KochkaKV 30112024-110017

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 792 М Γ ц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 12 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 175 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 4 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 1750 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 618 МГц до 652 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -87 дБм 2) -90 дБм 3) -93 дБм 4) -96 дБм 5) -99 дБм 6) -102 дБм 7) -105 дБм 8) -108 дБм 9) -111 дБм

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.26091 - 0.10955i, s_{31} = 0.11401 + 0.27154i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -24 дБн 2) -26 дБн 3) -28 дБн 4) -30 дБн 5) -32 дБн 6) -34 дБн 7) -36 дБн 8) -38 дБн 9) 0 дБн

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_2$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 195 МГц, частота ПЧ 38 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 623 MΓ_{II}
- 2) 780 МГц
- 3) 157 МГц
- 4) 38 MΓ_{II}.

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 1.6 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 12 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 11 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 2.)

Рисунок 2 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

- 1) 7.3 дБ 2) 7.9 дБ 3) 8.5 дБ 4) 9.1 дБ 5) 9.7 дБ 6) 10.3 дБ 7) 10.9 дБ 8) 11.5 дБ
- 9) 12.1 дБ

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 3. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 3? (Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 3 – Экран анализатора спектра

Варианты ОТВЕТА:

1)
$$\{6;-17\}$$
 2) $\{6;-17\}$ 3) $\{6;-17\}$ 4) $\{6;-17\}$ 5) $\{12;-45\}$ 6) $\{18;-3\}$ 7) $\{18;-73\}$

8) {12; -45} 9) {6; -17}

Для полного подавления **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 13 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 123 М $\Gamma_{\rm H}$?

Варианты ОТВЕТА:

1) 67.9 нГн 2) 51.5 нГн 3) 81.3 нГн 4) 63 нГн