(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-229544

(43)公開日 平成10年(1998) 8月25日

(51) Int.Cl. ⁶		識別記号	FΙ		
H 0 4 N	5/92		H04N	5/92	Н
G06F	3/12		G06F	3/12	Α
G 0 6 T	1/60			15/64	450A

審査請求 未請求 請求項の数26 OL (全 26 頁)

(21)出願番号	特顧平9-30885	(71)出顧人	000001007
(22) 出顧日	平成9年(1997)2月14日	(72)発明者 (74)代理人	キヤノン株式会社 東京都大田区下丸子3丁目30番2号 高橋 賢司 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 弁理士 大塚 康徳 (外1名)

(54) 【発明の名称】 画像処理装置及びその制御方法、画像処理システム、出力装置、記憶媒体

(57) 【要約】

【課題】 コストを上げることなく、トータルスループットを向上することができる画像処理装置及びその制御方法、画像処理システム、出力装置を提供する。

【解決手段】 デジタルカメラとプリンタが接続されて 構成される画像処理システムにおいて、デジタルカメラ 側のインタフェース部27によってプリンタと相互に通 信し、そのインタフェース部27を介してプリンタの記 録ヘッドの1走査で記録可能な画素数を受信する。受信 した画素数に基づいて、デジタルカメラに入力された画 像データを画像変換部25によって分割し圧縮する。

. :

30

【特許請求の範囲】

【請求項1】 入力された画像データに処理を施し出力 装置に出力する画像処理装置であって、

前記出力装置と相互に通信する通信手段と、

前記通信手段を介して、前記出力装置の画像データの出 力単位を示す出力単位情報を該出力装置より受信する受

前記受信手段で受信した出力単位情報に基づいて、前記 入力された画像データを分割し圧縮する圧縮手段とを備 えることを特徴とする画像処理装置。

【請求項2】 前記圧縮手段は、圧縮した画像データを 記憶する記憶手段を備えることを特徴とする請求項1に 記載の画像処理装置。

【請求項3】 前記出力単位及び前記出力装置の出力設 定に応じて前記記憶手段に記憶された画像データを、前 記通信手段を介して該出力装置へ送信することを特徴と する請求項1に記載の画像処理装置。

【請求項4】 前記出力設定は、少なくとも出力する画 像の拡大/縮小率、画像サイズに関する設定を含むこと を特徴とする請求項3に記載の画像処理装置。

【請求項5】 前記圧縮手段は、前記入力された画像デ ータを所定単位で分割し圧縮することを特徴とする請求 項1に記載の画像処理装置。

【請求項6】 前記所定単位は、8の倍数の画素数であ ることを特徴とする請求項5に記載の画像処理装置。

【請求項7】 前記圧縮手段は、前記入力された画像デ ータのピクセル方向あるいはライン方向の少なくとも一 方に対し、該入力された画像データを前記8の倍数の画 素数毎に分割し圧縮することを特徴とする請求項6に記 載の画像処理装置。

【請求項8】 前記通信手段は、IEEE1394シリ アルバスであることを特徴とする請求項1に記載の画像 処理装置。

【請求項9】 入力された画像データに処理を施し出力 装置に出力する画像処理装置の制御方法であって、

前記出力装置の画像データの出力単位を示す出力単位情 報を該出力装置より受信する受信工程と、

前記受信工程で受信した出力単位情報に基づいて、前記 入力された画像データを分割し圧縮する圧縮工程とを備 えることを特徴とする画像処理装置の制御方法。

【請求項10】 前記圧縮工程は、圧縮した画像データ を記憶媒体に記憶する記憶工程を備えることを特徴とす る請求項9に記載の画像処理装置の制御方法。

【請求項11】 前記出力単位及び前記出力装置の出力 設定に応じて前記記憶媒体に記憶された画像データを該 出力装置へ送信することを特徴とする請求項9に記載の 画像処理装置の制御方法。

【請求項12】 前記出力設定は、少なくとも出力する 画像の拡大/縮小率、画像サイズに関する設定を含むこ とを特徴とする請求項11に記載の画像処理装置の制御 50 方法。

前記圧縮工程は、前記入力された画像 【請求項13】 データを所定単位で分割し圧縮することを特徴とする請 求項9に記載の画像処理装置の制御方法。

2

【請求項14】 前記所定単位は、8の倍数の画素数で あることを特徴とする請求項13に記載の画像処理装置 の制御方法。

《請求項15》 前記圧縮工程は、前記入力された画像 データのピクセル方向あるいはライン方向の少なくとも 一方に対し、該入力された画像データを前記8の倍数の 画素数毎に分割し圧縮することを特徴とする請求項14 に記載の画像処理装置の制御方法。

【請求項16】 入力された画像データに処理を施す画 像処理装置と、該画像処理装置で処理された画像データ に基づく画像を出力する出力装置を有する画像処理シス テムであって、

前記画像処理装置と前記出力装置とで相互に通信する通 信手段と、

前記通信手段を介して、前記出力装置の画像データの出 20 力単位を示す出力単位情報を前記画像処理装置へ転送す る第1転送手段と、

前記通知手段で通知された出力単位情報に基づいて、前 記入力された画像データを分割し圧縮する圧縮手段と、 前記通信手段を介して、前記出力単位及び前記出力装置 の出力設定に応じて前記圧縮手段で圧縮された画像デー タを該出力装置へ転送する第2転送手段とを備えること 特徴とする画像処理システム。

【請求項17】 前記出力設定は、少なくとも出力する 画像の拡大/縮小率、画像サイズに関する設定を含むこ とを特徴とする請求項16に記載の画像処理システム。

【請求項18】 前記圧縮手段は、圧縮した画像データ を記憶する記憶手段を備えることを特徴とする請求項1 6に記載の画像処理システム。

【請求項19】 前記圧縮手段は、前記入力された画像 データを所定単位で分割し圧縮することを特徴とする請 求項16に記載の画像処理システム。

【請求項20】 前記通信手段は、IEEE1394シ リアルバスであることを特徴とする請求項16に記載の 画像処理システム。

40 【請求項21】 画像処理装置より入力された画像デー タに基づく画像を出力する出力装置であって、

前記画像処理装置と相互に通信する通信手段と、

前記通信手段を介して、前記画像処理装置へ当該出力装 置の画像データの出力単位を示す出力単位情報を送信す る送信手段と、

前記通信手段を介して、前記出力単位及び当該出力装置 の出力設定に応じた画像データを前記画像処理装置より 受信する受信手段とを備えることを特徴とする出力装 置。

【請求項22】 前記出力設定は、少なくとも出力する

30

40

3

画像の拡大/縮小率、画像サイズに関する設定を含むことを特徴とする請求項21に記載の出力装置。

【請求項23】 前記画像処理装置より入力された画像 データは、圧縮された画像データであり、

前記圧縮された画像データを解凍する解凍手段を更に備えることを特徴とする請求項21に記載の出力装置。

【請求項24】 前記画像処理装置より入力される画像 データは、所定単位で圧縮された画像データであり、 前記受信手段は、前記所定単位を示す情報を前記画像処 理装置より受信し、該所定単位を示す情報と前記出力単 位情報を比較する比較手段を備え、

前記比較手段の比較結果に基づいて、前記出力単位に対応する前記所定単位で圧縮された画像データ数を決定することを特徴とする請求項21に記載の出力装置。

【請求項25】 前記通信手段は、IEEE1394シリアルバスであることを特徴とする請求項21に記載の出力装置。

【請求項26】 入力された画像データに処理を施し出力装置に出力する画像処理装置の制御のプログラムコードが格納され方法がコンピュータより読み出し可能な記 20 憶媒体であって、

前記出力装置の画像データの出力単位を示す出力単位情報を該出力装置より受信する受信工程のプログラムコードと、

前記受信工程で受信した出力単位情報に基づいて、前記 入力された画像データを分割し圧縮する圧縮工程のプログラムコードとを備えることを特徴とする記憶媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、入力された画像データに処理を施し出力装置に出力する画像処理装置及びその制御方法、画像処理システム、出力装置、記憶媒体に関するものである。

[0002]

【従来の技術】従来、デジタルカメラで撮影された画像 データは、パーソナルへと送信され、画像データの出力 はパーソナルコンピュータと接続されているプリンタに より行われていた。しかしながら、パソコンユーザーで ないユーザーにもデジタルカメの使用を可能とするため に、デジタルカメラとプリンタを直接接続可能とし、画 像データに基づく画像を記録することができる画像処理 システムが開発されている。

【0003】一般的に、デジタルカメラには撮影した画像に基づく画像データを記憶するための記憶媒体の記憶容量に制限がある。そのため、その記憶媒体にできるだけ多くの画像データを記憶できるようにするため、画像データをJPEG圧縮して記憶媒体に記憶する。このようなJPEG圧縮された画像データを、デジタルカメラと直接接続されたプリンタによる記録(ダイレクトプリント)を行うためには、デジタルカメラあるいはプリン50

タにJPEG圧縮された画像データをJPEG解凍して 得られる画像データ量分の記憶容量を持つ記憶媒体を必 要とする。現在、このダイレクトプリントを実現してい る画像処理システムのプリンタは、A6サイズのため、 1枚の記録媒体に記録を行う記録動作でA6サイズの画 像データ複数分を記録することはない。そのため、A6 サイズの画像データ分の記憶容量を持つ記憶媒体(バッ ファメモリ)があれば実現可能である。しかし、例え ば、図1のように、A4サイズの記録媒体上にプリンタ の記録ヘッドの走査方向にA、B、Cの3つの画像を記 録する場合は、記録ヘッドの1走査で記録可能な画素数 が限定されているため、1回目の記録ヘッドの走査で は、バッファメモリに図1中のA1、B1、C1の部分 に対応する画像データを記憶、2回目の記録ヘッドの走 査では図1中のA2、B2、C2の部分といったよう に、各記録媒体の記録領域に対応する画像データを順次 バッファメモリに記憶していけば良い。

