Lamb-Dicke regime/approximation

Yichao Yu

Journal Club

Sideband

Sideband

Frequency: $\omega + n\omega_m$

Sideband

Frequency: $\omega + n\omega_m$

Strength: $\langle n|e^{ik\hat{x}}|n+\Delta n\rangle$

$$\langle n|e^{\mathrm{i}k\hat{x}}|n+\Delta n\rangle$$

$$\langle n|\mathrm{e}^{\mathrm{i}k\hat{x}}|n+\Delta n\rangle$$

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(a + a^{\dagger} \right) = z_0 \left(a + a^{\dagger} \right)$$

$$\langle n|e^{ik\hat{x}}|n+\Delta n\rangle$$

 $\hat{x}=\sqrt{\frac{\hbar}{2m\omega}}\Big(a+a^{\dagger}\Big)=z_0\Big(a+a^{\dagger}\Big)$
 $k\hat{x}=\eta\Big(a+a^{\dagger}\Big)$
 $\eta\equiv kz_0=k\sqrt{\frac{\hbar}{2m\omega}}$

$$\langle n|e^{ik\hat{x}}|n+\Delta n\rangle$$
 $\hat{x}=\sqrt{\frac{\hbar}{2m\omega}}\Big(a+a^{\dagger}\Big)=z_0\Big(a+a^{\dagger}\Big)$
 $\eta=\frac{2\pi z_0}{\lambda}$
 $k\hat{x}=\eta\Big(a+a^{\dagger}\Big)$
 $\eta=\sqrt{\frac{\omega_R}{\omega_m}}$
 $\eta\equiv kz_0=k\sqrt{\frac{\hbar}{2m\omega}}$

Sideband strength

$$\langle n|e^{ik\hat{x}}|n+\Delta n\rangle$$

$$=e^{-\eta^2/2}\eta^{\Delta n}\sqrt{\frac{n_-!}{n_+!}}L_{n_-}^{\Delta n}(\eta^2)$$

$$n_- \equiv \min(n, n+\Delta n), \quad n_+ \equiv \max(n, n+\Delta n)$$

Sideband strength

$$\langle n|e^{ik\hat{x}}|n+\Delta n\rangle$$

$$=e^{-\eta^2/2}\eta^{\Delta n}\sqrt{\frac{n_-!}{n_+!}}L_{n_-}^{\Delta n}(\eta^2)$$

$$n_{-} \equiv \min(n, n + \Delta n), \quad n_{+} \equiv \max(n, n + \Delta n)$$

