

Covid - 19 Data Analysis, Visualization and Machine Learning Implementation

Nishant Ranjan Verma, Letterkenny Institute of Technology, L00157133

Abstract—Big Data Analytics is mix bag of all the technologies come together when working with problems and analysis associated with Big Data. In here I am trying to attempt to do analysis, visualization and machine learning prediction on the Covid 19 dataset. I would use pyspark as the language to operate and Databricks as the platform to operate on achieving the requisite task.

Index Terms—Attacks, Machine Learning, Adversarial Attacks, Artificial Intelligence

I. Introduction

N December 2019, the novel coronavirus (COVID-19) pandemic broke out in Wuhan, China, and has since spread across the world. COVID-19 pandemic disease was caused by a virus known as coronavirus 2, also known as extreme acute respiratory syndrome coronavirus 2, is a virus that causes severe acute respiratory syndrome. SARS-CoV-2 is a virus that causes SARS. Coronaviruses (CoV) are a broad group of viruses. Cold-related illnesses, such as the flu, are caused by viruses. Severe Middle East Respiratory Syndrome (MERS-CoV) and Middle East Respiratory Syndrome (MERS-CoV) Acute Respiratory Syndrome (ARS) is a condition that affects the lungs (SARS-CoV). COVID-19 is a new genus of Coronavirus that was discovered in 2019 and has never been found in humans before. In this project I aim at predicting the number of confirmed cases and fatalities in different regions of the world. I will apply the concepts of Big Data and make attempt to solve the following scenario using PySpark. I will make use of Linear Regression, Decision Tree, Random Forest in way to find the results.

II. DATA

The Data for has been provided by John Hopkins CSSE. It is readily available on Kaggle[1] in train and test files to be used for any further research and analysis purposes. The training dataset file consists of corresponding Ids, Province State, Country Region, Date, Confirmed Cases and Fatalities as the required columns. The test dataset file consists of ID, Province State, Country Region and Date as the aforementioned columns. The format of the dataset will be changed accordingly in order to make better use of it. Also the data columns which consists of the NULL values will be handled in order better up the analysis of the whole set.

root

```
|-- Id: integer (nullable = true)
|-- Province_State: string (nullable = true)
|-- Country_Region: string (nullable = true)
|-- Date: timestamp (nullable = true)
|-- ConfirmedCases: double (nullable = true)
|-- Fatalities: double (nullable = true)
```

Train

Fig 1: Train Data Schema

```
root
```

```
|-- ForecastId: integer (nullable = true)
|-- Province_State: string (nullable = true)
|-- Country_Region: string (nullable = true)
|-- Date: timestamp (nullable = true)
```

Test

Fig 2: Test Data Schema

2 BIG DATA TECHNICAL REPORT

Id Prov	ince_State C	ountry_Region		Date	ConfirmedCases	Fatalities
1	null	Afghanistan	2020-01-22	00:00:00	0.0	0.6
2	null	Afghanistan				0.6
3	null	Afghanistan				Θ.6
4	null	Afghanistan				
5	null	Afghanistan				
6	null	Afghanistan				0.0
7	null	Afghanistan				Θ.
8	null	Afghanistan	2020-01-29	00:00:00	0.0	Θ.
9	null	Afghanistan	2020-01-30	00:00:00	0.0	Θ.
10	null	Afghanistan	2020-01-31	00:00:00	0.0	Θ.
11	null	Afghanistan	2020-02-01	00:00:00	0.0	Θ.
12	null	Afghanistan	2020-02-02	00:00:00	0.0	Θ.
13	null	Afghanistan	2020-02-03	00:00:00	0.0	Θ.
14	null	Afghanistan	2020-02-04	00:00:00	0.0	Θ.
15	null	Afghanistan	2020-02-05	00:00:00	0.0	Θ.
16	null	Afghanistan	2020-02-06	00:00:00	0.0	Θ.
17	null	Afghanistan	2020-02-07	00:00:00	0.0	Θ.
18	null	Afghanistan				0.
19	null	Afghanistan	2020-02-09	00:00:00	0.0	0.
20	null	Afghanistan	2020-02-10	00:00:00	0.0	Θ.

