PATENT ABSTRACTS OF JAPAN

(11) Publication number: 03089058 A

(43) Date of publication of application: 15.04.91

(51) Int. CI

F16H 39/14 F04B 1/20

(21) Application number: 01225679

(22) Date of filing: 31.08.89

(71) Applicant:

HONDA MOTOR CO LTD

(72) Inventor:

NAKAJIMA YOSHIHIRO HAYASHI TSUTOMU SAITO MITSURU

(54) HYDROSTATIC PRESSURE TYPE CONTINUOUSLY VARIABLE TRANSMISSION

(57) Abstract:

PURPOSE: To increase the capacity of a hydraulic motor by forming the respective cylinder holes of a motor cylinder larger in diameter than those of a pump cylinder as well as forming the cylinder hole group of the motor cylinder larger in pitch circle diameter than that of the pump cylinder.

CONSTITUTION: The cylinder hole 18 of a motor cylinder 17 is formed to be larger than the cylinder hole 8 of a pump cylinder 7 so as to increase the capacity of a hydraulic motor M. In this case, as the hole 18 group of the cylinder 17 is formed larger in pitch circle diameter than the hole 8 group of the cylinder 7, respective partition walls between cylinder holes 8 and between cylinder holes 18 in both cylinders 7, 17 are provided with appropriate thickness. In addition, each motor port (b) is displaced more onto the center side of a cylinder block 13 than the center of the corresponding hole 18, and the pitch circle diameter of the port (b) group is made approximately equal to that of the pump port (a) group, so that an inner and an outer oil passages 52, 53 are brought close to the center side of

a block B, thus restraining the diameter enlargement of the block B and eccentric wheels 63, 64 to a minimum.

COPYRIGHT: (C)1991,JPO&Japio

(日)特許番号

第2920772号

(45)発行日 平成11年(1999)7月19日

(24) 登録日 平成11年(1999) 4月30日

(51) Int.Cl.6

識別記号

F 1 6 H 39/14

F1 F16H 39/14

請求項の数1(全 9 頁)

	<u> </u>	爾氷坝の数 1 (全 9 頁)
(21)出願番号	特願平1-225679	(73)特許権者 999999999
(22)出願日	平成1年(1989)8月31日	本田技研工業株式会社 東京都港区南背山2丁目1番1号
(65)公開番号 (43)公開日 審査請求日	特開平3-89058 平成3年(1991)4月15日 平成7年(1995)10月12日	(72)発明者 中島 芳浩 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内
		(72)発明者 林 勉 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内
		(72)発明者 療藤 充 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内
		(74)代理人 弁理士 落合 健 (外1名)
		審査官 小谷 一郎
		最終頁に続く

(54)【発明の名称】 静油圧式無段変速機

(57)【特許請求の範囲】

【請求項1】 斜板式油圧ボンプのボンプシリンダと、斜板式油圧モータのモータシリンダとを伝動軸上で互いに一体に連結してシリンダブロックを構成し、このシリンダブロックには、ホンプシリンダのシリンダ孔群との間で伝動軸を囲繞する内側油路と、この内側油路を囲繞する外側油路とを表し、ボンプシリンダの各シリンダ孔に連立を表し、ボンプシリンダの各シリンダ孔に連立させる多数の第1分配弁と、モータシリンダの各シリンダ孔に連通させる多数の第1分配弁とを行りでは、原理に連通させる多数の第2分配弁とを行りでは、原理に連通させる多数の第2分配弁とを行りでは、原理に連通させる多数の第2分配弁とを行りでは、原理に表し、これを定し、第二分配介を行りでは、原理に配置した、原油圧式無時変速機にはよって、

モータションダの各ションダ孔をボンブションダの各ションダ孔より大径に形成すると共に、モータションダのションダ孔群のビッチ円をボンブションダのションダ孔群のビッチ円よりも大きくする一方、ボンブボート群及びモータボート群のピッチ円を互いに略等しくすべく各モータボートを対応するションダ孔の中心よりションダブロック中心側へ偏心して配置したことを特徴とする、静油圧式無段変速騰。

【発明の詳細な説明】

4. 発明の目的

(1) 産業上の利用分野

本発明は、斜板式油圧注してのけませいドンドと、斜板式油圧セッタのモータンドンドとを存在動植しで払いに一体に連結しておりングではックを構成し、このシリングでは、水にでよりングのシリング化師とモー

