Practice (Python+OpenCV)

Yu-Cheng, Wu 2019/07/15

Python3

- Python3.5+
- Array operation:
 - NumPy → pip3 install numpy
- Image processing:
 - OpenCV → pip3 install opency-python
 - Pillow → pip3 install Pillow

Python Grammar

- Tutorial
 - http://cs231n.github.io/python-numpy-tutorial/
- Google it

NumPy

- NumPy is the fundamental package for scientific computing with Python. It provides containers and efficient tools to deal with multi-dimensional arrays.
- Tutorial
 - http://cs231n.github.io/python-numpy-tutorial/

CV in Python

- OpenCV:
 - Popular library for computer vision application in C++ and python.
 - https://opencv-python-tutroals.readthedocs.io/en/latest/
- Pillow
 - PIL (Python Image Library) fork
 - https://pillow.readthedocs.io/en/stable/

Lab1

- Image operation
- Image smoothing
- Image denoising
- Image PCA analysis

Interpolation

Media IC & System Lab

Yu-Cheng, Wu

Color Space

- Organization of colors

 - YCbCr (Y: luminance, Cb, Cr: chrominance)

 - HSV (hue, saturation, value)

Yu-Cheng, Wu

8

Convolution

$$g(x,y) = \frac{1}{W} \sum_{i,j \in [-r,r]} h(i,j) f(x-i,y-j)$$
 $W = \sum_{i,j \in [-r,r]} h(i,j)$

	45	60	98	127	132	133	137	133	
	46	65	98	123	126	128	131	133	
	47	65	96	115	119	123	135	137	
	47	63	91	107	113	122	138	134	
	50	59	80	97	110	123	133	134	
	49	53	68	83	97	113	128	133	
	50	50	58	70	84	102	116	126	
	50	50	52	58	69	86	101	120	
•									

0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1

	69	95	116	125	129	132
	68	92	110	120	126	132
	66	86	104	114	124	132
	62	78	94	108	120	129
	57	69	83	98	112	124
	53	60	71	85	100	114

Box filtering (average filtering)

$$h(i,j) = \frac{1}{r^2}$$

$$g(x,y) = \frac{1}{r^2} \sum_{i,j \in [-r,r]} f(x-i,y-j)$$

Gaussian filtering

$$h(i,j) = e^{-\frac{i^2+j^2}{2\sigma^2}}$$

Original Image

Gaussian filtered image, $\sigma = 2$

- Median filtering
 - 3*3 example:

Media IC & System Lab

Noise

original

Media IC & System Lab

Gaussian noise

Salt and pepper noise

Yu-Cheng, Wu

13

Lab1

- Image operation
 - Resize: down-sample, up-sample with different interpolation methods
 - Color conversion: RGB (BGR) to YCbCr
- Image smoothing
 - Averaging, Gaussian filtering, median filtering
- Image denoising
 - Add noise: Gaussian noise, salt and pepper noise
 - Denoise: Gaussian filtering, median filtering

Principal Component Analysis

- Unsupervised & linear dimension reduction
- Goal: determine the projection to maximize the variation of projected data

Formulation & Derivation for PCA

- Input: a set of instances x (N instances)
- Output: a projection vector w maximizing the variance of the projected data

$$\max_{w} E[(w^{T}x - w^{T}\mu)^{2}], \|w\|_{2} = 1, \ \mu = \sum_{i=1}^{N} x_{i}$$

$$w \in \mathbb{R}^{d}, \ x_{i} \in \mathbb{R}^{d}, \ \forall i \in \{1, ..., N\}$$

Formulation & Derivation for PCA

•
$$E[(w^T x - w^T \mu)^2] = E[(w^T x - w^T \mu)(x^T w - \mu^T w)]$$

= $w^T E[(x - \mu)(x - \mu)^T] w$
= $w^T \Sigma w$

Covariance matrix

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} \{ (x_i - \mu)(x_i - \mu)^T \}$$

