

Filter bag and method for manufacturing same

Field of Invention

5

25

[0001] The <u>present</u> invention relates to a filter bag for a vacuum cleaner which has a tubular bag and a closed free end area and an opposed, at least partially closed area, as well as a retaining plate, the partially closed area being folded forming a bottom.

Background Information

[0002] Filter bags for vacuum cleaners which have a tubular bag 10 and, as well as a closed free end area, a folded bottom, a socalled "square bottom", are known in the prior art. Usually such dust bags are produced from a paper material which can be processed on standard tubular bag systems. In the case of such filter bags, an appropriate retaining plate is generally attached 15 to the square bottom and has an opening through which the air to The task of the square bottom is to stabilise be cleaned is led. the filter bag and form a three-dimensional bag. Moreover the square bottom makes it easier to fit the bag into the vacuum 20 cleaner.

[0003] Recently however, new developments have become known in respect of materials for vacuum cleaner bags. Thus the document WO 01/03802 Al describes a special non-woven material comprising a plurality of plies of filter material which are independent of one another. These independent plies are connected to form a filter material which has special properties. In practice it has become apparent that vacuum cleaner bags which are produced from

such a non-woven material are considerably superior to previously known bags in respect of the efficiency of the vacuum cleaner.

[0004] As a result of this bag material being low in flexural strength however, the formation of a square bottom is only possible with difficulty or with great outlay.

5

10

15

25

30

[0005] The document DE 100 64 608 Al describes a solution for securing a retaining plate to such a bag. According to this document, first a tubular arrangement of the vacuum cleaner bag is undertaken with the formation of a fold along a longitudinal This tubular arrangement is then separated, such that a The opposite free ends of such a second end area is produced. tubular arrangement are closed and a retaining plate is allocated to an end area after an appropriate opening has been formed. According to the teaching of DE 100 64 608 A1, a special fold is then made in the area of the vacuum cleaner bag between the area retaining plate and the free provided with the Stabilisation of the baq which is of low flexural strength is intended to be achieved by means of the special design of transverse folds.

20 [0006] The method described in DE 100 64 608 Al is very expensive however.

[0007] In the document EP 1 059 056 Al is described a further solution for introducing a retaining plate for a bag into the filter material. According to the solution proposed by EP 1 059 056 Al, two independent plies of the filter material are guided on top of one another and welded together in the edge areas. Subsequently, the welded material is separated and the two open transverse sides are welded together. For introducing a retaining plate, an appropriate hole is stamped into the superposed plies and a reinforcement is laid around the two plies.

[0008] What is disadvantageous about this solution is that no bottom is formed here which stabilises the bag per se, but that a reinforcing means, i.e. a retaining plate, must always inevitably be attached. The retaining plate, which is attached according to the above- mentioned European application, must in addition always be foldable since it is laid around the two plies which are placed on top of one another. Thus this bag is subject to great restrictions in relation to its application in the field of vacuum cleaners, since the retaining plate regularly has to With retaining plates it has fulfil a plurality of functions. namely been usual up to now to attach in addition slides or flaps with which the opening can be sealed for the hygienic removal of This is not possible with a foldable the vacuum cleaner bag. embodiment of the retaining plate. It is also not possible to attach the retaining plate e.g. on the longitudinal sides of the bag since there is no bottom present to stabilise the bag.

Summary of Invention

5

10

15

20

30

[0009] Proceeding from the above, the object of the __The present invention relates is to quote a filter bag made from a non-woven material which has at least one end area, which is comparable in design to that of a square bottom produced from paper material.

A further object of the __The present invention also relates is to quote a method for manufacturing such a filter bag.

25 [0010] This object is accomplished in respect of the bag by the characterising features of patent claim 1 and in respect of the method by the features of claim 20. The subordinate claims list advantageous developments.

[0011] Thus according to the invention it is proposed that the vacuum cleaner bag, which is made from a non-woven material, has an at least partially closed end opposite the free closed end,

the at least partially closed end being folded to form a bottom. The folding according to the present invention is so executed here that at least in areas there are plies of the bag material lying the one above the other in the bottom of the bag and these are at least partially interconnected. Due to this embodiment, stabilisation of the vacuum cleaner bag is achieved similar to that of a square bottom bag.

