Análise sintática

Função, interação com o compilador Análise descendente e ascendente Especificação e reconhecimento de cadeias de tokens válidas Implementação Tratamento de erros

Prof. Thiago A. S. Pardo

Análise sintática ascendente

- Bottom-up, ascendente ou redutiva
 - □ Analisadores de precedência de operadores
 - Analisadores LR
 - SLR: Simple LR
 - LR Canônico
 - Look Ahead LR: LALR

Analisadores LR Reconhecer a cadeia id*id+id Tabela sintática LR (1) < E > ::= < E > + < T >Ações Transições (2) <E>::=<T> **Estados** id \$ Ε Т F + (3) < T > ::= < T > * < F >0 s5 s4 1 2 3 (4) <T>::=<F> s6 OK (5) < F > := (< E >)2 r2 s7 r2 r2 (6) <F>::=id 3 r4 r4 r4 r4 2 3 4 5 r6 r6 r6 r6 6 s4 3 s5 9 7 10 Na tabela, tem-se que: 8 s11 s6 - si indica "empilhar i" 9 s7 r1 r1 r1 - ri indica "reduzir por regra i" 10 r3 r3 r3 r3 r5 r5 r5 11 De onde vem esse 's'?

Analisadores LR

Exercício: reconhecer a cadeia (id)

Pilha	Cadeia	Regra
0	(id)\$	

5

Analisadores LR

Exercício: reconhecer a cadeia (id)

Pilha	Cadeia	Regra
0	(id)\$	s4
0(4	id)\$	s5
0(4id5)\$	r6
0(4F3)\$	r4
0(4T2)\$	r2
0(4E8)\$	s11
0(4E8) <u>11</u>	\$	r5
0F3	\$	r4
0T2	\$	r2
0E1	\$	OK

Analisadores LR

- Três técnicas para construir tabelas sintáticas para gramáticas LR
 - □ Simple LR (SLR)
 - Mais fácil de implementar, mas o menos poderoso
 - Look Ahead LR (LALR)
 - Complexidade e poder intermediários
 - LR canônico
 - Mais complexo, mas mais poderoso
- Tabelas possivelmente distintas para cada técnica, determinando o poder do analisador

7

Analisadores LR

- Gramáticas LR
 - Uma gramática é LR se é possível construir uma tabela sintática LR para ela
 - Não pode haver ambigüidade
- LL(k) vs. LR(k)
 - LL(k): decide-se por uma produção olhando-se apenas os k primeiros símbolos da cadeia de entrada
 - LR(k): reconhece-se o lado direito de uma produção tendo visto tudo que foi derivado a partir desse lado direito (na pilha) mais o esquadrinhamento antecipado de k símbolos (da cadeia de entrada)
 - Mais poderoso do que LL(k): pode descrever mais linguagens

- A análise sintática por meio de uma tabela SLR é chamada análise sintática SLR
- Uma gramática é SLR se for possível construir uma tabela SLR para ela

9

Análise SLR

- A construção da tabela SLR se baseia no conjunto canônico de itens LR(0)
 - □ LR(0): não se olha nenhum símbolo a frente
- Um item para uma gramática G é uma regra de produção com alguma indicação do que já foi derivado/consumido na regra durante a análise sintática
 - □ Exemplo: A→XYZ
 - A→.XYZ
 - A→X.YZ
 - A→XY.Z
 - A→XYZ.
 - □ Regras do tipo $A \rightarrow \lambda$ geram somente um item $A \rightarrow \lambda$.

- Construção do conjunto canônico de itens
 - Duas operações
 - Acrescentar à gramática a produção S'→S (em que S é o símbolo inicial da gramática)
 - Permite a identificação do fim da análise, mais especificamente, S'→S.
 - Computar as funções fechamento e transição para a nova gramática

11

Análise SLR

- Função fechamento
 - Seja I um conjunto de itens LR(0)
 - 1. Todo item em I pertence ao fechamento(I)
 - 2. Se $A \rightarrow \alpha.X\beta$ está em fechamento(I) e $X \rightarrow \gamma$ é uma produção, então adiciona-se $X \rightarrow .\gamma$ ao conjunto
- Em outras palavras
 - Inicializa-se o conjunto I com as regras iniciais da gramática, colocando-se o indicador (.) no início de cada regra
 - Para cada regra no conjunto, adicionam-se as regras dos não terminais que aparecem precedidos pelo indicador (.)

