PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08330316 A

(43) Date of publication of application: 13 . 12 . 96

(51) Int. CI

H01L 21/322 C30B 15/22 C30B 29/06

(21) Application number: 07158458

(71) Applicant:

SUMITOMO SITIX CORP

(22) Date of filing: 31 . 05 . 95

(72) Inventor:

HORAI MASATAKA

KAJITA EIJI

(54) SILICON SINGLE CRYSTAL WAFER AND ITS PRODUCTION

COPYRIGHT: (C)1996, JPO

(57) Abstract:

PURPOSE: To provide a silicon single crystal wafer having no grown-in defect over the entire surface.

CONSTITUTION: When a silicon single crystal is grown by Czochralski method at a pulling rate of V (mm/min) with an average temperature gradient of G (°C/mm) in the crystal in the direction of pulling axis over a temperature range from the melting point of silicon and 1300°C, the value of V/G is set at 0.20-0.22 mm²/°C.min between the center of crystal and a position separated by 30 mm from the outer circumference of crystal. The value of V/G is set at 0.20-0.22 mm²/°C min between the position separated by 30mm from the outer circumference of crystal and the position on the outer circumference of crystal or it is increased gradually toward the outer circumference of crystal. Consequently, the OSF ring disappears in the center of wafer and no dislocation cluster is generated on the outside of the ring.

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-330316

(43)公開日 平成8年(1996)12月13日

(51) Int.Cl.6		識別記号	庁 内整理番号	FΙ			技術表示箇所
H 0 1 L	21/322			H01L	21/322	Y	
C 3 0 B	15/22			C 3 0 B	15/22		
	29/06	5 0 2	7202-4G		29/06	502J	

		審査請求	未請求 請求項の数2 FD (全 7 頁)		
(21)出願番号	特顧平7-158458	(71)出顧人			
(22)出顧日	平成7年(1995) 5月31日	1	住友シチックス株式会社 兵庫県尼崎市東浜町1番地		
		(72)発明者	宝来 正隆		
		i	佐賀県杵島郡江北町大字上小田2201番地 住友シチックス株式会社九州事業所内		
		(72)発明者			
			佐賀県杵島郡江北町大字上小田2201番地		
		1	住友シチックス株式会社九州事業所内		
		(74)代理人	弁理士 生形 元重 (外1名)		
		İ			

(54) 【発明の名称】 シリコン単結晶ウェーハおよびその製造方法

(57)【要約】

【目的】 全面にGrown-in欠陥のないシリコン単結晶ウェーハを提供する。

【構成】 チョクラルスキー法でシリコン単結晶を育成する際に、引き上げ速度をV(mm/min)とし、シリコン融点から 1300 ℃までの温度範囲における引き上げ軸方向の結晶内温度勾配の平均値をG(\mathbb{C}/mm)とするとき、V/G値を結晶中心位置と結晶外周から 30 mmまでの位置との間では $0.20\sim0.22$ mm^2/\mathbb{C} ・min とし、結晶外周から 30 mmまでの位置と結晶外周 位置との間では $0.20\sim0.22$ mm^2/\mathbb{C} ・min とし、結晶外周から 30 mmまでの位置と結晶外周 位置との間では $0.20\sim0.22$ mm^2/\mathbb{C} ・min とするか若しくは結晶外周に向かって漸次増加させる。OSF リングがウェーハ中心部で消滅し、且つリングの外側に生じるはずの転位クラスタも発生しない。

【特許請求の範囲】

【請求項1】 チョクラルスキー法により育成されたシ リコン単結晶ウェーハであって、熱酸化処理をした際に リング状に発生する酸化誘起積層欠陥がウェーハ中心部 で消滅した低速育成ウェーハであり、且つウェーハ全面 から転位クラスタが排除されていることを特徴とするシ リコン単結晶ウェーハ。