5

10

15

20

[0012] The crucial advantage of the solution according to the invention can be seen in the fact that, due to the central weld seam and the at least partial connection of the plies folded over one another, stabilisation of the bottom is achieved which is sufficient to make available, even from a material which is low in flexural strength, a vacuum cleaner bag which can be provided at any point with a retaining plate and which can therefore be easily fitted into a vacuum cleaner. What should be further stressed about the solution according to the invention is that the design of the retaining plate can be freely selected. the solution according to the invention it is thus possible to attach retaining plates which not only have an opening but which are additionally provided with slides or flaps for sealing the opening. According to the present invention, it is also possible not to attach the retaining plate directly on the bottom but it can also be arranged on the longitudinal surfaces of the vacuum cleaner bag.

[0013] With the vacuum cleaner bag according to the invention it is preferred for the central weld seam to extend over the entire width of the bottom. In this way an increased stability of the bottom formed by the folding is achieved. Connecting the superposed plies which have been formed by the fold takes place preferably by welding or gluing. This gluing or welding can take place in a linear manner. Thus a directed reinforcement of the bottom can be achieved.

[0014] In the case of the vacuum cleaner bag according to the invention it is furthermore propitious if pre-creases introduced over the longitudinal sides, i.e. over those surfaces of the vacuum cleaner bag which lie between the closed free end and the at least partially closed end having the bottom designed according to the invention, into the thus spread-apart side surfaces so that folding is possible. The pre-creases can be so designed that they start e.g. from the respective corners of the if it is angular, e.g. square, and are led to the opposite free end. It is advantageous moreover if, in addition, starting from the central weld seam, a further pre-crease is introduced into the bag material in each case. introduction of side folds is facilitated and the surface of the vacuum cleaner bag is enlarged. Simultaneously, the pre-creases introduced into the longitudinal sides of the vacuum cleaner bag can serve to further stabilise the bag material. creases" in the sense of the invention are understood material compressions which are preferably configured linear. creases can be introduced by a suitable forming tool and/or by welding.

5

10

15

20

25

30

[0015] Advantageously, the filter bag according to the invention also has a pre-crease which extends parallel to the central weld seam. This serves to fold the bottom over in the direction of the longitudinal side of the filter bag. It is therefore sufficient for one such pre-crease to be present. The spacing of the pre-crease is so selected that, starting from the central weld seam, it corresponds to the width of the bottom of the bag.

[0016] It is preferred in the case of the bag according to the invention for the bottom to be angular, by particular preference to have a rectangular shape. In this case, the pre-creases start from the respective short sides of the rectangular and extend up to the free closed end. A further pre-crease extends from the central weld seam to the free end. Such an embodiment has proved to be particularly preferred.

[0017] As regards the retaining plate, it is possible according to the present invention either, as is known from paper filter bags, to connect the retaining plate to the square bottom or to attach the retaining plate to the free side surfaces of the vacuum cleaner bag. Preferred here is the embodiment in which the retaining plate is attached to the bottom of the bag, at least partially covering the latter. Because, according to the present invention, the bag is stabilised by the design of the bottom, the retaining plate can also be attached lying inside the bag. This can be realised for example in that the retaining plate is introduced and connected at the same time as the die provided for forming the bottom.

5

10

15

20

25

30

[0018] It is advantageous furthermore that, due to the stabilisation of the bottom as such, one-piece retaining plates can be used. These can also then be provided with a closing mechanism.

[0019] The retaining plate is here constructed as known per se from the prior art and has at least one through opening which serves to feed in the air to be cleaned. The retaining plate can furthermore have an element, e.g. a slide or a flap, for sealing the opening. The retaining plate can here be connected to the bottom of the bag using any current technique of the prior art. Gluing or welding can be considered for this purpose for example.

[0020] According to the present invention, however, it is also possible for the retaining plate to be arranged on the side surfaces of the vacuum cleaner bag. It is preferred here for the retaining plate to be attached in the vicinity of the bottom of the bag since thus the bag interior freely spread-apart by the bottom can be used for introducing a filling nozzle and for advantageous air conduction.

[0021] The retaining plates can, as known per se from the prior art, be made from plastics material or cardboard.

[0022] In the case of the filter bag according to the present invention, the bag material is preferably to be formed from a multilayer non-woven material such as is described e.g. in WO 01/03802 Al. Reference is therefore expressly made to the disclosed content of this document. The invention however also includes all other non-woven materials which have been known up to now in the prior art for filter bags.

5

10

15

30

[0023] The invention relates furthermore to a method for manufacturing a filter bag as described above. According to the present invention, in a first method step a tubular bag is produced which has an at least partially closed end area.

[0024] The production of this tubular bag having the at least partially closed end area can here take place in cycles. The tubular bag is produced by forming the tubular material through connecting e.g. the two edges of a ply of the bag material, and then the open area thus formed is closed.

