Effects of Epidemiological Structure on the Transient Evolution of HIV Virulence

Name1 Surname^{1,2,3}, Name2 Surname^{2,3}, Name3 Surname^{2,3,3}, Name4 Surname², Name5 Surname^{2,1}, Name6 Surname^{2,1}, Name7 Surname^{1,2,3,*}, with the Lorem Ipsum Consortium¹

- 1 Affiliation Dept/Program/Center, Institution Name, City, State, Country
- 2 Affiliation Dept/Program/Center, Institution Name, City, State, Country
- 3 Affiliation Dept/Program/Center, Institution Name, City, State, Country
- These authors contributed equally to this work.
- ‡These authors also contributed equally to this work.
- ¤Current Address: Dept/Program/Center, Institution Name, City, State, Country †Deceased
- ¶Membership list can be found in the Acknowledgments section.
- * corresponding author@institute.edu

Abstract

The evolutionary dynamics of parasite virulence over the course of an emerging epidemic have important implications both for our basic understanding of epidemiological dynamics and, potentially, for the outcomes of public health interventions. In general changes in fitness landscapes over the course of an epidemic will select for higher virulence during the early, exponential-growth phase of the epidemic, but quantitative outcomes can depend sensitively on biological details and the structure of mathematical models used to capture them. Fraser, Shirreff, and co-workers have proposed a series of models for eco-evolutionary dynamics of HIV that are relatively detailed in their portrayal of the tradeoffs between transmission and virulence (mediated by set-point viral load, SPVL) and their heritability between hosts. However, these models use very simple implicit representations of the transmission process that ignore the partnership dynamics that previous research has found to be critical in predicting epidemics of sexually transmitted diseases. We explore models that combine HIV virulence tradeoffs with a range of epidemiological structures, modeling partnership formation and dissolution and allowing for individuals to transmit disease outside of partnerships. We assess summary statistics such as the peak value of virulence (SPVL) and the time at which the peak occurs across all models and across a Latin hypercube sample that captures a realistic range of partnership dynamic parameters for sub-Saharan Africa. In order to account for the different interpretations of parameters across model structures, we scale all parameter sets to constrain the simulated epidemic growth rate to be identical, matching a realistic baseline value. Our primary result is that, for this particular model setting, the simplest random-mixing structure is actually the best approximation to the most realistic model; this surprising outcome occurs because the dominance of extra-pair contact in the realistic model tends to mask the effects of partnership structure.

PLOS 1/8

Author Summary

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur eget porta erat. Morbi consectetur est vel gravida pretium. Suspendisse ut dui eu ante cursus gravida non sed sem. Nullam sapien tellus, commodo id velit id, eleifend volutpat quam. Phasellus mauris velit, dapibus finibus elementum vel, pulvinar non tellus. Nunc pellentesque pretium diam, quis maximus dolor faucibus id. Nunc convallis sodales ante, ut ullamcorper est egestas vitae. Nam sit amet enim ultrices, ultrices elit pulvinar, volutpat risus.

Introduction

The evolution of pathogen virulence is a fundamental process in evolutionary biology, of both theoretical and (potentially) practical importance. The trade-off theory [1] which postulates that parasite virulence can be explained as the long-term evolutionary outcome of a saturating relationship between parasite clearance rate and transmission rate — has been criticized [2,3], but has also been successfully applied in a variety of host-pathogen systems [4–7]. One particularly interesting application of these ideas is the work by Fraser et al. showing that HIV appears to satisfy the prerequisites of the tradeoff theory: in a study of discordant couples (i.e. long-term sexual partnerships with one infected and one uninfected partner), HIV virulence as measured by the rate of progression to AIDS was both heritable and covaried with the set-point viral load (i.e., the characteristic virus load measured in blood during the intermediate stage of infection), which in turn predicted the probability of within-couple transmission [8,9]. Subsequent studies [10,11] used these data to parameterize mechanistic models of HIV virulence evolution, suggesting that HIV invading a novel population would initially evolve increased virulence, peaking after approximately [XXX] years and then declining slightly to a long-stable virulence level.

