

Universidad Nacional de Colombia

Facultad de ciencias

Departamento de matemáticas

Contingencias de vida 2025-I

Trabajo de seguros de vida

Estudiantes:

Jose Miguel Acuña Hernandez Andrés Steven Puertas Santiago Hernandez Bernal Yeferson Fabian Rubio Anna Gabriela Salazar Castro Guillermo Eduardo Murillo

Docente:

Jaime Abel Huertas Campos

Contenido			
1. Constitution to authorities for action de	1		
1. Crecimiento aritmético fraccionado	1		
2. Crecimiento aritmético dentro del año fraccionado	2		
3. Demostración	2		
4. Crecimiento geométrico	5		
5. Comparaciones	6		
5.1. Tabla	6		
5.2. Gráficas	8		

1. Crecimiento aritmético fraccionado

Queremos caracterizar la prima de un seguro fraccionario con el siguiente patrón de valor asegurado:

Sabemos que eso es simplemente la suma de todas las primas de los seguros fraccionarios temporales diferidos multiplicadas por el valor asegurado de ese momento, es decir:

$$(I_r A^{(m)})_x = \sum_{k=0}^{\infty} (1 + kr)_{k|A_{1}^{(m)}}^{(m)}$$

Para poder realizar los cálculos utilizando la tabla de mortalidad vamos a asumir UDD, por lo que tenemos:

$$\begin{split} \sum_{k=0}^{\infty} (1+kr)_{k|} A_{\frac{1}{x:1|}}^{(m)} &= \sum_{k=0}^{\infty} (1+kr) \cdot \frac{i}{i^{(m)}} \cdot {}_{k|} A_{\frac{1}{x:1|}} \\ &= \frac{i}{i^{(m)}} \sum_{k=0}^{\infty} (1+kr)_{k|} A_{\frac{1}{x:1|}} \\ &= \frac{i}{i^{(m)}} \left[\sum_{k=0}^{\infty} {}_{k|} A_{\frac{1}{x:1|}} + r \sum_{k=0}^{\infty} k \cdot {}_{k|} A_{\frac{1}{x:1|}} \right] \end{split} \tag{Usamos UDD}$$

$$\begin{split} &=\frac{i}{i^{(m)}}\left[\sum_{k=0}^{\infty}v^{k}\cdot_{k}p_{x}\cdot q_{x+k}+r\sum_{k=0}^{\infty}k\cdot v^{k}\cdot_{k}p_{x}\cdot q_{x+k}\right]\\ &=\frac{i}{i^{(m)}}\left[A_{x}+r\sum_{k=0}^{\infty}k\cdot v^{k}\cdot_{k}p_{x}\cdot q_{x+k}\right]\\ &=\frac{i}{i^{(m)}}\left[A_{x}+r\left(\sum_{k=0}^{\infty}(k+1)v^{k}\cdot_{k}p_{x}\cdot q_{x+k}-\sum_{k=0}^{\infty}v^{k}\cdot_{k}p_{x}\cdot q_{x+k}\right)\right]\\ &=\frac{i}{i^{(m)}}\left[A_{x}+r\left((IA)_{x}-A_{x}\right)\right]\\ &=\frac{i}{i^{(m)}}\left[A_{x}+r\left((IA)_{x}-A_{x}\right)\right] \end{split}$$

Esto es lo que esta programado en punto1. R. Para ejecutar la función el único requisito es que la tabla de mortalidad sea un dataframe de R y que tenga al menos las columnas x y qx. La función no requiere una edad mínima en la tabla porque detecta la edad mínima y máxima y sobre eso realiza los cálculos. La función también tiene una pequeña validación del tipo de los datos antes de realizar los cálculos.

2. Crecimiento aritmético dentro del año fraccionado

Queremos caracterizar la prima de un seguro fraccionario con el siguiente patrón de valor asegurado creciente dentro del año:

Sabemos que es la esperanza del pago descontado a valor presente, es decir:

$$(I_r^{(m)}A^{(m)})_x = \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} \left(1 + r\left(k + \frac{j}{m}\right)\right) v^{k + \frac{j+1}{m}} k + \frac{j}{m} \left|\frac{1}{m}q_x\right|$$

Para poder realizar los cálculos utilizando la tabla de mortalidad vamos a asumir UDD. El desarrollo de esto esta en la siguiente demostración y la implementación esta en punto2.R y tiene los mismos requerimientos que la función anterior.

