Part B: Adaptive signal processing

ADSP

RLS

RLS algorithm

Initialization:

$$\overline{\mathbf{r}}_{ex}[\mathtt{0}] = \underline{\mathbf{0}}$$
 ; $\overline{\mathbf{R}}_x^{-1}[\mathtt{0}] = \delta^{-1}\mathbf{I}$ with δ small

For $k \geq 0$:

$$\underline{\mathbf{g}}[k+1] = \frac{\overline{\mathbf{R}}^{-1}[k]\underline{\mathbf{x}}[k+1]}{\lambda^2 + \underline{\mathbf{x}}^t[k+1]\overline{\overline{\mathbf{R}}^{-1}}[k]\underline{\mathbf{x}}[k+1]}$$

$$\overline{\mathbf{R}}^{-1}[k+1] = \lambda^{-2} \left(\overline{\mathbf{R}}^{-1}[k] - \underline{\mathbf{g}}[k+1] \cdot \underline{\mathbf{x}}^t[k+1]\overline{\overline{\mathbf{R}}^{-1}}[k] \right)$$

$$\underline{\overline{\mathbf{r}}}_{ex}[k+1] = \lambda^2 \underline{\overline{\mathbf{r}}}_{ex}[k] + \underline{\mathbf{x}}[k+1]e[k+1]$$

$$\underline{\mathbf{w}}[k+1] = \overline{\mathbf{R}}_x^{-1}[k+1] \cdot \underline{\overline{\mathbf{r}}}_{ex}[k+1]$$

Part B: Adaptive signal processing

ADSP

RLS

Compare RLS with "LMS/Newton"

"LMS/Newton":
$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + 2\alpha \mathbf{R}_x^{-1} \underline{\mathbf{x}}[k]r[k]$$

Update RLS can be rewritten as (see Appendix):

$$\underline{\mathbf{w}}[k+1] = \underline{\mathbf{w}}[k] + \underline{\mathbf{g}}[k+1] \left(e[k+1] - \underline{\mathbf{x}}^t[k+1]\underline{\mathbf{w}}[k] \right)$$
$$= \underline{\mathbf{w}}[k] + \underline{\mathbf{g}}[k+1]r[k+1]$$

with gain vector:

$$\underline{\mathbf{g}}[k+1] = \frac{\overline{\mathbf{R}}^{-1}[k]\underline{\mathbf{x}}[k+1]}{\lambda^2 + \underline{\mathbf{x}}^t[k+1]\overline{\mathbf{R}}^{-1}[k]\underline{\mathbf{x}}[k+1]}$$

Part B: Adaptive signal processing

ADSP

RLS

Effective memory: $1/(1-\lambda)$

 λ : 0.99~1

 $\bar{R}^{-1}[k]$: should be Hermitian, positive definiteness

$$r_{ij}[k] = r_{ji}^*[k]$$

$$\bar{R}^{-1}[k] = [\bar{R}^{-1}[k] + (\bar{R}^{-1}[k])^H]/2$$

ADSP

Advanced digital signal processing

Main content ADSP course

- ➤ Part A: Stochastic Signal Processing
- ➤ Part B: Adaptive Signal Processing
- ➤ Part C: Array Signal Processing (ASP) (including DOA)
- ▶ Part D: Adaptive Array Signal Processing (AASP)

ADSP

Introduction

Parabolic dish antenna (continuous aperture)

Sensor array antenna (discrete spatial aperture)

ADSP

Introduction

ADSP

Introduction

Result of spatial filtering:

Introduction

Beamforming:

Spatio temporal filtering to either direct or block the radiation or reception of signals in specified directions.

Result Array Signal Processing:

Spatial filtering: Separate signals with possible overlapping frequency content but from different spatial locations.

ADSP

Introduction

Furthermore:

- Able to 'look' in several directions simultaneously
- Signal enhancement: averaging different sensor measurements improves SNR
- Flexible spatial discrimination: size of spatial aperture can be adapted.
- Adaptivity --> able to adapt response

AASP is versatile and flexible

ADSP

Introduction

To provide insight into various aspects of AASP we use familiar methods and techniques from FIR filtering.

