Exercise set # 2.2

Exercise 1. Consider the equation

$$\begin{cases} x' = x - y - x(x^2 + y^2) \\ y' = x + y - y(x^2 + y^2) \end{cases}$$

Compute the Poincaré map of it with respect to the section $\Sigma = \{(x,y) \in \mathbb{R}^2 : x > 0, y = 0\}$ in explicit form. Hint: Use polar coordinates.

Proof. Let us follow the hint and use polar coordinates to simplify the system of differential equations. Let $(r, \theta) \in \mathbb{R}^+ \times \mathbb{S}^1$, and consider the following change of variables

$$\begin{cases} x = r \cos \theta, \\ y = r \sin \theta. \end{cases}$$

Since $x^2 + y^2 = r^2$ and $\tan \theta = \frac{y}{x}$, taking derivatives, one can obtain the following formula for time derivative of polar coordinates

$$\begin{cases} r' = \frac{xx' + yy'}{r}, \\ \theta' = \frac{xy' - yx'}{r^2}. \end{cases}$$

Therefore,

$$rr' = x(x - y - x(x^2 + y^2)) + y(x + y - y(x^2 + y^2)) = x^2 + y^2 - (x^2 + y^2)^2 = r^2 - r^4,$$

$$r^2\theta' = x(x + y - y(x^2 + y^2)) - y(x - y - x(x^2 + y^2)) = x^2 + y^2 = r^2,$$

and the initial system of differential equations becomes

$$\begin{cases} r' = (1 - r^2)r, \\ \theta' = 1. \end{cases}$$

Since $(r,\theta) \in \mathbb{R}^+ \times \mathbb{S}^1$, the mentioned section $\Sigma = \{(x,y) \in \mathbb{R}^2 : x > 0, y = 0\}$ becomes $\Sigma = \{(r,\theta) : r > 0, \theta = 0\}$. Notice that every point in Σ returns to the section at $t = 2\pi$, hence, we can take as Poincaré map the restriction of the flow to the section Σ computed at the time 2π . Therefore, if we are able to compute the flow of the system, we will be done. Integrating, for the component θ we simply have $\theta(t) = \theta_0 + t$ and for the r component we need to separate the variables and integrate:

$$\int \frac{1}{(1-r^2)r} dr = \int dt \implies \log\left(\frac{r}{\sqrt{1-r^2}}\right) = t + c.$$

Applying the exponential function to both sides of the last equation, we obtain

$$r(t) = \sqrt{\frac{e^{2(t+c)}}{1 + e^{2(t+c)}}}.$$

Since $r_0 = r(0) = \sqrt{\frac{e^{2t}}{1 + e^{2t}}}$, we can write r(t) as

$$r(t) = \sqrt{\frac{e^{2t}r_0^2}{1 + r_0^2(e^{2t} - 1)}} = \sqrt{\frac{1}{1 + e^{-2t}\left(\frac{1}{r_0^2} - 1\right)}}.$$

Therefore, the flow of the system is

$$\Phi(r,\theta) = \left(\theta + t, \sqrt{\frac{1}{1 + e^{-2t} \left(\frac{1}{r_0^2} - 1\right)}}\right).$$

As previously mentioned, the Poincaré map is given by $\Phi_{2\pi}|_{\Sigma}$

$$P(r) = \sqrt{\frac{1}{1 + e^{-4\pi} \left(\frac{1}{r^2} - 1\right)}}$$

Exercise 2. Let $f(x) = \lambda x + bx^2$ be a map from \mathbb{R} to \mathbb{R} with $|\lambda| \neq 0, 1$. Compute the Taylor expansion of a conjugation h between f and $Ax = \lambda x$, such that h(0) = 0 and h'(0) = 1, up to order 3. Do you think it is possible to find the Taylor expansion to all orders? If so, are the coefficients uniquely determined?

Proof. Let us start by computing the Taylor expansion of the conjugation up to order 3. Let h be a conjugation between f and $g(x) = \lambda x$ such that h(0) = 0 and h'(0) = 1. Then, the following diagram must be commutative:

$$\begin{array}{ccc}
\mathbb{R} & \xrightarrow{f} & \mathbb{R} \\
\downarrow h & & \downarrow h \\
\mathbb{R} & \xrightarrow{g} & \mathbb{R}
\end{array}$$

Consider the Taylor expansion of h with h(0) = 0 and h'(0) = 1 up to order 3, i.e.,

$$h(x) = h(0) + h'(0)x + \frac{h''(0)}{2}x^2 + \frac{h'''(0)}{6}x^3 = x + \frac{h''(0)}{2}x^2 + \frac{h'''(0)}{6}x^3.$$

