MA 101 (Mathematics I)

Solutions for Tutorial Problem Set

1. Let (x_n) be a convergent sequence of positive real numbers such that $\lim_{n\to\infty} x_n < 1$. Show that $\lim_{n\to\infty} x_n^n = 0$.

Solution: If $\ell = \lim_{n \to \infty} x_n$, then $\frac{1}{2}(1-\ell) > 0$ and so there exists $n_0 \in \mathbb{N}$ such that $|x_n - \ell| < \frac{1}{2}(1-\ell)$ for all $n \ge n_0$. Hence $0 < x_n < \frac{1}{2}(1+\ell)$ for all $n \ge n_0 \Rightarrow 0 < x_n^n < (\frac{1+\ell}{2})^n$ for all $n \ge n_0$. Since $\frac{1}{2}(1+\ell) < 1$, $\lim_{n \to \infty} (\frac{1+\ell}{2})^n = 0$. Therefore by sandwich theorem, $\lim_{n \to \infty} x_n^n = 0$.

Alternative solution: Since $\lim_{n\to\infty} (x_n^n)^{\frac{1}{n}} = \lim_{n\to\infty} x_n < 1$, by root test, the series $\sum_{n=1}^{\infty} x_n^n$ converges and hence $\lim_{n\to\infty} x_n^n = 0$.

- 2. Let (x_n) be a convergent sequence in \mathbb{R} with limit $\ell \in \mathbb{R}$ and let $\alpha \in \mathbb{R}$.
 - (a) If $x_n > \alpha$ for all $n \in \mathbb{N}$, then show that $\ell \geq \alpha$.
 - (b) If $\ell > \alpha$, then show that there exists $n_0 \in \mathbb{N}$ such that $x_n > \alpha$ for all $n \geq n_0$.

(Note that ℓ can be equal to α in (a).)

Solution: (a) If possible, let $\ell < \alpha$. Then $\alpha - \ell > 0$ and since $x_n \to \ell$, there exists $n_0 \in \mathbb{N}$ such that $|x_n - \ell| < \alpha - \ell$ for all $n \ge n_0$. This implies that $x_n < \ell + \alpha - \ell = \alpha$ for all $n \ge n_0$, which is a contradiction. Hence $\ell \ge \alpha$.

(b) Since $\ell - \alpha > 0$ and since $x_n \to \ell$, there exists $n_0 \in \mathbb{N}$ such that $|x_n - \ell| < \ell - \alpha$ for all $n \ge n_0$. This implies that $x_n > \ell - (\ell - \alpha) = \alpha$ for all $n \ge n_0$.

(Note that although $\frac{1}{n} > 0$ for all $n \in \mathbb{N}$, $\lim_{n \to \infty} \frac{1}{n} = 0$ and thus ℓ can be equal to α in (a).)

3. For $\alpha \in \mathbb{R}$, examine whether $\lim_{n \to \infty} \frac{1}{n^2} ([\alpha] + [2\alpha] + \cdots + [n\alpha])$ exists (in \mathbb{R}). Also, find the value if it exists.

(For each $x \in \mathbb{R}$, [x] denotes the greatest integer not exceeding x.) Solution: For each $x \in \mathbb{R}$, $[x] \le x < [x] + 1 \Rightarrow x - 1 < [x] \le x$. Hence, for all $n \in \mathbb{N}$, $\frac{1}{n^2}\{(\alpha - 1) + (2\alpha - 1) + \dots + (n\alpha - 1)\} < x_n \le \frac{1}{n^2}(\alpha + 2\alpha + \dots + n\alpha) \Rightarrow \frac{\alpha}{2}(1 + \frac{1}{n}) - \frac{1}{n} < x_n \le \frac{\alpha}{2}(1 + \frac{1}{n})$ for all $n \in \mathbb{N}$. Since $\frac{\alpha}{2}(1 + \frac{1}{n}) - \frac{1}{n} \to \frac{\alpha}{2}$ and $\frac{\alpha}{2}(1 + \frac{1}{n}) \to \frac{\alpha}{2}$, by sandwich theorem, (x_n) is convergent and $\lim_{n \to \infty} x_n = \frac{\alpha}{2}$.

4. Let $x_1 = 6$ and $x_{n+1} = 5 - \frac{6}{x_n}$ for all $n \in \mathbb{N}$. Examine whether the sequence (x_n) is convergent. Also, find $\lim_{n \to \infty} x_n$ if (x_n) is convergent.