Array:

ADSP

Introduction

However main differences ASP and FIR filtering:

- Source can have several parameters of interest (e.g. range, azimuth and elevation angle, polarization, temporal frequency content)
- Different signal often mutually correlated (multipath)
- Spatial sampling often nonuniform and multidimensional
- Uncertainty must often be included in characterization of individual sensor response and location (robust ASP techniques required)

ADSP

Introduction

General objective of AASP:

Detect or enhance desired signal(s) (increase SNR), while simultaneously reducing unwanted interference.

Physical form array varies according to medium:

Microphone for pressure variations in air Hydrophone for pressure variations in water (sonar) Geophone for land base seismology Radar of electromagnetic waves Etc.

Information of interest:

- Signal itself (teleconferencing, communications)
- Location of source (=DOA) (radar, sonar)
- Number of sources

ADSP

Introduction

AASP applications:

Radar: Phased-array, air traffic control

Sonar: Source localization and classification

Communication: Directional transmission and reception

Imaging: Ultrasonic, optical, tomographic

Geophysical exploration: Earth crust mapping, oil exploration

Astrophysical exploration: High resolution imaging of universe

Biomedical: Fetal heart monitoring

Acoustic: Hearing aids, transparent communication

ADSP

Different scenario's

Bandwidth source
Source position
Array geometry
Discrete-time signal representation
Array signal model
ASP unit

Assumptions:

Superposition principle applies to propagating wave signals
Homogeneous, lossless medium, neglect dispersion,

diffraction, changes in propagation speed

ADSP

Scenarios

<u>Bandwidth source</u>

Analytical representation: $s(t) = A(t)e^{j(\omega_0 t + \phi(t))}$

Narrowband: A(t) and $\phi(t)$ vary slower than $e^{j\omega_0t}$

Narrowband: $|\tau| \ll 1/B \Rightarrow$

$$A(t- au)pprox A(t)=1$$
 (usually)

$$\phi(t- au)pprox\phi(t)=0$$
 (usually)

$$\Rightarrow s(t-\tau) = A(t-\tau)e^{j\phi(t-\tau)}e^{j\omega_0(t-\tau)} \approx e^{-j\omega_0\tau} \cdot s(t)$$

Thus for narrow band: Time delay \Rightarrow phase shift In this course: mainly narrowband

ADSP

Scenarios

ADSP

Scenarios

Array aperture: Volume (1D length) that collects incoming energy

Far field: • Distance source - array ≫ array aperture

• Plane wavefront

Near field: • Distance source - array ≪ array aperture

• Spherical wavefront

In this course mainly Far field

ADSP

Scenarios

Propagation for near field (single frequency) source

$$s(t, \underline{\mathbf{p}}) = \frac{A}{||\underline{\mathbf{p}}||^2} e^{\mathbf{j}\omega(t - \frac{||\underline{\mathbf{p}}||}{c})}$$

with $\omega = 2\pi f$ and $f = \frac{c}{\lambda}$

 $\lambda =$ wavelength; c = speed in medium

Note: For acoustic sound in air $c \approx 334 [\text{m/sec}]$

⇒ Amplitude decays proportional to distance from source

ADSP

Scenarios

In far field at position $\underline{\mathbf{p}}_i$ monochromic plane wave:

$$s(t, \mathbf{p}_i) = A e^{\mathbf{j}\omega(t - \tau_i)} = A e^{\mathbf{j}\omega(t - \frac{\mathbf{v}^t}{c} \cdot \mathbf{p}_i)} = A e^{\mathbf{j}(\omega t - \underline{\mathbf{k}}^t \cdot \mathbf{p}_i)}$$

Direction vector $\underline{\mathbf{v}}$; Wave number vector $\underline{\mathbf{k}} = \frac{\omega}{c} \cdot \underline{\mathbf{v}}$

- Propagation expressed as function of time and space
- Information is preserved while propagating
- Band-limited signal can be reconstructed over all space and time by either:
 - temporally sampling at given location in space
 - spatially sampling at given instant of time

Basis for all aperture and sensor array processing techniques

ADSP

Scenarios

Array geometry

Array can be uniform, nonuniform, linear, circular, ...

