Using a supervision signal to control an amplifier to obtain even gain with respect to wavelength

Publication number: DE19831801 (A1)
Publication date: 1999-04-29

Inventor(s): CHOI DOE-IN [KR]

Applicant(s): SAMSUNG ELECTRONICS CO LTD [KR]

Classification:

- international: H04J14/00; H01S3/13; H04B10/02; H04B10/08; H04B10/17;

H04B10/24; H04J14/02; H01S3/094; H04J14/00; H01S3/13; H04B10/02; H04B10/08; H04B10/17; H04B10/24;

H04J14/02; H01S3/094; (IPC1-7): H04J14/02; H04B10/08 **- European:** H04B10/02; H01S3/13A; H04B10/08A2R; H04B10/17A1G;

H04B10/17A2; H04J14/02B

Application number: DE19981031801 19980715 **Priority number(s):** KR19970032903 19970715

Abstract not available for DE 19831801 (A1) Abstract of corresponding document: **GB 2327309 (A)**

Wavelength division multiplexed optical amplifier controlling system and method are provided. The wavelength division multiplexed optical amplifier controlling system includes an optical exchange system for generating and interpreting a supervision channel optical signal, multiplexing the supervision channel and data channels comprised of a plurality of optical signals having different wavelengths, and transmitting and receiving the multiplexed channels and a plurality of optical amplifying portions located on a transmission path connected to the optical exchange system, for performing amplification so as to have even gain with respect to predetermined wavelength range which the data channel optical signals have according to the supervision channel optical signal information,; and inserting the state information thereof into the supervision channel when the optical exchange system requests the state information thereof. According to the present invention, since an optical filter in each wavelength for supervision in a WDM-EDFA because a supervision channel having a predetermined wavelength is used is not necessary, the structure of the WDM-EDFA becomes simpler. Therefore, it is possible to lower costs and there is no loss of optical signals which occurs by using a conventional optical demultiplexer.

FIG. 2

Also published as:

GB2327309 (A) US6271962 (B1)

KR100219719 (B1)

JP11074840 (A)

FR2766311 (A1)

more >>

Data supplied from the **esp@cenet** database — Worldwide

19 BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

Offenlegungsschrift

_m DE 198 31 801 A 1

(21) Aktenzeichen: 198 31 801.4 (22) Anmeldetag: 15. 7.98 (43) Offenlegungstag: 29. 4.99

(51) Int. CI.⁶: H 04 J 14/02 H 04 B 10/08

(31) Unionspriorität:

97-32903

15.07.97 KR

(71) Anmelder:

Samsung Electronics Co., Ltd., Suwon, Kyungki, KR

(74) Vertreter:

Grünecker, Kinkeldey, Stockmair & Schwanhäusser, Anwaltssozietät, 80538 München

(72) Erfinder:

Choi, Doe-in, Seoul/Soul, KR

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- System zur Steuerung eines optischen Wellenlängenmultiplexverstärkers und Verfahren dazu
 - Es wird ein optisches Wellenlängenmultiplexverstärkungssteuerungssystem und ein Verfahren vorgesehen. Das optische Wellenlängenmultiplexverstärkersteuerungssystem enthält ein optisches Vermittlungssystem zur Erzeugung und Auswertung eines optischen Überwachungskanalsignals, zum Multiplexen des Überwachungskanals und der Datenkanäle, die aus einer Vielzahl von optischen Signalen unterschiedlicher Wellenlängen bestehen, und zum Senden und Empfangen der gemultiplexten Kanäle; und eine Vielzahl von optischen Verstärkungsabschnitten, die einem mit dem optischen Vermittlungssystem verbundenen Übertragungspfad liegen, zur Ausführung von Verstärkung, um so entsprechend der optischen Überwachungskanalinformation einen gleichmäßigen Vestärkungsfaktor hinsichtlich des vorbestimmten Wellenlängenbereichs zu haben, welchen die optischen Datenkanalsignale belegen, und zum Einfügen seiner Zustandsinformation in den Überwachungskanal, wenn das optische Vermittlungssystem dessen Zustandsinformation anfordert. Da nach der vorliegenden Erfindung ein optisches Filter in jeder Wellenlänge für die Überwachung in einem WDM-EDFA nicht erforderlich ist, weil ein Überwachungskanal mit einer vorbestimmten Wellenlänge benutzt wird, wird die Struktur des WDM-EDFA viel einfacher. Deshalb ist es möglich, die Kosten zu senken, und es tritt kein Verlust beim optischen Signal auf, der sonst bei Benutzung eines konventionellen optischen Demultiplexers vorkommt.

