NMF

William Zhang, Eva, Jerry

2024-09-01

```
# load the packages
library(NMF)
library(tidyverse)
library(gridExtra)
library(readxl)
```

Procedure

- 1. Remove hourly observation with missing observation for any chemical
- 2. Remove background noise level using min values (except for chemicals with minimum value < 2*LOD and maximum value > 100*LOD)
- 3. Zero values are converted to a random value between 0 and 0.5*LOD
- 4. Normalize using min and max
- 5. Compute weight matrix according to Guha's paper, without LOQ

Reading the data

```
# read the radon data
# Old:
# hourly_radon <- readRDS("hourly_radon.rds")</pre>
# New:
hourly_data <- readRDS("../DataProcessing/Trailer_hourly_merge_20240905.rds")
# PROCEDURE STEP 1:
# remove NAs
hourly_nona <- hourly_data %>% select(-c(temp_bb,rhi, esf_bb, distToLovi,inv_dist,
                                          distToLovi_wells, monthly_oil, monthly_gas)) %>% na.omit()
vocs <- c("ethane", "ethene", "propane", "propene",</pre>
                                         "1_3-butadiene", "i-butane", "n-butane",
                                         "acetylene", "cyclopentane", "i-pentane",
                                         "n-pentane", "n-hexane", "isoprene", "n-heptane",
                                         "benzene", "n-octane", "toluene", "ethyl-benzene",
                                         "m&p-xylene", "o-xylene")
# retrieving the vocs, removing everything else except the vocs
hourly_vocs <- hourly_nona %>% select(any_of(vocs))
# retrieving the non-vocs: co2_ppm, nox, ch4, h2s, so2, o3
# double check this
non_vocs <- c('ch4', 'co2_ppm', 'co', 'h2s', 'so2', 'nox', 'o3')</pre>
hourly_non_vocs <- hourly_nona %>% select(all_of(non_vocs)) %>% rename('co2' = 'co2_ppm')
```

```
hourly_full_nona <- cbind(hourly_non_vocs, hourly_vocs)

# retrive a vector of yearmonth
hourly_dates <- hourly_nona %>%
   mutate(yearmonth = substring(day, 0, 7)) %>%
   pull(yearmonth)
```

Data visualisation

```
non_vocs <- c('ch4', 'co2', 'co', 'h2s', 'so2', 'nox', 'o3')
for (compound in non_vocs) {
    assign(paste0(compound, '_boxplot'),
        geplot(hourly_non_vocs) +
        geom_boxplot(aes(y = .data[[compound]])) +
        labs(x = compound, y = '') +
        theme_minimal())
}
grid.arrange(ch4_boxplot, co2_boxplot, co_boxplot, nrow = 1)</pre>
```


grid.arrange(h2s_boxplot, so2_boxplot, nox_boxplot, o3_boxplot, nrow = 1)


```
for (compound in vocs) {
  assign(pasteO(compound, '_boxplot'),
         ggplot(hourly_vocs) +
           geom_boxplot(aes(y = .data[[compound]])) +
           labs(x = compound, y = '') +
           theme_minimal())
}
grid.arrange(get(paste0(vocs[1], '_boxplot')), get(paste0(vocs[2], '_boxplot')),
             get(paste0(vocs[3], '_boxplot')), get(paste0(vocs[4], '_boxplot')), nrow = 1)
                                                   1250
   2000
                           15
                                                   1000
   1500
                                                                           4
                                                    750
                           10
   1000
                                                    500
                                                                           2
                            5
    500
                                                    250
                                                                           0
                                                      -0.4-0.20.0 0.2 0.4
       -0.4-0.20.0 0.2 0.4
                             -0.4-0.2 0.0 0.2 0.4
                                                                           -0.4 - 0.2 \ 0.0 \ 0.2 \ 0.4
            ethane
                                   ethene
                                                           propane
                                                                                 propene
grid.arrange(get(paste0(vocs[5], '_boxplot')), get(paste0(vocs[6], '_boxplot')),
```


