Problem Set 11.1, page 485

3. $2\pi ln$, $2\pi ln$, k, k, k/n, k/n

13.
$$\frac{1}{2} + \frac{2}{\pi} \left(\cos x - \frac{1}{3} \cos 3x + \frac{1}{5} \cos 5x - + \cdots \right)$$

15.
$$\frac{\pi}{2} + \frac{4}{\pi} \left(\cos x + \frac{1}{9} \cos 3x + \frac{1}{25} \cos 5x + \cdots \right)$$

17.
$$\frac{\pi}{4} - \frac{2}{\pi} \left(\cos x + \frac{1}{9} \cos 3x + \frac{1}{25} \cos 5x + \cdots \right) + \sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - + \cdots$$

$$19. - \frac{4}{\pi} \left(\cos x + \frac{1}{9} \cos 3x + \frac{1}{25} \cos 5x + \cdots \right) \\
+ 2 \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right)$$

21.
$$\frac{1}{3} \pi^2 - 4 \left(\cos x - \frac{1}{4} \cos 2x + \frac{1}{9} \cos 3x - + \cdots \right)$$

23.
$$\frac{1}{6} \pi^2 - \frac{4}{\pi} \cos x - \frac{1}{2} \cos 2x + \frac{4}{27\pi} \cos 3x + \frac{1}{8} \cos 4x - \cdots$$

29.
$$f' = 2x$$
, $f'' = 2$, $j_1 = 0$, $j_1' = -4\pi$, $j_1'' = 0$, $a_n = \frac{1}{n\pi} \left(-\frac{1}{n} \right) (-4\pi) \cos n\pi$, etc.

Problem Set 11.2, page 490

1.
$$\frac{4}{\pi} \left(\sin \frac{\pi x}{2} + \frac{1}{3} \sin \frac{3\pi x}{2} + \frac{1}{5} \sin \frac{5\pi x}{2} + \cdots \right)$$

3.
$$\frac{1}{3} - \frac{4}{\pi^2} \left(\cos \pi x - \frac{1}{4} \cos 2\pi x + \frac{1}{9} \cos 3\pi x - + \cdots \right)$$

5. Rectifier,
$$\frac{2}{\pi} - \frac{4}{\pi} \left(\frac{1}{1 \cdot 3} \cos 2\pi x + \frac{1}{3 \cdot 5} \cos 4\pi x + \frac{1}{5 \cdot 7} \cos 6\pi x + \cdots \right)$$

7. Rectifier,
$$\frac{1}{2} - \frac{4}{\pi^2} \left(\cos \pi x + \frac{1}{9} \cos 3\pi x + \frac{1}{25} \cos 5\pi x + \cdots \right)$$

9.
$$\frac{2}{3} + \frac{4}{\pi^2} \left(\cos \pi x - \frac{1}{4} \cos 2\pi x + \frac{1}{9} \cos 3\pi x - \frac{1}{16} \cos 4\pi x + \cdots \right)$$

11.
$$\frac{3}{4} - \frac{4}{\pi^2} \left(\cos \frac{\pi x}{2} + \frac{1}{2} \cos \pi x + \frac{1}{9} \cos \frac{3\pi x}{2} + \frac{1}{25} \cos \frac{5\pi x}{2} + \frac{1}{18} \cos 3\pi x + \cdots \right)$$

13.
$$\frac{3}{8} + \frac{1}{2} \cos 2x + \frac{1}{8} \cos 4x$$

15. Translate by
$$\frac{1}{2}$$
. 17. Set $x = 0$.

Problem Set 11.3, page 496

- 1. Even, odd, neither, even, neither, odd
- Odd
- 5. Neither
- 7. Odd
- 9. Odd

11.
$$\frac{\pi}{2} + \frac{4}{\pi} \left(\cos x + \frac{1}{9} \cos 3x + \frac{1}{25} \cos 5x + \cdots \right)$$

13.
$$\frac{4}{\pi} \left(\sin x - \frac{1}{9} \sin 3x + \frac{1}{25} \sin 5x - + \cdots \right)$$

15.
$$1 - \frac{4}{\pi} \left(\sin \frac{\pi x}{2} + \frac{1}{3} \sin \frac{3\pi x}{2} + \frac{1}{5} \sin \frac{5\pi x}{2} + \cdots \right)$$

17. (a) 1, (b)
$$\frac{4}{\pi} \left(\sin \frac{\pi x}{2} + \frac{1}{3} \sin \frac{3\pi x}{2} + \frac{1}{5} \sin \frac{5\pi x}{2} + \cdots \right)$$

