CLAIMS

We claim:

1. Photopolymerizable colorant compounds having Formulas I and II:

$$A - \left(-CO_2 - X\right)_n \qquad A - \left(-S - \frac{N - N}{N}\right)_n$$

5

wherein

A, is a mono-, di-, tri- or tetravalent chromophore;

X is -R₁-O-Q or the phtopolymerizable group –CH₂-C₆H₄-p-C(R₂)=CH₂;

10

Y is $-R_1-O-Q$, $-CH_2-C_6H_4-p-C(R_2)=CH_2$ or Q;

R is selected from hydrogen, C₁-C₆ alkyl, aryl and C₃-C₈ cycloalkyl;

 R_1 is selected from $C_2\text{-}C_8$ alkylene, -(- CH_2CH_2O -)_m- CH_2CH_2 - and

1,4-cyclohexylenedimethylene;

R₂ is selected from hydrogen and C₁- C₆ alkyl;

15 n is 1 to 4;

m is 1 - 3;

Q is a photopolymerizable group selected from an organic radical having the formula:

Ia $-COC(R_3)=CH-R_4$

IIa -CONHCOC(R₃)=CH-R₄

IIIa -CONH-C₁ - C₆-alkylene OCOC(R₃) =CH-R₄

$$\begin{matrix} \text{IVa} \\ \begin{matrix} R_5 \\ \text{-COC-NHCOC(R}_3)=\text{CH-R}_4 \end{matrix}$$

VIa
$$-CO \leftarrow C(R_3) = CH_2$$

VIIa
$$-CONH-C - C(R_3)=CH_2$$

$$R_6$$

IXa
$$\begin{array}{ccc} \mathrm{CH_2} & \mathrm{CH_2} \\ \mathrm{II} & \mathrm{II} \\ \mathrm{-COCH_2CCO_2R_7} \text{ and/or -COCCH_2CO_2R_7} \end{array}$$

5

 R_3 is selected from hydrogen or C_1 - C_6 alkyl;

 R_4 is selected from hydrogen; C_1 - C_6 alkyl; phenyl; phenyl substituted with one or more groups selected from C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -N(C_1 - C_6 alkyl)₂, nitro, cyano, C_2 - C_6 alkoxycarbonyl, C_1 - C_6 alkanoyloxy and halogen; 1- and 2-naphthyl; 1- and 2-naphthyl substituted with C_1 - C_6 alkyl or C_1 - C_6 alkoxy; 2- and 3-thienyl; 2- and 3-thienyl substituted with C_1 - C_6 alkyl or halogen; 2- and 3-furyl; and 2- and 3-furyl substituted with C_1 - C_6 alkyl;

 R_5 and R_6 are independently selected from hydrogen, C_1 - C_6 alkyl, substituted C_1 - C_6 alkyl; aryl; or R_5 and R_6 may be combined to represent a -(-CH₂-)₃₋₅- radical;

 R_7 is selected from hydrogen or a group selected from C_1 - C_6 alkyl, substituted C_1 - C_6 alkyl, C_3 - C_8 alkenyl, C_3 - C_8 cycloalkyl and aryl; and R_8 is selected from hydrogen, C_1 - C_6 alkyl and aryl.

