

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

III Semester B. E. Fast Track Examinations January-2023

Computer Science Engineering

DATA STRUCTURES USING C

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6.

PART A

1	1.1	What is the deletion operation on a queue referred as?	01
	1.2	In the Tower of Hanoi problem, how many moves are carried out to	
		transfer 6 discs from source to destination.	01
	1.3	Dynamic memory is allocated from section of process memory.	01
	1.4	What is the return type of malloc function?	01
	1.5	Write the equivalent postfix expression for the given infix expression	
		(A + B) * (C * D - E) * (F/G)	02
	1.6	A Queue can be implemented using linked list by and	
		operations on it.	02
	1.7	A circular queue of SIZE 5 has three elements 10,20 and 30 where	
		front=0 and rear=Z. Show the value of front and rear after each of	
		these operations:	
		i. Insert 40	
		ii. Insert 50	
		iii. Insert 60	
		iv. Delete an item.	02
	1.8	What is the output of the following code for the input $x = 5$ and $y = 6$.	
		int something (int x, int y)	
		\{	
		if (y == 1)	
		return x;	
		else	
		return $x + something (x, y - 1);$	
		}	02
	1.9	Consider the following definition	
		Strcut node	
		{	
		int data;	
		struct node * next;	
]}	
		typedef strcutnode * NODE;	
		NODE ptr;	
		Write corresponding C code (statement) to create a new node?	02

1.10	Construct a binary tree from the given transversal	
	Inorder: D B H E I A F J C G	
	Postorder D H I E B J F G C A	02
1.11	What does the following function do for a given singly linked list with first node as start? void fun(struct node * start) { If (start == NULL)	
1.12	return; $fun(start \rightarrow next);$ $printf(\%d'', start \rightarrow data);$ } Draw the hash table for the following data keys: 124, 132, 146, 115, 95, 88, 99, 145, 23, 37. Hash function: key %8	02
	Method used: Sepearate chaining	02

PART B

2	а	Design an algorithm to evaluate a postfix expression. Trace the same with stack contents for the following expression; 6 5 2 3 + 8 * + 3 + *	08
	b	Write recursive function in C to i. Simulate the tower of Hanoi problem ii. To check whether array elements are sorted or not (in ascending order)	08
3	a	What are the advantages of dynamic allocation over static allocation? With examples, discuss the functions that support the dynamic memory allocation in C.	08
	b	Write a C program to implement a circular queue of integers.	08
		OR	
4	a	What is a Queue? Develop C functions to perform Enqueue & Dequeue operations on it.	08
	b	Differentiate between malloc and calloc functions.	04
	С	Develop a C program to find the sum of n elements using dynamic memory allocation.	04
5	a b	Build C functions to construct a singly linked list to perform the operations of a stack of integers. Write function in C to	08
	Б	i. Non-recursive function to reverse singly linked list ii. To insert a node at rear end in a doubly linked list	08
		OR	
6	a b	Write necessary functions to implement a queue of integers using circular singly linked list. Write function in C to	08
	D .	i. To search a doubly linked list for the given key element ii. To concatenate two singly linked lists.	08

7	а	For the given data, draw a binary search tree	04
	1	100, 85, 45, 55, 110, 20, 70, 65, 44	04
	b	Construct an AVL Tree for the following data:	0.4
		COMPUTER	04
	C	Draw a binary tree for the following expression:	
		2*3/(2-1)+5*(4-1)	04
	d	Write a C function to create a binary search tree of integers.	04
8	a	Develop a C function to construct a max heap of integers. Apply the	
		same to the keys: 8, 15, 7, 6, 20, 10, 35.	08
	b	What is collision? How is chaining methodology different from open	
		addressing method in resolving hash collisions? Explain.	08