19. (a)
$$1 + \frac{8}{\pi^2} \left(\cos \frac{\pi x}{2} + \frac{1}{9} \cos \frac{3\pi x}{2} + \frac{1}{25} \cos \frac{5\pi x}{2} + \cdots \right)$$

(b)
$$\frac{4}{\pi} \left(\sin \frac{\pi x}{2} + \frac{1}{2} \sin \pi x + \frac{1}{3} \sin \frac{3\pi x}{2} + \frac{1}{4} \sin 2\pi x + \cdots \right)$$

21. (a)
$$\frac{3}{2} - \frac{2}{\pi} \left(\cos \frac{\pi x}{2} - \frac{1}{3} \cos \frac{3\pi x}{2} + \frac{1}{5} \cos \frac{5\pi x}{2} - \frac{1}{7} \cos \frac{7\pi x}{2} + \cdots \right)$$

(b)
$$\frac{6}{\pi} \left(\sin \frac{\pi x}{2} - \frac{1}{3} \sin \pi x + \frac{1}{3} \sin \frac{3\pi x}{2} + \frac{1}{5} \sin \frac{5\pi x}{2} - \frac{1}{9} \sin 3\pi x + \cdots \right)$$

23. (a)
$$\frac{L}{2} - \frac{4L}{\pi^2} \left(\cos \frac{\pi x}{L} + \frac{1}{9} \cos \frac{3\pi x}{L} + \frac{1}{25} \cos \frac{5\pi x}{L} + \cdots \right)$$

(b)
$$\frac{2L}{\pi} \left(\sin \frac{\pi x}{L} - \frac{1}{2} \sin \frac{2\pi x}{L} + \frac{1}{3} \sin \frac{3\pi x}{L} - + \cdots \right)$$

25. (a)
$$\frac{\pi}{2} + \frac{4}{\pi} \left(\cos x + \frac{1}{9} \cos 3x + \frac{1}{25} \cos 5x + \cdots \right)$$

(b)
$$2\left(\sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + \cdots\right)$$

Problem Set 11.4, page 499

Use (5).
$$7. -\frac{2i}{\pi} \sum_{n=-\infty}^{\infty} \frac{1}{2n+1} e^{(2n+1)ix}$$

$$\sum_{n=-\infty}^{\infty} (-1)^n inx$$

9.
$$i \sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} \frac{(-1)^n}{n} e^{inx}$$

11.
$$\frac{\pi^2}{3} + 2 \sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} \frac{(-1)^n}{n^2} e^{inx}$$

13.
$$\pi + i \sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} \frac{1}{n} e^{inx}$$

Problem Set 11.5, page 501

- 3. $(0.05n)^2$ in D_n changes to $(0.02n)^2$, which gives $C_5 = 0.5100$, leaving the other coefficients almost unaffected.
- 5. $y = c_1 \cos \omega t + c_2 \sin \omega t + A(\omega) \cos t$, $A(\omega) = 1/(\omega^2 1) < 0$ if $\omega^2 < 1$ (phase shift!) and > 0 if $\omega^2 > 1$

7.
$$y = c_1 \cos \omega t + c_2 \sin \omega t + \sum_{n=1}^{N} \frac{a_n}{\omega^2 - n^2} \cos nt$$

9.
$$y = c_1 \cos \omega t + c_2 \sin \omega t + \frac{\pi}{2\omega^2} + \frac{4}{\pi} \left(\frac{1}{\omega^2 - 1} \cos t + \frac{1/9}{\omega^2 - 9} \cos 3t + \cdots \right)$$

11.
$$y = c_1 \cos \omega t + c_2 \sin \omega t + \frac{1}{2\omega^2} - \frac{1}{1 \cdot 3(\omega^2 - 4)} \cos 2t - \frac{1}{3 \cdot 5(\omega^2 - 16)} \cos 4t - \cdots$$

13. The situation is the same as in Fig. 53 in Sec. 2.8.

15.
$$y = -\frac{3c}{64 + 9c^2}\cos 3t - \frac{8}{64 + 9c^2}\sin 3t$$

17.
$$y = \sum_{n=1}^{N} \left(-\frac{ncb_n}{D_n} \cos nt + \frac{(1-n^2)b_n}{D_n} \sin nt \right), D_n = (1-n^2)^2 + n^2c^2$$