Some Training Records

Fig 3: Train Data

+	+	+	+	+
ForecastId	Province State	Country Region	I	Date
‡		<u> </u>		
1	null	Afghanistan	2020-04-02	00:00:00
] 2	null	Afghanistan	2020-04-03	00:00:00
3	null	Afghanistan	2020-04-04	00:00:00
4	null	Afghanistan	2020-04-05	00:00:00
5	null	Afghanistan	2020-04-06	00:00:00
6	null	Afghanistan	2020-04-07	00:00:00
7	null	Afghanistan	2020-04-08	00:00:00
8	null	Afghanistan	2020-04-09	00:00:00
j 9	null	Afghanistan	2020-04-10	00:00:00
10	null	Afghanistan	2020-04-11	00:00:00
11	null	Afghanistan	2020-04-12	00:00:00
12	null	Afghanistan	2020-04-13	00:00:00
13	null	Afghanistan	2020-04-14	00:00:00
14	null	Afghanistan	2020-04-15	00:00:00
15	null	Afghanistan	2020-04-16	00:00:00
16	null	Afghanistan	2020-04-17	00:00:00
17	null	Afghanistan	2020-04-18	00:00:00
18	null	Afghanistan	2020-04-19	00:00:00
19	null	Afghanistan	2020-04-20	00:00:00
20	null	Afghanistan	2020-04-21	00:00:00
+	+	+	+	+

Fig 4: Test Data

Some Test Records

```
train_sdf.createOrReplaceTempView('train_sdf')

sDF = spark.sql('SELECT Country_Region FROM train_sdf GROUP BY Country_Region')

print('Total Countries: ',len(sDF.toPandas()['Country_Region']))

sDF = spark.sql('SELECT Date FROM train_sdf GROUP BY Date")

print('Total Days: ',len(sDF.toPandas()['Date']))

(4) Spark Jobs

sDF: pyspark.sql dataframe.DataFrame = [Date: string]

Total Countries: 180

Total Days: '7

Command took 0.92 seconds -- by L00157133@student.lyit.ie at 3/6/2021, 6:35:52 PM on myfirstcluster

Cmd 12

test_sdf.createOrReplaceTempView('test_sdf')

sDF = spark.sql('SELECT Country_Region FROM test_sdf GROUP BY Country_Region')

print('Total Countries: ',len(sDF.toPandas()['Country_Region']))

sDF = spark.sql('SELECT Date FROM test_sdf GROUP BY Date')

print('Total Days: ',len(sDF.toPandas()['Date']))

(4) Spark Jobs

sDF: pyspark.sql dataframe.DataFrame = [Date: string]

Total Countries: 180

Total Days: 43

Command took 1.54 seconds -- by L00157133@student.lyit.ie at 3/6/2021, 6:35:53 PM on myfirstcluster
```

Fig 5: Total countries

Since it is not possible to train a regression model with multiple outputs in PySpark, separate training and testing for Confirmed Cases and Fatalities were needed, followed by the merging of their individual outputs into a single file for submission.

III. METHODOLOGY

The problem involved forecasting confirmed cases and fatalities between April 1 and April 30 by region, the primary

goal wasn't only to produce accurate forecasts. It was also to identify factors that appeared to impact the transmission rate of COVID-19. I later implied the following as a procedure to do the need full Visualization, Pre-Processing, Linear Regression, Decision Tree, Random Forest.

A. Visualisation

There were 32,707 training records and 13,158 evaluation records in the data collection, with the following schemas:

1. Cases with Confirmed Virus but No Fatalities:

Fig show different visualizations for cases with confirmed virus but no fatalities. China, the United States, Australia, Canada, and France are among the top five countries in Fig. The spike occurred after 30 days, and it began to go down after about 55 days, as shown in Fig.

Fig 5: Top 5 Confirmed

2) Sorted Confirmed Cases Per Day:

Fig. show various visualizations for cases where the virus has been reported as having caused fatalities or not. The increase in Fig. occurred after 30 days, but the data given shows that it never goes down.

Fig 6: Confirmed Graph

3) Sorted Per-Day Fatalities: Figures show various visualizations of per-day fatalities. The increase in Fig.16 occurred after 45 days, but the data given shows that it never

goes down.

(4) Spark Jobs

Out[106]: count 77.000000 mean 75.584416 std 42.192962 min 27.000000 25% 41.000000 59.000000 50% 75% 100.000000 166.000000 max

Name: count(ConfirmedCases), dtype: float64

Command took 0.58 seconds -- by L00157133@student.lyit

Fig 7: Confirmed Describe

4) Country-wise Confirmed Cases: Figures show various visualizations for countrywide confirmed cases. China, the United States, Australia, Canada, and France are among the top five countries in Fig.20.

