Differentially-private Sublinear-Time Clustering

Jeremiah Blocki, Elena Grigorescu, Tamalika Mukherjee*

Department of Computer Science

Department of Computer Science
Purdue University

DP Clustering Motivation

Cat Lovers Society wants to open some Cat Café centers close to its members.

K-median clustering. Input is set of member locations D, Output is cat cafes $c_1, c_2, ..., c_k$ such that $\sum_{x \in D} \min_i d(x, c_i)$

<u>DP Motivation</u>. Alice is a closet cat lover. Her partner Eve is a cat hater. Alice being a member of Cat Lovers Society is *sensitive information*. <u>DP Clustering</u>

Related Work

Framework for Sublinear-time Clustering

[MOP2001; CS2004] showed that for a small sample size.

Average cost of clustering on the sample S ≈ Average cost of clustering on the entire input set D

Framework for Sublinear-time <u>DP</u> Clustering

Challenges.

- (1) Need to sample without replacement to preserve DP.
- (2) DP Clustering algorithms are (α, γ) -approximate where $\gamma \neq 0$.

Sublinear-time DP Clustering Results

Assuming a DP (α, γ) -factor approx. k-median (or k-means) algorithm that runs in time T(n) we can draw a sample S of size $s = poly(\alpha, k, ln n)$ and obtain a k-median (or k-means) clustering \hat{c}_S in time T(s) such that with high probability

$$avg - cost(\hat{c}_S) \leq \alpha \cdot avg - cost(c_D) + \gamma + \epsilon$$

Where c_D is the optimum k-median (or k-means) clustering of input set D.

Group Privacy

(Naïve bound) An $(\varepsilon, 0)$ -DP mechanism guarantees $(g\varepsilon, 0)$ -group DP for group of size g elements.

Stronger Group Privacy for Sampling Algorithms

An algorithm that runs an $(\varepsilon, 0)$ -DP mechanism on a subsample (each item sampled w.p. ξ) is $(T\varepsilon, \delta_{T,\xi,g})$ -group DP for groups of size g.

where $T \in [0, g]$ is a threshold, and $\delta_{T,\xi,g}$:= $\Pr[(\#samples\ from\ the\ group\) > T\].$

 $\delta_{T,\xi,g}$ is often negligible even for $T\ll g$. The guarantee of $(T\varepsilon,\delta_{T,\xi,g})$ -group DP is then much stronger than the naive bound of $(g\varepsilon,0)$ -group DP .

References

- L. Maria-Florina Balcan, Travis Dick, Yingyu Liang, Wenlong Mou, and Hongyang Zhang. Differentially private clusteringin high-dimensional Euclidean spaces. ICML, 2017
- 2. Artur Czumaj and Christian Sohler. Sublinear-time approximation algorithms for clustering via random sampling. ICALP, 2004.
- 3. Badih Ghazi, R. Kumar, and Pasin Manurangsi. Differentially private clustering: Tight approximation ratios. NeurIPS, 2020.
- 4. Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar. Differentially private combinatorial optimization. SODA 2010.
- 5. Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility location problems. STOC, 2002.
- 6. Oded Kariv and S Louis Hakimi. An algorithmic approach to network location problems. ii: The p-medians. SIAM Journal on Applied Mathematics, 1979.
- 7. Haim Kaplan and Uri Stemmer. Differentially private k-means with constant multiplicative error. NeurIPS, 2018.
- . Nina Mishra, Dan Oblinger, and Leonard Pitt. Sublinear time approximate clustering. SODA, 2001.
- 9. Kobbi Nissim and Uri Stemmer. Clustering algorithms for the centralized and local models. ALT, 2018.
- 10. Dan Feldman, Amos Fiat, Haim Kaplan, and Kobbi Nissim. Private coresets. STOC, 2009.
- 11. Dan Feldman, Chongyuan Xiang, Ruihao Zhu, and Daniela Rus. Coresets for differentially private k-means clustering and applications to privacy in mobile sensor networks. IPSN, 2017
- 12. Uri Stemmer. Locally private k-means clustering. SODA, 2020