LEMONAID

Ellen Kim

Background: What is a Lemon car?

Lemon (auto):

In order to qualify as a lemon under most state laws, the car must (1) have a substantial defect covered by the warranty that occurred within a certain period of time or number of miles after you bought the car, and (2) not be fixed after a reasonable number of repair attempts. Varies drastically from state to state.

Basically a lemon car is a dud.

Objective

Create a tool to determine if a used car is likely to be a Lemon or not.

Create recommendation system for potential lemon buyers.

Why?

Business model: attract user traffic by making lemon predictor available.

Users looking at lemons will receive recommendation from our inventory.

- 1. Consulting Service:
 - a. Become "WebMD" of car diagnostics
- 2. Use lemon predictor as funnel to our inventory. \rightarrow increase business sales
- 3. Potential arbitrage opportunities:
 - a. prices of cars can vary drastically from state to state.

Data

- Dataset (Kaggle competition by CarVana)
- There are 32 Independent variables (C3-C34)
 - o Make, model, odometer, color, auction, warranty price, state, etc
- The dependent variable (IsBadBuy) is binary (1 = lemon, 0 = not a lemon).
- The data contains missing values.

EDA

- 1. Data did not show significant relationships between
 - a. Lemon and auction
 - b. Lemon and size
 - c. Lemon and make
 - i. # of Lemons was proportional to output of that make.
 - d. Lemon and price:
 - i. Lexus and Calidillac's are drastically more expensive when lemons, than not.
 - ii. Infiniti, Mini are slightly more expensive when they're lemons than not.

Data: Price

1. Retail Price Range: \$3,000 and \$19,000

2. Odometer Range: 30k to 100k miles

Data

- 1. Auctions drastically change price range.
- 2. Auction price range: \$3,000 \$12,000.
- 3. Clear drop when car reaches 100k miles at \$5,00-.

Data Processing

- Missing values:
 - Imputed using KNearestNeighbors for Wheeltype (alloy, covers)
 - Reduced model accuracy by 2%.
 - Dropped Nan values → better performance
- Data Cleaning: normalize, make dummy variables.

Early Algorithm Selection

- 1. Decision Tree
- 2. Random Forest
- 3. Logistic Regression
- 4. AdaBoost
- 5. Gradient Boost

- Overfitting caused model to label all cars as "Lemons".
- Could not predict likelihood of Lemon.
- Baseline is ~90%.

Ex: Random Forest

p. Lemon	red_lemon	pred_not_l	Lemon 1985	
Not_Lemon	8	1	18848	
50% (default				
	precision	recall	f1-score	support
0	0.90	1.00	0.95	18856
			170,070,070	
1	0.50	0.00	0.01	1993
avg / total	0.87	0.90	0.86	20849
The accuracy	score for	threshold	of 50% =	0.90440788527

Other attempts to increase model performance

- Balancing data
 - a. Only ~10% of data were lemons.
- 2. Fine tuning hyper-parameters
 - a. Penalty
 - b. Inverse of regularization strength (C)

Model of choice

1. Logistic Regression

```
Confusion Matrix for 50% threshold
          pred lemon pred not lemon
Lemon
                                1991
Not Lemon
                               18850
50% THRESHOLD
            precision
                         recall f1-score
                                            support
                 0.90
                           1.00
                                     0.95
                                              18856
                 0.25
                                               1993
                           0.00
                                     0.00
avg / total
                 0.84
                           0.90
                                     0.86
                                              20849
```

Fine-Tuning

- Best Model:
 - Logistic Regression w/ 12% threshold.
- Accuracy = 73.92%
- Baseline = ~90% likely to be non_lemon
- Accuracy improvement is not the only way to add value to the business.
- Goal: increase precision

Confusion	Matrix for 12	2% threshol	d	
Lemon Not_Lemon	pred_lemon 1016 4461	<pre>pred_not_1 1</pre>	emon 977 4395	
12% THRESH	OLD precision	recall	f1-score	support
	0 0.94 1 0.19	0.76 0.51	0.84 0.27	18856 1993
avg / tota	1 0.86	0.74	0.79	20849

Recommendation System

Used Nearest Neighbors based on following features: *Generally*, *non-negotiables for buyers*.

- 1. Make and model
- 2. Price
- 3. Mileage
- 4. Size

Rec System: Feature Selection

Excluded features:

- 1. Color
- 2. State
 - a. Price varies drastically by state.
 - b. Could find financial savings by shipping car than purchasing locally.
- 3. Year of manufacturing

Would you buy a gold car?

Rec. System: Process

- 1. Split Data:
 - a. $X_{\text{test}} \rightarrow \text{hypothetical inventory}$
- 2. Logistic Regression
 - a. Kept only non-lemons
- 3. Recommended cars from inventory of non-lemons

Flask

Miles on Odometer 100000 Price of Vehicle 10000 Warranty Cost 1200 Auction Adesa \$ Month of Purchase January \$ Year Car Manufactured 2001 \$ Vehicle's color RED Make-Model CHEVROLET MALIBU State NJ \$ Nationality of Vehicle AMERICAN Vehicle Size Type COMPACT submit

LEMON PREDICTOR

Mile	s on Odometer
Pric	e of Vehicle
Warr	anty Cost
Auct	ion (Adesa 💠
Mont	h of Purchase January 💠
Year	Car Manufactured 2001 \$
Vehi	cle's color RED \$
Make	-Model (ACURA 3.2 \$
Stat	e AL \$
Nati	onality of Vehicle OTHER ASIAN
Vehi	cle Size Type MEDIUM \$
subr	nit

Conclusion

- 1. Can't predict if a car will be a lemon based on these features.
 - a. These may not be the determining features.

What we need

- 1. A decision making tool that takes more comprehensive approach:
 - a. Monthly installments
 - b. Financing interest
 - c. Cost of insurance
 - d. Average cost of gas
 - e. With risk assessment
- 2. Incorporate CarFax information
 - a. Model must include condition of individual vehicles (regular maintenance, accident history)

Questions?