GPU Programming

\\

Introduction to High Performance Computing, High Performance Data Analytics and Large-Scale Machine Learning

Giannis Koutsou,

Computation-based Science and Technology Research Center,

The Cyprus Institute

Lecture part

- Review of GPU architecture
- Review of GPU programming and CUDA
- Some details of our training system, "Cyclone"

Lecture part

- Review of GPU architecture
- Review of GPU programming and CUDA
- Some details of our training system, "Cyclone"

Hands-on - Practical examples on GPUs

Covering:

- GPU performance vs CPU performance
- Memory coalescing on GPUs
- Shared memory
- What is a warp and should you care

Lecture part

- Review of GPU architecture
- Review of GPU programming and CUDA
- Some details of our training system, "Cyclone"

Hands-on - Practical examples on GPUs

Covering:

- GPU performance vs CPU performance
- Memory coalescing on GPUs
- Shared memory
- What is a warp and should you care

Assumptions about this hands-on session

- Some familiarity with programming in C or C++
- Familiarity with some common tasks in C, e.g. array allocation, pointers, etc.
- Can edit text files on a remote server, e.g. text-based (emacs or vim) or VS Code Remote
- Hopefully this will be useful to capture high-level GPU features that affect performance

Lecture part

- Review of GPU architecture
- Review of GPU programming and CUDA
- Some details of our training system, "Cyclone"

Hands-on - Practical examples on GPUs

Covering:

- GPU performance vs CPU performance
- Memory coalescing on GPUs
- Shared memory
- What is a warp and should you care

Assumptions about this hands-on session

- Some familiarity with programming in C or C++
- Familiarity with some common tasks in C, e.g. array allocation, pointers, etc.
- Can edit text files on a remote server, e.g. text-based (emacs or vim) or VS Code Remote
- Hopefully this will be useful to capture high-level GPU features that affect performance

Repo with slides (PDF) and exercises and URL for direct access to slides:

github.com/CaSToRC-Cyl/EuroCC2 training Nov23

https://slides.koutsou.net/EuroCC-2023-11-09

GPU architecture

At a very high level:

CPU

- Few heavy cores
- Large memory
- Moderate BW to memory
- Optimized for serial execution

GPU

- Many light "cores"
- Smaller memory
- High BW to memory
- Optimized for parallel execution

Some numbers from the GPU partition of our Cyclone cluster

NVIDIA V100 Volta GPUs

- 80 Streaming Multiprocessors (SM) per GPU
- 64 "cores" per SM
- GPU memory: 32 GBytes
- Memory bandwidth: 900~GB/s
- Peak performance: 7.8 Tflop/s (double precision)

Some numbers from the GPU partition of our Cyclone cluster

NVIDIA V100 Volta GPUs

- 80 Streaming Multiprocessors (SM) per GPU
- 64 "cores" per SM
- GPU memory: 32 GBytes
- Memory bandwidth: 900~GB/s
- Peak performance: 7.8 Tflop/s (double precision)

We will come back to these numbers during the hands-on

"Offload" model of programming

- CPU starts program (runs main())
- CPU copies data to GPU memory (over e.g. PCIe, ~32 GB/s)
- CPU dispatches "kernels" for execution on GPU
 - Kernels read/write to GPU memory (~900 GB/s)
 - \circ Kernels run on GPU threads (thousands) which share *fast* memory [O(10) times faster compared to GPU memory]
- Kernel completes; CPU copies data back from GPU (over e.g. PCIe, ~32 GB/s)

GPU memory model (NVIDIA model)

- GPU threads: slow access to global, constant, and texture memory
- Each thread has registers (fast) and local memory (slow)
- Threads are grouped into blocks; Threads within the same block: shared memory (fast)
- Shared memory is limited. E.g. 96 KB per block for V100

GPU memory model (NVIDIA model); some numbers for context

- Threads per block: 1024 (max)
- Register memory (per block): 64 KB
- Shared memory (per block): 96 KB
- Also, max. 255 registers per thread

GPU memory model (NVIDIA model)

- Assumptions about execution order
 - Threads within the same block can be assumed to run concurrently
 - No assumption about the order by which blocks are executed

CUDA programming model

NVIDIA programming framework for NVIDIA GPUs

- Compute Unified Device Architecture
- C-like programming language for writing CUDA Kernels
 - Includes C/C++ and Fortran variants
 - Compiler for C/C++: nvcc
- Functions for transferring data to/from GPUs, starting kernels, etc.
- Some higher-level functionality also available (linear algebra, random number generations, etc.)
- Concepts generalizable to other accelerator programming frameworks (OpenCL, OpenACC, HiP, etc.)