The work of Shirreff et al. [10], and particularly the predicted transient peak in HIV virulence midway through the epidemic, highlights the importance of interactions between epidemiological and evolutionary factors [12, 13]. However, despite the attention to mechanistic detail at the individual or physiological level, the epidemiological structures used in these models are relatively simple.

17

21

23

31

As we discuss in detail below, the existing models of HIV eco-evolutionary dynamics either use implicit models that incorporate the average effects of within-couple sexual contact — without representing the explicit dynamics of pair formation and dissolution or accounting for extra-partnership contact — or use an agent-based formulation with parameters that effectively lead to random mixing among infected and uninfected individuals. Here we explore the effects of incorporating *explicit* epidemiological structure in eco-evolutionary models.

We add complexity to the epidemiological model following the general approach of Champredon et al. [14]; individuals join and leave partnerships at a specified rate, and can have sexual contact both within and outside of established partnerships. At the same time, our analysis somewhat simplifies the models of Shirreff et al. [10], for computational tractability; we check that our qualitative results are not sensitive to these simplifications. In order to explore how virulence evolution depends on epidemiological structure, we consider a series of models with increasing levels of complexity. In order to avoid dependence of the results on a particular set of parameters — as we explain below, finding matching sets of parameters across models with widely differing epidemiological structures is challenging — we evaluate our models across a wide range of parameters, again following Champredon et al. [14] in using a Latin hypercube design. For each model run, we compute a set of metrics (peak

PLOS 2/8

virulence, timing of virulence peak, equilibrium virulence) that summarize the evolutionary trajectory of a simulated HIV epidemic.

Materials and Methods

As our primary goal is to explore how different epidemiological structures (i.e. partnership dynamics and contact structures) affect our conclusions about the evolution of virulence, our models use a simplified description of within-host dynamics and heritability derived from Shirreff $et\ al.$'s multi-strain evolutionary model [10]. Like Shirreff $et\ al.$, we use a simple susceptible-infected-susceptible demographic formulation; rather than modeling birth and death (or more specifically, recruitment into the sexually active population and death), we assume that whenever an individual dies from infection, another enters the susceptible compartment.

Infection dynamics

Like Shirreff et al. [10], we focus on the evolution of mean \log_{10} set-point viral load, SPVL (which we denote as α), rather than virulence (i.e. rate of progression to AIDS) itself. In contrast to Shirreff et al., we use a single-stage disease model instead of accounting explicitly for progression through the three main stages of HIV infection (primary, asymptomatic, and disease), and we use a simple exponentially distributed infectious period instead of a more realistic Weibull-distributed infectious period. We account for varying transmission rates and durations of each disease stage by summing the durations of three stages (again based on Shirreff et al.'s model) and taking the duration-weighted average of transmission rates of three stages. Thus the within-couple transmission rate, β , for our models is given by:

$$\beta(\alpha) = \frac{D_P \beta_P + D_A(\alpha) \beta_A(\alpha) + D_D \beta_D}{D_P + D_A(\alpha) + D_D}$$
(1)

53

62

63

where the duration of infection $(D_P \text{ and } D_D)$ and rate of transmission $(\beta_P \text{ and } \beta_D)$ of the **P**rimary and **D**isease stages of infection are independent of the host's SPVL. Following Shirreff *et al.*, the duration of infection (D_A) and rate of transmission (β_A) for the **A**symptomatic stage are Hill functions of the SPVL:

$$D_{A}(\alpha) = \frac{D_{max}D_{50}^{D_{k}}}{V_{\alpha}^{D_{k}} + D_{50}^{D_{k}}},$$

$$\beta_{A}(\alpha) = \frac{\beta_{max}V_{\alpha}^{\beta_{k}}}{V_{\alpha}^{\beta_{k}} + \beta_{50}^{\beta_{k}}},$$
(2)

where $V_{\alpha} = 10^{\alpha}$. The uncoupled and extra-couple transmission rates are scaled by multiplying the within-couple transmission rate β by the contact ratios c_u/c_w and c_e/c_w .