5

20

30

- Photopolymerizable colorant compounds according to Claim 1 wherein A represents a a mono-, di-, tri- or tetravalent residue of a
 chromophore selected from anthraquinone, anthrapyridone, anthrapyridine, anthrapyrimidine, anthrapyrimidone, isothiazoloanthrone, azo, bis-azo, methine, bis-methine, coumarin, 3-aryl-2,5-dioxypyrroline, 3-aryl-5-dicyanomethylene-2-oxypyrroline, perinone, quinophthalone, phthalocyanine, metal phthalocyanine, nitroarylamine and a
 2,5-diarylaminoterephthalic ester residue.
 - 3. Photopolymerizable colorant compounds according to Claim 2 wherein X and Y, respectively, are selected from -CH₂CH₂OQ, -CH₂CH(CH₃)OQ, -(CH₂CH₂O)₁₋₂-CH₂CH₂OQ, -CH₂C(CH₃)₂CH₂OQ, and -CH₂-C₆H₁₀-CH₂OQ and A is an anthraquinone, anthrapyridone or anthrapyridine residue or a 2,5-diarylaminoterephthalate chromophore residue.
- 4. Photopolymerizable colorant compounds according to Claim 2
 25 wherein Q is -COCH=CH₂ or -COC(CH₃)=CH₂.
 - 5. Photopolymerizable colorant compounds according to Claim 2 wherein X is selected from $-CH_2-C_6H_4-4-C(R_2)=CH_2$ wherein R_2 is hydrogen of methyl; and $-R_1-O-Q$ wherein R_1 is selected from $-(CH_2)_{2-4}$, $-CH_2CH(CH_3)_-$, $-CH_2C(CH_3)_2CH_2-$, $-(CH_2CH_2O_-)_{1-2}CH_2CH_2-$,

- -CH₂CH(OH)CH₂-, and CH₂-C₆H₁₀-4-CH₂-; and Q is selected from
- -COC(R₃)=CH₂ wherein R₃ is hydrogen of methyl; or
- $-CONHC(CH_3)_2-C_6H_4-4-C(CH_3)=CH_2.$

15

20

25

6. Process for the preparation of the photopolymerizable colorants defined in Claim 1 having Formula I wherein X is a p-vinylbenzyl radical having the formula –CH₂-C₆H₄-p-C(R₂)=CH₂ which comprises reacting colored acidic compounds having the structure:

- with a compound having the structure CICH₂-C₆H₄-p-C(R₂)=CH₂ in the presence of base.
 - 7. Process for the preparation of the photopolymerization colorants defined in Claim 1 having Formula II wherein Y is a p-vinylbenzyl radical having the formula –CH₂-C₆H₄-p-C(R₂)=CH₂ which comprises reacting colored acidic compounds having the structure

$$A \leftarrow S \xrightarrow{N \longrightarrow N} R$$

with 4-chloromethylstyrene compounds having the structure CICH₂-C₆H₄-p-C(R₂)=CH₂ in the presence of a base.

- 8. Process for the preparation of the colored photopolymerizable compounds defined in Claim 1 having Formula I and Formula II wherein X and Y are -CH₂CH₂-O-Q or -CH₂CH(CH₃)-O-Q, which comprises the steps of:
- (a) reacting colored acidic compounds having the structures:

$$A - (-CO_2-H)_n$$
 and $A - (-S-N-R)_n$

with at least about n molecular equivalents of ethylene or propylene carbonate for each molecular equivalent of acidic compounds to produce the 2-hydroxyalkyl derivatives of said acidic compounds;

(b) reacting said colored 2-hydroxyalkyl derivatives with about n molecular equivalents of one or more acylating agents having the structures:

Ib
$$CICOC(R_3) = CH-R_4$$
 or $O[COC(R_3) = CH-R_4]_2$,

lib
$$O=C=N-COC(R_3)=CH-R_4$$

IIIb
$$O=C=N-C_1-C_6$$
 alkylene $OCOC(R_3)=CH-R_4$,

$$lvb \qquad \begin{array}{c} R_{5} \longrightarrow C(R_{3}) = CH-R_{4} \\ R_{6} \longrightarrow O \end{array} ,$$

5

VIIb
$$O = C = N - C - C(R_3) = CH_2$$

9. Process for the preparation of the colored photopolymerizable compounds defined in Claim 1 having Formula II wherein Y is a photopolymerizable group Q which comprises reacting a colored acidic compound having the structure:

$$A \leftarrow S \xrightarrow{N \longrightarrow N} R$$

5

with at least about n molecular equivalents of an acylating agent selected from acylating agents lb through IXb of Claim 7.

