- Business Case - Aerofit

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

!wget https://d2beiqkhq929f0.cloudfront.net/public assets/assets/000/001/125/original/aerofit treadmill.csv?1639992749 -O aerofit.csv

▼ 1. Defining Problem Statement and Analysing basic metrics

About Aerofit

Aerofit is a leading brand in the field of fitness equipment. Aerofit provides a product range including machines such as treadmills, exercise bikes, gym equipment, and fitness accessories to cater to the needs of all categories of people.

Problem Statement

The market research team at AeroFit wants to identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to the new customers. The team decides to investigate whether there are differences across the product with respect to customer characteristics.

- 1. Perform descriptive analytics to create a customer profile for each AeroFit treadmill product by developing appropriate tables and charts.
- 2. For each AeroFit treadmill product, construct **two-way contingency tables** and compute all **conditional and marginal probabilities** along with their insights/impact on the business

Analysing basic metrics

The company collected the data on individuals who purchased a treadmill from the AeroFit stores during the prior three months.

Product Purchased: KP281, KP481, or KP781

Age: In years

Gender: Male/Female **Education**: In years

MaritalStatus: Single or partnered

Usage: The average number of times the customer plans to use the treadmill each week.

Income: Annual income (in \$)

Fitness: Self-rated fitness on a 1-to-5 scale, where 1 is the poor shape and 5 is the excellent shape.

Miles: The average number of miles the customer expects to walk/run each week

Product Portfolio:

- The KP281 is an entry-level treadmill that sells for \$1,500.
- The KP481 is for mid-level runners that sell for \$1,750.
- The KP781 treadmill is having advanced features that sell for \$2,500.
- 1. Observations on shape of data, data types of all the attributes, conversion of categorical attributes to 'category' (If required), statistical summary

```
# Import data
aerofit = pd.read_csv('aerofit.csv')
aerofit
```

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	7
0	KP281	18	Male	14	Single	3	4	29562	112	
1	KP281	19	Male	15	Single	2	3	31836	75	
2	KP281	19	Female	14	Partnered	4	3	30699	66	
3	KP281	19	Male	12	Single	3	3	32973	85	
4	KP281	20	Male	13	Partnered	4	2	35247	47	
175	KP781	40	Male	21	Single	6	5	83416	200	
176	KP781	42	Male	18	Single	5	4	89641	200	
177	KP781	45	Male	16	Single	5	5	90886	160	
178	KP781	47	Male	18	Partnered	4	5	104581	120	
179	KP781	48	Male	18	Partnered	4	5	95508	180	
180 rows × 9 columns										

#shape of the data aerofit.shape

(180, 9)

aerofit.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):
# Column
                 Non-Null Count Dtype
                 -----
0
    Product
                180 non-null
                              object
                 180 non-null int64
1 Age
                 180 non-null object
2 Gender
                180 non-null int64
3 Education
4 MaritalStatus 180 non-null
                              object
5 Usage
                 180 non-null
                              int64
                 180 non-null
                              int64
6
   Fitness
7
   Income
                 180 non-null
                              int64
8 Miles
                 180 non-null int64
dtypes: int64(6), object(3)
memory usage: 12.8+ KB
```

#statistical summary
aerofit.describe()

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

aerofit.describe(include='object')

	Product	Gender	MaritalStatus	1
count	180	180	180	
unique	3	2	2	
top	KP281	Male	Partnered	
freq	80	104	107	

```
#conversion of categorical attributes to 'category'
income_points = [29000, 50000, 70000, 90000, 110000]
income_labels = ['Below Average','Average','High','Very High']
aerofit['Income_Range'] = pd.cut(aerofit['Income'], bins=income_points, labels=income_labels)

miles_points = [20, 90, 180, 270, 380]
miles_labels = ['Low','Medium','High','Very High']
aerofit['Miles_Range'] = pd.cut(aerofit['Miles'], bins=miles_points, labels=miles_labels)

aerofit.head()
```

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	<pre>Income_Range</pre>	Miles_Range
0	KP281	18	Male	14	Single	3	4	29562	112	Below Average	Medium
1	KP281	19	Male	15	Single	2	3	31836	75	Below Average	Low
2	KP281	19	Female	14	Partnered	4	3	30699	66	Below Average	Low
3	KP281	19	Male	12	Single	3	3	32973	85	Below Average	Low
4	KP281	20	Male	13	Partnered	4	2	35247	47	Below Average	Low

→ 2. Non-Graphical Analysis: Value counts and unique attributes

```
#number of unique values in our data
for i in aerofit.columns:
  print(i,':',aerofit[i].nunique())
     Product : 3
     Age : 32
     Gender : 2
     Education : 8
    MaritalStatus : 2
    Usage : 6
     Fitness : 5
     Income : 62
     Miles : 37
     Income Range : 4
    Miles_Range : 4
#unique attributes
products = aerofit['Product'].unique()
products #contains unique records of director
     array(['KP281', 'KP481', 'KP781'], dtype=object)
#checking null values in every column of our data
aerofit.isnull().sum() #There are no NaN values
     Product
     Age
     Gender
     Education
     MaritalStatus
     Usage
     Fitness
     Income
     Miles
     Income_Range
     Miles_Range
     dtype: int64
#checking the occurences of each of the Product
aerofit['Product'].value_counts()
     KP281
             80
     KP481
             60
     KP781
```

Name: Product, dtype: int64

