On a new method towards proof of Riemann's Hypothesis

Akhila Raman

University of California at Berkeley. Email: akhila.raman@berkeley.edu.

Abstract

We consider the analytic continuation of Riemann's Zeta Function derived from **Riemann's Xi function** $\xi(s)$ which is evaluated at $s = \frac{1}{2} + \sigma + i\omega$, given by $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$, where σ, ω are real and $-\infty \le \omega \le \infty$ and compute its inverse Fourier transform given by $E_p(t)$.

We use a new method and show that the Fourier Transform of $E_p(t)$ given by $E_{p\omega}(\omega) = \xi(\frac{1}{2} + \sigma + i\omega)$ does not have zeros for finite and real ω when $0 < |\sigma| < \frac{1}{2}$, corresponding to the critical strip excluding the critical line and prove Riemann's hypothesis.

More importantly, the new method **does not** contradict the existence of non-trivial zeros on the critical line with real part of $s = \frac{1}{2}$ and **does not** contradict Riemann Hypothesis. It is shown that the new method is **not** applicable to Hurwitz zeta function and related functions and **does not** contradict the existence of their non-trivial zeros away from the critical line.

If the specific solution presented in this paper is incorrect, it is **hoped** that the new method discussed in this paper will lead to a correct solution by other researchers.

Keywords: Riemann, Hypothesis, Zeta, Xi, exponential functions

1. Introduction

It is well known that Riemann's Zeta function given by $\zeta(s)=\sum_{m=1}^{\infty}\frac{1}{m^s}$ converges in the half-plane where the real part of s is greater than 1. Riemann proved that $\zeta(s)$ has an analytic continuation to the whole s-plane apart from a simple pole at s=1 and that $\zeta(s)$ satisfies a symmetric functional equation given by $\xi(s)=\xi(1-s)=\frac{1}{2}s(s-1)\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s)$ where $\Gamma(s)=\int_0^\infty e^{-u}u^{s-1}du$ is the Gamma function. [4] [5] We can see that if Riemann's Xi function has a zero in the critical strip, then Riemann's Zeta function also has a zero at the same location. Riemann made his conjecture in his 1859 paper, that all of the non-trivial zeros of $\zeta(s)$ lie on the critical line with real part of $s=\frac{1}{2}$, which is called the Riemann Hypothesis. [1]

Hardy and Littlewood later proved that infinitely many of the zeros of $\zeta(s)$ are on the critical line with real part of $s=\frac{1}{2}.^{[2]}$ It is well known that $\zeta(s)$ does not have non-trivial zeros when real part of $s=\frac{1}{2}+\sigma+i\omega$, given by $\frac{1}{2}+\sigma\geq 1$ and $\frac{1}{2}+\sigma\leq 0$. In this paper, **critical strip** 0< Re[s]<1 corresponds to $0\leq |\sigma|<\frac{1}{2}$.

In this paper, a **new method** is discussed and a specific solution is presented to prove Riemann's Hypothesis. If the specific solution presented in this paper is incorrect, it is **hoped** that the new method discussed in this paper will lead to a correct solution by other researchers.

In Section 2, we prove Riemann's hypothesis by taking the analytic continuation of Riemann's Zeta Function derived from Riemann's Xi function $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ and compute inverse Fourier transform of $E_{p\omega}(\omega)$ given by $E_p(t)$ and show that its Fourier transform $E_{p\omega}(\omega)$ does not have zeros for finite and real ω when $0 < |\sigma| < \frac{1}{2}$, corresponding to the critical strip **excluding** the critical line.

In Appendix A to Appendix E, well known results which are used in this paper are re-derived.

We present an **outline** of the new method below.

1.1. Step 1: Inverse Fourier Transform of $\xi(\frac{1}{2} + i\omega)$

Let us start with Riemann's Xi Function $\xi(s)$ evaluated at $s = \frac{1}{2} + i\omega$ given by $\xi(\frac{1}{2} + i\omega) = \Xi(\omega) = E_{0\omega}(\omega)$, where $-\infty \le \omega \le \infty$. Its inverse Fourier Transform is given by $E_0(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{0\omega}(\omega) e^{i\omega t} d\omega$, where ω, t are real, as follows (link).^[3]

$$E_0(t) = \Phi(t) = 2\sum_{n=1}^{\infty} \left[2n^4\pi^2 e^{\frac{9t}{2}} - 3n^2\pi e^{\frac{5t}{2}}\right]e^{-\pi n^2 e^{2t}} = 2\sum_{n=1}^{\infty} \left[2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}\right]e^{-\pi n^2 e^{2t}}e^{\frac{t}{2}}$$
(1)

We see that $E_0(t) = E_0(-t)$ is a real and **even** function of t, given that $E_{0\omega}(\omega) = E_{0\omega}(-\omega)$ because $\xi(s) = \xi(1-s)$ and hence $\xi(\frac{1}{2}+i\omega) = \xi(\frac{1}{2}-i\omega)$ when evaluated at $s = \frac{1}{2}+i\omega$.

The inverse Fourier Transform of $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ is given by the real function $E_p(t)$. We can write $E_p(t)$ as follows for $0 < |\sigma| < \frac{1}{2}$ and this is shown in detail in Appendix A using contour integration.

$$E_p(t) = E_0(t)e^{-\sigma t} = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}]e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} e^{-\sigma t}$$
(2)

We can see that $E_p(t)$ is an analytic function in the interval $|t| \leq \infty$, given that the sum and product of exponential functions are analytic in the same interval and hence infinitely differentiable in that interval.

1.2. Step 2: On the zeros of a related function $G(\omega)$

Statement 1: Let us assume that Riemann's Xi function $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ has a zero at $\omega = \omega_0$ where ω_0 is real and finite and $0 < |\sigma| < \frac{1}{2}$, corresponding to the critical strip excluding the critical line. We will prove that this assumption leads to a **contradiction**.

Let us consider $0 < \sigma < \frac{1}{2}$ at first. Let us consider a new function $g(t) = e^{\sigma t_0} E_p'(t+t_0) e^{-\sigma t} u(-t) + e^{\sigma t_0} E_p'(t+t_0) e^{\sigma t} u(t)$, where $E_p'(t) = e^{\sigma t_2} E_p(t+t_2)$ and g(t) is a real function of variable t and u(t) is Heaviside unit step function. We can see that $g(t)h(t) = e^{\sigma t_0} E_p'(t+t_0)$ where $h(t) = [e^{\sigma t} u(-t) + e^{-\sigma t} u(t)]$.

In Section 2.1, we will show that the Fourier transform of the **odd function** $g_{odd}(t) = \frac{1}{2}[g(t) - g(-t)]$ given by $G_{odd}(\omega) = G_I(\omega)$ must have **at least one zero** at $\omega = \omega_z(t_2, t_0) \neq 0$, for every value of t_0 , to satisfy Statement 1, where $\omega_z(t_2, t_0)$ is real and finite.

1.3. Step 3: On the zeros of the function $G_R(\omega)$

In Section 2.2, we compute the Fourier transform of the function $g_{odd}(t)$ given by $G_I(\omega)$. We require $G_I(\omega) = 0$ for $\omega = \omega_z(t_2, t_0)$ for every value of t_0 , to satisfy **Statement 1**. In general, $\omega_z(t_2, t_0) \neq \omega_0$.

It is shown that $R(t_2, t_0) = -G_I(\omega_z(t_2, t_0), t_0) = 0$ for all t_0 as follows. We use $E'_0(t) = E_0(t + t_2)$ and $E'_{0n}(t) = E_0(t - t_2)$.

$$R(t_{2},t_{0}) = e^{2\sigma t_{0}} \left[\cos\left(\omega_{z}(t_{2},t_{0})t_{0}\right) \int_{-\infty}^{t_{0}} E_{0}'(\tau)e^{-2\sigma\tau} \sin\left(\omega_{z}(t_{2},t_{0})\tau\right)d\tau \right]$$

$$-\sin\left(\omega_{z}(t_{2},t_{0})t_{0}\right) \int_{-\infty}^{t_{0}} E_{0}'(\tau)e^{-2\sigma\tau} \cos\left(\omega_{z}(t_{2},t_{0})\tau\right)d\tau$$

$$-\left[\cos\left(\omega_{z}(t_{2},t_{0})t_{0}\right) \int_{-\infty}^{-t_{0}} E_{0n}'(\tau) \sin\left(\omega_{z}(t_{2},t_{0})\tau\right)d\tau + \sin\left(\omega_{z}(t_{2},t_{0})t_{0}\right) \int_{-\infty}^{-t_{0}} E_{0n}'(\tau) \cos\left(\omega_{z}(t_{2},t_{0})\tau\right)d\tau\right] = 0$$

$$R(t_{0}) = \int_{-\infty}^{0} \left[E_{0}'(\tau+t_{0})e^{-2\sigma\tau} - E_{0n}'(\tau-t_{0})\right] \sin\left(\omega_{z}(t_{2},t_{0})\tau\right)d\tau = 0$$

1.4. Step 4: $\omega_z(t_2,t_0)$ is an even function of variable t_0

In Section 2.3, we show the result in Eq. 4 and that $\omega_0(t_2, t_0) = \omega_z(t_2, t_0) = \omega_z(t_2, -t_0)$.

$$P(t_0) = \int_{-\infty}^{0} \left[E_0'(\tau + t_0)e^{-2\sigma\tau} + E_{0n}'(\tau - t_0) \right] \cos(\omega_0(t_2, t_0)\tau) d\tau$$
$$+ \int_{-\infty}^{0} \left[E_0'(\tau - t_0)e^{-2\sigma\tau} + E_{0n}'(\tau + t_0) \right] \cos(\omega_0(t_2, t_0)\tau) d\tau = 0$$
(4)

1.5. Step 5: Final Step

We set $t_0 = t_1$ and $t_2 = t_{2c} = Kt_1$, for positive integer K, such that $\omega_z(t_{2c}, t_1)t_1 = \pi$ and substitute in the equation for $R(t_2, t_0)$ in Eq. 3 and show that this leads to the result in Eq. 5.

$$\int_0^{t_1} (E_0(\tau - t_{2c}) - E_0(\tau + t_{2c}))(\cosh(2\sigma t_1) - \cosh(2\sigma \tau)) \sin(\omega_2(t_{2c}, t_1)\tau) d\tau = 0$$
(5)

We show that the **each** of the terms in the integrand in Eq. 5 are **greater than zero**, in the interval $\tau = [0, t_1]$ where $t_1 > 0$. For $\omega_z(t_{2c}, t_1)t_1 = \pi$, we see that $\omega_z(t_{2c}, t_1)\tau = \frac{\pi}{t_1}\tau$ lies in the range $[0, \pi]$ and hence $\sin(\omega_z(t_{2c}, t_1)\tau) > 0$ in that interval $\tau = [0, t_1]$.

Hence the result in Eq. 5 leads to a **contradiction** for $0 < \sigma < \frac{1}{2}$.

We have shown this result for $0 < \sigma < \frac{1}{2}$ and then use the property $\xi(\frac{1}{2} + \sigma + i\omega) = \xi(\frac{1}{2} - \sigma - i\omega)$ to show the result for $-\frac{1}{2} < \sigma < 0$. Hence we have produced a **contradiction** of **Statement 1** that the Fourier Transform of the function $E_p(t) = E_0(t)e^{-\sigma t}$ has a zero at $\omega = \omega_0$ for $0 < |\sigma| < \frac{1}{2}$.

2. An Approach towards Riemann's Hypothesis

Theorem 1: Riemann's Xi function $\xi(\frac{1}{2}+\sigma+i\omega)=E_{p\omega}(\omega)$ does not have zeros for any real value of $-\infty < \omega < \infty$, for $0<|\sigma|<\frac{1}{2}$, corresponding to the critical strip excluding the critical line, given that $E_0(t)=E_0(-t)$ is an even function of variable t, where $E_p(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}E_{p\omega}(\omega)e^{i\omega t}d\omega$, $E_p(t)=E_0(t)e^{-\sigma t}$ and $E_0(t)=2\sum_{n=1}^{\infty}[2\pi^2n^4e^{4t}-3\pi n^2e^{2t}]e^{-\pi n^2e^{2t}}e^{\frac{t}{2}}$.

Proof: We assume that Riemann Hypothesis is false and prove its truth using proof by contradiction.

Statement 1: Let us assume that Riemann's Xi function $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ has a zero at $\omega = \omega_0$ where ω_0 is real and finite and $0 < |\sigma| < \frac{1}{2}$, corresponding to the critical strip excluding the critical line. We will prove that this assumption leads to a **contradiction**.

We will prove it for $0 < \sigma < \frac{1}{2}$ first and then use the property $\xi(\frac{1}{2} + \sigma + i\omega) = \xi(\frac{1}{2} - \sigma - i\omega)$ to show the result for $-\frac{1}{2} < \sigma < 0$ and hence show the result for $0 < |\sigma| < \frac{1}{2}$.

We know that $\omega_0 \neq 0$, because $\zeta(s)$ has no zeros on the real axis between 0 and 1, when $s = \frac{1}{2} + \sigma + i\omega$ is real, $\omega = 0$ and $0 < |\sigma| < \frac{1}{2}$. [3] This is shown in detail in first two paragraphs in Appendix C.1.

2.1. New function g(t)

Let us consider the function $E'_p(t) = e^{\sigma t_2} E_p(t+t_2) = E_0(t+t_2) e^{-\sigma t} = E'_0(t) e^{-\sigma t}$, where t_2 is finite and real, and $E'_0(t) = E_0(t+t_2)$. Its Fourier transform is given by $E'_{p\omega}(\omega) = E_{p\omega}(\omega) e^{\sigma t_2} e^{i\omega t_2}$ which has a zero at the same $\omega = \omega_0$.

Let us consider the function $f(t) = e^{\sigma t_0} E_p'(t+t_0) = E_0(t+t_2+t_0) e^{-\sigma t}$ where $|t_0| \leq \infty$ and we can see that the Fourier Transform of this function $F(\omega) = e^{\sigma t_0} E_{p\omega}'(\omega) e^{i\omega t_0}$ also has a zero at $\omega = \omega_0$.

Let us consider a new function $g(t) = g_-(t)u(-t) + g_+(t)u(t)$ where g(t) is a real function of variable t and u(t) is Heaviside unit step function and $g_-(t) = f(t)e^{-\sigma t}$ and $g_+(t) = f(t)e^{\sigma t}$. We can see that g(t)h(t) = f(t) where $h(t) = [e^{\sigma t}u(-t) + e^{-\sigma t}u(t)]$.

We can show that $E_p(t), E_p'(t), h(t), g(t)$ are real absolutely integrable functions and go to zero as $t \to \pm \infty$. Hence their respective Fourier transforms given by $E_{p\omega}(\omega), E_{p\omega}'(\omega), H(\omega), G(\omega)$ are finite for $|\omega| \le \infty$ and go to zero as $|\omega| \to \infty$, as per Riemann Lebesgue Lemma (link). This is shown in detail in Appendix C.1.

We can see that g(t) is a real L^1 integrable function, its Fourier transform $G(\omega)$ is finite for $|\omega| < \infty$ and goes to zero as $\omega \to \pm \infty$, as per **Riemann-Lebesgue Lemma**[Riemann Lebesgue Lemma]. This is explained in detail in Appendix C.1.

