Import packages, set up model and functions

$_{\text{ln[5]:=}} \hspace{0.1cm} \textbf{First@Import["glycolysis_yeast.pdf"]}$

Define starveSystem function

```
In[6]:= starveSystem[starveTime_, starveGlc_, originalModel_] :=
    Block[{modelTemp, cSmallbone, fSmallbone},
     modelTemp = originalModel;
     {cSmallbone, fSmallbone} = simulate[modelTemp,
          \{t, 0, starveTime\}, Parameters \rightarrow \{GLCx^{extracellular} \rightarrow starveGlc\}];
     updateInitialConditions[modelTemp, cSmallbone /. t → starveTime];
     Return[{modelTemp, cSmallbone, fSmallbone}];];
    Define exportData function
in[7]:= exportData[outputFile_, data_, simLength_, timeInterval_: 0.001] :=
      Block[{concDataToExport},
       concDataToExport =
             Table[
                   Flatten@{tPoint, Values@data /. t → tPoint},
              {tPoint, 0, simLength, timeInterval}];
            concDataToExport =
        Insert[concDataToExport, Flatten@{"t", Map[getID@#&, Keys@data]}, 1];
            Export[outputFile, concDataToExport, "CSV"];
      ];
```

Simulate cell starvation

Do starvation simulation

Define starvation time, glucose concentration during starvation, and glucose concentration for the glucose pulse

```
In[8]:= starveGlc = 0.1; (* in mM/L *)
    starveTime = 1200; (* in seconds *)
```

Starve the model, a new model is returned whose initial metabolite concentrations are the concentrations at the end of the starvation period

```
[starveTime, starveGlc, modelSmallbone18];
```

.... NDSolve: NDSolve has computed initial values that give a zero residual for the differential-algebraic system, but some components are different from those specified. If you need them to be satisfied, giving initial conditions for all dependent variables and their derivatives is recommended.

Export simulation data

```
ln[11]:= exportData["conc_starvation.csv", concStarv, starveTime, 0.1];
     exportData["flux_starvation.csv", fluxStarv, starveTime, 0.1];
```

Plot metabolite and flux time courses during starvation

Simulate glucose pulse, with external glucose concentration set to 4 mM

Simulate the glucose pulse

```
ln[13]:= glcPulse = 4; (*glucose concetration in mmol/L*)
     glcPulseSimulationTime = 60; (*in seconds*)
In[15]:= {concentrationGlcPulse, fluxGlcPulse} = simulate[model,
        {t, 0, glcPulseSimulationTime}, Parameters → {GLCx<sup>extracellular</sup> → glcPulse}];
     Export simulation data
In[16]: exportData["conc_glc_pulse.csv", concentrationGlcPulse, 60, 0.01];
     exportData["flux_glc_pulse.csv", fluxGlcPulse, 60, 0.01];
```

Plot initial metabolite concentrations, to see which metabolites accumulated during starvation

Plot simulation results

Figure 5B

Other simulation results

Simulate glucose and acetaldehyde coinjection, with external glucose concentration set to 4 mM and internal acetaldehyde concentration set to 2.3 mM

Simulate the glucose+acetaldehyde pulse

```
In[20]:= {concentrationCoinjection1, fluxCoinjection1} = simulate [model, {t, 0, 60},
         Parameters → {GLCx^{\text{extracellular}} → 4}, InitialConditions → {AcAld^{\text{cell}} → 2.3}];
     Export simulation data
In[21]:= exportData["conc_glc_pulse_acald23.csv", concentrationCoinjection1, 60, 0.01];
     exportData["flux_glc_pulse_acald23.csv", fluxCoinjection1, 60, 0.01];
```

Plot simulation results

Figure S5

```
In[23]:= plotGlcPulse = Plot[Values@filter[concentrationGlcPulse, {NAD<sup>cell</sup>}] /
          Values@filter[concentrationGlcPulse, {NADH<sup>cell</sup>}], {t, 0, 60}, PlotStyle → Red];
     plotCoinjection = Plot[Values@filter[concentrationCoinjection1, {NAD<sup>cell</sup>}] / Values@
            filter[concentrationCoinjection1, {NADH<sup>cell</sup>}], {t, 0, 60}, PlotStyle → Gray];
     Show[plotGlcPulse, plotCoinjection, FrameLabel \rightarrow {"t (s)", "NAD/NADH"}]
```


Simulate second glucose and acetaldehyde coinjection, with external glucose concentration set to 4 mM and internal acetadehyde concentration set to 12 mM

Simulate the glucose+acetaldehyde pulse

```
In[26]:= {concentrationCoinjection2, fluxCoinjection2} = simulate[model, {t, 0, 60},
           Parameters \rightarrow {GLCx<sup>extracellular</sup> \rightarrow 4}, InitialConditions \rightarrow {AcAld<sup>cell</sup> \rightarrow 12}];
```

