

CS489/698: Intro to ML

Lecture 06: Hard-margin SVM

Outline

Maximum Margin

Lagrangian Dual

Alternative View

Perceptron revisited

• Two classes: y = 1 or y = -1

- Assuming linear separable
 - exist w and b such that for all i, $y_i(\mathbf{w}^T\mathbf{x}_i + \mathbf{b}) > 0$

Separable

Find any such w and b

$$\min_{\mathbf{w},b} 0$$

s.t.
$$\forall i, \ y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) > 0$$

feasibility problem

Margin

 Take any linear separating hyperplane H

for all i,
$$y_i(\mathbf{w}^T\mathbf{x}_i + \mathbf{b}) > 0$$

- Move H until it touches some positive point, H₁ increase b say
- Move H until it touches some negative point, H₋₁ decrease b say

margin = dist(H_1 ,H) \land dist(H_{-1} ,H)

Put into formula

$$H : \mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{b} = 0$$

$$H_1: \mathbf{w}^T \mathbf{x} + \mathbf{b} = \mathbf{t}$$

$$H_{-1}: \mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{b} = -\mathbf{s}$$

What is the distance between

s.t.
$$\mathbf{w}^{\top}\mathbf{x} + b = t$$

$$\mathbf{w}^{\top}\mathbf{z} + b = 0$$

$$\mathbf{x} = \frac{\mathbf{w}}{\|\mathbf{w}\|_2^2} (t - b)$$

Yao-Liang Yu
$$\mathbf{z} = rac{\mathbf{w}}{\|\mathbf{w}\|_2^2} (-b)$$
 WATE

Put into formula

$$H : \mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{b} = 0$$

$$H_1: w^T x + b = t$$

$$H_{-1} : \mathbf{w}^{\mathsf{T}} \mathbf{x} + \mathbf{b} = -\mathbf{t}$$

What is the distance between H₁ and H?

Put into formula

$$H : \mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{b} = 0$$

$$H_1: \mathbf{w}^T \mathbf{x} + \mathbf{b} = 1$$

$$H_{-1}: \mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{b} = -1$$

What is the distance between H₁ and H?

Maximum Margin

$$\max_{\mathbf{w}, b} \frac{1}{\|\mathbf{w}\|_2}$$
s.t. $\forall i, y_i(\mathbf{w}^{\top} \mathbf{x}_i + b) \ge 1$

Important facts.

• For any
$$f$$
, $\max_{\mathbf{w}} f(\mathbf{w}) = -\min_{\mathbf{w}} -f(\mathbf{w})$

- For positive f, $\max_{\mathbf{w}} \frac{1}{f(\mathbf{w})} = \frac{1}{\min_{\mathbf{w}} f(\mathbf{w})}$
- For s. monotone g, $\min_{\mathbf{w}} f(\mathbf{w}) \equiv \min_{\mathbf{w}} g(f(\mathbf{w}))$

Hard-margin Support Vector Machines

$$\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|_2}$$

s.t.
$$\forall i, y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \geq 1$$

Quadratic programming

$$\frac{\text{margin}}{1}$$

$$\frac{1}{\|\mathbf{w}\|_2}$$

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_{2}^{2}$$

s.t.
$$\forall i, y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \geq 1$$

Support Vectors

- Those touch the parallel hyperplanes H₁ and H₋₁
- Usually only a handful

 Entirely determine the hyperplanes!

Existence and uniqueness

$$\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||_{2}^{2}$$
s.t. $\forall i, y_{i}(\mathbf{w}^{\top}\mathbf{x}_{i} + b) \geq 1$

- Always exists a minimizer w and b (if linearly separable)
- The minimizer \mathbf{w} is unique (strong convexity of $\frac{1}{2} ||\mathbf{w}||_2^2$)

The minimizer b is also unique (why?)