Nomenclature

- "Host" is the CPU
- "Device" is the GPU

Allocate memory on GPU

err = cudaMalloc(&d_ptr, size);

- Call from host (CPU)
- Allocate size bytes of memory on GPU and store the starting address in d_ptr
- d_ptr is a variable that holds an address to GPU memory i.e. a "device pointer"
- If err != cudaSuccess then something went wrong

Free GPU memory

cudaFree(d_ptr);

Nomenclature

- "Host" is the CPU
- "Device" is the GPU

Copy data to GPU

cudaMemcpy(d_ptr, ptr, size, cudaMemcpyHostToDevice);

- Call from host (CPU)
- Copy data on host pointed to by ptr to device at address pointed to by d_ptr
- Device memory should have been allocated using cudaMalloc() to obtain d_ptr

Copy data from GPU

cudaMemcpy(ptr, d_ptr, size, cudaMemcpyDeviceToHost);

- Call from host (CPU)
- Copy data on device pointed to by d_ptr to host at address pointed to by ptr
- Host memory should have been allocated using e.g. malloc() to obtain ptr

Declare a CUDA kernel

Example:

```
global__ void
func(int n, double a, double *x)
{
    return;
}
```

Call a CUDA kernel

• Call from host. Example:

```
func<<<nblck, nthr>>>(n, a, x);
```

- nthr: number of threads per block; can be scalar or a dim3 type
- nblck: number of blocks; can be scalar or a dim3 type
- Example of dim3 type:

```
dim3 nthr(1024, 8, 8); /* No. of threads in (x, y, z) */
```

Call a CUDA kernel

• Call from host. Example:

```
func<<<nblck, nthr>>>(n, a, x);
```

- nthr: number of threads per block; can be scalar or a dim3 type
- nblck: number of blocks; can be scalar or a dim3 type
- Example of dim3 type:

```
dim3 nthr(1024, 8, 8); /* No. of threads in (x, y, z) */
```

Thread coordinates within kernel

Example:

```
global__ void
func(int n, double a, double *x)
{
   int idx = threadIdx.x + blockIdx.x*blockDim.x;
   return;
}
```

```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```



```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```



```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```



```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```



```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```



```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```



```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```


Threads, blocks, grids

```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```


Variables available within kernel

- threadIdx.{x,y,z}
- blockIdx.{x,y,z}

- blockDim.{x,y,z}
- gridDim.{x,y,z}

Port a simple code to GPU and investigate performance

Sources: github.com/CaSToRC-CyI/EuroCC2 training Nov23/GPU programming/exercise/

• axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

$$y_i \leftarrow a \cdot x_i + y_i, i = 0, \dots, n-1$$

with α scalar and y and x vectors of length n.

Port a simple code to GPU and investigate performance

Sources: github.com/CaSToRC-CyI/EuroCC2 training Nov23/GPU programming/exercise/

• axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

$$y_i \leftarrow a \cdot x_i + y_i, i = 0, \dots, n-1$$

with α scalar and y and x vectors of length η .

• Currently Implements this on the **CPU**. Uses OpenMP to multi-thread over the 20 cores (per socket) of the Cyclone cluster nodes

Port a simple code to GPU and investigate performance

Sources: github.com/CaSToRC-CyI/EuroCC2 training Nov23/GPU programming/exercise/

• axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

$$y_i \leftarrow a \cdot x_i + y_i, i = 0, \dots, n-1$$

with α scalar and y and x vectors of length η .

- Currently Implements this on the **CPU**. Uses OpenMP to multi-thread over the 20 cores (per socket) of the Cyclone cluster nodes
- We will proceed step-by-step, to port this simple application to the GPU using CUDA

Port a simple code to GPU and investigate performance

Sources: github.com/CaSToRC-CyI/EuroCC2 training Nov23/GPU programming/exercise/

• axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

$$y_i \leftarrow a \cdot x_i + y_i, i = 0, \dots, n-1$$

with α scalar and y and x vectors of length η .

