Integrarea sistemelor informatice

Suport curs practic nr. 2

Sisteme Informaționale Geografice - GIS

2024-2025

Objective

- Înțelegerea arhitecturii sistemelor GIS
- Înțelegerea metodelor de modelare a datelor geospațiale
- Identificarea funcționalităților comune în sistemele GIS

Cuprins

• Arhitectura unui sistem GIS

Aplicații ale sistemelor GIS

Concepte geografice fundamentale

- Platforme GIS ArcGIS, Open GIS
- Studiu de caz QGIS
- Analiza datelor geospațiale

Ce este GIS?

GIS – Sistem Informațional Geografic, este o colecție de componente hardware și software, destinată achiziției, stocării, actualizării, prelucrării, analizei și afișării informațiilor geografice, cu implicarea factorului uman

Scurt istoric

-J-L	1854	John Snow a realizat prima reprezentare pe hartă a unui fenomen – epidemia de holeră din Londra
XX	1854 – 1960	Dezvoltările ulterioare sunt încă limitate de tehnologie
<u>©0</u>	1960 – 1975	Au fost puse bazele domeniului, dar aplicațiile erau disponibile doar pentru companii și universități și necesitau echipamente scumpe
	1975 – 1990	Jack Dangermond, Co-Fondatorul Esri a dezvoltat primul sistem GIS pentru uz comercial
	1990 – 2010	Sistemele GIS au fost adoptate la nivel guvernamental, oferind servicii publice orientate către cetățeni
b	2010 – 2018	Dezvoltarea sistemelor GIS online, și a programelor GIS open-source
	Prezent	Sistemele GIS devin omniprezente prin tehnologii și aplicații mobile

De ce GIS?

- GIS este un domeniu interdisciplinar
- Sistemele GIS presupun o gamă largă de integrări: baze de date, servicii software, sisteme hardware, interfețe grafice

- Concepte geografice fundamentale
- Tehnologii
- Date geospațiale
- Domenii de specialitate
- Proceduri / Metode
- Vizualizări

Arhitectura GIS pe 5 niveluri

Three-Tier Architecture

- Domenii de aplicabilitate
 - Sisteme de suport decizional
 - Analiza mediului înconjurător
 - Dezvoltarea planurilor urbanistice
 - Agricultură și silvicultură
 - Resurse naturale
 - Transport
 - Demografie
 - •

- Organizarea unui proiect GIS
 - Projectare hartă
 - Gestionare baze de date
 - Programare aplicații
 - Analiză geospațială
- Surse de date GIS
 - Măsurători de teren, tabele, foi de calcul
 - Digitizarea hărților tipărite (scanare, vectorizare)
 - Fotogrametrie (fotografii aeriene)
 - Imagini satelitare, aeriene (clasificare)
 - GPS (coordonate geografice)

Concepte generale

Concepte generale

- Date geospațiale: date geografice-spațiale
- Georeferențiere: corespondența dintre un punct reprezentat pe hartă și coordonatele geografice reale
- Topologie: ramură a matematicii utilizată pentru a defini relațiile spațiale dintre obiecte, pe baza proprietăților de adiacență și conectivitate

Concepte generale – date geospațiale

- Date geospațiale: date geografice-spațiale
 - Date geografice/spațiale localizarea obiectelor
 - Date descriptive caracterizarea obiectelor
- Metadate caracterizarea datelor geospațiale: titlu, rezumat, autor, zonă geografică, proiecție cartografică, etc.

- Locație, direcție, distanță
- Geocoding: maparea locației specificată prin adresă
- GPS (Global Positioning System)

- Sisteme de coordonate
 - Coordonate geografice
 - Coordonate carteziene
 - Coordonate proiectate
- Proiecții cartografice clasificare
 - Conforme păstrează nedeformate unghiurile
 - Echivalente păstrează nedeformate suprafețele
 - Echidistante nu deformează distanțele
 - Azimutale harta menține direcții precise

- Punctele, liniile și poligoanele indică poziția și forma obiectelor geografice
- Sistem geografic de coordonate
 - suprafață sferică 3D pământul
 - punct: latitudine (paralele), longitudine (meridiane)
- Sistem proiectat de coordonate
 - 2D hartă punct (x, y)
 - 3D spaţiu virtual punct (x, y, z)

