Comparing Job Applicant Deception in Asynchronous vs. Synchronous Video Interviews, with and without AI-assisted Assessments

Hung-Yue Suen* and Kuo-En Hung

Department of Technology Application and Human Resource Development, National Taiwan Normal University, Taipei City, 106, Taiwan. R.O.C.

Purpose

Asynchronous Video Interviews (AVIs) incorporating Artificial Intelligence (AI)-assisted assessment has become popular as a pre-employment screening method. The extent to which applicants engage in deceptive impression management (IM) behaviors during these interviews remains uncertain. Furthermore, the accuracy of human detection in identifying such deceptive IM behaviors is limited. This study seeks to explore differences in deceptive IM behaviors by applicants across video interview modes (AVIs versus Synchronous Video Interviews (SVIs)) and the use of AI-assisted assessment (AI versus non-AI). The study also investigates if video interview modes affect human interviewers' ability to detect deceptive IM behaviors.

Design/methodology/approach

We conducted a field study with four conditions based on two critical factors: the synchrony of video interviews (AVI vs. SVI) and the presence of AI-assisted assessment (AI vs. Non-AI): Non-AI-assisted AVIs, AI-assisted AVIs, Non-AI-assisted SVIs, and AI-assisted SVIs. The study involved 144 pairs of interviewees and interviewers/assessors. To assess applicants' deceptive IM behaviors, we employed a combination of interviewee self-reports and interviewer perceptions.

Suen, H. Y., & Hung, K. E. (2025). Comparing job applicant deception in asynchronous vs. synchronous video interviews, with and without AI-assisted assessments. *Information Technology & People*, *38*(2), 963–983. https://doi.org/10.1108/ITP-02-2023-0189

Findings

The results indicate that AVIs elicited fewer instances of deceptive IM behaviors across all dimensions when compared to SVIs. Furthermore, using AI-assisted assessment in both video interview modes resulted in less extensive image creation than non-AI settings. However, the study revealed that human interviewers had difficulties detecting deceptive IM behaviors regardless of the mode used, except for extensive faking in AVIs.

Originality

The study is the first to address the call for research on the impact of video interview modes and AI on interviewee faking and interviewer accuracy. This research enhances our understanding of the practical implications associated with the use of different video interview modes and AI algorithms in the pre-employment screening process. The study contributes to the existing literature by refining the theoretical model of faking likelihood in employment interviews according to media richness theory and the model of volitional rating behavior based on expectancy theory in the context of AVIs and AI-assisted assessment.

Keywords: Automated video interviews, digital interview, faking behaviors, human-AI interaction (HAII), hiring algorithms, video conferencing, recording interviews

1 Introduction

Although previous research has identified certain negative perceptions among job candidates concerning video interviews (see Blacksmith et al., 2016; Langer et al., 2017; Guchait et al., 2014), global employers have widely embraced the use of asynchronous video interviews (AVIs) powered by artificial intelligence (AI) to screen job applicants. This AI-assisted video interview method provides several advantages over traditional selection interviews, including cost-effectiveness, time-efficiency, a novel applicant experience, and alignment with objectives, ensuring procedural justice and consistency (Kim and Heo, 2022; Mirowska and Mesnet, 2022; Woods et al., 2020). These interviews expedite the recruitment process by delivering real-time outcomes during the application, verification, and selection stages. Moreover, they serve as a means to attract high-caliber candidates (van Esch et al., 2019). Personnel recruiters identified AI-assisted video interviews as one of the top five innovations in interviewing in 2018 and beyond (see Lukacik et al., 2022).

Most AI-assisted video interviews primarily take the form of "asynchronous" video interviews (AVIs), with very few instances of "synchronous" video interviews (SVIs). In asynchronous modes, also known as recorded video interviews, candidates respond to predetermined interview questions using their mobile devices or computer cameras, and these responses are recorded as video files. These recorded responses are subsequently assessed by human assessors and, in some cases, AI algorithms. In synchronous modes, also called video conferencing interviews, live, real-time interactive interviews occur online between human interviewers and candidates, facilitated through internet chat rooms or conferencing software (Lukacik et al., 2022; Suen et al., 2019a).

Additionally, AI-assisted video interviews incorporate a feature called AI-assisted assessment, which involves the utilization of visual-audio recognition and deep learning techniques to analyze interviewees' verbal content, facial expressions, or acoustic features. This analysis helps in inferring interviewees' personality traits and competencies, assisting employers in early-stage candidate screening (Hickman et al., 2022). Conversely, non-AI-assisted assessment relies entirely on human interviewers or assessors for evaluation without AI involvement (Suen et al., 2019a).

Thus, the synchrony of video interview modes (AVI vs. SVI) with or without AI-assisted assessment can be categorized into four major types:

- Non-AI-assisted AVIs: These are recorded video interviews where candidates
 respond to preset questions, and their responses are evaluated solely by human
 assessors without AI assistance, such as "Spark Hire."
- Non-AI-assisted SVIs: These are real-time video interviews where candidates
 interact with human interviewers, and assessment relies solely on human judgment
 without AI involvement, such as "Google Meet."
- AI-assisted AVIs: In these recorded video interviews, AI technology aids human assessors in evaluating candidates' responses after the candidates' responses have been recorded, as seen in platforms like "HireVue."
- AI-assisted SVIs: These are real-time video interviews where AI technology
 provides real-time assistance to human interviewers in evaluating candidates'
 responses through synchronous recording and real-time scoring, as exemplified by
 "Aspiring Mind".

Suen, H. Y., & Hung, K. E. (2025). Comparing job applicant deception in asynchronous vs. synchronous video interviews, with and without AI-assisted assessments. *Information Technology & People*, *38*(2), 963–983. https://doi.org/10.1108/ITP-02-2023-0189

Previous research on AI-assisted video interviews has primarily focused on technical methodology (Su et al., 2021), their impact on applicants' perceptions (Kim and Heo, 2022; Langer et al., 2019ab; Zhang and Yencha 2022), trust in the technology (Suen and Hung, 2023), and interview ratings (Suen et al., 2019a). However, our current understanding of how job interviewees interact with AI-assisted video interviews and whether they display different behaviors compared to traditional interviews is inadequate (Baker et al., 2020), particularly in the context of deceptive impression management (IM) or faking (Langer et al., 2020). During job interviews, it is common for job applicants to overstate their qualifications in order to improve their chances of securing employment (Swider et al., 2016). Additionally, a substantial number of job applicants have acknowledged employing deceptive IM during the interview process (Donovan et al., 2003). While honest IM may improve predictive validity for task performance, deceptive IM may introduce bias into hiring decisions (Bourdage et al., 2018). Prior studies have shown that even experienced interviewers struggle to detect or identify interviewees' IM, which can distort or inflate the interview evaluation (Roulin et al., 2015). This effect is present even in highly structured interviews (Amaral et al., 2019), which are commonly used in AI-assisted video interviews (Su et al., 2021).

However, it remains unclear whether interviewees' deceptive behaviors vary between synchrony modes of video interviews (AVIs vs. SVIs) and if they exhibit different faking tendencies during video interviews with AI-assisted assessment. Additionally, it's unknown whether human interviewers' or assessors' ability to detect deception differs between SVIs and AVIs. Therefore, researchers such as Basch et al. (2021) and Lukacik et al.(2022) have called for more studies to explore whether job applicants exhibit deceptive IM differently in AI-assisted video interviews compared to interviews without AI assistance, as candidates' faking could

significantly impact hiring decisions through biases (Langer et al., 2019a; Liem et al., 2018). In Lukacik et al.'s (2022) review of relevant studies, they discovered there is no empirical evidence regarding the use of actual IM by job applicants in AVIs. Similarly, Baker and colleagues (2020) suggest conducting a comparative study to examine the differences in interviewee behaviors between AVIs and SVIs.

The purpose of this study is threefold: 1) to investigate whether job applicants exhibit different tendencies to fake in between asynchronous modes (AVIs) and synchronous modes (SVIs) of video interviews; 2) to examine whether job candidates' propensity to fake differs between AI-assisted assessment and non-AI-assisted assessment; and 3) to determine whether the mode of video interview synchrony (AVI vs. SVI) impacts the accuracy of human assessors or interviewers in detecting job candidates' faking behaviors.