```
# Count with respect to Gender
aerofit['Gender'].value_counts()
              104
    Male
               76
     Female
    Name: Gender, dtype: int64
# Count with respect to MaritalStatus
aerofit['MaritalStatus'].value_counts()
     Partnered 107
     Single
                 73
    Name: MaritalStatus, dtype: int64
# Count with respect to Fitness
aerofit['Fitness'].value_counts()
         97
         31
         26
    4 24
        2
    Name: Fitness, dtype: int64
# Count with respect to Education
aerofit['Education'].value_counts()
          85
     16
          55
     14
     18
          23
    15
    13
     12
     21
           3
     20
          1
    Name: Education, dtype: int64
# Count with respect to Usage
aerofit['Usage'].value_counts()
    3
         69
    4 52
    2 33
        17
         7
         2
    Name: Usage, dtype: int64
```

▼ 3. Visual Analysis - Univariate & Bivariate

▼ 1. For continuous variable(s): Distplot, countplot, histogram for univariate analysis

```
plt.figure(figsize=(20,8))
nlt.subplot(1.2.1)
```

```
sns.histplot(data=aerofit.loc[aerofit['Gender']=='Male'],x='Age',bins=10)
plt.title('Count of Male Customers with respect to age using the product')
plt.subplot(1,2,2)
sns.histplot(data=aerofit.loc[aerofit['Gender']=='Female'],x='Age',bins=10)
plt.title('Count of Female Customers with respect to age using the product')
plt.show()
```



```
plt.figure(figsize=(15,8))
sns.lineplot(data=aerofit.loc[aerofit['Gender']=='Male'],x='Age',y='Fitness',label='Male')
sns.lineplot(data=aerofit.loc[aerofit['Gender']=='Female'],x='Age',y='Fitness',label='Female')
plt.title('Fitness of Customers with respect to Age')
plt.show()
```


sns.lineplot(data=aerofit,x='Usage',y='Fitness',hue="Gender")
plt.title('Distribution of Male/Female fitness range with respect to usage')
plt.show()

sns.lineplot(data=aerofit,x='Fitness',y='Income',hue="Product")
plt.title('Distribution of Fitness and Income')
plt.show()

sns.boxplot(data=aerofit,y='Income')
plt.show()

sns.boxplot(data=aerofit,y='Miles')
plt.show()

▼ 2. For categorical variable(s): Boxplot

```
sns.countplot(data=aerofit,x='Product')
plt.title('Count of Products')
plt.show()
```



```
plt.figure(figsize=(18,8))
plt.subplot(1,2,1)
sns.countplot(data=aerofit,x='Gender',hue='Product')
plt.title('Customer count using products with respect to gender')
plt.subplot(1,2,2)
```

sns.countplot(data=aerofit,x='MaritalStatus',hue='Product')
plt.title('Customer count using products with respect to marital status')
plt.show()

sns.countplot(data=aerofit,x='Miles_Range',hue='Product')
plt.show()

▼ 3. For correlation: Heatmaps, Pairplots

correlation1 = pd.crosstab(aerofit['Product'],aerofit.Gender,margins=True)
correlation1

Gender	Female	Male	A11	1
Product				
KP281	40	40	80	
KP481	29	31	60	
KP781	7	33	40	
All	76	104	180	

correlation2 = pd.crosstab(aerofit['Product'],aerofit.MaritalStatus,margins=True)
correlation2

MaritalStatus	Partnered	Single	All	1
Product				
KP281	48	32	80	
KP481	36	24	60	
KP781	23	17	40	
AII	107	73	180	

Using the above calculation, we can find marginal probability and conditional probability :

Marginal Probability:

P(KP281) = 80/180 = 0.444

P(KP481) = 60/180 = 0.333

P(KP781) = 40/180 = 0.222

P(Male) = 104/180 = 0.577

P(Female) = 76/180 = 0.422

P(Partnered) = 107/180 = 0.594

P(Single) = 73/180 = 0.405

Conditional Probability:

P(KP281 | Male) = 40/104 = 0.384

P(KP281 | Female) = 40/76 = 0.526

P(KP481 | Male) = 31/104 = 0.298

P(KP481 | Female) = 29/76 = 0.381

P(KP781 | Male) = 33/104 = 0.314

P(KP781 | Female) = 7/76 = 0.092

P(KP281 | Partnered) = 48/107 = 0.448

P(KP281 | Single) = 32/73 = 0.438

P(KP481 | Partnered) = 36/107 = 0.336

P(KP481 | Single) = 24/73= 0.328

P(KP781 | Partnered) = 23/107 = 0.214

P(KP781 | Single) = 17/73 = 0.232

corr = pd.crosstab(aerofit['Product'],[aerofit.Gender,aerofit.MaritalStatus])
sns.heatmap(corr,annot=True)
plt.show()

sns.heatmap(aerofit.corr(),annot=True,cmap='Blues')
plt.show()

sns.pairplot(data=aerofit)
plt.show()

#Missing Value Detection

aerofit.isna().sum() #There are no missing values in this dataset

Age Gender

Education 0
MaritalStatus 0
Usage 6
Fitness 0
Income 0
Miles 0
Income_Range 0
Miles_Range 0
dtype: int64

