First Order Logic

27/01/2025

Koustav Rudra

Objective

• Formulate more types of sentences in logic?

• Write correct predicate logic formulae

Limitations of propositional logic

- All dogs are faithful
- Tommy is a dog
- Therefore, Tommy is faithful

How to represent and infer this in propositional logic?

- P: All dogs are faithful
- Q: Tommy is a dog
- Can we claim? $P \land Q \rightarrow$ Tommy is faithful

• Machine does not know what does "all dogs" mean?

Limitations of propositional logic

- Anil is a hardworking student
 - Hardworking_Anil
- Anil is an intelligent student
 - Intelligent_Anil
- Anil scores high marks
 - Score_High_Mark_Anil
- If Anil is hardworking and Anil is intelligent, then Anil scores high marks
 - Hardworking_Anil ∧ Intelligent_Anil → Score_High_Mark_Anil
- What about Akash and Asish?

Limitations of propositional logic

- Anil is a hardworking student
- Anil is an intelligent student
- All students who are hardworking and intelligent scores high marks
- For all x such that x is a student and x is intelligent and x is hardworking then x scores high marks
 - x is a variable
 - Need power to write such sentences

The problem of Infinite Model

- Propositional logic, we have to restrict ourselves to constants
- In general, propositional logic can deal with only a finite number of propositions
- If there are only three students Anil Akash Asish, then
 - P: Anil is intelligent
 - Q: Akash is intelligent
 - R: Asish is intelligent
- All students are intelligent: $P \wedge Q \wedge R$
- If a new student joins the class?
- How long should we go on?
- Limitation: Finiteness of statements

First Order Logic

- Generalization of propositional logic that allows us to express and infer arguments in infinite models like
 - All men are mortal
 - Some birds cannot fly
 - At least one planet has life on it

Syntax of FOL

- The syntax of First-Order Logic can be defined in terms of
 - Terms
 - Predicates
 - Quantifiers

Term

• A term denotes some object other than **true** or **false**

- Terms can be constants as well as variables
- In proposition logic, we only have constants

Term: Constants & Variables

- A constant of type W is a name that denotes a particular object in a set W
 - Example: 5, Anil
- A variable of type W is a name that can denote any element in the set W
 - Examples: x∈N denotes a Natural number
 - s denotes the name of a student

Functions

• A functional term of arity n takes n objects of type W_1 to W_n as inputs and returns an object of type W

- $f(W_1, W_2, ..., W_n)$
- plus(3,4) = 7
 - Two objects of type constant from the set of Natural numbers

Functional Term

Constants

Functions: Example

• Let plus be a function that takes two arguments of type Natural number and returns a Natural number

- Valid Functional Terms:
 - plus(2,3)
 - plus(5,plus(7,3))
- Invalid Functional Terms:
 - plus(0,-1)
 - Plus(1.2,3.3)

Predicates

• Predicates are like functions except that their return type is **true** or **false**

• Example:

- gt(x,y) is true iff x>y
- Here gt is a predicate symbol that takes two arguments of type natural number
- gt(3,4) is a valid predicate but gt(3,-4) is not

Types of Predicates

- A predicate with no variable is a proposition
 - Anil is a student
- A predicate with one variable is called a property
 - student(x) is true iff x is student
 - mortal(y) is true iff y is mortal

Formulation of Predicates

• Let P(x,y,...) and Q(x,y,...) are two predicates

- Then so are
 - P\lambda Q
 - PVQ
 - ~P
 - $P \rightarrow Q$

Predicate Examples

- If x is a man then x is mortal
 - $man(x) \rightarrow mortal(x)$
 - ~man(x)Vmortal(x)
- If n is a natural number then n is either even or odd
 - $natural(n) \rightarrow even(n) Vodd(n)$

Quantifiers

- There are two basic quantifiers in FOL
- ∀ "for all" Universal Quantifier
- 3 "there exists" Existential Quantifier

Days in a week

 $\forall_x sunrise(x)$

 $\exists_x holiday(x)$

Universal Quantifiers

- All dogs are faithful
 - faithful(x): x is faithful
 - dog(x): x is a dog
 - $\forall_{x}(dog(x) \rightarrow faithful(x))$
- All birds cannot fly
 - fly(x): x can fly
 - bird(x): x is a bird
 - \blacktriangleright ($\forall_{\mathcal{X}}(\text{bird}(x) \rightarrow \text{fly}(x))$)

Existential Quantifiers

- At least one planet has life on it
 - planet(x): x is a planet
 - haslife(x): x has life on it
 - $\exists_x(\text{planet}(x) \land \text{haslife}(x))$
- There exists a bird that can't fly
 - fly(x): x can fly
 - bird(x): x is a bird
 - $\exists_{x}(bird(x) \land \neg fly(x))$

First Order Logic

27/01/2025

Koustav Rudra

Duality of Quantifiers

- All men are mortal
 - No man is immortal
 - $\forall_{x}(\text{man}(x) \rightarrow \text{mortal}(x))$
 - \Box (\exists_{x} (man(x) \land ~mortal(x)))

Universal quantifiers could be expressed in a different way with existential quantifiers

Sentences

- A predicate is a sentence
- If sen, sen' are sentences and x is a variable then following are sentences
 - (sen), \sim sen, \exists_{x} sen, \forall_{x} sen
 - sen∧sen′
 - senVsen'
 - $sen \rightarrow sen'$
- Nothing else is sentence

First-order Logic

- Sentence \rightarrow AtomicSentence
 - | Sentence Connective Sentence
 - Quantifier Variable, ... Sentence
 - ~ Sentence | (Sentence)
- AtomicSentence → Predicate(Term, ...)
 - | Term = Term
- Term → Function(Term, ...) | Constant | Variable
- Connective $\rightarrow \Rightarrow |V| \land |\Leftrightarrow$
- Quantifier →∀|∃

Difference from second order logic

• In FOL we quantify only variables

- In second order logic we can quantify predicates
 - $\exists_P \forall_x \forall_y P(x,y)$

Examples

- Not all students take history and biology
 - Student(x): x is a student
 - Takes(x,y): subject x is taken by y
 - \blacksquare [\forall_x Student(x) \rightarrow Takes(History,x) \land Takes(Biology,x)]
 - \exists_{x} Student(x) \land [~Takes(History,x) \lor ~Takes(Biology,x)]
- Only one student failed biology
 - Failed(x,y): student y failed in subject x

Examples

- Only one student failed both history and biology
 - Failed(x,y): student y failed in subject x
- The best score in history is better than the best score in biology
 - Function: score(subject, student)
 - Greater(x,y): x>y

Takeaway

- Predicate logic is a more powerful version of proposition logic
- Provide support for variables and quantifiers
- Can capture sentences more naturally

How we can perform inferencing with predicates?

Thank You