Data preprocessing

```
# Define LOD for each chemical
LOD_non_voc \leftarrow c('ch4' = 0.9,
             co2' = 0.0433,
             'co' = 40,
             'h2s' = 0.4,
              'so2' = 0.4,
             'nox' = 0.05,
             '03' = 1)
LOD_voc_monthly <- read_csv('../data/LNM_VOC_LOD_Rounded.csv') %>% select(-1)
# extract the yearmonth from date variables
LOD_voc_monthly <- LOD_voc_monthly %>%
  mutate(yearmonth = strftime(as.POSIXct(start_date, format = '%Y-%m-%d %H:%M:%S', tz = 'UTC'), '%Y-%m'
LOD_voc_monthly <- LOD_voc_monthly %>%
  select(-c(start_date, end_date)) %>%
  select(!any_of(ends_with('half_ldl')))
colnames(LOD_voc_monthly) <- str_replace_all(names(LOD_voc_monthly), '_ldl', '')</pre>
LOD_voc_avg <- read_xlsx('../data/LNM_VOC_Uncertainties.xlsx', skip = 1)</pre>
LOD_voc_avg <- LOD_voc_avg %>%
  select(1, 4) %>%
```

```
rename('LOD' = 2, 'chemical' = 1) %>%
  head(20)
# find the min for background-levels
background_levels <- sapply(hourly_full_nona, min)</pre>
background_levels
##
              ch4
                             co2
                                             СО
                                                          h2s
                                                                         so2
##
        1928.000
                        411.300
                                        61.630
                                                        0.200
                                                                       0.200
##
             nox
                                        ethane
                                                       ethene
                                                                     propane
##
           0.025
                          0.500
                                         0.916
                                                        0.011
                                                                       0.224
##
         propene 1_3-butadiene
                                      i-butane
                                                     n-butane
                                                                   acetylene
##
           0.009
                          0.007
                                         0.035
                                                        0.090
                                                                       0.019
##
    cyclopentane
                      i-pentane
                                     n-pentane
                                                     n-hexane
                                                                    isoprene
##
           0.005
                          0.038
                                                        0.021
                                                                       0.005
                                         0.042
##
       n-heptane
                        benzene
                                      n-octane
                                                      toluene ethyl-benzene
##
           0.004
                          0.017
                                         0.004
                                                        0.004
                                                                       0.004
##
      m&p-xylene
                       o-xylene
##
           0.004
                          0.004
get_info <- function(column) {</pre>
  N <- length(column)
  background <- quantile(column, 0)</pre>
  quantile1 <- quantile(column, 0.01)</pre>
  quantile99 <- quantile(column, 0.99)</pre>
  n_background <- sum(column == background)</pre>
  max <- max(column)</pre>
  return(c(N, quantile1, quantile99, max, background, n_background))
}
info_table <- hourly_full_nona %>%
  reframe(across(everything(), ~ get_info(.x)))
info_table <- info_table %>%
  mutate(rownames = c('N', '1st percentile', '99th percentile', 'Max', 'Background', '# Background')) %
  pivot_longer(-rownames) %>%
  pivot_wider(names_from = rownames, values_from = value)
knitr::kable(info_table)
```

						#
name	N	1st percentile	99th percentile	Max	Background	Background
ch4	4497	1963.40000	6318.81200	34010.900	1928.000	1
co2	4497	417.09000	457.87120	503.990	411.300	1
co	4497	84.90720	444.04320	2513.440	61.630	1
h2s	4497	0.20000	5.18084	27.700	0.200	777
so2	4497	0.20000	1.83896	8.578	0.200	3065
nox	4497	0.22700	92.01080	452.959	0.025	2
03	4497	0.50000	72.11200	87.300	0.500	255
ethane	4497	1.80852	536.67200	2060.000	0.916	1
ethene	4497	0.01100	3.52212	16.970	0.011	163
propane	4497	0.81700	305.54000	1211.000	0.224	1
propene	4497	0.00900	0.70228	5.528	0.009	401
1_3-butadiene	4497	0.00700	0.05904	1.207	0.007	3126

