library(ggplot2)

#install.packages("ggthemes")

library(ggthemes)

#install.packages("forecast")

library(forecast)

#install.packages("tseries")

library(tseries)

#install.packages("ggfortify")

library(ggfortify)

#install.packages("summarytools")

library(summarytools)

library (autoplotly)

install.packages("dummies")

library(dummies)

#Import the data

TimeBands_Hospital<- read.csv(file.choose())</pre>

attach(TimeBands_Hospital)

View(TimeBands_Hospital)

Year Hospital Time.Bands Count

Min. :2014 Length:1504 Length:1504 Min. : 1

1st Qu.:2015 Class :character Class :character 1st Qu.: 3019

Median :2016 Mode :character Mode :character Median : 9171

Mean :2016 Mean : 17273

3rd Qu.:2017 3rd Qu.: 22983

Max. :2018 Max. :157710

Take a peek at the dataset

TimeBands_Hospital

str(TimeBands_Hospital)

##Check the null values

is.null(TimeBands_Hospital)## No Null values

#table

table(TimeBands_Hospital\$Count)

##Label encoding

#install.packages("superml")

library(superml)

lbl <- LabelEncoder\$new()

lbl\$fit(TimeBands_Hospital\$Hospital)

TimeBands_Hospital\$Hospital <- lbl\$fit_transform(TimeBands_Hospital\$Hospital)

lbl\$fit(TimeBands_Hospital\$Time.Bands)

TimeBands_Hospital\$Time.Bands <- lbl\$fit_transform(TimeBands_Hospital\$Time.Bands)

Some EDA By Visualization

library(tidyr)

Box Plot

boxplot(TimeBands_Hospital\$Count)

There are outliers present in the data

plot the distribution of Count by year using boxplots

ggplot(TimeBands_Hospital,

$$aes(x = Year,$$

$$y = Count)) +$$

geom_boxplot(fill = "cornflowerblue",

$$alpha = .7) +$$

labs(title = "Out Patient Count by Year")

#plot the distribution of Count by Hospital using boxplots

ggplot(TimeBands_Hospital,

$$y = Count)) +$$

geom_boxplot(fill = "cornflowerblue",

alpha = .7) +labs(title = "Out Patient Count by Hospital")

#plot the distribution of Count by Time.Bands using boxplots
ggplot(TimeBands_Hospital,

$$y = Count)) +$$

geom_boxplot(fill = "cornflowerblue",

$$alpha = .7) +$$

labs(title = "Out Patient Count by Time.Bands")

###Histogram simple

hist(TimeBands_Hospital\$Count)##Data is Right/Positively skewed

 $hist (log (Time Bands_Hospital \$ Count)) \\$

ggplot(TimeBands_Hospital, aes(x = Hospital)) +
 geom_histogram(fill = "cornflowerblue",

color = "white",) +

labs(title="Out Patient Count by Hospital",

x = "Hospital")

ggplot(TimeBands_Hospital, aes(x = Time.Bands)) +

geom_histogram(fill = "cornflowerblue",

color = "white",) + labs(title="Out Patient Count by Year", x = "Time.Bands")

#An alternative to a histogram is the kernel density plot.

Create a kernel density plot of Count

ggplot(TimeBands_Hospital, aes(x = Count)) +

geom_density(fill = "indianred3") +

labs(title = "Out Patient Count by Year")

We can observe the data is right skewed.

##by Hopsital

ggplot(TimeBands_Hospital, aes(x = Hospital)) +
geom_density(fill = "indianred3") +

#By Time.Bands

ggplot(TimeBands_Hospital, aes(x = Time.Bands)) +
geom_density(fill = "indianred3") +
labs(title = "Out Patient Count by Time.Bands")

#scatterplot wiht X and Y axis

ggplot(data = TimeBands_Hospital,
 mapping = aes(x = Year, y = Count)) +
geom_point(color = "cornflowerblue",
 alpha = .7,
 size = 3) +

geom_smooth(method = "Im")### There is a increase in the count year wise and same trend for every two years. Patt

#and we can observe there are outliers present in the data

```
# basic area chart
```

```
ggplot(TimeBands_Hospital, aes(x = Year, y = Count)) +
geom_area(fill="lightblue", color="black") +
labs(title = "Out Patient Count by Year",
    x = "Year",
    y = "Count)
```


clearly shows there is some pattern in the data. Year by year the count is increasing pairs(TimeBands_Hospital)

#Pair plot show the relationship between the variables.

sorted heat map

#install.packages("superheat")

library(superheat)

superheat(TimeBands_Hospital,row.dendrogram = TRUE)

###Outliers treatment by capping

x <- TimeBands_Hospital\$Count

qnt <- quantile(x, probs=c(.25, .75), na.rm = T)

caps <- quantile(x, probs=c(.05, .95), na.rm = T)

H <- 1.5 * IQR(x, na.rm = T)

x[x < (qnt[1] - H)] < -caps[1]

x[x > (qnt[2] + H)] <- caps[2]