Perceptron

Prithwijit Guha Dept. of EEE, IIT Guwahati

Supervised Learning

- ➤ Bayesian Classification, MAP, Chebyshev Inequality
- ➤ Performance Measures, Confusion Matrix, ROC Curves
- **≻**Logistic Regression
- **≻**Perceptron
- ➤ Multi-Layer Perceptron (MLP), ELM
- ➤ MLP Architectures, Learning, Interpretations
- ➤ Non-parametric Methods and K-NN
- Radial Basis Function Neural Networks
- ➤ Data Balancing; SMOTE & Weighted Loss Functions
- ➤ Classification & Regression Trees
- Support Vector Machines & Multiple Kernel Learning
- ➤ Ensemble Methods, Bagging and Boosting

Linearly Separable

Hyperplane(s) can Separate Features Extracted from Two (Or More) Classes

Not Linearly Separable

Nonlinear Hypersurfaces Separate Features Extracted from Two (Or More) Classes

Not Separable

Require Further Transformations for Enhancing Separability

Binary Classification: Input-Output Specification

$$S_b = \{(x_i, y_i); i = 1, ... n\}$$
 $x \in \mathbb{R}^d$
 $y \in \{0,1\}$
 $x \longrightarrow \widehat{y} = C_b(x)$

Multi-Category Classification: Input-Output Specification

$$S_m = \{(x_i, y_i); i = 1, ... n\}$$

$$y \in \{1, \dots m\}$$

One Hot Output Encoding

$$\mathbf{y}_{i}[j] = \begin{cases} 1, & y_{i} = j \\ 0, & y_{i} \neq j \end{cases}$$

Perceptron: Biological Motivation

Perceptron: Mathematical Formulation

Perceptron: Classifier & Feature Extractor

$$S_b = \{(x_i, y_i); i = 1, ... n\}$$

$$u_i = \boldsymbol{\omega}^T \boldsymbol{x}_i + b$$

$$u_i = \sum_{j=1}^d \boldsymbol{\omega}_j \boldsymbol{x}_{ij} + b$$

$$\hat{y}_i = \frac{1}{1 + e^{-u_i}}$$

$$\hat{y} = P(x; \boldsymbol{\omega}, b)$$

$$P:\mathbb{R}^d o (0,1)$$

Perceptron: Linear Algebra Interpretation

$$S_b = \{(x_i, y_i); i = 1, ... n\}$$

$$e_i = y_i - \hat{y}_i = y_i - P(x_i; \omega, b)$$
 \longrightarrow $E = \frac{1}{n} \sum_{i=1}^{n} e_i^2$

$$\omega_j^{(k+1)} = \omega_j^{(k)} - \eta_{jk} \frac{\partial E}{\partial \boldsymbol{\omega}_j}$$

$$b^{(k+1)} = b^{(k)} - \eta_{jk} \frac{\partial E}{\partial b}$$

$$E = \frac{1}{n} \sum_{i=1}^{n} e_i^2$$

$$E = \frac{1}{n} \sum_{i=1}^{n} e_i^2 \qquad \frac{\partial E}{\partial \boldsymbol{\omega}_j} = \frac{1}{n} \sum_{i=1}^{n} 2e_i \frac{\partial e_i}{\partial \boldsymbol{\omega}_j}$$

$$e_i = y_i - \hat{y}_i$$

$$\frac{\partial e_i}{\partial \boldsymbol{\omega}_i} = -\frac{\partial \hat{y}_i}{\partial \boldsymbol{\omega}_i}$$

$$\frac{\partial \hat{y}_i}{\partial \boldsymbol{\omega}_j} = \frac{\partial \hat{y}_i}{\partial u_i} \times \frac{\partial u_i}{\partial \boldsymbol{\omega}_j}$$

$$\hat{y}_i = \frac{1}{1 + e^{-u_i}} \qquad \qquad \frac{\partial \hat{y}_i}{\partial u_i} = \hat{y}_i (1 - \hat{y}_i)$$