<matplotlib.axes._subplots.AxesSubplot at 0x7f3fc3</pre>

(2) Spark Jobs

5) Countrywide Fatalities: Figures depict various visualizations of countrywide reported cases. China, the

United States, Canada, Australia, and France are the top five nations, according to Fig.23. I tried removing records with NULL values and removing Province State as a function to include all the records, but it didn't work. By eliminating Province State as a whole, I was able to achieve better results.

[<matplotlib.lines.Line2D at 0x7f3fc31a7fd0>]

(2) Spark Jobs

+	+
Country_Region	count(Fatalities)
+	+
China	1662
US	1003
Canada	122
Australia	117
France	110
+	++

4 BIG DATA TECHNICAL REPORT

(2) Spark Jobs

+	+
Country_Region count(Fatali	ties)
T	
Antigua and Barbuda	1
Belize	2
Benin	2
Barbados	3
Ethiopia	3
+	+

Date count	(Fatalities)
+	+
2020-01-22	1
2020-01-23	2
2020-01-24	3
2020-01-25	3
2020-01-26	5
2020-01-27	7
2020-01-28	7
2020-01-29	8
2020-01-30	8
2020-01-31	8
2020-02-01	9
2020-02-02	10
2020-02-03	10
2020-02-04	11
2020-02-05	13
2020-02-06	13
2020-02-07	15
2020-02-08	17
Command took 0.69 se	conds by L00157

at two things: Is it possible to predict an outcome (dependent) variable using a collection of predictor variables? The variables in particular are important predictors of the outcome variable, and how do they influence the outcome variable (as shown by the magnitude and sign of the beta estimates). These regression estimates are used to describe how one dependent variable and one or more independent variables are related. The simplest form of the regression equation with one dependent and one independent variable is y = c + b*x, where y represents the approximate dependent variable value, c represents the constant, b represents the regression coefficient, and x represents the score on the independent variable.

Coefficients: [0.015212651240759895, -2.615164941136036, 1.3961631256617492e-08]
Intercept: 0.0
numIterations: 67

objectiveHistory: [1703.0120401027157, 1000.4381795310941, 881.8521168204035, 873.4033753972781, 870.562866497902, 869.6423477066529, 869.0961177924488, 868.7580023550192, 868.5518679640857, 868.4258128385408, 868.3622370994053, 868.3622757117944, 868.3622713640924, 868.362280170828, 868.362236751863, 868.362229769265, 868.361230176026, 868.36129071032879, 868.36129747060937, 868.393735206197, 868.39538009180733, 868.343563336791, 868.3177021958080, 868.2466438635433, 867.9980636431771, 867.5763666327385, 867.228540247459, 867.2737354509449, 867.275120446112, 867.2158053020857, 867.2745856563291, 867.2736101070794, 867.2707283304234, 867.2638029422236, 867.2482899309912, 867.20333412781, 867.1280218092373, 866.01404939228, 866.8616957333132, 866.1899452329901, 866.6619854172512, 866.8028342595259, 866.0158221046999, 866.0140736797706, 866.01407597706, 866.0140949179157, 866.01409179144835, 866.814099917095, 866.8140884913459, 866.0140776797706, 866.0140559232704, 866.0139367362285, 866.0138023880525, 866.814099917095, 866.0140746797070706, 866.0140978917085, 866.9138449494, 867.293804949, 867.29381381844, 865.9378073843494, 867.29371849941357, 865.937184

RMSE: 5337.372178 MAE: 645.756616 MSE: 28487541.761554

(2) Spark Jobs

++	+
Country_Region	count(Fatalities)
+	+
Antigua and Barbuda	1
Belize	2
Benin	2
Barbados	3
Ethiopia	3
++	+

B. Pre-processing

Pre-processing tasks performed were as follows: Remove NULL values, Convert Timestamp to UnixTimestamp and Convert Categorical Attributes to Nominal.