【請求項2】 チョクラルスキー法でシリコン単結晶を 育成する際に、引き上げ速度をV (mm/min)とし、 シリコン融点から1300℃までの温度範囲における引 10 き上げ軸方向の結晶内温度勾配の平均値をG (℃/m m)とするとき、V/G値を結晶中心位置と結晶外周か ら30mmまでの位置との間では0.20~0.22mm² /℃・min とし、結晶外周から30mmまでの位置と結 晶外周位置との間では0.20~0.22mm²/℃・min とするか若しくは結晶外周に向かって漸次増加させるこ とを特徴とするシリコン単結晶ウェーハ製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体素子等の製造に 用いられるシリコン単結晶ウェーハ、特にチョクラルス キー法(以下CZ法という)により育成されたシリコン 単結晶ウェーハおよびその製造方法に関する。

[0002]

【従来の技術】半導体素子の製造に用いられるシリコン 単結晶ウェーハは主にCZ法により製造されている。C Z法とは周知の如く石英坩堝内のシリコン融液に種結晶 を漬け、石英坩堝および種結晶を回転させながら種結晶 を引き上げることにより、円柱状のシリコン単結晶を育 成するものである。このときの引き上げ速度、すなわち 単結晶育成速度は通常1.0~2.0 mm/min である。

【0003】ところで、このようなCZ法により育成し たシリコン単結晶ウェーハは、熱酸化処理(例えば10 00~1200℃×1~10時間)を受けたときに、リ ング状に発生するOSFと呼ばれる酸化誘起積層欠陥を 生じることがある。このOSFリングは引き上げ速度が 速くなるにつれて単結晶の外周側へ移動することが知ら れており、現在LSIの製造には、OSFリングが単結 晶の最外周に分布するように比較的高速の引き上げ速 度、すなわち1.0~2.0mm/min で育成された高速育 成ウェーハが用いられている。

【0004】しかしながら、このような高速で育成され たシリコン単結晶ウェーハには数種の微小欠陥(以下Gr own-in欠陥と称す)が存在し、MOSデバイスのゲート 酸化膜耐圧特性を劣化させることが明らかになってき た。また、これらのGrown in欠陥は熱的に極めて安定で あることから、デバイスの製造プロセス中においても消 滅せず、ウェーハ表面近傍の活性領域に残留し、酸化膜 耐圧特性だけでなく接合リーク特性を劣化させることも 明らかになってきた(例えばM. Horikawa et al. Semicon 50 ductor Silicon 1994, p987) .

【0005】近年LSI等のMOS型高集積半導体素子 の集積度増大に伴ってゲート酸化膜が薄膜化され、ソー ス・ドレイン等の拡散層深さが浅くなったため、ゲート 酸化膜の絶縁耐圧特性の向上および接合リーク電流の低 減が強く要請されているが、現在LSIの製造に使用さ れている高速育成ウェーハは、これらの特性が劣るた め、最近の特に高い集積度に対しては対応が困難になっ てきた。

【0006】そこで最近になって、引き上げ速度が0.8 mm/min 以下の中速または低速でシリコン単結晶を育 成する方法が特開平2-267195号公報により提案 された。しかしながら、このような中速~低速で育成し たシリコン単結晶ウェーハにも下記のような結晶品質上 の問題点がある。

[0007]

【発明が解決しようとする課題】一般に、単結晶内の温 度分布はCZ炉内の構造に依存しており、引き上げ速度 が変化しても、その分布は大きくは変わらない。そのた め、同じ構造を有する装置により、引き上げ速度を変化 させて単結晶を育成すると、図1に示すような引き上げ 速度と欠陥発生分布との関係が見られる。装置が異なる とこの関係は若干変化するが、傾向まで変化することは ない。

【0008】引き上げ速度が0.8~0.6 mm/min の中 速育成の場合には、同図(A)に示すように、シリコン 単結晶ウェーハの半径の1/2付近にOSFリングが発 生する。リングの外側と内側とでは物性が異なり、OS Fリングより外側の領域では、ゲート酸化膜の耐圧特性 は良好である。

【0009】しかし、リングより内側の領域では、いく つかの種類のGrown-in欠陥が存在するため、その耐圧特 性は良好でない。なかでも結晶育成中に形成されas-gro wn状態で赤外トモグラフ法で観察される赤外散乱欠陥が 約10°個/cm³の密度で発生する。酸素析出物と考 えられるこの欠陥は熱的に極めて安定であるので、デバ イスの熱処理プロセスでも消滅することはなく、デバイ ス活性領域に残留して接合リーク特性も劣化させる。

