Fabrication of graphitic-carbon suspended nanowires through mechano-electrospinning of photocrosslinkable polymers

A Osamu Katagiri Tanaka A01212611@itesm.mx

08 Apr 2020

Motivation & Problem Statement

Current approaches for the fabrication of carbon nanowires (CNWs)

Lithography
Physical & Optical Limitations

Near-Field Electrospinning (NFES)

Can fabricate Suspended Nanowires w/Spatial Control

Self-assembly

Limited Length and Random Orientation

Two-Photon Polymerization (TPP)
Slow (mm per sec) & Expensive

Thesis Overview

Design polymer solutions that can be electrospun by NFES, photopolymerized, and then pyrolyzed into conductive carbon nanowires.

Polymer Solution Parameters

SU-8 Carbon Structures

The production of C-MEMS:

- 1. Polymer patterning through photolithography
- 2. Carbonization through pyrolysis

However, SU-8 as is can not electrospin SU-8 does not have the right viscosity & solution conductivity

SU-8 is design for photolithography

Making SU-8 spunable (by Braulio & Ricardo)

SU-8 + TBF + PEO

To increase the solution conductivity

To provided the required viscosity

... both needed for **smooth PEO flow** during electrospinning

Results with amended SU-8

The modified solution is spunable

Fiber diameter before pyrolysis of 4.966 µm

Fiber diameter after pyrolysis of 204 nm

But, somewhat pyrolyzable

Fiber resistivity from 407 K Ω to 1.727 M Ω

Fiber yield rate of 81 %

Achieved with:

wt% PEO	SU-8 2002 [mg]	PEO [mg]	TBT [mg]		
0.25	2246	5.65	11.32		

Implications of PEO, as it introduces oxygen to the solution

The fiber yield rate and fiber conductivity are impacted negatively.

Some samples are destroyed during pyrolysis

High variance in the obtained conductivity across samples.

Rheology of the amended SU-8 solution (0.25 wt%)

The 0.25 wt% sample (orange line) has a zero-shear viscosity (ZSV) of 60 Pa.s

Let's discover new polymer solutions with similar rheology (and no oxygen)

NFES Process Parameters

Data collection from 30+ NFES papers

Python Image Analysis

Figure from Min2013

Figure from Camillo2013

WebPlotDigitalizer https://github.com/ankitrohatgi/WebPlotDigitizer

Applied voltage vs. fiber diameter by Madou2011

Polymer Concentration,
Nozzle Diameter,
Solution Deposition Rate,
Nozzle to Collector Distance &
Applied Voltage

are the main drivers of the **final**Fiber Diameter

Polymer	1	0	-0	0	-0	-0	-0	0	-0	-0	-0	٠	-0
Polymer Molecular Weight	0	1	0	0	-0	-0		-0	0	-0	-0	-0	-0
Solvent	-0	0	1	o	-1	-0	-0	0	0	-0	0		-0
NFES Type	0	0		1	-0	-0	-0	-0	0		-0	-0	-0
Polymer Concentration		-0			1	1	1	0	-0		0	1	0
Nozzle Diameter			-0	-0	1	1	0	-0	0	o	0	1	0
Solution Deposition Rate	-0				1	0	1	0	-0	0	0	1	0
Collector Substrate	0	-0	0	-0	0	-0	0	1	0		0	0	-0
Nozzle to Collector Distance		0	0	0	-0	0	-0	0	1	o	-0	1	-0
NFES Applied Voltage	-0	-0	-0	-0						1	0	1	-0
NFES Stage Velocity	-0		0	-0	0	0	0	0	-0	0	1	0	-0
Fiber Diameter	-0	-0	-0	-0	1	1	1	0	1	1	0	1	-0
Distance Between Fibers	-0	-0			0	0	0	-0	-0	-0	-0	-0	1
	Polymer	Polymer Molecular Weight	Solvent	NFES Type	Polymer Concentration	Nozzle Diameter	Solution Deposition Rate	Collector Substrate	ozzle to Collector Distance	NFES Applied Voltage	NFES Stage Velocity	Fiber Diameter	Distance Between Fibers

Overall Progress & Next Steps

Current Work Plan

Next step: Study/Test the proposed polymer solutions

high carbon polymers and no oxygen

+35 wt% in THF

~15 wt% in NMP ~25 wt% in THF & DMF

+15 wt% in DMF

H H H n
Poly(9-Vinyl Carbazole) (PVK)

No records

No records

~8 wt% in CHL

Carbon nanostructures via Lithography

The production of C-MEMS:

- Polymer patterning through photolithography electrospinning
- 2. Carbonization through pyrolysis

photolithography process

- SU-8 Waste
- Physical & Optical Limitations
- Structure Limitations

TPP – Two-Photon Polymerization

Characterization of the 0.25 wt% PEO Solution

Characterization of the 0.25 wt% PEO Solution

Electrospun-able with an applied voltage of 600V.

Unable to initiate the jet at 500V or lower.

PEO Solution

The EMS polymer solution consisted of 2ml of SU-8 2002 mixed with 0.5 wt% of Poly(ethylene oxide) (PEO, 4,000,000 MW; SigmaAldrich Inc., Cat. N. 189464) and 0.5 wt% Tetrabutylammonium Tetrafluoroborate salts (TBATFB; SigmaAldrich Inc., Cat. N. 217964) to increase its conductivity and allow smooth polymer flow during electrospinning.

All reagents were used as received. Magnetic stirring of these components was performed for 1hr at 75°C and low rpm (100-150 rpm).

Applications of CNWs

SU-8 (MicroChem, US)

Mixed Triarylsulfonium/Hexafluoroantimonate Salt (CAS: 89452-37-9)/(CAS: 71449-78-0)

Propylene Carbonate (CAS: 108-32-7)

Cyclopentanone (CAS: 120-92-3)

Epoxy Resin (CAS: 28906-96-9)
2-(Chloromethyl)oxirane; formaldehyde; 4-[2-(4-hydroxyphenyl)propan-2-yl]phenol

SU-8 (MicroChem, US)

https://www.fishersci.com/shop/products/NC0702370/nc0702370#?keyword=MIC ROCHEM+CORP+PHOTORESIST+SU-8

https://www.fishersci.com/shop/products/NC9901158/nc9901158#?keyword=SU-8++developer

<subTitle>

<content> <key concept>

