

Algorithmen und Komplexität **TIF 21 A/B** Dr. Bruno Becker

1. Einführung – Probleme und Algorithmen

www.dhbw-loerrach.de

Einführung - Probleme und Algorithmen

- Definition Algorithmus, Datenstruktur
- Eigenschaften eines Algorithmus
- Beispiel: Suchen in linearer Liste
- Binäre Suche

Was ist ein Problem in der Informatik?

- Problem: Klasse gleichartiger Aufgabenstellungen, mit
 - Zulässigen Inputs
 - Möglichen Outputs
 - Deren Beziehung (Relation)
- Probleme möglichst allgemein formulieren
 - Finde Maximum in einer Folge von Werten
 - Finde kürzesten Weg von <Start> nach <Ziel>
- Probleminstanz: Konkreter Satz von Input-Daten für ein Problem
- Problemgröße: Meistens Inputgröße

Algorithmus und Datenstruktur

- Algorithmus: Verfahren zur systematischen Lösung eines Problems
- Datenstruktur: Verfahren zur Speicherung von Informationen
- Algorithmus benötigt Zugriff auf Daten
- Wahl der Datenstrukturen oft entscheidend für Machbarkeit und Effizienz eines Algorithmus
- → Algorithmen und Datenstrukturen hängen eng zusammen

Probleme und Algorithmen

- Definition Algorithmus, Datenstruktur
- Eigenschaften eines Algorithmus
- Beispiel: Suchen in linearer Liste
- Binäre Suche

Eigenschaften eines Algorithmus

- Korrektheit: Algorithmus löst Problem (für alle zulässigen Inputs)
 - Navigation führt immer mit <schnellster, kürzester,..> Route zum <Ziel> ...
 - ... oder meldet, dass es keinen Weg mit dem <Verkehrsmittel> dorthin gibt

Robust:

- Funktioniert auch für falsche oder unvollständige Inputs
- Effizienz: Möglichst geringe Kosten (in Abhängigkeit von Input)
 - Laufzeit -> Schnell (z.B. Navigation in Deutschland innerhalb 30 sec.)
 - -> Geringe Anzahl von Rechenoperationen
 - Speicherplatz

Beschreibung von Algorithmen

- Pseudo-Code: Algorithmus ist Idee eines Programms, nicht vollständiges, syntaktisch und semantisch korrektes Programm
 - Endliche Folge eindeutiger Anweisungen
 - Prinzipiell maschinenmäßig ausführbar
- Implementierung eines Algorithmus in Programmiersprache (Java, Python, C++, ...)

Fragestellungen zu Algorithmen

- Ist ein Problem (immer) algorithmisch lösbar?
 - Wie schwierig ist ein Problem?
 - Welchen Aufwand benötigt Algorithmus?
 - Gibt es einen "besten" Algorithmus für ein Problem?
- Analyse von Algorithmen
 - Korrektheit (für jeden Input)?
 - Ressourcenverbrauch?; Geht es besser?
- Entwurf von Algorithmen
 - Designmuster?
 - Welche Datenstrukturen?

Probleme und Algorithmen

- Definition Algorithmus, Datenstruktur
- Eigenschaften eines Algorithmus
- Beispiel: Suchen in linearer Liste
- Binäre Suche

Suchen in linearer Liste

- Input: Zahlenfolge a₀, a₁, a₂, ..., a_{n-1}, Zahl X
- Output: Der Index i, falls a_i = X; sonst -1 (Fehler/Exception)

Idee: Vergleiche X nacheinander mit $a_{0,}$ $a_{2,...,}$ a_{n-1} und stoppe, falls a_i =X gefunden. Gebe i zurück. Wenn am Ende der Folge nicht gefunden, gebe -1 zurück

Analyse von Algorithmen

- Ziel: Kosten (Ressourcenverbrauch) des Algorithmus in Abhängigkeit von Problemgröße und Input bestimmen
- Empirisch: Implementieren und Messen...
- Theoretisch: Zähle Operationen/Speicher auf Basis eines vereinfachten Maschinenmodells
 - Unabhängig von konkreten Implementierungen und Maschinen
 - Für alle Inputs
 - Maschinenmodell realistisch aber doch vereinfacht (z.B. zählen nur gewisse Operationen)

