МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов и формирования исполнительного адреса

Студентка гр. 9383	 Пономаренко С. А.
Преподаватель	 Ефремов М. А.

Санкт-Петербург 2020

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует

готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме

выполняться не должна, так как не имеет самостоятельного функционального назначения, а

только тестирует режимы адресации. Поэтому ее выполнение должно производиться под

управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по

работе, а соответствующие команды закомментировать для прохождения трансляции.

Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по

типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.

На защите студенты должны уметь объяснить результат выполнения каждой команды с

учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не

являются объяснением, а только должны подтверждать ваши объяснения.

Тексты исходных файлов программ hello1 и hello2.

lb2.asm

EOL EQU '\$'

ind EQU 2

n1 EQU 500

n2 EQU -50

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

; Данные программы

DATA SEGMENT

; Директивы описания данных

mem1 DW 0

mem2 DW 0

mem3 DW 0

vec1 DB 11,12,13,14,18,17,16,15

vec2 DB 10,20,-10,-20,30,40,-30,-40

matr DB 1,2,-4,-3,3,4,-2,-1,5,6,-8,-7,7,8,-6,-5

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

push DS

sub AX,AX

push AX

mov AX,DATA

mov DS,AX

; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ

; Регистровая адресация

mov ax,n1

```
mov cx,ax
mov bl,EOL
mov bh,n2
; Прямая адресация
mov mem2,n2
mov bx,OFFSET vec1
mov mem1,ax
; Косвенная адресация
mov al,[bx]
; mov mem3,[bx]
; Базированная адресация
mov al,[bx]+3
mov cx,3[bx]
; Индексная адресация
mov di,ind
mov al, vec2[di]
; mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al,matr[bx][di]
; mov cx,matr[bx][di]
; mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
```

```
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx,ax
; ----- вариант 3
mov di,ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
; mov ax,matr[bp+bx]
; mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx,[bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
lb2.lst
#Microsoft (R) Macro Assembler Version 5.10
                                                     11/19/20 00:04:1
                                  Page
                                          1-1
= 0024
```

= 0024 EOL EQU '\$' = 0002 ind EQU 2 = 01F4 n1 EQU 500 =-0032 n2 EQU -50

; Стек программы

0000 AStack SEGMENT STACK

0000 000C[DW 12 DUP(?)

????

]

0018 AStack ENDS

; Данные программы

0000 DATA SEGMENT

; Директивы описания данн�

 $\mathbf{\hat{Q}}_{\mathbf{X}}$

0000 0000 mem1 DW 0

0002 0000 mem2 DW 0

0004 0000 mem3 DW 0

0006 0B 0C 0D 0E 12 11 vec1 DB 11,12,13,14,18,17,16,15

10 0F

000E 0A 14 F6 EC 1E 28 vec2 DB 10,20,-10,-20,30,40,-30,-40

E2 D8

0016 01 02 FC FD 03 04 matr DB 1,2,-4,-3,3,4,-2,-1,5,6,-8,-7,7,8,-6,-5

FE FF 05 06 F8 F9

07 08 FA FB

0026 DATA ENDS

; Код программы

0000 CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

0000 Main PROC FAR

0000 1E push DS

0001 2B C0 sub AX,AX

0003 50 push AX

0004 B8 ---- R mov AX,DATA

0007 8E D8 mov DS,AX

; ПРОВЕРКА РЕЖИМОВ АДРЕСА�

ФИИ НА УРОВНЕ СМЕЩЕНИЙ

; Регистровая адресация

0009 B8 01F4 mov ax,n1

000C 8B C8 mov cx,ax

000E B3 24 mov bl,EOL

0010 B7 CE mov bh,n2

; Прямая адресация

0012 C7 06 0002 R FFCE mov mem2,n2

0018 BB 0006 R mov bx,OFFSET vec1

001B A3 0000 R mov mem1,ax

; Косвенная адресация

001E 8A 07 mov al,[bx]

mov mem3,[bx]

lb2.asm(41): error A2052: Improper operand type

; Базированная адресация

0020 8A 47 03 mov al,[bx]+3

0023 8B 4F 03 mov cx,3[bx]