If we take the Fourier transform of the equation g(t)h(t) = f(t) where $h(t) = [e^{\sigma t}u(-t) + e^{-\sigma t}u(t)]$, we get $\frac{1}{2\pi}[G(\omega)*H(\omega)] = F(\omega) = E'_{p\omega}(\omega)e^{\sigma t_0}e^{i\omega t_0} = F_R(\omega) + iF_I(\omega)$ as per convolution theorem (link), where * denotes convolution operation given by $F(\omega) = \frac{1}{2\pi}\int_{-\infty}^{\infty}G(\omega')H(\omega-\omega')d\omega'$ and $H(\omega) = H_R(\omega) = [\frac{1}{\sigma-i\omega} + \frac{1}{\sigma+i\omega}] = \frac{2\sigma}{(\sigma^2+\omega^2)}$ is real and is the Fourier transform of the function h(t) and $G(\omega) = G_R(\omega) + iG_I(\omega)$ is the Fourier transform of the function g(t). This is shown in detail in Appendix B.1.

For a given fixed value of t_2 , for **every value** of t_0 , we require the Fourier transform of the function f(t) given by $F(\omega)$ to have a zero at $\omega = \omega_0$. This implies that the Fourier transform of the **odd** function $g_{odd}(t)$ given by $G_I(\omega)$ must have **at least one real zero** at $\omega = \omega_z(t_2, t_0)$ for **every value** of t_0 , for a given fixed value of t_2 . Because $H(\omega) = \frac{2\sigma}{(\sigma^2 + \omega^2)}$ does not have real zeros, if $G_I(\omega)$ does not have real zeros, then $F_I(\omega) = G_I(\omega) * H_R(\omega)$ obtained by the convolution of $H_R(\omega)$ and $G_I(\omega)$, cannot possibly have real zeros, which goes against **Statement 1**.

We can write $g(t) = g_{even}(t) + g_{odd}(t)$ where $g_{even}(t)$ is an even function and $g_{odd}(t)$ is an odd function of variable t. If Statement 1 is true, then the **imaginary** part of the Fourier transform of the **odd function** $g_{odd}(t) = \frac{1}{2}[g(t) - g(-t)]$ given by $G_I(\omega)$ must have **at least one zero** at $\omega = \omega_z(t_2, t_0) \neq 0$ where $\omega_z(t_2, t_0)$ is real and finite and can be different from ω_0 in general. We call this **Statement 2**.

Because $H(\omega) = \frac{2\sigma}{(\sigma^2 + \omega^2)}$ is real and does not have zeros for any finite value of ω , **if** $G_I(\omega)$ does not have at least one zero for some $\omega = \omega_z(t_2, t_0) \neq 0$, **then** the **imaginary part** of $F(\omega)$ given by $F_I(\omega) = \frac{1}{2\pi}[G_I(\omega) * H(\omega)]$, obtained by the convolution of $H(\omega)$ and $G_I(\omega)$, **cannot** possibly have zeros for any non-zero finite value of ω , which goes against **Statement 1**. This is shown in detail in Lemma 1.

Lemma 1: If Riemann's Xi function $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ has a zero at $\omega = \omega_0 \neq 0$ where ω_0 is real and finite, then the **imaginary** part of the Fourier transform of the **odd function** $g_{odd}(t) = \frac{1}{2}[g(t) - g(-t)]$ given by $G_I(\omega)$ must have **at least one zero** at $\omega = \omega_z(t_2, t_0) \neq 0$ for **every value** of t_0 , for a given fixed value of t_2 , where $\omega_z(t_2, t_0)$ is real and finite, where $g(t)h(t) = f(t) = e^{\sigma t_0}E'_p(t+t_0)$ and $h(t) = e^{\sigma t}u(-t) + e^{-\sigma t}u(t)$ and $0 < \sigma < \frac{1}{2}$.

Proof: If $E_{p\omega}(\omega)$ has a zero at finite $\omega = \omega_0 \neq 0$ to satisfy Statement 1, then $F(\omega) = E'_{p\omega}(\omega)e^{\sigma t_0}e^{i\omega t_0} = E_{p\omega}(\omega)e^{\sigma t_2}e^{i\omega t_2}e^{i\omega t_2}e^{i\omega t_0}$ also has a zero at the same location $\omega = \omega_0 \neq 0$.

Let us consider the case where $G_I(\omega)$ does not have at least one zero for finite $\omega = \omega_z(t_2, t_0) \neq 0$ and show that $F_I(\omega)$ does not have at least one zero at finite $\omega \neq 0$ for this case, which **contradicts** Statement 1. Given that $H(\omega)$

is real, we can write the convolution theorem only for the imaginary parts as follows.

$$F_I(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G_I(\omega') H(\omega - \omega') d\omega'$$
 (6)

We can show that the above integral converges for all $|\omega| \leq \infty$, given that $G(\omega)$ and $H(\omega)$ have fall-off rate of $\frac{1}{\omega^2}$ as $|\omega| \to \infty$ because the first derivatives of g(t) and h(t) are discontinuous at t = 0. (Appendix C.2)

We substitute $H(\omega) = \frac{2\sigma}{(\sigma^2 + \omega^2)}$ in Eq. 6 and we get

$$F_I(\omega) = \frac{\sigma}{\pi} \int_{-\infty}^{\infty} G_I(\omega') \frac{1}{(\sigma^2 + (\omega - \omega')^2)} d\omega'$$
 (7)

We can split the integral in Eq. 7 as follows.

$$F_I(\omega) = \frac{\sigma}{\pi} \left[\int_{-\infty}^0 G_I(\omega') \frac{1}{(\sigma^2 + (\omega - \omega')^2)} d\omega' + \int_0^\infty G_I(\omega') \frac{1}{(\sigma^2 + (\omega - \omega')^2)} d\omega' \right]$$
(8)

We see that $G_I(-\omega) = -G_I(\omega)$ because g(t) is a real function (Appendix B.2). We can substitute $\omega' = -\omega''$ in the first integral in Eq. 8 and substituting $\omega'' = \omega'$ in the result, we can write as follows.

$$F_I(\omega) = \frac{\sigma}{\pi} \int_0^\infty G_I(\omega') \left[\frac{1}{(\sigma^2 + (\omega - \omega')^2)} - \frac{1}{(\sigma^2 + (\omega + \omega')^2)} \right] d\omega'$$
(9)

In Appendix C.1 last paragraph, it is shown that $G(\omega)$ is finite for $|\omega| \leq \infty$ and goes to zero as $|\omega| \to \infty$. We can see that for $\omega' = 0$ and $\omega' = \infty$, the integrand in Eq. 9 is zero. For finite $\omega > 0$, and $0 < \omega' < \infty$, we can see that the term $\frac{1}{(\sigma^2 + (\omega - \omega')^2)} - \frac{1}{(\sigma^2 + (\omega + \omega')^2)} > 0$.

• Case 1: $G_I(\omega') > 0$ for all finite $\omega' > 0$

We see that $F_I(\omega) > 0$ for all finite $\omega > 0$. We see that $F_I(-\omega) = -F_I(\omega)$ because $E_p(t)$ is a real function (Appendix B.2). Hence $F_I(\omega) < 0$ for all finite $\omega < 0$.

This **contradicts** Statement 1 which requires $F_I(\omega)$ to have at least one zero at finite $\omega \neq 0$ because we showed that $\omega_0 \neq 0$ in **Section 2** paragraph 5. Therefore $G_I(\omega')$ must have **at least one zero** at $\omega' = \omega_z(t_2, t_0) \neq 0$, where $\omega_z(t_2, t_0)$ is real and finite.

• Case 2: $G_I(\omega') < 0$ for all finite $\omega' > 0$

We see that $F_I(\omega) < 0$ for all finite $\omega > 0$. We see that $F_I(-\omega) = -F_I(\omega)$ because $E_p(t)$ is a real function (Appendix B.2). Hence $F_I(\omega) > 0$ for all finite $\omega < 0$.

This **contradicts** Statement 1 which requires $F_I(\omega)$ to have at least one zero at finite $\omega \neq 0$. Therefore $G_I(\omega')$ must have **at least one zero** at $\omega' = \omega_z(t_2, t_0) \neq 0$, where $\omega_z(t_2, t_0)$ is real and finite.

We have shown that, $G_I(\omega)$ must have at least one zero at finite $\omega = \omega_z(t_2, t_0) \neq 0$ to satisfy **Statement 1**. We call this **Statement 2**. We will investigate if Statement 2 leads to a contradiction for $0 < \sigma < \frac{1}{2}$.

2.2. On the zeros of a related function $G(\omega)$

We can compute the fourier transform of the function $g_{odd}(t) = \frac{1}{2}[g(t) - g(-t)]$ given by $G_I(\omega)$. We require $G_I(\omega) = 0$ for $\omega = \omega_z(t_2, t_0)$ for **every value** of t_0 , to satisfy **Statement 1**. In general, $\omega_z(t_2, t_0) \neq \omega_0$.

First we compute the fourier transform of the function g(t) given by $G(\omega) = G_R(\omega) + iG_I(\omega)$. We use $g(t) = e^{\sigma t_0} E'_p(t+t_0) e^{-\sigma t} u(-t) + e^{\sigma t_0} E'_p(t+t_0) e^{\sigma t} u(t)$.

$$G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-i\omega t}dt = \int_{-\infty}^{0} g_{-}(t)e^{-i\omega t}dt + \int_{0}^{\infty} g_{+}(t)e^{-i\omega t}dt$$

$$G(\omega) = \int_{-\infty}^{0} e^{\sigma t_{0}} E'_{p}(t+t_{0})e^{-\sigma t}e^{-i\omega t}dt + \int_{0}^{\infty} e^{\sigma t_{0}} E'_{p}(t+t_{0})e^{\sigma t}e^{-i\omega t}dt$$
(10)

We use $E_p'(t) = E_0'(t)e^{-\sigma t}$ where $E_0'(t) = E_0(t+t_2)$ and $E_p'(t+t_0) = E_0'(t+t_0)e^{-\sigma t}e^{-\sigma t_0}$. Substituting t=-t in the second integral in Eq. 10, we have

$$G(\omega) = \int_{-\infty}^{0} E'_0(t+t_0)e^{-2\sigma t}e^{-i\omega t}dt + \int_{0}^{\infty} E'_0(t+t_0)e^{-i\omega t}dt$$

$$G(\omega) = \int_{-\infty}^{0} E'_0(t+t_0)e^{-2\sigma t}e^{-i\omega t}dt + \int_{-\infty}^{0} E'_0(-t+t_0)e^{i\omega t}dt$$
(11)

We define $E'_{0n}(t) = E'_{0}(-t)$ and get $E'_{0}(-t+t_{0}) = E'_{0n}(t-t_{0})$ and write Eq. 11 as follows.

$$G(\omega) = \int_{-\infty}^{0} E_0'(t+t_0)e^{-2\sigma t}e^{-i\omega t}dt + \int_{-\infty}^{0} E_{0n}'(t-t_0)e^{i\omega t}dt = G_R(\omega) + iG_I(\omega)$$
(12)

The above equations can be expanded as follows using the identity $e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)$. Comparing the imaginary parts of $G(\omega)$, we have

$$G_{I}(\omega) = -\int_{-\infty}^{0} E'_{0}(t+t_{0})e^{-2\sigma t}\sin(\omega t)dt + \int_{-\infty}^{0} E'_{0n}(t-t_{0})\sin(\omega t)dt$$
(13)

We require $G_I(\omega) = 0$ for $\omega = \omega_z(t_2, t_0)$ for every value of t_0 , for every given fixed value of t_2 , to satisfy **Statement 1**. Hence we can see that $R(t_2, t_0) = -G_I(\omega_z(t_2, t_0)) = 0$ and we can write as follows using $t = \tau$.

$$R(t_{2}, t_{0}) = \int_{-\infty}^{0} \left[E_{0}'(\tau + t_{0})e^{-2\sigma\tau} - E_{0n}'(\tau - t_{0}) \right] \sin(\omega_{z}(t_{2}, t_{0})\tau) d\tau = 0$$
(14)

We can rewrite Eq. 14 as follows, using the substitution $\tau + t_0 = \tau'$ in the first integral and $\tau - t_0 = \tau''$ in the second integral and substituting back $\tau' = \tau$ and $\tau'' = \tau$.

$$R(t_{2},t_{0}) = e^{2\sigma t_{0}} \left[\cos\left(\omega_{z}(t_{2},t_{0})t_{0}\right) \int_{-\infty}^{t_{0}} E_{0}'(\tau)e^{-2\sigma\tau} \sin\left(\omega_{z}(t_{2},t_{0})\tau\right)d\tau - \sin\left(\omega_{z}(t_{2},t_{0})t_{0}\right) \int_{-\infty}^{t_{0}} E_{0}'(\tau)e^{-2\sigma\tau} \cos\left(\omega_{z}(t_{2},t_{0})\tau\right)d\tau\right] - \left[\cos\left(\omega_{z}(t_{2},t_{0})t_{0}\right) \int_{-\infty}^{-t_{0}} E_{0n}'(\tau) \sin\left(\omega_{z}(t_{2},t_{0})\tau\right)d\tau + \sin\left(\omega_{z}(t_{2},t_{0})t_{0}\right) \int_{-\infty}^{-t_{0}} E_{0n}'(\tau) \cos\left(\omega_{z}(t_{2},t_{0})\tau\right)d\tau\right] = 0$$

Now we replace t_0 by $-t_0$ in f(t) and consider the function $f_2(t) = e^{-\sigma t_0} E_p'(t-t_0)$ where $|t_0| \le \infty$ and use the procedure in above section and we can write as follows.

$$R(t_{2}, -t_{0}) = \int_{-\infty}^{0} \left[E_{0}'(\tau - t_{0})e^{-2\sigma\tau} - E_{0n}'(\tau + t_{0}) \right] \sin(\omega_{z}(t_{2}, -t_{0})\tau) d\tau = 0$$

$$R(t_{2}, t_{0}) + R(t_{2}, -t_{0}) = \int_{-\infty}^{0} \left[E_{0}'(\tau + t_{0})e^{-2\sigma\tau} - E_{0n}'(\tau - t_{0}) \right] \sin(\omega_{z}(t_{2}, t_{0})\tau) d\tau$$

$$+ \int_{-\infty}^{0} \left[E_{0}'(\tau - t_{0})e^{-2\sigma\tau} - E_{0n}'(\tau + t_{0}) \right] \sin(\omega_{z}(t_{2}, -t_{0})\tau) d\tau = 0$$

$$(16)$$

2.3. $\omega_z(t_2,t_0)$ is an even function of variable t_0

Now we consider the function $f_T(t) = f(t) + f_2(t) = e^{\sigma t_0} E_p'(t+t_0) + e^{-\sigma t_0} E_p'(t-t_0)$ where $|t_0| \leq \infty$ and $g_T(t)h(t) = f_T(t)$ where $g_T(t) = f_T(t)e^{-\sigma t}u(-t) + f_T(t)e^{\sigma t}u(t)$ and $h(t) = [e^{\sigma t}u(-t) + e^{-\sigma t}u(t)]$ and compute the Fourier transform of the function $g_T(t)$ and compute its imaginary part using the procedure in above section, similar to Eq. 13 and we can write as follows.

