ECAR 2001 Summer Assessment of Transmission System Performance (01-TSPP-3)

DRAFT

TSPWG

T. Laios (AEP), Chairman

C. Liang-Nicol (AP)

J. C. Fraley (AP)

T. Imel (CIN)

D. G. Leitch (CONS)

E. P. Laverty (DECO/ITC)

K. E. Krieger (FE/ATSI)

J. L. Mitchell (ECAR)

April 23, 2001

TABLE OF CONTENTS

INTRODUCTION

CONCLUSION AND OBSERVATIONS

STUDY RESULTS – Michigan (MECS) Study Area

STUDY RESULTS - Northeast (NE) Study Area

STUDY RESULTS – South West (SW) Study Area

INDIVIDUAL COMPANY ASSESSMENTS

TRANSFER CAPABILITY ANALYSIS

BASE CASE CONTINGENCY OVERLOADS

VOLTAGE ANALYSIS

BACKGROUND INFORMATION

APPENDIX

INTRODUCTION

The ECAR Transmission System Performance Working Group (TSPWG), under the direction of the ECAR Transmission System Performance Panel (TSPP), semiannually assesses the ECAR bulk transmission system. The purpose of these assessments is to provide insight into the expected performance of the ECAR bulk transmission system under a wide range of system conditions for the upcoming peak load season.

This report presents an assessment of the performance of the ECAR bulk transmission system for the 2001 Summer period. It is based on analyses of extensive studies conducted by the TSPWG for various operating conditions. This report also contains results from studies conducted by the individual ECAR-member companies, and includes information regarding studies conducted by inter-regional study groups involving ECAR (such as MEN, MET, and VEM), which complement the ECAR study results contained in this report. This study uses ECAR Document No.1 as a guide to measure the ability of the transmission system to avoid uncontrolled power interruptions for use as a gauge in assessing overall system performance.

In order to stress the ECAR bulk transmission system, inter-regional and transregional power transfers were simulated. Contingencies were superimposed on these power transfers to determine the ability of the ECAR network to perform adequately under the expected seasonal peak load conditions. Linear power flow studies were used to examine these scenarios. Based on these simulations, assessments of the bulk transmission networks were performed. The specific generation outaged and the sources of replacement power used to model these transfers were not intended to reflect typical or expected generation availability or maintenance schedules. The tests were selected to stress the ECAR bulk transmission system and are not to be construed as being normal or expected operating conditions. In addition to the linear power flow analysis, AC analysis was also used to examine the voltage performance of those portions of the ECAR transmission network where potential voltage limitations have been identified through past operating experience or other ECAR assessments. The study results from these linear and AC simulations are contained in the main body of this report.

The Appendix contains information supporting the study results documented in this report. Key transmission facilities identified in this assessment, along with their TLR history, are listed in Appendix A. Facilities expected to be added, removed, modified, or remain out of service during this study period, are listed in Appendix B. A tabulation of loads, losses, and interchange modeled in the ECAR base case are documented in Appendices C, D, and E. Transcriptions of the simulated flow patterns on the ECAR bulk transmission network and within ECAR-member systems, along with EHV facility ratings, are documented in Appendix F. A listing of the various generation dispatch scenarios used in this study are contained in Appendix G. Operating procedures cited in this report, which were developed by the ECAR members and are designed to relieve overloading problems that may result from interconnected system operation, are documented in Appendix H. A listing of the contingency outages simulated as part of this study are contained in Appendix I. Finally, Appendices J and K contain listings of definitions and abbreviations used throughout this report.

The transfer capabilities in this report are not the Available Transfer Capabilities (ATC) or the Total Transfer Capabilities (TTC) required under FERC Orders 888 and 889 for posting on the OASIS nodes. While all of these values are based on next-contingency analysis, numerous differences in the study scopes and assumptions make valid comparisons impossible. These include different study periods, and use of Transmission Reliability Margin (TRM) and Capacity Benefit Margin (CBM) which may vary with the time horizon. In addition, as the transfer capabilities documented in this report are based on only one set of forecasted conditions for the period under study, they should not be considered absolute or optimal. They represent just one possible method of measuring and comparing the relative strength of the system from one season or study period to the next.

Geographic Location of Study Areas (Figure 1)

For the purposes of this study, the ECAR Region has been sub-divided into three study areas that coincide with the three security coordinator areas presently operating within ECAR. These three study areas are as follows:

- The Michigan (MECS) study area, composed of CONS and DECO/ITC.
- The Northeast (NE) study area, composed of AP, DLCO, and FE/ATSI.
- The South West (SW) study area, composed of AEP, BREC, CIN, DPL, EKPC, ENWC, ENWI, HE, IPL, LGEE, NIPS, OVEC, and SIGE.

A map showing the geographic relationship between these three study areas and the ECAR Region as a whole is presented as Figure 1 in this report.

References

This ECAR transmission assessment report is augmented by the following regional and inter-regional reports and studies:

- ECAR 2001 Summer Facility Outage Notification Table (01-TSPP-2)
- ECAR 2001 Summer Assessment of Load and Capacity (01-GRP-33)
- MAAC-ECAR-NPCC (MEN) 2001 Summer Transmission Assessment
- MAIN 2001 Summer Transmission Assessment Study, Including MAIN-ECAR-TVA (MET), MAIN-MAPP-SPP (MMS), and MAIN-SERC West (MSw) Inter-regional Appraisals (Referred to in this report as the MET 2001 Summer Transmission Assessment)
- VACAR-AEP-Southern-TVA (VAST) 2001 Summer Operating Study
- VACAR-ECAR-MAAC (VEM) 2001 Summer Transmission Assessment
- Ontario-Michigan Transfer Capability Summer 2000

Figure 1

ECAR 2001 Summer Assessment of Transmission System Performance
Geographic Location of Study Areas

CONCLUSION AND OBSERVATIONS

ECAR Regional Assessment

The bulk transmission systems in ECAR are expected to perform reliably under a wide range of conditions. However, there will be a greater need for the Security Coordinators and Transmission Operators to communicate and coordinate their actions to preserve the continued reliability of the ECAR systems. It is anticipated that the ECAR transmission systems could become constrained as a result of unit unavailability and/or economic transactions that have historically resulted in large unanticipated power flows within and through the ECAR systems. conditions occur again this summer, local operating procedures, as well as the NERC Transmission Loading Relief procedure, will need to be invoked in order to maintain transmission system security. As long as transmission limitations are identified and available operating procedures are implemented when required, the ECAR bulk transmission systems are anticipated to perform reliably. During times of heavy regional and inter-regional transfers, it will be essential that Security Coordinators and Transmission Operators have timely and adequate information on the sources and sinks of scheduled transfers in order to identify appropriate corrective actions. This report is designed to serve as a tool for the Security Coordinators and Transmission Operators, by providing them with an indication of where transmission problems are anticipated for the upcoming peak load season.

The most significant differences from 2000 Summer which are expected to impact ECAR transmission system performance during 2001 Summer, and which also serve to explain the changes in transfer capability between last summer and this summer, include: (1) the return-to-service of AEP's Cook Unit 1; (2) the mode of operation of the new Phase Angle Regulators (PAR) on the Michigan - Ontario interface; (3) the addition of approximately 4,600 MW of merchant and utility generation in ECAR; (4) the addition of the new Orange 765-138 kV (AEP) station on the Kammer - Marysville 765 kV (AEP) circuit; (5) the addition of the new Foster - Bath 345 kV (CIN-DPL) circuit; and (6) the 1,100 MW increase in ECAR load forecasted for 2001 Summer as compared to 2000 Summer.

The transfer capability levels documented in this report are primarily presented using the new concept of Total Import Capability. This is in addition to the traditional NITC/NTTC and FCITC/FCTTC quantities which are also presented in this report. Total Import Capability is basically the sum of the FCITC between

two areas of interest, plus the net of the power transfers modeled in the base case for the importing area, but from all directions, not just those associated with the exporting area. This provides for a better indication of the total amount of power that can be imported into an area of interest. The detailed definitions can be found Appendix J.

Summary of ECAR Study Area Imports

The ability of the transmission system to support ECAR study area imports from adjacent Regions varies significantly. In this 2001 Summer assessment, under the projected peak load conditions modeled in the ECAR primary (E100) base case, Total Import Capabilities ranged from 2,950 MW into Kentucky, to 6,250 MW into the Northeast (NE) study area. Under transfer-bias conditions, Total Import Capabilities ranged from zero to 5,350 MW. Of the twenty-four ECAR study area import scenarios examined in this 2001 Summer assessment, thirteen had a higher transfer capability as compared to 2000 Summer, two had a lower transfer capability, and nine were either unchanged or not analyzed in the 2000 Summer assessment. The specific ECAR import transfer capability levels varied as a function of transfer direction, other transfer activity, and the specific limiting and outaged facilities that were considered during the study. Based on an analysis of both thermal and voltage limitations, the most limiting facilities found in this assessment, included:

- Dumont 765-345 kV (AEP) Transformer
- Muskingum River Ohio Central 345 kV (AEP) Circuit
- Queenston Flow West (QFW) (HONI) Interface
- Michigan Ontario (L4D / L51D / B3N / J5D) Interface
- Norris La Follette 161 kV (TVA) Circuit
- Twin Branch Argenta 345 kV (AEP-CONS) Circuit
- Cumberland Davidson 500 kV (TVA) Circuit
- South Canton 765-345 kV (AEP) Transformer
- Gallagher 230-138 kV (CIN) Transformer

• Grahamville - South Paducah - Livingston 161 kV (LGEE) Path

Summary of MAAC Imports

The ability of the transmission system to support MAAC imports from or through ECAR will be somewhat more restrictive this year. In this 2001 Summer assessment, under the projected peak load conditions modeled in the ECAR primary (E100) base case, Total Import Capabilities were around 1,500 MW. Under transfer-bias conditions, Total Import Capabilities were also around 1,500 MW. Of the three MAAC import scenarios examined in this 2001 Summer assessment, none had a higher transfer capability as compared to 2000 Summer, one had a lower transfer capability, and two were either unchanged or not analyzed in the 2000 Summer assessment. The specific MAAC import transfer capability levels varied as a function of transfer direction, other transfer activity, and the specific limiting and outaged facilities that were considered during the study. Based on an analysis of both thermal and voltage limitations, the most limiting facility found in this assessment, was:

• Hatfield - Black Oak 500 kV (AP) Circuit -- Voltage Limit

Summary of VACAR Imports

The ability of the transmission system to support VACAR imports from or through ECAR will be somewhat more restrictive this year. In this 2001 Summer assessment, under the projected peak load conditions modeled in the ECAR primary (E100) base case, Total Import Capabilities were around 2,500 MW. Under transfer-bias conditions, Total Import Capabilities ranged from zero to 800 MW. Of the four VACAR import scenarios examined in this 2001 Summer assessment, one had a higher transfer capability as compared to 2000 Summer, one had a lower transfer capability, and two were either unchanged or not analyzed in the 2000 Summer assessment. The specific VACAR import transfer capability levels varied as a function of transfer direction, other transfer activity, and the specific limiting and outaged facilities that were considered during the study. Based on an analysis of both thermal and voltage limitations, the most limiting facilities found in this assessment, included:

- Hatfield Black Oak 500 kV (AP) Circuit -- Voltage Limit
- Cumberland Davidson 500 kV (TVA) Circuit

Summary of TVA Imports

The ability of the transmission system to support TVA imports from or through ECAR varies significantly. In this 2001 Summer assessment, under the projected peak load conditions modeled in the ECAR primary (E100) base case, Total Import Capabilities ranged from 2,550 MW to over 3,350 MW. Under transferbias conditions, Total Import Capabilities ranged from 3,000 MW to 4,700 MW (1,200 MW to 3,000 MW if the 2,000 MW transfer-bias to Southern from the E104 study base case is not included in the calculation of Total Import Capability for TVA). Of the seven TVA import scenarios examined in this 2001 Summer assessment, two had a higher transfer capability as compared to 2000 Summer, three had a lower transfer capability, and two were not analyzed in the 2000 Summer assessment. The specific TVA import transfer capability levels varied as a function of transfer direction, other transfer activity, and the specific limiting and outaged facilities that were considered during the study. Based on an analysis of both thermal and voltage limitations, the most limiting facilities found in this assessment, included:

- Clinch River Spring Creek North Bristol 138 kV (AEP) Path
- Kanawha River Matt Funk 345 kV (AEP) Circuit -- Voltage Limit

Summary of MAIN Imports

The ability of the transmission system to support MAIN imports from or through ECAR varies significantly. In this 2001 Summer assessment, under the projected peak load conditions modeled in the ECAR primary (E100) base case, Total Import Capabilities ranged from 3,550 MW to 4,700 MW. Under transfer-bias conditions, Total Import Capabilities ranged from zero 5,550 MW. Of the sixteen MAIN import scenarios examined in this 2001 Summer assessment, six had a higher transfer capability as compared to 2000 Summer, three had a lower transfer capability, and seven were either unchanged or not analyzed in the 2000 Summer assessment. The specific MAIN import transfer capability levels varied as a function of transfer direction, other transfer activity, and the specific limiting and outaged facilities that were considered during the study. Based on an analysis of both thermal and voltage limitations, the most limiting facilities found in this assessment, included:

• Breed - Casey 345 kV (AEP-AMRN) Circuit

- Sidney 345-138 kV (IP) Transformer
- Queenston Flow West (QFW) (HONI) Interface
- Dumont 765-345 kV (AEP) Transformer
- East Danville Danville 138 kV (AEP) Circuit
- Summer Shade Summer Shade Tap 161 kV (TVA-EKPC) Circuit

Summary of Significant Observations

In addition to the specific observations documented above, this section of the report summarizes the most significant observations from this ECAR transmission assessment, from studies conducted by the individual ECAR-member companies, either individually or jointly with other companies, and from past operating experiences.

- The return-to-service of AEP's Cook Unit 1 (1000 MW connected at 345 kV) is expected to reduce loadings on the Dumont and Cook 765-345 kV (AEP) transformers, increasing transfer capability to the north and west.
- The Michigan Ontario interface and the Queenston Flow West (QFW) interface in Ontario have been susceptible to large parallel flows and Transmission Loading Relief (TLR) curtailments during past summers. The scheduled installation (by mid-August) of the remaining (L4D) Phase Angle Regulating (PAR) transformer on the Michigan Ontario interface, and subsequent utilization of all four PARs on this interface, will mitigate these conditions by normally operating these PARs to reduce unscheduled flows from Ontario into Michigan. This operating mode, however, increases loadings on other critical ECAR facilities, such as the Dumont 765-345 kV (AEP) and Cook 765-345 kV (AEP) transformers, by redirecting flows that would otherwise flow around the north end of Lake Erie into Michigan. This can reduce transfer capability to the north and west. The Lake Erie Security Process Working Group has developed an overall operating strategy for coordinated operation of all control devices in the area, including the new PARs on the Michigan Ontario interface.
- Several transmission additions, modifications, and abnormal conditions within ECAR are expected for this summer. The most significant include the addition

of the new Orange 765-138 kV (AEP) station on the Kammer - Marysville 765 kV (AEP) circuit, and the addition of the new Foster - Bath 345 kV (CIN-DPL) circuit. Details on all facility changes and the impact they will have on ECAR bulk transmission system performance can be found under the Individual Company Assessments section of this report, and in Appendix B.

- The installation of over 4,500 MW of new merchant and utility generation is expected to be in place for 2001 Summer within the ECAR Region. For comparison, over 3,000 MW were installed for 2000 Summer. Of this amount, 1,930 MW are scheduled to be installed in AEP, 540 MW in DECO, 480 MW in DPL, 445 MW in CONS, 425 MW in FE, 295 MW in LGEE, 183 MW in CIN, 88 MW in AP, 75 MW in IPL, and 58 MW in BREC. Higher facility loadings may result from these installations. Details can be found in Table B-1, under Appendix B.
- Central Ohio continues to be susceptible to voltage drops for the loss of the Marysville 765-345 kV (AEP) transformer concurrent with certain generation outages at the Conesville (AEP) generating plant. These concerns are heightened for outages of the Cook (AEP) generating units, by heavy transfers to the north and west, and by the mode of operation of the Phase Angle Regulators (PAR) on the Michigan Ontario interface. Voltage performance in 2001 Summer, however, is expected to significantly improve from 2000 Summer due to the scheduled addition of the new Orange 765-138 kV (AEP) station on the Kammer Marysville 765 kV (AEP) circuit. Details can be found under the Voltage Analysis section (refer to Figure 4.2).
- The Reliability Coordination Plan (RCP) methodology will continue to be used by Allegheny Power to determine limitations on the AP transmission system, which in conjunction with the NERC TLR procedure, will be used to freeze or curtail west-to-east transfers to ensure that adequate system reliability is maintained in portions of ECAR, MAAC, and VACAR. More limiting voltage constraints are expected this summer due to higher loads in Allegheny Power.
- AEP will continue to use the Southern Transmission Emergency Procedures (STEP) to maximize the loadability of the critical Kanawha River Matt Funk 345 kV (AEP) circuit and reduce the reliability risks of potential widespread power interruptions in the southeastern portion of ECAR. More limiting voltage constraints are expected this summer due to higher loads in the area.

- The Kentucky transmission system has experienced numerous overload and voltage problems during shoulder peak periods with high north-to-south transfers. TLRs have been called in an attempt to control the north-to-south flows through Kentucky, and relieve overloading on area facilities such as the Blue Lick 345-161 kV (LGEE) transformer, the Paddy's Run - Summershade 161 kV (LGEE-TVA) circuit, the New Hardinsburg 138-161 kV (BREC) transformer, and the New Hardinsburg - Paradise 161 kV (BREC-TVA) circuit. However, due to the low response factors, sufficient relief has sometimes not been obtained via the TLR process and the affected companies have been forced to redispatch generation and open 161 kV transmission interconnection facilities to eliminate the problems. In addition, LGEE has experienced depressed voltages in the central Kentucky area and had to dispatch combustion turbines at the Brown CT site to provide reactive and voltage support (refer to Figure 4.8 in the Voltage Analysis section of this report). Problems due to north to south flow are anticipated this summer and similar responses will be required unless the TLR process is modified to recognize and respond to the problem.
- In addition to the voltage concerns noted above, the voltage performance of other portions of the ECAR transmission network, where potential voltage limitations have been identified through past operating experience or other ECAR assessments, is also documented in this report. Details can be found in the Voltage Analysis section of this report.

Summary of Transfer Capabilities (Table 1)

Table 1 summarizes the study results from this assessment (detailed study results are documented in Table 2). Fifty-four transfer scenarios, representing the most significant and meaningful combinations of approximately twenty-two transfer patterns and eight base case conditions, were analyzed. The eight base cases were comprised of the primary base case, developed from the NERC/MMWG 2001 Summer base case, and seven study base cases which were developed to model conditions which would further stress the ECAR bulk transmission network.

The first three study base cases (E101a / E101b / E101c) reflected the same 4,000 MW east-to-west transfer bias, but different operating settings for the four Phase Angle Regulators (PAR) on the Michigan - Ontario interface. The E101a study base case reflected minimum-fixed-angle PAR settings which resulted in a 2,430 MW flow from Ontario to Michigan, the E101b study base case reflected

zero-fixed-angle PAR settings which resulted in a 1,890 MW flow from Ontario to Michigan, and the E101c study base case reflected maximum-fixed-angle PAR settings which resulted in a 1,220 MW (most restrictive) flow from Ontario to Michigan. The fourth study base case (E102) reflected a 4,000 MW west-to-east transfer bias. The next two study base cases (E103a / E103b) reflected a 4,000 MW south-to-north transfer bias, except that in first (E103a) base case, Cook Unit 1 (AEP) was outaged as part of the transfer bias, while in the second (E103b) base case, Davis-Besse Unit 1 (FE) was outaged as part of the transfer bias. The final study base case (E104) reflected a 4,000 MW north-to-south transfer bias. The total ECAR bus load for 2001 Summer modeled in all eight base cases was 100,783 MW, which is 1.1% higher than the 99,675 MW of ECAR bus load modeled in the 2000 Summer base cases.

The transfer capabilities summarized in Table 1 are the Total Import Capability values for the 2001 Summer assessment (shown to the left of the slash), with those from the 2000 Summer assessment (shown to the right of the slash) also included for comparison. The transfer pattern and base case combinations that were not considered significant for this analysis, appear in the table as blank entries. Although a number of transfers were considered in this seasonal assessment in an effort to stress the ECAR transmission network, it is impossible to anticipate all operating possibilities, and thus, this report should only be used as a guide for conditions expected during the upcoming peak load season.

The study results also reflect selected non-ECAR outages and limitations. These non-ECAR facilities were added in an attempt to provide consistency with other regional reports and to capture elements that may be more restrictive to transfers of interest to ECAR. However, additional limiting elements not reported in this study may exist in other Regions for various transfers from, to, or through ECAR. Refer to the MEN, MET, and VEM transmission assessments for additional insight into these transmission limitations in adjacent Regions.

Bubble Diagram of Transfer Capabilities (Figure 2)

The primary study results from this assessment are also summarized in the form of three bubble diagrams. Figure 2.1 presents the study results for ECAR exports, Figure 2.2 presents the results associated with ECAR imports, and Figure 2.3 presents the results for the trans-regional transfers considered in this assessment under primary (E100) base case conditions. The study results are presented as Total Import Capabilities, as defined in Appendix J.

Summary of Operating Procedures

Operating procedures have been developed by ECAR-member systems to relieve overloading problems that may result from interconnected system operation. Those operating procedures, which are available to allow for improvement of transfer capabilities in specific areas of the ECAR bulk transmission network, are described in Appendix H. One of these procedures, the Ridgeway - Dan River 138 kV (AEP-DUKE) operating procedure, was implemented in the primary base case, which served as the starting point for this seasonal transmission assessment, due to expected high loadings on the Ridgeway - Dan River 138 kV (AEP-DUKE) circuit during peak load conditions.

Transmission Loading Relief (TLR) Procedure

The NERC Transmission Loading Relief (TLR) Procedure is a step-by-step procedure developed by the NERC Security Coordinator Subcommittee to maintain network security by avoiding or relieving transmission overloads. The TLR identifies the actual transactions (by priority and use) which cause Operating Security Limit violations. The TLR considers the actual paths over which transactions are flowing, not their contract paths, to determine which transactions to freeze or curtail.

Due to the significance of this operating procedure, Table A-1 (in Appendix A) contains the TLR history of all ECAR and selected non-ECAR transmission facilities which had a TLR Level 2 or above declared during the most recent eight seasonal quarters. Table A-1 also lists all transfer limiting facilities identified in the 2001 and 2000 Summer transmission assessments. By presenting these two pieces of information together, comparison can be made between limiting facilities encountered in actual operation and those identified in the seasonal assessments.

Based on the information presented in Table A-1, the following ECAR facilities had at least one TLR Level 2 or above (total number of TLRs is shown on the right) declared during 2000 Summer, and were also identified as limiting facilities in this 2001 Summer assessment under the transfer capability analysis documented in Table 2.

- Kanawha Matt Funk 345 kV (AEP) Circuit (Voltage Limit) (35)
- New Hardinsburg 161-138 kV (BREC) Transformer (10)

- Gallagher 230-138 kV (CIN) Transformer (9)
- Wylie Ridge #1 or #2 500-345 kV (AP) Transformer (7)
- Bedington Doubs 500 kV (AP) Circuit (Voltage Limit) (5)
- Black Oak Bedington 500 kV (AP) Circuit (4)
- Ghent West Lexington Brown 345 kV (LGEE) (4)
- Cloverport Newtonville 138 kV (LGEE-SIGE) Circuit (4)
- Pruntytown Mount Storm 500 kV (AP-VP) Circuit (2)
- Gallagher Paddys West 138 kV (CIN-LGEE) Circuit (2)
- Cook 765-345 kV (AEP) Transformer (1)
- Dumont 765-345 kV (AEP) Transformer (1)
- Doubs #1 or #2 or #3 or #4 500-230 kV (AP) Transformer (1)
- South Canton Star 345 kV (AEP-FE) Circuit (1)

The following ECAR facilities had at least one TLR (Level 2 or above) declared during 2000 Summer, but were not identified as limiting facilities in this 2001 Summer transmission assessment under the transfer capability analysis documented in Table 2. However, they were identified as facilities which might exceed their thermal emergency ratings under the base case contingency overload analysis documented in Table 3.

• Blue Lick 345-161 kV or Blue Lick - Bullitt Co. 161 kV (LGEE-EKPC) (53)

The following ECAR facilities had at least one TLR (Level 2 or above) declared during 2000 Summer, but were not identified as limiting facilities in this 2001 Summer transmission assessment under neither the transfer capability analysis documented in Table 2 or the base case contingency overload analysis documented in Table 3. These facilities have clearly documented explanations in Table A-1 as to why they did not appear as limiting facilities in this 2001 Summer assessment.

• Paddys Run - Summershade 161 kV (LGEE-TVA) Circuit (37)

- Trimble County Centerfield 138 kV (LGEE) (11)
- Speed Northside 138 kV (CIN-LGEE) Circuit (3)
- Coleman National Aluminum 161 kV (BREC) Circuit (2)
- Foster Sugarcreek 345 kV (CIN-DPL) Circuit (1)
- McCracken Marshall 161 kV (BREC-TVA) Circuit (1)
- Henderson County 138-161 kV (SIGE-BREC) Transformer (1)
- Oakland City Toyota 138 kV (CIN-SIGE) Circuit (1)

Table 1 ECAR 2001 Summer Assessment of Transmission System Performance Summary of Study Results from Transfer Capability Analysis

Date: 04/18/01

TYPE OF TRANSFER	STUDY AREA	Transfer Scenarios by Study Area MECS = 12 NE = 12 SW = 30 Total = 54 TRANSFER DIRECTION	E100 Base Case With No Transfer Bias OH to MECS PARs Fixed @ 600 MW Total Import Capability (2001S / 2000S)	E101a Base Case With East to West 4000 MW Bias OH to MECS PARs Fixed @ Min Angle Total Import Capability (2001S / 2000S)	E101b Base Case With East to West 4000 MW Bias OH to MECS PARs Fixed @ Zero Angle Total Import Capability (2001S / 2000S)	E101c Base Case With East to West 4000 MW Bias OH to MECS PARs Fixed @ Max Angle Total Import Capability (2001S / 2000S)	E102 Base Case With West to East 4000 MW Bias OH to MECS PARs Fixed @ 600 MW Total Import Capability (2001S / 2000S)	E103a Base Case With South to North 4000 MW Bias OH to MECS PARs Fixed @ 600 MW Total Import Capability (2001S / 2000S)	E103b Base Case With South to North 4000 MW Bias OH to MECS PARs Fixed @ 600 MW Total Import Capability (2001S / 2000S)	E104 Base Case With North to South 4000 MW Bias OH to MECS PARs Fixed @ Min Angle Total Import Capability (2001S / 2000S)
ECAR	MECS	ECAR to IMO	Winter Only							
EXPORTS	NE	ECAR to MAAC	1500 / 2100							
	NE	ECAR to VACAR	2450 / 3400							
	SW	ECAR to TVA	2550 / 1400						/	3200 / 3650
	SW	ECAR to MAIN	4050 / 4000					5400 / 4750	5550 / 4750	
FOAD	MEGG	MAAG 4- MEGG	2000 /					4050 / 4000	0050 / 4000	
ECAR IMPORTS	MECS MECS	MAAC to MECS VACAR to MECS	3200 /	(*) 0 / 0050	2452 / 2552	2000 / 4000		1650 / 1600	2650 / 1600	
IIMPORTS	MECS		3200 /	(*) 0 / 2650	3450 / 2550	3200 / 1900				
	MECS	TVA to MECS MAIN to MECS	3100 / 4200 /				1050 / (*) 0	1400 / 1300	2750 / 1300	
	NE NE	TVA to NE	4950 /	5050 / 4450			5350 / 3700	1400 / 1300	2730 / 1300	
	NE	MAIN to NE	6250 /	3030 / 4430			2700 / 1450			
	SW	MAIN to Kentucky	2950 /				1400 / 650			(*) 0 / (*) 0
	SW	MAAC to Indiana	+ 3800 /	+ 3800 / 0			1400 / 000	(*) 0 / (*) 0	(*) 0 / (*) 0	() 0 / () 0
	0	THE TO THE HIGHE	. 5550 /					() () ()	() 0 / () 0	
TRANS-	MECS	TVA to IMO	Winter Only							
REGIONAL	MECS	MAIN to IMO	Winter Only							
	NE	MAIN to MAAC	1550 /				1450 / 1400			
	NE	MAIN to VACAR	2500 /				800 / 750			(*) 0 / (*) 0
	SW	MAAC to TVA	2600 /							3250 / 4200
	SW	MAIN to TVA	+ 3350 /				3000 / 2600			4700 / 5200
	SW	MAAC to MAIN	4600 /	(*) 0 / 3650	3600 / 3650	3550 / 1200		(*) 0 / (*) 0	2800 / (*) 0	
	SW	VACAR to MAIN	4700 /	3700 / 3650	3650 / 3650	3550 / 1500				
	SW	TVA to MAIN	3550 /					1400 / 2700	1500 / 2700	

^(*) Overloaded facilities were found under transfer-bias conditions without any additional transfers.

Figure 2.2 ECAR 2001 Summer Assessment of Transmission System Performance ECAR Imports Under Primary (E100) Base Case 4200 to 3200 to **MECS** MECS **ECAR** 6250 to +3800 to NE Indiana **MAAC MAIN** 2950 to Kentucky **TVA VACAR** Values are Total Import Capability 04/21/00 levels as defined in Appendix J

STUDY RESULTS -- Michigan (MECS) Study Area

Introduction

The MECS study area of ECAR is one control area that includes Consumers Energy, Detroit Edison, and several municipals and cooperatives. It is also one of three security coordinators within ECAR. Consumers Energy and Detroit Edison have projected peak demands of 8,166 MW and 11,399 MW, respectively, as modeled in the ECAR primary base case (E100). Edison Sault became part of the WEC control area in the MAIN reliability region beginning January 2001. Edison Sault with a peak demand of 130 MW was modeled in the MECS control area for this assessment and included a 20 MW transfer from WEC. The municipals and cooperatives have a reduced representation modeling 809 MW of load. Therefore, the total summer peak demand modeled for the MECS study area is 20,504 MW. This is 635 MW higher than the 19,879 MW modeled in the 2000 Summer study. In addition, about 1,000 MW of generation is scheduled to be added for the 2001 Summer period (refer to Appendix B). With 20,196 MW of dispatched generation and an import of 308 MW supporting this demand, there is approximately 1,730 MW of non-dispatched generation available (before forced and scheduled unit outages).

General Observations

System additions that are presently under construction for 2001 Summer include a new looped 230 kV line into the DIG merchant plant, a new 345-120 kV autotransformer at the Bismarck station, a new station called Blackfoot that breaks up the 3-ended Belle River - Madrid - Pontiac 345 kV line, a looped 345 kV line into the Oneida station, and a looped 345 kV line into Roosevelt with a radial line to the Zeeland merchant plant. Also, the Phase Angle Regulating (PAR) transformer on the L4D interconnection between Detroit Edison and Hydro One is scheduled to be in service by mid-August. PAR transformers were installed last year on the B3N and L51D interconnections, along with a new 345-230 kV autotransformer on the L51D interconnection.

Even with these system improvements, study results indicate that the MECS study area may experience difficult operating conditions during the 2001 Summer season. Potential overloads were observed under single contingency conditions for total simultaneous imports into MECS above 3,100 MW. MECS imports will

continue to be generally limited by the Dumont and Cook 765-345 kV (AEP) transformers. The restart of AEP's Cook Unit 1 (connected at 345 kV) has improved the import capability into MECS, as compared to the 2000 Summer Study, by relieving the loadings on these transformers.

There are lower limits for MECS imports if there are heavy interregional transfers or critical unit outages. The Michigan - Ontario Phase Angle Regulating (PAR) transformers can be operated to improve transfer capability. Internal limits in MECS appear only under heavy interregional transfers and with multiple units inside of MECS being out of service. Also, with the PARs at their minimum angle, elements inside of Ontario and on the Michigan - Ontario interface may limit MECS imports.

Of the twelve transfer scenarios examined as part of the MECS study area assessment, six had a higher transfer capability as compared to 2000 Summer, one had a lower transfer capability, and five were either unchanged or not analyzed as part of the 2000 Summer assessment. In addition to the return-to-service of Cook Unit 1, the operation of the PARs, and the facility modifications noted above, other factors contributing to the change in transfer capability, include the approximately 1,100 MW increase in ECAR load modeled for 2001 Summer, and the addition of over 4,600 MW of merchant and utility generation in ECAR.

Additional information relating to MECS import limits may be found in the MEN, MET, and VEM, 2001 Summer Transmission Assessments, and the Ontario-Michigan Transfer Capability Review for Summer 2000.

MECS Imports

The MECS study area is summer peaking. Imports into MECS and transmission loadings during the summer season are significantly higher than during the winter period. Transfers into the MECS study area from MAAC, VACAR, TVA, or MAIN were analyzed using the ECAR primary (E100) peak load base case. As shown in Tables 1 & 2, the MECS Total Import Capability ranges from 3,100 MW to 4,200 MW. Transfers from MAAC or VACAR were limited to 3,200 MW by the Dumont 765-345 kV (AEP) transformer for an outage of the Cook 765-345 kV (AEP) transformer. Transfers from TVA were limited to 3,100 MW by the Norris - La Follette 161 kV (TVA) circuit for an outage of the Volunteer - Phipps Bend 500 kV (TVA) circuit. Transfers from MAIN were limited to 4,200 MW by

the Twin Branch - Argenta 345 kV (AEP-CONS) circuit for an outage of the Cook - Palisades 345 kV (AEP-CONS) double-circuit tower.

East-to-West Transfer Bias: MECS imports from VACAR were analyzed under the three E101 study base cases, which reflect a 4,000 MW east-to-west transfer bias. Transfer capability was determined with different modes of operation for the PARs on the Michigan - Ontario interface. This study showed a range of Total Import Capability of -600 MW to 3,450 MW. The E101a study base case reflects a maximum flow of 2,430 MW from Ontario to Michigan. Although the Total Import Capability as limited by the Dumont 765-345 kV transformer increases to 4,400 MW, the Queenston Flow West (QFW) and Michigan - Ontario interfaces This is a condition that MECS does not anticipate become more limiting. operating in, as this scenario models the holding of fixed minimum angles on the PARs, when in reality it is anticipated that if the system conditions were those modeled in this case, the PARs would most likely be used to retard flow not contracted through Ontario. The E101b study base case reflects zero-fixed-angle PAR settings, which resulted in 1,890 MW flow from Ontario to Michigan. For this condition the Total Import Capability was limited to 3,450 MW by the precontingency rating of the Lambton - Saint Clair (L4D) 345 kV (DECO-HONI) line. To achieve this limit, operating procedures were modeled to relieve potential overloads on the Michigan - Ontario interface. Again, the PAR on the L4D circuit could be operated to resolve this limit. The E101c study base case reflects the most restrictive flow from Ontario to Michigan of 1,220 MW. The Total Import Capability was limited to 3,200 MW by the Dumont 765-345 kV (AEP) transformer for an outage of the Cook 765-345 kV (AEP) transformer.

West-to-East Transfer Bias: MECS imports from MAIN were analyzed under the E102 study base case, which models a 4,000 MW west-to-east transfer bias. The Total Import Capability was limited to 1,050 MW by the Cumberland - Davidson 500 kV (TVA) circuit for an outage of the Cumberland - Johnsonville 500 kV (TVA) circuit. This is a decrease of 3,150 MW from the E100 base case.

South-to-North Transfer Bias: MECS imports from MAAC or MAIN were analyzed under the E103 study base cases, which model a 4,000 MW south-to-north transfer bias. The E103a study base case modeled Cook Unit 1 out of service. As compared to the E100 study base case, the Total Import Capability from MAAC decreased by 1,550 MW, and the Total Import Capability from MAIN decreased by 2,800 MW. The Dumont 765-345 kV (AEP) transformer for an outage of the Cook 765-345 kV (AEP) transformer limited both transfers. The E103b study base case modeled Davis-Besse Unit 1 out of service. As compared

to the E100 study base case, the Total Import Capability from MAAC decreased by 550 MW, and the Total Import Capability from MAIN decreased by 1,450 MW. The Muskingum River - Ohio Central 345 kV (AEP) circuit limited both transfers at its pre-contingency summer rating.

Comparison to 2000 Summer: MECS Total Import Capability increased between 900 MW and 1,450 MW as compared to 2000 Summer. This improvement can largely be attributed to the return to service of Cook Unit 1 (AEP). With Cook Unit 1 out of service, as was modeled in the E103a study base case, MECS Total Import Capability did not increase more than 100 MW. TVA being modeled as exporting 500 MW more power in 2001 Summer as compared to 2000 Summer, also contributed to the increase in MECS Total Import Capability.

STUDY RESULTS -- Northeast (NE) Study Area

Introduction

The NE study area includes the AP, DLCO, and FE control areas. This grouping was chosen to generally define the northeastern portion of ECAR. It is also one of the three security coordinators within ECAR. The MECS and SW study areas, the MAAC Region, and the VACAR Sub-Region of SERC bound the NE study area. The NE study area has a projected peak demand for 2001 Summer of 24,092 MW, with approximately 21,880 MW of dispatched internal generation and a net import of approximately 2,210 MW. Non-dispatched generation of approximately 1,060 MW is projected to be available. These values reflect the over 500 MW of merchant generation that is scheduled to be added for the 2001 Summer period (refer to Appendix B). There are no major generation or transmission facilities planned for an extended outage, and no significant facility additions or retirements affecting regional reliability.

General Observations

The results of these studies indicate that the NE study area is expected to perform adequately during the 2001 Summer season. Transfer capabilities to MAAC and VACAR are limited by either voltage constraints in Allegheny Power or thermal constraints in TVA, while transfer capabilities to the NE study area are limited by thermal constraints in AEP and TVA. In general, the voltage constraints are more limiting than last year, while the thermal constraints are less limiting than last year. Specifically, of the twelve transfer scenarios examined as part of the NE study area assessment, four scenarios had higher transfer capability from 2000 Summer, two scenarios had lower transfer capability, and six were either unchanged or not analyzed as part of the 2000 Summer assessment.

FE is in the process of adding five 85 MW combustion turbines at its Beaver 345 kV station west of Lorain. They are scheduled to be in service by June 1, but they were not modeled in any of the ECAR study base cases. However, a sensitivity analysis was performed. As expected, the addition of these generating units had little effect on most of the transfer capabilities. Specifically, under primary base case (E100) conditions, these generating units did marginally improve MECS import capability from MAAC, VACAR, and MAIN, between 100 MW and 200 MW.

The four significant operating procedures defined for the NE study area are the Reliability Coordination Plan (AP-PJM-VP), and the Elrama - Mitchell 138 kV (DLCO-AP), Springdale - Cheswick 138 kV (AP-DLCO), and Hoytdale - Maple - Krendale - Butler 138 kV (FE-AP) operating procedures. All four operating procedures are summarized in Appendix H. Additional information on the thermal and voltage constraints of significance to the NE study area can also be found in the MEN, MET, and VEM 2001 Summer Transmission Assessments.

NE Imports

Transfers into the NE study area from TVA or MAIN were analyzed using the ECAR primary (E100) peak load base case. As shown in Tables 1 & 2, the Total Import Capability into the NE study area ranges from 4,950 MW to 6,250 MW. Transfers from TVA were limited to 4,950 MW by the Norris - La Follette 161 kV (TVA) circuit for an outage of the Volunteer - Phipps Bend 500 kV (TVA) circuit. Transfers from MAIN were limited to 6,250 MW by the South Canton 765-345 kV (AEP) transformer at its pre-contingency summer rating.

East-to-West Transfer Bias: Total Import Capability into the NE study area from TVA was analyzed under the E101a study base case, which reflects a 4,000 MW east-to-west transfer bias and a maximum flow of 2,430 MW from Ontario to Michigan. Transfer capability was again limited by the Norris - La Follette 161 kV (TVA) circuit for an outage of the Volunteer - Phipps Bend 500 kV (TVA) circuit, but at the slightly higher total import level of 5,050 MW.

West-to-East Transfer Bias: Total Import Capability into the NE study area from TVA or MAIN was analyzed under the E102 study base case, which models a 4,000 MW west-to-east transfer bias. Total Import Capability into the NE study area from TVA was limited to 5,350 MW by the South Canton 765-345 kV (AEP) transformer at its pre-contingency summer rating. This is an increase of 400 MW from the E100 base case. Conversely, Total Import Capability into the NE study area from MAIN was limited to 2,700 MW by the Cumberland - Davidson 500 kV (TVA) circuit for an outage of the Cumberland - Johnsonville 500 kV (TVA) circuit. This is a decrease of 3,550 MW from the E100 base case.

Comparison to 2000 Summer: Total Import Capability into the NE study area increased between 600 MW and 1,650 MW as compared to 2000 Summer. This improvement can be attributed to the June 2001 addition of the new Foster - Bath 345 kV (CIN-DPL) circuit, which relieves loadings on the previously-limiting

Foster - Sugarcreek 345 kV (CIN-DPL) circuit, and on TVA being modeled as exporting 500 MW more power in 2001 Summer as compared to 2000 Summer.

MAAC Imports

Transfers into MAAC from ECAR or MAIN were analyzed using the ECAR primary (E100) peak load base case. As shown in Tables 1 & 2, the MAAC Total Import Capability only ranges from 1,500 MW to 1,550 MW. Transfers from ECAR were limited to 1,500 MW, and transfers from MAIN were limited to 1,550 MW, in both cases by the voltage-limited Hatfield - Black Oak 500 kV (AP) circuit for an outage of the Pruntytown - Mount Storm 500 kV (AP) circuit.

West-to-East Transfer Bias: MAAC imports from MAIN were analyzed under the E102 study base case, which models a 4,000 MW west-to-east transfer bias. MAAC Total Import Capability from MAIN was limited to 1,450 MW by the voltage-limited Hatfield - Black Oak 500 kV (AP) circuit for an outage of the Pruntytown - Mount Storm 500 kV (AP) circuit. This is a decrease of 100 MW from the E100 base case.

Comparison to 2000 Summer: MAAC Total Import Capability from ECAR decreased by 600 MW, and from MAIN it was essentially unchanged, as compared to 2000 Summer. The decrease can be attributed to more limiting voltage constraints in Allegheny Power due to higher real and reactive loads being modeled for 2001 Summer.

VACAR Imports

Transfers into VACAR from ECAR or MAIN were analyzed using the ECAR primary (E100) peak load base case. As shown in Tables 1 & 2, the VACAR Total Import Capability only ranges from 2,450 MW to 2,500 MW. Transfers from ECAR were limited to 2,450 MW, and transfers from MAIN were limited to 2,500 MW, in both cases by the voltage-limited Hatfield - Black Oak 500 kV (AP) circuit for an outage of the Pruntytown - Mount Storm 500 kV (AP) circuit.

West-to-East Transfer Bias: VACAR imports from MAIN were analyzed under the E102 study base case, which models a 4,000 MW west-to-east transfer bias. VACAR Total Import Capability from MAIN was limited to 800 MW by the voltage-limited Hatfield - Black Oak 500 kV (AP) circuit for an outage of the

Pruntytown - Mount Storm 500 kV (AP) circuit. This is a decrease of 1,700 MW from the E100 base case.

North-to-South Transfer Bias: VACAR imports from MAIN were analyzed under the E104 study base case, which models a 4,000 MW north-to-south transfer bias. With this transfer bias, the Cumberland - Davidson 500 kV (TVA) circuit overloads for an outage of the Cumberland - Johnsonville 500 kV (TVA) circuit. For comparison purposes, this results in a VACAR Total Import Capability from MAIN of -350 MW. This is a decrease of 2,850 MW from the E100 base case.

Comparison to 2000 Summer: VACAR Total Import Capability from ECAR decreased by 950 MW, and from MAIN it ranged between being essentially unchanged to increasing 1,150 MW. The decrease can be attributed to more limiting voltage constraints in Allegheny Power due to higher real and reactive loads being modeled for 2001 Summer, while the increases can be attributed on TVA being modeled as exporting 500 MW more power in 2001 Summer as compared to 2000 Summer.

STUDY RESULTS -- South West (SW) Study Area

Introduction

The SW study area of ECAR is composed of thirteen control areas. These include AEP, BREC, CIN, DPL, EKPC, ENWC, ENWI, HE, IPL, LGEE, NIPS, OVEC, and SIGE. It is also one of three security coordinators within ECAR. The SW study area has a projected 2001 Summer demand of approximately 58,690 MW, with approximately 60,990 MW of dispatched generation supporting this demand and 2,300 MW of exports. With the addition of 3,020 MW of merchant and utility generation scheduled to be added for the 2001 Summer period (refer to Appendix B), a total of 6,310 MW of non-dispatched generation is available for exports. The SW study area was further divided into the Kentucky and Indiana import study areas. These import study areas were defined in order to better concentrate generation deficiencies and further stress the internal ECAR network.

General Observations

The results of this study indicate that the SW study area of ECAR is expected to perform adequately during the 2001 Summer season. However, during times of heavy inter-regional transfers, it will be important for the ECAR companies to closely monitor their areas in order to maintain the reliability of the bulk system. During times of peak loading conditions, it may be necessary to implement certain operating procedures to reduce loadings on various transmission facilities. Refer to Appendix H of this report for details on these operating procedures.

There are four significant generation and transmission changes taking place in the SW study area since the 2000 Summer operating period. The first is the addition of 3,020 MW of merchant and utility generation. Of this amount, 1,930 MW are being added in AEP, 480 MW in DPL, 295 MW in LGEE, 183 MW in CIN, 75 MW in IPL, and 58 MW in BREC. The second is the return to service of Cook Unit 1 (AEP) which will relieve loadings on the Dumont and Cook 765-345 kV (AEP) transformers. The third is the addition of the new Orange 765-138 kV (AEP) station on the Marysville - Kammer 765 kV (AEP) circuit, which will improve the voltage performance in the Columbus Metropolitan area. The fourth is the addition of the Foster - Bath 345 kV (CIN-DPL) circuit, which will relieve contingency overloads on the Foster - Sugarcreek 345 kV (CIN-DPL) circuit.

In addition to the generation and transmission changes noted above, transmission system performance in the SW study area will also be impacted by the mode of operation of the Phase Angle Regulators (PAR) on the Michigan - Ontario interface. By redirecting flows that would otherwise flow around the north end of Lake Erie, a greater percentage of flows to the west will now flow through transmission facilities located south of Lake Erie. The net effect of these changes is that of the thirty transfer scenarios examined as part of the SW study area assessment, twelve scenarios had higher transfer capability from 2000 Summer, seven scenarios had lower transfer capability, and eleven were either unchanged or not analyzed as part of the 2000 Summer assessment. It should be noted that this assessment includes the reporting of selected limitations outside of the ECAR These facilities in adjacent Regions were included in an attempt to provide consistency with other regional reports and to capture elements that may be more restrictive for transfers of interest to ECAR. For additional limiting elements in other Regions, refer to the MEN, MET, and VEM, 2001 Summer transmission assessments.

Kentucky Imports

Transfers into Kentucky from MAIN were analyzed using the ECAR primary (E100) peak load base case. As shown in Tables 1 & 2, the Kentucky Total Import Capability was limited to 2,950 MW by the Gallagher 230-138 kV transformer in Cinergy for an outage of the Clifty Creek - Trimble County (OVEC-LGEE) line.

West-to-East Transfer Bias: Kentucky imports from MAIN were analyzed under the E102 study base case, which models a 4,000 MW west-to-east transfer bias. Kentucky Total Import Capability from MAIN was limited to 1,400 MW by the Grahamville - South Paducah - Livingston 161 kV (LGEE) path for an outage of the Shawnee - Marshall 500 kV (TVA) circuit. This is a decrease of 1,550 MW from the E100 base case.

North-to-South Transfer Bias: Kentucky imports from MAIN were analyzed under the E104 study base case, which models a 4,000 MW north-to-south transfer bias. With this transfer bias, the Cumberland - Davidson 500 kV (TVA) circuit overloads for an outage of the Cumberland - Johnsonville 500 kV (TVA) circuit. For comparison purposes, this results in a Kentucky Total Import Capability from MAIN of -1,600 MW. This is a decrease of 4,550 MW from the E100 base case.

Comparison to 2000 Summer: Kentucky Total Import Capability from MAIN increased by 750 MW when limited by ECAR facilities, but decreased by -1,550 MW when limited by TVA facilities. In the former case, Cinergy increased the ratings for some of its transformers for 2001 Summer as compared to 2000 Summer. In the latter case, the Cumberland - Johnsonville 500 kV (TVA) circuit had an OTDF of 2.6% in this 2001 Summer assessment, while its OTDF during the 2000 Summer assessment was under the 2.5% cut-off used in these ECAR seasonal assessments.

Indiana Imports

Transfers into Indiana from MAAC were analyzed using the ECAR primary (E100) peak load base case. As shown in Tables 1 & 2, the Indiana Total Import Capability was not limited up to the 3,800 MW test level.

East-to-West Transfer Bias: Indiana imports from MAAC were analyzed under the E101a study base case, which reflects a 4,000 MW east-to-west transfer bias and a maximum flow of 2,430 MW from Ontario to Michigan. Indiana Total Import Capability was again not limited up to the 3,800 MW test level.

South-to-North Transfer Bias: Indiana imports from MAAC were analyzed under the E103 study base cases, which model a 4,000 MW south-to-north transfer bias. The E103a study base case modeled Cook Unit 1 (AEP) out of service. As compared to the E100 study base case, the Indiana Total Import Capability from MAAC decreased by 5,850 MW, with the Dumont 765-345 kV (AEP) transformer limiting for an outage of the Cook 765-345 kV (AEP) transformer. The E103b study base case modeled Davis-Besse Unit 1 out of service. As compared to the E100 study base case, the Indiana Total Import Capability from MAAC decreased by 3,850 MW, with the Dumont 765-345 kV (AEP) transformer again limiting for an outage of the Cook 765-345 kV (AEP) transformer.

Comparison to 2000 Summer: Indiana Total Import Capability increased between 2,400 MW and 4,400 MW as compared to 2000 Summer. This improvement can largely be attributed to the return to service of Cook Unit 1.

TVA Imports

Transfers into TVA from ECAR, MAAC, or MAIN were analyzed using the ECAR primary (E100) peak load base case. As shown in Tables 1 & 2, the TVA

Total Import Capability ranges from 2,550 MW to 3,350 MW. Transfers from ECAR were limited to 2,550 MW, and transfers from MAAC were limited to 2,600 MW, in both cases by the Clinch River - Spring Creek - North Bristol 138 kV (AEP) path for an outage of the Broadford - Sullivan 500 kV (AEP-TVA) circuit. No limits were found for transfers from MAIN up to the total import test level of 3,350 MW.

West-to-East Transfer Bias: TVA imports from MAIN were analyzed under the E102 study base case, which models a 4,000 MW west-to-east transfer bias. TVA Total Import Capability from MAIN was limited to 3,000 MW by the voltage-limited Kanawha River - Matt Funk 345 kV (AEP) circuit for an outage of the Baker - Broadford 765 kV (AEP) circuit. This is a decrease of at least 350 MW from the E100 base case.

North-to-South Transfer Bias: TVA imports from ECAR, MAAC, or MAIN were analyzed under the E104 study base case, which models a 4,000 MW northto-south transfer bias into TVA and through TVA into Southern. With this transfer bias, Total Import Capability into and through TVA from ECAR was limited to 3,200 MW, and from MAAC it was limited to 3,250 MW, in both cases by the Clinch River - Spring Creek - North Bristol 138 kV (AEP) path for an outage of the Broadford - Sullivan 500 kV (AEP-TVA) circuit. Both levels reflect an increase of 650 MW from the E100 base case. The Total Import Capability into and through TVA from MAIN was limited to 4,700 MW by the voltage-limited Kanawha River - Matt Funk 345 kV (AEP) circuit for an outage of the Baker -Broadford 765 kV (AEP) circuit. This is an increase of at least 1,350 MW from the E100 base case. In all three scenarios, the increase in Total Import Capability from the E100 base case is due to the 2,000 MW transfer bias into Southern being included in the calculation of Total Import Capability into and through TVA. If this 2,000 MW transfer bias into Southern was not included, the Total Import Capability into TVA would have decreased 1,350 MW and 650 MW, respectively.

Comparison to 2000 Summer: TVA Total Import Capability from ECAR increased by 1,150 MW under the E100 base case, but decreased by 450 MW under the E104 base case. From MAAC, it decreased by 950 MW under the E104 base case. From MAIN it increased 400 MW under the E102 base case, but decreased 500 MW under the E104 base case. These changes can be attributed to higher facility loadings in southeastern ECAR due to higher forecasted loads, the merchant generation additions, the return to service of Cook Unit 1 (AEP), the 400 MW net increase in base case scheduled interchange from the northwest to the

southeast (refer to Appendices B, C, and E). Changes in the number of non-ECAR monitored and outaged facilities also attributed to some of the differences.

MAIN Imports

Transfers into MAIN from ECAR, MAAC, VACAR or TVA were analyzed using the ECAR primary (E100) peak load base case. As shown in Tables 1 & 2, the MAIN Total Import Capability ranges from 3,550 MW to 4,700 MW. Transfers from ECAR were limited to 4,050 MW, and transfers from MAAC were limited to 4,600 MW, in both cases by the Breed - Casey 345 kV (AEP-AMRN) circuit for an outage of the Rockport - Jefferson 765 kV (AEP) circuit. Transfers from VACAR were limited to 4,700 MW by the East Danville - Danville 138 kV (AEP) circuit for an outage of the Antioch - Jackson Ferry 500 kV (DUKE-AEP) circuit. Transfers from TVA were limited to 3,550 MW by the Summer Shade - Summer Shade Tap 161 kV (TVA-EKPC) circuit for an outage of the Summer Shade - Summer Shade 161 kV (TVA-EKPC) circuit.

East-to-West Transfer Bias: MAIN imports from MAAC or VACAR were analyzed under the three E101 study base cases, which reflect a 4,000 MW east-towest transfer bias. Transfer capability was determined with different modes of operation for the Michigan - Ontario Phase Angle Regulating (PAR) transformers. Total Import Capability from MAAC ranged from -1,400 MW to 3,600 MW, and Total Import Capability from VACAR ranged from 3,550 MW to 3,700 MW. In all cases but one, MAIN Total Import Capability was limited to the 3,550 MW to 3,700 MW range by the Sidney 345-138 kV (IP) transformer for an outage of the Dumont - Wilton Center 765 kV (AEP-CE) circuit. The only exception was the Total Import Capability from MAAC which was limited to -1,400 MW by the Queenston Flow West (QFW) interface in Ontario under the E101a study base case conditions (the E101a study base case reflects a maximum flow of 2,430 MW from Ontario to Michigan). This is a condition that MECS does not anticipate operating in, as this scenario models the holding of fixed minimum angles on the PARs, when in reality it is anticipated that if the system conditions were those modeled in this base case, the PARs would most likely be used to retard flow not contracted through Ontario. The other two E101 study base cases used in this analysis reflected zero-fixed-angle PAR settings (E101b), resulting in an 1,890 MW flow from Ontario to Michigan, and maximum-fixed-angle PAR settings (E101c), resulting in a 1,220 MW flow from Ontario to Michigan. Excluding the QFW-limited scenario, MAIN Total Import Capability from MAAC

or VACAR decrease by 1,000 MW to 1,150 MW under the E101 base cases as compared to the E100 base case.

South-to-North Transfer Bias: MAIN imports from ECAR, MAAC, or TVA were analyzed under the E103 study base cases, which model a 4,000 MW southto-north transfer bias. The E103a study base case modeled Cook Unit 1 (AEP) out of service, while the E103b study base case modeled Davis-Besse Unit 1 out of service. Total Import Capability from ECAR was limited to 5,400 MW (E103a) and 5,550 MW (E103b) by the Sidney 345-138 kV (IP) transformer for an outage of the Dumont - Wilton Center 765 kV (AEP-CE) circuit. This is an increase of 1,350 MW to 1,500 MW from the E100 base case. Total Import Capability from MAAC was limited to -1,800 MW (E103a) and 2,800 MW (E103b) by the Dumont 765-345 kV (AEP) transformer for an outage of the Cook 765-345 kV (AEP) transformer. This is a decrease of 1,800 MW to 6,400 MW from the E100 base case. Total Import Capability from TVA was limited to 1,400 MW (E103a) and 1,500 MW (E103b) by the Summer Shade - Summer Shade Tap 161 kV (TVA-EKPC) circuit for an outage of the Summer Shade - Summer Shade 161 kV (TVA-EKPC) circuit. This is a decrease of 2,050 MW to 2,150 MW from the E100 base case.

Comparison to 2000 Summer: MAIN Total Import Capability from ECAR increased from 50 MW to 800 MW, mostly due to the changes in modeling the south-to-north transfer bias from 2000 Summer to 2001 Summer. MAIN Total Import Capability from MAAC increased from 400 MW to 5,000 MW, largely due to the return to service of Cook Unit 1 (AEP), and the changes in modeling the south-to-north transfer bias from 2000 Summer to 2001 Summer. MAIN Total Import Capability from VACAR increased from 50 MW to 2,050 MW, mainly due to the return to service of Cook Unit 1 (AEP). MAIN Total Import Capability from TVA decreased from 1,200 MW to 1,3000 MW, primarily due to the changes in modeling the south-to-north transfer bias from 2000 Summer to 2001 Summer.

INDIVIDUAL COMPANY ASSESSMENTS

Introduction

In addition to the ECAR seasonal transmission assessments conducted by the TSPWG under the direction of the TSPP, individual ECAR members also conduct seasonal studies either individually or jointly with other companies. This section of the report presents the significant findings from these studies as reported by the individual ECAR members.

American Electric Power (AEP)

The AEP System was designed, built, and is operated to perform adequately under a range of outage conditions. However, extreme outages coupled with extreme weather conditions and/or power transfer conditions can potentially stress the system beyond acceptable limits.

In AEP's Fort Wayne Transmission Region, the unavailability of critical facilities, such as the Cook and Dumont 765-345 kV (AEP) transformers, could materially reduce the capability of the transmission system. This is more of a concern in the summer than in the winter. In contrast to 2000 Summer, the return to service of Cook Unit 1 (connected to the 345 kV bus) is expected to reduce loadings on the Cook and Dumont transformers during 2001 Summer. However, these loading reductions could be minimized by the anticipated mode of operation of the Phase Angle Regulators (PAR) on the Michigan - Ontario interface. The PAR owners have stated that the PARs will be operated to control flows through the Michigan -Ontario interface to scheduled levels. By redirecting flows that would otherwise flow around the north end of Lake Erie, a greater percentage of flows into Michigan will now flow through the Cook and Dumont 765-345 kV transformers. Contingency overloads on these two transformers are more probable when sales to Michigan are heavy. If contingency overloads do occur, the NERC Transmission Loading Relief (TLR) procedure will be initiated to maintain reliability. operating procedure is also available to address contingency loadings on the Cook and Dumont transformers (refer to Appendix H). In addition, the DeSoto - Jay 138 kV (AEP) circuit was found to exceed its summer normal rating under base case conditions (refer to Table 3). An upgrade scheduled for later this year will increase its summer normal rating from 185 MVA to 292 MVA, and its summer

emergency rating from 244 MVA to 301 MVA. This region of AEP is scheduled to have 400 MW of new merchant generation placed in service by 2001 Summer.

Seasonal studies of AEP's Columbus Transmission Region have raised concerns regarding the voltage performance in Central Ohio (primarily the Columbus Metropolitan area) during summer operating conditions. This area has been susceptible to voltage drops for the loss of the Marysville 765-345 kV (AEP) transformer concurrent with generation unavailability at the Conesville (AEP) generating plant. These concerns are heightened during outages of the Cook (AEP) generating units, and during periods of heavy transfers to the north and west through ECAR. To minimize potential voltage problems in the Columbus area, AEP completed an 1,100 MVAR reactive correction program in 2000, and established the Columbus Region Emergency Procedures (CREP) to reduce the risk of an uncontrolled voltage collapse (refer to Appendix H). To further mitigate the Columbus area voltage condition, AEP will be placing in service the new Orange 765-138 kV station on the Marysville - Kammer 765 kV (AEP) circuit, by May 2001. Figure 4.2 illustrates the improvement in voltage performance which can be attributed to this facility addition. In an effort to address local area needs, the Bixby #1 345-138 kV transformer is being replaced with a higher capability bank, and a second South Canton 345-138 kV transformer is scheduled to be placed in service, both by June 2001. This region of AEP is not scheduled to have any new merchant generation placed in service by 2001 Summer.

In AEP's Roanoke Transmission Region, loss of overlapping EHV elements could result in thermal overloads and low voltages on underlying transmission networks. Based on the results of seasonal assessments and the "ECAR/MAAC/SERC Tri-Regional Assessment, Reliability Impact of the Delayed Completion of the Wyoming-Cloverdale 765 kV Line" (dated March 1997), AEP has identified the need to employ (with the assistance of its neighbors) operating procedures to reduce the reliability risks of potential widespread power interruptions in the southeastern portion of ECAR. These operating procedures, referred to as the Southern Transmission Emergency Procedures (STEP), are designed to maximize the loadability of the critical Kanawha River - Matt Funk 345 kV (AEP) circuit and reduce excessive loadings on AEP's southeastern transmission system. The risk for a voltage collapse in this area is greater in the winter than in the summer, due to the higher area loads in the winter. Details on the STEP and Kanawha River - Matt Funk 345 kV operating procedures can be found in Appendix H. In addition, the Cloverdale #1B 345-138 kV transformer has been replaced with a higher capability bank to address local area needs. This region of AEP is

scheduled to have 1,530 MW of new merchant generation placed in service for 2001 Summer.

Overall, AEP will continue to operate its system so that transmission loadings and voltage levels are maintained within safe levels. This may require the redispatch of generation, the initiation of the NERC TLR procedure, and/or the purchase of power from neighboring systems to reduce high loadings on critical transmission elements or severe voltage depressions.

Allegheny Power (AP)

Allegheny Power expects to have adequate control area generation to meet its forecasted peak load this summer. No major transmission facilities are anticipated to be out of service during the summer peak, and no generation is planned to be out of service. AP does not anticipate any potential operating problems for this summer peak.

Big Rivers Electric (BREC)

Based on internal power flow studies and actual experiences, BREC expects its system to generally perform well during this summer season. The load flow screening studies showed no violations of NERC Planning Standard IA under both normal and single contingency conditions.

However, BREC facilities have the potential to reach normal or emergency ratings during times of heavy north-to-south flows. In particular, the New Hardinsburg 138-161 kV (BREC) transformer and/or the New Hardinsburg - Paradise 161 kV (BREC-TVA) interconnection may experience loadings that are especially severe during TVA dispatch scenarios that include Paradise generating unit outages. In addition, the Henderson County 138-161 kV (BREC) transformer may experience loadings that are particularly severe during BREC generation outages. The initiation of the NERC TLR procedure may be necessary to reduce these facility loadings. In addition, the outage of the New Hardinsburg - Paradise interconnection may be necessary to reduce the New Hardinsburg transformer loading when TLRs prove ineffective.

BREC does not expect any generation or transmission facilities to be out of service this summer. A 58 MW co-generation facility is being installed by Willamette Industries that will result in a reduced load at the Skillman substation.

Cinergy (CIN)

The Cinergy transmission system is expected to perform well, with no significant problems. Cinergy screening studies using the ECAR 2001 Summer (E100) base case indicated no violations of the NERC Planning Standard IA under normal and single contingency conditions. Some of the study scenarios, which resulted in contingency overloads or low voltages, were due to modeling reasons (the equivalizing of the Cinergy 69 kV system and the choice of base voltage for the CG&E 66 kV system) rather than expected system conditions. The remainder is discussed below.

The Wabash River - Crawfordsville 138 kV circuit appeared as loaded above its emergency rating for several outages. Cinergy has an operating procedure for this circuit that essentially opens this circuit to relieve the overload. This operating procedure is included in Appendix H. In addition, upgrade of this circuit is budgeted for the summer of 2002.

The 138 kV windings of the three 230-138-69 kV transformers at Kokomo Highland Park may overload for large transfers from either west-to-east or south-to-north or during certain generation or transmission outages in the vicinity of the Greentown 765 kV substation. This overload may be reduced or eliminated by altering the configuration of the Greentown 138 kV station, as noted under the subject operating procedure in Appendix H. There are no plans to expand the transmission system to handle these contingencies due to the low probability that all of the necessary conditions will occur.

The new Foster - Bath 345 kV (CIN-DPL) circuit is planned to be in service by this summer. This circuit is being built to help alleviate congestion during high south-to-north transfers across the ECAR Region. The Terminal 345-138 kV transformer's return to service is scheduled for this summer upon completion of its repairs. The Port Union - Todhunter 138 kV double circuit is scheduled to be rebuilt to increase its rating by this summer. There are no major bulk facilities scheduled to be out of service on the Cinergy system this summer.

The connection of one merchant plant is planned for the Cinergy transmission system by this summer. This plant, located in Henry County, Indiana, has experienced delays due regulatory proceedings. Depending on the actual level and direction of transfers across the Cinergy transmission system, Cinergy may experience loading and or voltage concerns. Cinergy will utilize various

mechanisms including but not limited to TLR's and redispatch alternatives to address these concerns.

Consumers Energy (CONS)

The Consumers Energy bulk power transmission system is expected to perform well during the 2001 Summer season. Power flow simulations using the ECAR 2001 Summer base case (E100) indicate no violations of NERC Planning Standard IA for both normal peak load conditions and for single contingency conditions, including double circuit tower contingencies, within the Consumers Energy service territory.

Generating plant modifications at Palisades, Whiting, and Cobb will increase Consumers Energy's capacity by 24 MW. The completion of two units at Zeeland will add 370 MW of merchant plant capacity. In addition, there will be approximately 75 MW of capacity added by several smaller merchant plants.

In past summers, Consumers had a Long Term Power Reservation to purchase 300 MW from Ontario. This purchase was modeled in the base case. Consumers, however, has not extended the purchase for this summer. Consumers has purchased 600 MW of firm transmission capacity through AEP from Cinergy and 150 MW through NIPS. With the addition of two 138-69 kV transformers at Barton Lake (NIPS) and the completion of NIPS' 69 kV reinforcement project, the NIPS - MECS interface capacity will increase to 293 MW this summer.

The Phase Angle Regulating (PAR) transformer planned for last summer on the Lambton - Saint Clair (L4D) 345 kV (HONI-DECO) circuit, failed factory testing and is now scheduled for completion by mid-August. Until the completion of this project, the operating procedures that exist to maximize transfer capability across the Michigan - Ontario interface may be utilized more often. These procedures include adjusting the J5D phase shifter (HONI), moving Saint Clair Unit 6 (DECO) generation to the 120 kV system, and arming Lambton (HONI) generation rejection for the loss of either Lambton - Saint Clair 345 kV (HONI-DECO) interconnection (L4D or L51D).

The range of MECS import capability is highly dependent upon the amount of power flow scheduled across the HONI/DECO Phase Angle Regulating (PAR) transformers. Internal studies indicate that with 600 MW scheduled across the PAR transformers, the simultaneous MECS import capability is 3,500 MW, limited by the Dumont 765-345 kV (AEP) transformer for the outage of the Cook

765-345 kV (AEP) transformer. With 2,100 MW scheduled across the PAR transformers and 2,500 MW through ECAR into MAIN, the simultaneous MECS import capability is 4,100 MW, also limited by the Dumont transformer for an outage of the Cook transformer. As shown in last summer's assessment, an outage of Cook Unit 1 (AEP) or large transfers through ECAR into MAIN will significantly reduce MECS import capability.