2 Background and hypotheses

2.1 Applicant Faking in Employment Interviews

Interviewing is a widely utilized method for candidates to highlight their suitability and for interviewers to foster a positive employer image. It serves as a tool for IM, often prioritizing a positive image over complete truthfulness (Peck and Levashina, 2017; Wilhelmy et al., 2017). Interviewees' attempts to control their ideal self-image to affect interviewers' ratings are instances of IM (Swider et al., 2016). IM plays a central role in selection interviews, and job candidates can use different types of IM to present themselves in the best possible way while being honest or deceptive (faking) (Bourdage et al., 2018). For example, job candidates can use honest IM to promote their accomplishments related to job requirements, or they can use deceptive IM to fake answers to interview questions and state nonexistent achievements to obtain

a job offer (Marcus, 2009). Ho et al. (2021) also found that some interviewees may effectively use deceptive IM to enhance their prospects of being hired. Although it is debatable whether honest IM is an issue in personnel selection, deceptive IM has been found to significantly boost interviewer ratings, potentially leading to biases in hiring decisions (Roth et al., 2021).

According to "the model of faking likelihood in employment interviews" (Levashina and Campion, 2006), job applicants engage in deceptive behaviors during job interviews when they have a higher capability, willingness, and opportunity to fake. Additionally, more than 90% of job applicants admit to engaging in deception at least once during an employment interview using tactics such as slight image creation, extensive image creation, image protection, and ingratiation (Levashina and Campion, 2007). Slight image creation involves presenting the image of being a good candidate for the job that is close to the truth. Extensive image creation involves inventing the image of being a good candidate for a job that includes false information. Image protection involves defending the image of being a good candidate for the job which involves omitting negative information. Ingratiation involves gaining favor with the interviewer to improve the appearance of being a good candidate for the job by attempting to please the interviewer regardless of the selection criteria.

2.2 Applicant faking in AVIs vs. SVIs

The main difference between AVIs and SVIs is the real-time interaction. In an SVI mode, interviewees sit face-to-face with a real human interviewer(s) from the comfort of the interviewee's own device and location, whereas interviewees do not have the opportunity to interact or build rapport with the interviewer(s) in an AVI setting because there is no live interviewer in attendance (Brenner et al., 2016).

2.2.1 Media Richness in AVI vs. SVI

Media richness theory (Daft and Lengel, 1986) highlights that various media offer different levels of information richness, significantly shaping communication dynamics and outcomes. This theory elucidates why individuals tailor their communication strategies to different media. The richness of a medium is assessed using several criteria, including immediate feedback capacity, cues transmission, personalized information, and complexity of language usage. These criteria collectively influence communication dynamics and outcomes across diverse media (Apers & Derous, 2017).

In the context of employment video interviews, it implies that interviewees participating in AVIs may face challenges such as limited immediate feedback, diminished conveyance of non-verbal cues, fewer chances for personalized communication, and heightened difficulty in understanding complex or ambiguous messages compared to their counterparts in SVIs (Suen et al., 2019a).

2.2.2 Faking Likelihood in AVI vs. SVI

In line with media richness theory and the model of faking likelihood in employment interviews, regarding feedback capacity, an interviewee may believe that he or she has less capacity to immediately explain or mask his or her weaknesses to the interviewer(s) (image protection) in AVIs than in SVIs because no interviewer appears in AVIs. Regarding the transmission of cues, an interviewee has no interaction with an interviewer in AVIs and thus cannot detect any cues expressed by the interviewer (e.g., nodding and smiling) that can be used to adjust an answer to enhance (slight image creation) or invent (extensive image creation) an interviewee image to present person-job fit or to appear similar to the interviewer (ingratiation), unlike in SVIs.

Regarding the personalized communication style, an interviewee has no information about the

opportunity to tailor their communication style to conform to the interviewers' values or attitudes (ingratiation), which the interviewer's nonverbal signals may express in SVIs. With respect to understanding and deciphering ambiguous or complex messages, an interviewee has no chance to determine the preferences of an interviewer based on facial expressions or other nonverbal cues that may be meaningful for the job, the organization, or the hiring decision-makers personal values in AVIs, in contrast to SVIs (Shin et al., 2017). Therefore, the interviewee may have more difficulty utilizing cues to modify (slight image creation) or create better (extensive image creation) answers to fit job expectations, to omit information that may be negative for the job opportunity (image protection), or to praise or compliment the assessor (ingratiation). (see

Drawing on the rationale put forth by Basch et al. (2021), job candidates perceived it more difficult to engage in IM during mediated, lower media richness SVIs compared to face-to-face interviews. SVIs provide more information richness compared to AVIs, which lack immediate feedback, interaction, and opportunities to tailor communication styles to counterparts. Additionally, interviewees may struggle to comprehend ambiguous or complex messages conveyed by interviewers in AVIs (Hassell et al., 2017). Consequently, the limited opportunities for faking in AVIs relative to SVIs can be inferred. Based on these considerations, we propose the following:

Hypothesis 1: Interviewees tend to fake more in SVIs than in AVIs.

2.3 Applicant faking with AI vs. non-AI-assisted assessment

2.3.1 The Role of AI in Video Interviews

Some AVI and SVI service providers install an embedded AI algorithm to automatically infer interviewees' personality traits (Suen et al., 2019b), interview performance (called interviewability) (Naim et al., 2018), or interpersonal communication skills (Rao et al., 2017) according to interviewees' audio-visual expressions on video (Çeliktutan and Gunes, 2017). AI can also make hiring recommendations in actual employment interviews by extracting verbal or nonverbal cues from both the interviewee and the interviewer (Nguyen et al., 2014).

2.3.2 The Impact of AI on Applicant Faking Likelihood

Whether actual candidates exhibit varying faking tendencies in AI-assisted AVIs or SVIs remains unexplored (Basch et al., 2021; Lukacik et al., 2022). We can deduce the probability of this based on job applicants' capacity, willingness, and opportunity to fake during interviews, as outlined in the Model of Faking Likelihood (Levashina and Campion, 2006). If a candidate understands the criteria used by human interviewers, they are more likely to fake to align with these standards. However, when a candidate is uncertain about how AI assesses their interview performance, faking behavior may decrease because the candidate lacks knowledge about AI-assisted assessment criteria (Langer et al., 2020). Currently, job candidates can easily access interview questions and human selection criteria from target companies through platforms like Glassdoor (Suen et al., 2020b). However, they may struggle to comprehend AI assessment criteria due to limited explanations (Jaser et al., 2022).

In addition, in light of the model of volitional rating behavior (Kane, 1994) and expectancy theory (Vroom, 1964), a job candidate's willingness to fake in interviews depends on the perceived probability of being caught. When job applicants expect more risk of being caught faking, they are less likely to engage in the behaviors (Levashina and Campion, 2006). Because AI is perceived as a "smart" interviewer (Langer et al., 2019b), interviewees may be afraid that

their faking behaviors will be detected by the AI interviewer more easily than by human interviewers (Langer et al., 2020); therefore, they may have less willingness to engage in creating a slight or extensive image beyond a reasonable description of the truth or to enact ingratiation to gain a job opportunity (Levashina and Campion, 2007). The second hypothesis is proposed as follows:

Hypothesis 2: Interviewees tend to fake less in AI-assisted video interviews than in non-AI-assisted video interviews.

2.3 Human detection of applicant faking in AVIs vs. SVIs

Although applicant faking may threaten the validity of personnel interviews (Roulin and Powell, 2018), human interviewers have limited capacity to identify faking behaviors (Roulin et al., 2014), and only 12-19% of faking behaviors could be accurately detected across multiple studies (Roulin et al., 2015). Roulin and Powell (2018) argued that human interviewers could not identify applicants faking because they extensively use invalid nonverbal cues conveyed by interviewees to assess the interviewees' deception. For example, many human interviewers perceive that an interviewee is faking when the interviewee appears anxious. However, interviewees who fake more in the context of selection interviews attempt to control their expressions and demonstrate less anxiety (Schneider et al., 2015). Roulin and Powell (2018) proposed that a better method to detect faking behaviors for human interviewers or assessor(s) should focus on the content of interviewees' answers, and this method can be implemented better in behavioral-based structured interviews.

In line with media richness theory, SVIs have more information richness than AVIs (Köchling et al., 2022). Therefore, an interviewee has more opportunity to express nonverbal

cues in SVIs than in AVIs, and human interviewers or assessors may perceive richer nonverbal cues that are invalid for detecting faking behaviors in SVIs than in AVIs. Moreover, the presence of a picture-in-picture window during SVIs where an interviewer can observe his or her presentation in a mirror increases self-focused attention, which may cause cognitive loading and distract the interviewer's attention when evaluating the interviewee's answers (Horn and Behrend, 2017). We anticipate that interviewers can focus more on the content of interviewees' answers in AVIs than in SVIs because AVIs offer fewer nonverbal cues and no picture-in-picture window. Accordingly, interviewers/assessors have a higher probability of accurately detecting interviewees who are faking in AVIs than in SVIs and therefore have more opportunity to adjust the interviewee's score or evaluation based on their perceptions of faking behaviors. We propose our last hypothesis as follows:

Hypothesis 3: Interviewers/assessors can detect an interviewee's faking more accurately in AVIs than in SVIs.

