

Outline A Brief History CMOS Gate Design Pass Transistors CMOS Latches & Flip-Flops Standard Cell Layouts Stick Diagrams

- ☐ 1958: First integrated circuit
 - Flip-flop using two transistors
 - Built by Jack Kilby at Texas Instruments
- **2010**
 - Intel Core i7 μprocessor
 - 2.3 billion transistors
 - 64 Gb Flash memory
 - > 16 billion transistors

1: Circuits & Layout

CMOS VLSI Design 4th Ed.

3

Growth Rate

- □ 53% compound annual growth rate over 50 years
 - No other technology has grown so fast so long
- □ Driven by miniaturization of transistors
 - Smaller is cheaper, faster, lower in power!
 - Revolutionary effects on society

Moore65] Electronics Magazine

1: Circuits & Layout

CMOS VLSI Design 4th Ed.

Transistor Types

- Bipolar transistors
 - npn or pnp silicon structure
 - Small current into very thin base layer controls large currents between emitter and collector
 - Base currents limit integration density
- Metal Oxide Semiconductor Field Effect Transistors
 - nMOS and pMOS MOSFETS
 - Voltage applied to insulated gate controls current between source and drain
 - Low power allows very high integration

1: Circuits & Layout

CMOS VLSI Design 4th Ed.

MOS Integrated Circuits

- ☐ 1970's processes usually had only nMOS transistors
 - Inexpensive, but consume power while idle

Intel 1101 256-bit SRAM

Intel 4004 4-bit µProc

☐ 1980s-present: CMOS processes for low idle power

1: Circuits & Layout

CMOS VLSI Design 4th Ed.

CMOS Gate Design

- □ Activity:
 - Sketch a 4-input CMOS NOR gate

1: Circuits & Layout

CMOS VLSI Design 4th Ed.

Signal Strength

- ☐ Strength of signal
 - How close it approximates ideal voltage source
- □ nMOS pass strong 0
 - But degraded or weak 1
- pMOS pass strong 1
 - But degraded or weak 0
- ☐ Thus nMOS are best for pull-down network

1: Circuits & Layout

CMOS VLSI Design 4th Ed.

19

Pass Transistors

☐ Transistors can be used as switches

$$g = 0$$

$$s \multimap -d$$

Input
$$g = 1$$
 Output $0 \rightarrow -strong 0$

$$g = 0$$

$$s \longrightarrow d$$

$$g = 1$$

Input
$$g = 0$$
 Output $0 \rightarrow -degraded 0$

1: Circuits & Layout

CMOS VLSI Design 4th Ed.

Transmission Gates

- □ Pass transistors produce degraded outputs
- ☐ Transmission gates pass both 0 and 1 well

Input Output

g
a
$$\stackrel{}{\bigsqcup}$$
 b

$$g = 1$$
, $gb = 0$ $g = 1$, $gb = 0$ $1 \longrightarrow -$ strong 1

1: Circuits & Layout

CMOS VLSI Design 4th Ed.

21

Tristates

☐ *Tristate buffer* produces Z when not enabled

	EN	Α	Υ
	0	0	
	0	1	
	1	0	
	1	1	

1: Circuits & Layout

CMOS VLSI Design $^{4\text{th Ed.}}$

- Nonoverlapping clocks can prevent races
 - As long as nonoverlap exceeds clock skew
- ☐ We will use them in this class for safe design
 - Industry manages skew more carefully instead

1: Circuits & Layout

CMOS VLSI Design 4th Ed.

3

Gate Layout

- ☐ Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- ☐ Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

1: Circuits & Layout

CMOS VLSI Design 4th Ed.