- Currently Implements this on the **CPU**. Uses OpenMP to multi-thread over the 20 cores (per socket) of the Cyclone cluster nodes
- We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

Allocation of memory on the GPU;

Port a simple code to GPU and investigate performance

Sources: github.com/CaSToRC-CyI/EuroCC2 training Nov23/GPU programming/exercise/

• axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

$$y_i \leftarrow a \cdot x_i + y_i, i = 0, ..., n-1$$

with α scalar and y and x vectors of length η .

- Currently Implements this on the **CPU**. Uses OpenMP to multi-thread over the 20 cores (per socket) of the Cyclone cluster nodes
- We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

- Allocation of memory on the GPU;
- Transferring memory to/from GPU;

Port a simple code to GPU and investigate performance

Sources: github.com/CaSToRC-CyI/EuroCC2 training Nov23/GPU programming/exercise/

• axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

$$y_i \leftarrow a \cdot x_i + y_i, i = 0, ..., n-1$$

with α scalar and γ and x vectors of length η .

- Currently Implements this on the **CPU**. Uses OpenMP to multi-thread over the 20 cores (per socket) of the Cyclone cluster nodes
- We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

- Allocation of memory on the GPU;
- Transferring memory to/from GPU;
- Invoking kernels;

Port a simple code to GPU and investigate performance

Sources: github.com/CaSToRC-CyI/EuroCC2 training Nov23/GPU programming/exercise/

• axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

$$y_i \leftarrow a \cdot x_i + y_i, i = 0, \dots, n-1$$

with α scalar and y and x vectors of length η .

- Currently Implements this on the **CPU**. Uses OpenMP to multi-thread over the 20 cores (per socket) of the Cyclone cluster nodes
- We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

- Allocation of memory on the GPU;
- Transferring memory to/from GPU;
- Invoking kernels;
- Placement of threads and memory access

File: axpy.cu

- Contains the C program we will begin with: axpy.cu
- Even though the file extension is .cu, the program contains no CUDA. Only OpenMP
- Allocates four arrays: x0[n], x1[n], y0[n], and y1[n], with n read from the command line
- x0 and y0 are initialized to random numbers
- x1 and y1 are initialized to x0 and y0 respectively
- The program:
 - o performs y0[:] = a*x0[:] + y0[:] in the first part marked with A:
 - o performs y1[:] = a*x1[:] + y1[:] in the second part marked with B:
 - reports the timing for part A and for B
 - o reports the difference between yo and y1

File: axpy.cu

- Contains the C program we will begin with: axpy.cu
- Even though the file extension is .cu, the program contains no CUDA. Only OpenMP
- Allocates four arrays: x0[n], x1[n], y0[n], and y1[n], with n read from the command line
- x0 and y0 are initialized to random numbers
- x1 and y1 are initialized to x0 and y0 respectively
- The program:
 - o performs y0[:] = a*x0[:] + y0[:] in the first part marked with A:
 - o performs y1[:] = a*x1[:] + y1[:] in the second part marked with B:
 - o reports the timing for part A and for B
 - o reports the difference between yo and y1

Take some time to inspect axpy.cu before we compile and run

• Copy first exercise from this training's shared space:

```
[user@front02 ~]$ git clone https://github.com/CaSToRC-CyI/EuroCC2_training_Nov23.git
[user@front02 ~]$ cd EuroCC2_training_Nov23/GPU_programming/exercise
[user@front02 ]$ ls -1
axpy.cu
```

• Copy first exercise from this training's shared space:

```
[user@front02 ~]$ git clone https://github.com/CaSToRC-CyI/EuroCC2_training_Nov23.git [user@front02 ~]$ cd EuroCC2_training_Nov23/GPU_programming/exercise [user@front02 ]$ ls -1 axpy.cu
```

Compile with nvcc including OpenMP:

```
[user@front02 exercise]$ module load gompi
[user@front02 exercise]$ module load CUDA
[user@front02 exercise]$ nvcc -03 -arch sm_70 -Xcompiler -fopenmp -o axpy axpy.cu
```

-Xcompiler -fopenmp: tells nvcc to pass -fopenmp to the underlying C compiler (here gcc)

