

Rob J Hyndman

Functional time series

with applications in demography

5. Forecasting functional time series via PLS

Outline

- 1 Functional Partial Least Squares
- 2 Application: French mortality rates
- 3 Application: Australian fertility rates
- 4 Forecast accuracy comparisons
- **5** Bootstrap intervals
- **6** Comparisons
- 7 References

- PCA components are designed to explain historical variation. They do not necessarily provide the best predictors.
- Partial least squares extracts uncorrelated latent components cores by maximizing the covariance between predictors and response.
- Response is $s_t(x)$ and predictor is $s_{t-1}(x)$.
- We want to predict $s_t(x)$ using

- This is a functional ARH(1).
- How to choose b(x, u)?

- PCA components are designed to explain historical variation. They do not necessarily provide the best predictors.
- Partial least squares extracts uncorrelated latent components cores by maximizing the covariance between predictors and response.
- Response is $s_t(x)$ and predictor is $s_{t-1}(x)$.
- We want to predict $s_t(x)$ using

- This is a functional ARH(1).
- How to choose b(x, u)?

- PCA components are designed to explain historical variation. They do not necessarily provide the best predictors.
- Partial least squares extracts uncorrelated latent components cores by maximizing the covariance between predictors and response.
- Response is $s_t(x)$ and predictor is $s_{t-1}(x)$.
- We want to predict $s_t(x)$ using
 - $\hat{s}_{T+1|T}(x) = \hat{\mu}(x) + \int [s_T(x) \hat{\mu}(x)] b(x, u) du$
- This is a functional ARH(1).
- How to choose b(x, u)?

- PCA components are designed to explain historical variation. They do not necessarily provide the best predictors.
- Partial least squares extracts uncorrelated latent components cores by maximizing the covariance between predictors and response.
- Response is $s_t(x)$ and predictor is $s_{t-1}(x)$.
- We want to predict $s_t(x)$ using

$$\hat{s}_{T+1|T}(x) = \hat{\mu}(x) + \int [s_T(x) - \hat{\mu}(x)] b(x, u) du$$

- \blacksquare This is a functional ARH(1).
- How to choose b(x, u)?

- PCA components are designed to explain historical variation. They do not necessarily provide the best predictors.
- Partial least squares extracts uncorrelated latent components cores by maximizing the covariance between predictors and response.
- Response is $s_t(x)$ and predictor is $s_{t-1}(x)$.
- We want to predict $s_t(x)$ using

$$\hat{s}_{T+1|T}(x) = \hat{\mu}(x) + \int [s_T(x) - \hat{\mu}(x)] b(x,u) du$$

- \blacksquare This is a functional ARH(1).
- How to choose b(x, u)?

- PCA components are designed to explain historical variation. They do not necessarily provide the best predictors.
- Partial least squares extracts uncorrelated latent components cores by maximizing the covariance between predictors and response.
- Response is $s_t(x)$ and predictor is $s_{t-1}(x)$.
- We want to predict $s_t(x)$ using

$$\hat{s}_{T+1|T}(x) = \hat{\mu}(x) + \int [s_T(x) - \hat{\mu}(x)] b(x,u) du$$

- This is a functional ARH(1).
- How to choose b(x, u)?

- PCA components are designed to explain historical variation. They do not necessarily provide the best predictors.
- Partial least squares extracts uncorrelated latent components cores by maximizing the covariance between predictors and response.
- Response is $s_t(x)$ and predictor is $s_{t-1}(x)$.
- We want to predict $s_t(x)$ using

$$\hat{s}_{T+1|T}(x) = \hat{\mu}(x) + \int [s_T(x) - \hat{\mu}(x)] b(x,u) du$$

- This is a functional ARH(1).
- How to choose b(x, u)?

$$\hat{\boldsymbol{f}}^*(x) = \sum_{k=1}^{\infty} \beta_k \psi_k(x)$$
, and $\hat{\boldsymbol{g}}^*(x) = \sum_{k=1}^{\infty} \beta_k \phi_k(x)$

- $\mathbf{W} = \text{diagonal}(w_1, \dots, w_T)$, $w_t = \kappa (1 \kappa)^{T-t}$
- $\mathbf{f}^*(x) = \mathbf{W}[s_1^*(x), \dots, s_{T-1}^*(x)]'$ and $\mathbf{g}^*(x) = \mathbf{W}[s_2^*(x), \dots, s_T^*(x)]'$ are weighted decentralized functional predictors and responses
- lacksquare eta_k denotes common latent component scores
- $\psi_k(x)$ and $\phi_k(x)$ are latent components of predictors and responses respectively

$$\hat{\boldsymbol{f}}^*(x) = \sum_{k=1}^{\infty} \beta_k \psi_k(x)$$
, and $\hat{\boldsymbol{g}}^*(x) = \sum_{k=1}^{\infty} \beta_k \phi_k(x)$

- **W** = diagonal (w_1, \dots, w_T) , $w_t = \kappa (1 \kappa)^{T-t}$
- $\mathbf{f}^*(x) = \mathbf{W}[s_1^*(x), \dots, s_{T-1}^*(x)]'$ and $\mathbf{g}^*(x) = \mathbf{W}[s_2^*(x), \dots, s_T^*(x)]'$ are weighted decentralized functional predictors and responses
- lacksquare eta_k denotes common latent component scores
- $\psi_k(x)$ and $\phi_k(x)$ are latent components of predictors and responses respectively

$$\hat{\boldsymbol{f}}^*(x) = \sum_{k=1}^{\infty} \boldsymbol{\beta}_k \psi_k(x), \quad \text{and} \quad \hat{\boldsymbol{g}}^*(x) = \sum_{k=1}^{\infty} \boldsymbol{\beta}_k \phi_k(x)$$