Let us define $\alpha := h''(0)$ and $\beta := h'''(0)$. Due to the commutative diagram, $h \circ f = g \circ h$, i.e.,

$$(\lambda x + bx^2) + \frac{\alpha}{2}(\lambda x + bx^2)^2 + \frac{\beta}{6}(\lambda x + bx^2)^3 = \lambda(x + \frac{\alpha}{2}x^2 + \frac{\beta}{6}x^3). \tag{0.1}$$

Matching coefficients of degree 2, we have that

$$b + \frac{\alpha \lambda^2}{2} = \frac{\alpha \lambda}{2},\tag{0.2}$$

and matching coefficients of degree 3, we have that

$$\alpha \lambda b + \frac{\beta \lambda^3}{6} = \frac{\beta \lambda}{6}.\tag{0.3}$$

Hence, isolating α and β from (0.2) and (0.3) respectively, we have that

$$\alpha = \frac{2b}{\lambda(1-\lambda)},$$

$$\beta = \frac{6\alpha b}{1-\lambda^2} = \frac{12b^2}{\lambda(1-\lambda)(1-\lambda^2)}.$$

Notice that it is possible to derive the Taylor expansion to any degree, and the coefficients are uniquely defined. This fact is evident through the expression (0.1). Notice that each $h^{(n)}(0)$ can be computed by utilizing $h^{(n-1)}(0)$ and considering the condition $0 \neq \lambda \neq 1$.

Exercise 3. Consider the map

$$f(x,y) = (\lambda x, \lambda^2 y + x^2), \qquad 0 < \lambda < 1.$$

Prove that f cannot be linearized with a C^2 conjugation.

Proof. Let us proof that f can not be locally conjugated to its linear part by a C^2 conjugation.

First, notice that f(0,0) = (0,0) and that (0,0) is an hyperbolic fixed point, since $\lambda \in (0,1)$:

$$A = Df(0,0) = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^2 \end{pmatrix}.$$

We claim that $f^k(x,y) = (\lambda^k x, \lambda^{2k} y + k\lambda^{2(k-1)} x^2)$. This can be easily prove it by induction. For k = 1 is clear. Now, assume the result true for k and let us see it for k + 1.

$$f^{k+1}(x,y) = f(\lambda^k x, \lambda^{2k} y + k\lambda^{2(k-1)} x^2)$$

$$= (\lambda^{k+1} x, \lambda^2 (\lambda^{2k} y + k\lambda^{2(k-1)} x^2) + \lambda^{2k} x^2)$$

$$= (\lambda^{k+1} x, \lambda^{2(k+1)} y + (k+1)\lambda^{2k} x^2).$$

Let g(x) = Ax and assume h be a \mathcal{C}^2 conjugation such that $h \circ f = g \circ h$ (we will try to reach a contradiction). We have that h(0,0) = (0,0) since h(f(0,0)) = h(0,0) = g(h(0,0)), i.e., A(h(0,0)) = h(0,0) and h(0,0) is an eigenvector of eigenvalue 1. But since $\lambda \in (0,1)$, 1 is not an eigenvalue of A and then h(0,0) = (0,0). Let $H := h^{-1}$, H(0,0) = (0,0) and $f \circ H = H \circ g$. Therefore,

$$f^k \circ H = H \circ g^k.$$

Writing it by components,

(1)
$$\lambda^k H_1(x,y) = H_1(\lambda^k x, \lambda^{2k} y),$$

(2)
$$\lambda^{2k} H_2(x,y) + k\lambda^{2(k-1)} (H_1(x,y))^2 = H_2(\lambda^k x, \lambda^{2k} y).$$

Fix y = 0 and assume $x \neq 0$. Since $H_1(0,0) = 0$, equation (1) gives us

$$H_1(x,0) = \frac{H_1(\lambda^k x,0)}{\lambda^k} = x \left[\frac{H_1(\lambda^k x,0) - H_1(0,0)}{\lambda^k x} \right] \xrightarrow{k \to \infty} x \frac{\partial H_1}{\partial x}(0,0).$$

Moreover, if $x \neq 0$, since $H \in \mathcal{C}^2$, the equation is still true. Hence $H_1(x,0) = x \frac{\partial H_1}{\partial x}(0,0) \ \forall x$. Now, fixing y = 0, equation (2) becomes

$$k\lambda^{2(k-1)}(H_1(x,0))^2 = H_2(\lambda^k x,0) - \lambda^{2k}H_2(x,0).$$

Taking $x = \lambda^k t$, since $H_2(\lambda^k x, 0) \xrightarrow{k \to \infty} 0$, we have that

$$\lim_{k \to \infty} k(H_1(\lambda^k t, 0))^2 = \lim_{k \to \infty} \left[\lambda^2 t \frac{H_2(\lambda^{2k} t, 0)}{\lambda^{2k} t} - \lambda^2 H_2(\lambda^k t, 0) \right] = \lim_{k \to \infty} \lambda^2 t \frac{H_2(\lambda^{2k} t, 0)}{\lambda^{2k} t}.$$