Solution: We have $x_1 > 3$ and if we assume that $x_k > 3$ for some $k \in \mathbb{N}$, then $x_{k+1} > 5 - 2 = 3$. Hence by the principle of mathematical induction, $x_n > 3$ for all $n \in \mathbb{N}$. Therefore (x_n) is bounded below. Again, $x_2 = 4 < x_1$ and if we assume that $x_{k+1} < x_k$ for some $k \in \mathbb{N}$, then $x_{k+2} - x_{k+1} = 6(\frac{1}{x_k} - \frac{1}{x_{k+1}}) < 0 \Rightarrow x_{k+2} < x_{k+1}$. Hence by the principle of mathematical induction, $x_{n+1} < x_n$ for all $n \in \mathbb{N}$. Therefore (x_n) is decreasing. Consequently (x_n) is convergent. Let $\ell = \lim_{n \to \infty} x_n$. Then $\lim_{n \to \infty} x_{n+1} = 5 - \frac{6}{\lim_{n \to \infty} x_n} \Rightarrow \ell = 5 - \frac{6}{\ell}$ (since $x_n > 3$ for all $n \in \mathbb{N}$, $\ell \neq 0$) $\Rightarrow (\ell - 2)(\ell - 3) = 0 \Rightarrow \ell = 2$ or $\ell = 3$. But $x_n > 3$ for all $n \in \mathbb{N}$, so $\ell \geq 3$. Therefore $\ell = 3$.

Alterbative solution: For all $n \in \mathbb{N}$, we have $|x_{n+2} - x_{n+1}| = \frac{6}{|x_{n+1}||x_n|} |x_{n+1} - x_n|$. Also, as shown in the above solution, $x_n > 3$ for all $n \in \mathbb{N}$. Hence $|x_{n+2} - x_{n+1}| \leq \frac{2}{3} |x_{n+1} - x_n|$ for all $n \in \mathbb{N}$. It follows that (x_n) is a Cauchy sequence in \mathbb{R} and hence (x_n) is convergent. To show that $\lim_{n \to \infty} x_n = 3$, we proceed as in the above solution.

5. Let (x_n) be a sequence of nonzero real numbers. If (x_n) does not have any convergent subsequence, then show that $\lim_{n\to\infty}\frac{1}{x_n}=0$.

Solution: If $\lim_{n\to\infty} \frac{1}{x_n} \neq 0$, then there exists $\varepsilon > 0$ such that for each $n \in \mathbb{N}$, there exists a positive integer m > n satisfying $|\frac{1}{x_m}| \geq \varepsilon$, i.e. $|x_m| \leq \frac{1}{\varepsilon}$. Thus we get positive integers $n_1 < n_2 < \cdots$ such that $|x_{n_k}| \leq \frac{1}{\varepsilon}$ for each $k \in \mathbb{N}$. So (x_{n_k}) is a bounded subsequence of (x_n) and hence by Bolzano-Weierstrass theorem, (x_{n_k}) has a convergent subsequence, which is also a convergent subsequence of (x_n) , which contradicts the hypothesis. Therefore $\lim_{n\to\infty} \frac{1}{x_n} = 0$.

Alternative solution: Let $\varepsilon > 0$. We claim that there exist at most finitely many $n \in \mathbb{N}$ for which $x_n \in [-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}]$. Because otherwise, we get a subsequence (x_{n_k}) of (x_n) such that $x_{n_k} \in [-\varepsilon, \varepsilon]$ for all $k \in \mathbb{N}$ and so (x_{n_k}) is bounded. By Bolzano-Weierstrass theorem, (x_{n_k}) has a convergent subsequence, which is also a subsequence of (x_n) . This contradicts the given hypothesis. Hence our claim is proved and so there exists $n_0 \in \mathbb{N}$ such that $|x_n| > \frac{1}{\varepsilon}$ for all $n \geq n_0$. Thus $|\frac{1}{x_n}| < \varepsilon$ for all $n \geq n_0$ and therefore $\lim_{n \to \infty} \frac{1}{x_n} = 0$.

6. Examine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ is convergent.

Solution: Let $x_n = \frac{1}{n^{1+\frac{1}{n}}}$ and let $y_n = \frac{1}{n}$ for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} \frac{x_n}{y_n} = 1 \neq 0$. Since $\sum_{n=1}^{\infty} y_n$ is not convergent, by the limit comparison test, $\sum_{n=1}^{\infty} x_n$ is also not convergent.

7. Let $x_n > 0$ for all $n \in \mathbb{N}$. Show that the series $\sum_{n=1}^{\infty} x_n$ converges iff the series $\sum_{n=1}^{\infty} \frac{x_n}{1+x_n}$ converges. Solution: We have $0 < \frac{x_n}{1+x_n} < x_n$ for all $n \in \mathbb{N}$. Hence by comparison test, $\sum_{n=1}^{\infty} \frac{x_n}{1+x_n}$ converges if $\sum_{n=1}^{\infty} x_n$ converges.

Conversely, let $\sum_{n=1}^{\infty} \frac{x_n}{1+x_n}$ converge. Then $\frac{x_n}{1+x_n} \to 0$ and so there exists $n_0 \in \mathbb{N}$ such that $\frac{x_n}{1+x_n} < \frac{1}{2}$ for all $n \geq n_0$. This implies that $x_n < 1$ for all $n \geq n_0$, i.e. $1 + x_n < 2$ for all $n \geq n_0$ and so $x_n < \frac{2x_n}{1+x_n}$ for all $n \geq n_0$. By comparison test, we conclude that $\sum_{n=1}^{\infty} x_n$ converges.

