MATH 337 - Fall 2024 T.-P. Nguyen

25 Lecture 25: Orthogonal Diagonalization

25.1 Recall:

- A square matrix **A** is symmetric if $\mathbf{A}^T = \mathbf{A}$
- A matrix **A** is an orthogonal matrix if **A** is a square real matrix and $\mathbf{A}^T \mathbf{A} = \mathbf{I}$.
- A real square matrix **A** is orthogonal is and only if $\mathbf{A}^T = \mathbf{A}^{-1}$
- A square matrix **A** is orthogonal if and only if columns of **A** form and orthonormal set.

25.2 Orthogonal diagonalization: definitions and examples

Definition 25.1. An $n \times n$ matrix **A** is said to be orthogonally diagonalizable if there are an orthogonal matrix **P** (with $P^T = \mathbf{P}^{-1}$) and a diagonal matrix **D** such that

$$\mathbf{A} = \mathbf{P} \mathbf{D} \mathbf{P}^T$$

Example 25.1. Diagonalize matrix below if possible

$$\mathbf{A} = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$$

Solution: The characteristic polynomial of **A** is

$$p_{\mathbf{A}}(\lambda) = -\lambda^3 + 16\lambda^2 - 90\lambda + 144 = -(\lambda - 3)(\lambda - 6)(\lambda - 8).$$

 $p_{\mathbf{A}}(\lambda) = 0$ has three roots, $\lambda = 3$, $\lambda = 6$, $\lambda = 8$. Thus **A** has three distinct real eigenvalues $\lambda = 3$, $\lambda = 6$, and $\lambda = 8$.

Solving the homogeneous system $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ for each eigenvalue λ_1, λ_2 , and λ_3 , we obtain the corresponding eigenvectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ (for } \lambda_1 = 3); \qquad \mathbf{v}_2 = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix} \text{ (for } \lambda_2 = 6), \qquad \mathbf{v}_3 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \text{ (for } \lambda_3 = 8)$$

We observe that the set formed by $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$, which is $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\-1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}$ is orthogonal. We now

build an orthonormal set from this one by normalizing each vector in the set. Define

$$\mathbf{u}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}, \qquad \mathbf{u}_{2} = \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|} = \begin{bmatrix} \frac{-1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{bmatrix}, \qquad \mathbf{u}_{3} = \frac{\mathbf{v}_{3}}{\|\mathbf{v}_{3}\|} = \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix},$$

MATH 337 - Fall 2024 T.-P. Nguyen

then the set $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is orthonormal. We next define

$$\mathbf{P} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{D} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 8 \end{bmatrix},$$

then A has the orthogonal diagonalization

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^T$$
.

Note that if **A** is orthogonally diagonalizable then

$$\mathbf{A}^T = (\mathbf{P}\mathbf{D}\mathbf{P}^T)^T = (\mathbf{P}^T)^T \mathbf{D}^T \mathbf{P}^T = \mathbf{P}\mathbf{D}\mathbf{P}^T.$$

Thus, **A** is symmetric.

25.3 Eigenvalues and eigenvectors of symmetric matrices and orthogonally diagonalizable

Theorem 14. If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

We see from Example 25.1 that matrix **A** is symmetric and three eigenvalues $\lambda = 3$, $\lambda = 6$, and $\lambda = 8$ are distinct. So, any two distinct vectors in the set of eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are orthogonal.

Theorem 15. An $n \times matrix \mathbf{A}$ is orthogonally diagonalizable if and only if \mathbf{A} is a symmetric matrix.

Example 25.2. Orthogonally diagonalize the matrix
$$\mathbf{A} = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

Solution:

The characteristic polynomial is

$$-\lambda^{3} + 12\lambda^{2} - 21\lambda - 98 = -(\lambda + 2)(\lambda - 7)^{2}.$$

Equation $p_{\mathbf{A}}(\lambda) = 0$ has to distinct roots, $\lambda = -2$, $\lambda = 7$. Thus **A** has two distinct real eigenvalues $\lambda = -2$ and $\lambda = 7$ (of multiplicity 2).