キシリンドのシリンド礼群との間で伝動軸を回続する内側油路と、この内側油路を埋続する外側油路とを形成すると共に、ホンコシリンドの各シリンド礼に連立る多数の第1分配率と、モータシリンドの各シリンダ孔に連立る多数の第1分配率と、モータシリンドの各シリンダ孔に連立る多数の第2分配弁とをそれぞれ放射状に配設し、これら第1、第2分配弁をそれぞれ作動する第1、第2弁作動装置をシリンダブロックの外周に配設した、静油圧式無段変速機に関する。

(2) 従来の技術

40 . 40 . 12

この種の静油圧式無段変速機は、例えば特開昭64-79 469号公報に開示されているように既に知られている。 上記公報に開示されたものは、ポンプシリンダ及びモータシリンダの各シリンダを互いに同径に形成すると共に、両者のシリンダ孔群のピッチ円を同径にしてシリンダブロックを極力小径に形成している。

(3) 発明が解決しようとする課題

ところが、モータシリンダのシリンダ孔をポンプシリンダのそれよりも大径にして油圧モータの容量増加を図ろうとする場合、従来通り両者のシリンダ孔群のピッチ円を同径にすると、モータシリンダのシリンダ孔間隔壁が薄くなり過ぎるか、ポンプシリンダのシリンダ孔間の隔壁が厚くなり過ぎるかして、強度上やコンパクト化の上で不利となる。

本発明は、かゝる事情に鑑みてなされたもので、油圧 モータの容量増加を図りつゝ、強度不足無くコンパクト に構成し得る前記静油圧式無段変速機を提供することを 目的とする。

B. 発明の構成

(1) 課題を解決するための手段

上記目的を達成するために、本発明は、モータシリンダの各シリンダ孔をポンプシリンダの各シリンダ孔より大径に形成すると共に、モータシリンダのシリング孔群のピッチ円をポンプシリンダのシリンダ孔群のピッチ円をポンプシリンダのシリンダ孔群のピッチ円を互いに略等しくすべく各モークボートを対応するシリンダ孔の中心よりシリンダブロック中心側へ偏心して配置したことを特徴とする。

(2) 作用

上記構成によれば、モータシリングのシリンダ孔をポンプシリングのシリング孔より大径に形成するも、前省のシリンダ孔群のピッチ円を後着のシリンダ孔群のピッチ円より大きくしたことにより、各シリンダ孔間の間壁に適正な厚さを与えることができる。

もから、各モータボートを対応するシリング社の中心 よりシリングでロックの中心側へ偏心をせて、モータボート群のビッチ円と暗詞後 にもためで、内側及び外側面器をシリングでは、ケッ中 心側、極力近っなりることができ、その結果、シリングで ロック及び第1.第2章駆動手機の大衛化を最小限に抑えることができる。

(3) 寒梔倒

以下、図前により本範囲の一実施例について説明せる。

先ず第1図において、自動工幅車用のパワーユニット じは、エンジンE及び静油圧式無段変速機干とからなっ ており、エンジンEのクランク軸1及び無段変速機干は 共通のケーシング4に収容されて実持される。

無段変速後下は、ケーシング4の中間壁にボール・ベアリング6を介して回転自在に支承される入力筒軸5及びこれに囲繞される伝動軸としての出力軸31を有し、これらはクランク軸1と平行に配置される。クランク軸1は1次伝動装置R₁及び1次トルクダンパD₁を介して入力筒軸5を駆動し、出力軸31は2次伝動装置R₂、2次トルクダンパD₂及びブロペラ軸3を介して自動二輪車の後輪(図示せず)を駆動する。

第2図において、前記無段変速機Tは定容量型の斜板 式油圧ポンプP及び可変容量型の斜板式油圧モータMか らなっている。

油圧ボンブPは、前記入力筒軸5の左端に連なる筒状の第1シリンダホルダ16の内周壁にボールペアリング712を介して相対回転自在に支承されるポンプシリンダ7と、このボンブシリンダ7にその回転軸線を囲むように設けられた環状配列の多数且つ奇数(図示例では9本)のシリンダ孔8,8…にそれぞれ摺合される多数のボンブランジャ9.9…と、これらのボンブランジャ9.9…の外端に前面を当接させるボンプ斜板10とから構成を軸線でのポンプ斜板10は、これをボンブシリンダ7の軸線に対し一定角度傾斜させた状態に保持すべく、アンギュラコンタクトベアリング12及びラジャルボールベアリング13を介して入力筒軸5に回転自在に支承される。上記アンギュラコンタクトベアリング12はボンフ斜板10に調心作用を与えるように構成される。

