Zadanie 1.

Każda ze zmiennych losowych X_1, X_2, \ldots, X_9 ma rozkład normalny z nieznaną wartością oczekiwaną m_1 i wariancją 1, a każda ze zmiennych losowych Y_1, Y_2, \ldots, Y_9 rozkład normalny z nieznaną wartością oczekiwaną m_2 i wariancją 4. Założono, że wszystkie zmienne losowe są niezależne i wyznaczono, przy tych założeniach, test oparty na ilorazie wiarogodności dla testowania hipotezy $H_0: m_1 = m_2$ przy alternatywie $H_1: m_1 \neq m_2$ na poziomie istotności 0,05.

W rzeczywistości założenie to nie jest spełnione:

- co prawda pary zmiennych $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ są niezależne, ale
- X_i, Y_i są zależne i współczynnik korelacji $Corr(X_i, Y_i) = \frac{1}{2}$ dla i = 1, 2, ..., 9.

Oblicz faktyczne prawdopodobieństwo błędu pierwszego rodzaju α i moc testu β przy alternatywie $m_1=m_2+2$.

(A)
$$\alpha = 0.01$$
; $\beta = 0.82$

(B)
$$\alpha = 0.03$$
; $\beta = 0.79$

(C)
$$\alpha = 0.01$$
; $\beta = 0.73$

(D)
$$\alpha = 0.03$$
; $\beta = 0.82$

(E)
$$\alpha = 0.10; \beta = 0.73$$

Zadanie 2.

Zakładamy, że zależność czynnika Y od czynnika x (nielosowego) opisuje model regresji liniowej $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$. Obserwujemy 10 elementową próbkę, w której $x_1 = x_2 = \ldots = x_5 = 1$ i $x_6 = x_7 = \ldots = x_{10} = 4$. Zmienne losowe Y_1, Y_2, \ldots, Y_{10} są niezależne i błędy mają rozkłady normalne o wartości oczekiwanej 0, przy czym $Var\varepsilon_i = \sigma^2$, gdy $i = 1,2,\ldots,5$, i $Var\varepsilon_i = 9\sigma^2$, gdy $i = 6,7,\ldots,10$. Wyznaczono estymatory $\hat{\beta}_0$ i $\hat{\beta}_1$ parametrów β_0 i β_1 wykorzystując ważoną metodę najmniejszych kwadratów, to znaczy minimalizując sumę $\sum_{i=1}^{10} \frac{(Y_i - \beta_0 - \beta_1 x_i)^2}{Var\varepsilon_i}$. Wyznacz stałe z_0 i z_1 tak, aby $P(|\hat{\beta}_0 - \beta_0| < z_0\sigma) = 0,95$ i $P(|\hat{\beta}_1 - \beta_1| < z_1\sigma) = 0,95$. Spośród podanych odpowiedzi wybierz odpowiedź będącą najlepszym przybliżeniem.

(A)
$$z_0 = 1,20 \text{ i } z_1 = 0,77$$

(B)
$$z_0 = 1,20 \text{ i } z_1 = 0,92$$

(C)
$$z_0 = 1,46 \text{ i } z_1 = 0.92$$

(D)
$$z_0 = 1,20 \text{ i } z_1 = 0,41$$

(E)
$$z_0 = 1,75 i z_1 = 1,84$$

Zadanie 3.

Niech (X,Y) będzie dwuwymiarową zmienną losową o funkcji gęstości

$$f(x, y) = \begin{cases} \frac{3}{x^4} & \text{gdy } x \ge 1 \text{ i } y \in [1;2] \\ 0 & \text{w przeciwnym przypadku.} \end{cases}$$

Niech S = XY. Wtedy

- (A) zmienne losowe S i X są niezależne
- (B) $E(S \mid X) = 1.5$
- (C) zmienna losowa X przy S = 3 ma rozkład o gęstości

$$g(x \mid S = 3) = \begin{cases} \frac{108}{5x^5} & \text{gdy } x \in [1,5;3] \\ 0 & \text{gdy } x \notin [1,5;3] \end{cases}$$

- (D) $E(X \mid S = 3) = 2$
- (E) funkcja gęstości rozkładu brzegowego zmiennej S, dla s>2, wyraża się wzorem $g_S(s)=\frac{45}{s^4}$

Zadanie 4.

