

多元统计与矩阵分析

张锋 8125345@qq.com 中国地质大学, 计算机学院, 武汉

第10章 逻辑回归模型

内容

- (1)基本思想
- (2)逻辑回归的数学模型
- (3)逻辑回归模型的参数估计
- (4)逻辑回归模型的模型检验

基本思想

- 一种广义线性模型
- 实质是一种分类模型
- 响应变量的取值范围仅为1和0,代表响应 变量的两种情况发生和不发生

线性回归 + logistic function = logistic回归

基本思想

• 一般线性回归模型的形式为:

$$y = \alpha + \beta x$$

- 自变量x的取值范围为($-\infty$, + ∞),响应变量y的取值范围也为($-\infty$, + ∞)。
- 但是逻辑回归中,响应变量y的取值范围仅为0和1两种情况,而自变量x的取值范围仍为 $(-\infty, +\infty)$

SEDA

基本思想

- 有两类样本"是"和"否",分别 用图中的蓝点和黄点表示。 x_1 和 x_2 分别为两个变量。
- 目标是:利用已知分类结果的样本信息,寻找两类结果的判断规则, 尽量将样品分开;并利用这一规则, 对分类结果未知的样品进行判断

- 决策边界(Decision Bound): $\theta_0 + \theta_1 x_1 + \theta_2 x_2$
- 推广到高维空间,决策边界为一个分类超平面(Hyperplane):

$$\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

基本思想

以信用卡评分为例,我们可选择用户的年龄、性别、收入水平等作为自变量,因变量则可定义为是否有过逾期行为。

内容

- (1)基本思想
- (2)逻辑回归的数学模型
- (3)逻辑回归模型的参数估计
- (4)逻辑回归模型的模型检验

逻辑回归实质是分类模型

- Logistic Regression 虽然被称为回归,但其实际上是分类模型,并常用于二分类。Logistic Regression 因其简单、可并行化、可解释强深受工业界喜爱。
- Logistic 回归的本质是:假设数据服从这个分布,然后使用极大似然估计做参数的估计。

逻辑回归实质是分类模型

· 逻辑回归的决策边界为一个分类超平面(Hyperplane):

$$\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

• "分类"是应用逻辑回归的目的和结果,但中间过程依旧是"回归"。

逻辑回归实质是分类模型

• 逻辑回归函数(Sigmod)函数

$$f(y) = \frac{1}{1 + e^{-y}}$$

- 定义: $\ln \frac{p}{1-p} = \alpha + \beta x$
- 因此可得逻辑回归的数学形式为:

$$p = \frac{1}{1 + e^{-(\alpha + \beta x)}}$$

Logit变换与Logistic回归

· 优势(Odds)

$$odds = \frac{p}{1 - p}$$

• logit变换

$$\ln(odds) = \ln\frac{p}{1-p}$$

• logit模型

$$\ln(odds) = \ln\frac{p}{1-p} = \alpha + \beta x$$

模型解释

图 10-2 $\beta > 0$ 时的一元 Logistic 回归曲线示意

图 10-3 $\beta < 0$ 时的一元 Logistic 回归曲线示意

内容

- (1)基本思想
- (2)逻辑回归的数学模型
- (3)逻辑回归模型的参数估计
- (4)逻辑回归模型的模型检验

Logistic回归的参数估计

逻辑回归的似然函数为:

$$L(\beta) = \prod_{i=1}^{n} P(y = 1 | x_i; \beta)^{y_i} [1 - P(y = 1 | x_i; \beta)]^{1 - y_i}$$

$$= \prod_{i=1}^{n} \left(\frac{1}{1 + e^{-(\alpha + \beta x_i)}} \right)^{y_i} \left(1 - \frac{1}{1 + e^{-(\alpha + \beta x_i)}} \right)^{1 - y_i}$$

对数似然函数为:

$$\ln L(\beta) = \sum_{i=1}^{n} \left\{ y_i \times \ln \frac{1}{1 + e^{-(\alpha + \beta x_i)}} + \left[\left(1 - y_i \right) \times \ln \left(1 - \frac{1}{1 + e^{-(\alpha + \beta x_i)}} \right) \right] \right\}$$

$$= \sum_{i=1}^{n} \left[y_i (\alpha + \beta x_i) - \ln \left(1 + e^{\alpha + \beta x_i} \right) \right]$$
www.cug.edu.cn

关于参数β的偏导,可得到似然方程:

$$\frac{\partial \ln L(\beta)}{\partial (\beta)} = \sum_{i=1}^{n} \left(y_i x_i - \frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}} x_i \right) = 0$$

解得:

$$y_i = \frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}}$$

陷入循环求解的过程

$$p = \frac{1}{1 + e^{-(\alpha + \beta x)}}$$

如何求解? 最小二乘估计可行吗?

