

SDS 384 11: Theoretical Statistics

Lecture 8: U Statistics

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

U Statistics

- We will see many interesting examples of U statistics.
- Interesting properties
 - Unbiased
 - Reduces variance
 - Concentration (via McDiarmid)
 - Asymptotic variance
 - Asymptotic distribution

An estimable parameter

- Let P be a family of probability measures on some arbitrary measurable space.
- We will now define a notion of an an estimable parameter. (coined "regular parameters" by Hoeffding.)
- An estimable parameter $\theta(P)$ satisfies the following.

Theorem (Halmos)

 θ admits an unbiased estimator iff for some integer m there exists an unbiased estimator of $\theta(P)$ based on $X_1,\ldots,X_m \stackrel{iid}{\sim} P$ that is, if there exists a real-valued measurable function $h(X_1,\ldots,X_m)$ such that

$$\theta = Eh(X_1, \ldots, X_m).$$

The smallest integer m for which the above is true is called the degree of $\theta(P)$.

U statistics

- The function *h* may be taken to be a symmetric function of its arguments.
- This is because if $f(X_1, ..., X_m)$ is an unbiased estimator of $\theta(P)$, so is

$$h(X_1,\ldots,X_m):=\frac{\sum_{\pi\in\Pi_m}f(X_{\pi_1},\ldots,X_{\pi_m})}{m!}$$

• For simplicity, we will assume *h* is symmetric for our notes.

U Statistics (Due to Wassily Hoeffding in 1948)

Definition

Let $X_i \stackrel{iid}{\sim} f$, let $h(x_1, \dots, x_r)$ be a symmetric kernel function and $\Theta(F) = E[h(x_1, \dots, x_r)]$. A U-statistic U_n of order r is defined as

$$U_n = \frac{\sum_{\{i_1,...,i_r\} \in \mathcal{I}_r} h(X_{i_1}, X_{i_2}, ..., X_{i_r})}{\binom{n}{r}},$$

where \mathcal{I}_r is the set of subsets of size r from [n].

Sample variance as an U-Statistic

Example

The sample variance is an U-statistic of order 2.

Proof.

Let $\theta(F) = \sigma^2$.

$$\sum_{i \neq j}^{n} (X_i - X_j)^2 = 2n \sum_{i} X_i^2 - 2 \sum_{i,j} X_i X_j$$

$$= 2n \sum_{i} X_i^2 - 2n^2 \bar{X}^2$$

$$= 2n(n-1) \frac{\sum_{i} X_i^2 - n\bar{X}^2}{n-1}$$

$$U_n := \frac{\sum_{i < j}^{n} (X_i - X_j)^2 / 2}{n(n-1)/2} = 2s_n^2$$

Sample variance as U-statistic

- Is its expectation the variance?
- $\frac{1}{2}E[(X_1-X_2)^2] = \frac{1}{2}E(X_1-\mu-(X_2-\mu))^2 = \sigma^2$

U-statistics examples: Wilcoxon one sample rank statistic

Example

 $U_n = \sum_i R_i 1(X_i > 0)$, where R_i is the rank of X_i in the sorted order $|X_1| \le |X_2| \dots$

- This is used to check if the distribution of X_i is symmetric around zero.
- Assume X_i to be distinct.

•
$$R_i = \sum_{j=1}^n 1(|X_j| \le |X_i|)$$

U-statistics examples: Wilcoxon one sample rank statistic

Example

 $T_n = \sum_i R_i 1(X_i > 0)$, where R_i is the rank of X_i in the sorted order $|X_1| \le |X_2| \dots$

$$T_{n} = \sum_{i} R_{i} 1(X_{i} > 0) = \sum_{i=1}^{n} \sum_{j=1}^{n} 1(|X_{j}| \le |X_{i}|) 1(X_{i} > 0)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} 1(|X_{j}| \le X_{i}) 1(X_{i} \ne 0) = \sum_{i \ne j}^{n} 1(|X_{j}| < X_{i}) + \sum_{i=1}^{n} 1(X_{i} > 0)$$

$$= \sum_{i < j} 1(|X_{j}| < X_{i}) + \sum_{i < j} 1(|X_{i}| < X_{j}) + \sum_{i=1}^{n} 1(X_{i} > 0)$$

$$= \sum_{i < j} 1(X_{i} + X_{j} > 0) + \sum_{i=1}^{n} 1(X_{i} > 0) = \binom{n}{2} U_{2} + nU_{1}$$

- Asymptotically dominated by the first term, which is an U statistic.
- Why isn't it a U statistic?

