Algorithms

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

Road network

Vertex = intersection; edge = one-way street.

Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Uber taxi graph

Vertex = taxi pickup; edge = taxi ride.

http://blog.uber.com/2012/01/09/uberdata-san-franciscomics/

Implication graph

Vertex = variable; edge = logical implication.

Combinational circuit

Vertex = logical gate; edge = wire.

WordNet graph

Vertex = synset; edge = hypernym relationship.

Digraph applications

digraph	vertex	directed edge
transportation	street intersection	one-way street
web	web page	hyperlink
food web	species	predator-prey relationship
WordNet	synset	hypernym
scheduling	task	precedence constraint
financial	bank	transaction
cell phone	person	placed call
infectious disease	person	infection
game	board position	legal move
citation	journal article	citation
object graph	object	pointer
inheritance hierarchy	class	inherits from
control flow	code block	jump

Some digraph problems

problem	description	
s→t path	Is there a path from s to t?	
shortest s→t path	What is the shortest path from s to t?	
directed cycle	Is there a directed cycle in the graph?	
topological sort	Can the digraph be drawn so that all edges point upwards?	
strong connectivity	Is there a directed path between all pairs of vertices?	
transitive closure	For which vertices v and w is there a directed path from v to w?	
PageRank	What is the importance of a web page?	

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Digraph API

Almost identical to Graph API.

public class Digraph		
	Digraph(int V)	create an empty digraph with V vertices
	Digraph(In in)	create a digraph from input stream
void	addEdge(int v, int w)	add a directed edge v→w
Iterable <integer></integer>	adj(int v)	vertices pointing from v
int	V()	number of vertices
int	E()	number of edges
Digraph	reverse()	reverse of this digraph
String	toString()	string representation

Digraph API


```
% java Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
11->4
11->12
12->9
```

```
In in = new In(args[0]);

Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)

for (int w : G.adj(v))

StdOut.println(v + "->" + w);
```


Digraph representation: adjacency lists

Maintain vertex-indexed array of lists.

Digraph representations

In practice. Use adjacency-lists representation. (sparse graphs)

- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.

representation	space	insert edge from v to w	edge from v to w?	iterate over vertices pointing from v?
list of edges	E	1	E	E
adjacency matrix	V^2	1†	1	V
adjacency lists	E + V	1	outdegree(v)	outdegree(v)

† disallows parallel edges

Adjacency-lists graph representation undirected (review): Java implementation

Adjacency-lists digraph representation: Java implementation

```
public class Digraph
  private final int V;
                                                                      adjacency lists
  private final Bag<Integer>[] adj;
  public Digraph(int V)
    this.V = V;
                                                                      create empty digraph
    adj = (Bag<Integer>[]) new Bag[V];
                                                                      with V vertices
    for (int v = 0; v < V; v++)
      adj[v] = new Bag<Integer>();
  public void addEdge(int v, int w)
                                                                      add edge v→w
    adj[v].add(w);
  public Iterable<Integer> adj(int v)
                                                                      iterator for vertices
                                                                      pointing from v
  { return adj[v]; }
```

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Reachability

Problem. Find all vertices reachable from *s* along a directed path.

Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked

vertices w pointing from v.

Depth-first search demo

To visit a vertex v:

Mark vertex v as visited.

Recursively visit all unmarked vertices pointing from v.

4→2

 $2\rightarrow 3$

 $3\rightarrow 2$

6→0

0→1

2→0

11→12

12→9

9→10

9→11

8→9

10→12

 $11\rightarrow 4$

4→3

 $3 \rightarrow 5$

6→8

8→6

5→4

 $0\rightarrow 5$

6→4

a directed graph

Depth-first search demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

Depth-first search (in undirected graphs – without edgeTo (path repr.))

Recall code for undirected graphs.

```
public class DepthFirstSearch
  private boolean[] marked;
                                                                         true if connected to s
  public DepthFirstSearch(Graph G, int s)
                                                                         constructor marks
                                                                         vertices connected to s
   marked = new boolean[G.V()];
   dfs(G, s);
  private void dfs(Graph G, int v)
                                                                         recursive DFS does the work
   marked[v] = true;
   for (int w : G.adj(v))
     if (!marked[w]) dfs(G, w);
                                                                         client can ask whether any
  public boolean visited(int v)
                                                                         vertex is connected to s
  { return marked[v]; }
```

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.

[substitute Digraph for Graph]

Reachability application: program control-flow analysis

Every program is a digraph.

- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program

(starting at a root and following a chain of pointers).

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

- /
- Reachability.
- Path finding.
- Topological sort.
- Directed cycle detection.

Basis for solving difficult digraph problems.

- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components.

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by $k_1V + k_2E + k_3$ for some constants k_1, k_2 , and k_3 , where V is the number of vertices and E is the number of edges of the graph being examined.

Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

- remove the least recently added vertex v
- for each unmarked vertex pointing from v:
 add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to E + V.