; Индексная адресация

Page 1-2

0026 BF 0002 mov di,ind

0029 8A 85 000E R mov al, vec2[di]

002D 8B 8D 000E R mov cx,vec2[di]

lb2.asm(48): warning A4031: Operand types must match

; Адресация с базирование�

• и индексированием

0031 BB 0003 mov bx,3

0034 8A 81 0016 R mov al,matr[bx][di]

0038 8B 89 0016 R mov cx,matr[bx][di]

lb2.asm(52): warning A4031: Operand types must match

003C 8B 85 0022 R mov ax,matr[bx*4][di]

lb2.asm(53): error A2055: Illegal register value

; ПРОВЕРКА РЕЖИМОВ АДРЕСА�

ФИИ С УЧЕТОМ СЕГМЕНТОВ

; Переопределение сегмент

a

; ----- вариант 1

0040 B8 ---- R mov ax, SEG vec2

0043 8E C0 mov es, ax

0045 26: 8B 07 mov ax, es:[bx]

0048 B8 0000 mov ax, 0

; ----- вариант 2

004B 8E C0 mov es, ax

004D 1E push ds

004E 07 pop es

004F 26: 8B 4F FF mov cx, es:[bx-1]

0053 91 xchg cx,ax

; ----- вариант 3

0054 BF 0002 mov di,ind

0057 26: 89 01 mov es:[bx+di],ax

; ----- вариант 4

005A 8B EC mov bp,sp

005C 3E: 8B 86 0016 R mov ax,matr[bp+bx]

lb2.asm(72): error A2046: Multiple base registers

0061 3E: 8B 83 0016 R mov ax,matr[bp+di+si]

lb2.asm(73): error A2047: Multiple index registers

; Использование сегмента �

Фтека

0066 FF 36 0000 R push mem1

006A FF 36 0002 R push mem2

006E 8B EC mov bp,sp

0070 8B 56 02 mov dx,[bp]+2

0073 CA 0002 ret 2

0076 Main ENDP

lb2.asm(80): error A2006: Phase error between passes

0076 CODE ENDS

END Main

Symbols-1

Segments and Groups:

N a m e	Lengt	:h	Aligı	ıComb	oine Class	5
ASTACK	0076	PARA	A	NON	E	
Symbols:						
N a m e	Type	Valu	e	Attr		
EOL	NUM	BER	0024			
IND	NUM	BER	0002			
MAIN		L BY L WO L WO	TE ORD ORD	0016 0000 0002	DATA DATA	ength = 0076
N1	NUM	BER	-0032		۸	
VEC1	LBY	ΊĿ	0006	DAT	\boldsymbol{F}	

VEC2..... L BYTE 000E DATA

@CPU TEXT 0101h

@FILENAME TEXT lb2

@VERSION TEXT 510

82 Source Lines

82 Total Lines

19 Symbols

47842 + 459418 Bytes symbol space free

2 Warning Errors

5 Severe Errors

Исходные данные.

Вариант 5.

vec1 11,12,13,14,18,17,16,15

vec2 10,20,-10,-20,30,40,-30,-40

matr 1,2,-4,-3,3,4,-2,-1,5,6,-8,-7,7,8,-6,-5

Закомментированные ошибки.

- 1. строка 41: mov mem3,[bx] нельзя перемещать из области памяти в область памяти напрямую, надо через регистры общего назначения error A2052: Improrer operand type (Неподходящий тип операнда)
- 2. строка 53: mov ax,matr[bx*4][di] 16-битовые регистры нельзя умножать error A2055: Illegal register value (Недопустимое значение регистра)
- 3. строка 72: mov ax,matr[bp+bx] складывается два базовых регистра (могут складываться базовый с индексным) error A2046: Multiple base registers (Несколько базовых регистров)

4. строка 73: mov ax,matr[bp+di+si] — складывается два индексных регистра (могут складываться базовый с индексным) error A2047: Multiple index registers (Несколько индексных регистров)

Предупреждения.