【0010】またOSFリング自体は、数mm~10m m程度の幅で発生し、約10⁴個/cm²の高密度でO SFを含むことから、半導体素子の特性、例えば接合リ ーク特性を悪化させる原因になる。更に、この領域に は、ウェーハを熱処理した際に10°~10°cm°の 密度で酸素析出物が発生する。この酸素析出物の核も熱 的に安定であり、1250℃の熱処理でも成長する。従 って、OSFリング自体もデバイスプロセス後の特性を 劣化させる原因になる。

【0011】シリコン単結晶の引き上げ速度を0.6~0. 5 mm/min に低下させた場合には、図1 (B) に示す ように、OSFリングの直径が更に小さくなり、ウェー

40

ハの中心付近にリング状または円盤状にOSFが発生す る。リングより外側の面積が増大するために、酸化膜耐 圧特性は向上するが、代わってリング外側の外周部に転 位クラスタが発生する。この転位クラスタは大きさが約 10~20μmで密度が約10³個/cm²程度であ り、これも半導体素子の特性を劣化させる原因になるこ とは周知の通りである。

【0012】また、CZ法で育成されたシリコン単結晶 ウェーハには、酸素不純物が1~2×10¹⁸ atoms/c m³の濃度で含まれている。そして、この酸素不純物の ためにデバイスプロセスでの熱処理(例えば600~1 150℃×数十時間)により酸素析出が起こることは上 述した通りである。この酸素析出物はデバイス活性領域 に発生してデバイスの特性を劣化させる一方で、デバイ スプロセス中に発生する重金属汚染をゲッタリングする サイトとして作用する。

【0013】OSFリングより内側の領域では酸素析出 が強く起こるため、通常のイントリンシックゲッタリン グ能(以下1G能という)が得られるが、OSFリング より外側の転位クラスタが発生する領域では、この酸素 析出が起こりにくいためIG能は低下する。

【0014】このように、引き上げ速度が0.8~0.5 m m/min の中速で育成されたウェーハは、OSFリング が残り、そのリング自体が欠陥発生領域であるだけな く、リングの内外にも欠陥が発生するため、高集積度の 半導体素子の製造には適さない。

【0015】一方、引き上げ速度が0.5 mm/min 以下 の低速で育成されたウェーハでは、図1(C)に示すよ うに、OSFリング領域はウェーハの中央部で消滅し、 これに伴いリングより内側の赤外散乱欠陥が発生する領 30 域も消える。しかし、ウェーハの全面に転位クラスタが、 発生する。転位クラスタの発生がデバイス特性の低下や IG能の低下の原因になることは上述した通りである。 従って、低速育成ウェーハも高集積度半導体素子の製造 に適さない。

【0016】以上のように、現状のCZ法によるシリコ ン単結晶の育成では、引き上げ速度をいかに調整しても 結晶径方向の少なくとも一部に有害欠陥が生じ、全面無 欠陥のウェーハは製造されない。

【0017】本発明の目的は、全面にわたって有害欠陥 40 がない高品質なCZ法育成のシリコン単結晶ウェーハお よびその製造方法を提供することにある。

[0018]

【課題を解決するための手段】ところで本発明者らは先 にOSFリングの発生位置に関し次のような重要な事実 を得た。

【0019】同一の構造を有する結晶育成装置では、〇 SFリングの径は結晶の引き上げ速度に依存して変化 し、引き上げ速度の低下と共にその径は減少するが、育

の引き上げ速度であってもOSFリングの径は異なる。 しかし、単結晶の引き上げ速度をV(mm/min)と し、シリコン融点から1300℃までの高温域における 引き上げ軸方向の結晶内温度勾配の平均値をG (℃/m m)とするとき、V/Gで表わされる比によりOSFリ ングの径は一義的に決定される。つまり、V/G値を制 御することにより、OSFリングを狙いとする位置に発 生させることができ、また消滅させることも可能とな