- **W** = diagonal (w_1, \dots, w_T) , $w_t = \kappa (1 \kappa)^{T-t}$
- $\mathbf{f}^*(x) = \mathbf{W}[s_1^*(x), \dots, s_{T-1}^*(x)]'$ and $\mathbf{g}^*(x) = \mathbf{W}[s_2^*(x), \dots, s_T^*(x)]'$ are weighted decentralized functional predictors and responses
- lacksquare eta_k denotes common latent component scores
- $\psi_k(x)$ and $\phi_k(x)$ are latent components of predictors and responses respectively

$$\hat{\boldsymbol{f}}^*(x) = \sum_{k=1}^{\infty} \beta_k \psi_k(x)$$
, and $\hat{\boldsymbol{g}}^*(x) = \sum_{k=1}^{\infty} \beta_k \phi_k(x)$

- **W** = diagonal (w_1, \dots, w_T) , $w_t = \kappa (1 \kappa)^{T-t}$
- $\mathbf{f}^*(x) = \mathbf{W}[s_1^*(x), \dots, s_{T-1}^*(x)]'$ and $\mathbf{g}^*(x) = \mathbf{W}[s_2^*(x), \dots, s_T^*(x)]'$ are weighted decentralized functional predictors and responses
- lacksquare eta_k denotes common latent component scores
- $\psi_k(x)$ and $\phi_k(x)$ are latent components of predictors and responses respectively

$$eta_k = \int oldsymbol{f}^*(x) w_k(x) dx = \int oldsymbol{g}^*(x) m_k(x) dx,$$

- **1** Let $\mathbf{f}_0^*(x) = \mathbf{f}^*(x)$ and $\mathbf{g}_0^*(x) = \mathbf{g}^*(x)$
- Obtain $w_k(x)$ iteratively, starting with $w_k^{(0)}(x) = 1$: $w_k^{(i)}(x) = \iint w_k^{(i-1)}(v) [\hat{\boldsymbol{f}}_{k-1}^*(v)]' \hat{\boldsymbol{g}}_{k-1}^*(u) [\hat{\boldsymbol{g}}_{k-1}^*(u)]' \hat{\boldsymbol{f}}_{k-1}^*(x) \, dv \, du$
- $\beta_k = \int \mathbf{f}^*(x) w_k(x) dx.$
- $\hat{\mathbf{f}}_{k}^{*}(x) = (\mathbf{I} \beta_{k}\beta_{k}')\hat{\mathbf{f}}_{k-1}^{*}(x)$
- $\hat{g}_{k}^{*}(x) = (I \beta_{k}\beta_{k}')\hat{g}_{k-1}^{*}(x)$

$$eta_k = \int oldsymbol{f}^*(x) w_k(x) dx = \int oldsymbol{g}^*(x) m_k(x) dx,$$

- **1** Let $\mathbf{f}_0^*(x) = \mathbf{f}^*(x)$ and $\mathbf{g}_0^*(x) = \mathbf{g}^*(x)$
- 2 Obtain $w_k(x)$ iteratively, starting with $w_k^{(0)}(x) = 1$: $w_k^{(i)}(x) = \iint w_k^{(i-1)}(v) [\hat{\boldsymbol{f}}_{k-1}^*(v)]' \hat{\boldsymbol{g}}_{k-1}^*(u) [\hat{\boldsymbol{g}}_{k-1}^*(u)]' \hat{\boldsymbol{f}}_{k-1}^*(x) \, dv \, du$
- $\beta_k = \int \mathbf{f}^*(x) w_k(x) dx.$
- $\hat{\boldsymbol{f}}_{k}^{*}(x) = (\boldsymbol{I} \beta_{k}\beta_{k}')\hat{\boldsymbol{f}}_{k-1}^{*}(x)$
- $\hat{\boldsymbol{g}}_k^*(\boldsymbol{x}) = (\boldsymbol{I} \beta_k \beta_k') \hat{\boldsymbol{g}}_{k-1}^*(\boldsymbol{x})$

$$eta_k = \int oldsymbol{f}^*(x) w_k(x) dx = \int oldsymbol{g}^*(x) m_k(x) dx,$$

- **1** Let $\mathbf{f}_0^*(x) = \mathbf{f}^*(x)$ and $\mathbf{g}_0^*(x) = \mathbf{g}^*(x)$
- 2 Obtain $w_k(x)$ iteratively, starting with $w_k^{(0)}(x) = 1$: $w_k^{(i)}(x) = \iint w_k^{(i-1)}(v) [\hat{\boldsymbol{f}}_{k-1}^*(v)]' \hat{\boldsymbol{g}}_{k-1}^*(u) [\hat{\boldsymbol{g}}_{k-1}^*(u)]' \hat{\boldsymbol{f}}_{k-1}^*(x) \, dv \, du$
- $\boldsymbol{\beta}_k = \int \boldsymbol{f}^*(x) w_k(x) dx.$
- $\hat{f}_{k}^{*}(x) = (I \beta_{k}\beta_{k}')\hat{f}_{k-1}^{*}(x)$
- $\hat{\boldsymbol{g}}_{k}^{*}(x) = (\boldsymbol{I} \beta_{k}\beta_{k}')\hat{\boldsymbol{g}}_{k-1}^{*}(x)$

$$eta_k = \int oldsymbol{f}^*(x) w_k(x) dx = \int oldsymbol{g}^*(x) m_k(x) dx,$$

- **1** Let $\mathbf{f}_0^*(x) = \mathbf{f}^*(x)$ and $\mathbf{g}_0^*(x) = \mathbf{g}^*(x)$
- 2 Obtain $w_k(x)$ iteratively, starting with $w_k^{(0)}(x) = 1$: $w_k^{(i)}(x) = \iint w_k^{(i-1)}(v) [\hat{\boldsymbol{f}}_{k-1}^*(v)]' \hat{\boldsymbol{g}}_{k-1}^*(u) [\hat{\boldsymbol{g}}_{k-1}^*(u)]' \hat{\boldsymbol{f}}_{k-1}^*(x) \, dv \, du$
- $\beta_k = \int \mathbf{f}^*(x) w_k(x) dx.$
- $\hat{f}_{k}^{*}(x) = (I \beta_{k}\beta_{k}')\hat{f}_{k-1}^{*}(x)$
- $\hat{m{g}}_{k}^{*}(x) = (m{I} eta_{k}eta_{k}')\hat{m{g}}_{k-1}^{*}(x)$

