1 T.P.N°2: Acción del Viento - CIRSOC 102/94

Hallar las acciones del viento para un hangar de aviones ubicado en la ciudad de Comodoro Rivadavia, la zona de emplazamiento es a 100m de la zona costera. Tiene un portón de 4m x 16m, realizar el cálculo según CIRSOC 102/94. Las medidas se muestran en la siguiente figura:

a = 50m

b = 30m

h' = 7m

h = 11,87m

 $\alpha = 18^{\rm o}$

c = 16m

d = 4m

Plantear todas las combinaciones de cargas de acuerdo a la reglamentación, de las acciones del peso propio, sobrecarga y nieve obtenidas del TPN°1, junto con las acciones del viento del presente trabajo práctico.

2 Solución

1. Se determina la Velocidad de referencia β para la localidad de Comodoro Rivadavia.

$$\beta = 37.5 \frac{m}{s}$$
 de tabla 1

2. Cálculo de la Velocidad básica de diseño V_0 . Se calculara mediante la expresión:

$$V_0 = C_p \cdot \beta$$

donde $C_p = 1.65$ es el coeficiente de velocidad probable, que toma en consideración el riesgo y el tiempo de riesgo adoptado para la construcción de acuerdo con el tipo y destino de la misma, se obtiene de la tabla 2.

$$V_0 = 1.65 \cdot 37.5 \frac{m}{s} = 61.87 \frac{m}{s}$$

3. Cálculo de la presión dinámica básica q_0 . La presión dinámica básica es:

$$q_0 = 0.000613 \cdot V_0^2$$

 $q_0 = 0.000613 \cdot \left(61.87 \frac{m}{s}\right)^2 = 2.34 \frac{KN}{m^2} \Rightarrow 234 \frac{Kg}{m^2}$

4. Cálculo de la presión dinámica de cálculo q_z . La presión dinámica de cálculo es:

$$q_z = q_0 \cdot C_z \cdot C_d$$

donde C_z es el coeficiente adimensional que expresa la ley de variación de la presión con la altura y tiene en cuenta la condición de rugosidad del terreno. y C_d es el coeficiente adimensional de reducción que tiene en cuenta las dimensiones de la construcción.

• El coeficiente C_z se calcula mediante:

$$C_z = \left[\frac{ln \frac{z}{z_{0i}}}{ln \frac{10}{z_{01}}} \right]^2 \cdot \left(\frac{z_{0i}}{z_{01}} \right)^{0.1412}$$

En donde:

z: es la altura del punto considerado, respecto al nivel de referencia, en metros.

 z_{0i} : es un parámetro que depende del tipo de rugosidad del terreno.

 z_{01} : es un parámetro que corresponde al tipo de rugosidad I.

De la tabla 3 obtenemos un $z_{0i} = 0.005$ para rugosidad tipo I.

$$C_z = \left[\frac{ln \frac{11.87m}{0.005}}{ln \frac{10}{0.005}} \right]^2 \cdot \left(\frac{0.005}{0.005} \right)^{0.1412} = 1.044$$

• El coeficiente C_d se obtiene mediante la tabla 5, es función de la relación $\frac{a}{h}, \frac{b}{h}, \frac{b}{V_0}$ y el tipo de rugosidad.

Viento según a y entrando a tabla 5

$$\left\{ \begin{array}{l} \frac{a}{h} = \frac{50m}{11.87m} = 4.21\\ \frac{h}{V_0} = \frac{11.87m}{61.87\frac{m}{s}} = 0.19\\ \text{Tipo I} \end{array} \right\} \Rightarrow C_{\rm d} = 1$$

$$q_{za} = q_0 \cdot C_z \cdot C_d$$

 $q_{za} = 234 \frac{Kg}{m^2} \cdot 1.044 \cdot 1 = 244.29 \frac{Kg}{m^2}$

Viento según \boldsymbol{b} y entrando a tabla 5

$$\left\{ \begin{array}{l} \frac{b}{h} = \frac{30m}{11.87m} = 2.52\\ \frac{h}{V_0} = \frac{11.87m}{61.87\frac{m}{s}} = 0.19\\ \text{Tipo I} \end{array} \right\} \Rightarrow C_{\rm d} = 1$$

$$q_{zb} = q_0 \cdot C_z \cdot C_d$$

 $q_{zb} = 234 \frac{Kg}{m^2} \cdot 1.044 \cdot 1 = 244.29 \frac{Kg}{m^2}$

5. Relación de dimensiones λ .

Para una dirección del viento dada, la relación de dimensiones λ es el cociente entre la altura h y la dimensión horizontal de la cara expuesta. Según sea la cara expuesta a la acción del viento tendremos:

$$\lambda_a = \frac{h}{a} = \frac{11.87m}{50m} = 0.237$$
 $\lambda_b = \frac{h}{b} = \frac{11.87m}{30m} = 0.395$

