

InfraRed Spectrum and Depolarization Factors of the Raman Lines of Spiropentane and the Raman and InfraRed Spectra of 1,1 Dimethylcyclopropane,1 1Methylcyclobutene, and Methylenecyclobutane

Forrest F. Cleveland, M. J. Murray, and W. S. Gallaway

Citation: The Journal of Chemical Physics 15, 742 (1947); doi: 10.1063/1.1746311

View online: http://dx.doi.org/10.1063/1.1746311

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/15/10?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

InfraRed and Raman Spectra of Fluorinated Ethylenes II. 1,1Difluoro-2,2Dichloroethylene J. Chem. Phys. **18**, 485 (1950): 10,1063/1,1747666

InfraRed and Raman Spectra of Fluorinated Ethylenes. I. 1,1Difluoroethylene

J. Chem. Phys. 18, 326 (1950); 10.1063/1.1747626

The InfraRed and Raman Spectra of Chlorine Monofluoride

J. Chem. Phys. 18, 235 (1950); 10.1063/1.1747608

The InfraRed and Raman Spectra of Carbonyl Fluoride

J. Chem. Phys. 17, 502 (1949); 10.1063/1.1747302

Erratum: InfraRed Spectrum and Depolarization Factors of the Raman Lines of Spiropentane and the Raman and InfraRed Spectra of 1,1Dimethylcyclopropane, 1Methylcyclobutene, and Methylenecyclobutane

J. Chem. Phys. 16, 158 (1948); 10.1063/1.1746817

Infra-Red Spectrum and Depolarization Factors of the Raman Lines of Spiropentane and the Raman and Infra-Red Spectra of 1,1-Dimethylcyclopropane, 1-Methylcyclobutene, and Methylenecyclobutane

FORREST F. CLEVELAND
Department of Physics, Illinois Institute of Technology, Chicago 16, Illinois

M. J. MURRAY AND W. S. GALLAWAY
Universal Oil Products Company, Chicago, Illinois
(Received May 26, 1947)

The infra-red absorption spectrum in the region $700-4000 \,\mathrm{cm^{-1}}$, both for the liquid and for the gas at various pressures, and precise values for the depolarization factors of the Raman lines of spiropentane are reported. Infra-red and Raman frequencies, estimated relative intensities, and qualitative depolarization data are reported also for 1,1-dimethylcyclopropane. Selection rules for the two hydrocarbons are discussed, and it is shown that the observed numbers of Raman frequencies are not inconsistent with the structures D_{2d} and C_{2v} for the spiropentane and 1,1-dimethylcyclopropane, respectively. In addition, Raman and infra-red data are included for the isomers, 1-methylcyclobutene and methylenecyclobutane. Tentative assignments of the fundamentals are made for each of the four hydrocarbons.

INTRODUCTION

 \mathbf{M} URRAY and Stevenson² synthesized a C_bH_8 hydrocarbon by the debromination of pentaerythrityl bromide with zinc dust, using acetamide as a solvent. On the basis of its Raman spectrum, chemical properties, and method of preparation, they assigned to the hydrocarbon the spiropentane structure (symmetry D_{2d}). This structure was later confirmed by an electron-diffraction investigation.³

In view of the symmetrical structure of spiropentane it seemed worth while to obtain precise depolarization factors for its Raman lines, to obtain its infra-red spectrum, and to attempt a correlation of these data by use of the group theory selection rules. As a possible aid to this analysis it appeared desirable also to obtain the Raman and infra-red spectra of the similar molecule, 1,1-dimethylcyclopropane. Infra-red and Raman spectra of the isomers, 1-methylcyclobutene and methylenecyclobutane are included.

EXPERIMENTAL PROCEDURE

Raman

The depolarization factors for liquid spiropen tane were obtained with a Hilger E-518 spectrograph by use of a previously described method.4 Calibration marks were placed upon each of the two spectrograms, and corrections were made for real or apparent polarization produced by the spectrograph, reciprocity failure of the plates, and convergence errors. Six independent determinations of the depolarization factor of each line were made; for the four more intense lines, half of these determinations were made from the 2-hr. spectrogram and half from the 5-hr. spectrogram; for the other, weaker lines, all six of the determinations were made from the 5-hr. spectrogram. Intensities were obtained by use of a Gaertner microdensitometer.

1,1-Dimethylcyclopropane

The sample of 1,1-dimethylcyclopropane was prepared by the reduction of (CH₃)₂C(CH₂Br)₂ by zinc in acetamide. The method is that described by Whitmore, Popkin, Bernstein, and Wilkins.⁵ Because the quantity of the reduction product at hand was too small to permit frac-

¹ The Raman data for the first two compounds were presented at the American Physical Society Meeting, Columbus, Ohio, June 1945; abstract in Phys. Rev. 68, 98 (1945).

²M. J. Murray and E. H. Stevenson, J. Am. Chem. Soc. 66, 812 (1944).

⁸ J. Donohue, G. L. Humphrey, and V. Schomaker, J. Am. Chem. Soc. 67, 332 (1945).

⁴ Forrest F. Cleveland, J. Chem. Phys. 13, 101 (1945). ⁶ F. C. Whitmore, A. H. Popkin, H. I. Bernstein, and J. P. Wilkins, J. Am. Chem. Soc. 63, 124 (1941).

Fig. 1. Infra-red absorption curve for liquid spiropentane.

tionation in the equipment available, the Raman spectrum was obtained with the crude material. Weak Raman lines at 1652 and 3017 cm⁻¹ (not included in Table II) are assigned to an olefinic impurity. Before the infra-red spectrum was taken, however, the olefinic contaminant was removed as follows: bromine was added to the crude product at about -40°C until a slight color showed that an excess of the halogen was present. On warming, the 1,1-dimethylcyclopropane vaporized directly into the absorption tube while the dibromides of the olefins remained as residue. Olefinic bands were absent in the spectrum of the sample thus purified.

1-Methylcyclobutene

It was stated by Philipov⁶ that the reduction of pentaerythrityl tetrabromide by zinc in alcohol produced methylenecyclobutane and 1-methylcyclobutene. Murray and Stevenson² found no spectroscopic (Raman) evidence for the presence of the latter compound, but since its spectrum was not available the conclusion needed verification. A sample of 1-methylcyclobutene was generously furnished by Dr. V. Schomaker. It was prepared as described by Shand, Schomaker. and Fischer.7

Even the most prominent unique lines found in

Fig. 2. Infra-red absorption curve for gaseous spiropentane.

⁶ O. Philipov, J. prakt. Chem. [2] **93**, 162 (1916).

⁷ W. Shand, Jr., V. Schomaker, and J. R. Fischer, J. Am. Chem. Soc. **66**, 636 (1944).

Fig. 3. Infra-red absorption curve for gaseous 1,1-dimethyl-cyclopropane.

the Raman spectrum of this hydrocarbon are absent from all reduction products of pentaerythrityl bromide so far examined by one of us (M.J.M.), hence it is thought that the concentration of this hydrocarbon in the crude product is probably less than one percent.

