Predicit if the income of the individual is greater than 50k or not.

In [1]:

```
# Importing necessary modules/libraries....
import numpy as np
import pandas as pd
# Importing matplotlib library for data visualisation...
import matplotlib.pyplot as plt
# Importing seaborn for heatmap and correlation
import seaborn as sns
%matplotlib inline
# Libraries for building models on our dataset....
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
from sklearn.model_selection import train_test_split
```

In [2]:

In [3]:

```
# Exploring dataset
print("Shape is: ",income_df.shape)
print()
print(income_df.info())
print()
# printing the column names of the dataset
print(income_df.columns)
print()
income_df.head(10)

Shape is: (48842, 15)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48842 entries, 0 to 48841
```

```
Data columns (total 15 columns):
                  48842 non-null int64
age
                  48842 non-null object
workclass
fnlwgt
                  48842 non-null int64
                  48842 non-null object
education
education-num
                  48842 non-null int64
maritalStatus
                  48842 non-null object
occupation
                  48842 non-null object
relationship
                  48842 non-null object
                  48842 non-null object
race
sex
                  48842 non-null object
                  48842 non-null int64
capitalGain
                  48842 non-null int64
capitalLoss
                  48842 non-null int64
hours-per-week
nativeCountry
                  48842 non-null object
salary
                  48842 non-null object
dtypes: int64(6), object(9)
memory usage: 5.6+ MB
None
```

Out[3]:

	age	workclass	fnlwgt	education	education- num	maritalStatus	occupation	relationship	race
0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-family	White
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Blacl
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Blacl

	age	workclass	fnlwgt	education	education- num	maritalStatus	occupation	relationship	race
5	37	Private	284582	Masters	14	Married-civ- spouse	Exec- managerial	Wife	White
6	49	Private	160187	9th	5	Married- spouse- absent	Other- service	Not-in-family	Blacl
7	52	Self-emp- not-inc	209642	HS-grad	9	Married-civ- spouse	Exec- managerial	Husband	White
8	31	Private	45781	Masters	14	Never-married	Prof- specialty	Not-in-family	White
9	42	Private	159449	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White
4									•

In [4]:

Getting the general overview about dataset
income_df.describe()

Out[4]:

	age	fnlwgt	education- num	capitalGain	capitalLoss	hours-per- week
count	48842.000000	4.884200e+04	48842.000000	48842.000000	48842.000000	48842.000000
mean	38.643585	1.896641e+05	10.078089	1079.067626	87.502314	40.422382
std	13.710510	1.056040e+05	2.570973	7452.019058	403.004552	12.391444
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.175505e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.781445e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.376420e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.490400e+06	16.000000	99999.000000	4356.000000	99.000000

Cleaning the dataset

In [5]:

```
print("Before cleaning the dataset: \n",income df['salary'].value counts())
# Replacing the 50K. with 50K
income_df['salary'] = income_df.salary.apply(lambda x: x.replace('<=50K.', '<=50K'))</pre>
income df['salary'] = income df.salary.apply(lambda x: x.replace('>50K.', '>50K'))
print()
print("After cleaning the dataset: \n",income_df['salary'].value_counts())
Before cleaning the dataset:
            24720
  <=50K
 <=50K.
           12435
 >50K
            7841
            3846
 >50K.
Name: salary, dtype: int64
After cleaning the dataset:
  <=50K
           37155
          11687
 >50K
Name: salary, dtype: int64
In [6]:
print("Before cleaning the dataset: \n",income df['maritalStatus'].value counts())
income df['maritalStatus']=income df.maritalStatus.apply(lambda x:x.replace('Married-civ-sp
income_df['maritalStatus']=income_df.maritalStatus.apply(lambda x:x.replace('Married-AF-spc
income df['maritalStatus']=income df.maritalStatus.apply(lambda x:x.replace('Married-spouse
income_df['maritalStatus']=income_df.maritalStatus.apply(lambda x:x.replace('Separated','Di
print("After cleaning the dataset: \n",income df['maritalStatus'].value counts())
Before cleaning the dataset:
  Married-civ-spouse
                           22379
Never-married
                          16117
Divorced
                           6633
 Separated
                           1530
Widowed
                           1518
Married-spouse-absent
                            628
Married-AF-spouse
                             37
Name: maritalStatus, dtype: int64
After cleaning the dataset:
  Married
                   23044
 Never-married
                  16117
Divorced
                   8163
Widowed
                   1518
Name: maritalStatus, dtype: int64
```

