第二章 随机变量及其分布

习题 2.1

- 口袋中有5个球,编号为1,2,3,4,5. 从中任取3只,以X表示取出的3个球中的最大号码.
 - (1) 试求X的分布列:
 - (2) 写出 X 的分布函数, 并作图.
- 解: (1) X的全部可能取值为 3, 4, 5,

$$\mathbb{H} P\{X=3\} = \frac{1}{\binom{5}{3}} = \frac{1}{10} = 0.1, \quad P\{X=4\} = \frac{\binom{3}{2}}{\binom{5}{3}} = \frac{3}{10} = 0.3, \quad P\{X=5\} = \frac{\binom{4}{2}}{\binom{5}{3}} = \frac{6}{10} = 0.6,$$

故 X 的分布列为

$$\frac{X \mid 3 \quad 4 \quad 5}{P \mid 0.1 \quad 0.3 \quad 0.6};$$

(2) 因分布函数 $F(x) = P\{X \le x\}$, 分段点为 x = 3, 4, 5,

$$\stackrel{\text{def}}{=} 3 \le x < 4 \text{ lpd}, \quad F(x) = P\{X \le x\} = P\{X = 3\} = 0.1,$$

$$\stackrel{\text{def}}{=}$$
 x ≥ 5 $\stackrel{\text{def}}{=}$ F(x) = P{X ≤ x} = P{X = 3} + P{X = 4} + P{X = 5} = 0.1 + 0.3 + 0.6 = 1,

- 一颗骰子抛两次, 求以下随机变量的分布列:
 - (1) X表示两次所得的最小点数;
 - (2) Y表示两次所得的点数之差的绝对值.
- 解: (1) X的全部可能取值为 1, 2, 3, 4, 5, 6,

$$\mathbb{E} P\{X=1\} = \frac{6^2 - 5^2}{6^2} = \frac{11}{36}, \quad P\{X=2\} = \frac{5^2 - 4^2}{6^2} = \frac{9}{36},$$

$$P\{X=3\} = \frac{4^2 - 3^2}{6^2} = \frac{7}{36}, \quad P\{X=4\} = \frac{3^2 - 2^2}{6^2} = \frac{5}{36},$$

$$P\{X=5\} = \frac{2^2 - 1}{6^2} = \frac{3}{36}, \quad P\{X=6\} = \frac{1}{6^2} = \frac{1}{36},$$

故X的分布列为

(2) Y的全部可能取值为 0, 1, 2, 3, 4, 5,

$$\mathbb{E} P\{Y=0\} = \frac{6}{6^2} = \frac{6}{36}, \quad P\{Y=1\} = \frac{5 \times 2}{6^2} = \frac{10}{36},$$
$$P\{Y=2\} = \frac{4 \times 2}{6^2} = \frac{8}{36}, \quad P\{Y=3\} = \frac{3 \times 2}{6^2} = \frac{6}{36},$$

$$P{Y = 4} = \frac{2 \times 2}{6^2} = \frac{4}{36}$$
, $P{Y = 5} = \frac{1 \times 2}{6^2} = \frac{2}{36}$

故Y的分布列为

- 3. 口袋中有7个白球、3个黑球.
 - (1) 每次从中任取一个不放回,求首次取出白球的取球次数X的概率分布列;
 - (2) 如果取出的是黑球则不放回,而另外放入一个白球,此时X的概率分布列如何.
- 解: (1) X的全部可能取值为 1, 2, 3, 4,

$$\mathbb{E} P\{X=1\} = \frac{7}{10}, \quad P\{X=2\} = \frac{3}{10} \times \frac{7}{9} = \frac{7}{30},$$

$$P\{X=3\} = \frac{3}{10} \times \frac{2}{9} \times \frac{7}{8} = \frac{7}{120}, \quad P\{X=4\} = \frac{3}{10} \times \frac{2}{9} \times \frac{1}{8} \times \frac{7}{7} = \frac{1}{120},$$

故X的概率分布列为

(2) X的全部可能取值仍为 1, 2, 3, 4,

$$\mathbb{E} P\{X=1\} = \frac{7}{10} = 0.7 , \quad P\{X=2\} = \frac{3}{10} \times \frac{8}{10} = 0.24 ,$$

$$P\{X=3\} = \frac{3}{10} \times \frac{2}{10} \times \frac{9}{10} = 0.054 , \quad P\{X=4\} = \frac{3}{10} \times \frac{2}{10} \times \frac{1}{10} \times \frac{10}{10} = 0.006 ,$$

故X的概率分布列为

- 4. 有3个盒子,第一个盒子装有1个白球、4个黑球;第二个盒子装有2个白球、3个黑球;第三个盒子装有3个白球、2个黑球.现任取一个盒子,从中任取3个球.以*X*表示所取到的白球数.
 - (1) 试求 X 的概率分布列;
 - (2) 取到的白球数不少于 2 个的概率是多少?
- 解:设 A_1, A_2, A_3 分别表示"取到第一个、第二个、第三个盒子",
 - (1) X的全部可能取值为 0, 1, 2, 3,

$$= \frac{1}{3} \times \frac{\binom{4}{3}}{\binom{5}{3}} + \frac{1}{3} \times \frac{\binom{3}{3}}{\binom{5}{3}} + \frac{1}{3} \times 0 = \frac{4}{30} + \frac{1}{30} + 0 = \frac{1}{6},$$

$$P{X=1} = P(A_1)P{X=1 | A_1} + P(A_2)P{X=1 | A_2} + P(A_3)P{X=1 | A_3}$$

$$= \frac{1}{3} \times \frac{1 \times \binom{4}{2}}{\binom{5}{3}} + \frac{1}{3} \times \frac{\binom{2}{1}\binom{3}{2}}{\binom{5}{3}} + \frac{1}{3} \times \frac{\binom{3}{1}\binom{2}{2}}{\binom{5}{3}} = \frac{6}{30} + \frac{6}{30} + \frac{3}{30} = \frac{1}{2},$$

$$P\{X=2\} = P(A_1)P\{X=2 \mid A_1\} + P(A_2)P\{X=2 \mid A_2\} + P(A_3)P\{X=2 \mid A_3\}$$

$$= \frac{1}{3} \times 0 + \frac{1}{3} \times \frac{\binom{2}{2}\binom{3}{1}}{\binom{5}{3}} + \frac{1}{3} \times \frac{\binom{3}{2}\binom{2}{1}}{\binom{5}{3}} = 0 + \frac{3}{30} + \frac{6}{30} = \frac{3}{10},$$

 $P\{X=3\} = P(A_1)P\{X=3 | A_1\} + P(A_2)P\{X=3 | A_2\} + P(A_3)P\{X=3 | A_3\}$

$$= \frac{1}{3} \times 0 + \frac{1}{3} \times 0 + \frac{1}{3} \times \frac{\binom{3}{3}}{\binom{5}{3}} = 0 + 0 + \frac{1}{30} = \frac{1}{30},$$

故 X 的概率分布列为

(2) 所求概率为
$$P\{X \ge 2\} = P\{X = 2\} + P\{X = 3\} = \frac{3}{10} + \frac{1}{30} = \frac{10}{30} = \frac{1}{3}$$
.

- 5. 掷一颗骰子 4 次, 求点数 6 出现的次数的概率分布.
- 解:设X表示点数 6 出现的次数,有X的全部可能取值为 0, 1, 2, 3, 4,

且试验次数 n=4,每次掷骰子点数 6 出现的概率 $p=\frac{1}{6}$,

$$\text{for } P\{X=0\} = \binom{4}{0} \times \left(\frac{1}{6}\right)^0 \times \left(\frac{5}{6}\right)^4 = \frac{625}{1296} \; , \quad P\{X=1\} = \binom{4}{1} \times \left(\frac{1}{6}\right)^1 \times \left(\frac{5}{6}\right)^3 = \frac{500}{1296} \; ,$$

$$P\{X=2\} = {4 \choose 2} \times \left(\frac{1}{6}\right)^2 \times \left(\frac{5}{6}\right)^2 = \frac{150}{1296}, \quad P\{X=3\} = {4 \choose 3} \times \left(\frac{1}{6}\right)^3 \times \left(\frac{5}{6}\right)^1 = \frac{20}{1296},$$

$$P\{X=4\} = {4 \choose 4} \times \left(\frac{1}{6}\right)^4 \times \left(\frac{5}{6}\right)^0 = \frac{1}{1296}$$

故X的概率分布列为

- 6. 从一副 52 张的扑克牌中任取 5 张,求其中黑桃张数的概率分布.
- 解:设X表示黑桃张数,有X的全部可能取值为0,1,2,3,4,5,

$$\mathbb{P}\{X=0\} = \frac{\binom{13}{0}\binom{39}{5}}{\binom{52}{5}} = \frac{575757}{2598960} = 0.2215 , \quad P\{X=1\} = \frac{\binom{13}{1}\binom{39}{4}}{\binom{52}{5}} = \frac{1069263}{2598960} = 0.4114 ,$$

$$P\{X=2\} = \frac{\binom{13}{2}\binom{39}{3}}{\binom{52}{5}} = \frac{712842}{2598960} = 0.2743, \quad P\{X=3\} = \frac{\binom{13}{3}\binom{39}{2}}{\binom{52}{5}} = \frac{211926}{2598960} = 0.0815,$$

$$P\{X=4\} = \frac{\binom{13}{4}\binom{39}{1}}{\binom{52}{5}} = \frac{27885}{2598960} = 0.0107, \quad P\{X=5\} = \frac{\binom{13}{5}\binom{39}{0}}{\binom{52}{5}} = \frac{1287}{2598960} = 0.0005,$$

故X的概率分布列为

- 7. 一批产品共有 100 件,其中 10 件是不合格品.根据验收规则,从中任取 5 件产品进行质量检验,假如 5 件中无不合格品,则这批产品被接受,否则就要重新对这批产品逐个检验.
 - (1) 试求 5 件产品中不合格品数 X 的分布列;
 - (2) 需要对这批产品进行逐个检验的概率是多少?
- 解: (1) 这 5 件产品中不合格品数 X 的全部可能取值为 0, 1, 2, 3, 4, 5,

$$\mathbb{P}\{X=0\} = \frac{\binom{10}{0}\binom{90}{5}}{\binom{100}{5}} = \frac{43949268}{75287520} = 0.583752 , \quad P\{X=1\} = \frac{\binom{10}{1}\binom{90}{4}}{\binom{100}{5}} = \frac{25551900}{75287520} = 0.339391 ,$$

$$P\{X=2\} = \frac{\binom{10}{2}\binom{90}{3}}{\binom{100}{5}} = \frac{5286600}{75287520} = 0.070219 , \quad P\{X=3\} = \frac{\binom{10}{3}\binom{90}{2}}{\binom{100}{5}} = \frac{480600}{75287520} = 0.006384 ,$$

$$P\{X=4\} = \frac{\binom{10}{4}\binom{90}{1}}{\binom{100}{5}} = \frac{18900}{75287520} = 0.000251, \quad P\{X=5\} = \frac{\binom{10}{5}\binom{90}{0}}{\binom{100}{5}} = \frac{252}{75287520} = 0.000003,$$

故X的分布列为

- (2) 所求概率为 $P\{X>0\}=1-P\{X=0\}=1-0.583752=0.416248$.
- 8. 设随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < 0; \\ \frac{1}{4}, & 0 \le x < 1; \\ \frac{1}{3}, & 1 \le x < 3; \\ \frac{1}{2}, & 3 \le x < 6; \\ 1, & x \ge 6. \end{cases}$$

试求 X 的概率分布列及 $P\{X < 3\}$, $P\{X \le 3\}$, $P\{X > 1\}$, $P\{X \ge 1\}$.

解: X的全部可能取值为其分布函数 F(x) 的分段点 0, 1, 3, 6

$$\mathbb{E} P\{X=0\} = F(0) - F(0-0) = \frac{1}{4} - 0 = \frac{1}{4}, \quad P\{X=1\} = F(1) - F(1-0) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12},$$

$$P\{X=3\}=F(3)-F(3-0)=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}, P\{X=6\}=F(6)-F(6-0)=1-\frac{1}{2}=\frac{1}{2},$$

故 X 的概率分布列为

$$\frac{X \mid 0 \quad 1 \quad 2 \quad 3}{P \mid \frac{1}{4} \quad \frac{1}{12} \quad \frac{1}{6} \quad \frac{1}{2}};$$

$$\mathbb{H} P\{X < 3\} = F(3 - 0) = \frac{1}{3}; \quad P\{X \le 3\} = F(3) = \frac{1}{2}; \quad P\{X > 1\} = 1 - P\{X \le 1\} = 1 - F(1) = 1 - \frac{1}{3} = \frac{2}{3};$$

$$P\{X \ge 1\} = 1 - P\{X < 1\} = 1 - F(1 - 0) = 1 - \frac{1}{4} = \frac{3}{4}.$$

9. 设随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < 1; \\ \ln x, & 1 \le x < e; \\ 1, & x \ge e. \end{cases}$$

试求 $P\{X < 2\}$, $P\{0 < X \le 3\}$, $P\{2 < X < 2.5\}$.

解: $P\{X < 2\} = F(2 - 0) = \ln 2$; $P\{0 < X \le 3\} = F(3) - F(0) = 1 - 0 = 1$; $P\{2 < X < 2.5\} = F(2.5 - 0) - F(2) = \ln 2.5 - \ln 2 = \ln 1.25$.

10. 若 $P\{X \ge x_1\} = 1 - \alpha$, $P\{X \le x_2\} = 1 - \beta$, 其中 $x_1 < x_2$, 试求 $P\{x_1 < X < x_2\}$.

注: 此题有误, 应改为"试求 $P\{x_1 \le X \le x_2\}$ "

 $\mathfrak{M} \colon P\{x_1 \le X \le x_2\} = P\{X \le x_2\} - P\{X \le x_1\} = P\{X \le x_2\} + P\{X \ge x_1\} - 1 = 1 - \beta + 1 - \alpha - 1 = 1 - \alpha - \beta.$

- 11. 从 1, 2, 3, 4, 5 五个数字中任取三个,按大小排列记为 $x_1 < x_2 < x_3$,令 $X = x_2$,试求
 - (1) X的分布函数;
 - (2) $P\{X < 2\} \not \setminus P\{X > 4\}$.

解: (1) X的全部可能取值为 2, 3, 4,

$$\mathbb{H} P\{X=2\} = \frac{1\times 3}{\binom{5}{3}} = \frac{3}{10} = 0.3, \quad P\{X=3\} = \frac{2\times 2}{\binom{5}{3}} = \frac{4}{10} = 0.4, \quad P\{X=4\} = \frac{3\times 1}{\binom{5}{3}} = \frac{3}{10} = 0.3,$$

因分布函数 $F(x) = P\{X \le x\}$, 分段点为 x = 2, 3, 4,

当
$$x < 2$$
时, $F(x) = P\{X \le x\} = P(\emptyset) = 0$,

$$\stackrel{\text{def}}{=} 2 \le x < 3 \text{ iff}, F(x) = P\{X \le x\} = P\{X = 2\} = 0.3,$$

$$\stackrel{\text{def}}{=} 3 \le x < 4 \text{ lpf}, \quad F(x) = P\{X \le x\} = P\{X = 2\} + P\{X = 3\} = 0.3 + 0.4 = 0.7,$$

当
$$x \ge 4$$
 时, $F(x) = P\{X \le x\} = P(\Omega) = 1$,

故
$$X$$
 的分布函数 $F(x) = \begin{cases} 0, & x < 2; \\ 0.3, & 2 \le x < 3; \\ 0.7, & 3 \le x < 4; \\ 1, & x \ge 4; \end{cases}$

- (2) $P{X<2} = P(\emptyset) = 0$, $P{X>4} = P(\emptyset) = 0$.
- 12. 设随机变量 X 的密度函数为

$$p(x) = \begin{cases} 1 - |x|, & -1 \le x \le 1; \\ 0, & \text{其他.} \end{cases}$$

试求X的分布函数.

解: 分布函数 $F(x) = P\{X \le x\}$, 分段点为 x = -1, 0, 1,

 $\stackrel{\text{def}}{=}$ x < -1 $\stackrel{\text{def}}{=}$ F(x) = P{X ≤ x} = P(\varnothing) = 0,

$$\stackrel{\text{def}}{=} -1 \le x < 0 \text{ BF}, \quad F(x) = \int_{-\infty}^{x} p(u) du = \int_{-1}^{x} [1 - (-u)] du = \left(u + \frac{u^2}{2}\right) \bigg|_{1}^{x} = x + \frac{x^2}{2} - \left(-1 + \frac{1}{2}\right) = \frac{x^2}{2} + x + \frac{1}{2},$$

$$\stackrel{\underline{w}}{=} 0 \le x < 1$$
 $\stackrel{\underline{h}}{=} 0$, $F(x) = \int_{-\infty}^{x} p(u) du = \int_{-1}^{0} [1 - (-u)] du + \int_{0}^{x} (1 - u) du = \left(u + \frac{u^{2}}{2}\right)\Big|_{-1}^{0} + \left(u - \frac{u^{2}}{2}\right)\Big|_{0}^{x}$

$$= 0 - \left(-1 + \frac{1}{2}\right) + \left(x - \frac{x^2}{2}\right) - 0 = -\frac{x^2}{2} + x + \frac{1}{2},$$

 $\stackrel{\text{\tiny ω}}{=}$ x ≥ 1 $\stackrel{\text{\tiny W}}{=}$ F(x) = P{X ≤ x} = P(\Omega) = 1,

故
$$X$$
 的分布函数 $F(x) = \begin{cases} 0, & x < -1; \\ \frac{x^2}{2} + x + \frac{1}{2}, & -1 \le x < 0; \\ -\frac{x^2}{2} + x + \frac{1}{2}, & 0 \le x < 1; \\ 1, & x \ge 1. \end{cases}$

13. 如果X的密度函数为

$$p(x) = \begin{cases} x, & 0 \le x < 1; \\ 2 - x, & 1 \le x < 2; \\ 0, & 其他. \end{cases}$$

试求 $P{X \le 1.5}$.

$$\text{#F:} \quad P\{X \le 1.5\} = \int_{-\infty}^{1.5} p(x) dx = \int_{0}^{1} x dx + \int_{1}^{1.5} (2-x) dx = \frac{x^{2}}{2} \bigg|_{0}^{1} + \left(2x - \frac{x^{2}}{2}\right)\bigg|_{1}^{1.5} = \frac{1}{2} - 0 + \left(3 - \frac{1.5^{2}}{2}\right) - \frac{3}{2} = \frac{7}{8}.$$

14. 设随机变量 X 的密度函数为

$$p(x) = \begin{cases} A\cos x, & |x| \le \frac{\pi}{2}; \\ 0, & |x| > \frac{\pi}{2}. \end{cases}$$

试求

- (1) 系数 A;
- (2) X落在区间 (0, π /4) 内的概率.

解: (1) 由密度函数正则性知
$$\int_{-\infty}^{+\infty} p(x) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} A \cos x dx = A \sin x \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = A \sin \frac{\pi}{2} - A \sin \left(-\frac{\pi}{2}\right) = 2A = 1$$
,故 $A = \frac{1}{2}$;

(2) 所求概率为
$$P\{0 < X < \frac{\pi}{4}\} = \int_0^{\frac{\pi}{4}} \frac{1}{2} \cos x dx = \frac{1}{2} \sin x \Big|_0^{\frac{\pi}{4}} = \frac{1}{2} \sin \frac{\pi}{4} - 0 = \frac{\sqrt{2}}{4}$$
.

15. 设连续随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < 0; \\ Ax^2, & 0 \le x < 1; \\ 1, & x \ge 1. \end{cases}$$

试求

- (1) 系数 A;
- (2) X落在区间 (0.3, 0.7) 内的概率;
- (3) X的密度函数.
- 解: (1) 由连续随机变量分布函数的连续性知 $1 = F(1) = F(1-0) = \lim_{x \to 1^-} F(x) = A \cdot 1^2 = A$, 故 A = 1;
 - (2) 所求概率为 $P{0.3 < X < 0.7} = F(0.7) F(0.3) = 0.7^2 0.3^2 = 0.4;$
 - (3) 密度函数 p(x) = F'(x),

当
$$x < 0$$
时, $F(x) = 0$, 有 $p(x) = F'(x) = 0$,

当
$$0 \le x < 1$$
 时, $F(x) = x^2$,有 $p(x) = F'(x) = 2x$,

当
$$x \ge 1$$
 时, $F(x) = 1$, 有 $p(x) = F'(x) = 0$,

故
$$X$$
 的密度函数为 $p(x) = \begin{cases} 2x, & 0 \le x < 1; \\ 0, & 其他. \end{cases}$

16. 学生完成一道作业的时间 X 是一个随机变量,单位为小时.它的密度函数为

$$p(x) = \begin{cases} cx^2 + x, & 0 \le x \le 0.5; \\ 0, & 其他. \end{cases}$$

- (1) 确定常数 c;
- (2) 写出 X 的分布函数;
- (3) 试求在 20min 内完成一道作业的概率;
- (4) 试求 10min 以上完成一道作业的概率.

解: (1) 由密度函数正则性知
$$\int_{-\infty}^{+\infty} p(x)dx = \int_{0}^{0.5} (cx^2 + x)dx = \left(c\frac{x^3}{3} + \frac{x^2}{2}\right)\Big|_{0.5}^{0.5} = \frac{c}{24} + \frac{1}{8} = 1$$
, 故 $c = 21$;

(2) 分布函数 $F(x) = P\{X \le x\}$, 分段点为 x = 0, 0.5,

$$\stackrel{\text{def}}{=} 0 \le x < 0.5 \text{ Iff}, \quad F(x) = \int_{-\infty}^{x} p(u) du = \int_{0}^{x} (21u^{2} + u) du = \left(7u^{3} + \frac{u^{2}}{2}\right)\Big|_{0}^{x} = 7x^{3} + \frac{x^{2}}{2},$$

当
$$x \ge 0.5$$
时, $F(x) = P\{X \le x\} = P(\Omega) = 1$,

故
$$X$$
 的分布函数 $F(x) = \begin{cases} 0, & x < 0; \\ 7x^3 + \frac{x^2}{2}, & 0 \le x < 0.5; \\ 1, & x \ge 0.5; \end{cases}$

(3) 所求概率为
$$P{X \le \frac{20}{60} = \frac{1}{3}} = F{\left(\frac{1}{3}\right)} = 7 \times \left(\frac{1}{3}\right)^3 + \frac{1}{2} \times \left(\frac{1}{3}\right)^2 = \frac{7}{27} + \frac{1}{18} = \frac{17}{54};$$

(4) 所求概率为
$$P\{X \ge \frac{10}{60} = \frac{1}{6}\} = 1 - F\left(\frac{1}{6}\right) = 1 - 7 \times \left(\frac{1}{6}\right)^3 - \frac{1}{2} \times \left(\frac{1}{6}\right)^2 = 1 - \frac{7}{216} - \frac{1}{72} = \frac{103}{108}$$
.

17. 某加油站每周补给一次油. 如果这个加油站每周的销售量(单位:千升)为一随机变量,其密度函数为

$$p(x) = \begin{cases} 0.05 \left(1 - \frac{x}{100} \right)^4, & 0 < x < 100; \\ 0, & \text{其他.} \end{cases}$$

试问该油站的储油罐需要多大,才能把一周内断油的概率控制在5%以下?

解:设这个加油站每周的销售量为X千升,储油罐的储油量为a千升,有 $P{X>a} \le 0.05$,

$$\text{If } P\{X > a\} = \int_{a}^{+\infty} p(x) dx = \int_{a}^{100} 0.05 \left(1 - \frac{x}{100}\right)^{4} dx = -\left(1 - \frac{x}{100}\right)^{5} \Big|^{100} = \left(1 - \frac{a}{100}\right)^{5} \le 0.05 \text{ ,}$$

故 $a \ge 100(1-\sqrt[5]{0.05}) = 45.0720$.

18. 设随机变量 X和 Y同分布,X的密度函数为

$$p(x) = \begin{cases} \frac{3}{8}x^2, & 0 < x < 2; \\ 0, & \text{ 其他.} \end{cases}$$

已知事件 $A = \{X > a\}$ 和 $B = \{Y > a\}$ 独立,且 $P(A \cup B) = 3/4$,求常数 a.

解:由于事件 A 和 B 独立,且显然有 P(A) = P(B),

$$\mathbb{P}(A \cup B) = P(A) + P(B) - P(AB) = P(A) + P(B) - P(A)P(B) = 2P(A) - [P(A)]^{2} = \frac{3}{4}$$

可得
$$P(A) = \frac{1}{2}$$
 或 $P(A) = \frac{3}{2}$ (舍去),

显然
$$0 < a < 2$$
, 有 $P(A) = P\{X > a\} = \int_a^2 \frac{3}{8} x^2 dx = \frac{1}{8} x^3 \Big|_a^2 = 1 - \frac{a^3}{8} = \frac{1}{2}$,

故 $a = \sqrt[3]{4}$.

19. 设连续随机变量 X 的密度函数 p(x) 是一个偶函数,F(x) 为 X 的分布函数,求证对任意实数 a > 0,有

(1)
$$F(-a) = 1 - F(a) = 0.5 - \int_0^a p(x) dx$$
;

(2)
$$P\{|X| < a\} = 2F(a) - 1$$
;

(3)
$$P\{|X| > a\} = 2[1 - F(a)].$$

证: (1) 因
$$p(x)$$
 为偶函数,有 $\int_{-\infty}^{-a} p(x) dx = \int_{a}^{+\infty} p(x) dx$ 且 $\int_{-\infty}^{0} p(x) dx = 0.5$,

$$\text{III } F(a) = \int_{-\infty}^{a} p(x)dx = \int_{-\infty}^{0} p(x)dx + \int_{0}^{a} p(x)dx = 0.5 + \int_{0}^{a} p(x)dx ,$$

故
$$F(-a) = \int_{-\infty}^{-a} p(x)dx = \int_{a}^{+\infty} p(x)dx = 1 - \int_{-\infty}^{a} p(x)dx = 1 - F(a) = 0.5 - \int_{0}^{a} p(x)dx$$
;

(2)
$$P\{|X| < a\} = P\{-a < X < a\} = F(a) - F(-a) = F(a) - [1 - F(a)] = 2F(a) - 1$$
;

(3)
$$P\{|X| > a\} = 1 - P\{|X| \le a\} = 1 - P\{|X| \le a\} = 1 - [2F(a) - 1] = 2 - 2F(a)$$
.

1. 设离散型随机变量 X 的分布列为

$$\begin{array}{c|cccc} X & -2 & 0 & 2 \\ \hline P & 0.4 & 0.3 & 0.3 \end{array}$$

试求 E(X) 和 E(3X+5).

MF: $E(X) = (-2) \times 0.4 + 0 \times 0.3 + 2 \times 0.3 = -0.2$; $E(3X + 5) = (-1) \times 0.4 + 5 \times 0.3 + 11 \times 0.3 = 4.4$.

2. 某服装店根据历年销售资料得知:一位顾客在商店中购买服装的件数 X 的分布列为

试求顾客在商店平均购买服装件数.

解: 平均购买服装件数为 $E(X) = 0 \times 0.10 + 1 \times 0.33 + 2 \times 0.31 + 3 \times 0.13 + 4 \times 0.09 + 5 \times 0.04 = 1.9$.

3. 某地区一个月内发生重大交通事故数 X 服从如下分布

试求该地区发生重大交通事故的月平均数.

解: 月平均数 $E(X) = 0 \times 0.301 + 1 \times 0.362 + 2 \times 0.216 + 3 \times 0.087 + 4 \times 0.026 + 5 \times 0.006 + 6 \times 0.002 = 1.201$.

4. 一海运货船的甲板上放着 20 个装有化学原料的圆桶,现已知其中有 5 桶被海水污染了. 若从中随机抽取 8 桶,记 X 为 8 桶中被污染的桶数,试求 X 的分布列,并求 E(X).

解: X的全部可能取值为 0, 1, 2, 3, 4, 5,

$$\mathbb{E} P\{X=0\} = \frac{\binom{15}{8}}{\binom{20}{8}} = \frac{6435}{125970} = 0.0511, \quad P\{X=1\} = \frac{\binom{5}{1}\binom{15}{7}}{\binom{20}{8}} = \frac{32175}{125970} = 0.2554,$$

$$P\{X=2\} = \frac{\binom{5}{2}\binom{15}{6}}{\binom{20}{8}} = \frac{50050}{125970} = 0.3973, \quad P\{X=3\} = \frac{\binom{5}{3}\binom{15}{5}}{\binom{20}{8}} = \frac{30030}{125970} = 0.2384,$$

$$P\{X=4\} = \frac{\binom{5}{4}\binom{15}{4}}{\binom{20}{8}} = \frac{6825}{125970} = 0.0542, \quad P\{X=5\} = \frac{\binom{5}{5}\binom{15}{3}}{\binom{20}{8}} = \frac{455}{125970} = 0.0036,$$

故X的分布列为

 $\exists E(X) = 0 \times 0.0511 + 1 \times 0.2554 + 2 \times 0.3973 + 3 \times 0.2384 + 4 \times 0.0542 + 5 \times 0.0036 = 2.$

5. 用天平称某种物品的质量(砝码仅允许放在一个盘中),现有三组砝码:(甲)1,2,2,5,10(g);(乙)1,2,3,4,10(g);(丙)1,1,2,5,10(g),称重时只能使用一组砝码.问:当物品的质量为1g、2g、…、10g的概率是相同的,用哪一组砝码称重所用的平均砝码数量少?

9

解:设 X_1, X_2, X_3 分别表示使用甲、乙、丙组砝码称重时需要的砝码个数,

当物品的质量为 1g、2g、…、10g 时,

有
$$X_1 = 1$$
、1、2、2、1、2、2、3、3、1,即 $P\{X_1 = 1\} = 0.4$, $P\{X_1 = 2\} = 0.4$, $P\{X_1 = 3\} = 0.2$,

$$X_2 = 1, 1, 1, 1, 2, 2, 3, 3, 1,$$
 $\mathbb{P}\{X_2 = 1\} = 0.5, P\{X_2 = 2\} = 0.3, P\{X_2 = 3\} = 0.2,$

 $X_3 = 1$, 1, 2, 3, 1, 2, 2, 3, 4, 1,

 $\mathbb{P}\{X_3=1\}=0.4,\ P\{X_3=2\}=0.3,\ P\{X_3=3\}=0.2,\ P\{X_3=4\}=0.1,$

则平均砝码数 $E(X_1) = 1 \times 0.4 + 2 \times 0.4 + 3 \times 0.2 = 1.8$, $E(X_2) = 1 \times 0.5 + 2 \times 0.3 + 3 \times 0.2 = 1.7$,

$$E(X_3) = 1 \times 0.4 + 2 \times 0.3 + 3 \times 0.2 + 4 \times 0.1 = 2$$

故用乙组砝码称重所用的平均砝码数最少.

- 6. 假设有十只同种电器元件,其中有两只不合格品、装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品只数的数学期望.
- 解:设X表示在取到合格品之前已取出的不合格品只数,X的全部可能取值为0,1,2,

$$\text{If } P\{X=0\} = \frac{8}{10} = \frac{4}{5} \; , \quad P\{X=1\} = \frac{2}{10} \times \frac{8}{9} = \frac{8}{45} \; , \quad P\{X=2\} = \frac{2}{10} \times \frac{1}{9} \times \frac{8}{8} = \frac{1}{45} \; ,$$

故
$$E(X) = 0 \times \frac{4}{5} + 1 \times \frac{8}{45} + 2 \times \frac{1}{45} = \frac{2}{9}$$
.

- 7. 对一批产品进行检查,如查到第a件全为合格品,就认为这批产品合格;若在前a件中发现不合格品即停止检查,且认为这批产品不合格.设产品的数量很大,可以认为每次查到不合格品的概率都是p.问每批产品平均要查多少件?
- 解:设X表示检查一批产品要查的件数,X的全部可能取值为 1, 2, \cdots , a-1, a,

$$\overline{\mathbf{f}}(1-p)E(X) = 1 \cdot (1-p)p + 2(1-p)^2p + \dots + (a-2)(1-p)^{a-2}p + (a-1)(1-p)^{a-1}p + a(1-p)^a,$$

得
$$E(X) - (1-p)E(X) = p + (1-p)p + \dots + (1-p)^{a-2}p + a(1-p)^{a-1} - (a-1)(1-p)^{a-1}p - a(1-p)^a$$
,

$$\mathbb{H} pE(X) = \frac{p[1 - (1 - p)^{a-1}]}{1 - (1 - p)} + (1 - p)^{a-1}[a - (a - 1)p - a(1 - p)]$$

$$=1-(1-p)^{a-1}+(1-p)^{a-1}\cdot p=1-(1-p)^{a-1}\cdot (1-p)=1-(1-p)^a,$$

故
$$E(X) = \frac{1-(1-p)^a}{p}$$
.

- 8. 某人参加"答题秀",一共有问题 1 和问题 2 两个问题,他可以自行决定回答这两个问题的顺序.如果他先回答问题 *i*,那么只有回答正确,他才被允许回答另一题.如果他有 60%的把握答对问题 1,而答对问题 1 将获得 200 元奖励;有 80%的把握答对问题 2,而答对问题 2 将获得 100 元奖励.问他应该先回答哪个问题,才能使获得奖励的期望值最大化?
- 解:设答对问题 i记为事件 A_i ,记为他先回答问题 i 获得的奖励金额为 X_i 元,i=1,2,

有 X_1 的全部可能取值为 $0,200,300,X_2$ 的全部可能取值为0,100,300,

$$\mathbb{E} P\{X_1 = 0\} = P(\overline{A_1}) = 0.4$$
, $P\{X_1 = 200\} = P(A_1\overline{A_2}) = 0.12$, $P\{X_1 = 300\} = P(A_1A_2) = 0.48$,

$$P\{X_2 = 0\} = P(\overline{A}_2) = 0.2$$
, $P\{X_2 = 100\} = P(A_2, \overline{A}_1) = 0.32$, $P\{X_2 = 300\} = P(A_2, A_1) = 0.48$,

则 $E(X_1) = 0.4 \times 0 + 0.12 \times 200 + 0.48 \times 300 = 168$, $E(X_2) = 0.2 \times 0 + 0.32 \times 100 + 0.48 \times 300 = 176$,故 $E(X_1) < E(X_2)$,他应该先回答问题 2.

9. 某人想用 10000 元投资于某股票,该股票当前价格是 2 元/股,假设一年后该股票等可能的为 1 元/股和 4 元/股.而理财顾问给他的建议是:若期望一年后所拥有的股票市值达到最大,则现在就购买;

若期望一年后所拥有股票数量达到最大,则一年以后购买. 试问理财顾问的建议是否正确? 为什么?解:设 *X*表示一年后该股票的价格, *X*的全部可能取值为 1, 4,

若现在就购买股票所拥有的股票数量为5000股,一年后的股票市值为5000X元,

若一年以后购买股票所拥有的股票数量为 $\frac{10000}{X}$ 股,股票市值为 10000 元,

因 $E(5000X) = 0.5 \times 5000 \times 1 + 0.5 \times 5000 \times 4 = 12500 > 10000$

故现在就购买股票,则一年后所拥有的股票市值的数学期望达到最大;

故一年以后购买股票,则所拥有的股票数量的数学期望达到最大.

- 10. 保险公司的某险种规定:如果某个事件 A 在一年内发生了,则保险公司应付给投保户金额 a 元,而事件 A 在一年内发生的概率为 p. 如果保险公司向投保户收取的保费为 ka 元,则问 k 为多少,才能使保险公司期望收益达到 a 的 10%?
- 解:设X表示保险公司的收益,X的全部可能取值为ka,ka-a,

则
$$E(X) = (1-p) \times ka + p \times (ka-a) = (k-p) a = 0.1a$$
,

故 k = p + 0.1.

11. 某厂推土机发生故障后的维修时间 T 是一个随机变量(单位: h), 其密度函数为

$$p(t) = \begin{cases} 0.02 e^{-0.02t}, & t > 0; \\ 0, & t \le 0. \end{cases}$$

试求平均维修时间.

解: 平均维修时间
$$E(T) = \int_0^{+\infty} t \cdot 0.02 \, \mathrm{e}^{-0.02t} \, dt = \int_0^{+\infty} t (-d \, \mathrm{e}^{-0.02t}) = -t \, \mathrm{e}^{-0.02t} \Big|_0^{+\infty} + \int_0^{+\infty} \mathrm{e}^{-0.02t} \, dt = \frac{\mathrm{e}^{-0.02t}}{-0.02} \Big|_0^{+\infty} = 50$$
.

12. 某新产品在未来市场上的占有率 X 是仅在区间 (0,1) 上取值的随机变量,它的密度函数为

$$p(x) = \begin{cases} 4(1-x)^3, & 0 < x < 1; \\ 0, & \text{其他.} \end{cases}$$

试求平均市场占有率.

解:
$$E(X) = \int_0^1 x \cdot 4(1-x)^3 dx = \int_0^1 (4x - 12x^2 + 12x^3 - 4x^4) dx = \left(2x^2 - 4x^3 + 3x^4 - \frac{4}{5}x^5\right)\Big|_0^1 = \frac{1}{5}$$
.

13. 设随机变量 X 的密度函数如下, 试求 E(2X+5).

$$p(x) = \begin{cases} e^{-x}, & x > 0; \\ 0, & x \le 0. \end{cases}$$

解:
$$E(2X+5) = \int_0^{+\infty} (2x+5) e^{-x} dx = \int_0^{+\infty} (2x+5)(-de^{-x}) = -(2x+5) e^{-x} \Big|_0^{+\infty} + \int_0^{+\infty} 2e^{-x} dx = 5 - 2e^{-x} \Big|_0^{+\infty} = 7$$
.

14. 设随机变量 X 的分布函数如下,试求 E(X).

$$F(x) = \begin{cases} \frac{e^x}{2}, & x < 0; \\ \frac{1}{2}, & 0 \le x < 1; \\ 1 - \frac{1}{2}e^{-\frac{1}{2}(x-1)}, & x \ge 1. \end{cases}$$

解:因分布函数 F(x) 是连续函数,有 X 为连续型,密度函数 p(x) = F'(x),

$$\stackrel{\underline{\scriptscriptstyle \perp}}{=} x < 0 \; \text{Fr}, \quad p(x) = F'(x) = \frac{e^x}{2},$$

$$\stackrel{\text{def}}{=} x > 1 \text{ B}, \quad p(x) = F'(x) = \frac{1}{4} e^{-\frac{1}{2}(x-1)}, \quad = \int_{-\infty}^{0} x \cdot \frac{1}{2} d(e^{x}) + \int_{1}^{+\infty} x \cdot \left(-\frac{1}{2}\right) d[e^{-\frac{1}{2}(x-1)}]$$

$$\text{If } E(X) = \int_{-\infty}^{+\infty} x p(x) dx = \int_{-\infty}^{0} x \cdot \frac{e^{x}}{2} dx + \int_{1}^{+\infty} x \cdot \frac{1}{4} e^{-\frac{1}{2}(x-1)} dx = \frac{1}{2} \int_{-\infty}^{0} x e^{x} dx + \frac{1}{4} \int_{1}^{+\infty} x e^{-\frac{1}{2}(x-1)} dx \text{ .}$$

$$\int_{1}^{+\infty} x e^{-\frac{1}{2}(x-1)} dx = -2 \int_{1}^{+\infty} x \cdot d \left[e^{-\frac{1}{2}(x-1)} \right] = -2x e^{-\frac{1}{2}(x-1)} \bigg|_{1}^{+\infty} + 2 \int_{1}^{+\infty} e^{-\frac{1}{2}(x-1)} dx = 2 - 4 e^{-\frac{1}{2}(x-1)} \bigg|_{1}^{+\infty} = 6,$$

故
$$E(X) = \frac{1}{2} \times (-1) + \frac{1}{4} \times 6 = 1$$
.

15. 设随机变量 X 的密度函数为

$$p(x) = \begin{cases} a + bx^2, & 0 \le x \le 1; \\ 0, & 其他. \end{cases}$$

如果 $E(X) = \frac{2}{3}$, 求 a 和 b.

解: 由正则性得
$$\int_{-\infty}^{+\infty} p(x)dx = \int_{0}^{1} (a+bx^{2})dx = \left(ax+b\cdot\frac{x^{3}}{3}\right)\Big|_{0}^{1} = a+\frac{b}{3}=1$$
,

$$\mathbb{X} E(X) = \int_{-\infty}^{+\infty} x p(x) dx = \int_{0}^{1} x (a + bx^{2}) dx = \left(a \cdot \frac{x^{2}}{2} + b \cdot \frac{x^{4}}{4} \right) \Big|_{0}^{1} = \frac{a}{2} + \frac{b}{4} = \frac{2}{3} ,$$

故
$$a = \frac{1}{3}$$
, $b = 2$.

16. 某工程队完成某项工程的时间 X (单位: 月) 是一个随机变量,它的分布列为

- (1) 试求该工程队完成此项工程的平均月数;
- (2) 设该工程队所获利润为 Y = 50(13 X),单位为万元.试求该工程队的平均利润;
- (3) 若该工程队调整安排,完成该项工程的时间 X (单位:月)的分布为

$$\begin{array}{c|ccccc} X & 10 & 11 & 12 \\ \hline P & 0.5 & 0.4 & 0.1 \end{array}$$

则其平均利润可增加多少?

- 解: (1) 平均月数 $E(X) = 10 \times 0.4 + 11 \times 0.3 + 12 \times 0.2 + 13 \times 0.1 = 11$.
 - (2) 平均利润为 $E(Y) = E[50(13-X)] = 150 \times 0.4 + 100 \times 0.3 + 50 \times 0.2 + 0 \times 0.1 = 100$ (万元);
 - (3) 因 $E(Y_1) = E[50(13 X_1)] = 150 \times 0.5 + 100 \times 0.4 + 50 \times 0.1 = 120$,有 $E(Y_1) E(Y) = 20$,故平均利润增加 20 万元.

17. 设随机变量 X 的概率密度函数为

$$p(x) = \begin{cases} \frac{1}{2} \cos \frac{x}{2}, & 0 \le x \le \pi; \\ 0, & 其他. \end{cases}$$

对 X 独立重复观察 4 次, Y 表示观察值大于 $\pi/3$ 的次数,求 Y^2 的数学期望.

解: Y的全部可能取值为 0, 1, 2, 3, 4, 因
$$p = P\{X > \frac{\pi}{3}\} = \int_{\frac{\pi}{3}}^{\pi} \frac{1}{2} \cos \frac{x}{2} dx = \sin \frac{x}{2} \Big|_{\frac{\pi}{3}}^{\pi} = \sin \frac{\pi}{2} - \sin \frac{\pi}{6} = \frac{1}{2}$$
,

$$\text{If } P\{Y=0\} = (1-p)^4 = \frac{1}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \cdot p(1-p)^3 = \frac{4}{16} \text{ , } P\{Y=2\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \cdot p(1-p)^3 = \frac{4}{16} \text{ , } P\{Y=2\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \cdot p(1-p)^3 = \frac{4}{16} \text{ , } P\{Y=2\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \cdot p(1-p)^3 = \frac{4}{16} \text{ , } P\{Y=2\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \cdot p(1-p)^3 = \frac{4}{16} \text{ , } P\{Y=2\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \cdot p(1-p)^3 = \frac{4}{16} \text{ , } P\{Y=2\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot p^2(1-p)^2 = \frac{6}{16} \text{ , } P\{Y=1\} = \frac{6}{$$

$$P{Y=1} = {4 \choose 3} \cdot p^3 (1-p) = \frac{4}{16}, \quad P{Y=4} = p^4 = \frac{1}{16},$$

故
$$E(Y^2) = 0^2 \times \frac{1}{16} + 1^2 \times \frac{4}{16} + 2^2 \times \frac{6}{16} + 3^2 \times \frac{4}{16} + 4^2 \times \frac{1}{16} = \frac{80}{16} = 5$$
.

18. 设随机变量 X 的密度函数为

$$p(x) = \begin{cases} \frac{3}{8}x^2, & 0 < x < 2; \\ 0, & \text{其他.} \end{cases}$$

试求 $\frac{1}{X^2}$ 的数学期望.

解:
$$E\left(\frac{1}{X^2}\right) = \int_0^2 \frac{1}{x^2} \cdot \frac{3}{8} x^2 dx = \int_0^2 \frac{3}{8} dx = \frac{3}{4}$$
.

19. 设 X 为仅取非负整数的离散随机变量, 若其数学期望存在, 证明

(1)
$$E(X) = \sum_{k=1}^{+\infty} P\{X \ge k\}$$
;

(2)
$$\sum_{k=0}^{+\infty} kP\{X>k\} = \frac{1}{2} [E(X^2) - E(X)].$$

$$\text{i.f.} \quad (1) \quad \sum_{k=1}^{+\infty} P\{X \geq k\} = \sum_{k=1}^{+\infty} \sum_{n=k}^{+\infty} P\{X = n\} = \sum_{n=1}^{+\infty} \sum_{k=1}^{n} P\{X = n\} = \sum_{n=1}^{+\infty} nP\{X = n\} = E(X) \; ;$$

$$(2) \sum_{k=0}^{+\infty} kP\{X > k\} = \sum_{k=0}^{+\infty} k \sum_{n=k+1}^{+\infty} P\{X = n\} = \sum_{n=1}^{+\infty} \sum_{k=0}^{n-1} kP\{X = n\} = \sum_{n=1}^{+\infty} \frac{1}{2} n(n-1)P\{X = n\}$$

$$= \frac{1}{2} \left[\sum_{n=1}^{+\infty} n^2 P\{X=n\} - \sum_{n=1}^{+\infty} n P\{X=n\} \right] = \frac{1}{2} [E(X^2) - E(X)].$$

20. 设连续随机变量X的分布函数为F(x),且数学期望存在,证明:

$$E(X) = \int_0^{+\infty} [1 - F(x)] dx - \int_0^{\infty} F(x) dx.$$

证: 设 X 的密度函数为 p(x),有 $E(X) = \int_{-\infty}^{+\infty} xp(x)dx = \int_{0}^{+\infty} xp(x)dx + \int_{-\infty}^{0} xp(x)dx$,

13

$$\boxtimes \int_0^{+\infty} x p(x) dx = \int_0^{+\infty} \left(\int_0^x dy \right) p(x) dx = \int_0^{+\infty} dx \int_0^x p(x) dy = \int_0^{+\infty} dy \int_y^{+\infty} p(x) dx = \int_0^{+\infty} dy \cdot F(x) \Big|_y^{+\infty}$$

$$= \int_0^{+\infty} [1 - F(y)] dy = \int_0^{+\infty} [1 - F(x)] dx ,$$

$$\mathbb{E} \int_{-\infty}^{0} x p(x) dx = \int_{-\infty}^{0} \left(-\int_{x}^{0} dy \right) p(x) dx = -\int_{-\infty}^{0} dx \int_{x}^{0} p(x) dy = -\int_{-\infty}^{0} dy \int_{-\infty}^{y} p(x) dx = -\int_{-\infty}^{0} dy \cdot F(x) \Big|_{-\infty}^{y} dy = -\int_{-\infty}^{0} F(y) dy = -\int_{-\infty}^{0} F(x) dx ,$$

故
$$E(X) = \int_0^{+\infty} [1 - F(x)] dx - \int_{-\infty}^0 F(x) dx$$
.

- 21. 设X为非负连续随机变量,若E(X'')存在,试证明:
 - (1) $E(X) = \int_0^{+\infty} P\{X > x\} dx$;
 - (2) $E(X^n) = \int_0^{+\infty} nx^{n-1} P\{X > x\} dx$.
- 证:设X的密度函数为p(x),分布函数为F(x),当x<0时,p(x)=0,

(1)
$$E(X) = \int_0^{+\infty} x p(x) dx = \int_0^{+\infty} \left(\int_0^x dy \right) p(x) dx = \int_0^{+\infty} dx \int_0^x p(x) dy = \int_0^{+\infty} dy \int_y^{+\infty} p(x) dx = \int_0^{+\infty} dy \cdot F(x) \Big|_y^{+\infty}$$
$$= \int_0^{+\infty} [1 - F(y)] dy = \int_0^{+\infty} P\{X > x\} dx ;$$

(2)
$$E(X^{n}) = \int_{0}^{+\infty} x^{n} p(x) dx = \int_{0}^{+\infty} \left(\int_{0}^{x} n y^{n-1} dy \right) p(x) dx = \int_{0}^{+\infty} dx \int_{0}^{x} n y^{n-1} p(x) dy = \int_{0}^{+\infty} dy \int_{y}^{+\infty} n y^{n-1} p(x) dx$$
$$= \int_{0}^{+\infty} dy \cdot n y^{n-1} F(x) \Big|_{y}^{+\infty} = \int_{0}^{+\infty} n y^{n-1} [1 - F(y)] dy = \int_{0}^{+\infty} n x^{n-1} P\{X > x\} dx.$$

习题 2.3

- 1. 设随机变量 X满足 $E(X) = \text{Var}(X) = \lambda$,已知 E[(X-1)(X-2)] = 1,试求 λ .
- 解: 因 $E(X) = \text{Var}(X) = \lambda$,有 $E(X^2) = \text{Var}(X) + [E(X)]^2 = \lambda + \lambda^2$, 则 $E[(X-1)(X-2)] = E(X^2 - 3X + 2) = E(X^2) - 3E(X) + 2 = \lambda + \lambda^2 - 3\lambda + 2 = \lambda^2 - 2\lambda + 2 = 1$,故 $(\lambda - 1)^2 = 0$,即 $\lambda = 1$.
- 2. 假设有 10 只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品数的方差.
- 解:设X表示在取到合格品之前已取出的不合格品只数,X的全部可能取值为0,1,2,

則
$$P\{X=0\} = \frac{8}{10} = \frac{4}{5}$$
, $P\{X=1\} = \frac{2}{10} \times \frac{8}{9} = \frac{8}{45}$, $P\{X=2\} = \frac{2}{10} \times \frac{1}{9} \times \frac{8}{8} = \frac{1}{45}$,
 得 $E(X) = 0 \times \frac{4}{5} + 1 \times \frac{8}{45} + 2 \times \frac{1}{45} = \frac{2}{9}$, 且 $E(X^2) = 0^2 \times \frac{4}{5} + 1^2 \times \frac{8}{45} + 2^2 \times \frac{1}{45} = \frac{12}{45} = \frac{4}{15}$,

故
$$Var(X) = E(X^2) - [E(X)]^2 = \frac{4}{15} - \left(\frac{2}{9}\right)^2 = \frac{88}{405}$$
.

