Algebra II

Relación 3

Grupos cociente. Teoremas de isomorfismo. Productos

Ejercicio 1. Demostrar que si $G \leq S_n$, entonces $G \subseteq A_n$ o bien se tiene que $[G:G\cap A_n]=2$. Concluir que un subgrupo de S_n consiste sólo en permutaciones pares, o bien contiene el mismo número de permutaciones pares que de impares.

Ejercicio 2. Dado un cuerpo K, el grupo lineal especial de orden n sobre K, $SL_n(K)$, (también llamado el grupo unimodular de orden n sobre K) es

$$SL_n(K) = \{ G \in GL_n(K) | \det(G) = 1 \}$$

- 1. Se considera la aplicación det : $GL_n(K) \to F^{\times}$ que aplica cada matriz en su determinante. Demostrar que dicha aplicación es un epimorfismo de grupos. ¿Cuál es el núcleo de este homomorfismo?
- 2. Si K es un cuerpo finito con q elementos, determinar el orden del grupo $SL_n(K)$.

Ejercicio 3. Sea n > 1 un número natural, y sea G un grupo verificando que para todo par de elementos $x, y \in G$ se tiene que $(xy)^n = x^n y^n$. Se definen $H = \{x \in G | x^n = 1\}$, y $K = \{x^n | x \in G\}$. Demostrar que H y K son subgrupos normales de G, y que |K| = [G : H].

Ejercicio 4. Para un grupo G se define su centro como

$$Z(G) = \{ a \in G | \forall x \in G \ xa = ax \}.$$

- 1. Demostrar que Z(G) es un subgrupo de G.
- 2. Demostrar que Z(G) es normal en G.
- 3. Demostrar que G es abeliano si, y sólo si, G = Z(G).
- 4. Demostrar que si G/Z(G) es cíclico, entonces G es abeliano.

Ejercicio 5. Determinar el centro del grupo diédrico D_4 . Observar que el cociente $D_4/Z(D_4)$ es abeliano, aunque D_4 no lo sea (compárese este hecho con el tercer apartado del ejercicio anterior).

Ejercicio 6. Determinar el centro de los grupos S_n y A_n para $n \ge 2$.

Ejercicio 7. Determinar el centro del grupo D_n para $n \geq 3$ -

Ejercicio 8. Sean H y K dos subgrupos finitos de un grupo G, uno de ellos normal. Demostrar que

$$|H||K| = |HK||H \cap K|.$$

Ejercicio 9. Sea $N \subseteq G$. Probar que $G/N \cong G$ si, y sólo si, $N = \{1\}$, y que $G/N \cong \{1\}$ si, y sólo si, N = G.

Ejercicio 10. Sean G y H dos grupos cuyos órdenes sean primos relativos. Probar que si $f: G \to H$ es un homomorfismo, entonces necesariamente f(x) = 1 para todo $x \in G$, es decir, que el único homomorfismo entre ellos es el trivial.

Ejercicio 11. Sean H y K subgrupos de G, y sea $N \subseteq G$ un subgrupo normal de G tal que HN = KN. Demostrar que

$$\frac{H}{H\cap N}\cong \frac{K}{K\cap N}.$$

Ejercicio 12. Sea N un subgrupo normal de G tal que N y G/N son abelianos. Sea H un subgrupo cualquiera de G. Demostrar que existe un subgrupo normal $K \subseteq H$ tal que K y H/K son abelianos.

Ejercicio 13. Sea G un grupo finito, y sean H, K subgrupos de G, con K normal y tales que |H| y [G:K] son primos relativos. Demostrar que H está contenido en K.

Ejercicio 14. Sea G un grupo

- 1. Demostrar que para cada $a \in G$ la aplicación $\varphi_a : G \to G$ definida por $\varphi_a(x) = axa^{-1}$, es un automorfismo de G. φ_a se llama automorfismo interno o de conjugación de G definido por a.
- 2. Demostrar que la aplicación $G \to Aut(G)$, $a \mapsto \varphi_a$ es un homomorfismo
- 3. Demostrar que el conjunto de automorfismos internos de G, que se denota Int(G), es un subgrupo normal de Aut(G).
- 4. Demostrar que $G/Z(G) \cong Int(G)$.
- 5. Demostrar que Int(G)=1 si y sólo si G es abeliano.

Ejercicio 15. Demostrar que el grupo de automorfismos de un grupo no abeliano no puede ser cíclico.

Ejercicio 16. Demostrar que el grupo $Aut(\mathbb{Z}_2 \times \mathbb{Z}_2)$ es isomorfo a S_3 .

Ejercicio 17. Demostrar que los grupos S_3 , \mathbb{Z}_{p^n} (con p primo) y \mathbb{Z} no son producto directo internos de subgrupos propios.

Ejercicio 18. En cada uno de los siguientes casos, decidir si el grupo G es o no producto directo de los subgrupos H y K.

- 1. $G = \mathbb{R}^{\times}$, $H = \{\pm 1\}$, $K = \{x \in \mathbb{R} | x > 0\}$.
- 2. $G = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in GL_2(\mathbb{R}) \}, H = \{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \in GL_2(\mathbb{R}) \}, K = \{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbb{R}) \}.$
- 3. $G = \mathbb{C}^{\times}, H = z \in \mathbb{C} | |z| = 1 \}, K = x \in \mathbb{R} | x > 0 \}.$

Ejercicio 19. Sean G, H y K grupos. Demostrar que:

- 1. $H \times K \cong K \times H$,
- 2. $G \times (H \times K) \cong (G \times H) \times K$.

