In the Claims:

1. (Previously Presented) A method of determining capital investment in a wireless network, the method comprising:

determining, using a computer system, a subscriber profit proxy for a plurality of subscribers in the wireless network, the wireless network comprising multiple cell sites, each cell site having a coverage area divided into sectors, each sector having at least one cell site antenna serving that sector, the wireless network thereby comprising multiple sectors;

determining, using the computer system, a number of minutes of use over a period of time for one or more of the subscribers;

determining, using the computer system, a service quality metric per sector for a first sector in the wireless network;

determining, using the computer system, the service quality metric per sector for one or more other sectors in the wireless network;

determining, using the computer system, an investment return per sector for the first sector and each of the one or more other sectors in the wireless network, wherein the investment return is based upon the subscriber profit proxy for the plurality of subscribers, the number of minutes of use over the period of time for the one or more of the subscribers, and the service quality metric per sector in the wireless network; and

selecting one of the wireless network sectors for capital investment, the selecting based at least in part on the investment return per sector.

CER-001 Page 2 of 15

- 2. (Original) The method of claim 1, wherein the subscriber profit proxy is based at least in part on revenue collected from the subscriber, an expected number of months under a contract, an acquisition cost, and a service delivery cost.
- 3. (Previously Presented) The method of claim 2, wherein the subscriber profit proxy (SPP) value is determined at least in part by the equation:

$$SPP_i = V_i * M_i - A_i - S_i$$

wherein

V_i is the revenue per month for subscriber I;

M_i is the expected months under contract for subscriber I;

A_i is the acquisition cost for subscriber I; and

S_i is the service delivery cost for subscriber I.

- 4. (Previously Presented) The method of claim 1, wherein the minutes of use over the period of time is based on call detail records collected during peak usage periods.
- 5. (Previously Presented) The method of claim 1, wherein the service quality metric per sector comprises a dropped call rate per sector.
- 6. (Previously Presented) The method of claim 5, wherein the dropped call rate per sector is determined from call detail records.

CER-001 Page 3 of 15

7. (Currently Amended) The method of claim [[1,]] <u>5.</u> wherein the determining the investment return comprises:

determining a profit per sector;

determining a dropped-call rate per sector;

determining an investment needed per sector to reduce dropped calls in each sector; and determining the investment return per sector based at least in part on the profit per sector, the dropped call dropped call rate per sector, and the investment needed per sector to reduce dropped calls in each sector.

8. (Previously Presented) The method of claim 7, wherein the determining the profit per sector is performed in accordance with the equation:

$$P_{k} = \sum_{i} SPP_{i} * \frac{MOU_{ik}}{\sum_{j} MOU_{ij}}$$

wherein

k represents a sector;

I represents a subscriber;

 P_k is the profit for sector k;

SPP_i is the subscriber profit proxy value for subscriber I;

MOU_{ik} is the minutes of use for subscriber I in sector k; and

 $\sum_{j}\!MOU_{ij}$ is a sum of the minutes of use for subscriber I in all sectors.

CER-001 Page 4 of 15

9. (Currently Amended) The method of claim 7, wherein the determining the investment return per sector (R_k) is performed in accordance with the equation:

$$R_k = P_k + D_k - I_k$$

wherein

k represents a sector;

 P_k is the profit for sector k;

 D_k is the drop-call rate for sector k; and

 I_k is investment needed to investment needed to reduce dropped calls in sector k.

10. (Previously Presented) The method of claim 1, wherein the selecting one of the wireless network sectors for capital investment is performed at least in part by prioritizing the sectors based upon the investment return determined for each respective sector.

11-21. (Canceled)

22. (Previously Presented) A computer program product for analyzing a wireless network, the computer program product having a non-transitory computer-readable medium with a computer program embodied thereon, the computer program product comprising:

computer program code for determining a subscriber profit proxy for a plurality of subscribers in the wireless network, the wireless network comprising multiple cell sites, each cell site having a coverage area divided into sectors, each sector having at least one cell site antenna

CER-001 Page 5 of 15

serving that sector, the wireless network thereby comprising multiple sectors;

computer program code for determining a number of minutes of use over a period of time for one or more of the subscribers;

computer program code for determining a service quality metric per sector for a first sector in the wireless network;

computer program code for determining a service quality metric per sector for one or more other sectors in the wireless network;

computer program code for determining an investment return per sector for the first sector and each of the one or more other sectors in the wireless network, wherein the investment return is based upon the subscriber profit proxy for the plurality of subscribers, the number of minutes of use over the period of time for the one or more of the subscribers, and the service quality metric per sector in the wireless network; and

computer program code for identifying one of the wireless network sectors for capital investment, the identifying based at least in part on the investment return per sector.

