Optimization Methods

Fall 2023

Homework 2

Instructor: Lijun Zhang Name: Ji Qiankun, StudentId: 221300066

Notice

• The submission email is: optfall2023@163.com.

- Please use the provided IATEX file as a template.
- If you are not familiar with LATEX, you can also use Word to generate a PDF file.

Problem 1: Convexity

a) Suppose $f: \mathbb{R} \to \mathbb{R}$ is convex and differentiable. Show that its running average F, i.e.,

$$F(x) = \frac{1}{x} \int_0^x f(t)dt$$

is convex over $\operatorname{\mathbf{dom}}(F) = \mathbb{R}_{++}$.

b) Suppose f and g are both convex, nondecreasing (or nonincreasing), and positive real-valued functions defined on \mathbb{R} , prove that fg is convex on $\mathbf{dom}(f) \cap \mathbf{dom}(g)$.

c) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Its perspective transform $g: \mathbb{R}^{n+1} \to \mathbb{R}$ is defined by

$$g(x,t) = tf(\frac{x}{t}),$$

with domain $\mathbf{dom}(g) = \{(x,t) \in \mathbb{R}^{n+1} : x \in \mathbf{dom}(f), t > 0\}$. Use the definition of convexity to prove that if f is convex, then so is its perspective transform g.

Solution. a) To show that F is convex, we need to show that for any $x, y \in \mathbf{dom}(F)$ and $\lambda \in [0, 1]$, we have

$$F(\lambda x + (1 - \lambda)y) < \lambda F(x) + (1 - \lambda)F(y)$$

Using the definition of F, we can get

$$F(\lambda x + (1 - \lambda)y) = \frac{1}{\lambda x + (1 - \lambda)y} \int_0^{\lambda x + (1 - \lambda)y} f(t)dt$$

$$= \frac{1}{\lambda x + (1 - \lambda)y} \left(\int_0^{\lambda x} f(t)dt + \int_{\lambda x}^{\lambda x + (1 - \lambda)y} f(t)dt \right)$$

$$= \frac{\lambda x}{\lambda x + (1 - \lambda)y} \frac{1}{\lambda x} \int_0^{\lambda x} f(t)dt + \frac{(1 - \lambda)y}{\lambda x + (1 - \lambda)y} \frac{1}{(1 - \lambda)y} \int_{\lambda x}^{\lambda x + (1 - \lambda)y} f(t)dt$$

$$= \frac{\lambda x}{\lambda x + (1 - \lambda)y} F(x) + \frac{(1 - \lambda)y}{\lambda x + (1 - \lambda)y} F(y)$$

$$\leq \lambda F(x) + (1 - \lambda)F(y)$$

where the last inequality follows from the fact that $\frac{\lambda x}{\lambda x + (1-\lambda)y} \le \lambda$ and $\frac{(1-\lambda)y}{\lambda x + (1-\lambda)y} \le (1-\lambda)$, since x, y > 0 and $\lambda \in [0, 1]$. Therefore, F is convex.

b) To show that fg is convex, we need to show that for any $x, y \in \mathbf{dom}(f) \cap \mathbf{dom}(g)$ and $\lambda \in [0, 1]$, we have

$$(fg)(\lambda x + (1-\lambda)y) \le \lambda(fg)(x) + (1-\lambda)(fg)(y)$$

Using the fact that f and g are convex, we have

$$(fg)(\lambda x + (1 - \lambda)y) = f(\lambda x + (1 - \lambda)y)g(\lambda x + (1 - \lambda)y)$$

$$\leq (\lambda f(x) + (1 - \lambda)f(y))(\lambda g(x) + (1 - \lambda)g(y))$$

$$= \lambda^2 f(x)g(x) + \lambda(1 - \lambda)f(x)g(y) + \lambda(1 - \lambda)f(y)g(x) + (1 - \lambda)^2 f(y)g(y)$$

Now, if f and g are both nondecreasing, then we have $f(x)g(y) \le f(y)g(y)$ and $f(y)g(x) \le f(y)g(y)$, so we can get

$$(fg)(\lambda x + (1 - \lambda)y) \le \lambda^2 f(x)g(x) + 2\lambda(1 - \lambda)f(y)g(y) + (1 - \lambda)^2 f(y)g(y)$$
$$= \lambda f(x)g(x) + (1 - \lambda)f(y)g(y)$$
$$= \lambda (fg)(x) + (1 - \lambda)(fg)(y)$$

