# Adv. Engineering Math Homework 7

Ian Sinclair ENGR 3621-1

March 30, 2022 Dr. Margareta Stefanovic

## Problem 1:

The MATLAB script below generates the real data linearly modeled as Ax, and the noise corrupted measured data b modeled as b = Ax + n

```
1  x = 3; % true slope
2  A = [0: .25: 5]';
3  b = A*x + 1*randn(size(A)); %add noise
4  plot(A, A*x, 'k') % true relationship
5  hold on
6  plot(A,b, 'rx')
```

Compute and the least squares approximation of SVD Superimpose the plot of the result onto the previous plot. Attach the matlab script you wrote and the plot.

Let  $Ax = b^*$  be the true relationship be the signal, and Ax + n = b be the noisy signal data.

Desired is a least square approximation of x, being  $\tilde{x}$  that minimizes the square different between b and  $b^*$ ,

$$Ax\cong b=\min_{\tilde{x}}||b-b^*||_2^2=\min_{\tilde{x}}||b-A\tilde{x}||_2^2$$

Has a well known solution,

$$\hat{b} = A\tilde{x} = P_A b$$

Or is the projection of b onto the span of A, which implies that,

$$\tilde{x} = (A^T A)^{-1} A^T b$$

As a result, the error,  $e=b-\hat{b}$  between the noisy data and the approximation is,

$$e = b - \hat{b} = b - A(A^T A)^{-1} A^T b = b - P_A b = (I - P_A)b = P_{A \perp} b$$

Or is the projection of b onto the space normal to the span of A.

Next, note that A can be written in terms of its economy singular value decomposition,

$$A = U\Sigma V^T = \tilde{U}\Sigma V^T$$

Where,

$$U = [\tilde{U} \mid U_{\perp}]$$

Now substituting for A in the projection,  $\tilde{x}$ ,

$$\tilde{x} = (A^TA)^{-1}A^Tb = (V\Sigma \tilde{U}^T\tilde{U}\Sigma V^T)^{-1}V\Sigma^T\tilde{U}^Tb = (V\Sigma V^T)^{-1}V\Sigma^T\tilde{U}^Tb = V\Sigma^{-1}\tilde{U}^Tb$$

Interestingly, now  $\hat{b}$  can be found by,

$$\hat{b} = P_A b = A(A^T A)^{-1} A^T b = \tilde{U} \Sigma V^T (V \Sigma^{-1} \tilde{U}^T) b = \tilde{U} \tilde{U}^T b$$

Which implies,

$$span\{A\} = span\{\tilde{U}\}$$

Now examining the error,

$$P_{A\perp}b = b - \hat{b} = (I - P_A b) = (I - \tilde{U}\tilde{U}^T)b \longrightarrow P_{A\perp} = (I - \tilde{U}\tilde{U}^T)$$

And now note by the construction of U,

$$U = \left[ \tilde{U} \mid U_{\perp} \right]$$

It follows that,

$$I = UU^T = \begin{bmatrix} \tilde{U} \mid U_{\perp} \end{bmatrix} \frac{\begin{bmatrix} \tilde{U}^T \\ U_{\perp}^T \end{bmatrix}}{\begin{bmatrix} \tilde{U}^T \\ U_{\perp}^T \end{bmatrix}} = \tilde{U}\tilde{U}^T + U_{\perp}U_{\perp}^T \longrightarrow P_{A\perp} = (I - \tilde{U}\tilde{U}^T)) = U_{\perp}U_{\perp}^T$$

Ultimately, this results in an approximation generated from  $\tilde{x}$  by,

- <sup>1</sup> [U, S, V] = svd(A,0); % Returns the economy SVD
- $_{2} \quad Xtilde = V*(inv(S))*U*b;$
- plot(A, A\*Xtilde, 'r');



## Problem 2:

A ray of light having amplitude  $\alpha$  travels through space in the unit direction  $d \in \mathbb{R}^3$  and falls on 4 photosensors located on a solar panel. Unit vectors  $q \in \mathbb{R}^3$ , i = 1, 2, ..., 4 are outward normal vectors to the surface of each photosensor, representing the direction in which the sensor is pointed. Assume that  $\{q_1, q_2, q_3, q_4\}$  span  $\mathbb{R}^3$  (that is, not all sensors point in the same plane). Each photosensor generates a scalar output signal,