【0020】しかしながら、V/G値の制御によりOS 10 Fリングの発生位置を制御しても赤外散乱欠陥、転位ク ラスタ等のGrown-in欠陥まで消滅させることはできな W

【0021】そこで本発明者らは欠陥分布に及ぼすV/ G値の影響を次のようにして調査した。単結晶の肩から それぞれ100, 200, 300, 400mmの各位置 に固液界面がある場合の温度分布を総合伝熱解析により 求めた。この伝熱解析においては、融液内の対流による 温度分布の効果が考慮されていないと、実際と異なる固 液界面形状が得られ、またこれによって結晶内の特に固 液界面に近い高温部での温度分布が実際のものと若干異 なることが懸念される。この計算上の問題を改善し、高 温部におけるより正確な温度分布を得るために、さらに 上記各位置での固液界面の形状を実結晶から計測し、界 面での温度をシリコンの融点として、これと上記伝熱計 算による結晶表面での温度を境界条件として再び結晶内 部の軸方向温度分布を計算し、これから軸方向温度勾配 の径方向分布を計算した。径方向位置を横軸とし、V/ G値を縦軸として欠陥分布を示したのが図2である。

【0022】図2から分かるように、V/G値が0.20 mm²/℃·min 未満の場合、径方向全域において転位 クラスタが発生する。V/G値が0.20mm²/℃・mi n より大きくなるに連れて無欠陥領域、OSFリング発 生領域、赤外散乱欠陥発生領域の順に領域が変化する。 ここで無欠陥領域の下限は径方向位置に関係なく一定 (0.20 m m² / ℃·min) であるが、上限は結晶中心 と結晶外周から30mmまでの位置との間では一定(0. 22mm²/℃·min)となり、結晶外周から30mm までの位置と結晶外周位置との間では、結晶外周に近づ くに連れて大となる。そして、ホットゾーン構造が異な る場合でも各種欠陥はこの図に従って分布する。

【0023】すなわち、ホットゾーン構造と引き上げ速 度が決まると、その育成装置が持つ結晶径方向でのV/ G値が破線のように決定される。引き上げ速度がViの 場合、そのV/G曲線が赤外散乱欠陥発生領域を横切る 結晶部位で赤外散乱欠陥が生じ、OSFリング発生領域 を横切る結晶部位でOSFリングが発生する。よって引 き上げ速度がV₁の場合はウェーハの最外周部にOSF リングが発生し、その内側の領域には赤外散乱欠陥が生 成装置が相違し、ホットゾーン構造が変化すると、同一500じる。引き上げ速度が低下するとV/G曲線は V_{\circ},V_{\circ}

10

 y_1 , V_2 , V_3 のように移動し、結晶に発生する欠陥の 径方向分布が変化する。

【0024】ここで注目すべきことは、CZ法によるシリコン単結晶の育成では単結晶の径方向全域において無欠陥となるV/Gが存在すること、換言すればV/Gによっては単結晶の径方向全域において欠陥を無くすのが可能であること、しかし従来の育成では単結晶の引き上げ速度に関係なくV/G曲線が一般に右下がりとなるため径方向全域において無欠陥とするのができないことの2点である。

【0025】V/G曲線が右下がりとなるのは、後で詳しく述べるが、結晶内の軸方向温度勾配が中心部に比して外周部で大きいことによる。すなわち、Vが一定の状態でGが中心から外周へ向かうに連れて増大するためにV/G曲線は右下がりとなる。そのため径方向の全域において無欠陥となるV/Gが存在するにもかかわらず、ウェーハ全面を無欠陥にすることはできない。

