E-84 Problem Set #5 Key

Ch 3 #11.

11. Show that for the circuit shown below: $Z_{th} = 5.5 \Omega$ and $\underline{V}_{th} = 13/-67.4^{\circ} V$

Hint: first find V_A using node analysis with the load removed.

To calculate Z_{Th} replace the current source with an open circuit and the voltage source with a short circuit. That makes the impedance from the top of the load to ground 3 Ω plus the other two impedance going in parallel to ground. Hence

$$Z_{\text{Th}} = 3 + (1 + 2j)(1 - 2j)/(1 + 2j + 1 - 2j) = 3 + 5/2 = 5.5 \Omega$$

To calculate V_{Th} we remove the load and calculate V_A using node analysis at A: We have

$$(10 - V_A)/(1 - 2j) = V_a/(1 + 2j) + 4j$$
 so that collecting terms,

$$\frac{10}{1-2j}-4j=V_A\left(\frac{1}{1+2j}+\frac{1}{1-2j}\right)=\frac{2V_A}{5}, \text{ so that (multiplying the first term}$$

by
$$(1 + 2j)/(1 + 2j)$$
 we have;

$$2((1+2j)-4j=2V_A/5)$$
 from which we easily find $V_A=5V_A$

But with Z_{LOAD} removed, $V_{Th} = V_A - 12j$ (where the second term is the voltage drop across the 3 Ω resistor. Hence

$$V_{Th} = 5 - 12i$$
 (which also equals $13/\tan^{-1}(-12/5) = 13/-67.4^{\circ}$

1. a. Show that for a sinusoidal input voltage $v_{IN} = A \sin \omega t$ the steady state solution for the voltage across the capacitor in the R-C circuit shown below is

$$v_{ss}(t) = \frac{A\sin(\omega t - \phi)}{\sqrt{1 + \omega^2 \tau^2}}$$
 where $\phi = \tan^{-1} \omega \tau$ and $\tau = RC$

Thus the voltage on the capacitor oscillates at the same frequency as the source, but with a smaller amplitude and a time lag, $t_{lag} = \phi/\omega$.

b. Show that for low frequency oscillations, when $\omega \tau << 1$, the time lag $t_{lag} \approx \tau$, while for high frequency oscillations when $\omega \tau >> 1$, the time lag $t_{lag} \approx T/4$, where $T=1/f=2\pi/\omega$ is the period of the oscillations.

c. Show that the complete solution, including the homogeneous (or transient) term is

$$v_C(t) = v_{ss}(t) + Ce^{-t/\tau}$$
, where, for $v_C(0) = 0$, $C = (A\sin\phi)/(1 + \omega^2\tau^2)^{1/2}$

a. The soverney quadran for This system is:

$$V_{IN} = iR + U_{Z} = RC \frac{dU_{Z}}{dZ} + U_{Z} = T U_{Z} + U_{Z}$$

If we try The particular solution

$$U_{SS}(t) = A \frac{\sin(\omega t - \varphi)}{\sqrt{1 + \omega^{2} \tau^{2}}} \qquad (T = RC)$$

Then

$$U_{SS}(t) = A \frac{\cos(\omega t - \varphi)}{\sqrt{1 + \omega^{2} \tau^{2}}}$$

A WT However for d=tan wt $\frac{1}{\sqrt{1+w^2T^2}} = \cos \varphi$ 55 + T 55 = A wif sin(wt-d) + sind cos(wt-d) sin (wt-d+d) = sin wt! (woing sin a wob + cosa suit = sin cet) i Uss+tUss= Asmut=U,Nb. Uss = A sin [ult-teg] Where teg = d Ely = tan (w) (1) In wrece, tankt = wt they = wt = T (ii) frut 57 1, ten lut 1 = IT

they =
$$\frac{\pi}{2\omega}$$
 But $\omega = 2\pi f = 2\pi$
if they = $\frac{\pi}{2 \cdot 2\pi} = \frac{T}{4}$

c) As shown in notes, Jett = Jsstt + JH(t) where

TJH + JH = 0

Try UH = Cest = Sh = Scest Suther we set

 $Ce^{st}[st+i] = 0 \Rightarrow s = -\frac{1}{t}$ $\therefore \ \ U_{k} = Ce^{-t/t}$

FUCKI = Cett + Asimulated

To find C, Suppose Valor=0:

Then 0 = C + A sin(-d) = 7 C = A sind $\frac{1}{\sqrt{1 + \omega^2 T^2}} = 7 C = A sind$ $\frac{1}{\sqrt{1 + \omega^2 T^2}} = 7 C = A sind$

3 . a. Prove that for an underdamped series R-L-C circuit, with $U(t) = \sin \omega_s t$

$$v_{C}(t) = Q \left[e^{-\alpha t} \left(\cos \beta t + \frac{\alpha}{\beta} \sin \beta t \right) - \cos \omega_{0} t \right], \text{ where } Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{\omega_{0}}{2\alpha}$$

