

#### **EXPERIMENT - 2**

Student Name: Yash Gupta UID: 23BCS11317

Branch: BE-CSE Section/Group: KRG\_1-B

Semester: 5th Date of Performance: 29/07/2025

Subject Name: ADBMS Subject Code: 23CSP-333

#### 1. AIM: Ques 1 :- Organizational Hierarchy Explorer (medium)

You are a Database Engineer at TalentTree Inc., an enterprise HR analytics platform that stores employee data, including their reporting relationships. The company maintains a centralized Employee relation that holds:

Each employee's ID, name, department, and manager ID (who is also an employee in the same table).

Your task is to generate a report that maps employees to their respective managers, showing:

The employee's name and department

Their manager's name and department (if applicable)

This will help the HR department visualize the internal reporting hierarchy.

| EmpID | Ename   | Department | ManagerID |
|-------|---------|------------|-----------|
| 1     | Alice   | HR         | NULL      |
| 2     | Bob     | Finance    | 1         |
| 3     | Charlie | IT         | 1         |
| 4     | David   | Finance    | 2         |
| 5     | Eve     | IT         | 3         |
| 6     | Frank   | HR         | 1         |

# DEPARTMENT OF

Discover. Learn. Empower.

2. TOOLS USED:- MS SSMS & Microsoft SQL Server

**COMPUTER SCIENCE & ENGINEERING** 

#### 3. SQL CODE:

```
-- create
CREATE TABLE EMPLOYEE (
  empId int primary key,
  name varchar(15),
  dept varchar(10),
 managerId int foreign key references EMPLOYEE(empId)
);
-- insert
INSERT INTO EMPLOYEE VALUES (1, 'Alice', 'HR', NULL);
INSERT INTO EMPLOYEE VALUES (2, 'Bob', 'Finance', 1);
INSERT INTO EMPLOYEE VALUES (3, 'Charlie', 'IT', 1);
INSERT INTO EMPLOYEE VALUES (4, 'David', 'IT', 2);
INSERT INTO EMPLOYEE VALUES (5, 'Eve', 'IT', 3);
INSERT INTO EMPLOYEE VALUES (6, 'Frank', 'IT', 1);
-- fetch
SELECT E.empId as EmpId, E.name as EmpName, E.dept as EmpDept, M.name as
ManagerName, M.dept as ManagerDept
FROM
EMPLOYEE as E
left join
EMPLOYEE as M
on E.managerId = M.empId;
```

#### 4. OUTPUT:

|   | Empld | EmpName | EmpDept | ManagerName | ManagerDept |
|---|-------|---------|---------|-------------|-------------|
| 1 | 1     | Alice   | HR      | NULL        | NULL        |
| 2 | 2     | Bob     | Finance | Alice       | HR          |
| 3 | 3     | Charlie | IT      | Alice       | HR          |
| 4 | 4     | David   | IT      | Bob         | Finance     |
| 5 | 5     | Eve     | IT      | Charlie     | IT          |
| 6 | 6     | Frank   | IT      | Alice       | HR          |

### **DEPARTMENT OF**



#### COMPUTER SCIENCE & ENGINEERING

Discover. Learn. Empower.

5. Ques 2: -Financial Forecast Matching with Fallback Strategy (hard)

You are a Data Engineer at FinSight Corp, a company that models Net Present Value (NPV) projections for investment decisions. Your system maintains two key datasets:

1. Year tbl: Actual recorded NPV's of various financial instruments over different years:

ID: Unique Financial instrument identifier.

YEAR: Year of record

NPV: Net Present Value in that year

2. Queries\_tbl: A list of instrument-year pairs for which stakeholders are requesting NPV values:

ID: Financial instrument identifier

YEAR: Year of interest.

Find the NPV of each query from the Queries table. Return the output order by ID and Year in the sorted form.

However, not all ID-YEAR combinations in the Queries table are present in the Year\_tbl. If an NPV is missing for a requested combination, assume it to be 0 to maintain a consistent financial report.

| ID | YEAR | NPV | ID | YEAR |
|----|------|-----|----|------|
| 1  | 2018 | 100 | 1  | 2019 |
| 7  | 2020 | 30  | 2  | 2008 |
| 13 | 2019 | 40  | 3  | 2009 |
| 1  | 2019 | 113 | 7  | 2018 |
| 2  | 2008 | 121 | 7  | 2019 |
| 3  | 2009 | 12  |    | 2019 |
| 11 | 2020 | 99  | 7  | 2020 |
| 7  | 2019 | 0   | 13 | 2019 |

**Year Table** 

**Queries Table** 

#### 6. SQL CODE:-

```
-- Create Year_tbl (holds actual NPV values)
CREATE TABLE Year_tbl (
    ID INT,
    YEAR INT,
    NPV INT
);
```

# DEPARTMENT OF

# CHU CHANDIGARH UNIVERSITY

#### **COMPUTER SCIENCE & ENGINEERING**

Discover. Learn. Empower.

```
-- Create Queries table (requested values)
CREATE TABLE Queries (
   ID INT,
   YEAR INT
);
-- Insert data into Year_tbl
INSERT INTO Year_tbl (ID, YEAR, NPV)
VALUES
(1, 2018, 100),
(7, 2020, 30),
(13, 2019, 40),
(1, 2019, 113),
(2, 2008, 121),
(3, 2009, 12),
(11, 2020, 99),
(7, 2019, 0);
-- Insert data into Queries
INSERT INTO Queries (ID, YEAR)
VALUES
(1, 2019),
(2, 2008),
(3, 2009),
(7, 2018),
(7, 2019),
(7, 2020),
(13, 2019);
SELECT Q.*, ISNULL(Y.NPV, 0) AS NPV
FROM
Year_tbl AS Y
right outer join
Queries AS Q
ON Y.ID=Q.ID AND Y.YEAR = Q.YEAR
ORDER BY Q.ID;
```



## 7. OUTPUT

|   | ID | YEAR | NPV |
|---|----|------|-----|
| 1 | 1  | 2019 | 113 |
| 2 | 2  | 2008 | 121 |
| 3 | 3  | 2009 | 12  |
| 4 | 7  | 2018 | 0   |
| 5 | 7  | 2019 | 0   |
| 6 | 7  | 2020 | 30  |
| 7 | 13 | 2019 | 40  |