Robot grocery shopping in partially observable settings

Rodrigo Gomes, Xiaomin Wang, Dustin Tran May 13, 2015

MIT, 6.834j Cognitive Robotics

Outline

- 1. Background on POMDPs
- 2. Grocery shopping as planning in a POMDP
- 3. Demo!
- 4. What worked
- 5. What failed

A partially observable Markov decision process (POMDP) is a collection of objects (S, A, Ω, R, T, O)

- \square S: state space
- \Box A: action space
- \square Ω : observation space
- $R: S \times A \to \mathbb{R}$ reward function
- T: transition operator. $T(s' \mid s, a)$ is probability of next state s' given state s and action a
- O: observable operator. $O(o \mid s)$ is probability of observing o given at state s

Belief-state MDP

Implemented MDP solvers:	
implemented MD1 solvers.	
	Q-learning
	SARSA
	R-MAX
	Thompson sampling
There are a lot!	
	Function approximations with adaptive basis functions
	BOSS
	Spectral methods
	Skill chaining

Grocery shopping

the task in the POMDP framework

Grocery shopping

how the software works, etc.

Our working solver

- Max Probability Value Iteration:
- □ Choose the most likely state from belief state to run value iteration

Our working solver

Value iteration:

$$v_{k+1}(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = a]$$

= $\max_{a} \sum_{s'} p(s' \mid s, a)[r(s, a, s') + \gamma v_k(s')]$

Failed tasks

- Value iteration as a belief-state MDP
- ☐ Thompson sampling
- l ..

Play with it!

github.com/dustinvtran/bayesrl