$$u_i = \sum_{r=1}^d \boldsymbol{\omega}_r \boldsymbol{x}_{ir} + b \qquad \qquad \frac{\partial u_i}{\partial \boldsymbol{\omega}_j} = \boldsymbol{x}_{ij}$$

$$\frac{\partial E}{\partial \boldsymbol{\omega}_{j}} = \frac{1}{n} \sum_{i=1}^{n} 2e_{i} \frac{\partial e_{i}}{\partial \hat{y}_{i}} \times \frac{\partial \hat{y}_{i}}{\partial u_{i}} \times \frac{\partial u_{i}}{\partial \boldsymbol{\omega}_{j}}$$

$$\frac{\partial E}{\partial \boldsymbol{\omega}_j} = -\frac{2}{n} \sum_{i=1}^n e_i \hat{y}_i (1 - \hat{y}_i) \boldsymbol{x}_{ij}$$

$$\frac{\partial E}{\partial b} = -\frac{2}{n} \sum_{i=1}^{n} e_i \hat{y}_i (1 - \hat{y}_i)$$

Perceptron: Learning by Pseudo-Inverse

$$S_b = \{(x_i, y_i); i = 1, ... n\}$$

$$y_i = 0$$
 $\tilde{y}_i^{(0)} = 0 + \epsilon$ Small Number $y_i = 1$ $\tilde{y}_i^{(1)} = 1 - \epsilon$

Example: $\epsilon = 0.001$

$$\tilde{y}_i^{(0)} = 0.001$$

$$\tilde{y}_i^{(1)} = 0.999$$

Perceptron: Learning by Pseudo-Inverse

$$\tilde{y}_i = \frac{1}{1 + e^{-u_i}} \longrightarrow e^{-u_i} = \frac{1}{\tilde{y}_i} - 1 \longrightarrow e^{u_i} = \frac{\tilde{y}_i}{1 - \tilde{y}_i}$$

$$u_i = \log_e \left(\frac{\tilde{y}_i}{1 - \tilde{y}_i} \right)$$

$$\omega^T x_i + b = \log_e \left(\frac{\tilde{y}_i}{1 - \tilde{y}_i} \right)$$

$$u_i = \omega^T x_i + b$$

Perceptron: Learning by Pseudo-Inverse

$$A = \begin{bmatrix} \boldsymbol{x}_{1}^{T} & 1 \\ \vdots & \vdots \\ \boldsymbol{x}_{i}^{T} & 1 \\ \vdots & \vdots \\ \boldsymbol{x}_{n}^{T} & 1 \end{bmatrix}_{n \times (d+1)} P = \begin{bmatrix} \boldsymbol{\omega} \\ b \end{bmatrix}_{(d+1) \times 1}$$

$$B = \begin{bmatrix} \log_{e} \left(\frac{\tilde{y}_{1}}{1 - \tilde{y}_{1}} \right) \\ \vdots \\ \log_{e} \left(\frac{\tilde{y}_{i}}{1 - \tilde{y}_{i}} \right) \\ \vdots \\ \log_{e} \left(\frac{\tilde{y}_{n}}{1 - \tilde{y}_{n}} \right) \end{bmatrix}_{n \times 1}$$

$$P = (A^T A)^{-1} A^T B = A^\# B$$

Perceptron: Multi-Category Classification

Perceptron: Multi-Category Classification

$$S_m = \{(x_i, y_i); i = 1, \dots n\}$$

$$x \in \mathbb{R}^d \qquad y \in \{1, \dots m\}$$

$$u_{ij} = \boldsymbol{\omega}_j^T \boldsymbol{x}_i + b_j$$

$$\boldsymbol{u}_i = W\boldsymbol{x}_i + \boldsymbol{b}$$

$$\hat{y}_{ij} = \frac{e^{u_{ij}}}{\sum_{r=1}^{m} e^{u_{ir}}}$$

$$W_{m imes d} = egin{bmatrix} oldsymbol{\omega}_1^T \ dots \ oldsymbol{\omega}_m^T \end{bmatrix} \qquad oldsymbol{b}_{m imes 1} = egin{bmatrix} b_1 \ dots \ b_m \end{bmatrix}$$

