Parameter Efficient Finetuning

LoRA, Adaptors, Prefix-tuning

Finetuning LLMs

- Typical LLMs has 7B, 70B, 400B parameters.
 - Finetuning 70B will take around 1TB of VRAM with a batch size of 1.
 - My rule of thumb is usually params * 4 * size(float) for full finetune
 - Why? Optimizer states (momentum, etc), activation value, current weight value
 - Calculator https://github.com/manuelescobar-dev/LLM-Tools
 - Info on memory requirements https://blog.eleuther.ai/transformer-math/
 https://arxiv.org/abs/2404.10933
- This is not practical for most users.

Example Memory breakdown of LLM

		OPT-1.3B, 16bit- float, seq 512
cuDNN and CUDA		~1GB
Model weights	size(float)*N	2.6GB
Gradients	size(float)*N _{trainable}	2.6GB
Hidden state activations	~size(float) L (20H seq + 3 seq ²)	1 GB
Optimizer states	2*size(float)*N _{trainable}	5.2 GB
(Maybe) fp32 copy of the gradients	4*N _{trainable}	10.2 GB

Estimate 12.4 GB, actual 11.0 GB

Tricks such as gradient/activation checkpointing can help reduce memory requirements for hidden states

Notes on precision

Most transformer are trained in mixed precision. Usually BF16+FP32 or FP16+FP32

Catastrophic Forgetting

- Finetuning on a new dataset usually makes the model forgets its original capabilities.
- More likely that your model will be dumber if you finetune a model on a small dataset
 - O Remember Chinchilla Scaling Law?
- Instead of finetuning the entire model, let's focus on parts of the model instead

Parameter Efficient Fine-Tuning

What if we train on less parameters

Train on 0.2M parameters

		OPT-1.3B, 16bit- float, seq 512
cuDNN and CUDA		~1GB
Model weights	size(float)*N	2.6GB
Gradients	size(float)*N _{trainable}	0.4MB
Hidden state activations	~size(float) L (20H seq + 3 seq ²)	1 GB
Optimizer states	2*size(float)*N _{trainable}	0.8MB
(Maybe) fp32 copy of the gradients	4*N _{trainable}	1.6MB

Estimate 4.6 GB, actual 5.7 GB

Parameter Efficient Fine-tuning

- O. In-context learning (Prompt Engineering)
- 1. Prefix-tuning
 - a. Append learnable tokens in the input
- 2. Adapter Module
 - Insert a small number of layers that are relatively small compared to the entire model.
- 3. Select parts of network to update
 - a. BiTFit, freeze and reconfigure
- 4. Low-Rank Adaptation (LoRA)
 - a. Represent an adaptation weight (gradient) with a low-rank matrix.

Figure 1: Illustration of the transformer architecture and several state-of-the-art parameter-efficient tuning methods. We use blocks with dashed borderlines to represent the added modules by those methods.

Adapters

- Add small adapter layers after attention and feed forward layers.
- Only update these layers

Figure 1: Illustration of the transformer architecture and several state-of-the-art parameter-efficient tuning methods. We use blocks with dashed borderlines to represent the added modules by those methods.

https://arxiv.org/abs/1902.00751

Prompt tuning / Prefix tuning

Original idea: add a learnable token to the input text instead of prompt engineering your prompt

- Modern versions only append the key and value tokens (prefix tuning)
- Some people refer to this as a soft prompt

Add & Layer Norm

Add & Layer Norm

Feed Forward

Add & Layer Norm

https://developer.ibm.com/articles/awb-how-prompt-tuning-works/ https://arxiv.org/pdf/2104.08691

Ladder Side-Tuning (LST)

- Add another branch to the original network.
 - O Think of original model as multiple feature extractors
- Reduce the requirement to backprop over the entire network

Figure 2: Comparison between transfer learning with (a) Adapters, (b) Prompt Tuning, and our (b) Ladder Side-Tuning (LST). LST reduces memory usage by removing the need of backpropgation through backbone networks.

BitFit

- A kind of selective finetuning
- Finetune only the **bias** of the network
- Works well on the paper (BERT) but doesn't work well on LLM scale

Figure 2: Comparison of BitFit and Full-FT with BERT_{BASE} exact match score on SQuAD validation set.

Squeeze and reconfigure

- Selects part of the network based on some criterion.
 - O In the paper they used the size of the change in weight in full finetuning
- Only learn on that part

Low-Rank Adaptation

LoRA compress the update weights using low-rank decomposition. You are essentially updating all weights in a low parameter space.

$$\Delta W = BA$$
 $B \in \mathbb{R}^{d \times r} A \in \mathbb{R}^{r \times d}$

Low-Rank Adaptation

LoRA compress the update weights using low-rank decomposition. You are essentially updating all weights in a low parameter space.

Low-Rank Adaptation

In the initialization process, we use a random Gaussian initialization for A and zero for B.

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

Therefore, the model is initialized to be identical to the pretrained weights.

In addition, the paper proposes to scale low-rank matrices by alpha/r, claiming that it helps reduce the need to adjust hyperparameters when varying r.

