\mathbf{a}

i

Proof.

1. $\exists x, y \in \mathbb{Z} : ax + by = c$

2.
$$a = \gcd(a, b) \cdot \frac{a}{\gcd(a, b)}$$
 and $b = \gcd(a, b) \cdot \frac{b}{\gcd(a, b)}$

3. Substituting a and b into the equation:

(a)
$$\gcd(a,b) \cdot \frac{a}{\gcd(a,b)} \cdot x + \gcd(a,b) \cdot \frac{b}{\gcd(a,b)} \cdot y = c$$

(b)
$$c = \gcd(a, b) \left(\frac{a}{\gcd(a, b)} \cdot x + \frac{b}{\gcd(a, b)} \cdot y \right)$$

4. Since
$$x, y \in \mathbb{Z}$$
, $\frac{a}{\gcd(a, b)} \cdot x + \frac{b}{\gcd(a, b)} \cdot y \in \mathbb{Z}$

5. So gcd(a, b)|c

ii

Proof.

$$1. \ ax_1 + by_1 = c$$

2. Substituting x_1 to $x_1 + mb$ and y_1 to $y_1 - ma$:

(a)
$$LHS = a(x_1+mb) + b(y_1-ma) = ax_1+mab+by_1-mab = ax_1+by_1$$

(b)
$$ax_1 + by_1 = c$$

3. So $a(x_1 + mb) + b(y_1 - ma) = c$, and $(x_1 + mb, y_1 - ma)$ is a solution to the equation.

4. if (x_1, y_1) is a solution, (x_1+mb, y_1-ma) is also a solution to the equation.

b

- 1. Change the words into mathematical language: find x: $63x + 7 \equiv 0 \pmod{23}$
- 2. $63 = 23 \times 2 + 17$
- 3. So the equation can be reduced to $17x + 7 \equiv 0 \pmod{23}$
- 4. $17x \equiv -7 \pmod{23}$
- 5. $-7 \mod 23 = 16 \pmod{23}$
- 6. So $17x \equiv 16 \pmod{23}$
- 7. $17^{-1} = \frac{1}{17} \equiv \frac{1}{-6} \equiv \frac{24}{-6} = -4 \equiv 19 \pmod{23}$
- 8. So $17^{-1} \equiv 19 \pmod{23}$
- 9. Multiplying 19 on both sides: $x \equiv 16 \times 19 = 304 \equiv 5 \pmod{23}$
- 10. So the smallest solution is 5

a

- 1. (a) N = 24a + 6
 - (b) N = 98b + 18
- 2. So 24a 98b = 12, 12a 49b = 6
- 3. $49 12 \times 4 = 1$
- 4. So $12 \times -24 49 \times -6 = 6$
- 5. (-24, -6) is a solution
- 6. by 1 a ii,(-24 + 49, -6 + 12) = (25, 6) is a solution.
- 7. $N = 24 \times 25 + 6 = 606 = 98 \times 6 + 18$
- 8. N = 606 is the smallest positive solution.

b

- 1. (a) N = 11a + 2
 - (b) N = 13b + 3
 - (c) N = 18c + 5
- 2. Use the first two equations:
 - (a) 11a 13b = 1
 - (b) $11 \times 6 13 \times 5 = 1$
 - (c) (6,5) is a solution
 - (d) (6+13d, 5+11d) is also a solution
 - (e) N = 11(6+13d) + 2 = 143d + 68
- 3. Use the third equation:
 - (a) 143d 18c = -63
 - (b) $143d \equiv -63 \pmod{18}$
 - (c) $17n \equiv 9 \pmod{18}$

- (d) $17^{-1} \equiv 17 \pmod{18}$
- (e) $d \equiv 9 \times 17 = 153 \equiv 9 \pmod{18}$
- (f) $d = 9 \implies c = 75$
- (g) (9,75) is a solution, which is also the smallest positive solution for N since all the other smallers go to negative.
- 4. $N = 143 \times 9 + 68 = 1355 = 18 \times 75 + 5$
- 5. N = 1355 is the smallest positive solution.

 \mathbf{a}

Proof.

1. case 1 (v is even):

(a)
$$u_1 = \frac{1}{2}uv(v^2 + 1)(v^2 + 3)$$
:

i.
$$u \in \mathbb{Z}$$

ii.
$$\frac{1}{2}v \in \mathbb{Z}$$
 since v is even; iii. $v^2 + 1 \in \mathbb{Z}$;

iii.
$$v^2 + 1 \in \mathbb{Z}$$

iv.
$$v^2 + 3 \in \mathbb{Z}$$
;

v. So
$$u_1 \in \mathbb{Z}$$
.