【0026】例えばVがV」の場合はウェーハの最外周 部にOSFリングが発生し、その内側に赤外散乱欠陥が 発生する。これは従来一般の高速育成である。VがVょ より遅いV。、V。になると、ウェーハの径方向中間部 にOSFリングが発生し、その外側は無欠陥領域となる が、内側には赤外散乱欠陥が発生する。これは中速育成 であり図1(A)に相当する。Vが更に遅いV,になる と、ウェーハ中心部にOSFリングが発生し、その外側 に無欠陥領域が残るが、最外周部には転位クラスタが発 生する。これは図1 (B) に相当する中速育成である。 Vが更に遅いV。になると、OSFリングは中心部で消 滅するが、ウェーハ全面に転位クラスタが発生する。こ れは図1 (C) に相当する低速育成である。また仮に、 結晶中心部でV/Gを欠陥が生じない0.20~0.22m m² / ℃・min に管理しても、結晶中心部から外れるに 連れてV/Gが低下するために、中心部以外は転位クラ スタを生じる。

【0027】このように、C2法によるシリコン単結晶の育成では、単結晶の径方向全域において無欠陥領域を形成し得るV/Gが存在するにもかかわらず、V/Gが右下がりの曲線であるために、ウェーハ全面を無欠陥とすることができない。

【0028】しかしながら、もし仮に、単結晶の径方向においてV/Gを径方向に一定の直線、あるいは外周部において漸増する右上りの曲線とすることができれば、径方向の全域において欠陥の発生を防止することができる。この仮定に基づき本発明者らは更なる調査解析を行なった。その結果、結晶育成装置のホットゾーンの構造によってはV/Gを図2に実線で示すような直線乃至は右上りの曲線とすることができ、その結果、単結晶の径方向全域において無欠陥領域が形成され、ここにこれまで不可能であった全面無欠陥ウェーハの製造が可能になることを知見し、本発明を完成させるに至った。

6

【0029】本発明のシリコン単結晶ウェーハは、CZ 法により育成されたシリコン単結晶ウェーハであって、 熱酸化処理をした際にリング状に発生する酸化誘起積層 欠陥(OSF)がウェーハ中心部で消滅した低速育成ウェーハであり、且つウェーハ全面から転位クラスタが排 除されていることを特徴とする。

【0030】また本発明のウェーハ製造方法は、C.7法でシリコン単結晶を育成する際に、引き上げ速度をV(mm/min)とし、シリコン融点から 1300 \mathbb{C} までの温度範囲における引き上げ軸方向の結晶内温度勾配の平均値をG(\mathbb{C}/min)とするとき、V/G値を結晶中心位置と結晶外周から 30 mmまでの位置との間では $0.20\sim0.22$ $mm^2/\mathbb{C}\cdot min$ とし、結晶外周から 30 mmまでの位置と結晶外周位置との間では $0.20\sim0.22$ $mm^2/\mathbb{C}\cdot min$ とするか若しくは結晶外周に向かって漸次増加させることを特徴とする。

[0031]

【作用】本発明のウェーハは、OSFリングがウェーハ中心部で消滅した低速育成ウェーハであるので、OSFおよびその内側に発生する赤外散乱欠陥を含まない。そして、外側に発生するはずの転位クラスタも排除されている。よって全面にわたり有害欠陥のない高品質ウェーハとなる。

【0032】また、本発明のウェーハ製造方法では、結晶径方向でV/G値が無欠陥領域のみを横切るようにCZ炉の温度分布を調節する。ここで無欠陥領域の下限値は、0.20mm²/℃・minで一定であり、上限値は、外周から30mmを除く部分においては、0.22mm²/℃・minで一定であり、外周から30mmまでの部分30においては外周に向かって漸次増大している。従って、V/G値を結晶中心位置と結晶外周から30mmまでの位置との間では0.20~0.22mm²/℃・minとし、結晶外周から30mmまでの位置と結晶外周位置との間では0.20~0.22mm²/℃・minとするか若しくは結晶外周に向かって漸次増加させることにより、OSFリングが結晶中心部で消滅し、且つ転位クラスタを含まない低速育成結晶が得られる。

