HOJA DE EJERCICIOS 2: Lógica de predicados

EDyL 2022-2023

[Fecha de publicación: 2022-09-30]

[Fecha de entrega: 2022-10-07, 09:00]

[Resolución en clase: 2022-10-07]

NOTA: Incluye explicaciones para tus respuestas. Un ejercicio cuya respuesta es correcta, pero que no incluye explicaciones podrá ser valorado como incompleto.

EJERCICIO 1.

Considera la ontología:

Constantes: 0 (números natural)

<u>Variables</u>: m, n, l (números naturales)

Predicados

Nombre	Aridad	Descripción
D	2	D (m,n) evalúa a "Verdadero" si y solo si m
		es divisible por n.
Р	1	P(n) evalúa a "Verdadero" si y solo si n es
		primo.
L	2	L(m,n) evalúa a "Verdadero" si y solo si m
		es mayor que n.

Funciones

prod(n,m)		prod(n, m): referencia al número natural que	
		resulta de la multiplicación m*n.	
s(n)	1	s(n): referencia al sucesor del número natural n	

Utiliza el predicado de igualdad en caso de necesidad.

Escribe FBF's en lógica de predicados que formalicen de la forma lo más literal posible las frases:

I. "El producto de 1 por un número natural es el propio número".

```
\forall n \text{ Equal}(prod(s(0), n), n)
```

II. Definición del predicado D: "Un número natural es divisible por otro, cuando existe un tercer número natural, el cual, al ser multiplicado por el segundo da como resultado el primero"

```
\forall m, n [D(m,n) \Leftrightarrow \exists l Equal(m,prod(l,n))]
```

III. "Un número es primo si y solo si es mayor que 1 y es divisible únicamente por sí mismo y por la unidad".

```
\forall n [P(n) \Leftrightarrow [L(n,s(0)) \land D(n,n) \land D(n,s(0)) \\ \land (\forall m [D(n,m) \Rightarrow (Igual(m,n) \lor Igual(m,s(0))))]]
```

EJERCICIO 2.

Considera la ontología:

<u>Constantes</u>: FZK [empresa]

G (grado), M (máster) [nivel académico]

INF (informática), FIL (filosofía), CD (ciencia de datos)

[disciplina]

<u>Variables</u>: x [objetos en general]

p, q [persona]

n [nivel académico]

m [disciplina]

Predicados

Nombre	Aridad	Descripción	
С	2	C (x,p) evalúa a "Verdadero" si y solo si x	
		contrata a p.	
Р	2	P(p,x) evalúa a "Verdadero" si y solo si p	
		posee x.	

<u>Función</u>

t(n,m)	2	t(n,m): referencia al título de nivel académico n	
		en la disciplina m.	

Utiliza el predicado de igualdad solo en el caso en que sea necesario.

Escribe FBF's en lógica de predicados que formalicen de la forma más literal posible las frases:

I. "Hay personas que están en posesión del título de máster en ciencia de datos, aun siendo graduados en disciplinas distintas a la informática".

```
\exists p \ [P(p, t(M, CD)) \land \exists m \ (P(p, t(G, m)) \land \neg Equal(m, INF))]
```

II. "La empresa FZK no contrata a graduados de informática a menos que estén en posesión del título de máster en ciencia de datos".

```
\forall p \ [(C(FZK,p) \land P(p, t(G, INF))) \Rightarrow P(p, t(M, CD))]
```

III. "La empresa FZK no contrata a personas que no estén en posesión del título de máster en Ciencia de Datos o que no sean graduados en Filosofía".

```
\forall p \ [\neg (P(p,t(G, FIL)) \lor P(p,t(M, CD))) \Rightarrow \neg C(FZK,p)]
\equiv \forall p \ [C(FZK,p) \Rightarrow (P(p,t(G, FIL)) \lor P(p,t(M, CD)))]
```

EJERCICIO 3. Considera la ontología:

<u>Constantes</u>: Francia [tipo: país]

Paris [tipo: ciudad]

<u>Variables</u>: x [tipo: objetos en general]

P [tipo: país]
c [tipo: ciudad]
r [tipo: carretera]

Predicados

Nombre	Aridad	Descripción	
Р	1	P(r) evalúa a "Verdadero" si y solo si r es	
		una carretera principal.	
L	2	L(x,p) evalúa a "Verdadero" si y solo si x	
		está localizado en el país p.	
O(x,l)	2	O(x,l) evalúa a "Verdadero" si y solo si x	
		tiene su origen en l.	

Funciones

capital(p)	1	capital(p): referencia a la capital del país p.
centro(c)	1	centro(c): referencia al centro de la ciudad c.

No se puede utilizar el predicado de igualdad.

Escribe FBF's en lógica de predicados que formalicen de la forma más literal posible las frases:

a. Todas las carreteras principales de Francia tienen su origen en el centro de Paris.

```
\forall r [(P(r) \land L(r, Francia)) \Rightarrow O(r, centro(Paris))]
```

b. En todos los países algunas carreteras principales tienen su origen en el centro de su capital.

```
\forall p \ [\exists r \ [P(r) \land L(r,p) \land O(r, centro(capital(p)))]]
```

c. Ninguna de las carreteras de Francia tiene su origen en Paris a menos que sea principal.

```
\neg \exists r [L(r,Francia) \land O(r,Paris) \land \neg P(r)] \equiv \forall p[(L(r,Francia) \land O(r,Paris)) \Rightarrow P(r)]
```

EJERCICIO 4. Consideremos la ontología:

Constantes:

1,2,3: Números complejos

Q: Polinomio $(\xi-1) (\xi-2) (\xi-6)$

Variables:

x, y, z, ... Objetos matemáticos entre los que está definida una operación

producto (números, polinomios, matrices, etc.).

c,d,... Números complejos.

