

Proposta de teste de avaliação

Matemática A

12.º ANO DE ESCOLARIDADE

Duração: 90 minutos | **Data:** FEVEREIRO 2024

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

1. Seja S o espaço amostral (espaço de resultados) associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos ($A \subset S$ e $B \subset S$).

Sabe-se que:

- A e B são acontecimentos independentes e equiprováveis;
- $P(\overline{A} \cap \overline{B}) = 0.81$

Qual é o valor de P(A)?

- **(A)** 0,1
- **B)** 0,9
- **(C)** 0,5
- **(D)** 0,19
- 2. Na figura está representada uma circunferência de centro O e raio 2 em que AB e CD são diâmetros perpendiculares.

Considere que o ponto P se desloca sobre o arco BD de tal forma que:

- o ponto Q acompanha o movimento do ponto P sendo o transformado deste na reflexão de eixo AB;
- o ângulo ao centro QOP tem x radianos de amplitude $(x \in]0, \pi[).$

Sejam a e s as funções que a cada valor de x fazem corresponder a área do quadrilátero [OQBP] e a área do setor circular QOP, respetivamente.

- **2.1.** Mostre que $a(x) = 4\sin(\frac{x}{2})$, e s(x) = 2x, $x \in]0$, $\pi[$.
- **2.2.** Considere o polígono obtido para $x = \pi$. Mostre que a sua área ainda é dada por a(x).
- **2.3.** Determine $\lim_{x\to 0} \frac{a(x)}{s(x)}$ e interprete o resultado obtido no contexto da situação apresentada.

- Seja h a função, de domínio \mathbb{R} , definida por $h(x) = \begin{cases} \frac{e^{-x} e^{-x} 2x}{x} & \text{se } x < 0 \\ k & \text{se } x = 0 \end{cases}$ $(k \in \mathbb{R})$ 3.
 - 3.1. Qual é o valor de k para o qual a função h é contínua no ponto x = 0?
 - **(A)** -1
- **(B)** 1
- $(\mathbf{C}) = 0$
- h é descontínua no ponto x = 0 qualquer que seja o valor de k**(D)**
- Estude a função h quanto à existência de assíntotas horizontais ao seu gráfico e, caso estas 3.2. existam, escreva as respetivas equações.
- 4. Numa fábrica, foi instalado um exaustor para eliminar o dióxido de carbono (CO₂) em excesso. Para testar o exaustor, instalado num recinto fechado, injetou-se CO2 a uma razão constante durante um certo tempo.

Decorrido algum tempo após se iniciar a injeção de CO₂, ligou-se o exaustor durante 25 minutos. Admira que t minutos após o exaustor ser ligado, a taxa de CO₂ existente nesse recinto, em percentagem (100% = 1), é dada por

$$d(t) = (0.8t + 0.4)e^{-0.5t} + 0.04, 0 \le t \le 25$$

- 4.1. Qual era a taxa de CO₂ existente no ambiente da fábrica no instante em que o exaustor foi ligado?
 - **(A)** 44 %

- **(B)** 4,4 % **(C)** 0,44 % **(D)** 0,044 %
- **4.2.** Estude a função d quanto à monotonia para determinar o valor da taxa máxima de CO_2 que foi atingida bem como o instante em que ocorreu.

Apresente o valor da taxa de CO₂ em percentagem arredondada às unidades.

4.3. Para que o exaustor seja considerado eficiente pretende-se que a taxa de CO₂ existente nesse ambiente se situe abaixo de 4,5 % nos primeiros 20 minutos de funcionamento.

Este objetivo foi concedido?

Para responder a esta questão, utilize as capacidades gráficas da calculadora Reproduza o gráfico da função ou os gráficos das funções que tiver necessidade de visualizar na calculadora, devidamente identificado(s), incluindo o referencial e apresente as abcissas dos pontos que tiver de calcular arredondadas às centésimas.

5. Seja g uma função de domínio $]-\infty$, $\pi[$ definida por:

$$g(x) = \begin{cases} e^{2x} - 7e^x & \text{se } x \le 0\\ \sin(2x) - x & \text{se } 0 < x < \pi \end{cases}$$

- **5.1.** Estude a função g quanto à monotonia e existência de extremos relativos no intervalo]0, $\pi[$.
- **5.2.** Considere, em referencial o.n. Oxyz, o gráfico da função g.

