Lecture 10: Eigenvectors of Real, Symmetric Tensors (RHB 7.12, 7.13)

If T is a (2nd-rank) tensor an eigenvector n of T obeys (in any basis)

$$T(\underline{n}) = t\underline{n}$$
 or $T_{ij}n_j = t \ n_i$.

where t is the eigenvalue of the eigenvector.

The tensor acts on the eigenvector to produce a vector in the same direction.

The direction of \underline{n} doesn't depend on the basis although its components do (because \underline{n} is a vector) and is sometimes referred to as a **principal axis**; t is a scalar (doesn't depend on basis) and is sometimes referred to as a **principal value**.

10. 1. Construction of the Eigenvectors

Since $n_i = \delta_{ij} n_j$, we can write the equation for an eigenvector as

$$\left(T_{ij} - t \,\delta_{ij}\right) n_j = 0.$$

This has a non-trivial solution (i.e. a solution $n \neq 0$) iff

$$\boxed{\det \left(T_{ij} - t \, \delta_{ij} \right) \equiv 0}.$$

i.e.

$$\begin{vmatrix} T_{11} - t & T_{12} & T_{13} \\ T_{21} & T_{22} - t & T_{23} \\ T_{31} & T_{32} & T_{33} - t \end{vmatrix} = 0.$$

This is equation, known as the 'characteristic' or 'secular' equation, is a **cubic** in t, giving 3 real solutions t_A , t_B and t_C .

For a given t we may substitute back into the original equations to find \underline{A} , \underline{B} and \underline{C} .

Example

$$T_{ij} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

The characteristic equation reads

$$\begin{vmatrix} 1-t & 1 & 0 \\ 1 & -t & 1 \\ 0 & 1 & 1-t \end{vmatrix} = 0.$$

Thus

$$(1-t)\{t(t-1)-1\}-\{(1-t)-0\}\ =\ 0$$

and so

$$(1-t)\{t^2-t-2\} = 0.$$

Solutions are t = 1, t = 2 and t = -1.

Check The sum of the eigenvalues is 2, and is equal to the **trace** of the tensor; the reason for this will become apparent next lecture.

We now find the eigenvector for each of these eigenvalues, by solving T_{ij} $n_j = tn_i$ i.e.

for $t_A = 1$, $t_B = 2$ and $t_C = -1$.

For $t=t_{\!_A}=1\,$, the equations for \underline{A} are:–

$$A_1 - A_2 + A_3 = 0
 A_2 + A_3 = 0
 A_2 = 0; A_3 = -A_1.$$

Thus $A_1:A_2:A_3=1:0:-1$ and a unit vector in the direction of A is

$$\frac{\hat{A}}{2} = \frac{1}{\sqrt{2}}(1,0,-1).$$

[Note that we could equally well have chosen $\underline{\hat{A}} = \frac{-1}{\sqrt{2}}(1,0,-1)$.]

For $t = t_B = 2$, the equations for \underline{B} are:-

$$\begin{pmatrix}
 -B_1 + B_2 & = 0 \\
 B_1 - 2B_2 + B_3 & = 0 \\
 B_2 - B_3 & = 0
 \end{pmatrix}
 \Longrightarrow B_2 = B_3 = B_1.$$

Thus $B_1: B_2: B_3 = 1:1:1$ and a unit vector in the direction of \underline{B} is

$$\frac{\hat{B}}{\hat{B}} = \frac{1}{\sqrt{3}}(1,1,1).$$

For $t=t_{\!\scriptscriptstyle C}=-1\,$, a similar calculation (exercise) gives

$$\hat{\underline{C}} = \frac{1}{\sqrt{6}}(1, -2, 1).$$

Note that $\underline{\hat{A}} \cdot \underline{\hat{B}} = \underline{\hat{A}} \cdot \underline{\hat{C}} = \underline{\hat{B}} \cdot \underline{\hat{C}} = 0$ and so the eigenvectors are mutually orthogonal.

The scalar triple product of the triad $\underline{\hat{A}}$, $\underline{\hat{B}}$ and $\underline{\hat{C}}$, with the above choice of signs, is -1, and so they form a *left-handed* basis. Changing the sign of *one* (or all three) of the vectors would produce a right-handed basis.

