propriétés des homographies de $\mathbb{P}_1(\mathbb{C})$, exemples d' utilisations en géométrie

1 géométrie dans l'espace vectoriel euclidien $\mathbb C$

On considère le corps $\mathbb C$ des nombres complexes comme un espace vectoriel de dimension 2 sur $\mathbb R$, donc aussi comme un espace affine de dimension 2 sur $\mathbb R$. Le $\mathbb R$ -espace vectoriel $\mathbb C$ est muni du produit scalaire $z.z'=\frac{1}{2}(\overline{z}z'+\overline{z'}z)$, c'est donc un espace euclidien.

- 1. Donnez une condition nécessaire et suffisante pour qu'un point z de \mathbb{C} appartienne au cercle de centre $\omega \in \mathbb{C}$ et de rayon $r \in \mathbb{R}^+$.
- 2. Donnez une condition nécessaire et suffisante pour qu'un point z de \mathbb{C} appartienne à la droite de vecteur normal $u \in \mathbb{C}$ contenant $\alpha \in \mathbb{C}$.
- 3. Soit $z_0 \in C$. La multiplication $m : \mathbb{C} \longrightarrow \mathbb{C}$ qui à z associe z_0z est un endomorphisme de \mathbb{C} . Quelle est sa matrice dans la base (1,i) de \mathbb{C} ? Quel est son nom en tant que transformation géométrique?
- 4. Soient z et z' deux vecteurs non nuls de \mathbb{C} . L'angle de vecteurs $\widehat{(z,z')}$ est égal à $Arg(\frac{z'}{z})$. Soit s une similitude vectorielle directe de \mathbb{C} . Montrer que $\widehat{(s(z),s(z'))} = \widehat{(z,z')}$.
- 5. Montrer que les similitudes directes sont les seuls endomorphismes de $\mathbb C$ qui préservent les angles de vecteurs.
- 6. Une courbe tracée sur \mathbb{C} est une application différentiable c d'un intervalle I de \mathbb{R} dans \mathbb{C} . Si $c_1:I_1\longrightarrow\mathbb{C}$ et $c_2:I_2\longrightarrow\mathbb{C}$ sont deux courbes telles qu'il existe $t_1\in I_1$ et $t_2\in I_2$ avec $c_1(t_1)=c_2(t_2)$ et $c'_1(t_1)\neq 0$ et $c'_2(t_2)\neq 0$, l'angle $(c_1,c_2)_m$ formé par les deux courbes en $m=c_1(t_1)=c_2(t_2)$ est par définition l'angle de vecteurs $(c'_1(t_1),c'_2(t_2))$. Soit U un ouvert de \mathbb{C} et $h:U\longrightarrow\mathbb{C}$ une fonction holomorphe dont la dérivée ne s'annule pas sur U, montrer que h préserve les angles des courbes tracées sur U.
- 7. Lorsque l'angle $(c_1, c_2)_m$ formé par les courbes c_1 et c_2 est congru à 0 modulo π , les courbes sont dites tangentes en m. Montrer qu'alors, pour toute application $f: \mathbb{C} \longrightarrow \mathbb{C}$ différentiable au voisinage de m et telle que $d_f(m)$ est un endomorphisme inversible du \mathbb{R} -espace vectoriel \mathbb{C} , les courbes $f \circ c_1$ et $f \circ c_2$ sont elles aussi tangentes en f(m).

2 homographies de $\mathbb{P}_{n-1}(\mathbb{C})$

On note $p: \mathbb{C}^n \longrightarrow \mathbb{P}_{n-1}(\mathbb{C})$ l'application de passage au quotient. On appelle repère projectif de $\mathbb{P}_{n-1}(\mathbb{C})$ une famille de n+1 points $(u_0, u_1, ..., u_n)$ de $\mathbb{P}_{n-1}(\mathbb{C})$ tels qu'il existe une base $U_1, ..., U_n$ de \mathbb{C}^n de sorte que pour $1 \le i \le n$ on ait $p(U_i) = u_i$ et de plus $p(\sum_{i=1}^n U_i) = u_0$.

- 1. Montrer que l'image d'un repère projectif de $\mathbb{P}_{n-1}(\mathbb{C})$ par une homographie de $\mathbb{P}_{n-1}(\mathbb{C})$ dans $\mathbb{P}_{n-1}(\mathbb{C})$ est un repère projectif de $\mathbb{P}_{n-1}(\mathbb{C})$.
- 2. Si $(u_0, u_1, ..., u_n)$ et $(v_0, v_1, ..., v_n)$ sont des repères projectifs de $\mathbb{P}_{n-1}(\mathbb{C})$ alors il existe une et une seule homographie h telle que $h(u_i) = v_i$ pour $0 \le i \le n$.