Can be seen as Learning Rate

Works well. Popularized by stable diffusion finetuning.

$$h = W_0 x + \frac{\alpha}{r} BAx$$

Newer variants introduce dropout (peft library drops input x). New paper drops B and A columns/rows.

QLoRA

- QLoRA is an implementation of LoRA that focuses on compute efficiency
- Quantize both the value and the quantization scaling (double quantization)
- LoRA that is done on a quantized weights of the original model
- Uses 4-bit NormalFloat (for weight storage) and BF16 (for compute)

Figure 1: Different finetuning methods and their memory requirements. QLORA improves over LoRA by quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

Quick slide on Quantization

• Symmetric quantization keeps track of the abs(max) for scaling to the quantized value

$$S = \frac{2^{b-1}-1}{\alpha}$$
 (scale factor)
$$X_{\text{quantized}} = \text{round}\left(S \cdot X\right)$$
 (quantization)

Filling in the values would then give us the following:

$$s = \frac{127}{10.8} = 11.76$$
 (scale factor)
$$x_{\text{quantized}} = \text{round} \left(11.76 \cdot \text{quantization} \right)$$

Note the [-127, 127] range of values represents the restricted range. The unrestricted range is [-128, 127] and depends on the quantization method.

Hybrid approaches

- There are MANY approaches that are based on these simple methods.
- Example MAM adaptors (Mix-and-Match adaptors)
 - O Sacled parallel adapter + prefixed finetuning
- S4 finds optimal combinations of PEFT

Table 2: Accuracy on the dev set of MNLI and SST2. MAM Adapter is proposed in §4.6. Bitfit numbers are from Ben Zaken et al. (2021).

Method (# params)	MNLI	SST2
Full-FT (100%)	$87.6_{\pm.4}$	$94.6_{\pm.4}$
Bitfit (0.1 %)	84.7	93.7
Prefix (0.5%)	$86.3_{\pm.4}$	$94.0_{\pm.1}$
LoRA (0.5%)	$87.2_{\pm.4}$	$94.2_{\pm.2}$
Adapter (0.5%)	$87.2_{\pm.2}$	$94.2 \scriptstyle{\pm .1}$
MAM Adapter (0.5%)	87.4 _{±,3}	94.2 _{±.3}

https://arxiv.org/pdf/2110.04366 https://arxiv.org/abs/2301.01821

Performance comparison

 These depend on application and exact benchmarks, but people tends to fine LoRA to perform well.

Method	$T5_{LARGE}$	$T5_{3B}$	$T5_{11B}$
Additive methods			
Adapters (Houlsby)	$67.34_{\pm 9.58}$	$74.66_{\pm 1.68}$	$76.16_{\pm 1.47}$
Adapters (Pfeiffer)	$62.93_{\pm 3.52}$	$69.92_{\pm 5.61}$	$50.72_{\pm 1.69}$
Parallel Adapter	$66.78_{\pm 3.85}$	$\frac{74.15}{0.88}$	$68.74_{\pm 12.73}$
IA3	$55.06_{\pm 1.80}$	$41.77_{\pm 0.50}$	$61.05_{\pm 3.42}$
Prefix Tuning	$45.05_{\pm 3.89}$	$48.90_{\pm 5.37}$	$51.93_{\pm 2.21}$
Prompt Tuning	$8.97_{\pm 30.91}$	$8.38_{\pm 0.50}$	-
Selective methods			
LN Tuning	$64.68_{\pm 4.59}$	$72.95_{\pm 1.38}$	${f 73.77}_{\pm 0.93}$
Reparametrization-based methods			
LoRA (q and v)	$67.42_{\pm 2.32}$	${\bf75.49}_{\pm1.71}$	$76.20_{\pm 1.27}$
LoRA (all linear)	$68.76_{\pm 1.83}$	${f 75.22}_{\pm 1.28}$	$76.58_{\pm 2.16}$
KronA	$65.68_{\pm 3.27}$	$71.98_{\pm 0.57}$	$\frac{72.13}{\pm 7.30}$
Hybrid methods			
MAM	$46.90_{\pm 6.47}$	$45.57_{\pm 4.67}$	$51.49_{\pm 0.54}$
Compacter	$64.48_{\pm 1.81}$	$70.72_{\pm 0.87}$	${f 74.33}_{\pm 1.40}$
$\operatorname{Compacter}++$	$64.78_{\pm 2.23}$	$71.00_{\pm 1.62}$	${f 74.72}_{\pm 0.82}$
Unipelt	$44.10_{\pm 15.48}$	$47.16_{\pm 4.84}$	$52.29_{\pm 3.09}$
Full tuning	67.22	74.83	73.25

Table 4: Average model performance on our collection of datasets (Section 11.1) with 95% confidence intervals (two standard deviations). We **bold** values that outperform full-tuning by mean value. We <u>underline</u> values that achieve full-tuning performance within the confidence interval.

