

Question 4: Path Loss, Shadowing, and Small-Scale Fading

Synthesizing a Complete Channel Model

Cédric Sipakam

ULB | VUB

ELEC-H415: Communication Channels

2025

Outline

- 1 Introduction: The Three Layers of Propagation
- 2 Component 1: Path Loss Canonical Models
- 3 Component 2: Shadowing Statistical Model
- 4 Component 3: Small-Scale Fading Models
- 5 Synthesis: Building the Complete Model
- **6** Conclusion
- Thank You

Introduction: The Three Layers of Propagation

Deconstructing Received Power Variations

- The power received by a mobile user is the result of three distinct physical phenomena acting on different spatial scales.
- To build a complete and realistic channel model, we must understand and model each of these components separately before combining them.
 - ▶ Path Loss: Large-scale average power decay with distance.
 - ▶ **Shadowing**: Medium-scale variations due to large obstacles.
 - ► **Small-Scale Fading**: Rapid, small-scale fluctuations from multipath interference.

Components of Received Power Variation

Figure: Illustration of path loss, shadowing, and small-scale fading.

Signal Propagation Models 5 / 34

Component 1: Path Loss Canonical Models

Defining the Large-Scale Trend

- Path loss describes the average attenuation of signal power as a function of the distance d between the transmitter and receiver.
- It represents the mean received power, denoted as $\ll P_{RX} \gg$.
- **Hypothesis**: We assume that the environment's large-scale properties are statistically homogeneous.
- This allows us to use a simple, empirically-validated mathematical form known as the canonical path loss model.

The Canonical Model Formulation

• The model states that the average received power in dBm decays linearly with the logarithm of the distance.

$$\ll P_{RX}(d) \gg [\mathsf{dBm}] = \ll P_{RX}(d_0) \gg [\mathsf{dBm}] - 10n \log_{10} \left(\frac{d}{d_0}\right)$$

The Canonical Model Formulation

- Key Parameters:
 - $ightharpoonup d_0$: A reference distance, chosen in the far-field of the antenna.
 - ▶ n: The **path loss exponent**, which characterizes the environment.
- In terms of path loss $L(d) = P_{TX} \ll P_{RX}(d) \gg$:

$$L(d)[dB] = L(d_0)[dB] + 10n\log_{10}\left(\frac{d}{d_0}\right)$$

Signal Propagation Models

Physical Origin of the Path Loss Exponent

- The value of n is determined by the dominant propagation mechanism.
- Free Space (n = 2): Derived from the Friis formula, where power density decreases with the surface area of a sphere $(1/d^2)$.

$$P_{RX}(d) = P_{TX}G_{TX}G_{RX}\left(\frac{\lambda}{4\pi d}\right)^2 \implies \ll P_{RX} \gg \propto d^{-2}$$

Physical Origin of the Path Loss Exponent

• Over-the-Ground (n = 4): At large distances in the two-ray model, destructive interference between the direct and ground-reflected paths leads to a much faster power decay.

$$P_{RX}(d) \approx P_{TX} G_{TX} G_{RX} \frac{h_{TX}^2 h_{RX}^2}{d^4} \implies \ll P_{RX} \gg \propto d^{-4}$$

• Other environments (urban, indoor) have values of *n* between 2 and 6, determined empirically or through complex physical models.

Signal Propagation Models

Component 2: Shadowing Statistical Model

Modeling Medium-Scale Variations

- The path loss model gives the average power over all possible locations at a distance d.
- In reality, large obstacles like buildings or hills cause the *local* average power, $< P_{RX} >$, to deviate from this global average. This is **shadowing** or slow fading.
- **Hypothesis**: The shadowing effect is a random process.
- Observation: Numerous measurement campaigns have shown that the variations of $< P_{RX} >$ in dB follow a Normal (Gaussian) distribution.

The Log-Normal Model

• The local average received power is modeled as the mean power from the path loss model plus a random variable.

$$< P_{RX} > (d)[dBm] = \ll P_{RX} \gg [dBm] - L_{\sigma_L}$$

• L_{σ_L} is a zero-mean Gaussian random variable with standard deviation σ_L .

$$L_{\sigma_L} \sim \mathcal{N}(0, \sigma_L^2)$$

The Log-Normal Model

- The parameter σ_L is the **shadowing variability** (in dB), which depends on the environment's clutter (e.g., 4 dB for open areas, up to 10 dB for dense urban).
- Since the power in dB is Gaussian, the power in linear units (Watts) follows a **log-normal distribution**.

Component 3: Small-Scale Fading Models

Modeling Small-Scale Variations

- Even within a small "local area" where $< P_{RX} >$ is constant, the instantaneous power P_{RX} fluctuates rapidly as the receiver moves over distances of about half a wavelength.
- This small-scale fading is caused by the constructive and destructive interference of multiple signal copies (Multipath Components or MPCs) arriving from different directions.

Modeling Small-Scale Variations

 The narrowband channel is modeled by a single complex coefficient h(t):

$$y(t) = h(t)x(t)$$

$$h(t) = \sum_{n=1}^{N} a_n e^{j\Phi_n(t)}$$

where a_n and $\Phi_n(t)$ are the amplitude and phase of the *n*-th MPC.

