

Ţ <u>Help</u>

sandipan_dey >

<u>Syllabus</u> laff routines **Community** <u>Progress</u> **Discussion** <u>Outline</u> <u>Course</u> <u>Dates</u>

Next >

F.2.3 Sample Exam Answers and Videos Questions 3-4

☐ Bookmark this page

< Previous

■ Calculator

F.2.3 Sample Exam Answers and Videos Questions 3-4

Question 3

0 points possible (ungraded)

- 3. Compute the inverses of the following matrices
 - (a) (4 points) $A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$. $A^{-1} =$
 - (b) (3 points) $B = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$. $B^{-1} =$
 - (c) (3 points) C = BA where A and B are as in parts (a) and (b) of this problem. $C^{-1} =$
- 3. Compute the inverses of the following matrices
 - (a) (4 points) $A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$. $A^{-1} = \frac{1}{(5)(1) (2)(2)} \begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix}$
 - (b) (3 points) $B = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$. $B^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.
 - (c) (3 points) C = BA where A and B are as in parts (a) and (b) of this problem.

$$C^{-1} = (BA)^{-1} = A^{-1}B^{-1} = \begin{pmatrix} 1 & -2 \ -2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 \ 1 & 1 \end{pmatrix}$$

Submit

Answers are displayed within the problem

Question 3

Video

♣ Download video file

■ Calculator

Transcripts

Question 4

0 points possible (ungraded)

- 4. Consider the vectors $a_0 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $a_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$.
 - (a) (6 points) Compute the projection of $b = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ onto the space spanned by the vectors a_0 and a_1 . (The numbers may not work out very nicely. Set the problem up first, plug in the numbers, then move on and solve other problems. Then come back and solve this one. There may be fractions.)
 - (b) (4 points) Compute the linear least-squares solution to find an approximate solution to Ax = b. (The numbers may not work out very nicely. Set the problem up first, plug in the numbers, then move on and solve other problems. Then come back and solve this one. There may be fractions.)
- 4. Consider the vectors $a_0 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $a_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$.
 - (a) (6 points) Compute the projection of $b = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ onto the space spanned by the vectors a_0 and a_1 . (The numbers may not work out very nicely. Set the problem up first, plug in the numbers, then move on and solve other problems. Then come back and solve this one. There may be fractions.)

The formula is $A \underbrace{(A^T A)^{-1} A^T b}_{T}$ where a_0 and a_1 are the columns of A.

Now,

- $\bullet \ \ A = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{array}\right)$
- $A^T A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}^T \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 5 \end{pmatrix}$
- $(A^TA)^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 5 \end{pmatrix}^{-1} = \frac{1}{(2)(5)-(1)(1)} \begin{pmatrix} 5 & -1 \\ -1 & 2 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 5 & -1 \\ -1 & 2 \end{pmatrix}.$
- $\bullet \ A^Tb = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{array}\right)^T \left(\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} 1 \\ 2 \end{array}\right).$
- $x = (A^T A)^{-1} A^T b = \frac{1}{9} \begin{pmatrix} 5 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 3 \\ 3 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- $A(A^TA)^{-1}A^Tb = Ax = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix} \frac{1}{3} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}.$
- (b) (4 points) Compute the linear least-squares solution to find an approximate solution to Ax = b. (The numbers may not work out very nicely. Set the problem up first, plug in the numbers, then move on and solve other problems. Then come back and solve this one. There may be fractions.)

This is just the x computed above.

Submit

Answers are displayed within the problem

Question 4

© All Rights Reserved

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>