Due: Sun. 02/16/20

Instructions: All assignments are due by midnight on the due date specified.

Every student must write up their own solutions in their own manner.

Please present your solutions in a clean, understandable manner. Use the provided files that give mathematical notation in Word, Open Office, Google Docs, and LATEX. Do Not Crowd Your Answers! Assignments should be typed and submitted as a PDF.

You should <u>complete all problems</u>, but <u>only a subset will be graded</u> (which will be graded is not known to you ahead of time).

Relations

- 1. (6 points) Let $X = \{a, b\}$ and $Y = \{1, 2\}$.
 - (a) Give the sets $X \times Y$ and $\mathcal{P}(X \times Y)$.
 - (b) How many possible relations exist from X to Y?
 - (c) What does $\mathcal{P}(X \times Y)$ represent with respect to relations?
 - (d) How many binary relations exist on the set $C = \{1, 2, 3, 4\}$? You do **not** need to list all such relations
- 2. (10 points) For each part, describe a relation using the different representations asked for.
 - (a) Let $A = \{1, 2, 3, 4, 5, 6\}$.
 - (i) Write out the relation R on A that expresses $x \mid y$ (divides), that is if $x \mid y$ then $(x, y) \in R$, that is describe the relation using the set enumeration methods (list all elements of the set).
 - (ii) Draw the relation as a digraph.
 - (iii) Describe the relation as a zero-one matrix (assume rows/columns are ordered numerically).
 - (b) Let R be a relation on a set A, illustrated below.

- (i) Write out the sets A and R.
- (ii) Describe the relation as a zero-one matrix (assume rows/columns are ordered numerically).
- (c) Congruence modulo 5 is a relation, R, on \mathbb{Z} , where $(x,y) \in R$ means $x \equiv y \pmod{5}$. Write out the set R in set-builder notation.
- 3. (4 points) In the following figures relations R are indicated by gray shading. In figure (a), the relation is on \mathbb{R} in (b) the relation is on \mathbb{Z} . State what familiar relation is being represented.

Relation	R?	S?	AS?	T ?
(a)	Yes / No	Yes / No	Yes / No	Yes / No
:	:	:	:	:

Also, briefly explain for any "no" answer, why the relation does not have a given property.

- (a) $R_a = \{(a, a), (b, b), (c, c), (d, d), (a, b), (b, a)\}$ on $\{a, b, c, d\}$
- (b) $R_b = \{(0,0), (2,0), (0,2), (2,2)\}$ on \mathbb{R}
- (c) Rosen 9.1.4(a)
- (d) Rosen 9.1.4(c)
- (e) Rosen 9.1.4(d)
- (f) $R_f = \{ (Bill Gates, Mark Zuckerberg) \}$ on the set of all people.
- (g) The > relation on \mathbb{Z}
- (h) The \leq relation on \mathbb{Z}
- (i) The \neq relation on \mathbb{Z}
- (i) The \mid relation on \mathbb{Z} .
- (k) Rosen 9.1.6(b)
- (l) Rosen 9.1.6(c)
- (m) Rosen 9.1.6(e)
- (n) Rosen 9.1.6(f)

Consider the relations R, S, T, U on the set $\{a, b, c, d\}$. Use the definitions and properties discussed in class and chapter 9.1 and the properties or operations of **irreflexive**, **asymmetric**, **inverse relations**, and **complementary relations** mentioned before Rosen 9.1 # 11 (p. 581), # 18 (p. 582), and # 26 (p. 582).

Let $R = \{(a, a), (b, c), (c, b), (c, d), (d, c), (d, d)\},\$ $S = \{(a, a), (a, d), (b, a), (b, b), (b, d), (c, a), (c, c), (d, c), (d, d)\},\$ $T = \{(a, a), (a, b), (b, c), (b, d), (c, d), (d, a), (d, b)\},\$ and $U = \{(a, a), (a, d), (b, c), (b, d), (c, a), (d, d)\}$

- 5. (6 points) Determine (Yes/No) whether R and S have each of the following properties: reflexive, irreflexive, symmetric, antisymmetric, asymmetric, and transitive.
- 6. (25 points) Find the following expressions:
 - a) (1pt) $R \cup S$

i) (2pt) $T \circ U$

- b) (1pt) $R \cap S$
- c) (1pt) R S
- d) (1pt) S Rh) (2pt) $U \circ T$

Due: Sun. 02/16/20

- e) (1pt) \overline{S}
- f) (1pt) S^{-1} i) (4pt) R^3
- g) (2pt) $T \circ T$ k) (4pt) U^3
- 1) (5pt) $R \circ S \circ T$

Bonus

7. (2 points (bonus)) There are 16 possible relations R on the set $A = \{a, b\}$. Describe all of them as directed graphs (be sure to label the nodes in the graph). Which relations are reflexive? symmetric? transitive?