DOLS Assignment

Elizabeth Goodwin

4/07/2022

1 Loading Data

```
data <- read.csv('WARNER.csv') %>% mutate(
    year = YR+1900,
    lx = log(X),
    lwi = log(WI),
    lwc = log(WC),
    lwgnp = log(WGNP),
    lpx = log(PX),
    indexwi = (WI/989.42)*100,
    indexwc = (WC/3496.09)*100
) %>% tsibble(index = year)
```

2 Plotting

As seen in Figure 1, Indexwi follows the data far more closely.

3 Testing

3.1 ADF Results

t-stat	1pct	5pct	10pct	variable
-0.2244284	-3.75	-3	-2.63	lx
-0.7272847	-3.75	-3	-2.63	lwi
-3.1041147	-3.75	-3	-2.63	lwc
-0.9863677	-3.75	-3	-2.63	lpx

As seen in the table, we can reject the null hypothesis of a unit root for lwc. For all other variables (lx, lwi, lpx), we cannot reject the null hypothesis. Having a unit root means I(1), so we cannot reject the possibility of those three being I(1). We can, however, reject it for lwc, and it is likely that it is I(0). This agrees with Warner.

Figure 1: Plot of indexwi and indexwc on $\mathbf x$

3.2 Johansen Cointegration Test

Date: 04/12/22 Time: 16:30 Sample: 1967 1990 Included observations: 22 Series: LPX LWC LWI LX Lags interval: 1 to 1

Selected (0.05 level*) Number of Cointegrating Relations by Model

Data Trend:	None	None	Linear	Linear	Quadratic
Test Type	No Intercept	Intercept	Intercept	Intercept	Intercept
	No Trend	No Trend	No Trend	Trend	Trend
Trace	2	2	3	2	2
Max-Eig	2	2	3	2	2

^{*}Critical values based on MacKinnon-Haug-Michelis (1999)

Figure 2: Johansen Test Result

There is at least one cointegrating vector. As shown in Figure 2, no matter which assumption picked, there is at least one cointegrating vector at a 0.05 level.

4 Dynamic OLS

Results in Figure 3, results are accurate and match Warner exactly.

5 Forecasting

Figure 4 shows the WI Result and Figure 5 shows the GNP result. WI seems to be the better variable.

5.1 Graph

Figure 6 shows the forecast plot for WI. Figure 7 shows the plot for GNP. As you can see, WI seems to be the more accurate estimator.

6 Conclusion

Yes, it seems that global investment is driven by world investment quite a bit.

Dependent Variable: LX
Method: Dynamic Least Squares (DOLS)
Date: 04/13/22 Time: 20:27
Sample (adjusted): 1969 1989
Included observations: 21 after adjustments
Cointegrating equation deterministics: C
Static OLS leads and lags specification
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed handwidth = 3.0000)

bandwidth = 3.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LWI	1.234285	0.270928	4.555761	0.0008
LWC	-0.162992	0.212240	-0.767960	0.4587
LPX	-0.535145	0.131731	-4.062419	0.0019
DLWI	-0.048455	0.187538	-0.258376	0.8009
DLPX	0.597326	0.092300	6.471596	0.0000
DLWI(1)	0.147596	0.118292	1.247725	0.2380
DLWI(-1)	-0.153595	0.098602	-1.557729	0.1476
DLPX(1)	0.186134	0.100631	1.849664	0.0914
DLPX(-1)	0.238410	0.078154	3.050509	0.0110
c	-0.152095	0.916115	-0.166022	0.8712
R-squared	0.997700	Mean dependent var S.D. dependent var Sum squared resid		5.289194
Adjusted R-squared	0.995819			0.332488
S.É. of regression	0.021499			0.005084

Figure 3: DOLS Test Result

Dependent Variable: LX Method: Least Squares Date: 04/13/22 Time: 21:21 Sample (adjusted): 1969 1984

Included observations: 16 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LWI LPX LPX(-1)	0.762799 1.005525 0.037266 -0.453213	1.169784 0.091049 0.122652 0.185933	0.652085 11.04383 0.303830 -2.437511	0.5277 0.0000 0.7669 0.0330
LPX(-2) R-squared	-0.252382 0.992345	0.121339 Mean depend	-2.079981	0.0617 5.165438
Adjusted R-squared S.E. of regression	0.989561 0.026162	Mean dependent var S.D. dependent var Akaike info criterion		0.256062 -4.198680
Sum squared resid Log likelihood	0.007529 38.58944	Schwarz criterion Hannan-Quinn criter.		-3.957247 -4.186317
F-statistic Prob(F-statistic)	356.4760 0.000000	Durbin-Watso	on stat	1.900989

Figure 4: WI Result

Dependent Variable: LX Method: Least Squares Date: 04/13/22 Time: 21:21 Sample (adjusted): 1969 1984

Included observations: 16 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LWI LPX LPX(-1) LPX(-2)	0.762799 1.005525 0.037266 -0.453213 -0.252382	1.169784 0.091049 0.122652 0.185933 0.121339	0.652085 11.04383 0.303830 -2.437511 -2.079981	0.5277 0.0000 0.7669 0.0330 0.0617
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.992345 0.989561 0.026162 0.007529 38.58944 356.4760 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion in criter.	5.165438 0.256062 -4.198680 -3.957247 -4.186317 1.900989

Figure 5: WGNP Result

Figure 6: WI Graph

Forecast: LXF	
Actual: LX	
Forecast sample: 1967 1990	
Adjusted sample: 1969 1990	
Included observations: 22	
Root Mean Squared Error	0.043933
Mean Absolute Error	0.031724
Mean Abs. Percent Error	0.576685
Theil Inequality Coef. 0.004	122
Bias Proportion	0.083500
Variance Proportion	0.184343
Covariance Proportion	0.732157
Theil U2 Coefficient	0.426581
Symmetric MAPE	0.578664

Figure 7: WGNP Graph