Załóżmy, że X_1, X_2, \dots, X_{10} są niezależnymi zmiennymi losowymi o jednakowym rozkładzie wykładniczym o gęstości

$$f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x} & \text{gdy } x > 0\\ 0 & \text{gdy } x \le 0, \end{cases}$$

 $f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x} & \text{gdy } x > 0 \\ 0 & \text{gdy } x \leq 0, \end{cases}$ gdzie $\lambda > 0$ jest ustaloną liczbą. Niech $S = X_1 + X_2 + \ldots + X_{10}$. Obliczyć

$$P\left(X_{1} > \frac{S}{2} \lor X_{2} > \frac{S}{2} \lor \dots \lor X_{10} > \frac{S}{2}\right)$$

- (A) $\frac{1}{512}$
- (B)
- (C)
- (D)
- żadna z odpowiedzi podanych wyżej (E)

Zadanie 5.

Zmienne losowe $X_1, X_2, ..., X_n, ...$ są niezależne i mają identyczny rozkład dany gęstością $f_{\theta}(x) = \begin{cases} 4\theta x^3 \exp(-\theta x^4) & \text{gdy } x > 0 \\ 0 & \text{w przeciwnym przypadku,} \end{cases}$

gdzie $\theta > 0$ jest nieznanym parametrem. Niech T_n oznacza estymator największej wiarogodności funkcji $g(\theta) = P_{\theta}(X_1 > 1) = e^{-\theta}$ wyznaczony w oparciu o próbę losową $X_1, X_2, ..., X_n$. Przypuśćmy, że $\theta = 2$. Które z twierdzeń jest prawdziwe?

(A)
$$\lim_{n \to \infty} P\{|T_n - e^{-2}|\sqrt{n} > e^{-1}\} = 0.32$$

(B)
$$\lim_{n \to \infty} P\{|T_n - e^{-2}| \sqrt{n} > 2e^{-2}\} = 0.32$$

(C)
$$\lim_{n\to\infty} P\{T_n \le e^{-2}\} = 1$$

(D)
$$\lim_{n \to \infty} P\{|T_n - 2| \sqrt{n} < 2\} = 0.32$$

(E)
$$\lim_{n \to \infty} P\{T_n > e^{-2}\} = 1$$

Zadanie 6.

Niech $(U_1,...,U_n)$ będzie próbą niezależnych zmiennych losowych z rozkładu jednostajnego na odcinku (0,1), a więc niech łączna gęstość próby wynosi:

$$f(u_1,...,u_n) = 1$$
 dla każdego $(u_1,...,u_n) \in (0,1)^n$.

Załóżmy, że n > 1. Niech $(Y_1,...,Y_n)$ oznacza próbę $(U_1,...,U_n)$ uporządkowaną w kolejności rosnącej. Oznaczmy gęstość próby uporządkowanej przez $g(y_1,...,y_n)$. Oczywiście gęstość ta przyjmuje wartości dodatnie na zbiorze:

$$(y_1,...,y_n): 0 < y_1 < y_2 < ... < y_n < 1$$

Gęstość g jest na tym zbiorze stała i wynosi:

(A)
$$g(y_1,...,y_n) = 2^n - n$$

(B)
$$g(y_1,...,y_n) = 2^{n-1}$$

(C)
$$g(y_1,...,y_n) = (n+1)!-n$$

(D)
$$g(y_1,...,y_n) = n^2 - 2n + 2$$

(E)
$$g(y_1,...,y_n) = n!$$

Zadanie 7.

