Adressage & routage réseau SAE 21

Kamel Bouchefra

Nom:	Prénom :	Groupe:
Login:		Mdp:

Les objectifs de ces travaux sont : (1) définir et réaliser un schéma d'adressage ; (2) documenter les travaux (des tableaux à renseigner) ; (3) configurer différents routages réseau.

1 Mettre en place un réseau

1.1 Structure du réseau

Réaliser le réseau de la figure ci-dessous. Enregistrez le projet (avec ce nom, p-xy), puis faites en une copie (option « save project as », une option du menu « File »), avant de commencer les configurations. Ceci vous évitera de reprendre depuis le début en cas d'erreur.

1.2 Schéma d'adressage

On travaille bien sûr avec le projet p-xy et non pas la copie.

Nous disposons d'une seule adresse privée de classe C, en « 192.168.y.x » avec y = 14. Vous devez déterminer le champ $\ll x \gg$ selon les éléments suivants :

- Le réseau comprend 14 sous-réseaux pour lesquels on doit définir une adresse :
 - Les 10 sous-réseaux qui relient les routeurs entre eux : de « Lan-1 » à « Lan-10 ».
 - Les 4 sous-réseaux : « $P202 \gg$, « $Q203 \gg$, « $CRIT \gg et$ « $FAC \gg$.
 - Note: Le sous-réseau du Nat, possède déjà son adresse.
- Le champ $\ll x \gg cod\acute{e}$ sur 1 octet est à scinder en deux parties : x = $\underbrace{1...1}_{poidsfort\ poidsfaible}\underbrace{1...1}_{}$
 - Les bits de **poids fort** sont affectés à l'adresse des sous-réseaux.
 - Les bits de **poids faible** sont affectés à la numérotation dans chaque sous-réseau (adresse de réseau, diffusion, routeurs, PCs, ...).
- 1. Combien de bits de poids fort sont suffisants? Notez cette valeur ici :
- 2. Déduire le nombre de bits à 1 qui doivent définir le masque du réseau (entier). Notez cette valeur ici:
- 3. Déduire et donnez ici l'adresse du masque :
 - Valeur en binaire :
 - Valeur en décimal :
- 4. Notez ici en décimal l'adresse inverse du masque :
- 5. Pour définir l'adresse d'un sous-réseau : x = 1...1. $adresse\ poids faible$
 - on met dans les bits de poids fort une suite binaire qui correspond à l'adresse que l'on choisit;
 - on met des zéros dans les bits de poids faible.
 - a) Attribuez une valeur à la partie poids fort de $\ll x \gg$ pour chaque sous-réseau.
 - Notez la valeur de « \mathbf{x} » dans les tableaux ci-dessous.
 - Donnez les représentations binaire (1 octet), décimale (de l'octet) et hexadécimale (de l'octet).
 - b) Notez la valeur de y.x (en décimal) sur le schéma du réseau (page 1, au niveau du LAN correspondant, pour tous les sous-réseaux).

Adresse de sous-réseaux : LAN intra-routeurs					
valeur de x	Lan-1	Lan-2	Lan-3	Lan-4	Lan-5
suite binaire	000000000	00010000	00100000	00110000	01000000
valeur décimale	0	16	32	48	64
valeur hexadécimale	0	10	20	30	40

Adresse de sous-réseaux : LAN intra-routeurs					
valeur de x	Lan-6	Lan-7	Lan-8	Lan-9	Lan-10
suite binaire	01010000	01100000	01110000	10000000	10010000
valeur décimale	80	96	112	128	144
valeur hexadécimale	50	60	70	80	90

Adresse de sous-réseaux : LAN des autres sous-réseaux					
valeur de x	P202	Q203	CRIT	FAC	
suite binaire	10100000	10110000	11000000	11010000	
valeur décimale	160	176	192	208	
valeur hexadécimale	A0	B0	C0	D0	

6. Déduire pour chaque sous-réseau, la valeur de $\mathbf x$ donnant son adresse de diffusion :

Adresse de diffusion : LAN intra-routeurs						
valeur de x	Lan-1	Lan-2	Lan-3	Lan-4	Lan-5	
suite binaire	00001111	00011111	00101111	00111111	01001111	
valeur décimale	15	31	47	63	79	
	Adresse de diffusion : LAN intra-routeurs					
valeur de x	Lan-6	Lan-7	Lan-8	Lan-9	Lan-10	
suite binaire	01011111	01101111	011111111	10001111	10011111	
valeur décimale	95	111	127	143	159	
Ad	Adresse de diffusion : LAN des autres sous-réseaux					
valeur de x	P202	Q203	CRIT	FAC		
suite binaire	10101111	10111111	11001111	11011111		
valeur décimale	175	191	207	223		