Alternative solution: If $\sum_{n=1}^{\infty} x_n$ converges, then $\lim_{n\to\infty} \frac{\frac{x_n}{1+x_n}}{x_n} = \lim_{n\to\infty} \frac{1}{1+x_n} = 1$ (since $x_n \to 0$) and hence by limit comparison test, $\sum_{n=1}^{\infty} \frac{x_n}{1+x_n}$ converges.

Conversely, if $\sum_{n=1}^{\infty} \frac{x_n}{1+x_n}$ converges, then $\lim_{n\to\infty} \frac{\frac{x_n}{1+x_n}}{x_n} = \lim_{n\to\infty} \frac{1}{1+x_n} = 1 \neq 0$ (since $\frac{x_n}{1+x_n} \to 0$ and so $\frac{1}{1+x_n} = 1 - \frac{x_n}{1+x_n} \to 1$) and hence by limit comparison test, $\sum_{n=1}^{\infty} x_n$ converges.

8. Find all $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{(-1)^n (x-1)^n}{2^n n^2}$ converges.

Solution: If x = 1, then the given series becomes $0 + 0 + \cdots$, which is clearly convergent. Let $x \neq 1 \in \mathbb{R}$ and let $a_n = \frac{(-1)^n (x-1)^n}{2^n n^2}$ for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{2} |x-1|$. Hence by ratio test, $\sum_{n=1}^{\infty} a_n$ converges (absolutely) if $\frac{1}{2} |x-1| < 1$, i.e. if $x \in (-1,3)$ and does not converge if $\frac{1}{2} |x-1| > 1$, i.e. if $x \in (-\infty,-1) \cup (3,\infty)$. If $\frac{1}{2} |x-1| = 1$, i.e. if $x \in \{-1,3\}$, then $\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{1}{n^2}$ converges and hence $\sum_{n=1}^{\infty} a_n$ converges. Therefore the set of $x \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} a_n$ converges is [-1,3].

Alternative solution: Instead of ratio test, one can find $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = \frac{1}{2}|x-1|$ and use root test.

The remaining part is same.

9. If $\alpha(\neq 0) \in \mathbb{R}$, then show that the series $\sum_{n=1}^{\infty} (-1)^n \sin(\frac{\alpha}{n})$ is conditionally convergent. Solution: We choose $n_0 \in \mathbb{N}$ such that $\frac{|\alpha|}{n_0} < \frac{\pi}{2}$. Then for all $n \geq n_0$, $\sin(\frac{\alpha}{n})$ has the same sign as that of α . Since the sine function is increasing in $(0, \frac{\pi}{2})$, it follows that the sequence $\left(\sin(\frac{|\alpha|}{n})\right)_{n=n_0}^{\infty}$ is decreasing. Also, $\lim_{n\to\infty}\sin(\frac{|\alpha|}{n})=0$. Hence by Leibniz's test, $\sum_{n=n_0}^{\infty}(-1)^n\sin(\frac{\alpha}{n})$

is convergent. Consequently $\sum_{n=1}^{\infty} (-1)^n \sin(\frac{\alpha}{n})$ is convergent.

Again, $\sum_{n=1}^{\infty} |(-1)^n \sin(\frac{\alpha}{n})| = \sum_{n=1}^{\infty} |\sin(\frac{\alpha}{n})|$ is not convergent by limit comparison test, since (using

 $\lim_{x\to 0} \frac{\sin x}{x} = 1 \Big) \lim_{n\to \infty} \frac{|\sin(\alpha/n)|}{1/n} = |\alpha| \lim_{n\to \infty} \left| \frac{\sin(\alpha/n)}{\alpha/n} \right| = |\alpha| \neq 0 \text{ and } \sum_{n=1}^{\infty} \frac{1}{n} \text{ is not convergent. Therefore }$ the given series is conditionally convergent.

10. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ [x] & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Determine all the points of \mathbb{R} where f is continuous.

Solution: Let $x \in \mathbb{R} \setminus \mathbb{Q}$. Then there exists a sequence (r_n) in \mathbb{Q} such that $r_n \to x$. $f(r_n) = r_n \to x \neq [x] = f(x)$. Hence f is not continuous at x.

Again, let $y \in \mathbb{Q}$. Then there exists a sequence (t_n) in $\mathbb{R} \setminus \mathbb{Q}$ such that $t_n < y$ for all $n \in \mathbb{N}$ and $t_n \to y$. For each $n \in \mathbb{N}$, $f(t_n) = \begin{cases} [t_n] \le y - 1 & \text{if } y \in \mathbb{Z}, \\ [t_n] \le [y] < y & \text{if } y \notin \mathbb{Z}. \end{cases}$ In either case $f(t_n) \not\to f(y) = y$. Hence f is not continuous at y. Therefore f is not continuous

at any point of \mathbb{R} .

- 11. Let $f:[0,1]\to\mathbb{R}$ be continuous such that f(0)=f(1). Show that
 - (a) there exist $x_1, x_2 \in [0, 1]$ such that $f(x_1) = f(x_2)$ and $x_1 x_2 = \frac{1}{2}$.
 - (b) there exist $x_1, x_2 \in [0, 1]$ such that $f(x_1) = f(x_2)$ and $x_1 x_2 = \frac{1}{3}$.

