Отчет о выполнении лабораторной работы 1.2.3

Определение моментов инерции твёрдых тел с помощью трифилярного подвеса

Г. А. Багров

ФРКТ МФТИ, 18.10.2021

Цель работы: измерение момента инерции ряда тел и сравнение результатов с расчетами по теоретическим формулам; проверка аддитивности моментов инерции и справедливости формулы Гюйгенса-Штейнера.

В работе используются: трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых необходимо измерить.

Теоретические сведения:

Инерционность при вращении тела относительно оси определяется моментом инерции тела относительно этой оси. Момент инерции относительно неподвижной оси вращения определяется по следующей формуле (интегрирование проводится по всей массе тела): $I=\int r^2 dm$. Пренебрегая потерями энергии на трение, можно записать уравнение закона сохранения энергии для колебаний:

$$\frac{I\dot{\phi}^2}{2} + mg(z_0 - z) = E$$

Расстояние между точками С и С" равно длине нити L (рис.1). Отсюда

$$(R \cos \phi - r)^2 + R^2 \sin^2 \phi + z^2 = L^2$$

Учитывая малость угла поворота и пользуясь приближением корня получим:

$$z \approx z_0 - \frac{Rr\phi^2}{2z_0}$$

Подставляем это выражение в закон сохранения энергии, дифференцируем уравнение сохранения по времени и сокращаем на ϕ . Находим уравнение крутильных колебаний:

$$I\ddot{\phi} + mg\frac{Rr}{z_0}\phi = 0$$

Откуда, решая дифференциальное уравнение крутильных колебаний системы, получаем её период колебаний T, момент инерции I и константу k, постоянную для данной установки:

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}} \qquad I = \frac{mgRrT^2}{4\pi^2 z_0} \qquad k = \frac{grR}{4\pi^2 z_0} \qquad I = kmT^2$$

Рис. 1: Трифилярный подвес

Результаты измерений и обработка данных:

- 1. Проверяем пригодность установки (рис. 1) для возбуждения крутильных колебаний.
- 2. Проверяем, что время изменения периода крутильных колебаний в 2-3 раза много больше периода колебаний. Проверяем для ненагруженной платформы.
- 3. Оценим относительную систематическую погрешность измерения времени: $\sigma_{\rm t}^{\rm cuct} \approx 0,1\%$ при фиксации показаний измерения времени использовалась запись процесса на видео, что существенно повысило точность (кроме того, была устранена погрешность, возникающая из-за времени нажатия на кнопку прибора). $\sigma_{\rm t}^{\rm cnyq} \approx 0,47\%$ (определили через среднеквадратичное отклонение). Полная погрешность складывается квадратично из систематической и случайной, равна $\epsilon_t \approx 0,48\%$
- 4. Находим оптимальную амплитуду, то есть такую, чтобы период не зависел от амплитуды колебаний, так как запускали по кнопке, то это примерно половина от максимальной амплитуды, которую мы можем сделать.
- 5. Определяем параметры установки $z_0=(2,14\pm0,01)$ м, $R=(0,1146\pm0,0005)$ м, $r=(0,0302\pm0,0003)$ м. По ним вычисляем константу установки (и её погрешность) $k=(4,02\pm0,05)\cdot 10^{-4}(\frac{\rm M}{c})^2$. по формулам:

$$k = \frac{gRr}{4\pi^2 z_0}$$

$$\sigma_k = k \cdot \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{z_0}}{z_0}\right)^2}$$

6. Далее нам понадобятся используемых грузов (рис.2) и платформы:

$$m_{\text{платф.}} = (0,9657 \pm 0,0005)$$
 кг

$$m_{\text{кольн.}} = (0,748 \pm 0,0003)$$
 кг

$$m_{\text{диск}} = (1, 1229 \pm 0, 0003)$$
 кг

$$m_{\text{пол.1}} = (0,770 \pm 0,0003)$$
 кг

$$m_{\text{пол.2}} = (0,768 \pm 0,0003)$$
 кг

7. Измеряем периоды колебаний ненагруженной платофрмы, определяем I ненагруженной платформы (табл. 1). Здесь и далее для этого N=25 колебаний, тогда искомый период будет равен $\frac{T_{\rm ofm}}{N}$.