(b)
$$v_1 = (v^2 + 2) \left[\frac{1}{2} (v^2 + 1)(v^2 + 3) - 1 \right]$$
:

i.
$$v_1 = \frac{1}{2}(v^2 + 1)(v^2 + 3)(v^2 + 2) - (v^2 + 2)$$

ii.
$$v^2 + 2$$
 is even, so $\frac{1}{2}(v^2 + 1)(v^2 + 3)(v^2 + 2) \in \mathbb{Z}$;

iii.
$$v^2 + 2 \in \mathbb{Z}$$
;

iv. So
$$v_1 \in \mathbb{Z}$$
.

(c) So
$$u_1, v_1 \in \mathbb{Z}$$

2. case 2 (v is odd):

(a)
$$u_1 = \frac{1}{2}uv(v^2 + 1)(v^2 + 3)$$
:

i.
$$u \in \mathbb{Z}$$

ii.
$$v \in \mathbb{Z}$$
;

iii.
$$v$$
 is odd, so v^2+1 is even, $\frac{1}{2}(v^2+1) \in \mathbb{Z}$;

iv.
$$v^2 + 3 \in \mathbb{Z}$$
;

v. So
$$u_1 \in \mathbb{Z}$$
.

(b)
$$v_1 = (v^2 + 2) \left[\frac{1}{2} (v^2 + 1)(v^2 + 3) - 1 \right]$$
:

i.
$$v$$
 is odd, so $v^2 + 1$ is even, $\frac{1}{2}(v^2 + 1) \in \mathbb{Z}$;

ii.
$$v^2 + 3 \in \mathbb{Z}$$
;

iii. So
$$\frac{1}{2}(v^2+1)(v^2+3)-1 \in \mathbb{Z};$$

iv.
$$v^2 + 2 \in \mathbb{Z}$$
;

v. So
$$v_1 \in \mathbb{Z}$$
.

(c) So
$$u_1, v_1 \in \mathbb{Z}$$

3. So (u_1, v_1) is a pair of integers.

b

1. test for small x:

2.
$$x = 1$$
:

(a)
$$13 - 4 = y^2$$

(b)
$$y = 3$$

(c)
$$x = 1$$
 stands.

3.
$$(u, v) = (1, 3)$$

 \mathbf{c}

1.
$$(u, v) = (1, 3)$$

2.
$$u_1 = \frac{1}{2}uv(v^2 + 1)(v^2 + 3) = \frac{1}{2} \cdot 1 \cdot 3(3^2 + 1)(3^2 + 3) = 180$$

3.
$$v_1 = (v^2 + 2) \left[\frac{1}{2} (v^2 + 1)(v^2 + 3) - 1 \right] = (3^2 + 2) \left[\frac{1}{2} (3^2 + 1)(3^2 + 3) - 1 \right] = 649$$

4. So $(u_1, v_1) = (180, 649)$ is a solution to the equation.

Proof.

- 1. Suppose $\Box ABCD$ which diagonals intersect at O
- 2. $AC \perp BD \implies AB^2 + CD^2 = AD^2 + BC^2$:
 - (a) $AC \perp BD$;
 - (b) So $\angle AOB = \angle BOC = \angle COD = \angle DOA = 90^{\circ}$;
 - (c) By Pythagorean Theorem:

i.
$$AB^2 = AO^2 + BO^2$$

ii.
$$BC^2 = BO^2 + CO^2$$

iii.
$$CD^2 = CO^2 + DO^2$$

iv.
$$DA^2 = DO^2 + AO^2$$

(d)
$$AB^2 + CD^2 = AO^2 + BO^2 + CO^2 + DO^2$$

(e)
$$AD^2 + BC^2 = BO^2 + CO^2 + DO^2 + AO^2$$

(f) So
$$AB^2 + CD^2 = AD^2 + BC^2$$

3.
$$AB^2 + CD^2 = AD^2 + BC^2 \implies AC \perp BD$$
:

(a)
$$\alpha := \angle AOB = \angle COD, \beta := \angle BOC = \angle DOA$$

(b) By Law of Cosines:

i.
$$AB^2 = AO^2 + BO^2 - 2AO \cdot BO \cos \alpha$$

ii.
$$BC^2 = BO^2 + CO^2 - 2BO \cdot CO \cos \beta$$

iii.
$$CD^2 = CO^2 + DO^2 - 2CO \cdot DO \cos \alpha$$

iv.
$$DA^2 = DO^2 + AO^2 - 2DO \cdot AO \cos \beta$$

(c) By
$$AB^2 + CD^2 = AD^2 + BC^2$$
:

$$AO^2 + BO^2 - 2AO \cdot BO \cos \alpha + CO^2 + DO^2 - 2CO \cdot DO \cos \alpha = BO^2 + CO^2 - 2BO \cdot CO \cos \beta + DO^2 + AO^2 - 2DO \cdot AO \cos \beta$$