The Raman line at 1680 cm⁻¹ in the spectrum of the sample of 1-methylcyclobutene is probably due to the presence of a small amount of the isomeric methylenecyclobutane. Likewise the infra-red spectrum of the liquid shows a band at 1670 cm⁻¹ which could be assigned to the exocyclic olefin. The infra-red band of the liquid at 1720 cm⁻¹ is probably due to carbonyl introduced either accidentally or by atmospheric oxidation. The Raman spectrum when obtained

some months earlier with the same sample had no line at this position.

Methylenecyclobutane

The sample of this hydrocarbon was obtained by careful fractionation of the olefins recovered from silver nitrate extraction of the crude reduction products of pentaerythrityl tetrabromide. The sample studied was taken from the middle of the plateau boiling at 41.8°C at 760-mm pressure.

Infra-Red

The infra-red spectra were obtained with a large Littrow spectrometer having a 60° prism of 10×15-cm faces and a collimating mirror of

Fig. 4. Infra-red absorption curve for liquid 1-methylcyclobutene.

Fig. 5. Infra-red absorption curve for gaseous 1-methylcyclobutene.

100-cm focal length. The spectrometer proper is nearly a duplicate of the instrument described by McAlister, Matheson, and Sweeney.8 The source used here, however, is a Nernst glower, and the photographic recordings of the thermocouple output are obtained by use of a two-galvanometer amplifier coupled by a conventional split-beam, photo-cell arrangement.

The spectra were recorded using rocksalt cells of the type described by Gildart and Wright⁹ and of the thicknesses noted on the spectrograms (Figs. 1-7). The final curve for each compound represents the result obtained by comparing the traces of the thermocouple output when the filled cell is in the beam with that obtained with the evacuated cell.

Good stabilization of all circuits and elimination of sources of erratic disturbances have resulted in records that are reproducible to better than one percent of full-scale response and wavelength measurements to better than 0.01 micron. However, errors introduced in transposing from the records of thermocouple response versus dial reading to percent transmission versus wavelength may double these figures. To compensate for the variation of the intensity of the radiation emitted by the glower with wave-length, the slits of the spectrometer are manually operated in a

E. D. McAlister, G. L. Matheson, and W. J. Sweeney, Rev. Sci. Inst. 12, 314 (1941).
 L. Gildart and N. Wright, Rev. Sci. Inst. 12, 204 (1941).

stepwise fashion. The effective slit widths are indicated on the curves (Figs. 1–7) at the appropriate wave-lengths.

Careful studies of the spectra of water vapor and of ammonia show that the optics of the instrument are of such sufficiently high quality that the resolving power is determined solely by the size of the slits used. Furthermore, the resolving power obtained is at least equal to or better than that reported by McAlister, Matheson, and Sweeney⁸ and by Oetjen, Kao, and Randall,¹⁰ except from 13 to 15 microns where the response of the thermocouple is below par, thus requiring the use of slits somewhat wider than normal. These data also show that the positions of the absorption maxima (as given in the tables) are reliable to 1 cm⁻¹ at the longer wave-lengths. Band centers are given to the nearest 5 cm⁻¹ for frequencies above 1300 cm⁻¹.

RESULTS

The depolarization data for spiropentane are given at the left in Table I. Depolarization factors were not obtained for the weak lines at 1150, 2836, and 2881 cm⁻¹, and the data for the weak 613- and 779-cm⁻¹ lines are less precise than for the stronger lines. The lines at 1033 and 2991 cm⁻¹ are strongly polarized, while the ones at 581, 613, and 779 cm⁻¹ are only slightly polarized.

The infra-red data for the liquid and gaseous states are given in the central part of Table I, and the corresponding infra-red absorption curves are shown in Figs. 1 and 2. The infra-red spectra of gaseous spiropentane and methylenecyclobutane have also been reported by Cleaves and Sherrick.¹¹ The data reported by them agree well with those obtained in the present investigation, except for differences in resolving power of the two instruments.

The Raman data obtained for liquid 1,1-dimethylcyclopropane are compared with the Raman data obtained for liquid spiropentane at the left in Table II; the corresponding infra-red data for the two compounds in the gaseous state are compared at the right in Table II. The infra-red absorption curve for the 1,1-dimethylcyclopropane is shown in Fig. 3.

The Raman spectrum of 1-methylcyclobutene and the infra-red spectra for the liquid and gaseous states are compared in Table III. The corresponding infra-red absorption curves are given in Figs. 4 and 5.

The Raman spectrum of methylenecyclobutane and the infra-red spectra for the liquid and gaseous states are compared in Table IV. The corresponding infra-red absorption curves are given in Figs. 6 and 7.

DISCUSSION OF RESULTS

Number of Frequencies Expected for the Bicyclic C₅H₈ Compound

The number of polarized and depolarized Raman lines to be expected in the Raman spec-

cyclobutane.

Fig. 7. Infra-red absorption

curve for gaseous methylene-

R. A. Oetjen, C. L. Kao, and H. M. Randall, Rev. Sci. Inst. 13, 515 (1942).
 A. P. Cleaves and M. E. Sherrick, N.A.C.A., Tech. Note No. 1160 (1946).