Formulation & Derivation for PCA

Cont'd

$$\max_{w} w^T \Sigma w, \ \|w\|_2 = 1$$

Lagrangian multiplier

$$J(w) = w^T \Sigma w - \lambda (w^T w - 1)$$

$$\Rightarrow \frac{\partial J}{\partial w} = 2\Sigma w - 2\lambda w = 0$$

$$\Rightarrow w^T \Sigma w = \lambda w^T w = \lambda$$

Eigenanalysis & PCA

Eigen decomposition

$$\Sigma W = W\Lambda \Rightarrow \Sigma = W\Lambda W^{-1} = W\Lambda W^T = \sum_{i=1}^d \lambda_i w_i w_i^T$$

Next principle component

$$E[(w^{T}(1 - w_{1}w_{1}^{T})(x - \mu))^{2}] = w^{T}(1 - w_{1}w_{1}^{T})\Sigma(1 - w_{1}w_{1}^{T})w$$

$$= w^{T}(\Sigma - w_{1}w_{1}^{T}\Sigma - \Sigma w_{1}w_{1}^{T} + w_{1}w_{1}^{T}\Sigma w_{1}w_{1}^{T})w$$

$$= w^{T}(\Sigma - w_{1}w_{1}^{T}\lambda_{1} - \lambda_{1}w_{1}w_{1}^{T} + w_{1}\lambda_{1}w_{1}^{T})w$$

$$= w^{T}(\Sigma - \lambda_{1}w_{1}w_{1}^{T})w$$

Eigenanalysis & PCA

Covariance matrix

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} \{ (x_i - \mu)(x_i - \mu)^T \}$$

- Rank = N-1 (if d > N-1)
 - → dim(Null space) = d-(N-1)
 - → at most N-1 non-zero eigenvalues

$$x_j - \mu = \sum_{i=1}^d a_i w_i$$
$$= \sum_{i=1}^{N-1} a_i w_i$$

Eigenanalysis & PCA

Covariance matrix is symmetric

 $=a_i$

- → eigenvectors are orthogonal
- > span the instances with eigenvectors
- Less bases → larger reconstruction error

$$w_j^T(x_k - \mu) = w_j^T \sum_{i=1}^{N-1} a_i w_i$$

$$x_j - \mu = \sum_{i=1}^{N-1} a_i w_i$$

$$= \sum_{i=1}^{N-1} a_i \delta_{ij}$$

$$\simeq \sum_{i=1}^{n} a_i w_i$$

Media IC & System Lab

KNN Classifier

k-nearest neighbors classifier

Media IC & System Lab

Yu-Cheng, Wu

Lab1

- Image PCA analysis
 - 40 classes, 10 images for each class (6 train, 4 test)

$$x_i \in \mathbb{R}^d$$

$$x_j - \mu = \sum_{i=1}^{N-1} a_i w_i$$
$$\simeq \sum_{i=1}^n a_i w_i$$

Lab2

- Color segmentation
- Texture segmentation
- Feature descriptor
- Recognition with bag of visual words

K-means Clustering

 Group the data into k groups and minimize the sum of distances between data and corresponded group center (mean of each group)

K-means Clustering

- Hard coding dictionary learning
 - D: group centers, α: belong to which group

$$\min_{D,\{\alpha_i\}} \sum_{i=1}^{N} \|x_i - D\alpha_i\|_2, \ s.t. \ \|\alpha_i\|_0 = 1, \ \|\alpha_i\|_1 = 1, \ \forall i \in \{1, ..., N\}$$

$$D \in \mathbb{R}^{d \times k}, \ x_i \in \mathbb{R}^d, \ \alpha_i \in \mathbb{R}^k, \ \forall i \in \{1, ..., N\}$$

Feature Descriptor

- Feature extraction: feature detection + feature description
- Common descriptors: SURF, SIFT, BRIEF, ORB

Media IC & System Lab

Yu-Cheng, Wu

Bag of Visual Words

- Encode images with visual words
- Can be used in image classification

Lab2

- Color segmentation
 - K-means clustering: d = 3, N = H*W, k = 10
- Texture segmentation
 - K-means clustering: d = 38 or 41, N = H*W, k = 6
- Bag of visual words
 - 5 classes, 100 train and 100 test images for each class
 - K-means clustering: d = 128 (dim of SURF feat.), N = sum(# of SURF feat. in each image), k = 50
 - BoW feat: dim = 50