1. строка 48: mov cx,vec2[di] — перемещение слова (1 байт) в 16-битовый регистр (2 байта)

warning A4031: Operand types must match (Типы операндов должны совпадать)

2. строка 52: mov cx,matr[bx][di] — перемещение слова (1 байт) в 16-битовый регистр (2 байта)

warning A4031: Operand types must match (Типы операндов должны совпадать)

Листинг успешной трансляции.

lb2.asm

Page 1-1

= 0024 EOL EQU '\$'

= 0002 ind EQU 2

= 01F4 n1 EQU 500

=-0032 n2 EQU -50

; Стек программы

0000 AStack SEGMENT STACK

0000 000C[DW 12 DUP(?)

????

]

0018 AStack ENDS

; Данные программы

0000 DATA SEGMENT

; Директивы описания данн�

 $\mathbf{\hat{Q}}_{\mathbf{X}}$

0000 0000 mem1 DW 0

0002 0000 mem2 DW 0

0004 0000 mem3 DW 0

0006 0B 0C 0D 0E 12 11 vec1 DB 11,12,13,14,18,17,16,15

10 0F

000E 0A 14 F6 EC 1E 28 vec2 DB 10,20,-10,-20,30,40,-30,-40

E2 D8

0016 01 02 FC FD 03 04 matr DB 1,2,-4,-3,3,4,-2,-1,5,6,-8,-7,7,8,-6,-5

FE FF 05 06 F8 F9

07 08 FA FB

0026 DATA ENDS

; Код программы

0000 CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

0000 Main PROC FAR

0000 1E push DS

0001 2B C0 sub AX,AX

0003 50 push AX

0004 B8 ---- R mov AX,DATA

0007 8E D8 mov DS,AX

; ПРОВЕРКА РЕЖИМОВ АДРЕСА�

ФИИ НА УРОВНЕ СМЕЩЕНИЙ

; Регистровая адресация

0009 B8 01F4 mov ax,n1

000C 8B C8 mov cx,ax

000E B3 24 mov bl,EOL

0010 B7 CE mov bh,n2

; Прямая адресация

0012 C7 06 0002 R FFCE mov mem2,n2

0018 BB 0006 R mov bx,OFFSET vec1

001B A3 0000 R mov mem1,ax

; Косвенная адресация

001E 8A 07 mov al,[bx]

; mov mem3,[bx]

; Базированная адресация

0020 8A 47 03 mov al,[bx]+3

0023 8B 4F 03 mov cx,3[bx]

; Индексная адресация

Page 1-2

0026 BF 0002 mov di,ind

0029 8A 85 000E R mov al, vec2[di]

002D 8B 8D 000E R mov cx,vec2[di]

lb2.asm(48): warning A4031: Operand types must match

; Адресация с базирование�

• и индексированием

0031 BB 0003 mov bx,3

0034 8A 81 0016 R mov al,matr[bx][di]

0038 8B 89 0016 R mov cx,matr[bx][di]

lb2.asm(52): warning A4031: Operand types must match

; mov ax,matr[bx*4][di]

; ПРОВЕРКА РЕЖИМОВ АДРЕСА�

♦ИИ С УЧЕТОМ СЕГМЕНТОВ

; Переопределение сегмент

a

; ----- вариант 1

003C B8 ---- R mov ax, SEG vec2

003F 8E C0 mov es, ax

0041 26: 8B 07 mov ax, es:[bx]

0044 B8 0000 mov ax, 0

; ----- вариант 2

0047 8E C0 mov es, ax

0049 1E push ds

004A 07 pop es

004B 26: 8B 4F FF mov cx, es:[bx-1]

