

جامعة طرابلس ـ كلية تقنية المعلومات

مقدمة في هندسة البرمجيات Introduction to software Engineering ITGS-213

المحاضرة الثانية _ انشطة التخطيط (تقدير التكلفة وجدولة المشروع)

Cost Estimation and Project Scheduling

خريف2020

مواضيع المحاضرة

- انشطة التخطيط لمشروع برمجي:
 - جدولة المشروع البرمجي
 - أدوات الجدولة
- تقدير تكلفة البرمجة و عوامل أخرى تؤثر على تقدير التكلفة
 - صعوبات تواجه عملية تقدير التكلفة
 - ، طـرق تقدير التكلفة
 - حقائق و مفاهيم خاطئة

التخطيط لمشروع برمجي

- من الانشطة التي يتم ممارستها عند التخطيط لمشروع برمجي:
 - ا. تحدید اهداف المشروع.
 - 2. دراسة الجدوي
- 3. تحديد المستلزمات الخاصة للمشروع البرمجي من عتاد وبرمجيات وعنصر بشري.
 - 4. تحديد حدود او نطاق المشروع و المخاطر المتوقعة
 - 5. تقدير المدة الزمنية للمشروع.
 - 6. تقدير تكلفة المشروع

تقدير التكلفة و زمن المشروع هو الجزء الاهم والاصعب في التخطيط

تقدير التكلفة و زمن المشروع

- □ حيث اصبحت البرمجيات في يومنا هذا أغلى تكلفة من العتاد، وعند حدوث أي خطأ في تقدير التكلفة قد ينتج عنه خسارة لمعدي المنظومات ومن ثم فشل اعداد المنظومة.
- □ وتحديد الجدول الزمني مهم ايضاً ، لأنه مرتبط بتقدير التكلفة ويؤثر على نجاح المشروع ، ولهذا تم إعداد طرق لتقدير كل مهمة من مهام المشروع ليتم معرفة الزمن الكلى.

Cost Estimation تقدير التكلفة

□ يتم تقدير جميع مراحل المشروع البرمجي بداية من:

حتقديرات أولية لمعرفة الجدوى الاقتصادية

تقديرات تفصيلية عند اعداد خطة المشروع.

*عوامل تؤثر على تقدير التكلفة:

Complexity of Software: ا.درجة تعقيد البرمجيات

♦ كلما زاد التعقيد زادت التكلفة.

Size Of Software : حجم البرنامج

- ♦ البرمجيات الكبيرة أكثر كلفة من الصغيرة.
- ٣. التقنية المستخدمة technologies علاقة عكسية
 - Modern◆
 - Old •
- ٤. أداء المبرمجينPerformance of programmers
 - ♦ المبرمج المجد يوفر من تكلفة المشروع.

صعوبات تواجه عملية تقدير التكلفة

- □ تعتبر عملية تقدير تكلفة اعداد المنظومات البرمجية صعبة في الحالات التالية:
 - ﴿ لا توجد مشاريع سابقة مماثلة.
 - ﴿ ازدياد تعقيد المشروع البرمجي.
 - ◄ نتائج أدوات وطرق تقدير التكلفة غير دقيقة.

طرق مقترحة لاجتياز صعوبات تقدير التكلفة

- اعطاء وقت كاف لعمليات تقدير التكلفة.
- التقديرات السريعة تولد تكاليف غير دقيقة.
- □ استخدام بيانات مشاريع ناجحة ومتكاملة سابقة كلما أمكن.
 - •نماذج تجريبية مبنية على الواقعية والاختبار.
 - □ استخدام اسلوب التجزئة.Decomposition
- يتم تقسيم المشروع الى مهام ثم تجمع تكلفة المهام للوصول الى التكلفة الكلية.
 - □ الاستشارة الجماعية.
 - تساعد في كثيرا في التقدير الجيد بدل الرأي الفردي.