[0025] Connecting the edges of the plies and closing the open end can take place in cycles. Continuous connection of the edges of the plies is also possible.

20 [0026] For reasons of process economy, it is advantageous if the connection of the open end and the closing of the free end of the previously produced filter bag take place at the same time. Separation of the bag can also take place at this stage.

[0027] The connection process both during the formation of the tube and also during the connection of the open end can take place by means of ultrasonic welding. Thermowelding is also possible.

[0028] The welding is preferably undertaken in such a way that the weld seam extends over the two webs lying the one above the other.

[0029] In the method according to the invention provision is furthermore made for the pre-creases to be formed during method step a). Thus, according to the present invention the precreases are introduced into the filter bag by suitable forming tools or also by additional weld seams.

5

10

15

20

25

30

[0030] However, the invention also includes those embodiments in which the pre-creases are introduced in a method step before or after method step a). For reasons of process economy, however, the above-described variant is preferred in which the pre-creases are already introduced during method step a).

[0031] According to the present invention, the bottom of the bag is formed by a die being introduced from the open side into the bag produced according to method step a). This automatically in the closed end to a fold appearing in the region For stabilising the thus-formed bottom, it is of the bottom. then essential that the plies lying the one above the other as a result of the folding are at least partially connected. preferably carried out in such a way that the superposed plies are glued or welded together. Thus additional stabilisation of the bottom is achieved. In respect of the methods for connecting the superposed plies, all the methods known from the prior art Gluing or welding could be mentioned here. can be used. individual plies could also be stapled together. If the plies are connected by means of welding or gluing, it is furthermore preferred for this to take place in a linear manner.

[0032] A further advantage of the method according to the invention can be seen in the fact that the die provided for forming the bottom is used as an anvil. The anvil can also serve as a sound reflector for a sonotrode during ultrasonic welding. The anvil can also serve as the supporting element for forming pre-creases. Furthermore it can also be used as a supporting element as the filling opening is being stamped. The reverse

method sequence is also possible. Thus the die can also be used as a sonotrode.

[0033] Thus due to the method of the invention, folding of the bottom is achieved which leads to stabilisation in the bottom area of the material which is low in flexural strength. opens up the possibility that the retaining plate can be arranged not only in the area of the bottom directly on the bottom but can also be attached to the longitudinal sides of the bag. method according to the invention also opens up the possibility of arranging the retaining plate inside lying on the bottom of For this purpose, the retaining place is introduced in one working cycle with the die and is welded/glued to the bag According to the present method, it is still necessary for an appropriate opening to be introduced into the bag at the points at which the retaining plate is attached. Insofar as the retaining plate is arranged directly on the bottom, an appropriate opening is introduced into the bottom area. opening can be introduced either in the web which is not yet formed into a tube or during method step a). The filling opening can also be introduced in method step b) or already in the web before it is shaped into a tube, i.e. before method step a).

Brief Description of Drawings

5

10

15

20

[0034] The invention is described in greater detail below with the aid of Figs. 1 to 4.

[0035] Fig. 1 shows an exemplary embodiment of a filter bag according to the <u>present</u> invention in a semi-finished state and open at one side.

- [0036] Fig. 2 shows an exemplary embodiment of a filter bag according to the <u>present</u> invention which has a rectangular bottom.
- [0037] Fig. 3 shows a further <u>exemplary</u> embodiment with a special folding of the bottom.
- [0038] Figs. 4a, 4b and to 4c show the sequence of the manufacturing process.

Detailed Description

5

25

[0039] Fig. 1 shows an exemplary embodiment of the filter bag 1 10 according to the present invention schematically in the state resulting from the formation of the tubular bag and the closing of the free end area (method step a)). The filter bag 1 here consists of a composite non-woven material, such as is described In the embodiment according to Fig. 1, the in WO 01/03802 A1. 15 filter bag has pre-creases 3, 4 and 5 which lead to the illustrated fold formation. As "pre-crease" is here understood a material compression. This can be produced either by pressure or by pressure and temperature. Due to the pre-creases 3, 4 and 5, a folded tubular filter bag is produced which is sealed at its 20 closed end 2 by a weld seam 6.

[0040] In the embodiment according to Fig. 1, the central weld seam 6 is introduced by thermowelding. The welding is here so executed that the two superposed plies of the filter material have been interconnected by the welding. The filter bag according to Fig. 1 has in addition a further pre-crease 7. This serves to fold the bottom over.