7. Déduire pour chaque sous-réseau, son adresse de réseau en notation CIDR et son adresse de diffusion. Notez ces adresses ci-dessous :

h) Lan_8 : 192.168.14.112/28 a) Lan_1 : 192.168.14.0/28 b) *Lan*₂: 192.168.14.16/28 i) Lan_9 : 192.168.14.128/28 c) Lan_3 : 192.168.14.32/28 j) Lan_{10} : 192.168.14.144/28 d) Lan_4 : 192.168.14.48/28 k) P202: 192.168.14.160/28 1) Q203: 192.168.14.176/28 e) *Lan*₅: 192.168.14.64/28 m) CRIT: 192.168.14.192/28 f) Lan_6 : 192.168.14.80/28 192.168.14.208/28 n) FAC: g) Lan_7 : 192.168.14.96/28

8. Combien d'adresses IP on peut avoir au maximum dans chaque sous-réseau? Soit N cette valeur. Donnez ici la valeur de N en justifiant votre réponse :

On peut avoir au maximum 14 adresses IP dans chaque sous-réseau

9. Déduire pour les sous-réseaux suivants la première et la dernière adresse IP que l'on peut affecter aux machines (PCs, routeur, prériphérique(s)). Notez ces adresses ici :

	Première adresse IP	Dernière adresse IP
P_{202}	192.168.14.161	192.168.14.174
Q_{203}	192.168.14.177	192.168.14.190
CRIT	192.168.14.193	192.168.14.206
FAC	192.168.14.209	192.168.14.222

1.3 Configurer les interfaces des routeurs

- 1. Affectez une adresse IP aux interfaces des routeurs des sous-réseaux reliant les routeurs.
 - Notez dans le tableau ci-dessous l'adresse IP (et entre parenthèses, le nom de l'interface), que vous affectez aux **deux routeurs** de chaque LAN.

adres	adresse et entre parenthèses le nom des interfaces des routeurs			
	IP (Interface) routeur 1	IP (Interface) routeur 2		
Lan_1	192.168.14.13(f0/0)	192.168.14.14(f1/0)		
Lan_2	192.168.14.29(f1/0)	192.168.14.30(f2/0)		
Lan_3	192.168.14.45(f2/0)	192.168.14.46(f0/0)		
Lan_4	192.168.14.61(f0/0)	192.168.14.62(f1/0)		
Lan_5	192.168.14.77(f1/0)	192.168.14.78(f0/0)		
Lan_6	192.168.14.93(f0/0)	192.168.14.94(f2/0)		
Lan_7	192.168.14.109(f2/0)	192.168.14.110(f2/0)		
Lan_8	192.168.14.125 (f1/0)	192.168.14.126 (f1/0)		
Lan_9	192.168.14.141(f0/0)	192.168.14.142		
Lan_{10}	192.168.14.157(f2/0)	192.168.14.158 (f3/0)		

2. Configurez l'adresse IP des interfaces du routeur R_5 . Notez ces commandes ici :

```
f2/0 ip address 192.168.14.141 255.255.255.240 f1/0 ip address 192.168.14.77 255.255.255.240 f0/0 ip address 192.168.122.157 255.255.255.240
```

3. Configurez l'adresse IP des interfaces du routeur R_4 . Notez ces commandes ici :

```
f2/0
ip address 192.168.14.109 255.255.255.240
f1/0
ip address 192.168.14.93 255.255.255.240
F0/0
ip address 192.16814.126 255.255.255.240
```

4. Configurez l'adresse IP des interfaces du routeur R_3 . Notez ces commandes ici :

```
f0/0
ip address 192.168.14.78 255.255.255.240
F1/0
ip address 192.168.14.29 255.255.255.240
f2/0
ip address 192.168.14.46 255.255.255.240
```

5. Configurez l'adresse IP des interfaces du routeur R_2 . Notez ces commandes ici :

```
F1/0 ip address 192.168.14.62 255.255.255.240 F0/0 ip address 192.168.14.110 255.255.255.240 F2/0 ip address 192.168.14.45 255.255.255.240
```

6. Configurez l'adresse IP des interfaces du routeur R_1 . Notez ces commandes ici :

```
interface f0/0 ip address 192.168.14.30 255.255.255.240 interface f1/0 ip address 192.168.14.13 255.255.255.240
```

7. Configurez l'adresse IP des interfaces du routeur R_{CRIT} . Notez ces commandes ici :

```
interface f0/0
ip address 192.168.14.142 255.255.255.240
interface f1/0
ip address 192.168.14.206 255.255.255.240
interface f2/0
ip address 192.168.14.125 255.255.255.240
```

