1. Reading the data of csv file using numpy and importing the libraries required

```
In [5]: %matplotlib inline
   import matplotlib.pyplot as plt
   import numpy as np
   from scipy.optimize import curve_fit as cf
   Time, Distance, Angle = np.loadtxt(r"Comet_Data_1.csv",delimiter=',
   import math
```

2. Calculation of the distance of the comet from stationary earth reference

```
In [6]: New Distance = []
        for h in range( len(Time)):
            if(abs(Angle[h]) < 1.57079633):</pre>
                Distance_square = np.square(Distance[h])
                s = np.sin(Angle[h])
                o = np.cos(Angle[h])
                sine = np.square(s)
                cosine = np.square(o)
                Distance times cos = np.multiply(Distance[h], o)
                c = 2*Distance_times_cos
                k = np.multiply(sine, Distance_square)
                a = np.add(k, Distance_square)
                b = np.add(c, cosine)
                d = np.add(a, b)
                f = np.sqrt(d)
                New_Distance.append(f)
            elif(abs(Angle[h]) > 1.57079633):
                w = 1/math.sin(Angle[h])
                v = 1/math.tan(Angle[h])
                t = math.atan((w/Distance[h]) - v)
                l = math.cos(t)
                Distance square = np.square(Distance[h])
                g = np.sqrt(Distance_square - l**2)
                n = np.sqrt(1 - l**2)
                m = g + n
                New_Distance.append(f)
        New_Distance = np.array(New_Distance)
        print(New_Distance) #this is the final distance of the comet to sun
        1.97695757 2.37934504 2.91972202
                                               3.55404808 4.15434468
                                                                        4.59
        60192
```

5.8628259

4.89507862 5.18935566 5.5788724

5.68

5.68386103

386103					
5.68386103	5.68386103	5.68386103	5.68386103	8.23161829	8.59
496407					
8.32517492	8.39510703	9.23709205	10.02773301	10.02773301	10.02
773301	40 02772204	40 02772204	40 02772204	12 12005 101	44 50
	10.02//3301	10.02//3301	10.02//3301	12.12995484	11.53
365254	11 55101001	12 0126/025	12 /060/502	13.48604502	12 /0
604502	11.33101091	13.01304933	13.40004302	13.40004302	13.40
	13.48604502	13.48604502	15.191553	14.62282085	13.22
028747	131 1000 1302	131 1000 1302	13.131333	11102202003	13122
13.41695927	15.2243456	16.45535844	16.45535844	16.45535844	16.45
535844					
16.45535844	16.45535844	17.84313974	17.46973275	15.63955622	15.19
876833					
	18.96775666	18.96775666	18.96775666	18.96775666	18.96
775666	40 00777		10 0110000	46 00470700	40 = 4
	18.96//5666	20.23536249	18.04193096	16.80170788	18.54
93426 21.0228849	21.0228849	21.0228849	21.0228849	21.0228849	21.02
28849	21.0220049	21.0220049	21.0220049	21.0220049	21.02
21.0228849	22.68085995	20.35672522	18 45744341	19.770327	22.80
018219	22100003333	20133072322	101 137 11311	131770327	22100
23.77777443	23.77777443	23.77777443	23.77777443	23.77777443	23.77
777443					
24.79976749	22.65773239	20.07694839	20.87105821	24.17583598	25.86
259701					
	25.86259701	25.86259701	25.86259701	25.86259701	26.86
419582					
25.03852145	21.8617517	21.89736376	25.2988623		

3. Calculation of the conic section plot with its eccentricities

```
In [7]: | j = 2*(np.pi)
        Angle_Earth= []
        for i in Time:
            Angle Swept = i*j
            Angle_Earth.append(Angle_Swept)
        Angle_Earth = np.array(Angle_Earth)
        def conic_Section_Co@ordinates(Angle, Distance, Angle_Earth):
            x = []
            y = []
            for i in range(len(Angle)):
                u = Distance[i] * np.cos(Angle[i])
                v = 1-Distance[i] * np.sin(Angle[i])
                Earths_Rotation_Matrix = [[np.cos(Angle_Earth[i]), -np.sin(
                Comet\_Cordinates = [u,v]
                New_Comet_Cordinates = np.matmul(Earths_Rotation_Matrix, Co
                x.append(New_Comet_Cordinates[0])
                y.append(New_Comet_Cordinates[1])
            x = np.array(x)
            y = np_array(y)
            return x,y
```