In [7]:

```
hs_grad = ['HS-grad','11th','10th','9th','12th']
elementary = ['1st-4th','5th-6th','7th-8th']
print("Before cleaning the dataset: \n",income_df['maritalStatus'].value_counts())
income_df['education']=income_df.education.apply(lambda x:x.replace('HS-grad','HSGrad'))
income_df['education']=income_df.education.apply(lambda x:x.replace('11th','HSGrad'))
income_df['education']=income_df.education.apply(lambda x:x.replace('9th','HSGrad'))
income_df['education']=income_df.education.apply(lambda x:x.replace('12th','HSGrad'))
income_df['education']=income_df.education.apply(lambda x:x.replace('12th','HSGrad'))
income_df['education']=income_df.education.apply(lambda x:x.replace('1st-4th','elementary_s
income_df['education']=income_df.education.apply(lambda x:x.replace('7th-8th','elementary_s
income_df['education']=income_df.education.apply('education')=income_df.education.apply('education')=income_df.education.apply('education')=inco
```

Before cleaning the dataset:

Married 23044
Never-married 16117
Divorced 8163
Widowed 1518

Name: maritalStatus, dtype: int64

After cleaning the dataset:

Married 23044
Never-married 16117
Divorced 8163
Widowed 1518

Name: maritalStatus, dtype: int64

In [8]:

```
print("Before replacing the '?' values\n")
income_df.head(20)
```

Before replacing the '?' values

Out[8]:

	age	workclass	fnlwgt	education	education- num	maritalStatus	occupation	relationsh
0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-fam
1	50	Self-emp- not-inc	83311	Bachelors	13	Married	Exec- managerial	Husba
2	38	Private	215646	HSGrad	9	Divorced	Handlers- cleaners	Not-in-fam
3	53	Private	234721	HSGrad	7	Married	Handlers- cleaners	Husba
4	28	Private	338409	Bachelors	13	Married	Prof- specialty	W
5	37	Private	284582	Masters	14	Married	Exec- managerial	W
6	49	Private	160187	HSGrad	5	Married	Other- service	Not-in-fam
7	52	Self-emp- not-inc	209642	HSGrad	9	Married	Exec- managerial	Husba
8	31	Private	45781	Masters	14	Never-married	Prof- specialty	Not-in-fam
9	42	Private	159449	Bachelors	13	Married	Exec- managerial	Husba
10	37	Private	280464	Some-college	10	Married	Exec- managerial	Husba
11	30	State-gov	141297	Bachelors	13	Married	Prof- specialty	Husba
12	23	Private	122272	Bachelors	13	Never-married	Adm- clerical	Own-ch
13	32	Private	205019	Assoc-acdm	12	Never-married	Sales	Not-in-fam
14	40	Private	121772	Assoc-voc	11	Married	Craft-repair	Husba
15	34	Private	245487	elementary_school	4	Married	Transport- moving	Husba
16	25	Self-emp- not-inc	176756	HSGrad	9	Never-married	Farming- fishing	Own-ch
17	32	Private	186824	HSGrad	9	Never-married	Machine- op-inspct	Unmarri
18	38	Private	28887	HSGrad	7	Married	Sales	Husba
19	43	Self-emp- not-inc	292175	Masters	14	Divorced	Exec- managerial	Unmarri

In [9]:

```
# Replacing ? with null values
income_df['nativeCountry']=income_df.nativeCountry.apply(lambda x:x.replace('?',''))
income_df['occupation']=income_df.occupation.apply(lambda x:x.replace('?',''))
income_df['workclass']=income_df.workclass.apply(lambda x:x.replace('?',''))
print("After replacement\n")
income_df.head(20)
```

