Pravděpodobnost a statistika

Náhodné vektory

Vilém Vychodil

KMI/PRAS, Přednáška 8

Vytvořeno v rámci projektu 2963/2011 FRVŠ

Přednáška 8: Přehled

- Náhodné vektory:
 - definice náhodného vektoru, vícerozměrná Borelovská jevová pole,
 - rozdělení pravděpodobnosti, borelovské funkce,
 - marginální a sdružená rozdělení pravděpodobnosti, distribuční funkce,
 - diskrétní a spojitá sdružená rozdělení, střední hodnoty a variance.
- Nezávislost náhodných veličin:
 - definice nezávislosti náhodných veličin, ekvivalentní vyjádření,
 - nezávislost a sdružené pravděpodobností funkce a funkce hustoty,
 - kovariance, korelační koeficient, lineární regrese,
 - podmíněná rozdělení, distribuční funkce, očekávané hodnoty.
- Generování pseudonáhodných čísel:
 - ruletová metoda, metoda inversní transformace,
 - techniky založené na simulaci, využití funkce hustoty.

Příklad (Motivace pro náhodné vektory)

Mějme pravděpodobnostní prostor $\langle \Omega, \mathcal{F}, P \rangle$, dvě náhodné veličiny $Y \colon \Omega \to \mathbb{R}$ a $Z \colon \Omega \to \mathbb{R}$ a Borelovské množiny $A, B \in \mathcal{B}$. Zajímáme se o pravděpodobnost, že Y nabude hodnoty z množiny A a současně Z nabude hodnoty z množiny B:

$$\begin{split} P(\{Y \in A\} \cap \{Z \in B\}) &= P(\{\omega \in \Omega \,|\, Y(\omega) \in A\} \cap \{\omega \in \Omega \,|\, Z(\omega) \in B\}) \\ &= P(\{\omega \in \Omega \,|\, Y(\omega) \in A \text{ a } Z(\omega) \in B\}) \\ &= P(\{\omega \in \Omega \,|\, \langle Y(\omega), Z(\omega) \rangle \in A \times B\}) \\ &= P(\{\omega \in \Omega \,|\, \boldsymbol{X}(\omega) \in A \times B\}), \end{split}$$

kde $X:\Omega\to\mathbb{R}^2$ je zobrazení definované $X(\omega)=\langle Y(\omega),Z(\omega)\rangle$. Použitím standardní notace pro vyjádření inverzních obrazů

$$\{X \in A \times B\} = \{\omega \in \Omega \mid X(\omega) \in A \times B\},\$$

můžeme psát

$$P({Y \in A} \cap {Z \in B}) = P({X \in A \times B}).$$

To jest: X lze chápat jako dvourozměrnou náhodnou veličinu (náhodný vektor).

Náhodný vektor

Zobecnění pojmu náhodná veličina:

Definice (Náhodný vektor / vícerozměrná náhodná veličina)

Mějme pravděpodobnostní prostor $\langle \Omega, \mathcal{F}, P \rangle$. Zobrazení $\mathbf{X}: \Omega \to \mathbb{R}^n$ nazýváme (n-rozměrný) náhodný vektor v $\langle \Omega, \mathcal{F}, P \rangle$ (angl.: $random\ vector$) pokud

$$\{\omega \in \Omega \mid \boldsymbol{X}(\omega) \in (-\infty, a_1] \times \cdots \times (-\infty, a_n]\} \in \mathcal{F}.$$

platí pro každé $a_1, \ldots, a_n \in \mathbb{R}$.

Poznámky:

- náhodná veličina = jednorozměrný náhodný vektor,
- ullet i-tou složku $oldsymbol{X}(\omega)$ označujeme $oldsymbol{X}(\omega)(i)$,
- podmínku z definice lze psát $\{\omega \in \Omega \,|\, \boldsymbol{X}(\omega)(i) \leq a_i \text{ pro každé } i=1,\ldots,n\} \in \mathcal{F}$ nebo $\{\boldsymbol{X} \in (-\infty,a_1] \times \cdots \times (-\infty,a_n]\} \in \mathcal{F}$ pomocí inverzních obrazů.

Vícerozměrné Borelovské jevové pole

Úzce související pojem:

Definice (Vícerozměrné Borelovské jevové pole)

Mějme $\Omega=\mathbb{R}^n$ a nechť

$$\mathcal{A}^n = \{(-\infty, a_1] \times \cdots \times (-\infty, a_n] \mid a_1, \dots, a_n \in \mathbb{R}\}.$$

Pak σ -algebru $\mathcal{B}^n = \mathcal{F}_{\mathcal{A}^n}$ nazveme n-rozměrné Borelovské (jevové) pole a každou $A \in \mathcal{B}^n$ nazveme (n-rozměrná) Borelovská množina.

Poznámky:

- \mathcal{B}^1 je klasické Borelovské jevové pole (Přednáška 3),
- ullet motivace pro zavedení: $\{oldsymbol{X}\in B\}\in \mathcal{F}$ pro "rozumné podmnožiny" $B\subseteq \mathbb{R}^n$
- \mathcal{B}^n má několik ekvivalentních vyjádření, . . .

Věta (Ekvivalentní zavedení \mathcal{B}^n)

 \mathcal{B}^n je σ -algebra generovaná $\mathcal{A}^n = \{(a_1, b_1] \times \cdots \times (a_n, b_n] \mid a_1 \leq b_1, \dots, a_n \leq b_n\}.$

Důkaz.

Nejprve prokážeme, že každá $(-\infty, a_1] \times \cdots \times (-\infty, a_n]$ náleží to $\mathcal{F}_{\mathcal{A}^n}$. To plyne z toho, že $\mathcal{F}_{\mathcal{A}^n}$ je uzavřená na sjednocení spočetně mnoha množin:

$$(-\infty, a_1] \times \cdots \times (-\infty, a_n] = \bigcup_{i=1}^{\infty} ((a_1 - i, a_1] \times \cdots \times (a_n - i, a_n]) \in \mathcal{F}_{\mathcal{A}^n}.$$

Tím jsme prokázali $\mathcal{B}^n\subseteq\mathcal{F}_{\mathcal{A}^n}$. Abychom dokázali opačnou inkluzi, stačí ověřit, že každá $(a_1,b_1]\times\cdots\times(a_n,b_n]$ náleží to \mathcal{B}^n . To prokážeme s využitím faktu, že \mathcal{B}^n je uzavřená na množinový rozdíl. Například pro n=2 platí, že $(a,b]\times(c,d]$ je rovno

$$((-\infty, b) \times (-\infty, d)) - ((-\infty, b) \times (-\infty, c)) - ((-\infty, a) \times (-\infty, d)).$$

Obecně lze $(a_1,b_1] \times \cdots \times (a_n,b_n]$ vyjádřit rozdílem n+1 množin ve tvaru $(-\infty,c_1] \times \cdots \times (-\infty,c_n]$, to jest $(a_1,b_1] \times \cdots \times (a_n,b_n] \in \mathcal{B}^n$. Tím jsme prokázali, že $\mathcal{F}_{\mathcal{A}^n} \subseteq \mathcal{B}^n$. Dohromady dostáváme $\mathcal{B}^n = \mathcal{F}_{\mathcal{A}^n}$.

Věta (Generování \mathcal{B}^n pomocí jednorozměrných Borelovských množin)

 \mathcal{B}^n je σ -algebra generovaná $\mathcal{A}^n = \{A_1 \times \cdots \times A_n \mid A_1, \dots, A_n \in \mathcal{B}\}.$

Důkaz.

Zřejmě platí, že každá $(-\infty, a_1] \times \cdots \times (-\infty, a_n]$ náleží do $\mathcal{F}_{\mathcal{A}^n}$, protože každá $(-\infty, a_i]$ je Borelovská množina, tedy $(-\infty, a_i] \in \mathcal{B}$. Odtud máme $\mathcal{B}^n \subseteq \mathcal{F}_{\mathcal{A}^n}$.

Vezměme libovolné $A_1,\ldots,A_n\in\mathcal{B}$. Nejprve nahlédněme, že

$$\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{i-1} \times (a,b] \times \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n-i} \in \mathcal{B}^n$$

pro každé $i=1,\ldots,n$ a $a,b\in\mathbb{R}$. To plyne z předchozího tvrzení a užitím uzavřenosti \mathcal{B}^n na sjednocení spočetně mnoha množin. Jelikož $A_i\in\mathcal{B}$ a \mathcal{B} je generovaná otevřenými intervaly, ihned dostáváme, že

$$\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{i-1} \times A_i \times \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n-i} \in \mathcal{B}^n.$$

Fakt $A_1 \times \cdots \times A_n \in \mathcal{B}^n$ tedy plyne z uzavřenosti \mathcal{B}^n na průniky n množin.

Věta (Ekvivalentní zavedení náhodného vektoru)

Mějme pravděpodobnostní prostor $\langle \Omega, \mathcal{F}, P \rangle$. Zobrazení $\mathbf{X} : \Omega \to \mathbb{R}^n$ je náhodný vektor v $\langle \Omega, \mathcal{F}, P \rangle$ právě tehdy, když $\{ \mathbf{X} \in B \} \in \mathcal{F}$ platí pro každé $B \in \mathcal{B}^n$.

Důkaz.

Pokud $\{X \in B\} \in \mathcal{F}$ platí pro každé $B \in \mathcal{B}^n$, pak je X zřejmě náhodný vektor, protože $(-\infty, a_1] \times \cdots \times (-\infty, a_n] \in \mathcal{B}^n$.

Opačnou implikaci prokážeme následovně: Pro $\mathcal{A}^n = \{B \subseteq \mathbb{R}^n \mid \{X \in B\} \in \mathcal{F}\}$ platí, že \mathcal{A}^n je σ -algebra (jde o obraz σ -algebry \mathcal{F} , Přednáška 5). Dále platí, že \mathcal{A}^n zřejmě obsahuje všechny množiny tvaru $(-\infty, a_1] \times \cdots \times (-\infty, a_n]$, protože X je náhodný vektor. Tím pádem $\mathcal{B}^n \subseteq \mathcal{A}^n$, protože \mathcal{B}^n je generovaná právě množinami v předchozím tvaru. Odtud dostáváme $\{X \in B\} \in \mathcal{F}$ pro každou $B \in \mathcal{B}^n$.