 Existe nesse gráfico um ponto A, de abcissa negativa, em que a reta tangente é paralela à reta tangente ao mesmo gráfico no ponto de abcissa $\frac{\pi}{2}$.

 Determine a abcissa de A.
- **6.** Considere, para cada $a \in \mathbb{R}^+$ a função f_a , de domínio \mathbb{R} , definida por $f_a(x) = x + a e^{-x}$.
 - **6.1.** Mostre que para cada $a \in \mathbb{R}^+$ a função f_a admite um mínimo para $x = \ln a$.
 - **6.2.** Mostre que para cada $a \in \mathbb{R}^+$, o ponto do gráfico correspondente ao mínimo de f_a , ou seja, o ponto de abcissa $x = \ln a$, pertence à reta de equação y = x + 1

Cotações:

Item													
Cotação (em pontos)													
1.	2.1.	2.2.	2.3.	3.1.	3.2.	4.1.	4.2.	4.3.	5.1.	5.2.	6.1.	6.2.	
10	20	15	15	10	15	10	20	20	15	20	15	15	200

Proposta de resolução

1.
$$P(A) = P(B)$$

$$P(A \cap B) = P(A) \times P(B)$$

Os acontecimentos A e B são independentes.

$$P(\overline{A} \cap \overline{B}) = 0.81 \Leftrightarrow P(\overline{A \cup B}) = 0.81 \Leftrightarrow$$

$$P(A \cup B) = 1 - 0.81 \Leftrightarrow P(A \cup B) = 0.19$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A) = P(B) \in P(A \cap B) = P(A) \times P(B)$$

$$0.19 = P(A) + P(A) - P(A) \times P(A) \Leftrightarrow$$

$$\Leftrightarrow \left[P(A)\right]^2 - 2P(A) + 0.19 = 0 \Leftrightarrow$$

$$\Leftrightarrow P(A) = 0.1 \lor P(A) = 1.9$$

Como
$$0 \le P(A) \le 1$$
, $P(A) = 0,1$

Cálculo auxiliar

$$x^{2} - 2x + 0,19 = 0 \Leftrightarrow$$
$$\Leftrightarrow x = \frac{2 \pm \sqrt{4 - 4 \times 0,19}}{2} \Leftrightarrow$$

$$\Leftrightarrow x = \frac{2 \pm \sqrt{3,24}}{2} \Leftrightarrow x = \frac{2 \pm 1,8}{2} \Leftrightarrow$$
$$\Leftrightarrow x = 0,1 \lor x = 1,9$$

$$\Leftrightarrow x = 0, 1 \lor x = 1, 9$$

Resposta: (A)

2.

Seja h a altura do triângulo [OBP] relativa à base [OB]. 2.1.

$$\frac{h}{2} = \sin\left(\frac{x}{2}\right) \Leftrightarrow h = 2\sin\left(\frac{x}{2}\right)$$

$$A_{[OBP]} = \frac{2 \times 2\sin\left(\frac{x}{2}\right)}{2} = 2\sin\left(\frac{x}{2}\right)$$

$$A_{[OQBP]} = 2 \times A_{[OBP]} = 2 \times 2\sin\left(\frac{x}{2}\right) = 4\sin\left(\frac{x}{2}\right)$$

Logo,
$$a(x) = 4\sin\left(\frac{x}{2}\right)$$

$$A_{\text{setor }QOP} = \frac{x \times 2^2}{2} = 2x$$

$$A_{\text{setor}} = \frac{\alpha \times r^2}{2}$$

Logo,
$$s(x) = 2x$$
.

Se $x = \pi$, P e Q coincidem com D e C, respetivamente. 2.2.

