ALGORITMOS AVANÇADOS DE BIOINFORMÁTICA

Apresentação

2017/ 2018 – 2° semestre

Docentes: Rui Mendes, Rúben Rodrigues, Sara Correia

Objetivos / tópicos

- Conhecer as principais classes de algoritmos usados em Bioinformática
 - Computação vs optimização
 - Algoritmos mais apropriados para cada problema em cada contexto
 - Complexidade e características dos algoritmos de optimização (determinísticos/ estocásticos; exatos, heurísticos)
- Abordar classes de algoritmos de maior complexidade
 - Grafos, algoritmos sobre grafos e suas aplicações
 - Meta-heurísticas incluindo algoritmos estocásticos
- Abordar problemas biológicos utilizando ferramentas avançadas com interfaces em linha de comandos
 - Procura de padrões, alinhamentos contra referências, assemblagem de genomas, descoberta de motifs, análise de redes biológicas

Programa

- Grafos
 - Introdução; conceitos; representações
 - Algoritmos sobre grafos: análise topológica, travessias, etc
- Redes biológicas
 - Tipos de redes; análise topológica de redes biológicas
 - Construção e visualização das redes
- Algoritmos e ferramentas para procura de padrões e alinhamento contra referência
 - Autómatos; algoritmos heurísticos; árvores de sufixos e tries
 - Transformação de Burrows-Wheeler
 - Alinhamentos contra referências em dados de sequenciação / NGS
- Algoritmos e ferramentas para assemblagem de genomas a partir de dados de sequenciação
 - Circuitos Eulerianos e Hamiltonianos; grafos de DeBruijn
 - Aplicações no alinhamento de dados NGS
- Algoritmos estocásticos
 - Gibbs sampling e Expectation-Maximization para descoberta de motifs
 - Computação evolucionária e suas aplicações em Bioinformática
- Implementação em Python
- Utilização de ferramentas em linhas de comandos

Avaliação

• **Teste escrito final** (2 de Junho): 50% (nota mínima de 8 valores)

50%

- Avaliação contínua:
 - Dois trabalhos individuais
 - Data de entregas:
 - 23 de Março
 - 11 de Maio