An Introduction to Stochastic Differential Equations Pages 1–19

Lawrence C. Evans

presentation by: Arun Suresh

Georgia State University

Chapter 1 - Introduction

Chapter 1 - Motivation

• We start by considering $x_0 \in \mathbb{R}^n$ and the ODE

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{b}(\mathbf{x}(t)) & (t > 0) \\ \mathbf{x}(0) = x_0 \end{cases}$$

where $\mathbf{b}(x(t))$ is a vector field

- Let us motivate our study with an example: The Lotka Volterra model
 - Let x(t) denote the population count of rabbits (prey) at time t and y(t) denote the population count of foxes (predators) at time t.
 - The predator prey population dynamics can be theoretically modelled by the following ODE system

$$\frac{dx}{dt} = \alpha x - \beta xy$$
 and $\frac{dy}{dt} = \delta xy - \gamma y$

• where $\alpha,\beta,\gamma,\delta$ are constants determined based on the environmental conditions.

Chapter 1 - Motivation

Figure: Theoretical LV

4 29.3.2021

Chapter 1 - Motivation

- So, there is a need to account for this "randomness" in the data we observe.
- A way to do this is simply by modifying the ODE system to introduce a "white noise" factor

$$\begin{cases} \dot{\mathbf{X}}(t) = \mathbf{b}(\mathbf{X}(t)) + \mathbf{B}(\mathbf{X}(t))\boldsymbol{\xi}(t) & (t > 0) \\ \mathbf{X}(0) = x_0 \end{cases}$$
 (1)

where $\mathbf{B}:\mathbb{R}^n o \mathbb{R}^{m imes n}$ and $\pmb{\xi}(t) := m$ dimensional "white noise"

- However, we are mathematicians who thrive in rigor.
- Quotation marks, hand waving and intuition simply doesn't cut it.
- So, we have the following ambitious list of goals for this semester
 - Define $\xi(t)$ rigorously
 - Understand what it even means to solve (1)
 - Ponder the uniqueness of solution to (1) and discuss other behavior of the (hopefully unique) solution that would (also, hopefully) interest us.

Chapter 1 - Background and Notations

- Consider (1) under the constraints $m=n, x_0=0, \mathbf{b} \equiv 0$ and $\mathbf{B} \equiv I$
 - The solution is the so called *Wiener process* denoted by $\mathbf{W}(t)$.
 - Simplifying (1) gives $\dot{\mathbf{W}}(t) = \boldsymbol{\xi}(t)$
- Going back to the general form in (1) we obtain (after some simplification)

$$\begin{cases} d\mathbf{X}(t) = \mathbf{b}(\mathbf{X}(t))dt + \mathbf{B}(\mathbf{X}(t))d\mathbf{W}(t) \\ \mathbf{X}(0) = x_0 \end{cases}$$
 (2)

- Eq (2) is what we will fondly call Stochastic Differential Equation from now on.
- Ambitious as we are, we are going to try and solve (2)
- As an attempt to (falsely) pride ourselves in making progress, we rewrite the solution to the above SDE in the integral form

$$\mathbf{X}(t) = x_0 + \int_0^t \mathbf{b}(\mathbf{X}(s))ds + \int_0^t \mathbf{B}(\mathbf{X}(s))d\mathbf{W}$$
 (3)

Chapter 1 - Background and Notations

$$\mathbf{X}(t) = x_0 + \int_0^t \mathbf{b}(\mathbf{X}(s))ds + \int_0^t \mathbf{B}(\mathbf{X}(s))d\mathbf{W}$$

- Of-course writing it this way raises more questions than it answers.
- However, these are important, more concrete questions
 - How do we construct W?
 - How do we integrate with respect to dW?
 - How do we even know that solution to (3) actually exists?
- Upon answering the above questions we have, you guessed it, more questions!
 - How can we be sure this SDE models reality?
 - Is $\xi(t)$ really just pure randomness or does it have a "Fourier flavor" to it?

Chapter 1 - Itô's formula

- A very very important tool to deal with SDEs is the so called Itô's formula.
 - Think of it as a "Integration by parts" formula for SDE's
 - Helps us deal with $\int_0^t [...] d\mathbf{W}$ with relative ease
- Motivation for the formula (we will make this rigorous when we are ready)
 - Suppose X(t) is the solution to the following SDE

$$d\mathbf{X}(t) = \mathbf{b}(\mathbf{X}(t))dt + \mathbf{B}(\mathbf{X}(t))d\mathbf{W}(t)$$

and we have $u: \mathbb{R}^2 \to \mathbb{R}$ a given smooth function.

