Практическое занятие

МЕТОД ГРАДИЕНТНОГО СПУСКА

1 Цель работы

Ознакомление с методами поиска экстремума нелинейной выпуклой функции нескольких переменных и решение таких задач с помощью ЭВМ.

2 Описание метода

Задача состоит в отыскании минимума функции двух переменных f(x,y) (следует отметить, что если необходимо найти максимум некоторой функции F(x,y), то эта задача сводится к поиску минимума функции f(x,y) = -F(x,y)).

Большинство численных методов состоит в отыскании некоторой последовательности (x_0,y_0) , (x_1,y_1) ,..., (x_k,y_k) , которая при $k\to\infty$ (или при $k\to k_M$) сходится к точке минимума (x^*,y^*) . Если при этом выполняется $f(x_0,y_0)>f(x_1,y_1)>..>f(x_k,y_k)$, то есть значения функции монотонно убывают при увеличении k, то такой метод называется методом спуска.

Известно, что вектор градиента функции

$$\overline{\operatorname{grad}} f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

направлен в сторону наибольшего возрастания функции f(x,y). Поэтому в качестве направления движения можно принять противоположное градиенту направление (антиградиент), т.е. координаты точек пересчитываются по формулам

$$x_{k+1} = x_k - \alpha_k \frac{\partial f(x_k, y_k)}{\partial x},$$

$$y_{k+1} = y_k - \alpha_k \frac{\partial f(x_k, y_k)}{\partial y}.$$
(1)

Выбор величины α_k , с которой связана длина k-го шага, в общем случае является сложной задачей. Если α_k мало, то движение будет слишком медленным и потребует значительного объема вычислений. Если α_k велико, то существует возможность перескочить точку

минимума и выйти на противоположный склон функции. При этом возможно нарушение требования монотонного убывания последовательности $f(x_k,y_k)$ и появляется опасность зацикливания, то есть колебания последовательности (x_k,y_k) в некоторой окрестности точки минимума (x^*,y^*) без приближения к ней.

Существует несколько различных способов выбора α_k . В данной работе рассматривается разновидность метода с дроблением шага. Для этого задается начальное приближение (x_0,y_0) и начальное значение α_0 (например, $x_0=y_0=0$, $\alpha_0=1$). Вычисление x_1,y_1 и всех последующих x_{k+1},y_{k+1} производится по формуле (1). При этом если окажется, что $f(x_{k+1},y_{k+1}) > f(x_k,y_k)$, то величина α_k уменьшается в два раза и вычисление x_{k+1},y_{k+1} повторяется от точки (x_k,y_k) с новым значением α_k . Если же значение функции убывает, то величина $\alpha_k=\alpha_{k-1}$.

Критерием окончания счета принимается неравенство

$$\left| \overline{\text{grad}} f(x, y) \right| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} < \varepsilon$$
 (2)

либо одновременное выполнение двух неравенств

$$\left| \frac{\partial f}{\partial x} \right| < \frac{\varepsilon}{2}, \quad \left| \frac{\partial f}{\partial y} \right| < \frac{\varepsilon}{2}$$
 (3)

3 Порядок выполнения работы на ПЭВМ

- 1. Составить на C++ программу поиска минимума f(x,y) методом градиентного спуска.
- 2. Задать входные данные согласно номеру варианта.
- 3. Провести вычисления на ЭВМ.
- 4. Написать отчет, который должен содержать результаты пунктов 1-3, а также комментарий хода вычислений с объяснениями результатов.

4 Варианты заданий

Минимизировать функцию $f(x,y) = ax + by + e^{cx^2 + dy^2}$ методом градиентного спуска с точностью до $\varepsilon = 10^{-4}$. Коэффициенты выбрать из таблицы 1. Представить два варианта расчета: с коэффициентами из верхней и нижней частей таблицы. Объяснить разницу в работе

алгоритма.

Таблица 1

Вари-		b		d
ант	а	b	С	a
1	1	-1.4	0.01	0.11
		-1.3	0.04	0.12
3	3	-1.2	0.02	0.13
4	4	-1.1	0.16	0.14
5	5	-1.0	0.25	0.15
6	6	-0.9	0.36	0.16
7	7	-0.8	0.49	0.17
8	8	-0.7	0.64	0.18
9	9	-0.6	0.80	0.19
10	10	-0.5	0.94	0.20
11	11	-0.4	1.00	0.21
12	12	-0.3	1.21	0.22
13	13	-0.2	1.44	0.23
14	14	-0.1	1.69	0.24
15	15	0.0	1.96	0.25
16	16	0.1	1.99	0.26
17	17	0.2	2.56	0.27
18	18	0.3	2.89	0.28
19	19	0.4	3.24	0.29
20	20	0.5	3.81	0.30
21	21	0.6	4.00	0.31
22	22	0.7	5.02	0.32
23	23	0.8	4.84	0.33
24	24	0.9	5.29	0.34
25	25	1.0	5.76	0.35
26	26	1.1	7.25	0.36
27	27	1.2	6.76	0.37
28	28	1.3	5.98	0.38
29	29	1.4	7.29	0.39
30	30	1.5	8.41	0.40