Exercise 13.4

Let c = a + bi be a complex number with real coefficients. We can represent complex numbers on the 2-dimensional Cartesian plane by the point (a, b). Define the absolute value norm to be $|c| = \sqrt{a^2 + b^2}$, the Cartesian distance from the point (a, b) to the origin. In using this representation of complex numbers, we can write any complex number as the product of a real number r and a complex number c = a + bi such that the norm of |rc| = 1. The absolute value product |rc| = |r||c| = 1:

$$|r| = \frac{1}{|c|}$$
 $|r| = \frac{1}{\sqrt{a^2 + b^2}}$
 $r = \frac{\sqrt{a^2 + b^2}}{a^2 + b^2}$

Suppose the absolute value of c is 1. Then $\sqrt{a^2 + b^2} = 1$. Recall the trigonometric identity: $\cos^2(\theta) + \sin^2(\theta) = 1$ where θ is a real number. So,

$$\sqrt{\cos^2(\theta) + \sin^2(\theta)} = \sqrt{1} = 1$$

$$\sqrt{a^2 + b^2} = \sqrt{\cos^2(\theta) + \sin^2(\theta)}$$

$$a^2 = \cos^2(\theta) \text{ and } b^2 = \sin^2(\theta)$$
Hence,
$$a = \cos(\theta) \text{ and } b = \sin(\theta)$$

Therefore, $c = a + bi = cos(\theta) + isin(\theta)$. From the above results, we know that any complex number n can be written as the product of a real number r and a complex number. Then, $n = rc = r(cos(\theta) + isin(\theta))$.

Exercise 13.8: Determine which of the elements in the set \mathbb{F}_p for p=3,5,7,11,13, and 19 are squares. The elements that have squares have been boxed.

Let p = 3

Element	Element Squared
0	0
1	1
2	1

There is 1 square

Let p=5

Element	Element Squared					
0	0					
1	1					
$\overline{2}$	4					
3	4					
4	1					

There are 2 squares

Let p = 7

Element	Element Squared			
0	0			
1	1			
2	4			
3	2			
4	2			
5	4			
6	1			

There are 3 squares

Let p = 11

Element	Element Squared
0	0
1	1
2	4
3	9
4	5
5	3
6	3
7	5
8	9
9	4
10	1

There are 5 squares $\,$

Let p = 13

Element	t Element Squared					
0	0					
1	1					
2	4					
3	9					
4	3					
5	12					
6	10					
7	10					
8	12					
9	3					
10	9					
11	14					
12	1					

There are 6 squares

Let p = 19

	T1 + C 1			
Element	Element Squared			
0	0 1			
1				
2	4			
3	9			
4	16			
5	6			
6	17			
7	11			
8	7			
9	5			
10	5			
11	7			
12	11			
13	17			
14	6			
15	16			
16	9			
17	4			
18	1			

There are 9 squares

Exercise 13.12: For each of the prime numbers p = 3, 5, 7, 11, and 13, determine the orders of all the elements of \mathbb{F}_p .

Let p=3

Element	Order
1	1
2	2

There is 1 element of order $p-1:\{2\}$

Let p = 5

Element	Order		
1	1		
2	4		
3	4		
4	2		

There are 2 elements of order $p-1:\{2,3\}$

Let p = 7

Element	Order		
1	1		
2	3		
3	6		
4	3		
5	6		
6	2		

There are 2 elements of order $p-1:\{3,5\}$

Let p = 11

Element	Order		
1	1		
2	10		
3	5		
4	5		
5	5		
6	10		
7	10		
8	10		
9	5		
10	2		

There are 4 elements of order $p-1:\{2,6,7,8\}$

Let p = 13

Element	Order		
1	1		
2	12		
3	3		
4	6		
5	4		
6	12		
7	12		
8	4		
9	3		
10	6		
11	12		
12	2		

There are 4 elements of order $p-1:\{2,6,7,11\}$

Exercise 13.16

Define K to be the set $K = \{a + b\gamma | a, b \in \mathbb{F}_3, \gamma^2 = 2\}$. Define addition and multiplication rules on K as follows:

$$(a+b\gamma) + (c+d\gamma) = (a+c) + (b+d)\gamma$$
and
$$(a+b\gamma)(c+d\gamma) = (ac+2bd) + (ad+bc)\gamma$$

Observe that K is closed under addition and multiplication because (a+c) mod 3, (b+d) mod 3, (ac+2bd) mod 3, and (ad+bc) mod 3 are all elements in \mathbb{F}_3 . This means that K is a ring that contains the field \mathbb{F}_3 . The following is a multiplication table of the 8 nonzero elements of K:

