Optimization 1 — Tutorial 3

November 5, 2020

Definition (Coercive Function)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is called coercive if

$$\lim_{\|\mathbf{x}\| \to \infty} f(\mathbf{x}) = \infty.$$

Definition (Diagonally Dominant Matrix)

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then \mathbf{A} is called [stirctly] diagonally dominant if for any $i = 1, 2, \dots, n$ we have

$$\left|\mathbf{A}_{ii}
ight| \ \ \mathop{\geq}\limits_{\left[>
ight]} \ \sum_{\left\{j\colon j
eq i
ight\}} \left|\mathbf{A}_{ij}
ight|.$$

Proposition (LS is quadratic)

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^n$. Then the LS problem $\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ has a unique solution if \mathbf{A} is of full column rank.

Problem 1

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $\mathbf{b} \in \mathbb{R}^n$. Prove that the function $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + 2 \mathbf{b}^T \mathbf{x} + c$ is coercive if and only if $\mathbf{A} \succ 0$.

Problem 2

For each of the following functions, determine whether it is coercive or not.

(a)
$$f(x,y) = 4x^2 + 2xy + 2y^2$$
.

(b)
$$f(x,y) = 2x^2 - 8xy + y^2$$
.

(c)
$$f(x,y,z) = x^3 + y^3 + z^3$$
.

(d)
$$f(x,y) = x^4 + y^4$$
.

(e)
$$f(x,y) = (x-2y)^4 + 2xy$$
.

Problem 3

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Suppose that \mathbf{A} is [strictly] diagonally dominant with [positive] non-negative diagonal elements. Then \mathbf{A} is [PD] PSD.