Chapter 5

Introduction to Trees

The Main Topics

- Learn about binary trees and the basic terminologies used in binary trees
- Explore various binary tree traversal algorithms
- Learn about
 - Binary search trees
 - Binary search balanced trees
 - Red-Black trees
 - B-Trees

and explore how to implement the basic operations on them

Definition of a Tree

A *tree structure* (or *tree* for short) with base type *T* is either:

- The empty structure, or
- A node of type T, called root, with a finite number of associated disjoint tree structures with base type T, called subtrees

Representation of a Tree

Basic Concepts

- The top node is commonly called the root
- If an edge is between node n and node m, and node n is above node m in the tree:
 - *n* is the *parent* of *m*
 - m is a child of n
 - The *parent-child* relationship between the nodes is generalized to the *ancestor-descendant* relationship
- A node that has no children is called a *leaf* of the tree
- A node which is not leaf is an interior node

Basic Concepts

- Children of the same parent are called siblings
- A <u>subtree</u> in a tree is any node in the tree together with all of its descendants
 - A subtree of a node n is a subtree rooted at a child of n
- The number of children of an interior node is called its degree
- The maximum degree over all nodes is the degree of the tree
 - The tree name is named after the degree of the tree

Basic Concepts

- The sequence of edges that connects an ancestor and a descendant is called a path
- The height of a tree is the number of nodes on the longest path from the root to a leaf
 - Alternatively, the number of edges of the longest path denotes the height
- If node n is at level i, then its child is said to be at level
 i + 1. The root of tree is at level 1
 - Some authors define the root is at level 0

Binary Trees

A *binary tree* is a finite set of nodes which either is empty or consists of a root with two disjoint binary trees called the *left* and the *right subtree* of the root

Representation of Binary Trees

 A binary tree consists of nodes of a type defined as follows:

```
typedef struct Node * Ref;
struct Node {
  int key;
  Ref left, right;
};
```

An empty binary tree is represented as follows:

```
Ref root = NULL;
```

Constructing a Perfectly Balanced Binary Tree

- A binary tree is perfectly balanced if for each node the numbers of nodes in its left and right subtrees differ by at most 1
- An algorithm for constructing a PBBT with n nodes is best formulated in recursive terms:
 - 1. Use one node for the root
 - 2. Construct the left subtree with $n_l = \left| \frac{n}{2} \right|$ nodes in this way
 - 3. Construct the right subtree with $n_r = n n_l 1$ nodes in this way

Pseudo-code

```
Ref tree(n) {
 if (n == 0) return NULL;
 nl = n / 2;
 nr = n - nl - 1;
 cin >> k;
 Ref r = new Node;
  r->key = k;
  r->left = tree(nl);
  r->right = tree(nr);
  return r;
Ref root = tree(n);
```

Binary Tree Traversal

- A traversal algorithm for a binary tree visits each and every node in the tree
 - Assume that visiting a node simply means displaying the key portion of the node
- According to the recursive definition of a binary tree,
 the binary tree T is either empty or is of the form:

Binary Tree Traversal

- If T is empty, the traversal algorithm takes no action
 - An empty tree is the base case
- Otherwise, the traversal algorithm must perform three tasks: display the key in the root r, and traverse two subtrees T_L and T_R
- The algorithm has three choices when to visit r:
 - $-r \rightarrow T_L \rightarrow T_R$ (preorder travesal)
 - $-T_L \rightarrow r \rightarrow T_R$ (inorder travesal)
 - $-T_L \rightarrow T_R \rightarrow r$ (postorder travesal)

Binary Tree Traversal: Pseudo-code

```
void preOrder(Ref r) {
 if (r) {
    cout << r->key;
   preOrder(r->left);
   preOrder(r->right);
void inOrder(Ref r) {
void postOrder(Ref r) {
```

Binary Search Trees

 A binary search tree (or BST) is one that satisfies the following property:

"For each node its value is greater than all values in its left subtree and less than all values in its right subtree"

BSTs are also called ordered binary trees

Binary Search Tree Traversal

- The traversal of a BST is the same as that of a binary tree
- An inorder traversal of a BST will visit the tree's nodes in sorted order according to their keys

Search Operation

- Firstly, check whether the root (of the whole tree or the current subtree) contains the search key k
 - If it does then the search process finishes succefully
 - If k is less than the value stored in the root, the search process continues with the left subtree
 - If k is greater than the value stored in the root, the search process continues with the right subtree
- If k is not in the tree, the search process always ends at an *empty* subtree