Similarly, if f and g are both nonincreasing, then we have $f(x)g(y) \ge f(y)g(y)$ and $f(y)g(x) \ge f(y)g(y)$, so we can get

$$(fg)(\lambda x + (1 - \lambda)y) \le \lambda^2 f(x)g(x) + 2\lambda(1 - \lambda)f(x)g(x) + (1 - \lambda)^2 f(y)g(y)$$
$$= \lambda f(x)g(x) + (1 - \lambda)f(y)g(y)$$
$$= \lambda (fg)(x) + (1 - \lambda)(fg)(y)$$

Therefore, in either case, fg is convex.

c) To show that g is convex, we need to show that for any $(x,t), (y,s) \in \mathbf{dom}(g)$ and $\lambda \in [0,1]$, we have

$$g(\lambda(x,t) + (1-\lambda)(y,s)) \le \lambda g(x,t) + (1-\lambda)g(y,s)$$

Using the definition of g, we can get

$$\begin{split} g(\lambda(x,t) + (1-\lambda)(y,s)) &= (\lambda t + (1-\lambda)s) f\left(\frac{\lambda x + (1-\lambda)y}{\lambda t + (1-\lambda)s}\right) \\ &= (\lambda t + (1-\lambda)s) f\left(\frac{\lambda t}{\lambda t + (1-\lambda)s} \frac{x}{t} + \frac{(1-\lambda)s}{\lambda t + (1-\lambda)s} \frac{y}{s}\right) \\ &\leq (\lambda t + (1-\lambda)s) \left(\frac{\lambda t}{\lambda t + (1-\lambda)s} f\left(\frac{x}{t}\right) + \frac{(1-\lambda)s}{\lambda t + (1-\lambda)s} f\left(\frac{y}{s}\right)\right) \\ &= \lambda t f\left(\frac{x}{t}\right) + (1-\lambda)s f\left(\frac{y}{s}\right) \\ &= \lambda g(x,t) + (1-\lambda)g(y,s) \end{split}$$

where the inequality follows from the fact that f is convex and $\frac{\lambda t}{\lambda t + (1-\lambda)s}, \frac{(1-\lambda)s}{\lambda t + (1-\lambda)s} \in [0,1]$. Therefore, g is convex.

Problem 2: Convex Functions

a) Let A is a positive semidefinite symmetric $n \times n$ matrix and β is a positive scalar. Prove that the function $f : \mathbb{R}^n \to \mathbb{R}$, defined as

$$f(x) = e^{x^{\top} A x},$$

is convex.

b) Show that the function

$$f(x, u, v) = -\log(uv - x^Tx)$$

is convex over $\operatorname{dom} f = \{(x, u, v) \mid uv > x^T x, u, v > 0\}$ (Hint: consider the function $f(x, u) = x^T x/u$)

c) Suppose $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$. Show that the function

$$f(x) = \frac{\|Ax - b\|_2^2}{1 - x^{\mathsf{T}}x}$$

is convex on $\operatorname{dom}(f) = \{x \in \mathbb{R}^n | ||x||_2 \le 1\}.$

Solution. a) To show that f is convex, we need to show that its Hessian matrix is positive semidefinite, i.e., for any $z \in \mathbb{R}^n$, we have

$$z^{\top} \nabla^2 f(x) z \ge 0$$

Using the chain rule, compute the gradient and the Hessian of f as follows:

$$\nabla f(x) = f(x)\nabla(x^{\top}Ax)$$

$$= 2f(x)Ax$$

$$\nabla^{2}f(x) = 2f(x)\nabla(Ax) + 2f(x)Ax\nabla^{\top}(Ax)$$

$$= 4f(x)A + 4f(x)Axx^{\top}A$$

Then, we have

$$z^{\top} \nabla^2 f(x) z = 4f(x) z^{\top} A z + 4f(x) z^{\top} A x x^{\top} A z$$
$$= 4f(x) \left(z^{\top} A z + (x^{\top} A z)^2 \right)$$
$$\geq 0$$

where the last inequality follows from the fact that f(x) > 0 and A is positive semidefinite, so $z^{\top}Az \geq 0$ and $(x^{\top}Az)^2 \geq 0$. Therefore, f is convex.

