Part II:

Machine Learning on Heart Disease Classification

Agenda

- 01 Project Objective & Flow
- 02 Data Preprocessing
- 03 Model Implementation
- 04 Comparisons of Optimized Models
- 05 Conclusions and Future Work

Project Objective

Supervised Learning

Binary Classification of Heart Disease

(Class 1: Have heart disease, Class 0: No heart disease)

Project Flow

Dataset

Categorical

Fasting Exercise-induced Binary Sex **Target** blood sugar angina (> 120 mg/dL)Resting Slope of **Chest pain Nominal** electrocardiogram the peak exercise type results **ST** segment

Numeric

Age

Resting blood pressure

Serum cholesterol

Maximum heart rate

Oldpeak

Data Exploration

Dataset statistics		Variable types	
Number of variables	12	Numeric	
Number of observations	1048	Categorical	
Missing cells	0		
Missing cells (%)	0.0%		
Duplicate rows	0		
Duplicate rows (%)	0.0%		
Total size in memory	98.4 KiB		

Data Exploration

- 1. Mean and median (50%) of all columns, except oldpeak, are almost the same, meaning that the data is symmetrically distributed.
- 2. The distribution of age follows a normal distribution pattern.

		4.4.111	
		30	NO
oeak	target		
0000	Categorical		
2366	HIGH CORRELATION		
2300	Distinct		2
0429	Distinct (%)		0.2%
0000	Missing		0
0000	Missing (%)		0.0%
0000	Memory size		8.3 KiB
2000			

	age	resting bps	cholesterol	max heart rate	oldpeak
count	1048.000000	1048.000000	1048.000000	1048.000000	1048.000000
mean	53.325382	132.613550	245.172710	142.918893	0.942366
std	9.397822	17.367605	57.101359	24.427115	1.100429
min	28.000000	92.000000	85.000000	69.000000	-0.100000
25%	46.000000	120.000000	208.000000	125.000000	0.000000
50%	54.000000	130.000000	239.000000	144.000000	0.600000
75%	60.000000	140.000000	275.000000	162.000000	1.600000
max	77.000000	200.000000	603.000000	202.000000	6.200000

520

Data Exploration

	target
ST slope	0.574
age	0.132
chest pain type	0.390
cholesterol	0.000
exercise angina	0.267
fasting blood sugar	0.100
max heart rate	0.138
oldpeak	0.241
resting bps	0.052
resting ecg	0.147
sex	0.106
target	1.000
•	

Feature Selection, Scaling and Dataset Splitting

- Drop the low scored features
 score < 10
 (resting bps and cholesterol)
- 2. Standardize features using
 Standard Scaler
 mean to 0
 standard deviation to 1
- 3. Split train and test dataset

train set: 80%

test set : 20%

Model Building

01
Model with
Default Settings

02 Model with Manual Tuning 03
Model with "Best" hyperparameters
(Tuned by GridSearchCV)

04
Computing
Permutation Importance

05
Model Retraining with
"Best" hyperparameters
(Tuned by GridSearchCV)

Model 1: Gaussian Naive Bayes (GNB)

hyperparameter tuning

variance smoothing

Model 1: Gaussian Naive Bayes (GNB)

Approach 1: Default Settings

Train Accuracy using default settings: 73.63% Test Accuracy using default settings: 75.71%

Approach 2: Hyperparameter tuning using GridSearchCV (Automated Tuning)

```
Best Hyperparameter: {'var_smoothing': 0.3511191734215131}
Best Cross-Validation Accuracy: 0.7397
Train Accuracy with the best hyperparameter: 73.87%
Test Accuracy with the best hyperparameter: 74.76%
```

* After eliminating negative features determined by permutation importance:

Best Hyperparameters after dropping negative features: {'var_smoothing': 0.8111308307896871}
Best Cross-Validation Accuracy after dropping negative features: 0.7660
Train Accuracy with best hyperparameters after dropping negative features: 76.73%
Test Accuracy with best hyperparameters after dropping negative features: 77.62%

Permutation Importance for GNB

Performance Evaluations before and after Feature Elimination(GNB)

before					after				
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.72 0.78	0.80 0.70	0.76 0.74	104 106	0 1	0.76 0.79	0.80 0.75	0.78 0.77	104 106
accuracy macro avg weighted avg	0.75 0.75	0.75 0.75	0.75 0.75 0.75	210 210 210	accuracy macro avg weighted avg	0.78 0.78	0.78 0.78	0.78 0.78 0.78	210 210 210

