AUTHOR INDEX

Ahmed, M., Giesbrecht, G.G., Serrette, C., Georgopoulos, D. and Anthonisen, N.R., Ventilatory response to hypoxia in elderly humans, 343

Anthonisen, N.R., see Ahmed, M., 343

Ar, A., Girard, H. and Rodeau, J.L., Oxygen uptake and chorioallantoic blood flow changes during acute hypoxia in the 16 day chicken embryo, 295

Atton, L., see Cormier, Y., 179

Babb, A.L., see Tsu, M.E., 261

Bartlett, Jr., D., see Furilla, R.A., 47

Basner, R.C., Ringler, J., Schwartzstein, R.M., Weinberger, S.E. and Woodrow Weiss, J., Phasic electromyographic activity of the genioglossus increases in normals during slow-wave sleep, 189

Birchard, G.F. and Tenney, S.M., Relationship between blood-oxygen affinity and blood volume, 365

Brown, R.H., see Parker, S.D., 323

Bruce, E.N., see Khatib, M.F., 115

Bureau, M., see Denjean, A., 201

Burtin, B., see Massabuau, J.-C., 103

Canet, E., see Denjean, A., 201

Carlin, J. I., see Hsia, C. C. W., 11

Cassidy, S.S., see Hsia, C.C.W., 11

Cherniack, N.S., see Kou, Y.R., 353

Chonan, T., Hida, W., Okabe, S., Izumiyama, T., Sakurai, M. and Takishima, T., Effects of focal cooling of the ventral medullary surface on breathing pattern and blood pressure in dogs, 77

Clark, R.J., see Hughes, J.M.B., 155

Coates, E.L., see Furilla, R.A., 47

Cormier, Y., Laviolette, M., Atton, L. and Sériès, F., Influence of lung volume on collateral resistance in normal man, 179

Cragg, P.A., see Kou, Y.R., 353

Criswell, D., see Powers, S.K., 1

Denjean, A., Canet, E., Praud, J.P., Gaultier, Cl. and Bureau, M., Hypoxia-induced bronchial responsiveness in awake sheep: role of carotid chemoreceptors, 201

De Vries, W.R., see Six, D.P.J., 277

Dodd, S., see Powers, S.K., 1

Douse, M. A. and Mitchell, G. S., Time course of temperature effects on arterial acid-base status in *Alligator mississippiensis*, 87

Eldridge, F.L., see Wagner, P.G., 129 Ernsberger, P., see Kou, Y.R., 353

Furilla, R.A., Coates, E.L. and Bartlett, Jr., D., The influence of venous CO₂ on ventilation in garter snakes, 47

Gaultier, Cl., see Denjean, A., 201

Georgopoulos, D., see Ahmed, M., 343

Giesbrecht, G.G., see Ahmed, M., 343

Girard, H., see Ar, A., 295

Guénard, H., see Manier, G., 143

Hempleman, S.C. and Hughes, J.M.B., Estimating exercise DL_{O2} and diffusion limitation in patients with interstitial fibrosis, 167

Hida, W., see Chonan, T., 77

Hirshman, C.A., see Parker, S.D., 323

Hlastala, M.P., see Tsu, M.E., 261

Hsia, C.C.W., Carlin, J.I., Ramanathan, M., Cassidy, S.S. and Johnson, Jr., R.L., Estimation of diffusion limitation after pneumonectomy from carbon monoxide diffusing capacity, 11

Hughes, J. M. B., Lockwood, D. N. A., Jones, H. A. and Clark, R. J., DL_{CO}/\dot{Q} and diffusion limitation at rest and on exercise in patients with interstitial fibrosis, 155

Hughes, J.M.B., see Hempleman, S.C., 167

Izumiyama, T., see Chonan, T., 77

Jackson, D. C., see Wasser, J. S., 239 Johnson, Jr., R. L., see Hsia, C. C. W., 11 Jones, H. A., see Hughes, J. M. B., 155

Kakuta, Y., Sasaki, H. and Takishima, T., Effect of artificial surfactant on ciliary beat frequency in guinea pig trachea, 313

Khatib, M. F., Oku, Y. and Bruce, E. N., Contribution of chemical feedback loops to breath-tobreath variability of tidal volume, 115

Kobayashi, H., Pelster, B., Piiper, J. and Scheid, P., Diffusion and perfusion limitation in alveolar O₂ exchange: shape of the blood O₂ equilibrium curve, 23

Kobayashi, H., Piiper, J. and Scheid, P., Effect of the curvature of the O₂ equilibrium curve on alveolar O₂ uptake: theory, 255

Kou, Y.R. and Lee, L.-Y., Mechanisms of cigarette smoke-induced stimulation of rapidly adapting receptors in canine lungs, 61