```
#Outlier Detection
plt.figure(figsize=(20,8))
plt.subplot(1,3,1)
sns.boxplot(data=aerofit,y='Income')
plt.title('statistical Summary of Income')
plt.subplot(1,3,2)
sns.boxplot(data=aerofit,y='Miles')
plt.title('statistical Summary of Miles')
plt.subplot(1,3,3)
sns.boxplot(data=aerofit,y='Age')
plt.title('statistical Summary of Age')
plt.show()
```


From the above charts,

We can determine the outliers for the respective fields,

Income:

```
Below 30000 and above 78000 is considered outliers
```

Miles:

```
Below 46 and above 180 miles is considered outliers
```

Age:

167

166 173

280 300

360

Name: Miles, dtype: int64

```
Below 17 and above 46 is considered outliers
```

```
#Further analysis for getting potential outliers using z-score test
z_scores = (aerofit["Income"] - aerofit["Income"].mean()) / aerofit["Income"].std()
potential_outliers = aerofit[np.abs(z_scores) > 3]["Income"]
potential outliers.sort values() #Below values are potential outliers for income
           103336
     168
     174
           104581
     178
          104581
     Name: Income, dtype: int64
z_scores = (aerofit["Age"] - aerofit["Age"].mean()) / aerofit["Age"].std()
potential_outliers = aerofit[np.abs(z_scores) > 3]["Age"]
potential_outliers.sort_values() #Below values are potential outliers for Age
     79
     Name: Age, dtype: int64
z_scores = (aerofit["Miles"] - aerofit["Miles"].mean()) / aerofit["Miles"].std()
potential_outliers = aerofit[np.abs(z_scores) > 3]["Miles"]
potential_outliers.sort_values() #Below values are potential outliers for Miles
     170
           260
```

▼ 5. Business Insights based on Non-Graphical and Visual Analysis

- 1. The given dataset contains 180 rows and 9 columns, of which 6 columns are numerical.
- 2. The given dataset is clean and has no missing values.
- 3. Using histplot, we have plotted count of female/male customers with respect to age using aerofit product. Highest sales of the product are with male customers whose age is around 24-27 and with female customers around age 22-26.
- 4. Using lineplot, we have plotted fitness of male customers with respect to Age. The plot reached its peak at 22 years.

- 5. Using lineplot, we have plotted fitness of female customers with respect to Age. The plot reached its peak at 30 years.
- 6. Using lineplot, we have plotted the distribution of Male/Female fitness range with respect to usage. We observe that the plot follows a linear pattern which idicates, fitness of a customer increases with increase of the product usage.
- 7. Using lineplot, we have plotted how education and income affect the customer's choice of product. Higher the education, higher the income and the customers tend to prefer the product accordingly.
- 8. Using boxplot, we can infer than fifty percentile of customers income is 50,000.
- 9. Using countplot, we have found that KP281 is the most popular among customers followed by KP481 and KP781.
- 10. Using boxplot, we can infer than fifty percentile of customers run 90 miles.

▼ 6. Recommendations

- 1. In general people tend to prefer buying KP281 followed by KP481 and KP781. So it is highly recommended to sugesst begineers to buy KP281.
- 2. Since people with high income tend to buy the high ended product the most it is advisable to recommend the customer based on their income/usage.
- 3. Since sales of the products with male customers whose age is around 24-27 is the highest the sales team can target these customers having high probability of buying.
- 4. Since sales of the products with female customers whose age is around 22-26 is the highest the sales team can target these customers having high probability of buying.
- 5. Customer profiling It is recommended to use the below profiling to suggest a product to a cutomer.
- 6. When a customer is male it is highly likely that he would buy KP281>KP781>KP481 with the probablity of 38%,31% and 29% respectively.
- 7. When a customer is female it is highly likely that she would buy KP281>KP481>KP781 with the probablity of 52%,38% and 9% respectively.
- 8. When a customer is partnered it is highly likely that he/she would buy KP281>KP481>KP781 with the probablity of 44%,33% and 21% respectively.
- 9. When a customer is single it is highly likely that he/she would buy KP281>KP481>KP781 with the probablity of 43%,32% and 23% respectively.
- 10. Low income customers tend to buy KP481 if they have high fitness range, so producing KP481 in high quantity is recommended.

✓ 2s completed at 8:36 PM

×