GANPAT UNIVERSITY											
FACULTY OF ENGINEERING & TECHNOLOGY											
Programme		Bachelor of Technology				Branch/Spec.	Computer Engineering / Information Technology				
Semester		V				Version	2.0.0.0				
Effective from	lemic	Year	2020-21	[Effective for the	e batch Adm	July 2018				
Subject code 2		2CE	2CEIT5PE2 Subj		Name	Computer Graphics & Visualization					
Teaching sche	Teaching scheme				Examination scheme (Marks)						
(Per week)	Lectu DT)	`		tical(Lab.)	Total		CE	SEE	Total		
	L	T U	P	TW							
Credit	3	0	1	-	4	Theory	40	60	100		
Hours	3	0	2	-	5	Practical	30	20	50		

Pre-requisites:

Knowledge of C Programming language, Basic Linear Algebra, Basic data structures and algorithms

Objectives of the course:

- 1. Understand about fundamentals of Graphics to enable them to design animated scenes for virtual object creations.
- 2. Understand the 2D & 3D graphics and their transformations.3. Understand illumination and color models.
- 4. Understand clipping techniques.

	4. Understand cripping techniques.					
Theory Syllabus						
Unit	Content	Hrs				
	Introduction:					
1	History of Computer Graphics, Applications, Animation, Rendering, Relation to Computer Vision					
	and Image Processing					
	Introduction To Opengl:	04				
2	Opengl Architecture, Primitives and Attributes, Simple Modeling and Rendering of Two- and Three-					
	Dimensional Geometric Objects, Indexed and RGB Color Models, Frame Buffer, Double Buffering,					
	GLUT, Interaction, Events and Callbacks, Picking.					
3	Raster Graphics & Clipping:					
	Point, Line, Circle and Ellipse as Primitives, Fill Area Primitives, Windowing, Line Clipping (Cohen					
	and Sutherland, Cyrus-Beck), Polygon Clipping, 3d Clipping, Introduction to Anti-Aliasing					
	Technique 2D & 3D Geometric Transformations:					
4	Basic Transformation, Matrix Representations and Homogenous Coordinates, Composite					
7	Transformations, Affine Transformations, Matrix Stacks and Model View Matrix In Opengl.	04				
	2D & 3D Viewing:					
5	Viewing Pipeline and Co-Ordinate System, Viewing Transformations, Classical 3D Viewing,	02				
	Parallel and Perspective Projective Transformations					
	3D Object Representation and Visualization:					
	Curves and Surfaces: Cubic Splines, Bezier Curves, B-Splines, Tensor Product Surfaces, Surface of					
6	Revolution Sweep Surfaces, Fractal Curves and Surfaces, Hidden Line/Surface Removal Methods, Visibility- Z-Buffer, BSP Trees, Open-GL Culling, Hidden-Surface Algorithms, Visualization,					
						Interpolation, Modelling Techniques, Trees, Scene Graphs, Wireframe, Surface and Solid Modelling,
		Surface Area and Volume Estimation For 3D Tessellation				
7	Lighting & Shading:	08				
	Light Sources, Basic Illumination Models: Ambient Light, Diffuse Reflection, Specular Reflection					

	and Phong Model, Intensity Attenuation, Color Models, Transparency and Shadows, Gouraud and Phong Shading for Polygons, Programmable Shaders: Opengl Shading Language, Fragment Shaders,						
	Cub and Bump Maps						
	Discrete Techniques:						
8	Texture Mapping, Compositing, Textures in Opengl; Ray Tracing- Recursive Ray Tracer, Ray- Sphere Intersection	05					
	Introduction of CUDA Programming:						
9	Different Generations of Gpus, GPU Architecture Overview, CUDA Programming Model, Memory Models, CUDA Hardware Interface on The GPU, CUDA Programming Examples	03					
	Introduction of Animation:						
10	Principles of Animation, Overview of Various Animation Techniques, Storyboards for Animation, Key-Frame System, Tweening and Morphing	03					
Practic	cal Content						
	ments/Practical/Simulations would be carried out based on syllabus						
Text B	· · · · · · · · · · · · · · · · · · ·						
	"Mathematics for 3D Game Programming and Computer Graphics" by Eric Lengyel, Course Technological	σv					
1	PTR Cengage Learning.	<i>0)</i>					
2	Donald Hearn and Pauline Baker, Computer Graphics with OpenGL, Prentice Hall						
Refere	nce Books						
1	Peter Shirley and Steve Marschner, Computer Graphics, A. K. Peters.						
2	F. S. Hill Jr. and S. M. Kelley, Computer Graphics using OpenGL, Prentice Hall.						
3	"Geometric Modeling and Mesh Generation from Scanned Images by Jessica Zhang", Taylor and Francis Group.						
4	"Curves and Surfaces For CAGD" by Gerald Farin, Morgan Kauffman Publishers.						
5	"Polygon Mesh Processing" by Botsch, Kobbelt, Pauly, Alliez and Levy, A K Peters Ltd						
6	Tomas Akenine-Mller and Eric Haines Naty Hoffman, Real-Time Rendering, A.K. Peters.						
7	NVidia CUDA Repository, URL: http://developer.nvidia.com/category/zone/cudazone						
8	Donald Hearn and M Pauline Baker, "Computer Graphics C Version", Pearson Education						
0	"Geometric Modeling and Mesh Generation from Scanned Images by Jessica Zhang", Taylor and France	cis					
9	Group.						
10	M. de Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry:						
	Algorithms and Applications, Springer.						
ICT/M	IOOCs Reference						

https://nptel.ac.in/courses/106106090/

Course Outcomes:

After successful completion of this course, student will be able to

- 1. Implement the concept of 2D and 3D transformations, projection and viewing.
- 2. Gain detailed knowledge of the graphics pipeline.
- 3. Implement the concept of shading and texture mapping algorithms.
- 4. Get broad knowledge of 3D modelling and rendering techniques.
- 5. Understand, design and implement scene graphs for games.
- 6. Develop practical skills in graphics programming.