$$G_{T_{I}}(\omega, t_{0}) = G_{1}(\omega, t_{0}) + G_{1}(\omega, -t_{0})$$

$$G_{1}(\omega, t_{0}) = -\int_{-\infty}^{0} E_{0}'(t + t_{0})e^{-2\sigma t} \sin(\omega t)dt + \int_{-\infty}^{0} E_{0n}'(t - t_{0})\sin(\omega t)dt$$

$$G_{T_{I}}(\omega, t_{0}) = -\left[\int_{-\infty}^{0} \left[E_{0}'(\tau + t_{0})e^{-2\sigma \tau} - E_{0n}'(\tau - t_{0})\right]\sin(\omega \tau)d\tau + \int_{-\infty}^{0} \left[E_{0}'(\tau - t_{0})e^{-2\sigma \tau} - E_{0n}'(\tau + t_{0})\right]\sin(\omega \tau)d\tau\right]$$

$$(17)$$

We require $G_{T_I}(\omega, t_0) = 0$ for $\omega = \omega_0(t_2, t_0)$ for every value of t_0 , for **every given fixed value** of t_2 , to satisfy **Statement 1**. In general $\omega_0(t_2, t_0) \neq \omega_z(t_2, t_0)$. Hence we can see that $P(t_2, t_0) = -G_{T_I}(\omega_0(t_2, t_0)) = 0$ and we can rewrite as follows using the substitution $t = \tau$.

$$P(t_{2}, t_{0}) = \int_{-\infty}^{0} \left[E'_{0}(\tau + t_{0})e^{-2\sigma\tau} - E'_{0n}(\tau - t_{0}) \right] \sin(\omega_{0}(t_{2}, t_{0})\tau) d\tau$$

$$+ \int_{-\infty}^{0} \left[E'_{0}(\tau - t_{0})e^{-2\sigma\tau} - E'_{0n}(\tau + t_{0}) \right] \sin(\omega_{0}(t_{2}, t_{0})\tau) d\tau = 0$$

$$(18)$$

We see that $f_T(t) = e^{\sigma t_0} E_p'(t+t_0) + e^{-\sigma t_0} E_p'(t-t_0)$ is **unchanged** by the substitution $t_0 = -t_0$ and hence $\omega_0(t_2, t_0)$ is an **even** function of variable t_0 , for **every fixed value** of t_2 . Hence we can rewrite the second integral in Eq. 18 as follows using $\omega_0(t_2, t_0) = \omega_0(t_2, -t_0)$.

$$\int_{-\infty}^{0} \left[E_0'(\tau + t_0)e^{-2\sigma\tau} - E_{0n}'(\tau - t_0) \right] \sin(\omega_0(t_2, t_0)\tau) d\tau$$
$$+ \int_{-\infty}^{0} \left[E_0'(\tau - t_0)e^{-2\sigma\tau} - E_{0n}'(\tau + t_0) \right] \sin(\omega_0(t_2, -t_0)\tau) d\tau = 0$$

We compare Eq. 19 and Eq. 16 as follows.

$$\int_{-\infty}^{0} \left[E_0'(\tau + t_0) e^{-2\sigma\tau} - E_{0n}'(\tau - t_0) \right] \sin(\omega_0(t_2, t_0)\tau) d\tau
+ \int_{-\infty}^{0} \left[E_0'(\tau - t_0) e^{-2\sigma\tau} - E_{0n}'(\tau + t_0) \right] \sin(\omega_0(t_2, -t_0)\tau) d\tau = 0
\int_{-\infty}^{0} \left[E_0'(\tau + t_0) e^{-2\sigma\tau} - E_{0n}'(\tau - t_0) \right] \sin(\omega_z(t_2, t_0)\tau) d\tau
+ \int_{-\infty}^{0} \left[E_0'(\tau - t_0) e^{-2\sigma\tau} - E_{0n}'(\tau + t_0) \right] \sin(\omega_z(t_2, -t_0)\tau) d\tau = 0$$
(20)

We can see that there must be **at least one** common solution where $\omega_z(t_2, t_0) = \omega_0(t_2, t_0)$ to satisfy Eq. 20. Because $\omega_0(t_2, t_0)$ is an **even** function of variable t_0 , for **every fixed value** of t_2 , we see that $\omega_z(t_2, t_0) = \omega_0(t_2, t_0)$ is also an **even** function of variable t_0 , for **every fixed value** of t_2 .

Given that $E_p'(t) = e^{\sigma t_2} E_p(t+t_2)$, we see that $f(t) = e^{\sigma t_0} E_p'(t+t_0) = e^{\sigma t_0} e^{\sigma t_2} E_p(t+t_2+t_0)$ is **unchanged** if we interchange the variables t_2 and t_0 and hence the location of the zeros in Fourier transform of $g(t,t_0,t_2)$ represented by $\omega_z(t_2,t_0)$ remain the same. Hence $\omega_z(t_2,t_0) = \omega_z(t_0,t_2)$. Given that, for **every value** of t_2 , $\omega_z(t_2,t_0) = \omega_z(t_2,-t_0)$, we see that $\omega_z(t_0,t_2) = \omega_z(t_0,-t_2)$.

The results in this section apply **only** for the case $0 < \sigma < \frac{1}{2}$. For $\sigma = 0$, $g_T(t) = E_0'(t+t_0) + E_0'(t-t_0)$ is an even function of variable t_0 and $2g_{T_{odd}}(t) = g_T(t) - g_T(-t) = 0$ and hence $G_{T_I}(\omega) = 0$ for all $|\omega| \le \infty$.

3. Show that $\omega_z(t_2, t_0) = \omega_z(t_2 + t_0) = \omega_c$

In this section, we show that $\omega_z(t_2, t_0) = \omega_z(t_2 + t_0) = \omega_c$, where ω_c is a zero of the Fourier transform of $E_0(t)$ given by $E_{0\omega}(\omega) = \xi(\frac{1}{2} + i\omega)$ on the **critical line**, for all t_0, t_2 .

From Section 2.1, we see that $f(t) = e^{\sigma t_0} E_p'(t+t_0) = E_0(t+t_2+t_0)e^{-\sigma t}$, where $E_p'(t) = e^{\sigma t_2} E_p(t+t_2)$ and $E_p(t) = E_0(t)e^{-\sigma t}$. We **define** $t_p = t_2 + t_0$ and write $f(t) = E_0(t+t_p)e^{-\sigma t}$.

In Section 2.2, we form $g(t) = f(t)e^{-\sigma t}u(-t) + f(t)e^{\sigma t}u(t)$ and compute the imaginary part of its Fourier transform given by $G_I(\omega)$ which has at least one zero at $\omega = \omega_z(t_2, t_0)$. In Section 2.3, we showed that $\omega_z(t_2, t_0) = \omega_z(t_2, -t_0) = \omega_0(t_2, t_0)$. Given that $f(t) = E_0(t + t_p)e^{-\sigma t}$, we see that $\omega_z(t_2, t_0) = \omega_z(0, t_2 + t_0) = \omega_z(t_p) = \omega_0(t_p)$. Hence we can write Eq. 18 as follows.

$$P(t_{2}, t_{0}) = \int_{-\infty}^{0} \left[E_{0}'(\tau + t_{0})e^{-2\sigma\tau} - E_{0n}'(\tau - t_{0}) \right] \sin(\omega_{0}(t_{2}, t_{0})\tau) d\tau$$

$$+ \int_{-\infty}^{0} \left[E_{0}'(\tau - t_{0})e^{-2\sigma\tau} - E_{0n}'(\tau + t_{0}) \right] \sin(\omega_{0}(t_{2}, t_{0})\tau) d\tau = 0$$
(21)

Now we substitute $\omega_0(t_2, t_0) = \omega_0(t_p)$ and take the first and last term in Eq. 21 and write as follows, where $P_{odd}(t_2, t_0)$ is an **odd** function of variable t_0 , for a given value of t_2 .

$$P_{odd}(t_2, t_0) = \int_{-\infty}^{0} \left[E_0'(\tau + t_0)e^{-2\sigma\tau} - E_{0n}'(\tau + t_0) \right] \sin(\omega_0(t_p)\tau) d\tau$$

We see that $E'_0(\tau + t_0) = E_0(\tau + t_2 + t_0)$, given that $E'_0(\tau) = E_0(\tau + t_2)$. In Section 2.2, we defined $E'_{0n}(\tau) = E'_0(-\tau)$ and $E'_0(\tau) = E_0(\tau + t_2)$. Hence $E'_0(\tau - t_0) = E_0(\tau + t_2 - t_0)$ and $E'_0(-\tau - t_0) = E_0(-\tau + t_2 - t_0)$. We **define** $t_n = t_2 - t_0$ and given that $E_0(-\tau + t_n) = E_0(\tau - t_n)$, we see that $E'_0(-\tau - t_0) = E_0(\tau - t_n)$. Hence we see that $E'_0(\tau + t_0) = E'_0(\tau - t_0) = E_0(\tau - t_0)$. Hence we write as follows.

$$P_{odd}(t_2, t_0) = \int_{-\infty}^{0} \left[E_0(\tau + t_2 + t_0)e^{-2\sigma\tau} - E_0(\tau - (t_2 - t_0)) \right] \sin(\omega_0(t_p)\tau) d\tau$$
(23)

We derived earlier in this section that $\omega_z(t_2, t_0) = \omega_z(0, t_2 + t_0) = \omega_z(t_p) = \omega_0(t_p)$. Given that $\omega_0(t_2, t_0) = \omega_z(t_2, t_0)$, we get $\omega_0(t_2, t_0) = \omega_0(0, t_2 + t_0) = \omega_0(t_p)$. We consider $P_{odd}(t_2, t_0)$ in Eq. 22 and derive a **related** expression $P'_{odd}(t_2, t_0)$, by setting $t_2 = 0$ and **replacing** t_0 by $t_p = t_2 + t_0$ as follows. We get $E'_0(\tau) = E_0(\tau + t_2) = E_0(\tau)$. We see that $E'_{0n}(\tau) = E'_0(\tau) = E_0(\tau) = E_0(\tau)$.

We note that the zero crossing point $\omega_0(t_p)$ remains the **same**, given that $\omega_0(t_2, t_0) = \omega_0(0, t_2 + t_0)$. In general, $P'_{odd}(t_2, t_0) \neq P_{odd}(t_2, t_0)$, where $P'_{odd}(t_2, t_0)$ is an **odd** function of variable t_0 , for a given value of t_2 .

$$P'_{odd}(t_2, t_0) = \int_{-\infty}^{0} \left[E_0(\tau + t_p) e^{-2\sigma\tau} - E_0(\tau + t_p) \right] \sin(\omega_0(t_p)\tau) d\tau$$

$$= \int_{-\infty}^{0} \left[E_0(\tau + t_2 + t_0) e^{-2\sigma\tau} - E_0(\tau + t_2 + t_0) \right] \sin(\omega_0(t_p)\tau) d\tau$$
(24)

We subtract Eq. 24 from Eq. 23 and cancel the common term as follows.

$$P_{odd}(t_2, t_0) - P'_{odd}(t_2, t_0) = \int_{-\infty}^{0} \left[E_0(\tau + t_2 + t_0) - E_0(\tau - (t_2 - t_0)) \right] \sin(\omega_0(t_p)\tau) d\tau$$
(25)

We set $t_0 = 0$ and write as follows. We get $t_p = t_2 + t_0 = t_2$, $P'_{odd}(t_2, t_0) = 0$ and $P_{odd}(t_2, t_0) = 0$, because they are **odd** functions of variable t_0 , for a given value of t_2 .

$$\int_{-\infty}^{0} \left[E_0(\tau + t_2) - E_0(\tau - t_2) \right] \sin(\omega_0(t_2)\tau) d\tau = 0$$
(26)

We substitute $\tau + t_2 = \tau'$ in the first term and $\tau - t_2 = \tau''$ in the second term in Eq. 26 and then substitute $\tau' = \tau$ and $\tau'' = \tau$ as follows.

$$X(t_2) = \cos(\omega_0(t_2)t_2) \int_{-\infty}^{t_2} E_0(\tau) \sin(\omega_0(t_2)\tau) d\tau - \sin(\omega_0(t_2)t_2) \int_{-\infty}^{t_2} E_0(\tau) \cos(\omega_0(t_2)\tau) d\tau$$
(27)

We can see that $X(t_2) = X(-t_2) = X_{even}(t_2)$ is an **even** function of variable t_2 .

$$X_{even}(t_2) = \cos{(\omega_0(t_2)t_2)} \int_{-\infty}^{t_2} E_0(\tau) \sin{(\omega_0(t_2)\tau)} d\tau - \sin{(\omega_0(t_2)t_2)} \int_{-\infty}^{t_2} E_0(\tau) \cos{(\omega_0(t_2)\tau)} d\tau$$

We know that the Fourier transform of $E_0(t)$ given by $E_{0\omega}(\omega) = \xi(\frac{1}{2} + i\omega)$ has **at least one zero** on the **critical** line. We consider the first zero on the critical line ω_{c1} . We define $\omega_c(t_2) = \omega_{c1}$ for all $|t_2| < \infty$. The analysis in Section 2.1 to the current section hold, if we set $\sigma = 0$ and set $\omega_z(t_2, t_0) = \omega_0(t_2, t_0) = \omega_{c1}$. We can write an expression similar to Eq. 27 as follows.

$$Y(t_{2}) = \cos(\omega_{c1}(t_{2})t_{2}) \int_{-\infty}^{t_{2}} E_{0}(\tau) \sin(\omega_{c1}(t_{2})\tau) d\tau - \sin(\omega_{c1}(t_{2})t_{2}) \int_{-\infty}^{t_{2}} E_{0}(\tau) \cos(\omega_{c1}(t_{2})\tau) d\tau$$
(29)

We see that $Y(t_2)$ is an **even** function of variable t_2 .

Hence $\omega_0(t_2) = \omega_c(t_2) = \omega_{c1}$ is **one solution** for $\omega_0(t_2)$ in Eq. 28. Hence we see that $\omega_z(t_2, t_0) = \omega_0(t_2, t_0) = \omega_{c1}$ is one solution, for all t_2, t_0 .

4. Final Proof

We write $R(t_2, t_0) = 0$ in Eq. 15 as follows. We use $E'_{0n}(\tau) = E'_{0n}(-\tau)$ and $E'_{0n}(\tau) = E_{0n}(\tau + t_2)$.

$$R(t_{2},t_{0}) = e^{2\sigma t_{0}} \left[\cos\left(\omega_{z}(t_{2},t_{0})t_{0}\right) \int_{-\infty}^{t_{0}} E_{0}'(\tau)e^{-2\sigma\tau} \sin\left(\omega_{z}(t_{2},t_{0})\tau\right)d\tau - \sin\left(\omega_{z}(t_{2},t_{0})t_{0}\right) \int_{-\infty}^{t_{0}} E_{0}'(\tau)e^{-2\sigma\tau} \cos\left(\omega_{z}(t_{2},t_{0})\tau\right)d\tau \right] - \left[\cos\left(\omega_{z}(t_{2},t_{0})t_{0}\right) \int_{-\infty}^{-t_{0}} E_{0n}'(\tau) \sin\left(\omega_{z}(t_{2},t_{0})\tau\right)d\tau + \sin\left(\omega_{z}(t_{2},t_{0})t_{0}\right) \int_{-\infty}^{-t_{0}} E_{0n}'(\tau) \cos\left(\omega_{z}(t_{2},t_{0})\tau\right)d\tau \right] = 0$$

$$(30)$$

In this section, we use the fact that $\omega_z(t_2, t_0) = \omega_{c1}$ derived in Section 3.

In Section 5, it is shown that $E_0(t)$ is **strictly decreasing** for $t \ge t_d = \frac{1}{8}$ and that the **minimum** value $Min(E_0(t)) = \frac{1}{5} = E_{min}$ in the interval $-t_d \le t \le t_d$.