- We want to understand what SDE satisfies $\mathbf{Y}(t) = u(\mathbf{X}(t))$
- The whole idea being, given such an SDE
 - We will have $d[u(\mathbf{X}(t))]$ on the left hand side...
 - ullet There are hopes for integrating both sides to obtain an expression for ${\bf X}(t)$
 - ullet Of course, the choice of u is crucial here to make progress.

Chapter 1 - Itô's formula

Theorem (Itô's formula)

Suppose $\mathbf{X}(t)$ is the solution of the following SDE

$$d\mathbf{X}(t) = \mathbf{b}(\mathbf{X}(t))dt + \mathbf{B}(\mathbf{X}(t))d\mathbf{W}(t)$$

and u(x,t) is a real valued function defined for $x\in\mathbb{R}$ with continuous partial derivatives $\partial u/\partial t$, $\partial u/\partial x$ and $\partial^2 u/\partial x^2$ then

$$du(\mathbf{X}(t)) = f(\mathbf{X}(t))dt + g(\mathbf{X}(t))d\mathbf{W}(t)$$

where

$$\begin{split} f(x,t) &= \frac{\partial u}{\partial t} + \boldsymbol{b} \frac{\partial u}{\partial x} + \frac{1}{2} \boldsymbol{B}^2 \frac{\partial^2 u}{\partial x^2} \\ g(x,t) &= \boldsymbol{B} \frac{\partial u}{\partial x} \end{split}$$

Chapter 1 - Itô's formula

- Chapter 4 derives the formula. So, for now will simply illustrate its sheer power
- Assume (for the time being) we know $\int_a^b d\mathbf{W} = \mathbf{W}(b) \mathbf{W}(a)$ and $\mathbf{W}(0) = 0$

Example

Suppose $\mathbf{X}(s)$ is the solution to

$$d\mathbf{X}(s) = \mathbf{X}(s)d\mathbf{W}(s)$$
 with $X(0) = 1$

let $u(x,t) = \ln(x)$. Applying Itô's formula

$$d[\ln(X(s))] = -\frac{1}{2}dt + 1d\mathbf{W}(s)$$

Now integrating both sides from 0 to t simply yields

$$\begin{split} &\ln(\mathbf{X}(t)) = -\frac{1}{2}t + \mathbf{W}(t) \\ \Longrightarrow & \mathbf{X}(t) = \exp\left(-\frac{1}{2}t + \mathbf{W}(t)\right) \end{split}$$

Chapter 2 - Basic probability theory

Chapter 2 - Probability Spaces

Definition

Given a set Ω , a σ -algebra is a collection $\mathcal U$ of subsets of Ω . We call $P:\mathcal U\to [0,1]$ a probability measure provided

- **2** If $\{A_i\}_i \in \mathcal{U}$ then

$$P\bigg(\bigcup_{k=1}^{\infty} A_k\bigg) \le \sum_{k=1}^{\infty} P(A_k)$$

with equality holding if and only if A_k are pairwise disjoint.

The triple (Ω, \mathcal{U}, P) is called a probability space.

Definition

- **1** $A \in \mathcal{U}$ is called an *event*, points $\omega \in \Omega$ are *sample points*
- \mathbf{Q} P(A) is the probability of event A
- 3 A property that is true except for an event of probability zero is said to hold almost surely.

Chapter 2 - Probability Spaces

Example

The smallest σ algebra containing all the open subsets of \mathbb{R}^n is called the Borel σ -algebra, denote by \mathcal{B} . Assume f is non-negative, integrable real valued function with $\int_{\mathbb{R}^n} f(x) dx = 1$. Define for any $B \in \mathcal{B}$

$$P(B) = \int_{B} f(x)dx$$

 $(\mathbb{R}^n, \mathcal{B}, P)$ is a probability space. f is the density of the probability measure P.

Side note: Think of \mathcal{B} , informally, as the set of all "nice" subsets of \mathbb{R}^n .

Chapter 2 - Random Variables

- Probability spaces are simply necessary constructs for rigor
 - they do not usually represent the "observable"
- We need a way to translate objects in Ω to \mathbb{R}^n , the values of which we may observe...