- 10. Process for the preparation of the colored photopolymerizable compounds defined in Claim 1 having Formula II wherein Y is a photopolymerizable group Q which comprises the steps of:
 - (a) reacting a colored acidic triazolylthio compound having the structure:

$$A \leftarrow S \xrightarrow{N \longrightarrow N} R$$

15

with at least about n molecular equivalents of ethylene or propylene carbonate to produce a hydroxyalkyl compound having the formula

$$A \leftarrow S \xrightarrow{N \longrightarrow N} R \xrightarrow{CH_2CH(R')OH}$$

20

wherein R' is hydrogen or methyl, and

- (b) reacting the hydroxyalkyl compund produced in step (a) with an acylating agent selected from acylating agents Ib through IXb of Claim 8.
- 5 11. A photopolymerizable azo colorant compound defined in Claim 5 having the formula

20

D is a diazo component selected from aryl and heteroaryl groups wherein the aryl and heteroaryl groups are unsubstituted or substituted with C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio, halogen, C₂-C₆ alkoxycarbonyl, formyl, C₂-C₆ alkanoyl, dicyanovinyl, trifluoromethyl, cyano, carbamoyl, -CONH-C₁-C₆ alkyl, sulfamoyl, -SO₂NH-C₁-C₆ alkyl, phenylazo, phenylsulfonyl, fluorosulfonyl, benzoyl, C₁-C₆ alkylsulfonyl, nitro, -CO2X and

$$-L$$
 CO_2X

wherein L is a linking group selected from -O-, -S- and -SO₂-;

 R_{15} is selected from hydrogen or 1 or 2 groups selected from C_1 - C_6 alkyl; C_1 - C_6 alkoxy; halogen; -NHCOR₂₂, -NHCO₂R₂₂, and -NHSO₂R₂₃ wherein R_{22} is selected from hydrogen, C_1 - C_6 alkyl, and aryl and R_{23} is selected from C_1 - C_6 alkyl, and aryl; wherein the C_1 - C_6 alkyl groups represented by R_{22} and R_{23} may be substituted with C_1 - C_6 alkoxy, aryl, cyano, halogen, C_2 - C_6 alkanoyloxy, -CO₂X or

$$-L_1$$
 CO_2X

wherein L_1 is selected from a covalent bond, -O-, -S-, -SO₂-, -SO₂NH- and -CONH-;

 R_{16} and R_{17} are independently selected from hydrogen, C_1 - C_6 alkyl, cyclohexyl, aryl, C_1 - C_6 alkyl substituted with 1 or 2 groups selected from aryl, C_1 - C_6 alkoxy, cyano, -OCO- C_1 - C_6 -alkyl, halogen, succinimido, phthalimido, - CO_2X ,

$$CO_2X$$
 and CO_2X

12. A photopolymerizable methine colorant compound defined in Claim 5 having the formula

$$R_{16}$$
 N
 CH
 C
 CN
 R_{41}

wherein

5

10

15

20

 R_{15} is selected from hydrogen or 1 or 2 groups selected from C_1 - C_6 alkyl; C_1 - C_6 alkoxy; halogen; -NHCOR₂₂, -NHCO₂R₂₂, and -NHSO₂R₂₃

wherein R_{22} is selected from hydrogen, C_1 - C_6 alkyl, and aryl and R_{23} is selected from C_1 - C_6 alkyl and aryl; wherein the C_1 - C_6 alkyl groups represented by R_{22} and R_{23} may be substituted with C_1 - C_6 alkoxy, aryl, cyano, halogen, C_2 - C_6 alkanoyloxy, - CO_2X or

5

$$-L_1$$
 CO_2X

wherein L_1 is selected from a covalent bond, -O-, -S-, -SO₂-, -SO₂NH- and - CONH-;

10

 R_{16} and R_{17} are independently selected from hydrogen, C_1 - C_6 alkyl, cyclohexyl, aryl, C_1 - C_6 alkyl substituted with 1 or 2 groups selected from aryl, C_1 - C_6 alkoxy, cyano, -OCO- C_1 - C_6 -alkyl, halogen, succinimido, phthalimido, -CO2X,

$$CO_2X$$
 and $-L_1$

15

 R_{41} is selected from cyano, -CO₂-C₁-C₆-alkyl, aryl, heteroaryl, -SO₂-C₁-C₆-alkyl, -SO₂-aryl, and -CO₂X.

