1 Motion in one dimension

Proposition 1.1. Let Then, it is true that

$$\vec{F}^{ext} = m\vec{a} + (\vec{v} - \vec{u})\dot{m} \tag{1}$$

or which is equivalent,

$$\vec{F}^{ext} + \dot{m}\vec{u} = \dot{\vec{p}} \tag{2}$$

$\mathbf{2}$ Oscillations

Proposition 2.1. Let be the following differential equation

$$\ddot{x} + \omega_0^2 x = 0, (3)$$

with the initial value condition of $x(0) = x_0$ and $v(0) = v_0$. Then, the general solution is

$$x(t) = x_0 \cos \omega_0 t + \frac{v_0}{\omega_0} \sin \omega_0 t, \tag{4}$$

or, which is equivalent,

$$x(t) = A\cos\left[\omega_0 t + \phi_0
ight], \qquad A = \sqrt{x_0^2 + \left(rac{v_0}{\omega_0}
ight)^2}, \qquad egin{array}{c} \mathbf{5} & \mathbf{Coupled \ oscillations} \ \mathbf{2} \\ \phi_0 = -\arctanrac{v_0}{\omega_0 x_0}. \\ \mathbf{6} & \mathbf{Rotations} \end{array}$$

Definition 2.1. Let U(x) be a potential function of class $C^2(\mathbb{R})$. Then, we say x_0 is a point of stable equi*librium* if U has a maxima in x_0 .

Proposition 2.2. Let be the following differential equation

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0,\tag{6}$$

with the initial value conditions of $x(0) = x_0$ and

$$v(0) = v_0$$
. Then, the general solution is

$$x(t) = e^{-\beta t} \left[x_0 \cos \tilde{\omega} t + \frac{v_0 + \beta x_0}{\tilde{\omega}} \sin \tilde{\omega} t \right], \qquad \tilde{\omega} = \sqrt{\omega_0^2 - \beta^2}$$

$$(7) \qquad \qquad \langle \nabla, \mathbf{E} \rangle_I = \frac{\rho}{\epsilon},$$

if $\beta < \omega_0$,

$$x(t) = e^{-\omega_0 t} \left[x_0 + (x_0 \omega_0 + v_0)t \right]$$
 (8)

if $\beta = \omega_0$, and

$$x(t) = \frac{x_0(\bar{\omega} - \beta) - v_0}{2\bar{\omega}} e^{-(\beta + \bar{\omega})t} + \frac{x_0(\bar{\omega} + \beta) + v_0}{2\bar{\omega}} e^{-(\beta - \bar{\omega})t} \text{ are } in\bar{v} \bar{a}\bar{r} i \sqrt{\hbar^2 u \bar{n} dv^2} \text{ Galileo transformations, then } \mathbf{E} = 0$$

Proposition 2.3. Let be the following differential equation

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f(t) = f_0 \cos[\omega t + \psi_0], \tag{10}$$

with the initial value conditions of $x(0) = x_0$ and $v(0) = v_0$. Then, the particular solution is

$$x_p(t) = A\cos\left[\omega t + \psi_0 - \phi_0\right], \qquad A = \frac{f_0}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + 4\beta t \sin^2 \theta}} \frac{\text{Lemma 8.2. Let } f : \mathbb{R}^4_{2/\beta}\overline{\omega} \to \mathbb{R}^4 \text{ be a Lorentz transformation} \phi_0 Then, then, then the form t = ctt to lines that (11) are not contained in hyperplanes of the form t' = ctt.$$

3 Central forces

Definition 3.1. Central force

$$\vec{F}(\vec{r}) = f(r)\vec{e}_o \tag{12}$$

Proposition 3.1. All central forces are conservatives.