Definition

Let (Ω, \mathcal{U}, P) be a probability space. A mapping $\mathbf{X} : \Omega \to \mathbb{R}^n$ is called an n-dimensional random variable if for each $B \in \mathcal{B}$ we have $\mathbf{X}^{-1}(B) \in \mathcal{U}$.

- For the initiated (i.e, completed graduate analysis 1), the random variable ${\bf X}$ is simply a ${\cal U}-$ measurable map.
 - Unpacking **X** we see that, $\mathbf{X}: (\Omega, \mathcal{U}, P) \to (\mathbb{R}^n, \mathcal{B}, P)$.
 - \bullet It should be straight forward now why \boldsymbol{X} is $\mathcal{U}-\text{measurable}.$
- Notations and Clarification:
 - Disregarding sample dependence, we simply write $\mathbf{X}(w)$ as \mathbf{X}
 - We denote $P(\mathbf{X}^{-1}(B))$ as $P(\mathbf{X} \in B)$
 - Capital letters = Random Variables, Boldface = Vector valued map.

Chapter 2 - Random Variables

Definition

Let $\mathbf{X}:\Omega\to\mathbb{R}^n$ be a random variable. Then $\mathcal{U}(\mathbf{X}):=\{\mathbf{X}^{-1}(B)|B\in\mathcal{B}\}$ is the σ -algebra generated by \mathbf{X} . It is also the smallest σ -algebra wrt which \mathbf{X} is measurable.

Theorem

A random variable $Y:\Omega\to\mathbb{R}$ is $\mathcal{U}(\textbf{\textit{X}})-$ measurable if and only if $Y=\Phi(\textbf{\textit{X}})$ for some $\Phi.$

Chapter 2 - Stochastic Processes

• There is a need for random variables to depend on time...

Definition

- **①** A collection $\{\mathbf{X}(t)|t\geq 0\}$ of random variables is called a *stochastic process*
- **2** For each point $\omega \in \Omega$, the mapping $t \to \mathbf{X}(t,\omega)$ is the corresponding sample path

Two sample paths of a stochastic process

- Remark: Informally speaking, as t changes, X changes even if ω is fixed.
 - To make this explicit X(0) and X(1), for example, are completely different mappings from $\Omega \to \mathbb{R}^n$. Essentially, **X** evolves with time.

Chapter 2 - Expected value and Variance - Preliminaries

• We start by recalling certain notions from measure theory

Definition

If (Ω, \mathcal{U}, P) is a probability space and $X = \sum_{i=1}^k a_i \chi_{A_i}$ is a real valued random variable then

$$\int_{\Omega} XdP = \sum_{i=1}^{k} a_i P(A_i)$$

If X is a non-negative random variable, then

$$\int_{\Omega} XdP := \sup_{\substack{Y \le X \\ Y \ simple}} \int_{\Omega} YdP$$

Finally, $X:\Omega\to\mathbb{R}$ is a random variable, then

$$\int_{\Omega} X dP = \int_{\Omega} X^{+} dP - \int_{\Omega} X^{-} dP$$

For vector $\mathbf{X} = (X_i)_{i=1}^n$, we simply define $\int_{\Omega} \mathbf{X} dP = (\int_{\Omega} X_i dP)_{i=1}^n$

29.3.2021

Chapter 2 - Expected value and Variance

Definition

Expected value of X:

$$E(\mathbf{X}) := \int_{\Omega} \mathbf{X} dP$$

Variance of X:

$$V(\mathbf{X}) := \int_{\Omega} |\mathbf{X} - E(\mathbf{X})|^2 dP$$

- It is easy to show $E(E(\mathbf{X})) = E(\mathbf{X})$
- It is also easy to show $V(\mathbf{X}) = E(|\mathbf{X}|^2) |E(\mathbf{X})|^2$
- Chebyshev's inequality: Given $1 \le p < \infty$ and $\lambda > 0$, $P(|\mathbf{X}| \ge \lambda) \le \frac{1}{\lambda^p} E(|\mathbf{X}|^p)$
 - Proof:

$$\int_{\Omega} |\mathbf{X}|^p \ge \int_{\{|\mathbf{X}| \ge \lambda\}} |\mathbf{X}|^p dP \ge \int_{\{|\mathbf{X}| \ge \lambda\}} \lambda^p dP = \lambda^p P(|\mathbf{X}| \ge \lambda)$$

Chapter 2 - Distribution Functions

• Notation: For $x=(x_i)_{i=1}^n, y=(y_i)_{i=1}^n\in\mathbb{R}^n$, we say $x\leq y$ if $x_i\leq y_i$ for all i.

