Epigenetics of cardiometabolic diseases among transitioning African populations

Felix P Chilunga, MD, PhD

Assistant Professor (Global Health)

Amsterdam UMC (The Netherlands)

International migration among Africans

Type 2 diabetes among migrants in western Europe

Hypertension among migrants in western Europe

Cardiovascular disease mortality among migrants in western Europe

Type 2 diabetes compared to home populations

Hypertension compared to home populations

Attributed to changes in lifestyle factors

Tobacco smoking

Unhealthy diet

Physical inactivity

Heavy alcohol consumption

Cardiometabolic diseases still prevalent even after adjusting for these lifestyle factors

CVD attributable to lifestyle factors

Missing explanations

Epigenetics

- Heritable changes in gene expression without changes to the underlying DNA sequence
 - DNA Methylation
 - Histone modifications
 - Noncoding RNAs
- Influenced by both the underlying genome and the environmental
 - Plausible in the context of migration

From this environment

To the Europe (a huge environmental change)

Research aim

 assessed for DNAm differences between Ghanaian migrants living in European compared to those who stayed behind in Ghana

The experiment

- DNA extracted from blood samples and processed
- Placed on a chip to measure methylation at 450,000 genome sites

Removed external sources of variation to make sure result was accurate

- Removed outliers
- Checked that the sex profile by DNA methylation matches the reported sex by participant
- Controlled for bias that can result from measurements e.g., type of chip, place on the chip
- Removed DNA methylation sites on the X and Y chromosome
- Removed DNA methylation sites directly under a genetic variation
- Controlled for amount and type of cells in each blood sample

Statistical analyses

 Compared mean methylation in migrant's vs non-migrants at the 429,000 genome sites that were left after controlling for external variation

Results and interpretation

Participant inclusion and characteristics

	All participants (n = 712)	Migrants [†] (n = 365)	Non-migrants [‡] (n = 347)	p-value
Demographics, n (%)				
Mean age, SD	51.09 (9.86)	49.89 (9.74)	52.36 (9.84)	< 0.001
Sex (Female)	409 (57.36)	166 (45.42)	243 (70.00)	< 0.001
Location				
Rural Ghana	104 (14.61)		104 (29.97)	
Urban Ghana	243 (34.13) 243 (70.03)		243 (70.03)	
Ghanaians in Europe	365 (51.26)	365 (100)	**************************************	

Differentially methylated positions

No	CpG ID	Chromosome	Position [†]	Gene name†	Feature [†]	Relation to Island [†]	Delta β value	p-value	FDR
1	cg16411857	16	57023191	NLRC5	TSS1500 [‡]	Island	0.021	4.34×10^{-10}	0.000
2	cg15706807	8	58106598	IMPAD1	TSS200	Island	-0.045	9.46×10^{-10}	0.000
3	cg07839457	16	57023022	NLRC5	TSS1500	N_Shore	0.040	1.29 × 10 ⁻⁸	0.002
4	cg07295964	5	175223982	CPLX2	5'UTR	Island	0.009	7.74 × 10 ⁻⁸	0.008
5	cg03024619	3	71803308	GPR27	1stExon	Island	0.008	3.60×10^{-7}	0.031
6	cg13273540	3	176850227	TBL1XR1	5'UTR§	OpenSea	0.016	4.90×10^{-7}	0.031
7	cg16861076	8	11421594	BLK	Body	Island	-0.029	5.13 × 10 ⁻⁷	0.031
8	cg01787285	1	2162682	SKI	Body	S_Shore	0.018	6.43×10^{-7}	0.033
9	cg15723874	1	156457945	MEF2D	5'UTR	OpenSea	0.013	6.82 × 10 ⁻⁷	0.033
10	cg01088410	5	170739179	TLX3	Body	Island	0.006	8.35 × 10 ⁻⁷	0.036
11	cg10333808	12	22487459	ST8SIA1	5'UTR	Island	0.005	1.26×10^{-6}	0.045
12	cg22895601	14	21131621	ANG	TSS1500	OpenSea	0.002	1.31 × 10 ⁻⁶	0.045
13	cg13985485	1	239550283	CHRM3	Body	Island	-0.025	1.35 × 10 ⁻⁶	0.045

[†]Annotation were performed via IlluminaHumanMethylation450kanno.ilmn12.hg19. Homo sapiens (human) genome assembly GRCh37 (hg19). Hansen KD (2016) IlluminaHuman-Methylation450kanno.ilmn12.hg19: Annotation for Illumina's 450k methylation arrays. R package version 0.6.0.

FDR: False discovery rate; TSS: Transcription start site.

[‡]TSS1500 (the region from TSS to - 1500 nucleotides upstream of TSS).

^{§5&#}x27;UTR (the region of an mRNA that is directly upstream from the initiation codon).

Diffrentially methylated positions

Figure 1. Manhattan plot of differentially methylated positions associated with migration from low- and middle-income countries to high-income countries. All 429,459 CpG sites are presented according to the p-value in the epigenome-wide association study, as well as by chromosomal annotation. Red line is the demarcation line for statistically significant differentially methylated positions at $p < 1.1 \times 10^{-7}$.

