DESIGN PROCEDURE

- From the word description and specifications of the desired operation, derive a state diagram for the circuit.
- Reduce the number of states if necessary.
- Assign binary values to the states.
- Obtain the binary-coded state table.
- Choose the type of flip-flops to be used.
- Derive the simplified flip-flop input equations and output equations.
- Draw the logic diagram.

Dr. Deepthi Sasidharan Assistant Professor, Department of Information Technology GEC Barton Hill, Thiruvananthapuram Digital System Design

Design a circuit that detects a sequence of 3 or more consecutive zeros

Binary assignment to the state

$$a = 00$$
 $b = 01$
 $c = 10$
 $d = 11$

	Bina	ny coa	ted stat	e table.	•	autout
	Present		input	next st	(641)	output
_	0	0	D	0	0	0
	0	1	0	1,	0	D
	0	1	1	0	0	0
C)	1	0	0	<i>D</i>	9	0
4)	1	1	O	1		1
	1	\	1	0	٥	1

choose a flip flop to implement the aircuit available choices are D, Jk, T flip flops

D Flip Flop to implement the white characteristic equation of D Flip Flop.

Q(t+1) = D

A(t+1) = DA = A\overline{z} + B\overline{z}

B(t+1) = DB = A\overline{z} + B\overline{z}

Y = AB

$$\frac{A(t+1)=A\bar{x}+B\bar{x}}{B(t+1)=A\bar{x}+B\bar{x}}$$

$$\frac{Y=AB}{AB}$$