1

Beschreibung

Hintergrund der Erfindung

1. Feld der Erfindung

Die vorliegende Erfindung bezieht sich auf ein System zur Steuerung eines optischen Wellenlängenmultiplexverstärkers und auf ein Verfahren dazu, und besonders auf ein System zur Steuerung eines optischen Wellenlängenmultiplexverstärkers für die Überwachung des Zustands des optischen Multiplexers und für die Steuerung eines Verstärkungsfaktors unter Benutzung eines Überwachungskanals und auf ein Verfahren für seine Steuerung.

2. Beschreibung des Stands der Technik

Mit der Entwicklung des Erbium-dotierten Faserverstärkers, eines Typs von optischem Verstärker, wurde ein gewaltiges Wachstum auf dem Gebiet der optischen Übertragung 20 erreicht. Ebenfalls kam mit der Entwicklung eines Wellenlängenmultiplexsystems, das sowohl gleichzeitig vier bis sechzehn Kanäle als auch einen einzigen Kanal übertragen kann, die Entwicklung eines Wellenlängenmultiplexfaserverstärkers (WDM-EDFA, wavelength division multiplexed 25 erbium doped fiber amplifier).

Allgemein muß beim WDM-EDFA der Verstärkungsfaktor gleichmäßig in jeder Wellenlänge eingehalten werden, da mehr als vier Kanäle gleichmäßig und gleichzeitig verstärkt werden müssen, anders als im Fall eines einzigen Ka- 30 nals, und der Strom der Pumplaserdiode muß gesteuert werden, damit eine nur geringe Veränderung des Verstärkungsfaktors entsprechend der Veränderung der Anzahl der Kanäle (Hinzufügen/Weglassen) auftritt.

In einem konventionellen optischen Verstärkungssteue- 35 rungssystem wird der Verstärkungsfaktor gesteuert durch Ausführen einer optischen Filterung jeder Wellenlänge oder durch Auslesen der von einem Überwachungskanal an eine Vermittlungsstelle oder eine Auffrischverstärkerstelle gesendete Kanalinformation. Jedoch wird die Struktur kompli- 40 ziert, um das Ausfiltern jeder Wellenlänge auszuführen. Dementsprechend wachsen unvermeidbar die Kosten, und die Ausmaße des WDM-EDFA wachsen ebenfalls. Auch gibt es ein technisches Problem dadurch, daß die Filterung korrekt bei einem Kanalabstand von 0,8 nm durchgeführt 45 werden sollte.

Um das obige Problem zu lösen, wird der mit den Datenkanälen gemultiplexte Überwachungskanal zur selben Zeit durch einen optischen Teiler herausgetrennt. Der Überwachungskanal wird aus dem herausgetrennten 10% des Si- 50 gnals optisch herausgefiltert und dann untersucht. Jedoch tritt in einem solchen Fall ein Signalverlust von 10% auf, und es ist sehr schwierig, die Information über den Zustand des WDM-EDFA auf den Überwachungskanal aufzubringen. Es wird nämlich die Synchronisation zwischen dem 55 WDM-EDFA und einem Vermittlungssystem, einem Multiplexer (MUX) und einem Demultiplexer (DEMUX) erforderlich.

Zusammenfassung der Erfindung

Um die obigen Probleme zu lösen, ist es ein Ziel der vorliegenden Erfindung, ein Steuerungssystem für einen optischen Wellenlängenmultiplexverstärker vorzusehen, durch das es möglich wird, den Zustand eines optischen Verstär- 65 multiplexverstärker von Fig. 1 ist; kers über einen Überwachungskanal an eine Vermittlungsstelle oder eine Auffrischverstärkerstelle zu senden und den Verstärkungsfaktor eines jeden optischen Verstärkers zu

steuern.

Es ist ein anderes Ziel der vorliegenden Erfindung, ein System zur Steuerung eines optischen Wellenlängenmultiplexverstärkers vorzusehen, durch das es möglich ist, Fernüberwachung und -steuerung durch Verbinden benachbarter optischer Verstärker über einen kürzeren Pfad zu bewirken, und ein Verfahren dazu vorzuschen.

Um das erste Ziel zu erreichen, wird ein System zur Steuerung eines optischen Wellenlängenmultiplexverstärkers vorgesehen, das ein optisches Vermittlungssystem enthält für die Erzeugung und Auswertung eines optischen Überwachungskanalsignals, für das Multiplexen des Überwachungskanals und der Datenkanäle, die eine Vielzahl optischer Signale mit unterschiedlichen Wellenlängen enthalten, und für das Senden und Empfangen der gemultiplexten Kanäle und einer Vielzahl von optischen Verstärkerabschnitten, die auf einem mit dem optischen Vermittlungssystem verbundenen Übertragungspfad liegen, für die Ausführung der Verstärkung derart, daß bezüglich eines vorbestimmten Wellenlängenbereichs ein gleichmäßiger Verstärkungsfaktor vorliegt, welchen das optische Datenkanalsignal entsprechend der optischen Überwachungskanalsignalinformation hat, und für das Einfügen der Zustandsinformation darüber in den Überwachungskanal, wenn das optische Vermittlungssystem die Zustandsinformation darüber anfor-