Search Operation: Pseudo-code

```
Ref search(Ref r, int k) {
  while (r)
    if (r->key == k)
      return r;
    else
      if (r->key > k)
        r = r - > left;
      else
        r = r->right;
  return NULL;
```

Insertion Operation

- A new node is always inserted to a tree as a new leaf
- It cannot be inserted to a node whose both subtrees are nonempty
- Since BSTs are ordered ones, so the new key has to be inserted to an appropriate place in the tree
 - The algorithm must search for the right place first
 - The operation should be called *tree search with insertion* task

Insertion Operation: Rough Algorithm

- Firstly, the key will be searched for in the tree
- If the key is found, the algorithm does nothing more than returns back
- Otherwise, the search process will lead us to an empty subtree
- The new node must be inserted at the place of the empty tree

Insertion Operation: Pseudo-code

```
void searchAdd(Ref & r, int k) {
  if (r == NULL) {
    r = new Node;
    r->key = k;
    r->left = r->right = NULL;
  else
    if (r->key > k) searchAdd(r->left, k);
    else
      if (r->key < k) searchAdd(r->right, k);
      else
        return;
```

Deletion Operation

- Similar to the insertion operation, this operation consists of search task and deletion task
 - This operation should be called *tree search with deletion* task
- Firstly, the key will be searched for in the tree
 - If the key is not found: Stop!!!
 - Otherwise, the search process will lead us to the node that contains the key
 - lt's time to run deletion task

Deletion Operation

- It is simple if the node to be deleted is a leaf or one with a single child
- The difficulty lies in removing a node with two children
 - A single pointer cannot point in two directions

Solution: The deleted node is to be replaced by either its predecessor or successor

One of them will be actually deleted

Deletion Operation: Pseudo-code

```
void searchDel(Ref & r, int k) {
  if (r == NULL) return;
 if (r->key > k) searchDel(r->left, k);
 else
   if (r->key < k) searchDel(r->right, k);
   else { // ==
     q = r;
     if (q->right == NULL) r = q->left;
     else
       if (q->left == NULL) r = q->right;
       else
         del(r->left, q);
     delete q;
```

Deletion Operation: Pseudo-code

```
void del(Ref & r, Ref & q) {
  if (r->right)
    del(r->right, q);
  else {
                          void searchDel(Ref & r, int k)
    q->key = r->key;
    q = r;
                            else { // ==
                              q = r;
    r = r->left;
                              if (q->right == NULL)
                                r = q->left;
                              else
                                 if (q->left == NULL)
                                   r = q->right;
                                else
                                   del(r->left, q);
                              delete q;
                                                   25
```

Balanced Binary Search Trees

- In 1962, two Soviet scientists, Adelson-Velskii and Landis, proposed a new type of BSTs called balanced binary search tree
 - Nowadays, it's well known as AVL tree named after its inventors
- The noteworthy point of AVL trees is its balance criterion

The Balance Criterion

The criterion is stated as follows:

A binary tree is balanced if and only if for every node the heights of its two subtrees differ by at most 1

- The criterion makes AVL trees have 3 advantages over the others:
 - The height of AVL trees is at most $1.44 \log_2 n$
 - AVL trees could not be deformed as BSTs
 - The cost of rebalancing AVL trees is nearly constant time and in the worst case, it's $O(\log n)$

The Basic Operations

- The search algorithm for an AVL tree is the same as the search algorithm for a BST
- Insertion and deletion operations on AVL trees are somewhat different from the ones discussed for BSTs
 - After inserting a node to (or deleting a node from) an AVL tree, the resulting tree may still be an AVL tree or a rebalancing must be done to restore the balance criterion
- Three operations run in $O(\log n)$

When Does an Imbalance Arise?

- Given a root r with the left and right subtrees: T_L and T_R
 - In general, r can be any node in an AVL tree
- Let h_L and h_R be the heights of T_L and T_R , respectively
- ullet Assume that the new node is inserted to T_L causing its height to increase by 1

When Does an Imbalance Arise?