3 la droite projective complexe

3.1 cercles et droites

On considère la carte usuelle de $\mathbb{P}_1(\mathbb{C})$ donnée par l'hyperplan affine $H_0 = \{(z_1, z_2) \in \mathbb{C}^2 | z_2 = 1\}$ et la bijection $\phi_0 : \mathbb{P}_1(\mathbb{C}) \setminus \{(1:0)\} \longrightarrow \mathbb{C}$ qui au point de coordonnées homogènes $(z_1:z_2)$ associe le complexe $\frac{z_1}{z_2}$.

Pour $\alpha \in \mathbb{C}^2 \setminus \{0\}$ et $\beta \in \mathbb{C}$ on considère la carte de $\mathbb{P}_1(\mathbb{C})$ donnée par l'hyperplan affine $H_{\alpha,\beta} = \{(z_1,z_2) \in \mathbb{C}^2 | \alpha z_1 + \beta z_2 = 1\}$ et la bijection $\phi_{\alpha,\beta} : \mathbb{P}_1(\mathbb{C}) \setminus \{(-\beta : \alpha)\} \longrightarrow \mathbb{C}$ qui au point de coordonnées homogènes $(z_1 : z_2)$ associe le complexe $\frac{z_2}{\alpha z_1 + \beta z_2}$ (on a identifié $H_{\alpha,\beta}$ à \mathbb{C} via la paramétrisation de $H_{\alpha,\beta}$ par z_2).

Le changement de cartes est alors donné par la bijection $\phi_{\alpha,\beta} \circ \phi_0^{-1} : \mathbb{C} \setminus \{-\frac{\beta}{\alpha}\} \longrightarrow \mathbb{C} \setminus \{0\}$ qui au complexe z associe $\frac{1}{\alpha z + \beta}$.

- 1. Quel est le représentant dans $H_{\alpha,\beta}$ du point à l'infini de la représentation de $\mathbb{P}_1(\mathbb{C})$ par H_0 ?
- 2. Soit D la droite de H_0 d'équation $u\overline{z} + \overline{u}z + d = 0$ où $u \in \mathbb{C} \setminus \{0\}$ et $d \in \mathbb{R}$. On note $\tilde{D} = \phi_0^{-1}(D)$. Déterminer $\phi_{\alpha,\beta}(\tilde{D})$. Quelle est la nature géométrique de son adhérence dans \mathbb{C} ? L'adhérence de $\phi_{\alpha,\beta}(\tilde{D})$ contient-elle le représentant dans $H_{\alpha,\beta}$ du point à l'infini de la représentation de $\mathbb{P}_1(\mathbb{C})$ par H_0 ?
- 3. Soit C le cercle de H_0 d'équation $z\overline{z} \omega \overline{z} \overline{\omega}z + c = 0$ où $\omega \in \mathbb{C}$ et $c \in \mathbb{R}$. On note $\tilde{C} = \phi_0^{-1}(C)$. Déterminer $\phi_{\alpha,\beta}(\tilde{C})$. Quelle est la nature géométrique de son adhérence dans \mathbb{C} ? L'adhérence de $\phi_{\alpha,\beta}(\tilde{C})$ contient-elle le représentant dans $H_{\alpha,\beta}$ du point à l'infini de la représentation de $\mathbb{P}_1(\mathbb{C})$ par H_0 ?

3.2 birapport

On privilégie la représentation de $\mathbb{P}_1(\mathbb{C})$ par H_0 . De ce fait, on notera $(1:0) = \infty$, (0:1) = 0 et (1:1) = 1.

1. définition du birapport :

- (a) Soient a,b et c trois points distincts de $\mathbb{P}_1(\mathbb{C})$. Montrer qu'il existe une unique homographie h de $\mathbb{P}_1(\mathbb{C})$ dans $\mathbb{P}_1(\mathbb{C})$ telle que $h(a) = \infty$, h(b) = 0 et h(c) = 1. Soit alors d un point de $\mathbb{P}_1(\mathbb{C})$, l'image h(d) de d par h est appelée le birapport des quatre points a, b, c et d et il est noté [a, b, c, d].
- (b) Soient a, b, c et d quatre points de $\mathbb{P}_1(\mathbb{C})$, les trois premiers étant distincts, soient a', b', c' et d' quatre points de $\mathbb{P}_1(\mathbb{C})$, les trois premiers étant distincts, montrer qu'il existe une homographie $h: \mathbb{P}_1(\mathbb{C}) \longrightarrow \mathbb{P}_1(\mathbb{C})$ telle que h(a) = a', h(b) = b', h(c) = c' et h(d) = d' si et seulement si les birapports [a, b, c, d] et [a', b', c', d'] sont égaux.
- (c) Soient a, b, c et d quatre points de $\mathbb{P}_1(\mathbb{C})$, les trois premiers étant distincts et $d \neq a$. Montrer que $[a, b, c, d] = (\delta : 1)$ où

