Name	Date		

PHYSICS 214 HOMEWORK FOR LAB 11: HEAT ENGINES

(Due at the beginning of Lab 12)

1. Fig. CP21.74 on p. 599 shows a typical cycle for one cylinder of a typical Diesel engine with a displacement V_{max} - V_{min} of 1000 cm³ and a compression ratio V_{max}/V_{min} =21. The engine takes in air at 25 °C and 1 atm pressure. At point 2 the fuel is injected. The combustion of the fuel provides 1000 J of heat energy per cycle. a) Describe in words what each step of the cycle represents (what type of process; expansion/compression):

1→2:

2→3:

3→4:

4→1:

b) Find p, V, and T at each of the four corners of the cycle. Show your work and summarize your results in the table. Keep a few extra figures to avoid rounding error in the next question.

	p (atm)	V (cm ³)	T (K)
1	1	1050	298
2		50	
3			
4		1050	

c) Calculate the work done by the cylinder during each part of the cycle, and use these to find the net work done by the engine in one cycle, W_{out} . $1{\to}2$
2→3
3→4
4→1
W_out
d) Calculate the power output in hp (1 hp=746 W) of an 8-cylinder Diesel engine that's running at 2400 rpm (each cylinder fires once during a single revolution).
e) Find the thermal efficiency of the engine and compare it to the maximum possible (Carnot) efficiency between the maximum and minimum temperatures in the cycle.