5.2 Prove that homology is an equivalence relation on curves in a region Ω .

Solution Let γ_1 , γ_2 , and γ_3 be closed curves in Ω , and let $a \notin \bar{\Omega}$.

Reflexivity: $n(\gamma_1 - \gamma_1, a) = n(0, a) = 0$, so $\gamma_1 \sim \gamma_1$.

Symmetry: Let $\gamma_1 \sim \gamma_2$. Then $n(\gamma_1 - \gamma_2, a) = -n(\gamma_2 - \gamma_1, a) = 0$, so $\gamma_2 \sim \gamma_1$.

Transitivity: Let $\gamma_1 \sim \gamma_2$ and $\gamma_2 \sim \gamma_3$. Then

$$n(\gamma_1 - \gamma_2, a) = 0$$
 and $n(\gamma_2 - \gamma_3, a) = 0$.

Then

$$n(\gamma_1 - \gamma_3, a) = n(\gamma_1 - \gamma_2 + \gamma_2 - \gamma_3, a) = n(\gamma_1 - \gamma_2, a) + n(\gamma_2 - \gamma_3, a) = 0 + 0 = 0$$

so $\gamma_1 \sim \gamma_3$.

Hence, homology is an equivalence relation on curves in Ω .

- **5.3** The proof of Corollary 2.6(iii) should remind you of the proof that the winding number is an integer. Explain this using the increase in the imaginary part of a continuous determination of $\log(z-a)$ along γ .
- **Solution** Let $\gamma \colon [0,1] \to \mathbb{C}$ be a closed loop that winds around a counter-clockwise once, and consider the bounded region Ω with $\partial \Omega = \gamma$.

If $a \in \Omega$, then $\frac{1}{z-a}$ is analytic on $\Omega \setminus \{\text{the ray passing through } a \text{ and } \gamma(0)\}$, and its primitive is a branch of $\log(z-a)$. $\log(z-a)$ is analytic (and thus continuous) on the same domain since its derivative exists.

Consider $\log(\gamma(t) - a)$, which is continuous on the same slit domain, since it is the composition of two continuous functions.

The complex part of $\log(\gamma(t) - a)$ gives us the angle that $\gamma(t)$ makes with a, and the real part gives its distance from a. Suppose $\lim_{t\to 0} \log(\gamma(0) - a) = r + i\alpha$. Then as γ is closed, it completes a full loop as $t\to 1$. So,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-a} \, \mathrm{d}z = \frac{1}{2\pi i} \left[\lim_{t \to 1} \log(\gamma(t)-a) - \lim_{t \to 0} \log(\gamma(0)-a) \right] = \frac{1}{2\pi i} \left[(r+i(\alpha+2\pi)) - (r+i\alpha) \right] = 1.$$

We can apply this argument to loops that wind around a multiple times also by splitting into integrals along curves (not necessarily closed) that wind around a once. Summing up these integrals will yield the same result: each loop picks up 1 if it winds counter-clockwise, or it picks up a -1 if it winds clockwise, along with a telescoping sum of distances from a.

- 5.4 Suppose Ω is a bounded region whose boundary consists of finitely many disjoint piecewise differentiable simple closed curves. Orient $\partial\Omega$ so that the region lies on the left for each boundary component (the inner normal is i times the unit tangent vector). Prove $n(\partial\Omega, a) = 1$ if $a \in \Omega$ and $n(\partial\Omega, a) = 0$ if $a \in \mathbb{C} \setminus \overline{\Omega}$. You may assume that Ω is formed from a simply connected region by removing finitely many pairwise disjoint closures of simply connected subregions.
- **Solution** We can write $\partial \Omega = \sum_{j=1}^{N} \partial \Omega_{j}$, oriented counter-clockwise, by assumption.

Let $a \in \Omega$.

