代数结构第七周作业参考答案

5.1(2) 解:

(a) **封闭性:** 对任意 $x = a_1 + b_1\sqrt{2} \in S$ 和 $y = a_2 + b_2\sqrt{2} \in S$,有

$$x + y = (a_1 + a_2) + (b_1 + b_2)\sqrt{2}.$$

由于 $a_1 + a_2 \in \mathbb{Q}$ 且 $b_1 + b_2 \in \mathbb{Q}$,故 $x + y \in S$ 。

(b) **结合律**:加法在有理数集合 \mathbb{Q} 中满足结合律,因此对任意 $x,y,z\in S$,有

$$(x + y) + z = x + (y + z).$$

(c) **单位元:** 取 $0 = 0 + 0\sqrt{2} \in S$,对任意 $x \in S$,满足

$$x + 0 = (a + b\sqrt{2}) + (0 + 0\sqrt{2}) = a + b\sqrt{2} = x.$$

(d) **逆元:** 对任意 $x = a + b\sqrt{2} \in S$, 存在 $-x = (-a) + (-b)\sqrt{2} \in S$, 满足

$$x + (-x) = (a + (-a)) + (b + (-b))\sqrt{2} = 0 + 0\sqrt{2} = 0.$$

(e) **交换性**:对任意 $x,y \in S$,有

$$x + y = (a_1 + a_2) + (b_1 + b_2)\sqrt{2} = (a_2 + a_1) + (b_2 + b_1)\sqrt{2} = y + x.$$

结论: $\langle S, + \rangle$ 是交换群,单位元为 $0 + 0\sqrt{2}$,任意元素 $a + b\sqrt{2}$ 的逆元为 $-a - b\sqrt{2}$ 。

5.1(4) 解:

- (a) **封闭性**:运算结果均在S中。
- (b) 单位元:观察运算表, γ 满足 $x*\gamma=\gamma*x=x$ 。
- (c) 逆元:
 - α 的逆元为 δ (因 $\alpha * \delta = \gamma$),
 - β 的逆元为 β (因 $\beta * \beta = \gamma$),
 - γ 的逆元为 γ,
 - δ 的逆元为 α。
- (d) **结合律:** 验证部分三元组结果一致(如 $(\alpha*\alpha)*\beta=\beta*\beta=\gamma$,与 $\alpha*(\alpha*\beta)=\alpha*\delta=\gamma$ 结果相同)。
- (e) **交换性:** 运算表对称 (如 $\alpha * \beta = \delta = \beta * \alpha$), 故为交换群。

结论: $\langle S, * \rangle$ 是交换群,单位元为 γ ,逆元如上述对应。

5.1(6) 解:

- (a) **封闭性:** 因 p 为素数, $a \cdot b \not\equiv 0 \pmod{p}$, 故 $c \in S$ 。
- (b) 结合律:整数乘法结合律在模运算下仍成立。
- (c) 单位元: 1, 满足 $a*1 \equiv a \pmod{p}$ 。
- (d) **逆元**: 由费马小定理, $a^{p-1} \equiv 1 \pmod{p}$, 故 $a^{-1} = a^{p-2} \pmod{p} \in S$ 。
- (e) **交换性**:乘法交换,故为交换群。

结论: $\langle S, * \rangle$ 是交换群,单位元为 1,逆元为模 p 的乘法逆元。

- 5.2 令 $S = \mathbb{R} \setminus \{-1\}$, 定义运算 a * b = a + b + ab。
 - (1) 证明 (S,*) 是群:
 - (a) **封闭性:** 若 $a, b \neq -1$,则 $a * b = a + b + ab \neq -1$ (反证法: 假设 a + b + ab = -1,则 (a + 1)(b + 1) = 0,矛盾)。
 - (b) **结合律:** 展开得 (a*b)*c = a*(b*c) = a+b+c+ab+ac+bc+abc, 等式成立。
 - (c) **单位元:** 解 a * e = a, 得 e = 0 (验证 0 * a = a)。
 - (d) 逆元: 解 a * x = 0,得 $x = -\frac{a}{a+1} \in S$ (因 $a \neq -1$)。
 - (2) 解方程 2*x*3=7:

$$(2*x)*3 = 7$$

$$(2+x+2x)*3 = 7$$

$$(2+3x)+3+(2+3x)\cdot 3 = 7$$

$$11+12x = 7 \implies x = -\frac{1}{3}.$$

结论: $x = -\frac{1}{3} \in S$,解成立。

5.4 证明: **必要性:** 若 G 交换,则

$$(a*b)^2 = a*b*a*b = a^2*b^2.$$

充分性: 若 $(a*b)^2 = a^2*b^2$,则

$$a*b*a*b = a*a*b*b \implies b*a = a*b$$
 (消去律)

5.6 证明: 法一: 设 $(a*b)^n = e$, 则:

$$(b*a)^{n+1} = b*a*b*a*\cdots*b*a = b*(a*b)^n*a = b*e*a = b*a.$$

反之亦然. 同时这也说明两个元素若有无穷阶元素则两者都是无穷阶元素.

法二: 观察到 $b*a = a^{-1}*(a*b)*a$,即 b*a 是 a*b 的共轭,共轭元素同阶。

- 5.10 证明:
 - (a) **非空**: 单位元 $e \in H$ 。
 - (b) **封闭性**: 若 $a, b \in H$, 则对任意 $g \in G$, 有:

$$(a*b^{-1})*g = a*b^{-1}*g = a*g*b^{-1} = g*a*b^{-1},$$

故 $a * b^{-1} \in H$ 。

- 5.12 解: Klein 四元群 $K_4 = \{e, a, b, c\}$ 的所有子群为:
 - 平凡子群: {*e*}。
 - 2 阶子群: {e,a}、{e,b}、{e,c}。
 - 4 阶子群: K₄ 自身。
- 5.15 解: 6 阶循环群 $G = \langle g \rangle$, 生成元为 g 和 g^5 。子群:
 - 1 阶: {e}。

 - 3 \Re : $\langle g^2 \rangle$.
 - 6 阶: G 自身。
- 5.17 若 G 是 n 阶群且存在 $g \in G$ 的阶为 n, 则 $\langle g \rangle$ 是 G 的 n 阶子群,故 $G = \langle g \rangle$,即 G 为循环群。