After replacement

Out[9]:

	age	workclass	fnlwgt	education	education- num	maritalStatus	occupation	relationsh
0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-fam
1	50	Self-emp- not-inc	83311	Bachelors	13	Married	Exec- managerial	Husba
2	38	Private	215646	HSGrad	9	Divorced	Handlers- cleaners	Not-in-fam
3	53	Private	234721	HSGrad	7	Married	Handlers- cleaners	Husba
4	28	Private	338409	Bachelors	13	Married	Prof- specialty	W
5	37	Private	284582	Masters	14	Married	Exec- managerial	W
6	49	Private	160187	HSGrad	5	Married	Other- service	Not-in-fam
7	52	Self-emp- not-inc	209642	HSGrad	9	Married	Exec- managerial	Husba
8	31	Private	45781	Masters	14	Never-married	Prof- specialty	Not-in-fam
9	42	Private	159449	Bachelors	13	Married	Exec- managerial	Husba
10	37	Private	280464	Some-college	10	Married	Exec- managerial	Husba
11	30	State-gov	141297	Bachelors	13	Married	Prof- specialty	Husba
12	23	Private	122272	Bachelors	13	Never-married	Adm- clerical	Own-ch
13	32	Private	205019	Assoc-acdm	12	Never-married	Sales	Not-in-fam
14	40	Private	121772	Assoc-voc	11	Married	Craft-repair	Husba
15	34	Private	245487	elementary_school	4	Married	Transport- moving	Husba
16	25	Self-emp- not-inc	176756	HSGrad	9	Never-married	Farming- fishing	Own-ch

	age	workclass	fnlwgt	education	education- num	maritalStatus	occupation	relationsh
17	32	Private	186824	HSGrad	9	Never-married	Machine- op-inspct	Unmarri
18	38	Private	28887	HSGrad	7	Married	Sales	Husba
19	43	Self-emp- not-inc	292175	Masters	14	Divorced	Exec- managerial	Unmarri
4								>

In [10]:

```
# Identifying the categorical and numerical parameters
numeric_parameters = income_df.dtypes[income_df.dtypes != "object"]
categorical_parameters = income_df.dtypes[income_df.dtypes == "object"]
print("Categorical variables are:\n"+str(categorical_parameters))
print("\n\nNumeric variables are:\n"+str(numeric_parameters))
```

Categorical variables are:

workclass object object education maritalStatus object occupation object object relationship race object object sex nativeCountry object salary object dtype: object

Numeric variables are:

age int64
fnlwgt int64
education-num int64
capitalGain int64
capitalLoss int64
hours-per-week int64

dtype: object

In [11]:

```
# Plotting histogram of the numerical parameters to identify the outliers
income_df[numeric_parameters.index].hist(figsize=(16,10))
```

Out[11]:

In [12]:

```
# Removing outliers from column 'age'
print("Number of observation before removing:",income_df.shape)
age = income_df[income_df['age'] == 90].index
income_df.drop(labels = age,axis = 0,inplace =True)
print("Number of observation after removing:",income_df.shape)
```

Number of observation before removing: (48842, 15) Number of observation after removing: (48787, 15)

In [14]:

```
print("Number of observation before removing:",income_df.shape)
fnlwgt = income_df[income_df['fnlwgt'] > 750000].index
income_df.drop(labels = fnlwgt,axis = 0,inplace =True)
print("Number of observation after removing:",income_df.shape)
```

Number of observation before removing: (48721, 15) Number of observation after removing: (48721, 15)

In [15]:

```
# Removing the outliers from capitalGain column
print("Number of observation before removing:",income_df.shape)
gain = income_df[income_df['capitalGain'] == 99999].index
income_df.drop(labels = gain,axis = 0,inplace =True)
print("Number of observation after removing:",income_df.shape)
```

Number of observation before removing: (48721, 15) Number of observation after removing: (48477, 15)

In [16]:

```
# Dropping column education as education-num has high correlation with education
income_df.drop(['education'], axis=1, inplace=True)
income_df.head(10)
```