[0041] Fig. 2 shows the filter bag 1 in a preferred embodiment. The filter bag 1 according to Fig. 2 has a rectangular bottom 9

10

15

20

25

30

35

with two short transverse sides 10 and two longitudinal sides 11. In the inventive filter bag 1 according to Fig. 2, the precreases are designated as 3, 4 and 5 in the same way as in Fig. The contour of the filter bag 1 is determined by these precreases 3, 4 and 5. What is essential about the filter bag according to the invention is the folding, i.e. the design of the The bottom 9 has a fold at its short transverse sides The fold is produced by layering the filter material over itself as is illustrated in Fig. 1. The geometry of the fold is here determined by the pre-creases 3, 4 and 5. In the edge area 10, a triangular gusset is thus covered under the spread-apart The triangular gusset 8 formed is shown by broken bottom 9. The outer edge member 12 of the triangle is lines in Fig. 2. connected according to the invention to the transverse side 10 of the bottom 9 of the bag. In the example according to Fig. 2, the transverse side 10 of the bottom 9 is glued to member 12. invention, however, present every other the According to embodiment is included in which other connecting techniques known from the prior art are used. Such connection can take place e.g. also by means of ultrasonic welding or by stapling. embodiment of Fig. 2 is provided furthermore an additional pre-This serves to fold the bottom over in the direction of the longitudinal side of the bag 1. The spacing of the precrease 7 from the central weld seam 6 therefore corresponds to the width of the bottom 9, such that folding the bottom 9 over completely is possible.

[0042] The filter bag 1 is furthermore closed at its free end 13 by a further weld seam 15. In the case of the filter bag according to the invention, reference should particularly be made to the fact that due to the folding as described above and the connection of the plies as well as the central weld seam 6, stabilisation of the bottom 9 is produced. The great advantage of the filter bag according to the invention can be seen in the fact that the bottom 9 has sufficient stability even without any additional retaining plate. In the embodiment according to Fig.

2, the bottom also has a through hole 16. This through hole 16 can then be provided with a retaining plate (not illustrated) such that the filter bag can then be suspended in a corresponding holder in the vacuum cleaner.

[0043] Fig. 3 now shows a possible further option for undertaking 5 the folding of the bottom 9. In the embodiment according to Fig. 3, there is again provided a central weld seam 6. shows, in this embodiment a gusset 19 and 20 is formed which, as is apparent from the figure, can be folded round in two different it becomes possible to fold the Thus 10 directions. downwards onto the side surfaces of the filter bag 1 and glue it there (arrow direction a) or the gusset can be folded back onto the remaining part of the bottom 9 and be glued there also. Stabilisation of the bottom 9 is again achieved by The filter bag according to Fig. 3 again has 15 embodiment also. pre-creases 3, 4 which determine the contour of the filter bag.

[0044] Fig. 4 now shows, with the aid of Figs. 4a to 4c, the sequence of the manufacturing method according to the invention.

20

25

30

4a shows schematically how a ply of the filter [0045] Fig. material is folded together and connected at its edges 22 and 23. The contour of the corresponding filter bag is here defined by During the process of means of a forming tool, not shown. manufacturing the filter bag, the appropriate pre-creases 3, 4 and 5 are introduced into the filter bag material also in the first method step, i.e. as the tube is being formed. connection of the filter material at edges 22 and 23 preferably takes place in cycles, i.e. the welding is undertaken at the position shown in Fig. 4a by the designation "Stop". this cycle, the tube thus formed is led on to the position designated as "Stop 2". At this point, the bag is now closed. This is preferably carried out by ultrasonic welding. shows, the method according to the invention preferably operates in such a way that, with the closing of the tube and the

formation of the central weld seam 6, the filter bag produced in the previous working cycle is closed at its opposite free end 13. According to the present method therefore, closing and separation of the filter bag take place in one working cycle. This can be carried out using a divided welding tool.

5

10

15

20

25

[0046] Fig. 4b shows the step of the method according to the invention in which the folding of the bottom is carried out. The folding of the bottom is carried out after the filter bag has been closed at its end 2 by the weld seam 6. This is illustrated in Fig. 4a. To form the bottom of the bag, a die 24 is introduced into the filter bag from the side which is still open and guided against the closed end 2. By introducing the die 24 in the direction of the closed end 2, the inventive folding of the bottom 9 is achieved due to the provision of the pre-creases 3, 4 and 5. Even whilst the die is in its lower position (Fig. 4b), this folding is stabilised by connecting the plies which now lie the one above the other.

