TD13 – Régime sinusoïdal forcé, résonance

Exercice 1 – Impédances équivalentes

Déterminer l'impédance équivalente à chacune des trois associations de dipôles suivantes. Il s'agit de la suite de l'application 1 du cours. Les exemples sont donc naturellement un peu plus délicats à traiter.

Exercice 2 – Équivalence entre dipôles RL

Les dipôles représentés ci-contre sont étudiés en RSF à la pulsation ω .

2. Si l'on remplace la bobine L' par un condensateur C', le dipôle R'C' série peut-il être équivalent au dipôle RL parallèle? Commenter.

Exercice 3 - Étude d'un circuit en régime sinusoïdal forcé

On étudie le circuit représenté ci-dessous où $u(t) = U_m \cos(\omega t)$. Dans l'exercice, on notera les intensités sous la forme $i(t) = \underline{I}e^{j\omega t}$ et $I_m = |\underline{I}|$.

- 1. Déterminer l'impédance \underline{Z} et l'admittance $\underline{Y} = 1/\underline{Z}$.
- **2.** Exprimer $\underline{i_1}(t)$ et $\underline{i_2}(t)$ en fonction de $\underline{i}(t)$.
- 3. Montrer que si le rapport des amplitudes complexes des intensités $\underline{I_1}/\underline{I_2}$ est un imaginaire pur, les intensités 1 et 2 sont déphasées de $\pi/2$. Quelle relation lie alors C, L et R?
- 4. Quelle relation vérifient ω , L et C lorsque les amplitudes réelles des intensités sont égales $I_{m1} = I_{m2}$?

Exercice 4 - Résonance en tension dans un circuit RLC

On considère le circuit RLC série représenté ci-contre où la tension e(t) est de la forme

$$e(t) = E_0 \cos(\omega t).$$

On s'intéresse à l'évolution de la réponse en tension aux bornes du condensateur, en régime permanent, en fonction de la pulsation ω de l'excitation e(t).

- 1. Donner l'expression du signal complexe $\underline{e}(t)$ associé à e(t).
- 2. Exprimer le signal complexe $\underline{u_C}(t)$ associé à $u_C(t)$ en fonction de $\underline{e}(t)$, ω et des valeurs des composants.
- 3. En déduire l'équation différentielle vérifiée par $u_C(t)$. La mettre sous forme canonique et donner l'expression de la pulsation propre ω_0 et du facteur de qualité Q en fonction de R, L et C.

On repasse en notation complexe et on note $\underline{H}(j\omega)$ le rapport $\underline{u_C}/\underline{e}$, $G(\omega)$ son module et $\varphi(\omega)$ son argument :

$$G(\omega) = |\underline{H}(j\omega)| \text{ et } \varphi(\omega) = \arg(\underline{H}(j\omega)), \text{ avec } \underline{H}(j\omega) = \frac{u_C}{e}.$$

- 4. Exprimer $H(j\omega)$ en fonction de ω , ω_0 et Q.
- 5. Calculer les valeurs de $G(\omega)$ et $\varphi(\omega)$ pour $\omega = \omega_0$.
- 6. Montrer que $G(\omega)$ atteint un maximum pour une pulsation $\omega_r > 0$ à condition que le facteur de qualité Q soit suffisamment grand. Préciser cette condition à l'aide d'une inégalité sur Q et donner l'expression de ω_r . Commenter.
- 7. Que peut-on dire de ω_r dans le cas où $Q \gg 1$?
- 8. Étudier le comportement asymptotique de $\underline{H}(j\omega)$ à basse fréquence et à haute fréquence. Les valeurs de $G(\omega)$ dans ces régimes sont-elles cohérentes avec les simplifications que l'on peut alors opérer dans le circuit?
- 9. Représenter graphiquement $G(\omega)$ et $\varphi(\omega)$ pour $Q=\frac{1}{2}$, 2 et 10.

Exercice 5 – Alimentation d'un électroaimant de levage

Un électroaimant de levage est un dispositif industriel permettant de soulever des pièces métalliques à partir de champs magnétiques intenses. On modélise cet appareil par une bobine d'inductance $L=1,25\,\mathrm{H}$ et de résistance interne $R=1\,\Omega$. Cette bobine est traversée par un courant i sinusoïdal de fréquence $f=50\,\mathrm{Hz}$ et dont l'amplitude $I_m=30\,\mathrm{A}$ est imposée pour le bon fonctionnement du dispositif.

