I/O-Efficient Algorithms and Data Structures

Steffan Christ Sølvsten

8th of September, 2023

$$0, 1, 2, \cdots i, i+1, \cdots 2i, 2i+1, \cdots N-1$$

$$0, 1, 2, \cdots, i, i+1, \cdots 2i, 2i+1, \cdots N-1$$

$$0, 1, 2, \cdots$$
 $i, i+1, \cdots$ $2i, 2i+1, \cdots N-1$

$$0, 1, 2, \cdots$$
 $i, i+1, \cdots$ $2i, 2i+1, \cdots$ $N-1$

I/O Model Aggarwal and Vitter '87

a, b, c d, e, f ··· x, y, z

a, b, c d, e, f ··· x, y, z

a, b, c d, e, f ··· x, y, z

a, b, c d, e, f ... x, y, z

æ

a, b, c d, e, f ··· x, y, z

æ, ø

a, b, c d, e, f ... x, y, z

æ, ø, å

a, b, c d, e, f ... x, y, z æ, ø, å

Time : N

I/O : N/B

Memory : B

a, b

a, b, c

a, b, c d

a, b, c d, e

a, b, c d, e, f

a, b, c

g d, e, f

a, b, c

g, h d, e, f

a, b, c

g, h, i d, e, f

a, b, c d, e, f

g, h, i j

a, b, c d, e, f

g, h, i j, k

a, b, c d, e, f

g, h, i j

a, b, c d, e, f

g, h, i

a, b, c d, e, f

g, h

a, b, c d, e, f

g

a, b, c d, e, f

a, b, c d, e, f

d, e

a, b, c d, e, f

d, e, f'

a, b, c d, e, f

g' d, e, f'

a, b, c d, e, f

g', h' d, e, f'

a, b, c d, e, f

g', h', i' d, e, f'

a, b, c d, e, f'

g', h', i' j'

a, b, c d, e, f'

g', h', i' j'

Time : O(N)

I/O : O(N/B)

Memory : 2B

_					
M/B-1	a, b, d	e, h, j	• • •	-	
	c, g, l	m, o, q			
	f, i, k	n, p, r			
_					

-	a, b, d	e, h, j	
M/B	c, g, l	m, o, q	
V	f, i, k	n, p, r	

Steffan Sølvsten (soelvsten@cs.au.dk)

d, e, f

В

ВВ

ВВВВ

ВВВВВ

B B B B

B B B B B

B B B B B ... B

B B B B B ... B B

$I/O\ Model:\ M/B-way\ Mergesort$

Aggarwal and Vitter '87

Theorem N elements can be sorted in $\Theta(N/B \cdot \log_{M/B}(N/B))$ I/Os.

Convex Hull

Compute the *convex hull* for *N* points in the plane.

Theorem Convex Hull can be computed in $O(N/B \cdot \log_{M/B}(N/B))$ I/Os.

Upper Hull:

■ Sort input points by x-axis

- Sort input points by x-axis
- Initialize stack $S = [p_0, p_1]$

- Sort input points by *x*-axis
- Initialize stack $S = [p_0, p_1]$
- For remaining points $p_i \in p_2, p_3, \dots, p_{N-1}$:
 - 1 Let p_s , p_t be the two top-most points of S
 - 2 While $p_s p_t p_i$ is a "left-turn":
 - Pop p_t and go-to 1
 - 3 Push p_i onto S

- Sort input points by x-axis
- Initialize stack $S = [p_0, p_1]$
- For remaining points $p_i \in p_2, p_3, \dots, p_{N-1}$:
 - 1 Let p_s , p_t be the two top-most points of S
 - 2 While $p_s p_t p_i$ is a "left-turn":
 - Pop p_t and go-to 1
 - 3 Push p_i onto S

- Sort input points by *x*-axis
- Initialize stack $S = [p_0, p_1]$
- For remaining points $p_i \in p_2, p_3, \dots, p_{N-1}$:
 - 1 Let p_s , p_t be the two top-most points of S
 - 2 While $p_s p_t p_i$ is a "left-turn":
 - Pop p_t and go-to 1
 - 3 Push p_i onto S

- Sort input points by x-axis
- Initialize stack $S = [p_0, p_1]$
- For remaining points $p_i \in p_2, p_3, \dots, p_{N-1}$:
 - 1 Let p_s , p_t be the two top-most points of S
 - 2 While $p_s p_t p_i$ is a "left-turn":
 - Pop p_t and go-to 1
 - 3 Push p_i onto S

- Sort input points by *x*-axis
- Initialize stack $S = [p_0, p_1]$
- For remaining points $p_i \in p_2, p_3, \dots, p_{N-1}$:
 - 1 Let p_s , p_t be the two top-most points of S
 - 2 While $p_s p_t p_i$ is a "left-turn":
 - Pop p_t and go-to 1
 - 3 Push p_i onto S

