Conjectura big-line-big-clique e bloqueadores de visibilidade

Gabriel Kuribara Lasso

Orientador: Carlos Eduardo Ferreira

Resumo

Dado um conjunto P de pontos no plano, podemos definir o grafo de visibilidade desses pontos, colocando uma aresta entre dois pontos de P se, e somente se não houver nenhum ponto de P no segmento aberto que liga esses dois pontos. É natural pensar que para conjuntos grandes com poucos pontos colineares o número de clique do grafo de visibilidade associado seja alto. Essa é uma questão em aberto, conhecida como conjectura big-line-big-clique, que deu origem a algumas pesquisas interessantes na área.

Introdução

O seguinte problema, embora possua um enunciado simples, permanece há mais de uma década em aberto:

Dados dois inteiros, k e l, quão grande um conjunto de pontos precisa ser para que ele tenha, obrigatoriamente, l pontos colineares ou k pontos dois a dois visíveis?

Esse problema, conhecido na literatura como $Big\text{-}line\text{-}big\text{-}clique\ conjecture},$ foi proposto em 2005 por $K\acute{a}ra\ et\ al.$

Objetivos

Esse trabalho tem como objetivo estudar os resultados conhecidos sobre a conjectura *Big-line-big-clique*, assim como explorar um problema sobre o tamanho de conjuntos bloqueadores de visibilidade.

Grafos de visibilidade

Dado um conjunto P de pontos no plano, o seu grafo de visibilidade é o grafo G com vértices P e aresta entre dois vértices p e q se não se tem nenhum outro ponto de P no segmento \overline{pq} .

Figura 1: Grafo de visibilidade

Assim como em teoria dos grafos, uma k-clique em um grafo de visibilidade é um conjunto de k vértices tal que todo par de vértices desse conjunto é conectado por uma aresta.

1 Conjectura big-line-big-clique

Utilizando a noção de grafos de visivilidade, o problema pode ser colocado ad seguinte forma:

Dados dois inteiros k, l > 2, existe um número n = n(k, l) tal que para todo conjunto finito P com pelo menos n pontos no plano, P possui l pontos colineares ou seu grafo de visibilidade possui uma k-clique?

É intuitivo pensar que limitando a colinearidade, se tenha mais visibilidade

dos pontos, e que limitando o tamanho de conjuntos com pontos dois a dois visíveis, seja forçada a colinearidade. No entanto, só existem poucos resultados para esse problema.

Resultados

Para k=3 ou l=3, é fácil verificar que a conjectura é verdadeira. Para k=4, Kára et al. (2005) mostraram que ela é vale e mostraram o valor de n(4,l). Para k=5, Abel et al. (2009) mostraram que ela vale, mas só em 2012 que Baral et al. estimaram n(5,l) de forma eficaz, mostrando que cresce de forma quadrática em l.

k/l	3	4	5	6	7	8	• • •
3	3	4	5	6	7	8	l
4	4	7	7	8	9	10	l+2
5	5	≤ 5248	≤ 8200	≤ 11808	≤ 16072	≤ 20992	$\leq 328l^2$
6	6	?	?	?	?	?	?
• • •	k	?	?	?	?	?	?

Tabela 1: Valores de n(k, l) conhecidos

Outro resultado interessante é que se for permitido o conjunto P ser infinito, mesmo enumerável, é possível construir um conjunto sem 4 pontos colineares e nem 3 pontos visíveis dois a dois.

2 Bloqueadores de visibilidade

Um problema que surgiu de estudos relacionados a big-line-big-clique conjecture foi colocado por Matoušek (2009) da seguinte forma:

Para um dado conjunto P de pontos no plano sem três pontos colineares, dizemos que um conjunto B bloqueia P se, para todo par de pontos visíveis p_1 e p_2 em P, existir um ponto de B em $\overline{p_1p_2}$ e $B \cap P = \emptyset$.

Sejam $b(P) = min\{|B| : B$ bloqueia $P\}$ e $b(n) = min\{b(P) : |P| = n\}$, queremos estimar b(n) em função de n.

Resultados conhecidos

Acredita-se que b(n) seja superlinear, mas os melhores resultados conhecidos são os seguintes:

- $b(n) \le ne^{O(\sqrt{logn})} (Matou\check{s}ek (2009))$
- $b(n) \ge \frac{25}{8}n o(1) \ (Dumitrescu \ et \ al. \ (2009))$

3 Conclusões

Ainda há muitas questões em aberto sobre visibilidade de pontos, essas foram somente algumas delas.

Embora o enunciado simples, as duas conjecturas mostradas aqui não mostraram nenhum avanço nos últimos anos e se mostram bem distantes de serem resolvidas.