name	N	1st percentile	99th percentile	Max	Background	# Background
i-butane	4497	0.14496	63.53760	296.600	0.035	1
n-butane	4497	0.34792	171.37600	536.900	0.090	1
acetylene	4497	0.04900	2.66204	8.471	0.019	1
cyclopentane	4497	0.00500	3.12356	13.460	0.005	96
i-pentane	4497	0.10396	51.02080	215.900	0.038	1
n-pentane	4497	0.10300	58.10280	258.800	0.042	1
n-hexane	4497	0.04196	18.32640	93.360	0.021	2
isoprene	4497	0.00500	0.03204	0.362	0.005	2815
n-heptane	4497	0.01500	6.58924	30.470	0.004	5
benzene	4497	0.02700	3.87512	9.610	0.017	3
n-octane	4497	0.00400	2.01452	6.867	0.004	100
toluene	4497	0.01296	3.53640	9.077	0.004	11
ethyl-benzene	4497	0.00400	0.31604	0.931	0.004	898
m&p-xylene	4497	0.00400	1.31824	3.123	0.004	814
o-xylene	4497	0.00400	0.45912	0.922	0.004	1266

```
# PROCEDURE STEP 2:
#adjustments that were made according to paper
#William: I'm quessing this refers to Gunnar's paper section 2.2 and Guha 3.3
# Check whether chemical has background noise level that needs to be removed
# i.e, NO ADJUSTMENT if minimum value < 2*LOD and maximum value > 100*LOD
adjusting_neg_bg_from_lod <- function(chemical, LOD, background, hourly_data){
    # get min and max
   min_value <- min(hourly_data[chemical], na.rm = TRUE)</pre>
   max_value <- max(hourly_data[chemical], na.rm = TRUE)</pre>
    \# if min less than double LOD or max > 100 times LOD
    # adjust to -100 (for entire column???)
   if (min_value < 2 * LOD & max_value > 100 * LOD ){
      return (0)
   }
  return (background)
# Check if background is negligible for non voc
# merge background and LOD
background_lod_non_voc <- tibble(chemical = non_vocs,</pre>
                                  LOD = LOD_non_voc,
                                  background = unname(background_levels[non_vocs]))
adjusted_background_non_voc <- background_lod_non_voc %>%
  rowwise() %>%
  mutate(min = min(hourly_full_nona[chemical], na.rm = TRUE),
         LODx2 = 2 * LOD,
         criterion1 = min(hourly_full_nona[chemical], na.rm = TRUE) < 2 * LOD,</pre>
         max = max(hourly_full_nona[chemical], na.rm = TRUE),
         LODx100 = 100 * LOD,
         criterion2 = max(hourly full nona[chemical], na.rm = TRUE) > 100 * LOD,
         adjusted_background = adjusting_neg_bg_from_lod(chemical, LOD, background, hourly_full_nona))
# Check if background is negligible for voc
# merge background and LOD
```

```
background_lod_voc <- LOD_voc_avg %>%
  left_join(tibble(chemical = setdiff(names(background_levels), non_vocs),
                   background = background_levels[setdiff(names(background_levels), non_vocs)]))
## Joining with `by = join_by(chemical)`
adjusted_background_voc <- background_lod_voc %>%
  rowwise() %>%
  mutate(min = min(hourly_full_nona[chemical], na.rm = TRUE),
         LODx2 = 2 * LOD,
         criterion1 = min(hourly_full_nona[chemical], na.rm = TRUE) < 2 * LOD,</pre>
         max = max(hourly full nona[chemical], na.rm = TRUE),
         LODx100 = 100 * LOD,
         criterion2 = max(hourly_full_nona[chemical], na.rm = TRUE) > 100 * LOD,
         adjusted_background = adjusting_neg_bg_from_lod(chemical, LOD, background, hourly_full_nona))
# So now we have the adjusted background concentrations
hourly_nona_bgrm <- hourly_full_nona %>%
  mutate(across(adjusted_background_non_voc$chemical, ~ .x - adjusted_background_non_voc$adjusted_back
hourly_nona_bgrm <- hourly_nona_bgrm %>%
  mutate(across(adjusted_background_voc$chemical, ~ .x - adjusted_background_voc$adjusted_background[a
# look at zero values
colSums(hourly_nona_bgrm == 0)
##
             ch4
                            co2
                                            СО
                                                         h2s
                                                                       so2
                                                                      3065
##
                                                         777
               1
                              1
                                            1
                                                                   propane
##
             nox
                             о3
                                       ethane
                                                      ethene
##
               0
                            255
##
         propene 1_3-butadiene
                                     i-butane
                                                    n-butane
                                                                 acetylene
##
               0
                           3126
                                            1
                                                           1
                                                                         0
##
    cyclopentane
                      i-pentane
                                    n-pentane
                                                    n-hexane
                                                                  isoprene
##
                              1
                                            1
                                                           2
                                                                      2815
##
       n-heptane
                        benzene
                                     n-octane
                                                     toluene ethyl-benzene
##
                              0
                                            0
                                                           0
                                                                         0
               0
##
      m&p-xylene
                       o-xylene
##
# PROCEDURE STEP 3
# replace zero values with random values between 0 and 0.5*LOD
set.seed(123)
replace_zero_with_random <- function(column, name, LOD_df){</pre>
  LOD <- LOD_df$LOD[LOD_df$chemical == name]
  column <- if_else(column == 0, round(runif(length(column), 0, 0.5 * LOD), 3), column)</pre>
  return (column)
}
hourly_nona_bgrm_zerorepl <- hourly_nona_bgrm %>%
  mutate(across(adjusted_background_non_voc$chemical, ~ replace_zero_with_random(.x, cur_column(), adju
hourly_nona_bgrm_zerorepl <- hourly_nona_bgrm_zerorepl %>%
```