Proposition 3.2. The angular momentum with respect the origin is conserved.

$$\dot{\vec{L}} = \vec{0} \tag{13}$$

Proposition 3.3. The areal velocity is constant.

$$\frac{dA}{dt} = \frac{L}{2m} = ctt \tag{14}$$

Theorem 3.4 (Bertrand's Theorem). The only central potentials where every bounded orbit is closed are:

$$U(r) = -\frac{k}{r}, \qquad U(r) = \frac{k}{2}r^2, \qquad k > 0$$
 (15)

Coupled oscillations 1

Dynamics of rigid body

Proposition 7.1. The vector Ω is independent on the origin of the system S.

Proposition 7.2. The energy of the rigid body is an invariant scalar under change of basis.

Special relativity

$$\langle \mathbf{\nabla}, \mathbf{E} \rangle_I = \frac{\rho}{\epsilon_0},\tag{16}$$

$$\langle \mathbf{\nabla}, \mathbf{B} \rangle_I = 0, \tag{17}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},\tag{18}$$

$$\mathbf{V} \times \mathbf{E} = -\frac{1}{\partial t}, \tag{18}$$

$$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right). \tag{19}$$

(9) $\mathbf{B} = \mathbf{0}$.

Definition 8.1 (Reference system). We define a reference system S as a set of three axis and one origin over which we have determined an orientation. We will suppose we have selected a unit of length and that in each point a in the immobile space with respect the axis there is a clock q_a such that the clocks q_a and q_b corresponding to two different points a and b immobile with respect these axis are synchronized

Lemma 8.3. Let $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a Lorentz transformation. Let $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a Lorentz transformation. Then, f transforms planes that are not contained in hyperplanes of the form t = ctt to planes that are not contained in hyperplanes of the form t' = ctt.

Lemma 8.4. Let $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a Lorentz transformation. Then, f transforms hyperplanes that are not of the form t = ctt to hyperplanes that are not of the form t' = ctt.

Theorem 8.5. Let $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a Lorentz transformation. Then, f is an affine transformation.

Theorem 8.6. Let S, S' be two inertial reference systems. We can make orthogonal changes (isometries) of axis to S and S' and a change of origin of time such thate the Lorentz transformation has the form of the equation ??.

Lemma 8.7. Let $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a Lorentz transformation and $r \subseteq \mathbb{R}^4$ a line with a timelike direction vector. Then, f transforms r to a line with a timelike direction vector.

Lemma 8.8. Let $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a Lorentz transformation and V and admissible plane (hyperplane). Then, f(V) is an admissible plane (hyperplane).

Theorem 8.9. Let $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a Lorentz transformation. Then, f is an affine transformation.

Theorem 8.10. (Lorenz transformation) Let S, S' be two reference systems with the same origin such that

$$S' \text{ moves with a constant velocity } \mathbf{v} = v\mathbf{e}_x. \text{ Then,} \\ P_{\mathbf{s}'} = \Lambda P_{\mathbf{s}} \Leftrightarrow P_{\mathbf{s}'}^{\nu} = \Lambda_{\mu}^{\nu} P_{\mathbf{s}}^{\mu}, \qquad \Lambda = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{Proposition 8.19. If the system has a general velocity} \\ \mathbf{P}_{\mathbf{s}'} = \mathbf{P}_{\mathbf{s}'} + \mathbf{P}_$$

Proposition 8.11. Let $\mathbf{R} \in L$ be a vector and $a \in \mathbb{R}$ a scalar. Then, $\|a\mathbf{R}\|_m = |a| \|\mathbf{R}\|_m$.

Proposition 8.12. Every subspace W of L is either timelike, spacelike, or lightlike. Besides,

- 1. S is timelike $\Leftrightarrow W^{\perp}$ is spacelike.
- 2. S is spacelike $\Leftrightarrow W^{\perp}$ is timelike.
- 3. W is lightlike $\Leftrightarrow W^{\perp}$ is lightlike.

Proposition 8.13. Two orthogonal vectors different from zero and non spacelike are necessarily lightlike and collinear. In particular, there is not a subspace of dimension 2 where \langle , \rangle is null.

