COMP9334 Solution to the tutorial for Week 10

Chun Tung Chou

May 6, 2018

- 1. (a) Let us define a few notation:
 - $T_{\text{max}} = \text{computation time limit} = 4000 \text{s}$
 - $P = \text{total number of cycles required} = 10^7 \text{ Mcycles.}$
 - $p_i = \text{Speed (in Mcycles/s)}$ of company i, e.g. $p_1 = 1000 \text{ Mcycles/s}$
 - c_i = Per-second charge for company i, e.g. $c_1 = \$0.1/s$.
 - s_i = Set up cost for company i, e.g. s_1 = 500.

The decision variables are y_i and x_i (for i = 1, 2, 3):

$$y_i = \begin{cases} 1 & \text{if Company } i \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

 x_i = fraction of cycles to be bought from Company i and is ≥ 0

Based on these decision variables, we know that

• Completion time T is:

$$T = \max_{i} \frac{Px_i}{p_i}$$

• Total cost C is:

$$C = \sum_{i=1}^{n} \left(\frac{c_i P x_i}{p_i} + s_i y_i \right)$$

The problem formulation is

 $\min C$

subject to

$$T_{\text{max}} \geq \frac{Px_i}{p_i} \qquad 1 \leq i \leq n$$

$$C = \sum_{i=1}^{n} \left(\frac{c_i Px_i}{p_i} + s_i y_i\right)$$

$$x_i \leq y_i \qquad 1 \leq i \leq n$$

$$\sum_{i=1}^{3} x_i = 1$$

$$x_i \geq 0 \qquad 1 \leq i \leq n$$

$$y_i \in \{0, 1\} \qquad 1 \leq i \leq n$$

- (b) By using an integer programming solver, we find that we should buy 8×10^6 Mcycles from Company 2 and 2×10^6 Mcycles from Company 3. This costs a total of \$1833. The files used to solve this problem are hw_grid.mod, hw_grid.dat and hw_grid_batch.
- 2. (a) Since Database 1 can only be placed at one of the three locations, there are three possible combinations for for x_{11} , x_{21} and x_{31} :

i.
$$x_{11} = 1$$
, $x_{21} = 0$ and $x_{31} = 0$

ii.
$$x_{11} = 0$$
, $x_{21} = 1$ and $x_{31} = 0$

iii.
$$x_{11} = 0$$
, $x_{21} = 0$ and $x_{31} = 1$

This means $x_{11} + x_{21} + x_{31} = 1$.

(b) The decision variables are

$$x_{ij} = \begin{cases} 1 & \text{if Database } j \text{ is stored in Location } i \\ 0 & \text{otherwise} \end{cases}$$

We use the notation:

- D_i = capacity of Location i
- $t_i = access time of Location i$
- $s_j = \text{size of Database } j$
- f_j = frequency of accessing Database j
- F = total number of accesses per second

The (binary) integer programming problem is:

$$\min \frac{1}{F} \sum_{i=1}^{3} \sum_{j=1}^{8} f_j t_i x_{ij}$$

subject to

$$\sum_{j=1}^{8} s_j x_{ij} \leq D_i \quad \text{for } 1 \leq i \leq 3$$

$$\sum_{i=1}^{3} x_{ij} = 1 \quad \text{for } 1 \leq j \leq 8$$

$$x_{ij} \in \{0, 1\}$$

Note the first set of constraints enforces capacity limit of each location. The second set of constraints ensures that each database is stored at exactly one location.

- (c) The location is as showed below.
 - Databases 2,3,4 at Location 1.
 - Databases 1,7,8 at Location 2.
 - The rest at Location 3.

The files used to solve this problem are hw_db.mod, hw_db.dat and hw_db_batch.