Mutation

Like Shirreff et al. [10] we incorporate a between-host mutation process in the SPVL, but simplify Shirreff et al.'s evolutionary model slightly by using a one-to-one genotype-phenotype mapping. The mutational process in our model is directly taken from Shirreff et al.. Over the course of infection, mutation occurs within the host. However, it is assumed that SPVL of an infected individual is determined by the SPVL at the time of infection for simplicity (and is not further affected by within-host

PLOS 3/8

mutation). Instead, the mutational effect takes place when an infected individual transmits the virus to a susceptible individual. First, the distribution of \log_{10} SPVL is discretized into a vector:

$$\alpha_i = (\alpha_{max} - \alpha_{min}) \frac{(i-1)}{n-1} + \alpha_{min} \qquad i = 1, 2, 3, \dots n.$$
 (3)

We have experimented with varying degrees of discretization in the strain distribution (i.e., values of n); in our model runs comparing results with Shirreff et~al.~[10] (Figure ??) we use n=51 (i.e. a bin width of $0.05~\log_{10}$ SPVL for α), but we find only small differences when reducing n to 21 (bin width $0.25~\log_{10}$ SPVL), which we use for all other simulations.

We construct an n by n mutational matrix, M — which is multiplied with the transmission term — so that M_{ij} is the probability that a newly infected individual will have $\log_{10} \text{ SPVL}$ of α_j given that the infector has $\log_{10} \text{ SPVL}$ of α_i . Finally, the probabilities are normalized so that each row sums to 1:

$$M_{ij} = \frac{\Phi(\alpha_j + d/2; i) - \Phi(\alpha_j - d/2; i)}{\Phi(\alpha_{max} + d/2; i) - \Phi(\alpha_{min} - d/2; i)},$$
(4)

where $\Phi(x;i)$ is the Gaussian cumulative distribution function with mean α_i and variance of σ_M^2 , and $d = (\alpha_{max} - \alpha_{min})/(n-1)$. Transmission rate and disease induced mortality rates are discretized into a vector as well:

$$\beta_i = \beta(\alpha_i)$$

$$\lambda_i = \frac{1}{D_P + D_A(\alpha_i) + D_D}$$
(5)

Contact structure and partnership dynamics

We developed six multi-strain evolutionary models, designed to cover a gamut between Champredon textet al.'s relatively realistic [14] and Shirreff et al.'s relatively simplistic [10] epidemiological structures, each of which is based on different assumptions regarding contact structure and partnership dynamics. Specifically, we focus on the effects of the assumptions of (1) instantaneous vs. non-instantaneous partnership formation and (2) zero vs. positive extra-partnership sexual contact and transmission on the evolution of mean \log_{10} SPVL.

Our first four models consider explicit partnership dynamics and are based on Champredon textet al.'s model [14]. Models 1 and 2 assume non-instantaneous partnership formation (i.e. individuals spend some time uncoupled, outside of partnerships) and consist of five states that are classified by infection status and partnership status. S is the number of single (uncoupled) susceptible individuals, and I is the number of single infected individuals. SS is the number of susceptible-susceptible couples, SI is the number of serodiscordant (susceptible-infected) couples, and II is the number of concordant positive (infected-infected) couples. Model 1 includes extra-partnership contact (with both uncoupled individuals and individuals in other partnerships) whereas model 2 only considers within-couple transmission. Models 3 and 4 assume instantaneous partnership formation and thus consist of only the three partnered states: SS, SI, and II. Parallel to model 1 and 2, model 3 includes extra-partnership contact (now only with individuals in other partnerships, since uncoupled individuals don't exist in this model) and model 4 only considers within-couple transmission.

In contrast, models 5 and 6 are not explicitly structured. Model 5 is an implicit serial monogamy model based on the epidemiological model used by Shirreff *et al.* [10].

PLOS 4/8

It is actually a random mixing model that consist of only two states, S and I, and does not consider explicit partnership dynamics. However, to simulate the effect of instantaneous partnership formation, it uses an adjusted transmission rate that is derived from approximated basic reproduction number of a serial monogamy model [15]. Finally, model 6 is a simple random-mixing model.

