Documents interdits (la table des TL est au verso) Exercice1 :(6 points)

Pour
$$x > 0$$
, on pose $F(x) = \int_0^{+\infty} \frac{\log t}{t^2 + x} dt$, où $f(t, x) = \frac{\log t}{t^2 + x}$.

- 1) Etudier la convergence simple de F dans \mathbb{R}_{+}^{*} .
- 2) Etudier la continuité de F sur $[A, +\infty[A > 0]$, puis conclure.
- 3) Etudier la dérivabilité de F dans \mathbb{R}^*_{\perp} .

Exercice2:(5,5 points)

1)
$$\mathcal{L}((t+2)e^t + e^{-t}\cos(2t))$$
.

2)
$$\int_{0}^{+\infty} te^{-3t} \sin t dt.$$

Calculer: 3)
$$\mathcal{L}^{-1} \left(\frac{3x+16}{x^2-x-6} + \frac{1}{x(x^2+4)} \right)$$

4) $\mathcal{L}^{-1} \left(\frac{x}{(x^2+1)^2} \right)$

Exercice3:(5,5 points)

Pour $\alpha > 0$, on pose $f(t) = e^{-\alpha|t|}$.

- 1) Calculer $\mathcal{F}f$
- 2) A l'aide de la formule d'inversion de Fourier, calculer la valeur de $\int_{0}^{+\infty} \frac{\cos(xt)}{x^2 + \alpha^2} dx$.
- 3) Trouver b et c tels que: $\frac{1}{(x^2+1)(x^2+4)} = \frac{b}{(x^2+1)} + \frac{c}{(x^2+4)} \, \forall x \in \mathbb{R}.$ 4) Résoudre l'équation différentielle -y" $+y = e^{-2|t|}$ où y est une fonction telle

 $*y, y', y'' \in \mathcal{L}^1(\mathbb{R})$ et y continue sur \mathbb{R} .

et *y est dérivable à droite et à gauche de tout point de \mathbb{R} .

Rappel: L'opérateur \mathcal{F} est linéaire et $\mathcal{F}g'(x) = ix\mathcal{F}g(x)$ pour $g, g' \in \mathcal{L}^1(\mathbb{R})$. Exercice4 :(3 points)

I- Dire si les assertions suivantes sont vraies ou fausses, justifier vos réponses. Pour toute partie non vide D de \mathbb{R}^2 ; on a

- a) Si $A \notin D$ alors A est un point extérieur à D.
- b) Si A est un point intérieur à D alors A est un point d'accumulation de D.
- c) Si $A \in fr(D)$ alors A est un point d'accumulation de D.
- II- On munit \mathbb{R}^2 de la norme $\|.\|$ définie par : $\|(x,y)\| = \max(|x|,|x-y|)$. Représenter graphiquement la boule ouverte $B(0_{\mathbb{R}^2}, 1)$.