b) To show that f is convex, we need to show that its Hessian matrix is positive semidefinite, i.e., for any $z \in \mathbb{R}^{n+2}$, we have

$$z^{\top} \nabla^2 f(x, u, v) z \ge 0$$

Using the chain rule, compute the gradient and the Hessian of f as follows:

$$\begin{split} \nabla f(x,u,v) &= -\frac{1}{uv - x^{\top}x} \nabla (uv - x^{\top}x) \\ &= -\frac{1}{uv - x^{\top}x} \begin{bmatrix} -2x \\ v \\ u \end{bmatrix} \\ \nabla^2 f(x,u,v) &= -\frac{1}{uv - x^{\top}x} \nabla \begin{bmatrix} -2x \\ v \\ u \end{bmatrix} + \frac{1}{(uv - x^{\top}x)^2} \nabla (uv - x^{\top}x) \nabla^{\top} (uv - x^{\top}x) \\ &= -\frac{1}{uv - x^{\top}x} \begin{bmatrix} -2I & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} + \frac{1}{(uv - x^{\top}x)^2} \begin{bmatrix} -2x \\ v \\ u \end{bmatrix} \begin{bmatrix} -2x \\ v \\ u \end{bmatrix}^{\top} \\ &= \frac{1}{uv - x^{\top}x} \begin{bmatrix} 2I + \frac{4xx^{\top}}{uv - x^{\top}x} & -\frac{2x}{uv - x^{\top}x} & -\frac{2x}{uv - x^{\top}x} \\ -\frac{2x}{uv - x^{\top}x} & 1 + \frac{u^2}{uv - x^{\top}x} & 1 + \frac{u^2}{uv - x^{\top}x} \end{bmatrix} \end{split}$$

Then, we have

$$\begin{split} z^\top \nabla^2 f(x,u,v) z &= \frac{1}{uv - x^\top x} \left(2z_1^\top z_1 + \frac{4(z_1^\top x)^2}{uv - x^\top x} - \frac{4z_1^\top x(z_2 + z_3)}{uv - x^\top x} + z_2^2 + \frac{v^2 z_2^2}{uv - x^\top x} + z_3^2 + \frac{u^2 z_3^2}{uv - x^\top x} + 2\frac{u^2 - v^2}{uv - x^\top x} z_2 z_3 \right) \\ &= \frac{1}{uv - x^\top x} \left(2\|z_1\|^2 + \frac{(z_2 + z_3)^2}{uv - x^\top x} \left((uv - x^\top x)^2 - 4(x^\top z_1)^2 \right) + \frac{u^2 + v^2}{uv - x^\top x} (z_2^2 + z_3^2) + 2\frac{u^2 - v^2}{uv - x^\top x} z_2 z_3 \right) \end{split}$$

where $z_1 \in \mathbb{R}^n$ and $z_2, z_3 \in \mathbb{R}$ are the components of z. Now, we can use the following facts to show that the expression inside the parentheses is nonnegative: $-2\|z_1\|^2 \ge 0$ since z_1 is a vector. $-(uv - x^\top x)^2 - 4(x^\top z_1)^2 \ge 0$ since it is equivalent to $(uv - x^\top x - 2x^\top z_1)(uv - x^\top x + 2x^\top z_1) \ge 0$, which holds because $uv - x^\top x > 0$ and $uv - x^\top x \pm 2x^\top z_1$ have the same sign for any z_1 . $-\frac{u^2 + v^2}{uv - x^\top x}(z_2^2 + z_3^2) + 2\frac{u^2 - v^2}{uv - x^\top x}z_2z_3 \ge 0$ since it is equivalent to $\left(\frac{uz_2+vz_3}{\sqrt{uv-x^\top x}}\right)^2 \ge 0$, which holds because u,v>0 and $uv-x^\top x>0$.

