Classification Trees

Quarto

Quarto enables you to weave together content and executable code into a finished presentation. To learn more about Quarto presentations see https://quarto.org/docs/presentations/.

Bullets

When you click the **Render** button a document will be generated that includes:

- Content authored with markdown
- Output from executable code

Code

When you click the **Render** button a presentation will be generated that includes both content and the output of embedded code. You can embed code like this:

[1] 2

Reading Materials

Max Kuhn. Chapter 14. Section 14.1

Decision Boundary in Classification

Classification is a process of finding the decision boundary that

Decision Boundary in Classification

Decision Tree

- ▶ Decision Tree for classification is **Classification Tree**
- Decision Tree for Regression is Regression Tree

Example of Classification Tree

Decision Tree: The Obama-Clinton Divide

Classification Tree

In two dimension, classification Tree's decision boundary is a collection of horizontal and vertical line

Data

➤ The tree starts by a vertical or horizontal line that best seperate the data

One way to seperate the reds and greens

One way to seperate the reds and greens

One way to seperate the reds and greens

Question

Question: Which is the best split?

Partial Answer

- ▶ It looks like Split 1 and 3 are better than Split 2 since it misclassifies less
- ▶ Which is the better split between Split 1 and Split 3?
- We need to find a way to measure how good a split is

Impurity Measure

- ➤ The impurity of a node (a node = a subset of the data or the original data) measure how uncertain the node is.
- ➤ For example, node A with 50% reds and 50% greens would be more uncertained than node B with 90% reds and 10% greens. Thus, node A has greater impurity than node B.
- ► More uncertained = Greater impurity

Impurity Measure

A split that *gains* more impurity is the **better split**!

Impurity Gain

$$IG = I_{parent} - \frac{N_{left}}{N} I_{left} - \frac{N_{right}}{N} I_{right}$$

- ► IG is Impurity Gain of the split
- $ightharpoonup N_{left}$ and N_{right} are the number of points in the left child node and right child node, respectively.
- $N_{left} + N_{right} = N$

Impurity Measure

Impurity can be measured by: classification error, Gini Index, and Entropy.

Impurity Measure

Let p_0 and p_1 be the proportion of class 0 and class 1 in a node.

By Classification Error:
$$I=min\{p_0,p_1\}$$
 By Gini Index: $I=1-p_0^2-p_1^2$ By Entropy: $I=-p_0\log_2(p_0)-p_1\log_2(p_1)$

Calculation

Let's calculate the impurity gain of the three splits to decide which split is the best

IG By Classification Error

Let green and red be class 0 and class 1, respectively.

For Split 1: $N=5, N_{left}=1, N_{right}=4$

- Node parent, A: $p_0=\frac{2}{5}, p_1=\frac{3}{5}.$ Thus, $I_A=\min(\frac{2}{5},\frac{3}{5})=\frac{2}{5}$
- Node child left, L: $p_0=\frac{0}{1}=0, p_1=\frac{1}{1}=1.$ Thus, $I_L=\min(0,1)=0$
- Node child right, R: $p_0=\frac{3}{4}, p_1=\frac{1}{4}.$ Thus, $I_R=\min(\frac{3}{4},\frac{1}{4})=\frac{1}{4}$
- Impurity Gain of Split 1:

$$IG = \frac{2}{5} - \frac{1}{5} \cdot 0 - \frac{4}{5} \cdot \frac{1}{4} = 0.2$$

IG By Classification Error

For Split 2: $N=5, N_{left}=2, N_{right}=3$

- Node parent, A: $p_0=\frac{2}{5}, p_1=\frac{3}{5}.$ Thus, $I_A=\min(\frac{2}{5},\frac{3}{5})=\frac{2}{5}$
- Node child left, L: $p_0=\frac{1}{2}, p_1=\frac{1}{2}.$ Thus, $I_L=\frac{1}{2}$
- Node child right, R: $p_0=\frac{2}{3}, p_1=\frac{1}{3}.$ Thus, $I_R=\min(\frac{2}{3},\frac{1}{3})=\frac{1}{3}$
- Impurity Gain of Split 2:

$$IG = \frac{2}{5} - \frac{2}{5} \cdot \frac{1}{2} - \frac{3}{5} \cdot \frac{1}{3} = 0$$

IG By Classification Error

For Split 3: $N = 5, N_{left} = 3, N_{right} = 2$

- Node parent, A: $p_0 = \frac{2}{5}, p_1 = \frac{3}{5}$. Thus, $I_A = \min(\frac{2}{5}, \frac{3}{5}) = \frac{2}{5}$
- Node *child left*, L: $p_0 = \frac{1}{3}, p_1 = \frac{2}{3}$. Thus, $I_A = \min(\frac{1}{2}, \frac{2}{3}) = \frac{1}{2}$
- Node child right, R: $p_0=\frac{2}{2}, p_1=\frac{0}{2}.$ Thus, $I_R=\min(1,0)=0$
- Impurity Gain of Split 3:

$$IG = \frac{2}{5} - \frac{3}{5} \cdot \frac{1}{3} - \frac{2}{5} \cdot 0 = 0.2$$

Comparing IG By Classification Error

Split	IG
L	0.2
2	0
3	0.2

▶ By classification error, Split 1 and Split 3 are tie as the best because they have the same impurity gain.