Module Interface Specification for Solar Water Heating Systems Incorporating Phase Change Material

Brooks MacLachlan and Spencer Smith May 29, 2017

Contents

1	Introduction	4
2	Notation	4
3	Module Decomposition	5
4	MIS of Control Module	7
	4.1 Module	 7
	4.2 Uses	7
	4.3 Syntax	7
	4.3.1 Exported Access Programs	7
	4.4 Semantics	7
		7
		-
	4.4.2 Environment Variables	7
	4.4.3 Access Routine Semantics	 8
5	MIS of Input Parameters Module	9
	5.1 Module	 9
	5.2 Uses	9
	5.3 Syntax	9
		9
	5.4 Semantics	
	5.4.1 Environment Variables	 9

		5.4.2 State Variables	9
		5.4.3 Assumptions	10
			10
	5.5		12
6	MIS	S of Input Format Module	13
	6.1		13
	6.2	Uses	13
	6.3		13
	6.4		13
	6.5		13
		6.5.1 Environment Variables	13
		6.5.2 Assumptions	13
		6.5.3 Access Routine Semantics	13
			14
7	MIS	S of Input Verification Module	16
	7.1	-	16
	7.2		16
	7.3	Syntax	16
		·	16
	7.4		16
			16
			16
	7.5	Considerations	18
8	MIS	S of Temperature ODEs Module	۱9
	8.1	•	19
	8.2		19
	8.3		19
		ϑ	19
	8.4		19
			- 19
			- 19
		<u>.</u>	19

9	MIS	of ODE Solver Module	21
	9.1	Module	21
	9.2	Uses	21
	9.3	Syntax	21
		9.3.1 Exported Constants	21
		9.3.2 Exported Access Programs	21
	9.4	Semantics	21
		9.4.1 State Variables	21
		9.4.2 Access Routine Semantics	22
10	MIS	of Energy Module	23
			23
			23
			23
		V	$\frac{-3}{23}$
	10.4		23
	-0		23
			$\frac{1}{24}$
		r in it is a second of the sec	 26
			$\frac{1}{27}$
11	MIS	of Output Verification Module	28
			- 0
			-0 28
			$\frac{20}{28}$
	11.0		28
	11 4	ı	$\frac{28}{28}$
	11.1		$\frac{28}{28}$
			$\frac{28}{28}$
			$\frac{20}{28}$
			$\frac{20}{28}$
			$\frac{20}{29}$
			$\frac{29}{29}$
		11.4.0 Eocal Functions	<u> </u>
12		0	31
			31
	12.2	Uses	31
	12.3	Syntax	31

		12.3.1	Exported Access Programs	 31
	12.4	Semant	tics	 31
		12.4.1	State Variables	 31
		12.4.2	Environment Variables	 31
		12.4.3	Assumptions	 31
		12.4.4	Access Routine Semantics	 32
13	MIS	of Ou	ıtput Module	33
			e	 33
			<u>.</u>	
			Exported Constants	
			Exported Access Program	
	13.4		tics	
			State Variables	
			Environment Variables	
			Access Routine Semantics	
14	App	endix		35

1 Introduction

The following document details the Module Interface Specifications for the implemented modules in a program simulating a Solar Water Heating System with Phase Change Material. It is intended to ease navigation through the program for design and maintenance purposes.

Complementary documents include the System Requirement Specifications and Module Guide.

2 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by SWHS.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	$\mathbb Z$	a number without a fractional component in $(-\infty, \infty)$
natural number	\mathbb{N}	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of SWHS uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, SWHS uses functions, which are defined by the data types of their inputs and outputs. Functions are described by showing their input data types separated by multiplication symbols on the left side of an arrow, and their output data type on the right side.

3 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
Behaviour-Hiding Module	Input Format Module Input Parameters Module Input Verification Module Output Format Module Output Verification Module Temperature ODEs Module Energy Equations Module Control Module
Software Decision Module	Sequence Data Structure Module ODE Solver Module Plotting Module

Table 1: Module Hierarchy

4 MIS of Control Module

4.1 Module

main

4.2 Uses

parameters (Section 5), load_params (Section 6), verify_params (Section 7), temperature (Section 8), ODE Solvers Module (Section 9), energy (Section 10), verify_output (Section 11), plot (Section 12), output (Section 13)