- 23. (Original) The computer program product of claim 22, wherein the computer program code for determining a subscriber profit proxy includes computer program code for including revenue collected from the subscriber, an expected number of months under a contract, an acquisition cost, and a service delivery cost.
- 24. (Previously Presented) The computer program product of claim 22, wherein the computer program code for determining a subscriber profit proxy (SPP) value includes computer program code for performing the equation:

CER-001 Page 6 of 15

$$SPP_i = V_i * M_i - A_i - S_i$$

wherein

V_i is the revenue per month for subscriber I;

M_i is the expected months under contract for subscriber I;

A_i is the acquisition cost for subscriber I; and

S_i is the service delivery cost for subscriber I.

- 25. (Previously Presented) The computer program product of claim 22, wherein the minutes of use over the period of time is based on call detail records collected during peak usage periods.
- 26. (Previously Presented) The computer program product of claim 22, wherein the computer program code for determining a service quality metric per sector includes computer program code for determining a dropped call rate per sector.
- 27. (Previously Presented) The computer program product of claim 26, wherein the dropped call rate per sector is determined from call detail records.
- 28. (Currently Amended) The computer program product of claim [[22,]] <u>26</u>, wherein the computer program code for determining the investment return comprises:

computer program code for determining a profit per sector;

computer program code for determining a dropped-call rate per sector;

computer program code for determining an investment needed per sector to reduce dropped calls in each sector; and

CER-001 Page 7 of 15

computer program code for determining the investment return per sector based at least in part on the profit per sector, the dropped call dropped call rate per sector, and the investment needed per sector to reduce dropped calls in each sector.

29. (Previously Presented) The computer program product of claim 28, wherein the computer program code for determining the profit per sector includes computer program code to perform the equation:

$$P_{k} = \sum_{i} SPP_{i} * \frac{MOU_{ik}}{\sum_{j} MOU_{ij}}$$

wherein

k represents a sector;

i represents a subscriber;

 P_k is the profit for sector k;

SPP_i is the subscriber profit proxy value for subscriber i;

MOU_{ik} is the minutes of use for subscriber i in sector k; and

 $\sum_{j}\!MOU_{ij}$ is a sum of the minutes of use for subscriber i in all sectors.

30. (Previously Presented) The computer program product of claim 29, wherein the computer program code for determining the investment return per sector (R_k) includes computer program code for performing the equation:

$$R_k = P_k + D_k - I_k$$

CER-001 Page 8 of 15

wherein

k represents a sector;

 P_k is the profit for sector k;

 D_k is the drop-call rate for sector k; and

 I_k is investment needed to investment needed to reduce dropped calls in sector k.

31. (Previously Presented) The computer program product of claim 22, wherein the computer program code for identifying one of the wireless network sectors for capital investment includes computer program code for prioritizing the sectors based upon the investment return determined for each respective sector.

32-42. (Canceled)

43. (Previously Presented) The method of claim 1, further comprising:

deploying additional equipment to a base transceiver station (BTS) serving the selected one of the sectors, based at least in part on the selecting one of the wireless network sectors for capital investment.

44. (Previously Presented) The method of claim 43, wherein the additional equipment is selected from the group consisting of: a radio tower, an antenna, a radio, a cable, and combinations thereof.

45-52. (Canceled)

CER-001 Page 9 of 15

- 53. (Previously Presented) The method of claim 1, further comprising selecting wireless network sectors for capital investment.
- 54. (Previously Presented) The method of claim 1, wherein the one of the wireless network sectors is served by a first base transceiver station (BTS) in the wireless network, and wherein the selecting one of the wireless network sectors for capital investment further comprises selecting all sectors served by the first BTS for capital investment.
- 55. (Previously Presented) The computer program product of claim 22, further comprising computer program code for identifying additional equipment to deploy to a first base transceiver station (BTS) serving the one of the wireless network sectors.
- 56. (Previously Presented) The computer program product of claim 55, wherein the additional equipment is selected from the group consisting of: a radio tower, an antenna, a radio, a cable, and combinations thereof.
- 57. (Previously Presented) The computer program product of claim 22, further comprising computer program code for identifying additional wireless network sectors for capital investment.
- 58. (Previously Presented) The computer program product of claim 22, wherein the one of the wireless network sectors is served by a first base transceiver station (BTS) in the wireless network, and wherein the computer program code for identifying one of the wireless network sectors for capital investment further comprises computer program code for identifying all sectors served by the first BTS for capital investment.

CER-001 Page 10 of 15