Sensors at J locations \mathbf{p}_i

In this course mainly: Uniform Linear Array (ULA)

ADSP

Scenarios

Propagation between two points for plane wave:

Assume reference p_1 :

s(t) arrives at ${f p}_1$

 $\underline{\mathbf{p}}_1$ in origin

Analog signal at location \mathbf{p}_i : $s(t-\tau_i) = s(t)e^{-\mathbf{j}\omega\tau_i}$

with delay: $\tau_i = \underline{\mathbf{v}}^t \cdot \underline{\mathbf{p}}_i/c$ Direction vector \mathbf{v}

with
$$\omega = 2\pi f$$
 and $f = \frac{c}{\lambda}$

 $\lambda =$ wavelength; c = speed in medium

ADSP

Scenarios

Note: Location is 3D quantity

In practice: Direction Of Arrival (DOA) 2D

ULA:

If reference p_1 at (0,0)

$$\Rightarrow$$
 $\mathbf{p}_i = (0, (i-1) \cdot d)^t$

Directional vector:

$$\underline{\mathbf{v}} = (\cos(\theta), \sin(\theta))^t$$

$$|\underline{\mathbf{v}}| = 1$$

ADSP

Scenarios

Example: Plane wave, ULA

For far field only one parameter (DOA) characterizing position

ADSP

Scenarios

Discrete-time signal representation

- ullet Analog sensor signal at J locations: $\tilde{x}_i(t)$
- In each sensor $i=1\cdots J$ ideal demodulation and LPF takes place to baseband signal $\widehat{x}_i(t)$
- After A/D:

Complex valued discrete-time signal $x_i[k]$

ADSP

Scenarios

Propagation between two points for plane wave:

Assume reference p_1 :

s(t) arrives at $\underline{\mathbf{p}}_1$ \mathbf{p}_1 in origin

Analog signal at location $\underline{\mathbf{p}}_i$: $s(t-\tau_i) = s(t)\mathrm{e}^{-\mathrm{j}\omega\tau_i}$ with delay: $\tau_i = \underline{\mathbf{v}}^t \cdot \mathbf{p}_i/c$

 \Rightarrow Discrete-time signal at $\underline{\mathbf{p}}_i$: $s[k] \cdot \mathrm{e}^{-\mathrm{j}\omega\tau_i}$

ADSP

Scenarios

 \Rightarrow Discrete-time signal in sensor i (for ULA):

$$s[k] \cdot e^{-j\omega\tau_i} \equiv s[k] \cdot a_i(\omega, \theta)$$
with $a_i(\omega, \theta) = e^{-j\omega\tau_i}$

$$= e^{-j\omega(i-1)\frac{d\sin(\theta)}{c}}$$

$$= e^{-j2\pi\frac{c}{\lambda}(i-1)\frac{d\sin(\theta)}{c}}$$

$$= e^{-j2\pi(i-1)\frac{d\sin(\theta)}{\lambda}}$$

Note: Usually simplified notation

$$a_i(\omega,\theta) \rightarrow a_i(\theta)$$

ADSP

Scenarios

Array signal model

Array sensor vector: $\underline{\mathbf{x}}[k] = (x_1[k], x_2[k], \cdots, x_J[k])^t$

Noise vector: $\underline{\mathbf{n}}[k] = (n_1[k], n_2[k], \cdots, n_J[k])^t$

Steering vector: $\underline{\mathbf{a}}(\theta) = (a_1(\theta), a_2(\theta), \cdots, a_J(\theta))^t$

with $a_i(\theta) = e^{-j\omega\tau_i(\theta)}$

Note: for ULA: $a_i(\theta) = e^{-j2\pi(i-1)\frac{d\sin(\theta)}{\lambda}}$

ADSP

Scenarios

Case: Noisy observation, one source, J sensors

for
$$i=1,2,\cdots,J$$
: $x_i[k]=a_i(\theta)\cdot s[k]+n_i[k] \Rightarrow$
$$\underline{\mathbf{x}}[k]=\underline{\mathbf{a}}(\theta)\cdot s[k]+\underline{\mathbf{n}}[k]$$

Covariance structure:

$$\mathbf{R}_x = E\{\underline{\mathbf{x}} \cdot \underline{\mathbf{x}}^h\} = \sigma_s^2 \cdot (\underline{\mathbf{a}} \cdot \underline{\mathbf{a}}^h) + \mathbf{R}_n$$

with
$$\sigma_s^2 = E\{|s|^2\}$$
 and $\mathbf{R}_n = E\{\underline{\mathbf{n}} \cdot \underline{\mathbf{n}}^h\}$

