MODUL 12 STATISTIKA Nama: Nadhira Anindita Nama Dosen: **Dedy Sugiarto** Ralena NIM: 065002300021 **UNIVERSITAS TRISAKTI** Nama Aslab: **PRAKTIKUM** Hari/Tanggal: Rabu, **STATISTIKA** 1. Tarum Widyasti 29 Mei 2024 (064002200027)2. Kharisma Maulida (064002200024)

Modul 9 Regresi Linier Sederhana dan Berganda

Teori Singkat

Pada regresi linier akan dibicarakan masalah pendugaan atau peramalan sebuah variabel dependen Y dengan sebuah variabel independen X yang telah diketahui nilainya.

Model persamaan linier yang digunakan di sini adalah : $\hat{y} = a + bx$

Regresi linier berganda Jika variabel dependen-nya dihubungkan dengan lebih dari satu variabel independen, maka persamaan yang dihasilkan adalah persamaan regresi linier berganda (*multiple linier regression*). Dalam hal ini kita membatasi pada kasus dua peubah bebas X_1 dan X_2 saja. Dengan hanya dua peubah bebas, persamaan regresi contohnya menjadi:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2$$

Salah satu ukuran kebaikan model adalah dengan melihat koefisien determinasi R² yang menyatakan proporsi keragaman variabel Y yang dapat dijelaskan oleh variabel X. Namun penggunaan yang lebih baik adalah dengan menggunakan nilai **R-Sq(adj)**, yang merupakan nilai estimasi yang tidak bias (*unbiased estimate*) dari populasi.

ELEMEN KOMPETENSI I

No	X	Y
1	40	385
2	20	400
3	25	395
4	20	365
5	30	475
6	50	440

Misalkan ingin dilakukan pendugaan terhadap nilai penjualan dalam USD (variabel Y) berdasarkan nilai biaya iklan yang dikeluarkan dalam USD (variabel X) di suatu perusahaan. Data sampel dalam 12 bulan terakhir adalah sebagai berikut:

- a. buatlah persamaan regresi untuk menduga penjualan mingguan (Y) berdasarkan pengeluaran iklan (X).
- b. Hitunglah R-square (Koefisien determinasi) dan korelasinya.

R Studio:

Deskripsi (minimal 4 baris)

Ringkasan output analisis regresi linear sederhana menggunakan R menunjukkan

bahwa hubungan antara variabel independen (X) dan variabel dependen (Y) teridentifikasi sebagai lemah, dengan koefisien determinasi (R^2) sebesar 0.1628. Pvalue untuk slope menunjukkan bahwa hubungan antara X dan Y tidak signifikan secara statistik. Intercept dari model adalah 368.295.

Python:

```
import numpy as np
import pandas as pd
# Data
data = {
  "X": [40, 20, 25, 20, 30, 50],
  "Y": [385, 400, 395, 365, 475, 440]
df = pd.DataFrame(data)
# Menghitung rata-rata
mean_X = np.mean(df["X"])
mean Y = np.mean(df["Y"])
# Menghitung b1 (slope)
df['XY'] = df['X'] * df['Y']
df['X^2'] = df['X'] ** 2
b1 = (sum(df['XY']) - len(df) * mean_X * mean_Y) / (sum(df['X^2']) - len(df) * mean_X ** 2)
# Menghitung b0 (intersep)
b0 = mean Y - b1 * mean X
# Persamaan regresi
regression_eq = f''Y = \{b0:.2f\} + \{b1:.2f\}X''
# Menghitung koefisien korelasi (r)
correlation matrix = np.corrcoef(df["X"], df["Y"])
r = correlation_matrix[0, 1]
# Menghitung koefisien determinasi (R^2)
R2 = r^{**} 2
# Menampilkan hasil dengan deskripsi
print(f"Rata-rata X: {mean_X:.2f}")
print(f"Rata-rata Y: {mean Y:.2f}")
print(f"Nilai intersep (b0): {b0:.2f}")
print(f"Nilai kemiringan (b1): {b1:.2f}")
print(f"Koefisien korelasi (r): {r:.2f}")
print(f"Koefisien determinasi (R^2): {R2:.2f}")
print(f"Persamaan regresi: {regression_eq}")
# Menampilkan DataFrame
print("\nDataFrame:")
print(df)
```

Output:

Deskripsi (minimal 4 baris

Kode tersebut menjalankan regresi linear sederhana antara variabel X dan Y untuk menemukan persamaan garis regresi, menghitung statistik seperti koefisien korelasi dan determinasi, serta menyajikan hubungan antara kedua variabel dalam bentuk persamaan regresi dan statistik terkait.

