BRAC UNIVERSITY

Department of Computer Science and Engineering CSE420: Compiler Design

Final Examination, Fall 2014

Duration: 2.30 hours, Total Marks: 40

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4)

1	(-)	XX741 41				.1114	\mathbf{r}	(1	١.
ı.	(a)	write the	regular	expression	over the a	upnabet	>	o, c	}:

i) All strings containing at least 2c's

[2+2=4]

- ii) All strings of the form, $b^{2m}c^{3n}$, where m, $n \ge 1$
- (b) Consider the following grammar for Boolean expression:

 $E \rightarrow E \mid E$

 $E \rightarrow (E)$

 $E \rightarrow id$

 $E \rightarrow E \& E$

 $E \rightarrow true$

 $E \rightarrow \sim E$

 $E \rightarrow false$

- i) Show that this grammar is ambiguous.
- ii) Rewrite the grammar to remove the ambiguity.

[2+2=4]

(c) Draw an NFA for $(x+y)^*px^*p(x+y)^*$ over the alphabet $\sum = \{x, y, p\}$.

[2]

- **2.** (a) Convert the regular expression mm(m|n)*n over the alphabet $\Sigma = \{m,n\}$ directly to DFA.
 - (b) What is handle? Explain with an example.
 - (c) Using an example, describe how the DFA state minimization algorithm works?

[7+2+1=10]

3. (a) Consider the following augmented grammar:

0.
$$E' \rightarrow E$$
\$

1.
$$E \rightarrow id$$

2.
$$E \rightarrow (E)$$

3.
$$E \rightarrow (id) E$$

i)Draw the LR (0) automation for this grammar.

[4+3+1=8]

- ii) Construct simple LR (SLR) parsing table.
- iii) Is the grammar LR (0)? Why? Why not?
- (b) Draw DAG for the following expression.

[2]

$$a*(b+c) + (b+c)*d + a*(b^c) + d*(b^c)$$

4. (a) Consider the following grammar:

$$E \rightarrow [L] \mid a$$

$$L \rightarrow ET$$

$$T \rightarrow L \mid \epsilon$$

- i)Construct LL parsing table for the above grammar.
- ii) Using predictive parsing algorithm, determine whether it is possible to parse the string [a]? Show the moves by predictive parser for this task. [4+3=7]

(b) Consider the following code fragment:

do i=1+1;

f=i*5000; while (a[i] < v);

Write the three address code and its quadruple representation.

[3]

5. (a) Consider the following grammar:

$$[3+4=7]$$

 $T \rightarrow FT'$

 $T' \rightarrow +FT'$

 $T' \rightarrow \epsilon$

 $F \rightarrow 1 | 2 | 3 | \dots | 9$

- i) Construct an SDD for the grammar.
- ii) Using SDD constructed in (i) give an annotated parse tree for the expression: 2+3+4.

(b) Consider the augmented grammar:

[3]

- $0. S \rightarrow N$
- 1. $N \rightarrow NB$
- 2. $N \rightarrow B$
- $3. B \rightarrow 1$
- $4. B \rightarrow 0$

Show a bottom-up parsing of the string 1101, using the LR parsing table below.

State	1	0	\$	N	В
0	S3	S4		1	2
1	S3	S4	ACCEPT		5
2	R2	R2	R2		
3	R3	R3	R3		
4	R4	R4	R4		
5	R1	R1	R1		

6. (a) Write an Semantic Rules to generate 3-address code for the following grammar: [5+5=10]

 $P \rightarrow S$

 $S \rightarrow assign \mid if (B) S1 \mid S1 S2$

 $B \rightarrow B1 \parallel B2 \mid B1 \&\& B2 \mid id1 \text{ rel id2} \mid true \mid false$

According to your SDD, write down the code that will be generated for the following expression.

if(
$$x>200 \&\& x!=y || x<100$$
)

x=50;

(b) Given the following grammar, $G = (\{S, A, B\}, S, \{a, b, x\})$ with the following productions:

- 1. $S \rightarrow A$
- 2. $S \rightarrow xb$
- 3. $A \rightarrow aAb$
- $4. A \rightarrow B$
- 5. B \rightarrow b

Computer the LR(1) items and the corresponding DFA and construct the parsing table.