4.3 Syntax

4.3.1 Exported Access Programs

Name	In	Out	Exceptions
main	string	-	-

4.4 Semantics

4.4.1 State Variables

time: array of \mathbb{R} tempW: array of \mathbb{R} tempP: array of \mathbb{R} latHeat: array of \mathbb{R} eW: array of \mathbb{R} eP: array of \mathbb{R} eTot: array of \mathbb{R}

4.4.2 Environment Variables

win: 2D array of pixels displayed on the screen

4.4.3 Access Routine Semantics

main(s): transition: time, tempW, tempP, latHeat, eW, eP, eTot, win := results[0],

 $results[1], \ results[2], \ results[3], \ eW1 \\ \|eW2 \\ \|eW3, \ eP1 \\ \|eP2 \\ \|eP3, \ eP4 \\ \|eP4 \\ \|$

 $(\forall i \in [0..|post(eW)|-1]) (post(eW[i]) + post(eP[i]))$, Prints infor-

mation about the melting of PCM.

exception: none

5 MIS of Input Parameters Module

5.1 Module

Param

5.2 Uses

N/A

5.3 Syntax

Name	In	Out	Exceptions
load_params	string	-	-
L	-	\mathbb{R}	
D	-	\mathbb{R}	
V_P	-	\mathbb{R}	
$V_P \ A_P$	-	\mathbb{R}	
	-	•••	

5.4 Semantics

5.4.1 Environment Variables

f: sequence of string #f[i] is the ith string in the text file f

5.4.2 State Variables

L: \mathbb{R}

diam: \mathbb{R}

 $\mathrm{Vp}\colon \mathbb{R}$

Ap: \mathbb{R}

rho_p: \mathbb{R}

T
melt: \mathbb{R}

C_ps: \mathbb{R}

C_pl: \mathbb{R}

Hf: \mathbb{R}

```
Ac: \mathbb{R}
Tc: \mathbb{R}
rho_w: \mathbb{R}
C_w: \mathbb{R}
hc: \mathbb{R}
hp: \mathbb{R}
Tinit: \mathbb{R}
tstep: \mathbb{R}
tfinal: \mathbb{R}
AbsTol: \mathbb{R}
RelTol: \mathbb{R}
ConsTol: \mathbb{R}
Vt: \mathbb{R}
Mw: \mathbb{R}
tau_w: \mathbb{R}
eta: \mathbb{R}
Mp: \mathbb{R}
tau_ps: \mathbb{R}
tau_pl: \mathbb{R}
Epmelt_init: \mathbb{R}
Ep_melt3: \mathbb{R}
Mw_noPCM: \mathbb{R}
tau_w_no_PCM: \mathbb{R}
```

5.4.3 Assumptions

load_params will be called before the values of any state variables will be accessed.

5.4.4 Access Routine Semantics

init():

```
 • transition: L, diam, Vp, Ap, ..., tau_w_no_PCM := 0, 0, 0, 0, ..., 0
```

 \bullet output: out := self

• exception: none

getL():

- ullet output: out := L
- exception: none

get_diam():

- \bullet output: out := diam
- exception: none

getVp():

- \bullet output: out := Vp
- exception: none

getAp():

- \bullet output: out := Ap
- exception: none

...

get_tau_w_no_PCM():

- \bullet output: $out := tau_w_no_PCM$
- exception: none

setL(x):

- transition: L := x
- exception: none

$set_diam(x)$:

- transition: diam := x
- exception: none

setVp(x):

- transition: Vp := x
- exception: none

setAp(x):

• transition: Ap := x

• exception: none

. . .

 $set_tau_w_no_PCM(x)$:

• transition: $tau_w_no_PCM := x$

• exception: none

5.5 Considerations

The value of each state variable can be accessed through its name (getter). An access program is available for each state variable. There are no setters for the state variables, since the values will be set and checked by load params and not changed for the life of the program.

6 MIS of Input Format Module

6.1 Module

Load_params

6.2 Uses

Param (Section 5)

6.3 Syntax

6.4 Exported Access Programs

Name	In	Out	Exceptions
load_params	string	-	-

6.5 Semantics

6.5.1 Environment Variables

f: sequence of string #f[i] is the ith string in the text file f

6.5.2 Assumptions

The input string corresponds to an existing filename. The name will be relative to the current directory. The input file is assumed to be formatted correctly. The file contains the string equivalents of the numeric values for each input parameter in order, each on a new line. The order is the same as in the table in R1 of the SRS. Any comments in the input file should be denoted with a '#' symbol.

