MATH 302

CHAPTER 1

SECTION 1.1: APPLICATIONS LEADING TO DES

Contents

Little experiment	2
Newton's Law of Cooling	3
Second Version of Newton's Law of Cooling	4

CREATED BY: PIERRE-OLIVIER PARISÉ

Fall 2022

EXAMPLE 1. Poor some hot water in a teapod and take its temperature with a thermometer. Take the temperature every 5 minutes. Record your data in a table and plot them in a Times VS Temperature graph.

TABLES		
	DATA	FROM CLASS
	Time	Temperature
Osac.	11:56:20	175·5°F.
720 soc.	12:00:00	163.4°F
	12:05:00	154.0°F
	12:10:00	142.0°F
1120 Sec.	12:15:00	131.0°F
1420 sec.	12:20:00	122.0°F
	12:25:00	116.8°F
	12:30:00	110.8°F
2320 soc.	12:35:00	106.7°F
	12:43:00	100.90F
	12:57:00	43.6°F
795 sw	13:40:55	87.5°F
i is set.		

$\underline{\text{Plots}}$

DATA FROM CLASS.

My DATA (From 2012-08-72) Time | Temperature

	Time	Temperature
Dsec.	19:00:00	181.8°F
126 sec.	19:02:06	169.8°F
200sec.	19:03:20	166.3°F
280 sec.	19'.04'.40	163.6°F
340sec.	19:05:40	160.905
443 sec.	19:07:23	154.5°F
600 Sec.	19:10:00	149.0°F
760sec.	19:12:40	H3.3°F
91854.	19:15:18	138.7°F
1100 sec.	19:18:20	134.6°F
1312 sec.	19:21:52	129.0°F
1450 sec.	19:24:10	126.2°F
1740 50	19:29:00	121.5°F
2160 sec.	19:36:00	116.0°F
256050	c. 19: 42: 40	111.1°F
3026 sec	^	_
38 63 <i>501</i>	. 20:04:23	161. 40F
6 396 5 06	. 20:46:36	91. 3°F
75 71su	. 21:66:14	89.1°F
9280 sec	. 21:34:40	86.9°F
4,755 sec.	23: 05:55	83.2°F
11,526 sec.	مان: 32 · ما ا	80.2°F

My data

NEWTON'S LAW OF COOLING

EXAMPLE 2. Let T = T(t) be the temperature of a body at time t and let T_m be the temperature of its surrounding. Assuming that

- the rate of cooling of the body is directly proportial to the temperature difference of the surface area exposed
- the temperature of the surrounding does not change

deduce a model describing the evolution of the temperature T(t) of the body.

Information:

rate of
$$\chi$$
 $\frac{dT}{dt} \propto T-Tm$ > Temperature change of proportional. Clifference.

Therefore
$$\frac{dT}{dt} = -k(T-Tm)$$

(\$>0 positive)

Laker on, if I'm remains constant

$$\Rightarrow T(t) = T_m + (T_o - T_m)e^{-kt}$$

To: temperature at t=0.

SECOND VERSION OF NEWTON'S LAW OF COOLING

Assuming that the medium (surrounding) remains at constant temperature seems reasonable if we're considering a cup of tea/coffee cooling in a room.

What if the body warms or cools its surrounding, resulting in changing drastically the surrounding temperature?

EXAMPLE 3. Let T = T(t) be the temperature of the body at time t and let $T_m = T_m(t)$ be the temperature of its surrounding. Assuming that

- the rate of cooling of the body is directly proportial to the temperature difference of the surface area exposed
 - the energy is preserved

deduce a model describing the evolution of the temperature T(t) of the body.

$$T_0 := T(0)$$

From Example 1:

$$\frac{dT}{dt} = -k \left(T - Tm\right) \qquad (*)$$
depends on T.

We will assume further that

- · Change in heat of the object as T(+) is increasing from To to T(+) is a (T-To) (a>o).
- . Change in heat of the object as Tm(t) is increasing from Tmo to Tm(t) is am(Tm-Tmo) (am>0).

By conservation:

$$a(T-To) + am(Tm-Tmd) = 0$$

$$= Tm = -\frac{a}{am}(T-To) + Tmo$$

Replace in (x)

$$T' = -k \left(1 + \frac{a}{am} \right) T + k \left(T_{mo} + \frac{a}{am} T_0 \right) (x *)$$

Later on, we will able to find:

$$T(t) = \frac{a T_0 + a m T_{mo}}{a + a m} + \frac{a m \left(T_0 - T_{mo} \right)}{a + a m} e$$