Redes de área local (LANs) (nivel de enlace)

Transparencias de soporte

XC, Abril 2018

Jaime Delgado, DAC

Tema 4: LANs

- 4.1. Introducción
- 4.2. Arquitecturas IEEE
- 4.3. Protocolos MAC (*Medium Access Control*) aleatorios
- 4.4. Tramas Ethernet. Nivel físico. HD vs FD.
- 4.5. Switches Ethernet
- 4.6. VLANs (LANs virtuales)
- 4.7. WLANs (Redes inalámbricas)

4.1. Introducción

Introducción

- WAN vs. LAN
- Conmutada (switched) vs. Acceso múltiple (medio compartido)
 - Conmutada → "Routers nivel 2"
 - Medio compartido:
 Protocolos de Control de Acceso al Medio:
 - Paso de testigo
 - Aleatorios
- <u>Topologías</u>:
 - Radio/Aire
 - Cable: Bus (Ethernet, ...), Anillo (Token-Ring, ...), ...

4.2. Arquitecturas IEEE

Arquitecturas IEEE de una LAN

Nivel de enlace →

LLC (Logical Link Control) sobre

MAC (Medium Acces Control)

Trama MAC:

| MAC | LLC | ... Datagrama IP ... | CRC MAC |

LLC: Logical Link Control

Cabecera LLC:

```
8 bits 8 bits 8-16 bits | SAP destino | SAP origen | Control/Orden |
```

 SAP: Service Access Point (equivalente a "Protocol" de IP).

MAC: Medium Access Control

Cabecera MAC:

• "Cola" MAC: CRC de toda la trama (4 octetos).

4.3. Protocolos MAC aleatorios

Introducción

- WAN vs. LAN
- Conmutada (switched) vs. Acceso múltiple (medio compartido)
 - Conmutada → "Routers nivel 2"
 - Medio compartido:
 Protocolos de Control de Acceso al Medio:
 - Paso de testigo
 - Aleatorios
- Topologías:
 - Radio/Aire
 - Cable: Bus (Ethernet, ...), Anillo (Token-Ring, ...), ...

Preguntas

- ¿Cuándo se envía la trama?
- ¿Cómo sabemos si ha llegado?
- ¿Cómo se hace el re-envío si no ha llegado?

¿Cuándo se envía la trama?

- 1) Cuando tenemos trama para enviar (Aloha)
- 2) Primero "escucha" el medio (CSMA)

(Carrier Sense Multiple Access)

Si no lo hace → colisión si el medio está ocupado

¿Cómo sabemos si ha llegado?

- 1) Cuando llega un ACK (Aloha, algunos CSMA)
 - Si no llega (Tout) → Se re-envía (se supone "colisión")

ACKs (Aloha, algunos CSMA)

- ¿Cuándo se envía el ACK?
 - En cuanto llega una trama correcta.
- ¿Cuándo NO se envía un ACK?
 - Cuando no identificamos la trama (por ejemplo
 CRC) porque hay más de una a la vez (COLISION)

¿Cómo sabemos si ha llegado?

- 1) Cuando llega un ACK (Aloha, algunos CSMA)
 - Si no llega (Tout) → Se re-envía (se supone "colisión")
- 2) "Escuchamos" el medio durante y después de la transmisión

(CSMA/CD, "Collision Detection" → Ethernet)

- Paramos si "escuchamos" colisión
- Si no → Ha llegado (no necesitamos ACK!)
- ¿Qué hacemos cuando detectamos una colisión?

¿Qué hacemos cuando detectamos una colisión? (CSMA/CD)

Paramos de transmitir y enviamos una señal para indicarlo (señal de interferencia o de "jam") ->

Facilitamos que en la escucha se detecte la colisión

- 32 bits en Ethernet. Trama no válida.
- El "preámbulo" Ethernet se acaba aunque haya colisión

¿Cómo se hace el re-envío?

- Se espera un tiempo aleatorio, "tiempo de backoff" (Aloha, CSMA, CSMA/CD)
 - ¿Cómo se calcula? (después)
- ¿Qué hacemos cuando vemos el medio libre (después o no de una colisión)?

¿Qué hacemos cuándo vemos el medio libre? (CSMA)

- Esperamos un tiempo aleatorio, distinto al backoff
 ("CSMA No persistente")
 (WLAN)
- 2) Enviamos inmediatamente ("CSMA 1-persistente") (*Ethernet*)
 - <u>Problema (si no colisión)</u>: El que envía "acapara" medio siempre ocupado (*jha de ser equitativo!*)
 - → Esperamos un tiempo después de que se vea el medio libre

```
(IPG, Inter Packet Gap, en Ethernet)
¿Vuelve a escuchar? No (Ethernet)
```

<u>Problema</u>: Si hay 2 esperando → Colisión (se ha buscado!)

¿Qué hacemos si se repite?