6.5.3 Access Routine Semantics

 $load_params(s)$:

- transition: The filename s is first associated with the file f. File f is then used to modify the state of Param (Section 5) as follows:
 - 1. Param.init()

- 2. Read data sequentially from f to populate the state variables of Param from L to ConsTol.
- 3. Calculate the derived quantities in Param as follows:
 - Param.setVt(calcVt(Param.getL(), Param.get_diam()))
 - Param.setMw(calcMw(Param.getVp(), Param.get_rho_w(), Param.getVt()))
 - Param.set_tau_w(calcTauw(Param.getMw(), Param.getC_w(), Param.get_hc(), Param.getAc()))
 - Param.set_eta(calcEta(Param.get_hp(), Param.getAp(), Param.get_hc(), Param.getAc()))
 - Param.setMp(calcMp(Param.get_rho_p(), Param.getVp()))
 - Param.set_tau_ps(calcTaups(Param.getMp(), Param.getC_ps(), Param.get_hp(), Param.getAp()))
 - Param.set_taul_pl(calcTaupl(Param.getMp(), Param.getC_pl(), Param.get_hp(), Param.getAp()))
 - Param.setEpmelt_init(calcEpmeltinit(Param.getC_ps(), Param.getMp(), Param.getTmelt(), Param.getTinit()))
 - Param.setEp_melt3(calcEpmelt3(Param.getHf(), Param.getMp()))
 - Param.setMw_noPCM(calcMwno(Param.get_rho_w, Param.getVt()))
 - Param.set_tau_no_PCM(calcTauwnoPCM(Param.getMw_noPCM(), Param.getC_w(), Param.get_hc(), Param.getAc()))
- exception: none

6.5.4 Local Functions

calcVt:
$$\mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

calcVt $(L, d) \equiv \pi \times L \times (\frac{d}{2})^2$
calcMw: $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
calcMw $(V_p, \rho_w, V_t) \equiv \rho_w(V_t - V_p)$
calcTauw: $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
calcTauw $(m_w, C_w, h_c, A_c) \equiv \frac{m_w C_w}{A_c h_c}$
calcEta: $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
calcEta: $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
calcEta: $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

calcMp: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ calcMp(ρ_p, V_p) $\equiv \rho_p V_p$

calcTaups: $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ calcTaups $(M_p, C_{ps}, h_p, A_p) \equiv \frac{M_p C_{ps}}{h_p A_p}$

calcTaupl: $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ calcTaupl $(M_p, C_{pl}, h_p, A_p) \equiv \frac{M_p C_{pl}}{h_p A_p}$

calcEpmeltinit: $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ calcEpmeltinit($C_{ps}, M_p, T_{\text{melt}}, T_{\text{init}}$) $\equiv C_{ps}M_p(T_{\text{melt}} - T_{\text{init}})$

calcEpmelt3: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ calcEpmelt3 $(H_f, M_p) \equiv H_f M_p$

calcMwnoPCM: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ calcMwnoPCM(ρ_w, V_t) $\equiv \rho_w V_t$

calcTauwnoPCM: $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ calcTauwnoPCM $(M_{w_{\text{noPCM}}}, C_w, h_c, A_c) \equiv \frac{M_{w_{\text{noPCM}}}C_w}{h_c A_c}$

7 MIS of Input Verification Module

7.1 Module

 $verify_params$

7.2 Uses

Param (Section 5)

7.3 Syntax

7.3.1 Exported Access Programs

Name	In	Out	Exceptions	
verify_valid	-	-	badLength, badDiam, badPCMVolume, bad-	
			PCMAndTankVol, badPCMArea, badPCMDen-	
			sity, badMeltTemp, badCoilAndInitTemp, bad-	
			CoilTemp, badPCMHeatCapSolid, badPCMHeat-	
			CapLiquid, badHeatFusion, badCoilArea, badWa-	
			terDensity, badWaterHeatCap, badCoilCoeff, bad-	
			PCMCoeff, badInitTemp, badFinalTime, badIni-	
			${ m tAndMeltTemp}$	
verify_recommen	d -	-	-	

7.4 Semantics

7.4.1 Assumptions

All of the fields Param have been assigned values before any of the access routines for this module are called.