Excel:

	Α	В	С	D	E	F	G	Н	- 1	J	K	L	M	N	0
		X	У	x^2	xy	cara lain		(x-xbar)	(y-ybar)	(x-xbar)(y-ybar)	(x-xbar)^2		y_duga	(y_duga - ybar)^2	(y-ybar)^2
		40	38	35 160	0 15400	*buku an	derson	9,166667	-25	-229,1666667	84,02778		422,3988439	153,7313308	625
		20	40	00 40	0008)		-10,8333	-10	108,3333333	117,3611		395,3468208	214,7156604	100
		25	39	95 62	9875	5		-5,83333	-15	87,5	34,02778		402,1098266	62,25483645	225
		20	36	55 40	7300)		-10,8333	-45	487,5	117,3611		395,3468208	214,7156604	2025
		30	47	75 90	0 14250)		-0,83333	65	-54,16666667	0,694444		408,8728324	1,270506866	4225
		50	44	10 250	00 22000)		19,16667	30	575	367,3611		435,9248555	672,0981322	900
	sum	185	246	642	76825	5				975	720,8333			1318,786127	8100
ı	y_bar		4:	10										SSR	SST
)	x_bar	30,83333													
L	n	6											rsquare	0,162813102	
2	b1	1,352601							b1	1,352601156			correlation	0,403501056	
3	b0	368,2948							b0	368,2947977					
1															
5	y_duga =	368.2948 +	1.35260	1x									Nama : Nadhir	a Anindita Ralena	
16 artinya penambahan satu satu satuan x akan meningkatkan 1.352601 satuan y									NIM: 065002300021						
7															
					dalah										

Deskripsi (minimal 4 baris)

Lembar kerja Excel tersebut menampilkan analisis regresi linear sederhana antara variabel x dan y, menghasilkan persamaan regresi \(y_{duga} = -35 + 1.3x \). Ini mengindikasikan bahwa setiap kenaikan satu satuan pada x akan meningkatkan y sebesar 1.3 satuan. Koefisien determinasi (R^2) sebesar 0.1628, menandakan bahwa 16.28% variabilitas y dapat dijelaskan oleh x. Sementara itu, koefisien korelasi sebesar 0.4035, menunjukkan adanya hubungan positif moderat antara x dan y.

TUGAS

Delapan orang lulusan dipilih secara random dan ditanyakan berapa nilai IPK kelulusan (X) serta total gaji pertama kali (Y) dalam jutaan rupiah. Data yang diperoleh sebagai berikut:

Nama	X	Y	
Amir	2,8	5,4	
Agus	2,5	5,1	
Charlie	3,5	7,2	
Debi	3,1	6,2	
Faishal	3,0	6,0	
Jojo	3,8	7,5	
Kamal	3,3	6,8	
Caca	3,5	8,9	

Pertanyaan:

- a. Hitung nilai intersep (b0) dan slope/koefisien regresi (b1). Jelaskan perhitungan manualnya
- b. Tuliskan persamaan regresi linear sederhana dan interpretasikan nilai b1 dalam regresi ini.

c. Hitung nilai koefisien determinasi dan koefisien korelasi serta interpretasikan nilainya. Jelaskan perhitungan manualnya

R Studio:

```
>df nadhira2=read.delim("clipboard")
> View(df nadhira2)
> model reg=lm(df nadhira2$Y~df nadhira2$X)
> summary(model_reg)
> df_nadhira2=read.delim("clipboard")
> View(df_nadhira2)
> model_reg=lm(df_nadhira2$Y~df_nadhira2$X)
> summary(model_reg)
lm(formula = df_nadhira2$Y ~ df_nadhira2$X)
Residuals:
                     Median
                                           Мах
     Min
                1Q
                                  3Q
-0.66967 -0.23146 -0.19354 -0.04362 1.48078
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.3360 1.9930 -0.670 0.52756
df_nadhira2$X 2.5015
                            0.6205 4.031 0.00687 **
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6934 on 6 degrees of freedom
Multiple R-squared: 0.7304,
                                Adjusted R-squared:
F-statistic: 16.25 on 1 and 6 DF, p-value: 0.006869
```

Deskripsi (minimal 4 baris)

Hasil analisis regresi menunjukkan bahwa model persamaan Y ~ X, dengan koefisien intersep sebesar -1.3360 (yang tidak signifikan), dan koefisien X sebesar 2.5015 (yang signifikan pada tingkat 0.01). Dengan nilai R-squared sebesar 0.7304, model ini mampu menjelaskan sekitar 73% dari variasi data, dengan nilai adjusted R-squared sebesar 0.6854. Penilaian p untuk model ini adalah 0.006869, menunjukkan signifikansi statistik. Selain itu, residual standard error dari model adalah 0.6934.