$$eta_k = \int oldsymbol{f}^*(x) w_k(x) dx = \int oldsymbol{g}^*(x) m_k(x) dx,$$

- **1** Let $\mathbf{f}_0^*(x) = \mathbf{f}^*(x)$ and $\mathbf{g}_0^*(x) = \mathbf{g}^*(x)$
- 2 Obtain $w_k(x)$ iteratively, starting with $w_k^{(0)}(x) = 1$: $w_k^{(i)}(x) = \iint w_k^{(i-1)}(v) [\hat{\boldsymbol{f}}_{k-1}^*(v)]' \hat{\boldsymbol{g}}_{k-1}^*(u) [\hat{\boldsymbol{g}}_{k-1}^*(u)]' \hat{\boldsymbol{f}}_{k-1}^*(x) \, dv \, du$
- $\boldsymbol{\beta}_k = \int \boldsymbol{f}^*(x) w_k(x) dx.$
- $\hat{f}_{k}^{*}(x) = (I \beta_{k}\beta_{k}')\hat{f}_{k-1}^{*}(x)$
- 5 $\hat{m{g}}_k^*(m{x}) = (m{I} eta_k eta_k') \hat{m{g}}_{k-1}^*(m{x})$

- Discretize $s_t^*(x)$ on a dense grid of q equally spaced points.
- Denote discretized $s_t^*(x)$ as $T \times q$ matrix G^* and let $G = WG^*$.
- Define G_{k-1} and F_{k-1} analogously
- $\mathbf{w}_1(x) = \text{largest eigenvector of } \mathbf{G}' \mathbf{F}$
- $\mathbf{m}_k(x) = \text{largest eigenvector of } \mathbf{G}'_{k-1} \mathbf{F}_{k-1}$
- lacksquare $w_k(x) =$ largest eigenvector of $oldsymbol{F}'_{k-1}oldsymbol{G}_{k-1}$

- Discretize $s_t^*(x)$ on a dense grid of q equally spaced points.
- Denote discretized $s_t^*(x)$ as $T \times q$ matrix G^* and let $G = WG^*$.
- Define G_{k-1} and F_{k-1} analogously
- $\mathbf{w}_1(x) = \text{largest eigenvector of } \mathbf{G}' \mathbf{F}$
- lacksquare $m_k(x) =$ largest eigenvector of $oldsymbol{G}'_{k-1} oldsymbol{F}_{k-1}$
- $\mathbf{w}_k(\mathbf{x}) = \text{largest eigenvector of } \mathbf{F}'_{k-1} \mathbf{G}_{k-1}$

- Discretize $s_t^*(x)$ on a dense grid of q equally spaced points.
- Denote discretized $s_t^*(x)$ as $T \times q$ matrix G^* and let $G = WG^*$.
- Define G_{k-1} and F_{k-1} analogously
- $\mathbf{w}_1(x) = \text{largest eigenvector of } \mathbf{G}' \mathbf{F}$
- lacksquare $m_k(x) =$ largest eigenvector of $oldsymbol{G}'_{k-1} oldsymbol{F}_{k-1}$
- $\mathbf{w}_k(x) = \text{largest eigenvector of } \mathbf{F}'_{k-1} \mathbf{G}_{k-1}$

- Discretize $s_t^*(x)$ on a dense grid of q equally spaced points.
- Denote discretized $s_t^*(x)$ as $T \times q$ matrix G^* and let $G = WG^*$.
- Define G_{k-1} and F_{k-1} analogously
- $\mathbf{w}_1(x) = \text{largest eigenvector of } \mathbf{G}' \mathbf{F}$
- lacksquare $m_k(x) =$ largest eigenvector of $oldsymbol{G}'_{k-1} oldsymbol{F}_{k-1}$
- $\mathbf{w}_k(x) = \text{largest eigenvector of } \mathbf{F}'_{k-1} \mathbf{G}_{k-1}$

- Discretize $s_t^*(x)$ on a dense grid of q equally spaced points.
- Denote discretized $s_t^*(x)$ as $T \times q$ matrix G^* and let $G = WG^*$.
- Define G_{k-1} and F_{k-1} analogously
- $\mathbf{w}_1(x) = \text{largest eigenvector of } \mathbf{G}' \mathbf{F}$
- $lacksquare m_k(x) = \text{largest eigenvector of } oldsymbol{G}'_{k-1} oldsymbol{F}_{k-1}$
- $\mathbf{w}_k(x) = \text{largest eigenvector of } \mathbf{F}'_{k-1} \mathbf{G}_{k-1}$

- Discretize $s_t^*(x)$ on a dense grid of q equally spaced points.
- Denote discretized $s_t^*(x)$ as $T \times q$ matrix G^* and let $G = WG^*$.
- Define G_{k-1} and F_{k-1} analogously
- $\mathbf{w}_1(x) = \text{largest eigenvector of } \mathbf{G}' \mathbf{F}$
- lacksquare $m_k(x) =$ largest eigenvector of $oldsymbol{G}'_{k-1} oldsymbol{F}_{k-1}$
- $\mathbf{w}_k(x) =$ largest eigenvector of $\mathbf{F}'_{k-1}\mathbf{G}_{k-1}$

Functional autoregression coefficient:

$$b(x,u) = \sum_{k=1}^{\infty} w_k(u) \phi_k(x)$$

By orthogonality of β_k :

$$\phi_k(\mathbf{x}) = (\beta_k' \beta_k)^{-1} \beta_k' \hat{\mathbf{g}}^*(\mathbf{x}).$$

Therefore

$$\hat{b}(x,u) = \sum_{k=1}^K w_k(u) (\beta_k' \beta_k)^{-1} \beta_k' \hat{\boldsymbol{g}}^*(x),$$

for some finite *K*.

Functional autoregression coefficient:

$$b(x,u) = \sum_{k=1}^{\infty} w_k(u)\phi_k(x)$$

By orthogonality of β_k :

$$\phi_k(\mathbf{x}) = (\beta_k'\beta_k)^{-1}\beta_k'\hat{\mathbf{g}}^*(\mathbf{x}).$$

Therefore

$$\hat{b}(x,u) = \sum_{k=1}^K w_k(u) (\beta_k' \beta_k)^{-1} \beta_k' \hat{\boldsymbol{g}}^*(x),$$

for some finite *K*.

