Lecture 15: The power rule

Jonathan Holland

Rochester Institute of Technology*

October 3, 2018

Figure: The parity (evenness or oddness) of the numbers appearing in Pascal's triangle

Preview

• The **power rule** states that, if $y = x^p$ is a power function, then

$$dy = px^{p-1} dx$$
.

- Interpret the differentials $d(x^2)$ and $d(x^3)$ geometrically and algebraically.
- Distinguish between the differential, dy, and the derivative dy/dx:
 - dx and dy are variables, representing a small change in the x variable, and a small compensating change in the y variable.
 - the ratio dy/dx represents the rate at which y changes with respect to changes in the x variable

Differential of an area

- The area of a square of side x is $A = x^2$.
- If we increase x by a little bit dx, how much does the area increase? We call this dA.
- We have $dA = (x + dx)^2 x^2 = x^2 + 2x dx + dx^2 x^2 = 2x dx + dx^2 = 2x dx$

Differential of a volume

Suppose the side length of a cube is x.

- Write the formula for the volume of the cube, V.
- Fill in the blanks $(x + dx)^3 = x^3 + _3x^2 dx$
- So $dV = 3x^2 dx$. (Animation)
- Note $\frac{dV}{dx}$ is half the surface area of the cube: when we add dx to each of the sides, half the faces of the cube get fattened out by $x \times x \times dx$ slabs.

The differential versus the derivative

- Let's look again at the calculation of $d(x^2)$: $d(x^2) = (x + dx)^2 - x^2 = x^2 + 2x dx + dx^2 - x^2 = 2x dx + dx^2 = 2x dx$
- Now, let's calculate the derivative of the function $f(x) = x^2$:

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2}{h}$$

$$= \lim_{h \to 0} (2x + h) = 2x$$

- So $d(x^2) = f'(x)dx = 2x dx$
- Note why this is true: the h in the numerator of the limit corresponds to the dx in the first calculation (in blue)

The differential: two definitions

Suppose that y = f(x) is a polynomial function. The differential of y can be defined either by:

- dy = f(x + dx) f(x), where we expand everything out, setting $dx^2 = 0$.
- dy = f'(x) dx, where f'(x) is the derivative of the function f(x).

Procedure for computing derivatives

Suppose that y = f(x). Then f'(x) = dy/dx. That is, to find f'(x), we first find dy, then divide it by dx.

The power rule

- $d(x^2) = 2x dx$
- $d(x^3) = 3x^2 dx$

Power rule

If $y = x^p$, then $dy = px^{p-1} dx$.

- Let $f(x) = x^2$. Compute f'(4). (Remember that f'(x) = dy/dx.) With $y = x^2$, dy = 2x dx, so $f'(x) = \frac{dy}{dx} = 2x$. Thus f'(4) = 2(4) = 8.
- Let $f(x) = \sqrt{x}$. Compute f'(4). $y = \sqrt{x} = x^{1/2}$, so $dy = \frac{1}{2}x^{\frac{1}{2}-1} dx$. So $f'(x) = \frac{1}{2\sqrt{x}}$. So $f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}$.

Idea of algebraic proof

Power rule

If
$$y = x^p$$
, then $dy = px^{p-1} dx$.

$$p = 1$$
: if $y = x$, then $dy = dx$.

$$p = 2$$
:

$$(x+dx)(x+dx) = (x+dx)(x+dx) = x^2 + (x+dx)(x+dx) = x^2 + x dx + (x+dx)(x+dx) = x^2 + x dx + (x+dx)(x+dx) = x^2 + x dx + x dx + x dx = x^2 + x dx + x dx + x dx = x^2 + x dx + x dx + x dx = x^2 + x dx + x dx + x dx = x^2 + x dx + x dx + x dx = x^2 + x dx + x dx + x$$

Key point: There are two ways to get the product x dx, hence the factor of 2

• Similarly, with $(x + dx)^3$, there are three ways to get a dx term:

$$(x+dx)^3 = (x+dx)(x+dx)(x+dx)(x+dx)^3 = (x+dx)(x+dx)(x+dx)$$

- So $d(x^3) = 3x^2 dx$
- In general, when computing $(x + dx)^n$, there are n ways to get a dx term, so $(x + dx)^n = x^n + nx^{n-1}dx + h.o.t$.

The binomial theorem

Pascal's triangle of binomial coefficients:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 3 & 3 & 1 & 0 & 0 & 0 \\ 1 & 4 & 6 & 4 & 1 & 0 & 0 \\ 1 & 5 & 10 & 10 & 5 & 1 & 0 \\ 1 & 6 & 15 & 20 & 15 & 6 & 1 \end{bmatrix} \xrightarrow{x + dx} x + dx$$

$$x^{2} + 2xdx + dx^{2}$$

$$x^{3} + 3x^{2}dx + 3xdx^{2} + dx^{3}$$

$$x^{4} + 4x^{3}dx + 6x^{2}dx^{2} + 4xdx^{3} + dx^{4}$$

$$x^{5} + 5x^{4}dx + 10x^{3}dx^{2} + 10x^{2}dx^{3} + 5xdx^{4} + dx^{5}$$

$$x^{6} + 6x^{5}dx + 15x^{4}dx^{2} + 20x^{3}dx^{3} + 15x^{2}dx^{4} + 6xdx^{4}$$

Construction of Pascal's triangle

Proof for positive rational exponents

Power rule

If $y = x^p$ with p = n/m, then $dy = px^{p-1} dx$.

Proof.

From $y = x^{n/m}$, we have $y^m = x^n$. So $(y + dy)^m = (x + dx)^n$. Expanding both sides using the binomial theorem,

$$y^m + my^{m-1}dy + h.o.t. = x^n + nx^{n-1}dx + h.o.t.$$

where h.o.t. means terms involving higher powers of dx and dy. Taking these to be zero, and imposing $y^m = x^n$ gives

$$my^{m-1} dy = nx^{n-1} dx$$

Again using $y^m = x^n$, we may cancel this common factor, giving

$$my^{-1}dy = nx^{-1}dx \implies dy = \frac{n}{m}yx^{-1}dx = px^{p}x^{-1}dx = px^{p-1}dx$$