- Proiecții cartografice Mercator
 - Proiecție conformă menținerea proprietăților unghiulare (estul va fi situat întotdeauna la 90 de grade față de nord)
 - Paralele, meridiane
 - Lungimea unui minut de latitudine este echivalentă cu o milă marină: bună pentru navigație
 - Distorsionează formele și dimensiunile, în special spre poli (e.g., Africa pare a fi la fel de mare ca Groenlanda – este în realitate de 14 ori mai mare)

d = R * c

Cum se calculează distanța dintre 2 poziții geografice reprezentate pe hartă? – Formula Haversine (distanța pe suprafață sferică – suprafața pământului)

```
function getHaversineDistance(xA, xB) {
   const earthRadius = 6371; // km
   let phiA = xA.lat * Math.PI / 180;
   let phiB = xB.lat * Math.PI / 180;
   let deltaPhi = (xB.lat - xA.lat) * Math.PI / 180;
   let deltaLambda = (xB.lng - xA.lng) * Math.PI / 180;
   // Haversine formula
   let arc = Math.sin(deltaPhi / 2) ** 2 +
       Math.cos(phiA) * Math.cos(phiB) *
       Math.sin(deltaLambda / 2) ** 2;
   let line = 2 * Math.atan2(Math.sqrt(arc), Math.sqrt(1 - arc));
   let distance = 6371 * line;
   return distance;
```


Concepte generale – topologie

- Topologia descrie spațiul din perspectiva conectivității locațiilor
- Exemplu: hartă de metrou din Londra

Concepte generale – reprezentare pe hartă

- Titlu
- Legendă: reprezentarea simbolurilor folosite
- Săgeata nordului: orientarea hărții
- Scara de reprezentare
 - a) (1 centimeter represents 250 meters)
 b) 1: 25 000
 c) $0 \frac{1000}{2000} \frac{2000}{3000} \frac{3000}{4000} \frac{4000}{1000}$ meters
- Acreditare: informații despre autor, dată
- Graticule / Grid: paralele, meridiane
- Denumirea proiecției cartografice

- Date geospațiale
 - Date geografice-spațiale poziția și forma obiectelor (puncte, linii, poligoane)
 - Date descriptive informații despre obiecte (atribute, valori)
- Operatori specifici
 - Operații de bază cu date geospațiale
 - Vecinătate, intersecție, distanță

Reprezentarea raster

Lumea reală

Reprezentarea vectorială

Modelul de date geo-relaţional

Caracteristică\Model	Raster	Vectorial	
Reprezentare	Spațiul este reprezentat prin celule rectangulare uniforme, fiecare celulă având o valoare asignată (obiectul situat în acea poziție)	Obiectele sunt reprezentate având o delimitare bine definită în spațiu (puncte, arce / linii, poligoane)	
Acuratețe	Forma obiectelor depinde de rezoluția celulei (nivelul de zoom)	Forma obiectelor este bine definită indiferent de nivelul de zoom	
Procesare	Calcule simple – Map Algebra	Calcule mai complexe – analiza grafurilor	
Stocare	Spațiu mare de stocare – pixeli	Spațiu mic de stocare – obiecte	
Colectare	Senzori (imagini aeriene, satelitare, hărți scanate)	GPS (coordonate geografice)	

- Reprezentarea datelor geospațiale
 - Straturi (layers) delimitarea contextului
 - Geocodificare (geocoding) identificarea unei locații pe baza unei caracteristici (de ex. adresa)
- Care dintre straturile din imagine sunt cel mai bine reprezentate în format raster / vectorial?

• Reprezentarea datelor în format raster

Caracteristică\Reprezentare	Discret	Continuu	Boolean	
Reprezentare	Valori întregi	Valori reale	0/1	
Utilizări posibile	Unități admin. teritoriale	Temperaturi Umiditate Elevație	Inundații Incendii	

- Reprezentarea datelor în format vectorial
 - Forma unei entități este reprezentată de o geometrie: unul sau mai multe noduri interconectate

- Reprezentarea datelor în format vectorial
 - Transpunerea entităților geografice în format vectorial
 - Puncte (copaci)
 - Poli-linii (râuri, drumuri)
 - Poligoane (case, terenuri)
 - Este important să ținem cont de scară atunci când alegem formele geometrice?
 - Putem reprezenta un oraș ca un punct?
 - Dar o clădire?

- Reprezentarea datelor în format vectorial procesul de digitizare
- Este importantă scara în procesul de digitizare?

- Reprezentarea datelor în format vectorial procesul de digitizare
 Ce putem face cu aceste date?
 - Analiză spațială
 - Câte terenuri se află în vecinătatea drumului principal?
 - Care este lungimea drumului ce trece prin pădure?
 - Care este nivelul de împădurire a zonei traversate de drumul principal?

