Idempotent generating sets for semigroups and combinatorics of bipartite graphs

Robert Gray

Centro de Álgebra da Universidade de Lisboa

Lisbon, May 2012

My family

Leonhard Euler (the "father" of graph theory)

Great great great great great great great great great grandfather

John Howie

Grandfather

Nik

Father

Bob

A theorem of Howie

 T_n - the full transformation monoid

$$T_n = S_n \cup \operatorname{Sing}_n$$
, where $\operatorname{Sing}_n = \{\text{non-bijections}\}$

Theorem (Howie (1966))

The subsemigroup of T_n generated by its idempotents is:

$$\langle E(T_n)\rangle = \operatorname{Sing}_n \cup \{\operatorname{id}\}.$$

Corollary

Every proper two-sided ideal

$$K(n,r) = \{ \alpha \in T_n : |\text{im } \alpha| \le r \}$$

of T_n is idempotent generated.

Howie asked:

▶ How many idempotents are needed to generate K(n, r)?

A theorem of Howie and McFadden

S - finite idempotent generated semigroup

Definition

idrank(S) = smallest size of an idempotent generating set for S.

Theorem (Howie and McFadden (1990))

For 1 < r < n we have

$$idrank(K(n, r)) = S(n, r),$$

where S(n,r) is the Stirling number of the second kind (i.e. the number of partitions of $\{1, ..., n\}$ into r non-empty subsets).

Reduction to principal factors

Let
$$D_r = \{ \alpha \in T_n : |\text{im } \alpha| = r \}$$
, so

$$K(n,r) = K(n,r-1) \cup D_r$$

where K(n, r - 1) is an ideal of K(n, r).

Lemma

K(n,r) is generated by the idempotents in its top \mathcal{D} -class D_r .

Principal factor: $D_r^* = D_r \cup \{0\}$ with multiplication:

$$\alpha\beta = \begin{cases} \alpha\beta & \text{if } \alpha, \beta, \alpha\beta \in D_r \\ 0 & \text{otherwise.} \end{cases}$$

Conclusion: D_r^* is a idempotent generated finite completely 0-simple semigroup satisfying:

$$idrank(K(n,r)) = idrank(D_r^*).$$

Regular \mathcal{D} -classes

For $u, v \in S$ we define

$$u\mathcal{R}v \Leftrightarrow uS \cup \{u\} = vS \cup \{v\}, \quad u\mathcal{L}v \Leftrightarrow Su \cup \{u\} = Sv \cup \{v\},$$

$$\mathcal{H} = \mathcal{R} \cap \mathcal{L}. \quad \mathcal{D} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R}.$$

- ightharpoonup A \mathcal{D} -class is regular if it contains an idempotent
- ▶ A regular \mathcal{D} -class has ≥ 1 idempotent in every \mathcal{R} and every \mathcal{L} -class.

Structure of finite completely 0-simple semigroups

 $S = D \cup \{0\}$ - where *D* is a regular \mathcal{D} -class

$$\mathcal{R}$$
-classes = $\{R_i : i \in I\}$, \mathcal{L} -classes = $\{L_{\lambda} : \lambda \in \Lambda\}$. \mathcal{H} -classes = $\{H_{i\lambda} : i \in I, \lambda \in \Lambda\}$

Miller & Clifford Theorem. If $\alpha \in H_{i\lambda}$ and $\beta \in H_{i\mu}$ then

 $\alpha\beta \in H_{i\mu}$ if $H_{j\lambda}$ contains an idempotent $\alpha\beta = 0$ if $H_{j\lambda}$ does not contain an idempotent.

Conclusion: Every generating set for *S* has at least $\max(|I|, |\Lambda|)$ elements.

$$S_{n}$$

$$D_{n-1} \quad |\operatorname{Im}(\alpha)| = n-1$$

$$\binom{n}{r}$$

$$D_{r} \quad |\operatorname{Im}(\alpha)| = r$$

$$D_{1} \quad |\operatorname{Im}(\alpha)| = 1$$

 T_n - full transformation semigroup, $\alpha, \beta \in T_n$

 $\alpha \mathcal{L}\beta \iff \operatorname{Im}(\alpha) = \operatorname{Im}(\beta)$

 $\alpha \mathcal{R} \beta \iff \ker(\alpha) = \ker(\beta)$

 $\alpha \mathcal{D}\beta \iff |\operatorname{Im}(\alpha)| = |\operatorname{Im}(\beta)|$

 $D_r = \{ \alpha \in T_n : |\mathrm{Im}(\alpha)| = r \}$

 $K(n,r) = \{\alpha \in T_n : |\operatorname{Im}(\alpha)| \le r\}$ = $D_1 \cup \dots \cup D_r$.

