INVESTIGATING THE STRUCTURE OF $M_2(\mathbb{F}_q)$

IAN GALLAGHER DR. ERIC BRUSSEL

ABSTRACT. We present and prove a count of the maximal commutative subalgebras of $M_2(\mathbb{F}_q)$, as well as counts for the individual isomorphism classes.

1. Introduction

For a finite field of $q = p^m$ elements, $p \neq 2$, it is possible to count the number of vector subspaces of \mathbb{F}_q^n of a given dimension. These counts arise in problems involving the number of points of \mathbb{F}_q^n , the Grassmannian, and further generalizations.

This paper is meant to address a similar problem. Namely, the structure and count of the maximal commutative sub-algebras of $M_2(\mathbb{F}_q)$. Such sub-algebra's...

For the duration of the paper, $q = p^n$ for some prime $p \neq 2$.

2. Generalized Quaternions and
$$M_2(\mathbb{F}_q)$$

Here, we introduce an alternative formulation of $M_2(\mathbb{F}_q)$ based on the generalized quaternions, an abstraction of the well-known quaternion algebra. This formulation lends itself nicely to a more general result detailing the structure of commutative sub-algebras of $M_2(\mathbb{F}_q)$.

Definition 1 (Generalized Quaternions). Let k be a field, char $k \neq 2$, and fix $a, b \in k - \{0\}$. Then the *generalized quaternions* are a central simple k-algebra (CSA) of the form

$$A_{a,b}(k) = \{t + xi + yj + zl : t, x, y, z \in k\}$$
 where $i^2 = a, j^2 = b$, and $ij = -ji = l$

We also introduce an alternative vector notation for the generalized quaternions that is useful for cleaner computations.

Definition 2 (Generalized Quaternions, Vector Notation).

$$A_{a,b}(k) = \{(t, \mathbf{v}) : t \in k, \mathbf{v} = \langle xi + yj + zl \rangle, x, y, z \in k\}$$

where $i^2 = a, j^2 = b$, and $ij = -ji = l$

Definition 3 (Generalized Quaternion Norm).

$$N_{a,b}: A_{a,b}(k) \to k$$

$$q \mapsto q\overline{q} = t^2 - ax^2 - by^2 + abz^2$$

It turns out that $M_2(\mathbb{F}_q)$ is the only isomorphism class of generalized quaternions over \mathbb{F}_q but this fact is not immediately obvious. To prove this, we cite but do not prove the following results.

 $Date \hbox{: June 4, 2021.}$

Theorem 4 (Wedderburn). requires citation Let k be a field and A a central simple algebra. Then $A \simeq M_n(D)$ for some k-division algebra D.

Theorem 5 (Chevalley-Warning [2]). Let $f_{\alpha} \in \mathbb{F}_q[X_1, \ldots, X_n]$ be polynomials in n variables such that $\sum_{\alpha} \deg f_{\alpha} < n$ and let V be the set of their common zeros in \mathbb{F}_q^n . One has

$$|V| \equiv 0 \pmod{p}$$

Lemma 6. $N_{a,b}(X_1 + iX_2 + jX_3 + kX_4)$ has a nontrivial zero over $A_{a,b}(\mathbb{F}_q)$.

Proof. For this, we make use of theorem 5. Let

$$f_1 = N_{a,b}(X_1 + iX_2 + jX_3 + kX_4)$$

= $X_1^2 - aX_2^2 - bX_3^2 + abX_4^2$
 $\in \mathbb{F}_q[X_1, X_2, X_3, X_4]$

Here, $\deg f_1 = 2 < 4$, so Chevalley-Warning holds and $|V| \equiv 0 \pmod{p}$. Note that f(0,0,0,0) = 0, so we must have p divides |V|. Therefore, f_1 has a nontrivial zero and this completes the proof.

Theorem 7. $A_{a,b}(\mathbb{F}_q) \cong M_2(\mathbb{F}_q)$

Proof. By lemma 6, there exists $q \in A_{a,b}(\mathbb{F}_q)$, $q \neq 0$, such that $N_{a,b}(q) = q\overline{q} = 0$. In other words, $A_{a,b}(\mathbb{F}_q)$ has nontrivial zero divisors and is therefore not a \mathbb{F}_q -division algebra. By theorem 4 we must have $A_{a,b}(\mathbb{F}_q) \cong M_2(D)$ for some \mathbb{F}_q -division algebra D. However, $\dim_{\mathbb{F}_q} A_{a,b}(\mathbb{F}_q) = 4$, so D must have \mathbb{F}_q -dimension 1.

$$\therefore D \cong \mathbb{F}_q \text{ and } A_{a,b}(\mathbb{F}_q) \cong M_2(\mathbb{F}_q).$$

3. Planes in
$$M_2(\mathbb{F}_a)$$

For a matrix $A \in M_2(\mathbb{F}_q)$, we know

- (1) A's characteristic polynomial: $p_A(X) = X^2 \operatorname{tr}(A)X + \operatorname{det}(A)$.
- (2) A's minimum polynomial: $m_A(X) = X A$ if $A \in \mathbb{F}_q$. Otherwise, $m_A(X) = p_A(X)$.

