COORDINATION PROCESS OF LEARNING ACTIVITIES PR/CL/001

103000363 - Programmable Biology: Dna Computing Amd Biocircuits Engineering

DEGREE PROGRAMME

10AJ - Master Universitario En Inteligencia Artificial

ACADEMIC YEAR & SEMESTER

2021/22 - Semester 1

Index

Learning guide

Description	1
J. JKIII5 and Icaniing dulconics	
4. Brief description of the subject and syllabus	
5. Schedule	
6. Activities and assessment criteria	S
7. Teaching resources1	2

1. Description

1.1. Subject details

Name of the subject	103000363 - Programmable Biology: Dna Computing Amd Biocircuits Engineering			
No of credits	5 ECTS			
Туре	Optional			
Academic year ot the programme	First year			
Semester of tuition	Semester 1			
Tuition period	September-January			
Tuition languages	English			
Degree programme	10AJ - Master Universitario en Inteligencia Artificial			
Centre	10 - Escuela Tecnica Superior De Ingenieros Informaticos			
Academic year	2021-22			

2. Faculty

2.1. Faculty members with subject teaching role

Name and surname	Office/Room	Email	Tutoring hours *
Alfonso Vicente Rodriguez- Paton Aradas (Subject coordinator)	2106	alfonso.rodriguez- paton@upm.es	M - 17:00 - 19:00

^{*} The tutoring schedule is indicative and subject to possible changes. Please check tutoring times with the faculty member in charge.

2.2. Research assistants

	Faculty member in charge
a.nunez@upm.es	Rodriguez-Paton Aradas, Alfonso Vicente
2	a.nunez@upm.es

3. Skills and learning outcomes *

3.1. Skills to be learned

- CEIA1 Capacidad de integrar tecnologías y sistemas propios de la Inteligencia Artificial, con carácter generalista, y en contextos más amplios y multidisciplinares
- CEIA2 Capacidad de conectar la tecnología puntera en Inteligencia Artificial con las necesidades de los clientes
- CEIA5 Conocimiento las principales técnicas de computación natural, tanto a nivel simbólico como físico, e identificar su idoneidad para distintos tipos de problemas
- CG15 Capacidad para contribuir al desarrollo futuro de la informática.
- CG18 Capacidad de trabajar y comunicarse también en contextos internacionales
- CG6 Gestión de la información.
- CG8 Planteamiento y resolución de problemas también en áreas nuevas y emergentes de su disciplina
- CG9 Aplicación de los métodos de resolución de problemas más recientes o innovadores y que puedan implicar el uso de otras disciplinas.
- CGI1 Adquirir conocimientos científicos avanzados del campo de la informática que le permitan generar nuevas ideas dentro de una línea de investigación.
- CGI2 Comprender el procedimiento, valor y límites del método científico en el campo de la Informática, siendo capaz de identificar, localizar y obtener datos requeridos en un trabajo de investigación, de diseñar y guiar investigaciones analíticas, de modelado y experimentales, así como de evaluar datos de una manera crítica y extraer conclusiones.
- CGI3 Capacidad para valorar la importancia de las fuentes documentales, manejarlas y buscar la información para el desarrollo de cualquier trabajo de investigación.

CGI4 - Capacidad de leer y comprender publicaciones dentro de su ámbito de estudio/investigación, así como su catalogación y valor científico.

3.2. Learning outcomes

- RA90 Comprender co?mo se pueden disen?ar e implementar bioalgoritmos que emplean mole?culas de ADN como sustrato (memoria).
- RA91 Disen?ar circuitos lo?gicos biomoleculares sinte?ticos operando : (1) con ADN/ARN o (2) con protei?nas
- RA92 Comprender co?mo las ce?lulas procesan informacio?n codificada en biomole?culas y toman decisiones.
- RA4 Valorar la importancia de las fuentes documentales y seleccionar aquéllas que sean más interesantes para publicar sus trabajos
- RA3 Abordar los aspectos formales del proyecto inicial de una investigación
- RA2 Establecer un debate fundamentado sobre el conocimiento científico y las bases de la investigación
- * The Learning Guides should reflect the Skills and Learning Outcomes in the same way as indicated in the Degree Verification Memory. For this reason, they have not been translated into English and appear in Spanish.