而して、ボンブ斜板10は、入力筒軸5の回転時、ポンプブランジャ9.9…に往復動を与えて吸入及び吐出行程を繰返させることができる。

一方、油圧モータMは、ポンプシリンダイと同軸上でその左方に配置されるモータシリンダ17と、このモータシリンダ17にその回転軸線を囲むように設けられた環状配列の、前記シリンダ孔8.8…と同数のシリンダ孔18.18 …にそれぞれ摺合される多数のモータプランジャ19.19 …と、これらモータフランジャ19.19 …の外端に前面を当接させるモータ斜板20と、このモータ斜板20をアンギニラコンタクトスアリング10及びラジアルボールスアリング15全年して支重するモータ斜板エルグ22と、更にこって一ヶ斜板ホルグ22と、更にこって一ヶ斜板ホルグ22の背面全支重するモーク斜板でより20とから構成される

この油圧で・イタAR3、最大容量が前配油圧体) マドモ

りも大きな券ように、シリンダ孔(8投びモータッカンジ や19が油圧水とロドの利和よりも大発に形成される。

モード 斜板ホルド22及びモータ斜板アンカ23の対向面 f, f.は、モークシリング17の軸線とトラニオン軸線の。 との交点を中心とする珠面に形成される

また、モータ斜板ホルダ22は、モーケシリンダ17の回転軸線と直交するトラニオン軸線(L上に配置される一対のトラニオン軸22a、22aを両端に一体に備え、これらはモータ斜板アンカ23に回転可能に支承される。

前記アンギュラコンタクトベアリングロはモータ斜板 ホルダ22と協働してモータ斜板20に調心作用を与えるよ うに構成される。

モータ斜板アンカ23はケーシング4の左側壁にボルト21 (第1図)で固着される。このモータ斜板アンカ23の右端には筒状の第2シリンダホルダ24がボルト32で固着されており、この第2シリンダホルダ24はボールベアリング26を介してモータシリンダ17の外周而を回転自在に支承する。

モータ斜板20は、モータシリンダ17の軸線に対し直角となる直立位置と、或る角度で傾倒する最大傾斜位置との間をモータ斜板ホルダ22の回動によって移動するようになっており、その傾斜状態では、モータシリンダ17の回転に伴いモータブランジャ19、19…に往復動を与えて膨脹及び収縮行程を繰返させることができる。

モータ斜板ホルダ22の一側には、トラニオン軸線0.2と 直交する方向へ延びる作動腕25が固設されており、モータ斜板20の傾斜角度を制御する変速制御装置27がこの作 動腕25に連結される。

ボンプシリンダ7及びモータシリンダ17は相互に一体に結合されてシリンダブロックBを構成し、このシリンダブロックBの中心部には出力軸31を貫通させる。そして、この出力軸31の外周に形成されたフランジ31aに環状の油路形成体35を介してモータシリンダ17の外端を衝合し、また同外周に係止されたストッパ環28にポンプシリンダ7の外端を衝合すると共に、シリンダブロックB(図示例ではポンプシリンダ7)を出力軸31にスプライン嵌合することにより、シリンダブロックBは出力軸31に周替される。

出力軸31の右端部はポンプ斜板10を貫通して入力筒軸5の外方まで延び、そしてポンプ斜板10の外方でアンギュラコンタクト・ドアリング29を介して入力筒軸5に回転自在に支承される。

出力軸31の左端部はモータ斜板20、モータ斜板ホルダ 22及びモータ斜板アンカ23を資通するように延び、そし てアンギュラコンタクトバアリング30を介してモータ斜 板アンカ23に回転自在に支承される

こうして無段変速機工は、人力筒軸5から出り軸のま での構成部材が上個の組立体に組立てられ、その人力筒軸5枚(5出力軸のは、第下圏に示せように各有機部にむ いて、前記(次下ルング)の内の出力部材及が前記2次 トルクダンスルで入り部村に行むで加スプライン結合される。