19.
$$I(t) = \sum_{n=1}^{\infty} (A_n \cos nt + B_n \sin nt), \quad A_n = (-1)^{n+1} \frac{240(10 - n^2)}{n^2 D_n},$$

$$B_n = (-1)^{n+1} \frac{2400}{nD_n}, \quad D_n = (10 - n^2)^2 + 100n^2$$

Problem Set 11.6, page 505

1.
$$F = 2\left(\sin x - \frac{1}{2}\sin 2x + \dots + \frac{(-1)^{N+1}}{N}\sin Nx\right), E^* = 8.1, 5.0, 3.6, 2.8, 2.3$$

3.
$$F = \frac{\pi}{2} - \frac{4}{\pi} \left(\cos x + \frac{1}{9} \cos 3x + \frac{1}{25} \cos 5x + \cdots \right), E^* = 0.0748, 0.0748, 0.0119, 0.0037$$

5.
$$F = \frac{2}{\pi} - \frac{4}{\pi} \left(\frac{1}{1 \cdot 3} \cos 2x + \frac{1}{3 \cdot 5} \cos 4x + \frac{1}{5 \cdot 7} \cos 6x + \cdots \right),$$

 $E^* = 0.5951, 0.0292, 0.0292, 0.0066, 0.0066$

7.
$$F = \frac{4}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right), E^* = 1.1902, 1.1902, 0.6243, 0.6243, 0.4206 \quad (0.1272 \text{ when } N = 20)$$

9.
$$\frac{8}{\pi} \left(\sin x + \frac{1}{27} \sin 3x + \frac{1}{125} \sin 5x + \cdots \right), E^* = 0.0295, 0.0295, 0.0015, 0.0015, 0.00023$$

Problem Set 11.7, page 512

1.
$$f(x) = \pi e^{-x}$$
 (x > 0) gives $A = \int_0^\infty e^{-v} \cos wv \, dv = \frac{1}{1 + w^2}$, $B = \frac{w}{1 + w^2}$ (see Example 3), etc.

3.
$$f(x) = \frac{1}{2}\pi e^{-x}$$
 gives $A = 1/(1 + w^2)$.

5. Use
$$f = (\pi/2) \cos v$$
 and (11) in App. 3.1 to get $A = (\cos (\pi w/2))/(1 - w^2)$.

$$7. \frac{2}{\pi} \int_0^\infty \frac{\sin aw \cos xw}{w} dw$$

$$7. \frac{2}{\pi} \int_0^\infty \frac{\sin aw \cos xw}{w} dw \qquad \qquad 9. \frac{2}{\pi} \int_0^\infty \frac{\cos w + w \sin w - 1}{w^2} \cos xw dw$$

11.
$$\frac{2}{\pi} \int_0^\infty \frac{\cos \pi w + 1}{1 - w^2} \cos xw \, dw$$
 15. $\frac{2}{\pi} \int_0^\infty \frac{\sin \pi w}{1 - w^2} \sin xw \, dw$

15.
$$\frac{2}{\pi} \int_0^{\infty} \frac{\sin \pi w}{1 - w^2} \sin xw \, dw$$

17.
$$\frac{2}{\pi} \int_{0}^{\infty} \frac{\pi w - \sin \pi w}{w^2} \sin xw \, dw$$

17.
$$\frac{2}{\pi} \int_0^\infty \frac{\pi w - \sin \pi w}{w^2} \sin xw \, dw$$
 19. $\frac{2}{\pi} \int_0^\infty \frac{wa - \sin wa}{w^2} \sin xw \, dw$

Problem Set 11.8, page 517

$$1. \sqrt{\frac{2}{\pi}} \left(\frac{\sin 2w - 2 \sin w}{w} \right)$$

5.
$$\sqrt{\pi/2} e^{-x}$$
 $(x > 0)$

7.
$$\sqrt{\pi/2} \cos w$$
 if $0 < w < \pi/2$ and 0 if $w > \pi/2$ 9. Yes, no

11.
$$\sqrt{(2/\pi)} w/(w^2 + \pi^2)$$

13.
$$\mathcal{F}_s(xe^{-x^2/2}) = \mathcal{F}_s(-(e^{-x^2/2})') = w\mathcal{F}_c(e^{-x^2/2}) = we^{-w^2/2}$$