3 Materials and methods

To address the aforementioned research questions, we carried out a field study involving actual job interviewers/assessors and job applicants in the context of employment interviews. The credibility of our study is particularly strong as the interviewers were experienced recruiters, and the interviewees were actual job applicants applying for an internship position. Through this field study, our research aims to provide insights into how AVI and AI influence the responses of job applicants and interviewers with regard to faking behaviors in AI video interviews.

3.1 Procedure and design

Suen, H. Y., & Hung, K. E. (2025). Comparing job applicant deception in asynchronous vs. synchronous video interviews, with and without AI-assisted assessments. *Information Technology & People*, *38*(2), 963–983. https://doi.org/10.1108/ITP-02-2023-0189

This field study aimed to investigate the faking behaviors of job applicants and the accuracy of interviewer detection in four different experimental selection interview conditions based on two settings: the asynchrony of video interview modes (AVI vs. SVI) and the use of AI-assisted assessment (AI vs. Non-AI). These four conditions include Non-AI-assisted AVIs (Non-AI-AVI), AI-assisted AVIs (AI-AVI), Non-AI-assisted SVIs (Non-AI-SVI), and AI-assisted SVIs (AI-SVI). The video interview modes were manipulated using different platforms, LINE (2022) for SVI and HRDA (2022) for AVI. The authors are co-developers of HRDA. The AI manipulation was done by instructing the interviewees that "My interview performance will be evaluated by an AI algorithm (in both AVI-AI and SVI-AI groups) / a human assessor/interviewer (in both AVI and SVI groups)."

In both AVI and SVI modes, each interviewee was assigned randomly to an interviewer/assessor and underwent an evaluation of their communication skills through a series of five behavioral-based structured interview questions used by a professional employer organization (PEO) that provides staffing services to employers for various job functions, including internships. An example of a sample question is "Can you describe a time when you had to resolve a conflict in a work environment? How did you go about it?" The interview process lasted approximately 18-25 minutes per candidate. Interviewees had three minutes to answer each question, preceded by one minute to think about or generate a response before the recording began for each question. The use of structured interviews in this study aimed to mitigate interference from interviewers' IM (e.g. rapport building, rapport building, selling, or smooth-talking) on applicants' behavior in the SVI context (Wilhelmy et al., 2017). A more reliable comparison was ensured by controlling this confounding factor during the comparison

with AVI. Furthermore, structured interviews helped prevent hasty evaluations by interviewers/assessors due to IM used by job applicants (Frieder et al., 2016).

In the SVI mode, interviews were conducted on video conferencing software, and interviewees were informed that their entire video interviews, including verbal and nonverbal messages, would be reviewed and assessed by an interviewer. The interviewers did not receive the resumes of the interviewees in advance to prevent any bias. In the AVI setting, interviews were conducted on a recorded video interview platform, and interviewees had access to a live recording preview window on their smartphone screen, similar to the SVI setting. Each question was presented on a separate screen, and interviewees were not allowed to request a re-record or review of their responses before moving on to the next question, just like in the SVI setting.

In the AI setting, interviewees were informed that their interview performances would be evaluated not only by a human interviewer/assessor but also with the assistance of AI algorithms, with the specific criteria used by each kept undisclosed. In the non-AI setting, interviewees were informed that their interview performances would be evaluated by a human, without disclosing the specific criteria used. To ensure the validity of this manipulation, we followed the approach of Langer et al. (2020) and asked all interviewees in the AI groups to confirm that they did not receive any information about how their interview performance would be evaluated. In both AI and non-AI settings, interviewees were allowed to complete their responses before moving on to the next question without interruption.

3.2 Participants

We recruited paired interviewers/assessors and interviewees through a PEO based on an academic-industry cooperation agreement. The interviewers/assessors were the PEO's actual

recruiters with an average of 8 years of interview experience who were invited to participate in the experiment and were offered a gift card worth approximately 30 USD as compensation. The interviewees were interested in pursuing intern job vacancies and were promised entrance to a second round of face-to-face interviews if their performance was satisfactory to the interviewers/assessors.

To reach the minimum required sample size for testing H1 and H2, we employed G*Power (Faul et al., 2009) to estimate the necessary sample size for an Independent Samples T-Test (one-tail) with a moderate effect size (d) of 0.5, an alpha level of 0.05, a power of 0.9, and two groups with an allocation ratio of 1. Given these criteria, our goal was to enlist at least 140 interviewer/assessor-interviewee pairs. Ultimately, our study involved 144 job interviewers and 144 job applicants, who were randomly divided into four groups: 70 pairs for the AVI group, 74 pairs for the SVI group, 72 pairs for the AI group, and 72 pairs for the non-AI group in the final analysis.

We also ensured that the total number of paired data points was sufficient for Pearson's correlation analysis (one-tails) by recruiting more participants than the required sample size of 88, based on the assumption of a moderate effect size of .30, alpha = 0.05, and power = 0.9. During the recruitment process, we discarded participants who failed to complete (5) or withdraw from (10) the survey or failed the manipulation check (1) for the AI treatment, leaving us with a final dataset for analysis.

3.2.1 Interviewees

A total of 144 graduate students and recent graduates seeking internship opportunities participated in the study, with 65 (45%) males and 79 (55%) females. The interviewees' ages ranged from 20 to 28 years (Mean = 23.56, Standard Deviation, SD = 0.93). Among them, 36%

held a Master's degree, while 64% had a bachelor's degree. Additionally, 28% had more than a year of full-time work experience, and 72% had part-time work experience. 13% had prior video interview experience.

To ensure voluntary participation and address concerns about self-reported faking, we implemented Powell et al.'s (2021) safeguard protocol. This involved sending an email invitation with a digital consent form to participants, assuring them of response confidentiality, and emphasizing the voluntary nature of participation. A post hoc check was conducted to gauge participants' confidence in response confidentiality, resulting in a mean value of 4.52 with an SD of 0.67. This aligns with Powell et al.'s (2021) findings, indicating the effectiveness of our safeguard procedure in reducing potential biases in participant responses, particularly regarding self-reported faking.

3.2.2 Interviewers/assessors

The study invited a total of 144 recruiters from the PEO to participate, of whom 98 (68%) were female and 46 (32%) were male HR professionals. The participating recruiters had an average of 8 years of employment interview experience. The interviewees were randomly assigned to one of four experimental settings and each interview was conducted in a one-on-one mode as per Fifić and Gigerenzer's (2014) method, which ensured that each interviewer/assessor was matched with only one interviewee. To ensure that the interviewers/assessors were familiar with the experimental procedures and knew how to operate the video interview platforms, they underwent a one-hour training session, during which they received assistance from the PEO's administrators. It should be noted that the interviewers/assessors had already used the SVI and AVI platforms to screen their job candidates before the study, as reported by Suen et al. (2019a).

3.3 Measures

After the interviews, both interviewees and interviewers/assessors completed a brief deceptive IM scale comprising 16 items to evaluate applicants' deceptive behaviors. This scale, adapted from Bourdage et al. (2018), consisted of four subscales: slight image creation (Cronbach's α = 0.82-0.85), extensive image creation (α = 0.80-0.83), image protection (α = 0.86-0.88), and ingratiation (α = 0.88-0.89). Scores were collected from both applicants' self-reports and interviewers'/assessors' perceptions. To compute overall faking scores for self-reported and interviewer/assessor perception, we averaged the scores across the four subscales, following the approach of Powell et al. (2021). Participants, including interviewers and assessors, as well as interviewees, were randomly assigned to one of four conditions, and paired data were collected, aligning scores from interviewers/assessors with self-reported scores from interviewees.

4 Results

4.1 Linear Relationships Between Variables

Before testing the hypotheses, we conducted a chi-square analysis and (Analysis of Variance, ANOVA) to investigate whether the interviewees' demographic characteristics such as age, sex, education, work experience, and video interview experience (Langer et al., 2016) had any impact on the group differences and dependent variables (i.e., applicant faking) in this study (Brandão et al., 2019). However, these analyses did not find any statistically significant factors (p<.05) that might have influenced the differences between the AVI and SVI modes or between the AI and non-AI settings. Therefore, we did not include these demographic data in the subsequent analyses.