TABLE I. Raman and infra-red data for spiropentane (C₅H₈).*

		Raman				Infra	ı-red		
		Liquid			Liqui	d	Gas	;	Tentative assignment
$\Delta \nu$	1	ρ	a.d.	m.d.	νl	It	ν_{a}	I_g	
305	4	0.86	0.03	0.07					Fundamental, E, 305**
581	16	0.69	0.02	0.04					Fundamental, A_1 , 581
613	4	0.71	0.04	0.11					Fundamental, E, 613
779	4	0.66	0.07	0.12	783	S	778	m	Fundamental, E, 779
							798	vw	$1397 - 613 = 784, B_1 \times E$
0.00	40	0.00	0.04	0.04	074		861	ขร	P branch or $1163 - 305 = 858$, $(B_2 \text{ or } E) \times$
872	30	0.82	0.01	0.04	871	vs	870	vs }	Fundamental, B_2 or E , 870
							879	vs)	R branch
					(0.20)	4040	896 929	w	$305+581=886, A_1\times E$
					(928)	vw	949	vw	$3(305) = 915, E^3$
							983	ขน ขร)	$305+613=918, E\times E$ P branch
					990	vs	993	vs	Fundamental, E, 993
					990	vs	1003	vs }	R branch
033	50	0.02	0.01	0.03			1003	vsj	Fundamental, A ₁ , 1033
033	30	0.02	0.01	0.03	1049	s	1053	s	Fundamental, B_2 or E , 1053
150	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_		1155	s	1151	S	Fundamental, B_2 or E , 1151
100	•				1100	3	1163	s	Fundamental, B_2 or E , 1163
							1260	ขข	$2(613) = 1226, E^2$
							1280	vw	$305+993=1298, E\times E$
							1325	m	Fundamental, B_2 or E , 1325
					1340	w	1340	m	Fundamental, B_2 or E , 1340
397	5	0.81	0.03	0.04		••	2020	***	Fundamental, B_1 , 1397
426	10	0.82	0.02	0.05	1420	S	1430	S	Fundamental, B_2 or E , 1430
					1445	w		•	$581 + 870 = 1451$, $A_1 \times (B_2 \text{ or } E)$
					1530	w			$2(778) = 1556, E^2$
					1630	w			$305+1325=1630$, $E\times(B_2 \text{ or } E)$
					1675	w			$613+1053=1666$, $E\times (B_2 \text{ or } E)$
					1760	w			$613+1151=1764, E\times (B_2 \text{ or } E)$
					1775	w	1765	m	$613+1163=1776, E\times (B_2 \text{ or } E)$
					1815	w			$1033+778=1811, A_1\times E$
					1825	vw			$1053 + 778 = 1831$, $E \times (B_2 \text{ or } E)$
					1860	vw			$870+993=1863$, $E\times (B_2 \text{ or } E)$
					1885	vw	1880	m	$870+1033=1903$, $A_1\times (B_2 \text{ or } E)$
					1915	vw			$581 + 1340 = 1921$, $A_1 \times (B_2 \text{ or } E)$
					1985	vw			$2(993) = 1986, E^2$
					2025	m	2030	S	$993+1033=2026, A_1\times E$
					2085	m	2085	S	$1033 + 1053 = 2086$, $A_1 \times (B_2 \text{ or } E)$
					2175	w	2190	m	$1033 + 1151 = 2184, A_1 \times (B_2 \text{ or } E)$
					2275	w	2245		$870 + 1397 = 2267, B_1 \times (B_2 \text{ or } E)$
					2320	m	2345	m	$993+1340=2333, E\times (B_2 \text{ or } E)$
					2415	m	2425		$993 + 1430 = 2423, E \times (B_2 \text{ or } E)$
					2450	w	2435	m	$1053+1397=2450, B_1\times(B_2 \text{ or } E)$
					2545	w	2565		$1151+1397=2548, B_1\times(B_2 \text{ or } E)$
1926	0.4		_				2565	w	$1163 + 1397 = 2560, B_1 \times (B_2 \text{ or } E)$
2836	0.4				2860	m	2850	s	Fundamental, A_1 or B_1 , 2836 Fundamental, B_2 or E , 2850
2881	vw				2000	116	4000	ა	Fundamental R. or 4. 2821
1001	ow			_	2985	vs	2985	vs	Fundamental, B_1 or A_1 , 2881 Fundamental, B_2 or E , 2985
2991	100	0.15	0.03	0.05	2703	Ų3	2703	V.S	Fundamental, A ₁ , 2991
J J L	100	0.13	0.03	0.00	3050	vs	3050	vs	Fundamental, B_2 or E , 3050
3065	30	0.80	0.02	0.03	0000	03	5050		Fundamental, B_1 , 3065
	50	0.00	0.02	0.00			3370	w	$305+3065=3370, B_1\times E$
							0010	w	000 0000 = 0010 , D1 \ D

trum was worked out from the group theory formulas12 for each of the five conceivable structures listed by Murray and Stevenson.2 This was done both for the entire molecule and for the carbon skeleton alone. The results are given in Table V. The five possible structures given by

¹² See Arnold G. Meister, Forrest F. Cleveland, and M. J. Murray, Am. J. Phys. 11, 239 (1943).

TABLE II. Comparison of t	the Raman data for the	liquid state and the int	fra-red data for the gaseous state
for 1.1	I-dimethylcyclopropane	e (C ₅ H ₁₀) and spiropenta	ane (C ₅ H ₈).*

		Raman data	a (liquid)				Infra-re	d data (gas)	
;	Spiropentane		1,1-Dir	nethylcyclopro	opane	Spirope	entane	1,1-Dir cyclop	methyl- ropane
$\Delta \nu$	I	ρ	Δu	I_s	ρε	ν_g	I_{ϱ}	ν_g	I_{g}
305	4	0.86							
000	+	0.00	326	1					
			356	$\bar{3}$	D				
			392	í					
581	16	0.69	~~-	•					
613	4	0.71							
	-		658	1					
			678	1 7	\overline{P}				
								724	w
								750	\boldsymbol{w}
								758	\boldsymbol{w}
								766	w
779	4	0.66	778	1		778	m	785	w
						798	vw		
			836	5	D			(830)	m
								835	s
							_	842	vvs}
						861	vs)	857	s
872	30	0.82				870	vs }		
						879	vs)		
						896	w		
					_			920	s
			928	10	P	929	vw	928	vvs }
						940	บาย	939	vs)
						003	,	(970)	vvw
						983	ขร	(976)	vvw
						993	vs $\}$	999	ขร
						1003	vs)	1007	vvs}
1022	50	0.02						1019	vs)
1033	อบ	0.02	1056	5	P	1053		1042	m
			1030	3	r	1055	s	1056	w
			1124	2				(1112) 1127	m
			1124	4	-			1137	m
								1137	m

Murray and Stevenson² are shown in the first column, and the observed numbers of lines are listed at the bottom. In determining these observed numbers of lines it was assumed that the carbon skeleton frequencies were those less than 1155 cm⁻¹ and that the weak 613- and 779-cm⁻¹ lines were depolarized lines. The 581-cm⁻¹ line was chosen as a polarized line, rather than the 779 line, because of the greater reliability of the ρ value of the 581 line, because polarized lines are usually more intense in Raman spectra than depolarized lines, and because there is an infrared band near 779 cm⁻¹. Such a coincidence of Raman and infra-red bands is forbidden for polarized lines by the selection rules if the structure of the hydrocarbon is that indicated by the chemical and electron diffraction evidence.

The 1150-cm^{-1} line could reasonably be expected to correspond to a non-totally-symmet-

rical vibration involving the *CCC* rings, since the totally-symmetrical frequency involving these rings certainly corresponds to the highly polarized line at 1033 cm⁻¹ and since the more unsymmetrical vibration frequently corresponds to a line having a higher frequency than that of the totally-symmetrical vibration; if this is the case, the 1150 line would be a depolarized line.

If these assumptions are made, the observed numbers and those predicted for the spiropentane or D_{2d} structure are in good agreement as far as the skeleton frequencies are concerned; in fact if the 1150 line is actually a depolarized line, as indicated above, the agreement would be perfect. But when the entire molecule is considered, the observed numbers are less than the predicted ones, presumably because of unresolved lines in the region of the carbon-hydrogen frequencies; such unresolved lines are to be expected since

TABLE II.—Continued.