This gives an evaluation map $\epsilon_A : \mathbb{F}_q[X] \to M_2(\mathbb{F}_q)$ taking f(X) to f(A), which is a \mathbb{F}_q -linear ring homomorphism with image $\mathbb{F}_q[A] \subseteq M_2(\mathbb{F}_q)$. The kernel is nontrivial, since $M_2(\mathbb{F}_q)$ has finite \mathbb{F}_q -dimension and $\mathbb{F}_q[X]$ does not. It follows that $\ker(\epsilon_A) = (m_A(X))$. By the First Isomorphism Theorem,

$$\frac{\mathbb{F}_q[X]}{(m_A(X))} \cong \mathbb{F}_q[A]$$

So if $A \in M_2(\mathbb{F}_q) - \mathbb{F}_q$, we know $m_A(X) = p_A(X)$ is degree 2 and $\mathbb{F}_q[A]$ has \mathbb{F}_q -dimension 2.

Thus, we have that each such A generates the unique 2 dimensional commutative sub-algebra of $M_2(\mathbb{F}_q)$ containing A. All possible 2 dimensional commutative sub-algebra's are therefore of the form

$$\frac{\mathbb{F}_q[X]}{(m_A(X))}$$

for some $A \in M_2(\mathbb{F}_q) - \mathbb{F}_q$. The set of two dimensional commutative sub-algebra's of $M_2(\mathbb{F}_q)$ must then be composed of exactly three isomorphism classes based on $m_A(X)$

- (1) If $m_A(X)$ is irreducible, then $\mathbb{F}_q[A] \cong \mathbb{F}_{q^2}$
- (2) If $m_A(X)$ is reducible but not separable, then $\mathbb{F}_q[A] \cong \mathbb{F}_q \times \mathbb{F}_q$
- (3) If $m_A(X)$ is separable, then $\mathbb{F}_q[A] \cong \mathbb{F}_{q_{nil}}^2$ the degenerate nilpotent case.

4. Identifying maximal commutative sub-algebras

At this point, we have shown that each matrix $A \in M_2(\mathbb{F}_q) - \mathbb{F}_q$ can be identified with the unique plane generated by taking the linear span of 1 and A, and that this plane belongs to one of three given isomorphism classes. It is reasonable to ask whether this is the maximal commutative sub-algebra of $M_2(\mathbb{F}_q)$ containing A. Indeed, if we drop the restriction of commutativity, we may easily find sub-algebras of dimension 3. The set of all upper triangular matrices is one such example.

To prove

5. Plane Counts

Theorem 8. $M_2(\mathbb{F}_q)$ has $q^2 + q + 1$ unique 2D commutative subalgebras.

Proof outline notes:

- Each plane has q^2 elements.
- Each plane shares the q elements of \mathbb{F}_q .
- Each plane has trivial intersection.
- The planes cover all of $M_2(\mathbb{F}_q)$.

Proof. Let E_x for $x \in M_2(\mathbb{F}_q) - \mathbb{F}_q$ be the commutative subalgebra created by the span of 1 and x. Label $\Sigma = \{E_x \mid x \in M_2(\mathbb{F}_q) - \mathbb{F}_q\}$ and set $N = |\Sigma|$, the number of unique 2D commutative subalgebras. Let $x, y \in M_2(\mathbb{F}_q) - \mathbb{F}_q$. E_x, E_y are both two dimensional \mathbb{F}_q algebras so we know that $E_x \cap E_y$ is also a \mathbb{F}_q -algebra. By dimension arguments, either $E_x = E_y$ or $E_x \cap E_y = \mathbb{F}_q$. Since $\bigcup_{E \in \Sigma} E = M_2(\mathbb{F}_q)$, $\{E_x - \mathbb{F}_q \mid x \in M_2(\mathbb{F}_q) - \mathbb{F}_q\}$ is a partition of $M_2(\mathbb{F}_q) - \mathbb{F}_q$. The following then holds,

$$N(|E_x| - |\mathbb{F}_q|) = |M_2(\mathbb{F}_q)| - |\mathbb{F}_q|$$

$$N(q^2 - q) = q^4 - q$$

$$N(q - 1) = q^3 - 1$$

$$N = q^2 + q + 1$$

Lemma 9. Let k be a field such that $[k:k^{\times 2}]=2$ and $A\in M_2(k)$. Define $S=\{\det(\lambda A)\mid \lambda\in k^{\times}\}.$

$$S = \begin{cases} \{0\} & \text{if } \det(A) = 0\\ k^{\times 2} & \text{if } \det(A) \in k^{\times 2}\\ k^{\times} - k^{\times 2} & \text{if } \det(A) \in k^{\times} - k^{\times 2} \end{cases}$$