【0033】一般に結晶内の軸方向温度勾配は中心部に比較して外周部が大きい。これは、CZ炉内の発熱部が 結晶よりも下にあり、結晶の上方と周囲が低温部であることから、固液界面から流入した熱流が結晶中を引き上げ軸にそって上方及び結晶の表面方向(外周)に向かって流れることで、結晶が冷却されるためであり、結晶が冷却され易い炉ほど結晶表面からの放熱が大きく、外周部での温度勾配は大きくなる傾向がある。従って、結晶冷却能の大きい構造を有する一般のCZ炉では、一定の引き上げ速度で成長中の結晶内のV/Gの径方向分布は、中心から外周に向かって低下する傾向がある。このようなCZ炉では、中心部でV/G値が図2の無欠陥領50域にあったとしても、外周に近づくとこの領域から外

10

40

れ、転位クラスタが発生する領域を横切るため、転位ク ラスタの発生は避けられない。

【0034】しかし逆に、結晶が冷却されにくいCZ炉は、熱流の方向が外周よりも主に上方に向かって流れ、逆に融点に近い高温部の結晶表面は、融液や石英坩堝、ヒーター等からの輻射によって、温度が相対的に高くなる傾向があるため、温度勾配は中心よりも若干低くなる。ただし、結晶表面からの放熱も少なからずあるため、無制限に温度勾配が小さくなることはない。このことから、結晶が冷却されにくい構造を有するCZ炉では、V/G値は径方向に一定か、もしくは若干増大し、無制限に増大しない傾向となる。従って、このようなCZ炉を使用し、且つ結晶中心部でV/G値を無欠陥領域に存在させておけば、V/G値は径方向全域において無欠陥領域から外れることはない。その結果、OSFリングが結晶の中心部で消滅した低速育成結晶でありながら、転位クラスタが発生しない単結晶が得られる。

【0035】結晶内の融点に近い高温部における温度勾配は、結晶軸方向で必ずしも一定ではなく、トップ部からテイル部にかけて若干変化する。これは、結晶成長時に一定の直径を維持するためにヒーターパワーが変化することや、結晶長、残融液量等の変化によってCZ炉内の熱的な環境が徐々に変化することによって、結晶に流入流出する熱流が変化するためである。従って、従来のCZ法においては、引き上げ量の増大に伴う結晶軸方向の温度勾配の変化によってV/G値も変化し、発生する欠陥分布も軸方向にわずかずつ変化する(図3参照)。

【0036】そこで、結晶軸方向の温度勾配Gの変化に対して、V/Gが一定になるように引き上げ速度Vを調整する(図5参照)。そうすることにより、軸方向全域においても全面無欠陥とすることが可能となる。このように、欠陥制御の目的で引き上げ速度を制御したとしても、結晶の直径制御は従来と同様に可能である。すなわち、ヒーターパワーの制御とそれと連動または独立に、欠陥制御のために必要な目標引上速度の周りで、数秒の時間毎に一定のスパンで引き上げ速度を変動させたとしても、平均の引き上げ速度Vは変わらず、目的とするV/G値は維持される。これは、このような短時間の引き上げ速度の変動に対して、欠陥の発生が影響されないためである。

[0037]

【実施例】以下に本発明の実施例を説明する。

【0038】18"石英坩堝及びカーボン坩堝が設置された6"単結晶の育成可能なCZ炉において、坩堝の周囲に設置された円筒状のカーボンヒーターと坩堝との相対位置、育成結晶の周囲に設置されたカーボンからなる厚さ5mm、開口径200mmの半円錐形状の輻射遮蔽体の先端と融液表面との距離、ヒータ周囲の断熱材構造等の種々条件を総合伝熱計算によって種々検討し、結晶外周から30mmまでの領域を除く部分においてはV/50

Gがほぼ一定で、外周から30mmまでの領域においては外周に向かってV/Gが単調に増大するように、上記条件を決定した。計算結果を図3に示す。図中の0,100…700mmは結晶引き上げ量である。

【0039】上記条件を決定した後、18"石英坩堝に高純度多結晶シリコンを65kg入れ、ボロンをドープして、多結晶シリコンを加熱溶解し、直径が150mmで結晶成長方位が〈100〉の単結晶を引き上げ速度が0.45mm/minの低速で長さ1300mmまで育成した。