(In fact, if $n \in \mathbb{N}$, then there exist $x_1, x_2 \in [0, 1]$ such that $f(x_1) = f(x_2)$ and $x_1 - x_2 = \frac{1}{n}$. However, it is not necessary that there exist $x_1, x_2 \in [0, 1]$ such that $f(x_1) = f(x_2)$ and $x_1 - x_2 = \frac{2}{5}$. Solution: (a) Let $g(x) = f(x + \frac{1}{2}) - f(x)$ for all $x \in [0, \frac{1}{2}]$. Since f is continuous, $g: [0, \frac{1}{2}] \to \mathbb{R}$ is continuous. Also $g(0) = f(\frac{1}{2}) - f(0)$ and $g(\frac{1}{2}) = f(1) - f(\frac{1}{2}) = -g(0)$, since $f(0) = \bar{f}(1)$. If g(0) = 0, then we can take $x_1 = \frac{1}{2}$ and $x_2 = 0$. Otherwise, $g(\frac{1}{2})$ and g(0) are of opposite signs and hence by the intermediate value property of continuous functions, there exists $c \in (0, \frac{1}{2})$ such that g(c) = 0, i.e. $f(c + \frac{1}{2}) = f(c)$. We take $x_1 = c + \frac{1}{2}$ and $x_2 = c$.

(b) Let $g(x) = f(x + \frac{1}{3}) - f(x)$ for all $x \in [0, \frac{2}{3}]$. Since f is continuous, $g: [0, \frac{2}{3}] \to \mathbb{R}$ is continuous. Also $g(0) + g(\frac{1}{3}) + g(\frac{2}{3}) = f(1) - f(0) = 0$. If at least one of g(0), $g(\frac{1}{3})$ and $g(\frac{2}{3})$ is 0, then the result follows immediately. Otherwise, at least two of g(0), $g(\frac{1}{3})$ and $g(\frac{2}{3})$ are of opposite signs and hence by the intermediate value property of continuous functions, there exists $c \in (0, \frac{2}{3})$ such that g(c) = 0, i.e. $f(c + \frac{1}{3}) = f(c)$. We take $x_1 = c + \frac{1}{3}$ and $x_2 = c$.

(Assuming n > 1, we define $g(x) = f(x + \frac{1}{n}) - f(x)$ for all $x \in [0, 1 - \frac{1}{n}]$. Since f is continuous, $g:[0,1-\frac{1}{n}]\to\mathbb{R}$ is continuous. Also $g(0)+g(\frac{1}{n})+g(\frac{2}{n})+\cdots+g(1-\frac{1}{n})=f(1)-f(0)=0$. If at least one of $g(0), g(\frac{1}{n}), ..., g(1-\frac{1}{n})$ is 0, then the result follows immediately. Otherwise, at least two of g(0), $g(\frac{1}{n})$, ..., $g(1-\frac{1}{n})$ are of opposite signs and hence by the intermediate value property of continuous functions, there exists $c \in (0, 1-\frac{1}{n})$ such that g(c) = 0, i.e. $f(c+\frac{1}{n}) = f(c)$. We

take $x_1 = c + \frac{1}{n}$ and $x_2 = c$. Again, if $f(x) = \sin^2(\frac{5}{2}\pi x) - x$ for all $x \in [0,1]$, then $f: [0,1] \to \mathbb{R}$ is continuous and f(0) = 0 = f(1). However, $f(x) - f(x + \frac{2}{5}) = \frac{2}{5}$ for all $x \in [0, \frac{3}{5}]$ and so no points $x_1, x_2 \in [0, 1]$

exist satisfying $f(x_1) = f(x_2)$ and $x_1 - x_2 = \frac{2}{5}$.)

12. Let p be an odd degree polynomial with real coefficients in one real variable. If $g: \mathbb{R} \to \mathbb{R}$ is a bounded continuous function, then show that there exists $x_0 \in \mathbb{R}$ such that $p(x_0) = g(x_0)$.

(In particular, this shows that

- (a) every odd degree polynomial with real coefficients in one real variable has at least one real zero.
- (b) the equation $x^9 4x^6 + x^5 + \frac{1}{1+x^2} = \sin 3x + 17$ has at least one real root.
- (c) the range of every odd degree polynomial with real coefficients in one real variable is \mathbb{R} .) Solution: Let f(x) = p(x) g(x) for all $x \in \mathbb{R}$. Since both p and g are continuous, $f : \mathbb{R} \to \mathbb{R}$ is continuous.

Since g is bounded, there exists M > 0 such that $|g(x)| \leq M$ for all $x \in \mathbb{R}$.

