NMC Problem Set #57

ONESHOT MATH GROUP

Oct. 22, 2023

Welcome!

Problem set delivered to you by the great Niko (in exchange for pancakes). Harder problems are marked with chilies (), in case you want to challenge yourself.

Have fun! Note: New variants on these problems may be released throughout the week. Remember to check back once in a while!

§1 Algebra

A1. Tron!

Let n be a positive integer, and let

$$f_n(z) = n + (n-1)z + (n-2)z^2 + \dots + z^{n-1}.$$

Prove that f_n has no roots in the closed unit disc $\{z \in \mathbb{C} \mid |z| \leq 1\}$.

A2. (\mathcal{S}) One or Six

Let p be a prime number. Prove that the determinant of the matrix

$$\begin{pmatrix} x & y & z \\ x^p & y^p & z^p \\ x^{p^2} & y^{p^2} & z^{p^2} \end{pmatrix}$$

is congruent modulo p to a product of polynomials in the form ax + by + cz, where a, b, c are integers.

A3. (\mathcal{S}) Gamble

For each $\alpha \in \mathbb{R}$, define $f_{\alpha}(x) = \lfloor \alpha x \rfloor$. Let $n \in \mathbb{N}$; show that there exists a real α such that for $1 \leq \ell \leq n$:

$$f_{\alpha}^{\ell}(n^2) = n^2 - \ell = f_{\alpha\ell}(n^2).$$

Here, $f_{\alpha}^{\ell} = (f_{\alpha} \circ f_{\alpha} \circ \cdots \circ f_{\alpha})(x)$ where the composition is carried out ℓ times.

§2 Combinatorics

C1. (🌽) Halfway Home

Let f_1, f_2, \ldots, f_{10} be bijections $\mathbb{Z} \to \mathbb{Z}$ such that for each integer n, there is some composition $f_{\ell_1} \circ f_{\ell_2} \circ \cdots \circ f_{\ell_m}$ (allowing repetition) mapping 0 to n. Consider the set of 1024 functions,

$$\mathcal{F} = \{ f_1^{\varepsilon_1} \circ f_2^{\varepsilon_2} \circ \dots \circ f_{10}^{\varepsilon_{10}} \mid e_i = 0 \text{ or } 1 \text{ for } 1 \le i \le 10 \}.$$

Show that if A is a finite set of integers then at most 512 of the functions in \mathcal{F} map A into itself.

C2. Homework...?

For positive integers m and n, let f(m, n) denote the number of n-tuples (x_1, x_2, \ldots, x_n) of integers such that $|x_1| + |x_2| + \cdots + |x_n| \le m$. Show that f(m, n) = f(n, m).

§3 Geometry

G1. Rare Sighting

Given A, B, C non-collinear points in the integer lattice plane such that AB, BC, CA are of integer length, what's the smallest possible value of AB?

G2. Hit or Miss

Let \mathfrak{F} be a finite collection of open discs in \mathbb{R}^2 whose union contains a set $E \subset \mathbb{R}^2$. Show that there is a pairwise disjoint subcollection D_1, D_2, \ldots, D_n in \mathfrak{F} such that

$$\bigcup_{j=1}^{n} 3D_j \supset E.$$

Here, if D is a disc of radius r and center P, then 3D is a disc of radius 3r and center P.

¹note that I use \subset and \subsetneq , sorry- habits

§4 Number Theory

N1. (🌽) "Square Plus One"

Let p be an odd prime and let \mathbb{Z}_p denote the field of integers modulo p. How many elements are in the set

$$\{x^2 \mid x \in \mathbb{Z}_p\} \cap \{y^2 + 1 \mid y \in \mathbb{Z}_p\}?$$