[0004]

【発明が解決しようとする課題】しかしながら、上記従来の画像処理システムにおいて、上記のような記録を実現するためには、デジタルカメラあるいはプリンタにJPEG圧縮されたA4サイズのA、B、Cの画像データをJPEG解凍した画像データ3つ分のバッファメモリを持つことで可能となるが、これはコスト等の問題から実現は困難である。

【0005】また、デジタルカメラあるいはプリンタに JPEG圧縮されたA4サイズの画像データをJPEG 解凍した画像データ1つ分のバッファメモリを持ち、A の画像データを JPEG解凍、Aの画像データの内A1 部分の画像データのバッファメモリへの書き込み、Bの 画像データをJPEG解凍、Bの画像データの内B1部 分の画像データのバッファメモリへの書き込み、Cの画 像データの JPEG解凍、Cの画像データの内C1部分 の画像データのバッファメモリへの書き込み、1回目の 記録ヘッドの走査、Aの画像データをJPEG解凍、A の画像データの内A2部分の画像データのバッファメモ リへの書き込み、Bの画像データをJPEG解凍、Bの 画像データの内B2部分の画像データのバッファメモリ への書き込み、この画像データのJPEG解凍、この画 像データの内C2部分の画像データのバッファメモリへ の書き込み、2回目の記録ヘッドの走査というような記 録を行うことで、バッファメモリを節約することもでき るが、JPEG圧縮された画像データのJPEG解凍す る回数が増えるため、記録速度が低下するという問題が 発生する。

【0006】本発明は上記の問題点に鑑みてなされたものであり、コストを上げることなく、トータルスループットを向上することができる画像処理装置及びその制御方法、画像処理システム、出力装置、媒体を提供することを目的とする。

20

30

40

[0007]

【課題を解決するための手段】上記の目的を解決するた めの本発明による画像処理装置は以下の構成を備える。 即ち、入力された画像データに処理を施し出力装置に出 力する画像処理装置であって、前記出力装置と相互に通 信する通信手段と、前記通信手段を介して、前記出力装 置の画像データの出力単位を示す出力単位情報を該出力 装置より受信する受信手段と、前記受信手段で受信した 出力単位情報に基づいて、前記入力された画像データを 分割し圧縮する圧縮手段とを備える。

【0008】また、好ましくは、前記圧縮手段は、圧縮 した画像データを記憶する記憶手段を備える。また、好 ましくは、前記出力単位及び前記出力装置の出力設定に 応じて前記記憶手段に記憶された画像データを、前記通 信手段を介して該出力装置へ送信するまた、好ましく は、前記出力設定は、少なくとも出力する画像の拡大/ 縮小率、画像サイズに関する設定を含む。

【0009】また、好ましくは、前記圧縮手段は、前記 入力された画像データを所定単位で分割し圧縮する。ま た、好ましくは、前記所定単位は、8の倍数の画素数で ある。前記圧縮手段は、前記入力された画像データのピ クセル方向あるいはライン方向の少なくとも一方に対 し、該入力された画像データを前記8の倍数の画素数毎 に分割し圧縮する。

【0010】また、好ましくは、前記通信手段は、IE EE1394シリアルバスである。上記の目的を達成す るための本発明による画像処理装置の制御方法は以下の 構成を備える、即ち、入力された画像データに処理を施 し出力装置に出力する画像処理装置の制御方法であっ て、前記出力装置の画像データの出力単位を示す出力単 位情報を該出力装置より受信する受信工程と、前記受信 工程で受信した出力単位情報に基づいて、前記入力され た画像データを分割し圧縮する圧縮工程とを備える。

【0011】上記の目的を達成するための本発明による 画像処理システムは以下の構成を備える。即ち、入力さ れた画像データに処理を施す画像処理装置と、該画像処 理装置で処理された画像データに基づく画像を出力する 出力装置を有する画像処理システムであって、前記画像 処理装置と前記出力装置とで相互に通信する通信手段 と、前記通信手段を介して、前記出力装置の画像データ の出力単位を示す出力単位情報を前記画像処理装置へ転 送する第1転送手段と、前記通知手段で通知された出力 単位情報に基づいて、前記入力された画像データを分割 し圧縮する圧縮手段と、前記通信手段を介して、前記出 力単位及び前記出力装置の出力設定に応じて前記圧縮手 段で圧縮された画像データを該出力装置へ転送する第2 転送手段とを備える。

【0012】上記の目的を達成するための本発明による 出力装置は以下の構成を備える。即ち、画像処理装置よ

置であって、前記画像処理装置と相互に通信する通信手 段と、前記通信手段を介して、前記画像処理装置へ当該 出力装置の画像データの出力単位を示す出力単位情報を 送信する送信手段と、前記通信手段を介して、前記出力 単位及び当該出力装置の出力設定に応じた画像データを

前記画像処理装置より受信する受信手段とを備える。

[0013]

【発明の実施の形態】以下の実施形態では、デジタルカ メラとプリンタとの接続にデジタルインターフェース (D-I/F) を用いた例を説明するが、これに先立 ち、本実施形態で採用可能なDーI/Fの代表技術とし て、IEEE1394を説明する。

《IEEE1394の技術の概要》民生用デジタルVC RやDVDプレーヤの登場に伴なって、ビデオデータや オーディオデータなどを通信するために、リアルタイム で、かつ高情報量のデータ転送のサポートが必要になっ ている。こういったビデオデータやオーディオデータを リアルタイムで転送し、パソコン(PC)に取り込んだ り、またはその他のデジタル機器に転送を行なうには、 必要な転送機能を備えた高速データ転送可能なインタフ ェースが必要になってくる。そういった観点から開発さ れたインタフェースが、IEEE1394-1995 (HighPerformance Serial Bus、以下1394シリアル バスという) である。

【0014】図11は、1394シリアルバスを用いて 構成されるネットワーク・システムの構成例を示す図で ある。このシステムは機器A, B, C, D, E, F, G, Hを備えており、A-B間、A-C間、B-D間、 D-E間、C-F間、C-G間、及びC-H間はそれぞ れ1394シリアルバスのツイスト・ペア・ケーブルで 接続されている。これらの機器A~Hは、例えばパソコ ン、デジタルVTR、DVD、デジタルカメラ、ハード ディスク、モニタ、チューナー等である。

【0015】各機器間の接続方式は、ディジーチェーン 方式とノード分岐方式とを混在可能としたものであり、 自由度の高い接続が可能である。また、各機器は各自固 有のIDを有し、それぞれが認識し合うことによって1 394シリアルバスで接続された範囲において、1つの ネットワークを構成している。各デジタル機器間をそれ ぞれ1本の1394シリアルバスケーブルで順次接続す るだけで、それぞれの機器が中継の役割を行い、全体と して1つのネットワークを構成するものである。また、 1394シリアルバスはPlug&Play機能を有し、ケーブ ルを機器に接続した時点で自動的に機器の認識や接続状 況などを認識する機能を有している。

【0016】また、図11に示したようなシステムにお いて、ネットワークからある機器が削除されたり、また は新たに追加されたときなどには、自動的にバスリセッ トを行い、それまでのネットワーク構成をリセットして り入力された画像データに基づく画像を出力する出力装 50 から、新たなネットワークの再構築を行なう。この機能

(5)

10

30

によって、その時々のネットワークの構成を常時設定、 認識することができる。

【0017】またデータ転送速度は、100/200/400Mbpsを備えており、上位の転送速度を持つ機器が下位の転送速度をサポートし、互換をとるようになっている。データ転送モードとしては、コントロール信号などの非同期データ(Asynchronousデータ:以下Asyncデータという)を転送するAsynchronous転送モードとリアルタイムなビデオデータやオーディオデータ等の同期データ(Isochronousデータ:以下Isoデータという)を転送するIsochronous転送モードがある。このAsyncデータとIsoデータは、各サイクル(通常1サイクル125 μ s)の中において、サイクル開始を示すサイクル・スタート・パケット(CSP)を転送した後、Isoデータの転送をAsyncデータより優先しつつサイクル内で混在して転送される。

【0018】図12は1394シリアルバスの構成要素を示す図である。1394シリアルバスは全体としてレイヤ(階層)構造で構成されている。図12に示したように、1394シリアルバスのケーブルとコネクタが接続されるコネクタポートがあり、その上にハードウェアとしてフィジカル・レイヤとリンク・レイヤを位置づけしている。

【0019】ハードウェア部は実質的なインターフェイスチップの部分であり、そのうちフィジカル・レイヤは符号化やコネクタ関連の制御等を行い、リンク・レイヤはパケット転送やサイクルタイムの制御等を行なう。ファームウェア部のトランザクション・レイヤは、転送(トランザクション)すべきデータの管理を行ない、Read、Write、Lockの命令を出す。シリアルバスマネージメント(マネージメント・レイヤ)は、接続されている各機器の接続状況やIDの管理を行ない、ネットワークの構成を管理する部分である。以上のハードウェア及びファームウェアまでが実質上の1394シリアルバスの構成である。

【0020】またソフトウェア部のアプリケーション・レイヤは、使用するアプリケーションソフトによって異なり、インタフェース上にのせるデータを規定する部分であり、プリンタプロトコルやAVCプロトコルなどが規定されている。以上が1394シリアルバスに構成である。図13は、1394シリアルバスにおけるアドレス空間を示す図である。1394シリアルバスに接続された各機器(ノード)には必ず各ノード固有の64ビットアドレスを持たせておく。そしてこのアドレスをROMに格納しておくことで、自分や相手のノードアドレスを常時認識できるとともに、相手を指定した通信も行なえる。1394シリアルバスのアドレッシングは、IEEE1212規格に準じた方式であり、アドレス設定は、最初の10bitがバスの番号の指定用に、次の6bitがノードID番号の指定用に使われる。そして、