Consumers Energy is in the second year of a multi-year plan to increase import capability by 2002, as required by Michigan's new electric restructuring law. Approximately half of the \$37 million project will be completed by summer 2001. A major portion of this project, which will be completed by this summer, is the looping of the Oneida (CONS) substation into the Battle Creek - Majestic (CONS-DECO) 345 kV line. This will maintain a 345 kV feed into the Lansing area in the event of any single 345 kV line outage or double circuit tower outage between Battle Creek and Majestic. Consumers will also add 291.6 MVAR of 138 kV capacitors prior to this summer to support voltages during large imports.

Ignoring limits external to MECS, the Oneida loop increases transfer capability into MECS by approximately 1,300 MW. With 600 MW scheduled across the Ontario - Michigan Phase Angle Regulating transformers, the simultaneous MECS import capability, as limited by MECS facilities, will be 4,900 MW. The Canal-Island Road 138 kV (CONS) line limits for an outage of the Argenta - Tompkins 345 kV and Battle Creek - Oneida 345 kV (CONS) double-circuit tower.

For the past three summers, Consumers has reported that the NERC Transmission Loading Relief (TLR) Procedure could affect power transactions by Consumers and Detroit Edison for overloads on other systems. Consumers Energy has entered into an agreement with all major electric utilities located around Lake Erie to use generation re-dispatch to mitigate TLR curtailments in situations where the affected system is about to curtail load. This operating procedure, called the Lake Erie Emergency Re-dispatch (LEER) Procedure, is documented in Appendix H.

Detroit Edison (DECO) / International Transmission (ITC)

Detroit Edison expects to serve its customers this summer with a combination of native generation and purchased power, much the same as it did in 2000. Dearborn Industrial Generation, which added approximately 170 MW in 1999, will be adding another 540 MW this year.

The International Transmission Company has three major projects that will aid Southeastern Michigan this summer. They are described below.

The Blackfoot Project is in service and involves the addition of a 345 kV line between the new Blackfoot station and Belle River. Also, the Jewell end of the Greenwood - Belle River - Pontiac 345 kV circuit was reterminated at Pontiac, using the existing Jewell - Pontiac 345 kV circuit. The transmission line is in service, creating a three-ended transmission line between Belle River, Madrid, and Pontiac. There is a switching station under construction which will break that three-ended circuit into three two-ended circuits; the Belle River - Blackfoot, Blackfoot - Madrid, Blackfoot - Pontiac 345 kV circuits. This station is scheduled to be in service this summer.

The Bismarck Project is scheduled to be in service this summer. This project will add a 345-120 kV autotransformer at the Bismarck station, and cut into the St. Clair - Stephens 120 kV circuit. This autotransformer will relieve overloading of either Stephens 345-120 kV autotransformer for the loss of the other one.

Previous limiting elements in Ontario and on the Michigan - Ontario interface will be relieved by the addition of the Phase Angle Regulating (PAR) transformers and the new autotransformer on the Michigan - Ontario interface. This project is mostly complete, with the new autotransformer and two of the three new PAR transformers in place. The L4D PAR transformer failed an in-factory test, and is now scheduled to be in place by mid-August. The PAR transformers will be used to relieve the potential overloads on the DECO-HONI interconnections during periods of heavy transfers by redistributing the flows in an efficient manner.

Duquesne Light (DLCO)

The Duquesne Light power system is expected to perform adequately during this summer season. Power flow simulations indicate that transmission facility loadings and voltages are within acceptable limits for both normal peak load conditions (with all facilities in service) and for single contingency conditions within and outside Duquesne's control area. There are no planned outages of either generating or transmission facilities or abnormal system conditions this summer and there are no bulk power facility additions scheduled. Interconnection capability between Duquesne and its directly connected neighbors is adequate to support economic power transfers, generation outages within Duquesne, and to supply reserve sharing assistance to other control areas upon demand.

The Elrama - Mitchell 138 kV interconnection between Duquesne and Allegheny Power has been reported as a limit to interregional transfers in past appraisals and may be limiting for similar power transfers this summer. Elrama - Mitchell responds approximately five percent to power transfers from ECAR to the east and southeast. Elrama - Mitchell responds as much as 50% to power transfers from and to the Elrama Power Station and Duquesne's directly connected neighbors.

Operating procedures to mitigate loadings on the Elrama - Mitchell 138 kV circuit are available and can be employed to maximize transfers. The Springdale - Cheswick 138 kV (AP-DLCO) operating procedure is also available and can be initiated for outages of the Cheswick and/or Beaver Valley generating units. Details on both of these operating procedures can be found in Appendix H.

Dayton Power and Light (DPL)

Based on DPL's transmission system assessment, Dayton Power and Light does not anticipate any operating problems, or any negative impact on the ECAR bulk transmission system performance during the 2001 Summer period under normal or single contingency conditions.

Construction of the new Foster - Bath 345 kV (CIN-DPL) circuit, scheduled for completion by June 1, will significantly reduce loadings on the existing Foster - Sugarcreek 345 kV (CIN-DPL) circuit. This circuit has been susceptible to single contingency overloads during periods of heavy south-to-north power transfers. Construction of the Adkins merchant plant on the Atlanta - Beatty 345 kV (DPL-AEP) circuit is in progress, and is scheduled to be in service for the summer of 2001. The replacement of the Clinton 345-69 kV transformer with a higher capacity bank is scheduled for the spring of 2001. The upgraded transformer will have a normal rating of 250 MVA and an emergency rating of 275 MVA.

There are no anticipated operating procedures for the summer of 2001 involving the 345 kV or 138 kV system. Depending on the generation dispatch at the O. H. Hutchings generating station, an overload can occur on the Carlisle 138-69 kV (CIN) transformer. Operating procedures are in place to correct this overload, up to and including the opening of the Carlisle - Hutchings 69 kV circuit.

East Kentucky Power Cooperative (EKPC)

Under normal system conditions during the upcoming peak load season, EKPC expects that all of its facilities will be in service; that all line and equipment loadings will fall within normal thermal limits; that all voltage levels will fall within normal limits; that the stability of the network will be maintained; that all customer demands will be supplied; that all contracted firm (non-recallable reserved) transfers will be maintained; and that no cascading outages will occur.

Furthermore, for the loss of any single transmission component, EKPC expects that all voltage levels will fall within emergency limits; that the stability of the network will be maintained; that no unplanned loss of customer demand or generation will occur; that no contracted firm (non-recallable reserved) transfers will be curtailed; and that no cascading outages will occur.

FirstEnergy (FE) / American Transmission Systems (ATSI)

FirstEnergy's bulk transmission, generation, and interconnection capacities are expected to be adequate to supply FE's projected 2001 Summer peak load, with interchange schedules as indicated in the ECAR 2001 Summer base case. Items of note relative to local area thermal loading concerns and potential regional transfer capability limitations are summarized below.

The Bay Shore - Dixie 138 kV circuit may thermally overload for loss of the Allen Junction 345-138 kV transformer. This circuit is scheduled to be re-conductored prior to the fall of 2001. Until completed, a local 138 kV line can be opened through supervisory control to eliminate the overload without any customer supply interruptions.

The Pleasant Valley - Griffin (Q3) 138 kV circuit may thermally overload for loss of the Fox #2 and/or #3 345-138 kV transformers. This line is scheduled to be reconductored prior to the summer of 2001. Until completed, a local 138 kV line can be opened through supervisory control to eliminate the overload without any customer supply interruptions.

The Star #1 345-138 kV transformer may thermally overload for loss of the Star #2 and #3 345-138 kV transformers which are paralleled on the same set of breakers. Local 138 kV lines can be opened to eliminate the overload without customer supply interruption.

The Tangy 138-69 kV transformer may thermally overload for loss of the Galion #1 and #2 345-138 kV transformers. A local 69 kV line can be opened through supervisory control to eliminate the overload without any customer supply interruptions.

Hoosier Energy (HE)

Hoosier Energy expects its transmission grid (100 kV and above) to function without incident under system normal conditions during the summer of 2001. Under contingency conditions, the Georgetown 138-69 kV transformer could reach 100% of its 100 MVA summer fan rating, while the Ramsey 345-69 kV transformer could reach 104% of its 150 MVA summer fan rating (as noted in Table 3). In both cases, HE can transfer some of the load off the 69 kV buses to reduce transformer loadings. HE will permit its transformers to operate at 132% of their summer fan ratings for an eight-hour period accepting a 2% loss of life. Therefore, HE accepts the conditions noted in Table 3 and feels that there is no threat to jeopardizing the integrity of their transmission grid or that of the ECAR bulk transmission system. Furthermore, HE plans to install a second Georgetown 138-69 kV (100 MVA) transformer by June 1, 2001. In addition to reducing any HE overloaded conditions (reduces flows on the existing Greentown and Ramsey 138-69 kV transformers), this new transformer will provide increased support to the Hoosier Energy and Cinergy 69 kV systems.

As was the case during 2000 Summer, HE will implement an established operating procedure which calls for the Worthington 345-138 kV transformer to be operated out-of-service during the summer period when the Worthington CT (170 MW), connected to the Worthington 138 kV station, is in operation. This is being done to prevent any potential contingency overloads on the Cinergy transmission system when the Worthington CT is in operation.

Indianapolis Power and Light (IPL)

IPL's analysis did not identify any transmission overloads under normal, single contingency, or single-with-common-mode contingency conditions. The IPL transmission system, however, will experience local overloads under double-contingency conditions. Overloads in the Indianapolis area will be mitigated by re-dispatching generation, reconfiguring the distribution system, calling on interruptibles, or dropping load. None of these actions should impact ECAR bulk transmission system performance.

During the past year, IPL experienced more thermal overloads on it's Petersburg East 345-138 kV autotransformer. When power is flowing to the south, this autotransformer overloads, requiring IPL to implement the Local Petersburg Autotransformer Operating Procedure (refer to Appendix H). IPL is concerned that the frequency of implementing this operating procedure may increase in 2001.

LG&E Energy (LGEE)

The LGEE transmission system is expected to perform adequately to reliably transmit electrical energy from company owned generating resources to native load customers for a wide range of summer conditions. The Trimble County to Middletown 345 kV line and the Middletown 345-138 kV transformer additions that were completed in 2000 will strengthen the EHV transmission system in the Louisville area. The abnormal system conditions that existed during 2000 Summer due to the January 2000 failure of the Blue Lick 345-138 kV (LGEE) transformer will be eliminated for 2001 Summer. Installation of the replacement transformer is scheduled prior to the 2001 Summer peak. System generation changes include the installation of combustion turbines at the Brown CT and Paddys Run substation sites. The new units will increase LGEE's summer generating capacity by 295 MW.

The TSPWG assessment of 2001 Summer peak conditions, using the ECAR primary (E100) base case, indicated that some LGEE facilities could exceed their emergency ratings during contingency conditions (refer to Table 3). Limitations must be observed and corrective action may need to be taken during contingency situations to alleviate these problems. Specifically, the Kenton - Flemingsburg - Goddard 138 kV (LGEE) line could overload during an outage of the Spurlock - Maysville - Plumville 138 kV (EKPC) line. The level of generation at EKPC's Spurlock Plant has a significant effect on the contingency flow. Corrective measures to alleviate the problem include reducing generation at EKPC's Spurlock Plant. In addition, terminal equipment upgrades have been accomplished that eliminate an overload of the Tyrone - Adams 138 kV (LGEE) line during an outage of the Ghent - Owen County - Scott County 138 kV (LGEE) line and EKPC's Owen County 138-69 kV transformer.

LGEE's transmission system has experienced numerous overload and voltage problems during shoulder peak periods with high north-to-south transfers. TLRs have been called in an attempt to control the north-to-south flow through the LGEE system, and relieve overloading of the Blue Lick 345-161 kV transformer

(south of Louisville) and the Paddy's Run - Summershade 161 kV (LGEE-TVA) line. However, due to the low response factors, sufficient relief has sometimes not been obtained via the TLR process and LGEE has been forced to redispatch generation and open 161 kV transmission interconnection facilities to eliminate the problems. Additionally, LGEE has experienced depressed voltages in the central Kentucky area and had to dispatch combustion turbines at the Brown CT site to provide reactive and voltage support. Problems due to north to south flow are anticipated this summer and similar responses will be required unless the TLR process is modified to recognize and respond to the problem.

Northern Indiana Public Service (NIPS)

The Northern Indiana Public Service transmission system is expected to perform adequately during this summer season. Various capacitor installations and circuit conductor upgrades will eliminate possible overload or low voltage conditions for most credible outage contingencies. For the simultaneous outage of the Dequine - Olive 345 kV (AEP) and Dequine - Westwood 345 kV (AEP-CIN) circuits, the NIPS 345-138 kV transformer at the Reynolds substation could overload (refer to Table 3). If this situation were to occur, temporary switching could alleviate this transformer overload.

Ohio Valley Electric (OVEC)

Based on an analysis of projected 2001 Summer conditions, as modeled in the ECAR 2001 Summer (E100) base case, no OVEC facilities are expected to experience flows above summer normal ratings with all facilities in service, or above summer emergency ratings for loss of any single bulk power system facility.

Past operating experience indicates that high levels of west-to-east transactions may heavily load the Kyger Creek - Sporn 345 kV (OVEC-AEP) tieline, especially if these transfers coincide with reduced output at any of several AEP generating plants east of this tieline. AEP and OVEC have agreed to open the tie as needed. Opening the tie under these conditions will increase loading on the Sargents 345-138 kV (OVEC) transformer, but existing procedures can be used to address transformer-loading concerns if they arise. No other overloads would be expected to result from implementation of these operating procedures.

To prevent exposure to possible fault duties in excess of the capability of many of the 345 kV breakers at the Pierce station, Pierce circuit breakers E and G will be

operated "Normally Open" until installation of higher capability breakers is completed, expected by 2003 Summer. This temporary reconfiguration will leave the Dearborn - Pierce #1 345 kV (OVEC) and Pierce - X533 #1 345 kV (OVEC) circuits connected to each other, but isolated from the remainder of the Pierce station. This temporary change is expected to have little effect on flows in the area for most operating conditions. Breakers E and G could be reclosed, if desired, during outages of the Pierce - Foster 345 kV (OVEC-CIN) tieline.

For nearly fifty years, the OVEC system has supplied just one customer load, the Portsmouth Gaseous Diffusion Plant located near Piketon, Ohio, presently owned and operated by the United States Enrichment Corporation. This load, which at times in the past has reached nearly 2,000 MW, has been served under agreements between OVEC and the consortium of utilities known as the OVEC Sponsors, and the various plant owners and operators over the years. USEC has indicated that they intend to cease enrichment operations at Portsmouth this year, and has initiated termination of supply under the OVEC - DOE/USEC agreement effective August 31, 2001. After that date, essentially all of the approximately 2,300 MW of OVEC generation output will be delivered to the Sponsors, instead of only that deemed "Surplus" to the needs of the USEC load. Compared to the most recent summer and winter peak load periods, this will make 600 MW to 1,000 MW of additional capacity available to the OVEC Sponsors. Although the OVEC-DOE/USEC agreement will still be in effect through the summer, the precise schedule for ending enrichment operations is not known at this time. There are indications that the USEC load could be significantly below the 600 MW level represented in the ECAR power flow model, dropping down to 35 MW for June, July, and August. Flows on the Sargents 345-138 kV (OVEC) transformer, and the Sargents - Waverly 138 kV, Sargents - Wakefield 138 kV, and Kyger Creek -Sporn 345 kV (OVEC-AEP) tielines, will all increase with increased deliveries to the OVEC Sponsors, but significant margin will remain for transfers and/or contingencies.

Southern Indiana Gas and Electric (SIGE)

SIGE does not expect to have any operating problems this summer, which would affect ECAR bulk transmission system performance. In addition, SIGE is not planning any facility additions, removals, or modifications for this summer.

There is a potential overloading condition involving the Newtonville - Cloverport 138 kV (SIGE-LGEE) circuit and the Newtonville 161-138 kV (SIGE) transformer

during heavy exports by SIGE and/or BREC. This potential problem can be addressed through an established operating procedure documented in Appendix H.

There is a potential overloading condition involving the remaining Newtonville 138-69 kV (SIGE) transformer should the other Newtonville 138-69 kV (SIGE) transformer fail under peak load conditions. A temporary operating procedure is in place that calls for SIGE to install a spare transformer which will be supplied by Hoosier Energy, thus providing for the needed capacity during contingency conditions. This temporary operating procedure will remain in effect until permanent transformer capacity is added in the Newtonville area.

Finally, there is a potential overloading condition involving the Petersburg East and West 345-138 kV (IPL) transformers during heavy north-to-south transfers, and/or the loss of SIGE generation. IPL and Cinergy have an operating agreement to open the Petersburg - Vincennes Jct. 138 kV (IPL-CIN) circuit. If this action fails to provide enough relief to these transformers, SIGE and IPL have agreed to open the Petersburg - Dubois 138 kV (IPL-SIGE) circuit (refer to Appendix H).

TRANSFER CAPABILITY ANALYSIS

Introduction and Detailed Study Results (Table 2)

The transfer capabilities table (Table 2) provides a listing of the Normal Incremental Transfer Capabilities (NITC), the First Contingency Incremental Transfer Capabilities (FCITC), the Normal Total Transfer Capabilities (NTTC), the First Contingency Total Transfer Capabilities (FCTTC), and the Total Import Capability, for each of the transfer scenarios analyzed, as defined in Appendix J. A given facility was only listed as a limiting facility for the lowest FCITC level at which it appeared as a limitation. The facility may continue to be overloaded at higher transfer levels for other contingencies, but for brevity, it was not repeated in this table. However, this facility would appear a second time in Table 2 if it also limited under NITC conditions. Limitations imposed by the following types of contingencies appear in Table 2: (1) single circuits; (2) single circuit segments of multiple terminal circuits; (3) multiple terminal circuits; and (4) double-circuit towers in MECS and IMO.

The transfer capabilities listed in Table 2 were based on a linear analysis screening of single and selected double-circuit tower transmission contingencies under the stated base case and power transfer conditions. All monitored facilities which exceeded their emergency ratings and which had an OTDF greater than or equal to 2.5% were included in the table in increasing levels of permissible transfer. The purpose of Table 2 is not to define an absolute transfer capability for each of the transfers modeled, but to provide a measure of the level of transfers that can be supported between each of the study areas and give an idea of what facilities could limit those transfers. These transfer capabilities were determined primarily by analyzing ECAR outages and limitations for the specific base case and transfer conditions modeled for this seasonal study.

Selected non-ECAR outages and limitations were also included in this assessment. These non-ECAR facilities were added in an attempt to provide consistency with other regional reports and to capture elements that may be more restrictive to transfers of interest to ECAR. Additional limiting elements not reported in this study may exist in other Regions for various transfers from, to, or through ECAR. Refer to the MEN, MET, and VEM seasonal transmission assessments for additional insight into transmission limitations in adjacent Regions. Finally, it should be noted that transfer capabilities might vary significantly as specific generation, transmission, and scheduled transfer conditions change.

Geographic Location of Limiting Facilities (Figure 3)

To facilitate use of the study results documented in Table 2, this section of the report includes a diagram (Figure 3) that shows the geographic location of all limiting facilities identified in this seasonal transmission assessment. For lines, the direction of flow corresponding to the limiting condition is indicated through the use of an arrowhead. For transformers, the limiting flow direction is from left-to-right based on the voltage designation (e.g., the Dumont 765-345 label indicates that the flow through this transformer is from 765 kV to 345 kV).

TRANSFER	BASE CASE	NITC FCITC (MW)		NTTC FCTTC (MW)		TOTAL Import (MW)	N O T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
	CASE	(A)	(B)	(A+B)	(C)	(A+C)	E			(IVIVA)			(70)	(/0)	(70)
ECAR								(Tested During Winter Assessments)							
to															
IMO															
ECAR	E100	4550	000	0450	50	4500		Hatfield Black Oak 500 by (Valeans)	A.D.	0005	Description Manual Charge 500 IV	AD VD	0.0	00.0	40.0
	E100	1550	600		-50			Hatfiled - Black Oak 500 kV (Voltage)	AP AP		Pruntytown - Mount Storm 500 kV	AP-VP	9.6	26.8	13.8
to MAAC		2300	600	2900	-50 -50		_	Doubs #1 or #2 or #3 or #4 500-230 kV	VP-AP		Doubs - Brighton 500 kV	AP-PEPCO	1.3	8.7	3.1
MAAC		2450	600 600	3050 3300	-50 -50	_	2	Mount Storm - Doubs 500 kV	AP-PEPCO		Mount Storm - Meadow Brook 500 kV Doubs - Station H 230 kV	VP-AP AP-PEPCO	11.9 3.8	35.0 60.5	14.5 6.1
		2700				_		Doubs - Aqueduct - Station H 230 kV				AP-PEPCO AP			
		2700	600 600	3300 4550	-50 -50			Doubs - Station H 230 kV	AP-PEPCO AP		Doubs - Aqueduct 230 kV Pruntytown - Mount Storm 500 kV	AP-VP	3.8 11.7	60.3 31.1	6.1 16.7
		3950 4600	600	5200	-50 -50		3	Black Oak - Bedington 500 kV Black Oak 138-500 kV	AP		Hatfield - Black Oak 500 kV	AP-VP AP	1.9	20.2	3.9
		4850	600	5450	-50	_	3	Pruntytown - Mount Storm 500 kV	AP-VP		Black Oak - Bedington 500 kV	AP	16.1	44.6	21.3
		5000	600	5600	-50	_		Test Level - No Other Limits Found			D PARs @ 600 MW Fixed Flow into Michigan		10.1	44.0	21.3
		3000	000	3000	-30	4330		rest Level - No Other Limits i ound	Note: Michiga	il-Ontant	T ARS & 600 MW Tixed Flow into Michigal				
	2000S	2200	600	2800	-100	2100		Hatfiled - Black Oak 500 kV (Voltage)	AP	1940	Mount Storm - Meadow Brook 500 kV	VP-AP	8.7	10.1	9.4
	Top 3	2900	600	3500	-100	_		Doubs #1 or #2 or #3 or #4 500-230 kV	AP	479	Doubs - Brighton 500 kV	AP-PEPCO	1.2	8.7	3.0
	Limits	3600	600	4200	-100	3500	2	Mount Storm - Doubs 500 kV	VP-AP	2330	Mount Storm - Meadow Brook 500 kV	VP-AP	11.5	35.0	13.8
ECAR	E100	2050	0	2050	400	2450		Hatfield - Black Oak 500 kV (Voltage)	AP	2265	Pruntytown - Mount Storm 500 kV	AP-VP	5.9	26.8	10.6
to		4050	0	4050	400	4450	3	Kanawha - Matt Funk 345 kV (Voltage)	AEP	1040	Broadford - Jackson Ferry 765 kV	AEP	5.8	14.9	9.6
VACAR											Broadford 138 kV Series Reactor Inserted	AEP			
		4550	0	4550	400	4950		Pruntytown - Mount Storm 500 kV	AP-VP	3326	Black Oak - Bedington 500 kV	AP	19.3	44.6	22.6
		4900	0	4900	400	5300		Black Oak - Bedington 500 kV	AP	2783	Pruntytown - Mount Storm 500 kV	AP-VP	7.3	31.1	13.4
		5000	0	5000	400	5400		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michigan	า			
	2000S	3350	-50		50	_		Bedington - Doubs 500 kV (Voltage)	AP		Pruntytown - Mount Storm 500 kV	AP-VP	6.4	26.1	10.6
	Top 3	4300	-50	4250	50			Leesville - Altavista 138 kV	AEP-VP	209	Base Case		2.7		
	Limits	4000	-50	3950	50	4050		Test Level - No Other Limits Found							

ECAR 2001 Summer Assessment of Transmission System Performance Detailed Study Results from Transfer Capability Analysis (1)

Page: 2 of 39

TRANSFER	BASE CASE	FCITC	Sales (MW)	FCTTC	Import (MW)	TOTAL Import (MW) (A+C)	0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
ECAR	E100	1200	200	2000	1050	2550		Clinch D. Coving Cl. M. Drietal 420 ld/	AEP	239	Droodford 705 500 IV/ 9	AED	1.0	7.5	2.4
to	E100	4200	-300	3900	-1650	2550		Clinch R - Spring Ck - N Bristol 138 kV	AEP			AEP AEP-TVA	1.9	7.5	3.4
TVA		5000	-300	4700	-1650	3350		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michigan	า		Ī	
	2000S	2550	-400	2150	-1150	1400	2	River Queen - Earlington North 161 kV	LGEE	184	Green R - Corydon - Morganfield 161 kV &	LGEE	2.4		2.8
	Top 3										· ·	LGEE			
	Limits	2850				1700		,	BREC-TVA			BREC-LGEE	3.9	25.6	4.7
		2900	-400	2500	-1150	1750	2	Brown - Danville North - Lebanon 138 kV	LGEE	182		LGEE	2.2		2.8
											Alcalde 345-138 kV	LGEE			

Page: 3 of 39

TRANSFER	BASE CASE	NITC FCITC (MW) (A)	_	NTTC FCTTC (MW) (A+B)	Import (MW)	TOTAL Import (MW) (A+C)	т	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
ECAR to	E104	900	-300	600	2300	3200		Clinch R - Spring Ck - N Bristol 138 kV	AEP	239		AEP AEP-TVA	1.9	7.5	3.4
TVA		2000	-300	1700	2300	4300	2,3	Kanawha - Matt Funk 345 kV (Voltage)	AEP	1010	Baker - Broadford 765 kV	AEP	2.8	12.7	5.5
		2650	-300	2350	2300	4950	2	Brown - Alcalde 345 kV	LGEE	956	Baker - Broadford 765 kV	AEP	6.2	6.9	7.6
		2650	-300	2350	2300	4950		North Bristol - North Bristol 138 kV	AEP-TVA	260		AEP AEP-TVA	1.4	7.5	2.7
		2950	-300	2650	2300	5250	2	New Hardinsburg 138-161 kV	BREC	224	Coleman - National Aluminum 161 kV	BREC	2.6	77.2	3.4
		3200	-300	2900	2300	5500		Brown 138-345 kV	LGEE	515	Ghent-West Lexington-Brown 345 kV & West Lexington 345-138 kV	LGEE LGEE	3.6		5.6
		3350	-300	3050	2300	5650	2	Broadford 765-500 kV or Broadford - Sullivan 500 kV	AEP AEP-TVA	1920 1920	Broadford - Jacksons Ferry 765 kV & Broadford 138 kV Series Reactor Inserted	AEP	17.4	28.9	18.5
		3950	-300	3650	2300	6250		Reid - Hopkins County - Barkley 161 kV	BREC-TVA	265		BREC-LGEE	2.7	23.3	3.3
		3950	-300					Pineville - Pocket 500 kV or	LGEE		Baker - Broadford 765 kV	AEP	3.9	7.1	5.4
		0000	000	0000	2000	0200	4	Pineville 345-500 kV	LGEE	580	Baker Broadiora 700 KV	, (L)	0.5		0.4
		4000	-300	3700	2300	6300	2	Pineville - Pineville 161 kV	LGEE-TVA	242	Pocket - Phipps Bend 500 kV	LGEE-TVA	1.2	30.1	2.9
		4200	-300	3900	2300	6500		Wolf Hills - Orebank 138 kV	AEP	239		AEP	1.3	6.2	2.8
												AEP-TVA			
		5000	-300	4700	2300	7300		Test Level - 5 Other Limits Found	Note: Michiga	n-Ontario	D PARs @ Minimum Degrees Fixed Angle (F	low into Michig	an is 261	10 MW)	
	2000S Top 3	850	-400	450	2800	3650	2	Brown - Danville North - Lebanon 138 kV	LGEE	182	Brown - Alcalde - Pineville 345 kV & Alcalde 345-138 kV	LGEE LGEE	2.2		2.8
	Limits	1450	-400	1050	2800	4250		Lebanon - Marion County 161 kV or Marion County 138-161 kV	LGEE-EKPC EKPC	_	Brown - Alcalde - Pineville 345 kV & Alcalde 345-138 kV	LGEE LGEE	1.9		2.6
		1550	-400	1150	2800	4350	2	River Queen - Earlington North 161 kV	LGEE		Green R - Corydon - Morganfield 161 kV & Corydon 161-69 kV	_	2.4		2.8

TRANSFER	BASE CASE	NITC FCITC (MW) (A)	BASE Sales (MW) (B)	NTTC FCTTC (MW) (A+B)	_	TOTAL Import (MW) (A+C)	N O T E	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
ECAR	E100	4050	-100	3950	0	4050		Breed - Casey 345 kV	AEP-AMRN		Rockport - Jefferson 765 kV	AEP	14.9	34.0	11.7
to		4350	-100	4250	0	4350		Eugene - Bunsonville 345 kV	AEP-IP		Breed - Casey 345 kV	AEP-AMRN	5.2	39.0	11.0
MAIN		5000	-100	4900	0	5000		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michiga	n	ı		
	00000														L
	2000S	3450	-100		550			Breed - Casey 345 kV	AEP-AMRN		Rockport - Jefferson 765 kV	AEP	16.0	34.2	12.5
	Top 3	3800	-100		550	4350		Eugene - Bunsonville 345 kV	AEP-IP	856	Breed - Casey 345 kV	AEP-AMRN	5.4	39.5	11.8
	Limits	4000	-100	3900	550	4550		Test Level - No Other Limits Found							-
															\vdash
ECAR	E103a	4450	-100	4350	950	5400		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.7
to	L 103a	4700	-100		950	5650		Eugene - Bunsonville 345 kV	AEP-IP		Breed - Casey 345 kV	AEP-CE AEP-AMRN	5.2	39.0	11.0
MAIN		4850	-100	4750	950	5800		Breed - Casey 345 kV	AEP-IP AEP-AMRN		Rockport - Jefferson 765 kV	AEP-AIVIRIN AEP	14.9	34.0	11.7
IVIZIIN		5000	-100		950	5950		Test Level - No Other Limits Found			tario PARs @ 600 MW Fixed Flow into Mich		14.9	34.0	11.7
		3000	-100	4300	330	3930		rest Level - No Other Limits i ound		_	inits outaged to model transfer bias: Monro	~	des 1 / C	nok 1	
									Note (b). Gen		into outaged to model transfer bias. World	C T & S / T All SAC	163 17 0	JOK 1	
	2000S	2200	-100	2100	2550	4750		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.6
	Top 3	3400	-100	3300	2550	5950		Eugene - Bunsonville 345 kV	AEP-IP	856	Breed - Casey 345 kV	AEP-AMRN	5.4	39.5	11.8
	Limits	3700	-100	3600	2550	6250		Dumont 765-345 kV	AEP	2070	Dumont - Wilton Center 765 kV	AEP-CE	0.4	42.0	11.1
ECAR	E103b	4500	-100	4400	1050	5550		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.7
to		4700	-100	4600	1050	5750		Eugene - Bunsonville 345 kV	AEP-IP	856	Breed - Casey 345 kV	AEP-AMRN	5.2	39.0	11.0
MAIN		4850	-100	4750	1050	5900		Breed - Casey 345 kV	AEP-AMRN	1442	Rockport - Jefferson 765 kV	AEP	14.9	34.0	11.7
		5000	-100	4900	1050	6050		Test Level - No Other Limits Found		_	tario PARs @ 600 MW Fixed Flow into Mich	-			
									Note (b): Gen	erating u	nits outaged to model transfer bias: Monro	e 1 & 3 / Palisad	des 1 / D	avis-Bes	se 1
															igwdown
	2000S	2200	-100		2550	4750		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.6
	Top 3	3400	-100		2550	5950		Eugene - Bunsonville 345 kV	AEP-IP		Breed - Casey 345 kV	AEP-AMRN	5.4	39.5	11.8
	Limits	3700	-100	3600	2550	6250		Dumont 765-345 kV	AEP	2070	Dumont - Wilton Center 765 kV	AEP-CE	0.4	42.0	11.1

Page: 4 of 39

TRANSFER	BASE CASE	NITC FCITC (MW) (A)			Import (MW)	Import	0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAAC	E100	2900	0	2900	300	3200	3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	10.5	51.9	19.3
to		3650	0	3650	300	3950	3	Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	16.9	42.7	21.4
MECS		4150	0	4150	300	4450		Muskingum - Ohio Central 345 kV	AEP	938	Base Case		5.2		5.2
		4300	0	4300	300	4600		Greenfield - Lakeview 138 kV	FE	248	Beaver - Davis Besse 345 kV	FE	3.4	12.6	5.7
		4400	0	4400	300	4700		Marysville - East Lima 345 kV	AEP	923	Base Case		7.6		7.6
		4850	0	4850	300	5150		Twin Branch - Argenta 345 kV	AEP-CONS	1434	Cook - Palisades 345 kV &	AEP-CONS	9.9		23.1
											Cook-Benton Harbor-Palisades 345 kV &	AEP-CONS			
											Benton Harbor 345-138 kV	AEP			
		4850	0	4850	300	5150		Muskingum - Ohio Central 345 kV	AEP	1076	Muskingum - W. Millersport 345 kV &	AEP	5.2		5.5
											W. Millersport 345-138 kV	AEP			
		4950	0	4950	300	5250		Cook - Palisades 345 kV	AEP-CONS	1554	Cook-Benton Harbor-Palisades 345 kV &	AEP-CONS	15.6		26.7
											Benton Harbor 345-138 kV	AEP			
		4950	0	4950	300	5250		Cook - Benton Harbor - Palisades 345 kV	AEP-CONS	1554	Cook - Palisades 345 kV	AEP-CONS	14.5	65.7	23.4
		5000	0	5000	300	5300		Test Level - No Other Limits Found	Note (a): Mich	igan-On	tario PARs @ 600 MW Fixed Flow into Mich	igan			
									Note (b): Lam	bton Ger	neration Rejection was modeled for outages	involving the L	4D and L	51D tieli	nes
									Note (c): Map	le - Kren	dale 138 kV (FE-AP) circuit opened at FCIT	C = 2100 MW			
	2000S							(Not Tested During 2000 Summer Study)							
	Top 3														
	Limits														

ECAR 2001 Summer Assessment of Transmission System Performance Detailed Study Results from Transfer Capability Analysis (1)

TRANSFER	BASE CASE	_	_	_	` '	_	т	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAAC	E103a	-650	0	-650	2300	1650	2,3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	10.4	51.9	18.7
to		-150	0	-150	2300	2150	2,3	Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	15.9	42.7	20.3
MECS		1050	0	1050	2300	3350	2	Muskingum - Ohio Central 345 kV	AEP	938	Base Case		5.3		5.3
		1750	0	1750	2300	4050		Marysville - East Lima 345 kV	AEP	923	Base Case		7.8		7.8
		1800	0	1800	2300	4100		Muskingum - Ohio Central 345 kV	AEP	1076	Muskingum - W. Millersport 345 kV & W. Millersport 345-138 kV	AEP AEP	5.3		5.6
		1950	0	1950	2300	4250	3	Cook 765-345 kV	AEP	1875	Base Case		15.9		15.9
		2050	0	2050	2300	4350		Greenfield - Lakeview 138 kV	FE	248	Beaver - Davis Besse 345 kV	FE	3.5	12.7	5.9
		2600	0	2600	2300	4900	2	Beaver - Davis Besse 345 kV	FE	984	Galion - Fostoria Central 345 kV	AEP	18.9	20.0	20.9
		2650	0	2650	2300	4950		Marysville - East Lima 345 kV	AEP	1220	Marysville - Southwest Lima 345 kV	AEP	7.8	32.8	9.2
		2750	0	2750	2300	5050		Fostoria Central - Lemoyne 345 kV	AEP	1076	Davis Besse - Lemoyne 345 kV	FE	11.6	46.2	14.4
		2950	0	2950	2300	5250		Greenfield - Lakeview 138 kV	FE	184	Base Case		3.5		3.5
		3000	0	3000	2300	5300		Test Level - No Other Limits Found	Note (b): Gen	erating u	tario PARs @ 600 MW Fixed Flow into Mich nits outaged to model transfer bias: Monroe neration Rejection was modeled for outages	e 1 & 3 / Palisad			nes
	00000														
	2000S	-900	0	-900				Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	10.6	52.0	19.1
	Top 3	-500	0	-500				Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	16.3	42.8	20.8
	Limits	1300	0	1300	2500	3800		Marysville - East Lima 345 kV	AEP	923	Base Case		7.8		

Page: 6 of 39

Page: 7 of 39

TRANSFER	BASE CASE	NITC FCITC (MW) (A)		NTTC FCTTC (MW) (A+B)	_	TOTAL Import (MW) (A+C)	N O T E	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAAC	E103b	350	0	350	2300	2650		Muskingum - Ohio Central 345 kV	AEP	938	Base Case		5.3		5.3
to		400	0	400	2300	2700	3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	10.4	51.9	18.7
MECS		1100	0	1100	2300	3400	2	Muskingum - Ohio Central 345 kV	AEP	1076	Muskingum - W. Millersport 345 kV &	AEP	5.3		5.6
											W. Millersport 345-138 kV	AEP			
		1150	0	1150	2300	3450		Marysville - East Lima 345 kV	AEP	923	Base Case		7.8		7.8
		1200	0	1200	2300	3500	3	Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	15.9	42.7	20.3
		1500	0	1500	2300	3800		Greenfield - Lakeview 138 kV	FE	248	Beaver - Davis Besse 345 kV	FE	3.5	12.7	5.9
		1600	0	1600	2300	3900	2	Beaver - Davis Besse 345 kV	FE	984	Galion - Fostoria Central 345 kV	AEP	18.9	20.0	20.9
		2000	0	2000	2300	4300		Marysville - East Lima 345 kV	AEP	1220	Marysville - Southwest Lima 345 kV	AEP	7.8	32.8	9.2
		2100	0	2100	2300	4400		Beaver - Davis Besse 345 kV	FE	950	Base Case		18.9		18.9
		2250	0	2250	2300	4550		South Canton - Star 345 kV	AEP-FE	1076	Sammis - Star 345 kV	FE	2.6	39.0	4.2
		2550	0	2550	2300	4850	2	Fostoria Central - Lemoyne 345 kV	AEP-FE	1076	Fostoria Central - Bay Shore 345 kV	AEP-FE	11.6	60.4	17.8
		2650	0	2650	2300	4950		Twin Branch - Argenta 345 kV	AEP-CONS	1434	Cook - Palisades 345 kV &	AEP-CONS	10.8		22.7
											Cook-Benton Harbor-Palisades 345 kV &	AEP-CONS			
											Benton Harbor 345-138 kV	AEP			
		2750	0	2750	2300	5050		Greenfield - Lakeview 138 kV	FE	184	Base Case		3.5		3.5
		2750	0	2750	2300	5050		Carlisle 345-138 kV	FE	505	Carlisle - Beaver 345 kV	FE	0.3	37.6	3.2
		2800	0	2800	2300	5100		Cook - Benton Harbor - Palisades 345 kV	AEP-CONS	1554	Cook - Palisades 345 kV	AEP-CONS	13.1	65.7	21.1
		2800	0	2800	2300	5100		Cook - Palisades 345 kV	AEP-CONS	1554	Cook-Benton Harbor-Palisades 345 kV &	AEP-CONS	14.0		24.0
											Benton Harbor 345-138 kV	AEP			
		2850	0	2850	2300	5150		Lorain - Johnson 138 kV	FE	215	Star - Carlisle 345 kV	FE	1.8	9.2	2.5
		3000	0	3000	2300	5300		Test Level - No Other Limits Found	Note (a): Mich	nigan-On	tario PARs @ 600 MW Fixed Flow into Mich	igan			
									Note (b): Gen	erating u	nits outaged to model transfer bias: Monro	e 1 & 3 / Palisad	des 1 / Da	avis-Bes	se 1
									Note (c): Lam	bton Ger	neration Rejection was modeled for outages	involving the La	4D and L	51D tielir	nes
	2000S	-900	0	-900	2500	1600	2,3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	10.6	52.0	19.1
	Top 3	-500	0	-500	2500	2000	2,3	Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	16.3	42.8	20.8
	Limits	1300	0	1300	2500	3800		Marysville - East Lima 345 kV	AEP	923	Base Case		7.8		

Top 3 Limits (%)

19.1

21.6

5.4

7.5

7.9

24.5

27.9

24.5

5.6

NITC BASE NTTC BASE TOTAL TRANSFER BASE FCITC Sales **FCTTC** Import Import 0 SYSTEM RATING **OUTAGED FACILITY** SYSTEM **PTDF** LODF OTDF LIMITING FACILITY Т CASE (MW) (MW) (MW) (MW) (MVA) (%) (%) (A) (B) (A+B) (C) (A+C) Е **VACAR** E100 AEP 2900 2900 300 3200 Dumont 765-345 kV 2070 Cook 765-345 kV AEP 10.1 51.9 AEP 3600 3600 300 3900 Cook 765-345 kV 2115 Dumont 765-345 kV AEP 17.3 42.7 **MECS** AEP 4000 4000 300 4300 Muskingum - Ohio Central 345 kV Base Case 5.4 AEP 4450 4450 300 4750 Marysville - East Lima 345 kV Base Case 7.5 300 AEP Antioch - Jacksons Ferry 500 kV & 4450 4450 4750 East Danville - Danville 138 kV DUKE-AEP 4.5 15.1 Jacksons Ferry 500-765 kV AEP 4550 300 4850 Twin Branch - Argenta 345 kV **AEP-CONS** Cook - Palisades 345 kV & **AEP-CONS** 4550 10.6 -----Cook-Benton Harbor-Palisades 345 kV & AEP-CONS AEP Benton Harbor 345-138 kV 4700 0 4700 300 5000 Cook - Palisades 345 kV **AEP-CONS** Cook-Benton Harbor-Palisades 345 kV & **AEP-CONS** 1554 16.3 Benton Harbor 345-138 kV AEP **AEP-CONS** AEP-CONS 4750 0 4750 300 5050 Cook - Benton Harbor - Palisades 345 kV 1554 Cook - Palisades 345 kV 15.2 65.7 4800 4800 300 5100 Muskingum - Ohio Central 345 kV AEP 1076 Muskingum - W. Millersport 345 kV & AEP 5.4 W. Millersport 345-138 kV AEP 5000 5000 300 5300 Test Level - No Other Limits Found Note (a): Michigan-Ontario PARs @ 600 MW Fixed Flow into Michigan Note (b): Lambton Generation Rejection was modeled for outages involving the L4D and L51D tielines 2000S (Not Tested During 2000 Summer Study)

Page: 9 of 39 Date: 04/16/01

TRANSFER	BASE CASE	NITC FCITC (MW) (A)			BASE Import (MW) (C)		N O T E	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
VACAR to	E101a	-2400	0	-2400	1800	-600	2	Beck - Hannon Jct (Q24HM) 220 kV	HONI	616	Beck - Neale Jct (Q25BM) 220 kV & Beck - Hannon Jct (Q29HM) 220 kV	HONI HONI	2.7		4.0
MECS		-1600	0	-1600	1800	200	2,3	Scott - Bunce (B3N) 220 kV	HONI-DECO	482	Lambton - Saint Clair (L4D) 345 kV &	HONI-DECO	1.7		3.2
											Saint Clair - Belle River 345 kV &	DECO			
											Lambton Generation Rejection	HONI			
		-900	0	-900	1800	900	3	Lambton - Saint Clair (L4D) 345 kV	HONI-DECO	845	Base Case		5.9		5.9
		-550	0	-550	1800	1250	2,3	Lambton - Saint Clair (L4D) 345 kV	HONI-DECO	1170	Lambton - Saint Clair (L51D) 345 kV &	HONI-DECO	5.9		8.7
											Lambton - Chatham (L29C) 230 kV &	HONI			
											Lambton Generation Rejection	HONI			
		-400	0	-400	1800	1400	3	Lambton - Saint Clair (L51D) 345 kV	HONI-DECO	845	Base Case		5.3		5.3
		-150	0	-150	1800	1650		Beck - Hannon Jct (Q24HM) 220 kV	HONI	465	Base Case		2.7		2.7
		100	0	100	1800	1900	2,3	Lambton - Saint Clair (L51D) 345 kV	HONI-DECO	1170	Lambton - Saint Clair (L4D) 345 kV &	HONI-DECO	5.3	54.9	8.5
											Lambton Generation Rejection	HONI			
		2300	0	2300	1800	4100		Allanburg Jct - Middleport (Q30M) 220 kV	HONI	408	Base Case		2.6		2.6
		2400	0	2400	1800	4200		Packard - Beck (PA27) 220 kV	HONI	400	Base Case		2.9		2.9
		2450	0	2450	1800	4250		Beck - Hannon Jct (Q29HM) 220 kV	HONI	530	Base Case		2.7		2.7
		2600	0	2600	1800	4400	3	Dumont 765-345 kV	AEP		Cook 765-345 kV	AEP	8.8	51.9	16.4
		3500	0	3500	1800	5300		Test Level - No Other Limits Found	Note (b): Gen Note (c): Lam Note (d): St. C	erating u bton Ger Clair Unit	tario PARs @ Minimum Degrees Fixed Ang inits outaged to model transfer bias: Monro- neration Rejection was modeled for outages 6 moved to 120 kV system FW facilities limit under contingency condition	e 1 and Palisade involving the La	es 1 4D and L	51D tielir	nes
] 						
	2000S	650	200	850	2000	2650	3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	10.1	52.0	18.7
	Top 3	1200	200	1400	2000	3200		Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	16.5	42.8	20.9
	Limits	1900	200	2100	2000	3900		East Danville - Danville 138 kV	AEP	384	Axton - Jacksons Ferry 765 kV & Axton 138-765 kV	AEP AEP	6.1	56.5	3.1

TABLE 2 ECAR 2001 Summer Assessment of Transmission System Performance Detailed Study Results from Transfer Capability Analysis (1)

Page: 10 of 39

TRANSFER	BASE CASE		(MW)		Import (MW)		N O T E	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
VACAR	E101b	1650	0	1650	1800	3450	3	Lambton - Saint Clair (L4D) 345 kV	HONI-DECO	845	Base Case		6.6		6.6
to		1700	0	1700	1800	3500	2	Beck - Hannon Jct (Q24HM) 220 kV	HONI	616	Beck - Neale Jct (Q25BM) 220 kV &	HONI	2.7		4.1
MECS											Beck - Hannon Jct (Q29HM) 220 kV	HONI			
		2100	0	2100	1800	3900	3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	8.8	51.9	16.3
		2150	0	2150	1800	3950	2,3	Lambton - Saint Clair (L4D) 345 kV	HONI-DECO	1170	Lambton - Saint Clair (L51D) 345 kV &	HONI-DECO	6.6		10.0
											Lambton - Chatham (L29C) 230 kV &	HONI			
											Lambton Generation Rejection	HONI			
		2450	0	2450	1800	4250	3	Scott - Bunce (B3N) 220 kV	HONI-DECO	482	Lambton - Saint Clair (L4D) 345 kV &	HONI-DECO	1.5		3.3
											Saint Clair - Belle River 345 kV &	DECO			
											Lambton Generation Rejection	HONI			
		3100	0	3100	1800	4900	3	Lambton - Saint Clair (L51D) 345 kV	HONI-DECO	1170	Lambton - Saint Clair (L4D) 345 kV &	HONI-DECO	5.6	62.8	9.7
											Lambton Generation Rejection	HONI			
		3350	0	3350	1800	5150	3	Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	14.5	42.7	18.2
		3500	0	3500	1800	5300		Test Level - No Other Limits Found	Note (b): Gen Note (c): Lam Note (d): St. C	erating u bton Ger Clair Unit	tario PARs @ Zero Degrees Fixed Angle (F inits outaged to model transfer bias: Monro neration Rejection was modeled for outages 6 moved to 120 kV system FW facilities limit under contingency condition	e 1 and Palisad involving the L	es 1 4D and L	51D tieli	
	2222														
	2000S	550	200	750	2000			Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	8.9	52.0	16.5
	Top 3	1200	200	1400	2000	3200		Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	14.7	42.8	18.5
	Limits	1900	200	2100	2000	3900	2	East Danville - Danville 138 kV	AEP	384	Axton - Jacksons Ferry 765 kV &	AEP	5.9	56.5	3.0
											Axton 138-765 kV	AEP			

Page: 11 of 39

TRANSFER	BASE CASE	NITC FCITC (MW) (A)	_	FCTTC	BASE Import (MW) (C)	_	0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
VACAR	E101c	1400	0	1400	1800	3200	3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	8.9	51.9	16.4
to		2650	0	2650	1800	4450	3	Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	14.6	42.7	18.3
MECS		2750	0	2750	1800	4550		Muskingum - Ohio Central 345 kV	AEP	938	Base Case		4.9		4.9
		3450	0	3450	1800	5250		East Danville - Danville 138 kV	AEP	384	,	DUKE-AEP AEP	4.4	15.1	7.7
		3500	0	3500	1800	5300		Marysville - East Lima 345 kV	AEP	923	Base Case		6.8		6.8
		3500	0	3500	1800	5300		Test Level - No Other Limits Found							
	2000S	-100	200	100	2000	1900	2,3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	9.0	52.0	16.7
	Top 3	550	200	750	2000	2550	2,3	Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	14.8	42.8	18.6
	Limits	1800	200	2000	2000	3800	2	East Danville - Danville 138 kV	AEP	384	, , , , , , , , , , , , , , , , , , , ,	AEP AEP	5.9	56.5	3.0
1															

Page: 12 of 39

TRANSFER	BASE CASE	_	Sales (MW)		` ′		0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
TVA	E100	2800	0	2800	300	3100		Norris - La Follette 161 kV	TVA	234	Volunteer - Phipps Bend 500 kV	TVA	1.8	6.2	2.9
to		2900	0	2900	300	3200		Summer Shade-Summer Shade Tap 161	TVA-EKPC	240	Summer Shade - Summer Shade 161 kV	TVA-EKPC	2.1	99.6	3.7
MECS		3200	0	3200	300	3500	3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	8.5	51.9	17.4
		3500	0	3500	300	3800		Bull Run - Volunteer 500 kV	TVA	1732	Watts Bar - Volunteer 500 kV	TVA	12.8	75.6	17.1
		3750	0	3750	300	4050	3	Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	17.1	42.7	20.7
		4200	0	4200	300	4500		New London - Webster 230 kV	CIN	495	Jefferson - Greentown 765 kV	AEP	2.0	10.7	3.2
		4300	0	4300	300	4600		Twin Branch - Argenta 345 kV	AEP-CONS	1434	Cook - Palisades 345 kV &	AEP-CONS	11.4		26.0
											Cook-Benton Harbor-Palisades 345 kV &	AEP-CONS			
											Benton Harbor 345-138 kV	AEP			
		4450	0	4450	300	4750		Muskingum - Ohio Central 345 kV	AEP	938	Base Case		4.8		4.8
		4500	0	4500	300	4800		Cook - Palisades 345 kV	AEP-CONS	1554	Cook-Benton Harbor-Palisades 345 kV &	AEP-CONS	17.1		29.4
											Benton Harbor 345-138 kV	AEP			
		4500	0	4500	300	4800		Cook - Benton Harbor - Palisades 345 kV	AEP-CONS	1554	Cook - Palisades 345 kV	AEP-CONS	15.9	65.7	25.7
		4650	0	4650	300	4950		Paradise - New Hardinsburg 161 kV	TVA-BREC	265	Volunteer - Phipps Bend 500 kV	TVA	3.5	2.3	3.9
		4950	0	4950	300	5250		Marysville - East Lima 345 kV	AEP	923	Base Case		6.7		6.7
		5000	0	5000	300	5300		Test Level - No Other Limits Found	Note (a): Mich	igan-Ont	tario PARs @ 600 MW Fixed Flow into Mich	nigan			
									Note (b): Lam	bton Ger	neration Rejection was modeled for outages	involving the L	4D and L	51D tielir	nes
	2000S							(Not Tested During 2000 Summer Study)							
	Top 3														
	Limits														

Page: 13 of 39

TRANSFER	BASE CASE		Sales		, ,	Import	0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAIN	E100	3450	0	3450	300	3750	2,3	State Line - Wolf Lake - Sheffield 138 kV	CE-NIPS	160	Burnham - Sheffield 345 kV	CE-NIPS	1.8	23.3	2.8
to		3900	0	3900	300	4200		Twin Branch - Argenta 345 kV	AEP-CONS	1434	Cook - Palisades 345 kV &	AEP-CONS	12.8		28.7
MECS											Cook-Benton Harbor-Palisades 345 kV &	AEP-CONS			
											Benton Harbor 345-138 kV	AEP			
		4000	0	4000	300	4300	3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	5.2	51.9	13.9
		4100	0	4100	300	4400	3	Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	16.8	42.7	19.0
		4150	0	4150	300	4450		Cook - Palisades 345 kV	AEP-CONS	1554	Cook-Benton Harbor-Palisades 345 kV &	AEP-CONS	18.5		31.9
											Benton Harbor 345-138 kV	AEP			
		4150	0	4150	300	4450		Cook - Benton Harbor - Palisades 345 kV	AEP-CONS	1554	Cook - Palisades 345 kV	AEP-CONS	21.7	65.7	33.9
		4600	0	4600	300	4900		Olive 345-138 kV	AEP	544	Olive - Cook 345 kV	AEP	1.4	15.3	3.5
		4850	0	4850	300	5150		Dune Acres - Michigan City 138 kV	NIPS	157	Wilton Center - Dumont 765 kV	CE-AEP	1.6	3.2	2.5
		5000	0	5000	300	5300		Test Level - No Other Limits Found	` '	•	tario PARs @ 600 MW Fixed Flow into Mich	· ·			
									Note (b): Lam	bton Ger	neration Rejection was modeled for outages	involving the La	4D and L	51D tielir	nes
	2000S							(Not Tested During 2000 Summer Study)							
	Top 3														
	Limits														

Page: 14 of 39

TRANSFER	BASE CASE	NITC FCITC (MW) (A)		NTTC FCTTC (MW) (A+B)	Import (MW)	TOTAL Import (MW) (A+C)	0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAIN	E102	-50	0	-50	300	250	2,3	State Line - Wolf Lake - Sheffield 138 kV	CE-NIPS	160	Burnham - Sheffield 345 kV	CE-NIPS	1.7	23.3	2.8
to		750	0	750	300	1050		Cumberland - Davidson 500 kV	TVA	2597	Cumberland - Johnsonville 500 kV	TVA	3.4	75.7	3.5
MECS		1600	0	1600	300	1900		Dune Acres - Michigan City 138 kV	NIPS	157	Wilton Center - Dumont 765 kV	CE-AEP	1.6	3.2	2.5
		3200	0	3200	300	3500		Twin Branch - Argenta 345 kV	AEP-CONS	1434	Cook - Palisades 345 kV &	AEP-CONS	12.8		28.7
											Cook-Benton Harbor-Palisades 345 kV &				
											Benton Harbor 345-138 kV				
		3500	0	3500	300	3800		Olive 345-138 kV	AEP	544	Olive - Cook 345 kV	AEP	1.4	15.3	3.5
		3550	0	3550	300	3850	2	Cook - Palisades 345 kV	AEP-CONS	1554	Cook-Benton Harbor-Palisades 345 kV &	AEP-CONS	18.5		31.9
											Benton Harbor 345-138 kV	AEP			
		3600	0	3600	300	3900	2	Cook - Benton Harbor - Palisades 345 kV	AEP-CONS	1554	Cook - Palisades 345 kV	AEP-CONS	21.7	65.7	33.9
		4150	0	4150	300	4450		Cumberland - Johnsonville 500 kV	TVA	2597	Cumberland - Davidson 500 kV	TVA	0.1	77.3	2.8
		4600	0	4600	300	4900	3	Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	16.9	42.7	19.1
		4850	0	4850	300	5150		Olive - Cook 345 kV	AEP	1383	Cook 765-345 kV	AEP	13.9	35.0	19.8
		4950	0	4950	300	5250		Cook - Palisades 345 kV	AEP	1239	Base Case		18.5		18.5
		5000	0	5000	300	5300		Test Level - No Other Limits Found	Note (a): Mich	igan-On	tario PARs @ 600 MW Fixed Flow into Mich	igan			
									Note (b): Lam	bton Ger	neration Rejection was modeled for outages	involving the La	1D and L	51D tieli	nes
	2000S	-600	0	-600	500	-100		Cumberland - Johnsonville 500 kV	TVA	2597	Cumberland - Davidson 500 kV	TVA	0.1	77.4	2.5
	Top 3	-50	0	-50	500	450	2,3	State Line - Wolf Lake - Sheffield 138 kV	CE-NIPS	160	Burnham - Sheffield 345 kV	CE-NIPS	2.0	23.4	3.2
	Limits	250	0	250	500	750		Cumberland - Davidson 500 kV	TVA	2597	Cumberland - Johnsonville 500 kV	TVA	3.4	76.2	3.3

TRANSFER	BASE CASE				Import (MW)	TOTAL Import (MW) (A+C)	0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAIN	E103a	-900				-	_	Dumont 765-345 kV	AEP		Cook 765-345 kV	AEP	5.0	51.9	13.2
to		-200	0				2,3	Cook 765-345 kV	AEP		Dumont 765-345 kV	AEP	15.8	42.7	18.0
MECS		1450	0	1450	2300	3750		Muskingum - Ohio Central 345 kV	AEP	938	Base Case		3.9		3.9
		2000	0	2000	2300	4300	3	Cook 765-345 kV	AEP	1875	Base Case		15.8		15.8
		2350	0	2350	2300	4650		Marysville - East Lima 345 kV	AEP	923	Base Case		5.8		5.8
		2550	0	2550	2300	4850	2	Muskingum - Ohio Central 345 kV	AEP	1076	Muskingum - W. Millersport 345 kV &	AEP	3.9		3.9
											W. Millersport 345-138 kV	AEP			
		2550	0	2550	2300	4850		Olive 345-138 kV	AEP	544	Olive - Cook 345 kV	AEP	1.3	15.3	3.4
		2750	0	2750	2300	5050		Twin Branch - Argenta 345 kV	AEP-CONS	1434	Cook - Palisades 345 kV &	AEP-CONS	13.8		28.4
											Cook-Benton Harbor-Palisades 345 kV &	AEP-CONS			
											Benton Harbor 345-138 kV	AEP			
		3000	0	3000	2300	5300		Morrow - Battle Creek 138 kV	CONS	253	Argenta - Battle Creek 345 kV &	CONS	0.6		2.7
											Argenta - Tompkins 345 kV	CONS			
		3000	0	3000	2300	5300		Test Level - No Other Limits Found	Note (a): Mich	nigan-Ont	tario PARs @ 600 MW Fixed Flow into Mich	igan			
									Note (b): Gen	erating u	nits outaged to model transfer bias: Monroe	e 1 & 3 / Palisad	des 1 / Co	ook 1	
									` '		neration Rejection was modeled for outages				nes
									. /		,				
	2000S	-1200	0	-1200	2500	1300	2,3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	5.4	52.0	14.0
	Top 3	-550	0			1		Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	16.6	42.8	18.9
	Limits	1600	0	1600	2500	4100	,	Cook 765-345 kV	AEP	1875	Base Case		16.6		
									1				J		

Page: 15 of 39

Page: 16 of 39

TRANSFER	BASE CASE	NITC FCITC (MW)	Sales (MW)	NTTC FCTTC (MW)	Import (MW)	TOTAL Import (MW)	т	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
		(A)	(B)	(A+B)	(C)	(A+C)	Е								
MAIN	E103b	450	0		2300	2750		Muskingum - Ohio Central 345 kV	AEP		Base Case		3.9		3.9
to		550	0	550	2300			Dumont 765-345 kV	AEP		Cook 765-345 kV	AEP	5.0	51.9	13.2
MECS		1350	0	1350	2300	3650	2,3	Cook 765-345 kV	AEP		Dumont 765-345 kV	AEP	15.8	42.7	18.0
		1500	0	1500	2300	3800		Morrow - Battle Creek 138 kV	CONS	253	Argenta - Battle Creek 345 kV &	CONS	0.6		2.8
											Argenta - Tompkins 345 kV	CONS			
		1550	0	1550	2300	3850		Marysville - East Lima 345 kV	AEP	923	Base Case		5.8		5.8
		1600	0	1600	2300	3900	2	Muskingum - Ohio Central 345 kV	AEP	1076	Muskingum - W. Millersport 345 kV &	AEP	3.9		3.9
											W. Millersport 345-138 kV	AEP			
		2100	0	2100	2300	4400		Twin Branch - Argenta 345 kV	AEP-CONS	1434	Cook - Palisades 345 kV &	AEP-CONS	13.8		28.4
											Cook-Benton Harbor-Palisades 345 kV &	AEP-CONS			
											Benton Harbor 345-138 kV	AEP			
		2300	0	2300	2300	4600		Cook - Palisades 345 kV	AEP-CONS	1554	Cook-Benton Harbor-Palisades 345 kV &	AEP-CONS	17.1		29.3
											Benton Harbor 345-138 kV	AEP			
		2300	0	2300	2300	4600		Cook - Benton Harbor - Palisades 345 kV	AEP-CONS	1554	Cook - Palisades 345 kV	AEP-CONS	15.8	65.7	25.6
		2400	0	2400	2300	4700		South Canton - Star 345 kV	AEP-FE	1076	Sammis - Star 345 kV	FE	3.2	39.0	3.9
		2650	0	2650	2300	4950		Fostoria Central - Lemoyne 345 kV	AEP-FE	1076	Fostoria Central - Bay Shore 345 kV	AEP-FE	11.1	60.4	17.1
		2800	0	2800	2300	5100		Greenfield - Lakeview 138 kV	FE	248	Beaver - Davis Besse 345 kV	FE	1.9	12.7	3.2
		2800	0	2800	2300	5100		Marysville - East Lima 345 kV	AEP	1220	Marysville - Southwest Lima 345 kV	AEP	5.8	32.8	6.7
		2850	0	2850	2300	5150	2	Beaver - Davis Besse 345 kV	FE	984	East Lima - Fostoria Central 345 kV	AEP	10.3	15.0	12.2
		3000	0	3000	2300	5300		Test Level - No Other Limits Found	Note (a): Mich	igan-On	tario PARs @ 600 MW Fixed Flow into Mich	igan			
									Note (b): Gen	erating u	nits outaged to model transfer bias: Monro	e 1 & 3 / Palisad	des 1 / Da	avis-Bes	se 1
									Note (c): Lam	bton Ger	neration Rejection was modeled for outages	involving the La	4D and L	51D tielir	nes
	2000S	-1200	0	-1200	2500	1300	2,3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	5.4	52.0	14.0
	Top 3	-550	0	-550	2500	1950	2,3	Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	16.6	42.8	18.9
	Limits	1600	0	1600	2500	4100		Cook 765-345 kV	AEP	1875	Base Case		16.6		
									_						

TRANSFER	BASE CASE	_		FCTTC	Import (MW)	TOTAL Import (MW) (A+C)	0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
TVA	E100	2750	0	2750	2200	4950	2	Norris - La Follette 161 kV	TVA	234	Volunteer - Phipps Bend 500 kV	TVA	1.7	6.2	2.9
to		3050	0	3050	2200	5250		Summer Shade-Summer Shade Tap 161	TVA-EKPC	240	Summer Shade - Summer Shade 161 kV	TVA-EKPC	2.0	99.7	3.5
NE		3200	0	3200	2200	5400	2	Bull Run - Volunteer 500 kV	TVA	1732	Watts Bar - Volunteer 500 kV	TVA	13.9	75.6	18.6
		3950	0	3950	2200	6150		South Canton 765-345 kV	AEP	1660	Base Case		12.5		
		4550	0	4550	2200	6750	2	South Canton 765-345 kV	AEP	1890	Tidd - Canton Central 345 kV	AEP	12.5	27.5	12.5
		4900	0	4900	2200	7100		Paradise - New Hardinsburg 161 kV	TVA-BREC	265	Volunteer - Phipps Bend 500 kV	TVA	3.2	2.3	3.7
		5050	0	5050	2200	7250		Kammer - West Bellaire 345 kV	AEP	1023	Kammer - South Canton 765 kV &	AEP	7.3	21.8	10.0
											South Canton 765-345 kV	AEP			
		5400	0	5400	2200	7600	2	Bay Shore 345-138 kV	FE	650	Allen Junction 345-138 kV	FE	3.4	31.8	4.2
		5500	0	5500	2200	7700		Summer Shade - Summer Shade 161 kV	TVA-EKPC	327	Summer Shade-Summer Shade Tap 161	TVA-EKPC	1.6	99.6	3.5
		5750	0	5750	2200	7950		New Hardinsburg 161-138 kV	BREC	224	Volunteer - Phipps Bend 500 kV	TVA-EKPC	2.9	2.3	3.3
		6000	0	6000	2200	8200		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michiga	n			
	2000S							(Not Tested During 2000 Summer Study)							
	Top 3														
	Limits														

Page: 18 of 39

TRANSFER	BASE CASE	_	_	_	Import (MW)	TOTAL Import (MW) (A+C)		LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
TVA	E101a	2850	0	2850	2200	5050	2	Norris - La Follette 161 kV	TVA	234	Volunteer - Phipps Bend 500 kV	TVA	1.7	6.2	2.9
to		2850	0	2850	2200	5050		Summer Shade-Summer Shade Tap 161	TVA-EKPC	240	Summer Shade - Summer Shade 161 kV	TVA-EKPC	2.0	99.7	3.5
NE		3750	0	3750	2200	5950	2	Bull Run - Volunteer 500 kV	TVA	1732	Watts Bar - Volunteer 500 kV	TVA	13.9	75.6	18.5
		4700	0	4700	2200	6900		Paradise - New Hardinsburg 161 kV	TVA-BREC	265	Volunteer - Phipps Bend 500 kV	TVA	3.2	2.3	3.7
		4900	0	4900	2200	7100		South Canton 765-345 kV	AEP	1660	Base Case		12.5		
		5300	0	5300	2200	7500		Summer Shade - Summer Shade 161 kV	TVA-EKPC	327	Summer Shade-Summer Shade Tap 161	TVA-EKPC	1.6	99.6	3.5
		5450	0	5450	2200	7650	2	South Canton 765-345 kV	AEP	1890	Tidd - Canton Central 345 kV	AEP	12.5	27.5	12.3
		5450	0	5450	2200	7650		Coffeen - Pana 345 kV	AMRN	952	Rockport - Jefferrson 765 kV	AEP	4.4	5.1	4.7
		5650	0	5650	2200	7850	2	Bay Shore 345-138 kV	FE	650	Allen Junction 345-138 kV	FE	3.3	31.8	4.1
		5850	0	5850	2200	8050		New Hardinsburg 161-138 kV	BREC	224	Coleman - Newtonville - Taswell 161 kV &	BR-SIGE-HE	3.0		3.0
											Newtonville 161-138 kV	SIGE			1
		5850	0	5850	2200	8050		Paradise - New Hardinsburg 161 kV	TVA-BREC	265	Base Case		3.2		
		6000	0	6000	2200	8200		Test Level - No Other Limits Found	Note (a): Mich	igan-Ont	tario PARs @ Minimum Degrees Fixed Angl	le (Flow into Mid	chigan is	2430 MV	N)
									Note (b): Gen	erating u	nits outaged to model transfer bias: Monroe	e 1 and Palisade	es 1		
	2000S	2500	0	2500	1950	4450		Norris - La Follette 161 kV	TVA	234	Volunteer - Phipps Bend 500 kV	TVA	1.8	6.2	3.0
	Top 3	3000	0	3000	1950	4950		Summer Shade-Summer Shade Tap 161	TVA-EKPC		Summer Shade - Summer Shade 161 kV	TVA-EKPC	2.1	99.7	3.8
	Limits	4100	0	4100	1950	6050	2	Bull Run - Volunteer 500 kV	TVA	1732	Watts Bar - Volunteer 500 kV	TVA	13.5	75.8	17.8