- 3. 己知 E(X) = -2, $E(X^2) = 5$, 求 Var(1-3X).
- 解: 因 $Var(X) = E(X^2) [E(X)]^2 = 5 (-2)^2 = 1$, 故 $Var(1 3X) = (-3)^2 Var(X) = 9 \times 1 = 9$.
- 4. $\forall P\{X=0\} = 1 P\{X=1\}$, $\forall P\{X=0\} = 3 \text{Var}(X)$, $\forall P\{X=0\}$.
- 解: 因 $P\{X=0\} + P\{X=1\} = 1$,有 X 的全部可能取值为 0, 1,设 $P\{X=1\} = p$, $P\{X=0\} = 1 p$,则 $E(X) = 0 \times (1-p) + 1 \times p = p$, $E(X^2) = 0^2 \times (1-p) + 1^2 \times p = p$,即 $Var(X) = p p^2$,

因
$$E(X) = 3\text{Var}(X)$$
, 有 $p = 3(p - p^2)$, 可得 $2p - 3p^2 = 0$, 即 $p = \frac{2}{3}$ 或 $p = 0$,

故
$$P{X = 0} = 1 - p = \frac{1}{3}$$
 或 1.

5. 设随机变量 X 的分布函数为

$$F(x) = \begin{cases} \frac{e^x}{2}, & x < 0; \\ \frac{1}{2}, & 0 \le x < 1; \\ 1 - \frac{1}{2}e^{-\frac{1}{2}(x-1)}, & x \ge 1. \end{cases}$$

试求 Var(X).

解:因分布函数F(x)是连续函数,有X为连续型,密度函数p(x) = F'(x),

$$\stackrel{\underline{\scriptscriptstyle \perp}}{=} x < 0 \; \text{Fr}, \quad p(x) = F'(x) = \frac{e^x}{2},$$

$$\stackrel{\underline{\mathsf{u}}}{=} x > 1 \; \exists f, \quad p(x) = F'(x) = \frac{1}{4} e^{-\frac{1}{2}(x-1)},$$

$$\text{If } E(X) = \int_{-\infty}^{+\infty} x p(x) dx = \int_{-\infty}^{0} x \cdot \frac{e^{x}}{2} dx + \int_{1}^{+\infty} x \cdot \frac{1}{4} e^{-\frac{1}{2}(x-1)} dx = \frac{1}{2} \int_{-\infty}^{0} x e^{x} dx + \frac{1}{4} \int_{1}^{+\infty} x e^{-\frac{1}{2}(x-1)} dx ,$$

$$\int_{1}^{+\infty} x^{2} e^{-\frac{1}{2}(x-1)} dx = -2 \int_{1}^{+\infty} x^{2} \cdot d\left[e^{-\frac{1}{2}(x-1)}\right] = -2x^{2} e^{-\frac{1}{2}(x-1)} \Big|_{1}^{+\infty} + 2 \int_{1}^{+\infty} e^{-\frac{1}{2}(x-1)} \cdot 2x dx$$

$$= 2 + 4 \int_{1}^{+\infty} x e^{-\frac{1}{2}(x-1)} dx = 2 + 4 \times 6 = 26,$$

可得
$$E(X^2) = \frac{1}{2} \times 2 + \frac{1}{4} \times 26 = \frac{15}{2}$$
,

故
$$Var(X) = E(X^2) - [E(X)]^2 = \frac{15}{2} - 1^2 = \frac{13}{2}$$
.

6. 设随机变量 X 的密度函数为

$$p(x) = \begin{cases} 1+x, & -1 < x \le 0; \\ 1-x, & 0 < x \le 1; \\ 0, & \text{其他}. \end{cases}$$

试求 Var(3X+2).

解: 因
$$E(X) = \int_{-\infty}^{+\infty} x p(x) dx = \int_{-1}^{0} x (1+x) dx + \int_{0}^{1} x (1-x) dx = \left(\frac{x^{2}}{2} + \frac{x^{3}}{3}\right)\Big|_{-1}^{0} + \left(\frac{x^{2}}{2} - \frac{x^{3}}{3}\right)\Big|_{0}^{1} = -\frac{1}{6} + \frac{1}{6} = 0$$
,
$$\exists E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} p(x) dx = \int_{-1}^{0} x^{2} (1+x) dx + \int_{0}^{1} x^{2} (1-x) dx = \left(\frac{x^{3}}{3} + \frac{x^{4}}{4}\right)\Big|_{-1}^{0} + \left(\frac{x^{3}}{3} - \frac{x^{4}}{4}\right)\Big|_{0}^{1} = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$
,
$$\exists E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} p(x) dx = \int_{-1}^{0} x^{2} (1+x) dx + \int_{0}^{1} x^{2} (1-x) dx = \left(\frac{x^{3}}{3} + \frac{x^{4}}{4}\right)\Big|_{-1}^{0} + \left(\frac{x^{3}}{3} - \frac{x^{4}}{4}\right)\Big|_{0}^{1} = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$
,
$$\exists E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} p(x) dx = \int_{-1}^{0} x^{2} (1+x) dx + \int_{0}^{1} x^{2} (1-x) dx = \left(\frac{x^{3}}{3} + \frac{x^{4}}{4}\right)\Big|_{-1}^{0} + \left(\frac{x^{3}}{3} - \frac{x^{4}}{4}\right)\Big|_{0}^{1} = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$
,
$$\exists E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} p(x) dx = \int_{-1}^{0} x^{2} (1+x) dx + \int_{0}^{1} x^{2} (1-x) dx = \left(\frac{x^{3}}{3} + \frac{x^{4}}{4}\right)\Big|_{-1}^{0} + \left(\frac{x^{3}}{3} - \frac{x^{4}}{4}\right)\Big|_{0}^{1} = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$

$$\exists E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} p(x) dx = \int_{-1}^{0} x^{2} (1+x) dx + \int_{0}^{1} x^{2} (1-x) dx = \left(\frac{x^{3}}{3} + \frac{x^{4}}{4}\right)\Big|_{0}^{1} = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$

$$\exists E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} p(x) dx = \int_{-1}^{0} x^{2} (1+x) dx + \int_{0}^{1} x^{2} (1-x) dx = \left(\frac{x^{3}}{3} + \frac{x^{4}}{4}\right)\Big|_{0}^{1} = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$

$$\exists E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} p(x) dx = \int_{-1}^{0} x^{2} (1+x) dx + \int_{0}^{1} x^{2} (1-x) dx = \left(\frac{x^{3}}{3} + \frac{x^{4}}{4}\right)\Big|_{0}^{1} = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$

$$\exists E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} p(x) dx = \int_{-\infty}^{0} x^{2} (1+x) dx + \int_{0}^{1} x^{2} (1-x) dx = \left(\frac{x^{3}}{3} + \frac{x^{4}}{4}\right)\Big|_{0}^{1} = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}$$

$$\exists E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} p(x) dx = \int_{-\infty}^{0} x^{2} (1+x) dx + \int_{0}^{+\infty} x^{2} dx + \int_{0}^{+\infty} x^{4} dx = \frac{1}{12} + \frac{1}{$$

7. 设随机变量X的密度函数为

$$p(x) = \begin{cases} ax + bx^2, & 0 < x < 1; \\ 0, & 其他. \end{cases}$$

如果已知 E(X) = 0.5, 试计算 Var(X).

解: 由正则性得
$$\int_{-\infty}^{+\infty} p(x)dx = \int_{0}^{1} (ax+bx^{2})dx = \left(a \cdot \frac{x^{2}}{2} + b \cdot \frac{x^{3}}{3}\right)\Big|_{0}^{1} = \frac{a}{2} + \frac{b}{3} = 1$$
,
 $\mathbb{Z}E(X) = \int_{-\infty}^{+\infty} xp(x)dx = \int_{0}^{1} x(ax+bx^{2})dx = \left(a \cdot \frac{x^{3}}{3} + b \cdot \frac{x^{4}}{4}\right)\Big|_{0}^{1} = \frac{a}{3} + \frac{b}{4} = 0.5$,

则 a = 6, b = -6,

$$\exists E(X^2) = \int_{-\infty}^{+\infty} x^2 p(x) dx = \int_0^1 x^2 (6x - 6x^2) dx = \left(6 \cdot \frac{x^4}{4} - 6 \cdot \frac{x^5}{5} \right) \Big|_0^1 = \frac{6}{4} - \frac{6}{5} = 0.3 ,$$

故 $Var(X) = E(X^2) - [E(X)]^2 = 0.3 - 0.5^2 = 0.05$.

8. 设随机变量 X 的分布函数为

$$F(x) = 1 - e^{-x^2}, \quad x > 0$$

试求 E(X)和 Var(X).

解: 因密度函数 $p(x) = F'(x) = 2xe^{-x^2}$, x > 0,

故
$$E(X) = \int_{-\infty}^{+\infty} x p(x) dx = \int_{0}^{+\infty} x \cdot 2x e^{-x^2} dx = \int_{0}^{+\infty} x d(-e^{-x^2}) = -x e^{-x^2} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2};$$
因 $E(X^2) = \int_{-\infty}^{+\infty} x^2 p(x) dx = \int_{0}^{+\infty} x^2 \cdot 2x e^{-x^2} dx = \int_{0}^{+\infty} x^2 d(-e^{-x^2}) = -x^2 e^{-x^2} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} e^{-x^2} \cdot 2x dx$

$$= 0 - e^{-x^2} \Big|_{0}^{+\infty} = 1,$$

故
$$\operatorname{Var}(X) = E(X^2) - [E(X)]^2 = 1 - \left(\frac{\sqrt{\pi}}{2}\right)^2 = 1 - \frac{\pi}{4}$$
.

- 9. 试证: 对任意的常数 $c \neq E(X)$, 有 $Var(X) = E(X E(X))^2 < E(X c)^2$.
- i. $E(X-c)^2 = E(X^2 2cX + c^2) = E(X^2) 2cE(X) + c^2 = E(X^2) [E(X)]^2 + [E(X)]^2 2cE(X) + c^2$ = $E(X-E(X))^2 + [E(X)-c]^2 > E(X-E(X))^2 = Var(X)$.
- 10. 设随机变量 X 仅在区间 [a,b] 上取值,试证 $a \le E(X) \le b$, $Var(X) \le \left(\frac{b-a}{2}\right)^2$.
- 证: 因 $X \ge a$, 有 $X a \ge 0$, 得 $E(X a) = E(X) a \ge 0$, 即 $E(X) \ge a$, 又因 $X \le b$, 同理可得 $E(X) \le b$, 故 $a \le E(X) \le b$;

因
$$a \le X \le b$$
,有 $-\frac{b-a}{2} \le X - \frac{a+b}{2} \le \frac{b-a}{2}$,得 $\left(X - \frac{a+b}{2}\right)^2 \le \left(\frac{b-a}{2}\right)^2$,

$$\text{for } E\!\!\left[\left(X-\frac{a+b}{2}\right)^2-\!\left(\frac{b-a}{2}\right)^2\right]=E\!\!\left(X-\frac{a+b}{2}\right)^2-\!\left(\frac{b-a}{2}\right)^2\leq 0\;, \quad \text{for } E\!\!\left(X-\frac{a+b}{2}\right)^2\leq \!\left(\frac{b-a}{2}\right)^2\;,$$

故
$$\operatorname{Var}(X) = E(X - E(X))^2 \le E\left(X - \frac{a+b}{2}\right)^2 \le \left(\frac{b-a}{2}\right)^2$$
.

11. 设随机变量 X 取值 $x_1 \le \cdots \le x_n$ 的概率分别是 p_1, \cdots, p_n , $\sum_{k=1}^n p_k = 1$. 证明 $\operatorname{Var}(X) \le \left(\frac{x_n - x_1}{2}\right)^2$.

证: 因
$$x_1 \le X \le x_n$$
 , 有 $-\frac{x_n - x_1}{2} \le X - \frac{x_1 + x_n}{2} \le \frac{x_n - x_1}{2}$, 得 $\left(X - \frac{x_1 + x_n}{2}\right)^2 \le \left(\frac{x_n - x_1}{2}\right)^2$,

故
$$Var(X) = E(X - E(X))^2 \le E\left(X - \frac{x_1 + x_n}{2}\right)^2 \le E\left(\frac{x_n - x_1}{2}\right)^2 = \left(\frac{x_n - x_1}{2}\right)^2$$
.

12. 设 g(x) 为随机变量 X 取值的集合上的非负不减函数,且 E(g(X)) 存在,证明:对任意的 $\varepsilon > 0$,有

$$P\{X > \varepsilon\} \le \frac{E(g(X))}{g(\varepsilon)}.$$

注: 此题应要求 $g(\varepsilon) \neq 0$.

证:以连续型随机变量为例加以证明,设连续型随机变量X的密度函数为p(x),

因 g(x) 为非负不减函数,当 $x > \varepsilon$ 时,有 $g(x) \ge g(\varepsilon) > 0$,即 $\frac{g(x)}{g(\varepsilon)} \ge 1$,

故
$$P\{X > \varepsilon\} = \int_{\varepsilon}^{+\infty} p(x)dx \le \int_{\varepsilon}^{+\infty} \frac{g(x)}{g(\varepsilon)} p(x)dx \le \int_{-\infty}^{+\infty} \frac{g(x)}{g(\varepsilon)} p(x)dx = E\left(\frac{g(X)}{g(\varepsilon)}\right) = \frac{E(g(X))}{g(\varepsilon)}.$$

- 13. 设X为非负随机变量,a>0. 若 $E(e^{aX})$ 存在,证明: 对任意的x>0,有 $P\{X\geq x\}\leq \frac{E(e^{aX})}{e^{ax}}$.
- 证:以连续型随机变量为例加以证明,设连续型随机变量X的密度函数为p(x),

故
$$P\{X \ge x\} = \int_{x}^{+\infty} p(u)du \le \int_{x}^{+\infty} \frac{e^{au}}{e^{ax}} p(u)du \le \int_{-\infty}^{+\infty} \frac{e^{au}}{e^{ax}} p(u)du = E\left(\frac{e^{aX}}{e^{ax}}\right) = \frac{E(e^{aX})}{e^{ax}}.$$

- 14. 已知正常成人男性每升血液中的白细胞数平均是 7.3×10^9 ,标准差是 0.7×10^9 . 试利用切比雪夫不等式估计每升血液中的白细胞数在 5.2×10^9 至 9.4×10^9 之间的概率的下界.
- 解:设 X表示每升血液中的白细胞数,有 $E(X) = 7.3 \times 10^9$, $Var(X) = (0.7 \times 10^9)^2 = 0.49 \times 10^{18}$,则 $P\{5.2 \times 10^9 \le X \le 9.4 \times 10^9\} = P\{-2.1 \times 10^9 \le X 7.3 \times 10^9 \le 2.1 \times 10^9\} = P\{|X E(X)| \le 2.1 \times 10^9\}$

$$\geq 1 - \frac{\operatorname{Var}(X)}{(2.1 \times 10^9)^2} = 1 - \frac{0.49 \times 10^{18}}{4.41 \times 10^{18}} = 1 - \frac{1}{9} = \frac{8}{9}$$
,

故所求概率的下界为 $\frac{8}{9}$.

习题 2.4

- 1. 一批产品中有10%的不合格品,现从中任取3件,求其中至多有一件不合格品的概率.
- 解:设X表示取到的不合格品个数,有X服从二项分布b(3,0.1),

故所求概率为
$$P{X \le 1} = P{X = 0} + P{X = 1} = 0.9^3 + {3 \choose 1} \times 0.1 \times 0.9^2 = 0.972$$
.

- 2. 一条自动化生产线上产品的一级品率为 0.8, 现检查 5 件, 求至少有 2 件一级品的概率.
- 解:设X表示检查到的一级品个数,有X服从二项分布b(5,0.8),

故所求概率为
$$P{X \ge 2} = 1 - P{X = 0} - P{X = 1} = 1 - 0.2^5 - {5 \choose 1} \times 0.8 \times 0.2^4 = 0.99328$$
.

- 3. 某优秀射手命中 10 环的概率为 0.7, 命中 9 环的概率为 0.3. 试求该射手三次射击所得的环数不少于 29 环的概率.
- 解:设X表示三次射击所中的 10 环次数,有X服从二项分布 b(3,0.7),

故所求概率为
$$P\{X \ge 2\} = P\{X = 2\} + P\{X = 3\} = {3 \choose 2} \times 0.7^2 \times 0.3 + 0.7^3 = 0.784$$
.

- 4. 经验表明: 预定餐厅座位而不来就餐的顾客比例为 20%. 如今餐厅有 50 个座位, 但预定给了 52 位 顾客, 问到时顾客来到餐厅而没有座位的概率是多少?
- 解:设X表示到时来到餐厅的顾客人数,有X服从二项分布b(52,0.8),

故所求概率为
$$P\{X \ge 51\} = P\{X = 51\} + P\{X = 52\} = {52 \choose 51} \times 0.8^{51} \times 0.2 + 0.8^{52} = 0.0001279$$
.

- 5. 设随机变量 $X \sim b(n, p)$, 已知 E(X) = 2.4, Var(X) = 1.44, 求两个参数 n 与 p 各为多少?
- 解: 因 $X \sim b(n, p)$, 有 E(X) = np = 2.4, Var(X) = np(1-p) = 1.44, 有 $1-p = \frac{1.44}{2.4} = 0.6$, 故 p = 0.4, $n = \frac{2.4}{0.4} = 6$.

6. 设随机变量
$$X$$
 服从二项分布 $b(2,p)$,随机变量 Y 服从二项分布 $b(4,p)$. 若 $P\{X \ge 1\} = 8/9$,试求 $P\{Y \ge 1\}$.

解: 因 X 服从二项分布 b(2,p),有 $P\{X \ge 1\} = 1 - P\{X = 0\} = 1 - (1-p)^2 = \frac{8}{9}$,即 $p = \frac{2}{3}$,

故
$$P{Y \ge 1} = 1 - P{Y = 0} = 1 - (1 - p)^4 = 1 - \left(\frac{1}{3}\right)^4 = \frac{80}{81}$$
.

- 7. 一批产品的不合格率为 0.02, 现从中任取 40 件进行检查, 若发现两件或两件以上不合格品就拒收这 批产品. 分别用以下方法求拒收的概率:
 - (1) 用二项分布作精确计算:
 - (2) 用泊松分布作近似计算.
- 解:设X表示发现的不合格品个数,有X服从二项分布b(40,0.02),

(1) 所求概率为
$$P\{X \ge 2\} = 1 - P\{X = 0\} - P\{X = 1\} = 1 - 0.98^{40} - \binom{40}{1} \times 0.02 \times 0.98^{39} = 0.1905$$
;

(2) 因 n = 40 较大,p = 0.02 很小,取 $\lambda = np = 0.8$,有 $X \sim P(0.8)$,故查表可得所求概率为 $P\{X \ge 2\} = 1 - P\{X \le 1\} = 1 - 0.809 = 0.191$.

- 8. 设X服从泊松分布,且已知 $P\{X=1\}=P\{X=2\}$,求 $P\{X=4\}$.
- 解:设X服从泊松分布 $P(\lambda)$,有 $\lambda > 0$,

则
$$P\{X=1\} = \frac{\lambda^1}{1} e^{-\lambda} = P\{\lambda=2\} = \frac{\lambda^2}{2} e^{-\lambda}$$
 , 得 $\lambda = \frac{\lambda^2}{2}$, 即 $\lambda = 2$,

故查表可得 $P{X=4} = P{X \le 4} - P{X \le 3} = 0.947 - 0.857 = 0.090$.

- 9. 已知某商场一天来的顾客数 X 服从参数为 λ 的泊松分布,而每个来到商场的顾客购物的概率为 p,证明:此商场一天内购物的顾客数服从参数为 λp 的泊松分布.
- 证:设 Y 表示该商场一天内购买商品的顾客人数,Y 的全部可能取值为0,1,2,…,

有
$$P\{Y = r\} = \sum_{k=r}^{\infty} P\{X = k\} P\{Y = r \mid X = k\} = \sum_{k=r}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} \cdot {k \choose r} p^r (1-p)^{k-r}$$

$$= \sum_{k=r}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} \cdot \frac{k!}{r! \cdot (k-r)!} p^r (1-p)^{k-r} = \frac{p^r e^{-\lambda}}{r!} \sum_{k=r}^{\infty} \frac{\lambda^k (1-p)^{k-r}}{(k-r)!} = \frac{p^r e^{-\lambda}}{r!} \sum_{n=0}^{\infty} \frac{\lambda^{n+r} (1-p)^n}{n!}$$

$$= \frac{\lambda^r p^r e^{-\lambda}}{r!} \sum_{n=0}^{\infty} \frac{[\lambda(1-p)]^n}{n!} = \frac{(\lambda p)^r e^{-\lambda}}{r!} \cdot e^{-\lambda(1-p)} = \frac{(\lambda p)^r}{r!} e^{-\lambda p}, \quad r = 0, 1, 2, \cdots,$$

故 Y 服从参数为 λp 的泊松分布.

- 10. 设一个人一年内患感冒的次数服从参数 $\lambda = 5$ 的泊松分布. 现有某种预防感冒的药物对 75%的人有效 (能将泊松分布的参数减少为 $\lambda = 3$),对另外的 25%的人不起作用. 如果某人服用了此药,一年内患了两次感冒,那么该药对他(她)有效的可能性是多少?
- 解:设X表示他(她)一年内患感冒的次数,事件A表示该药对他(她)有效,若A发生,X服从参数 $\lambda = 3$ 的泊松分布,若 \overline{A} 发生,X服从参数 $\lambda = 5$ 的泊松分布,

故
$$P(A \mid X = 2) = \frac{P(A \cap "X = 2")}{P\{X = 2\}} = \frac{P(A)P\{X = 2 \mid A\}}{P(A)P\{X = 2 \mid A\} + P(\overline{A})P\{X = 2 \mid \overline{A}\}}$$

$$= \frac{0.75 \times (0.423 - 0.199)}{0.75 \times (0.423 - 0.199) + 0.25 \times (0.125 - 0.040)} = \frac{0.168}{0.168 + 0.02125} = 0.8877.$$

- 11. 有三个朋友去喝咖啡,他们决定用掷硬币的方式确定谁付账:每人掷一枚硬币,如果有人掷出的结果与其他两人不一样,那么由他付账;如果三个人掷出的结果是一样的,那么就重新掷,一直这样下去,直到确定了由谁来付账.求以下事件的概率:
 - (1) 进行到了第2轮确定了由谁来付账;
 - (2) 进行了3轮还没有确定付账人.
- 解:设X表示三个人投掷的轮数,p表示每一轮三个人掷出的结果不一样的概率,有 $p=1-\frac{2}{2^3}=\frac{3}{4}$,

(1)
$$P{X = 2} = (1-p)p = \frac{3}{16}$$
;

(2)
$$P{X > 3} = (1 - p)^3 = \frac{1}{64}$$
.

- 12. 从一个装有m个白球、n个黑球的袋子中返回地摸球,直到摸到白球时停止. 试求取到黑球数的期望.
- 解:设 X 表示取到的黑球数,有 X+1 服从参数为 $p=\frac{m}{m+n}$ 的几何分布,有 $E(X+1)=\frac{1}{p}=\frac{m+n}{m}$,

故
$$E(X) = \frac{m+n}{m} - 1 = \frac{n}{m}$$
.

13. 某种产品上的缺陷数 X 服从下列分布列: $P\{X=k\} = \frac{1}{2^{k+1}}, k=0,1,\dots$,求此种产品上的平均缺陷数.

解: 因
$$X+1$$
 服从参数为 $p=\frac{1}{2}$ 的几何分布 $Ge\left(\frac{1}{2}\right)$,有 $E(X+1)=\frac{1}{p}=2$,故 $E(X)=2-1=1$.

14. 设随机变量 X 的密度函数为

$$p(x) = \begin{cases} 2x, & 0 < x < 1; \\ 0, & 其他. \end{cases}$$

以 Y表示对 X的三次独立重复观察中事件 $\{X \le 1/2\}$ 出现的次数,试求 $P\{Y = 2\}$.

解: 因
$$P\{X \leq \frac{1}{2}\} = \int_0^{\frac{1}{2}} 2x dx = x^2 \Big|_0^{\frac{1}{2}} = \frac{1}{4}$$
, 有 Y 服从二项分布 $b\left(3, \frac{1}{4}\right)$,

故
$$P{Y=2} = {3 \choose 2} \cdot \left(\frac{1}{4}\right)^2 \cdot \frac{3}{4} = \frac{9}{64}$$
.

- 15. 某产品的不合格品率为 0.1,每次随机抽取 10 件进行检查,若发现其中不合格品数多于 1,就去调整设备. 若检验员每天检查 4 次,试问每天平均要调整几次设备.
- 解:设X表示所取 10 件中的不合格品数,有X服从二项分布 b(10,0.1),

则需要调整设备的概率为
$$P\{X \ge 2\} = 1 - P\{X = 0\} - P\{X = 1\} = 1 - 0.9^{10} - \binom{10}{1} \times 0.1 \times 0.9^9 = 0.2639$$
,

设 Y 表示每天调整设备的次数,有 X 服从二项分布 b (4, 0.2639),

故 $E(X) = 4 \times 0.2639 = 1.0556$, 即每天平均要调整 1.0556 次设备.

- 16. 一个系统由多个元件组成,各个元件是否正常工作是相互独立的,且各个元件正常工作的概率为p. 若在系统中至少有一半的元件正常工作,那么整个系统就有效. 问p 取何值时,5个元件的系统比3个元件的系统更有可能有效?
- 解:设X表示3个元件的系统中正常工作的元件数,Y表示5个元件的系统中正常工作的元件数,

则 3 个元件的系统有效的概率为
$$P\{X \ge 2\} = \binom{3}{2} p^2 (1-p) + \binom{3}{3} p^3 = 3p^2 (1-p) + p^3 = 3p^2 - 2p^3$$
,

且 5 个元件的系统有效的概率为

$$P\{Y \ge 3\} = {5 \choose 3} p^3 (1-p)^2 + {5 \choose 4} p^4 (1-p) + {5 \choose 5} p^5 = 10 p^3 (1-p)^2 + 5 p^4 (1-p) + p^5 = 10 p^3 - 15 p^4 + 6 p^5,$$

要使得 $10p^3 - 15p^4 + 6p^5 > 3p^2 - 2p^3$,即 $3p^2 - 12p^3 + 15p^4 - 6p^5 < 0$,有 $3p^2(1-p)^2(1-2p) < 0$,故 p > 0.5.

17. 设随机变量 X 服从参数为 λ 的泊松分布,试证明

$$E(X^n) = \lambda E[(X+1)^{n-1}],$$

利用此结果计算 $E(X^3)$.

证: 因 X 的概率函数为 $P\{X=k\} = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k=0,1,2,\cdots$

故
$$E(X^n) = \sum_{k=0}^{+\infty} k^n \cdot \frac{\lambda^k}{k!} e^{-\lambda} = \sum_{k=1}^{+\infty} k^{n-1} \cdot \frac{\lambda^k}{(k-1)!} e^{-\lambda} = \sum_{m=0}^{+\infty} (m+1)^{n-1} \cdot \frac{\lambda^{m+1}}{m!} e^{-\lambda} = \lambda \sum_{m=0}^{+\infty} (m+1)^{n-1} \cdot \frac{\lambda^m}{m!} e^{-\lambda}$$

$$= \lambda E[(X+1)^{n-1}];$$

$$\exists. E(X^3) = \lambda E[(X+1)^2] = \lambda E(X^2) + 2\lambda E(X) + \lambda = \lambda^2 E(X+1) + 2\lambda E(X) + \lambda$$

$$= \lambda^2 (\lambda + 1) + 2\lambda^2 + \lambda = \lambda^3 + 3\lambda^2 + \lambda.$$

18. 令X(n,p)表示服从二项分布b(n,p)的随机变量,试证明:

$$P\{X(n, p) \le i\} = 1 - P\{X(n, 1-p) \le n - i - 1\}.$$

$$\text{iif:} \quad P\{X(n,p) \leq i\} = 1 - P\{X(n,p) \geq i+1\} = 1 - \sum_{k=i+1}^{n} P\{X(n,p) = k\} = 1 - \sum_{k=i+1}^{n} \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$=1-\sum_{m=0}^{n-i-1}\binom{n}{n-m}p^{n-m}(1-p)^m=1-\sum_{m=0}^{n-i-1}\binom{n}{m}(1-p)^mp^{n-m}=1-P\{X(n,1-p)\leq n-i-1\}.$$

19. 设随机变量 X 服从参数为 p 的几何分布, 试证明:

$$E\left(\frac{1}{X}\right) = \frac{-p\ln p}{1-p}.$$

证: 因 X 的概率函数为 $P\{X=k\} = (1-p)^{k-1}p$, $k=1,2,\cdots$,

$$\text{In } E\left(\frac{1}{X}\right) = \sum_{k=1}^{+\infty} \frac{1}{k} (1-p)^{k-1} p = \frac{p}{1-p} \sum_{k=1}^{+\infty} \frac{(1-p)^k}{k} ,$$

设
$$f(x) = \sum_{k=1}^{+\infty} \frac{x^k}{k}$$
,有 $f'(x) = \sum_{k=1}^{+\infty} x^{k-1} = \frac{1}{1-x}$,可得 $f(x) = \int_0^x \frac{1}{1-u} du = -\ln(1-u)\Big|_0^x = -\ln(1-x)$,

故
$$E\left(\frac{1}{X}\right) = \frac{p}{1-p} f(1-p) = \frac{-p \ln p}{1-p}$$
.

20. 设随机变量 $X \sim b(n, p)$, 试证明:

$$E\left(\frac{1}{X+1}\right) = \frac{1-(1-p)^{n+1}}{(n+1)p}$$
.

证: 因
$$X$$
 的概率函数为 $P\{X=k\} = \binom{n}{k} p^k (1-p)^{n-k}, \quad k=0,1,2,\dots,n$,

习题 2.5

- 1. 设随机变量 X 服从区间 (2, 5)上的均匀分布,求对 X 进行 3 次独立观察中,至少有 2 次的观察值大于 3 的概率.
- 解: 设 Y 表示 "X 大于 3 的次数",有 Y 服从二项分布 b(3,p),且 $p = P\{X > 3\} = \frac{5-3}{5-2} = \frac{2}{3}$

故所求概率为
$$P{Y \ge 2} = {3 \choose 2} \cdot \left(\frac{2}{3}\right)^2 \cdot \frac{1}{3} + \left(\frac{2}{3}\right)^3 = \frac{20}{27}$$
.

- 2. 在 (0,1)上任取一点记为 X,试求 $P\left\{X^2 \frac{3}{4}X + \frac{1}{8} \ge 0\right\}$.
- 解: 因 X 服从区间 (0,1)上的均匀分布,且 $X^2 \frac{3}{4}X + \frac{1}{8} = \left(X \frac{1}{4}\right)\left(X \frac{1}{2}\right) \ge 0$,即 $X \le \frac{1}{4}$ 或 $X \ge \frac{1}{2}$,

故
$$P\left\{X^2 - \frac{3}{4}X + \frac{1}{8} \ge 0\right\} = P\left\{X \le \frac{1}{4}$$
 或 $X \ge \frac{1}{2}\right\} = \left(\frac{1}{4} - 0\right) + \left(1 - \frac{1}{2}\right) = \frac{3}{4}$.

- 3. 设 K 服从 (1,6)上的均匀分布,求方程 $x^2 + Kx + 1 = 0$ 有实根的概率.
- 解: 因方程 $x^2 + Kx + 1 = 0$ 有实根,有判别式 $\Delta = K^2 4 \ge 0$,即 $K \le -2$ 或 $K \ge 2$,故所求概率为 $P\{K \le -2$ 或 $K \ge 2\} = 0 + \frac{6-2}{6-1} = \frac{4}{5}$.
- 4. 若随机变量 $K \sim N(\mu, \sigma^2)$, 而方程 $x^2 + 4x + K = 0$ 无实根的概率为 0.5, 试求 μ .
- 解: 因方程 $x^2+4x+K=0$ 无实根,有判别式 $\Delta=16-4K<0$,即 K>4,则 $P\{K>4\}=0.5$,且 $P\{K>\mu\}=0.5$,故 $\mu=4$.
- 5. 设流经一个 2 Ω 电阻上的电流 I 是一个随机变量,它均匀分布在 9A 至 11A 之间. 试求此电阻上消耗的平均功率,其中功率 $W=2I^2$.
- 解: 因电流 I 的密度函数为 $p(x) = \begin{cases} \frac{1}{2}, & 9 < x < 11, \\ 0, & 其他. \end{cases}$

故平均功率
$$E(W) = E(2I^2) = \int_{-\infty}^{+\infty} 2x^2 p(x) dx = \int_{9}^{11} 2x^2 \cdot \frac{1}{2} dx = \frac{x^3}{3} \Big|_{9}^{11} = \frac{602}{3}.$$

- 6. 某种圆盘的直径在区间 (a, b)上服从均匀分布, 试求此种圆盘的平均面积.
- 解:设 d 表示"圆盘的直径",S 表示"圆盘的面积",有 $S = \frac{1}{4}\pi d^2$,

因直径
$$d$$
 密度函数为 $p(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, & 其他. \end{cases}$

故平均面积
$$E(S) = E\left(\frac{1}{4}\pi d^2\right) = \int_{-\infty}^{+\infty} \frac{1}{4}\pi x^2 p(x) dx = \int_a^b \frac{1}{4}\pi x^2 \cdot \frac{1}{b-a} dx = \frac{\pi x^3}{12(b-a)} \bigg|_a^b = \frac{\pi}{12}(a^2+ab+b^2).$$

7. 设某种商品每周的需求量 *X* 服从区间 (10, 30)上的均匀分布,而商店进货数为区间 (10, 30)中的某一整数,商店每销售 1 单位商品可获利 500 元;若供大于求则削价处理,每处理 1 单位商品亏损 100 元;若供不应求,则可从外部调剂供应,此时每一单位商品仅获利 300 元.为使商店所获利润期望值不少

于9280元,试确定最少进货量.

解: 因 X 的密度函数为 $p(x) = \begin{cases} \frac{1}{20}, & 10 \le x \le 30, \\ 0, & \text{其它}, \end{cases}$ 并设每周进货量为 a 单位商品,商店所获利润为 Y元,

当 $X \le a$ 时,Y = 500X - 100(a - X) = 600X - 100a; 当 X > a 时,Y = 500a + 300(X - a) = 300X + 200a,

$$\text{BD } Y = g(X) = \begin{cases} 600X - 100a, & X \le a, \\ 300X + 200a, & X > a, \end{cases}$$

$$\iiint E(Y) = \int_{-\infty}^{+\infty} g(x) p(x) dx = \int_{10}^{a} (600x - 100a) \frac{1}{20} dx + \int_{a}^{30} (300x + 200a) \frac{1}{20} dx$$
$$= (15x^{2} - 5ax)\Big|_{10}^{a} + (\frac{15}{2}x^{2} + 10ax)\Big|_{a}^{30} = -\frac{15}{2}a^{2} + 350a + 5250,$$

要使得
$$E(Y) = -\frac{15}{2}a^2 + 350a + 5250 \ge 9280$$
,有 $\frac{15}{2}a^2 - 350a + 4030 \le 0$,可得 $\frac{62}{3} \le a \le 26$,

故 a 可取 21, 22, 23, 24, 25, 26, 即最少进货量为 21 单位商品.

- 8. 统计调查表明,英格兰在 1875 年至 1951 年期间,在矿山发生 10 人或 10 人以上死亡的两次事故之间的时间 T (以日计) 服从均值为 241 的指数分布. 试求 P{50 \leq T \leq 100}.
- 解: 因 T 服从指数分布,且 $E(T) = \frac{1}{\lambda} = 241$,有 T 的密度函数为 $p(t) = \begin{cases} \frac{1}{241} e^{-\frac{t}{241}}, & t \ge 0, \\ 0, & t < 0, \end{cases}$

故
$$P\{50 \le T \le 100\} = \int_{50}^{100} \frac{1}{241} e^{-\frac{t}{241}} dt = (-e^{-\frac{x}{241}}) \Big|_{50}^{100} = e^{-\frac{50}{241}} - e^{-\frac{100}{241}} = 0.1523$$
.

- 9. 若一次电话通话时间 X (单位: min) 服从参数为 0.25 的指数分布, 试求一次通话的平均时间.
- 解:因X服从参数为 $\lambda = 0.25$ 的指数分布,故一次通话的平均时间 $E(X) = \frac{1}{\lambda} = 4$.
- 10. 某种设备的使用寿命 *X*(以年计)服从指数分布,其平均寿命为 4年.制造此种设备的厂家规定,若设备在使用一年之内损坏,则可以予以调换.如果设备制造厂每售出一台设备可盈利 100 元,而调换一台设备需花费 300 元.试求每台设备的平均利润.
- 解: 因 X 服 从 指 数 分 布,且 $E(X) = \frac{1}{\lambda} = 4$,有 X 的 密 度 函 数 为 $p(x) = \begin{cases} \frac{1}{4} e^{-\frac{x}{4}}, & x \ge 0, \\ 0, & x < 0, \end{cases}$

设 Y表示"每台设备的利润",当 $X \le 1$ 时,Y = 100 - 300 = -200,当 X > 1 时,Y = 100.

故平均利润
$$E(Y) = -200P\{X \le 1\} + 100P\{X > 1\} = -200\int_0^1 \frac{1}{4}e^{-\frac{x}{4}}dx + 100\int_1^{+\infty} \frac{1}{4}e^{-\frac{x}{4}}dx$$

$$= -200(-e^{-\frac{x}{4}})\Big|_{0}^{1} + 100(-e^{-\frac{x}{4}})\Big|_{1}^{+\infty} = -200(1-e^{-\frac{1}{4}}) + 100e^{-\frac{1}{4}} = 300e^{-\frac{1}{4}} - 200 = 33.6402.$$

11. 设顾客在某银行的窗口等待服务的时间 X(以 min 计) 服从指数分布, 其密度函数为

$$p(x) = \begin{cases} \frac{1}{5} e^{-\frac{x}{5}}, & x > 0, \\ 0, & 其他. \end{cases}$$

某顾客在窗口等待服务,若超过 10min,他就离开. 他一个月要到银行 5 次,以 Y 表示一个月内他未等到服务而离开窗口的次数,试求 $P\{Y \ge 1\}$.

解: 因
$$Y$$
 服从二项分布 $b(5,p)$,且 $p = P\{X > 10\} = \int_{10}^{+\infty} \frac{1}{5} e^{-\frac{x}{5}} dx = -e^{-\frac{x}{5}} \Big|_{10}^{+\infty} = e^{-2}$,

故
$$P{Y \ge 1} = 1 - P{Y = 0} = 1 - (1 - e^{-2})^5 = 0.5167.$$

12. 某仪器装了 3 个独立工作的同型号电子元件,其寿命(单位: h)都服从同一指数分布,密度函数为

$$p(x) = \begin{cases} \frac{1}{600} e^{-\frac{x}{600}}, & x > 0, \\ 0, & \text{其他.} \end{cases}$$

试求: 此仪器在最初使用的 200h 内, 至少有一个此种电子元件损坏的概率.

解:设 Y表示"电子元件损坏的个数",有 Y服从二项分布 b(3,p),

故所求概率为 $P{Y \ge 1} = 1 - P{Y = 0} = 1 - (1 - 1 + e^{-\frac{1}{3}})^3 = 1 - e^{-1} = 0.6321$.

13. 设随机变量 X 的密度函数为

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0. \end{cases} \quad (\lambda > 0)$$

试求 k, 使得 $P\{X > k\} = 0.5$.

14. 设随机变量 X 的密度函数为

$$p(x) = \begin{cases} 1/3, & 0 \le x \le 1, \\ 2/9, & 3 \le x \le 6, \\ 0, & \sharp \ \stackrel{\sim}{\Sigma}. \end{cases}$$

若 $P{X ≥ k} = 2/3$, 试求 k 的取值范围.

解: 首先求出 X 的分布函数 F(x), 分段点 0, 1, 3, 6, 当 x < 0 时, F(x) = 0,

$$\stackrel{\text{def}}{=} 0 \le x < 1 \text{ ltj}, \quad F(x) = \int_0^x \frac{1}{3} dt = \frac{t}{3} \Big|_0^x = \frac{x}{3},$$

$$\stackrel{\text{def}}{=} 1 \le x < 3 \text{ By}, \quad F(x) = \int_0^1 \frac{1}{3} dt = \frac{t}{3} \Big|_0^1 = \frac{1}{3},$$

$$\stackrel{\text{\tiny Δ}}{=}$$
 3 ≤ x < 6 $\stackrel{\text{\tiny D}}{=}$, $F(x) = \int_0^1 \frac{1}{3} dt + \int_3^x \frac{2}{9} dt = \frac{t}{3} \Big|_0^1 + \frac{2t}{9} \Big|_3^x = \frac{2x}{9} - \frac{1}{3}$,

$$\stackrel{\text{def}}{=}$$
 x ≥ 6 $\stackrel{\text{def}}{=}$, $F(x) = \int_0^1 \frac{1}{3} dt + \int_3^6 \frac{2}{9} dt = \frac{t}{3} \Big|_0^1 + \frac{2t}{9} \Big|_0^6 = 1$.

因 X 为连续型随机变量,有 $P\{X \ge k\} = 1 - F(k) = \frac{2}{3}$,即 $F(k) = \frac{1}{3}$,故 k 的取值范围是 [1, 3].

15. 写出一下正态分布的均值和标准差.

$$p_1(x) = \frac{1}{\sqrt{\pi}} e^{-(x^2 + 4x + 4)}, \quad p_2(x) = \sqrt{\frac{2}{\pi}} e^{-2x^2}, \quad p_3(x) = \frac{1}{\sqrt{\pi}} e^{-x^2}.$$

解: 正态分布的密度函数 $p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$, 其中均值为 μ , 标准差为 σ ,

因
$$p_1(x) = \frac{1}{\sqrt{\pi}} e^{-(x^2+4x+4)} = \frac{1}{\sqrt{2\pi} \cdot \frac{1}{\sqrt{2}}} e^{-\frac{(x+2)^2}{2\times \frac{1}{2}}}$$
, 故均值 $\mu = -2$, 标准差 $\sigma = \frac{1}{\sqrt{2}}$;

因
$$p_2(x) = \sqrt{\frac{2}{\pi}} e^{-2x^2} = \frac{1}{\sqrt{2\pi} \cdot \frac{1}{2}} e^{-\frac{x^2}{2 \times \frac{1}{4}}}$$
,故均值 $\mu = 0$,标准差 $\sigma = \frac{1}{2}$;

因
$$p_3(x) = \frac{1}{\sqrt{\pi}} e^{-x^2} = \frac{1}{\sqrt{2\pi} \cdot \frac{1}{\sqrt{2}}} e^{-\frac{x^2}{2 \times \frac{1}{2}}}$$
,故均值 $\mu = 0$,标准差 $\sigma = \frac{1}{\sqrt{2}}$.

- 16. 某地区 18 岁女青年的血压 X (收缩压,以 mm-Hg 计)服从 N (110, 12 2). 试求该地区 18 岁女青年的血压在 100 至 120 的可能性有多大?
- 解: 因 $X \sim N(110, 12^2)$, 有 $\mu = 110$, $\sigma = 12$,

故
$$P\{100 \le X \le 120\} = \Phi\left(\frac{120 - 110}{12}\right) - \Phi\left(\frac{100 - 110}{12}\right) = \Phi(0.8333) - \Phi(-0.8333) = 2\Phi(0.8333) - 1$$

= 2 × 0.7977 - 1 = 0.5954.

(或查表可得 $P\{100 \le X \le 120\} = \Phi(0.83) - \Phi(-0.83) = 2\Phi(0.83) - 1 = 2 \times 0.7967 - 1 = 0.5934$)

- 17. 某地区成年男子的体重 X (kg) 服从正态分布 $N(\mu, \sigma^2)$. 若已知 $P\{X \le 70\} = 0.5$, $P\{X \le 60\} = 0.25$.
 - (1) 求 μ 与 σ 各为多少?
 - (2) 若在这个地区随机地选出 5 名成年男子,问其中至少两人体重超过 65kg 的概率是多少?

(2) 设 Y表示"体重 X超过 65kg 的人数",有 Y服从二项分布 b(5,p),

故所求概率为
$$P{Y \ge 2} = 1 - p(0) - p(1) = 1 - 0.3680^5 - {5 \choose 1} \times 0.6320 \times 0.3680^4 = 0.9353$$
.

(或查表可得
$$p = P\{X > 65\} = 1 - \Phi\left(\frac{65 - 70}{14.9254}\right) = 1 - \Phi(-0.34) = 0.6331$$
, 故 $P\{Y \ge 2\} = 0.9360$)

- 18. 由某机器生产的螺栓的长度(cm)服从正态分布 $N(10.05, 0.06^2)$,若规定长度在范围 10.05 ± 0.12 内为合格品,求螺栓不合格的概率.
- 解:设X表示"螺栓的长度",有 $X \sim N(10.05, 0.06^2)$,即 $\mu = 10.05$, $\sigma = 0.06$,

故所求概率为
$$P\{|X-10.05|>0.12\}=2\left[1-\Phi\left(\frac{0.12}{0.06}\right)\right]=2[1-\Phi(2)]=2\times(1-0.9772)=0.0456$$
.

- 19. 某地抽样调查结果表明,考生的外语成绩(百分制)近似地服从 μ = 72 的正态分布,已知 96 分以上的人数占总数的 2.3%,试求考生的成绩在 60 到 84 之间的概率.
- 解:设X表示"考生的外语成绩",有 $X \sim N(\mu, \sigma^2)$,其中 $\mu = 72$,

因
$$P\{X > 96\} = 1 - \Phi\left(\frac{96 - 72}{\sigma}\right) = 1 - \Phi\left(\frac{24}{\sigma}\right) = 0.023$$
,即 $\Phi\left(\frac{24}{\sigma}\right) = 0.977$, $\frac{24}{\sigma} = 2$,可得 $\sigma = 12$,

故所求概率为
$$P\{60 \le X \le 84\} = \Phi\left(\frac{84-72}{12}\right) - \Phi\left(\frac{60-72}{12}\right) = \Phi(1) - \Phi(-1) = 2 \times 0.8413 - 1 = 0.6826$$
.

20. 设 $X \sim N(3, 2^2)$, (1) 求 $P\{2 < X \le 5\}$; (2) 求 $P\{|X| > 2\}$; (3) 确定 c 使得 $P\{X > c\} = P\{X < c\}$.

解: (1)
$$P{2 < X \le 5} = \Phi\left(\frac{5-3}{2}\right) - \Phi\left(\frac{2-3}{2}\right) = \Phi(1) - \Phi(-0.5) = 0.8413 - (1-0.6915) = 0.5328$$
;

(2)
$$P\{|X| > 2\} = 1 - \Phi\left(\frac{2-3}{2}\right) + \Phi\left(\frac{-2-3}{2}\right) = 1 - \Phi(-0.5) + \Phi(-2.5) = 0.6915 + 1 - 0.9938 = 0.6977$$
;

- 21. 若 $X \sim N(4, 3^2)$,(1) 求 $P\{-2 < X \le 10\}$;(2) 求 $P\{X > 3\}$;(3) 设 d 满足 $P\{X > d\} \ge 0.9$,问 d 至多为多少?

$$\text{#F:} \quad (1) \quad P\{-2 < X \le 10\} = \Phi\left(\frac{10-4}{3}\right) - \Phi\left(\frac{-2-4}{3}\right) = \Phi(2) - \Phi(-2) = 2 \times 0.9772 - 1 = 0.9544 \; ;$$

(2)
$$P{X > 3} = 1 - \Phi\left(\frac{3-4}{3}\right) = 1 - \Phi(-0.3333) = 0.6306$$
;

(或查表可得 $P{X>3}=1-\Phi(-0.33)=0.6293$)

(3) 因
$$P\{X > d\} = 1 - \Phi\left(\frac{d-4}{3}\right) = \Phi\left(\frac{4-d}{3}\right) \ge 0.9$$
,有 $\frac{4-d}{3} \ge 1.2816$,故 $d \le 0.1552$.

(或查表可得
$$\frac{4-d}{3} \ge 1.28$$
, 故 $d \le 0.16$)

22. 测量到某一目标的距离时,发生的随机误差X(m)具有密度函数

$$p(x) = \frac{1}{40\sqrt{2\pi}} e^{-\frac{(x-20)^2}{3200}}, -\infty < x < +\infty$$

求在三次测量中,至少有一次误差的绝对值不超过30m的概率.

解:设 Y表示"误差 X的绝对值不超过 30 m 的次数",有 Y服从二项分布 b(3,p),

因
$$X$$
 的密度函数 $p(x) = \frac{1}{40\sqrt{2\pi}} e^{-\frac{(x-20)^2}{2\times 40^2}}$,有 X 服从正态分布 $N(\mu, \sigma^2)$,其中 μ = 20, σ = 40,

$$\text{III } p = P\{|X| \le 30\} = \Phi\left(\frac{30 - 20}{40}\right) - \Phi\left(\frac{-30 - 20}{40}\right) = \Phi(0.25) - \Phi(-1.25)$$

$$= 0.5987 - (1 - 0.8944) = 0.4931$$
,

故所求概率为 $P{Y \ge 1} = 1 - p(0) = 1 - (1 - p)^3 = 1 - 0.5069^3 = 0.8698$.