Logistic回归的参数估计

解决这一问题的思路是,通过求解 $-\ln L(\theta)$ 的极小值来进行估计,即设定变换函数 $J(\theta)$,有:

$$J(\beta) = -\ln L(\beta)$$

$$= -\sum_{i=1}^{n} \left\{ y_i \times \ln \frac{1}{1 + e^{-(\alpha + \beta x_i)}} + \left[\left(1 - y_i \right) \times \ln \left(1 - \frac{1}{1 + e^{e^{-(\alpha + \beta x_i)}}} \right) \right] \right\}$$

凸优化中的**梯度下降法、牛顿法、拟牛顿法**均可以求解!

梯度下降法

- 通过求解目标函数f(x)在某取值处的一阶偏导数,从而确定在特定的位置,如 (x_0, y_0, \dots, z_0) 处的梯度;
- 由于 f(x)在该点的梯度方向是函数值增长最快的方向,所以其反方向则是函数值下降最快的方向

$$\beta_{k+1} = \beta_k - a\nabla J(\beta)$$

 β_{k+1} 、 β_k 为分别为参数 θ 在k+1、k时刻的取值; a为梯

度下降的迭代过程的步长; VJ(β)为梯度的方向,

 $-VJ(\beta)$ 为梯度的反方向。

著名的下山问题:

若目标函数为凸函数,则 凸函数的性质可知,**局部 最优为全局最优**

www.cug.edu.cn

以函数 $f(x) = x^2$ 为例,其梯度为 f'(x) = 2x ,初始化时,我们令起点 $x_0 = 1$,步长 $\alpha = 0.4$,根据梯度下降的公式可得:

$$x_{0} = 1$$

$$x_{1} = x_{0} - \alpha f'(x_{0})$$

$$= 1 - 0.4 * 2$$

$$= 0.2$$

$$x_{2} = x_{1} - \alpha f'(x_{1})$$

$$= 0.04$$

$$x_{3} = 0.008$$

$$x_{4} = 0.0016$$

可知第三次和第四次迭代得到的估计值比较接近,故经过四次运算,我们近似可以得到x的值了。

$$\nabla J(\beta) = -\sum_{i=1}^{n} \left(y_i x_i - \frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}} x_i \right)$$

其参数的梯度下降法表示为:

$$\beta_{k+1} = \beta_k - a \left[-\sum_{i=1}^n \left(y_i x_i - \frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}} x_i \right) \right]$$

$$= \beta_k - a \left[\sum_{i=1}^n \left(\frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}} x_i - y_i x_i \right) \right]$$

不断迭代,当两次迭代的结果比较接近时,即可求得逻辑回归参数的近似解

那么,逻辑回归的梯度则可表示为:

$$\nabla J(\beta) = -\sum_{i=1}^{n} \left(y_i x_i - \frac{e^{\beta x_i}}{1 + e^{\beta x_i}} x_i \right)$$

其参数的梯度下降法表示为:

$$\boldsymbol{\beta}_{k+1} = \boldsymbol{\beta}_k - a \left[-\sum_{i=1}^n \left(y_i \boldsymbol{x}_i - \frac{e^{\boldsymbol{\beta}_i \boldsymbol{x}_i}}{1 + e^{\boldsymbol{\beta} \boldsymbol{x}_i}} \boldsymbol{x}_i \right) \right]$$
$$= \boldsymbol{\beta}_k - a \left[\sum_{i=1}^n \left(\frac{e^{\boldsymbol{\beta} \boldsymbol{x}_i}}{1 + e^{\boldsymbol{\beta} \boldsymbol{x}_i}} \boldsymbol{x}_i - y_i \boldsymbol{x}_i \right) \right]$$