• Copy first exercise from this training's shared space:

```
[user@front02 ~]$ git clone https://github.com/CaSToRC-CyI/EuroCC2_training_Nov23.git
[user@front02 ~]$ cd EuroCC2_training_Nov23/GPU_programming/exercise
[user@front02 ]$ ls -1
axpy.cu
```

Compile with nvcc including OpenMP:

```
[user@front02 exercise]$ module load gompi
[user@front02 exercise]$ module load CUDA
[user@front02 exercise]$ nvcc -03 -arch sm_70 -Xcompiler -fopenmp -o axpy axpy.cu
```

- -Xcompiler -fopenmp: tells nvcc to pass -fopenmp to the underlying C compiler (here gcc)
- Run on the CPUs of a GPU node
- Use srun to run interactively, e.g.:

```
[user@front02 exercise] export OMP_PROC_BIND="close"
[user@front02 exercise] export OMP_PLACES="cores"
[user@front02 exercise] export OMP_NUM_THREADS=20
[user@front02 exercise] srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics
CPU: nthr = 20  t0 = 0.0089 sec  P = 15.024 Gflop/s  B = 90.142 GB/s
CPU: nthr = 20  t0 = 0.0086 sec  P = 15.667 Gflop/s  B = 94.000 GB/s
Diff = 0.000000e+00
```

• Copy first exercise from this training's shared space:

```
[user@front02 ~]$ git clone https://github.com/CaSToRC-CyI/EuroCC2_training_Nov23.git
[user@front02 ~]$ cd EuroCC2_training_Nov23/GPU_programming/exercise
[user@front02 ]$ ls -1
axpy.cu
```

Compile with nvcc including OpenMP:

```
[user@front02 exercise]$ module load gompi
[user@front02 exercise]$ module load CUDA
[user@front02 exercise]$ nvcc -03 -arch sm_70 -Xcompiler -fopenmp -o axpy axpy.cu
```

- -Xcompiler -fopenmp: tells nvcc to pass -fopenmp to the underlying C compiler (here gcc)
- Run on the CPUs of a GPU node
- Use srun to run interactively, e.g.:

```
[user@front02 exercise] export OMP_PROC_BIND="close"
[user@front02 exercise] export OMP_PLACES="cores"
[user@front02 exercise] export OMP_NUM_THREADS=20
[user@front02 exercise] srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics
CPU: nthr = 20 t0 = 0.0089 sec P = 15.024 Gflop/s B = 90.142 GB/s
CPU: nthr = 20 t0 = 0.0086 sec P = 15.667 Gflop/s B = 94.000 GB/s
Diff = 0.0000000e+00
```

Compare ~90 GB/s achieved vs ~130 GB/s peak memory bandwidth

Use a GPU to replace part B of the calculation

- Edits outside of main():
 - 1. Add the cuda_runtime.h header file
 - 2. Add the GPU axpy kernel, naming it gpu_axpy()
 - 3. Add a function similar to ualloc() that allocates memory on the GPU and checks whether an error occured
- Edits within main():
 - 1. Allocate arrays on GPU
 - 2. Copy x1[:] and y1[:] to GPU
 - 3. Call gpu_axpy()
 - 4. Copy y1[:] from GPU

Edits outside of main() 1/3

• Add the cuda_runtime.h header file on line 5:

#include <cuda_runtime.h>

Edits outside of main() 2/3

• Add the GPU axpy kernel, naming it gpu_axpy(), after the CPU axpy, around line 64:

```
/***
 * Do y <- a*x + y on the GPU
 ***/
   _global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
   for(int i=0; i<n; i++)
    y[i] = a*x[i] + y[i];
   return;
}</pre>
```

Edits outside of main() 3/3

• At around line 30 add a function similar to ualloc() that allocates memory on the GPU and checks whether an error occurred

```
/***
 * Allocate memory on GPU; print error if not successful
    ***/
void *
gpu_alloc(size_t size)
{
    void *ptr;
    cudaError_t err = cudaMalloc(&ptr, size);
    if(err != cudaSuccess) {
        fprintf(stderr, "cudaMalloc() returned %d; quitting...\n", err);
        exit(-2);
    }
    return ptr;
}
```