C. Linear Regression

The most basic and widely used method of predictive analysis is linear regression. The aim of regression is to look

Fig 8: Train data

ForecastId Province_State Continues prediction	untry_Region Date Provin	ce_StateIndex Country_	RegionIndex fea
345 Australian Capita 51 10.729025426110711	Australia 1585162800	110.0	5.0 [110.0,5.0,1.58
346 Australian Capita 52 10.73023171105128	Australia 1585249200	110.0	5.0 [110.0,5.0,1.58
347 Australian Capita 53 10.731437995991852	Australia 1585335600	110.0	5.0 [110.0,5.0,1.58
348 Australian Capita 54 10.732644280932425	Australia 1585422000	110.0	5.0 [110.0,5.0,1.58
349 Australian Capita	Australia 1585508400	110.0	5.0 [110.0,5.0,1.58
350 Australian Capita 55 10.735056850813569	Australia 1585594800	110.0	5.0 [110.0,5.0,1.58
351 Australian Capita	Australia 1585681200	110.0	5.0 [110.0,5.0,1.58
56 10.736263135754141 352 Australian Capita	Australia 1585767600	110.0	5.0 [110.0,5.0,1.58
57 10.73746942069471 353 Australian Capita	Australia 1585854000	110.0	5.0 [110.0,5.0,1.58
58 10.738675705635282 354 Australian Capita	Australia 1585940400	110.0	5.0 [110.0,5.0,1.58
59 10.739881990575855 355 Australian Capita	Australia 1586026800	110.0	5.0 [110.0,5.0,1.58
50 10.741088275516427 356 Australian Capita	Australia 1586113200	110.0	5.0 [110.0,5.0,1.58
51 10.742294560457			
357 Australian Capita 61 10.743500845397572	Australia 1586199600	110.0	5.0 [110.0,5.0,1.58
358 Australian Capita 52 10.744707130338144	Australia 1586286000	110.0	5.0 [110.0,5.0,1.58
359 Australian Capita 63 10.745913415278713	Australia 1586372400	110.0	5.0 [110.0,5.0,1.58
360 Australian Capita 54 10.747119700219285	Australia 1586458800	110.0	5.0 [110.0,5.0,1.58
361 Australian Capita 65 10.748325985159857	Australia 1586545200	110.0	5.0 [110.0,5.0,1.58
362 Australian Capita 66 10.74953227010043	Australia 1586631600	110.0	5.0 [110.0,5.0,1.58
363 Australian Capita 67 10.750738555041002	Australia 1586718000	110.0	5.0 [110.0,5.0,1.58
364 Australian Capita 58 10.751944839981574	Australia 1586804400	110.0	5.0 [110.0,5.0,1.58

Fig 9: Test data

Coefficients: [5.44957612239998e-10,-5.6189620828913035e-09,1.2602663552243827e-17]
Intercept: 0.0
numIterations: 74

objectiveMistory: [1194.7435104344768, 28.272935594723306, 27.31932307279021, 27.317282278743725, 27.3171102631992
74, 27.3105662296683372, 27.310225660189177, 27.29673596244733, 27.2614989271218893, 27.183427561156683, 26.59908171
65179, 26.64803708319912, 26.574517458316404, 26.5356216922807227, 26.53604616297333, 26.53603939379294, 26.53639
23907706, 26.535608181404246, 26.5359136820608847, 26.535661461140602, 26.535923126541347, 26.5333338082223814, 26.52
982938833607, 26.518084042280626, 26.5978279988743, 26.4777348688777, 26.43824431802966, 26.398239747492616, 26.
398277981702897, 26.398259914663186, 26.398259477876433, 26.398257777653477, 26.398240809041244, 26.39820824913963
5, 26.39811165087662, 26.397871701551708, 26.397237196347522, 26.395520631542926, 26.391513005359216, 26.381198555
783502, 26.336372166608762, 26.397871701551708, 26.3314589475197, 26.331307258700078, 26.31249992173413, 26.31217
99682624242, 26.309538255751857, 26.309625883611645, 26.3944623827678168126, 26.3094036959, 26.3929992448377, 26.39731782795, 26.309675115217383, 26.309015518663945, 26.297307604367514, 26.2973065210335, 26.2974976197816
8, 26.29734642674083, 26.2974505551667, 26.297398725970247, 26.29731911043207, 26.2973086727302, 26.29730800
7884435, 26.297307590165376, 26.297307660769333, 26.29730879744083, 26.29730873169747047, 26.297307769747047, 26.297307731067512]