Let $p(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$ for all $x \in \mathbb{R}$, where $a_i \in \mathbb{R}$ for i = 0, 1, ..., n, $n \in \mathbb{N}$ is odd and $a_0 \neq 0$. So $p(x) = a_0 x^n (1 + \frac{a_1}{a_0} \cdot \frac{1}{x} + \cdots + \frac{a_{n-1}}{a_0} \cdot \frac{1}{x^{n-1}} + \frac{a_n}{a_0} \cdot \frac{1}{x^n})$ for all $x \neq 0 \in \mathbb{R}$. We assume that $a_0 > 0$. (The case $a_0 < 0$ is almost similar.) Then $\lim_{x \to \infty} p(x) = \infty$ and $\lim_{x \to -\infty} p(x) = -\infty$ (since n is odd). So there exist $x_1 > 0$ and $x_2 < 0$ such that $p(x_1) > M$ and $p(x_2) < -M$. Hence $p(x_1) > 0$ and $p(x_2) < 0$. By the intermediate value property of continuous functions, there exists $x_0 \in (x_2, x_1)$ such that $p(x_0) = 0$, $p(x_0) = p(x_0)$.

(For (a), we take g(x)=0 for all $x\in\mathbb{R}$. For (b), we take $p(x)=x^9-4x^6+x^5-17$ and $g(x)=\sin 3x-\frac{1}{1+x^2}$ for all $x\in\mathbb{R}$ and we note that $|g(x)|\leq 2$ for all $x\in\mathbb{R}$. For (c), given $y\in\mathbb{R}$, we take g(x)=y for all $x\in\mathbb{R}$.)

- 13. Does there exist a continuous function from (0,1] onto \mathbb{R} ? Justify. Solution: If $f(x) = \frac{1}{x} \sin \frac{1}{x}$ for all $x \in (0,1]$, then $f:(0,1] \to \mathbb{R}$ is continuous and $f(\frac{2}{(4n+1)\pi}) = 2n\pi + \frac{\pi}{2}$, $f(\frac{2}{(4n+3)\pi}) = -2n\pi - \frac{3\pi}{2}$ for all $n \in \mathbb{N}$. For each $y \in \mathbb{R}$, we can find $n \in \mathbb{N}$ such that $-2n\pi - \frac{3\pi}{2} < y < 2n\pi + \frac{\pi}{2}$ and hence by the intermediate value property of continuous functions, there exists $x \in \mathbb{R}$ such that f(x) = y. Thus $f:(0,1] \to \mathbb{R}$ is onto. Therefore there exists such a function.
- 14. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable on $(-\delta, \delta)$ for some $\delta > 0$ and let f''(0) exist (in \mathbb{R}). If $f(\frac{1}{n}) = 0$ for all $n \in \mathbb{N}$, then find f'(0) and f''(0).

 Solution: Since f is continuous at 0 and since $\frac{1}{n} \to 0$, we have $f(0) = \lim_{n \to \infty} f(\frac{1}{n}) = 0$. Also, since f'(0) exists (in \mathbb{R}) and since $\frac{1}{n} \to 0$, we have $f'(0) = \lim_{n \to \infty} \frac{f(\frac{1}{n}) f(0)}{1/n} = 0$. Again, we can choose $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \delta$. By Rolle's theorem, for each $n \geq n_0$, there exists $x_n \in (\frac{1}{n+1}, \frac{1}{n})$ such that $f'(x_n) = 0$. By sandwich theorem, $x_n \to 0$. Since f''(0) exists, we have $f''(0) = \lim_{n \to \infty} \frac{f'(x_n) f'(0)}{x_n} = 0$.
- 15. For $n \in \mathbb{N}$, show that the equation $1-x+\frac{x^2}{2}-\frac{x^3}{3}+\cdots+(-1)^n\frac{x^n}{n}=0$ has exactly one real root if n is odd and has no real root if n is even. Solution: Let $p(x)=1-x+\frac{x^2}{2}-\frac{x^3}{3}+\cdots+(-1)^n\frac{x^n}{n}$ for all $x\in\mathbb{R}$. Then $p'(x)=-1+x-x^2+\cdots+(-1)^nx^{n-1}$ for all $x\in\mathbb{R}$. We first assume that n is odd. By Ex.12 of Tutorial Problem Set, the equation p(x)=0 has at least one real root. Also, $p'(-1)=-n\neq 0$ and $p'(x)=-(\frac{1+x^n}{1+x})\neq 0$ for all $x\in\mathbb{R}\setminus\{-1\}$. As a consequence of Rolle's theorem, the equation p(x)=0 can have at most one real root. Therefore the equation p(x)=0 has exactly one real root. We now assume that n is even. Then p'(-1)=-n<0 and $p'(x)=-(\frac{1-x^n}{1+x})$ for all $x\in\mathbb{R}\setminus\{-1\}$. So p'(x)>0 for all x>1 and p'(x)<0 for all x<1. Hence p is strictly increasing in $[1,\infty)$ and p is strictly decreasing in $(-\infty,1]$. So p(x)>p(1) for all x>1 and also p(x)>p(1) for all x<1, i.e. p(x)>p(1) for all $x(\neq 1)\in\mathbb{R}$. Since $p(1)=(\frac{1}{2}-\frac{1}{3})+(\frac{1}{4}-\frac{1}{5})+\cdots+(\frac{1}{n-2}-\frac{1}{n-1})+\frac{1}{n}>0$,

we get p(x) > 0 for all $x \in \mathbb{R}$. Therefore the equation p(x) = 0 has no real root.

16. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable such that f(0) = f(1) = 0 and f'(0) > 0, f'(1) > 0. Show that there exist $c_1, c_2 \in (0, 1)$ with $c_1 \neq c_2$ such that $f'(c_1) = f'(c_2) = 0$. Solution: Since f'(0) > 0, there exists $\delta_1 \in (0, \frac{1}{2})$ such that f(x) > f(0) = 0 for all $x \in (0, \delta_1)$. Also, since f'(1) > 0, there exists $\delta_2 \in (0, \frac{1}{2})$ such that f(x) < f(1) = 0 for all $x \in (1 - \delta_2, 1)$. By the intermediate value property of continuous functions, there exists $c \in (\frac{\delta_1}{2}, 1 - \frac{\delta_2}{2})$ such that f(c) = 0. Now, by Rolle's theorem, there exists $c_1 \in (0,c)$ and $c_2 \in (c,1)$ such that $f'(c_1) = f'(c_2) = 0.$

Alternative solution: If possible, let $f'(x) \geq 0$ for all $x \in (0,1)$. Then f is an increasing function on [0,1]. So $0=f(0) \le f(x) \le f(1)=0$ for all $x \in [0,1]$, i.e. f(x)=0 for all $x \in [0,1]$. This gives f'(0) = 0, which is a contradiction. Therefore there exists $c \in (0,1)$ such that f'(c) < 0. Then by the intermediate value property of derivatives, there exist $c_1 \in (0,c)$ and $c_2 \in (c,1)$ such that $f'(c_1) = f'(c_2) = 0$.

17. Let $f: \mathbb{R} \to \mathbb{R}$ be such that f''(c) exists (in \mathbb{R}), where $c \in \mathbb{R}$. Show that $\lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2} = f''(c).$

Give an example of an $f: \mathbb{R} \to \mathbb{R}$ and a point $c \in \mathbb{R}$ for which f''(c) does not exist (in \mathbb{R}) but the above limit exists (in \mathbb{R}).

Solution: Since f''(c) exists (in \mathbb{R}), there exists $\delta > 0$ such that f'(x) exists (in \mathbb{R}) for each $x \in (c-\delta, c+\delta)$. Hence by L'Hôpital's rule, $\lim_{h \to 0} \frac{f(c+h)-2f(c)+f(c-h)}{h^2} = \lim_{h \to 0} \frac{f'(c+h)-f'(c-h)}{2h}$, provided

the second limit exists (in \mathbb{R}). Now $\lim_{h\to 0} \frac{f'(c+h)-f'(c-h)}{2h} = \frac{1}{2} [\lim_{h\to 0} \frac{f'(c+h)-f'(c)}{h} + \lim_{h\to 0} \frac{f'(c-h)-f'(c)}{-h}] = \frac{1}{2} [f''(c) + f''(c)] = f''(c)$. Hence $\lim_{h\to 0} \frac{f(c+h)-2f(c)+f(c-h)}{h^2} = f''(c)$.

If $f(x) = \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x = 0, \text{ then } f : \mathbb{R} \to \mathbb{R} \text{ is not continuous at } 0 \text{ and hence } f''(0) \text{ does not } -1 & \text{if } x < 0, \end{cases}$ exist (in \mathbb{R}), but $\lim_{h\to 0} \frac{f(0+h)-2f(0)+f(0-h)}{h^2} = 0$, since f(h)+f(-h)=0 for all $h(\neq 0) \in \mathbb{R}$.

18. Let $f: [-1,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 1 & \text{if } x = \frac{1}{n} \text{ for some } n \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$

Show that f is Riemann integrable on [-1,1] and that $\int_{-1}^{1} f(x) dx = 0$. If $F(x) = \int_{-1}^{x} f(t) dt$ for all $x \in [-1,1]$, then show that $F: [-1,1] \to \mathbb{R}$ is differentiable, and in particular, F'(0) = f(0), although f is not continuous at 0.

Solution: If $P = \{x_0, x_1, ..., x_n\}$ is any partition of [-1, 1], then clearly $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\} = 0$ and $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\} \ge 0$ for i = 1, 2, ..., n and so