Rozważamy łańcuch Markowa X_1, X_2, \dots na przestrzeni stanów $\{1,2,3\}$ o macierzy przejścia

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{4} & 0 & \frac{3}{4}\\ 0 & 1 & 0 \end{bmatrix},$$

(gdzie $P_{ij} = \Pr(X_{n+1} = j \mid X_n = i)$ dla i, j = 1,2,3). Załóżmy, że rozkład początkowy łańcucha jest wektorem

$$\pi = \left[\frac{2}{9}, \frac{4}{9}, \frac{1}{3}\right],$$

(gdzie $\pi_i = \Pr(X_1 = i) \text{ dla } i = 1,2,3$). Oblicz $p = \Pr(X_3 = 1 | X_2 \neq 1 \land X_1 \neq 1)$.

- (A) $p = \frac{1}{7}$
- (B) $p = \frac{1}{8}$
- (C) $p = \frac{1}{4}$
- (D) $p = \frac{1}{9}$
- (E) $p = \frac{1}{12}$

Zadanie 8.

Rzucamy 12 razy symetryczną monetą. Niech X_4 oznacza liczbę orłów w pierwszych czterech rzutach, a X_{12} liczbę orłów we wszystkich dwunastu rzutach. Oblicz

$$EVar(X_4 \mid X_{12})$$

- $(A) \qquad \frac{1}{2}$
- (B) 1
- (C) $\frac{4}{3}$
- (D) $\frac{2}{3}$
- (E) $\frac{1}{3}$

Zadanie 9.

Niech $X_1, X_2, ..., X_n$ będą niezależnymi zmiennymi losowymi z rozkładu o gęstości

$$f_{\theta}(x) = \begin{cases} \frac{2\theta^2}{x^3} & \text{gdy } x \ge \theta \\ 0 & \text{w przeciwnym przypadku,} \end{cases}$$

gdzie $\theta > 0$ jest nieznanym parametrem. Dla parametru θ zakładamy rozkład a priori o gęstości

$$\pi(\theta) = \begin{cases} \frac{1}{2}\theta & \text{gdy } \theta \in (0,2) \\ 0 & \text{w przeciwnym przypadku.} \end{cases}$$

Wyznacz wartość estymatora bayesowskiego parametru θ przy kwadratowej funkcji straty, jeżeli zaobserwowano próbkę spełniającą warunek

$$\min(X_1, X_2, ..., X_n) = 1$$
.

$$(A) \qquad \frac{2n+2}{2n+3}$$

$$(B) \qquad \frac{2(2n+2)}{2n+3}$$

$$(C) \qquad \frac{2n+1}{2n+2}$$

(D)
$$\frac{2n+2}{2(2n+3)}$$

Zadanie 10.

Załóżmy, że dysponujemy pojedynczą obserwacją X z rozkładu Laplace'a o gęstości

$$f_{\mu,\lambda}(x) = \frac{\lambda}{2} e^{-\lambda|x-\mu|},$$

gdzie $\lambda > 0$ i $\mu \in R$ są parametrami.

Rozważmy zadanie testowania hipotezy

$$H_0$$
: $\mu = 0$ i $\lambda = 1$

przeciw alternatywie

$$H_1: \mu = -1$$
 i $\lambda = 0.5$.

Obszar krytyczny najmocniejszego testu na poziomie istotności α jest postaci

$$K = \{x : x \notin (a,3)\}$$
.

Wyznacz a i poziom istotności α .

(A)
$$a = -\infty$$
; $\alpha = 0.025$

(B)
$$a = -2$$
; $\alpha = 0.093$

(C)
$$a = -1$$
; $\alpha = 0.209$

(D)
$$a = -3$$
; $\alpha = 0.050$

(E)
$$a = -4$$
; $\alpha = 0.034$

Egzamin dla Aktuariuszy z 10 października 2005 r.

Prawdopodobieństwo i statystyka

Arkusz odpowiedzi*

Imię i nazwisko :	K L U C Z	ODPOWIEDZ	I
Pesel			

Zadanie nr	Odpowiedź	Punktacja⁴
1	A	
2	С	
3	С	
4	С	
5	В	
6	Е	
7	В	
8	D	
9	A	
10	C	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.