Proposition 8.14. Let $\mathbf{R}_1, \mathbf{R}_2 \in T$ be two timelike vectors. Then, the following statements are true.

- 1. $|\langle \mathbf{R}_1, \mathbf{R}_2 \rangle_m| \geq ||\mathbf{R}_1||_m ||\mathbf{R}_2||_m$, and the equality is equivalent to both vectors being collinear.
- 2. $\mathbf{R}_1, \mathbf{R}_2$ are in the same time cone $(C_+ \text{ or } C_-)$ if and only if $\langle \mathbf{R}_1, \mathbf{R}_2 \rangle_m < 0$. In this case,

(a) There is a unique $\varphi \in \mathbb{R}$ such that

$$\cosh \varphi = -\frac{\langle \mathbf{R}_1, \mathbf{R}_2 \rangle_m}{\|\mathbf{R}_1\|_m \|\mathbf{R}_2\|_m}.$$
(21)

We call this φ the hyperbolic angle.

(b)
$$\|\mathbf{R}_1\|_m + \|\mathbf{R}_2\|_m \le \|\mathbf{R}_1 + \mathbf{R}_2\|_m$$
.

Proposition 8.15. The Lorentz-Minkowski metric (using the proper orthonormal basis) can be expressed by the bilinear form η

$$\begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.$$
(22)

Proposition 8.16. The transformation in $\mathbb{M} = \mathbb{R}^4$ (using the proper orthonormal basis) can be expressed by the matrix Λ

$$\begin{pmatrix}
\gamma & -\gamma\beta & 0 & 0 \\
-\gamma\beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.$$
(23)

Proposition 8.17. The Lorenz-Minkowski metric is invariant under Lorentz transformations.

Proposition 8.18. Let S, S' be two inertial reference systems such that the velocity of S' is $\mathbf{w} = w\mathbf{e}_x$ with

$$v_{s'}^{1} = \frac{v_{s}^{1} - w}{1 - \beta_{v}\beta_{w}}, \qquad v_{s'}^{2} = \frac{1}{\gamma_{w}} \frac{v_{s}^{2}}{1 - \beta_{v}\beta_{w}}, \qquad v_{s'}^{3} = \frac{1}{\gamma_{w}} \frac{v_{s}^{3}}{1 - \beta_{v}\beta_{w}}$$
(24)

$$\mathbf{v}' = \frac{1}{1 - \langle \boldsymbol{\beta}_v, \boldsymbol{\beta}_2 \rangle_I} \left[\frac{\mathbf{v}}{\gamma_w} - \mathbf{w} + \frac{1}{c^2} \frac{\gamma_w}{1 + \gamma_w} \langle \mathbf{v}, \mathbf{w} \rangle_I \mathbf{w} \right],$$
(25)

$$\mathbf{v} = \frac{1}{1 + \langle \boldsymbol{\beta}_{v'}, \boldsymbol{\beta}_{w} \rangle_{I}} \left[\frac{\mathbf{v}'}{\gamma_{w}} + \mathbf{w} + \frac{1}{c^{2}} \frac{\gamma_{w}}{1 + \gamma_{w}} \langle \mathbf{w}', \mathbf{w} \rangle_{I} \mathbf{v} \right].$$
(26)

Proposition 8.20. Let p be a particle of velocity U and acceleration **A**. Then, $\langle \mathbf{A}, \mathbf{U} \rangle_m = 0$.