As $a \in \Omega$, there exists a unique j_0 such that $a \in \Omega_{j_0}$, and if $j \neq j_0$, then $a \notin \Omega_j$. This j_0 is unique as each curve is disjoint. Thus, by Cauchy's integral formula,

$$n(\partial\Omega, a) = \int_{\partial\Omega} \frac{\mathrm{d}\zeta}{\zeta - a} = \sum_{j=1}^{N} \int_{\partial\Omega_{j}} \frac{\mathrm{d}\zeta}{\zeta - a} = \int_{\partial\Omega_{j_{0}}} \frac{\mathrm{d}\zeta}{\zeta - a} = 1.$$

Similarly, if $a \notin \bar{\Omega}$, then $a \notin \Omega_j$ for all $1 \leq j \leq N$. Thus,

$$n(\partial\Omega, a) = \int_{\partial\Omega} \frac{\mathrm{d}\zeta}{\zeta - a} = \sum_{j=1}^{N} \int_{\partial\Omega_j} \frac{\mathrm{d}\zeta}{\zeta - a} = 0.$$

5.5 Prove the uniqueness of the Laurent series expansion, that is if

$$\sum_{n=-\infty}^{\infty} a_n z^n = \sum_{n=-\infty}^{\infty} b_n z^n$$

for r < |z| < R then $a_n = b_n$ for all n. Convergence of the series on the region is part of the assumption. Hint: Liouville.

Solution Consider the series

$$0 \equiv f(z) = \sum_{n = -\infty}^{\infty} c_n z^n,$$

where $c_n = a_n - b_n$. Note that f is analytic, so we can write

$$f(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=-\infty}^{-1} a_n z^n := g(z) + h(z).$$

 $f(z) \equiv 0$, so f is entire, which means g and h are entire also.

Note that $\lim_{z\to\infty} f(z) = \lim_{z\to\infty} (g(z) + h(z)) = 0$ and $\lim_{z\to\infty} h(z) = 0$ also by Laurent series. Hence, we must have that $\lim_{z\to\infty} g(z) = 0$.

But this implies that g is bounded. Indeed, for M > 0, $|z| \ge M \implies |f(z)| < \epsilon$. Hence, by Liouville's theorem, $f \equiv 0$. By uniqueness of power series, we must have that $a_n = b_n$ for all $n \ge 0$.

Since $f(z) \equiv 0$, $f(1/z) \equiv 0$ also, so f(1/z) is entire. Using the same argument, but for h(1/z) (which can now be written as a power series), we get that $h \equiv 0$ also. By uniqueness of power series, $a_n = b_n$ for all $n \le -1$.

Thus, $a_n = b_n$ for all n.

5.6 Notice that in the proof of Laurent series expansions we proved that a function f which is analytic on r < |z| < R can be written as $f = f_1 + f_2$ where f_1 is analytic in |z| < R and f_2 is analytic in |z| > r and $f_2(z) \to 0$ as $|z| \to \infty$. Suppose that Ω is a bounded region in \mathbb{C} such that $\partial \Omega$ is a finite union of disjoint (piecewise continuously differentiable) closed curves Γ_j , $j = 1, \ldots, n$. Suppose that f is analytic on $\bar{\Omega}$. Prove that $f = \sum f_j$ where f_j is analytic on the component of $\mathbb{C} \setminus \Gamma_j$ which contains Ω .

Solution Let $D_j \subseteq \mathbb{C} \setminus \Omega$ be such that $\partial D_j = \Gamma_j$, i.e., each D_j is the bounded region in the exterior of Ω whose boundary is Γ_j .

Let Γ_{j_0} be such that Ω is contained within the bounded region whose boundary is Γ_{j_0} . Orient Γ_{j_0} counter-clockwise and all the other Γ_j clockwise.

Note that $\sum \Gamma \sim 0$ because of the curves oriented clockwise. Then applying Cauchy's integral formula yields

$$f(z) = \sum_{j=1}^{n} \frac{1}{2\pi i} \oint_{\Gamma_j} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Each term in the sum is analytic in z since each Γ_j will never touch $z \in \Omega$, and the product of analytic functions is analytic. Hence, we can write

$$f(z) = \sum_{j=1}^{n} f_j(z).$$

2

- 5.7 Prove that if a sequence of analytic polynomials converges uniformly on a region Ω then the sequence converges uniformly on a simply connected region containing Ω . Hint: See Exercise IV.2(b).
- **Solution** Suppose the sequence of polynomials p_n converges uniformly to f on some open set D, with $\Omega \subseteq D$ by assumption. We wish to show that D is simply connected.