O polígono obtido é o triângulo [DCB] cuja área é:

$$\frac{\overline{CD} \times \overline{OB}}{2} = \frac{4 \times 2}{2} = 4 \text{ e}$$

$$a(\pi) = 4\sin\left(\frac{\pi}{2}\right) = 4 \times 1 = 4$$

2.3.
$$\lim_{x \to 0} \frac{a(x)}{s(x)} = \lim_{x \to 0} \frac{4\sin\left(\frac{x}{2}\right)}{2x} \stackrel{\begin{pmatrix} 0 \\ \overline{0} \end{pmatrix}}{=} 2\lim_{x \to 0} \frac{\sin\left(\frac{x}{2}\right)}{x} =$$

$$=2\lim_{x\to 0}\frac{\sin\left(\frac{x}{2}\right)}{2\times\frac{x}{2}}=\frac{2}{2}\lim_{x\to 0}\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}=\lim_{x\to 0}\frac{\sin y}{y}=1\qquad \qquad \begin{vmatrix} y=\frac{x}{2}\\ \sec x\to 0, y\to 0 \end{vmatrix}$$

Quando $x \to 0$, a área do quadrilátero [OQBP] tende a igualar a área do setor circular

QOP pelo que o quociente $\frac{a(x)}{s(x)}$ tende para 1.

3.
$$h(x) = \begin{cases} \frac{e^{2x} - e^{x} - 2x}{x} & \text{se } x < 0 \\ k & \text{se } x = 0 \\ \frac{\sqrt{4x + 1} - 1}{2x} & \text{se } x > 0 \end{cases}$$

3.1.
$$\lim_{x \to 0^{-}} h(x) = \lim_{x \to 0^{-}} \frac{e^{2x} - e^{x} - 2x}{x} = \lim_{x \to 0^{-}} \frac{e^{2x} - e^{x} - 2x}{x} = \lim_{x \to 0^{-}} \frac{e^{2x} - e^{x}}{x} - \frac{2x}{x} = \lim_{x \to 0^{-}} \frac{e^{x} (e^{x} - 1)}{x} - \lim_{x \to 0^{-}} \frac{2x}{x} = \lim_{x \to 0^{-}} \frac{e^{x} + 1}{x} - 2 = 1 \times 1 - 2 = -1$$

$$\lim_{x \to 0^{+}} h(x) = \lim_{x \to 0^{+}} \frac{\sqrt{4x+1} - 1}{2x} = \frac{1}{2} \lim_{x \to 0^{+}} \frac{\left(\sqrt{4x+1} - 1\right)\left(\sqrt{4x+1} + 1\right)}{x\left(\sqrt{4x+1} + 1\right)} = \frac{1}{2} \lim_{x \to 0^{+}} \frac{\left(4x+1\right) - 1}{x\left(\sqrt{4x+1} + 1\right)} = \frac{1}{2} \lim_{x \to 0^{+}} \frac{4x}{x\left(\sqrt{4x+1} + 1\right)} = \frac{1}{2} \lim_{x \to 0^{+}} \frac{1}{\sqrt{4x+1} + 1} = 2 \times \frac{1}{2} = 1$$

Dado que $\lim_{x\to 0^-} h(x) \neq \lim_{x\to 0^+} h(x)$, a função h é descontínua no ponto x=0 qualquer que seja o valor de k.

Resposta: (D)

3.2.
$$\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} \frac{e^{2x} - e^{x} - 2x}{x} = \lim_{x \to -\infty} \left(\frac{e^{2x} - e^{x}}{x} - \frac{2x}{x} \right) =$$

$$= \lim_{x \to -\infty} \frac{e^{2x} - e^{x}}{x} - \lim_{x \to -\infty} \frac{2x}{x} = 0 - 2 = -2$$

A reta de equação y = -2 é uma assíntota ao gráfico de h quando $x \to -\infty$.

$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \frac{\sqrt{4x+1} - 1}{2x} = \frac{1}{2} \lim_{x \to +\infty} \frac{\sqrt{x^2 \left(\frac{4}{x} + \frac{1}{x^2}\right)} - 1}{x} =$$

$$= \frac{1}{2} \lim_{x \to +\infty} \frac{\left|x \left|\sqrt{\frac{4}{x} + \frac{1}{x^2}} - 1\right|}{x} = \frac{1}{2} \lim_{x \to +\infty} \frac{x\left(\sqrt{\frac{4}{x} + \frac{1}{x^2}} - \frac{1}{x}\right)}{x} =$$

$$= \frac{1}{2} \lim_{x \to +\infty} \left(\sqrt{\frac{4}{x} + \frac{1}{x^2}} - \frac{1}{x}\right) = \frac{1}{2} \times 0 = 0$$
| Quando $x \to +\infty$, $|x| = x$

A reta de equação y = 0 é uma assíntota ao gráfico de h quando $x \to +\infty$.

