

fest une isomettie = f conserve les distances

Met N 2 pgs $(N \pm N)$

1, g 2 isometries

fog une isometrie.

, of sometrie (=) of une bijection.

1. tout pt M a smel une mique image

2). tout pt N admet un uni que autece dent

et une bij = fodré/une come/rei recitrosons.

The spans
$$f(A) = A$$

monalignes $f(B) = B$ $f = Id$
 $f(c) = C$

(2) fixe 2 pts
$$f(A) = A = f = Id$$

 $f(B) = B = f = X$
(AB)

(3)
$$f$$
 fixe 1 p $f(A) = A = f(A) = R$

$$(AB)$$

A fina pas de pos fixe.

 $f = T_{ij}$ or $f = \delta \gamma m$, glissonle $(\vec{x} \neq 0) = T_{ij} \circ S_{\Delta}$

r dir de A

· To = I1

· R(A,0) = Id

 $5 \left(\int_{-\infty}^{\infty} \left(A \right) - A \right)$

(or)

a)
$$g = \overline{I}$$
 o \overline{CI} = \overline{I} = \overline{CI} + \overline{AB}

$$=) 9 = \overline{1A} + \overline{AB} = \overline{1B}$$

b)
$$q = \frac{1}{AB} \circ S (AD)$$

Jemanoue (200pre)

Symet. otho S (fixe tons)

Symet. otho S (look) de D')

Sym glismute (pas de pt fixe

Si $\int \overline{\mu} \circ S_{\Delta}(A) = A \implies A \in \Delta'$ $+ \overline{\mu} \circ S_{\Delta}(B) = B \implies B \in \Delta'$

Timo So = S (AB)

$$= \sum_{(EF)} o \sum_{(AD)} o \sum_{(AD)}$$

7/

$$\overline{AB}(I) = \overline{I} \longrightarrow \overline{AB} = \overline{II} = \overline{0}$$

$$\overline{Imposo}$$

 $g \neq Id = g = S_{(BC)}$

$$\begin{cases} f \\ g = S_{H} \\ (AD) \end{cases} \circ S_{TG} = S_{H} = R_{(H,\Pi)}$$

ona
$$(AC) \cap (EF) = \{I\}$$

donc
$$g = \mathcal{R}(I, 2(I^{\dagger}, I^{\dagger}))$$

$$= \mathcal{Z}_{(\mathcal{I})} 2 \times \frac{311}{4}$$

$$= \mathcal{R}(I, \frac{3^{11}}{2})$$

$$\frac{3T}{2} = -\frac{T}{2} \left(2T \right)$$

$$= \mathcal{L}_{(I)} 2 \left(\overline{IF}, \overline{IC} \right)$$

$$= \mathcal{R}(\underline{I}) 2 \times -\underline{II}$$

$$= \mathcal{R}_{\left(\mathcal{I}_{j} - \frac{1}{2}\right)}$$

$$h) g = \sum_{(CD)} OR(c, -\frac{1}{2})$$

$$g = S$$
 CCD
 CCD
 CCD

$$g = S$$
 con g

$$(CD)\cap(CA)=\{C\}.$$

$$Jonc S_{CCD} \circ S_{CCA} = \mathcal{R}_{(C,2(\overline{CA}),\overline{CD})}$$

i)
$$g(A) = A$$
 g fixe deux pAs .
$$g(T) = T$$

$$\frac{1}{3} = \frac{1}{3} = \frac{3}{3} = \frac{3}$$

$$\begin{array}{cccc}
\times & & & & & & & & & \\
X & & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & & & & & & \\
X & & &$$

$$\frac{S^2}{\Lambda} = R(\Lambda, \Delta \pm 0)$$

$$\begin{array}{c}
g(B) = D \\
g(D) = B
\end{array}$$

$$= \boxed{D} \qquad = (B\overrightarrow{D}, \overrightarrow{DB}) (2T)$$

$$Q = R(A,T) = S_A$$

Comme
$$g(B) = D = A = B \times D$$

Absurde.

Jer

$$g(B) = D = \Delta = \text{med} \left[BD\right]$$

$$f$$
 $f = S$ (AC)

$$\begin{pmatrix} k \end{pmatrix} = \begin{pmatrix} Q & A \end{pmatrix} = \begin{pmatrix} Q & A$$

$$\cdot g + Td cor g(A) = C + A$$

Si
$$g = S$$
 $g(A) = C = \Delta = \text{med}[AC]$
 $g(B) = D = \Delta = \text{med}[BD]$

Maths

[Ac] // (BD) Impo

9 + SD

$$=) d = (AB)(D)(2T)$$

$$= TT(2T)$$

Lone 9 = Not (?, TI) = Symetre Centrole

Conne g (A) = C
$$\Longrightarrow$$
 $\Sigma = A \times C = I$
g (B) = D \Longrightarrow $\Sigma = B \times D = I$

$$g = T_{N} \circ S_{D} = S_{D} \circ T_{N}$$

$$g(A) = C$$

$$g(B) = D$$

$$g(A) = C \Rightarrow T = A \times C \in A \times e \Delta$$

$$g(B) = D \Rightarrow I = B * D \in A \times e D$$

Axe D forse I