Given $\omega_z(t_2, t_0) = \omega_{c1}$ is a **continuous** function of both t_0 and t_2 , we can **make sure** that $\omega_{c1}t_1 = \pi$, by finding a **suitable** value of $t_0 = t_1$ and $t_2 = t_{2c} = Kt_1$, where K is a positive integer, **such that** $E_0(t) < E_{min}$ for $t \ge t_{2c}$. Given that $\omega_z(t_2, t_0)$ is a continuous function of t_0 , for every value of t_2 , and t_0 is a continuous function, we see that the **product** of two continuous functions $\omega_z(t_2, t_0)t_0$ is a **continuous** function as well. Given that $0 < \omega_{c1} < \infty$, as t_0 is increased from zero to ∞ , we see that $\omega_{c1}t_1$ increases from zero towards ∞ in a continuous manner and will **certainly pass through** π .

We set $t_0 = t_1$ and $t_2 = t_{2c} = Kt_1$ such that $\omega_{c1}t_1 = \pi$ in Eq. 30 as follows.

$$e^{2\sigma t_1} \int_{-\infty}^{t_1} E_0'(\tau) e^{-2\sigma \tau} \sin(\omega_{c1}\tau) d\tau = \int_{-\infty}^{-t_1} E_{0n}'(\tau) \sin(\omega_{c1}\tau) d\tau$$
(31)

We split the integral in the left hand side of Eq. 31 and write as follows.

$$\int_{-\infty}^{t_1} E_0'(\tau) e^{-2\sigma\tau} \sin(\omega_{c1}\tau) d\tau = e^{-2\sigma t_1} \int_{-\infty}^{-t_1} E_{0n}'(\tau) \sin(\omega_{c1}\tau) d\tau
\int_{-\infty}^{-t_1} E_0'(\tau) e^{-2\sigma\tau} \sin(\omega_{c1}\tau) d\tau + \int_{-t_1}^{t_1} E_0'(\tau) e^{-2\sigma\tau} \sin(\omega_{c1}\tau) d\tau = e^{-2\sigma t_1} \int_{-\infty}^{-t_1} E_{0n}'(\tau) \sin(\omega_{c1}\tau) d\tau$$
(32)

In Eq. 30, we substitute $t_0 = -t_1$ for which $\omega_{c1}(-t_1) = -\pi$ as follows. We use $\omega_z(t_{2c}, -t_1) = \omega_{c1}$.

$$e^{-2\sigma t_{1}} \int_{-\infty}^{-t_{1}} E'_{0}(\tau) e^{-2\sigma \tau} \sin(\omega_{c1}\tau) d\tau = \int_{-\infty}^{t_{1}} E'_{0n}(\tau) \sin(\omega_{c1}\tau) d\tau$$

$$\int_{-\infty}^{-t_{1}} E'_{0}(\tau) e^{-2\sigma \tau} \sin(\omega_{c1}\tau) d\tau = e^{2\sigma t_{1}} \int_{-\infty}^{t_{1}} E'_{0n}(\tau) \sin(\omega_{c1}\tau) d\tau$$

$$= e^{2\sigma t_{1}} \left[\int_{-\infty}^{-t_{1}} E'_{0n}(\tau) \sin(\omega_{c1}\tau) d\tau + \int_{-t_{1}}^{t_{1}} E'_{0n}(\tau) \sin(\omega_{c1}\tau) d\tau \right]$$
(33)

We substitute Eq. 33 in Eq. 32 as follows and we substitute $E_0'(\tau) = E_0(\tau + t_{2c})$ and $E_{0n}'(\tau) = E_0'(-\tau) = E_0(\tau - t_{2c})$ given that $E_0(\tau) = E_0(-\tau)$.

$$\int_{-t_1}^{t_1} E_0(\tau + t_{2c}) e^{-2\sigma\tau} \sin(\omega_{c1}\tau) d\tau = e^{-2\sigma t_1} \int_{-\infty}^{-t_1} E_0(\tau - t_{2c}) \sin(\omega_{c1}\tau) d\tau
-e^{2\sigma t_1} \left[\int_{-\infty}^{-t_1} E_0(\tau - t_{2c}) \sin(\omega_{c1}\tau) d\tau + \int_{-t_1}^{t_1} E_0(\tau - t_{2c}) \sin(\omega_{c1}\tau) d\tau \right]$$
(34)

We can rearrange the terms in Eq. 34 as follows.

$$\int_{-t_1}^{t_1} \left[E_0(\tau + t_{2c}) e^{-2\sigma\tau} + E_0(\tau - t_{2c}) e^{2\sigma t_1} \right] \sin(\omega_{c1}\tau) d\tau = -2\sinh(2\sigma t_1) \int_{-\infty}^{-t_1} E_0(\tau - t_{2c}) \sin(\omega_{c1}\tau) d\tau$$
(35)

We can split the integral in Eq. 35 using $\int_{-t_1}^{t_1} = \int_{-t_1}^{0} + \int_{0}^{t_1}$ and substitute $\tau = -\tau$ in the first integral as follows. We use $E_0(-\tau + t_{2c}) = E_0(\tau - t_{2c})$ and $E_0(-\tau - t_{2c}) = E_0(\tau + t_{2c})$, given that $E_0(\tau) = E_0(-\tau)$.

$$\int_{t_1}^{0} \left[E_0(-\tau + t_{2c})e^{2\sigma\tau} + E_0(-\tau - t_{2c})e^{2\sigma t_1} \right] \sin(\omega_{c1}\tau)d\tau + \int_{0}^{t_1} \left[E_0(\tau + t_{2c})e^{-2\sigma\tau} + E_0(\tau - t_{2c})e^{2\sigma t_1} \right] \sin(\omega_{c1}\tau)d\tau \\
= -2\sinh(2\sigma t_1) \int_{-\infty}^{-t_1} E_0(\tau - t_{2c})\sin(\omega_{c1}\tau)d\tau \\
\int_{t_1}^{0} \left[E_0(\tau - t_{2c})e^{2\sigma\tau} + E_0(\tau + t_{2c})e^{2\sigma t_1} \right] \sin(\omega_{c1}\tau)d\tau + \int_{0}^{t_1} \left[E_0(\tau + t_{2c})e^{-2\sigma\tau} + E_0(\tau - t_{2c})e^{2\sigma t_1} \right] \sin(\omega_{c1}\tau)d\tau \\
= -2\sinh(2\sigma t_1) \int_{-\infty}^{-t_1} E_0(\tau - t_{2c})\sin(\omega_{c1}\tau)d\tau \\
= -2\sinh(2\sigma t_1) \int_{-\infty}^{-t_1} E_0(\tau - t_{2c})\sin(\omega_{c1}\tau)d\tau$$

Given that $\int_{t_1}^0 = -\int_0^{t_1}$, we can simplify as follows.

(36)

$$\int_{0}^{t_{1}} \left[E_{0}(\tau + t_{2c})(e^{-2\sigma\tau} - e^{2\sigma t_{1}}) + E_{0}(\tau - t_{2c})(e^{2\sigma t_{1}} - e^{2\sigma\tau}) \right] \sin(\omega_{c1}\tau) d\tau$$

$$= -2 \sinh(2\sigma t_{1}) \int_{-\infty}^{-t_{1}} E_{0}(\tau - t_{2c}) \sin(\omega_{c1}\tau) d\tau$$
(37)

We substitute $\tau = -\tau$ in the right hand side of Eq. 37 as follows. We use $E_0(-\tau - t_{2c}) = E_0(\tau + t_{2c})$.

$$\int_{0}^{t_{1}} E_{0}(\tau + t_{2c})(e^{-2\sigma\tau} - e^{2\sigma t_{1}}) \sin(\omega_{c1}\tau)d\tau + \int_{0}^{t_{1}} E_{0}(\tau - t_{2c})(e^{2\sigma t_{1}} - e^{2\sigma\tau}) \sin(\omega_{c1}\tau)d\tau
= 2 \sinh(2\sigma t_{1}) \int_{t_{1}}^{\infty} E_{0}(\tau + t_{2c}) \sin(\omega_{c1}\tau)d\tau$$
(38)

We split the integral on the right hand side in Eq. 38 as follows.

$$\int_{0}^{t_{1}} E_{0}(\tau + t_{2c})(e^{-2\sigma\tau} - e^{2\sigma t_{1}}) \sin(\omega_{c1}\tau)d\tau + \int_{0}^{t_{1}} E_{0}(\tau - t_{2c})(e^{2\sigma t_{1}} - e^{2\sigma\tau}) \sin(\omega_{c1}\tau)d\tau
= 2 \sinh(2\sigma t_{1}) \left[\int_{0}^{\infty} E_{0}(\tau + t_{2c}) \sin(\omega_{c1}\tau)d\tau - \int_{0}^{t_{1}} E_{0}(\tau + t_{2c}) \sin(\omega_{c1}\tau)d\tau \right]$$
(39)

We consolidate the integrals with the term $\int_0^{t_1} E_0(\tau + t_{2c})$ on both sides of Eq. 39 as follows. We use $2 \sinh(2\sigma t_1) = e^{2\sigma t_1} - e^{-2\sigma t_1}$.

$$\int_{0}^{t_{1}} E_{0}(\tau + t_{2c})(e^{-2\sigma\tau} - e^{-2\sigma t_{1}}) \sin(\omega_{c1}\tau)d\tau + \int_{0}^{t_{1}} E_{0}(\tau - t_{2c})(e^{2\sigma t_{1}} - e^{2\sigma\tau}) \sin(\omega_{c1}\tau)d\tau
= 2 \sinh(2\sigma t_{1}) \int_{0}^{\infty} E_{0}(\tau + t_{2c}) \sin(\omega_{c1}\tau)d\tau$$
(40)

In Section 2.3, we showed that $\omega_z(t_2, t_0) = \omega_z(t_0, t_2)$ and $\omega_z(t_0, t_2) = \omega_z(t_0, -t_2)$, for **every value** of t_2 and t_0 . Hence we see that $\omega_z(t_1, t_{2c}) = \omega_z(t_1, -t_{2c})$ and $\omega_{c1} = \omega_z(-t_{2c}, t_1)$ for our choice of $t_0 = t_1$ and $t_2 = t_{2c}$.

We substitute $\tau + t_{2c} = \tau'$ in the right hand side of Eq. 40 and then substitute $\tau' = \tau$ as follows.

$$\int_{0}^{t_{1}} E_{0}(\tau + t_{2c})(e^{-2\sigma\tau} - e^{-2\sigma t_{1}}) \sin(\omega_{c1}\tau)d\tau + \int_{0}^{t_{1}} E_{0}(\tau - t_{2c})(e^{2\sigma t_{1}} - e^{2\sigma\tau}) \sin(\omega_{c1}\tau)d\tau
= 2 \sinh(2\sigma t_{1}) \int_{t_{2c}}^{\infty} E_{0}(\tau) \sin(\omega_{c1}(\tau - t_{2c}))d\tau
= 2 \sinh(2\sigma t_{1}) [\cos(\omega_{c1})t_{2c}) \int_{t_{2c}}^{\infty} E_{0}(\tau) \sin(\omega_{c1}\tau)d\tau - \sin(\omega_{c1}t_{2c}) \int_{t_{2c}}^{\infty} E_{0}(\tau) \cos(\omega_{c1}\tau)d\tau]$$
(41)

In Eq. 41, given that $\omega_z(t_{2c}, t_1)t_1 = \pi$ and $t_{2c} = Kt_1$ and hence $\omega_z(t_{2c}, t_1)t_{2c} = K\pi$ and $\sin(\omega_{c1}t_{2c}) = 0$ and $\cos(\omega_{c1})t_{2c} = -1$ for odd integer K. Hence we write Eq. 41 as follows.

$$\int_{0}^{t_{1}} E_{0}(\tau + t_{2c})(e^{-2\sigma\tau} - e^{-2\sigma t_{1}}) \sin(\omega_{c1}\tau)d\tau + \int_{0}^{t_{1}} E_{0}(\tau - t_{2c})(e^{2\sigma t_{1}} - e^{2\sigma\tau}) \sin(\omega_{c1}\tau)d\tau
= -2 \sinh(2\sigma t_{1}) \int_{t_{2c}}^{\infty} E_{0}(\tau) \sin(\omega_{c1}\tau)d\tau$$
(42)

In Section 2.3, we showed that, for **every value** of t_{2c} , $\omega_2(t_{2c}, t_0) = \omega_2(t_{2c}, -t_0)$ and given that $\omega_z(t_{2c}, t_0) = \omega_z(t_0, t_{2c})$, we see that $\omega_z(t_0, t_{2c}) = \omega_z(t_0, -t_{2c})$.

Hence we substitute t_{2c} by $-t_{2c}$ in Eq. 42 as follows. We use $\int_{-t_{2c}}^{t_{2c}} E_0(\tau) \sin(\omega_{c1}\tau) d\tau = 0$, because $E_0(\tau) \sin(\omega_{c1}\tau)$ is an **odd** function of variable τ , given that $E_0(\tau) = E_0(-\tau)$.

$$\int_{0}^{t_{1}} E_{0}(\tau - t_{2c})(e^{-2\sigma\tau} - e^{-2\sigma t_{1}}) \sin(\omega_{c1}\tau)d\tau + \int_{0}^{t_{1}} E_{0}(\tau + t_{2c})(e^{2\sigma t_{1}} - e^{2\sigma\tau}) \sin(\omega_{c1}\tau)d\tau
= -2 \sinh(2\sigma t_{1}) \int_{-t_{2c}}^{\infty} E_{0}(\tau) \sin(\omega_{c1}\tau)d\tau = -2 \sinh(2\sigma t_{1}) [\int_{-t_{2c}}^{t_{2c}} E_{0}(\tau) \sin(\omega_{c1}\tau)d\tau + \int_{t_{2c}}^{\infty} E_{0}(\tau) \sin(\omega_{c1}\tau)d\tau]
= -2 \sinh(2\sigma t_{1}) \int_{t_{2c}}^{\infty} E_{0}(\tau) \sin(\omega_{c1}\tau)d\tau = -2 \sinh(2\sigma t_{1}) \int_{t_{2c}}^{\infty} E_{0}(\tau) \sin(\omega_{c1}\tau)d\tau$$

(43)

Now we subtract Eq. 42 from Eq. 43 as follows.

$$\int_{0}^{t_{1}} (E_{0}(\tau - t_{2c}) - E_{0}(\tau + t_{2c}))(e^{-2\sigma\tau} - e^{-2\sigma t_{1}} - e^{2\sigma t_{1}} + e^{2\sigma\tau}) \sin(\omega_{c1}\tau)d\tau = 0$$

$$2 \int_{0}^{t_{1}} (E_{0}(\tau - t_{2c}) - E_{0}(\tau + t_{2c}))(\cosh(2\sigma\tau) - \cosh(2\sigma t_{1})) \sin(\omega_{c1}\tau)d\tau = 0$$
(44)

We can divide Eq. 44 by a factor -2 as follows.

$$\int_{0}^{t_{1}} (E_{0}(\tau - t_{2c}) - E_{0}(\tau + t_{2c}))(\cosh(2\sigma t_{1}) - \cosh(2\sigma \tau))\sin(\omega_{c1}\tau)d\tau = 0$$
(45)

In Eq. 45, given that $\omega_{c1}t_1 = \pi$, as τ varies over the interval $[0, t_1]$, $\omega_{c1}\tau = \frac{\pi\tau}{t_1}$ varies from $[0, \pi]$ and hence the sinusoidal function varies over a **half cycle** and is > 0, in the interval $0 < \tau < t_1$, for $t_1 > 0$.