Poznámka:

• Zobecnění věty o ekvivalentním zavedení náhodné veličiny (Přednáška 5).

Rozdělení pravděpodobnosti náhodného vektoru

Definice (Rozdělení pravděpodobnosti náhodného vektoru)

Mějme pravděpodobnostní prostor $\langle \Omega, \mathcal{F}, P \rangle$ a náhodný vektor $\mathbf{X} : \Omega \to \mathbb{R}^n$ v $\langle \Omega, \mathcal{F}, P \rangle$. Pak se pravděpodobnostní míra $P_{\mathbf{X}} : \mathcal{B}^n \to \mathbb{R}$ na σ -algebře n-rozměrných Borelovských množin \mathcal{B}^n definovaná

$$P_{\boldsymbol{X}}(B) = P(\{\boldsymbol{X} \in B\}),$$

pro každou $B \in \mathcal{B}^n$

nazývá rozdělení pravděpodobnosti náhodného vektoru X.

Poznámky:

- ullet pro n=1 je $P_{oldsymbol{X}}$ rozdělení pravděpodobnosti náhodné veličiny (Přednáška 5),
- ullet pro $m{X}:\Omega o\mathbb{R}^n$ někdy píšeme $P_{m{X}}(B_1,\ldots,B_n)$ místo $P_{m{X}}(B_1 imes\cdots imes B_n)$,
- místo $\langle \Omega, \mathcal{F}, P \rangle$ a $X : \Omega \to \mathbb{R}^n$ se (obvykle) vedou úvahy jen v $\langle \mathbb{R}^n, \mathcal{B}^n, P_X \rangle$.

Borelovské funkce

Definice (Borelovská funkce)

Funkce $f: \mathbb{R}^n \to \mathbb{R}$ se nazývá Borelovská funkce (angl.: Borel function), pokud pro každé $a \in \mathbb{R}$ platí, že $\{\langle x_1, \dots, x_n \rangle \in \mathbb{R}^n \mid f(x_1, \dots, x_n) \leq a\} \in \mathcal{B}^n$.

Poznámka: Pro $f:A\to B$ a $g:B\to C$ uvažujeme **složenou funkci** $g(f):A\to C$ (někdy značíme $f\circ g$) takovou, že (g(f))(x)=g(f(x)) pro každé $x\in A$.

Speciálně pro $f\colon\Omega\to\mathbb{R}^n$ a $g\colon\mathbb{R}^n\to\mathbb{R}$ máme $g(f)\colon\Omega\to\mathbb{R}.$

Věta

Mějme pravděpodobnostní prostor $\langle \mathbb{R}, \mathcal{B}, P \rangle$. Pak platí:

- lacktriangledown X je náhodná veličina v $\langle \mathbb{R}^n, \mathcal{B}^n, P \rangle$ právě tehdy, když je X Borelovská funkce.
- ② Je-li $X: \Omega \to \mathbb{R}^n$ náhodný vektor v $\langle \Omega, \mathcal{F}, P \rangle$ a $g: \mathbb{R}^n \to \mathbb{R}$ je Borelovská funkce, pak g(X) je (jednorozměrná) náhodná veličina v $\langle \Omega, \mathcal{F}, P \rangle$.

Důkaz.

První tvrzení plyne přímo z definice náhodného vektoru.

Druhé tvrzení prokážeme takto: Vezměme libovolné $a \in \mathbb{R}$. Platí, že

$$\{g(\boldsymbol{X}) \le a\} = \{\omega \in \Omega \mid g(\boldsymbol{X}(\omega)) \le a\} = \{\omega \in \Omega \mid \boldsymbol{X}(\omega) \in \{\boldsymbol{x} \in \mathbb{R}^n \mid g(\boldsymbol{x}) \le a\}\}$$
$$= \{\omega \in \Omega \mid \boldsymbol{X}(\omega) \in \{g \le a\}\} = \{\boldsymbol{X} \in \{g \le a\}\}.$$

Jelikož g je Borelovská funkce, pak $\{g \leq a\} \in \mathcal{B}^n$. Odtud ihned dostáváme, že $\{\boldsymbol{X} \in \{g \leq a\}\} \in \mathcal{F}$, z čehož plyne, že $g(\boldsymbol{X})$ je náhodná veličina.

Důsledek: Pro Borelovskou funkci g platí $\{g \in B\} \in \mathcal{B}^n$ pro každou $B \in \mathcal{B}$.

Příklad (Projekce jsou Borelovské funkce)

Každá *i*-tá projekce π_i , to jest zobrazení $\pi_i \colon \mathbb{R}^n \to \mathbb{R}$, kde $\pi_i(x_1, \dots, x_n) = x_i$ pro všechna $x_1, \dots, x_n \in \mathbb{R}$, je Borelovská funkce, protože:

$$\{\pi_i \leq a\} = \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{i-1} \times (-\infty, a] \times \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n-i} \in \mathcal{B}^n.$$

Marginální náhodné veličiny a rozdělení pravděpodobnosti

S využitím projekcí můžeme zavést:

Definice (Marginální náhodná veličina a rozdělení pravděpodobnosti)

Mějme náhodný vektor $X:\Omega\to\mathbb{R}^n$ s rozdělením P_X , pak každá $\pi_i(X):\Omega\to\mathbb{R}$ se nazývá marginální náhodná veličina (angl.: marginal random variable) a $P_{\pi_i(X)}$ se nazývá marginální rozdělení pravděpodobnosti (angl.: marginal distribution).

Poznámka: Podle definice lze každé rozdělení $P_{\pi_i(X)} \colon \mathcal{B} \to \mathbb{R}$ vyjádřit

$$P_{\pi_i(\mathbf{X})}(B) = P(\{\pi_i(\mathbf{X}) \in B\}) = P(\{\mathbf{X} \in \{\pi_i \in B\}\}) = P_{\mathbf{X}}(\{\pi_i \in B\})$$

$$= P_{\mathbf{X}}(\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{i-1} \times B \times \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n-i}),$$

pro každou Borelovskou množinu $B \in \mathcal{B}$ pouze na základě znalosti $P_{\mathbf{X}}$. (!!)

V praxi obvykle známe $\langle \mathbb{R}^n, \mathcal{B}^n, P_{\boldsymbol{X}} \rangle$, kdežto $\langle \Omega, \mathcal{F}, P \rangle$ a $\boldsymbol{X} \colon \Omega \to \mathbb{R}^n$ jsou neznámé.

Sdružené rozdělení pravděpodobnosti

Definice (Sdružené rozdělení pravděpodobnosti)

Mějme náhodné veličiny X_1, \ldots, X_n v pravděpodobnostním prostoru (Ω, \mathcal{F}, P) . Pak se zobrazení $P_{X_1,\ldots,X_n} \colon \mathcal{B}^n \to \mathbb{R}$, pro které platí

$$P_{X_1,...,X_n}(A_1,...,A_n) = P(\{X_1 \in A_1\} \cap \cdots \cap \{X_n \in A_n\})$$

pro každé $A_1, \ldots, A_n \in \mathcal{B}$, nazývá **sdružené rozdělení pravděpodobnosti** náhodných veličin X_1, \ldots, X_n (angl.: *joint probability distribution*).

Poznámky:

- $\{X_1 \in A_1, \dots, X_n \in A_n\}$ je zkrácená notace pro $\{X_1 \in A_1\} \cap \dots \cap \{X_n \in A_n\}$.
- Pokud známe $\langle \Omega, \mathcal{F}, P \rangle$ a $X_i \colon \Omega \to \mathbb{R}$ (pro každé $i = 1, \dots, n$), pak

$$P_{X_1,\ldots,X_n}(A_1,\ldots,A_n)=P_{\boldsymbol{X}}(A_1,\ldots,A_n)=P(\{\boldsymbol{X}\in A_1\times\cdots\times A_n\}),$$

kde $X(\omega)(i) = X_i(\omega)$ pro každé $i = 1, \ldots, n$ a $\omega \in \Omega$.

Distribuční funkce

Definice (Distribuční funkce náhodného vektoru)

Mějme n-rozměrný náhodný vektor ${m X}$ s rozdělením $P_{{m X}}$. Potom zobrazení $F_{{m X}}\colon \mathbb{R}^n \to \mathbb{R}$, definované předpisem

$$F_{\boldsymbol{X}}(x_1,\ldots,x_n)=P_{\boldsymbol{X}}\big((-\infty,x_1],\ldots,(-\infty,x_n]\big)$$
 pro každé $x_1,\ldots,x_n\in\mathbb{R},$

se nazývá distribuční funkce náhodného vektoru X.

Poznámky:

- ullet Pro n=1 přechází v distribuční funkci F_X náhodné veličiny;
- distribuční funkce náhodných vektorů mají analogické vlastnosti jako distribuční funkce náhodných veličin (Přednáška 5);
- ullet pro dvourozměrný náhodný vektor $oldsymbol{X}$ s rozdělením $P_{oldsymbol{X}}$ máme

$$\lim_{x\to\infty} F_{\boldsymbol{X}}(x,y) = \lim_{x\to\infty} P_{\boldsymbol{X}} \left((-\infty,x], (-\infty,y] \right) = P_{\boldsymbol{X}} \left(\bigcup_{x=1}^{\infty} (-\infty,x] \times (-\infty,y] \right)$$
$$= P_{\boldsymbol{X}} \left(\mathbb{R} \times (-\infty,y] \right) = P_{\pi_2(\boldsymbol{X})} \left((-\infty,y] \right) = F_{\pi_2(\boldsymbol{X})}(y).$$

Marginální a sdružené distribuční funkce

Analogicky jako pro rozdělení zavádíme marginální a sdružené distribuční funkce:

Definice (Marginální distribuční funkce)

Mějme náhodný vektor $X: \Omega \to \mathbb{R}^n$ s distribuční funkcí F_X , pak se každá $F_{\pi_i(X)}$ nazývá **marginální distribuční funkce** (angl.: *marginal distribution function*).