4. Brief description of the subject and syllabus

4.1. Brief description of the subject

In this course we will study the basic concepts and topics of Biomolecular Computing, Synthetic Biology and Programmable Biology.

What is Synthetic Biology? It is the engineering of biology: the application of the engineering principles in biology to design and build biological systems. This field considers biology as a technology that can be programmed to manufacture new synthetic biological devices and systems. This field was born in 2000 in MIT Artificial Intelligence Lab where engineers, computer scientists, and physicists started to work jointly with biologists. Engineers asked this question: can we combine natural living hardware components (mainly genes) to build new synthetic biological systems? Can we design and write genetic programs in DNA (the software) to be run in a cellular processor (the hardware)? The answer was yes. The biotechnology and genetic engineering tools were already available. The first synthetic devices were developed in 2000: a genetic memory (Gardner, Cantor, & Collins, 2000), an oscillatory

genetic circuit (Elowitz et al. 2000) and several genetic Boolean logic gates (Hasty, McMillen, & Collins, 2002; Weiss et al., 2003).

From single cell biocircuits to multicell biocircuits: recent efforts in synthetic biology are moving into the engineering of distributed biocircuits encoded in multicell populations. Multicellular synthetic circuits exploit the ability of the single cells to communicate with its peers to achieve robust dynamics in engineered populations. Quorum sensing circuits are the most noticeable example of this tendency, with great efforts going into the study of artificial pattern-formation, division of labour or bio-computation. We will also analyze software tools like individual-based simulators able to model multicellular bacterial programmed populations and tissues.

RNA Synthetic Biology: traditionally, transcriptional and translational RNA regulators have performed worse than protein regulators in terms of ON/OFF switching range. But recently, the engineering of new robust RNA switches have overcome this problem. These bio-switches can be flipped ON or OFF with high speed and high fidelity. Some of theses new synthetic RNA switches act transcriptionally (STARs and CRISPRi) and others act translationally (Toehold Switches). The results obtained in terms of dynamic range response and expression rates make them an interesting tool to reach robust and fast genetic circuits (Chappell, Takahashi, & Lucks, 2015; Green, Silver, Collins, & Yin, 2014). On the other hand, RNA molecules can be used as effective and orthogonal wiring signals due to their size and to their high programmability. Moreover, RNA circuits are more compact than protein-based ones so that implies a reduced metabolic burden on the cell host and allow for faster propagation of signals. Finally, it is already known that CRISPR is not only a powerful gene-editing tool but it can also be used as a precise and programmable computing tool, so this open a new research line in the SynBio framework.

Biomolecular computing: is the term used for information processing encoded in biological macromolecules. A bio-molecular computer is a device made with these biomolecules that processes biological information, and use DNA, RNA, proteins, or their combination. We will describe only a few of the most relevant DNA and RNA-based computers developed so far and applied to in vivo diagnostic and drug delivery. The engineering of programmable biomolecular automata applied to the diagnosis/treatment in vitro of a disease is a promising application in the area of intelligent in situ drug delivery. This field started in 2001 with the first design of a DNA-based automaton operating in vitro (Benenson et al. 2001) applied to biomedical diagnosis in 2004 (Benenson et al. 2004). An automaton is a device that can operate in an autonomous way, sensing inputs, processing those inputs and emitting an output without external human interaction. Another important and widely used nucleic acid sensing technique is the so-called ?competitive hybridization? or ?DNA strand displacement? (Seelig et al., 2006). This technique is used in the design of DNA logic circuits for the intelligent sensing and processing of DNA and RNA molecules.