17.
$$\mathscr{F}_{c}(f') = \mathscr{F}_{c}(-af) = -a\mathscr{F}_{c}(f) = -\sqrt{\frac{2}{\pi}} \frac{a^{2}}{a^{2} + w^{2}} = w\mathscr{F}_{s}(f) - \sqrt{\frac{2}{\pi}} \cdot 1,$$

$$\mathscr{F}_{s}(f) = \sqrt{\frac{2}{\pi}} \frac{w}{a^{2} + w^{2}}$$

19. In (5) for f(ax) set ax = v.

Problem Set 11.9, page 528

3.
$$ik(e^{-ibw}-1)/(\sqrt{2\pi w})$$

5.
$$\sqrt{(2/\pi)}k (\sin w)/w$$

3.
$$ik(e^{-ibw} - 1)/(\sqrt{2\pi w})$$
 5. $\sqrt{(2/\pi)}k (\sin w)/w$ 7. $[(1 + iw)e^{-iw} - 1]/(\sqrt{2\pi w^2})$ 9. $\sqrt{(2/\pi)}i(\cos w - 1)/w$

9.
$$\sqrt{(2/\pi)}i(\cos w - 1)/w$$

11.
$$\frac{1}{2}e^{-w^2/2}$$

13.
$$(e^{ibw} - e^{-ibw})/(iw\sqrt{2\pi}) = \sqrt{2/\pi}(\sin bw)/w$$

Chapter 11 Review Questions and Problems, page 532

11.
$$\frac{4k}{\pi} \left(\sin \pi x + \frac{1}{3} \sin 3\pi x + \frac{1}{5} \sin 5\pi x + \cdots \right)$$

13.
$$4\left(\sin\frac{x}{2} - \frac{1}{2}\sin x + \frac{1}{3}\sin\frac{3x}{2} - \frac{1}{4}\sin 4x + \frac{1}{5}\sin\frac{5x}{2} - + \cdots\right)$$

15.
$$\frac{8}{\pi^2} \left(\sin \frac{\pi x}{2} - \frac{1}{9} \sin \frac{3\pi x}{2} + \frac{1}{25} \sin \frac{5\pi x}{2} - + \cdots \right)$$

17.
$$\frac{2}{\pi} - \frac{4}{\pi} \left(\frac{1}{1 \cdot 3} \cos 16\pi x + \frac{1}{3 \cdot 5} \cos 32\pi x + \frac{1}{5 \cdot 7} \cos 48\pi x + \cdots \right)$$

19.
$$\frac{\pi^2}{12} - \cos 2x + \frac{1}{4} \cos 4x - \frac{1}{9} \cos 6x + \frac{1}{16} \cos 8x - + \cdots$$

21.
$$\pi/4$$
 by Prob. 11

21.
$$\pi/4$$
 by Prob. 11 **23.** $\pi^2/8$ by Prob. 15

25.
$$\frac{1}{2} [f(x) + f(-x)], \frac{1}{2} [f(x) - f(-x)]$$

27.
$$\pi - \frac{8}{\pi} \left(\cos \frac{x}{2} + \frac{1}{9} \cos \frac{3x}{2} + \frac{1}{25} \cos \frac{5x}{2} + \cdots \right)$$

29. 8.105, 4.963, 3.567, 2.781, 2.279, 1.929, 1.673, 1.477

31.
$$y = C_1 \cos \omega t + C_2 \sin \omega t + \frac{\pi^2}{3\omega^2} - 4\left(\frac{\cos t}{\omega^2 - 1} - \frac{1}{4} \cdot \frac{\cos 2t}{\omega^2 - 4} + \frac{1}{9} \cdot \frac{\cos 3t}{\omega^2 - 9} - \frac{1}{16} \cdot \frac{\cos 4t}{\omega^2 - 16} + \cdots\right)$$

33.
$$\frac{1}{\pi} \int_0^\infty \frac{(\cos w + w \sin w - 1) \cos wx + (\sin w - w \cos w) \sin wx}{w^2} dw$$

35.
$$\frac{2}{\pi} \int_0^\infty \frac{w - \sin w \cos w}{w^2} \sin wx \, dw$$

37.
$$\frac{4}{\pi} \int_0^\infty \frac{\sin 2w - 2w \cos 2w}{w^3} \cos wx \, dw$$
 39. $\sqrt{\frac{8}{\pi}} \cdot \frac{1}{w^2 + 4}$