7.4.2 Access Routine Semantics

 $\operatorname{verify_valid}()$:

• transition: none

```
• exceptions: exc := (
  Param.getL() \le 0 \Rightarrow badLength
  Param.get_diam() \leq 0 \Rightarrow \text{badDiam}
  Params.get_Vp() \leq 0 \Rightarrow \text{badPCMVolume}
  Params.getVp() \ge Params.Vt \Rightarrow badPCMAndTankVol |
  Params.getAp() \leq 0 \Rightarrow \text{badPCMArea}
  Params.get_rho_p() \leq 0 \Rightarrow \text{badPCMDensity}
  Params.getTmelt() \leq 0 \Rightarrow \text{badMeltTemp}
  Params.getTmelt() > Params.getTc() \Rightarrow badMeltTemp
  Params.getTc() \leq Params.getTinit() \Rightarrow badCoilAndInitTemp
  Params.getTc() > 100 \lor Params.getTc() < 0 \Rightarrow badCoilTemp
  Params.getC_ps() \leq 0 \Rightarrow \text{badPCMHeatCapSolid}
  Params.getC_pl() \leq 0 \Rightarrow \text{badPCMHeatCapLiquid}
  Params.getHf() \leq 0 \Rightarrow \text{badHeatFusion} \mid
  Params.getAc() \leq 0 \Rightarrow \text{badCoilArea}
  Params.get_rho()_w \leq 0 \Rightarrow \text{badWaterDensity} \mid
  Params.getC_w() \leq 0 \Rightarrow \text{badWaterHeatCap}
  Params.get_hc() \leq 0 \Rightarrow \text{badCoilCoeff}
  Params.get_hp() \leq 0 \Rightarrow \text{badPCMCoeff}
  Params.getTinit() < 0 \lor Params.getTinit() > 100 \Rightarrow badInitTemp
  Params.get_tfinal() \leq 0 \Rightarrow \text{badFinalTime}
  Params.getTinit() \ge Params.getTmelt() \Rightarrow badInitAndMeltTemp)
verify_recommend():
• transition: none
\bullet exceptions: exc := (
  Params.getL() < 0.1 \lor Params.getL() > 50 \Rightarrow warnLength
  Params.getdiam() / Params.getL() < 0.002 \times Params.getdiam() / Params.getL()
  > 200 \Rightarrow \text{warnDiam}
  Params.getVp() < Params.getVt() \times 10^{-}6 \Rightarrow warnPCMVol |
  Params.getVp() > Params.getAp() \vee Params.getAp > (2/0.001) \times Params.getVp()
  ⇒ warnVolArea |
  (Params.get\_rho\_p() < 500) \lor (Params.get\_rho\_p() > 20000) \Rightarrow warn-
  PCMDensity | ... )
  # Need to continue for the rest of the example - tabular form? # Should
  add a module (Configuration Module) to store symbolic constants
```

7.5 Considerations

See Appendix (Section 14) for the complete list of exceptions and associated error messages.

8 MIS of Temperature ODEs Module

8.1 Module

temperature

8.2 Uses

Param (Section 5)

8.3 Syntax

8.3.1 Exported Access Programs

Name	In	Out	Exceptions
ODE_SolidPCM	_	sequence[2] of $\mathbb{R} \to \text{sequence}[2]$ of \mathbb{R}	_
ODE_MeltingPCM	_	sequence[3] of $\mathbb{R} \to \text{sequence}[3]$ of \mathbb{R}	
ODE_LiquidPCM	_	sequence[2] of $\mathbb{R} \to \text{sequence}[2]$ of \mathbb{R}	-
event_StartMelt	_	sequence[2] of $\mathbb{R} \to \mathbb{R}$	_
event_EndMelt	_	sequence[3] of $\mathbb{R} \to \mathbb{R}$	-

8.4 Semantics

8.4.1 State Variables

none

8.4.2 Assumptions

none

8.4.3 Access Routine Semantics

ODE_SolidPCM():

• output:
$$out := \begin{bmatrix} \frac{dT_W}{dt}([T_W, T_P]^T) \\ \frac{dT_P}{dt}([T_W, T_P]^T) \end{bmatrix} = \begin{bmatrix} \frac{1}{\tau_W}[(T_C - T_W(t)) + \eta(T_P(t) - T_W(t))] \\ \frac{1}{\tau_P^S}(T_W(t) - T_P(t)) \end{bmatrix}$$

• exception: none

ODE_MeltingPCM():

