Section 3.3 Exercise 19

Sol.

Let $f, g: D \to \mathbb{R}$ be uniformly continuous.

Let us prove that $f + g : D \to \mathbb{R}$ is also uniformly continuous. Let $\epsilon > 0$. Since $f : D \to \mathbb{R}$ is uniformly continuous, there exists $\delta_1 > 0$ such that for all $x, y \in D$ with $|x - y| < \delta_1$, we have $|f(x) - f(y)| < \epsilon/2$. Similarly, there exists $\delta_2 > 0$ such that for all $x, y \in D$ with $|x - y| < \delta_1$, we have $|g(x) - g(y)| < \epsilon/2$.

Let $\delta := \min(\delta_1, \delta_2) > 0$. Then for all $x, y \in D$ with $|x - y| < \delta$, we have

$$\begin{aligned} |(f+g)(x) - (f+g)(y)| &= |f(x) - f(y) + g(x) - g(y)| \\ &\leq |f(x) - f(y)| + |g(x) - g(y)| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \end{aligned}$$

as required.

It is not true in general that the product fg is uniformly continuous as well. Indeed, the function f(x) = x is uniformly continuous on \mathbb{R} , but $f \cdot f$ is not.

Section 3.3 Exercise 20

Sol.

Let $f:A\to B$ and $g:B\to C$ be uniformly continuous. We show that $g\circ f:A\to C$ is also uniformly continuous.

Let $\epsilon>0$. Since $g:B\to C$ is uniformly continuous, there exists $\delta_1>0$ such that for all $w,z\in B$ with $|w-z|<\delta_1$, we have $|g(w)-g(z)|<\epsilon$. Since $f:A\to B$ is uniformly continuous, there exists $\delta>0$ such that for all $x,y\in A$ with $|x-y|<\delta$, we have $|f(x)-f(y)|<\delta_1$.

It follows that for all $x, y \in A$ with $|x - y| < \delta$, we have that z = f(x) and w = f(y) satisfy $|z - w| < \delta_1$, hence

$$|g(f(x)) - g(f(y))| = |g(z) - g(w)| < \epsilon,$$

as required.

Section 3.3 Exercise 21

Sol.

Let $f: [3.4, 5] \to \mathbb{R}$ defined by

$$f(x) = \frac{2}{x-3}$$
 $(x \in [3.4, 5]).$

Note that for all $x, y \in [3.4, 5]$, we have

$$|f(x) - f(y)| = \left| \frac{2}{x-3} - \frac{2}{y-3} \right| = 2 \frac{|x-y|}{|x-3||y-3|} < 2 \frac{|x-y|}{0.2^2},$$

since $|x-3|=x-3\geq 3.4-3=0.4>0.2$, and similarly for |y-3|. Now, let $\epsilon>0$. Take $\delta:=\frac{0.2^2}{2}\epsilon$. Then for all $x,y\in[3.4,5]$ with $|x-y|<\delta$, we have

$$|f(x) - f(y)| < 2\frac{\delta}{0.2^2} = \epsilon,$$

as required.

Section 3.3 Exercise 22

Sol.

Let $f:(2,7)\to\mathbb{R}$ defined by

$$f(x) = x^3 - x + 1$$
 $(x \in (2,7)).$

Note that for all $x, y \in (2,7)$, we have

$$|f(x)-f(y)| = |x^3-y^3-x+y| = |(x-y)(x^2+xy+y^2)-(x-y)| = |x-y||x^2+xy+y^2-1|.$$

Using the triangle inequality and the fact that $x, y \in (2,7)$, we get

$$|f(x) - f(y)| \le |x - y|(7^2 + 7(7) + 7^2 + 1) = 148|x - y|.$$

It easily follows from this that f is uniformly continuous on (2,7), as in the previous exercise.

Section 3.3 Exercise 31

Sol.

Let $f, g : [a, b] \to \mathbb{R}$ be continuous, and let $T := \{x \in [a, b] : f(x) = g(x)\}$. We have to show that T is closed.

Let x_0 be an accumulation point of T. By Theorem 1.17, there is a sequence (x_n) of elements of T, each distinct from x_0 , such that (x_n) converges to x_0 . Then $f(x_n) = g(x_n)$ for all n, since each x_n belongs to T. Also, since f and g are both continuous at x_0 , we have that $f(x_n) \to f(x_0)$ and $g(x_n) \to g(x_0)$. Hence $f(x_0) = g(x_0)$ and $x_0 \in T$.

This shows that every accumulation point of T belongs to T, so that T is closed, as required.

Section 3.3 Exercise 37

Sol.

Let $f:[a,b] \to \mathbb{R}$ be a function, and suppose that f has a limit at each $x \in [a,b]$. We have to show that f is bounded.

For each $x \in [a, b]$, we have that f has a limit at x, so that f is bounded in a neighborhood of x, by Theorem 2.3. Hence there exists a real number M_x and an interval I_x containing x such that $|f(y)| \leq M_x$ for all $y \in I_x$. Now, the collection of open intervals $\{I_x\}_{x \in [a,b]}$ is an open cover of [a,b]. Since [a,b] is compact, there exists a finite subcover. In other words, there exist $x_1, \ldots, x_n \in [a,b]$ such that

$$[a,b] \subset I_{x_1} \cup I_{x_2} \cup \cdots \cup I_{x_n}$$
.

Now, let M be larger than all the numbers $M_{x_1}, M_{x_2}, \ldots, M_{x_n}$. If $y \in [a, b]$, then y belongs to I_{x_i} for some i, hence $|f(y)| \leq M_i \leq M$. This shows that $|f(y)| \leq M$ for all $y \in [a, b]$, thus f is bounded, as required.

Section 3.3 Exercise 39

Sol.

Let $f: \mathbb{R} \to \mathbb{R}$ be continuous with the property that for each $\epsilon > 0$, there exists M > 0 such that if $|x| \geq M$, then $|f(x)| < \epsilon$. We have to show that f is uniformly continuous.

Let $\epsilon > 0$. By the assumption of the problem, there exists M > 0 such that for all x with $|x| \ge M$, we have $|f(x)| < \epsilon/3$.

Now, the interval [-M, M] is compact, so by a theorem from the last lecture notes, we have that f is uniformly continuous on [-M, M]. Hence there exists $\delta > 0$ such that for all $x, y \in [-M, M]$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \epsilon/3$.

We now claim that for all $x, y \in \mathbb{R}$ with $|x-y| < \delta$, we have $|f(x)-f(y)| < \epsilon$, which implies uniform continuity. Indeed, let $x, y \in \mathbb{R}$ with $|x-y| < \delta$. If both x, y belong to the interval [-M, M], then we have

$$|f(x) - f(y)| < \frac{\epsilon}{3} < \epsilon.$$

On the other hand, if neither x or y belong to [-M, M], then we have $|x| \ge M$ and $|y| \ge M$, so that

$$|f(x) - f(y)| \le |f(x)| + |f(y)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} < \epsilon,$$

as required.

It remains to treat the case where one of x,y belongs to [-M,M] and the other does not. Without loss of generality, suppose that x<-M and $-M\leq y\leq M$. Note that $|-M|\geq M$ trivially, hence $|f(-M)|<\epsilon/3$. Also, since $|x-y|<\delta$, we must have $|-M-y|<\delta$, hence $|f(-M)-f(y)|<\epsilon/3$, since both -M and y belong to [-M,M]. Combining, we get

$$|f(x) - f(y)| \le |f(x) - f(-M) + f(-M) - f(y)|$$

$$\le |f(x)| + |f(-M)| + |f(-M) - f(y)|$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon,$$

as required.