طرق تقدير التكلفة Cost Estimation Methods

- يمكن استخدام نموذج أو طريقة أو أكثر من طريقة للمشروع الواحد:
 - □ حكم الخبير.Expert judgement
 - «الخبراء يستخدمون تجربتهم لتوقع كلفة المشروع.
- ﴿الفوائد: يمكن أن يكون دقيق إذا كان الخبراء لديهم تجربة مباشرة من أنظمة مماثلة.
 - ﴿الأضرار: خاطئ جدا إذا ليس هناك خبراء!
 - □ التقدير بالمقارنةEstimation By analogy
- التم حساب تكلفة المشروع بمقارنة المشروع مع مشروع مماثل في نفس مجال التطبيق.
 - ◄الفوائد: قد يكون دقيق إذا بيانات المشروع القديم متوفرة ومستخدم نفس الادوات.
 - ﴿الأضرار: مستحيل إذا لا يوجد مشروع مقارن مماثل.

طرق تقدير التكلفة Cost Estimation Methods

- □ الإجماع Group Consensus وتتبع هذه الطريقة الخطوات التالية:
- ◄ تعتمد على الرأي الجماعي المقنع والمبني على اساس سليم وتتبع الخطوات التالبة:
- اعطاء) مستند تعریف للمنظومة + نموذج لتدوین التقدیر الابتدائي لتكلفة المشروع (للاخصائیین.
- 2. يجب ان لا يتبادل الاخصائيين الافكار مع بعضهم عند اجراء عملية التقدير مع الرجوع للمنسق عن أي معلومة في حاجة اليها.
 - 3. يقوم المنسق بجمع ومراجعة التقديرات الناتجة.

طرق تقدير التكلفة Cost Estimation Methods

- 4. تبرير الاختلاف الكبير في تقديرات الاخصائيين واعادة عملية التقدير في حالة كان تقدير الاختلاف مقنع.
- 5. تكرار الخطوة السابقة الى ان يتحقق المطلوب على أن لا توجد مناقشة جماعية في أي جلسة.
 - □ طريقة من أسفل-الى-أعلى Bottom-Up method تجزئة المشروع الى مهام
 - ◄التقدير الكلي= مجموع تقدير أجزاء أو مهام المشروع.

جدولة المشروع البرمجيSoftware project scheduling

- □ أدوات الجدولة للمشاريع البرمجية والإنشائية والصناعية تعتبر الى حد كبير متشابهة وتستخدم نفس الادوات.
- □ صعوبة مهمة جدولة المشاريع يحتم على مدير المشروع أو المتخصص في الاستفادة من جداول سابقة ان وجدت.
- □ لحساب الزمن الكلي لإنهاء المنظومة يجب تجزئة العمل وحساب كل جزء على حدى مع مراعاة الاجزاء التي تتم بالتوازي والبعض الاخر يتم بالتسلسل لأنه يعتمد على بعضه الآخر.
 - □ مشاكل تسبب في تأخير تسليم المشروع:
- (مرض أحد الاعضاء الفاعلين- عطل في العتاد- تأخر وصول العتاد أو تأخير التدريب اختلاف محتوى المنظومة عن أي منظومة سابقة)

جدولة المشروع البرمجيSoftware project scheduling

□ الطريقة المتبعة لتقدير جدولة المشروع هي

- التقدير الزمني الكلي)%0 +بسبب المشاكل التي قد تحدث)
- تستخدم الايام واحيانا الساعة كوحدة قياس للزمن لاختلاف أيام العمل من دولة لاخرى.
 - ارشادات بخصوص تقدیر الوقت:
 - ١. تحديد المهام التي تتم على التوازي والتي لا تعتمد على بعضها.
 - 2. استعمال أقل قوة عاملة.
 - 3. الأخذ في الاعتبار أن بعض الأعضاء قد يتركون العمل.
 - 4. تحديد مواصفات المتطلبات والتصميم يتطلب ضعف وقت كتابة شفرة البرنامج.

أدوات الجدولة Tools of scheduling

- □ تفترض أدوات الجدولة أن المشروع يتكون من مجموعة نشاطات أو مهام بعضها ينجز بالتوازي والاخر يعتمد على بعض.
 - أدوات الجدولة المستخدمة في التخطيط ومتابعة المشروع هي:
 - ا مخطط غانتGantt Chart
 - 2. طريق المسار الحر -Critical Path Method CPM
 - 3. اداة برت Project Evaluation & Review Technique PERT

مخطط غانتGantt Chart

□عرفت هذا المخطط باسم جانت نسبه إلى ، Henery L. Gantt يعتبر مخطط جانت أداة تخطيط رسومية تستخدم المحور الافقي لزمن التنفيذ والمحور الراسي لأسماء النشاطات.

