PROBLEM 1:

DATA 1

```
Y=X';

data(:,1)=Y(:,1)-mean(Y(:,1));

data(:,2)=Y(:,2)-mean(Y(:,2));

data(:,3)=Y(:,3)-mean(Y(:,3));

scatter plot of the Data

scatter3(X(1,:),X(2,:),X(3,:));

hold on;
```



```
PCA of the data upto 2 componets
pca(data, "NumComponents", 2)

0.6277    0.3682

-0.5458    0.8364

-0.5550    -0.4061
```

```
Var=cov(data);
[U,S,V]=svd(Var);
center=mean(Y);
```

```
top two principal directions of variability overlaid onthe scatter plot of the data.
PD_1=[center'+sqrt(S(1,1))*U(:,1) , center'-sqrt(S(1,1))*U(:,1)];
PD_2=[center'+sqrt(S(2,2))*U(:,2) , center'-sqrt(S(2,2))*U(:,2)];
h1=plot3(PD_1(1,:),PD_1(2,:),PD_1(3,:),'-o','Color','g');
h2=plot3(PD_2(1,:),PD_2(2,:),PD_2(3,:),'-o','Color','r');
hold off;
view([-69 11])
```



```
U1 = U(:,1:2);
Z=U1'*X;
Projection the original data to the first two principal dimensions
plot(Z(1,:), Z(2,:), '.', 'markersize', 15,"Color","r")
xL = xlim;
yL = ylim;
line([0 0], yL,"linewidth",2);
line(xL, [0 0],"linewidth",2);
```



```
singular value plot
plot(diag(S), "LineStyle", "--", "Marker", "*", "MarkerEdgeColor", "r")
```



```
Splot=cumsum(diag(S))/sum(diag(S));
cumulative total variance plot
plot(Splot,"Marker","o","MarkerEdgeColor","r","LineWidth",1,"LineStyle","--")
title("Variablity Plot")
xlabel("No of Principle Components")
ylabel("Total Variablity explained")
```


All 3 principal components are needed to obtain a total of 95% variability.

DATA 2

PCA of the data up to 2 components

0.4990 -0.1959 -0.2950 0.8775 0.8148 0.4377

top two principal directions of variability overlaid on the scatter plot of the data.

Projection the original data to the first two principal dimensions

singular value plot

cumulative total variance plot

Only 2 principal components are needed to obtain a total of 95% variability.

Data 3

PCA of the data up to 2 components

0.0975 0.3257 -0.2693 -0.2891 0.4379 0.0955 0.0726 -0.1795 0.1976 0.5454 -0.0079 0.6304 -0.0883 -0.1281 -0.4561 -0.0183 -0.3631 0.3832 0.3686 -0.3299

Projection the original data to the first two principal dimensions

singular value plot

cumulative total variance plot

Only 5 principal components are needed to obtain a total of 95% variability.

Data 4

PCA of the data upto 2 componets

-0.2367 -0.4419 -0.3196 -0.3424 0.0863 -0.1074 -0.1825 0.1362 -0.1673 0.4473 0.1898 -0.0366 0.6393 0.0806 -0.2737 -0.3267 -0.4995 0.4284 -0.3990 0.0630

Projection the original data to the first two principal dimensions

cumulative total variance plot

1st 6 principal components are needed to obtain a total of 95% variability.

PROBLEM 2:

```
Y=X';
for i=1:1:3584
  data(:,i)=Y(:,i)-mean(Y(:,i));
end

M=mean(Y);
I=reshape(M,64,56);
%Image of Sample mean face
imagesc(I)
title('Image of Sample Mean Face');
colormap(gray)
```



```
var=cov(data);
[U,S,V]=svd(var);
plot(diag(S));
```


Splot=cumsum(diag(S))/sum(diag(S));
plot(Splot)


```
C=pca(var, "NumComponents",3);
I1=reshape(C(:,1),64,56);
imagesc(I1)
title('Image of 1st Principle Eigen vector');
colormap(gray)
```



```
I2=reshape(C(:,2),64,56);
imagesc(I2)
title('Image of 2nd Principle Eigen vector');
colormap(gray)
```



```
I3=reshape(C(:,3),64,56);
imagesc(I3)
title('Image of 3rd Principle Eigen vector');
colormap(gray)
```


reconstruction of image 50

```
d = 20
d = 20
P = 0;
for i = 1:1:d
    P = P + U(:,i)'*((U(:,i)')*X(:,50));
end
Diff = abs(X(:,50) - P');
Actual = reshape(X(:,50),64,56);
Reconstructed = reshape(P,64,56);
Error = reshape(Diff,64,56);
subplot(1,3,1)
imagesc(Actual);
colormap(gray)
axis equal;
title('Actual 50');
subplot(1,3,2)
imagesc(Reconstructed);
colormap(gray)
```

```
axis equal;
title('Reconstructed 50');
subplot(1,3,3)
imagesc(Error);
colormap(gray)
axis equal;
title('Error 50');
```


reconstruction of image 100

