Some Cool Sounding Buzzwords

Less Buzzy and Somewhat More Explanaotry Subtitle

Eric Qu ericqu@berkeley.edu

Department of Electrical Engineering and Computer Sciences
Berkeley Artificial Intelligence Research Lab
University of California, Berkeley

November 6, 2023

The main goals for this slide:

- ► This is just to show you how this *template* works
- ► There are two 'emphasize' functions used to highlight & italicize texts
 - ▶ '\empy' does *this* and '\empr' does *this*.
- ► The colors in this template is taken from the UC Berkeley brand guide: https://brand.berkeley.edu/colors/

Example

A (hopefully) useful function in this LATEX template is:

 $\verb|\examplebox{ExampleTitle}{ExampleContents}|$

which does this:

Example of the Command \setminus examplebox

This is what it does. Pretty self-explanatory, isn't it? Given the color them, I recommend using \empr inside of examplebox. The \empy command does not look that good.

There are color boxes for Definition, Theorem, and Lemma:

Definition 1: Test		
Theorem 2: Test		
Lemma 3: Test		
_		

Proof.

You can refer to them by Def. 1, Thm. 2, Lem. 3.

Test some equations:

$$\int_{-\infty}^{\infty} \exp\left(ax^4 + bx^3 + cx^2 + dx + f\right) dx \ = e^f \sum_{n,m,p=0}^{\infty} \frac{b^{4n}}{(4n)!} \frac{c^{2m}}{(2m)!} \frac{d^{4p}}{(4p)!} \frac{\Gamma\left(3n+m+p+rac{1}{4}
ight)}{a^{3n+m+p+rac{1}{4}}}$$

$$p(R,\phi) \sim \int_{-\infty}^{\infty} rac{ ilde{W}_n(\gamma) \exp\left[\imath R/a\left(\sqrt{k^2 a^2 - \gamma^2}\cos\phi
ight)
ight]}{\left(k^2 a^2 - \gamma^2
ight)^{3/4} H_n^{\prime(1)}\left(\sqrt{k^2 a^2 - \gamma^2}
ight)} d\gamma$$

Code

Citation

Test Citation: (Qu et al., 2023), Qu et al. (2023)

References

Qu, E., Luo, X., and Li, D. (2023). Data continuity matters: Improving sequence modeling with lipschitz regularizer. In *International Conference on Learning Representations*.