Рис. 2: Набор экспериментальных тел

- 8. Измеряем (отсчитываем N колебаний) периоды колебаний платформы с каждым грузом по отдельности и с диском и кольцом (табл. 2)
- 9. Определяем значения моментов инерции грузов (теоретические) по формулам, результаты заносим в табл.2:

$$I_{
m диск}=rac{mR^2}{2}$$
 $I_{
m кольц.}=mR^2$ $I_{
m платф.}=rac{mR^2}{2}$

$$\sigma_I = I \cdot \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + 2\left(\frac{\sigma_R}{R}\right)^2}$$

10. Измеряем моменты инерции и их погрешности для каждого груза (экспериментальные) по формулам, результаты заносим в табл.2:

$$I = kmT^{2}$$

$$\sigma_{I} = I \cdot \sqrt{\left(\frac{\sigma_{k}}{k}\right)^{2} + \left(\frac{\sigma_{m}}{m}\right)^{2} + 2\left(\frac{\sigma_{T}}{T}\right)^{2}}$$

11. Определяем момент инерции двух тел (r1 = r2 = 8,14 см) из набора сначала порознь, потом вместе (табл. 2). Проверяем аддитивность момента инерции, т.е. что $I_{\rm общ} = I_1 + I_2$. То есть что $I_{\rm общ} = I_{\rm диск} + I_{\rm кольц.} - I_{\rm платф.}$. 0,0142 = 0,00682 + 0,0161 - 0,00669, что действительно верно с погрешностью в 8,9%. Следовательно, теоретическое правило аддитивности моментов инерции действительно выполняется.

- 12. Помещаем на платформу диск (масса диска $m=1,546\pm0,0003$ кг, радиус $r=4,75\pm0,01$ см), разрезанный по диаметру. Постепенно его раздвигая так, чтобы центр масс оставался на оси вращения фиксируем (отсчитываем N колебаний) значения зависимости I(h) (табл. 3).
- 13. Строим график зависимости $I(h^2)$ (рис.3). Согласно МНК $k=\frac{<I\cdot h^2>-<I>< h^2>}{<(h^2)^2>-< h^2>^2}\approx 1,330$ кг, $b=<I>-k<h^2>\approx 77,71$ кг · м².

Исходя из построенного графика, $m_{\rm эксп}=1,330$ кг, что близко к реальной массе: $m_{\rm теор}=0,668+0,670=1,338$ кг. Погрешность аппроксимации составляет всего $\approx 0,6\%$.

Определим погрешность определения момента инерции:

$$\sigma_I = I \cdot \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_m}{m}\right)^2 + 2\left(\frac{\sigma_T}{T}\right)^2}; \ \epsilon_I = \frac{\sigma_I}{I} \cdot 100\% \approx 8,9\%$$

Выводы:

- 1) Величина момента инерции, определенная с помощью трифилярного подвеса с довольно большой точностью совпадает с теоретическими предсказаниями.
- 2) Была достигнута относительная точность определения момента инерции $\epsilon_I=0,089$. Основной вклад в погрешность измерения момента инерции внесла погрешность измерения z_0 . Эту погрешность можно уменьшить, если точнее определять параметры установки.
- 3) Была полученая зависимость $I(h^2)$. Данная зависимость довольно хорошо аппроксимируется линейной зависимость, что подтверждает теоретические данные (т.е. формулу Гюйгенса-Штейнера). Также была подтверждена аддитивность момента инерции.

Таблица 1: Определение периода колебаний ${\cal T}$

Тело	$T \pm 0.01, c$			$T_{\rm cp} \pm 0.01, {\rm c}$	$\sigma_{T_{\mathrm{cp}}}$, c	
Платформа	4,26	4,22	4,22	4,24	4,24	0,02
Платформа с кольцом	4,01	4,02	4,01	4,00	4,01	0,02
Платформа с диском	3,33	3,47	3,46	3,42	3,42	0,02
Платформа с диском и кольцом	3,55	3,53	3,54	3,54	3,54	0,02

Таблица 2: Определение момента инерции ${\cal I}$

Тело	$I_{\text{эксп}}$, кг · м ²	$I_{\text{теор}}$, кг · м ²	σ_I , kg·m ²	$\varepsilon,\%$
Платформа	0,00669	0,00634	0,00035	2
Платформа с кольцом	0,0161	0,0164	0,0003	2
Платформа с диском	0,00682	0,00692	0,0001	1
Платформа с диском и кольцом	0,0142	0,0143	0,0002	0,7

Таблица 3: Зависимость $I(h^2)$ для разрезанного по диаметру диска

(1)/// 1 11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1					
$T_{\text{общ}}$, с	T, c	$h \cdot 10^2$, м	$h^2 \cdot 10^4$, m ²	I, кг ⋅м²	
76,874	3,075	0	0	87,56	
74,218	2,9687	2,75	$7,\!5625$	81,61	
77,478	3,0991	3,75	14,0625	88,94	
84,603	3,3841	4,5	20,2500	106,05	
93,004	3,7202	6,38	40,7044	128,16	
97,975	3,9190	6,75	45,5625	142,22	
100,197	4,0079	7,25	$52,\!5625$	148,74	