Suen, H. Y., & Hung, K. E. (2025). Comparing job applicant deception in asynchronous vs. synchronous video interviews, with and without AI-assisted assessments. *Information Technology & People*, *38*(2), 963–983. https://doi.org/10.1108/ITP-02-2023-0189

To understand the patterns and linear relationships between the variables in this study, we conducted a Pearson correlation analysis, as shown in Table 1.

Table 1. Mean, SD, and Correlation matrix.

Varaibles	Mean	SD	1	2	3	4	5	6	7	8	9	10	11
1. Slight image creation (Self-reported)	3.16	0.75											
2. Extensive image creation (Self-reported)	3.01	0.92	.788***										
3. Image protection (Self-reported)	2.53	0.59	.434***	.429***									
4. Ingratiation (Self-reported)	3.03	0.74	.744***	.766***	.335***								
5. Overall Faking (Self-reported)	2.94	0.63	.770***	.921***	.616***	.869***							
6. Slight image creation (Interviewers/Assessors)	3.41	0.73	.116	.231**	.053	.293***	.216**						
7. Extensive image creation (Interviewers/Assessors)	3.31	0.68	.126	.198*	.182*	.288***	.237**	.492***					
8. Image protection (Interviewers/Assessors)	3.25	0.60	.277***	.312***	.141	.273***	.308***	.628***	.378***				
9. Ingratiation (Interviewers/Assessors)	3.30	0.74	.063	.073	.119	.162	.121	.555***	.782***	.501***			
10. Overall Faking (Interviewers/Assessors)	3.32	0.56	.170*	.242**	.148	.308***	.263**	.822***	.818***	.748***	.877***		
11. Video interview mode (SVI=2; AVI=1)	1.51	0.50	.299***	.284***	.082	.469***	.348***	.554***	.392***	.346***	.429***	.530***	
12. AI setting (AI=2; Non-AI=1)	1.50	0.50	254**	169*	041	089	172*	102	136	072	028	020	.028

^{*}p < .05, ** p < .01, *** p < .001

The matrix reveals that interviewees reported engaging in more faking behaviors (r = .284 to .469, p < .01) during SVIs compared to AVIs. Furthermore, interviewees indicated that they engaged in less extensive faking when AI was involved compared to non-AI interview settings (r = -.169 to -254, p < .05), except for image protection and ingratiation. Furthermore, interviewers/assessors noted a higher frequency of faking behaviors in interviewees during SVIs compared to AVIs (r = .346 to .554, p < .01). However, they did not perceive significant differences in faking behaviors when considering the presence or absence of AI-assisted assessment (p > .05). It's important to note that there was only a modest alignment in the perception of overall faking (r = .263, p < .01) and extensive image creation (r = .198, p < .05)

Suen, H. Y., & Hung, K. E. (2025). Comparing job applicant deception in asynchronous vs. synchronous video interviews, with and without AI-assisted assessments. *Information Technology & People*, *38*(2), 963–983. https://doi.org/10.1108/ITP-02-2023-0189

between interviewers/assessors and interviewees. There were no significant correlations found for the other three faking behaviors (p > .05).

4.2 Impact of AVI vs. SVI and AI vs. Non-AI on Faking

To evaluate H1 and H2, we conducted a series of independent samples T-tests to investigate the impact of synchrony of video interviews (AVI vs. SVI) and the use of AI-assisted assessment (AI vs. non-AI) on interviewees' overall faking scores and specific faking scores. Before examining the main effects of the two independent variables, it was determined that the interaction effects between the variables did not significantly impact the dependent variables. Figure 1 presents the mean scores of interviewees' self-reported and interviewers'/assessors' perceived faking behaviors of interviewees across different video interview modes and AI settings.

Figure 1. Applicant Faking Reported by Interviewees and Interviewers/Assessors

The T-test results, as shown in Table 2, revealed that the self-reported overall faking score in the AVI Group was significantly lower than in the SVI Group, with a substantial negative effect size (Cohen's d = -0.738), thereby supporting H1 based on the applicants' self-

Suen, H. Y., & Hung, K. E. (2025). Comparing job applicant deception in asynchronous vs. synchronous video interviews, with and without AI-assisted assessments. *Information Technology & People*, *38*(2), 963–983. https://doi.org/10.1108/ITP-02-2023-0189

reported data. Furthermore, self-reported faking scores for slight image creation, extensive image creation, and ingratiation in the AVI Group were also significantly lower than in the SVI Group, showing small to moderate negative effect sizes (Cohen's d = -0.164 to -0.622). However, no significant difference was found in self-protection between the AVI and SVI groups

 Table 2. Independent Samples T-Test Results

Independent Samples T-Test	Faking Behaviors	Source	t	р	Mean Difference	95% CI for Mean Difference		Cohen's d
						Lower	Mean Difference Lower Upper -0.684 -0.210 -0.81 -0.228 -0.292 0.098 -0.903 -0.473 -0.634 -0.243 -0.621 -0.141 -0.607 -0.009 -0.244 0.147 -0.373 0.111 -0.423 -0.011 -1.009 -0.606 -0.739 -0.325 -0.601 -0.228 -0.851 -0.410 -0.754 -0.438 -0.389 0.092 -0.038 0.408 -0.284 0.112 -0.286 0.202	
	Slight image creation		-3.728	< .001	-0.447	-0.684	-0.210	-0.622
AVI vs. SVI	Extensive image creation		-3.525	< .001	-0.519	-0.81	-0.228	-0.588
	Image protection		-0.984	0.327	-0.097	-0.292	0.098	-0.164
	Ingratiation		-6.335	< .001	-0.688	-0.903	-0.473	-1.056
	Overall faking	Salf ranart	-4.427	< .001	-0.439	-0.634	-0.243	-0.738
	Slight image creation	Self-report	-3.134	0.002	-0.381	-0.621	-0.141	-0.522
AI vs. Non-AI	Extensive image creation		-2.038	0.043	-0.308	-0.607	-0.009	-0.340
	Image protection		-0.492	0.623	-0.049	-0.244	0.147	-0.082
	Ingratiation		-1.066	0.288	-0.131	-0.373	0.111	-0.178
	Overall faking		-2.086	Mean Difference Lower Upper	-0.011	-0.348		
	Slight image creation		-7.928	< .001	-0.807	Lower Upper -0.684 -0.210 -0.81 -0.228 -0.292 0.098 -0.903 -0.473 -0.634 -0.243 -0.621 -0.141 -0.607 -0.009 -0.244 0.147 -0.373 0.111 -0.423 -0.011 -1.009 -0.606 -0.739 -0.325 -0.601 -0.228 -0.851 -0.410 -0.754 -0.438 -0.389 0.092 -0.038 0.408 -0.284 0.112 -0.286 0.202	-1.322	
	Extensive image creation		-5.071	< .001	-0.532	-0.739	-0.325	-0.846
AVI vs. SVI	Image protection		-4.39	< .001	-0.414	-0.601	-0.228	-0.732
	Ingratiation		-5.656	< .001	-0.631	-0.851	-0.410	-0.943
	Overall faking	Interviewers /	-7.454	< .001	-0.596	-0.754	-0.438	-1.243
AI vs. Non-AI	Slight image creation	Assessors	-1.222	0.224	-0.149	-0.389	0.092	-0.204
	Extensive image creation		1.637	0.104	0.185	-0.038	0.408	0.273
	Image protection		-0.859	0.392	-0.086	-0.284	0.112	-0.143
	Ingratiation		-0.338	0.736	-0.042	-0.286	0.202	-0.056
	Overall faking		-0.243	0.808	-0.023	0.094	0.163	-0.041

In terms of interviewers/assessors' perceptions, T-tests indicated that interviewees' overall and specific faking scores in the AVI groups were significantly lower than in the SVI group, accompanied by substantial negative effect sizes (Cohen's d = -0.732 to -1.322), thereby strongly supporting H1 from the interviewers' and assessors' perspective.

Suen, H. Y., & Hung, K. E. (2025). Comparing job applicant deception in asynchronous vs. synchronous video interviews, with and without AI-assisted assessments. *Information Technology & People*, *38*(2), 963–983. https://doi.org/10.1108/ITP-02-2023-0189

In examining the influence of AI on applicant faking, T-tests revealed that interviewees' self-reported overall faking score in the AI group was lower than that in the non-AI groups. This difference had a small negative effect size (Cohen's d = -0.217), thus supporting H2 based on the applicants' self-reports. When delving into specific dimensions, AI significantly reduced both slight and extensive image creation, with moderate negative effect sizes ranging from Cohen's d = -0.340 to -0.522. However, AI did not significantly (p > .05) affect interviewees' self-reported image protection or ingratiation.