Proof. Let $A \in M_2(k)$. Then $\det(\lambda A) = \det(\lambda I) \det(A) = \lambda^2 \det(A)$ where $\lambda \in k$. If $\det(A) = 0$, then $\det(\lambda A) = 0$ for $\lambda \in k$ and $S = \{0\}$ follows. Otherwise, we know that the quotient group $k^{\times}/k^{\times 2}$ has only the two cosets $k^{\times 2}, k^{\times} - k^{\times 2}$. So if $\det(A) \in k^{\times 2}$, we have $S = \{\lambda^2 \det(A) \mid \lambda \in k^{\times}\} = k^{\times 2}$ and similarly, if $\det(A) \in k^{\times} - k^{\times 2}$, then $S = \{\lambda^2 \det(A) \mid \lambda \in k^{\times}\} = k^{\times} - k^{\times 2}$. \square

Lemma 10. Consider the following elements of $M_2(\mathbb{F}_q)$.

$$x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Under the conjugation action of $GL_2(\mathbb{F}_q)$ on $M_2(\mathbb{F}_q)$,

$$|\mathcal{O}_x| = q(q+1)$$
$$|\mathcal{O}_y| = (q+1)(q-1)$$

Proof. We may compute the size of the orbits of x, y by first computing the size of their stabilizers, G_x, G_y , and then applying the orbit coset correspondence theorem. Now,

$$G_x = \{ A \in GL_2(\mathbb{F}_q) \mid A \cdot x = x \}$$
$$= \{ A \in GL_2(\mathbb{F}_q) \mid AxA^{-1} = x \}$$
$$= \{ A \in GL_2(\mathbb{F}_q) \mid Ax = xA \}$$

Inevitably, matrices of the form sx + tI commute with x for $s, t \in \mathbb{F}_q$, so if $sx + tI \in GL_2(\mathbb{F}_q)$, then $sx + tI \in G_x$. These are also the only possible matrices in G_x since they are the elements of the maximal commutative subalgebra containing x requires result citation/prior inclusion. It now suffices to determine when $\det(sx + tI) = 0$.

$$\det(sx + tI) = \begin{vmatrix} t & s \\ s & t \end{vmatrix} = t^2 - s^2$$

Therefore, det(sx + tI) = 0 when $t^2 = s^2$, so when $t = \pm s$. We have thus found precisely $q^2 - 2q + 1 = (q - 1)^2$ elements of G_x . It follows that,

$$[GL_2(\mathbb{F}_q):G_x] = \frac{(q^2-1)(q^2-q)}{(q-1)^2} = q(q+1)$$

By the orbit coset correspondence theorem should cite/include prior we have that $\mathcal{O}_x = q(q+1)$

Similarly we have $G_y = \{A \in GL_2(\mathbb{F}_q) | Ay = yA\}$ and the only possible elements of G_y are those of the form sy + tI for $s, t \in \mathbb{F}_q$ where $sy + tI \in GL_2(\mathbb{F}_q)$.

$$\det(sy + tI) = \begin{vmatrix} t & 0 \\ s & t \end{vmatrix} = t^2$$

So det(sy + tI) = 0 if and only if t = 0. There are then $q^2 - q$ elements of G_y . Therefore,

$$[GL_2(\mathbb{F}_q):G_y] = \frac{(q^2-1)(q^2-q)}{q^2-q} = q^2-1$$

and we have $\mathcal{O}_y = q(q-1)$

Theorem 11.

$$(1) |[\mathbb{F}_{q^2}]| = \begin{pmatrix} q \\ 2 \end{pmatrix}$$

(2)
$$|[\mathbb{F}_q \times \mathbb{F}_q]| = \binom{q+1}{2}$$

$$|[\mathbb{F}^2_{q_{nil}}]| = q+1$$

Proof. The elements x,y from lemma 10 are the rational canonical forms for all matrices with minimum polynomials X^2-1 and X^2 respectively.

Since $X^2-1=(X+1)(X-1)$ in $M_2(\mathbb{F}_q)$ and $\operatorname{char}(\mathbb{F}_q)\neq 2$ this must be included in the introductory sections, all of the elements of \mathcal{O}_x belong to an embedding of $\mathbb{F}_q\times\mathbb{F}_q$. Additionally any embedding of $\mathbb{F}_q\times\mathbb{F}_q$ must be of this form...

Now, referring to lemma 9 we know that each plane isomorphic to $\mathbb{F}_q \times \mathbb{F}_q$ By theorem 8, ...

References

- [1] Nathan Jacobson, Schur's Theorems on Commutative Matrices, Bull. Amer. Math. Soc. **50** (1944), 431–436.
- [2] Jean-Pierre Serre, A Course in Arithmetic: Graduate Texts in Mathematics, Springer-Verlag, New York, 1973.