

CANDAC

Canadian Network for the Detection of Atmospheric Change

Project Lead: Taneil Uttal
taneil.uttal@noaa.gov
Site Manager: Pierre Fogal
pierre.fogal@utoronto.ca
Scientist, Technician: Christopher Cox
Christopher.j.cox@noaa.gov

Contacts

File name: (as of 4/2/14) eutYYJJJ.met

luxtower - towermet

101	Year	DOY	GMT/UT C time HMM	Campbell Battery Voltage	Campbell internal temp	DW LW Total – NOT INSTAL LED [mV]	DW LW Total – NOT INSTALL ED_STD [mV]	DW LW Total - NOT INSTA LLED _CaseTe mp[mV]	DW LW Total – NOT INSTALL ED _DomeTem p [mV]	Upwelli ngLong waveTot al [mV]	Upwellin gLongw aveTotal STD [mV]	gLongw	Upwelling Longwave TotalDom eTemp [mV]	DW SW Total – NOT INSTAL LED [mV]	DW SW Total – NOT INSTALL ED_ STD[mV]	veTotal	gShortwa veTotalST D [mV] – NOT										
311	Year	DOY	GMT/UT C time HMM	Probe excitation voltage [mV]	Probe excitation voltage deviation	5cm [mV]	10cm [mV]	15cm [mV]	20cm [mV]	25cm [mV]	30cm [mV]	45cm [mV]	70cm [mV]	95cm [mV]	120cm [mV]	REF [mV]	5std	10std	15std	20std 2	25std 3	30std	45std	70std	95std	120std	REF std
301	Year	DOY	GMT/UT C time HMM	Pressure 2M [mbar]	Pressure std	Wind speed [m/s]	Wind direction [degree]	Wind speed std (sigma theta)	Wind speed std	Wind direction std																	
330	Year	DOY	GMT/UT C time HMM	10M temp [degC]	10M humidity [%]	6M temp [degC]	6M humidity [%]	2M temp [degC]	2M humidity [%]	10M temp std	10M humidity std	6M temp std	6M humidity std	2M temp std	2M humidity std												
331	Year	DOY	GMT/UT C time HMM	ref	Ref std	10M east TC [degC]	10M east TC std	6M east TC [degC]	6M east TC std	Differen tial ABS (east)	ΔK	6M west TC [degC]	6M west TC std	2M west TC [degC]	2M west TC std	Differenti al ABS (west)	Differenti al ABS (west) std										
320	Year	DOY	GMT/UT C time HMM	Soil temp ave TCs	Soil temp ave TCs std	Flux plate 1 [mV]	Flux plate 2 [mV]	Flux plate 1 std	Flux plate 2 std	IR temp [mV]	IR ref [ohms]	IR temp std	IR ref std	Snow depth [mm]	Snow depth std												
333	Year	DOY	GMT/UT C time HMM	RTD1	RTD1_v1	RTD1_v 2	10M RTD [degC]	RTD2	RTD2_v1	RTD2_v 2	6M RTD [degC]	RTD3	RTD3_v1	RTD3_v2	2M RTD [degC]	Service switch	ABS (service switch)										
180	Year	DOY	GMT/UT C time HMM	Seconds_R TM	RTD1	RTD1_v 1	RTD1_v2	10M RTD [degC]	RTD2	RTD2_v 1	RTD2_v 2	6M RTD [degC]	RTD3	RTD3_v1	RTD3_v2	2M RTD [degC]											
181	Year	DOY	GMT/UT C time HMM	Seconds_R TM	IR temp [mV]	IR ref	IR temp std	IR ref	IR ref [repeat]	IR ref std [repeat]								ov and 10	or arc 3-sc	cond data 110	in mstrum	ilents co	nected in	micib's 32	20 and 33.	o frepeate	duataj
101	2014	118	0	13.42	-6.078	-0.11646	0.00469	54.081	56.097	0.00137	0.00032	9.9784	9.9673	1.4529	0.00222	0	0										
	2014		0	4959.2	0.27709	382.2	385.84	386.21	387.21	388.41	388.94	386.17	386.04	381.55	378.96	87.257	0.3012	0.29582	0.26007	0.32749 0.2	25961 0.2	20818	0.34616	0.23758	0.39696	0.17554	0.02575
	2014		0	1017.1	0	1.0026	101.07	0.02356		0.04387																	
	2014		0	-17.609	62.588	-17.737	65.325	-18.192		0.02209		0.0213	0.08835	0.01873	0.05813												
	2014		0	-13.332	0.02085	-16.863	0.05725	-17.107		0.24444				-99999	0 26906	99999	0										
	2014		0	-26.303 0.93261	0.0375 83.791	0.14271 78.145	0.19504	0.00033		0.41432 78.075	67355 -17.929	0.00219	37.088 83.808	2671.3 77.909	-18.365	-33.564	33.564										
	2014		0	3.375	0.949	83.659	79.392	-13.295		83.675	79.335		0.9452	83.669	79.083	-14.299	33.304										
	2014		0	3.5	0.08125	68412	0	0	68412	0	, , , , , , ,	10.071	0.7132	00.007	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												