Page: 19 of 39

TRANSFER	BASE CASE	NITC FCITC (MW) (A)	_		Import (MW)	TOTAL Import (MW) (A+C)	0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
TVA	E102	3150	0	3150	2200	5350		South Canton 765-345 kV	AEP	1660	Base Case		12.3		
to		3300	0	3300	2200	5500	2	Bull Run - Volunteer 500 kV	TVA	1732	Watts Bar - Volunteer 500 kV	TVA	14.3	75.6	19.6
NE		3400	0	3400	2200	5600	2	South Canton 765-345 kV	AEP	1890	Kammer 765-500 kV &	AEP-AP	12.3		14.0
											Kammer - Harrison - Fort Martin 500 kV	AP			
		3450	0	3450	2200	5650	2	Norris - La Follette 161 kV	TVA	234	Volunteer - Phipps Bend 500 kV	TVA	1.8	6.2	3.0
		3600	0	3600	2200	5800		Kammer - West Bellaire 345 kV	AEP	1023	Kammer - South Canton 765 kV &	AEP	7.1	21.8	9.7
											South Canton 765-345 kV	AEP			
		3850	0	3850	2200	6050		Summer Shade-Summer Shade Tap 161	TVA-EKPC	240	Summer Shade - Summer Shade 161 kV	TVA-EKPC	1.9	99.7	3.5
		5150	0	5150	2200	7350		Mountaineer - Belmont 765 kV	AEP	3313	Gavin - Marysville 765 kV	AEP	23.1	43.9	24.4
		5150	0	5150	2200	7350	2	Bay Shore 345-138 kV	FE	650	Allen Junction 345-138 kV	FE	3.3	31.8	4.1
		5800	0	5800	2200	8000		Paradise - New Hardinsburg 161 kV	TVA-BREC	265	Volunteer - Phipps Bend 500 kV	TVA	3.2	2.3	3.6
		5800	0	5800	2200	8000		Kammer 765-500 kV	AEP-AP	1700	Belmont - Harrison 500 kV	AP	8.3	39.8	11.9
		6000	0	6000	2200	8200		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michiga	n			
	2000S	1750	0	1750	1950	3700		Foster - Sugarcreek 345 kV	CIN-DPL	1315	Stuart - Clinton - Greene 345 kV &	DPL	2.6		2.9
	Top 3										Clinton 345-69 kV	DPL			
	Limits	3250	0	3250	1950	5200	2	Norris - La Follette 161 kV	TVA	234	Volunteer - Phipps Bend 500 kV	TVA	1.8	6.2	3.0
		3300	0	3300	1950	5250		South Canton 765-345 kV	AEP		Base Case		12.0		

Page: 20 of 39

TRANSFER	BASE CASE	NITC FCITC (MW) (A)		NTTC FCTTC (MW) (A+B)		TOTAL Import (MW) (A+C)	N O T E	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAIN	E100	3800	0	3800	2200	6000	2,3	State Line - Wolf Lake - Sheffield 138 kV	CE-NIPS	160	Wilton Center - Dumont 765 kV	CE-AEP	1.5	3.6	2.5
to		4050	0	4050	2200	6250		South Canton 765-345 kV	AEP	1660	Base Case		12.3		
NE		4650	0	4650	2200	6850	2	South Canton 765-345 kV	AEP	1890	Tidd - Canton Central 345 kV	AEP	12.3	27.5	12.2
		4950	0	4950	2200	7150		Kammer - West Bellaire 345 kV	AEP	1023	Kammer - South Canton 765 kV &	AEP	7.6	21.8	10.3
											South Canton 765-345 kV	AEP			
		5200	0	5200	2200	7400	2	Bay Shore 345-138 kV	FE	650	Allen Junction 345-138 kV	FE	3.4	31.8	4.3
		6000	0	6000	2200	8200		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michiga	n	T		
	2000S							(Not Tested During 2000 Summer Study)							
	Top 3														
	Limits														
	- 400														
MAIN	E102	200	0		2200	2400	2,3	State Line - Wolf Lake - Sheffield 138 kV	CE-NIPS	160	Wilton Center - Dumont 765 kV	CE-AEP	1.6	3.6	2.6
to		500	0	500	2200	2700		Cumberland - Davidson 500 kV	TVA	2597	Cumberland - Johnsonville 500 kV	TVA	4.5	75.7	4.8
NE		2850	0	2850	2200	5050		Cumberland - Johnsonville 500 kV	TVA	2597	Cumberland - Davidson 500 kV	TVA	0.4	77.3	3.9
		3250	0	3250	2200	5450		South Canton 765-345 kV	AEP	1660	Base Case		12.0		
		3400	0	3400	2200	5600	2	South Canton 765-345 kV	AEP	1890	Kammer 765-500 kV &	AEP-AP	12.0		14.2
											Kammer - Harrison - Fort Martin 500 kV	AP			
		3550	0	3550	2200	5750		Kammer - West Bellaire 345 kV	AEP	1023	Kammer - South Canton 765 kV &	AEP	7.3	21.8	9.9
											South Canton 765-345 kV	AEP			
		4750	0	4750	2200		_	Kammer 765-500 kV	AEP-AP	1700	Belmont - Harrison 500 kV	AP	10.5	39.8	14.6
		5100	0	5100	2200	7300	_	Bay Shore 345-138 kV	FE	650	Allen Junction 345-138 kV	FE	3.3	31.8	4.2
		5550	0	5550	2200	7750	3	Kyger Creek - Sporn 345 kV	OVEC-AEP		Amos 765-345 kV	AEP	6.1	28.7	6.4
		6000	0	6000	2200	8200		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	D PARs @ 600 MW Fixed Flow into Michiga	n I	I	1	
	20000		_		40=-	4		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T) (A	0505	0 1 1 5 11	T) / A	6.1	·	6.0
	2000S	-500			1950	†		Cumberland - Johnsonville 500 kV	TVA	2597	Cumberland - Davidson 500 kV	TVA	0.4	77.4	3.8
	Top 3	0			1950	1950		State Line - Wolf Lake - Sheffield 138 kV	CE-NIPS	160	Burnham - Sheffield 345 kV	CE-NIPS	1.9	23.4	3.0
	Limits	150	0	150	1950	2100		Cumberland - Davidson 500 kV	TVA	2597	Cumberland - Johnsonville 500 kV	TVA	4.4	75.9	4.7

Page: 21 of 39

TRANSFER	BASE CASE	NITC FCITC (MW) (A)		NTTC FCTTC (MW) (A+B)	Import (MW)		0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAIN	E100	2350	200			†		Gallagher 230-138 kV	CIN	•	, ,	OVEC-LGEE	2.1	11.3	4.3
to		2500	200	2700	600	3100		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michiga	n	ı		
Kentucky															
	2000S							(Not Tested During 2000 Summer Study)							<u> </u>
	Top 3														
	Limits														
	E400														
MAIN	E102	800	200		600	†		Grahamville-S Paducah-Livingston 161kV	LGEE	223	Shawnee - Marshall 500 kV	TVA	2.2	9.1	2.9
to		950	200			-		Cumberland - Davidson 500 kV	TVA	2597	Cumberland - Johnsonville 500 kV	TVA	3.5	75.7	2.6
Kentucky		1800	200		600			Gallagher 230-138 kV	CIN	162	Clifty Creek - Trimble County 345 kV	OVEC-LGEE	2.1	11.3	4.3
		2300	200	2500	600	2900		Livingston Co - Earlington North 161 kV	LGEE	193	Livingston-Crittenden-Morgenfield 161 &	LGEE	4.1		5.3
												LGEE			<u> </u>
		2500	200	2700	600	3100		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michiga	n	ı		
	0000														<u> </u>
	2000S	-50	200			†		State Line - Wolf Lake - Sheffield 138 kV	CE-NIPS	100	Burnham - Sheffield 345 kV	CE-NIPS	2.1	23.4	2.8
	Top 3	150	200	350	500	650	2	Buffington 345-138 kV	CIN	440		CIN	3.5		3.8
	Limits											CIN			<u> </u>
		850	200	1050	500	1350	2	Miami Fort 345-138 kV	CIN	440	East Bend - Terminal 345 kV	CIN	3.1	19.0	3.2

Date.	04/	10/1

					BASE										
TRANSFER	BASE				Import		0	LIMITING FACILITY	SYSTEM	RATING	OUTAGED FACILITY	SYSTEM	PTDF	LODF	OTDF
	CASE	(MW)		(MW)		(MW)	Т			(MVA)			(%)	(%)	(%)
		(A)	(B)	(A+B)	(C)	(A+C)	Е								
MAIN	E104	-2200	200	-2000	600	-1600		Cumberland - Davidson 500 kV	TVA	2597	Cumberland - Johnsonville 500 kV	TVA	3.5	75.7	2.6
to		1100	200	1300	600	1700		Grahamville-S Paducah-Livingston 161kV	LGEE	223	Shawnee - Marshall 500 kV	TVA	2.2	9.1	2.9
Kentucky		1250	200	1450	600	1850		Gallagher 230-138 kV	CIN	162	Clifty Creek - Trimble County 345 kV	OVEC-LGEE	2.1	11.3	4.3
		1750	200	1950	600	2350		Clifty Creek #1B 345-138 kV	OVEC	155	Clifty Creek - Trimble County 345 kV	OVEC-LGEE	1.9	8.6	3.6
		1900	200	2100	600	2500		Clifty Creek - Northside 138 kV	OVEC-LGEE	113	Clifty Creek - Trimble County 345 kV	OVEC-LGEE	0.9	13.4	3.5
		2000	200	2200	600	2600	2	Clifty Creek - Carrollton 138 kV	OVEC-LGEE	191	Baker - Broadford 765 kV	AEP	3.8	1.3	3.8
		2100	200	2300	600	2700	2	Buffington 345-138 kV	CIN	499	Red Bank-Silver Grove-Zimmer 345 kV &	CIN	3.4		3.6
											Silver Grove 345-138 kV	CIN			
		2100	200	2300	600	2700		Gallagher - Paddys West 138 kV	CIN-LGEE	382	Clifty Creek - Trimble County 345 kV	OVEC-LGEE	2.8	27.0	8.1
		2200	200	2400	600	2800		Clifty Creek #1A 345-138 kV	OVEC	193	Clifty Creek - Trimble County 345 kV	OVEC-LGEE	2.0	9.6	4.0
		2500	200	2700	600	3100		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ Minimum Degrees Fixed Angle (F	Flow into Michig	an is 26	10 MW)	
	2000S	-550	200	-350	500	-50	2	Buffington 345-138 kV	CIN	440	Red Bank-Silver Grove-Zimmer 345 kV &	CIN	3.5		3.8
	Top 3										Silver Grove 345-138 kV	CIN			
	Limits	750	200	950	500	1250	2	Gallagher 230-138 kV	CIN	147	Clifty Creek - Trimble County 345 kV	OVEC-LGEE	2.1	11.3	4.3
		1000	200	1200	500	1500		Miami Fort 345-138 kV	CIN	440	East Bend - Terminal 345 kV	CIN	3.1	19.0	3.2

Page: 22 of 39

TRANSFER	BASE CASE	NITC FCITC (MW) (A)		NTTC FCTTC (MW) (A+B)	Import (MW)	TOTAL Import (MW) (A+C)	0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAAC	E100	3250	-400	2850	-1200	2050	3	Butler - Krendale - Maple 138 kV	AP-FE	227	Cabot - Wylie Ridge 500 kV	AP	2.0	7.8	3.3
to		5000	-400	4600	-1200	3800		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michiga	n			
Indiana															
	2000S							(Not Tested During 2000 Summer Study)							
	Top 3														
	Limits														
MAAC	E101a	-1000						Lambton - Saint Clair (L4D) 345 kV	HONI-DECO		Base Case		2.6		2.6
to		-650	-400	-1050	-1200	-1850	2,3	Lambton - Saint Clair (L4D) 345 kV	HONI-DECO	1170	Lambton - Saint Clair (L51D) 345 kV &	HONI-DECO	2.6		4.0
Indiana											Saint Clair Unit 6 &	DECO			
											Lambton Generation Rejection	HONI			
		0	-400	-400	-1200	-1200	2,3	Lambton - Saint Clair (L51D) 345 kV	HONI-DECO		Lambton - Saint Clair (L4D) 345 kV &	HONI-DECO	2.4		3.8
											Saint Clair Unit 6 &	DECO			
							_				Lambton Generation Rejection	HONI			
		1350						Butler - Krendale - Maple 138 kV	AP-FE		Cabot - Wylie Ridge 500 kV	AP	1.8	7.8	3.0
		5000	-400	4600	-1200	3800		Test Level - No Other Limits Found		_	tario PARs @ Minimum Degrees Fixed Ang		_	2430 M	W)
									Note (b): Gen	erating u	nits outaged to model transfer bias: Monro	e 1 and Palisad T	es 1		I
	2000S	1350	-400	050	-1350	^	2.2	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	5.8	52.0	6.4
	Top 3	1350						Butler - Krendale - Maple 138 kV	AP-FE		Cabot - Wylie Ridge 500 kV	AP	2.0	8.0	3.5
	Limits	2100						Corner - Wolf Ck Muskingum 138 kV	AP-FE AP-AEP		Kammer - Belmont - Mountain 765 kV &	AEP	1.0	6.0	2.5
	LIIIIII	2100	-400	1700	-1330	730	٥	Comer - Woll Ck Waskingum 136 KV	AL-AEF		Belmont 765-500 kV	AEP-AP	1.0		۷.5
											Demont 700-000 KV	ALT-AL			

TABLE 2 ECAR 2001 Summer Assessment of Transmission System Performance
Detailed Study Results from Transfer Capability Analysis (1) Date: 04/16/01

TRANSFER	BASE CASE	NITC FCITC (MW) (A)	BASE Sales (MW) (B)	NTTC FCTTC (MW) (A+B)		Import (MW) (A+C)	N O T E	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
	- 400														
MAAC	E103a	-1850	-400	-2250	-200	-2050		Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	5.8	52.0	6.4
to		-900	-400	-1300	-200	-1100	3	Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	1.1	42.8	3.7
Indiana		2100	-400	1700	-200	1900		Butler - Krendale - Maple 138 kV	AP-FE	227	Cabot - Wylie Ridge 500 kV	AP	2.0	7.8	3.3
		4100	-400	3700	-200	3900		Cayuga 345-230 kV	CIN	534	Cayuga - Nucor 345 kV	CIN	4.2	31.4	3.4
		4400	-400	4000	-200	4200		Newtonville 161-138 kV	SIGE	179	Cloverport - Newtonville 138 kV	LGEE-SIGE	2.0	76.0	3.4
		4600	-400	4200	-200	4400	3	Cloverport - Newtonville 138 kV	LGEE-SIGE	143	Coleman-Newtonville-Taswell 161 kV & Newtonville 161-138 kV	BR-SIGE-HE SIGE	1.2		2.9
		4800	-400	4400	-200	4600		Greenfield - Lakeview 138 kV	FE	248	Beaver - Davis Besse 345 kV	FE	1.5	12.7	2.5
		5000	-400	4600	-200	4800		Test Level - No Other Limits Found		_	rario PARs @ 600 MW Fixed Flow into Michanits outaged to model transfer bias: Monro	~	des 1 / C	ook 1	
	00000														
	2000S	-3100	-400			-4450		Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	5.8	52.0	6.4
	Top 3	-3050	-400	-3450	-1350	-4400		Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	1.1	42.8	3.6
	Limits	2200	-400	1800	-1350	850	2	Cayuga 345-230 kV	CIN	480	Cayuga - Nucor 345 kV	CIN	4.2	31.4	3.2
MAAC	E103b	1150	-400	750	-1200	-50	3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	5.8	52.0	6.4
to		2000	-400	1600	-1200	800	3	Butler - Krendale - Maple 138 kV	AP-FE	227	Cabot - Wylie Ridge 500 kV	AP	1.9	7.8	3.3
Indiana		3550	-400	3150	-1200	2350		Greenfield - Lakeview 138 kV	FE	248	Beaver - Davis Bessie 345 kV	FE	1.5	12.6	2.5
		3900	-400	3500	-1200	2700	2	Beaver - Davis Bessie 345 kV	FE	984	Kammer - Orange 765 kV	AEP	8.1	6.8	9.4
		4200	-400	3800	-1200	3000	2	Cayuga 345-230 kV	CIN	534	Cayuga - Nucor 345 kV	CIN	4.2	31.4	3.4
		4450	-400	4050	-1200	3250	2	Newtonville 161-138 kV	SIGE	179	Cloverport - Newtonville 138 kV	LGEE-SIGE	2.0	76.0	3.4
		4650	-400	4250	-1200	3450	2,3	Cloverport - Newtonville 138 kV	LGEE-SIGE	143	Coleman-Newtonville-Taswell 161 kV &	BR-SIGE-HE	2.0		2.9
											Newtonville 161-138 kV	SIGE			
		4900	-400	4500	-1200	3700		Beaver - Davis Bessie 345 kV	FE	950	Base Case		8.1		
		5000	-400	4600	-1200	3800		Test Level - No Other Limits Found	Note (a): Mich	nigan-On	tario PARs @ 600 MW Fixed Flow into Mich	nigan			
									Note (b): Gen	erating u	nits outaged to model transfer bias: Monro	e 1 & 3 / Palisad	des 1 / D	avis-Bes	se 1
	2222														
	2000S	-3100	-400	-3500	-1350	-4450		Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	5.8	52.0	6.4
	Top 3	-3050	-400	-3450		-4400	3	Cook 765-345 kV	AEP	2115	Dumont 765-345 kV	AEP	1.1	42.8	3.6
	Limits	2200	-400	1800	-1350	850	2	Cayuga 345-230 kV	CIN	480	Cayuga - Nucor 345 kV	CIN	4.2	31.4	3.2

Page: 24 of 39

TABLE 2

Date: 04/16/01 ECAR 2001 Summer Assessment of Transmission System Performance Page: 25 of 39

ECAR 2001 Summer Assessment of Transmission System Performance Detailed Study Results from Transfer Capability Analysis (1)

TRANSFER	BASE CASE	FCITC	Sales (MW)	NTTC FCTTC (MW) (A+B)	Import (MW)	Import (MW)	О Т	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
TVA								(Tested During Winter Assessments)							
to															
IMO															
MAIN								(Tested During Winter Assessments)							1
to															
IMO															

Page: 26 of 39

Date:	04/16	3/01
-------	-------	------

TRANSFER	BASE	NITC FCITC		NTTC FCTTC		TOTAL Import	N O	LIMITING FACILITY	SYSTEM	RATING	OUTAGED FACILITY	SYSTEM	PTDF	LODF	OTDF
	CASE	(MW) (A)	(MW) (B)	(MW) (A+B)	(MW) (C)	(MW) (A+C)	T E			(MVA)			(%)	(%)	(%)
MAIN	E100	1600	0	1600	-50	1550		Hatfiled - Black Oak 500 kV (Voltage)	AP	2265	Pruntytown - Mount Storm 500 kV	AP-VP	9.6	26.8	13.4
to		2300	0	2300	-50	2250		Doubs #1 or #2 or #3 or #4 500-230 kV	AP	488	Doubs - Brighton 500 kV	AP-PEPCO	1.3	8.7	3.1
MAAC		2450	0	2450	-50	2400	2	Mount Storm - Doubs 500 kV	VP-AP	2271	Mount Storm - Meadow Brook 500 kV	VP-AP	12.1	35.0	14.6
		2850	0	2850	-50	2800	2	Doubs - Aqueduct - Station H 230 kV	AP-PEPCO	629	Doubs - Station H 230 kV	AP-PEPCO	3.5	60.5	5.7
		2850	0	2850	-50	2800	2	Doubs - Station H 230 kV	AP-PEPCO	628	Doubs - Aqueduct 230 kV	AP	3.5	60.3	5.7
		4150	0	4150	-50	4100		Black Oak - Bedington 500 kV	AP	2783	Pruntytown - Mount Storm 500 kV	AP-VP	11.3	31.1	15.8
		5000	0	5000	-50	4950		Test Level - No Other Limits Found	Note (a): Mich	igan-On	tario PARs @ 600 MW Fixed Flow into Mich	igan			
	2000S							(Not Tested During 2000 Summer Study)							
	Top 3														
	Limits														
MAIN	E102	-450	2000	1550	1900	1450		Hatfiled - Black Oak 500 kV (Voltage)	AP	2265	Pruntytown - Mount Storm 500 kV	AP-VP	9.6	26.8	13.4
to		400	2000	2400	1900	2300		Cumberland - Davidson 500 kV	TVA	2597	Cumberland - Johnsonville 500 kV	TVA	5.3	75.7	5.9
MAAC		650	2000	2650	1900	2550	2	Mount Storm - Doubs 500 kV	VP-AP	2271	Mount Storm - Meadow Brook 500 kV	VP-AP	12.1	35.0	14.6
		750	2000	2750	1900	2650		Doubs #1 or #2 or #3 or #4 500-230 kV	AP	488	Doubs - Brighton 500 kV	AP-PEPCO	1.3	8.7	3.1
		1900	2000	3900	1900	3800	2	Doubs - Aqueduct - Station H 230 kV	AP-PEPCO	629	Doubs - Brighton 500 kV	AP-PEPCO	3.6	17.1	7.1
		1900	2000	3900	1900	3800	2	Doubs - Station H 230 kV	AP-PEPCO	628	Doubs - Aqueduct 230 kV	AP	3.5	60.3	5.7
		2150	2000	4150	1900	4050		Black Oak - Bedington 500 kV	AP	2783	Pruntytown - Mount Storm 500 kV	AP-VP	11.3	31.1	15.8
		2350	2000	4350	1900	4250		Cumberland - Johnsonville 500 kV	TVA	2597	Cumberland - Davidson 500 kV	TVA	0.7	77.3	4.8
		2600	2000	4600	1900	4500	2	Wylie Ridge #2 345-500 kV	AP	942	Wylie Ridge #1 345-500 kV	AP	7.8	72.2	13.2
		2900	2000	4900	1900	4800		Pruntytown - Mount Storm 500 kV	AP-VP	3326	Black Oak - Bedington 500 kV	AP	14.7	44.6	19.7
		2900	2000	4900	1900	4800		Kammer 765-500 kV	AEP-AP	1700	Belmont - Harrison 500 kV	AP	17.5	39.8	23.5
		2950	2000	4950	1900	4850		Harrison - Pruntytown 500 kV	AP	3584	502 Junction - Fort Martin 500 kV	AP	13.1	67.7	26.1
		5000	2000	7000	1900	6900		Test Level - No Other Limits Found	Note (a): Mich	igan-On	tario PARs @ 600 MW Fixed Flow into Mich	igan			
									Note (b): Ten	additiona	al limits were found from 3000 to 5000 but a	re not shown in	this table	e for brev	vity
	2000S	-450	2000	1550	1850	1400		Cumberland - Johnsonville 500 kV	TVA	2597	Cumberland - Davidson 500 kV	TVA	0.7	77.4	4.5
	Top 3	-50	2000	1950	1850	1800	2,3	State Line - Wolf Lake - Sheffield 138 kV	CE-NIPS	160	Burnham - Sheffield 345 kV	CE-NIPS	1.9	23.4	3.0
	Limits	100	2000	2100	1850	1950		Cumberland - Davidson 500 kV	TVA	2597	Cumberland - Johnsonville 500 kV	TVA	5.0	75.9	5.5

ECAR 2001 Summer Assessment of Transmission System Performance Detailed Study Results from Transfer Capability Analysis (1)

Page: 27 of 39

TRANSFER	BASE CASE		Sales (MW)	FCTTC (MW)	BASE Import (MW) (C)	Import (MW)	0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
NAAINI	E400														
MAIN	E100	2100	0	2100	400			Hatfiled - Black Oak 500 kV (Voltage)	AP	2265	,	AP-VP	5.9	26.8	10.1
to		4100	0	4100	400	4500	2,3	Kanawha - Matt Funk 345 kV (Voltage)	AEP	1040	Broadford - Jackson Ferry 765 kV	AEP	5.3	14.9	9.1
VACAR											Broadford 138 kV Series Reactor Inserted	AEP			
		4600	0	4600	400	5000		Cumberland - Davidson 500 kV	TVA	2597	Cumberland - Johnsonville 500 kV	TVA	6.9	75.7	8.0
		4900	0	4900	400	5300		Pruntytown - Mount Storm 500 kV	AP-VP	3326	Black Oak - Bedington 500 kV	AP	17.9	44.6	21.0
		5000	0	5000	400	5400		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michigan	n			
	2000S							(Not Tested During 2000 Summer Study)							
	Top 3														
	Limits														

TABLE 2 ECAR 2001 Summer Assessment of Transmission System Performance Detailed Study Results from Transfer Capability Analysis (1)

TRANSFER	BASE CASE	NITC FCITC (MW) (A)	Sales	FCTTC	BASE Import (MW) (C)	Import		LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAIN	E102	-600	1000	400	1400	800		Hatfiled - Black Oak 500 kV (Voltage)	AP	2265	Pruntytown - Mount Storm 500 kV	AP-VP	5.9	26.8	10.2
to		300	1000	1300	1400	1700		Cumberland - Davidson 500 kV	TVA	2597	Cumberland - Johnsonville 500 kV	TVA	6.9	75.7	8.0
VACAR		1650	1000	2650	1400	3050		Cumberland - Johnsonville 500 kV	TVA	2597	Cumberland - Davidson 500 kV	TVA	1.4	77.3	6.7
		2000	1000	3000	1400	3400	2,3	Kanawha - Matt Funk 345 kV (Voltage)	AEP	1040	Broadford - Jackson Ferry 765 kV	AEP	5.3	14.9	9.1
											Broadford 138 kV Series Reactor Inserted	AEP			
		2750	1000	3750	1400	4150	2	Pruntytown - Mount Storm 500 kV	AP-VP	3326	Black Oak - Bedington 500 kV	AP	17.9	44.6	21.0
		2750	1000	3750	1400	4150		Black Oak - Bedington 500 kV	AP	2783	Pruntytown - Mount Storm 500 kV	AP-VP	6.9	31.1	12.5
		3650	1000	4650	1400	5050	2	Axton 765-138 kV	AEP	792	Cloverdale - Joshua Falls 765 kV &	AEP	3.9	10.9	5.3
											Joshua Falls 765-138 kV	AEP			
		3800	1000	4800	1400	5200		Mount Storm - Doubs 500 kV	VP-AP	2271	Mount Storm - Meadow Brook 500 kV	VP-AP	11.3	35.0	2.6
		4200	1000	5200	1400	5600		Harrison - Pruntytown 500 kV	AP	3584	502 Junction - Fort Martin 500 kV	AP	11.8	67.7	18.5
		4200	1000	5200	1400	5600		Hatfield - Black Oak 500kV	AP	2783	Pruntytown - Mount Storm 500 kV	VP-AP	6.0	26.8	10.8
		4400	1000	5400	1400	5800		Pruntytown - Mount Storm 500 kV	AP-VP	2733	Base Case		17.9		
		4450	1000	5450	1400	5850		Danville - East Danville 138 kV	AEP	384	Jackson Ferry 765-500 kV	AEP	4.0	15.1	6.1
											Jackson Ferry - Antioch 500 kV	AEP-DUKE			
		4750	1000	5750	1400	6150		Fort Martin - Pruntytown 500 kV	AP	2654	Harrison - Pruntytown 500 kV	AP	4.6	68.7	12.7
		4850	1000	5850	1400	6250		Harrison - Pruntytown 500 kV	AP	2733	Base Case		11.8		
		5000	1000	6000	1400	6400		Test Level - No Other Limits Found	Note (a): Mich	igan-On	tario PARs @ 600 MW Fixed Flow into Mich	igan	1		
	2000S	-300	1000	700	1050	750		Cumberland - Johnsonville 500 kV	TVA	2597	Cumberland - Davidson 500 kV	TVA	1.4	77.4	6.5
	Top 3	-50	1000		1050		2.3	State Line - Wolf Lake - Sheffield 138 kV	CE-NIPS			CE-NIPS	1.8	23.4	2.8
	Limits	100					,,,	Cumberland - Davidson 500 kV	TVA		Cumberland - Johnsonville 500 kV	TVA	6.6	75.9	7.6

TRANSFER	BASE CASE	FCITC (MW) (A)		FCTTC	Import (MW)		0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAIN	E104	-750	0	-750	400	-350	<u> </u>	Cumberland - Davidson 500 kV	TVA	2597	Cumberland - Johnsonville 500 kV	TVA	6.8	75.7	7.8
to	1 1	50	0	50	400	450	<u> </u>	Hatfiled - Black Oak 500 kV (Voltage)	AP	2265	Pruntytown - Mount Storm 500 kV	AP-VP	5.9	26.8	10.1
VACAR		450	0	450	400	850	<u></u>	Cumberland - Johnsonville 500 kV	TVA	2597	Cumberland - Davidson 500 kV	TVA	1.4	77.3	6.6
i l		1400	0	1400	400	1800	2,3	Kanawha - Matt Funk 345 kV (Voltage)	AEP	1010	Baker - Broadford 765 kV	AEP	5.2	12.7	7.7
i !	1 1	3000	0	3000	400	3400	2	Pruntytown - Mount Storm 500 kV	AP-VP	3326	Black Oak - Bedington 500 kV	AP	17.5	44.6	20.4
i !	1 1	3500	0	3500	400	3900	<u> </u>	Black Oak - Bedington 500 kV	AP	2783	Pruntytown - Mount Storm 500 kV	AP-VP	6.6	31.1	12.0
i !	1 1	4350	0	4350	400	4750	Ĺ	Brown - Alcalde 345 kV	LGEE	956	Baker - Broadford 765 kV	AEP	3.2	6.9	4.6
i l		4500	0	4500	400	4900		Axton 765-138 kV	AEP	792	Jackson Ferry 765-500 kV	AEP	3.8	16.9	6.1
i l					ľ	1 '	1				Jackson Ferry - Antioch 500 kV	AEP-DUKE			f
i l		4550	0	4550	400	4950		Pruntytown - Mount Storm 500 kV	AP-VP	2733	Base Case		17.5		
i l		4600	0	4600	400	5000		Fort Martin - Pruntytown 500 kV	AP	2654	Harrison - Pruntytown 500 kV	AP	4.7	68.7	12.5
i l		4900	0	4900	400	5300		Hatfield - Black Oak 500kV	AP	2783	Pruntytown - Mount Storm 500 kV	VP-AP	5.8	26.8	10.5
i l		4900	0	4900	400	5300		Danville - East Danville 138 kV	AEP	384	Jackson Ferry 765-500 kV	AEP	3.9	15.1	6.1
i l					ľ	1 '	1				Jackson Ferry - Antioch 500 kV	AEP-DUKE			1
İ		4950	0	4950	400	5350		Pineville - Pocket 500 kV	LGEE	550	Baker - Broadford 765 kV	AEP	2.9	7.1	4.3
		5000	0	5000	400	5400		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	o PARs @ Minimum Degrees Fixed Angle	(Flow into Michiç	gan is 261	10 MW)	
İ						igspace	—								
İ	00000				ļ!	\vdash	<u> — </u>		 	-		<u> </u>		<u> </u>	
i !	2000S	-1550	0	-1550		+ +		Cumberland - Johnsonville 500 kV	TVA	2597	Cumberland - Davidson 500 kV	TVA	1.4	77.4	6.5
i !	Top 3	-1000	0	-1000	_	_	—	Cumberland - Davidson 500 kV	TVA	2597	Cumberland - Johnsonville 500 kV	TVA	6.6	75.9	7.6
i	Limits	1250	0	1250	50	1300	<u> </u>	Hatfiled - Black Oak 500 kV (Voltage)	AP	1940	Mount Storm - Meadow Brook 500 kV	VP-AP	5.9	10.1	6.5

Page: 29 of 39

TABLE 2

Date: 04/16/01 ECAR 2001 Summer Assessment of Transmission System Performance Page: 30 of 39

ECAR 2001 Summer Assessment of Transmission System Performance Detailed Study Results from Transfer Capability Analysis (1)

TRANSFER	BASE CASE	FCITC	Sales (MW)	FCTTC (MW)	Import (MW)	TOTAL Import (MW) (A+C)	0 T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAAC	E100	3700	0	3700	-1650	2050	3	Butler - Shanor Manor - Krendale 138 kV	AP	227	Cabot - Wylie Ridge 500 kV	AP	1.6	7.8	2.9
to		4250	0	4250	-1650	2600		Clinch R - Spring Ck - N Bristol 138 kV	AEP	239	Broadford 765-500 kV &	AEP	1.6	7.5	3.3
TVA											Broadford - Sullivan 500 kV	AEP-TVA			
		5000	0	5000	-1650	3350		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michiga	n			
	2000S							(Not Tested During 2000 Summer Study)							
	Top 3														
	Limits														
						·									

Page: 31 of 39

TRANSFER	BASE CASE	NITC FCITC (MW) (A)		NTTC FCTTC (MW) (A+B)	BASE Import (MW) (C)	TOTAL Import (MW) (A+C)		LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAAC	E104	-3600	0	-3600	2300	-1300	2,3	Lambton - Saint Clair (L4D) 345 kV	HONI-DECO	1170	Lambton - Saint Clair (L51D) 345 kV &	HONI-DECO	2.1		3.2
to											Saint Clair Unit 6 &	DECO			
TVA											Lambton Generation Rejection	HONI			
		-3000	0	-3000	2300	-700	2,3	Lambton - Saint Clair (L51D) 345 kV	HONI-DECO	1170	Lambton - Saint Clair (L4D) 345 kV &	HONI-DECO	1.9		3.1
											Saint Clair Unit 6 &	DECO			
											Lambton Generation Rejection	HONI			
		950	0	950	2300	3250		Clinch R - Spring Ck - N Bristol 138 kV	AEP	239	Broadford 765-500 kV &	AEP	1.6	7.5	3.3
											Broadford - Sullivan 500 kV	AEP-TVA			
		2700	0	2700	2300	5000		North Bristol - North Bristol 138 kV	AEP-TVA	260	Broadford 765-500 kV &	AEP	1.1	7.5	2.7
											Broadford - Sullivan 500 kV	AEP-TVA			
		3350	0	3350	2300	5650	2	Broadford 765-500kV or	AEP	1920	Broadford - Jacksons Ferry 765 kV &	AEP	21.2	28.9	18.6
								Broadford - Sullivan 500 kV	AEP-TVA	1920	Broadford 138 kV Series Reactor Inserted	AEP			
		3850	0	3850	2300	6150		New Hardinsburg 138-161 kV	BREC	224	Coleman - National Aluminum 161 kV	BREC	2.3	77.2	2.6
		4250	0	4250	2300	6550		Broadford 765-500kV or	AEP	1710	Base Case		21.3		
								Broadford - Sullivan 500 kV	AEP-TVA	1710					
		4300	0	4300	2300	6600		Clinch River - Copper Ridge - Hill 138 kV	AEP	269	Broadford 765-500 kV &	AEP	1.3	6.2	2.8
											Broadford - Sullivan 500 kV	AEP-TVA			
		4550	0	4550	2300	6850		Newtonville - Coleman 161 kV	SIGE-BREC	265	AB Brown - Henderson County 138 kV	SIGE-BREC	2.3	4.8	2.7
		4600	0	4600	2300	6900		Wolf Hills - Orebank 138 kV	AEP	239	Broadford 765-500 kV &	AEP	1.2	6.2	2.6
											Broadford - Sullivan 500 kV	AEP-TVA			
		4900	0	4900	2300	7200		Brown - Alcalde 345 kV	LGEE	956	Baker - Broadford 765 kV	AEP	3.0	6.9	4.1
		5000	0	5000	2300	7300		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	o PARs @ Minimum Degrees Fixed Angle (F	Flow into Michig	an is 26	10 MW)	
	2000S	1400	0	1400	2800	4200		Clinch R Abingdon - N. Bristol 138 kV	AEP	239	Broadford 765-500 kV &	AEP	1.6		3.4
	Top 3										Broadford - Sullivan 500 kV	AEP-TVA			
	Limits	3300	0	3300	2800	6100	2	Ghent - West Lexington 345 kV	LGEE	956	Baker - Broadford 765 kV	AEP	3.2	4.4	3.7
		3400	0	3400	2800	6200		North Bristol - North Bristol 138 kV	AEP-TVA	260	Broadford 765-500 kV &	AEP	1.1		2.7
											Broadford - Sullivan 500 kV	AEP-TVA			

TRANSFER	BASE	NITC FCITC		NTTC FCTTC (MW)	Import		N O	LIMITING FACILITY	SYSTEM	RATING	OUTAGED FACILITY	SYSTEM	PTDF	LODF	OTDF
	CASE	(MW) (A)	(MW) (B)	(A+B)	(MW)	(MW) (A+C)	T E			(MVA)			(%)	(%)	(%)
MAIN	E100	5000	0	5000	-1650	3350		Test Level - No Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michiga	n			
to														<u> </u>	
TVA															
	2000							W							
	2000S							(Not Tested During 2000 Summer Study)						$\vdash \vdash \vdash$	
	Top 3 Limits														
	LIIIIIIS													\vdash	
MAIN	E102	3650	950	4600	-650	3000	2.3	Kanawha - Matt Funk 345 kV (Voltage)	AEP	1010	Baker - Broadford 765 kV	AEP	2.4	12.8	4.6
to		4000	950	_	-650		_,0	Bland - Franks 345 kV	AMRN-AECI		Base Case		7.0		
TVA		4400	950		-650	-		Renshaw - Livingston County 161 kV	SIPC-BREC		Shawnee - Marshall 500 kV	TVA	2.1	5.8	3.0
		5000	950	5950	-650	4350		Test Level - No Other Limits Found	Note: Michiga		PARs @ 600 MW Fixed Flow into Michiga	n			
	2000S	2750	600	3350	-150		2	Lutesville - Essex 345 kV	AMRN-AECI	870	Shawnee - Marshall 500 kV	TVA	6.4	17.5	9.1
	Top 3	4400	600		-150	4250	3	Kanawha - Matt Funk 345 kV (Voltage)	AEP	1010	Baker - Broadford 765 kV	AEP	2.3	12.8	4.6
	Limits	4800	600	5400	-150	4650	2	Ghent - West Lexington 345 kV	LGEE	956	Baker - Broadford 765 kV	AEP	3.9	4.4	4.6
MAIN	E104	0.400	0	0.400	0000	4700		Manager Matt Forst OAF IN (Valtage)	AED	4040	Dalam Dara 46- ad 705 137	AED	0.0	40.0	4.0
to	□104	2400 3400	0	2400 3400	2300			Kanawha - Matt Funk 345 kV (Voltage) Brown - Alcalde 345 kV	AEP LGEE	1010 956	Baker - Broadford 765 kV Baker - Broadford 765 kV	AEP AEP	2.3 4.6	12.8 6.9	4.6 5.9
TVA		3800	0	3800	2300			Bland - Franks 345 kV	AMRN-AECI		Base Case		7.0	0.9	
1 7/7		4150	0					Broadford 765-500kV or	AEP		Broadford - Jacksons Ferry 765 kV &	AEP	14.0	28.9	15.0
		4100		4100	2000	0400		Broadford - Sullivan 500 kV	AEP-TVA		Broadford 138 kV Series Reactor Inserted	AEP	14.0	20.5	10.0
		4250	0	4250	2300	6550		Renshaw - Livingston County 161 kV	SIPC-BREC		Shawnee - Marshall 500 kV	TVA	2.1	5.8	3.0
		4900	0	4900	2300			West Lexington - Brown 345 kV	LGEE		Base Case		4.3		
		5000	0	5000	2300	7300		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ Minimum Degrees Fixed Angle (Flow into Michig	an is 26	10 MW)	
	2000S	2400						Lutesville - Essex 345 kV	AMRN-AECI	870	Shawnee - Marshall 500 kV	TVA	6.4	17.5	9.1
	Top 3	2450	-350	2100	2800	5250	2	Ghent - West Lexington 345 kV	LGEE	956	Baker - Broadford 765 kV	AEP	3.9	4.4	4.6
	Limits	3200	-350	2850	2800	6000	3	Kanawha - Matt Funk 345 kV (Voltage)	AEP	1010	Baker - Broadford 765 kV	AEP	2.3	12.8	4.6

Page: 33 of 39

TRANSFER	BASE CASE	NITC FCITC (MW) (A)		NTTC FCTTC (MW) (A+B)		TOTAL Import (MW) (A+C)	N O T E	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
MAAC	E100	3300	0	3300	0	3300	3	Butler - Krendale - Maple 138 kV	AP-FE	227	Cabot - Wylie Ridge 500 kV	AP	2.0	7.8	3.3
to		4600	0	4600	0	4600		Breed - Casey 345 kV	AEP-AMRN	1442	Rockport - Jefferson 765 kV	AEP	14.3	34.0	10.3
MAIN		4650	0	4650	0	4650		Eugene - Bunsonville 345 kV	AEP-IP	856	Breed - Casey 345 kV	AEP-AMRN	4.7	39.0	10.3
		5000	0	5000	0	5000		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michiga	n			
	2000S							(Not Tested During 2000 Summer Study)							
	Top 3														
	Limits														
MAAC	E101a	-3850	1750	-2100	2450	-1400	2	Beck - Hannon Jct (Q24HM) 220 kV	HONI	616 Beck - Neale Jct (Q25BM) 220 kV &		HONI	1.7		2.5
to											Beck - Hannon Jct (Q29HM) 220 kV				
MAIN		-950	1750	800	2450	1500	3	Lambton - Saint Clair (L4D) 345 kV	HONI-DECO	845	Base Case		2.7		2.7
		-650	1750	1100	2450	1800	2,3	Lambton - Saint Clair (L4D) 345 kV	HONI-DECO	1170	Lambton - Saint Clair (L51D) 345 kV &	HONI-DECO	2.7		4.2
											Saint Clair Unit 6 &	DECO			
											Lambton Generation Rejection	HONI			
		0	1750	1750	2450	2450	2,3	Lambton - Saint Clair (L51D) 345 kV	HONI-DECO	1170	Lambton - Saint Clair (L4D) 345 kV &	HONI-DECO	2.5		4.0
											Saint Clair Unit 6 &	DECO			
											Lambton Generation Rejection	HONI			
		1250	1750	3000	2450			Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.5	3.9	2.7
		1350	1750	3100	2450	3800	3	Butler - Krendale - Maple 138 kV	AP-FE	227	Cabot - Wylie Ridge 500 kV	AP	1.7	7.8	3.0
		2300	1750	4050	2450	4750		Eugene - Bunsonville 345 kV	AEP-IP	-	Breed - Casey 345 kV	AEP-AMRN	4.7	39.0	10.3
		3050	1750	4800	2450	5500		Breed - Casey 345 kV	AEP-AMRN		Rockport - Jefferson 765 kV	AEP	14.3	34.0	10.4
		3500	1750	5250	2450	5950	3	Dumont 765-345 kV	AEP		Dumont - Wilton Center 765 kV	AEP-CE	3.8	41.9	15.8
		5000	1750	6750	2450	7450		Test Level - No Other Limits Found		-	tario PARs @ Minimum Degrees Fixed Ang			2430 M\	N)
									Note (b): Gen	erating u	nits outaged to model transfer bias: Monro	e 1 and Palisad	es 1		
	00005														
	2000S	600	1750	2350	3050	3650		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.7
	Top 3	1400	1750	3150	3050	4450		Butler - Krendale - Maple 138 kV	AP-FE	227	Cabot - Wylie Ridge 500 kV	AP	2.0	8.0	3.5
	Limits	1750	1750	3500	3050	4800	2	Eugene - Bunsonville 345 kV	AEP-IP	856	Breed - Casey 345 kV	AEP-AMRN	4.8	39.5	10.5

Page: 34 of 39

TRANSFER	BASE CASE	NITC FCITC (MW)	_	NTTC FCTTC (MW)	_	TOTAL Import (MW)	N O T	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
		(A)	(B)	(A+B)	(C)	(A+C)	Е								
MAAC	E101b	750	1750	2500	2450	3200	2,3	Butler - Krendale - Maple 138 kV	AP-FE	227	Cabot - Wylie Ridge 500 kV	AP	1.7	7.8	3.0
to		1150	1750	2900	2450	3600		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.5	3.9	2.6
MAIN		2300	1750	4050	2450	4750		Eugene - Bunsonville 345 kV	AEP-IP		Breed - Casey 345 kV	AEP-AMRN	4.7	39.0	10.3
		2750	1750	4500	2450	5200	2	Beck - Hannon Jct (Q24HM) 220 kV	HONI	616	Beck - Neale Jct (Q25BM) 220 kV & Beck - Hannon Jct (Q29HM) 220 kV	HONI	1.7		2.5
		3050	1750	4800	2450	5500	2	Breed - Casey 345 kV	AEP-AMRN	1442	Rockport - Jefferson 765 kV	AEP	14.2	34.0	10.4
		3200	1750	4950	2450	5650	3	Dumont 765-345 kV	AEP	2070	Dumont - Wilton Center 765 kV	AEP-CE	3.7	41.9	15.8
		4750	1750	6500	2450	7200		Yukon - Shepler Hill Junction 138 kV	AP	243	Keystone - Cabot 500 kV	PENLEC-AP	2.0	4.0	2.7
		5000	1750	6750	2450	7450		Test Level - No Other Limits Found	Note (a): Michigan-Ontario PARs @ Zero Degrees Fixe			~		O MW)	
									Note (a): Michigal Politario FAIS & Zero Degrees Fixed Note (b): Generating units outaged to model transfer bia		This outaged to model transfer bias. Monto	e i aliu Falisau	ES 1		
	2000S	600	1750	2350	3050	3650		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.7
	Top 3	1300	1750	3050	3050	4350	3	Butler - Krendale - Maple 138 kV	AP-FE	227	Cabot - Wylie Ridge 500 kV	AP	1.8	8.0	3.2
	Limits	1750	1750	3500	3050	4800	2	Eugene - Bunsonville 345 kV	AEP-IP	856	Breed - Casey 345 kV	AEP-AMRN	4.8	39.5	10.5
N4A A O	E404 -						_								
MAAC	E101c	-50	1750	1700	2450	2400	3	Butler - Krendale - Maple 138 kV	AP-FE	227	Cabot - Wylie Ridge 500 kV	AP	1.7	7.8	3.0
to MAIN		1100	1750	2850	2450	3550		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.5	3.9	2.6
IVIAIIN		2350	1750	4100	2450	4800	_	Eugene - Bunsonville 345 kV	AEP-IP		Breed - Casey 345 kV	AEP-AMRN	4.7	39.0	10.3
		2800	1750	4550	2450 2450	5250 5550		Dumont 765-345 kV	AEP-AMRN	2070	Dumont - Wilton Center 765 kV	AEP-CE AEP	3.8	41.9	15.8
		3100 4150	1750 1750	4850 5900	2450	6600	2	Breed - Casey 345 kV Yukon - Shepler Hill Junction 138 kV	AP-AMRN	1442 243	Rockport - Jefferson 765 kV	PENLEC-AP	14.3 2.0	34.0 4.0	10.4 2.7
		4900	1750	6650	2450	7350		Kammer 500-765 kV	AP-AEP	1	Keystone - Cabot 500 kV Belmont 500-765 kV	AP-AEP	16.2	37.8	21.9
		5000	1750	6750	2450	7450		Test Level - No Other Limits Found			tario PARs @ Maximum Degrees Fixed Ang				
		0000	1700	0700	2400	7400		rest Level 140 Guiei Emilio i Guila		_	nits outaged to model transfer bias: Monro	•	_	1220 1	, ,
									(4)						
	2000S	-1850	1750	-100	3050	1200	2,3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	3.7	52.0	2.8
	Top 3	-50	1750	1700	3050	3000		Ashtabula 345-138 kV	FE	304	Ashtabula - Perry 345 kV	FE	0.8	39.2	2.7
	Limits	500	1750	2250	3050	3550		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.7

TABLE 2 Date: 04/16/01

TRANSFER	BASE	NITC FCITC			BASE Import		N O	LIMITING FACILITY	SYSTEM	RATING	OUTAGED FACILITY	SYSTEM	PTDF	LODF	OTDF
	CASE	(MW)	(MW)	(MW)	(MW)	(MW)	Т			(MVA)			(%)	(%)	(%)
		(A)	(B)	(A+B)	(C)	(A+C)	Е								
MAAC	E103a		0	-2750			, -	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	4.4	51.9	4.3
to		2150	0	2150	950	3100	3	Butler - Krendale - Maple 138 kV	AP-FE	227	Cabot - Wylie Ridge 500 kV	AP	1.9	7.8	3.3
MAIN		4550	0	4550	950	5500		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.7
		4600	0	4600	950	5550		Greenfield - Lakeview 138 kV	AEP-IP	248	Beaver - Davis Besse 345 kV	FE	1.6	12.7	2.6
		5000	0	5000	950	5950		Test Level - No Other Limits Found	, ,	_	tario PARs @ 600 MW Fixed Flow into Mich	~			
									Note (b): Gen	erating u	nits outaged to model transfer bias: Monroe	e 1 & 3 / Palisad	des 1 / C	ook 1	
									AEP 2070 Cook 765-345 kV						
	2000S	-4750	0	-4750	_		2,3	Dumont 765-345 kV	AEP 2070 Cook 765-345 kV			AEP	4.4	52.0	4.1
	Top 3	2050	0	2050	2550	4600		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.7
	Limits	2800	0	2800	2550	5350	3	Butler - Krendale - Maple 138 kV	AP-FE	227	Cabot - Wylie Ridge 500 kV	AP	2.0	8.0	3.5
MAAC	E103b		0	1750		2800		Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	4.5	52.0	4.3
to		2000	0	2000	1050	3050	3	Butler - Krendale - Maple 138 kV	AP-FE	227	Cabot - Wylie Ridge 500 kV	AP	2.0	7.8	3.3
MAIN		3350	0	3350	1050	4400		Greenfield - Lakeview 138 kV	FE	248	Beaver - Davis Bessie 345 kV	FE	1.6	12.6	2.6
		3700	0	3700	1050	4750	2	Beaver - Davis Bessie 345 kV	FE	984	Kammer - Orange 765 kV	AEP	8.5	6.9	9.8
		4550	0	4550	1050	5600		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.7
		4650	0	4650	1050	5700		Beaver - Davis Bessie 345 kV	FE		Base Case		8.5		
		5000	0	5000	1050	6050		Test Level - No Other Limits Found	Note (a): Mich	nigan-On	tario PARs @ 600 MW Fixed Flow into Mich	igan			
									Note (b): Gen	erating u	nits outaged to model transfer bias: Monro	e 1 & 3 / Palisad	des 1 / D	avis-Bes	se 1
	2000S	-4750	0	-4750			2,3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	4.4	52.0	4.1
	Top 3	2050	0	2050	2550	4600		Sidney 345-138 kV	IP 560 Dumor		Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.7
	Limits	2800	0	2800	2550	5350	3	Butler - Krendale - Maple 138 kV	AP-FE 22		Cabot - Wylie Ridge 500 kV	AP	2.0	8.0	3.5

Page: 35 of 39

ECAR 2001 Summer Assessment of Transmission System Performance Detailed Study Results from Transfer Capability Analysis (1)

Page: 36 of 39

TRANSFER	BASE CASE	NITC FCITC (MW) (A)			BASE Import (MW) (C)		т	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
VACAR to	E100	4700	0	4700	0	4700		East Danville - Danville 138 kV	AEP	384	· · · · · · · · · · · · · · · · · · ·	DUKE-AEP AEP	4.4	15.1	7.5
MAIN		5000	0	5000	0	5000		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michiga	n I			
	2000S Top 3 Limits							(Not Tested During 2000 Summer Study)							
VACAR	E101a	1250	750	2000	2450	3700		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.6
to MAIN		2650	750	3400 4250	2450 2450	5100		Eugene - Bunsonville 345 kV	AEP-IP AEP-AMRN	856 1442	Breed - Casey 345 kV Rockport - Jefferson 765 kV	AEP-AMRN AEP	4.1	39.0	8.9 8.9
IVIATIN		3500 3700	750 750	4450	2450	5950 6150		Breed - Casey 345 kV Dumont 765-345 kV	AEP-AWKN	2070	Dumont - Wilton Center 765 kV	AEP	12.5 3.8	34.0 42.0	14.9
		3750	750	4500	2450	6200		East Danville - Danville 138 kV	AEP	384	Antioch - Jacksons Ferry 500 kV & Jacksons Ferry 500-765 kV	DUKE-AEP AEP	4.4	15.1	7.4
		4300	750	5050	2450	6750		East Danville - Danville 138 kV	AEP	310	Base Case		4.4		
		5000	750	5750	2450	7450		Test Level - No Other Limits Found	, ,	_	tario PARs @ Minimum Degrees Fixed Ang nits outaged to model transfer bias: Monro	•	_	2430 M\	N)
	2000S	600	750					Sidney 345-138 kV	IP AEP-IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.6
	Top 3 Limits	2000	750 750	2750 2950	3050 3050	5050 5250	2	Eugene - Bunsonville 345 kV East Danville - Danville 138 kV	AEP	856 384	Breed - Casey 345 kV Axton - Jacksons Ferry 765 kV & Axton 138-765 kV	AEP-AMRN AEP AEP	4.2	39.5 56.5	9.0 2.9
															1

TRANSFER	BASE	NITC FCITC		NTTC FCTTC		TOTAL Import		LIMITING FACILITY	SYSTEM	RATING	OUTAGED FACILITY	SYSTEM	PTDF	LODF	OTDF
	CASE	(MW) (A)	(MW) (B)	(MW) (A+B)	(MW) (C)	(MW) (A+C)	T E			(MVA)			(%)	(%)	(%)
VACAR	E101b	1200	750	1950	2450	3650		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.6
to		2650	750	3400	2450	5100		Eugene - Bunsonville 345 kV	AEP-IP	856	Breed - Casey 345 kV	AEP-AMRN	4.2	39.0	8.9
MAIN		3400	750	4150	2450	5850	3	Dumont 765-345 kV	AEP	2070	Dumont - Wilton Center 765 kV	AEP	3.7	42.0	14.9
		3550	750	4300	2450	6000	2	Breed - Casey 345 kV	AEP-AMRN	1442	Rockport - Jefferson 765 kV	AEP	12.5	34.0	8.9
		3650	750	4400	2450	6100	2	East Danville - Danville 138 kV	AEP	384	Antioch - Jacksons Ferry 500 kV &	DUKE-AEP	4.4	15.1	7.4
											Jacksons Ferry 500-765 kV	AEP			
		4200	750	4950	2450	6650		East Danville - Danville 138 kV	AEP	310	Base Case		4.4		
		5000	750	5750	2450	7450		Test Level - No Other Limits Found	Note (a): Mich	nigan-On	tario PARs @ Zero Degrees Fixed Angle (F	low into Michiga	an is 189	0 MW)	
									Note (b): Gen	erating u	inits outaged to model transfer bias: Monro	e 1 and Palisad	es 1		
	2000S	600	750	1350	3050	3650		Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.6
	Top 3	1650	750	2400	3050	4700	2,3	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	3.7	52.0	3.4
	Limits	2000	750	2750	3050	5050		Eugene - Bunsonville 345 kV	AEP-IP	856	Breed - Casey 345 kV	AEP-AMRN	4.1	39.5	9.0
VACAR	E101c	1100	750				_	Sidney 345-138 kV	IP	560	Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.6
to		2700	750	3450		•		Eugene - Bunsonville 345 kV	AEP-IP		Breed - Casey 345 kV	AEP-AMRN	4.1	39.0	8.9
MAIN		2950	750	3700	2450	5400	3	Dumont 765-345 kV	AEP		Dumont - Wilton Center 765 kV	AEP-CE	3.7	41.9	14.9
		3550	750	4300	2450	6000	2	East Danville - Danville 138 kV	AEP	384	Antioch - Jacksons Ferry 500 kV &	DUKE-AEP	4.4	15.1	7.4
											Jacksons Ferry 500-765 kV	AEP			
		3600	750	4350		_	_	Breed - Casey 345 kV	AEP-AMRN	1442	Rockport - Jefferson 765 kV	AEP	12.5	34.0	8.9
		4050	750	4800	2450	6500		East Danville - Danville 138 kV	AEP		Base Case		4.4		
		5000	750	5750	2450	7450		Test Level - No Other Limits Found	Note (a): Mich	nigan-On	tario PARs @ Maximum Degrees Fixed Ang	gle (Flow into M	ichigan is	1220 M	IW)
									Note (b): Gen	erating u	inits outaged to model transfer bias: Monro	e 1 and Palisad	es 1		
	2000S	-1550	750		_	_	_	Dumont 765-345 kV	AEP	2070	Cook 765-345 kV	AEP	3.7	52.0	3.4
	Top 3	500	750	1250	+			Sidney 345-138 kV	IP		Dumont - Wilton Center 765 kV	AEP-CE	1.6	3.9	2.6
	Limits	1950	750	2700	3050	5000	2	East Danville - Danville 138 kV	AEP	384	Axton - Jacksons Ferry 765 kV &	AEP	5.8	56.5	2.9
							 				Axton 138-765 kV	AEP			ļ

Page: 38 of 39

TABLE 2 **Detailed Study Results from Transfer Capability Analysis (1)**

TRANSFER	BASE CASE	NITC FCITC (MW) (A)	_		Import (MW)	_	N O T E	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
TVA	E100	3550	0	3550	0	3550		Summer Shade-Summer Shade Tap 161	TVA-EKPC	240	Summer Shade - Summer Shade 161 kV	TVA-EKPC	1.7	99.7	3.1
to		4850	0	4850	0	4850		Bull Run - Volunteer 500 kV	TVA	1732	Watts Barr - Volunteer 500 kV	TVA	9.2	75.6	12.3
MAIN		5000	0	5000	0	5000		Test Level - No Other Limits Found	Note: Michiga	n-Ontario	PARs @ 600 MW Fixed Flow into Michigan	n			
	2000S							(Not Tested During 2000 Summer Study)							
	Top 3														
	Limits														
TVA	E103a	450	1000	1450	950	1400		Summer Shade-Summer Shade Tap 161	TVA-EKPC	240	Summer Shade - Summer Shade 161 kV	TVA-EKPC	1.7	99.7	3.1
to		2400	1000	3400	950	3350		Bull Run - Volunteer 500 kV	TVA	1732	Watts Barr - Volunteer 500 kV	TVA	9.2	75.6	12.3
MAIN		2450	1000	3450	950	3400	2	Paradise - New Hardinsburg 161 kV	TVA-BREC	265	Volunteer - Phipps Bend 500 kV	TVA	3.0	2.4	3.3
		3300	1000	4300	950	4250		Summer Shade - Summer Shade 161 kV	TVA-EKPC	327	Summer Shade-Summer Shade Tap 161	TVA-EKPC	1.7	99.7	3.1
		3600	1000	4600	950	4550		Paradise - New Hardinsburg 161 kV	TVA-BREC	265	Base Case		3.0		
		4350	1000	5350	950	5300	2	New Hardinsburg 161-138 kV	BREC	224	Coleman - Newtonville - Taswell 161 kV &	BR-SIGE-HE	2.2		2.8
											Newtonville 161-138 kV	SIGE			
		5000	1000	6000	950	5950		Test Level - No Other Limits Found	Note (a): Mich	nigan-Ont	tario PARs @ 600 MW Fixed Flow into Mich	igan			
									Note (b): Gen	erating u	nits outaged to model transfer bias: Monroe	e 1 & 3 / Palisad	des 1 / C	ook 1	
	2000S	150	2350	2500	2550	2700	2	Summer Shade-Summer Shade Tap 161	TVA-EKPC	240	Summer Shade - Summer Shade 161 kV	TVA-EKPC	1.5	99.7	2.7
	Top 3	550	2350	2900	2550	3100	2	Norris - La Follette 161 kV	TVA	234	Phipps Bend - Pocket 500 kV	TVA-LGEE	1.7	19.0	2.6
	Limits	1900	2350	4250	2550	4450	2	Paradise - New Hardinsburg 161 kV	TVA-BREC	265	Volunteer - Phipps Bend 500 kV	TVA	2.6	2.4	3.0

TABLE 2

Date: 04/16/01 ECAR 2001 Summer Assessment of Transmission System Performance Page: 39 of 39

ECAR 2001 Summer Assessment of Transmission System Performance Detailed Study Results from Transfer Capability Analysis (1)

TRANSFER	BASE CASE			FCTTC (MW)	BASE Import (MW) (C)	Import (MW)	О Т	LIMITING FACILITY	SYSTEM	RATING (MVA)	OUTAGED FACILITY	SYSTEM	PTDF (%)	LODF (%)	OTDF (%)
TVA	E103b	450	1100	1550	1050	1500		Summer Shade-Summer Shade Tap 161	TVA-EKPC	240	Summer Shade - Summer Shade 161 kV	TVA-EKPC	2.0	99.7	3.1
to		2250	1100	3350	1050	3300		Bull Run - Volunteer 500 kV	TVA	1732	Watts Barr - Volunteer 500 kV	TVA	9.2	75.6	12.3
MAIN		2450	1100	3550	1050	3500	2	Paradise - New Hardinsburg 161 kV	TVA-BREC	265	Volunteer - Phipps Bend 500 kV	TVA	3.0	2.4	3.3
		3300	1100	4400	1050	4350		Summer Shade - Summer Shade 161 kV	TVA-EKPC	240	Summer Shade-Summer Shade Tap 161	TVA-EKPC	2.0	99.7	3.1
		3600	1100	4700	1050	4650	2	Paradise - New Hardinsburg 161 kV	TVA-BREC	265	Base Case		3.0		
		4350	1100	5450	1050	5400	2	New Hardinsburg 161-138 kV	BREC	224	Coleman - Newtonville - Taswell 161 kV &	BR-SIGE-HE	2.2		2.8
											Newtonville 161-138 kV	SIGE			İ
		5000	1100	6100	1050	6050		Test Level - No Other Limits Found	Note (a): Mich	nigan-On	tario PARs @ 600 MW Fixed Flow into Mich	igan			
									Note (b): Gen	erating u	nits outaged to model transfer bias: Monroe	e 1 & 3 / Palisad	des 1 / D	avis-Bes	se 1
															1
	2000S	150	2350	2500	2550	2700	2	Summer Shade-Summer Shade Tap 161	TVA-EKPC	240	Summer Shade - Summer Shade 161 kV	TVA-EKPC	1.5	99.7	2.7
	Top 3	550	2350	2900	2550	3100	2	Norris - La Follette 161 kV	TVA	234	Phipps Bend - Pocket 500 kV	TVA-LGEE	1.7	19.0	2.6
	Limits	1900	2350	4250	2550	4450	2	Paradise - New Hardinsburg 161 kV	TVA-BREC	265	Volunteer - Phipps Bend 500 kV	TVA	2.6	2.4	3.0
			·												

Case E100 = ECAR Primary Base Case E100

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Case E104 = ECAR Primary Base Case E100 + NORTH to SOUTH 4000 MW Transfer Bias

- (1) The transfer capabilities stated in this report are NOT the Available Transfer Capabilities (ATC) noted in FERC Orders 888 and 889.
- (2) This facility may overload at higher transfer levels for other single contingencies which are not shown in this table for brevity.
- (3) This transfer capability does not reflect the implementation of an established operating procedure to relieve this overload (refer to Appendix H).
- (4) This transfer capability reflects the implementation of an established operating procedure to relieve a more limiting overload (refer to Appendix H).

BASE CASE CONTINGENCY OVERLOADS

Introduction and Detailed Study Results (Table 3)

The following table lists facilities found to exceed their thermal emergency ratings under contingency conditions, without any additional incremental transfers. These contingencies were simulated on the ECAR primary base case (E100) and on each of the seven study base cases (E101a, E101b, E101c, E102, E103a, E103b, and E104) developed for this assessment. No additional transfers were simulated other than those already modeled in these eight base cases. These base case contingency overloaded facilities, which may be representative of local area problems, may also require close monitoring during the upcoming peak load season.