Ejercicio 20. Dados isomorfismos de grupos $H \cong J$ y $K \cong L$, demostrar que $H \times K \cong J \times L$.

Ejercicio 21. Sean H, K, L y M grupos tales que $H \times K \cong L \times M$. ¿Se verifica necesariamente que $H \cong L$ y $K \cong M$?

Ejercicio 22. Demostrar que no todo subgrupo de un producto directo $H \times K$ es de la forma $H_1 \times K_1$, con H_1 subgrupo de H y K_1 subgrupo de K.

Ejercicio 23. Sean H, K dos grupos y sean $H_1 \triangleleft H, K_1 \triangleleft K$. Demostrar que $H_1 \times K_1 \triangleleft H \times K$ y que

$$\frac{H \times K}{H_1 \times K_1} \cong \frac{H}{H_1} \times \frac{K}{k_1}.$$

Ejercicio 24. Sean $H, K \triangleleft G$ tales que $H \cap K = 1$. Demostrar que G es isomorfo a un subgrupo de $G/H \times G/K$.

Ejercicio 25. Sean H y K subgrupos normales de G tales que HK = G. Demostrar que

$$G/(H \cap K) \cong H/(H \cap K) \times K/(H \times K) \cong (G/H) \times (G/K).$$

Ejercicio 26. Demostrar que si G es un grupo que es producto directo interno de subgrupos H y K, y $N \subseteq G$ tal que $N \cap H = \{1\} = N \cap K$, entonces N es abeliano.

Ejercicio 27. Dar un ejemplo de un grupo G que sea producto directo interno de dos subgrupos propios H y K, y que contenga a un subgrupo normal no trivial N tal que $N \cap H = \{1\} = N \cap K$. Concluir que para $N \subseteq H \times K$ es posible que se tenga

$$N \neq (N \cap (H \times 1)) \times (N \cap (1 \times K)).$$

Ejercicio 28. Sea G un grupo finito que sea producto directo interno de dos subgrupos H y K tales que mcd(|H|,|K|) = 1. Demostrar que para todo subgrupo $N \leq G$ verifica que $N = (N \cap H) \times (N \cap K)$.

Ejercicio 29. Sea G un grupo y sea $f: G \to G$ un endomorfismo idempotente (esto es, verificando que $f^2 = f$) y tal que $Im(f) \subseteq G$. Demostrar que $G \cong Im(f) \times Ker(f)$.

Ejercicio 30. Sea S un subconjunto de un grupo G. Se llama *centralizador* de S en G al conjunto

$$C_G(S) = \{ x \in G \mid xs = sx \ \forall s \in S \}$$

y se llama normalizador de S en G al conjunto

$$N_G(S) = \{ x \in G \mid xS = Sx \}$$

- 1. Demostrar que el normalizador $N_G(S)$ es un subgrupo de G.
- 2. Demostrar que el centralizador $C_G(S)$ es un subgrupo normal de $N_G(S)$.
- 3. Demostrar que si S es un subgrupo de G entonces S es un subgrupo normal de $N_G(S)$.

Ejercicio 31. Sea G un grupo y H y K subgrupos suyos con $H \subset K$. Entonces demostrar que H es normal en K si y sólo si $K < N_G(H)$. (Así, el normalizador $N_G(H)$ queda caracterizado como el mayor subgrupo de G en el que H es normal.)

Ejercicio 32. 1. Demostrar que $C_G(Z(G)) = G$ y que $N_G(Z(G)) = G$.

- 2. Si G es un grupo y H < G ¿Cuando es $G = N_G(H)$? ¿Y cuando es $G = C_G(H)$?
- 3. Si H es un subgrupo de orden 2 de un grupo G, demostrar que $N_G(H) = C_G(H)$. Deducir que H es normal en G si y solo si está contenido en Z(G).

Ejercicio 33. Sea G un grupo arbitrario. Para dos elementos $x, y \in G$ se define su conmutador como el elemento $[x, y] = xyx^{-1}y^{-1}$. (El conmutador recibe tal nombre porque [x, y]yx = xy.)

Como $[x,y]^{-1} = [y,x]$, el inverso de un conmutador es un conmutador. Sin embargo el producto de dos conmutadores no tiene porqué ser un conmutador. Entonces se define el subgrupo conmutador o (primer) subgrupo derivado de G, denotado [G,G], como el subgrupo generado por todos los conmutadores de G.

- 1. Demostrar que, $\forall a, x, y \in G$, se tiene que $a[x, y]a^{-1} = [axa^{-1}, aya^{-1}]$.
- 2. Demostrar que [G, G] es un subgrupo normal de G.
- 3. demostrar que el grupo cociente G/[G,G], que se representa por G^{ab} , es un grupo abeliano (que se llama el abelianizado de G).
- 4. Demostrar que G es abeliano si y sólo si [G, G] = 1.
- 5. Sea N un subgrupo normal de G. Demostrar que el grupo cociente G/N es abeliano si y sólo si N > [G, G] (así que el grupo [G, G] es el menor subgrupo normal de G tal que el cociente es abeliano).
- **Ejercicio 34.** 1. Calcular el subgrupo conmutador de los grupos S_3 , A_4 , D_4 y Q_2 .
 - 2. Demostrar que, para $n \geq 3$, el subgrupo conmutador de S_n es A_n y que éste es el único subgrupo de S_n de orden n!/2.