Emotion Recognition Using Fusion of Audio and Video Features

Grigor Keropyan supervisor: Vazgen Mikayelyan

Department of Mathematics ASDS program Yerevan State University

Outline

Motivation

Existing Datasets and Methods

Proposed Method

Why emotion recognition is important?

- 1. Interpersonal Relationships
- 2. Human Computer Interaction

Why emotion recognition is important?

- 1. Interpersonal Relationships
- 2. Human Computer Interaction

Applications

- 1. Call centers (Zoom, Hangout, Skype, etc.)
- 2. Business meetings
- 3. Tutor Agents

Applications

- 1. Call centers (Zoom, Hangout, Skype, etc.)
- 2. Business meetings
- 3. Tutor Agents

Applications

- 1. Call centers (Zoom, Hangout, Skype, etc.)
- 2. Business meetings
- 3. Tutor Agents

Emotion Expression Modalities

Pure Text

Datasets

- 1. RAVDESS (Livingstone and Russo, 2018)
- 2. SAVEE (Philip and Haq, 2014)
- 3. IEMOCAP (Busso et al., 2008)
- 4. SEMANIE (Mckeown et al., 2010)
- 5. AFEW (Dhall et al., 2012)
- 6. eNTREFACE'05 (Martin et al., 2006)
- 7. ...

Methods

Methods

Major contributions

- 1. Use hybrid method for modality fusion on the raw data (e.g., audio and pictures from video) to be able to use existing whole content
- Train and test sets separation based on the speakers (this is important as models tend to overfit to speakers and so the generalization error will be high in this cases)
- 3. Use mixture of different datasets with augmentation of real world noise in order to provide robustness

Major contributions

- 1. Use hybrid method for modality fusion on the raw data (e.g., audio and pictures from video) to be able to use existing whole content
- 2. Train and test sets separation based on the speakers (this is important as models tend to overfit to speakers and so the generalization error will be high in this cases)
- 3. Use mixture of different datasets with augmentation of real world noise in order to provide robustness

Major contributions

- 1. Use hybrid method for modality fusion on the raw data (e.g., audio and pictures from video) to be able to use existing whole content
- 2. Train and test sets separation based on the speakers (this is important as models tend to overfit to speakers and so the generalization error will be high in this cases)
- 3. Use mixture of different datasets with augmentation of real world noise in order to provide robustness

Emotions and Datasets

Eemotions

- 1. Happy
- 2. Angry
- 3. Sad
- 4. Neutral

Datasets

- 1. RAVDESS (Livingstone and Russo, 2018)
- 2. IEMOCAP (Busso et al., 2008)
- 3. eNTREFACE'05 (Martin et al., 2006)

Proposed Architecture

Results Random Split

models	Accuracy	Accuracy
	random.s.	speaker s.
Baseline	54	-
Lightgbm Audio	87.7	57.6

Results Speaker Split

models	Accuracy	
Baseline	54	
Audio model	54	
Video model	57.7	

Confusion Matrix

Demo

Videos: Link

Source code: Link

Thank you!

References

- Busso, C., Bulut, M., Lee, C.-C., Kazemzadeh, A., Mower Provost, E., Kim, S., Chang, J., Lee, S., and Narayanan, S. (2008). Iemocap: Interactive emotional dyadic motion capture database. *Language Resources and Evaluation*, 42:335–359.
- Dhall, A., Goecke, R., Lucey, S., and Gedeon, T. (2012). Collecting large, richly annotated facial-expression databases from movies. *IEEE MultiMedia*, 19(3):34–41.
- Livingstone, S. R. and Russo, F. A. (2018). The ryerson audio-visual database of emotional speech and song (ravdess): A dynamic, multimodal set of facial and vocal expressions in north american english. *PLOS ONE*, 13(5):1–35.
- Martin, O., Kotsia, I., Macq, B., and Pitas, I. (2006). The enterface'05 audio-visual emotion database. *Data Engineering Workshops, 2006. Proceedings*, pages 8 8.
- Mckeown, G., Valstar, M., Cowie, R., and Pantic, M. (2010). The semaine corpus of emotionally coloured character interactions. *2010 IEEE International Conference on Multimedia and Expo, ICME 2010*, pages 1079–1084.
- Philip, J. and Haq, S. (2014). Surrey audio-visual expressed emotion YSU (savee) database. *University of Surrey; Guildford, UK*.

Precision, Recall, F1score

-	precision	recall	f1-score	support
sad	0.60	0.68	0.63	6136
neu	0.36	0.37	0.37	5278
hap	0.40	0.22	0.28	2899
ang	0.68	0.71	0.69	8047
accuracy			0.56	22360

Features

Audio

- 1. ZRC
- 2. RMS
- 3. Mel Spectrogram
- 4. MFCC
- 5. Chromagram

Video

1. 20 faces of (50, 50) size