Functional autoregression coefficient:

$$b(x,u) = \sum_{k=1}^{\infty} w_k(u)\phi_k(x)$$

By orthogonality of β_k :

$$\phi_k(\mathbf{x}) = (\beta_k'\beta_k)^{-1}\beta_k'\hat{\mathbf{g}}^*(\mathbf{x}).$$

Therefore

$$\hat{b}(x,u) = \sum_{k=1}^K w_k(u) (\beta_k' \beta_k)^{-1} \beta_k' \hat{\boldsymbol{g}}^*(x),$$

for some finite K.

Forecasted curves:

$$\hat{f}_{t+1|t}(x) = \hat{\mu}(x) + \int [\hat{f}_t(u) - \hat{\mu}(u)] \hat{b}(x,u) du.$$

For $\hat{f}_{t+h|t}(x)$ where h > 1, apply iteratively.

Outline

- 1 Functional Partial Least Squares
- 2 Application: French mortality rates
- 3 Application: Australian fertility rates
- 4 Forecast accuracy comparisons
- **5** Bootstrap intervals
- **6** Comparisons
- 7 References

French female mortality rates

French female mortality rates

French mortality rate models

French mortality rate models

French mortality rate models

French mortality rate forecasts

French mortality rate forecasts

Outline

- 1 Functional Partial Least Squares
- 2 Application: French mortality rates
- 3 Application: Australian fertility rates
- 4 Forecast accuracy comparisons
- **5** Bootstrap intervals
- **6** Comparisons
- 7 References

Australian fertility rates

Australian fertility rates

Australian fertility rate models

Australian fertility rate models

Australian fertility rate models

Australian fertility rate forecasts

Australian fertility rate forecasts

Outline

- 1 Functional Partial Least Squares
- 2 Application: French mortality rates
- 3 Application: Australian fertility rates
- 4 Forecast accuracy comparisons
- **5** Bootstrap intervals
- **6** Comparisons
- 7 References

$$\mathsf{MSE}_t = \frac{1}{p} \sum_{i=1}^{p} \left[y_t(x_i) - \hat{y}_{t|t-1}(x_i) \right]^2.$$

- Averaged over last m years of observed data.
- For French female mortality, m = 30
- For Australian fertility, m = 20
- For comparison, compare random walk: $y_{t+1|t}(x) = y_t(x)$.

$$\mathsf{MSE}_t = \frac{1}{p} \sum_{i=1}^{p} \left[y_t(x_i) - \hat{y}_{t|t-1}(x_i) \right]^2.$$

- Averaged over last m years of observed data.
- For French female mortality, m = 30
- For Australian fertility, m = 20
- For comparison, compare random walk: $y_{t+1|t}(x) = y_t(x)$.

$$\mathsf{MSE}_t = \frac{1}{p} \sum_{i=1}^{p} \left[y_t(x_i) - \hat{y}_{t|t-1}(x_i) \right]^2.$$

- Averaged over last m years of observed data.
- For French female mortality, m = 30
- For Australian fertility, m = 20
- For comparison, compare random walk: $y_{t+1|t}(x) = y_t(x)$.

$$\mathsf{MSE}_t = \frac{1}{\rho} \sum_{i=1}^{\rho} \left[y_t(x_i) - \hat{y}_{t|t-1}(x_i) \right]^2.$$

- Averaged over last m years of observed data.
- For French female mortality, m = 30
- For Australian fertility, m = 20
- For comparison, compare random walk: $y_{t+1|t}(x) = y_t(x)$.

MSE: French female mortality rates (x1000)

K	FPC	FPC _w	FPLSR	FPLSR _W	RW
1	0.5956	0.0293	0.5994	0.0607	
2	0.0537	0.0310	0.0738	0.0288	
3	0.0316	0.0310	0.0445	0.0288	
4	0.0296	0.0311	0.0428	0.0288	
5	0.0287	0.0311	0.0472	0.0297	
6	0.0425	0.0311	0.0474	0.0291	0.0437

MSE: Australian fertility rates

K	FPC	\mathbf{FPC}_{w}	FPLSR	$FPLSR_{\scriptscriptstyle{W}}$	RW
1	99.0611	16.7304	94.0311	53.8186	
2	56.3095	3.3019	54.3410	17.5883	
3	24.9330	3.2580	26.0428	10.2599	
4	15.6845	3.1995	19.7227	4.4818	
5	4.4495	3.2132	5.9299	4.0573	
6	3.4310	3.2123	4.9205	2.9046	4.9800

Computation time

- Weighted FPLSR more efficient than weighted FPC as FPC requires many univariate time series models.
- Time to fit 100 replications:

Method	Fertility data	Mortality data
FPC	34.1072	62.2797
FPC_w	33.1424	60.8426
FPLSR	0.4287	2.9184
FPLSR _w	0.4537	3.1602
RW	0.0000	0.0002

(Intel Xeon 2.33GHz processor)

Computation time

Weighted FPLSR more efficient than weighted FPC as FPC requires many univariate time series models.