mutate(across(adjusted_background_voc\$chemical, ~ replace_zero_with_random(.x, cur_column(), adjusted

Median :0.019717

3rd Qu.:0.057853

1st Qu.:0.005317

Median :0.017889

3rd Qu.:0.055078

n-heptane

:0.041448

:1.000000

:0.000000

:0.039271

:1.000000

##

##

##

##

##

##

##

Mean

Max.

Min.

Mean

Max.

Median: 0.018229

3rd Qu.:0.054789

benzene

1st Qu.:0.01574

Median: 0.04097

3rd Qu.:0.10706

:0.039184

:1.000000

:0.00000

:0.07624

:1.00000

Mean

Max.

Min.

Mean

Max.

```
Normalize the non-vocs
#normalizing function
normalize_column <- function(column){</pre>
  background <- quantile(column, 0)</pre>
  max <- quantile(column, 1) # this could be adjusted</pre>
  return ((column - background)/(max - background))
}
# normalize all
hourly_nona_bgrm_zerorepl_norm <- as_tibble(sapply(as.list(hourly_nona_bgrm_zerorepl), normalize_column
summary(hourly_nona_bgrm_zerorepl_norm)
##
         ch4
                                                                   h2s
                              co2
                                                 СО
           :0.000000
                                :0.0000
                                                                     :0.00000
##
    Min.
                        Min.
                                          Min.
                                                  :0.00000
                                                              Min.
##
    1st Qu.:0.005697
                        1st Qu.:0.1397
                                          1st Qu.:0.02347
                                                              1st Qu.:0.01022
    Median : 0.014615
                        Median: 0.1826
                                          Median : 0.03663
                                                              Median: 0.02338
##
    Mean
            :0.027164
                        Mean
                                :0.1998
                                          Mean
                                                  :0.04550
                                                              Mean
                                                                     :0.03517
##
    3rd Qu.:0.037362
                        3rd Qu.:0.2415
                                           3rd Qu.:0.05734
                                                              3rd Qu.:0.04564
##
    Max.
            :1.000000
                        Max.
                                :1.0000
                                                 :1.00000
                                                              Max.
                                                                     :1.00000
##
         so2
                             nox
                                                   о3
                                                                   ethane
##
    Min.
            :0.000000
                        Min.
                                :0.000000
                                            Min.
                                                    :0.0000
                                                               Min.
                                                                       :0.000000
##
    1st Qu.:0.007997
                        1st Qu.:0.006515
                                                               1st Qu.:0.008171
                                             1st Qu.:0.1117
    Median : 0.015756
                        Median: 0.020376
                                             Median :0.2960
                                                               Median : 0.026203
##
    Mean
            :0.026295
                                :0.036923
                                                    :0.3080
                        Mean
                                            Mean
                                                               Mean
                                                                       :0.051422
    3rd Qu.:0.023633
                        3rd Qu.:0.050500
                                             3rd Qu.:0.4735
                                                               3rd Qu.:0.075895
##
                                                    :1.0000
##
    Max.
           :1.000000
                        Max.
                                :1.000000
                                            Max.
                                                               Max.
                                                                      :1.000000
                                               propene
                                                                1 3-butadiene
##
        ethene
                          propane
##
            :0.00000
                                                   :0.000000
                                                                Min.
    Min.
                       Min.
                               :0.000000
                                            Min.
                                                                        :0.000000
##
    1st Qu.:0.01303
                       1st Qu.:0.009005
                                            1st Qu.:0.005798
                                                                1st Qu.:0.001667
##
    Median :0.03615
                       Median : 0.028067
                                            Median :0.018663
                                                                Median : 0.004167
    Mean
           :0.05116
                       Mean
                               :0.054283
                                            Mean
                                                   :0.028932
                                                                Mean
                                                                        :0.007500
    3rd Qu.:0.07324
##
                       3rd Qu.:0.081075
                                            3rd Qu.:0.043305
                                                                3rd Qu.:0.007500
##
    Max.
            :1.00000
                       Max.
                               :1.000000
                                            Max.
                                                   :1.000000
                                                                Max.
                                                                        :1.000000
##
       i-butane
                           n-butane
                                               acetylene
                                                                 cyclopentane
##
            :0.000000
                                :0.000000
                                                    :0.00000
                                                                        :0.00000
    Min.
                        Min.
                                            Min.
                                                                Min.
##
    1st Qu.:0.005999
                        1st Qu.:0.008556
                                             1st Qu.:0.02769
                                                                1st Qu.:0.007284
##
    Median :0.019042
                        Median :0.027302
                                            Median :0.05265
                                                                Median : 0.022445
##
    Mean
           :0.038815
                        Mean
                                :0.055538
                                             Mean
                                                    :0.07600
                                                                Mean
                                                                       :0.043917
                                             3rd Qu.:0.10400
##
    3rd Qu.:0.054019
                        3rd Qu.:0.078140
                                                                3rd Qu.:0.062356
##
    Max.
            :1.000000
                        Max.
                                :1.000000
                                                    :1.00000
                                                                Max.
                                                                        :1.000000
##
                                                n-hexane
      i-pentane
                          n-pentane
                                                                   isoprene
##
            :0.000000
                                :0.000000
                                            Min.
                                                    :0.00000
                                                                Min.
                                                                        :0.000000
    1st Qu.:0.006092
                        1st Qu.:0.005596
                                             1st Qu.:0.00465
                                                                1st Qu.:0.002801
##
```

