Ax = b の \mathbb{Z} 上での可解性について考える.

定理 1 $A: m \times n$ 整数行列で rank(A) = m とすると以下はすべて同値である.

- (1) $\forall b \in \mathbb{Z}^m$ に対して $\exists x \in \mathbb{Z}^n : Ax = b$
- $(2) \ y^{\mathrm{T}} A \in \mathbb{Z}^n \Rightarrow y \in \mathbb{Z}^m$
- (3) A の行列式因子 $g_k(A)\cdots k$ 次の小行列式の最大公約数として, $g_m(A)=1$
- (4) A のエルミート標準形= $[I_m|0]$
- (4) を基準に見ていく.

まず (1) について. Q を単摸行列でエルミート標準形として $Ax=b \Leftrightarrow AQQ^{-1}x=b$ 先週より $x\in\mathbb{Z}^n \Leftrightarrow Q^{-1}x\in\mathbb{Z}^n (4\to 1)$ なので A をエルミート標準形としてよい.

 $\forall b \in \mathbb{Z}^m$ に対して

このとき *i*(>1) 行目で

$$1{\sim}i-1$$
 行は解けて $x=egin{bmatrix}0\\\vdots\\x_i\\\vdots* \end{pmatrix}$ $\to ax_i=b_i\in\mathbb{Z}$ なので $a=1$

次に (2) についてみてみる. $y^{\mathrm{T}}A \in \mathbb{Z}^n \Leftrightarrow y^{\mathrm{T}}AQ \in \mathbb{Z}^n(Q$ は単摸行列) なので A をエルミート標準形としてよい.

このとき (2) $\Leftrightarrow \beta_{11} = \beta_{22} = \cdots \beta_{mm} = 1$ を示す.

⇐ は明らかである.

 $\Rightarrow \beta_{ii} \neq 1$ となる最初の行 $(k \ 7)$ に注目する.

とおくと $y^{\mathrm{T}}A = [0, 0 \cdots 1, 0 \cdots 0]$ となって $y^{\mathrm{T}}A \in \mathbb{Z}^n$ であるが $y \notin \mathbb{Z}^n$ 次に (3) について.

準備として $g_k(A)$ は A の \mathbb{Z} 型の列基本変形で不変である.

A に対して $\alpha=1\sim k$ 列の小行列式で $\beta=1\sim k-1, j$ 列の小行列式とし A の j 列を i 列に加えて A' とする.

A' に対して $1\sim k-1,j$ 列の小行列式 $=b,1\sim k$ 列の小行列式を a' とする. Laplace 展開を考えると $(a_i$ に関する展開) $+(a_i$ に関する展開) なので a'=a+b

準備より Q が単摸なら $g_n(A)=g_m(AQ)$ なので A をエルミート標準形としてよい. $g_m(A)=1\Leftrightarrow \beta_{11}=\cdots=\beta_{mm}=1$

0.1 Smith 標準形

 $A \in \mathbb{Z}^{m \times n}$, rank(A) = r, $\exists P, Q$ を単摸行列とする.

$$PAQ = \begin{bmatrix} \alpha_1 & & & & \\ & \ddots & & 0 \\ & & \alpha_r & \\ \hline & 0 & & 0 \end{bmatrix}$$

 $\alpha_1 > 0, \alpha_2 > 0 \cdots \alpha_r > 0$ であり $\alpha_1 | \alpha_2 \cdots | \alpha_r (\alpha_1 \, \text{は} \, \alpha_2 \, \text{を割り切る})$

このとき $g_k(A) = g_k(PAQ) = \alpha_1 \cdots \alpha_k$

Smith 標準形の作り方を述べる. まず $\min\{|a_{ij}|i=1\cdots m,\ j=1\cdots n\ a_{ij}\neq 0\}$ なる (i,j) に注目して a_{ij} を基本変形で (1,1) にもってくる.

次に列基本変形で $0 \le a_{1j} < a_{11} (j=2\cdots n)$ とする. $a_{ij} = q_j a_{11} + r_j (q_j \in \mathbb{Z})$ として $a_{ij}' = r_j$ とする. a_{ij} を a_{11} で割り算して余りで更新していく. これを続けて最小 $(\neq 0)$ になった a_{ij} を (1,1) にもってくる. そうするといつかは以下のようになる.

同じことを行基本変形でも行うと以下のようになる.

$$egin{array}{c|cccc} a_{11} & 0 & \cdots & 0 \\ \hline 0 & & & & \\ dots & & & a_{11} の倍数 & \\ 0 & & & & & \end{array}$$

もし a_{11} の倍数でないなら $a_{ij} \rightarrow a_{ij}/a_{11}$ の基本変形ができるので.