Um das zweite Ziel zu erreichen, wird ein Verfahren für die Steuerung und Überwachung des optischen Verstärkerabschnitts in dem optischen Vermittlungssystem in einem optischen Kommunikationssystem vorgesehen, in dem das optische Vermittlungssystem und der optische Verstärkungsabschnitt mit dem optischen Übertragungspfad verbunden sind, unter Benutzung eines Überwachungskanals, das die Schritte enthält des (a) Multiplexens des optischen Überwachungskanalsignals mit einer vorbestimmten Form und eines optischen Datenkanalsignals, das aus optischen Signalen fit unterschiedlichen Wellenlängen in dem optischen Vermittlungssystem besteht, und der Übertragung der gemultiplexten optischen Signale, (b) Trennens des Überwachungskanals von den in Schritt (a) gemultiplexten, optischen Signalen im optischen Verstärker und Verstärkens der optischen Datenkanalsignale entsprechend vorbestimmter Steuerungsinformation, die in dem abgetrennten Überwachungskanal enthalten ist, (c) Umwandelns der Zustandsinformation des optischen Verstärkerabschnitts in ein optisches Signal, des Aufbringens des umgewandelten Signals auf den Überwachungskanal, des Kombinierens des Überwachungskanals mit dem in Schritt (b) verstärkten Datenkanals, und des Übertragens des Kombinationsergebnisses, und (d) des Demultiplexens des optischen Signals im optischen Vermittlungssystem und Prüfens des Zustands des optischen Verstärkerabschnitts durch Auswerten des optischen Überwachungskanalsignals in dem gedemultiplexten Signal.

Kurze Beschreibung der Zeichnungen

Die obigen Ziele und Vorteile der vorliegenden Erfindung werden offensichtlicher werden durch die detaillierte Be-60 schreibung einer bevorzugten Ausführungsform davon mit Bezug auf die angefügten Zeichnungen, in denen:

Fig. 1 ein Blockdiagramm eines Steuerungssystems für einen optischen Wellenlängenmultiplexverstärker ist;

Fig. 2 ein Blockdiagramm eines optischen Wellenlängen-

Fig. 3 ein Flußdiagramm eines Verfahrens für die Steuerung eines optischen Wellenlängenmultiplexverstärkers nach der vorliegenden Erfindung ist; und

Fig. 4 ein Protokollformat für die Steuerung eines optischen Wellenlängenmultiplexverstärkers ist.

Beschreibung der bevorzugten Ausführungsformen

Im folgenden wird die vorliegende Erfindung in größerem Detail mit Bezug auf die beigefügten Zeichnungen beschrieben. Fig. 1 ist ein Blockdiagramm eines Steuerungssystems für einen optischen Wellenlängenmultiplexverstärker nach der vorliegenden Erfindung. Das in Fig. 1 gezeigte Steuerungssystem enthält ein erstes optisches Vermittlungssystem 100, die ersten, zweiten dritten und vierten WDM-EDFA 110, 120, 130 und 140 und ein zweites optisches Vermittlungssystem 150. Sie sind miteinander über bidirektionale optische Übertragungsleitungen verbunden.

In einem allgemeinen optischen Kommunikationssystem wird das erste optische Vermittlungssystem 100 vom zweiten optischen Vermittlungssystem 150 durch eine Entfernung von etwa 200 km getrennt. Die ersten und zweiten optischen Vermittlungssysteme multiplexen oder demultiple- 20 xen acht Datenkanäle mit unterschiedlichen Wellenlängen und einen Überwachungskanal, erzeugen ein zu multiplexendes Überwachungskanalsignal und bewerten ein geteiltes Überwachungskanalsignal. Die Vielzahl der ersten, zweiten, dritten und vierten WDM-EDFA 110, 120, 130 und 25 140 betreiben die Signalübertragung bidirektional zwischen den ersten und dem zweiten optischen Vermittlungssystem 100 und 150 und steuern den Betrag dessen Verstärkung unter Bezug auf die Daten des Überwachungskanals. Auch dann, wenn eine Anforderung vom ersten optischen Ver- 30 mittlungssystem 100 oder vom zweiten optischen Vermittlungssystem 150 vorliegt, konstruieren die WDM-EDFA dessen Überwachungskanalsignal und übertragen es. Da der erste und der dritte WDM-EDFA 110 und 130 und der zweite und der vierte WDM-EDFA 120 und 140 miteinan- 35 der verbunden sind, um den Signalpfad zu verkürzen, kann dazu ein optisches Vermittlungssystem alle Verstärkerabschnitte bidirektional überwachen und steuern.

Die ersten und zweiten optischen Vermittlungssysteme 100 bzw. 150 enthalten Überwachungs- und Steuerungsabschnitte 102 und 152, Multiplexer (MUX) 104 bzw. 154 und Demultiplexer (DEMUX) 106 bzw. 156.