Since $H_2(0,0) = 0$, we can rewrite the previous equation to obtain

$$\lim_{k\to\infty} k(H_1(\lambda^k t, 0))^2 = \lim_{k\to\infty} \lambda^2 t \left[\frac{H_2(\lambda^{2k} t, 0) - H_2(0, 0)}{\lambda^{2k} t} \right] = \lambda^2 t \frac{\partial H_2}{\partial x}(0, 0).$$

Since $H_1(\lambda^k x, 0) = \lambda^k x \frac{\partial H_1}{\partial x}(0, 0)$, the limit becomes

$$\lim_{k \to \infty} k \lambda^{2k} x^2 \left(\frac{\partial H_1}{\partial x} (0, 0) \right)^2 = x \lambda^2 \frac{\partial H_2}{\partial x} (0, 0),$$

and since $k\lambda^{2k} \xrightarrow{k\to\infty} 0$, we have that $\frac{\partial H_2}{\partial x}(0,0) = 0$.

Now, we can take partial derivatives of (1) with respect to y to obtain

$$\lambda^k \frac{\partial H_1}{\partial y}(x,y) = \lambda^{2k} \frac{\partial H_1}{\partial y}(\lambda^k x, \lambda^{2k} y).$$

Hence,

$$\frac{\partial H_1}{\partial y}(x,y) = \lambda^k \frac{\partial H_1}{\partial y}(\lambda^k x, \lambda^{2k} y) \xrightarrow{k \to \infty} 0,$$

and $\frac{\partial H_1}{\partial y}(x,y) = 0 \quad \forall x,y$. This implies that H_1 does not depend on y, i.e., $H_1(x,y) = H_1(x)$. Now, taking partial derivatives of (2) with respect to x, we have that

$$\lambda^{2k} \frac{\partial H_2}{\partial x}(x,y) + 2k\lambda^{2(k-1)} H_1(x) \frac{\partial H_1}{\partial x}(x) = \lambda^k \frac{\partial H_2}{\partial x}(\lambda^k x, \lambda^{2k} y).$$

Then,

$$2k\lambda^{-2}H_1(x)\frac{\partial H_1}{\partial x}(x) = \lambda^{-k}\frac{\partial H_2}{\partial x}(\lambda^k x, \lambda^{2k}y) - \frac{\partial H_2}{\partial x}(x, y).$$

Fixing y=0, since we have seen that $\frac{\partial H_2}{\partial x}(0,0)=0$, the previous equation becomes

$$\lim_{k \to \infty} 2k\lambda^{-2}H_1(x)\frac{\partial H_1}{\partial x}(x) = x \left[\frac{\frac{\partial H_2}{\partial x}(\lambda^k x, 0) - \frac{\partial H_2}{\partial x}(0, 0)}{\lambda^k x} \right] - \frac{\partial H_2}{\partial x}(x, 0) = x \frac{\partial^2 H_2}{\partial x^2}(0, 0) - \frac{\partial H_2}{\partial x}(x, 0).$$

Notice that the right-hand side of the equation does not depends on k and, the limit of the left-hand side goes to infinity unless $H_1(x) = 0$ or $\frac{\partial H_1}{\partial x}(x) = 0$. Then, we face two possibilities:

$$\begin{cases} i) \ H_1(x) = 0 \ \forall x \ \text{and} \ x \frac{\partial^2 H_2}{\partial x^2}(0,0) = \frac{\partial H_2}{\partial x}(x,0), \\ ii) \ \frac{\partial H_1}{\partial x}(x) = 0 \ \forall x \ \text{and} \ x \frac{\partial^2 H_2}{\partial x^2}(0,0) = \frac{\partial H_2}{\partial x}(x,0). \end{cases}$$

Hence, $H_1(x)\frac{\partial H_1}{\partial x}(x) = 0 \ \forall x$. This implies that $\frac{\partial H_1^2}{\partial x}(x) = 2H_1(x)\frac{\partial H_1}{\partial x}(x) = 0 \ \forall x$. Therefore, H_1^2 does not depend on x and in consequence neither does H_1 . Since we have seen that H_1 was neither depending on y, H_1 is constant. Then, there exist a fixed value k such that $H = (H_1, H_2) = (k, H_2)$, leading to a contradiction with H being injective.