■ Time to fit 100 replications:

Method	Fertility data	Mortality data
FPC	34.1072	62.2797
FPC_w	33.1424	60.8426
FPLSR	0.4287	2.9184
$FPLSR_w$	0.4537	3.1602
RW	0.0000	0.0002
<u> </u>	2.22.011	

(Intel Xeon 2.33GHz processor)

Outline

- 1 Functional Partial Least Squares
- 2 Application: French mortality rates
- 3 Application: Australian fertility rates
- 4 Forecast accuracy comparisons
- **5** Bootstrap intervals
- **6** Comparisons
- 7 References

- **1** smoothing error in estimating $s_t(x)$
- \mathbf{z} error in estimating $\mu(\mathbf{x})$
- ${f 3}$ error in forecasting the scores $eta_{t,k}$
- \blacksquare error in the model residuals $e_t(x)$
- appropriateness of model

- **1** smoothing error in estimating $s_t(x)$
- **2** error in estimating $\mu(x)$
- ${f 3}$ error in forecasting the scores $\beta_{t,k}$
- f a error in the model residuals $e_t(x)$
- appropriateness of mode

- **1** smoothing error in estimating $s_t(x)$
- **2** error in estimating $\mu(x)$
- \blacksquare error in forecasting the scores $\beta_{t,k}$
- error in the model residuals $e_t(x)$
- appropriateness of model

- **1** smoothing error in estimating $s_t(x)$
- **2** error in estimating $\mu(x)$
- \blacksquare error in forecasting the scores $\beta_{t,k}$
- ullet error in the model residuals $e_t(x)$
- appropriateness of mode

- **1** smoothing error in estimating $s_t(x)$
- **2** error in estimating $\mu(x)$
- ${f 3}$ error in forecasting the scores $eta_{t,k}$
- ullet error in the model residuals $e_t(x)$
- appropriateness of model

Functional PLS

- **I** smoothing error in estimating $s_t(x)$
- **2** error in estimating $\mu(x)$
- \blacksquare error in estimating b(x, u)
- \blacksquare error in the model residuals $e_t(x)$
- appropriateness of model

- Let $\hat{\xi}_{t,k} = \hat{\beta}_{t,k} \hat{\beta}_{t|t-1,k}$ be 1-step errors of PC scores.
- $lacksquare \{\xi_k^{(\ell)}\}$ sampled with replacement from $\{\hat{\xi}_{t,k}\}$.
- Simulate future sample paths of $\beta_{T+h|T,k}$ using these bootstrapped residuals: $\{\beta_{T+h|T,k}^{(\ell)}\}$.
- $\{e^{(\ell)}(x)\}$ sampled with replacement from residual functions $\{\hat{e}_1(x), \dots, \hat{e}_T(x)\}$.
- \blacksquare $\{arepsilon^{(\ell)}\}$ sampled with replacement from $\{\hat{arepsilon}_{1,i},\dots,\hat{arepsilon}_{T,i}\}$

- Let $\hat{\xi}_{t,k} = \hat{\beta}_{t,k} \hat{\beta}_{t|t-1,k}$ be 1-step errors of PC scores.
- $lacksquare \{\xi_k^{(\ell)}\}$ sampled with replacement from $\{\hat{\xi}_{t,k}\}$.
- Simulate future sample paths of $\beta_{T+h|T,k}$ using these bootstrapped residuals: $\{\beta_{T+h|T,k}^{(\ell)}\}$.
- $\{e^{(\ell)}(x)\}$ sampled with replacement from residual functions $\{\hat{e}_1(x), \dots, \hat{e}_T(x)\}$.
- lacksquare $\{\varepsilon^{(\ell)}\}$ sampled with replacement from $\{\hat{\varepsilon}_{1,i},\ldots,\hat{\varepsilon}_{T,i}\}$.

- Let $\hat{\xi}_{t,k} = \hat{\beta}_{t,k} \hat{\beta}_{t|t-1,k}$ be 1-step errors of PC scores.
- $lacksquare \{\xi_k^{(\ell)}\}$ sampled with replacement from $\{\hat{\xi}_{t,k}\}$.
- Simulate future sample paths of $\beta_{T+h|T,k}$ using these bootstrapped residuals: $\{\beta_{T+h|T,k}^{(\ell)}\}$.
- $\{e^{(\ell)}(x)\}$ sampled with replacement from residual functions $\{\hat{e}_1(x), \dots, \hat{e}_T(x)\}$.
- lacksquare $\{\varepsilon^{(\ell)}\}$ sampled with replacement from $\{\hat{\varepsilon}_{1,i},\ldots,\hat{\varepsilon}_{T,i}\}$.

- Prediction intervals are produced from the bootstrap variants using percentiles.

- Let $\hat{\xi}_{t,k} = \hat{\beta}_{t,k} \hat{\beta}_{t|t-1,k}$ be 1-step errors of PC scores.
- $lacksquare \{\xi_k^{(\ell)}\}$ sampled with replacement from $\{\hat{\xi}_{t,k}\}$.
- Simulate future sample paths of $\beta_{T+h|T,k}$ using these bootstrapped residuals: $\{\beta_{T+h|T,k}^{(\ell)}\}$.
- $\{e^{(\ell)}(x)\}$ sampled with replacement from residual functions $\{\hat{e}_1(x), \dots, \hat{e}_T(x)\}$.
- lacksquare $\{\varepsilon^{(\ell)}\}$ sampled with replacement from $\{\hat{\varepsilon}_{1,i},\ldots,\hat{\varepsilon}_{T,i}\}$.
- $y_{T+h|T}^{(\ell)}(x_i) = \hat{\mu}(x_i) + \sum_{k=1}^{\infty} \beta_{T+h|T,k}^{(\ell)} \phi_k(x_i) + e^{(\ell)}(x_i) + \hat{\sigma}_{T+h}(x_i) e^{(\ell)}$
 - Prediction intervals are produced from the bootstrap variants using percentiles.

- Let $\hat{\xi}_{t,k} = \hat{\beta}_{t,k} \hat{\beta}_{t|t-1,k}$ be 1-step errors of PC scores.
- $lacksquare \{\xi_k^{(\ell)}\}$ sampled with replacement from $\{\hat{\xi}_{t,k}\}$.
- Simulate future sample paths of $\beta_{T+h|T,k}$ using these bootstrapped residuals: $\{\beta_{T+h|T,k}^{(\ell)}\}$.
- $\{e^{(\ell)}(x)\}$ sampled with replacement from residual functions $\{\hat{e}_1(x), \dots, \hat{e}_T(x)\}$.
- $\{\varepsilon^{(\ell)}\}$ sampled with replacement from $\{\hat{\varepsilon}_{1,i},\ldots,\hat{\varepsilon}_{T,i}\}$.