$$p_i = \alpha \sigma \cos(\theta_i + v_i)$$

where  $\theta_i$  is the angle between the ray direction d and the sensor direction  $q_i$  and  $\sigma \in \mathbb{R}$  is the photosensor sensitivity (same for all sensors). The scalar numbers  $v_i$  are small measurement errors (noise). We are given the following data: the photosensor direction vectors  $q \in \mathbb{R}^3$ , i = 1, 2, ..., 4 the photosensor sensitivity  $\sigma$  and the noisy photosensor outputs,  $p_i \in \mathbb{R}$ , i = 1, 2, ..., 4 Your task is to estimate the light ray direction  $d \in \mathbb{R}^3$  (also a unit vector), and  $\alpha$  the ray amplitude, knowing that  $v_i$  is small. The unit vectors  $q_i$  are defined in terms of the azimuth angles  $\theta_i$  and elevation angles  $\phi_i$  as follows:

$$q_i = \begin{bmatrix} \cos(\phi_i)\cos(\theta_i) \\ \cos(\phi_i)\sin(\phi_i) \\ \sin(\phi_i) \end{bmatrix}, i = 1, 2, ..., 4$$

Similarly,

$$d = \begin{bmatrix} \cos(\phi_d)\cos(\theta_d) \\ \cos(\phi_d)\sin(\phi_d) \\ \sin(\phi_d) \end{bmatrix}$$

Implement your method in Matlab using the data given in  $hw7_p2_data.m$ . This file defines P the vector of photosensor outputs, the vector  $\Theta$  which gives the azimuth angles of the photosensors directions, and the vector  $\Phi$  which gives the elevation angles of the photosensor directions for the four sensors. Both angle vectors are given in degrees. Give your estimate of the ray amplitude  $\alpha$  and ray direction d (in azimuth and elevation, in degrees). Attach the matlab code you wrote.

Let w be a ray of light with direction d and magnitude  $\alpha$ ; such that,  $w = \alpha d$ .

Then take 4 photosensors located on solar panels such that  $q_i$  is the outward normal vectors to the surface of each photosensor. Next, assume that  $\{q_i\}$  is non-planar any so spans  $\mathbf{R}^3$ . Take  $\sigma \in \mathbb{R}$  be the photosensor sensitivity consistent for all sensors. Lastly, let  $v_i$  be noise in the signal. And so, the scalar output signal is,

$$p_i = \alpha \sigma \cos(\theta_i) + v_i$$

And for small  $v_i$ 

$$p_i \approx \alpha \sigma \cos(\theta_i) = \sigma q_i^T(\alpha d) = \sigma q_i^T(w)$$

As a result, desired in a vector w that corresponds to the projection of p onto the basis generated by [q]. And so define  $q_i$  in terms of  $\phi$  and  $\theta$ ,

$$q_i = \begin{bmatrix} \cos(\phi_i)\cos(\theta_i) \\ \cos(\phi_i)\sin(\phi_i) \\ \sin(\phi_i) \end{bmatrix}, i = 1, 2, ..., 4$$

Where  $\phi_i$  and  $\theta_i$  are known.

Then let q be the column wise adjoinment of each  $q_i$ ,  $q = [q_1, ..., q_4]$ .

Then by a symmetric argument to problem 1, the optimal  $\hat{w}$  that finds the least square projection of p onto span(q) is,

$$\hat{w} = V \Sigma^{-1} \tilde{U}^T p$$

Where  $q = \tilde{U}\Sigma V^T$  is the economy SVD of q.

Next, because  $\{q_1, ..., q_4\}$  spans  $\mathbb{R}^3$  matrix q is consistent and so,

$$\hat{w} = \sigma w$$

And so,

$$\alpha = \frac{||\hat{w}||}{\sigma}$$

And d is the normalized direction vector of w expressed in azimuth and elevation angles.

```
1 % Problem 2 {Ray Detection}
   % Data for HW 7, P2 (estimate light-ray amplitude and direction)
_{4} m = 4;
   sigma = 0.5;
   % theta is azimuth angle
   theta =[3]
    10
    80
    150
10
   % phi is elevation angle
   phi = 88
    34
    30
    20
17
   p = [
          1.58
    1.50
19
    2.47
    1.10
21
22
23
   q = [];
25
   for i = 1:length(theta)
        n = [\cos d(\text{theta}(i)) * \cos d(\text{phi}(i)); \ \sin d(\text{theta}(i)) * \cos d(\text{phi}(i)); \ \sin d(\text{phi}(i))];
27
        q = [q n];
28
   end
29
31
   [U, S, V] = svd(q', 0); %Returns the economy SVD
   w = V * inv(S) * U * p;
33
34
w = w/sigma;
   [TH, PHI, alpha] = cart2sph(w(1), w(2), w(3));
```

