

Geometría Vectorial (sin coordenadas)

Una partícula se mueve a lo largo de un segmento de recta del punto A al punto B. El **vector de desplazamiento v**, correspondiente tiene **punto inicial** A y el **punto terminal** B y esto se indica escribiendo $\mathbf{v} = \overrightarrow{AB}$

En la figura el vector $\mathbf{u} = \overrightarrow{CD}$ tiene la misma longitud y la misma dirección que \mathbf{v} aun cuando está en diferente posición. Si dice que \mathbf{u} y \mathbf{v} son iguales y se escribe $\mathbf{u} = \mathbf{v}$

El **vector cero**, denotado por ${\bf 0}$, tiene longitud 0. Es el único vector sin dirección específica. Suponga que una partícula se mueve de A a B, así que su vector de desplazamiento es \overrightarrow{AB} . Entonces la partícula cambia de dirección y se mueve de B a C, con vector de desplazamiento \overrightarrow{BC} .

El efecto combinado de estos desplazamientos es que la partícula se ha movido de \overrightarrow{A} a C. El vector de desplazamiento resultante \overrightarrow{AC} se llama la suma de \overrightarrow{AB} y \overrightarrow{BC} y se escribe

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

DEFINICIÓN (Suma Vectorial)

Si u y v son vectores colocados de modo que el punto inicial de v esté en el punto terminal de u, entonces la suma u + v es el vector del punto inicial de u al punto terminal de v.

La definición de suma vectorial se ilustra en la figura. Se puede ver por qué esta definición a veces se llama **ley del triángulo.**

En la figura se empieza con los mismo vectores \mathbf{u} y \mathbf{v} y se dibuja otra copia de \mathbf{v} con el mismo punto inicial que \mathbf{u} . Al completar el paralelogramo se ve que $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$. Esto da otra forma de construir la suma: Si se colocan \mathbf{u} y \mathbf{v} de modo que empiecen en el mismo punto, entonces $\mathbf{u}+\mathbf{v}$ yace a lo largo de la

En la figura se empieza con los mismo vec- diagonal del paralelogramo con \mathbf{u} y \mathbf{v} como es \mathbf{u} v \mathbf{v} v se dibuia otra copia de \mathbf{v} con lados.

SEMANA 13 Pág. 1 - 6

DEFINICIÓN (Multiplicación por escalar)

Si c es un escalar y ${\bf v}$ es un vector, entonces el **múltiplo escalar** $c{\bf v}$ es el vector cuya longitud es |c| multiplicado por la longitud de ${\bf v}$ y cuya dirección es la misma que ${\bf v}$ si c>0 y es opuesta a ${\bf v}$ si c<0. Si c=0 o ${\bf v}={\bf 0}$, entonces $c{\bf v}={\bf 0}$.

Observe que dos vectores no cero son paralelos si son múltiplos escalares entre sí. En particular, el vector $-\mathbf{v}=(-1)\mathbf{v}$ tiene la misma longitud que \mathbf{v} , pero apunta en la dirección opuesta.

Por la **diferencia** $\mathbf{u} - \mathbf{v}$ de dos vectores se entiende

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$$

DEFINICIÓN En un sistema cualquiera sea O el origen y el vector que lo representa es el vector $\vec{0}$. Un vector cualquiera fijo en este sistema y con respecto al origen O, lo fijaremos mediante el llamado **vector de posición**, es decir $\overrightarrow{OA} = \vec{a}$.

Notemos que con la sustentación de la diferencia de vectores se tiene la relación fundamental

PROPOSICIÓN 1 (Relación Fundamental)

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{b} - \overrightarrow{a}$$

SEMANA 13 Pág. 2 - 6

1 División de un segmento

Vector de posición de un punto P, que divide a un segmento AB en una razón dada λ .

