(DONOY WRITE YOUR ANSWER IN THIS AREA)

.....Sale

WARNING: MISBEHAVIOR AT EXAM TIME WILL LEAD TO SERIOUS CONSEQUENCE.

SCUT Final Exam

2020-2021-2 《Calculus II》 Exam Paper A

Notice:

- 1. Make sure that you have filled the form on the left side of seal line.
- 2. Write your answers on the exam paper.
- 3. This is a close-book exam.
- 4. The exam with full score of 100 points lasts 120 minutes.

Question No.	1-5	6-12	13-22	Sum
Score				

- -. Answer the questions. $(3' \times 6 = 18')$
- 1. L is the boundary of circle $x^2 + y^2 = 9$ with counterclockwise direction, then curve integral

$$\oint_L (2xy - 2y) dx + (x^2 - 4x) dy = \underline{\qquad}$$

-18π

2. $L: x^2 + y^2 = a^2 \oint \sqrt{x^2 + y^2} ds =$ ______

$$\oint_L \sqrt{x^2 + y^2} ds = \oint_L |a| ds = 2\pi a^2$$

3. Let $D: x^2 + y^2 \le 2x$, write the $\iint_D f(x, y) dx dy$ in polar coordinate

then
$$\iint_D f(x, y) dxdy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} f(r\cos\theta, r\sin\theta) rdr$$

4. If
$$\vec{a} = \{-1, 2, 2\}, \vec{b} = \{2, -1, 2\}$$
, then $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = \underline{\qquad \qquad \{12, 12, -6\}}$

5. The equation of plane through the three points $P_1(1,-2,3), P_2(4,1,-2), P_1(-2,-3,0)$ is

6. The divergence of $\vec{A} = e^{xy}\vec{i} + \cos(xy)\vec{j} + xz^2\vec{k} =$

The divergence of
$$\vec{A} = e^{xy}\vec{i} + \cos(xy)\vec{j} + xz^2\vec{k}$$
 $ye^{xy} - x\sin(xy) + 2xz$

 \equiv Finish the following questions. (7-16: $7' \times 10 = 70'$; 17-18: $6' \times 2 = 12'$)

7. Please show that $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$ is conditionally convergent.

Solu:

By the Alternating Series Test,

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$$
 converges.

Since
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 is a *p*-series with $p = \frac{1}{2}$.

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 diverges. So, it is conditionally convergent.

8. Expand the function $f(x) = \arctan \frac{1+x}{1-x}$ into power series of x. Solu:

$$f(x) = \arctan \frac{1+x}{1-x} \Rightarrow f(0) = \arctan 1 = \frac{\pi}{4}$$

$$f'(x) = \frac{1}{1+\left(\frac{1+x}{1-x}\right)^2} \cdot \frac{1 \cdot (1-x) - (1+x) \cdot (-1)}{(1-x)^2}$$

$$= \frac{1}{1+x^2} (-1 < x < 1)$$

$$\text{by } \int_0^x f'(t) dt = f(t) \Big|_0^x = f(x) - f(0) = f(x) - \frac{\pi}{4}.$$

$$\Rightarrow f(x) = \frac{\pi}{4} + \int_0^x f'(t) dt$$

$$= \frac{\pi}{4} + \int_0^x \sum_{n=0}^{\infty} (-1)^n t^{2n} dt$$

$$= \frac{\pi}{4} + \sum_{n=0}^{\infty} \int_0^x (-1)^n t^{2n} dt$$

$$= \frac{\pi}{4} + \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1} x^{2n+1}. (-1 \le x < 1)$$

9. Line integral $\int_L xy^2 dx + y\varphi(x) dy$ is independent of path, and $\varphi(x)$ is derivative, $\varphi(0) = 0$, find $\int_{(0,0)}^{(1,1)} xy^2 dx + y\varphi(x) dy$.