残りの48bitが機器に与えられたアドレス幅になり、それぞれ固有のアドレス空間として使用できる。なお、48bit中の後半の28bitは固有データの領域として、各機器の識別や使用条件の指定の情報などを格納する。

【0021】以上が1394シリアルバスの技術の概要である。次に、1394シリアルバスの特徴といえる技術の部分を、より詳細に説明することにする。

《1394シリアルバスの電気的仕様》図14は1394シリアルバス・ケーブルの断面図である。1394シリアルバスでは接続ケーブル内に6ピン、即ち2組のツイストペア信号線の他に、電源ラインを設けている。これによって、電源を持たない機器や、故障により電圧低下した機器等にも電力の供給が可能になっている。なお、電源線内を流れる電源の電圧は8~40V、電流は最大電流DC1.5Aと規定されている。なお、DVケーブルと呼ばれる規格では電源を省いた4ピンで構成されている。

【0022】《DS-Link符号化》図15は、13 94シリアルバスで採用されている、データ転送フォー マットのDS-Link符号化方式を説明するための図 である。1394シリアルバスでは、DS-Link (Data/Strobe Link) 符号化方式が採用されている。 このDS-Link符号化方式は、高速なシリアルデー タ通信に適しており、その構成は、2本の信号線を必要 とする。より対線のうち1本に主となるデータを送り、 他方のより対線にはストローブ信号を送る構成になって いる。受信側では、この通信されるデータと、ストロー ブとの排他的論理和をとることによってクロックを再現 する。このDS-Link符号化方式を用いるメリット として、8/10B変換に比べて転送効率が高いこと、 PLL回路が不要となるのでコントローラLS Iの回路 規模を小さくできること、更には、転送すべきデータが 無いときにアイドル状態であることを示す情報を送る必 要が無いので、各機器のトランシーバ回路をスリープ状 態にすることができることによって、消費電力の低減が 図れる、などが挙げられる。

【0023】《バスリセットのシーケンス》1394シリアルバスでは、接続されている各機器(ノード)にはノードIDが与えられ、ネットワーク構成として認識されている。このネットワーク構成に変化があったとき、例えばノードの挿抜や電源のON/OFFなどによるノード数の増減などによって変化が生じて、新たなネットワーク構成を認識する必要があるとき、変化を検知した各ノードはバス上にバスリセット信号を送信して、新たなネットワーク構成を認識するモードに入る。このときの変化の検知方法は、1394ポート基板上でのバイアス電圧の変化を検知することによって行われる。

【0024】あるノードからバスリセット信号が伝達さ 50 れると、各ノードのフィジカルレイヤはこのバスリセッ

10

ト信号を受けると同時にリンクレイヤにバスリセットの 発生を伝達し、かつ他のノードにバスリセット信号を伝 達する。最終的にすべてのノードがバスリセット信号を 検知した後、バスリセットが起動される。バスリセット は、先に述べたようなケーブル抜挿や、ネットワーク異 常等によるハード検出によって起動されるが、プロトコ ルからのホスト制御などによってフィジカルレイヤに直 接命令を出すことによっても起動される。また、バスリ セットが起動するとデータ転送は一時中断され、データ 転送は当該バスリセットの処理の間待たされることにな る。そして、バスリセットの終了後、新しいネットワー ク構成のもとで再開される。以上がバスリセットのシー ケンスである。

【0025】《ノードID決定のシーケンス》バスリセ ットの後、各ノードは新しいネットワーク構成を構築す るために、各ノードに I Dを与える動作に入る。このと きの、バスリセットからノードID決定までの一般的な シーケンスを図23、24、25のフローチャートを用 いて説明する。

【0026】図23は、バスリセットの発生からノード 20 IDが決定し、データ転送が行えるようになるまでの、 一連のバスの作業を示すフローチャートである。まず、 ステップS101において、ネットワーク内にバスリセ ットが発生することを常時監視し、ここでノードの電源 ON/OFFなどによってバスリセットが発生するとス テップS102に移る。ステップS102では、ネット ワークがリセットされた状態から、新たなネットワーク の接続状況を知るために、直接接続されている各ノード 間において親子関係の宣言がなされる。ステップS10 3において、すべてのノード間で親子関係が決定された と判断されると、ステップS104へ進み、一つのルー トを決定する。なお、すべてのノード間で親子関係が決 定するまでは、ステップS102の親子関係の宣言をお こない、またルートも決定されない。

【0027】ステップS104でルートが決定される と、ステップS105において、各ノードにIDを与え るノードIDの設定作業が行われる。所定のノード順序 で、ノードIDの設定が行われ、すべてのノードにID が与えられるまで繰り返し設定作業が行われる(ステッ プS106)。最終的にすべてのノードにIDを設定し 終えると、新しいネットワーク構成がすべてのノードに おいて認識されたことになる。よって、処理はステップ S106からステップS107へ進み、ノード間のデー 夕転送が行える状態となり、データ転送が開始される。 【0028】そして、このステップS107の状態にな ると、再びバスリセットが発生するのを監視するモード に入り、バスリセットが発生したらステップS101か らステップS106までの設定作業が繰り返し行われ る。以上が、図23のフローチャートの説明であるが、 図23のフローチャートのバスリセットからルート決定 50

までの部分と、ルート決定後からID設定終了までの手 順を図24及び図25を参照して更に詳しく説明する。 図24は、各ノードにおけるバスリセットからルート決 定までの処理を説明するフローチャートである。また、 図25は、ルート決定後からID設定終了までの手順を 示すフローチャートである。

【0029】まず、図24を参照して説明を行う。ステ ップS201においてバスリセットが発生すると、ネッ トワーク構成は一旦リセットされ、処理はステップS2 02へ進む。なお、ステップS201では、バスリセッ トが発生するのを常に監視している。次に、ステップS 202において、リセットされたネットワークの接続状 況を再認識する作業の第一段階として、各機器にリーフ (ノード) であることを示すフラグを立てておく。

【0030】次に、ステップS203において、各機器 が自分の持つポートがいくつ他ノードと接続されている のかを調べる。ステップS204では、ポート数に基づ いて親子関係の宣言を始めていくために、未定義(親子 関係が決定されてない) ポートの数を調べる。バスリセ ットの直後はポート数=未定義ポート数であるが、親子 関係が決定されていくにしたがって、ステップS204 で検知する未定義ポートの数は変化していくものであ る。

【0031】まず、バスリセットの直後、はじめに親子 関係の宣言を行えるのはリーフに限られている。リーフ であるというのはステップS203のポート数の確認で 知ることができる。即ち、リーフは、親子関係が未定義 の段階で未定義ポート数が1のものである。リーフは、 ステップS205において、自分に接続されているノー ドに対して、「自分は子、相手は親」と宣言し動作を終 了する。

【0032】ステップS203でポート数が複数ありブ ランチと認識したノードは、バスリセットの直後はステ ップS204で未定義ポート数>1ということになるの で、ステップS206へ移り、ブランチというフラグが 立てられる。そして、ステップS207でリーフからの 親子関係宣言で「親」の受付をするために待つ。リーフ である他のノードが親子関係の宣言を行い、ステップS 207でそれを受けたプランチは、適宜ステップS20 4の未定義ポート数の確認を行う。ここで、未定義ポー ト数が1になっていれば残っているポートに接続されて いるノードに対して、ステップS205の「Child (自分が子)」の宣言をすることが可能になる。2度目 以降のステップS204の処理で未定義ポート数を確認 しても2以上あるプランチに対しては、再度ステップS 207でリーフ又は他のブランチからの「親」の受付を するために待つ。

【0033】最終的に、いずれか1つのブランチ、又は 例外的にリーフ(子宣言を行えるのにすばやく動作しな かった為)がステップS204の未定義ポート数の確認

20

30

12

の結果としてゼロになったら、これにてネットワーク全体の親子関係の宣言が終了したものであり、未定義ポート数がゼロ(すべて親のポートとして決定)になった唯一のノードはステップS208においてルートのフラグが立てられ、ステップS209においてルートとしての認識がなされる。このようにして、図24に示したバスリセットから、ネットワーク内すべてのノード間における親子関係の宣言までが終了する。

【0034】つぎに、図25のフローチャートについて 説明する。まず、図24までのシーケンスでリーフ、ブ ランチ、ルートという各ノードのフラグの情報が設定さ れているので、これを元にして、ステップS301でそ れぞれ分類する。各ノードに I Dを与える作業として、 最初に I Dの設定を行うことができるのはリーフからで ある。リーフ→ブランチ→ルートの順で若い番号(ノー ド番号=0~)から I Dの設定がなされていく。

【0035】ステップS302において、ネットワーク内に存在するリーフの数N(Nは自然数)を設定する。この後、ステップS303において各リーフがルートに対してIDを与えるように要求する。この要求が複数ある場合には、ルートはステップS304においてアービトレーションを行い、ステップS305において勝ったノード1つにID番号を与え、負けたノードには失敗の結果通知を行う。ステップS306においてID取得が失敗に終わったリーフは、再度ID要求を出し、同様の作業を繰り返す。

【0036】IDを取得できたリーフはステップS307においてそのノードのID情報をブロードキャストで全ノードに転送する。1ノードID情報のブロードキャストが終わると、ステップS308において残りのリーフの数Nが1つ減らされる。ここで、ステップS309において、この残りのリーフの数Nが1以上ある場合はステップS303からのID要求の作業を繰り返し行う。そして、最終的にすべてのリーフがID情報をブロードキャストすると、ステップS309においてN=0となり、ブランチのID設定のためにステップS310に移る。