Out[16]:

	age	workclass	fnlwgt	education- num	maritalStatus	occupation	relationship	race	sex
0	39	State-gov	77516	13	Never-married	Adm- clerical	Not-in-family	White	Male
1	50	Self-emp- not-inc	83311	13	Married	Exec- managerial	Husband	White	Male
2	38	Private	215646	9	Divorced	Handlers- cleaners	Not-in-family	White	Male
3	53	Private	234721	7	Married	Handlers- cleaners	Husband	Black	Male
4	28	Private	338409	13	Married	Prof- specialty	Wife	Black	Female
5	37	Private	284582	14	Married	Exec- managerial	Wife	White	Female
6	49	Private	160187	5	Married	Other- service	Not-in-family	Black	Female
7	52	Self-emp- not-inc	209642	9	Married	Exec- managerial	Husband	White	Male
8	31	Private	45781	14	Never-married	Prof- specialty	Not-in-family	White	Female
9	42	Private	159449	13	Married	Exec- managerial	Husband	White	Male
4									+

In [18]:

In [19]:

```
# printing shape and top rows of the dataset
print("Shape of dummies: ",dummies.shape)
dummies.head(15)
```

Shape of dummies: (48477, 85)

Out[19]:

	fnlwgt	education- num	workclass_	workclass_ Federal- gov	workclass_ Local-gov	workclass_ Never- worked	workclass_ Private	workclass Self-em ir
0	77516	13	0	0	0	0	0	
1	83311	13	0	0	0	0	0	
2	215646	9	0	0	0	0	1	
3	234721	7	0	0	0	0	1	
4	338409	13	0	0	0	0	1	
5	284582	14	0	0	0	0	1	
6	160187	5	0	0	0	0	1	
7	209642	9	0	0	0	0	0	
8	45781	14	0	0	0	0	1	
9	159449	13	0	0	0	0	1	
10	280464	10	0	0	0	0	1	
11	141297	13	0	0	0	0	0	
12	122272	13	0	0	0	0	1	
13	205019	12	0	0	0	0	1	
14	121772	11	0	0	0	0	1	

15 rows × 85 columns

In [20]:

```
# Concatention of existing columns with newly created ones
merged = pd.concat([income_df, dummies], axis=1)
```

In [21]:

```
print("Shape of dataset now is: ",merged.shape)
merged.head(5)
```

Shape of dataset now is: (48477, 99)

Out[21]:

	age	workclass	fnlwgt	education- num	maritalStatus	occupation	relationship	race	sex
0	39	State-gov	77516	13	Never-married	Adm- clerical	Not-in-family	White	Male
1	50	Self-emp- not-inc	83311	13	Married	Exec- managerial	Husband	White	Male
2	38	Private	215646	9	Divorced	Handlers- cleaners	Not-in-family	White	Male
3	53	Private	234721	7	Married	Handlers- cleaners	Husband	Black	Male
4	28	Private	338409	13	Married	Prof- specialty	Wife	Black	Female