Proposition 8.21. Let p be a particle of 4-momentum \mathbf{P} . Then,

$$\mathbf{P} = (E/c, \mathbf{p}) = (E/c, \gamma m \mathbf{v}). \tag{27}$$

Theorem 8.22.

$$E^2 = p^2 c^2 + m^2 c^4. (28)$$

Proposition 8.23. There are three possible cases: stationary particle with mass, moving particle with mass, particle with no mass.

$$E = mc^2$$
, $E^2 = m^2c^4 + ||p||^2c^2$, $E = pc$ (29)

Theorem 8.24. (Work-Energy theorem)

$$W = \Delta E. \tag{30}$$

Theorem 8.25. Let p be a particle of velocity \mathbf{v} . Then, the kinetic energy is obtained by the expression

$$T = \int_{\Gamma} \langle \mathbf{F}, d\mathbf{r} \rangle_{I} = (\gamma(\dot{\mathbf{r}}) - 1)mc^{2}$$
 (31)

Theorem 8.26 (Compton scattering).

$$\Delta \lambda = \frac{h}{mc} (1 - \cos \theta). \tag{32}$$

Theorem 8.27 (Center of momentum). Let be a system of particles p_1, \ldots, p_n with energies E_1, \ldots, E_n and momentum $\mathbf{p}_1, \dots, \mathbf{p}_n$. Then, the center of momentum system has a velocity determined by the expression

$$\mathbf{v}_{\rm cp} = \frac{1}{E_t} \sum_{i=1}^n \|\mathbf{p}_i\|^2 c^2.$$
 (33)

Theorem 8.28. Let p be a particle of mass m with $v_0 = x_0 = t_0 = 0$ on which a constant force F acts. If we denote $a_0 = \gamma^3 a = F/m$ (which is constant), then

$$x(t) = \frac{c^2}{a_0} \left[\sqrt{1 + \frac{a_0^2 t^2}{c^2}} - 1 \right], \qquad v(t) = \frac{a_0 t}{\sqrt{1 + a_0^2 t^2 / c^2}},$$
(34)

and in the limit cases,

$$t \to \infty : v(t) \approx c, x(t) \approx ct - \frac{c^2}{a_0},$$
 (35)

$$a_0 t \ll c : v(t) \approx a_0 t, x(t) \approx \frac{a_0}{2} t^2.$$
 (36)

Theorem 8.29. Let p be a particle of mass m on which a potential of the form U = k/r acts. If k < 0, then

$$\mathbf{F} \perp \mathbf{v}, \qquad \gamma m \beta^2 c^2 = -\frac{k}{r},$$

$$-1 < \frac{T}{U} = -\frac{\gamma}{\gamma + 1} < -\frac{1}{2}, \qquad E = \frac{mc^2}{\gamma}.$$

Theorem 8.30. Let p be a particle of mass m on which a potential of the form U = k/r acts. If k > 0, then it is not possible falling to the origin, and if k < 0, then it is possible if $Lc \leq k$ (in this case $p_r \to \infty$).

Theorem 8.31. Let p be a particle of mass m on which a potential of the form U = k/r acts. If k > 0, then it is always possible to escape to the infinity is always possible, and if k < 0, it is possible if $E > mc^2$.

Theorem 8.32. Let p be a particle of mass m on which a potential of the form U = k/r acts. Then,

$$L = \gamma m r^2 \dot{\theta} = \text{ctt}, \qquad E = \gamma m c^2 + \frac{k}{r} = \text{ctt}, \qquad \mathbf{p} = \gamma m (\dot{r} \mathbf{e}_r \sum_{i=1}^n \langle \mathbf{\nabla}_i f_j, \mathbf{v}_i \rangle_I + \frac{\partial f_j}{\partial t} = 0, \ j = 1, \dots, k.$$
(37)

$$\frac{\mathrm{d}}{\mathrm{d}t}(\gamma m\dot{r}) - \frac{L^2}{\gamma mr^3} = \frac{k}{r^2}, \qquad \frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \left(\frac{1}{r}\right) + \frac{1}{r} = -\frac{\gamma mk}{L^2},$$

$$\frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \left(\frac{1}{r} \right) + (1 - \alpha^2) \frac{1}{r} = -\frac{kE}{L^2 c^2}, \ \alpha^2 = \frac{k^2}{L^2 c^2}. \tag{39}$$

Proposition 8.33. Let p be a particle of mass m on which a potential of the form U = k/r acts. If the variation of r is negligible, then $\alpha^2 < 1$.

