

Relations Among Load, Shear and Bending

Wherever there is an external concentrated force, there will be a change (jump) in internal shear force.

$$\overline{z}f_y = V+F - (V+\partial V) = 0$$

$$\delta V = F$$

Relations Among Load, Shear and Bending **Moments**

Wherever there is an external couple moment, there will be a change (jump) in internal bending moment.

$$V$$

$$V$$

$$M + \Delta M$$

$$M + \Delta M$$

$$M + \Delta M$$

$$V + \Delta V$$

$$\Delta M = M_0 + (V + \Delta V) \Delta X \rightarrow 0$$

Relations Among Load, Shear and Bending

Moments

Relationship between load and shear:

$$\sum F_y = 0: \quad V - (V + \Delta V) + w \, \Delta x = 0$$

Dividing by $\Delta V = w \Delta x$ Dividing by Δx and letting $\Delta x \rightarrow 0$, we

$$\frac{dV}{dx} = w \qquad \Delta V = \int w \, dx$$

Relations Among Load, Shear and Bending

Moments

Relationship between shear and bending

moment: $\sum_{M_o = 0}^{M_o = 0} (M + \Delta M) - M - V \Delta x - w \Delta x (\frac{\Delta x}{\Delta x}) = 0$

Dividing by $\Delta M = V \Delta x + wk (\Delta x)$ Dividing by Δx and letting $\Delta x \rightarrow 0$, we

 $\Delta F = w(x) \Delta x$

 $k(\Delta x)$

 $V + \Delta V$

 $(M + \Delta M)$

Relationships between w, V, M

a:
$$\frac{1}{2}b = \frac{1}{3}L$$

 $\Sigma fy = Ay + F_B - P - w \cdot \frac{1}{3}L$
 $\Sigma (N_A = -\frac{1}{3}L \cdot w \cdot \frac{1}{6}k - P \cdot \frac{3}{3}k + f_B \cdot k = 6$
 $F_3 = \frac{2}{3}P + \frac{1}{3}w \cdot L$
 $Ay = P + \frac{1}{3}wL - F_B = \frac{1}{3}P + \frac{5}{18}wL$

- 2P-118 -

Relationships between w, V, M

Relationships between w, V, M

Draw the shear and moment diagrams for the beam.

Example

Draw the shear force and bending moment diagrams for the beam.

10

What is the shape of V(x) for region 1?

i-Clicker Time

What is the shape of M(x) for region 2?

i-Clicker Time

What is the value of M at A?

- A) 200 kip-ft
- B) 300 kip-ft
- C) 400 kip-ft
- D) 500 kip-ft
- E) None of the above

Example

