

Sliding CUSUM and its Solutions to Anomaly Detection problems in the field of

Digital Currency

Dang Thanh Lam - 20194442 Nguyen Vu Thien Trang - 20194459 Nguyen Van Thanh Tung - 2<u>0190090</u>

Table of Contents

Problem

Statement on the challenges of anomaly detection

Basis Algorithms

A brief explanation of basis knowledge

Sliding CUSUM

Our proposed algorithm

Experiments

Application of SCUSUM on real Bitcoin price data

Problem Statement

Concept Drift

The phenomenon where statistical properties of the target variable change overtime in unforeseen ways.

→ Predictions become less accurate as time passes

Sliding CUSUM

Basis Knowledge | Sliding Window

Sliding Window

Split an unbounded stream of data (events) into finite sets.
Observes the most recent data points measurements and moves by a fixed step size along the time axis as new ones arrive.

Basis Knowledge | CUSUM

One-sided CUmulative SUM

- μ The expected mean
- σ The expected standard deviation
- k The size of the shift to be detected
- H The control limit

$$So = 0$$

$$S_{n+1} = \max(0, S_n + X_n - \mu - k)$$

$$for n = 1, 2, ... N$$

Basis Knowledge | CUSUM

Two-sided CUmulative SUM

```
μ The expected mean
```

σ The expected standard deviation

k The size of the shift to be detected

H The control limit

$$S_{n+1^+} = \max(0, S_n + X_n - \mu - k)$$

$$S_{n+1}^- = \min(0, S_n + X_n - \mu + k)$$

Sliding CUSUM | Main Idea

Sliding CUSUM | Notations and Formulas

L_W Length of the windows

β The output rate

M_I The mean of the latest window

D_{mL} The mean of windows' mean values

D_{SI} The mean of the windows' standard deviation

 S_{n+1}^+ The upper cumulative sum

 S_{n+1} The lower cumulative sum

$$S_{n+1^+} = \max(0, S_n + M_L - D_{mL} - \beta * D_{SL})$$

$$S_{n+1^-} = \min(0, S_n + M_L - D_{mL} + \beta * D_{SL})$$

$$H^+ = D_{SL}$$

$$H^- = -D_{SL}$$

Sliding CUSUM | Notations and Formulas

Sliding CUSUM

INITIALIZE L_W, β COMPUTE M_L
UPDATE D_{mL} , D_{SL} $S_{n+1^+} = \max (0, S_n + M_L - D_{mL} - \beta * D_{SL})$ $S_{n+1^-} = \min (0, S_n + M_L - D_{mL} + \beta * D_{SL})$ IF $S_{n+1^+} > D_{SL}$ THEN $Label \leftarrow Anomaly$ IF $S_{n+1^+} < -D_{SL}$ THEN $Label \leftarrow Anomaly$

Experiments

Figure 7. Data analysis diagram

Figure 8. SCUSUM

THANK YOU

Do you have any question?

lam.dt194442@sis.hust.edu.vn trang.nvt194459@sis.hust.edu.vn tung.nvt0090@sis.hust.edu.vn