

ICS141: Discrete Mathematics for Computer Science I

Dept. Information & Computer Sci., University of Hawaii

Jan Stelovsky
based on slides by Dr. Baek and Dr. Still
Originals by Dr. M. P. Frank and Dr. J.L. Gross
Provided by McGraw-Hill

Appendix to Lecture 7

Sample Proof for Example in Lecture 7

- This time a direct proof
 - Proves a more general Theorem first
 - Employs a Lemma
 - Uses Sets Notation

Direct Proof of $\forall n$ ∈**Z**: $O(3n+2) \rightarrow O(n)$

Definitions:

- Def_{Odd}: O($x \in \mathbb{Z}$): $\exists k \in \mathbb{Z}$: x = 2k + 1
- Def_{Even}: $E(x \in \mathbb{Z})$: $\exists k \in \mathbb{Z}$: x = 2k

Theorem 1:

■ $\forall n,m \in \mathbb{Z}$: $O(n) \wedge E(m) \rightarrow O(n+m)$.

Proof:

- O(*n*) ∧ E(*m*)
 - $\rightarrow \exists x \in \mathbb{Z}$: $n=2x+1 \land \exists y \in \mathbb{Z}$: $m=2y \quad Def_{Odd}$, Def_{Even}
 - $\rightarrow \exists x,y \in \mathbb{Z}: n+m=2x+1+2y=2(x+y)+1$
 - $\rightarrow \exists k=x+y\in \mathbb{Z}: n+m=2k+1$ Def_{Odd}
 - → O(n+m)

Direct Proof (cont.) of $\forall n \in \mathbb{Z}$: $O(3n+2) \rightarrow O(n)$

- **Lemma:** E(-2*n*-2)
 - -2n-2=2(-n-1) $\rightarrow \exists k=-n-1 \in \mathbb{Z}$: -2n-2=2k Def_{Even} $\rightarrow E(-2n-2)$ ■
- Theorem: $\forall n \in \mathbb{Z}$: $O(3n+2) \rightarrow O(n)$
 - Proof: O(3n+2)
 - \rightarrow O(3n+2) \land E(-2n-2)
 - \rightarrow O(3n+2-2n-2)
 - \rightarrow O(3n-2n+2-2)
 - $\rightarrow O(n) \blacksquare$

Conjunction Rule, Lemma

Theorem 1