- 23. 从甲地飞往乙地的航班,每天上午 10:10 起飞,飞行时间 X 服从均值是 4 h,标准差是 20 min 的正态分布.
 - (1) 该机在下午 2:30 以后到达乙地的概率是多少?
 - (2) 该机在下午 2:20 以前到达乙地的概率是多少?
 - (3) 该机在下午1:50至2:30之间到达乙地的概率是多少?
- 解: 因 X 服从正态分布 $N(\mu, \sigma^2)$, 其中 $\mu = 4 \times 60 = 240$, $\sigma = 20$,

(1) 所求概率为
$$P{X > 260} = 1 - \Phi\left(\frac{260 - 240}{20}\right) = 1 - \Phi(1) = 1 - 0.8413 = 0.1587$$
;

(2) 所求概率为
$$P{X < 250} = \Phi\left(\frac{250 - 240}{20}\right) = \Phi(0.5) = 0.6915$$
;

(3) 所求概率为
$$P{220 \le X \le 260} = \Phi\left(\frac{260 - 240}{20}\right) - \Phi\left(\frac{220 - 240}{20}\right) = \Phi(1) - \Phi(-1)$$

$$= 2 \times 0.8413 - 1 = 0.6826$$
.

24. 某单位招聘员工,共有 10000 人报考. 假设考试成绩服从正态分布,且已知 90 分以上有 359 人,60 分以下有 1151 人. 现按考试成绩从高分到低分依次录用 2500 人,试问被录用者中最低分为多少?解:设X表示"考试成绩",有X服从正态分布 $N(\mu, \sigma^2)$,

因
$$P\{X > 90\} = 1 - \Phi\left(\frac{90 - \mu}{\sigma}\right) = 0.0359$$
,即 $\Phi\left(\frac{90 - \mu}{\sigma}\right) = 0.9641$,得 $\frac{90 - \mu}{\sigma} = 1.8$,

且
$$P\{X < 60\} = \Phi\left(\frac{60 - \mu}{\sigma}\right) = 0.1151$$
,即 $\Phi\left(-\frac{60 - \mu}{\sigma}\right) = 0.8849$,得 $-\frac{60 - \mu}{\sigma} = 1.2$,

可得 μ = 72, σ = 10, 又设录用者中最低分为 a,

则
$$P\{X > a\} = 1 - \Phi\left(\frac{a - 72}{10}\right) = 0.25$$
,即 $\Phi\left(\frac{a - 72}{10}\right) = 0.75$,得 $\frac{a - 72}{10} = 0.6745$,

故 a = 78.745.

(或查表可得
$$\frac{a-72}{10}$$
=0.67,故 a =78.7)

25. 设随机变量 X 服从正态分布 $X \sim N(60, 3^2)$,试求实数 a, b, c, d,使得 X 落在如下五个区间中的概率之比为 7:24:38:24:7.

$$(-\infty, a], (a, b], (b, c], (c, d], (d, +\infty).$$

解: 因
$$P\{X \le a\} = \Phi\left(\frac{a-60}{3}\right) = 0.07$$
,即 $\Phi\left(-\frac{a-60}{3}\right) = 0.93$,得 $-\frac{a-60}{3} = 1.4758$,故 $a = 55.5726$;

因
$$P\{X \le b\} = \Phi\left(\frac{b-60}{3}\right) = 0.31$$
,即 $\Phi\left(-\frac{b-60}{3}\right) = 0.69$,得 $-\frac{b-60}{3} = 0.4959$,故 $b = 58.5123$;

因
$$P\{X \le c\} = \Phi\left(\frac{c-60}{3}\right) = 0.69$$
,得 $\frac{c-60}{3} = 0.4959$,故 $c = 61.4877$;

因
$$P\{X \le d\} = \Phi\left(\frac{d-60}{3}\right) = 0.93$$
,得 $\frac{d-60}{3} = 1.4758$,故 $d = 64.4274$.

(或查表可得
$$-\frac{a-60}{3}$$
=1.48, $-\frac{b-60}{3}$ =0.50, $\frac{c-60}{3}$ =0.50, $\frac{d-60}{3}$ =1.48,

故 a = 55.56, b = 58.50, c = 61.50, d = 64.44)

26. 设随机变量 X 与 Y 均服从正态分布 $N(\mu, 4^2)$, Y 服从 $N(\mu, 5^2)$, 试比较以下 p_1 和 p_2 的大小. $p_1 = P\{X \le \mu - 4\}$, $p_2 = P\{Y \ge \mu + 5\}$.

解: 因
$$p_1 = P\{X \le \mu - 4\} = \Phi\left(\frac{\mu - 4 - \mu}{4}\right) = \Phi(-1) = 1 - \Phi(1) = 1 - 0.8413 = 0.1587$$
,

$$\mathbb{H}. \ p_2 = P\{X \ge \mu + 5\} = 1 - \Phi\left(\frac{\mu + 5 - \mu}{5}\right) = 1 - \Phi(1) = 1 - 0.8413 = 0.1587,$$

故 $p_1 = p_2$.

27. 设随机变量 X 服从正态分布 $N(0, \sigma^2)$, 若 $P\{|X| > k\} = 0.1$, 试求 $P\{X < k\}$.

解: 因
$$P\{|X| > k\} = 1 - \Phi\left(\frac{k-0}{\sigma}\right) + \Phi\left(\frac{-k-0}{\sigma}\right) = 2 - 2\Phi\left(\frac{k}{\sigma}\right) = 0.1$$
,得 $\Phi\left(\frac{k}{\sigma}\right) = 0.95$,

故
$$P\{X < k\} = \Phi\left(\frac{k-0}{\sigma}\right) = \Phi\left(\frac{k}{\sigma}\right) = 0.95$$
.

28. 设随机变量 X 服从正态分布 $N(\mu, \sigma^2)$, 试问: 随着 σ 的增大, 概率 $P\{|X-\mu| < \sigma\}$ 是如何变化的?

解: 因
$$P\{|X - \mu| < \sigma\} = \Phi\left(\frac{\mu + \sigma - \mu}{\sigma}\right) - \Phi\left(\frac{\mu - \sigma - \mu}{\sigma}\right) = \Phi(1) - \Phi(-1) = 2 \times 0.8413 - 1 = 0.6826$$

故随着 σ 的增大,概率 $P\{|X-\mu| < \sigma\}$ 不变.

29. 设随机变量 X 服从参数为 μ = 160 和 σ 的正态分布,若要求 $P\{120 < X \le 200\} \ge 0.90$,允许 σ 最大为多少?

故
$$\Phi\left(\frac{40}{\sigma}\right) \ge 0.95$$
,即 $\frac{40}{\sigma} \ge 1.6449$,可得 $\sigma \le 24.3183$.

(或查表可得
$$\frac{40}{\sigma} \ge 1.64$$
,故 $\sigma \le 24.3902$)

30. 设随机变量 $X \sim N(\mu, \sigma^2)$, 求 $E|X - \mu|$.

解: 因
$$X$$
 的密度函数为 $p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty$

31. 设
$$X \sim N(0, \sigma^2)$$
, 证明: $E|X| = \sigma \sqrt{\frac{2}{\pi}}$.

证: 因
$$X$$
 的密度函数为 $p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}, -\infty < x < +\infty$,

32. 设随机变量 X 服从伽玛分布 Ga(2, 0.5),试求 $P\{X < 4\}$.

解: 因
$$X$$
 的密度函数为 $p(x) = \begin{cases} 0.5^2 x e^{-0.5x}, & x \ge 0, \\ 0, & x < 0, \end{cases} = \begin{cases} 0.25 x e^{-0.5x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$

33. 某地区漏缴税款的比例 X 服从参数 a=2,b=9 的贝塔分布,试求此比例小于 10%的概率及平均漏缴税款的比例.

解: 因
$$X$$
 的密度函数为 $p(x) = \begin{cases} \frac{\Gamma(11)}{\Gamma(2)\Gamma(9)} x(1-x)^8, & 0 < x < 1, \\ 0, & 其他, \end{cases} = \begin{cases} 90x(1-x)^8, & 0 < x < 1, \\ 0, & 其他, \end{cases}$

故
$$P\{X < 0.1\} = \int_0^{0.1} 90x(1-x)^8 dx = \int_0^{0.1} (-10x)d[(1-x)^9] = -10x(1-x)^9 \Big|_0^{0.1} + \int_0^4 (1-x)^9 \cdot 10dx$$

= $-0.9^9 - (1-x)^{10} \Big|_0^{0.1} = -0.9^9 - 0.9^{10} + 1 = 0.2639$;

且平均漏缴税款的比例为 $E(X) = \frac{2}{2+9} = \frac{2}{11} = 0.1818$.

34. 某班级学生中数学成绩不及格的比例 X 服从 a=1,b=4 的贝塔分布,试求 $P\{X>E(X)\}$.

解: 因
$$X$$
 的密度函数为 $p(x) = \begin{cases} \frac{\Gamma(5)}{\Gamma(1)\Gamma(4)} (1-x)^3, & 0 < x < 1, \\ 0, & \text{其他,} \end{cases} = \begin{cases} 4(1-x)^3, & 0 < x < 1, \\ 0, & \text{其他,} \end{cases}$ 且 $E(X) = \frac{1}{1+4} = 0.2$,

故
$$P\{X > E(X)\} = \int_{0.2}^{1} 4(1-x)^3 dx = -(1-x)^4 \Big|_{0.2}^{1} = 0.8^4 = 0.4096$$
.

1. 已知离散随机变量 X 的分布列为

试求 $Y=X^2$ 与 Z=|X| 的分布列.

解: 因 X 的全部可能取值为 -2, -1, 0, 1, 3,

则 $Y = X^2$ 的全部可能取值为 4, 1, 0, 1, 9, Z = |X| 的全部可能取值为 2, 1, 0, 1, 3, 故 $Y = X^2$ 的分布列为

$$\frac{Y \mid 0}{P \mid \frac{1}{5} \mid \frac{7}{30} \mid \frac{1}{5} \mid \frac{11}{30}};$$

且 Z=|X| 的分布列为

2. 己知随机变量 X 的密度函数为

$$p(x) = \frac{2}{\pi} \cdot \frac{1}{e^x + e^{-x}}, -\infty < x < +\infty.$$

试求随机变量 Y = g(X)的概率分布,其中

$$g(x) = \begin{cases} -1, & \text{\pm x} < 0, \\ 1, & \text{\pm x} \ge 0. \end{cases}$$

解:因Y=g(X)的全部可能取值为-1,1,1

有
$$P{Y = -1} = P{X < 0} = \int_{-\infty}^{0} \frac{2}{\pi} \cdot \frac{1}{e^{x} + e^{-x}} dx = \frac{2}{\pi} \int_{-\infty}^{0} \frac{e^{x}}{e^{2x} + 1} dx = \frac{2}{\pi} \int_{-\infty}^{0} \frac{1}{e^{2x} + 1} d(e^{x}) = \frac{2}{\pi} \arctan(e^{x}) \Big|_{-\infty}^{0}$$

$$= \frac{2}{\pi} (\arctan 1 - \arctan 0) = \frac{2}{\pi} \times \frac{\pi}{4} = \frac{1}{2} , \quad \text{If } P{Y = 1} = 1 - P{Y = -1} = \frac{1}{2} ,$$

故 Y = g(X)的概率分布列为

$$\frac{Y -1}{P \frac{1}{2} \frac{1}{2}}$$
.

3. 设随机变量 X 服从 (-1, 2) 上的均匀分布,记

$$Y = \begin{cases} 1, & X \ge 0, \\ -1, & X < 0. \end{cases}$$

试求Y的分布列.

解: 因
$$Y$$
 的全部可能取值为 -1 , 1 , 有 $P\{Y=-1\}=P\{X<0\}=\frac{0-(-1)}{2-(-1)}=\frac{1}{3}$, $P\{Y=1\}=1-P\{Y=-1\}=\frac{2}{3}$,

31

故Y的分布列为

$$\begin{array}{c|cc} Y & -1 & 1 \\ \hline P & \frac{1}{3} & \frac{2}{3} \end{array}.$$

4. 设 $X \sim U(0,1)$, 试求1-X的分布.

解: 因 X 的密度函数为

$$p_X(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

设 Y = g(X) = 1 - X,有 y = g(x) = 1 - x 严格单调下降,其反函数为 x = h(y) = 1 - y,且 h'(y) = -1,且 0 < x < 1 时,有 0 < y < 1,可得 $p_Y(y) = 1 \cdot |-1| = 1$,0 < y < 1,故 Y = 1 - X的密度函数为

$$p_{Y}(y) = \begin{cases} 1, & 0 < y < 1, \\ 0, & 其他. \end{cases}$$

5. 设随机变量 X 服从 $(-\pi/2, \pi/2)$ 上的均匀分布,求随机变量 $Y = \cos X$ 的密度函数 $p_Y(y)$.

解: 因 X 的密度函数为

$$p_X(x) = \begin{cases} \frac{1}{\pi}, & -\frac{\pi}{2} < x < \frac{\pi}{2}, \\ 0, & \text{其他.} \end{cases}$$

且
$$-\frac{\pi}{2} < x < \frac{\pi}{2}$$
时,有 $0 < y = \cos x \le 1$,

当
$$y < 0$$
 时, $F_Y(y) = P\{Y = \cos X \le y\} = P(\emptyset) = 0$;

$$\stackrel{\text{def}}{=} 0 \le y < 1$$
 时, $F_Y(y) = P\{Y = \cos X \le y\} = P\{-\frac{\pi}{2} < X \le -\arccos y\} + P\{\arccos y \le X < \frac{\pi}{2}\}$

$$= \frac{2(\frac{\pi}{2} - \arccos y)}{\pi} = 1 - \frac{2}{\pi} \arccos y;$$

 $\stackrel{\text{def}}{=}$ y ≥ 1 $\stackrel{\text{def}}{=}$ F_Y(y) = P{Y = cos X ≤ y} = P(Ω) = 1;

因 $F_Y(y)$ 连续且仅有两个不可导的点,当 0 < y < 1 时, $F'_Y(y) = \frac{2}{\pi \sqrt{1-y^2}}$,

故 $Y = \cos X$ 为连续随机变量,密度函数为

$$p_{Y}(y) = F'_{Y}(y) = \begin{cases} \frac{2}{\pi \sqrt{1 - y^{2}}}, & 0 < y < 1; \\ 0, & \text{ 其他.} \end{cases}$$

6. 设圆的直径服从区间 (0,1) 上的均匀分布,求圆的面积的密度函数.

解:设X表示"圆的直径",Y表示"圆的面积",有 $Y = \frac{1}{4}\pi X^2$,因X的密度函数为

$$p_X(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

且 0 < x < 1 时,有 $y = g(x) = \frac{1}{4}\pi x^2$ 严格单调增加,其反函数为 $x = h(y) = 2\sqrt{\frac{y}{\pi}}$,且 $h'(y) = \frac{1}{\sqrt{\pi y}}$,

当
$$0 < x < 1$$
 时,有 $0 < y < \frac{\pi}{4}$,可得 $p_{Y}(y) = 1 \cdot \frac{1}{\sqrt{\pi y}} = \frac{1}{\sqrt{\pi y}}$, $0 < y < \frac{\pi}{4}$,

故圆的面积 Y 的密度函数为

$$p_{Y}(y) = \begin{cases} \frac{1}{\sqrt{\pi y}}, & 0 < y < \frac{\pi}{4}, \\ 0, & 其他. \end{cases}$$

7. 设随机变量 X 服从区间 (1,2) 上的均匀分布,试求 $Y=e^{2X}$ 的密度函数.

解: 因 X 的密度函数为

$$p_X(x) = \begin{cases} 1, & 1 < x < 2, \\ 0, & 其他. \end{cases}$$

且 $y = g(x) = e^{2x}$ 严格单调增加,其反函数为 $x = h(y) = \frac{1}{2} \ln y$,且 $h'(y) = \frac{1}{2y}$,

当
$$1 < x < 2$$
 时,有 $e^2 < y < e^4$,可得 $p_Y(y) = 1 \cdot \frac{1}{2y} = \frac{1}{2y}$, $e^2 < y < e^4$,

故 $Y = e^{2X}$ 的密度函数为

$$p_{Y}(y) = \begin{cases} \frac{1}{2y}, & e^{2} < y < e^{4}, \\ 0, & 其他. \end{cases}$$

8. 设随机变量 X 服从区间 (0,2) 上的均匀分布,(1) 求 $Y = X^2$ 的密度函数; (2) $P\{Y < 2\}$.

解: 因 X 的密度函数为

$$p_X(x) = \begin{cases} \frac{1}{2}, & 0 < x < 2; \\ 0, & 其他. \end{cases}$$

(1) 因 0 < x < 2 时,有 $y = g(x) = x^2$ 严格单调增加,其反函数为 $x = h(y) = \sqrt{y}$,且 $h'(y) = \frac{1}{2\sqrt{y}}$,

当
$$0 < x < 2$$
 时,有 $0 < y < 4$,可得 $p_{Y}(y) = \frac{1}{2} \cdot \frac{1}{2\sqrt{y}} = \frac{1}{4\sqrt{y}}$, $0 < y < 4$,

故 $Y = X^2$ 的密度函数为

$$p_{Y}(y) = \begin{cases} \frac{1}{4\sqrt{y}}, & 0 < y < 4; \\ 0, & 其他. \end{cases}$$

(2)
$$P{Y<2} = P{X<\sqrt{2}} = \frac{\sqrt{2}}{2}$$
.

9. 设随机变量 X 服从区间 (-1,1) 上的均匀分布,求:

(1)
$$P\{|X| > \frac{1}{2}\};$$

(2) Y = |X| 的密度函数.

解: (1)
$$P\{|X| > \frac{1}{2}\} = \frac{\left[\left(-\frac{1}{2}\right) - (-1)\right] + \left(1 - \frac{1}{2}\right)}{1 - (-1)} = \frac{1}{2};$$

(2) 因
$$X$$
 的密度函数为 $p_X(x) = \begin{cases} \frac{1}{2}, & -1 < x < 1; \\ 0, & 其他. \end{cases}$

当
$$y < 0$$
 时, $F_Y(y) = P\{Y = |X| \le y\} = P(\emptyset) = 0$;

当
$$0 \le y < 1$$
 时, $F_Y(y) = P\{Y = |X| \le y\} = P\{-y \le X \le y\} = \frac{y - (-y)}{1 - (-1)} = y$;

 $\stackrel{\text{def}}{=}$ y ≥ 1 $\stackrel{\text{def}}{=}$ $F_Y(y) = P\{Y = \cos X \le y\} = P(\Omega) = 1;$

因 $F_Y(y)$ 连续且仅有两个不可导的点,

故 Y=|X| 为连续随机变量,密度函数为

$$p_{Y}(y) = F'_{Y}(y) = \begin{cases} 1, & 0 < y < 1; \\ 0, & 其他. \end{cases}$$

- 10. 设随机变量 X 服从区间 (0,1) 上的均匀分布, 试求以下 Y 的密度函数
 - (1) $Y = -2 \ln X$; (2) Y = 3X + 1;
- - (3) $Y = e^{X}$:
- (4) $Y = |\ln X|$.
- 解: 因 X 的密度函数为

$$p_X(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

(1) 因 x > 0 时,有 $y = g(x) = -2 \ln x$ 严格单调减少,其反函数为 $x = h(y) = e^{-\frac{y}{2}}$,且 $h'(y) = -\frac{1}{2}e^{-\frac{y}{2}}$,

当
$$0 < x < 1$$
 时,有 $0 < y < +\infty$,可得 $p_{Y}(y) = 1 \cdot \left| -\frac{1}{2} e^{-\frac{y}{2}} \right| = \frac{1}{2} e^{-\frac{y}{2}}, y > 0$,

故 $Y = -2 \ln X$ 的密度函数为

$$p_{Y}(y) = \begin{cases} \frac{1}{2} e^{-\frac{y}{2}}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

(2) 因 y = g(x) = 3x + 1 严格单调增加,其反函数为 $x = h(y) = \frac{y-1}{2}$,且 $h'(y) = \frac{1}{2}$,

当
$$0 < x < 1$$
 时,有 $1 < y < 4$,可得 $p_Y(y) = 1 \cdot \frac{1}{3} = \frac{1}{3}$, $1 < y < 4$,

故 Y = 3X + 1 的密度函数为

$$p_{Y}(y) = \begin{cases} \frac{1}{3}, & 1 < y < 4, \\ 0, & 其他. \end{cases}$$

(3) 因 $y = g(x) = e^x$ 严格单调增加,其反函数为 $x = h(y) = \ln y$,且 $h'(y) = \frac{1}{y}$,

当
$$0 < x < 1$$
 时,有 $1 < y < e$,可得 $p_{Y}(y) = 1 \cdot \frac{1}{y} = \frac{1}{y}$, $1 < y < e$,

故 $Y = e^X$ 的密度函数为

$$p_{Y}(y) = \begin{cases} \frac{1}{y}, & 1 < y < e, \\ 0, & 其他. \end{cases}$$

(4) 因 x > 0 时,有 $y = g(x) = |\ln x| = -\ln x$ 严格单调减少,其反函数为 $x = h(y) = e^{-y}$,且 $h'(y) = -e^{-y}$,当 0 < x < 1 时,有 $0 < y < +\infty$,可得 $p_Y(y) = 1 \cdot |-e^{-y}| = e^{-y}$,y > 0,故 $Y = |\ln X|$ 的密度函数为

$$p_{Y}(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

11. 设随机变量 X 的密度函数为

$$p_X(x) = \begin{cases} \frac{3}{2}x^2, & -1 < x < 1, \\ 0, & 其他. \end{cases}$$

试求下列随机变量的分布: (1) $Y_1 = 3X$; (2) $Y_2 = 3 - X$; (3) $Y_3 = X^2$.

解: (1) 因 y = g(x) = 3x 严格单调增加,其反函数为 $x = h(y) = \frac{y}{3}$,且 $h'(y) = \frac{1}{3}$,

当
$$-1 < x < 1$$
 时,有 $-3 < y < 3$,可得 $p_1(y) = \frac{3}{2} \cdot \left(\frac{y}{3}\right)^2 \cdot \frac{1}{3} = \frac{y^2}{18}$, $-3 < y < 3$,

故 $Y_1 = 3X$ 的密度函数为

$$p_1(y) = \begin{cases} \frac{y^2}{18}, & -3 < y < 3, \\ 0, & 其他. \end{cases}$$

(2) 因y = g(x) = 3 - x 严格单调下降,其反函数为x = h(y) = 3 - y,且h'(y) = -1,

当
$$-1 < x < 1$$
 时,有 $2 < y < 4$,可得 $p_2(y) = \frac{3}{2}(3-y)^2 \cdot |-1| = \frac{3}{2}(3-y)^2$, $2 < y < 4$,

故 $Y_2 = 3 - X$ 的密度函数为

$$p_2(y) = \begin{cases} \frac{3}{2}(3-y)^2, & 2 < y < 4, \\ 0, & 其他. \end{cases}$$

(3) 因 -1 < x < 1 时,有 $0 < y = x^2 < 1$,

$$\stackrel{\text{def}}{=}$$
 y < 0 $\stackrel{\text{def}}{=}$ F₃(y) = P{Y₃ = X² ≤ y} = P(∅) = 0;

$$\stackrel{\text{def}}{=}$$
 0 ≤ y < 1 $\stackrel{\text{def}}{=}$ $\stackrel{\text{def}$

$$\stackrel{\text{def}}{=}$$
 y ≥ 1 $\stackrel{\text{def}}{=}$ F₃(y) = P{Y₃ = X² ≤ y} = P(Ω) = 1;

因 $F_Y(y)$ 连续且仅有一个不可导的点, 当 0 < y < 1 时, $F'_Y(y) = \frac{3}{2}\sqrt{y}$,

故 $Y_3 = X^2$ 的密度函数为

$$p_3(y) = F'_Y(y) = \begin{cases} \frac{3}{2}\sqrt{y}, & 0 < y < 1; \\ 0, & 其他. \end{cases}$$

12. 设 $X \sim N(0, \sigma^2)$, 求 $Y = X^2$ 的分布.

解: 因 X 的密度函数为

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}, -\infty < x < +\infty,$$

 $\perp \!\!\! \perp 0 < y = x^2 < +\infty,$

当
$$y \le 0$$
时, $F_Y(y) = P\{Y = X^2 \le y\} = P(\emptyset) = 0$;

当
$$y > 0$$
 时, $F_Y(y) = P\{Y = X^2 \le y\} = P\{-\sqrt{y} \le X \le \sqrt{y}\} = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}} dx$,

因 $F_Y(y)$ 连续且仅有一个不可导的点, 当 y > 0 时,

$$F_{y}'(y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{y}{2\sigma^{2}}} \cdot \frac{1}{2\sqrt{y}} - \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{y}{2\sigma^{2}}} \cdot \left(-\frac{1}{2\sqrt{y}}\right) = \frac{1}{\sqrt{2\pi y}\sigma} e^{-\frac{y}{2\sigma^{2}}},$$

故 $Y = X^2$ 的密度函数为

$$p_{Y}(y) = F'_{Y}(y) = \begin{cases} \frac{1}{\sqrt{2\pi y}\sigma} e^{-\frac{y}{2\sigma^{2}}}, & y > 0; \\ 0, & y \leq 0. \end{cases}$$

13. 设 $X \sim N(\mu, \sigma^2)$, 求 $Y = e^X$ 的数学期望与方差.

解: 因
$$X$$
 的密度函数为 $p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty$,

$$\text{III} E(e^{X}) = \int_{-\infty}^{+\infty} e^{x} \cdot \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^{2}-2\mu x + \mu^{2}-2\sigma^{2} x}{2\sigma^{2}}} dx$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2 - 2(\mu + \sigma^2)x + (\mu + \sigma^2)^2 - 2\mu\sigma^2 - \sigma^4}{2\sigma^2}} dx = e^{\frac{2\mu\sigma^2 + \sigma^4}{2\sigma^2}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{[x - (\mu + \sigma^2)]^2}{2\sigma^2}} dx$$

因正态分布
$$N(\mu + \sigma^2, \sigma^2)$$
密度函数为 $p_1(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{[x-(\mu+\sigma^2)]^2}{2\sigma^2}}$,有 $\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{[x-(\mu+\sigma^2)]^2}{2\sigma^2}} dx = 1$,

故
$$E(Y) = E(e^X) = e^{\mu + \frac{\sigma^2}{2}}$$
;

又因
$$E(e^{2X}) = \int_{-\infty}^{+\infty} e^{2x} \cdot \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2-2\mu x+\mu^2-4\sigma^2 x}{2\sigma^2}} dx$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2 - 2(\mu + 2\sigma^2)x + (\mu + 2\sigma^2)^2 - 4\mu\sigma^2 - 4\sigma^4}{2\sigma^2}} dx = e^{\frac{4\mu\sigma^2 + 4\sigma^4}{2\sigma^2}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{[x - (\mu + 2\sigma^2)]^2}{2\sigma^2}} dx,$$

且正态分布 $N(\mu + 2\sigma^2, \sigma^2)$ 密度函数为 $p_2(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{[x-(\mu+2\sigma^2)]^2}{2\sigma^2}}$, 有 $\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{[x-(\mu+2\sigma^2)]^2}{2\sigma^2}} dx = 1$,

则
$$E(Y^2) = E(e^{2X}) = e^{2\mu + 2\sigma^2}$$
,

故
$$Var(Y) = E(Y^2) - [E(Y)]^2 = e^{2\mu + 2\sigma^2} - e^{2\mu + \sigma^2} = e^{2\mu + \sigma^2} (e^{\sigma^2} - 1)$$
.

14. 设随机变量 X 服从标准正态分布 N(0,1),试求以下 Y 的密度函数

- (1) Y = |X|; (2) $Y = 2X^2 + 1$.
- 解: 因 X 的密度函数为 $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < +\infty$,
 - (1) 当 $y \le 0$ 时, $F_1(y) = P\{Y = |X| \le y\} = P(\emptyset) = 0$; 当 y > 0 时, $F_1(y) = P\{Y = |X| \le y\} = \Phi(y) - \Phi(-y) = 2\Phi(y) - 1$, 因 $F_Y(y)$ 连续且仅有一个不可导的点,当 y > 0 时,

$$F_1'(y) = 2\Phi'(y) = 2\varphi(y) = \frac{2}{\sqrt{2\pi}} e^{-\frac{y^2}{2}},$$

故 Y = |X| 的密度函数为

$$p_1(y) = F_1'(y) = \begin{cases} \frac{2}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, & y > 0; \\ 0, & y \le 0. \end{cases}$$

(2) $\stackrel{\omega}{=} y \le 1$ $\stackrel{\omega}{=} F_2(y) = P\{Y = 2X^2 + 1 \le y\} = P(\emptyset) = 0;$

因 $F_Y(y)$ 连续且仅有一个不可导的点, 当y > 1时,

$$F_2'(y) = 2\Phi'\left(\sqrt{\frac{y-1}{2}}\right) \cdot \frac{1}{2\sqrt{2(y-1)}} = \frac{1}{\sqrt{2(y-1)}} \varphi\left(\sqrt{\frac{y-1}{2}}\right) = \frac{1}{2\sqrt{\pi(y-1)}} e^{-\frac{y-1}{4}},$$

故 $Y = 2X^2 + 1$ 的密度函数为

$$p_2(y) = F_2'(y) = \begin{cases} \frac{1}{2\sqrt{\pi(y-1)}} e^{-\frac{y-1}{4}}, & y > 1; \\ 0, & y \le 1. \end{cases}$$

15. 设随机变量 X 的密度函数为

$$p_X(x) = \begin{cases} e^{-x}, & 若 x > 0, \\ 0, & 若 x \le 0. \end{cases}$$

试求以下Y的密度函数

(1)
$$Y = 2X + 1$$
; (2) $Y = e^X$; (3) $Y = X^2$.

解: (1) 因 y = g(x) = 2x + 1 严格单调增加,其反函数为 $x = h(y) = \frac{y-1}{2}$,且 $h'(y) = \frac{1}{2}$,

当
$$x > 0$$
 时,有 $y > 1$,可得 $p_1(y) = e^{-\frac{y-1}{2}} \cdot \frac{1}{2} = \frac{1}{2} e^{-\frac{y-1}{2}}$, $y > 1$,

故 Y = 2X + 1 的密度函数为

$$p_1(y) = \begin{cases} \frac{1}{2} e^{-\frac{y-1}{2}}, & y > 1, \\ 0, & y \le 1. \end{cases}$$

(2) 因 $y = g(x) = e^x$ 严格单调增加,其反函数为 $x = h(y) = \ln y$,且 $h'(y) = \frac{1}{y}$,

当 x > 0 时,有 y > 1,可得 $p_2(y) = e^{-\ln y} \cdot \frac{1}{y} = \frac{1}{y^2}$, y > 1,

故 $Y = e^X$ 的密度函数为

$$p_2(y) = \begin{cases} \frac{1}{y^2}, & y > 1, \\ 0, & y \le 1. \end{cases}$$

(3) 因 x > 0 时,有 $y = g(x) = x^2$ 严格单调增加,其反函数为 $x = h(y) = \sqrt{y}$,且 $h'(y) = \frac{1}{2\sqrt{y}}$,

当
$$x > 0$$
 时,有 $y > 0$,可得 $p_3(y) = e^{-\sqrt{y}} \cdot \frac{1}{2\sqrt{y}} = \frac{1}{2\sqrt{y}} e^{-\sqrt{y}}$, $y > 0$,

故 $Y = X^2$ 的密度函数为

$$p_3(y) = \begin{cases} \frac{1}{2\sqrt{y}} e^{-\sqrt{y}}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

16. 设随机变量 X 服从参数为 2 的指数分布. 试证 $Y_1 = e^{-2X}$ 和 $Y_2 = 1 - e^{-2X}$ 都服从区间(0, 1)上的均匀分布. 解: 因 X 的密度函数为

$$p_X(x) = \begin{cases} 2e^{-2x}, & \exists x > 0, \\ 0, & \exists x \le 0. \end{cases}$$

且 $y = g(x) = e^{-2x}$ 严格单调减少,其反函数为 $x = h(y) = -\frac{1}{2} \ln y$,且 $h'(y) = -\frac{1}{2y}$,

当
$$x > 0$$
 时,有 $0 < y < 1$,可得 $p_1(y) = 2e^{-2\left(-\frac{1}{2}\ln y\right)} \cdot \left| -\frac{1}{2y} \right| = 2y \cdot \frac{1}{2y} = 1$, $0 < y < 1$,

故 $Y_1 = e^{-2X}$ 的密度函数为 $p_1(y) = \begin{cases} 1, & 0 < y < 1, \\ 0, & 其他. \end{cases}$ 即 Y_1 服从区间 (0, 1) 上的均匀分布;

又
$$y = g(x) = 1 - e^{-2x}$$
 严格单调增加,其反函数为 $x = h(y) = -\frac{1}{2}\ln(1-y)$,且 $h'(y) = \frac{1}{2(1-y)}$,

当
$$x > 0$$
 时,有 $0 < y < 1$,可得 $p_2(y) = 2e^{-2\left[-\frac{1}{2}\ln(1-y)\right]} \cdot \left|\frac{1}{2(1-y)}\right| = 2(1-y) \cdot \frac{1}{2(1-y)} = 1$, $0 < y < 1$,

故 $Y_2 = 1 - e^{-2X}$ 的密度函数为

$$p_2(y) = \begin{cases} 1, & 0 < y < 1, \\ 0, & 其他. \end{cases}$$

即 Y₂ 服从区间 (0,1) 上的均匀分布.

- 17. 设 $X \sim LN(\mu, \sigma^2)$, 试证 $Y = \ln X \sim N(\mu, \sigma^2)$.
- 证: 因 X 的密度函数为

$$p_X(x) = \begin{cases} \frac{1}{\sqrt{2\pi x \sigma}} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

且 $y = g(x) = \ln x$ 严格单调增加, 其反函数为 $x = h(y) = e^y$, 且 $h'(y) = e^y$,

当
$$x > 0$$
 时,有 $-\infty < y < +\infty$,可得 $p(y) = \frac{1}{\sqrt{2\pi} e^y \sigma} e^{-\frac{(\ln e^y - \mu)^2}{2\sigma^2}} \cdot e^y = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(y - \mu)^2}{2\sigma^2}}$, $-\infty < y < +\infty$,

故
$$Y = \ln X$$
的密度函数为 $p(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$, $-\infty < y < +\infty$, 即 $Y \sim N(\mu, \sigma^2)$.

18. 设
$$Y \sim LN(5, 0.12^2)$$
, 试求 $P\{Y < 188.7\}$.

解: 因
$$Y \sim LN(5, 0.12^2)$$
, 有 $X = \ln Y \sim N(5, 0.12^2)$,

故
$$P{Y < 188.7} = P{X = \ln Y < \ln 188.7 = 5.24} = \Phi\left(\frac{5.24 - 5}{0.12}\right) = \Phi(2) = 0.9772$$
.

习题 2.7

- 1. 设 $X \sim U(a, b)$,对 k = 1, 2, 3, 4,求 $\mu_k = E(X^k)$ 与 $\nu_k = E[X E(X)]^k$,进一步求此分布的偏度系数和峰度系数.
- 解: 因 X 的密度函数为

$$p_X(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, & \text{ i.e.} \end{cases}$$

$$\text{i.e.}$$

$$\mu_2 = E(X^2) = \int_a^b x^2 \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \cdot \frac{x^3}{3} \bigg|_a^b = \frac{b^3 - a^3}{3(b-a)} = \frac{a^2 + ab + b^2}{3}$$
;

$$\mu_3 = E(X^3) = \int_a^b x^3 \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \cdot \frac{x^4}{4} \bigg|_a^b = \frac{b^4 - a^4}{4(b-a)} = \frac{a^3 + a^2b + ab^2 + b^3}{4};$$

$$\mu_4 = E(X^4) = \int_a^b x^4 \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \cdot \frac{x^5}{5} \bigg|_a^b = \frac{b^5 - a^5}{5(b-a)} = \frac{a^4 + a^3b + a^2b^2 + ab^3 + b^4}{5};$$

$$v_1 = E[X - E(X)] = \int_a^b \left(x - \frac{a+b}{2} \right) \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \cdot \frac{1}{2} \left(x - \frac{a+b}{2} \right)^2 \Big|_a^b = 0;$$

$$v_2 = E[X - E(X)]^2 = \int_a^b \left(x - \frac{a+b}{2}\right)^2 \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \cdot \frac{1}{3} \left(x - \frac{a+b}{2}\right)^3 \bigg|_a^b = \frac{2\left(\frac{b-a}{2}\right)^3}{3(b-a)} = \frac{(b-a)^2}{12};$$

$$v_3 = E[X - E(X)]^3 = \int_a^b \left(x - \frac{a+b}{2}\right)^3 \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \cdot \frac{1}{4} \left(x - \frac{a+b}{2}\right)^4 \Big|_a^b = 0;$$

$$v_4 = E[X - E(X)]^4 = \int_a^b \left(x - \frac{a+b}{2}\right)^4 \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \cdot \frac{1}{5} \left(x - \frac{a+b}{2}\right)^5 \bigg|_a^b = \frac{2\left(\frac{b-a}{2}\right)^5}{5(b-a)} = \frac{(b-a)^4}{80};$$

偏度系数
$$\beta_1 = \frac{v_3}{(v_2)^{3/2}} = 0$$
;

峰度系数
$$\beta_2 = \frac{\nu_4}{(\nu_2)^2} - 3 = \frac{12^2}{80} - 3 = -\frac{6}{5}$$
.

2. 设 $X \sim U(0, a)$, 求此分布的变异系数.

解: 因
$$X \sim U(0, a)$$
,有 $E(X) = \frac{a}{2}$, $Var(X) = \frac{(b-a)^2}{12}$, 故变异系数 $C_v(X) = \frac{\sqrt{Var(X)}}{E(X)} = \frac{b-a}{\sqrt{3}a}$.

- 3. 求以下分布的中位数:
 - (1) 区间 (a, b)上的均匀分布;

- (2) 正态分布 $N(\mu, \sigma^2)$;
- (3) 对数正态分布 $LN(\mu, \sigma^2)$.

解: (1) 因 X 服从区间 (a,b)上的均匀分布,

则
$$0.5 = P\{X \le x_{0.5}\} = P\{a < X \le x_{0.5}\} = \frac{x_{0.5} - a}{b - a}$$
,

故中位数
$$x_{0.5} = a + 0.5(b - a) = \frac{a + b}{2}$$
;

(2) 因X服从正态分布 $N(\mu, \sigma^2)$,

则
$$0.5 = P\{X \le x_{0.5}\} = F(x_{0.5}) = \Phi\left(\frac{x_{0.5} - \mu}{\sigma}\right)$$
,即 $\frac{x_{0.5} - \mu}{\sigma} = 0$,

故中位数 $x_{0.5} = \mu$;

(3) 因X服从对数正态分布 $LN(\mu, \sigma^2)$,有 $\ln X$ 服从正态分布 $N(\mu, \sigma^2)$,

$$\text{ If } 0.5 = P\{X \leq x_{0.5}\} = P\{\ln X \leq \ln x_{0.5}\} = F(\ln x_{0.5}) = \Phi\left(\frac{\ln x_{0.5} - \mu}{\sigma}\right), \quad \text{ If } \frac{\ln x_{0.5} - \mu}{\sigma} = 0 \text{ ,}$$

故中位数 $x_{0.5} = e^{\mu}$.

解:因 $Ga(\alpha, \lambda)$ 的密度函数为

$$p_X(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

由正则性知
$$\int_0^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} dx = 1$$
, 可得 $\int_0^{+\infty} x^{\alpha-1} e^{-\lambda x} dx = \frac{\Gamma(\alpha)}{\lambda^{\alpha}}$,

故
$$\mu_1 = \int_0^{+\infty} x \cdot \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} dx = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_0^{+\infty} x^{\alpha} e^{-\lambda x} dx = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \cdot \frac{\Gamma(\alpha+1)}{\lambda^{\alpha+1}} = \frac{\alpha}{\lambda};$$

$$\mu_2 = \int_0^{+\infty} x^2 \cdot \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} dx = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_0^{+\infty} x^{\alpha+1} e^{-\lambda x} dx = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \cdot \frac{\Gamma(\alpha+2)}{\lambda^{\alpha+2}} = \frac{\alpha(\alpha+1)}{\lambda^2};$$

$$\mu_3 = \int_0^{+\infty} x^3 \cdot \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} dx = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_0^{+\infty} x^{\alpha+2} e^{-\lambda x} dx = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \cdot \frac{\Gamma(\alpha+3)}{\lambda^{\alpha+3}} = \frac{\alpha(\alpha+1)(\alpha+2)}{\lambda^3};$$

$$v_1 = E[X - E(X)] = 0;$$

$$v_2 = E[X - E(X)]^2 = \mu_2 - \mu_1^2 = \frac{\alpha(\alpha + 1)}{\lambda^2} - \frac{\alpha^2}{\lambda^2} = \frac{\alpha}{\lambda^2};$$

$$v_3 = E[X - E(X)]^3 = \mu_3 - 3\mu_2\mu_1 + 2\mu_1^3 = \frac{\alpha(\alpha+1)(\alpha+2)}{\lambda^3} - 3\frac{\alpha(\alpha+1)}{\lambda^2} \cdot \frac{\alpha}{\lambda} + 2\frac{\alpha^3}{\lambda^3} = \frac{2\alpha}{\lambda^3}.$$

5. 设 $X \sim Exp(\lambda)$, 对 k = 1, 2, 3, 4, 求 $\mu_k = E(X^k)$ 与 $\nu_k = E[X - E(X)]^k$, 进一步求此分布的变异系数、偏度系数和峰度系数.

解: 因 X 的密度函数为

$$p_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

且
$$k$$
 为正整数时, $\int_{0}^{+\infty} x^{k-1} e^{-\lambda x} dx = \frac{\Gamma(k)}{\lambda^{k}} = \frac{(k-1)!}{\lambda^{k}}$,
故 $\mu_{1} = \int_{0}^{+\infty} x \cdot \lambda e^{-\lambda x} dx = \lambda \int_{0}^{+\infty} x e^{-\lambda x} dx = \lambda \cdot \frac{1}{\lambda^{2}} = \frac{1}{\lambda}$;
$$\mu_{2} = \int_{0}^{+\infty} x^{2} \cdot \lambda e^{-\lambda x} dx = \lambda \int_{0}^{+\infty} x^{2} e^{-\lambda x} dx = \lambda \cdot \frac{2!}{\lambda^{3}} = \frac{2}{\lambda^{2}}$$
;
$$\mu_{3} = \int_{0}^{+\infty} x^{3} \cdot \lambda e^{-\lambda x} dx = \lambda \int_{0}^{+\infty} x^{3} e^{-\lambda x} dx = \lambda \cdot \frac{3!}{\lambda^{4}} = \frac{6}{\lambda^{3}}$$
;
$$\mu_{4} = \int_{0}^{+\infty} x^{4} \cdot \lambda e^{-\lambda x} dx = \lambda \int_{0}^{+\infty} x^{4} e^{-\lambda x} dx = \lambda \cdot \frac{4!}{\lambda^{5}} = \frac{24}{\lambda^{4}}$$
;
$$v_{1} = E[X - E(X)] = 0$$
;
$$v_{2} = E[X - E(X)]^{2} = \mu_{2} - \mu_{1}^{2} = \frac{2}{\lambda^{2}} - \frac{1}{\lambda^{2}} = \frac{1}{\lambda^{2}}$$
;
$$v_{3} = E[X - E(X)]^{3} = \mu_{3} - 3\mu_{2}\mu_{1} + 2\mu_{1}^{3} = \frac{6}{\lambda^{3}} - 3\frac{2}{\lambda^{2}} \cdot \frac{1}{\lambda} + 2\frac{1}{\lambda^{3}} = \frac{2}{\lambda^{3}}$$
;
$$v_{4} = E[X - E(X)]^{4} = \mu_{4} - 4\mu_{3}\mu_{1} + 6\mu_{2}\mu_{1}^{2} - 3\mu_{1}^{4} = \frac{24}{\lambda^{4}} - 4\frac{6}{\lambda^{3}} \cdot \frac{1}{\lambda} + 6\frac{2}{\lambda^{2}} \cdot \frac{1}{\lambda^{2}} - 3\frac{1}{\lambda^{4}} = \frac{9}{\lambda^{3}}$$
;

 \mathfrak{S} 异系数 $C_{v}(X) = \frac{\sqrt{\operatorname{Var}(X)}}{E(X)} = \frac{\sqrt{v_{2}}}{\mu_{1}} = 1$;

偏度系数
$$\beta_1 = \frac{v_3}{(v_2)^{3/2}} = 2$$
;

峰度系数
$$\beta_2 = \frac{v_4}{(v_2)^2} - 3 = 9 - 3 = 6$$
.

6. 设随机变量 X 服从正态分布 N(10, 9),试求 $x_{0.1}$ 和 $x_{0.9}$.

解: 因
$$F(x_{0.1}) = \Phi\left(\frac{x_{0.1} - 10}{3}\right) = 0.1$$
,得 $-\frac{x_{0.1} - 10}{3} = 1.2816$,故 $x_{0.1} = 6.1552$;

又因 $F(x_{0.9}) = \Phi\left(\frac{x_{0.9} - 10}{3}\right) = 0.9$,得 $\frac{x_{0.9} - 10}{3} = 1.2816$,故 $x_{0.9} = 13.8448$.

(或查表可得 $-\frac{x_{0.1} - 10}{3} = 1.28$,故 $x_{0.1} = 6.16$; $\frac{x_{0.9} - 10}{3} = 1.28$,故 $x_{0.9} = 13.844$)

7. 设随机变量 X 服从双参数韦布尔分布,其分布函数为

$$F(x) = 1 - \exp\left\{-\left(\frac{x}{\eta}\right)^m\right\}, \quad x > 0,$$

其中 $\eta > 0$, m > 0. 试写出该分布的p 分位数 x_p 的表达式,且求出当m = 1.5, $\eta = 1000$ 时的 $x_{0.1}, x_{0.5}, x_{0.8}$ 的值.

解: 因
$$F(x_p) = 1 - \exp\left\{-\left(\frac{x_p}{\eta}\right)^m\right\} = p$$
,
故 $x_p = \eta [-\ln(1-p)]^{\frac{1}{m}}$;

当
$$m = 1.5$$
, $\eta = 1000$ 时, $x_{0.1} = 1000(-\ln 0.9)^{\frac{1}{1.5}} = 223.0755$; $x_{0.5} = 1000(-\ln 0.5)^{\frac{1}{1.5}} = 783.2198$; $x_{0.8} = 1000(-\ln 0.2)^{\frac{1}{1.5}} = 1373.3550$.

8. 自由度为 2 的 χ^2 分布的密度函数为

$$p(x) = \frac{1}{2}e^{-\frac{x}{2}}, \quad x > 0$$

试求出其分布函数及分位数 $x_{0.1}, x_{0.5}, x_{0.8}$.

解:设X服从自由度为2的 χ^2 分布,

 $\stackrel{\omega}{=}$ x < 0 $\stackrel{\omega}{=}$ f(x) = P{X≤x} = P(∅) = 0,

$$\stackrel{\text{def}}{=} x \ge 0 \text{ pr}, \quad F(x) = P\{X \le x\} = \int_0^x \frac{1}{2} e^{-\frac{u}{2}} du = (-e^{-\frac{u}{2}}) \bigg|_0^x = 1 - e^{-\frac{x}{2}};$$

故X的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\frac{x}{2}}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

因
$$F(x_p) = 1 - e^{-\frac{x_p}{2}} = p$$
,有 $x_p = -2\ln(1-p)$,

故 $x_{0.1} = -2 \ln 0.9 = 0.2107$; $x_{0.5} = -2 \ln 0.5 = 1.3863$; $x_{0.8} = -2 \ln 0.2 = 3.2189$.

- 9. 设随机变量 X 的分布密度函数 p(x) 关于 c 点是对称的,且 E(X) 存在,试证
 - (1) 这个对称点 c 既是均值又是中位数, 即 $E(X) = x_{0..5} = c$;
 - (2) 如果 c = 0,则 $x_p = -x_{1-p}$.
- 证:设f(x) = p(x+c),因p(x)关于c点对称,有f(x)为偶函数,

(1)
$$E(X) = \int_{-\infty}^{+\infty} xp(x)dx = \int_{-\infty}^{+\infty} (x-c)p(x)dx + \int_{-\infty}^{+\infty} cp(x)dx = \int_{-\infty}^{+\infty} up(u+c)du + c = \int_{-\infty}^{+\infty} uf(u)du + c$$

= 0 + c = c:

因
$$f(x)$$
 为偶函数,有 $\int_{-\infty}^{0} f(x)dx = \frac{1}{2} \int_{-\infty}^{+\infty} f(x)dx = 0.5$,

则
$$F(c) = \int_{-\infty}^{c} p(x)dx = \int_{-\infty}^{0} p(u+c)du = \int_{-\infty}^{0} f(u)du = 0.5$$
,可得 $x_{0...5} = c$;

故
$$E(X) = x_{0.5} = c$$
;

(2) 如果 c = 0, 有 p(x) 为偶函数,

則
$$F(x_p) = \int_{-\infty}^{x_p} p(x) dx = \int_{+\infty}^{-x_p} p(-u) \cdot (-du) = \int_{-x_p}^{+\infty} p(u) du = 1 - \int_{-\infty}^{-x_p} p(u) du = 1 - F(-x_p) = p$$
,可得 $F(-x_p) = 1 - p$,故 $-x_p = x_{1-p}$,即 $x_p = -x_{1-p}$.

10. 试证随机变量 X 的偏度系数与峰度系数对位移和改变比例尺是不变的,即对任意的实数 $a, b \ (b \neq 0)$, Y = a + bX与 X有相同的偏度系数与峰度系数.