		Raman data	a (liquid)				Infra-red data (gas)					
,	Spiropentane		1 1-Din	nethylcyclopr	Onane	Spirope	intana	1,1-Dimethyl- cyclopropane				
Δυ	I	_	Δν	I.	•				-			
		Р		·	ρε	ν ₀	Ig	ν _g				
1150	1	_	1158	1		1151	S					
						1163	S	1163	w			
								1180	vw			
								1240	\boldsymbol{w}			
						1261	vw	(1270)	vw			
						1280	vw	` ,				
			1319	8	P			1310	m			
		•		_	_	1325	m	1335	m			
						1340	m	1340	w			
			1382	2	_	1040	716	1380				
			1362	2					m			
1207	-	0.01						1385	m			
1397	5	0.81		•				1395	m			
1426	10	0.82			_			1420	w			
			1433	4b	D	1430	S	1430	m			
								1445	S			
			1465	4b	D			1460	ขร			
								1470	s			
						1765	m	1785	w			
						1880	m	1850	w			
						1000	***	1930	vw			
								1940	vw			
								1955				
						2030		1933	vw			
						2030	s	2030	w			
			,			200#		(2060)	vw			
						2085	S	(2070)	vw			
						2190	m					
								2285	w			
						2345	m					
						2435	m	2460	w			
						2565	w	2560	w			
								2700	m			
			2733	3	P			2.00	""			
2836	0.4	_	2100	·	*			2840	m			
2000	0.1		2863	6	D	2850	s	2010	776			
2881			2892	ž	D	2000	3	2000				
7001	vw			6 5 7 5	r D			2890	vs			
			2926	2	P							
			2950	. 5	P P D P							
2991	100	0.15	2993	10	P	2985	vs	2985	m			
						3050	US	3075	m			
3065	30	0.80	3061	4b	D			3240	w			
						3370	w					

^{*} I_{\bullet} = Estimated intensity on the basis of 10 for the strongest line; ρ_{\bullet} is the qualitative depolarization data, P = polarized, D = depolarized; b = broad; other symbols have the same meaning as in Table I. Data in regard to which there is some uncertainty are enclosed in parentheses.

there should be 15C-H lines all of which involve, however, only one kind of C-H bond. These frequencies would give rise to Raman lines that would undoubtedly fall very close together on the spectrograms and which could well be unresolved.

One can conclude then that the observed Raman data are in reasonably good agreement with the spiropentane or D_{2d} structure. The predictions for the D_{3h} structure are not in as good an agreement with the observed Raman data, even if the 1150 line were considered to be a C-H frequency.

Selection Rules and Assignment of Frequencies for Spiropentane

The selection rules for fundamentals, overtones, and binary combinations¹² for the spiropentane or D_{2d} structure are given in Table VI and a tentative assignment of the frequencies is given at the right in Table I. Twenty-one of the expected 25 bands corresponding to fundamental frequencies were assigned. The fundamentals were selected upon the basis of their intensity, their appearance or non-appearance in the Raman and infra-red spectra, and in consideration of the selection rules for fundamentals, overtones, and

TABLE III. Raman and infra-red data for 1-methylcyclobutene (C ₅ H ₈).*	TABLE III. I	Raman and	infra-red	data for	1-methylc	vclobutene ($(C_5H_8).*$
--	--------------	-----------	-----------	----------	-----------	--------------	--------------

Ram	an		Infr	a-red				
Liqu	iid	Liqu	id	Gas	3	Tentative assignment		
$\Delta \nu$	I.	ν _l	Ιι	νο	Iq			
318	4					Fundamental, 318**		
390	3					Fundamental, 390		
434	0					729 - 318 = 411 or $1091 - 651 = 440$		
520	1					890 - 390 = 500 or 1181 - 651 = 530		
620	1					2(318) = 636		
651	6					Fundamental, 651		
001	Ū			716)	vs	1034 - 318 = 716		
723	1	728	s	729}	vvs	Fundamental. 729		
. 20	•	3	•	737	vs	1375-651=724		
762	2	762	m	,		Fundamental, 762		
.04	" .	804	S	802	w	1181 – 390 = 791		
		(833)	w	810	w	1217 - 390 = 827		
860	4	854	vvs	858	vs	Fundamental, 858		
000	4	034	vvs	864	vs vs	1181 – 318 = 863		
		870		870		1202 - 318 = 884		
		070	vs	877)	vs	1280 - 390 = 890		
900	-	894	410	890}	vs	Fundamental. 890		
890	5	894	vs		vs			
055	-	040		903)	vs	1217 - 318 = 899		
957	5	949	vs	951	S	Fundamental, 951		
001	_	976	vs	965	S	318 + 651 = 969		
986	6	983	vs	979	S	Fundamental, 979		
				986	S	1375 - 390 = 985		
				993	S	1640 - 651 = 989		
	_			1026)	w	390 + 651 = 1041		
037	2	1032	S	1034 }	m	Fundamental, 1034		
		(1046)	vw	1043)	w	318 + 729 = 1047		
				1070)	w	1375 - 318 = 1057		
091	2	1085	vs	1090}	S	Fundamental, 1090		
		1110	m	1100)	w	1435 - 318 = 1117		
		1130	vw	,		390 + 729 = 1119		
144	2	1143	ขาย			Fundamental, 1144		
	_	1167	ขร	1164	m	318 + 858 = 1176		
				1181	s	Fundamental, 1181		
185	1b	1189	พร	1202	m	Fundamental, 1202		
216	4	1214	s	1217	w	Fundamental, 1217		
210	•	1211	3	1227	w	390+858= 1248		
				1270	vs	318 + 951 = 1269		

binary combinations. Three of the five type- A_1 , two of the four type- B_1 , and four of the eight type-E fundamentals were definitely assigned. The twelve remaining ones could only be assigned to one or the other of two vibration types, ten as either B_2 or E, two as either A_1 or B_1 . Four of the fundamentals, the vibration type of which was at first ambiguous, were assigned to a particular vibration type while accounting for the weak bands as overtones or binary combinations. Only overtones or binary combinations allowed by the selection rules were used in accounting for the weaker bands, and difference bands were used only for the fundamentals below 700 cm⁻¹, for which the corresponding energy states can be expected to be sufficiently well populated to give rise to appreciable intensities. It was not possible to account for the weak infra-red band observed

for the liquid state at 3400 cm⁻¹. It could be accounted for as the combination 581+2836 = 3417, except for the fact that this combination is forbidden by the selection rules. This weak band may owe its origin to a combination of three, or more, frequencies.

Of the four unassigned lines, three correspond to type-A₂ frequencies that are forbidden in both the Raman and infra-red spectra. These frequencies correspond to C-H vibrations and therefore at least some of them may be expected to fall in the 1400- or 3000-cm⁻¹ regions.

For a revision of the present tentative and incomplete assignment, a normal coordinate treatment should be very valuable. Such a treatment should make it possible to remove much or all of the ambiguity inherent in the bands assigned to " B_2 or E" which must be done before reliable

TABLE III.—Continued.

