

Industrial IoT for Digitization of Electronis Assets

Kalman Filter Estimation and Inflow Prediction

Agenda

• Estimate the Unmeasured Inflow using The Kalman Filter

State Equation

$$\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{B}_k \mathbf{u}_k + \mathbf{G}_k \mathbf{w}_k$$

 $\mathbf{z}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k$

- **x**_k: State vector at time k.
- A_k: State transition matrix.
- **B**_k: Control-input matrix.
- **G**_k: Noise transformation matrix.

- **z**_k: Measurement at time k.
- \mathbf{H}_k : Observation matrix.
- **w**_k: Process noise
- **v**_k: Measurement noise

Noise Characteristics and Assumptions

- Process noise \mathbf{w}_k and measurement noise \mathbf{v}_k are typically independent.
- Both noises are modeled as white noise (constant spectral density, uncorrelated in time).
- G_k scales or transforms process noise to align with the state space.

 $x_0 \sim \tilde{x_0}$ and covariance P_0

Covariance, of the process noise w_k and the measurement noise v_k

$$\mathbb{E}\left[\begin{pmatrix} w_k \\ v_k \end{pmatrix} \begin{pmatrix} w'_\ell & v'_\ell \end{pmatrix}\right] = \begin{bmatrix} Q_k & 0 \\ 0 & R_k \end{bmatrix} \delta_{kl}$$

- The resulting matrix has zeros off diagional, uncorrelated error with each other.
- The δ_{kl} means that the autocorrelation is non-zero on for l=k, thus they are independent in time (independence of sample in white noise)

Figure:

Priori Knowledge from the previous measurements

Prediction Phase: Step 1.1

Let's start by considering the state update (no new measurement)

Predicted State Estimate (a priori)

$$\hat{x}_{k|k-1} = F_k \hat{x}_{k-1|k-1} + B_k u_k$$

- $\mathbf{x}_{\mathbf{k}|\mathbf{k}-\mathbf{1}}$ \rightarrow estimate of x at time k given k-1.
- $\mathbf{x}_{\mathbf{k-1}|\mathbf{k-1}}$ \rightarrow all the estimation up to k-1 given k-1 observations.
- **Bu**_{k-1} → deterministic input.

Prediction Phase: Step 1.2

Predicted Estimate Covariance (a priori)

$$\hat{P}_{k|k-1} = F_k P_{k|k-1} F_k^T + Q_k$$

- $P_{k|k-1}$ \rightarrow predicted state covariance matrix at time k based on P_{k-1} .
- $\mathbf{F}_{\mathbf{k}}$ is the state transition matrix
- Q_k is the covariance matrix of the process noise

New measurement available

Measurement Update Equation

$$y_k = z_k - H_k \hat{x}_{k|k-1}$$

- $\mathbf{y_k} \rightarrow$ represents the measurement at time step k
- $\mathbf{z_k}$ is the predicted measurement at time step k.
- $\mathbf{H}_{\mathbf{k}}$ is the observation matrix at time step k.

New measurement available

Innovation of Covariance Matrix

$$S_{k|k-1} = H_k \hat{P}_{k|k-1} H_k^T + R_k$$

- $\mathbf{y_k} \rightarrow$ represents the measurement at time step k
- $\mathbf{z_k}$ is the predicted measurement at time step k.
- $\mathbf{H_k}$ is the observation matrix at time step k.

New measurement available

Kalman Gain

$$S_{k|k-1} = H_k \hat{P}_{k|k-1} H_k^T + R_k$$

- $\mathbf{y_k} \rightarrow$ represents the measurement at time step k
- $\mathbf{z_k}$ is the predicted measurement at time step k.
- $\mathbf{H_k}$ is the observation matrix at time step k.

Kalman Gain Calculation

$$K_{k} = \hat{P}_{k|k-1} H_{k}^{T} S_{k}^{-1}$$

$$K_{k} = \hat{P}_{k|k-1} H_{k}^{T} (H_{k} P_{k|k-1} H_{k}^{T} + R_{k})^{-1}$$

Updated State Estimate

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k y_k$$

Updated Estimate Covariance

$$P_{k|k} = (I - K_k H_k) P_{k|k-1}$$

Inflow Estimation of the Wastewater Tank

- The goal is to estimate the inflow rate (Q_{in}) in a reservoir system without direct measurements.
- Kalman Filter is utilized to estimate Q_{in} using the water height (h) and outflow rate (Q_{out}) measurements.
- The estimation is crucial for building the inflow forecast and the controller.
- State Variables: Inflow Rate (Q_{in}) , Water Height (h), Outflow Rate (Q_{out}) .
- Measurements: Water Height and Outflow Rate.

System Model

• The continuous-time model is given by the differential equation:

$$rac{dh}{dt} = rac{t_{sampling}}{A}(Q_{in}(t) - Q_{out}(t))$$

$$\frac{dh}{dt} = 0 \longrightarrow Q_{in}(t) = Q_{out}(t)$$

State Transition Matrix (A)

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{t}{\text{area}} & 1 & -\frac{t}{\text{area}} \\ 0 & 0 & 1 \end{bmatrix}$$

- Describes the system's evolution over time.
- *t* is the time step, and area is a system parameter.

Observation Matrix (H) and Measurements

$$H = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Maps state variables to measurements.
- Observes water height (h) and outflow rate (Qout).

Process and Measurement Noise

- Process Noise: Error estimates for Q_{in} , h, Q_{out} .
- Measurement Noise: Error in measuring h and Qout.

Initial State and Covariance

- Initial State: Estimates for Q_{in} , h, Q_{out} .
- Covariance: Represents initial uncertainty in state estimates.

Python Tutorial: Build The Kalman Filter To Estimate the Inflow

(a) Outflow Estimation vs Measurements

(b) Height Estimation vs Measurements

(c) Indirect Inflow Estimation