证: 因
$$Y = a + bX$$
,有 $E(Y) = E(a + bX) = a + bE(X)$,可得 $Y - E(Y) = a + bX - a - bE(X) = b[X - E(X)]$,则 $\nu_2(Y) = E[Y - E(Y)]^2 = E\{b^2[X - E(X)]^2\} = b^2 E[X - E(X)]^2 = b^2 \nu_2(X)$, $\nu_3(Y) = E[Y - E(Y)]^3 = E\{b^3[X - E(X)]^3\} = b^3 E[X - E(X)]^3 = b^3 \nu_3(X)$, $\nu_4(Y) = E[Y - E(Y)]^4 = E\{b^4[X - E(X)]^4\} = b^4 E[X - E(X)]^4 = b^4 \nu_4(X)$,

故偏度系数
$$\beta_1(Y) = \frac{v_3(Y)}{[v_2(Y)]^{3/2}} = \frac{b^3 v_3(X)}{[b^2 v_2(X)]^{3/2}} = \frac{b^3 v_3(X)}{b^3 [v_2(X)]^{3/2}} = \frac{v_3(X)}{[v_2(X)]^{3/2}} = \beta_1(X)$$
;

峰度系数
$$\beta_2(Y) = \frac{v_4(Y)}{[v_2(Y)]^2} - 3 = \frac{b^4v_4(X)}{[b^2v_2(X)]^2} - 3 = \frac{b^4v_4(X)}{b^4[v_2(X)]^2} - 3 = \frac{v_4(X)}{[v_2(X)]^2} - 3 = \beta_2(X)$$
.

- 11. 设某项维修时间 T (单位:分) 服从对数正态分布 $LN(\mu, \sigma^2)$.
 - (1) 求p 分位数 t_p ;
 - (2) 若 μ = 4.127, 求该分布的中位数;
 - (3) 若 μ = 4.127, σ = 1.0364,求完成 95%维修任务的时间.
- 解: (1) 因 T 服从对数正态分布 $LN(\mu, \sigma^2)$, 有 $\ln T$ 服从正态分布 $N(\mu, \sigma^2)$,

$$\text{If } p = P\{T \leq t_p\} = P\{\ln T \leq \ln t_p\} = \Phi\left(\frac{\ln t_p - \mu}{\sigma}\right), \text{ If } \frac{\ln t_p - \mu}{\sigma} = u_p, \text{ In } t_p = \mu + \sigma \cdot u_p,$$

故
$$t_p = e^{\mu + \sigma \cdot u_p}$$
;

- (2) 中位数 $t_{0.5} = e^{\mu + \sigma \cdot u_{0.5}} = e^{4.1271+0} = 61.9979$;
- (3) $t_{0.95} = e^{\mu + \sigma \cdot u_{0.95}} = e^{4.1271 + 1.0364 \times 1.6449} = 340.9972$.
- 12. 某种绝缘材料的使用寿命 T (单位:小时) 服从对数正态分布 $LN(\mu, \sigma^2)$. 若已知分位数 $t_{0.2} = 5000$ 小时, $t_{0.8} = 65000$ 小时,求 μ 和 σ .
- 解:因 T 服从对数正态分布 $LN(\mu, \sigma^2)$,有 $\ln T$ 服从正态分布 $N(\mu, \sigma^2)$,

由第 11 题可知 $t_n = e^{\mu + \sigma \cdot u_p}$,

$$\text{III}\ t_{0.2} = \mathrm{e}^{\mu + \sigma \cdot u_{0.2}} = \mathrm{e}^{\mu - 0.8416\sigma} = 5000\ \text{,}\quad t_{0.8} = \mathrm{e}^{\mu + \sigma \cdot u_{0.8}} = \mathrm{e}^{\mu + 0.8416\sigma} = 65000\ \text{,}$$

可得 μ -0.8416 σ = ln 5000 = 8.5172, μ +0.8416 σ = ln 65000 = 11.0821,故 μ =9.7997, σ =1.5239.

- 13. 某厂决定按过去生产状况对月生产额最高的 5%的工人发放高产奖. 已知过去每人每月生产额 X (单位: 千克) 服从正态分布 $N(4000,60^2)$,试问高产奖发放标准应把生产额定为多少?
- 解: 因X服从正态分布 $N(4000, 60^2)$,

$$\text{ If } 0.95 = P\{X \leq x_{0.95}\} = F(x_{0.95}) = \Phi\left(\frac{x_{0.95} - 4000}{60}\right), \quad \text{If } \frac{x_{0.95} - 4000}{60} = u_{0.95} = 1.6449 \; ,$$

故高产奖发放标准应把生产额定为 $x_{0.95} = 4000 + 60 \times 1.6449 = 498.6940$ 千克.

第三章 多维随机变量及其分布

习题 3.1

- 1. 100 件商品中有 50 件一等品、30 件二等品、20 件三等品. 从中任取 5 件,以 *X、Y* 分别表示取出的 5 件中一等品、二等品的件数,在以下情况下求 (*X*, *Y*) 的联合分布列.
 - (1) 不放回抽取; (2) 有放回抽取.
- 解: (1) (X, Y)服从多维超几何分布, X, Y的全部可能取值分别为 0, 1, 2, 3, 4, 5,

$$\mathbb{H} P\{X=i,Y=j\} = \frac{\binom{50}{i}\binom{30}{j}\binom{20}{5-i-j}}{\binom{100}{5}}, \quad i=0,1,2,3,4,5; \quad j=0,\cdots,5-i\,,$$

故 (X, Y) 的联合分布列为

X	0	1	2	3	4	5
0	0.0002	0.0019	0.0066	0.0102	0.0073	0.0019
1	0.0032	0.0227	0.0549	0.0539	0.0182	0
2	0.0185	0.0927	0.1416	0.0661	0	0
3	0.0495	0.1562	0.1132	0	0	0
4	0.0612	0.0918	0	0	0	0
5	0.0281	0	0	0	0	0

(2) (X, Y)服从多项分布, X, Y的全部可能取值分别为 0, 1, 2, 3, 4, 5,

故 (X, Y) 的联合分布列为

X	0	1	2	3	4	5
0	0.00032	0.0024	0.0072	0.0108	0.0081	0.00243
1	0.004	0.024	0.054	0.054	0.02025	0
2	0.02	0.09	0.135	0.0675	0	0
3	0.05	0.15	0.1125	0	0	0
4	0.0625	0.09375	0	0	0	0
5	0.03125	0	0	0	0	0

2. 盒子里装有 3 个黑球、2 个红球、2 个白球,从中任取 4 个,以 X 表示取到黑球的个数,以 Y 表示取到红球的个数,试求 $P\{X=Y\}$.

解:
$$P\{X = Y\} = P\{X = 1, Y = 1\} + P\{X = 2, Y = 2\} = \frac{\binom{3}{1}\binom{2}{1}\binom{2}{2}}{\binom{7}{4}} + \frac{\binom{3}{2}\binom{2}{2}}{\binom{7}{4}} = \frac{6}{35} + \frac{3}{35} = \frac{9}{35}$$
.

3. 口袋中有 5 个白球、8 个黑球,从中不放回地一个接一个取出 3 个. 如果第 i 次取出的是白球,则令 $X_i = 1$,否则令 $X_i = 0$, i = 1, 2, 3. 求:

1

- (1) (X_1, X_2, X_3) 的联合分布列;
- (2) (X_1, X_2) 的联合分布列.

解: (1)
$$P\{(X_1, X_2, X_3) = (0, 0, 0)\} = \frac{8}{13} \cdot \frac{7}{12} \cdot \frac{6}{11} = \frac{28}{143}$$
, $P\{(X_1, X_2, X_3) = (0, 0, 1)\} = \frac{8}{13} \cdot \frac{7}{12} \cdot \frac{5}{11} = \frac{70}{429}$, $P\{(X_1, X_2, X_3) = (0, 1, 0)\} = \frac{8}{13} \cdot \frac{5}{12} \cdot \frac{7}{11} = \frac{70}{429}$, $P\{(X_1, X_2, X_3) = (1, 0, 0)\} = \frac{5}{13} \cdot \frac{8}{12} \cdot \frac{7}{11} = \frac{70}{429}$, $P\{(X_1, X_2, X_3) = (0, 1, 1)\} = \frac{8}{13} \cdot \frac{5}{12} \cdot \frac{4}{11} = \frac{40}{429}$, $P\{(X_1, X_2, X_3) = (1, 0, 1)\} = \frac{5}{13} \cdot \frac{8}{12} \cdot \frac{4}{11} = \frac{40}{429}$, $P\{(X_1, X_2, X_3) = (1, 1, 1)\} = \frac{5}{13} \cdot \frac{4}{12} \cdot \frac{3}{11} = \frac{5}{143}$;

(2)
$$P\{(X_1, X_2) = (0, 0)\} = \frac{8}{13} \cdot \frac{7}{12} = \frac{14}{39}, \quad P\{(X_1, X_2) = (0, 1)\} = \frac{8}{13} \cdot \frac{5}{12} = \frac{10}{39},$$

 $P\{(X_1, X_2) = (1, 0)\} = \frac{5}{13} \cdot \frac{8}{12} = \frac{10}{39}, \quad P\{(X_1, X_2) = (1, 1)\} = \frac{5}{13} \cdot \frac{4}{12} = \frac{5}{39}.$

$$\begin{array}{c|cccc} X_2 & 0 & 1 \\ \hline X_1 & 0 & 14/39 & 10/39 \\ 1 & 10/39 & 5/39 \end{array}$$

4. 设随机变量 X_i , i=1,2 的分布列如下,且满足 $P\{X_1X_2=0\}=1$, 试求 $P\{X_1=X_2\}$.

$$\begin{array}{c|cccc} X_i & -1 & 0 & 1 \\ \hline P & 0.25 & 0.5 & 0.25 \end{array}$$

解: 因 $P\{X_1X_2=0\}=1$, 有 $P\{X_1X_2\neq 0\}=0$,

即
$$P\{X_1 = -1, X_2 = -1\} = P\{X_1 = -1, X_2 = 1\} = P\{X_1 = 1, X_2 = -1\} = P\{X_1 = 1, X_2 = 1\} = 0$$
,分布列为

X_1	-1	0	1	$p_{i\cdot}$		X_1	-1	0	1	$p_{i\cdot}$
-1	0		0	0.25		-1	0	0.25	0	0.25
0				0.5	→	0	0.25	0	0.25	0.5
1	0		0	0.25		1	0	0.25	0	0.25
$\overline{p_{\cdot j}}$	0.25	0.5	0.25			$p_{\cdot j}$	0.25	0.5	0.25	

故 $P\{X_1 = X_2\} = P\{X_1 = -1, X_2 = -1\} + P\{X_1 = 0, X_2 = 0\} + P\{X_1 = 1, X_2 = 1\} = 0$.

5. 设随机变量 (X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} k(6-x-y), & 0 < x < 2, \ 2 < y < 4, \\ 0, & 其他. \end{cases}$$

试求

- (1) 常数 k:
- (2) $P\{X < 1, Y < 3\}$;
- (3) $P\{X < 1.5\}$;
- (4) $P\{X+Y\leq 4\}$.

解: (1) 由正则性:
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x, y) dx dy = 1$$
, 得

故
$$k=\frac{1}{8}$$
;

(2)
$$P\{X < 1, Y < 3\} = \int_0^1 dx \int_2^3 \frac{1}{8} (6 - x - y) dy = \int_0^1 dx \cdot \frac{1}{8} \left(6y - xy - \frac{y^2}{2} \right) \Big|_2^3$$

$$= \int_0^1 \frac{1}{8} \left(\frac{7}{2} - x \right) dx = \frac{1}{8} \left(\frac{7}{2} x - \frac{x^2}{2} \right) \Big|_0^1 = \frac{3}{8};$$

(3)
$$P\{X < 1.5\} = \int_0^{1.5} dx \int_2^4 \frac{1}{8} (6 - x - y) dy = \int_0^{1.5} dx \cdot \frac{1}{8} \left(6y - xy - \frac{y^2}{2} \right) \Big|_2^4$$

= $\int_0^{1.5} \frac{1}{8} (6 - 2x) dx = \frac{1}{8} (6x - x^2) \Big|_0^{1.5} = \frac{27}{22}$;

(4)
$$P\{X + Y < 4\} = \int_0^2 dx \int_2^{4-x} \frac{1}{8} (6 - x - y) dy = \int_0^2 dx \cdot \frac{1}{8} \left(6y - xy - \frac{y^2}{2} \right) \Big|_2^{4-x}$$

$$= \int_0^2 \frac{1}{8} \left(6 - 4x + \frac{x^2}{2} \right) dx = \frac{1}{8} \left(6x - 2x^2 + \frac{x^3}{6} \right) \Big|_0^2 = \frac{2}{3}.$$

6. 设随机变量(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} k e^{-(3x+4y)}, & x > 0, y > 0, \\ 0, & \text{其他.} \end{cases}$$

试求

- (1) 常数 k;
- (2) (X, Y) 的联合分布函数 F(x, y);
- (3) $P{0 < X \le 1, 0 < Y \le 2}$.

解: (1) 由正则性:
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x, y) dx dy = 1$$
, 得

$$\int_0^{+\infty} dx \int_0^{+\infty} k \, e^{-(3x+4y)} \, dy = \int_0^{+\infty} dx \cdot k \left[-\frac{1}{4} e^{-(3x+4y)} \right]_0^{+\infty} = \int_0^{+\infty} \frac{k}{4} e^{-3x} \, dx = -\frac{k}{12} e^{-3x} \Big|_0^{+\infty} = \frac{k}{12} = 1,$$

故 k = 12;

(2) 当 $x \le 0$ 或 $y \le 0$ 时, $F(x, y) = P(\emptyset) = 0$, 当 x > 0 且 y > 0 时,

$$F(x,y) = \int_0^x du \int_0^y 12 e^{-(3u+4v)} dv = \int_0^x du \cdot \left[-3 e^{-(3u+4v)} \right]_0^y = \int_0^x 3 e^{-3u} (1 - e^{-4y}) du$$

$$= -e^{-3u} (1 - e^{-4y})\Big|_0^x = (1 - e^{-3x})(1 - e^{-4y})$$

故(X, Y) 的联合分布函数为

7. 设二维随机变量(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} 4xy, & 0 < x < 1, \ 0 < y < 1, \\ 0, & \text{其他.} \end{cases}$$

试求

- (1) $P{0 < X < 0.5, 0.25 < Y < 1}$;
- (2) $P\{X=Y\};$
- (3) $P\{X < Y\};$
- (4) (X, Y) 的联合分布函数.

$$= \int_0^{0.5} \frac{15}{8} x dx = \frac{15}{16} x^2 \Big|_0^{0.5} = \frac{15}{64};$$

(2) $P\{X=Y\}=0$;

(3)
$$P\{X < Y\} = \int_0^1 dx \int_x^1 4xy dy = \int_0^1 dx \cdot 2xy^2 \Big|_x^1 = \int_0^1 (2x - 2x^3) dx$$

$$=\left(x^2-\frac{1}{2}x^4\right)\Big|_0^1=\frac{1}{2};$$

(4) $\stackrel{\text{def}}{=} x < 0 \stackrel{\text{def}}{=} y < 0 \stackrel{\text{def}}{=} F(x, y) = P(\emptyset) = 0,$

当 $0 \le x < 1$ 且 $0 \le y < 1$ 时,

$$F(x,y) = P\{X \le x, Y \le y\} = \int_0^x du \int_0^y 4uv dv = \int_0^x du \cdot 2uv^2 \Big|_0^y = \int_0^x 2uy^2 du = u^2 y^2 \Big|_0^x = x^2 y^2;$$

当 $0 \le x < 1$ 且 $y \ge 1$ 时,

$$F(x,y) = P\{X \le x, Y \le y\} = \int_0^x du \int_0^1 4uv dv = \int_0^x du \cdot 2uv^2 \Big|_0^1 = \int_0^x 2u du = u^2 \Big|_0^x = x^2;$$

当 $x \ge 1$ 且 $0 \le y < 1$ 时,

$$F(x,y) = P\{X \le x, Y \le y\} = \int_0^1 du \int_0^y 4uv dv = \int_0^1 du \cdot 2uv^2 \Big|_0^y = \int_0^1 2uy^2 du = u^2 y^2 \Big|_0^1 = y^2;$$

当 $x \ge 1$ 且 $y \ge 1$ 时, $F(x, y) = P(\Omega) = 1$,

故(X, Y) 的联合分布函数为

$$F(x,y) = \begin{cases} 0, & x < 0 \text{ if } y < 0, \\ x^2 y^2, & 0 \le x < 1, 0 \le y < 1, \\ x^2, & 0 \le x < 1, y \ge 1, \\ y^2, & x \ge 1, 0 \le y < 1, \\ 1, & x \ge 1, y \ge 1. \end{cases}$$

8. 设二维随机变量(X,Y) 在边长为 2,中心为(0,0) 的正方形区域内服从均匀分布,试求 $P\{X^2+Y^2\leq 1\}$.

解:设D表示该正方形区域,面积 $S_D=4$,G表示单位圆区域,面积 $S_G=\pi$,

故
$$P\{X^2 + Y^2 \le 1\} = \frac{S_G}{S_D} = \frac{\pi}{4}$$
.

9. 设二维随机变量(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} k, & 0 < x^2 < y < x < 1, \\ 0, & 其他. \end{cases}$$

(1) 试求常数 k;

- (2) $\bar{x} P\{X > 0.5\} \pi P\{Y < 0.5\}$.
- 解: (1) 由正则性: $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x, y) dx dy = 1$, 得

$$\int_0^1 dx \int_{x^2}^x k dy = \int_0^1 dx \cdot k \, y \Big|_{x^2}^x = \int_0^1 k(x - x^2) dx = k \left(\frac{x^2}{2} - \frac{x^3}{3} \right) \Big|_0^1 = \frac{k}{6} = 1 \,,$$

故 k = 6;

$$P\{Y < 0.5\} = \int_0^{0.5} dy \int_y^{\sqrt{y}} 6dx = \int_0^{0.5} dy \cdot 6x \Big|_y^{\sqrt{y}} = \int_0^{0.5} (6\sqrt{y} - 6y) dy$$

$$= (4y^{\frac{3}{2}} - 3y^2)\Big|_0^{0.5} = \sqrt{2} - \frac{3}{4}.$$

10. 设二维随机变量(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} 6(1-y), & 0 < x < y < 1, \\ 0, & \text{其他.} \end{cases}$$

(2) 求
$$P{X<0.5}$$
和 $P{Y<0.5}$;

(3)
$$\bar{x} P\{X+Y<1\}$$
.

$$= \int_0^{0.5} \left[-\frac{3}{4} + 3(1-x)^2 \right] dx = \left[-\frac{3}{4}x - (1-x)^3 \right]_0^{0.5} = \frac{1}{2};$$

求 X_1 和 X_2 的联合分布列.

解: 因 Y 的密度函数为

$$p_Y(y) = \begin{cases} e^{-y}, & y \ge 0, \\ 0, & y < 0. \end{cases}$$

且 X_1 和 X_2 的全部可能取值为 0, 1,

$$\text{If } P\{X_1 = 0, X_2 = 0\} = P\{Y \le 1, Y \le 2\} = P\{Y \le 1\} = \int_0^1 e^{-y} dy = -e^{-y} \Big|_0^1 = 1 - e^{-1},$$

$$P\{X_1 = 0, X_2 = 0\} = P\{Y \le 1, Y \le 2\} = P\{Y \le 1\} = 0$$

$$P\{X_1 = 0, X_2 = 1\} = P\{Y \le 1, Y > 2\} = P(\emptyset) = 0,$$

$$P\{X_1 = 1, X_2 = 0\} = P\{Y > 1, Y \le 2\} = P\{1 < Y \le 2\} = \int_1^2 e^{-y} dy = -e^{-y} \Big|_1^2 = e^{-1} - e^{-2}$$

$$P\{X_1 = 1, X_2 = 1\} = P\{Y > 1, Y > 2\} = P\{Y > 2\} = \int_2^{+\infty} e^{-y} dy = -e^{-y} \Big|_2^{+\infty} = e^{-2}$$

故 X_1 和 X_2 的联合分布列为

$$\begin{array}{c|cccc} X_2 & 0 & 1 \\ \hline 0 & 1 - e^{-1} & 0 \\ 1 & e^{-1} - e^{-2} & e^{-2} \end{array}$$

12. 设二维随机变量(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} x^2 + \frac{xy}{3}, & 0 < x < 1, \ 0 < y < 2, \\ 0, & \text{ 其他.} \end{cases}$$

求 $P\{X+Y\geq 1\}$.

解:
$$P\{X + Y \ge 1\} = \int_0^1 dx \int_{1-x}^2 \left(x^2 + \frac{xy}{3}\right) dy = \int_0^1 dx \cdot \left(x^2 y + \frac{xy^2}{6}\right)\Big|_{1-x}^2$$

$$= \int_0^1 \left(\frac{1}{2} x + \frac{4}{3} x^2 + \frac{5}{6} x^3 \right) dx = \left(\frac{1}{4} x^2 + \frac{4}{9} x^3 + \frac{5}{24} x^4 \right) \Big|_0^1 = \frac{65}{72}.$$

13. 设二维随机变量(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} e^{-y}, & 0 < x < y, \\ 0, & \text{其他.} \end{cases}$$

试求 $P\{X+Y\leq 1\}$.

解:
$$P\{X + Y \le 1\} = \int_0^{0.5} dx \int_x^{1-x} e^{-y} dy = \int_0^{0.5} dx \cdot (-e^{-y}) \Big|_x^{1-x} = \int_0^{0.5} (-e^{x-1} + e^{-x}) dx$$

= $(-e^{x-1} - e^{-x}) \Big|_0^{0.5} = 1 + e^{-1} - 2e^{-0.5}$.

14. 设二维随机变量(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} 1/2, & 0 < x < 1, \ 0 < y < 2, \\ 0, & \text{其他.} \end{cases}$$

求X与Y中至少有一个小于0.5的概率.

- #: $P\{\min\{X,Y\} < 0.5\} = 1 P\{X \ge 0.5, Y \ge 0.5\} = 1 \int_{0.5}^{1} dx \int_{0.5}^{2} \frac{1}{2} dy = 1 \int_{0.5}^{1} \frac{3}{4} dx = 1 \frac{3}{9} = \frac{5}{9}$
- 15. 从(0,1)中随机地取两个数, 求其积不小于 3/16, 且其和不大于 1 的概率.
- 解:设X、Y分别表示"从(0,1)中随机地取到的两个数",则(X, Y)的联合密度函数为

$$p(x, y) = \begin{cases} 1, & 0 < x < 1, \ 0 < y < 1, \\ 0, & \text{其他.} \end{cases}$$

故所求概率为

$$P\{XY \ge \frac{3}{16}, X + Y \le 1\} = \int_{\frac{1}{4}}^{\frac{3}{4}} dx \int_{\frac{3}{16x}}^{1-x} dy = \int_{\frac{1}{4}}^{\frac{3}{4}} \left(1 - x - \frac{3}{16x}\right) dx$$
$$= \left(x - \frac{1}{2}x^2 - \frac{3}{16}\ln x\right)\Big|_{\frac{1}{4}}^{\frac{3}{4}} = \frac{1}{4} - \frac{3}{16}\ln 3.$$

1. 设二维离散随机变量(X,Y) 的可能值为

$$(0,0), (-1,1), (-1,2), (1,0),$$

且取这些值的概率依次为 1/6, 1/3, 1/12, 5/12, 试求 X 与 Y 各自的边际分布列.

解:因X的全部可能值为-1,0,1,且

$$P\{X=-1\} = \frac{1}{3} + \frac{1}{12} = \frac{5}{12}, \quad P\{X=0\} = \frac{1}{6}, \quad P\{X=1\} = \frac{5}{12},$$

故X的边际分布列为

$$\begin{array}{c|cccc} X & -1 & 0 & 1 \\ \hline P & \frac{5}{12} & \frac{1}{6} & \frac{5}{12} \end{array}$$

因 Y 的全部可能值为 0, 1, 2, 且

$$P\{X=0\} = \frac{1}{6} + \frac{5}{12} = \frac{7}{12}, \quad P\{X=1\} = \frac{1}{3}, \quad P\{X=2\} = \frac{1}{12},$$

故Y的边际分布列为

$$\begin{array}{c|ccccc}
Y & 0 & 1 & 2 \\
P & 7 & 1 & 1 \\
\hline
12 & 3 & 12
\end{array}$$

2. 设二维随机变量(X, Y) 的联合密度函数为

$$F(x, y) = \begin{cases} 1 - e^{-\lambda_1 x} - e^{-\lambda_2 y} - e^{-\lambda_1 x - \lambda_2 y - \lambda_{12} \max\{x, y\}}, & x > 0, y > 0, \\ 0, & \text{其他}. \end{cases}$$

试求X与Y各自的边际分布函数.

解: 当 $x \le 0$ 时, F(x, y) = 0, 有 $F_X(x) = F(x, +\infty) = 0$,

当
$$x > 0$$
 时, $F(x, y) = \begin{cases} 1 - e^{-\lambda_1 x} - e^{-\lambda_2 y} - e^{-\lambda_1 x - \lambda_2 y - \lambda_{12} \max\{x, y\}}, & y > 0, \\ 0, & y \le 0. \end{cases}$

$$F_X(x) = F(x, +\infty) = \lim_{y \to +\infty} \left[1 - e^{-\lambda_1 x} - e^{-\lambda_2 y} - e^{-\lambda_1 x - \lambda_2 y - \lambda_{12} \max\{x, y\}}\right] = 1 - e^{-\lambda_1 x},$$

故
$$F_X(x) = \begin{cases} 1 - e^{-\lambda_1 x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

当 $y \le 0$ 时, F(x, y) = 0, 有 $F_Y(y) = F(+\infty, y) = 0$,

当
$$y > 0$$
 时, $F(x, y) = \begin{cases} 1 - e^{-\lambda_1 x} - e^{-\lambda_2 y} - e^{-\lambda_1 x - \lambda_2 y - \lambda_{12} \max\{x, y\}}, & x > 0, \\ 0, & x \le 0. \end{cases}$

$$F_Y(y) = F(+\infty, y) = \lim_{x \to +\infty} \left[1 - e^{-\lambda_1 x} - e^{-\lambda_2 y} - e^{-\lambda_1 x - \lambda_2 y - \lambda_{12} \max\{x, y\}} \right] = 1 - e^{-\lambda_2 y},$$

故
$$F_Y(y) = \begin{cases} 1 - e^{-\lambda_2 y}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

3. 试求以下二维均匀分布的边际分布:

$$p(x, y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1, \\ 0, & \text{ 其他.} \end{cases}$$

解: 当 x < -1 或 x > 1 时, $p_X(x) = 0$,

$$\stackrel{\underline{\vee}\nu}{=} -1 \le x \le 1 \text{ ft}, \quad p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy = \frac{2}{\pi} \sqrt{1-x^2} ,$$

故
$$p_X(x) = \begin{cases} \frac{2}{\pi} \sqrt{1 - x^2}, & -1 \le x \le 1, \\ 0, & 其他. \end{cases}$$

当
$$y < -1$$
 或 $y > 1$ 时, $p_Y(y) = 0$

$$\stackrel{\text{left}}{=} -1 \le y \le 1 \text{ B}, \quad p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \frac{1}{\pi} dx = \frac{2}{\pi} \sqrt{1-y^2} ,$$

故
$$p_Y(y) = \begin{cases} \frac{2}{\pi} \sqrt{1 - y^2}, & -1 \le y \le 1, \\ 0, & 其他. \end{cases}$$

则(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} \frac{1}{2}, & (x, y) \in D, \\ 0, & (x, y) \notin D. \end{cases}$$

当 x < 1 或 $x > e^2$ 时, $p_X(x) = 0$

$$\stackrel{\text{def}}{=} 1 \le x \le e^2 \text{ By}, \quad p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_0^{\frac{1}{x}} \frac{1}{2} dy = \frac{1}{2x},$$

故
$$p_X(x) = \begin{cases} \frac{1}{2x}, & 1 \le x \le e^2, \\ 0, & 其他. \end{cases}$$

(1)
$$p_1(x, y) = \begin{cases} e^{-y}, & 0 < x < y; \\ 0, & 其他. \end{cases}$$

(2)
$$p_2(x, y) = \begin{cases} \frac{5}{4}(x^2 + y), & 0 < y < 1 - x^2; \\ 0, & 其他. \end{cases}$$

(3)
$$p_3(x, y) = \begin{cases} \frac{1}{x}, & 0 < y < x < 1; \\ 0, & 其他. \end{cases}$$

故
$$p_X(x) = \begin{cases} e^{-x}, & x > 0; \\ 0, & x \le 0. \end{cases}$$

当
$$y \le 0$$
时, $p_Y(y) = 0$,

$$\stackrel{\text{def}}{=} y > 0 \text{ B}, \quad p_Y(y) = \int_{-\infty}^{+\infty} p_1(x, y) dx = \int_0^y e^{-y} dx = y e^{-y},$$

故
$$p_Y(y) = \begin{cases} y e^{-y}, & y > 0; \\ 0, & y \le 0. \end{cases}$$

$$\stackrel{\underline{u}}{=} -1 < x < 1 \text{ ft}, \quad p_X(x) = \int_{-\infty}^{+\infty} p_2(x, y) dy = \int_0^{1-x^2} \frac{5}{4} (x^2 + y) dy = \frac{5}{4} (x^2 y + \frac{1}{2} y^2) \Big|_0^{1-x^2} = \frac{5}{8} (1 - x^4) ,$$

故
$$p_X(x) = \begin{cases} \frac{5}{8}(1-x^4), & -1 < x < 1; \\ 0, & 其他. \end{cases}$$

当 $y \le 0$ 或 $y \ge 1$ 时, $p_Y(y) = 0$

故
$$p_Y(y) = \begin{cases} \frac{5}{6}(1+2y)\sqrt{1-y}, & 0 < y < 1; \\ 0, & 其他. \end{cases}$$

$$\stackrel{\cong}{=} 0 < x < 1 \text{ ft}, \quad p_X(x) = \int_{-\infty}^{+\infty} p_3(x, y) dy = \int_0^x \frac{1}{x} dy = x \cdot \frac{1}{x} = 1,$$

故
$$p_X(x) = \begin{cases} 1, & 0 < x < 1; \\ 0, & 其他. \end{cases}$$

当 $y \le 0$ 或 $y \ge 1$ 时, $p_Y(y) = 0$,

当
$$0 < y < 1$$
 时, $p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \int_{y}^{1} \frac{1}{x} dx = \ln x \Big|_{y}^{1} = \ln 1 - \ln y = -\ln y$,

故
$$p_Y(y) = \begin{cases} -\ln y, & 0 < y < 1; \\ 0, & 其他. \end{cases}$$

6. 设二维随机变量(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} 6, & 0 < x^2 < y < x < 1, \\ 0, & 其他. \end{cases}$$

试求边际密度函数 $p_x(x)$ 和 $p_y(y)$.

解: 当 $x \le 0$ 或 $x \ge 1$ 时, $p_X(x) = 0$,

当
$$0 < x < 1$$
 时, $p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_{x^2}^x 6 dy = 6(x - x^2)$,

故
$$p_X(x) = \begin{cases} 6(x-x^2), & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

当 $y \le 0$ 或 $y \ge 1$ 时, $p_Y(y) = 0$,

$$\stackrel{\text{def}}{=} 0 < y < 1 \text{ BF}, \quad p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \int_{y}^{\sqrt{y}} 6 dx = 6(\sqrt{y} - y),$$

故
$$p_Y(y) = \begin{cases} 6(\sqrt{y} - y), & 0 < y < 1, \\ 0, & 其他. \end{cases}$$

7. 试验证: 以下给出的两个不同的联合密度函数,它们有相同的边际密度函数.

$$p(x, y) =$$
 $\begin{cases} x + y, & 0 \le x \le 1, 0 \le y \le 1, \\ 0, & 其他. \end{cases}$

$$g(x, y) = \begin{cases} (0.5 + x)(0.5 + y), & 0 \le x \le 1, 0 \le y \le 1, \\ 0, & 其他. \end{cases}$$

证: 当 x < 0 或 x > 1 时, $p_X(x) = 0$,

$$\stackrel{\text{def}}{=} 0 \le x \le 1$$
 时, $p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_{0}^{1} (x + y) dy = (xy + \frac{1}{2}y^2) \Big|_{0}^{1} = x + 0.5$,

则
$$p_X(x) = \begin{cases} x + 0.5, & 0 \le x \le 1, \\ 0, & 其他. \end{cases}$$

当 y < 0 或 y > 1 时, $p_Y(y) = 0$,

$$\stackrel{\text{def}}{=} 0 \le y \le 1 \text{ BF}, \quad p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \int_0^1 (x + y) dx = \left(\frac{1}{2}x^2 + xy\right)\Big|_0^1 = y + 0.5,$$

则
$$p_Y(y) = \begin{cases} y + 0.5, & 0 \le y \le 1, \\ 0, & 其他. \end{cases}$$

并且当x < 0或x > 1时, $g_X(x) = 0$,

$$\stackrel{\text{def}}{=} 0 \le x \le 1 \text{ BF}, \quad g_X(x) = \int_{-\infty}^{+\infty} g(x, y) dy = \int_0^1 (0.5 + x)(0.5 + y) dy = (0.5 + x) \cdot \frac{1}{2} (0.5 + y)^2 \Big|_0^1 = x + 0.5,$$

则
$$g_X(x) = \begin{cases} x + 0.5, & 0 \le x \le 1, \\ 0, & 其他. \end{cases}$$

当 y < 0 或 y > 1 时, $g_Y(y) = 0$,

$$\stackrel{\text{def}}{=} 0 \le y \le 1 \text{ BF}, \quad g_Y(y) = \int_{-\infty}^{+\infty} g(x, y) dx = \int_0^1 (0.5 + x)(0.5 + y) dx = \frac{1}{2} (0.5 + x)^2 \cdot (0.5 + y) \Big|_0^1 = y + 0.5,$$

则
$$g_Y(y) = \begin{cases} y + 0.5, & 0 \le y \le 1, \\ 0, & 其他. \end{cases}$$

故它们有相同的边际密度函数.

8. 设随机变量 X 和 Y 独立同分布,且

$$P\{X=-1\} = P\{Y=-1\} = P\{X=1\} = P\{Y=1\} = 1/2,$$

试求 $P\{X=Y\}$.

解: 因 X 和 Y 独立同分布,且 $P\{X=-1\} = P\{Y=-1\} = P\{X=1\} = P\{Y=1\} = 1/2$,则(X,Y) 的联合概率分布

$$\begin{array}{c|ccccc} X & -1 & 1 & p_i. \\ \hline -1 & \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ 1 & \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \hline p_{\cdot j} & \frac{1}{2} & \frac{1}{2} \end{array}$$

故 $P\{X = Y\} = P\{X = -1, Y = -1\} + P\{X = 1, Y = 1\} = 1/2$.

9. 甲、乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的命中率为0.5,以 X 和 Y 分别表示甲

和乙的命中次数, 试求 $P\{X \leq Y\}$.

解: 因 X 的全部可能取值为 0, 1, 2,

$$\mathbb{H}.P\{X=0\} = 0.8^2 = 0.64, \quad P\{X=1\} = \binom{2}{1} \times 0.2 \times 0.8 = 0.32, \quad P\{X=2\} = 0.2^2 = 0.04,$$

又因 Y 的全部可能取值为 0, 1, 2,

$$\mathbb{H}.P\{Y=0\} = 0.5^2 = 0.25, P\{Y=1\} = {2 \choose 1} \times 0.5 \times 0.5 = 0.5, P\{Y=2\} = 0.5^2 = 0.25,$$

则(X, Y) 的联合概率分布

 $total P\{X \le Y\} = 1 - P\{X > Y\} = 1 - P\{X = 1, Y = 0\} - P\{X = 2, Y = 0\} - P\{X = 2, Y = 1\} = 0.89.$

10. 设随机变量 X 和 Y 相互独立, 其联合分布列为

$$\begin{array}{c|ccccc}
 & Y & y_1 & y_2 & y_3 \\
\hline
 & x_1 & a & 1/9 & c \\
 & x_2 & 1/9 & b & 1/3 \\
\end{array}$$

试求联合分布列中的 a, b, c.

解: 因
$$p_{1.} = a + \frac{1}{9} + c$$
, $p_{2.} = \frac{1}{9} + b + \frac{1}{3} = b + \frac{4}{9}$, $p_{.1} = a + \frac{1}{9}$, $p_{.2} = \frac{1}{9} + b$, $p_{.3} = \frac{1}{3} + c$,

根据独立性,知
$$p_{22} = b = p_2 \cdot p_{22} = \left(b + \frac{4}{9}\right)\left(\frac{1}{9} + b\right) = b^2 + \frac{5}{9}b + \frac{4}{81}$$
,

可得
$$b^2 - \frac{4}{9}b + \frac{4}{81} = 0$$
,即 $\left(b - \frac{2}{9}\right)^2 = 0$,

故
$$b=\frac{2}{9}$$
;

再根据独立性,知
$$p_{21} = \frac{1}{9} = p_2 \cdot p_{.1} = \left(b + \frac{4}{9}\right)\left(a + \frac{1}{9}\right) = \frac{6}{9}\left(a + \frac{1}{9}\right)$$
,可得 $a + \frac{1}{9} = \frac{1}{6}$,

故
$$a = \frac{1}{18}$$
;

由正则性,知
$$\sum_{i=1}^{2} \sum_{j=1}^{3} p_{ij} = a + \frac{1}{9} + c + \frac{1}{9} + b + \frac{1}{3} = a + b + c + \frac{5}{9} = 1$$
,可得 $a + b + c = \frac{4}{9}$,

故
$$c = \frac{4}{9} - a - b = \frac{3}{18} = \frac{1}{6}$$
.

11. 设 X 和 Y 是两个相互独立的随机变量, $X \sim U(0,1)$, $Y \sim Exp(1)$. 试求(1)X 与 Y 的联合密度函数;(2) $P\{Y \leq X\}$;(3) $P\{X + Y \leq 1\}$.

解:(1)因X与Y相互独立,且边际密度函数分别为

$$p_X(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & \text{ i.t.} \end{cases} \quad p_Y(y) = \begin{cases} e^{-y}, & y \ge 0, \\ 0, & y < 0. \end{cases}$$

故X与Y的联合密度函数为

$$p(x,y) = p_X(x)p_Y(y) = \begin{cases} e^{-y}, & 0 < x < 1, y \ge 0, \\ 0, & \text{其他.} \end{cases}$$

(2)
$$P\{Y \le X\} = \int_0^1 dx \int_0^x e^{-y} dy = \int_0^1 dx \cdot (-e^{-y})\Big|_0^x = \int_0^1 (1-e^{-x}) dx = (x+e^{-x})\Big|_0^1 = 1+e^{-1}-1=e^{-1};$$

(3)
$$P\{X + Y \le 1\} = \int_0^1 dx \int_0^{1-x} e^{-y} dy = \int_0^1 dx \cdot (-e^{-y}) \Big|_0^{1-x} = \int_0^1 (1 - e^{x-1}) dx = (x - e^{x-1}) \Big|_0^1 = e^{-1}$$
.

12. 设随机变量(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} 3x, & 0 < x < 1, 0 < y < x, \\ 0, & 其他. \end{cases}$$

试求(1)边际密度函数 $p_x(x)$ 和 $p_y(y)$;(2) X与 Y是否独立.

解: (1) 当 $x \le 0$ 或 $x \ge 1$ 时, $p_X(x) = 0$,

$$\stackrel{\text{def}}{=} 0 < x < 1 \text{ By}, \quad p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_0^x 3x dy = 3x^2,$$

故
$$p_X(x) = \begin{cases} 3x^2, & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

当 $y \le 0$ 或 $y \ge 1$ 时, $p_y(y) = 0$,

$$\stackrel{\underline{}}{=}$$
 0 < y < 1 $\stackrel{\underline{}}{=}$ $\stackrel{\underline{}}{=}$ $p(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \int_{y}^{1} 3x dx = \frac{3}{2} x^{2} \Big|_{y}^{1} = \frac{3}{2} (1 - y^{2})$,

故
$$p_Y(y) = \begin{cases} \frac{3}{2}(1-y^2), & 0 < y < 1, \\ 0, & 其他. \end{cases}$$

故X与Y不独立.

13. 设随机变量(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} 1, & |x| < y, 0 < y < 1, \\ 0, & 其他. \end{cases}$$

试求(1)边际密度函数 $p_x(x)$ 和 $p_y(y)$;(2) X与 Y是否独立.

解: (1) 当 $x \le -1$ 或 $x \ge 1$ 时, $p_X(x) = 0$,

$$\stackrel{\underline{}}{=} -1 < x < 0 \text{ ft}, \quad p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_{-x}^{1} 1 dy = 1 + x,$$

当
$$0 \le x < 1$$
 时, $p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_{x}^{1} 1 dy = 1 - x$,

当 $y \le 0$ 或 $y \ge 1$ 时, $p_Y(y) = 0$,

$$\stackrel{\text{def}}{=} 0 < y < 1 \text{ ft}, \quad p_Y(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \int_{-y}^{y} 1 dx = 2y$$

故
$$p_Y(y) = \begin{cases} 2y, & 0 < y < 1, \\ 0, & 其他. \end{cases}$$

(2) 因
$$p_X(x)p_Y(y) = \begin{cases} 2y(1+x), & -1 < x < 0, 0 < y < 1, \\ 2y(1-x), & 0 \le x < 1, 0 < y < 1, \end{cases}$$
 即 $p_X(x)p_Y(y) \ne p(x, y), 0,$ 其他.

故X与Y不独立.

14. 设二维随机变量(X, Y) 的联合密度函数如下,试问X与Y是否相互独立?

(1)
$$p(x,y) = \begin{cases} xe^{-(x+y)}, & x > 0, y > 0; \\ 0, & \text{其他.} \end{cases}$$

(2)
$$p(x,y) = \frac{1}{\pi^2(1+x^2)(1+y^2)}, -\infty < x, y < +\infty;$$

(3)
$$p(x,y) = \begin{cases} 2, & 0 < x < y < 1; \\ 0, & 其他. \end{cases}$$

(4)
$$p(x,y) = \begin{cases} 24xy, & 0 < x < 1, 0 < y < 1, 0 < x + y < 1; \\ 0, & \sharp \text{ th. } \end{cases}$$

(5)
$$p(x,y) = \begin{cases} 12xy(1-x), & 0 < x < 1, 0 < y < 1; \\ 0, & \text{其他.} \end{cases}$$

(6)
$$p(x, y) = \begin{cases} \frac{21}{4}x^2y, & x^2 < y < 1; \\ 0, & \text{其他.} \end{cases}$$

解: (1) 因 $xe^{-(x+y)} = xe^{-x} \cdot e^{-y}$ 可分离变量,x > 0, y > 0 是广义矩形区域,故 X 与 Y 相互独立;

(2) 因
$$\frac{1}{\pi^2(1+x^2)(1+y^2)} = \frac{1}{\pi(1+x^2)} \cdot \frac{1}{\pi(1+y^2)}$$
 可分离变量, $-\infty < x, y < +\infty$ 是广义矩形区域,故 X 与 Y 相互独立;

- (3) 因 0 < x < y < 1 不是矩形区域,故 X 与 Y 不独立;
- (4) 因 0 < x < 1, 0 < y < 1, 0 < x + y < 1 不是矩形区域,故 X 与 Y 不独立;
- (5) 因 $12xy(1-x) = 12x(1-x) \cdot y$ 可分离变量,0 < x < 1, 0 < y < 1 是矩形区域,故 X 与 Y 相互独立;
- (6) 因 $x^2 < y < 1$ 不是矩形区域,故 X = Y 不独立.
- 15. 在长为 a 的线段的中点的两边随机地各取一点,求两点间的距离小于 a/3 的概率.

解:设X和Y分别表示这两个点与线段中点的距离,有X和Y相互独立且都服从[0,a/2]的均匀分布,则(X,Y)的联合密度函数为 y_{\blacktriangle}

$$p(x,y) = \begin{cases} \frac{4}{a^2}, & 0 < x < \frac{a}{2}, 0 < y < \frac{a}{2}, \\ 0, & \text{其他.} \end{cases}$$

故所求概率为
$$P\{X+Y<rac{a}{3}\}=rac{S_G}{S_D}=rac{rac{1}{2} imes\left(rac{a}{3}
ight)^2}{\left(rac{a}{2}
ight)^2}=rac{2}{9}$$
.

16. 设二维随机变量(X, Y) 服从区域

$$D = \{(x, y): a \le x \le b, c \le y \le d\}$$

上的均匀分布,试证X与Y相互独立.

证: 因(X, Y) 的联合密度函数为

$$p(x,y) = \begin{cases} \frac{1}{(b-a)(d-c)}, & a \le x \le b, c \le y \le d; \\ 0, & 其他. \end{cases}$$

当 x < a 或 x > b 时, $p_X(x) = 0$

$$\stackrel{\text{def}}{=} a \le x \le b \text{ ft}, \quad p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_{c}^{d} \frac{1}{(b-a)(d-c)} dy = \frac{1}{b-a},$$

则
$$p_X(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b; \\ 0, & 其他. \end{cases}$$

当 y < c 或 y > d 时, $p_Y(y) = 0$,

$$\stackrel{\underline{}}{=}$$
 $c \le y \le d$ $\forall f$, $p_Y(y) = \int_{-\infty}^{+\infty} p(x,y) dx = \int_a^b \frac{1}{(b-a)(d-c)} dx = \frac{1}{d-c}$,

则
$$p_Y(y) = \begin{cases} \frac{1}{d-c}, & c \le y \le d; \\ 0, & 其他. \end{cases}$$

因 $p_x(x)p_y(y) = p(x, y)$,

故X与Y相互独立.

17. 设 X_1, X_2, \dots, X_n 是独立同分布的正值随机变量. 证明

$$E\left(\frac{X_1+\cdots+X_k}{X_1+\cdots+X_n}\right)=\frac{k}{n}, \quad k\leq n.$$

证: 因 X_1, X_2, \dots, X_n 是独立同分布的正值随机变量,

则由对称性知
$$\frac{X_i}{X_1+\cdots+X_n}$$
 $(i=1,2,\cdots,n)$ 同分布,且满足 $0<\frac{X_i}{X_1+\cdots+X_n}<1$,

可得
$$E\left(\frac{X_i}{X_1+\cdots+X_n}\right)$$
 存在,且 $E\left(\frac{X_1}{X_1+\cdots+X_n}\right)=E\left(\frac{X_2}{X_1+\cdots+X_n}\right)=\cdots=E\left(\frac{X_n}{X_1+\cdots+X_n}\right)$

$$\boxtimes E\left(\frac{X_1}{X_1+\cdots+X_n}\right)+E\left(\frac{X_2}{X_1+\cdots+X_n}\right)+\cdots+E\left(\frac{X_n}{X_1+\cdots+X_n}\right)=E\left(\frac{X_1+\cdots+X_n}{X_1+\cdots+X_n}\right)=1,$$

$$\operatorname{IM} E\left(\frac{X_1}{X_1 + \dots + X_n}\right) = E\left(\frac{X_2}{X_1 + \dots + X_n}\right) = \dots = E\left(\frac{X_n}{X_1 + \dots + X_n}\right) = \frac{1}{n},$$

故
$$E\left(\frac{X_1+\cdots+X_k}{X_1+\cdots+X_n}\right)=\frac{k}{n}, \quad k\leq n.$$

习题 3.3

1. 设二维随机变量(X, Y) 的联合分布列为

试分布求 $U = \max\{X, Y\}$ 和 $V = \min\{X, Y\}$ 的分布列.

解: 因
$$P\{U=1\} = P\{X=0, Y=1\} + P\{X=1, Y=1\} = 0.05 + 0.07 = 0.12;$$

$$P\{U=2\} = P\{X=0, Y=2\} + P\{X=1, Y=2\} + P\{X=2, Y=2\} + P\{X=2, Y=1\}$$

$$= 0.15 + 0.11 + 0.07 + 0.04 = 0.37;$$

 $P\{U=3\} = P\{X=0, Y=3\} + P\{X=1, Y=3\} + P\{X=2, Y=3\} = 0.20 + 0.22 + 0.09 = 0.51;$ 故U的分布列为

$$\begin{array}{c|cccc} U & 1 & 2 & 3 \\ \hline P & 0.12 & 0.37 & 0.51 \end{array}$$

$$P{V=2} = P{X=2, Y=2} + P{X=2, Y=3} = 0.07 + 0.09 = 0.16;$$
故 V 的分布列为

$$\begin{array}{c|ccccc} V & 0 & 1 & 2 \\ \hline P & 0.40 & 0.44 & 0.16 \end{array}$$

设 X 和 Y 是相互独立的随机变量,且 $X \sim Exp(\lambda)$, $Y \sim Exp(\mu)$. 如果定义随机变量 Z 如下

$$Z = \begin{cases} 1, & \stackrel{\text{def}}{=} X \leq Y, \\ 0, & \stackrel{\text{def}}{=} X > Y. \end{cases}$$

求Z的分布列.

解: 因(X, Y) 的联合密度函数为

$$p(x,y) = p_X(x)p_Y(y) = \begin{cases} \lambda \mu e^{-(\lambda x + \mu y)}, & x > 0, y > 0, \\ 0, & 其他. \end{cases}$$
則 $P\{Z = 1\} = P\{X \le Y\} = \int_0^{+\infty} dx \int_x^{+\infty} \lambda \mu e^{-(\lambda x + \mu y)} dy = \int_0^{+\infty} dx \cdot (-\lambda) e^{-(\lambda x + \mu y)} \Big|_x^{+\infty}$

$$= \int_0^{+\infty} \lambda e^{-(\lambda+\mu)x} dx = -\frac{\lambda}{2+\mu} e^{-(\lambda+\mu)x} \Big|_0^{+\infty} = \frac{\lambda}{2+\mu},$$

$$= \int_0^{+\infty} \lambda \, e^{-(\lambda + \mu)x} \, dx = -\frac{\lambda}{\lambda + \mu} \, e^{-(\lambda + \mu)x} \Big|_0^{+\infty} = \frac{\lambda}{\lambda + \mu} \,,$$

$$P{Z=0} = 1 - P{Z=1} = \frac{\mu}{\lambda + \mu}$$

故Z的分布列为

$$\begin{array}{c|cc}
Z & 0 & 1 \\
P & \frac{\mu}{\lambda + \mu} & \frac{\lambda}{\lambda + \mu}
\end{array}$$

3. 设随机变量 X 和 Y 的分布列分别为

已知 $P\{XY=0\}=1$, 试求 $Z=\max\{X,Y\}$ 的分布列.