Directed breadth-first search demo

Repeat until queue is empty:

- \blacksquare Remove vertex v from queue.
- Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

Repeat until queue is empty:

- \blacksquare Remove vertex v from queue.
- Add to queue all unmarked vertices pointing from v and mark them.

V	edgeTo[]	distTo[]
0	_	0
1	0	1
2	0	1
3	4	3
4	2	2
5	3	4

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex.
$$S = \{ 1, 7, 10 \}.$$

- Shortest path to 4 is $7 \rightarrow 6 \rightarrow 4$.
- Shortest path to 5 is $7 \rightarrow 6 \rightarrow 0 \rightarrow 5$.
- Shortest path to 12 is $10\rightarrow 12$.
- . . .

- Q. How to implement multi-source shortest paths algorithm?
- A. Use BFS, but initialize by enqueuing all source vertices.

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]

- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

Q. Why not use DFS?

Bare-bones web crawler: Java implementation

```
Queue<String> queue = new Queue<String>();
                                                                                   queue of websites to crawl
                                                                                   set of marked websites
SET<String> marked = new SET<String>();
String root = "<a href="http://www.princeton.edu";">http://www.princeton.edu</a>";
                                                                                   start crawling from root website
queue.enqueue(root);
marked.add(root);
while (!queue.isEmpty())
{ String v = queue.dequeue();
 StdOut.println(v);
 In in = new ln(v);
  String input = in.readAll();
                                                                                   read in raw html from next
                                                                                  website in queue use regular expression to find all URLs
 String regexp = \frac{\cdot}{\cdot} +\\.)+(\\w+\\.)
                                                                                  in website of form http://xxx.yyy.zzz
  Pattern pattern = Pattern.compile(regexp);
                                                                                  [crude pattern misses relative URLs]
  Matcher matcher = pattern.matcher(input);
 while (matcher.find())
 { String w = matcher.group();
    if (!marked.contains(w))
                                                                                   if unmarked, mark it and put
    { marked.add(w);
                                                                                   on the queue
      queue.enqueue(w);
```

Web crawler output

BFS crawl

http://www.princeton.edu

http://www.w3.org

http://ogp.me

http://giving.princeton.edu

http://www.princetonartmuseum.org

http://www.goprincetontigers.com

http://library.princeton.edu

http://helpdesk.princeton.edu

http://tigernet.princeton.edu

http://alumni.princeton.edu

http://gradschool.princeton.edu

http://vimeo.com

http://princetonusg.com

http://artmuseum.princeton.edu

http://jobs.princeton.edu

http://odoc.princeton.edu

http://blogs.princeton.edu

http://www.facebook.com

http://twitter.com

http://www.youtube.com

http://deimos.apple.com

DFS crawl

http://www.princeton.edu

http://deimos.apple.com

http://www.youtube.com

http://www.google.com

http://news.google.com

http://csi.gstatic.com

http://googlenewsblog.blogspot.com

http://labs.google.com

http://groups.google.com

http://img1.blogblog.com

http://feeds.feedburner.com

http:/buttons.googlesyndication.com

http://fusion.google.com

http://insidesearch.blogspot.com

http://agoogleaday.com

http://static.googleusercontent.com

http://searchresearch1.blogspot.com

http://feedburner.google.com

http://www.dot.ca.gov

http://www.TahoeRoads.com

http://www.LakeTahoeTransit.com

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

- 0. Algorithms
- 1. Complexity Theory
- 2. Artificial Intelligence
- 3. Intro to CS
- 4. Cryptography
- 5. Scientific Computing
- 6. Advanced Programming tasks

precedence constraint graph

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

directed edges

DAG

Solution. DFS. What else?

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

tinyDAG7.txt

7

11

0 5

0 2

0 1

3 6

3 5

3 4

5 2

6 4

6 0

3 2

Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

postorder

4 1 2 5 0 6 3

topological order

3 6 0 5 2 1 4

Depth-first search order

```
public class DepthFirstOrder
 private boolean[] marked;
 private Stack<Integer> reversePostorder;
 public DepthFirstOrder(Digraph G)
 { reversePostorder = new Stack<Integer>();
   marked = new boolean[G.V()];
   for (int v = 0; v < G.V(); v++)
     if (!marked[v]) dfs(G, v);
 private void dfs(Digraph G, int v)
 { marked[v] = true;
   for (int w : G.adj(v))
     if (!marked[w]) dfs(G, w);
   reversePostorder.push(v);
 public Iterable<Integer> reversePostorder()
 { return reversePostorder; }
```

returns all vertices in "reverse DFS postorder"

Topological sort in a DAG: intuition

Why does topological sort algorithm work?

- First vertex in postorder has outdegree 0.
- Second-to-last vertex in postorder can only point to last vertex.
- ...

postorder

4 1 2 5 0 6 3

topological order

3 6 0 5 2 1 4

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v \rightarrow w$. When dfs(v) is called:

Case 1: dfs(w) has already been called and returned. Thus, w was done before v.

