Homework 3

Daniel Halmrast

May 18, 2018

Problem 1

Prove the following inequality. Let $f:[0,\pi]\to\mathbb{R}$ be a real C^2 function such that $f(0)=f(\pi)=0$. Then

$$\int_0^{\pi} f^2 dt \le \int_0^{\pi} (f')^2 dt$$

with equality if and only if $f(t) = c \sin(t)$.

Proof. Let γ be a normalized geodesic joint the antipodal points p, -p of S^2 . Let v(t) be a parallel field along γ with $g(v, \gamma') = 0$, ||v|| = 1. Let V = fv. We calculate

$$I_{\pi}(V,V) = \int_{0}^{\pi} g(V',V') - g(R(\gamma',V)\gamma',V)dt$$

$$= \int_{0}^{\pi} g(f'v,f'v) - f^{2}K(\gamma',v)dt$$

$$= \int_{0}^{\pi} (f')^{2} ||v||^{2} - f^{2}(1)dt$$

$$= \int_{0}^{\pi} (f')^{2}dt - \int_{0}^{\pi} f^{2}dt \geq 0$$

where the last line follows from the Morse index theorem. This establishes the inequality.

Note that equality holds if and only if $I_{\pi}(V, V) = 0$, which implies that V is a Jacobi field. Thus, it must satisfy the Jacobi equation

$$f''(t) + K(\gamma', v)f(t) = 0$$

which, on S^2 , is just

$$f''(t) + f(t) = 0$$

with Dirichlet boundary conditions. This is solved only when $f(t) = c \sin(t)$ for some constant c, as desired.

PROBLEM 2

Let M^2 be a complete simply connected 2-dimensional Riemannian manifold. Suppose that for each point $p \in M$, the locus C(p) of first conjugate points to p reduces to a unique $q \neq p$ and that $d(p, C(p)) = \pi$. Prove that if the sectional curvature K of M satisfies $K \leq 1$, then M is isometric to the sphere S^2 with K = 1.

Proof. Let J be a Jacobi field along a normalized geodesic γ joining p to q with $J(0) = J(\pi) = 0$ and $g(J, \gamma') = 0$. Let $\{e_i, \gamma'\}$ be an orthonormal parallel frame to γ , and write

$$J = a^i e_i$$

Define $K(t) = K(\gamma', J)$. We calculate

$$\begin{split} 0 &= I_{\pi}(J,J) = -\int_{0}^{\pi} g(J'' + R(\gamma',J)\gamma',J)dt \\ &= -\int_{0}^{\pi} g(J'',J)dt - \int_{0}^{\pi} K(t)\|J\|^{2}dt \\ &= -\int_{0}^{\pi} a''^{i}a_{i}dt - \int_{0}^{\pi} K(t)a^{i}a_{i}dt \\ &= \int_{0}^{\pi} a'^{i}a'_{i}dt - \int_{0}^{\pi} K(t)a^{i}a_{i}dt \qquad \text{using integration by parts} \\ &\geq \int_{0}^{\pi} a^{i}a_{i}dt - \int_{0}^{\pi} K(t)a^{i}a_{i}dt \qquad \text{by problem 1} \\ &= \int_{0}^{\pi} a^{i}a_{i}(1 - K(t))dt \geq 0 \end{split}$$

and thus K(t) = 1 for all t.

Next, we show that every point in M is an interior point for some geodesic of the form above. To that end, let $p \in M$, and let $v \in T_pM$, ||v|| = 1. Define $\gamma : [0, \pi] \to M$ as the unique normalized geodesic with $\gamma(\frac{\pi}{2}) = p$ and $\gamma'(\frac{\pi}{2}) = v$. Now, let σ be a geodesic from $\gamma(0)$ to some conjugate point q, concatenated with the minimizing geodesic from q to $\gamma(\pi)$. That is, we've formed the triangle from $\gamma(0)$ to $\gamma(\pi)$ and q. σ has a Jacobi field on it that vanishes at $\gamma(0)$ and q. Furthermore, since M is simply connected, there is a homotopy between σ and γ . Pushing the Jacobi field from σ to γ along the homotopy parallel transport, we construct a Jacobi field on γ vanishing at $\gamma(0)$ and some other point $\gamma(t)$. Since the conjugate locus of $\gamma(0)$ is a distance π away, it must be that $t = \pi$, and $\gamma(0)$ is conjugate to $\gamma(\pi)$, which has p as an interior point, as desired.