8. Configurez l'adresse IP des interfaces du routeur R_{FAC} . Notez ces commandes ici :

```
interface f0/0
ip address 192.168.14.158 255.255.255.240
interface f1/0
ip address 192.168.14.222 255.255.255.240
```

9. Configurez l'adresse IP des interfaces du routeur R_{Q203} . Notez ces commandes ici :

```
interface f0/0 ip address 192.168.14.61 255.255.255.240 interface f1/0 ip address 192.168.14.190 255.255.255.240
```

10. Configurez l'adresse IP des interfaces du routeur R_{P202} . Notez ces commandes ici :

```
interface f0/0
ip address 192.168.14.14 255.255.255.240
interface f1/0
ip address 192.168.14.174 255.255.255.240
```

11. Notez la valeur $\ll \mathbf{y} \cdot \mathbf{x} \gg$ des adresses IP des routeurs au niveau de l'interface correspondante le schéma du réseau (page 1).

1.4 Configurer des services

- 1. Configurer le service telnet sur tous les routeurs.
- 2. Configurer le service dhcp sur les routeurs des lan FAC, CRIT, P202, Q203.

1.5 Configurer les interfaces de PCs

- 1. Installez un nombre de PCs de votre choix dans chaque lan.
- 2. Configurer (par dhcp) les adresses ip de ces PCs.
- 3. Reportez sur le schéma du réseau, au niveau des interfaces correspondantes, la valeur $\ll \mathbf{y} \cdot \mathbf{x} \gg$ des adresses ip des PCs qui y sont représentés.

1.6 Vérification et sauvegarde

- 1. Vérifiez par **ping** la connectivité dans chaque sous-réseau :
 - Pour les sous-réseaux entre routeurs : commande **ping** entre les routeurs connectés.
 - Pour les autres sous-réseaux : commande **ping** entre les PC et entre PC et le routeur.
 - En cas d'erreur, il faut trouver et corriger la ou les erreurs de configuration.
- 2. Enregistrez le projet « p-xy ».
- 3. Archivez le projet et déposez-le dans votre espace post-it.
- 4. Déposez l'énoncé annoté de vos réponses dans votre espace post-it.

2 Routage statique

 $Quelques\ rappels:$

- \bullet Dans le cas d'un routeur R_a relié à un seul routeur R_b : On configure en R_a une route par défaut passant par R_b .
- $\bullet\,$ Dans le cas d'un routeur R_a relié à plusieurs routeurs :
 - On choisit une route par défaut.
 - On configure explicitement toutes les autres routes qui ne passent pas par le routeur de la route par défaut.

2.1 Préalable

1. Remplir le tableau ci-dessous pour R_{p202} :

Choisir et donner ici l'adresse du routeur choisi pour la route par défaut	192.168.14.14	
S'il y a lieu notez ci-dessous l'adresse(s) de réseau(x) non couverts par la route par défau		
Adresse de réseau	Via l'interface :	
	f1/0	

2. Remplir le tableau ci-dessous pour ${\cal R}_{q203}$:

Choisir et donner ici l'adresse du routeur choisi pour la route par défaut	192.168.14.62
S'il y a lieu notez ci-dessous l'adresse(s) de réseau(x) non couverts par	· la route par défaut
Adresse de réseau	Via l'interface :
	f1/0

3. Remplir le tableau ci-dessous pour R_{FAC} :

Choisir et donner ici l'adresse du routeur choisi pour la route par défaut	192.168.14.157	
S'il y a lieu notez ci-dessous l'adresse(s) de réseau(x) non couverts par la route		
Adresse de réseau	Via l'interface :	
	f3/0	

4. Remplir le tableau ci-dessous pour R_{CRIT} :

Choisir et donner ici l'adresse du routeur choisi pour la route par défaut	192.168.14.141	
S'il y a lieu notez ci-dessous l'adresse(s) de réseau(x) non couverts par la route par défau		
Adresse de réseau	Via l'interface :	
192.168.14.48 192.168.14.96 192.168.14.176	f2/0	

5. Remplir le tableau ci-dessous pour R_1 :

7

Choisir et donner ici l'adresse du routeur choisi pour la route par défaut	192.168.14.29
S'il y a lieu notez ci-dessous l'adresse(s) de réseau(x) non couverts par	la route par défaut
Adresse de réseau	Via l'interface :
192.168.14.160	f1/0

