

Pauta Ayudantía 14 Álgebra Lineal

Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

4 de julio de 2022

Problema 1. Sea V espacio vectorial de dimensión finita y $T: V \to V$ un automorfismo.

- 1. Muestre que si λ es valor propio de T, entonces $1/\lambda$ es valor propio de T^{-1} . Pruebe también que $\mathbf{V}_{\lambda}(T) =$ $V_{1/\lambda}(T^{-1}).$
- 2. Demuestre que si T es diagonalizable entonces T^{-1} es diagonalizable.
- 3. Pruebe que si T es diagonalizable entonces T^n es diagonalizable para todo $n \in \mathbb{N}$.

Demostración.

1. En primer lugar, notar que el hecho que T sea invertible implica que $\lambda \neq 0$, pues sino $\ker(T) \neq \{0\}$. Si $\lambda \neq 0$ es valor propio de T, por definición existe $\mathbf{v} \in \mathbf{V} \setminus \{\mathbf{0}\}$ tal que $T(\mathbf{v}) = \lambda \mathbf{v}$. Aplicando T^{-1} a lo anterior tenemos que

$$\lambda T^{-1}(\mathbf{v}) = T^{-1}(T(\mathbf{v})) = \mathbf{v} \quad \Rightarrow \quad T^{-1}(\mathbf{v}) = \frac{1}{\lambda} \mathbf{v}$$

deduciendo así que $1/\lambda$ es valor propio de T^{-1} . Más aún, la identidad anterior muestra que $\mathbf{V}_{\lambda}(T)$ = $\mathbf{V}_{1/\lambda}(T^{-1})$, pues el vector propio de T^{-1} asociado a $1/\lambda$ corresponde a \mathbf{v} .

- 2. Suponer que T es diagonalizable. Entonces existe una base de vectores propios de T. Ahora, por el punto anterior sabemos que todo vector propio de T es vector propio de T^{-1} y viceversa, así que toda base de vectores propios de T es base de vectores propios de T^{-1} .
- 3. Notamos que si λ es valor propio de T con vector propio \mathbf{v} entonces $T^2(\mathbf{v}) = T(T(\mathbf{v})) = \lambda T(\mathbf{v}) = \lambda^2 \mathbf{v}$ e inductivamente $T^n(\mathbf{v}) = \lambda^n \mathbf{v}$, así que los valores propios de T^n son las potencias de los valores propios de T, con iguales valores propios. Siguiendo el mismo argumento del punto anterior, toda base de vectores propios de T es base de vectores propios de T^n .

Problema 2. Sea V espacio vectorial sobre $K, T: \mathbf{V} \to \mathbf{V}$ aplicación lineal y $\mathbf{v} \in \mathbf{V}$ vector propio asociado al valor propio λ . Demuestre que $P(T)(\mathbf{v}) = P(\lambda)\mathbf{v}$ para todo polinomio $P \in K[X]$.

- 1. Si $\mathbf{v} \in \mathbf{V}$ vector propio asociado al valor propio λ probar que $P(T)(\mathbf{v}) = P(\lambda)\mathbf{v}$ para todo polinomio $P \in K[X]$, ie, $P(\lambda)$ es vector propio de P(T) y $\mathbf{V}_{\lambda}(T) = \mathbf{V}_{P(\lambda)}(P(T))$.
- 2. Si $S \in \mathcal{L}(V)$ es invertible pruebe que $P(STS^{-1}) = SP(T)S^{-1}$.

Demostración.

1. Hemos visto en el problema anterior que $T^m(\mathbf{v}) = \lambda^m \mathbf{v}$. Por lo tanto, si $P = \sum_{k=0}^n a_k x^k$ entonces

$$P(T)(\mathbf{v}) = a_0 \operatorname{id}_{\mathbf{V}}(\mathbf{v}) + a_1 T(\mathbf{v}) + \dots + a_n T^n(\mathbf{v})$$

$$= a_0 \mathbf{v} + a_1 \lambda \mathbf{v} + \dots + a_n \lambda^n \mathbf{v}$$

$$= (a_0 + a_1 \lambda + \dots + a_n \lambda^n) \mathbf{v}$$

$$= P(\lambda) \mathbf{v}$$

MAT210 UTFSM

2. Notamos que

$$(STS^{-1})^m = (STS^{-1}) \cdots (STS^{-1}) = ST^m S^{-1}$$

y por lo tanto si $P = \sum_{k=0}^{n} a_k x^k$ tenemos que

$$P(STS^{-1}) = a_0 \operatorname{id}_{\mathbf{V}} + a_1 STS^{-1} + \dots + a_n (STS^{-1})^n$$

$$= a_0 \operatorname{id}_{\mathbf{V}} + a_1 STS^{-1} + \dots + a_n ST^n S^{-1}$$

$$= S(a_0 \operatorname{id}_{\mathbf{V}} + a_1 T + \dots + a_n T^n) S^{-1}$$

$$= SP(T)S^{-1}$$

Problema 3. Sea **V** espacio vectorial y $T: \mathbf{V} \to \mathbf{V}$ aplicación lineal. Decimos que T es **nilpotente** si existe $n \in \mathbb{N}$ tal que $T^n = \mathbf{0}$. En base a esta definición

- 1. Si T es nilpotente, pruebe que 0 es su único valor propio.
- 2. Si T es nilpotente y diagonalizable entonces T=0.
- 3. Demuestre que $id_{\mathbf{V}} T$ es invertible y que

$$(id_{\mathbf{V}} - T)^{-1} = id_{\mathbf{V}} + T + T^2 + \dots + T^{n-1}$$

Demostración.