Kou, Y.R., Ernsberger, P., Cragg, P.A., Cherniack, N.S. and Prabhakar, N.R., Role of α_2 adrenergic receptors in the carotid body response to isocapnic hypoxia, 353

Lahiri, S., see Pokorski, M., 211

Lai, Y.-L., Role of the axon reflex in capsaicininduced bronchoconstriction in guinea pigs,

Laviolette, M., see Cormier, Y., 179 Lawler, J., see Powers, S. K., 1 Lee, L.-Y., see Kou, Y. R., 61 Lockwood, D. N. A., see Hughes, J. M. B., 155 Luijendijk, S. C. M., see Six, D. P. J., 277

Manier, G., Moinard, J., Téchoueyres, P., Varène, N. and Guénard, H., Pulmonary diffusion limitation after prolonged strenuous exercise, 143

Massabuau, J.-C., Burtin, B. and Wheathly, M., How is O₂ consumption maintained independent of ambient oxygen in mussel Anodonta cygnea?, 103

Mitchell, G.S., see Douse, M.A., 87 Moinard, J., see Manier, G., 143

Okabe, S., see Chonan, T., 77 Oku, Y., see Khatib, M.F., 115

Olson, L.G., Ulmer, L.G. and Saunders, N.A., Mechanical properties of the rabbit upper airway during hypoxia and hypercapnia, 333 Parker, S.D., Brown, R.H. and Hirshman, C.A., Differential effect of glucocorticoids on pulmonary responses and eosinophils, 323

Pelster, B., see Kobayashi, H., 23

Piiper, J., see Kobayashi, H., 23

Piiper, J., see Kobayashi, H., 255

Pokorski, M. and Lahiri, S., Endogenous opiates and ventilatory acclimatization to chronic hypoxia in the cat, 211

Powers, S. K., Lawler, J., Criswell, D., Dodd, S. and Silverman, H., Age-related changes in enzyme activity in the rat diaphragm, 1

Prabhakar, N.R., see Kou, Y.R., 353

Praud, J.P., see Denjean, A., 201

Prechtl, J., see Wittmann, J., 375

Ramanathan, M., see Hsia, C.C.W., 11 Ringler, J., see Basner, R.C., 189 Rodeau, J.L., see Ar, A., 295

Sakurai, M., see Chonan, T., 77

Sasaki, H., see Kakuta, Y., 313

Saunders, N.A., see Olson, L.G., 333

Scheid, P., see Kobayashi, H., 23

Scheid, P., see Kobayashi, H., 255

Schwartzstein, R. M., see Basner, R. C., 189

Serrette, C., see Ahmed, M., 343

Silverman, H., see Powers, S.K., 1

Six, D.P.J., De Vries, W.R. and Luijendijk, S.C.M., Sloping alveolar plateaus of He and SF₆ measured in excised cat lungs ventilated at constant volume by pressure changes, 277

Smatresk, N.J. and Smits, A.W., Effects of central and peripherai chemoreceptor stimulation on ventilation in the marine toad, *Bufo marinus*, 223

Smits, A.W., see Smatresk, N.J., 223 Sugiyama, E.M., see Tsu, M.E., 261 Sériès, F., see Cormier, Y., 179

Takishima, T., see Chonan, T., 77 Takishima, T., see Kakuta, Y., 313 Tenney, S.M., see Birchard, G.F., 365

Tsu, M.E., Babb, A.L., Sugiyama, E.M. and Hlastala, M.P., Dynamics of soluble gas exchange in the airways: II. Effects of breathing conditions, 261

Téchoueyres, P., see Manier, G., 143

Ulmer, L. G., see Olson, L. G., 333

Varène, N., see Manier, G., 143

Wagner, P. G. and Eldridge, F. L., Development of short-term potentiation of respiration, 129

Warburton, S.J., see Wasser, J.S., 239

Wasser, J. S., Warburton, S. J. and Jackson, D. C., Extracellular and intracellular acid-base effects of submergence anoxia and nitrogen breathing in turtles, 239 Weinberger, S.E., see Basner, R.C., 189 Wheathly, M., see Massabuau, J.-C., 103 Wittmann, J. and Prechtl, J., Respiratory function