TABLE 3

Date: 04/18/01

ECAR 2001 Summer Assessment of Transmission System Performance Base Case Contingency Overloads

(Limiting Facilities Exceeding 100% of Emergency Ratings for Critical Outages Under Primary and Study Base Case Conditions)

Limiting Facility	System	Rating (MVA)	Critical Outage	System	LODF (%)	Case E100 (2)	Case E101a (3)	Case E101b (4)	Case E101c (5)	Case E102 (2)	Case E103a (2)	Case E103b (2)	Case E104 (3)
Cabot - Osolo 138 kV	AEP	201	Cook - East Elkhart 345 kV	AEP	19.4					105.1%			
			Cook - East Elkhart 345 kV Robison Park - Argenta 345 kV	AEP AEP-CONS						112.7%			103.4%
Cook 765-345 kV (1)	AEP	2070	Dumont 765-345 kV	AEP	42.7						101.7%		
DeSoto - Jay 138 kV	AEP	185	Base Case			103.0%		100.8%	102.0%	105.5%	110.1%	111.0%	
Dumont 765-345 kV (1)	AEP	2070	Cook 765-345 kV	AEP	51.9						105.6%		
Glen Lyn - Claytor 138 kV	AEP	153	Broadford - Jacksons Ferry 765 kV & Broadford 138 kV Series Reactor Inserted	AEP AEP						104.2%			
North Newark - Sharp Road 138 kV	AEP	133	Base Case								102.8%	108.0%	
Torrey - Cloverdale 138 kV	AEP-FE	210	Canton Central - Cloverdale 138 kV	AEP-FE	48.6						105.6%	111.5%	
			South Canton - Star 345 kV	AEP-FE	1.4						104.9%	111.5%	
West Canton - Dale 138 kV	AEP-FE	185	Base Case								100.4%	103.7%	
Twin Branch - Kline - Northeast 138 kV	AEP-NIPS	156	Base Case										105.5%
		201	Schahfer - Burr Oak 345 kV	NIPS	12.8					107.5%			109.3%

Page: 1 of 7

TABLE 3

(Limiting Facilities Exceeding 100% of Emergency Ratings for Critical Outages Under Primary and Study Base Case Conditions)

Date: 04/18/01

Limiting Facility	System	Rating (MVA)	Critical Outage	System	LODF (%)	Case E100 (2)	Case E101a (3)	Case E101b (4)	Case E101c (5)	Case E102 (2)	Case E103a (2)	Case E103b (2)	Case E104 (3)
Butler - Shanor M - Krendale 138kV (1)	AP	176	Base Case				113.7%	119.8%	127.4%		107.4%	109.5%	
		227	Mansfield - Hoytdale 345 kV	FE	9.4	101.0%	116.8%	121.4%	127.4%		112.5%	114.3%	
			Hoytdale 345-138 kV	FE	23.7		112.8%	117.1%	122.5%		108.5%	110.1%	
Millville - Lovettsville 138 kV	AP	227	Bedington - Doubs 500 kV	AP	8.2					101.0%			
Social Hall - Vasco - Edgewater 138 kV	AP	106	Base Case					103.3%	122.1%				
		136	Keystone - Yukon 500 kV	PJM-AP	5.9				118.1%				
			Erie West - Ashtabula - Perry 345 kV & Ashtabula 345-138 kV	PENLEC-FE FE					112.1%				
Greene - Roxbury 138 kV (1)	AP-PENLEC	142	Bedington - Black Oak 500 kV	AP	3.5				102.9%				
Hatfield - Black Oak 500 kV (Voltage)	AP	2265	Pruntytown - Mount Storm 500 kV	AP-VP	26.8					102.7%			
Social Hall - Blairsville 138 kV (1)	AP-PENLEC	119	Base Case			107.4%	111.2%	129.6%	153.3%		108.9%	107.7%	105.8%
		171	Cabot - Keystone 500 kV	AP-PJM	4.9			104.3%	123.4%				
			Yukon - Keystone 500 kV	AP-PJM	5.1			102.1%	122.3%				
State Line - Wolf Lake 138 kV (1)	CE-NIPS	160	Burnham - Sheffield 345 kV	CE-NIPS	23.2					100.7%			

Page: 2 of 7

TABLE 3

(Limiting Facilities Exceeding 100% of Emergency Ratings for Critical Outages Under Primary and Study Base Case Conditions)

Date: 04/18/01

Northeast 230-120 kV

Spurlock - Kenton #1 or #2 138 kV

DECO

EKPC-LGEE

405

280

Base Case

Spurlock - Kenton #2 or #1 138 kV

Case Case Case Case Case Case Case Case **Limiting Facility** System Rating **Critical Outage** System LODF E100 E101a E101b E101c E102 E103a E103b E104 (MVA) (%) (2) (3) (4) (5) (2) (2) (2) (3) Bloomington 230-138 kV CIN Gibson - Bedford 345 kV & CIN 100.7% ---------CIN Bedford 345-138 kV Gibson - Princeton 138 kV CIN 246 Gibson - Petersburg 345 kV & CIN-IPL 102.9% Petersburg E 345-138 kV IPL CIN AEP Kokomo #4 or #5 or #6 230-138 kV (1) 75 Jefferson - Greentown 765 kV 1.7 108.5% 104.0% ---------Wabash R - Crawfordsville 138 kV (1) CIN Dequine - Westwood 345 kV & AEP-CIN 146 9.5 105.6% 109.8% 110.3% 111.0% 100.7% 113.8% 112.5% -----CIN Westwood 345-138 kV Cayuga - Attica - Lafayette 230 kV CIN 7.4 105.2% 111.2% 112.0% 112.8% 115.6% 113.7% -----Cayuga Sub - Eugene 345 kV CIN-AEP 2.7 106.3% 107.0% 107.8% 109.3% 107.5% --------Greenwood - Saratoga 345 kV DECO Base Case 101.1% 103.2% 103.5% 107.5% 771 104.8% ----DECO Lincoln-Northeast-Northwest 120 kV (1) 222 Base Case 102.0% 104.5% 250 Belle River - Pontiac 345 kV DECO 106.0% 108.9% -------------Quaker 345-120 kV DECO 102.8% 105.0% --------

EKPC-LGEE

82.3

100.4%

Page: 3 of 7

102.2%

103.6%

104.1%

TABLE 3

Date: 04/18/01

(Limiting Facilities Exceeding 100% of Emergency Ratings for Critical Outages Under Primary and Study Base Case Conditions)

Limiting Facility	System	Rating (MVA)	Critical Outage	System	LODF (%)	Case E100 (2)	Case E101a (3)	Case E101b (4)	Case E101c (5)	Case E102 (2)	Case E103a (2)	Case E103b (2)	Case E104 (3)
Bay Shore - Jeep - Dixie 138 kV	FE	218	Allen 345-138 kV	FE	21.5	117.9%	119.6%	119.6%	119.5%	115.5%	117.4%	114.5%	119.1%
			Lulu - Allen / Majestic / Monroe 345 kV	DECO-FE		101.4%	103.2%	102.2%	101.4%				105.4%
			Lemoyne - Midway 345 kV	FE	6.8						110.0%	102.9%	
Cloverdale - Brookside 138 kV	FE	188	Muskingum - Ohio C - Galion 345 kV & Ohio Central 345-138 kV	AEP-FE AEP								100.6%	
Pleasant V - Griffin - Faber (Q3) 138 kV	FE	141	Fox T-2 (Q11) 345-138 kV & Fox T-3 (Q13) 345-138 kV	FE FE		110.9%	113.7%	118.8%	125.2%	102.0%	123.6%	128.1%	100.2%
			Fox T-3 (Q13) 345-138 kV	FE	29.5			103.1%	108.9%		107.3%	111.4%	
Richland - Ridgeville 138 kV	FE	124	East Lima - Fostoria 345 kV	AEP	3.5							107.5%	
			Allen 345-138 kV	FE	5.7							102.0%	
Star # 1 345-138 kV	FE	300	Star # 2 345-138 kV & Star # 3 345-138 kV	FE FE		110.7%	111.3%	110.8%	110.1%	110.8%	108.4%	106.7%	112.9%
Tangy 138-69 kV	FE	64	Base Case									100.4%	
		64	Galion # 1 345-138 kV & Galion # 2 345-138 kV	FE FE		114.6%	109.8%	109.4%	108.8%	119.9%	116.7%	120.1%	112.3%
			Muskingum - Ohio C - Galion 345 kV & Ohio Central 345-138 kV	AEP-FE AEP		101.7%		100.9%	104.9%	101.3%	118.8%	126.4%	

Page: 4 of 7

TABLE 3

(Limiting Facilities Exceeding 100% of Emergency Ratings for Critical Outages Under Primary and Study Base Case Conditions)

Date: 04/18/01

Page: 5 of 7

Limiting Facility	System	Rating (MVA)	Critical Outage	System	LODF (%)	Case E100 (2)	Case E101a (3)	Case E101b (4)	Case E101c (5)	Case E102 (2)	Case E103a (2)	Case E103b (2)	Case E104 (3)
Georgetown 138-69 kV	HE	100	Gibson - Ramsey - Speed 345 kV & Ramsey 345-69 kV & Speed 345-138 kV	CIN-HE-CIN HE & CIN		100.3%				102.0%			103.5%
Ramsey 345-69 kV	HE	150	Speed 345-138 kV	CIN	11.5	104.3%	102.4%	102.2%	102.0%	106.2%	102.1%	102.4%	105.6%
Taswell 161-69 kV	HE	67	Gibson - Ramsey - Speed 345 kV & Ramsey 345-69 kV & Speed 345-138 kV	CIN-HE-CIN HE & CIN							100.7%	101.0%	
Beck - Hannon Jct (Q24HM) 220 kV	HONI	465	Base Case				100.9%						
		616	Beck - Neale Jct (Q25BM) 220 kV & Beck - Hannon Jct (Q29HM) 220 kV	HONI HONI			115.6%						
Lambton - Saint Clair (L4D) 345 kV (1)	HONI-DECO	845	Base Case				106.3%						
		1170	Lambton - Saint Clair (L51D) 345 kV	HONI-DECO	60.0		104.1%						109.8%
Lambton - Saint Clair (L51D) 345 kV (1)	HONI-DECO	845	Base Case				102.5%						
		1368	Lambton - Saint Clair (L4D) 345 kV	HONI-DECO	58.0		100.0%						102.7%
Scott - Bunce Creek (B3N) 220 kV (1)	HONI-DECO	461	Base Case				108.5%						112.4%
		482	Lambton - Saint Clair (L4D) 345 kV	HONI-DECO	16.2		132.4%	111.5%					138.0%
			Lambton - Saint Clair (L51D) 345 kV	HONI-DECO	15.1		129.9%	106.8%					135.5%

TABLE 3

(Limiting Facilities Exceeding 100% of Emergency Ratings for Critical Outages Under Primary and Study Base Case Conditions)

Date: 04/18/01

Page: 6 of 7

Limiting Facility	System	Rating (MVA)	Critical Outage	System	LODF (%)	Case E100 (2)	Case E101a (3)	Case E101b (4)	Case E101c (5)	Case E102 (2)	Case E103a (2)	Case E103b (2)	Case E104 (3)
Sidney 345-138 kV	IP	560	Bunsonville 345-138 kV	IP	48.4		105.7%	106.0%	106.4%				
			Rockport - Jefferson 765 kV	AEP	4.2		101.0%	101.1%	101.3%				
Petersburg East 345-138 kV	IPL	180	Petersburg - Lost River 345 kV & Petersburg West 345-138 kV	IPL-CIN IPL						101.1%			116.0%
			Gibson 345-138 kV	CIN	22.6								102.6%
Petersburg - Oakland City 138 kV	IPL-CIN	143	Gibson 345-138 kV	CIN	65.5								102.6%
Fawkes - Lake Reba Tap 138 kV	LGEE	165	JK Smith - Powell County 138 kV	EKPC	27.9								107.8%
			Brown - Alcalde - Pineville 345 kV & Alcalde 345-138 kV	LGEE LGEE									102.7%
Ghent - Owen Co Scott Co. 138 kV	LGEE	227	Ghent - West Lexington - Brown 345 kV & West Lexington 345-138 kV	LGEE LGEE									101.2%
Goddard - Rodburn 138 kV	LGEE	179	Spurlock - Avon 345 kV & Avon 345-138 kV	EKPC EKPC	16.7								100.3%
Kenton-Flemingsburg-Goddard 138 kV	LGEE	158	Spurlock - Maysville - Plumville 138 kV	EKPC	49.6	111.4%	108.5%	108.0%	107.4%	117.1%	104.2%	104.4%	120.7%
Blue Lick - Bullitt County 161 kV	LGEE-EKPC	239	Baker - Broadford 765 kV	AEP	1.5								108.0%
			Ghent - West Lexington - Brown 345 kV & West Lexington 345-138 kV	LGEE LGEE									101.6%

TABLE 3

ECAR 2001 Summer Assessment of Transmission System Performance Base Case Contingency Overloads

(Limiting Facilities Exceeding 100% of Emergency Ratings for Critical Outages Under Primary and Study Base Case Conditions)

Limiting Facility	System	Rating (MVA)	Critical Outage	System	LODF (%)	Case E100 (2)	Case E101a (3)	Case E101b (4)	Case E101c (5)	Case E102 (2)	Case E103a (2)	Case E103b (2)	Case E104 (3)
Reynolds 345-138 kV	NIPS	224	Dequine - Olive 345 kV & Dequine - Westwood 345 kV & Westwood 345-138 kV	AEP AEP-CIN CIN		100.9%	103.1%	102.8%	102.1%			100.2%	101.0%
Culley-Grandview-Newtonville 138 kV	SIGE	156	Base Case										106.2%
		179	A.B.Brown - Henderson County 138 kV	SIGE-BREC	42.2					105.7%			118.6%
			Wilson - Coleman 161 kV	BREC	13.2								103.0%
Cumberland - Davidson 500 kV	TVA	2597	Cumberland - Johnsonville 500 kV	TVA	75.7								102.2%

Case E100 = ECAR Primary Base Case E100

Date: 04/18/01

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Case E104 = ECAR Primary Base Case E100 + NORTH to SOUTH 4000 MW Transfer Bias

- (1) This overload does not reflect the implementation of an established operating procedure to relieve the overload (refer to Appendix H).
- (2) Michigan-Ontario PARs @ 600 MW Fixed Flow into Michigan.
- (3) Michigan-Ontario PARs @ Minimum Degrees Fixed Angle.
- (4) Michigan-Ontario PARs @ Zero Degrees Fixed Angle.
- (5) Michigan-Ontario PARs @ Maximum Degrees Fixed Angle.

Page: 7 of 7

VOLTAGE ANALYSIS

Introduction

In addition to the linear analysis documented in this report, AC analysis was also conducted in an effort to examine the voltage performance of those portions of the ECAR transmission network where potential voltage limitations have been identified through past operating experience or other ECAR assessments. This section of the report documents the results from these AC assessments.

Summary of Study Results (Table 4)

The voltage performance of the ECAR transmission network was analyzed under eight scenarios, covering seven distinct portions of the ECAR transmission network. The eight scenarios are outlined in Table 4, which also documents the resulting voltage-limited transfer capabilities for each of the eight scenarios. The detailed results are presented in terms of PV-Curves (Figure 4) and discussed below. It should be noted that although voltage limitations are clearly present in all of the scenarios studied, in most cases, more restrictive thermal limitations were identified. In addition, in the first two scenarios, where the sensitivity of the study results to the operation of the Phase Angle Regulators (PAR) on the Michigan-Ontario interface was examined, both the voltage and thermal limitations were found to be more restrictive when the PARs were operated to redirect flows that would otherwise flow around the north end of Lake Erie.

Northern Indiana (Figure 4.1)

The first scenario examined an outage of the Cook 765-345 kV (AEP) transformer with a prior outage of the Cook 1 (AEP) and Palisades 1 (CONS) generating units. The voltage at the Robison Park 138 kV (AEP) bus was monitored in response to transfers from VACAR to MECS. Study base cases E101b and E101c were used because their east-to-west transfer bias provided a more stressful scenario. In addition, the E101b study base case reflected PAR settings (zero fixed angle) which resulted in a 1,890 MW flow from Ontario to Michigan, while the E101c study base case reflected PAR settings (maximum fixed angle) which resulted in the most restrictive flow (1,220 MW) from Ontario to Michigan. For incremental transfers from VACAR to MECS, the Robison Park 138 kV (AEP) voltage drops

below the 92% voltage limit at a FCITC level of 3,900 MW (FCTTC of 3,900 MW and Total Import Capability of 5,700 MW) when the PARs are set at a zero fixed angle, and at a FCITC level of 3,150 MW (FCTTC of 3,150 MW and Total Import Capability of 4,950 MW) when the PARs are set at a maximum fixed angle. It is anticipated, however, that thermal limitations will be reached before this voltage condition becomes limiting. Transfers from VACAR to MECS were found to be thermally limited by the Lambton - Saint Clair (L4D) 345 kV (HONI-DECO) circuit under base case (no transmission outage) conditions, at a FCITC level of 1,650 MW (FCTTC of 1,650 MW and Total Import Capability of 3,450 MW) when the PARs are set at a zero fixed angle, and by the Dumont 765-345 kV (AEP) transformer for an outage of the Cook 765-345 kV (AEP) transformer, at a FCITC level of 1,400 MW (FCTTC of 1,400 MW and Total Import Capability of 3,200 MW) when the PARs are set at a maximum fixed angle. While the 2001 Summer thermal limits are less restrictive than the 2000 Summer thermal limits, the 2001 Summer voltage limits are basically unchanged from the 2000 Summer voltage limits.

Central Ohio (Figure 4.2)

The second scenario examined an outage of the Marysville 765-345 kV (AEP) transformer with a prior outage of the Conesville 4 and 5 (AEP) generating units. The voltage at the Saint Clair 138 kV (AEP) bus was monitored in response to transfers from VACAR to MECS. Study base cases E101b and E101c were used because their east-to-west transfer bias provided a more stressful scenario. In addition, the E101b study base case reflected PAR settings (zero fixed angle) which resulted in a 1890 MW flow from Ontario to Michigan, while the E101c study base case reflected PAR settings (maximum fixed angle) which resulted in the most restrictive flow (1220 MW) from Ontario to Michigan. For incremental transfers from VACAR to MECS, the Saint Clair 138 kV (AEP) voltage drops below the 92% voltage limit at a FCITC level of 4,150 MW (FCTTC of 4,150 MW and Total Import Capability of 5,950 MW) when the PARs are set at a zero fixed angle, and at a FCITC of 3,250 MW (FCTTC of 3,250 MW and Total Import Capability of 5,050 MW) when the PARs are set at a maximum fixed angle. It is anticipated, however, that thermal limitations will be reached before this voltage condition becomes limiting. Transfers from VACAR to MECS were found to be thermally limited by the Lambton - Saint Clair (L4D) 345 kV (HONI-DECO) circuit under base case (no transmission outage) conditions, at a FCITC level of 1650 MW (FCTTC of 1650 MW and Total Import Capability of 3,450 MW) when the PARs are set at a zero fixed angle, and by the Dumont 765-345 kV (AEP)

transformer for an outage of the Cook 765-345 kV (AEP) transformer, at a FCITC level of 1,400 MW (FCTTC of 1,400 MW and Total Import Capability of 3,200 MW) when the PARs are set at a maximum fixed angle. Both the 2001 Summer thermal and voltage limits are less restrictive than the 2000 Summer thermal and voltage limits, with the extent to which they are less restrictive being a function of the HONI-DECO PAR settings. The significant improvement in voltage performance is due to the addition of the new Orange 765-138 kV (AEP) Station on the Kammer - Marysville 765 kV (AEP) circuit, which is scheduled to be placed in service by May 2001.

Southeastern ECAR (Figures 4.3a, 4.3b)

The third scenario examined an outage of the Baker - Broadford 765 kV (AEP) circuit with a prior outage of the Glen Lyn 5 and 6 (AEP) generating units, and separately, an outage of the Broadford - Jacksons Ferry 765 kV (AEP) circuit for the same prior generation outage. The voltage at the Matt Funk 345 kV (AEP) bus was monitored in response to transfers from MAIN to VACAR. Study base case E102 was used because its west-to-east transfer bias provided a more stressful For incremental transfers from MAIN to VACAR, the Matt Funk 345 kV (AEP) voltage drops below the 95% voltage limit (as determined through the Kanawha River - Matt Funk 345 kV (KMF) Operating Guidelines -- refer to Appendix H for details) at a FCITC level of 2,200 MW (FCTTC of 3,200 MW and Total Import Capability of 3,600 MW) for an outage of the Baker - Broadford 765 kV circuit, and at a FCITC level of 1,850 MW (FCTTC of 2,850 MW and Total Import Capability of 3,250 MW) for an outage of the Broadford - Jacksons Ferry 765 kV circuit. It is anticipated, however, that thermal limitations will be reached before this voltage condition becomes limiting. Transfers from MAIN to VACAR were found to be thermally limited by the Cumberland - Davidson 500 kV (TVA) circuit for an outage of the Cumberland - Johnsonville 500 kV (TVA) circuit, at a FCITC level of 300 MW (FCTTC of 1,300 MW and Total Import Capability of 1,700 MW). While the 2001 Summer thermal limits are less restrictive than the 2000 Summer thermal limits, the 2001 Summer voltage limits are more restrictive than the 2000 Summer voltage limits due to higher load levels.

Eastern ECAR (Figures 4.4, 4.5a, 4.5b)

The fourth scenario assumed an outage of the Black Oak - Bedington 500 kV (AP) circuit without any prior generation outages. The voltage of the Meadow Brook

500 kV (AP) bus was monitored in response to transfers from MAIN to MAAC. Study base case E102 was used because its west-to-east transfer bias provided a more stressful scenario. For incremental transfers from MAIN to MAAC, the Meadow Brook 500 kV (AP) voltage drops below the calculated 97.98% voltage stability limit (Reliability Coordination Plan Level II) at a FCITC level of 1,150 MW (FCTTC of 3,150 MW and Total Import Capability of 3,050 MW). This voltage limit corresponds to a Mount Storm - Meadow Brook 500 kV (VP-AP) circuit loading of 1,790 MW. It is anticipated, however, that thermal limitations will be reached before this voltage condition becomes limiting. Transfers from MAIN to MAAC were found to be thermally limited by the Cumberland - Davidson 500 kV (TVA) circuit for an outage of the Cumberland -Johnsonville 500 kV (TVA) circuit, at a FCITC level of 400 MW (FCTTC of 2,400 MW and Total Import Capability of 2,300 MW). This thermal limit corresponds to a Mount Storm - Meadow Brook 500 kV (VP-AP) circuit loading The 2001 Summer thermal limit and voltage limits are more of 1,602 MW. restrictive than the 2000 Summer thermal and voltage limits. The decrease in voltage limits can be attributed to base case differences such as the higher real and reactive loads modeled in the AP system.

The fifth scenario assumed an outage of the Pruntytown - Mount Storm 500 kV (AP-VP) circuit without any prior generation outages. Voltages at the Black Oak 500 kV (AP) and Bedington 500 kV (AP) buses were monitored in response to transfers from MAIN to MAAC. Study base case E102 was used because its westto-east transfer bias provided a more stressful scenario. For incremental transfers from MAIN to MAAC, the Black Oak 500 kV (AP) and Bedington 500 kV (AP) voltages drop below their calculated 95.42% and 96.52% respective voltage stability limits (Reliability Coordination Plan Level II) at a FCITC level of -150 MW (FCTTC of 1,850 MW and Total Import Capability of 1,750 MW). This voltage limit corresponds to a Bedington - Doubs 500 kV (AP) circuit loading of 1,530 MW. It is anticipated that this voltage limit will be reached prior to any thermal limitations. Transfers from MAIN to MAAC were found to be thermally limited by the Cumberland - Davidson 500 kV (TVA) circuit for an outage of the Cumberland - Johnsonville 500 kV (TVA) circuit, at a FCITC level of 400 MW (FCTTC of 2,400 MW and Total Import Capability of 2,300 MW). This thermal limit corresponds to a Bedington - Doubs 500 kV (AP) circuit loading of 1,600 MW. The 2001 Summer voltage limit is more restrictive than the 2000 Summer voltage limit. The decrease in voltage performance can be attributed to base case differences such as the higher real and reactive loads modeled in the AP system.

Southern Michigan (Figure 4.6)

The sixth scenario assumed no transmission outages and no prior generation outages. The voltage of the Tompkins 345 kV (CONS) bus was monitored in response to transfers from MAIN to MECS. Study base cases E103a and E103b were used because their south-to-north transfer bias, which included an outage of Monroe Units 1 & 3 (DECO) and Palisades Unit 1 (CONS), provided a more stressful scenario. In addition, the E103a study base case reflected an outage of Cook Unit 1 (AEP), while the E103b study base case reflected an outage of Davis-Besse Unit 1 (FE). For incremental transfers from MAIN to MECS, the Tompkins 345 kV (CONS) voltage drops below the 97% voltage limit at a FCITC level of 2,200 MW (FCTTC of 2,200 MW and Total Import Capability of 4,500 MW) when Cook Unit 1 was outaged as part of the south-to-north transfer bias (E103a), and a FCITC level of 1,400 MW (FCTTC of 1,400 MW and Total Import Capability of 3,700 MW) when Davis-Besse Unit 1 was outaged as part of the south-to-north transfer bias (E103b). It is anticipated, however, that thermal limitations will be reached before these voltage conditions become limiting. Transfers from MAIN to MECS were found to be thermally limited by the Dumont 765-345 kV (AEP) transformer for an outage of the Cook 765-345 kV (AEP) transformer (AEP), at a FCITC of -900 MW (FCTTC of -900 MW and Total Import Capability of 1,400 MW) when Cook Unit 1 was outaged as part of the south-to-north transfer bias (E103a), and by the Muskingum - Ohio Central 345 kV (AEP) circuit at its pre-contingency rating to a FCITC of 450 MW (FCTTC of 450 MW and Total Import Capability of 2,750 MW) when Davis-Besse Unit 1 was outaged as part of the south-to-north transfer bias (E103b). This scenario was not tested as part of the 2000 Summer assessment.

Northwestern Ohio (Figure 4.7)

The seventh scenario assumed an outage of the Allen Junction 345-138 kV (FE) transformer without any prior generation outages. The voltage at the Allen Junction 138 kV (FE) bus was monitored in response to transfers from MAAC to MECS. Study base cases E103a and E103b were used because their south-to-north transfer bias, which included an outage of Monroe Units 1 & 3 (DECO) and Palisades Unit 1 (CONS), provided a more stressful scenario. In addition, the E103a study base case reflected an outage of Cook Unit 1 (AEP), while the E103b study base case reflected an outage of Davis-Besse Unit 1 (FE). For incremental transfers from MAAC to MECS, the Allen Junction 138 kV (FE) voltage drops below the 90% voltage limit at a FCITC level of 1,000 MW (FCTTC of 1,000 MW

and Total Import Capability of 3,300 MW) when Cook Unit 1 was outaged as part of the south-to-north transfer bias (E103a), and a FCITC level of -1,250 MW (FCTTC of -1,250 MW and Total Import Capability of 1,050 MW) when Davis-Besse Unit 1 was outaged as part of the south-to-north transfer bias (E103b). While it is anticipated that thermal limitations will be reached first for an outage of Cook Unit 1, voltage limitation will be reached first for an outage of Davis-Besse Unit 1. Transfers from MAAC to MECS were found to be thermally limited by the Dumont 765-345 kV (AEP) transformer for an outage of the Cook 765-345 kV (AEP) transformer (AEP), at a FCITC of -650 MW (FCTTC of -650 MW and Total Import Capability of 1,650 MW) when Cook Unit 1 was outaged as part of the south-to-north transfer bias (E103a), and by the Muskingum - Ohio Central 345 kV (AEP) circuit at its pre-contingency rating to a FCITC of 350 MW (FCTTC of 350 MW and Total Import Capability of 2,650 MW) when Davis-Besse Unit 1 was outaged as part of the south-to-north transfer bias (E103b). This scenario was not tested as part of the 2000 Summer assessment.

Central Kentucky (Figure 4.8)

The eighth scenario examined an outage of the Baker - Broadford 765 kV (AEP) circuit under two different prior generation outage conditions. The first condition reflected the outage of just two of the seven Brown CT (LGEE) generating units. The second condition reflected the outage of all seven Brown CT (LGEE) generating units, and the outage of all three J. K. Smith CT (EKPC) generating units. The voltage at the Brown North 138 kV (LGEE) bus was monitored in response to transfers from ECAR to TVA. Study base case E104 was used because its north-to-south transfer bias provided a more stressful scenario. For incremental transfers from ECAR to TVA, the Brown North 138 kV (LGEE) voltage drops below the 95% voltage limit at a FCITC level of 4,200 MW (FCTTC of 3,900 MW and Total Import Capability of 6,500 MW) when just two of the ten CTs are outaged. However, when all ten CTs are outaged, the voltage limit is reached at a FCITC level of 2,600 MW (FCTTC of 2,300 MW and Total Import Capability of 4,900 MW). It is anticipated that thermal limitations will be reached before either of these voltage conditions become limiting. Transfers from ECAR to TVA were found to be thermally limited by the Clinch River - Spring Creek - North Bristol 138 kV (AEP) path for an outage of the Broadford - Sullivan 500 kV (AEP-TVA) circuit, at a FCITC level of 900 MW (FCTTC of 600 MW and Total Import Capability of 3,200 MW). This scenario was not tested as part of the 2000 Summer assessment.

BACKGROUND INFORMATION

System Description

The EHV transmission system in ECAR consists of an extensive 765 kV, 500 kV, and 345 kV network. The 765 kV network interfaces with the 500 kV network in eastern and southeastern ECAR and interconnects with the MAIN Region in the west. The 500 kV system is located in eastern and southeastern ECAR and is the major interface with MAAC, VACAR, and TVA. Extensive 345 kV facilities are located throughout ECAR, interconnecting with MAIN, MAAC, and NPCC. Generation and transmission facilities projected to be added, removed, or modified during the upcoming season, together with any major generation and transmission outages, are listed in Appendix B.

Study Procedure

The bulk transmission systems in ECAR and selected non-ECAR facilities, are evaluated using linear analysis to calculate changes in power flows resulting from line outages and incremental power transfers. This procedure identifies transmission facilities which might overload during transmission outages under base and transfer conditions. Contingency types studied include: (1) single circuits; (2) single circuit segments of multiple terminal circuits (circuit segments that can be outaged by automatically sectionalizing multiple terminal circuits); (3) multiple terminal circuits (single circuit segments that are outaged together by normal circuit breaker action); and (4) selected double-circuit towers.

Any facility exceeding its emergency rating under transfer conditions, with a transfer response factor (PTDF or OTDF) greater than 2.5%, is listed in Table 2 along with the associated outage condition. Similarly, any facility exceeding its emergency rating under base conditions, is listed in Table 3 along with the associated outage. In addition to the linear analysis, AC analysis was also used to examine the voltage performance of those portions of the ECAR transmission network where potential voltage limitations have been identified through past operating experience or other ECAR assessments.

Base Case Development (Table 5)

The ECAR primary base case used for this assessment was derived from the operating model developed by the NERC/MMWG. Since this operating model was developed to assess the bulk transmission systems within and outside of ECAR, it reflects limited sub-transmission detail. Consequently, certain localized transmission problems within ECAR may not have been observed in this study. On the other hand, non-ECAR areas, with bulk transmission system modeling detail which was not required for this study, were equivalized.

The total ECAR and individual ECAR member system generation and load levels modeled in this primary base case are tabulated in Appendix C, along with the generation and load levels modeled in the previous seasonal assessment. The ECAR load level represented in the primary base cases is the summation of the forecasted seasonal peak loads of the individual ECAR member systems, which may not be projected to occur coincidentally.

During the upcoming season, many interchange schedules will be in effect between systems in ECAR, and between ECAR members and companies in neighboring Regions. Details on the schedules modeled in this primary power flow base case, in addition to those noted above, are documented in Appendix D. It should be noted that actual interchange schedules might vary significantly in the day-to-day operation of the systems from those modeled in any base case. Similarly, this primary base case may differ from other base cases developed by other Regions or for other study purposes.

In addition to the primary base case developed for this study, labeled E100, seven additional study base cases were also developed to model conditions which would further stress the ECAR bulk transmission network. The first three study base cases, labeled E101a, E101b, and E101c, model a 4000 MW east-to-west transfer bias, which is comprised of a 1,500 MW transfer from NPCC to MECS, a 1,750 MW transfer from MAAC to MAIN, and a 750 MW transfer from VACAR to MAIN. The only difference between these three study base cases pertains to how the four Phase Angle Regulators (PAR) on the Michigan - Ontario interface are modeled. In the E101a study base case, the PARs are fixed at their respective minimum angles, resulting in a total flow from Ontario to Michigan of 2,430 MW. In the E101b study base case, the PARs are set at a fixed angle of zero degrees, resulting in a total flow from Ontario to Michigan of 1,890 MW. In the E101c study base case, the PARs are fixed at their respective maximum angles, resulting in a total flow from Ontario to Michigan of 1,220 MW. These three study base

cases were then used to run sensitivity studies involving the four PARs on the Michigan - Ontario interface.

The fourth study base case, labeled E102, models a 4,000 MW west-to-east transfer bias, which is comprised of a 2,000 MW transfer from MAIN to MAAC, a 1,000 MW transfer from MAIN to VACAR, and a 1,000 MW transfer from MAIN to TVA. The fifth and sixth study base cases, labeled E103a and E103b, model a 4,000 MW south-to-north transfer bias. The E103a study base case models this transfer bias as 2,000 MW transfer from VACAR to MECS, a 1,000 MW transfer from TVA to AEP (Cook Unit 1 outaged), and a 1,000 MW transfer from TVA to MAIN. The E103b study base case models this transfer bias as 2,000 MW transfer from VACAR to MECS, a 900 MW transfer from TVA to FE (Davis-Besse Unit 1 outaged), and a 1,100 MW transfer from TVA to MAIN. The seventh and final study base case, labeled E104, models a 4,000 MW north-to-south transfer bias, which is comprised of a 2,000 MW transfer from NPCC to TVA, and a 2,000 MW transfer from MAIN to Southern. All seven study base cases are documented in Table 5.

Base Case Changes

Modeling changes were encountered in the course of conducting this seasonal transmission assessment. These changes were identified by, or reported to the TSPWG by the ECAR-member companies after the ECAR 2001 Summer base case was declared final and distributed to the ECAR-member companies. Unless otherwise indicated, the TSPWG study results documented in this report reflect the following changes:

American Electric Power (AEP): The summer normal and emergency ratings for the Kanawha River - Matt Funk 345 kV (AEP) circuit were increased from 970 MVA to 1010 MVA, to reflect revised loadability limits.

Cinergy (CIN): The following four summer emergency ratings were corrected: (1) Buffington 345-138 kV from 440 MVA to 499 MVA, (2) Cayuga 345-230 kV from 480 MVA to 534 MVA, (3) Gallagher 230-138 kV from 147 MVA to 162 MVA, and (4) Miami Fort 345-138 kV from 440 MVA to 486 MVA.

Consumers Energy (CONS): The summer normal rating for the Bullock - Edenville 138 kV (CONS) circuit was increased from 107 MVA to 191 MVA, and the summer emergency rating was increased from 125 MVA to 220 MVA, due to a reconductoring project.

FirstEnergy (FE): The summer normal and emergency ratings for the Davis Besse - Bay Shore 345 kV (FE) circuit were increased from 1231 MVA to 1487 MVA, due to circuit improvements made in 2000. This upgrade complemented a similar upgrade to the Davis Besse - Lemoyne 345 kV (FE) circuit made in 1999.

Indianapolis Power and Light (IPL): The summer normal and emergency ratings for the Petersburg - Hanna 345 kV (IPL) circuit were increased from 717 MVA to 960 MVA, while those for the Petersburg - Thompson 345 kV circuit were increased from 960 MVA to 1200 MVA, due to the replacement of terminal equipment.

LG&E Energy (LGEE): The summer normal and emergency ratings for the Tyrone - Adams 138 kV (LGEE) circuit were increased from 97 MVA to 132 MVA, to reflect terminal equipment upgrades.

Ohio Valley Electric (OVEC): The OVEC load is expected to decrease from 600 MW to 35 MW for 2001 Summer. Refer to the OVEC individual company assessment for details. Effective 2001 Summer, the Pierce 345 kV station will be reconfigured, leaving the Dearborn - Pierce #1 345 kV (OVEC) and Pierce - X533 #1 345 kV (OVEC) circuits connected to each other, but isolated from the remainder of the Pierce station. Refer to the OVEC individual company assessment for details.

Historical Tieline Flows (Figure 5)

The ECAR Transmission System Performance Working Group (TSPWG), under the direction of the ECAR Transmission System Performance Panel (TSPP), annually collects and analyzes historical tieline flow data between ECAR companies and their interconnected Non-ECAR neighbors. These data are presented in Figure 5 as scatter plots of net hourly exports/imports versus hourly ECAR load (as defined by ECAR) for the most recent four summer periods for which data are available (June - August 1996 through June - August 1999). To facilitate interpretation of the data, a third-order polynomial trend line is also presented with each scatter plot. These plots help illustrate the historical export/import characteristics of the ECAR Region as a function of ECAR load.

Page: 1 of 1

Base Case	Transfer Bias	Exporter	Importer	Amount (MW)	Significant Generating Unit Outages and Michigan-Ontario Phase Angle Regulator (PAR) Settings
E100	None	Base Case	Base Case	Base Case	Units Out = None PARs @ 600 MW Fixed Flow into Michigan Resulting Ontario to Michigan Flow is 600 MW L4D = 200 / L51D = 200 / B3N = 100 / J5D = 100
E101a	EAST to WEST	NPCC (OH) NPCC (NYPP) MAAC VACAR	MECS MECS MAIN MAIN	500 1000 1750 750	Units Out = Monroe 1 and Palisades 1 PARs @ Minimum Degrees Fixed Angle Resulting Ontario to Michigan Flow is 2430 MW L4D = 870 / L51D = 840 / B3N = 500 / J5D = 220
E101b	EAST to WEST	NPCC (OH) NPCC (NYPP) MAAC VACAR	MECS MECS MAIN MAIN	500 1000 1750 750	Units Out = Monroe 1 and Palisades 1 PARs @ Zero Degrees Fixed Angle Resulting Ontario to Michigan Flow is 1890 MW L4D = 690 / L51D = 595 / B3N = 435 / J5D = 170
E101c	EAST to WEST	NPCC (OH) NPCC (NYPP) MAAC VACAR	MECS MECS MAIN MAIN	500 1000 1750 750	Units Out = Monroe 1 and Palisades 1 PARs @ Maximum Degrees Fixed Angle Resulting Ontario to Michigan Flow is 1220 MW L4D = 355 / L51D = 325 / B3N = 345 / J5D = 195
E102	WEST to EAST	MAIN MAIN MAIN	MAAC VACAR TVA	2000 1000 1000	Units Out = None PARs @ 600 MW Fixed Flow into Michigan Resulting Ontario to Michigan Flow is 600 MW L4D = 200 / L51D = 200 / B3N = 100 / J5D = 100
E103a	SOUTH to NORTH	VACAR TVA TVA	MECS AEP MAIN	2000 1000 1000	Units Out = Monroe 1&3 / Palisades 1 / Cook 1 PARs @ 600 MW Fixed Flow into Michigan Resulting Ontario to Michigan Flow is 615 MW L4D = 200 / L51D = 200 / B3N = 115 / J5D = 100
E103b	SOUTH to NORTH	VACAR TVA TVA	MECS FE MAIN	2000 900 1100	Units Out = Monroe 1&3 / Palisades 1 / Davis-Besse 1 PARs @ 600 MW Fixed Flow into Michigan Resulting Ontario to Michigan Flow is 625 MW L4D = 200 / L51D = 200 / B3N = 125 / J5D = 100
E104	NORTH to SOUTH	NPCC (OH) MAIN	TVA (East) Southern	2000 2000	Units Out = None PARs @ Minimum Degrees Fixed Angle Resulting Ontario to Michigan Flow is 2610 MW L4D = 925 / L51D = 900 / B3N = 520 / J5D = 265

APPENDIX A

Key Facilities Index

Table A-1 lists all transfer limiting facilities identified in this and previous seasonal transmission assessments. They are tabulated in alphabetical order by system name and then by facility name. The corresponding critical outages, together with their associated Line Outage Distribution Factors (LODF), are also shown. In addition, all critical transfers identified in this study for each of the limiting facilities are tabulated together with their corresponding Outage Transfer Distribution Factors (OTDF). Table A-1 also includes the NERC Transmission Loading Relief (TLR) history of all ECAR and selected non-ECAR transmission facilities which had a TLR Level 2 or above declared during the most recent eight seasonal quarters (Winter being December - February, Spring being March - May, Summer being June - August, and Fall being September - November).

The NERC Transmission Loading Relief (TLR) Procedure is a step-by-step procedure developed by the NERC Security Coordinator Subcommittee to maintain network security by avoiding or relieving transmission overloads. The TLR identifies the actual transactions (by priority and use) which cause Operating Security Limit violations. The TLR considers the actual paths over which transactions are flowing, not their contract paths, to determine which transactions to freeze or curtail. More information about the TLR procedure can be found in NERC Operating Policy No. 9 (refer to the NERC home page at www.nerc.com).

Date: 04/17/01 Key Facilities Index Page: 1 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
Х	х	Axton 765-138 kV	2	AEP	792	Cloverdale - Joshua Falls 765 kV & Joshau Falls 765-138 kV	AEP AEP	10.9	MAIN to VACAR	5.3	
						Jacksons Ferry 765-500 kV & Jacksons Ferry - Antioch 500 kV	AEP AEP-DUKE	16.9	MAIN to VACAR	6.1	
Х	Х	Central Ohio Voltage Limit (138 kV) Note: Refer to Voltage Analysis section of this report for details on this limitation.	1	AEP							Mar - May = 0 / 0 Jun - Aug = 0 / 4 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
Х	Х	Clinch R - Spring Ck - N Bristol 138 kV		AEP	239	Broadford 765-500 kV & Broadford - Sullivan 500 kV	AEP AEP-TVA	7.5	ECAR to TVA MAAC to TVA	3.4 3.3	
Х	х	Clinch River - Copper Ridge - Hill 138 kV		AEP	269	Broadford 765-500 kV & Broadford - Sullivan 500 kV	AEP AEP-TVA	6.2	MAAC to TVA	2.8	
Х	х	Cook 765-345 kV	1&2	AEP	1875	Base Case			MAAC to MECS MAIN to MECS	15.9 15.8	Mar - May = 0 / 0 Jun - Aug = 1 / 1 Sep - Nov = 2 / 0
					2115	Dumont 765-345 kV	AEP	42.7	MAAC to MECS VACAR to MECS TVA to MECS MAIN to MECS MAAC to Indiana	21.4 21.6 20.7 19.0 3.7	Dec-Feb = 0 / 0
х	Х	Dumont 765-345 kV	1&2	AEP	2070	Dumont - Wilton Center 765 kV	AEP-CE	41.9	MAAC to MAIN VACAR to MAIN	15.8 14.9	Mar - May = 0 / 0 Jun - Aug = 1 / 2 Sep - Nov = 1 / 0
						Cook 765-345 kV	AEP	51.9	MAAC to MECS VACAR to MECS TVA to MECS MAIN to MECS MAAC to Indiana MAAC to MAIN	19.3 19.1 17.4 13.9 6.4 4.3	Dec-Feb = 0 / 0

Date: 04/17/01 Key Facilities Index Page: 2 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
Х	х	East Danville - Danville 138 kV	2	AEP	310	Base Case			VACAR to MAIN	4.4	
		Note: Overloads possible in both directions.			384	Antioch - Jacksons Ferry 765 kV & Jacksons Ferry 500-765 kV	DUKE-AEP AEP	15.1	VACAR to MECS MAIN to VACAR VACAR to MAIN	7.9 6.1 7.5	
Х	х	Kammer - West Bellaire 345 kV		AEP	1023	Kammer - South Canton 765 kV & South Canton 765-345 kV	AEP AEP	21.8	TVA to NE MAIN to NE	10.0 10.3	Mar - May = 1 / 0 Jun - Aug = 0 / 0 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
X	Х	Kanawha - Matt Funk 345 kV (Voltage)	1&2	AEP	1010	Baker - Broadford 765 kV	AEP	12.7	ECAR to TVA MAIN to VACAR MAIN to TVA	5.5 7.7 4.6	Mar - May = 5 / 1 Jun - Aug = 35 / 1 Sep - Nov = 6 / 7 Dec - Feb = 37 / 6
					1040	Broadford - Jacksons Ferry 765 kV & Broadford 138 kV Series Reactor Inserted	AEP AEP		ECAR to VACAR MAIN to VACAR	9.6 9.1	
Х	х	Marysville - East Lima 345 kV		AEP	923	Base Case			MAAC to MECS VACAR to MECS TVA to MECS MAIN to MECS	7.6 7.5 6.7 5.8	Mar - May = 0 / 0 Jun - Aug = 0 / 4 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
					1220	Marysville - Southwest Lima 345 kV	AEP	32.8	MAAC to MECS MAIN to MECS	9.2 6.7	
Х	Х	Mountaineer - Belmont 765 kV		AEP	3313	Gavin - Marysville 765 kV	AEP	43.9	TVA to NE	24.4	
Х	х	Muskingum River - Ohio Central 345 kV		AEP	938	Base Case			MAAC to MECS VACAR to MECS TVA to MECS MAIN to MECS	5.2 5.4 4.8 3.9	
					1076	Muskingum - West Millersport 345 kV & West Millersport 345-138 kV	AEP AEP		MAAC to MECS VACAR to MECS MAIN to MECS	5.5 5.6 3.9	

Date: 04/17/01 Key Facilities Index Page: 3 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
Х	Х	Olive 345-138 kV		AEP	544	Olive - Cook 345 kV	AEP	15.3	MAIN to MECS	3.5	
Х	Х	Olive - Cook 345 kV		AEP	1383	Cook 765-345 kV	AEP	35.0	MAIN to MECS	19.8	
Х	Х	South Canton 765-345 kV	2	AEP	1660	Base Case			TVA to NE MAIN to NE	12.5 12.3	
					1890	Tidd - Canton Central 345 kV	AEP	27.5	TVA to NE MAIN to NE	12.5 12.2	
						Kammer 765-500 kV & Kammer - Harrison - Fort Martin 500 kV	AEP-AP AP		TVA to NE MAIN to NE	14.0 14.2	
Х		Wolf Hills - Orebank 138 kV		AEP	239	Broadford 765-500 kV & Broadford - Sullivan 500 kV	AEP AEP-TVA	6.2	ECAR to TVA MAAC to TVA	2.8 2.6	
X	X	Breed - Casey 345 kV		AEP-AMRN	1442	Rockport - Jefferson 765 kV	AEP	34.0	ECAR to MAIN MAAC to MAIN VACAR to MAIN	11.7 10.3 8.9	
		Belmont 765-500 kV Note: Old bank was replaced with a new higher capability bank in November 1999.		AEP-AP		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 0 / 0 Jun - Aug = 0 / 1 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
Х	Х	Kammer 765-500 kV Note: Overloads possible in both the 765-500 kV and 500-765 kV directions.		AEP-AP	1700	Belmont - Harrison 500 kV	AP	39.8	TVA to NE MAIN to NE MAIN to MAAC	11.9 14.6 23.5	
					1700	Belmont 500-765 kV	AP-AEP	37.8	MAAC to MAIN	21.9	
	Х	Greentown 765-138 kV		AEP-CIN	795	Greentown 765-230-138 kV	AEP-CIN	48.6	MAAC to Indiana	4.7	

Date: 04/17/01 Key Facilities Index Page: 4 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
Х	X	Cook - Benton Harbor - Palisades 345 kV		AEP-CONS	1554	Cook - Palisades 345 kV	AEP-CONS	65.7	MAAC to MECS VACAR to MECS TVA to MECS MAIN to MECS	23.4 24.5 25.7 33.9	
х	x	Cook - Palisades 345 kV		AEP-CONS	1239	Base Case			MAIN to MECS	18.5	
					1554	Cook - Benton Harbor - Palisades 345 kV & Benton Harbor 345-138 kV	AEP-CONS AEP		MAAC to MECS VACAR to MECS TVA to MECS MAIN to MECS	27.0 27.9 29.4 31.9	
Х	Х	Twin Branch - Argenta 345 kV		AEP-CONS	1434	Cook - Palisades 345 kV & Cook - Benton Harbor - Palisades 345 kV & Benton Harbor 345-138 kV	AEP-CONS AEP-CONS AEP		MAAC to MECS VACAR to MECS TVA to MECS MAIN to MECS	23.1 25.4 26.0 28.7	
х	х	Fostoria Central - Lemoyne 345 kV		AEP-FE	1076	Davis Besse - Lemoyne 345 kV	FE	46.2	MAAC to MECS	14.4	
						Fostoria Central - Bay Shore 345 kV	AEP-FE	60.4	MAAC to MECS MAIN to MECS	17.8 17.1	
х	х	South Canton - Star 345 kV		AEP-FE	1076	Sammis - Star 345 kV	FE	39.0	MAAC to MECS MAIN to MECS	4.2 3.9	Mar - May = 0 / 0 Jun - Aug = 1 / 0 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
Х	x	Eugene - Bunsonville 345 kV		AEP-IP	856	Breed - Casey 345 kV	AEP-AMRN	39.0	ECAR to MAIN MAAC to MAIN VACAR to MAIN	11.0 10.3 8.9	
Х	x	Broadford 765-500 kV or Broadford - Sullivan 500 kV	2	AEP AEP-TVA	1710 1710	Base Case			MAAC to TVA	21.3	
					1920 1920	Broadford - Jacksons Ferry 765 kV & Broadford 138 kV Series Reactor Inserted	AEP AEP	28.9	ECAR to TVA MAAC to TVA MAIN to TVA	18.5 18.6 15.0	

Date: 04/17/01 Key Facilities Index Page: 5 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
X	Х	North Bristol - North Bristol 138 kV		AEP-TVA	260	Broadford 765-500 kV & Broadford - Sullivan 500 kV	AEP AEP-TVA	7.5	ECAR to TVA MAAC to TVA	2.7 2.7	
	Х	Leesville - Altavista 138 kV		AEP-VP	209	Base Case			ECAR to VACAR	2.7	
		Scottsville - Bremo 138 kV & Greenbrier - Fudge Hollow 138 kV Note: TLR was called after local options were exhausted Cloverdale - Joshua Falls 765 kV line was outaged at the time.		AEP-VP		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 0 / 1 Jun - Aug = 0 / 0 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
	Х	Albion 345-138 kV	2	AMRM	448	Breed - Casey 345 kV	AEP-AMRN	6.2	ECAR to MAIN MAAC to MAIN	3.4 2.8	
х		Coffeen - Pana 345 kV		AMRM	952	Rockport - Jefferson 765 kV	AEP	5.1	TVA to NE	4.7	
		Rush Island - St. Francois 345 kV Note: This facility was not monitored in the ECAR 2001 and 2000 assessments.		AMRN		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 0 / Jun - Aug = 32 / Sep - Nov = 29 / Dec - Feb = 29 /
Х		Bland - Franks 345 kV Note: This facility was partly monitored in the ECAR 2001 and 2000 assessments.		AMRN-AECI	949	Base Case			MAIN to TVA	7.0	Mar - May = 21 / 0 Jun - Aug = 59 / 9 Sep - Nov = 43 / 6 Dec - Feb = 12 / 0
	х	Bedington - Doubs 500 kV (Voltage)		АР	1590	Pruntytown - Mount Storm 500 kV	AP-VP	26.1	ECAR to VACAR	10.6	Mar - May = 0 / 0 Jun - Aug = 5 / 0 Sep - Nov = 4 / 0 Dec - Feb = 2 / 0
Х	Х	Black Oak 138-500 kV	1	AP	531	Hatfield - Black Oak 500 kV	AP	20.2	ECAR to MAAC	3.9	

Date: 04/17/01 Key Facilities Index Page: 6 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
Х	X	Black Oak - Bedington 500 kV		AP	2783	Pruntytown - Mount Storm 500 kV	AP-VP	31.1	ECAR to MAAC ECAR to VACAR MAIN to MAAC MAIN to VACAR	16.7 13.4 15.8 12.5	Mar - May = 2 / 0 Jun - Aug = 4 / 0 Sep - Nov = 1 / 0 Dec - Feb = 1 / 1
Х	X	Doubs #1 or #2 or #3 or #4 500-230 kV Note: Several TLRs were declared under the Doubs - Brighton 500 kV flowgate.		АР	488	Doubs - Brighton 500 kV	AP-PEPCO	8.7	ECAR to MAAC MAIN to MAAC	3.1 3.1	Mar - May = 0 / 0 Jun - Aug = 1 / 5 Sep - Nov = 3 / 0 Dec - Feb = 0 / 0
х	х	Harrison - Pruntytown 500 kV		AP	2733	Base Case			MAIN to VACAR	11.8	
					3584	502 Junction - Fort Martin 500 kV	AP	67.7	MAIN to MAAC MAIN to VACAR	26.1 18.5	
Х		Fort Martin - Pruntytown 500 kV		AP	2654	Harrison - Pruntytown 500 kV	AP	68.7	MAIN to VACAR	12.7	
X	X	Hatfield-Black Oak 500 kV (Voltage)		АР	2265	Pruntytown - Mount Storm 500 kV	AP-VP	26.8	ECAR to MAAC ECAR to VACAR MAIN to MAAC MAIN to VACAR	13.8 10.6 13.4 10.1	
Х	Х	Wylie Ridge #1 or #2 500-345 kV Note: Overloads possible in both the 500-345 kV and 345-500 kV directions.		АР	942	Wylie Ridge #2 or #1 500-345 kV	АР	72.2	MAAC to MAAC	13.2	Mar - May = 0 / 0 Jun - Aug = 7 / 0 Sep - Nov = 17 / 4 Dec - Feb = 0 / 0
Х	Х	Yukon - Shepler Hill Junction 138 kV	2	AP	243	Keystone - Cabot 500 kV	PENLEC-AP	4.0	MAAC to MAIN	2.7	
	Х	Corner - Wolf Ck - Muskingum R 138 kV	1	AP-AEP	174	Kammer-Belmont-Mountaineer 765 kV & Belmont 765-500 kV	AEP AEP-AP		MAAC to MECS MAAC to Indiana	2.6 2.5	
х	Х	Butler - Krendale - Maple 138 kV	1	AP-FE	227	Cabot - Wylie Ridge 500 kV	АР	7.8	MAAC to Indiana MAAC to TVA MAAC to MAIN	3.3 2.9 3.3	

Date: 04/17/01 Key Facilities Index Page: 7 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
Х	х	Doubs - Aqueduct - Station H 230 kV		AP-PEPCO	629	Doubs - Station H 230 kV	AP-PEPCO	60.5	ECAR to MAAC MAIN to MAAC	6.1 5.7	
						Doubs - Brighton 500 kV	AP-PEPCO	17.1	MAIN to MAAC	7.1	
Х	Х	Doubs - Station H 230 kV		AP-PEPCO	628	Doubs - Aqueduct 230 kV	AP	60.3	ECAR to MAAC MAIN to MAAC	6.1 5.7	
		Doubs - Brighton 500 kV Note: This TLR was declared under the Doubs 500 kV Voltage flowgate to address voltage concerns at Doubs This line is also part of the PJM Western Interface flowgate appearing elsewhere in this table.		AP-PEPCO		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 0 / 0 Jun - Aug = 0 / 1 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
		PJM Western Interface (500 kV) Note: The following comprise this interface. Only the first facility is monitored as part of the ECAR seasonal assessments. a) Doubs - Brighton 500 kV b) Conemaugh - Hunterstown 500 kV c) Conemaugh - Juniata 500 kV d) Keystone - Juniata 500 kV		AP-PJM		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 0 / 0 Jun - Aug = 0 / 1 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
Х	х	Pruntytown - Mount Storm 500 kV	2	AP-VP	2733	Base Case			MAIN to VACAR	17.9	Mar - May = 0 / 0 Jun - Aug = 2 / 12
					3326	Black Oak - Bedington 500 kV	АР	44.6	ECAR to MAAC ECAR to VACAR MAIN to MAAC MAIN to VACAR	21.3 22.6 19.7 21.0	Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
		Coleman - National Aluminum 161 kV Note: Possible forced and/or scheduled outages at time TLRs were called.		BREC		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 0 / 0 Jun - Aug = 2 / 0 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0

Date: 04/17/01 Key Facilities Index Page: 8 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
х	х	New Hardinsburg 161-138 kV Note: One TLR was declared under the	2	BREC	224	Coleman - National Aluminum 161 kV	BREC	77.2	ECAR to TVA MAAC to TVA	3.4 3.4	Mar - May = 9 / 0 Jun - Aug = 10 / 1 Sep - Nov = 11 / 5
		BREC-TVA Interface flowgate, another under the LGEE-BREC Interface flowgate. Overloads possible in both the 161-138 kV				Volunteer - Phipps Bend 500 kV	TVA	2.3	TVA to NE	3.3	Dec - Feb = 2 / 2
		and 138-161 kV directions.				Coleman - Newtonville - Taswell 161 kV & Newtonville 161-138 kV	BR-SIG-HE SIGE		TVA to NE TVA to MAIN	3.0 2.8	
		McCracken - Marshall 161 kV Note: Possible forced and/or scheduled outages at time TLRs were called.		BREC-TVA		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 0 / 0 Jun - Aug = 1 / 0 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
Х	х	Reid - Hopkins County - Barkley 161 kV		BREC-TVA	265	Wilson - Green River 161 kV	BREC-LGEE	23.3	ECAR to TVA	3.3	
Х	х	State Line - Wolf Lake - Sheffield 138 kV	1&2	CE-NIPS	160	Burnham - Sheffield 345 kV	CE-NIPS	23.4	MAIN to MECS	2.8	
						Wilton Center - Dumont 765 kV	CE-AEP	3.6	MAIN to NE	2.5	
х	Х	Buffington 345-138 kV	2	CIN	499	Red Bank - Silver Grove - Zimmer 345 kV & Silver Grove 345-138 kV	CIN CIN		MAIN to Kentucky	3.6	
Х	х	Cayuga 345-230 kV	2	CIN	534	Cayuga - Nucor 345 kV	CIN	31.4	MAAC to Indiana	3.4	
Х	х	Gallagher 230-138 kV		CIN	162	Clifty Creek - Trimble County 345 kV	OVEC-LGEE	11.3	MAIN to Kentucky	4.3	Mar - May = 0 / 0 Jun - Aug = 9 / 0 Sep - Nov = 1 / 0 Dec - Feb = 0 / 0
	Х	Kokomo East - Webster Street 230 kV		CIN	416	Greentown - Dumont 765 kV	AEP	14.1	MAAC to Indiana	3.2	
	Х	Miami Fort 345-138 kV		CIN	486	East Bent - Terminal 345 kV	CIN	19.4	MAIN to Kentucky	3.1	

Date: 04/17/01 Key Facilities Index Page: 9 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
х	Х	New London - Webster 230 kV		CIN	495	Jefferson - Greentown 765 kV	AEP	10.7	TVA to MECS	3.2	
	Х	Walton 230-345 kV		CIN	644	Greentown - Dumont 765 kV	AEP	12.9	VACAR to MAIN TVA to MAIN	3.1 3.0	
	Х	Foster - Sugarcreek 345 kV Note: Loadings reduced by the addition of	2	CIN-DPL	1315	Stuart - Clinton - Greene 345 kV & Clinton 345-69 kV	DPL DPL		TVA to MECS TVA to NE	2.9 2.9	Mar - May = 0 / 0 Jun - Aug = 1 / 3 Sep - Nov = 0 / 10
		the Foster - Bath 345 kV (CIN-DPL) circuit scheduled for completion by June 2001.				Miami Fort - West Milton 345 kV	CIN-DPL	36.0	MAIN to MECS MAIN to NE	2.7 2.7	Dec - Feb = 0 / 0
Х	X	Gallagher - Paddys West 138 kV		CIN-LGEE	382	Clifty Creek - Trimble County 345 kV	OVEC-LGEE	27.0	MAIN to Kentucky	8.1	Mar - May = 2 / 0 Jun - Aug = 2 / 0 Sep - Nov = 1 / 0 Dec - Feb = 0 / 0
		Speed - Northside 138 kV Note: Possible forced and/or scheduled outages at time TLRs were called.		CIN-LGEE		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 3 / 0 Jun - Aug = 3 / 0 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
		Oakland City - Toyota 138 kV Note: Possible forced and/or scheduled outages at time TLRs were called.		CIN-SIGE		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 0 / 0 Jun - Aug = 1 / 0 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
Х	Х	Morrow - Battle Creek 138 kV		CONS	253	Argenta - Battle Creek 345 kV & Argenta - Tompkins 345 kV	CONS CONS		MAIN to MECS	2.7	
	Х	Coventry 345-120 kV	2	DECO	670	Monroe 12 - Browstown South 345 kV & Monroe 34 - Browstown North 345 kV	DECO DECO		MAAC to MECS VACAR to MECS TVA to MECS MAIN to MECS	4.8 4.7 4.7 4.6	
	Х	Boone - Renaker 138 kV		EKPC	67	Clifty Creek - Trimble County 345 kV	OVEC-LGEE	1.4	MAIN to Kentucky	2.6	

Date: 04/17/01 Key Facilities Index Page: 10 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
	Х	Ashtabula 345-138 kV		FE	304	Ashtabula - Perry 345 kV	FE	39.2	MAAC to Indiana MAAC to MAIN	4.1 4.1	
Х	Х	Bay Shore 345-138 kV	2	FE	650	Allen Junction 345-138 kV	FE	31.8	TVA to NE MAIN to NE	4.2 4.3	
х	X	Beaver - Davis Besse 345 kV	2	FE	950	Base Case			MAAC to MECS MAAC to Indiana MAAC to MAIN	18.9 8.1 8.5	
					984	Galion - Fostoria Central 345 kV	AEP	20.0	MAAC to MECS	20.9	
						East Lima - Fostoria Central 345 kV	AEP	15.0	MAIN to MECS	12.2	
						Kammer - Orange 765 kV	AEP	6.8	MAAC to Indiana MAAC to MAIN	9.4 9.8	
Х		Carlisle 345-138 kV		FE	505	Carlisle - Beaver 345 kV	FE	37.6	MAAC to MECS	3.2	
Х	х	Greenfield - Lakeview 138 kV		FE	184	Base Case			MAAC to MECS	3.5	
					248	Beaver - Davis Besse 345 kV	FE	12.6	MAAC to MECS MAIN to MECS MAAC to Indiana MAAC to MAIN	5.7 3.2 2.5 2.6	
	Х	Lemoyne - Midway 345 kV		FE	1231	Bay Shore - Monroe 345 kV & Lemoyne - Majestic 345 kV	FE-DECO FE-DECO		MAAC to MECS VACAR to MECS	20.2 19.0	
Х		Lorain - Johnson 138 kV		FE	215	Star - Carlisle 345 kV	FE	9.2	MAAC to MECS	2.5	
	Х	Bay Shore - Monroe 345 kV		FE-DECO	1523	Allen Jct - Monroe - Majestic 345 kV & Lemoyne - Majestic 345 kV	FE-DECO FE-DECO		MAAC to MECS	38.7	

Date: 04/17/01 Key Facilities Index Page: 11 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
х		Allanburg Jct - Middleport (Q30M) 220 kV		HONI	408	Base Case			VACAR to MECS	2.6	Refer to QFW Interface flowgate for TLR information
Х		Beck - Hannon Jct (Q24HM) 220 kV	2	HONI	465	Base Case			VACAR to MECS	2.7	Refer to QFW Interface flowgate
					616	Beck - Neale Jct (Q25BM) 220 kV & Beck - Hannon Jct (Q29HM) 220 kV	HONI HONI		VACAR to MECS MAAC to MAIN	4.0 2.5	for TLR information
X		Beck - Hannon Jct (Q29HM) 220 kV		HONI	530	Base Case			VACAR to MECS	2.7	Refer to QFW Interface flowgate for TLR information
X		Packard - Beck (PA27) 220 kV		HONI	400	Base Case			VACAR to MECS	2.9	Refer to QFW Interface flowgate for TLR information
Х		QFW Interface (220 kV) Note: This interface includes the above four HONI facilities.		HONI							Mar - May = 0 / 0 Jun - Aug = 0 / 7 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
		IMO-MECS Interface (west-to-east Flow) Note: Includes the following four facilities: a) Lambton - Saint Clair (L4D) 345 kV b) Lambton - Saint Clair (L51D) 345 kV c) Scott - Bunce Creek (B3N) 230 kV d) Keith - Waterman (J5D) 230 kV		HONI-DECO	2580						Mar - May = 0 / 1 Jun - Aug = 0 / 0 Sep - Nov = 5 / 6 Dec - Feb = 11 / 0
X	Х	IMO-MECS Interface (east-to-west flow) Note: Includes the following four facilities: a) Lambton - Saint Clair (L4D) 345 kV b) Lambton - Saint Clair (L51D) 345 kV c) Scott - Bunce Creek (B3N) 230 kV d) Keith - Waterman (J5D) 230 kV		HONI-DECO	2580						Mar - May = 0 / 0 Jun - Aug = 0 / 12 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0

Date: 04/17/01 Key Facilities Index Page: 12 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
х	х	Lambton - Saint Clair (L4D) 345 kV	1&2	HONI-DECO	845	Base Case			VACAR to MECS MAAC to Indiana MAAC to MAIN	6.0 2.6 2.7	Refer to IMO-MECS Interface flowgate for TLR information
					1170	Lambton - Saint Clair (L51D) 345 kV & Saint Clair Unit 6 & Lambton Generation Rejection	HONI-DECO DECO HONI		MAAC to Indiana MAAC to TVA MAAC to MAIN	4.0 3.2 4.2	
					1170	Lambton - Saint Clair (L51D) 345 kV & Lambton - Chatham (L29C) 230 kV & Lambton Generation Rejection	HONI-DECO HONI HONI		VACAR to MECS	9.0	
х	х	Lambton - Saint Clair (L51D) 345 kV	1&2	HONI-DECO	845	Base Case			VACAR to MECS	5.3	Refer to IMO-MECS Interface flowgate
					1170	Lambton - Saint Clair (L4D) 345 kV & Saint Clair Unit 6 & Lambton Generation Rejection	HONI-DECO DECO HONI		MAAC to Indiana MAAC to TVA MAAC to MAIN	3.8 3.1 4.0	for TLR information
					1170	Lambton - Saint Clair (L4D) 345 kV & Lambton Generation Rejection	HONI-DECO HONI	59.0	VACAR to MECS	9.0	
х	X	Scott - Bunce Creek (B3N) 230 kV	1&2	HONI-DECO	482	Lambton - Saint Clair (L4D) 345 kV & Saint Clair - Belle River 345 kV & Lambton Generation Rejection	HONI-DECO DECO HONI		VACAR to MECS	3.2	Refer to IMO-MECS Interface flowgate for TLR information
Х	х	Sidney 345-138 kV		IP	560	Dumont - Wilton Center 765 kV	AEP-CE	3.9	ECAR to MAIN MAAC to MAIN VACAR to MAIN	2.7 2.7 2.6	
	Х	Wheatland - Breed 345 kV	2	IPL-AEP	1200	Rockport - Sullivan 765 kV	AEP	33.7	ECAR to MAIN MAAC to MAIN VACAR to MAIN	9.6 7.8 7.3	

TABLE A-1 ECAR 2001 Summer Assessment of Transmission System Performance Key Facilities Index

Date: 04/17/01 Key Facilities Index Page: 13 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
Х	Х	Brown 138-345 kV		LGEE	515	Ghent - West Lexington - Brown 345 kV & West Lexington 345-138 kV	LGEE LGEE		ECAR to TVA	5.6	
Х	х	Brown - Alcalde - Pineville 345 kV	2	LGEE	956	Baker - Broadford 765 kV	AEP	6.9	ECAR to TVA MAIN to VACAR MAAC to TVA MAIN to TVA	7.6 4.6 4.1 5.9	
	Х	Brown - Danville North - Lebanon 138 kV Note: TLRs declared under the LGEE-TVA Interface flowgate.	2	LGEE	182	Brown - Alcalde - Pineville 345 kV & Alcalde 345-138 kV	LGEE LGEE		ECAR to TVA	2.8	Mar - May = 0 / 0 Jun - Aug = 0 / 3 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
		Ghent 345-138 kV Note: No TLRs called during the summer.		LGEE		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 2 / 0 Jun - Aug = 0 / 0 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
Х	X	Ghent - West Lexington - Brown 345 kV		LGEE	717	Base Case			MAIN to TVA	4.3	Mar - May = 0 / 0 Jun - Aug = 4 / 2 Sep - Nov = 6 / 0 Dec - Feb = 9 / 2
Х	Х	Grahamville-Paducah-Livingston 161 kV		LGEE	223	Shawnee - Marshall 500 kV	TVA	9.1	MAIN to Kentucky	2.9	
Х		Livingston Co - Earlington North 161 kV		LGEE	193	Livingston-Crittenden-Morgenfield 161 kV & Crittenden 161-69 kV	LGEE LGEE		MAIN to Kentucky	5.3	
Х		Pineville - Pocket 500 kV or Pineville 345-500 kV		LGEE LGEE	550 580	Baker - Broadford 765 kV	AEP	7.1	ECAR to TVA MAIN to VACAR	5.4 4.3	
	Х	River Queen - Earlington North 161 kV	2	LGEE	184	Green R - Corydon - Morganfield 161 kV & Corydon 161-69 kV	LGEE LGEE		ECAR to TVA	2.8	

Date: 04/17/01 Key Facilities Index Page: 14 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
		Trimble County - Centerfield 138 kV Note: Due to construction outages to build 2nd Trimble Co - Middletown 345 kV.		LGEE		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 2 / 0 Jun - Aug = 11 / 0 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
		Blue Lick 345-161 kV or Blue Lick - Bullitt County 161 kV Note: These facilities are not responsive (<2.5%) to the ECAR transfers scenarios. This interconnection is not a problem at peak load when LGEE generators in the Louisville area are supplying load in the immediate area. Loading problems occur at shoulder peak, when LGEE generation is serving remote load, but still in the LGEE control area.		LGEE LGEE-EKPC		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 6 / 0 Jun - Aug = 53 / 1 Sep - Nov = 40 / 1 Dec - Feb = 27 / 0
	Х	Lebanon - Marion County 161 kV or Marion County 138-161 kV		LGEE-EKPC EKPC	167 167	Brown - Alcalde - Pineville 345 kV & Alcalde 345-138 kV	LGEE LGEE		ECAR to TVA	2.6	
		LGEE-EKPC Interface (138 kV) Note: This flowgate was used to address numerous flowgates that were operating at or above their emergency ratings.		LGEE-EKPC							Mar - May = 0 / 0 Jun - Aug = 0 / 2 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
Х		Cloverport - Newtonville 138 kV	1	LGEE-SIGE	143	Coleman - Newtonville - Taswell 161 kV & Newtonville 161-138 kV	BR-SIG-HE SIGE		MAIN to Indiana	2.9	Mar - May = 3 / 0 Jun - Aug = 4 / 0 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
		Paddys Run - Summershade 161 kV Note: TLRs associated with operating procedures to relieve Blue Lick facilities.		LGEE-TVA		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 3 / 0 Jun - Aug = 37 / 0 Sep - Nov = 40 / 0 Dec - Feb = 27 / 0
Х	X	Pineville - Pineville 161 kV	2	LGEE-TVA	187	Pocket - Phipps Bend 500 kV	LGEE-TVA	30.1	ECAR to TVA	2.9	

Date: 04/17/01 Key Facilities Index Page: 15 of 17

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
Х	х	Dune Acres - Michigan City 138 kV	2	NIPS	157	Wilton Center - Dumont 765 kV	CE-AEP	3.2	MAIN to MECS	2.5	
Х	Х	Clifty Creek #1A 345-138 kV		OVEC	193	Clifty Creek - Trimble County 345 kV	OVEC-LGEE	9.6	MAIN to Kentucky	4.0	
Х	Х	Clifty Creek #1B 345-138 kV		OVEC	155	Clifty Creek - Trimble County 345 kV	OVEC-LGEE	8.6	MAIN to Kentucky	3.6	
Х	Х	Kyger Creek - Sporn 345 kV	3	OVEC-AEP	1100	Amos 765-345 kV	AEP	28.7	MAIN to NE	6.4	Mar - May = 0 / 0 Jun - Aug = 0 / 2 Sep - Nov = 0 / 3 Dec - Feb = 0 / 0
Х	х	Clifty Creek - Carrollton 138 kV	2	OVEC-LGEE	191	Baker - Broadford 765 kV	AEP	1.3	MAIN to Kentucky	3.8	
Х	х	Clifty Creek - Northside 138 kV		OVEC-LGEE	113	Clifty Creek - Trimble County 345 kV	OVEC-LGEE	13.4	MAIN to Kentucky	3.5	
Х	Х	Newtonville 161-138 kV	2	SIGE	179	Cloverport - Newtonville 138 kV	LGEE-SIGE	76.0	MAAC to Indiana	3.4	
		Henderson County 138-161 kV AB Brown - Henderson County 138 kV Note: Possible forced and/or scheduled outages at time TLRs were called.		SIGE-BREC		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 0 / 1 Jun - Aug = 1 / 0 Sep - Nov = 16 / 2 Dec - Feb = 9 / 1
Х	Х	Newtonville - Coleman 161 kV		SIGE-BREC	265	AB Brown - Henderson County 138 kV	SIGE-BREC	4.8	MAAC to TVA	2.7	Mar - May = 1 / 0 Jun - Aug = 0 / 0 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
Х	Х	Renshaw - Livingston County 161 kV		SIPC-BREC	250	Shawnee - Marshall 500 kV	TVA	5.8	MAIN to TVA	3.0	
Х	Х	Bull Run - Volunteer 500 kV		TVA	1732	Watts Barr - Volunteer 500 kV	TVA	75.6	TVA to MECS TVA to NE TVA to MAIN	17.1 18.6 12.3	

Date: 04/17/01 Key Facilities Index Page: 16 of 17

2 0 0 1	2 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
Х	х	Cumberland - Davidson 500 kV		TVA	2597	Cumberland - Johnsonville 500 kV	TVA	75.7	MAIN to MECS MAIN to NE MAIN to Kentucky MAIN to MAAC MAIN to VACAR	3.5 4.8 2.6 5.9 8.0	Mar - May = 1 / 0 Jun - Aug = 5 / 0 Sep - Nov = 0 / 0 Dec - Feb = 0 / 0
Х	Х	Cumberland - Johnsonville 500 kV		TVA	2597	Cumberland - Davidson 500 kV	TVA	77.3	MAIN to MECS MAIN to NE MAIN to MAAC MAIN to VACAR	2.8 3.9 4.8 6.7	
	Х	Gallatin - Hartsville 161 kV		TVA	206	Volunteer - Phipps Bend 500 kV	TVA	2.1	TVA to MECS	2.7	
Х	Х	Norris - La Follette 161 kV	2	TVA	234	Volunteer - Phipps Bend 500 kV	TVA	6.2	TVA to MECS TVA to NE	2.9 2.9	
		Volunteer - Phipps Bend 500 kV Note: These TLRs were declared under this flowgate to address voltage concerns in TVA during the summer. Only selected thermal limitations in TVA are considered in the ECAR seasonal assessments.		TVA		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 4 / 0 Jun - Aug = 37 / 2 Sep - Nov = 1 / 0 Dec - Feb = 0 / 0
Х	Х	Paradise - New Hardinsburg 161 kV		TVA-BREC	265	Base Case			TVA to NE TVA to MAIN	3.2 3.0	
					265	Volunteer - Phipps Bend 500 kV	TVA	2.3	TVA to MECS TVA to NE TVA to MAIN	3.9 3.7 3.3	
X	Х	Summershade-Summershade Tap 161 kV		TVA-EKPC	240	Summershade - Summershade 161 kV	TVA-EKPC	99.7	TVA to MECS TVA to NE TVA to MAIN	3.7 3.5 3.1	
Х	Х	Summershade-Summershade 161 kV		TVA-EKPC	327	Summershade-Summershade Tap 161 kV	TVA-EKPC	99.6	TVA to NE TVA to MAIN	3.5 3.1	

TABLE A-1 ECAR 2001 Summer Assessment of Transmission System Performance **Key Facilities Index**

Page: 17 of 17 Date: 04/17/01

2 0 0 1	2 0 0 0	Limiting Facility	Notes	System	Rating (MVA)	Outaged Facility	System	LODF (%)	Limiting Transfers	OTDF (%)	TLR Level 2 & Above For 2000 / 1999 (3)
	Х	Shawnee - East West Frankfort 345 kV		TVA-IP	1195	Lutesville - St. Francois 345 kV & St. Francois 345-138 kV	AMRN AMRN		TVA to MAIN	15.6	
	Х	Phipps Bend - Pocket 500 kV		TVA-LGEE	693	Sullivan - Broadford 500 kV & Broadford 500-765 kV	TVA-AEP AEP	18.0	TVA to NE TVA to MAIN	6.5 7.0	
х	Х	Mount Storm - Doubs 500 kV	2	VP-AP	2271	Mount Storm - Meadow Brook 500 kV	VP-AP	35.0	ECAR to MAAC MAIN to MAAC MAIN to VACAR	14.5 14.6 2.6	
		Mount Storm - Meadow Brook 500 kV Note: No TLRs called during the summer.		VP-AP		Although this facility has a TLR history, it was not identified as a limit in the ECAR 2001 nor 2000 Summer assessments for the reasons noted in the left column.					Mar - May = 0 / 0 Jun - Aug = 0 / 0 Sep - Nov = 0 / 0 Dec - Feb = 0 / 1

⁽¹⁾ This facility has an established operating procedure to relieve overloads (refer to Appendix H).(2) This facility may overload at higher transfer levels (but below the transfer level tested in the respective interregional studies) for other single contingencies which are not shown in this table for brevity.