Therefore, we have

$$z^{\top} \nabla^2 f(x, u, v) z \ge 0$$

for any $z \in \mathbb{R}^{n+2}$, which implies that f is convex.

c) To show that f is convex, we need to show that its Hessian matrix is positive semidefinite, i.e., for any $z \in \mathbb{R}^n$, we have

$$z^{\top} \nabla^2 f(x) z \ge 0$$

Using the chain rule, compute the gradient and the Hessian of f as follows:

$$\begin{split} \nabla f(x) &= \frac{1}{1 - x^\top x} \nabla (\|Ax - b\|_2^2) - \frac{\|Ax - b\|_2^2}{(1 - x^\top x)^2} \nabla (x^\top x) \\ &= \frac{2}{1 - x^\top x} (A^\top Ax - A^\top b) - \frac{2\|Ax - b\|_2^2}{(1 - x^\top x)^2} x \\ \nabla^2 f(x) &= \frac{2}{1 - x^\top x} \nabla (A^\top Ax - A^\top b) - \frac{2\|Ax - b\|_2^2}{(1 - x^\top x)^2} \nabla x - \frac{2}{(1 - x^\top x)^2} (A^\top Ax - A^\top b) \nabla^\top (x^\top x) \\ &= \frac{2}{1 - x^\top x} A^\top A - \frac{2\|Ax - b\|_2^2}{(1 - x^\top x)^2} I - \frac{4}{(1 - x^\top x)^2} (A^\top Ax - A^\top b) x^\top - \frac{4\|Ax - b\|_2^2}{(1 - x^\top x)^3} x x^\top \end{split}$$

Then, we have

$$z^{\top}\nabla^{2}f(x)z = \frac{2}{1-x^{\top}x}z^{\top}A^{\top}Az - \frac{2\|Ax-b\|_{2}^{2}}{(1-x^{\top}x)^{2}}z^{\top}z - \frac{4}{(1-x^{\top}x)^{2}}z^{\top}(A^{\top}Ax - A^{\top}b)x^{\top}z - \frac{4\|Ax-b\|_{2}^{2}}{(1-x^{\top}x)^{3}}z^{\top}xx^{\top}z$$

$$= \frac{2}{1-x^{\top}x}\|Az\|_{2}^{2} - \frac{2\|Ax-b\|_{2}^{2}}{(1-x^{\top}x)^{2}}\|z\|_{2}^{2} - \frac{4}{(1-x^{\top}x)^{2}}(z^{\top}A^{\top}Ax - z^{\top}A^{\top}b)z^{\top}x - \frac{4\|Ax-b\|_{2}^{2}}{(1-x^{\top}x)^{3}}(z^{\top}x)^{2}$$

Now, use the following facts to show that the expression is nonnegative: $-\frac{2}{1-x^{\top}x}\|Az\|_2^2 \geq 0$ since A is a matrix and z is a vector. $-\frac{2\|Ax-b\|_2^2}{(1-x^\top x)^2}\|z\|_2^2 \ge 0$ since $\|Ax-b\|_2^2 \ge 0$, $\|z\|_2^2 \ge 0$, and $(1-x^\top x)^2 > 0$ for $\|x\|_2 \le 1$. $-\frac{4}{(1-x^\top x)^2}(z^\top A^\top Ax - z^\top A^\top b)z^\top x \ge 0$ since $(z^\top A^\top Ax - z^\top A^\top b)z^\top x = z^\top A^\top (Ax - b)x \le 0$ by the Cauchy-Schwarz inequality, with equality if and only if Ax - b and x are linearly dependent, and $(1-x^\top x)^2 > 0$ for $||x||_2 \le 1$. $-\frac{4||Ax-b||_2^2}{(1-x^\top x)^3}(z^\top x)^2 \ge 0$ since $||Ax-b||_2^2 \ge 0$, $(z^\top x)^2 \ge 0$, and $(1-x^\top x)^3 > 0$ for $||x||_2 \le 1$. Therefore, we have

$$z^{\top} \nabla^2 f(x) z \ge 0$$

for any $z \in \mathbb{R}^n$, which implies that f is convex.

Problem 3: Concave Function

Show that the function

$$f(x) = \left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}}$$

with $\mathbf{dom}(f) = \mathbb{R}^n_{++}$ is concave.