Soft-Max Activation Function

Soft-Max Activation Function

$$\hat{y}_{ij} = \frac{e^{u_{ij}}}{\sum_{r=1}^{m} e^{u_{ir}}}$$

$$\int_{ij}^{\text{Soft-Max}} \frac{1}{1 + \sum_{r=1}^{m} e^{(u_{ir} - u_{ij})}}$$

$$y = \frac{e^{u}}{1 + e^{u}}$$

$$\int_{y=\frac{1}{1 + e^{u}}}^{\text{Sigmoid}} y = \frac{1}{1 + e^{u}}$$

$$S_m = \{(x_i, y_i); i = 1, \dots n\}$$

$$x \in \mathbb{R}^d \qquad y \in \{0, 1\}^m$$

$$u_{iq} = \sum_{r=1}^{d} \boldsymbol{\omega}_{qr} \boldsymbol{x}_{ir} + b_{q} \leftarrow q = 1, ... m \rightarrow \hat{\boldsymbol{y}}_{iq} = \phi_{q}(u_{iq})$$

$$e_i = y_i - \widehat{y}_i$$
 $e_{iq} = y_{iq} - \widehat{y}_{iq}$

$$e_{iq} = \mathbf{y}_{iq} - \widehat{\mathbf{y}}_{iq}$$

$$E = \frac{1}{m \times n} \sum_{i=1}^{m} \sum_{q=1}^{m} e_{iq}^{2}$$

$$\omega_{jk}^{(t+1)} = \omega_{jk}^{(t)} - \eta_{jk}^{(t)} \frac{\partial E}{\partial \boldsymbol{\omega}_{jk}}$$

$$b_j^{(t+1)} = b_j^{(t)} - \eta_j^{(t)} \frac{\partial E}{\partial b_j}$$

$$E = \frac{1}{mn} \sum_{i=1}^{n} \sum_{q=1}^{m} e_{iq}^{2} \qquad \qquad \frac{\partial E}{\partial \boldsymbol{\omega}_{jk}} = \frac{1}{mn} \sum_{i=1}^{n} 2\boldsymbol{e}_{ij} \frac{\partial \boldsymbol{e}_{ij}}{\partial \boldsymbol{\omega}_{jk}}$$

$$\boldsymbol{e}_{ij} = \boldsymbol{y}_{ij} - \widehat{\boldsymbol{y}}_{ij} \qquad \qquad \frac{\partial \boldsymbol{e}_{ij}}{\partial \boldsymbol{\omega}_{jk}} = -\frac{\partial \widehat{\boldsymbol{y}}_{ij}}{\partial \boldsymbol{\omega}_{jk}}$$

$$\frac{\partial \widehat{\mathbf{y}}_{ij}}{\partial \boldsymbol{\omega}_{jk}} = \frac{\partial \widehat{\mathbf{y}}_{ij}}{\partial u_{ij}} \times \frac{\partial u_{ij}}{\partial \boldsymbol{\omega}_{jk}}$$

$$\widehat{\mathbf{y}}_{ij} = \phi_j(u_{ij}) \qquad \qquad \frac{\partial \widehat{\mathbf{y}}_{ij}}{\partial u_{ij}} = \phi_j^{(1)}(u_{ij})$$

$$u_{ij} = \sum_{r=1}^{d} \boldsymbol{\omega}_{jr} \boldsymbol{x}_{ir} + b \qquad \qquad \frac{\partial u_{ij}}{\partial \boldsymbol{\omega}_{jk}} = \boldsymbol{x}_{ik}$$

$$\frac{\partial E}{\partial \boldsymbol{\omega}_{jk}} = \frac{1}{mn} \sum_{i=1}^{n} 2\boldsymbol{e}_{ij} \frac{\partial \boldsymbol{e}_{ij}}{\partial \widehat{\boldsymbol{y}}_{ij}} \times \frac{\partial \widehat{\boldsymbol{y}}_{ij}}{\partial u_{ij}} \times \frac{\partial u_{ij}}{\partial \boldsymbol{\omega}_{jk}}$$

$$\frac{\partial E}{\partial \boldsymbol{\omega}_{jk}} = -\frac{2}{mn} \sum_{i=1}^{n} \boldsymbol{e}_{ij} \phi_{j}^{(1)} (u_{ij}) \boldsymbol{x}_{ik}$$

$$\frac{\partial E}{\partial b_j} = -\frac{2}{mn} \sum_{i=1}^n e_{ij} \phi_j^{(1)} (u_{ij})$$

