Classification of chroma reconstruction method by machine learning method

¹Meng-Hsuan Kuo, ¹Yu-Chen Shen, and ²Ting-Lan Lin ¹Chung Yuan Christian University, Zhongli, Taiwan (ROC) ²National Taipei University of Technology, Taipei, Taiwan (ROC)

Abstract—In this paper, we propose a method to do the chroma reconstruction by using the machine learning for screen content images (SCIs). We create a feature matrix with twenty features in it, and use the classification learner to train the model. It's for predicting the subsample scheme. After the test, we get the experimental data. It shows us the correlation between the luma and chroma, and the accuracy of the model. Based on this situation, we find the accuracy of the model is not high enough, so we propose other methods in the paper to improve the accuracy of the model. After the improvement, it can make us get a more accurate predictable subsampling scheme, and we are able to make the chroma reconstruction better.

I. INTRODUCTION

Screen content images (SCIs) are computer generated images for screen display [1]. Because mobile phones have gained great popularity, SCIs have been widely used in many applications [2], [3]. When we deliver an image, the RGB image is first transformed into a YUV image, and the chroma UV will be subsampled by a subsampling scheme which the encoder uses. After subsampled, the image could be transmitted. Next, we use the subsampled image receiving from the decoder to predict the subsampling method and reconstruct the chroma image. The reason of luma-assisted chroma upsampling [4] is that it can improve the quality of the chroma image reconstruction [5]. In this paper, we use the machine learning to predict the subsampling scheme. We find an image, and we use a subsampling scheme named 4:2:0(A) to compress. Afterwards, we create a feature matrix which contains twenty features in it, using the classification learner and the feature matrix to train the model which is for predicting the subsampling method. We propose this method, as shown in Fig.1, to improve the accuracy of chroma reconstruction. Further, we are able to rebuild a better subsampled image.

II. THE ALGORITHM

A. The Used Subsampling Scheme

There are many subsampling scheme, in this paper, we use a subsampling method called 4:2:0(A) to do the subsample. The 4:2:0(A) determines the one sampled U and V components, U' and V', by averaging all the U and V components of the 2×2 UV block, as shown in Fig.2.

Fig.2 An example used to illustrate the subsampled luma and chroma. (a)5x5 luma block. (b)Subsampled luma block by 4:2:0(A).

B. Relation Between the Subsampled Luma and Chroma

We propose a feature matrix to train the data for testing the method of chroma subsampling. Firstly, according to the subsampled chroma by 4:2:0(A), we subsample the luma by 4:2:0(A), and then place the values that equal to {(Y'₁-U'₁),(Y'₂-U'₂),(Y'₃-U'₃),...,(Y'_n-U'_n)} inside the first column in the feature matrix of method-all. The values that the subsampled luma by 4:2:0(L), 4:2:0(R), 4:2:0(DIRECT) and 4:2:0(MPEG-B) all minus the subsampled chroma-U by 4:2:0(A) are placed inside the second, third, forth and fifth column respectively. Secondly, based on the regular subsampled chroma-V by 4:2:0(A), we put the calculation of {(Y'₁-V'₁),(Y'₂-V'₂),(Y'₃-V'₃),...,(Y'_n-V'_n)} by each subsampling method into the next five columns of the same feature matrix.

C. The Correlation Through the Linear Regression

In this subsection, we calculate the correlation between the

subsampled chroma from the decoder and the estimated chroma, which is computed by the subsampled luma through the linear regression. The correlation for the block-pair $(U^{(A)},Y^{*})$ can be determined by the following system:

$$\begin{bmatrix} Y'1 & 1 \\ Y'2 & 1 \\ Y'3 & 1 \\ \vdots & \vdots \\ Y'9 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} U'1 \\ U'2 \\ U'3 \\ \vdots \\ U'9 \end{bmatrix}$$

Geometrically, the two correlation parameters, a and b, which can be solved by linear regression, could be the slope and intercept which can yield the sentence, U = aY + b. Therefore, we calculate the correlation by the subsampled chroma and the estimated value from each subsampling method, which can be expressed as $(aY' + b - U'^{(A)})$.

Accordingly, there are totally ten columns of the feature matrix placing the values which are, based on the subsampled chroma by the same method, the correlation by each subsampled luma, such as $(aY^{\prime(A)} + b - U^{\prime(A)})$, $(aY^{\prime(L)} + b - U^{\prime(A)})$, $(aY^{\prime(R)} + b - U^{\prime(A)})$, $(aY^{\prime(DIRECT)} + b - U^{\prime(A)})$, $(aY^{\prime(MPEG-B)} + b - U^{\prime(A)})$. By the same argument, we obtain the other five columns through the same subsampling scheme for chroma-V.