3. Demostración

Teorema 3.1. Consideremos un seguro de vida entero para una persona de edad x, donde el valor asegurado sigue el siguiente patron temporal:

Bajo la hipótesis UDD la prima simple neta de este seguro es:

$$P.S.N. = \frac{i}{i^{(m)}} [A_x + r((IA)_x - A_x)] + rA_x \left[\frac{i - i^{(m)}}{(i^{(m)})^2} \right]$$
 (1)

Demostración. La definición de la prima neta de un seguro es la esperanza del valor presente del pago. Como el año esta fraccionado en m partes, la probabilidad de realizar el pago al final de la j-esima parte del año k es simplemente la probabilidad de que la persona de edad (x) haya sobrevivido $k+\frac{j}{m}$ años y muera pasados $\frac{1}{m}$, es decir $k+\frac{j}{m}|\frac{1}{m}q_x$. Simplemente traemos a valor presente con la tasa de descuento v elevado al tiempo transcurrido hasta el pago que es $k+\frac{j+1}{m}$ el pago que es $(1+r(k+\frac{j}{m}))$. Asi, la prima de este seguro es:

$$P.S.N. = \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} \left(1 + r \left(k + \frac{j}{m} \right) \right) v^{k + \frac{j+1}{m}} {}_{k + \frac{j}{m} \mid \frac{1}{m}} q_x$$
 (2)

Observemos que el valor asegurado se puede reescribir como:

$$1 + r\left(k + \frac{j}{m}\right) = (1 + rk) + r\frac{j}{m}$$

Por lo tanto, la prima neta única se puede expresar como:

$$\sum_{k=0}^{\infty} \sum_{j=0}^{m-1} \left[(1+rk) + r \frac{j}{m} \right] v^{k+\frac{j+1}{m}} {}_{k+\frac{j}{m}|\frac{1}{m}} q_x$$

Así, aplicando la propiedad distributiva:

$$P.S.N. = \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} (1+rk) v^{k+\frac{j+1}{m}}{}_{k+\frac{j}{m}|\frac{1}{m}} q_x + \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} r \frac{j}{m} v^{k+\frac{j+1}{m}}{}_{k+\frac{j}{m}|\frac{1}{m}} q_x$$

$$= \text{Parte I} + \text{Parte II}$$

Para la Parte I:

Parte I =
$$\sum_{k=0}^{\infty} \sum_{j=0}^{m-1} (1+kr) v^{k+\frac{j+1}{m}} {}_{k+\frac{j}{m}|\frac{1}{m}} q_x$$
$$= \sum_{k=0}^{\infty} (1+kr) \sum_{j=0}^{m-1} v^{k+\frac{j+1}{m}} {}_{k+\frac{j}{m}|\frac{1}{m}} q_x$$

Pero observe que $\sum_{j=0}^{m-1} v^{k+\frac{j+1}{m}} k+\frac{j}{m} |\frac{1}{m} q_x$ es la prima de un seguro temporal de un año (m posibles pagos de un año fraccionado en m partes) con valor asegurado de 1 pagadero al final del la fracción del año de muerte pero diferido k años. Es decir

Parte I =
$$\sum_{k=0}^{\infty} (1+kr) \sum_{j=0}^{m-1} v^{k+\frac{j+1}{m}} {}_{k+\frac{j}{m}|\frac{1}{m}} q_x$$
$$= \sum_{k=0}^{\infty} (1+kr)_{k|} A_{1}^{(m)}_{x:\overline{1}|}$$

Por lo tanto, la parte I es un seguro con incremento aritmético anual de r pero es pagadero al final de la fracción del año de muerte. Sabemos que bajo UDD la prima de este seguro es:

Parte I =
$$\frac{i}{i(m)}[A_x + r((IA)_x - A_x)]$$
 (3)

