

Representation

Markov Networks

Pairwise Markov Networks

$$\tilde{P}(A,B,C,D) = \phi_1(A,B) \times \phi_2(B,C) \times \phi_3(C,D) \times \phi_4(A,D)$$
 unnormalized measure
$$P(A,B,C,D) = \frac{1}{Z}\tilde{P}(A,B,C,D)$$
 partition function

A	ssig	nme		Unnormalized
a^0	b^{0}	c^0	d^0	300000
a^0	b^0	c^0	d^1	300000
a^0	b^0	c^1	d^0	300000
a^0	b^0	c^1	d^1	30
a^0	b^1	c^0	d^0	500
a^0	b^1	c^0	d^1	500
a^0	b^1	c^1	d^0	5000000
a^0	b^1	c^1	d^1	500
a^1	b^0	c^0	d^0	100
a^1	b^0	c^0	d^1	1000000
a^1	b^0	c^1	d^0	100
a^1	b^0	c^1	d^1	100
a^1	b^1	c^0	d^0	10
a^1	b^1	c^0	d^1	100000
a^1	b^1	c^1	d^0	100000
a^1	b^1	c^1	d^1	100000

Daphne Koller

I = Ed1, P2, P3, 043

P(A, B)

Α	В	Prob.	
a ⁰	p ₀	0.13	4
a ⁰	b ¹	0.69	
a ¹	p ₀	0.14	
a ¹	b ¹	0.04	4

Pairwise Markov Networks

• A pairwise Markov network is an undirected graph whose nodes are $X_1,...,X_n$ and each edge X_i-X_j is associated with a factor (potential) $\phi_{ij}(X_i-X_j)$

Daphne Koller