Proposition 8.34. Let p be a particle of mass m on which a potential of the form U = k/r (with k < 0) acts. If $\alpha^2 <$, $E < mc^2$, and E > 0, then the trajectory of p is bounded.

Theorem 8.35. Let p be a particle of mass m on which a potential of the form U = k/r (with k < 0) acts. If $\alpha^2 < 1$, $E < mc^2$, and $E > mc^2\sqrt{1-\alpha^2}$, then the trajectory of p is determined by the expression

$$r = \frac{a(1 - e^2)}{1 + e\cos(\sqrt{1 - \alpha^2}\theta)},\tag{40}$$

$$\frac{1}{a} = \frac{E}{k} \left[1 - \frac{m^2 c^4}{E^2} \right], \ e = \frac{1}{\alpha} \sqrt{1 + (\alpha^2 - 1) \frac{m^2 c^4}{E^2}}, \tag{41}$$

which is an ellipse with a precession $2\pi(1/\sqrt{1-\alpha^2}-1)$ per revolution (and $\pi \alpha^2$ if $\alpha^2 \ll 1$).

Theorem 8.36. Let p be a particle of mass m on which a potential of the form U = k/r (with k < 0) acts. If p has a closed bounded trajectory, then the average of $\frac{\mathrm{d}\langle \mathbf{r}, \mathbf{p} \rangle_I}{\mathrm{d}t} = 0$ on an interval of nT.

Proposition 8.37. Let p be a particle of mass m on which a potential of the form U = k/r (with k < 0) acts. If p has a closed bounded trajectory, then

$$E = \left\langle \frac{1}{\gamma} \right\rangle mc^2. \tag{42}$$

9 Generalized coordinates

Definition 9.1. Let S be a system of particles p_1, \ldots, p_n with masses m_1, \cdots, m_n . Then, we say the system has non stationary holonomic constraints or rheonomic constraints if and only if there is a function $\mathbf{f}: \mathbb{R}^{3n} \times \mathbb{R} \longrightarrow \mathbb{R}^k$ such that

$$\mathbf{f}(\mathbf{r}_1, \dots, \mathbf{r}_n, t) = \mathbf{0}. \tag{43}$$

Proposition 9.1. Let S be a system of n particles with a constraint $\mathbf{f}: \mathbb{R}^{3n} \times \mathbb{R} \longrightarrow \mathbb{R}^k$ and V the set of possible velocities at an instant t. If $\dot{\mathbf{x}} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$, then

$$\dot{r}\mathbf{e}_{r} \sum_{i=1}^{n} \langle \nabla_{i} f_{j}, \mathbf{v}_{i} \rangle_{I} + \frac{\partial f_{j}}{\partial t} = 0, \ j = 1, \dots, k.$$
 (44)

Theorem 9.2 (D'Alembert's principle). Let S be a system of particles. Then,

$$\left| \sum_{i=1}^{n} \langle \mathbf{F}_{i} - m\mathbf{a}_{i}, \delta \mathbf{r}_{i} \rangle_{I} = 0, \ \forall \, \delta \mathbf{r}_{i} \,. \right|$$
 (45)

generalized coordinates q^1, \ldots, q^r . Then,

$$\left| \sum_{i=1}^{n} \left\langle \mathbf{F}_{i}, \frac{\partial \mathbf{p}_{i}}{\partial q^{j}} \right\rangle_{I} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial T}{\partial \dot{q}^{j}} - \frac{\partial T}{\partial q^{j}}, \ j = 1, \dots, r. \right| (46) \qquad \frac{\mathrm{d}}{\mathrm{d}x} \delta y = \delta \frac{\mathrm{d}}{\mathrm{d}x} y, \qquad \delta \int_{0}^{b} f(x) \, \mathrm{d}x = \int_{0}^{b} \delta f(x) \, \mathrm{d}x.$$
 (51)

