Numerical Methods for Uncertainty Quantification

Paul W. Talbot1

¹University of New Mexico

Supported by Idaho National Laboratory

BYU-Idaho Physics Dept. Colloquium, December 2014

Outline

Discussion Points

1 Uncertainty

Uncertainty

- Aleatory (physical)
- Epistemic (measured)

Example Stochastic Problem

$$y_f = y_i + v \sin(\theta)t - \frac{1}{2}gt^2,$$
 (1)

$$x_f = v \cos(\theta)t. \tag{2}$$

Solution:
$$x_f = \frac{v\cos\theta}{g} \left(v\sin\theta + \sqrt{v^2\sin^2\theta + 2gy_i} \right)$$

Example Stochastic Problem

$$x_f = \frac{v\cos\theta}{g}\left(v\sin\theta + \sqrt{v^2\sin^2\theta + 2gy_i}\right) \tag{3}$$

- initial height $y_i = 2 \text{ m}$
- initial velocity v = 50 m/s
- initial trajectory $\theta = 35^{\circ}$
- accel. gravity g = -9.81 m/s/s

Example Stochastic Problem

$$x_f = \frac{v\cos\theta}{g}\left(v\sin\theta + \sqrt{v^2\sin^2\theta + 2gy_i}\right) \tag{4}$$

- initial height $y_i = 2 \pm 0.1$ m
- initial velocity $v = 50 \pm 5$ m/s
- initial trajectory $\theta = 35 \pm 5^{o}$
- lacktriangle accel. gravity $g=9.81\pm0.01$ m/s/s

$$x_f = rac{v\cos heta}{g}\left(v\sin heta + \sqrt{v^2\sin^2 heta + 2gy_i}
ight)$$

Min-Max

•
$$x_{f,min} = (()() + \sqrt{()^2()^2 + 2()()}) = m$$

•
$$x_{f,\text{max}} = \left(()() + \sqrt{()^2()^2 + 2()()} \right) = m$$

Result: $y_f \approx 7.16 \pm 1.12$ m

Flawed Reasoning

- Nonlinear Flight Path
- \blacksquare Does increasing θ make a longer or shorter range?

$$x_f = rac{v\cos heta}{g}\left(v\sin heta + \sqrt{v^2\sin^2 heta + 2gy_i}
ight)$$

Min-Max

•
$$x_{f,min} = (()() + \sqrt{()^2()^2 + 2()()}) = m$$

•
$$x_{f,\text{max}} = \left(()() + \sqrt{()^2()^2 + 2()()} \right) = m$$

Result: $y_f \approx 7.16 \pm 1.12$ m

Flawed Reasoning

- Nonlinear Flight Path
- **Does** increasing θ make a longer or shorter range?

$$x_f = rac{v\cos heta}{g}\left(v\sin heta + \sqrt{v^2\sin^2 heta + 2gy_i}
ight)$$

Analytic Uncertainty

$$\sigma_{X_f} = \sqrt{\left(\frac{\partial X_f}{\partial y_i}\right)^2 \sigma_{y_i}^2 + \left(\frac{\partial X_f}{\partial v}\right)^2 \sigma_v^2 + \left(\frac{\partial X_f}{\partial g}\right)^2 \sigma_g^2 + \left(\frac{\partial X_f}{\partial \theta}\right)^2 \sigma_\theta^2}$$

Result: $y_f = 0 \pm 0$ m

Works well for simple functions

- Simple derivatives
- Analytic solution

No Air Resistance:

$$y_f = v \sin(\theta) t - \frac{1}{2} g t^2, \tag{5}$$

$$x_f = v \cos(\theta) t. \tag{6}$$

With Air Resistance:

$$y_{t} = \frac{v_{t}}{g}(v\sin\theta + v_{t})\left(1 - e^{-gt/v_{t}}\right) - v_{t}t, \tag{7}$$

$$x_f = \frac{vv_t \cos \theta}{g} \Big(1 - e^{-gt/v_t} \Big). \tag{8}$$

Solve numerically to get x_f (Forward Euler).

Uncertainty Quantification: Complicated Problems

How do we quantify uncertainty for problems without simple analytic solutions?

- Monte Carlo sampling
- Stochastic Collocation
- High Density Model Reduction (low-order)

Monte Carlo

- Let u(Y) be any system, like $x_f(v, \theta, g, y_i)$
- Randomly sample input parameters, record outputs
- Calculate moments (mean, variance, skew, kurtosis)

$$\mathbb{E}[u'] \approx \frac{1}{M} \sum_{m=1}^{M} u\left(Y^{(m)}\right)'$$

Mean:
$$\bar{u} \approx \frac{1}{M} \sum u(Y^{(m)})$$