6. Remplir le tableau ci-dessous pour R_2 :

Choisir et donner ici l'adresse du routeur choisi pour la route par défaut	192.168.14.46	
S'il y a lieu notez ci-dessous l'adresse(s) de réseau(x) non couverts par la route par défaut		
Adresse de réseau	Via l'interface :	
192.168.14.176	f2/0	

7. Remplir le tableau ci-dessous pour \mathbb{R}_3 :

Choisir et donner ici l'adresse du routeur choisi pour la route par défaut	192.168.14.77	
S'il y a lieu notez ci-dessous l'adresse(s) de réseau(x) non couverts par la route par défaut		
Adresse de réseau	Via l'interface :	
192.168.14.0 192.168.14.48	f1/0	

8. Remplir le tableau ci-dessous pour \mathbb{R}_4 :

Choisir et donner ici l'adresse du routeur choisi pour la route par défaut	192.168.14.125	
S'il y a lieu notez ci-dessous l'adresse(s) de réseau(x) non couverts par la route par défaut		
Adresse de réseau	Via l'interface :	
192.168.14.176 192.168.14.48	f2/0	

9. Remplir le tableau ci-dessous pour \mathbb{R}_5 : Rappel, pas de route par défaut pour ce routeur.

S'il y a lieu notez ci-dessous l'adresse(s) de réseau(x) non couverts par la route par défaut		
Adresse de réseau	Via l'interface :	
192.168.14.208	f3/0	
192.068.14.192/192.068.14.112	f2/0	
192.168.14.0/192.168.14.16/192.168.14.32 192.168.14.48/192.168.14.80 192.168.14.96/192.168.14.160 192.168.14.176	f1/0	

2.2 Configuration, test et sauvegarde

- 1. Enregistrez le projet « p-xy » avec le nom : « p-xy-statique » (\propto xy » sont vos initiales).
- 2. Configurer le routage statique des routeurs.
- 3. Vérifiez par **ping** la connectivité dans le réseau entier :
 - Commande ping entre PC de différents sous-réseau.
 - Commande **ping** entre PC ou routeur et une adresse extérieure au réseau, par exemple les adresses IP « **81.194.43.200** »; « **216.239.48.139** »... et d'autres de votre choix.
 - Si les **ping** fonctionnent, exécutez la Commande **trace** depuis un PC vers d'autres machines : PCs / routeurs du réseau ; des adresses IP comme celles ci dessus.
 - En cas d'erreur, il faut trouver et corriger la ou les erreurs de configuration.
- 4. Enregistrez le projet.
- 5. Archivez le projet et déposez-le dans votre espace post-it.
- 6. Déposez l'énoncé annoté de vos réponses dans votre espace post-it.

3 Routage dynamique

3.1 Routage RIP et sauvegarde

- 1. Reprenez le projet « p-xy-statique » et enregistrez-le avec ce nom « p-xy-routage ».
- 2. Configurer le routage RIP des routeurs dans le projet « p-xy-routage ».
- 3. Vérifiez par ping la connectivité dans le réseau entier :
 - Commande **ping** entre PC de différents sous-réseau.
 - Commande **ping** entre PC ou routeur et une adresse extérieure au réseau, par exemple les adresses IP « **81.194.43.200** » ; « **216.239.48.139** »... et d'autres de votre choix.
 - Si les **ping** fonctionnent, exécutez la Commande **trace** depuis un PC vers d'autres machines : PCs / routeurs du réseau ; des adresses IP comme celles ci dessus.
 - En cas d'erreur, il faut trouver et corriger la ou les erreurs de configuration.
- 4. Enregistrez le projet « p-xy-routage » : Il contient les routages statique et rip.
- 5. Archivez le projet et déposez-le dans votre espace post-it.

3.2 Routage OSPF et sauvegarde

- 1. Reprenez le projet « p-xy-routage ».
- 2. Configurer le routage OSPF des routeurs.

- 3. Vérifiez par **ping** la connectivité dans le réseau entier :
 - Commande **ping** entre PC de différents sous-réseau.
 - Commande **ping** entre PC ou routeur et une adresse extérieure au réseau, par exemple les adresses IP « **81.194.43.200** »; « **216.239.48.139** »... et d'autres de votre choix.
 - Si les **ping** fonctionnent, exécutez la Commande **trace** depuis un PC vers d'autres machines : PCs / routeurs du réseau ; des adresses IP comme celles ci dessus.
 - En cas d'erreur, il faut trouver et corriger la ou les erreurs de configuration.
- 4. Enregistrez le projet « p-xy-routage » : Il contient les trois routages.
- 5. Archivez le projet et déposez-le dans votre espace post-it.

