Basic Control Manual

Aksh ay Arjun

$$V = IR$$
 in Laplace; $V = IR$

and as we know it a constant linear factor.

$$VC = \begin{bmatrix} \frac{Vn}{R+1/cs} \end{bmatrix} \frac{1}{1/cs} \Rightarrow \begin{bmatrix} \frac{Vin}{R+cs} \end{bmatrix}$$

$$\frac{1}{CS} \Rightarrow \frac{1}{R+1/cs} \Rightarrow \frac{1}{R+cs} = \frac{1}{R+cs}$$

$$\frac{1}{Nin} \Rightarrow \frac{1}{MipM} \Rightarrow \frac{1}{R+cs} = \frac{1}{R+cs}$$

$$\frac{1}{R+cs} \Rightarrow \frac{1}{MipM} \Rightarrow \frac{1}{R+cs} \Rightarrow$$

NR =
$$\left[\frac{Vin}{R+LS+1/IS}\right]$$
 Res $\pm L(S^2+1)$

Res $\pm L(S^2+1)$

NR = $\left[\frac{Vin}{R+LS+1/IS}\right]$ Res $\left[\frac{Vin}{R+LS+1/IS}\right]$

More transfer	[pechan	ical systems]
Compount	F-V	F-n	trupedinu
П		h of (1)	10
X(1) F(f)	Kjvc+sat	K X (+)	K
*(1) E(1)			
→ ±(1)	f (vur)	for driver	f _v s
	1,	1 out	1~
χ(r)	M d Y	M dans	MSZ
	dt	ati	
T (1)	t		
2(11) D(1)	KJWasal	K 6(1)	K
	0		
Ters out	 Dω(4)	Didoin	D S
		at	
7.0			
	Octo Jawes at	J d2041)	ゴ ぢ
	at	dt '	

Zeloes and Poles of a tomstur pro: (3-a)(s-b) given a transfel fre S=a, b are zerous (3-c) (5-d) s = c, a au pous Zerous are points where transfer function Poles are points where transfer free is as NO Buck diagams: Serial blocks => R > b, all Cribility are in dividual Parame blocks => = C = [WI + WL + G] Feed back = R I HILL

Ti = gain of the ith forward path Δ= 1-(Elsop gain) + (E2 non tommy boys) etc Di = Gain of all loops touching path i Stability analysis with poles and zeroes: a system's performance is normany analysed by giving an "impulse". If the system susponds in a bounded monus, its stable, else its unslable. before mat we defin ordu of a system the highest deque of the decromination of a towns of the system eg: a is a first order system a us a second order system Mostly we need to analyse systems only until second whom because any higher order systems can be approximated as and order

Relation Ship of pour on system behaviour (a) First order system response to unit signal (i) $\frac{1}{5} \left(\frac{1}{5+a} \right) = F(5) = \frac{1}{a} \left[\frac{1}{5} - \frac{1}{5+a} \right]$ 1 1 system

= 2 [] [] - []]

a 6 a 5 ea] $=\frac{1}{a}[uu] - \frac{1}{a}c^{-at}$ => 1[1-e^at] C E->0-> fet) = 0

$$\frac{1}{5}$$

2) we can thereby see the response isn't bounded -) constable system

(iis)	different	2nd	ordu	System	respons	es:
in B	ooth pous	sam	e and	- v e	-> cm	11 31900
	z <u>l (r</u> s (sr s)				1-36e -e-3	Bt L-
	S (SFS)) ²			- e ·	
		QE-	\Rightarrow of t) =0		
		@ F .	s to	E4) = 1		
->	system ;	es bou	n ded;	slabu =		
	oth pous	- All	conagiva	wy		
Frs) z	<u> (a²</u> (a²) <u>-</u>	1-	les at		
ح)	system	is os	cilaboxy	about	\	

(11)	Bom pou	+~ e	<u> </u>			
 ດັ່ນ)	Both po	w Go	ina 011 m = 1.	with -u	e sial	Dell.
<u>(, , , , , , , , , , , , , , , , , , , </u>	Do Po		on pan		()	Υ

We can observe a gental kind hue: is the pous are unstable 11). -ve pous au stable purely imaginary pour osullaboury iv). compun pour with -ve r al Bamped Dsc => with These Points we can everle a Lepleu, s Oscillatory nature & + نسز Domain Damped osurchon cutial Unsta ble Cenponential decay] unstell Slable