Definice (Sdružená distribuční funkce)

Mějme náhodné veličiny X_1,\ldots,X_n v pravděpodobnostním prostoru $\langle\Omega,\mathcal{F},P\rangle$. Pak se zobrazení $F_{X_1,\ldots,X_n}\colon\mathbb{R}^n\to\mathbb{R}$, pro které platí

$$F_{X_1,...,X_n}(x_1,...,x_n) = P(\{X_1 \le x_1\} \cap \cdots \cap \{X_n \le x_n\}),$$

pro každé $x_1, \ldots, x_n \in \mathbb{R}$, nazývá sdružená distribuční funkce náhodných veličin X_1, \ldots, X_n (angl.: joint distribution function).

Diskrétní náhodné vektory

Definice (Diskrétní náhodný vektor)

Náhodný vektor $X:\Omega\to\mathbb{R}^n$ s rozdělením P_X se nazývá **diskrétní** pokud existuje spočetná množina $C\subseteq\mathbb{R}^n$ taková, že $P_X(C)=1$.

Připomeňme (Přednáška 3), že pravděpodobnostní míra $P_{\pmb{X}}\colon \mathcal{B}^n \to \mathbb{R}$ se nazývá diskrétní pokud existuje spočetně mnoho $\pmb{x}_i \in \mathbb{R}^n$ a koeficientů $a_i \in [0,1]$ (pro každé $i=1,2,\ldots$) tak, že $\sum_{i=1}^\infty a_i=1$ a $P_{\pmb{X}}$ lze psát

$$P_{\boldsymbol{X}}(A) = \sum\nolimits_{i=1}^{\infty} a_i \cdot \delta_{\boldsymbol{x}_i}(A), \qquad \qquad \text{pro každou } A \in \mathcal{B}^n,$$

kde $\delta_{x_i} \colon \mathcal{B}^n \to \mathbb{R}$ je Diracova míra koncentrovaná v x_i . Lze prokázat:

Věta (Charakterizace diskrétních náhodných vektorů)

Náhodný vektor ${m X}$ s rozdělením $P_{m X}$ je diskrétní právě tehdy, když $P_{m X}$ je diskrétní pravděpodobnostní míra.

Důkaz (veden podobně u náhodných veličin, Přednáška 5).

Tvrzení je ve tvaru ekvivalence, prokazujeme proto obě implikace.

" \Rightarrow ": Předpokládejme, že X je diskrétní náhodný vektor a označme C spočetnou podmnožinu \mathbb{R}^n pro niž $P_{\boldsymbol{X}}(C)=1$. Lze psát $C=\{\boldsymbol{x}_1,\boldsymbol{x}_2,\dots\}$, kde $\boldsymbol{x}_i\neq\boldsymbol{x}_j$ pro $i\neq j$. Z faktu $P_{\boldsymbol{X}}(C)=1$ dostáváme pro každou $B\in\mathcal{B}^n$:

$$P_{\mathbf{X}}(B) = P_{\mathbf{X}}(B \cap C) = P_{\mathbf{X}}(\bigcup_{k=1}^{\infty} (B \cap \{\mathbf{x}_k\})) = \sum_{k=1}^{\infty} P_{\mathbf{X}}(B \cap \{\mathbf{x}_k\})$$
$$= \sum_{k=1}^{\infty} P_{\mathbf{X}}(\{\mathbf{x}_k\}) \cdot \delta_{\mathbf{x}_k}(B).$$

Užitím σ -aditivity, $1 = P_{\boldsymbol{X}}(C) = P_{\boldsymbol{X}} \left(\bigcup_{k=1}^{\infty} \{\boldsymbol{x}_k\} \right) = \sum_{k=1}^{\infty} P_{\boldsymbol{X}}(\{\boldsymbol{x}_k\})$, takže za hledané koeficienty a_i lze vzít hodnoty $P_{\boldsymbol{X}}(\{\boldsymbol{x}_i\})$ a $P_{\boldsymbol{X}}$ je tím pádem diskrétní pravděpodobnostní míra.

" \Leftarrow ": Nechť $P_{\boldsymbol{X}}$ je diskrétní míra ve tvaru $P_{\boldsymbol{X}}(A) = \sum_{i=1}^{\infty} a_i \cdot \delta_{\boldsymbol{x}_i}(A)$. Pak lze za hledanou $C \subseteq \mathbb{R}^n$ vzít spočetnou $C = \{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots\}$. Zbývá ověřit $P_{\boldsymbol{X}}(C) = 1$:

$$P_{\mathbf{X}}(C) = \sum_{i=1}^{\infty} a_i \cdot \delta_{\mathbf{x}_i}(C) = \sum_{i=1}^{\infty} a_i = 1.$$

Pravděpodobnostní funkce

U diskrétních náhodných vektorů uvažujeme pravděpodobnostní funkce:

Definice (Pravděpodobnostní funkce)

Mějme diskrétní náhodný vektor $\boldsymbol{X}\colon\Omega\to\mathbb{R}^n$ s rozdělením $P_{\boldsymbol{X}}$. Zobrazení $f_{\boldsymbol{X}}\colon\mathbb{R}^n\to[0,1]$, kde $f_{\boldsymbol{X}}(x_1,\ldots,x_n)=P_{\boldsymbol{X}}(\{\langle x_1,\ldots,x_n\rangle\})$ pro každé $x_1,\ldots,x_n\in\mathbb{R}$, se nazývá **pravděpodobnostní funkce** náhodného vektoru \boldsymbol{X} .

Zjednodušení: $P_{\boldsymbol{X}}(A)$ pro diskrétní náhodný vektor \boldsymbol{X} lze vyjádřit

$$P_{\mathbf{X}}(A) = \sum_{\langle x_1, \dots, x_n \rangle \in A} f_{\mathbf{X}}(x_1, \dots, x_n).$$

Distribuční funkce $F_{\mathbf{X}}$ má tvar

$$F_{\mathbf{X}}(a_1, \dots, a_n) = \sum_{x_1 \le a_1} \dots \sum_{x_n \le a_n} f_{\mathbf{X}}(x_1, \dots, x_n)$$
$$= \sum \{ f_{\mathbf{X}}(x_1, \dots, x_n) \mid x_1 \le a_1, \dots, x_n \le a_n \}.$$

Marginální a sdružené pravděpodobnostní funkce

Definice (Marginální a sdružené pravděpodobnostní funkce)

Mějme náhodný vektor $X:\Omega\to\mathbb{R}^n$ s pravděpodobnostní funkcí f_X , pak se každá $f_{\pi_i(X)}$ nazývá **marginální pravděpodobnostní funkce**. Mějme náhodné veličiny X_1,\ldots,X_n v pravděpodobnostním prostoru $\langle\Omega,\mathcal{F},P\rangle$. Pak se zobrazení $f_{X_1,\ldots,X_n}\colon\mathbb{R}^n\to\mathbb{R}$, pro které platí

$$f_{X_1,...,X_n}(x_1,...,x_n) = P(\{X_1 = x_1\} \cap \cdots \cap \{X_n = x_n\}),$$

pro každé $x_1, \ldots, x_n \in \mathbb{R}$, nazývá sdružená pravděpodobnostní funkce náhodných veličin X_1, \ldots, X_n .

Poznámka: Marginální pravděpodobnostní funkce lze dle definice psát ve tvaru

$$f_{\pi_i(\mathbf{X})}(x) = \sum_{x_1,\dots,x_{n-1}\in\mathbb{R}} f_{\mathbf{X}}(x_1,\dots,x_{i-1},x,x_i,\dots,x_{n-1}).$$

Příklad (Výsledek házení dvěma kostkami)

Problém: Jsou vrženy dvě nefalšované šestistěnné kostky. Předpokládejme, že X označuje menší z výsledných hodnot a Y označuje větší z obou výsledných hodnot.

Úkol: Určete, jak vypadají sdružené a marginální pravděpodobnostní a distribuční funkce veličin X a Y.

$\frac{11}{36}$	6	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{1}{36}$
$ \begin{array}{c c} \hline & \frac{11}{36} \\ & 9 \\ & 36 \\ & 7 \\ & 36 \\ & 5 \\ & 36 \\ & 3 \\ & 36 \\ & 3 \\ & 36 \\ $	5	$\begin{array}{ c c }\hline 2\\ \hline 36\\ \hline \\ 1\\ \hline 36\\ \\ \end{array}$	$ \begin{array}{r} \frac{2}{36} \\ \frac{2}{36} \\ \frac{2}{36} \\ \frac{2}{36} \\ \frac{1}{36} \end{array} $	$ \begin{array}{r} \frac{2}{36} \\ \frac{2}{36} \\ \frac{2}{36} \end{array} $	$ \begin{array}{r} \frac{2}{36} \\ \frac{2}{36} \\ \hline \frac{1}{36} \end{array} $	$\frac{2}{36}$ $\frac{1}{36}$	0
$\frac{7}{36}$	$\mid 4 \mid$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	0	0
$\frac{5}{36}$	3	$\frac{2}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	0	0	0
$\frac{3}{36}$	2	$\frac{2}{36}$	$\frac{1}{36}$	0	0	0	0
$\frac{1}{36}$	1	$\frac{1}{36}$	0	0	0	0	0
		1	2	3	4	5	6
		$\frac{11}{36}$	$\frac{9}{36}$	$\frac{7}{36}$	$\frac{5}{36}$	$\frac{3}{36}$	$\frac{1}{36}$