【0037】ブランチのID設定もリーフの時と同様に行われる。まず、ステップS310においてネットワーク内に存在するブランチの数M(Mは自然数)を設定す 40る。この後、ステップS311として各ブランチがルートに対して、IDを与えるように要求する。これに対してルートは、ステップS312においてアービトレーションを行い、勝ったブランチから順に、リーフに与え終った番号の次に若い番号から与えていく。ステップS313において、ルートは要求を出したブランチにID情報又は失敗結果を通知する。ステップS314において、ID取得が失敗に終わったブランチは、再度ID要求を出し、同様の作業を繰り返す。

【0038】 I Dを取得できたブランチからステップS 50

315へ進み、そのノードのID情報をブロードキャストで全ノードに転送する。1ノードID情報のブロードキャストが終わると、ステップS316において、残りのブランチの数Mが1つ減らされる。ここで、ステップS317において、この残りのブランチの数Mが1以上ある場合はステップS311からのID要求の作業を繰り返し、最終的にすべてのブランチがID情報をブロードキャストするまで行われる。すべてのブランチがノードIDを取得すると、ステップS317においてM=0となり、ブランチのID取得モードが終了する。

【0039】ここまで終了すると、最終的にID情報を取得していないノードはルートのみなので、ステップS318において与えていない番号で最も若い番号を自分のID番号と設定し、ステップS319としてルートのID情報をブロードキャストする。以上で、図25に示したように、親子関係が決定した後から、すべてのノードのIDが設定されるまでの手順が終了する。

【0040】次に、一例として、図16に示した実際のネットワークにおけるバスリセット時のネットワーク構築動作を説明する。図16は、バスリセット時のネットワーク構築動作を説明するための図である。図16において、ノードB(ルート)の下位にはノードAとノードCが直接接続されており、更にノードCの下位にはノードDが直接接続されており、更にノードDの下位にはノードEとノードFが直接接続された階層構造になっている。このような、階層構造やルートノード、ノードIDを決定する手順を以下で説明する。

【0041】バスリセットがされた後、まず各ノードの接続状況を認識するために、各ノードの直接接続されているポート間において、親子関係の宣言がなされる。この親子とは親側が階層構造で上位となり、子側が下位となると言うことができる。図16ではバスリセットの後、最初に親子関係の宣言を行なったのはノードAである。基本的にノードの1つのポートにのみ接続があるノード(リーフと呼ぶ)から親子関係の宣言を行なうことができる。これは、自分には1ポートの接続のみしかない、ということをまず知ることができるので、これによってネットワークの端であることを認識し、その中で早く動作を行なったノードから親子関係が決定されていく。こうして親子関係の宣言を行なった側(A-B間で

く。こうして親子関係の宣言を行なった側(A-B間ではノードA)のポートが子と設定され、相手側(ノードB)のポートが親と設定される。こうして、ノードA-B間では子一親、ノードE-D間で子一親、ノードF-D間で子一親と決定される。

【0042】さらに1階層あがって、今度は複数個接続ポートを持つノード(ブランチと呼ぶ)のうち、他ノードからの親子関係の宣言を受けたものから順次、更に上位に親子関係の宣言を行なっていく。図16ではまずノードDがD-E間、D-F間と親子関係が決定した後、

ノードCに対する親子関係の宣言を行っており、その結

(8)

10

30

40

果ノードD-C間で子-親と決定している。

【0043】ノードDからの親子関係の宣言を受けたノ ードCは、もう一つのポートに接続されているノードB に対して親子関係の宣言を行なっている。これによって ノードC-B間で子-親と決定している。このようにし て、図16のような階層構造が構成され、最終的に、接 続されているすべてのポートにおいて親となったノード Bが、ルートノードと決定されることになる。ルートは 1つのネットワーク構成中に一つしか存在しないもので ある。

【0044】なお、この図16においてノードBがルー トノードと決定されたが、これはノードAから親子関係 宣言を受けたノードBが、他のノードに対して親子関係 宣言を早いタイミングで行なっていれば、ルートノード は他ノードに移っていたこともあり得る。すなわち、伝 達されるタイミングによってはどのノードもルートノー ドとなる可能性があり、同じネットワーク構成でもルー トノードは一定とは限らない。

【0045】ルートノードが決定すると、次は各ノード IDを決定するモードに入る。ここではすべてのノード 20 が、決定した自分のノードIDを他のすべてのノードに 通知する(ブロードキャスト機能)。自己ID情報は、 自分のノード番号、接続されている位置の情報、持って いるポートの数、接続のあるポートの数、各ポートの親 子関係の情報等を含んでいる。

【0046】ノードID番号の割り振りの手順として は、まず1つのポートにのみ接続があるノード(リー フ) から起動することができ、この中から順にノード番 号=0、1、2…と割り当てられる。ノードIDを獲得 したノードは、ノード番号を含む情報をプロードキャス トで各ノードに送信する。これによって、そのID番号 は『割り当て済み』であることが認識される。

【0047】すべてのリーフが自己ノードIDを取得し 終ると、次はブランチへ移りリーフに引き続いたノード ID番号が各ノードに割り当てられる。リーフと同様 に、ノードID番号が割り当てられたブランチから順次 ノードID情報をブロードキャストし、最後にルートノ ードが自己ID情報をブロードキャストする。すなわち 常にルートは最大のノードID番号を所有するものであ る。

【0048】以上のようにして、階層構造全体のノード IDの割り当てが終わり、ネットワーク構成が再構築さ れ、バスの初期化作業が完了する。

《アービトレーション》1394シリアルバスでは、デ ータ転送に先立って必ずバス使用権のアービトレーショ ン(調停)を行なう。1394シリアルバスは個別に接 続された各機器が、転送された信号をそれぞれ中継する ことによって、ネットワーク内すべての機器に同信号を 伝えるように、論理的なバス型ネットワークであるの

必要である。これによってある時間には、たった一つの ノードのみ転送を行なうことができる。

【0049】図17は1394紙リアルバスにおけるア ービトレーションを説明する図である。特に、図17の (a) はバス使用要求の流れを示し、図17の(b) は バス使用許可の流れを示す。アービトレーションが始ま ると、1つもしくは複数のノードが親ノードに向かっ て、それぞれバス使用権の要求を発する。図17 (a) のノードCとノードFがバス使用権の要求を発している ノードである。これを受けた親ノード(図17ではノー ドA) は更に親ノードに向かって、バス使用権の要求を 発する(中継する)。この要求は最終的に調停を行なう ルートに届けられる。

【0050】バス使用要求を受けたルートノード(ノー ドB)は、どのノードにバスを使用させるかを決める。 この調停作業はルートノードのみが行なえるものであ り、調停によって勝ったノードにはバスの使用許可が与 えられる。図17の(b)ではノードCに使用許可が与 えられ、ノードFの使用要求は拒否されたことを示して いる。アービトレーションに負けたノードに対してはD P (data prefix) パケットを送り、要求が拒否された ことを知らせる。要求が拒否されたノードのバス使用要 求は次回のアービトレーションまで待たされる。

【0051】以上のようにして、アービトレーションに 勝ってバスの使用許可を得たノードは、以降データの転 送を開始できる。ここで、アービトレーションの一連の 流れをフローチャート図26を参照して説明する。図2 6はアービトレーションの処理手順を表すフローチャー トである。ノードがデータ転送を開始できる為には、バ スがアイドル状態であることが必要である。先に行われ ていたデータ転送が終了して、現在バスが空き状態であ ることを認識するためには、各転送モードで個別に設定 されている所定のアイドル時間ギャップ長 (例. サブア クション・ギャップ) を経過する事によって、各ノード は自分の転送が開始できると判断する。

【0052】ステップS401において、Asyncデー タ、Isoデータ等それぞれ転送するデータに応じた所定 のギャップ長が得られたか判断する。所定のギャップ長 が得られない限り、転送を開始するために必要なバス使 用権の要求はできないので、所定のギャップ長が得られ るまで待つ。ステップS401で所定のギャップ長が得 られたら、ステップS402において転送すべきデータ があるかを判断し、あればステップS403へ進む。

【0053】ステップS403では、データ転送をする ためにバスを確保するよう、バス使用権の要求をルート に対して発する。このときの、バス使用権の要求を表す 信号の伝達は、図17の(a)に示したように、ネット ワーク内の各機器を中継しながら、最終的にルートに届 けられる。一方、ステップS402で転送するデータが で、パケットの衝突を防ぐ意味でアービトレーションは 50 ない場合は、そのまま待機する。次に、ステップS40

40

16

4において、ルートノードはステップS403で発行されたバス使用要求を受信する。そして、ステップS405において、ルートは使用要求を出したノードの数を調べる。ステップS405で使用要求を出したノードの数が1(使用権要求を出したノードが1つ)だったら、そのノードに直後のバス使用許可が与えられることとなる。一方、ステップS405において、ノード数>1(使用要求を出したノードは複数)だったら、ルートはステップS406において使用許可を与えるノードを1つに決定する調停作業を行う。この調停作業は公平なものであり、毎回同じノードばかりが許可を得る様なことはなく、平等に権利を与えていくような構成となっている(フェア・アービトレーション)。

【0054】次に、ステップS407において、ステッ プS406で使用要求を出した複数ノードの中からルー トが調停して使用許可を得た1つのノードと、敗れたそ の他のノードに分ける選択を行う。ここで、調停されて 使用許可を得た1つのノード、またはステップS405 において使用要求ノード数=1で調停無しに使用許可を 得たノードには、ステップS408として、ルートはそ のノードに対して許可信号を送る。許可信号を得たノー ドは、受け取った直後に転送すべきデータ(パケット) を転送開始する。また、ステップS406の調停で敗れ て、バス使用が許可されなかったノードには、ステップ S409において、ルートから、アービトレーション失 敗を示すDP (data prefix) パケットを送られ、これ を受け取ったノードは再度転送を行うためのバス使用要 求を出すため、ステップS401まで戻り、所定ギャッ プ長が得られるまで待機する。