Problem Set 12.1, page 537

1.
$$u = c_1(x) \cos 4y + c_2(x) \sin 4y$$
 3. $u = c_1(x) + c_2(x)y$

5.
$$u = c(x)e^{-y} + e^{xy}/(x+1)$$
 7. $u = c(x) \exp(\frac{1}{2}y^2 \cosh x)$

9.
$$u = c_1(x)y + c_2(x)y^{-2}$$
 11. $u = c(x)e^y + h(y)$

15.
$$c = 1/4$$
 17. Any c

9.
$$\pi/4$$
 21. Any c and ω

27.
$$u = 110 - (110/\ln 100) \ln (x^2 + y^2)$$
 29. $u = c_1 x + c_2(y)$

Problem Set 12.3, page 546

1. $k \cos 2\pi t \sin 2\pi x$

3.
$$\frac{8k}{\pi^3} \left(\cos \pi t \sin \pi x + \frac{1}{27} \cos 3\pi t \sin 3\pi x + \frac{1}{125} \cos 5\pi t \sin 5\pi x + \cdots \right)$$

5.
$$\frac{4}{5\pi^2} \left(\cos \pi t \sin \pi x - \frac{1}{9} \cos 3\pi t \sin 3\pi x + \frac{1}{25} \cos 5\pi t \sin 5\pi x - + \cdots \right)$$

7.
$$\frac{2}{\pi^2} \left((\sqrt{2} - 1) \cos \pi t \sin \pi x + \frac{1}{2} \cos 2\pi t \sin 2\pi x + \frac{1}{9} (\sqrt{2} + 1) \cos 3\pi t \sin 3\pi x - \cdots \right)$$

9.
$$\frac{2}{\pi^2} \left((2 - \sqrt{2}) \cos \pi t \sin \pi x - \frac{1}{9} (2 + \sqrt{2}) \cos 3\pi t \sin 3\pi x + \frac{1}{25} (2 + \sqrt{2}) \cos 5\pi t \sin 5\pi x + \cdots \right)$$

17.
$$u = \frac{8L^2}{\pi^3} \left(\cos \left[c \left(\frac{\pi}{L} \right)^2 t \right] \sin \frac{\pi x}{L} + \frac{1}{3^3} \cos \left[c \left(\frac{3\pi}{L} \right)^2 t \right] \sin \frac{3\pi x}{L} + \cdots \right)$$

19. (a) u(0, t) = 0, (b) u(L, t) = 0, (c) $u_x(0, t) = 0$, (d) $u_x(L, t) = 0$. C = -A, D = -B from (a), (b). Insert this. The coefficient determinant resulting from (c), (d) must be zero to have a nontrivial solution. This gives (22).

Problem Set 12.4, page 552

3.
$$c^2 = 300/[0.9/(2 \cdot 9.80)] = 80.83^2 \text{ [m}^2/\text{sec}^2\text{]}$$

11. Hyperbolic,
$$u = f_1(x) + f_2(x + y)$$

13. Elliptic,
$$u = f_1(y + 3ix) + f_2(y - 3ix)$$

15. Parabolic,
$$u = xf_1(x - y) + f_2(x - y)$$

17. Parabolic,
$$u = xf_1(2x + y) + f_2(2x + y)$$

19. Hyperbolic,
$$u = (1/y)f_1(xy) + f_2(y)$$

Problem Set 12.5, page 560

5.
$$u = \sin 0.4\pi x e^{-1.752 \cdot 16\pi^2 t/100}$$

7.
$$u = \frac{2}{\pi} \left(\frac{2}{\pi} \sin 0.1 \pi x \, e^{-0.01752 \pi^2 t} + \frac{1}{2} \sin 0.2 \pi x \, e^{-0.01752(2\pi)^2 t} - \cdots \right)$$

9.
$$u = \frac{20\sqrt{2}}{\pi^2} \left(\sin 0.1 \pi x \, e^{-0.01752 \pi^2 t} + \frac{1}{9} \sin 0.3 \pi x \, e^{-0.01752(3\pi)^2 t} - - \cdots \right)$$

11. $u = u_{\rm I} + u_{\rm II}$, where $u_{\rm II} = u - u_{\rm I}$ satisfies the boundary conditions of the text, so

that
$$u_{II} = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{L} e^{-(cn\pi/L)^2 t}$$
, $B_n = \frac{2}{L} \int_0^L [f(x) - u_I(x)] \sin \frac{n\pi x}{L} dx$

13.
$$F = A \cos px + B \sin px$$
, $F'(0) = Bp = 0$, $B = 0$, $F'(L) = -Ap \sin pL = 0$, $p = n\pi L$, etc.