- Sort input points by x-axis
- Initialize stack $S = [p_0, p_1]$
- For remaining points $p_i \in p_2, p_3, \dots, p_{N-1}$:
 - 1 Let p_s , p_t be the two top-most points of S
 - 2 While $p_s p_t p_i$ is a "left-turn":
 - Pop p_t and go-to 1
 - 3 Push p_i onto S

- Sort input points by x-axis
- Initialize stack $S = [p_0, p_1]$
- For remaining points $p_i \in p_2, p_3, \dots, p_{N-1}$:
 - 1 Let p_s , p_t be the two top-most points of S
 - 2 While $p_s p_t p_i$ is a "left-turn":
 - Pop p_t and go-to 1
 - 3 Push p_i onto S

- Sort input points by *x*-axis
- Initialize stack $S = [p_0, p_1]$
- For remaining points $p_i \in p_2, p_3, \dots, p_{N-1}$:
 - 1 Let p_s , p_t be the two top-most points of S
 - 2 While $p_s p_t p_i$ is a "left-turn":
 - Pop p_t and go-to 1
 - 3 Push p_i onto S

- Sort input points by *x*-axis
- Initialize stack $S = [p_0, p_1]$
- For remaining points $p_i \in p_2, p_3, \dots, p_{N-1}$:
 - 1 Let p_s , p_t be the two top-most points of S
 - 2 While $p_s p_t p_i$ is a "left-turn":
 - Pop p_t and go-to 1
 - 3 Push p_i onto S

Upper Hull:

- Sort input points by x-axis
- Initialize stack $S = [p_0, p_1]$
- For remaining points $p_i \in p_2, p_3, \dots, p_{N-1}$:
 - 1 Let p_s , p_t be the two top-most points of S
 - 2 While $p_s p_t p_i$ is a "left-turn":
 - Pop p_t and go-to 1
 - 3 Push p_i onto S

Lower Hull:

■ Symmetric...

a-b Tree Huddleston and Mehlhorn '82

$$a = \frac{1}{4}M/B$$
, $b = M/B$, Leaf Size = B

$$a = \frac{1}{4}M/B$$
, $b = M/B$, Leaf Size = B

Theorem

A Buffer Tree can resolve N inserts and deletes in $\Theta(N/B \cdot \log_{M/B}(N/B))$ I/Os.

Theorem

A Buffer Tree can resolve N inserts and deletes in $\Theta(N/B \cdot \log_{M/B}(N/B))$ I/Os.

Theorem

A Buffer Tree with N requests can empty all its buffers, and output all remaining sorted elements, in $\Theta(N/B)$ I/Os.

Theorem

A Buffer Tree can resolve N inserts and deletes in $\Theta(N/B \cdot \log_{M/B}(N/B))$ I/Os.

Theorem

A Buffer Tree with N requests can empty all its buffers, and output all remaining sorted elements, in $\Theta(N/B)$ I/Os.

Corollary

An I/O-efficient Priority Queue can resolve N push and deletemin operations in $\Theta(N/B \cdot \log_{M/B}(N/B))$ I/Os.

Proof.

Use an M/2 sized internal memory priority queue, pq. If pq overflows, move M/4 the largest elements to a Buffer Tree, t. If pq underflows, obtain the M/4 smallest elements from t.

#Paths

Given a Binary Decision Diagram of N nodes, compute the number of paths from the root to the \top terminal.

Theorem #Paths can be computed in $O(N/B \cdot \log_{M/B}(N/B))$ I/Os.

(a) $(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$

(a) $(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$

Idea

Count the number of in-going paths to each node.

Time-Forward Processing

Defer work with Q_{count} : PriorityQueue $\langle (s \to t, \mathbb{N}) \rangle$ sorted on t in ascending order.

$$((i, \mathtt{id}) \xrightarrow{\perp} \alpha, \quad \sum_i n_i), \qquad ((i, \mathtt{id}) \xrightarrow{\top} \beta, \quad \sum_i n_i)$$

Priority Queue: Q_{count}:

J

Priority Queue: Q_{count}:

J

$$(x_2 \oplus x_3)$$

Priority Queue: Qcount: $[\quad ((0,0) \xrightarrow{\top} (1,0), \quad 1) \quad ,$ $((0,0) \xrightarrow{\perp} (2,0), 1)$

Seek Sum Result
$$(1,0)$$
 0 0 0

Priority Queue: Q_{count} :

[$((0,0) \xrightarrow{\top} (1,0), 1)$, $((0,0) \xrightarrow{\bot} (2,0), 1)$,


```
Seek
              Sum
                           Result
(1,0)
                              0
     Priority Queue: Qcount:
     ((0,0) \xrightarrow{\perp} (2,0), 1)
```


Seek Sum Result
$$(1,0)$$
 1 0 $(1,0)$ $\stackrel{}{=} 1$ 0 $(1,0)$ $\stackrel{}{=} (2,0)$ $\stackrel{}{=} (1,0)$ $\stackrel{}{=$

