TEORÍA DE JUEGOS

Teoría de juegos

¿Qué es un juego?

Un juego es un modelo simplificado de la realidad que representa una situación de conflicto.

Los elementos que intervienen en un juego son:

- Jugadores.
- Opciones o Alternativas.
- Un valor/resultado asociado a cada alternativa (compensaciones).

Teoría de juegos

¿Qué aplicaciones tiene esta teoría?

- Planificación estratégica.
- Negociación.
- Juegos de computadoras.
- Todo problema en ambiente competitivo...

Teoría de juegos

Supuestos o características:

- 2 jugadores igualmente inteligentes.
- Tratan de hacerse el mayor daño posible.
- Jugador A \rightarrow m renglones.
- Jugador B → n columnas.
- Suma cero (ganancia de A + pérdida de B = 0).
- Jugador A \rightarrow recibe recompensa $C_{ij} \rightarrow$ Jugador B.
- Jugador B \rightarrow paga recompensa $C_{ij} \rightarrow$ Jugador A.

John Von Newman Oskar Morgenstein

Desarrollan la teoría sobre la manera en que se deben jugar

juegos con punto de equilibrio

Jugador B /Jugador A	b ₁	b ₂	•••	b _n
a ₁	C ₁₁	C ₁₂	•••	C _{1n}
a_2	C ₂₁	C ₂₂	•••	C ₂₁
•••				•••
a _m	C _{m1}	C _{m2}		C _{mn}

Se cumple que:

Para jugador maximizante (A) Para jugador minimizante (B) máx.[min.
$$c_{ij}$$
] min. [Máx. c_{ij})] x y x

Juegos con punto de equilibrio

Equilibrio de Nash

El *equilibrio de Nash*, se presenta cuando cada jugador elige la acción que optimiza su pago, tomando como dadas las decisiones de los otros jugadores, y sin tener en cuenta los efectos que su decisión pueda tener en los pagos de los demás.

En una situación de equilibrio de Nash, ninguno de los jugadores tendrá incentivos individuales para variar de estrategia.

Ejemplo, con punto de equilibrio

Jugador B /Jugador A	b ₁	b ₂	b ₃	d(x)	
a ₁	4	4	10	4	
a_2	2	3	1	1	
a ₃	6	5	7	5	
d(y)	6	5	10		
		1			

El par de valores coincide (gana 5, pierde 5) = Valor del juego = 5

Juegos de suma constante para dos personas

Aunque un juego no sea suma cero, dos jugadores pueden aún estar en conflicto total.

Definición: un juego de suma constante para dos personas es un juego donde participan dos contrincantes en el cual, para cualquier elección de estrategias de ambos jugadores, la recompensa del jugador de renglones (i) y la recompensa del jugador columnas (j) suman un valor constante "C".

Juego suma cero

Caso especial C = 0

Ejemplo: juegos de suma constante.

Red televisoras: en juego 100 millones de televidentes.

Los televidentes que no sean atraídos por la R1 serán atraídos por defecto por la R2. Ej.: si R1 no hace nada, todos verán la R2.

Red 1 /Red 2	Película acción	Telenovela	Programa comedia
Película acción	35	15	60
Telenovela	45	58	50
Programa comedia	38	14	70

Ejemplo: juegos de suma constante.

Red televisoras: en juego 100 millones de televidentes.

Red 1 /Red 2	Película acción	Telenovela	Programa comedia	d(x)
Película acción	35	15	60	15
Telenovela	45	58	50	45
Programa comedia	38	14	70	14
d(y)	45	58	70	

- Valor del juego para red 1 = 45 ← lo que gana la red 1
- Valor del juego para red 2 = 100 45 = 55 ← lo que gana la red 2
- Suma constante = 45 + 55 = 100

Juego SIN punto de equilibrio

Juego sin punto de equilibrio

Máx.[min.
$$c_{ij}$$
] =/= Min. [Máx. c_{ij}] x y y x

La expectativa de ambos jugadores no coincide.

Existe un punto de equilibrio, pero no pueden llegar los jugadores utilizando estrategias simples (o puras). Existe el teorema de Von Newman y Morgenstern que demuestra como se llega al punto de equilibrio. Tendremos entonces:

Max. Min.
$$\sum_{i=1}^{i=n} \sum_{j=1}^{j=m} c_{ij} * p_i * q_j = V = Min. Max. \sum_{i=1}^{i=n} \sum_{j=1}^{j=m} c_{ij} * p_i * q_j$$

$$0 \le p_i \le 1$$
; $0 \le q_j \le 1$ \Rightarrow $\begin{cases} p_i \ y \ q_j \ representa \ la probabilidad que cada \\ jugador le asigna a cada alternativa "i" o "j". \end{cases}$

Juego sin punto de equilibrio

Cada jugador tratara de mantener el máximo secreto sobre la mecánica que aplica en sus decisiones (suponemos aleatorios). "Esto nos dice, que la presentación de algún cij es aleatoria" y esa probabilidad de presentación es una probabilidad compuesta dada por el producto de p_i*q_i.

El valor esperado de esta serie de posibles resultados es:

$$V = \sum_{i=1}^{i=n} \sum_{j=1}^{j=m} c_{ij} * p_i * q_j$$

Es condición necesaria que el jugador A y B deben poder fijar las probabilidades p_i y q_i.