5 rows × 99 columns

In [56]:

```
# Printing final columns of the dataset merged.columns[:100]
```

Out[56]:

```
Index(['age', 'workclass', 'fnlwgt', 'education-num', 'maritalStatus',
        'occupation', 'relationship', 'race', 'sex', 'capitalGain',
        'capitalLoss', 'hours-per-week', 'nativeCountry', 'salary', 'fnlwgt',
        'education-num', 'workclass_ ', 'workclass_ Federal-gov',
        'workclass_ Local-gov', 'workclass_ Never-worked', 'workclass_ Privat
е',
        'workclass_ Self-emp-inc', 'workclass_ Self-emp-not-inc',
        'workclass_ State-gov', 'workclass_ Without-pay',
        'maritalStatus_ Divorced', 'maritalStatus_ Married',
        'maritalStatus_ Never-married', 'maritalStatus_ Widowed',
        'occupation_ ', 'occupation_ Adm-clerical', 'occupation_ Armed-Force
s',
        'occupation_ Craft-repair', 'occupation_ Exec-managerial',
        'occupation_ Farming-fishing', 'occupation_ Handlers-cleaners',
        'occupation_ Machine-op-inspct', 'occupation_ Other-service',
        'occupation_ Priv-house-serv', 'occupation_ Prof-specialty',
'occupation_ Protective-serv', 'occupation_ Sales',
        'occupation_ Tech-support', 'occupation_ Transport-moving',
        'relationship_ Husband', 'relationship_ Not-in-family',
        'relationship_ Other-relative', 'relationship_ Own-child',
        'relationship_ Unmarried', 'relationship_ Wife',
        'race_ Amer-Indian-Eskimo', 'race_ Asian-Pac-Islander', 'race_ Blac
k',
        'race_ Other', 'race_ White', 'sex_ Female', 'sex_ Male',
        'nativeCountry_ ', 'nativeCountry_ Cambodia', 'nativeCountry_ Canad
a',
        'nativeCountry_ China', 'nativeCountry_ Columbia',
'nativeCountry_ Cuba', 'nativeCountry_ Dominican-Republic',
        'nativeCountry_ Ecuador', 'nativeCountry_ El-Salvador',
        'nativeCountry_ England', 'nativeCountry_ France', 'nativeCountry_ Germany', 'nativeCountry_ Greece',
        'nativeCountry_ Guatemala', 'nativeCountry_ Haiti',
        'nativeCountry Holand-Netherlands', 'nativeCountry Honduras',
        'nativeCountry_ Hong', 'nativeCountry_ Hungary', 'nativeCountry_ Indi
        'nativeCountry_ Iran', 'nativeCountry_ Ireland', 'nativeCountry_ Ital
        'nativeCountry_ Jamaica', 'nativeCountry_ Japan', 'nativeCountry_ Lao
s',
        'nativeCountry_ Mexico', 'nativeCountry_ Nicaragua',
        'nativeCountry_ Outlying-US(Guam-USVI-etc)', 'nativeCountry_ Peru',
        'nativeCountry_ Philippines', 'nativeCountry_ Poland',
        'nativeCountry_ Portugal', 'nativeCountry_ Puerto-Rico',
'nativeCountry_ Scotland', 'nativeCountry_ South',
'nativeCountry_ Taiwan', 'nativeCountry_ Thailand',
        'nativeCountry Trinadad&Tobago', 'nativeCountry United-States',
        'nativeCountry_ Vietnam', 'nativeCountry_ Yugoslavia'],
      dtype='object')
```

In [22]:

Printing shape of the dataset: (48477, 92)

Out[22]:

	age	fnlwgt	education- num	capitalGain	capitalLoss	hours- per- week	salary	fnlwgt	education- num	workc
0	39	77516	13	2174	0	40	<=50K	77516	13	
1	50	83311	13	0	0	13	<=50K	83311	13	
2	38	215646	9	0	0	40	<=50K	215646	9	
3	53	234721	7	0	0	40	<=50K	234721	7	
4	28	338409	13	0	0	40	<=50K	338409	13	
5	37	284582	14	0	0	40	<=50K	284582	14	
6	49	160187	5	0	0	16	<=50K	160187	5	
7	52	209642	9	0	0	45	>50K	209642	9	
8	31	45781	14	14084	0	50	>50K	45781	14	
9	42	159449	13	5178	0	40	>50K	159449	13	

10 rows × 92 columns

In [23]:

In [24]:

```
# printing the size of the train and test variables
print("X_train size: ",X_train.shape)
print("X_test size: ",X_test.shape)
```

X_train size: (32479, 91) X_test size: (15998, 91)

Applying Logistic Regression

In [25]:

```
lr=LogisticRegression()
lr.fit(X_train, y_train)
predictions = lr.predict(X_test)
print(metrics.classification_report(y_test, predictions))
print("Accuracy for Logistic Regression model is: ",metrics.accuracy_score(y_test, predictions))
```

C:\Users\DELL\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:4
33: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specif
y a solver to silence this warning.
FutureWarning)

	precision	recall	f1-score	support
<=50K	0.80	0.97	0.88	12220
>50K	0.71	0.24	0.36	3778
micro avg	0.80	0.80	0.80	15998
macro avg	0.76	0.60	0.62	15998
weighted avg	0.78	0.80	0.76	15998