Solution. My idea to show that f is concave is to use the arithmetic-geometric mean inequality, which states that for any positive numbers x_1, x_2, \ldots, x_n , we have

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge (x_1 x_2 \dots x_n)^{\frac{1}{n}}$$

with equality if and only if $x_1 = x_2 = \cdots = x_n$. Taking the logarithm of both sides, we get

$$\log\left(\frac{x_1+x_2+\cdots+x_n}{n}\right) \ge \frac{1}{n}\log\left(x_1x_2\ldots x_n\right)$$

with equality if and only if $x_1 = x_2 = \cdots = x_n$. Now, let $x, y \in \mathbf{dom}(f)$ and $\lambda \in [0, 1]$. Then, we have

$$\log f(\lambda x + (1 - \lambda)y) = \frac{1}{n} \log \left(\prod_{i=1}^{n} (\lambda x_i + (1 - \lambda)y_i) \right)$$

$$\leq \frac{1}{n} \log \left(\frac{\lambda \sum_{i=1}^{n} x_i + (1 - \lambda) \sum_{i=1}^{n} y_i}{n} \right)$$

$$= \frac{1}{n} \log \left(\lambda \frac{\sum_{i=1}^{n} x_i}{n} + (1 - \lambda) \frac{\sum_{i=1}^{n} y_i}{n} \right)$$

$$\leq \frac{1}{n} \left(\lambda \log \left(\frac{\sum_{i=1}^{n} x_i}{n} \right) + (1 - \lambda) \log \left(\frac{\sum_{i=1}^{n} y_i}{n} \right) \right)$$

$$= \lambda \frac{1}{n} \log \left(\prod_{i=1}^{n} x_i \right) + (1 - \lambda) \frac{1}{n} \log \left(\prod_{i=1}^{n} y_i \right)$$

$$= \lambda \log f(x) + (1 - \lambda) \log f(y)$$

where the first inequality follows from the arithmetic-geometric mean inequality applied to each term $\lambda x_i + (1 - \lambda)y_i$, and the second inequality follows from the concavity of the logarithm function. Taking the exponential of both sides, we get

$$f(\lambda x + (1 - \lambda)y) \le f(x)^{\lambda} f(y)^{1-\lambda}$$

which shows that f is concave.

Problem 4: Conjugate Function

- a) Prove that the conjugate of the conjugate of a closed convex function is itself, i.e., $f^{**} = f$, if f is closed and convex.
- b) Show that the conjugate of $f(x) = \max_{i=1,\dots,n} x_i$ over \mathbb{R}^n .
- c) Show that the conjugate of $f(x) = x^p$ over \mathbb{R}_{++} , where p > 1.

Solution. a)To prove that conjugate of the conjugate of a closed convex function is itself, we need to show that for any $x \in \mathbf{dom}(f)$, we have

$$f^{**}(x) = f(x)$$

Using the definition of the conjugate function, we can get

$$\begin{split} f^{**}(x) &= \sup_{y \in \mathbb{R}^n} (y^\top x - f^*(y)) \\ &= \sup_{y \in \mathbb{R}^n} (y^\top x - \sup_{z \in \mathbb{R}^n} (z^\top y - f(z))) \\ &= \sup_{y \in \mathbb{R}^n} \inf_{z \in \mathbb{R}^n} (y^\top x - z^\top y + f(z)) \end{split}$$

Now, use the following facts to simplify the expression:

- The supremum and the infimum can be interchanged by using the min-max theorem.
- The infimum over z is attained at z = x.
- The supremum over y is attained at $y = \nabla f(x)$.

Therefore, we have

$$\begin{split} f^{**}(x) &= \sup_{y \in \mathbb{R}^n} \inf_{z \in \mathbb{R}^n} (y^\top x - z^\top y + f(z)) \\ &= \inf_{z \in \mathbb{R}^n} \sup_{y \in \mathbb{R}^n} (y^\top x - z^\top y + f(z)) \\ &= \sup_{y \in \mathbb{R}^n} (y^\top x - x^\top y + f(x)) \\ &= \sup_{y \in \mathbb{R}^n} (y - \nabla f(x))^\top x + f(x) \\ &= f(x) + \sup_{y \in \mathbb{R}^n} (y - \nabla f(x))^\top x \\ &= f(x) + \|x\|^2 \sup_{\|y\| = 1} (y - \nabla f(x)/\|x\|)^\top x/\|x\| \\ &= f(x) + \|x\|^2 \sup_{\|y\| = 1} (y^\top x/\|x\| - \nabla f(x)^\top x/\|x\|^2) \\ &= f(x) + \|x\|^2 \sup_{\|y\| = 1} (y^\top x/\|x\| - 1) \\ &= f(x) + \|x\|^2 (\|x\|/\|x\| - 1) \\ &= f(x) \end{split}$$

where the second last equality follows from the fact that $y^{\top}x/\|x\| \leq \|y\|\|x\|/\|x\| = 1$ by the Cauchy-Schwarz inequality, with equality if and only if $y = x/\|x\|$. Therefore, we have proved that $f^{**} = f$ so conjugate of the conjugate of a closed convex function is itself.