Ejemplo, sin punto de equilibrio

Jugador B /Jugador A	b ₁	b ₂	b ₃	d(x)	
a ₁	9	2	3	2	
a ₂	-1	8	9	-1	
a ₃	6	4	5	4	
d(x)	9	8	9		
		1			

Dominancia

Jugador B /Jugador A	b ₁	b ₂	b ₃	d(x)	
a ₁	9	2	3	2	
a_2	-1	8	9	-1	
a_3	6	4	5	4	-
d(y)	9	8	9		
		1		-	

Algunas alternativas de decisión (para cualquier Universo), no se utilizarán nunca por ser dominadas por otra u otras; es el caso en que esas alternativas sean NO preferibles a primera vista cualquiera sea el estado de naturaleza o la decisión del opositor.

Dominancia

Jugador B /Jugador A	b ₁	b ₂	b ₃	d(x)	
a ₁	9	2	3	2	p_1
a ₂	-1	8	9	-1	p_2
a_3	6	4	5	4	p_3
d(y)	9	8	9		
	q_1	q_2	q_3		_

Matriz reducida

Jugador B /Jugador A	b ₁	b ₂
a ₁	9	2
a ₂	-1	8
a_3	6	4
d(y)	9	8

 q_1

 p_1

 p_2

 p_3

 q_2

Solución del juego

Jugador B /Jugador A	b ₁	b ₂
a ₁	9	2
a ₂	-1	8
a ₃	6	4
d(x)	9	8
	q_1	\mathfrak{q}_2

$$9*q_1 + 2*q_2 \le V$$

$$(-1)*q_1 + 8*q_2 \le V$$

$$6*q_1 + 4*q_2 \le V$$

Como el jugador siempre elije alguna de las alternativas, esto es, $q_1 + q_2 = 1$ podemos hacer $q_2 = 1$ - q_1 y reemplazar en las formulas anteriores:

Jugador B /Jugador A	b ₁	b ₂
a ₁	9	2
a ₂	-1	8
a ₃	6	4
d(x)	9	8
	q_1	1-q ₁

$$9*q_1 + 2*(1-q_1) \le V$$

$$p_1 p_2 (-1)*q_1 + 8*(1-q_1) \le V$$

$$6*q_1 + 4*(1-q_1) \le V$$

Solución gráfica

(La alternativa a1 queda fuera del punto de equilibrio, por lo cual p₁=0)

Solución del juego

Buscamos la intersección de las 2 rectas:

$$(-1)^*q_1 + 8^*(1-q_1) = 6^*q_1 + 4^*(1-q_1)$$

 $(-9)^*q_1 + 8 = 2^*q_1 + 4$
 $(-9)^*q_1 - 2^*q_1 = 4 - 8$
 $(-11)^*q_1 = -4$
 $q_1 = -4 / -11$

Jugador B /Jugador A	b ₁	b ₂	
a ₁	9	2	p_1
a ₂	-1	8	p_2
a ₃	6	4	p_3
d(x)	9	8	
	~	~	

Si reemplazamos q₁ en: $q_1 = 4/11$ $q_2 = 7/11$ $V = (-1)^*q_1 + 8^*(1-q_1)$ $V = (-1)^*(4/11) + 8^*(1-4/11)$ V= 52/11 <= Valor del juego

Matriz reducida

Jugador B /Jugador A	b ₁	b ₂
a ₁	9	2
a ₂	-1	8
a ₃	6	4
d(x)	9	8
	q ₁ =4/11	q ₂ =7/11

$$p_1=0$$
 $p_2=2/11$
 $p_3=9/11$

Ya sabemos que V = 52/11 y luego hacemos $p_3 = 1-p_2$ entonces: $52/11 = (-1)^*p_2 + 6^*(1-p_2)$ $p_2 = 2/11$, entonces $p_3 = 1-p_2 = 9/11$

Solución gráfica para "A"

"A" elije de las Mín. ganancias, la Máx.

			_ :
Jugador B /Jugador A	b ₁	b ₂	
a ₁	9	2	$p_1 = 0$
a ₂	-1	8	p_2
a_3	6	4	p ₃ 2
d(x)	9	8	
	q_1	1-q ₁	: y _i *

$$9* p_1 + (-1)*p_2 + 6*(1-p_2) >= V$$

 $2* p_1 + 8 *p_2 + 4*(1-p_2) >= V$

D1 = 0, porque no participaba del punto de equilibrio, entonces:

$$(-1)^*p_2 + 6^*(1-p_2) >= V$$

8 *p₂ + 4*(1-p₂) >= V

Verificar los resultados de cada ecuación para cuando p=0 y p=1

Solución del juego con PL

Desde el punto de vista del jugador A:

$$Max.(Z) = V$$

SA
$$9p_1 + (-1)p_2 + 6p_3 >= V$$

$$2p_1 + 8p_2 + 4p_3 >= V$$

 $3p_1 + 9p_2 + 5p_3 >= V$
 $p_1 + p_2 + p_3 = 1$
 $p_1, p_2, p_3, V >= 0$

Solución del juego con PL

Desde el punto de vista del jugador B:

Jugador B /Jugador A	b ₁	b ₂	b ₃	d(x)	
a ₁	9	2	3	2	p
a ₂	(-1	8	9	-1	p_2
a ₃	6	4	5	4	p_{i}
d(y)	9	8	9		
	q_1	q_2	q_3		_

$$\begin{aligned} &\text{Min}(Z) = V \\ &\text{SA} \quad 9q_1 + 2q_2 + 3q_3 <= V \\ &(-1)q_1 + 8q_2 + 9q_3 <= V \\ &6q_1 + 4q_2 + 5q_3 <= V \\ &q_1 + q_2 + q_3 = 1 \\ &q_1 \;, \quad q_2 \;, \; q_3 \;, V >= 0 \end{aligned}$$