Rar	nan		Infr	a-red		
Liq	uid	Liqu	aid	Ga	.8	Tentative assignment
$\Delta \nu$	I_e	ν_l	$I\iota$	ν_g	I_{θ}	
278	3	1276	vs	1280	vs	Fundamental, 1280
-				1290	vs	390+890=1280 or $318+979=1297$ or $2(651)=1302$
		1345	w			390+951 = 1341 or $318+1034 = 1352$
1378	4	1375	บร	1375	m	Fundamental, 1375
	•	*****	••	1380	S	651 + 729 = 1380
				1390	s	318 + 1090 = 1408
				1430)	m	390+1034=1424
1430	8b	1435	vvs	1435}	s	Fundamental, 1435
100	00	1100	003	1450	m	2(729) = 1458
1586	1	1585	S	1585	m	Fundamental, 1585
1300		1000	3	1595	m	318+1280=1598 or 651+951=1602
				1630	S	651+979=1630
1641	8	1640	ขร	1640	s	Fundamental, 1640
1041	O	1040	U3	1650	s	390+1280=1670
1680	3	1670		1675		729 + 951 = 1680 or 651 + 1034 = 1685 or 318 + 1375 = 16
1000	3	1070	S	10/3	m	
		1720				(or impurity)
		1720	US			2(858) = 1716 or $729 + 979 = 1708$ (or impurity)
		1758	าย	1700		858 + 890 = 1748 or $318 + 1435 = 1753$
		1000		1765	70	729 + 1034 = 1763 or $390 + 1375 = 1765$
		1820	761	1820	761	858+951=1809 or 729+1090=1819 or 390+1435=18
		2000		1905	w	2(951) = 1902 or $318 + 1585 = 1903$ or $729 + 1181 = 1910$
		2000	w	2010	w	729 + 1280 = 2009 or 979 + 1034 = 2013
		2020	w	2035	าย	651+1375=2026 or 390+1640=2030
		2045	vw			858+1181=2039 or 951+1090=2041
		2065	vw	2065	w	2(1034) = 2068 or 979 + 1090 = 2069 or 890 + 1181 = 2073
		2125	w	2135	ч	1034 + 1090 = 2124 or $951 + 1181 = 2132$ or
						858 + 1280 = 2138
		2220	vw			1034 + 1181 = 2215 or $951 + 1280 = 2231$
		2270	w	2235	w	858+1375=2233 or $651+1585=2236$
		2295	w	2290	w	651+1640=2291 or $858+1435=2293$
		2400	\boldsymbol{w}	2420	าย	1034 + 1375 = 2409 or $979 + 1435 = 2414$
		2480	w	2495	w	890 + 1585 = 2475 or $1217 + 1280 = 2495$ or
						858 + 1640 = 2498
		2540	vw			890+1640=2530 or 951+1585=2536
		2585	าย	2600	w	951+1640=2591 or $1217+1375=2592$
		2675	m			1034 + 1640 = 2674 or $1090 + 1585 = 2675$
2723	2			2700	m	Fundamental, 2700
		2770	m	2800	ซร	Fundamental, 2800
2851	5vb	2850	ขร	2865	vvs	Fundamental, 2865
2917	10vb					Fundamental, 2917
		2940	m	2965	vs	Fundamental, 2965
3044	6			-, 00		Fundamental, 3044
	•	3080	vw	3085	าย	1640+1435= 3075
		3180	vw	0000	w	2(1585) = 3170 or 318 + 2865 = 3183
		3240	ขน	3200	w	1640 + 1585 = 3225 or $318 + 2917 = 3235$
		0270	· · ·	3270	w	318+2965=3283 or $2(1640)=3280$
		3450	ขาย	3210	w	651+2800=3451 or $390+3044=3434$
		0.400	· · ·			001 2000 - 9101 01 090 0011 - 0101

^{*} See reference 3, vb =very broad; other symbols have the same meaning as in Tables I and II. ** Assumed value of the fundamental. All of the fundamentals are non-degenerate, degeneracy = d = 1.

values of thermodynamic quantities can be calculated from the spectroscopic data. Then a high resolution investigation, especially in the 3000-cm⁻¹ region where the resolution was poorest, might lead to the discovery of the missing A_1 fundamental. A_1 frequencies usually give rise to strong lines in the Raman spectrum, and it seems more likely that the missing A_1 line should be attributed to an unresolved line than to a Raman line so weak that it escaped observation. If the normal coordinate treatment and the high resolu-

tion investigation should result in the establishment of the B_2 and E frequencies and in the discovery of the missing A_1 fundamental, the A_2 frequencies might then be located by a comparison of heat capacities calculated from the spectroscopic data with heat capacities experimentally determined.

1,1-Dimethylcyclopropane

The equilibrium configuration of the 1,1-dimethylcyclopropane molecule will depend upon

Ram	an		Infi	a-red		
Liqu	ıid	Liq	uid	G	as	Tentative assignment
Δu	1	ν_l	$I\iota$	$ u_g$	I_{ϱ}	
354	23					Fundamental, 354**
373	13					Fundamental, 373
657	20					Fundamental, 657
		731	m	728	w	Fundamental, 728
				736	w	354 + 373 = 727
				743	w	2(373) = 746
				751	w	$1\dot{4}15 - 657 = 758$
		782	m			Fundamental, 782
				800	\boldsymbol{w}	1155 - 354 = 801
				812	w	1167 - 354 = 813
				825	w	1197 - 373 = 824
				865	vs	1197 - 354 = 843
				870	vs	1248 - 373 = 875
873	14	877	vvs	879	vvs	Fundamental, 879
				884	vs	1248 - 354 = 894
907	20			895	vs	Fundamental, 895
				944	w	•
957	72	952	m	954	w }	Fundamental, A_1 , 954
				966	w	, ,
				983	m	
		990	vs	991	m	Fundamental, 991
				1001	m)	354 + 657 = 1011
		1018	w	1029	w	Fundamental, 1029
		1051	m	1059	w	Fundamental, 1059
		1067	m	1070	m	Fundamental, 1070
		1155	m	1155	m	Fundamental, 1155
		1164	S	1167	m	Fundamental, 1167
				1183	m	·
1191	11	1198	S	1197	m	Fundamental, 1197
				1210	m	·
		1226	m		•	354 + 879 = 1233
				1240	m	354 + 895 = 1249 or $373 + 879 = 1252$
		1250	m	1248	m	Fundamental, $(XXC = CH_2)$, 1248
				1260	m	373 + 895 = 1268
				1385	m	657 + 728 = 1385

the orientations of the two methyl groups with respect to rotation about the C-C single bond. A qualitative consideration of the possible interactions between the H and C atoms indicates that only one of two structures, of symmetry C_1 and C_{2v} , is probable.

For the structure C_1 all of the frequencies would be allowed to appear in the Raman spectrum and should all be polarized. For the structure C_{2v} the frequencies allowed in the Raman spectrum are: twelve polarized, type- A_1 frequencies, four of which are frequencies of the carbon skeleton; and 27 depolarized (10 type B_1 , 8 type A_2 , and 9 type B_2) frequencies, five of which (two type B_2 , one type A_2 , and two type B_1) are carbon skeleton frequencies. The selection rules allow all of the fundamentals to appear in the Raman spectrum and all except the A_2 fundamentals to appear in the infra-red. All overtones and binary combinations are allowed

in the Raman spectrum and all except A_2^n (n odd), $A_1 \times A_2$, and $B_1 \times B_2$ are allowed in the infra-red.