×	1	2	$1+\gamma$	$1+2\gamma$	$2 + \gamma$	$2+2\gamma$	γ	2γ
1	1	2	$1+\gamma$	$1+2\gamma$	$2 + \gamma$	$2+2\gamma$	γ	2γ
2	2	1	$2+2\gamma$	$2 + \gamma$	$1+2\gamma$	$1 + \gamma$	2γ	γ
$1+\gamma$	$1+\gamma$	$2+2\gamma$	2γ	2	1	γ	$2 + \gamma$	2
$1+2\gamma$	$1+2\gamma$	$2+\gamma$	2	γ	2γ	1	$1 + \gamma$	$2+2\gamma$
$2+\gamma$	$2+\gamma$	$1+2\gamma$	1	2γ	γ	2	$2+2\gamma$	$1 + \gamma$
$2+2\gamma$	$2+2\gamma$	$1+\gamma$	γ	1	2	2γ	$1 + \gamma$	$2 + \gamma$
γ	γ	2γ	$2 + \gamma$	$1+\gamma$	$2+2\gamma$	$1 + \gamma$	2	1
2γ	2γ	γ	2	$2+2\gamma$	$1 + \gamma$	$2 + \gamma$	1	2

Notice that every non-zero element has a multiplicative inverse such that $(a + b\gamma)(a + b\gamma)^{-1} = 1$. Therefore, K is a field. Observe that

$$(a+b\gamma)(a-b\gamma) = a^2 - ab\gamma + ab\gamma - b^2\gamma^2$$
$$a^2 - 2b^2$$
$$a^2 + b^2 \mod 3$$

Consider the possible values for $a^2 + b^2$ in \mathbb{F}_3 :

$$(a,b) = (0,0), a^2 + b^2 = 0$$

$$(a,b) = (0,1), a^2 + b^2 = 1$$

$$(a,b) = (0,2), a^2 + b^2 = 4 = 1$$

$$(a,b) = (1,0), a^2 + b^2 = 1$$

$$(a,b) = (2,0), a^2 + b^2 = 4 = 1$$

$$(a,b) = (1,1), a^2 + b^2 = 2$$

$$(a,b) = (1,2), a^2 + b^2 = 5 = 2$$

$$(a,b) = (2,1), a^2 + b^2 = 5 = 2$$

$$(a,b) = (2,2), a^2 + b^2 = 8 = 2$$

Notice that the only time $a^2 + b^2 = 0$ is when a = b = 0. Assume that a and b are not zero, so $a^2 + b^2 \neq 0$. Because $a^2 + b^2$ is not zero and \mathbb{F}_3 is a field, $a^2 + b^2$ has an inverse, call it $(a^2 + b^2)^{-1}$. Now, we can perform the following operation:

$$(a+b\gamma)(a-b\gamma)/(a^2+b^2)$$

$$(a+b\gamma)(a-b\gamma)(a^2+b^2)^{-1}$$

$$(a+b\gamma)[a(a^2+b^2)^{-1}-b\gamma(a^2+b^2)^{-1}]$$

$$(a^2+ab\gamma)(a^2+b^2)^{-1}-(ab\gamma+b^2\gamma^2)(a^2+b^2)^{-1}$$

$$(a^2-2b^2)(a^2+b^2)^{-1}$$

$$(a^2+b^2)(a^2+b^2)^{-1}=1$$

Hence, for all elements of K, $a+b\gamma$, its inverse exists so we have confirmed that K is a field. Notice that if $f(x)=x^2-2$, $f(\gamma)=\gamma^2-2=2-2=0$, so f(x) has a root in K and factors as $f(x)=(x+\gamma)(x-\gamma)$ in K[x].

Since K is a field with 9 elements, we will rename it \mathbb{F}_9 instead. By theorem 13.9 in the textbook, \mathbb{F}_9 has a primitive root. Observe:

$$(1+\gamma)^{1} = 1+\gamma$$

$$(1+\gamma)^{2} = 2\gamma$$

$$(1+\gamma)^{3} = 1+2\gamma$$

$$(1+\gamma)^{4} = 2$$

$$(1+\gamma)^{5} = 2+2\gamma$$

$$(1+\gamma)^{6} = \gamma$$

$$(1+\gamma)^{7} = 2+\gamma$$

$$(1+\gamma)^{8} = 1$$

Therefore, $1 + \gamma$ is a primitive root because $(1 + \gamma)^k = \mathbb{F}_9^{\times}$ for 0 < k < 9.

Exercise 13.20

Let p be an odd prime and let α be a primitive root in the field \mathbb{F}_p such that $\mathbb{F}_p^{\times} = \{\alpha, \alpha^2, \alpha^3, ... \alpha^{p-1}\}$, where $\sqrt{\alpha}$ is not an element of \mathbb{F}_p . We will construct a new set $\mathbb{F}_p[\sqrt{\alpha}] = \{a + b\sqrt{\alpha} | a, b \in \mathbb{F}_p, \sqrt{\alpha} \notin \mathbb{F}_p\}$. Define addition and multiplication rules on $\mathbb{F}_p[\sqrt{a}]$ to be as follows:

$$(a+b\sqrt{\alpha}) + (c+d\sqrt{\alpha}) = (a+c) + (b+d)\sqrt{\alpha}$$

and
$$(a+b\sqrt{\alpha})(c+d\sqrt{\alpha}) = (ac+bd\alpha) + (ad+bc)\sqrt{\alpha}$$