Die Multiplexer (MUX) 104 und 154 multiplexen die Datenkanäle mit acht unterschiedlichen Wellenlängen und einen Überwachungskanal mit einer Wellenlänge, die kürzer 45 als die der Datenkanäle ist. Die Demultiplexer (DEMUX) 106 und 156 demultiplexen die gemultiplexten optischen Signale. Die Überwachungs- und Steuerungsabschnitte 102 und 152 überwachen die jeweiligen, mit den Überwachungskanälen der MUX 104 und 154 und der DEMUX 106 und 156 verbundenen WDM-EDFA oder richten die Überwachungskanäle ein, um die Verstärkungsfaktoren der jeweiligen WDM-EDFA zu steuern.

Fig. 2 ist ein Blockdiagramm der WDM-EDFA 110, 120, 130 und 140. Jeder WDM-EDFA nach Fig. 2 enthält ein optisches Filter 200, eine mit Erbium dotierte Faser (EDF) 210 als einen optischen Verstärker, erste und zweite Pumplichtquellen 220 und 230 als Treiberabschnitte der EDF 210, eine Steuerung 240 mit einer Mikroprozessoreinheit (MPU) und einen optischen Koppler 250.

Das optische Filter **200** trennt den Überwachungskanal aus dem gemultiplexten optischen Signal heraus und überträgt die optischen Signale der verbleibenden Datenkanäle. Die EDF verstärkt die übertragenen optischen Signale der verbleibenden Datenkanäle. Die ersten und zweiten Pumplichtquellen **220** und **230** erzeugen Pumplicht für die Verstärkung des optischen Datenkanalsignals zum EDF **210**. Die MPU-Steuerung **240** wandelt das durch das optische

Filter 200 herausgetrennte optische Überwachungskanalsignal in ein elektrisches Signal um und erhält die für die Verstärkung durch die EDF 210 erforderlichen Daten. Ein Strom wird den ersten und zweiten Pumplichtquellen 220 und 230 entsprechend den Daten zugeführt, und verschieden Arten von Zustandsinformation hinsichtlich der EDF 210 werden in optische Signale umgewandelt und ausgegeben. Der optische Koppler 250 vereinigt die durch die EDF 210 verstärkten optischen Datenkanalsignale mit dem optischen Überwachungskanalsignal der MPU-Steuerung 240 und überträgt das Vereinigungsergebnis.

Die MPU-Steuerung **240** enthält einen opto-elektrischen Wandler **242** wie etwa eine Photodiode, eine MPU **244** und einen elektrooptischen Wandler **246** wie etwa eine verteilte, rückgeführte Laserdiode.

Der opto-elektrische Wandler 242 wandelt das optische Überwachungssignal in ein elektrisches Signal um. Die MPU 244 wertet das in das elektrische Signal gewandelte optische Überwachungskanalsignal aus, steuert den Voreinstellungsstrom der ersten und zweiten Pumplichtquellen 220 und 230 und bildet verschiedene Arten von Zustandsinformation der ersten und zweiten Pumplichtquellen 220 und 230 als Überwachungskanaldaten. Der elektrooptische Wandler 246 wandelt die Überwachungskanaldaten der MPU 244 in ein optisches Signal um und gibt das Umwandlungsergebnis aus.

Der Betrieb wird mit Bezug auf die **Fig.** 3 und 4 beschrieben. **Fig.** 3 ist ein Flußdiagramm zum Veranschaulichen eines Verfahrens zur Steuerung des optischen Wellenlängenmultiplexverstärkers nach der vorliegenden Erfindung. **Fig.** 4 ist ein Protokollformat zur Steuerung der WDM-EDFA.

Identifizierungen (ID) werden an das erste und zweite optische Vermittlungssystem 100 und 150 und die jeweiligen WDM-EDFA **110, 120, 130** und **140** vergeben. Die Überwachungskanaldaten mit dem in Fig. 4 gezeigten Protokollformat werden in dem MUX 104 oder 154 eines Übertragungsteils der ersten und zweiten optischen Vermittlungssysteme 100 und 150 erzeugt (Schritt 300). Das Protokoll hat ein Format mit einer Empfangsstellen-ID 400 von acht Bit, einer Sendestellen-ID 402 von acht Bit, einem externen Steuerungsmerkers 404 von einem Bit, einem Feld 406 für das Einfügen/Weglassen eines Prüfkanals von einem Bit, einem externen Überwachungsanforderungsmerker 408 von einem Bit, einem ersten Pumplichtquellenvoreinstellungsstrom 410, einem zweiten Pumplichtquellenvoreinstellungsstrom 412, der Temperatur 414 der ersten Pumplichtquelle von acht Bit, der Temperatur 416 der zweiten Pumplichtquelle von acht Bit und einem WDM-EDFA-Alarmfeld 418 von sechs Bit.

