Les Ondes mécaniques progressives périodiques

Exercice 1 : la propagation d'une onde le long d'une corde

On considère l'aspect d'une corde à l'instant t1 avec une échelle réelle.

- A l'instant t = 0, la source S commence à vibrer avec une fréquence N = 100 Hz.
- 1. Calculer la vitesse de l'onde.
- 2. Trouver la valeur de t_1 .
- 3. Décrire le mouvement de la source S à partir de l'instant t=0.
- 4. Trouver toutes les fréquences N_e du stroboscope qui nous permet de visualiser la périodicité spatiale sachant que $N_e > 15Hz$.
- 5. Comparer le mouvement des deux points P et Q par rapport à la source S.
- 6. Représenter, dans le même graphe, les amplitudes des points S et Q.

Exercice 2: la propagation d'une onde dans un liquide

Voici l'aspect à l'instant t de la surface d'un liquide où se propage une onde progressive sinusoïdale. Les cercles correspondent aux maxima de la perturbation. Au point P se trouve un petit flotteur qui est animé d'un mouvement de fréquence 7,5 Hz.

Exercice 3 :la célérité du son.

On enregistre à l'aide d'un microphone relié à un oscilloscope le son émis par un diapason.

- 1. Caractériser l'onde émise par la diapason.
- 2. Déduire de la courbe obtenue la fréquence de son émis.
- 3. Décrire un mode opératoire permettant à l'aide d'un second microphone, relié à l'autre voie de l'oscilloscope, de mesurer la longueur d'onde du signal sonore émis par le diapason.
- 4. On obtient $\lambda = 77cm$. En déduire la célérité du son.
- 5. En répétant l'expérience avec un autre diapason qui produit un son de fréquence f=330Hz, on mesure une longueur d'onde $\lambda=1m.$ Commenter.

Exercice 4 :corde élastique

Un vibreur provoque des ondes sinusoïdales de fréquence f = 50Hz à l'extrémité d'une corde.

Un point M situé à la distance d=18cm de l'extrémité commence à vibrer à l'instant t=0,060s après la mise en fonction du vibreur.

- 1. Déterminer la célérité des ondes le long de cette corde. 2. Représenter sur deux graphes différents l'évolution de la position du point M et celle de la source S pour t variant de 0 à 0,080s.
- 3. Comparer l'état vibratoire du point M et du point S. Que peut-on dire de la distance les séparant.
- 4. Quelle est la plus petite distance séparant deux points vibrant en phase?
- 5. Pour quelle fréquence la distance précédente vaut- elle 5cm?

Exercice 5 :Périodicité temporelle

Deux haut-parleurs identiques H_1 et H_2 sont alimentés par un même GBF. Le haut-parleurs H_1 , adapté à cet usage, est immergé dans l'eau, tandis que H_2 est à l'air libre.

On place un microphone M_1 face au haut-parleurs H_1 , à une distance d_1 , et un microphone M_2 face au haut-parleurs H_2 , à une distance d_2 .

Les microphones M_1 et M_2 sont reliés en voies 1 et 2 d'un oscilloscope.

La vitesse du son est de 340m/s dans l'air, et de 1500m/s dans l'eau dans les conditions de l'expérience. La fréquence du signal sinusoïdale délivré par le GBF est f = 1 kHz.

- 1. Quelle est la plus petite valeur d_{1min} non nulle de d_1 pour que M_1 et H_1 soient en phase.
- 2. On déplace le microphone M_2 jusqu'à ce que $d_1 = d_{1min}$.

Calculer le retard τ avec lequel le son arrive M_2 . Représenter les courbes obtenus pour le l'oscilloscope pour une vitesse de balayage de 1 ms/div.

3. Quelle distance minimale doit séparer M_2 et H_2 pour que es deux courbes soient en phrase?

Exercices Supplémentaires

Exercice 6 :Propagation d'une onde mécanique à la surface de l'eau

On crée, à l'instant t_0 , en un point S de la surface de l'eau, une onde mécanique progressive sinusoïdale de fréquence $N=50~\mathrm{Hz}$

La figure ci-dessous représente une coupe verticale de la surface de l'eau à un instant t. La règle graduée sur le schéma indique l'échelle utilisée.

Déterminer :

- 1. Longueur d'onde
- 2. La vitesse de propagation de l'onde à la surface de l'eau,
- 3. L'instant t, où la coupe de la surface de l'eau est représentée,
- 4. On considère un point M de la surface de l'eau, éloigné de la source S d'une distance SM=6cm. Le point M reprend le même mouvement que celui de S avec un retard temporel τ . écrire la relation entre l'élongation du point M et celle de la source S ?