b) To show that the conjugate of $f(x) = \max_{i=1,\dots,n} x_i$ over \mathbb{R}^n is

$$f^*(y) = \begin{cases} 0 & \text{if } y \in \Delta_n \\ \infty & \text{otherwise} \end{cases}$$

where $\Delta_n = \{y \in \mathbb{R}^n : y_i \geq 0, \sum_{i=1}^n y_i = 1\}$ is the standard simplex, we need to use the definition of the conjugate function, which is

$$f^*(y) = \sup_{x \in \mathbb{R}^n} (y^\top x - f(x))$$

Now, use the following facts to find the expression for $f^*(y)$:

- The function $y^{\top}x f(x)$ is linear in x, so it is unbounded above unless $y \in \Delta_n$, in which case it is constant and equal to zero.
- The supremum over x is either zero or infinity, depending on whether $y \in \Delta_n$ or not.

Therefore, we have

$$f^*(y) = \begin{cases} 0 & \text{if } y \in \Delta_n \\ \infty & \text{otherwise} \end{cases}$$

which is the conjugate of $f(x) = \max_{i=1,\dots,n} x_i$ over \mathbb{R}^n .

c) To show that the conjugate of $f(x) = x^p$ over \mathbb{R}_{++} , where p > 1, is

$$f^*(y) = \begin{cases} \left(\frac{y}{p-1}\right)^{\frac{p}{p-1}} & \text{if } y \ge 0\\ \infty & \text{otherwise} \end{cases}$$

Using the definition of the conjugate function, which is

$$f^*(y) = \sup_{x \in \mathbb{R}_{++}} (yx - x^p)$$

Now, we can use the following facts to find the expression for $f^*(y)$:

- The function $yx x^p$ is concave in x.
- The global maximum value is $yx x^p = \left(\frac{y}{p}\right)^{\frac{p}{p-1}} \left(\frac{y}{p}\right)^{\frac{p}{p-1}} = 0$ if $y \ge 0$, and ∞ if y < 0, since $yx x^p \to \infty$ as $x \to \infty$ in that case.
- The supremum over x is either zero or infinity, depending on whether $y \geq 0$ or not.

Therefore, we have

$$f^*(y) = \begin{cases} \left(\frac{y}{p-1}\right)^{\frac{p}{p-1}} & \text{if } y \ge 0\\ \infty & \text{otherwise} \end{cases}$$

which is the conjugate of $f(x) = x^p$ over \mathbb{R}_{++} , where p > 1.

Problem 5: Projection

For any point y, the projection onto a nonempty and closed convex set \mathcal{X} is defined as

$$\Pi_{\mathcal{X}}(y) = \underset{x \in \mathcal{X}}{\arg\min} \frac{1}{2} ||x - y||_2^2.$$

- a) Prove that $\|\Pi_{\mathcal{X}}(x) \Pi_{\mathcal{X}}(y)\|_2^2 \leq \langle \Pi_{\mathcal{X}}(x) \Pi_{\mathcal{X}}(y), x y \rangle$.
- b) Prove that $\|\Pi_{\mathcal{X}}(x) \Pi_{\mathcal{X}}(y)\|_2 \leq \|x y\|_2$.
- c) Denote by $\Delta_R(x,y)$ the Bregman divergence with respect to the function R, defined as

$$\Delta_R(x,y) = R(x) - R(y) - \langle \nabla R(y), x - y \rangle, \quad \forall x, y \in \Omega.$$

If we choose $\Pi_{\mathcal{X}}(y) = \underset{x \in \mathcal{X}}{\arg\min} \Delta_R(x, y)$, where \mathcal{X} is the *n*-dimensional simplex $\{x \in \mathbb{R}^n_+ | \sum_{i=1}^n x_i = 1\}$, and $R(x) = \sum_{i=1}^n x_i \log(x_i)$. Prove that $\Pi_{\mathcal{X}}(y) = \frac{y}{||y||_1}$ when $y \in \mathbb{R}^n_{++}$. (*Hint: you may use the Jensen's inequality*)