1	6	$\frac{11}{36}$	$\frac{20}{36}$	$\frac{27}{36}$	$\frac{32}{36}$	$\frac{35}{36}$	1
$\frac{25}{36}$	5	$\frac{9}{36}$	$\frac{16}{36}$	$\frac{21}{36}$	$\frac{24}{36}$	$\frac{25}{36}$	$\frac{25}{36}$
$\frac{16}{36}$	4	$\frac{7}{36}$	$\frac{16}{36}$ $\frac{12}{36}$	$\frac{15}{36}$	$\frac{24}{36}$ $\frac{16}{36}$	$\frac{16}{36}$	$\frac{16}{36}$
$ \begin{array}{r} \frac{25}{36} \\ \frac{16}{36} \\ \frac{9}{36} \\ \frac{4}{36} \\ \frac{1}{36} \end{array} $	3	$ \begin{array}{c c} \hline & \frac{11}{36} \\ & 9 \\ \hline & 36 \\ & 7 \\ & 36 \\ & 5 \\ & 36 \\ & 3 \\ & 36 \\ & 1 \\ & 36 \\ \end{array} $	$\frac{8}{36}$	$ \begin{array}{r} \frac{27}{36} \\ \frac{21}{36} \\ \frac{15}{36} \\ \frac{9}{36} \\ \frac{4}{36} \\ \frac{1}{36} \end{array} $	$\frac{9}{36}$	$ \begin{array}{r} \frac{35}{36} \\ \frac{25}{36} \\ \frac{16}{36} \\ \frac{9}{36} \\ \frac{4}{36} \end{array} $	$ \begin{array}{r} \underline{25} \\ \underline{36} \\ \underline{16} \\ \underline{36} \\ \underline{9} \\ \underline{36} \\ \underline{4} \\ \underline{36} \\ \underline{1} \\ \underline{36} \\ \end{array} $
$\frac{4}{36}$	2	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{4}{36}$	$\frac{4}{36}$	$\frac{4}{36}$	$\frac{4}{36}$
$\frac{1}{36}$	1	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$
		1	2	3	4	5	6
		$\frac{11}{36}$	$\frac{20}{36}$	$\frac{27}{36}$	$\frac{32}{36}$	$\frac{35}{36}$	1

Příklad (Vyjádření marginálních pravděpodobnostních funkcí)

Problém: Mějme náhodné veličiny X a Y, které mají sdruženou pravděpodobnostní funkci $f_{X,Y}$ danou předpisem

$$f_{X,Y}(x,y) = \frac{1}{2^{x+1}} \qquad \qquad \text{pokud } x \geq y \text{ a } x,y \in \mathbb{N},$$

a $f_{X,Y}(x,y) = 0$ ve všech ostatních případech.

Úkol: Najděte marginální pravděpodobnostní funkce f_X a f_Y .

Řešení: Pomocí součtu prvků geometrické řady dostáváme:

$$f_X(x) = \sum_{y=1}^{\infty} f_{X,Y}(x,y) = \sum_{y=1}^{x} \frac{1}{2^{x+1}} = \frac{x}{2^{x+1}},$$

$$f_Y(y) = \sum_{x=1}^{\infty} f_{X,Y}(x,y) = \sum_{x=y}^{\infty} \frac{1}{2^{x+1}} = \sum_{x=0}^{\infty} \frac{1}{2^{x+y+1}} = \frac{1}{2^{y+1}} \sum_{x=0}^{\infty} \frac{1}{2^x}$$

$$= \frac{1}{2^{y+1}} \cdot \frac{1}{1 - \frac{1}{2}} = \frac{1}{2^{y+1}} \cdot 2 = \frac{1}{2^y}.$$

Věta (O sdruženém rozdělení diskrétních náhodných veličin)

Pokud jsou X_1, \ldots, X_n diskrétní veličiny, pak je jejich sdružené rozdělení pravděpodobnosti P_{X_1,\ldots,X_n} diskrétní.

Důkaz.

Pokud jsou všechny X_1,\ldots,X_n diskrétní náhodné veličiny, pak existují spočetné množiny $C_1,\ldots,C_n\subseteq\mathbb{R}$ tak, že $P_{X_1}(C_1)=\cdots=P_{X_n}(C_n)=1$. Tedy i jejich kartézský součin $C_1\times\cdots\times C_n$ je spočetná množina. Stačí ukázat, že hledaná spočetná podmnožina \mathbb{R}^n je právě $C_1\times\cdots\times C_n$.

Pro každou C_i položme

$$D_i = \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{i-1} \times C_i \times \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n-i}.$$

Jelikož $P_{X_1,\dots,X_n}(D_i)=P_{X_i}(C_i)=1$ pro každé $i=1,\dots,n$, dostáváme:

$$P_{X_1,\ldots,X_n}(C_1\times\cdots\times C_n)=P_{X_1,\ldots,X_n}(D_1\cap\cdots\cap D_n)=1.$$

Věta (O marginálních rozděleních diskrétního sdruženého rozdělení)

Pokud je sdružené rozdělení pravděpodobnosti P_{X_1,\dots,X_n} náhodných veličin X_1,\dots,X_n diskrétní, pak jsou všechny X_1,\dots,X_n diskrétní veličiny.

Důkaz.

Nechť je sdružené rozdělení P_{X_1,\dots,X_n} diskrétní. To jest, existuje spočetná $C\subseteq\mathbb{R}^n$ tak, že $P_{X_1,\dots,X_n}(C)=1.$ Pro libovolné $i=1,\dots,n$ položme $C_i=\{x_i\,|\,\langle x_1,\dots,x_n\rangle\in C\}.$ Označme

$$D_i = \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{i-1} \times C_i \times \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n-i}.$$

Zřejmě $C\subseteq D_i$. Z monotonie $1=P_{X_1,\dots,X_n}(C)\leq P_{X_1,\dots,X_n}(D_i)=P_{X_i}(C_i)$, náhodná veličina X_i je tedy diskrétní, protože C_i je spočetná.

Poznámky:

- Opačná implikace jako u předchozího tvrzení; dohromady dostáváme:
- $P_{X_1,...,X_n}$ je diskrétní právě tehdy, když jsou všechny X_1,\ldots,X_n diskrétní.

Absolutně spojité sdružené rozdělení

Definice (Spojitě sdružené náhodné věličiny, angl.: jointy continuous)

Náhodné veličiny X_1,\ldots,X_n jsou (absolutně) spojitě sdružené pokud existuje funkce $f_{X_1,\ldots,X_n}\colon\mathbb{R}^n\to[0,\infty)$ tak, že

$$P_{X_1,\dots,X_n}\big((-\infty,a_1]\times\cdots\times(-\infty,a_n]\big)=\int_{-\infty}^{a_n}\cdots\int_{-\infty}^{a_1}f_{X_1,\dots,X_n}(x_1,\dots,x_n)\,\mathrm{d}x_1\cdots\mathrm{d}x_n.$$

Funkce f_{X_1,\dots,X_n} se nazývá **sdružená hustota** (angl.: *joint density*). Rozdělení pravděpodobnosti P_{X_1,\dots,X_n} se nazývá (absolutně) spojité sdružené rozdělení (angl.: *jointly continuous probability distribution*).

Marginální hustoty: pro marginální veličinu X_i zavádíme:

$$f_{X_i}(x_i) = \underbrace{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}}_{x_{i-1}} f_{X_1,\dots,X_n}(x_1,\dots,x_n) \, \mathrm{d}x_1 \cdots \, \mathrm{d}x_{i-1} \, \mathrm{d}x_{i+1} \cdots \, \mathrm{d}x_n.$$

Příklad (Sdružené abolutně spojité náhodné veličiny)

Mějme náhodné veličiny X a Y se sdruženou funkcí hustoty

$$f_{X,Y}(x,y) = \frac{3}{2} \cdot x^2 \cdot (1-|y|), \qquad \text{ pokud } -1 < x < 1 \text{ a } -1 < y < 1,$$

a $f_{X,Y}(x,y) = 0$ jinak. Pro $A = \{\langle x,y \rangle \, | \, 0 < x < 1 \text{ a } 0 < y < x \}$ dostáváme

$$P_{X,Y}(A) = \int_0^1 \int_0^x f_{X,Y}(x,y) \, dy \, dx = \int_0^1 \frac{3}{2} \cdot x^2 \cdot \int_0^x 1 - |y| \, dy \, dx$$
$$= \int_0^1 \frac{3}{2} \cdot x^2 \cdot \left[y - \frac{y^2}{2} \right]_0^x \, dx = \int_0^1 \frac{3}{2} \left(x^3 - \frac{x^4}{2} \right) \, dx = \frac{3}{2} \cdot \left[\frac{x^4}{4} - \frac{x^5}{10} \right]_0^1 = \frac{9}{40}.$$

To jest,

$$P_{X,Y}(A) = P(\{\omega \in \Omega \mid 0 < X(\omega) < 1 \text{ a } 0 < Y(\omega) < X(\omega)\}) = \frac{9}{40} = 0.225.$$

Věta (O absolutně spojitých marginálních veličinách)

Mějme náhodné veličiny X a Y s absolutně spojitým sdruženým rozdělením daným sdruženou funkcí hustoty $f_{X,Y}$. Potom X a Y jsou absolutně spojité náhodné veličiny s marginálními hustotami f_X a f_Y .

Důkaz.

Pokud je sdružené rozdělení X a Y absolutně spojité, potom máme

$$P_X((a,b]) = P_{X,Y}((a,b] \times \mathbb{R}) = \int_a^b \left(\int_{-\infty}^\infty f_{X,Y}(x,y) \, \mathrm{d}y \right) \mathrm{d}x = \int_a^b f_X(x) \, \mathrm{d}x,$$

$$P_Y((a,b]) = P_{X,Y}(\mathbb{R} \times (a,b]) = \int_a^b \left(\int_{-\infty}^\infty f_{X,Y}(x,y) \, \mathrm{d}x \right) \, \mathrm{d}y = \int_a^b f_Y(y) \, \mathrm{d}y.$$

To znamená, že f_X a f_Y jsou funkce hustoty rozdělení veličin X a Y.

Poznámka: Na rozdíl od diskrétních veličin, opačné tvrzení neplatí. (!!)

Příklad (Sdružené rozdělení, které není absolutně spojité)

Uvažujme absolutně spojitou náhodnou veličinu X jejíž funkce hustoty je $f_X=\mathbf{1}_{[0,1]}$. To jest, $f_X(x)=1$ pro $x\in[0,1]$ a $f_X(x)=0$ ve všech ostatních případech.

Položme Y=X. Obě X a Y jsou absolutně spojité náhodné veličiny.