Exemplo

```
S' \rightarrow S
S \rightarrow a \mid [L]
L \rightarrow L; S \mid S
I=\{S \rightarrow [.L]\}
```

fechamento(I)=

13

Análise SLR

Exemplo

```
S' \rightarrow S
S \rightarrow a \mid [L]
L \rightarrow L; S \mid S
I=\{S \rightarrow [.L]\}
fechamento(I)=\{S \rightarrow [.L], L \rightarrow .L; S, L \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}
```

- Função transição
 - transição(I,X): consiste avançar o indicador (.) através do símbolo gramatical X das produções correspondentes em I e calcular a função fechamento para o novo conjunto
- Exemplo

```
I=\{S\rightarrow [L.], L\rightarrow L.;S\}
```

transição(I,;)=

 $S' \rightarrow S$ $S \rightarrow a \mid [L]$ $L \rightarrow L; S \mid S$

Análise SLR

- Função transição
- Exemplo

$$I=\{S\rightarrow[L.], L\rightarrow L.;S\}$$

transição($I, : = \{L \rightarrow L; S, S \rightarrow a, S \rightarrow [L]\}$

 $S' \rightarrow S$ $S \rightarrow a \mid [L]$ $L \rightarrow L; S \mid S$

 Algoritmo para obter o conjunto canônico de itens LR(0)

```
 \begin{split} & \text{C:=}\{I_0 = \text{fechamento}(\{\text{S'} \rightarrow \text{S}\})\} \\ & \text{repita} \\ & \text{para cada conjunto I em C e X símbolo de G, tal que} \\ & \text{transição}(I,X) \neq \lambda \\ & \text{adicione transição}(I,X) \text{ a C} \\ & \text{até que todos os conjuntos tenham sido adicionados a C} \end{split}
```

17

Análise SLR

Exemplo

```
0) S' → S
```

1) S → a

2) $S \rightarrow [L]$

3) $L \rightarrow L;S$

4) L → S

Exemplo

Conjunto de itens

```
I_0 = \{S' \rightarrow .S, S \rightarrow .a, S \rightarrow .[L]\}
0) S' → S
                         transição(I_0,S) = {S'\rightarrowS.} = I_1
1) S \rightarrow a
                         transição(I_0,a) = {S\rightarrowa.} = I_2
                         transição(I_0,[) = {S\rightarrow[.L], L\rightarrow.L;S, L\rightarrow.S, S\rightarrow.a, S\rightarrow.[L]} = I_3
2) S \rightarrow [L]
                         transição(I_3,L) = {S\rightarrow[L.], L\rightarrowL.;S} = I_4
3) L \rightarrow L;S
                         transição(I_3,S) = {L\rightarrowS.} = I_5
4) L\rightarrowS
                         transição(I_3,a) = {S\rightarrowa.} = I_2
                         transição(I_3,[) = {S\rightarrow[.L], L\rightarrow.L;S, L\rightarrow.S, S\rightarrow.a, S\rightarrow.[L]} = I_3
                        transição(I_4,]) = {S\rightarrow[L].} = I_6
                         transição(I_4,;) = {L\rightarrowL;.S, S\rightarrow.a, S\rightarrow.[L]} = I_7
                         transição(I_7,S) = {L\rightarrowL;S.} = I_8
                         transição(I_7,a) = {S\rightarrowa.} = I_2
                        transição(I_{7},[) = {S\rightarrow[.L], L\rightarrow.L;S, L\rightarrow.S, S\rightarrow.a, S\rightarrow.[L]} = I_{3}
```

19

Análise SLR

- Construção da tabela sintática
 - □ Seja C= $\{I_0, I_1, ..., I_n\}$, os estados são 0...n, com 0 sendo o estado inicial
 - A linha i da tabela é construída pelo conjunto I_i
 - Ações na tabela
 - □ Se transição(I_i ,a)= I_i , então ação[i,a]= s_i
 - □ Com exceção da regra S' \rightarrow S adicionada, para todas as outras regras, se A \rightarrow α . está em I_i, então, para todo a em seguidor(A), faça ação[i,a]=rn, em que n é o número da produção A \rightarrow α
 - □ Se S'→S. está em I_i, então faça ação[i,\$]=OK
 - Transições na tabela
 - □ Se transição(I_i ,A)= I_i , então transição(i,A)=i
- Entradas não definidas indicam erros
- Ações conflitantes indicam que a gramática não é SLR

- Construção da tabela sintática
- 0) S' → S
- 1) $S \rightarrow a$
- 2) $S \rightarrow [L]$
- 3) $L \rightarrow L;S$
- 4) L → S

$$S(S') = \{\$\}$$

$$S(S)=S(S') \cup S(L)=\{\$,],;\}$$

$$S(L)={],;}$$

OBS: agora, para indicar fim de cadeia, utiliza-se o \$
Antes estávamos sobrecarregando o símbolo de cadeia vazia λ