004F 91 xchg cx,ax

; ----- вариант 3

0050 BF 0002 mov di,ind

0053 26: 89 01 mov es:[bx+di],ax

; ----- вариант 4

0056 8B EC mov bp,sp

; mov ax,matr[bp+bx]

; mov ax,matr[bp+di+si]

; Использование сегмента �

тека

0058 FF 36 0000 R push mem1

005C FF 36 0002 R push mem2

0060 8B EC mov bp,sp

0062 8B 56 02 mov dx,[bp]+2

0065 CA 0002 ret 2

0068 Main ENDP

0068 CODE ENDS

END Main

Symbols-1

Segments and Groups:

N a m e	Lengt	h	Aligi	nComb	oine Cla	ass
ASTACK	0068	PARA	A	NON	E	K
DATA	0026	PARA	A	NON	E	
Symbols:						
N a m e	Type	Valu	e	Attr		
EOL	NUM	BER	0024			
IND	NUM	BER	0002			
MAIN	F PRO	OC	0000	COD	E	Length = 0068
MATR		L BY	TE	0016	DATA	Λ
MEM1		L WC	ORD	0000	DATA	Λ
MEM2		L WC	ORD	0002	DATA	Λ
MEM3		L WC	ORD	0004	DATA	Λ
N1	NUM	BER	01F4			
N2	NUM	BER	-0032			
VEC1	L BY	TE	0006	DAT	A	

VEC2	L BYTE	000E DATA
V F.U.Z	I.BYIE.	UUUH. DATA

@CPU	TEXT	0101h

@FILENAME TEXT lb2

@VERSION TEXT 510

82 Source Lines

82 Total Lines

19 Symbols

47842 + 459418 Bytes symbol space free

2 Warning Errors

0 Severe Errors

Протокол пошагового исполнения программы.

			Содержимое	
Адрес	Символический	16-ричный код	регистров и	после
команды	код команды	команды	ячеек памяти до	выполнения
0	PUSH DS	1E	SP = 0018	SP = 0016
			IP = 0000	IP = 0001
			Stack +0 0000	Stack +0 19F5
1	SUB AX, AX	2BC0	IP = 0001	IP = 0003
			AX = 0000	AX = 0000
3	PUSH AX	50	SP = 0016	SP = 0014
			IP = 0003	IP = 0004
			Stack +0 19F5	Stack +0 0000
			Stack +2 0000	Stack +2 19F5
4	MOV AX, 1A07	B8071A	AX = 0000	AX = 1A07
			IP = 0004	IP = 0007
7	MOV DS, AX	8ED8	IP = 0007	IP = 0009
			DS = 19F5	DS = 1A07
9	MOV AX, 01F4	B8F401	AX = 1A07	AX = 01F4
			IP = 0009	IP = 000C
000C	MOV CX, AX	8BC8	CX = 00B8	CX = 01F4
			IP = 000C	IP = 000E

