1 Cryptography: An Overview

1.4 The Hill Cipher

Problem 1. Complete the following:

- (a) Use a 26-character Hill cipher to encode the message FOUR using the key matrix $K = \begin{pmatrix} 25 & 0 \\ 2 & 1 \end{pmatrix}$.
- (b) Let $\alpha_1\alpha_2\alpha_3\alpha_4$ represent your answer from part (a). Now encode the message $\alpha_1\alpha_2\alpha_3\alpha_4$ using the same key matrix that you used in part (a).
- (c) There should be something surprising about your answer in part (b). Is that simply a coincidence? Explain.

Let's start with part (a). To encode the message FOUR using the provided Hill cipher, we'll rewrite the phrase into two-letter vectors according to $A \mapsto 0, B \mapsto 1, \ldots$, and so on:

$$\mathtt{FO} \mapsto \begin{pmatrix} 5 \\ 14 \end{pmatrix} = \mathbf{x_1}, \quad \mathtt{UR} \mapsto \begin{pmatrix} 20 \\ 17 \end{pmatrix} = \mathbf{x_2}.$$

We'll then multiply each as $K\mathbf{x_1}, K\mathbf{x_2}$ and reduce to their representatives modulo 26:

$$K\mathbf{x_1} = \begin{pmatrix} 25 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 14 \end{pmatrix} = \begin{pmatrix} 125 \\ 24 \end{pmatrix} \equiv \begin{pmatrix} 21 \\ 24 \end{pmatrix} = \mathbf{y_1},$$
$$K\mathbf{x_2} = \begin{pmatrix} 25 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 20 \\ 17 \end{pmatrix} = \begin{pmatrix} 500 \\ 57 \end{pmatrix} \equiv \begin{pmatrix} 6 \\ 5 \end{pmatrix} = \mathbf{y_2}.$$

Finally, we can map these vectors back to their corresponding digrams, completing the encryption:

$$\mathbf{y_1} = \begin{pmatrix} 21 \\ 24 \end{pmatrix} \mapsto \mathtt{VY}, \quad \mathbf{y_2} = \begin{pmatrix} 6 \\ 5 \end{pmatrix} \mapsto \mathtt{GF}.$$

Thus our encrypted message is VYGF.

For part (b), we'll perform the same process as above:

$$K\mathbf{y_1} = \begin{pmatrix} 25 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 21 \\ 24 \end{pmatrix} = \begin{pmatrix} 525 \\ 66 \end{pmatrix} \equiv \begin{pmatrix} 5 \\ 14 \end{pmatrix} = \mathbf{z_1},$$

$$K\mathbf{y_2} = \begin{pmatrix} 25 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} = \begin{pmatrix} 150 \\ 17 \end{pmatrix} \equiv \begin{pmatrix} 20 \\ 17 \end{pmatrix} = \mathbf{z_2}.$$

$$\mathbf{y_1} = \begin{pmatrix} 5 \\ 14 \end{pmatrix} \mapsto \text{FO}, \quad \mathbf{y_2} = \begin{pmatrix} 20 \\ 17 \end{pmatrix} \mapsto \text{UR}.$$

As a result, we get the original plaintext FOUR. Looking to part (c), we can see that the linear transformation, K, is it's own inverse modulo 26:

$$\begin{pmatrix} 25 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 25 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 625 & 0 \\ 52 & 1 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{26}$$

which confirms that KK will result in the original vector modulo 26.

Problem 2. Alice and Bob agree that they will use a Hill Cipher to send messages to each other. They decide to use $K = \begin{pmatrix} 2 & 1 \\ 3 & 6 \end{pmatrix}$ for the key matrix. Bob receives the ciphertext SMKH from Alice. What is the plaintext?

To find the plaintext, we simply need to calculate K^{-1} and apply it to the digram's corresponding vector:

$$K^{-1} = \frac{1}{2(6) - 1(3)} \begin{pmatrix} 6 & -1 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{9} \\ -\frac{1}{3} & \frac{2}{9} \end{pmatrix}$$

Using the mapping $SM \mapsto \begin{pmatrix} 18 \\ 12 \end{pmatrix}$ and $KH \mapsto \begin{pmatrix} 10 \\ 7 \end{pmatrix}$

1.5 Attacks on the Hill Cipher

Problem 1. You discover¹ that the key matrix for a certain Hill cipher is $K = \begin{pmatrix} 8 & 1 \\ 1 & 2 \end{pmatrix}$. You have intercepted the ciphertext BYIC. What is the plaintext?

Answer here...

Problem 2. You have intercepted the message

WGTK

and know it has been encrypted using a Hill cipher. You also happen to know that CD is encrypted as RR and JK is encrypted as OV. What is the plaintext?

Answer here...

1.6 Feistel Ciphers and DES

Problem 1. Consider the fifth S-box used in DES. Think of it as a function from \mathbb{Z}_2^6 to \mathbb{Z}_2^4 . Show that this function is not linear.

Answer here...

¹How convenient!