L(f,P) = 0 and $U(f,P) \ge 0$. Hence $\int_{-1}^{1} f(x) dx = 0$ and $\int_{-1}^{1} f(x) dx \ge 0$. Let $\varepsilon > 0$. There exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \frac{\varepsilon}{2}$. We choose u, v and s_k, t_k for $k = 2, 3, ..., n_0$ such that $\frac{1}{n_0+1} < u < s_{n_0} < \frac{1}{n_0} < t_{n_0} < \cdots < s_2 < \frac{1}{2} < t_2 < v < 1$ and also $1 - v < \frac{\varepsilon}{2n_0}$ and $t_k - s_k < \frac{\varepsilon}{2n_0}$ for $k = 2, 3, ..., n_0$. Then the partition $P_0 = \{-1, 0, u, s_{n_0}, t_{n_0}, ..., s_2, t_2, v, 1\}$ of [-1, 1] is such

that $U(f, P_0) < \varepsilon$. It follows that $0 \le \int_{-1}^{\overline{1}} f(x) dx \le U(f, P_0) < \varepsilon$ and so $\int_{-1}^{\overline{1}} f(x) dx = 0$. Thus $\int_{-1}^{1} f(x) dx = \int_{-1}^{\overline{1}} f(x) dx = 0$. Therefore f is Riemann integrable on [-1, 1] and $\int_{-1}^{1} f(x) dx = 0$. As above we can see that F(x) = 0 for all $x \in [-1, 1]$. Hence F is differentiable and

F'(0) = 0 = f(0). However, f is not continuous at 0, because $\frac{1}{n} \to 0$ but $f(\frac{1}{n}) \to 1$ (since $f(\frac{1}{n}) = 1$ for all $n \in \mathbb{N}$).

(Alternative method of showing F(x) = 0 for all $x \in [-1,1]$: Since $f(t) \ge 0$ for all $t \in [-1,1]$, we have $0 \le F(x) \le F(x) + \int\limits_x^1 f(t) \, dt = \int\limits_{-1}^1 f(t) \, dt = 0$ for all $x \in [-1,1]$. Hence F(x) = 0 for all $x \in [-1,1]$.)

19. Let $f:[a,b]\to\mathbb{R}$ be continuous such that $f(x)\geq 0$ for all $x\in[a,b]$ and $\int_a^b f(x)\,dx=0$. Show that f(x)=0 for all $x\in[a,b]$.

(The above result need not be true if f is assumed to be only Riemann integrable on [a,b].) Solution: If possible, let $f(c) \neq 0$ for some $c \in (a,b)$, so that f(c) > 0. Since f is continuous at c, there exists $\delta > 0$ such that $|f(x) - f(c)| < \frac{1}{2}f(c)$ for all $x \in (c - \delta, c + \delta)$. (We may choose δ such that $(c - \delta, c + \delta) \subset [a,b]$.) This implies that $f(x) > \frac{1}{2}f(c)$ for all $x \in (c - \delta, c + \delta)$. So $\int_a^b f(x) \, dx = \int_a^{c - \delta/2} f(x) \, dx + \int_{c - \delta/2}^b f(x) \, dx + \int_{c + \delta/2}^b f(x) \, dx \geq \frac{1}{2}\delta f(c) > 0$, a contradiction. Hence f(x) = 0 for all $x \in (a,b)$. Almost similar arguments work if c = a or c = b.

(Taking f(0) = 1 and f(x) = 0 for all $x \in (0,1]$, we find that $f: [0,1] \to \mathbb{R}$ is Riemann integrable on [0,1] with $f(x) \ge 0$ for all $x \in [0,1]$ and $\int\limits_0^1 f(x) \, dx = 0$ but $f(0) \ne 0$.)

20. If $f:[0,1] \to \mathbb{R}$ is continuous, then show that $\int_0^x (\int_0^u f(t) dt) du = \int_0^x (x-u)f(u) du$ for all $x \in [0,1]$. Solution: Let $F(u) = \int_0^u f(t) dt$ for all $u \in [0,1]$. Then for all $x \in [0,1]$,

 $\int_{0}^{x} (\int_{0}^{u} f(t) dt) du = \int_{0}^{x} F(u) \cdot 1 du = F(u)u|_{0}^{x} - \int_{0}^{x} f(u)u du \text{ (integrating by parts and using the fact that } F'(u) = f(u) \text{ for all } u \in [0,1], \text{ since } f \text{ is continuous on } [0,1]) = xF(x) - \int_{0}^{x} uf(u) du = x \int_{0}^{x} f(u) du - \int_{0}^{x} uf(u) du = \int_{0}^{x} (x-u)f(u) du.$

Alternative solution: Let $F(x) = \int_0^x (\int_0^x f(t) dt) du$ and $G(x) = \int_0^x (x-u)f(u) du = x \int_0^x f(u) du - \int_0^x uf(u) du$ for all $x \in [0,1]$. Since f is continuous on [0,1], both $F:[0,1] \to \mathbb{R}$ and $G:[0,1] \to \mathbb{R}$ are differentiable and $F'(x) = \int_0^x f(t) dt$ and $G'(x) = xf(x) + \int_0^x f(u) du - xf(x) = \int_0^x f(u) du$ for all $x \in [0,1]$. Thus (F-G)'(x) = F'(x) - G'(x) = 0 for all $x \in [0,1]$ and hence F-G is a constant function on [0,1]. Since (F-G)(0) = F(0) - G(0) = 0 - 0 = 0, we get (F-G)(x) = 0 for all $x \in [0,1] \Rightarrow F(x) = G(x)$ for all $x \in [0,1]$.

