SECTION:	NAME:		ROLL NUMBER:
	DATABASE SYSTEMS	FINAL EXAM	SUBJECTIVE PART
[Spring 2014]	[Total Points: 80]	[Time: 150 min.]
	the exam pages for scratch w		es provided on the exam. You may use the blank Iditional scratch paper. Write your roll no in the
functional depende		the implication but does not s	give a relation withonly two tuples that satisfies the atisfy the dependencies in the right-hand side. If it is true,
a) $C \rightarrow A$ and $CA \rightarrow$	$B \models C \rightarrow B$		
b) $X \rightarrow Z$ and $Y \rightarrow Z$	$\models X \rightarrow Y$		
Question 2	(5 points)		

Consider the relation R (A, B, C), with a set of fd's{A \square C, C \square A}. List all possible keys of this relation. Prove it.

Question 3 (5 points) Consider the relation R (<i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i>), with a set of fd's{AB		

Question 4 (5 points)

Find a minimal cover F'for the set of fd's $F = \{AB \square C, DEG \square H, A \square C, DE \square G \}$.

Question 5 (20 points)

Depositor (SSN, account-number)

Consider the following banking enterprise relational schema:

Branch (branch-name, branch-city, assets) *Customer* (<u>SSN</u>, *customer-name*, *customer-city*) Loan (<u>loan-number</u>, branch-name, amount) Borrower (SSN, loan-number) Account (account-number, branch-name, balance)

Write **Relational Algebra and SQL statements** for the following queries:

- a) Find the names of all branches with customers who have an account in the bank and who live in Karachi.
- **b)** Find all customers who have an account at *all* the branches located in Lahore.
- **c)** Find the accounts that have more than one account holders (joint-accounts).
- d) Find the names of all customers who do not have account in the branch named Faisal-Town.

3/11

Question 6 (5 points)

Create a view consisting of branch name and the names of customers who have either an account or a loan at that branch and name it *all-customer*.

Using the view *all-customer*, find all customers of the Garden-Town branch

Question 7 (10 points)

Consider the relational state of the banking enterprise scheme.

Branch

branch-name	branch-city	assets
Faisal Town	Lahore	1000000
Garden Town	Lahore	2000000
All-shah	Islamabad	5000000
Defense	Karachi	12000000

Customer

SSN	customer- name	customer- city
111	Ali Mustafa	Lahore
222	Nida Shaheed	Gujrat
333	Aliya Shah	Lahore
444	Ahmed Noor	Islamabad
555	FahadYahya	Karachi
666	Usman Shan	Karachi
777	Haider Ali	Lahore

Loan

<u>loan-number</u>	branch-name	amount
L-101	Faisal-Town	10000
L-102	Garden-Town	25000
L-103	Al-shah	50000
L-104	Al-shah	10000

Account

account-number	branch-name	balance
A-101	Faisal-Town	1000
A-102	Garden-Town	250

A-201	Al-shah	500
A-215	Defense	820
A-217	Faisal Town	9000
A-222	Garden Town	5470

Borrower

<u>SSN</u>	<u>loan-number</u>
111	L-101
555	L-102
333	L-104
111	L-103
222	L-101

Depositor

<u>SSN</u>	account-number
111	A-101
222	A-102
777	A-201
444	A-215
111	A-222
666	A-217
222	A-215
111	A-102

Given the above relational state, write the result of the following Queries. Also show the result of intermediate relations and describe in a sentence what each query does.

a) select distinct customer-name
 fromborrower
 wherecustomer-name not in (select customer-namefrom depositor)

selectbranch-name fromaccount group by branch-name

b)

havingavg(balance) >= all (select avg(balance)from accountgroup by branch-name)

Question 8 (15 points)

The company you work for wants to digitize their time cards. You have been asked to design the database for submitting and approving time cards. Draw the database ER diagram with the following information:

- A timecard should have hours worked and date submitted
- Each timecard is associated with exactly one employee. An employee can be permanent or employed on hourly basis.
- Each timecard should have a unique id
- Each timecard has a status: it is either approved, not approved, or pending
- Each employee has a unique id, name and address.
- Each employee submits a time card every pay period. i.e. In 1 year, they will submit multiple time cards
- Each employee either has direct deposit or physical check as their method of payment
- Each employee is associated with exactly one manager
- Each manager has a unique id and a name
- Each manager is in charge of multiple employees
- Each manager approves time cards for multiple employees

Make sure that you indicate all cardinality constraints and your model should not contain redundant entity sets, relationships, or attributes. If you need to make any assumptions, include them in your answer.

Question 9 (5 points)

Map conceptual schema given below to a set of relations. Choose the best mapping option and specify all the mapping steps. Also shows keys and all possible constraints

Question 10 (5 points)

Answer the following questions based on the ER Diagram in Question 9:

- **a)** Could the "Date of Measure" attribute of the *Measurement* entity be the key for the entity, instead of the "MeasureID"? Why or Why Not?
- b) We want to add a "Tools Used" attribute, which will store the tool(s) used to make measurements, but are not sure where this attribute belongs. We do know that one person might use multiple tools for different trees, and also that more than one tool may be used to measure the same tree (for example, different tools may be necessary to measure the same tree in the summer, than in the winter.) Where could we add this attribute? Choose *one or more* answers from the 3 entities and 2 relationships (we would add the attribute only once, but if you believe there are multiple possible places to add the attribute, we ask you to identify all potential candidates):
 - a. the entity Person
 - b. the relationship Has
 - c. the entity Measurement
 - d. the relationship Takes
 - e. the entity Tree
- c) There are two roles that people can have, a Ranger and a Volunteer. Using what you know of subclassing, add these as two new entities in the ER Diagram. Add a reasonable attribute to each of the new entities. Just redraw the relevant part of the diagram that needs to change. Can we eliminate the **role** attribute from *Person*?