Definition

1 The distribution function of **X** is $F_{\mathbf{X}}: \mathbb{R}^n \to [0,1]$ where

$$F_{\mathbf{X}}(x) := P(\mathbf{X} \le x)$$

2 If $\mathbf{X}_1, \dots, \mathbf{X}_m : \Omega \to \mathbb{R}^n$ are random variables, then their joint distribution function $F_{\mathbf{X}_1, \dots, \mathbf{X}_m} : (\mathbb{R}^n)^m \to [0, 1]$ given by

$$F_{\mathbf{X}_1,\ldots,\mathbf{X}_m}(x_1,\ldots,x_m) := P(\mathbf{X}_1 \le x_1,\ldots,\mathbf{X}_m \le x_m)$$
 for all $x_i \in \mathbb{R}^n$

3 Given **X** and its associated $F_{\mathbf{X}}$, if there exists non-negative integrable $f: \mathbb{R}^n \to \mathbb{R}$ such that

$$F_{\mathbf{X}}(x) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(y_1, \dots, y_n) dy_n \dots dy_1$$

then f is called the *density function* of \mathbf{X} .

Chapter 2 - Distribution Functions

• An important observation is that we now have

$$P(\mathbf{X} \in B) = \int_B f(x) dx$$
 for all $B \in \mathcal{B}$

- The nice fact being, we have the capacity to compute integrals
 - Be it analytically or numerically...

Example

If $\mathbf{X}:\Omega\to\mathbb{R}^n$ has density

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det C}} \exp\left(-\frac{1}{2}(x-m)^T C^{-1}(x-m)\right)$$

for $x, m \in \mathbb{R}^n$ and C symmetric, positive semi-definite, then we say \mathbf{X} is a *normal* distribution with mean m and covarience matrix C.

We notate this by $\mathbf{X} = N(m, C)$ or equivalently $\mathbf{X} \sim N(m, C)$

29.3.2021

Chapter 2 - Distribution Functions

Lemma

Let $X : \Omega \to \mathbb{R}^n$ be a random variable with density f. Suppose $g : \mathbb{R}^n \to \mathbb{R}$ and that Y = g(X) is integrable. Then

$$E(Y) = \int_{\mathbb{R}}^{n} g(x)f(x)dx$$

• In particular, we have

$$E(\mathbf{X}) = \int_{\mathbb{R}^n} x f(x) dx \quad \text{ and } \quad V(\mathbf{X}) = \int_{\mathbb{R}^n} |x - E(\mathbf{X})|^2 f(x) dx$$

• Computing E and V of ${\bf X}$ as integrals let us translate information from the "unobservable" probability space (Ω, \mathcal{U}, P) to the observable \mathbb{R}^n .

• Let (Ω, \mathcal{U}, P) be a probability space, with $A, B \in \mathcal{U}$ with P(B) > 0. Then

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- A and B are said to be independent events if P(A) = P(A|B).
 - Rewriting the main equation gives us an equivalent condition for independence, namely

$$P(A \cap B) = P(A)P(B)$$

- If (A, B) is an independent pair, then so are (A^c, B) , (A, B^c) and (A^c, B^c) .
- This notion is easily extended for more than two events

$$P\bigg(\bigcap_{i=1}^{k} A_i\bigg) = \prod_{i=1}^{k} P(A_i)$$

ullet Independence can also be extended to σ -algebras and random variables

Definition

Let $\mathcal{U}_i \subseteq \mathcal{U}$ be σ -algebras. We say that $\{\mathcal{U}_i\}_{i=1}^{\infty}$ are independent if for all choices of $1 \leq k_1 \leq k_2 \leq \cdots \leq k_m$ and events $A_{k_i} \in \mathcal{U}_{k_i}$ we have

$$P\bigg(\bigcap_{i=1}^{m} A_{k_i}\bigg) = \prod_{i=1}^{m} P(A_{k_i})$$

Definition

Let $\mathbf{X}_i:\Omega\to\mathbb{R}^n$ be random variables. We say that they are *independent* if for all integers $k\geq 2$ and all borel sets $B_1,\ldots,B_k\subseteq\mathbb{R}^n$, we have

$$P(\mathbf{X}_1 \in B_1, \dots, \mathbf{X}_k \in B_k) = \prod_{i=1}^k P(\mathbf{X}_i \in B_i)$$