Predicados:

Nombre	Aridad	Descripción	
P	1	P(x) evalúa a <i>Verdadero</i> si x es un	
		polinomio, <i>Falso</i> en caso contrario.	
R	2	R(x,y) evalúa a <i>Verdadero</i> si x es la raíz	
		de y, <i>Falso</i> en caso contrario.	
F	3	F(x,y,z) evalúa a <i>Verdadero</i> si z puede	
		ser expresado como el producto de x e y,	
		Falso en caso contrario.	

Funciones:

prod	2	prod(x,y): Referencia al producto de x e y.	
f	1	f(x): Referencia al factor polinómico $(\xi-x)$.	

Solo se pueden utilizar estos predicados y funciones.

Escribe FBF's en lógica de predicados que formalicen lo más literalmente posible las siguientes aseveraciones. No se puede utilizar el predicado de igualdad.

I. El polinomio Q se puede expresar como el producto del polinomio $(\xi-1)$ $(\xi-2)$ y el factor $(\xi-6)$.

```
Se formaliza con 2 FBF's o la conjunción de esas 2 FBF's en una única FBF. Se puede demostrar que estas dos formalizaciones son equivalentes utilizando las reglas de equivalencia introducción / eliminación del conector and (\wedge)

P(product(f(1),f(2))) ["(\xi-1)(\xi-2) es un polinomio"] F(product(f(1),f(2)),f(product(2,3)),Q) [Expresión para Q]
```

II. Si c es una raíz de un polinomio, el polinomio se puede expresar como el producto de un polinomio y el factor $(\xi-c)$.

```
\forall \mathbf{x} \ [P(\mathbf{x}) \Rightarrow \forall \mathbf{c} \ [R(\mathbf{c}, \mathbf{x}) \Leftrightarrow \exists \mathbf{y} \ (P(\mathbf{y}) \land F(\mathbf{y}, \mathbf{f}(\mathbf{c}), \mathbf{x}))]]
```

III. El producto de dos polinomios es conmutativo.

```
\forall x,y[(P(x)\land P(y)) \Rightarrow \exists z \ (F(x,y,z) \land F(y,x,z))]
```

EJERCICIO 5. Dada la siguiente ontología

	Símbolo	Interpretación / dominio
Constantes	O ₂	Oxígeno
	С	Carbono
	He	Helio
Variables	x, y, z,	Objetos
	b, b1, b2,	Cuerpos celestes
Predicados	L(x)	x es una forma de vida.
	B(x, y)	x está basado en y.
	P(b)	b es un planeta.
	S(b)	b es una estrella.
	F(x, y)	x está presente en y.
	E(x, y)	x puede existir en y.
Funciones	atm(b)	Atmósfera de b.

Formula las siguientes aserciones como FBFs en lógica de predicados.

Utiliza el predicado de igualdad en caso de que sea necesario.

a) Hay formas de vida que no están basadas en el carbono.

```
\exists x [L(x) \land \neg B(x,C)]
```

b) En todos los planetas es posible la vida basada en el carbono.

$$\forall b \ [P(b) \Rightarrow \exists x \ [L(x) \land B(x,C) \land E(x,b)]]$$

c) La presencia de oxígeno en la atmósfera de un planeta es compatible con la existencia de vida no basada en el carbono en dicho planeta.

$$\forall b \ [(P(b) \land F(O_2, atm(b))) \Rightarrow \exists x \ (L(x) \land \neg B(x,C) \land E(x,b))]$$

d) Ninguna criatura viva puede sobrevivir en una estrella cuya atmósfera contenga helio, a menos que dicha criatura no esté basada en el carbono.

EXERCISE 6. Consideremos la siguiente ontología:

Variables: x, y, z, ... (personas)

Predicados: M(x,y): True si x es madre de y, False en caso contrario.

C(x,y): True si x es hijo de y, False en caso contrario.

S(x,y): True si x es hermano de y, False en caso

contrario.

Funciones: ma(x): Referencia a la madre de x.

IMPORTANTE: Utiliza el predicado de igualdad únicamente si es necesario. No se puede utilizar constantes, predicados o funciones adicionales.

Completa la información en la siguiente base de conocimiento:

FBF en lógica de predicados	Significado
∀x M(ma(x),x)	La persona a la que hace referencia ma(x) es madre de x (una de la posibles).
$\forall x [M(x,y) \Rightarrow C(y,x)]$	Si una persona es madre de otra, la segunda es hija de la primera.
$\forall x,y \ [M(x,y) \Rightarrow M(ma(x),ma(y))]$	Si una persona es madre de otra, la madre de la primera es madre de la madre de la segunda.
$\forall x \exists y [M(y,x) \land \forall z [M(z,x)] \Rightarrow (z=y)]$	Todo el mundo tiene una y solo una madre.
$[\forall x,y \ [S(x,y) \\ \Leftrightarrow [\neg(x=y) \land \exists z \ (M(z,x) \land M(z,y))]]$	Dos personas son hermanos si tienen la misma madre.