4.
$$d(t) = (0.8t + 0.4)e^{-0.5t} + 0.04, 0 \le t \le 25$$

4.1.
$$d(0) = (0.8 \times 0 + 0.4)e^{-0.5 \times 0} + 0.04 = 0.4 \times 1 + 0.04 = 0.44$$

 $0.44 = \frac{44}{100} = 44\%$

Resposta: (A)

4.2.
$$d'(t) = \left[(0.8t + 0.4) e^{-0.5t} + 0.04 \right]' =$$

$$= (0.8t + 0.4)' e^{-0.5t} + (0.8x + 0.4) (e^{-0.5t})' =$$

$$= 0.8 e^{-0.5t} \times (0.8t + 0.4) + (-0.5) (e^{-0.5t}) =$$

$$= e^{-0.5t} \left[0.8 + (0.8t + 0.4) \times (-0.5) \right] =$$

$$= e^{-0.5t} (0.8 - 0.4t - 0.2) = e^{-0.5t} (0.6 - 0.4t)$$

$$d'(t) = 0 \Leftrightarrow e^{-0.5t} (0.6 - 0.4t) = 0 \Leftrightarrow$$

$$\Leftrightarrow e^{-0.5t} = 0 \vee 0.6 - 0.4t = 0 \Leftrightarrow$$

$$e^{-0.5t} \neq 0. \forall t \in \mathbb{R}$$

$$\Leftrightarrow 0.4t = 0.6 \Leftrightarrow t = \frac{0.6}{0.4} \Leftrightarrow t = 1.5$$

$$0 \le 1.5 \le 25$$

 $d(1,5) = (0.8 \times 1,5 + 0.4)e^{-0.5 \times 1.5} + 0.04 \approx 0.796$

A taxa máxima de CO₂ foi cerca de 80% e foi atingida 1,5 min, ou seja, 1 min e 30 s após o

exaustor ter sido ligado.

t	0		1,5		25		
g'		+	0	_			
g	0,44	7		Z			
	Mín		Máx.		Mín.		

4.3. Pretende-se resolver a inequação d(t) < 0.045.

Começamos por determinar, recorrendo à calculadora e escolhendo uma janela de visualização adequada, a abcissa do ponto de interseção do gráfico da função dada – $y_1 = d(x) = (0.8x + 0.4)e^{-0.5x} + 0.04$ – com a reta de equação $y_2 = 0.045$.

Foi obtido o seguinte resultado:

Como a função é decrescente para $t \ge 1,5$, podemos concluir que a partir dos 15,72 minutos, ou seja, a partir dos 15 min e 43 s, a taxa de CO_2 existente nesse ambiente se situou abaixo de 4,5 %. Logo, o exaustor pode ser considerado eficiente.

5.
$$g(x) = \begin{cases} e^{2x} - 7e^x & \text{se } x \le 0 \\ \sin(2x) - x & \text{se } 0 < x < \pi \end{cases}$$

5.1. No intervalo $]0, \pi[$,

g'

$$g'(x) = (\sin(2x) - x)' = 2\cos(2x) - 1$$

$$g'(x) = 0 \land x \in]0, \pi[\Leftrightarrow 2\cos(2x) - 1 = 0 \land x \in]0, \pi[\Leftrightarrow \cos(2x) = \frac{1}{2} \land 2x \in]0, 2\pi[\Leftrightarrow 2x = \frac{\pi}{3} \lor 2x = 2\pi - \frac{\pi}{3} \Leftrightarrow 2x = \frac{\pi}{3} \lor 2x = \frac{5\pi}{3} \Leftrightarrow x = \frac{\pi}{6} \lor x = \frac{5\pi}{6}$$

$$x = \frac{\pi}{3} \lor 2x = \frac{5\pi}{3} \Leftrightarrow x = \frac{\pi}{6} \lor x = \frac{5\pi}{6}$$

A função g é estritamente crescente em $\left]0,\frac{\pi}{6}\right]$ e em $\left[\frac{5\pi}{6},\pi\right[$ e estritamente

0

decrescente em $\left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$. A função g tem máximo relativo para $x = \frac{\pi}{6}$ e um mínimo relativo para $x = \frac{5\pi}{6}$.