Performance Evaluations before and after Feature Elimination(GNB)

Model 2: K-Nearest Neighbor (KNN)

hyperparameter tuning

- number of neighbors (k)
- distance metric

Model 2: K-Nearest Neighbor (KNN)

Approach 1: Default settings

Train Accuracy with default settings: 84.01% Test Accuracy with default settings: 75.71%

Approach 2: Direct Training and Testing (Manual tuning)

K = 14 / 18

Train Accuracy with n_neighbors=14: 80.55%
Test Accuracy with n_neighbors=14: 79.52%

Train Accuracy with n_neighbors=18: 79.36%
Test Accuracy with n_neighbors=18: 79.52%

Approach 3 : Cross-Validation (Manual tuning) K = 7

Train Accuracy with n_neighbors=7: 82.46%
Test Accuracy with n_neighbors=7: 78.57%

Model 2: K-Nearest Neighbor (KNN)

Approach 4: Hyperparameter Tuning using GridSearchCV (Automated Tuning)

_					
	before permutation importance	params_knn_1	params_knn_2	params_knn_3	params_knn_4
	(1) N-neigbor (2-29)	22	17	20	25
	(2) metric	NA	manhattan	NA	manhattan
	(3) weight	NA	distance	distance	NA
	train accuracy	79.36%	100.00%	100.00%	80.31%
	test accuracy	77.62%	77.62%	77.14%	78.57%

* After eliminating negative features determined by permutation importance:

after permutation importance	knn_reduced
(1) N-neigbor (2-29)	28
(2) metric	manhattan
(3) weight	NA
train accuracy	80.31%
test accuracy	80.00%

Permutation Importance for KNN

Performance Evaluations before and after Feature Elimination (KNN)

before					after 👚				
	precision	recall	f1-score	support		precision	recall	f1-score	support
0 1	0. 79 0. 79	0. 78 0. 79	0. 78 0. 79	104 106	0 1	0. 82 0. 79	0. 77 0. 83	0. 79 0. 81	104 106
accuracy macro avg weighted avg	0. 79 0. 79	0. 79 0. 79	0. 79 0. 79 0. 79	210 210 210	accuracy macro avg weighted avg	0. 80 0. 80	0. 80 0. 80	0. 80 0. 80 0. 80	210 210 210

Performance Evaluations before and after Feature Elimination (KNN)

Model 3: Support Vector Machine (SVM)

hyperparameter tuning

■ C (fault tolerance)

the trade-off between maximizing the margin and minimizing the classification error on the training data

Smaller C: allows more misclassifications -> more support vectors

■ gamma (Coefficient of radial basis function (RBF) kernel)

Smaller gamma: the influence of a single training example extends further

Input Space Feature Space

Choose the one with large margin!

Model 3: Support Vector Machine (SVM)

Approach 1: Default settings

We get an accuracy of 78.1% without tuning the hyperparameters.

Approach 2: Direct Training and Testing (Manual tuning)

```
Train Accuracy using manual tuning: 94.75%
Test Accuracy using manual tuning: 73.81%
```

Approach 3: Hyperparameter tuning using GridSearchCV (Automated Tuning)

```
Best Hyperparameter: {'C': 1000, 'gamma': 0.01}

Best Cross-Validation Accuracy: 0.7923

Train Accuracy with the best hyperparameter: 85.20%

Test Accuracy with the best hyperparameter: 79.05%
```

* After eliminating negative features determined by permutation importance:

```
Best Hyperparameter: {'C': 1000, 'gamma': 0.01}
Best Cross-Validation Accuracy: 0.7923
Train Accuracy with the best hyperparameter: 82.58%
Test Accuracy with the best hyperparameter: 80.00%
```

Permutation Importance for SVM

Performance Evaluations before and after Feature Elimination (SVM)

before					after 👚				
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.81	0.75	0.78	104	0	0.82	0.77	0.79	104
1	0.77	0.83	0.80	106	1	0.79	0.83	0.81	106
accuracy			0.79	210	accuracy			0.80	210
macro avg	0.79	0.79	0.79	210	macro avg	0.80	0.80	0.80	210
weighted avg	0.79	0.79	0.79	210	weighted avg	0.80	0.80	0.80	210