Die Sende- und Empfangsstellen-ID 400 und 402 zeigen anrufende und angerufene ID. Der externe Steuerungsmerker 404 wird durch das optische Vermittlungssystem auf 1 gesetzt, wenn der Verstärkungsfaktor eines beliebigen WDM-EDFA gesteuert werden soll. Das Feld 406 für das Einfügen/Weglassen eines Prüfkanals zeigt das Vorliegen des bezeichneten Kanals unter den acht Kanälen an. Der externe Überwachungsanforderungsmerker 408 zeigt an, ob es eine Überwachungsanforderung von dem optischen Vermittlungssystem gibt. Wenn es eine Überwachungsanforderung von dem optischen Vermittlungssystem gibt, wird der externe Überwachungsanforderungsmerker auf 1 gesetzt. Die ersten und zweiten Pumplichtquellenvoreinstellungsströme 410 und 412 zeigen die Voreinstellungsstromwerte der von der Außenseite gesetzten ersten und zweiten Pumplichtquellen, um den Verstärkungsfaktor der WDM-EDFA zu steuern. Die Temperaturen der ersten und zweiten Pumplichtquelle zeigen die Temperaturen der ersten und zweiten Pumplichtquelle, die die WDM-EDFA aufnimmt, um zu

überwachen, ob die WDM-EDFA von außen verstärkt wird. Das WDM-EDFA-Alarmfeld 418 zeigt an, ob es einen Eingabe- oder Ausgabestromversorgungsfehler in dem WDM-EDFA, einen Stromversorgungsfehler der ersten und zweiten Pumplichtquellen und einen Temperaturfühlerfehler der ersten und zweiten Pumplichtquellen gibt.

5

Die in den jeweiligen WDM-EDFA erzeugten Überwachungskanäle werden mit acht Datenkanälen von den MUX 104 oder 154 gemultiplext und werden mit hoher Geschwindigkeit übertragen (Schritt 302). In den jeweiligen WDM-EDFA 110, 120, 130 und 140 trennt das optische Filter 200 auf dem optischen Übertragungspfad das optische Überwachungskanalsignal von den optischen Multiplexsignalen ab. Der opto-elektrische Wandler 242 wandelt das optische Überwachungskanalsignal in ein elektrisches Signal um 15 (Schritt 304). Wenn eine Alarmvorrichtung (nicht gezeigt) mit dem Ausgabeanschluß des opto-elektrischen Wandlers 242 als Überwachung des optischen Übertragungsweges verbunden ist, dann wird dazu alarmiert, wenn die Ausgabeleistung des opto-elektrischen Wandlers 242 nicht niedriger 20 als ein Schwellwert ist, und es ist möglich zu erkennen, ob die optische Übertragungsstrecke normal arbeitet.

Die MPU 244 prüft jedes Feld des Protokollformats aus dem in Schritt 304 umgewandelten elektrischen Signal. Die Prüfung wird wie folgt durchgeführt. Wenn der externe 25 Steuerungsmerker 404 auf 1 gesetzt ist (Schritt 306) und die Empfangs-ID 400 gleich der ID des WDM-EDFA ist, zu der die MPU 244 gehört, (Schritt 308), dann werden die Werte der Voreinstellungsstromfelder 410 und 412 der ersten und zweiten Pumplichtquellen als Voreinstellungsstromwerte 30 den ersten und zweiten Pumplichtquellen 220 und 230 übergeben (Schritt 310). Wenn der externe Steuerungsmerker 404 auf 0 gesetzt ist oder die Empfangs-ID 400 ungleich der ID seines WDM-EDFA ist, dann werden die in der MPU 244 bestimmten Stromwerte als Voreinstellungsstromwerte 35 ten und zu reparieren. den ersten und zweiten Pumplichtquellen 220 und 230 übergeben (Schritt 312). Die ersten und zweiten Pumplichtquellen 220 und 230 erzeugen Pumplicht entsprechend den übergebenen Stromwerten. Die EDF 210 verstärkt das optische Datenkanalsignal, das das optische Filter 200 passiert hat, 40 um so durch das Pumplicht einen gleichmäßigen Verstärkungsfaktor bezüglich jeder Wellenlänge zu erreichen.

Nach der Verstärkung wird der externe Überwachungsanforderungsmerker des Protokollformats geprüft (Schritt 313). Wenn nämlich der externe Überwachungsanforde- 45 rungsmerker 408 auf 1 gesetzt ist und die Empfangs-ID 400 gleich der ID des WDM-EDFA ist, zu der die MPU 244 gehört (Schritt 314), dann wird die Zustandsinformation dieses WDM-EDFA, d. h. die Werte der Temperaturfelder 414 und 416 der ersten und zweiten Pumplichtquellen und das 50 WDM-EDFA-Alarmfeld 418 eingesetzt, und die ID der Stelle, die die externe Überwachung anfordert, und die ID dieser WDM-EDFA werden in das Empfangs-ID-Feld 400 bzw. in das Sende-ID-Feld 402 eingesetzt (Schritt 316). Der elektro-optische Wandler 246 wandelt die eingesetzten 55 Überwachungskanaldaten in ein optisches Signal um. Wenn der externe Überwachungsmerker 408 auf 0 gesetzt ist oder die Empfangs-ID 400 ungleich der ID dieser WDM-EDFA ist, werden die oben genannten Protokolldaten von dem elektro-optischen Wandler 246 unverändert in das optische 60 Signal umgewandelt.