⁽³⁾ Number of days limiting facility was under TLR Level 2 and above (based on NERC logs) during March 1999 through February 2001.

APPENDIX B

Facility Additions, Removals, and Modifications, and Abnormal System Conditions

The following three tables document the generation and transmission facility additions, removals, and modifications, and abnormal system conditions which have occurred on the ECAR network since the beginning of last year, and which are expected to occur through the end of this year.

Table B-1 lists the ECAR Generation Additions, Removals, and Modifications.

Table B-2 lists the ECAR Transmission Additions, Removals, and Modifications.

Table B-3 lists the ECAR Abnormal System Conditions.

TABLE B-1

			Ger	neration Ac	ditions				
Connected	Generating Unit	Merchant	Unit	Fuel		Summer	Winter	Modeled in	Study
System	Name/Number	Plant	Type	Type	NDC (MW)	NSC (MW)	NSC (MW)	Base Case	Area
June 2000									
CIN	Madison 1	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Madison 2	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Madison 3	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Madison 4	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Madison 5	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Madison 6	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Madison 7	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Madison 8	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Vermillion 1	Yes	СТ	Nat Gas	80	80	80	Yes	SW
CIN	Vermillion 2	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Vermillion 3	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Vermillion 4	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Vermillion 5	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Vermillion 6	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Vermillion 7	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN	Vermillion 8	Yes	CT	Nat Gas	80	80	80	Yes	SW
CIN-ENWC	Wheatland 3	Yes	СТ	Nat Gas	125	125	125	Yes	SW
CIN-ENWC	Wheatland 4	Yes	СТ	Nat Gas	125	125	125	Yes	SW
DECO	River Rouge 1	Yes	СТ	Nat Gas	240	240	240	Yes	MECS
DPL	Greenville 1	Yes	СТ	Nat Gas	56	56	56	Yes	SW
DPL	Greenville 2	Yes	CT	Nat Gas	56	56	56	Yes	SW
DPL	Greenville 3	Yes	CT	Nat Gas	56	56	56	Yes	SW
DPL	Greenville 4	Yes	CT	Nat Gas	56	56	56	Yes	SW
FE	Richland CT 4	Yes	СТ	Nat Gas	130	130	130	Yes	NE
FE	Richland CT 5	Yes	CT	Nat Gas	130	130	130	Yes	NE
FE	Richland CT 6	Yes	CT	Nat Gas	130	130	130	Yes	NE
HE	Worthington 1	No	СТ	Nat Gas	170	170	170	Yes	SW
IPL	Georgetown 1	No	СТ	Nat Gas	100	75	75	Yes	SW
IPL	Georgetown 2	Yes	CT	Nat Gas	100	75	75	Yes	SW
IPL	Georgetown 3	Yes	СТ	Nat Gas	100	75	75	Yes	SW
IPL-ENWI	Wheatland 1	Yes	СТ	Nat Gas	125	125	125	Yes	SW
IPL-ENWI	Wheatland 2	Yes	СТ	Nat Gas	125	125	125	Yes	SW
December 2	000								
AP	Allegheny Energy 8	Yes	СТ	Nat Gas	48	44	48	Yes	SW
AP	Allegheny Energy 9	Yes	СТ	Nat Gas	48	44	48	Yes	SW

TABLE B-1

		G	eneratio	n Addition	s (Continue	ed)			
Connected	Generating Unit	Merchant	Unit	Fuel	•	Summer	Winter	Modeled in	Study
System	Name/Number	Plant	Type	Туре	NDC (MW)	NSC (MW)	NSC (MW)	Base Case	Area
April 2001									
•									
BREC	Willamette Ind. (a) Note (a): Co-generat	Co-Gen ion facility add	Steam ded by indu	Waste strial custom	58 er is modeled	58 as reduced lo	58 ad at Skillma	Yes n.	SW
DECO	DIG STG 1	Yes	STG	Nat Gas	250	200	250	Yes	MECS
May 2001									
LGEE	Brown CT 5	No	СТ	Nat Gas	135	135	135	Yes	SW
LGEE	Paddys Run 13	No	CT	Nat Gas	185	160	185	Yes	SW
June 2001									
AEP	Twelve Pole Ck 1	Yes	СТ	Nat Gas	80	80	80	Yes	SW
AEP	Twelve Pole Ck 2	Yes	CT	Nat Gas	80	80	80	Yes	SW
AEP	Twelve Pole Ck 3	Yes	CT	Nat Gas	80	80	80	Yes	SW
AEP	Twelve Pole Ck 4	Yes	CT	Nat Gas	80	80	80	Yes	SW
AEP	Twelve Pole Ck 5	Yes	CT	Nat Gas	80	80	80	Yes	SW
AEP	Twelve Pole Ck 6	Yes	СТ	Nat Gas	80	80	80	Yes	SW
AEP	Grangston 1	Yes	СТ	Nat Gas	50	50	50	Yes	SW
AEP	Grangston 2	Yes	CT	Nat Gas	50	50	50	Yes	SW
AEP	Grangston 3	Yes	CT	Nat Gas	50	50	50	Yes	SW
AEP	Grangston 4	Yes	CT	Nat Gas	50	50	50	Yes	SW
AEP	Grangston 5	Yes	CT	Nat Gas	50	50	50	Yes	SW
AEP	Grangston 6	Yes	CT	Nat Gas	50	50	50	Yes	SW
۸ED	Kayatana 1	Vos	СТ	Not Coo	E0	E 0	E 0	Vaa	SW
AEP	Keystone 1	Yes	CT	Nat Gas	50 50	50 50	50	Yes Yes	SW
AEP	Keystone 2	Yes	CT	Nat Gas	50 50	50 50	50 50		SW
AEP	Keystone 3	Yes	CT CT	Nat Gas	50 50	50 50	50 50	Yes	
AEP	Keystone 4	Yes		Nat Gas	50 50	50 50	50 50	Yes	SW
AEP	Keystone 5	Yes	CT	Nat Gas	50 50	50 50	50	Yes	SW
AEP AEP	Keystone 6	Yes	CT CT	Nat Gas	50 50	50 50	50 50	Yes	SW SW
AEP	Keystone 7	Yes Yes	CT	Nat Gas Nat Gas	50 50		50 50	Yes Yes	SW
ALF	Keystone 8	162	CI	Nat Gas	50	50	50	162	SVV
AEP	Wolf Hills 1	Yes	CT	Nat Gas	50	50	50	Yes	SW
AEP	Wolf Hills 2	Yes	CT	Nat Gas	50	50	50	Yes	SW
AEP	Wolf Hills 3	Yes	CT	Nat Gas	50	50	50	Yes	SW
AEP	Wolf Hills 4	Yes	CT	Nat Gas	50	50	50	Yes	SW
AEP	Wolf Hills 5	Yes	CT	Nat Gas	50	50	50	Yes	SW
AEP	Zelda 1	Yes	СТ	Nat Gas	167	167	167	Yes	SW
AEP	Zelda 2	Yes	CT	Nat Gas	167	167	167	Yes	SW
AEP	Zelda 3	Yes	CT	Nat Gas	167	167	167	Yes	SW

TABLE B-1

		G	eneratio	n Additions	s (Continue	ed)			
Connected	Generating Unit	Merchant	Unit	Fuel	•	Summer	Winter	Modeled in	Study
System	Name/Number	Plant	Type	Type	NDC (MW)	NSC (MW)	NSC (MW)	Base Case	Area
June 2001 (C	ontinued)								
CIN	Henry 1	Yes	CT	Nat Gas	61	61	61	Yes	SW
CIN	Henry 2	Yes	CT	Nat Gas	61	61	61	Yes	SW
CIN	Henry 3	Yes	CT	Nat Gas	61	61	61	Yes	SW
CONS	Zeeland 1	Yes	СТ	Nat Gas	185	185	185	Yes	MECS
CONS	Zeeland 2	Yes	CT	Nat Gas	185	185	185	Yes	MECS
CONS	Various Plants	Yes			75	75	75	Yes	MECS
DECO	DIG GTG 2	Yes	СТ	Nat Gas	183	170	183	Yes	MECS
DECO	DIG GTG 3	Yes	CT	Nat Gas	183	170	183	Yes	MECS
DPL	Adkins 1	Yes	СТ	Nat Gas	80	80	80	Yes	SW
DPL	Adkins 2	Yes	CT	Nat Gas	80	80	80	Yes	SW
DPL	Adkins 3	Yes	CT	Nat Gas	80	80	80	Yes	SW
DPL	Adkins 4	Yes	CT	Nat Gas	80	80	80	Yes	SW
DPL	Adkins 5	Yes	CT	Nat Gas	80	80	80	Yes	SW
DPL	Adkins 6	Yes	СТ	Nat Gas	80	80	80	Yes	SW
FE	West Lorain 1	Yes	СТ	Nat Gas	85	85	85	No	NE
FE	West Lorain 2	Yes	CT	Nat Gas	85	85	85	No	NE
FE	West Lorain 3	Yes	CT	Nat Gas	85	85	85	No	NE
FE	West Lorain 4	Yes	CT	Nat Gas	85	85	85	No	NE
FE	West Lorain 5	Yes	СТ	Nat Gas	85	85	85	No	NE
IPL	Georgetown 4	Yes	СТ	Nat Gas	100	75	75	No	sw
September 2	001								
NIPS	WCEP 1	Yes	CC-CT	Nat Gas	150	150	150	Yes	SW
NIPS	WCEP 2	Yes	CC-CT	Nat Gas	150	150	150	Yes	SW
NIPS	WCEP 3	Yes	CC-STM	Waste Heat	150	150	150	Yes	SW
October 2001									
AP	Oak Grove 1	Yes	СТ	Nat Gas	190	150	190	No	NE
AP	Oak Grove 2	Yes	СТ	Nat Gas	190	150	190	No	NE
December 20	01								
AP	Allegheny Energy 6	Yes	СТ	Nat Gas	48	44	48	Yes	NE
AP	Allegheny Energy 7	Yes	CT	Nat Gas	48	44	48	Yes	NE

TABLE B-1

			Gen	eration Re	movals				
Connected	Generating Unit	Merchant	Unit	Fuel		Summer	Winter	Modeled in	Study
System	Name/Number	Plant	Type	Type	NDC (MW)	NSC (MW)	NSC (MW)	Base Case	Area

None

			Gener	ration Mod	ifications				
Connected	Generating Unit	Merchant	Unit	Fuel		Summer	Winter	Modeled in	Study
System	Name/Number	Plant	Type	Type	NDC (MW)	NSC (MW)	NSC (MW)	Base Case	Area
May 2000									
ay 000									
LGEE	Brown CT 8 (b)	No	CT	Gas / Oil	135	135	135	Yes	SW
LGEE	Brown CT 9 (b)	No	CT	Gas / Oil	135	135	135	Yes	SW
LGEE	Brown CT 10 (b)	No	CT	Gas / Oil	135	135	135	Yes	SW
LGEE	Brown CT 11 (b)	No	CT	Gas / Oil	135	135	135	Yes	SW
	Note (b): Added inlet	-air cooling to	increase c	apability from	110 MW to 1	35 MW.			
June 2000									
CONS	Various Plants (c)	No			57	57	57	Yes	MECS
	Note (c): Reflects tot	al increase in	capacity d	ue to various	modifications	at existing ger	nerating units		
November 2	2000								
CONS	Cobb 1 (d)	No	Steam	Nat Gas	61	61	15	Yes	MECS
CONS	Cobb 2 (d)	No	Steam	Nat Gas	61	61	14	Yes	MECS
CONS	Cobb 3 (d)	No	Steam	Nat Gas	61	61	14	Yes	MECS
	Note (d): Reduced w	inter capability	due to ga	s availability.					
June 2001									
CONS	Various Plants (e)	No			24	24	24	Yes	MECS
	Note (e): Reflects tot	al increase in	capacity d	ue to various	modifications	at existing ge	nerating units	i.	

TABLE B-2

Transmission Additions											
System	Transmission Facility	Voltage (kV)	Summer N/E (MVA)	Winter N/E (MVA)	Line Mileage	Modeled in Base Case	Study Area				
	-	(NV)	INE (INIVA)	IVE (IVIVA)	willeage	Dase Case	AIEd				
February 20	00										
AP	New Market / Monocacy - Mt. Airy	230	(Loop)	(Loop)	4	Yes	SW				
May 2000											
DECO	Belle River - Madrid - Pontiac	345	1756 / 2007	1756 / 2007	42	Yes	MECS				
June 2000											
AEP	Ohio/Indiana Reactive Correction	(Various)	1100 MVAR	1100 MVAR		Yes	SW				
CIN	Madison - Woodsdale (radial connection to merchant plant)	345	1200 / 1200	1200 / 1200	0	Yes	SW				
CIN	Vermilion / Cayuga - Eugene (loop connection to merchant plant)	345	(Loop)	(Loop)	0	Yes	SW				
CIN	Wheatland / Gibson - Qualitech (loop connection to merchant plant)	345	(Loop)	(Loop)	0	Yes	SW				
CONS	Battle Creek # 1 (Battle Creek # 2 has been in service)	345-138	563 / 595	563 / 595		Yes	MECS				
DECO	Bunce Creek (B3N) PAR	230-230	675 / 1100	675 / 1100		Yes	MECS				
DECO	Saint Clair (L51D) #9	345-230	230 1000 / 1300 1000 / 1300			Yes	MECS				
HE	Bloomington # 2	345-230	500 / 750	500 / 750		Yes	SW				
HONI	Lambton (L51D) PAR	230-230	845 / 1170	845 / 1170		Yes	MECS				
IPL	Wheatland / Breed - Petersburg (loop connection to merchant plant)	345	(Loop)	(Loop)	0	Yes	SW				
LGEE	Middletown - Trimble County # 2	345	1207 / 1207	1207 / 1207	28	Yes	SW				
LGEE	Middletown # 3	345-138	448 / 478	448 / 478		Yes	SW				
February 20	01										
DECO	DIG / Waterman - Navarre (loop connection to merchant plant)	230	(Loop)	(Loop)	1	Yes	MECS				
March 2001											
CONS	Roosevelt / Palisades - Talmadge	345	(Loop)	(Loop)	0	Yes	MECS				
CONS	Roosevelt - Zeeland (radial connection to merchant plant)	345	1933 / 2732	2303 / 2963	1.5	No	MECS				

TABLE B-2

Transmission Additions (Continued)											
System	Transmission Facility	Voltage (kV)	Summer N/E (MVA)	Winter N/E (MVA)	Line Mileage	Modeled in Base Case	Study Area				
April 2001											
DECO	DIG / Baxter - Navarre - Warren (loop connection to merchant plant)	230	(Loop)	(Loop)	1	Yes	MECS				
May 2001											
AEP	Orange / Kammer - Marysville	765	(Loop)	(Loop)	0	Yes	SW				
AEP	Orange # 1	765-138	801 / 960	915 / 1050		Yes	SW				
DECO	Bismarck # 1	345-120	600 / 625	600 / 625		Yes	MECS				
DECO	Blackfoot / Belle R - Madrid - Pontiac	345	(Loop)	(Loop)	0	Yes	MECS				
FE	Highland # 3	345-138	448 / 490	485 / 535		No	NE				
FE	Hoytdale # 2	345-138	448 / 490	485 / 535		No	NE				
June 2001											
AEP	Baker - Zelda (radial connection to merchant plant)	345	800 / 800	800 / 800	0.1	Yes	SW				
AEP	Keystone / DeSoto-Sorenson # 1 (loop connection to merchant plant)	345	(Loop)	(Loop)	0.4	Yes	SW				
AEP	South Canton # 2 (West # 1)	345-138	786 / 888	876 / 966		Yes	SW				
AEP	TriState # 3 (operated normally open)	345-138	500 / 550	560 / 600		Yes	SW				
CIN - DPL	Foster - Bath	345	1258 / 1556	1258 / 1556	40	Yes	SW				
CONS	Oneida / Battle Creek - Majestic	345	(Loop)	(Loop)	20	Yes	MECS				
DPL - AEP	Adkins / Atlanta - Beatty (loop connection to merchant plant)	345	(Loop)	(Loop)	0	Yes	SW				
August 2001											
HONI	Lambton (L4D) PAR	230-230	845 / 1170	845 / 1170		Yes	MECS				
December 20	001										
AEP	Meridian / Sorenson - Twin Branch	345	(Loop)	(Loop)	0	No	SW				
AEP	Meridian - Whitely (radial connection to industrial load)	345	200 / 200	200 / 200	7	No	SW				

TABLE B-2

	Transmission Additions (Continued)												
		Voltage	Summer	Winter	Line	Modeled in	Study						
System	Transmission Facility	(kV)	N/E (MVA)	N/E (MVA)	Mileage	Base Case	Area						
December 2	South Bend / Yukon - Keystone	500	(Loop)	(Loop)	0.1	No	NE						
	(loop connection to merchant plant)												
	Т	ransmissio	n Removals										

None

Summer

N/E (MVA)

Winter

N/E (MVA)

Line

Modeled in

Mileage Base Case

Study

Area

Voltage

(kV)

Transmission Facility

System

Transmission Modifications												
System	Transmission Facility	Voltage (kV)	Summer N/E (MVA)	Winter N/E (MVA)	Line Mileage	Modeled in Base Case	Study Area					
May 2000												
DECO	Belle River - Greenwood - Pontiac (re-terminate bypassing Jewell)	345				Yes	MECS					
June 2000												
AEP	Cloverdale # 3 (replacement with higher capability bank)	345-138	722 / 817	803 / 884		Yes	SW					
OVEC	Sargents # 1 (replacement with higher capability bank)	345-138	322 / 368	368 / 411		Yes	SW					
Septembe	2000											
OVEC	Clifty Creek # 1A (replacement with higher capability bank)	345-138	169 / 193	193 / 214		Yes	SW					
December	2000											
AEP	Cloverdale # 1B (replacement with higher capability bank)	345-138	550 / 600	550 / 600		Yes	SW					
FE	Star # 2 (replacement with higher capability bank)	345-138	448 / 490	485 / 535		Yes	NE					
January 20	001											
AEP	Sporn B # 4 (replacement with similar capability bank)	345-138	550 / 600	550 / 600		Yes	SW					

TABLE B-2

	Transmission Modifications (Continued)												
System	Transmission Facility	Voltage (kV)	Summer N/E (MVA)	Winter N/E (MVA)	Line Mileage	Modeled in Base Case	Study Area						
April 2001	<u>-</u>	(**-7	(,										
DPL	Clinton # 1 (replacement with higher capability bank)	345-69	250 / 275	250 / 275		Yes	SW						
June 2001													
AEP	Bixby # 1 (replacement with higher capability bank)	345-138	717 / 754	717 / 933		Yes	SW						
December	2001												
FE - AP	Maple - Krendale - Butler 138 kV (increase circuit capacity)	138	308 / 364	374 / 480	13.0	No	NE						

TABLE B-3
ECAR 2001 Summer Assessment of Transmission System Performance
Abnormal System Conditions (Generation 200 MW and Above - Transmission 230 kV and Above)

	Abnormal Generation Conditions												
System	Generating Unit Name/Number	NDC (MW)	Summer NSC (MW)	Winter NSC (MW)	Date Out	Date Back	Reason	Modeled in Base Case	Study Area				
AEP	Cook 1	1020	1000	1020	09/08/97	12/21/00	Forced	In Service	SW				
AEP	Cook 2	1090	1060	1090	09/08/97	07/04/00	Forced	In Service	SW				

		Al	bnormal Tr	ansmissio	n Condition	ons			
System	Transmission Facility	Voltage (kV)	Summer N/E (MVA)	Winter N/E (MVA)	Date Out	Date Back	Reason	Modeled in Base Case	Study Area
CIN	Terminal # 11	345-138	400 / 400	400 / 400	10/23/98	06/01/01	Forced	Outaged	SW
HE	Worthington # 1	345-138	300 / 450	300 / 450	06/01/00 06/01/01	08/31/00 08/31/01	Procedure	Outaged	SW
LGEE	Blue Lick # 1	345-138	448 / 515	448 / 515	01/03/00	06/01/01	Forced	In Service	SW

APPENDIX C

Comparison of Data Reported in Primary Base Cases

Table C-1 provides a means of comparing the area generation and load levels represented in the primary base cases used in this and previous seasonal transmission assessments. In addition, for each ECAR company represented in the primary base case used for this seasonal assessment, load power factors, losses, scheduled interchange (where positive quantities represent exports and negative quantities represent imports), bus and line shunts (where positive quantities represent capacitive sources and negative quantities represent reactive sinks), and line charging (where positive quantities represent capacitive sources) are tabulated.

	COMPARISON OF SEASONAL COMPARISON OF GENERATION (MW) BUS LOADS				BUSI	LOADS	AREA LOSSES		INTERCHANGE		BUS SHUNTS	LINE SHUNTS	LINE CHARGE		
AREA	2001S	2000S	DELTA	2001S	2000S	DELTA	(MVAR)	(P.F.)	(MW)	(MVAR)	(MW)	(MVAR)	(MVAR)	(MVAR)	(MVAR)
AEP AP	24275 7322	22837 7439	1438 -117	23013 7828	22696 7671	317 157	4666 2422	0.9795 0.9525	657 166	7745 3216	605 -671	256 -381	4890 2000	-5852 0	12732 1708
BREC CIN	1455 11918	1526 12651	-71 -733	1539 11335	1544 11727	-5 -392	703 1848	0.8975 0.9867	6 354	59 4583	-90 161	-31 -1035	293 297	0 0	109 1640
DECO DLCO	9262 10934 2979	8783 10589 2959	479 345 20	8889 11185 2639	8431 11100 2693	458 85 -54	1654 2522 815	0.9827 0.9747 0.9527	216 214 21	2494 3092 268	157 -465 319	155 213 92	527 918 242	224 0 0	1767 1628 466
DPL EKPC	3446 1829	3467 1712	-21 117	3261 1683	3236 1591	25 92	677 636	0.9785 0.9294	100 64	1167 490	84 80	413 47	1416 429	0 -10	391 194
ENWC ENWI FE	110 110 11579	0 0 11352	110 110 227	0 0 13130	0 0 12922	0 0 208	0 0 4163	 0.9502	0 0 308	5 5 3172	110 110 -1859	-1 -2 -436	0 0 2611	0 0 0	0 0 1513
HE IPL	1395 3232	1418 3497	-23 -265	484 3160	515 3021	-31 139	143 427	0.9567 0.9909	25 67	187 999	886	-43 -147	0 99	0 -29	125 318
LGEE NIPS OVEC	6681 2872 2001	6394 3233 2161	287 -361 -160	7112 3211 600	6813 3344 600	299 -133 0	1910 1478 285	0.9642 0.8959 0.8893	151 37 12	1267 395 162	-589 -376 1389	106 -215 -83	336 160	38 0 0	846 313 536
SIGE	1667	1723	-160 -56	1714	1771	-57	520	0.8893	23	287	-70	-83 -61	0 143	0	536 24
ECAR	103067	101741	1326	100783	99675	1108	24869	0.9697	2421	29593	-219	-1153	14361	-5629	24310

Page: 1 of 1

APPENDIX D

Scheduled Interchange

Table D-1 lists the firm and non-firm transactions represented in the ECAR primary base case (E100) used for this seasonal transmission assessment. As many of the schedules shown are dependent on the availability of sufficient transmission capacity and the relative generation costs of the parties involved, the actual interchanges scheduled at any given time during the period covered by this seasonal assessment may be substantially different.

Imbedded in the company-to-company scheduled interchange documented in Table D-1 are some virtual transactions which were modeled to facilitate the development of the ECAR primary base case (E100) used for this transmission assessment. Due to uncertainties associated with actual sources of power needed to meet some of the power requirements within ECAR at the time the primary base case was developed, these virtual transactions were modeled to reflect the exchange of power between those ECAR areas with available generation resources in the primary base case and those ECAR areas in need of generation resources in the primary base case. This power exchange ensured that none of the ECAR areas reduced their modeled load from forecasted peak levels. Table D-2 documents all of the non-firm and virtual transactions modeled in the primary base case used for this seasonal transmission assessment.

ECAR 2001 SUMMER ASSESSMENT OF TRANSMISSION SYSTEM PERFORMANCE SCHEDULED INTERCHANGE FOR PRIMARY BASE CASE (E100)

REGION	FROM	TO	2001S	REGION	FROM	TO	2001S	REGION	FROM	TO	2001S
MAAC	PJM500	**	10762		======		=====	 SERC	EES	TVA	-674
	PJM500	NYISO	-94	MAAC	MAAC	TOTALS	74		EES	EQ-SERC	-23
				======			======		EES	AMRN	160
	PJM500	TOTALS	10668					 	EES	EQ-SPP	460
MAAC	PENELEC	* *	370	 SERC	CPLE	PECO	-300	 	EES	TOTALS	-77
	PENELEC	FE	332		CPLE	DUKE	-3				
	PENELEC	NYISO	486		CPLE	VP	41	SERC	ENNA	DOE	136
					CPLE	EQ-SERC	341				
	PENELEC	TOTALS	1188		CPLE	AEP	-275		ENNA	TOTALS	136
					CPLE	EQ-FRCC	-50				
MAAC	METED	**	57					SERC	EQ-SERC	CPLE	-341
					CPLE	TOTALS	-246		EQ-SERC	DUKE	438
	METED	TOTALS	57						EQ-SERC	TVA	-350
				SERC	CPLW	TVA	-14		EQ-SERC	EES	23
MAAC	JCP&L	* *	-2129		CPLW	AEP	-180		EQ-SERC	BREC	-100
				İ					EQ-SERC	AMRN	34
	JCP&L	TOTALS	-2129	İ	CPLW	TOTALS	-194	İ	EQ-SERC	EQ-FRCC	2273
				İ					EQ-SERC	EQ-SPP	-295
MAAC	PP&L	* *	1559	SERC	DUKE	CPLE	3		EQ-SERC	EQ-MAPP	95
				i İ	DUKE	EQ-SERC	-438				
	PP&L	TOTALS	1559	į	DUKE	CIN	-58	į	EQ-SERC	TOTALS	1777
MAAC	PECO	* *	-2258		DUKE	TOTALS	 -493	 	======		=====
	PECO	CPLE	300					SERC	SERC T	TOTALS	2512
	PECO	HE	-400	SERC	VP	CPLE	-41	======	=======		======
	PECO	DLCO	-100		VP	AP	560				
					VP	AEP	-17				
	PECO	TOTALS	-2458					ECAR	AP	VP	-560
					VP	TOTALS	502		AP	FE	194
MAAC	PSE&G	**	-3535						AP	AEP	-16
				SERC	TVA	CPLW	14		AP	OVEC	-169
	PSE&G	TOTALS	-3535		TVA	DOE	164		AP	DLCO	-120
					TVA	EES	674				
MAAC	BG&E	**	-3296		TVA	EQ-SERC	350		AP	TOTALS	-671
					TVA	CIN	-107				
	BG&E	TOTALS	-3296		TVA	LGEE	126	ECAR	FE	PENELEC	-332
					TVA	BREC	190		FE	PEPCO	450
MAAC	PEPCO	* *	-285		TVA	EKPC	118		FE	AP	-194
	PEPCO	FE	-450		TVA	SIPC	28		FE	AEP	-774
									FE	OVEC	-316
	PEPCO	TOTALS	-735		TVA	TOTALS	1557		FE	DLCO	-322
									FE	CONS	-312
MAAC	AE	* *	-565	SERC	DOE	TVA	-164		FE	NYISO	-59
					DOE	ENNA	-136				
	AE	TOTALS	-565		DOE	EEI	-150		FE	TOTALS	-1859
MAAC	DP&L	**	-680		DOE	TOTALS	-450	 			
	DP&L	TOTALS	-680	 				<u> </u>			

ECAR 2001 SUMMER ASSESSMENT OF TRANSMISSION SYSTEM PERFORMANCE SCHEDULED INTERCHANGE FOR PRIMARY BASE CASE (E100)

REGION	FROM	ТО	2001S	REGION	FROM	TO	2001S	REGION	FROM	TO	2001S
ECAR	AEP	CPLE	275	 ECAR	DPL	AEP	236	ECAR	EKPC	TVA	-118
	AEP	CPLW	180	· 	DPL	OVEC	-66		EKPC	AEP	-53
	AEP	VP	17		DPL	CIN	-81		EKPC	HE	-50
	AEP	AP	16			NYISO	-5		EKPC	CIN	38
	AEP	FE	774						EKPC	LGEE	263
	AEP	OVEC	-568		DPL	TOTALS	84	İ			
	AEP	CIN	-350	İ				İ	EKPC	TOTALS	80
	AEP	DPL	-236	ECAR	SIGE	AEP	-50				
	AEP	SIGE	50		SIGE	OVEC	-20	ECAR	ENWC	HE	110
	AEP	LGEE	-66								
	AEP	DLCO	223		SIGE	TOTALS	-70		ENWC	TOTALS	110
	AEP	EKPC	53								
	AEP	EQ-SPP	250	ECAR	LGEE	TVA	-126	ECAR	ENWI	HE	110
	AEP	NYISO	-13		LGEE	AEP	66				
					LGEE	OVEC	-128		ENWI	TOTALS	110
	AEP	TOTALS	605		LGEE	CIN	79				
					LGEE	EKPC	-263		======	========	=====
ECAR	OVEC	AP	169		LGEE	EEI	-217	ECAR	ECAR	TOTALS	-219
	OVEC	FE	316					======	======	========	======
	OVEC	AEP	568		LGEE	TOTALS	-589				
	OVEC	CIN	122								
	OVEC	DPL	66	ECAR	BREC	TVA	-190	MAIN	ENLC	CE	600
	OVEC	SIGE	20		BREC	EQ-SERC	100				
	OVEC	LGEE	128						ENLC	TOTALS	600
					BREC	TOTALS	-90				
	OVEC	TOTALS	1389					MAIN	AMRN	EES	-160
				ECAR	DLCO	PECO	100		AMRN	EQ-SERC	-34
ECAR	HE	PECO	400		DLCO	AP	120		AMRN	CIN	40
	HE	CIN	656		DLCO	FE	322		AMRN	CE	30
	HE	ENWC	-110		DLCO	AEP	-223		AMRN	EQ-MAIN	180
	HE	ENWI	-110						AMRN	IP	41
	HE	EKPC	50		DLCO	TOTALS	319	ĺ	AMRN	EEI	-720
									AMRN	EQ-SPP	-16
	HE	TOTALS	886	ECAR	NIPS	CIN	-376				
									AMRN	TOTALS	-639
ECAR	CIN	DUKE	58		NIPS	TOTALS	-376				
	CIN	TVA	107					MAIN	IP	CIN	-129
	CIN	AEP	350	ECAR	CONS	FE	312		IP	AMRN	-41
	CIN	OVEC	-122		CONS	DECO	165		IP	SIPC	-20
	CIN	HE	-656		CONS	WEC	-20		IP	EEI	-164
	CIN	DPL	81		CONS	IMO	-300		IP	CE	65
	CIN	LGEE	-79								
	CIN	NIPS	376		CONS	TOTALS	157		IP	TOTALS	-289
	CIN	EKPC	-38								
	CIN	AMRN	-40	ECAR	DECO	CONS	-165	MAIN	SIPC	TVA	-28
	CIN	IP	129		DECO	IMO	-300		SIPC	IP	20
	CIN	NYISO	-5								
	CIN	TOTALS	161		DECO	TOTALS	-465	 	SIPC	TOTALS	-8
	CTIA	TOTALD	101					 			

ECAR 2001 SUMMER ASSESSMENT OF TRANSMISSION SYSTEM PERFORMANCE SCHEDULED INTERCHANGE FOR PRIMARY BASE CASE (E100)

REGION	FROM	ТО	2001S	REGION	FROM	TO	2001S	REGION	FROM	ТО	2001S
MAIN	EEI	DOE	150	MAIN	EQ-MAIN	AMRN	-180	NPCC	NYISO	РЈМ500	94
		LGEE	217		EQ-MAIN				NYISO		-486
	EEI	AMRN	720	' 					NYISO	FE	59
	EEI	IP	164		EQ-MAIN	TOTALS	-279		NYISO	AEP	13
							j		NYISO	CIN	5
	EEI	TOTALS	1251		======		=====		NYISO	DPL	5
				MAIN	MAIN T	COTALS	11		NYISO	EQ-NPCC	-719
MAIN	CE	ENLC	-600	======	=======	:=======	======				
	CE	AMRN	-30						NYISO	TOTALS	-1029
	CE	IP	-65								
	CE	ALTE		FRCC	EQ-FRCC			NPCC	IMO		300
	CE	WEC	25		EQ-FRCC	_	'		IMO		
	CE	MGE	15						IMO	EQ-MAPP	-200
	CE	EQ-MAPP	634		EQ-FRCC	TOTALS	-2223				400
			164	 					IMO	TOTALS	400
	CE	TOTALS	164	 EDGG		ODAT C	-2223	MDGG	EO NDGG	MATERIA	710
MAIN	ALTE	CE	_105	FRCC 		OTALS ========		I NPCC	EQ-NPCC	NYISO	719
MAIN	ALTE	WEC	276	 				 	EQ-NPCC	פ. דהיים	719
	ALTE	WPS	219	<u> </u> 					EQ NECC	TOTALS	713
	ALTE	MGE	225	I I SPP	EQ-SPP	EES	-460		=======	=======	=====
		EQ-MAPP		522	EQ-SPP			NPCC		TOTALS	90
				! 	EQ-SPP	AEP				:======	
	ALTE	TOTALS	189		EQ-SPP		16				
				! 	EQ-SPP	EQ-MAIN	99				
MAIN	WEC	CONS	20		EQ-SPP	EQ-MAPP	117	*****	******	*****	*****
	WEC	CE	-25					SUMMATI	ON		0
	WEC	ALTE	-276		EQ-SPP	TOTALS	-183				
	WEC	EQ-MAPP	-62					** F	REE FLOW	OF POWER	
					======	=======	=====	M	ITHIN REG	GION.	
	WEC	TOTALS	-343	SPP	SPP I	OTALS	-183				
					:======	========	======				
MAIN		ALTE									
		MGE	100				0.5				
	WPS	UPP				EQ-SERC					
	WPS	EQ-MAPP	-176 	 	EQ-MAPP EQ-MAPP	CE ALTE	-634 346				
	WPS	TOTALS	-200	 	EQ-MAPP	WEC	62				
	WED	TOTALS	200	<u> </u> 	EQ-MAPP		176				
MAIN	MGE	CE	-15	! 	EQ-MAPP		-117				
		ALTE	-225		~ EQ-MAPP		200				
	MGE	WPS	-100	!							
					EQ-MAPP	TOTALS	-62	· 			
	MGE	TOTALS	-340				j				
					======	========	=====				
MAIN	UPP	WPS	-95	MAPP	MAPP I	OTALS	-62				
				====== :	=======	=======	======				
	UPP	TOTALS	-95								

ECAR 2001 SUMMER ASSESSMENT OF TRANSMISSION SYSTEM PERFORMANCE ECAR NON-FIRM/VIRTUAL TRANSACTIONS IN SCHEDULED INTERCHANGE FOR PRIMARY BASE CASE (E100)

REGION	FROM	TO		REGION				REGION	FROM	то	2001S
MAAC	PECO	HE	-400	!	ENWI	HE	110				
	PECO	DLCO	-100 	 	ENWI	TOTALS	110				
	PECO	TOTALS	-500	 	TIME	TOTALD	110				
						=======================================					
MAAC		TOTALS	-500			TOTALS	-100				
		=========		 							
				l							
EGAD		3.00	1 5 0	NPCC		CONS	300				
ECAR		AEP 	-150 	 	IMO	DECO	300				
	FE	TOTALS	-150	į	IMO	TOTALS	600				
ECAR	AEP	FE	150	 	=====	========	=====				
		SIGE	50	NPCC	NPCC	TOTALS	600				
	AEP	DLCO	223	=====		========					
	AEP	EKPC	100	 							
	AEP	TOTALS	523	 *****	*****	*****	*****				
				SUMMAT	ION		0				
ECAR	HE	PECO	400								
		ENWC				W OF POWER					
	HE 	ENWI	-110 		VITHIN R	EGION.					
	HE	TOTALS	180	' 							
ECAR	SIGE	AEP	-50 	 							
	SIGE	TOTALS	-50	 							
ECAR	DLCO	AEP	-223	! 							
	DLCO	PECO	100								
	DLCO	TOTALS	-123	 -							
ECAR	CONS	IMO	-300	 -							
	CONS	TOTALS	-300	 							
ECAR	DECO	IMO	-300								
	DECO	TOTALS	-300								
ECAR	EKPC	AEP	-100								
	EKPC	TOTALS	-100	 							
ECAR	ENWC	HE	110	 							
	ENWC	TOTALS	110	 							

APPENDIX E

Scheduled Interchange Comparisons

Table E-1 lists the net scheduled interchange for each area modeled in the ECAR primary base case (E100) used for this seasonal transmission assessment. This table also includes a comparison of this season's net scheduled interchange amounts with those modeled in the previous seasonal assessment.

Whereas Table D-1 lists all of the power transfers represented in the ECAR primary base case (E100) used for this seasonal transmission assessment, Table E-2 lists only those power transfers which cross the geographic boundaries between the ECAR Region and its neighboring regions. This facilitates the identification of all inter-regional power transfers modeled in this study involving ECAR. This table also includes a comparison of these power transfers with those represented during the previous seasonal assessment.

Table E-1
ECAR 2001 Summer Assessment of Transmission System Performance
Comparison of Scheduled Interchange in Primary Base Cases (E100)

Date: 04/17/01 Page: 1 of 2

			DELTA			
PJM500 PENELEC METED JCP&L PP&L PECO PSE&G BG&E PEPCO AE DP&L	10668 1188 57 -2129 1559 -2458 -3535 -3296 -735 -565 -680	10636 1305 207 -2134 988 -2224 -3607 -2771 -769 -638 -869	32 -117 -150 5 571 -234 72 -525 34 73 189			
MAAC	74	124	-50			
CPLE CPLW DUKE VP TVA DOE EES ENSE ENCE ENNA ENGL EQ-SERC	-246 -194 -493 502 1557 -450 -77 0 0 136 0	-404 -183 144 352 -27 -150 0 455 445 300 0	158 -11 -637 150 1584 -300 -77 -455 -445 -164 0			
SERC	2512	2917	-405			
AP FE AEP OVEC HE CIN DPL SIGE LGEE BREC DLCO IPL NIPS CONS DECO EKPC ENWC ENWI	-671 -1859 605 1389 886 161 84 -70 -589 -90 319 0 -376 157 -465 80 110 110	-387 -1815 -543 1550 870 489 120 -73 -570 -25 244 400 -154 157 -665 58 0 0	-284 -44 1148 -161 16 -328 -36 3 -19 -65 75 -400 -222 0 200 22 110 110			

Table E-1
ECAR 2001 Summer Assessment of Transmission System Performance
Comparison of Scheduled Interchange in Primary Base Cases (E100)

Date: 04/17/01 Page: 2 of 2

SYSTEM	2001S	2000S	DELTA
ENLC AMRN IP SIPC EEI CE ALTE WEC WPS MGE UPP EQ-MAIN	600 -639 -289 -8 1251 164 189 -343 -200 -340 -95 -279	0 -711 -214 0 1010 173 0 0 0 0	600 72 -75 -8 241 -9 189 -343 -200 -340 -95 567
MAIN	11	-588	599
EQ-FRCC	-2223	-2268	45
FRCC	-2223	-2268	45
EQ-SPP	-183	-136	-47
SPP	-183	-136	-47
EQ-MAPP	-62	255	-317
MAPP	-62	255	-317
NYISO IMO EQ-NPCC	-1029 400 719	-1584 -400 2024	555 800 -1305
NPCC	90	40	50
TOTAL	0	0	0

REGION	FROM SYSTEM	TO SYSTEM	TYPE OF TRANSACTION	2001S	2000\$	DELTA
MAAC	FE FE FE HE DLCO	PENELEC PENELEC PEPCO PECO PECO	Seneca Wellsboro Firm Sale Interchange Interchange Total MAAC	-352 20 450 400 100 618	-352 20 450 400 100 618	0 0 0 0 0
SERC	AP AP AEP AEP CIN DECO CIN LGEE BREC BREC EKPC EKPC EKPC	VP VP CPL CPL VP DUKE DUKE TVA TVA TVA TVA TVA TVA TVA	Bath County Diversity NCEMC Rockport Miscellaneous Greenwood Interchange Subtotal Bristol Interchange Oglethorpe SEPA Peaking SEPA TVA Load Subtotal Total SERC	-560 0 205 250 17 58 0 -30 107 -126 100 -190 0 -100 -18 -227 -257	-560 150 205 250 17 59 -200 -79 104 -125 100 -190 -100 -20 -331 -410	0 -150 0 0 0 -1 200 49 3 -1 0 0 100 0 2 104 153
MAIN	CIN CIN CIN CIN CIN CONS LGEE	AMRN AMRN AMRN IP IP WEC EEI	Edgar SWEC WVPA IMEA SWEC Edison Sault Interchange Total MAIN	17 8 -65 60 69 -20 -217	15 8 -65 60 62 0 -200	2 0 0 7 -20 -17
SPP	AEP	CESW	Interchange Total SPP	250 250	250 250	0 0
NPCC	FE AEP CIN DPL CONS DECO	NYISO NYISO NYISO NYISO IMO	AMPO-NYPA AMPO-NYPA AMPO-NYPA AMPO-NYPA Subtotal Interchange Interchange Subtotal Total NPCC	-59 -13 -5 -5 -82 -300 -300 -600 -682	-59 -13 -5 -5 -82 -300 -300 -600 -682	0 0 0 0 0 0
TOTAL	ECAR	NON-ECAR	GRAND TOTAL	-219	-344	125

APPENDIX F

Transcription Diagrams

This section of the Appendix includes flow and rating transcription diagrams of the ECAR bulk transmission network as modeled in the primary base case (E100) used for this seasonal assessment. It should be noted that actual power flows may significantly vary in the day-to-day operation of the ECAR system from those represented in this base case model. Similarly, this base case model may differ from other base case models developed and used in other regional and interregional studies. The ECAR primary base case and the transcription diagrams, reflect the generation and transmission conditions documented in Appendix B.

APPENDIX G

Generation Dispatch Tables

This section of the Appendix documents the Generation Deficiency Import Levels (Table G-1), the Generation Dispatch for Study Base Cases (Table G-2), and the Generation Dispatch for Transfer Scenarios (Table G-3) used in this seasonal transmission assessment.

Page: 1 of 1

		(4)	(0)	(2)	(4)	(F)	(C)	(7)	(0)	(0)
Study Area	System	(1) Load (A)	(2) Losses and Shunts (A)	(3) Interchange Export (+) Import (-) (A)	Non- Dispatched (Available) Generation (A)	(5) Deficiency (30% Load) (B) (1) x (0.30)	(6) Adjusted Deficiency Transfer Export (+) Import (-) (5) + (4)	(7) Share of Study-Area Deficiency (5) / (5)	(8) Target Deficiency Transfer Export (+) Import (-) (7) x (8)	(9) Target Deficiency Transfer as % of Load (8) / (1)
MECS	CONS DECO Total	8889 11185 20074	216 214 430	157 -465 	559 1177 1736	-2667 -3356 	-2108 -2179 -4286	44% 56% 1	-2210 -2790 -5000	25%
NE	AP DLCO FE Total	7828 2639 13130 2 23597	166 21 308 495	-671 319 -1859 	962 71 24 1 1057	-2348 -792 -3939 	-1386 -721 -3915 	33% 11% 56% 1	-1990 -670 -3340 	25%
SW	AEP BREC CIN DPL EKPC ENWC ENWI HE IPL LGEE NIPS OVEC SIGE	23013 1539 11335 3261 1683 0 0 484 3160 7112 3211 600 1714	657 6 422 101 66 0 0 25 72 158 37 12 23	605 -90 161 84 80 110 110 886 0 -589 -376 1389 -70	1972 319 1070 960 0 158 158 26 89 700 425 267 165	-6904 -462 -3401 -978 -505 0 0 -145 -948 -2134 -963 -180 -514	-4932 -143 -2331 -18 -505 158 158 -119 -859 -1434 -538 87 -349	40% 3% 20% 6% 3% 0% 0% 1% 6% 12% 6% 1% 3%	-6040 -400 -2980 -860 -440 0 0 -130 -830 -1870 -840 -160 -450	26%
ECAR	Total	100783	2504	-219	9102	-30235	-21133	100%	-25000	25%
Kentucky	BREC EKPC LGEE Total	1539 1683 7112 10334	6 66 158 230	-90 80 -589 	319 0 700 1019	-462 -505 -2134 	-143 -505 -1434 	15% 16% 69% 1	-370 -410 -1720 	24%
Indiana	AEP (IM) CIN (PSI) ENWC ENWI HE IPL NIPS SIGETotal	4874 6203 0 0 484 3160 3211 1714	186 289 0 0 25 72 37 23 	870 -289 110 110 886 0 -376 -70	350 259 158 158 26 89 425 165	-1462 -1861 0 0 -145 -948 -963 -514 	-1112 -1602 158 158 -119 -859 -538 -349 	25% 32% 0% 0% 2% 16% 16% 9%	-1240 -1580 0 0 -120 -800 -820 -440 	25%

⁽A) As modeled in the ECAR 2001 Summer primary base case (E100).(B) Based on established ECAR TSPP testing criteria.

Page: 1 of 5

Date:	04/17/01
Date.	0 1/ 1 1 / 0 1

NPC	======== E101 ==========================			E100 Primary Base Case Dispatch (MW)	Incre- mental Export Dispatch (MW)	Incre- mental Import Dispatch (MW)	E101 Study Base Case Dispatch (MW)
81423 703	1	Lennox 1 Net Interchange	IMO IMO	0 400	500 500	0	500 900
79528 79530 77953 702	2 4 6	Gilboa 2 Gilboa 4 Oswego 6 Net Interchange	NYISO NYISO NYISO NYISO	0 0 271 -1029	250 171 579 1000	0	250 171 850 -29
33 33 36 25	H L 1	Keystone 2H Keystone 2L Salem 1 Net Interchange	PJM500 PJM500 PJM500 PJM500	0 0 0 10668	375 375 1000 1750	0	375 375 1000 12418
142 142		Scale Load Net Interchange	DUKE DUKE	-18288 -493	375 375	0	-17913 -118
145 145		Scale Load Net Interchange	VP VP	-16276 502	375 375	0	-15901 877
28339 28356 218	3	Campbell 3 Palisades 1 Net Interchange	CONS CONS CONS	667 760 157	0	10 -760 -750	677 0 -593
29031 219	1	Monroe 1 Net Interchange	DECO DECO	750 -465	0	-750 -750	0 -1215
32346 357	1	Clinton 1 Net Interchange	IP IP	930 -289	0	-930 -930	0 -1219
37616 37545 37548 363	3 2 2	Cordova 3 Kincaid 2 LaSalle 2 Net Interchange	CE CE CE	0 539 1087 164	0	56 -539 -1087 -1570	56 0 0 -1406
		Total			4000	-4000	

Table G-2 **ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Study Base Cases**

Page: 2 of 5 Date: 04/17/01

	======== E102 ======== MAIN to MAAC 2000 MW MAIN to VACAR 1000 MW MAIN to TVA 1000 MW Bus (Number/Unit/Name/System)			E100 Primary Base Case Dispatch (MW)	Incre- mental Export Dispatch (MW)	Incre- mental Import Dispatch (MW)	E102 Study Base Case Dispatch (MW)
356 356		Scale Load Net Interchange	AMRN AMRN	-11252 -639	1300 1300	0	-9952 661
357 357		Scale Load Net Interchange	IP IP	-3900 -289	400 400	0	-3500 111
363 363		Scale Load Net Interchange	CE CE	-20628 164	2300 2300	0	-18328 2464
34 35 38 25	1 1 1	Peach Bottom 2 Peach Bottom 3 Susquehanna 2 Net Interchange	PJM500 PJM500 PJM500 PJM500	1090 1093 1110 10668	0	203 -1093 -1110 -2000	1293 0 0 8668
11052 11053 11002 142	B C 2	Lincoln 11 Lincoln 12 McGuire 2 Net Interchange	DUKE DUKE DUKE DUKE	0 0 1100 -493	0	50 50 -1100 -1000	50 50 0 -1493
18137 18184 18275 147	1 1 1	Browns Ferry 3 Gallatin 4 Sequoyah 1 Net Interchange	TVA TVA TVA	1143 182 1199 1557	0	99 100 -1199 -1000	1242 282 0 557
		Total			4000	-4000	

Page:		

	VACAR to MECS 2000 MW TVA to AEP 1000 MW TVA to MAIN 1000 MW Bus (Number/Unit/Name/System)			E100 Primary Base Case Dispatch (MW)	Incre- mental Export Dispatch (MW)	Incre- mental Import Dispatch (MW)	E103 Study Base Case Dispatch (MW)
142 142		Scale Load Net Interchange	DUKE DUKE	-18288 -493	1050 1050	0	-17238 557
145 145		Scale Load Net Interchange	VP VP	-16276 502	950 950	0	-15326 1452
147 147		Scale Load Net Interchange	TVA TVA	-29666 1557	2000 2000	0	-27666 3557
28339 28356 218	3	Campbell 3 Palisades 1 Net Interchange	CONS CONS CONS	667 760 157	0	150 -760 -610	817 0 -453
29023 29031 29033 29015 219	1 1 3 7	Greenwood 1 Monroe 1 Monroe 3 St. Clair 7 Net Interchange	DECO DECO DECO DECO	701 750 750 435 -465	0	80 -750 -750 30 -1390	781 0 0 465 -1855
22654 205	1	Cook 1 Net Interchange	AEP AEP	1000 605	0	-1000 -1000	0 -395
32346 357	1	Clinton 1 Net Interchange	IP IP	930 -289	0	-500 -500	430 -789
37548 363	2	LaSalle 2 Net Interchange	CE CE	1087 164	0	-500 -500	587 -336
		Total			4000	-4000	

======== E103b ====================================			E100 Primary Base Case Dispatch (MW)	Incre- mental Export Dispatch (MW)	Incre- mental Import Dispatch (MW)	E103 Study Base Case Dispatch (MW)	
142 142		Scale Load Net Interchange	DUKE DUKE	-18288 -493	1050 1050	0	-17238 557
145 145		Scale Load Net Interchange	VP VP	-16276 502	950 950	0	-15326 1452
147 147		Scale Load Net Interchange	TVA TVA	-29666 1557	2000 2000	0	-27666 3557
28339 28356 218	3	Campbell 3 Palisades 1 Net Interchange	CONS CONS CONS	667 760 157	0	150 -760 -610	817 0 -453
29023 29031 29033 29015 219	1 1 3 7	Greenwood 1 Monroe 1 Monroe 3 St. Clair 7 Net Interchange	DECO DECO DECO DECO	701 750 750 435 -465	0	80 -750 -750 30 -1390	781 0 0 465 -1855
21630 21310 202	1	Davis-Besse 1 Mansfield 1 Net Interchange	FE FE	883 772 -1859	0	-883 -17 -900	0 755 -2759
32346 357	1	Clinton 1 Net Interchange	IP IP	930 -289	0	-500 -500	430 -789
37548 363	2	LaSalle 2 Net Interchange	CE CE	1087 164	0	-600 -600	487 -436
		Total			4000	-4000	

Page: 5 of 5

NPC	======== E104 ====================================			E100 Primary Base Case Dispatch (MW)	Incre- mental Export Dispatch (MW)	Incre- mental Import Dispatch (MW)	E104 Study Base Case Dispatch (MW)
80903 80902 80896 81424 81425 703	1 1 1 1	Lakeview 6 Lakeview 7 Lakeview 8 Lennox 3 Lennox 4 Net Interchange	IMO IMO IMO IMO IMO	0 0 0 0 0 0 400	300 300 300 550 550 2000	0	300 300 300 550 550 2400
356 356		Scale Load Net Interchange	AMRN AMRN	-11252 -639	650 650	0	-10602 11
357 357		Scale Load Net Interchange	IP IP	-3900 -289	200 200	0	-3700 -89
363 363		Scale Load Net Interchange	CE CE	-20628 164	1150 1150	0	-19478 1314
18137 18139 18138 18184 18297 147	1 1 1 1	Browns Ferry 3 Bull Run 1H Bull Run 1L Gallatin 4 Watts Bar 1 Net Interchange	TVA TVA TVA TVA TVA	1143 482 459 182 1203 1557	0	44 -482 -459 100 -1203 -2000	1187 0 0 282 0 -443
15109 15134 15118 199	4 4 6	Bowen 4 Scherer 4 Yates 6 Net Interchange	Southern Southern Southern Southern	929 845 355 1777	0	-929 -845 -226 -2000	0 0 129 -223
		Total			4000	-4000	

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

Date: 04/17/01

		INCREMENTAL GENERATION DIS						SPATCH			
ECAR		Case E100		Case		Case		Case	E103	Case	E104
Exports		ECAR to	MAAC						-		
		ECAR to VACAR			-				-		-
(Page 1 of 2)		ECAR 1	to TVA						ECAR to TVA		
	E100	ECAR to	ECAR to MAIN		ECAR to MAIN						
	Base						-				-
	Case		-		-		-		-		-
Bus (Number/Unit/Name/System)	Dispatch	Export =	5000					Export =	5000	Export =	5000
	(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
20564 1 Albright 1 AP	0	74	1.5					74	1.5	74	1.5
20566 1 Albright 3 AP	120	20	0.4					20	0.4	20	0.4
20584 1 Fort Martin 2 AP	525	30	0.6					30	0.6	30	0.6
20580 1 Hatfield 1 AP	520	30	0.6					30	0.6	30	0.6
20581 1 Hatfield 2 AP	520	30	0.6					30	0.6	30	0.6
20574 1 Mitchell 3 AP	228	48	1.0					48	1.0	48	1.0
20590 1 Pleasants 1 AP	584	36	0.7					36	0.7	36	0.7
20591 1 Pleasants 2 AP	600	20	0.4					20	0.4	20	0.4
20576 1 Rivesville 6 AP	0	93	1.9					93	1.9	93	1.9
20579 1 Smith 4 AP	0	86	1.7					86	1.7	86	1.7
20578 1 Willow Island 2 AP	120	61	1.2					61	1.2	61	1.2
201 Total AP		528						528		528	
21310 Mansfield 345 FE	2336	24	0.5					24	0.5	24	0.5
202 Total FE		24						24		24	
23050 Ceredo 138 AEP	80	292	5.8					292	5.8	292	5.8
23100 Grangston 138 AEP	50	183	3.7					183	3.7	183	3.7
22679 Keystone 345 AEP	50	256	5.1					256	5.1	256	5.1
24516 Wolf Hills 1 138 AEP	50	73	1.5					73	1.5	73	1.5
24517 Wolf Hills 2 138 AEP	50	37	0.7					37	0.7	37	0.7
22600 Zelda 345 AEP	167	244	4.9					244	4.9	244	4.9
205 Total AEP		1085						1085		1085	
24952 Clifty Ck 345 OVEC	1101	81	1.6					81	1.6	81	1.6
24951 Kyger Ck 345 OVEC	899	66	1.3					66	1.3	66	1.3
206 Total OVEC	074	147	0.0					147	0.0	147	0.0
25143 Merom 345 HE 207 Total HE	974	14 14	0.3					14 14	0.3	14 14	0.3
	400	76	4.5					76	4.5	76	4.5
•	162 485	10	1.5					10	1.5	10	1.5
			0.2						0.2		0.2
26233 1 Henry 1 CIN 26234 2 Henry 2 CIN	50 50	11 11	0.2 0.2					11 11	0.2 0.2	11 11	0.2 0.2
•										11	
26235 3 Henry 3 CIN 25927 1 Madison 1 CIN	50 0	11 87	0.2 1.7					11	0.2 1.7	11 87	0.2 1.7
25927 1 Madison 1 CIN 25928 2 Madison 2 CIN	0	87 87	1.7					87 87	1.7 1.7	87 87	1.7 1.7
25928 2 Madison 2 CIN 25929 3 Madison 3 CIN	0	87 87	1.7					87 87	1.7	87 87	1.7
25929 3 Madison 3 CIN 25930 4 Madison 4 CIN	0	87 87	1.7					87 87	1.7	87 87	1.7
25930 4 Madison 4 CIN 25931 5 Madison 5 CIN	0	87 87	1.7					87 87	1.7	87 87	1.7
26231 7 Vermillion 7 CIN	0	32	0.6					32	0.6	32	0.6
208 Total CIN		586	0.0					586	0.0	586	0.0
26681 Adkins 345 DPL	0	275	5.5					275	5.5	275	5.5
26631 OHH West 69 DPL	126	26	0.5					26	0.5	26	0.5
26676 Tait 69 DPL	145	115	2.3					115	2.3	115	2.3
26668 Yankee 69 DPL	0	111	2.2					111	2.2	111	2.2
209 Total DPL		527						527		527	
26860 1 AB Brown 1 SIGE	110	91	1.8					91	1.8	91	1.8
210 Total SIGE		91						91		91	
27063 Brown CT 138 LGEE	511	385	7.7					385	7.7	385	7.7
211 Total LGEE		385						385		385	
(Continued on next page)											

Page: 2 of 19

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

Date: 04/17/01

		INCREMENTAL GENERATION DISPATCH									
ECAR		Case	E100	Case	E101	Case	E102	Case	E103	Case	E104
Exports		ECAR to	MAAC				-		-		-
		ECAR to	VACAR						-		-
(Page 2 of 2)		ECAR 1	to TVA						-	ECAR t	o TVA
	E100	ECAR to	o MAIN					ECAR to	MAIN		-
	Base		-								-
	Case						-				
Bus (Number/Unit/Name/System)	Dispatch	Export =	5000					Export =	5000	Export =	5000
	(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
27552 Coleman 161 BREC	415	40	0.8					40	0.8	40	0.8
27551 Reid 161 BREC	620	135	2.7					135	2.7	135	2.7
214 Total BREC		175						175		175	
27685 1 St Joe 1 DLCO	50	70	1.4					70	1.4	70	1.4
215 Total DLCO		70						70		70	
27961 1 Petersburg 1 IPL	189	49	1.0					49	1.0	49	1.0
216 Total IPL		49						49		49	
28021 Dune Acres 138 NIPS	450	30	0.6					30	0.6	30	0.6
28011 Schahfer 345 NIPS	1242	200	4.0					200	4.0	200	4.0
217 Total NIPS		230						230		230	
28512 1 Cobb 1 CONS	0	61	1.2					61	1.2	61	1.2
28513 3 Cobb 3 CONS	0	24	0.5					24	0.5	24	0.5
28469 C Livingston C CONS	0	34	0.7					34	0.7	34	0.7
28470 D Livingston D CONS	0	34	0.7					34	0.7	34	0.7
28275 1 MCV Cogen 1 CONS	486	42	0.8					42	8.0	42	8.0
28276 2 MCV Cogen 2 CONS	486	42	0.8					42	0.8	42	8.0
28354 1 MCV ST Gen CONS	268	24	0.5					24	0.5	24	0.5
28362 Thetford 569 CONS	0	44	0.9					44	0.9	44	0.9
218 Total CONS		305						305		305	
29013 1 Belle River 1 DECO	625	25	0.5					25	0.5	25	0.5
29014 2 Belle River 2 DECO	635	15	0.3					15	0.3	15	0.3
28752 DIG 230 DECO	371	602	12.0					602	12.0	602	12.0
219 Total DECO		642						642		642	
220 Total EKPC		0						0		0	
29701 1 Wheatland 3 ENWC	55	42	0.8					42	0.8	42	0.8
29702 1 Wheatland 4 ENWC	55	42	0.8					42	0.8	42	0.8
221 Total ENWC		84						84		84	
29711 1 Wheatland 1 ENWI	55	42	0.8					42	0.8	42	8.0
29712 1 Wheatland 2 ENWI	55	42	0.8					42	0.8	42	0.8
222 Total ENWI		84						84		84	
Grand Total		5000	100.0					5000	100.0	5000	100.0

