PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-097475

(43) Date of publication of application: 08.04.1994

(51)Int.Cl.

H01L 31/04

(21)Application number: 04-243271

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

11.09.1992

(72)Inventor: NOGUCHI SHIGERU

IWATA HIROSHI SANO KEIICHI

(54) PHOTOVOLTAIC DEVICE AND FABRICATION THEREOF

(57)Abstract:

PURPOSE: To provide a photovoltaic device having a surface uniform and fine to improve an optical absorption efficiency.

CONSTITUTION: There is employed an insulating film 2 containing insulating ceramic particles 2b on a substrate 1, and a photoelectric conversion part is formed on such an insulating film 2. Further, an amorphous silicon material containing hydrogen is irradiated with an energy beam whereby an uneven configuration is ensured on which the photoelectric conversion part is formed.

LEGAL STATUS

[Date of request for examination]

01.07.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3222945 [Date of registration] 17.08.2001

[Number of appeal against examiner's decision of

rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出類公開番号

特開平6-97475

(43)公開日 平成6年(1994)4月8日

(51)Int.CL ⁵ H 0 I L 31/04	識別記号	庁内整選番号	F I			技術表示箇所	
NV L Copye		7376—4M 7376—4M	H01L	31/ 04		M B	
			ā	连查請求	永請 求	請求項の数3(全 7 頁)	
(21)出類巻号	特 類平4-243271		(71)出頃人	00000188 三洋電機	89 株式会を	±	
(22)出戰日	平成 4 年(1992) 9	月11日	(72)発明者	大阪府令 能口 第		反本通2丁目5番5号	
					アロ市京駅	反本通2丁目18番地 三洋	

(72)発明者 佐野 景一 大阪府守口市京阪本通2丁目18番地 三洋

大阪府守口市京阪本通2丁目18番地 三洋

電機株式会社内

電機株式会社内

(74)代理人 弁理士 西野 卓嗣

(72)発明者 岩多 浩志

(54) 【発明の名称 】 光起電力装置及びその製造方法

(57)【要約】

【目的】 光吸収効率を高めるための表面凹凸形状が均 一で且つ微細のものとする光起電力装置を提供すること

【構成】 基板(1)上の絶縁性セラミックス粒(2b)を含 有した絶縁膜(2)を使用し、斯る絶縁膜(2)上に光電変換 部を形成したことにあり、また、水素を含有した非晶質 シリコン材料にエネルギービームを照射したことにより 凹凸形状とし、その上に光電変換部を形成したことにあ る。

(2)

【特許請求の範囲】

【語求項1】 基板上に形成された、絶縁性セラミックス粒を含む絶繰騰と、上記絶縁膜上に形成された背面電極と、上記背面電極上に形成された半導体から成る光電変換層と、上記光電変換層上に形成された逐光性電極と、を具備したことを特徴とする光起電力装置。

【請求項2】 墓板上に水素を含有した非晶質シリコン 膜を形成する工程と、

上記非晶質シリコン膜に対して、エネルギービームを照 射する工程と

上記非晶質シリコン膜上に背面電極を形成する工程と、 上記背面電極上に半導体から成る光電変換層を形成する 工程と、

上記光電変換層上に透光性電極を形成する工程と から成ることを特徴とする光起電力装置の製造方法。

【請求項3】 基板上に、一導電型半導体、光活性層及び他導電型半導体から成る光電変換層を具備して成る光 起電力装置の製造方法に於て、

上記一導電型半導体が、水素を含有した非晶質シリコン 膜にエネルギービームの照射が施されて成ることを特徴 20 とする光起電力装置の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】 本発明は、入射した光によるエネルギーを電気エネルギーに変換する光起電力装置及びその製造方法に関する。

[0002]

【従来の技術】光起電力装置では、如何にして入射した 光の殆どを吸収するかが問題となる。図6は、従来の光 起電力装置の素子構造図である。図中の(61)は、光起電 30 力装置の支持体となるガラスやセラミックス等からなる 基板。(62)は基板(61)上に形成された金属膜から成る背 面電極、(63)は背面電極(62)上に形成された非晶質シリ コン膜を母材とする光電変換層、この光電変換層には膜 面に平行なpin接合が形成されている。(64)は光電変 換層(63)上に形成された光入射用の電極として機能する 透光性電極である。この光起電力装置では膜形成面側か ら入射した光(65)を光電変換し電子と正孔とからなる光 キャリアとして取り出すこととなる。