Programmable Biology and open-source portable biology labs: LIA group is developing code for programming portable biology labs run by Arduino cards. We want to make these biolabs easy to program and easy to engineer. This is why we are using BioBlocks language (a drag-and-drop visual language based on Scratch and Blockly). We want to develop open-source versions of Bento.bio and Amino.bio.

More introductory info at: http://www.lia.upm.es

Also: Alfonso?s talk in Valencia, Spain, in ISBBC Summer School, June 2017: ?Synthetic Biology for computer scientists in 2 hours?. Slides available at: https://drive.google.com/file/d/0B1K8p9umsfl4WWhUd1IMLTA0OVE/view

Towards programmable antibiotics and in silico microbiota: https://www.youtube.com/watch?v=b4ECvhXD5kg

Decrypting bacterial virulence networks: https://youtu.be/tPZ36vyzAUM

¿Cómo funcionan los fármacos programables? https://youtu.be/RwAUjSLwXOc

4.2. Syllabus

- 1. DNA Computing
 - 1.1. DNA structure and DNA operations
 - 1.2. DNA Strand displacement-based biocircuits
 - 1.3. Molecular automata
- 2. Synthetic Biology: unicellular genetic circuits
 - 2.1. Gene expression and regulation
 - 2.2. Genetic Boolean logic gates
 - 2.3. Basic genetic circuits: A toggle switch and an oscillator (repressilator)
 - 2.4. CRISPR-based devices and gene drives
- 3. Synthetic Biology: multicellular genetic circuits
 - 3.1. Bacterial cell-cell communication: quorum sensing
 - 3.2. Bacterial cell-cell communication: conjugation
 - 3.3. Morphogenesis: engineering multicellular motifs

- 4. Programmable Biology
 - 4.1. Simulating bacterial colonies with IBM: Gro simulator
 - 4.2. Engineering portable biolabs with Arduino cards and software blocks
 - 4.3. Deep learning in SynBio

5. Schedule

5.1. Subject schedule*

Week	Face-to-face classroom activities	Face-to-face laboratory activities	Distant / On-line	Assessment activities
	Tema 1: DNA Computing 1.1: DNA			Reading papers
	structure and DNA operations			Other assessment
1	Duration: 02:00			Continuous assessment
	Lecture			Not Presential
				Duration: 01:00
	1.2 DNA Strand displacement-based			Reading papers
	biocircuits			Other assessment
2	Duration: 02:00			Continuous assessment
	Lecture			Not Presential
				Duration: 01:00
	1.3 Molecular automata			Reading papers
	Duration: 02:00			Other assessment
3	Lecture			Continuous assessment
3				Not Presential
				Duration: 01:00
	2. Synthetic Biology: unicellular genetic			Reading papers
	circuits. 2.1. Gene expression and			Other assessment
4	regulation			Continuous assessment
	Duration: 02:00			Not Presential
	Lecture			Duration: 01:00
	2.2. Genetic Boolean logic gates			Reading papers
	Duration: 02:00			Other assessment
5	Lecture			Continuous assessment
				Not Presential
				Duration: 01:00
	2.3. Basic genetic circuits: A toggle			Reading papers
	switch and an oscillator (repressilator)			Other assessment
6	Duration: 02:00			Continuous assessment
	Lecture			Not Presential
				Duration: 01:00
	2.4 CRISPR-based devices and gene			Reading papers
	drives			Other assessment
7	Duration: 02:00			Continuous assessment
•	Lecture			Not Presential
				Duration: 01:00
	3.1 Bacterial cell-cell communication:			Reading papers
	quorum sensing based-circuits			Other assessment
c	Duration: 02:00			Continuous assessment
8	Lecture			Not Presential
	Lecture			
				Duration: 01:00
	3.2. Bacterial cell-cell communication:			Reading papers
	conjugation and 3.3 Morphogenesis			Other assessment
9	Duration: 02:00			Continuous assessment
	Lecture			Not Presential
	l l			Duration: 01:00