From the qualitative depolarization data given in Table II it does not appear probable that all of the lines are polarized and, consequently, it seems more reasonable to suppose that the structure is C_{2v} rather than C_1 . Assuming the C_{2v} structure, a comparison of the expected and observed numbers of lines for the 1,1-dimethylcyclopropane with the corresponding numbers for spiropentane is given in Table VII. Skeleton frequencies were, as for spiropentane, taken as those less than 1155 cm⁻¹; when this is done, the total number of skeleton frequencies observed (10) is one greater than the expected number (9) in this region. The additional frequency could well be a C-H frequency similar to the "rocking frequency" of the methyl group which in dimethyl-

TABLE	IX/	Contina	Lad
LABLE	I V	-coniini	w.

Ram	an		Infr	a-red		
Liqu	ıid	Liquid		Ga	s	Tentative assignment
Δν	I	νı	Iı	ν_g	I ₀	
1391	20	1390	vs	1395	S	Fundamental, $(XXC = CH_2)$, 1395
		1415	vvs	1415	vs	Fundamental, 1415
1428	20			1425	vs	Fundamental, $(XXC = CH_2)$, 1425
		1485	m	1490	w	Fundamental, 1490
				1510	w	354 + 1155 = 1509 or $728 + 782 = 1510$
1679	48	1665	ขขร	1675	vvs	Fundamental, $(XXC = CH_2)$, 1675
		1750	S	1750	m	354 + 1395 = 1749 or $728 + 1029 = 1757$ or
						2(879) = 1758
				1770	m	373 + 1395 = 1768
		1880	\boldsymbol{w}	1880	w	728 + 1155 = 1883
		1900	w			2(954) = 1908
		2015	\boldsymbol{w}			$9\dot{5}4 + 1059 = 2013$
		2040	w	2045	w	879 + 1167 = 2046
		2060	w			991 + 1070 = 2061 or $896 + 1167 = 2063$
		2115	w	2115	w	2(1059) = 2118 or 954 + 1155 = 2109
		2180	w	2185	w	782 + 1395 = 2177 or $991 + 1197 = 2188$
		2310	w	2305	w	879 + 1425 = 2304 or $2(1155) = 2310$
		2420	w	2420	w	1425 + 991 = 2416
				2560	w	879 + 1675 = 2554
		2590	w	2605	w	1197 + 1395 = 2592
		2690	\boldsymbol{w}			1248 + 1425 = 2673
		2770	S	(2785)	m	Fundamental, 2770
2826	4			` ′		Fundamental, A_2 , 2826
2861	4	2860	vvs	2880	vvs	Fundamental, 2860
2902	60	2900	s			Fundamental, 2902
2921	75					Fundamental, A_2 , 2921
2952	88					Fundamental, A ₂ , 2952
2986	100	2980	S	2985	vs	Fundamental, (ring and $XXC = CH_2$), 2985, 2985
3072	18					Fundamental, A_2 , 3072
-		3225	w	3235	w	2860 + 373 = 3233

acetylene¹³ appeared at 1029 cm⁻¹. While the observed numbers of frequencies for the carbon skeleton are in fairly good qualitative agreement with the values expected for the C_{2v} structure, definite conclusions cannot be drawn on the basis of the present qualitative depolarization data.

Since all of the fundamentals, overtones, and binary combinations are allowed in the Raman spectrum, whether the structure is C_1 or C_{2v} , and all of them, if the structure is C_1 , or most of them, if the structure is C_{2v} , are allowed in the infra-red spectrum, it seemed worth while to attempt a tentative assignment of the frequencies for this molecule. Such an assignment, even if incomplete, is of value to those who may wish to estimate the heat capacity or other thermodynamic quantities, estimates even as far off as 10 percent frequently being of value in work of a practical nature. The tentative assignment finally decided upon is given at the right in Table VIII. The nine fundamental frequencies of the carbon skeleton were

assumed to be those at 326, 356, 392, 658, 678, 836, 842, 928, and 1056 cm⁻¹. These are the frequencies that make the greatest contribution to the thermodynamic quantities, and the assignment of these skeleton frequencies is complete. Nineteen other frequencies were chosen as fundamentals (see Table VIII), thus making a total of 28 assigned fundamentals out of the 39 possible ones. The 785-cm⁻¹ band was assumed to be a CH₂ deformation frequency, in line with Mecke's results¹⁴ for the isomeric paraffins; he found such a frequency near 750 cm⁻¹ for these compounds (at 762 cm^{-1} for *n*-pentane). The intense, polarized Raman lines at 928 and 1056 cm⁻¹ correspond to totally symmetrical (A_1) vibrations of the open and closed *CCC* triangles, respectively. For comparison, one may note that the frequency of the open CCC triangle in n-propane is at 867 cm⁻¹, while the frequency of the CCC ring in spiropentane and cyclopropane is 1033 and 1187 cm⁻¹, respectively. The strong, polarized Raman

^{*} See reference 3. For meaning of symbols, see footnotes to Tables I, II, and III. ** Assumed value of the fundamental. All of the fundamentals are non-degenerate, degeneracy =d=1.

¹³ B. L. Crawford, Jr., J. Chem. Phys. 7, 555 (1939).

¹⁴ R. Mecke, Zeits. f. physik. Chemie **B36**, 347 (1937).

Table V. Comparison of the expected numbers of Raman lines for the five conceivable structures of the bicyclic C_5H_8 hydrocarbon with the experimental results.*

		Number of fundamentals							
		Λ	Skeleton						
Structure	Symmetry	P	D	T	P	D	T		
	C_s	18	15	33	5	4	9		
⇔ c	C_{s}	19	14	33	6	3	9		
Č −c	C_s	20	13	33	6	3	9		
C	D_{3h}	5	11	16	2	3	5		
\boxtimes	D_{2d}	5	17	22	2	5	7		
	Observed	3	7	13	2	4	7		

^{*}P=number of polarized lines, D=number of depolarized lines, T=total number of lines allowed in the Raman spectrum.

line at 678 cm⁻¹ also seems certain to correspond to an A_1 fundamental. In the region of the C – H vibrations, where the resolution was poorest, the broad Raman line observed at 3061 cm⁻¹ was assumed to correspond to two unresolved fundamentals, one at 3045, the other at 3075 cm⁻¹.

All of the remaining bands observed in the Raman and infra-red spectra were accounted for, in this tentative assignment, as P or R branches, overtones, or binary combinations. Frequencies corresponding to difference bands were calculated only for fundamentals below 700 cm⁻¹, for which the corresponding energy states can be expected

TABLE VII. Comparison of the expected and observed numbers of Raman lines for 1,1-dimethylcyclopropane and spiropentane.

		ies						
		Мо	lecule			s	kele	ton
Hydrocarbon	Sym- metry		\boldsymbol{P}	D	T	\boldsymbol{P}	D	T
Spiropentane	D_{2d}	Expected: Observed:	5 3	17 7	22 13	2 2	5 4	7 7
1,1-Dimethyl- cyclopropane	C_{2v}	Expected: Observed:				4		9 10

to be sufficiently well populated to give rise to appreciable intensities.

Of the eleven unassigned fundamentals, it seems likely that several of them may lie in the 2700–3100-cm⁻¹ region and have escaped observation because of insufficient resolution in this region. Fundamentals falling in this region make a relatively small contribution to the thermodynamic quantities. A high resolution investigation in this region, quantitative values for the depolarization factors of the Raman lines, and an experimental measurement of the heat capacity at various temperatures would provide useful data for a revision of the present tentative and incomplete assignment.