$$y_{T+h|T}^{(\ell)}(x_i) = \hat{\mu}(x_i) + \sum_{k=1}^{K} \beta_{T+h|T,k}^{(\ell)} \phi_k(x_i) + e^{(\ell)}(x_i) + \hat{\sigma}_{T+h}(x_i) \varepsilon^{(\ell)}$$

- Let $\hat{\xi}_{t,k} = \hat{\beta}_{t,k} \hat{\beta}_{t|t-1,k}$ be 1-step errors of PC scores.
- $lacksquare \{\xi_k^{(\ell)}\}$ sampled with replacement from $\{\hat{\xi}_{t,k}\}$.
- Simulate future sample paths of $\beta_{T+h|T,k}$ using these bootstrapped residuals: $\{\beta_{T+h|T,k}^{(\ell)}\}$.
- $\{e^{(\ell)}(x)\}$ sampled with replacement from residual functions $\{\hat{e}_1(x), \dots, \hat{e}_T(x)\}$.
- $\{\varepsilon^{(\ell)}\}$ sampled with replacement from $\{\hat{\varepsilon}_{1,i},\ldots,\hat{\varepsilon}_{T,i}\}$.

$$y_{T+h|T}^{(\ell)}(x_i) = \hat{\mu}(x_i) + \sum_{k=1}^{K} \beta_{T+h|T,k}^{(\ell)} \phi_k(x_i) + e^{(\ell)}(x_i) + \hat{\sigma}_{T+h}(x_i) \varepsilon^{(\ell)}$$

- Let $\hat{\xi}_{t,k} = \hat{\beta}_{t,k} \hat{\beta}_{t|t-1,k}$ be 1-step errors of PC scores.
- $lacksquare \{\xi_k^{(\ell)}\}$ sampled with replacement from $\{\hat{\xi}_{t,k}\}$.
- Simulate future sample paths of $\beta_{T+h|T,k}$ using these bootstrapped residuals: $\{\beta_{T+h|T,k}^{(\ell)}\}$.
- $\{e^{(\ell)}(x)\}$ sampled with replacement from residual functions $\{\hat{e}_1(x), \dots, \hat{e}_T(x)\}$.
- lacksquare $\{\varepsilon^{(\ell)}\}$ sampled with replacement from $\{\hat{\varepsilon}_{1,i},\ldots,\hat{\varepsilon}_{T,i}\}$.

$$y_{T+h|T}^{(\ell)}(x_i) = \hat{\mu}(x_i) + \sum_{k=1}^{K} \beta_{T+h|T,k}^{(\ell)} \phi_k(x_i) + e^{(\ell)}(x_i) + \hat{\sigma}_{T+h}(x_i) \varepsilon^{(\ell)}$$

Resample residuals and construct bootstrap samples:

$$egin{aligned} m{f}^{(\ell)}(x) &= \hat{\mu}(x) + \hat{m{f}}^*(x) + m{e}^{(\ell)}(x), \ m{g}^{(\ell)}(x) &= \hat{\mu}(x) + \hat{m{g}}^*(x) + m{e}^{(\ell)}(x). \end{aligned}$$

- Construct weighted FPLSR model for each bootstrap sample.
- Compute bootstrapped forecast variants:

Resample residuals and construct bootstrap samples:

$$egin{aligned} m{f}^{(\ell)}(x) &= \hat{\mu}(x) + \hat{m{f}}^*(x) + m{e}^{(\ell)}(x), \ m{g}^{(\ell)}(x) &= \hat{\mu}(x) + \hat{m{g}}^*(x) + m{e}^{(\ell)}(x). \end{aligned}$$

- Construct weighted FPLSR model for each bootstrap sample.
- Compute bootstrapped forecast variants:

$$y_{T+1|T}^{(\ell)}(x_i) = \hat{\mu}(x_i) + \int (f_T(u) - \hat{\mu}(u))\hat{b}^{(\ell)}(x_i, u)du + \hat{\sigma}_{T+1}(x_i)\hat{\varepsilon}^{(\ell)}$$

Resample residuals and construct bootstrap samples:

$$egin{aligned} oldsymbol{f}^{(\ell)}(x) &= \hat{\mu}(x) + \hat{oldsymbol{f}}^*(x) + oldsymbol{e}^{(\ell)}(x), \ oldsymbol{g}^{(\ell)}(x) &= \hat{\mu}(x) + \hat{oldsymbol{g}}^*(x) + oldsymbol{e}^{(\ell)}(x). \end{aligned}$$

- Construct weighted FPLSR model for each bootstrap sample.
- Compute bootstrapped forecast variants:

$$y_{T+1|T}^{(\ell)}(x_i) = \hat{\mu}(x_i) + \int (f_T(u) - \hat{\mu}(u))\hat{b}^{(\ell)}(x_i, u)du + \hat{\sigma}_{T+1}(x_i)\hat{\varepsilon}^{(\ell)}$$

Bootstrap curves for FPLS

Resample residuals and construct bootstrap samples:

$$egin{aligned} oldsymbol{f}^{(\ell)}(x) &= \hat{\mu}(x) + \hat{oldsymbol{f}}^*(x) + oldsymbol{e}^{(\ell)}(x), \ oldsymbol{g}^{(\ell)}(x) &= \hat{\mu}(x) + \hat{oldsymbol{g}}^*(x) + oldsymbol{e}^{(\ell)}(x). \end{aligned}$$

- Construct weighted FPLSR model for each bootstrap sample.
- Compute bootstrapped forecast variants:

$$y_{T+1|T}^{(\ell)}(x_i) = \hat{\mu}(x_i) + \int (f_T(u) - \hat{\mu}(u))\hat{b}^{(\ell)}(x_i, u)du + \hat{\sigma}_{T+1}(x_i)\hat{\varepsilon}^{(\ell)}$$

Prediction intervals are produced from the bootstrap variants using percentiles.

