LISTA 07: FIS670 - Métodos Computacionais da Física. (Prof. Leandro Rizzi)

Exercício 1. Materiais com estrutura atômica cristalina geralmente são caracterizados pelo seu padrão de difração de raios-x, o qual está intimamente relacionado com o fator de estrutura $S(\vec{q})$. Para cristais ideais o fator de estrutura pode ser definido como [1]:

$$S(\vec{q}) = \frac{1}{N} \left| \sum_{l=1}^{N} \sum_{m=1}^{N} e^{-i\vec{q} \cdot (\vec{r}_{l} - \vec{r}_{m})} \right| ,$$

onde os vetores \vec{r}_m denotam o vetor posição do m-ésimo átomo e o vetor $\vec{q}=(q_x,q_y)$ está relacionado à diferença entre os vetores de onda incidente \vec{k} e espalhado \vec{k}' . Calcule o fator de estrutura de um plano cristalino bidimensional definido pelas posições $\vec{r}_m=(x_m,y_m)$ dos N átomos dadas no arquivo posicoes.dat. Faça o gráfico de S em função de S0 e S1 e S2 e S3 e S4 e S4 e S5 e S5 e S6 e S6 e S6 e S6 e S6 e S6 e S7 e S8 e S9 e S

Exercício 2. Considere a função degrau f(t) definida no intervalo -T/2 a T/2 como

$$f(t) = \left\{ \begin{array}{ll} -A + B, & t < t^* \\ A + B, & t \ge t^* \end{array} \right..$$

Mesmo f(t) sendo uma função descontínua em $t = t^*$, podemos expandi-la utilizando séries de Fourier [2]:

$$f_M(t) = \frac{1}{2}a_0 + \sum_{n=1}^{M} a_n \cos(w_n t) + \sum_{n=1}^{M} b_n \sin(w_n t)$$

onde $w_n = nw_0$ com $w_0 = 2\pi/T$. A aproximação $f(t) \approx f_M(t)$ pode ser obtida a partir do cálculo dos coeficientes:

$$a_0 = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt$$
 , $a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t)\cos(\omega_n t)dt$, $b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t)\sin(\omega_n t)dt$.

- a) Considerando $T=2\pi, A=7, B=0$ e $t^*=0$, obtenha (analiticamente) as expressões para os coeficientes a_0, a_n e b_n . Grafique a função f(t) e as séries $f_M(t)$ para M=3, 7, 15, 30 e 55 utilizando $\Delta t=0.005$. Discuta o que ocorre a medida que M aumenta.
- b) Ilustre o que acontece com $f_{55}(t)$ fora do intervalo dado, e.g. para -4T < t < 4T.
- c) Repita o item (a) com os mesmos parâmetros mas agora considerando B=2 e $t^*=\pi/2$.

Exercício 3. Considere uma série temporal de uma grandeza f(t) com N pontos tomados em tempos igualmente espaçados $t_k = \delta k, \ k = 0, \dots, N-1$, sendo $f_k = f(t_k)$ e o intervalo de tempo total dado por $T = \delta N$. Para esses casos, uma ferramenta útil de análise de dados é a transformada de Fourier discreta, na qual a função $f(t_k)$ é aproximada por [2]

$$f_k = \frac{1}{N} \sum_{k=0}^{N-1} F_n e^{2\pi i k n/N} \quad , \quad \text{onde a transformada inversa \'e dada por} \quad F_n = \sum_{k=0}^{N-1} f_k e^{-2\pi i n k/N} \quad .$$