Solving the homogeneous system $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ for each eigenvalue -2 and 7, we obtain: For

$$\lambda = -2$$
, **A** has an eigenvector $\mathbf{v}_1 = \begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix}$. For $\lambda = 7$, **A** has two linearly independent eigenvectors

Solving the homogeneous system
$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$
 for each eigenvalue -2 and 7, we obtain: For $\lambda = -2$, \mathbf{A} has an eigenvector $\mathbf{v}_1 = \begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix}$. For $\lambda = 7$, \mathbf{A} has two linearly independent eigenvectors $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$. We see that \mathbf{v}_1 is orthogonal to both \mathbf{v}_2 and \mathbf{v}_3 but \mathbf{v}_2 is not orthogonal

to \mathbf{v}_3 although they are linearly independent. Note that \mathbf{v}_2 and \mathbf{v}_3 form a basis for the eigenspace associated with the eigenvector $\lambda = 7$. We now need to find an orthogonal basis formed by two vectors

MATH 337 - Fall 2024 T.-P. Nguyen

 w_2 and \mathbf{w}_3 , for this eigenspace using \mathbf{v}_2 and \mathbf{v}_3 . To do that, we use the Gram-Schmidt process. Let $\mathbf{w}_2 = \mathbf{v}_2$ and find w_3 as

$$\mathbf{w}_3 = \mathbf{v}_3 - \frac{\mathbf{v}_3 \cdot \mathbf{w}_2}{\|\mathbf{w}_2\|^2} \mathbf{w}_2 = \begin{bmatrix} -1\\2\\0 \end{bmatrix} - \frac{-1}{2} \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1\\4\\1 \end{bmatrix}.$$

Then $\{\mathbf{w}_2, \mathbf{w}_3\}$ is an orthogonal set in the eigenspace for $\lambda = 7$. (Note that the number of vector in the basis equals the multiplicity of the eigenvalues in this case), and the set $\{\mathbf{v}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is the orthogonal set of eigenvectors of matrix \mathbf{A} . We normalize each vector in this set to obtain an orthonormal basis for the eigenspace for matrix \mathbf{A} , which is

$$\mathbf{u}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = \frac{1}{3} \begin{bmatrix} -2\\ -1\\ 2 \end{bmatrix} = \begin{bmatrix} -2/3\\ -1/3\\ 2/3 \end{bmatrix}, \quad \mathbf{u}_{2} = \frac{\mathbf{w}_{2}}{\|\mathbf{w}_{2}\|} = \begin{bmatrix} 1/\sqrt{2}\\ 0\\ 1/\sqrt{2} \end{bmatrix}, \quad \mathbf{u}_{3} = \frac{\mathbf{w}_{3}}{\|\mathbf{w}_{3}\|} = \begin{bmatrix} -1/\sqrt{18}\\ 4/\sqrt{18}\\ 1/\sqrt{18} \end{bmatrix}.$$

Hence $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthonormal set. Let

$$\mathbf{P} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix} = \begin{bmatrix} -2/3 & 1/\sqrt{2} & -1/\sqrt{18} \\ -1/3 & 0 & 4/\sqrt{18} \\ 2/3 & 1/\sqrt{2} & 1/\sqrt{18} \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$

Then **P** orthogonal matrix, and the orthogonal diagonalization of **A** is $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^T$.

25.4 Spectral Decomposition

Suppose $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^T$, where the columns of \mathbf{P} are orthonormal eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_n$ of \mathbf{A} and the corresponding eigenvalues $\lambda_1, \dots, \lambda_n$ are in the diagonal matrix \mathbf{D} . Then

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{T} = \begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & \mathbf{u}_{1}^{T} \\ & \ddots & \\ 0 & \lambda_{n} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_{1}\mathbf{u}_{1} & \cdots & \lambda_{n}\mathbf{u}_{n} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{bmatrix} = \lambda_{1}\mathbf{u}_{1}\mathbf{u}_{1}^{T} + \lambda_{2}\mathbf{u}_{2}\mathbf{u}_{2}^{T} + \cdots + \lambda_{n}\mathbf{u}_{n}\mathbf{u}_{n}^{T}$$

This representation of A is called a spectral decomposition of \mathbf{A} because it breaks up \mathbf{A} into pieces determined by the spectrum (eigenvalues) of \mathbf{A} . Each term $\lambda_j \mathbf{u}_j \mathbf{u}_j^T$ is an $n \times n$ matrix of rank 1. Furthermore, each matrix $\mathbf{u}_j \mathbf{u}_j^T$ is a projection matrix in the sense that for each \mathbf{x} in \mathbb{R}^n , the vector $(\mathbf{u}_j \mathbf{u}_j^T) \mathbf{x}$ is the orthogonal projection of \mathbf{x} onto the subspace spanned by \mathbf{u}_j .

Example 25.3. Construct a spectral decomposition of the matrix A that has the orthogonal diagonalization

$$A = \begin{bmatrix} 7 & 2 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 8 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

MATH 337 - Fall 2024T.-P. Nguyen

Solution: Let
$$\mathbf{u}_1 = \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}$$
 and $\mathbf{u}_2 = \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$. Then $\mathbf{A} = 8\mathbf{u}_1\mathbf{u}_1^T + 3\mathbf{u}_2\mathbf{u}_2^T$

Suggested problems 25.5

25.5 Suggested problems

Problem 25.1. Orthogonally diagonalize the matrix
$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$