Python:

```
import numpy as np
import pandas as pd

# Data
data={
 "X": [2.8,2.5,3.5,3.1,3,3.8,3.3,3.5],
```

```
"Y": [5.4, 5.1, 7.2, 6.2, 6, 7.5, 6.8, 8.9]
df = pd.DataFrame(data)
# Menghitung rata-rata
mean_X = np.mean(df["X"])
mean_Y = np.mean(df["Y"])
# Menghitung b1 (slope)
df['XY'] = df['X'] * df['Y']
df['X^2] = df['X'] ** 2
b1 = (sum(df['XY']) - len(df) * mean_X * mean_Y) / (sum(df['X^2']) - len(df) * mean_X)
** 2)
# Menghitung b0 (intersep)
b0 = mean_Y - b1 * mean_X
# Persamaan regresi
regression_eq = f''Y = \{b0:.2f\} + \{b1:.2f\}X''
# Menghitung koefisien korelasi (r)
correlation_matrix = np.corrcoef(df["X"], df["Y"])
r = correlation matrix[0, 1]
# Menghitung koefisien determinasi (R^2)
R2 = r ** 2
# Menampilkan hasil dengan deskripsi
print(f"Rata-rata X: {mean_X:.2f}")
print(f"Rata-rata Y: {mean Y:.2f}")
print(f"Nilai intersep (b0): {b0:.2f}")
print(f"Nilai kemiringan (b1): {b1:.2f}")
print(f"Koefisien korelasi (r): {r:.2f}")
print(f"Koefisien determinasi (R^2): {R2:.2f}")
print(f"Persamaan regresi: {regression eq}")
# Menampilkan DataFrame
print("\nDataFrame:")
print(df)
HASIL:
```

```
# Menampilkan DataFrame
print("\nDataFrame:")
print(df)
Rata-rata X: 3.19
Rata-rata Y: 6.64
Nilai intersep (b0): -1.34
Nilai kemiringan (b1): 2.50
Koefisien korelasi (r): 0.85
Koefisien determinasi (R^2): 0.73
Persamaan regresi: Y = -1.34 + 2.50X
DataFrame:
                     X^2
    Х
        V
               XΥ
  2.8 5.4 15.12
                    7.84
  2.5 5.1 12.75
                    6.25
1
  3.5
       7.2
            25.20 12.25
  3.1
       6.2 19.22
                    9.61
  3.0
       6.0
           18.00
                    9.00
  3.8
       7.5
            28.50 14.44
      6.8 22.44 10.89
  3.3
  3.5 8.9
            31.15
```

Deskripsi (minimal 4 baris)

Rata-rata dari variabel X tercatat sebesar 3.19, sedangkan rata-rata dari variabel Y adalah 6.64. Intersep nilai (b0) dari regresi adalah -1.34, dengan kemiringan (b1) sebesar 2.50. Koefisien korelasi (r) mencapai 0.85, sementara koefisien determinasi (R^2) mencapai 0.73. Persamaan regresi yang terbentuk adalah Y = -1.34 + 2.50X. Data dipresentasikan dalam bentuk dataframe dengan kolom X, Y, XY, dan X^2 untuk 8 baris data.

Excel:

Deskripsi (minimal 4 baris)

Data dipresentasikan dalam sebuah dataframe dengan kolom X, Y, XY, dan X² untuk 8 baris data. Hasil perhitungan dari dataframe ini akan menjadi dasar untuk membuat prediksi serta menarik kesimpulan yang relevan dari data yang tersedia.

CEK LIST (**✓**)

1. Melakukan regresi linier sederhana dan berganda.

KESIMPULAN

Dari praktikum ini, kita bisa menyimpulkan bahwa regresi linier sederhana telah berhasil digunakan untuk menganalisis hubungan antara kedua variabel. Model regresi yang terbentuk menunjukkan kekokohan dan signifikansi, menegaskan bahwa variabel independen memiliki dampak yang signifikan terhadap variabel dependen. Analisis ini memberikan wawasan yang berharga tentang dinamika hubungan antara kedua variabel, memperkuat pemahaman kita tentang faktor-faktor yang memengaruhi variabel dependen dalam konteks spesifik yang diamati. Kesimpulan ini menggarisbawahi pentingnya regresi linier sebagai alat analisis yang efektif dalam memahami hubungan antara variabel dalam suatu studi.

LINK GITHUB:

https://github.com/NadhiraAninditaRalena/probstat9prak.git

FORM UMPAN BALIK

Elemen Kompetensi	Tingkat Kesulitan	Tingkat Ketertarikan	Waktu Penyelesaian (menit)
Melakukan regresi linier sederhana dan berganda.	Biasa	Cukup Tertarik	30 Menit

Keterangan Tingkat Kesulitan

- 1: Sangat Mudah
- 2: Mudah
- 3: Biasa
- 4: Sulit
- 5: Sangat Sulit

Keterangan Tingkat Ketertarikan

- 1: Tidak Tertarik
- 2: Cukup Tertarik
- 3: Tertarik
- 4: Sangat Tertarik