Logger Info

Data

Diagnostics

<u>Folder</u> File Name FTP Location <u>Name</u> ftp://ftp.etl.noaa.gov/psd3/arctic/eureka/surface_properties/flu eutYYJJJ.met Raw xtower/towermet/raw/ ftp://ftp.etl.noaa.gov/psd3/arctic/eureka/surface_properties/flu eurmettwr.a1.YYYYMMDD.hhmm Ingest xtower/towermet/ingest/ ss.txt ftp://ftp.etl.noaa.gov/psd3/arctic/eureka/surface_properties/flu eurmeteorologicaltwr.b1.YYYYM MDD.hhmmss.txt xtower/towermet/products/daily_meteorological eurradiationtwr.b1.YYYYMMDD.h ftp://ftp.etl.noaa.gov/psd3/arctic/eureka/surface_properties/flu **Products** xtower/towermet/products/daily_radiation hmmss.txt eursoiltwr.b1.YYYYMMDD.hhmm ftp://ftp.etl.noaa.gov/psd3/arctic/eureka/surface_properties/flu xtower/towermet/products/daily_soil ss.txt ftp://ftp.etl.noaa.gov/psd3/arctic/eureka/surface_properties/flu Quickloo eurradiationbsrn.a1.YYYYMMDD. xtower/towermet/quicklooks/ hhmmss.jpg ks

<u>Ingest</u>

Product

Home: http://www.esrl.noaa.gov/psd/iasoa/ Data: http://www.esrl.noaa.gov/psd/iasoa/dataat

IASOA Portal

<u>aglance</u>

Example Product File:													
DayFrac	Year	JulianDay	HourMin	LWTotalDownwelling[W/m ^2]	SWTotalDownwelling[W/m^2]	LWTotalUpwelling[W/m^2]	SWTotalUpwelling[W/m^2]	QualityControl					
32	2015	32	0	165.696	-0.353503	447.797	-0.226852	0000-10230044000					
32.0007	2015	32	1	165.638	-0.353503	447.834	-0.277778	0000-10230044000					
32.0014	2015	32	2	165.722	-0.353503	447.968	-0.277778	0000-10230044000					

Contacts
Project Lead: Taneil Uttal
taneil.uttal@noaa.gov
Site Manager: Pierre Fogal
pierre.fogal@utoronto.ca
Scientist, Technician: Christopher Cox
Christopher.j.cox@noaa.gov

