☐ Technical-Debt-Large-Scale / tdmls


```
In [56]: # 1. Tabela de Métricas
df_all_metrics.head(3)
```

Out[56]:

	uniqueID	ID	location	maturity	totalDevelopers	complexityPoints	start	end	leadTime	technicalDebt	ŀ
0	14187	t1	India	4.0	13.0	60.0	2014- 08-11 00:00:00	2015- 02-06 00:00:00	179.0	796.0	(
1	15448	b1b3	Virtual	4.0	25.0	170.0	2015- 01-19 00:00:00	2015- 06-05 00:00:00	137.0	2474.0	(
2	13350	tl1	India	4.0	7.0	35.0	2015- 02-09 00:00:00	2015- 04-02 00:00:00	52.0	202.0	[

1.1 Normalized Data

```
x_scaled = min_max_scaler.fit_transform(x_values)
df_X_normalized = pd.DataFrame(x_scaled)
# Guardar os valores das features Xi normalizadas
X_normalized = df_X_normalized

df_X_n = df_X_normalized

df_X_n.rename(columns={0:my_dict[1], 1:my_dict[2], 2:my_dict[3], 3:my_dict[4], 4:my_dict[5], 5
:my_dict[6]},inplace = True)
df_X_n['technicalDebt'] = y
df_X_n['location'] = df_all_metrics['location']
df_all_metrics_normalized = df_X_n

df_all_metrics_normalized.head(3)
```

Out[87]:

	leadTime	complexityPoints	totalDevelopers	taskScaling	maturity	taskGlobalDistance	technicalDebt	location
0	1.00000	0.084746	0.478261	0.448529	1.0	0.200168	796.0	India
1	0.73913	0.271186	1.000000	0.294983	1.0	1.000000	2474.0	Virtual
2	0.21118	0.042373	0.217391	0.411765	1.0	0.554705	202.0	India

```
In [92]: X_normalized = X_normalized[['leadTime', 'complexityPoints', 'totalDevelopers', 'taskScaling']
]
```

2. Box-plot about TD values group by located

```
In [93]: sns.boxplot(x='location', y='technicalDebt', data=df_all_metrics_normalized).set_title('Boxplo
t Distribuition Technical Debt x Location')
Out[93]: Text(0.5,1,'Boxplot Distribuition Technical Debt x Location')
Boxplot Distribuition Technical Debt x Location
```

5000 -

3. Check correlations among factors and TD

Correlation Matrix

In [94]: df_all_metrics_normalized.corr().round(4)

Out[94]:

	leadTime	complexityPoints	totalDevelopers	taskScaling	maturity	taskGlobalDistance	technica
leadTime	1.0000	0.3300	0.5913	-0.2425	0.0119	-0.1703	0.4088
complexityPoints	0.3300	1.0000	0.2966	-0.4695	-0.2918	-0.2742	0.6088
totalDevelopers	0.5913	0.2966	1.0000	0.0765	0.3162	0.2219	0.3433
taskScaling	-0.2425	-0.4695	0.0765	1.0000	0.5259	0.2017	-0.4190
maturity	0.0119	-0.2918	0.3162	0.5259	1.0000	0.2134	-0.0476
taskGlobalDistance	-0.1703	-0.2742	0.2219	0.2017	0.2134	1.0000	-0.0258
technicalDebt	0.4088	0.6088	0.3433	-0.4190	-0.0476	-0.0258	1.0000

Testing Linearity: Scatter Plot

Out[95]: <seaborn.axisgrid.PairGrid at 0x119290588>

Spearman's Coeficient

```
arrayTaskScaling = df_all_metrics_normalized.taskScaling.values
print("Task Scaling x Technical Debt")
print(stats.spearmanr(arrayTaskScaling, arrayTechnicalDebt))
print("")

arrayTeamMaturity = df_all_metrics_normalized.maturity.values
print("Team Maturity x Technical Debt")
print(stats.spearmanr(arrayTeamMaturity, arrayTechnicalDebt))
print("")

arrayTaskGlobalDistance = df_all_metrics_normalized.taskGlobalDistance.values
print("Task GlobalDistance x Technical Debt")
print(stats.spearmanr(arrayTaskGlobalDistance, arrayTechnicalDebt))
```

```
Lead Time x Technical Debt
SpearmanrResult(correlation=0.48587185407612227, pvalue=0.004814195878751078)

Task Complexity x Technical Debt
SpearmanrResult(correlation=0.6498748363481108, pvalue=5.689214652268194e-05)

Total Developers x Technical Debt
SpearmanrResult(correlation=0.5049990019693433, pvalue=0.0032000488729230416)

Task Scaling x Technical Debt
SpearmanrResult(correlation=-0.43922598272476504, pvalue=0.011900668916364508)

Team Maturity x Technical Debt
SpearmanrResult(correlation=-0.134695711600555, pvalue=0.462340404155135)

Task GlobalDistance x Technical Debt
SpearmanrResult(correlation=-0.03356045187955763, pvalue=0.8553123790027143)
```

4. Testing Normality

The normal distribution of residuals is tested by visually checking the normal P-P plot. The points on the plot remain close to the diagonal line, which means residuals are normally distributed. So, we do not violate the assumption of normality.