4. Spacial co-ordinates of the comet

5. Plot of the conic section curve

```
In [9]: x,y = conic_Section_Co0ordinates(Angle, Distance, Angle_Earth)
plt.scatter(x,y,s=50, color='b', marker='.')
plt.ylabel('Eccentricity of the comet frm the sun')
plt.xlabel('Angle of the comet to sun')
plt.grid()
plt.show()
```


In [10]: # SINCE THIS WHIRLPOOL IS A CLOSD FIGURE ORIGINATING FROM ONE POINT # REPRESENTS THE CONIC SECTIONS THAT CAN BE FORMED ARE EITHER ELLIP

6. Plot of the path of the comet with respect to the sun

```
In [11]: y,x = Space_Coordinates(Angle, Distance, Angle_Earth)
plt.scatter(x,y,s=10, color='g', marker='*')
plt.ylabel('Distance of comet to sun')
plt.xlabel('distance of the comet from the earth')
plt.grid()
plt.show()
```


7. Figuring out the conic section equation of the trajectory of the comet with sun at one foci

```
In [12]: #curve fitting function using SciPy optimization
#Deterintion of the conic equation
X=[]
Y=[]
for i in range(len(x)):
        X.append([x[i]])
        Y.append([y[i]])
X = np.array(X)
Y = np.array(Y)
A = np.hstack([X**2, X * Y, Y**2, X, Y])
b = np.ones_like(X)
m = np.linalg.lstsq(A,b)[0] #minimizes using least squares
print('The conic is {}x^2 - {}xy + {}y^2 + {}x +{}y - 1 = 0'.format
```

```
The conic is [0.01266896]x^2 - [0.04938894]xy + [0.08877545]y^2 + [0.09406674]x + [-0.10544793]y - 1 = 0
```

/var/folders/dd/mm0bjyy925nbd_28cjkrchgr0000gn/T/ipykernel_65968/3 279779048.py:12: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`

m = np.linalg.lstsq(A,b)[0] #minimizes using least squares

8. Calculation of the distance of the comet from the sun and sorting out the array to calculate the closest approach

```
In [15]: y_array = np.array(y)
    modulus_y_array = np.abs(y_array)
    Sorted_y_array = np.sort(modulus_y_array)
    print(Sorted_y_array)
```

```
[0.03880427 0.07546963 0.12243524 0.15827495 0.19371884 0.23392619
0.23949326 0.26481509 0.29132251 0.30216573 0.30784465 0.39317923
0.41311087 0.41806002 0.48221788 0.49718878 0.51723439 0.60419907
0.60452987 0.6099579 0.61110239 0.62320784 0.6325148
                                                    0.68161708
0.75861268 0.78056912 0.83039897 0.85779852 0.86415526 0.90074857
0.96458552 0.96602671 0.97941835 1.04453064 1.06739373 1.08139036
1.09316737 1.11932477 1.19406235 1.20603964 1.23183482 1.26321656
1.29122684 1.363854
                     1.37672519 1.38369944 1.42814303 1.45406409
1.50149028 1.57284546 1.59139025 1.62561527 1.64804747 1.69160581
1.76188761 1.79151692 1.82689863 1.86171574 1.87381865 1.89569307
1.89670165 1.9689522 1.98511433 2.01111609 2.01444652 2.02582555
2.08818269 2.10718349 2.14616938 2.18604682 2.18701453 2.23571323
2.45575057 2.47981023 2.49204578 2.52326901 2.53166424 2.55599698
2.57609048 2.66021888 2.68927256 2.76358313 2.793422
                                                    2.8698554
2.9217751 2.96042546 3.06373264 3.10752621 3.13072653 3.20498537
3.27314122 4.11907506 4.14159001 4.781869691
```

9. Conclusion

In [16]: print("Answer: The comet follows the trajectory of a {} and it's cl

Answer: The comet follows the trajectory of a Hyperbola and it's c losest approach to the sun is 0.038804266924794106Au