Divisibility and Congruences (I)

Jongmin Lim (March 2022)

February 23, 2022

1 Things you should be able to do at the end of this lecture

- 1. Bezout Identity, Fermat's little theorem, Euler's theorem, Wilson's Theorem
- 2. McNugget Theorem
- 3. Insane factorisations

2 Warm-up

- 1. Show that if $p, p + 11, p^2 + 4$ are all primes, then $p^6 + p^3 + 5$ is also a prime.
- 2. Find all $x, y \in \mathbb{Z}^+$ such that $\frac{1}{x} + \frac{1}{y} = \frac{1}{2022}$
- 3. Find all $n \in \mathbb{Z}^+$ such that $n + 10|n^3 + 100$.
- 4. Find all $n \in \mathbb{Z}^+$ such that $\frac{1}{3} + \frac{1}{n}$ can be expressed as a fraction with a denominator less than n.
- 5. Show that $\frac{12n+1}{30n+2}$ is irreducible for all $n \in \mathbb{Z}^+$.
- 6. Notice that in base 10, we have $12 = 3 \times 4$ and $56 = 7 \times 8$. Notice that we have four consecutive digits. Find another such equation, perhaps in another base system, such that the digits are in an arithmetic sequence with difference two.
- 7. Let $x, y \in \mathbb{Z}^+$ such that lcm(x, y) + gcd(x, y) = x + y. Show that one of the numbers is divisible by the other.

3 Fun facts

- 1. If $x, y \in \mathbb{Z}$ and xy = n, then x, y are divisors of n.
- 2. If $x, y \in \mathbb{Z} \setminus \{0\}$, then there exist $q, r \in \mathbb{Z}$ such that $0 \le r \le y 1$ such that x = yq + r.
- 3. gcd(x, y) = gcd(y, r).
- 4. Let gcd(a,b)=1. Then there exist $x,y\in\mathbb{Z}$ such that ax+by=1. (Bezout's Identity)
- 5. If x_0, y_0 are such that $ax_0 + by_0 = 1$, then

$$\{(x,y) \in \mathbb{Z} \mid ax + by = 1\} = \{(x_0 - ky, y_0 + kx) \mid k \in \mathbb{Z}\}$$

- 6. Let p be prime. Then $\{1,2,\cdots,p-1\}\equiv\{a,2a,\cdots(p-1)a\}\pmod{p}$ for all $a\in\mathbb{Z}$ such that $p\not|a$.
- 7. Thus $a^{p-1} \equiv 1 \pmod{p}$.
- 8. Actually, let p be any number. Let $R = \{n \in \mathbb{Z} \mid 0 < n < p, \gcd(n, p) = 1\}$. Then for any $\gcd(a, n) = 1$, let $aR = \{an \mid n \in R\}$. Then $aR \equiv R \pmod{p}$.
- 9. Thus, $a^{|R|} \equiv 1 \pmod{p}$. Let $\phi : \mathbb{N} \to \mathbb{N}$ such that $\phi(p) = |R|$. This is the Euler totient function.
- 10. Wait, there's more! Let p be prime again. Then $(p-1)! \equiv -1 \pmod{p}$. This is Wilson's Theorem.

4 McNugget Theorem

Unfortunately, Mcdonalds sells chicken nuggets in packs of a and b, where a, b are coprime positive integers. What is the greatest integer N such that we cannot order N chicken nuggets with these packs?

- 1. Let's do some experiments. Everybody split up and do some small cases.
- 2. Let's have a guess on what N can be in terms of a and b.
- 3. A number M is order-able when we can find positive integers x, y such that ax + by = M. Let's try to prove that N + 1 is order-able. (fun fact number 5 wink wink)
- 4. Can you prove that every order greater than N is order-able?
- 5. Find a pattern that tells you how many numbers $0 \le n \le N-1$ are order-able.

5 Insane factorisations

To use fun fact number 1, we need to have great powers in factorising. Please flex your factorisation muscles.

- 1. Find all $n \in \mathbb{Z}$ such that $n^2 + 3n + 1$ divides $n^3 + 6n^2 + 2n + 1$.
- 2. Factorise fully with rational coefficients.
 - (a) $x^2 y^2 + 2y 1$
 - (b) $x^2 y^2 4x + 2y + 3$
 - (c) $x^4 + x^2 + 1$
 - (d) $x^4 + 4$
 - (e) $x^5 + x^4 + 1$
 - (f) (a+b+c)(ab+bc+ca) abc (Ok, this one isn't really number theory but it's cool nonetheless)
- 3. Find $\sqrt{1000 \times 1001 \times 1002 \times 1003 + 1}$
- 4. Let $P(x) = x^2 + x + 1$ for positive integers x. Let Q(x) be the smallest prime divisor of P(x). Show that Q(x) is never eventually monotonically increasing.
- 5. (Hard) Show that if $4^n + 2^n + 1$ is prime, then n must be a power of 3.

6 Cyclic numbers

It was a warm mid summer's day in 2013, where a Year 9 Jongmin was studiously preparing for the upcoming mathematics competitions. As he was chugging along the questions, he ran into a quite an interesting problem. The problem read,

Find all numbers n such that when we multiply n by 5, the ones digit of n becomes the leading digit, and every other digit shifts down by one. For example, $147 \rightarrow 714$

- 1. Let's discuss ideas to solve this question.
- 2. What if the number has this property when multiplied by 2 instead? Or 3? Or any other number?

7 Problems

- 1. Show that for every prime p, there exists a number of the form $9999 \cdots 999$ which is divisible by p
- 2. Hence or otherwise, show that $\frac{1}{n}$ is expressable as a recurring decimal number.
- 3. Hence or otherwise, show that every rational number is expressable as a recurring decimal number.
- 4. Let positive integers a, b, c satisfy $c(ac+1)^2 = (5c+2b)(2c+b)$. If c is odd, show that it must be a perfect square.
- 5. Find all triples of positive integers a,b,c such that $\frac{(at+1)(bt+1)(ct+1)-1}{lcm(at,bt,ct)}$ is an integer.
- 6. Prove that $\left\lfloor \frac{(n-1)!}{n(n+1)} \right\rfloor$ is even for every $n \in \mathbb{Z}^+$