For spatially white noise: $\mathbf{R}_n = \sigma_n^2 \mathbf{I}$

Note: Time indices are skipped for simplicity

ADSP

Scenarios

Case: Noisy observation, P sources, J sensors

for
$$i = 1, 2, \dots, J$$
: $x_i[k] = \sum_{p=1}^{P} a_i(\theta_p) \cdot s_p[k] + n_i[k] \Rightarrow$

$$\underline{\mathbf{x}}[k] = \mathbf{A} \cdot \underline{\mathbf{s}}[k] + \underline{\mathbf{n}}[k]$$

$$J \times P$$
 steering matrix $\mathbf{A} = (\underline{\mathbf{a}}(\theta_1), \underline{\mathbf{a}}(\theta_2), \cdots, \underline{\mathbf{a}}(\theta_P))$

$$P \times 1$$
 signal vector $\underline{\mathbf{s}}[k] = (s_1[k], s_2[k], \cdots, s_P[k])^t$

Covariance structure:

$$\mathbf{R}_x = E\{\underline{\mathbf{x}} \cdot \underline{\mathbf{x}}^h\} = \mathbf{A}\mathbf{R}_s \mathbf{A}^h + \mathbf{R}_n$$

with
$$\mathbf{R}_s = E\{\underline{\mathbf{s}} \cdot \underline{\mathbf{s}}^h\}$$
 and $\mathbf{R}_n = E\{\underline{\mathbf{n}} \cdot \underline{\mathbf{n}}^h\} = \sigma_n^2 \mathbf{I}$

ADSP

Scenarios

General case:

Noisy observation, desired + undesired signals:

$$\underline{\mathbf{x}}[k] = \underline{\mathbf{x}}_d[k] + \underline{\mathbf{x}}_u[k] + \underline{\mathbf{n}}[k]$$

 $\underline{\mathbf{x}}_d[k]$: P independent desired sources

 $\underline{\mathbf{x}}_{u}[k]$: Q independent undesired sources

 $\underline{\mathbf{n}}[k]$: Spatially white noise

Covariance structure:

$$\mathbf{R}_x = E\{\underline{\mathbf{x}} \cdot \underline{\mathbf{x}}^h\} = \mathbf{R}_{x_d} + \mathbf{R}_{x_u} + \mathbf{R}_n$$

ADSP

Scenarios

Case: Single complex weight for each sensor

Short notation:
$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k]$$

$$\underline{\mathbf{x}}[k] = (x_1[k], \dots, x_J[k])^t$$

$$\underline{\mathbf{w}} = (w_1, \dots, w_J)^t$$

ADSP

Scenarios

Case: FIR filter for each sensor

Short notation for $i = 1, 2, \dots, J$:

$$\underline{\mathbf{x}}_{i}[k] \longrightarrow \underline{\mathbf{w}}_{i}^{*} \longrightarrow y_{i}[k] = \underline{\mathbf{w}}_{i}^{h} \cdot \underline{\mathbf{x}}_{i}[k]$$

$$\underline{\mathbf{x}}_{i}[k] = (x_{i}[k], \cdots, x_{i}[k-N+1])^{t}$$

$$\underline{\mathbf{w}}_{i} = (w_{i,1}, \cdots, w_{i,N})^{t}$$

ADSP

Scenarios

Short notation:
$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k]$$

$$\underline{\mathbf{x}}[k] = (\underline{\mathbf{x}}_1[k], \dots \underline{\mathbf{x}}_J[k])^t$$

$$\underline{\mathbf{w}} = (\underline{\mathbf{w}}_1, \dots, \underline{\mathbf{w}}_J)^t$$

$$\underline{\mathbf{x}}[k] \longrightarrow \underline{\underline{\mathbf{w}}^*} \longrightarrow y[k]$$

ADSP

Scenarios

ADSP

Scenarios

Notes:

- ullet Propagating source signal is sampled at $J{\cdot}N$ nonuniformly spaced points
- Temporal aperture: $T(\theta)$
- ullet Array aperture L: array length in wave length For ULA: $L=J\cdot d$
- FIR provide not simple frequency depending weighting of each channel. Weights effect
 both temporal and spatial response

ADSP

Scenarios

How to cope with broadband signals:

