

Update on Ara

26/10/2022

Matteo Perotti

Matheus Cavalcante

Nils Wistoff

Professor Luca Benini Integrated Systems Laboratory ETH Zürich

Summary

- Software
 - New benchmarks upstream
- Hardware (RTL + Backend)
 - Fixed-Point support
 - Scale to 16 lanes
 - Merge Fixed-Point support

Fill benchmark pool

Benchmark report

Scale-up to 16 lanes

Bottleneck analysis

Improved verification

Power

- Set up generic flow to get power analysis
- fmatmul 128x128, 4-lanes
 - Updated system with FP-reductions
 - ~same power than before
 - From 280 mW to 290 mW @TT_freq
- ~36 DP-GFLOPs/W

HW - Scale up to 8 lanes

- First run:
 - ~950 MHz*
 - * without aggressive DRC/hold fixing
- Second run:
 - Vertical channels among the \$ banks
 - More space to solve DRC/hold
- Next run:
 - Need for larger channels!

HW - Scale up to 16 lanes

- First run:
 - >10 days run
 - May require RTL modifications
 - May require different die shape
- Next run:
 - Pipelined Slide Unit?
 - Lanes around the system?

PR

Merged:

- Jacobi2d, Dropout, DWT, FFT
- Ideal-dispatcher
- Misc (EEW fix, VRF size, SPIKE patch)

Ongoing:

- softmax, [f]dotp, pathfinder, roi-align
- Fixed-Point support

Next:

AWB, spmv, lavaMD

Further

- Software
 - spmv, AWB, lavaMD
- Hardware (RTL + Backend)
 - Merge fixed point support
 - Try different die shapes
 - Close timing with 16 lanes

Fill benchmark pool

Benchmark report

Scale-up to 16 lanes

Bottleneck analysis

Improved verification