An:
$$P = xy^2$$
, $Q = y\varphi(x)$, $\frac{\partial P}{\partial y} = 2xy = \frac{\partial Q}{\partial x} = y\varphi'(x) \Rightarrow \varphi'(x) = 2x \Rightarrow \varphi(x) = x^2 + C$

By
$$\varphi(0) = 0$$
 obtain $C = 0$, so $\varphi(x) = x^2$

$$\int_{(0,0)}^{(1,1)} xy^2 dx + y\varphi(x) dy = \int_{(0,0)}^{(1,1)} xy^2 dx + yx^2 dy = \int_0^1 y dy = \frac{1}{2}$$

10. Find
$$\int_{\frac{1}{4}}^{\frac{1}{2}} dx \int_{\frac{1}{2}}^{\sqrt{x}} e^{\frac{x}{y}} dy + \int_{\frac{1}{2}}^{1} dx \int_{x}^{\sqrt{x}} e^{\frac{x}{y}} dy$$
.

Solu:
$$I = \iint_D e^{\frac{y}{x}} dx dy = \int_{\frac{1}{2}}^1 dy \int_{y^2}^y e^{\frac{x}{y}} dx = \frac{3}{8}e - \frac{1}{2}e^{\frac{1}{2}}$$

11. Find
$$\iiint_{\Omega} (x^2 + y^2 + z^2) dv$$
, Ω is bounded by $x^2 + y^2 + z^2 = 1$.

Solu:
$$I = \int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 r^2 \cdot r^2 \sin\varphi dr = \frac{4\pi}{5}$$

12. Find $\iiint_{\Omega} z dv$, and Ω is bounded by $x^2 + y^2 = 1$ and z = 0, z = 1.

Solu: Method A: Cylindrical,
$$I = \int_0^{2\pi} d\theta \int_0^1 r dr \int_0^1 z dz = \frac{\pi}{2}$$

Method B: Cutting plane method:
$$I = \int_0^1 \pi z dz = \frac{\pi}{2}$$

Let f(u, v) is differentiable, z = z(x, y) is determined by $(x+1)z - y^2 = x^2 f(x-z, y)$. 13. find $dz\big|_{(0,1)}$.

$$x = 0, y = 1 \Rightarrow z = 1$$

Partial derivatives of x and y on both sides of the equation

$$z + (x+1)\frac{\partial z}{\partial x} = 2xf(x-z, y) + x^2 f_1' \cdot (1 - \frac{\partial z}{\partial x})$$

$$(x+1)\frac{\partial z}{\partial y} - 2y = x^2 [f_1' \cdot (-\frac{\partial z}{\partial y}) + f_2']$$

when x = 0, y = 1, z = 1

$$\Rightarrow \frac{\partial z}{\partial x}\Big|_{(0,1)} = -1, \frac{\partial z}{\partial y}\Big|_{(0,1)} = 2$$

$$dz\Big|_{(0,1)} = -dx + 2dy$$

14. \sum is the surface $z = x^2 + y^2 (z \le 1)$ with upper side, please calculate

$$I = \iint_{\Sigma} (x-1)^3 dy dz + (y-1)^3 dz dx + (z-1) dx dy.$$

Ans:

Let \sum_{1} is the lower side of surface $x^{2} + y^{2} \le 1$, z = 1

Let the area enclosed by Σ_1 and Σ is Ω .

$$\bigoplus_{\Sigma_1 + \Sigma} (x-1)^3 dy dz + (y-1)^3 dz dx + (z-1) dx dy = - \iiint_{\Omega} [3(x-1)^2 + 3(y-1)^2 + 1] dz dx dy$$

$$z = 1, dz = 0 \Rightarrow \iint_{\Sigma_{z}} (x - 1)^{3} dydz + (y - 1)^{3} dzdx + (z - 1)dxdy = 0$$

$$\iiint\limits_{\Omega} x dx dy dz = \iiint\limits_{\Omega} y dx dy dz = 0$$

$$I = -\iiint_{\Omega} (3x^2 + 3y^2 + 7) dx dy dz = -\int_{0}^{2\pi} d\theta \int_{0}^{1} dr \int_{r^2}^{1} (3r^2 + 7) r dz = -4\pi$$

15. Find the minimum distance between the original point and the surface $z^2 = x^2y + 4$.

Solu:

$$z^2 = x^2 y + 4$$
.