不断迭代,当两次迭代的结果比较接近时,即可求得逻辑回归参数的近似解

然而这样求得的最优值有可能仅为"局部最优",当目标函数为凸函数时,根据图函数的性质可以知道局部最优必为全局最优。因此,求得目标函数 $J(\theta)$ 的二阶偏导数为:

$$\frac{\partial^2 J(\beta)}{\partial \beta^2} = -\sum_{i=1}^n \left[-\frac{e^{\alpha + \beta x_i}}{(1 + e^{\alpha + \beta x_i})^2} x_i \right] = \sum_{i=1}^n \left[\frac{e^{\alpha + \beta x_i}}{(1 + e^{\alpha + \beta x_i})^2} x_i \right]$$

由于
$$x_i^2 \ge 0$$
, $e^{\alpha + \beta x_i} \ge 0$, $\left(1 + e^{\alpha + \beta x_i}\right)^2 \ge 0$,故 $\frac{\partial^2 J(\theta)}{\partial \theta^2} \ge 0$

根据凸函数的充要条件可知, $J(\theta)$ 为凸函数,故局部最优点必为全局最优点,从而可知,所求的参数估计值即为我们所求的参数估计值。

通过函数图形,我们非常直观的就能看到,如果一个函数 是凸函数的话,其局部最小值就是全局最小值。

内容

- (1)基本思想
- (2)逻辑回归的数学模型
- (3)逻辑回归模型的参数估计
- (4)逻辑回归模型的模型检验

逻辑回归模型中的检验

- 对回归系数的显著性检验
 - Wald检验(Wald Test)
 - 似然比检验(Likelihood Ratio Test, LRT)
 - 比分检验(Score Test)等
- 对模型拟合效果的检验
 - 拟合优度检验(Test Of Goodness of Fit)
 - 残差检验(Residuals Test)等
 - 检验分类模型的相关指标:
 - 混淆矩阵(Confusion Matrix),
 - 准确率(Accuracy Rate)
 - AUC等指标。

回归系数的检验

- 给定模型 $\log it(p) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$,现需要验证参数 θ_2 是否显著,
 - Wald检验(Wald Test)
 - 似然比检验(Likelihood Ratio Test, LRT)
 - 比分检验(Score Test)
- 记无约束模型 (Full Model) 为:

$$- \log it(p) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

• 记约束模型 (Reduced Model) 为:

$$-\log it(p) = \theta_0 + \theta_1 x_1$$

- 则参数 θ_2 是否显著对应假设检验为:
 - $H_0: \theta_2 = 0$
 - $H_1: \theta_2 \neq 0$

Wald检验

· Wald检验的原理是通过构造无约束估计量与检验值之差的函数,并采用估计标准误差进行归一化处理,验证参数是否具有统计显著性。 Wald统计量可表示为

$$W_{\beta_j} = \left(\frac{\hat{\beta}_j - \beta_j^0}{SE(\hat{\beta}_j)}\right)^2$$

• $\hat{\beta}_{j}$ 、 β_{j}^{0} 分别表示参数 β_{j} 的估计值(也即无约束模型中参数 θ_{2} 的估计值)和检验值(此处为 0); $SE(\hat{\beta}_{j})$ 为 β_{j} 的估计标准误差。统计量W服从自由度为n的卡方分布,即 $W \sim \chi^{2}(n)$

Wald检验的不足

- 当变量的回归系数的绝对值很大时,其估 计标准误差有可能膨胀,从而导致统计值 变小,提高了犯第二类错误的概率;
- 在样本量较小的情形下,估计标准误差将会直接影响检验结论。
- 如果存在以上两种情况,则Wald检验法的适用性受到一定的影响。

Score检验

• Score检验原理是在约束模型中构造关于待检验参数 β_j 的得分函数(score function),也即一阶偏导数;由最大似然估计的性质可知,在最大似然估计值处,得分函数为0。若在待检验参数 β_j 处的得分函数显著不为0,则有理由认为原假设不成立。Score统计量的计算公式为

$$Score = \frac{\left[u(\beta_j)\right]^2}{I(\beta_j)}$$

- β_j 为待检验参数, $u(\beta_j)$ 为约束模型对数似然函数在待检验参数 β_j 处的一阶偏导数; $I(\beta_j)$ 为对应的Fisher信息 ($Fisher\ Information$)。
- 在大样本情况下, score统计量近似服从正态分布。