[0047] To complete the filter bag, separation of this bag from the previous filter bag as described above produces the finished bag as shown in Fig. 4c.

[0048] According to the method of the invention, provision is also made for introducing appropriate openings into the filter bag. The opening is here preferably introduced during method step a) or b) into the filter bag material. Finally, for completing the filter bag it is still necessary also to attach the retaining plate. The retaining plate can be attached e.g. at the same time as the bottom of the bag is formed or it is attached subsequently.

Patent claims

5

35

40

1. A filter bag for a vacuum cleaner, comprising:

a substantially tubular bag made from a bag material having at least one non-woven layer, the bag having a closed free end area and an at least partially closed area opposite the closed free end area; and

a retaining plate, wherein edges of the bag are at least partially interconnected by a weld seam to form the at least partially closed area, and wherein a bottom of the bag is formed by at least partially interconnecting plies of the bag material at least in areas in which plies of the bag material lie one above the other.

- 2. The filter bag according to claim 1, wherein the weld seam in the bottom extends over an entire width of the bottom.
- 3. The filter bag according to claim 1, wherein the plies are interconnected by at least one of (i) gluing and (ii) welding.
- 4. The filter bag according to claim 3, wherein at least one of the gluing and the welding is linear.
 - 5. The filter bag according to claim 1, wherein the bottom has a substantially square shape.
- 30 6. The filter bag according to claim 1, wherein the bottom has a substantially rectangular shape.
 - 7. The filter bag according to claim 1, wherein, starting from the bottom to the closed free end area, at least one pre-crease is introduced in the bag material.
 - 8. The filter bag according to claim 5, wherein, starting from respective corners of the bottom to the closed free end area, pre-creases are introduced into the bag material.
 - 9. The filter bag according to claim 1, wherein, starting from the weld seam in the bottom, at least one pre-crease is introduced into the bag material up to the closed free end area.
- 10. The filter bag according to claim 1, wherein a pre-crease is introduced into the bag material substantially parallel to the weld seam in the bottom.

- 11. The filter bag according to claim 10, wherein the pre-crease is introduced into the bag material spaced from the weld seam by a distance corresponding to approximately a width of the bottom.
- 5 12. The filter bag according to claim 1, wherein the retaining plate is arranged on the bottom to at least partially cover the bottom, the retaining plate having at least one through hole.
- 13. The filter bag according to claim 12, wherein the retaining plate covers an entire area of the bottom.

35

40

- 14. The filter bag according to claim 1, wherein the retaining plate is arranged on an area spread between the closed free end area and the at least partially closed end area, the retaining plate having at least one through hole.
- 15. The filter bag according to claim 14, wherein the retaining plate is arranged in a region of the bottom.
- 20 16. The filter bag according to claim 1, wherein the retaining plate is connected to the filter bag using at least one of gluing and welding.
- 17. The filter bag according to claim 1, wherein the retaining plate is formed from a plastic material.
 - 18. The filter bag according to claim 1, wherein the retaining plate is formed from a cardboard.
- 30 19. The filter bag according to claim 1, wherein the bag material is a non-woven composite material.
 - 20. A method for manufacturing a filter bag according to claim 1, comprising of steps:
 - a) producing a substantially tubular bag having at least partially closed area on a closed side of the bag;
 - b) introducing a die from an open side of the bag in a direction of the closed side of the bag so that a bottom is produced by folding the bag over the die; and
 - c) connecting plies in the bottom which, as a result of the folding, are arranged one above the other.
 - 21. The method according to claim 20, wherein step a) is performed in cycles, a tube being produced from a filter material and the open side being closed.

- 22. The method according to claim 20, wherein, wherein, while the at least partially closed area is being produced in the step a), a free end of a previously produced bag is simultaneously closed.
- 23. The method according to claim 22, further comprising separating from one another bags produced in a single working cycle.
- 10 24. The method according to claim 23, wherein the separating step takes place mechanically.