- 1. Esto es claro del hecho que si λ es valor propio de T entonces $T^n(\mathbf{v}) = \lambda^n \mathbf{v} = 0$ y así $\lambda^n = 0$.
- 2. Si T es nilpotente, por el punto anterior 0 es su único valor propio. Ahora, si es diagonalizable posee una base $\mathbf{v}_1, \dots, \mathbf{v}_n$ de vectores propios. Por lo tanto $T(\mathbf{v}_i) = \mathbf{0}$ para todo $i = 1, \dots, n$ y así $T = \mathbf{0}$.
- 3. Por el punto 1. el único valor propio de T es 0, y luego si \mathbf{v} es valor propio de T entonces $(\mathrm{id}_{\mathbf{V}} T)(\mathbf{v}) = \mathbf{v} T(\mathbf{v}) = \mathbf{v}$, por lo que el único valor propio de $\mathrm{id}_{\mathbf{V}} T$ es 1, y así es invertible pues es inyectivo. Para verificar la fórmula simplemente hay que verificar que

$$(\mathrm{id}_{\mathbf{V}} - T)(\mathrm{id}_{\mathbf{V}} + T + T^2 + \dots + T^{n-1}) = \mathrm{id}_{\mathbf{V}} + T + T^2 + \dots + T^{n-1} - T(\mathrm{id}_{\mathbf{V}} + T + T^2 + \dots + T^{n-1})$$

$$= \mathrm{id}_{\mathbf{V}} + T + T^2 + \dots + T^{n-1} - T - T^2 - T^3 - \dots - T^n$$

$$= \mathrm{id}_{\mathbf{V}} - T^n = \mathrm{id}_{\mathbf{V}}$$

Problema 4. Considere la sucesión de Fibonacci definida por

$$F_1 = 1, F_2 = 1$$
 $F_n = F_{n-2} + F_{n-1}$

Considere la aplicación lineal $T \in \mathcal{L}(\mathbb{R}^2)$ definida por T(x,y) = (y, x + y).

- 1. Muestre que $T^n(0,1) = (F_n, F_{n+1})$ para cada $n \in \mathbb{N}$.
- 2. Encuentre una base de \mathbb{R}^2 de vectores propios de T.
- 3. Deduzca la fórmula

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n + \left(\frac{1 - \sqrt{5}}{2} \right)^n \right] \qquad \forall n \in \mathbb{N}$$

Demostración.

MAT210 UTFSM

1. Por inducción vemos claramente que si $T^n(0,1) = (F_n, F_{n+1})$ entonces

$$T^{n+1}(0,1) = T(T^n(0,1)) = T(F_n, F_{n+1}) = (F_{n+1}, F_n + F_{n+1}) = F_{n+1}, F_{n+2})$$

- 2. Si λ es valor propio entonces se cumple que $(\lambda x, \lambda y) = T(x, y) = (y, x + y)$, es decir, $\lambda x = y, \lambda y = x + y$. Reemplazando tenemos que $\lambda^2 x = x + \lambda x \Rightarrow y(\lambda \lambda 1) = 0$. Vemos entonces que los valores propios son $\lambda = \frac{1 \pm \sqrt{5}}{2}$. Notando que los vectores propios verifican la relación $y/x = \lambda$, escogiendo x = 1 tenemos los vectores propios $(1, \frac{1+\sqrt{5}}{2}), (1, \frac{1-\sqrt{5}}{2})$, que denotaremos por e_1, e_2 .
- 3. Dada la fórmula demostrada en el punto 1, deseamos escribir (0,1) en términos de la base anterior. Para ello vemos que

$$(0,1) = \frac{1}{\sqrt{5}} \left(\left(1, \frac{1+\sqrt{5}}{2} \right) - \left(1, \frac{1-\sqrt{5}}{2} \right) \right) = \frac{1}{\sqrt{5}} (e_1 - e_2)$$

Por lo tanto tenemos que

$$(F_n, F_{n+1}) = T^n(0, 1) = \frac{1}{\sqrt{5}} (T^n(e_1) - T^n(e_2)) = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n e_1 - \left(\frac{1 - \sqrt{5}}{2} \right)^n e_2 \right)$$

La primera coordenada de la identidad anterior nos entrega la fórmula requerida.