Observe that $\mathbb{F}_p[\sqrt{\alpha}]$ is closed under addition and multiplication because $(a+c) \mod p$, $(b+d) \mod p$, $(ac+bd\alpha) \mod p$, and $(ad+bc) \mod p$ are all elements in \mathbb{F}_p . This means that $\mathbb{F}_p[\sqrt{\alpha}]$ is a ring that contains the field \mathbb{F}_p and where the square of α exists. Because \mathbb{F}_p has p elements, for each element $a+b\sqrt{\alpha}$ in $\mathbb{F}_p[\sqrt{\alpha}]$, there are p choices for a and p choices for b, so $\mathbb{F}_p[\sqrt{\alpha}]$ has p^2 elements, including the zero element.

To show that every element of $\mathbb{F}_p[\alpha]$ has a square, we will begin by proving that $\mathbb{F}_p[\alpha]$ is a field. Observe that

$$(a + b\sqrt{\alpha})(a - b\sqrt{\alpha}) = a^2 - ab\sqrt{\alpha} + ba\sqrt{\alpha} + \alpha b^2$$
$$= a^2 - \alpha b^2$$

Lemma: If $a + b\sqrt{\alpha} \neq 0$, then $a^2 - \alpha b^2 \neq 0$. Proof: Suppose instead that $a^2 - \alpha b^2 = 0$. Then

$$a^2 = \alpha b^2$$

$$a^2(b^{-1})^2 = \alpha$$

$$(ab^{-1})^2 = \alpha$$

$$ab^{-1} = \sqrt{\alpha}$$

This implies $\sqrt{\alpha} \in \mathbb{F}_p$ since ab^{-1} exists in the field \mathbb{F}_p . Then, this is a contradtion because $\sqrt{\alpha} \notin \mathbb{F}_p$. Therefore, by proof of contradiction, if $a + b\sqrt{\alpha} \neq 0$, then $a^2 - \alpha b^2 \neq 0$. \square

Now, given $a + b\sqrt{\alpha} \neq 0$, we know that $a^2 - \alpha b^2 \neq 0$. Recall that

$$(a+b\sqrt{\alpha})(a-b\sqrt{\alpha})=a^2-\alpha b^2$$

We can divide the product $(a+b\sqrt{\alpha})(a-b\sqrt{\alpha})$ by $a^2-\alpha b^2$ because $a^2-\alpha b^2 \neq 0$ so its inverse exsists in \mathbb{F}_p . The inverse of $a^2-\alpha b^2$ will be given by $(a^2-\alpha b^2)^{-1}$. Hence:

$$(a+b\sqrt{\alpha})(a-b\sqrt{\alpha})/(a^2-\alpha b^2) \\ (a+b\sqrt{\alpha})(a-b\sqrt{\alpha})(a^2-\alpha b^2)^{-1} \\ (a+b\sqrt{\alpha})[a(a^2-\alpha b^2)^{-1}-\alpha b^2(a^2-\alpha b^2)^{-1}] \\ (a^2+ab\sqrt{\alpha})(a^2-\alpha b^2)^{-1}-(ab\sqrt{\alpha}+\alpha b^2)(a^2-\alpha b^2)^{-1} \\ (a^2+ab\sqrt{\alpha}-ab\sqrt{\alpha}+\alpha b^2)(a^2-\alpha b^2)^{-1} \\ (a^2-\alpha b^2)(a^2-\alpha b^2)^{-1}=1$$

Therefore, for all non-zero elements in $\mathbb{F}_p[\sqrt{\alpha}]$, $a+b\sqrt{\alpha}$, the inverse exists so $\mathbb{F}_p[\sqrt{\alpha}]$ is a field.

In conclusion, we began with a field \mathbb{F}_p which has a primitive root α such that $\mathbb{F}_p^{\times} = \{\alpha, \alpha^2, \alpha^3, ... \alpha^{p-1}\}$, but, $\sqrt{\alpha}$ did not exist in \mathbb{F}_p . Then, we created a new field $\mathbb{F}_p[\sqrt{\alpha}]$ where the square of α existed. Since α is a primitave root, for all $k \in \mathbb{F}_p^{\times}$, there exists an integer $m \leq p-1$ such that $\alpha^m = k$ and thus $\sqrt{k} = \sqrt{\alpha^m} = (\sqrt{\alpha})^m$ which we have proven exists. This means that every non zero element of \mathbb{F}_p has a square. Therefore, for all numbers $b, c \in \mathbb{F}_p$, the polynomial $f(x) = x^2 + bx + c$ has roots in $\mathbb{F}_p[\sqrt{\alpha}]$ because its discriminant $\sqrt{b^2 - 4c}$ exists. \square