	4.1: Gro. 4.2: Portable biolabs		Reading papers
	Duration: 02:00		Other assessment
10	Lecture		Continuous assessment
10	255.4.5		Not Presential
			Duration: 01:00
	4.4: Deep learning in SynBio		Reading papers
	Duration: 02:00		Other assessment
11	Lecture		Continuous assessment
			Not Presential
			Duration: 01:00
	iGEM groups presentations		Reading papers
	Duration: 02:00		Other assessment
12	Lecture		Continuous assessment
			Not Presential
			Duration: 01:00
	Oral presentations students		
1 ,,	Duration: 02:00		
13			
	Cooperative activities		
	Oral presentations of the students		
14	Duration: 02:00		
	Lecture		
	Oral presentations of the students		Oral presentations
	Duration: 02:00		Individual presentation
l	Lecture		Continuous assessment
15	Lecture		
			Presential
			Duration: 25:00
	Review of general topics		
16	Duration: 02:00		
	Problem-solving class		
	Written exam		Written exam
	Duration: 02:00		Written test
	Additional activities		Continuous assessment
	Additional activities		
			Presential
			Duration: 14:00
			Final written assay
			Individual work
			Continuous assessment
			Not Presential
			Duration: 50:00
17			
			Final written assay (for final evaluation)
			Individual work
			Final examination
			Not Presential
			Duration: 44:00
			Duration: 44:00
			L "
			Written exam (for only final evaluation)
			Written test
			Final examination
			Not Presential
			Duration: 20:00

Depending on the programme study plan, total values will be calculated according to the ECTS credit unit as 26/27 hours of student face-to-face contact and independent study time.

* The schedule is based on an a priori planning of the subject; it might be modified during the academic year, especially considering the COVID19 evolution.

6. Activities and assessment criteria

6.1. Assessment activities

6.1.1. Continuous assessment

Week	Description	Modality	Туре	Duration	Weight	Minimum grade	Evaluated skills
1	Reading papers	Other assessment	No Presential	01:00	2%	5/10	CGI1 CG15 CG9 CGI4
2	Reading papers	Other assessment	No Presential	01:00	2%	5/10	CGI1 CG15 CG9 CGI4
3	Reading papers	Other assessment	No Presential	01:00	2%	5/10	CGI1 CG15 CG9 CGI4
4	Reading papers	Other assessment	No Presential	01:00	2%	5/10	CGI1 CG15 CG9 CGI4
5	Reading papers	Other assessment	No Presential	01:00	2%	5/10	CGI1 CG15 CG9 CGI4
6	Reading papers	Other assessment	No Presential	01:00	2%	5/10	CGI1 CG15 CG9 CGI4
7	Reading papers	Other assessment	No Presential	01:00	2%	5/10	CGI1 CG15 CG9 CGI4
8	Reading papers	Other assessment	No Presential	01:00	2%	5/10	CGI1 CG15 CG9 CGI4

9	Reading papers	Other assessment	No Presential	01:00	2%	5 / 10	CGI1 CG15 CG9 CGI4
10	Reading papers	Other assessment	No Presential	01:00	2%	5 / 10	CGI1 CG15 CG9 CGI4
11	Reading papers	Other assessment	No Presential	01:00	2%	5/10	CGI1 CG15 CG9 CGI4
12	Reading papers	Other assessment	No Presential	01:00	2%	5/10	CGI1 CG15 CG9 CGI4
15	Oral presentations	Individual presentation	Face-to-face	25:00	25%	5/10	
17	Written exam	Written test	Face-to-face	14:00	1%	5/10	CG18 CEIA1 CGI1 CGI2 CEIA2 CEIA5 CG6 CG8 CG15 CG9 CGI4 CGI3
17	Final written assay	Individual work	No Presential	50:00	50%	5/10	

6.1.2. Final examination

Week	Description	Modality	Туре	Duration	Weight	Minimum grade	Evaluated skills
17	Final written assay (for final evaluation)	Individual work	No Presential	44:00	75%	5 / 10	CEIA1 CG6 CGI3
17	Written exam (for only final evaluation)	Written test	No Presential	20:00	25%	5/10	CG18 CGI1 CGI2 CEIA2 CEIA5 CG8 CG15 CG9 CGI4

6.1.3. Referred (re-sit) examination

No se ha definido la evaluación extraordinaria.