Before	After
$h_L = h_R$	$h_L > h_R \colon h_L$ and h_R become of unequal height, but the balance criterion is not violated
$h_L < h_R$	$h_L = h_R \colon h_L$ and h_R obtain equal height, the balance has even been improved
$h_L > h_R$	The balance criterion is violated, and the tree must be restructured

The Rebalancing Procedure

- It's also called *rotating* the tree
- Suppose the rotation occurs at a node r:
 - Left rotation: Certain nodes from the right subtree of r move to its left subtree; the root of the right subtree of r becomes the new root of the reconstructed subtree

The Rebalancing Procedure

- It's also called *rotating* the tree
- Suppose the rotation occurs at a node r:
 - Left rotation: Certain nodes from the right subtree of r move to its left subtree; the root of the right subtree of r becomes the new root of the reconstructed subtree
 - Right rotation: Certain nodes from the left subtree of r move to its right subtree; the root of the left subtree of r becomes the new root of the reconstructed subtree

Insertion Operation

- Assume that the key to be added to the AVL tree is the new one
- Insertion operation includes 2 stages:
 - Search the tree and add the new node to the appropriate place
 - 2. After inserting the new node in the tree, the resulting tree might not be an AVL tree
 - The rebalancing procedure must be activated

Insertion Operation

- How does the rebalancing procedure work?
 - It's accomplished by retreating along the search path and check if the balance criterion is violated at each node
 - If the balance criterion is violated at a node, the subtree rooted at that node will be rebalanced
- Once balance is established, the subtree no longer grew in height
 - The algorithm can ignore the remaining nodes on the path back to the root

Deletion Operation

- Assume that the key to be deleted is in the AVL tree
- Deletion operation includes 2 stages:
 - 1. Find the node containing the key to be deleted and delete it
 - 2. After deleting the node in the tree, the resulting tree might not be an AVL tree
 - The rebalancing procedure must be activated

Deletion Operation

- How does the rebalancing procedure work?
- Its performance is similar to the case of insertion operation except two things:
 - After rebalancing a subtree, the overall tree might still not be an AVL tree
 - The algorithm has to continuously traverse back to the root node
 - The second thing?

Red-Black Trees

- A red-black tree (RBT) is a type of self-balancing BST
 - Each node in an RBT is labeled as red or black
- Operations on RBTs take $O(\log n)$ time in the worst case since the height of an RBT is at most $2\log_2(n+1)$
 - The height of an AVL tree is at most $1.44 \log_2 n$
- However, a careful nonrecursive implementation can be done relatively effortlessly compared with AVL trees

Definition of Red-Black Trees

An RBT is a BST that satisfies the following *red-black criteria*:

- 1. Every node is either *red* or *black*
- 2. The root of the tree is always **black**
- 3. All leaves are **black**
- 4. If a node is *red*, then its parent is *black*
- 5. Any path from a node to any of its leaves contains the same number of black nodes, called *black height*

Representation of Red-Black Trees

```
typedef struct Node * Ref;
struct Node {
 int key;
 int color;
 Ref parent, left, right;
ref getNode(int key, int color, Ref nil) {
 p = new Node;
 p->key = key;
 p->color = color;
 p->left = p->right = p->parent = nil;
 return p;
```

The Initial State of a Red-Black Tree

```
Ref nil, root;
nil = new Node;
                                nil
nil->color = BLACK;
nil->key = -1;
nil->left =
nil->right =
nil->parent = nil;
root = nil;
```

Tree Rotation

Tree Rotation


```
leftRotate(Ref & root, Ref x) {
 y = x->right;
 x->right = y->left;
 if (y->left != nil)
   y->left->parent = x;
 y->parent = x->parent;
 if (x->parent == nil) root = y;
 else
   if (x == x->parent->left)
     x-parent->left = y;
   else
     x->parent->right = y;
 y->left = x;
 x->parent = y;
                                              49
```

Search Operation

 An RBT is a BST so the search algorithm for an RBT is the same as the search algorithm for a BST

Insertion Operation

- The new node, as usual, is placed as a leaf in the tree
- The node must be colored red
 - If the parent is black: The red-black criteria are maintained
 - If the parent is *red*: The criterion "no two consecutive red nodes" is violated
 - Rebalancing the tree is needed

Insertion Operation: Pseudo-code

```
void RBT_Insertion(Ref & root, int key) {
   x = getNode(key, RED, nil);
   BST_Insert(root, x);
   Insertion_FixUp(root, x);
}
```

```
BST Insert(Ref & root, ref x) {
 y = nil;
  z = root;
 while (z != nil) {
   y = z;
   if (x->key < z->key)
                               z = z->left;
   else if (x->key > z->key) z = z->right;
   else
                               return;
 x-parent = y;
  if (y == nil) root = x;
 else
   if (x-)key < y-)key y-)left = x;
   else
                          y->right = x;
```