Para la Parte II:

$$\begin{split} \text{Parte II} &= \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} r \frac{j}{m} v^{k + \frac{j+1}{m}}{}_{k + \frac{j}{m}} p_x \cdot \frac{1}{m} q_{x + k + \frac{j}{m}} \\ &= r \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} \frac{j}{m} v^{k + \frac{j+1}{m} + 1 - 1}{}_{k + \frac{j}{m}} p_x \cdot \frac{1}{m} q_{x + k + \frac{j}{m}} \\ &= r \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} \frac{j}{m} v^{k + \frac{j+1}{m} + 1 - 1}{}_{k} p_x \cdot \frac{j}{m} p_{x + k} \cdot \frac{1}{m} q_{x + k + \frac{j}{m}} \\ &= r \sum_{k=0}^{\infty} v^{k+1}{}_{k} p_x \sum_{j=0}^{m-1} \frac{j}{m} v^{\frac{j+1}{m} - 1}{}_{\frac{j}{m}} p_{x + k} \cdot \frac{1}{m} q_{x + k + \frac{j}{m}} \\ &= r \sum_{k=0}^{\infty} v^{k+1}{}_{k} p_x \sum_{j=0}^{m-1} \frac{j}{m} v^{\frac{j+1}{m} - 1}{}_{\frac{j}{m}} q_{x + k} \quad \text{(Utilizando DUM)} \\ &= r \sum_{k=0}^{\infty} v^{k+1}{}_{k} p_x \cdot q_{x + k} \sum_{j=0}^{m-1} \frac{j}{m^2} v^{\frac{j+1}{m} - 1} \\ &= r A_x \sum_{j=0}^{m-1} \frac{j}{m^2} v^{\frac{j+1}{m} - 1} \text{(Reorganizamos la suma, def. } A_x) \\ &= r A_x v^{\frac{1}{m}} (1 + i) \frac{1}{m^2} \sum_{j=0}^{m-1} j v^{\frac{j}{m}} \end{split}$$

Analicemos unicamente $v^{\frac{1}{m}}(1+i)\frac{1}{m^2}\sum_{j=0}^{m-1}jv^{\frac{j}{m}}$:

$$\begin{split} v^{\frac{1}{m}}(1+i)\frac{1}{m^2}\sum_{j=0}^{m-1}jv^{\frac{j}{m}} &= \frac{v^{\frac{1}{m}}(1+i)}{m^2}\left(\sum_{j=0}^{m-1}jv^{\frac{j}{m}} + mv^{\frac{m}{m}} - mv^{\frac{m}{m}}\right) \\ &= \frac{v^{\frac{1}{m}}(1+i)}{m^2}\left(\sum_{j=0}^{m}jv^{\frac{j}{m}} - mv\right) \\ &= v^{\frac{1}{m}}(1+i)\frac{1}{m^2}\sum_{j=0}^{m}jv^{\frac{j}{m}} - \frac{v^{\frac{1}{m}}}{m} \\ &= v^{\frac{1}{m}}(1+i)(I^{(m)}\ddot{a})^{\frac{m}{1}} - \frac{v^{\frac{1}{m}}}{m} \\ &= v^{\frac{1}{m}}(1+i)\left(\frac{\ddot{a}^{(m)}_{x:\overline{1}} - v}{i^{(m)}}\right) - \frac{v^{\frac{1}{m}}}{m} \\ &= v^{\frac{1}{m}}(1+i)\left(\frac{1-v}{d^{(m)}} - \frac{v}{i^{(m)}}\right) - \frac{v^{\frac{1}{m}}}{m} \\ &= v^{\frac{1}{m}}(1+i)\left(\frac{1-v-vd^{(m)}}{i^{(m)}d^{(m)}}\right) - \frac{v^{\frac{1}{m}}}{m} \\ &= v^{\frac{1}{m}}(1+i)\left(\frac{1-v-vd^{(m)}}{i^{(m)}i^{(m)}v^{\frac{1}{m}}}\right) - \frac{v^{\frac{1}{m}}}{m} \end{split}$$

$$= \frac{(1+i)-1-d^{(m)}}{(i^{(m)})^2} v^{\frac{1}{m}} - \frac{v^{\frac{1}{m}}}{m}$$