#### Solution

Which results in,

$$\alpha = 5.0107, \qquad d = \begin{bmatrix} \cos(\phi_d)\cos(\theta_d) \\ \cos(\phi_d)\sin(\phi_d) \\ \sin(\phi_d) \end{bmatrix} = \begin{bmatrix} \cos(-18.6^\circ)\cos(98.66^\circ) \\ \cos(-18.6^\circ)\sin(98.66^\circ) \\ \sin(-18.6^\circ) \end{bmatrix} = \begin{bmatrix} -0.1427 \\ 0.9369 \\ -0.32 \end{bmatrix}$$

# **Problem 3:**

In this problem we find the point in  $\mathbb{R}^n$  (( the position vector  $z^*$  associated with the point) that is closest (in Euclidean sense) to the given set of m lines in  $\mathbb{R}^n$ . The end result should look similar to the sample figure below, which shows 15



lines in  $\mathbb{R}^2$ . and the point (marked by a red asterisk) that is closest (among all points in  $\mathbb{R}^2$  to the given lines. Each line is defined by a vector equation:

$$\mathcal{L}_i: r = P_i + tV_i$$

Where  $t \in \mathbb{R}$  is a scalar parameter and  $r, P_i, V_i \in \mathbb{R}^n$ . Vectors  $V_i$  are unit length. For example, for  $\mathbb{R}^2$ 

$$\mathcal{L}: \begin{bmatrix} r_x \\ r_y \end{bmatrix} = \begin{bmatrix} P_x \\ P_y \end{bmatrix} + t \begin{bmatrix} V_x \\ V_y \end{bmatrix}$$

Next, the distance from a point, z, to a line is calculated as follows,

$$dist(z,\mathcal{L}) := \min_{u \in \mathcal{L}} ||z - u||$$

That is, the closest Euclidean distance between z and some point in  $\mathcal{L}$ . Additionally, note that,

$$||z - u|| = \sqrt{(z - u)^T (z - u)}$$

Find the point  $z^* \in \mathbb{R}^n$  that minimizes the sum of the squares of the distances to all m given lines. In this way, we find the point that is closest to all lines simultaneously.

$$z^* = \arg\min_{z \in \mathbb{R}^n} \sum_{i=1}^n (dist(z, \mathcal{L}_i))^2$$

If you need to assume that some condition holds (such as some matrix being full rank), state this explicitly.

Consider the set of lines,  $\mathcal{L}_i$  defined by,

$$r_i = P_i + tV_i$$

For matrices  $r, P, V \in \mathbb{R}^n$ , where n is the diminsionality of the lines.

Then, let z be a point,  $z \in \mathbb{R}^n$ ,

then the minimum distance from any line  $\mathcal{L}_i$  to z can be found by,

$$||z - u|| = \sqrt{(z - u)^T (z - u)} = \sqrt{(z - P - tV)^T (z - P - tV)}$$

And so take,

$$J_i = \sqrt{(z - P - tV)^T (z - P - tV)}$$

to be the cost function describing the distance from z to  $\mathcal{L}_i$ , which is optimized by,

$$\nabla_{t^*} J_i = 0$$

For optimal parameter  $t^*$ .

Additionally, note that the optimum for  $J_i$  is incident with the optimum for  $J_i = (z - P - tV)^T (z - P - tV)$  and so redefine the cost function,

$$J_i = (z - P - tV)^T (z - P - tV)$$

Then,

$$0 = \nabla_t J_i = 2(z - P - tV)^T (-V)$$

Which implies,

$$(z - P)^T v = tV^T V$$

And so the  $t^*$  that gives an optimum for  $J_i$  is,

$$t^* = \frac{(z-P)^T v}{V^T V} = \frac{(z-P)^T v}{||v||}$$

And so the point closest to z is,

$$u^* = P + \frac{(z - P)^T V}{||V||} V$$

Next, assume that V is normalized such that, ||V|| = 1; then,

$$u^* = P + VVT^(z - P)$$

Therefore, the minimum distance between z and  $\mathcal{L}_i$  is,

$$dist(z, \mathcal{L}_i) = \min_{u \in \mathcal{L}_i} ||z - u|| = ||(I - VV^T)(z - P)||$$