The base model (i.e. model 1) for the first four models is an extension of Champredon textet al.'s model [14]. Individuals in single compartment acquire a partner at a rate, ρ , and partnerships dissolve at a rate, c. Infected individuals in a discordant partnership infect susceptible partner at a rate β (within-couple transmission rate) and susceptible individuals outside the partnership at a rate c_e (extra-couple transmission rate). Likewise, a single infected individual can infect any susceptible individuals at a rate c_u through uncoupled mixing. Extra-couple and uncoupled transmission are modeled in a same way as Champredon textet al.'s model. All the details have been adapted to a multi-strain scenario. Model 2, 3, and 4 are derived from the base model by removing epidemiological details (partnership formation and uncoupled/extra-couple contact). Model details are explained in the appendix.

Results

Nulla mi mi, venenatis sed ipsum varius, Table 1 volut
pat euismod diam. Proin rutrum vel massa non gravida. Quisque tempor sem et dignissim rutrum. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi at justo vitae nulla elementum commodo eu id massa. In vitae diam ac augue semper tincidunt eu ut eros. Fusce fringilla erat porttitor lectus cursus, vel sagittis arcu lobortis. Aliquam in enim semper, aliquam massa id, cursus neque. Praesent faucibus semper libero.

Table 1. Table caption Nulla mi mi, venenatis sed ipsum varius, volutpat euismod diam.

Heading1				Heading2			
cell1row1	cell2 row 1	cell3 row 1	cell4 row 1	cell5 row 1	cell6 row 1	cell7 row 1	cell8 row 1
cell1row2	cell2 row 2	cell3 row 2	cell4 row 2	cell5 row 2	cell6 row 2	cell7 row 2	cell8 row 2
cell1row3	cell2 row 3	cell3 row 3	cell4 row 3	cell5 row 3	cell6 row 3	cell7 row 3	cell8 row 3

Table notes Phasellus venenatis, tortor nec vestibulum mattis, massa tortor interdum felis, nec pellentesque metus tortor nec nisl. Ut ornare mauris tellus, vel dapibus arcu suscipit sed.

LOREM and IPSUM Nunc blandit a tortor.

3rd Level Heading.

Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque. Quisque augue sem, tincidunt sit amet feugiat eget, ullamcorper sed velit. Sed non aliquet felis. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris commodo justo ac dui pretium imperdiet. Sed suscipit iaculis mi at feugiat.

1. react

2. diffuse free particles

3. increment time by dt and go to 1

PLOS 5/8

Sed ac quam id nisi malesuada congue.

Nulla mi mi, venenatis sed ipsum varius, volutpat euismod diam. Proin rutrum vel massa non gravida. Quisque tempor sem et dignissim rutrum. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi at justo vitae nulla elementum commodo eu id massa. In vitae diam ac augue semper tincidunt eu ut eros. Fusce fringilla erat porttitor lectus cursus, vel sagittis arcu lobortis. Aliquam in enim semper, aliquam massa id, cursus neque. Praesent faucibus semper libero.

- First bulleted item.
- Second bulleted item.
- Third bulleted item.

Discussion

Nulla mi mi, venenatis sed ipsum varius, Table 1 volutpat euismod diam. Proin rutrum vel massa non gravida. Quisque tempor sem et dignissim rutrum. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi at justo vitae nulla elementum commodo eu id massa. In vitae diam ac augue semper tincidunt eu ut eros. Fusce fringilla erat porttitor lectus cursus, vel sagittis arcu lobortis. Aliquam in enim semper, aliquam massa id, cursus neque. Praesent faucibus semper libero [?].

Conclusion

 ${\rm CO_2}$ Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque. Quisque augue sem, tincidunt sit amet feugiat eget, ullamcorper sed velit.

Sed non aliquet felis. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris commodo justo ac dui pretium imperdiet. Sed suscipit iaculis mi at feugiat. Ut neque ipsum, luctus id lacus ut, laoreet scelerisque urna. Phasellus venenatis, tortor nec vestibulum mattis, massa tortor interdum felis, nec pellentesque metus tortor nec nisl. Ut ornare mauris tellus, vel dapibus arcu suscipit sed. Nam condimentum sem eget mollis euismod. Nullam dui urna, gravida venenatis dui et, tincidunt sodales ex. Nunc est dui, sodales sed mauris nec, auctor sagittis leo. Aliquam tincidunt, ex in facilisis elementum, libero lectus luctus est, non vulputate nisl augue at dolor. For more information, see S1 Appendix.