5.2. O declive da reta tangente ao gráfico no ponto de abcissa $\frac{\pi}{2}$ é igual a $g'\left(\frac{\pi}{2}\right)$.

$$g'\left(\frac{\pi}{2}\right) \Leftrightarrow 2\cos\left(2\times\frac{\pi}{2}\right) - 1 = 2\cos\pi - 1 = 2\times(-1) - 1 = -3$$

Trata-se de determinar, no intervalo $]-\infty,0[$, a solução da equação g'(x)=-3.

Em
$$]-\infty,0[, g'(x) = (e^{2x} - 7e^x)' = 2e^{2x} - 7e^x.$$

 $g'(x) = -3 \land x \in]-\infty,0[\Leftrightarrow$
 $\Leftrightarrow 2e^{2x} - 7e^x = -3 \land x \in]-\infty,0[\Leftrightarrow$
 $\Leftrightarrow 2(e^x)^2 - 7e^x + 3 = 0 \land x \in]-\infty,0[\Leftrightarrow$
 $\Leftrightarrow (e^x = \frac{2}{4} \lor e^x = 3) \land x \in]-\infty,0[\Leftrightarrow$
 $\Leftrightarrow (x = \ln \frac{1}{2} \lor x = \ln 2) \land x \in]-\infty,0[\Leftrightarrow$
 $\Leftrightarrow x = \ln 2^{-1} \Leftrightarrow x = -\ln 2$

Cálculo auxiliar:

$$\Leftrightarrow e^{x} = \frac{7 \pm \sqrt{49 - 4 \times 3 \times 2}}{4} \land x \in]-\infty, 0[$$

$$\Leftrightarrow e^{x} = \frac{7 \pm 5}{4} \land x \in]-\infty, 0[\Leftrightarrow$$

$$\Leftrightarrow \left(e^{x} = \frac{2}{4} \lor e^{x} = 3\right) \land x \in]-\infty, 0[$$

$$|\ln 2 > 0$$

A abcissa de A é $x = -\ln 2$.

6.
$$f_a(x) = x + a e^{-x}$$

6.1.
$$f_a'(x) = 1 + a \times (-e^{-x}) = 1 - ae^{-x}$$

 $f_a'(x) = 0 \Leftrightarrow 1 - ae^{-x} = 0 \Leftrightarrow ae^{-x} = 1 \Leftrightarrow e^{-x} = \frac{1}{a} \Leftrightarrow$
 $\Leftrightarrow -x = \ln\left(\frac{1}{a}\right) \Leftrightarrow -x = \ln a^{-1} \Leftrightarrow -x = -\ln a \Leftrightarrow x = \ln a$

х	$-\infty$	ln a	+∞
$f_a'(x)$	_	0	+
$f_a(x)$	Z		7

Mín.

Cálculo auxiliar:

$$f'_{a}(x) < 0 \Leftrightarrow 1 - ae^{-x} < 0 \Leftrightarrow ae^{-x} > 1 \Leftrightarrow e^{-x} > \frac{1}{a} \Leftrightarrow$$

$$\Leftrightarrow -x > \ln\left(\frac{1}{a}\right) \Leftrightarrow -x > -\ln a \Leftrightarrow x < \ln a$$

Para cada $a \in \mathbb{R}^+$, a função f_a é decrescente em $]-\infty$, $\ln a]$ e crescente em $[\ln a, +\infty[$. Logo, para cada $a \in \mathbb{R}^+$ a função f_a admite um mínimo para $x = \ln a$.

6.2.
$$f_a(\ln a) = \ln a + a e^{-\ln a} = \ln a + a e^{\ln a^{-1}} = \ln a + a \times a^{-1} = \ln a + 1$$

O ponto do gráfico correspondente ao mínimo de f_a tem coordenadas $(\underbrace{\ln a}_x, \underbrace{\ln a + 1}_{y=x+1})$, ou seja, pertence à reta de equação y = x + 1.