【①①①③】この従来例光起電力装置にあっては、図示 40の如き凹凸形状を基板(61)の表面に縮すことで、入射した光の有効利用が図られている。即ち、透光性電極(64)を経て入射した光(65)は、光電変換層(63)内を進行中、順大吸収されていくものの、通常この光(65)は一度だけの進行ではこの光電変換層(63)に十分吸収されず、その一部は光電変換層(64)を通過し背面電極(62)にまで至ってしまう。

【①①①4】斯る場合に、基板(51)の表面に上記凹凸形 特徴とするところは、光電変換層を 状を施しておくと、この凹凸形状はその基板表面に紋着 導体が、水素を含有した非晶質シリ された背面電極(62)の表面にまでその凹凸状態を反映さ 50 ビームを照射して成ることにある。

せる結果、その背面電極(の)の表面に生じた凹凸形状が 効果的に光(65)を散乱反射させることとなり、再度この 光を光電変換層(63)内に走行させることとなる。特に、 この散乱反射された光の多くは、この光電変換層(63)の 膜内を斜めに走行することから、この光電変換層(63)内 を走行する距離がその光電変換層(63)の腹厚よりも実質 的に長くなり、より多くの光吸収が可能となる。

【①①①5】従って、斯様な凹凸形状を利用することによって光起電力鉄置としての光電変換効率の向上、とり わけ長波長光の吸収置が増加することによる、短絡電流の増加が成し得る。斯る光起電力装置に関しては、例えば特開昭62-76569号等に詳細に記載されている。

[0006]

【発明が解決しようとする課題】然し乍ら、斯様な凹凸 形状を備えた墓板(61)を製造することは一般に幾つかの 困難を伴う。

【①①①7】つまり、この凹凸形状で有効に光反射させるには、その凹凸形状の程度を微細なものとする必要がある一方、形成されたその凹凸形状の凸部はあまり鋭利なものであってはならない。即ち、その凸部があまりにも鋭利なものとなると、その後に形成される背面電極(62)や光電変換層(63)が極めて薄い膜であることからそれら競を均一な鰻厚を保った状態で形成することが困難となり、更には、形成された鰻の膜内応力が大きく幾四してしまい、そもそも光起電力装置としての特性が十分に得られないものとなってしまうからである。

【①①①8】従来、斯る凹凸形状の製造方法としては、 基板表面への機械加工や、薬剤等による化学エッチング によってなされることが多いが未だ幾つかの問題を有し ていた。

【0009】とりわけ、光起電力装置は、より多くの光を吸収するため、即ちより大きな出力を得るためにそもそも大面積の装置として作製する必要があることから、従来の上記方法によってしては、大面積に亘った均一で且つ微細な凹凸形状を施すことはできなかった。

[00]10]

【課題を解決するための手段】本発明光起電力装置の特徴とするところは、その基板上に形成した絶縁性セラミックス粒を含む絶縁膜に、背面電極、光電変換層及び透光性電極を備えていることにあり、又、本発明光起電力装置の製造方法の特徴とするところは、基板上に水素を含有した非晶質シリコン機を形成し、これにエネルギービームを照射するとともに、該非晶質シリコン機の表面に、順次背面電極、光電変換層をして過光性電極を形成することにある。

【①①11】さらに、本発明光起電力装置の製造方法の 特徴とするところは、光電変換層を構成する一導電型半 導体が、水素を含有した非晶質シリコン膜にエネルギー ビームを照射して収ることにある。 [0012]

【作用】本発明光起電力装置によれば、本装置の基板表面を凹凸形状とするために、組縁性セラミックス粒を含む絶繰膜をその基板表面に設けることから、そのセラミックス粒の大きさを予め特定しておくことによって、上記凹凸形状の凹凸の程度を容易に制御することが可能となり、またその絶縁性セラミックスとして粒形のものを使用することから、この絶縁性セラミックス粒によって得られる、その凹凸形状の凸部が珠状となり、その絶縁膜の表面から鋭利に突出する虞がない。

【0013】従って、その凹凸形状による膜の破れが生せず、安定した光起電力特性を得ることができる。

【0014】又、本発明光起電力装置の製造方法によれば、水素を含有する非晶質シリコン機にエネルギービームを照射するととにより、との非晶質シリコン機中に含まれる水素が機から噴出し、斯る噴出の際の圧力に因ってとの非晶質シリコン膜の厚みに局所的な大小ができることとなる。とれにより、との非晶質シリコン機が形成された基板の表面には、光反射に適した微細な凹凸形状を超すことができる。

