La méthode

$$R x = Q^T b$$

1 – Calculez R et Q

 $2 - Calculez Q^Tb = c$

3 - Résoudre R x = c

$$CX(n) = (4/3) qn^2 + O(n^2)$$

Nous pouvons calculer au fur et à mesure lors de la factorisation QR

Exercice

Q1 : Résoudre en utilisant la méthode de Cholesky

Q2 : Résoudre en utilisant une factorisation QR

Q3 : Ecrire un programme pour cette méthode (homework)

2.0	1.0	0.0	4.0
-2.0	-2.0	3.0	-5.0
6.0	1.0	-2.0	3.0
2.0	-3.0	-12.	0 -1.0
0.0	1.0	6.0	0.0
4.0	-5.0	-3.0	-2.0
A			

64.0	-14.0	-54.0	26.0
-14.0	41.0	49.0	30.0
-54.0	49.0	202.	-3.00
26.0	30.0	-3.00	55.0
\			

 A^TA

Nous savons que A^TA est symétrique définie positive

SEPT-OCT 2020

 $A^{T}A x = A^{T}b$

 $A^{T}b$

ENREGISTREMENT INTERDIT

135

Résoudre alors ce système symétrique définie positif par la méthode de Cholesky

$A^{T}A x = A^{T}b$