Kendal's Tau

Example

Let $P_1 = (X_1, Y_1)$ and $P_2 = (X_2, Y_2)$ be two points. P_1 and P_2 are called concordant if the line joining them (call this P_1P_2) has a positive slope and discordant if it has a negative slope. Kendal's tau is defined as:

$$\tau := P(P_1P_2 \text{ has } + \text{ve slope}) - P(P_1P_2 \text{ has -ve slope})$$

- This is very much like a correlation coefficient, i.e. lies between -1, 1
- Its zero when X, Y are independent, and ± 1 when Y = f(X) is a monotonically increasing (or decreasing) function.

g

Kendal's Tau

- Define $h(P_1, P_2) = \begin{cases} 1 & \text{if } P_1, P_2 \text{ is concordant} \\ -1 & \text{if } P_1, P_2 \text{ is discordant} \end{cases}$
- Now define $h(P_1, P_2) = sgn(X_1 X_2)(Y_1 Y_2)$
- So $U = \frac{\sum_{i < j} h(P_i, P_j)}{\binom{n}{2}}$ is an U statistic which computes Kendals Tau, and it has order 2.

More novel examples

Example (Gini's mean difference/ mean absolute deviation)

Let
$$\theta(F) := E[|X_1 - X_2|]$$
; the corresponding U statistic is $U_n = \frac{\sum_{i < j} |x_i - x_j|}{\binom{n}{2}}$.

Example (Quantile Statistic)

Let
$$\theta(F) := P(X_1 \le t) = E[1(X_1 \le t)]$$
; the corresponding U statistic is $U_n = \frac{\sum_i 1(X_i \le t)}{n}$.

Properties of the U-statistic

- The U is for unbiased.
- Note that $E[U] = Eh(X_1, ..., X_r)$
- $var(U(X_1,...,X_n)) \le var(h(X_1,...,X_r))$ (Rao Blackwell theorem)
 - Just $h(X_1, ..., X_r)$ is an unbiased estimator of $\theta(F)$.
 - But averaging over many subsets reduces variance.

Properties of U-statistics

- Let $X_{(1)}, \dots, X_{(n)}$ denote the order statistics of the data.
- The empirical distribution puts 1/n mass on each data point.
- So we can think about the U statistic as

$$U_n = E[h(X_1, ..., X_r)|X_{(1)}, ..., X_{(n)}]$$

• We also have:

$$E[(U - \theta)^{2}] = E\left[\left(E[h(X_{1}, ..., X_{r}) - \theta | X_{(1)}, ..., X_{(n)}]\right)^{2}\right]$$

$$\leq E[E[(h(X_{1}, ..., X_{r}) - \theta)^{2} | X_{(1)}, ..., X_{(n)}]]$$

$$= var(h(X_{1}, ..., X_{r}))$$

- Rao-Blackwell theorem says that the conditional expectation of any estimator given the sufficient statistic has smaller variance than the estimator itself.
- For $X_1, \ldots, X_n \stackrel{iid}{\sim} P$, the order statistics are sufficient. (why?)

- Consider a U statistic of order 2 $U = \frac{\sum_{i < j} h(X_i, X_j)}{\binom{n}{2}}$.
- How does U concentrate around its expectation?
- Recall McDiarmid's inequality?

Theorem

Let $f: \mathcal{X}^n \to \mathbb{R}$ satisfy the following bounded difference condition $\forall x_1, \dots, x_n, x_i' \in \mathcal{X}$:

$$|f(x_1,\dots,x_{i-1},x_i,x_{i+1},\dots,x_n) - f(x_1,\dots,x_{i-1},x_i',x_{i+1},\dots,x_n)| \leq B_i,$$

then,
$$P(|f(X) - E[f(X)]| \ge t) \le 2 \exp\left(-\frac{2t^2}{\sum_i B_i^2}\right)$$

Consider a U statistic of order 2.
$$U = \frac{\sum_{i < j} h(X_i, X_j)}{\binom{n}{2}}$$
.