And if **F** is derived from a potential $\Phi(\mathbf{r})$, then

$$\frac{\partial L}{\partial q^j} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}^j} = 0, \ j = 1, \dots, r.$$
(47)

Theorem 9.4. Let $J: C^2[x_0, x_1] \longrightarrow \mathbb{R}$ be a functional of the form

$$J(y) = \int_{x_0}^{x_1} f(x, y, y') \, dx,$$

where f has continuous partial derivatives of second order with respect to x, y, and y', and $x_0 < x_1$. Let

$$S = \{ y \in C^2[x_0, x_1] \mid y(x_0) = y_1 \text{ and } y(x_1) = y_1 \},$$

where y_0 and y_1 are given real numbers. If $y \in S$ is an extremal for J, then

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right) - \frac{\partial f}{\partial y} = 0 \tag{48}$$

for all $x \in [a_0, x_1]$.

Theorem 9.5 (Lagrange multipliers method for non-holonomic constraints). If we want to find an extrema having a set of m non-holonomic constraints

$$\overline{\delta f_1} = A_{11}\delta u_1 + \dots + A_{1n}\delta u_n = 0,$$

$$\vdots = \vdots \qquad \qquad = \vdots$$

$$\overline{\delta f_m} = A_{m1}\delta u_1 + \dots + A_{mn}\delta u_n = 0,$$

$$(49)$$

Then we can proceed as the original multipliers method by considering every variation as independent and solving the following equation.

$$\delta F + \lambda_1 \overline{\delta f_1} + \dots + \lambda_m \overline{\delta f_m} = 0$$
 (50)

Theorem 9.3. Let S be a system of n particles with **Theorem 9.6.** Let f be a continuous functions with a variation $\delta f = \epsilon \phi$. Then,

$$\frac{\mathrm{d}}{\mathrm{d}x}\delta y = \delta \frac{\mathrm{d}}{\mathrm{d}x}y, \qquad \delta \int_{a}^{b} f(x) \,\mathrm{d}x = \int_{a}^{b} \delta f(x) \,\mathrm{d}x. \quad (51)$$

Theorem 9.7. Let $J: \mathbb{C}^2[t_0, t_1] \longrightarrow \mathbb{R}$ be a functional of the form

$$J(\mathbf{q}) = \int_{t_0}^{t_1} L(\mathbf{q}, \dot{\mathbf{q}}, t) dt, \qquad (52)$$

where $\mathbf{q} = (q_1, \dots, q_n)$, and L has continuous secondorder partial derivatives with respect to t, q_k , and \dot{q}_k , $k=1,\ldots,n$. Let

$$S = \{ \mathbf{q} \in \mathbf{C}^2[t_0, t_1] \mid \mathbf{q}(t_0) = \mathbf{q}_0, \mathbf{q}(t_1) = \mathbf{q}_1 \}, \quad (53)$$

where $\mathbf{q}_0, \mathbf{q}_1 \in \mathbb{R}^n$ are given vectors. If \mathbf{q} is an extremal for J in S then for k = 1, ..., n

$$\frac{\partial L}{\partial q_k} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_k} = 0.$$
 (54)

Theorem 9.8. If we have a set of holonomic constraints

$$f_1(q_1, \dots, q_n, t) = 0,$$

$$\dots = \vdots,$$

$$f_m(q_1, \dots, q_n, t) = 0,$$

$$(55)$$

then we can treat each variable as independent and search the stationary value of

$$J' = \int_{t_1}^{t_2} L + \sum_{k=1}^{m} \lambda_m f_m \, \mathrm{d}t \,, \tag{56}$$

which leads to the equation

$$\left| \frac{\partial L}{\partial q_k} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_k} + \lambda_1 \frac{\partial f_1}{\partial q_k} + \dots + \lambda_m \frac{\partial f_m}{\partial q_k} = 0. \right|$$
 (57)