The Rayleigh Fading Model (NLOS)

• Hypothesis:

- ▶ There is a large number of MPCs $(N \to \infty)$.
- There is no dominant (Line-of-Sight) path; all MPCs have comparable amplitudes.
- ▶ The phases of the MPCs, Φ_n , are independent and uniformly distributed in $[0, 2\pi)$.

The Rayleigh Fading Model (NLOS)

- **Derivation**: By the Central Limit Theorem, the channel coefficient h(t) = X(t) + jY(t) becomes a zero-mean complex Gaussian random variable.
- The envelope $|h(t)| = \sqrt{X^2 + Y^2}$ follows a **Rayleigh distribution**.

$$p(|h|) = \frac{|h|}{\sigma^2} \exp\left(-\frac{|h|^2}{2\sigma^2}\right)$$

where $2\sigma^2 = \mathbb{E}[|h|^2]$ is the average power of the channel, which is given by the local average power $< P_{RX} >$.

Signal Propagation Models

The Rician Fading Model (LOS)

• Hypothesis:

► There is one dominant, stable (LOS) component, plus a large number of weaker, scattered components.

$$h(t) = \underbrace{Ae^{j\theta}}_{\text{Dominant}} + \underbrace{\sum_{n=1}^{N} a_n e^{j\Phi_n}}_{\text{Scattered}}$$

The Rician Fading Model (LOS)

- **Derivation**: The channel coefficient h(t) is now a complex Gaussian variable with a **non-zero mean**.
- The envelope |h(t)| follows a **Rician distribution**.

$$p(|h|) = \frac{|h|}{\sigma^2} \exp\left(-\frac{|h|^2 + A^2}{2\sigma^2}\right) I_0\left(\frac{|h|A}{\sigma^2}\right)$$

 This distribution is characterized by the Rician K-factor, the ratio of dominant to scattered power:

$$K = \frac{A^2}{2\sigma^2}$$

• As $K \to 0$, the Rician distribution converges to the Rayleigh distribution.

Synthesis: Building the Complete Model

Step-by-Step Construction

- We can now synthesize the complete model shown in Figure 4.8 by combining the three components sequentially.
- **Goal**: Generate a realistic series of received power values $P_{RX}(d)$ as a function of distance d.

Procedure

- 1 Define the large-scale trend with a path loss model.
- Add medium-scale variations by introducing shadowing.
- Superimpose small-scale fluctuations using a fading model.

Step 1: Path Loss Foundation

- First, we calculate the mean received power $\ll P_{RX} \gg$ over the entire distance range using a canonical model.
- We choose an environment, which defines the path loss exponent n. For example, an urban micro-cell with n = 3.5.
- We compute the mean power at a reference distance d_0 .

$$\ll P_{RX}(d) \gg [\mathsf{dBm}] = \ll P_{RX}(d_0) \gg -10n \log_{10} \left(\frac{d}{d_0}\right)$$

 This gives us the straight line (on a log-log plot) that represents the large-scale average.

◆□▶ ◆□▶ ◆■▶ ◆■ りへ○

Step 1: Path Loss Foundation

Figure: The path loss model provides the mean trend line.

Signal Propagation Models

Step 2: Adding Shadowing

- Next, we generate the local average power $< P_{RX} >$ by adding shadowing.
- We choose a shadowing variability σ_L appropriate for the environment (e.g., $\sigma_L = 8$ dB for urban).
- For each point (or local area) along the path, we draw a random number from a zero-mean Gaussian distribution $\mathcal{N}(0,\sigma_L^2)$ and subtract it from the path loss mean.

$$< P_{RX} > (d)[dBm] = \ll P_{RX}(d) \gg [dBm] - L_{\sigma_L}$$

• This creates the slowly varying signal that "rides" on top of the path loss trend.

Signal Propagation Models 27 / 34

Step 2: Adding Shadowing

pictures/synthesis-step2.png

Step 3: Superimposing Small-Scale Fading

- Finally, we generate the instantaneous received power P_{RX} by adding small-scale fading.
- At each point, the local average power $< P_{RX} >$ defines the average power of the fading distribution.

$$\mathbb{E}[|h|^2] \propto < P_{RX} > [Watts]$$

- We draw a random variable |h| from either a Rayleigh (for NLOS) or Rician (for LOS) distribution, scaled by $\langle P_{RX} \rangle$.
- The instantaneous power is then $P_{RX} = |h|^2 P_{TX}$.
- This process creates the rapid fluctuations that are characteristic of multipath interference.

Signal Propagation Models 29 / 34

Step 3: Superimposing Small-Scale Fading

pictures/synthesis-step3.png

Conclusion

Conclusion

A Unified Statistical Model

The total received signal power is a composite of three distinct statistical processes, each modeling a different physical scale of interaction:

- Path Loss (L(d)): A deterministic function of distance, setting the mean power level.
- **Shadowing** (L_{σ_L}): A log-normal (Gaussian in dB) random process modeling large-scale blockages.
- Small-Scale Fading ($|h|^2$): A Rayleigh or Rician random process modeling multipath interference.

Signal Propagation Models

Conclusion

A Unified Statistical Model

[0.8] By systematically combining these three layers—starting with the path loss trend, adding log-normal shadowing, and finally superimposing Rayleigh/Rician fading—we can construct a comprehensive and statistically accurate model of a wireless channel. This synthesized model is fundamental for simulating and predicting the performance of any real-world communication system.

Thank You