Senior Test 2

Stellenbosch Camp 2018

Time: $2\frac{1}{2}$ hours

1. Find all positive integers m, n such that

$$1 + 5 \cdot 2^m = n^2$$

2. Show that if we are given 50 segments on the real line, then either there are 8 of them which are pairwise disjoint or 8 of them with a common point.

A segment is defined as a closed interval $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}.$

- 3. Let $a_0 = a_1 = 1$ and $a_{n+1} = 7a_n a_{n-1} 2$ for all positive integers n. Prove that a_n is a perfect square for all n.
- 4. Let ABC be triangle with AB = AC. A circle Γ lies outside triangle ABC and is tangent to line AC at C. Point D lies on Γ such that the circumcircle of triangle ABD is internally tangent to Γ . Segment AD meets Γ again at E. Prove that BE is tangent to Γ .
- 5. Find all functions $f: \mathbb{Q} \to \mathbb{Q}$ such that

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

for all $x, y \in \mathbb{Q}$.