Bootstrap curves for FPLS

Resample residuals and construct bootstrap samples:

$$egin{aligned} oldsymbol{f}^{(\ell)}(x) &= \hat{\mu}(x) + \hat{oldsymbol{f}}^*(x) + oldsymbol{e}^{(\ell)}(x), \ oldsymbol{g}^{(\ell)}(x) &= \hat{\mu}(x) + \hat{oldsymbol{g}}^*(x) + oldsymbol{e}^{(\ell)}(x). \end{aligned}$$

- Construct weighted FPLSR model for each bootstrap sample.
- Compute bootstrapped forecast variants:

$$y_{T+1|T}^{(\ell)}(x_i) = \hat{\mu}(x_i) + \int (f_T(u) - \hat{\mu}(u))\hat{b}^{(\ell)}(x_i, u)du + \hat{\sigma}_{T+1}(x_i)\hat{\varepsilon}^{(\ell)}$$

Prediction intervals are produced from the bootstrap variants using percentiles.

Bootstrap curves for FPLS

Resample residuals and construct bootstrap samples:

$$egin{aligned} oldsymbol{f}^{(\ell)}(x) &= \hat{\mu}(x) + \hat{oldsymbol{f}}^*(x) + oldsymbol{e}^{(\ell)}(x), \ oldsymbol{g}^{(\ell)}(x) &= \hat{\mu}(x) + \hat{oldsymbol{g}}^*(x) + oldsymbol{e}^{(\ell)}(x). \end{aligned}$$

- Construct weighted FPLSR model for each bootstrap sample.
- Compute bootstrapped forecast variants:

$$y_{T+1|T}^{(\ell)}(x_i) = \hat{\mu}(x_i) + \int (f_T(u) - \hat{\mu}(u))\hat{b}^{(\ell)}(x_i, u)du + \hat{\sigma}_{T+1}(x_i)\hat{\varepsilon}^{(\ell)}$$

Prediction intervals are produced from the bootstrap variants using percentiles.

$$\frac{1}{mph} \sum_{t=T-m+1}^{T} \sum_{j=1}^{h} \sum_{i=1}^{p} 1\left(\hat{y}_{t+j|t}^{(0.025)}(x_i) < y_{t+j}(x_i) < \hat{y}_{t+j|t}^{(0.975)}(x_i)\right)$$

- $\hat{y}_{t+i|t}^{(\alpha)}(x_i) = \alpha$ -quantile from bootstrap samples
- m = smallest number of observations used to fit a model

$$\frac{1}{mph} \sum_{t=T-m+1}^{T} \sum_{j=1}^{h} \sum_{i=1}^{p} 1\left(\hat{y}_{t+j|t}^{(0.025)}(x_i) < y_{t+j}(x_i) < \hat{y}_{t+j|t}^{(0.975)}(x_i)\right)$$

- $\hat{y}_{t+i|t}^{(\alpha)}(x_i) = \alpha$ -quantile from bootstrap samples
- m = smallest number of observations used to fit a model

Method	Fertility data	Mortality data

$$\frac{1}{mph} \sum_{t=T-m+1}^{T} \sum_{j=1}^{h} \sum_{i=1}^{p} 1\left(\hat{y}_{t+j|t}^{(0.025)}(x_i) < y_{t+j}(x_i) < \hat{y}_{t+j|t}^{(0.975)}(x_i)\right)$$

- $\hat{y}_{t+i|t}^{(\alpha)}(x_i) = \alpha$ -quantile from bootstrap samples
- m = smallest number of observations used to fit a model

Method	Fertility data	Mortality data
FPC	98.00%	97.19%
FPLS	96.86%	97.23%

$$\frac{1}{mph} \sum_{t=T-m+1}^{T} \sum_{j=1}^{h} \sum_{i=1}^{p} 1\left(\hat{y}_{t+j|t}^{(0.025)}(x_i) < y_{t+j}(x_i) < \hat{y}_{t+j|t}^{(0.975)}(x_i)\right)$$

- $\hat{y}_{t+i|t}^{(\alpha)}(x_i) = \alpha$ -quantile from bootstrap samples
- m = smallest number of observations used to fit a model

Method	Fertility data	Mortality data
FPC	98.00%	97.19%
FPLS	96.86%	97.23%

- Compute d(x) = difference between $(1 \alpha/2)$ and $(\alpha/2)$ quantiles of $\{\hat{f}_{t+1}(x) \hat{f}_{t+1|t}(x); t = m, ..., T 1\}$
- Let $[\ell_h(x), u_h(x)]$ be $100(1-\alpha)\%$ *h*-step-ahead prediction intervals obtained from bootstrap methods.
- Ideally, $u_1(x) \ell_1(x) = d(x)$.

Adjusted prediction interva

$$0.5\{\ell_h(x) + u_h(x)\} - \{u_h(x) - \ell_h(x)\}p(x),$$

$$0.5\{\ell_h(x) + u_h(x)\} + \{u_h(x) - \ell_h(x)\}p(x)$$

where $p(x) = 0.5d(x)/[u_1(x) - \ell_1(x)]$.

- Compute d(x) = difference between $(1 \alpha/2)$ and $(\alpha/2)$ quantiles of $\{\hat{f}_{t+1}(x) \hat{f}_{t+1|t}(x); t = m, ..., T 1\}$
- Let $[\ell_h(x), u_h(x)]$ be $100(1 \alpha)\%$ *h*-step-ahead prediction intervals obtained from bootstrap methods.
- Ideally, $u_1(x) \ell_1(x) = d(x)$.

Adjusted prediction interval

$$[0.5\{\ell_h(x) + u_h(x)\} - \{u_h(x) - \ell_h(x)\}p(x),$$

$$[0.5\{\ell_h(x) + u_h(x)\} + \{u_h(x) - \ell_h(x)\}p(x)]$$

where $p(x) = 0.5d(x)/[u_1(x) - \ell_1(x)]$

- Compute d(x) = difference between $(1 \alpha/2)$ and $(\alpha/2)$ quantiles of $\{\hat{f}_{t+1}(x) \hat{f}_{t+1|t}(x); t = m, ..., T 1\}$
- Let $[\ell_h(x), u_h(x)]$ be $100(1 \alpha)\%$ *h*-step-ahead prediction intervals obtained from bootstrap methods.
- Ideally, $u_1(x) \ell_1(x) = d(x)$.

$$\begin{bmatrix} 0.5\{\ell_h(x) + u_h(x)\} - \{u_h(x) - \ell_h(x)\}p(x), \\ 0.5\{\ell_h(x) + u_h(x)\} + \{u_h(x) - \ell_h(x)\}p(x) \end{bmatrix}$$
 where $p(x) = 0.5d(x)/[u_1(x) - \ell_1(x)].$

- Compute d(x) = difference between $(1 \alpha/2)$ and $(\alpha/2)$ quantiles of $\{\hat{f}_{t+1}(x) \hat{f}_{t+1|t}(x); t = m, ..., T 1\}$
- Let $[\ell_h(x), u_h(x)]$ be $100(1 \alpha)\%$ h-step-ahead prediction intervals obtained from bootstrap methods.
- Ideally, $u_1(x) \ell_1(x) = d(x)$.