$$\delta = \frac{d-b}{d-a} / \frac{c-b}{c-a}$$

Comme on privilégie la représentation de $\mathbb{P}_1(\mathbb{C})$ par H_0 on notera $[a,b,c,d]=\delta$. indication: L'homographie h de $\mathbb{P}_1(\mathbb{C})$ dans lui-même telle que $h(a)=\infty$, h(b)=0 et h(c)=1 provient d'une application linéaire bijective de \mathbb{C}^2 dans \mathbb{C}^2 dont la matrice dans la base canonique de \mathbb{C}^2 vérifie certaines conditions...

- (d) Que vaut [a, b, c, a]?
- (e) Montrer que pour quatre points a, b, c et d de $\mathbb{P}_1(\mathbb{C})$, les trois premiers étant distincts et $d \neq a$, si $[a, b, c, d] = \delta$ alors $[b, a, c, d] = \frac{1}{\delta}$, $[a, b, d, c] = \frac{1}{\delta}$, $[a, c, b, d] = 1 \delta$, $[d, b, c, a] = 1 \delta$, $[c, b, a, d] = \frac{\delta}{\delta 1}$, $[a, d, c, b] = \frac{\delta}{\delta 1}$, $[c, d, a, b] = \delta$.

2. cercles-droites:

- (a) Soient a, b, c trois points non alignés de \mathbb{C} . Montrer qu'un point d de \mathbb{C} appartient au cercle qui contient a, b et c si et seulement si le birapport [a, b, c, d] est réel ou infini. (On considère le birapport comme un complexe avec la convention décrite précédemment)
- (b) Soient a, b, c trois points alignés et distints de \mathbb{C} . Montrer qu'un point d de \mathbb{C} appartient à la droite qui contient a, b et c si et seulement si le birapport [a, b, c, d] est réel ou infini. (On considère le birapport comme un complexe avec la convention décrite précédemment)
- (c) Etant donnés trois points a, b, et c distincts de $\mathbb{P}_1(\mathbb{C})$, on définit le cercle-droite $C_{a,b,c}$ de $\mathbb{P}_1(\mathbb{C})$ qui contient a, b, et c par

$$C_{a,b,c} = \{ d \in \mathbb{P}_1(\mathbb{C}) \mid [a,b,c,d] \in \mathbb{R} \cup \{\infty\} \}$$

Montrer que l'image de $C_{a,b,c}$ par une homographie de $\mathbb{P}_1(\mathbb{C})$ est encore un cercle-droite de $\mathbb{P}_1(\mathbb{C})$.