Seek Sum Result (2,0) 0 0

Priority Queue:
$$Q_{count}$$
:
[
((0,0) $\xrightarrow{\perp}$ (2,0), 1) ,
((1,0) $\xrightarrow{\perp}$ (2,0), 1) ,

Seek Sum Result (2,0) 0 0

Priority Queue:
$$Q_{count}$$
:
[
((0,0) $\stackrel{\perp}{\rightarrow}$ (2,0), 1) ,
((1,0) $\stackrel{\perp}{\rightarrow}$ (2,0), 1) ,


```
Seek
                    Sum
                                        Result
(2,0)
                                            0
        Priority Queue: Qcount:
       ((2,0) \xrightarrow{\perp} (3,0), 2), ((1,0) \xrightarrow{\top} (3,1), 1),
       ((2,0) \xrightarrow{\top} (3,1), 2) ]
```



```
Seek
                    Sum
                                        Result
(3,0)
                      0
                                           0
        Priority Queue: Qcount:
      ((2,0) \xrightarrow{\perp} (3,0), 2), ((1,0) \xrightarrow{\top} (3,1), 1),
       ((2,0) \xrightarrow{\top} (3,1), 2) ]
```



```
Seek
                    Sum
                                        Result
(3,0)
                      0
                                           0
        Priority Queue: Qcount:
      ((2,0) \xrightarrow{\perp} (3,0), 2), ((1,0) \xrightarrow{\top} (3,1), 1),
       ((2,0) \xrightarrow{\top} (3,1), 2) ]
```


Steffan Sølvsten (soelvsten@cs.au.dk)

Adiar

I/O-efficient Decision Diagrams

github.com/ssoelvsten/adiar

Running time for the *N-Queens* problems.

Running time for the *N-Queens* problems.

Further Reading : Foundations

- Aggarwal and Vitter (1987)

 "The Input/Output Complexity of Sorting and Related Problems"

 The I/O-model, Sorting, Permutation, FFT, and Matrix transposition.
- Arge, Goodrich, Nelson, and Sitchinava (2008)

 "Fundamental Parallel Algorithms for Private-cache Chip Multiprocessors."

 The I/O-model for Multi-Threading.

Further Reading : Data Structures

■ Arge (1995)

"The Buffer Tree: A new technique for Optimal I/O-algorithms" An I/O-efficient Tree, Priority Queue, and Range Tree.

■ Sanders (2002)

"Fast Priority Queues for Cached Memory"
A much faster I/O-efficient Priority Queue.

■ Agarwal, Arge and Yi (2006)

"I/O-Efficient Batched Union-Find and Its Applications to Terrain Analysis" An I/O-efficient (Lazy) Union-Find.

Further Reading: Algorithms

- Goodrich, Tsay, Vengroff, and Vitter (1993) "External-Memory Computational Geometry" Distribution Sweeping and other algorithms.
- Chiang, Goodrich, Grove, Tamassia, Vengroff, and Vitter (1995) "External-memory Graph Algorithms"

 Time-forward Processing and other algorithms.
- Arge, Toma, Vitter (2001)

 "I/O-Efficient Algorithms for Problems on Grid-Based Terrains"

 The TERRAFLOW algorithm.

Further Reading : Libraries (C++)

- TPIE : Templated Portable I/O Environment github.com/thomasmoelhave/tpie

 Duke University and Aarhus University
- STXXL : Standard Template library for XXL data sets github.com/stxxl/stxxl
 University of Karlsruhe

Steffan Christ Sølvsten

- soelvsten@cs.au.dk
- ssoelvsten.github.io

Adiar

- github.com/ssoelvsten/adiar
- ssoelvsten.github.io/adiar

Batched Range Searching

Given N axis-parallel rectangles and N points in the plane, compute for each point p all rectangles containing p.

Theorem

Batched Range Searching can be solved in O(sort(N) + scan(T)) I/Os.

Preprocessing:

Preprocessing:

■ Split each rectangle into two vertical lines.

Preprocessing:

- Split each rectangle into two vertical lines.
- Sort all lines and points by their *x*-value.

Preprocessing:

- Split each rectangle into two vertical lines.
- Sort all lines and points by their *x*-value.

Algorithm:

■ Split all data into $\Theta(\sqrt{M/B})$ slabs. Solve these recursively; output is given sorted by *y*-value.

Preprocessing:

- Split each rectangle into two vertical lines.
- Sort all lines and points by their *x*-value.

- Split all data into $\Theta(\sqrt{M/B})$ slabs. Solve these recursively; output is given sorted by *y*-value.
- Merge slabs together, report points between line segments outside its slab.
 - Use $\Theta(\sqrt{M/B}^2) = \Theta(\sqrt{M/B})$ multi-slabs to maintain each *active* rectangle.
 - Output points and un-matched line segments.