From the perspective of interviewers and assessors, no statistically significant (p > .05) differences were found in either overall or specific faking scores between the AI and non-AI groups. As a result, H2 was not supported based on evaluations by interviewers and assessors.

4.3 Evaluating Faking Detection in AVI vs. SVI

To evaluate the accuracy of identifying applicant faking behaviors, we followed the approach of Roulin et al. (2014) by examining the correlation between interviewers'/assessors' perceptions of faking scores and the self-reported faking scores of interviewees. Simple linear regression was conducted to test H3, comparing the correlations between interviewees' self-reported faking scores and interviewers'/assessors' perceptions in both AVI and SVI settings.

Table 3. Correlation: Interviewee Self-Reports vs. Interviewer Perceptions

	Slight image creation	Extensive image creation	image protection	Ingratiation	Overall faking
SVI	.067	.032	.013	.006	.076
AVI	.148	.280*	.055	.109	.103
Steiger's Z-Value	974	-3.306**	516	-1.270	334

n = 144

^{**}p < .01; *p < .05

Table 3 presents the correlations between interviewees' self-reported faking scores and the perceptions of both interviewers and assessors. The results indicate that these correlations were generally higher in the AVI mode than in the SVI mode. To compare the correlation coefficients between SVI and AVI across different faking types, a Steiger's Z-test was employed with a significance level of α =0.05. The analysis results, as shown in Table 3, revealed that for extensive image creation, the correlation coefficients between SVI and AVI were significantly negatively different. However, for other specific faking behaviors and overall faking, the differences in correlation coefficients were not statistically significant. These findings suggest that the AVI mode allowed assessors to more accurately identify interviewees' fabricated responses compared to interviewers using the SVI mode. Consequently, our results provide partial support for H3.

4.4 Media Richness Impact on AVI and SVI Perceptions

To examine the impact of media richness on the distinct perceptions of AVI and SVI among interviewees and interviewers, a supplementary exploratory investigation was conducted. We recruited 60 new job candidates, who were not part of the original 144 participants from the main study, to gain experience with digital interviews. They followed the same procedure and were randomly assigned to either AVI or SVI conditions. Additionally, we invited 30 interviewers and 30 assessors from the original group of 144 participants to take part in a post-survey specifically designed for either AVI or SVI.

Consequently, a total of 30 interviewees and interviewers participated in the post-survey for SVI, while another 30 interviewees and 30 assessors engaged in the post-survey for AVI. As the PEO conducted the survey in an anonymous manner, access to respondents' demographic

data was not possible. This investigation encompassed both the 60 interviewers/assessors and the 60 interviewees who rated or completed the video interviews using AVI and SVI.

We employed a 13-item, five-point scale developed by Ferry et al. (2001) to investigate the perceived differences in media richness, specifically examining multiple channels, immediacy of feedback, and personalness. Multiple channels involve utilizing various senses for communication, whereas multiple cues refer to alternative ways of conveying information within a specific channel. Immediacy of feedback refers to the medium's ability to facilitate feedback and the speed at which feedback can be provided. Personalness relates to the extent to which a message conveyed through a specific medium is perceived as having a personal nature (see Ferry et al., 2001).

We conducted confirmatory factor analyses and reliability analyses to examine the three-factor scale. The survey results from interviewers/assessors and interviewees revealed a Comparative Fit Index (CFI) of 0.93 and 0.86, respectively, which can be considered an adequate level of fit. The three sub-dimensions of media richness, as well as Cronbach's α for the overall scale, ranged from 0.90 to 0.97 and 0.85 to 0.97, respectively, indicating a high level of internal consistency reliability.

A series of independent t-tests were conducted to examine the differences in media richness measures between AVI and SVI. For interviewers/assessors, the analysis revealed a significant difference in media richness measures between the two groups (t(58) = 12.422 - 16.232, p < .001). The effect sizes (Cohen's d) ranged from 3.207 to 4.191, indicating a large effect. These results suggest that SVI is perceived to have significantly higher levels of media richness compared to AVI by the interviewers/assessors. Similarly, for interviewees, a significant difference in media richness measures between the two groups was observed (t(58) = 11.623 - 11.623).

14.135, p < .001). The effect sizes (Cohen's d) ranged from 3.001 to 4.137, also indicating a large effect. The findings indicate that interviewees perceive SVI to possess significantly higher levels of media richness compared to AVI. Consequently, the analysis reveals notable differences in media richness between SVI and AVI, as perceived by both interviewers/assessors and interviewees. These differences have subsequent effects on their behaviors during the digital interviews conducted in this study. Figure 2 below presents the means of media richness for AVI and SVI as perceived by the 60 interviewers/assessors and interviewees.

Figure 2. Perceptions of AVI and SVI Among Interviewers and Interviewees

5 Discussion

Although AI-assisted video interviews are gaining popularity, future research should be conducted to investigate job candidates' actual IM in various video interview modes, as suggested by Lukacik et al. (2022). Furthermore, Basch et al. (2021) have called for research to

explore how applicant faking is manifested in AI-mediated platforms. Our study responds to these calls for research by examining the impact of AVI and AI (versus SVI and non-AI) used in employment screening on applicant faking and interviewer faking detection accuracy in the field of technology implementation and human scale of social processes (Liem et al., 2018; Melchers et al., 2022; Woods et al., 2020).

Our findings suggest that the intensity of faking behaviors among interviewees varies depending on the video interview mode (AVI versus SVI), as perceived by both interviewees and interviewers/assessors. SVIs, which provide more nonverbal cues for social signal processing, may result in a higher occurrence of faking behaviors compared to AVIs. SVIs didn't result in more information omission (image protection) compared to AVIs according to interviewees' self-reported data. This might be because the interview questions did not extensively cover past failure-related experiences of applicants, and the structured interview format lacked follow-up questions. As a result, interviewees felt less need for image protection, as reflected by the mean score of 2.53.

The study revealed that AI reduced the self-reported slight and extensive image creation of interviewees. However, based on the observations of interviewers/assessors, there were no significant differences in faking behaviors between AI-assisted assessment and non-AI-assisted assessment AVI or SVI modes. The finding is consistent with previous research, suggesting that the presence of AI in SVIs does not impact job candidates' faking intentions (Bill and Melchers, 2022).

The interviewers/assessors were unable to perceive any discernible differences in applicants' deceptions in the presence or absence of AI. One possible explanation is that the AI interface used in the study lacked visible interfaces or transparency (see Suen and Hung, 2023),

which may have failed to alert interviewees that their deceptions would be detected. The findings support previous research indicating that the use of AI assessment in video interviews does not negatively affect candidates' self-presentation (Köchling et al., 2022).

The structured interview format employed in this study may have influenced the effects of AI on different aspects of faking behaviors. Without follow-up questions, interviewees may have avoided discussing past failures (image protection) and adhered to expected norms (ingratiation) to pass faking detection. However, they may have believed that AI could more easily detect slight or extensive image creation, leading to a reduction in those behaviors during interactions with AI. While our findings support H2 based on self-reported overall faking scores, it is crucial to consider other factors that could have influenced the results.

Our research reinforces previous findings that indicate the limited ability of experienced interviewers to detect subtle forms of applicant faking, regardless of the inclusion of AI.

However, our results demonstrate that interviewers exhibited greater proficiency in identifying interviewees' self-reported extensive image creation in AVIs compared to SVIs. This finding suggests that SVIs have a higher media richness level compared to AVIs, which can cause interviewers to become easily distracted and observe too many invalid cues, leading to misjudgments of interviewees' exaggerations. In other words, using AVIs instead of SVIs can enhance assessors' detection accuracy for extensive image creation.

The paper provides multiple significant academic contributions. Firstly, it enhances our comprehension of the likely social impacts of utilizing various video interview modes (Baker et al., 2020; Lukacik et al., 2022) and AI algorithms in the hiring process (Zhang and Yencha, 2022), and more broadly, of AI application and human responses in the workplace (Yu et al., 2023). Moreover, our study refines the theoretical model of interviewee performance (Huffcutt et

al., 2011) by examining the effect of AI-assisted AVIs (Hickman et al., 2022). To our knowledge, this study may be one of the first to investigate how AVIs and AI influence interviewees' deceptive IM and interviewers' ability to detect deception.

Secondly, the current study extends and refines the model of faking likelihood in employment interviews (Levashina and Campion, 2006) in line with media richness theory and the model of volitional rating behavior based on expectancy theory in the context of both AVI and SVI with and without AI interacting with interviewees and interviewers. By understanding the role of media richness of the video interview mode in applicant faking behaviors, this research can help predict deceptive IM behaviors used by job interviewees in video interviews.