【0015】さらに、上記非晶質シリコン膜に増電特性を備えさせるととにより、この非晶質シリコン膜を光電変換層を構成する一導電型半導体とし得、更にはそのエネルギービームを照射により、膜内のドーパントがより活性化されるとととなりキャリア取り出し用の電極と同程度の導電特性を有するととと成り、所謂電極特料とし*

* ても使用することができる。

【0016】斯る場合にあっては、光超電力装置としての光入射側電極或いは背面電極を省略することができ、特に、上記一導電型半導体を光入射側電極としても併せて機能させることで、従来の透明電極を使用する必要がなくなることから、そもそもこの透明電極を用いたことによる光損失を解消することができることとなり、光起電力装置としての光電変換効率の向上を図ることが可能となる。

10 [0017]

【実施例】図 1 は、本発明光起電力装置の第1の実施例の素子構造図である。図中の(1)はセラミックス等からなる基板、(2)は絶縁村(2a)中に絶縁性セラミックス粒(2b)を含む絶縁膜、(3)は絶縁膜(2)上に形成された銀等からなる背面電極、(4)は当該光起電力装置の光電変換層で、本例では非晶質シリコン頃を使用し、その構成としてはn型非晶質シリコン(4n)、真性非晶質シリコン(41)そしてp型非晶質シリコン(4p)の三層構造から成る。(5)は光入射側の酸化インジュウム銀や酸化錦等からなる過光性電極である。

【0018】セラミックス粒(2b)を含んだ絶縁膜(2)以 外は従来周知の材料であり、表1に上記光電変換層(4) の代表的な形成条件を示す。

[0019]

【表1】

篇	基板温度 (で)	R F 147 - (mW/c m ²)	ガス流量 (5 c c m)	压力 (Pa)	(人)
4 n	200	5 0	SiH ₄ = 20 1XPH ₃ /H ₂ = 10	13, 3	100
4 i	200	1 0	Siff ₄ = 100	13. 3	4000
4 p	200	100	SiH ₄ = 20 1000spmB ₂ H ₆ /H ₂ - 200 CH ₄ = 20	13, 3	100

【0.02.0】本発明の特徴である絶練機(2)は以下のように形成される。セラミックス粒(2b)として粒径約5 μ mのアルミナ粒を含むシリカ(51G)溶液を基板(1)の表面に塗布した後。約50.000温度で硬化させる。硬化後の絶縁膜(2)の膜厚としては。 0.5μ m~5 0.0μ mが実用的な簡曲である。また、セラミックス粒(2b)の粒線としては、 0.5μ mが作業的な簡単で

ある。

【0021】 これにより、シリカはそのセラミックス粒 (2b)を包み込むようにその鉱間を埋めると共に、上記硬化後の絶縁膜(2)豪面をセラミックス粒(2b)によって凹凸化することができることとなる。

mが実用的な範囲である。また、セラミックス粒(2b)の 【0.022】尚、本実施例では絶縁機の膜厚は、硬化後粒径としては、 $0.1\mu m \sim 1.0\mu m$ が代表的な範囲で 50 約 $2.0\mu m$ となるように設計したが、本発明者等の実験

特開平6-97475

によればこの膜厚は()、5 μm~5 () () μmの範囲にお いて使用可能であることを確認している。又、本実施例 の場合にあってはこの絶縁膜の表面に生じる凹凸の程度

5

は約2μmとなった。

【0023】表2は、上記実施例光起電力装置の特性値 を示した表であり、同家には従来例光起電力装置のそれ* *についても比較のために示してある。この従来例光起電 力装置としては、本願発明の特徴であるセラミックス粒 を含む絶縁膜に替え、シリカ単体からなる絶縁膜を使用 したこと以外は、全く同様の構造としている。

5

[0024]

【表2】

	V o c (V)	Isc (mA/cm ²)	P P	n (96)
本発明	0.875	17, 25	0, 674	10, 17
從来例	0.877	14.86	0.672	8, 46

(照射条件AM1, 5 100mW/cm²)

【0025】同表で明らかなように、本発明光起電力装 置は従来例光起電力装置と比較して短絡電流が20%以 はセラミックス粒による光反射が効果的に生じている結 果。光吸収が有効に行われ短絡電流の増加が成し得たと 考えられる。

【0026】本発明における絶縁膜は、前述した実施例 で使用した塗布法による形成のみならず、所謂プラズマ 密射法によって形成された絶縁膜であってもよい。この プラズマ溶射法とは、空中に噴出されたパウダ状原料を※

※プラズマによるエネルギーによって分解し、これを膜形 成のための材料とするものである。このプラズマ溶射法 上増加している。これは、本発明光起電力装置にあって 20 については例えば特関平4-45521号に詳細に記載 されている。