ポンプ斜板10をホンコミリングでと同期的に回転させるために、ポンプ斜板10には、対応するホンプフランジャ9の球状端部9aが係合する球状側部10aが形成される。

また、モータ斜板20をモータシリンダ17と間期的に回転させるために、モータ斜板20には、対応するモータブランジャ19の球状端部19aが係合する球状凹部20aが形成される。

前記球状凹部10a, 20aは、いずれも対応する前記球状端部9a, 19aの半径より大なる半径をもって形成されていて、如何なる位置においても球状端部9a, 19aとの係合状態が確保されるようになっている。

第3図において、シリンダブロックBには、ボンブシリンダ7のシリンダ孔8群とモータシリンダ17のシリンダ孔18群との間において、出力軸31を中心にして同心に並ぶ環状の内側油路52及び外側油路53と、両油路52,53間の環状隔壁及び外側油路53の外周壁を放射状に貫通する、シリンダ孔8,8…及び18,18…とそれぞれ同数の第1弁孔54,54…及び第2弁孔55,55…と、相隣るシリンダ孔8,8…及び第1弁孔54,54…を相互に連通するボンブボートa,a…と、相隣るシリンダ孔18,18……及び第2弁孔55,55…を相互に連通する多数のモータボートb,b…とが設けられる。

以上において、油圧ポンプ Pのシリンダ孔 8 群及び油圧モータ Mのシリンダ孔 18 群は前者のピッチ円よりも後者のピッチ円の方が大径となるように配列され(即ちゅくは)、且つポンプボート a 群及びモータボート b 群は、それぞれのピッチ円が略同径となるように配列される(即ちゅらは、図示例でははがあまり若干大径となっている)。このようなポート群の配列を得るために、油圧ポンプ P 側では各対応するシリンダ孔 8 及びポンプボート a は同軸に配置される一方、油圧モータ M 側では各シリンダ孔 18 に対して対応するモータボート b をシリンダ孔 18 に対して対応するモータボート b をシリンダ孔 18 に対して対応するモータボート b をシリンダブロック B の中心側へ偏心して配置される。

前記内側油路52は、シリンダブロックBの内周面に環 状溝として形成され、その開放面は出力軸31の外周前に より閉じられる。

前記第1 弁孔54,54…にはスプール型の第1分配弁61.61…が、また前記第2 弁孔55.55…には同じくスプール型の第2分配弁62.62…がそれぞれ摺合される。そして、第1分配弁61.61…の外端にはそれを囲む第1 弁作動装置としての第1 偏心輪63が、また第2分配弁62.62…の外端にはそれらを囲む第2弁作動装置としての第2 偏心輪64がそれぞれがまず、エニアリング65.66を介して係合され、それらの係合を強制するために、第1分配弁61.61…の外端のは第1偏心幅60と同心関係の第1強制輪65により相互に連結され、また第2分配弁62.62…の外端には第2個心輪61と同心関係の第2般制輪68により相

互に連結を行る

第1編企幅60日、前記第1ミリングポルド16の内端に一体に連設され、第3国に示すように仮想トラニオン軸線のに治って出力軸3トの中心から衝定距離;」偏心した位置に配置される。

面して、入力簡動5とボンブシリンダ7間に相対回転が生じると、各第1分配が61は、第1偏心軸63により第1弁孔切において偏心量1,02倍の距離をストロークとしてボンブシリンダ7の半径方向内方位置及び外方位置時を往復動される。そして、第3図に示すように、油圧ボンブPの吐出領域Dでは、第1分配が61は前記内方位置側を移動して、対応するボンブボートaを外側油路53に連通すると共に内側油路52と不通にし、吐出行程中のボンプランジャ9によりシリンダ孔8から外側油路53と不通にし、吸入行程中のボンブプランジャ9により内側油路52からシリンダ孔8に作動油が吸入される。

前記第2偏心輪64は、前記第2シリンダホルダ24の内端に連結され、第4図に示すように、トラニオン軸線0,に沿って出力軸31の中心から所定距離 t 2偏心した位置に配置される。