Some Conventions

- x: The pointer designated to point to the newly added leaf
- p: The pointer designated to point to the parent of the node pointed to by x
- u: The pointer designated to point to the uncle of the node pointed to by x
- *g*: The pointer designated to point to the *grandparent* of the node pointed to by *x*

Imbalance Cases

The Strategies for Rebalancing an RBT

- Case 1
 - \rightarrow Reverse the color of three nodes: u, p, and g

- Case 2
 - \rightarrow Reverse the color of two nodes: p and g
 - \rightarrow Run a rotation at g

- Case 3
 - \rightarrow Run a rotation at parent p
 - → Go to Case 2

Case 1

Case 2

Case 2

Insertion Operation: Pseudo-code

```
Insertion FixUp(Ref & root, Ref x) {
 while (x-\text{parent-}\text{-}\text{color} == RED)
    if (x->parent == x->parent->parent->left)
      ins leftAdjust(root, x);
    else
      ins rightAdjust(root, x);
  root->color = BLACK;
```

```
ins leftAdjust(Ref & root, Ref & x) {
 u = x->parent->parent->right;
 if (u->color == RED) {
   x->parent->color = u->color = BLACK;
   x->parent->parent->color = RED;
   x = x-parent->parent;
 else {
   if (x == x-)parent->right) {
     x = x->parent; leftRotate(root, x);
   x->parent->color = BLACK;
   x->parent->parent->color = RED;
   rightRotate(root, x->parent->parent);
```

B-Trees

Example: A B-tree of Order 2

Definition of B-Trees

A B-tree of order *t* is either empty, or has the following properties:

- Every node contains at most 2t keys
- All nodes, except the root, contain at least t keys
- Every node is either a leaf or it has m+1 children, where m is its number of keys
- All leaves are on the same level

Example: A B-tree of Order 2

The Structure of a Node (or Page)

The structure of a node is as follows:

where

- $k_1 < k_2 < \dots < k_m$
- p_i is a pointer to a child
 - If it's a leaf: p_i = NULL, $\forall i \in [0, m]$
- All keys in the node to which p_i points are greater than k_i and less than k_{i+1}

Example

(((01 03 05 07) 09 (11 13 15 17) 19 (21 23)) 25 ((27 29 31) 33 (35 37) 39 (41 43 45 47)))

Search Operation

- The search must start at the root of tree
 - Assume that the node being considered contains m keys: $k_1, k_2, ..., k_m$
 - If m is sufficiently large, one may use binary search; otherwise,
 a sequential search will do
- Let k be the search key. If the search is unsuccessful:
 - $k < k_1$: Search the node pointed to by p_0
 - $k > k_m$: Search the node pointed to by p_m
 - $k_i < k < k_{i+1}$: Search the node pointed to by p_i
- If the designated pointer is a null pointer: Stop!!!

Example

Insertion Operation

- Assume that the key to be inserted is new
 - The search process terminates at a leaf
- The new key is inserted into the leaf if there is room
- If the leaf is full
 - (for pedagogical reasons) *Insert the new key into the leaf*
 - Split the leaf into two nodes
 - Move the median key to the parent node
- The splitting can propogate upward up to the root,
 causing the tree to increase in height

Example

Deletion Operation

- Assume that the key to be deleted, say k, is in the tree
 - \blacksquare The search process terminates at the node containing k
- There are two different circumstances:
 - It's a leaf: The removal algorithm is plain and simple
 - Otherwise: The key must be replaced by its predecessor or successor, which happen to be on leaves
 - In either cases, the key that actually to be deleted is always on a leaf

Deletion Operation

- If the leaf contains more than t keys
 - Delete k and no further action is required
- If the leaf contains only t keys
 - If one of the adjacent siblings has more than t keys: Move one key from that sibling to the parent and one key from the parent to the leaf, and then delete k
 - Otherwise: Combine one of the adjacent siblings with the leaf
 and the median key from the parent, and then delete k
 - This process may propogate all the way up to the root which could result in reducing the height of the B-tree

Example

B-Trees: Summary

- In practice, B-trees are designed to store and manage a large data on secondary storage devices
- A node of a B-tree normally corresponds to a disk page
 - For a typical disk, a page might be 2¹¹ to 2¹⁴ bytes in length
- The time needed to access a disk page is typically ~10⁵
 larger than the time needed to compare keys in RAM
 - The height of B-trees is the principal indicator of the efficiency of this data structure