In Eq. 45, we see that in the interval $\tau = [0, t_1]$, the integral on the left hand side is > 0 for $t_1 > 0$, because each of the terms in the integrand are > 0, in the interval $0 < \tau < t_1$ as follows. Given that $E_0(t)$ is a **strictly decreasing** function for t > 0, we see that $E_0(\tau - t_{2c}) - E_0(\tau + t_{2c})$ is > 0 (Section 5.4). The term $(\cosh(2\sigma t_1) - \cosh(2\sigma \tau))$ is > 0 and the integrand is zero at $\tau = 0$ and $\tau = t_1$ and hence the integral **cannot** equal zero, as required by the right hand side of Eq. 45. Hence this leads to a **contradiction** for $0 < \sigma < \frac{1}{2}$.

For $\sigma = 0$, both sides of Eq. 45 is zero and **does not** lead to a contradiction. It should be noted that the results from Section 2.3 to Section 4 are valid only for $\sigma \neq 0$.

We have shown this result for $0 < \sigma < \frac{1}{2}$ and then use the property $\xi(\frac{1}{2} + \sigma + i\omega) = \xi(\frac{1}{2} - \sigma - i\omega)$ to show the result for $-\frac{1}{2} < \sigma < 0$. Hence we have produced a **contradiction** of **Statement 1** that the Fourier Transform of

the function $E_p(t) = E_0(t)e^{-\sigma t}$ has a zero at $\omega = \omega_0$ for $0 < |\sigma| < \frac{1}{2}$.

Therefore, the assumption in **Statement 1** that Riemann's Xi Function given by $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ has a zero at $\omega = \omega_0$, where ω_0 is real and finite, leads to a **contradiction** for the region $0 < |\sigma| < \frac{1}{2}$ which corresponds to the critical strip excluding the critical line. This means $\zeta(s)$ does not have non-trivial zeros in the critical strip excluding the critical line and we have proved Riemann's Hypothesis.

5. Strictly decreasing $E_0(t)$ for $t \geq \frac{1}{8}$

It is well known that $E_0(t) = \Phi(t)$ is positive for t > 0 and its first derivative is negative for t > 0 and hence $E_0(t)$ is a **strictly decreasing** function for t > 0.(link and link) In this section, we derive the loose bound that $\frac{dE_0(t)}{dt} \leq 0$ for $t \geq \frac{1}{8}$.

Let us consider $E_0(t) = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}}$. (link)

$$E_{0}(t) = \Phi(t) = 2 \sum_{n=1}^{\infty} [2\pi^{2} n^{4} e^{4t} - 3\pi n^{2} e^{2t}] e^{-\pi n^{2} e^{2t}} e^{\frac{t}{2}} = \sum_{n=1}^{\infty} [4\pi^{2} n^{4} e^{4t} - 6\pi n^{2} e^{2t}] e^{-\pi n^{2} e^{2t}} e^{\frac{t}{2}}$$

$$E_{0}(t) = \sum_{n=1}^{\infty} 2\pi n^{2} e^{-\pi n^{2} e^{2t}} e^{\frac{t}{2}} [2\pi n^{2} e^{4t} - 3e^{2t}]$$

$$\frac{dE_{0}(t)}{dt} = \sum_{n=1}^{\infty} 2\pi n^{2} e^{-\pi n^{2} e^{2t}} e^{\frac{t}{2}} [8\pi n^{2} e^{4t} - 6e^{2t} + (2\pi n^{2} e^{4t} - 3e^{2t})(\frac{1}{2} - 2\pi n^{2} e^{2t})]$$

$$\frac{dE_{0}(t)}{dt} = \sum_{n=1}^{\infty} 2\pi n^{2} e^{-\pi n^{2} e^{2t}} e^{\frac{t}{2}} [8\pi n^{2} e^{4t} - 6e^{2t} + (\pi n^{2} e^{4t} - \frac{3}{2} e^{2t} - 4\pi^{2} n^{4} e^{6t} + 6\pi n^{2} e^{4t})]$$

$$\frac{dE_{0}(t)}{dt} = \sum_{n=1}^{\infty} 2\pi n^{2} e^{-\pi n^{2} e^{2t}} e^{\frac{t}{2}} [-4\pi^{2} n^{4} e^{6t} + 15\pi n^{2} e^{4t} - \frac{15}{2} e^{2t}]$$

$$\frac{dE_{0}(t)}{dt} = \sum_{n=1}^{\infty} 2\pi n^{2} e^{-\pi n^{2} e^{2t}} e^{\frac{t}{2}} e^{2t} [-4\pi^{2} n^{4} e^{4t} + 15\pi n^{2} e^{2t} - \frac{15}{2}]$$

5.1. Numerical results

For n = 1 and t = 0, the term $S_1 = -4\pi^2 n^4 e^{4t} + 15\pi n^2 e^{2t} - \frac{15}{2} = -4\pi^2 + 15\pi - \frac{15}{2} = 0.14547$ and the summand in Eq. 46 is **positive** for n = 1.

(46)

For n = 1 and t = 0.0025, the term $S_1 = -4\pi^2 n^4 e^{4t} + 15\pi n^2 e^{2t} - \frac{15}{2} = -0.015$ and the summand in Eq. 46 is **negative** and for all $t \ge 0.0025$.

5.2. Mathematical results

For n > 1 and $t \ge 0$, the term $S_1 = -4\pi^2 n^4 e^{4t} + 15\pi n^2 e^{2t} - \frac{15}{2}$ and the summand in Eq. 46 is **negative**.

For n = 2, t = 0, the term $S_1 = -4\pi^2 n^4 e^{4t} + 15\pi n^2 e^{2t} - \frac{15}{2} = -4\pi^2 * 16 + 15\pi * 4 - \frac{15}{2} = 4\pi (15 - 16\pi) - \frac{15}{2} < 0$ because $(15 - 16\pi) < 0$ and $\pi > 3$. Similar arguments for n > 1 and $t \ge 0$.

We can show that for n=1 and $t>\frac{1}{8}$ (loose bound), the summand S_1 in Eq. 46 is **negative** as follows.

$$S_{1} = -4\pi^{2}n^{4}e^{4t} + 15\pi n^{2}e^{2t} - \frac{15}{2} = -\pi n^{2}e^{2t}(4\pi n^{2}e^{2t} - 15) - \frac{15}{2}$$

$$S_{2} = 4\pi n^{2}e^{2t} - 15 \ge 4\pi n^{2}(1+2t) - 15 = 4\pi n^{2} - 15 + 8\pi n^{2}t$$

$$n = 1, \quad S_{2} \ge 4\pi + 8\pi t - 15 > 0 \quad if \quad 8\pi t > 15 - 4\pi, \quad t > \frac{(15 - 4\pi)}{8\pi}$$

$$(47)$$

We see that the term $S_2 > 0$ if $t > \frac{(15-4\pi)}{8\pi} = t_m$ and hence the summand S_1 in Eq. 47 is **negative**.

We can get a **loose bound** for $t_m = \frac{(15-4\pi)}{8\pi} = \frac{15}{8\pi} - \frac{1}{2}$ as follows. We see that $\pi > 3$, hence the **maximum value** of t_m is given by $\frac{5}{8} - \frac{4}{8} = \frac{1}{8}$. Hence $\frac{dE_0(t)}{dt} \le 0$ for $t \ge \frac{1}{8}$.

5.3. Minimum value of $E_0(t)$

In this section, it is shown that the $E_0(t) \ge \frac{1}{5} = E_{min}$ in the interval $-t_d \le t \le t_d$ where $t_d = \frac{1}{8}$ and E_{min} is the **minimum** value of $E_0(t)$ in that interval.

$$E_0(t) = \Phi(t) = \sum_{n=1}^{\infty} \left[4\pi^2 n^4 e^{4t} - 6\pi n^2 e^{2t}\right] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} = \sum_{n=1}^{\infty} 2\pi n^2 e^{-\pi n^2 e^{2t}} e^{\frac{5t}{2}} \left[2\pi n^2 e^{2t} - 3\right]$$

$$(48)$$

We want to find the **minimum** value of $E_0(t)$ in the interval $-t_d \le t \le t_d$, where $t_d = \frac{1}{8}$. We set n = 1 and compute $E_0(t_d, n)$ at n = 1.

$$E_0(t_d, 1) = 2\pi e^{-\pi e^{2*\frac{1}{8}}} e^{\frac{5}{2*8}} [2\pi e^{2*\frac{1}{8}} - 3] = 2\pi e^{-\pi e^{\frac{1}{4}}} e^{\frac{5}{16}} [2\pi e^{\frac{1}{4}} - 3]$$

$$(49)$$

Given that $\frac{5}{16} > \frac{4}{16} = \frac{1}{4}$ and $\pi > 3$ and $e^{\frac{1}{4}} > 2^{\frac{1}{4}} > 1$, we see that $2\pi e^{\frac{1}{4}} - 3 > 2\pi - 3 > 3$ and $e^{-\pi} > 3^{-4}$, we can write as follows.

$$E_0(t_d, 1) > 6\pi e^{-\pi} > 6\pi 3^{-\pi} > 6\pi 3^{-4} > \frac{6\pi}{81}$$
$$> \frac{6*3}{81} > \frac{6}{27} > \frac{6}{30} > \frac{1}{5}$$
 (50)

Hence we have shown that $E_0(t_d, 1) > \frac{1}{5}$, where $t_d = \frac{1}{8}$.

We set n = 1 and at t = 0, we get $E_0(t, n) = E_0(0, 1) = 2\pi e^{-\pi} [2\pi - 3] > 6\pi e^{-\pi} > \frac{1}{5}$.

The **minimum** value of $E_0(t,n)$ in the interval $-t_d \le t \le t_d$, for n=1 is given by $2\pi e^{-\pi e^{2\pi t_d}}[2\pi-3] > \frac{1}{5}$, using procedure above. Hence we see that in the interval $-t_d \le t \le t_d$, $E_0(t,n) = E_0(t,1) > \frac{1}{5}$.

For n > 1, $E_0(t, n) > 0$. Hence we see that $E_0(t) \ge \frac{1}{5}$ in the interval $-t_d \le t \le t_d$.

Hence we have shown that $E_0(t) \ge \frac{1}{5} = E_{min}$ in the interval $-t_d \le t \le t_d$ where $t_d = \frac{1}{8}$.

5.4. **Result** $E_0(t-t_{2c}) - E_0(t+t_{2c}) > 0$

In this section, it is shown that $E_0(t - t_{2c}) - E_0(t + t_{2c}) > 0$ for $0 < t \le t_1$ and $t_{2c} = Kt_1$ in Eq. 45, where $t_1 = \frac{1}{8}$.

In Section 5, we showed that $E_0(t)$ is a **strictly decreasing** function for $t \ge t_d = \frac{1}{8}$. In 5.3, we showed that the **minimum** value $E_{min} = \frac{1}{5}$ in the interval $-t_d \le t \le t_d$ where $t_d = \frac{1}{8}$ and $t_{2c} > t_d$ is chosen such that $E_0(t) < E_{min}$ for $t \ge t_{2c}$.

We see that $E_0(t)$ is an **even** function of variable t. We see that $E_0(t + t_{2c}) < E_{min} = \frac{1}{5}$ in the interval $t \ge 0$ by our **specific** choice of t_{2c} .

Given that t_{2c} is chosen such that $E_0(t) < E_{min}$ for $t \ge t_{2c}$, we see that $E_0(t - t_{2c}) > E_0(t + t_{2c})$ in the interval $0 < t \le 2t_{2c}$. Further, for $t > 2t_{2c}$, we see that $E_0(t - t_{2c}) > E_0(t + t_{2c})$ given that $E_0(t)$ is a **strictly decreasing** function for $t \ge t_d = \frac{1}{8}$.

Given that $E_0(t)$ is a **strictly decreasing** function for $t \ge \frac{1}{8}$ and $E_0(t)$ is an **even** function of variable t, and $t_{2c} = Kt_1 > t_d$ for positive integer K, is chosen such that $E_0(t) < E_{min}$ for $t \ge t_{2c}$, we see that, in the interval $0 < t \le t_1$, $E_0(t+t_{2c}) = E_0(t+Kt_1)$ ranges from $E_0(Kt_1)$ to $E_0((K+1)t_1)$, which is **less than** $E_0(t-t_{2c}) = E_0(t-Kt_1)$ which ranges from $E_0(-Kt_1)$ to $E_0((1-K)t_1)$ respectively. Hence we see that $E_0(t-t_{2c}) > E_0(t+t_{2c})$, in the interval $0 < t \le t_1$. At t = 0, $E_0(t-t_{2c}) = E_0(t+t_{2c})$.

Hence $E_0(t - t_{2c}) - E_0(t + t_{2c}) > 0$ for $0 < t \le t_1$ in Eq. 45.

6. Hurwitz Zeta Function and related functions

We can show that the new method is **not** applicable to Hurwitz zeta function and related zeta functions and **does not** contradict the existence of their non-trivial zeros away from the critical line with real part of $s = \frac{1}{2}$. The new method requires the **symmetry** relation $\xi(s) = \xi(1-s)$ and hence $\xi(\frac{1}{2}+i\omega) = \xi(\frac{1}{2}-i\omega)$ when evaluated at the critical line $s = \frac{1}{2} + i\omega$. This means $\xi(\frac{1}{2} + i\omega) = E_{0\omega}(\omega) = E_{0\omega}(-\omega)$ and $E_{0}(t) = E_{0}(-t)$ where $E_{0}(t) = 2\sum_{n=1}^{\infty} [2\pi^{2}n^{4}e^{4t} - 3\pi n^{2}e^{2t}]e^{-\pi n^{2}e^{2t}}e^{\frac{t}{2}}$ and this condition is satisfied for Riemann's Zeta function.

It is **not** known that Hurwitz Zeta Function given by $\zeta(s,a) = \sum_{m=0}^{\infty} \frac{1}{(m+a)^s}$ satisfies a symmetry relation similar to $\xi(s) = \xi(1-s)$ where $\xi(s)$ is an entire function, for $a \neq 1$ and hence the condition $E_0(t) = E_0(-t)$ is **not** known to be satisfied^[6]. Hence the new method is **not** applicable to Hurwitz zeta function and **does not** contradict the existence of their non-trivial zeros away from the critical line.

Dirichlet L-functions satisfy a symmetry relation $\xi(s,\chi) = \epsilon(\chi)\xi(1-s,\bar{\chi})$ [7] which does **not** translate to $E_0(t) = E_0(-t)$ required by the new method and hence this proof is **not** applicable to them.

We know that $\zeta(s) = \sum_{m=1}^{\infty} \frac{1}{m^s}$ diverges for real part of $s \leq 1$. Hence we derive a convergent and entire function $\xi(s)$

using the well known theorem $F(x) = 1 + 2\sum_{n=1}^{\infty} e^{-\pi n^2 x} = \frac{1}{\sqrt{x}}(1 + 2\sum_{n=1}^{\infty} e^{-\pi \frac{n^2}{x}})$, where x > 0 is real and then derive

 $E_0(t) = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}}$ (Appendix E). In the case of **Hurwitz zeta** function and **other zeta functions** with non-trivial zeros away from the critical line, it is **not** known if a corresponding relation similar to F(x) exists, which enables derivation of a convergent and entire function $\xi(s)$ and results in $E_0(t)$ as a Fourier transformable, real, even and analytic function. Hence the new method presented in this paper is **not** applicable to Hurwitz zeta function and related zeta functions.