6.2. Assessment criteria

Las presentaciones orales se valorarán y calificarán en función de la claridad y la profundidad a la hora de explicar los conceptos básicos del tema elegido, la extensión y adecuación de la bibliografía consultada, la concisión y el ajuste al tiempo asignado. La presentación oral individual es obligatoria para aprobar la asignatura y tiene un valor máximo de 2 puntos sobre 10.

El examen de conocimientos básicos se califica como Apto o No Apto. Si un alumno no obtiene la calificación de No-Apto puede presentarse a otro examen de recuperación. Es obligatorio superar este examen para aprobar la asignatura.

El trabajo escrito final tiene un valor máximo de 7,5 puntos sobre 10.

La asistencia y participación activa en clase se valorará entre 0 y 0,5 puntos.

Para superar la asignatura hay que obtener al menos 5 puntos sobre un total de 10 al sumar las tres calificaciones anteriores (presentación oral+trabajo escrito+participación presencial). Y aprobar el examen de conocimientos básicos.

Los alumnos deberán realizar un trabajo escrito al final del curso en el que estudiarán un problema o tópico descrito en la asignatura y a definir previamente con el profesor. Este documento contendrá una descripción del problema o tópico elegido así como una reflexión crítica por parte del alumno sobre el tema y la bibliografía consultada por el alumno. El alumno deberá consultar al menos 5 artículos relevantes sobre el tema descrito. La memoria del trabajo deberá ser original y contener todas las citas y referencias bibliográficas utilizadas para su elaboración. El plagio de algún párrafo conlleva el suspenso automático en la asignatura. No se valora la cantidad escrita sino la calidad. Es decir, se valora la capacidad de síntesis, la capacidad de comprensión por parte del alumno del problema analizado, la profundidad del análisis y la crítica y la reflexión personal del alumno. Al tratarse de una asignatura de un Máster de investigación se valorará en gran medida cualquier aportación creativa o idea novedosa y original por parte del alumno.

Los alumnos que no realicen la evaluación continua (presentación oral + examen parcial + trabajo final) se pueden presentar a la convocatoria extraordinaria de julio en la que tendrán que realizar/entregar un trabajo escrito (sobre un tema que se debe acordar con el profesor no más tarde de principios/mediados de junio) y un examen de conocimientos sobre los contenidos y temas analizados a lo largo del curso. Para aprobar en la convocatoria de julio hay que aprobar tanto el trabajo escrito como el examen de conocimientos.

La metodología o modelo docente que se sigue en las clases es el denominado "Flipped Classroom" en el que los alumnos leen y consultan artículos y material docente previamente a la sesión presencial que se utiliza no de manera expositiva por parte del profesor sino interactiva para resolver dudas y analizar de manera conjunta los aspectos más relevantes o complejos que los alumnos se han encontrado al consultar el material docente (artículos de investigación).

7. Teaching resources

7.1. Teaching resources for the subject

Name	Туре	Notes
Basic docs about synbio	Web resource	Consultar la web del grupo LIA (hay una sección con material introductorio a la Biología Sintética): http://www.lia.upm.es
Reading papers	Web resource	At the beginning of the course a link to the reading papers described during each class will be given to the students
GRO 2D bacterial simulator	Web resource	Software for simulating growing 2D bacterial colonies: https://github.com/liaupm/GRO-LIA br /> Paper: https://pubs.acs.org/doi/abs/10.1021/a cssynbio.7b00003
BioBlocks	Web resource	Drag-and-drop software for describing biological protocols based on Scratch Paper: http://biorxiv.org/content/early/2016/10 /14/081075 Link: https://github.com/liaupm