6. Determinación del coeficiente de forma γ_0 .

Según la ubicación de la construcción con respecto al suelo tendremos γ_0 ó γ_h ó γ_e . El coeficiente de forma γ_0 se obtiene según la dirección a y b a partir de la figura 13

Viento normal a la cara mayor S_a y entrando a la figura 13.

Con
$$\lambda_a < 0.5$$
 y $\lambda_b = 0.395 \Rightarrow \gamma_{0a} = 0.95$

Viento normal a la cara menor S_b y entrando a la figura 13.

Con
$$\lambda_b < 1$$
 y $\lambda_a = 0.237 \Rightarrow \gamma_{0b} = 0.85$

7. Permeabilidad μ .

Si $\mu \leq 5\% \Rightarrow$ Construcción con pared cerrada.

Si $\mu \leq 35\% \Rightarrow$ Construcción con paredes abiertas.

Si $\mu > 5\%$ y $\mu \le 35\%$ \Rightarrow Construcción con paredes parcialmente abiertas.

Calculamos el porcentaje que representa el portón respecto del área total de la pared:

Area total =
$$b \cdot h' + \frac{1}{2} \cdot b \cdot f = 30m \cdot 7m + \frac{1}{2} \cdot 30m \cdot 4.87m = 283.05m^2 \Rightarrow 100\%$$

Area portón = $c \cdot d = 16m \cdot 4m = 64m^2 \Rightarrow \mu = 22.6\%$

Cálculo como Construcción con Paredes Cerradas:

Viento según A
$$\Rightarrow \gamma_{0a} = 0.95$$

8. Determinación de las acciones exteriores C_e .

Los valores de los coeficientes de presión exterior C_e se obtienen de las tablas 6 y 7. Estos valores corresponden a un viento que no atraviesa la construcción, cuando esto no se cumple, ciertos coeficientes pueden dejar de ser válidos.

• Barlovento

$$- \text{ Pared} \Rightarrow \boxed{+0.8} \text{ de Tabla 6.}$$

– Cubierta
$$\Rightarrow$$
 [-0.4] de la Figura 17)a) con $\alpha = 18^{\circ}$ y $\gamma_{0a} = 0.95$

Sotavento

- Pared ⇒
$$-(1.3 \cdot \gamma_{0a} - 0.8) = \boxed{-0.435}$$
 de Tabla 6.

• Paredes Laterales
$$\Rightarrow$$
 $\boxed{-0.45}$ de la Figura 16) con $\alpha = 0$ y $\gamma_{0a} = 0.95$

9. Determinación de las acciones interiores C_i .

Los valores de los coeficientes de presión interior C_i se obtienen de la tabla 8, de conformidad con las características de la construcción, permeabilidad de las paredes y su disposición con respecto a la dirección del viento.

$$C_i = +0.6 \cdot (1.8 - 1.3 \cdot \gamma_{0a}) = \boxed{+0.34}$$
 de Tabla 8.

$$C_i = -0.6 \cdot (1.3 \cdot \gamma_{0a} - 0.8) = \boxed{-0.26}$$
 de Tabla 8.

Viento según B - Portón Cerrado $\Rightarrow \gamma_{0b} = 0.85$ y $\mu \le 5\%$

10. Determinación de las acciones exteriores C_e .

Los valores de los coeficientes de presión exterior C_e se obtienen de las tablas 6 y 7. Estos valores corresponden a un viento que no atraviesa la construcción, cuando esto no se cumple, ciertos coeficientes pueden dejar de ser válidos.

• Barlovento

- Pared
$$\Rightarrow$$
 $\boxed{+0.8}$ de Tabla 6.

Sotavento

- Pared
$$\Rightarrow -(1.3 \cdot \gamma_{0b} - 0.8) = -0.305$$
 de Tabla 6.