Case E100 = ECAR Primary Base Case E100

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance

Date: 04/17/01 Generation Dispatch for Transfer Scenarios Page: 3 of 19

								INCREME	ENTAL GEN	ERATION D	ISPATCH			
		MECS			Case	E100	Case	E101	Case	E102	Case	E103	Case	E104
		Imports			MAAC to	MECS		-		-	MAAC to	MECS		-
		-			VACAR t	o MECS	VACAR t	o MECS		-				-
					TVA to	MECS		-		-				-
				E100	MAIN to	MECS		MAI		MECS	MAIN to	MECS		-
				Base		-		-		-				
				Case		-		-		-				
Bus	Bus (Number/Unit/Name/System)		stem)	Dispatch	Import =	5000	Import =	3500	Import =	5000	Import =	3000		
				(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
28339	3	Campbell 3	CONS	667	-64	-1.3	-76	-2.2	-64	-1.3		0.0		
28349	3	Karn 3	CONS	638	-638	-12.8	-638	-18.2	-638	-12.8	-638	-21.3		
28350	4	Karn 4	CONS	638	-638	-12.8	-638	-18.2	-638	-12.8	-333	-11.1		
28351	1	Ludington 1	CONS	312	-312	-6.2	-312	-8.9	-312	-6.2	-312	-10.4		
28351	2	Ludington 2	CONS	312	-312	-6.2	-312	-8.9	-312	-6.2	-312	-10.4		
28356	1	Palisades 1	CONS	760	-760	-15.2		0.0	-760	-15.2		0.0		
218		Total	CONS		-2724		-1976		-2724		-1595			
29013	1	Belle River 1	DECO	625	-625	-12.5	-625	-17.9	-625	-12.5	-625	-20.8		
29023	1	Greenwood 1	DECO	701	-701	-14.0	-701	-20.0	-701	-14.0	-781	-26.0		
29033	3	Monroe 3	DECO	750	-750	-15.0		0.0	-750	-15.0		0.0		
29037	1	River Rouge 1	DECO	200	-200	-4.0	-200	-5.7	-200	-4.0		0.0		
219		Total	DECO		-2276		-1526		-2276		-1406			
	Grand Total			5000	-100.0	3500	-100.0	5000	-100.0	3000	-100.0			

Case E100 = ECAR Primary Base Case E100

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Date: 04/17/01 Generation Dispatch for Transfer Scenarios Page: 4 of 19

					INCREME	ENTAL GEN	ERATION D	ISPATCH			
NE		Case	E100	Case	E101	Case	E102	Case	E103	Case	E104
Imports		TVA t	o NE	TVA t	o NE	TVA to NE					-
		MAIN	to NE			MAIN to NE			-		-
			-						-		-
	E100										
	Base		-								
	Case		-								-
Bus (Number/Unit/Name/System)	Dispatch	Import =	6000	Import =	6000	Import =	6000				
	(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
20566 1 Albright 3 AP	120	-120	-2.0	-120	-2.0	-120	-2.0				
20569 1 Armstrong 2 AP	172	-172	-2.9	-172	-2.9	-172	-2.9				
20584 1 Fort Martin 2 AP	525	-525	-8.8	-525	-8.8	-525	-8.8				
20587 1 Harrison 3 AP	640	-405	-6.8	-405	-6.8	-405	-6.8				
20580 1 Hatfield 1 AP	520	-520	-8.7	-520	-8.7	-520	-8.7				
20574 1 Mitchell 3 AP	228	-228	-3.8	-228	-3.8	-228	-3.8				
20578 1 Willow 2 AP	120	-120	-2.0	-120	-2.0	-120	-2.0				
201 Total AP		-2090		-2090		-2090					
27623 1 Cheswick 1 DLCO	562	-280	-4.7	-280	-4.7	-280	-4.7				
27624 1 Elrama 1 DLCO	97	-97	-1.6	-97	-1.6	-97	-1.6				
27625 3 Elrama 3 DLCO	109	-109	-1.8	-109	-1.8	-109	-1.8				
27626 4 Elrama 4 DLCO	171	-171	-2.9	-171	-2.9	-171	-2.9				
215 Total DLCO		-657		-657		-657					
21640 Bay Shore 138 FE	647	-505	-8.4	-505	-8.4	-505	-8.4				
21685 Eastlake 138 FE	636	-504	-8.4	-504	-8.4	-504	-8.4				
21680 5 Eastlake 5 FE	597	-597	-10.0	-597	-10.0	-597	-10.0				
21310 Mansfield 345 FE	2336	-772	-12.9	-772	-12.9	-772	-12.9				
21450 Richland 138 FE	423	-260	-4.3	-260	-4.3	-260	-4.3				
21320 Sammis 345 FE	600	-600	-10.0	-600	-10.0	-600	-10.0				
202 Total FE		-3238		-3238		-3238					
Grand Total		6000	-100.0	6000	-100.0	6000	-100.0				

Case E100 = ECAR Primary Base Case E100

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

Date: 04/17/01 Generation Dispatch for Transfer Scenarios Page: 5 of 19

							INCREME	ENTAL GENE	ERATION D	ISPATCH			
	KENTUCKY			Case	E100	Case	Case E101		E102	Case E103		Case	E104
	Imports			MAIN to Kentucky				MAIN to Kentucky				MAIN to Kentucky	
					-		-		-		-		
					-		-		-		-		
			E100		-		-		-		-		-
			Base		-		-		-		-		-
			Case		-				-		-		
Bus (Nu	mber/Unit/Name/Sy	rstem)	Dispatch	Import =				Import = 2500				Import = 2500	
			(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
27553 1	Wilson 161	BREC	420	-420	-16.8			-420	-16.8			-420	-16.8
214	Total	BREC		-420				-420				-420	
29382 1	JK Smith 1	EKPC	110	-65	-2.6			-65	-2.6			-65	-2.6
29560 1	Spurlock 1	EKPC	325	-325	-13.0			-325	-13.0			-325	-13.0
220	Total	EKPC		-390				-390				-390	
27064 3	Brown North 3	LGEE	441	-441	-17.6			-441	-17.6			-441	-17.6
27005	- Ghent 345	LGEE	1489	-500	-20.0			-500	-20.0			-500	-20.0
27008	- Mill Creek 345	LGEE	1470	-500	-20.0			-500	-20.0			-500	-20.0
27142	Ciriitii 100	LGEE	400	-250	-10.0			-250	-10.0			-250	-10.0
211	Total	LGEE		-1691				-1691				-1691	
	Grand Total			2500	-100.0			2500	-100.0			2500	-100.0

Case E100 = ECAR Primary Base Case E100

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

Date: 04/17/01

								INCREME	ENTAL GENE	ERATION D	ISPATCH			
		INDIANA			Case	E100	Case	E101	Case	E102	Case	E103	Case	E104
		Imports			MAAC to	Indiana	MAAC to Indiana				MAAC to	Indiana		-
						-						-		-
										-				
				E100		-		-		-		-		
				Base		-		-		-				
				Case						-		-		
Bus	(Num	ber/Unit/Name/Sys	tem)	Dispatch	Import =		Import =				Import =	5000		
				(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
22671		Rockport 765	AEP	2600	-700	-14.0	-700	-14.0			-700	-14.0		
22674		Tanners 345	AEP	700	-500	-10.0	-500	-10.0			-500	-10.0		
205		Total	AEP		-1200		-1200				-1200			
26208	1	Cayuga 1	CIN	500	-500	-10.0	-500	-10.0			-500	-10.0		
26200	4	Cayuga CT 345	CIN	106	-12	-0.2	-12	-0.2			-12	-0.2		
26218	3	Gallagher 3	CIN	140	-140	-2.8	-140	-2.8			-140	-2.8		
26203	1	Gibson 1	CIN	630	-630	-12.6	-630	-12.6			-630	-12.6		
26215	6	Wabash River 6	CIN	318	-318	-6.4	-318	-6.4			-318	-6.4		
208		Total	CIN		-1600		-1600				-1600			
25143		Merom 345	HE	974	-100	-2.0	-100	-2.0			-100	-2.0		
207		Total	HE		-100		-100				-100			
27964	4	Petersburg 4	IPL	524	-524	-10.5	-524	-10.5			-524	-10.5		
27987	7	Stout 7	IPL	440	-240	-4.8	-240	-4.8			-240	-4.8		
216		Total	IPL		-764		-764				-764			
28009	С	Michigan C 345	NIPS	460	-460	-9.2	-460	-9.2			-460	-9.2		
28011		Schahfer 345	NIPS	1242	-380	-7.6	-380	-7.6			-380	-7.6		
217		Total	NIPS		-840		-840				-840			
26862	1	AB Brown 2	SIGE	225	-225	-4.5	-225	-4.5			-225	-4.5		
26852	1	Culley 3	SIGE	270	-270	-5.4	-270	-5.4			-270	-5.4		
210		Total	SIGE		-495		-495				-495			
	Grand Total			5000	-100.0	5000	-100.0			5000	-100.0			

Case E100 = ECAR Primary Base Case E100

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Page: 7 of 19

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

					INCREME	ENTAL GENE	RATION D	ISPATCH			
MAAC		Case	E100	Case	E101	Case	E102	Case	E103	Case	E104
Exports		MAAC to MECS						MAAC to MECS			
			-				-				
(Part 1 of 2)			-				-				
	E100		-		-		-		-		
	Base		-		-		-		-		-
Des (Newsberglieb) (News (Oestern)	Case				-		-		- 0000		-
Bus (Number/Unit/Name/System)	Dispatch (MW)	Export = (MW)	5000	(MW)	(14)4()		(%)	Export = (MW)	3000	(MW) (%)	
	(10100)	(IVIVV)	(%)	(IVIVV)	(%)	(MW)	(%)	(IVIVV)	(%)	(IVIVV)	(%)
MAAC (areas 25 to 35) dispatched in	51772	5000	100.0					3000	100.0		
proportion to available (non-dispatched)	31772	3000	100.0					3000	100.0		
generation (6400 MW). The following											
MUST program method was used:											
SUBSYSTEM 'MAAC_EXPORT'											
AREAS 25 35											
SCALE ALL FOR EXPORT INCLUDE OFFL	INE EXCEPT										
BUS 33											
BUS 36											
END											
END											
Grand Total		5000	100.0					3000	100.0		

Case E100 = ECAR Primary Base Case E100

Date: 04/17/01

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Page: 8 of 19

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

					INCREME	ENTAL GENE	ERATION D	ISPATCH			
MAAC		Case	E100	Case	E101	Case E102		Case	E103	Case	E104
Exports		MAAC to	MAAC to Indiana		MAAC to Indiana				MAAC to Indiana		-
·		MAAC	to TVA				-			MAAC	to TVA
(Part 2 of 2)		MAAC to	MAIN c	MAAC to MAIN			-	MAAC t	o MAIN		-
	E100		-		-		-		-		-
	Base		-		-		-		-		-
	Case		-				-		-		-
Bus (Number/Unit/Name/System)	Dispatch	Export =	5000		Export = 5000				5000	Export =	
	(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
MAAC (areas 25 to 35) dispatched in proportion to available (non-dispatched) generation (6400 MW). The following MUST program method was used:	51772	5000	100.0	5000	100.0			5000	100.0	5000	100.0
SUBSYSTEM 'MAAC_EXPORT' AREAS 25 35											
SCALE ALL FOR EXPORT INCLUDE OFFI	LINE EXCEPT										
BUS 33											
BUS 36											
END											
END											
Grand Total		5000	100.0	5000	100.0			5000	100.0	5000	100.0

Case E100 = ECAR Primary Base Case E100

Date: 04/17/01

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Page: 9 of 19

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

		MAAC			Case	E100	Case	E101	Case	E102	Case	E103	Case	E104
		Imports			ECAR to	MAAC			MAIN to	MAAC				-
					MAIN to	MAAC		-		-		-		-
						-		-		-		-		-
				E100		-		-		-		-		-
				Base		-		-		-		-		-
				Case		-		-		-		-		-
Bus	s (Nu	nber/Unit/Name/Sys	stem)	Dispatch	Import =	5000			Import =	5000				
				(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
3135	1	Brunner Island 3	PP&L	735	-735	-14.7			-735	-14.7				
3146			759	-759	-15.2			-759	-15.2					
3162	1	Sunbury 4	PP&L	128	-128	-2.6			-128	-2.6				
29		Total	PP&L		-1622				-1622					
5180	1	Bergen GT	PSE&G	380	-380	-7.6			-380	-7.6				
5140	1	Mercer 1	PSE&G	324	-324	-6.5			-324	-6.5				
31		Total	PSE&G		-704				-704					
5901	1	Brandon Shrs 1	BG&E	663	-663	-13.3			-663	-13.3				
5902	1	Brandon Shrs 2	BG&E	662	-220	-4.4			-220	-4.4				
32		Total	BG&E		-883				-883					
7106	1	Chalk Point 3	PEPCO	612	-612	-12.2			-612	-12.2				
7107	1	Chalk Point 4	PEPCO	612	-612	-12.2			-612	-12.2				
7115	1	Morgantown 1	PEPCO	583	-565	-11.3			-565	-11.3				
33		Total	PEPCO		-1789				-1789					
	Grand Total				5000	-100.0			5000	-100.0				

Case E100 = ECAR Primary Base Case E100

Date: 04/17/01

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Page: 10 of 19

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

		INCREMENTAL GENERATION									
VACAR		Case	E100	Case	E101	Case	E102	Case	E103	Case	E104
Exports		VACAR t	o MECS	VACAR t	o MECS		-				-
			-		-		-				-
(Part 1 of 2)			-		-		-				-
	E100		-		-		-				-
	Base		-		-		-				-
	Case		-		-		-		-		-
Bus (Number/Unit/Name/System)	Dispatch	Export =		Export =							
	(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
VACAR (areas 140 to 145) dispatched in proportion to available (non-dispatched) generation (6700 MW). The following MUST program method was used: SUBSYSTEM 'VACAR_EXPORT' AREAS 140 145 SCALE ALL FOR EXPORT INCLUDE OFFI	46708	5000	100.0	3500	100.0						
Grand Total		5000	100.0	3500	100.0						

Case E100 = ECAR Primary Base Case E100

Date: 04/17/01

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Page: 11 of 19

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

					INCREME	NTAL GENE	RATION D	ISPATCH			
VACAR		Case	E100	Case	E101	Case	E102	Case	E103	Case	E104
Exports		VACAR	to MAIN	VACAR	to MAIN		-		-		-
			-		-		-				-
(Part 2 of 2)			-		-		-		-		-
	E100		-		-		-		-		-
	Base		-		-		-		-		-
	Case						-	-			-
Bus (Number/Unit/Name/System)	Dispatch	Export =		Export =		(2.020)	(0.1)	(2.0.40)	(0.()	(2.02.0	(0.1)
	(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
VACAR (areas 140 to 145) dispatched in proportion to available (non-dispatched) generation (6700 MW). The following MUST program method was used: SUBSYSTEM 'VACAR_EXPORT' AREAS 140 145 SCALE ALL FOR EXPORT INCLUDE OFFI	46708	5000	100.0	5000	100.0						
Grand Total		5000	100.0	5000	100.0						

Case E100 = ECAR Primary Base Case E100

Date: 04/17/01

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

Date: 04/17/01 Generation Dispatch for Transfer Scenarios Page: 12 of 19

								INCREME	ENTAL GENI	ERATION D	DISPATCH			
		VACAR			Case	E100	Case	E101	Case	E102	Case	E103	Case	E104
		Imports			ECAR to	VACAR		-	MAIN to	VACAR		-		-
					MAIN to	VACAR		-		· -		-	MAIN to	VACAR
						-		-		· -		-		-
				E100		-		-		· -		-		-
				Base		-		-				-		_
				Case		-		-				-		-
Bus	(Num	ber/Unit/Name/Sy	stem)	Dispatch	Import =	5000			Import =				Import =	
				(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
10862	1	Brunswick 1	CPLE	820	-820	-16.4			-820	-16.4			-820	-16.4
140		Total	CPLE		-820				-820				-820	
11004	2	Catawba 2	DUKE	1129	-1129	-22.6			-1129	-22.6			-1129	-22.6
11006	2	Oconee 2	DUKE	846	-846	-16.9			-846	-16.9			-846	-16.9
142		Total	DUKE		-1975				-1975				-1975	
14901	1	Bath County 1	VP	304	-304	-6.1			-304	-6.1			-304	-6.1
14901	2	Bath County 2	VP	304	-304	-6.1			-304	-6.1			-304	-6.1
14901	3	Bath County 3	VP	303	-303	-6.1			-303	-6.1			-303	-6.1
14901	4	Bath County 4	VP	303	-303	-6.1			-303	-6.1			-303	-6.1
14286	5	Chesterfield 5	VP	326	-326	-6.5			-326	-6.5			-326	-6.5
14287	6	Chesterfield 6	VP	658	-658	-13.2			-658	-13.2			-658	-13.2
145		Total	VP		-2198				-2198				-2198	
	Grand Total			5000	-100.0			5000	-100.0			5000	-100.0	

Case E100 = ECAR Primary Base Case E100

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

5000

100.0

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

					INCREME	NTAL GENE	RATION D	ISPATCH			
TVA		Case	E100	Case	E101	Case	E102	Case	E103	Case	E104
Exports		TVA to	MECS						-		-
		TVA to	MAIN		-		-	TVA to	MAIN		-
(Part 1 of 2)			-		-		-		-		-
	E100		-		-		-		-		
	Base		-		-		-		-		-
	Case		-		-		-		-		-
Bus (Number/Unit/Name/System)	Dispatch	Export =						Export =			
	(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
TVA (areas 147 and 170 to 173) dispatched	31908	2000	40.0					2000	40.0		
in proportion to available (non-dispatched)	(Gens)										
generation (2000 MW) and total load. The	00000	0000	00.0					0000	00.0		
following MUST program method was used:	29666	3000	60.0					3000	60.0		
SUBSYSTEM 'TVA_GENS'	(Load)										
AREA 147											
AREAS 170 173											
SCALE ALL FOR EXPORT INCLUDE OFFI	TNE										
END	INE										
SUBSYSTEM 'TVA_LOAD'											
AREA 147											
SCALE ALL LOAD											
END											
SUBSYSTEM 'TVA_EXPORT'											
AREA 147											
AREAS 170 173											
PARTICIPATE											
SYSTEM TVA_GENS 40											
SYSTEM TVA_LOAD 60											

Case E100 = ECAR Primary Base Case E100

Grand Total

END END

Date: 04/17/01

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

5000

100.0

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

Date: 04/17/01

TVA Exports (Part 2 of 2)					E101	Case	INCREMENTAL GENERATION DISPATCH										
·			TVA to NE				_ 102	Case	E103	Case	⊏104						
(Part 2 of 2)				TVA t	o NE	TVA t	o NE		-								
(Part 2 of 2)			-		-		-		-		-						
			-		-		-		-		-						
	E100		-		-		-		-		-						
	Base		-		-		-		-		-						
	Case		-		-		-		-		-						
Bus (Number/Unit/Name/System)	Dispatch	Export =	6000	Export =	6000	Export =	6000										
	(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)						
TVA (areas 147 and 170 to 173) dispatched	31908	2400	40.0	2400	40.0	2400	40.0										
in proportion to available (non-dispatched)	(Gens)																
generation (2000 MW) and total load. The																	
following MUST program method was used:	29666	3600	60.0	3600	60.0	3600	60.0										
	(Load)																
SUBSYSTEM 'TVA_GENS'																	
AREA 147																	
AREAS 170 173																	
SCALE ALL FOR EXPORT INCLUDE OFF	LINE																
END																	
SUBSYSTEM 'TVA_LOAD'																	
AREA 147																	
SCALE ALL LOAD																	
END																	
SUBSYSTEM 'TVA_EXPORT'																	
AREA 147																	
AREAS 170 173																	
PARTICIPATE																	
SYSTEM TVA_GENS 40																	
SYSTEM TVA_LOAD 60																	
END																	
END																	
Grand Total		6000	100.0	6000	100.0	6000	100.0										

Case E100 = ECAR Primary Base Case E100

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Date: 04/17/01 Generation Dispatch for Transfer Scenarios Page: 15 of 19

					INCREME	ENTAL GENE	ERATION D	ISPATCH			
TVA		Case	E100	Case	E101	Case	E102	Case	E103	Case	E104
Imports		ECAR	to TVA							ECAR 1	to TVA
		MAAC	to TVA							MAAC	to TVA
		MAIN t	o TVA			MAIN t	o TVA			MAIN t	o TVA
	E100		-								-
	Base		-		-		-		-		-
	Case				-				-		
Bus (Number/Unit/Name/System)	Dispatch	Import =				Import =				Import =	
	(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
18137 1 Browns Ferry 3 TVA	1143	-1143	-22.9			-1143	-22.9			-1143	-22.9
18167 1 Cumberland 1H TVA	681	-681	-13.6			-681	-13.6			-681	-13.6
18167 2 Cumberland 1L TVA	681	-681	-13.6			-681	-13.6			-681	-13.6
18270 1 Raccoon Mt 1 TVA	383	-325	-6.5			-325	-6.5			-325	-6.5
18271 1 Raccoon Mt 2 TVA	383	-325	-6.5			-325	-6.5			-325	-6.5
18272 1 Raccoon Mt 3 TVA	383	-325	-6.5			-325	-6.5			-325	-6.5
18273 1 Raccoon Mt 4 TVA	383	-320	-6.4			-320	-6.4			-320	-6.4
18274 1 Sequoyah 2 TVA	1199	-1199	-24.0			-1199	-24.0			-1199	-24.0
147 Total TVA		-4999				-4999				-4999	
Grand Total		5000	-100.0			5000	-100.0			5000	-100.0

Case E100 = ECAR Primary Base Case E100

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Page: 16 of 19

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

					INCREME	ENTAL GENE	ERATION D	ISPATCH			
MAIN		Case	E100	Case	E101	Case	E102	Case	E103	Case	E104
Exports		MAIN to	MECS		-	MAIN to	MECS	MAIN to	MECS		-
		MAIN to	MAAC		-	MAIN to	MAAC		-		-
(Part 1 of 3)		MAIN to	VACAR		-	MAIN to	VACAR		-	MAIN to	VACAR
	E100	MAIN to	a TVA		-	MAIN t	o TVA		-	MAIN t	o TVA
	Base		-		-		-		-		-
	Case				-						
Bus (Number/Unit/Name/System)	Dispatch	Export =		(2.02.0	(0.()	Export =		Export =		Export =	
	(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
MAIN (areas 356, 357, 363) dispatched in proportion to available (non-dispatched) generation (9200 MW). The following MUST program method was used: SUBSYSTEM 'MAIN_EXPORT' AREA 356 AREA 357 AREA 363 SCALE ALL FOR EXPORT INCLUDE OFFIEND	35780	5000	100.0			5000	100.0	3000	100.0	5000	100.0
Grand Total		5000	100.0			5000	100.0	3000	100.0	5000	100.0

Case E100 = ECAR Primary Base Case E100

Date: 04/17/01

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

smission System Performance Insfer Scenarios Page: 17 of 19

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

					INCREME	ENTAL GEN	ERATION D	ISPATCH			
MAIN		Case	E100	Case	E101	Case	E102	Case	E103	Case	E104
Exports		MAIN	to NE		-	MAIN	to NE		-		
			-		-		-		-		-
(Part 2 of 3)			-		-		-		-		-
	E100		-		-		-		-		-
	Base		-		-		-		-		-
	Case				-				-		
Bus (Number/Unit/Name/System)	Dispatch	Export =				Export =					
	(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
MAIN (areas 356, 357, 363) dispatched in proportion to available (non-dispatched) generation (9200 MW). The following MUST program method was used: SUBSYSTEM 'MAIN_EXPORT' AREA 356 AREA 357 AREA 363 SCALE ALL FOR EXPORT INCLUDE OFFIEND	35780	6000	100.0			6000	100.0				
Grand Total		6000	100.0			6000	100.0				

Case E100 = ECAR Primary Base Case E100

Date: 04/17/01

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

Page: 18 of 19

2500

100.0

Table G-3 ECAR 2001 Summer Assessment of Transmission System Performance Generation Dispatch for Transfer Scenarios

INCREMENTAL GENERATION DISPATCH MAIN Case E100 Case E101 Case E102 Case E103 Case E104 MAIN to Kentucky MAIN to Kentucky MAIN to Kentucky **Exports** (Part 3 of 3) ---------E100 Base Case 2500 Bus (Number/Unit/Name/System) Dispatch 2500 2500 Export = Export = Export = (MW) (MW) (%) (MW) (%) (MW) (MW) (%) (MW) (%) MAIN (areas 356, 357, 363) dispatched in 35780 2500 2500 100.0 2500 100.0 proportion to available (non-dispatched) generation (9200 MW). The following MUST program method was used: SUBSYSTEM 'MAIN_EXPORT'

2500

100.0

Case F100 =	FCAR	Primary	Rase	Case	F100

Grand Total

SCALE ALL FOR EXPORT INCLUDE OFFLINE

Date: 04/17/01

AREA 356 AREA 357 AREA 363

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

2500

100.0

Date: 04/17/01 Generation Dispatch for Transfer Scenarios Page: 19 of 19

								INCREME	NTAL GEN	ERATION D	ISPATCH			
		MAIN			Case	E100	Case	E101	Case	E102	Case	E103	Case F	- 104
		Imports			ECAR to	MAIN		-		-	ECAR t	o MAIN		
					MAAC t	o MAIN	MAAC t	o MAIN		-	MAAC t	o MAIN		
					VACAR	to MAIN	VACAR	to MAIN		-				
				E100	TVA to	MAIN		-		-	TVA to	MAIN		
				Base		-		-		-				
				Case		-		-		-		-		
Bus	(Nun	nber/Unit/Name/Sy	ystem)	Dispatch	Import =	5000	Import =	5000			Import =	5000		
				(MW)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)	(MW)	(%)
30397	2	Coffeen 2	AMRN	530	-530	-10.6	-530	-10.6			-530	-10.6		
30895	2	Labadie 2	AMRN	555	-420	-8.4	-420	-8.4			-420	-8.4		
31333	2	Newton 2	AMRN	540	-540	-10.8	-540	-10.8			-540	-10.8		
356		Total	AMRN		-1490		-1490				-1490			
32274	3	Baldwin 3	IP	595	-595	-11.9	-595	-11.9			-595	-11.9		
357		Total	IP		-595		-595				-595			
37522	1	Braidwood 1	CE	1116	-525	-10.5	-525	-10.5			-525	-10.5		
37524	1	Byron 1	CE	1114	-1114	-22.3	-1114	-22.3			-1114	-22.3		
37529	4	Collins 4	CE	515	-515	-10.3	-515	-10.3			-515	-10.3		
37551	1	Quad Cities 1	CE	762	-762	-15.2	-762	-15.2			-762	-15.2		
363	363 Total CE			-2916		-2916				-2916				
	Grand Total			5000	-100.0	5000	-100.0			5000	-100.0			

Case E100 = ECAR Primary Base Case E100

Case E101 = ECAR Primary Base Case E100 + EAST to WEST 4000 MW Transfer Bias

Case E102 = ECAR Primary Base Case E100 + WEST to EAST 4000 MW Transfer Bias

Case E103 = ECAR Primary Base Case E100 + SOUTH to NORTH 4000 MW Transfer Bias

APPENDIX H

Operating Procedures

This section of the Appendix lists and briefly describes those operating procedures which are available to allow for improvement of transfer capabilities or alleviate facility overloads in specific areas of the ECAR bulk transmission network. These operating procedures have been developed by member systems and are designed to relieve overloading problems that may result from interconnected system operation. The date of first publication and latest revision in this series of reports, is also shown.

OPERATING PROCEDURES

Black Oak 500-138 kV (AP) Transformer (May 1999)

When single contingency analysis results show that the Black Oak 500-138 kV (AP) transformer may become a thermal limit for regional and inter-regional transfers, and analysis indicates that by opening the transformer the thermal limits are relieved, the transformer may be opened.

Broadford - Atkins - Wythe 138 kV (AEP) (May 1998)

To prevent overloads on the Broadford - Smyth - Atkins - Rural Retreat - Mount Airy - Wythe 138 kV (AEP) path resulting from a loss of the Broadford - Jacksons Ferry 765 kV (AEP) circuit, an 8% series reactor will automatically be inserted at the Broadford end of the Broadford - Atkins 138 kV (AEP) circuit upon the loss of the Broadford - Jacksons Ferry 765 kV (AEP) circuit.

Burma - Piney 115 kV (AP-PENELEC)
Carroll - Germantown 138 kV (AP-METED)
Garrett - Deep Creek 115 kV (AP-PENELEC)
Grand Point - Roxbury 138 kV (AP-PENELEC)
Social Hall - Blairsville 138 kV (AP-PENELEC) (November 1987)

These tielines between AP and companies in the MAAC Region may be opened if necessary during west-to-east power transfer conditions to protect various facilities such as the Grand Point - Roxbury 138 kV, Catoctin - Carroll 138 kV, and Carlisle - Roxbury 115 kV circuits. The need for implementation of these operating procedures is strongly dependent on local load and generation patterns.

Columbus Region Emergency Procedures (AEP) (November 1999)

The Columbus Region Emergency Procedures (CREP) were developed by AEP to reduce the risk of a voltage collapse in the Central Ohio area. These procedures include: (1) dispatching Conesville and Picway generation at full output; (2) removing the 765 kV shunt reactors at Marysville; (3) switching shunt capacitors by supervisory control; (4) requesting voluntary load curtailments; and (5) initiating load shedding. These procedures would be enacted at times of peak demand on the transmission network in conjunction with transmission outages.

Cook 765-345 kV (AEP) Transformer Dumont 765-345 kV (AEP) Transformer (May 2000)

An outage of the 765-345 kV transformer at either the Cook or Dumont station, in conjunction with peak loads and high levels of power transactions (particularly into MECS) may lead to an overload of the 765-345 kV transformer at the other station. If a contingency overload occurs (or anticipated to occur), the Dumont - Olive 345 kV and Cook - Kenzie Creek 345 kV (AEP) lines can be opened to reduce transformer loadings. This operating procedure is not expected to be initiated in isolation of other control options.

The anticipated operating mode of the Phase Angle Regulators (PARs) on the Michigan - Ontario interface (that of holding a fixed flow at reserved transfer levels) results in increased loadings on the Cook and Dumont transformers. Furthermore, transformer overloads are most likely when there are heavy power sales to MECS from the south (i.e., AEP, FE, and NIPS). Accordingly, it is expected that use of this operating procedure will be part of a joint effort which includes the beneficial control of the PARs and possibly the reduction of transfers into Michigan from the south.

Elrama - Mitchell 138 kV (DLCO-AP) (November 1990)

Heavy loadings on the Elrama - Mitchell 138 kV (DLCO-AP) circuit may be reduced by (1) opening a Collier 345-138 kV (DLCO) transformer, (2) opening the Collier - Woodville 138 kV (DLCO) line at Woodville, (3) re-dispatching generation at the Mitchell and Elrama generating stations, or (4) removing the Elrama - Mitchell 138 kV (DLCO-AP) circuit from service.

Gallagher (CIN) Generating Station (May 1995)

A double contingency outage of the two 230 kV lines from the plant could cause the Gallagher 230-138 kV (CIN) transformer to overload. In the event of a double contingency and resulting overload, the 230 kV generation would be reduced to a level below the emergency rating of the transformer.

Genoa - Latson 138 kV (CONS-DECO) Hemphill - Hunters Creek 120 kV (CONS-DECO) Karn - Atlanta - Thetford 138 kV (CONS-DECO-CONS) (May 1991)

The loss of the double circuit tower containing the Jewell - Thetford 345 kV and Pontiac - Hampton 345 kV lines may cause the Hemphill - Hunters Creek 120 kV, Karn - Atlanta - Thetford 138 kV, and Genoa - Latson 138 kV lines to exceed their emergency (24-hour) ratings. If the real-time security analysis program indicates that post contingency flows would exceed the short-term (4-hour) ratings, the following operating procedures may be implemented: (1) if CONS system security is not jeopardized, CONS will split the Hemphill bus into two bus groups; (2) if DECO system security is not jeopardized, DECO will split the Hunters Creek bus by opening bus sectionalizing breaker 101-102; (3) reduce generating output at Thetford, Karn 3, or Karn 4 to relieve the potential overload condition.

Gibson - Petersburg 345 kV (CIN-IPL) (May 1997)

In the event the Gibson - Petersburg 345 kV (CIN-IPL) circuit overloads, CIN has an existing operating procedure to reduce generation at Gibson upon the loss of multiple transmission outlets. This operating procedure will eliminate the overload condition.

Green River 161-138 kV (LGEE) Transformers (May 1997)

If one of the two Green River 161-138 kV (LGEE) transformers, located at the LGEE-BREC interface, is out of service and the flow through the remaining inservice transformer exceeds its rating, it will be removed from service.

Hoytdale-Maple-Krendale-Butler 138 kV (FE-AP) (Nov 1987 /Rev May 1999)

The west-to-east loading on the Hoytdale - Maple - Seneca - Krendale - Shanor Manor - Butler 138 kV path can be relieved by opening the Maple - Krendale 138 kV (FE-AP) portion. This procedure would be initiated by the FE system, but could be called upon by either FE or AP. Additionally, opening the Maple - Krendale 138 kV (FE-AP) line section can also relieve loadings on the same line section in the east-to-west direction. This procedure would be initiated by FE, but could be called upon by either FE or AP.

Kanawha River - Matt Funk 345 kV (AEP) (Nov. 1987 / Rev. May 1995)

The Kanawha River - Matt Funk 345 kV (AEP) circuit is subject to excessive voltage decline, large phase-angle separation, and possible steady-state instability, caused by the outage of parallel EHV facilities. To enhance its loadability characteristics, adjustable series compensation (from 0% to 60% in steps of 10%) was placed in service in 1991. An appropriate level of series compensation will be inserted on a pre-contingency basis to increase the loadability of the circuit, thereby improving the overall performance of the transmission system in the area. Furthermore, in accordance with a prior agreement between AEP and AP, series compensation may be inserted to reduce flows on AP 500 kV facilities when the combined MAAC and VP imports from ECAR are curtailed below 2800 MW. When appropriate, series compensation levels may also be adjusted as part of a NERC Security Coordinator's efforts to maintain regional reliability margins. Zero percent series compensation is modeled in study base cases.

Based on several factors, including the status of the 450 MVAR shunt reactors at the Cloverdale 765 kV station and the 300 MVAR shunt reactor at the Axton 765 kV station, the prior and anticipated outages, and the amount of series compensation, the maximum recommended contingency loading will vary from approximately 500 MW to 1,600 MW. If the Kanawha River - Matt Funk 345 kV circuit actually reaches these loading levels following an outage, the parallel 138 kV paths may be overloaded, requiring operator intervention. Operating procedures to limit loading on this circuit include reducing pumping loads at Smith Mountain and Bath County, shifting local generation, and/or reducing transfers to the east and south.

Kokomo - Highland Park 230-138-69 kV (CIN) Transformers (May 1988)

The 138 kV windings of the three 230-138-69 kV transformers at Kokomo-Highland Park may overload for large transfers from west-to-east or during certain generation or transmission outages in the vicinity of the Greentown 765 kV substation. This overload may be reduced or eliminated by splitting the 138 kV bus at Greentown which isolates the Greentown - Hummel Creek 138 kV (AEP) and Greentown - Grant 138 kV (AEP) circuits from the Greentown - Kokomo 138 kV (CIN) and Greentown - Wabash 138 kV (CIN) circuits.

Kyger Creek - Sporn 345 kV (OVEC-AEP) (May 2000)

Past operating experience indicates that the Kyger Creek - Sporn 345 kV tieline between OVEC and AEP may become heavily loaded by high levels of west-to-east transactions, especially if these transfers coincide with reduced output at any of several AEP plants east of this tieline. AEP and OVEC have agreed to open the Kyger Creek - Sporn 345 kV circuit, as needed. Opening this tieline under these conditions will increase loadings on the Sargents 345-138 kV transformer, but the existing operating procedure to address the transformer loading concerns are still applicable. No other overloads would be expected to result from implementation of these operating procedures.

Lake Erie Emergency Re-dispatch Procedure (May 1999)

The objective of the Lake Erie Emergency Re-dispatch (LEER) procedure is to facilitate emergency re-dispatch among participants within the Lake Erie Control Area (AEP, AP, MECS, NYPP, OH, and PJM) to avoid the shedding of firm load. The LEER procedure is only intended to be for emergency re-dispatch to relieve transmission constraints that could otherwise result in the requirement of another Lake Erie Company to shed firm load. The LEER procedure would only be fully effected when firm load curtailment is imminent. Lake Erie Control Areas must purchase emergency power from unconstrained directions or from other sources, if possible, before calling on LEER emergency re-dispatch. The Lake Erie Security Process is considered a supplement to the NERC Transmission Loading Relief (TLR) Procedure and may be implemented in place of or in addition to the NERC TLR Procedure.

Leslie - Stinnett - Pineville 161 kV (AEP-TVA) (November 1997)

Loading on the Leslie - Stinnett - Pineville 161 kV (AEP-TVA) circuit may be reduced by inserting the 8% series reactor located at the Leslie station.

Lincoln - Northeast - Northwest 120 kV (DECO) (Nov. 1987 / Rev. May 2001)

An overload protection scheme has been installed to open section breakers at the Northwest Station (DECO) whenever the loading on the Northwest end of the Lincoln - Northeast - Northwest 120 kV line exceeds its summer emergency rating of 250 MVA. The loss of the double-circuit tower containing the Belle River - Pontiac 345 kV (DECO) and Belle River - Greenwood - Pontiac 345 kV

(DECO) lines or the loss of the double-circuit tower containing the Pontiac - Placid - Wayne 345 kV and Quaker - Wixom - Wayne 345 kV (DECO) lines could cause the flow on the Lincoln - Northeast - Northwest 120 kV line to exceed its emergency rating. This overload is more severe if the Jewell - Thetford 345 kV line is out of service or when Greenwood generation is running. The overload on the Lincoln - Northeast - Northwest 120 kV line is reduced by opening Northwest section breakers. Depending upon system conditions, splitting the 120 kV ring bus may not eliminate the Lincoln - Northeast - Northwest 120 kV overload. A new trip scheme implemented in 1999 rejects generation at Greenwood for a loss of the Pontiac - Belle River 345 kV and Belle River - Greenwood - Pontiac 345 kV (DECO) double-circuit tower.

Muskingum River - Wolf Creek - Corner 138 kV (AEP-AP) Riverview - Corner 138 kV (AP) (May 1995)

Heavy loadings on the Muskingum River - Wolf Creek - Corner 138 kV (AEP-AP) tieline or Riverview - Corner 138 kV (AP) circuit may be reduced by one of the following options: (1) opening the Belmont end of the Belmont - Riverview 138 kV (AP) circuit; (2) adjusting generation levels at the Willow Island (AP) generating plant; or (3) opening the Muskingum River - Wolf Creek 138 kV (AEP-AP) tieline. In addition, loadings in the Muskingum River to Wolf Creek direction may be relieved by reducing output at the Muskingum River generating plant. The specific action chosen will depend on local conditions at the time.

Newtonville - Cloverport 138 kV (SIGE-LGEE) (May 1994 / Rev. May 1998)

The Newtonville - Cloverport 138 kV (SIGE-LGEE) line may overload under contingency conditions (loss of the Wilson - Green River 161 kV (BREC-LGEE) circuit). To increase transfers, BREC would attempt to lower the output of the Coleman generating station (go off economic dispatch) to relieve the loading on this line if it could do so without interrupting exports. If this action does not relieve the loading on this line, SIGE would open the line.

Petersburg 345-138 kV (IPL) Transformers (May 2000)

The Local Petersburg Autotransformer Operating Procedure was implemented on January 6, 2000, to alleviate potential overloads on the two Petersburg 345-138 kV autotransformers. When loadings on these two autotransformers approach their operating limits, IPL will notify the ECAR MET Security

Coordinator, SIGE, CIN, and HE, that if the Petersburg autotransformer power flows and temperatures continue to increase, IPL will implement the Local Petersburg Autotransformer Operating Procedure to alleviate the overload if the situation does not allow the time for curtailing non-firm transmission transactions. Should such emergency conditions occur, IPL will notify CIN and open the Petersburg - Vincennes Junction 138 kV (IPL-CIN) line, as recommended by the ECAR August 31, 1998, Disturbance Report, dated July 16, 1999. If loadings continue to increase, IPL will notify CIN and close the Petersburg - Vincennes Junction 138 kV line, and will ask SIGE to split the 138 kV bus at Dubois. If the Dubois bus is not split, IPL will open the Dubois 138 kV line terminal at Petersburg. If the loadings continue to increase, IPL will notify CIN and open the Petersburg - Oakland City 138 kV (IPL-CIN) line. As soon as conditions allow, the lines will be returned to service and non-firm transactions will be resumed.

Pierce 345 kV (OVEC) Station (May 2001)

To prevent exposure to possible fault duties in excess of the capability of many of the 345 kV breakers at the Pierce station, Pierce circuit breakers E and G will be operated "Normally Open" until installation of higher capability breakers is completed, expected by 2004 Summer. This temporary reconfiguration will leave the Dearborn - Pierce #1 345 kV (OVEC) and Pierce - X533 #1 345 kV (OVEC) circuits connected to each other, but isolated from the remainder of the Pierce station. This temporary change is expected to have little effect on flows in the area for most operating conditions. Breakers E and G could be reclosed, if desired, during outages of the Pierce - Foster 345 kV (OVEC-CIN) tieline.

Pierce 345-138 kV (OVEC) Transformer (January 1990)

The Pierce 345-138 kV (OVEC) transformer may experience heavy loading depending on the status of the system. In the event the Pierce transformer exceeds its emergency rating, CIN would remove the transformer from service at the request of OVEC.

Reliability Coordination Plan (AP-PJM-VP) (November 1990)

To control loadings on the ECAR-MAAC-VP interface, including on the Pruntytown - Mount Storm 500 kV (AP-VP) and Mount Storm - Meadow Brook 500 kV (VP-AP) circuits, a Reliability Coordination Plan (RCP) is in place between AP, PJM, and VP. The RCP is used to curtail or freeze transfers to

ensure that adequate thermal and voltage reliability is maintained. For more information regarding these thermal and voltage limitations, refer to the latest VEM seasonal operating study.

Ridgeway - Dan River 138 kV (AEP-DUKE) (November 1991)

Loading on the Ridgeway - Dan River 138 kV (AEP-DUKE) circuit may be reduced by inserting either one or both of the 18.8% series reactors into the line.

Rockport (AEP) Generation (May 1995)

During certain transmission contingencies, including an outage of the Rockport -Jefferson 765 kV (AEP) circuit, generation at the Rockport Plant will be curtailed to address certain thermal, voltage, and stability concerns in the area. Maximum plant output levels for various combinations of outages, while utilizing several special controls (single phase switching, fast valving, rapid unit runback, emergency unit tripping, etc.) available at the plant, are outlined in the Rockport Operating Guidelines developed by AEP.

Rodburn 138-69 kV (LGEE) Transformer (November 1987) (Rev. May 1992)

In the event of an overload of the Rodburn 138-69 kV transformer, located at the 69 kV EKPC-LGEE-AEP interface, a procedure exists to open the Morehead -Leon 69 kV circuit at Morehead and/or transfer the Index 69 kV station load to Jackson.

Saint Clair - Lambton (L4D) 345 kV (DECO-HONI) Saint Clair - Lambton (L51D) 345 kV (DECO-HONI) Bunce Creek - Scott (B3N) 230 kV (DECO-HONI) Waterman - Keith (J5D) 230 kV (DECO-HONI) (May 1988 / Rev. Aug. 1990)

The Michigan - Ontario interface flow may be optimized for various system conditions by: (1) adjusting the $\pm 30^{\circ}$ phase shifter regulator on the Waterman -Keith 230 kV interconnection; (2) switching the Saint Clair generating unit #6 from the 345 kV to the 120 kV switchyards; (3) operating Marysville generating units #7 and #8; (4) using real-time ratings for the Waterman - Keith 230 kV and Bunce Creek - Scott 230 kV interconnections; (5) arming the generation rejection scheme at Lambton. One Lambton unit (485 MW) may be selected for automatic

generation rejection for the loss of either the L4D or L51D interconnections (both terminate at the Lambton and Saint Clair Power Plants).

Sargents 345-138 kV (OVEC) Transformer (Nov. 1992 / Rev. May 2000)

To relieve overloads on the Sargents 345-138 kV (OVEC) transformer, the preferred procedure is to open the Sargents - Wakefield 138 kV (OVEC-AEP) line. If this action is not adequate, the Sargents 345 kV high side breakers at the DOE X530 station may be opened, while leaving the Sargents - Waverly 138 kV (OVEC-AEP) and Sargents - Wakefield 138 kV (OVEC-AEP) circuits tied together on the low side. This procedure must be coordinated between OVEC and AEP to minimize risk to area loads while correcting the transformer overload condition.

Southern Transmission Emergency Procedures (AEP) (November 1997 / Revised November 1999)

The Southern Transmission Emergency Procedures (STEP), developed by AEP, are intended to reduce, to the extent possible, excessive loadings on critical transmission and subtransmission facilities located within AEP's Roanoke Transmission Region. These procedures, which incorporate the Kanawha River-Matt Funk 345 kV (AEP) operating procedure, were developed to address transmission loadings and voltage conditions that may occur at critical facilities within AEP's Roanoke Transmission Region due to the delay of the Wyoming-Cloverdale Project. Specific actions that may be taken as part of these procedures include: (1) removing the 765 kV shunt reactors at selected stations; (2) adjusting the series compensation on the Kanawha River - Matt Funk 345 kV (AEP) circuit; (3) redispatching generation; (4) curtailing transfers from AEP to the east, southeast, and south; (5) purchasing power from the east and south; (6) requesting voluntary load curtailments; and (7) initiating load shedding.

Springdale - Cheswick 138 kV (AP-DLCO) (May 1991)

During normal system operating conditions with Cheswick generation on-line, the Springdale - Cheswick 138 kV interconnection between AP and DLCO is operated normally open, because circuit loading approaches the continuous rating. When Cheswick generation is off-line, the interconnection is placed in service.

OPERATING PROCEDURES

State Line - Wolf Lake - Sheffield 138 kV (CE-NIPS) (November 1987)

Loading on the State Line - Wolf Lake - Sheffield 138 kV circuits may be reduced by shifting generation at State Line, Mitchell, Schahfer, and Dune Acres. The Wolf Lake - State Line 138 kV circuit could also be opened if overloaded.

Transmission Loading Relief Procedure (NERC) (May 1998 / Rev. May 1999)

The NERC Transmission Loading Relief (TLR) Procedure is a step-by-step procedure for preventing transmission overloads through the curtailment of transactions and the re-dispatch of generation. Details and up-to-date information about the TLR may be obtained from the NERC home page (www.nerc.com).

Wabash River - Crawfordsville 138 kV (CIN) (May 1997)

If the Wabash River - Crawfordsville 138 kV (CIN) circuit overloads under contingency conditions, CIN will open the Crawfordsville - Lafayette Southeast 138 kV (CIN) circuit. This action is effective in reducing the overload.

Worthington 345-138 kV (HE) Transformer (May 2000)

The Worthington 345-138 kV (HE) transformer will be operated out-of-service during the summer months when the Worthington 170 MW combustion turbine is in operation. This is being done to prevent any potential contingency overloads on the Cinergy transmission system when the Worthington CT is operating. When the Worthington CT is not operating, the Worthington 345-138 kV transformer will be operated in service.

APPENDIX I

Contingency Outages

This appendix contains a listing of the contingency outages that were considered as part of this ECAR seasonal transmission assessment. These contingencies are categorized under the following four types of outages: (1) single circuits; (2) single circuit segments of multiple terminal circuits (circuit segments that can be outaged by automatically sectionalizing multiple terminal circuits); (3) multiple terminal circuits (single circuit segments that are outaged together by normal circuit breaker action); and (4) selected double-circuit towers. Specifically, those outages which have a "YES" entry under the ECAR label were the ones simulated in this ECAR seasonal transmission assessment.

SINGLE (TWO TERMINAL) CIRCUITS, 345 KV OR ABOVE WITH LOWER VOLTAGE CIRCUITS INCLUDED BY EXCEPTION, THAT ARE OUTAGED BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS	TO BUS	CKT	ECAR MEN		VEM	GROUP	IN	OUT	ORIGINATOR
AEP	05AMOS 765	05CULLOD 765	1	YES	YES	YES	001			AEP (AP)
AEP	05AMOS 765	05MOUNTN 765	1	YES	YES	YES	001			AEP (AP)
AEP	05BAKER 765	05BROADF 765	1	YES	YES	YES	001			AEP (AP)
AEP	05BAKER 765	05CULLOD 765	1	YES	YES	YES	001			AEP (AP)
AEP	05BAKER 765	05HANG R 765	1	YES	YES	YES	001			AEP (AP)
AEP	05BROADF 765	05J.FERR 765	1		YES	YES	001			AEP (AP)
AEP	05CLOVRD 765	05J.FERR 765	1	YES	YES	YES	001			AEP (AP)
AEP	05CLOVRD 765	05WYOMIN 765	1	YES	YES	YES	001	2004S		AEP (AP)
AEP	05CULLOD 765	05WYOMIN 765	1	YES	YES	YES	001	2004S		AEP (AP)
AEP	05CULLOD 765	05GAVIN 765	1	YES	YES	YES	001			AEP (AP)
AEP	05J.FERR 765	05WYOMIN 765	1	YES	YES	YES	001	2004S		AEP (AP)
AEP	05CLOVRD 765	05CLOVRD 500	1	YES	YES	YES	001	2004S		AEP (AP)
AEP	05AMOS 765	05AMOS 345	1	YES	YES	YES	001			AEP (AP)
AEP	05BAKER 765	05BAKER 345	1	YES	YES		001			AEP (AP)
AEP	05CLOVRD 765	05CLOVRD 345	1	YES	YES	YES	001	2004S		AEP (AP)
AEP	05BROADF 765	05BROADF 138	1	YES	YES		001			AEP (AP)
AEP	05J.FERR 765	05J.FERR 138	1	YES	YES		001			AEP (AP)
AEP	05NAGEL 500	05NAGEL 138	1	YES	YES	YES	001			AEP (AP)
AEP	05AMOS 345	05KANAWH 345	1	YES	YES	YES	001			AEP (AP)
AEP	05AMOS 345	05SPORN 345	1	YES			001			AEP (AP)
AEP	05CLOVRD 345	05M FUNK 345	1	YES		YES	001			AEP (AP)
AEP	05AMOS 345	05AMOS 138	7	YES			001			AEP (AP)
AEP	05AMOS 345	05AMOS 138	8	YES	YES	YES	001			AEP (AP)
AEP	05CLOVRD 345	05CLOVRD 138	3	YES			001			AEP (AP)
AEP	05SPORN 345	05SPORNB 138	3	YES			001			AEP (AP)
AEP	05BRADLE 138	05KANAWH 138	1			YES	001			AEP (AP)
AEP	05GLENLY 138	05CLYTR1 138	1			YES	001			AEP (AP)
AEP	05LOGAN 138	05WYOMIN 138	1			YES	001			AEP (AP)
AEP-CPL	05EDANV1 230	6ROX 1-4 230	1	YES	YES	YES	001	1998S		AEP (AP)
AEP-CPL	05EDANV2 230	6YANCY T 230	1	YES	YES	YES	001	1998S		AEP (AP)
AEP-OVEC	05SPORN 345	06KYGER 345	1	YES			001			AEP (AP)
AEP-TVA	05NAGEL 500	8PHIPP B 500	1	YES	YES	YES	001			AEP (AP)
AEP-TVA	05NAGEL 500	8SULLIVA 500	1	YES	YES	YES	001			AEP (AP)
AEP-VP	05LEESVI 138	4ALTVSTA 138	1	YES	YES	YES	001			AEP (AP)

SINGLE (TWO TERMINAL) CIRCUITS, 345 KV OR ABOVE WITH LOWER VOLTAGE CIRCUITS INCLUDED BY EXCEPTION, THAT ARE OUTAGED BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS	TO BUS		ECAR ME	VOLTAGE N MET	 GROUP	IN	OUT	N/A N/A	ORIGINATOR
AEP	05COOK 765	05DUMONT 765	1	YES	YES	001				AEP (IM)
AEP	05DUMONT 765	05GRNTWN 765	1	YES	YES	001				AEP (IM)
AEP	05DUMONT 765	05MARYSV 765	1	YES	YES	001				AEP (IM)
AEP	05GRNTWN 765	05JEFRSO 765	1	YES	YES	001				AEP (IM)
AEP	05JEFRSO 765	05ROCKPT 765	1	YES	YES	001				AEP (IM)
AEP	05ROCKPT 765	05SULLVA 765	1	YES	YES	001				AEP (IM)
AEP	05COOK 765	05COOK 345	1	YES YE	S YES	001				AEP (IM)
AEP	05SULLVA 765	05BREED 345	1	YES	YES	001				AEP (IM)
AEP	05SULLVA 765	05BREED 345	2	YES	YES	001				AEP (IM)
AEP	05ALLEN 345	05ROB PK 345	1	YES	YES	001				AEP (IM)
AEP	05BREED 345	05DEQUIN 345	1	YES	YES	001				AEP (IM)
AEP	05BREED 345	05EUGENE 345	1	YES YE	S YES	001				AEP (IM)
AEP	05COOK 345	050LIVE 345	1	YES	YES	001				AEP (IM)
AEP	05DEQUIN 345	05EUGENE 345	1	YES	YES	001				AEP (IM)
AEP	05DESOTO 345	05FALL C 345	1	YES	YES	001				AEP (IM)
AEP	05DESOTO 345	05DESOTO 138	1	YES	YES	001				AEP (IM)
AEP	05FALL C 345	05FALL C 138	1	YES	YES	001				AEP (IM)
AEP	05ROB PK 345	05ROB PK 138	1	YES	YES	001				AEP (IM)
AEP	05SORENS 345	05SORENS 138	1	YES	YES	001				AEP (IM)
AEP	05TANNER 345	05TANNER 138	1	YES	YES	001				AEP (IM)
AEP	05TWIN B 345	05TWIN B 138	1	YES	YES	001				AEP (IM)
AEP-CIN	05GRNTWN 765	08GRNTWN 138	1	YES	YES	001				AEP (IM)
AEP-CIN	05EUGENE 345	08CAYUGA 345	1	YES	YES	001		2000S		AEP (IM)
AEP-CIN	05EUGENE 345	08CAYSUB 345	1	YES	YES	001	2000S			AEP (IM)
AEP-CIN	05TANNER 345	08EBEND 345	1	YES	YES	001				AEP (IM)
AEP-CIN	05HUMMEL 138	08GRNTWN 138	1	YES	YES	001				AEP (IM)
AEP-CIPS	05BREED 345	CASEY 345	1	YES	YES	001				AEP (IM)
AEP-CONS	05СООК 345	18PALISA 345	1	YES YE	S YES	001				AEP (IM)
AEP-CONS	05ROB PK 345	18ARGENT 345	1	YES	YES	001				AEP (IM)
AEP-CONS	05TWIN B 345	18ARGENT 345	1	YES YE	S YES	001				AEP (IM)
AEP-IPL	05BREED 345	16PETE 345	1	YES	YES	001		2000S		AEP (IM)
AEP-IPL	05BREED 345	16WHEAT 345	1	YES	YES	001	2000S			AEP (IM)
AEP-IPL	05TANNER 345	16HANNA 345	1	YES	YES	001				AEP (IM)
AEP-NI	05DUMONT 765	WILTO; 765	1	YES	YES	001				AEP (IM)
AEP-NI	050LIVE 345	E FRA; R 345	1	YES	YES	001				AEP (IM)

SINGLE (TWO TERMINAL) CIRCUITS, 345 KV OR ABOVE WITH LOWER VOLTAGE CIRCUITS INCLUDED BY EXCEPTION, THAT ARE OUTAGED BY NORMAL CIRCUIT BREAKER ACTION.

	FROM BUS							GROUP	IN	OUT	N/A N/A	ORIGINATOR
AEP-NI	050LIVE 345	G ACR; T 345	1	YES	YES	YES		001				AEP (IM)
AEP-NIPS	05DUMONT 345	17STLWEL 345	1	YES	YES	YES		001				AEP (IM)
AEP	05GAVIN 765	05MARYSV 765	1	YES		YES		001				AEP (OP)
AEP	05GAVIN 765	05MOUNTN 765	1	YES		YES	YES	001				AEP (OP)
AEP	05HANG R 765	05JEFRSO 765	1	YES		YES		001				AEP (OP)
AEP	05KAMMER 765	05MARYSV 765	1	YES		YES		001		2001S		AEP (OP)
AEP	05MARYSV 765	05ORANGE 765	1	YES		YES		001	2001S			AEP (OP)
AEP	05BEATTY 345	05BIXBY 345	1	YES				001				AEP (OP)
AEP	05BEATTY 345	05HAYDEN 345	1	YES				001				AEP (OP)
AEP	05BIXBY 345	05CONES 345	1	YES				001				AEP (OP)
AEP	05BIXBY 345	05MARQUI 345	1	YES				001				AEP (OP)
AEP	05CANTNC 345	05SCANTO 345	1	YES				001				AEP (OP)
AEP	05CONES 345	05CORRID 345	1	YES				001				AEP (OP)
AEP	05CONES 345	05HYATT 345	1	YES				001				AEP (OP)
AEP	05CORRID 345	05HYATT 345	1	YES				001				AEP (OP)
AEP	05E LIMA 345	05FOSTOR 345	1	YES				001				AEP (OP)
AEP	05E LIMA 345	05MARYSV 345	1	YES	YES	YES		001				AEP (OP)
AEP	05E LIMA 345	05SW LIM 345	1	YES	YES			001				AEP (OP)
AEP	05HAYDEN 345	05HYATT 345	1	YES				001				AEP (OP)
AEP	05HYATT 345	05MARYSV 345	1	YES				001				AEP (OP)
AEP	05KAMMER 345	05MUSKNG 345	1	YES				001				AEP (OP)
AEP	05MARYSV 345	05SW LIM 345	1	YES	YES	YES		001				AEP (OP)
AEP	05MUSKNG 345	05SPORN 345	1	YES				001		2002S		AEP (OP)
AEP	05WATERF 345	05MUSKNG 345	1	YES				001	2002S			AEP (OP)
AEP	05WATERF 345	05SPORN 345	1	YES				001	2002S			AEP (OP)
AEP	05MUSKNG 345	05TIDD 345	1	YES			YES	001		2002S		AEP (OP)
AEP	05BEVERL 345	05MUSKNG 345	1	YES			YES	001	2002S			AEP (OP)
AEP	05BEVERL 345	05TIDD 345	1	YES			YES	001	2002S			AEP (OP)
AEP	05BEATTY 345	05BEATTY 138	3	YES				001				AEP (OP)
AEP	05BIXBY 345	05BIXBY 138	1	YES				001				AEP (OP)
AEP	05BIXBY 345	05BIXBY 138	2	YES				001				AEP (OP)
AEP	05CORRID 345	05CORRID 138	1	YES				001				AEP (OP)
AEP	05FOSTOR 345	05FOSTOR 138	1	YES				001				AEP (OP)
AEP	05ROBERT 345	05ROBERT 138	1	YES				001				AEP (OP)

SINGLE (TWO TERMINAL) CIRCUITS, 345 KV OR ABOVE WITH LOWER VOLTAGE CIRCUITS INCLUDED BY EXCEPTION, THAT ARE OUTAGED BY NORMAL CIRCUIT BREAKER ACTION.

	EDOM DIG										N / 2 N / 2	
COMPANY	FROM BUS	TO BUS	CKT	ECAR		 ME.I.	VEM	GROUP	IN 		N/A N/A	ORIGINATOR
AEP	05SCANTO 345	05SCANTO 138	1	YES				001		2001S		AEP (OP)
AEP	05SCANTO 345	05SCANTE 138	1	YES				001	2001S			AEP (OP)
AEP	05SCANTO 345	05SCANTW 138	1	YES				001	2001S			AEP (OP)
AEP	05SW LIM 345	05SW LIM 138	1	YES				001				AEP (OP)
AEP-AP	05TIDD 345	01WYLIER 345	1	YES	YES		YES	001				AEP (OP)
AEP-AP	05TIDD 138	01CARNEG 138	1	YES				001				AEP (OP)
AEP-AP	05TIDD 138	01MAHNSL 138	1	YES				001				AEP (OP)
AEP-AP	05TILTON 138	01WINDSR 138	1	YES				001				AEP (OP)
AEP-DLCO	05TIDD 345	15COLLIE 345	1	YES			YES	001				AEP (OP)
AEP-DPL	05BEATTY 345	09ADKINS 345	1	YES				001				AEP (OP)
AEP-DPL	05BEATTY 345	09GREENE 345	1	YES				001				AEP (OP)
AEP-DPL	05MARQUI 345	09KILLEN 345	1	YES				001				AEP (OP)
AEP-DPL	05SW LIM 345	09SHELBY 345	1	YES				001				AEP (OP)
AEP-DPL	05HILLSB 138	09ОНН 138	1	YES				001				AEP (OP)
AEP-FE	05CANTNC 345	02HANNA 345	1	YES				001				AEP (OP)
AEP-FE	05FOSTOR 345	02BAY SH 345	1	YES	YES			001				AEP (OP)
AEP-FE	05FOSTOR 345	02GALION 345	1	YES				001				AEP (OP)
AEP-FE	05FOSTOR 345	02LEMOYN 345	1	YES	YES			001				AEP (OP)
AEP-FE	05FRMNT 138	02LEMOYN 138	1	YES				001				AEP (OP)
AEP-FE	05HYATT 345	02TANGY 345	1	YES				001				AEP (OP)
AEP-FE	05SCANTO 345	02SAMMIS 345	1	YES			YES	001				AEP (OP)
AEP-FE	05SCANTO 345	02STAR 345	1	YES	YES		YES	001				AEP (OP)
AEP-FE	05CANTNC 138	02CLVRDL 138	1	YES				001				AEP (OP)
AEP-FE	05CANTNC 138	02BLUBEL 138	1	YES				001				AEP (OP)
AEP-FE	05TORREY 138	02CLVRDL 138	1	YES				001				AEP (OP)
AEP-FE	05W CANT 138	02DALE 138	1	YES				001				AEP (OP)
AEP-FE	05W.END 138	02LEMOYN 138	1	YES				001				AEP (OP)
AEP-OVEC	05MARQUI 345	06DOE530 345	1	YES				001				AEP (OP)
AEP-OVEC	05MARQUI 345	06DOE533 345	1	YES				001				AEP (OP)
AP	01BEDNGT 500	01BLACKO 500	1	YES	YES		YES	001				AP
AP	01BEDNGT 500	01DOUBS 500	1	YES	YES		YES	001				AP
AP	01BELMNT 500	01HARRSN 500	1	YES	YES		YES	001				AP
AP	01BLACKO 500	01HATFLD 500	1	YES	YES		YES	001				AP
AP	01CABOT 500	01WYLIER 500	1	YES	YES		YES	001				AP
AP	01FMARTN 500	01HATFLD 500	1	YES	YES		YES	001				AP

SINGLE (TWO TERMINAL) CIRCUITS, 345 KV OR ABOVE WITH LOWER VOLTAGE CIRCUITS INCLUDED BY EXCEPTION, THAT ARE OUTAGED BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS	TO BUS	CKT	ECAR	MEN	MET	VEM	GROUP	IN	OUT	N/A N/A	ORIGINATOR
AP	01FMARTN 500	01PRNTY 500	1	YES	YES		YES	001				AP
AP	01HARRSN 500	01PRNTY 500	1	YES	YES		YES	001				AP
AP	01HARRSN 500	01WYLIER 500	1	YES	YES		YES	001				AP
AP	01HATFLD 500	01YUKON 500	1	YES	YES		YES	001				AP
AP	01WYLIER 500	01WYLIER 345	1	YES	YES		YES	001				AP
AP	01WYLIER 500	01WYLIER 345	2	YES	YES		YES	001				AP
AP	01WYLIER 345	01WYLIER 138	1	YES				001				AP
AP	01WYLIER 345	01WYLIER 138	2	YES				001				AP
AP	01WYLIER 345	01WYLIER 138	3	YES				001				AP
AP	01DOUBS 230	01AQUEDT 230	1	YES			YES	001				ECAR
AP	01ARMSTR 138	01N BETH 138	1	YES	YES		YES	001				AP
AP	01BURMA 138	01CLARN 138	1	YES	YES		YES	001				AP
AP-FE	01WYLIER 345	02SAMMIS 345	1	YES	YES		YES	001				AP
AP-PEPCO	01DOUBS 230	STATIONH 230	1	YES			YES	001				ECAR
AP-PJM500	01CABOT 500	KEYSTONE 500	1	YES	YES		YES	001				AP
AP-PJM500	01DOUBS 500	BRIGHTON 500	1	YES	YES		YES	001				ECAR
AP-PJM500	01YUKON 500	KEYSTONE 500	1	YES	YES		YES	001				AP
AP-VP	01DOUBS 500	8LOUDOUN 500	1	YES	YES		YES	001				AP
AP-VP	01DOUBS 500	8MT STM 500	1	YES	YES		YES	001				AP
AP-VP	01MDWBRK 500	8MORRSVL 500	1	YES	YES		YES	001	1995S			AP
AP-VP	01MDWBRK 500	8MT STM 500	1	YES	YES		YES	001	1995S			AP
AP-VP	01PRNTY 500	8MT STM 500	1	YES	YES	YES	YES	001				AP
BREC	14COLE 7 345	14WILSO7 345	1	YES		YES		001				BREC
BREC	14REID 7 345	14WILSO7 345	1	YES		YES		001				BREC
BREC	14COLE 5 161	14NATAL5 161	1	YES		YES		001				BREC
BREC-LGEE	14WILSO5 161	11GR RV 161	1	YES	YES	YES	YES	001				BREC
BREC-LGEE	14N.HAR4 138	11CLVRPR 138	1	YES		YES		001				BREC
BREC-SIGE	14HENDR4 138	10ABBRWN 138	1	YES		YES		001				BREC
BREC-TVA	14HOPCO5 161	5BARKLEY 161	1	YES		YES		001				BREC
BREC-TVA	14LIVIN5 161	5BARKLEY 161	1	YES				001				VAST
BREC-TVA	14LIVIN5 161	5MARSHAL 161	1	YES				001				VAST
BREC-TVA	14MCRAK5 161	5MARSHAL 161	1	YES				001				VAST
BREC-TVA	14MCRAK5 161	5MCCRACK 161	1	YES				001				VAST
BREC-TVA	14N.HAR5 161	5PARADIS 161	1	YES		YES		001				BREC

SINGLE (TWO TERMINAL) CIRCUITS, 345 KV OR ABOVE WITH LOWER VOLTAGE CIRCUITS INCLUDED BY EXCEPTION, THAT ARE OUTAGED BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS	TO BUS	CKT		MET VEM	GROUP	IN	OUT	N/A N/A	ORIGINATOR
CIN	08BEDFRD 345	08COLMBU 345	1	YES	YES	001				CIN
CIN	08CAYUGA 345	08NUCOR 345	1	YES	YES	001				CIN
CIN	08COLMBU 345	08GWYNN 345	1	YES	YES	001		2001S		CIN
CIN	08COLMBU 345	08PRESCT 345	1	YES	YES	001	2001S			CIN
CIN	08GWYNN 345	08PRESCT 345	1	YES	YES	001	2001S			CIN
CIN	08DEEDSV 345	08WALTON 345	1	YES	YES	001				CIN
CIN	08EBEND 345	08TERMNL 345	1	YES		001				CIN
CIN	08GIBSON 345	08QUALTC 345	1	YES	YES	001		2000S		CIN
CIN	08GIBSON 345	08WHEAT 345	1	YES	YES	001	2000S			CIN
CIN	08WHEAT 345	08QUALTC 345	1	YES	YES	001	2000S	2001S		CIN
CIN	08WHEAT 345	08AMO 345	1	YES	YES	001	2001S			CIN
CIN	08AMO 345	08QUALTC 345	1	YES	YES	001	2001S			CIN
CIN	08QUALTC 345	08WHITST 345	1	YES	YES	001				CIN
CIN	08NUCOR 345	08WHITST 345	1	YES	YES	001				CIN
CIN	08GIBSON 345	08GIB 138	1	YES	YES	001				ECAR
CIN	08CAYUGA 230	08NEWLON 230	99	YES	YES	001		2000S		ECAR
CIN	08CAYUGA 230	08FRNKFT 230	1	YES	YES	001	2000S			ECAR
CIN	08NEWLON 230	08FRNKFT 230	1	YES	YES	001	2000S			ECAR
CIN	08GRNTWN 230	08KOEAST 230	1	YES	YES	001				CIN
CIN	08NEWLON 230	08WEBSTE 230	1	YES	YES	001				CIN
CIN	08STAUTN 230	08WAB R 230	1	YES	YES	001				CIN
CIN	08WALTON 230	08WEBSTE 230	1	YES	YES	001				CIN
CIN	08BATESV 138	08LAUREL 138	1	YES	YES	001				CIN
CIN	08GRNTWN 138	08MAPLE 138	1	YES	YES	001	2000S			ECAR
CIN	08GRNTWN 138	08DELCO 138	1	YES	YES	001	2000S			ECAR
CIN-DPL	08FOSTER 345	09STUART 345	1	YES		001				CIN
CIN-DPL	08FOSTER 345	09SUGRCK 345	1	YES		001				CIN
CIN-DPL	08M.FORT 345	09WMILTN 345	1	YES		001				CIN
CIN-DPL	08ZIMER 345	09STUART 345	1	YES		001				CIN
CIN-EKPC	08BUFTN1 138	20BOONE 138	1	YES	YES	001				CIN
CIN-HE	08DRESSR 345	07MEROM5 345	1	YES	YES	001				HE
CIN-HE	08GIBSON 345	07MEROM5 345	1	YES	YES	001				HE
CIN-IPL	080KLND 138	16PETE 138	1	YES	YES	001				IPL
CIN-IPL	08VIN J 138	16PETE 138	1	YES	YES	001				IPL
CIN-LGEE	08SPEED 345	11GHENT 345	1	YES	YES	001				LGEE

SINGLE (TWO TERMINAL) CIRCUITS, 345 KV OR ABOVE WITH LOWER VOLTAGE CIRCUITS INCLUDED BY EXCEPTION, THAT ARE OUTAGED BY NORMAL CIRCUIT BREAKER ACTION.