Instrument Specifications

			Inch	rument Details			
Specification	1	2	3	4	5	6	7
Line ID#	101	311	301	330	331	320 (& 181-fast IR data)	333 (& 180-fast data)
Measuremen t	a. Downwelling Longwave Total — NOT INSTALLED b. Upwelling Longwave Total c. Downwelling Shortwave Total — NOT INSTALLED d. Upwelling Shortwave Total — NOT LOGGING HERE	Thermistor Soil Probe	a. Pressure b. Wind Speed, Wind Direction	Temperature, Humidity	Thermocouple	a. IR surface temp b. Ground Height c. Conductive FluxA d. Conductive FluxB e. Soil Thermocouple	/\convotod amnarativa
Serial #	a. 34309 – NOT INSTALLED b. 34310 c. 060130 – NOT INSTALLED d. 060133 – NOT LOGGING HERE		a. A3110005 b.	a. A3840003 b. D2130038 c. A3840001	a. 1323 b. 1320, 1321 c. 1319	a. 1972 b. C4559 c. H053033 d. H053034 e.	a. TS14389 b. TS14385 c. TS14386
Instrument Manufacture r	a. Eppley PIR b. Eppley PIR c. Kipp&Zonen CM22 d. Kipp&Zonen CM22		a. Vaisala b. R.M. Young	Vaisala (w/ Campbell housing)	Campbell Scientific	a. Apogee b. Campbell Scientific c. Hukseflux d. Hukseflux e. Campbell Scientific	RTD Logan temp probe (w/Cambridge System, Inc housing)
Type	a. Pyrgeometer PIR b. Pyrgeometer PIR c. Pyranometer PSP d. Pyranometer PSP	TP-101	a. PTB-220 b. Cup and Vane	a. HMT 337 b. HMT 337 c. HMT 337	ASPTC	a. IRTS-P b. SR50A c. HFT3 d. HFT3 e. TCAV	a. b. c.
Height Location on Tower	11.1m	Depth: 5cm-120cm	a. 2.0m b. 11.1m	a. 2.33m b. 6.10m c. 10.10m	a. 2.33m b. 6.10m (x2) c. 11.1m	a. 3.21m b. 2.835m c. Depth: ~3cm d. Depth: ~3cm e. Depth ~0.2m	a. 2.33m b. 5.98m c. 9.75m
Instrument Specification s	a., b. Aspirated, AC fan c., d. Heated, Aspirated, DC fan	n/a	n/a	Aspirated	Aspirated	e. Measurement is average of 4 thermocouples at ~0.2m depth	Aspirated
Measuremen t Unit	mV	mV	a. mbar b. Direction: Degrees Speed: m/s	Temp: Degree Celsius Humidity: %	Degree Celsius	a. mV b. mm c. mV d. mV e. Degree Celsius	Degree Celsius
Calibration factors (y/n/value)	a. 295.858 W/mV/m^2 (Dome = 3.867) b. 253.614 W/mV/m^2 (Dome = 3.30) c. $9.42 \mu\text{V/W/m}^2$ $d.8.64 \mu\text{V/W/m}^2$	A=0.002478535 B=0.0002538399 C=0.000000281223				a. See calibration details on specifications page c. 62.4 V/W/m² d. 61.8 V/W/m²	
Unit after Applied Calibration or Conversion	W/m^2	Degree Celsius	a. mbar b. Direction: Degrees Speed: m/s	Temp: Degree Celsius Humidity: %	Degree Celsius	a. Degree Celsius b. mm c. W/m² d. W/m² e. Degree Celsius	Degree Celsius
Additional Corrections Applied (y/n/explain)	Downwelling SW and LW taken off of tower on June 17, 2012		no	no	no	b. Zero value for ground =	Shield damaged Jan 2010, replaced 7/15/2010

Contacts Research Coordinator: James Drummond james.drummond@dal.ca CANDAC Data Manager: Yan Tsehtik yan.tsehtik@candac.ca NOAA Data Manager, Logistics, Technician: Sara Crepinsek

sara.crepinsek@noaa.gov

Contacts Project Lead: Taneil Uttal

taneil.uttal@noaa.gov

Site Manager: Pierre Fogal pierre.fogal@utoronto.ca

Scientist, Technician: Christopher Cox Christopher.j.cox@noaa.gov

Instrument Specifications

Lufft METEK Sonic ATI Sonic Licor Lufft METEK Sonic ATI Sonic 5 6 2 6

Processing

Calibration Values Radiometers:

1a. Downwelling Longwave Total (Eppley PSP) – **NOT INSTALLED** 295.858 W/mV/m^2 , Dome = $3.867 \quad 01/01/2014$ – present 287.770 W/mV/m^2 , Dome = $3.50 \quad 07/13/2007 - 12/31/2013$

1b. Upwelling Longwave Total (Eppley PSP)