3.3 angles de courbes dans $\mathbb{P}_1(\mathbb{C})$

- 1. Soit c une application d'un intervalle I de \mathbb{R} dans $\mathbb{P}_1(\mathbb{C})$. Montrer que $\phi_0 \circ c$ est différentiable en tout point de $I \setminus c^{-1}\{(1:0)\}$ si et seulement si pour tout $(\alpha, \beta) \in \mathbb{C}^* \times \mathbb{C}$, $\phi_{\alpha,\beta} \circ c$ est différentiable en tout point de $I \setminus c^{-1}\{(1:0), (-\beta:\alpha)\}$. On dira donc que c est différentiable en $t \in I$ lorsqu'il existe une représentation de $\mathbb{P}_1(\mathbb{C})$ à l'aide d'une application $\phi_{\alpha,\beta}$ définie en c(t) telle que $\phi_{\alpha,\beta} \circ c$ est différentiable en t (avec la convention $\phi_{0,1} = \phi_0$).
- 2. Soit $t \in I \setminus c^{-1}\{(1:0), (-\beta:\alpha)\}$. Montrer que $(\phi_0 \circ c)'(t) \neq 0$ si et seulement si $(\phi_{\alpha,\beta} \circ c)'(t) \neq 0$.
- 3. Une courbe tracée sur $\mathbb{P}_1(\mathbb{C})$ est une application différentiable c d'un intervalle I de \mathbb{R} dans $\mathbb{P}_1(\mathbb{C})$. Soient $c_1: I_1 \longrightarrow \mathbb{P}_1(\mathbb{C})$ et $c_2: I_2 \longrightarrow \mathbb{P}_1(\mathbb{C})$ deux courbes telles qu'il existe $t_1 \in I_1$ et $t_2 \in I_2$
 - Soient $c_1: I_1 \longrightarrow \mathbb{P}_1(\mathbb{C})$ et $c_2: I_2 \longrightarrow \mathbb{P}_1(\mathbb{C})$ deux courbes telles qu'il existe $t_1 \in I_1$ et $t_2 \in I_2$ avec $c_1(t_1) = c_2(t_2)$. On suppose qu'il existe une représentation $\phi_{\alpha,\beta}$ de $\mathbb{P}_1(\mathbb{C})$ telle que $(\phi_{\alpha,\beta} \circ c_1)'(t_1) \neq 0$ et $(\phi_{\alpha,\beta} \circ c_2)'(t_2) \neq 0$. Montrer que l'angle $(\phi_{\alpha,\beta} \circ c_1, \phi_{\alpha,\beta} \circ c_2)_m$ formé par les images des courbes c_1 et c_2 en leur point d'intersection $m = \phi_{\alpha,\beta} \circ c_1(t_1)$ est indépendant de la représentation $\phi_{\alpha,\beta}$ choisie. Cet angle est par définition l'angle des courbes c_1 et c_2 en $c_1(t_1) = c_2(t_2)$ sur $\mathbb{P}_1(\mathbb{C})$.
- 4. Soient U un ouvert de $\mathbb{P}_1(\mathbb{C})$. On appelle application conforme directe sur U une application différentiable sur U, dont le jacobien ne s'annule pas, et qui conserve les angles de courbes. Montrer que les homographies sont des applications conformes directes de $\mathbb{P}_1(\mathbb{C})$.
- 5. Soit U un ouvert de \mathbb{C} , montrer que les applications conformes directes sur U sont les fonctions holomorphes sur U dont la dérivée ne s'annule pas sur U.
- 6. Montrer que les applications conformes directes bijectives de C dans C sont les similitudes directes.
- 7. Montrer que les applications conformes directes bijectives de $\mathbb{P}_1(\mathbb{C})$ dans $\mathbb{P}_1(\mathbb{C})$ sont les homographies.

4 quelques exemples d'utilisation des homographies dans la résolution de problèmes de géométrie affine plane

- 1. Soient a, b et n trois points distincts de \mathbb{C} . On veut montrer qu'il existe un unique cercle contenant n et orthogonal à tous les cercles passant par a et b.
 - (a) Soit Γ le cercle contenant a, b et n. Comment trace-t-on le centre de Γ ?
 - (b) Montrer qu'il existe un unique cercle C contenant n et orthogonal à Γ et à la droite (ab).
 - (c) Montrer que C est également orthogonal au cercle Γ' image de Γ dans la reflexion par rapport à la droite (ab).
 - (d) Montrer que C est orthogonal à tous les cercles passant par a et b. indication : on pourra utiliser une homographie.
- 2. Soient D_1 et D_2 deux droites orthogonales et sécantes en a. Soient C_1 et C_3 deux cercles tangents en a à D_1 , soient C_2 et C_4 deux cercles tangents en a à D_2 .
 - (a) Montrer que pour $i \in \{1,3\}$ et $j \in \{2,4\}$ les cercles C_i et C_j possèdent un deuxième points d'intersection que l'on note $m_{i,j}$.
 - (b) Montrer que les points $m_{1,2}$, $m_{1,4}$, $m_{3,2}$ et $m_{3,4}$ sont cocycliques ou alignés.
- 3. Soient C et C' deux cercles et $a \in C$. Montrer qu'il existe un et un seul cercle contenant a et orthogonal à C et à C'.
- 4. Soient C un cercle et C' un cercle contenu dans l'intérieur du disque délimité par C. On construit par récurrence une suite de cercles Γ_n ainsi : Γ_1 est tangent à C et à C' . Si Γ_n est construit, on construit Γ_{n+1} tangent à C et à C' , tangent à Γ_n et distinct de Γ_{n-1} . Montrer que l'on a l'alternative suivante : ou bien il existe $s \in \mathbb{N} \setminus \{0,1\}$ tel que $\Gamma_s = \Gamma_1$ pour n'importe quel choix de Γ_1 , ou bien les cercles Γ_n sont tous distincts quel que soit le cercle Γ_1 choisi.
 - indication : l'alternative est claire lorsque les cercles C et C' sont concentriques, de même que le procédé de construction de la suite de cercles Γ_n .
- 5. Soient C et C' deux cercles sécants en deux points distincts dans \mathbb{C} . Montrer que les assertions suivantes sont équivalentes :
 - (a) Les cercles C et C' sont orthogonaux.
 - (b) Pour tout diamètre (ab) de C qui coupe C' en deux points distincts a' et b' on a [a',b',a,b]=-1.
 - (c) Il existe un diamètre (ab) de C qui coupe C' en deux points distincts a' et b' tels que [a', b', a, b] = -1.