解: 因 $P\{X_1X_2=0\}=1$, 有 $P\{X_1X_2\neq 0\}=0$,

即 $P\{X_1 = -1, X_2 = 1\} = P\{X_1 = 1, X_2 = 1\} = 0$, 可得 (X, Y) 的联合分布列为

X	0	1	p_{i} .	`	X	0	1	p_{i}
-1			1/4		-1	1/4	0	1/4
0			1/2		0	0	1/2	1/2
1			1/4		1	1/4	0	1/4
$p_{\cdot j}$	1/2	1/2			$p_{\cdot j}$	1/2	1/2	

$$P{Z=1} = 1 - P{Z=0} = \frac{3}{4};$$

故Z的分布列为

$$\begin{array}{c|cc} Z & 0 & 1 \\ \hline P & \frac{1}{4} & \frac{3}{4} \end{array}$$

- 4. 设随机变量 $X \times Y$ 独立同分布,在以下情况下求随机变量 $Z = \max\{X, Y\}$ 的分布列.
 - (1) X 服从 p = 0.5 的 (0-1) 分布;
 - (2) X 服从几何分布,即 $P\{X=k\} = (1-p)^{k-1}p$, $k=1,2,\cdots$.

解: (1)(X,Y)的联合分布列为

$$\begin{array}{c|cccc} Y & 0 & 1 & p_i. \\ \hline 0 & 0.25 & 0.25 & 0.5 \\ \hline 1 & 0.25 & 0.25 & 0.5 \\ \hline p_{,j} & 0.5 & 0.5 \\ \hline \end{array}$$

因 $P{Z=0} = P{X=0, Y=0} = 0.25; P{Z=1} = 1 - P{Z=0} = 0.75;$ 故 Z 的分布列为

$$\frac{Z \mid 0}{P \mid 0.25 \quad 0.75}$$

(2)
$$\boxtimes P\{Z=k\} = P\{X=k, Y \le k\} + P\{X < k, Y=k\} = P\{X=k\} P\{Y \le k\} + P\{X < k\} P\{Y=k\}$$

$$= (1-p)^{k-1} p \cdot \sum_{j=1}^{k} (1-p)^{j-1} p + \sum_{i=1}^{k-1} (1-p)^{i-1} p \cdot (1-p)^{k-1} p$$

$$= (1-p)^{k-1} p \cdot \frac{1-(1-p)^k}{1-(1-p)} p + \frac{1-(1-p)^{k-1}}{1-(1-p)} p \cdot (1-p)^{k-1} p$$

$$= (1-p)^{k-1}p \cdot [2 - (1-p)^{k-1} - (1-p)^k]$$

故 $Z = \max\{X, Y\}$ 的概率函数为 $p_z(k) = (1-p)^{k-1} p \cdot [2 - (1-p)^{k-1} - (1-p)^k]$, $k = 1, 2, \dots$

5. 设X和Y为两个随机变量,且

$$P\{X \ge 0, Y \ge 0\} = \frac{3}{7}, \quad P\{X \ge 0\} = P\{Y \ge 0\} = \frac{4}{7},$$

试求 $P\{\max\{X,Y\} \geq 0\}$.

解: 设 A 表示事件 " $X \ge 0$ ",B 表示事件 " $Y \ge 0$ ",有 $P(AB) = \frac{3}{7}$, $P(A) = P(B) = \frac{4}{7}$,

故 $P{\max{X,Y}} ≥ 0} = P(A \cup B) = P(A) + P(B) - P(AB) = \frac{4}{7} + \frac{4}{7} - \frac{3}{7} = \frac{5}{7}$.

6. 设 X 与 Y 的联合密度函数为

$$p(x, y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0, \\ 0, & 其他. \end{cases}$$

试求以下随机变量的密度函数(1)Z = (X + Y)/2;(2)Z = Y - X.

解:方法一:分布函数法

(1) 作曲线簇 $\frac{x+y}{2} = z$, 得 z 的分段点为 0,

当 $z \le 0$ 时, $F_z(z) = 0$

当
$$z > 0$$
 时, $F_Z(z) = \int_0^{2z} dx \int_0^{2z-x} e^{-(x+y)} dy = \int_0^{2z} dx \cdot [-e^{-(x+y)}] \Big|_0^{2z-x}$

$$= \int_0^{2z} (-e^{-2z} + e^{-x}) dx = (-e^{-2z} x - e^{-x}) \Big|_0^{2z} = 1 - (2z+1) e^{-2z},$$

因分布函数 $F_Z(z)$ 连续,有 Z = (X + Y)/2 为连续随机变量,故 Z = (X + Y)/2 的密度函数为

$$p_Z(z) = F_Z'(z) = \begin{cases} 4z e^{-2z}, & z > 0, \\ 0, & z \le 0. \end{cases}$$

(2) 作曲线簇 y-x=z, 得 z 的分段点为 0,

 $\stackrel{\cong}{=} z \le 0 \text{ ft}, \quad F_{Z}(z) = \int_{-z}^{+\infty} dx \int_{0}^{x+z} e^{-(x+y)} dy = \int_{-z}^{+\infty} dx \cdot \left[-e^{-(x+y)} \right]_{0}^{x+z} = \int_{-z}^{+\infty} \left[-e^{-(2x+z)} + e^{-x} \right] dx$ $= \left[\frac{1}{2} e^{-(2x+z)} - e^{-x} \right]_{-z}^{+\infty} = -\left[\frac{1}{2} e^{z} - e^{z} \right] = \frac{1}{2} e^{z} ,$

$$= \left[\frac{1}{2}e^{-(2x+z)} - e^{-x}\right]_0^{+\infty} = -\left[\frac{1}{2}e^{-z} - 1\right] = 1 - \frac{1}{2}e^{-z},$$

因分布函数 $F_Z(z)$ 连续,有 Z=Y-X 为连续随机变量,故 Z=Y-X 的密度函数为

$$p_{Z}(z) = F'_{Z}(z) = \begin{cases} \frac{1}{2}e^{z}, & z \le 0, \\ \frac{1}{2}e^{-z}, & z > 0. \end{cases}$$

方法二:增补变量法

(1) 函数 $z = \frac{x+y}{2}$ 对任意固定的 y 关于 x 严格单调增加,增补变量 v = y,

可得
$$\begin{cases} z = \frac{x+y}{2}, & \text{有反函数} \begin{cases} x = 2z - v, \\ y = v, \end{cases} \quad \text{且 } J = \begin{vmatrix} x'_z & x'_v \\ y'_z & y'_v \end{vmatrix} = \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} = 2, \end{cases}$$

$$\mathbb{M} p_{Z}(z) = \int_{-\infty}^{+\infty} p(2z - v, v) \cdot 2dv = \int_{-\infty}^{+\infty} 2p(2z - v, v) dv,$$

作曲线簇 $\frac{x+y}{2}=z$,得z的分段点为0,

当 $z \le 0$ 时, $p_Z(z) = 0$,

$$\stackrel{\text{def}}{=} z > 0 \text{ ft}, \quad p_Z(z) = \int_0^{2z} 2 e^{-2z} dv = 4z e^{-2z},$$

故 Z = (X + Y)/2 的密度函数为

$$p_Z(z) = \begin{cases} 4z e^{-2z}, & z > 0, \\ 0, & z \le 0. \end{cases}$$

可得
$$\begin{cases} z = y - x, \\ v = y, \end{cases}$$
 有反函数 $\begin{cases} x = v - z, \\ y = v, \end{cases}$ 且 $J = \begin{vmatrix} x_z' & x_v' \\ y_z' & y_v' \end{vmatrix} = \begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix} = -1$,

作曲线簇 y-x=z, 得 z 的分段点为 0,

$$\stackrel{\underline{\mathsf{M}}}{=} z \le 0 \; \text{Fig.} \quad p_{Z}(z) = \int_{0}^{+\infty} \mathrm{e}^{-2\nu + z} \; d\nu = -\frac{1}{2} \, \mathrm{e}^{-2\nu + z} \Big|_{0}^{+\infty} = \frac{1}{2} \, \mathrm{e}^{z} \; ,$$

$$\stackrel{\underline{\mathsf{u}}}{=} z > 0 \; \forall \,, \quad p_{Z}(z) = \int_{z}^{+\infty} e^{-2\nu + z} \; d\nu = -\frac{1}{2} e^{-2\nu + z} \Big|_{z}^{+\infty} = \frac{1}{2} e^{-z} \;,$$

故 Z = Y - X 的密度函数为

$$p_{Z}(z) = \begin{cases} \frac{1}{2}e^{z}, & z \le 0, \\ \frac{1}{2}e^{-z}, & z > 0. \end{cases}$$

7. 设X与Y的联合密度函数为

$$p(x,y) = \begin{cases} 3x, & 0 < x < 1, 0 < y < x, \\ 0, & 其他. \end{cases}$$

试求 Z = X - Y 的密度函数.

解:方法一:分布函数法

作曲线簇 x-y=z, 得 z 的分段点为 0,1,

当 z < 0 时, $F_Z(z) = 0$,

$$\stackrel{\cong}{=} 0 \le z < 1 \text{ ft}, \quad F_Z(z) = \int_0^z dx \int_0^x 3x dy + \int_z^1 dx \int_{x-z}^x 3x dy = \int_0^z 3x^2 dx + \int_z^1 3x z dx = x^3 \Big|_0^z + \frac{3}{2} x^2 z \Big|_z^1 = \frac{3}{2} z - \frac{1}{2} z^3,$$

当 $z \ge 1$ 时, $F_Z(z) = 1$,

因分布函数 $F_Z(z)$ 连续,有 Z=X-Y 为连续随机变量,

故 Z = X - Y 的密度函数为

$$p_Z(z) = F_Z'(z) = \begin{cases} \frac{3}{2}(1-z^2), & 0 < z < 1, \\ 0, & 其他. \end{cases}$$

方法二:增补变量法

函数 z=x-y 对任意固定的 y 关于 x 严格单调增加,增补变量 v=y,

可得
$$\begin{cases} z = x - y, \\ v = y, \end{cases}$$
有反函数 $\begin{cases} x = z + v, \\ y = v, \end{cases}$ 且 $J = \begin{vmatrix} x'_z & x'_v \\ y'_z & y'_v \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1,$

则
$$p_Z(z) = \int_{-\infty}^{+\infty} p(z+v,v) dv$$
,

作曲线簇 x-y=z, 得 z 的分段点为 0,1,

当 $z \le 0$ 或 $z \ge 1$ 时, $p_z(z) = 0$,

$$\stackrel{\text{\tiny ω}}{=}$$
 0 < z < 1 $\stackrel{\text{\tiny v}}{=}$ $\stackrel{\text{\tiny v}}{=}$ $p_z(z) = \int_0^{1-z} 3(z+v)dv = \frac{3}{2}(z+v)^2\Big|_0^{1-z} = \frac{3}{2}(1-z^2)$,

故 Z = X - Y 的密度函数为

$$p_Z(z) = \begin{cases} \frac{3}{2}(1-z^2), & 0 < z < 1, \\ 0, & 其他. \end{cases}$$

$$p_1(t) = \begin{cases} t e^{-t}, & t > 0, \\ 0, & t \le 0. \end{cases}$$

设各周的需要量是相互独立的, 试求

(1) 两周需要量的密度函数 $p_2(x)$; (2) 三周需要量的密度函数 $p_3(x)$.

解:方法一:根据独立伽玛变量之和仍为伽玛变量

设 T_i 表示"该种商品第i周的需要量",因 T_i 的密度函数为

$$p_1(t) = \begin{cases} \frac{1}{\Gamma(2)} t^{2-1} e^{-t}, & t > 0, \\ 0, & t \le 0. \end{cases}$$

可知 T_i 服从伽玛分布 Ga(2,1),

(1) 两周需要量为 $T_1 + T_2$,因 T_1 与 T_2 相互独立且都服从伽玛分布 Ga(2, 1),故 $T_1 + T_2$ 服从伽玛分布 Ga(4, 1),密度函数为

$$p_2(x) = \begin{cases} \frac{1}{\Gamma(4)} x^{4-1} e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases} = \begin{cases} \frac{1}{6} x^3 e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

(2) 三周需要量为 $T_1 + T_2 + T_3$,因 T_1, T_2, T_3 相互独立且都服从伽玛分布 Ga(2, 1),故 $T_1 + T_2 + T_3$ 服从伽玛分布 Ga(6, 1),密度函数为

$$p_3(x) = \begin{cases} \frac{1}{\Gamma(6)} x^{6-1} e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases} = \begin{cases} \frac{1}{120} x^5 e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

方法二: 分布函数法

(1) 两周需要量为 $X_2 = T_1 + T_2$,作曲线簇 $t_1 + t_2 = x$,得 x 的分段点为 0, 当 $x \le 0$ 时, $F_2(x) = 0$,

$$= \left(\frac{1}{3}x^3 - \frac{1}{2}x^3 - \frac{1}{2}x^2\right)e^{-x} - xe^{-x} - e^{-x} - (-1)$$

$$= 1 - e^{-x} - xe^{-x} - \frac{1}{2}x^2e^{-x} - \frac{1}{6}x^3e^{-x},$$

因分布函数 $F_2(x)$ 连续,有 $X_2 = T_1 + T_2$ 为连续随机变量,故 $X_2 = T_1 + T_2$ 的密度函数为

$$p_2(x) = F_2'(x) = \begin{cases} \frac{1}{6}x^3 e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

(2) 三周需要量为 $X_3 = T_1 + T_2 + T_3 = X_2 + T_3$,作曲线簇 $x_2 + t_3 = x$,得 x 的分段点为 0, 当 $x \le 0$ 时, $F_3(x) = 0$,

因分布函数 $F_3(x)$ 连续,有 $X_3 = T_1 + T_2 + T_3$ 为连续随机变量,故 $X_3 = T_1 + T_2 + T_3$ 的密度函数为

$$p_3(x) = F_3'(x) = \begin{cases} \frac{1}{120} x^5 e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

方法三: 卷积公式(增补变量法)

(1) 两周需要量为 $X_2 = T_1 + T_2$,卷积公式 $p_2(x) = \int_{-\infty}^{+\infty} p_{T_1}(x - t_2) p_{T_2}(t_2) dt_2$,作曲线簇 $t_1 + t_2 = x$,得 x 的分段点为 0, 当 $x \le 0$ 时, $p_2(x) = 0$, 当 x > 0 时,

$$p_2(x) = \int_0^x (x - t_2) e^{-(x - t_2)} \cdot t_2 e^{-t_2} dt_2 = \int_0^x (x t_2 - t_2^2) e^{-x} dt_2 = \left(\frac{1}{2} t_2^2 x - \frac{1}{3} t_2^3\right) e^{-x} \Big|_0^x = \frac{1}{6} x^3 e^{-x},$$

故 $X_2 = T_1 + T_2$ 的密度函数为

$$p_2(x) = \begin{cases} \frac{1}{6} x^3 e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

(2) 三周需要量为
$$X_3 = T_1 + T_2 + T_3 = X_2 + T_3$$
,卷积公式 $p_3(x) = \int_{-\infty}^{+\infty} p_{X_2}(x - t_3) p_{T_3}(t_3) dt_3$,作曲线簇 $x_2 + t_3 = x$,得 x 的分段点为 0 , 当 $x \le 0$ 时, $p_3(x) = 0$,

$$\stackrel{\underline{\mathsf{M}}}{=} x > 0 \; \exists f, \quad p_3(x) = \int_0^x \frac{1}{6} (x - t_3)^3 \; \mathrm{e}^{-(x - t_3)} \; t_3 \; \mathrm{e}^{-t_3} \; dt_3 = \int_0^x \frac{1}{6} (x^3 t_3 - 3x^2 t_3^2 + 3x t_3^3 - t_3^4) \; \mathrm{e}^{-x} \; dt_3$$

$$=\frac{1}{6}\left(\frac{1}{2}t_3^2x^3-t_3^3x^2+\frac{3}{4}t_3^4x-\frac{1}{5}t_3^5\right)e^{-x}\bigg|_0^x=\frac{1}{120}x^5e^{-x},$$

故 $X_3 = T_1 + T_2 + T_3$ 的密度函数为

$$p_3(x) = \begin{cases} \frac{1}{120} x^5 e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

- 9. 设随机变量 X 与 Y 相互独立, 试在以下情况下求 Z = X + Y 的密度函数:
 - (1) $X \sim U(0, 1), Y \sim U(0, 1);$
 - (2) $X \sim U(0, 1), Y \sim Exp(1).$
- 解:方法一:分布函数法
 - (1) 作曲线簇 x+y=z, 得 z 的分段点为 0, 1, 2, 当 z < 0 时, $F_z(z) = 0$,

$$\stackrel{\text{def}}{=} 0 \le z < 1 \text{ ft}, \quad F_Z(z) = \int_0^z dx \int_0^{z-x} 1 dy = \int_0^z (z-x) dx = \left(zx - \frac{1}{2}x^2\right) \Big|_0^z = \frac{1}{2}z^2,$$

$$\stackrel{\text{\tiny ΔP}}{=} 1 \le z < 2 \text{ Pr}, \quad F_Z(z) = \int_0^{z-1} dx \int_0^1 1 dy + \int_{z-1}^1 dx \int_0^{z-x} 1 dy = \int_0^{z-1} 1 dx + \int_{z-1}^1 (z-x) dx = z - 1 - \frac{1}{2} (z-x)^2 \Big|_{z-1}^1 dx = 0$$

$$= z - 1 - \frac{1}{2}(z - 1)^2 + \frac{1}{2} = 2z - \frac{1}{2}z^2 - 1,$$

因分布函数 $F_Z(z)$ 连续,有 Z=X+Y 为连续随机变量,

故 Z = X + Y 的密度函数为

$$p_{Z}(z) = F_{Z}'(z) = \begin{cases} z, & 0 \le z < 1, \\ 2 - z, & 1 \le z < 2, \\ 0, & 其他. \end{cases}$$

当 $0 \le z < 1$ 时,

$$F_{Z}(z) = \int_{0}^{z} dx \int_{0}^{z-x} e^{-y} dy = \int_{0}^{z} dx \cdot (-e^{-y}) \Big|_{0}^{z-x} = \int_{0}^{z} (1 - e^{-z+x}) dx = (x - e^{-z+x}) \Big|_{0}^{z} = z - 1 + e^{-z},$$

当 $z \ge 1$ 时,

$$F_{z}(z) = \int_{0}^{1} dx \int_{0}^{z-x} e^{-y} dy = \int_{0}^{1} dx \cdot (-e^{-y}) \Big|_{0}^{z-x} = \int_{0}^{1} (1 - e^{-z+x}) dx = (x - e^{-z+x}) \Big|_{0}^{1} = 1 - e^{1-z} + e^{-z},$$

因分布函数 $F_Z(z)$ 连续,有 Z=X+Y 为连续随机变量,

故 Z = X + Y 的密度函数为

$$p_Z(z) = F_Z'(z) = \begin{cases} 1 - e^{-z}, & 0 \le z < 1, \\ (e - 1)e^{-z}, & z \ge 1, \\ 0, & z < 0. \end{cases}$$

方法二:卷积公式(增补变量法)

卷积公式
$$p_Z(z) = \int_{-\infty}^{+\infty} p_X(z-y) p_Y(y) dy$$
,

(1) 作曲线簇 x + y = z, 得 z 的分段点为 0, 1, 2,

当 $z \le 0$ 或 $z \ge 2$ 时, $p_z(z) = 0$,

当
$$0 < z < 1$$
 时, $p_Z(z) = \int_0^z 1 dy = z$,

$$\stackrel{\text{def}}{=} 1 \le z < 2$$
 时, $p_Z(z) = \int_{z-1}^1 1 dy = 2 - z$,

故 Z = X + Y 的密度函数为

$$p_{z}(z) = \begin{cases} z, & 0 \le z < 1, \\ 2 - z, & 1 \le z < 2, \\ 0, & 其他. \end{cases}$$

$$\stackrel{\text{def}}{=} 0 < z < 1 \text{ ft}, \quad p_Z(z) = \int_0^z e^{-y} dy = (-e^{-y})\Big|_0^z = 1 - e^{-z},$$

当
$$z \ge 1$$
 时, $p_z(z) = \int_{z-1}^z e^{-y} dy = (-e^{-y})\Big|_{z-1}^z = -e^{-z} + e^{-z+1} = (e-1)e^{-z}$,

故 Z = X + Y 的密度函数为

$$p_{Z}(z) = \begin{cases} 1 - e^{-z}, & 0 \le z < 1, \\ (e - 1)e^{-z}, & z \ge 1, \\ 0, & z < 0. \end{cases}$$

- 10. 设随机变量 X 与 Y 相互独立, 试在以下情况下求 Z = X/Y 的密度函数:

 - (1) $X \sim U(0, 1)$, $Y \sim Exp(1)$; (2) $X \sim Exp(\lambda_1)$, $Y \sim Exp(\lambda_2)$.

解: 方法一: 分布函数法

因分布函数 $F_Z(z)$ 连续,有 Z=X/Y 为连续随机变量,

故 Z = X/Y 的密度函数为

$$p_{Z}(z) = F'_{Z}(z) = \begin{cases} 1 - e^{-\frac{1}{z}} - \frac{1}{z}e^{-\frac{1}{z}}, & z > 0; \\ 0, & z \le 0. \end{cases}$$

(2) 作曲线簇 $\frac{x}{y} = z$, 即直线簇 $y = \frac{x}{z}$, 得 z 的分段点为 0,

当 $z \le 0$ 时, $F_Z(z) = 0$

$$\stackrel{\text{\tiny \perp}}{=} z > 0 \text{ ft}, \quad F_Z(z) = \int_0^{+\infty} dx \int_{\frac{x}{z}}^{+\infty} \lambda_1 e^{-\lambda_1 x} \cdot \lambda_2 e^{-\lambda_2 y} dy = \int_0^{+\infty} dx \cdot \lambda_1 e^{-\lambda_1 x} \cdot (-e^{-\lambda_2 y}) \Big|_{\frac{x}{z}}^{+\infty} = \int_0^{+\infty} \lambda_1 e^{-\lambda_1 x} \cdot e^{-\frac{\lambda_2 x}{z}} dx$$

$$= \int_0^{+\infty} \lambda_1 e^{-(\lambda_1 + \frac{\lambda_2}{z})x} dx = -\frac{\lambda_1}{\lambda_1 + \frac{\lambda_2}{z}} e^{-(\lambda_1 + \frac{\lambda_2}{z})x} \bigg|_0^{+\infty} = \frac{\lambda_1 z}{\lambda_1 z + \lambda_2},$$

因分布函数 $F_Z(z)$ 连续,有 Z=X/Y 为连续随机变量,

故 Z = X/Y 的密度函数为

$$p_Z(z) = F_Z'(z) = \begin{cases} \frac{\lambda_1 \lambda_2}{(\lambda_1 z + \lambda_2)^2}, & z > 0; \\ 0, & z \le 0. \end{cases}$$

方法二:增补变量法

(1) 函数 z=x/y 对任意固定的 y 关于 x 严格单调增加,增补变量 v=y,

可得
$$\begin{cases} z = x/y, \\ v = y, \end{cases}$$
 有反函数
$$\begin{cases} x = zv, \\ y = v, \end{cases}$$
 且
$$J = \begin{vmatrix} x'_z & x'_v \\ y'_z & y'_v \end{vmatrix} = \begin{vmatrix} v & z \\ 0 & 1 \end{vmatrix} = v ,$$

则
$$p_Z(z) = \int_{-\infty}^{+\infty} p(zv, v) \cdot |v| dv$$
,

作曲线簇 x/y=z, 得 z 的分段点为 0,

当 $z \le 0$ 时, $p_Z(z) = 0$,

$$\stackrel{\text{\tiny Δ'}}{\equiv} z > 0 \text{ } p_Z(z) = \int_0^{\frac{1}{z}} \mathrm{e}^{-v} \cdot v dv = -(v+1) \mathrm{e}^{-v} \Big|_0^{\frac{1}{z}} = -\left(\frac{1}{z}+1\right) \mathrm{e}^{-\frac{1}{z}} + 1 = 1 - \mathrm{e}^{-\frac{1}{z}} - \frac{1}{z} \mathrm{e}^{-\frac{1}{z}} \text{ } ,$$

故 Z = X/Y 的密度函数为

$$p_{z}(z) = \begin{cases} 1 - e^{-\frac{1}{z}} - \frac{1}{z} e^{-\frac{1}{z}}, & z > 0; \\ 0, & z \leq 0. \end{cases}$$

(2) 作曲线簇 x/y=z, 得 z 的分段点为 0,

当 $z \le 0$ 时, $p_Z(z) = 0$,

当
$$z > 0$$
 时, $p_Z(z) = \int_0^{+\infty} \lambda_1 e^{-\lambda_1 z v} \cdot \lambda_2 e^{-\lambda_2 v} \cdot v dv = -\lambda_1 \lambda_2 \left[\frac{v}{\lambda_1 z + \lambda_2} + \frac{1}{(\lambda_1 z + \lambda_2)^2} \right] e^{-(\lambda_1 z + \lambda_2) v} \bigg|_0^{+\infty}$

$$=\frac{\lambda_1\lambda_2}{(\lambda_1z+\lambda_2)^2},$$

故 Z = X/Y 的密度函数为

$$p_{Z}(z) = \begin{cases} \frac{\lambda_{1}\lambda_{2}}{(\lambda_{1}z + \lambda_{2})^{2}}, & z > 0; \\ 0, & z \leq 0. \end{cases}$$

- 11. 设 X_1, X_2, X_3 为相互独立的随机变量,且都服从(0, 1)上的均匀分布,求三者中最大者大于其他两者之和的概率.
- 解:设 A_i 分别表示 X_i 大于其他两者之和,i=1,2,3,

显然 A_1, A_2, A_3 两两互不相容,且 $P(A_1) = P(A_2) = P(A_3)$,

 $\mathbb{P}(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) = 3P(A_3) = 3P(X_3 > X_1 + X_2)$

因 X_1, X_2, X_3 相互独立且都服从(0, 1)上的均匀分布,

则由几何概型知
$$P\{X_3 > X_1 + X_2\} = \frac{\frac{1}{3} \times 1 \times \frac{1}{2}}{1} = \frac{1}{6}$$

故
$$P(A_1 \cup A_2 \cup A_3) = 3P\{X_3 > X_1 + X_2\} = \frac{1}{2}$$
.

12. 设随机变量 X_1 与 X_2 相互独立同分布, 其密度函数为

$$p(x) = \begin{cases} 2x, & 0 < x < 1; \\ 0, & 其他. \end{cases}$$

试求 $Z = \max \{X_1, X_2\} - \min \{X_1, X_2\}$ 的分布.

解:分布函数法,

二维随机变量 (X_1, X_2) 的联合密度函数为

$$p(x_1,x_2) = \begin{cases} 4x_1x_2, & 0 < x_1 < 1, 0 < x_2 < 1; \\ 0, & 其他. \end{cases}$$

因 $Z = \max \{X_1, X_2\} - \min \{X_1, X_2\} = |X_1 - X_2|$,

作曲线簇 $|x_1 - x_2| = z$, 得 z 的分段点为 0, 1,

当 z < 0 时, $F_Z(z) = 0$,

当 $0 \le z < 1$ 时,

$$F_{Z}(z) = 1 - 2 \int_{z}^{1} dx_{1} \int_{0}^{x_{1}-z} 4x_{1}x_{2}dx_{2} = 1 - 2 \int_{z}^{1} dx_{1} \cdot 2x_{1}x_{2}^{2} \Big|_{0}^{x_{1}-z} = 1 - 4 \int_{z}^{1} (x_{1}^{3} - 2zx_{1}^{2} + z^{2}x_{1})dx_{1}$$

$$= 1 - 4 \left(\frac{x_{1}^{4}}{4} - \frac{2zx_{1}^{3}}{3} + \frac{z^{2}x_{1}^{2}}{2} \right) \Big|_{z}^{1} = 1 - 4 \left(\frac{1}{4} - \frac{2z}{3} + \frac{z^{2}}{2} \right) + 4 \left(\frac{z^{4}}{4} - \frac{2z^{4}}{3} + \frac{z^{4}}{2} \right) = \frac{8z}{3} - 2z^{2} + \frac{z^{4}}{3},$$

当 $z \ge 1$ 时, $F_Z(z) = 1$,

因分布函数 $F_Z(z)$ 连续,有 $Z = \max \{X_1, X_2\} - \min \{X_1, X_2\}$ 为连续随机变量,

故 $Z = \max \{X_1, X_2\} - \min \{X_1, X_2\}$ 的密度函数为

$$p_Z(z) = F_Z'(z) = \begin{cases} \frac{8}{3} - 4z + \frac{4z^3}{3}, & 0 < z < 1; \\ 0, & 其他. \end{cases}$$

- 13. 设某一个设备装有 3 个同类的电器元件,元件工作相互独立,且工作时间都服从参数为λ的指数分布. 当 3 个元件都正常工作时,设备才正常工作.试求设备正常工作时间 *T* 的概率分布.
- 解:设 T_i 表示"第i个元件正常工作",有 T_i 服从指数分布 $Exp(\lambda)$,分布函数为

$$F_i(t) = \begin{cases} 1 - e^{-\lambda t}, & t > 0, \\ 0, & t \le 0. \end{cases} \quad i = 1, 2, 3,$$

则设备正常工作时间 $T = \min \{T_1, T_2, T_3\}$, 分布函数为

$$F(t) = P\{T = \min\{T_1, T_2, T_3\} \le t\} = 1 - P\{\min\{T_1, T_2, T_3\} > t\} = 1 - P\{T_1 > t\}P\{T_2 > t\}P\{T_3 > t\}$$
$$= 1 - [1 - F_1(t)][1 - F_2(t)][1 - F_3(t)]$$

当 $t \le 0$ 时, F(t) = 0,

 $\pm t > 0$ $\exists t > 0$ $\exists t > 0$ $\exists t = 1 - (e^{-\lambda t})^3 = 1 - e^{-3\lambda t}$,

故设备正常工作时间 T 服从参数为 3λ 的指数分布 $Exp(3\lambda)$, 密度函数为

$$p(t) = F'(t) = \begin{cases} 3\lambda e^{-3\lambda t}, & t > 0, \\ 0, & t \le 0. \end{cases}$$

- 14. 设二维随机变量(X, Y) 在矩形 $G = \{(x, y) | 0 \le x \le 2, 0 \le y \le 1\}$ 上服从均匀分布,试求边长分别为 X 和 Y 的矩形面积 Z 的密度函数.
- 解:二维随机变量(X,Y)的联合密度函数为

$$p(x, y) = \begin{cases} \frac{1}{2}, & 0 \le x \le 2, 0 \le y \le 1, \\ 0, & 其他. \end{cases}$$

方法一: 分布函数法

矩形面积 Z = XY, 作曲线族 xy = z, 得 z 的分段点为 0, 2,

当 $z \le 0$ 时, $F_Z(z) = 0$,

$$\stackrel{\text{def}}{=} 0 < z < 2 \text{ Pr}, \quad F_Z(z) = \int_0^z dx \int_0^1 \frac{1}{2} dy + \int_z^2 dx \int_0^z \frac{1}{2} dy = \int_0^z \frac{1}{2} dx + \int_z^2 \frac{z}{2x} dx$$

$$= \frac{z}{2} + \frac{z}{2} \ln x \Big|_z^2 = \frac{z}{2} + \frac{z}{2} (\ln 2 - \ln z) ,$$

当 $z \ge 2$ 时, $F_Z(z) = 1$,

因分布函数 $F_Z(z)$ 连续, 有 Z = XY 为连续随机变量,

故矩形面积 Z=XY 的密度函数为

$$p_Z(z) = F_Z'(z) = \begin{cases} \frac{1}{2} (\ln 2 - \ln z), & 0 < z < 2, \\ 0, & \text{ \sharp '\sigma'}. \end{cases}$$

方法二:增补变量法

矩形面积 Z = XY, 函数 z = xy 对任意固定的 $y \neq 0$ 关于 x 严格单调增加, 增补变量 v = y,

可得
$$\begin{cases} z = xy, \\ v = y, \end{cases}$$
 有反函数 $\begin{cases} x = \frac{z}{v}, \\ y = v, \end{cases}$ 且 $J = \begin{vmatrix} x'_z & x'_v \\ y'_z & y'_v \end{vmatrix} = \begin{vmatrix} \frac{1}{v} & -\frac{z}{v^2} \\ 0 & 1 \end{vmatrix} = \frac{1}{v},$

$$\mathbb{P} p_{Z}(z) = \int_{-\infty}^{+\infty} p\left(\frac{z}{v}, v\right) \cdot \left|\frac{1}{v}\right| dv,$$

作曲线族 xy = z, 得 z 的分段点为 0, 2,

当 $z \le 0$ 或 $z \ge 2$ 时, $p_Z(z) = 0$,

$$\stackrel{\text{def}}{=} 0 < z < 2 \text{ B}, \quad p_Z(z) = \int_{\frac{z}{2}}^1 \frac{1}{2\nu} dy = \frac{1}{2} \ln \nu \Big|_{\frac{z}{2}}^1 = 0 - \frac{1}{2} \ln \frac{z}{2} = \frac{1}{2} (\ln 2 - \ln z),$$

故矩形面积 Z=XY 的密度函数为

$$p_{Z}(z) = \begin{cases} \frac{1}{2} (\ln 2 - \ln z), & 0 < z < 2, \\ 0, & 其它. \end{cases}$$

15. 设二维随机变量(X, Y) 服从圆心在原点的单位圆内的均匀分布, 求极坐标

$$R = \sqrt{X^2 + Y^2}$$
, $\theta = \arctan(Y/X)$,

的联合密度函数

注: 此题有误,对于极坐标,不是 θ = arctan(Y/X),应改为 $\tan \theta$ = Y/X, $0 \le \theta \le 2\pi$

解: 二维随机变量(X, Y) 的联合密度函数为

$$p_{XY}(x, y) = \begin{cases} \frac{1}{\pi}, & 0 \le x^2 + y^2 \le 1; \\ 0, & 其他. \end{cases}$$

因
$$\begin{cases} r = \sqrt{x^2 + y^2}; \\ \tan \theta = \frac{y}{x}. \end{cases}$$
 有反函数
$$\begin{cases} x = r\cos\theta; \\ y = r\sin\theta. \end{cases}$$
 且
$$J = \begin{vmatrix} x'_r & x'_\theta \\ y'_r & y'_\theta \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r,$$

且当 $0 \le x^2 + y^2 \le 1$ 时,有 $0 \le r \le 1$, $0 \le \theta < 2\pi$,

故 (R, θ) 的联合密度函数为

$$p_{R\theta}(r,\theta) = p_{XY}(r\cos\theta, r\sin\theta) \cdot |r| = \begin{cases} \frac{r}{\pi}, & 0 \le r \le 1, 0 \le \theta < 2\pi; \\ 0, & 其他. \end{cases}$$

16. 设随机变量 X 与 Y 独立同分布, 其密度函数为

$$p(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

- (1) 求 U = X + Y 与 V = X/(X + Y) 的联合密度函数 $p_{UV}(u, v)$;
- (2) 以上的U与V独立吗?

解: 二维随机变量(X, Y) 的联合密度函数为

$$p_{XY}(x, y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0, \\ 0, & 其他. \end{cases}$$

(1) 因
$$\begin{cases} u = x + y, \\ v = \frac{x}{x + y}, \end{cases}$$
 有反函数
$$\begin{cases} x = uv, \\ y = u(1 - v), \end{cases}$$
 且 $J = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix} = \begin{vmatrix} v & u \\ 1 - v & -u \end{vmatrix} = -u,$

且当 x > 0, y > 0 时,有 uv > 0, u(1-v) > 0,即 u > 0, 0 < v < 1,

故 U = X + Y与 V = X/(X + Y) 的联合密度函数为

$$p_{UV}(u,v) = p_{XY}(uv,u(1-v)) \cdot |(-u)| = \begin{cases} u e^{-u}, & u > 0, 0 < v < 1, \\ 0, & \text{其他.} \end{cases}$$

(2) 当 $u \le 0$ 时, $p_U(u) = 0$,

$$\stackrel{\text{def}}{=} u > 0 \text{ ft}, \quad p_U(u) = \int_{-\infty}^{+\infty} p_{UV}(u, v) dv = \int_0^1 u e^{-u} dv = u e^{-u},$$

$$\mathbb{J} p_{U}(u) = \begin{cases} u e^{-u}, & u > 0, \\ 0, & u \leq 0. \end{cases}$$

当 $v \le 0$ 或 $v \ge 1$ 时, $p_V(v) = 0$,

当
$$0 < v < 1$$
 时, $p_V(v) = \int_{-\infty}^{+\infty} p_{UV}(u, v) du = \int_0^{+\infty} u e^{-u} du = \Gamma(2) = 1$,

则
$$p_V(v) = \begin{cases} 1, & 0 < v < 1, \\ 0, & 其他. \end{cases}$$

因
$$p_{UV}(u, v) = p_U(u)p_V(v) = \begin{cases} u e^{-u}, & u > 0, 0 < v < 1, \\ 0, & 其他. \end{cases}$$

故U与V相互独立.

17. 设X,Y独立同分布,且都服从标准正态分布N(0,1),试证: $U=X^2+Y^2$ 与V=X/Y相互独立.

证: 二维随机变量(*X*, *Y*) 的联合密度函数为
$$p(x,y) = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}}, -\infty < x < +\infty, -\infty < y < +\infty$$
,

因
$$\begin{cases} u = x^2 + y^2; \\ v = \frac{x}{y}. \end{cases}$$
 有
$$\begin{cases} x = \pm \frac{v}{\sqrt{1 + v^2}} \sqrt{u}; \\ y = \pm \frac{1}{\sqrt{1 + v^2}} \sqrt{u}. \end{cases}$$

对于
$$\begin{cases} x = -\frac{v}{\sqrt{1+v^2}} \sqrt{u}; \\ y = -\frac{1}{\sqrt{1+v^2}} \sqrt{u}. \end{cases} \neq J = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix} = \begin{vmatrix} -\frac{v}{\sqrt{1+v^2}} \cdot \frac{1}{2\sqrt{u}} & -\frac{1}{(1+v^2)\sqrt{1+v^2}} \sqrt{u} \\ -\frac{1}{\sqrt{1+v^2}} \cdot \frac{1}{2\sqrt{u}} & \frac{v}{(1+v^2)\sqrt{1+v^2}} \sqrt{u} \end{vmatrix} = -\frac{1}{2(1+v^2)},$$

且 $-\infty < x < +\infty$, $-\infty < y < 0$ 与 $-\infty < x < +\infty$, $0 < y < +\infty$ 时,都有 $0 < u < +\infty$, $-\infty < v < +\infty$, 故由对称性知 $U = X^2 + Y^2$ 与 V = X/Y的联合密度函数为

$$p_{UV}(u,v) = p_{XY}\left(\frac{v}{\sqrt{1+v^2}}\sqrt{u}, \frac{1}{\sqrt{1+v^2}}\sqrt{u}\right) \cdot \left| -\frac{1}{2(1+v^2)} \right|$$

$$+ p_{XY}\left(-\frac{v}{\sqrt{1+v^2}}\sqrt{u}, -\frac{1}{\sqrt{1+v^2}}\sqrt{u}\right) \cdot \left| -\frac{1}{2(1+v^2)} \right|$$

$$= \begin{cases} \frac{1}{2\pi(1+v^2)} e^{-\frac{u}{2}}, & 0 < u < +\infty, -\infty < v < +\infty; \\ 0, & \sharp \text{ the.} \end{cases}$$

当 $u \le 0$ 时, $p_U(u) = 0$,

当
$$u > 0$$
 时, $p_U(u) = \int_{-\infty}^{+\infty} p_{UV}(u, v) dv = \int_{-\infty}^{+\infty} \frac{1}{2\pi(1+v^2)} e^{-\frac{u}{2}} dv = \frac{1}{2\pi} e^{-\frac{u}{2}} \cdot \arctan v \Big|_{-\infty}^{+\infty} = \frac{1}{2} e^{-\frac{u}{2}}$

$$\text{If } p_U(u) = \begin{cases} \frac{1}{2} e^{-\frac{u}{2}}, & u > 0; \\ 0, & u \le 0. \end{cases}$$

$$\mathbb{E} p_{V}(v) = \int_{-\infty}^{+\infty} p_{UV}(u, v) du = \int_{0}^{+\infty} \frac{1}{2\pi(1+v^{2})} e^{-\frac{u^{2}}{2}} du = -\frac{1}{\pi(1+v^{2})} e^{-\frac{u^{2}}{2}} \Big|_{0}^{+\infty} = \frac{1}{\pi(1+v^{2})}, \quad -\infty < x < +\infty,$$

因
$$p_{UV}(u,v) = p_U(u)p_V(v) = \begin{cases} \frac{1}{2\pi(1+v^2)}e^{-\frac{u}{2}}, & 0 < u < +\infty, -\infty < v < +\infty; \\ 0, & 其他. \end{cases}$$

故U与V相互独立.

- 18. 设随机变量 X 与 Y 相互独立,且 $X \sim Ga(\alpha_1, \lambda)$, $Y \sim Ga(\alpha_2, \lambda)$. 试证: U = X + Y 与 V = X/(X + Y) 相互独立,且 $V \sim Be(\alpha_1, \alpha_2)$.
- 证: 二维随机变量(X, Y) 的联合密度函数为

$$p_{XY}(x,y) = \begin{cases} \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} x^{\alpha_1 - 1} y^{\alpha_2 - 1} e^{-\lambda(x+y)}, & x > 0, y > 0; \\ 0, & \text{#.de.} \end{cases}$$

因
$$\begin{cases} u = x + y; \\ v = \frac{x}{x + y}. \end{cases}$$
 有反函数
$$\begin{cases} x = uv; \\ y = u(1 - v). \end{cases}$$
 且 $J = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix} = \begin{vmatrix} v & u \\ 1 - v & -u \end{vmatrix} = -u$,

且当 x > 0, y > 0 时,有 uv > 0, u(1-v) > 0,即 u > 0, 0 < v < 1,故 U = X + Y = V = X/(X + Y) 的联合密度函数为

$$p_{UV}(u, v) = p_{XY}(uv, u(1-v)) \cdot |(-u)|$$

$$=\begin{cases} \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} (uv)^{\alpha_1-1} [u(1-v)]^{\alpha_2-1} e^{-\lambda u} \cdot |-u|, & u>0, 0< v<1; \\ 0, & \sharp \text{ th.} \end{cases}$$

$$= \begin{cases} \frac{\lambda^{\alpha_1+\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} u^{\alpha_1+\alpha_2-1} e^{-\lambda u} v^{\alpha_1-1} (1-v)^{\alpha_2-1}, & u>0, \, 0< v<1; \\ 0, & \not\equiv \text{.} \end{cases}$$

当 $u \le 0$ 时, $p_U(u) = 0$,

$$\begin{split} \stackrel{\text{def}}{=} u > 0 & \text{ Iff }, \quad p_U(u) = \int_{-\infty}^{+\infty} p_{UV}(u, v) dv = \int_0^1 \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1) \Gamma(\alpha_2)} u^{\alpha_1 + \alpha_2 - 1} \, \mathrm{e}^{-\lambda u} \cdot v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1} dv \\ &= \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1) \Gamma(\alpha_2)} u^{\alpha_1 + \alpha_2 - 1} \, \mathrm{e}^{-\lambda u} \int_0^1 v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1} dv \\ &= \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1) \Gamma(\alpha_2)} u^{\alpha_1 + \alpha_2 - 1} \, \mathrm{e}^{-\lambda u} \cdot \frac{\Gamma(\alpha_1) \Gamma(\alpha_2)}{\Gamma(\alpha_1 + \alpha_2)} = \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1 + \alpha_2)} u^{\alpha_1 + \alpha_2 - 1} \, \mathrm{e}^{-\lambda u} \; , \end{split}$$

$$\text{If } p_U(u) = \begin{cases} \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1 + \alpha_2)} u^{\alpha_1 + \alpha_2 - 1} e^{-\lambda u}, & u > 0; \\ 0, & u \leq 0. \end{cases}$$

当 $v \le 0$ 或 $v \ge 1$ 时, $p_V(v) = 0$,

$$\begin{split} \stackrel{\cong}{=} 0 < v < 1 \; & \; \text{ ft}, \quad p_V(v) = \int_{-\infty}^{+\infty} p_{UV}(u,v) du = \int_0^{+\infty} \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1) \Gamma(\alpha_2)} u^{\alpha_1 + \alpha_2 - 1} \, \mathrm{e}^{-\lambda u} \cdot v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1} du \\ & = \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1) \Gamma(\alpha_2)} v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1} \cdot \int_0^{+\infty} u^{\alpha_1 + \alpha_2 - 1} \, \mathrm{e}^{-\lambda u} \, du \\ & = \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1) \Gamma(\alpha_2)} v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1} \cdot \frac{\Gamma(\alpha_1 + \alpha_2)}{\lambda^{\alpha_1 + \alpha_2}} = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1) \Gamma(\alpha_2)} v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1} \,, \end{split}$$

则
$$p_V(v) = \begin{cases} \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \cdot v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1}, & 0 < v < 1; \\ 0, & 其他. \end{cases}$$

故 $V \sim Be(\alpha_1, \alpha_2)$.

因
$$p_{UV}(u, v) = p_U(u)p_V(v) = \begin{cases} \frac{\lambda^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} u^{\alpha_1 + \alpha_2 - 1} e^{-\lambda u} v^{\alpha_1 - 1} (1 - v)^{\alpha_2 - 1}, & u > 0, 0 < v < 1; \\ 0, & 其他. \end{cases}$$

故U与V相互独立.

19. 设随机变量 U_1 与 U_2 相互独立,且都服从(0,1)上的均匀分布,试证明:

(1)
$$Z_1 = -2 \ln U_1 \sim Exp(1/2)$$
, $Z_2 = 2\pi U_2 \sim U(0, 2\pi)$;

(2)
$$X = \sqrt{Z_1} \cos Z_2$$
 和 $Y = \sqrt{Z_1} \sin Z_2$ 是相互独立的标准正态随机变量.

证: (1) 因
$$z_1 = -2 \ln u_1$$
 严格单调减少,反函数为 $u_1 = h(z_1) = e^{-\frac{z_1}{2}}$, $h'(z_1) = -\frac{1}{2}e^{-\frac{z_1}{2}}$,

当
$$0 < u_1 < 1$$
 时,有 $0 < z_1 < +\infty$,可得 $p_{z_1}(z_1) = 1 \cdot \left| -\frac{1}{2} e^{\frac{-z_1}{2}} \right| = \frac{1}{2} e^{\frac{-z_1}{2}}$, $0 < z_1 < +\infty$,

则 $Z_1 = -2 \ln U_1$ 的密度函数为

$$p_{Z_1}(z_1) = \begin{cases} \frac{1}{2} e^{-\frac{z_1}{2}}, & z_1 > 0; \\ 0, & z_1 \le 0. \end{cases}$$

故 $Z_1 = -2 \ln U_1 \sim Exp(1/2)$;

因
$$z_2 = 2\pi u_2$$
 严格单调增加,反函数为 $u_2 = h(z_2) = \frac{z_2}{2\pi}$, $h'(z_2) = \frac{1}{2\pi}$,

当
$$0 < u_2 < 1$$
 时,有 $0 < z_2 < 2\pi$,可得 $p_{Z_2}(z_2) = 1 \cdot \left| \frac{1}{2\pi} \right| = \frac{1}{2\pi}$, $0 < z_2 < 2\pi$,

则 $Z_2 = 2\pi U_2$ 的密度函数为

$$p_{Z_2}(z_2) = \begin{cases} \frac{1}{2\pi}, & 0 < z_2 < 2\pi; \\ 0, & 其他. \end{cases}$$

故 $Z_2 = 2\pi U_2 \sim U(0, 2\pi)$;

(2) 因 U_1 与 U_2 相互独立,有 $Z_1 = -2 \ln U_1$ 与 $Z_2 = 2\pi U_2$ 相互独立,

则二维随机变量(Z1, Z2) 的联合密度函数为

$$p_{Z_1Z_2}(z_1,z_2) = p_{Z_1}(z_1)p_{Z_2}(z_2) = \begin{cases} \frac{1}{4\pi}e^{-\frac{z_1}{2}}, & z_1 > 0, 0 < z_2 < 2\pi; \\ 0, & \sharp \text{ th.} \end{cases}$$

因
$$\begin{cases} x = \sqrt{z_1} \cos z_2; \\ y = \sqrt{z_1} \sin z_2. \end{cases}$$
 有反函数
$$\begin{cases} z_1 = x^2 + y^2; \\ \tan z_2 = \frac{y}{x}, 0 < z_2 < 2\pi. \end{cases}$$
 且
$$J = \begin{vmatrix} \frac{\partial z_1}{\partial x} & \frac{\partial z_1}{\partial y} \\ \frac{\partial z_2}{\partial x} & \frac{\partial z_2}{\partial y} \end{vmatrix} = \begin{vmatrix} 2x & 2y \\ -y & x^2 + y^2 \end{vmatrix} = 2,$$

且当 $z_1 > 0$, $0 < z_2 < 2\pi$ 时,有 $-\infty < x < +\infty$, $-\infty < y < +\infty$,

则 $X = \sqrt{Z_1} \cos Z_2$ 与 $Y = \sqrt{Z_1} \sin Z_2$ 的联合密度函数为

$$p_{XY}(x, y) = p_{Z_1Z_2}(x^2 + y^2, \arctan \frac{y}{x}) \cdot |2| = \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}}, -\infty < x < +\infty, -\infty < y < +\infty$$

即(X, Y)服从二维正态分布 N(0, 0, 1, 1, 0),相关系数 ρ = 0,

故 $X = \sqrt{Z_1} \cos Z_2$ 和 $Y = \sqrt{Z_1} \sin Z_2$ 是相互独立的标准正态随机变量.