15.
$$u = 1$$

17.
$$u = \frac{2\pi^2}{3} + 4\left(\cos x \, e^{-t} - \frac{1}{4}\cos 2x \, e^{-4t} + \frac{1}{9}\cos 3x \, e^{-9t} - + \cdots\right)$$

19.
$$u = \frac{\pi^2}{12} + \cos 2x e^{-4t} + \frac{1}{4} \cos 4x e^{-16t} + \frac{1}{9} \cos 6x e^{-36t} + \cdots$$

23.
$$-\frac{K\pi}{L}\sum_{n=1}^{\infty}nB_{n}e^{-\lambda_{n}^{2}t}$$
 25. $w=e^{-\beta t}$

27.
$$v_t - c^2 v_{xx} = 0$$
, $w'' = -Ne^{-\alpha x}/c^2$, $w = \frac{N}{c^2 \alpha^2} \left[-e^{-\alpha x} - \frac{1}{L} (1 - e^{-\alpha L})x + 1 \right]$, so that $w(0) = w(L) = 0$.

29.
$$u = (\sin \frac{1}{2}\pi x \sinh \frac{1}{2}\pi y)/\sinh \pi$$

31.
$$u = \frac{80}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)\sinh{(2n-1)\pi}} \sin{\frac{(2n-1)\pi x}{24}} \sinh{\frac{(2n-1)\pi y}{24}}$$

33.
$$u = A_0 x + \sum_{n=1}^{\infty} A_n \frac{\sinh(n\pi x/24)}{\sinh n\pi} \cos \frac{n\pi y}{24}$$
,

$$A_0 = \frac{1}{24^2} \int_0^{24} f(y) \, dy, \quad A_n = \frac{1}{12} \int_0^{24} f(y) \cos \frac{n\pi y}{24} \, dy$$
35. $\sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{a} \sinh \frac{n\pi (b-y)}{a}$, $A_n = \frac{2}{a \sinh(n\pi b/a)} \int_0^a f(x) \sin \frac{n\pi x}{a} \, dx$

Problem Set 12.6, page 568

1.
$$A = \frac{2 \sin ap}{\pi p}$$
, $B = 0$, $u = \frac{2}{\pi} \int_0^\infty \frac{\sin ap}{p} \cos px \, e^{-c^2 p^2 t} \, dp$
3. $A = e^{-p}$, $B = 0$, $u = \int_0^\infty \cos px \, e^{-p - c^2 p^2 t} \, dp$
5. Set $\pi v = s$. $A = 1$ if $0 < p/\pi < 1$, $B = 0$, $u = \int_0^\pi \cos px \, e^{-c^2 p^2 t} \, dp$
7. $A = 2[\cos p + p \sin p - 1)/(\pi p^2)]$, $B = 0$, $u = \int_0^\infty A \cos px \, e^{-c^2 p^2 t} \, dp$

Problem Set 12.8, page 578

1. (a), (b) It is multiplied by
$$\sqrt{2}$$
. (c) Half

3.
$$B_{mn} = 16/(mn\pi^2)$$
 if m, n odd, 0 otherwise

5.
$$B_{mn} = (-1)^{n+1} 8/(mn\pi^2)$$
 if m odd, 0 if m even

7.
$$B_{mn} = (-1)^{m+n} 4/(mn\pi^2)$$

11.
$$k \cos \sqrt{29} t \sin 2x \sin 5y$$

13.
$$\frac{6.4}{\pi^2} \sum_{\substack{m=1 \ m, n \text{ odd}}}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^3 n^3} \cos(t \sqrt{m^2 + n^2}) \sin mx \sin ny$$

17. $c\pi\sqrt{260}$ (corresponding eigenfunctions $F_{4,16}$ and $F_{16,14}$), etc.

19.
$$B_{mn} = 0$$
 (m or n even), $B_{mn} = 16k/(mn\pi^2)$ (m , n odd)
21. $B_{mn} = (-1)^{m+n} 144 \frac{a^3}{6} b^3 / (m^3 n^3 \pi^6)$

21.
$$B_{mn} = (-1)^{m+n} 144 a^3 b^3 / (m^3 n^3 \pi^6)$$

23.
$$\cos \left(\pi t \sqrt{\frac{9}{a^2} + \frac{16}{b^2}} \right) \sin \frac{3\pi x}{a} \sin \frac{4\pi y}{b}$$

Problem Set 12.9, page 585

7.
$$30r \cos \theta + 10r^3 \cos 3\theta$$

9.
$$55 + \frac{220}{\pi} \left(r \cos \theta - \frac{1}{3} r^3 \cos 3\theta + \frac{1}{5} r^5 \cos 5\theta - + \cdots \right)$$

