第8章 常用的时序逻辑电路模块

概述

常见的时序逻辑电路有寄存器、计数器和序号发生器等。 所谓时序逻辑电路是指电路此刻的输出不仅与电路此刻的输入 组合有关,还与前一时刻的输出状态有关。

若干常用的时序电路

寄存器

在数字电路中,用来存放二进制数据或代码的电路称为寄存器。

寄存器是由具有存储功能的触发器组合起来构成的。

存放n位二进制代码的寄存器,需用n个触发器来构成。

按照功能的不同,可将寄存器分为基本寄存器和移位寄存器两大类。

基本寄存器只能并行送入数据,需要时也只能并行输出。

移位寄存器中的数据可以在移位脉冲作用下依次逐位右移或左移。

一基本寄存器

1、单拍工作方式基本寄存器

只要送数控制时钟脉冲CP上升沿到来,

加在并行数据输入端的数据 $D_0 \sim D_3$,就立即被送入进寄存器

中,即有:
$$Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}=D_3D_2D_1D_0$$

看复杂时序电路时候的大致步骤方法:

- 1) 先看时钟CP。
- 2) 再看复位、置数信号(同步! 还是异步!)
- 3) 再看输入和输出。
- 4) 最后看还有其它控制端否。

这样基本能分辨出该复杂电路的大致功能!

2、双拍工作方式基本寄存器

(1) 清零。 CR=0, 异步清零。 立即有:

$$Q_3^n Q_2^n Q_1^n Q_0^n = 0000$$

(2) 送数。 CR=1时, CP上升沿送数。即有:

$$Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}Q_0^{n+1} = D_3D_2D_1D_0$$

(3)保持。在 $\overline{CR}=1$ 、CP上升沿以外时间,寄存器内容将保持不变。

1、单向移位寄存器

时 钟 方 程 :
$$CP_0 = CP_1 = CP_2 = CP_3 = CP$$

驱动方程:
$$D_0 = D_i$$
、 $D_1 = Q_0^n$ 、 $D_2 = Q_1^n$ 、 $D_3 = Q_2^n$

状态方程:
$$Q_0^{n+1} = D_i$$
、 $Q_1^{n+1} = Q_0^n$ 、 $Q_2^{n+1} = Q_1^n$ 、 $Q_3^{n+1} = Q_2^n$

输	〕入	现态				次态
D_i	CP	Q_0^n	Q_1^n	Q_2^n	Q_3^n	Q_0^{n+1} Q_1^{n+1} Q_2^{n+1} Q_3^{n+1} 说明
1	↑	0	0	0	0	1 0 0 0
1	↑	1	0	0	0	1 1 0 0 连续输入
1	↑	1	1	0	0	1 1 0 4个1
1	↑	1	1	1	0	1 21 21

时 钟 方 程 :
$$CP_0 = CP_1 = CP_2 = CP_3 = CP$$

驱动方程:
$$D_0 = Q_1^n$$
、 $D_1 = Q_2^n$ 、 $D_2 = Q_3^n$ 、 $D_3 = D_i$

状态方程:
$$Q_0^{n+1} = Q_1^n$$
、 $Q_1^{n+1} = Q_2^n$ 、 $Q_2^{n+1} = Q_3^n$ 、 $Q_3^{n+1} = D_i$

箱	输入		现	态		次态
D_{i}	CP	Q_0^n	Q_1^n	Q_2^n	Q_3^n	Q_0^{n+1} Q_1^{n+1} Q_2^{n+1} Q_3^{n+1} 说明
1	↑	0	0	0	0	0 0 0 1
1	†	1	0	0	0	0 0 1 1 连续输入
1	†	1	1	0	0	0 1 1 4 个 1
1	†	1	1	1	0	1 1 1 1

单向移位寄存器具有以下主要特点:

- (1)单向移位寄存器中的数码,在*CP* 脉冲操作下,可以依次右移或左移。
- (2) n位单向移位寄存器可以寄存n位二进制代码。n个CP脉冲即可完成串行输入工作。
- (3) 若串行输入端输入为0,则n个CP 脉冲后,所有寄存器便被清零。

2、双向移位寄存器

$$\begin{cases} Q_0^{n+1} = \overline{M}D_{SR} + MQ_1^n \\ Q_1^{n+1} = \overline{M}Q_0^n + MQ_2^n \\ Q_2^{n+1} = \overline{M}Q_1^n + MQ_3^n \\ Q_3^{n+1} = \overline{M}Q_2^n + MD_{SL} \end{cases}$$

$$M=0$$
时右移 $Q_0^{n+1}=D_{SR}$ $Q_1^{n+1}=Q_0^n$ $Q_2^{n+1}=Q_1^n$ $Q_3^{n+1}=Q_2^n$

$$M=1$$
时左移 $Q_0^{n+1}=Q_1^n$ $Q_1^{n+1}=Q_2^n$ $Q_2^{n+1}=Q_3^n$ $Q_3^{n+1}=D_{SL}$

3、集成移位寄存器 右移 74LS195

图 8.6 集成移位寄存器 74195 逻辑符号

,		表 8.3	74195 的功能表		Ř			
S/L̄	J K	CR	СР	$Q_0^{n+1}Q_1^{n+1}Q_2^{n+1}Q_3^{n+1}$	功能			
×	××	0	×	0 0 0 0	异步清除			
1	0 0	1	†	0 Q ₀ Q ₁ Q ₂				
1	0 1	1	1	$Q_0^{n}Q_0^{n}Q_1^{n}Q_2^{n}$	串入、右移			
1	1 0	1	↑ ½($\bar{Q}_{0}^{n}Q_{0}^{n}Q_{1}^{n}Q_{2}^{n}$	4/11/11/19			
1	1 1	1	1	1Q ₀ Q ₁ Q ₂				
0	××	1	1	D ₀ D ₁ D ₂ D ₃	同併入			
	司的置数							

4、集成<u>双向</u>移位寄 存器 74LS194

CF	$\overline{R} S_1$	工作	工作状态		
0	×	×	×	异步	清零
1	0	0	X	保	持
1	0	1	↑	右	移
1	1	0	↑	左	移
1	1	1	×	并行	输入_

三 寄存器的应用

三 寄存器的应用

2、环形计数器

结构特点

 $D_0 = Q_{n-1}^n$ 即将FF_{n-1}的输出Q_{n-1}接到FF₀的输入端D₀。

上作原理

在输入计数脉冲CP的作用下,环形计数器的有效状态可以循环移位一个1,也可以循环移位一个0。

即当连续输入CP脉冲时,环形计数器中各个触发器的Q端或Q非端,将轮流地出现矩形脉冲。

能自启动的4位环形计数器

状

态

图

书上的描述

• 1) 环形计数器

2) 扭环形计数器

3、扭环形计数器

结构特点 $D_0 = \overline{Q}_{n-1}^n$ 即将FF_{n-1}的输出 \overline{Q}_{n-1} 接到FF₀的输入端D₀。

状

态

图

能自启动的4位扭环形计数器