1-Methylcyclobutene

Depending upon the orientation of the methyl group, the structure of 1-methylcyclobutene is

TABLE VI. Selection rules for fundamentals, overtones, and binary combinations for the spiropentane or D_{2d} structure.*

	Number of fundamentals				of allowed nentals		Forbi	ddan	Forbidde	n binarı	
Tun			Molecule Ske		Skele	Skeleton overt			combin	Forbidden binary combinations	
Type	Mole- cule	Skeleton	i.r.	R	i.r.	R	i.r.	R	i.r.	R	
<i>A</i> ₁	5	2	0	5 <i>P</i>	0	2 P	Ail	None	$A_1 \times A_1 \\ A_1 \times A_2 \\ A_1 \times B_1$	$A_1 \times A_2$	
A_2	3	0	0	0	0	0	All	A_2^n $(n \text{ odd})$	$\begin{array}{c} A_2 \times A_1 \\ A_2 \times A_2 \\ A_2 \times B_2 \end{array}$	$A_2 \times A_1$	
B_1	4	1	0	4 D	0	$\stackrel{1}{D}$	All	None	$\begin{array}{c} B_1 \times A_1 \\ B_1 \times B_1 \\ B_1 \times B_2 \end{array}$	$B_1 \times B_2$	
B ₂ -	5	2	5 M _z	5 <i>D</i>	M_z	2 D	B_2^n (n even)	None	$B_2 \times A_2 B_2 \times B_1 B_2 \times B_2$	$B_2 \times B_1$	
E	8	2	M_P	8 D	$\frac{2}{M_P}$	2 D	None	None	None	None	

^{*} i.r. = infra-red, R = Raman, P = polarized, D = depolarized, $M_z = parallel$ band, $M_P = perpendicular$ band.

Raman			Infra-red			
Liquid			Gas		Tentative assignment	
Δυ	I _e	ρ	ν _g	10		
326	1	_			Fundamental, 326**	
356	3	D			Fundamental, 356	
392	1	marks.			Fundamental, 392	
658	1				Fundamental, 658	
678	7	P			Fundamental, 678, A_1	
			724	w	326 + 392 = 718	
			750	w	356 + 392 = 748	
			758	w	1429 - 678 = 751	
			766	w	1445 - 678 = 767	
778	1		785	w	Fundamental, 785	
836	1 5	D	(830)	m	Fundamental, 836	
			`835	s)	P branch or $1163 - 326 = 837$	
			842	vvs }	Fundamental, 842	
			857	s	R branch	
			920	s	1310 - 392 = 918 or P branch	
928	10	P	928	vvs }	Fundamental, 928, A ₁	
, _ 0	••		939	vs	R branch	
			(970)	งขาง	1310 - 356 = 954	
			(976)	vvw	326+658=984 or $3(326)=978$	
			999	vs)	P branch or $1380 - 392 = 988$	
			1007	vvs }	Fundamental, 1007	
			1019	บร	356+658=1014 or R branch	
			1042	m	1430 - 392 = 1038 or $392 + 658 = 10$	
1056	5	P	1056	70	Fundamental, 1056, A_1	
1000	v	-	(1112)	m	326+785=1111	
1124	2		1127	m	Fundamental, 1127	
1127	2		1137	m	356+785=1141 or $1460-326=13$	
1158	1		1163	w	Fundamental, 1163	
1100	1		1180	vw	392 + 785 = 1177	
			1240	w	392 + 842 = 1234	
			(1270)	w บพ	326 + 928 = 1254	

TABLE VIII. Tentative assignment of frequencies for 1,1-dimethylcyclopropane.*

either C_1 or C_s , the only possible symmetry element being a plane of symmetry. If the structure is C_1 , with no symmetry, there would be 33 fundamentals, of which nine are vibrations of the carbon skeleton. All of these would be allowed in both the Raman and infra-red spectra, and all of the Raman lines should be polarized.

If the structure is C_s , all of the 33 fundamentals are again allowed in both the Raman and infrared spectra and, as before, nine of them are frequencies of the carbon skeleton. Of the 33 expected Raman lines, 20 should be polarized and 13 depolarized. Of the nine Raman lines corresponding to frequencies of the carbon skeleton, seven should be polarized and two depolarized. Since some depolarized lines are to be expected for the C_s structure, but not for the C_1 structure, precise values of the depolarization factors of the Raman lines should enable one to decide between these two structures.

Since all of the fundamentals and all of the overtones and combinations (for either structure)

are allowed in both the Raman and infra-red spectra, it seemed worth while to attempt an assignment of the fundamentals. The tentative assignments finally decided upon are listed at the right in Table III. The nine fundamental frequencies of the carbon skeleton were assumed to be those at 318, 390, 651, 729, 858, 890, 951, 979, and 1640. These are the frequencies that make the greatest contribution to the thermodynamic quantities and the assignment of these skeleton frequencies is complete. Seventeen other frequencies were chosen as fundamentals (see Table III), thus making a total of 26 assigned fundamentals out of the 33 possible ones. The 762-cm⁻¹ band was again, as for 1,1-dimethylcyclopropane, assumed to be a CH₂ deformation frequency. The 1202-cm⁻¹ infra-red band, unresolved from the 1181 band in the Raman spectrum, was chosen as a fundamental in order to explain the infra-red band at 870 cm⁻¹ as a difference band.

All of the remaining frequencies observed in

TABLE	VIII	-Continu	ed.

. Raman Liquid			Infra-		Tentative assignment	
			Gas			
	I _e	ρ	ν _θ	I _U		
19	8	P	1310	m	Fundamental, 1310	
			1335	m	326 + 1007 = 1333	
			1340	w	658 + 678 = 1336	
82	2	a feet name	1380	ml	Fundamental, 1380	
			1385	m	326 + 1056 = 1382	
			1395	m	392 + 1007 = 1399	
			1420	w	356 + 1056 = 1412	
			1430	m	Fundamental, 1430	
33	4b	D	1445	S	Fundamental, 1445	
			1460	vs	Fundamental, 1460	
65	4b	D	1470	S	Fundamental, 1470	
		1785	w	326+1460=1786 or 785+1007=17		
		1850	w	842 + 1007 = 1849		
		1930	vw	928+1007=1935 or 785+1127=19		
		1940	vw	785 + 1163 = 1948		
		1955	vw	836 + 1127 = 1963		
			2030	w	2(1007) = 2014	
			(2060)	vw	678 + 1380 = 2058	
			(2070)	vw	1007 + 1056 = 2063	
			2285	w	842 + 1445 = 2287	
			2460	w	1007 + 1460 = 2467	
			2560	w	1127 + 1430 = 2557	
			2700	m	1310 + 1380 = 2690 or $3045 - 326 = 2$	
33	3	P			Fundamental, 2733	
			2840	m	Fundamental, 2840	
63	6	$P \\ P \\ P$			Fundamental, 2863	
92	5	P	2890	vs	Fundamental, 2890	
26	7	P			Fundamental, 2926	
50	6 5 7 5	D			Fundamental, 2950, A ₂	
93	10	P	2985	m	Fundamental, 2985	
					Fundamental, 3045, A ₂	
61	4b	D	3075	$n\iota$	Fundamental, 3075	
= =	-		3240	w	356 + 2890 = 3246	

the Raman and infra-red spectra were accounted for as overtones or binary combinations. Frequencies corresponding to difference bands were again calculated only for the three lowest fundamentals, 318, 390, and 651. While the frequency near 1675 cm⁻¹ may be due to the presence of an olefinic impurity, at least part of its intensity may be due to one of the combination bands given in Table III, the intensity of the combination band being enhanced by its nearness to the 1640 fundamental. Likewise, while the 1720 band may be due to an impurity containing a carbonyl group, at least part of its intensity may be accounted for as an overtone or combination.