【0040】育成後の結晶を結晶軸方向と平行に厚さ1.5 mmで切り出し、HFおよびHNO。からなる混酸溶液中で加工歪を溶解除去し、さらに希HF溶液中に浸漬し、その後超純水でリンスし乾燥させた。このサンプルを800 $\mathbb{C}/4$ hr+1000 $\mathbb{C}/1$ 6hr乾燥酸素中で熱処理した後、X線トポグラフによって欠陥の発生分布を調べた。欠陥の分布を図4に示すが、調べた欠陥の分布は以下のように図3の計算結果に対応するものとなった。なお、図4中の数字は単結晶の肩からの長さで、図3中の引き上げ量に対応する。

【0041】引き上げ速度Vと融点から1300℃までの結晶軸方向温度勾配の平均値Gとの比V/Gは、結晶の径方向に中心から45mmの位置まではほぼ一定値で、45mmの位置からは外周部に向かって単調に増大している。なお、中心から45mmの位置は外周から30mmの位置である。

【0042】 V/Gをこのように管理した結果、結晶トップから200 mmまでの軸方向部位では、結晶中心部でのV/Gが0.20 mm²/ \mathbb{C} ・min 未満であり、径方向全域に転位クラスタが発生した。200 mmから500 mmにかけては、結晶中心部でのV/Gが $0.22\sim0.20$ mm²/ \mathbb{C} ・min となっており、特に400 mm近傍では結晶中心から45 mmまでの領域でV/Gが $0.22\sim0.20$ mm²/ \mathbb{C} ・min に維持され、45 mmから外側の領域でV/Gが単調に増加し、これらにより径方向全域でV/Gが無欠陥領域内に管理されたため、径方向全域でV/Gが無欠陥領域内に管理されたため、径方向全域でV/Gが無欠陥領域内に管理されたか。V/GがV/GがのV/Gが発生は見られなかった。V/Gが発生し、その内側には赤外散乱欠陥が発生した。

【0043】このような結果をふまえて次に、図5に示すように、前記実施例における400mm近傍でのV/G曲線を結晶軸方向の全長において再現した。すなわち、結晶中心から45mmまでの領域でV/Gが0.22~0.20mm²/C·minに維持され、45mmから外側の領域でV/Gが単調に増加するように結晶軸方向での目標引き上げ速度を設定した。引き上げ速度を除く他の操業条件は前記実施例と同様に設定し、6" Bドープ(100)、結晶長1300mmの単結晶を育成した。

前記実施例と同様の方法によってこの結晶内の欠陥の発生分布を調べた。トップ部からテイル部にかけての全長において、OSFリング、赤外散乱欠陥、転位クラスタの発生は見られなかった。

[0044]

【発明の効果】以上に説明した通り、本発明のシリコン単結晶ウェーハは、熱的に極めて安定でデバイス活性領域に残留または成長し、ゲート酸化膜の信頼性や接合リーグ特性を劣化させる有害なGrown in欠陥(赤外散乱欠陥、OSFリング、転位クラスタ)を全面にわたって含まないために、高集積半導体素子に使用してその特性劣化を防ぎ、素子製造歩留の向上に寄与する。また、本発明のウェーハ製造方法によってこのような高品質のCZシリコン単結晶ウェーハが容易に製造可能となる。

【図面の簡単な説明】

【図1】 C Z 法で育成したシリコン単結晶ウェーハの欠*

* 陥分布を示す模式図である。

【図2】横軸を結晶径方向位置とし縦軸をV/Gとしたときの両者の関係(V/G曲線)および欠陥分布を示す図表で、V/G曲線の傾きが欠陥の発生に及ぼす影響を示す。

10

【図3】横軸を結晶径方向位置とし縦軸をV/Gとしたときの両者の関係(V/G曲線)および欠陥分布を示す図表で、V/G曲線のレベルが欠陥の発生に及ぼす影響を示す。

10 【図4】結晶軸を含む平面での欠陥分布を示す模式図である。

【図5】横軸を結晶径方向位置とし縦軸をV/Gとしたときの両者の関係(V/G曲線)および欠陥分布を示す図表で、軸方向全長にわたって欠陥の発生を防止する場合を示す。