The proof of Riemann Hypothesis presented in this paper is **only** for the specific case of Riemann's Zeta function and **only** for the **critical strip** $0 \le |\sigma| < \frac{1}{2}$. This proof requires both $E_p(t)$ and $E_{p\omega}(\omega)$ to be Fourier transformable where $E_p(t) = E_0(t)e^{-\sigma t}$ is a real analytic function. These conditions may **not** be satisfied for many other functions including those which have non-trivial zeros away from the critical line and hence the new method may **not** be applicable to such functions.

If the proof presented in this paper is internally consistent and does not have mistakes and gaps, then it should be considered correct, **regardless** of whether it contradicts any previously known external theorems, because it is possible that those previously known external theorems may be incorrect.

References

- [1] Bernhard Riemann, On the Number of Prime Numbers less than a Given Quantity. (Ueber die Anzahl der Primzahlen untereiner gegebenen Grosse.) Monatsberichte der Berliner Akademie, November 1859. (Link to Riemann's 1859 paper)
- [2] Hardy, G.H., Littlewood, J.E. The zeros of Riemann's zeta-function on the critical line. Mathematische Zeitschrift volume 10, pp.283 to 317 (1921).
- [3] E. C. Titchmarsh, The Theory of the Riemann Zeta Function. (1986) pp.254 to 255
- [4] Fern Ellison and William J. Ellison, Prime Numbers (1985).pp147 to 152
- [5] J. Brian Conrey, The Riemann Hypothesis (2003). (Link to Brian Conrey's 2003 article)
- [6] Mathworld article on Hurwitz Zeta functions. (Link)
- [7] Wikipedia article on Dirichlet L-functions. (Link)

Appendix A. Derivation of $E_p(t)$

Let us start with Riemann's Xi Function $\xi(s)$ evaluated at $s = \frac{1}{2} + i\omega$ given by $\xi(\frac{1}{2} + i\omega) = E_{0\omega}(\omega)$. Its inverse Fourier Transform is given by $E_0(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{0\omega}(\omega) e^{i\omega t} d\omega = 2 \sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}}$ (link). This is re-derived in Appendix E.

We will show in this section that the inverse Fourier Transform of the function $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$, is given by $E_p(t) = E_0(t)e^{-\sigma t}$ where $0 \le |\sigma| < \frac{1}{2}$ is real.

$$\xi(\frac{1}{2} + \sigma + i\omega) = \xi(\frac{1}{2} + i(\omega - i\sigma)) = E_{p\omega}(\omega) = E_{0\omega}(\omega - i\sigma)$$

$$E_{p}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{p\omega}(\omega) e^{i\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{0\omega}(\omega - i\sigma) e^{i\omega t} d\omega$$
(A.1)

We substitute $\omega' = \omega - i\sigma$ in Eq. A.1 as follows.

$$E_p(t) = e^{-\sigma t} \frac{1}{2\pi} \int_{-\infty - i\sigma}^{\infty - i\sigma} E_{0\omega}(\omega') e^{i\omega' t} d\omega'$$
(A.2)

We can evaluate the above integral in the complex plane using contour integration, substituting $\omega' = z = x + iy$ and we use a rectangular contour comprised of C_1 along the line $x = [-\infty, \infty]$, C_2 along the line $y = [\infty, \infty - i\sigma]$, C_3 along the line $x = [\infty - i\sigma, -\infty - i\sigma]$ and then C_4 along the line $y = [-\infty - i\sigma, -\infty]$. We can see that $E_{0\omega}(z) = \xi(\frac{1}{2} + iz)$ has no singularities in the region bounded by the contour because $\xi(\frac{1}{2} + iz)$ is an entire function in the Z-plane.

In **Appendix C.1**, we show that $\int_{-\infty}^{\infty} |E_p(t)| dt$ is finite and $E_p(t) = E_0(t)e^{-\sigma t}$ is an absolutely integrable function, for $0 \le |\sigma| < \frac{1}{2}$.

We use the fact that $E_{0\omega}(z) = \xi(\frac{1}{2} + iz) = \xi(\frac{1}{2} - y + ix) = \int_{-\infty}^{\infty} E_0(t)e^{-izt}dt = \int_{-\infty}^{\infty} E_0(t)e^{yt}e^{-ixt}dt$, goes to zero as $x \to \pm \infty$ when $-\sigma \le y \le 0$, as per Riemann-Lebesgue Lemma (link), because $E_0(t)e^{yt}$ is a absolutely integrable function in the interval $-\infty \le t \le \infty$. Hence the integral in Eq. A.2 vanishes along the contours C_2 and C_4 . Using Cauchy's Integral theroem, we can write Eq. A.2 as follows.

$$E_p(t) = e^{-\sigma t} \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{0\omega}(\omega') e^{i\omega' t} d\omega'$$

$$E_p(t) = E_0(t)e^{-\sigma t} = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} e^{-\sigma t}$$
(A.3)

Thus we have arrived at the desired result $E_p(t) = E_0(t)e^{-\sigma t}$.

Appendix B. Properties of Fourier Transforms Part 1

In this section, some well-known properties of Fourier transforms are re-derived.

Appendix B.1. Convolution Theorem: Multiplication of g(t) and h(t) corresponds to convolution in Fourier transform domain

We start with the Fourier transform equation $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$ where f(t) = g(t)h(t) and show that $F(\omega) = \frac{1}{2\pi}[G(\omega)*H(\omega)] = \frac{1}{2\pi}\int_{-\infty}^{\infty} G(\omega')H(\omega-\omega')d\omega'$ obtained by the **convolution** of the functions $G(\omega)$ and $H(\omega)$ which correspond to the Fourier transforms of g(t) and h(t) respectively.

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt = \int_{-\infty}^{\infty} g(t)h(t)e^{-i\omega t}dt$$
(B.1)

We use the inverse Fourier transform equation $g(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}G(\omega')e^{i\omega't}d\omega'$ and we interchange the order of integration in equations below using Fubini's theorem (link).

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} G(\omega') e^{i\omega't} d\omega' \right] h(t) e^{-i\omega t} dt$$

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega') \left[\int_{-\infty}^{\infty} e^{i\omega't} h(t) e^{-i\omega t} dt \right] d\omega'$$

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega') \left[\int_{-\infty}^{\infty} h(t) e^{-i(\omega - \omega')t} dt \right] d\omega'$$
(B.2)

We substitute $\int_{-\infty}^{\infty} h(t)e^{-i(\omega-\omega')t}dt = H(\omega-\omega')$ in Eq. B.2 and arrive at the convolution theorem.

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega') H(\omega - \omega') d\omega' = \int_{-\infty}^{\infty} g(t) h(t) e^{-i\omega t} dt$$
 (B.3)

Appendix B.2. Fourier transform of Real g(t)

In this section, we show that the Fourier transform of a real function g(t), given by $G(\omega) = G_R(\omega) + iG_I(\omega)$ has the properties given by $G_R(-\omega) = G_R(\omega)$ and $G_I(-\omega) = -G_I(\omega)$.

$$G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-i\omega t}dt = G_R(\omega) + iG_I(\omega)$$

$$G_R(\omega) = \int_{-\infty}^{\infty} g(t)\cos(\omega t)dt = G_R(-\omega)$$

$$G_I(\omega) = -\int_{-\infty}^{\infty} g(t)\sin(\omega t)dt = -G_I(-\omega)$$
(B.4)

Appendix B.3. Even part of g(t) corresponds to real part of Fourier transform $G(\omega)$

In this section, we show that the **even part** of real function g(t), given by $g_{even}(t) = \frac{1}{2}[g(t) + g(-t)]$, corresponds to **real part** of its Fourier transform $G(\omega)$. We use the fact that $G_R(-\omega) = G_R(\omega)$ and $G_I(-\omega) = -G_I(\omega)$ for a real function g(t).

$$G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-i\omega t}dt = G_R(\omega) + iG_I(\omega)$$
$$\int_{-\infty}^{\infty} g_{even}(t)e^{-i\omega t}dt = \int_{-\infty}^{\infty} \frac{1}{2}[g(t) + g(-t)]e^{-i\omega t}dt = \frac{1}{2}[G(\omega) + G(-\omega)] = G_R(\omega)$$

(B.5)

Appendix B.4. Odd part of g(t) corresponds to imaginary part of Fourier transform $G(\omega)$

In this section, we show that the **odd part** of real function g(t), given by $g_{odd}(t) = \frac{1}{2}[g(t) - g(-t)]$, corresponds to **imaginary part** of its Fourier transform $G(\omega)$. We use the fact that $G_R(-\omega) = G_R(\omega)$ and $G_I(-\omega) = -G_I(\omega)$ for a real function g(t).

$$G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-i\omega t}dt = G_R(\omega) + iG_I(\omega)$$

$$\int_{-\infty}^{\infty} g_{odd}(t)e^{-i\omega t}dt = \int_{-\infty}^{\infty} \frac{1}{2}[g(t) - g(-t)]e^{-i\omega t}dt = \frac{1}{2}[G(\omega) - G(-\omega)] = iG_I(\omega)$$
(B.6)

Appendix C. Properties of Fourier Transforms Part 2

Appendix C.1. $E_p(t), h(t), g(t)$ are absolutely integrable functions and their Fourier Transforms are finite.

The inverse Fourier Transform of the function $E_{p\omega}(\omega) = \xi(\frac{1}{2} + \sigma + i\omega)$ is given by $E_p(t) = E_0(t)e^{-\sigma t} = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{p\omega}(\omega) e^{i\omega t} d\omega$. We see that $E_0(t) = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} > 0$ for all $0 \le t < \infty$. Given that $E_0(t) = E_0(-t)$, we see that $E_0(t) > 0$ and $E_p(t) = E_0(t)e^{-\sigma t} > 0$ for all $-\infty < t < \infty$.

As $t \to \infty$, $E_p(t)$ goes to zero, due to the term $e^{-\pi n^2 e^{2t}}$. As $t \to -\infty$, $E_p(t)$ goes to zero, because for every value of n, the term $e^{-\pi n^2 e^{2t}} e^{\frac{5t}{2}} e^{-\sigma t}$ goes to zero, for $0 \le |\sigma| < \frac{1}{2}$. Hence $E_p(t) = E_0(t) e^{-\sigma t} = 0$ at $t = \pm \infty$ and we showed that $E_p(t) > 0$ for all $-\infty < t < \infty$. Hence $E_{p\omega}(\omega) = \int_{-\infty}^{\infty} E_p(t) e^{-i\omega t} dt$, evaluated at $\omega = 0$ cannot be zero. Hence $E_{p\omega}(\omega)$ does not have a zero at $\omega = 0$ and hence $\omega_0 \ne 0$.

Given that $\xi(\frac{1}{2} + \sigma + i\omega) = E_{p\omega}(\omega)$ is an entire function in the whole of s-plane, it is finite for $|\omega| \leq \infty$ and also for $\omega = 0$. Hence $\int_{-\infty}^{\infty} E_p(t)dt$ is finite. We see that $E_p(t) \geq 0$ for all $|t| \leq \infty$. Hence we can write $\int_{-\infty}^{\infty} |E_p(t)|dt$ is finite and $E_p(t)$ is an absolutely **integrable function** and its Fourier transform $E_{p\omega}(\omega)$ goes to zero as $\omega \to \pm \infty$, as per Riemann Lebesgue Lemma (link).

Let us consider a new function $g(t) = E_p(t)e^{-\sigma t}u(-t) + E_p(t)e^{\sigma t}u(t)$ where g(t) is a real function of variable t and u(t) is Heaviside unit step function and $0 < \sigma < \frac{1}{2}$. We can see that $g(t)h(t) = E_p(t)$ where $h(t) = e^{\sigma t}u(-t) + e^{-\sigma t}u(t)$.

We can see that $h(t) = e^{\sigma t}u(-t) + e^{-\sigma t}u(t)$ is an absolutely **integrable function** because $\int_{-\infty}^{\infty} |h(t)| dt = \int_{-\infty}^{\infty} h(t) dt = [\int_{-\infty}^{\infty} h(t) e^{-i\omega t} dt]_{\omega=0} = [\frac{1}{\sigma-i\omega} + \frac{1}{\sigma+i\omega}]_{\omega=0} = \frac{2}{\sigma}$, is finite for $0 < \sigma < \frac{1}{2}$ and its Fourier transform $H(\omega)$ goes to zero as $\omega \to \pm \infty$, as per Riemann Lebesgue Lemma (link).

It is shown in Appendix C.4 that $E_0(t)$ and $E_0(t)e^{-2\sigma t}$ have fall-off rates **at least** $\frac{1}{t^2}$ as $|t| \to \infty$ and hence are absolutely **integrable** functions and the integrals $\int_{-\infty}^{\infty} |E_0(t)| dt < \infty$ and $\int_{-\infty}^{\infty} |E_0(t)e^{-2\sigma t}| dt < \infty$. Hence $g(t) = E_0(t)e^{-2\sigma t}u(-t) + E_0(t)u(t)$ is an absolutely **integrable function** and $\int_{-\infty}^{\infty} |g(t)| dt = \int_{-\infty}^{\infty} g(t) dt$ is finite and its Fourier transform $G(\omega)$ goes to zero as $\omega \to \pm \infty$, as per Riemann Lebesgue Lemma (link).

Appendix C.2. Convolution integral convergence

Let us consider $h(t) = e^{\sigma t}u(-t) + e^{-\sigma t}u(t)$ whose **first derivative is discontinuous** at t = 0. The second derivative of h(t) given by $h_2(t)$ has a Dirac delta function $A_0\delta(t)$ where $A_0 = -2\sigma$ and its Fourier transform $H_2(\omega)$ has a constant term A_0 , corresponding to the Dirac delta function.

This means h(t) is obtained by integrating $h_2(t)$ twice and its Fourier transform $H(\omega)$ has a term $-\frac{A_0}{\omega^2}$ (link) and has a **fall off rate** of $\frac{1}{\omega^2}$ as $|\omega| \to \infty$ and $\int_{-\infty}^{\infty} H(\omega) d\omega$ converges.

We see that
$$E_p(t) = E_0(t)e^{-\sigma t}$$
 where $E_0(t) = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}]e^{-\pi n^2 e^{2t}}e^{\frac{t}{2}}$.

Let us consider a new function $g(t) = E_p(t)e^{-\sigma t}u(-t) + E_p(t)e^{\sigma t}u(t)$ where g(t) is a real function of variable t and u(t) is Heaviside unit step function and $0 < \sigma < \frac{1}{2}$. We can see that $g(t)h(t) = E_p(t)$ where $h(t) = e^{\sigma t}u(-t) + e^{-\sigma t}u(t)$.

We can see that $G(\omega), H(\omega)$ have **fall-off rate** of $\frac{1}{\omega^2}$ as $|\omega| \to \infty$ because the **first derivatives** of g(t), h(t) are **discontinuous** at t = 0. Also, h(t), g(t) are absolutely integrable functions and their Fourier Transforms are finite as shown in Appendix C.1. Hence the convolution integral below converges to a finite value for $|\omega| \le \infty$.

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega') H(\omega - \omega') d\omega' = \frac{1}{2\pi} [G(\omega) * H(\omega)]$$
 (C.1)

Appendix C.3. Fall off rate of Fourier Transform of functions

Let us consider a real Fourier transformable function $P(t) = P_+(t)u(t) + P_-(t)u(-t)$ whose $(N-1)^{th}$ derivative is discontinuous at t = 0. The $(N)^{th}$ derivative of P(t) given by $P_N(t)$ has a Dirac delta function $A_0\delta(t)$ where $A_0 = \left[\frac{d^{N-1}P_+(t)}{dt^{N-1}} - \frac{d^{N-1}P_-(t)}{dt^{N-1}}\right]_{t=0}$ and its Fourier transform $P_N(\omega)$ has a constant term A_0 , corresponding to the Dirac delta function.