Thus as expected from the results in Chapter 4 for a band pass filter, the steady state amplitude of these oscillations is Q (the quality factor for the filter). Note that for a high Q system, the damping is minimal, so that $\alpha << \omega_o$ and $\beta \approx \omega_o$, so that

$$v_C(t) \approx -Q(1-e^{-\alpha t})\cos\omega_0 t$$

b. Show that for a high Q system it takes about Q cycles before the full amplitude of the steady state solution is achieved. Hint: show that after Q cycles, $\alpha t = \pi \pi$, so that $e^{-\alpha t}$ becomes negligible.

al First es shown in notes The homogeneous soln to The equation "
(1) V(L) = L UZ + ZX UZ + UZ
Wo Z WO Z is Je = e - Et (A wspt + Bsnipt) For spell try sp= C sinfust+ pt - to metch well if we set in (Sinwot = - (sinkwot to) + 2x Ccos(wot to)+ Csintwith Hence We let \$ =+900 50 That cos(wot+4)=-sines Singst = - ZXC SINGST => C=-W_ = - Q before upply BCIs we have

(using Up = - Q sinlw, t+909 = - Quswot)

(3) oft = e - t (A cospt + B sinpt - Q cosust

To find A & B we use The initial and times

1. Subotituting These volus auto 2)

Frahigh @ system & 221 and \$2 Wo

1 to a sord apparximation

b) Recall That
$$Zd = \frac{\omega_0}{Q} = \frac{z\pi f_0}{Q} = \frac{z\pi}{QT}$$

when T = to The period for an oscillation

. After O cycles t=to=QT and

 \P **.** a. Show that to a good approximation if a voltage V is applied at t' for a very short time dt', the voltage across the capacitor for an R-C circuit with time constant τ is

$$\mathbf{v}_{c}(t) \approx (Vdt'/\tau)e^{-(t-t')/\tau}$$

b. If the same short pulse at t^\prime is applied to an L-C circuit with resonant frequency $\omega_0,$ show that

$$\mathbf{v}_{\mathsf{C}}(\mathsf{t}) \approx (\mathsf{V}\omega_{\mathsf{0}}\mathsf{d}\,\mathsf{t}') \sin\omega_{\mathsf{0}}(\mathsf{t}\,\mathsf{-t}')$$

These results are called the impulse response of these systems, and Vdt' is the "strength" of the impulse.

These results are easily extended to a "series of impulses" with strength V(t')dt', to show that for a circuit driven by an arbitrary function V(t'), the voltage across the capacitor is given by

$$v_C(t) = (1/\tau) \int_0^t V(t') e^{-(t-t')/\tau} dt'$$
, for an R - C circuit, and

$$v_C(t) = \omega_0 \int_0^t V(t') \sin \omega_0(t-t') dt'$$
, for an L-C circuit, and

a) For a pulse of length dt!; I we've shown

$$\int_{clt|} = V \left[V - \frac{t}{t} \right] - V \left[V - \frac{t}{t} - \frac{t}{t} \right] / 2 \right] \\
= V e^{-t/t} \left[e^{-t/t} \right] - V \left[v - \frac{t}{t} \right] / 2 \right] \\
= V e^{-t/t} \left[e^{-t/t} \right] \approx V e^{-t/t} \left[v + \frac{t}{t} \right] / 2 \right] \\
= V e^{-t/t} \left[e^{-t/t} \right] = V e^{-t/t} \left[v + \frac{t}{t} \right] / 2 \right] \\
= V e^{-t/t} \left[e^{-t/t} \right] \approx V e^{-t/t} \left[v + \frac{t}{t} \right] / 2 \right] \\
= V e^{-t/t} \left[v + \frac{t}{t} \right] = V e^{-t/t} \left[v + \frac{t}{t} \right] / 2 \right] \\
= V e^{-t/t} \left[v + \frac{t}{t} \right] = V e^{-t/t} \left[v + \frac{t}{t} \right] / 2 \right] \\
= V e^{-t/t} \left[v + \frac{t}{t} \right] = V e^{-t/t} \left[v + \frac{t}{t} \right] / 2 \left[v$$

in for Ules > I V(t) = V(1- wswot] - V(1- wswo(t-dt)) = U(coswalt-14)-wswat) But as wolt-It! = coswotcoswoll+sinnotsinnotti and es It so: coswodt = 1 while sinult' = well Schl=V[wsust + w.dtsinw, t-loset] = Uwdtowwat If The short pulse is applied et t' we set The Same result (for totil but with to U-ti): re John Schle (Vwosinwolf ti) del Hene. In an arbitring Ultil we have for RC: SILLI= I SULI)e -(t-ti)/t dt1 for RL: 50(4) = W& SULU) = 10 Wold-11) del