Export simulation data

```
In[27]:= exportData["conc_glc_pulse_acald12.csv", concentrationCoinjection2, 60, 0.01];
     exportData["flux_glc_pulse_acald12.csv", fluxCoinjection2, 60, 0.01];
```

Plot simulation results

Figure S7 - 3PG evolution

```
In[29]:= plot3PGnoAcald = plotSimulation[filter[concentrationGlcPulse, {P3G<sup>cell</sup>}],
          PlotFunction \rightarrow Plot, PlotRange \rightarrow {{0, 40}, {0, 1}}, PlotStyle \rightarrow Blue];
      plot3PG12Acald = plotSimulation[filter[concentrationCoinjection2, {P3G<sup>cell</sup>}],
          PlotFunction \rightarrow Plot, PlotRange \rightarrow {{0, 40}, {0, 1}}, PlotStyle \rightarrow Green];
     Show[plot3PGnoAcald, plot3PG12Acald, FrameLabel → {"t (s)", "3PG (mM)"}]
```


Figure S7 - pyruvate evolution

```
In[32]:= plotPYRnoAcald = plotSimulation[filter[concentrationGlcPulse, {PYR<sup>cell</sup>}],
          PlotFunction \rightarrow Plot, PlotRange \rightarrow {{0, 40}, {0, 2}}, PlotStyle \rightarrow Blue];
      plotPYR12Acald = plotSimulation[filter[concentrationCoinjection2, {PYR<sup>cell</sup>}],
          PlotFunction \rightarrow Plot, PlotRange \rightarrow {{0, 40}, {0, 2}}, PlotStyle \rightarrow Green];
      Show[plotPYRnoAcald, plotPYR12Acald, FrameLabel \rightarrow {"t (s)", "Pyr (mM)"}]
```


Figure S7 - GrnP evolution

```
In[35]:= plotGrnPnoAcald = plotSimulation[filter[concentrationGlcPulse, {DHAP<sup>cell</sup>}],
          PlotFunction \rightarrow Plot, PlotRange \rightarrow {{0, 40}, {0, 1}}, PlotStyle \rightarrow Blue];
      plotGrnP12Acald = plotSimulation[filter[concentrationCoinjection2, {DHAP<sup>cell</sup>}],
          PlotFunction \rightarrow Plot, PlotRange \rightarrow {{0, 40}, {0, 1}}, PlotStyle \rightarrow Green];
      Show[plotGrnPnoAcald, plotGrnP12Acald, FrameLabel \rightarrow {"t (s)", "GrnP (mM)"}]
```


Energy charge ratio = 0.37: set ADP = 3.01, and ADP/ATP ratio = 4

Simulate glucose pusel with energy charge and acetaldehyde increase

```
InitialConditions → {ADP<sup>cell</sup> → 3.01, ATP<sup>cell</sup> → 0.75, AcAld<sup>cell</sup> → 1.6426428464870837`},
      Parameters → {GLCx<sup>extracellular</sup> → 4}];
```

... NDSolve: NDSolve has computed initial values that give a zero residual for the differential-algebraic system, but some components are different from those specified. If you need them to be satisfied, giving initial conditions for all dependent variables and their derivatives is recommended.

Export simulation data

```
exportData["flux_glc_pulse_S6.csv", fluxEnergyCharge, 60, 0.01];
```

Plot simulation results

Figure S6

```
In[41]:=
      plot = plotSimulation[
         filter[concentrationEnergyCharge, {F16bPcell, DHAPcell, P3Gcell}],
         FrameLabel → {"t (s)", "Concentration (mM)"},
         PlotFunction \rightarrow Plot, PlotRange \rightarrow {{0, 20}, {0, 0.7}}, Legend \rightarrow True
          0.7
          0.6
      Concentration (mM)
          0.5
          0.4
                                                                                F16bPcell
                                                                                DHAPcell
          0.3

    P3G<sup>cell</sup>

          0.2
          0.1
          0.0
                            5
                                         10
                                                       15
                                                                     20
                                        t (s)
```

Simulation without AcAld increase

```
In[42]:= {concentrationEnergyChargeNoAcaldChange, fluxEnergyChargeNoAcaldChange} =
         simulate[model, \{t, 0, 60\}, InitialConditions \rightarrow \{ADP^{cell} \rightarrow 3.01, ATP^{cell} \rightarrow 0.75\},
           Parameters → {GLCx<sup>extracellular</sup> → 4}];
      plot = plotSimulation[
         filter [concentration Energy Charge No A cald Change, \left. \left\{ F16bP^{cell}, DHAP^{cell}, P3G^{cell} \right\} \right],
         FrameLabel \rightarrow {"t (s)", "Concentration (mM)"}, PlotFunction \rightarrow Plot,
         PlotRange \rightarrow {{0, 20}, {0, 0.7}}, Legend \rightarrow True
```

.... NDSolve: NDSolve has computed initial values that give a zero residual for the differential-algebraic system, but some components are different from those specified. If you need them to be satisfied, giving initial conditions for all dependent variables and their derivatives is recommended.