→ Tbackoff distinto en cada retransmisión! (Cálculo "aleatorio")

Detalles MAC aleatorio Ethernet

- JAM = 32 bits
- IPG = 12 bytes (96 bits), sincronismo de trama ("silencio")
- Tiempo de backoff = n * slot time
- Slot ("ranura") time = **Tt (512)**, tpo. transmisión 512 bits (p.e.: 51,2 microsegundos a 10 Mbps). Es la trama mínima.
- n: Núm. aleatorio uniformemente distribuido en { 0, 2^{min (N, 10)} - 1}; N => 1

(N: Número de retransmisiones)

CSMA/CD Ethernet protocol (simplified)

Legend:

- InterPacket Gap (IPG): 96 bits.
- JAM: 32 bits that produce an erroneus CRC.
- $backoff = n T_{512}$
- T_{512} :*SlotTime* (51,2 µs at 10 Mbps)
- $n = \text{random}\{0, 2^{\min\{N, 10\}}-1\},\$
 - N: number of retransmission of the same frame (1, 2...)
- The transmitting station must detect the collision (no ack is sent).

Colisiones Ethernet

4.4. Tramas Ethernet. Nivel físico. HD vs FD.

Ethernet frames

Ethernet II (DIX):

IEEE 802.3:

Type (> 1500): Identifies the upper layer protocol

Tramas Ethernet

- IEEE Sub-Network Access Protocol (SNAP)
 - Frame type for IEEE frame.
 - Example: TCP/IP protocols over IEEE 802.2 (LLC)
 - OUI=0x000000. Type equal to the RFC 1700 used for DIX.

802.3 SNAP Frame

TCP's MSS: 1460 if DIX, 1452 if IEEE.

Tema 4: LANs

- 4.1. Introducción
- 4.2. Arquitecturas IEEE
- 4.3. Protocolos MAC (*Medium Access Control*) aleatorios
- 4.4. Tramas Ethernet. Nivel físico. HD vs FD.
- 4.5. Switches Ethernet
- 4.6. VLANs (LANs virtuales)
- 4.7. WLANs (Redes inalámbricas)

4.7. WLANs (Redes inalámbricas)

Algunos conceptos básicos

- Access Point (AP): Como "bridge" o con Router.
- Distribution system (DS):
 - Conecta APs entre ellos o con redes cableadas.
 - Puede ser "wireless" (WDS).
- "Basic Service Set" (BSS):
 - Service Set Identifer (SSID), o nombre de red.
 - BSS Identifier (BSSID)
- Extended Service Set (ESS) si más de un BSS.

Modos de funcionamiento

Más conceptos básicos

- Protocolo MAC (802.11):
 - CSMA/CA (Collision Avoidance)
 - Tiempo backoff adicional antes de transmitir.
 IFS (InterFrame Space): Distributed (DIFS), Short (SIFS)
 - Hay ACKs! ("S&W")

Más conceptos básicos

- Protocolo MAC (802.11):
 - CSMA/CA (Collision Avoidance)
 - Tiempo backoff adicional antes de transmitir.
 IFS (InterFrame Space): Distributed (DIFS), Short (SIFS)
 - Hay ACKs! ("S&W")
- Trama (direcciones compatibles Ethernet):

¿Distinguir Receptor y Destino, Transmisor y Origen?

Más conceptos básicos

- Protocolo MAC (802.11):
 - CSMA/CA (Collision Avoidance)
 - Tiempo backoff adicional antes de transmitir.
 IFS (InterFrame Space): Distributed (DIFS), Short (SIFS)
 - Hay ACKs! ("S&W")
- Trama (direcciones compatibles Ethernet):

¿Distinguir Receptor y Destino, Transmisor y Origen?

Direcciones 802.11

Receptor Transmisor

Escenario	Modo	Direcc.1	Direcc.2	Direcc.3	Direcc.4	
STA→STA	Ad-H	DA	SA	BSSId	<u>-</u>	
STA→AP	Infra.	BSSId	SA	DA	-	
AP→STA	Infra.	DA	BSSId	SA	-	
$AP \rightarrow AP$	WDS	RA	TA	DA	SA	

Destination Address (DA), Source Address (SA), Receiver Address (RA), Transmitter Address (TA) Station (STA)

Direcciones 802.11

Bits control / tipo de trama / uso de direcciones

Escenario Modo		To-DS From-DS		
STA→STA	Ad-H	0	0	
STA→AP	Infra.	1	0	
AP→STA	Infra.	0	1	
$AP \rightarrow AP$	WDS	1	1	

Ejemplo Infraestructura

Legend, frames 802.11:

MESSAGE-TYPE(to-DS, from-DS, Address1, Address2, Address3)

Legend, frames ethernet:

MESSAGE-TYPE(destination address, source address)

FF is the broadcast address

Ejemplo WDS

Legend, frames 802.11:

frame(to-DS, from-DS, Address1, Address2, Address3, Address4)

Legend, frames ethernet:

frame(destination address, source address)

Problema "nodo escondido"

Un nodo no puede ver el medio ocupado por otro fuera de su cobertura

Problema "nodo escondido"

La solución

Problema "nodo escondido"

Se solicita enviar (RTS) y el AP puede pedir esperar (CTS)