This means P(t) is obtained by integrating $P_N(t)$, N times and its Fourier transform $P(\omega)$ has a term $\frac{A_0}{(i\omega)^N}$ (link) and has a **fall off rate** of $\frac{1}{\omega^N}$ as $|\omega| \to \infty$.

We have shown that if the $(N-1)^{th}$ derivative of the function P(t) is discontinuous at t=0 then its Fourier transform $P(\omega)$ has a fall-off rate of $\frac{1}{\omega^N}$ as $|\omega| \to \infty$.

In Section 1.1, we showed that $E_0(t)$ is an analytic function which is infinitely differentiable which produces no discontinuities in $|t| \leq \infty$. Hence its Fourier transform $E_{0\omega}(\omega)$ has a fall-off rate faster than $\frac{1}{\omega^M}$ as $M \to \infty$, as $|\omega| \to \infty$ and it should have a fall-off rate **at least** of the order of $\omega^A e^{-B|\omega|}$ as $|\omega| \to \infty$, where A, B > 0 are real.

Appendix C.4. Payley-Weiner theorem and Exponential Fall off rate of analytic functions.

We know that Payley-Weiner theorem relates analytic functions and exponential decay rate of their Fourier transforms (link). Using similar arguments, we will show that the functions $E_0(t)$, $E_p(t)$ and $x(t) = E_0(t)e^{-2\sigma t}$ and $\frac{d^{2r}x(t)}{dt^{2r}}$ have fall-off rates at least $\frac{1}{t^2}$ as $|t| \to \infty$ for $0 < \sigma < \frac{1}{2}$.

We know that the order of Riemann's Xi function $\xi(\frac{1}{2}+i\omega) = E_{0\omega}(\omega) = \Xi(\omega)$ is given by $O(\omega^A e^{-\frac{|\omega|\pi}{4}})$ where A is a constant^[3] (link). Hence both $E_{0\omega}(\omega)$ and $E_{p\omega}(\omega) = \xi(\frac{1}{2}+\sigma+i\omega) = E_{0\omega}(\omega-i\sigma)$ have **exponential fall-off** rate $O(\omega^A e^{-\frac{|\omega|\pi}{4}})$ as $|\omega| \to \infty$ and they are absolutely integrable and Fourier transformable, given that they are derived from an entire function $\xi(s)$.

Given that $\xi(s)$ is an entire function in the s-plane, we see that $E_{0\omega}(\omega)$ and $E_{p\omega}(\omega)$ are **analytic** functions which are infinitely differentiable which produce no discontinuities for all $|\omega| \leq \infty$ and $0 < \sigma < \frac{1}{2}$. Hence their respective **inverse Fourier transforms** $E_0(t), E_p(t)$ have fall-off rates faster than $\frac{1}{t^M}$ as $M \to \infty$, as $|t| \to \infty$ (Appendix C.3) and hence it should have **exponential fall-off** rates as $|t| \to \infty$.

We can use similar arguments to show that $x(t) = E_0(t)e^{-2\sigma t}$ and $\frac{d^{2r}x(t)}{dt^{2r}}$ have fall-off rates at least $\frac{1}{t^2}$ as $|t| \to \infty$, because their Fourier transforms are analytic functions for all $|\omega| \le \infty$ with exponential fall-off rate $O(\omega^A e^{-\frac{|\omega|\pi}{4}})$ as $|\omega| \to \infty$.

Appendix D. $\omega_z(t_0)$ is a continuous function around $t_0 = 0$

This result is shown as follows.

• $G_R(\omega) = G_R(\omega, t_0)$ in Eq. 13 is copied below, which is a **continuous** function of ω which is differentiable **at** least once with respect to ω . (Eq. D.2 and Appendix D.3)

$$G_R(\omega) = G_R(\omega, t_0) = \int_{-\infty}^0 [E_0(t + t_0)e^{-2\sigma t} + E_{0n}(t - t_0)]\cos(\omega t)dt$$
(D.1)

Given that $E_0(t) \ge 0$ for $|t_0| \le \infty$ (Appendix C.1), we see that $G_R(\omega) > 0$ at $\omega = 0$. **Set** $t_0 = 0$ and $G_R(\omega, t_0)$ passes through its **first zero** at $\omega = \omega_z(t_0) = \omega_z(0)$. In the rest of this section, we consider the **interval** $[-\delta t_0, \delta t_0]$ around $t_0 = 0$, in $\omega_z(t_0)$. There are 3 possibilities.

Case 1: $G_R(\omega) < 0$ for $\omega = \omega_z(0) + dw$, $G_R(\omega) > 0$ for $\omega = \omega_z(0) - dw$ for infinitesimal dw (example plot)

In this case, we will show in Appendix D.1 that $\omega_z(t_0)$ is a continuous function of t_0 in the interval $[-\delta t_0, \delta t_0]$, in the neighborhood around the first zero crossing at $\omega = \omega_z(t_0) = \omega_z(0)$.

Case 2: $G_R(\omega) > 0$ for $\omega = \omega_z(0) + dw$, $G_R(\omega) > 0$ for $\omega = \omega_z(0) - dw$ (example plot)

In this case, $\frac{dG_R(\omega)}{d\omega} = 0$ at the same $\omega = \omega_z(0)$ because $\frac{dG_R(\omega)}{d\omega} < 0$ at $\omega = \omega_z(0) - dw$ and $\frac{dG_R(\omega)}{d\omega} > 0$ at $\omega = \omega_z(0) + dw$.

$$\frac{dG_R(\omega)}{d\omega} = -\int_{-\infty}^0 t[E_0(t+t_0)e^{-2\sigma t} + E_{0n}(t-t_0)]\sin(\omega t)dt$$

(D.2)

In this case, we will show Appendix D.2 that $\omega_z(t_0)$ is a continuous function of t_0 in the interval $[-\delta t_0, \delta t_0]$, in the neighborhood around the first zero crossing at $\omega = \omega_z(t_0) = \omega_z(0)$.

Case 3: $G_R(\omega) = 0$ for $\omega = \omega_z(0)$ and $\omega = \omega_z(0) + dw$.

This is **not** possible because $G_R(\omega, t_0)$ in Eq. D.1 is an **analytic** function and infinitely differentiable with respect to ω (Appendix D.3). We know that analytic functions have **isolated** zeros. (link). Hence we cannot have $G_R(\omega) = 0$ for $\omega = \omega_z(0)$ and $\omega = \omega_z(0) + dw$ as $dw \to 0$.

Appendix D.1. Case 1: $G_R(\omega) < 0$ for $\omega = \omega_z(0) + dw$, $G_R(\omega) > 0$ for $\omega = \omega_z(0) - dw$

- Consider the **segment** S in $G_R(\omega, t_0)$ in the neighborhood around the first zero crossing where $\frac{dG_R(\omega, t_0)}{d\omega} < 0$. (Segment S is the portion between the green lines in example plot)
- In the **segment** S, $G_R(\omega, t_0)$ in Eq. D.1 is a **continuous** function of ω , for **each** value of t_0 . Hence $G_R(\omega, t_0 \delta t_0)$ and $G_R(\omega, t_0 + \delta t_0)$ are **continuous** functions of ω , which are differentiable **at least** once, and $G_R(\omega, t_0 \pm \delta t_0)$ tends to $G_R(\omega, t_0)$, as infinitesimal $\delta t_0 \to 0$.

$$G_R(\omega, t_0) = \int_{-\infty}^0 \left[E_0(t + t_0)e^{-2\sigma t} + E_{0n}(t - t_0) \right] \cos(\omega t) dt$$

$$G_R(\omega, t_0 + \delta t_0) = \int_{-\infty}^0 \left[E_0(t + t_0 + \delta t_0)e^{-2\sigma t} + E_{0n}(t - t_0 - \delta t_0) \right] \cos(\omega t) dt$$
22

• In the segment S, $G_R(\omega, t_0)$ in Eq. D.3 is a **continuous** function of ω , for **each** value of t_0 and $\frac{dG_R(\omega, t_0)}{d\omega} < 0$ in the neighborhood around the **first zero crossing**. If we fix the X-coordinate ω , $G_R(\omega, t_0)$ is a **continuous** function of t_0 , for **each** value of ω . Hence, for **each** value of ω , as we change t_0 by an infinitesimal δt_0 , $G_R(\omega, t_0)$ moves towards $G_R(\omega, t_0 + \delta t_0)$ in a **continuous** manner, as $\delta t_0 \to 0$. Every point in the segment S, moves continuously, as we change t_0 by an infinitesimal δt_0 .

This also applies to the first **zero crossing** in $G_R(\omega, t_0)$ in the segment S, which corresponds to $\omega_z(t_0) = \omega_z(0)$ at $t_0 = 0$ where $G_R(\omega, t_0) = 0$ in Eq. D.3. The zero crossing moves continuously, as we change t_0 by an infinitesimal δt_0 . This is explained below.

• Explanation: This is shown by an example plot. Red plot corresponds to $G_R(\omega, t_0)$ with zero crossing at point P_0 , Green plot corresponds to $G_R(\omega, t_0 + \delta t_0)$ with zero crossing at point P_{11} and Blue plot corresponds to $G_R(\omega, t_0 - \delta t_0)$ with zero crossing at point P_{21} .

We define the point P_{12} in $G_R(\omega, t_0 + \delta t_0)$ as the point which has the fixed X-coordinate $\omega = \omega_z(0)$. We define the point P_{22} in $G_R(\omega, t_0 - \delta t_0)$ as the point which has the fixed X-coordinate $\omega = \omega_z(0)$.

We define the point P_{11} in $G_R(\omega, t_0 + \delta t_0)$ as the **zero crossing point** which has the **fixed Y-coordinate** which equals zero. We define the point P_{21} in $G_R(\omega, t_0 - \delta t_0)$ as the **zero crossing point** which has the **fixed Y-coordinate** which equals zero.

As we change t_0 by an infinitesimal δt_0 , $G_R(\omega, t_0 + \delta t_0)$ in Eq. D.4 moves towards $G_R(\omega, t_0)$ in a **continuous** manner as follows. The **point** P_{12} in $G_R(\omega, t_0 + \delta t_0)$ which corresponds to the **fixed X-coordinate** $\omega = \omega_z(0)$, moves towards corresponding point P_0 in $G_R(\omega, t_0)$, for the **same** $\omega = \omega_z(0)$ in a **continuous** manner, as $\delta t_0 \to 0$. Given that P_0 is a **zero crossing point** in $G_R(\omega, t_0)$, this is equivalent to the **Zero crossing point** P_{11} in $G_R(\omega, t_0 + \delta t_0)$ moving towards corresponding **zero crossing** point P_0 in $G_R(\omega, t_0)$ in a **continuous** manner, as $\delta t_0 \to 0$.

Similarly, as we change t_0 by an infinitesimal δt_0 , $G_R(\omega, t_0 - \delta t_0)$ in Eq. D.4 moves towards $G_R(\omega, t_0)$ in a **continuous** manner as follows. The **point** P_{22} in $G_R(\omega, t_0 - \delta t_0)$ which corresponds to the **fixed X-coordinate** $\omega = \omega_z(0)$, moves towards corresponding point P_0 in $G_R(\omega, t_0)$, for the **same** $\omega = \omega_z(0)$ in a **continuous** manner, as $\delta t_0 \to 0$. Given that P_0 is a **zero crossing point** in $G_R(\omega, t_0)$, this is equivalent to the **Zero crossing point** P_{21} in $G_R(\omega, t_0 - \delta t_0)$ moving towards corresponding **zero crossing** point P_0 in $G_R(\omega, t_0)$ in a **continuous** manner, as $\delta t_0 \to 0$.

$$G_{R}(\omega, t_{0}) = \int_{-\infty}^{0} \left[E_{0}(t + t_{0})e^{-2\sigma t} + E_{0n}(t - t_{0}) \right] \cos(\omega t) dt$$

$$G_{R}(\omega, t_{0} + \delta t_{0}) = \int_{-\infty}^{0} \left[E_{0}(t + t_{0} + \delta t_{0})e^{-2\sigma t} + E_{0n}(t - t_{0} - \delta t_{0}) \right] \cos(\omega t) dt$$

$$G_{R}(\omega, t_{0} - \delta t_{0}) = \int_{-\infty}^{0} \left[E_{0}(t + t_{0} - \delta t_{0})e^{-2\sigma t} + E_{0n}(t - t_{0} + \delta t_{0}) \right] \cos(\omega t) dt$$

$$\lim_{\delta t_{0} \to 0} G_{R}(\omega, t_{0} + \delta t_{0}) = G_{R}(\omega, t_{0})$$

$$\lim_{\delta t_{0} \to 0} G_{R}(\omega, t_{0} - \delta t_{0}) = G_{R}(\omega, t_{0})$$

(D.4)

• Hence in the **segment** S, $\omega_z(t_0)$ is a **continuous** function of t_0 in the neighborhood $[-\delta t_0, \delta t_0]$ around the first zero crossing at $\omega = \omega_z(t_0) = \omega_z(0)$ at $t_0 = 0$.

$$G_R(\omega_z(t_0), t_0) = \int_{-\infty}^0 \left[E_0(t + t_0)e^{-2\sigma t} + E_{0n}(t - t_0) \right] \cos(\omega_z(t_0)t) dt = 0$$

$$G_R(\omega_z(t_0 + \delta t_0), t_0 + \delta t_0) = \int_{-\infty}^0 \left[E_0(t + t_0 + \delta t_0)e^{-2\sigma t} + E_{0n}(t - t_0 - \delta t_0) \right] \cos((\omega_z(t_0 + \delta t_0)t) dt = 0$$
(D.5)

Appendix D.2. Case 2: $G_R(\omega) > 0$ for $\omega = \omega_z(0) + dw$, $G_R(\omega) > 0$ for $\omega = \omega_z(0) - dw$

- In this case, $\frac{dG_R(\omega)}{d\omega} = 0$ at the same $\omega = \omega_z(t_0)$ because $\frac{dG_R(\omega)}{d\omega} < 0$ at $\omega = \omega_z(t_0) dw$ and $\frac{dG_R(\omega)}{d\omega} > 0$ at $\omega = \omega_z(t_0) + dw$.
- Consider the **segment** S' in $\frac{dG_R(\omega,t_0)}{d\omega}$ in the neighborhood around the first zero crossing where $\frac{d^2G_R(\omega,t_0)}{d\omega^2} > 0$. (Segment S' is the portion between the green lines in example plot) In this segment S', $\frac{dG_R(\omega,t_0)}{d\omega}$ is a **continuous** function of ω which is differentiable **at least** once.(Appendix D.3)
- In the **segment** S', $\frac{dG_R(\omega,t_0)}{d\omega} = 0$ at the **same** $\omega = \omega_z(t_0)$. The arguments in Appendix D.1 can be applied here, with $G_R(\omega,t_0)$ replaced by $\frac{dG_R(\omega,t_0)}{d\omega}$.

Hence $\omega_z(t_0)$ is a **continuous** function of t_0 in the neighborhood $[-\delta t_0, \delta t_0]$ around the first zero crossing at $\omega = \omega_z(t_0) = \omega_z(0)$ at $t_0 = 0$ in the **segment** S'.

