Data Communication (DC)

Lecture 4b

Overview of the contents

- High-level Data Link Control (HDLC)
 - Configurations and transfer modes
 - Framing

<u>High-Level Data Link Control (HDLC)</u> is a <u>bit-oriented protocol</u>. It can communicate via both Point-to-Point and Multi-point links. It implements the Stop-and-Wait protocol and contains ARQ.

Although this protocol is more a theoretical issue than practical, most of the concept defined in this protocol is the basis for other practical protocols such as PPP or the Ethernet protocol.

This protocol contains two transfer modes:

- <u>Normal Response Mode (NRM)</u>
- <u>A</u>synchronous <u>B</u>alanced <u>M</u>ode (ABM)

HDLC

In **Normal Response Mode (NRM)** the <u>station configuration is unbalanced</u>. That is, we have a primary station and one or more secondary stations.

- The primary station can send commands.
- Secondary stations can only respond.
- The configuration can be point-to-point or multi-point links.

In **Asynchronous Balanced Mode (ABM)** the <u>station configuration is</u> balanced.

That is, we have a point-to-point connection with two equal stations, both of which can send commands and respond to them.

This transfer mode is the most widely used today.

HDLC Frames – three types

- I-frame: Information frames (data transport)
- S-frame: Supervisory frames (control messages)
- U-frame: Unnumbered frames (management messages)

HDLC Frames - Fields

Flag field:

The field has a length of 8-bit with a pattern: **01111110**.

The field is used both at the beginning and in the end of a frame.

The flag also serves as a synchronization pattern for the receiver.

HDLC Frames - Fields

Address field:

This field contains the address of the secondary station that is to receive the HDLC Frame if it is transmitted from a primary station. If it's a response from a secondary station to a primary station, then contains the field address from the secondary station.

HDLC Frames - Fields

Control field:

This field is 1-2 bytes long, it is used for flow and error control. The interpretation of the individual bits depends on the frame type. We will take a closer look at this field later.

HDLC Frames - Fields

Information field:

This field contains the user's data obtained from the network layer.

It may also contain management information.

The length of the field may vary from network to network.

HDLC Frames - Fields

FCS field:

This field is called the <u>F</u>rame <u>C</u>heck <u>S</u>equence (FCS) and contains the HDLC Frame's CRC check, it is used for error detection. The field is either 2- or 4-byte long.

HDLC Frames - Fields: Control field

Control field for I-Frames

Frames are designed to transmit user data. These Frames can also contain flow and error control information (piggybacking).

- Bit 0: defines the type (I-Frame) and is always 0
- **Bit 1 3**: is called **N(S)** and defines a sequence number for the frame. Here you can have sequence numbers between 0 and 7. But if the extended version of the control field (2 bytes) is used, there can be more sequence numbers.
- **Bit 4**: the **P/F bit** can have two meanings:
 - Server to client: (Request) here the meaning P=Poll is used.
 P is "0" for all frames except the last one, where P = 1.
 This indicates that there is a "poll" for a response from the client.
 - Client to Server: (Response) here the meaning F=Final is used.
 F is "0" for all frames except the last one, where F = 1.
 This indicates that it is the "Final" frame from the client.
- **Bit 5 7**: is called **N(R)** and defines an acknowledgment number when using <u>piggybacking</u>.

HDLC example P/F bit

Multi-point

HDLC example P/F bit

Multi-point

HDLC Frames - Fields: Control field

Control field for S-Frames

The <u>Supervisory Frame</u> is used for <u>flow and error control</u> when it is not possible or appropriate to use piggybacking (e.g., if a station itself does not have something it should have sent).

- Bit 0 1: defines the type (S-Frame) and is always 10.
- **Bit 2 3**: type code:
 - **00** = Receive Ready (**RR**) an ACK for error-free reception of a frame or group of frames.
 - O1 = Reject (REJ) a NAK negative acknowledgment (not as in selective repeat ARQ), but it can be used in Go-Back-N ARQ to inform a sender before a timeout occurs. This will make the protocol more efficient.
 - 10 = Receive not Ready (RNR) an ACK for error-free reception of a frame or group of frames. But the receiver is busy now and can not receive any more right now. it acts as a congestion-control mechanism.
 - **11** = <u>Selective reject</u> (**SREJ**) a NAK negative acknowledgment that can be used in the Selective Repeat ARQ protocol.

HDLC Frames - Fields: Control field

Control field for S-Frames (continued)

- **Bit 4**: The **P/F bit** can have two meanings:
 - Server to client: (Request) here the meaning P = Poll is used.
 P is "0" for all frames except the last one, where P = 1.
 This indicates that there is a "poll" for a response from the client.
 - Client to Server: (Response) here the meaning F = Final is used.
 F is "0" for all frames except the last one, where F = 1.
 This indicates that it is the "Final" frame from the client.
- **Bit 5 7**: is called **N(R)** and defines an acknowledgment number (ACK) or a negative acknowledgment number (NAK). This depends on the type of S-Frame, as indicated in bits 2 and 3.

HDLC Frames - Fields: Control field

Control field for U-Frames

<u>Unnumbered Frames</u> are used to <u>exchange session management</u> and control information between connected devices.

Like a S-Frame, this Frame also contains an information field. However, this is not used for user data, but for management data.

Code	Command	Response	Meaning
00 001	SNRM		Set normal response mode
11 011	SNRME		Set normal response mode, extended
11 100	SABM	DM	Set asynchronous balanced mode or disconnect mode
11 110	SABME		Set asynchronous balanced mode, extended
00 000	UI	UI	Unnumbered information
00 110		UA	Unnumbered acknowledgment
00 010	DISC	RD	Disconnect or request disconnect
10 000	SIM	RIM	Set initialization mode or request information mode
00 100	UP		Unnumbered poll
11 001	RSET		Reset
11 101	XID	XID	Exchange ID
10 001	FRMR	FRMR	Frame reject

HDLC: Connect/disconnect

SABM:

Set Asynchronous Balanced Mode

DISC:

Disconnect

UA:

Unnumbered Acknowledgment

HDLC: Piggybacking without errors

HDLC: Piggybacking with errors

Node A Node B I-frame (data frame 0) Control I-frame (data frame 1) Control I-frame (data frame 2) Control Discarded 8-frame (REJ 1), a NAK Control Here it says incorrectly I-frame (data frame 1) 2 is used in the book Control Resent I-frame (data frame 2) Control Resent S-frame (RR 3), an ACK Control Time Time