Homework 2 Due: Friday, February 3

1. This is another way to derive the Cauchy-Riemann equations Suppose $S \subset \mathbb{C}$ is a domain, and that $f: S \to \mathbb{C}$ is a function with a (complex) derivative at $z_0 \in S$.

As usual, let z = x + iy, and write f(x + iy) = u(x,y) + iv(x,y), where u,v are \mathbb{R} -valued functions.

(a) By computing $f'(z_0)$ along the trajectory $x_0 + \Delta x + iy_0$, where $\Delta x \to 0$, show that

$$f'(z_0) = (\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x})|_{z_0}.$$

We will often write this as $f'(z) = \frac{\partial}{\partial x} f(z) = \partial_x f(z)$.

(b) By computing $f'(z_0)$ along the trajectory $x_0 + i(y_0 + \Delta y)$ as $\Delta y \to 0$, show that

$$f'(z) = \frac{1}{i}(\frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}).$$

- (c) Deduce the Cauchy-Riemann equations.
- 2. [SS]1.13. (HINT: Let f = u + iv; in each case, write the function in question in terms of u and v.)
- 3. [SS]1.19(a),(b).
- 4. [SS]1.19(c). (HINT: You may use the result of [SS]1.14. If $z \neq 1$, what is $\sum_{n=1}^{N} z^n$?)
- 5. Don't start this until after class on Monday, January 30. For $\alpha \in \mathbb{C}$ and r > 0, let $\gamma_r(\alpha)$ be the arc given by

$$[0,2\pi]$$
 \xrightarrow{z} \mathbb{C}

$$t \longmapsto r \exp(it) + \alpha.$$

Let n be an integer. Calculate

$$\int_{\gamma_1(0)} z^n \, dz.$$