Appendix D.3. Integral convergence in $\frac{dG_R(\omega)}{d\omega}$

It is shown in Appendix C.4 that $E_0(t)$ and $E_0(t)e^{-2\sigma t}$ have exponential fall-off rates as $|t| \to \infty$ and hence are absolutely **integrable** functions and the integrals $\int_{-\infty}^{\infty} |E_0(t)|dt < \infty$ and $\int_{-\infty}^{\infty} |E_0(t)e^{-2\sigma t}|dt < \infty$. Hence the integrand $A_r(t) = \frac{t^r}{!(r)} [E_0(t+t_0)e^{-2\sigma t} + E_{0n}(t-t_0)] \sin(\omega t)$ in Eq. D.2 copied below, is an absolutely **integrable** function and $\int_{-\infty}^{0} |A_r(t)|dt = \int_{-\infty}^{0} \frac{|t^r|}{!(r)} [E_0(t+t_0)e^{-2\sigma t} + E_{0n}(t-t_0)]dt$ is **finite**, for r = 0, 1, ..., given the **exponential** fall-off rate of $E_0(t)e^{-2\sigma t}$ and $E_0(t)$.

$$\frac{1}{!(r)} \frac{d^r G_R(\omega)}{d\omega^r} = (-1)^{\frac{r+1}{2}} \int_{-\infty}^0 \frac{t^r}{!(r)} [E_0(t+t_0)e^{-2\sigma t} + E_{0n}(t-t_0)] \sin(\omega t) dt, \quad r = odd$$

$$\frac{1}{!(r)} \frac{d^r G_R(\omega)}{d\omega^r} = (-1)^{\frac{r}{2}} \int_{-\infty}^0 \frac{t^r}{!(r)} [E_0(t+t_0)e^{-2\sigma t} + E_{0n}(t-t_0)] \cos(\omega t) dt, \quad r = even$$
(D.6)

Appendix E. Derivation of entire function $\xi(s)$

In this section, we will re-derive Riemann's Xi function $\xi(s)$ and the inverse Fourier Transform of $\xi(\frac{1}{2}+i\omega)=E_{0\omega}(\omega)$ and show the result $E_{0}(t)=2\sum_{n=1}^{\infty}[2\pi^{2}n^{4}e^{4t}-3\pi n^{2}e^{2t}]e^{-\pi n^{2}e^{2t}}e^{\frac{t}{2}}$.

We will use the steps in Ellison's book "Prime Numbers" pages 151-152 and re-derive the steps below^[4] (link). We start with the gamma function $\Gamma(s) = \int_0^\infty y^{s-1} e^{-y} dy$ and substitute $y = \pi n^2 x$ and derive as follows.

$$\Gamma(\frac{s}{2}) = \int_0^\infty y^{\frac{s}{2} - 1} e^{-y} dy$$

$$\Gamma(\frac{s}{2}) (\pi n^2)^{-\frac{s}{2}} = \int_{0_{2d}}^\infty x^{\frac{s}{2} - 1} e^{-\pi n^2 x} dx$$

For real part of s greater than 1, we can do a summation of both sides of above equation for all positive integers n and obtain as follows. We note that $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$.

$$\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}\zeta(s) = \sum_{n=1}^{\infty} \int_{0}^{\infty} x^{\frac{s}{2}-1} e^{-\pi n^{2}x} dx$$

(E.2)

For real part of s (σ') greater than 1, we can use theorem of dominated convergence and interchange the order of summation and integration as follows. We use the fact that $w(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$ and

$$\sum_{n=1}^{\infty} \int_{0}^{\infty} |x^{\frac{s}{2}-1} e^{-\pi n^{2} x}| dx = \Gamma(\frac{\sigma'}{2}) \pi^{-\frac{\sigma'}{2}} \zeta(\sigma').$$

$$\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}\zeta(s) = \int_0^\infty x^{\frac{s}{2}-1}w(x)dx$$

(E.3)

For real part of s less than or equal to 1, $\zeta(s)$ diverges. Hence we do the following. In Eq. E.3, first we consider real part of s greater than 1 and we divide the range of integration into two parts: (0,1] and $[1,\infty)$ and make the substitution $x \to \frac{1}{x}$ in the first interval (0,1]. We use **the well known theorem** $1 + 2w(x) = \frac{1}{\sqrt{x}}(1 + 2w(\frac{1}{x}))$, where x > 0 is real.^[4]

$$\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}\zeta(s) = \int_{1}^{\infty} x^{\frac{s}{2}-1}w(x)dx + \int_{1}^{\infty} \frac{x^{-(\frac{s}{2}-1)}}{x^{2}} \frac{(1+2w(x))\sqrt{x}-1)}{2}dx$$
(E.4)

Hence we can simplify Eq. E.4 as follows.

$$\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}\zeta(s) = \frac{1}{s(s-1)} + \int_{1}^{\infty} x^{\frac{s}{2}-1}w(x)dx + \int_{1}^{\infty} x^{\frac{-(s+1)}{2}}w(x)dx$$
(E.5)

We multiply above equation by $\frac{1}{2}s(s-1)$ and get

$$\xi(s) = \frac{1}{2}s(s-1)\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}}\zeta(s) = \frac{1}{2}\left[1 + s(s-1)\int_{1}^{\infty} \left(x^{\frac{s}{2}} + x^{\frac{1-s}{2}}\right)w(x)\frac{dx}{x}\right]$$
(E.6)

We see that $\xi(s)$ is an entire function, for all values of Re[s] in the complex plane and hence we get an analytic continuation of $\xi(s)$ over the entire complex plane. We see that $\xi(s) = \xi(1-s)$ [4].

Appendix E.1. **Derivation of** $E_p(t)$ **and** $E_0(t)$

Given that $w(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$, we substitute $x = e^{2t}$, $\frac{dx}{x} = 2dt$ in Eq. E.6 and evaluate at $s = \frac{1}{2} + \sigma + i\omega$ as follows.

$$\xi(\frac{1}{2} + \sigma + i\omega) = \frac{1}{2} \left[1 + 2(\frac{1}{2} + \sigma + i\omega)(-\frac{1}{2} + \sigma + i\omega) \int_{0}^{\infty} \sum_{n=1}^{\infty} e^{-\pi n^{2} e^{2t}} (e^{\frac{t}{2}} e^{\sigma t} e^{i\omega t} + e^{\frac{t}{2}} e^{-\sigma t} e^{-i\omega t}) dt\right]$$
(E.7)

We can substitute t = -t in the first term in above integral and simplify above equation as follows.

$$\xi(\frac{1}{2} + \sigma + i\omega) = \frac{1}{2} + (-\frac{1}{4} + \sigma^2 - \omega^2 + i\omega(2\sigma)) \left[\int_{-\infty}^{0} \sum_{n=1}^{\infty} e^{-\pi n^2 e^{-2t}} e^{\frac{-t}{2}} e^{-\sigma t} e^{-i\omega t} dt \right]$$

$$+ \int_{0}^{\infty} \sum_{n=1}^{\infty} e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} e^{-\sigma t} e^{-i\omega t} dt$$
(E.8)

We can write this as follows.

$$\xi(\frac{1}{2} + \sigma + i\omega) = \frac{1}{2} + (-\frac{1}{4} + \sigma^2 - \omega^2 + i\omega(2\sigma)) \int_{-\infty}^{\infty} [\sum_{n=1}^{\infty} e^{-\pi n^2 e^{-2t}} e^{\frac{-t}{2}} u(-t) + \sum_{n=1}^{\infty} e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} u(t)] e^{-\sigma t} e^{-i\omega t} dt \quad (E.9)$$

We define $A(t) = \left[\sum_{n=1}^{\infty} e^{-\pi n^2 e^{-2t}} e^{\frac{-t}{2}} u(-t) + \sum_{n=1}^{\infty} e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} u(t)\right] e^{-\sigma t}$ and get the **inverse Fourier transform** of $\xi(\frac{1}{2} + \sigma + i\omega)$ in above equation given by $E_p(t)$ as follows. We use dirac delta function $\delta(t)$.

$$E_{p}(t) = \frac{1}{2}\delta(t) + \left(-\frac{1}{4} + \sigma^{2}\right)A(t) + 2\sigma\frac{dA(t)}{dt} + \frac{d^{2}A(t)}{dt^{2}}$$

$$A(t) = \left[\sum_{n=1}^{\infty} e^{-\pi n^{2}e^{-2t}}e^{\frac{-t}{2}}u(-t) + \sum_{n=1}^{\infty} e^{-\pi n^{2}e^{2t}}e^{\frac{t}{2}}u(t)\right]e^{-\sigma t}$$

$$\frac{dA(t)}{dt} = \sum_{n=1}^{\infty} e^{-\pi n^{2}e^{-2t}}e^{\frac{-t}{2}}e^{-\sigma t}\left[-\frac{1}{2} - \sigma + 2\pi n^{2}e^{-2t}\right]u(-t) + \sum_{n=1}^{\infty} e^{-\pi n^{2}e^{2t}}e^{\frac{t}{2}}e^{-\sigma t}\left[\frac{1}{2} - \sigma - 2\pi n^{2}e^{2t}\right]u(t)$$

$$\frac{d^{2}A(t)}{dt^{2}} = \sum_{n=1}^{\infty} e^{-\pi n^{2}e^{-2t}}e^{\frac{-t}{2}}e^{-\sigma t}\left[-4\pi n^{2}e^{-2t} + \left(-\frac{1}{2} - \sigma + 2\pi n^{2}e^{-2t}\right)^{2}\right]u(-t)$$

$$+ \sum_{n=1}^{\infty} e^{-\pi n^{2}e^{2t}}e^{\frac{t}{2}}e^{-\sigma t}\left[-4\pi n^{2}e^{2t} + \left(\frac{1}{2} - \sigma - 2\pi n^{2}e^{2t}\right)^{2}\right]u(t) + \delta(t)\left[\sum_{n=1}^{\infty} e^{-\pi n^{2}}(1 - 4\pi n^{2})\right]$$
(E.10)

We can simplify above equation as follows.

$$\frac{d^2A(t)}{dt^2} = \sum_{n=1}^{\infty} e^{-\pi n^2 e^{-2t}} e^{\frac{-t}{2}} e^{-\sigma t} \left[\frac{1}{4} + \sigma^2 + \sigma + 4\pi^2 n^4 e^{-4t} - 6\pi n^2 e^{-2t} - 4\sigma \pi n^2 e^{-2t} \right] u(-t)$$

$$\sum_{n=1}^{\infty} e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} e^{-\sigma t} \left[\frac{1}{4} + \sigma^2 - \sigma + 4\pi^2 n^4 e^{4t} - 6\pi n^2 e^{2t} + 4\sigma \pi n^2 e^{2t} \right] u(t) + \delta(t) \left[\sum_{n=1}^{\infty} e^{-\pi n^2} (1 - 4\pi n^2) \right]$$
(E.11)

We use the fact that $F(x) = 1 + 2w(x) = \frac{1}{\sqrt{x}}(1 + 2w(\frac{1}{x}))$, where $w(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$ and x > 0 is real^[4], and we take the first derivative of F(x) and evaluate it at x = 1. We see that $\sum_{n=1}^{\infty} e^{-\pi n^2}(1 - 4\pi n^2) = -\frac{1}{2}$ (Appendix E.2) and hence **dirac delta terms cancel each other** in equation below.

26

$$E_{p}(t) = \frac{1}{2}\delta(t) + \left(-\frac{1}{4} + \sigma^{2}\right)A(t) + 2\sigma\frac{dA(t)}{dt} + \frac{d^{2}A(t)}{dt^{2}}$$

$$E_{p}(t) = \sum_{n=1}^{\infty} e^{-\pi n^{2}e^{2t}} e^{\frac{t}{2}} e^{-\sigma t} \left[-\frac{1}{4} + \sigma^{2} + 2\sigma(\frac{1}{2} - \sigma - 2\pi n^{2}e^{2t}) + \frac{1}{4} + \sigma^{2} - \sigma + 4\pi^{2}n^{4}e^{4t} - 6\pi n^{2}e^{2t} + 4\sigma\pi n^{2}e^{2t}\right]u(t)$$

$$+ \sum_{n=1}^{\infty} e^{-\pi n^{2}e^{-2t}} e^{\frac{-t}{2}} e^{-\sigma t} \left[-\frac{1}{4} + \sigma^{2} + 2\sigma(-\frac{1}{2} - \sigma + 2\pi n^{2}e^{-2t}) + \frac{1}{4} + \sigma^{2} + \sigma + 4\pi^{2}n^{4}e^{-4t} - 6\pi n^{2}e^{-2t} - 4\sigma\pi n^{2}e^{-2t}\right]u(-t)$$

$$(E.12)$$

We can simplify above equation as follows.

$$E_p(t) = [E_0(-t)u(-t) + E_0(t)u(t)]e^{-\sigma t}$$

$$E_0(t) = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}]e^{-\pi n^2 e^{2t}}e^{\frac{t}{2}}$$
(E.13)

We use the fact that $E_0(t) = E_0(-t)$ because $\xi(s) = \xi(1-s)$ and hence $\xi(\frac{1}{2} + i\omega) = \xi(\frac{1}{2} - i\omega)$ when evaluated at the critical line $s = \frac{1}{2} + i\omega$. This means $\xi(\frac{1}{2} + i\omega) = E_{0\omega}(\omega) = E_{0\omega}(-\omega)$ and $E_0(t) = E_0(-t)$ and we arrive at the desired result for $E_p(t)$ as follows.

$$E_0(t) = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}}$$

$$E_p(t) = E_0(t)e^{-\sigma t} = 2\sum_{n=1}^{\infty} [2\pi^2 n^4 e^{4t} - 3\pi n^2 e^{2t}] e^{-\pi n^2 e^{2t}} e^{\frac{t}{2}} e^{-\sigma t}$$
(E.14)

Appendix E.2. **Derivation of** $\sum_{n=1}^{\infty} e^{-\pi n^2} (1 - 4\pi n^2) = -\frac{1}{2}$

In this section, we derive $\sum_{n=1}^{\infty} e^{-\pi n^2} (1 - 4\pi n^2) = -\frac{1}{2}$. We use the fact that $F(x) = 1 + 2w(x) = \frac{1}{\sqrt{x}} (1 + 2w(\frac{1}{x}))$, where $w(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$ and x > 0 is real^[4], and we take the first derivative of F(x) and evaluate it at x = 1.

$$F(x) = 1 + 2w(x) = \frac{1}{\sqrt{x}}(1 + 2w(\frac{1}{x}))$$

$$F(x) = 1 + 2\sum_{n=1}^{\infty} e^{-\pi n^2 x} = \frac{1}{\sqrt{x}}(1 + 2\sum_{n=1}^{\infty} e^{-\pi n^2 \frac{1}{x}})$$

$$\frac{dF(x)}{dx} = 2\sum_{n=1}^{\infty} (-\pi n^2)e^{-\pi n^2 x} = \frac{1}{\sqrt{x}}\sum_{n=1}^{\infty} (2\pi n^2)e^{-\pi n^2 \frac{1}{x}}(\frac{1}{x^2}) + (1 + 2\sum_{n=1}^{\infty} e^{-\pi n^2 \frac{1}{x}})(\frac{-1}{2})\frac{1}{x^{\frac{3}{2}}}$$
(E.15)

We evaluate the above equation at x = 1 and we simplify as follows.

$$\left[\frac{dF(x)}{dx}\right]_{x=1} = 2\sum_{n=1}^{\infty} (-\pi n^2)e^{-\pi n^2} = \sum_{n=1}^{\infty} (2\pi n^2)e^{-\pi n^2} + (1 + 2\sum_{n=1}^{\infty} e^{-\pi n^2})(\frac{-1}{2})$$

$$\sum_{n=1}^{\infty} e^{-\pi n^2}(1 - 4\pi n^2) = -\frac{1}{2}$$
(E.16)