Edits within main() 1/4

• Allocate arrays on GPU, within B part. Free arrays before closing B part:

```
/*
 * B: Run axpy(), return to y1, report performance
 */
 {
    /* Allocate GPU memory */
    float *d_x = (float *)gpu_alloc(n*sizeof(float));
    float *d_y = (float *)gpu_alloc(n*sizeof(float));
    ...
    cudaFree(d_x);
    cudaFree(d_y);
}
```

Edits within main() 2/4

• Copy x1[:] and y1[:] to GPU

```
cudaMemcpy(d_x, x1, sizeof(float)*n, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y1, sizeof(float)*n, cudaMemcpyHostToDevice);
```

Edits within main() 3/4

• Call gpu_axpy(). For the moment use 1 thread and 1 block. Replace axpy(n, a, x, y) of part B with:

```
double t0 = stop_watch(0);
gpu_axpy<<<1, 1>>>(n, a, d_x, d_y);
t0 = stop_watch(t0);
```

Note we need to pass the *device pointers* since it is these pointers that point to the memory allocated on the GPU

Edits within main() 4/4

• Copy y1[:] from GPU:

```
/* Copy y1 back from GPU */
cudaMemcpy(y1, d_y, sizeof(float)*n, cudaMemcpyDeviceToHost);
```

• Also change:

```
printf(" CPU: nthr = %4d ...);
```

to:

```
printf(" GPU: ...);
```

and remove OpenMP parallel region.

Compile and run

• Compile as before:

```
[user@front02 exercise]$ nvcc -arch sm_70 -03 -Xcompiler -fopenmp -o axpy axpy.cu
```

• Run as before (I'm assuming OMP_BIND, OMP_PLACES, and OMP_NUM_THREADS were set before):

```
[user@front02 exercise]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytic
CPU: nthr = 20    t0 = 0.0089 sec    P = 15.035 Gflop/s    B = 90.212 GB/s
GPU:         t0 = 0.0000 sec    P = 3198.579 Gflop/s    B = 19191.476 GB/s
Diff = 1.021564e-15
```

This performance is infeasible. What's going on?

Edits within main() 3/4

• The problem is here:

```
double t0 = stop_watch(0);
gpu_axpy<<<1, 1>>>(n, a, d_x, d_y);
t0 = stop_watch(t0);
```

- CUDA kernels return **immediately**; the kernel is still being executed on the device when stop_watch(t0) is called. We are **not** timing the kernel execution time, but the time it takes to dispatch the kernel to the GPU.
- Correct this by adding cudaDeviceSynchronize(); after the CUDA kernel, which blocks until all running CUDA kernels are complete:

```
double t0 = stop_watch(0);
gpu_axpy<<<1, 1>>>(n, a, d_x, d_y);
cudaDeviceSynchronize();
t0 = stop_watch(t0);
```

• Compile and run again:

```
[user@front02 exercise]$ nvcc -arch sm_70 -03 -Xcompiler -fopenmp -o axpy axpy.cu [user@front02 exercise]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytic CPU: nthr = 20 t0 = 0.0088 sec P = 15.199 Gflop/s B = 91.193 GB/s GPU: t0 = 3.9670 sec P = 0.034 Gflop/s B = 0.203 GB/s Diff = 1.021564e-15
```

• Compile and run again:

```
[user@front02 exercise]$ nvcc -arch sm_70 -03 -Xcompiler -fopenmp -o axpy axpy.cu
[user@front02 exercise]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytic
CPU: nthr = 20  t0 = 0.0088 sec  P = 15.199 Gflop/s  B = 91.193 GB/s
GPU:        t0 = 3.9670 sec  P = 0.034 Gflop/s  B = 0.203 GB/s
Diff = 1.021564e-15
```

• This performance is of course extremely poor;

• Compile and run again:

```
[user@front02 exercise]$ nvcc -arch sm_70 -03 -Xcompiler -fopenmp -o axpy axpy.cu [user@front02 exercise]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytic CPU: nthr = 20 t0 = 0.0088 sec P = 15.199 Gflop/s B = 91.193 GB/s GPU: t0 = 3.9670 sec P = 0.034 Gflop/s B = 0.203 GB/s Diff = 1.021564e-15
```

- This performance is of course extremely poor;
- We're using only one GPU thread in the kernel