RMSE: 211.088569 MAE: 19.479487 MSE: 44558.383973

Fig 10: Fatalities Train

+				
ForecastId Province State Co	untry Region	Date Provi	nce StateIndex Country	RegionIndex fea
tures prediction				
345 Australian Capita	Australia 15	35162800	110.0	5.0 [110.0,5.0,1.58
51 5.182759676411623E-8 346 Australian Capita	Australia 15	35249200	110.0	5.0 [110.0,5.0,1.58
52 5.182868563424714E-8 347 Australian Capita	Australia 15	35335600	110.0	5.0 [110.0,5.0,1.58
53 5.182977450437806E-8 348 Australian Capita	Australia 15	35422000	110.0	5.0 [110.0,5.0,1.58
54 5.183086337450897 349 Australian Capita	Australia 15	35508400	110.0	5.0 [110.0,5.0,1.58
55 5.183195224463988 350 Australian Capita	Australia 15	35594800	110.0	5.0 [110.0,5.0,1.58
55 5.18330411147708E-8 351 Australian Capita	Australia 15	35681200	110.0	5.0 [110.0,5.0,1.58
56 5.183412998490171E-8 352 Australian Capita	Australia 15	35767600	110.0	5.0 [110.0,5.0,1.58
57 5.183521885503263E-8 353 Australian Capita	Australia 15	35854000	110.0	5.0 [110.0,5.0,1.58
58 5.183630772516354 354 Australian Capita	Australia 15	35940400	110.0	5.0 [110.0,5.0,1.58
59 5.183739659529446E-8 355 Australian Capita	Australia 15	36026800	110.0	5.0 [110.0,5.0,1.58
60 5.183848546542537E-8 356 Australian Capita	Australia 15	36113200	110.0	5.0 [110.0,5.0,1.58
61 5.183957433555628E-8 357 Australian Capita	Australia 15	36199600	110.0	5.0 [110.0,5.0,1.58
61 5.18406632056872E-8 358 Australian Capita	Australia 15		110.0	5.0 [110.0,5.0,1.58
62 5.184175207581811E-8 359 Australian Capita	Australia 15		110.0	5.0 [110.0,5.0,1.58
63 5.184284094594903E-8 360 Australian Capita	Australia 15		110.0	5.0 [110.0,5.0,1.58
64 5.184392981607994E-8 361 Australian Capita	Australia 15		110.0	5.0 [110.0,5.0,1.58
65 5.184501868621085E-8				
362 Australian Capita 66 5.184610755634176	Australia 15		110.0	5.0 [110.0,5.0,1.58
363 Australian Capita 67 5.184719642647268E-8	Australia 15		110.0	5.0 [110.0,5.0,1.58
364 Australian Capita 68 5.18482852966036E-8	Australia 15		110.0	5.0 [110.0,5.0,1.58
+				

Fig 11: Fatalities Test

D. Decision Tree

By splitting the source set into subsets based on an attribute value test, a tree can be "learned." Recursive partitioning is the process of repeating this process on each derived subset. When all of the subsets at a node have the same value of the target variable, or when splitting no longer adds value to the predictions, the recursion is complete. Since the construction of a decision tree classifier does not necessitate domain awareness or parameter setting, it is suitable for exploratory knowledge exploration. High-dimensional data can be handled by decision trees. The accuracy of the decision tree classifier is generally fine. Decision tree induction is a popular inductive method for learning classification information.

+				·····
ForecastId Country_Re	gion Date Co	ountry_RegionIndex	features	prediction
+	+			***************************************
1 Afghani	stan 1585162800	38.0	[38.0,1.5851628E9]	1270.5553977272727
2 Afghani	stan 1585249200	38.0	[38.0,1.5852492E9]	1270.5553977272727
3 Afghani	stan 1585335600	38.0	[38.0,1.5853356E9]	1270.5553977272727
4 Afghani	stan 1585422000	38.0	[38.0,1.585422E9]	1270.5553977272727
5 Afghani	stan 1585508400	38.0	[38.0,1.5855084E9]	1270.5553977272727
6 Afghani	stan 1585594800	38.0	[38.0,1.5855948E9]	1270.5553977272727
7 Afghani	stan 1585681200	38.0	[38.0,1.5856812E9]	1270.5553977272727
8 Afghani	stan 1585767600	38.0	[38.0,1.5857676E9]	1270.5553977272727
9 Afghani	stan 1585854000	38.0	[38.0,1.585854E9]	1270.5553977272727
10 Afghani	stan 1585940400	38.0	[38.0,1.5859404E9]	1270.5553977272727
11 Afghani	stan 1586026800	38.0	[38.0,1.5860268E9]	1270.5553977272727
12 Afghani	stan 1586113200	38.0	[38.0,1.5861132E9]	1270.5553977272727
13 Afghani	stan 1586199600	38.0	[38.0,1.5861996E9]	1270.5553977272727
14 Afghani	stan 1586286000	38.0	[38.0,1.586286E9]	1270.5553977272727
15 Afghani	stan 1586372400	38.0	[38.0,1.5863724E9]	1270.5553977272727
16 Afghani	stan 1586458800	38.0	[38.0,1.5864588E9]	1270.5553977272727
17 Afghani	stan 1586545200	38.0	[38.0,1.5865452E9]	1270.5553977272727
18 Afghani	stan 1586631600	38.0	[38.0,1.5866316E9]	1270.5553977272727
19 Afghani	stan 1586718000	38.0	[38.0,1.586718E9]	1270.5553977272727
20 Afghani	stan 1586804400	38.0	[38.0,1.5868044E9]	1270.5553977272727
+		· · · · · · · · · · · · · · · · · · ·		·