Problem 3

Let $a : \mathbb{R} \to \mathbb{R}$ be a differentiable function with $a(t) \geq 0$ for all t, and a(0) > 0. Prove that the solution to the differential equation

$$(\partial_t^2 + a)\phi = 0$$

with initial conditions $\phi(0) = 1, \phi'(0) = 0$ has at least one positive zero and one negative zero.

Proof. We first prove that ϕ has a positive zero. To see this, suppose for a contradiction that $\phi(t) > 0$ for all t > 0. From this, it follows that

$$\phi'' = -a\phi < 0$$

with $\phi''(0) < 0$. Thus, there is some t_0 with $\phi'(t_0) < 0$. Let $f(t) = (t - t_0)\phi'(t_0) + \phi(t_0)$ be the tangent line to ϕ at t_0 . I assert that $\phi(t) \le f(t)$ for all $t > t_0$.

Suppose that there existed some t_1 for which $\phi(t_1) > f(t_1)$. In particular, this means that the slope of the secant line

$$M = \frac{\phi(t_1) - \phi(t_0)}{t_1 - t_0}$$

is such that $M > \phi'(t_0)$. By the mean value theorem, there is some c for which $\phi'(c) = M$ with $c \in [t_0, t_1]$. However, this implies that

$$\frac{\phi'(c) - \phi'(t_0)}{c - t_0} > 0$$

and so by the mean value theorem (again) there is some $d \in [t_0, c]$ for which $\phi''(d) > 0$. This contradicts our original assumption, so ϕ must be bounded above by f. However, f has a positive zero, so it must be that ϕ has at least one positive zero as well.

Arguing by a symmetric argument for points below zero, we see that ϕ has at least one negative zero as well.

Problem 4

Suppose M^n is a complete Riemannian manifold with sectional curvature strictly positive, and let $\gamma: (-\infty, \infty) \to M$ be a normalized geodesic in M. Show that there exists $t_0 \in \mathbb{R}$ for which $\gamma([-t_o, t_o])$ has index greater or equal to n-1.

Proof. Let Y be a parallel field along γ with $g(\gamma', Y) = 0$ and ||Y|| = 1. Set

$$\phi_Y = g(R(\gamma', Y)\gamma', Y)$$

and

$$K(t) = \inf_{Y} \phi_Y(t)$$

and let $a : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $0 \le a(t) \le K(t)$ with 0 < a(0) < K(0). Let ϕ be the solution to $\phi'' + a\phi = 0$ with $\phi(0) = 1, \phi'(0) = 0$, with $-t_1, t_2$ the two zeroes of ϕ found in the previous problem. We consider the field $X = \phi Y$, and calculate

$$I_{[-t_1,t_2]}(X,X) = -\int_{-t_1}^{t_2} g(X'' + R(\gamma',X)\gamma',X)dt$$

$$= -\int_{-t_1}^{t_2} g(\phi''Y,\phi Y)dt - \int_{t_1}^{t_2} g(\phi R(\gamma',Y)\gamma',\phi Y)$$

$$= -\int_{-t_1}^{t_2} g(\phi''Y,\phi Y)dt - \int_{t_1}^{t_2} \phi^2 \phi_Y dt$$

$$\leq -\int_{-t_{-1}}^{t_2} g(\phi''Y,\phi Y)dt - \int_{-t_{1}}^{t_2} K(t)\phi^2(t)dt$$

$$= -\int_{-t_{1}}^{t_2} \phi(\phi'' + K(t)\phi)dt$$

$$< -\int_{-t_{1}}^{t_2} \phi(\phi'' + a(t)\phi)dt$$

$$= 0$$

Thus, for all Y perpendicular to γ' (an n-1 dimensional subspace) the form $I_{[-t_1,t_2]}(Y,Y)$ is negative-definite, and so the index is greater than or equal to n-1. In particular, this holds (as the index is strictly increasing) for $[-t_0,t_0]$ for $t_0=\max(t_1,t_2)$.

PROBLEM 5

Show that if the sectional curvature K of M is strictly positive, M does not have any lines. Show by example this is false if $K \ge 0$.

Proof. The previous problem asserts that for any geodesic in M, there is a segment $[-t_0, t_0]$ on which it has index greater than zero. In particular, this means that $\gamma(-t_0)$ has a conjugate point. Thus, γ does not minimize the length between $-t_0$ and points past its conjugate point, so γ is not a line, as desired.

For a counterexample with $K \geq 0$, take \mathbb{R}^n , where the geodesics are just straight lines. These trivially minimize distance between points, and so any maximally extended geodesic in \mathbb{R}^n is a line.