Forza di Lorentz

Esercizio 1

Moto elicoidale: Una particella (carica q e massa m) si muove all'interno di un campo magnetico \mathbf{B} con velocità \mathbf{v} , formante un angolo α con la direzione del campo. Studiare il moto della particella.

Esercizio 2

Selettore di velocità: un fascio di particelle cariche viene inviato tra le piastre di un condensatore in cui sono presenti un campo **E** ed un campo **B**. Determinare il valore della velocità di quelle particelle che escono dal condensatore senza avere subito deflessioni verticali.

$$v = \frac{E}{B}$$

Esercizio 3

Spettrometro di massa: un fascio di particelle con la stessa carica q e diversa massa m entrano con velocità v in una regione dove è presente un campo magnetico \mathbf{B} ortogonale alla direzione delle particelle. Un array di rivelatori (vedi figura) permette di misurare la massa delle cariche. Sapendo che i rivelatori dell'array hanno una dimensione Δx , determinare la minima variazione di massa Δm che si può misurare.

$$\left[\Delta m = \frac{qB}{2L}\Delta x\right]$$

Esercizio 4

Una particella di massa m e carica q viene iniettata con velocità v in una zona di spazio in cui è presente un campo magnetico B, come indicato in figura. Calcolare il valore di B per cui la particella può uscire da una fenditura posta a distanza h da quella di ingresso. Calcolare anche il tempo Δt impiegato.

$$\left[B = \frac{2mv}{qh}; \Delta t = \frac{\pi h}{2v}\right]$$

Esercizio 5

Un elettrone, di carica -e e di massa m_e , viene accelerato partendo da fermo da un campo elettrico uniforme e costante di modulo E con direzione orizzontale per un tratto d. L'elettrone entra successivamente in una zona in cui è presente un campo magnetico uniforme e costante, ortogonale alla direzione del moto, e assume una velocità diretta verticalmente dopo un ulteriore tratto orizzontale l. Calcolare l'intensità B del campo magnetico, trascurando la forza peso.

$$B = \frac{1}{l} \sqrt{\frac{2Edm_e}{e}}$$

Esercizio 6

Un'asta metallica AB di lunghezza L ruota con frequenza f attorno a un asse z perpendicolare a essa, a una distanza αL dall'estremo A (dove α è un numero puro compreso fra 0 ed 1). Nella regione è presente un campo magnetico stazionario di modulo B_0 , diretto lungo l'asse z. Calcolare la differenza di potenziale tra gli estremi A e B della barretta.

$$\left[\Delta V_{\rm AB} = \pi f B_0 L^2 (2\alpha - 1)\right]$$