Median :0.01578

3rd Qu.:0.04925

n-octane

1st Qu.:0.008014

Median :0.025499

3rd Qu.:0.076206

:0.03511

:1.00000

:0.000000

:0.054094

:1.000000

Mean

Max.

Min.

Mean

Max.

Median :0.005602

3rd Qu.:0.011204

toluene

1st Qu.:0.01345

Median :0.04122

3rd Qu.:0.11165

:0.010377

:1.000000

:0.00000

:0.07760

:1.00000

Mean

Max.

Min.

Mean

Max.

```
## ethyl-benzene
                      m&p-xylene
                                        o-xylene
         :0.000000 Min.
                          :0.000000 Min.
## Min.
                                           :0.00000
                                     1st Qu.:0.00000
## 1st Qu.:0.006472 1st Qu.:0.006733
## Median :0.032363 Median :0.037512
                                     Median :0.04031
## Mean :0.061284
                   Mean
                          :0.076834
                                     Mean :0.08577
                    3rd Qu.:0.113177
## 3rd Qu.:0.088457
                                     3rd Qu.:0.12745
         :1.000000
## Max.
                   Max. :1.000000
                                     Max.
                                           :1.00000
```

Combine and Transpose

```
normalized_matrix <- as.matrix(hourly_nona_bgrm_zerorepl_norm) #important: using the normalized VOCs for # Transpose <- cbind(Normalized_Data, Merged_VOCs) # rownames(Transpose) <- as.character(Transpose[,1]) # I'm not able to run this line, but it shouldn't # transpose_normalized_matrix <- t(as.matrix(normalized_matrix))

number_row<- dim(normalized_matrix)[1] #store number of rows (used for checking) number_column<- dim(normalized_matrix)[2] #store number of columns
```

NMF section

} else {

} }

Based on the Guha paper

compute weight matrix (uncertainties)

```
# next comment is from the other nmf R file
weight_matrix <- matrix(0, nrow = nrow(normalized_matrix), ncol = ncol(normalized_matrix))</pre>
LOD_merged <- tibble(chemical = c(adjusted_background_non_voc$chemical, adjusted_background_voc$chemica
                      LOD = c(adjusted_background_non_voc$LOD, adjusted_background_voc$LOD))
LOD_merged <- tibble(chemical = names(hourly_nona_bgrm_zerorepl_norm)) %>%
 left_join(LOD_merged)
## Joining with `by = join_by(chemical)`
# creating uncertainty Matrix
for (i in 1:number_row) {
  for (j in 1:number_column) {
    xij <- normalized_matrix[i, j]</pre>
    LOD <- LOD_merged$LOD[[j]]
    # Get LOD value for this row
    if (j == 1) {
      # based on equation 6, we sqrt ch4 (at column = 1) and times by 1
      weight_matrix[i, j] <- sqrt(xij)</pre>
    } else if (j == 2) {
      # 0.25 for co2
      weight_matrix[i, j] <- 0.25 * sqrt(xij)</pre>
    } else if (j == 3) {
      # 0.5 for CO
      weight_matrix[i, j] <- 0.5 * sqrt(xij)</pre>
    } else if (xij <= LOD) {</pre>
      weight_matrix[i, j] <- 2 * LOD # equation 5a) in reference paper</pre>
```