Score检验

费舍尔信息的计算公式:

$$I(\beta) = -E_{\theta}[l''(x|\beta)]$$

则参数 β_2 是否显著对应假设检验为:

$$H_0: \beta_2 = 0$$

约束模型(Reduced Model)为:

$$H_1: \beta_2 \neq 0$$

 $\log it(p) = \beta_0 + \beta_1 x_1$

在本例中,对应的score统计量为:

$$Score = \frac{[u(\beta_2)]^2}{I(\beta_2)}$$

将Score统计量与正态分布对应的临界值比较,即可判断原假设是否成立,从而可知变量是否显著。

似然比检验

• 参数 β_i 是否显著对应假设检验为

$$H_0: \beta_j = 0$$

$$H_1: \beta_j \neq 0$$

• 似然比检验的统计量为

$$LR = -2\log \frac{l(\beta_j|H_0)}{l(\beta_i|H_1)} \sim \chi^2(n)$$

 $-l(\beta_{j}|H_{0})$ 、 $l(\beta_{j}|H_{1})$ 分别表示约束模型、无约束模型所对应的极大似然函数值,n为自由度。

三种检验的对比

- 相同之处
 - 这三种方法都是在对数似然函数的基础上展开的。
- 不同之处
 - Wald检验只需要构造无约束模型
 - Score检验只需要构造约束模型
 - 似然比检验则需要构造无约束模型和约束模型

模型拟合效果检验

- 在构建好模型后,我们需要对模型整体进行检验,需要检验模型的拟合能力,或者 说对于正负样本的区分度。
- 常用的方法
 - 皮尔逊卡方拟合优度检验
 - 混淆矩阵
 - ROC曲线
 - KS值。

皮尔逊卡方拟合优度检验

• 利用样品i的观测值 y_i ,可以得到该样品的皮尔逊残差 (Pearson residuals),有:

$$\gamma_i = \frac{y_i - E(y_i|x)}{\sqrt{\text{var}(y_i|x)}} = \frac{y_i - \hat{y}_i}{\sqrt{\hat{y}_i(1 - \hat{y}_i)}} \qquad \hat{y}_i = \frac{1}{1 + e^{-(\alpha + \beta x_i)}}$$

• 构造皮尔逊卡方拟合优度统计量:

$$\chi^2 = \sum_{i=1}^n \gamma_i^2$$

 $-\chi^2$ 统计量服从自由度为n-2的卡方分布。对于多元逻辑回归模型则有自由度n-(k+1),其中,k为解释变量的个数。

混淆矩阵

真实结果	预测结果	
	发生	不发生
发生	TP	FN
不发生	FP	TN

- TP (True Positive)表示"实际情况为发生,预测结果也为发生"的样品数量;
- TN (True Negative)表示"实际情况为不发生,预测结果也为不发生"的样品数量;
- 以上两类均表示实际情况与预测结果相符。
- FN (False Negative)
- FP(False Positive)表示实际情况与预测结果不相符的样品数量。

CHINA THE RESTAURANT THE PROPERTY OF THE PROPE

混淆矩阵

- 准确率衡量了正确分类的样品数与样品总数之比 $Accu = \frac{TP+TN}{TP+FP+TN+FN}$
- 错误率: $Error = 1 Accu = \frac{FN + FP}{TP + FP + TN + FN}$
- 精确率表示在预测为"发生"的样品中,有多大比例的样品实际分类就是"发生"的,即: $Precision = \frac{TP}{TP+FP}$
- 真正率(召回率、灵敏度)表示在实际分类为"发生"的样品中有多大比例的样本被预测为"发生", $TPR = \frac{TP}{TP+FN}$
- 真负率(特异度)表示实际分类为"不发生"的样品中,有多大比例的样本被预测为"不发生", $TNR = \frac{TN}{FP+TN}$
- 假正率表示实际分类为"不发生"的样品中,有多大比例的样本被预测为"发生", $FPR = \frac{FP}{FP+TN}$ www.cug.edu.cn

ROC曲线

- 以TPR为纵坐标,FPR为横坐标,构建一个二维直角坐标系,并在该坐标系中画出点 P_i 的位置,连成线之后,就得到了ROC曲线 (Receiver Operating Characteristic Curve)。
- ROC曲线与横坐标轴围成的面积称为 AUC(Area Under Curve of ROC)值,衡量了分类模型的好坏,AUC值越大,则说明分类模型效果越好;反之,不好。