【0055】以上が1394シリアルバスによるアービ 30トレーションの流れである。

《アシンクロナス(Asynchronous、非同期)転送》アシンクロナス転送は、非同期転送である。図18はアシンクロナス転送における時間的な遷移状態を示す図である。図18の最初のサブアクション・ギャップは、バスのアイドル状態を示すものである。このアイドル時間が一定値になった時点で、転送を希望するノードはバスが使用できると判断してバス使用要求を発行し、バス獲得のためのアービトレーションが実行される。

【0056】アービトレーションでバスの使用許可を得ると、次にデータの転送がパケット形式で実行される。データ転送後、当該データを受信したノードは、転送されたデータに対しての受信結果のack(受信確認用返送コード)をack gapという短いギャップの後、返送して応答するか、応答パケットを送ることによって転送が完了する。ackは4ビットの情報と4ビットのチェックサムからなり、成功か、ビジー状態か、ペンディング状態であるかといった情報を含み、すぐに送信元ノードに返送される。

【0057】次に、アシンクロナス転送のパケットフォ 50 われる。しかし、アシンクロナス転送のように1対1の

ーマットを説明する。図19はアシンクロナス転送のパケットフォーマットの例を示す図である。パケットには、データ部及び誤り訂正用のデータCRCの他にヘッダ部がある。ヘッダ部には図19に示したような、目的ノードID、ソースノードID、転送データ長さや各種コードなどが書き込まれ、転送が行なわれる。また、アシンクロナス転送は自己ノードから相手ノードへの1対1の通信である。転送元ノードから転送されたパケットは、ネットワーク中の各ノードに行き渡るが、自分宛てのアドレス以外のものは無視されるので、宛先の1つのノードのみが読込むことになる。以上がアシンクロナス転送の説明である。

【0058】《アイソクロナス(Isochronous、同期)転送》アイソクロナス転送は同期転送である。1394シリアルバスの最大の特徴であるともいえるこのアイソクロナス転送は、特に映像データや音声データといったマルチメディアデータなど、リアルタイムな転送を必要とするデータの転送に適した転送モードである。また、アシンクロナス転送(非同期)が1対1の転送であったのに対し、このアイソクロナス転送はプロードキャスト機能によって、転送元の1つのノードから他のすべてのノードへ一様にデータが転送される。

【0059】図20はアイソクロナス転送における、時間的な遷移状態を示す図である。アイソクロナス転送は、バス上一定時間毎に実行される。この時間間隔をアイソクロナスサイクルと呼ぶ。アイソクロナスサイクル時間は、 125μ sである。この各サイクルの開始時間を示し、各ノードの時間調整を行なう役割を担っているのがサイクル・スタート・パケットを送信するのは、サイクル・マスタと呼ばれるノードであり、1つ前のサイクル内のデータ転送終了後、所定のアイドル期間(サブアクションギャップ)を経た後、本サイクルの開始を告げるサイクル・スタート・パケットを送信する。このサイクル・スタート・パケットの送信される時間間隔が 125μ sとなる。

【0060】また、図20にチャネルA、チャネルB、チャネルCと示したように、1サイクル内において複数種のパケットがチャネルIDをそれぞれ与えられることによって、区別して転送できる。これによって同時に複数ノード間でのリアルタイムな転送が可能であり、また受信するノードでは自分が欲しいチャネルIDのデータのみを取り込む。このチャネルIDは送信先のアドレスを表すものではなく、データに対する論理的な番号を与えているに過ぎない。よって、あるパケットの送信は1つの送信元ノードから他のすべてのノードに行き渡る、ブロードキャストで転送されることになる。

【0061】アイソクロナス転送のパケット送信に先立って、アシンクロナス転送同様アービトレーションが行われる。しかし、アシンクロナス転送のように1対1の

(10)

10

30

17

通信ではないので、アイソクロナス転送にはack(受信確認用返信コード)は存在しない。また、図20に示した iso gap(アイソクロナスギャップ)とは、アイソクロナス転送を行なう前にバスが空き状態であると認識するために必要なアイドル期間を表している。この所定のアイドル期間を経過すると、アイソクロナス転送を行ないたいノードはバスが空いていると判断し、転送前のアービトレーションを行なうことができる。

【0062】つぎに、アイソクロナス転送のパケットフォーマットについて説明する。図21はアイソクロナス転送のパケットフォーマットの例を示す図である。各チャネルに分かれた、各種のパケットにはそれぞれデータ部及び誤り訂正用のデータCRCの他に、ヘッダ部がある。そのヘッダ部には図21に示したような、転送データ長やチャネルNO.、その他各種コード及び誤り訂正用のヘッダCRCなどが書き込まれ、転送が行なわれる。以上がアイソクロナス転送の説明である。

【0063】《バス・サイクル》実際の1394シリアルバス上の転送では、アイソクロナス転送と、アシンクロナス転送は混在できる。図22は、アイソクロナス転送とアシンクロナス転送とが混在した、バス上の転送状態の時間的な遷移の様子を表した図である。アイソクロナス転送はアシンクロナス転送より優先して実行される。その理由は、サイクル・スタート・パケットの後、アシンクロナス転送を起動するために必要なアイドル期間のギャップ長(サブアクションギャップ)よりも短いギャップ長(アイソクロナスギャップ)で、アイソクロナス転送を起動できるからである。したがって、アシンクロナス転送となる。

【0064】図22に示した一般的なバスサイクルにおいて、サイクル#mのスタート時にサイクル・スタート・パケットがサイクル・マスタから各ノードに転送される。これによって、各ノードで時刻調整を行ない、所定のアイドル期間(アイソクロナスギャップ)を待ってからアイソクロナス転送を行なうべきノードはアービトレーションを行い、パケット転送に入る。図22ではチャネルeとチャネルsとチャネルkが順にアイソクロナス転送されている。

【0065】このアービトレーションからパケット転送までの動作を、与えられているチャネル分繰り返し行なった後、サイクル#mにおけるアイソクロナス転送がすべて終了したら、アシンクロナス転送を行うことができるようになる。アイドル時間がアシンクロナス転送が可能なサブアクションギャップに達することによって、アシンクロナス転送を行いたいノードはアービトレーションの実行に移れると判断する。ただし、アシンクロナス転送が行える期間は、アイソクロナス転送終了後から、次のサイクル・スタート・パケットを転送すべき時間(cycle synch)までの間に、アシンクロナス転送を起

動するためのサブアクションギャップが得られた場合に 限っている。

【0066】図22のサイクル#mでは3つのチャネル分のアイソクロナス転送と、その後アシンクロナス転送 (ackを含む) が2パケット (パケット1、パケット2) 転送されている。このアシンクロナスパケット2の後は、サイクルm+1をスタートすべき時間 (cycle synch) にいたるので、サイクル#mでの転送はここまでで終わる。

【0067】ただし、非同期または同期転送動作中に次のサイクル・スタート・パケットを送信すべき時間(cy cle synch)に至ったとしたら、無理に中断せず、その転送が終了した後のアイドル期間を待ってから次サイクルのサイクル・スタート・パケットを送信する。すなわち、1つのサイクルが 125μ s以上続いたときは、その分次サイクルは基準の 125μ s より短縮されたとする。このようにアイソクロナス・サイクルは 125μ s を基準に超過、短縮し得るものである。しかし、アイソクロナス転送はリアルタイム転送を維持するために毎サイクル必要であれば必ず実行され、アシンクロナス転送はサイクル時間が短縮されたことによって次以降のサイクルにまわされることもある。こういった遅延情報も含めて、サイクル・マスタによって管理される。

【0068】<実施形態1>本発明の実施形態1では、 画像処理装置と出力装置とが接続され、その画像処理装 置で処理された画像データに基づく画像を出力装置で出 力する画像処理システムにおいて、画像処理装置として デジタルカメラ、出力装置としてプリンタで構成した図 4に示すような画像処理システムを例に挙げて説明す る。

【0069】まず、デジタルカメラの機能構成及びその動作について、図2を用いて説明する。図2は本発明の実施形態1のデジタルカメラの機能構成を示すブロック図である。尚、ここでは、図1に示した画像データに対応する画像を記録する場合を例に挙げて説明する。

【0070】まず、レンズ系21より得られる画像はC C D素子22面上に結像される。C C D素子22より得られたアナログ信号は、A/D変換部23によりデジタル信号へと変換される。変換されたデジタル信号は、画像処理部24へと送信され、色変換処理、エッジ強調処理、ガンマ補正処理等の画像処理が施された画像データに変換される。次に、画像データは画像変換部25へと送信される。画像変換部25では、プリンタの記録へッドの1走査によって記録可能な画素数幅毎に画像データが分割され、分割された画像データ毎にJPEG圧縮されてデータ記録部26に記録される。

【0071】尚、画像データのデータ記録部26への記録の管理は、データ記録部26のアドレスに基づいて行われる。例えば、プリンタの記録に用いる1枚の記録媒50 体分の画像データAが3つの画像データA1、A2、A

40

50

3に分割されてJPEG圧縮されている場合、画像データA1、A2、A3が記録されているデータ記録部26のそれぞれの先頭アドレスが、データ記録部26内のアドレス管理部(不図示)によって管理される。