 $weight_matrix[i, j] \leftarrow sqrt(((0.1 * xij)**2 + LOD**2))$ #equation 5c) in reference paper

```
# plots the NMF rank survey
plot(estimate_rank)
```

NMF rank survey

Factorization rank

Source contributions

NMF - SVD seed

NMF Reconstruction Error vs. Number of Components

Method comparisons

Remove Ozone

4 Components

5 Components

```
nmf result 5c less o3 <- nmf(normalized matrix less o3, rank = 5, method = "KL", seed='nndsvd')
## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre
   Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
   Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre
   Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
   Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termp) * uup: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
## Warning in sqrt(S[i] * termp) * vvp: Recycling array of length 1 in array-vector arithmetic is depre
    Use c() or as.vector() instead.
basis_matrix_5c_less_o3 <- basis(nmf_result_5c_less_o3)</pre>
coef_matrix_5c_less_o3 <- coef(nmf_result_5c_less_o3)</pre>
par(mfrow = c(1, 2))
image(basis_matrix_5c_less_o3, main = "Basis Matrix (W)")
image(coef_matrix_5c_less_o3, main = "Coefficient Matrix (H)")
```

Basis Matrix (W)

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.0

0.4

0.6

8.0

1.0

Coefficient Matrix (H)


```
# Convert H to a data frame for ggplot
H_df_5c_less_o3 <- as.data.frame(coef_matrix_5c_less_o3)</pre>
# Add a column for chemicals
H_df_5c_less_o3$Component <- rownames(H_df_5c_less_o3)</pre>
# Reshape data to long format
H_long_5c_less_o3 <- pivot_longer(H_df_5c_less_o3, cols = -Component, names_to = "Chemical", values_to
nmfplt_1_svd_5c_less_o3 <- get_component_plot(H_long_5c_less_o3,</pre>
                                             '1', 'Component 1 nndsvd Less ozone, 5c')
nmfplt_2_svd_5c_less_o3 <- get_component_plot(H_long_5c_less_o3,</pre>
                                             '2', 'Component 2 nndsvd Less ozone, 5c')
nmfplt_3_svd_5c_less_o3 <- get_component_plot(H_long_5c_less_o3,</pre>
                                             '3', 'Component 3 nndsvd Less ozone, 5c')
nmfplt_4_svd_5c_less_o3 <- get_component_plot(H_long_5c_less_o3,</pre>
                                             '4', 'Component 4 nndsvd Less ozone, 5c')
nmfplt_5_svd_5c_less_o3 <- get_component_plot(H_long_5c_less_o3,
                                             '5', 'Component 5 nndsvd Less ozone, 5c')
```


Wind plots

```
hourly_wind_nona <- hourly_nona %>%
    select(wdr_deg, wsp_ms)

data_to_plot <- tibble(
    component1 = basis(nmf_result_5c_less_o3)[,1],
    component2 = basis(nmf_result_5c_less_o3)[,2],
    component3 = basis(nmf_result_5c_less_o3)[,3],
    component4 = basis(nmf_result_5c_less_o3)[,4],
    component5 = basis(nmf_result_5c_less_o3)[,5],
    wd = round(hourly_wind_nona$wdr_deg, -1)
)

# ) %>%
# pivot_longer(cols = c(1:5), names_to = 'component', values_to = 'component_wind')
# data_to_plot %>%
```

```
# ggplot(aes(x = wd, y = component_wind, group = wd, fill = component)) +
# geom_boxplot() +
# facet_wrap(~component)
```

NMF factor expression vs Wind Direction (Component 1)

NMF factor expression vs Wind Direction (Component 2)

NMF factor expression vs Wind Direction (Component 3)

NMF factor expression vs Wind Direction (Component 4)

NMF factor expression vs Wind Direction (Component 5)

6 Components

Wind plots

Remove Ozone + chemicals with more than 500+ background values

- 4 Components
- 5 Components

Compare to 4 components