$$= \frac{i-d^{(m)}}{(i^{(m)})^2} v^{\frac{1}{m}} - \frac{v^{\frac{1}{m}}}{m}$$

$$= \frac{m(i-d^{(m)})-(i^{(m)})^2 v^{\frac{1}{m}}}{(i^{(m)})^2 m}$$

Como $v^{\frac{1}{m}} = \frac{1}{1+(i^{(m)})/m} = \frac{m}{m+i^{(m)}}$ entonces

$$\begin{split} \frac{m\,(i-d^{(m)})-(i^{(m)})^2v^{\frac{1}{m}}}{(i^{(m)})^2m} &= \frac{m\,(i-d^{(m)})-(i^{(m)})^2\left(\frac{m}{m+i^{(m)}}\right)}{(i^{(m)})^2m} \\ &= \frac{m\,(i-\frac{i^{(m)}m}{m+i^{(m)}})-(i^{(m)})^2\frac{m}{m+i^{(m)}}}{(i^{(m)})^2m} \\ &= \frac{mi-\frac{i^{(m)}m^2}{m+i^{(m)}}-\frac{i^{(m)})^2m}{m+i^{(m)}}}{(i^{(m)})^2m} \\ &= \frac{mi-\frac{i^{(m)}m^2+(i^{(m)})^2m}{m+i^{(m)}}}{(i^{(m)})^2m} \\ &= \frac{m^2i+imi^{(m)}-i^{(m)}m^2-(i^{(m)})^2m}{m+i^{(m)}} \frac{1}{(i^{(m)})^2m} \\ &= \frac{m\,(mi+ii^{(m)}-i^{(m)}m-(i^{(m)})^2)}{m+i^{(m)}} \frac{1}{(i^{(m)})^2m} \\ &= \frac{m\,(m(i-i^{(m)})+i^{(m)}(i-i^{(m)}))}{m+i^{(m)}} \frac{1}{(i^{(m)})^2m} \\ &= \frac{m\,((i-i^{(m)})(m+i^{(m)}))}{m+i^{(m)}} \frac{1}{(i^{(m)})^2m} \\ &= \frac{m\,((i-i^{(m)})(m+i^{(m)}))}{(m+i^{(m)})} \frac{1}{(i^{(m)})^2m} \\ &= \frac{m\,((i-i^{(m)})(m+i^{(m)}))}{(m+i^{(m)})} \frac{1}{(i^{(m)})^2m} \\ &= \frac{m\,((i-i^{(m)})(m+i^{(m)}))}{(m+i^{(m)})} \frac{1}{(i^{(m)})^2m} \\ &= \frac{m\,((i-i^{(m)})(m+i^{(m)}))}{(i^{(m)})^2} \frac{1}{(i^{(m)})^2m} \end{split}$$

Por lo tanto

$$rA_x v^{\frac{1}{m}} (1+i) \frac{1}{m^2} \sum_{j=0}^{m-1} j v^{\frac{j}{m}} = rA_x \frac{(i-i^{(m)})}{(i^{(m)})^2}$$

así, sumando las dos partes tenemos que:

$$P.S.N. = \sum_{k=0}^{\infty} \sum_{j=0}^{m-1} \left(1 + r \left(k + \frac{j}{m} \right) \right) v^{k + \frac{j+1}{m}} {}_{k + \frac{j}{m} \mid \frac{1}{m}} q_x = \frac{i}{i(m)} [A_x + r[(IA)_x - A_x]] + r \frac{\left(i - i^{(m)} \right)}{(i^{(m)})^2} A_x \tag{4}$$

Que es lo que se quería demostrar.

4. Crecimiento geométrico

Queremos caracterizar la prima de un seguro fraccionario con el siguiente patrón de valor asegurado geométrico:

Primero analizamos como es el seguro discreto, calculando la esperanza del valor asegurado descontado el año en que se pagaría:

$$(G_{r}A)_{x} = \sum_{k=0}^{\infty} (1+r)^{k} \cdot v^{k+1} \cdot {}_{k}p_{x} \cdot q_{x+k}$$

$$= \sum_{k=0}^{\infty} (1+r)^{k} \cdot \left(\frac{1}{1+i}\right)^{k+1} \cdot {}_{k}p_{x} \cdot q_{x+k}$$

$$= \frac{1}{1+i} \sum_{k=0}^{\infty} (1+r)^{k} \cdot \left(\frac{1}{1+i}\right)^{k} \cdot {}_{k}p_{x} \cdot q_{x+k}$$

$$= \frac{1}{1+i} \sum_{k=0}^{\infty} \left(\frac{1+r}{1+i}\right)^{k} \cdot {}_{k}p_{x} \cdot q_{x+k}$$

$$= \frac{1}{1+i} \sum_{k=0}^{\infty} \left(\frac{1}{1+e}\right)^{k} \cdot {}_{k}p_{x} \cdot q_{x+k}$$