Adjusted prediction interval

$$\begin{split} \left[0.5\{\ell_h(x) + u_h(x)\} - \{u_h(x) - \ell_h(x)\} p(x), \\ 0.5\{\ell_h(x) + u_h(x)\} + \{u_h(x) - \ell_h(x)\} p(x) \right] \\ \text{where } p(x) = 0.5 d(x) / [u_1(x) - \ell_1(x)]. \end{split}$$

For h = 1, these have same coverage as in-sample

- Compute d(x) = difference between $(1 \alpha/2)$ and $(\alpha/2)$ quantiles of $\{\hat{f}_{t+1}(x) \hat{f}_{t+1|t}(x); t = m, ..., T 1\}$
- Let $[\ell_h(x), u_h(x)]$ be $100(1 \alpha)\%$ *h*-step-ahead prediction intervals obtained from bootstrap methods.
- Ideally, $u_1(x) \ell_1(x) = d(x)$.

Adjusted prediction interval

$$\begin{split} \left[0.5 \{ \ell_h(x) + u_h(x) \} - \{ u_h(x) - \ell_h(x) \} p(x), \\ 0.5 \{ \ell_h(x) + u_h(x) \} + \{ u_h(x) - \ell_h(x) \} p(x) \right] \\ \text{where } p(x) = 0.5 d(x) / [u_1(x) - \ell_1(x)]. \end{split}$$

For h = 1, these have same coverage as in-sample intervals if distributions symmetric.

- Compute d(x) = difference between $(1 \alpha/2)$ and $(\alpha/2)$ quantiles of $\{\hat{f}_{t+1}(x) \hat{f}_{t+1|t}(x); t = m, ..., T 1\}$
- Let $[\ell_h(x), u_h(x)]$ be $100(1 \alpha)\%$ *h*-step-ahead prediction intervals obtained from bootstrap methods.
- Ideally, $u_1(x) \ell_1(x) = d(x)$.

Adjusted prediction interval

$$\begin{split} \left[0.5 \{ \ell_h(x) + u_h(x) \} - \{ u_h(x) - \ell_h(x) \} p(x), \\ 0.5 \{ \ell_h(x) + u_h(x) \} + \{ u_h(x) - \ell_h(x) \} p(x) \right] \\ \text{where } p(x) = 0.5 d(x) / [u_1(x) - \ell_1(x)]. \end{split}$$

■ For h = 1, these have same coverage as in-sample intervals if distributions symmetric.

	Fertility data		Mortality data	
	95%	adj 95%	95%	adj 95%
FPC	98.00%	95.86%	97.19%	95.91%
FPLS	96.86%	94.89%	97.23%	94.95%

Outline

- 1 Functional Partial Least Squares
- 2 Application: French mortality rates
- 3 Application: Australian fertility rates
- 4 Forecast accuracy comparisons
- **5** Bootstrap intervals
- **6** Comparisons
- 7 References

FPC advantages

- allows more complex dynamics and higher order components;
- eases interpretability of dynamic changes by separating out effects of a few orthogonal components;

FPLS advantages

FPC advantages

- allows more complex dynamics and higher order components;
- eases interpretability of dynamic changes by separating out effects of a few orthogonal components;

FPLS advantages

FPC advantages

- allows more complex dynamics and higher order components;
- eases interpretability of dynamic changes by separating out effects of a few orthogonal components;

FPLS advantages

- latent components more suitable for prediction rather than variance decomposition.
- Faster as there is no need to fit univariate time series models

FPC advantages

- allows more complex dynamics and higher order components;
- eases interpretability of dynamic changes by separating out effects of a few orthogonal components;

FPLS advantages

- latent components more suitable for prediction rather than variance decomposition.
- Faster as there is no need to fit univariate time series models

Both methods implemented in ftsa package for R

FPC advantages

- allows more complex dynamics and higher order components;
- eases interpretability of dynamic changes by separating out effects of a few orthogonal components;

FPLS advantages

- latent components more suitable for prediction rather than variance decomposition.
- Faster as there is no need to fit univariate time series models

Both methods implemented in ftsa package for R

FPC advantages

- allows more complex dynamics and higher order components;
- eases interpretability of dynamic changes by separating out effects of a few orthogonal components;

FPLS advantages

- latent components more suitable for prediction rather than variance decomposition.
- Faster as there is no need to fit univariate time series models

Both methods implemented in ftsa package for R.

FPC advantages

- allows more complex dynamics and higher order components;
- eases interpretability of dynamic changes by separating out effects of a few orthogonal components;

FPLS advantages

- latent components more suitable for prediction rather than variance decomposition.
- Faster as there is no need to fit univariate time series models

Both methods implemented in ftsa package for R.

Outline

- 1 Functional Partial Least Squares
- 2 Application: French mortality rates
- 3 Application: Australian fertility rates
- 4 Forecast accuracy comparisons
- **5** Bootstrap intervals
- **6** Comparisons
- **7** References

Selected references

Hyndman, Shang (2009). "Forecasting functional time series (with discussion)".

Journal of the Korean Statistical Society 38(3), 199–221.

Hyndman (2014). demography: Forecasting mortality, fertility, migration and population data.

cran.r-project.org/package=demography

Shang, Hyndman (2013). ftsa: Functional time series analysis.

cran.r-project.org/package=ftsa