Marcin Mikuła

Rozwiązywanie równań różniczkowych zwyczajnych

Zadanie:

Dane jest równanie różniczkowe (zagadnienie początkowe):

$$y' - kmy\sin(mx) = k^2m\sin(mx)\cos(mx), \quad y(x_0) = a$$

 x_0, x_k, m, k – parametry zadawane, a – wyliczane z rozwiązania dokładnego (poniżej).

Znaleźć rozwiązanie tego zagadnienia y(x) w przedziale $[x_0, x_k]$ metodą Eulera oraz metodą Rungego-Kutty. Eksperymenty przeprowadzić dla różnych kroków.

Porównać otrzymane rozwiązanie z rozwiązaniem dokładnym: $y(x) = e^{-k \cos(mx)} - k \cos(mx) + 1$.

Zilustrować wybrane rozwiązania.

Dla:

k = 0.5

m = 2

oraz przedziału [pi/4, 3pi]

Rysunek 1. Wykres przyznanej funkcji.

Do wyliczania błędów użyto sumy różnicy kwadratów.

Liczba kroków	Metoda Eulera	RK2	RK4
10	22.98492	8.55955	4.35708
50	6.39801	2.57872	1.03713
100	3.44776	1.34728	0.51842
250	1.44711	0.55297	0.20701
1000	0.37097	0.14001	0.05169

Tabelka 1. Tabela błędów dla testowanych metod.

Rysunek 2. Wykres rozwiązania dla metody Eulera dla 10 węzłów.

Rysunek 3. Wykres rozwiązania dla metody Eulera dla 1000 węzłów.

Rysunek 4. Wykres rozwiązania dla metody RK2 dla 100 węzłów.

Rysunek 5. Wykres rozwiązania dla metody RK2 dla 1000 węzłów.

Rysunek 6. Wykres rozwiązania dla metody RK4 dla 100 węzłów.

Rysunek 7. Wykres rozwiązania dla metody RK4 dla 1000 węzłów.

Dla 1000 węzłów metoda Rungego-Kutty 4 rzędu dokładnie przybliża zadaną funkcję, metoda Rungego-Kutty 2 rzędu również przybliża z zadowalającą dokładnością. Natomiast metoda Eulera, co widać na wykresie, jeszcze nie do końca idealnie przybliża rozwiązanie