> 【10027】とのプラズマ溶射法による形成方法にあっ ては、表3に示すような原材料及びガスを利用すること によって前記第1の実施例と同様に絶縁膜を形成するこ とができる。

[0028]

【表3】

膜原料パウダ	SiO ₂ (粒径5μm)
凹凸形成パウダ	TiN (粒径10μm)
キャリアガス	Ar (108/min each feeder)
トーチ基板関距離	15cm
トーチDCパワー	10kW
基板穩度	8 0 0°C
圧力	1000Pa

【0029】また、このセラミックス粒としては、上記 ることができる。

【0030】次に、本願発明の第2の実施例について説 明する。この実施例に於ける基板表面に凹凸形状を施す 方法は、水素を含有した非晶質シリコン膜にレーザビー ム等のエネルギービームを照射することに因り、斯る水 素の膜中からの爆発的な噴出現象を生じさせ、これによ り、その非晶質シリコン膜の表面に凹凸形状を縮すもの

【①①31】との輸出現象が生ずる墓となる水素。の膜 中含有置と、その順にエネルギービームを照射したこと 50 以上で急激に増加している。

によるその凹凸の程度との関係を示したのが図2であ アルミナ(A120」)の他にTiN、TiC等を使用す(40)る。機軸はエネルギービームとして利用したAェFエキ シマレーザのエネルギー密度であり、縦軸はその凹凸の 程度を示したもので、同図には膜中の水素含有量とし て、(a) 18%、(b) 13%、(c) 8%の3種類について 示している。尚、これら水素含有量の副御は、後述する 膜の形成温度を調整することによって行った。

【0032】同図から明らかなように、膜中の水素含有 置とエネルギー密度とが共に増加するにつれて、その凹 凸の程度は急速に大きくなる。特に18%の水素含有量 の場合にあってはエネルギー密度が200mJ/cm¹

【0033】図3は、その形成温度と膜中の水素含有量 との関係を示す特性図である。同図によれば、形成温度 200℃から500℃へと高温化するにつれて漸次減少 することが分かる。従って、この形成温度による膜中の 水素含有量の制御は極めて容易であり且つ再現性のよい ものであることが分かる。

【0034】次に、この水素の噴出現象により凹凸形状 を施した光起電力装置の特性について説明する。 図4 は、上記第2の実施例光起電力装置の特性を従来の光起 度特性を示している。本実施例光起電力装置(a)の具 体的な素子構造は、前述した第1の実施例光起電力装置 の絶縁膜(2)に替えて、エネルギービームの照射に因る 水素噴出で凹凸形状を施した非晶質シリコン膜を使用し たこと以外、全く同様である。

【0035】実施例で使用した非晶質シリコン膜として は、その形成温度が約250℃とし、膜厚が約3000 Aの膜である。又、従来例光起電力装置(り)としては 表2における従来例光起電力装置と同様のもので評価し

【0036】同図によれば、本発明光起電力装置(a) では、600mm~800mmの長波長領域での光感度 が大きく向上しており、入射した光。とりわけ長波長光 を十分利用できていることから、水素噴出による凹凸形 状が良好に形成できていることが分かる。

【0037】次に第3の実施例光起電力装置について、 図5に示す素子構造図に従って説明する。本実能例光起 電力装置の特徴とするところは、光電変換層を構成する 一導電型半導体として、エネルギービームの照射に起因 する水素質出により凹凸形状が施された半導体を使用し 30 た点にある。従って、この導電性半導体は、その凹凸形米

* 状によって、光の利用効率を高める役割を担うと共に、 光電変換機能を呈する光電変換層を構成する半導体膜と しての役割も担うこととなる。

【①038】図5中の、(51)はセラミックス等からなる 基板。(52)はアルミニウム等の金属からなる背面電極、 (53)は背面電極(52)上に形成された光電変換層で、この 歴は主に n 型の非晶質半導体(53n)、 1 型の非晶質半導 体(531). そしてp型の非晶質半導体(53p)の3層により 模成されている。(54)は光電変換層(53)上に積層形成さ 電方装置の特性と比較したもので、同図には矢々の光感 10 れた酸化インジェウムや酸化銀等からなる透明導電膜で ある。光電変換層として使用した非晶質半導体として は、プラズマCVD法によって成膜した非晶質シリコン を使用している。

> 【0039】この光起電力装置の特徴とするところは、 n型非晶質半導体(53n)として水素を含有する非晶質半 導体にレーザビーム等によるエネルギービームを照射す ることによって、その表面に凹凸形状を施したことにあ る。この n 型非晶質半導体(52n)は、前述したノンドー ピングの非晶質半導体と比べドーピングの有無という差 20 異はあるものの、そのレーザエネルギー密度と凹凸の程 度との関係(図3)については殆どノンドーピングのも のと同様である。従って、エネルギービームの照射条件 は第2の実施例と同様としている。

【① 0.4.0 】なお、このn 型非晶質半導体(53n)はエネ ルギービーム照射を受けることによって、膜中の一部が 多結晶半導体化するが、この様な状態の膜についても本 頻発明で言う一導電型半導体に含まれるものである。

【① 041】因みに、上記各非晶質半導体膜の機形成条 件について表4に示す

[0042]

【表4】

基板温度	R F パワー	ガス流量	压力)
(℃)	(W/c m ²)	(8 c c m)	(Pa)	(入)
250	0.01	\$iH ₄ = 20 1XPH ₃ /H ₂ = 20	6. 6 5	3000

【0043】この本発明光起電力装置と従来の光起電力 40 装置とを比較した場合、光電変換効率において、後者が 約8%であるのに対して、前者は約10%と高い効率を 示すことを確認している。なお、この従来の光起電力装 置としては、n型非晶質半導体に凹凸形状のためのエネ ルギービームを照射しなかったことのみを異にするもの である。

【① ① 4.4 】なお、第3の実施例では、光起電力装置の 構成として背面電極(52)を設けたが、本発明の特徴であ るエネルギービームの照射によって形成された導電性半 - て、この背面電極としての機能を併せもつものとして利 用することもできる。即ち、これはそのエネルギービー ムの照射により、その導電性半導体中のドーパントが非 **寓に活性化されることから、光電変換層としての導電性** 半導体として機能すると共に、キャリアの取り出し用電 極としても機能することができることとなる。この場合 にあっては、上記第3の実施例におけるような背面電極 は不要となる。

【①①45】前述した実施例の半導体材料として主に非 **監賢半導体を使用したが、本発明の効果は斯る半導体材** 導体を光電変換層を構成する半導体としての機能に加え 50 料に限られるものではなく、例えば多結晶半導体や単結 (6)

晶半導体の組合わせによって成る光電変換層であって も、水素を含有した非晶質シリコン材料を使用する限り 全く同様に形成できる。更にはこの光電変換層として は、実施例で利用したプラズマCVD法等によって形成 されたものだけに限られるものではなく、例えば固相成 長法等で形成されたものであってもよい。

[0046]

【発明の効果】本発明光起電力装置によれば、絶縁性セ ラミックス粒を含む絶縁膜を基板上に形成することで、 その基板表面にその絶縁性セラミックス粒の大きさを反 10 特性図である。 映した凹凸形状を備えさせることができることとなる。 特に、本発明においては、この絶縁性セラミックス粒の 粒間にその絶縁膜が理まり、更にはとのセラミックス粒 の表面は薄いその絶縁膜が覆われることから、鋭利な突 出部がその基板表面に生じることを抑圧することができ る。

【0047】従って、本発明光起電力装置にあっては、 基板表面の凹凸による歩留まりの低下が生じることがな く、むしろ効率的な光反射に基づく光電変換効率の向上 が成し得る。

【0048】また、本発明光起電力装置にあっては、膜 中の水素量が副御された非晶質シリコン材料にエネルギ ービームの照射を行うことによって、所塑の凹凸形状を* * 備えた基板あるいは一導電型半導体を製造することが可 能となる。このため、再現性のよい凹凸形状が出来ると 共に、その一導電型半導体を使用することで、従来の光 入射のための透明電極等を不要とすることかできる。

19

【図面の簡単な説明】

【図1】本発明光起電力装置の第1の実施例の素子構造 断面図である。

【図2】水素を含有する非晶質シリコンへのエネルギー ビーム照射のエネルギー密度と、凹凸形状の程度を示す

【図3】非晶質シリコンの形成条件と膜中水素含有量と の関係を示す特性図である。

【図4】本発明光起電力装置と従来例光起電力装置の光 感度特性図である。

【図5】本発明第3の実施例光起電力装置の素子構造断 面図である。

【図6】従来例光起電力装置の素子構造断面図である。 【符号の説明】

[図2]

(1)…基板

(2)…絶縁膜

20 (26)…絶縁性セラミックス粒

CH o 18%

> 13% 8%

(3)…背面篙

極

(4)…光電変換層

120

100

80 凸

程 友 (5)…透光性

400

弯極

[図l]

[図5]

特開平6-97475 (7)