(d)
$$(AO \cdot BO + CO \cdot DO) \cos \alpha = (BO \cdot CO + DO \cdot AO) \cos \beta$$

(e)
$$\alpha + \beta = 180^{\circ} \implies \cos \alpha = -\cos \beta$$

(f)
$$(AO \cdot BO + CO \cdot DO + BO \cdot CO + DO \cdot AO) \cos \alpha = 0$$

(g)
$$AO, BO, CO, DO > 0 \implies AO \cdot BO + CO \cdot DO + BO \cdot CO + DO \cdot AO \neq 0$$

- (h) So $\cos \alpha = 0 \implies \alpha = 90^{\circ}$
- (i) $AC \perp BD$

4.
$$AC \perp BD \iff AB^2 + CD^2 = AD^2 + BC^2$$

 \mathbf{a}

Proof.

1. LHS > 0

$$2. \ \sqrt{\frac{a+\sqrt{a^2-b}}{2}} > \sqrt{\frac{a-\sqrt{a^2-b}}{2}} \implies RHS > 0$$

3. So squaring does not affect the positivity of both sides

i.e.
$$LHS^2 = RHS^2 \implies LHS = RHS$$

4.

$$\begin{split} RHS^2 \\ &= \left(\sqrt{\frac{a + \sqrt{a^2 - b}}{2}} \pm \sqrt{\frac{a - \sqrt{a^2 - b}}{2}}\right)^2 \\ &= \frac{a + \sqrt{a^2 - b}}{2} + \frac{a - \sqrt{a^2 - b}}{2} \pm 2\sqrt{\frac{a + \sqrt{a^2 - b}}{2}}\sqrt{\frac{a - \sqrt{a^2 - b}}{2}} \\ &= a \pm \sqrt{a^2 - (a^2 - b)} \\ &= a \pm \sqrt{b} \end{split}$$

5.
$$LHS^2 = a \pm \sqrt{b}$$

6. So
$$RHS^2 = LHS^2$$

7.
$$RHS = LHS$$

8.
$$\sqrt{a \pm \sqrt{b}} = \sqrt{\frac{a + \sqrt{a^2 - b}}{2}} \pm \sqrt{\frac{a - \sqrt{a^2 - b}}{2}}$$

b

1.
$$a = 17, b = 240$$

$$2. \ \sqrt{17+\sqrt{240}} = \sqrt{\frac{17+\sqrt{17^2-240}}{2}} + \sqrt{\frac{17-\sqrt{17^2-240}}{2}}$$

3.
$$\sqrt{\frac{17+\sqrt{17^2-240}}{2}} + \sqrt{\frac{17-\sqrt{17^2-240}}{2}} = \sqrt{\frac{17+7}{2}} + \sqrt{\frac{17-7}{2}}$$

4.
$$\sqrt{\frac{17+7}{2}} + \sqrt{\frac{17-7}{2}} = \sqrt{12} + \sqrt{5}$$

5. So
$$\sqrt{17 + \sqrt{240}} = \sqrt{12} + \sqrt{5}$$

 \mathbf{a}

1.
$$L(x) = kx + b$$

2.
$$k = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

3.
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot x_1 + b = f(x_1)$$

4.
$$b = f(x_1) - \frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot x_1$$

5.
$$L(x) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot x + f(x_1) - \frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot x_1$$

6.
$$L(x_3) = 0$$

7.
$$x_3 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot x_1 - f(x_1)}{\frac{f(x_2) - f(x_1)}{x_2 - x_1}} = \frac{f(x_2)x_1 - f(x_1)x_2}{f(x_2) - f(x_1)}$$

b

1.
$$x_1 = 2, f(x_1) = 8$$

2.
$$x_2 = 3$$
, $f(x_2) = -9$

3.
$$x_3 = \frac{-9 \cdot 2 - 8 \cdot 3}{-9 - 8} = \frac{42}{17}$$

4.
$$f(x_3) = -\frac{9144}{4913}$$

5. Use x_1 and x_3 to get x_4 :

6.
$$x_4 = \frac{-\frac{9144}{4913} \cdot 2 - 8 \cdot \frac{42}{17}}{-\frac{9144}{4913} - 8} = \frac{1803}{757}$$

7.
$$f(x_4) = -\frac{100793169}{433798093}$$

8. Use x_1 and x_4 to get x_5 :

9.
$$x_5 = \frac{-\frac{100793169}{433798093} \cdot 2 - 8 \cdot \frac{1803}{757}}{-\frac{100793169}{433798093} - 8} = \frac{29298426}{12357017} \approx 2.370995 \approx 2.37$$

10. So the root is approximately 2.37.