Outline

Maximum Margin

Lagrangian Dual

Alternative View

Lagrangian

Primal

$$\min_{\mathbf{w},b} \ \frac{1}{2} \|\mathbf{w}\|_2^2$$

s.t.
$$\forall i, y_i(\mathbf{w}^\top \mathbf{x}_i + b) \geq 1$$

[dual variable]

Lagrangian

$$\min_{\mathbf{w},b} \max_{\alpha \geq 0} \frac{1}{2} \|\mathbf{w}\|_2^2 - \sum_i \alpha_i [y_i(\mathbf{w}^\top \mathbf{x}_i + b) - 1]$$
 [primal variable] Lagrangian multiplier

Joseph-Louis Lagrange (1736-1813)

Optimization detour

$$\min_{x} f(x)$$

Fermat's Theorem. Necessarily Df(x) = 0

(Fréchet) Derivative at x.

$$\lim_{0 \neq \delta \to 0} \frac{|f(x+\delta) - f(x) - Df(x)\delta|}{|\delta|} = 0$$

Example.
$$f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{x}^T \mathbf{b} + c$$

$$Df(\mathbf{x}) = (A + A^T) \mathbf{x} + \mathbf{b}$$

Deriving the dual

$$\min_{\mathbf{w},b} \max_{\alpha \ge 0} \frac{1}{2} \|\mathbf{w}\|_2^2 - \sum_i \alpha_i [y_i(\mathbf{w}^\top \mathbf{x}_i + b) - 1]$$

$$\max_{\alpha \geq 0} \min_{\mathbf{w}, b}$$

$$\max_{\alpha \ge 0} \min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|_2^2 - \sum_i \alpha_i [y_i(\mathbf{w}^\top \mathbf{x}_i + b) - 1]$$

The dual problem

$$\max_{\alpha \ge 0} \sum_{i} \alpha_{i} - \frac{1}{2} \left\| \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \right\|_{2}^{2}$$

s.t.
$$\sum_{i} \alpha_{i} y_{i} = 0$$

Only need dot product in the dual!

$$\min_{\alpha \ge 0} \frac{1}{2} \sum_{i} \sum_{j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\top} \mathbf{x}_j - \sum_{k} \alpha_k$$

Dual

s.t.
$$\sum_{i} \alpha_{i} y_{i} = 0$$

Rn

Support Vectors

Outline

Maximum Margin

Dual

Alternative View

An dual view

21

Convex sets and Convex hull

Convex set. A point set $C \in \mathbf{R}^d$ is convex if the line segment [x,y] connecting any two points x and y in C lies entirely in C.

Convex hull. Smallest convex set containing C.

$$\operatorname{ch}(C) := \left\{ \sum_{i} \alpha_{i} \mathbf{x}_{i} : \mathbf{x}_{i} \in C, \alpha_{i} \geq 0, \sum_{i} \alpha_{i} = 1 \right\}.$$

WATERLOO

Yao-Liang Yu

Regularization vs. Constraint

From regularization to constraint

$$\min_{\alpha \ge 0} \frac{1}{2} \left\| \sum_{i} \alpha_i y_i \mathbf{x}_i \right\|_2^2 - \sum_{i} \alpha_i$$

s.t.
$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$\min_{\alpha \ge 0} \frac{1}{2} \left\| \sum_{i} \alpha_i y_i \mathbf{x}_i \right\|_2^2$$

s.t.
$$\sum_{i} \alpha_{i} y_{i} = 0, \quad \sum_{i} \alpha_{i} = C$$

Homogeneity

$$\min_{\alpha \ge 0} \frac{1}{2} \left\| \sum_{i} \alpha_i y_i \mathbf{x}_i \right\|_2^2$$

s.t.
$$\sum_{i} \alpha_{i} y_{i} = 0$$
, $\sum_{i} \alpha_{i} = C$

$$\alpha \leftarrow 2\alpha/C$$

$$\min_{\alpha \ge 0} \frac{1}{2} \left\| \sum_{i} \alpha_i y_i \mathbf{x}_i \right\|_2^2$$

s.t.
$$\sum_{i} \alpha_i y_i = 0$$
, $\sum_{i} \alpha_i = 2$

Split

$$\min_{\alpha \ge 0} \frac{1}{2} \left\| \sum_{i} \alpha_i y_i \mathbf{x}_i \right\|_2^2$$

$$P := \{i : y_i = 1\}$$
 $N := \{i : y_i = -1\}$

$$N := \{i : y_i = -1\}$$

$$\alpha = [\mu; \nu]$$

s.t.
$$\sum_{i} \alpha_{i} y_{i} = 0, \quad \sum_{i} \alpha_{i} = 2$$

$$\min_{\mu \ge 0, \nu \ge 0} \frac{1}{2} \left\| \sum_{i \in P} \mu_i \mathbf{x}_i - \sum_{j \in N} \nu_j \mathbf{x}_j \right\|_2^2$$

s.t.
$$\sum_{i} \mu_{i} = 1, \quad \sum_{j} \nu_{j} = 1$$

NOW this

Questions?