Theorem

The random variables $\mathbf{X}_1, \dots, \mathbf{X}_m : \Omega \to \mathbb{R}^n$ are independent if and only if

$$F_{\mathbf{X}_1,\dots,\mathbf{X}_m}(x_1,\dots,x_m) = \prod_{i=1}^m F_{\mathbf{X}_i}(x_i)$$
(4)

if the random variables have densities, the above equation is equivalent to

$$f_{\mathbf{X}_1,\dots,\mathbf{X}_m}(x_1,\dots,x_m) = \prod_{i=1}^m f_{\mathbf{X}_i}(x_i)$$
 (5)

Proof.

If $\{\mathbf{X}_i\}_{i=1}^m$ are independent then

$$F_{\mathbf{X}_{1},\dots,\mathbf{X}_{m}}(x_{1},\dots,x_{m}) = P(\mathbf{X}_{1} \leq x_{1},\dots,\mathbf{X}_{m} \leq x_{m})$$

$$= P(\mathbf{X}_{1} \leq x_{1})P(\mathbf{X}_{2} \leq x_{2})\dots P(\mathbf{X}_{m} \leq x_{m})$$

$$= \prod_{i=1}^{m} F_{\mathbf{X}_{i}}(x_{i})$$
(6)

Now, notice that from the definitions of F and f we have the following relation

$$f_{\mathbf{X}_1,\dots,\mathbf{X}_m}(x_1,\dots,x_m) = \frac{\partial^m}{\partial x_1\dots\partial x_m} F_{\mathbf{X}_1,\dots,\mathbf{X}_m}(x_1,\dots,x_m)$$

Now using, the above relation on equation (4) gives equation (5), which shows the equivalence*. Now, we show the converse using (5).

Note: *This assumes $\{X_i\}$ has a joint density function. It is unclear what happens when it doesn't...

Proof.

In this case, pick $A_i \in \mathcal{U}(\mathbf{X}_i)$, and this gives us that $A_i = \mathbf{X}_i^{-1}(B_i)$ for some $B_i \in \mathcal{B}$. Now we have that

$$\begin{split} P(A_1 \cap A_2 \cap \dots \cap A_m) &= P(\mathbf{X}_1 \in B_1, \dots, \mathbf{X}_m \in B_m) \\ &= \int_{B_1 \times \dots \times B_m} f_{\mathbf{X}_1, \dots, \mathbf{X}_m}(x_1, \dots, x_m) dx_1 \dots dx_m \\ &= \left(\int_{B_1} f_{\mathbf{X}_1}(x_1) \right) \dots \left(\int_{B_m} f_{\mathbf{X}_m}(x_m) \right) \\ &= P(\mathbf{X}_1 \in B_1) \dots P(\mathbf{X}_m \in B_m) \\ &= P(A_1) \dots P(A_m) \end{split}$$

which completes the proof as desired.

• A very exciting consequence of the above theorem is the following result

Corollary

If X_1,\ldots,X_m are independent, real valued random variables with $E(|X_i|)<\infty$ and $V(X_i)<\infty$ then

$$E(X_1 \dots X_m) = E(X_1) \dots E(X_m)$$

and

$$V(X_1 + \dots + X_m) = V(X_1) + \dots + V(X_m)$$

Proof.

Proof of the first statement is identical to the converse of the main theorem. For the second statement, we proceed by induction after letting $E(X_1)=m_1$ and $E(X_2)=m_2$. The base case is trivial, now notice

$$V(X_1 + X_2) = \int_{\Omega} (X_1 + X_2 - (m_1 + m_2))^2 f dP$$

$$= \int_{\Omega} (X_1 - m_1)^2 f dP + \int_{\Omega} (X_2 - m_2)^2 f dP$$

$$- 2 \int_{\Omega} (X_1 - m_1)(X_2 - m_2) f dP$$

$$= V(X_1) + V(X_2) - 2E(X_1 - m_1)E(X_2 - m_2)$$

$$= V(X_1) + V(X_2)$$

$$(7)$$

Thank you!