ROC曲线

例如,下表给出了20个样本的实际类别以及预测为正类的概率, 并将其按照概率进行降序排列:

编号	实际类别	概率	编号	实际类别	概率
1	р	0.9	11	р	0.4
2	р	0.8	12	n	0.39
3	n	0.7	13	р	0.38
4	р	0.6	14	n	0.37
5	р	0.55	15	n	0.36
6	р	0.54	16	n	0.35
7	n	0.53	17	р	0.34
8	n	0.52	18	n	0.33
9	р	0.51	19	р	0.30
10	n	0.505	20	n	0.1

然后依次取不同的概率值为阈值,如先取0.9为阈值,大于等于0.9的记为正样本,小于0.9的负样本,于是便可得到对应的混淆矩阵为:

	预测值			
实际值	正例	负例		
正例	1	9		
负例	0	10		

故TPR=1/10, 1-TNR=1-10/10,则我们可以得到第一个点的坐标(0, 0.1);同理,再依次取0.8,0.7,...,0.1为阈值,同样也能得到对应的坐标,然后将这些点连起来,便得到了如下的ROC曲线:

AUC为0.68

AUC取值范围	模型效果
=0.5	完全无效果
(0.5,0.6]	模型效果 较低
(0.6,0.75]	模型效果中等
(0.75,0.9]	模型效果 较高
(0.9,1]	模型效果极高

一个区分能力较好的 分类模型,对应的 ROC曲线应该是这样 子,或者更靠近左上 角

KS值

- 来源于Kolmogorov-Smirnov检验,基于累计分布函数
- 用以检验一个经验分布是否符合某种理论分布或者比较两个 经验分布是否有显著性差异。
- 在逻辑回归中,取正样本和负样本两个分布的累计分布函数 做差值的绝对值运算,然后取其中最大的值作为KS值。
- · 给定KS值的参照表,我们便可对模型的拟合效果做出评价。

KS值	模型的对正负样本的区分度
<=0.2	无
(0.2,0.4]	低
(0.4,0.5]	中
(0.5,0.6]	高
(0.6,0.75]	极高
>0.75	太高了,模型可能有误

还是以上面20个样本的例子为例,将20个正负样本根据模型预测为正样本的概率,将其从高到低排序,并将其按照指定的分组进行计数,便可得:

预测概率区间	实际为正样本的样本量	实际为负样本的样本量
(0.9,1]	0	0
(0.8,0.9]	1	0
(0.7,0.8]	1	0
(0.6,0.7]	0	1
(0.5,0.6]	4	3
(0.4,0.5]	0	0
(0.3,0.4]	3	5
(0.2,0.3]	1	0
(0.1,0.2]	0	0
(0,0.1]	0	1
合计	10	10

据此我们可以每个预测概率区间中,实际正样本累积量占实际正样本总量的比率(positive%),以及实际负样本累积量占实际负样本总量的比率(negative%):

预测概率区间	实际为正样本的 样本累计量	positive%	实际为负样本的 累计样本量	negative%	positive%- negative%
(0.9,1]	0	0%	0	0%	0%
(0.8,0.9]	1	10%	0	0%	10%
(0.7,0.8]	2	20%	0	0%	20%
(0.6,0.7]	2	20%	1	10%	10%
(0.5,0.6]	6	60%	4	40%	20%
(0.4,0.5]	6	60%	4	40%	20%
(0.3,0.4]	9	90%	9	90%	0%
(0.2,0.3]	10	100%	9	90%	10%
(0.1,0.2]	10	100%	9	90%	10%
(0,0.1]	10	100%	10	100%	0%

