The Proof of Disjoint Path Matroid

Hongjie Fang

CS2018 @ SJTU

March 26, 2020

Disjoint Path Matroid

The definition of the Disjoint Path Matroid is as follows.

Definition 1 (Disjoint Path Matroid)

Let G=(V,E) be an arbitrary directed graph, and let s be a fixed vertex of G. A subset $I\subseteq V$ is independent if and only if there are edge-disjoint paths from s to each vertex in I. Let ${\bf C}$ be the collection of independent subsets of V, then $M=(V,{\bf C})$ is a Disjoint Path Matroid.

And we want to prove that M is indeed a matroid.

Hereditary

Lemma 1 (Hereditary)

The collection C is hereditary.

Proof.

 $\forall B \in \mathbf{C}$, B is independent, that is, there are edge-disjoint paths from s to each vertex in B. $\forall A \subseteq B$, then there are edge-disjoint paths from s to each vertex in A, since the vertex in A must be in B. Hence, $A \in \mathbf{C}$. Therefore, the collection \mathbf{C} is hereditary. \square

Overlapped Path

Assume that

- All lemmas and definitions are under the condition of a given graph G=(V,E);
- A path P consists of the edges in path, so P is a subset of E;
- dst(P) stands for the destination of the path P.

Before we prove the exchange property of M, I would like to propose the following useful definitions and lemmas.

Definition 2 (Overlapped Path)

Two paths P_1, P_2 is overlapped if and only if there exists an edge $e \in E$ satisfying $e \in P_1$ and $e \in P_2$ (i.e., $P_1 \cap P_2 \neq \varnothing$).

Construction Lemma

Lemma 2 (Construction Lemma)

Suppose $A \in \mathbf{C}, B \in \mathbf{C}$, and m = |A| < |B| = n. According to the definition of \mathbf{C} , there exist m non-overlapped paths with the destinations of every vertex in A, say $\mathbf{P} = \{P_1, P_2, ..., P_m\}$. Similarly, there also exist n non-overlapped paths with the destinations of every vertex in B, say $\mathbf{Q} = \{Q_1, Q_2, ..., Q_n\}$. Then we are able to construct a non-overlapped path set $\mathbf{R} = \{R_1, R_2, ..., R_n\}$ satisfying

$$A \subseteq \{dst(R_i) \mid i = 1, 2, ..., n\}$$

Proof of Construction Lemma

- Initially, we set $\mathbf{R}_0 = \mathbf{Q}$. Then we prove that after c steps $(c \in \mathbb{R})$, \mathbf{R}_c meets the requirement $A \subseteq \{dst(R) \mid R \in \mathbf{R}_c\}$.
- In every step, we will maintain the property that each path in \mathbf{R}_i is not overlapped with other paths in \mathbf{R}_i .
- First, we give the following process of every step, and try to prove that if the process ends, then it will give the correct answer to the problem.
- In i-th step, we will check that whether \mathbf{R}_i meets the requirement $A\subseteq \{dst(R)\mid R\in \mathbf{R}_i\}$ first.
- If the answer is true, then let c=i, we prove that \mathbf{R}_c meets the requirement above.
- If the answer is false, then there exists $P \in \mathbf{P}$ satisfying $dst(P) \notin \{dst(R) \mid R \in \mathbf{R}_i\}$. We will discuss this case in next slide.

Proof of Construction Lemma (Cont.)

- ullet We divided it into two cases, according to the situation of P.
 - Case 1 (P is not overlapped with any paths in \mathbf{R}_i): Randomly choose a path in \mathbf{R}_i called R', which is not in \mathbf{P} (there must exist because paths are distinct in \mathbf{P} and $|\mathbf{P}| < |\mathbf{R}_i|$). Then $\mathbf{R}_{i+1} = \mathbf{R}_i \{R'\} + \{P\}$ will maintain the property above, since every two paths in \mathbf{R}_i do not have overlapped edge and P is not overlapped with any paths in \mathbf{R}_i .
 - Case 2 (P is overlapped with some paths in \mathbf{R}_i): Suppose the last overlapped edge in P is e, and it is the overlapped edge between P and R', where $R' \in \mathbf{R}_i$. Then we construct a new path P' by mainly copying path R', except that after edge e it follows path P. Therefore, the destination of P' is the same as the destination of P, and P' do not overlapped with any path in $\mathbf{R}_i \{R'\}$. It's because the front part of P' follows R', which is not overlapped with any other paths in \mathbf{R}_i , and the last part of P' follows path P after edge e, which is not overlapped with any paths since e is the last overlapped edge in P. Hence $\mathbf{R}_{i+1} = \mathbf{R}_i \{R'\} + \{P'\}$ will maintain the property above.

Proof of Construction Lemma (Cont.)

- In summary, we have proved that if the process ends successfully, it will give us the correct answer to the question.
- Second, we prove that the process will end in finite steps.
- Notice that when the first case happens, we substitutes an element in ${\bf R}$ with an element in ${\bf P}$ and keeps the elements in ${\bf R}$ distinct. And the second case won't change these elements in ${\bf P}$. Therefore, the first case happens at most $|{\bf P}|=m$ times.
- Now let us consider the second case. Let E_i be the **multi-set** (i.e. set that allows duplicate elements) of edges that have been operated after i-th second-case step. At first, we stipulate that $E_0 = \varnothing$. In i-th second-case step $(i \in \mathbb{N}^+)$, we set e as a new operated edge, that is, $E_i = E_{i-1} + \{e\}$. Then it is obvious that $|E_i|$ is strictly increasing.

Proof of Construction Lemma (Cont.)

- Notice that an edge can not be operated twice, that is, the multi-set E_i is actually a set. In the second case, we set edge e as operated edge and we know that $e \in \cup \mathbf{P}$ because of overlapping. After the setting, edge e cannot be set as operated edge again because:
 - Edge e cannot be overlapped again by another path in $\mathbf{P} \{P\}$, and for path P we won't operate the e again because $dst(R') \in A$;
 - If an edge e' in path R' before edge e is operated in future, then e will maintain the property that $e \in \cup \mathbf{P}$ and $e \in \cup \mathbf{Q}$, which will ensure that it won't be operated again.
- Since the process starts with an empty set $E_0 = \emptyset$ and only involves edges in a finite set $\mathbf{E} \stackrel{\Delta}{=} (\cup \mathbf{P}) \cup (\cup \mathbf{Q})$, the second case happens at most $|\mathbf{E}|$ times.
- \bullet Therefore, the whole process will end in at most $(|\mathbf{E}|+m)$ steps. Thus, the lemma is proved. QED.

Exchange Property

Lemma 3 (Exchange Property)

The independent system $M = (V, \mathbf{C})$ satisfies the exchange property.

Proof.

 $\forall A \in \mathbf{C}, \forall B \in \mathbf{C} \text{ and } |A| < |B|, \text{ with the Construction Lemma, we can construct a path set } \mathbf{R} \text{ satisfying}$

$$A \subseteq \{dst(R) \mid R \in \mathbf{R}\}$$

Thus, it's easy to choose (|A|+1) paths in ${\bf R}$ and keep the property above, and we suppose these paths form path set ${\bf R}'$. Then, we construct the set C as follows.

$$C = \{ dst(R) \mid R \in \mathbf{R}' \}$$

It's easy to see that $A\subseteq C$ and $C\in {\bf C}.$ Thus the exchange property is proved.

Final: Matroid

Theorem 4

Disjoint Path Matroid M is indeed a matroid.

Proof.

According to the Lemma Hereditary and Lemma Exchange Property, the theorem is proved.