10. 2. Important Theorem and Proof

Theorem If T_{ij} is real and symmetric, it has three real eigenvalues t_A (not necessarily all distinct), with corresponding eigenvectors \underline{A} which are **orthogonal** (for t_A distinct).

Proof If \underline{A} and \underline{B} are 2 eigenvectors, with eigenvalues t_A and t_B , then:-

$$T_{ij}A_{j} = t_{A}A_{i} \tag{1}$$

$$T_{ij}B_{j} = t_{B}B_{i} \tag{2}$$

We multiply equation (1) by B_i^* , and sum over i, giving:-

$$T_{ij}A_jB_i^* = t_A A_i B_i^* \tag{3}$$

We now take the complex conjugate of equation (2), multiply by A_i and sum over i, to give:-

$$T_{ij}^* B_j^* A_i = t_B^* B_i^* A_i \tag{4}$$

Since T_{ij} is real and symmetric, $T_{ij}^* = T_{ji}$, and so:–

L.H. side of equation (4) =
$$T_{ji}B_j^*A_i$$

= $T_{ij}B_i^*A_j$
= L.H. side of equation (3).

Subtracting (4) from (3) gives:-

$$\left[\left\{ t_A - t_B^* \right\} A_i B_i^* = 0 \right].$$

For $\underline{A} = \underline{B}$,

$$A_i A_i^* = \sum_{i=1}^3 |A_i|^2 > 0$$
 for all non-zero \underline{A} ,

and so

Thus, eigenvalues are real.

Since t is real and T_{ij} are real, real $\underline{A}, \underline{B}$ can be found (i.e. $B_i^* = B_i$).

For $\underline{A} \neq \underline{B}$,

$$\{t_A - t_B\} A_i B_i = 0.$$

If $t_{\!\scriptscriptstyle A} \neq t_{\!\scriptscriptstyle B},$ then $A_i B_i = 0,$ implying

$$\boxed{\underline{A} \cdot \underline{B} = 0} \ .$$

Thus eigenvectors are orthogonal if the eigenvalues are distinct.

10. 3. Degenerate eigenvalues

If the characteristic equation is of form

$$(t_A - t)(t_B - t)^2 = 0$$

then we have a doubly degenerate eigenvalue t_B .

Claim In the case of a real, symmetric tensor for this eigenvalue we can always find TWO orthogonal solutions for \underline{B} (which are both orthogonal to \underline{A}).

Example

$$T_{ij} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

$$\left| T_{ij} - t\delta_{ij} \right| = 0 \Longrightarrow \boxed{t = 2 \text{ and } t = -1 \text{ (twice)}}.$$

For $t = t_A = 2$ {choose <u>A</u> to be the eigenvector}

For
$$t = t_B = t_C = -1$$

$$B_1 + B_2 + B_3 = 0$$

is the only independent equation. This can be written as $\underline{A} \cdot \underline{B} = 0$ *i.e.* equation for a plane normal to \underline{A} . Thus any vector orthogonal to \underline{A} is an eigenvector with eigenvalue -1.

If we choose $B_3 = 0$, then $B_2 = -B_1$ and a possible unit eigenvector is

$$\frac{\hat{B}}{2} = \frac{1}{\sqrt{2}}(1, -1, 0).$$

If we require the third eigenvector \underline{C} to be orthogonal to \underline{B} , then we must have $C_2 = C_1$. The equations then give $C_3 = -2C_1$ and so

$$\frac{\hat{C}}{\hat{C}} = \frac{1}{\sqrt{6}}(1, 1, -2).$$

[Alternatively, and more easily, the third eigenvector can be calculated by using $\underline{\hat{C}} = \pm \underline{\hat{A}} \times \underline{\hat{B}}$, the sign chosen determining the handedness of the triad $\underline{\hat{A}},\underline{\hat{B}},\underline{\hat{C}}$.]

This pair, \underline{B} and \underline{C} , is just one of an *infinite number* of orthogonal pairs that are eigenvectors of T_{ij} — all lying in the plane normal to \underline{A} .

If the characteristic equation is of form

$$\left(t_C - t\right)^3 = 0$$

then we have a triply degenerate eigenvalue t_C . In fact, this only occurs if the tensor is equal to $t_C \, \delta_{ij}$ which means it is 'isotropic' and any direction is an eigenvector with eigenvalue t_C .