Uvažujme nyní $B = \{\langle x, x \rangle \, | \, x \in \mathbb{R} \}$. Platí

$$P\big(\{\langle X,Y\rangle\not\in B\}\big)=P\big(\{\omega\in\Omega\,|\,X(\omega)\neq Y(\omega)\}\big)=P(\{X\neq Y\})=0.$$

Kdyby X a Y měly sdruženou funkci hustoty $f_{X,Y}$, pak by platilo

$$P(\{\langle X, Y \rangle \notin B\}) = P(\{X < Y\}) + P(\{X > Y\})$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{y} f_{X,Y}(x, y) \, \mathrm{d}x \, \mathrm{d}y + \int_{-\infty}^{\infty} \int_{y}^{\infty} f_{X,Y}(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, \mathrm{d}x \, \mathrm{d}y = P_{X,Y}(\mathbb{R}^{2}) = 1,$$

což by byl spor s faktem, že $P(\{X \neq Y\}) = 0$; $P_{X,Y}$ proto není absolutně spojité.

Očekávané hodnoty

Očekávané hodnoty marginálních veličin:

- uvažujeme náhodný vektor $X:\Omega\to\mathbb{R}^n$ s rozdělením P_X ;
- marginální veličiny $\pi_i(\boldsymbol{X}) \colon \Omega \to \mathbb{R}$ pro $i = 1, \dots, n$;
- lze uvažovat očekávané hodnoty $E(\pi_i(\boldsymbol{X}))$, $E(g(\pi_i(\boldsymbol{X})))$, . . . (Přednáška 7)

Střední hodnoty marginálních veličin:

- $E(\pi_i(\boldsymbol{X}))$ je střední hodnota i-té marginální veličiny;
- ullet pokud se marginální veličina označuje X, pak označujeme $E(X)=\mu_X$.

Rozptyl marginálních veličin:

- $E((\pi_i(\boldsymbol{X}) E(\pi_i(\boldsymbol{X})))^2)$ je rozptyl i-té marginální veličiny;
- ullet pokud je marginální veličina X, píšeme $Eig((X-\mu_X)^2ig)=\sigma_X^2={
 m Var}(X)$.

Příklad (Motivace pro nezávislost náhodných veličin)

Uvažujme dvě náhodné veličiny X a Y v pravděpodobnostním prostoru $\langle \Omega, \mathcal{F}, P \rangle$. Pro libovolné $A, B \in \mathcal{B}$ platí, že $\{X \in A\} \in \mathcal{F}$ a $\{Y \in B\} \in \mathcal{F}$. Podle definice nezávislosti náhodných jevů (Přednáška 4) platí, že $\{X \in A\}$ a $\{Y \in B\}$ pokud

$$P(\{X \in A\} \cap \{Y \in B\}) = P(\{X \in A\}) \cdot P(\{Y \in B\}).$$

Pomocí sdružených a marginálních rozdělení lze předchozí vyjádřit jako

$$P_{X,Y}(A,B) = P_X(A) \cdot P_Y(B).$$

Pokud $P_Y(B)>0$, lze v důsledku nezávislosti $\{X\in A\}$ a $\{Y\in B\}$ psát

$$P(\{X \in A\} | \{Y \in B\}) = \frac{P(\{X \in A\} \cap \{Y \in B\})}{P(\{Y \in B\})} = \frac{P_{X,Y}(A, B)}{P_Y(B)} = P_X(A).$$

Rozšíření úvahy: Místo nezávislosti náhodných jevů $\{X \in A\}$ a $\{Y \in B\}$ daných dvěma konkrétními Borelovskými množinami $A, B \in \mathcal{B}$ můžeme uvažovat nezávislosti jevů pro libovolné A, B, \ldots

Nezávislost náhodných veličin

Definice (Nezávislost náhodných veličin)

Mějme náhodné veličiny X_1,\ldots,X_n v pravděpodobnostním prostoru $\langle\Omega,\mathcal{F},P\rangle$. Pak X_1,\ldots,X_n se nazývají **nezávislé** (angl.: *independent*) náhodné veličiny pokud

$$\{X_1 \le a_1\}, \dots, \{X_n \le a_n\}$$

jsou vzájemně nezávislé náhodné jevy pro každé $a_1, \ldots, a_n \in \mathbb{R}$. V opačném případě se X_1, \ldots, X_n nazývají **závislé** (angl.: dependent).

Důsledky nezávislosti: Mějme nezávislé náhodné veličiny X_1,\ldots,X_n . Pak pro sdruženou pravděpodobnostní míru P_{X_1,\ldots,X_n} platí

$$P_{X_1,...,X_n}((-\infty, a_1] \times \cdots \times (-\infty, a_n]) = P(\{X_1 \le a_1\} \cap \cdots \cap \{X_n \le a_n\})$$

= $\prod_{i=1}^n P(\{X_i \le a_i\}) = \prod_{i=1}^n P_{X_i}((-\infty, a_i]).$

V případě nezávislých veličin lze vyjádřit P_{X_1,\dots,X_n} z marginálních pravděpodobností.

Věta (Ekvivalentní zavedení nezávislosti náhodných veličin)

Náhodné veličiny X_1, \ldots, X_n v pravděpodobnostním prostoru $\langle \Omega, \mathcal{F}, P \rangle$ jsou nezávislé právě tehdy, když $\{X_1 \in A_1\}, \ldots, \{X_n \in A_n\}$ jsou vzájemně nezávislé náhodné jevy pro všechny Borelovské množiny $A_1, \ldots, A_n \in \mathcal{B}$.

Důkaz.

Prokážeme pouze netriviální implikaci pro náhodné veličiny X a Y (tvrzení pro X_1,\ldots,X_n lze získat přímočarým zobecněním). Předpokládejme, že X a Y jsou nezávislé veličiny. Položme

$$\mathcal{X} = \big\{ A \in \mathcal{B} \, | \, \{X \in A\} \text{ a } \{Y \leq b\} \text{ jsou nezávislé pro každé } b \in \mathbb{R} \big\}.$$

Dle předpokladu, $(-\infty, a] \in \mathcal{X}$ pro každé $a \in \mathbb{R}$. Navíc platí, že \mathcal{X} je uzavřená na komplement, sjednocení spočetně mnoha prvků z \mathcal{X} a $\mathbb{R} \in \mathcal{X}$ (Přednáška 4). Odtud ihned dostáváme, že \mathcal{X} je σ -algebra a je totožná s \mathcal{B} . Analogicky:

$$\mathcal{Y} = \{ B \in \mathcal{B} \mid \{ X \in A \} \text{ a } \{ Y \in B \} \text{ jsou nezávislé pro každé } A \in \mathcal{X} \}.$$

Opět máme $\mathcal{Y} = \mathcal{B}$. Pro $A, B \in \mathcal{B}$ tedy tvrzení platí, protože $A \in \mathcal{X}$, $B \in \mathcal{Y}$.

Věta (Nezávislost odvozených náhodných veličin)

Mějme náhodné veličiny X_1, \ldots, X_n v pravděpodobnostním prostoru $\langle \Omega, \mathcal{F}, P \rangle$ a Borelovské funkce g_1, \ldots, g_n . Pokud jsou X_1, \ldots, X_n nezávislé, pak jsou náhodné veličiny $g_1(X_1), \ldots, g_n(X_n)$ rovněž nezávislé.

Důkaz.

Vezměme $a_1,\ldots,a_n\in\mathbb{R}$. Stačí ukázat, že $\{g_1(X_1)\leq a_1\},\ldots,\{g_n(X_n)\leq a_n\}$ jsou vzájemně nezávislé. Pro každé $i=1,\ldots,n$ platí, že

$$\{g_i(X_i) \le a_i\} = \{X_i \in \{g_i \le a_i\}\}.$$

Dále platí, že $\{g_i \leq a_i\} \in \mathcal{B}$ pro každé $i=1,\ldots,n$. Aplikací předchozí věty tedy ihned dostáváme, že

$${X_1 \in \{g_1 \le a_1\}\}, \dots, \{X_n \in \{g_n \le a_n\}\}}$$

jsou vzájemně nezávislé náhodné jevy. Tvrzení je tedy důsledkem předchozích dvou pozorování a toho, že $a_1, \ldots, a_n \in \mathbb{R}$ byly voleny libovolně.

Sdružená pravděpodobnostní funkce a nezávislost

Věta (Nezávislost diskrétních náhodných veličin)

Diskrétní náhodné veličiny X,Y s pravděpodobnostními funkcemi f_X a f_Y jsou nezávislé právě tehdy, když $f_{X,Y}(a,b) = f_X(a) \cdot f_Y(b)$, pro libovolné $a,b \in \mathbb{R}$.

Důkaz.

Nechť X a Y jsou nezávislé veličiny, pak pro libovolné $a,b\in\mathbb{R}$ platí:

$$f_{X,Y}(a,b) = P(\{X = a\} \cap \{Y = b\})$$

= $P(\{X = a\}) \cdot P(\{Y = b\}) = f_X(a) \cdot f_Y(b)$.

Obráceně, nechť platí $f_{X,Y}(a,b) = f_X(a) \cdot f_Y(b)$ pro všechna $a,b \in \mathbb{R}$. Platí:

$$P(\{X \le a\}) \cdot P(\{Y \le b\}) = \sum_{x \le a} f_X(x) \cdot \sum_{y \le b} f_X(y)$$

= $\sum_{x \le a} (\sum_{y \le b} f_X(y) \cdot f_X(x)) = \sum_{x \le a} \sum_{y \le b} (f_X(y) \cdot f_X(x))$
= $\sum_{x \le a} \sum_{y \le b} f_{X,Y}(x,y) = P(\{X \le a\} \cap \{Y \le b\}).$

Příklad (Nezávislé diskrétní náhodné veličiny)

Mějme diskrétní náhodné veličiny X a Y se sdruženou pravděpodobnostní funkcí

$$f_{X,Y}(x,y) = \frac{x \cdot y^2}{30}$$
 pokud $x \in \{1,2,3\}$ a $y \in \{1,2\}$,

a $f_{X,Y}(x,y) = 0$ ve všech ostatních případech.

Úkol: Vyšetřete, jestli jsou X a Y nezávislé.

