

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Name:	Digital Design Laboratory	Semester:	III
Date of Performance:	31/7/2023	Batch No:	C2
Faculty Name:		Roll No:	16010122267
Faculty Sign & Date:		Grade/Marks:	/25

Experiment No: 2

Title: Binary Adders and Subtractors

Aim and Objective of the Experiment:
To implement half and full adder–subtractor using gates and IC 7483

COs to be achieved:

CO2: Use different minimization technique and solve combinational circuits.

Tools used:	
Trainer kits	

Theory:

Adder: The addition of two binary digits is the most basic operation performed by the digital computer. There are two types of adder:

- Half adder
- Full adder

Half Adder: Half adder is a combinational logic circuit with two inputs and two outputs. It is the basic building block for the addition of two single-bit numbers.

Full adder: A half adder has a provision not to add a carry coming from the lower order bits when multi-bit addition is performed, for this purpose, a third input terminal is added and this circuit is to add A, B, and C where A and B are the nth order bits of the number A and B respectively and C is the carry generated from the addition of (n-1) order bits. This circuit is referred to as full adder. **Subtractor:** Subtraction of two binary digits is one of the most basic operations performed by digital computer .there are two types of subtractors:

Semester: III

Half subtractor

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Full subtractor

Half subtractor: Logic circuit for the subtraction of B from A where A,B are 1 bit numbers is referred to as half subtract or .the subtract or process has two input and difference and borrow are the two outputs.

Full subtractor: As in the case of the addition using logic gates, a full subtractor is made by combining two half-sub tractors and an additional OR-gate. A full subtractor has the borrow in capability (denoted as BOR_{IN}) and so allows cascading which results in the possibility of multi-bit subtraction.

IC 7483

For subtraction of one binary number from another, we do so by adding 2's complement of the former to the latter number using a full adder circuit.

IC 7483 is a 16 pin, 4-bit full adder. This IC has a provision to add the carry output to transfer and end around carry output using Co and C4 respectively.

2's complement: 2's complement of any binary no. can be obtained by adding 1 in 1'scomplement of that no.

e.g. 2's complement of
$$+(10)_{10} = 1010$$
is

1C of 1010 0101
$$+$$
 1 $-(10)_{10}$ 0110

In 2's complement subtraction using IC 7483, we are representing negative number in 2's complement form and then adding it with 1st number.

> Academic Year: 2023-24 Roll No:____

Semester: III Digital Design Laboratory

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Semester: III

Digital Design Laboratory

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Truth Table for Half Adder

Inputs		Outputs		
A	В	A	В	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

From the truth table (with steps):

Semester: III

Digital Design Laboratory

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Semester: III

Digital Design Laboratory

Academic Year: 2023-24

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Truth Table for Full Adder

Do Enput Oulputs					
A	B 1 0	C-IN	Jum	COext	
		MAHAA		0	
0	0			0	
0		0		1	
1819	10A A	0 9 7	0		
14) 19	- (JAA+	O		1	
1	1				

Semester: III

Digital Design Laboratory

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

From the truth table (with steps):

Semester: III

Half Subtractor Block Diagram

Digital Design Laboratory

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Semester: III

Half Subtractor Circuit

Truth Table for Half Subtractor

A	В	DIFFERENCE(D)	BORROW(Bo)
1	0	1	0
1	1	0	0
0	0	0	0
0	1	0	1

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

From the truth table (with steps):

Semester: III

Full Subtractor Block Diagram

Full Subtractor Circuit

Academic Year: 2023-24

Truth Table for Full subtractor

A	В	BIN	D	BOROUT
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

From the truth table (with steps):

Semester: III

Example:

1)
$$710-210 = 510$$

$$7 0111$$

$$2 0010$$

$$1'C of 2$$

$$1101$$

$$+ 1$$

$$2'C of 2$$

$$1110$$

$$0111 + 1110 1$$

$$0101$$

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Pin Diagram IC7483

Adder

Subtractor

Implementation Details

Procedure:

- 1) Locate the IC 7483 and 4-not gates block on trainer kit.
- 2) Connect 1st input no. to A4-A1 input slot and 2nd (negative) no. to B4-B1 through 4-not gates (1C of 2nd no.)
- 3) Connect high input to Co so that it will get added with 1C of 2nd no. to get 2C.
- 4) Connect 4-bit output to the output indicators.
- 5) Switch ON the power supply and monitor the output for various input combinations.

Semester: III

Academic Year: 2023-24
Roll No:____

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Post Lab Subjective/Objective type Questions:

- 1. Design a full adder using two half adders.
- 2. Perform the following Binary subtraction with the help of appropriate ICs:
 - a. 6-4
 - b. 5-8
 - c. 7-9

Semester: III Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Conclusion:

In conclusion, we learnt and understood the working and logic behind half adder, full adder, half subtracter and full subtracter.

Signature of faculty in-charge with Date:

Semester: III Academic Year: 2023-24