http://www.akubihar.com

Code: 102102

B.Tech 1st Semester Exam., 2018 (New)

MATHEMATICS—I

(Calculus and Linear Algebra)

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Answer/Choose the correct option of the following (any seven): $2 \times 7 = 14$
 - The evolute of a cycloid is
 - (i) circle
 - (ii) another cycloid
 - (iii) an ellipse
 - (iv) None of the above

AK9/449

(Turn Over)

2)

- integral improper value $\int_0^\infty \sqrt{x} e^{-x^2} dx \text{ is}$
 - (i) √π
 - (ii) $\frac{\sqrt{\pi}}{2}$
 - (iii) $\sqrt{\frac{3}{8}}$
 - (iv) $\frac{1}{2}\sqrt{\frac{3}{4}}$
- If the Cauchy mean value theorem is applicable for the function $f(x) = \frac{1}{x^2}$,
 - $g(x) = \frac{1}{x}$, in [a, b], then the value of c is
 - (ii) √ab

 - (iv) None of the above
- The value of $\lim \sin x \log x$ is
 - (i) 0
 - (ii) 1
 - (iii) -1
 - (iv) None of the above

AK9/449

(Continued)

Radius of convergence of $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$ is

Define half-range sine and cosine series.

(g)
$$\lim_{x\to 2} \frac{1}{(x-2)^2}$$
 is

- (ii) -∞
- (iv) Does not exist

(h) If $u = \sin^{-1}\left(\frac{y}{x}\right) \div \tan^{-1}\left(\frac{y}{x}\right)$, then

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} =$$

- (i) $\frac{2x}{\sqrt{y^2-x^2}}$
- $(ii) \frac{2xy}{x^2 + u^2}$
- (iii) 0

(Turn Over)

- _(i) 1
- (ii) -1
- , (iii) 0
- (iv) ∞

- (i) +∞
- Exists finitely

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} =$$

- (iv) None of the above

4)

(i) Let $M = \begin{bmatrix} 1 & 3 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 9 \end{bmatrix}$. Then

- (i) M is diagonalizable but not M^2
- (ii) M^2 is diagonalizable but not M
- (iii) both M and M2 are diagonalizable
- (iv) neither M nor M^2 is diagonalizable

The possible set of eigenvalues of a 4×4 skew-symmetric orthogonal real matrix

- (i) $\{\pm i\}$
- (ii) $\{\pm i, \pm 1\}$
- (iii) {±1}
- (iv) $\{0, \pm i\}$

Find the evolute of the parabola $\sqrt{x} + \sqrt{y} = \sqrt{a}$.

(b) Prove that 1.3.5...(2n-1) = $\frac{2^n \sqrt{n+\frac{1}{2}}}{\sqrt{n+\frac{1}{2}}}$.

AK9/449

http://www.akubihar.com

(Continued)

7

http://www.akubihar.com

(5)

- 3. (a) Evaluate $\int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1 + x)^{m+n}} dx$. 7
 - Find the area of the region enclosed by the curve $x = a(t - \sin t)$, $y = a(1 - \cos t)$, $0 \le t \le 2\pi$.
- Verify Rolle's theorem for $f(x) = e^{-x} \sin x$ 6 in $(0, \pi)$.
 - Obtain the Taylor's polynomial expansion of the function $f(x) = \sin x$ about the point $x = \frac{\pi}{4}$. Show that the error term tends to zero as $n \to \infty$ for any real x. Hence, write the Taylor's series expansion of f(x). http://www.akubihar.com
- A figure consists of a semicircle with a rectangle on its diameter. Given that the 5. (a) perimeter of the figure is 20 metres. Find its dimensions in order that its area may be maximum.
 - the convergence of the Discuss geometric series $\sum_{n=0}^{\infty} r^n$, where r is any (b) real number.

(Turn Over)

7

7

AK9/449

(6)

- Find the minimum value of $x^2 + y^2 + z^2$ subject to the condition $xyz = a^3$.
 - Find the directional derivative of $f(x, y) = x^2y^3 + xy$ at point (2, 1) in the direction of a unit vector, which makes an angle $\frac{\pi}{3}$ with the x-axis. 7
- Prove that $\operatorname{div}(fv) = \int \operatorname{div}(v) + (\operatorname{grad} f) \cdot v$, where f is a scalar function.
 - Show that the function

$$f(x, y) = \begin{cases} (x + y) \sin(\frac{1}{x + y}), & x + y \neq 0 \\ 0, & x + y = 0 \end{cases}$$

is continuous at (0, 0) but its partial derivatives f_x and f_y do not exist at (0, 0).

8. Find the rank of the matrix (a)

$$\begin{bmatrix} 2 & 3 & 4 & -1 \\ 5 & 2 & 0 & -1 \\ -4 & 5 & 12 & -1 \end{bmatrix}.$$

For what values of λ and μ do the system of equations x + y + z = 6, x + 2y + 3z = 10and $x+2y+\lambda z=\mu$ have (i) no solution, (ii) unique solution and (iii) more than one solution?

AK9/449

http://www.akubihar.com

(Continued)

7

7

7

http://www.akubihar.com

(7)

 (a) Find the eigenvalues and eigenvectors of the matrix

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

(b) Show that the matrix

$$A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

is diagonalizable. Hence, find P such that $P^{-1}AP$ is a diagonal matrix. Then, obtain the matrix $B = A^2 + 5A + 3I$.

. .

http://www.akubihar.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से

AK9-3520/449

Code: 102102