10 to	Date.————————————————————————————————————
	Design and Analysis of Algorithms
	Tutornal - 1
1.	
	represent the time complexity of algorithms your asymptotic analysis?
Ļ	Onotation: It bounds a function forom above & below go it defines enact asymptotic behaviour.
	O(g(n)) = f(n): there exists positive constants $(1, (2 and n))Seulv that O = (1. *g(n)) = f(n) = (2 *g(n)) ? n > noi$
4	Big 0: It defines an upper found of an algorithm it bounds function only from above.
	$O(g(n)) = (f(n))$: There exists the constant c and no such that $O \le f(n) \cdot \le C + g(n)$ $\forall n >= no 3$
1	notation; It provides asymptotic lourer not bound.
	It can be useful when wee house lower bound on time
	complexity of an algorithm. (g(n)) = \(\frac{f(n)}{i} \): There exists the constants c and no such that $0 <= C + g(n) <= f(n) + n >= no \(\)$
	2. for (i = 1 ton n) 3 i = i + 23
	i=1,2,4n >9P
	$t_{k} = a_{k}^{k-1} \qquad [a = 1, \gamma = 2]$
	y = 1, 3
	$\log_2 n = k-1$

Date.___ Page No_ $K = log_2 n + 1$ Tic= O(logn) 3. $T(n) = \frac{9}{3}T(n-1)$ if n>0, otherwise 13 TERRETE n=n-1 Pn (1) T(n-1) = 3T(n-a) - Qput(2) in (1) T(n) = 3[3T(n-a)] = 9T(n-a)put n -> n-a in 3 T(n-a) = 3T(n-a-1) T(n-a) = 3T(n-a) - 9Put value of Tin-2) in TO 3 $T(n) = 99[3T(n-3)] = 27(n-3) = 3^{k}(n-3)$ Assume n-K=0 T(n) = 3 3 T(n-n) $= 3^n T(0)$ $T(n) = 3^n$ $T(n) = o(3^n)$

4)
$$T(n) = \begin{cases} 2T(n-1) - 1 & \text{if } m > 0 \\ 1 & \text{ottenuise} \end{cases}$$
 $T(m) = 2T(m-1) - 1 & -10$
 $T(b) = 1$

Put $m \Rightarrow m - 1$
 $T(m-1) = 2T(m-1-1) - 1 = 2T(m-2) - 1 - 20$

Put value of $T(n-1)$ in (0)
 $T(n) = 2[2T(n-2)] - 1] - 1$
 $= 2^2[(n-2) - 2 - 1] - 1$
 $= 2^2[(n-2) - 2 - 1] - 2 - 1$

Put $T(n-2)$ in (3)
 $T(n) = 2^2[2T(n-3) - 1] - 2 - 1$
 $= 2^3T(n-3) - 2^2 - 2 - 1$

Assume $m - k = 0 \Rightarrow m = k$
 $T(m) = 2^k(n-k) - 2^{k-1} - 2^{k-2} - 2^{k-3} - 2^{k-3} - 2^{k-1}$
 $= 2^mT(0) - [2^{n-1} + 2^{n-2} + \cdots + 2^2 + 2 + 1]$
 $= 2^mT(0) - [2^{n-1} + 2^{n-2} + \cdots + 2^2 + 2 + 1]$
 $= -[1 + 2 + 2^2 + \cdots + 2^{n-1}] + 2^n$
 $= -2^{n-1} + 1 + 2^n$

T(n) = 0(20) O(1)

Date.____ Page No____ 5) int i=1, s=1; while (s(=n), i++; s=s+i); prints("#"); This loop well work till $S \le n$, S = 1, i=1After \pm iteration, S = 3, i=211

2

11

1 S = 3+3=6, i=3Let this new till k times $S=6+4=10 \quad i=4$ $S=(k)(k+1) \quad S=n$ K^2 8 % & M > n... Time complexity = O(In) 6) void function (int n) ?

int e, count=0;

for(i=1, i xi <=n; i++) Loop will nur till i ti 7n

i2>n => i>n² & Time complexity = O(Jn) 7) void function (int n) ? int i, j, k, count=0, for (i=n/2; i<=n; i++) — n for (j=1 i j (=n j = j x2) -> logn

 $for(K=1; K <= n; K=K * 2) \longrightarrow logn$ count ++ Time Complexely = 0 (n *logn *logn) = 0(nlog2n) 8. Void function (int n) — T(n) 3 if (n==1) suctuon; \rightarrow constant T cine T(1) f or (i=1 ton) — T (n) function (n-3); T(n-3) $T(n) = T(n-3) + Cn^2$ $T(n) = O(n^3)$ go void function (int n) {

for (i=1 to n) } — n Times

for (j=1 j j (=n, j=j+i)

printf ("*"); —) extents j times with

3 jurieal by Inner loop executes n/i times for each value of i : log n times Time Complenely = O(nlogn)

Date	
Array .	
Page No	

No) The asymptotic relationship b/w the functions n^k and a^n is $n^k = o(a^n)$ k > -1, a > 1 a > 1 a > 1

 $\frac{n^{k}}{a^{n}} \leq c$

portina de la comercia

THE TOTAL

man with order or mi

A STATE OF THE STA