PROPOSICIÓN 2 Sean A y B dos puntos dados sobre una recta, \vec{a} y \vec{b} sus vectores de posición con $\vec{a} \neq \vec{b}$. Un punto P divide al segmento AB en la razón λ si y solo si

$$AP = \lambda PB \Longleftrightarrow \vec{p} - \vec{a} = \lambda (\vec{b} - \vec{p}) \Longleftrightarrow \vec{p} = \frac{\vec{a} + \lambda \vec{b}}{1 + \lambda} \,.$$

Si $\lambda=1$, se obtiene el vector posición del punto medio del segmento AB, que es $\vec{p}=\frac{\vec{a}+\vec{b}}{2}$. Variación de λ : En forma esquemática se puede expresar

$$0<\lambda<\infty$$

$$B$$

$$-\infty<\lambda<-1$$

$$A$$

Si $\lambda=0$ el punto P está en A, si $\lambda=\pm\infty$ el punto P está en B y si $\lambda=-1$ el punto P está al infinito de la recta que contiene a los puntos A y B.

DEFINICIÓN (Combinación lineal)

Se dice que el vector \vec{u} es **combinación lineal** de los vectores $\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}$ si y solo si existen escalares $x_1, x_2, \dots, x_n \in \mathbb{R}$ tales que

$$\vec{u} = x_1 \vec{a_1} + x_2 \vec{a_2} + \dots + x_n \vec{a_n}$$

SEMANA 13 Pág. 3 - 6

DEFINICIÓN (Vectores linealmente independientes)

Se dice que los vectores $\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}$ son **linealmente independientes** si y solo si

$$x_1\vec{a_1} + x_2\vec{a_2} + \dots + x_n\vec{a_n} = \vec{0}$$

implica que los escalares $x_1=x_2=\ldots=x_n=0$. En caso contrario se dirá que son linealmente dependientes.

DEFINICIÓN (Base)

Se dice que los vectores $\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}$ forman una base si son linealmente independientes y todo vector se puede escribir como combinación lineal de estos vectores.

Consecuencias:

- 1. En el plano dos vectores \vec{a} y \vec{b} no nulos y no colineales forman una base.
- 2. En el espacio tres vectores $\vec{a}, \vec{b}, \vec{c}$ no nulos y no coplanares forman una base.

EJEMPLO 1 Demostrar que las diagonales de un paralelogramo se dimidian

Solución De la figura se tiene que

$$\overrightarrow{AE} + \overrightarrow{ED} = \overrightarrow{AD} \iff k(\vec{a} + \vec{b}) + p(\vec{b} - \vec{a}) = \vec{b}$$

de donde

$$(k-p)\vec{a} + (k+p-1)\vec{b} = \vec{0}$$

Como \vec{a} y \vec{b} son dos vectores linealmente independientes entonces k-p=0 y k+p-1=0 de donde se obtiene que $k=p=\frac{1}{2}.$ Por lo tanto, las diagonales se bisecan mutuamente.

EJEMPLO 2 Demostrar vectorialmente

$$AB \parallel CD \Longleftrightarrow \frac{OA}{AC} = \frac{OB}{BD}$$
.

SEMANA 13 Pág. 4 - 6

Solución Sea $\{\vec{a}, \vec{b}\}$ una base, entonces si $AB \parallel CD$ implica que $\overrightarrow{AB} = m\overrightarrow{CD}$ con $m \neq 0$. Además, $\overrightarrow{OC} = x\vec{a}$, $\overrightarrow{OD} = y\vec{b}$, $\overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC} = y\vec{b} - x\vec{a}$, así por la propiedad fundamental

$$\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}m(y\overrightarrow{b} - x\overrightarrow{a}) \iff (1 - mx)\overrightarrow{a} + (my - 1)\overrightarrow{b} = \overrightarrow{0}$$

Como $\{\vec{a},\vec{b}\}$ es una base entonces 1-mx=0 y my-1=0 de donde $x=y=\frac{1}{m}$. Entonces

$$\frac{OC}{OA} = \frac{OD}{OB} \Longleftrightarrow \frac{OC - OA}{OA} = \frac{OD - OB}{OB} \Longleftrightarrow \frac{AC}{OA} = \frac{BD}{OB} \Longleftrightarrow \frac{OA}{AC} = \frac{OB}{BD} .$$

