Methoden der Wissenschaftsforschung Network analysis; an introduction

Ali (Aliakbar Akbaritabar)

Email: Akbaritabar@DZHW.eu

21/11/2019

- 1 What is relational view and network analysis?
- 2 Ethnography of network ties! Context of interactions
- How to gather and use network data?
- Possible questions to ask!
- **6** A real life example from science studies
- 6 Where to next?!

- What is relational view and network analysis?
- 2 Ethnography of network ties! Context of interactions
- One of the state of the stat
- 4 Possible questions to ask!
- **5** A real life example from science studies!
- 6 Where to next?!

- 1 What is relational view and network analysis?
- 2 Ethnography of network ties! Context of interactions
- 3 How to gather and use network data?
- 4 Possible questions to ask!
- **6** A real life example from science studies
- 6 Where to next?!

- 1 What is relational view and network analysis?
- 2 Ethnography of network ties! Context of interactions
- 3 How to gather and use network data?
- 4 Possible questions to ask!
- 6 A real life example from science studies!
- 6 Where to next?!

- 1 What is relational view and network analysis?
- 2 Ethnography of network ties! Context of interactions
- 3 How to gather and use network data?
- 4 Possible questions to ask!
- **5** A real life example from science studies!
- 6 Where to next?!

- 1 What is relational view and network analysis?
- 2 Ethnography of network ties! Context of interactions
- 3 How to gather and use network data?
- 4 Possible questions to ask!
- **5** A real life example from science studies!
- 6 Where to next?!

What is this?!

Now what?!

ID	Name	Age Political view		Education
1	Tom	24 left		NA
2	Sara	22	right	ВА
3	Bill	30 neutral		MA
4	Margaret	31	NA	PhD

A poll/survey results?

Variables/attributes

ID	Name	Age	Political view	Education
1	Tom	24	left	NA
2	Sara	22	right	ВА
3	Bill	30	neutral	MA
4	Margaret	31	NA	PhD

A variable by observation table

What if respondents know each other?!

Different contexts of familiarity

· Family, college, gym, ...

Stories behind ties!

Independence of observations?

Adjacency (familiarity) matrix

Read Edge List as CSV

edge_list2_use <- read_csv("./data/humans_ties.csv")
kable(edge_list2_use)</pre>

source	target	weight	label
Tom Sara Sara Bill Bill Bill Margaret	Sara Bill Margaret Tom Sara Margaret Bill	0.5 1.0 0.5 0.5 1.0 1.0	Acquaintance Sibling Acquaintance Acquaintance Sibling Friend Acquaintance

Convert it to a graph object

Bill

[4] Bill

[7] Margaret->Bill

->Tom

```
gg = graph_from_data_frame(d = edge_list2_use, directed = TRUE)
print(gg)

## IGRAPH 40855f1 DNW- 4 7 --
## + attr: name (v/c), weight (e/n), label (e/c)
## + edges from 40855f1 (vertex names):
## [1] Tom ->Sara Sara ->Bill Sara ->Margaret
```

Bill

->Margaret

->Sara

Plot the graph with a layout (directed)

```
set.seed(4535235)
gg_layout = layout.fruchterman.reingold(graph = gg)
plot(gg, layout = gg_layout, edge.label = NA)
```


Plot the graph with a layout (un-directed)

```
gg_undirected = graph_from_data_frame(d = edge_list2_use, directed = F)
gg_undirected = simplify(graph = gg_undirected, remove.multiple = T)
plot(gg_undirected, layout = gg_layout, edge.label = NA)
```


Add a new attribute to nodes?

```
print(V(gg))
## + 4/4 vertices, named, from 40855f1:
## [1] Tom
               Sara
                       Bill
                                Margaret
V(gg)$gender <- c('male', 'female', 'male', 'female')
V(gg)$shape <- c('circle', 'square', 'circle', 'square')
print(gg)
## TGRAPH 40855f1 DNW- 4 7 --
## + attr: name (v/c), gender (v/c), shape (v/c), weight (e/n), label
## | (e/c)
## + edges from 40855f1 (vertex names):
## [1] Tom ->Sara Sara ->Bill
                                        Sara
                                               ->Margaret
## [4] Bill ->Tom
                        Bill ->Sara Bill
                                                  ->Margaret
## [7] Margaret->Bill
```

Color and shape of nodes based on gender

Name ties based on types

```
plot(gg, edge.label = E(gg)$label, layout = gg_layout)
```


Weight ties based on importance

plot(gg, edge.width = E(gg)\$weight*5, edge.label = E(gg)\$weight, layout = gg_layout)

Mixture of weight/label

```
plot(gg, edge.label = E(gg)$label, edge.width = E(gg)$weight*5, layout = gg_layout)
```


A glimpse to more serious analysis

- After simple visualization (if possible), a five number summary!
 - 1 Size: V, E
 - **2 Density** (ratio of ties to possible ties, 1 = fully connected)
 - 3 Components & (dis)connectivity
 - 4 Diameter (how compact the network is)
 - 6 Clustering Coefficient (transitivity)
- Centrality in network
 - Degree, Closeness, Betweenness, Eigenvector, . . .

In-degree of a node

```
plot(gg, edge.label = NA, edge.width = E(gg)$weight*5,
    vertex.label = degree(gg, mode = 'in'), layout = gg_layout)
```


Out-degree of a node

```
plot(gg, edge.label = NA, edge.width = E(gg)$weight*5,
    vertex.label = degree(gg, mode = 'out'), layout = gg_layout)
```


Degree of a node

A real life example from science studies!

Sociological theories (& SNA conceptualization)

- Matteo effect, winner takes all?
 - Highly prolific scientists attract higher collaborations from other scientists?
 - Attaching preferably to a few star scientists/leaders?
- Fragmentation of ideas, sociology as a interstitial science?
 - Methodologists bridging the islands?
- [Sociological] small world of disconnected islands?
- Core of leaders and periphery of followers?

Coauthorship of Italian sociologists

Communities in the giant component

What can we learn from these communities? $(1/2)^{DZHW}$

Table 2: Gender composition and internationality of members of the communities detected from the giant component (Percentages are calculated by rows separately for gender and country)

		Gender			Country			
Community	# members	Female	Male	Missing Gender	Europe	Italy	Other	Missing Country
0	254	43%	54%	3%	54%	29%	11%	5%
1	142	50%	49%	1%	36%	55%	6%	3%
2	122	38%	61%	1%	37%	56%	3%	4%
3	103	45%	54%	1%	41%	44%	5%	11%
4	91	47%	49%	3%	32%	57%	9%	2%

Table 3: Sectors composition of members of the communities detected from the giant component (Percentages are calculated by rows)

		Scientific Disciplinary Sectors							
Community	# members	postdoc	SPS/07	SPS/08	SPS/09	SPS/10	SPS/11	Missing Sector	
0	254	2%	1%	5%	0	0%	0%	91%	
1	142	2%	6%	3%	8%	1%	1%	78%	
2	122	5%	10%	1%	7%	0	1%	76%	
3	103	2%	4%	2%	12%	1%	0	80%	
4	91	1%	7%	7%	0	1%	2%	82%	

What can we learn from these communities? $(2/2)^{DZHW}$

- 65% foreigners
- Medium, science communication, social medium, internet, political communication & public opinion

Where to next?!

Awesome network analysis list: https://github.com/briatte/awesome-network-analysis

Best of luck in exploring networks!