of catecholamines during the late period of avian development, 375

Woodrow Weiss, J., see Basner, R.C., 189

SUBJECT INDEX

Acid base balance	Blood
and anoxia in turtle, 239	total-volume, 365
prolonged temperature changes, 87	Blood gases
Adrenoceptors	and temperature in ectotherms, 87
and hypoxic response, 353	Blood O ₂ equilibrium curve, 255
Aging	effects of alinearity on alveolar O ₂ exchange, 23
and diaphragm metabolic activity, 1	Bronchoconstriction
and ventilatory response to hypoxia, 343	and cigarette smoke, 61
Airway	and lung receptors, 61
clearance, 313	induced by capsaicin, 35
heat, 261	Buffer value, 239
hyperresponsiveness and eosinophils, 323 reactivity, 35	in alligator, 87
resistance, 201, 323	Carotid body, 353
water and gas exchange, 261	Carotid chemoreceptors
Alveolar gas exchange, 23	and hypoxia-induced bronchial responsiveness,
Alveolar lavage, 323	201
Alveolar lung	effects of opiate antagonists, 211
O ₂ exchange, 255	Catecholamines, 375
Alveolar-arterial Po2 difference, 167	Central respitarory neurons, 129
Animal	Chemical feedback, 115
alligator, 87	Chemoreceptors, see also Carotid chemoreceptors
cat, 129, 211	central, 77
chicken, 295, 375	in the toad, 223
dog, 11, 61, 77	Ciliary beat frequency
freshwater mussel, 103	and artificial surfactant, 313
greyhound dog, 323	Carbon dioxide
guinea pig, 35, 313	stimulation of respiration, 47
man, 143, 155, 179, 189, 343	Collateral ventilation, 179
rat, 1, 115	Control of breathing, 129, 211
sheep, 201	chemical feedback, 115
snake, 47	chemoreceptors in the toad, 223
toad, 239	response to CO ₂ in snake, 47
turtle, 239	ventral medulla, 77
Anoxia	Control of vasomotor tone
and acid base balance in turtle, 239	ventral medulla, 77
Arterial blood	Convection
composition in mussel, 103	in alveolar gas exchange, 255
Asthma	Cryptogenic fibrosing alveolitis, 155
and hypoxia, 201	
Axon reflex	

and capsaicin-induced bronchoconstriction, 35

Development, 374	and diffusion limitation, 23
Diaphragm	and opiate antagonist, 211
metabolic properties and age, 1	and pressure in upper airways, 333
Diffusing capacity	tolerance of $-$ and P_{50} , 365
for CO, 11, 143, 155	ventilatory response to -, 343
for O ₂ , 167	
for NO, 143	Inert gases
predicted vs observed, 11	He, 277
pulmonary, 143	SF ₆ , 277
Diffusion	
and alveolar gas exchange, 155, 167, 255	Limitation for alveolar O2 exchange
Drug	by diffusion, 23
capsaicin, 35	by perfusion, 23
chlorisondamine, 35	Lung disease
hexamethonium, 61	interstital fibrosis, 155
isoproterenol, 61	Lung receptors
naloxone, 211	irritant, 61
TTX, 35	rapidly adapting, 61
1174, 55	response to cigarette smoke, 61
Egg	Lung volume
metabolism in hypoxie and hyperoxia, 295	and collateral resistance, 179
respiration, 295	and conateral resistance, 179
Electrolyte in blood	Metabolism
and temperature in ectotherms, 87	depression by anoxia in turtle, 239
Enzymes	Methylprednisolone
glycolytic, 1	and airway hyperresponsiveness, 323
of Krebs cycle, 1	Model
Exercise	for alveolar gas exchange, 23
and alveolar O ₂ uptake, 23	for gas exchange in airways, 261
and lung diffusing capacity, 11	Obstanting slam annua 180
and pulmonary diffusing capacity, 143	Obstructive sleep apnea, 189
hyperpnea, 129	Oxygen affinity
in patients with interstitial lung disease, 155	of hemoglobin and blood volume, 36
	Oxygen consumption
Gas exchange	dependent on inspired P _{O2} , 103
cutaneous – in snake, 47	in mussel, 103
in airways, 261	of chicken egg, 295
in alveolar lung, 255	
Gas mixing in the lung, 277	Pattern of breathing
	and ventral medulla, 77
Heat exchange	breath-to-breath variability, 115
in airways, 261	рН
Humidification	in mussel, 103
of air in upper airways, 261	Pneumonectomy
Hypercapnia	and diffusing capacity, 11
and pressure in upper airways, 333	Pressure breathing, 277
Hypoxemia at rest	
on exercise, 167	Respiratory afferents, 129
Hypoxia, 375	Respiratory muscles
α-adrenoceptors, 353	diaphragm, 1
and bronchial responsiveness, 201	genioglossus, 189
	D

Response to citric acid, 323

SUBJECT INDEX

Short-term potentiation, 129 Single-breath washout, 277 Sleep apnea, 189 Smoke, 61 Surfactant artificial, 313

Temperature and acid-base status in ectotherms, 87

Upper airway muscles of -, 333 resistance during sleep, 189

Vagotomy and response to CO₂ in snake, 47 Ventral medulla focal surface cooling, 77