Now, desired is a  $z^* \in \mathbb{R}^n$  that minimizes the distance to all of m lines  $\mathcal{L}$ , and so define the cost function,

$$J := \sum_{i=1}^{m} (dist(z, \mathcal{L}_i))^2$$

in terms of vectors  $P_i$  and  $V_i$ . Where,

$$z^* = \arg\min_{z} \{ \sum_{i=1}^{m} (dist(z, \mathcal{L}_i))^2 \}$$

Again note the distance function to each line,

$$J := \sum_{i=1}^{m} dist(z, \mathcal{L}_i) = \sum_{i=1}^{m} ||(I - VV^T)(z - P)|| = \sum_{i=1}^{m} \sqrt{(z - P)^T (I - VV^T)^2 (z - P)}$$

Has a minimum incident with,

$$J := \sum_{i=1}^{m} (z - P)^{T} (I - VV^{T})^{2} (z - P)$$

Now, because V is known, take,

$$Q_i = (I - V_i V_i^T)^2$$

And assume  $Q_i$  has full rank. Also, note that Q is symmetric because  $V_iV_i^T$  is symmetric, and so,  $(I-V_iV_i^T)$  is symmetric, lastly this means that,  $Q=(I-V_iV_i^T)^2$  is symmetric. Now note the cost function,

$$J = \sum_{i=1}^{m} (z - P)^{T} Q(z - P) = (z - P_{1})^{T} Q_{1}(z - P_{1}) + \dots + (z - P_{m})^{T} Q_{m}(z - P_{m})$$

And now optimizing,

$$0 = \nabla_z J = Q_1(z - P_1) + \dots + Q_m(z - P_m) = Q_1 z - Q_1 P_1 + \dots + Q_m z - Q_m P_m$$

$$= \underbrace{(Q_1 + \dots + Q_m)}_{\mathcal{Q}} z - \underbrace{(Q_1 P_1 + \dots + Q_m P_m)}_{\mathcal{W}}$$

And so,

$$0 = \mathcal{Q}z - \mathcal{W} \longrightarrow z = \mathcal{Q}^{-1}\mathcal{W}$$

Assuming Q is invertible. Otherwise, select z from the kern(Qz - W).



#### Which is implemented by,

- <sup>1</sup> % Problem 3 {Closest Point}
- 2 % Data for HW 7, P3 (point closest to the given lines)
- з clear
- n = 2;
- m = 15:
- $P = \begin{bmatrix} -0.7930, -6.1337, 6.5463, 1.3785, -4.0749, 1.9969, 3.0305, 1.7315, -0.2904, 4.6367, 1.3919, 0.0103, 3.1012, 10.9183, 4.6092; \end{bmatrix}$
- 2.4518, -4.4494, 2.6530, -3.6324, 3.5452, 3.8776, 0.5708, -0.0375, 1.4084, 7.7409, 3.0078, 2.4676, -1.0208, 4.2206, 6.0331;
- 8 ];
- $V = \begin{bmatrix} -1.0000, -0.4409, 0.9477, -0.2011, -0.0852, 0.9502, -0.6529, -0.5113, -0.9721, 0.5746, -0.5262, 0.9977, -0.5202, -0.4683, -0.6865; -0.5262, 0.9977, -0.5202, -0.4683, -0.6865; -0.5262, 0.9977, -0.5202, -0.4683, -0.6865; -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -0.5262, -$

```
0.0058, -0.8976, 0.3193, 0.9796, -0.9964, 0.3115, -0.7575, 0.8594, -0.2347, -0.8184,
10
                -0.8504, -0.0676, 0.8540, 0.8836, -0.7272;
            ];
11
12
13
   Q = [0, 0; 0, 0];
   for i = 1:length(V)
       Q_n = (eye(2) - (V(:, i:i)*V(:, i:i)'))^2;
16
       Q = Q + Qn;
17
   end
18
_{20} W = [0; 0];
   for i = 1:length(P)
       PP = ((eye(2) - (V(:,i:i)*V(:,i:i)'))^2)*(P(:,i:i));
22
       W = W + PP;
23
   end
24
25
   zstar = inv(Q)*W;
26
   t = -50:0.1:50;
   for i=1m
       cor=V(:,i)*t+P(:,i)*ones(1,length(t));
30
       plot(cor(1,:),cor(2,:));
31
       hold on
32
   end
33
   plot(zstar(1),zstar(2),'*r')
  axis([-20 \ 20 \ -20 \ 20])
```