L'intensité de ce courant est élevée : les pertes par effet Joule dans les câbles d'alimentation de l'électroaimant ne sont pas négligeables! Pour les diminuer, une méthode usuelle consiste à installer un condensateur de capacité C en parallèle de l'électroaimant. On note alors i' l'intensité du courant dans les câbles d'alimentation du dispositif, dont l'amplitude I'_m est inférieure à l'amplitude I_m du courant qui traverse l'électroaimant.

- 1. Exprimer l'amplitude complexe $\underline{I'}$ en fonction de l'amplitude complexe \underline{I} .
- 2. Calculer la valeur C à donner au condensateur pour minimiser l'amplitude I'_m tout en conservant I_m fixée. On pourra raisonner sur I'^2_m .
- 3. Calculer numériquement la valeur de I_m^\prime dans la configuration optimale. Commenter.
- 4. À quel dipôle l'association électroaimant-condensateur est-elle équivalente à la fréquence de travail?

Exercice 6 – Largeur du pic de résonance

1. On rappelle l'expression de l'amplitude réelle I_m de l'intensité dans un circuit RLC série de pulsation propre ω_0 et de facteur de qualité Q:

$$I_m = \frac{I_0}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}}.$$

Montrer que la largeur de la bande passante $\Delta\omega$, définie comme la plage de fréquence sur laquelle $I_m \geqslant I_0/\sqrt{2}$ vérifie $\Delta\omega = \omega_0/Q$.

 \star 2. Très facultatif: On rappelle l'expression de l'amplitude U_m de la tension aux bornes du condensateur d'un circuit RLC série de pulsation propre ω_0 et de facteur de qualité Q:

$$U_m = \frac{E_0}{\sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \left(\frac{\omega}{Q\omega_0}\right)^2}}.$$

Montrer que, dans la limite où $Q \gg 1$, la largeur de la bande passante $\Delta \omega$ vérifie également $\Delta \omega = \omega_0/Q$.

Indication : on pourra commencer par montrer que, dans le cas où $Q\gg 1$ et au voisinage de la résonance, on a (approximation lorentzienne)

$$U_m^2 \approx \frac{Q^2 E_0^2}{1 + 4Q^2 \left(1 - \frac{\omega}{\omega_0}\right)^2}.$$

Exercice 7 - Résolution de problème

Une source de tension sinusoïdale $e(t) = E_m \cos(\omega t)$ alimente trois dipôles R, L et C montés en parallèle. Pendant un TP on relève l'amplitude des intensités $I_R = 25\,\mathrm{mA}$ dans la résistance, $I_C = 33\,\mathrm{mA}$ dans le condensateur et $I = 64\,\mathrm{mA}$ pour le GBF. En reprenant le compte-rendu, on se rend compte que l'amplitude de l'intensité I_L dans la bobine est manquante.

Déterminer la valeur de I_L .

Indication : la réponse n'est pas 6 mA!

Exercice 8 - Paramètres d'un circuit RLC série - Oral CCP

L'étude expérimentale de la résonance en intensité d'un circuit RLC série en régime sinusoïdal forcé avec un GBF délivrant une tension sinusoïdale d'amplitude $E=10\,\mathrm{V}$ et de fréquence variable f a permis d'obtenir la courbe ci-dessous. Déterminer les paramètres R, L et C à partir de l'étude de cette courbe. On donne : $I_{\mathrm{max}}=100\,\mathrm{mA}, f_0=500\,\mathrm{Hz}, \Delta f=f_+-f_-=200\,\mathrm{Hz}.$

python Exercice 9 – Représentations graphiques

Pour les exercices 3, 4, 5 et 6, ainsi que pour tout autre circuit que vous rencontreriez, vous êtes encouragés à représenter graphiquement les différentes expressions obtenues. ¹ Il s'agit là d'un outil supplémentaire (en plus de l'analyse dimensionnelle, de l'étude rapide du comportement asymptotique et des points particuliers, etc.) pour la vérification de la cohérences de vos résultats. On pourra s'appuyer sur le programme td13-exo4.py.

La représentation de fonctions complexes n'est pas un problème : Python sait manipuler des expressions complexes. Le complexe $\underline{z}=3+5j$ s'écrit alors simplement 3+5j et les fonctions np.abs et np.angle de la bibliothèque numpy permettent d'accéder au module et à l'argument de z.

^{1.} Cette remarque s'applique bien évidemment aussi pour les autres domaines étudiés cette année et plus tard!