000E	MOV BL, 24	B324	BX = 0000 IP = 000E	BX = 0024 IP = 0010
10	MOV BH, CE	B7CE	BX = 0024 IP = 0010	BX = CE24 $IP = 0012$
12	MOV [0002], FFCE	C7060200CEFF	F IP = 0012 DS: 0002 = 00	IP = 0018 DS: 0002 = CE
18	MOV BX, 0006	BB0600	DS: 0003 = 00 BX = CE24 IP = 0018	DS: 0003 = FF BX = 0006 IP = 001B
001B	MOV [0000], AX	A30000	IP = 001B DS: $0000 = 00$	IP =001E DS: 0002 = F4
001E	MOV AL, [BX]	8A07	DS: 0001 = 00 AX = 01F4 IP = 001E	DS: $0003 = 01$ AX = $010B$ IP = 0020
20	MOV AL, [BX+03]	8A4703	AX = 010B IP = 0020	AX = 010E $IP = 0023$
23	MOV CX, [BX+03]	8B4F03	CX = 01F4 $IP = 0023$	CX = 120E IP = 0026
26	MOV DI, 0002	BF0200	DI = 0025 DI = 0000 IP = 0026	DI = 0026 DI = 0002 IP = 0029
29	MOV AL, [000E+DI]	8A850E00	AX = 010E $IP = 0029$	AX = 01F6 IP = 002D
002D	MOV CX, [000E+DI]	8B8D0E00	CX = 120E IP = 002D	CX = ECF6 IP = 0031
31	MOV BX, 0003	BB0300	BX = 0006 IP = 0031	BX = 0003 IP = 0034
34	MOV AL, [0012+BX+DI]	8A811600	AX = 01F6 IP = 0034	AX = 0104 IP = 0038
38	MOV CX, [0016+BX+DI]	8B891600	CX = ECF6 IP = 0038	CX = FE04 IP = 003C
003C	MOV AX, 1A07	B8071A	AX = 0104 IP = 003C	AX = 1A07 $IP = 003F$
003F	MOV ES, AX	8EC0	ES = 19F5 $IP = 003F$	ES = 1A07 IP = 0041
41	MOV AX, ES: [BX]	268B07	AX = 1A07 IP = 0041	AX = 00FF IP = 0044
44	MOV AX, 0000	B80000	AX = 00FF $IP = 0044$	AX = 0000 IP = 0047
47	MOV ES, AX	8EC0	ES = 1A07 IP = 0047	ES = 0000 IP = 0049
49	PUSH DS	1E	Stack +0 0000 Stack +2 19F5 Stack +4 0000 IP = 0049	Stack +0 1A07 Stack +2 0000 Stack +4 19F5 IP = 004A

004A	POP ES	7	ES = 0000 Stack +0 1A07 Stack +2 0000 Stack +4 19F5 IP = 004A	ES = 1A07 Stack +0 0000 Stack +2 19F5 Stack +4 0000 IP = 004B
	MOV CX, ES:			
004B	[BX-01]	268B4FFF	CX = FE04 $IP = 004B$	CX = FFCE $IP = 004F$
004F	XCHG AX, CX	91	AX = 0000 CX = FFCE IP = 004F	AX = FFCE $CX = 0000$ $IP = 0050$
50	MOV DI, 0002	BF0200	DI = 0002 IP = 0050	DI = 0002 IP = 0053
	MOV ES:			
53	[BX+DI], AX	268901	IP = 0053 DS: 0005 = 00 DS: 0006 = 0B	IP = 0056 DS: 0005 = CE DS: 0006 = FF
56	MOV BP, SP	8BEC	BP = 0000	BP = 0014
58	PUSH [0000]	FF360000	IP = 0056 IP = 0058 Stack +0 0000	IP = 0058 IP = 005C Stack +0 01F4
005C	PUSH [0002]	FF360200	Stack +2 19F5 Stack +4 0000 IP = 005C	Stack +2 0000 Stack +4 19F5 IP = 0060
003C	1 0311 [0002]	11300200	Stack +0 01F4 Stack +2 0000 Stack +4 19F5	Stack +0 FFCE Stack +2 01F4 Stack +4 0000
60	MOM DD CD	ODEC	Stack +6 0000	Stack +6 19F5
60	MOV BP, SP	8BEC	BP = 0014 IP = 0060	BP = 0010 IP = 0062
	MOV DX,		11 - 0000	11 - 0002
62	[BP+02]	8B5602	DX = 0000 IP = 0062	DX = 01F4 IP = 0065
65	RET Far, 0002	CA0200	SP = 0010 CS = 1A0A Stack +0 FFCE Stack +2 01F4 Stack +4 0000 Stack +6 19F5	SP = 0016 CS = 01F4 Stack +0 19F5 Stack +2 0000 Stack +4 0000 Stack +6 0000

Вывод.

Изучены режимы адресации и формирования исполнительного адреса, рассмотрена примеры; устранены ошибки; скомпилирована программа.