Suppose D were not simply connected. Then there exists a closed, bounded component of $\mathbb{C} \setminus D$, which we call K. Notice that K is compact.

Consider a point z_0 on ∂K , which is a point on \bar{D} . We define $f(z_0)$ to be the limit of $p_n(z_0)$ as n approaches infinity.

Suppose $f(z_0) = \infty$ for all $z_0 \in \partial K$. Then the set $\{z \in \mathbb{C} \mid f(z) = \infty\}$ admits an accumulation point, which means that $f(z) \equiv \infty$, so p_n converges uniformly everywhere in \mathbb{C}^* , which is compact and simply connected.

Then if $f(z_0) < \infty$, then p_n converges uniformly on $D \cup \{z_0\}$. But $z_0 \in K$ also, and since D and K are both connected, $D \cup K$ must be connected also. This is a contradiction, since K is the maximal closed component of $\mathbb{C} \setminus D$. Hence, no such K exists, so D must be simply connected.

5.8 We define the singularity at ∞ of f(z) to be the singularity at 0 of g(z) = f(1/z). Find the singularity at ∞ of the following functions. If the singularity is removable, give the value. If the singularity is a zero or pole, give the order.

a.
$$\frac{z^2 + 1}{e^z}$$
 d. $ze^{1/z}$
b. $\frac{1}{e^{1/z} - 1} - z$ e. $z^2 - z$
c. $e^{z/(1-z)}$ f. $\frac{1}{z^3}e^{1/z}$

d.
$$ze^{1/z}$$

b.
$$\frac{1}{e^{1/z}-1}$$

e.
$$z^2 - z$$

c.
$$e^{z/(1-z)}$$

f.
$$\frac{1}{z^3}e^{1/z}$$

Solution a. $g(z) = \frac{\frac{1}{z^2} + 1}{e^{1/z}} = \frac{z^2 + 1}{z^2 e^{1/z}} = \left(1 + \frac{1}{z^2}\right) \left(-\sum_{n = -\infty}^{-1} \frac{1}{n!} \cdot z^n\right)$. The singularity is essential since $e^{1/z}$ has an

essential singularity there will still be infinitely many negative coefficients after multiplication.

- b. $g(z) = \frac{1}{e^z 1} \frac{1}{z} = -\frac{1}{2} + \frac{z}{12} + \cdots$ This has a removable singularity, and g(z) = -1/2.
- c. $g(z) = \exp \frac{1}{z(1-\frac{1}{z})} = \exp \frac{1}{z-1}$. g(0) = 1/e, so the singularity is removable.
- d. $g(z) = \frac{e^z}{z} = \frac{1}{z} + 1 + \frac{z}{2} + \cdots$. This has a pole of degree 1 since $a_n = 0$ for all n < -1.
- e. $g(z) = \frac{1}{z^2} \frac{1}{z}$. This has a pole of degree 2.
- f. $g(z) = z^3 e^z = \sum_{n=0}^{\infty} a_n z^{n+3} = \sum_{n=0}^{\infty} a_{n-3} z^n$. This has a zero of degree 3.
- **5.9** Find the expansion in powers of z for

$$\frac{z}{(z^2+4)(z-3)^2(z-4)}$$

which converges in 3 < |z| < 4.

Solution By partial fractions, the function is equal to

$$\left(\frac{-\frac{34}{169}}{z-3} + \frac{\frac{1}{1690} - i\frac{29}{3380}}{z-2i} + \frac{\frac{1}{1690} + i\frac{29}{3380}}{z+2i} + \frac{-\frac{3}{13}}{(z-3)^2}\right) + \frac{\frac{1}{5}}{z-4}$$

The term in the parentheses is analytic on |z| > 3, and its limit as z tends to infinity is 0. So, we can find a power series expansion for that region. Additionally, the last term is analytic on |z| < 4, so we can find a power series expansion for that also.

By Laurent series, we can find an expansion in powers of z which converges in 3 < |z| < 4. The calculation is messy, but trivial since we just need to take contours around each pole, so it will not be typed out.

3