3.3 Paramétrer les routages

3.3.1 préalable

- Lorsque plusieurs algorithmes de routage sont configurés, le routeur met en œuvre l'algorithme ayant le plus faible score.
- Les valeurs de la table ci-dessous sont définies par standard : C'est donc le routage *statique* qui est mis en œuvre.

Table 1 – Routes administratives

Mécanisme de routage	Distance administrative
Connected	0
${f Static}$	1
\mathbf{BGP}	20
\mathbf{OSPF}	110
\mathbf{RIP}	$\boldsymbol{120}$

• Les commandes suivantes montrent comment **affecter** la valeur v (on choisit le chiffre), à la distance administrative du routage statique entre deux routeurs (les routeurs R4 et R5 de la première fiche):

• Les commandes suivantes montrent comment **affecter** la valeur v à la distance administrative d'un routage rip (on peut faire de même pour ospf):

```
      R5# conf t
      1

      R5 (config)# router rip
      2

      R5 (config-router)# distance v
      3

      R5 (config-router)# end
      4

      R5# sh run
      5

      R5# copy running-config startup-config
      6

      R5# write mem
      7
```

• Les commandes suivantes montrent comment **affecter** la valeur v au coût du lien de l'interface < f1/0 > d'un routage ospf :

3.3.2 Paramétrages

Reprenez le projet \ll **p-xy-routage** \gg et enregistrez-le avec le nom \ll **p-xy-net** \gg . Effectuez les paramètres des questions suivantes dans le projet \ll **p-xy-net** \gg .

- 1. Choisissez des valeurs administratives des routages statique et/ou rip et/ou ospf qui permettent que soit mis en œuvre le routage rip.
 - a) Notez ici les commandes exécutées qui montrent les valeurs de distances choisies :

router rip distance 110

b) Exécutez une commande *trace* entre deux machines qui montrent la route réalisée. Notez ici la commande *trace* ainsi que les routes obtenues :

```
r-P202#traceroute 192.168.14.61
192.168.14.13 20 msec 20 msec 20 msec
2 192.168.14.29 40 msec 28 msec 32 msec
3 192.168.14.45 40 msec 40 msec 40 msec
4 192.168.14.61 52 msec 48 msec 40 msec
```

- 2. Choisissez des valeurs administratives des routages statique et/ou rip et/ou ospf et des valeurs de coûts de liens ospf qui permettent que soit mis en œuvre le routage ospf. Choisissez des valeurs qui donnent des routes qui ne peuvent pas êtres obtenues par un routage statique ou rip.
 - a) Notez ici les commandes exécutées qui montrent les valeurs (distances, coûts de liens) choisies :

```
router ospf 1
int f0/0
192.168.14.110 ospf cost 80
end
int f1/0
192.168.14.45 ospf cost 110
```

b) Exécutez une commande trace entre deux machines qui montrent la route réalisée. Notez ici la commande trace ainsi que les routes obtenues :

```
traceroute 192.168.14.206

1 192.168.14.13 24 msec 20 msec 8 msec 2 192.168.14.29 28 msec 20 msec 20 msec 3 192.168.14.93 52 msec 40 msec 4 192.168.14.125 40 msec 52 msec 40 msec
```

3. Enregistrez le projet « p-xy-net » ; archivez-le et déposez-le dans votre espace post-it.

4 Ajouts de fonctionnalités

Toujours sur le projet $\ll \mathbf{p}$ - \mathbf{xy} - $\mathbf{net} \gg :$

- Trouvez deux ajouts à intégrer : (1) des services ; (2) des commandes particulières (exemple, l'équivalent de la commande history d'un terminal linux).
- Le plus simple est de consulter l'aide intégrée dans les routeurs : Par exemple « ? » donne une liste de commandes que l'on peut exécuter.
- On peut aussi chercher des informations sur le net, voici quelques exemples de liens :

https://www.cisco.com/c/en/us/support/routers/7200-series-routers/products-configuration-examples-list.html.

https://routeur.clemanet.com/configuration-base-routeur-cisco.php

- Décrivez ci-dessous vos ajouts en précisant les commandes exécutées.
- Enregistrez le projet « p-xy-net »; archivez-le et déposez-le dans votre espace post-it.

Commande nommée "show-ether" permettant d'afficher seulement les interfaces possédant une adresse IP.

conf t

alias exec show-ether show ip interface brief | exclude unassigned

Puis j'ai activé le protocole NTP permettant de synchroniser l'heure de tous les routeurs. J'ai réglé le fuseau horaire sur l'europe (CET) + 2 ce qui représente l'horaire française.

conf t ntp server 8.8.8.8 clock timezone CET +2 ntp update-calendar end

Kamel Bouchefra SAE 21 : Travaux en autonomie 12