	FROM BUS							OUT	ORIGINATOR
CIN-LGEE	08SPEED 138	11NORTHS 138	1	YES		001			LGEE
CIN-LGEE	08GALAGH 138	11P WEST 138	1	YES	YES	001			LGEE
CIN-NIPS	08DEEDSV 345	17LESBRG 345	1	YES	YES	001			NIPS
CIN-OVEC	08FOSTER 345	06PIERCE 345	1	YES		001			CIN
CIN-SIGE	080KLND 138	10ТОУОТА 138	1	YES	YES	001			CIN
CONS	18НАМРТО 345	18THETFR 345	1	YES		001			CONS
CONS	18KEYSTO 345	18LIVINS 345	1	YES		001			CONS
CONS	18TALLMA 345	18TALLMA 138	1	YES		001			CONS
CONS	18TALLMA 345	18TALLMA 138	2	YES		001			CONS
CONS	18MCGULP 138	18STRAIT 138	1	YES	YES	001			CONS
CONS	18MCGULP 138	18STRAIT 138	3	YES	YES	001			CONS
CONS-DECO	18НАМРТО 345	19PONTC 345	1	YES		001			CONS
CONS-DECO	18THETFR 345	19JEWEL 345	1	YES		001			CONS
CONS-DECO	18TOMPKN 345	19MAJTC 345	1	YES		001			CONS
CONS-DECO	180NEIDA 345	19MAJTC 345	1	YES		001	2001S		CONS
CONS-DECO	18HMPHLD 120	19HUNTC 120	1	YES		001			CONS
CONS-DECO	18WHTNGA 120	19CUSTR 120	1	YES		001			CONS
CONS-NIPS	18BATAVI 138	17BRTNLK 138	1	YES		001			CONS
DECO	19BFOOT 345	19BLRPP 345	1	YES		001	2000S		DECO
DECO	19BFOOT 345	19MADRD 345	1	YES		001	2000S		DECO
DECO	19BFOOT 345	19PONTC 345	1	YES		001	2000S		DECO
DECO	19BNSTNN 345	19ENFPP 345	1	YES		001			DECO
DECO	19BNSTNN 345	19MON34 345	1	YES YES	3	001			DECO
DECO	19BNSTNN 345	19WAYNE 345	1	YES		001			DECO
DECO	19BNSTNS 345	19ENFPP 345	1	YES		001			DECO
DECO	19BNSTNS 345	19MON12 345	1	YES YES	3	001			DECO
DECO	19BNSTNS 345	19WAYNE 345	1	YES		001			DECO
DECO	19BLRPP 345	19JEWEL 345	1	YES YES	3	001			DECO
DECO	19BLRPP 345	19PONTC 345	1	YES YES	3	001			DECO
DECO	19BLRPP 345	19STCPP 345	1	YES YES	3	001			DECO
DECO	19JEWEL 345	19STCPP 345	1	YES YES	3	001			DECO
DECO	19JEWEL 345	19STEPH 345	1	YES		001			DECO
DECO	19MAJTC 345	19WAYNE 345	1	YES		001			DECO
DECO	19MON12 345	19WAYNE 345	1	YES YES	3	001			DECO

SINGLE (TWO TERMINAL) CIRCUITS, 345 KV OR ABOVE WITH LOWER VOLTAGE CIRCUITS INCLUDED BY EXCEPTION, THAT ARE OUTAGED BY NORMAL CIRCUIT BREAKER ACTION.

NOTE: N/A = NOT APPLICABLE.

NOTE: ENTRIES SORTED BY (1) ALPHA BY COMPANY, AND (2) VOLTAGE THEN ALPHA BY BUSNAME.

COMPANY	FROM BUS	TO BUS	CKT	ECAR	MEN	MET	VEM	GROUP	IN	OUT	N/A	N/A	ORIGINATOR
DECO	19PONTC 345		1	YES				001					DECO
DECO	19STCPP 345	19STEPH 345	1	YES	YES			001					DECO
DECO	19WAYNE 345	19QUATP 345	1	YES				001					DECO
DECO	19BNSTNN 345	19BNSTNN 230	1	YES				001					DECO
DECO	19BNSTNS 345	19BNSTNS 230	1	YES				001					DECO
DECO	19PONTC 345	19PONTC1 230	1	YES				001					DECO
DECO	19WAYNE 345	19WAYNE 230	1	YES	YES			001					DECO
DECO	19MON34 345	19MONPP 120	1	YES				001					DECO
DECO	19QUAKR 345	19QUAKR 120	1	YES				001					DECO
DECO	19ЅТЕРН 345	19STEPH 120	1	YES				001					DECO
DECO	19STEPH 345	19STEPH 120	2	YES				001					DECO
DECO	19WAYNE 345	19WAYNE 120	1	YES				001					DECO
DECO	19WAYNE 345	19WAYNE 120	2	YES				001					DECO
DECO	19WIXOM 345	19WIXOM 120	1	YES				001					DECO
DECO-FE	19MAJTC 345	02LEMOYN 345	1	YES	YES			001					DECO
DECO-FE	19MON12 345	02BAY SH 345	1	YES	YES			001					DECO
DECO-OH	19STCPP 345	LAMB L4D 345	1	YES	YES			001					DECO
DECO-OH	19STCPP 345	LAMB L51 345	1	YES	YES			001		2000S			DECO
DECO-OH	19L51 PS 220	LAMB L51 220	1	YES	YES			001	2000S				DECO
DECO-OH	19WTRMN 230	J5D PS 230	1	YES	YES		YES	001					DECO
DECO-OH	19BUNCE 230	SCOTT 220	1	YES	YES		YES	001		2000S			DECO
DECO-OH	19B3N PS 220	SCOTT 220	1	YES	YES		YES	001	2000S				DECO
DLCO	15BVRVAL 345	15CLINTN 345	1	YES				001					DLCO
DLCO	15BVRVAL 345	15CRESCN 345	1	YES				001					DLCO
DLCO	15CLINTN 345	15COLLIE 345	1	YES				001					AEP (OP)
DLCO	15COLLIE 345	15CRESCN 345	1	YES				001					DLCO
DLCO	15COLLIE 138	15ELWYN 138	1	YES				001					DLCO
DLCO-FE	15BVRVAL 345	02HANNA 345	1	YES				001					DLCO
DLCO-FE	15BVRVAL 345	02MANSFD 345	1	YES				001					DLCO
DLCO-FE	15BVRVAL 345	02SAMMIS 345	1	YES				001					DLCO
DLCO-FE	15CRESCN 345	02MANSFD 345	1	YES				001					FE
DPL	09ATLNTA 345	09STUART 345	1	YES				001					DPL
DPL	09GREENE 345	09SUGRCK 345	1	YES				001					DPL
DPL	09KILLEN 345	09STUART 345	1	YES				001					DPL
DPL	09MIAMI 345	09SHELBY 345	1	YES				001					DPL

SINGLE (TWO TERMINAL) CIRCUITS, 345 KV OR ABOVE WITH LOWER VOLTAGE CIRCUITS INCLUDED BY EXCEPTION, THAT ARE OUTAGED BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS	TO BUS	CKT		MEN			GROUP	IN	OUT	ORIGINATOR
DPL	09MIAMI 345	09WMILTN 345	1	YES				001			DPL
DPL	09GREENE 345	09GREENE 138	1	YES				001			DPL
DPL	09GREENE 345	09GREENE 138	2	YES				001			DPL
DPL	09SHELBY 345	09SHELBY 138	1	YES				001			DPL
DPL	09GRNVIL 138	09GRNVIL69.0	1	YES				001			ECAR
EKPC	20LAURLC 161	20LAURLD 161	1	YES		YES		001			EKPC
EKPC	20JKSMIT 138	20POWELL 138	1	YES		YES		001			LGEE
EKPC-LGEE	20BLIT C 161	11BLUE L 161	1	YES		YES		001			EKPC
EKPC-LGEE	20AVON 138	11LOUDON 138	1	YES		YES		001			EKPC
EKPC-LGEE	20SPURLK 138	11KENTON 138	1	YES	YES	YES	YES	001			EKPC
EKPC-LGEE	20SPURLK 138	11KENTON 138	2	YES	YES	YES	YES	001			EKPC
EKPC-TVA	20SSHADE 161	5SUMMER 161	1	YES				001			VAST
EKPC-TVA	20SSHADT 161	5SUMMER 161	1	YES				001			VAST
EKPC-TVA	20RUSSEL 161	5WOLF CR 161	1	YES				001			VAST
FE	02AVON 345	02BEAVER 345	1	YES	YES		YES	001			FE
FE	02AVON 345	02JUNIPE 345	1	YES	YES			001			FE
FE	02BAY SH 345	02DAV-BE 345	1	YES	YES	YES		001			FE
FE	02BEAVER 345	02CARLIL 345	1	YES				001			FE
FE	02BEAVER 345	02DAV-BE 345	1	YES	YES			001			FE
FE	02CARLIL 345	02STAR 345	1	YES				001			FE
FE	02CHAMBR 345	02MANSFD 345	1	YES			YES	001			FE
FE	02DAV-BE 345	02LEMOYN 345	1	YES	YES			001			FE
FE	02EASTLK 345	02JUNIPE 345	1	YES	YES			001			FE
FE	02EASTLK 345	02PERRY 345	1	YES				001			FE
FE	02FOX 345	02HARDIN 345	1	YES				001			FE
FE	02HANNA 345	02HGHLND 345	1	YES				001			FE
FE	02HANNA 345	02JUNIPE 345	1	YES	YES		YES	001			FE
FE	02HARDIN 345	02CHAMBR 345	1	YES	YES		YES	001			FE
FE	02HARDIN 345	02INLAND 345	1	YES				001			FE
FE	02HARDIN 345	02JUNIPE 345	1	YES	YES			001			FE
FE	02HARDIN 345	02PERRY 345	1	YES				001			FE
FE	02HGHLND 345	02MANSFD 345	1	YES			YES	001			FE
FE	02HGHLND 345	02SAMMIS 345	1	YES				001			FE
FE	02HGHLND 345	02SHNAGO 345	1	YES				001			FE

SINGLE (TWO TERMINAL) CIRCUITS, 345 KV OR ABOVE WITH LOWER VOLTAGE CIRCUITS INCLUDED BY EXCEPTION, THAT ARE OUTAGED BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS	TO BUS			EN MET				N/A N/A	ORIGINATOR
FE	02HOYTDL 345	02MANSFD 345	1	YES		YES	001			FE
FE	02HOYTDL 345	02SHNAGO 345	1	YES			001			FE
FE	02INLAND 345	02PERRY 345	1	YES			001			FE
FE	02JUNIPE 345	02STAR 345	1	YES YE	ES	YES	001			FE
FE	02LEMOYN 345	02MIDWAY 345	1	YES			001			FE
FE	02SAMMIS 345	02STAR 345	1	YES YE	ES	YES	001			FE
FE	02ALLEN 345	02 ALLEN 138	1	YES YE	ES		001			FE
FE	02AVON 345	02AVON 138	91	YES YE	ES		001			FE
FE	02BAY SH 345	02BAYSHO 138	1	YES YE	ES		001			FE
FE	02BEAVER 345	02BEAVER 138	1	YES YE	ES		001			FE
FE	02BEAVER 345	02BEAVER 138	2	YES YE	ES		001			FE
FE	02CARLIL 345	02CARLIL 138	1	YES YE	ES		001			FE
FE	02EASTLK 345	02EASTLK 138	61	YES YE	ES		001			FE
FE	02HANNA 345	02HANNA 138	1	YES			001			FE
FE	02HANNA 345	02HANNA 138	2	YES			001			FE
FE	02HGHLND 345	02HGHLND 138	1	YES			001			FE
FE	02HGHLND 345	02HGHLND 138	2	YES			001			FE
FE	02HOYTDL 345	02HOYTDL 138	1	YES		YES	001			ECAR
FE	02INLAND 345	02INQ-11 138	3	YES YE	ES		001			FE
FE	02INLAND 345	02INQ-14 138	4	YES YE	ES		001			FE
FE	02JUNIPE 345	02JNPRQ1 138	45	YES YE	ES		001			FE
FE	02JUNIPE 345	02JNPRQ3 138	6	YES YE	ES		001			FE
FE	02JUNIPE 345	02JNPRQ4 138	3	YES YE	ES		001			FE
FE	02LEMOYN 345	02LEMOYN 138	1	YES			001			FE
FE	02LEMOYN 345	02LEMOYN 138	2	YES			001			FE
FE	02MIDWAY 345	02MIDWAY 138	1	YES			001			FE
FE	02SHNAGO 345	02SHNAGO 138	1	YES			001			FE
FE	02SHNAGO 345	02SHNAGO 138	2	YES			001			FE
FE	02STAR 345	02STAR 138	1	YES			001			FE
HE-IPL	07RATTS8 138	16PETE 138	1	YES	YES		001			IPL
IPL	16HANNA 345	16SUNNYS 345	1	YES	YES		001			IPL
IPL	16PETE 345	16THOMPS 345	1	YES	YES		001			IPL
IPL	16STOUT 345	16THOMPS 345	1	YES	YES		001			IPL
IPL	16PETE 345	16PETE 138	E	YES	YES		001			ECAR
IPL	16PETE 345	16PETE 138	W	YES	YES		001			ECAR

SINGLE (TWO TERMINAL) CIRCUITS, 345 KV OR ABOVE WITH LOWER VOLTAGE CIRCUITS INCLUDED BY EXCEPTION, THAT ARE OUTAGED BY NORMAL CIRCUIT BREAKER ACTION.

	FROM BUS										ORIGINATOR
IPL-SIGE	16PETE 138	10CATO_T 138	1	YES		YES		001			IPL
LGEE	11MIDDLT 345	11MIL CK 345	1	YES		YES		001			LGEE
LGEE	11MIDDLT 345	11TRIMBL 345	1	YES	YES	YES	YES	001			LGEE
LGEE	11BRWN N 345	11BRWN N 138	1	YES		YES		001			LGEE
LGEE	11SMITH 345	11SMITH 138	1	YES		YES	YES	001			LGEE
LGEE	11EARL N 161	11LIV C 161	1	YES		YES		001			LGEE
LGEE	11LIV C 161	11S PADU 161	1	YES		YES		001			LGEE
LGEE	11GR RV 161	11GR RVR 138	2	YES		YES		001			LGEE
LGEE	11ADAMS 138	11TYRONE 138	1	YES		YES		001			LGEE
LGEE	11BRWN N 138	11HIGBY 138	1	YES		YES		001			LGEE
LGEE	11BRWN P 138	11FAWKES 138	1	YES		YES		001			LGEE
LGEE	11CLARK 138	11FAWKES 138	1	YES		YES		001			LGEE
LGEE	11FAWK T 138	11LR TAP 138	1	YES	YES	YES	YES	001			LGEE
LGEE	11HAEFLI 138	11W LEXN 138	1	YES		YES		001			LGEE
LGEE	11HARDN 138	11HARDBG 138	1	YES		YES		001			LGEE
LGEE	11FINCHV69.0	11MIDDLT69.0	EQ	YES		YES		001			LGEE
LGEE	11SHLBYV69.0	116658 T69.0	EQ	YES		YES		001			LGEE
LGEE-OVEC	11TRIMBL 345	06CLIFTY 345	1	YES		YES		001			LGEE
LGEE-OVEC	11NORTHS 138	06CLIFTY 138	1	YES				001			LGEE
LGEE-SIGE	11CLVRPR 138	10NEWTVL 138	1	YES		YES		001			LGEE
LGEE-TVA	11POCKET 500	8PHIPP B 500	1	YES		YES	YES	001			LGEE
LGEE-TVA	11LIV C 161	5CALVERT 161	1	YES				001			VAST
LGEE-TVA	11PADDYS 161	5SUMMER 161	1	YES		YES		001			LGEE
LGEE-TVA	11PINEV 161	5PINEVIL 161	1	YES				001			VAST
NIPS	17BUROAK 345	17LESBRG 345	1	YES		YES		001			ECAR
NIPS	17BUROAK 345	17SCHAHF 345	1	YES		YES		001			NIPS
NIPS	17MITCHL 138	17ROXANA 138	1	YES		YES		001			NIPS
NIPS-NI	17SHEFLD 345	BURNH; B 345	1	YES	YES	YES		001			ECAR
NIPS-NI	17MUNSTR 345	BURNH; OR 345	1	YES	YES	YES		001			ECAR
OVEC	06DOE530 345	06SARGNT 138	1	YES				001			OVEC
SIGE	10NEWTVL 161	10NEWTVL 138	1	YES		YES		001			SIGE
SIGE	10CULLEY 138	10GRNDVW 138	1	YES		YES		001			SIGE
SIGE	10GRNDVW 138	10NEWTVL 138	1	YES		YES		001			SIGE
PJM500	BRIGHTON 500	W CHAPEL 500	1				YES	001			ECAR

SINGLE (TWO TERMINAL) CIRCUITS, 345 KV OR ABOVE WITH LOWER VOLTAGE CIRCUITS INCLUDED BY EXCEPTION, THAT ARE OUTAGED BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS		TO BUS		 CKT	ECAR	MEN	 MET	VEM	GROUP	 IN	OUT	N/A N/A	ORIGINATOR
РЈМ500	CONEM-GH 5	500	JUNIATA	500	1	YES	YES		YES	001				ECAR
РЈМ500	JUNIATA 5	500	KEYSTONE	500	1	YES	YES		YES	001				ECAR
AMRN	CASEY 3	345	NEOGA	345	1	YES		YES		001				ECAR
AMRN	CASEY 3	345	NEWTON	345	1	YES	YES	YES		001				ECAR
AMRN	DUCK CRK 3	345	TAZEWELL	345	1		YES	YES		001				ECAR
AMRN	RUSH 3	345	ST FRANC	345	1	YES		YES	YES	001				ECAR
AMRN-AECI	BLAND 3	345	7FRANKS	345	1	YES		YES	YES	001				ECAR
AMRN-IP	E W FKFT 3	345	MT VRNON	345	1	YES		YES		001				ECAR
IP	BUNSONVL 3	345	BUNSONVL	138	1	YES				001				ECAR
NI	LISLE B 3	345	LOMBRD B	345	1		YES	YES		001				ECAR
ОН	BECK A	345	BECK2PA1	220	1		YES		YES	001				(TBA)
ОН	LAMB L4D 3	345	LAMBTON	220	Т7		YES		YES	001				(TBA)
CPL-VP	8WAKE 5	500	8CARSON	500	1	YES			YES	001				ECAR
CPL-VP	6PERSON 2	230	6HALIFAX	230	1	YES			YES	001				ECAR
DUKE	8MCGUIRE 5	500	8JOCASSE	500	1				YES	001				VAST
DUKE-SOUTHER	80CONEE 5	500	8NORCROS	500	1	YES				001				VAST
SOUTHERN-TVA	8BOWEN 5	500	8SNP	500	1	YES			YES	001				ECAR
TVA	8BULL RU 5	500	8VOLUNTE	500	1	YES				001				VAST
TVA	8CUMBERL 5	500	8DAVIDSO	500	1	YES				001				ECAR
TVA	8CUMBERL 5	500	8JVILLE	500	1	YES			YES	001				ECAR
TVA	8CUMBERL 5	500	8MARSHAL	500	1	YES				001				VAST
TVA	8MARSHAL 5	500	8SHAWNEE	500	1	YES				001				VAST
TVA	8PHIPP B 5	500	8SULLIVA	500	1			YES	YES	001				ECAR
TVA	8PHIPP B 5	500	8VOLUNTE	500	1	YES		YES	YES	001				ECAR
TVA	8VOLUNTE 5	500	8WBNP 1	500	1	YES				001				ECAR
TVA	8PHIPP B 5	500	5РНІРР В	161	1			YES	YES	001				ECAR
TVA	8SULLIVA 5	500	5SULLIVA	161	1			YES		001				ECAR
TVA	5LAFOLLE 1	161	5PINEVIL	161	1			YES		001				ECAR
VP	8BATH CO	500	8LEXNGTN	500	1	YES			YES	001				ECAR
VP	8BATH CO 5	500	8VALLEY	500	1	YES		YES	YES	001				ECAR
VP	8DOOMS 5	500	8LDYSMTH	500	1	YES			YES	001	2004S			ECAR
VP	8DOOMS 5	500	8VALLEY	500	1	YES			YES	001				ECAR
VP	8LOUDOUN 5	500	8MORRSVL	500	1				YES	001				ECAR

ECAR TYPE 2 OUTAGES -- SINGLE CIRCUIT SEGMENT OF MULTIPLE TERMINAL CIRCUIT OUTAGES.

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED ALONE BY AUTOMATICALLY SECTIONALIZING MULTIPLE TERMINAL CIRCUITS.

 COMPANY		TO BUS						IN	OUT	ORIGINATOR
AEP	05CLOVRD 765	05CLOVRD 345	1	YES	YES	YES	001		2004S	AEP (AP)
AEP	05JOSHUA 765	05JOSHUA 500	1	YES	YES	YES	001	2004S		AEP (AP)
AEP	05JOSHUA 765	05JOSHUA 500	2	YES	YES	YES	001	2004S		AEP (AP)
AEP	05JOSHUA 765	05JOSHUA 138	1	YES	YES	YES	001	2004S		AEP (AP)
AEP	05WYOMIN 765	05WYOMX1 138	1	YES	YES	YES	001			AEP (AP)
AEP	05WYOMIN 765	05WYOMX2 138	2	YES	YES	YES	001			AEP (AP)
AEP	05KANAWH 345	05SPORN 345	1	YES		YES	001			AEP (AP)
AEP	05KANAWH 345	05KANAWH 138	1	YES		YES	001			AEP (AP)
AEP	05M FUNK 345	05M FUNK 138	1	YES	YES	YES	001			AEP (AP)
AEP	05TRISTA 345	05TRISTA 138	1	YES			001			AEP (AP)
AEP	05TRISTA 345	05TRISTA 138	2	YES			001			AEP (AP)
AEP-DUKE	05RIDGWA 138	4DAN RIV 138	3	YES	YES	YES	001			AEP (AP)
AEP	05ALLEN 345	05SORENS 345	1	YES	YES		001			AEP (IM)
AEP	05BENTON 345	05COOK 345	1	YES	YES		001			AEP (IM)
AEP	05COLNGW 345	05ROB PK 345	1	YES	YES		001			AEP (IM)
AEP	05COOK 345	05EELKHA 345	1	YES	YES		001			AEP (IM)
AEP	05COOK 345	05JACKSR 345	1	YES	YES		001		2002S	AEP (IM)
AEP	05BARODA 345	05COOK 345	1	YES	YES		001	2002S		AEP (IM)
AEP	05BARODA 345	05JACKSR 345	1	YES	YES		001	2002S		AEP (IM)
AEP	05COOK 345	05KENZIE 345	1	YES	YES		001			AEP (IM)
AEP	05DEQUIN 345	050LIVE 345	1	YES	YES		001			AEP (IM)
AEP	05DEQUIN 345	05REYNOL 345	1	YES			001			AEP (IM)
AEP	05JACKSR 345	05TWIN B 345	1	YES	YES		001			AEP (IM)
AEP	05KENZIE 345	05TWIN B 345	1	YES	YES		001			AEP (IM)
AEP	050LIVE 345	05REYNOL 345	1	YES			001			AEP (IM)
AEP	05ALLEN 345	05ALLEN 138	1	YES	YES		001			AEP (IM)
AEP	05BENTON 345	05BENTON 138	1	YES	YES		001			AEP (IM)
AEP	05EELKHA 345	05EELKHA 138	1	YES	YES		001			AEP (IM)
AEP-CIN	05GRNTWN 765	08GRNTWN1.00	1	YES	YES		001			AEP (IM)
AEP-CIN	05FALL C 345	08NOBLSV 345	1	YES	YES		001			AEP (IM)
AEP-CONS	05BENTON 345	18PALISA 345	1	YES	YES		001			AEP (IM)
AEP-IP	05EUGENE 345	BUNSONVL 345	1	YES	YES		001			AEP (IM)
AEP-IPL	05FALL C 345	16SUNNYS 345	1	YES	YES		001			AEP (IM)
AEP-NIPS	05REYNOL 345	17RYNLDS 138	1	YES	YES		001			AEP (IM)

ECAR TYPE 2 OUTAGES -- SINGLE CIRCUIT SEGMENT OF MULTIPLE TERMINAL CIRCUIT OUTAGES.

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED ALONE BY AUTOMATICALLY SECTIONALIZING MULTIPLE TERMINAL CIRCUITS.

NOTE: N/A = NOT APPLICABLE. NOTE: ENTRIES SORTED BY (1) ALPHA BY COMPANY, AND (2) VOLTAGE THEN ALPHA BY BUSNAME.

	·											
COMPANY	FROM BUS	TO BUS	CKT	ECAR	MEN		VEM	GROUP	IN 	OUT 	N/A N/A	ORIGINATOR
AEP	05KAMMER 765	05ORANGE 765	1	YES		YES		001	2001S			AEP (OP)
AEP	05NPROCT 765	05NPROCT 138	1	YES				001				AEP (OP)
AEP	050RANGE 765	05ORANGE 138	1	YES				001	2001S			AEP (OP)
AEP	05CANTNC 345	05SECANT 345	1	YES				001				AEP (OP)
AEP	05CANTNC 345	05TIDD 345	1	YES			YES	001				AEP (OP)
AEP	05E LIMA 345	05ROB PK 345	1	YES		YES		001		2002S		AEP (OP)
AEP	05CONVOY 345	05E LIMA 345	1	YES		YES		001	2002S			AEP (OP)
AEP	05CONVOY 345	05ROB PK 345	1	YES		YES		001	2002S			AEP (OP)
AEP	05MUSKNG 345	05WMILLP 345	1	YES				001				AEP (OP)
AEP	05MUSKNG 345	05WMILLP 345	2	YES				001				AEP (OP)
AEP	05SCANTO 345	05SECANT 345	1	YES				001				AEP (OP)
AEP	05CANTNC 345	05CANTNC 138	1	YES			YES	001				AEP (OP)
AEP	05KIRK 345	05KIRK 138	1	YES				001				AEP (OP)
AEP	050HIOCT 345	050HIOCX 138	1	YES				001				AEP (OP)
AEP	05SECANT 345	05SECANT 138	1	YES				001				AEP (OP)
AEP	05WBELLA 345	05WBELLA 138	1	YES				001				AEP (OP)
AEP	05WMILLP 345	05WMILLP 138	1	YES				001				AEP (OP)
AEP-AP	05BELMON 765	01BELMNT 500	1	YES	YES	YES	YES	001				ECAR
AEP-AP	05KAMMER 765	01KAMMER 500	1	YES	YES	YES	YES	001				ECAR
AEP-FE	050HIOCT 345	02GALION 345	1	YES		YES		001				AEP (OP)
AP	01 502 J 500	01FMARTN 500	1	YES	YES		YES	001				AP
AP	01 502 J 500	01HARRSN 500	1	YES	YES		YES	001				AP
AP	01 502 J 500	01KAMMER 500	1	YES	YES		YES	001				AP
AP	01BEDNGT 500	01BEDNGT 138	1	YES	YES		YES	001				AP
AP	01BEDNGT 500	01BEDNGT 138	2	YES	YES		YES	001				AP
AP	01MDWBRK 500	01MDWBRK 138	1	YES	YES		YES	001				AP
AP	01MDWBRK 500	01MDWBRK 138	2	YES	YES		YES	001				AP
AP	01BEDNGT 138	01HARMNY 138	1	YES	YES		YES	001				AP
AP	01CHERYR 138	01HARMNY 138	1	YES	YES		YES	001				AP
AP	01MARLOW 138	01HARMNY 138	1	YES	YES		YES	001				AP
CIN	08BEDFRD 345	08GIBSON 345	1	YES		YES		001				CIN
CIN	08BEDFRD 345	08LOST R 345	1	YES		YES		001				CIN
CIN	08CAY CT 345	08DRESSR 345	1	YES		YES		001				CIN
CIN	08NOBLSV 345	08WHITST 345	1	YES		YES		001		2001S		CIN
CIN	08NOBLSV 345	08HORTVL 345	1	YES		YES		001	2001S			CIN

ECAR TYPE 2 OUTAGES -- SINGLE CIRCUIT SEGMENT OF MULTIPLE TERMINAL CIRCUIT OUTAGES.

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED ALONE BY AUTOMATICALLY SECTIONALIZING MULTIPLE TERMINAL CIRCUITS.

NOTE: N/A = NOT APPLICABLE. NOTE: ENTRIES SORTED BY (1) ALPHA BY COMPANY, AND (2) VOLTAGE THEN ALPHA BY BUSNAME.

		TO BUS							OUT		ORIGINATOR
CIN	08WHITST 345	08HORTVL 345	1	YES		YES	001	2001S			CIN
CIN	08WALTON 345	08WALTON 230	1	YES		YES	001				CIN
CIN	08BEDFRD 345	08BEDFRD 138	1	YES		YES	001				CIN
CIN	08DRESSR 345	08DRESSR 138	1	YES		YES	001				CIN
CIN	08GRNBOR 345	08GRNBOR 138	1	YES		YES	001				CIN
CIN	08SPEED 345	08SPEED 138	1	YES		YES	001				CIN
CIN	08WALTON 230	08WEBSTE 230	1	YES		YES	001				CIN
CIN-IPL	08GIBSON 345	16PETE 345	1	YES		YES	001				ECAR
CIN-IPL	08GWYNN 345	16SUNNYS 345	1	YES		YES	001				CIN
CIN-IPL	08LOST R 345	16PETE 345	1	YES		YES	001				IPL
CIN-IPL	08WHITST 345	16GUION 345	1	YES		YES	001				IPL
DECO	19CVTRY 345	19MAJTC 345	1	YES			001				DECO
DPL	09BATH 345	09GREENE 345	1	YES			001				DPL
DPL	09BATH 345	09MIAMI 345	1	YES			001				DPL
DPL	09CLINTO 345	09STUART 345	1	YES			001				AEP (OP)
DPL	09ATLNTA 345	09ATLNTA69.0	1	YES			001				DPL
FE	02FOX 345	02FOXQ11 138	2	YES	YES		001				FE
FE	02FOX 345	02FOXQ12 138	5	YES	YES		001				FE
FE	02FOX 345	02FOXQ13 138	3	YES	YES		001				FE
FE	02FOX 345	02FOXQ14 138	4	YES	YES		001				FE
FE	02HARDIN 345	02HDGQ12 138	2	YES	YES		001				FE
FE	02HARDIN 345	02HDGQ13 138	3	YES	YES		001				FE
FE	02HARDIN 345	02HDGQ14 138	4	YES	YES		001				FE
IPL	16GUION 345	16ROCKVL 345	1	YES		YES	001				IPL
IPL	16HANNA 345	16PETE 345	1	YES		YES	001				IPL
IPL	16HANNA 345	16STOUT 345	1	YES		YES	001				IPL
IPL	16ROCKVL 345	16THOMPS 345	1	YES		YES	001				IPL
IPL	16GUION 345	16GUION 138	N	YES		YES	001				IPL
IPL	16GUION 345	16GUION 138	S	YES		YES	001				IPL
IPL	16HANNA 345	16HANNA 138	E	YES		YES	001				IPL
IPL	16HANNA 345	16HANNA 138	W	YES		YES	001				IPL
IPL	16ROCKVL 345	16ROCKVL 138	1	YES		YES	001				IPL
IPL	16STOUT 345	16STOUTS 138	1	YES		YES	001				IPL
IPL	16SUNNYS 345	16SUNNYS 138	1	YES		YES	001				IPL

ECAR TYPE 2 OUTAGES -- SINGLE CIRCUIT SEGMENT OF MULTIPLE TERMINAL CIRCUIT OUTAGES.

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED ALONE BY AUTOMATICALLY SECTIONALIZING MULTIPLE TERMINAL CIRCUITS.

NOTE: N/A = NOT APPLICABLE. NOTE: ENTRIES SORTED BY (1) ALPHA BY COMPANY, AND (2) VOLTAGE THEN ALPHA BY BUSNAME.

COMPANY	FROM BUS	TO BUS	CKT	ECAR	MEN	MET	VEM	GROUP	IN 	OUT	N/A N/A	ORIGINATOR
NIPS-NI	17SHEFLD 345	SLINE; B 345	1	YES	YES	YES		001				AEP (IM)
OVEC	06CLIFTY 345	06DEARBN 345	1	YES				001				OVEC
OVEC	06DEARBN 345	06PIERCE 345	1	YES				001				OVEC
OVEC-AEP	06KYGER 345	05TRISTA 345	1	YES				001				AEP (AP)
PJM500	CNASTONE 500	HUNTERTN 500	1	YES	YES		YES	001				ECAR
PJM500	CONEM-GH 500	HUNTERTN 500	1	YES	YES		YES	001				ECAR
РЈМ500	HUNTERTN 500	HUNTRSTN 230	1		YES		YES	001				ECAR
IP	BUNSONVL 345	SIDNEY 345	1	YES		YES		001				ECAR
NI	SLINE; R 345	SLINE; R 138	1		YES	YES		001				AEP (IM)
VP	8MT STM 500	8VALLEY 500	1	YES	YES		YES	001				ECAR
VP	8ELMONT 500	6ELMONT 230	2				YES	001				ECAR
VP	8VALLEY 500	6VALLEY 230	1				YES	001				ECAR
VP	8LEXNGTN 500	6LXNGTN2 230	1				YES	001				ECAR

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED TOGETHER BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS	TO BUS	CKT	ECAR MEN	MET	VEM	GROUP	IN	OUT	CRO CSO	ORIGINATOR
AEP	05AMOS 765	05NPROCT 765	1	YES	YES	YES	001				AEP (OP)
AEP	05HANG R 765	05NPROCT 765	1	YES	YES	YES	002				AEP (OP)
AEP	05NPROCT 765	05NPROCT 138	1	YES	YES	YES	003				AEP (OP)
AEP	05AXTON 765	05J.FERR 765		YES	YES	YES	001				AEP (AP)
AEP	05AXTON 765	05AXTON 138	1	YES	YES	YES	002				AEP (AP)
AEP	05BROADF 765	05J.FERR 765		YES	YES	YES	001				AEP (AP)
AEP	05BROADF 138	05BROADX 138	BP	YES	YES	YES	002				AEP (AP)
AEP	05CLOVRD 765	05JOSHUA 765	1	YES		YES	001		2004S		AEP (AP)
AEP	05JOSHUA 765	05JOSHUA 138	1	YES		YES	002		2004S		AEP (AP)
AEP	05CLOVRD 765	05JOSHUA 765	1	YES		YES	001		2004S	YES	AEP (AP)
AEP	05CLOVRD 765	05J.FERR 765	1	YES		YES	002		2004S	YES	AEP (AP)
AEP	05CLOVRD 765	05CLOVRD 345	1	YES		YES	003		2004S	YES	AEP (AP)
AEP	05JOSHUA 765	05JOSHUA 138	1	YES		YES	004		2004S	YES	AEP (AP)
AEP	05CLOVRD 765	05JOSHUA 765		YES		YES	001	2004S			AEP (AP)
AEP	05JOSHUA 765	05JOSHUA 500		YES		YES	002	2004S			AEP (AP)
AEP	05JOSHUA 765	05JOSHUA 500		YES		YES	003	2004S			AEP (AP)
AEP	05JOSHUA 765	05JOSHUA 138		YES		YES	004	2004S			AEP (AP)
VP-AEP VP	8ELMONT 500 8ELMONT 500	05JOSHUA 500 6ELMONT 230		YES YES		YES YES	005 006	2004S 2004S			AEP (AP) AEP (AP)
AEP	05CULLOD 765	05WYOMIN 765	1	YES	YES	YES	001		2004S		AEP (AP)
AEP	05WYOMIN 765	05WYOMX1 138		YES	YES	YES	001		2004S		AEP (AP)
AEP	05WYOMIN 765	05WYOMX2 138		YES	YES	YES	003		2004S		AEP (AP)
AEP	05BROADF 765	05BROADF 500	1	YES	YES	YES	001				AEP (AP)
AEP-TVA	05BROADF 500	8SULLIVA 500	1	YES	YES	YES	002				AEP (AP)
AEP-VP	05CLOVRD 765	05CLOVRD 500	1	YES	YES	YES	001	2004S			AEP (AP)
AEP-VP	05CLOVRD 500	8LEXNGTN 500	1	YES	YES	YES	002	2004S			AEP (AP)
AEP	05CLOVRD 500	05CLOVRD 345		YES	YES	YES	003	2004S			AEP (AP)
AEP	05CLOVRD 500	05CLOVRD 345		YES	YES	YES	004	2004S			AEP (AP)
VP	8LEXNGTN 500	6LEXNGT2 230	1	YES	YES	YES	005	2004S			AEP (AP)
AEP	05J.FERR 765	05J.FERR 500		YES	YES	YES	001				AEP (AP)
DUKE-AEP	8ANTIOCH 500	05J.FERR 500	1	YES	YES	YES	002				AEP (AP)
AEP	05JOSHUA 765	05JOSHUA 500	1	YES		YES	001	2004S			AEP (AP)
AEP	05JOSHUA 765	05JOSHUA 500	2	YES		YES	002	2004S			AEP (AP)
VP-AEP	8ELMONT 500	05JOSHUA 500	1	YES		YES	003	2004S			AEP (AP)
VP	8ELMONT 500	6ELMONT 230	2	YES		YES	004	2004S			AEP (AP)
AEP	05WYOMIN 765	05WYOMIN 138	1	YES		YES	001	2004S			AEP (AP)
AEP	05WYOMIN 765	05WYOMIN 138	2	YES		YES	002	2004S			AEP (AP)
AEP-VP	05CLOVRD 500			YES	YES	YES	001		2004S		AEP (AP)
AEP	05CLOVRD 500			YES	YES	YES	002		2004S		AEP (AP)
AEP	05CLOVRD 500			YES	YES	YES	003		2004S		AEP (AP)
VP	8LEXNGTN 500	6LEXNGT2 230	1	YES	YES	YES	004		2004S		AEP (AP)
AEP-VP	05CLOVRD 500			YES	YES	YES	001	2004S			AEP (AP)
VP	8LEXNGTN 500	6LEXNGT2 230	1	YES	YES	YES	002	2004S			AEP (AP)
AEP	05CLOVRD 500	05CLOVRD 345		YES	YES	YES	001	2004S			AEP (AP)
AEP	05CLOVRD 500	05CLOVRD 345	2	YES	YES	YES	002	2004S			AEP (AP)
AEP	05NAGEL 500	05NAGEL 230		YES	YES	YES	001				AEP (AP)
AEP-CPLW	05NAGEL 230	6CANE RI 230	1	YES	YES	YES	002				AEP (AP)
AEP	05BAKER 345	05TRISTA 345	1	YES			001				AEP (AP)
AEP	05TRISTA 345			YES			001				AEP (AP)
			_								, ,
AEP	05CLOVRD 345			YES	YES	YES	001				AEP (AP)
AEP	05KANAWH 345	05KANAWZ 345	00	YES	YES	YES	002				AEP (AP)

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED TOGETHER BY NORMAL CIRCUIT BREAKER ACTION.

ARP OSERIARIA 355 ORM FUNK 345 1 YES YES YES 003 ARP (AP) ARP OSERIARIA 355 ORM FUNK 345 1 YES YES YES 002 ARP (AP) ARP OSERIARIA 345 ORM FUNK 345 1 YES YES YES 002 ARP (AP) ARP OSERIARIA 345 ORM FUNK 345 1 YES YES YES 002 ARP (AP) ARP OSERIARIA 345 ORM FUNK 345 1 YES YES YES 002 ARP (AP) ARP OSERIARIA 345 ORM FUNK 345 1 YES YES YES 002 ARP (AP) ARP OSERIARIA 345 ORM FUNK 345 1 YES YES 002 ARP (AP) ARP OSERIARIA 345 ORM FUNK 345 1 YES YES 002 ARP (AP) ARP OSERIARIA 345 ORM FUNK 345 1 YES YES 002 ARP (AP) ARP OSERIARIA 345 ORM FUNK 345 1 YES YES 002 ARP (AP) ARP OSERIARIA 345 ORM FUNK 345 ORM FUNK 345 1 YES 002 ARP (AP) ARP OSERIARIA 345 ORM FUNK 3	COMPANY	FROM BUS		TO BUS		CKT		MEN	MET	VEM	GROUP	IN 	OUT	CRO CSC	ORIGINATOR
ARP OSAFANNE 145 OSAFANNE 145 1 YES YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 0 YES YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES YES OO2 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES OO1 ARP (AP) ARP OSAFANNE 145 OSAFANNE 145 1 YES YES OO1 ARP (AP) ARP OSAFANNE 150 OSAFANNE 151 1 YES YES OO1 ARP (AP) ARP OSAFANNE 150 OSAFANNE 151 1 YES YES OO1 ARP (AP) ARP OSAFANNE 150 OSAFANNE 151 1 YES YES OO1 ARP (AP) ARP OSAFANNE 150 OSAFANNE 158 1 YES YES OO1 ARP (AP) ARP OSAFANNE 150 OSAFANNE 158 1 YES OO1 ARP (AP) ARP OSAFANNE 150 OSAFANNE 158 1 YES OO1 ARP (AP) ARP OSAFANNE 150 OSAFANNE 158 1 YES OO1 ARP (AP) ARP OSAFANNE 150 OSAFANNE 158 1 YES OO1 ARP (AP) ARP OSAFANNE 150 OSAFANNE 158 1 YES OO1 ARP (AP) ARP OSAFANNE 150 OSAFANNE 158 1 YES OO1 ARP (AP) ARP OSAFANNE 150 OSAFANNE 158 1 YES OO1 ARP (AP) ARP OSAFANNE 150 OS	מיים ע	0 5 12 3 5 13 14 17 2	215	OEM DIIMIZ	215	1	VEC		VE C	VE C	002				אודי (ארט)
AEF OSKANAMU 345 OSFORM 345 1 YES YES 001 AEF (AF) AEF OSKANAMU 345 OSFORM 345 1 YES YES 001 AEF (AF) AEF OSKANAMU 345 OSKANAMU 138 1 YES YES 001 AEF (AF) AEF OSCANAMU 345 OSKANAMU 138 1 YES YES 001 AEF (AF) AEF OSCANAMU 345 OSKANAMU 138 1 YES YES 001 AEF (AF) AEF OSCANAMU 345 OSKONAMU 138 1 YES YES 001 AEF (AF) AEF OSSORM 345 OSKONAMU 138 8 YES 002 AEF (AF) AEF OSSORM 345 OSKONAMU 138 8 YES 002 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 002 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 001 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 002 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 002 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 002 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 002 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 002 AE															, ,
AEF OSKANAMU 345 OSFORM 345 1 YES YES 001 AEF (AF) AEF OSKANAMU 345 OSFORM 345 1 YES YES 001 AEF (AF) AEF OSKANAMU 345 OSKANAMU 138 1 YES YES 001 AEF (AF) AEF OSCANAMU 345 OSKANAMU 138 1 YES YES 001 AEF (AF) AEF OSCANAMU 345 OSKANAMU 138 1 YES YES 001 AEF (AF) AEF OSCANAMU 345 OSKONAMU 138 1 YES YES 001 AEF (AF) AEF OSSORM 345 OSKONAMU 138 8 YES 002 AEF (AF) AEF OSSORM 345 OSKONAMU 138 8 YES 002 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 002 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 001 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 002 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 002 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 002 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 002 AEF (AF) AEF OSKANAMU 138 OSKONAMU 138 1 YES YES 002 AE															
AEP OSKAMAMH 345 OSEPORN 345 1 YES YES 001 AEP (AP) AEP OSKAMAMH 345 OSCHOVED 138 1 YES YES 002 AEP (AP) AEP OSCHOVED 345 OSCHOVED 138 18 YES 001 AEP (AP) AEP OSCHOVED 345 OSCHOVED 138 18 YES 001 AEP (AP) AEP OSSPORN 345 OSCHOVED 138 18 YES 001 AEP (AP) AEP OSSPORN 345 OSCHOVED 138 18 YES 001 AEP (AP) AEP OSSPORN 345 OSCHOVED 138 18 YES 001 AEP (AP) AEP OSSPORN 345 OSCHOVED 138 14 YES 002 AEP (AP) AEP OSSESSED 138 OSCHOVED 138 17 YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 151 YES YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES YES 004 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES YES 004 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES YES 005 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES YES 005 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES YES 001 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES YES 003 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 003 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 003 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 004 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 004 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 004 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 004 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 004 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 004 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 151 YES YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 150 YES YES YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 150 YES YES YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 150 YES YES YES 002 AEP (AP) AEP OSCHOULD 150 OSCHOULD 150 YES YES YES 002 AEP (AP)															, ,
APP	ALP	USKANAWZ 3	343	AND T MED	343	1	IES		IES	IES	002				ALP (AP)
AEP OSCLOVED 345 OSCLOVED 138 1A YES YES 001 AEP (AP) AEP (AP) AEP OSCLOVED 345 OSCLOVED 138 1B YES YES 002 AEP (AP) AEP (AP) AEP OSSPORN 345 OSSPORNA 138 B YES YES 002 AEP (AP) AEP (AP) AEP OSSPORN 345 OSSPORNA 138 B YES YES 002 AEP (AP) AEP (AP) AEP OSSPORN 345 OSSPORNA 138 B YES YES 001 AEP (AP) AEP (AP) AEP OSSPORN 345 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 136 OSSPORNA 136 B YES YES 001 AEP (AP) AEP OSSPORNA 136 B YES YES 002 AEP (AP) AEP OSSPORNA 136 B YES YES 002 AEP (AP) AEP OSSPORNA 136 OSSPORNA 136 B YES YES 004 AEP (AP) AEP OSSPORNA 136 OSSPORNA 136 B YES YES 005 AEP (AP) AEP OSSPORNA 136 OSSPORNA 136 B YES YES 005 AEP (AP) AEP OSSPORNA 136 OSSPORNA 136 B YES YES 005 AEP (AP) AEP OSSPORNA 136 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138 B YES YES YES 001 AEP (AP) AEP OSSPORNA 138 OSSPORNA 138	AEP	05KANAWH 3	345	05SPORN	345	1	YES			YES	001				AEP (AP)
ARP OSCIOVED 345 OSCIOVED 138 18 YES	AEP	05KANAWH 3	345	05KANAWH	138	1	YES			YES	002				AEP (AP)
ARP OSCIOVED 345 OSCIOVED 138 18 YES	מע ג	UEGIOVAD 3	215	UEGI OMDD	120	1 7	VEC			VEC	0.01				אבט (אט)
AEP OSSPORN 345 OSSPORNE 138 4 YES 001 AEP (AP) AEP OSSPORN 345 OSSPORNE 138 4 YES 002 AEP (AP) AEP OSSPORN 345 OSSPORNE 138 4 YES 002 AEP (AP) AEP OSHAZARD 161 OSLESLIZ 161 BY YES YES 001 AEP (AP) AEP OSLESLIZ 161 OSLESLIZ 161 BY YES YES 002 AEP (AP) AEP OSLESLIZ 161 OSSTINKE 161 BY YES YES 003 AEP (AP) AEP OSLESLIZ 161 OSSTINKE 161 I YES YES 003 AEP (AP) AEP OSLESLIZ 161 OSSTINKE 161 I YES YES 005 AEP (AP) AEP OSLESLIZ 162 OSSTINKE 161 I YES YES 005 AEP (AP) AEP OSLESLIZ 163 OSSTINKE 161 I YES YES 005 AEP (AP) AEP OSKANAMI 138 OSKOPER 138 I YES 001 AEP (AP) AEP OSKOPER 138 OSSUENT 138 I YES 001 AEP (AP) AEP OSKANAMI 138 OSKOPER 138 I YES 004 AEP (AP) AEP OSKANAMI 138 OSKOPER 138 I YES 004 AEP (AP) AEP OSKANAMI 138 OSKOPER 138 I YES 001 AEP (AP) AEP OSKANAMI 138 OSKINKAI 138 I YES 001 AEP (AP) AEP OSKANAMI 138 OSKINKAI 138 I YES 001 AEP (AP) AEP OSKANAMI 138 OSKINKAI 138 I YES 001 AEP (AP) AEP OSKANAMI 138 OSKINKAI 138 I YES 001 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 001 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 001 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 002 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 002 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 003 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 003 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 003 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 001 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 002 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 003 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 001 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 001 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 003 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 003 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 003 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 003 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES 003 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES VES 001 1998S AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES YES 003 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES YES 003 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES YES 003 AEP (AP) AEP OSCANAMI 138 OSKINKAI 138 I YES YES 00										-					, ,
ARP OSHCARAN 345 OSSPORM 138 4 YES															. ,
ARP OSHAZARD 161 OSLESLIE 161 1 YES YES 001 ARP (AP) ARP OSLESLIE 161 OSLESLIX 161 BP YES YES 002 ARP (AP) ARP OSLESLIX 161 OSLESLIX 161 BP YES YES 003 ARP (AP) ARP OSLESLIX 161 OSSTINNE 161 1 YES YES 003 ARP (AP) ARP OSLESLIX 161 OSSTINNE 161 1 YES YES 004 ARP (AP) ARP OSLESLIX 161 OSSTINNE 161 1 YES YES 005 ARP (AP) ARP OSLESLIX 161 OSSTINNE 161 1 YES YES 005 ARP (AP) ARP OSLESLIX 181 OSTEMBLI 138 1 YES 002 ARP (AP) ARP OSLESLIX 138 OSTEMBLI 138 1 YES 003 ARP (AP) ARP OSLESLIX 138 OSTEMBLI 138 1 YES 003 ARP (AP) ARP OSLESLIX 138 OSTEMBLI 138 1 YES 003 ARP (AP) ARP OSLESLIX 138 OSTEMBLI 138 1 YES 004 ARP (AP) ARP OSLESLIX 138 OSTEMBLI 138 1 YES 004 ARP (AP) ARP OSLESLIX 138 OSTEMBLI 138 1 YES 002 ARP (AP) ARP OSLESLIX 138 OSTEMBLI 138 1 YES 002 ARP (AP) ARP OSCIANA 138 OSTEMBLI 138 1 YES 002 ARP (AP) ARP OSCIANA 138 OSCIANA 138 OSLESLIX 138 1 YES 002 ARP (AP) ARP OSCIANA 138 OSCIANA 138 OSCIANA 138 1 YES 002 ARP (AP) ARP OSCIANA 138 OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES YES 001 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES YES 003 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES YES 004 ARP (AP) ARP OSCIANA 138 OSCIANA 138 1 YES YES 004 ARP (AP) ARP OSCIANA 138 OSCIANA 138															
AEP	AEP	05SPORN 3	345	05SPORNB	138	4	YES				002				AEP (AP)
AEP	AEP	05HAZARD 1	161	05LESLIE	161	1	YES		YES		001				AEP (AP)
ARP	AEP	05LESLIE 1	161			BP	YES		YES		002				AEP (AP)
TYA-ARP															
AEP OSBAILS2 138 05KOPPER 138 1															, ,
AEP OSKANAWH 138 OSTENNIL 138 1	IVA-ALP	25INFAIL 1	101	OPPITME	101	Τ	YES		YES		005				ALP (AP)
AEP	AEP	05BAILS2 1	138	05KOPPER	138	1				YES	001				AEP (AP)
AEP	AEP	05KANAWH 1	138	05TENMIL	138	1				YES	002				AEP (AP)
AEP															, ,
AEP	AEP	05SUNDIA 1	138	05TENMIL	138	1				YES	004				AEP (AP)
AEP	AEP	05BRADL2 1	138	05KINCAI	138	1				YES	001				AEP (AP)
AEP 05CATAMB 138 05KIMBAL 138 1 YES 002 AEP (AP) AEP 05GLENL 138 05KIMBAL 138 1 YES 003 AEP (AP) AEP 05CELAN 138 05KIMBAL 138 1 YES 001 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 002 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 002 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 003 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 004 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 002 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES 002 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 002 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 001 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 002 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 002 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 002 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 003 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 003 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 003 1998S AEP (AP) CPL-E 4ROKE W 138 4YANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROKE W 138 4YANCY T 138 1 YES YES YES 003 1998S AEP (AP) CPL-E 4ROKE W 138 05MBLACK 138 1 YES YES YES 001 1998S AEP (AP) CPL-E 05CELAN 138 05MBLACK 138 1 YES YES YES 002 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 001 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 001 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 002 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 001 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 001 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 002 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 002 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 002 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 002 AEP (AP) AEP 05CHLAW 138 05MBLAC	AEP	05KANAWH 1	138	05KINCAI	138	1				YES	002				AEP (AP)
AEP 05CATAMB 138 05KIMBAL 138 1 YES 002 AEP (AP) AEP 05GLENL 138 05KIMBAL 138 1 YES 003 AEP (AP) AEP 05CELAN 138 05KIMBAL 138 1 YES 001 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 002 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 002 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 003 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 004 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 005 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES 002 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES 002 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 002 AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 001 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 002 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 002 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 002 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 003 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 003 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 003 1998S AEP (AP) CPL-E 4ROKE W 138 4YANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROKE W 138 4YANCY T 138 1 YES YES YES 003 1998S AEP (AP) CPL-E 4ROKE W 138 05MBLACK 138 1 YES YES YES 001 1998S AEP (AP) CPL-E 05CELAN 138 05MBLACK 138 1 YES YES YES 002 1998S AEP (AP) AEP 05CELAN 138 05MBLACK 138 1 YES YES YES 001 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 001 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 002 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 001 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 001 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 002 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 002 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 002 AEP (AP) AEP 05CHLAW 138 05MBLACK 138 1 YES YES YES 002 AEP (AP) AEP 05CHLAW 138 05MBLAC		05035375	120	0.5.61.01.00	120	1					0.01				355 (35)
AEP															, ,
AEP 05CLANZ 138 05NBLACK 138 1															
AEP 05CLANZ 138 05NBLACK 138 1		0=======		0=======											()
AEP O5CLAN 138 05PETRM 138 1 YES 003 AEP (AP) AEP O5GLEN1 138 05PETRM 138 1 YES 004 AEP (AP) AEP O5KUMIS 138 05PETRM 138 1 YES 005 AEP (AP) AEP O5KUMIS 138 05M FUNK 138 1 YES 006 AEP (AP) AEP O5KUMIS 138 05M FUNK 138 1 YES 006 AEP (AP) AEP O5KUMIS 138 05MELACK 138 1 YES 006 AEP (AP) AEP O5CLYTE2 138 05MENO 138 1 YES 001 AEP (AP) AEP O5J.FER 138 05PEAKCK 138 1 YES 002 AEP (AP) AEP O5PEAKCK 138 05MURNO 138 1 YES 003 AEP (AP) AEP O5PEAKCK 138 05MURNO 138 1 YES YES 003 AEP (AP) AEP-CPL-E O5EDANVI 138 4KOXB 1 138 1 YES YES YES 001 1998S AEP (AP) CPL-E 4ROXB 1 138 3ROXBORO 115 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXB W 138 4YANCY T 138 1 YES YES YES 001 1998S AEP (AP) CPL-E 4ROXB W 138 4ROXB 1 138 9YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 4ROXB 1 138 9YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 4ROXB 1 138 9YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 4ROXB 1 138 9YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 4ROXB 1 138 9YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 3ROXBORO 115 1 YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 4ROXB 1 138 9YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 3ROXBORO 115 1 YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 4ROXB 1 138 9YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 3ROXBORO 115 1 YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 4FUDGE H 138 1 YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 4FUDGE H 138 1 YES YES YES 001 AEP (AP) AEP 05GREENB 138 05RONCVR 138 1 YES YES YES 002 AEP (AP) AEP 05HINTON 138 05RONCVR 138 1 YES YES YES 002 AEP (AP) AEP 05HINTON 138 05RONCVR 138 1 YES YES YES 003 AEP (AP) AEP 05HUFCK 138 05PITTST 138 1 YES YES YES 003 AEP (AP) AEP 05LOGAN1 138 05PITTST 138 1 YES YES YES 003 AEP (AP) AEP 05LOGAN1 138 05PITTST 138 1 YES YES YES 004 AEP (AP) AEP 05LOGAN1 138 05PITTST 138 1 YES YES YES 002 AEP (AP) AEP 05LOGAN1 138 05PITTST 138 1 YES YES YES 002 AEP (AP) AEP 05LOGAN1 138 05PITTST 138 1 YES YES YES 002 AEP (AP) AEP 05LOGAN1 138 05PITTST 138 1 YES YES 003 AEP (AP) AEP 05LOGAN1 138 05PITTST 138 1 YES YES 003 AEP (AP) AEP 0															, ,
AEP OSCIENTL 138 OSPETERN 138 1 YES 004 AEP (AP) AEP OSKUMIS 138 05M FUNK 138 1 YES 005 AEP (AP) AEP OSKUMIS 138 05M FUNK 138 1 YES 006 AEP (AP) AEP OSKUMIS 138 05M FUNK 138 1 YES 006 AEP (AP) AEP OSKUMIS 138 05M FUNK 138 1 YES 006 AEP (AP) AEP OSCIENTAL 138 05M FUNK 138 1 YES 002 AEP (AP) AEP OSCIENTAL 138 05M FUNK 138 1 YES 002 AEP (AP) AEP OSCIENTAL 138 05M FUNK 138 1 YES 003 AEP (AP) AEP OSCIENTAL 138 4ROXE 1 138 1 YES YES YES 003 AEP (AP) AEP (AP) AEP CPL-E OSCIENTAL 138 3ROXEORO 115 1 YES YES YES 002 1998S AEP (AP) AEP CPL-E 4ROXE W 138 4VANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXE W 138 4VANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXE W 138 AVANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXE W 138 AVANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXE W 138 AVANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXE W 138 AVANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXE W 138 AVANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXE W 138 AVANCY T 138 1 YES YES YES 003 1998S AEP (AP) CPL-E 4ROXE W 138 AVANCY T 138 1 YES YES YES 003 1998S AEP (AP) CPL-E 4ROXE W 138 AVANCY T 138 1 YES YES YES 004 1998S AEP (AP) CPL-E 4ROXE W 138 AVANCY T 138 1 YES YES YES 004 1998S AEP (AP) AEP OSCIENTAL 138 OSCIENCE 138 1 YES YES YES 004 1998S AEP (AP) AEP OSCIENTAL 138 OSCIENCE 138 1 YES YES YES 004 1998S AEP (AP) AEP OSCIENTAL 138 AVALT H 135 1 YES YES YES 003 AEP (AP) AEP (AP) AEP OSCIENTAL 138 OSCIENCE 138 1 YES YES YES 003 AEP (AP) AEP (AP) AEP OSCIENTAL 138 OSCIENTAL 138 1 YES YES YES 004 AEP (AP) AEP (AP) AEP OSCIENTAL 138 OSCIENTAL 138 1 YES YES YES 004 AEP (AP) AEP (AP) AEP OSCIENTAL 138 OSCIENTAL 138 1 YES YES YES 004 AEP (AP) AEP (AP) AEP OSCIENTAL 138 OSCIENTAL 138 1 YES YES YES 004 AEP (AP) AEP (AP) AEP OSCIENTAL 138 OSCIENTAL 138 1 YES YES YES 002 AEP (AP) AEP (AP) AEP OSCIENTAL 138 OSCIENTAL 138 1 YES YES YES 002 AEP (AP) AEP (AP) AEP OSCIENTAL 138 OSCIENTAL 138 1 YES YES YES 002 AEP (AP) AEP (AP) AEP OSCIENTAL 138 OSCIENTAL 138 1 YES YES 003 AEP (AP) AEP (AP) AEP OSCIEN															. ,
AEP															
AEP OSCLYTR2 138 OSWURNO 138 1 YES 002 AEP (AP) AEP OSJ.FERR 138 OSWURNO 138 1 YES 002 AEP (AP) AEP OSDJ.FERR 138 OSWURNO 138 1 YES 003 AEP (AP) AEP OSDJ.FERR 138 OSWURNO 138 1 YES 003 AEP (AP) AEP OSDJ.FERR 138 OSWURNO 138 1 YES 003 AEP (AP) AEP-CPL-E OSEDANVI 138 4ROXB 1 138 1 YES YES YES 001 1998S AEP (AP) CPL-E 4ROXB 1 138 3ROXBORO 115 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXB W 138 4YANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXB W 138 4ROXB 1 138 99 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXB W 138 4ROXB 1 138 99 YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 3ROXBORO 115 1 YES YES YES 004 1998S AEP (AP) CPL-E 4ROXB 1 138 3ROXBORO 115 1 YES YES YES 004 1998S AEP (AP) AEP OSGREENE 138 OSRONCVR 138 1 YES YES YES 004 1998S AEP (AP) AEP OSGREENE 138 OSRONCVR 138 1 YES YES YES 004 1998S AEP (AP) CPL-W 4WALT 138 3WALT 138 1 YES YES YES 003 POSS AEP (AP) AEP OSHINTON 138 OSFONCVR 138 1 YES YES YES 003 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES YES 003 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 003 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 003 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 003 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 002 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 003 AEP (AP) AEP OSHUFFCK 138 OSFITTST 138 1 YES YES 003 AEP (AP)	AEP	05KUMIS 1	138	05M FUNK	138	1				YES	005				AEP (AP)
AEP OSPEAKCK 138 05PEAKCK 138 1 YES 002 003 AEP (AP) AEP OSPEAKCK 138 05WURNO 138 1 YES 003 AEP (AP) AEP-CPL-E 05EDANVI 138 4ROXB 1 138 1 YES YES 001 1998S AEP (AP) AEP-CPL-E 05EDANVI 138 4YANCY T 138 1 YES YES YES 001 1998S AEP (AP) AEP-CPL-E 4ROXB W 138 4YANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXB W 138 4YANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXB W 138 4ROXE 1 138 99 YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 AROXED 115 1 YES YES YES 004 1998S AEP (AP) CPL-E 4ROXB W 138 AROXED 115 1 YES YES YES 004 1998S AEP (AP) CPL-E 4ROXB W 138 AROXED 115 1 YES YES YES 004 1998S AEP (AP) AEP 05GREENB 138 05RONCVR 138 1 YES YES YES 004 1998S AEP (AP) AEP 05GREENB 138 05RONCVR 138 1 YES YES YES 002 ECAR AEP 05HINTON 138 05RONCVR 138 1 YES YES YES 002 ECAR AEP 05HURTON 138 05RONCVR 138 1 YES YES YES 001 AEP (AP) AEP AEP-CPL-W 4WALT 138 3WALT 138 1 YES YES YES 001 AEP (AP) AEP 05HUFCK 138 05WYOMIN 138 1 YES YES YES 002 AEP (AP) AEP 05HUFCK 138 05WYOMIN 138 1 YES YES YES 001 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 003 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 003 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 004 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 004 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 004 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 004 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 004 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 003 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 003 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 003 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 003 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 158 1 YES 003 AEP (AP)	AEP	05KUMIS 1	138	05NBLACK	138	1				YES	006				AEP (AP)
AEP OSPEAKCK 138 05PEAKCK 138 1 YES 002 003 AEP (AP) AEP OSPEAKCK 138 05WURNO 138 1 YES 003 AEP (AP) AEP-CPL-E 05EDANVI 138 4ROXB 1 138 1 YES YES 001 1998S AEP (AP) AEP-CPL-E 05EDANVI 138 4YANCY T 138 1 YES YES YES 001 1998S AEP (AP) AEP-CPL-E 4ROXB W 138 4YANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXB W 138 4YANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXB W 138 4ROXE 1 138 99 YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB W 138 AROXED 115 1 YES YES YES 004 1998S AEP (AP) CPL-E 4ROXB W 138 AROXED 115 1 YES YES YES 004 1998S AEP (AP) CPL-E 4ROXB W 138 AROXED 115 1 YES YES YES 004 1998S AEP (AP) AEP 05GREENB 138 05RONCVR 138 1 YES YES YES 004 1998S AEP (AP) AEP 05GREENB 138 05RONCVR 138 1 YES YES YES 002 ECAR AEP 05HINTON 138 05RONCVR 138 1 YES YES YES 002 ECAR AEP 05HURTON 138 05RONCVR 138 1 YES YES YES 001 AEP (AP) AEP AEP-CPL-W 4WALT 138 3WALT 138 1 YES YES YES 001 AEP (AP) AEP 05HUFCK 138 05WYOMIN 138 1 YES YES YES 002 AEP (AP) AEP 05HUFCK 138 05WYOMIN 138 1 YES YES YES 001 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 003 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 002 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 003 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES YES 004 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 004 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 004 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 004 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 004 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 003 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 003 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 003 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 003 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 158 1 YES 003 AEP (AP)	AEP	05CLYTR2 1	138	05WURNO	138	1				YES	0.01				AEP (AP)
AEP-CPL-E															, ,
CPL-E 4ROXB 1 188 3ROXBORO 115 1 YES YES YES 002 1998S AEP (AP) AEP-CPL-E 05EDANVI 138 4YANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXB 138 4YANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXB M 138 4ROXB 1 138 99 YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB 1 138 4ROXB 1 138 99 YES YES 003 1998S AEP (AP) CPL-E 4ROXB 1 138 1 YES YES 004 1998S AEP (AP) AEP 05GREENB 138 05RONCVR 138 1 YES YES 002 AEP (AP) AEP	AEP	05PEAKCK 1	138	05WURNO	138	1				YES	003				AEP (AP)
CPL-E 4ROXB 1 188 3ROXBORO 115 1 YES YES YES 002 1998S AEP (AP) AEP-CPL-E 05EDANVI 138 4YANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXB 138 4YANCY T 138 1 YES YES YES 002 1998S AEP (AP) CPL-E 4ROXB M 138 4ROXB 1 138 99 YES YES YES 003 1998S AEP (AP) CPL-E 4ROXB 1 138 4ROXB 1 138 99 YES YES 003 1998S AEP (AP) CPL-E 4ROXB 1 138 1 YES YES 004 1998S AEP (AP) AEP 05GREENB 138 05RONCVR 138 1 YES YES 002 AEP (AP) AEP	AFD_CDIF	05@DANK/T 1	130	4 ₽∩∀₽ 1	130	1	VEC		VFC	VEC	0.01		10089		VED (VD)
AEP-CPL-E															, ,
CPL-E															. ,
CPL-E															
CPL-E 4ROXB 1 138 3ROXBORO 115 1 YES YES YES 004 1998S AEP (AP) AEP 05GREENB 138 05RONCVR 138 1 YES YES 001 ECAR AEP-VP 05GREENB 138 4FUDGE H 138 1 YES YES 002 ECAR AEP 05HINTON 138 05RONCVR 138 1 YES YES 003 ECAR AEP 05HOLST2 138 05SULVN 138 1 YES YES YES 001 AEP (AP) AEP-CPL-W 05SULVN 138 4WALT 138 1 YES YES YES YES 002 AEP (AP) CPL-W 4WALT 138 3WALT H 115 1 YES YES YES 003 AEP (AP) AEP 05HUFFCK 138 05PITTST 138 1 YES YES YES 001 AEP (AP) AEP 05HUFFCK 138 05FITTST 138 1 YES YES 002 AEP (AP) AEP 05HUFFCK 138 05FITTST 138 1 YES YES 002 AEP (AP) AEP 05HUFFCK 138 05FITTST 138 1 YES 002 AEP (AP) AEP 05LOGAN1 138 05FITTST 138 1 YES 002 AEP (AP) AEP 05DUMONT 765 05GRNTWN 765 1 YES 003 AEP (AP) AEP 05DUMONT 765 05GRNTWN 765 1 YES 004 BECAR CIN 05GRNTWN 230 08GRNTWN1.00 1 YES 003 1999S 1999W ECAR															
AEP															
AEP-VP						_									(,
AEP															
AEP															
AEP-CPL-W 05SULVN 138 4WALT 138 1 YES YES 002 AEP (AP) CPL-W 4WALT 138 3WALT H 115 1 YES YES 003 AEP (AP) AEP 05HUFFCK 138 05PITTST 138 1 YES 001 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 002 AEP (AP) AEP 05LOGAN1 138 05PITTST 138 1 YES 003 AEP (AP) AEP 05LOGAN1 138 05PITTST 138 1 YES 003 AEP (AP) AEP 05PITTST 138 05RUM CK 138 1 YES 004 AEP (AP) AEP 05DUMONT 765 05GRNTWN 765 1 YES 004 AEP (AP) AEP 05GRNTWN 765 08GRNTWN1.00 1 YES 002 1999S 1999W ECAR CIN 08GRNTWN 230 08GRNTWN1.00 1 YES 003 1999S 1999W ECAR	AEP	USHINTON I	138	USRONCVR	138	Τ	YES			YES	003				ECAR
CPL-W 4WALT 138 3WALT H 115 1 YES YES YES 003 AEP (AP) AEP 05HUFFCK 138 05PITTST 138 1 YES 001 AEP (AP) AEP 05HUFFCK 138 05WYOMIN 138 1 YES 002 AEP (AP) AEP 05LOGANI 138 05PITTST 138 1 YES 003 AEP (AP) AEP 05PITTST 138 05RUM CK 138 1 YES 004 DO4 AEP (AP) AEP 05DUMONT 765 05GRNTWN 765 1 YES 001 1999S 1999W ECAR CIN 08GRNTWN 230 08GRNTWN 1.00 1 YES 003 1999S 1999W ECAR	AEP	05HOLST2 1	138	05SULVN	138	1	YES		YES	YES	001				AEP (AP)
AEP 05HUFFCK 138 05PITTST 138 1 YES 001 AEP (AP) AEP 05LOGAN1 138 05PITTST 138 1 YES 002 AEP (AP) AEP 05LOGAN1 138 05PITTST 138 1 YES 003 AEP (AP) AEP 05PITTST 138 05RUM CK 138 1 YES 004 AEP (AP) AEP 05DUMONT 765 05GRNTWN 765 1 YES 004 AEP (AP) AEP 05DUMONT 765 08GRNTWN1.00 1 YES 002 1999S 1999W ECAR CIN 08GRNTWN 230 08GRNTWN1.00 1 YES 003 1999S 1999W ECAR	AEP-CPL-W														
AEP 05HUFFCK 138 05WYOMIN 138 1 YES 002 AEP (AP) AEP 05LOGAN1 138 05PITTST 138 1 YES 003 AEP (AP) AEP 05PITTST 138 05RUM CK 138 1 YES 004 AEP (AP) AEP 05DUMONT 765 05GRNTWN 765 1 YES 001 1999S 1999W ECAR AEP-CIN 05GRNTWN 765 08GRNTWN1.00 1 YES 002 1999S 1999W ECAR CIN 08GRNTWN 230 08GRNTWN1.00 1 YES 003 1999S 1999W ECAR	CPL-W	4WALT 1	138	3WALT H	115	1	YES		YES	YES	003				AEP (AP)
AEP 05HUFFCK 138 05WYOMIN 138 1 YES 002 AEP (AP) AEP 05LOGAN1 138 05PITTST 138 1 YES 003 AEP (AP) AEP 05PITTST 138 05RUM CK 138 1 YES 004 AEP (AP) AEP 05DUMONT 765 05GRNTWN 765 1 YES 001 1999S 1999W ECAR AEP-CIN 05GRNTWN 765 08GRNTWN1.00 1 YES 002 1999S 1999W ECAR CIN 08GRNTWN 230 08GRNTWN1.00 1 YES 003 1999S 1999W ECAR	AEP	05HUFFCK 1	138	05PITTST	138	1				YES	0.01				AEP (AP)
AEP 05LOGAN1 138 05PITTST 138 1 YES 003 AEP (AP) AEP 05PITTST 138 05RUM CK 138 1 YES 004 AEP (AP) AEP 05DUMONT 765 05GRNTWN 765 1 YES 001 1999S 1999W ECAR AEP-CIN 05GRNTWN 765 08GRNTWN1.00 1 YES 002 1999S 1999W ECAR CIN 08GRNTWN 230 08GRNTWN1.00 1 YES 003 1999S 1999W ECAR															
AEP 05DUMONT 765 05GRNTWN 765 1 YES 001 1999S 1999W ECAR AEP-CIN 05GRNTWN 765 08GRNTWN1.00 1 YES 002 1999S 1999W ECAR CIN 08GRNTWN 230 08GRNTWN1.00 1 YES 003 1999S 1999W ECAR		05LOGAN1 1	138	05PITTST	138										
AEP-CIN 05GRNTWN 765 08GRNTWN1.00 1 YES 002 1999S 1999W ECAR CIN 08GRNTWN 230 08GRNTWN1.00 1 YES 003 1999S 1999W ECAR	AEP	05PITTST 1	138	05RUM CK	138	1				YES	004				AEP (AP)
AEP-CIN 05GRNTWN 765 08GRNTWN1.00 1 YES 002 1999S 1999W ECAR CIN 08GRNTWN 230 08GRNTWN1.00 1 YES 003 1999S 1999W ECAR	ΔFD	UZDIIMOMIT L	765		765	1	Arc				001	10000	10001		FCND
CIN 08GRNTWN 230 08GRNTWN1.00 1 YES 003 1999S 1999W ECAR															
CIN 08GRNTWN 138 08GRNTWN1.00 1 YES 004 1999S 1999W ECAR															
	CIN	08GRNTWN 1	138	08GRNTWN1	L.00	1	YES				004	1999S	1999W		ECAR