Effect sizes

Volcano plot of DMPs in migrants compared to non-migrants

SNP influences

No	CpG ID	Chromosome	Position ¹	Gene Annotation	Presence of underlying genomic variation?
1	cg16411857	16	57023191	NLRC5	Yes
2	cg15706807	8	58106598	IMPAD1	Yes
3	cg07839457	16	57023022	NLRC5	Yes
4	cg07295964	5	175223982	CPLX2	No
5	cg03024619	3	71803308	EIF4E3	No
6	cg13273540	3	176850227	TBL1XR1	Yes
7	cg16861076	8	11421594	BLK	Yes
8	cg01787285	1	2162682	SKI	Yes
9	cg15723874	1	156457945	MEF2D	No
10	cg01088410	5	170739179	TLX3	No
11	cg10333808	12	22487459	ST8SIA1	No
12	cg22895601	14	21131621	ANG	No
13	cg13985485	1	239550283	CHRM3	No

Biological assessment

CpG ID	Gene Annotation	Gene function	Associated traits GWAS catalog	Associated traits EWAS catalog
cg07295964	CPLX2	Regulates neurotransmitter release at synapses	Vascular endothelial function	вмі
cg03024619	EIF4E3	Plays a role in translation initiation	Type 2 diabetes, HDL cholesterol	Type 2 diabetes
cg15723874	MEF2D	Controls muscle and nervous system development, synaptic plasticity, and memory.	Diastolic blood pressure	Type 2 diabetes
cg01088410	TLX3	Aids in the development of T cells in the immune system.	Body mass index, HDL cholesterol	HDL cholesterol
cg10333808	ST8SIA1	Adds sialic acid residues to glycoproteins and glycolipids	Coronary artery calcification	Type 2 diabetes, HDL cholesterol
cg22895601	ANG	Promotes the formation of new blood vessels (angiogenesis)	Blood vessel formation and endothelium repair	Body mass index
cg13985485	CHRM3	Mediates effects of acetylcholine in the central nervous system	Hypertension	Type 2 diabetes

Duration of stay in urban Area among migrants

NLCR5 also an interesting gene

Function: transcriptional regulator of MHC class I antigen presentation in the immune response

Associated traits GWAS catalog: All lipids, metabolic syndrome, coronary artery disease

Associated traits EWAS catalog: All cholesterols, type 2 diabetes

Differentially methylated region 1

Differentially methylated region 2

Differentially methylated region 3

Biological assessment

GENE NAME	GENE FUNCTION	ASSOCIATED TRAITS IN GWAS CATALOG	ASSOCIATED TRAITS IN EWAS CATALOG
HOXD1	embryonic development, particularly in the patterning and differentiation of the spinal cord and vertebral column	Systolic blood pressure, diastolic blood pressure, stroke, type 2 diabetes	none
VIPR2	encodes a receptor for vasoactive intestinal peptide (VIP), playing a role in various physiological processes including neurotransmission, immune response modulation, and smooth muscle relaxation.	Diastolic blood pressure, ischemic stroke	type 2 diabetes
TRIOBP	associated with the development and maintenance of sensory hair cells in the inner ear, contributing to auditory function and balance	Type 2 diabetes, blood pressure, BMI, cholesterol	type 2 diabetes

Summary

We performed the first EWAS on migration and in a homogenous group of Ghanaians

We found seven DMPs and three DMRs associated with migration

Two CpG sites in NLRC5 are differentially methylated with duration of stay in Europe

All CpG sites/genes have been related to cardiometabolic diseases in previous studies

DNAm might play a role in the rising burden of cardiometabolic diseases among migrants

Clinical and public health implications

- Still in early phase
 - Points to an opportunity to possibly develop novel biomarkers of cardiometabolic diseases in migrants
 - DNA methylation changes are reversible, could also provide opportunity to modify these changes or monitor intervention progress over time

Future perspectives

- Longitudinal studies to validate the causal contribution of the identified DMPs and DMR
 - Currently working on it
- Further assessment as novel biomarkers of cardiometabolic diseases in migrants
 - Replication in other populations

Contributors and more reading

Research Article

For reprint orders, please contact: reprints@futuremedicine.com

DNA methylation as the link between migration and the major noncommunicable diseases: the RODAM study

¹Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands

²Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands

³Center for Research on Genomics & Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20894, USA

⁴Barcelona Institute for Global Health (ISGlobal, University of Barcelona), 08003 Barcelona, Spain

⁵Department of Global Public Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden

⁶Department of Endocrinology, Diabetes & Metabolism, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany

⁷Department of Non-communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, 1E 7HT, UK

⁸Department of Medicine, MKPGMS-Uganda Martyrs University, 8H33+5M Kampala, Uganda

⁹School of Public Health, Kwame Nkrumah University of Science & Technology, MCFH+R9 Kumasi, Ghana

¹⁰ Julius Global Health, Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands

Funding

European Research Council

Thank you