20. 设随机变量 X_1, X_2, \dots, X_n 相互独立,且 $X_i \sim Exp(\lambda_i)$,试证:

$$P\{X_i = \min\{X_1, X_2, \dots, X_n\}\} = \frac{\lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_n}.$$

证: 因 $X_i \sim Exp(\lambda_i)$, 密度函数和分布函数分别为

$$p_{j}(x) = \begin{cases} \lambda_{j} e^{-\lambda_{j} x}, & x > 0, \\ 0, & x \le 0. \end{cases} \quad F_{j}(x) = \begin{cases} 1 - e^{-\lambda_{j} x}, & x > 0, \\ 0, & x \le 0. \end{cases} \quad j = 1, 2, \dots, n,$$

设 $Y_i = \min\{X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n\}$,

则Yi的分布函数为

$$F_{Yi}(y) = P\{Y_i = \min\{X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n\} \le y\}$$

$$= 1 - P\{\min\{X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n\} > y\}$$

$$= 1 - P\{X_1 > y\} \cdots P\{X_{i-1} > y\} P\{X_{i+1} > y\} \cdots P\{X_n > y\},$$

当 $y \le 0$ 时, $F_{y}(y) = 0$,

因分布函数 $F_{Y_i}(y)$ 连续,有 $Y_i = \min\{X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n\}$ 为连续随机变量,

则Yi的密度函数为

$$p_{Y_i}(y) = F'_{Y_i}(y) = \begin{cases} (\lambda_1 + \dots + \lambda_{i-1} + \lambda_{i+1} + \dots + \lambda_n) e^{-(\lambda_1 + \dots + \lambda_{i-1} + \lambda_{i+1} + \dots + \lambda_n)y}, & y > 0; \\ 0, & y \le 0. \end{cases}$$

故
$$P\{X_i = \min\{X_1, X_2, \dots, X_n\}\} = P\{X_i \le Y_i\}$$

$$= \int_0^{+\infty} dx \int_x^{+\infty} \lambda_i e^{-\lambda_i x} \cdot (\lambda_1 + \dots + \lambda_{i-1} + \lambda_{i+1} + \dots + \lambda_n) e^{-(\lambda_1 + \dots + \lambda_{i-1} + \lambda_{i+1} + \dots + \lambda_n)y} dy$$

$$= \int_0^{+\infty} dx \cdot \lambda_i e^{-\lambda_i x} \cdot \left[-e^{-(\lambda_1 + \dots + \lambda_{i-1} + \lambda_{i+1} + \dots + \lambda_n)y} \right]_x^{+\infty} = \int_0^{+\infty} \lambda_i e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_n)x} dx$$

$$= -\frac{\lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_n} e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_n)x} \Big|_0^{+\infty} = \frac{\lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_n}.$$

21. 设连续随机变量 X_1, X_2, \dots, X_n 独立同分布, 试证:

$$P\{X_n > \max\{X_1, X_2, \dots, X_{n-1}\}\} = \frac{1}{n}$$
.

证: 设 X_i 的密度函数为 p(x),分布函数为 F(x),又设 $Y = \max\{X_1, X_2, \dots, X_{n-1}\}$,则 Y 的分布函数为

$$F_{Y}(y) = P\{Y = \max\{X_{1}, X_{2}, \dots, X_{n-1}\} \leq y\} = P\{X_{1} \leq y\} P\{X_{2} \leq y\} \dots P\{X_{n-1} \leq y\} = [F(y)]^{n-1},$$
 可得 $p_{Y}(y) = F_{Y}'(y) = (n-1)[F(y)]^{n-2} \cdot p(y),$

故
$$P\{X_n > \max\{X_1, X_2, \dots, X_{n-1}\}\} = P\{X_n > Y\}$$

$$= \int_{-\infty}^{+\infty} dx \int_{-\infty}^{x} p(x) p_{Y}(y) dy = \int_{-\infty}^{+\infty} dx \cdot p(x) F_{Y}(y) \Big|_{-\infty}^{x} = \int_{-\infty}^{+\infty} p(x) F_{Y}(x) dx$$
$$= \int_{-\infty}^{+\infty} p(x) [F(x)]^{n-1} dx = \int_{-\infty}^{+\infty} [F(x)]^{n-1} dF(x) = \frac{1}{n} [F(x)]^{n} \Big|_{-\infty}^{+\infty} = \frac{1}{n}.$$

1. 掷一颗均匀的骰子 2 次, 其最小点数记为 X, 求 E(X).

解: 因 X 的全部可能取值为 1, 2, 3, 4, 5, 6,

2. 求掷 n 颗骰子出现点数之和的数学期望与方差.

解:设 X_i 表示"第i颗骰子出现的点数",X表示"n颗骰子出现点数之和",有 $X = \sum_{i=1}^n X_i$,

且 X_i 的分布列为

则
$$E(X_i) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = \frac{21}{6} = \frac{7}{2}$$

可得
$$\operatorname{Var}(X_i) = E(X_i^2) - [E(X_i)]^2 = \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12}$$
,

故
$$E(X) = \sum_{i=1}^{n} E(X_i) = \frac{7}{2}n$$
, $Var(X) = \sum_{i=1}^{n} Var(X_i) = \frac{35}{12}n$.

3. 从数字 $0, 1, \dots, n$ 中任取两个不同的数字,求这两个数字之差的绝对值的数学期望.

解:设X表示"所取的两个数字之差的绝对值",有X的全部可能取值为 $1,2,\cdots,n$

$$\mathbb{H}.P\{X=k\} = \frac{n+1-k}{\binom{n+1}{2}} = \frac{2(n+1-k)}{n(n+1)}, \quad k=1,2,\dots,n,$$

故
$$E(X) = \sum_{k=1}^{n} kP\{X = k\} = \sum_{k=1}^{n} \frac{2k(n+1-k)}{n(n+1)} = \frac{2}{n(n+1)} \sum_{k=1}^{n} [(n+1)k - k^2]$$

$$=\frac{2}{n(n+1)}\left[(n+1)\cdot\frac{1}{2}n(n+1)-\frac{1}{6}n(n+1)(2n+1)\right]=(n+1)-\frac{1}{3}(2n+1)=\frac{n+2}{3}.$$

4. 设在区间 (0,1) 上随机地取n 个点,求相距最远的两点之间的距离的数学期望.

解:设 X_i 表示"第i个点",有 X_i 都服从均匀分布U(0,1),密度函数和分布函数分别为

$$p(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & \not\equiv \text{th.} \end{cases} \qquad F(x) = \begin{cases} 0, & x < 0, \\ x, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

 $\bigvee \bigvee X_{(1)} = \min \{X_1, X_2, \dots, X_n\}, X_{(n)} = \max \{X_1, X_2, \dots, X_n\},$

则相距最远的两点之间的距离为 $X = X_{(n)} - X_{(1)}$,

因 X(1) 的分布函数为

$$F_{1}(x) = P\{X_{(1)} = \min\{X_{1}, X_{2}, \dots, X_{n}\} \le x\} = 1 - P\{\min\{X_{1}, X_{2}, \dots, X_{n}\} > x\}$$

$$= 1 - P\{X_{1} > x\} P\{X_{2} > x\} \cdots P\{X_{n} > x\} = 1 - [1 - F(x)]^{n}$$

$$= \begin{cases} 0, & x < 0, \\ 1 - (1 - x)^{n}, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

可得
$$p_1(x) = F_1'(x) = \begin{cases} n(1-x)^{n-1}, & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

又因 X(n) 的分布函数为

$$F_n(x) = P\{X_{(n)} = \max\{X_1, X_2, \dots, X_n\} \le x\} = P\{X_1 \le x\} P\{X_2 \le x\} \dots P\{X_n \le x\} = [F(x)]^n$$

$$= \begin{cases} 0, & x < 0, \\ x^n, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

可得
$$p_n(x) = F'_n(x) = \begin{cases} nx^{n-1}, & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

$$\text{If } E(X_{(n)}) = \int_0^1 x \cdot nx^{n-1} dx = \int_0^1 nx^n dx = n \cdot \frac{x^{n+1}}{n+1} \Big|_0^1 = \frac{n}{n+1},$$

故相距最远的两点之间的距离的数学期望 $E(X) = E(X_{(n)}) - E(X_{(1)}) = \frac{n}{n+1} - \frac{1}{n+1} = \frac{n-1}{n+1}$.

- 5. 盒中有n个不同的球,其上分别写有数字 $1, 2, \dots, n$. 每次随机抽出一个,记下其号码,放回去再抽. 直到抽到有两个不同数字为止. 求平均抽球次数.
- 解:设X表示"抽球次数",有X的全部可能取值为 $2,3,\cdots$,

$$\mathbb{H} P\{X=k\} = \left(\frac{1}{n}\right)^{k-2} \frac{n-1}{n}, \quad k=2,3,\cdots,$$

$$\text{If } E(X) = \sum_{k=2}^{+\infty} k P\{X = k\} = \sum_{k=2}^{+\infty} k \cdot \left(\frac{1}{n}\right)^{k-2} \cdot \frac{n-1}{n} = (n-1) \sum_{k=2}^{+\infty} k \cdot \left(\frac{1}{n}\right)^{k-1},$$

$$\boxtimes |x| < 1 \text{ ft}, \quad \sum_{k=2}^{+\infty} kx^{k-1} = \left(\sum_{k=2}^{+\infty} x^k\right)' = \left(\frac{x^2}{1-x}\right)' = \frac{2x(1-x)-x^2\cdot(-1)}{\left(1-x\right)^2} = \frac{2x-x^2}{\left(1-x\right)^2},$$

故平均抽球次数
$$E(X) = (n-1) \cdot \frac{\frac{2}{n} - \frac{1}{n^2}}{\left(1 - \frac{1}{n}\right)^2} = \frac{2n-1}{n-1}$$
.

6. 设随机变量(X, Y) 的联合分布列为

$$\begin{array}{c|cccc}
X & 0 & 1 \\
\hline
0 & 0.1 & 0.15 \\
1 & 0.25 & 0.2 \\
2 & 0.15 & 0.15
\end{array}$$

试求 $Z = \sin \left[\frac{\pi}{2} (X + Y) \right]$ 的数学期望.

- $\mathbb{H}\colon E(Z) = 0.1 \times \sin 0 + 0.15 \times \sin \frac{\pi}{2} + 0.25 \times \sin \frac{\pi}{2} + 0.2 \times \sin \pi + 0.15 \times \sin \pi + 0.15 \times \sin \frac{3\pi}{2} = 0.25.$
- 7. 随机变量(X, Y) 服从以点 (0, 1),(1, 0),(1, 1) 为顶点的三角形区域上的均匀分布,试求 E(X + Y) 和 Var(X + Y).
- 解: 因(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} 2, & (x, y) \in D, \\ 0, & (x, y) \notin D. \end{cases}$$

其中区域 D 为以点 (0,1), (1,0), (1,1) 为顶点的三角形区域,

故
$$E(X+Y) = \int_0^1 dx \int_{1-x}^1 (x+y) \cdot 2dy = \int_0^1 dx \cdot (x+y)^2 \Big|_{1-x}^1 = \int_0^1 (x^2+2x)dx = \left(\frac{1}{3}x^3+x^2\right)\Big|_{1-x}^1 = \frac{4}{3}$$
;

$$\mathbb{E}\left[\left(X+Y\right)^{2}\right] = \int_{0}^{1} dx \int_{1-x}^{1} (x+y)^{2} \cdot 2dy = \int_{0}^{1} dx \cdot \frac{2}{3} (x+y)^{3} \bigg|_{1-x}^{1} = \int_{0}^{1} \frac{2}{3} (x^{3} + 3x^{2} + 3x) dx$$

$$= \frac{2}{3} \left(\frac{1}{4} x^4 + x^3 + \frac{3}{2} x^2 \right) \Big|_0^1 = \frac{11}{6},$$

故
$$Var(X+Y) = \frac{11}{6} - \left(\frac{4}{3}\right)^2 = \frac{1}{18}$$
.

8. 设 X, Y 均为(0, 1)上独立的均匀随机变量, 试证:

$$E(|X - Y|^{\alpha}) = \frac{2}{(\alpha + 1)(\alpha + 2)}, \quad \alpha > 0.$$

证: 因(X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 1; \\ 0, & 其他. \end{cases}$$

9. 设 X 与 Y 是独立同分布的随机变量,且

$$P\{X=i\} = \frac{1}{m}, \quad i=1,2,\dots,m$$
.

试证:

$$E(X-Y) = \frac{(m-1)(m+1)}{3m}$$

注: 此题有误, E(X-Y) 必等于 0, 应改为 E(|X-Y|)

$$\widetilde{\text{IIE}}: E(|X-Y|) = \sum_{i=1}^{m} \sum_{j=1}^{m} |i-j| \cdot \frac{1}{m^2} = \frac{2}{m^2} \sum_{i=1}^{m} \sum_{j=1}^{i-1} (i-j) = \frac{2}{m^2} \sum_{i=1}^{m} \frac{1}{2} i(i-1) = \frac{1}{m^2} \sum_{i=1}^{m} (i^2 - i)$$

$$= \frac{1}{m^2} \left[\frac{1}{6} m(m+1)(2m+1) - \frac{1}{2} m(m+1) \right] = \frac{1}{m^2} \cdot \frac{1}{6} m(m+1) [(2m+1) - 3] = \frac{(m-1)(m+1)}{3m}.$$

10. 设随机变量 X 与 Y 独立同分布,且 $E(X) = \mu$, $Var(X) = \sigma^2$,试求 $E(X - Y)^2$.

##:
$$E(X-Y)^2 = Var(X-Y) + [E(X-Y)]^2 = Var(X) + Var(Y) + (\mu - \mu)^2 = 2\sigma^2$$
.

11. 设随机变量(X, Y) 的联合密度函数为

$$p(x,y) = \begin{cases} x(1+3y^2)/4, & 0 < x < 2, 0 < y < 1, \\ 0, & \text{ 其他.} \end{cases}$$

试求 E(Y/X).

$$\text{ \mathbb{H}^2:} \quad E\left(\frac{Y}{X}\right) = \int_0^2 dx \int_0^1 \frac{y}{x} \cdot \frac{x(1+3y^2)}{4} \, dy = \int_0^2 dx \int_0^1 \frac{1}{4} (y+3y^3) \, dy = \int_0^2 dx \cdot \frac{1}{4} \left(\frac{1}{2} y^2 + \frac{3}{4} y^4\right) \Big|_0^1 = \int_0^2 \frac{5}{16} \, dx = \frac{5}{8} \, .$$

12. 设 X_1, X_2, \dots, X_5 是独立同分布的随机变量,其共同密度函数为

$$p(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

试求 $Y = \max\{X_1, X_2, \dots, X_5\}$ 的密度函数、数学期望和方差.

解: 因 X_1, X_2, \dots, X_5 的共同分布函数为

$$F(x) = \int_{-\infty}^{x} p(u)du = \begin{cases} 0, & x < 0, \\ x^{2}, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

当 $Y = \max\{X_1, X_2, \dots, X_5\}$ 的分布函数为

$$F_{Y}(y) = P\{Y = \max\{X_{1}, X_{2}, \dots, X_{5}\} \le y\} = P\{X_{1} \le y\} P\{X_{2} \le y\} \dots P\{X_{5} \le y\} = [F(y)]^{5}$$

$$= \begin{cases} 0, & y < 0, \\ y^{10}, & 0 \le y < 1, \\ 1, & y \ge 1. \end{cases}$$

故Y的密度函数为

$$p_Y(y) = F'_Y(y) = \begin{cases} 10y^9, & 0 < y < 1, \\ 0, & 其他. \end{cases}$$

数学期望
$$E(Y) = \int_{-\infty}^{+\infty} y p_Y(y) dy = \int_0^1 y \cdot 10 y^9 dy = \frac{10}{11} y^{11} \Big|_0^1 = \frac{10}{11};$$

$$\mathbb{E} E(Y^2) = \int_{-\infty}^{+\infty} y^2 p_Y(y) dy = \int_0^1 y^2 \cdot 10 y^9 dy = \frac{10}{12} y^{12} \Big|_0^1 = \frac{10}{12} ,$$

故方差
$$Var(Y) = \frac{10}{12} - \left(\frac{10}{11}\right)^2 = \frac{10}{1452} = \frac{5}{726}$$
.

- 13. 系统由 n 个部件组成. 记 X_i 为第 i 个部件能持续工作的时间,如果 X_1, X_2, \dots, X_n 独立同分布,且 $X_i \sim Exp(\lambda)$,试在以下情况下求系统持续工作的平均时间:
 - (1) 如果有一个部件停止工作,系统就不工作了;
 - (2) 如果至少有一个部件在工作,系统就工作.
- 解: $X_i \sim Exp(\lambda)$, 可得 X_i 的密度函数和分布函数分别为

$$p(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0, \\ 0, & x \le 0. \end{cases} \quad F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

设 Y 表示"系统持续工作的时间",

(1) $Y = \min\{X_1, X_2, \dots, X_n\}$, 可得 Y 的分布函数为

$$F_{Y}(y) = P\{Y = \min\{X_{1}, X_{2}, \dots, X_{n}\} \leq y\} = 1 - P\{\min\{X_{1}, X_{2}, \dots, X_{n}\} > y\}$$

$$= 1 - P\{X_{1} > y\} P\{X_{2} > y\} \dots P\{X_{n} > y\} = 1 - [1 - F(y)]^{n}$$

$$= \begin{cases} 1 - e^{-n\lambda y}, & y > 0, \\ 0, & y \leq 0. \end{cases}$$

可得
$$p_Y(y) = F'_Y(y) = \begin{cases} n\lambda e^{-n\lambda y}, & y > 0, \\ 0, & y \le 0. \end{cases}$$
 即 $Y \sim Exp(n\lambda),$

故
$$E(Y) = \frac{1}{n\lambda}$$
;

(2) $Y = \max\{X_1, X_2, \dots, X_n\}$, 可得 Y 的分布函数为

$$F_{Y}(y) = P\{Y = \max\{X_{1}, X_{2}, \dots, X_{n}\} \leq y\} = P\{X_{1} \leq y\} P\{X_{2} \leq y\} \dots P\{X_{n} \leq y\} = [F(y)]^{n}$$

$$= \begin{cases} (1 - e^{-\lambda y})^{n}, & y > 0, \\ 0, & y \leq 0. \end{cases}$$

可得
$$p_Y(y) = F_Y'(y) = \begin{cases} n\lambda e^{-\lambda y} (1 - e^{-\lambda y})^{n-1}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

则
$$E(Y) = \int_0^{+\infty} y \cdot n\lambda e^{-\lambda y} (1 - e^{-\lambda y})^{n-1} dy$$
,

令
$$t = 1 - e^{-\lambda y}$$
,有 $y = -\frac{1}{\lambda} \ln(1-t)$, $dy = \frac{1}{\lambda(1-t)} dt$, 且 $y = 0$ 时, $t = 0$; $y \to +\infty$ 时, $t \to 1$,

- 14. 设X,Y独立同分布,都服从正态分布N(0,1),求 $E[\max\{X,Y\}]$.
- 解:方法一: 先求最小值的分布函数,再求其数学期望

因X,Y独立且密度函数和分布函数都分别是标准正态分布密度函数 $\rho(x)$ 和分布函数 $\Phi(x)$,

则 $Z = \max\{X, Y\}$ 的分布函数为 $F(z) = [\Phi(z)]^2$, 密度函数为 $p(z) = F'(z) = 2\Phi(z)\varphi(z)$,

故
$$E[\max\{X,Y\}] = \int_{-\infty}^{+\infty} z \cdot 2\Phi(z)\varphi(z)dz = \int_{-\infty}^{+\infty} z \cdot 2\Phi(z) \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz = \frac{2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \Phi(z) \cdot (-1) d e^{-\frac{z^2}{2}}$$

$$= -\frac{2}{\sqrt{2\pi}} \Phi(z) e^{-\frac{z^2}{2}} \Big|_{-\infty}^{+\infty} + \frac{2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{z^2}{2}} \varphi(z) dz = 0 + \frac{2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{z^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

$$= \frac{2}{2\pi} \int_{-\infty}^{+\infty} e^{-z^2} dz = \frac{1}{\pi} \cdot \sqrt{\pi} = \frac{1}{\sqrt{\pi}}.$$

方法二: 直接求最小值函数的期望

因 (X, Y) 的联合密度函数为

$$p(x, y) = \varphi(x)\varphi(y) = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}}, -\infty < x, y < +\infty,$$

故
$$E[\max\{X,Y\}] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \max\{x,y\} p(x,y) dx dy = \iint_{D_1} y \cdot \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} dx dy + \iint_{D_2} x \cdot \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} dx dy$$

$$= 2 \iint_{D_1} y \cdot \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} dx dy = \frac{1}{\pi} \int_{-\infty}^{+\infty} dx \int_{x}^{+\infty} y e^{-\frac{x^2 + y^2}{2}} dy = \frac{1}{\pi} \int_{-\infty}^{+\infty} dx \cdot (-1) e^{-\frac{x^2 + y^2}{2}} \Big|_{x}^{+\infty}$$

$$= \frac{1}{\pi} \int_{-\infty}^{+\infty} e^{-x^2} dx = \frac{1}{\pi} \cdot \sqrt{\pi} = \frac{1}{\sqrt{\pi}}.$$

- 15. 设随机变量 X_1, X_2, \dots, X_n 相互独立,且都服从 $(0, \theta)$ 上的均匀分布,记 $Y = \max\{X_1, X_2, \dots, X_n\}$, $Z = \min\{X_1, X_2, \dots, X_n\}$, 试求 E(Y) 和 E(Z).
- 解:因 X_1, X_2, \dots, X_n 相互独立且密度函数和分布函数分别是

$$p(x) = \begin{cases} \frac{1}{\theta}, & 0 < x < \theta, \\ 0, & \cancel{\exists} \text{ th.} \end{cases} \qquad F(x) = \begin{cases} 0, & x < 0, \\ \frac{x}{\theta}, & 0 \le x < \theta, \\ 1, & x \ge \theta. \end{cases} \qquad i = 1, 2, \dots, n,$$

则 $Y = \max\{X_1, X_2, \dots, X_n\}$ 和 $Z = \min\{X_1, X_2, \dots, X_n\}$ 的分布函数分别是

$$F_{Y}(y) = [F(y)]^{n} = \begin{cases} 0, & y < 0, \\ \frac{y^{n}}{\theta^{n}}, & 0 \le y < \theta, & F_{Z}(z) = 1 - [1 - F(z)]^{n} = \begin{cases} 0, & z < 0, \\ 1 - \frac{(\theta - z)^{n}}{\theta^{n}}, & 0 \le z < \theta, \\ 1, & x \ge \theta. \end{cases}$$

且密度函数分别是

$$p_{Y}(y) = F'_{Y}(y) = \begin{cases} \frac{ny^{n-1}}{\theta^{n}}, & 0 < y < \theta, \\ 0, & \text{其他.} \end{cases} \quad p_{Z}(z) = F'_{Z}(z) = \begin{cases} \frac{n(\theta - z)^{n-1}}{\theta^{n}}, & 0 < z < \theta, \\ 0, & \text{其他.} \end{cases}$$

$$= 0 + \frac{1}{\theta^{n}} \cdot \frac{-(\theta - z)^{n+1}}{n+1} \bigg|_{0}^{\theta} = \frac{1}{n+1} \theta.$$

16. 设随机变量 U 服从 (-2, 2) 上的均匀分布,定义 X 和 Y 如下:

试求 Var(X+Y).

解:方法一: 先求X+Y的分布

因X+Y的全部可能取值为-2,0,2,

$$\coprod P\{X+Y=-2\} = P\{U<-1, U<1\} = P\{U<-1\} = \frac{1}{4},$$

$$P{X + Y = 0} = P{U \ge -1, U < 1} = P{-1 \le U < 1} = \frac{2}{4} = \frac{1}{2}$$

$$P\{X + Y = 2\} = P\{U \ge -1, U \ge 1\} = P\{U \ge 1\} = \frac{1}{4}$$

$$\mathbb{M} E(X+Y) = (-2) \times \frac{1}{4} + 0 \times \frac{1}{2} + 2 \times \frac{1}{4} = 0 \\ \mathbb{H} E(X+Y)^2 = (-2)^2 \times \frac{1}{4} + 0^2 \times \frac{1}{2} + 2^2 \times \frac{1}{4} = 2,$$

故
$$Var(X+Y) = E(X+Y)^2 - [E(X+Y)]^2 = 2$$
.

方法二: 用方差的性质

因 X 和 Y 的全部可能取值都-1.1

$$P\{X=1, Y=-1\} = P\{-1 \le U < 1\} = \frac{2}{4} = \frac{1}{2}, \quad P\{X=1, Y=1\} = P\{U \ge 1\} = \frac{1}{4},$$

$$\mathbb{P}(X) = (-1) \times \frac{1}{4} + (-1) \times 0 + 1 \times \frac{1}{2} + 1 \times \frac{1}{4} = \frac{1}{2}, \quad E(Y) = (-1) \times \frac{1}{4} + 1 \times 0 + (-1) \times \frac{1}{2} + 1 \times \frac{1}{4} = -\frac{1}{2},$$

$$E(X^{2}) = (-1)^{2} \times \frac{1}{4} + (-1)^{2} \times 0 + 1^{2} \times \frac{1}{2} + 1^{2} \times \frac{1}{4} = 1$$

$$E(Y^2) = (-1)^2 \times \frac{1}{4} + 1^2 \times 0 + (-1)^2 \times \frac{1}{2} + 1^2 \times \frac{1}{4} = 1$$

$$E(XY) = 1 \times \frac{1}{4} + (-1) \times 0 + (-1) \times \frac{1}{2} + 1 \times \frac{1}{4} = 0$$

可得
$$\operatorname{Var}(X) = 1 - \left(\frac{1}{2}\right)^2 = \frac{3}{4}$$
, $\operatorname{Var}(X) = 1 - \left(-\frac{1}{2}\right)^2 = \frac{3}{4}$, $\operatorname{Cov}(X, Y) = 0 - \frac{1}{2} \times \left(-\frac{1}{2}\right) = \frac{1}{4}$,

故
$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X,Y) = \frac{3}{4} + \frac{3}{4} + 2 \times \frac{1}{4} = 2$$
.

- 17. 一商店经销某种商品,每周进货量 X 与顾客对该种商品的需求量 Y 是相互独立的随机变量,且都服从区间 (10,20) 上的均匀分布.商店每售出一单位商品可得利润 1000 元;若需求量超过了进货量,则可从其他商店调剂供应,这时每单位商品获利润为 500 元.试求此商店经销该种商品每周的平均利润.
- 解:二维随机变量 (X,Y) 服从二维均匀分布,联合密度函数为 $p(x,y) = \begin{cases} \frac{1}{100}, & 10 < x < 20, 10 < y < 20, 0, \\ 0, & 其他. \end{cases}$

设 Z 表示此商店经销该种商品每周所得利润,

当
$$X \le Y$$
 时, $Z = 1000X + 500(Y - X) = 500X + 500Y$; 当 $X > Y$ 时, $Z = 1000 Y$,

$$\exists Z = g(X,Y) = \begin{cases} 500X + 500Y, & X \le Y, \\ 1000Y, & X > Y, \end{cases}$$

$$\exists E(Z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y)p(x,y)dxdy$$

$$= \iint_{D_1} (500x + 500y) \frac{1}{100} dxdy + \iint_{D_2} 1000y \cdot \frac{1}{100} dxdy = \int_{10}^{20} dx \int_{x}^{20} (5x + 5y)dy + \int_{10}^{20} dx \int_{10}^{x} 10ydy$$

$$= \int_{10}^{20} dx \cdot (5xy + \frac{5}{2}y^2) \Big|_{x}^{20} + \int_{10}^{20} dx \cdot 5y^2 \Big|_{10}^{x} = \int_{10}^{20} (100x + 1000 - \frac{15}{2}x^2)dx + \int_{10}^{20} (5x^2 - 500)dx$$

$$= (50x^2 + 1000x - \frac{5}{2}x^3) \Big|_{10}^{20} + (\frac{5}{3}x^3 - 500x) \Big|_{10}^{20} = \frac{42500}{3}.$$

- 18. 设随机变量 X 与 Y 独立,都服从正态分布 $N(a, \sigma^2)$,试证 $E[\max\{X,Y\}] = a + \frac{\sigma}{\sqrt{\pi}}$.
- 证:方法一: 先求最小值的分布函数,再求其数学期望 因 X, Y 独立且密度函数和分布函数都分别是

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-a)^2}{2\sigma^2}}, \quad -\infty < x < +\infty, \quad F(x) = \int_{-\infty}^x p(u) du$$

则 $Z = \max\{X, Y\}$ 的分布函数为 $F_Z(z) = [F(z)]^2$, 密度函数为 $p_Z(z) = F_Z'(z) = 2F(z)p(z)$,

可得
$$E[\max\{X,Y\}] = a + E(Z-a) = a + \int_{-\infty}^{+\infty} (z-a) \cdot 2F(z)p(z)dz$$

$$= a + \int_{-\infty}^{+\infty} (z - a) \cdot 2F(z) \cdot \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(z - a)^2}{2\sigma^2}} dz = a + \frac{2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(z) \cdot (-\sigma) d e^{-\frac{(z - a)^2}{2\sigma^2}}$$

$$= a - \frac{2}{\sqrt{2\pi}}F(z) \cdot \sigma e^{-\frac{(z-a)^2}{2\sigma^2}} \Big|_{-\infty}^{+\infty} + \frac{2\sigma}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{(z-a)^2}{2\sigma^2}} p(z) dz$$

$$= a - 0 + \frac{2\sigma}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{(z-a)^2}{2\sigma^2}} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(z-a)^2}{2\sigma^2}} dz = a + \frac{1}{\pi} \int_{-\infty}^{+\infty} e^{-\frac{(z-a)^2}{\sigma^2}} dz$$

$$= a + \frac{1}{\pi} \int_{-\infty}^{+\infty} e^{-\left(\frac{z-a}{\sigma}\right)^2} \cdot \sigma \, d\left(\frac{z-a}{\sigma}\right) = a + \frac{1}{\pi} \cdot \sigma \sqrt{\pi} = a + \frac{\sigma}{\sqrt{\pi}}.$$

方法二: 直接求最小值函数的期望

因 (X, Y) 的联合密度函数为

$$p(x, y) = p(x)p(y) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x-a)^2 + (y-a)^2}{2\sigma^2}}, -\infty < x, y < +\infty,$$

故
$$E[\max\{X,Y\}] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \max\{x,y\} p(x,y) dx dy = a + \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \max\{x-a,y-a\} p(x,y) dx dy$$

$$= a + \iint_{D_1} (y - a) \cdot \frac{1}{2\pi\sigma^2} e^{-\frac{(x - a)^2 + (y - a)^2}{2\sigma^2}} dxdy + \iint_{D_2} (x - a) \cdot \frac{1}{2\pi\sigma^2} e^{-\frac{(x - a)^2 + (y - a)^2}{2\sigma^2}} dxdy$$

$$= a + 2 \iint_{D_{1}} (y - a) \cdot \frac{1}{2\pi\sigma^{2}} e^{-\frac{(x-a)^{2} + (y-a)^{2}}{2\sigma^{2}}} dx dy = a + \frac{1}{\pi\sigma^{2}} \int_{-\infty}^{+\infty} dx \int_{x}^{+\infty} (y - a) e^{-\frac{(x-a)^{2} + (y-a)^{2}}{2\sigma^{2}}} dy$$

$$= a + \frac{1}{\pi\sigma^{2}} \int_{-\infty}^{+\infty} dx \cdot (-\sigma^{2}) e^{-\frac{(x-a)^{2} + (y-a)^{2}}{2\sigma^{2}}} \Big|_{x}^{+\infty} = a + \frac{1}{\pi} \int_{-\infty}^{+\infty} e^{-\frac{(x-a)^{2}}{\sigma^{2}}} dx$$

$$= a + \frac{1}{\pi} \int_{-\infty}^{+\infty} e^{-\frac{(x-a)^{2}}{\sigma^{2}}} \cdot \sigma d\left(\frac{x-a}{\sigma}\right) = a + \frac{1}{\pi} \cdot \sigma \sqrt{\pi} = a + \frac{\sigma}{\sqrt{\pi}}.$$

方法三:根据第14题结论

因 $\frac{X-a}{\sigma}$ 与 $\frac{Y-a}{\sigma}$ 独立同分布,都服从正态分布 N(0,1),

则根据第 12 题结论知
$$E\left[\max\left\{\frac{X-a}{\sigma}, \frac{Y-a}{\sigma}\right\}\right] = \frac{1}{\sqrt{\pi}}$$
,

故
$$E[\max\{X,Y\}] = a + \sigma E \left[\max\left\{\frac{X-a}{\sigma}, \frac{Y-a}{\sigma}\right\}\right] = a + \frac{\sigma}{\sqrt{\pi}}$$
.

19. 设二维随机变量 (X, Y) 的联合分布列为

试求 X^2 与 Y^2 的协方差.

解: 因
$$E(X^2) = 0^2 \times (0.07 + 0.18 + 0.15) + 1^2 \times (0.08 + 0.32 + 0.20) = 0.6$$
,
 $E(Y^2) = (-1)^2 \times (0.07 + 0.08) + 0^2 \times (0.18 + 0.32) + 1^2 \times (0.15 + 0.20) = 0.5$,
 $E(X^2Y^2) = 0 \times 0.07 + 0 \times 0.18 + 0 \times 0.15 + 1 \times 0.08 + 0 \times 0.32 + 1 \times 0.20 = 0.28$,
故 $Cov(X, Y) = E(X^2Y^2) - E(X^2)E(Y^2) = 0.28 - 0.6 \times 0.5 = -0.02$.

- 20. 把一颗骰子独立地掷n次,求1点出现次数与6点出现次数的协方差及相关系数.
- 解:设 X 与 Y 分别表示"1 点出现次数"与"6 点出现次数",又设

$$X_i = \begin{cases} 1, & \text{第} i$$
次掷出1点, $0, & \text{$\text{i}$}$ 次没有掷出1点. $Y_i = \begin{cases} 1, & \text{i}$ 次掷出6点, $0, & \text{$\text{i}$}$ 次没有掷出6点.

则 X_1, X_2, \dots, X_n 相互独立, Y_1, Y_2, \dots, Y_n 也相互独立, 且当 $i \neq j$ 时, X_i 与 Y_j 相互独立, 因 (X_i, Y_i) 的联合分布列为

$$\begin{array}{c|cccc} Y_i & 0 & 1 \\ \hline X_i & 0 & \frac{4}{6} & \frac{1}{6} \\ 1 & \frac{1}{6} & 0 \\ \end{array}$$

$$\mathbb{P}[E(X_i) = 0 \times \frac{5}{6} + 1 \times \frac{1}{6} = \frac{1}{6}, \quad E(Y_i) = 0 \times \frac{5}{6} + 1 \times \frac{1}{6} = \frac{1}{6},$$

$$E(X_i^2) = 0^2 \times \frac{5}{6} + 1^2 \times \frac{1}{6} = \frac{1}{6}, \quad E(Y_i^2) = 0^2 \times \frac{5}{6} + 1^2 \times \frac{1}{6} = \frac{1}{6},$$

$$E(X_iY_i) = 0 \times \frac{4}{6} + 0 \times \frac{1}{6} + 0 \times \frac{1}{6} + 1 \times 0 = 0$$

可得
$$\operatorname{Var}(X_i) = E(X_i^2) - [E(X_i)]^2 = \frac{1}{6} - \left(\frac{1}{6}\right)^2 = \frac{5}{36}$$
, $\operatorname{Var}(Y_i) = E(Y_i^2) - [E(Y_i)]^2 = \frac{1}{6} - \left(\frac{1}{6}\right)^2 = \frac{5}{36}$,

$$Cov(X_i, Y_i) = E(X_i Y_i) - E(X_i)E(Y_i) = 0 - \frac{1}{6} \times \frac{1}{6} = -\frac{1}{36}$$

因
$$X = \sum_{i=1}^{n} X_i$$
 , $Y = \sum_{i=1}^{n} Y_i$, 且当 $i \neq j$ 时, X_i 与 Y_j 相互独立,

故
$$Cov(X, Y) = Cov(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} Y_i) = \sum_{i=1}^{n} Cov(X_i, Y_i) = -\frac{n}{36};$$

又因 X_1, X_2, \dots, X_n 相互独立, Y_1, Y_2, \dots, Y_n 也相互独立,

$$\text{In } Var(X) = Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) = \frac{5n}{36}, \quad Var(Y) = Var(\sum_{i=1}^{n} Y_i) = \sum_{i=1}^{n} Var(Y_i) = \frac{5n}{36},$$

故
$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} = \frac{-\frac{n}{36}}{\sqrt{\frac{5n}{36}}\sqrt{\frac{5n}{36}}} = -\frac{1}{5}$$
.

- 21. 掷一颗骰子两次,求其点数之和与点数之差的协方差.
- 解:设 X_1, X_2 分别表示第 1,2 颗骰子出现的点数,有 $E(X_1) = E(X_2)$, $Var(X_1) = Var(X_2)$,故 $Cov(X_1 + X_2, X_1 X_2) = Var(X_1) Var(X_2) = 0$.
- 22. 某箱装 100 件产品,其中一、二和三等品分别为 80、10 和 10 件. 现从中随机取一件,定义三个随机变量 X_1, X_2, X_3 如下

$$X_i = \begin{cases} 1, & \text{Zim} i \in \mathbb{R}, \\ 0, & \text{Zim}. \end{cases}$$
 $i = 1, 2, 3, \dots$

试求随机变量 X_1 和 X_2 的相关系数 $Corr(X_1, X_2)$.

解: 因
$$P\{X_1=0,X_2=0\}=P\{$$
抽到三等品 $\}=\frac{10}{100}=0.1$, $P\{X_1=0,X_2=1\}=P\{$ 抽到二等品 $\}=\frac{10}{100}=0.1$,
$$P\{X_1=1,X_2=0\}=P\{$$
抽到一等品 $\}=\frac{80}{100}=0.8$, $P\{X_1=1,X_2=1\}=P(\varnothing)=0$,

则 X_1 和 X_2 的联合分布为

$$\begin{array}{c|cccc} X_2 & 0 & 1 \\ \hline X_1 & 0 & 0.1 & 0.1 \\ 1 & 0.8 & 0 \\ \end{array}$$

$$\boxtimes E(X_1) = 0 \times (0.1 + 0.1) + 1 \times (0.8 + 0) = 0.8$$
, $E(X_2) = 0 \times (0.1 + 0.8) + 1 \times (0.1 + 0) = 0.1$,

$$E(X_1^2) = 0^2 \times (0.1 + 0.1) + 1^2 \times (0.8 + 0) = 0.8$$
, $E(X_2^2) = 0^2 \times (0.1 + 0.8) + 1^2 \times (0.1 + 0) = 0.1$,

$$E(X_1X_2) = 0 \times 0.1 + 0 \times 0.1 + 0 \times 0.8 + 1 \times 0 = 0$$

Cov
$$(X_1, X_2) = E(X_1X_2) - E(X_1)E(X_2) = 0 - 0.8 \times 0.1 = -0.08$$
,

故
$$Corr(X_1, X_2) = \frac{Cov(X_1, X_2)}{\sqrt{Var(X_1)} \cdot \sqrt{Var(X_2)}} = \frac{-0.08}{0.4 \times 0.3} = -\frac{2}{3}$$
.

23. 将一枚硬币重复掷n次,以X和Y分别表示正面朝上和反面朝上的次数,试求X和Y的协方差及相关系数.

解: 方法一: 根据相关系数的性质

因 Y=n-X, 即 X与 Y线性负相关,

故 Corr (X, Y) = -1;

又因 X 和 Y 都服从二项分布 b(n, 0.5),有 E(X) = E(Y) = 0.5n, Var(X) = Var(Y) = 0.25n,

故
$$\operatorname{Cov}(X,Y) = \sqrt{\operatorname{Var}(X)} \cdot \sqrt{\operatorname{Var}(Y)} \cdot \operatorname{Corr}(X,Y) = \sqrt{0.25n} \cdot \sqrt{0.25n} \cdot (-1) = -0.25n$$
.

方法二: 直接计算

因 X 和 Y 都服从二项分布 b(n, 0.5),且 Y = n - X,有 E(X) = E(Y) = 0.5n, Var(X) = Var(Y) = 0.25n,故 Cov(X, Y) = Cov(X, n - X) = Cov(X, n) - Cov(X, X) = 0 - Var(X) = -0.25n;

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)} \cdot \sqrt{Var(Y)}} = \frac{-0.25n}{\sqrt{0.25n} \cdot \sqrt{0.25n}} = -1.$$

- 24. 设随机变量 X 和 Y 独立同服从参数为 λ 的泊松分布,令 U=2X+Y,V=2X-Y,求 U 和 V 的相关系数 Corr(U,V).
- 解: 因 X 和 Y 独立同服从泊松分布 $P(\lambda)$,有 $E(X) = E(Y) = \lambda$, $Var(X) = Var(Y) = \lambda$, 则 $E(U) = E(2X + Y) = 2E(X) + E(Y) = 3\lambda$, $E(V) = E(2X Y) = 2E(X) E(Y) = \lambda$, $Var(U) = Var(2X + Y) = 4Var(X) + Var(Y) = 5\lambda$, $Var(V) = Var(2X Y) = 4Var(X) + Var(Y) = 5\lambda$, $Cov(U, V) = Cov(2X + Y, 2X Y) = 4Cov(X, X) Cov(Y, Y) = 4Var(X) Var(Y) = 3\lambda$,

故
$$Corr(U, V) = \frac{Cov(U, V)}{\sqrt{Var(U)} \cdot \sqrt{Var(V)}} = \frac{3\lambda}{\sqrt{5\lambda} \cdot \sqrt{5\lambda}} = \frac{3}{5}$$
.

- 25. 在一个有n个人参加的晚会上,每个人带了一件礼物,且假定各人带的礼物都不相同. 晚会期间各人从放在一起的n件礼物中随机抽取一件,试求抽中自己礼物的人数X的均值与方差.
- 解: 设 $X_i = \begin{cases} 1, & \text{第} i \land \text{人抽到自己的礼物}, \\ 0, & \text{第} i \land \text{人抽到其他人的礼物}. \end{cases}$ $i = 1, 2, \cdots, n$,有 $P\{X_i = 1\} = \frac{1}{n}$, $P\{X_i = 0\} = \frac{n-1}{n}$,

$$\mathbb{M} E(X_i) = 0 \times \frac{n-1}{n} + 1 \times \frac{1}{n} = \frac{1}{n}, \quad E(X_i^2) = 0^2 \times \frac{n-1}{n} + 1^2 \times \frac{1}{n} = \frac{1}{n},$$

$$\operatorname{Var}(X_i) = E(X_i^2) - [E(X_i)]^2 = \frac{1}{n} - \left(\frac{1}{n}\right)^2 = \frac{n-1}{n^2},$$

因当 $i \neq j$ 时, (X_i, X_i) 的联合分布列为

$$\begin{array}{c|ccccc}
X_{i} & 0 & 1 \\
\hline
0 & \frac{(n-1)(n-2)+1}{n(n-1)} & \frac{n-2}{n(n-1)} \\
1 & \frac{n-2}{n(n-1)} & \frac{1}{n(n-1)}
\end{array}$$

$$\mathbb{M} E(X_i X_j) = 0 \times \frac{(n-1)(n-2)+1}{n(n-1)} + 0 \times \frac{n-2}{n(n-1)} + 0 \times \frac{n-2}{n(n-1)} + 1 \times \frac{1}{n(n-1)} = \frac{1}{n(n-1)},$$

可得
$$Cov(X_i, X_j) = E(X_i X_j) - E(X_i)E(X_j) = \frac{1}{n(n-1)} - \frac{1}{n} \times \frac{1}{n} = \frac{1}{n^2(n-1)}$$

因抽中自己礼物的人数 $X = \sum_{i=1}^{n} X_i$,

故
$$E(X) = E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = n \times \frac{1}{n} = 1$$
,

$$Var(X) = Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) + 2 \sum_{1 \le i < j \le n} Cov(X_i, X_j) = n \times \frac{n-1}{n^2} + n(n-1) \times \frac{1}{n^2(n-1)} = 1.$$

- 26. 设随机变量 X 和 Y 数学期望分别为 -2 和 2,方差分别为 1 和 4,而它们的相关系数为 -0.5,试根据切比雪夫不等式,估计 $P\{|X+Y| \ge 6\}$ 的上限.
- 解: 因 E(X+Y) = E(X) + E(Y) = -2 + 2 = 0,

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) = 1 + 4 + 2\sqrt{1} \times \sqrt{4} \times (-0.5) = 3$$

$$||P\{|X+Y| \ge 6\} = P\{|(X+Y) - E(X+Y)| \ge 6\} \le \frac{\operatorname{Var}(X+Y)}{6^2} = \frac{3}{36} = \frac{1}{12},$$

故 $P\{|X+Y| \ge 6\}$ 的上限为 $\frac{1}{12}$.

27. 设二维随机变量 (X, Y) 的联合密度函数为

$$p(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

求 E(X), E(Y), Cov(X, Y).

$$\text{#F:} \quad E(X) = \int_0^1 dx \int_{-x}^x x \cdot 1 dy = \int_0^1 2x^2 dx = \frac{2}{3} x^3 \Big|_0^1 = \frac{2}{3}; \quad E(Y) = \int_0^1 dx \int_{-x}^x y \cdot 1 dy = \int_0^1 dx \cdot \frac{1}{2} y^2 \Big|_{-x}^x = 0;$$

故
$$Cov(X, Y) = E(XY) - E(X)E(Y) = 0$$
.

28. 设二维随机变量 (X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} 3x, & 0 < y < x < 1, \\ 0, & 其他. \end{cases}$$

求X与Y的相关系数.

解: 因
$$E(X) = \int_0^1 dx \int_0^x x \cdot 3x dy = \int_0^1 3x^3 dx = \frac{3}{4}x^4 \Big|_0^1 = \frac{3}{4},$$

$$E(Y) = \int_0^1 dx \int_0^x y \cdot 3x dy = \int_0^1 dx \cdot \frac{3}{2}xy^2 \Big|_0^x = \int_0^1 \frac{3}{2}x^3 dx = \frac{3}{8}x^4 \Big|_0^1 = \frac{3}{8},$$

$$E(X^2) = \int_0^1 dx \int_0^x x^2 \cdot 3x dy = \int_0^1 3x^4 dx = \frac{3}{5}x^5 \Big|_0^1 = \frac{3}{5},$$

$$E(Y^2) = \int_0^1 dx \int_0^x y^2 \cdot 3x dy = \int_0^1 dx \cdot xy^3 \Big|_0^x = \int_0^1 x^4 dx = \frac{1}{5}x^5 \Big|_0^1 = \frac{1}{5},$$

$$E(XY) = \int_0^1 dx \int_0^x xy \cdot 3x dy = \int_0^1 dx \cdot \frac{3}{2}x^2 y^2 \Big|_0^x = \int_0^1 \frac{3}{2}x^4 dx = \frac{3}{10}x^4 \Big|_0^1 = \frac{3}{10},$$

$$\mathbb{Q} \operatorname{Var}(X) = E(X^{2}) - [E(X)]^{2} = \frac{3}{5} - \left(\frac{3}{4}\right)^{2} = \frac{3}{80}, \quad \operatorname{Var}(Y) = E(Y^{2}) - [E(Y)]^{2} = \frac{1}{5} - \left(\frac{3}{8}\right)^{2} = \frac{19}{320},$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{3}{10} - \frac{3}{4} \times \frac{3}{8} = \frac{3}{160}$$

故
$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} = \frac{\frac{3}{160}}{\sqrt{\frac{3}{80}}\sqrt{\frac{19}{320}}} = \sqrt{\frac{3}{19}}$$
.

- 29. 已知随机变量 X 与 Y 的相关系数为 ρ ,求 $X_1 = aX + b$ 与 $Y_1 = cY + d$ 的相关系数,其中 a,b,c,d 均为非零正常数。
- 解: 因 $\operatorname{Var}(X_1) = \operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)$, $\operatorname{Var}(Y_1) = \operatorname{Var}(cY + d) = c^2 \operatorname{Var}(Y)$, $\operatorname{Cov}(X_1, Y_1) = \operatorname{Cov}(aX + b, cY + d) = E[(aX + b) E(aX + b)][(cY + d) E(cY + d)]$ $= E[aX aE(X)][cY cE(Y)] = acE[X E(X)][Y E(Y)] = ac\operatorname{Cov}(X, Y)$,

故
$$\operatorname{Corr}(X_1, Y_1) = \frac{\operatorname{Cov}(X_1, Y_1)}{\sqrt{\operatorname{Var}(X_1)}\sqrt{\operatorname{Var}(Y_1)}} = \frac{ac \operatorname{Cov}(X, Y)}{\sqrt{a^2 \operatorname{Var}(X)}\sqrt{c^2 \operatorname{Var}(Y)}} = \frac{ac \operatorname{Cov}(X, Y)}{|ac|\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} = \frac{ac}{|ac|}\rho$$
.