Der optische Koppler **250** vereinigt den in ein optisches Signal umgewandelten Überwachungskanal mit dem durch die EDF **210** verstärkten optischen Datenkanalsignal. Wenn es mehr WDM-EDFA auf dem optischen Pfad gibt, wird der oben beschriebene Prozeß wiederholt. Das optische Datenkanalsignal wird verstärkt, und das optische Überwachungskanalsignal wird zu dem optischen Datenkanalsignal hinzu-

gefügt und erreicht das optische Vermittlungssystem 100 oder 150.

Der DEMUX 106 oder 156 in dem optischen Vermittlungssystem 100 oder 150 demultiplext das optische gemultiplexte Datenkanalsignal und optische Überwachungskanalsignal. Der mit dem Überwachungskanal verbundene Überwachungssteuerungsabschnitt 102 oder 152 wertet das optische Überwachungskanalsignal aus und überwacht den Zustand eines jeden WDM-EDFA (Schritt 320) Nach der vorliegenden Erfindung wird die Struktur des WDM-EDFA durch die Benutzung des Überwachungskanals einfacher, da ein optisches Filter für jede Wellenlänge für die Überwachung in den WDM-EDFA nicht erforderlich ist. Deshalb ist es möglich, die Kosten zu senken, und es tritt kein Verlust beim optischen Signal auf, was bei Benutzung eines konventionellen optischen Demultiplexer geschieht. Da durch die Abtrennung nur des Überwachungskanals, Verarbeitung des Überwachungskanals, Umwandlung des Überwachungskanals in ein optisches Signal und Einschleusung des umgewandelten optischen Signals in den optischen Übertragungsweg eine Verstärkung im Überwachungskanal nicht erforderlich ist, ist es möglich die Last der Angleichung des Verstärkungsfaktors des Überwachungskanalbands und des Datenkanalbands in dem WDM-EDFA zu verringern und leicht die Zustandsinformation des WDM-EDFA in den optischen Übertragungsweg einzubringen. Dementsprechend kann Fernüberwachung und Fernsteuerung durchgeführt werden. Da die Verstärkungssteuerung durch Aussenden einer Kanaleinfüge-/-weglaßinformation durchgeführt wird, ist es auch möglich, den Zeitfehler der Verstärkungssteuerung aufgrund des Kanalwechsels durch das optische Vermittlungssystem zu kompensieren. Dementsprechend ist es leichter, in einem optischen Kommunikationssystem während des Betriebs die WDM-EDFA zu überwachen, zu war-

Patentansprüche

- 1. Optisches Wellenlängenmultiplexverstärkersteuerungssystem, das enthält:
- ein optisches Vermittlungssystem zur Erzeugung und Auswertung eines optischen Überwachungskanalsignals, zum Multiplexen des Überwachungskanals und der Datenkanäle, die aus einer Vielzahl von optischen Signalen unterschiedlicher Wellenlängen bestehen, und zum Senden und Empfangen der gemultiplexten Kanäle; und
- eine Vielzahl von optischen Verstärkungsabschnitten, die einem mit dem optischen Vermittlungssystem verbundenen Übertragungspfad liegen, zur Ausführung von Verstärkung, um so entsprechend der optischen Überwachungskanalinformation einen gleichmäßigen Verstärkungsfaktor hinsichtlich des vorbestimmten Wellenlängenbereichs zu haben, welchen die optischen Datenkanalsignale belegen, und zum Einfügen seiner Zustandsinformation in den Überwachungskanal, wenn das optische Vermittlungssystem dessen Zustandsinformation anfordert.
- 2. Optisches Wellenlängenmultiplexverstärkersteuerungssystem nach Anspruch 1, wobei das optische Vermittlungssystem enthält:
- einen Multiplexer zum Multiplexen der aus den optischen Signalen mit unterschiedlichen Wellenlänge bestehenden Datenkanälen und des Überwachungskanale:
- einen Demultiplexer zum Demultiplexen der gemultiplexten optischen Signals in optische Datenkanalsignale mit unterschiedlichen Wellenlängen und den

6

Überwachungskanal; und

eine Überwachungssteuerung zur Erzeugung des optischen Überwachungskanalsignals und zum Auswerten des von dem Demultiplexer gedemultiplexten optischen Überwachungskanalsignals.