 $m \check{R}e\check{s}ení:$ Marginální rozdělení pravděpodobnosti veličin X a Y jsou

$$f_X(x) = \sum_{y=1}^2 \frac{x \cdot y^2}{30} = \frac{x}{30} + \frac{4x}{30} = \frac{x}{6}$$
 pro $x \in \{1, 2, 3\},$

$$f_Y(y) = \sum_{x=1}^3 \frac{x \cdot y^2}{30} = \frac{y^2}{30} + \frac{2y^2}{30} + \frac{3y^2}{30} = \frac{y^2}{5} \qquad \text{pro } y \in \{1, 2\}.$$

Zřejmě $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$ pro každé $x,y \in \mathbb{R}$, to jest X a Y jsou nezávislé.

Příklad (Nezávislé diskrétní náhodné veličiny)

Mějme diskrétní náhodné veličiny X a Y se sdruženou pravděpodobnostní funkcí

$$f_{X,Y}(x,y) = \frac{x+y}{21}, \qquad \qquad \text{pokud } x \in \{1,2,3\} \text{ a } y \in \{1,2\},$$

a $f_{X,Y}(x,y)=0$ ve všech ostatních případech.

Úkol: Vyšetřete, jestli jsou X a Y nezávislé.

 $m \check{R}e\check{s}en\acute{i}$: Marginální rozdělení pravděpodobnosti veličin X a Y jsou

$$f_X(x) = \sum_{y=1}^2 \frac{x+y}{21} = \frac{x+1}{21} + \frac{x+2}{21} = \frac{2x+3}{21}$$
 pro $x \in \{1, 2, 3\},$

$$f_Y(y) = \sum_{x=1}^3 \frac{x+y}{21} = \frac{6+3y}{21} \qquad \text{pro } y \in \{1,2\}.$$

To jest například $f_{X,Y}(1,1)=\frac{2}{21}\neq\frac{5}{49}=\frac{5}{21}\cdot\frac{9}{21}=f_X(1)\cdot f_Y(1)$, což znamená že náhodné veličiny X a Y jsou závislé.

Příklad (Rychlé vyšetření nezávislosti diskrétních náhodných veličin)

Mějme diskrétní náhodné veličiny X a Y se sdruženou pravděpodobnostní funkcí

$$f_{X,Y}(x,y) = \frac{x \cdot y^2}{13} \qquad \text{pro } \langle x,y \rangle \in \{\langle 1,1 \rangle, \langle 1,2 \rangle, \langle 2,2 \rangle\}.$$

a $f_{X,Y}(x,y) = 0$ ve všech ostatních případech.

Úkol: Vyšetřete, jestli jsou X a Y nezávislé.

 $m \check{R}e\check{s}en\acute{i}$: Marginální rozdělení pravděpodobnosti veličin X a Y jsou

$$f_X(x) = \begin{cases} \frac{5}{13} & \text{pro } x = 1, \\ \frac{8}{13} & \text{pro } x = 2, \end{cases} \qquad f_Y(y) = \begin{cases} \frac{1}{13} & \text{pro } y = 1, \\ \frac{12}{13} & \text{pro } y = 2. \end{cases}$$

Odtud $f_{X,Y}(2,1) = 0 \neq \frac{8}{169} = \frac{8}{13} \cdot \frac{1}{13} = f_X(2) \cdot f_Y(1)$, veličiny jsou *závislé*.

Obecná (kratší) úvaha: $S=\{\langle x,y\rangle\,|\,f_{X,Y}(x,y)>0\}$ není ve tvaru kartézského součinu dvou podmnožin $\mathbb R.$ V tom případě zřejmě musí existovat $x,y\in\mathbb R$ tak, že $f_{X,Y}(x,y)=0$ a $f_X(x)>0$ a $f_Y(y)>0$, což znamená, že X a Y jsou závislé.

Sdružená funkce hustoty a nezávislost

Věta (Nezávislost absolutně spojitých náhodných veličin)

Absolutně spojité náhodné veličiny X,Y se sdruženou funkcí hustoty $f_{X,Y}$ jsou nezávislé právě tehdy, když $f_{X,Y}(a,b) = f_X(a) \cdot f_Y(b)$, pro libovolné $a,b \in \mathbb{R}$.

Důkaz.

Prokazuje se užitím Fubiniho věty a faktů

$$P(\lbrace X \leq a \rbrace) \cdot P(\lbrace Y \leq b \rbrace) = \int_{-\infty}^{a} f_X(x) \, \mathrm{d}x \cdot \int_{-\infty}^{b} f_Y(y) \, \mathrm{d}y$$
$$= \int_{-\infty}^{b} \int_{-\infty}^{a} f_X(x) \cdot f_Y(y) \, \mathrm{d}x \, \mathrm{d}y,$$

$$P(\{X \le a\}) \cap P(\{Y \le b\}) = \int_{-\infty}^{b} \int_{-\infty}^{a} f_{X,Y}(x,y) \, dx \, dy.$$

Příklad (Nezávislé absolutně spojité náhodné veličiny)

Problém: Mějme absolutně spojité náhodné veličiny se sdruženou hustotou

$$f_{X,Y}(x,y) = c \cdot e^{x+y},$$
 pokud $x, y \le 0,$

a $f_{X,Y}(x,y)=0$ ve všech ostatních případech.

Úkol: Stanovte hodnotu $c \in \mathbb{R}$ a určete, jestli jsou X a Y nezávislé.

Řešení: Nejprve z vlastností funkce hustoty stanovíme konstantu $c \in \mathbb{R}$.

$$1 = P_{X,Y}(\mathbb{R}^2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c \cdot e^{x+y} \, \mathrm{d}y \, \mathrm{d}x = c \cdot \left(\int_{-\infty}^{\infty} e^{x+y} \, \mathrm{d}x \right)^2 = c.$$

Marginální funkce hustoty f_X a f_Y mají potom tvar:

$$f_X(x) = \int_{-\infty}^{\infty} e^{x+y} \, dy = e^x,$$
 $f_Y(y) = \int_{-\infty}^{\infty} e^{x+y} \, dx = e^y.$

X a Y jsou *nezávislé*, protože $f_{X,Y}(x,y)=f_X(x)\cdot f_Y(y)$ pro každé $x,y\in\mathbb{R}$.

Kovariance a korelační koeficient

Definice (Kovariance a korelační koeficient náhodných veličin)

Mějme náhodné veličiny X a Y. Potom

 $\textbf{ 0} \ \, \mathsf{Pokud} \ \, \mathsf{jsou} \ \, \mu_X \ \, \mathsf{a} \ \, \mu_Y \ \, \mathsf{st\check{r}edn\acute{i}} \ \, \mathsf{hodnoty} \ \, \mathsf{veli\check{c}in} \ \, X \ \, \mathsf{a} \ \, Y, \, \mathsf{pak}$

$$Cov(X,Y) = \sigma_{X,Y} = E((X - \mu_X) \cdot (Y - \mu_Y))$$

nazýváme kovariance náhodných veličin X a Y (angl.: covariance);

② Pokud $\sigma_X^2 > 0$ a $\sigma_Y^2 > 0$, pak

$$Cor(X, Y) = \rho_{X,Y} = \frac{Cov(X, Y)}{\sigma_X \cdot \sigma_Y}$$

se nazývá korelační koeficient veličin X a Y (angl.: correlation coefficient).

Poznámka: Pro $\boldsymbol{X}(\omega)=\langle X(\omega),Y(\omega)\rangle$ a $g(x,y)=(x-\mu_X)\cdot(y-\mu_Y)$ máme $\mathrm{Cov}(X,Y)=E(g(\boldsymbol{X})).$

Věta (Střední hodnota součinu náhodných veličin)

$$E(XY) = \mu_X \mu_Y + \rho_{X,Y} \sigma_X \sigma_Y = \mu_X \mu_Y + \text{Cov}(X, Y).$$

Důkaz.

Užitím faktu, že E je lineární operátor dostáváme:

$$E((X - \mu_X)(Y - \mu_Y)) = E(XY - \mu_X Y - \mu_Y X + \mu_X \mu_Y) =$$

$$= E(XY) - \mu_X E(Y) - \mu_Y E(X) + \mu_X \mu_Y =$$

$$= E(XY) - \mu_X \mu_Y - \mu_Y \mu_X + \mu_X \mu_Y = E(XY) - \mu_X \mu_Y.$$

Jelikož
$$\rho_{X,Y} = \frac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E(XY) - \mu_X \mu_Y}{\sigma_X \sigma_Y}$$
, vyjádřením $E(XY)$ dostáváme:

 $E(XY) = \mu_X \mu_Y + \rho_{X,Y} \sigma_X \sigma_Y.$

Důsledek: Střední hodnota součinu XY je rovna součinu středních hodnot X a Y zvětšenému o kovarianci $Cov(X,Y) = \rho_{X,Y}\sigma_X\sigma_Y$.

Příklad (Výpočet korelačního koeficientu dvou náhodných veličin)

Mějme diskrétní náhodné veličiny se sdruženou pravděpodobnostní funkcí

$$f_{X,Y}(x,y) = \frac{x+2y}{18},$$
 pro $x \in \{1,2\}$ a $y \in \{1,2\},$

 $f_{X,Y}(x,y)=0$ v ostatních případech. Střední hodnota a rozptyl marginálních náhodných veličin jsou následující:

$$\mu_X = \frac{14}{9}, \qquad \qquad \sigma_X^2 = \frac{20}{81}, \qquad \qquad \mu_Y = \frac{29}{18}, \qquad \qquad \sigma_Y^2 = \frac{77}{324}.$$

Kovarianci veličin X a Y stanovíme pomocí vztahu z předchozího tvrzení

$$Cov(X,Y) = \sum_{x=1}^{2} \sum_{y=1}^{2} xy \cdot \frac{x+2y}{18} - \frac{14}{9} \cdot \frac{29}{18} = -\frac{1}{162}.$$

Potom má korelační koeficient $\rho_{X,Y}$ hodnotu

$$\rho_{X,Y} = \frac{-1/162}{\sqrt{(20/81) \cdot (77/324)}} \approx -0.025.$$

Příklad (Kovariance nezávislých diskrétních veličin)

Problém: Mějme nezávislé diskrétní náhodné veličiny X a Y.