Theorem

 $|f|h(X_1,X_2)| \le B \text{ a.s., then,}$

$$P(|U - E[U]| \ge t) \le 2 \exp\left(-\frac{nt^2}{8B^2}\right).$$

Proof.

• Consider two samples X, X' which differ in the i^{th} coordinate.

• We have:
$$|U(X)-U(X')| \leq \frac{\sum_{j\neq i} |h(X_i,X_j)-h(X_i,X_j')|}{\binom{n}{2}}$$
$$\leq \frac{4B}{n}$$

Now we have:

$$P(|U - E[U]| \ge t) \le 2 \exp\left(-\frac{nt^2}{8B^2}\right).$$

Now consider a U statistic of order r. $U = \frac{\sum_{i \in \mathcal{I}_r} h(X_{i_1}, \dots, X_{i_r})}{\binom{n}{r}}$.

Theorem

If
$$|h(X_{i_1}, ..., X_{i_r})| \le B$$
 a.s., then,

$$P(|U - E[U]| \ge t) \le 2 \exp\left(-\frac{nt^2}{2r^2B^2}\right).$$

Proof.

- Consider two samples X, X' which differ in the first coordinate.
- Let \mathcal{I}_{r-1} is the set of r-1 subsets from $2, \ldots, n$.
- We have:

$$|U(X) - U(X')| \le \frac{\sum_{j \in \mathcal{I}_{r-1}} |h(X_1, X_{j_1}, \dots, X_{j_r}) - h(X_1, X'_{j_1}, \dots, X'_{j_r})|}{\binom{n}{r}} \\ \le \frac{2B\binom{n-1}{r-1}}{\binom{n}{r}} = \frac{2rB}{n}$$

Now we have:

$$P(|U-E[U]| \ge t) \le 2 \exp\left(-\frac{nt^2}{2r^2B^2}\right).$$

Hoeffding's bound from his 1963 paper

Now consider a U statistic of order r. $U = \frac{\sum_{i \in \mathcal{I}_r} h(X_{i_1}, \dots, X_{i_r})}{\binom{n}{r}}$.

Theorem

If $|h(X_{i_1}, ..., X_{i_r})| \le B$ a.s., then,

$$P(|U - E[U]| \ge t) \le 2 \exp\left(-\frac{\lfloor n/r \rfloor t^2}{2B^2}\right).$$

What are we missing?

Lets start with Markov

- First note that if I can write $U E[U] = \sum_{i} p_i T_i$ where $\sum_{i} p_i = 1$,
- Then,

$$egin{aligned} P(U-E[U] \geq t) \leq E[\exp(\lambda \sum_{i} p_{i}(T_{i}-t))] \ &\leq \sum_{i} p_{i}E[\exp(\lambda(T_{i}-t))] \end{aligned}$$

- So, if T_i is a sum of independent random variables, we can plug in previous bounds into the above.
- But how can we write the U statistics as a sum of such T_i 's?

Lets do a bit of combinatorics

- For simplicity assume that n = kr.
- Write $V(X_1,...,X_n) = \frac{h(X_1,...,X_r) + \cdots + h(X_{(k-1)r+1},...,X_{kr})}{k}$
- Note that $U = \frac{\sum_{\pi \in \Pi} V(X_{\pi_1}, \dots, X_{\pi_n})}{n!}$
- So set $T_{\pi} = V(X_{\pi_1}, \dots, X_{\pi_n}) E[.].$
- Since V is an average of k = n/r independent random variables, using Hoeffding's inequality we have

$$E[\exp(\lambda(T_i - t))] \le \exp(-\lambda t + \lambda^2 B^2 / 2k) \le \exp(-kt^2 / 2B^2)$$

• Since each V_{π} behave stochastically equivalently, we can take the λ the same everywhere.

Variance of U statistic

Next time!