Lastly, the media richness of the video interview mode may affect the accuracy of faking detection by interviewers, particularly for extensive image creation. The roles of the faking likelihood model, volitional rating behavior, and expectancy offer insights into interactive computing regarding how AI video interviews impact interviewees' willingness to misrepresent their work experience or accomplishments.

This study has important practical implications for practitioners designing AI video interview systems for employers. One key recommendation is for employers to use AVIs with AI to auto-screen job applicants in the pre-selection phase, which can reduce the likelihood of deceptive IM when using AVI. In AVIs, there is no human interviewer to flatter or provide feedback, which can discourage applicants from engaging in deception. When AI is integrated into AVIs, it does not appear to influence assessors' evaluations of candidates' performance due to the use of deceptive IM tactics by the candidates.

Furthermore, employers should be aware that human interviewers have limited ability to detect faking behavior. Although AVIs can improve human detection accuracy, the improvement

is not substantial. Employers could consider incorporating AI as a copilot to complement the assessor's selection training in order to enhance the evaluation of candidates' interview performance. This approach can improve the accuracy and validity of faking detection in video interviews by reducing reliance on human observation and attribution of nonverbal cues (Monaro et al., 2022).

There are several notable limitations of this study that can guide future research. First, the results were generated under specific conditions, including the use of particular video interview tools, the absence of resumes, the omission of a warm-up phase, the use of single questions about past behavioral incidents without follow-up questions, and the presentation of intern roles as job openings. These conditions may limit the generalizability of the findings (see Lukacik et al., 2022). Future studies should re-examine faking behaviors in other contexts while controlling for all possible variables.

Second, the participants in this study had limited work and interview experience, and they lived in a society without restrictions on the use of AI video interviews in hiring, such as the Illinois Artificial Intelligence Video Interview Act. Therefore, future research should include more diverse and experienced participants from different states or countries to test the research model.

Third, while the interviewees in AI-assisted assessment groups knew that their interview performance would be evaluated, they may have been less cautious about how the AI evaluated their performance, as is the case in many real AI-assisted video interviews (Jaser et al., 2022). Therefore, future studies should design AI systems that transparently explain how they work in advance (Yu et al., 2023).

Fourth, the AI in this study did not have any visible interfaces, which might have decreased the interviewees' awareness of the AI's presence during the interview process (Suen and Hung, 2023). Future studies could characterize AI as a tangible avatar or immediate chatbot (Gkinko and Elbanna, 2022; Pillai et al., 2023a; Pillai et al., 2023b) and examine its effects on applicant faking.

Fifth, although self-reported scores are commonly regarded as a reliable criterion for assessing applicant faking (Powell et al., 2021), they are also susceptible to response bias (Bauhoff, 2014). Future research should consider adopting or developing machine learning models to assess interview deception in high-stakes contexts (cf. Monaro et al., 2022).

Finally, despite our supplementary study confirming differences in media richness, it's essential to acknowledge that SVIs and AVIs may not be completely equivalent aside from the richness of the media. Future research endeavors could explore alternative explanations for the observed effects, such as Media Synchronicity Theory (Dennis et al., 2008).

6 Conclusion

To conclude, our study aligns with the recommendation for AI video interview research to focus on human-AI interaction in AVIs, rather than conventional human-computer interactions in SVIs with non-AI systems. By examining the impact of video interview mode and AI on the interview process, our findings indicate that the use of AVIs can decrease interviewee deception, while the utilization of AI can reduce their tendency to create a highly crafted image. These results provide insight into the potential for AI-assisted video interviews to enhance selection validity in terms of applicant faking. Furthermore, our study provides valuable guidance for future research to examine the broader implications of AVIs and AI on workplace practices and theories.

Suen, H. Y., & Hung, K. E. (2025). Comparing job applicant deception in asynchronous vs. synchronous video interviews, with and without AI-assisted assessments. *Information Technology & People, 38*(2), 963–983. https://doi.org/10.1108/ITP-02-2023-0189

References

- Amaral, A.A., Powell, D.M. and Ho, J.L. (2019), "Why does impression management positively influence interview ratings? The mediating role of competence and warmth", *International Journal of Selection and Assessment*, Vol. 27 No. 3, pp. 315-327.

 https://doi.org/10.1111/ijsa.12260
- Apers, C. and Derous, E. (2017), "Are They Accurate? Recruiters' Personality Judgments in Paper versus Video Resumes," *Computers in Human Behavior*, Vol. 73, pp. 9-19. https://doi.org/10.1016/j.chb.2017.02.063
- Baker, D.A., Burns, D.M. and Kueny, C.R. (2020), "Just sit back and watch: large disparities between video and face-to-face interview observers in applicant ratings", *International Journal of Human-Computer Interaction*, Vol. 36 No. 22, pp. 1968-1979. https://doi.org/10.1080/10447318.2020.1805874.
- Blacksmith, N., Wilford, J.C., and Behrend, T.S. (2016), "Technology in the employment interview: A meta-analysis and future research agenda", *Personnel Assessment and Decisions*, Vol. 2 Iss. 1, pp. 12-20. https://doi.org/110.25035/pad.2016.002
- Basch, J. M., Melchers, K.G., Kurz, A., Krieger, M. and Miller, L. (2021), "It takes more than a good camera: Which factors contribute to differences between face-to-face interviews and videoconference interviews regarding performance ratings and interviewee perceptions?", *Journal of Business and Psychology*, Vol. 36, pp. 921-940. https://doi.org/10.1007/s10869-020-09714-3.
- Bauhoff, S. (2014), "Self-report bias in estimating cross-sectional and treatment effects", in Michalos, A. C. (Ed.), Encyclopedia of Quality of Life and Well-Being Research, Springer, pp. 5798-5800.

- Bill, B. and Melchers, K. G. (2023), "Thou Shalt not Lie! Exploring and testing countermeasures against faking intentions and faking in selection interviews", *International Journal of Selection and Assessment*, Vol. 31, pp. 22-44. https://doi.org/10.1111/ijsa.12402
- Bill, B. and Melchers, K. G. (2023), "Thou Shalt not Lie! Exploring and testing countermeasures against faking intentions and faking in selection interviews", *International Journal of Selection and Assessment*, Vol. 31, pp. 22-44. https://doi.org/10.1111/ijsa.12402
- Bourdage, J.S., Roulin, N. and Tarraf, R. (2018), ""I (might be) just that good": honest and deceptive impression management in employment interviews", *Personnel Psychology*, Vol. 71 No. 4, pp. 597-632. https://doi.org/10.1111/peps.12285
- Brandão, C., Silva, R. and Dos Santos, J.V. (2019), "Online recruitment in Portugal: Theories and candidate profiles", *Journal of Business Research*, Vol. 94, pp. 273-279. https://doi.org/10.1016/j.jbusres.2018.04.011.
- Brenner, F. S., Ortner, T. M. and Fay, D. (2016), "Asynchronous Video Interviewing as a New Technology in Personnel Selection: The Applicant's Point of View," *Frontiers in Psychology*, Vol. 7 Article No. 863. https://doi.org/10.3389/fpsyg.2016.00863
- Çeliktutan, O. and Gunes, H. (2017), "Automatic prediction of impressions in time and across varying context: Personality, attractiveness and likeability", *IEEE Transactions on Affective Computing*, Vol. 8, pp. 29-42. https://doi.org/10.1109/TAFFC.2015.2513401
- Daft, R. L. and Lengel, R. H. (1986), "Organizational Information Requirements, Media Richness and Structural Design," *Management Science*, Vol. 32 No. 5, pp. 554-571. https://doi.org/10.1287/mnsc.32.5.554

- Suen, H. Y., & Hung, K. E. (2025). Comparing job applicant deception in asynchronous vs. synchronous video interviews, with and without AI-assisted assessments. *Information Technology & People*, *38*(2), 963–983. https://doi.org/10.1108/ITP-02-2023-0189
- Dennis, A. R., Fuller, R. M., and Valacich, J. S. (2008), "Media, tasks, and communication processes: A theory of media synchronicity", *MIS Quarterly*, Vol. 32 No.3, pp. 575-600. https://doi.org/10.2307/25148660
- Donovan, J. J., Dwight, S. A., and Hurtz, G. M. (2003), "An Assessment of the Prevalence, Severity, and Verifiability of Entry-Level Applicant Faking Using the Randomized Response Technique", *Human Performance*, Vol. 16 No. 1, pp. 81–106. https://doi.org/10.1207/S15327043HUP1601_4
- Faul, F., Erdfelder, E., Buchner, A. and Lang, A. G. (2009), "Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses", *Behavior Research Methods*, Vol. 41 No. 4, pp. 1149-1160. https://doi.org/10.3758/brm.41.4.1149.
- Ferry, D. L., Kydd, C. T., and Sawyer, J. E. (2001), "Measuring Facts of Media Richness", *Journal of Computer Information Systems*, Vol. 41 No. 4, pp. 69-78.