【0072】以上のような処理を画像データB、画像データCに対しても実行する。この場合、画像データBは、画像データB1、B2、B3に分割されJPEG圧縮されてデータ記録部26へ記録され、画像データCは画像データC1、C2、C3に分割されJPEG圧縮されてデータ記録部26へ記録される。次に、上記のデジタルカメラに接続されたプリンタの機能構成及び動作について、図3を用いて説明する。

【0073】尚、実施形態1のプリンタは、インクジェット方式による記録ヘッドを搭載したインクジェットプリンタであるとし、記録ヘッドは、その走査方向(ピクセル方向)及び記録ヘッドの走査方向とは垂直な方向、つまり、記録媒体の搬送方向(ライン方向)にそれぞれ64個のノズルが配置されているとする。また、各ノズルは画像データの1画素に対応し、記録媒体はA4サイズのカットシートを用いるとする。

【0074】図3は本発明の実施形態1のプリンタの機能構成を示すプロック図である。ユーザは、まず、プリンタ上にあるインタフェース部31により、デジタルカメラ内のデータ記録部26に記録された画像データをいくつ記録する画像データの選択を行う。尚、プリンタで記録する画像データの選択は、詳述しないが、デジタルカメラにディスプレイがあれば、そのディスプレイ上にデータ記録部26に記録されている画像データを表示して選択しても良いし、データ記録部26に記録される画像データのインデックスプリントを使用して選択しても良い。

【0075】ここでは、データ記録部26に記録されている画像データAをA4サイズの記録媒体に1枚記録する場合を例に挙げて説明する。プリンタで記録する画像データ(画像データA)を選択すると、プリンタはインタフェース部31からデジタルカメラへ画像データを得るためのリクエスト信号を送信する。リクエスト信号は、デジタルカメラのインタフェース部27に送信される。そして、デジタルカメラはそのリクエスト信号に答えるべく、画像データAを分割しJPEG圧縮した画像データの1つをプリンタへ送信する。

【0076】尚、上述したように、画像データAを分割する分割単位は、プリンタの記録ヘッドの1走査で記録可能な画素数幅で決定される。例えば、画像データAが832画素(ライン)×640画素(ピクセル)である場合は、記録ヘッドのピクセル方向のノズルの数(画素数)が64であるので、画像データAは832画素(ライン)×64画素(ピクセル)単位で分割される。即ち、画像データAは、画像データA1、A2、A3、

…、A9、A10の10個に分割された後、それぞれが JPEG圧縮されデータ記録部26に記録されている。 【0077】また、記録ヘッドの1走査で記録可能な画 素数は、ユーザが予めデジタルカメラのインタフェース 部27より設定するか、あるいはデジタルカメラのデー 夕記録部26に記録されている画像データをプリンタへ 送信する前に、プリンタがデジタルカメラに対して通知 するような構成にしても良い。また、あるいは、後述す る実施形態3のように、予めデフォルト値として設定し ていても良い。

【0078】次に、プリンタがデジタルカメラより受信したJPEG圧縮された画像データ(例えば、画像データA1)は、JPEG解凍処理部32でJPEG圧縮された画像データA1がJPEG解凍される。JPEG解凍された画像データA1は、プリント画像処理部33によって、色変換処理、2値化処理がなされる。2値化された画像データA1は、記録位置制御処理部34へと送信され、記録媒体上の記録すべき位置が管理される。

20 【0079】尚、記録位置制御処理部34における位置 制御は、2値化された画像データに対応するバッファメ モリ36の書き込み位置を制御することによって行われ る。次に、位置制御された2値化された画像データは、 ヘッド駆動信号変換部35へと送信され、記録ヘッドを 動作させるための記録信号へと変換される。次に、記録 信号はバッファメモリ36に一旦格納される。そして、 記録位置制御処理部34による位置制御に基づいて、記 録信号は順次プリンタエンジン37に送信され、その記 録信号に基づく画像が記録媒体上に記録される。

【0080】以上が実施形態1のプリンタの記録ヘッドの1走査による記録手順である。記録ヘッドの1走査による記録手順である。記録ヘッドの1走査による記録が完了すると、再び、プリンタのインタフェース部31により、次の記録ヘッドの1走査の記録に必要な画像データをデジタルカメラから得るために、デジタルカメラでは、プリンタよりリクエスト信号を受信すると、プリンタの次の記録ヘッドの1走査に必要なJPEG圧縮された画像データ(ここでは、画像データA2)をプリンタへ送信する。そして、上述した同様の記録手順によって、デジタルカメラより受信したJPEG圧縮された画像データA2に対応する画像が、記録媒体上に記録される。

【0081】以上のような記録手順を、分割された圧縮された画像データに対し順次行い、画像データA10に対応する画像が記録媒体上に記録されると、画像データAに対応する画像の記録が完了する。次に、記録ヘッドの走査方向に複数の画像を記録する場合の記録手順について説明する。尚、説明を簡単にするために、プリンタが選択する記録する画像データは、上述した画像データAと、画像データAと同サイズの画像データBが選択さ

20

30

22

れ、また、図6に示すように記録ヘッドの走査方向に、 画像データAに対応する画像A、画像データBに対応する画像Bを記録するように設定されているものとする。 【0082】まず、デジタルカメラより入力された画像 Aに対応する画像データA、画像Bに対応する画像データBは、上述した同様の記録手順で、記録ヘッドの1走査で記録可能な画素数幅毎に分割されJPEG圧縮されて、データ記録部26に記録される。続いて、プリンタより記録に必要な画像データのリクエスト信号がデジタルカメラへ送信される。プリンタよりリクエスト信号を受信したデジタルカメラは、プリンタの最初の記録ヘッドの1走査に必要な画像データとして、JPEG圧縮された画像データA1、続いて、JPEG圧縮された画像データA1、続いて、JPEG圧縮された画像

【0083】そして、プリンタは、JPEG圧縮された画像データA1をデジタルカメラより受信し、上述の記録手順を経てバッファメモリ36の所定の位置に一旦格納する。続いて、JPEG圧縮された画像データB1を受デジタルカメラより受信し、同様の記録手順によって、バッファメモリ36の画像データA1が格納されている位置とは異なる位置に一旦格納する。バッファメモリ36に画像データA1と画像データB1が格納されると、記録位置制御処理部34の位置制御に基づいて、順次プリンタエンジン37に送信され対応する画像が記録媒体上に記録される。

データ B 1をプリンタへ送信する。

【0084】以上のような記録手順を、画像データA2、画像データB2、画像データA3、画像データB3、…、画像データA10、画像データB10に対し順次行い、画像データA10、画像データB10に対応する画像が記録媒体上に記録されると、画像データAに対応する画像A、画像データBに対応する画像Bの記録が完了する。

【0085】尚、実施形態1では、デジタルカメラのデータ記録部26に記録されている画像データをプリンタに接続して対応する画像を出力する構成について説明したが、図5に示すようにパーソナルコンピュータに接続して対応する画像をパーソナルコンピュータのモニタに出力することができることは言うまでもない。また、複数の画像を記録する例として、2つの画像A、画像Bを記録へッドの走査方向へ並べて記録する場合について説明したが、2つ以上の画像を記録へッドの走査方向に並べて記録することも可能である。更には、図7に示すような記録へッドの走査方向に複数の画像を並べて記録することも可能である。

【0086】更に、デジタルカメラに入力された画像に対応する画像データの圧縮方式として、JPEG圧縮方式を用いてるが、これに限定されるものではない。以上説明したように、実施形態1によれば、デジタルカメラより入力した画像データを、プリンタの記録ヘッドの1走査で記録可能な画素数毎に分割し、その分割された画 50

像データを記録ヘッドの1走査毎に受信して記録するため、デジタルカメラからプリンタへの画像データの送信動作と、プリンタの記録動作を効率的に実行するこができる。その結果、画像処理システムのトータルスループットを向上することができる。

【0087】また、プリンタの記録ヘッドの1走査に必要な画像データを順次受信し記録を行っていくので、記録媒体に記録する画像全体の画像データを記憶するための記憶容量を持つバッファメモリ36を必要としない。その結果、バッファメモリ36の記憶容量を低減することができる。

<実施形態2>実施形態2では、デジタルカメラとプリンタとが接続され、デジタルカメラで入力された画像データに対応する画像のサイズを拡大あるいは縮小してプリンタで記録する画像処理システムを実施形態2として説明する。

【0088】尚、実施形態2のデジタルカメラの機能構成及び動作については、実施形態1の図1と同様であるので、ここではその詳細を省略する。次に、実施形態2のプリンタの機能構成及び動作について、図8を用いて説明する。図8は本発明の実施形態2のプリンタの機能構成を示すブロック図である。

【0089】尚、実施形態2のプリンタの記録ヘッドは、実施形態1のプリンタの記録ヘッドと同様のものを用いるとする。ユーザは、まず、プリンタ上にあるインタフェース部31により、デジタルカメラ内のデータ記録部26に記録された画像データをいくつ記録するか、どの画像データを記録するか等のプリンタで記録する画像データの選択を行うとともに、記録する画像のサイズ、拡大あるいは縮小の倍率を設定する。尚、プリンタで記録する画像データの選択及びサイズの設定は、詳述しないが、デジタルカメラにディスプレイがあれば、そのディスプレイ上にデータ記録部26に記録される画像データを表示して選択しても良いし、データ記録部26に記録される画像データのインデックスプリントを使用して選択しても良い。

【0090】ここでは、上述した実施形態1の画像データAを2倍に拡大してA4サイズの記録媒体に1枚記録する場合を例に挙げて説明する。プリンタで記録する画像データ(画像データA)を選択及びその記録するサイズを設定すると、プリンタはインタフェース部81からデジタルカメラへ画像データを得るためのリクエスト信号を送信する。リクエスト信号は、デジタルカメラのインタフェース部27に送信される。そして、デジタルカメラはそのリクエスト信号に答えるべく、画像データAを分割してJPEG圧縮した画像データA1をプリンタへ送信する。