Solution. a) To prove that $\|\Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y)\|_2^2 \leq \langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), x - y \rangle$, need to use the following facts:

- The projection $\Pi_{\mathcal{X}}(x)$ is the unique minimizer of the function $\frac{1}{2}\|x-z\|_2^2$ over \mathcal{X} , which implies that $\nabla_z \frac{1}{2}\|x-z\|_2^2|_{z=\Pi_{\mathcal{X}}(x)}=0$, i.e., $x-\Pi_{\mathcal{X}}(x)\in N_{\mathcal{X}}(\Pi_{\mathcal{X}}(x))$, where $N_{\mathcal{X}}(z)$ is the normal cone of \mathcal{X} at z, defined as $N_{\mathcal{X}}(z)=\{v\in\mathbb{R}^n: \langle v,w-z\rangle\leq 0, \forall w\in\mathcal{X}\}$.
- The normal cone $N_{\mathcal{X}}(z)$ is a convex cone, which means that if $v_1, v_2 \in N_{\mathcal{X}}(z)$, then $\lambda v_1 + (1 \lambda)v_2 \in N_{\mathcal{X}}(z)$ for any $\lambda \in [0, 1]$.
- The inner product $\langle u, v \rangle$ is linear in both arguments, which means that $\langle \lambda u_1 + (1 \lambda)u_2, v \rangle = \lambda \langle u_1, v \rangle + (1 \lambda) \langle u_2, v \rangle$ for any $u_1, u_2, v \in \mathbb{R}^n$ and $\lambda \in [0, 1]$.

Using facts above, we can write

$$\begin{split} \|\Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y)\|_{2}^{2} &= \langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y) \rangle \\ &= \langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), \Pi_{\mathcal{X}}(x) - x + x - \Pi_{\mathcal{X}}(y) \rangle \\ &= \langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), \Pi_{\mathcal{X}}(x) - x \rangle + \langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), x - \Pi_{\mathcal{X}}(y) \rangle \\ &= \left\langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), \frac{1}{2}(\Pi_{\mathcal{X}}(x) - x) + \frac{1}{2}(\Pi_{\mathcal{X}}(y) - y) \right\rangle + \left\langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), x - y - \frac{1}{2}(\Pi_{\mathcal{X}}(x) - x) - \frac{1}{2}(\Pi_{\mathcal{X}}(x) - x) - \frac{1}{2}(\Pi_{\mathcal{X}}(x) - x) - \frac{1}{2}(\Pi_{\mathcal{X}}(x) - x) + \frac{1}{2}\langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), \Pi_{\mathcal{X}}(y) - y \rangle + \left\langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), x - y - \frac{1}{2}(\Pi_{\mathcal{X}}(x) - x) + \frac{1}{2}\langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), \Pi_{\mathcal{X}}(y) - y \rangle + \langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), x - y \rangle \\ &= \langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), x - y \rangle \end{split}$$

where the inequality follows from the fact that $\Pi_{\mathcal{X}}(x) - x$, $\Pi_{\mathcal{X}}(y) - y \in N_{\mathcal{X}}(\Pi_{\mathcal{X}}(y))$, so $\frac{1}{2}(\Pi_{\mathcal{X}}(x) - x) + \frac{1}{2}(\Pi_{\mathcal{X}}(y) - y) \in N_{\mathcal{X}}(\Pi_{\mathcal{X}}(y))$ by the convexity of the normal cone, and $\langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), \frac{1}{2}(\Pi_{\mathcal{X}}(x) - x) + \frac{1}{2}(\Pi_{\mathcal{X}}(y) - y) \rangle \leq 0$ by the definition of the normal cone, which proves that $\|\Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y)\|_2^2 \leqslant \langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), x - y \rangle$.

b) To prove that $\|\Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y)\|_2 \leq \|x - y\|_2$, need to use the Cauchy-Schwarz inequality, which states that for any vectors $u, v \in \mathbb{R}^n$, we have

$$\langle u, v \rangle \le \|u\|_2 \|v\|_2$$

with equality if and only if u and v are linearly dependent. Applying this inequality to the result of part (a), we get

$$\|\Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y)\|_{2}^{2} \leqslant \langle \Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y), x - y \rangle$$

$$\leq \|\Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y)\|_{2} \|x - y\|_{2}$$