• output:
$$out := \begin{bmatrix} \frac{dT_W}{dt}([T_W, T_P, Q_P]^T) \\ \frac{dT_P}{dt}([T_W, T_P, Q_P]^T) \\ \frac{dQ_P}{dt}([T_W, T_P, Q_P]^T) \end{bmatrix} = \begin{bmatrix} \frac{1}{\tau_W}[(T_C - T_W(t)) + \eta(T_P(t) - T_W(t))] \\ 0 \\ h_P A_P(T_W(t) - T_{\text{melt}}^P) \end{bmatrix}$$

• exception: none

ODE_LiquidPCM():

• output:
$$out := \begin{bmatrix} \frac{dT_W}{dt}([T_W, T_P]^T) \\ \frac{dT_P}{dt}([T_W, T_P]^T) \end{bmatrix} = \begin{bmatrix} \frac{1}{\tau_W}[(T_C - T_W(t)) + \eta(T_P(t) - T_W(t))] \\ \frac{1}{\tau_P^L}(T_W(t) - T_P(t)) \end{bmatrix}$$

• exception: none event_StartMelt():

• output: $out := g([T_W, T_P]^T) = T_{\text{melt}}^P - T_P$

• exception: none

event_EndMelt():

• output: $out := g([T_W, T_P, Q_P]^T) = 1 - \phi$, where $\phi = \frac{Q_P}{H_f m_P}$

• exception: none

9 MIS of ODE Solver Module

9.1 Module

ODE Solver Module

9.2 Uses

N/A

9.3 Syntax

9.3.1 Exported Constants

MaxStep: natural number

N: natural number

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
solve	function, array of \mathbb{R} , array of \mathbb{R} , function, \mathbb{R} , \mathbb{R}	array of \mathbb{R} (N of them)	ODE_BAD_INPUT, ODE_MAXSTEP, ODE_ACCURACY

9.4 Semantics

9.4.1 State Variables

results: array of \mathbb{R} (N of them)

9.4.2 Access Routine Semantics

 $\mbox{solve}(f,\,domain,\,ics,\,events,\,abstol,\,reltol) \quad \mbox{out } := results, \mbox{ where} \\ results \mbox{ holds the solution to} \\ \mbox{ the ODE system generated} \\ \mbox{ by the solver.}$

exceptions: exc := (Invalid input parameters \Rightarrow ODE_BAD_INPUT | MaxStep steps taken and no solution found \Rightarrow ODE_MAXSTEP | reltol and abstol not satisfied for a step \Rightarrow ODE_ACCURACY)

10 MIS of Energy Module

10.1 Module

energy

10.2 Uses

Param (Section 5)

10.3 Syntax

10.3.1 External Access Programs

Name	In	Out	Exceptions
energy1Wat	array of \mathbb{R} , parameters	array of \mathbb{R}	-
energy1PCM	array of \mathbb{R} , parameters	array of \mathbb{R}	-
energy2Wat	array of \mathbb{R} , parameters	array of \mathbb{R}	-
energy2PCM	array of \mathbb{R} , parameters	array of \mathbb{R}	-
energy3Wat	array of \mathbb{R} , parameters	array of \mathbb{R}	-
energy3PCM	array of \mathbb{R} , parameters	array of \mathbb{R}	-

10.4 Semantics

10.4.1 State Variables

eW1: array of \mathbb{R} eP1: array of \mathbb{R} eW2: array of \mathbb{R} eP2: array of \mathbb{R} eW3: array of \mathbb{R} eP3: array of \mathbb{R}

10.4.2 Assumptions

All of the fields of the input parameters structure have been assigned a value. The values have been properly constrained.

10.4.3 Access Routine Semantics

energy1Wat(Tw1, params): transition: $(\forall i \in [0..|Tw1|-1]) (eW1[i] := 0..|Tw1|-1]$

watEnergy(Tw1[i], params))

output: out := eW1

exception: none

energy1PCM(Tp1, params): transition: $(\forall i \in [0..|Tp1| - 1]) (eP1[i] :=$

pcmEnergy1(Tp1[i], params))

output: out := eP1

exception: none

energy2Wat(Tw2, params): transition: $(\forall i \in [0..|Tw2|-1]) (eW2[i] :=$

watEnergy(Tw2[i], params))

output: out := eW2

exception: none

energy2PCM(Qp2, params): transition: $(\forall i \in [0..|Qp2|-1]) (eP2[i] := 0...$