$$= \frac{1}{1+i} \cdot (1+e) \sum_{k=0}^{\infty} \left(\frac{1}{1+e}\right)^{k+1} \cdot {}_{k}p_{x} \cdot q_{x+k}$$

$$= \frac{1}{1+i} \cdot (1+e) \cdot A_{x}@e$$

$$= \frac{1+e}{1+i} \cdot A_{x}@e$$

$$= \frac{(1+i)/(1+r)}{1+i} \cdot A_{x}@e$$

$$= \frac{1}{1+r} A_{x}@e$$

Ahora simplemente usamos UDD para ver que:

$$(G_r A^{(m)})_x = \frac{i}{i^{(m)}(1+r)} A_x @e$$

Esto es lo que esta programado en punto4.R.

5. Comparaciones

5.1. Tabla

Como ejemplo del calculo de estas primas seleccionamos la tabla "Rentistas Hombres" fijando r=0.05, i=0.1 y m=12.0

x	q_x	$(I_r A^{(m)})_x$	$(I_r^{(m)}A^{(m)})_x$	$(G_rA^{(m)})_x$
0	0.000485	0.012349	0.012492	0.036816
1	0.000485	0.012759	0.012905	0.038105
2	0.000485	0.013203	0.013352	0.039456
3	0.000485	0.013683	0.013836	0.040872
4	0.000485	0.014203	0.014360	0.042356
5	0.000485	0.014766	0.014927	0.043911

_				
6	0.000485	0.015374	0.015540	0.045542
7	0.000485	0.016032	0.016203	0.047251
8	0.000485	0.016743	0.016920	0.049042
9	0.000485	0.017512	0.017695	0.050919
10	0.000485	0.018342	0.018532	0.052887
11	0.000485	0.019238	0.019437	0.054949
12	0.000485	0.020206	0.020413	0.057111
13	0.000485	0.021250	0.021466	0.059376
14	0.000485	0.021230	0.022602	0.061751
15	0.000485	0.022570	0.022002	0.064240
16	0.000403			0.066849
-		0.024898	0.025148	
17	0.000509	0.026296	0.026560	0.069573
18	0.000523	0.027789	0.028068	0.072416
19	0.000538	0.029384	0.029679	0.075383
20	0.000554	0.031086	0.031398	0.078479
21	0.000573	0.032903	0.033232	0.081710
22	0.000593	0.034840	0.035189	0.085080
23	0.000615	0.036904	0.037274	0.088593
24	0.000639	0.039104	0.039497	0.092257
25	0.000666	0.041446	0.041864	0.096075
26	0.000694	0.043939	0.044383	0.100054
27	0.000726	0.046591	0.047064	0.104200
28	0.000720	0.049411	0.049914	0.108518
29	0.000701	0.052409	0.052945	0.113015
30	0.000799	0.055592	0.052943	0.113013
31	0.000886	0.058973	0.059582	0.122567
32	0.000936	0.062559	0.063209	0.127635
33	0.000991	0.066362	0.067055	0.132906
34	0.001051	0.070391	0.071131	0.138386
35	0.001117	0.074658	0.075448	0.144081
36	0.001190	0.079174	0.080018	0.149997
37	0.001269	0.083950	0.084851	0.156141
38	0.001356	0.088997	0.089960	0.162520
39	0.001451	0.094328	0.095356	0.169138
40	0.001556	0.099954	0.101053	0.176003
41	0.001671	0.105887	0.107061	0.183121
42	0.001797	0.112139	0.113392	0.190496
43	0.001934	0.118721	0.120060	0.198135
44	0.001334	0.115721	0.127076	0.206043
45	0.002000	0.123043	0.127070	0.214225
46	0.002231	0.132924	0.134431	0.214223
47	0.002632	0.148588	0.150329	0.231433
48	0.002851	0.156996	0.158853	0.240466
49	0.003091	0.165801	0.167783	0.249792
50	0.003353	0.175013	0.177127	0.259413
51	0.003641	0.184642	0.186896	0.269332
52	0.003956	0.194696	0.197099	0.279551
53	0.004301	0.205182	0.207742	0.290073
54	0.004681	0.216108	0.218834	0.300899
55	0.005050	0.227478	0.230381	0.312030
56	0.005463	0.239333	0.242422	0.323495
57	0.005925	0.251672	0.254960	0.335294
58	0.006442	0.264496	0.267994	0.347422
59	0.007019	0.277798	0.281518	0.359873
60	0.007619	0.277790	0.295526	0.372639
61	0.007000	0.291371	0.293520	0.372039
62	0.000300	0.320485	0.310007	0.399078
02	0.009191	0.520405	0.524941	0.088010