 https://doi.org/10.1080/08874417.2001.11647026
- Fifić, M. and Gigerenzer, G. (2014), "Are two interviewers better than one?", *Journal of Business Research*, Vol. 67 No. 8, pp. 1771-1779. https://doi.org/10.1016/j.jbusres.2014.03.003.
- Frieder, R. E., Van Iddekinge, C. H., and Raymark, P. H. (2016), "How quickly do interviewers reach decisions? An examination of interviewers' decision-making time across applicants", *Journal of Occupational and Organizational Psychology*, Vol. 89 No. 2, pp. 223-248. https://doi.org/10.1111/joop.12118
- Gkinko, L. and Elbanna, A. (2022), "Hope, tolerance and empathy: employees' emotions when using an AI-enabled chatbot in a digitalised workplace", *Information Technology & People*, Vol. 35 No. 6, pp. 1714-1743. https://doi.org/10.1108/ITP-04-2021-0328

- Gkinko, L. and Elbanna, A. (2022), "Hope, tolerance and empathy: employees' emotions when using an AI-enabled chatbot in a digitalised workplace", *Information Technology & People*, Vol. 35 No. 6, pp. 1714-1743. https://doi.org/10.1108/ITP-04-2021-0328
- Guchait, P., Ruetzler, T., Taylor, J., and Toldi, N. (2014), "Video interviewing: A potential selection tool for hospitality managers-a study to understand applicant perspective",

 International Journal of Hospitality Management, Vol.36, pp. 90-100.

 https://doi.org/10.1016/j.ijhm.2013.08.004
- Hart, C.L., Lemon, R., Curtis, D.A. and Griffith, J. D. (2020), "Personality traits associated with various forms of lying", *Psychological Studies*, Vol. 65, pp. 239-246. https://doi.org/10.1007/s12646-020-00563-x.
- Hassell, M.D. and Cotton, J.L. (2017), "Some things are better left unseen: Toward more effective communication and team performance in video-mediated interactions", *Computers in Human Behavior*, Vol. 73, pp. 200-208. https://doi.org/10.1016/j.chb.2017.03.039
- Hickman, L., Bosch, N., Ng, V., Saef, R., Tay, L. and Woo, S.E. (2022), "Automated video interview personality assessments: reliability, validity, and generalizability investigations", *Journal of Applied Psychology*, Vol. 107 No. 9, pp. 1323-1351. https://doi.org/10.1037/apl0000695
- Ho, J. L., Powell, D. M. and Stanley, D. J. (2021), "The relation between deceptive impression management and employment interview ratings: A meta-analysis", *Canadian Journal of Behavioural Science*, Vol. 53 No. 2, pp. 164-174. https://doi.org/10.1037/cbs0000223

- Horn, R. G. and Behrend, T. S. (2017), "Video killed the interview star: Does picture-in-picture affect interview performance?", *Personality Assessment and Decision Processes*, Vol. 3, pp. 51-59. https://doi.org/10.25035/pad.2017.005.
- HRDA (2022), "The cloud interview intelligent", Retrieved April 7, 2022, from https://hrda.pro/.
- Huffcutt, A.I., Van Iddekinge, C.H. and Roth, P.L. (2011), "Understanding applicant behavior in employment interviews: A theoretical model of interviewee performance", *Human Resource Management Review*, Vol. 21 No. 4, pp. 353-367. https://doi.org/10.1016/j.hrmr.2011.05.003.
- Jaser, Z., Petrakaki, D., Starr, R. and Oyarbide-Magaña, E. (2022), "Where automated job interviews fall short", *Harvard Business Review*. https://hbr.org/2022/01/where-automated-job-interviews-fall-short
- Kane, J.S. (1994), "A model of volitional rating behavior", *Human Resource Management Review*, Vol. 4, pp. 283-310. https://doi.org/10.1016/1053-4822(94)90016-7
- Kim, J.-Y. and Heo, W. (2022), "Artificial intelligence video interviewing for employment: perspectives from applicants, companies, developer and academicians", *Information Technology & People*, Vol. 35 No. 4, pp. 861-878. https://doi.org/10.1108/itp-04-2019-0173
- Köchling, A., Wehner, M. C. and Warkocz, J. (2022), "Can I show my skills? Affective responses to artificial intelligence in the recruitment process", *Review of Managerial Science*, https://doi.org/10.1007/s11846-021-00514-4.
- Langer, M., König, C. and Hemsing, V. (2020), "Is anybody listening? The impact of automatically evaluated job interviews on impression management and applicant

- reactions", *Journal of Management Psychology*, Vol. 35 No. 4, pp. 271-284. https://doi.org/10.1108/JMP-03-2019-0156.
- Langer, M., König, C., Sanchez, D. and Samadi, S. (2019), "Highly automated interviews: applicant reactions and the organizational context", *Journal of Management Psychology*, Vol. 35 No. 4, pp. 301-314. https://doi.org/10.1108/JMP-09-2018-0402.
- Langer, M., König, C.J. and Fitili, A. (2018), "Information as a double-edged sword: the role of computer experience and information on applicant reactions towards novel technologies for personnel selection", *Computers in Human Behavior*, Vol. 81, pp. 19-30. https://doi.org/10.1016/j.chb.2017.11.036
- Langer, M., König, C.J. and Papathanasiou, M. (2019), "Highly automated job interviews: acceptance under the influence of stakes", *International Journal of Selection and Assessment*, Vol. 27 No. 2, pp. 217-234. https://doi.org/10.1111/ijsa.12246.
- Langer, M., König, C.J., Gebhard, P. and André, E. (2016), "Dear computer, teach me manners: Testing virtual employment interview training", *International Journal of Selection and Assessment*, Vol. 24 No. 3, pp. 312-323. https://doi.org/10.1111/ijsa.12150.
- Langer, M., König, C.J., and Krause, K. (2017), "Examining digital interviews for personnel selection: Applicant reactions and interviewer ratings", *International Journal of Selection and Assessment*, Vol. 25 No. 4, pp. 371-382. https://doi.org/10.1111/ijsa.12191
- Levashina, J. and Campion, M. A. (2006), "A Model of Faking Likelihood in the Employment Interview," *International Journal of Selection and Assessment*, Vol. 14 No. 4, pp. 299-316. https://doi.org/10.1111/j.1468-2389.2006.00353.x

- Levashina, J. and Campion, M. A. (2007), "Measuring Faking in the Employment Interview: Development and Validation of an Interview Faking Behavior Scale," *Journal of Applied Psychology*, Vol. 92, No. 6, pp. 1638-1656. https://doi.org/10.1037/0021-9010.92.6.1638
- Liem, C. C. S., Langer, M., Demetriou, A., Hiemstra, A. M. F., Wicaksana, A. S., Born, M. P. and König, C. J. (2018). "Psychology meets machine learning: Interdisciplinary perspectives on algorithmic job candidate screening". In H. J. Escalante, S. Escalera, I. Guyon, X. Baró, Y. Güçlütürk, U. Güçlü, & M. van Gerven (Eds.), Explainable and Interpretable Models in Computer Vision and Machine Learning (pp. 197–253). Springer International Publishing. https://doi.org/10.1007/978-3-319-98131-4-7
- LINE (2022), "Free voice & video calls", Retrieved April 7, 2022, from https://line.me/en/.
- Lukacik, E. R., Bourdage, J. S. and Roulin, N. (2022), "Into the void: A conceptual model and research agenda for the design and use of asynchronous video interviews", *Human Resource Management Review*, Vol. 32 No. 1, Article No. 100789. https://doi.org/10.1016/j.hrmr.2020.100789
- Marcus, B. (2009), "'Faking' from the Applicant's Perspective: A Theory of Self-presentation in Personnel Selection Settings," *International Journal of Selection and Assessment*, Vol. 17 No. 4, pp. 417-430. https://doi.org/10.1111/j.1468-2389.2009.00483.x
- Melchers, K., Roulin, N. and Buehl, A.-K. (2020), "A review of applicant faking in selection interviews", *International Journal of Selection and Assessment*, Vol. 28 No. 2, pp. 123-142. https://doi.org/10.1111/ijsa.12280.
- Mirowska, A. and Mesnet, L. (2022), "Preferring the devil you know: Potential applicant reactions to artificial intelligence evaluation of interviews", *Human Resource*