Úkol: Stanovte kovarianci X a Y.

 $\check{\mathbf{R}}$ ešení: S využitím faktu $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$ máme:

$$E(u(X) \cdot v(Y)) = \sum_{x \in \mathbb{R}} \sum_{y \in \mathbb{R}} u(x) \cdot v(y) \cdot f_{X,Y}(x,y) =$$

$$= \sum_{x \in \mathbb{R}} \sum_{y \in \mathbb{R}} u(x) \cdot v(y) \cdot f_X(x) \cdot f_Y(y) =$$

$$= \sum_{x \in \mathbb{R}} u(x) \cdot f_X(x) \cdot \sum_{y \in \mathbb{R}} v(y) \cdot f_Y(y) =$$

$$= E(u(X)) \cdot E(v(Y)).$$

To jest, ve speciálním případě:

$$Cov(X,Y) = E((X - \mu_X)(Y - \mu_Y)) = E(X - \mu_X) \cdot E(Y - \mu_Y) = 0 \cdot 0 = 0.$$

 ${\bf D}$ ůsledek: Pokud jsou X a Y nezávislé, jejich kovariance je nulová.

Pozor: Opačné tvrzení neplatí: existují závislé veličiny s nulovou kovariancí. (!!)

Lineární regresní funkce

- Vyšetřování (lineární) závislosti jedné náhodné veličiny na druhé;
- jako v případě výběrů (Přednáška 2), ale pracujeme s náhodnými veličinami.

Nalezení regresní přímky ve smyslu metody nejmenších čtverců

Předpokládejme, že máme náhodné veličiny X a Y.

- Uvažujeme body $\langle x,y\rangle$ v prostoru (s jejich pravděpodobnostmi);
- 2 speciálně lze uvažovat bod $\langle \mu_X, \mu_Y \rangle$ daný středními hodnotami X a Y;
- **3** přímky procházející bodem $\langle \mu_X, \mu_Y \rangle$ splňují $y \mu_Y = b \cdot (x \mu_X)$;
- uvažujme bod $\langle x_0, y_0 \rangle$, čtverec jeho vzdálenosti od přímky $y = b \cdot (x \mu_X) + \mu_Y$ je $(y_0 \mu_Y b \cdot (x_0 \mu_X))^2$.
- Očekávaná střední vzdálenost bodů od přímky je tedy

$$E((Y - \mu_Y - b \cdot (X - \mu_X))^2).$$

• Hledáme proto $b \in \mathbb{R}$, které minimalizuje $K(b) = E((Y - \mu_Y - b \cdot (X - \mu_X))^2)$.

Vyjádření lineární regresní funkce

Zjednodušením tvaru funkce K a vyjádřením pomocí korelačního koeficientu:

$$K(b) = E((Y - \mu_Y - b \cdot (X - \mu_X))^2) =$$

$$= E((Y - \mu_Y)^2 - 2b(X - \mu_X)(Y - \mu_Y) + b^2(X - \mu_X)^2) =$$

$$= \sigma_Y^2 - 2b\sigma_{X,Y} + b^2\sigma_X^2 = \sigma_Y^2 - 2b\rho_{X,Y}\sigma_X\sigma_Y + b^2\sigma_X^2.$$

První derivace funkce K je následující:

$$K'(b) = -2\rho_{X,Y}\sigma_X\sigma_Y + 2b\sigma_X^2$$

To znamená, že hledané minimum je $b=rac{
ho_{X,Y}\cdot\sigma_{Y}}{\sigma_{X}}$ (platí $K''(b)=2\sigma_{X}^{2}>0$).

Věta (Tvar regresní přímky ve smyslu metody nejmenších čtverců)

$$y = \mu_Y + \rho_{X,Y} \cdot \frac{\sigma_Y}{\sigma_X} \cdot (x - \mu_X).$$

Příklad (Lineární regresní funkce)

Mějme diskrétní náhodné veličiny se sdruženou pravděpodobnostní funkcí

$$f_{X,Y}(x,y) = \frac{x+2y}{18},$$
 pro $x \in \{1,2\}$ a $y \in \{1,2\},$

 $f_{X,Y}(x,y) = 0$ v ostatních případech.

Z předchozího příkladu víme, že

$$\mu_X = \frac{14}{9}, \qquad \qquad \sigma_X^2 = \frac{20}{81}, \qquad \qquad \mu_Y = \frac{29}{18}, \qquad \qquad \sigma_Y^2 = \frac{77}{324}.$$

Dále máme stanovenu hodnotu korelačního koeficientu:

$$\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sqrt{(20/81) \cdot (77/324)}} \approx -0.025.$$

Lineární regresní funkce je proto ve tvaru:

$$y = \mu_Y + \rho_{X,Y} \cdot \frac{\sigma_Y}{\sigma_X} \cdot (x - \mu_X) = \frac{14}{9} + \frac{-0.025\sqrt{77/324}}{\sqrt{20/81}} \cdot \left(x - \frac{14}{9}\right).$$

Podmíněná rozdělení

S využitím podmíněné pravděpodobnosti (Přednáška 4) lze psát

$$P(\{X \in A\} | \{Y \in B\}) = \frac{P(\{X \in A\} \cap \{Y \in B\})}{P(\{Y \in B\})} = \frac{P_{X,Y}(A, B)}{P_Y(B)}.$$

To nás motivuje k zavedení následujícího pojmu:

Definice (Podmíněné rozdělení náhodné veličiny)

Mějme náhodné veličiny X a Y se sdruženým rozdělením pravděpodobnosti $P_{X,Y}$. Pak pravděpodobnostní míra $P_{X|\{Y\in B\}}$ daná pro každou $A\in\mathcal{B}$ předpisem

$$P_{X|\{Y \in B\}}(A) = \frac{P_{X,Y}(A,B)}{P_Y(B)}$$
 pokud $P_Y(B) > 0$,

je **podmíněné rozdělení** pravděpodobnosti náhodné veličiny X za předpokladu, že náhodná veličina Y nabude hodnoty z $B \in \mathcal{B}$, angl.: conditional distribution.

Pojmy související s podmíněným rozdělením

Pro $P_{X|\{Y\in B\}}$ je $F_{X|\{Y\in B\}}$ podmíněná distribuční funkce ve tvaru

$$F_{X|\{Y\in B\}}(a) = P_{X|\{Y\in B\}}((-\infty, a]) = P(\{X \le a\}|\{Y \in B\})$$
.

Pokud je X diskrétní, pak **podmíněná pravděpodobnostní funkce** je ve tvaru

$$f_{X|\{Y\in B\}}(x) = P_{X|\{Y\in B\}}(\{x\}) = P(\{X=x\}|\{Y\in B\})$$
.

Pokud je $P_{X|\{Y\in B\}}$ absolutně spojitá pravděpodobnostní míra s hustotu f, pak se f označuje $f_{X|\{Y\in B\}}$ a nazývá se **podmíněná funkce hustoty**. V důsledku:

$$P_{X|\{Y\in B\}}(A) = \int_A f_{X|\{Y\in B\}} dm$$
.

Pokud je $P_Y(B)>0$, podmíněná střední hodnota X za předpokladu $\{Y\in B\}$ je

$$E(X|\{Y\in B\}) = \frac{E(X\cdot \mathbf{1}_{\{Y\in B\}})}{P_Y(B)}\;, \qquad \text{kde } \mathbf{1}_{\{Y\in B\}} \text{ je indikátorová funkce}.$$

Příklad (Podmíněné rozdělení pravděpodobnosti)

Mějme diskrétní náhodné veličiny X a Y se sdruženou pravděpodobnostní funkcí

$$f_{X,Y}(x,y) = \frac{x+y}{21}$$
 pro $x \in \{1,2,3\}$ a $y \in \{1,2\}$,

 $f_{X,Y}(x,y) = 0$ ve všech ostatních případech.

Marginální pravděpodobnostní funkce f_X a f_Y jsou následující:

$$f_X(x) = \frac{2x+3}{21} \text{ pro } x \in \{1,2,3\}; \qquad f_Y(y) = \frac{6+3y}{21} \text{ pro } y \in \{1,2\}.$$

Podmíněnou pravděpodobnostní funkci $f_{X|\{Y=y\}}$ lze vyjádřit

$$f_{X|\{Y=y\}}(x) = P(\{X=x\}|\{Y=y\}) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{(x+y)/21}{(6+3y)/21} = \frac{x+y}{6+3y}.$$

Například tedy máme

$$P({X \ge 2}|{Y = 2}) = f_{X|{Y=2}}(2) + f_{X|{Y=2}}(3) = \frac{4}{12} + \frac{5}{12} = \frac{3}{4}.$$

Příklad (Podmíněné střední hodnoty)

Problém: Uvažujme náhodné veličiny X a Y z předchozího příkladu.

Úkol: Stanovte podmíněnou střední hodnotu X za předpokladu, že $\{Y=2\}$.

 Řešení: Jelikož je X diskrétní, existuje spočetná $C\subseteq\mathbb{R}$ tak, že

$$E(X|\{Y \in B\}) = \frac{E(X \cdot \mathbf{1}_{\{Y \in B\}})}{P_Y(B)} = \frac{1}{P_Y(B)} \sum_{x \in C} x \cdot P(\{X \cdot \mathbf{1}_{\{Y \in B\}} = x\})$$
$$= \sum_{x \in C} x \cdot \frac{P(\{X = x\} \cap \{Y \in B\})}{P_Y(B)} = \sum_{x \in C} x \cdot f_{X|\{Y \in B\}}(x).$$

Speciálně pro $B = \{y\}$ dostáváme:

$$E(X|\{Y=y\}) = \sum_{x \in C} x \cdot f_{X|\{Y=y\}}(x) = \sum_{x \in C} x \cdot \frac{f_{X,Y}(x,y)}{f_Y(y)}.$$

Případě předchozího příkladu pro y=2 dostáváme:

$$E(X|\{Y=2\}) = 1 \cdot f_{X|\{Y=2\}}(1) + 2 \cdot f_{X|\{Y=2\}}(2) + 3 \cdot f_{X|\{Y=2\}}(3) = \frac{13}{6}.$$

Příklad (Jeden politicky nekorektní příklad)

Problém: Malý podnik zaměstnává 100 mužů a 100 žen a výplaty všech zaměstnanců jsou buď $20\,000$ Kč nebo $30\,000$ Kč nebo $50\,000$ Kč. Muži zaměstnaní v podniku mají následující výplaty: 20 z nich má $20\,000$ Kč, 20 z nich má $30\,000$ Kč a zbývajících 60 má $50\,000$ Kč. Průměrný plat muže v podniku je tedy:

$$\frac{20 \cdot 20\,000 + 20 \cdot 30\,000 + 60 \cdot 50\,000}{100} = 40\,000 \text{ Kč.}$$

Ženy zaměstnané v podniku vydělávají následovně: 60 vydělává $20\,000$, 20 vydělává $30\,000$ a zbývajících 20 vydělává $50\,000$, což dává průměrnou hodnotu

$$\frac{60 \cdot 20\,000 + 20 \cdot 30\,000 + 20 \cdot 50\,000}{100} = 28\,000 \text{ Kč.}$$

Otázka: Jak máme tento výsledek interpretovat?