Case 2: dfs(w) has not yet been called. dfs(w) will get called directly or indirectly by dfs(v) and will finish before dfs(v). Thus, w will be done before v.

Case 3: dfs(w) has already been called,
 but has not yet returned.
 Can't happen in a DAG: function call stack contains path from w to v, so v→w would complete a cycle.

dfs(0)dfs(1)dfs(4)4 done 1 done dfs(2)2 done dfs(5) check 2 5 done 0 done check 1 check 2 dfs(3)check 2 check 4 check 5 dfs(6) check 0 check 4 6 done 3 done

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle. Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle. Solution. DFS. What else? See textbook.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

precedence constraint graph is not a DAG

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```
public class A extends B
{
...
}
```

```
public class B extends C
{
...
}
```

```
public class C extends A
{
...
}
```

```
% javac A.java
A.java:1: cyclic inheritance involving A
public class A extends B { }

^
1 error
```


Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

Directed cycle detection applications

- Causalities.
- Email loops.
- Compilation units.
- Class inheritance.
- Course prerequisites.
- Deadlocking detection.
- Precedence scheduling.
- Temporal dependencies.
- Pipeline of computing jobs.
- Check for symbolic link loop.
- Evaluate formula in spreadsheet.

Depth-first search orders

Observation. DFS visits each vertex exactly once. The order in which it does so can be important.

Orderings.

- Preorder: order in which dfs() is called.
- Postorder: order in which dfs() returns.
- Reverse postorder: reverse order in which dfs() returns.

```
private void dfs(Graph G, int v)
{
    marked[v] = true;
    preorder.enqueue(v);
    for (int w : G.adj(v))
        if (!marked[w]) dfs(G, w);
    postorder.enqueue(v);
    reversePostorder.push(v);
}
```

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

- \blacksquare *v* is strongly connected to *v*.
- If v is strongly connected to w, then w is strongly connected to v.
- If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

Connected components vs. strongly-connected components

v and w are connected if there is a path between v and w

v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v

connected component id (easy to compute with DFS)

```
public boolean connected(int v, int w)
{ return id[v] == id[w]; }

constant-time client connectivity query
```

strongly-connected component id (how to compute?)

```
public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }
```

constant-time client strong-connectivity query

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

Strong component application: software modules

Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.

Firefox

Internet Explorer

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.

Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in G are same as in G^R .

Kernel DAG. Contract each strong component into a single vertex.

Idea.

- how to compute?
- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

digraph G and its strong components

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R .

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R .

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G^R .

1 0 2 4 5 3 11 9 12 10 6 7 8

Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R .

1 0 2 4 5 3 11 9 12 10 6 7 8

-	
0	1
1	0
2	1
3	1
4	1
5	1
6	3
7	4
8	3
9	2
10	2
11	2
12	2 2

id[]

done

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

check unmarked vertices in the order 0 1 2 3 4 5 6 7 8 9 10 11 12

reverse postorder for use in second dfs ()
1 0 2 4 5 3 11 9 12 10 6 7 8

```
dfs(0)
  dfs(6).
    dfs(8)
     check 6
    8 done
    dfs(7)
    7 done
  6 done
  dfs(2)
    dfs(4)
      dfs(11)
        dfs(9)
           dfs(12)
             dfs(10)
               check 9.
            10 done
```


Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to E + V.

Pf.

- **R**unning time: bottleneck is running DFS twice (and computing G^R).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!

Connected components in an undirected graph (with DFS)

```
public class CC
 private boolean marked[];
 private int[] id;
 private int count;
 public CC(Graph G)
 { marked = new boolean[G.V()];
   id = new int[G.V()];
   for (int v = 0; v < G.V(); v++)
   { if (!marked[v])
     { dfs(G, v);
       count++;
 private void dfs(Graph G, int v)
 { marked[v] = true;
   id[v] = count;
   for (int w : G.adj(v))
     if (!marked[w])
       dfs(G, w);
 public boolean connected(int v, int w)
 { return id[v] == id[w]; }
```

Strong components in a digraph (with two DFSs)

```
public class KosarajuSharirSCC
 private boolean marked[];
 private int[] id;
 private int count;
 public KosarajuSharirSCC(Digraph G)
   marked = new boolean[G.V()];
   id = new int[G.V()];
    DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
   for (int v : dfs.reversePostorder())
   { if (!marked[v])
     { dfs(G, v);
       count++;
  } } }
 private void dfs(Digraph G, int v)
 { marked[v] = true;
   id[v] = count;
   for (int w : G.adj(v))
     if (!marked[w])
       dfs(G, w);
 public boolean stronglyConnected(int v, int w)
 { return id[v] == id[w]; }
```

Digraph-processing summary: algorithms of the day