21. Examine whether the integral $\int_{0}^{\infty} \sin(x^2) dx$ is convergent.

Solution: Since the Riemann integral $\int_0^1 \sin(x^2) dx$ exists (in \mathbb{R}), $\int_0^\infty \sin(x^2) dx$ is convergent if $\int_1^\infty \sin(x^2) dx$ is convergent. Let $f(x) = \frac{1}{2x}$ and $g(x) = 2x\sin(x^2)$ for all $x \in [1, \infty)$. Then f is decreasing on $[1, \infty)$ and $\lim_{x \to \infty} f(x) = 0$. Also $\left| \int_1^x g(t) dt \right| = |\cos 1 - \cos(x^2)| \le 2$ for all

 $x \in [1, \infty)$. Hence by Dirichlet's test, $\int_{1}^{\infty} f(x)g(x) dx$, i.e. $\int_{1}^{\infty} \sin(x^2) dx$ is convergent. Consequently $\int_{0}^{\infty} \sin(x^2) dx$ is convergent.

22. Determine all real values of p for which the integral $\int_{0}^{\infty} \frac{x^{p-1}}{1+x} dx$ is convergent.

Solution: The given integral is convergent iff both the integrals $\int_0^1 \frac{x^{p-1}}{1+x} dx$ and $\int_1^\infty \frac{x^{p-1}}{1+x} dx$ are convergent. If $p \geq 1$, then $\int_0^1 \frac{x^{p-1}}{1+x} dx$ exists (in \mathbb{R}) as a Riemann integral. For p < 1, since $\lim_{x \to 0+} \frac{x^{p-1}}{1+x} \cdot x^{1-p} = 1 \neq 0$, by the limit comparison test, $\int_0^1 \frac{x^{p-1}}{1+x} dx$ converges iff $\int_0^1 \frac{1}{x^{1-p}} dx$ converges. We know that $\int_0^1 \frac{1}{x^{1-p}} dx$ converges iff 1-p < 1, i.e. iff p > 0. Hence $\int_0^1 \frac{x^{p-1}}{1+x} dx$ converges iff p > 0. Again, since $\lim_{x \to \infty} \frac{x^{p-1}}{1+x} \cdot x^{2-p} = \lim_{x \to \infty} \frac{x}{1+x} = 1 \neq 0$, by the limit comparison test, $\int_1^\infty \frac{x^{p-1}}{1+x} dx$ converges iff $\int_1^\infty \frac{1}{x^{2-p}} dx$ converges. We know that $\int_1^\infty \frac{1}{x^{2-p}} dx$ converges iff 2-p > 1, i.e. iff p < 1. Hence $\int_1^\infty \frac{x^{p-1}}{1+x} dx$ converges iff p < 1. Therefore the given integral is convergent iff 0 .

- 23. Find the area of the region that is inside the cardioid $r = a(1 + \cos \theta)$ and
 - (a) inside the circle $r = \frac{3}{2}a$,
 - (b) outside the circle $r = \frac{3}{2}a$.

Solution: At a point of intersection of the cardioid $r = a(1 + \cos \theta)$ and the circle $r = \frac{3}{2}a$, we have $a(1 + \cos \theta) = \frac{3}{2}a$. So $\theta = \frac{\pi}{3}$ corresponds to a point of intersection. Hence the area of the region that is inside the cardioid $r = a(1 + \cos \theta)$ and inside the circle $r = \frac{3}{2}a$ is

 $2\left[\frac{1}{2}\int_{0}^{\pi/3}(\frac{3}{2}a)^{2}d\theta + \frac{1}{2}\int_{\pi/3}^{\pi}a^{2}(1+\cos\theta)^{2}d\theta\right] = (\frac{7\pi}{4} - \frac{9\sqrt{3}}{8})a^{2}.$ Also, the area of the region that is inside the cardioid $r = a(1+\cos\theta)$ and outside the circle $r = \frac{3}{2}a$ is

$$2\left[\frac{1}{2}\int_{0}^{\pi/3}a^{2}(1+\cos\theta)^{2}\,d\theta - \frac{1}{2}\int_{0}^{\pi/3}(\frac{3}{2}a)^{2}\,d\theta\right] = (\frac{9\sqrt{3}}{8} - \frac{\pi}{4})a^{2}.$$

24. Find the length of the curve $y = \int_{0}^{x} \sqrt{\cos 2t} \, dt$, $0 \le x \le \frac{\pi}{4}$.

Solution: Let $y = f(x) = \int_0^x \sqrt{\cos 2t} \, dt$ for all $x \in [0, \frac{\pi}{4}]$. Then $f'(x) = \sqrt{\cos 2x}$ for all $x \in [0, \frac{\pi}{4}]$ (by the first fundamental theorem of calculus). Hence the length of the given curve is $\int_0^{\frac{\pi}{4}} \sqrt{1 + (f'(x))^2} \, dx = \int_0^{\frac{\pi}{4}} \sqrt{1 + \cos 2x} \, dx = \sqrt{2} \int_0^{\frac{\pi}{4}} \cos x \, dx = 1.$