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED TOGETHER BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS	TO BUS	CKT	ECAR MEN	MET	VEM	GROUP	IN	OUT	CRO CSO	ORIGINATOR
AEP	05GRNTWN 765	05JEFRSO 765	1	YES			001		1999W		ECAR
AEP-CIN	05GRNTWN 765	08GRNTWN1.00	1	YES			002		1999W		ECAR
CIN	08GRNTWN 230	08GRNTWN1.00	1	YES			003		1999W		ECAR
CIN	08GRNTWN 138	08GRNTWN1.00	1	YES			004	19995	1999W		ECAR
AEP	05ROCKPT 765	05SULLVA 765	1	YES	YES		001				AEP (IM)
AEP	05SULLVA 765	05BREED 345	1	YES	YES		002				AEP (IM)
AEP	05SULLVA 765	05BREED 345	2	YES	YES		003				AEP (IM)
		05	_				0.04				/>
AEP	05DUMONT 765	05DUMTEQ 999	1	YES YES			001				AEP (IM)
AEP AEP	05DUMONT 345 05DUMT C17.3	05DUMTEQ 999 05DUMTEQ 999	1 1	YES YES			002 003				AEP (IM) AEP (IM)
ALF	03D0M1 C17.3	OSDOMIEQ SSS		IES IES	1110		003				ALF (IM)
AEP-CIN	05GRNTWN 765	08GRNTWN1.00	1	YES	YES		001				AEP (IM)
CIN	08GRNTWN 230	08GRNTWN1.00	1	YES	YES		002				AEP (IM)
CIN	08GRNTWN 138	08GRNTWN1.00	1	YES	YES		003				AEP (IM)
			_								
AEP	05ALLEN 345	05ROB PK 345	1	YES	YES		001				AEP (IM)
AEP AEP	05ALLEN 345 05ALLEN 345	05SORENS 345 05ALLEN 138	1 1	YES YES	YES YES		002 003				AEP (IM) AEP (IM)
ALP	ODALLEN 345	USALLEN 136	1	IES	IES		003				AEP (IM)
AEP	05BENTON 345	05COOK 345	1	YES	YES		001				AEP (IM)
AEP-CONS	05BENTON 345	18PALISA 345	1	YES	YES		002				AEP (IM)
AEP	05BENTON 345	05BENTON 138	1	YES	YES		003				AEP (IM)
	05======= 0.45	0.5 0.45	_				0.04				/>
AEP	05COLNGW 345	05EELKHA 345	1	YES	YES		001				AEP (IM)
AEP AEP	05COOK 345 05EELKHA 345	05EELKHA 345 05EELKHA 138	1 1	YES YES	YES YES		002 003				AEP (IM) AEP (IM)
ALP	USEELKHA 345	USEELKHA 130	1	IES	IES		003				AEP (IM)
AEP	05COOK 345	05JACKSR 345	1	YES	YES		001		2002S		AEP (IM)
AEP	05JACKSR 345	05TWIN B 345	1	YES	YES		002		2002S		AEP (IM)
AEP	05JACKSR 345	05JKSNEQ 999	1	YES	YES		003		2002S		AEP (IM)
AEP	05JACKSR 138	05JKSNEQ 999	1	YES	YES		004		2002S		AEP (IM)
N EID	05030003 245	OFTAGEOD 24F	1	VEC	MEG		0.01	20029			ADD (TM)
AEP AEP	05BARODA 345 05JACKSR 345	05JACKSR 345 05TWIN B 345	1 1	YES YES	YES YES		001 002	2002S 2002S			AEP (IM) AEP (IM)
AEP	05JACKSR 345	05JKSNEQ 999	1	YES	YES		002	2002S			AEP (IM)
AEP	05JACKSR 138	05JKSNEQ 999	1	YES	YES		004	2002S			AEP (IM)
AEP	05COOK 345	05KENZIE 345	1	YES	YES		001				AEP (IM)
AEP	05KENZIE 345	05TWIN B 345	1	YES	YES		002				AEP (IM)
AEP	05KENZIE 345	05KENZIE 138	1	YES	YES		003				AEP (IM)
AEP	05DEQUIN 345	050LIVE 345	1	YES	YES		001				AEP (IM)
AEP-CIN	05DEQUIN 345	08WESTWD 345	1	YES	YES		002				AEP (IM)
CIN	08WESTWD 345	08WESTWD 138	1	YES	YES		003				AEP (IM)
AEP	05DEQUIN 345	05REYNOL 345	1	YES	YES		001				AEP (IM)
AEP NIDG	050LIVE 345	05REYNOL 345	1	YES	YES		002				AEP (IM)
AEP-NIPS	05REYNOL 345	17RYNLDS 138	1	YES	YES		003				AEP (IM)
AEP-CIN	05DEQUIN 345	08WESTWD 345	1	YES	YES		001				AEP (IM)
CIN	08WESTWD 345	08WESTWD 138	1	YES	YES		002				AEP (IM)
AEP	05DESOTO 345	05FALL C 345	1	YES	YES		001				AEP (IM)
AEP-IPL	05FALL C 345	16SUNNYS 345	1	YES	YES		002				AEP (IM)
AED CIN	0 E E N T T C 2 4 E	00MODI 077 24F	1	VEC	VEC		0.01		20010		7 ED (T 7 7)
AEP-CIN CIN	05FALL C 345 08NOBLSV 345	08NOBLSV 345 08WHITST 345	1 1	YES YES	YES YES		001 002		2001S 2001S		AEP (IM) AEP (IM)
CIN	08NOBLSV 345	08NOBLSV 230	1	YES	YES		002		2001S 2001S		AEP (IM)
J	JULIUN JIJ	301.0DEDV 230	_		110		003		20010		(/
AEP-CIN	05FALL C 345	08NOBLSV 345	1	YES	YES		001	2001S			AEP (IM)
CIN	08NOBLSV 345	08HORTVL 345	1	YES	YES		002	2001S			AEP (IM)
CIN	08HORTVL 345	08WHITST 345	1	YES	YES		003	2001S			AEP (IM)
CIN	08NOBLSV 345	08NOBLSV 230	1	YES	YES		004	2001S			AEP (IM)
AEP-CIN	05FALL C 345	08NOBLSV 345	1	YES	YES		001				AEP (IM)
AEP-CIN AEP	05FALL C 345	05FALL C 138	1	YES	YES		001				AEP (IM)
	3311 0 313	-511111 0 150	_		110		502				(/

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED TOGETHER BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS	TO BUS	CKT	ECAR		MET		GROUP	IN	OUT	CRO CSO	ORIGINATOR
AEP AEP	05JACKSR 345 05JACKSR 138	05JKSNEQ 999 05JKSNEQ 999	1 1	YES YES		YES YES		001 002				AEP (IM) AEP (IM)
AEP	050LIVE 345	050LIVEQ 999	1	YES		YES		001				AEP (IM)
AEP	050LIVE 138	050LIVEQ 999	1	YES		YES		002				AEP (IM)
AEP	050LIVY113.2	050LIVEQ 999	1	YES		YES		003				AEP (IM)
AEP	05SORENS 345	05SORNEQ 999	2	YES		YES		001				AEP (IM)
AEP AEP	05SORENS 138 05SORN Y13.2	05SORNEQ 999 05SORNEO 999	2 2	YES YES		YES YES		002 003				AEP (IM) AEP (IM)
1111	035014 113.2	025014/15	_	1110		100						1111 (111)
AEP AEP	05BELMON 765 05BELMON 765	05KAMMER 765 05MOUNTN 765	1 1		YES YES	YES YES	YES YES	001 002				AEP (OP) AEP (OP)
AEP-AP	05BELMON 765	01BELMNT 500	1		YES	YES	YES	003				AEP (OP)
AEP	05HANG R 765	05MARQUI 765	1	YES				001				AEP (OP)
AEP	05MARQUI 765	05MARQUI 345	1	YES				002				AEP (OP)
AEP	05KAMMER 765	050RANGE 765	1	YES			YES	001	2001s			AEP (OP)
AEP	050RANGE 765	050RANGE 138	1	YES			YES	002	2001S			AEP (OP)
AEP	05KAMMER 765	05SCANTO 765	1	YES			YES	001				AEP (OP)
AEP	05SCANTO 765	05SCANTO 345	1	YES			YES	002				AEP (OP)
AEP-AP	05KAMMER 765	01KAMMER 500	1	YES	YES		YES	001				AEP (OP)
AP	01 502 J 500	01FMARTN 500	1		YES		YES	002				AEP (OP)
AP AP	01 502 J 500 01 502 J 500	01HARRSN 500 01KAMMER 500	1 1		YES YES		YES YES	003 004				AEP (OP) AEP (OP)
AF	01 302 0 300	OTKAMMEK 300		1110	1110		150	004				ALF (OF)
AEP AEP	05KAMMER 765 05KAMMER 345	05KMMREQ 999 05KMMREQ 999	1 1	YES YES			YES YES	001 002				AEP (OP) AEP (OP)
ABI		_	_	100			1110					ABI (OI)
AEP AEP-OE	05MARYSV 765 05MARYSV 345	05MARYSV 345 02TANGY 345	1 1		YES YES	YES YES	YES YES	001 002				AEP (OP) AEP (OP)
					120	120	120					
AEP AEP	05BIXBY 345 05CORRID 345	05KIRK 345 05KIRK 345	1 1	YES YES				001 002				AEP (OP) AEP (OP)
AEP	05KIRK 345	05KIRK 138	1	YES				003				AEP (OP)
AEP	05CANTNC 345	05SECANT 345	1	YES				001				AEP (OP)
AEP	05SCANTO 345	05SECANT 345	1	YES				002				AEP (OP)
AEP	05SECANT 345	05SECANT 138	1	YES				003				AEP (OP)
AEP	05CANTNC 345	05TIDD 345	1	YES			YES	001				AEP (OP)
AEP	05CANTNC 345	05CANTNC 138	1	YES			YES	002				AEP (OP)
AEP	05E LIMA 345	05ROB PK 345	1	YES		YES		001		2002S		AEP (OP)
AEP	05ROB PK 345	05ROB PK 138	1	YES		YES		002		2002S		AEP (OP)
AEP	05CONVOY 345	05ROB PK 345	1	YES		YES		001	2002S			AEP (OP)
AEP	05ROB PK 345	05ROB PK 138	1	YES		YES		002	2002S			AEP (OP)
AEP	05HYATT 345	05WMILLP 345	1	YES				001				AEP (OP)
AEP	05MUSKNG 345	05WMILLP 345	2	YES				002				AEP (OP)
AEP	05KAMMER 345	05WBELLA 345	1	YES			YES	001				AEP (OP)
AEP AEP	05TIDD 345 05WBELLA 345	05WBELLA 345 05WBELLA 138	1 1	YES YES			YES YES	002 003				AEP (OP) AEP (OP)
AEP AEP	05HAYDEN 345 05ROBERT 345	05ROBERT 345 05ROBERT 138	1 1	YES YES				001 002				AEP (OP) AEP (OP)
AEP AEP	05MUSKNG 345 05WMILLP 345	05WMILLP 345 05WMILLP 138	1 1	YES YES				001 002				AEP (OP) AEP (OP)
AEP AEP	05E LIMA 345 05E LIMA 345	05E LIMA 138 05E LIMA 138	1A 1B	YES YES				001 002				AEP (OP) AEP (OP)
								-				,

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED TOGETHER BY NORMAL CIRCUIT BREAKER ACTION.

	S SORTED BY (1)									NAME.
COMPANY	FROM BUS	TO BUS		ECAR MEN	MET		GROUP	IN	OUT	ORIGINATOR
AEP	05E LIMA 345	05ELIMEQ 999	2	YES			001			AEP (OP)
AEP		05ELIMEQ 999	2	YES			002			AEP (OP)
AEP	05ELIMA 13.2	05ELIMEQ 999	2	YES			003			AEP (OP)
AEP	05HYATT 345	05HYATT 138	1A	YES			001			AEP (OP)
AEP	05HYATT 345	05HYATT 138	1B	YES			002			AEP (OP)
AEP	05HILLSB 138	05SINKG8 138	1	YES	YES		001			AEP (OP)
AEP	05MILLBR 138	05SINKG8 138	1	YES	YES		002			AEP (OP)
AP-VP	01MDWBRK 500	8MORRSVL 500	1	YES YES	;	YES	001		1995S	AP
AP-VP	01MDWBRK 500	8MT STM 500	1	YES YES		YES	002		1995S	AP
AP	01MDWBRK 500	01MDWBRK 138	1	YES YES		YES	003		1995S	AP
AP	01MDWBRK 500	01MDWBRK 138	2	YES YES	5	YES	004		1995S	AP
AP	01BEDNGT 138	01HARMNY 138	1	YES YES		YES	001			AP
AP	01CHERYR 138	01HARMNY 138	1	YES YES		YES	002			AP
AP	01MARLOW 138	01HARMNY 138	1	YES YES	5	YES	003			AP
BREC-SIGE	14COLE 5 161	10NEWTVL 161	1	YES	YES		001			ECAR
SIGE-HE SIGE	10NEWTVL 161	07TASWL1 161	1 1	YES YES	YES YES		002 003			ECAR ECAR
SIGE	10NEWTVL 161	10NEWTVL 138	Τ.	IES	IEO		003			ECAR
CIN-LGEE	08BATESV 345	11GHENT 345	1	YES	YES		001			LGEE
CIN	08BATESV 345	08BATESV 138	1	YES	YES		002			LGEE
CIN	08BEDFRD 345	08GIBSON 345	1	YES	YES		001			CIN
CIN	08BEDFRD 345	08BEDFRD 138	1	YES	YES		002			CIN
CIN	08BEDFRD 345	08LOST R 345	1	YES	YES		001			CIN
CIN	08BEDFRD 345	08BEDFRD 138	2	YES	YES		001			CIN
CIN	08CAY CT 345	08DRESSR 345	1	YES	YES		001			AEP (IM)
CIN-HE	08DRESSR 345	07MEROM5 345	1	YES	YES		002			AEP (IM)
CIN CIN	08DRESSR 345 08DRESSR 345	08DRESSR 138 08DRESSR 138	1 2	YES YES	YES YES		003 004			AEP (IM) AEP (IM)
CIIV	OODREDDIK 313	OODREDDER 130	2	100	110		001			1101 (111)
CIN-IPL	08GIBSON 345	16PETE 345	1	YES	YES		001			IPL
IPL	16PETE 345	16PETE 138	E	YES	YES		002			IPL
CIN-HE	08GIBSON 345	07RAMSY5 345	1	YES	YES		001			CIN
HE-CIN	07RAMSY5 345	08SPEED 345	1	YES	YES		002			CIN
CIN	08SPEED 345	08SPEED 138	1	YES	YES		003			CIN
HE	07RAMSY5 345	07RAMSEY69.0	1	YES	YES		004			CIN
CIN-IPL	08GWYNN 345	16SUNNYS 345	1	YES	YES		001			CIN
IPL	16SUNNYS 345	16SUNNYS 138	1	YES	YES		002			CIN
CIN-IPL	08LOST R 345	16PETE 345	1	YES	YES		001			IPL
IPL	16PETE 345	16PETE 138	W	YES	YES		002			IPL
CIN APP	0.014 EBBIG 2.45	0.5 0.5 0.4 5	1	TTD C			0.01			CTN
CIN-AEP CIN	08M.FTHS 345 08M.FTHS 345	05TANNER 345 08MFTM9 138	1	YES YES			001 002			CIN CIN
CIIV	0011.11110 313	00111119 130	_	100			002			CIIV
CIN	08REDBK2 345	08SGROVE 345	1	YES			001			CIN
CIN CIN	08SGROVE 345 08SGROVE 345	08ZIMER 345 08SGROVE 138	1 1	YES YES			002 003			CIN CIN
O.111	202010048 242	202010 4 130	_	110			003			O111
CIN	08REDBK1 345	08TERMNL 345	1	YES			001			CIN
CIN	08REDBK1 345	08REDBK1 138	1	YES			002			CIN
CIN	08ATTICA 230	08LAFAYE 230	1	YES	YES		001			CIN
CIN	08ATTICA 230	08VDSBRG 230	1	YES	YES		002			CIN
CIN	08CAYUGA 230	08VDSBRG 230	1	YES	YES		003			CIN
CIN	08CAYUGA 230	08FRNKFT 230	1	YES	YES		001			ECAR
CIN	08FRNKFT 230	08NEWLON 230	1	YES	YES		002			ECAR
CIN	000HDV01 120	00млот п 120	1	VEC	Λιια		0.01			ECAD
CIN	08CHRYSL 138	08MAPLE 138	1	YES	YES		001			ECAR

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED TOGETHER BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS		TO BUS		CKT	ECAR	MEN	MET	VEM	GROUP	IN 	OUT	CRO	CSO	ORIGINATOR
CTM	0.001151101	1 2 2	0.017.017.017.	100	-					000					EGAD
CIN	08CHRYSL 08GRNTWN		08KOKOMO 08MAPLE	138	1	YES YES		YES YES		002 003					ECAR ECAR
CIN	08DELCO	138	08GRNTWN	138	1	YES		YES		001					ECAR
CIN		138	08DELBK2		1	YES		YES		002					ECAR
CIN	08DELBK2	138	08KOKOMO	138	2	YES		YES		003					ECAR
CIN CIN	08GRNTWN 08MIER	138 138	08MIER 08WABASH	138 138	1 1	YES YES		YES YES		001 002					CIN CIN
CONS	18GALLAG	345	18LIVINS	345	1	YES				001					CONS
CONS	18GALLAG	345	18TITBAW	345	1	YES				002					CONS
CONS	18GALLAG	345	18GALLAG	138	2	YES				003					CONS
CONS	18MANNIN		18THETFR		1	YES				001					CONS
CONS CONS	18MANNIN 18MANNIN		18TITBAW 18MANNIN		1 1	YES YES				002 003					CONS CONS
CONS-DECO	18ATLNTJ		19ATLAN	138	1	YES				001					CONS
CONS	18ATLNTJ	138	18KARN	138	1	YES				002					CONS
CONS	18BLACKS		18WSHTNJ		1	YES				001					CONS
DECO-CONS	19LARK	138	18WSHTNJ	138	1	YES				002					CONS
CONS	180AKLND	138	18LATSON		99	YES				001					CONS
DECO-CONS	19GENOA	138	18LATSON	138	1	YES				002					CONS
DECO	19CVTRY	345	19MAJTC	345	1	YES				001					DECO
DECO	19CVTRY	345	19MON34	345	1	YES				002					DECO
DECO	19CVTRY	345	19CVTRY	120	1	YES				003					DECO
DECO	19BR-G-P	345	19BLRPP	345	1	YES		YES		001		2000S			ECAR
DECO	19BR-G-P		19GRNEC	345	1	YES		YES		002		2000S			ECAR
DECO	19BR-G-P		19JEWEL	345	1	YES		YES		003		2000S			ECAR
DECO DECO		345 345	19GRNEC 19GRN G12	120 26.0	1 1	YES YES		YES YES		004 005		2000S 2000S			ECAR ECAR
DECO	19BR-G-P	345	19BLRPP	345	1	YES		YES		001	2000S				ECAR
DECO	19BR-G-P		19GRNEC	345	1	YES		YES		002	2000S				ECAR
DECO	19BR-G-P	345	19PONTC	345	1	YES		YES		003	2000S				ECAR
DECO		345	19GRNEC	120	1	YES		YES		004	2000S				ECAR
DECO	19GRNEC	345	19GRNEC 2	26.0	1	YES		YES		005	2000S				ECAR
DECO		345	19MAJTC	345	1	YES				001		2000S			DECO
DECO		345	19PONTC	345	1	YES				002		2000S			DECO
DECO		345	19MADRD	120	1	YES				003		2000S			DECO
DECO		345	19PONTC	345	1	YES				001					DECO
DECO DECO		345 345	19WAYNE 19PLACD	345 120	1 1	YES YES				002 003					DECO DECO
DECO	19PONTC	345	19PONTC1	230	1	YES				001					ECAR
DECO	19PONTC1		19BLMFD	230	1	YES				002					ECAR
DECO		230	19BLMFD	120	1	YES				003					ECAR
DECO		345	19WAYNE	345	1	YES				001					DECO
DECO		345	19WIXOM	345	1	YES				002					DECO
DECO DECO		345 345	19QUAKR 19QUAKR	345 120	1 1	YES YES				003 004					DECO DECO
DPL	09ADKINS	345	09ATLNTA	345	1	YES				001					DPL
DPL	09ATLNTA		09ATLNTA		1	YES				002					DPL
DPL	09BATH	345	09GREENE	345	1	YES				001					DPL
DPL	09BATH	345	1MAIM90	345	1	YES				002					DPL
DPL	09BATH	345	09BATH	138	1	YES				003					DPL
DPL	09CLINTO		09GREENE		1	YES				001					DPL
DPL	09CLINTO	345	09STUART	345	1	YES				002					DPL

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED TOGETHER BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS	TO BUS		 ידאי	ECAR	MEN	 МЕТ	VEM	GROUP	IN	OUT	CRO CS	O ORIGINATOR
DPL	09CLINTO 34	45 09CLINTO	69.0	1	YES				003				DPL
DPL DPL	09MIAMI 34	45 09WMILTN 45 09WMILTN		1	YES YES				001 002				DPL DPL
DPL DPL DPL	09CENTER 13 09CENTER 13 09NORMAN 13	38 09NORMAN	138	1 1 1	YES YES YES				001 002 003				ECAR ECAR ECAR
EKPC EKPC		45 20SPURLK 45 20AVON	345 138	1	YES YES		YES YES		001 002				EKPC EKPC
EKPC EKPC EKPC-LGEE	20AVON 1: 20BOONST 1: 20BOONSB 1:		138	1 1 1	YES YES YES				001 002 003				EKPC EKPC EKPC
EKPC EKPC	20DALE 13 20FAWKES 13	38 20TFJ 38 20TFJ	138 138	1	YES YES		YES YES		001 002				EKPC EKPC
EKPC EKPC	20MAYSVJ 13 20MAYSVJ 13			1	YES YES		YES YES		001 002				EKPC EKPC
FE-DECO DECO DECO		45 19LULU 45 19MAJTC 45 19MON34	345 345 345	1 1 1	YES YES YES	YES YES YES			001 002 003				FE FE FE
FE FE FE	02ALLEN 34 02MIDWAY 34 02NTAP 34		345 345 345	1 1 1	YES YES YES	YES YES YES			001 002 003				FE FE FE
FE-PENLEC FE FE	02AT 34	45 ERIE W 45 O2PERRY 45 O2ASHTBI	345 345 138	1 1 8	YES YES YES				001 002 003				FE FE FE
FE-AEP AEP AEP		45 050HIOCT 45 050HIOCT 45 050HIOCX	345	1 1 1	YES YES YES		YES YES YES	YES YES YES	001 002 003				FE FE FE
FE FE		45 02FOXQ11 45 02FOXQ13		2 3	YES YES				001 002				FE FE
FE FE		45 02FOXQ12 45 02FOXQ14		5 4	YES YES				001 002				FE FE
FE FE	02GALION 34	45 02GALION 45 02GALION		1 2	YES YES				001 002				FE FE
FE FE	02HARDIN 34	45 02HDGQ13 45 02HDGQ14		3 4	YES YES				001 002				FE FE
FE FE		45 02STAR 45 02STAR	138 138	2	YES YES				001 002				FE FE
FE FE		45 02TANGY 45 02TANGY	138 138	1 2	YES YES				001 002				FE FE
HE HE	07BLOMNG 34 07MEROM5 34			1 1	YES YES		YES YES		001 002				HE HE
HE-CIN HE	07BLOMNG 34		230 138	1 1	YES YES		YES YES		001 003				HE HE
HE HE-CIN	07BLOMNG 34		345 230	1 1	YES YES		YES YES		001 002				HE HE
IPL IPL		45 16ROCKVI 45 16GUION	345 138	1 S	YES YES		YES YES		001 002				AEP (IM) AEP (IM)
IPL	16GUION 34	45 16ROCKVI	345	1	YES		YES		001				IPL

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED TOGETHER BY NORMAL CIRCUIT BREAKER ACTION.

							D (Z)					
COMPANY	FROM BUS	TO BUS	CKT	ECAR	MEN	MET	VEM	GROUP	IN	OUT	CRO CSO	ORIGINATOR
IPL	16ROCKVL 345	16THOMPS 345	1	YES		YES		002				IPL
IPL	16ROCKVL 345	16ROCKVL 138	1	YES		YES		003				IPL
IPL-CIN	16GUION 345	08WHITST 345	1	YES		YES		001				IPL
IPL	16GUION 345	16GUION 138	N	YES		YES		002				IPL
				-								
IPL	16HANNA 345	16PETE 345	1	YES		YES		001				IPL
IPL	16HANNA 345	16HANNA 138	E	YES		YES		002				IPL
	1.6	4.5 0.45						0.04				
IPL	16HANNA 345	16STOUT 345	1	YES		YES		001 002				IPL
IPL IPL	16STOUT 345 16STOUT 345	16THOMPS 345 16STOUTS 138	1 1	YES YES		YES YES		002				IPL IPL
TET	1051001 545	10510015 150		1110		TEO		003				TET
IPL	16HANNA 345	16STOUT 345	1	YES		YES		001				IPL
IPL	16HANNA 345	16HANNA 138	W	YES		YES		002				IPL
LGEE	11PINEV 500	11POCKET 500	1	YES		YES		001				LGEE
LGEE	11PINEV 500	11PINEVI 345	1	YES		YES	YES	002				LGEE
LGEE	11ALCALD 345	11BRWN N 345	1	YES	YES	YES	YES	001				LGEE
LGEE	11ALCALD 345	11PINEVI 345	1	YES	YES	YES	YES	001				LGEE
LGEE	11ALCALD 345	11ALCALD 161	1	YES	YES	YES	YES	003				LGEE
LGEE	11BLUELI 345	11MIL CK 345	1	YES		YES		001				LGEE
LGEE	11BLUELI 345	11BLUE L 161	1	YES		YES		002				LGEE
	11077777 7 245	1111777777 245	-					0.01				3.55 (T34)
LGEE LGEE	11BLUELI 345	11MIDDLT 345	1 1	YES YES		YES YES		001 002				AEP (IM)
LGEE	11BLUELI 345	11BLUELI 138		ILS		IES		002				AEP (IM)
LGEE	11BRWN N 345	11HARDN 345	1	YES		YES	YES	001				LGEE
LGEE	11HARDN 345	11SMITH 345	1	YES		YES		002				LGEE
LGEE	11HARDN 345	11HARDN 138	1	YES		YES	YES	003				LGEE
LGEE	11BRWN N 345	11W LEXN 345	1	YES		YES		001				LGEE
LGEE	11GHENT 345	11W LEXN 345	1	YES		YES		002				LGEE
LGEE	11W LEXN 345	11W LEXN 138	1	YES		YES		003				LGEE
LGEE	11GHENT 345	11W FRNK 345	1	YES		YES	YES	001				LGEE
LGEE	11W FRNK 345	11W FRNK 138	1	YES		YES		002				LGEE
LGEE	11MIL CK 345	11PADDYW 345	1	YES		YES		001				AEP (IM)
LGEE	11PADDYW 345	11P WEST 138	1	YES		YES		002				AEP (IM)
LGEE	11NORTHS 345	11PADDYW 345	1	YES		YES		001				LGEE
LGEE		11NORTHS 138	1	YES		YES		001				LGEE
2022	11110111110 010	111.01(1110 150	_	125		120		002				2022
LGEE	11CORY T 161	11MORGNF 161	1	YES		YES		001				LGEE
LGEE	11CORY T 161	11GR RV 161	1	YES		YES		002				LGEE
LGEE	11CORY T 161	11CORYDO 161	1	YES		YES		003				LGEE
LGEE	11CORYDO 161	11CORYD069.0	1	YES		YES		004				LGEE
LGEE	11CRITTE 161	11MORGNF 161	1	YES		YES		001				LGEE
LGEE	11CRITTE 161	11LIV C 161	1	YES		YES		002				LGEE
LGEE	11CRITTE 161	11CRITTE69.0	1	YES		YES		003				LGEE
LGEE	11EARL N 161	11RQ TAP 161	1	YES		YES		001				LGEE
LGEE	11GR RV 161	11RQ TAP 161	1	YES		YES		002				LGEE
LGEE	11RIVR Q 161	11RQ TAP 161	1	YES		YES		003				LGEE
LGEE	11RIVR Q 161	11RIVR Q69.0	1	YES		YES		004				LGEE
LGEE	11BEARGR 138	113870 т 138	1	YES		YES		001				LGEE
LGEE	11MIDDLT 138	113870 T 138	1	YES		YES		002				LGEE
LGEE	11PLAINV 138	113870 т 138	1	YES		YES		003				LGEE
LGEE	11BEARGR 138	11JEFFJC 138	1	YES		YES		001				LGEE
CIN-LGEE	08JEFF 138	11JEFFJC 138	1	YES		YES		002				LGEE
LGEE	11JEFFJC 138	11NORTHS 138	1	YES		YES		003				LGEE
LGEE	11DAY-WA 138	11DW CRN 138	1	YES				001				LGEE
				-				· - -				

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED TOGETHER BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS		TO BUS		CKT	ECAR	MEN		VEM	GROUP	IN 	OUT	CRO	CSO	ORIGINATOR
LGEE LGEE	11DAY-WA 1 11GHENT 1		IINAS 11NAS	138 138	1	YES YES				002 003					LGEE LGEE
LGEE	11FLEMIN 1	138	11GODDRD	138	1	YES		YES		001					LGEE
LGEE	11FLEMIN 1	138	11WEDONI	138	1	YES		YES		002					LGEE
LGEE	11GODDRD 1		11RODBRN		1	YES		YES		003					LGEE
LGEE-EKPC	11GODDRD 1		20GODDRD		1	YES		YES		004					LGEE
LGEE	11KENTON 1	138	11WEDONI	138	1	YES		YES		005					LGEE
LGEE	11GHENT 1		110C TAP	138	1	YES				001					EKPC
LGEE	110C TAP 1		11SCOTT		1	YES				002					EKPC
LGEE-EKPC	110WEN C 1	138	200WEN C6	59.0	1	YES				003					EKPC
LGEE	11HAEFLI 1	138	11VILEY	138	1	YES				001					EKPC
LGEE	11VILEY 1	138	11W LEXN	138	1	YES				002					EKPC
NIPS	17BABCOK 3	345	17STLWEL	345	1	YES		YES		001					NIPS
AEP-NIPS	05DUMONT 3	345	17STLWEL	345	1	YES		YES		002					NIPS
NIPS	17STLWEL 3	345	17STLWEL	138	1	YES		YES		003					NIPS
NIPS	17BABCOK 3	345	17TWR RD	345	1	YES		YES		001					NIPS
NIPS	17SCHAHF 3	345	17TWR RD	345	1	YES		YES		002					NIPS
NIPS	17TWR RD 3	345	17TOWRRD	138	2	YES		YES		003					NIPS
NIPS	17CHIAVE 3	345	17DUNACR	345	1	YES		YES		001					NIPS
NIPS	17CHIAVE 3	345	17SHEFLD	345	1	YES		YES		002					NIPS
NIPS	17CHIAVE 3	345	17CHIAVE	138	2	YES		YES		003					NIPS
NIPS	17HIPLE 3	345	17LESBRG	345	1	YES		YES		001					AEP (IM)
NIPS	17HIPLE 3	345	17HIPLE	138	1	YES		YES		002					AEP (IM)
OVEC	06CLIFTY 3	345	06DEARBN	345	1	YES		YES		001					OVEC
OVEC	06DEARBN 3				1	YES		YES		002					OVEC
OVEC-AEP	06DEARBN 3	345	05TANNER	345	1	YES		YES		003					OVEC
OVEC-AEP	06KYGER 3	345	05TRISTA	345	1	YES				001					AEP (AP)
AEP	05TRISTA 3		05TRISTA		1	YES				002					AEP (AP)
OVEC	06CLIFTY 3	345	06CLIFTY	138	1A	YES				001					OVEC
OVEC	ООСШІГІІ	313	OOCHIFII	130	111	1110				001					OVEC
OVEC	06CLIFTY 3	345	06CLIFTY	138	1B	YES				001					OVEC
РЈМ500	CNASTONE 5	500	HUNTERTN	500	1	YES	YES		YES	001					ECAR
PJM500	CONEM-GH 5	500	HUNTERTN	500	1	YES	YES		YES	002					ECAR
PJM500	HUNTERTN 5	500	HUNTRSTN	230	1	YES	YES		YES	003					ECAR
AMRN	LUTESVIL 3	345	ST FRANC	345	1	YES				001					ECAR
AMRN	ST FRANC 3		ST FRANC		1	YES				002					ECAR
CIPS-CIN	ALBION 3	345	08GIBSON	345	1	YES		YES		001					AEP (IM)
CIPS		345	ALBION R		1	YES		YES		002					AEP (IM)
IP-AEP	BUNSONVL 3	3 / E	05EUGENE	215	1	YES		YES		001					ECAR
IP-AEP IP	BUNSONVL 3		SIDNEY	345	1	YES		YES		001					ECAR
IP	BUNSONVL 3		BUNSONVL		1	YES		YES		002					ECAR
ОН	LAMB L4D 3	215	LAMBTON	220	т7		YES		YES	001					(TBA)
OH		220	LAMBION LAMBING32		T3		YES		YES	001					(TBA)
DIWE	F313317731173	1 6 1	EDODD TITE	1.61	-					001					113 CM
DUKE	5NANTAHA 1	161 500	5ROBBINS 8BOWEN	500	1 1			YES YES		001 002					VAST
DUKE	8SNP 5	500	ODOMEN	500	Τ.			112		002					VAST
DUKE	5NANTAHA 1	161	5ROBBINS	161	1			YES		001					VAST
DUKE	05BROADF 7	765	05J.FERR	765	1			YES		002					VAST
DUKE	5NANTAHA 1	161	5ROBBINS	161	1			YES		001					VAST
DUKE	8VOLUNTE 5		8PHIPP B		1			YES		002					VAST
T/D	0D00MC 5	E 0 0	O D. I. M. C. N. C.	E 0 0	1		VEC		VIII C	001		20040			EGAD
VP	8DOOMS 5	500	8ELMONT	500	1		YES		YES	001		2004S			ECAR

SINGLE CIRCUIT SEGMENTS, 345 KV OR ABOVE WITH LOWER VOLTAGE SEGMENTS INCLUDED BY EXCEPTION, THAT ARE OUTAGED TOGETHER BY NORMAL CIRCUIT BREAKER ACTION.

COMPANY	FROM BUS	TO BUS	CKT	ECAR MEN	MET	VEM	GROUP	IN	OUT	CRO CSO	ORIGINATOR
IID	0.ET.MONE 500	CELMONE 020	0	7777.0		77EG	000		20040		EGAD
VP	8ELMONT 500	6ELMONT 230	2	YES		YES	002		2004S		ECAR
VP	8DOOMS 500	8LEXNGTN 500	1	YES		YES	001				ECAR
			_								
VP	8LEXNGTN 500	3LEXNGTN 115	2	YES		YES	002				ECAR
VP	8MT STM 500	8VALLEY 500	1	YES		YES	001				ECAR
VP	8VALLEY 500	6VALLEY 230	1	YES		YES	002				ECAR
AEP-VP	05BANSTR 138	4BANISTR 138	1	YES	YES	YES	001				ECAR
AEP	05BANSTR 138	05BEARSK 138	1	YES	YES	YES	002				ECAR
AEP	05BANSTR 138	05EDAN 2 138	1	YES	YES	YES	003				ECAR
AEP-VP	05BEARSK 138	4BEARSKN 138	1	YES	YES	YES	004				ECAR
AEP	05BEARSK 138	05SMITHM 138	1	YES	YES	YES	005				ECAR

ECAR TYPE 4 OUTAGES -- DOUBLE CIRCUIT TOWER OUTAGES.

SINGLE CIRCUIT, SINGLE CIRCUIT SEGMENT, AND/OR MULTIPLE TERMINAL CIRCUIT COMBINATIONS, SHARING COMMON TOWERS FOR AT LEAST ONE MILE AND WITH AT LEAST ONE CIRCUIT 345 KV OR ABOVE, RESULTING IN A DOUBLE CIRCUIT TOWER OUTAGE. NOTE: N/A = NOT APPLICABLE.

NOTE: ENTRIES SORTED BY (1) VOLTAGE THEN ALPHA BY BUSNAME, AND (2) ALPHA BY COMPANY OF FIRST BUSNAME.

COMPANY	FROM BUS	TO BUS	CKT	ECAR MEN	MET	VEM	GROUP	IN 	OUT	N/A N/A	ORIGINATOR
AEP	05BENTON 345	05COOK 345		YES	YES		001				AEP (IM)
AEP-CONS	05COOK 345	18PALISA 345	1	YES	YES		002				AEP (IM)
AEP	05BENTON 345	05COOK 345	1	YES	YES		001				AEP (IM)
AEP-CONS	05BENTON 345	18PALISA 345	1	YES	YES		002				AEP (IM)
AEP-CONS			1	YES	YES		003				AEP (IM)
AEP	05BENTON 345	05BENTON 138	1	YES	YES		004				AEP (IM)
AEP-CONS	05BENTON 345	18PALISA 345	1	YES	YES		001				AEP (IM)
AEP-CONS	05COOK 345	18PALISA 345	1	YES	YES		002				AEP (IM)
CONS	18ARGENT 345	18TOMPKN 345	1	YES			001		2001S		CONS
CONS	18BATTLE 345	180NEIDJ 345	1	YES			002		2001S		CONS
DECO-CONS	19MAJTC 345		1	YES			003		2001S		CONS
CONS	180NEIDA 345	180NEIDJ 345	1	YES			004		2001S		CONS
COMC	18ARGENT 345	18BATTLE 345	1	YES			001				CONC
CONS CONS	18ARGENT 345		1	YES			001				CONS
60110	TOTALODIVI 515	1010111111 313	-	110			002				COIND
CONS	18ARGENT 345		1	YES			001				ECAR
CONS	18ARGENT 345	18TALLMA 345	1	YES			002				ECAR
CONS	18ARGENT 345	18KENOWA 345	1	YES			001				ECAR
CONS			1	YES			002				ECAR
CONS	18ARGENT 345	18PALISA 345		YES			001				CONS
CONS	18ARGENT 345	18PALISA 345	2	YES			002				CONS
CONS-AEP	18ARGENT 345	05ROB PK 345	1	YES			001				CONS
CONS-AEP			1	YES			002				CONS
			_								
CONS-AEP AEP		05ROB PK 345	1 1	YES YES			001 002	1995S 1995S			CONS
ALP	USCOLINGW 345	05EELKHA 345	1	YES			002	19955			CONS
CONS-AEP	18ARGENT 345	05ROB PK 345	1	YES			001	1995S			CONS
AEP	05COLNGW 345	05ROB PK 345	1	YES			002	1995S			CONS
COMO AED	103DGDJE 245	05D0D DW 245	1	· · ·			0.01				COMO
CONS-AEP AEP	18ARGENT 345 05COOK 345	05ROB PK 345 05EELKHA 345	1 1	YES YES			001 002				CONS
ALE	03COOK 343	OJEEDKIM J4J	1	IES			002				COND
CONS-AEP	18ARGENT 345	05ROB PK 345	1	YES			001		1995S		CONS
AEP	05EELKHA 345	05ROB PK 345	1	YES			002		1995S		CONS
CONS	10xpdenm 2/E	18TOMPKN 345	1	YES			001	2001S			CONS
CONS	18BATTLE 345	180NEIDA 345	1	YES				2001S			CONS
001.0	105111122 010	1001.21211 313	_	120			002	20015			001.0
CONS	18ARGENT 345	18TOMPKN 345	1	YES			001	2001S			CONS
CONS-DECO	180NEIDA 345	19MAJTC 345	1	YES			002	2001S			CONS
CONS-AEP	18ARGENT 345	05TWIN B 345	1	YES			001				CONS
AEP	05COOK 345	05EELKHA 345	1	YES			002				CONS
CONS	18BATTLE 345	180NEIDJ 345	1	YES			001		2001S		CONS
DECO-CONS DECO-CONS	19MAJTC 345 19MAJTC 345	180NEIDJ 345 18TOMPKN 345	1 1	YES YES			002 003		2001S 2001S		CONS
CONS	19MAJTC 345 18ONEIDA 345	18TOMPKN 345 18ONEIDJ 345	1	YES			003		2001S 2001S		CONS
			-								
CONS	18CAMPSW 345	18GAINES 345	1	YES			001		2001S		ECAR
CONS	18GAINES 345	18VERGEN 345	1	YES			002		2001S		ECAR
CONS	18PALISA 345	18TALLMA 345	1	YES			003		2001S		ECAR
CONS	18CAMPSW 345	18GAINES 345	1	YES			001	2001S			ECAR
CONS	18GAINES 345	18VERGEN 345	1	YES			002	2001S			ECAR
CONS	18PALISA 345	18ROSEVT 345	1	YES			003	2001S			ECAR
COMO	100225000000000000000000000000000000000	1007 7777 245	-	TTD C			0.01		00016		EGAD
CONS CONS	18CAMPSW 345 18GAINES 345	18GAINES 345 18VERGEN 345	1 1	YES YES			001 002		2001S 2001S		ECAR ECAR
CONS	18PALISA 345	18VERGEN 345	1	YES			002		2001S		ECAR
- 32.0	101111111111111111111111111111111111111	_0.2.02.0	_				555				

ECAR TYPE 4 OUTAGES -- DOUBLE CIRCUIT TOWER OUTAGES.

SINGLE CIRCUIT, SINGLE CIRCUIT SEGMENT, AND/OR MULTIPLE TERMINAL CIRCUIT COMBINATIONS, SHARING COMMON TOWERS FOR AT LEAST ONE MILE AND WITH AT LEAST ONE CIRCUIT 345 KV OR ABOVE, RESULTING IN A DOUBLE CIRCUIT TOWER OUTAGE. NOTE: N/A = NOT APPLICABLE.

NOTE: ENTRIES SORTED BY (1) VOLTAGE THEN ALPHA BY BUSNAME, AND (2) ALPHA BY COMPANY OF FIRST BUSNAME.

COMPANY	FROM BUS	TO BUS	CKT	ECAR MEN	MET	VEM	GROUP	IN	OUT	N/A N/A	ORIGINATOR
CONS	18CAMPSW 345	18GAINES 345	1	YES			001	2001S			ECAR
CONS	18GAINES 345	18VERGEN 345	1	YES			002	2001S			ECAR
CONS		18TALLMA 345	1	YES			003	2001S			ECAR
CONS	18CAMPSW 345	18TALLMA 345	1	YES			001		2001S		ECAR
CONS	18CAMPSW 345	18GAINES 345	1	YES			002		2001S		ECAR
CONS	18GAINES 345	18VERGEN 345	1	YES			003		2001S		ECAR
CONS	18CAMPSW 345	18CAMPBE 138	5	YES			004		2001S		ECAR
CONS	18CAMPSW 345	18TALLMA 345	1	YES			001		2001S		ECAR
CONS		18TALLMA 345		YES			002		2001S		ECAR
CONTC	10GAMDGU 24F	100077747 245	1	VEC			0.01	20010			EGAD
CONS	18CAMPSW 345	18TALLMA 345		YES YES			001 002	2001S			ECAR
CONS	18ROSEVT 345	18TALLMA 345	1	IES			002	2001S			ECAR
CONS	18GOSS 345	18THETFR 345	1	YES			001				ECAR
CONS	18GOSS 345	18VERGEN 345	1	YES			002				ECAR
CONS	18GOSS 345	18THETFR 345	1	YES			001				ECAR
CONS	18THETFR 345	18TITBAW 345	1	YES			002				ECAR
G037G	100000 245	1077777 0777 245					0.01				7617
CONS	18GOSS 345	18VERGEN 345		YES YES			001 002				ECAR
CONS	18KENOWA 345	18TITBAW 345	1	YES			002				ECAR
CONS	18GOSS 345	18VERGEN 345	1	YES			001				ECAR
CONS	18KENOWA 345	18VERGEN 345	1	YES			002				ECAR
CONS	18GOSS 345	18VERGEN 345	1	YES			001				ECAR
CONS		18TITBAW 345	1	YES			002				ECAR
CONS-DECO	18HAMPTO 345	19PONTC 345	1	YES			001				ECAR
CONS	18HAMPTO 345	18TITBAW 345	1	YES			002				ECAR
CONS-DECO	18HAMPTO 345	19PONTC 345	1	YES			001				CONS
DECO-CONS	19JEWEL 345	18THETFR 345	1	YES			002				CONS
COMO DECO	10173MDEO 245	10D0Nmg 34E	1	VEC			0.01		20000		COMC
CONS-DECO	18HAMPTO 345	19PONTC 345	1	YES			001 002		2000S 2000S		CONS
DECO	19MADRD 345	19MAJTC 345	1	YES							CONS
DECO	19MADRD 345	19PONTC 345	1	YES			003		2000S		CONS
DECO	19MADRD 345	19MADRD 120	1	YES			004		2000S		CONS
CONS-DECO	18HAMPTO 345	19PONTC 345	1	YES			001	2000S			CONS
DECO	19BFOOT 345	19PONTC 345	1	YES			002	2000S			CONS
CONS-DECO	18HAMPTO 345	19PONTC 345	1	YES			001	2000S			CONS
DECO	19BFOOT 345	19BLRPP 345	1	YES			002	2000S			CONS
g0112 PEG0	10,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10007777 245					0.01				7617
CONS-DECO	18HAMPTO 345	19PONTC 345	1	YES			001				ECAR
CONS	18MANNIN 345 18MANNIN 345	18THETFR 345 18TITBAW 345	1 1	YES YES			002 003				ECAR ECAR
CONS	IOMANNIN 343	TOILIBAW 343	1	IES			003				ECAR
CONS	18HAMPTO 345	18THETFR 345	1	YES			001				ECAR
CONS	18HAMPTO 345	18THETFR 345	2	YES			002				ECAR
CONS	18HAMPTO 345	18TITBAW 345	1	YES			001				ECAR
CONS		18THETFR 345	1	YES			002				ECAR
CONS	18MANNIN 345		1	YES			003				ECAR
CONS	18KENOWA 345		1	YES			001				ECAR
CONS	18KENOWA 345	18LUDING 345	2	YES			002				ECAR
CONS	18KENOWA 345	18TITBAW 345	1	YES			001				ECAR
CONS		18VERGEN 345	1	YES			002				ECAR
		4.0	_								
CONS	18KENOWA 345		1	YES			001				ECAR
CONS	18THETFR 345	18TITBAW 345	1	YES			002				ECAR
CONS	18KEYSTO 345	18LUDING 345	1	YES			001				ECAR
							-				

ECAR TYPE 4 OUTAGES -- DOUBLE CIRCUIT TOWER OUTAGES.

SINGLE CIRCUIT, SINGLE CIRCUIT SEGMENT, AND/OR MULTIPLE TERMINAL CIRCUIT COMBINATIONS, SHARING COMMON TOWERS FOR AT LEAST ONE MILE AND WITH AT LEAST ONE CIRCUIT $345\,$ KV OR ABOVE, RESULTING IN A DOUBLE CIRCUIT TOWER OUTAGE. NOTE: N/A = NOT APPLICABLE.

NOTE: ENTRIES SORTED BY (1) VOLTAGE THEN ALPHA BY BUSNAME, AND (2) ALPHA BY COMPANY OF FIRST BUSNAME.

COMPANY	FROM BUS	TO BUS	CKT	ECAR MEN	MET	VEM	GROUP	IN	OUT	N/A N/A	ORIGINATOR
CONS CONS	18LUDING 345 18PEREMR 345	18PEREMR 345 18PEREMR 138	1 2	YES YES			002 003				ECAR ECAR
CONS CONS	18LUDING 345 18LUDING 345	18TALLMA 345 18TALLMA 345	1 2	YES YES			001 002				ECAR ECAR
CONS CONS-DECO	180NEIDA 345 180NEIDA 345	18BATTLE 345 19MAJTC 345	1 1	YES YES			001 002	2001S 2001S			CONS CONS
CONS CONS	18PALISA 345 18PALISA 345	18TALLMA 345 18VERGEN 345	1 1	YES YES			001 002		2001S 2001S		ECAR ECAR
CONS CONS	18PALISA 345 18PALISA 345	18ROSEVT 345 18VERGEN 345	1 1	YES YES			001 002	2001S 2001S			ECAR ECAR
DECO DECO-CONS	19BLRPP 345 19JEWEL 345	19JEWEL 345 18THETFR 345	1 1	YES YES			001 002				ECAR ECAR
DECO-CONS	19JEWEL 345 19JEWEL 345	19PONTC 345 18THETFR 345	1 1	YES YES			001 002		2000S 2000S		ECAR ECAR
DECO DECO-CONS DECO	19BR-G-P 345 19BR-G-P 345 19JEWEL 345 19GRNEC 345	19GRNEC 345 19PONTC 345 18THETFR 345 19GRNEC 26.0	1 1 1 1	YES YES YES YES			001 002 003 004	2000S 2000S 2000S 2000S			ECAR ECAR ECAR ECAR
DECO DECO-CONS	19BLRPP 345 19JEWEL 345	19BFOOT 345 18THETFR 345	1 1	YES YES			001 002	2000S 2000S			ECAR ECAR
DECO-CONS DECO-CONS	19MAJTC 345 19MAJTC 345	180NEIDA 345 18TOMPKN 345	1 1	YES YES			001 002	2001S 2001S			CONS CONS

APPENDIX J

Definitions

DEFINITIONS

Introduction

The transfer capability definitions presented in this appendix are based on the NERC Transmission Transfer Capability publication, dated May 1995. In addition to the definitions, this appendix also contains a discussion on transfer capability and response factor calculations.

Normal Incremental Transfer Capability (NITC)

The amount of electric power, incremental above normal base power transfers, that can be transferred between two areas of the interconnected transmission systems under conditions where pre-contingency loadings reach the normal thermal rating of a facility, prior to any first contingency transfer limits being reached. When this occurs, NITC replaces FCITC as the most limiting transfer capability. For calculation purposes, NITC is equal to the normal rating of the monitored facility, minus the MW flow on the monitored facility under in the base case, divided by the PTDF.

First Contingency Incremental Transfer Capability (FCITC)

The amount of electric power, incremental above normal base power transfers, that can be transferred over the interconnected transmission systems in a reliable manner based on all of the following conditions:

- 1. For the existing or planned system configuration, and with normal (precontingency) operating procedures in effect, all facility loading are within normal ratings and all voltages are within normal limits,
- 2. The electric systems are capable of absorbing the dynamic power swings, and remaining stable, following a disturbance that results in the loss of any single electric system element, such as a transmission line, transformer, or generating unit, and
- 3. After the dynamic power swings subside following a disturbance that results in the loss of any single electric system element as described in 2 above, and after the operation of any automatic operating systems, but before any post-contingency operator-initiated system adjustments are implemented, all transmission facility loading are within emergency ratings and all voltages are within emergency limits.

DEFINITIONS

For calculation purposes, FCITC is equal to the emergency rating of the monitored facility, minus the post-contingency MW flow on the monitored facility (without the transfer), divided by the OTDF.

First Contingency Total Transfer Capability (FCTTC)

The total amount of electric power (net of normal base power transfers plus first contingency incremental transfers) that can be transferred between two areas of the interconnected transmission systems in a reliable manner based on conditions 1, 2, and 3 in the FCITC definition above. For calculation purposes, FCTTC is equal to the FCITC plus the base case transfer level between these two areas of interest.

Total Import Capability

The total amount of electric power (net of normal base power transfers from all directions plus first contingency incremental transfers) that can be transferred between two areas of the interconnected transmission systems in a reliable manner based on conditions 1, 2, and 3 in the FCITC definition above. For calculation purposes, Total Import Capability is equal to the FCITC between these two areas of interest, plus the base case net scheduled interchange for the importing area.

Excluded Transfer Capability Limitations

Transfer capability is determined by concidering all network facilities within an area of interest. There will be occasions, however, when loadings on non-bulk power facilities may restrict the calculated transfer capability. As recommended in the NERC Transmission Transfer Capability publication, such limitations may be excluded from the results published in this report only if (a) there is an established operating procedure to eliminate the overload condition, and (b) the facility involved has a minimal effect on the bulk power supply system. Transfer responses below 2.5% are taken as prima facie evidence of minimal effect.

DEFINITIONS

Negative Transfer Capability Levels

Negative transfer capability levels indicate that the limiting facility is already overloaded under the contingency condition being considered without any additional transfers from those already modeled in the base case. As with positive transfer capability values, negative transfer capability values serve as a means of measuring the relative strength of the system from one season to the next.

Calculation of Power Transfer Distribution Factor (PTDF)

PTDF is equal to the MW flow on the monitored facility under the transfer case, minus the MW flow on the monitored facility under the base case, divided by the MW transfer level.

Calculation of Line Outage Distribution Factor (LODF)

LODF is equal to the post-contingency MW flow on the monitored facility, minus the pre-contingency MW flow on the monitored facility, divided by the pre-contingency MW flow on the outaged facility.

Calculation of Outage Transfer Distribution Factor (OTDF)

OTDF is equal to the PTDF of the monitored facility, plus the product of the LODF (for that monitored/outaged facility pair) and the PTDF of the outaged facility.

APPENDIX K

Abbreviations

ABBREVIATIONS

Part I

ECAR	East Central Area Reliability Coordination Agreement
AEP	American Electric Power System
AP	Appalachian Power Company
CS	Columbus Southern Power Company
IM	Indiana Michigan Power Company
KP	Kentucky Power Company
OP	Ohio Power Company
AMPO	American Municipal Power - Ohio, Incorporated
AP	Allegheny Power
BREC	Big Rivers Electric Corporation
BUCK	Buckeye Power, Incorporated
CIN	Cinergy Corporation
CGE	The Cincinnati Gas & Electric Company
PSI	PSI Energy, Incorporated
CONS	Consumers Energy
CPP	Cleveland Public Power
DECO	The Detroit Edison Company
ITC	International Transmission Company
DLCO	Duquesne Light Company
DPL	The Dayton Power and Light Company
EKPC	East Kentucky Power Cooperative, Incorporated
ENWC	Enron Wheatland (CIN Interconnection)
ENWI	Enron Wheatland (IPL Interconnection)
FE	FirstEnergy
ATSI	American Transmission Systems, Incorporated
CEI	The Cleveland Electric Illuminating Company
OE	Ohio Edison System
TE	The Toledo Edison Company
HE	Hoosier Energy Rural Electric Cooperative, Incorporated
IMPA	Indiana Municipal Power Agency
IPL	Indianapolis Power & Light Company
LGEE	LG&E Energy Corporation
KU	Kentucky Utilities Company
LGE	Louisville Gas & Electric Company
MCCP	Municipal Cooperative Coordianted Pool - Michigan
MCV	Midland Cogeneration Venture
MECS	Michigan Electric Coordinated System

ABBREVIATIONS

NIPS Northern Indiana Public Service Company

OVEC Ohio Valley Electric Corporation

SIGE Southern Indiana Gas and Electric Company

WVPA Wabash Valley Power Association

FRCC Florida Reliability Coordination Council EQ-FRCC Powerflow Equivalent of FRCC Region

MAAC Mid-Atlantic Area Coordination Group

AE Atlantic Electric

BG&E Baltimore Gas and Electric Company
DP&L Delmarva Power and Light Company
JCP&L Jersey Central Power and Light Company

METED Metropolitan Edison Company

PECO PECO Energy

PENELEC Pennsylvania Electric Company
PEPCO Potomac Electric Power Company
PJM500 PJM Interconnection - 500 kV System
PP&L Pennsylvania Power & Light Company
PSE&G Public Service Electric and Gas Company

MAIN Mid-America Interpool Network

AMRN AMEREN Corporation

CIPS Central Illinois Public Service Company

UE Union Electric System

CE Commonwealth Edison Company
CILCO Central Illinois Light Company

CWLP City Water Light and Power (Springfield, Illinois)

EEI Electric Energy, Incorporated

EMO East Missouri Subregion of MAIN

EQ-MAIN Partial Powerflow Equivalent of MAIN Region

IMEA Illinois Municipal Electric Agency

IP Illinois Power Company

NI Northern Illinois Subregion of MAIN

SCILL South Central Illinois Subregion of MAIN

SIPC Southern Illinois Power Cooperative

WUMS Wisconsin-Upper Michigan Systems Subregion of MAIN

MAPP Mid-Continent Area Power Pool

EQ-MAPP Powerflow Equivalent of MAPP Region

ABBREVIATIONS

NPCC Northeast Power Coordinating Council

EQ-NPCC Partial Powerflow Equivalent of NPCC Region

NYISO New York Independent System Operator

NYPP New York Power Pool HONI HydroOne (Canada)

IMO Independent Market Operator (Canada)

SERC Southeastern Electric Reliability Council

AECI Associated Electric Cooperative, Incorporated CPLE Carolina Power & Light Company (East)
CPLW Carolina Power & Light Company (West)

DOE Department of Energy
DUKE Duke Power Company

EQ-SERC Partial Powerflow Equivalent of SERC Region NCEMC North Carolina Electric Membership Cooperative

SEPA Southeastern Power Administration

TVA Tennessee Valley Authority

VACAR Virginia-Carolinas Subregion of SERC

VP Virginia Power

SPP Southwest Power Pool

EQ-SPP Powerflow Equivalent of SPP Region

Part II

ATC Available Transfer Capability
CRV Curtailment Reference Value

FCITC First Contingency Incremental Transfer Capability

FCTTC First Contingency Total Transfer Capability
LEER Lake Erie Emergency Re-dispatch Procedure

LODF Line Outage Distribution Factor

MEN MAAC-ECAR-NPCC MET MAIN-ECAR-TVA

MMWG Multiregional Modeling Working Group

NDC Net Demonstrated Capability
NSC Net Seasonal Capability

NERC North American Electric Reliability Council
NITC Normal Incremental Transfer Capability

NTTC Normal Total Transfer Capability
OTDF Outage Transfer Distribution Factor

PAR Phase Angle Regulator

PTDF Power Transfer Distribution Factor

QFW Queenston Flow West Interface in Ontario Hydro

RCP Reliability Coordination Plan

TLR Transmission Loading Relief Procedure
TSPP Transmission System Performance Panel

TSPWG Transmission System Performance Working Group

VAST VACAR-AEP-Southern-TVA

VEM VACAR-ECAR-MAAC