Homework DM Functions

March 2016

1

Let $X=\{1,2,3,4\}$ and $Y=\{a,b,c,d,e\}$. Define $g:X\to Y$ as follows: $g(1)=a,\,g(2)=a,\,g(3)=a,\,g(4)=d$

- 1. Draw an arrow diagram for g.
- 2. Let $A = \{2,3\}, C = \{a\}, D = \{b,c\}$. Find $g(A), g(X), g^{-1}(C), g^{-1}(D), g^{-1}(Y)$

2

Let X and Y be any sets, $A \subset X$, $B \subset X$, $C \subset Y$, $D \subset Y$. Is the following formula:

- 1. $F(A \cap B) \subseteq F(A) \cap F(B)$
- 2. $F(F^{-1}(C)) \subseteq C$

true for all functions F from X to Y? Justify your answer.

3

Prove that if p is a prime number and n is an integer, $n \ge 1$, then $\phi(p^n) = p^n - p^{n-1}$ where ϕ is an Euler phi function.

4

Define $F:Z^+\times Z^+\to Z^+$ and $G:Z^+\times Z^+\to Z^+$ as follows: For all $(n,m)\in Z^+\times Z^+$

$$F(n,m) = 3^n 5^m$$
 $G(n,m) = 3^n 6^m$

- 1. Prove or disprove that F and G are one-to-one functions.
- 2. Prove or disprove that F and G are onto functions.

5

Suppose $f:X\to Y$ and $g:Y\to Z$ are both one-to-one and onto. Prove that $(f\circ g)^{-1}$ exists and that $(f\circ g)^{-1}=f^{-1}\circ g^{-1}$.

6

Suppose $F: X \to Y$ is one-to-one.

- 1. Prove that $\forall A \subseteq X$, $F^{-1}(F(A)) = A$
- 2. Prove that $\forall A_1 \subseteq X, \forall A_2 \subseteq X, \quad F(A_1 \cap A_2) = F(A_1) \cap F(A_2)$

7

Given $(a)_x \in Z$ (x is a base of number a), provide a function $F(a_1, a_2, ...)$, where a_i - is the i - th digit of a number a, such that:

if $F(a_1, a_2, ...) \mod n = 0$ then $a \mod n = 0$

- 1. n = 9, x = 10
- 2. n = 11, x = 10
- 3. n = 101, x = 100

8

A factorial $n!, n \in \mathbb{Z}$ can be decomposed into its canonical form:

$$n! = p_1^{a_1} \cdot p_2^{a_2} \cdot p_3^{a_3} \cdot \dots \cdot m_i^{a_i} \cdot \dots$$

where p_i , m are prime numbers and m < n. For example:

$$20! = 2^{18} \cdot 3^8 \cdot 5^4 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19$$

Your task is to write a script with a function F(n, m) that calculates a_i , which is a power of a prime factor m. It should work fast and with relatively big numbers (for example n = 1000, so you should count the a_i value in 1000!).