طريق المسار الحرج Critical path method CPM

- □ اسلوب المسار الحرج هو احدى الطرق المستخدمة لحساب المدة الزمنية التي يستغرقها المشروع. و هي أداة تخطيط على شكل شبكة تبين المهام أو النشاطات والمدة الزمنية المقدرة لكل مهمة.
- □ المسار الحرج هو الذي يضم مجموعة من الانشطة و المهام و الذي يستغرق وقت اكثر من كافة المسارات في الشبكة •
- □ هو أطول وقت لإنهاء المشروع. اي هو اطول مسار من البداية الى النهاية ، وهذا المسار يبين أقصر مدة زمنية ممكنة لإنهاء المشروع.

طريق المسار الحرجCritical path method CPM

□ تتلخص هذه الطريقة في تحديد كل المسارات الممكنة من البداية الى النهاية وجمع المدة الزمنية لكل منها، ثم نحدد أطول هذه المسارات.

طريقة المسار الحرج تتكون من الاوقات الاتية -:

1. الوقت المبكر: Earliest Event Time

هو ابكر وقت او اقرب وقت يمكن ان يبدأ فيه نشاط معين، ويحدث ذلك عندما تنتهي من جميع الأنشطة السابقة

EEj=EEi + D OR EEj=Max(EEi +D)

2. الوقت المتأخر: Latest Event Time

يمثل أخر وقت يمكن أن يحدث حدث معين و يبدا نشاط معين دون التأثير على الجدول الزمني للمشروع.

حيث نبدا دائما بوضع الوقت المتأخر للنشاط يساوي الوقت المبكر له.

LEi=LEj - D OR LEi=Min(LEj - D)

3. الوقت الفائض: Slack Time

-الوقت الفائض: ويتمثل في الفرق بين الوقت المبكر والمتأخر، اما بالنسبة للأنشطة التي لا يوجد لديها وقت فائض أي ان الفرق بين الاوقات المبكرة والمتأخرة يساوي صفرا فأنها تعد انشطة حرجة.

S = LE - EE

طريق المسار الحرجCPM Critical path method

- □ في هذا المثال A,B,C,D عبارة عن أحداث ،أما من T1 الى T8 عبارة عن مهام.
- □ فمثلا قد تكون المهمة T1: المقابلة الشخصية T2. الملاحظة T3. العرض التجريبي. وهذه المهام يمكن أن تبدأ في نفس الوقت.
- □ شبكة CPM تبين الاحداث A,B,C,D والتي تمثل بداية أو نهاية الأحداث، يمكن كتابة تاريخ نهاية المهمة فوق الحدث.

طريق المسار الحرجCPM Critical path method

- □ TI,T2,T3هي مهام متوازية ويمكن استبدال المهام بزمن كل مهمة.
- ولحساب أقصر وقت لإنجاز المشروع نحدد أطول مسار زمني للوصول لنقطة النهاية وهو: T2+T6+T8=2+7+6=15 days

□ إذا افترضنا أن المشروع قد يبدأ يوم 1/1/2017 فتكون أقصر مدة زمنية هي 15 يوم أي ينتهي يوم 16/1/2017

مثال:

ارسم مخطط CPM وأوجد المسار الحرج

النشاط	المدة	السابق	اللاحق
Α	3	None	D, E
В	4	None	С
С	2	В	None
D	1	A	F
E	3	A	None
F	3	D	None

ملاحظات

- (1) الانشطة التي تقع على المسار الحرج تسمى أنشطة حرجة.
- (2) في الحدث الأخير لنهاية المشروع: الوقت المتاخر للحدث يساوي الوقت المبكر للحدث.
 - (3) الوقت المتأخر للحدث تاخذ القيمة الاقل.