而して、モータシリンダ17が回転すると、各第2分配弁62は、第2偏心輪64により第2弁孔55において偏心量 e2の2倍の距離をストロークとしてモータシリンダ17の半径方向内方位置及び外方位置間を往復動される。そして、油圧モータMの膨脹領域Exでは、第2分配弁62は前記内方位置側を移動して、対応するモータボートもを外側油路53に連通すると共に内側油路52を不通にし、外側油路53から膨脹行程中のモータプランジャ19のシリンダ孔18に高圧の作動油が供給され、、また収縮領域Shでは、第2分配弁62は前記外方位置側を移動して、対応するモータボートもを内側油路52に連通すると共に外側油路53と不通にし、収縮行程中のモークプランジャ19のシ

サンド 孔18から内側油路52、作動油が排出される

再決第2世において、出力軸知の年端部には、売力に 嵌製された一切の第1.第2年前40.41と端板は2とにより 油電43が画成される。この油電43は、一個において、エンジンEにより駆動される補給ホンフ44(第1個参照)の吐出側と連通し、他側においては、第1弁筒40及び出力軸31内の低圧油路45を介して前紀内側油路52と連通、また第2弁筒41及び出力軸31内の高圧油路45を介して前紀外側油路53とも連通する。

第1.第2 弁筒40.41(こは第1.第2逆止弁47.48がそれぞれ収納されており、いずれも逆止弁も、油室43から対応する油路45.46への油の流れを許容し、それと反対の流れを阻止するようになっている。

次にこの実施例の作用について説明する。エンジンEにより油圧ボンプPの入力筒軸5を回転駆動すると、ボンプ斜板10によりポンププランジャ9,9…に吐出及び吸入行程が交互に与えられる。

そしてボンプブランジャ9は、吐出領域Dを通過する間、シリンダ孔8から外側油路53に作動油を圧送し、また吸入領域Sを通過する間、内側油路52からシリンダ孔8に作動油を吸入する。

外側油路53に送られた高圧の作動油は、油圧モータMの膨脹領域Exに存するモータプランジャ19のシリンダ孔18に供給される一方、収縮領域Shに存するモータプランジャ19によりそのシリンダ孔18から内側油路52へ作動油が排出される。

この間に、ボンブシリンダ 7 が吐出行程のポンププランジャ 9 を介してポンプ斜板10から受ける反動トルクと、モータシリンダ17が膨脹行程のモータブランジャ19を介してモータ斜板20から受ける反動トルクとの和によって、シリンダブロック B は回転され、その回転トルクは出力軸31から 2 次減速装置 3 へ伝達される。

この場合、入力筒軸5に対する出力軸31の変速比は次式によって与えられる。

変速比=1+-

油圧モータMの容量

油圧ポンプPの容量

したがって、油圧モータMの容量を最大値から警に変えれば、変速比を最大値(ロー状態)から1 (トップ状態)まで変えることができる。しかも、その油圧モータ Mの容量はモータブランジャ19のストロークにより決定されるので、モータ斜板20の傾倒位置から直立位置まで傾動させることにより変速比を最大値から1まで無段階に制御することができる。

変連機工の作動中、ポンド組板10代ポンツプランドで 9.9一群の心。またモータ斜板20はモーターランジで19. 19一群の心や対理力反対方向のスラスト荷重を受ける ぶ、ポンド組板10が受けるスラスト荷重はアンギンジン ンタクトペアリング12、入力簡輔5及びアンギュラコンタクトペアリング29を介して出力制31に支承され、またモータ斜板20が受けるスラスト荷重はアンギュラコンタクトペアリング14、モータ斜板ホルダ22、モータ斜板アンカ23及びアンギュラコンタクトペアリング30を介して出力制31に支承される。したがって、上記スラスト荷重は、出力制61に引動に力を生じさせるだけで、該輸3)を支持するテーシング4(11)金(作用しない。

この場合、モータ斜板ボルマ22及びモータ斜板アンカ 20は、モータビリンタはの軸線とトラニオン軸線のどの 交点を中心とする球面による対向をせているので、こ む手球師の相互作用によりモータ針板ボルグ22代調心機能を発揮する。その結果、モータ斜板ボルグ22代、トラニオ:軸線の周りにスムーズに回動し得、モータ斜板20の傾斜角度を容易に制御することができる。

また、油圧ホンフP及び油圧モータAにおけて、各組板10、20は、対応するプランジャ9、19の球状端部9a、19a及びアンギュラコンタクトペアリング12、14により、前後から調心作用を受け、更に外周をラジアルボールペアリング13、15で支承されるため、如何なる傾斜状態でも定位置を保ってシリンダブロックBと的確に同期回転をすることができる。