Of the seven unassigned fundamentals, it seems likely that most of them lie in the 2700-3100-cm⁻¹ region and escaped observation because of insufficient resolution, although it is, of course, possible that a few of the bands assigned as overtones or combinations may in reality be fundamentals. A high resolution investigation in the 3000-cm⁻¹ region would probably lead to an improved assignment. An experimental measurement of the heat capacity at various temperatures and a quantitative determination of the depolarization factors of the Raman lines would also provide useful data for a revision of the present tentative and incomplete assignment.

Methylenecyclobutane

If the five carbon atoms and the two hydrogen atoms of the methylene group lie in a plane, as seems probable in view of Wilson's analysis of cyclobutane, 15 the symmetry of methylenecyclobutane is C_{2v} . For this structure, there should be eleven type- A_1 frequencies (of which four are

^{*} For meaning of symbols, see footnotes to Tables I, II, and III. ** Assumed value of the fundamental. All of the fundamentals are non-degenerate, degeneracy =d=1. *** 3061 is assumed to be two unresolved fundamentals, one at 3045, the other at 3075 cm⁻¹.

¹⁵ T. P. Wilson, J. Chem. Phys. 11, 369 (1943).

frequencies of the carbon skeleton), polarized in the Raman spectrum, parallel bands in the infrared; five type- A_2 frequencies (none of which are carbon skeleton frequencies), depolarized in the Raman spectrum, forbidden in the infra-red; eight type- B_1 frequencies (two of which are carbon skeleton frequencies), depolarized in the Raman spectrum, perpendicular bands in the infra-red; and nine B_2 type frequencies (three of which are carbon skeleton frequencies), depolarized in the Raman spectrum, perpendicular bands in the infra-red. The type- B_2 frequencies are symmetrical with respect to the plane of the ring. There are thus a total of 33 fundamentals, of which 9 are carbon skeleton frequencies and 24 are C-H frequencies.

A tentative assignment of the fundamentals is given at the right in Table IV. Frequencies selected as carbon skeleton fundamentals were those at 354, 373, 657, 728, 879, 895, 954, 991, and 1675 cm⁻¹. The 954-cm⁻¹ frequency, because of its great intensity in the Raman spectrum, certainly corresponds to the totally symmetrical, type A_1 , "breathing" frequency of the ring. The corresponding frequency for cyclobutane itself appears¹⁵ at 1010 cm⁻¹.

Twenty-one of the C-H frequencies were tentatively assigned; they are the ones at (782), 1029, 1059, 1070, 1155, 1167, 1197, 1248, 1395, 1415, 1425, 1490, (2770), 2826, 2860, 2902, 2921, 2952, 2985, 2985, and 3072 cm⁻¹, the ones in the parentheses being relatively less certain than the others.

Previous results¹⁶ for olefins showed that for molecules containing an *XXC*=CH₂ group Raman lines were generally observed near 1300, 1410, 1650, 2980, and 3075 cm⁻¹. Observed frequencies for the methylenecyclobutane that probably correspond to these are the ones at 1248, 1415, 1675, 2985, and 3072 cm⁻¹. The 1675-cm⁻¹ frequency is the skeleton frequency associated with the stretching of the carbon-carbon double bond.

The olefinic frequency at 2985 cm⁻¹ is believed to be coincident with a ring C-H frequency, for cyclobutane itself has a strong Raman line at 2988 cm⁻¹. Furthermore, for cyclobutane the most intense C-H Raman line is at 2962 cm⁻¹,

while for the present compound the strongest Raman line is the one at 2986 cm⁻¹. This change in the relative intensities is understandable if one supposes that the band observed near 2985 cm⁻¹ is in reality two unresolved bands, one due to the ring hydrogens, the other to the olefinic hydrogens. This is the basis for assigning two C-H fundamentals with the same frequency at 2985 cm⁻¹.

The five, type- A_2 , C-H frequencies are allowed in the Raman spectrum, but are forbidden in the infra-red spectrum. Four of these five type- A_2 frequencies can be ascribed to the four Raman lines observed at 2826, 2921, 2952, and 3072 cm⁻¹. The remaining one could be one of the supposedly coincident lines at 2985 cm⁻¹.

The remaining observed bands can be accounted for as P and R branches, binary combinations, or overtones. While the overtones A_2^n (n odd) and the binary combinations $A_1 \times A_2$ are forbidden in the infra-red, this would not affect any of the overtones or binary combinations used here, since the assigned A_2 fundamentals were all in the 3000-cm⁻¹ region. The only other binary combinations forbidden in the infra-red are the $B_1 \times B_2$ ones, and it is possible that some of the binary combinations used may have involved a type- B_1 and a type- B_2 frequency. In many cases, however, there were several binary combinations that could have been used to account for the observed band, so that the elimination of the $B_1 \times B_2$ combinations if and when the B_1 and B_2 frequencies are identified would probably not be difficult. All overtones and binary combinations are allowed in the Raman spectrum.

It seems likely that the three unassigned C-H fundamentals exist as unresolved lines, probably in the 3000-cm⁻¹ region where the resolution was poorest, although it is of course possible that some of the bands accounted for as overtones or combinations may actually be fundamentals. Precise depolarization factors of the Raman lines and high resolution studies, particularly in the 3000-cm⁻¹ region, should provide useful information for a revision of the present tentative and incomplete assignment.

ACKNOWLEDGMENTS

The Hilger, E-518 spectrograph used to secure the polarization spectrograms of spiropentane

¹⁶ Forrest F. Cleveland, J. Chem. Phys. 12, 53 (1944).

was obtained, in part, with a grant to one of us (F.F.C.) from the Permanent Science Fund of the American Academy of Arts and Sciences. The microdensitometer used in the intensity measurements was obtained with a grant (to F.F.C.) from the Penrose Fund of the American Philosophical Society. The optical parts of the two-prism spectrograph used to secure the Raman

spectrograms of 1,1-dimethylcyclopropane, 1-methylcyclobutene, and methylenecyclobutane were obtained with a grant (to F.F.C. and M.J.M.) from the Society of the Sigma Xi. The authors are grateful for this assistance.

The authors wish also to thank Dr. Verner Schomaker for supplying the sample of 1-methyl-cyclobutene.