由表可得,该例子的KS值为0.2,说明该例子中的模型没有区分度。将positive%与negative%绘制成图可得KS曲线图,即:

python例题

本次例题是使用波士顿房价数据集做线性回归,这是一个非常经典的数据集,原始数据有14个变量的506个观察值,其中,medv(自住房屋房价中位数,单位:千美元)是原始的目标变量,其他变量包括: crim (城镇的人均犯罪率)、zn (占地面积超过25000平方英尺的住宅用地的比例)、indus (每个镇的非零售业务比例,单位:英亩)、chas (有关查尔斯河的虚拟变量,如果挨着河为1,否则为0).....等。

crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	ь	lstat	medv
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
0.02731	0	7.07	0	0.469	6. 421	78.9	4. 9671	2	242	17.8	396.9	9.14	21.6
0.02729	0	7.07	0	0.469	7.185	61.1	4. 9671	2	242	17.8	392.83	4.03	34.7
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54. 2	6.0622	3	222	18.7	396.9	5.33	36.2
0.02985	0	2.18	0	0.458	6.43	58.7	6.0622	3	222	18.7	394.12	5. 21	28.7
0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9
0.14455	12.5	7.87	0	0.524	6.172	96.1	5. 9505	5	311	15.2	396.9	19.15	27.1
0.21124	12.5	7.87	0	0.524	5.631	100	6.0821	5	311	15.2	386.63	29.93	16.5
0 17004	12.5	7 87	n	0.524	6 004	85.9	6 5921	5	311	15.2	386 71	17 1	18 9

python代码:


```
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import scipy.stats as stats
import pandas as pd
w=pd.read_csv('BostonHousing2.csv')
wn0=w.columns
wn=wn0[5:]#不选前面不参与建模的5个变量
print(wn)
f=plt.figure(figsize=(16,8))
k=0
for i in range(len(wn)):
  for j in range(len(wn)):
    k=k+1
    if i!=j:
      f.add_subplot(len(wn),len(wn),k)
      plt.scatter(w[wn[i]],w[wn[j]])
    else:
      f.add_subplot(len(wn),len(wn),k)
      plt.scatter([0,1],[0,1])
      plt.text(.5,.5,wn[i],\
      ha='center',va='center',size=10)#打印变量名字
```

```
#确定自变量和因变量,并使用模块statsmodels.api,用最小二乘法回归拟合数据
y=np.array(w[wn[0]])[:,np.newaxis]#转成列向量
X=np.array(w[wn[1:]])
import statsmodels.api as sm
mod = sm.OLS(y,X)
res=mod.fit()
print(res.summary())
#下面用另一个模块(sklearn)做上述回归(不用截距项(,并画出残差对拟合值图
和残差的Q-Q图
from sklearn import linear model
regr =linear_model.LinearRegression(fit_intercept=False)#不做常数项
regr.fit(X,y)
print(regr.coef_)#输出估计的系数
#yhat=X.dot(regr.coef_.reshape(10,1) #直接计算拟合值
#resid =y -yhat #直接计算残差
res=y-regr.predict(X)
import pylab
res.shape=res.shape[0]#样本量
f=plt.figure(figsize=(12,5))
f.add_subplot(121)
#画残差对拟合值图
```


Dep. Variable:	у	R-squared (uncentered):	0.991
Model:	0LS	Adj. R-squared (uncentered):	0.991
Method:	Least Squares	F-statistic:	6898.
Date:	Sun, 19 Dec 2021	Prob (F-statistic):	0.00
Time:	11:18:24	Log-Likelihood:	-457.85

506 AIC:

Df Residuals: 498 BIC: Df Model: 8

No. Observations:

Covariance Type: nonrobust

=======	:==========	========	=======	=========		
	coef	std err	t	P> t	[0.025	0.975]
x1	0.0107	0.002	7.095	0.000	0.008	0.014
x2	0.1627	0.018	8.928	0.000	0.127	0.198
х3	-0.0205	0.007	-2.784	0.006	-0.035	-0.006
χ4	0.0016	0.000	4.028	0.000	0.001	0.002
x5	0.1384	0.011	12.819	0.000	0.117	0.160
x6	-9.18e-05	0.000	-0.276	0.783	-0.001	0.001
х7	0.0007	0.006	0.114	0.909	-0.011	0.013
x8	0.0856	0.004	23.422	0.000	0.078	0.093
Omnibus:		206.0	30 Durb	in-Watson:		0.875
Prob(Omn	nibus):	0.0	00 Jarq	ue-Bera (JB):		1636.809
Skew:		-1.5	68 Prob	(JB):		0.00
Kurtosis	s:	11.2	34 Cond	. No.		402.

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- - 1.38438893e-01 -9.17966904e-05 7.06264737e-04 8.56119312e-02]]

Process finished with exit code 0

931.7

965.5

波士顿房价数据的成对散点图

波士顿房价数据的残差对拟合值图和残差的Q-Q图