3

value.

What Is Claimed Is:

1	1. A method for scheduling processes within an operating system
2	based upon virtual server identifiers, wherein the operating system supports
3	multiple virtual servers that operate within separate virtual environments on a
4	single computing platform, the method comprising:
5	detecting an event that causes a scheduling priority for a process to be
6	updated;
7	looking up a virtual server identifier for the process, wherein the virtual
8	server identifier specifies a virtual server and an associated virtual environment
9	that the process operates within;
10	using the virtual server identifier to look up a scheduling priority
11	associated with the virtual server; and
12	calculating an updated scheduling priority for the process based upon the
13	scheduling priority associated with the virtual server.
1	2. The method of claim 1, wherein calculating the updated scheduling
2	priority involves calculating the updated scheduling priority based upon:
3	a value, E , stored within a priority-related timer that keeps track of
4	execution time for the process;
5	a system priority, S_P , associated with the process; and
6	the scheduling priority, M , associated with the virtual server.
1	3. The method of claim 2, wherein calculating the updated scheduling
2	priority, P , involves calculating $P = S_P + S(E/M)$, wherein S is a tunable constant

1	4. The method of claim 1, wherein the method further comprises:
2	receiving a command to adjust the scheduling priority associated with the
3	virtual server;
4	if the command is received from an authorized entity, adjusting the
5	scheduling priority associated with the virtual server so that the scheduling
6	priorities of all processes associated with the virtual server are modified.
1	5. The method of claim 1, wherein the method further comprises
2	charging a fee for hosting the virtual server, wherein the fee is based upon the
3	scheduling priority associated with the virtual server.
1	6. The method of claim 1, wherein detecting the event that causes the
2	scheduling priority for the process to be updated involves detecting one of:
3	the process entering a sleep state;
4	the process waking up from the sleep state; and
5	a priority-related timer associated with the process reaching a maximum
6	value.
1	7. The method of claim 1, wherein looking up the virtual server
2	identifier for the process involves looking up the virtual server identifier within a
3	process structure maintained by the operating system for the process.
1	8. A computer-readable storage medium storing instructions that
2	when executed by a computer cause the computer to perform a method for
3	scheduling processes within an operating system based upon virtual server

identifiers, wherein the operating system supports multiple virtual servers that

5	operate within separate virtual environments on a single computing platform, the						
6	method comprising:						
7	detecting an event that causes a scheduling priority for a process to be						
8	updated;						
9	looking up a virtual server identifier for the process, wherein the virtual						
10	server identifier specifies a virtual server and an associated virtual environment						
11	that the process operates within;						
12	using the virtual server identifier to look up a scheduling priority						
13	associated with the virtual server; and						
14	calculating an updated scheduling priority for the process based upon the						
15	scheduling priority associated with the virtual server.						
1	9. The computer-readable storage medium of claim 8, wherein						
2	calculating the updated scheduling priority involves calculating the updated						
3	scheduling priority based upon:						
4	a value, E , stored within a priority-related timer that keeps track of						
5	execution time for the process;						
6	a system priority, S_P , associated with the process; and						
7	the scheduling priority, M , associated with the virtual server.						
1	10. The computer-readable storage medium of claim 9, wherein						
2	calculating the updated scheduling priority, P , involves calculating $P = S_P +$						
3	S(E/M), wherein S is a tunable constant value.						
1	11. The computer-readable storage medium of claim 8, wherein the						

method further comprises:

2

1	receiving a command to adjust the scheduling priority associated with the					
2	virtual server;					
3	if the command is received from an authorized entity, adjusting the					
4	scheduling priority associated with the virtual server so that the scheduling					
5	priorities of all processes associated with the virtual server are modified.					
1	12. The computer-readable storage medium of claim 8, wherein the					
2	method further comprises charging a fee for hosting the virtual server, wherein t					
3	fee is based upon the scheduling priority associated with the virtual server.					
1	13. The computer-readable storage medium of claim 8, wherein					
2	detecting the event that causes the scheduling priority for the process to be					
3	updated involves detecting one of:					
4	the process entering a sleep state;					
5	the process waking up from the sleep state; and					
6	a priority-related timer associated with the process reaching a maximum					
7	value.					
1	14. The computer-readable storage medium of claim 8, wherein					
2	looking up the virtual server identifier for the process involves looking up the					
3	virtual server identifier within a process structure maintained by the operating					
4	system for the process.					
1	15. An apparatus that schedules processes within an operating system					
2	based upon virtual server identifiers, wherein the operating system supports					
3	multiple virtual servers that operate within separate virtual environments on a					
4	single computing platform, the apparatus comprising:					

5	a detection mechanism that is configured to detect an event that causes a					
6	scheduling priority for a process to be updated;					
7	a lookup mechanism that is configured to look up a virtual server identifier					
8	for the process, wherein the virtual server identifier specifies a virtual server and					
9	an associated virtual environment that the process operates within;					
10	wherein the lookup mechanism is additionally configured to use the virtual					
11	server identifier to look up a scheduling priority associated with the virtual server;					
12	and					
13	a calculating mechanism that is configured to calculate an updated					
14	scheduling priority for the process based upon the scheduling priority associated					
15	with the virtual server.					
1	16. The apparatus of claim 15, wherein the calculating mechanism is					
2	configured to calculate the updated scheduling priority based upon:					
3	a value, E , stored within a priority-related timer that keeps track of					
4	execution time for the process;					
5	a system priority, S_P , associated with the process; and					
6	the scheduling priority, M , associated with the virtual server.					
1	17. The apparatus of claim 16, wherein the calculating mechanism is					
2	configured to calculate the updated scheduling priority, P , by calculating					
3	$P = S_P + S(E/M)$, wherein S is a tunable constant value.					
1	18. The apparatus of claim 15, further comprising a priority adjustment					
2	mechanism that is configured to:					
3	receive a command to adjust the scheduling priority associated with the					
4	virtual server; and to					

1	adjust the scheduling priority associated with the virtual server so that the
2	scheduling priorities of all processes associated with the virtual server are
3	modified, if the command is received from an authorized entity.
1	19. The apparatus of claim 15, further comprising a fee calculation
2	mechanism that is configured to calculate a fee for hosting the virtual server based
3	upon the scheduling priority associated with the virtual server.
1	20. The apparatus of claim 15, wherein the detection mechanism is
2	configured to detect one of:
3	the process entering a sleep state;
4	the process waking up from the sleep state; and
5	a priority-related timer associated with the process reaching a maximum
6	value.
1	21. The apparatus of claim 15, wherein the lookup mechanism is
2	configured to look up the virtual server identifier for the process by looking up the
3	virtual server identifier within a process structure maintained by the operating
4	system for the process.