Some consideration on picking PEFT approaches

- Does it save storage size compared to full finetune (Disk)
- Whether it increases inference overhead (with additional parameters)
- Does it save memory when training (RAM)
- Some method does not require you to backprop through parts of the original model (BP)

	E@sioner.				
Method	Type	Efficiency Disk RAM BP			Inference overhead
Adapters (Houlsby et al., 2019)	A	✓	√	Х	+ FFN
AdaMix (Wang et al., 2022)		✓	\checkmark	X	+ FFN
SparseAdapter (He et al., 2022b)		✓	\checkmark	X	+ FFN
Cross-Attn tuning (Gheini et al., 2021)	S	✓	\checkmark	X	No overhead
BitFit (Ben-Zaken et al., 2021)	S	✓	\checkmark	X	No overhead
DiffPruning (Guo et al., 2020)	S	✓	X	X	No overhead
Fish-Mask (Sung et al., 2021)	S	✓	χ^5	X	No overhead
LT-SFT (Ansell et al., 2022)	S	✓	χ^5	X	No overhead
Prompt Tuning (Lester et al., 2021)	A	✓	\checkmark	X	+ input
Prefix-Tuning (Li and Liang, 2021)	A	✓	\checkmark	X	+ input
Spot (Vu et al., 2021)	A	✓	\checkmark	X	+ input
IPT (Qin et al., 2021)	A	✓	\checkmark	X	+ FFN and input
MAM Adapter (He et al., 2022a)	A	✓	\checkmark	X	+ FFN and input
Parallel Adapter (He et al., 2022a)	A	✓	\checkmark	X	$+ ext{ FFN}$
Intrinsinc SAID (Aghajanyan et al., 2020)	R	✓	X	X	No overhead
LoRa (Hu et al., 2022)	R	✓	\checkmark	X	No overhead
DoRA (Liu et al., 2024)	R	√	\checkmark	X	No overhead
UniPELT (Mao et al., 2021)	AR	✓	\checkmark	X	+ FFN and input
Compacter (Karimi Mahabadi et al., 2021)	AR	√	\checkmark	X	+ FFN
PHM Adapter (Karimi Mahabadi et al., 2021)	AR	✓	\checkmark	X	+ FFN
KronA (Edalati et al., 2022)	R	√	\checkmark	X	No overhead
$KronA_{res}^{\dot{B}}$ (Edalati et al., 2022)	AR	√	\checkmark	X	+ linear layer
$(IA)^3$ (Liu et al., 2022)	A	√	\checkmark	X	+ gating
Attention Fusion (Cao et al., 2022)	A	✓	\checkmark	\checkmark	+ decoder
LeTS (Fu et al., 2021)	A	✓	\checkmark	\checkmark	+ FFN
Ladder Side-Tuning (Sung et al., 2022)	A	√	\checkmark	\checkmark	+ decoder
FAR (Vucetic et al., 2022)	S	✓	\checkmark	X	No overhead
S4-model (Chen et al., 2023)	ARS	✓	\checkmark	X	+ FFN and input

More on PeFT

- Refer to the paper
 https://arxiv.org/abs/2303.1564
 7 for overview of other methods.
- https://github.com/synbol/Para meter-Efficient-Transfer-Learning-Benchmark for computer vision benchmarks

Figure 2: Parameter-efficient fine-tuning methods taxonomy. We identify three main classes of methods: **Addition**-based, **Selection**-based, and **Reparametrization**-based. Within additive methods, we distinguish two large included groups: **Adapter-like** methods and **Soft prompts**.

Scaling and PEFT

- Large/better pre-trained models require a small amount of parameters to be finetuned
 - The larger the model the smaller the amount of parameters need to be changed
 - Ex Typhoon-2 uses LoRA rank = 8 to finetune from base models (LLAMA 3 and Qwen2)
- Implications
 - O PEFT should always be used in finetuning large models

Figure 2: Every 10k updates of RoBERTa-Base that we trained from scratch, we compute d_{90} for six datasets; MRPC, QQP, Yelp Polarity, SST-2, MNLI, and ANLI. If we were unable to compute a d_{90} for a specific checkpoint, we do not plot the point, hence some datasets start at later points. Unable to compute means either we could not fine-tune the full checkpoint to accuracy above majority class or stabilize SAID training.

Figure 3: We calculate the intrinsic dimension for a large set of pre-trained models using the SAID method on the MRPC dataset.

Parameter Efficient Fine-tuning

- O. In-context learning (Prompt Engineering)
- 1. Prefix-tuning
 - a. Append learnable tokens in the input
- 2. Adapter Module
 - Insert a small number of layers that are relatively small compared to the entire model.
- 3. Select parts of network to update
 - a. BiTFit, freeze and reconfigure
- 4. Low-Rank Adaptation (LoRA)
 - a. Represent an adaptation weight (gradient) with a low-rank matrix.

Figure 1: Illustration of the transformer architecture and several state-of-the-art parameter-efficient tuning methods. We use blocks with dashed borderlines to represent the added modules by those methods.

Prompt engineering

- Prompt engineer does not learn any weight updates
- But you don't have to train!
 - If you have a long prompt, you are paying for it in inference compute.
 - o KV Caching can help.