Klausur zum Modul

Algorithmen in der Bioinformatik

Sommersemester 2018 25.07.2018

Name:		 	 	
Matrike	elnummer:	 	 	
Studien	igang:	 	 	

Geben Sie den L sungsweg immer mit an!

Nur mit blauem oder schwarzem Kugelschreiber schreiben.

Schreiben Sie auf jeden Zettel Ihre Matrikelnummer.

Geben Sie f r jede (Teil-)Aufgabe nur eine einzige L sung ab. Bei mehreren, alternativen L sungen zu einer Aufgabe wird die Schlechteste bewertet.

Teilnahme an der Klausur erfolgt unter Vorbehalt einer vorhandenen Zulassung.

Aufgabe Nr.:	Punktzahl:	Davon erreicht:
1	17	
2	10	
3	15	
4	8	
Σ	50	

Es sind keinerlei Hilfsmittel erlaubt. Bitte schreiben Sie deutlich mit einem schwarzen oder blauen Stift.

1. Alignments

a) Geben Sie die Dynamische Programmierungsmatrix mit Backtrackingpointern an, um optimale globale Alignments zwischen den Sequenzen GCTA und CCA zu bestimmen. Ein Match wird mit +3 bewertet, ein Mismatch und ein Gap werden mit jeweils -1 bestraft.

9

- Geben Sie die optimalen Alignments und deren Scores an.
- b) Was muss am Needleman-Wunsch-Algorithmus geändert werden, wenn man im Alignment Gaps am Ende der Sequenzen nicht bestrafen will?

4

c) Im Allgemeinen: Wie verhält sich der Score eines optimalen lokalen Alignments gegenüber dem Score eines optimalen globalen Alignments bei gleichem Scoringschema? Begründen Sie Ihre Antwort.

4

2. Assembly

Gegeben ist der String XYZWVYZSTYZU.

a) Zeichnen Sie den De
–Bruijn–Graphen G, dessen Kanten alle 3-mere des Strings sind.

6

b) Finden Sie einen Eulerweg in G. Wieviele verschiedene Eulerwege gibt es in dem Graphen? Zu welchen Strings korrespondieren diese Wege?

4

3. Suffix-Bäume

Gegeben seien ein Suffixbaum \mathcal{T} für einen Text T dery Länge n über dem Alphabet $\{C, G, T, A\}$ sowie ein Pattern p der Länge m. Gesucht ist die Menge aller Matchpositionen von p in T, d. h. die Indizes $M_p = \{i \mid T[i, \ldots, i+m-1] = p\}$.

8

a) Beschreiben Sie einen Algorithmus, der diese Aufgabe in Zeit besser als O(nm) löst, und schätzen Sie dessen Laufzeit ab.

7

b) Nun genügt es, eine Matchposition j aus M_p zu bestimmen. Beschreiben Sie einen effizienten Preprocessing-Algorithmus auf \mathcal{T} , so dass j in Zeit O(m) gefunden werden kann.

4. Phylogenetische Bäume

8

Gegeben ist folgende Distanzmatrix D für drei Blätter A, B und C:

$$D = \begin{pmatrix} 0 & 7 & 10 \\ 7 & 0 & 11 \\ 10 & 11 & 0 \end{pmatrix}$$

Zur Erinnerung: Eine Distanzmatrix ist genau dann additiv, wenn ein kantengewichteter Baum existiert, so dass für jedes Paar i, j von Blättern der Baumabstand gleich dem Abstand in der Matrix ist.

Ist obige Matrix D additiv? Beweisen Sie Ihre Antwort.