- Management Journal, Vol. 32 No. 2, pp. 364-383. https://doi.org/10.1111/1748-8583.12393
- Monaro, M., Maldera, S., Scarpazza, C., Sartori, G. and Navarin, N. (2022), "Detecting deception through facial expressions in a dataset of videotaped interviews: A comparison between human judges and machine learning models", *Computers in Human Behavior*, Vol. 127, Article No. 107063. https://doi.org/10.1016/j.chb.2021.107063.
- Naim, I., Tanveer, M.I., Gildea, D. and Hoque, M. E. (2018), "Automated analysis and prediction of job interview performance", *IEEE Transactions on Affective Computing*, Vol. 9, pp. 191-204. https://doi.org/10.1109/TAFFC.2016.2614299
- Nguyen, L.S., Frauendorfer, D., Mast, M.S. and Gatica-Perez, D. (2014), "Hire me:

 Computational inference of hirability in employment interviews based on nonverbal behavior", *IEEE Transactions on Multimedia*, Vol. 16, pp. 1018-1031.

 https://doi.org/10.1109/TMM.2014.2307169
- Pantic, M., Cowie, R., D'Errico, F., Heylen, D., Mehu, M., Pelachaud, C., Poggi, I., Schroeder,
 M. and Vinciarelli, A. (2011), "Social signal processing: The research agenda", in
 Moeslund, T. B., Hilton, A., Krüger, V. and Sigal, L. (Eds.), Visual Analysis of Humans:
 Looking at People, Springer, pp. 511-538.
- Peck, J. A., & Levashina, J. (2017), "Impression Management and Interview and Job
 Performance Ratings: A Meta-Analysis of Research Design with Tactics in Mind",
 Frontiers in Psychology, Vol. 8 No. 201. https://doi.org/10.3389/fpsyg.2017.00201
- Pillai, R., Ghanghorkar, Y., Sivathanu, B., Algharabat, R. and Rana, N.P. (2023a), "Adoption of artificial intelligence (AI) based employee experience (EEX) chatbots", *Information*

- Technology & People, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/ITP-04-2022-0287
- Pillai, R., Sivathanu, B., Metri, B. and Kaushik, N. (2023b), "Students' adoption of AI-based teacher-bots (T-bots) for learning in higher education", *Information Technology & People*, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/ITP-02-2021-0152
- Powell, D. M., Bourdage, J. S. and Bonaccio, S. (2021), "Shake and fake: The role of interview anxiety in deceptive impression management", *Journal of Business Psychology*, Vol. 36, pp. 829-840. https://doi.org/10.1007/s10869-020-09708-1.
- Rao, P.S.B., Rasipuram, S., Das, R. and Jayagopi, D. B. (2017), "Automatic assessment of communication skill in non-conventional interview settings: A comparative study", in
 Lank, E., Vinciarelli, A. and Subramanian, E. H. S. (Eds.), Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 221-229. ACM.
- Roth, L., Klehe, U. C., and Willhardt, G. (2021), "Liar, Liar, Pants on Fire: How Verbal Deception Cues Signal Deceptive Versus Honest Impression Management and Influence Interview Ratings", *Personnel Assessment and Decisions*, Vol. 7 No. 1. https://doi.org/10.25035/pad.2021.01.007
- Roulin, N. and Powell, D. M. (2018), "Identifying applicant faking in job interviews: Examining the role of criterion-based content analysis and storytelling", *Journal of Personality Psychology*, Vol. 17, pp. 143-154. https://doi.org/10.1027/1866-5888/a000207
- Roulin, N., Bangerter, A. and Levashina, J. (2014), "Interviewers' perceptions of impression management in employment interviews", *Journal of Management Psychology*, Vol. 29

 No. 1, pp. 141-163. https://doi.org/10.1108/JMP-10-2012-0295.

- Roulin, N., Bangerter, A. and Levashina, J. (2015), "Honest and deceptive impression management in the employment interview: can it be detected and how does it impact evaluations?", *Personnel Psychology*, Vol. 68 No. 2, pp. 395-444. https://doi.org/10.1111/peps.12079
- Schneider, L., Powell, D. M. and Roulin, N. (2015), "Cues to deception in the employment interview", *International Journal of Selection and Assessment*, Vol. 23 No. 2, pp. 182-190. https://doi.org/10.1111/ijsa.12106.
- Shin, S.Y., Liu, W., Jang, J.W. and Bente, G. (2017), "The Benefits of Distance and Mediation: How People React to Conflicts in Video Chat vs. FtF," *Computers in Human Behavior*, Vol. 73, pp. 1-8. https://doi.org/10.1016/j.chb.2017.03.022
- Su, Y.-S., Suen, H.-Y. and Hung, K.-E. (2021), "Predicting behavioral competencies automatically from facial expressions in real-time video-recorded interviews", *Journal of Real-Time Image Processing*, Vol. 18, pp. 1011-1021. https://doi.org/10.1007/s11554-021-01071-5
- Suen, H.-Y., and Hung, K.-E. (2023), "Building Trust in Automatic Video Interviews using Various AI Interfaces: Tangibility, Immediacy, and Transparency", *Computers in Human Behavior*, vol. 143 Article No.107713. https://doi.org/10.1016/j.chb.2023.107713
- Suen, H.Y., Chen, M.Y.C. and Lu, S.H. (2019), "Does the use of synchrony and artificial intelligence in video interviews affect interview ratings and applicant attitudes?", *Computers in Human Behavior*, Vol. 98 pp. 93-101.
 https://doi.org/10.1016/j.chb.2019.04.012

- Suen, H.-Y., Hung, K.-E. and Lin, C.L. (2019), "TensorFlow-based automatic personality recognition used in asynchronous video interviews", *IEEE Access*, Vol. 7, pp. 61018-61023. https://doi.org/10.1109/ACCESS.2019.2902863.
- Suen, H.-Y., Hung, K.-E. and Lin, C.L. (2020a), "Intelligent video interview agent used to predict communication skill and perceived personality traits", *Human-centric Computing and Information Sciences*, Vol. 10 No. 1, Article 3. https://doi.org/10.1186/s13673-020-0208-3.
- Suen, H.-Y., Hung, K.-E. and Tseng, F.-H. (2020b), "Employer Ratings through Crowdsourcing on Social Media: An Examination of U.S. Fortune 500 Companies", *Sustainability*, Vol. 12 No. 16 Article No. 6308. https://doi.org/10.3390/su12166308.
- Swider, B.W., Barrick, M.R. and Harris, T.B. (2016), "Initial impressions: what they are, what they are not, and how they influence structured interview outcomes", *Journal of Applied Psychology*, Vol. 101 No. 5, pp. 625-638. https://doi.org/10.1037/apl0000077
- van Esch, P., Black, J.S. and Ferolie, J. (2019), "Marketing AI recruitment: the next phase in job application and selection", *Computers in Human Behavior*, Vol. 90, pp. 215-222. https://doi.org/10.1016/j.chb.2018.09.009
- Vroom, V.H. (1964), "Work and motivation", Wiley.
- Wilhelmy, A., Kleinmann, M., Melchers, K.G., and Götz, M. (2017), "Selling and Smooth-Talking: Effects of Interviewer Impression Management from a Signaling Perspective", *Frontiers in Psychology*, Vol. 8 No.740. https://doi.org/10.3389/fpsyg.2017.00740
- Woods, S.A., Ahmed, S., Nikolaou, I., Costa, A.C. and Anderson, N.R. (2020), "Personnel selection in the digital age: a review of validity and applicant reactions, and future

Suen, H. Y., & Hung, K. E. (2025). Comparing job applicant deception in asynchronous vs. synchronous video interviews, with and without AI-assisted assessments. *Information Technology & People*, *38*(2), 963–983. https://doi.org/10.1108/ITP-02-2023-0189

- research challenges", *European Journal of Work and Organizational Psychology*, Vol. 29 No. 1, pp. 64-77. https://doi.org/10.1080/1359432X.2019.1681401
- Yu, X., Xu, S. and Ashton, M. (2023), "Antecedents and outcomes of artificial intelligence adoption and application in the workplace: the socio-technical system theory perspective", *Information Technology & People*, Vol. 36 No. 1, pp. 454-474. https://doi.org/10.1108/ITP-04-2021-0254
- Zhang, L. and Yencha, C. (2022), "Examining perceptions towards hiring algorithms", *Technology in Society*, Vol. 68 Article No. 101848. https://doi.org/10.1016/j.techsoc.2021.101848.