- 30. 设 X_1 与 X_2 独立同分布, 其共同分布为 $Exp(\lambda)$. 试求 $Y_1 = 4X_1 3X_2$ 与 $Y_2 = 3X_1 + X_2$ 的相关系数.
- 解: 因 X_1 与 X_2 独立同分布,有 $Var(X_1) = Var(X_2)$, $Cov(X_1, X_2) = 0$,

$$\mathbb{U}$$
 $\text{Var}(Y_1) = \text{Var}(4X_1 - 3X_2) = \text{Var}(4X_1) + \text{Var}(3X_2) = 16 \text{Var}(X_1) + 9 \text{Var}(X_2) = 25 \text{Var}(X_1)$

$$Var(Y_2) = Var(3X_1 + X_2) = Var(3X_1) + Var(X_2) = 9 Var(X_1) + Var(X_2) = 10 Var(X_1),$$

 $Cov(Y_1, Y_2) = Cov(4X_1 - 3X_2, 3X_1 + X_2) = Cov(4X_1, 3X_1) - Cov(3X_2, X_2) = 12 Var(X_1) - 3 Var(X_2)$ = 9 Var(X₁),

故
$$Corr(Y_1, Y_2) = \frac{Cov(Y_1, Y_2)}{\sqrt{Var(Y_1)}\sqrt{Var(Y_2)}} = \frac{9 \text{ Var}(X_1)}{\sqrt{25 \text{ Var}(X_1)}\sqrt{10 \text{ Var}(X_1)}} = \frac{9}{5\sqrt{10}}$$
.

- 31. 设 X_1 与 X_2 独立同分布,其共同分布为 $N(\mu, \sigma^2)$. 试求 $Y = aX_1 + bX_2$ 与 $Z = aX_1 bX_2$ 的相关系数,其中 a = b 为非零常数.
- 解: 因 X_1 与 X_2 独立同分布,有 $Var(X_1) = Var(X_2)$, $Cov(X_1, X_2) = 0$,

$$\mathbb{V} \operatorname{Var}(Y) = \operatorname{Var}(aX_1 + bX_2) = \operatorname{Var}(aX_1) + \operatorname{Var}(bX_2) = a^2 \operatorname{Var}(X_1) + b^2 \operatorname{Var}(X_2) = (a^2 + b^2) \operatorname{Var}(X_1),$$

$$Var(Z) = Var(aX_1 - bX_2) = Var(aX_1) + Var(bX_2) = a^2 Var(X_1) + b^2 Var(X_2) = (a^2 + b^2) Var(X_1),$$

$$Cov(Y, Z) = Cov(aX_1 + bX_2, aX_1 - bX_2) = Cov(aX_1, aX_1) - Cov(bX_2, bX_2) = a^2 Var(X_1) - b^2 Var(X_2)$$
$$= (a^2 - b^2) Var(X_1),$$

故
$$\operatorname{Corr}(Y,Z) = \frac{\operatorname{Cov}(Y,Z)}{\sqrt{\operatorname{Var}(Y)}\sqrt{\operatorname{Var}(Z)}} = \frac{(a^2 - b^2)\operatorname{Var}(X_1)}{\sqrt{(a^2 + b^2)\operatorname{Var}(X_1)}\sqrt{(a^2 + b^2)\operatorname{Var}(X_1)}} = \frac{a^2 - b^2}{a^2 + b^2}.$$

- 32. 设二维随机变量 (X, Y) 服从二维正态分布 $N(0, 0, 1, 1, \rho)$,
 - (1) 求 $E[\max\{X,Y\}]$;
 - (2) 求X-Y与XY的协方差及相关系数.
- 解: (1) 方法一: 直接计算 因 (*X*, *Y*) 的联合密度函数为

$$p(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-\frac{x^2-2\rho xy+y^2}{2(1-\rho^2)}}, -\infty < x, y < +\infty,$$

则
$$E[\max\{X,Y\}] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \max\{x,y\} p(x,y) dxdy = \iint_{D_1} y p(x,y) dxdy + \iint_{D_2} x p(x,y) dxdy$$

$$=2\iint_{D_{1}} y \cdot \frac{1}{2\pi\sqrt{1-\rho^{2}}} e^{-\frac{x^{2}-2\rho xy+y^{2}}{2(1-\rho^{2})}} dxdy = \frac{1}{\pi\sqrt{1-\rho^{2}}} \int_{-\infty}^{+\infty} dy \int_{-\infty}^{y} y e^{-\frac{x^{2}-2\rho xy+y^{2}}{2(1-\rho^{2})}} dx$$

$$=\frac{1}{\pi\sqrt{1-\rho^{2}}} \int_{-\infty}^{+\infty} dy \int_{-\infty}^{y} y e^{-\frac{x^{2}-2\rho xy+\rho^{2}y^{2}+(1-\rho^{2})y^{2}}{2(1-\rho^{2})}} dx = \frac{1}{\pi\sqrt{1-\rho^{2}}} \int_{-\infty}^{+\infty} y e^{-\frac{y^{2}}{2}} dy \int_{-\infty}^{y} e^{-\frac{(x-\rho y)^{2}}{2(1-\rho^{2})}} dx$$

令 $u=x-\rho y$,有 $x=u+\rho y$, dx=du,且当 $x\to -\infty$ 时, $u\to -\infty$; 当 x=y 时, $u=(1-\rho)y$,

方法二: 利用二维正态分布的性质

$$\mathbb{M} E[\max\{X,Y\}] = \frac{1}{2} E(X+Y+|X-Y|) = \frac{1}{2} [E(X)+E(Y)+E(|X-Y|)] = \frac{1}{2} E(|X-Y|),$$

因 (X, Y) 服从二维正态分布 $N(0, 0, 1, 1, \rho)$,有 E(X) = E(Y) = 0, Var(X) = Var(Y) = 1,

且
$$Corr(X, Y) = \rho$$
 , 可得 $Cov(X, Y) = \sqrt{Var(X)} \sqrt{Var(Y)} Corr(X, Y) = \rho$,

则 X - Y 服从正态分布,且 E(X - Y) = 0, $Var(X - Y) = Var(X) + Var(Y) - 2 Cov(X, Y) = 2 - 2\rho$,即 X - Y 服从正态分布 $N(0, 2 - 2\rho)$,密度函数为

$$p(z) = \frac{1}{\sqrt{2\pi(2-2\rho)}} e^{-\frac{z^2}{2(2-2\rho)}},$$

故
$$E[\max\{X,Y\}] = \frac{1}{2}E(|X-Y|) = \frac{1}{2}\int_{-\infty}^{+\infty}|z| \cdot \frac{1}{\sqrt{2\pi(2-2\rho)}}e^{-\frac{z^2}{2(2-2\rho)}}dz$$

$$= \frac{1}{\sqrt{2\pi (2-2\rho)}} \int_0^{+\infty} z \, e^{-\frac{z^2}{2(2-2\rho)}} \, dz = \frac{1}{2\sqrt{\pi (1-\rho)}} \cdot [-(2-2\rho)] e^{-\frac{z^2}{2(2-2\rho)}} \bigg|_0^{+\infty}$$

$$=\frac{1}{2\sqrt{\pi(1-\rho)}}\cdot(2-2\rho)=\sqrt{\frac{1-\rho}{\pi}}\;;$$

(2) 因 (X, Y) 的联合密度函数为

$$p(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-\frac{x^2-2\rho xy+y^2}{2(1-\rho^2)}}, -\infty < x, y < +\infty,$$

则由对称性知
$$E(X^2Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^2 y \cdot \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-\frac{x^2-2\rho \cdot xy+y^2}{2(1-\rho^2)}} dxdy$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy^2 \cdot \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-\frac{x^2-2\rho xy+y^2}{2(1-\rho^2)}} dxdy = E(XY^2),$$

 $\coprod E(X) = E(Y) = 0,$

故
$$Cov(X - Y, XY) = E[(X - Y)XY] - E(X - Y)E(XY)$$

= $[E(X^2Y) - E(XY^2)] - [E(X) - E(Y)]E(XY) = 0;$

$$Corr(X - Y, XY) = \frac{Cov(X - Y, XY)}{\sqrt{Var(X - Y)}\sqrt{Var(XY)}} = 0.$$

- 33. 设二维随机变量 (X, Y) 服从区域 $D = \{(x, y) | 0 < x < 1, 0 < x < y < 1\}$ 上的均匀分布,求 X 与 Y 的协方差及相关系数.
- 解: 因 (X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} 2, & 0 < x < y < 1, \\ 0, & 其他. \end{cases}$$

$$\frac{1}{0}$$

$$\text{If } E(X) = \int_0^1 dx \int_x^1 x \cdot 2 \, dy = \int_0^1 2x (1-x) \, dx = \left(x^2 - \frac{2}{3}x^3\right)\Big|_0^1 = 1 - \frac{2}{3} = \frac{1}{3},$$

$$E(Y) = \int_0^1 dx \int_x^1 y \cdot 2dy = \int_0^1 dx \cdot y^2 \Big|_x^1 = \int_0^1 (1 - x^2) dx = \left(x - \frac{1}{3} x^3 \right) \Big|_0^1 = 1 - \frac{1}{3} = \frac{2}{3},$$

$$E(X^{2}) = \int_{0}^{1} dx \int_{x}^{1} x^{2} \cdot 2 dy = \int_{0}^{1} 2x^{2} (1 - x) dx = \left(\frac{2}{3}x^{3} - \frac{2}{4}x^{4}\right)\Big|_{0}^{1} = \frac{2}{3} - \frac{1}{2} = \frac{1}{6},$$

$$E(Y^{2}) = \int_{0}^{1} dx \int_{x}^{1} y^{2} \cdot 2 dy = \int_{0}^{1} dx \cdot \frac{2}{3} y^{3} \Big|_{x}^{1} = \int_{0}^{1} \frac{2}{3} (1 - x^{3}) dx = \frac{2}{3} \left(x - \frac{1}{4} x^{4} \right) \Big|_{0}^{1} = \frac{2}{3} \times \left(1 - \frac{1}{4} \right) = \frac{1}{2},$$

$$E(XY) = \int_0^1 dx \int_x^1 xy \cdot 2dy = \int_0^1 dx \cdot xy^2 \Big|_x^1 = \int_0^1 (x - x^3) dx = \left(\frac{1}{2}x^2 - \frac{1}{4}x^4\right) \Big|_0^1 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4},$$

可得
$$\operatorname{Var}(X) = E(X^2) - [E(X)]^2 = \frac{1}{6} - \left(\frac{1}{3}\right)^2 = \frac{1}{18}$$
, $\operatorname{Var}(Y) = E(Y^2) - [E(Y)]^2 = \frac{1}{2} - \left(\frac{2}{3}\right)^2 = \frac{1}{18}$,

故
$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{1}{4} - \frac{1}{3} \times \frac{2}{3} = \frac{1}{36};$$

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} = \frac{\frac{1}{36}}{\sqrt{\frac{1}{18}}\sqrt{\frac{1}{18}}} = \frac{1}{2}.$$

34. 设二维随机变量 (X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} \frac{6}{7} \left(x^2 + \frac{xy}{2} \right), & 0 < x < 1, 0 < y < 2, \\ 0, & \text{ 其他.} \end{cases}$$

求X与Y的协方差及相关系数.

$$\begin{split} \widehat{m}^{\mu}; \quad & [X] E(X) = \int_{0}^{1} dx \int_{0}^{2} x \cdot \frac{6}{7} \left(x^{2} + \frac{xy}{2}\right) dy = \int_{0}^{1} dx \cdot \left(\frac{6}{7}x^{3}y + \frac{3}{14}x^{2}y^{2}\right) \Big|_{0}^{2} = \int_{0}^{1} \left(\frac{12}{7}x^{3} + \frac{6}{7}x^{2}\right) dx \\ & = \left(\frac{3}{7}x^{4} + \frac{2}{7}x^{3}\right) \Big|_{0}^{1} = \frac{3}{7} + \frac{2}{7} = \frac{5}{7}, \\ E(Y) = \int_{0}^{1} dx \int_{0}^{2} y \cdot \frac{6}{7} \left(x^{2} + \frac{xy}{2}\right) dy = \int_{0}^{1} dx \cdot \left(\frac{3}{7}x^{2}y^{2} + \frac{1}{7}xy^{3}\right) \Big|_{0}^{2} = \int_{0}^{1} \left(\frac{12}{7}x^{2} + \frac{8}{7}x\right) dx \\ & = \left(\frac{4}{7}x^{3} + \frac{4}{7}x^{2}\right) \Big|_{0}^{1} = \frac{4}{7} + \frac{4}{7} = \frac{8}{7}, \\ E(X^{2}) = \int_{0}^{1} dx \int_{0}^{2} x^{2} \cdot \frac{6}{7} \left(x^{2} + \frac{xy}{2}\right) dy = \int_{0}^{1} dx \cdot \left(\frac{6}{7}x^{4}y + \frac{3}{14}x^{3}y^{2}\right) \Big|_{0}^{2} = \int_{0}^{1} \left(\frac{12}{7}x^{4} + \frac{6}{7}x^{3}\right) dx \\ & = \left(\frac{12}{35}x^{5} + \frac{3}{14}x^{4}\right) \Big|_{0}^{1} = \frac{12}{35} + \frac{3}{14} = \frac{39}{70}, \\ E(Y^{2}) = \int_{0}^{1} dx \int_{0}^{2} y^{2} \cdot \frac{6}{7} \left(x^{2} + \frac{xy}{2}\right) dy = \int_{0}^{1} dx \cdot \left(\frac{2}{7}x^{2}y^{3} + \frac{3}{28}xy^{4}\right) \Big|_{0}^{2} = \int_{0}^{1} \left(\frac{16}{7}x^{2} + \frac{12}{7}x\right) dx \\ & = \left(\frac{16}{21}x^{3} + \frac{6}{7}x^{2}\right) \Big|_{0}^{1} = \frac{16}{21} + \frac{6}{7} = \frac{34}{21}, \\ E(XY) = \int_{0}^{1} dx \int_{0}^{2} xy \cdot \frac{6}{7} \left(x^{2} + \frac{xy}{2}\right) dy = \int_{0}^{1} dx \cdot \left(\frac{3}{7}x^{3}y^{2} + \frac{1}{7}x^{2}y^{3}\right) \Big|_{0}^{2} = \int_{0}^{1} \left(\frac{12}{7}x^{3} + \frac{8}{7}x^{2}\right) dx \\ & = \left(\frac{3}{7}x^{4} + \frac{8}{21}x^{3}\right) \Big|_{0}^{1} = \frac{3}{7} + \frac{8}{21} = \frac{17}{21}, \\ \emptyset U \operatorname{Var}(X) = E(X^{2}) - [E(X)]^{2} = \frac{39}{70} - \left(\frac{5}{7}\right)^{2} = \frac{23}{490}, \quad \operatorname{Var}(Y) = E(Y^{2}) - [E(Y)]^{2} = \frac{34}{21} - \left(\frac{8}{7}\right)^{2} = \frac{46}{147}, \\ \partial X \operatorname{Cov}(X,Y) = E(XY) - E(X)E(Y) = \frac{17}{21} - \frac{5}{7} \times \frac{8}{7} = -\frac{1}{147}; \\ \operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X) \sqrt{\operatorname{Var}(Y)}} = \frac{-\frac{1}{147}}{\left(\frac{23}{23} \sqrt{\frac{46}{149}}\right)} = -\frac{\sqrt{5}}{23\sqrt{3}}. \end{aligned}$$

35. 设二维随机变量 (X, Y) 在矩形 $G = \{(x, y) | 0 \le x \le 2, 0 \le y \le 1\}$ 上服从均匀分布,记

$$U = \begin{cases} 1, & X > Y, \\ 0, & X \le Y. \end{cases} \quad V = \begin{cases} 1, & X > 2Y, \\ 0, & X \le 2Y. \end{cases}$$

求 U 和 V 的相关系数.

解: 因
$$P\{U=0,V=0\}=P\{X\leq Y,X\leq 2Y\}=P\{(X,Y)\in D_1\}=\frac{S_{D_1}}{S_G}=\frac{0.5}{2}=0.25$$
,

$$P\{U=0, V=1\} = P\{X \le Y, X > 2Y\} = P(\emptyset) = 0,$$

$$P\{U=1, V=0\} = P\{X>Y, X \le 2Y\} = P\{(X,Y) \in D_2\} = \frac{S_{D_2}}{S_G} = \frac{0.5}{2} = 0.25$$

$$P\{U=1, V=1\} = P\{X>Y, X>2Y\} = P\{(X,Y) \in D_3\} = \frac{S_{D_3}}{S_C} = \frac{1}{2} = 0.5$$

則
$$E(U) = 0 \times (0.25 + 0) + 1 \times (0.25 + 0.5) = 0.75$$
, $E(V) = 0 \times (0.25 + 0.25) + 1 \times (0 + 0.5) = 0.5$, $E(U^2) = 0^2 \times (0.25 + 0) + 1^2 \times (0.25 + 0.5) = 0.75$, $E(V^2) = 0^2 \times (0.25 + 0.25) + 1^2 \times (0 + 0.5) = 0.5$, $E(UV) = 0 \times 0.25 + 0 \times 0 + 0 \times 0.25 + 1 \times 0.5 = 0.5$,

有
$$Var(U) = E(U^2) - [E(U)]^2 = 0.75 - 0.75^2 = 0.1875$$
, $Var(V) = E(V^2) - [E(V)]^2 = 0.5 - 0.5^2 = 0.25$, $Cov(U, V) = E(UV) - E(U)E(V) = 0.5 - 0.75 \times 0.5 = 0.125$,

故
$$Corr(U,V) = \frac{Cov(U,V)}{\sqrt{Var(U)} \cdot \sqrt{Var(V)}} = \frac{0.125}{0.25\sqrt{3} \times 0.5} = \frac{1}{\sqrt{3}}$$
.

36. 设二维随机变量 (X, Y) 的联合密度函数如下,试求 (X, Y) 的协方差矩阵.

(1)
$$p_1(x, y) = \begin{cases} 6xy^2, & 0 < x < 1, 0 < y < 1, \\ 0, & \sharp \text{th.} \end{cases}$$

(2)
$$p_2(x,y) = \begin{cases} \frac{x+y}{8}, & 0 < x < 2, 0 < y < 2, \\ 0, & \text{其他.} \end{cases}$$

解: (1) 因
$$E(X) = \int_0^1 dx \int_0^1 x \cdot 6xy^2 dy = \int_0^1 dx \cdot 2x^2 y^3 \Big|_0^1 = \int_0^1 2x^2 dx = \frac{2}{3}x^3 \Big|_0^1 = \frac{2}{3}$$
,
$$E(Y) = \int_0^1 dx \int_0^1 y \cdot 6xy^2 dy = \int_0^1 dx \cdot \frac{6}{4}xy^4 \Big|_0^1 = \int_0^1 \frac{3}{2}x dx = \frac{3}{4}x^2 \Big|_0^1 = \frac{3}{4},$$

$$E(X^2) = \int_0^1 dx \int_0^1 x^2 \cdot 6xy^2 dy = \int_0^1 dx \cdot 2x^3 y^3 \Big|_0^1 = \int_0^1 2x^3 dx = \frac{2}{4}x^4 \Big|_0^1 = \frac{1}{2},$$

$$E(Y^2) = \int_0^1 dx \int_0^1 y^2 \cdot 6xy^2 dy = \int_0^1 dx \cdot \frac{6}{5}xy^5 \Big|_0^1 = \int_0^1 \frac{6}{5}x dx = \frac{3}{5}x^2 \Big|_0^1 = \frac{3}{5},$$

$$E(XY) = \int_0^1 dx \int_0^1 xy \cdot 6xy^2 dy = \int_0^1 dx \cdot \frac{6}{4}x^2 y^4 \Big|_0^1 = \int_0^1 \frac{3}{2}x^2 dx = \frac{1}{2}x^3 \Big|_0^1 = \frac{1}{2},$$

$$\text{Tor}(X) = E(X^2) - [E(X)]^2 = \frac{1}{2} - \left(\frac{2}{3}\right)^2 = \frac{1}{18}, \quad \text{Var}(Y) = E(Y^2) - [E(Y)]^2 = \frac{3}{5} - \left(\frac{3}{4}\right)^2 = \frac{3}{80},$$

$$\text{Cov}(X, Y) = E(XY) - E(X)E(Y) = \frac{1}{2} - \frac{2}{3} \times \frac{3}{4} = 0,$$

故协方差矩阵为

$$\begin{pmatrix}
\frac{1}{18} & 0 \\
0 & \frac{3}{80}
\end{pmatrix}.$$

$$(2) \boxtimes E(X) = \int_0^2 dx \int_0^2 x \cdot \frac{x+y}{8} dy = \int_0^2 dx \cdot \left(\frac{1}{8}x^2y + \frac{1}{16}xy^2\right)\Big|_0^2 = \int_0^2 \left(\frac{1}{4}x^2 + \frac{1}{4}x\right) dx = \frac{2}{3} + \frac{1}{2} = \frac{7}{6},$$

$$E(Y) = \int_0^2 dx \int_0^2 y \cdot \frac{x+y}{8} dy = \int_0^2 dx \cdot \left(\frac{1}{16}xy^2 + \frac{1}{24}y^3\right)\Big|_0^2 = \int_0^2 \left(\frac{1}{4}x + \frac{1}{3}\right) dx = \frac{1}{2} + \frac{2}{3} = \frac{7}{6},$$

$$E(X^2) = \int_0^2 dx \int_0^2 x^2 \cdot \frac{x+y}{8} dy = \int_0^2 dx \cdot \left(\frac{1}{8}x^3y + \frac{1}{16}x^2y^2\right)\Big|_0^2 = \int_0^2 \left(\frac{1}{4}x^3 + \frac{1}{4}x^2\right) dx = 1 + \frac{2}{3} = \frac{5}{3},$$

$$E(Y^2) = \int_0^2 dx \int_0^2 y^2 \cdot \frac{x+y}{8} dy = \int_0^2 dx \cdot \left(\frac{1}{24}xy^3 + \frac{1}{32}y^4\right)\Big|_0^2 = \int_0^2 \left(\frac{1}{3}x + \frac{1}{2}\right) dx = \frac{2}{3} + 1 = \frac{5}{3},$$

$$E(XY) = \int_0^2 dx \int_0^2 xy \cdot \frac{x+y}{8} dy = \int_0^2 dx \cdot \left(\frac{1}{16}x^2y^2 + \frac{1}{24}xy^3\right)\Big|_0^2 = \int_0^2 \left(\frac{1}{4}x^2 + \frac{1}{3}x\right) dx = \frac{2}{3} + \frac{2}{3} = \frac{4}{3},$$

$$E(XY) = E(X^2) - [E(X)]^2 = \frac{5}{3} - \left(\frac{7}{6}\right)^2 = \frac{11}{36}, \quad Var(Y) = E(Y^2) - [E(Y)]^2 = \frac{5}{3} - \left(\frac{7}{6}\right)^2 = \frac{11}{36},$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{4}{3} - \frac{7}{6} \times \frac{7}{6} = -\frac{1}{36},$$

故协方差矩阵为

$$\begin{pmatrix} \frac{11}{36} & -\frac{1}{36} \\ -\frac{1}{36} & \frac{11}{36} \end{pmatrix}.$$

- 37. 设 a 为区间 (0,1) 上的一个定点,随机变量 X 服从区间 (0,1) 上的均匀分布,以 Y 表示点 X 到 a 的距离,问 a 为何值时 X 与 Y 不相关,
- 解:因X服从区间(0,1)上的均匀分布,有 $E(X) = \frac{1}{2}$ 且X的密度函数为

$$p(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & \text{ 其他.} \end{cases}$$

$$\mathbb{E}[Y] = \int_0^1 |x - a| \cdot 1 dx = \int_0^a (a - x) dx + \int_a^1 (x - a) dx = -\frac{1}{2} (a - x)^2 \Big|_0^a + \frac{1}{2} (x - a)^2 \Big|_a^1 = \frac{1}{2} - a + a^2,$$

$$E(XY) = \int_0^1 |x| - a \cdot 1 dx = \int_0^a |x| - a \cdot 1 dx = \int_0^a |x| - a \cdot 1 dx = \int_0^a |x| - a \cdot 1 dx = \left(\frac{1}{2} a x^2 - \frac{1}{3} x^3 \right) \Big|_0^a + \left(\frac{1}{3} x^3 - \frac{1}{2} a x^2 \right) \Big|_a^1$$

$$= \left(\frac{1}{2} a^3 - \frac{1}{3} a^3 \right) - 0 + \left(\frac{1}{3} - \frac{1}{2} a \right) - \left(\frac{1}{3} a^3 - \frac{1}{2} a^3 \right) = \frac{1}{3} - \frac{1}{2} a + \frac{1}{3} a^3,$$

可得
$$\operatorname{Cov}(X,Y) = E(XY) - E(X)E(Y) = \left(\frac{1}{3} - \frac{1}{2}a + \frac{1}{3}a^3\right) - \frac{1}{2}\left(\frac{1}{2} - a + a^2\right) = \frac{1}{12} - \frac{1}{2}a^2 + \frac{1}{3}a^3$$
,

令
$$Cov(X,Y) = \frac{1}{12} - \frac{1}{2}a^2 + \frac{1}{3}a^3 = \frac{1}{12}(2a-1)(2a^2-2a+1) = 0$$
,可得 $a = \frac{1}{2}$ 或 $a = \frac{2 \pm 2\sqrt{3}}{4}$,

因 a 为区间 (0,1) 上的一个定点,

故当
$$a = \frac{1}{2}$$
 时,Cov $(X, Y) = 0$,即 X 与 Y 不相关.

38. 设随机向量 (X₁, X₂, X₃) 满足条件

$$aX_1 + bX_2 + cX_3 = 0,$$

 $E(X_1) = E(X_2) = E(X_3) = d,$
 $Var(X_1) = Var(X_2) = Var(X_3) = \sigma^2,$

其中 a, b, c, d, σ^2 均为常数, 求相关系数 $\rho_{12}, \rho_{23}, \rho_{31}$.

注: 此题条件有误, 应更正为"其中 a, b, c, σ^2 均为非零常数, d 为常数"

解: 因
$$cX_3 = -aX_1 - bX_2$$
, 有 $Var(cX_3) = Var(-aX_1 - bX_2)$,

则
$$c^2 \operatorname{Var}(X_3) = a^2 \operatorname{Var}(X_1) + b^2 \operatorname{Var}(X_2) + 2ab \operatorname{Cov}(X_1, X_2)$$
,

因 $Var(X_1) = Var(X_2) = Var(X_3) = \sigma^2$, $Cov(X_1, X_2) = \sigma^2 \rho_{12}$, 且 a, b 为非零常数,

故
$$ho_{12} = \frac{c^2 - a^2 - b^2}{2ab}$$
,同理可得 $ho_{23} = \frac{a^2 - b^2 - c^2}{2bc}$, $ho_{31} = \frac{b^2 - a^2 - c^2}{2ac}$;

此外, 因 $aX_1 + bX_2 + cX_3 = 0$, 且 $E(X_1) = E(X_2) = E(X_3) = d$,

如果 $d \neq 0$, 有 a + b + c = 0, 即 c = -a - b,

故
$$\rho_{12} = \frac{(-a-b)^2 - a^2 - b^2}{2ab} = 1$$
,同理可得 $\rho_{23} = 1$, $\rho_{31} = 1$.

- 39. 设随机向量 X 与 Y 都只能取两个值,试证: X 与 Y的独立性与不相关性是等价的.
- 证:因独立必然不相关,只需证明若X与Y不相关可推出X与Y独立,

设X与Y不相关,且X只能取两个值a与b, Y只能取两个值c与d, 有 $a \neq b$, $c \neq d$,

令
$$X^* = \frac{X-a}{b-a}$$
 , $Y^* = \frac{Y-c}{d-c}$, 有 X^* 与 Y^* 只能取两个值 0 与 1,

$$\text{III } Cov(X^*,Y^*) = Cov\left(\frac{X-a}{b-a},\frac{Y-c}{d-c}\right) = \frac{Cov(X-a,Y-c)}{(b-a)(d-c)} = \frac{Cov(X,Y)}{(b-a)(d-c)} = 0,$$

设随机向量 (X*, Y*) 的联合分布列与边际分布列为

$$\begin{array}{c|ccccc}
X * & 0 & 1 & p_{i} \\
\hline
0 & p_{11} & p_{12} & p_{1} \\
1 & p_{21} & p_{22} & p_{2} \\
\hline
p_{.j} & p_{.1} & p_{.2} &
\end{array}$$

则 $Cov(X^*, Y^*) = E(X^*Y^*) - E(X^*)E(Y^*) = p_{22} - p_{2} \cdot p_{22} = 0$,即 $p_{22} = p_2 \cdot p_{22}$,

有
$$p_{12} = p_{.2} - p_{22} = p_{.2} - p_{2} \cdot p_{.2} = (1 - p_{2} \cdot) p_{.2} = p_{1} \cdot p_{.2}$$
,

$$p_{21} = p_2 - p_{22} = p_2 - p_2 \cdot p_{22} = p_2 \cdot (1 - p_{22}) = p_2 \cdot p_{21}$$

$$p_{11} = p_{\cdot 1} - p_{21} = p_{\cdot 1} - p_{2 \cdot p_{\cdot 1}} = (1 - p_{2 \cdot p_{\cdot 1}}) p_{\cdot 1} = p_{1 \cdot p_{\cdot 1}},$$

故 $p_{ii} = p_{i} \cdot p_{\cdot i}$, i, j = 1, 2 , 即 X 与 Y 独立,得证.

- 40. 设随机变量 X 服从区间 (-0.5, 0.5) 上的均匀分布, $Y = \cos X$,则 X 与 Y 有函数关系. 试证: X 与 Y 不相关,即 X 与 Y 无线性关系.
- 证: 因 X 服从区间 (-0.5, 0.5) 上的均匀分布,有 E(X) = 0 且 X 的密度函数为

$$p(x) = \begin{cases} 1, & -0.5 < x < 0.5, \\ 0, & 其他. \end{cases}$$

$$\mathbb{P}[E(Y)] = \int_{-0.5}^{0.5} \cos x \cdot 1 dx = \sin x \Big|_{-0.5}^{0.5} = \sin 0.5 - \sin(-0.5) = 2\sin 0.5,$$

因 $x \cos x$ 为奇函数,有 $E(XY) = \int_{0.5}^{0.5} x \cos x \cdot 1 dx = 0$,

故 $Cov(X, Y) = E(XY) - E(X)E(Y) = 0 - 0 \times 2 \sin 0.5 = 0$,即 X 与 Y 不相关,X 与 Y 无线性关系.

41. 设二维随机变量 (X, Y) 服从单位圆内的均匀分布, 其联合密度函数为

$$p(x, y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 < 1, \\ 0, & x^2 + y^2 \ge 1. \end{cases}$$

试证 X 与 Y 不独立且 X 与 Y 不相关。

$$\text{iif:} \quad \stackrel{\underline{u}}{=} -1 < x < 1 \text{ ivf}, \quad p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy = \frac{2\sqrt{1-x^2}}{\pi},$$

$$\stackrel{\underline{\mathsf{M}}}{=} -1 < y < 1 \; \exists j$$
, $p_{Y}(y) = \int_{-\infty}^{+\infty} p(x, y) dx = \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \frac{1}{\pi} dx = \frac{2\sqrt{1-y^2}}{\pi}$,

则
$$p_X(x)p_Y(y) = \begin{cases} \frac{4\sqrt{(1-x^2)(1-y^2)}}{\pi^2}, & -1 < x < 1, -1 < y < 1, \\ 0, & 其他. \end{cases}$$

故 $p(x, y) \neq p_X(x)p_Y(y)$, 即X与Y不独立;

$$\exists E(X) = \iint_{x^2+y^2<1} x \cdot \frac{1}{\pi} dx dy = \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{x}{\pi} dy = \int_{-1}^{1} \frac{2x\sqrt{1-x^2}}{\pi} dx = -\frac{2}{3\pi} (1-x^2)^{\frac{3}{2}} \bigg|_{-1}^{1} = 0,$$

$$E(Y) = \iint_{x^2 + y^2 < 1} y \cdot \frac{1}{\pi} dx dy = \int_{-1}^{1} dx \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} \frac{y}{\pi} dy = \int_{-1}^{1} dx \cdot \frac{y^2}{2 \pi} \bigg|_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} = 0,$$

$$E(XY) = \iint_{\substack{y^2 + y^2 < 1}} xy \cdot \frac{1}{\pi} dx dy = \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{xy}{\pi} dy = \int_{-1}^{1} dx \cdot \frac{xy^2}{2\pi} \bigg|_{-\sqrt{1-y^2}}^{\sqrt{1-x^2}} = 0,$$

故 $Cov(X, Y) = E(XY) - E(X)E(Y) = 0 - 0 \times 0 = 0$, 即 X 与 Y 不相关.

42. 设随机向量 (X_1,X_2,X_3) 的相关系数分别为 $\rho_{12},\rho_{23},\rho_{31}$,证明 $\rho_{12}^2+\rho_{23}^2+\rho_{31}^2\leq 1+2\rho_{12}\rho_{23}\rho_{31}$.

证: 设 $Var(X_i) = \sigma_i^2$, i = 1, 2, 3, 有 $Cov(X_i, X_j) = \sigma_i \sigma_j \rho_{ij}$, i, j = 1, 2, 3; $i \neq j$,

对任意实数 c_1, c_2, c_3 , 都有 $Var(c_1X_1 + c_2X_2 + c_3X_3) \ge 0$, 即

$$c_1^2\sigma_1^2+c_2^2\sigma_2^2+c_3^2\sigma_3^2+2c_1c_2\sigma_1\sigma_2\rho_{12}+2c_2c_3\sigma_2\sigma_3\rho_{23}++2c_3c_1\sigma_3\sigma_1\rho_{31}\geq 0\;,$$

$$(c_1\sigma_1, c_2\sigma_2, c_3\sigma_3) \begin{pmatrix} 1 & \rho_{12} & \rho_{31} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{31} & \rho_{23} & 1 \end{pmatrix} \begin{pmatrix} c_1\sigma_1 \\ c_2\sigma_2 \\ c_3\sigma_3 \end{pmatrix} \ge 0 ,$$

根据二次型理论及 c_1, c_2, c_3 的任意性,可知随机向量 (X_1, X_2, X_3) 的相关系数矩阵

$$\begin{pmatrix} 1 & \rho_{12} & \rho_{31} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{31} & \rho_{23} & 1 \end{pmatrix}$$

为半正定矩阵,

故
$$\begin{vmatrix} 1 & \rho_{12} & \rho_{31} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{31} & \rho_{23} & 1 \end{vmatrix} = 1 + 2\rho_{12}\rho_{23}\rho_{31} - \rho_{12}^2 - \rho_{23}^2 - \rho_{31}^2 \ge 0$$
,即 $\rho_{12}^2 + \rho_{23}^2 + \rho_{31}^2 \le 1 + 2\rho_{12}\rho_{23}\rho_{31}$.

43. 设随机向量 (X_1, X_2, X_3) 的相关系数分别为 $\rho_{12}, \rho_{23}, \rho_{31}$, 且

$$E(X_1) = E(X_2) = E(X_3) = 0$$
, $Var(X_1) = Var(X_2) = Var(X_3) = \sigma^2$,

令

$$Y_1 = X_1 + X_2$$
, $Y_2 = X_2 + X_3$, $Y_3 = X_3 + X_1$,

证明: Y_1, Y_2, Y_3 两两不相关的充要条件为 $\rho_{12} + \rho_{23} + \rho_{31} = -1$.

证: 充分性, 设 $\rho_{12} + \rho_{23} + \rho_{31} = -1$,

因 $Var(X_1) = Var(X_2) = Var(X_3) = \sigma^2$,有 $Cov(X_i, X_i) = \sigma^2 \rho_{ii}$, i, j = 1, 2, 3; $i \neq j$

則
$$Cov(Y_1, Y_2) = Cov(X_1 + X_2, X_2 + X_3) = Cov(X_1, X_2) + Cov(X_1, X_3) + Cov(X_2, X_3) + Cov(X_2, X_2)$$

= $\sigma^2 \rho_{12} + \sigma^2 \rho_{31} + \sigma^2 \rho_{23} + \sigma^2 = \sigma^2 (\rho_{12} + \rho_{23} + \rho_{31} + 1) = 0$;

同理 $Cov(Y_2, Y_3) = 0$, $Cov(Y_3, Y_1) = 0$,

故 Y_1, Y_2, Y_3 两两不相关;

必要性,设 Y_1, Y_2, Y_3 两两不相关,有 $Cov(Y_1, Y_2) = \sigma^2(\rho_{12} + \rho_{23} + \rho_{31} + 1) = 0$,

故 $\rho_{12} + \rho_{23} + \rho_{31} = -1$.

- 44. 设 $X \sim N(0, 1)$, Y 各以 0.5 的概率取值 ±1, 且假定 X = Y 相互独立. 令 $Z = X \cdot Y$, 证明:
 - (1) $Z \sim N(0, 1)$;
 - (2) *X*与 *Z* 不相关, 但不独立.
- 证: (1) 因 $X \sim N(0, 1)$, $P\{Y=1\} = P\{Y=-1\} = 0.5$, 且 X 与 Y 相互独立,

$$\mathbb{U} F_{Z}(z) = P\{Z = XY \le z\} = P\{X \le z, Y = 1\} + P\{X \ge -z, Y = -1\} = 0.5 P\{X \le z\} + 0.5 P\{X \ge -z\}$$

$$= 0.5 \Phi(z) + 0.5[1 - \Phi(-z)] = 0.5 \Phi(z) + 0.5 \Phi(z) = \Phi(z),$$

故 $Z \sim N(0, 1)$;

(2) 因 E(X) = 0, Var(X) = 1, $E(Y) = 0.5 \times (-1) + 0.5 \times 1 = 0$, 且 X 与 Y相互独立,

$$\mathbb{Z}[X] = E(XY) = E(X)E(Y) = 0 \times 0 = 0, \quad E(XZ) = E(X^2Y) = E(X^2)E(Y) = 1 \times 0 = 0,$$

故
$$Cov(X, Z) = E(XZ) - E(X)E(Z) = 0 - 0 \times 0 = 0$$
, 即 $X 与 Z$ 不相关;

因 (X, Z) 的联合分布函数

$$F_{XZ}(x, z) = P\{X \le x, Z = XY \le z\} = P\{X \le x, X \le z, Y = 1\} + P\{X \le x, X \ge -z, Y = -1\}$$

= 0.5 $P\{X \le x, X \le z\} + 0.5 P\{X \le x, X \ge -z\}$,

但 $F_X(x)F_Z(x) = [\Phi(x)]^2$,

故当 x = z < 0 时, $F_{XZ}(x, x) \neq F_X(x) F_Z(x)$,即 X 与 Z 不独立.

- 45. 设随机变量 X 有密度函数 p(x),且密度函数 p(x) 是偶函数,假定 $E(|X|^3) < +\infty$. 证明 $X 与 Y = X^2$ 不相关,但不独立.
- 证: 因 p(x) 是偶函数, 有 xp(x) 与 $x^3p(x)$ 都是奇函数,

则
$$E(X) = \int_{-\infty}^{+\infty} x p(x) dx = 0$$
, $E(X^3) = \int_{-\infty}^{+\infty} x^3 p(x) dx = 0$,

故 $Cov(X, Y) = E(XY) - E(X)E(Y) = E(X^3) - E(X)E(X^2) = 0 - 0 \times E(X^2) = 0$, 即 $X = Y = X^2$ 不相关;

因 (X, Y) 的联合分布函数 $F_{XY}(x, y) = P\{X \le x, Y = X^2 \le y\}$,

 $\exists y = x^2, x > 0 \text{ iff}, F_{XY}(x, x^2) = P\{X \le x, Y = X^2 \le x^2\} = P\{-x \le X \le x\} = F_X(x) - F_X(-x),$

 $\bigoplus F_X(x) F_Y(x^2) = F_X(x) P\{-x \le X \le x\} = F_X(x) [F_X(x) - F_X(-x)],$

故当 $y = x^2, x > 0$ 且 $F_X(x) < 1$ 时, $F_{XY}(x, x^2) \neq F_X(x) F_Y(x^2)$,即 X 与 $Y = X^2$ 不独立.

46. 设二维随机向量 (X, Y) 服从二维正态分布,且 E(X) = E(Y) = 0,E(XY) < 0,证明:对任意正常数 a, b 有 $P\{X \ge a, Y \ge b\} \le P\{X \ge a\}$ $P\{Y \ge b\}$.

证:设(X,Y)服从二维正态分布 $N(0,0,\sigma_1^2,\sigma_2^2,\rho)$,

则
$$(X, Y)$$
 的联合密度函数为 $p(x, y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left[\frac{x^2-2\rho xy}{\sigma_1^2-\sigma_1\sigma_2}\frac{y^2}{\sigma_2^2}\right]}$,

因 E(X) = E(Y) = 0, E(XY) < 0,

则
$$\rho = \frac{\operatorname{Cov}(X,Y)}{\sigma_1 \sigma_2} = \frac{E(XY) - E(X)E(Y)}{\sigma_1 \sigma_2} = \frac{E(XY)}{\sigma_1 \sigma_2} < 0$$
,

当 x > 0, y > 0 时,有

$$p(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\frac{x^2-2\rho xy}{\sigma_1^2-\sigma_1\sigma_2} + \frac{y^2}{\sigma_2^2}\right]} \le \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{x^2}{2(1-\rho^2)\sigma_1^2}} \cdot e^{-\frac{y^2}{2(1-\rho^2)\sigma_2^2}},$$

$$\mathbb{P}\left\{X \geq a, Y \geq b\right\} = \int_{a}^{+\infty} dx \int_{b}^{+\infty} p(x, y) dy \leq \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} \int_{a}^{+\infty} e^{-\frac{x^{2}}{2(1-\rho^{2})\sigma_{1}^{2}}} dx \cdot \int_{b}^{+\infty} e^{-\frac{y^{2}}{2(1-\rho^{2})\sigma_{2}^{2}}} dy,$$

$$\begin{split} \text{III} \ P\{X \geq a, Y \geq b\} \leq & \frac{1}{2 \, \pi \, \sigma_1 \sigma_2 \sqrt{1 - \rho^2}} \int_{\frac{a}{\sqrt{1 - \rho^2}}}^{+\infty} e^{-\frac{u^2}{2 \sigma_1^2}} \sqrt{1 - \rho^2} \, du \cdot \int_{\frac{b}{\sqrt{1 - \rho^2}}}^{+\infty} e^{-\frac{v^2}{2 \sigma_2^2}} \sqrt{1 - \rho^2} \, dv \\ = & \frac{\sqrt{1 - \rho^2}}{2 \, \pi \, \sigma_1 \sigma_2} \int_{\frac{a}{\sqrt{1 - \rho^2}}}^{+\infty} e^{-\frac{u^2}{2 \sigma_1^2}} \, du \cdot \int_{\frac{b}{\sqrt{1 - \rho^2}}}^{+\infty} e^{-\frac{v^2}{2 \sigma_2^2}} \, dv \;, \end{split}$$

因 X 服从正态分布 $N(0, \sigma_1^2)$, Y 服从正态分布 $N(0, \sigma_2^2)$,

$$\text{If } P\{X \ge a\} P\{Y \ge b\} = \frac{1}{\sqrt{2\pi\sigma_1}} \int_a^{+\infty} e^{-\frac{u^2}{2\sigma_1^2}} du \cdot \frac{1}{\sqrt{2\pi\sigma_2}} \int_b^{+\infty} e^{-\frac{v^2}{2\sigma_2^2}} dv = \frac{1}{2\pi\sigma_1\sigma_2} \int_a^{+\infty} e^{-\frac{u^2}{2\sigma_1^2}} du \cdot \int_b^{+\infty} e^{-\frac{v^2}{2\sigma_2^2}} dv \, .$$

故
$$P\{X \ge a, Y \ge b\} \le \frac{\sqrt{1-\rho^2}}{2\pi\sigma_1\sigma_2} \int_{\frac{a}{\sqrt{1-\rho^2}}}^{+\infty} e^{-\frac{u^2}{2\sigma_1^2}} du \cdot \int_{\frac{b}{\sqrt{1-\rho^2}}}^{+\infty} e^{-\frac{v^2}{2\sigma_2^2}} dv \le \frac{\sqrt{1-\rho^2}}{2\pi\sigma_1\sigma_2} \int_a^{+\infty} e^{-\frac{u^2}{2\sigma_1^2}} du \cdot \int_b^{+\infty} e^{-\frac{v^2}{2\sigma_2^2}} dv$$

$$\leq \frac{1}{2\pi\sigma_1\sigma_2} \int_a^{+\infty} e^{-\frac{u^2}{2\sigma_1^2}} du \cdot \int_b^{+\infty} e^{-\frac{v^2}{2\sigma_2^2}} dv = P\{X \geq a\} P\{Y \geq b\} .$$

47. 设随机向量 (X, Y) 满足 E(X) = E(Y) = 0, Var(X) = Var(Y) = 1, $Cov(X, Y) = \rho$, 证明:

$$E[\max\{X^2, Y^2\}] \le 1 + \sqrt{1 - \rho^2}$$
.

证: 因
$$E(X) = E(Y) = 0$$
, $Var(X) = Var(Y) = 1$, $Cov(X, Y) = \rho$, 则 $E(X^2) = Var(X) + [E(X)]^2 = 1$, $E(Y^2) = Var(Y) + [E(Y)]^2 = 1$, $E(XY) = Cov(X, Y) + E(X)E(Y) = \rho$, 因 $max\{X^2, Y^2\} = \frac{1}{2}[X^2 + Y^2 + |X^2 - Y^2|]$,

$$\text{ } \mathbb{U} E[\max\{X^{2},Y^{2}\}] = \frac{1}{2} \Big[E(X^{2}) + E(Y^{2}) + E(|X^{2} - Y^{2}|) \Big] = 1 + \frac{1}{2} E(|X^{2} - Y^{2}|),$$

根据 Cauchy-Schwarz 不等式有 $E(UV) = \sqrt{E(U^2)E(V^2)}$,

$$\mathbb{P}[\max\{X^{2},Y^{2}\}] = 1 + \frac{1}{2}E(|X^{2} - Y^{2}|) = 1 + \frac{1}{2}E(|X + Y| \cdot |X - Y|) \leq 1 + \frac{1}{2}\sqrt{E(|X + Y|^{2})E(|X - Y|^{2})},$$

故
$$E[\max\{X^2, Y^2\}] \le 1 + \frac{1}{2}\sqrt{(2+2\rho)(2-2\rho)} = 1 + \sqrt{1-\rho^2}$$
.

48. 设随机变量 X_1, X_2, \dots, X_n 中任意两个的相关系数都是 ρ ,试证: $\rho \ge -\frac{1}{n-1}$.

证: 设
$$X_i^* = \frac{X_i - E(X_i)}{\sqrt{\text{Var}(X_i)}}, \quad i = 1, 2, \dots, n, \quad \text{有 Var}(X_i^*) = 1, \quad i = 1, 2, \dots, n,$$

$$\text{In } \operatorname{Cov}(X_i^*, X_j^*) = \operatorname{Cov}\left(\frac{X_i - E(X_i)}{\sqrt{\operatorname{Var}(X_i)}}, \frac{X_j - E(X_j)}{\sqrt{\operatorname{Var}(X_j)}}\right) = \frac{\operatorname{Cov}(X_i, X_j)}{\sqrt{\operatorname{Var}(X_i)}\sqrt{\operatorname{Var}(X_j)}} = \rho , \quad 1 \le i < j \le n,$$

故
$$\rho \ge -\frac{1}{n-1}$$
.

1. 以X记某医院一天内诞生婴儿的个数,以Y记其中男婴的个数,设X与Y的联合分布列为

$$P\{X=n,Y=m\}=\frac{e^{-14}(7.14)^m(6.86)^{n-m}}{m!(n-m)!}, \quad m=0,1,\dots,n; \ n=0,1,2,\dots$$

试求条件分布列 $P\{Y=m \mid X=n\}$.

解: 因
$$P\{X=n\} = \sum_{m=0}^{n} P\{X=n, Y=m\} = \sum_{m=0}^{n} \frac{e^{-14} (7.14)^m (6.86)^{n-m}}{m! (n-m)!} = \frac{e^{-14}}{n!} \sum_{m=0}^{n} \frac{n!}{m! (n-m)!} (7.14)^m (6.86)^{n-m}$$

$$=\frac{e^{-14}}{n!}\sum_{m=0}^{n} {n \choose m} (7.14)^m (6.86)^{n-m} = \frac{e^{-14}}{n!} (7.14 + 6.86)^n = \frac{14^n}{n!} e^{-14},$$

故
$$P{Y = m \mid X = n} = \frac{P{X = n, Y = m}}{P{X = n}} = \frac{\frac{e^{-14}(7.14)^m (6.86)^{n-m}}{m!(n-m)!}}{\frac{14^n}{n!}e^{-14}} = \binom{n}{m} \cdot \left(\frac{7.14}{14}\right)^m \cdot \left(\frac{6.86}{14}\right)^{n-m}.$$

- 2. 一射手单发命中目标的概率为p(0 ,射击进行到命中目标两次为止.设<math>X表示第一次命中目标所需的射击次数,Y为总共进行的射击次数,求(X,Y)的联合分布和条件分布.
- 解: (X, Y) 的联合分布为

$$p_{ii} = P\{X = i, Y = j\} = p^2 (1 - p)^{j-2}, i = 1, 2, \dots; j = i + 1, i + 2, \dots;$$

则 X 的边际分布为几何分布 Ge(p), 即概率分布为 $p_i = P\{X = i\} = p(1-p)^{i-1}$, $i = 1, 2, \dots$

Y的边际分布为负二项分布 Nb(2,p),即概率分布为 $p_j = P\{Y=j\} = (j-1)p^2(1-p)^{j-2}$, $j=2,3,\cdots$,故当 Y=j 时,X的条件分布为

$$P\{X=i \mid Y=j\} = \frac{p_{ij}}{p_{\cdot j}} = \frac{1}{j-1}, \quad i=1,2,\dots,j-1;$$

当X=i时,Y的条件分布为

$$P\{Y=j\mid X=i\}=\frac{p_{ij}}{p_{i}}=p(1-p)^{j-i-1}, \quad j=i+1, i+2, \cdots$$

3. 已知(X, Y) 的联合分布列如下:

$$P\{X=1, Y=1\} = P\{X=2, Y=1\} = \frac{1}{8}, P\{X=1, Y=2\} = \frac{1}{4}, P\{X=2, Y=2\} = \frac{1}{2}.$$

试求:

- (1) 已知 Y = i 的条件下, X 的条件分布列, i = 1, 2;
- (2) X 与 Y 是否独立?