 253.614 W/mV/m^2 , Dome = 3.30 07/13/2007 – present 1c. Downwelling Shortwave Total (K&Z PIR) – **NOT INSTALLED**

 $9.42 \,\mu\text{V/W/m}^2$ 01/01/2014 – present 1d. Upwelling Shortwave Total (K&Z PIR) $8.64 \, \mu V/W/m^2$ 08/25/2007 – present

Processing Conversions:

Shortwave Radiation (#1d – logged in different logger)

DESCRIPTION:

SW = 1000 * Recorded value / calibration coefficient

UNITS:

 $W/m^2 = 1000 * mV / \mu V/W/m^2$

Longwave Radiation (#1b)

DESCRIPTION:

Sigma = 5.6704e-8, Emissivity = 1, DCF = dome correction factor, SF =

calibration coefficient A = 0.0010295

B = 0.0002391

C = 0.0000001568

 $LW_case = 1/(A+B*ln(T_case*1000)+C*ln(T_case*1000)^3)$

 $LW_dome = 1/(A+B*ln(T_dome*1000)+C*ln(T_dome*1000)^3)$

LW = SF*Recorded value+Sigma(E(LW_case⁴)+DCF((LW_case⁴)-(LW_dome⁴))

UNITS:

 $LW_{case_mV} = 1/(A+B*ln(mV*1000)+C*ln(mV*1000)^3)$

 $LW_dome_mV = 1/(A+B*ln(mV*1000)+C*ln(mV*1000)^3)$

 $W/m^2 = (mV/W/m^2)*mV + Sigma(E(LW_case_mV^4) + DCF((LW_case_mV^4) - W/m^2)*mV + Sigma(E(LW_case_mV^4) + W/m^2)*mV + Sigma(E(LW$ $(LW_dome_mV^4)$

Snow Depth (#6)

DESCRIPTION/UNITS:

 $Snow_depth_zero = 0$

Snow_depth_instrument_height = mm

Arg = IR temp in degrees Celsius

Snow Depth in mm = (Snow_depth_instrument_height - Recorded Value in mm

* sqrt(Arg)) – Snow_depth_zero

Thermistor Soil Probe (#2)

DESCRIPTION/UNITS: A = 0.002478535

B = 0.0002538399

C = 0.0000002812234

REF = mV

 $D = (Recorded\ Value\ in\ mV) - REF + 87.15$

D = ln(D)

Temp in degrees Celsius = $(1/(A + B * D + C * D^3)) - 273.15$

Flux Plate (#6)

DESCRIPTION/UNITS:

Esen = calibration factor [FluxA = 62.4 V/W/m^2 , FluxB = 61.8 V/W/m^2]

Vsen = (Recorded Value in mV) / 1000

Flux in $W/m^2 = V sen / E sen$

Infrared Temperature Sensor (#6)

*IR sensor calibration coefficients for 2007 DOY 240 - 2015 DOY 41:

mC2 = 114562;

mC1 = 26066700;mC0 = 4717850000;

bC2 = 37365.8;

bC1 = -1462220;bC0 = -34531700;

*IR sensor calibration coefficients for 2015 DOY 41 – 2016 DOY 213:

mC2 = 212168;

mC1 = 20267700;mC0 = 47069000000;

bC2 = -1815.69;

bC1 = 181051;

bC0 = -26835700;

* IR sensor calibration coefficients for 2016 DOY 214 - present

mC2 = 67766.9;

mC1 = 7935340;

mC0 = 1454960000;

bC2 = 2490.09;

bC1 = 122348;bC0 = -1692850;

Calculation of m(slope) and b(intercept) coefficients for target temp calculation $m = mC2.*(SBTempC.^2) + mC1.*SBTempC + mC0;$ $b = bC2.*(SBTempC.^2) + bC1.*SBTempC + bC0;$

Target temp calculation based on m and b coefficients SBTempK = SBTempC + 273.15; % sensor body temperature in degrees Kelvin

 $Tsqr = (SBTempK.^4) + m.*TmV + b;$

TargTempK = sqrt(sqrt(Tsqr));

Tskin = TargTempK - 273.15; % target temp in degrees Celsius