Advanced Probabilistic Machine Learning and Applications

Martina Contisciani and Caterina De Bacco

October 23, 2021

Tutorial 1: Introduction to probabilistic machine learning

Exercise 1: Multivariate Gaussian

Given a dataset $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}^{\top}$ in which the observations $\{\mathbf{x}_n\}$ are assumed to be drawn independently from a K-dimensional multivariate Gaussian distribution, i.e. $\mathbf{x}_n \sim \mathcal{N}_K(\mathbf{x}_n | \boldsymbol{\mu}_x, \boldsymbol{\Sigma}_x)$ $\forall n = 1, \dots, N$:

- 1. Estimate the mean and covariance parameters μ_x and Σ_x , by maximum likelihood (ML).
- 2. Assume the covariance matrix Σ_x to be known and the existence of a multivariate Gaussian prior over the mean parameter μ_x with mean μ_0 and identity covariance matrix, i.e. $\mathcal{N}_K(\mu_x|\mu_0,\Sigma_0)$ with $\Sigma_0 = \mathbf{I}$. Compute the distribution a posteriori of the mean parameter μ_x given the observed data \mathbf{X} , i.e. $p(\mu_x|\mathbf{x},\mu_0,\Sigma_x)$, and its maximum a posteriori (MAP) solution.

Exercise 2: Categorical distribution

Given a dataset $\mathbf{X} = \{x_1, \dots, x_N\}^{\top}$ in which the observations $x_n \in \{1, \dots, K\}$ are assumed to be drawn independently from a Categorical distribution, i.e. $x_n \sim Categorical(x_n | \pi_1, \dots, \pi_K) \forall n = 1, \dots, N$:

- 1. Estimate the parameters, i.e. the category probabilities $\{\pi_k\}$ by maximum likelihood (ML).
- 2. Assume a Dirichlet prior over the category probabilities $\boldsymbol{\pi} = (\pi_1, \dots, \pi_K)$ with hyperparameter $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_K)$, i.e. $\boldsymbol{\pi} \sim Dirichlet(\boldsymbol{\pi}|\boldsymbol{\alpha})$. Compute the distribution a posteriori of the category probabilities $\{\pi_k\}$ given the observed data \mathbf{X} , i.e. $p(\pi_1, \dots, \pi_K | \mathbf{x}, \boldsymbol{\alpha})$.