MGB 206: Decision Making and Management Science

Sanjay Saigal
ssaigal@ucdavis.edu
650 283 1985

- 1. Recalling Session 1
- 2. Example: Boat production
- 3. About Excel
- 4. Exercise: Banjul
- 5. Monte Carlo simulation
- 6. Central limit theorem

What We Discussed Last Time

Page 3

MGB 206

Formal Decision-Making

Choosing

 between possible alternatives
 based on preferences

But, but, but

- Do you {always, sometimes, ever} know
 - Your alternatives?
 - Your preferences?
- Can you choose meaningfully?

Example: Boat Production

- Production planning in a boat yard
 - Two types sailboats and motorboats
 - Different raw materials, different profits
 - Raw materials are limited
 - Otherwise, production can be unlimited
- We'll explore this "what if" problem in Excel

Page 5

MGB 206

- 1. Recalling Session 1
- 2. Example: Boat production
- 3. About Excel
- 4. Exercise: Banjul
- 5. Monte Carlo simulation
- 6. Central limit theorem

'What-if' Modeling In Excel

- Easy to set up and explore
- May provide "best possible" answer
- Best practices
 - Separate data & formulas (e.g., via sumproduct)
 - Test for correctness (=if(), auditing tools)
 - Maintain ability to scale (range names)

Excel As Analytic Workbench?

- Many disadvantages
 - Easy to mix data and formulas/logic
 - Documentation, validation and error checking are tedious
 - Dimensionally limited
 - Can't easily go beyond row and column
 - Performance slow for large models
- Killer advantage: It's everywhere!

Exercise: Medical Supplies

- Using micro-case description in handout, create spreadsheet for ops
 - Communicate financial requirements
 - Order supplies (in #packages)
 - Ensure distribution

Let's see

Page 9

MGB 206

April 3, '14

- 1. Recalling Session 1
- 2. Example: Boat prod
- 3. About Excel
- 4. Exercise: Banjul
- 5. Monte Carlo simulation
- 6. Central limit theorem

Page 10

MGB 206

About Uncertainty

- The past is not entirely known
 - Information is incomplete and/or dirty
- The future is essentially unknowable
 - Every forecast is wrong
- Yet, everyone operates under uncertainty
 - Some even prosper

Example: Estimating Profits

- New product to be introduced
- Profit forecast depends on
 - Quantity sold (uncertain)
 - Price per unit (uncertain)
 - Cost per unit (uncertain)
 - Fixed costs (estimated at \$30,000)
- Look at a simple P&L forecast

Page 12

MGB 206

Monte Carlo Simulation

- Technique to analyze systems where precise relationships are unknown or contain uncertainty
- Origins in Manhattan Project ('40s)
- Management use relatively recent ('70s)

Page 13

MGB 206

Monte Carlo Software

- Many simulation packages in the market
 - Analytica, Arena, @Risk, Crystal Ball,
 Modsim, Vanguard Systems, ...
- Risk Solver Platform fast & full-featured
 - Educational version is size limited, but enough for our purposes
 - The professional version is sufficient for most end-user applications

Page 14

MGB 206

Learnings

- Different from average case analysis
- Simple steps for Monte Carlo
 - 1. Model the uncertain variables
 - 2. Select outputs
 - 3. Change simulation options if necessary
- We get not just "expected" outcomes, but a range of possible outcomes
- Results may vary from run to run

- 1. Recalling Session 1
- 2. Example: Boat prod
- 3. About Excel
- 4. Exercise: Banjul
- 5. Monte Carlo simulation
- 6. Central limit theorem

Page 16

MGB 206

Randomness

- An uncertain number (or random variable) is a number whose exact quantity is uncertain
 - Continuous or discrete

Page 17

MGB 206

Exercise: Test Your Intuition

- Multiply <u>spinner</u> result by \$1,000,000 to get company profit forecast. If profit is less than \$200,000, you are fired!
- Write down on paper
 - a) What's the average company profit?
 - b) What's the chance you'll be laid off?
 - c) Create a bar graph showing percentage of time the profit (in millions) will fall between 0 and 0.2, 0.2 and 0.4, etc.

Page 18 MGB 206 July 12, '14

Exercise: Simulate To Check

- Simulate the company profit in Excel
 - Model uncertainty
 - Tie uncertainty to a result (output)
 - Analyze the result
- Compare against your previous answer on paper

Page 19

MGB 206

Exercise: Double Down!

- Company's profit is now the average of two spins multiplied by one million
- First on paper, then in Excel, describe:
 - a) Average company profit
 - b) Chance you'll be laid off
 - c) Histogram showing percentage of time the profit (in millions) will fall between 0 and 0.2, 0.2 and 0.4, etc.

Central Limit Theorem

- 1. Recalling Session 1
- 2. Example: Boat prod
- 3. About Excel
- 4. Exercise: Banjul
- 5. Monte Carlo simulation
- 6. Central limit theorem