Fig 12: DT Confirmed

prediction	features	Country_RegionIndex	Date	Country_Region	ForecastId
4.038628472222222	[38.0,1.5851628E9]	38.0	1585162800	Afghanistan	1
4.038628472222222	[38.0,1.5852492E9]	38.0	1585249200	Afghanistan] 2
4.038628472222222	[38.0,1.5853356E9]	38.0	1585335600	Afghanistan] 3
4.038628472222222	[38.0,1.585422E9]	38.0	1585422000	Afghanistan	4
4.038628472222222	[38.0,1.5855084E9]	38.0	1585508400	Afghanistan	5
4.038628472222222	[38.0,1.5855948E9]	38.0	1585594800	Afghanistan	6
4.038628472222222	[38.0,1.5856812E9]	38.0	1585681200	Afghanistan	7
4.038628472222222	[38.0,1.5857676E9]	38.0	1585767600	Afghanistan	8
4.038628472222222	[38.0,1.585854E9]	38.0	1585854000	Afghanistan	9
4.038628472222222	[38.0,1.5859404E9]				10
4.038628472222222	[38.0,1.5860268E9]	38.0	1586026800	Afghanistan	11
4.038628472222222	[38.0,1.5861132E9]				12
4.038628472222222	[38.0,1.5861996E9]				13
4.038628472222222	[38.0,1.586286E9]	38.0	1586286000	Afghanistan	14
	[38.0,1.5863724E9]		1586372400	Afghanistan	15
	[38.0,1.5864588E9]			Afghanistan	16
	[38.0,1.5865452E9]			Afghanistan	17
4.038628472222222	[38.0,1.5866316E9]				18
	[38.0,1.586718E9]				19
4.038628472222222	[38.0,1.5868044E9]	38.0	1586804400	Afghanistan	20

Fig 13: DT Fatalities

Decision trees identify objects by sorting them down the tree from the root to a leaf node, which determines the object's classification. Starting at the root node of the tree, evaluate the attribute defined by this node, then move down the tree branch corresponding to the value of the attribute, an instance is categorized. The sub-tree rooted at the new node is then processed in the same way.

E. Random Forest

As the name suggests, a random forest is made up of a large number of individual decision trees that work together as an ensemble. Each tree in the random forest produces a class prediction, and the class with the most votes becomes the prediction of our model.