Recíprocamente,

$$\frac{OA}{AC} = \frac{OB}{BD} \Longleftrightarrow \frac{AC}{OA} = \frac{BD}{OB} \Longleftrightarrow \frac{OA + AC}{OA} = \frac{OB + BD}{OB} = \frac{OC}{OA} = \frac{OD}{OB} = k$$

de donde $OC=k\vec{a}$ y $OD=k\vec{b}$. Por otro parte, $\overrightarrow{AB}=\vec{b}-\vec{a}$ y

$$\overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC} = k\vec{b} - k\vec{a} = k(\vec{b} - \vec{a} = k\overrightarrow{AB})$$

por lo tanto $AB \parallel CD$.

EJEMPLO 3 Demostrar que la recta que une el punto de intersección de los lados de un trapecio con el punto de intersección de sus diagonales, dimidia las bases.

Solución Se tiene que

$$DC \parallel AB \Longleftrightarrow \overrightarrow{DC} = \lambda \overrightarrow{AB} \Longleftrightarrow \overrightarrow{c} - \overrightarrow{d} = \lambda (\overrightarrow{b} - \overrightarrow{a}) \Longleftrightarrow \overrightarrow{c} + \lambda \overrightarrow{a} = \overrightarrow{d} + \lambda \overrightarrow{b} \Longleftrightarrow \frac{\overrightarrow{c} + \lambda \overrightarrow{a}}{1 + \lambda} = \frac{\overrightarrow{d} + \lambda b}{1 + \lambda}$$

este último vector es un vector posición del punto de intersección de las diagonales AC y DB es decir

$$\vec{q} = \frac{\vec{c} + \lambda \vec{a}}{1 + \lambda} = \frac{\vec{d} + \lambda b}{1 + \lambda}$$

Analogamente de (*) se tiene que

$$\vec{p} = \frac{\vec{c} - \lambda \vec{b}}{1 - \lambda} = \frac{\vec{d} - \lambda \vec{a}}{1 - \lambda}$$

De las anteriores ecuaciones obtenemos que

$$(1+\lambda)\vec{q} = \vec{c} + \lambda \vec{a} \quad \text{y} \quad (1-\lambda)\vec{p} = \vec{d} - \lambda \vec{a}$$

SEMANA 13 Pág. 5 - 6

sumando estos términos se obtiene que

$$(1+\lambda)\vec{q} + (1-\lambda)\vec{p} = \vec{c} + \vec{d}$$

de donde

$$\frac{(1+\lambda)\vec{q} + (1-\lambda)\vec{p}}{(1+\lambda) + (1-\lambda)} = \frac{\vec{c} + \vec{d}}{2}$$

este es el vector posición de un punto entre PQ y CD que no es otro que el punto M y como $\vec{m}=\frac{\vec{c}+\vec{d}}{2}$, es punto medio de CD.

2 Guía de Ejercicios

- 1. En un triángulo ABC, las transversales de gravedad AA', BB', CC' se cortan en G. Se toma el punto medio D de GA y el punto medio E de GB. Demuestre vectorialmente que DEA'B' es un paralelogramo.
- 2. Demuestre que en todo paralelogramo, el segmento que une un vértice con el punto medio del lado opuesto, triseca una diagonal y es trisectado por ella.
- 3. Sea D el punto medio de la transversal de gravedad AE del triángulo ABC. La recta BD corta a AC en el punto F. Determine vectorialmente la razón en que F divide AC.
- 4. Si ABC es un triángulo cualquiera L, M, N los puntos medios de sus lados, AB, BC y CA respectivamente, demostrar que ALMN es un paralelogramo.
- 5. Se da en un triángulo ABC, la transversal de gravedad AD. Por B se traza una recta BEF que pasa por el punto medio E de AD (F sobre AC). Demostrar que: 3AF = AC.

SEMANA 13 Pág. 6 - 6