 $K(n,r) = \langle D_r \rangle , \ 1 \le r < n.$

A theorem of Howie and McFadden

Theorem (Howie and McFadden (1990))

For 1 < r < n we have

$$idrank(K(n,r)) = S(n,r),$$

where S(n,r) is the Stirling number of the second kind (i.e. the number of partitions of $\{1, ..., n\}$ into r non-empty subsets).

Square completely 0-simple semigroups

 $S = D \cup \{0\}$ - an idempotent generated finite completely 0-simple semigroup with:

$$\mathcal{R}$$
-classes - $\{R_i : i \in I\}$, \mathcal{L} -classes - $\{L_{\lambda} : \lambda \in \Lambda\}$.

Suppose D is square, i.e. $|I| = |\Lambda|$.

Clearly every generating set for S must intersect every R_i and every L_{λ} .

Question: Is there a generating set of idempotents with size $|I| = |\Lambda|$?

Graham-Houghton Graphs

 $S = D \cup \{0\}$ - an idempotent generated finite completely 0-simple semigroup with:

$$\mathcal{R}$$
-classes - $\{R_i : i \in I\}$, \mathcal{L} -classes - $\{L_{\lambda} : \lambda \in \Lambda\}$.

Definition. Define a bipartite graph $\Delta(S)$ with

Vertices: $I \cup \Lambda$

Edges: $(i, \lambda) \Leftrightarrow H_{i\lambda} = R_i \cap L_{\lambda}$ contains an idempotent.

S

Graham-Houghton Graphs

 $S = D \cup \{0\}$ - an idempotent generated finite completely 0-simple semigroup with:

$$\mathcal{R}$$
-classes - $\{R_i : i \in I\}$, \mathcal{L} -classes - $\{L_{\lambda} : \lambda \in \Lambda\}$.

Definition. Define a bipartite graph $\Delta(S)$ with

Vertices: $I \cup \Lambda$

Edges: $(i, \lambda) \Leftrightarrow H_{i\lambda} = R_i \cap L_{\lambda}$ contains an idempotent.

S

Close, but no cigar

A necessary condition

If $idrank(S) = |I| = |\Lambda|$ then $\Delta(S)$ has a perfect matching.

But it is not sufficient

Hall's marriage theorem

 Γ - a graph, $W \subseteq V\Gamma$ a set of vertices

Definition (Neighbourhood)

$$\Gamma(W) = \{ v \in V\Gamma : \exists w \in W : v \sim w \}.$$

Theorem (Philip Hall (1935))

A bipartite graph $\Gamma = X \cup Y$ with |X| = |Y| has a perfect matching if and only if the following condition is satisfied:

$$|\Gamma(A)| \ge |A| \text{ for all } A \subseteq X.$$
 (HC)

Strengthening Hall's condition

Definition

A bipartite graph $\Gamma = X \cup Y$ with |X| = |Y| is said to satisfy the strong Hall condition if it satisfies

$$|\Gamma(A)| > |A| \text{ for all } A \subsetneq X.$$
 (SHC)

Theorem (RG (2008))

Let $S = D \cup \{0\}$ be a finite square idempotent generated completely 0-simple with \mathcal{R} -classes indexed by I and \mathcal{L} -classes by Λ . Then the following are equivalent:

- 1. $idrank(S) = |I| = |\Lambda|;$
- 2. the bipartite graph $\Delta(S)$ satisfies (SHC);
- 3. $A \subseteq S$ with $|A| = |I| = |\Lambda|$ is a generating set for S if and only if A intersects every non-zero \mathcal{R} -class and \mathcal{L} -class exactly once.

Application: Full linear monoid

A \mathcal{D} -class picture in $M_4(\mathbb{F}_2)$

Symmetry implies SHC

Definition

A graph Γ is called regular if all of its vertices have the same degree.

Fact. The Graham-Houghton graphs of the principal factors of the full linear monoid are all connected regular bipartite graphs.

Lemma

Let $\Gamma = X \cup Y$ be a connected bipartite graph with |X| = |Y|. If Γ is regular then Γ satisfies (SHC).

Theorem (RG (2008))

Let *V* be an *n*-dimensional vector space over the finite field *F* where |F| = q. Then:

$$idrank(L(n,r)) = \begin{bmatrix} n \\ r \end{bmatrix}_q$$
.

Moreover, a subset of L(n,r) is a generating set of minimum cardinality for L(n,r) if and only if it consists of $\begin{bmatrix} n \\ r \end{bmatrix}_q$ matrices of rank r no two of which have the same row space or the same column space.