無段変連機丁のような運転状態では、内側及び外側油路52,53の圧力、即ち低圧及び高圧油路45,46の圧力により第1,第2逆止弁47,48は閉弁して低圧及び高圧油路45,46から補給ボンブ44側への作動油の逆流を阻止するが、通常の負荷運転時、油圧ボンブP及び油圧モータM間の油圧閉回路からの漏油に起因して低圧油路45の圧力が補給ボンプ44の吐出圧よりも低くなると、第1逆止弁40が開くので、補給ボンブ44の吐出油が低圧油路45を経て内側油路52へ補給される。また逆負荷運転時、前記油圧閉回路からの漏油に起因して高圧油路46の圧力が補給ボンブ44の吐出圧より低くなると、第2逆止弁48が開くので、補給ボンブ44の吐出油が高圧油路46を経て外側油路53へ補給される。

このような無段変速機Tにおいて、モータシリンダ17のシリンダ孔18をボンプシリンダ7のシリンダ孔8より大径に形成して、油圧モータMの最大容量を油圧ポンプPのそれより大きくしたので、モータ斜板20の最大傾斜時には大なる変速比を得ることができる。

その際、モータシリンダ17のシリンダ孔18群のピッチ 円直径d。をポンプシリンダ7のシリンダ孔8群のピッチ 円直径d。より大きくしたので両者7,17共、シリンダ孔8 間及びシリンダ孔18間の各隔壁に適正な厚みを与えることができる。

しかも、各モータポートbを対応するシリンダ孔18の中心よりシリンダブロックBの中心側へ変位させて、モータボートb群のピッチ円直径点をボンフポートa群のピッチ円直径点と略同径にしたので、内側及び外側油路52.53をシリンダブロックBの中心側へ極力近づけるこ

とができる。その結果、シリングでロック15度が利力を 囲織する第1、第2偏心輸送の1610大役化を最小限に抑え ることができる。

尚、図示例では、第2個心輸6 いつ個心量を固定にしたが、これを前記特開昭61~79469号公報記載のように可変にしてクラッチオフ、ロックアッコ等のモート変換を行うようにしてもよい。

C. 範期の効果

以上のように本範明によれば、モータシリングのシリンダ孔をポンプシリンダのシリンダ孔より大径に形成するも、前者のシリンダ孔群のピッチ円を後者のシリンダ孔群のピッチ円より大径にしたので、両者のシリンダ孔間の隔壁に適正厚さを与え、シリンダブロックの耐久性を確保しつ>軽量化を図ることができる。

しかも、各モータボートを対応するシリンダ孔の中心よりシリンダブロックの中心側へ偏心させて、モータボート群のビッチ円をポンプボート群のビッチ円と略同径にしたので、内側及び外側油路をシリンダブロックの中心側へ極力近づけ、シリンダブロック及び第1,第2年作動手段の径方向のコンバクト化を図ることができる。

【図面の簡単な説明】

図面は本発明の一実施例を示すもので、第1図は本発明の静油圧式無段変速機を備えた自動二輪車用パワーユニットの平面図、第2図は上記無段変速機の縦断面図、第3図及び第4図は第2図の111-111線及びJV-1V線断面図である。

B……シリンダブロック、M……油圧モータ、P……油 圧ポンプ、T……無段変速機、a ……ポンプポート、b ……モータポート、d₁……ポンプシリンダのシリンダ孔 群ピッチ円の直径、d.……モータポート群ピッチ円の直 径、d₂……モータシリンダのシリンダ群ピッチ円の直 径、d₁……モータホート群ピッチ円の直径

7……ポンプシリンダ、8……シリンダ孔、9……ポンプランジャ、17……モータシリンダ、18……シリンダ孔、19……モータプランジャ、31……伝動軸としての出力軸、52……内側油路、53……外側油路、61……第1分配弁、62……第2分配弁、63……第1 か作動装置としての第1 偏心軸、64……第2 弁作動装置としての第2 偏心軸

フロントページの続き

(56) 参考文献

特開 昭63-203960 (JP, A)

特開 平1-171636 (JP, A)

実開 昭51-68856 (JP、い)

特開 昭64-79469 (JP、A) (58)調査した分野(Int.Cl.*、DB名) F16H 39/00 - 39/14