20

13. A photopolymerizable 3-aryl-2,5-dioxypyrroline colorant compound defined in Claim 5 having the formula

 R_{15} is selected from hydrogen or 1 or 2 groups selected from C_1 - C_6 alkyl; C_1 - C_6 alkoxy; halogen; -NHCOR₂₂, -NHCO₂R₂₂, and -NHSO₂R₂₃ wherein R_{22} is selected from hydrogen, C_1 - C_6 alkyl, and aryl and R_{23} is selected from C_1 - C_6 alkyl and aryl; wherein the C_1 - C_6 alkyl groups represented by R_{22} and R_{23} may be substituted with C_1 - C_6 alkoxy, aryl, cyano, halogen, C_2 - C_6 alkanoyloxy, -CO₂X or

10

5

$$-L_1$$
 CO_2X

wherein L₁ is selected from a covalent bond, -O-, -S-, -SO₂-, -SO₂NH- and - CONH-;

15

 R_{16} , R_{16} ' and R_{17} are independently selected from hydrogen, C_1 - C_6 alkyl, cyclohexyl, aryl, C_1 - C_6 alkyl substituted with 1 or 2 groups selected from aryl, C_1 - C_6 alkoxy, cyano, -OCO- C_1 - C_6 -alkyl, halogen, succinimido, phthalimido, -CO2X,

$$CO_2X$$
 and CO_2X

14. A photopolymerizable anthrapyridone colorant compound defined in Claim 5 having the formula

$$R_{28} = \begin{pmatrix} & & & & \\$$

wherein

5

10

15

 R_{28} is selected from hydrogen, 4-C₁-C₆ alkoxy, 4-arylthio, 4-aryloxy, 4-C₁-C₆ alkylthio, 4-C₁-C₆ alkylsulfonyl, 4-arylsulfonyl, and 4-halogen;

 R_{30} is selected from hydrogen, $C_1\text{-}C_8$ alkyl, substituted $C_1\text{-}C_8$ alkyl, and aryl;

 R_{31} is selected from hydrogen, cyano, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, halogen, C_1 - C_6 alkylsulfonyl, arylsulfonyl, aryl, arylthio, heteroaryl, heteroarylthio, C_2 - C_6 alkoxycarbonyl, and aroyl; and

L₄ is selected from 6-NH- and 6-S-.

15. A photopolymerizable anthrapyridone colorant compound defined in Claim 5 having the formula

$$R_{28}$$
 R_{28}
 R_{31}
 R_{30}
 R

R₂₈ is selected from hydrogen, 4-C₁-C₆ alkoxy, 4-arylthio,

4-heteroarylthio, 4-aryloxy, 4-C₁-C₆ alkylthio, 4-C₁-C₆ alkylsulfonyl, 4-arylsulfonyl, and 4-halogen;

 R_{30} is selected from hydrogen, $C_1\text{-}C_8$ alkyl, substituted $C_1\text{-}C_8$ alkyl, and aryl;

R₃₁ is selected from hydrogen, cyano, C₁-C₆ alkoxy, C₁-C₆ alkylthio, 10 halogen, C₁-C₆ alkylsulfonyl, arylsulfonyl, aryl, arylthio, heteroaryl, heteroarylthio, C₂-C₆ alkoxycarbonyl, and aroyl; and L₄ is selected from 6-NH- and 6-S-.