Dividing both sides by $\|\Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y)\|_2$, we get

$$\|\Pi_{\mathcal{X}}(x) - \Pi_{\mathcal{X}}(y)\|_{2} \le \|x - y\|_{2}$$

- which proves that $\|\Pi_{\mathcal{X}}(x) \Pi_{\mathcal{X}}(y)\|_2 \leq \|x y\|_2$. c)To prove that $\Pi_{\mathcal{X}}(y) = \frac{y}{\|y\|_1}$ when $y \in \mathbb{R}^n_{++}$, we need to use the following facts:
- The Bregman divergence $\Delta_R(x,y)$ is nonnegative, i.e., $\Delta_R(x,y) \geq 0$ for any $x,y \in \Omega$, where Ω is the domain
- The Bregman divergence $\Delta_R(x,y)$ is zero if and only if x=y, i.e., $\Delta_R(x,y)=0$ if and only if x=y.
- The function $R(x) = \sum_{i=1}^{n} x_i \log x_i$ is strictly convex and differentiable on \mathbb{R}^n_{++} , with $\nabla R(x) = \log x + 1$, where $\log x$ and 1 are element-wise operations.
- The set $\mathcal{X}=\{x\in\mathbb{R}^n_+:\sum_{i=1}^nx_i=1\}$ is the standard simplex, which is a convex set.
- The Jensen's inequality states that for any convex function ϕ and any probability distribution p, we have $\phi(\sum_{i=1}^n p_i x_i) \le \sum_{i=1}^n p_i \phi(x_i) \text{ for any } x_1, \cdots, x_n \in \mathbb{R}.$

Using these facts, we can write

$$\begin{split} \Pi_{\mathcal{X}}(y) &= \underset{x \in \mathcal{X}}{\arg\min} \Delta_{R}(x,y) \\ &= \underset{x \in \mathcal{X}}{\arg\min} (R(x) - R(y) - \langle \nabla R(y), x - y \rangle) \\ &= \underset{x \in \mathcal{X}}{\arg\min} (\sum_{i=1}^{n} x_{i} \log x_{i} - \sum_{i=1}^{n} y_{i} \log y_{i} - \langle \log y + 1, x - y \rangle) \\ &= \underset{x \in \mathcal{X}}{\arg\min} (\sum_{i=1}^{n} x_{i} (\log x_{i} - \log y_{i} - 1) + \sum_{i=1}^{n} y_{i} (\log y_{i} + 1)) \\ &= \underset{x \in \mathcal{X}}{\arg\min} (\sum_{i=1}^{n} x_{i} \log \frac{x_{i}}{y_{i}} + \sum_{i=1}^{n} y_{i} \log y_{i} + \sum_{i=1}^{n} y_{i}) \\ &= \underset{x \in \mathcal{X}}{\arg\min} (\sum_{i=1}^{n} x_{i} \log \frac{x_{i}}{y_{i}} + ||y||_{1} (\log ||y||_{1} + 1)) \end{split}$$

where the last equality follows from the fact that $\sum_{i=1}^{n} y_i = ||y||_1$ and log is an element-wise operation. Then, use the Jensen's inequality to show that the minimum is attained at $x = \frac{y}{\|y\|_1}$, since

$$\sum_{i=1}^{n} x_i \log \frac{x_i}{y_i} \ge \log \left(\sum_{i=1}^{n} x_i \frac{x_i}{y_i} \right)$$

$$= \log \left(\frac{\sum_{i=1}^{n} x_i^2}{\sum_{i=1}^{n} y_i} \right)$$

$$= \log \left(\frac{\|x\|_2^2}{\|y\|_1} \right)$$

with equality if and only if $x_i = \frac{x_i}{y_i}$ for all i, which implies that $x_i = \frac{y_i}{\|y\|_1}$ for all i. Therefore, we have

$$\Pi_{\mathcal{X}}(y) = \underset{x \in \mathcal{X}}{\arg\min} \left(\sum_{i=1}^{n} x_i \log \frac{x_i}{y_i} + ||y||_1 (\log ||y||_1 + 1) \right)$$
$$= \frac{y}{||y||_1}$$

when $y \in \mathbb{R}^n_{++}$, which proves that $\Pi_{\mathcal{X}}(y) = \frac{y}{\|y\|_1}$ when $y \in \mathbb{R}^n_{++}$.