pcmEnergy2(Qp2[i], params))

output: out := eP2

exception: none

energy3Wat(Tw3, params): transition: $(\forall i \in [0..|Tw3| - 1]) (eW3[i] :=$

watEnergy(Tw3[i], params))

output: out := eW3

exception: none

energy3PCM(Tp3, params): transition: $(\forall i \in [0..|Tp3|-1])$ (eP3[i] :=

pcmEnergy3(Tp3[i], params)

output: out := eP3

exception: none

10.4.4 Local Functions

```
watEnergy: \mathbb{R} \times \text{parameters} \to \mathbb{R}

watEnergy(Tw, params) \equiv params.C_{-}w \times params.Mw \times (Tw-params.Tinit)

pcmEnergy1: \mathbb{R} \times \text{parameters} \to \mathbb{R}

pcmEnergy1(Tp, params) \equiv params.C_{-}ps \times params.Mp \times (Tp-params.Tinit)

pcmEnergy2: \mathbb{R} \times \text{parameters} \to \mathbb{R}

pcmEnergy2(Qp, params) \equiv params.Epmelt\_init + Qp

pcmEnergy3: \mathbb{R} \times \text{parameters} \to \mathbb{R}

pcmEnergy3(Tp, params) \equiv params.Epmelt\_init+params.Ep\_melt3+params.C_{-}pl \times params.Mp \times (Tp-params.Tmelt)
```

11 MIS of Output Verification Module

11.1 Module

verify_output

11.2 Uses

Param (Section 5)

11.3 Syntax

11.3.1 Exported Access Programs

Name	In	Out	Exceptions
verify_output	array of \mathbb{R} , parameters	-	-

11.4 Semantics

11.4.1 State Variables

expEPCM: array of \mathbb{R} expEWat: array of \mathbb{R}

 $errorWater: \mathbb{R}$ $errorPCM: \mathbb{R}$

11.4.2 Environment Variables

win: 2D array of pixels displayed on the screen

11.4.3 Local Variables

11.4.4 Assumptions

All of the fields of the input parameters structure have been assigned a value. The values have been properly constrained. The input arrays are not empty.

Access Routine Semantics 11.4.5

verify_output(t, Tw, Tp, Ew, Ep, params): transition: expEPCM, expEWat, errorWater, errorPCM, $win := (\forall i)$ [1..|t| - 1] \in (expectedEp(traprule(delta(t[i t[i]),Tw[i],Tp[i],Tw[i-1], Tp[i-1], params), $(\forall i \in [1..|t|-1])$ (expectedEw (expectedEc(traprule(delta(t[i params.Tc,1], t[i]),params.Tc, Tw[i]1]),post(expEPCM))),params), $\operatorname{error}(\operatorname{sum}(\operatorname{post}(expEWat)),$ Ew[|Ew|]1]), $\operatorname{error}(\operatorname{sum}(\operatorname{post}(expEPCM)),$ Ep[|Ep|-1], (errorWater > $ConsTol \lor errorPCM$ ConsTol \Rightarrow Prints warning

> exception: (errorWater > ConsTolwarnWaterError | errorPCM > \Rightarrow warnPCMError) ConsTolThese exceptions do not termi-

message(s)

nate the program.

Local Functions 11.4.6

delta: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ $delta(t1, t2) \equiv t2 - t1$

traprule: $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ $traprule(t, A1, B1, A2, B2) \equiv t \times (A1 - B1 + A2 - B2)/2$

expectedEc: $\mathbb{R} \times \text{parameters} \to \mathbb{R}$ $expectedEc(c, params) \equiv params.hc \times params.Ac \times c$ expectedEp: $\mathbb{R} \times \text{parameters} \to \mathbb{R}$ expectedEp $(p, params) \equiv params.hp \times params.Ap \times p$

expectedEw: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ expectedEw(Ec, Ep) $\equiv Ec - Ep$

sum: array of $\mathbb{R}s \to \mathbb{R}$ sum $(a) \equiv \sum_{i=0}^{|a|-1} a[i]$

error: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ error $(exp, act) \equiv \frac{|exp-act|}{act} \times 100$

12 MIS of Plotting Module

12.1 Module

plot

12.2 Uses

N/A

12.3 Syntax

12.3.1 Exported Access Programs

Name	In	Out	Exceptions
plot	array of \mathbb{R} , string	_	-

12.4 Semantics

12.4.1 State Variables

plotFilename: string

12.4.2 Environment Variables

directory: The current directory of files from which the program is run.