63	0.010277	0.335593	0.340328	0.412723
64	0.010277	0.350993	0.340320	0.412723
65	0.011437	0.366664	0.371975	0.420332
66	0.012742	0.382584	0.371973	0.454572
67	0.014143	0.302304	0.404656	0.454372
68	0.013073	0.396729	0.404030	0.483065
69	0.017341	0.413073	0.421323	0.497436
70	0.019130	0.431392	0.455171	0.497430
71	0.021137	0.446233	0.433171	0.511002
72	0.025290	0.403027	0.472294	0.540799
73	0.023047	0.498787	0.506773	0.555266
74	0.020207	0.490707	0.524064	0.569703
75	0.034032	0.532608	0.541341	0.584087
76	0.037335	0.549456	0.558571	0.598394
77	0.037333	0.566215	0.575718	0.612601
78	0.040930	0.582850	0.573710	0.626686
79	0.044042	0.502030	0.609618	0.640625
80	0.053714	0.615614	0.626303	0.654395
81	0.058736	0.631676	0.642765	0.667976
82	0.064188	0.647481	0.658972	0.681345
83	0.070107	0.663001	0.674893	0.694483
84	0.076525	0.678206	0.690499	0.707369
85	0.083483	0.693071	0.705763	0.719986
86	0.091023	0.707572	0.720661	0.732318
87	0.099186	0.721687	0.735170	0.744350
88	0.108012	0.735399	0.749273	0.756069
89	0.117555	0.748696	0.762954	0.767465
90	0.127859	0.761564	0.776202	0.778531
91	0.138975	0.774000	0.789012	0.789263
92	0.150945	0.786003	0.801382	0.799660
93	0.163834	0.797581	0.813321	0.809732
94	0.177678	0.808748	0.824843	0.819490
95	0.192543	0.819535	0.835979	0.828962
96	0.208900	0.829984	0.846773	0.838190
97	0.227219	0.840080	0.857210	0.847161
98	0.247500	0.849755	0.867218	0.855813
99	0.269747	0.858962	0.876748	0.864098
100	0.293956	0.867675	0.885772	0.871987
101	0.320118	0.875881	0.894277	0.879466
102	0.348268	0.883588	0.902269	0.886534
103	0.378273	0.890810	0.909763	0.893198
104	0.410394	0.897601	0.916812	0.899499
105	0.444377	0.904009	0.923469	0.905478
106	0.480306	0.910177	0.929878	0.911258
107	0.517895	0.916388	0.936334	0.917102
108	0.558952	0.923357	0.943584	0.923704
109	0.599010	0.932724	0.953342	0.932724
110	1.000000	0.950041	0.973578	0.997543

5.2. Gráficas

Vamos a ver graficamente los valores asegurados a lo largo del tiempo para una persona de 20 años en dos horizontes temporales distintos. Al igual que antes, mantuvimos constante i=0.1 y r=0.05 (aunque en estos calculos solo r importa)

Tiempo	$(\mathbf{I_r}\mathbf{A^{(m)}})_{\mathbf{x}}$	$(\mathbf{I_r^{(m)}A^{(m)}})_{\mathbf{x}}$	$(\mathbf{G_r}\mathbf{A^{(m)}})_{\mathbf{x}}$
0 años	1.0000	1.0000	1.0000
1 años	1.0500	1.0500	1.0500
5 años	1.2500	1.2500	1.2763
10 años	1.5000	1.5000	1.6289
20 años	2.0000	2.0000	2.6533
50 años	3.5000	3.5000	11.4674
70 años	4.5000	4.5000	30.4264

Ahora es facil apreciar la razon de la diferencia de precios en los distintos productos. Sin embargo, si pensamos en un horizonte temporal de 20 años, el precio del seguro con incremento aritmetico (0.031086\$) es mucho mas atractivo que el del seguro con crecimiento geometrico (0.078479\$) para el comprador de 20 años.