【0091】プリンタがデジタルカメラより受信したJ PEG圧縮された画像データA1は、JPEG解凍処理 部82へと送信される。そして、JPEG解凍処理部8

20

30

40

24

2でJPEG圧縮された画像データA1がJPEG解凍される。JPEG解凍された画像データA1は、バッファメモリ1 (83)に格納される。バッファメモリ1 (83)に格納された画像データは、プリント画像処理部84で、画像サイズの変換が行われる。ここでは、画像データを2倍に拡大するように設定されているので、バッファメモリ1 (83)から画像データA1 (832画素×64画素)の内、832画素×32画素分の画像データを読み出し、周知の倍率変換処理によって1664画素×64画素の画像データに拡大する。

【0092】そして、その拡大された画像データに対し、色変換処理、2値化処理がなされる。2値化された画像データは、記録位置制御処理部85へと送信され、記録媒体上の記録すべき位置が管理される。尚、記録位置制御処理部85における位置制御は、2値化された画像データに対応するバッファメモリ2(87)の書き込み位置を制御することによって行われる。そして、位置制御された2値化された画像データは、ヘッド駆動信号変換部86へと送信され、記録ヘッドを動作させるための記録信号へと変換される。次に、記録信号はバッファメモリ2(87)に一旦格納される。そして、記録位置制御処理部85による位置制御に基づいて、記録信号は順次プリンタエンジン88に送信され、その記録信号に基づく画像が記録される。

【0093】次に、バッファメモリ1(83)に格納さ れている画像データA1の残りの832画素×32画素 分の画像データを、同様の手順によって、記録媒体上の 記録すべき位置に記録する。バッファメモリ1(83) に格納されている画像データがすべて記録されたら、プ リンタは次の画像データA2のリクエスト信号をデジタ ルカメラへと送信する。そして、デジタルカメラから次 の画像データA2を受信したら、画像データA1に対し て行った同様の手順によって、記録媒体上の記録すべき 位置に画像データA2に対応する画像を記録する。以上 のような記録手順を、分割された圧縮された画像データ に対し順次行い、画像データA10に対応する画像が記 録媒体上に記録されると、画像データAに対応する画像 の記録が完了する。次に画像データ Aを 1/2 倍に縮小 してA4サイズの記録媒体に1枚記録する場合について 説明する。

【0094】プリンタで記録する画像データ(画像データA)を選択及びその記録するサイズを設定すると、プリンタはインタフェース部81からデジタルカメラへ画像データを得るためのリクエスト信号を送信する。リクエスト信号は、デジタルカメラのインタフェース部27に送信される。そして、デジタルカメラはそのリクエスト信号に答えるべく、画像データAを分割してJPEG圧縮した画像データA1をプリンタへ送信する。プリンタがデジタルカメラより受信したJPEG圧縮された画像データA1は、JPEG解凍処理部82へと送信され50

る。そして、JPEG解凍処理部82でJPEG圧縮さ れた画像データA1がJPEG解凍される。JPEG解 凍された画像データA1は、バッファメモリ83に格納 される。バッファメモリ1 (83) に格納された画像デ ータは、プリント画像処理部84で、画像サイズの変換 が行われる。ここでは、画像データを1/2倍に縮小す るように設定されているので、バッファメモリ1 (8 3) から画像データA1 (832画素×64画素) を読 み出し、周知の倍率変換処理によって416 画素×32 画素の画像データに縮小する。そして、その縮小された 画像データに対し、色変換処理、2値化処理がなされ る。2値化された画像データは、記録位置制御処理部8 5へと送信され、記録媒体上の記録すべき位置が管理さ れる。位置制御された2値化された画像データは、ヘッ ド駆動信号変換部86へと送信され、記録ヘッドを動作 させるための記録信号へと変換される。次に、記録信号 はバッファメモリ2(87)に一旦格納される。

【0095】次に、同様の手順によって、デジタルカメラより画像データA2を受信し、バッファメモリ2(87)の画像データA1に対応する記録信号が格納されている位置の後に画像データA2に対応する記録信号を格納する。画像データA1、A2それぞれに対応するの2つの記録信号がバッファメモリ2(87)に格納されると、それぞれの記録信号は、記録位置制御処理部85による位置制御に基づいて、順次プリンタエンジン88に送信され、その記録信号に基づく画像が記録媒体上に記録される。

【0096】以上が、画像データを1/2倍に縮小して 記録する場合の記録ヘッドの1走査による記録手順であ る。記録ヘッドの1走査による記録が終了すると、再 び、プリンタのインタフェース部81により、次の記録 ヘッドの1走査の記録に必要な画像データをデジタルカ メラから得るために、デジタルカメラヘリクエスト信号 が送信される。デジタルカメラでは、プリンタよりリク エスト信号を受信すると、プリンタの次の記録ヘッドの 走査に必要なJPEG圧縮された画像データ(ここで は、画像データA3、A4)をプリンタへ送信する。そ して、上述した同様の記録手順によって、デジタルカメ ラより受信した J P E G 圧縮された画像データ A 3、 A 4に対応する画像が、記録媒体上の記録すべき位置に記 録される。以上のような記録手順を、分割された圧縮さ れた画像データに対し順次行い、画像データA10に対 応する画像が記録媒体上に記録されると、画像データA に対応する画像の記録が完了する。尚、実施形態2で は、記録する画像データのサイズとして2倍に拡大して 記録する場合と、1/2倍に縮小して記録する場合を例 に挙げて説明したが、3倍、4倍に拡大して記録、1/ 3倍、1/4倍に縮小して記録する場合においても、同 様の手順で対応できる。また、ここでは、記録媒体に1 つの画像を記録する場合について説明したが、実施形態

30

26

1で説明したように、複数の画像を記録媒体上に記録することも可能である。以上説明したように、実施形態2によれば、デジタルカメラで入力された画像データのサイズを変更し、その変更された画像データに対応する画像をプリンタで記録する場合にも、実施形態1と同様の効果を得ることができる。

【0097】<実施形態3>実施形態1、実施形態2では、デジタルカメラより入力された画像データを分割する単位である画素数幅を、ユーザあるいはプリンタより入力する構成であったが、これを予め決定されたデフォルト値を用いても良い。以下、分割する単位である画素数幅がデフォルトで決定されているデジタルカメラとプリンタが接続され、デジタルカメラで入力された画像データに対応する画像をプリンタで記録する画像処理システムを実施形態3として説明する。

【0098】尚、実施形態3のデジタルカメラ及びプリンタの機能構成及び動作については、実施形態2と同様であるので、ここではその詳細を省略する。また、一般的に、プリンタの記録ヘッドのノズル数はデータ制御の問題上、8の倍数となる。すなわち。記録ヘッドの1走査で記録可能となる画素数幅は8の倍数となる。そのため、デジタルカメラ内で予め決定されている画像データを分割する単位である画素数幅は8の倍数に設定される。また、画像データに対するJPEG圧縮の圧縮単位が8画素×8画素であることからも、画素数幅を8の倍数に設定することが好ましい。

【0099】ここでは、デジタルカメラ内で予め決定さ れている画像データを分割する単位である画素数幅が3 2であり、上述した実施形態1の画像データAをA4サ イズの記録媒体に1枚記録する場合を例に挙げて説明す る。まず、デジタルカメラにおいて、データ記録部26 に記録されている画像データAのサイズが832画素× 640画素であるので、画像データAは832画素×3 2 画素毎の画像データA1、A2、…A20の20個に 分割されてJPEG圧縮されデータ記録部26に記録さ れる。そして、プリンタのインタフェース部31より画 像データを得るためのリクエスト信号がデジタルカメラ へ送信されると、デジタルカメラは画像データの分割単 位である画素数幅(ここでは、32)をプリンタへ送信 する。プリンタはその画素数幅と記録ヘッドの1走査で 記録可能な画素数幅を比較し、その比較結果に基づい て、1度にデジタルカメラより受信することができる分 割されJPEG圧縮された画像データの数を決定する。

(実施形態3では、記録ヘッドの1走査で記録可能な画素数幅が64であるため、2つの分割され圧縮された画像データが必要となる。)

そこで、プリンタはJPEG圧縮された画像データA1 をデジタルカメラより受信し、その受信したJPEG圧 縮された画像データA1は、JPEG解凍処理部82へ と送信される。そして、JPEG解凍処理部32でJP 50

EG圧縮された画像データA1がJPEG解凍される。 JPEG解凍された画像データA1は、バッファメモリ 1 (83) に格納される。続いて、JPEG圧縮された 画像データA2をデジタルカメラより受信し、同様の手 順で、バッファメモリ1 (83) へ格納する。そのバッ ファメモリ1 (83) に格納された画像データに対し、 色変換処理、2値化処理がなされる。2値化された画像 データは、記録位置制御処理部85へと送信され、記録 媒体上の記録すべき位置が管理される。

【0100】次に、位置制御された2値化された画像データは、ヘッド駆動信号変換部86へと送信され、記録ヘッドを動作させるための記録信号へと変換される。次に、記録信号はバッファメモリ2(87)に一旦格納される。そして、記録位置制御処理部85による位置制御に基づいて、記録信号は順次プリンタエンジン88に送信され、その記録信号に基づく画像が記録媒体上に記録される。