In [97] import statemodels and as sm

```
III [ J / ] . | Import acatamoutta.upr us am
         from matplotlib import pyplot as plt
         import scipy.stats as stats
         from sklearn.linear model import LinearRegression
         from sklearn import metrics
         from sklearn.model selection import train test split
         # X normalized
         X = X normalized
         # print("Creating the dataset of train and test")
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1000)
         #Linear regression
         modelo = LinearRegression()
         modelo.fit(X train, y train)
         y previsto train = modelo.predict(X train)
         residuo = y_train - y_previsto_train
         tn x = residuo.values
         tn y = y previsto train
         pp x = sm.ProbPlot(tn x, fit=True)
         pp y = sm.ProbPlot(tn y, fit=True)
         fig = pp y.ppplot(line='45', other=pp x)
         h = plt.title('Dependent Variable: technical debt')
         fig = pp x.ppplot(line='45', other=pp y)
         h = plt.title('ppplot - compare residuo x y expected, other=pp y')
         plt.show()
```


5. No auto-correlation

Durbin_Watson

```
In [98]: from statsmodels.regression.linear_model import OLS from statsmodels.stats.stattools import durbin_watson import numpy as np
```

```
def dw(data):
    ols res = OLS(data, np.ones(len(data))).fit()
    return durbin watson(ols res.resid)
#print("dw of range=%f technicalDebt" % dw(df_all_metrics.technicalDebt.values))
for each in range(0,5):
    print("dw of " + my dict[each] + " is", dw(df all metrics normalized[my dict[each]].values
).round(3))
    my_array_dw = np.array([
    [2.041],
        [1.614],
        [2.155],
        [1.23],
        [1.727]
        ])
my index dw = ['technical debt', 'lead time', 'task complexity', 'total Developers', 'task Sca
ling'
my columns dw = ['value']
df my dw = pd.DataFrame(data=my array dw , index=my index dw , columns=my columns dw)
df my dw
dw of technicalDebt is 2.041
dw of leadTime is 1.614
dw of complexityPoints is 2.155
dw of totalDevelopers is 1.23
dw of taskScaling is 1.727
```

Out[98]:

	value
technical debt	2.041
lead time	1.614
task complexity	2.155
total Developers	1.230

6. Testing Homescedascity

```
In [104]: # Breusch-Pagan Test
          # import smf to process regression model
          import statsmodels.formula.api as smf
          # 1. Data (y, x1, x2, x3, x4)
          my df tm modelo = df all metrics normalized[[my dict[0], my dict[1], my dict[2], my dict[3],
          my dict[4]]]
          df bp = my df tm modelo[['technicalDebt', 'leadTime', 'complexityPoints', 'totalDevelopers',
          'taskScaling']]
          # 2. fit regression model
          fit = smf.ols('technicalDebt ~ leadTime+complexityPoints+totalDevelopers+taskScaling', data=d
          f bp).fit()
          #fit.summary()
          print("Perform a Breusch-Pagan test.")
          # import lzip and sms
          from statsmodels.compat import lzip
          import statsmodels.stats.api as sms
          names = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f p-value']
          # 3. perform Bresuch-Pagan test
          test = sms.het breuschpagan(fit.resid, fit.model.exog)
          lzip(names, test)
```

Perform a Breusch-Pagan test.

A Breusch-Pagan test uses the following null and alternative hypotheses:

The null hypothesis (H0): Homoscedasticity is present. The alternative hypothesis: (Ha): Homoscedasticity is not present (i.e. heteroscedasticity exists) In this dataset, the Lagrange multiplier statistic for the test is 2.326 and the corresponding p-value is 0.676. Because this p-value is not less than 0.05, we fail to reject the null hypothesis.

7. Testing Multicolinearity

```
In [105]: import statsmodels.formula.api as smf
          # import warnings
          # warnings.simplefilter(action='ignore', category=FutureWarning)
          from sklearn.linear model import LinearRegression
          def sklearn vif(exogs, data):
              # initialize dictionaries
              vif dict, tolerance dict = {}, {}
              # form input data for each exogenous variable
              for exog in exogs:
                  not exog = [i for i in exogs if i != exog]
                  X, y = data[not exog], data[exog]
                  # extract r-squared from the fit
                  r squared = LinearRegression().fit(X, y).score(X, y)
                  # calculate VIF
                  vif = 1/(1 - r squared)
                  vif dict[exoq] = vif
```

```
# calculate tolerance
    tolerance = 1 - r_squared
    tolerance_dict[exog] = tolerance

# return VIF DataFrame
    df_vif = pd.DataFrame({'VIF': vif_dict, 'Tolerance': tolerance_dict})

return df_vif

my_df_tm_modelo4 = df_all_metrics_normalized[[my_dict[0], my_dict[1], my_dict[2], my_dict[4]]]
    exogs_modelo4 = ['leadTime', 'complexityPoints', 'totalDevelopers', 'taskScaling']

df_vif_modelo4 = sklearn_vif(exogs=exogs_modelo4, data=my_df_tm_modelo4)
    df_vif_modelo4
```

Out[105]:

	VIF	Tolerance
complexityPoints	1.496794	0.668094
leadTime	1.764050	0.566877
taskScaling	1.511341	0.661664
totalDevelopers	1.823810	0.548303