- Reprezentarea datelor în format vectorial
 - CSV (.csv)
 - GeoJSON (.geoJSON)
 - KML Keyhole Markup Language (.kml)
 - Shapefile (.shp)
 - Esri Layer File (.lyr)
 - Geography Markup Language (.gml)
 - •

- Reprezentarea datelor în format vectorial CSV
 - Format tabelar
 - Coloane (atribute)
 - Rânduri (elemente)

- Reprezentarea datelor în format vectorial -GeoJSON
 - Are la bază formatul JSON
 - Conţine tipuri de reprezentare definite ca Feature sau FeatureCollection
 - Conține tipuri predefinite pentru reprezentarea entităților geografice: puncte (Point), linii (LineString), poligoane (Polygon), colecții geometrice (MultiPoint, MultiLineString, MultiPolygon, GeometryCollection)

```
"type": "FeatureCollection",
"features":[
   "type": "Feature",
    "geometry":{
     "type": "Point",
      "coordinates":[102.0, 0.5]
    "properties":{
      "prop0":"value0"
   "type": "Feature",
    "geometry":{
      "type":"LineString",
      "coordinates":[
       [102.0, 0.0],
       [103.0, 1.0],
        [104.0, 0.0],
       [105.0, 1.0]
    "properties":{
      "prop0":"value0",
      "prop1":0.0
```


- Reprezentarea datelor în format vectorial
 - KML (Keyhole Markup Language)
 - Are la bază formatul XML
 - Este utilizat în Google Earth
 - Conţine tag-uri specifice: name, description, coordinates
 - Utilizează tipuri predefinite pentru reprezentarea entităților geografice: Point, LineString, Polygon
 - Conţine grupuri de reprezentare diferite: Placemark, GroundOverlay

```
<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Placemark>
    <name>Simple placemark</name>
    <description>Attached to the ground. Intelligently places itself
    at the height of the underlying terrain.</description>
    <Point>
        <coordinates>-
122.0822035425683,37.42228990140251,0</coordinates>
        </Point>
    </Placemark>
</kml>
```


Reprezentarea datelor în format vectorial
 KML (Keyhole Markup Language)

https://earth.google.com/web/

- Reprezentarea datelor în format vectorial Shapefile
 - Format binar dezvoltat de Esri
 - Conține mai multe tipuri de fișiere:
 - .shp (geometrie)
 - .shx (indexare)

• .dbf (atribute)												
Context	Header						Record header		Record data			
Description	File code	Unused	File length	Version	Shape type	Bounding rectangle	Z range (elevation)	M range (time/4D)	Record number	Record length	Shape type	Shape content
Bytes	4	20	4	4	4	32	16	16	4	4	4	N

Value

Shape

Null

Point

Polyline

Polygon

MultiPoint

- Baze de date geospațiale
 - SGBD capabil să gestioneze date geospațiale
 - Reprezentare
 - Interogare
 - https://gistbok.ucgis.or g/bok-slide/spatialqueries

		point •	line	polygon
Reference feature	point o	Equal • Disjoint o	Touch Disjoint	Touch Contain Disjoint o
	line	Touch, Disjoint	Equal intersect contain contained by Touch Disjoint	Intersect Touch Disjoint
I	polygon	Touch Contained by Disjoint	Intersect Touch Contained by	Equal Overlap Adjacent Contained by Contain

- Formatul de stocare a datelor geospațiale ARC/INFO (Esri)
 - Model vectorial pentru reprezentarea informațiilor geospațiale
 - Model relațional al bazelor de date pentru reprezentarea atributelor
 - **Topologie ARC NOD**: arcele sunt determinate prin noduri, poligoanele sunt construite prin arce
 - Conectivitate (liste de perechi de coordonate X, Y + liste de triplete ARC, FROM-NODE, TO-NODE)
 - Definirea ariei (relația POLIGON-ARC, liste de arce ce definesc frontierele)
 - Sens (relația STÂNGA-DREAPTA, direcția fiecărui arc)

Întrebări?

Bibliografie

- The history of Geographic Information Systems (GIS)
- The Remarkable History of GIS
- An Overview of GIS History
- Essentials of Geographic Information Systems
- Essentials of Geographic Information Systems: Geographic Concepts
- Curs aplicat privind utilizarea aplicației informatice QGIS în silvicultură
- GIS and Environmental Monitoring
- Geographic Information Systems (GIS) for Disaster Management
- Introduction to Geographic Information Systems (GIS) Software: An Open Source Lecture #GIS #Maps
- What is Geographic Information Systems (GIS)?
- Vector vs Raster: What's the Difference Between GIS Spatial Data Types?
- GIS File Formats
- The Components of GIS Evolve
- About geocoding a table of addresses