3. Optisches Wellenlängenmultiplexverstärkersteuerungssystem nach Anspruch 2, wobei der optische Verstärkungsabschnitt enthält:

ein optisches Filter zur Übertragung des optischen Datenkanalsignals aus dem ausgegebenen optischen Si- 10 gnal des Multiplexers und zum Heraustrennen des optischen Überwachungskanalsignals;

einen optischen Verstärker zur Verstärkung des optischen Datenkanalsignals, das das optische Filter passiert hat:

einen Treiberabschnitt zum Steuern des Verstärkungsfaktors des optischen Verstärkers;

einen Steuerungsabschnitt zur Umwandlung des durch das optische Filter herausgetrennten optischen Überwachungskanalsignals in ein elektrisches Signal, zur 20 Steuerung des Treiberabschnitts, um so einen gleichmäßigen Verstärkungsfaktor bezüglich jeder Datenkanalwellenlänge unter Benutzung der in dem elektrischen Signal enthaltenen Daten zu erreichen, und zum Umwandeln der Zustandsinformation des Treiberabschnitts in ein optisches Signal, wenn eine Anforderung des Überwachungssteuerungsabschnitts vorliegt; und

einen optischen Koppler zur Vereinigung des optischen, durch den optischen Verstärker verstärkten Da- 30 tenkanalsignals mit dem optischen Überwachungskanalsignal, das von dem Steuerungsabschnitt ausgegeben wurde.

- 4. Wellenlängenmultiplexverstärkersteuerungssystem nach Anspruch 3, wobei der optische Verstärker ein mit 35 Erbium dotierter Faserverstärker ist.
- 5. Wellenlängenmultiplexverstärkersteuerungssystem nach Anspruch 3, wobei der Treiberabschnitt zwei Laserdioden enthält, die Pumplicht entsprechend den Stromwerten erzeugen, welche in den durch den Steuerungsabschnitt in ein elektrisches Signal umgewandelten Daten enthalten sind.
- 6. Wellenlängenmultiplexverstärkersteuerungssystem nach Anspruch 3, wobei der Steuerungsabschnitt enthält:

einen opto-elektrischen Wandler zur Umwandlung des optischen, durch das optische Filter herausgetrennten Überwachungskanalsignals in ein elektrisches Signal; einen Mikroprozessor zur Auswertung des aus gegebenen elektrischen Signals des opto-elektrischen Wandlers und zur Ausgabe als ein Steuerungssignal oder zur Bildung von Daten, die für die Überwachung erforderlich sind, und zur Ausgabe der Daten; und

einen elektro-optischen Wandler zur Umwandlung vorbestimmter, von dem Mikroprozessor aus gegebenen 55 Daten in ein optisches Signal.

7. Optisches Wellenlängenmultiplexverstärkersteuerungssystem nach Anspruch 6, das ferner eine optische Überwachungspfadüberwachung enthält, die mit dem elektro-optischen Wandler verbunden ist, und die aktiviert wird, wenn die durch den elektro-optischen Wandler umgewandelte elektrische Signalenergie nicht kleiner als ein vorbestimmter Wert ist, zur Anzeige, daß der optische Übertragungspfad normal arbeitet.

8. Verfahren zur Steuerung und Überwachung des optischen Verstärkungsabschnitts in dem optischen Vermittlungssystem in einem optischen Kommunikationssystem, in dem das optische Vermittlungssystem und

der optische Verstärkungsabschnitt mit dem optischen Übertragungspfad verbunden sind, unter Benutzung eines Überwachungskanals, und das Verfahren enthält die Schritte:

8

- (a) Multiplexen des optischen Überwachungskanalsignals mit einem vorbestimmten Format und einem optischen Datenkanalsignal, das aus optischen Signalen unterschiedlicher Wellenlängen in dem optischen Vermittlungssystem besteht, und Übertragen des optischen Multiplexsignals;
- (b) Heraustrennen des Überwachungssignals aus dem in Schritt (a) gemultiplexten, optischen Signal und Verstärken des optischen Datenkanalsignals entsprechend der vorbestimmten Steuerungsinformation, die in dem herausgetrennten Überwachungskanal enthalten ist;
- (c) Umwandeln der Zustandsinformation des optischen Verstärkungsabschnitts in ein optisches Signal, Aufbringen des umgewandelten optischen Signals in den Überwachungskanal, Vereinigen des Überwachungskanals mit dem in Schritt (b) verstärkten Signals und Übertragen des Vereinigungsergebnisses; und
- (d) Demultiplexen des optischen Signals im optischen Vermittlungssystem und Prüfen des Zustands des optischen Verstärkungsabschnitts durch Auswerten des optischen Überwachungskanalsignals in dem gedemultiplexten Signal.
- 9. Verfahren nach Anspruch 8, wobei es eine Vielzahl von optischen Verstärkungsabschnitten gibt, die jeweils die Schritte (b) und (c) wiederholen.
- 10. Verfahren nach Anspruch 8, wobei dann, wenn das optische Vermittlungssystem den Verstärkungsabschnitt nicht überwacht sondern steuert, die Überwachungskanaldaten enthalten:

