Topologie & Calcul différentiel

Quizz 3

1) Soit $d \geq 1$. Il existe des constantes m et M telles que, pour $d \geq 1$, toute norme $\ \cdot\ $ sur \mathbb{R}^d , on ait
$m \ x\ \le \ x\ _{\infty} \le M \ x\ \forall x \in \mathbb{R}^d$
$Vrai \square Faux \square$
Faux : pour toute paire de normes il existe de telles constantes, mais la constante dépend des normes (une grosse constante fois la norme ∞ par exemple invalide manifestement une telle inégalité).
2) Soit $f = (f_1, \ldots, f_m)$ une application de \mathbb{R}^n dans \mathbb{R}^m , différentiable en x .
Vrai \square Faux \square La <i>i</i> ème ligne de la jacobienne de f en x contient les coordonnées dans la base canonique du gradient de la fonction f_i en x
Vrai, sous réserve que le gradient soit définis à partir du produit scalaire canonique sur \mathbb{R}^n .
3) Soit $\alpha \in]0, +\infty[$. Préciser, selon les valeurs de α , les points de différentiabilité de la
function $f_{\alpha} : (x,y) \in \mathbb{R}^2 \longmapsto f_{\alpha}(x,y) = x ^{\alpha} + y ^{\alpha}.$
Pour tout $\alpha > 0$ la fonction est différentiable sur l'ouvert $\mathbb{R}^2 \setminus \{(0,0)\}$. On peut représenter la différentielle par la matrice jacobienne
$J(x) = \alpha \begin{pmatrix} x ^{\alpha - 1} & 0 \\ 0 & y ^{\alpha - 1} \end{pmatrix}$
Pour $\alpha > 1$, la fonction est différentiable en $(0,0)$, de différentielle nulle. Pour $\alpha = 1$, la restriction g de f_{α} à l'axe des x est $ x $, qui n'est pas différentiable en 0 (dérivées à droite et à gauche définies, mais différentes). Pour $\alpha \in]0,1[$, cette fonction n'est pas non plus différentiable en 0 , car le terme dominant de $g(h)$ est $\alpha x ^{\alpha-1}$, avec $\alpha - 1 < 0$, qui n'est pas un $O(h)$.
4) Applicabilité du Théorèmes des Fonctions Implicites (TFI)
Vrai \square Faux \square On peut exprimer localement y fonction de x au voisinage de $(0,0)$, avec x et y liés par la relation $yx^2 + y^2x - 1 = 0$.
Faux : la différentielle (ou dérivée) partielle de f par rapport à y vaut 0
Vrai \square Faux \square On peut exprimer localement y fonction de x au voisinage de $(1,1)$, avec x et y liés par la relation $yx^2+y^2x-2=0$.
Vrai : la différentielle (ou dérivée) partielle de f par rapport à y vaut 3
Vrai \square Faux \square On peut exprimer localement (y_1,y_2) fonction de x au voisinage de $(1,2,0)$, avec x et (y_1,y_2) liés par la relation $y_1x^2+y_2^2x-1=0$.

Sûrement pas : on n'a qu'une équation pour deux inconnues, connaître x ne permet pas de définir (y_1,y_2) .

Exercice 1

(Retour sur le théorème de point fixe de Banach (ou Picard))

a) On considère la fonction

$$f: x \in \mathbb{R} \longmapsto \sqrt{1+x^2}.$$

Montrer que f est faiblement contractante au sens où |f(y) - f(x)| < |y - x| pour tous $x \neq y$. Montrer que f n'admet pas de point fixe.

La dérivée de f est partout < 1 en valeur absolue, on a donc contraction stricte d'après le théorème des accroissements finis. L'équation du point fixe conduit à 1 = 0.

b) On considère maintenant une application T définie d'un compact K dans lui même, telle que

$$d(T(x), T(y)) < d(x, y).$$

Montrer que T admet un point fixe unique.

On considère la fonction définie par

$$x \in K \longmapsto \Phi(x) = d(x, T(x)).$$

L'application T est continue par hypothèse, Φ est donc également continue, sur le compact K, elle atteint donc sa borne inférieure m = d(x, T(x)) en un certain point x. Mais alors $\Phi(T(x)) < m$, ce qui est absurde.

Exercice 2 (Coordonnées sphériques)

a) On considère la fonction

$$f: (r, \varphi, \theta) \in U =]0, +\infty[\times \mathbb{R}^2 \longmapsto \left(\begin{array}{c} r \cos \varphi \cos \theta \\ r \cos \varphi \sin \theta \\ r \sin \varphi \end{array} \right) \in \mathbb{R}^3$$

- a) Calculer la matrice jacobienne de f, et montrer que f est différentiable sur U.
- b) L'application f est elle bijective? Peut on la rendre bijective en modifiant les espaces d'arrivée et de départ?
- c) En quels points de U la différentielle de f est-elle inversible?
- a) La matrice jacobienne s'écrit

$$J = \begin{pmatrix} \cos \varphi \cos \theta & -r \sin \varphi \cos \theta & -r \cos \varphi \sin \theta \\ \cos \varphi \sin \theta & -r \sin \varphi \sin \theta & -r \cos \varphi \cos \theta \\ \sin \varphi & r \cos \varphi & 0 \end{pmatrix}$$

Elle est continue sur U, f est donc différentiable sur U.

b) L'application est surjective de U vers $V = \mathbb{R}^3 \setminus (0,0,0)$. Elle n'est pas injective du fait des cos et sin. Mais elle est bijective si on restreint l'espace de départ à

$$U' =]0, +\infty[\times] - \pi/2, \pi/2[\times[-\pi, \pi],$$

et l'espace d'arrivée à \mathbb{R}^3 privé de l'axe des z. c) Le calcul du déterminant, en développant par rapport à la dernière ligne, donne

$$\det J = -\cos\varphi,$$

qui est nul pour $\varphi=\pm\pi/2+k\pi$. La différentielle est donc inversible en tout point de U' défini précédemment, mais si l'on s'en tient à l'espace de départ défini au début, elle n'est différentiable qu'en dehors de l'axe des pôles.