Supporting Information

S1 Fig. Bold the title sentence. Add descriptive text after the title of the item (optional).

S2 Fig. Lorem Ipsum. Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque.

S1 File. Lorem Ipsum. Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque.

PLOS 6/8

S1 Video. Lorem Ipsum. Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque.

S1 Appendix. Lorem Ipsum. Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque.

196

200

201

204

S1 Table. Lorem Ipsum. Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque.

Acknowledgments

Cras egestas velit mauris, eu mollis turpis pellentesque sit amet. Interdum et malesuada fames ac ante ipsum primis in faucibus. Nam id pretium nisi. Sed ac quam id nisi malesuada congue. Sed interdum aliquet augue, at pellentesque quam rhoncus vitae.

References

- 1. Ebert D. The evolution and expression of parasite virulence. In: Stearns SC, editor. Evolution in Health & Disease. New York: Oxford University Press, Oxford, UK; 1999. p. 161–172.
- 2. Ebert D, Bull JJ. Challenging the trade-off model for the evolution of virulence: is virulence management feasible? Trends Microbiol. 2003;11(1):15–20.
- 3. Alizon S, Michalakis Y. Adaptive virulence evolution: the good old fitness-based approach. Trends in Ecology & Evolution. 2015;30(5):248–254. doi:10.1016/j.tree.2015.02.009.
- 4. Dwyer G, Levin SA, Buttel L. A simulation model of the population dynamics and evolution of myxomatosis. Ecol Monog. 1990;60:423–447.
- 5. Mackinnon MJ, Read AF. Genetic relationships between parasite virulence and transmission in the rodent malaria *Plasmodium chabaudi*. Evolution. 1999; p. 689–703.
- 6. Jensen KH, Little T, Skorping A, Ebert D. Empirical support for optimal virulence in a castrating parasite. PLoS Biol. 2006;4(7):e197.
- De Roode JC, Yates AJ, Altizer S. Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proceedings of the National Academy of Sciences. 2008;105(21):7489–7494.
- 8. Fraser C, Hollingsworth TD, Chapman R, de Wolf F, Hanage WP. Variation in HIV-1 set-point viral load: Epidemiological analysis and an evolutionary hypothesis. PNAS. 2007;104:17441–17446.
- 9. Fraser C, Lythgoe K, Leventhal GE, Shirreff G, Hollingsworth TD, Alizon S, et al. Virulence and Pathogenesis of HIV-1 Infection: An Evolutionary Perspective. Science. 2014;343(6177):1243727. doi:10.1126/science.1243727.

PLOS 7/8

- 10. Shirreff G, Pellis L, Laeyendecker O, Fraser C. Transmission Selects for HIV-1 Strains of Intermediate Virulence: A Modelling Approach. PLoS Computational Biology. 2011;7(10):e1002185. doi:10.1371/journal.pcbi.1002185.
- 11. Herbeck JT, Mittler JE, Gottlieb GS, Mullins JI. An HIV Epidemic Model Based on Viral Load Dynamics: Value in Assessing Empirical Trends in HIV Virulence and Community Viral Load. PLoS Comput Biol. 2014;10(6):e1003673.
- 12. Day T, Proulx SR. A General Theory for the Evolutionary Dynamics of Virulence. The American Naturalist. 2004;163(4):E40–E63. doi:10.1086/382548.
- 13. Alizon S. The Price equation framework to study disease within-host evolution. Journal of Evolutionary Biology. 2009;22(5):1123–1132. doi:10.1111/j.1420-9101.2009.01726.x.
- Champredon D, Bellan S, Dushoff J. HIV Sexual Transmission Is Predominantly Driven by Single Individuals Rather than Discordant Couples: A Model-Based Approach. PLoS ONE. 2013;8(12):e82906. doi:10.1371
- 15. Hollingsworth TD, Anderson RM, Fraser C. HIV-1 Transmission, by Stage of Infection. Journal of Infectious Diseases. 2008;198(5):687–693. doi:10.1086/590501.

PLOS 8/8