$$d^{2} = x^{2} + y^{2} + z^{2} = x^{2} + y^{2} + x^{2}y + 4,$$

$$f_x = 0, f_y = 0 \Longrightarrow 2x + 2xy = 0, 2y + x^2 = 0,$$

$$\Rightarrow 2x - x^3 = 0 \Rightarrow x = 0 \text{ or } x = \pm \sqrt{2} \Rightarrow y = 0, y = -1.$$

critical points: $(0,0)(\sqrt{2},-1)(-\sqrt{2},-1)$.

$$D(x, y) = f_{xx}f_{yy} - f_{xy}^{2} = (2+2y)2 - 4x^{2}.$$

$$D(\pm\sqrt{2},-1) = -8 < 0$$
, neither $(\sqrt{2},-1)$ nor $(-\sqrt{2},-1)$ yiled extremum.

$$D(0,0) = 4 > 0, f_{xx}(0,0) = 2 > 0.$$

So,(0,0) yields the minmum distance $d^2 = 4.d_{min} = 2.$

16. Let $z = f(u, x, y), u = xe^y$, f has the second-order continuous partial derivative, find $\frac{\partial^2 z}{\partial x \partial y}$.

Ans:

$$\frac{\partial z}{\partial x} = f_1' \cdot \frac{\partial u}{\partial x} + f_2' = f_1' \cdot e^y + f_2'$$

$$\Rightarrow \frac{\partial^2 z}{\partial x \partial y} = (f_{11}'' \cdot \frac{\partial u}{\partial y} + f_{13}'')e^y + f_1' \cdot e^y + f_{21}'' \cdot \frac{\partial u}{\partial y} + f_{23}''$$

$$= f_{11}'' \cdot xe^{2y} + f_{13}'' \cdot e^y + f_1' \cdot e^y + f_{21}'' \cdot xe^y + f_{23}''$$

$$= e^y f_1' + xe^{2y} f_{11}'' + e^y f_{13}'' + xe^y f_{21}'' \cdot + f_{23}''.$$

17. Find $\oint_L \frac{(x-1)dy - ydx}{(x-1)^2 + y^2}$, L represents a simple closed curve, including point (1, 0) with

counterclockwise direction.

An: Take a circle $C:(x-1)^2+y^2=r^2$ inside of L with counterclockwise direction.

Parametric equations of
$$C$$
:
$$\begin{cases} x = 1 + r \cos \theta \\ y = r \sin \theta \end{cases}$$

$$0 \le \theta \le 2\pi$$

By Green formula

$$\oint_{L} \frac{(x-1)dy - ydx}{(x-1)^{2} + y^{2}} = \oint_{C} \frac{(x-1)dy - ydx}{(x-1)^{2} + y^{2}} = \int_{0}^{2\pi} d\theta = 2\pi$$

18. Find convergent region and sum function of power series $\sum_{n=0}^{\infty} \frac{x^{2n+2}}{(n+1)(2n+1)}$.

Ans:

$$\therefore \lim_{n \to \infty} \frac{\left| \frac{x^{2n+4}}{(n+2)(2n+3)} \right|}{\left| \frac{x^{2n+2}}{(n+1)(2n+1)} \right|} = x^2$$

 \Rightarrow when |x| < 1, absolute convergence; when |x| > 1, divergence

when
$$x = \pm 1$$
, series $\sum_{n=0}^{\infty} \frac{1}{(n+1)(2n+1)}$ is convergence.

 \Rightarrow Convergence region is [-1,1].

let
$$f(x) = \sum_{n=0}^{\infty} \frac{x^{2n+2}}{(n+1)(2n+1)}, x \in [-1,1]$$

$$f'(x) = 2\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}, f''(x) = 2\sum_{n=0}^{\infty} x^{2n} = \frac{2}{1-x^2}, x \in (-1,1),$$

$$f'(0) = 0, f(0) = 0$$

$$\Rightarrow f'(x) = \int_0^x f''(t)dt = \int_0^x \frac{2}{1-t^2}dt =,$$

$$f(x) = \int_0^x f'(t)dt = \int_0^x [\ln(1+t) - \ln(1-t)]dt$$
$$= (1+x)\ln(1+x) + (1-x)\ln(1-x), x \in (-1,1)$$

$$f(1) = \lim_{x \to 1^{-}} f(x) = 2 \ln 2, f(-1) = \lim_{x \to -1^{+}} f(x) = 2 \ln 2$$