Conflict-Based Search for Explainable Multi-Agent Path Finding W

Justin Kottinger¹, Shaull Almagor², Morteza Lahijanian¹

¹University of Colorado Boulder, USA ²Technion, Israel

Motivation

- MAPF algorithms are provably correct
- Not trusted in safety critical applications
- Currently use trained humans
 - Less efficient; more prone to mistakes

Goal: Allow MAPF solvers to explain correctness of solution to human user

An MAPF explanation consisting of 3 segments as defined in¹

Problem Formulation

Given:

- n agents operating in a graph $G = \langle V, E \rangle$
- List $s_1, ..., s_n$ if start vertices
- List $g_1, ..., g_n$ of goal vertices
- Explanation bound $r \in \mathbb{N}$

Compute:

- Non-colliding paths for all agents
- Plan is decomposed into at most *r* segments

This Work: Find a solution using Conflict-Based Search

Explanation-Guided CBS

Explanation-Guided CBS

- CBS appended with Segmentation Conflicts
- Returns correct plan with satisfiable decomposition

Segmentation Conflicts

- Occur when plan explanation has over r segments
- Identified using minimal disjoint-segmentation from¹

Segmentation Conflicts

¹Almagor, S., & Lahijanian, M. (2020, May). Explainable multi agent path finding. In *AAMAS*.

Step 1: Use low-level search to create initial plan

Step 2: Simulate plan to find conflicts

Step 3: Resolve conflicts by adding constraints

Step 4: Repeat until solution is found

1. Explanation-Guided A* (XG-A*)

- Cost function $f_{XG-A}(q) =$ number of segments within explanation
- Optimizes over number of segments within explanation
- Complete; Very slow and inefficient

2. Weighted XG-A* (WXG-A*)

- Combine A* with XG-A* by balancing between $f_{A*}(q)$ and $f_{XG-A*}(q)$
- Cost function $f_{WXG-A}(q) = wf_{XG-A}(q) + (1 w)f_{A}(q)$ where $w \in (0,1)$
- Complete; Difficult to find good value for w

3. Segment-Respecting A* (SR-A*)

- Plan around existing segmentation
- Treat explanation as a set of time-dependent obstacles
- Incomplete; works very well in practice

Increased Explanation-Guiding

Longer paths

Shorter paths longer explanations Quicker search

Apparent Collision in short plan vs. optimal index

Key Results

- CBS outputs lengthy explanations
- XG-CBS-A* excel when minor changes are required
- XG-CBS-XG-A* and XG-CBS-WXG-A* excel in small, congested environments
- XG-CBS-SR-A* clear choice in most realistic problems