11.
$$\frac{\pi}{2} - \frac{4}{\pi} \left(r \cos \theta + \frac{1}{9} r^3 \cos 3\theta + \frac{1}{25} r^5 \cos 5\theta + \cdots \right)$$

15. Solve the problem in the disk r < a subject to u_0 (given) on the upper semicircle

$$u = \frac{4u_0}{\pi} \left(\frac{r}{a} \sin \theta + \frac{1}{3a^3} r^3 \sin 3\theta + \frac{1}{5a^5} r^5 \sin 5\theta + \cdots \right)$$

17. Increase by a factor
$$\sqrt{2}$$

19.
$$T = 6.826 \rho R^2 f_1^2$$

21. No

23. Differentiation brings in a factor $1/\lambda_m = R/(c\alpha_m)$.

Problem Set 12.10, page 593

11.
$$v = F(r)G(t)$$
, $F'' + k^2F = 0$, $\dot{G} + c^2k^2G = 0$, $F_n = \sin(n\pi r/R)$, $G_n = B_n \exp(-c^2n^2\pi^2t/R^2)$, $B_n = \frac{2}{R} \int_0^R rf(r) \sin\frac{n\pi r}{R} dr$
13. $u = 100$
15. $u = \frac{8}{8}r^3P_3(\cos\phi) - \frac{3}{8}rP_1(\cos\phi)$

17. $64r^4P_4(\cos\phi)$

21. Analog of Example 1 in the text with 55 replaced by 50

23.
$$v = r(\cos \theta)/r^2 = x/(x^2 + y^2), v = xy/(x^2 + y^2)^2$$

Problem Set 12.11, page 596

5.
$$W = \frac{c(s)}{x^s} + \frac{x}{s^2(s+1)}$$
, $W(0, s) = 0$, $c(s) = 0$, $w(x, t) = x(t-1+e^{-t})$

7.
$$w = f(x)g(t)$$
, $xf'g + f\dot{g} = xt$, take $f(x) = x$ to get $g = ce^{-t} + t - 1$ and $c = 1$ from $w(x, 0) = x(c - 1) = 0$.

9. Set $x^2/(4c^2\tau) = z^2$. Use z as a new variable of integration. Use erf(∞) = 1.

Chapter 12 Review Questions and Problems, page 597

19.
$$u = c_1(y)e^x + c_2(y)e^{-2x}$$
 21. $u = g(x)(1 - e^{-y}) + f(x)$

23.
$$u = \cos t \sin x - \frac{1}{2} \cos 2t \sin 2x$$
 25. $u = \frac{3}{4} \cos t \sin x - \frac{1}{4} \cos 3t \sin 3x$

27.
$$u = \sin(0.02\pi x) e^{-0.004572t}$$

29.
$$u = \frac{200}{\pi^2} \left(\sin \frac{\pi x}{50} e^{-0.004572t} - \frac{1}{9} \sin \frac{3\pi x}{50} e^{-0.04115t} + \cdots \right)$$

31.
$$u = 100 \cos 4x e^{-16t}$$

33.
$$u = \frac{\pi}{2} - \frac{16}{\pi} \left(\frac{1}{4} \cos 2x \, e^{-4t} + \frac{1}{36} \cos 6x \, e^{-36t} + \frac{1}{100} \cos 10x \, e^{-100t} + \cdots \right)$$

37.
$$u = f_1(y) + f_2(x + y)$$
 39. $u = f_1(y - 2ix) + f_2(y + 2ix)$

41.
$$u = xf_1(y - x) + f_2(y - x)$$

49.
$$u = (u_1 - u_0)(\ln r)/\ln (r_1/r_0) + (u_0 \ln r_1 - u_1 \ln r_0)/\ln (r_1/r_0)$$

Problem Set 13.1, page 606

5.
$$x - iy = -(x + iy)$$
, $x = 0$
7. 484
9. -5/169
11. -7/13 -(22/13)i
13. -273 + 136i
15. -7/17 - (11/17)i
17. $x/(x^2 + y^2)$
19. $(x^2 - y^2)/(x^2 + y^2)^2$

Problem Set 13.2, page 611

1.
$$3\sqrt{2}(\cos(-\frac{1}{4}\pi) + i\sin(-\frac{1}{4}\pi))$$

3. $5(\cos \pi + i\sin \pi) = 5\cos \pi$
5. $\cos(\frac{1}{2}\pi + i\sin(\frac{1}{2}\pi))$

