Task: ROB

Robby the little robot

XXVI OI, Stage I. Source file rob.* Available memory: 256 MB.

8.10 - 12.11.2018

Consider a plane with orthogonal coordinate system. There is a programmable robot, called Robby for short, at the point (0,0) of said plane, facing north, i.e., the direction in which the second coordinate increases. Programming Robby consists in giving him a sequence of (numeric) commands d_1, d_2, \ldots, d_n . Once Robby is turned on, it does the following moves: the *i*-th move (for $i \geq 1$) consists in rolling forward $d_{((i-1) \mod n)+1}$ units (where "mod n" stands for taking the remainder of integer division by n), followed by a 90° clockwise turn.

Robby is equipped with a battery that keeps him functional for precisely t seconds. Rolling forward a single unit and turning 90° clockwise each take exactly one second.

Write a program that will determine how many times Robby will be located at a given point (x, y) of the plane before its battery is depleted.

Input

In the first line of the standard input, there are two integers n and t ($1 \le n \le 100\,000$, $t \ge 1$) which specify the length of Robby's program and the time its battery lasts. In the second line, there is a sequence of n integers d_1, \ldots, d_n ($1 \le d_i \le 10^9$) which specify the successive commands of the program. The third line contains a pair of integers x and y ($-10^9 \le x, y \le 10^9$) which specify the coordinates of the point of interest.

Output

A single integer should be printed to the standard output: the number of times that Robby is located at the point (x, y), including times 0 and t if applicable.

Example

For the input data:

the correct result is:

4 28

2 3 1 2

3 2

Explanation for the example: Robby is located at the point (3, 2) after 6 and after 22 seconds since it starts. The following figure depicts Robby's route:

2

Sample grading tests:

locen: the test from the example with t = 21;

2ocen: a test with n = 1;

3ocen: a large spiral test, i.e., $d_i = i$, n = 31, $t = \frac{10^{18} - 1}{3}$.

Sample solutions. A (wrong) sample solution for this problem in C++ and Python can be found in the Files (or Pliki in Polish) section of the SIO system.

Grading

The set of tests consists of the following subsets. Within each subset, there may be several unit tests.

Subset	Property	Score
1	$t \le 10^6$	10
2	$t \le 10^{12} \text{ and } 10^6 \le d_i$	30
3	$t \le 10^{18}$	60