Accuracy for Logistic Regression model is: 0.7974121765220653

Applying KNN

In [26]:

```
knn=KNeighborsClassifier()
knn.fit(X_train, y_train)
predictions = knn.predict(X_test)
print(metrics.classification_report(y_test, predictions))
print("Accuracy for KNN model is: ",metrics.accuracy_score(y_test, predictions))
```

	precision	recall	f1-score	support
	•			
<=50K	0.81	0.92	0.86	12220
>50K	0.54	0.31	0.39	3778
micro avg	0.78	0.78	0.78	15998
macro avg	0.68	0.61	0.63	15998
weighted avg	0.75	0.78	0.75	15998

Accuracy for KNN model is: 0.7752844105513189

Applying Decision Tree Classifier

In [27]:

```
dt=DecisionTreeClassifier()
dt.fit(X_train, y_train)
predictions = dt.predict(X_test)
print(metrics.classification_report(y_test, predictions))
print("Accuracy for Decision Tree Classifier model is: ",metrics.accuracy_score(y_test, predictions))
```

precision	recall	f1-score	support
0.88	0.88	0.88	12220
0.62	0.62	0.62	3778
0.82	0.82	0.82	15998
0.75	0.75	0.75	15998
0.82	0.82	0.82	15998
	0.88 0.62 0.82 0.75	0.88 0.88 0.62 0.62 0.82 0.82 0.75 0.75	0.88 0.88 0.88 0.62 0.62 0.62 0.82 0.82 0.82 0.75 0.75 0.75

Accuracy for Decision Tree Classifier model is: 0.8199774971871484

Applying Random Forest Classifier

In [28]:

```
rf = RandomForestClassifier(n_estimators=100)
rf.fit(X_train, y_train)
predictions = rf.predict(X_test)
print(metrics.classification_report(y_test, predictions))
print("Accuracy for Random Forest Classifier model is: ",metrics.accuracy_score(y_test, predictions))
```

precision	recall	t1-score	support
0.89	0.93	0.91	12220
0.74	0.61	0.67	3778
0.86	0.86	0.86	15998
0.81	0.77	0.79	15998
0.85	0.86	0.85	15998
	0.89 0.74 0.86 0.81	0.89 0.93 0.74 0.61 0.86 0.86 0.81 0.77	0.89 0.93 0.91 0.74 0.61 0.67 0.86 0.86 0.86 0.81 0.77 0.79

Accuracy for Random Forest Classifier model is: 0.8574196774596825

Applying GaussianNB

In [29]:

```
nb=GaussianNB()
nb.fit(X_train, y_train)
predictions = nb.predict(X_test)
print(metrics.classification_report(y_test, predictions))
print("Accuracy for Naive Bayes model is: ",metrics.accuracy_score(y_test, predictions))
```

	precision	recall	f1-score	support
	-			
<=50K	0.81	0.95	0.87	12220
>50K	0.63	0.29	0.40	3778
micro avg	0.79	0.79	0.79	15998
macro avg	0.72	0.62	0.64	15998
weighted avg	0.77	0.79	0.76	15998
weighted avg	0.//	0.79	0.76	15998

Accuracy for Naive Bayes model is: 0.7924115514439305

Applying Gradient Boosting Classifier

In [30]:

```
gbm = GradientBoostingClassifier()
gbm.fit(X_train, y_train)
predictions = gbm.predict(X_test)
print(metrics.classification_report(y_test, predictions))
print("Accuracy for Gradient Boosting model is: ",metrics.accuracy_score(y_test, prediction)
```

	precision	recall	†1-score	support
	•			
<=50K	0.89	0.95	0.92	12220
>50K	0.80	0.61	0.69	3778
micro avg	0.87	0.87	0.87	15998
macro avg	0.84	0.78	0.80	15998
weighted avg	0.87	0.87	0.86	15998

Accuracy for Gradient Boosting model is: 0.870796349543693

In []: