

AARHUS SCHOOL OF ENGINEERING

SUNDHEDSTEKNOLOGI 3. SEMESTERPROJEKT

Rapport

Gruppe 1
Lise Skytte Brodersen (201407432)
Nina Brkovic(201406458)
Jakob Degn Christensen(201408532)
Toke Tobias Aaris(201407321)
Annsofie Randrup Wagner (201406360)
Anders Wiggers Birkelund(201404118)

Vejleder Studentervejleder Peter Johansen Aarhus Universitet

Resumé

Problemstillingen i dette projekt omfatter en udarbejdelse af program, der har til formål at vise en kontinuerlig blodtrykskurve på en computerskærm. Der er udarbejdet et blodtryksmålesystem, der kan måle blodtrykket invasivt ved at tilslutte et væskefyldt kateter til patientens arterie. Systemet indeholder et elektronisk kredsløb, som forstærker signalet fra en tryktransducer og filtrerer det med et indbygget analogt filter. Derudover indeholder det et program, der har til formal at vise blodtrykskurven som funktion af tiden. Desuden skal løsningen kunne gemme data i en database, samt foretage kalibrering og nulpunktjustering.

Det udviklede produkt består af software, udviklet i Visual Studio efter 3-lagsmodellen, samt hardware i form af en tryktransducer, forstærker og DAQ. Den endelige løsning har resulteret i software, som kan vise en blodtrykskurve kontinuerligt over et interval på 4 sekunder og gemme det i en database. Løsningen er derudover i stand til at filtrere blodtrykket i selve programmet via et digitalt filter, som kan slås til og fra. Ydermere er brugergrænsefladen designet brugervenligt ud fra medicotekniske standarder.

Gennem en række tests er det konkluderet, at systemet er i stand til at vise en blodtrykskurve kontinuerligt, samt vise systole-, diastole- og pulsværdier med tal. Derudover er det konkluderet, at systemet kan gemme data i en database.

Godkendelsesformular

Underskrifter

Ordliste

Indholdsfortegnelse

Resumé	i
Godkendelsesformular	iii
Underskrifter	v
Ordliste	vii
Kapitel 1 Indledning	1
Kapitel 2 Projektformulering og afgrænsning	3
Kapitel 3 Baggrund 3.1 Kroppens kredsløb	5 9 13
Kapitel 4 Systembeskrivelse	17
Kapitel 5 Krav	19
Kapitel 6 Projektbeskrivelse	23
6.1.1 ASE-modellen	
6.1.3 Mødestruktur	25
6.2 Metode	
6.4.1 Design	25
6.4.2 Implementering og test af SW	
6.5 Resultater og diskussion	2525
6.7 Fremtidigt arbejde	25
Kapitel 7 Konklusion	27
Litteratur	29

Indledning

Måling af det arterielle blodtryk er en af de hyppigst udførte kliniske undersøgelser. Det er et uundværligt led i den kliniske vurdering af patienter. Der findes forskellige metoder til måling af blodtrykket – både invasive og non-invasive metoder, hvor der ved begge tilfælde bestemmes en værdi for det systoliske og diastoliske blodtryk.

De allerførste målinger af blodtryk blev udført på dyr. Den engelske præst, Stephen Hales (f. 1677), var den første person til at lave invasive målinger på blodtrykket. Han introducerede en ny teknik, der gik ud på at indsætte den ene ende af et messingrør i venstre arterie på en hest, og derefter tilslutte den anden ende af røret til et lodret glasrør således, at han kunne måle blodsøjlens højde og iagttage, hvordan denne steg og faldt i takt med hestens puls. Herved observerede han også, at hestens blodtryk var lavere, når den var i hvile, end når hesten var ophidset.

De første non-invasive blodtryksmålinger blev introduceret i 1880, hvor den østrigske fysiker, Samuel Von Basch (1837-1905), for første gang målte på blodtrykket indirekte. Den non-invasive metode, hvor der anvendes et kviksølvmanometer, blev indført i 1896 af den italienske læge, Scipione Riva-Rocci (f. 1863), som med en okklusionsmanchet gjorde det muligt at måle det systoliske blodtryk. I 1905 blev korotkofflydende for første gang beskrevet af den russiske kirurg, Nikolai S. Korotkov, hvilket viste sig at få stor indflydelse på i dags metode til at måle et pålideligt indirekte blodtryk ved den auskultatoriske metode. Dog er den elektroniske blodtryksmåling væsentlig mere udbredt til non-invasive målinger, hvor der anvendes et almindelig blodtryksapparat.

Derudover er det i daglig klinisk praksis ofte meget anvendeligt at kunne monitorere en patients blodtryk kontinuert under eksempelvis operationer eller på intensive afdelinger med svært syge patienter. Her bliver blodtrykket målt invasivt, hvor blodtryksmålesystemet er tilsluttet patientens arterier via et væskefyldt kateter. Således kan de hæmodynamiske data monitoreres. Denne metode giver et præcist og kontinuert, grafisk overblik over hjertets arbejde.

Med forståelsen for hjertet, kredsløbet og blodtryksmålinger er der i dette projekt fokuseret på udarbejdelsen af et monitoreringssystem til at vise en invasiv blodtryksmåling. Der ønskes en udvikling af et fysisk system til at måle trykket fra et måleobjekt, samt et tilhørende program, der grafisk kan udskrive blodtrykssignalet kontinuert som funktion af tiden. Systemet er udviklet til at kunne transformere et fysisk tryk til et analogt signal, som behandles og viderekonverteres til et digitalt signal, der grafisk kan vises i det udviklede program. Projektet er udviklet til forskningssammenhænge, som har været prioriteret i udarbejdelsen af blodtryksmålesystemet samt programmet. Derved er programmet an-

ST3PRJ3 Gruppe 1 1. Indledning

vendeligt for en forsker, der ønsker at foretage og observere målinger af blodtrykket, samt optage og gemme disse målinger til senere analyse. Med udgangspunkt i blodtryksmålersystemet, er der opstillet kravsspecifikation med use cases, og tilhørende accepttest.

Projektformulering og afgrænsning

2

I daglig klinisk praksis er der ofte behov for kontinuert at monitorere patienters blodtryk, i særdeleshed på intensive afdelinger samt operationsstuer, hvor blodtrykket er et vigtigt parameter til monitorering af deres helbredstilstand.

Blodtrykket måles invasivt, dvs. at blodtryksmålesystemet er tilsluttet patienternes arterier via et væskefyldt kateter, som afbildet i figuren nedenfor.

Figur 2.1: Måleopstilling

I dette projekt bliver der fokuseret på at udvikle et blodtryksmålersystem, som kan benyttes til forskning, hvor det typisk vil være interessant at observere blodtrykket kontinuerligt. Med det in mente, vil der udvikles et blodtryksmålersystem, som kan vise en kontinuerlig blodtrykskurve på en computerskærm. Systemet realiseres ved udvikling af to elementer, hvoraf det ene består af et elektronisk kredsløb, hvis formål er at forstærke signalet fra tryktransduceren, samt at filtrere signalet med et indbygget analogt filter.

Det andet element udmærker sig ved et C#-program, der skal vise blodtrykket som funk-

tion af tiden. Programmet skal derudover leve op til en række krav for bl.a. kalibrering af blodtrykssignalet, nulpunktsjustering, samt mulighed for at gemme interessante målinger til efterfølgende forskning i en database. Ydermere er der valgt at afbildede systolisk og diastolisk blodtryk med tal, samt angivelse af pulsværdi.

Ift. udvikling af vores program har det været nødvendigt, at lave antagelser, hvad angår design af brugergrænsefladen, da der ikke har været kommunikation eller mulighed for test af systemet med slutbrugerne(læger/forskere).

Baggrund 3

3.1 Kroppens kredsløb

Det menneskelige kredsløb har til hovedfunktion at transportere de forskellig livsnødvendige stoffer rundt i kroppen. Kredsløbet transporter også kroppens affaldsstoffer ud til de organer, hvor de kan udskilles. Kredsløbet er altså kroppens transportmiddel.

Kredsløbet består af hjertet samt et system af blodkar. Hjertet er opdelt i to halvdele, som begge fungere som en pumpe. Den højre side af hjertet pumper blodet gennem det lille kredsløb (lungekredsløb), mens venstre side pumper blodet gennem det store kredsløb (legemskredsløbet).

Figur 3.1: Illustration of kroppens kredsløb

På Figur 3.1 ses det lille- og det store kredsløb. Hjertet er placeret i midten, hvor det er

ST3PRJ3 Gruppe 1 3. Baggrund

delt op i højre- og venstre side. Højre atrium modtager iltfattigt veneblod, som har været igennem det store kredsløb. Fra atrium strømmer blodet til højre ventrikel, som pumper det gennem lungearterien til lungerne, hvor blodet får tilført ilt og afgiver kuldioxid. Blodet skal nu retur til hjertet gennem lungerne til venstre atrium. Fra venstre atrium strømmet blodet til venstre ventrikel, hvor det efterfølgende pumpes ud gennem aorta til alle kroppens organer, som har brug for ilt. Blodet bliver igen iltfattigt og skal tilbage til højre side af hjertet, før det kan benyttes igen. Mennesket har ca. 5 liter blod i kroppen, som bliver genbrugt igen og igen. Den menneskelig krop kan prioritere det iltrige blod i forhold til, hvor der er mest brug for det.

Systemet af blodkar består af tre forskellige typer. Arterier, vener og kapillærer. Arterieren leder blodet fra ventrikler til kroppens organer, venerne sørger for for returnering af langt det meste til atrierne, og kapillærerne forbinder arterier og vener.

Arterierne er som sagt de blodkar, der modtager blodet fra hjertet. Disse skal være elastiske, da de udsættes for et stort tryk, når hjertet trækker sig sammen og pumper blodet ud i det store kredsløb. Arterierne forgrener sig til arterioler, der igen forgrener sig kapillærer. Det er i disse blodkar udvekslingen af næringsstoffer, luftarter og affaldsstoffer til cellerne sker. Venolerne samler blodet fra kapillærerne og fører det over i venerne, som returnerer det til hjertets højre side.

Hjertet har i alt fire hjerteklapper. To af klapperne betegnes som AV-klapperne (Atrioventrikulærklapperne). Disse adskiller atrium og ventrikel i henholdsvis højre- og venstre side. Den i højre side kaldes tricuspidalklappen, mens den i venstre side kaldes bicuspidalklappen. Den tredje kaldes pulmonalklappen og sidder mellem lungearterien og højre atrium. Den fjerde kaldes aortaklappen og sidder mellem aorta og venstre ventrikel. Alle hjerteklapperne er designet således, at blodet kun kan løbe den ene vej igennem disse. Åbningen og lukningen af disse er en passiv proces, som bestemmes af forskelle i væsketrykket på de to sider af klapperne.

Figur 3.2: Illustration of hjertet cyklus

På Figur 3.2 illustreres hjertets cyklus ud fra trykket (mmHg) i henholdsvis venstre atrium og ventrikel, hjertelyde, lukning og åbning af hjerteklapperne samt volumen i venstre ventrikel. Der er i alt illustreret fem faser for hjertet.

Den første fase kaldes atrium systole. Her er trykket højere i atrium end i ventrikel og dermed er bicuspidalklappen åben, så blodet kan strømme fra atrium til ventrikel. Det ses også at volumen i ventriklen stiger.

Når trykket i ventriklen overstiger trykket i atrium lukker bicuspidalklappen og første hjertelyd forekommer på grund af vibrationer, befinder hjertet sig i anden fase. Her stiger trykket i atrium kort og lidt, mens trykket i ventriklen stiger voldsomt. Det ses at volumen forbliver konstant i denne fase.

I tredje fase over stiger trykket i ventriklen trykket i aorta og aortaklappen åbner sig – denne fase kaldes ventrikle systole. Volumen i ventriklen falder i takt med at ventriklerne trækker sig sammen. Det ses at i denne fase følger trykket i ventriklen og aorta hinanden. Forklaringen på dette er, at aorta har en høj compliance, som gør at den kan udvide sig og på den måde opretholde trykket. Samtidigt modtager atrium blod fra lungevenerne, hvilket gør at trykket i atrium stiger.

Fjerde fase forekommer, når trykket i ventriklen er under trykket i aorta igen, hvilket forårsager, at aortaklappen lukkes igen og anden hjertelyd kan høres. Denne fase kaldes tidlig ventrikel diastole. Her begynder ventriklen at slappe af.

Femte fase begynder, når ventrikel slapper så meget af, at trykket kommer under trykket

ST3PRJ3 Gruppe 1 3. Baggrund

i atrium. Her åbner bicuspidalklappen igen og fyldningen af ventriklen begynder stille og rolig igen. Det ses at volumen langsomt stiger. Denne fase kaldes sen ventrikel diastole. Efter denne fase begynder første fase igen, hvor trykket i atrium stadigvæk er større end i ventriklen.

Væskestrømningen er det væskevolumen, der fragtes gennem et rør pr. tidsenhed. Væskestrømningen, Q, stiger med trykforskellen i begyndelsen og slutning af røret, ΔP , samt aftager med rørets modstand mod væskestrømmen, R:

$$Q = \frac{\Delta P}{R} \tag{3.1}$$

Trykforskellen udgør drivkraften for væskestrømmen gennem røret. Denne strøm går fra højt til lavt tryk, hvilket hjertets kontraktion fremkalder. Modstanden i røret er et udtryk for gnidningsmodstanden mellem den væske, der bevæger sig og rørvæggen, som er i ro. Denne modstand har indflydelse på væskestrømmen i et rør. Efterhånden som væsken strømmer gennem røret, falder trykket i væsken. Ved stigende modstand mod væskestrømmen, stiger dette trykfald. Når modstand mod væskestrømmen i røret stiger, bliver væskestrømmen mindre under forudsætning af, at trykforskellen ikke stiger tilsvarende. Denne modstand bestemmes af tre faktorer: rørets længde, indre diameter og væskens viskositet. Modstanden stiger med øget rørlængde, reduceret diameter og øget viskositet.

Væskestrømmen i blodkar kaldes blodstrømmen. Hjertets kontraktion sætter væsken i rørene under tryk – jo kraftigere hjertet pumper, jo større bliver trykforskellen og dermed blodstrømningen. Diameteren af blodkarret har stor betydning for modstanden mod blodstrømmen. Modstanden er mindre, og blodstrømmen er større i de store kar end i de små.

Når blodet går fra hjertet til kapillærerne forgrener blodkarrene sig til mange små og smallere kar. Herved stiger det samlede tværsnitsareal kraftigt, og der sker automatisk en aftagning af blodets strømningshastighed. Blodets lave strømningshastighed i kapillærerne er vigtig for stofudvekslingen, der sker gennem kapillærvæggene. Ved blodets vej tilbage fra kapillærerne til hjertet stiger strømningshastigheden igen, idet det samlede tværsnitsareal aftager.

Væskestrømmens tryk gennem et rør er som nævnt trykforskellen mellem rørets begyndelse og slutning. I det store kredsløb er trykket lig med forskellen mellem trykket i aorta og trykket i højre atrium. Det tryk, der er i højre atrium, er ved normale tilstande meget tæt på nul, og derved kan man betragte det gennemsnitlige tryk i aorta som trykforskellen. Det arterielle blodtryk er det tryk, der er i de store arterier, som er ligeså højt som trykket i aorta. Modstanden i hele det store kredsløb kaldes den totale perifere modstand. Formlen for sammenhængen mellem væskestrøm, tykforskel og modstand kan også overføres til det store kredsløb, hvor minutvolumen, MV, stiger med blodtrykket, BT, og aftager med den totale perifere modtand, TPM:

$$MV = \frac{BT}{TPM} \tag{3.2}$$

Dette betyder, at ændringerne i det arterielle blodtryk skyldes forandringer i enten hjertets minutvolumen eller blodkarrenes modstand mod væskestrømmen. Arteriosklerose ændres modstanden i blodkarrene, da der sker en indsnævring af arterierne og arteriolerne. Dette medfører en belastning for hjertet, da den samme mængde blod ønskes transporteres rundt i kroppen på samme tid, da man gerne vil opretholde minutvolumen. Hvis denne sygdom ikke behandles vil indsnævringen blive så slem, at minutvolumen ikke heller kan opretholdes, og patienten vil nu være i en livstruende sygdom. Patientens arterielle blodtryk vil stige i takt med indsnævringen.

Det arterielle blodtryk (systole og diastole) fortæller altså noget om, hvordan hjerte arbejder. Hvis man har et arterielt blodtryk, hvor systole er over 140 og diastole er over 90, siger man, at man har et forhøjet blodtryk. Et forhøjet blodtryk kan have anledning til forskellige sygdomme, f.eks. arteriosklerose.

Der findes flere forskellige metoder til at måle blodtryk – både invasivt og ikke-invasivt. I begge tilfælde bestemmes en værdi for det systoliske- og det diastoliske blodtryk. Non-invasivt kan blodtrykket måles med ultralyd eller ved den oscillometriske metode med manchet, stetoskop og kviksølvsmanometer. Derudover findes der også den automatiserede teknik, der erstatter stetoskopet med en mikrofon.

I dette projekt er der blevet designet et monitoreringssystem til at vise en invasiv blodtryksmåling.

3.2 Invasiv blodtryksmåling

Invasive blodtryksmålinger bruges ofte til monitorering af hæmodynamiske data, og anvendes som regel hos svært syge patienter på eksempelvis intensiv afdeling, samt ved større operationer. Ved den invasive blodtryksmåling måles blodtrykket via et kateter, der lægges ind i arterien. Med denne metode får man et mere præcist og kontinuerligt billede af, hvordan hjertet arbejder.

ST3PRJ3 Gruppe 1 3. Baggrund

Figur 3.3: Måleopstilling

På Figur 3.3 ses måleopstillingen for den invasive blodtryksmåling. Der føres et væskefyldt kateter ind i personens arterie. Trykposen på Figur 3.1 er fyldt med natriumklorid og fungerer som en del af flushmekanismen, som benyttes til at fjerne bobler fra det væskefyldte kateter. Trykket i posen pumpes op til mellem 180 til 300 mmHg, hvilket er over det systoliske blodtryk.

Slangen fra trykposen går ned til tryktransduceren og flushsystemet. Når fluchsystemet startes, vil man på monitoren kunne se, at trykket stiger til det tryk, der er i trykposen. Når dette stoppes, er systemet udviklet således, at der altid vil løbe en dråbe natriumklorid ind i kateteret. Dette forhindrer blod i at strømme ud i kateteret. Trykket i det væskefyldte kateter er lig med trykket i personens arterie. Det er dette tryk, som tryktransduceren transformerer om til et elektrisk signal, som kontinuert vises på monitoren.

Tryktransduceren består af fire strain gauges, også kaldet en wheatstone bro. Strain gauges er en modstandståd, der kan foldes og limes på et hvilket som helst materiale. Modstanden, R bestemmes ud fra længden, l, resistiviteten, ρ og tværsnitsarealet, A.

$$R = \frac{l \cdot \varrho}{A} \tag{3.3}$$

Ændres en eller flere af disse, vil modstandsværdien ændres efterfølgende. Materialet, som strain gauges er limet fast på, kan ændre form, hvilket strain gauges registrerer. Det er dette, tryktransduceren benytter sig af. De fire strain gauges er limet fast på en membran, som sidder for enden af det væskefyldte kateter. Når blodtrykket ændrer sig, påvirkes membranen, da den har en meget højere compliance end selve det væskefyldte kateter.

Denne forskel i compliance er en af grundene til, at dette system kan registre selv de mindste trykændringer.

Trykændringer registreres af de fire strain gauges, som transformerer dem om til det elektriske signal, hvilket afbildes grafisk. På figur 3.4 ses afbildningen af en invasiv blodtryksmåling, hvor det også er muligt at aflæse det diastoliske og systoliske blodtryk. Det diastoliske tryk svarer til minimumspunkterne, hvor toppunkterne svarer til det systoliske tryk.

Figur 3.4: Grafisk afbildning af en invasiv blodtryksmåling

Strain gauges benyttes i dette tilfælde, da man ønsker, at selv den mindste trykændring skal kunne registreres. Da disse modstandsændringer er så små, ønskes disse forstærkes op. For at kunne gøre dette bedst muligt, skal der benyttes et måle setup, som er centraliseret omkring nul. Til dette bruges en Wheatstone bro, nærmere en helbro, se Figur 3.5.

Figur 3.5: Wheatstone bro

En Wheatstone bro er et kredsløb, der består af to serieforbindelser af to modstande, som sidder i parallelforbindelse. I mellem serieforbindelserne kan V_{out} beregnes ud fra

ST3PRJ3 Gruppe 1 3. Baggrund

spændingen ved punkt C og punkt D.

$$V_{out} = V_C - V_D \tag{3.4}$$

Hvis modstandene R_1 og R_3 samt R_2 og R_4 er ens, vil V_{out} være lig med nul og broen vil være i balance, se Figur 3.6.

Figur 3.6: Wheatstone bro i balance

Hvis modstandene R_1 og R_3 samt R_2 og R_4 er forskellige af hinanden, vil V_{out} være forskellig fra nul og broen vil være i ubalance, se Figur 3.7.

Figur 3.7: Wheatstone bro i ubalance

Når trykændringerne påvirker membranen, vil de fire strain gauges ændre form og dermed ændre modstandsværdi. Dette skaber ubalance i Wheatestone broen, og spændingen

ændrer sig i takt med dette. Spændingsændringen kan beregnes ud fra fomlen (3.5).

$$\frac{v_0}{v_{in}} = \frac{\Delta R}{R} \tag{3.5}$$

3.2.1 Dynamiske egenskaber

Et væskefyldt kateter har inerti, friktion og elastiske egenskaber, der også kan betegnes som inertans, modstand og compliance (eftergivelighed). Disse egenskaber kan beskrives som elektriske komponenter i form af en induktor, resistor og kapacitor, se Figur 3.8.

Figur 3.8: Anden ordens lavpassystem

De forskellige egenskaber kan udtrykkes ved ligninger (3.6), (3.7) og (3.8).

$$L = \frac{l \cdot p}{\pi \cdot r^2} \tag{3.6}$$

$$R = \frac{8 \cdot \mu \cdot l}{\pi \cdot r^4} \tag{3.7}$$

$$C = \frac{\Delta V}{\Delta P} = \frac{1}{E_d} \tag{3.8}$$

Figur 3.8 viser et anden ordens lavpassystem, der kan beskrives med følgende to overføringsfunktioner:

$$T(s) = \frac{Ks}{s^2 + 2 \cdot \zeta \cdot \omega_0 \cdot s + \omega_0^2} \tag{3.9}$$

$$T(s) = \frac{k}{s^2 + \frac{\omega_0}{Q} \cdot s + \omega_0^2}$$
 (3.10)

ST3PRJ3 Gruppe 1 3. Baggrund

Ud fra disse overføringsfunktioner kan knækfrekvensen, f_0 og flowet, Q findes:

$$f_0 = \frac{r}{2} \cdot \sqrt{\frac{1}{l \cdot p \cdot \pi} \cdot \frac{\Delta P}{\Delta V}} \tag{3.11}$$

$$Q = \frac{r^3}{8 \cdot \mu} \cdot \sqrt{\frac{\rho \cdot \pi}{l} \cdot \frac{\Delta P}{\Delta V}}$$
 (3.12)

Figur 3.9 viser et bodeplot for amplitude og fasen for lavpasfilteret.

 $Figur\ 3.9:\ Bodeplot$

Det interessante er, at knækfrekvensen ligger ved 90 Hz. Dette betyder, at systemet medtager frekvenser op til de 90 Hz, hvilket er mere end, hvad systemet skal kunne klare ift. en blodtryksmåling, hvis frekvenser ikke kommer over 50 Hz.

På figur 3.10 kan man se, hvorledes bobler i systemet påvirker systemets knækfrekvens og dermed dens båndbredde samt dæmpningsfaktoren.

Figur 3.10: Diagram over knækfrekvensen og dæmpningsfaktoren påvirket af bobler og uden

Hvis der er bobler tilstede i kateteret, bliver der samtidig tilført ekstra compliance. Dette medvirker til, at knækfrekvensen forekommer tidligere, hvilket betyder, at båndbredden bliver mindre. Som det ses i Figur 3.10 er knækfrekvensen mindre og dæmpningsfaktoren større, når der er bobler tilstede i kateteret.

En mindre knækfrekvens forårsager, at systemet kun lukker frekvenser fra 0 til 22 Hz igennem, hvilket ikke er tilstrækkeligt til at repræsentere en optimal blodtryksmåling. Dæmpningsfaktoren øges, når compliance stiger. Det vil sige, at jo større dæmpningsfaktor og compliance, jo mindre quality, jo større tab over system. Det ses ved ligningen for dæmpningsfaktoren:

$$\zeta = \frac{1}{2 \cdot Q} \tag{3.13}$$

For at undgå bobler i væsken, kan man benytte føromtalte flushmekanisme, hvor man vha. trykposen kan erstatte luftbobler med natriumklorid.

Systembeskrivelse 4

Det udviklede system består af en biomedicinsk måleopstilling med hardware- og en tilhørende softwaredel. Systemet er en invasiv blodtryksmåler udviklet til forskning. Blodtrykket skal kunne måles invasivt, således at blodtryksmålersystemet er tilsluttet et måleobjekt og kontinuert kan monitorere blodtrykket.

Figur 4.1: Illustration of systemet

Systemets hardwaredel er et opbygget elektrisk kredsløb, der behandler signalet. Det tryk, der ønskes behandles kommer fra et måleobjekt og hentes via en tryktransducer. Tryktransduceren har til formål at konvertere måleobjektets fysiske tryk til et analogt signal. Efter konverteringen fra tryk til et elektrisk signal forstærkes signalet i forstærkerblokken. Forstærkningen er nødvendig, da tryktransducerens spændingssignal er meget svagt og skal derfor forstærkes til en spænding, der er anvendelig til DAQ'en. Derudover skal signalet også filtreres i det indbyggede analoge filter, hvor signalet frasorterer frekvenser, der er højere end 50 Hz, da disse frekvenser er irelavante for blodtrykssignalet. Når signalet har passeret forstærker- og filterblokken, konverteres det i DAQ'en fra det analoge signal til et digitalt signal, hvorefter signalet kan vises grafisk på computer i den tilknyttede software.

Systemets softwaredel er et program, der er udviklet til at vise blodtrykssignalet grafisk som funktion af tiden. Programmet er programmeret i Visual Studio C# og er udviklet til at være anvendelig i forskningssammenhænge. Brugergrænsefladen skal grafisk vise blodtrykssignalet kontinuert. Derudover skal forskeren have mulighed for at optage en bestemt optagelseslængde, og derefter gemme de målte data i en lokal database. Systemet er ligeledes opbygget til at kunne foretage en kalibrering af blodtrykssignalet. Når programmet starter, vises kalibrering-vinduet, hvor forskeren har mulighed for at indtaste de målte kalibreringsdata og derefter udføre kalibreringen, hvis dette ønskes. Hvis forsker ikke ønsker at kalibrere, skal kalibrering-vinduet blot lukkes, og hermed ses blodtrykssignalet grafisk i monitor-vinduet. Monitorvinduet giver forskeren mulighed for at optage samt gemme en bestemt sekvens af et blodtrykssignal. Derudover giver monitor-vinduet mulighed for at nulpunktsjustere systemet. Programmet har ligeledes et digitalt filter, som giver forskeren mulighed for at filtrere blodtrykssignalet i selve programmet. Filteret er per default aktivt, men kan via radiobuttons deaktiveres og aktiveres efter forskerens ønske.

Dette afsnit har til formål at beskrive, hvilke krav der er til systemet, og skabe et overordnet overblik over rammerne for systemet.

Med udgangspunkt i projektformuleringen, er der udarbejdet seks Use Cases, som repræsenterer de funktionelle krav for systemet. Hver Use Case dækker over et givet krav og beskriver brugerens interaktion med systemet. Samlet dækker de seks Use Cases over systemets funktionalitet.

Systemets primære funktionalitet beskrives ved UC2, UC6, samt enkelte ikke-funktionelle krav, der tydeliggør muligheden for at monitorere et kontinuerligt blodtryk på en computerskærm, og gemme en måling til efterfølgende forskning.

Figur 5.1: Use Case diagram

Ovenfor ses de funktionelle krav beskrevet ud fra et Use Case diagram, der samtidig viser, hvilke aktører, der har betydning for hvilke Use Cases. Aktører beskrives herunder:

ST3PRJ3 Gruppe 1 5. Krav

Forsker er den primære aktør for samtlige seks Use Cases, hvilket betyder at forskeren initierer alle Use Cases og dermed styrer programmet og dets funktioner. Forskeren sidder med den fulde kontrol over systemet, og kan bestemme hvad der skal ske og hvornår.

Måleobjekt er sekundær aktør i UC2 og det er her blodtrykket måles på. Måleobjektet kan enten realiseres in vivo eller in vitro.

Tryktransducer er sekundær aktør i UC2 og fungerer som et bindeled mellem de to aktører, Forsker og Måleobjekt. Den sørger for, at omforme det målte tryk fra Måleobjektet om til et analog signal, som systemet kan behandle og fremvise på brugervenlig form for Forskeren.

Database er sekundær aktør i UC6 og den er ansvarlig for at blodtryksmålinger kan gemmes.

Nedenfor ses en kort beskrivelse af de seks Use Cases og aktørernes roller i disse. For yderligere detaljer af Use Cases henvises til kravspecifikationen i projektdokumentationen.

UC1: Kalibrér

Forskeren skal kunne kalibrere systemet via en grafisk brugergrænseflade.

UC2: Vi måling med filter

Forskeren skal kunne se en kontinuerlig blodtrykskurve for et givet måleobjekt på en grafisk brugergrænseflade.

UC3: Nulpunktsjustér

Forskeren skal kunne nulpunktsjustere systemet via en grafisk brugergrænseflade.

UC4: Deaktivér filter

Forskeren skal kunne deaktivere det digitale filter og udskrive det ufiltrerede blodtrykssignal på en grafisk brugergrænseflade.

UC5: Aktivér filter

Forskeren skal kunne aktivere det digitale filter og udskrive det filtrerede blodtrykssignal på en grafisk brugergrænseflade.

UC6: Gem måling

Forskeren skal kunne optage blodtryksmålinger og derefter gemme dem i en Database.

Udover de funktionelle krav, er der vha. FURPS+ opstillet en række ikke-funktionelle krav med henblik på at klarlægge design og kvalitetsgrad for systemet.

Herunder bliver der beskrevet krav til bl.a. design af den grafiske brugergrænseflade, systemets præstation og diverse krav til udstyr og generel af udvikling af systemet.

Det er gældende for hele den grafiske brugergrænseflade, at alle knapper skal være selvforklarende i forhold til den funktion, de varetager. Det gælder bl.a. knapperne "Beregn", "Nulpunktsjuster", "Rec", "Stop" og "Gem".

Ydermere er der forsøgt, at overholde diverse standarder for design af en grafisk brugergrænseflade, hvad angår placering, størrelse og farve af knapper, værdier, grafer mv. For yderligere detaljer af ikke-funktionelle krav henvises der til kravspecifikationen i projektdokumentationen.

Projektbeskrivelse

6.1 Projektgennemførelse

Ud fra den givne projektformulering og tilgang til emnet er der udformet en tidsplan, som indeholder de overordnede deadlines for review og tests givet fra AU.

Uger	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
P = Planlagt Arbejde															
R = Review ✓ = Udført arbejde															
Projektopstart	1														
Kravsspecifikation			Р	P/R	R		(✓)						1		
Accepttest			Р	P/R	R		(✓)						1		
Design							Р	Р	P/R	R/(√)			1		
Udarbejdelse af Software			Р	Р	Р		Р	Р	Р	Р	Р	Р	P/(√)	✓	
Udarbejdelse af Hardware			Р	Р	Р		P/(√)						1		
Rapportskrivning									Р	Р	Р	Р	P/(√)		✓
Korrekturlæsning														Р	P/ √
Accepttest med vejleder														1	
Rapport aflevering															1

Figur 6.1: Overordnet tidsplan

Udviklingsprocessen, Scrum, er blandt andet blevet brugt i nedbrydning af selve opgaven i delelementer, hvor de vigtigste delopgaver er prioriteret først. Via Scrum inddeles arbejdet i sprints, hvilket tidsplanen ligeledes er blevet. Sprints er forskellige faser, som eksempelvis projektopstart, kravspecifikation, accepttest, design osv.

I tidsplanen er der markeret et P for det planlagte arbejde, hvor reviews er markeret med bogstavet R. Derudover er der markeret flueben i tidsplanen for udført arbejde. Flueben i parentes repræsenterer, hvornår arbejdet skulle have været færdig, men ikke blev det. Uge 42 er markeret med orange farve, da der var efterårsferie, og her var der heller ikke planlagt arbejde. Uge 47 og 48 er også markeret med orange farve og bogstavet P, da der i denne periode har været planlagt arbejde. Dette arbejde er dog ikke blevet udført grundet eksamenslæsning og eksamen.

6.1.1 ASE-modellen

Projektets udviklingsproces har taget udgangspunkt i ASE-modellen, som ses på nedenstående figur. Denne afspejles desuden også i den overordnede tidsplan.

Figur 6.2: Udviklingsmodel: ASE-model

ASE-modellen er en udviklingsmodel, der tager udgangspunkt i use cases, som defineres i kravspecifikationen i starten af projektarbejdet. ASE-modellen er inspireret af vandfaldsmodellen, hvor projektarbejdet opdeles i faser. Der fastlægges en opgaveformulering, kravspecifikation og systemarkitektur, for derefter at designe, implementere og teste de enkelte moduler i iterationer. Ud fra projektformuleringen specificeres kravspecifikationen som en række use cases, der beskriver de forskellige aktørers interaktion med systemet. Dette giver et overblik over, hvilke krav, der stilles til systemets funktionalitet. Ud fra kravspecifikationen bliver systemets accepttest udarbejdet. Efter kravspecifikationen er fastlagt, udarbejdes systemarkitekturen. Ud fra systemarkitekturen designes systemet ved at nedbryde det efter funktionalitet, som kan bindes til både software og hardware.

De første step i udviklingen af projektet iflg. ASE-modellen er blevet udarbejdet af alle gruppens medlemmer. Alle har bidraget til projektformuleringen, kravspecifikationen og accepttesten. I begyndelsen var der primært fokus på, at få dette færdiggjort, men der blev allerede her arbejdet på komponentværdier og udkast til hardwaren. I starten af projekt-arbejdet var det udtænkt, at alle gruppens medlemmer skulle arbejde med alle områder i projektet. Dette kunne ikke udføres rent tidsmæssigt, og derfor var en opdeling af arbejdsopgaver i mindre grupper nødvendig. Det blev delt op i software- og hardwarehold, dog var en del af hardwaren allerede beregnet og implementeret, da denne opdeling fandt sted. Tilbage af hardwaredelen var at lodde det på et veroboard og derefter teste det.

6.2. Metode

6.1.2 Deadlines

6.1.3 Mødestruktur

6.2 Metode

Dette afsnit har til formål at beskrive hvilke metoder samt arbejdsredskaber, der er blevet benyttet til udarbejdelsen af software, hardware, rapport og dokumentation for projektet.

Der er blevet anvendt metoder samt viden fra forskellige kurser over 1.- 2.- og 3.semester. I kurset ST3KVI er der blevet benyttet viden om transducerprincippet samt generelt om blodtryksmåling, hvor der er i dette projekt fokuseres på den invasive blodtryksmåling. Fra kurserne ST2ITS2 og ST3ITS3 har viden om databasestruktur samt principperne om tre-lagsmodellen og Observer & Stragety Pattern været grundlaget for opbygningen af softwaren. Et krav til projektet var, at der skulle kunne aktiveres og deaktiveres et digitalt filter. Til at designe dette filter blev der anvendt viden fra kurset E3DSB. Kurset ST1SUN1 har bidraget med viden om den anatomiske opbygning af hjertet samt blodtryk. Til beregning af komponentværdier, design og implementering af hardwaren er der blevet benyttet metoder og viden fra kurset E2ASB. Principperne om design diagrammer fra kurset I2ISE har bidraget til designafsnittet for hardware og software i dokumentationen. Alle kurserne har tilsammen været nødvendige for at kunne stå tilbage med dette specifkke produkt.

6.3 Specifikation og analyse

6.4 Arkitektur

- 6.4.1 Design
- 6.4.2 Implementering og test af SW
- 6.4.3 Implementering og test af HW
- 6.5 Resultater og diskussion
- 6.6 Opnåede erfaringer
- 6.7 Fremtidigt arbeide

Konklusion 7

Litteratur