7.
$$\frac{1}{3}\sqrt{61}$$
 (cos arctan $\frac{6}{5}$ + i sin arctan $\frac{6}{5}$)
9. $-3\pi/4$
11. arctan ($\pm 3/4$)
13. $\pm \pi/4$
15. $3\pi/4$
17. $2.94020 + 0.59601i$
19. $0.54030 - 0.84147i$
21. cos ($-\frac{1}{4}\pi$) + i sin ($-\frac{1}{4}\pi$), cos $\frac{3}{4}\pi$ + i sin $\frac{3}{4}\pi$
23. $\pm (1 \pm i)/\sqrt{2}$
25. -1 , cos $\frac{1}{5}\pi \pm i$ sin $\frac{1}{5}\pi$, cos $\frac{3}{5}\pi \pm i$ sin $\frac{3}{5}\pi$
27. $4 + 3i$, $4 - 8i$
29. $\frac{5}{2} - i$, $2 + \frac{1}{4}i$

35.
$$|z_1 + z_2|^2 = (z_1 + z_2)(\overline{z_1 + z_2}) = (z_1 + z_2)(\overline{z_1} + \overline{z_2})$$
. Multiply out and use Re $z_1\overline{z_2} \le |z_1\overline{z_2}|$ (Prob. 32): $z_1\overline{z_1} + z_1\overline{z_2} + z_2\overline{z_1} + z_2\overline{z_2} = |z_1|^2 + 2 \operatorname{Re} |z_1\overline{z_2}| + |z_2|^2 \le |z_1|^2 + 2|z_1||z_2| + |z_2|^2 = (|z_1| + |z_2|)^2$.

Take the square root to get (6).

Problem Set 13.3, page 617

- 1. Circle of radius $\frac{4}{3}$, center 3 + 2i
- 3. Set obtained from an open disk of radius 1 by omitting its center z = 1
- 5. Hyperbola xy = 1 7. y-axis
- **9.** The region above y = x
- 13. $f = 1 1/(z + 1) = 1 (x + 1 iy)/[(x + 1)^2 + y^2]$; 0.9 0.1i
- 15. $(x^2 y^2 2ixy)/(x^2 + y^2)^2$, -i/2 17. Yes since $r^2(\sin 2\theta)/r \to 0$
- 19. Yes 21. $6z^2(z^3+i)$
- 23. $2i(1-z)^{-3}$

Problem Set 13.4, page 623

1. Yes 3. No 5. Yes 7. No 9. Yes for $z \neq 0$

11. $r_x = x/r = \cos \theta$, $r_y = \sin \theta$, $\theta_x = -(\sin \theta)/r$, $\theta_y = (\cos \theta)/r$, (a) $0 = u_x - v_y = u_r \cos \theta + u_\theta(-\sin \theta)/r - v_r \sin \theta - v_\theta(\cos \theta)/r$. (b) $0 = u_y + v_x = u_r \sin \theta + u_\theta(\cos \theta)/r + v_r \cos \theta + v_\theta(-\sin \theta)/r$. Multiply (a) by $\cos \theta$, (b) by $\sin \theta$, and add. Etc.

13. $z^2/2$ 15. $\ln |z| + i \operatorname{Arg} z$ 17. z^3

19. No **21.** No **23.** c = 1, $\cos x \sinh y$ **27.** Use (4), (5), and (1).

Problem Set 13.5, page 626

3.
$$-1.13120 + 2.47173i$$
, $e = 2.71828$
5. $-i$, 1
7. $e^{0.8}(\cos 5 - i \sin 5)$, 2.22554
9. $e^{-2x}\cos 2y$, $-e^{-2x}\sin 2y$
11. $\exp(x^2 - y^2)\cos 2xy$, $\exp(x^2 - y^2)\sin 2xy$

13. $e^{i\pi/4}$, $e^{5\pi i/4}$

15.
$$\sqrt[n]{r} \exp [i(\theta + 2k\pi)/n], \quad k = 0, \dots, n-1$$

17.
$$9e^{\pi i}$$
 19. $z = \ln 2 + \pi i + 2n\pi i \ (n = 0, \pm 1, \cdots)$

21. $z = \ln 5 - \arctan \frac{3}{4}i \pm 2n\pi i \ (n = 0, 1, \cdots)$

Problem Set 13.6, page 629

3. Use (11), then (5) for e^{iy} , and simplify. **5.** Use (11) and simplify. **7.** cos 1 cosh 1 - i sin 1 sinh 1 = 0.83373 - 0.98890i