- a) A análise mais comum feita com a transformada discreta é através do espectro de potência, definido pelo gráfico de $|F_n|$ por n (ou pela frequência $\omega_n = n\omega_0$, com $\omega_0 = 2\pi/T = 2\pi/\delta N$). Obtenha o espectro de potência para as quatro séries temporais definidas nos arquivos serie*.dat. Tendo em vista que o aparecimento de picos para certos valores n está associado às contribuições mais significativas da frequência ω_n , comente as diferenças que você observou para cada uma das séries. Em particular, compare a série 1 com a série 2 e a série 3 com a série 4 (plote os gráficos para $n = 0, \ldots, 100$ e, se necessário, use a escala logarítmica).
- b) O que é a frequência de Nyquist, f_{Nyquist} ? Supondo que o tempo t_k seja dado em segundos, qual é a frequência f_{Nyquist} , em Hz, para cada uma das séries dos arquivos? Sabendo que $w_0 = 2\pi f_0$ e $w_{\text{Nyquist}} = 2\pi f_{\text{Nyquist}}$, indique o n_{Nyquist} que correspondente à w_{Nyquist} no gráfico do espectro de potência plotando todos os valores, *i.e.* $n = 0, \ldots, N-1$. Refaça o gráfico do espectro de potência fazendo $n \to n-N$ se $n \ge n_{\text{Nyquist}}$.
- c) Qual o critério para N quando se quer implementar a transformada rápida de Fourier (Fast Fourier Transform, FFT) utilizando o algoritmo de Cooley-Tukey [2]? Implemente a subrotina FFT (pág. 314 de [2] ou pág. 501 de [3]) e refaça o item (a) comparando os resultados obtidos.

Exercício 4. Considere a série temporal do arquivo compliance.dat definida pelo dados (t_k, J_k) , onde os tempos t_k , com k = 1, ..., N, não estão igualmente espaçados. Nesse caso, é possível obter a transformada de Fourier $\hat{J}(\omega) = \mathcal{F}\{J(t)\}$ utilizando o método da referência [4]:

$$-\omega^2 \hat{J}(\omega) = i\omega J(0) + (1 - e^{-i\omega t_1}) \frac{(J_1 - J(0))}{t_1} + \dot{J}_{\infty} e^{-i\omega t_N} + \sum_{k=2}^{N} \left(\frac{J_k - J_{k-1}}{t_k - t_{k-1}} \right) \left(e^{-i\omega t_{k-1}} - e^{-i\omega t_k} \right) , \qquad (1)$$

onde os parâmetros são obtidos através das extrapolações J(0)=J(t) no limite $t\to 0$ e $\dot{J}_\infty=dJ(t)/dt$ no limite $t\to \infty$. No caso dos dados apresentados no arquivo podemos assumir que ambos J(0) e \dot{J}_∞ são nulos (faça o gráfico log-log dos dados: J_k por t_k). O interessante é que $\hat{J}(\omega)$ é uma função aproximada onde podemos tomar qualquer valor de ω dentro do intervalo $\omega_{\min}<\omega<\omega_{\max}$, com $\omega_{\min}\approx t_N^{-1}$ e $\omega_{\max}\approx t_0^{-1}$.

- a) Implemente uma subrotina para obter $\hat{J}(\omega)$ a partir dos dados do arquivo compliance.dat. Faça gráficos separados da parte real Re $[\hat{J}(\omega)]$ e imaginária Im $[\hat{J}(\omega)]$ utilizando $\omega_{m+1} = \omega_m e^{\Delta}$ com $M=100, \ \omega_{M+1} = \omega_{\max}$ e $\omega_1 = \omega_{\min}$.
- b) Utilize os dados do item (b) para obter a função complexa [4]

$$G^*(\omega) = \frac{1}{i\omega \hat{J}(\omega)} ,$$

a qual, neste caso em particular, corresponde à grandeza conhecida como módulo de cisalhamento. Faça gráficos log-log da parte real $G'(\omega) = \text{Re}[G^*(\omega)]$ e imaginária $G''(\omega) = \text{Im}[G^*(\omega)]$.

Referências:

- [1] Capítulo 2 de Chaikin & Lubensky, Principles of condensed matter physics (Cambridge University Press, 1995).
- [2] Capítulo 6 de P. L. DeVries, A first course in computational physics (John Wiley & Sons, 1994).
- [3] W. H. Press et al.. Numerical Recipes in Fortran 77: The Art of Parallel Scientific Computing. Disponível em: http://www.fing.edu.uy/if/cursos/fiscomp/extras/numrec/book/f12.pdf.
- [4] Evans et al., Direct conversion of rheological compliance measurements into storage and loss moduli. Phys. Rev. E 80 (2009) 012501. Disponível em: http://arxiv.org/abs/0812.2391