12.4.3 Assumptions

The input arrays are all of the same size.

12.4.4 Access Routine Semantics

plot(t, Tw, Tp, Ew, Ep, filename): transition: directory: writes a .png file

named plotFilename containing

the graphs of the simulation re-

sults.

exception: none

13 MIS of Output Module

13.1 Module

output

13.2 Uses

Param (Section 5)

13.3 Syntax

13.3.1 Exported Constants

 max_width : integer

13.3.2 Exported Access Program

In	Out	Exceptions
\mathbb{R} , array of \mathbb{R} , array of \mathbb{R} , array of \mathbb{R} ,	-	-
	string, array of \mathbb{R} , array of \mathbb{R} , array of	string, array of \mathbb{R} ,

13.4 Semantics

13.4.1 State Variables

outFilename: string

13.4.2 Environment Variables

directory: The current directory of files from which the program is run.

13.4.3 Access Routine Semantics

output(params, t, Tw, Tp, Ew, Ep, ETot, filename): transition: directory: writes

a .txt file named outFilename containing the input parameters, calculated parameters, and results of the

simulation.

exception: none

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995.

14 Appendix

Table 2: Possible Exceptions

Message ID	Error Message
badLength	Error: Tank length must be > 0
badDiam	Error: Tank diameter must be > 0
badPCMVolume	Error: PCM volume must be > 0
bad PCM And Tank Vol	Error: PCM volume must be < tank volume
badPCMArea	Error: PCM area must be > 0
badPCMDensity	Error: rho_p must be > 0
${\bf badMeltTemp}$	Error: Tmelt must be > 0 and $< Tc$
bad Coil And In it Temp	Error: Tc must be > Tinit
badCoilTemp	Error: Tc must be > 0 and < 100
${\bf badPCMHeatCapSolid}$	Error: C_p s must be > 0
${\bf badPCMHeatCapLiquid}$	Error: C_pl must be > 0
badHeatFusion	Error: Hf must be > 0
badCoilArea	Error: Ac must be > 0
badWaterDensity	Error: rho_w must be > 0
${\bf badWaterHeatCap}$	Error: C_w must be > 0
badCoilCoeff	Error: hc must be > 0
badPCMCoeff	Error: hp must be > 0
badInitTemp	Error: Tinit must be > 0 and < 100
badFinalTime	Error: tfinal must be > 0
badInit And Melt Temp	Error: Tinit must be < Tmelt
ODE_ACCURACY	reltol and abstol were not satisfied by the ODE solver for a given solution step.
ODE_BAD_INPUT	Invalid input to ODE solver
ODE_MAXSTEP	ODE solver took $MaxStep$ steps and did not find solution
warnLength	Warning: It is recommended that $0.1 \le L \le 50$
warnDiam	Warning: It is recommended that $0.002 \le D/L \le 200$

warnPCMVol	Warning: It is recommended that Vp be $>= 0.0001\%$ of Vt
warnVolArea	Warning: It is recommended that Vp \leq Ap \leq (2/0.001) * Vp
warnPCMDensity	Warning: It is recommended that $500 < \text{rho_p} < 20000$
warn PCM Heat Cap Solid	Warning: It is recommended that $100 < C_ps < 4000$
warn PCM Heat Cap Liquid	Warning: It is recommended that $100 < C_pl < 5000$
warnCoilArea	Warning: It is recommended that Ac <= pi * (D/2) \wedge 2
warnWaterDensity	Warning: It is recommended that $950 < \text{rho_w} <= 1000$
warnWaterHeatCap	Warning: It is recommended that $4170 < C_w < 4210$
warnCoilCoeff	Warning: It is recommended that $10 < hc < 10000$
warnPCMCoeff	Warning: It is recommended that $10 < hp < 10000$
warn Final Time	Warning: It is recommended that $0 < \text{tfinal} < 86400$
warnWaterError	Warning: There is greater than $x\%$ relative error between the energy in the water output and the expected output based on the law
	of conservation of energy. (Where x is the value of $ConsTol$)
warnPCMError	Warning: There is greater than $x\%$ relative error between the energy in the PCM output and the expected output based on the law of conservation of energy. (Where x is the value of $ConsTol$)