Performance Evaluations before and after Feature Elimination (SVM)

- Similar accuracies among models
- GNB:Less effective
- KNN and SVM:
 Equal test accuracies
- KNN:Best Generalization

- GNB: Better at Negatives
- KNN and SVM:
 - Better at Positives
 - o Identical TN, FP, FN, and TP values

- Equal precision
- KNN and SVM:
 - O Higher recall than GNB
 - o Identical scores

- GNB:Lower ROC curve
- KNN and SVM:
 Similar ROC curves
- KNN: Slightly higher AUC

- GNB: Lowest in AP
- KNN and SVM: Similar AP
- KNN:More stable

Conclusions

- 1. KNN Superiority (Test Accuracy: 80.00%): leads with highest AUC and stable precision-recall, indicating consistent performance
- 2. SVM Close Behind (Test Accuracy: 80.00%): closely follows KNN, with a slightly higher AP, but less stable precision-recall.
- 3. GNB Lagging (Test Accuracy: 77.62%): trails in AUC, AP, and positive case classification, making it the least effective model.

Limitations & Challenges

(2 h 3 n 0 1 1 2 h 3 n 0 1 1 2 h 3 n 1 1 2 h 3 n 1 1 2 h 3 n 1 1 2 h 3 n 1 1 2 h 3 n 1

- 1. Resource-Intensive Computation
 - especially in hyperparameter tuning and model training
- 2. Model optimization: time-consuming and complex (but it is worth it)
- 3. Limited time for further model building and evaluations
- 4. Difficult to make model comparisons due to similarities in findings
- 5. Lack of professional expertise to perform more precise feature selection

Future Work

- 1. Conduct an <u>in-depth analysis on the significant feature</u> ST-slope, by evaluating the impact of upsloping, flat, and downsloping characteristics
- 2. <u>Further perform model evaluations</u> for KNN and SVM by testing them under different scenarios (e.g. different train-test split ratios)
- 3. Experiment with <u>more models</u> and implement <u>ensemble learning</u> to synthesize predictions from various models for improved accuracy
- 4. Verify with <u>medical domain knowledge</u> to determine whether there is a better way to deal with feature elimination other than dropping the negative features
- 5. Establish a data pipeline to streamline the workflow of the code

Reference

Dataset:

Heart Disease Dataset (kaggle.com)

Heart Disease Dataset (Comprehensive) | IEEE DataPort (ieee-dataport.org)

Feature Selection Dropping the low scored features: https://www.kaggle.com/code/totoro29/heart-disease-eda-prediction

Permutation Importance: https://flageditors.medium.com/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%E5%8B%95%E6%89%8B%E5%81%9Alesson-4-%E4%BD%BF%E7%94%A8permutation-importance%E4%BE%86%E9%81%B8%E5%8F%96%E9%87%8D%E8%A6%81%E7%89%B9%E5%BE%B5-%E4%B8%8A%E7%AF%87-7d9b8a8cab30

KNN tuning: https://medium.com/@agrawalsam1997/hyperparameter-tuning-of-knn-classifier-a32f31af25c7

Appendix

Data Cleansing

- Remove the unnecessary column 'Unnamed: 0' (#1)
- Check null value (#2)

#1

	Unnamed: 0	age	sex	chest pain type	resting bps
0	0	40	1	2	140
1	1	49	0	3	160
2	2	37	1	2	130
3	3	48	0	4	138
4	4	54	1	3	150

Determine whether there are missing values
df.isnull().sum()

#2

	0
age	0
sex	0
chest pain type	0
resting bps	0
cholesterol	0
fasting blood sugar	0
resting ecg	0
max heart rate	0
exercise angina	0
oldpeak	0
ST slope	0
target	0

dtype: int64

Data Cleansing

- Check duplicated value (#3)
- Check Dataset size (number of rows, number of columns) (#4)

#3 #4

```
# Determine whether there are duplicated records
df.duplicated().sum()
```

```
# Explore the data
print("Dataset size (number of rows, number of columns):", df.shape)
```

Dataset size (number of rows, number of columns): (1048, 12)