طريقة التقييم والمراجعة للمشروع PERT أداة برت Project Evaluation & Review Technique

- □ تعتبر اداة pert من الأدوات التي تمكن من الحصول على زمن تقديري لإنهاء المشروع بدقة أكثر من اداة ال CPM لأنها تعتمد على ثلاث قيم متوقعة.
 - □ يتم تحسين الزمن التقديري لكل مهمة، حيث نستخدم لكل مهمة 3 تقديرات للزمن اللازم لها.
- ◄ <u>الوقت المتفائل</u> OT Optimistic Time وهو أقل وقت متوقع أن ينفذ فيه النشاط بفرض أن الظروف المتوقعة ملائمة للتنفيذ أو أقل مدة يمكن انهاء هذا العمل فيها.

طريقة التقييم والمراجعة للمشروع PERT أداة برت Project Evaluation & Review Technique

- □ الوقت المتشائم Pessimistic Time PT وهو أطول وقت متوقع أن ينفذ فيه النشاط بفرض أن الظروف المتوقعة غير ملائمة لعمليات التنفيذ.أو أقصى مدة يمكن انهاء العمل فيها.
- ◄ الوقت الأكثر احتمالا Most Likely Time MLv وهو الوقت الأكثر توقعاً في الحدوث وهو بين التفاؤل والتشاؤم. أو هو الزمن الأكثر تكرارا لإتمام العمل.
- ↓ يتم احتساب متوسط الوقت المتوقع Expected Time ET أي المدة المتوقعة لإنهاء هذا العمل فيها
 باستخدام تقديرات الثلاثة حسب المعادلة التالية:

EV=(Ov + Pv + 4*MLv) / 6

رَمَن أَدَاءَ النشاط = (الوقت المُقَائل + 4 × الزَمَن الأَكْثَر احتَمَالًا + الزَمَن المُنشائم)

مثال بفرض لدينا المهام التالي لإنهاء المشروع:

ET	ML	PT	от	Task number
5.2	5	8	3	ті
6.0	6	8	4	T2
7.0	7	9	5	тз
4	4	5	3	Т4

بعد حساب الزمن المتوقع لكل مهمة. نستخدم CPM لحساب أقصر وقت لانهاء المشروع.

حقائق ومفاهيم خاطئة Facts & misconceptions

□ المفهوم الخاطئ 1:عند التأخر في الجدول الزمني يمكننا اضافة مبرمجين لإنجاز المشروع في الوقت المناسب.

الحقيقة:

مشكلة التواصل بين أعضاء الفريق.

. الحاجة لتدريب الأعضاء الجدد لفريق المنظومة يتطلب وقت مضاف.

□ المفهوم الخاطئ2: المذكرة العامة للمتطلبات دون التفاصيل كافية لبدء المشروع. الحقيقة: يجب أن يكون يحتوي على وصف مفصل لكلا من: وظائف البرمجيات. واجهة المستخدم. معيار الجودة.

حقائق ومفاهيم خاطئة Facts & misconceptions

□ يمكن دائما التغلب على مشكلة تغير متطلبات المشروع في المراحل المختلفة، ولكن يترتب تكلفة تزيد بصورة كبيرة كلما حدث التغيير في المراحل المتأخرة.

حقائق ومفاهيم خاطئة Facts & misconceptions

- المفهوم الخاطئ3: كلما اسرعت في كتابة الشفرة انهيت المشروع بسرعة.
- الحقيقة: هذا صحيح في البرامج الصغيرة أما البرامج المعقدة كلما أسرعت أبطأت في إنهائه.
 - □ المفهوم الخاطئ 4: ما دمت لم تنفذ البرنامج لا يمكن تقييم الجودة.
 - الحقيقة:
 - كل مرحلة في المشروع لها تقييم جودة.
 - عملية الاختبار تتم في جميع المراحل. كلما اكتشفت الخطأ مبكرا توفر الوقت والمال.
 - □ المفهوم الخاطئ5: المطلوب تسليم مشروع برمجي (برنامج) بدون أخطاء. الحقيقة: البرنامج ليس الا جزء من البرمجيات والمتمثلة في
 - البرنامج -البيانات -التوثيق

End..