Use more threads

• In this step, we will use 512 GPU threads. First, change the call to the GPU kernel:

```
double t0 = stop_watch(0);
gpu_axpy<<<1, 512>>>(n, a, d_x, d_y);
cudaDeviceSynchronize();
t0 = stop_watch(t0);
```

Use more threads

• In this step, we will use 512 GPU threads. First, change the call to the GPU kernel:

```
double t0 = stop_watch(0);
gpu_axpy<<<1, 512>>>(n, a, d_x, d_y);
cudaDeviceSynchronize();
t0 = stop_watch(t0);
```

• Then we need to change the kernel. We need in each GPU thread to calculate which elements it will operate on:

```
/***
 * Do y <- a*x + y on the GPU
 ***/
   _global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
   int ithr = threadIdx.x;
   int nthr = blockDim.x;
   int lt = n/nthr;
   for(int i=ithr*lt; i<(ithr+1)*lt; i++)
     y[i] = a*x[i] + y[i];
   return;
}</pre>
```

• With the above, each thread operated on n/nthr contiguous elements

• Compile and run again:

```
[user@front02 exercise]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytic CPU: nthr = 8 t0 = 0.0064 sec P = 2.628 Gflop/s B = 15.765 GB/s GPU: t0 = 0.1316 sec P = 0.127 Gflop/s B = 0.765 GB/s Diff = 1.022961e-15
```

• Better than before, but still very poor performance. Can we do better?

Optimized GPU memory access

Always keep in mind that on GPUs, it is more optimal if contiguous threads access contiguous memory locations

This represents the order by which elements are accessed currently

- The same thread accesses continuous elements
- Very common approach on CPUs
- On GPUs, this results in so-called bank conflicts
- Suboptimal!

Optimized GPU memory access

Always keep in mind that on GPUs, it is more optimal if contiguous threads access contiguous memory locations

This represents an optimal data access pattern

- Different threads accesses continuous elements
- Each thread is served by a different memory bank

Optimized GPU memory access

Always keep in mind that on GPUs, it is more optimal if contiguous threads access contiguous memory locations

In our example:

```
/***
 * Do y <- a*x + y on the GPU
 ***/
    global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
    int ithr = threadIdx.x;
    int nthr = blockDim.x;
    for(int i=0; i<n; i+=nthr)
        y[i+ithr] = a*x[i+ithr] + y[i+ithr];
    return;
}</pre>
```

• Compile and run:

```
[user@front02 exercise]\$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytic CPU: nthr = 20 t0 = 0.0097 sec P = 13.788 Gflop/s B = 82.730 GB/s GPU: t0 = 0.0665 sec P = 2.018 Gflop/s B = 12.111 GB/s Diff = 1.021564e-15
```

Blocks and threads

Now let's use blocks. Let's use as many blocks and threads as we can

- Upper limit of 1024 threads
- Upper limit of $2^{31} 1$ blocks

```
double t0 = stop_watch(0);
int nthr = 1024;
gpu_axpy<<<n/nthr, nthr>>>(n, a, d_x, d_y);
cudaDeviceSynchronize();
t0 = stop_watch(t0);
```

```
/***
 * Do y <- a*x + y on the GPU
 ***/
    global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
    int ithr = threadIdx.x;
    int nthr = blockDim.x;
    int iblk = blockIdx.x;
    int idx = ithr + iblk*nthr;
    y[idx] = a*x[idx] + y[idx];
    return;
}</pre>
```

Blocks and threads

• Compile and run:

```
[user@front02 exercise]\$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytic CPU: nthr = 20 t0 = 0.0088 sec P = 15.188 Gflop/s B = 91.129 GB/s GPU: t0 = 0.0011 sec P = 119.930 Gflop/s B = 719.578 GB/s Diff = 1.021564e-15
```

• ~720 GB/s is ~80% of peak bandwidth (which is 900 GB/s)

Blocks and threads

• Compile and run:

```
[user@front02 exercise]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytic

CPU: nthr = 20 t0 = 0.0088 sec P = 15.188 Gflop/s B = 91.129 GB/s

GPU: t0 = 0.0011 sec P = 119.930 Gflop/s B = 719.578 GB/s

Diff = 1.021564e-15
```

- ~720 GB/s is ~80% of peak bandwidth (which is 900 GB/s)
- Try varying the number of threads per block. E.g. with 512 threads I got ~730 GB/s.