Multi-Class Perceptron: Learning by Pseudo-Inverse

$$S_m = \{(x_i, y_i); i = 1, ... n\}$$
 $x \in \mathbb{R}^d$ $y \in \{1, ... m\}$

$$\widetilde{y}_i[j] = egin{cases} 1-\epsilon, & y_i = j \ \epsilon & \\ rac{\epsilon}{m-1}, & y_i
eq j \end{cases}$$
 $\epsilon: \text{Small Number}$

Example:
$$m = 3$$
; $y_i = 2$; $\epsilon = 0.001 \longrightarrow \tilde{y}_i = \begin{bmatrix} 0.0005 \\ 0.999 \\ 0.0005 \end{bmatrix}$

Multi-Class Perceptron: Learning by Pseudo-Inverse

$$\tilde{y}_{ij} = \frac{1}{1 + e^{-u_{ij}}} \longrightarrow e^{-u_{ij}} = \frac{1}{\tilde{y}_{ij}} - 1 \longrightarrow e^{u_{ij}} = \frac{\tilde{y}_{ij}}{1 - \tilde{y}_{ij}}$$

$$u_{ij} = \log_e \left(\frac{\tilde{y}_{ij}}{1 - \tilde{y}_{ij}}\right)$$

$$Wx_i + b = u_i$$

$$u_{ij} = \boldsymbol{\omega}_j^T x_i + b_j$$

Multi-Class Perceptron: Learning by Pseudo-Inverse

$$P = [W \quad \boldsymbol{b}]_{m \times (d+1)}$$
 $B = [\boldsymbol{u}_1 \quad \cdots \quad \boldsymbol{u}_i \quad \cdots \quad \boldsymbol{u}_n]_{m \times n}$

$$A = \begin{bmatrix} \boldsymbol{x}_1 & \dots & \boldsymbol{x}_i & \dots & \boldsymbol{x}_n \\ 1 & \dots & 1 & \dots & 1 \end{bmatrix}_{(d+1)\times n}$$

$$P = BA^T (AA^T)^{-1}$$

Moore-Penrose Generalized Pseudo-Inverse

$$(x - c_x)^2 + (y - c_y)^2 = r^2$$

$$\left(\frac{x-c_x}{s_x}\right)^2 + \left(\frac{y-c_y}{s_y}\right)^2 = 1$$

$$\widetilde{m{x}}_i = Q^T (m{x}_i - m{\mu})$$
Matrix of Eigen Vectors of Covariance Matrix

$$\widetilde{\boldsymbol{x}}_{i}[r] = \frac{\boldsymbol{x}_{i}[r] - \boldsymbol{x}_{min}[r]}{\boldsymbol{x}_{max}[r] - \boldsymbol{x}_{min}[r]}$$
Minimum Value Along Dimension r

Maximum Value Along Dimension *r*

Application to Handwritten Digit Classification

The MNIST Dataset

Perceptron: Failure Cases

The XOR Problem

$$y = x_1(1 - x_2) + x_2(1 - x_1)$$

Perceptron: Failure Cases

Covers Theorem of Separability

Nonlinear Transformation to a Higher Dimensional Space Increases the Probability of Linear Separability

Summary

- Separability of Data in Feature Space
- Input-Output Description for Classification Problems
- Perceptron: Motivation & Formulation
- Perceptron: Interpretations
- Perceptron: Learning from Data
- Perceptron: Multi-category Classification
- Perceptron: Applications
- Failure Cases: Towards Multi-Layered Perceptron

Thank You