- 25. The method according to claim 20, wherein pre-creases are introduced during step a).
- 26. The method according to claim 25, wherein the pre-creases are introduced by at least one of a suitable forming tool and welding.
- 27. The method according to claim 20, wherein the die is used as a sound reflector for a sonotrode.
 - 28. The method according to claim 20, wherein the die is used as a sonotrode for a sound reflector.
 - 29. The method according to claim 20, wherein, during step a), an opening is introduced into the filter material forming a web.
- 1. Filter bag (1) for a vacuum cleaner, comprising a tubular

 bag (1) made from a bag material having at least one nonwoven layer, said bag having a closed free end area (13) and
 an opposed, at least partially closed area (2), as well as a
 retaining plate, the edges of the tubular bag being at least
 partially interconnected by a weld seam (6) to form the
 partially closed area (2) and a bottom being formed by the
 formation at least in areas of plies of the bag material
 which lie the one above the other and which are at least
 partially interconnected.
- 2. Filter bag according to claim 1, characterised in that the
 weld seam (6) in the bottom (9) extends over the entire
 width of the bottom.

- 3. Filter bag-according to claim 1 or 2, characterised in that the plies which lie the one above the other and are formed in areas of the bottom (9) by folding are connected by gluing and/or welding.
- 5 4. Filter bag according to claim 3, characterised in that the gluing and/or welding are/is linear.
 - 5. Filter bag according to one of claims 1 to 4, characterised in that the bottom (9) is in a square shape.
- 6. Filter bag according to one of claims 1 to 5, characterised

 10 in that the bottom (9) has a rectangular shape.
 - 7. Filter bag according to one of claims 1 to 6, characterised in that, starting from the bottom (9) to the closed free end (13), at least one pre-crease (3, 4, 5) is introduced in the bag material.
- 8. Filter bag according to one of claims 5 to 7, characterised in that, starting from the respective corners of the bottom (9) to the closed free end (13) in the bag material, precreases (3, 4) are introduced in the bag material.
- 9. Filter bag according to one of claims 1 to 8, characterised

 in that, starting from the weld seam (6) in the bottom (9),

 at least one pre-crease (5) is introduced into the bag

 material up to the closed free end (13).
 - 10. Filter bag according to one of claims 1 to 9, characterised
 in that a pre-crease (7) is introduced into the bag material
 parallel to the weld seam (6) in the bottom (9).

11. Filter bag according to claim 10, characterised in that the pre-crease (7) is introduced into the bag material at a

spacing from the weld seam (6) which corresponds roughly to the width of the bottom (9).

12. Filter bag according to one of claims 1 to 11, characterised in that the retaining plate is arranged on the bottom (9), at least partially covering same, and has at least one through hole (16).

5

20

- 13. Filter bag according to claim 12, characterised in that the retaining plate covers the entire bottom (9).
- 14. Filter bag according to one of claims 1 to 13, characterised

 in that on the area spread between the free end (13) and the

 partially closed end (2) of the bag is arranged a retaining

 plate which has at least one through hole.
 - 15. Filter bag according to claim 14, characterised in that the retaining plate is arranged in the region of the bottom (9).
- 15 16. Filter bag according to one of claims 1 to 15, characterised
 in that the retaining plate is connected to the filter bag
 by means of gluing and/or welding.
 - 17. Filter bag according to one of claims 1 to 16, characterised

 in that the retaining plate is formed from plastics

 material.
 - 18. Filter bag according to one of claims 1 to 16, characterised in that the retaining plate is formed from cardboard.
 - 19. Filter bag according to one of claims 1 to 18, characterised in that the bag material is a non woven composite material.
 - 20. Method for manufacturing a filter bag according to one of claims 1 to 19, characterised by the following method steps:

- a) producing a tubular bag and closing it on one side to form the at least partially closed area,
- b) introducing a die from the open side of the bag in the direction of the closed end of the bag so that a bottom is produced by folding,

- e) connecting the plies in the bottom which are arranged the one above the other as a result of the folding.
- 21. Method according to claim 20, characterised in that the production of the tubular bag (method step a)) takes place in cycles, a tube being produced from a filter material and the open end being closed.
 - 22. Method according to claim 20 or 21, characterised in that, as the open end is closed (method step a)), simultaneously the previously produced bag is closed at its free end.
- 15 23. Method according to claim 22, characterised in that in addition the bags are separated in the same working cycle.
 - 24. Method according to claim 23, characterised in that the separation takes place mechanically.
- 25. Method according to one of claims 20 to 24, characterised in that pre-creases are introduced during method step a).
 - 26. Method according to claim 25, characterised in that the preereases are introduced by a suitable forming tool and/or by welding.
- 27. Method according to one of claims 20 to 26, characterised in that the die is used as a sound reflector for a sonotrode.
 - 28. Method according to one of claims 20 to 26, characterised in that the die is used as a sonotrode for a sound reflector.

29. Method according to one of claims 20 to 28, characterised in that an opening is introduced during method step a) or into the filter material forming the web.

Abstract

5