

REDES ENERGÉTICAS DO FUTURO

12./13. Dez. 2011

Clemens Triebel, Younicos

Younicos develops applications of storage & grid management technologies

VISION: Future energy supply shall rely on Renewable Energy

(xamp)le w our oper de targets (20% in 2020, 30% in 2030, ...)

For a **stable** grid based on renewable energies

- StorageTechnologies
- New Control strategies

are required

The ISLAND case

While in the mainland grid, instability due to major contribution to renewables is a challenge of **TOMORROW**

Islands experience these future challenges of the European grid already **TODAY**

Therefore, they are the ideal platform to develop TODAY the energy concepts of TOMORROW

Example: Graciosa Island (Azores)

Inhabitants: 4500

Area: 67 km²

Peak load: ~ 3 MW

Electricity consumption: ~14 GWh

Energy supply: Fossil fuels (85%) Wind power (15%)

Local Utility: EDA

Graciosa Today's Power System

Power Station 4200 kW

(Fuel consumption ~ 4 Mio· 1/a)

Pilot Project Graciosa: 70-80% Renewables

Potential for wind and solar energy

Wind

Wind speed 0 15 m > 9 m/s
estim.
yield 3.0 MWh/kW

Solar radiation

daily average 3.3 kWh/m²d estim. yield 1.3 MWh/kW

Graciosa Renewable Energy System Layout

- ■Database: Load, irradiation and wind data from EDA
- Tool: the design and systems
- HOMER a simulation tool from NREL for optimization of renewable energy
- Simulation: energy various layouts
- Hour by hour energy balance for the possible supply system

Target Renewable Energy Supply System Layout

Assumptions - Technical

Target Renewable energy share: ~80%

Example Configuration

•Wind: 7 MW

■PV (fix tilt): L MW

●NaS Battery: 3 MW / 18

MWh

(15 years life expectancy)

•Dieselgenerators: 4₁2 MW

(existing Diesel as back-up)

SCADA System and Project Development

Total Investment: ~36 Mio. €

Assumptions - Economic

- ■Interest (term loan): 5%
- ●Equity Ratio: 20%
- ●Equity IRR: 10%
- ●Project Life time: 20 years
- •Fuel Price (2012) 0.65 €/1
- •Fuel price Increase Rate: 7%

(based on the past 20 years, see next slide)

- Administration Cost included
- Maintenance Cost included
- Battery exchanged after 12 years
- Exisiting Stuff trained employed for maintenance of the new equipment

Historic fuel price development

Fuel Price Increase Statistics

		Increase Rate Based on exponential fit		Geometric Mean Anual Fuel Price Increase Rate	
from	to	WORLD	AZORES	WORLD	AZORES
1987	2009	7-5%	<u>-</u>	7-8%	-
1995	2009	13.7%	10.2%	10.1%	7.9%

Cost of Electricity – high price stability

Challenges to be addressed on the way towards 100% renewable energy

- Application of reliable large scale storage solutions for the compensation of renewable energies
- 2. Development of fast inverter control schemes to assure the same stability as provided by conventional rotating generators
- 3. Assurence of reliable transport of information between the distributed sources
- 4. Development of disptach and optimization schemes taking into account also the new players in the game (cars, smart load, storage,...)
- 5. Development of standardized communication interfaces
- 6. Assure safe grid operation in fault conditions

ISLAND Test Site

To address the technical issues in island projects. Younicos is setting up the ISLAND Test Site to simulate up to 100% renewable energy based grids, using wind, irradiation and load measurements from any location

Inside View

2 x 500 kW NaS Battery

Electrochemistry → Cell

Electrochemistry

Discharging

2Na + XS \longrightarrow Na₂Sx (EMF=2.08 \sim 1.78V)

Charging

Cell → Module → Battery

Structure of Battery Module

NaS Battery Features

High Energy Density	About ∃ x that of Lead-Acid		
High Capacity	Up to L Hours continuous discharging		
Long Expected Life	Up tol5 years, 4500 cycles		
High Energy Efficiency	85% DC Efficiency		
No Self Discharge			
No Memory Effect			
Proven Technology	270 MW installation records		
Easy Maintenance	Inspection every 3 years only		
Fast Response	2 ms		
Operating Temperature	300 °C		

Conventional Market - Reverences

Wasseraufbereitungsanlage

Universität

Umspannstation, USA

Große Fabrikanlage

Vergnügungspark

Umspannstation, Japan

1 MW Diesel Generator

210 kW PV power plant (SOLON SE)

Island Grid Test Site

Let the fossils rest in peace.

ISLAND Test Site – for tests of grid stability and security of supply

Prediction based Energy Management

Younicos System Control and Energy Management System

Aktuelles Layout der Energieversorgung

Indikative Projektstruktur

Let the fossils rest in peace.

Investitionsbedarf

- Gesamtinvestment:
 31,85 Mio. €
- Erweiterungsinvestition nach 5 Jahren Laufzeit: 4,2 Mio. €*
- Sonstige Investitionen (Reserve Accounts)

*bei Annahme stabiler Preise für ein weiteres MW NaS Batterien, um 20 Jahre Betriebslaufzeit des Gesamtsystems zu gewährleisten

Profiles used for the Demonstration (1s resolution)

Short Circuit at substation

With proper Dimensioning of the Inverters and fast Control, the Batteries are capable of Supplying Enough Short Circuit Power to Substitute the Convenional Generators

3.5 x nominal current

2010 - LOI with EDA (October 20th 2010)

Let the fossils rest in peace.

Obrigado!