6 BIG DATA TECHNICAL REPORT

prediction	features	Country_RegionIndex	Date	Country_Region	ForecastId
858.2640841233557	[38.0,1.5851628E9]	38.0	1585162800	Afghanistan	1
1197.2721431851119	[38.0,1.5852492E9]	38.0	1585249200	Afghanistan	2
1261.8282497948262	[38.0,1.5853356E9]	38.0	1585335600	Afghanistan	3
1296.2584551241996	[38.0,1.585422E9]	38.0	1585422000	Afghanistan	4
1296.2584551241996	[38.0,1.5855084E9]	38.0	1585508400	Afghanistan	5
1408.6840448779562	[38.0,1.5855948E9]	38.0	1585594800	Afghanistan	6
1519.9895258385063	[38.0,1.5856812E9]	38.0	1585681200	Afghanistan	7
6697.227883989891	[38.0,1.5857676E9]	38.0	1585767600	Afghanistan	8
6697.227883989891	[38.0,1.585854E9]	38.0	1585854000	Afghanistan	9
6697.227883989891	[38.0,1.5859404E9]	38.0	1585940400	Afghanistan	10
6697.227883989891	[38.0,1.5860268E9]	38.0	1586026800	Afghanistan	11
6697.227883989891	[38.0,1.5861132E9]	38.0	1586113200	Afghanistan	12
6697.227883989891	[38.0,1.5861996E9]	38.0	1586199600	Afghanistan	13
6697.227883989891	[38.0,1.586286E9]	38.0	1586286000	Afghanistan	14
6697.227883989891	[38.0,1.5863724E9]	38.0	1586372400	Afghanistan	15
6697.227883989891	[38.0,1.5864588E9]	38.0	1586458800	Afghanistan	16
6697.227883989891	[38.0,1.5865452E9]	38.0	1586545200	Afghanistan	17
6697.227883989891	[38.0,1.5866316E9]	38.0	1586631600	Afghanistan	18
6697.227883989891	[38.0,1.586718E9]	38.0	1586718000	Afghanistan	19
6697.227883989891	[38.0,1.5868044E9]	38.0	1586804400	Afghanistan	20

Fig 14: RF Confirmed

+				
ForecastId Country Regi	on Date Coun	try RegionIndex	features	prediction
‡				
1 Afghanist	an 1585162800	38.0	[38.0,1.5851628E9]	33.358643996182145
2 Afghanist	n 1585249200	38.0	[38.0,1.5852492E9]	45.18073419328118
3 Afghanist	an 1585335600	38.0	[38.0,1.5853356E9]	47.589548340332385
4 Afghanist	an 1585422000	38.0	[38.0,1.585422E9]	50.61109559387538
5 Afghanist	n 1585508400	38.0	[38.0,1.5855084E9]	50.61109559387538
6 Afghanist	n 1585594800	38.0	[38.0,1.5855948E9]	62.25109495532659
7 Afghanist	an 1585681200	38.0	[38.0,1.5856812E9]	65.12304361083373
8 Afghanist	n 1585767600	38.0	[38.0,1.5857676E9]	80.06641098215732
9 Afghanist	n 1585854000	38.0	[38.0,1.585854E9]	80.06641098215732
10 Afghanist	an 1585940400	38.0	[38.0,1.5859404E9]	80.06641098215732
11 Afghanist	n 1586026800	38.0	[38.0,1.5860268E9]	80.06641098215732
12 Afghanist	n 1586113200	38.0	[38.0,1.5861132E9]	80.06641098215732
13 Afghanist	n 1586199600	38.0	[38.0,1.5861996E9]	80.06641098215732
14 Afghanist	n 1586286000	38.0	[38.0,1.586286E9]	80.06641098215732
15 Afghanist	an 1586372400	38.0	[38.0,1.5863724E9]	80.06641098215732
16 Afghanist	n 1586458800	38.0	[38.0,1.5864588E9]	80.06641098215732
17 Afghanist	n 1586545200	38.0	[38.0,1.5865452E9]	80.06641098215732
18 Afghanist	an 1586631600	38.0	[38.0,1.5866316E9]	80.06641098215732
19 Afghanist	an 1586718000	38.0	[38.0,1.586718E9]	80.06641098215732
20 Afghanist	n 1586804400	38.0	[38.0,1.5868044E9]	80.06641098215732
<u> </u>				

Fig 15: RF Fatalities

F. Gradient Boosted

A gradient boosted model is a set of regression or classification tree models that have been combined. Both are forward-learning ensemble approaches that boost estimations over time to produce predictive results. Boosting is a versatile nonlinear regression technique that aids in improving the accuracy of nonlinear regression models a forest Applying poor classification algorithms in a sequential manner A series of decision trees are applied to the incrementally modified results. are made, resulting in a collection of weak predictions prototypes Although boosting trees improves their accuracy, it comes at a cost It also slows down the process and makes it more difficult for humans to understand. The incline To reduce these, the boosting method generalizes tree boosting problems.