21

Análise SLR

- Construção da tabela sintática
- 0) S' → S
- 1) S → a
- 2) $S \rightarrow [L]$
- 3) L → L;S
- 4) L → S

 $S(S') = \{\$\}$

$$S(S)=S(S') \cup S(L)=\{\$,],;\}$$

 $S(L)={],;}$

Tabela sintática SLR

	Ações					Transições	
Estados	а	[]	;	\$	S	L
0	s2	s3				1	
1					OK		
2			r1	r1	r1		
3	s2	s3				5	4
4			s6	s7			
5			r4	r4			
6			r2	r2	r2		
7	s2	s3				8	
8			r3	r3			

OBS: agora, para indicar fim de cadeia, utiliza-se o \$ Antes estávamos sobrecarregando o símbolo de cadeia vazia λ

Autômato correspondente

Análise SLR

- O autômato não é usado para reconhecer cadeias, mas para acompanhar o estado da análise sintática
- O analisador aceitará uma cadeia quando ocorrer uma redução pela regra adicionada S'→S

 Exercício em duplas: construir a tabela sintática para a gramática abaixo

S \rightarrow if E then C | C E \rightarrow a C \rightarrow b

25

Análise SLR

- Passo 1: adicionar a regra S'→S
- 0) S'→S
- 1) S→if E then C
- 2) S→C
- 3) E→a
- 4) C→b

- Passo 2: construir o conjunto de itens
- 0) S'→S
- 1) S→if E then C
- 2) S→C
- 3) E→a
- 4) C→b

27

Análise SLR

- Passo 2: construir o conjunto de itens
- 0) S'→S
- 1) S→if E then C

Conjunto de itens

- 2) S→C
- 3) E→a
- 4) C→b

$$\begin{split} &I_0 = \{S' \!\!\! \to \!\!\! : \!\!\! S, S \!\!\! \to \!\!\! : \!\!\! \text{if E then C, } S \!\!\! \to \!\!\! : \!\!\! C, C \!\!\! \to \!\!\! : \!\!\! b\} \\ &t(I_0,S) = \{S' \!\!\! \to \!\!\! S.\} = I_1 \\ &t(I_0,if) = \{S \!\!\! \to \!\!\! : \!\!\! \text{if E then C, } E \!\!\! \to \!\!\! : \!\!\! a\} = I_2 \\ &t(I_0,C) = \{S \!\!\! \to \!\!\! : \!\!\! C.\} = I_3 \\ &t(I_0,b) = \{C \!\!\! \to \!\!\! b.\} = I_4 \\ &t(I_2,E) = \{S \!\!\! \to \!\!\! : \!\!\! \text{if E then C}\} = I_5 \\ &t(I_2,a) = \{E \!\!\! \to \!\!\! a.\} = I_6 \\ &t(I_2,a) = \{S \!\!\! \to \!\!\! : \!\!\! \text{if E then .C, } C \!\!\! \to \!\!\! . \!\!\! b\} = I_7 \\ &t(I_7,C) = \{S \!\!\! \to \!\!\! : \!\!\! \text{if E then C.}\} = I_8 \\ &t(I_7,b) = \{C \!\!\! \to \!\!\! b.\} = I_4 \end{split}$$

- Passo 3: construir a tabela sintática
- 0) S'→S
- 1) S→if E then C
- 2) S→C
- 3) E→a
- 4) C→b
- $S(S') {=} \{\$\}$
- $S(S)=S(S')=\{\$\}$
- $S(E)=\{then\}$
- $S(C)=S(S)=\{\$\}$

20

Análise SLR

- Passo 3: construir a tabela sintática
- 0) S'→S
- 1) S→if E then C
- 2) S→C
- 3) E→a
- 4) C→b
- $S(S') = \{\$\}$
- $S(S)=S(S')=\{\$\}$
- $S(E)=\{then\}$
- $S(C)=S(S)=\{\$\}$

Tabela sintática SLR

	Ações				Transições		ies	
Estados	if	then	а	b	\$	S	Е	С
0	s2			s4		1		3
1					OK			
2			s6				5	
3					r2			
4					r4			
5		s7						
6		r3						
7	•			s4				8
8	•				r1	•		

Exercício: reconhecer a cadeia if a then b

Pilha	Cadeia	Regra
0	if a then b \$	

31

Análise SLR

Exercício: reconhecer a cadeia if a then b

Pilha	Cadeia	Regra
0	if a then b \$	s2
0 if 2	a then b \$	s6
0 if 2 a 6	then b \$	r3
0 if 2 E 5	then b \$	s7
0 if 2 E 5 then 7	b\$	s4
0 if 2 E 5 then 7 b 4	\$	r4
0 if 2 E 5 then 7 C 8	\$	r1
0 S 1	\$	OK