Analyse der linearen Suche

- Maschinenmodell: Zähle nur Vergleichsoperationen
- Input: Länge n der Folge
- Ergebnis:
 - Best Case (Bester Fall): 1
 - Average Case (Durchschnitt): n/2 für erfolgreiche Suche
 - Worst Case (Schlimmster Fall): *n* für erfolglose Suche oder letztes Element

Average Case - Analyse

...ist oft schwierig

- Durchschnitt über
 - Welche Inputs?
 - Welche Wahrscheinlichkeitsverteilung?
 - Geschlossene Formeldarstellung? (Alternative Simulation)

Untere Schranken für Aufwandsbetrachtung

- Gibt es für Suchproblem einen im worst case besseren Algorithmus?
- NEIN!

Beweis durch Widerspruch:

Angenommen, es gäbe Algorithmus A, der nach max. n-1 Vergleichen Index findet Verwende Folge, für die $a_i <> X$ für alle i, für die A Vergleich durchführt und $a_j = X$ für ein j, für dessen Feld A *keinen* Vergleich durchführt

- → A findet X nicht, ist also nicht korrekt
- → So einen Algorithmus A gibt es nicht

Probleme und Algorithmen

- Definition Algorithmus, Datenstruktur
- Eigenschaften eines Algorithmus
- Beispiel: Suchen in linearer Liste
- Binäre Suche

Binäre Suche

- Suche in sortierter Zahlenfolge ist deutlich einfacher!
- Input: $a_1 \le a_2 \le ... \le a_n$, X
- Output: Ein Index i mit a_i=X
- Idee: Suche Element in Mitte der Folge. Wert M.

X=M → Fertig

X< M → Suche in linker Hälfte

X> M → Suche in rechter Hälfte

Binäre Suche

- Algorithmus nach der "Divide & Conquer"-Strategie
- Rekursive Variante (Funktion ruft sich selbst wieder auf)
- Geht auch iterativ (Schrittweise innerhalb der Funktion)

Binäre Suche – Iterativer Algorithmus

```
int binarysearch (int[] a, int x) {
int unten = 0;
int oben = a.length-1;
while (unten <= oben) {</pre>
       mitte = (unten + oben)/2;
       if (x < a[mitte]) // suche links</pre>
           oben = mitte -1;
       else if (x > a[mitte]) // suche rechts
           unten = mitte + 1;
       else
           return mitte; // gefunden
return -1 // nicht gefunden
                             Übung: Rekursiver Algorithmus
```


Binäre Suche – Rekursiver Algorithmus

```
int binarysearch (int[] a, int unten, int oben, int x) {
if (unten > oben)
 return -1; // nicht gefunden
mitte = (unten + oben)/2;
if (x < a[mitte]) // suche links</pre>
  return binarysearch(a,unten,mitte-1,x)
 if (x > a[mitte]) // suche rechts
  return binarysearch(a,mitte+1, oben, x)
 // sonst gefunden
            return mitte;
 Initialer Aufruf: binarysearch(a,0,a.length-1,x)
```

Rekursion nach dem *Divide & Conquer-Prinzip (Teile & Herrsche)*

- Teile Problem solange, bis Lösung offensichtlich ("beherrschbar")
- Konstruiere dann Lösung aus der Lösung der Teilprobleme

Binäre Suche - Aufwandsbetrachtung

Kosten: Vergleich zählt eine Einheit

Folge der Länge $N = 2^{n}-1$:

$$n=1; T(1) = 1$$

$$n=2; T(3) \le 2$$

$$n=3; T(7) \le ?$$

Allgemein: $T(2^{n}-1) \le T(2^{n-1}-1) + 1$

- →T $(2^n-1) \le n+1$
- → Binäre Suche benötigt log₂ N +1 Schritte

Kein relevanter Unterschied zwischen rekursiver- und iterativer Lösung

Binäre Suche

Vergleich mit linearer Suche

N	Lineare Suche	Binäre Suche
4	4	3
16	16	5
1.024	1.024	11
1.048.576	1.048.576	21
1.073.741.824	1.073.741.824	31

Besser als mit log₂ N Schritten geht Suche nicht