+						++
I	ForecastId	Country_Region	Date	Country_RegionIndex	features	prediction
+						++
ı	1	Afghanistan			[38.0,1.5851628E9]	
I	2	Afghanistan	1585249200		[38.0,1.5852492E9]	
١	3	Afghanistan	1585335600	38.0	[38.0,1.5853356E9]	691.1942022789012
ĺ	4	Afghanistan	1585422000	38.0	[38.0,1.585422E9]	691.1942022789012
İ	5	Afghanistan	1585508400	38.0	[38.0,1.5855084E9]	589.0975839360901
i	6	Afghanistan	1585594800	38.0	[38.0,1.5855948E9]	463.2658822234095
i	7	Afghanistan	1585681200	38.0	[38.0,1.5856812E9]	316.7483464595758
i	8	Afghanistan			[38.0,1.5857676E9]	
i	9	Afghanistan			[38.0,1.585854E9]	
i	10	Afghanistan			[38.0,1.5859404E9]	
i	11				[38.0,1.5860268E9]	
i	12				[38.0,1.5861132E9]	
i	13				[38.0,1.5861996E9]	
i	14	Afghanistan			[38.0,1.586286E9]	
ł	15	Afghanistan			[38.0,1.5863724E9]	
ł						
ļ	16	Afghanistan			[38.0,1.5864588E9]	
ļ	17	Afghanistan			[38.0,1.5865452E9]	
ļ	18	Afghanistan			[38.0,1.5866316E9]	
١	19	Afghanistan			[38.0,1.586718E9]	
I	20	Afghanistan	1586804400	38.0	[38.0,1.5868044E9]	338.8041600947142
į						4

Fig 16: Gradient Boost Confirmed

+	+			
ForecastId Country_Region	Date Country	_RegionIndex	features	prediction
1 Afghanistan	1585162800			10.329055445820146
2 Afghanistan	1585249200	38.0 [38	.0,1.5852492E9]	20.117558048480596
3 Afghanistan	1585335600	38.0 [38	.0,1.5853356E9]	20.117558048480596
4 Afghanistan	1585422000	38.0 [3	8.0,1.585422E9]	21.456640807870762
5 Afghanistan	1585508400	38.0 [38	.0,1.5855084E9]	28.604925293360502
6 Afghanistan	1585594800	38.0 [38	.0,1.5855948E9]	30.64581189807014
7 Afghanistan	1585681200	38.0 [38	.0,1.5856812E9]	19.541957286661482
8 Afghanistan	1585767600	38.0 [38	.0,1.5857676E9]	16.329802334099423
9 Afghanistan	1585854000	38.0 [3	8.0,1.585854E9]	16.329802334099423
10 Afghanistan	1585940400	38.0 [38	.0,1.5859404E9]	16.329802334099423
11 Afghanistan	1586026800	38.0 [38	.0,1.5860268E9]	16.329802334099423
12 Afghanistan	1586113200	38.0 [38	.0,1.5861132E9]	16.329802334099423
13 Afghanistan	1586199600	38.0 [38	.0,1.5861996E9]	16.329802334099423
14 Afghanistan	1586286000	38.0 [3	8.0,1.586286E9]	16.329802334099423
15 Afghanistan	1586372400	38.0 [38	.0,1.5863724E9]	16.329802334099423
16 Afghanistan	1586458800	38.0 [38	.0,1.5864588E9]	16.329802334099423
17 Afghanistan	1586545200	38.0 [38	.0,1.5865452E9]	16.329802334099423
18 Afghanistan	1586631600	38.0 [38	.0,1.5866316E9]	16.329802334099423
19 Afghanistan	1586718000	38.0 [3	8.0,1.586718E9]	16.329802334099423
20 Afghanistan	1586804400	38.0 [38	.0,1.5868044E9]	16.329802334099423
+	+			

Fig 17: Gradient Boost Fatalities

IV. EVALUATION

I have used root mean square to perform the required evaluation on models.

V. RESULTS

Below are the tabular results for all the methods of machine learning being employed on the dataset.

Including Province State	Without Including Province State
3.65539	3.35323
	Province State

RESULTS USING LINEAR REGRESSION

Decision Tree	Depth = 3	Depth = 5
Score	2.49157	2.38298
	TAR	I.F. II

RESULTS USING DECISION TREE

Random Forest	Trees = 2	Trees = 20	Trees = 100
Score	3.13457	3.15120	3.20820
	TAR	EII	

RESULTS USING RANDOM FOREST

Depth	Score
3	2.54647
5	2.05806
7	2.01467
9	1.98333
30	1.98171

RESULTS USING GRADIENT BOOSTED TREE

VI. CONCLUSION

There is multiple more analysis and implementation of the advance machine learning algorithms which can be achieved in here.

VII. REFERENCES

[1] https://www.kaggle.com/c/covid19-global-forecasting-week-3/overview