16. A photopolymerizable anthrapyridine colorant compound defined in15 Claim 5 having the formula

$$R_{31}$$

$$R_{28}$$

$$R_{28}$$

$$R_{28}$$

$$R_{20}$$

$$R_{31}$$

$$R_{32}$$

$$R_{32}$$

$$R_{32}$$

$$R_{32}$$

$$R_{33}$$

$$R_{34}$$

$$R_{35}$$

$$R_{35}$$

$$R_{35}$$

$$R_{35}$$

$$R_{35}$$

$$R_{36}$$

$$R_{37}$$

$$R_{38}$$

$$R_{39}$$

$$R$$

wherein

R₂₈ is selected from hydrogen, 4-C₁-C₆ alkoxy, 4-arylthio, 4-aryloxy, 4-C₁-C₆ alkylthio, 4-C₁-C₆ alkylsulfonyl, 4-arylsulfonyl, and 4-halogen; R₃₁ is cyano;

 R_{32} is $-N(R_{33})R_{34}$ wherein R_{33} and R_{34} are independently selected from C_1 - C_6 alkyl, C_1 - C_6 alkyl substituted with C_2 - C_6 alkanoyloxy, C_1 - C_6 alkoxy, and aryl or $-N(R_{33})R_{34}$ collectively may be morpholino, piperidino, or pyrrolidino; and

L₄ is selected from 6-NH- and 6-S-.

17. A photopolymerizable anthrapyridine colorant compound defined in Claim 5 having the formula

$$R_{28}$$
 R_{31}
 R_{32}
 R_{32}
 R_{31}
 R_{32}
 R_{32}
 R_{31}
 R_{32}
 R_{31}
 R_{32}
 R_{32}
 R_{31}
 R_{32}
 R_{31}
 R_{32}
 R_{32}
 R_{31}
 R_{32}
 R_{32}
 R_{31}
 R_{32}
 R_{32}
 R_{31}
 R_{32}
 R_{32}
 R_{31}
 R_{32}
 R_{32}
 R_{32}
 R_{32}
 R_{33}
 R_{32}
 R_{33}
 R_{32}
 R_{33}
 R_{33}
 R_{34}
 R_{32}
 R_{32}
 R_{33}
 R

10

20

5

wherein

R₂₈ is selected from hydrogen, 4-C₁-C₆ alkoxy, 4-arylthio, 4-aryloxy, 4-C₁-C₆ alkylthio, 4-C₁-C₆ alkylsulfonyl, 4-arylsulfonyl, and 4-halogen;

15 R₃₁ is cyano;

 R_{32} is $-N(R_{33})R_{34}$ wherein R_{33} and R_{34} are independently selected from C_1 - C_6 alkyl, C_1 - C_6 alkyl substituted with C_2 - C_6 alkanoyloxy, C_1 - C_6 alkoxy, and aryl or $-N(R_{33})R_{34}$ collectively may be morpholino, piperidino, or pyrrolidino; and

L₄ is selected from 6-NH- and 6-S-.

18. A photopolymerizable quinophthalone colorant compound defined in Claim 5 having the formula

wherein R_{35} is selected from hydrogen, bromo, arylthio, heteroarylthio, and arylsulfonyl.

5

19. A photopolymerizable nitroarylamine colorant compound defined in Claim 5 having the formula

$$\left(\begin{array}{c} R_{36} \\ XO_2C \end{array}\right)_{1-2}^{4} \stackrel{R_{36}}{\longrightarrow} NH \longrightarrow SO_2N \stackrel{R_{37}}{\longrightarrow} R_{38}$$

10

wherein

 \mbox{R}_{36} is selected from hydrogen, $\mbox{C}_1\mbox{-}\mbox{C}_6$ alkyl, $\mbox{C}_1\mbox{-}\mbox{C}_6$ alkoxy, and halogen; and

 R_{37} and R_{38} are independently selected from hydrogen, C_1 - C_6 alkyl, substituted C_1 - C_6 alkyl, and aryl.

15

20. A photopolymerizable 2,5-diarylaminoterephthalate colorant compound defined in Claim 5 having the formula

$$XO_2C$$
 NH
 CO_2X
 CO_2X
 R_{40}

wherein R_{40} is selected from hydrogen, $C_1\text{--}C_6$ alkyl, $C_1\text{--}C_6$ alkoxy, and halogen.

5