- Paredes Laterales \Rightarrow [-0.3] de la Figura 16) con $\alpha = 0$ y $\gamma_{0b} = 0.85$
- Cubierta \Rightarrow [-0.28] de la Figura 17)a) con $\alpha = 0$ y $\gamma_{0b} = 0.85$
- 11. Determinación de las acciones interiores C_i .

Los valores de los coeficientes de presión interior C_i se obtienen de la tabla 8, de conformidad con las características de la construcción, permeabilidad de las paredes y su disposición con respecto a la dirección del viento.

$$C_i = +0.6 \cdot (1.8 - 1.3 \cdot \gamma_{0b}) = \boxed{+0.42}$$
 de Tabla 8.

$$C_i = -0.6 \cdot (1.3 \cdot \gamma_{0b} - 0.8) = -0.18 \Rightarrow \boxed{-0.20}$$
 de Tabla 8.

Viento según B - Portón Abierto
$$\Rightarrow \gamma_{0b} = 0.85$$
 y $\mu \ge 35\%$

12. Determinación de las acciones exteriores C_e .

Los valores de los coeficientes de presión exterior C_e se obtienen de las tablas 6 y 7. Estos valores corresponden a un viento que no atraviesa la construcción, cuando esto no se cumple, ciertos coeficientes pueden dejar de ser válidos.

- Barlovento
 - Pared \Rightarrow $\boxed{+0.8}$ de Tabla 6.
- Sotavento

- Pared
$$\Rightarrow -(1.3 \cdot \gamma_{0b} - 0.8) = -0.305$$
 de Tabla 6.

- Paredes Laterales \Rightarrow [-0.3] de la Figura 16) con $\alpha=0$ y $\gamma_{0b}=0.85$
- Cubierta \Rightarrow [-0.28] de la Figura 17)a) con $\alpha = 0$ y $\gamma_{0b} = 0.85$

13. Determinación de las acciones interiores C_i .

Los valores de los coeficientes de presión interior C_i se obtienen de la tabla 8, de conformidad con las características de la construcción, permeabilidad de las paredes y su disposición con respecto a la dirección del viento.

 $C_i = \boxed{+0.8}$ para paredes y techos con $\mu \le 5\%$ de Tabla 8.

 $C_i = -0.6 \cdot (1.3 \cdot \gamma_{0b} - 0.8) = -0.18 \Rightarrow \boxed{-0.20}$ sobre el portón, con $\mu \geq 35\%$ de Tabla 8.

Como nosotros tenemos una permeabilidad $\mu=22.6\%$ procedemos a interpolar los valores de los coeficientes de presión interior entre el estado de Viento según B con portón cerrado y Viento según B con portón abierto, obteniéndose los siguientes valores:

μ	C_i porton	C_i paredes y techos
$\mu \le 5\%$	-0.20	+0.42
$\mu = 22.6\%$	-0.20	+0.64
$\mu \geq 5\%$	-0.20	+0.8

Combinaciones de Estados de Carga

g = peso propio

p = sobrecarga

 S_b = nieve balanceada

 S_{nb} = nieve no balanceada

Viento según A

Viento según B

- (a) g+p
- (b) $g + p + 0.5 \cdot S_b$
- (c) $g + p + 0.5 \cdot S_{nb}$
- (d) g+ Viento según A
- (e) q+ Viento según B portón cerrado
- (f) g+ Viento según B portón abierto
- (g) $g + S_b$
- (h) $g + S_{nb}$
- (i) $g + S_b + 0.5$ · Viento según A
- (j) $g + S_b + 0.5$ · Viento según B portón cerrado
- (k) $g + S_b + 0.5$ · Viento según B portón abierto
- (l) $g + S_{nb} + 0.5$ · Viento según A
- (m) $g + S_{nb} + 0.5$ · Viento según B portón cerrado
- (n) $g + S_{nb} + 0.5$ · Viento según B portón abierto
- (o) $g + 0.5 \cdot S_b + \text{Viento según A}$
- (p) $g + 0.5 \cdot S_b + \text{Viento según B portón cerrado}$
- (q) $g + 0.5 \cdot S_b + \text{Viento según B portón abierto}$
- (r) $g + 0.5 \cdot S_{nb} + \text{Viento según A}$
- (s) $g + 0.5 \cdot S_{nb} +$ Viento según B portón cerrado
- (t) $g + 0.5 \cdot S_{nb} + \text{Viento según B portón abierto}$