Odpověď statistika: Nijak. (Alespoň ne bez dodatečné informace.)

Příklad (Simpsonův paradox)

Pokud budeme uvažovat *dodatečnou dimenzi dat* (počet let v zaměstnání), situace z předchozího příkladu může vypadat následovně:

	výplata	1 rok	5 let	celkem
	20 000	15	5	20
muži	30 000	5	15	20
	50 000	0	60	60
průměr		22500	44375	40 000
	20 000	60	0	60
ženy	30 000	5	15	20
	50 000	5	15	20
průměr		23750	45000	28000

Ačkoliv mají muži vyšší celkovou průměrnou mzdu než ženy, v rámci obou skupin se stejnou dobou praxe mají ženy vyšší průměrnou mzdu než muži.

Příklad (Generování pseudonáhodných čísel ruletovovou metodou)

Problém: Máme diskrétní náhodnou veličinu X takovou, že $P_X(C)=1$ pro konečnou množinu $C\subseteq\mathbb{R}$. Úkolem je generovat (na počítači) pseudonáhodná čísla, která mají stejné rozdělení, jako veličina X (simulace náhodné veličiny X).

Většina programovacích jazyků disponuje pouze funkcí pro generování pseudonáhodných čísel odpovídající (diskrétnímu) uniformnímu rozdělení.

Pokud pro konečnou $C\subseteq\mathbb{R}$ platí $P_X(C)=1$, lze použít následující *princip ruletového výběru*:

- ① Označme $C = \{x_1, \ldots, x_k\}$ tak, že $f_X(x_i) > 0$ a $x_1 < x_2 < \cdots < x_k$;
- $oldsymbol{2}$ vygenerujeme uniformní pseudonáhodné číslo $p \in [0,1];$
- ③ najdeme nejmenší index $i=1,\ldots,k$ splňující podmínku $p\leq \sum_{n=1}^i f_X(x_n)$;
- vrátíme hodnotu x_i jako výsledek.
- Otázka: Jak postupovat pro obecná X?

Věta (O inverzní transformaci)

Mějme náhodnou veličinu X s rozdělením U(0,1). Pak pro libovolnou distribuční funkci F platí, že náhodná veličina $F^-(X)$ má distribuční funkci F.

Důkaz.

Distribuční funkce náhodné veličiny $F^-(X)$ je ve tvaru

$$F_{F^-(X)}(a) = P_{F^-(X)}\big((-\infty, a]\big) = P(\{F^-(X) \le a\}) = P(\{X \in \{F^- \le a\}\}).$$

Pokud si nyní uvědomíme, že $\{F^- \leq a\} = \{x \in \mathbb{R} \,|\, F^-(x) \leq a\}$ a využijeme faktu, že $x \leq F(a)$ platí právě tehdy, když $F^-(x) \leq a$ (Přednáška 7), pak

$$\{F^- \le a\} = \{x \in \mathbb{R} \mid F^-(x) \le a\} = \{x \in \mathbb{R} \mid x \le F(a)\} = (-\infty, F(a)].$$

Dosazením do předchozí rovnosti a využitím faktu, že X má uniformní rozdělení U(0,1), dostáváme:

$$F_{F^{-}(X)}(a) = P(\{X \in \{F^{-} \le a\}\}) = P(\{X \in (-\infty, F(a)]\})$$

= $P(\{0 \le X \le F(a)\}) = F(a).$

Příklad (Použití inverzní transformace)

Předchozí věta dává následující postup generování pseudonáhodných čísel:

- vygenerujeme uniformní pseudonáhodné číslo $x \in [0,1]$;

Použitelné v případech, kdy F^- má jednoduché explicitní vyjádření.

Poznámka: Nutné mít kvalitní generátor uniformních (pseudo)náhodných čísel.

Implementace ve standardních knihovnách C99 (ISO/IEC 9899)

```
#include <stdlib.h>
double random_u01 (void) {
    /* 0x7FFFFFFF = 2<sup>31</sup> - 1 */
    return random () / ((double) 0x7FFFFFF);
}
```

Příklad (Pseudonáhodná čísla z exponenciálního rozdělení)

Mějme náhodnou veličinu X, která má exponenciální rozdělení s parametrem $\mu=\theta.$ Pak kvantilová funkce F_X^- náhodné veličiny X je ve tvaru:

$$F_X^-(p) = -\theta \cdot \ln(1-p), \qquad \qquad \operatorname{pro} \ p \in [0,1).$$

Příklad: Pro X s parametrem $\theta=5$ a odpovídající F_X^- použijeme předchozí postup:

Věta (Základní věta simulace náhodných veličin)

Mějme absolutně spojitou náhodnou veličinu X s hustotou f_X a uvažujme dvourozměrný absolutně spojitý náhodný vektor \boldsymbol{X} jehož hustota $f_{\boldsymbol{X}}$ je

$$f_{\boldsymbol{X}}(x,y) = \begin{cases} 1 & \textit{pokud } 0 < y < f_X(x), \\ 0 & \textit{jinak}. \end{cases}$$

Pak $f_X=f_{\pi_1(\boldsymbol{X})}$, to jest f_X je marginální hustota \boldsymbol{X} . Pokud je navíc f_X shora omezená hodnotou nějakého $m\in\mathbb{R}$ a f_X nabývá nenulových hodnot pouze na intervalu (a,b), pak platí, že

$$P(\{X \le x\}) = P(\{U \le x\} | \{V \le f_X(U)\}),$$

kde U má rozdělení U(a,b) a V má rozdělení U(0,m).

Důkaz (začátek).

První část tvrzení je triviální, protože:

$$f_{\pi_1(\mathbf{X})}(x) = \int_{-\infty}^{\infty} f_{\mathbf{X}}(x, y) \, \mathrm{d}y = \int_{0}^{f_X(x)} 1 \, \mathrm{d}y = f_X(x).$$

Důkaz (dokončení).

Rozepsáním podmíněné pravděpodobnosti z druhé části tvrzení dostáváme

$$P(\{U \le x\} | \{V \le f_X(U)\}) = \frac{P(\{U \le x\} \cap \{V \le f_X(U)\})}{P(\{V \le f_X(U)\})}.$$

Jelikož $f_{U,V}(u,v)$ má na $(a,b)\times (0,m)$ konstantní nenulovou hodnotu:

$$\frac{P(\{U \le x\} \cap \{V \le f_X(U)\})}{P(\{V \le f_X(U)\})} = \frac{\int_a^x \int_0^{f_X(u)} f_{U,V}(u,v) \, \mathrm{d}v \, \mathrm{d}u}{\int_a^b \int_0^{f_X(u)} f_{U,V}(u,v) \, \mathrm{d}v \, \mathrm{d}u} = \frac{\int_a^x \int_0^{f_X(u)} 1 \, \mathrm{d}v \, \mathrm{d}u}{\int_a^b \int_0^{f_X(u)} 1 \, \mathrm{d}v \, \mathrm{d}u}.$$

Užitím pozorování z první části tvrzení dostáváme:

$$\frac{\int_{a}^{x} \int_{0}^{f_{X}(u)} 1 \, dv \, du}{\int_{a}^{b} \int_{0}^{f_{X}(u)} 1 \, dv \, du} = \frac{\int_{a}^{x} f_{X}(u) \, du}{\int_{a}^{b} f_{X}(u) \, du} = \frac{\int_{a}^{x} f_{X}(u) \, du}{1} = \int_{a}^{x} f_{X}(u) \, du = P(\{X \le x\}).$$

Aplikace věty: Lze generovat pseudonáhodná čísla pouze pomocí funkce hustoty f_X a generátoru uniformních pseudonáhodných čísel. (!!)

Implementace

Algoritmus (generování pseudonáhodných čísel pomocí funkce hustoty)

```
(defun density-random (f a b m)
  "Generate random number from interval (A,B) according to
   distribution with density F bounded by [0,M]."
  (loop
    for u := (+ a (random (float (- b a) 1L0)))
    for v := (random (float m 1L0))
    when (<= v (funcall f u)) do
        (return u)))</pre>
```

Poznámka:

- ullet používá se v případech, kdy $F_{\scriptscriptstyle X}^-$ nelze jednoduše vyjádřit;
- ullet metoda inverzní funkce se naopak používá, pokud lze F_X^- jednoduše počítat.

Přednáška 8: Závěr

Pojmy:

- náhodný vektor, vícerozměrné Borelovské jevové pole,
- sdružené rozdělení pravděpodobnosti, marginální rozdělení pravděpodobnosti
- nezávislost náhodných veličin, kovariance, korelační koeficient
- podmíněná rozdělení, inverzní transformace, pseudonáhodná čísla

Použité zdroje:

- Capinski M., Zastawniak T. J.: *Probability Through Problems* Springer 2001, ISBN 978–0–387–95063–1.
- Gentle J. E.: Random Number Generation and Monte Carlo Methods Springer 2004, ISBN 978-0-387-00178-4.
- Hogg R. V., Tanis E. A.: *Probability and Statistical Inference* Prentice Hall; 7. vydání 2005, ISBN 978-0-13-146413-1.