ein Sende-ID-Feld, das die ID einer Vorrichtung zur Bildung von Überwachungskanaldaten zeigt;

ein Empfangs-ID-Feld, das die ID einer Vorrichtung zeigt, welche ein Ziel des gebildeten Überwachungskanalformats wird;

ein Kanaleinfüge- oder -weglaßprüffeld, das den hinzugefügten oder ausgelassenen Kanal mit unterschiedlicher Wellenform in dem Datenkanal zeigt;

ein externer Steuerungsmerker, der gesetzt wird, um anzuzeigen, daß das optische Vermittlungssystem den Verstärkungsfaktor des optischen Verstärkungsabschnittes steuert;

einen externen Überwachungsanforderungsmerker, der anzeigt, daß das optische Überwachungssystem den Zustand des optischen Verstärkungsabschnittes nicht überwacht; und

zwei Felder mit einem vorbestimmtem Wert und einer vorbestimmten Anzahl von Bit für die Steuerung des Verstärkungsfaktors des Verstärkungsabschnittes.

11. Verfahren nach Anspruch 8, wobei dann, wenn das optische Vermittlungssystem den Verstärkungsabschnitt nicht steuert sondern überwacht, die Überwachungskanaldaten enthalten:

ein Sende-ID-Feld, das die ID einer Vorrichtung zur Bildung von Überwachungskanaldaten zeigt;

ein Empfangs-ID-Feld, das die ID einer Vorrichtung zeigt, welche ein Ziel des gebildeten Überwachungskanalformats wird;

ein Kanaleinfüge- oder -weglaßprüffeld, das den hinzugefügten oder ausgelassenen Kanal mit unterschiedlicher Wellenform in dem Datenkanal zeigt;

ein externer Steuerungsmerker, der gesetzt wird, um anzuzeigen, daß das optische Vermittlungssystem den

L-45 10

Verstärkungsfaktor des optischen Verstärkungsabschnittes nicht steuert;

9

einen externen Überwachungsanforderungsmerker, der anzeigt, daß das optische Überwachungssystem den Zustand des optischen Verstärkungsabschnittes überwacht: und

zwei Felder mit der Zustandsinformation des optischen Verstärkungsabschnittes und einer vorbestimmten Anzahl von Bit.

- 12. Verfahren nach Anspruch 11, wobei der optische 10 Verstärkungsabschnitt seinen Verstärkungsfaktor steuert
- 13. Verfahren nach Anspruch 8, wobei dann, wenn das optische Vermittlungssystem den Verstärkungsabschnitt steuert und überwacht, die Überwachungska- 15 naldaten enthalten:

ein Sende-ID-Feld, das die ID einer Vorrichtung zur Bildung von Überwachungskanaldaten zeigt;

ein Empfangs-ID-Feld, das die ID einer Vorrichtung zeigt, welche ein Ziel des gebildeten Überwachungska- 20 nalformats wird;

ein Kanaleinfüge- oder -weglaßprüffeld, das den hinzugefügten oder ausgelassenen Kanal mit unterschiedlicher Wellenform in dem Datenkanal zeigt;

einen externer Steuerungsmerker, der gesetzt wird, um 25 anzuzeigen, daß das optische Vermittlungssystem den Verstärkungsfaktor des optischen Verstärkungsabschnittes steuert;

einen externen Überwachungsanforderungsmerker, der anzeigt, daß das optische Überwachungssystem den 30 Zustand des optischen Verstärkungsabschnittes überwacht:

zwei Felder mit einem Wert zur Steuerung des Verstärkungsfaktors des optischen Verstärkungsabschnittes und einer vorbestimmten Anzahl von Bit; und zwei Felder mit der Zustandsinformation des optischen Verstärkungsabschnittes und einer vorbestimmten Anzahl von Bit.

14. Verfahren nach Anspruch 11 bis 13, das ferner ein Alarmfeld mit einer vorbestimmten Anzahl von Bit 40 enthält, welches anzeigt, ob die erforderlichen Werte dem optischen Verstärkungsabschnitt zugeführt wurden und ob der Zustand des optischen Verstärkungsabschnittes erkannt wurde.

Hierzu 4 Seite(n) Zeichnungen

45

55

50

60

FIG. 1

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 198 31 801 A1 H 04 J 14/02**29. April 1999

FIG. 2

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 198 31 801 A1 H 04 J 14/02**29. April 1999

FIG. 3

Nummer: Int. Cl.⁶: Offenlegungstag:

DE 198 31 801 A1 H 04 J 14/0229. April 1999

FIG. 4