D. The Feature Matrix to Train the Data

Since the feature matrix from the above is created, we add more pictures for gaining the higher accuracy. Firstly, we expand the feature matrix through calculating the feature values by the same theory from different pictures in turn. On the other hand, we can obtain the feature matrix with size, the number of pictures times 20.

III. EXPERIMENTAL SECTION

In this section, we train the feature matrix by the embedded application, Classification Learner, to classify the values, which can be seen that the similar subsampling method should be put into the same range. Table 1 and Table 2 talk about the value of subsampled luma minus subsampled chroma U and V in five subsampling schemes respectively. As a result, based on the different classifiers, the highest accuracy score, 57.3%, is trained through the types of "Fine Tree," as shown in Fig.3, which means that there are 57.3% of values in the feature matrix can be classified to the clear range.

Table 1 The Average Of Y Minus U Of Each Column

YU	Pic 1	Pic 2	Pic 3	Pic 4	Pic 5
Subsampled Y(A)	7.8303	18.4974	22.9362	24.2376	24.2103
Subsampled Y(L)	7.8474	18.5086	22.9382	24.2484	24.2162
Subsampled Y(R)	7.8467	18.5129	22.9362	24.2477	24.2160
Subsampled Y(D)	7.8585	18.5245	22.9408	24.2648	24.2279
Subsampled Y(M)	7.8344	18.4723	22.8267	24.1330	24.1128
Linear Y(A)	9.0454	18.4226	10.5015	18.0497	20.2781
Linear Y(L)	9.0607	18.4306	10.5032	18.0596	20.2885
Linear Y(R)	9.0604	18.4346	10.5032	18.0586	20.2897
Linear Y(D)	9.0707	18.4442	10.5043	18.0736	20.3080
Linear Y(M)	9.0393	18.3671	10.3921	18.9364	20.1853

Table 2 The Average Of Y Minus V Of Each Column

YV	Pic 1	Pic 2	Pic 3	Pic 4	Pic 5
Subsampled Y(A)	9.0634	6.7409	12.1227	18.7779	7.5512
Subsampled Y(L)	9.0633	6.7408	12.1227	18.7680	7.5506
Subsampled Y(R)	9.0633	6.7408	12.1228	18.7684	7.5506
Subsampled Y(D)	9.0634	6.7409	12.1226	18.7777	7.5507
Subsampled Y(M)	9.0617	6.7400	12.1196	18.7519	7.5471
Linear Y(A)	3.5600	18.8892	4.0196	21.6875	15.1240
Linear Y(L)	3.5599	18.8890	4.0196	21.6827	15.1239
Linear Y(R)	3.5599	18.8891	4.0196	21.6828	15.1239
Linear Y(D)	3.5600	18.8893	4.0196	21.6895	15.1239
Linear Y(M)	3.5597	18.8878	4.0194	21.6733	15.1228

IV. CONCLUSION

In this paper, we propose the method by machining learning which provides us with a predicted subsampling scheme that the encoder originally used. We obtain the result, the accuracy of the model, 57.3%, after the training. However, the accuracy is not high enough so that we will add more features and find the most suitable classification method in the future in order to improve the accuracy. Thus, we can predict the subsampling scheme for doing the chroma reconstruction more accurately and rebuild a better image.

V. Reference

- [1] K.-L. Chung, C.-C. Huang, and T.-C. Hsu, "Adaptive Chroma Subsampling-Binding and Luma-Guided Chroma Reconstruction Method for Screen Content Images," *IEEE Trans. Image Process.*, vol. 26, no. 12, pp. 6034-6038, Dec. 2017.
- [2] W.-S. Kim et al., "Cross-component prediction in HEVC," *IEEE Trans. Circuits Syst. Video Technol.*, Nov. 2015. [Online].
- [3] Y. Lu, S. Li, and H. Shen, "Virtualized screen: A third element for cloudmobile convergence," *IEEE Multimedia Mag.*, vol. 18, no. 2, pp. 4–11, Feb. 2011.
- [4] J. Korhonen, "Improving image fidelity by luma-assisted chroma sub-sampling," in *Proc. IEEE Int. Conf. Multimedia Expo*, Jun./Jul. 2015, pp. 1-6.
- [5] S. Wang, K. Gu, S. Ma, and W. Gao, "Joint chroma downsampling and upsampling for screen content image," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 26, no. 9, pp. 1595-1609, Sep. 2016.