【0101】以上が、デジタルカメラ内の画像データを分割する単位である画素数幅が予め決定されている場合の記録へッドの1走査による記録手順である。記録へッドの1走査による記録が終了すると、再び、プリンタのインタフェース部81により、次の記録へッドの1走査の記録に必要な画像データをデジタルカメラから得るために、デジタルカメラへリクエスト信号が送信される。デジタルカメラでは、プリンタよりリクエスト信号を受信すると、プリンタの次の記録へッドの走査に必要なJPEG圧縮された画像データ(ここでは、画像データA3、A4)をプリンタへ送信する。そして、上述した同様の記録手順によって、デジタルカメラより受信したJPEG圧縮された画像データA3、A4に対応する画像が、記録媒体上の記録すべき位置に記録される。

【0102】以上のような記録手順を、分割された圧縮された画像データに対し順次行い、画像データA20に対応する画像が記録媒体上に記録されると、画像データAに対応する画像の記録が完了する。尚、実施形態3では、デジタルカメラ内の画像データを分割する単位である画素数幅は32で予め決定されていたが、8の倍数であればこれに限られるものではない。

【0103】以上説明したように、実施形態3によれば、デジタルカメラ内の画像データを分割する単位である画素数幅が予め決定されている場合でも、その画素数幅とプリンタの記録ヘッドの1走査で記録可能な画素数幅とを比較することで、記録ヘッドの1走査に必要な画像データを受信できる。そのため、このような場合にも、実施形態1と同様の効果を得ることができる。

【0104】尚、本発明の画像処理システムのデジタルカメラ内で画像データを分割する分割単位である画素数幅の決定方法は、ユーザからの入力あるいはプリンタの記録へッドの1走査で記録可能な画素数幅から獲得する方法と、デジタルカメラ内で予め決定しておく方法の2

20

40

つに大別される。この観点に着目すると、実施形態1、2は、分割単位である画素数幅をユーザからの入力あるいはプリンタより獲得する方法、実施形態3がデジタルカメラ内で予め画素数幅を決定しておく方法に該当する。

【0105】そこで、本発明の画像処理システムで実行される処理の概要として、実施形態1、2における画像処理システムで実行される処理と、実施形態3における画像処理システムで実行される処理について、図9、図10のフローチャートを用いて説明する。まず、実施形態1、2における画像処理システムで実行される処理の概要について、図9を用いて説明する。

【0106】図9は本発明の実施形態1、2の画像処理システムの処理の概要を示すフローチャートである。まず、デジタルカメラ側において、ステップS101で、記録ヘッドの1走査で記録可能な画素数をユーザからの入力あるいはプリンタより獲得する。次に、ステップS202で、獲得した画素数に応じて画像データを分割する。次に、分割された画像データをJPEG圧縮しデータ記録部26に記録する。

【0107】プリンタ側において、ステップS104 で、出力させる画像データの選択、画像サイズの設定を インタフェース部31 (あるいはインタフェース部8 1) によて入力する。ステップS105で、インタフェ ース部31(あるいはインタフェース部81)からの入 力に応じて、デジタルカメラよりJPEG圧縮された画 像データを入力する。ステップS106で、入力された JPEG圧縮された画像データをJPEG解凍する。ス テップS107で、JPEG解凍された画像データに対 し、必要な画像処理を施した後、プリンタエンジン37 (あるいはプリンタエンジン88) によって記録する。 【0108】次に、実施形態3における画像処理システ ムで実行される処理の概要について、図10を用いて説 明する。図10は本発明の実施形態3の画像処理システ ムの処理の概要を示すフローチャートである。まず、デ ジタルカメラ側において、ステップS201で、予め決 定されている画像データの分割単位である所定の画素数 に応じて画像データを分割する。次に、ステップS20 2で、分割された画像データを JPEG圧縮しデータ記 録部26に記録する。

【0109】プリンタ側において、ステップS203で、プリンタより画像データの分割単位である所定の画素数を示す情報を入力する。ステップS204で、入力された所定の画素数とプリンタの記録ヘッドの1走査で記録可能な画素数を比較する。ステップS205で、比較結果に基づいて、デジタルカメラよりJPEG圧縮された画像データを入力する。ステップS206で、入力されたJPEG圧縮された画像データをJPEG解凍する。ステップS207で、JPEG解凍された画像データに対し、必要な画像処理を施した後、プリンタエンジ 50

ン88によって記録する。

【0110】以上説明したように、実施形態1~実施形 態3によれば、デジタルカメラ内で部分分割された画像 のJPEG圧縮された画像データを、必要となる画像デ ータ分だけプリンタへ転送するため、転送の時間を短縮 することができる。また、プリンタの記録ヘッドの1走 査で記録可能な画素数毎に画像データを受信し記録する ので、従来に比べて大きくバッファメモリの記憶容量を 低減することが可能となる。本発明の実施形態におい て、出力装置の画像データの出力単位を示す出力単位情 報を得るに際しては、図22に示すアシンクロナスパケ ットの通信を行うことによって得れば良い。また、かか る出力単位情報に基づいて、入力された画像データを圧 縮するに際しては、かかる画像データを図22に示すア イソクロナスパケットで受信しても良いし、アシンクロ ナスパケットで受信しても良い。アイソクロナスパケッ トで受信するのは、受信速度の点で好ましい。また、ア シンクロナスパケットで受信するのは、受信データの確 実性の点で好ましい。また、本実施形態では、IEEE 1394シリアルバスを例に挙げて説明したが、本発明 はこれに限定されず、他のインタフェース、例えば、U SBと呼ばれるインタフェースでも良いし、また、それ 以外の方式のインタフェースでも良い。

【0111】尚、本発明は、複数の機器(例えば、ホストコンピュータ、インタフェース機器、リーダ、プリンタ等)から構成されるシステムに適用しても、一つの機器からなる装置(例えば、複写機、ファクシミリ装置等)に適用してもよい。また、本発明の目的は、前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(またはCPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても、達成されることは言うまでもない。

【0112】この場合、記憶媒体から読出されたプログラムコード自体が上述した実施の形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明を構成することになる。プログラムコードを供給するための記憶媒体としては、例えば、フロッピディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどを用いることができる。

【0113】また、コンピュータが読出したプログラムコードを実行することにより、前述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれることは言うまでもない。更に、記憶媒体から読出されたプログラムコードが、コン

ピュータに挿入された機能拡張ボードやコンピュータに 接続された機能拡張ユニットに備わるメモリに書き込ま れた後、そのプログラムコードの指示に基づき、その機 能拡張ボードや機能拡張ユニットに備わるCPUなどが 実際の処理の一部または全部を行い、その処理によって 前述した実施形態の機能が実現される場合も含まれるこ とは言うまでもない。

[0114]

【発明の効果】以上説明したように、本発明によれば、 【図19】A コストを上げることなく、トータルスループットを向上 10 す図である。 することができる画像処理装置及びその制御方法、画像 【図20】I 処理システム、出力装置、記憶媒体を提供できる。 示す図である

【図面の簡単な説明】

【図1】本発明のプリンタの記録動作を説明するための 図である。

【図2】本発明の実施形態1のデジタルカメラの機能構成を示すプロック図である。

【図3】本発明の実施形態1のプリンタの機能構成を示すブロック図である。

【図4】本発明の実施形態1のデジタルカメラとプリンタで構成される画像処理システムの構成を示す図である。

【図5】本発明の実施形態1のデジタルカメラとパーソ ナルコンピュータで構成される画像処理システムの構成 を示す図である。

【図6】本発明の実施形態1のプリンタの記録例を説明 するための図である。

【図7】本発明の実施形態1のプリンタの記録動作を説明するための図である。

【図8】本発明の実施形態2のプリンタの機能構成を示 30 すブロック図である。

【図9】本発明の実施形態1、2の画像処理システムの 処理の概要を示すフローチャートである。

【図10】本発明の実施形態3の画像処理システムの処理の概要を示すフローチャートである。

【図11】IEEE1394シリアルバスを用いた通信システムの一実施形態を示す図である。

【図12】IEEE1394シリアルバスの階層構造を 示す図である

【図13】IEEE1394シリアルバスのアドレスを 40示す図である。 *

*【図14】IEEE1394シリアルバスの断面図である。

【図15】 DS-Link 符号化方式を説明するための 図である。

【図16】ノード間の親子関係を示す図である。

【図17】アービトレーションの過程を示す図である。

【図18】Asynchronous転送におけるサブアクションを示す図である。

【図 19】Asynchronous転送におけるパケット構造を示す図である。

【図20】Isochronous転送におけるサブアクションを示す図である。

【図21】Isochronous転送におけるパケット構造を示す図である。

【図22】 IEEE1394シリアルバスの通信サイク ルの一例を示す図である。

【図23】バスリセットからIDの設定までを説明する ためのフローチャートである。

【図24】ルートの決定方法を説明するフローチャート 20 である。

【図25】親子関係決定からすべてのノードIDの設定までの手順を説明するフローチャートである。

【図26】アービトレーションの過程を示すフローチャートである。

【符号の説明】

21 レンズ

22 CCD素子

23 A/D変換部

24 画像処理部

0 25 画像変換部

26 データ記録部

27、31、81 インタフェース部

32、82 JPEG解凍部

33、84 プリント画像処理部

34、85 記錄位置制御処理部

35、86 ヘッド駆動信号変換部

36 バッファメモリ

37、88 プリンタエンジン

83 バッファメモリ1

87 バッファメモリ2

【図8】

【図11】

【図18】

Time

【図10】

信号線シールド

software

firmware

hardware

【図12】

firmware

(ケーブル新面図)

【図13】

ブイジカルレイヤ

【図17】

(a) パス使用権の要求

(b) バス使用の許可

【図15】

(DataとStrobeの排他的論理和信号)

【図16】

ブランチ:2つ以上のノード接続があるノード リーフ :1つのポートのみ接続があるノード ロ:ポート c:子のノードに相当するポート p:親のノードに相当するポート

【図21】

【図19】

【図20】

【図22】

【図23】

【図24】

1 (A) (1)

【図25】

【図26】

