

planetmath.org

Math for the people, by the people.

proof of Zermelo's postulate

 ${\bf Canonical\ name} \quad {\bf ProofOfZermelosPostulate}$

Date of creation 2013-03-22 16:14:25 Last modified on 2013-03-22 16:14:25 Owner Wkbj79 (1863)

Last modified by Wkbj79 (1863)

Numerical id 9

Author Wkbj79 (1863)

Entry type Proof

Classification msc 03E25

The following is a proof that the axiom of choice implies Zermelo's postulate.

Proof. Let \mathcal{F} be a disjoint family of nonempty sets. Let $f \colon \mathcal{F} \to \bigcup \mathcal{F}$ be a choice function. Let $A, B \in \mathcal{F}$ with $A \neq B$. Since \mathcal{F} is a disjoint family of sets, $A \cap B = \emptyset$. Since f is a choice function, $f(A) \in A$ and $f(B) \in B$. Thus, $f(A) \notin B$. Hence, $f(A) \neq f(B)$. It follows that f is injective.

Let
$$C = \{ f(B) \in \bigcup \mathcal{F} : B \in \mathcal{F} \}$$
. Then C is a set.
Let $A \in \mathcal{F}$. Since f is injective, $A \cap C = \{ f(A) \}$.