解: (1) 因 Y 的边际分布为
$$P{Y=1} = \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$$
, $P{Y=2} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$,

故当 Y=1 时,X 的条件分布列为

$$P\{X=1 \mid Y=1\} = \frac{P\{X=1,Y=1\}}{P\{Y=1\}} = \frac{1}{2}, \quad P\{X=2 \mid Y=1\} = \frac{P\{X=2,Y=1\}}{P\{Y=1\}} = \frac{1}{2};$$

当 Y=2 时,X 的条件分布列为

$$P\{X=1\,|\,Y=2\} = \frac{P\{X=1,Y=2\}}{P\{Y=2\}} = \frac{1}{3}\;,\quad P\{X=2\,|\,Y=2\} = \frac{P\{X=2,Y=2\}}{P\{Y=2\}} = \frac{2}{3}\;;$$

(2) 因当 Y=1 与 Y=2 时,X 的条件分布列不同,故 X 与 Y 不独立.

- 4. 设随机变量 X 与 Y 独立同分布, 试在以下情况下求 $P\{X = k | X + Y = m\}$:
 - (1) X 与 Y都服从参数为 p 的几何分布;
 - (2) X 与 Y都服从参数为(n, p)的二项分布.
- 解: (1) 因 X 与 Y 的概率函数为 $P\{X=k\} = P\{Y=k\} = p(1-p)^{k-1}, k=1,2,\cdots$,且 X 与 Y 独立,则 X+Y 的概率函数为

$$P\{X+Y=m\} = \sum_{k=1}^{m-1} P\{X=k\} P\{Y=m-k\} = \sum_{k=1}^{m-1} p(1-p)^{k-1} \cdot p(1-p)^{m-k-1}$$

$$= (m-1)p^{2}(1-p)^{m-2}, \quad m=2,3,\cdots,$$

$$\text{th} P\{X=k \mid X+Y=m\} = \frac{P\{X=k,X+Y=m\}}{P\{X+Y=m\}} = \frac{P\{X=k\} P\{Y=m-k\}}{P\{X+Y=m\}}$$

$$= \frac{p(1-p)^{k-1} \cdot p(1-p)^{m-k-1}}{(m-1)p^{2}(1-p)^{m-2}} = \frac{1}{m-1};$$

(2) 因 X 与 Y 的概率函数为 $P\{X=k\} = P\{Y=k\} = \binom{n}{k} p^k (1-p)^{n-k}, \quad k=0,1,\cdots,n$,且 X 与 Y 独立,

则 X+Y 的概率函数为

$$P\{X+Y=m\} = \sum_{k} P\{X=k\} P\{Y=m-k\} = \sum_{k} \binom{n}{k} p^{k} (1-p)^{n-k} \cdot \binom{n}{m-k} p^{m-k} (1-p)^{n-m+k}$$
$$= \sum_{k} \binom{n}{k} \binom{n}{m-k} p^{m} (1-p)^{2n-m} = \binom{2n}{m} p^{m} (1-p)^{2n-m}, \quad m=0,1,2,\dots,2n,$$

这里比较
$$(1+x)^n \cdot (1+x)^n$$
 与 $(1+x)^{2n}$ 中 x^m 的系数可得 $\sum_{k} \binom{n}{k} \binom{n}{m-k} = \binom{2n}{m}$,

故
$$P\{X = k \mid X + Y = m\} = \frac{P\{X = k, X + Y = m\}}{P\{X + Y = m\}} = \frac{P\{X = k\}P\{Y = m - k\}}{P\{X + Y = m\}}$$

$$=\frac{\binom{n}{k}p^{k}(1-p)^{n-k}\cdot\binom{n}{m-k}p^{m-k}(1-p)^{n-m+k}}{\binom{2n}{m}p^{m}(1-p)^{2n-m}}=\frac{\binom{n}{k}\binom{n}{m-k}}{\binom{2n}{m}}, \quad k=l,l+1,\dots,r,$$

其中 $l = \max\{0, m-n\}, r = \min\{m, n\}.$

5. 设二维连续随机变量 (X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} 3x, & 0 < x < 1, 0 < y < x, \\ 0, & 其他. \end{cases}$$

试求条件密度函数 p(y|x).

解: 当 $x \le 0$ 或 $x \ge 1$ 时, $p_X(x) = 0$,

$$\stackrel{\text{def}}{=} 0 < x < 1 \text{ By}, \quad p_X(x) = \int_{-\infty}^{+\infty} p(x, y) dy = \int_0^x 3x dy = 3x^2,$$

则
$$p_X(x) = \begin{cases} 3x^2, & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

故当
$$0 < x < 1$$
 时, $p_X(x) > 0$,条件密度函数 $p_{Y|X}(y|x) = \frac{p(x,y)}{p_X(x)} = \begin{cases} \frac{1}{x}, & 0 < y < x, \\ 0, & 其他. \end{cases}$

6. 设二维连续随机变量 (X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

求条件密度函数 p(x|y).

当
$$-1 < y \le 0$$
 时, $p_Y(y) = \int_{-y}^1 1 dx = 1 + y$, 当 $0 < y < 1$ 时, $p_Y(y) = \int_y^1 1 dx = 1 - y$,

7. 设二维连续随机变量 (X, Y) 的联合密度函数为

$$p(x,y) = \begin{cases} \frac{21}{4}x^2y, & x^2 \le y \le 1, \\ 0, & 其他. \end{cases}$$

求条件概率 $P\{Y \ge 0.75 \mid X = 0.5\}$.

$$\stackrel{\underline{\mathsf{M}}}{=}$$
 -1 ≤ x ≤ 1 $\stackrel{\underline{\mathsf{M}}}{=}$, $p_X(x) = \int_{x^2}^1 \frac{21}{4} x^2 y dy = \frac{21}{8} x^2 y^2 \Big|_{x^2}^1 = \frac{21}{8} (x^2 - x^6)$,

则
$$p_X(x) = \begin{cases} \frac{21}{8}(x^2 - x^6), & -1 \le x \le 1, \\ 0, & 其他. \end{cases}$$

即
$$p_{Y|X}(y \mid x = 0.5) = \begin{cases} \frac{2y}{0.9375}, & 0.25 \le y \le 1, \\ 0, & 其他. \end{cases}$$

故
$$P\{Y \ge 0.75 \mid X = 0.5\} = \int_{0.75}^{1} \frac{2y}{0.9375} dy = \frac{1}{0.9375} y^2 \Big|_{0.75}^{1} = \frac{1}{0.9375} \times 0.4375 = \frac{7}{15}$$
.

8. 已知随机变量 Y 的密度函数为

$$p_Y(y) = \begin{cases} 5y^4, & 0 < y < 1, \\ 0, & 其他. \end{cases}$$

在给定 Y = y 条件下,随机变量 X 的条件密度函数为

$$p_{X|Y}(x|y) = \begin{cases} \frac{3x^2}{y^3}, & 0 < x < y < 1, \\ 0, & 其他. \end{cases}$$

求概率 $P\{X > 0.5\}$.

解:因(X,Y)的联合密度函数为

$$p(x, y) = p_Y(y)p_{X|Y}(x|y) = \begin{cases} 15x^2y, & 0 < x < y < 1, \\ 0, & 其他. \end{cases}$$

故
$$P\{X > 0.5\} = \int_{0.5}^{1} dx \int_{x}^{1} 15x^{2}y dy = \int_{0.5}^{1} dx \cdot \frac{15}{2}x^{2}y^{2}\Big|_{x}^{1} = \int_{0.5}^{1} \left(\frac{15}{2}x^{2} - \frac{15}{2}x^{4}\right) dx = \left(\frac{5}{2}x^{3} - \frac{3}{2}x^{5}\right)\Big|_{0.5}^{1}$$

$$=\left(\frac{5}{2}-\frac{3}{2}\right)-\left(\frac{5}{16}-\frac{3}{64}\right)=\frac{47}{64}$$
.

- 9. 设随机变量 X 服从 (1, 2) 上的均匀分布,在 X = x 的条件下,随机变量 Y 的条件分布是参数为 x 的指数分布,证明: XY 服从参数为 1 的指数分布.
- 证: 因 X 密度函数为

$$p_X(x) = \begin{cases} 1, & 1 < x < 2, \\ 0, & 其他. \end{cases}$$

在X=x的条件下,Y的条件密度函数为

$$p_{Y|X}(y|x) = \begin{cases} x e^{-xy}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

则 (X, Y) 的联合密度函数为

$$p(x,y) = p_X(x)p_{Y|X}(y|x) = \begin{cases} xe^{-xy}, & 1 < x < 2, y > 0, \\ 0, & \text{ 其他.} \end{cases}$$

设 Z = XY,

当 $z \le 0$ 时,有 $F_z(z) = 0$,

当
$$z > 0$$
 时,有 $F_Z(z) = P\{Z = XY \le z\} = \int_1^2 dx \int_0^{\frac{z}{x}} x e^{-xy} dy = \int_1^2 dx \cdot (-e^{-xy}) \Big|_0^{\frac{z}{x}} = \int_1^2 (1 - e^{-z}) dx = 1 - e^{-z}$,

即 Z=XY的分布函数和密度函数分别为

$$F_{Z}(z) = \begin{cases} 1 - e^{-z}, & z > 0, \\ 0, & z \le 0. \end{cases} \quad p_{Z}(z) = F_{Z}'(z) = \begin{cases} e^{-z}, & z > 0, \\ 0, & z \le 0. \end{cases}$$

故 Z = XY 服从参数为 1 的指数分布.

10. 设二维离散随机变量 (X, Y) 的联合分布列为

X	0	1	2	3
0	0	0.01	0.01	0.01
1	0.01	0.02	0.03	0.02
2	0.03	0.04	0.05	0.04
3	0.05	0.05	0.05	0.06
4	0.07	0.06	0.05	0.06
5	0.09	0.08	0.06	0.05

试求 E(X | Y = 2) 和 E(Y | X = 0).

$$\mathbb{H}: \ \, \mathbb{E} \, P\{Y=2\} = 0.01 + 0.03 + 0.05 + 0.05 + 0.05 + 0.06 = 0.25,$$

则条件分布列 (X|Y=2) 为

$$X \mid Y = 2$$
 0 1 2 3 4 5
 P 0.04 0.12 0.2 0.2 0.2 0.24

故 $E(X | Y = 2) = 0 \times 0.04 + 1 \times 0.12 + 2 \times 0.2 + 3 \times 0.2 + 4 \times 0.2 + 5 \times 0.24 = 3.12;$

则条件分布列 (Y|X=0) 为

故
$$E(Y \mid X = 0) = 1 \times \frac{1}{3} + 2 \times \frac{1}{3} + 3 \times \frac{1}{3} = 2$$
.

11. 设X与Y相互独立,分别服从参数为 λ_1 和 λ_2 的泊松分布,试求E(X|X+Y=n).

解:因 X 与 Y 的概率函数分别为

$$P\{X=k\} = \frac{\lambda_1^k}{k!} e^{-\lambda_1}$$
, $p\{Y=k\} = \frac{\lambda_2^k}{k!} e^{-\lambda_2}$, $k=1, 2, \dots$

$$\begin{split} \text{If } P\{X+Y=n\} &= \sum_{k=0}^n P\{X=k\} P\{Y=n-k\} = \sum_{k=0}^n \frac{\lambda_1^k}{k!} \mathrm{e}^{-\lambda_1} \cdot \frac{\lambda_2^{n-k}}{(n-k)!} \mathrm{e}^{-\lambda_2} = \frac{\mathrm{e}^{-(\lambda_1+\lambda_2)}}{n!} \sum_{k=0}^n \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k} \\ &= \frac{\mathrm{e}^{-(\lambda_1+\lambda_2)}}{n!} (\lambda_1+\lambda_2)^n \;, \end{split}$$

$$\stackrel{\text{def}}{=} 0 \leq k \leq n \text{ iff, } P\{X=k \mid X+Y=n\} = \frac{P\{X=k, X+Y=n\}}{P\{X+Y=n\}} = \frac{P\{X=k\}P\{Y=n-k\}}{P\{X+Y=n\}}$$

$$=\frac{\frac{\lambda_1^k}{k!}e^{-\lambda_1}\cdot\frac{\lambda_2^{n-k}}{(n-k)!}e^{-\lambda_2}}{\frac{(\lambda_1+\lambda_2)^n}{n!}e^{-(\lambda_1+\lambda_2)}}=\frac{n!}{k!(n-k)!}\cdot\frac{\lambda_1^k\lambda_2^{n-k}}{(\lambda_1+\lambda_2)^n}=\binom{n}{k}\cdot\left(\frac{\lambda_1}{\lambda_1+\lambda_2}\right)^k\cdot\left(\frac{\lambda_2}{\lambda_1+\lambda_2}\right)^{n-k},$$

即在
$$X + Y = n$$
 的条件下, X 服从二项分布 $b\left(n, \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)$,

故条件数学期望
$$E(X \mid X + Y = n) = n \frac{\lambda_1}{\lambda_1 + \lambda_2}$$
.

12. 设二维连续随机变量 (X, Y) 的联合密度函数为

$$p(x,y) = \begin{cases} x+y, & 0 < x, y < 1, \\ 0, & 其他. \end{cases}$$

试求 E(X|Y=0.5).

则
$$p(x \mid y = 0.5) = \frac{p(x,0.5)}{p_y(0.5)} = \begin{cases} x + 0.5, & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

故
$$E(X \mid Y = 0.5) = \int_0^1 x \cdot (x + 0.5) dx = \left(\frac{1}{3}x^3 + \frac{1}{4}x^2\right)\Big|_0^1 = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}$$
.

13. 设二维连续随机变量 (X, Y) 的联合密度函数为

$$p(x, y) = \begin{cases} 24(1-x)y, & 0 < y < x < 1, \\ 0, & \text{其他.} \end{cases}$$

试在 0 < y < 1 时,求 E(X|Y=y).

解: $\stackrel{\text{\tiny def}}{=} 0 < y < 1$ 时, $p_Y(y) = \int_y^1 24(1-x)ydx = -12(1-x)^2 y\Big|_y^1 = 12y(1-y)^2$,

故 $E(X \mid Y = y) = \int_{y}^{1} x \cdot \frac{2(1-x)}{(1-y)^{2}} dx = \frac{1}{(1-y)^{2}} \left(x^{2} - \frac{2}{3}x^{3}\right)\Big|_{y}^{1} = \frac{1}{(1-y)^{2}} \left[(1-y^{2}) - \frac{2}{3}(1-y^{3})\right]$ $= \frac{1}{1-y} \cdot \left[(1+y) - \frac{2}{3}(1+y+y^{2})\right] = \frac{1+y-2y^{2}}{3(1-y)} = \frac{1+2y}{3}.$

- 14. 设 E(Y), E(h(Y)) 存在, 试证 E(h(Y)|Y) = h(Y).
- 证: 在 Y = y 条件下, h(Y) = h(y)为常数, 即 E(h(Y)|Y = y) = h(y), 故 E(h(Y)|Y) = h(Y).
- 15. 设以下所涉及的数学期望均存在,试证:
 - (1) E(g(X)Y|X) = g(X)E(Y|X);
 - (2) E(XY) = E(XE(Y|X));
 - (3) Cov(X, E(Y|X)) = Cov(X, Y).
- 证: (1) 在 X = x 条件下, g(X) = g(x)为常数, 则 E(g(X)Y|X = x) = E(g(x)Y|X = x) = g(x) E(Y|X = x); 故 E(g(X)Y|X) = g(X)E(Y|X);
 - (2) $\boxtimes E(XY|X) = XE(Y|X)$, $\bowtie E(XE(Y|X)) = E(E(XY|X)) = E(XY)$;
 - (3) Cov(X, E(Y|X)) = E(XE(Y|X)) E(X)E(E(Y|X)) = E(XY) E(X)E(Y) = Cov(X, Y).
- 16. 设随机变量 X 与 Y 独立同分布,都服从参数为 λ 的指数分布.令

$$Z = \begin{cases} 3X + 1, & X \ge Y, \\ 6Y, & X < Y. \end{cases}$$

- (6Y, X) 求 E(Z).

解:因X与Y独立,且X与Y的密度函数分别为

$$p_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0. \end{cases} \quad p_Y(y) = \begin{cases} \lambda e^{-\lambda y}, & y > 0, \\ 0, & y \le 0. \end{cases}$$

则 (X, Y) 的联合密度函数为

$$p(x,y) = p_X(x)p_Y(y) = \begin{cases} \lambda^2 e^{-\lambda(x+y)}, & x > 0, y > 0, \\ 0, & \text{ 其他.} \end{cases}$$

故
$$E(Z) = \iint_{D_1} 6y \cdot \lambda^2 e^{-\lambda(x+y)} dxdy + \iint_{D_2} (3x+1) \cdot \lambda^2 e^{-\lambda(x+y)} dxdy$$

$$= \int_0^{+\infty} dy \int_0^y 6y \cdot \lambda^2 e^{-\lambda(x+y)} dx + \int_0^{+\infty} dx \int_0^x (3x+1) \cdot \lambda^2 e^{-\lambda(x+y)} dy$$

$$\begin{split} &= \int_{0}^{+\infty} dy \cdot 6y \cdot \left[-\lambda e^{-\lambda(x+y)} \right]_{0}^{y} + \int_{0}^{+\infty} dx \cdot (3x+1) \cdot \left[-\lambda e^{-\lambda(x+y)} \right]_{0}^{x} \\ &= \int_{0}^{+\infty} 6y \cdot \lambda (e^{-\lambda y} - e^{-2\lambda y}) dy + \int_{0}^{+\infty} (3x+1) \cdot \lambda (e^{-\lambda x} - e^{-2\lambda x}) dx \\ &= \int_{0}^{+\infty} 6y \cdot d(-e^{-\lambda y} + \frac{1}{2}e^{-2\lambda y}) + \int_{0}^{+\infty} (3x+1) \cdot d(-e^{-\lambda x} + \frac{1}{2}e^{-2\lambda x}) \\ &= 6y(-e^{-\lambda y} + \frac{1}{2}e^{-2\lambda y}) \bigg|_{0}^{+\infty} - \int_{0}^{+\infty} (-e^{-\lambda y} + \frac{1}{2}e^{-2\lambda y}) \cdot 6 dy \\ &+ (3x+1)(-e^{-\lambda x} + \frac{1}{2}e^{-2\lambda x}) \bigg|_{0}^{+\infty} - \int_{0}^{+\infty} (-e^{-\lambda x} + \frac{1}{2}e^{-2\lambda x}) \cdot 3 dx \\ &= 0 - 6 \bigg(\frac{1}{\lambda} e^{-\lambda y} - \frac{1}{4\lambda} e^{-2\lambda y} \bigg) \bigg|_{0}^{+\infty} + 0 - \bigg(-1 + \frac{1}{2} \bigg) - 3 \bigg(\frac{1}{\lambda} e^{-\lambda x} - \frac{1}{4\lambda} e^{-2\lambda x} \bigg) \bigg|_{0}^{+\infty} \\ &= 6 \bigg(\frac{1}{\lambda} - \frac{1}{4\lambda} \bigg) + \frac{1}{2} + 3 \bigg(\frac{1}{\lambda} - \frac{1}{4\lambda} \bigg) = \frac{1}{2} + \frac{27}{4\lambda} \, . \end{split}$$

17. 设随机变量 $X \sim N(\mu, 1)$, $Y \sim N(0, 1)$, 且 X 与 Y相互独立, 令

$$I = \begin{cases} 1, & Y < X; \\ 0, & X \le Y. \end{cases}$$

试证明:

- (1) $E(I|X=x) = \Phi(x)$;
- (2) $E(\Phi(X)) = P\{Y < X\};$
- (3) $E(\Phi(X)) = \Phi(\mu/\sqrt{2})$.

(提示: X-Y的分布是什么?)

证:(1)记示性函数

$$I_{Y < x} = \begin{cases} 1, & Y < x; \\ 0, & X \le x. \end{cases}$$

故
$$E(I \mid X = x) = E(I_{Y < x}) = \int_{-\infty}^{+\infty} I_{y < x} p_Y(y) dy = \int_{-\infty}^{x} \varphi(y) dy = \Phi(x);$$

(2)
$$E(\Phi(X)) = \int_{-\infty}^{+\infty} \Phi(x) p_X(x) dx = \int_{-\infty}^{+\infty} p_X(x) \left[\int_{-\infty}^{x} \varphi(y) dy \right] dx = \int_{-\infty}^{+\infty} \int_{-\infty}^{x} p_X(x) p_Y(y) dy dx$$
$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{x} p(x, y) dy dx = P\{Y < X\};$$

(3) 因 $X \sim N(\mu, 1)$, $Y \sim N(0, 1)$, 且 X 与 Y 相互独立,有 X - Y 服从正态分布,则 $E(X - Y) = E(X) - E(Y) = \mu - 0 = \mu$, Var(X - Y) = Var(X) + Var(Y) = 2, 即 $X - Y \sim N(\mu, 2)$,

18. 设 X_1, X_2, \cdots 为独立同分布的随机变量序列,且方差存在. 随机变量 N 只取正整数值,Var(N) 存在,且 N 与 $\{X_n\}$ 独立. 证明

$$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = \operatorname{Var}(N)[E(X_{1})]^{2} + E(N)\operatorname{Var}(X_{1}).$$

证:因 X_1, X_2, \cdots 为独立同分布的随机变量序列,且方差存在,有 $E(X_i) = E(X_1)$, $Var(X_i) = Var(X_1)$,

$$\begin{split} & \| X_1, X_2, \dots, Y_2, X_2, \dots, Y_3 \| X_1 \|_{L^2(\Omega)} \| X_2 \|_{L^2(\Omega)} \| X_1 \|_{L^2(\Omega)} \| X_1 \|_{L^2(\Omega)} \| X_2 \|_{L^2(\Omega)} \| X_1 \|_{L^2(\Omega)} \| X_1 \|_{L^2(\Omega)} \| X_2 \|_{L^2(\Omega)} \| X_1 \|_{L^2(\Omega)} \| X_2 \|_{L^2(\Omega)} \| X_1 \|_{L^2(\Omega)} \| X_2 \|_{L^2(\Omega)} \| X_1 \|_{L^2(\Omega)} \|$$

第四章 大数定律与中心极限定理

习题 4.1

1. 如果
$$X_n \xrightarrow{P} X$$
, 且 $X_n \xrightarrow{P} Y$. 试证: $P\{X = Y\} = 1$.

证: 因
$$|X-Y| = |-(X_n-X)+(X_n-Y)| \le |X_n-X|+|X_n-Y|$$
, 对任意的 $\varepsilon > 0$, 有

$$0 \le P\{\mid X - Y \mid \ge \varepsilon\} \le P\left\{\mid X_n - X \mid \ge \frac{\varepsilon}{2}\right\} + P\left\{\mid X_n - Y \mid \ge \frac{\varepsilon}{2}\right\},\,$$

又因
$$X_n \stackrel{P}{\to} X$$
,且 $X_n \stackrel{P}{\to} Y$,有 $\lim_{n \to +\infty} P \left\{ |X_n - X| \ge \frac{\varepsilon}{2} \right\} = 0$, $\lim_{n \to +\infty} P \left\{ |X_n - Y| \ge \frac{\varepsilon}{2} \right\} = 0$,

则
$$P\{|X-Y| \geq \varepsilon\} = 0$$
,取 $\varepsilon = \frac{1}{k}$,有 $P\{|X-Y| \geq \frac{1}{k}\} = 0$,即 $P\{|X-Y| < \frac{1}{k}\} = 1$,

故
$$P\{X = Y\} = P\left\{\bigcap_{k=1}^{+\infty} \left\{ |X - Y| < \frac{1}{k} \right\} \right\} = \lim_{k \to +\infty} P\left\{ |X - Y| < \frac{1}{k} \right\} = 1$$
.

- 2. 如果 $X_n \stackrel{P}{\rightarrow} X$, $Y_n \stackrel{P}{\rightarrow} Y$. 试证:
 - (1) $X_n + Y_n \xrightarrow{P} X + Y$;
 - $(2) X_n Y_n \xrightarrow{P} XY.$

证: (1) 因
$$|(X_n + Y_n) - (X + Y)| = |(X_n - X) + (Y_n - Y)| \le |X_n - X| + |Y_n - Y|$$
, 对任意的 $\varepsilon > 0$, 有

$$0 \le P\{|\left(X_n + Y_n\right) - \left(X + Y\right)| \ge \varepsilon\} \le P\left\{|\left(X_n - X\right)| \ge \frac{\varepsilon}{2}\right\} + P\left\{|\left(X_n - Y\right)| \ge \frac{\varepsilon}{2}\right\},$$

又因
$$X_n \xrightarrow{P} X$$
, $Y_n \xrightarrow{P} Y$, 有 $\lim_{n \to +\infty} P \left\{ |X_n - X| \ge \frac{\varepsilon}{2} \right\} = 0$, $\lim_{n \to +\infty} P \left\{ |Y_n - Y| \ge \frac{\varepsilon}{2} \right\} = 0$,

(2) 因 $|X_nY_n - XY| = |(X_n - X)Y_n + X(Y_n - Y)| \le |X_n - X| \cdot |Y_n| + |X| \cdot |Y_n - Y|$, 对任意的 $\varepsilon > 0$, 有

$$0 \leq P\{\mid X_{n}Y_{n} - XY\mid \geq \varepsilon\} \leq P\left\{\mid X_{n} - X\mid \cdot \mid Y_{n}\mid \geq \frac{\varepsilon}{2}\right\} + P\left\{\mid X\mid \cdot \mid Y_{n} - Y\mid \geq \frac{\varepsilon}{2}\right\},$$

对任意的 h>0,存在 $M_1>0$,使得 $P\{|X|\geq M_1\}<\frac{h}{4}$,存在 $M_2>0$,使得 $P\{|Y|\geq M_2\}<\frac{h}{8}$,

存在
$$N_1 > 0$$
, 当 $n > N_1$ 时, $P\{|Y_n - Y| \ge 1\} < \frac{h}{8}$,

$$|\exists |Y_n| = |(Y_n - Y) + Y| \le |Y_n - Y| + |Y|, \quad \hat{\uparrow} P\{|Y_n| \ge M_2 + 1\} \le P\{|Y_n - Y| \ge 1\} + \{|Y| \ge M_2\} < \frac{h}{4},$$

存在
$$N_2 > 0$$
, 当 $n > N_2$ 时, $P\left\{|X_n - X| \ge \frac{\varepsilon}{2(M_2 + 1)}\right\} < \frac{h}{4}$, 当 $n > \max\{N_1, N_2\}$ 时,有

$$P\left\{ \mid X_{n} - X \mid \cdot \mid Y_{n} \mid \geq \frac{\varepsilon}{2} \right\} \leq P\left\{ \mid X_{n} - X \mid \geq \frac{\varepsilon}{2(M_{2} + 1)} \right\} + P\left\{ \mid Y_{n} \mid \geq M_{2} + 1 \right\} < \frac{h}{4} + \frac{h}{4} = \frac{h}{2},$$

存在
$$N_3 > 0$$
, 当 $n > N_3$ 时, $P\left\{|Y_n - Y| \ge \frac{\varepsilon}{2M_1}\right\} < \frac{h}{4}$, 有

$$P\bigg\{\mid Y_n-Y\mid\cdot\mid X\mid\geq\frac{\varepsilon}{2}\bigg\}\leq P\bigg\{\mid Y_n-Y\mid\geq\frac{\varepsilon}{2M_1}\bigg\}+P\{\mid X\mid\geq M_1\}<\frac{h}{4}+\frac{h}{4}=\frac{h}{2}\ ,$$

则对任意的 h > 0, 当 $n > \max\{N_1, N_2, N_3\}$ 时, 有

$$0 \le P\{\mid X_n Y_n - XY \mid \ge \varepsilon\} \le P\left\{\mid X_n - X \mid \cdot \mid Y_n \mid \ge \frac{\varepsilon}{2}\right\} + P\left\{\mid X \mid \cdot \mid Y_n - Y \mid \ge \frac{\varepsilon}{2}\right\} < \frac{h}{2} + \frac{h}{2} = h,$$

故
$$\lim_{n\to+\infty} P\{|X_nY_n - XY| \ge \varepsilon\} = 0$$
,即 $X_nY_n \stackrel{P}{\to} XY$.

3. 如果 $X_n \xrightarrow{P} X$, g(x) 是直线上的连续函数, 试证: $g(X_n) \xrightarrow{P} g(X)$.

证:对任意的 h>0,存在 M>0,使得 $P\{|X|\geq M\}<\frac{h}{4}$,

存在
$$N_1 > 0$$
, 当 $n > N_1$ 时, $P\{|X_n - X| \ge 1\} < \frac{h}{4}$,

$$|\Xi|X_n| = |(X_n - X) + X| \le |X_n - X| + |X|,$$

$$\text{ If } P\{\mid X_n\mid \geq M+1\} \leq P\{\mid X_n-X\mid \geq 1\} + P\{\mid X\mid \geq M\} < \frac{h}{4} + \frac{h}{4} = \frac{h}{2} \text{ ,}$$

因 g(x) 是直线上的连续函数,有 g(x) 在闭区间 [-(M+1), M+1] 上连续,必一致连续,对任意的 $\varepsilon > 0$,存在 $\delta > 0$,当 $|x-y| < \delta$ 时,有 $|g(x)-g(y)| < \varepsilon$,

存在
$$N_2 > 0$$
, 当 $n > N_2$ 时, $P\{|X_n - X| \ge \delta\} < \frac{h}{4}$,

则对任意的 h > 0, 当 $n > \max\{N_1, N_2\}$ 时, 有

$$0 \le P\{|g(X_n) - g(X)| \ge \varepsilon\} \le P\{\{|X_n - X| \ge \delta\} \cup \{|X_n| \ge M + 1\} \cup \{|X| \ge M\}\}$$

$$\leq P\{|X_n - X| \geq \delta\} + P\{|X_n| \geq M + 1\} + P\{|X| \geq M\} < \frac{h}{4} + \frac{h}{2} + \frac{h}{4} = h,$$

故
$$\lim_{n\to+\infty} P\{|g(X_n)-g(X)|\geq \varepsilon\}=0$$
,即 $g(X_n)\stackrel{P}{\to}g(X)$.

4. 如果 $X_n \xrightarrow{P} a$,则对任意常数c,有 $cX_n \xrightarrow{P} ca$.

证: 当
$$c = 0$$
 时, 有 $cX_n = 0$, $ca = 0$, 显然 $cX_n \xrightarrow{P} ca$;

当
$$c \neq 0$$
 时,对任意的 $\varepsilon > 0$,有 $\lim_{n \to +\infty} P\left\{ |X_n - a| \ge \frac{\varepsilon}{|c|} \right\} = 0$,

故
$$\lim_{n \to +\infty} P\{|cX_n - ca| \ge \varepsilon\} = 0$$
,即 $cX_n \xrightarrow{P} ca$.

5. 试证:
$$X_n \stackrel{P}{\to} X$$
 的充要条件为: $n \to +\infty$ 时,有 $E\left(\frac{|X_n - X|}{1 + |X_n - X|}\right) \to 0$.

证: 以连续随机变量为例进行证明,设 $X_n - X$ 的密度函数为p(y),

必要性: 设
$$X_n \stackrel{P}{\to} X$$
, 对任意的 $\varepsilon > 0$, 都有 $\lim_{n \to +\infty} P\{|X_n - X| \ge \varepsilon\} = 0$,

对
$$\frac{\varepsilon^2}{1+\varepsilon} > 0$$
,存在 $N > 0$,当 $n > N$ 时, $P\{|X_n - X| \ge \varepsilon\} < \frac{\varepsilon^2}{1+\varepsilon}$,

$$\mathbb{I} E\left(\frac{|X_n - X|}{1 + |X_n - X|}\right) = \int_{-\infty}^{+\infty} \frac{|y|}{1 + |y|} p(y) dy = \int_{|y| < \varepsilon} \frac{|y|}{1 + |y|} p(y) dy + \int_{|y| \ge \varepsilon} \frac{|y|}{1 + |y|} p(y) dy$$

$$\leq \int_{|y| < \varepsilon} \frac{\varepsilon}{1 + \varepsilon} p(y) dy + \int_{|y| \ge \varepsilon} p(y) dy = \frac{\varepsilon}{1 + \varepsilon} P\{|X_n - X| < \varepsilon\} + P\{|X_n - X| \ge \varepsilon\} < \frac{\varepsilon}{1 + \varepsilon} + \frac{\varepsilon^2}{1 + \varepsilon} = \varepsilon,$$

故
$$n \to +\infty$$
 时,有 $E\left(\frac{\mid X_n - X\mid}{1 + \mid X_n - X\mid}\right) \to 0$;

充分性: 设
$$n \to +\infty$$
时,有 $E\left(\frac{|X_n - X|}{1 + |X_n - X|}\right) \to 0$,

$$\boxtimes P\{|X_n - X| \ge \varepsilon\} = \int_{|y| \ge \varepsilon} p(y) dy = \frac{1 + \varepsilon}{\varepsilon} \int_{|y| \ge \varepsilon} \frac{\varepsilon}{1 + \varepsilon} p(y) dy \le \frac{1 + \varepsilon}{\varepsilon} \int_{|y| \ge \varepsilon} \frac{|y|}{1 + |y|} p(y) dy$$

$$\leq \frac{1+\varepsilon}{\varepsilon} \int_{-\infty}^{+\infty} \frac{|y|}{1+|y|} p(y) dy = \frac{1+\varepsilon}{\varepsilon} E\left(\frac{|X_n - X|}{1+|X_n - X|}\right),$$

故
$$\lim_{n\to+\infty} P\{|X_n - X| \ge \varepsilon\} = 0$$
,即 $X_n \stackrel{P}{\to} X$.

6. 设 *D*(*x*)为退化分布:

$$D(x) = \begin{cases} 0, & x < 0; \\ 1, & x \ge 0. \end{cases}$$

试问下列分布函数列的极限函数是否仍是分布函数? (其中 $n=1,2,\cdots$.)

- (1) $\{D(x+n)\};$
- (2) $\{D(x+1/n)\};$
- (3) $\{D(x-1/n)\}.$

解: (1) 对任意实数 x, 当 n > -x 时, 有 x + n > 0, D(x + n) = 1, 即 $\lim_{n \to +\infty} D(x + n) = 1$,

则 $\{D(x+n)\}$ 的极限函数是常量函数 f(x)=1,有 $f(-\infty)=1 \neq 0$,故 $\{D(x+n)\}$ 的极限函数不是分布函数;

(2) 若
$$x \ge 0$$
, 有 $x + \frac{1}{n} > 0$, $D\left(x + \frac{1}{n}\right) = 1$, 即 $\lim_{n \to +\infty} D\left(x + \frac{1}{n}\right) = 1$,

若
$$x < 0$$
, 当 $n > -\frac{1}{x}$ 时,有 $x + \frac{1}{n} < 0$, $D\left(x + \frac{1}{n}\right) = 0$, 即 $\lim_{n \to +\infty} D\left(x + \frac{1}{n}\right) = 0$,

则 $\lim_{n\to+\infty} D\left(x+\frac{1}{n}\right) = \begin{cases} 0, & x<0; \\ 1, & x\geq0. \end{cases}$ 这是在 0 点处单点分布的分布函数,满足分布函数的基本性质,

故
$$\left\{ D\left(x+\frac{1}{n}\right)\right\}$$
 的极限函数是分布函数;

(3) 若
$$x \le 0$$
, 有 $x - \frac{1}{n} < 0$, $D\left(x - \frac{1}{n}\right) = 0$, 即 $\lim_{n \to +\infty} D\left(x - \frac{1}{n}\right) = 0$,

若
$$x > 0$$
, 当 $n > \frac{1}{x}$ 时, 有 $x - \frac{1}{n} > 0$, $D\left(x - \frac{1}{n}\right) = 1$, 即 $\lim_{n \to +\infty} D\left(x - \frac{1}{n}\right) = 1$,

则
$$\lim_{n\to+\infty} D\left(x-\frac{1}{n}\right) = \begin{cases} 0, & x\leq0;\\ 1, & x>0. \end{cases}$$
 在 $x=0$ 处不是右连续,

故
$$\left\{ D\left(x-\frac{1}{n}\right)\right\}$$
 的极限函数不是分布函数.

- 7. 设分布函数列 $\{F_n(x)\}$ 弱收敛于连续的分布函数 F(x),试证: $\{F_n(x)\}$ 在 $(-\infty, +\infty)$ 上一致收敛于分布函数 F(x).
- 证: 因 F(x) 为连续的分布函数,有 $F(-\infty)=0$, $F(+\infty)=1$,对任意的 $\varepsilon>0$,取正整数 $k>\frac{2}{\varepsilon}$,

则存在分点
$$x_1 < x_2 < \dots < x_{k-1}$$
, 使得 $F(x_i) = \frac{i}{k}$, $i = 1, 2, \dots, k-1$, 并取 $x_0 = -\infty$, $x_k = +\infty$,

可得
$$F(x_i) - F(x_{i-1}) = \frac{1}{k} < \frac{\varepsilon}{2}, \quad i = 1, 2, \dots, k-1, k$$

因 $\{F_n(x)\}$ 弱收敛于 F(x),且 F(x) 连续,有 $\{F_n(x)\}$ 在每一点处都收敛于 F(x),

则存在
$$N > 0$$
, 当 $n > N$ 时, $|F_n(x_i) - F(x_i)| < \frac{\varepsilon}{2}$, $i = 1, 2, \dots, k-1$,

且显然有
$$|F_n(x_0) - F(x_0)| = 0 < \frac{\varepsilon}{2}, |F_n(x_k) - F(x_k)| = 0 < \frac{\varepsilon}{2},$$

对任意实数 x, 必存在 j, $1 \le j \le k$, 有 $x_{i-1} \le x < x_i$,

即对任意的 $\varepsilon > 0$ 和任意实数 x, 总存在 N > 0, 当 n > N 时,都有 $|F_n(x) - F(x)| < \varepsilon$,

故 $\{F_n(x)\}$ 在 $(-\infty, +\infty)$ 上一致收敛于分布函数 F(x).

- 8. 如果 $X_n \stackrel{L}{\to} X$, 且数列 $a_n \to a$, $b_n \to b$. 试证: $a_n X_n + b_n \stackrel{L}{\to} aX + b$.
- 证:设 y_0 是 $F_{aX+b}(y)$ 的任一连续点,

则对任意的
$$\varepsilon$$
> 0,存在 h > 0,当 $|y-y_0| < h$ 时, $|F_{aX+b}(y) - F_{aX+b}(y_0)| < \frac{\varepsilon}{4}$,

又设 y 是满足 $|y-y_0| < h$ 的 $F_{aX+b}(y)$ 的任一连续点,

因
$$F_{aX+b}(y) = P\{aX + b \le y\} = P\left\{X \le \frac{y-b}{a}\right\} = F_X\left(\frac{y-b}{a}\right)$$
,有 $X = \frac{y-b}{a}$ 是 $F_X(x)$ 的连续点,且 $X_n \stackrel{L}{\to} X$,

有
$$\lim_{n\to+\infty} F_{X_n}(x) = F_X(x)$$
 ,存在 N_1 ,当 $n > N_1$ 时, $|F_{X_n}(x) - F_X(x)| < \frac{\varepsilon}{4}$,即 $|F_{aX_n+b}(y) - F_{aX+b}(y)| < \frac{\varepsilon}{4}$,

则当 $n > N_1$ 且 $|y - y_0| < h$ 时,

$$|F_{aX_n+b}(y) - F_{aX+b}(y_0)| \le |F_{aX_n+b}(y) - F_{aX+b}(y)| + |F_{aX+b}(y) - F_{aX+b}(y_0)| < \frac{\varepsilon}{2},$$

因 X 的分布函数 $F_X(x)$ 满足 $F_X(-\infty) = 0$, $F_X(+\infty) = 1$, $F_X(x)$ 单调不减且几乎处处连续,

存在
$$M$$
,使得 $F_X(x)$ 在 $x = \pm M$ 处连续,且 $F_X(M) > 1 - \frac{\varepsilon}{4}$, $F_X(-M) < \frac{\varepsilon}{4}$,

因
$$X_n \stackrel{L}{\to} X$$
,有 $\lim_{n \to +\infty} F_{X_n}(M) = F_X(M) > 1 - \frac{\varepsilon}{4}$, $\lim_{n \to +\infty} F_{X_n}(-M) = F_X(-M) < \frac{\varepsilon}{4}$,

则存在
$$N_2$$
, 当 $n > N_2$ 时, $F_{X_n}(M) > 1 - \frac{\varepsilon}{4}$, $F_{X_n}(-M) < \frac{\varepsilon}{4}$,

可得
$$P\{|X_n|>M\}=F_{X_n}(-M)+1-F_{X_n}(M)<\frac{\varepsilon}{2}$$
,

因数列
$$a_n \to a$$
, $b_n \to b$,存在 N_3 ,当 $n > N_3$ 时, $|a_n - a| < \frac{h}{4M}$, $|b_n - b| < \frac{h}{4}$,

可得当 $n > \max\{N_2, N_3\}$ 时,

$$P\left\{ |(a_n X_n + b_n) - (a X_n + b)| > \frac{h}{2} \right\} = P\left\{ |(a_n - a) X_n + (b_n - b)| > \frac{h}{2} \right\}$$

$$\leq P\bigg\{\mid a_n-a\mid\cdot\mid X_n\mid+\mid b_n-b\mid>\frac{h}{2}\bigg\}\leq P\bigg\{\frac{h}{4M}\cdot\mid X_n\mid+\frac{h}{4}>\frac{h}{2}\bigg\}=P\{\mid X_n\mid>M\}<\frac{\varepsilon}{2}\;,$$

$$\text{If } F_{a_n X_n + b_n}(y_0) = P\{a_n X_n + b_n \le y_0\} \le P\left\{\left\{a X_n + b \le y_0 + \frac{h}{2}\right\} \cup \left\{\left|\left(a_n X_n + b_n\right) - \left(a X_n + b\right)\right| > \frac{h}{2}\right\}\right\}$$

$$\leq P\left\{aX_n+b\leq y_0+\frac{h}{2}\right\}+P\left\{\left|\left(a_nX_n+b_n\right)-\left(aX_n+b\right)\right|>\frac{h}{2}\right\}< F_{aX_n+b}\left(y_0+\frac{h}{2}\right)+\frac{\varepsilon}{2}\;,$$

$$\exists . F_{aX_n+b} \left(y_0 - \frac{h}{2} \right) = P \left\{ aX_n + b \le y_0 - \frac{h}{2} \right\} \le P \left\{ \left\{ a_n X_n + b_n \le y_0 \right\} \bigcup \left\{ \left| \left(a_n X_n + b_n \right) - \left(aX_n + b \right) \right| > \frac{h}{2} \right\} \right\}$$

$$\leq P\{a_nX_n + b_n \leq y_0\} + P\left\{ |(a_nX_n + b_n) - (aX_n + b)| > \frac{h}{2} \right\} < F_{a_nX_n + b_n}(y_0) + \frac{\varepsilon}{2},$$

$$\operatorname{EP} F_{aX_n+b} \left(y_0 - \frac{h}{2} \right) - \frac{\varepsilon}{2} < F_{a_nX_n+b_n} (y_0) < F_{aX_n+b} \left(y_0 + \frac{h}{2} \right) + \frac{\varepsilon}{2} ,$$

因当
$$n > N_1$$
 且 $|y - y_0| < h$ 时, $F_{aX+b}(y_0) - \frac{\varepsilon}{2} < F_{aX_n+b}(y) < F_{aX+b}(y_0) + \frac{\varepsilon}{2}$,

在区间 $\left(y_0 + \frac{h}{2}, y_0 + h\right)$ 取 $F_{aX+b}(y)$ 的任一连续点 y_1 , 满足 $|y_1 - y_0| < h$, 当 $n > \max\{N_1, N_2, N_3\}$ 时,

$$F_{a_nX_n+b_n}(y_0) < F_{aX_n+b}\left(y_0 + \frac{h}{2}\right) + \frac{\varepsilon}{2} \le F_{aX_n+b}(y_1) + \frac{\varepsilon}{2} < F_{aX+b}(y_0) + \varepsilon,$$

在区间 $\left(y_0 - h, y_0 - \frac{h}{2}\right)$ 取 $F_{aX+b}(y)$ 的任一连续点 y_2 , 满足 $|y_2 - y_0| < h$, 当 $n > \max\{N_1, N_2, N_3\}$ 时,

$$F_{a_nX_n+b_n}(y_0) > F_{aX_n+b}\bigg(y_0 - \frac{h}{2}\bigg) - \frac{\varepsilon}{2} \geq F_{aX_n+b}(y_2) - \frac{\varepsilon}{2} > F_{aX+b}(y_0) - \varepsilon \ ,$$

即对于 $F_{aX+b}(y)$ 的任一连续点 y_0 ,当 $n \ge \max\{N_1,N_2,N_3\}$ 时, $|F_{a_nX_n+b_n}(y_0) - F_{aX+b}(y_0)| < \varepsilon$,

故
$$F_{a_nX_n+b_n}(y) \xrightarrow{W} F_{aX+b}(y)$$
, $a_nX_n + b_n \xrightarrow{L} aX + b$.

9. 如果
$$X_n \xrightarrow{L} X$$
, $Y_n \xrightarrow{P} a$, 试证: $X_n + Y_n \xrightarrow{L} X + a$.

证:设 y_0 是 $F_{X+a}(y)$ 的任一连续点,

则对任意的
$$\varepsilon > 0$$
,存在 $h > 0$,当 $|y - y_0| < h$ 时, $|F_{X+a}(y) - F_{X+a}(y_0)| < \frac{\varepsilon}{4}$,

又设 y 是满足 $|y-y_0| < h$ 的 $F_{X+a}(y)$ 的任一连续点,

因
$$F_{X+a}(y) = P\{X+a \le y\} = P\{X \le y-a\} = F_X(y-a)$$
, 有 $x = y-a$ 是 $F_X(x)$ 的连续点,且 $X_n \stackrel{L}{\to} X$,

有
$$\lim_{n\to+\infty} F_{X_n}(x) = F_X(x)$$
,存在 N_1 ,当 $n > N_1$ 时, $|F_{X_n}(x) - F_X(x)| < \frac{\varepsilon}{4}$,即 $|F_{X_n+a}(y) - F_{X+a}(y)| < \frac{\varepsilon}{4}$,

则当
$$n > N_1$$
 且 $|y - y_0| < h$ 时, $|F_{X_n + a}(y) - F_{X + a}(y_0)| \le |F_{X_n + a}(y) - F_{X + a}(y)| + |F_{X + a}(y) - F_{X + a}(y_0)| < \frac{\varepsilon}{2}$,

$$\text{If } F_{X_n+Y_n}(y_0) = P\{X_n + Y_n \leq y_0\} \leq P\left\{\left\{X_n + a \leq y_0 + \frac{h}{2}\right\} \cup \left\{|Y_n - a| > \frac{h}{2}\right\}\right\}$$

$$\leq P\left\{X_n + a \leq y_0 + \frac{h}{2}\right\} + P\left\{|Y_n - a| > \frac{h}{2}\right\} < F_{X_n + a}\left(y_0 + \frac{h}{2}\right) + \frac{\varepsilon}{2},$$

$$\leq P\{X_n + Y_n \leq y_0\} + P\{|Y_n - a| > \frac{h}{2}\} < F_{X_n + Y_n}(y_0) + \frac{\varepsilon}{2},$$

$$\exists \mathbb{P} \; F_{X_n+a}\bigg(y_0-\frac{h}{2}\bigg) - \frac{\varepsilon}{2} < F_{X_n+Y_n}(y_0) < F_{X_n+a}\bigg(y_0+\frac{h}{2}\bigg) + \frac{\varepsilon}{2} \; ,$$

因当
$$n > N_1$$
 且 $|y - y_0| < h$ 时, $F_{X+a}(y_0) - \frac{\varepsilon}{2} < F_{X_n+a}(y) < F_{X+a}(y_0) + \frac{\varepsilon}{2}$,

在区间
$$\left(y_0 + \frac{h}{2}, y_0 + h\right)$$
取 $F_{X+a}(y)$ 的任一连续点 y_1 , 满足 $|y_1 - y_0| < h$, 当 $n > \max\{N_1, N_2\}$ 时,

$$F_{X_n+Y_n}(y_0) < F_{X_n+a}\left(y_0 + \frac{h}{2}\right) + \frac{\varepsilon}{2} \le F_{X_n+a}(y_1) + \frac{\varepsilon}{2} < F_{X+a}(y_0) + \varepsilon,$$

在区间 $\left(y_0 - h, y_0 - \frac{h}{2}\right)$ 取 $F_{X+a}(y)$ 的任一连续点 y_2 ,满足 $|y_2 - y_0| < h$,当 $n > \max\{N_1, N_2\}$ 时,

$$F_{X_n+Y_n}(y_0) > F_{X_n+a}\left(y_0 - \frac{h}{2}\right) - \frac{\varepsilon}{2} \ge F_{X_n+a}(y_2) - \frac{\varepsilon}{2} > F_{X+a}(y_0) - \varepsilon,$$

即对于 $F_{X+a}(y)$ 的任一连续点 y_0 ,当 $n \ge \max\{N_1, N_2\}$ 时, $|F_{X_n+Y_n}(y_0) - F_{X+a}(y_0)| < \varepsilon$,

故
$$F_{X_n+Y_n}(y) \xrightarrow{W} F_{X+a}(y)$$
, $X_n + Y_n \xrightarrow{L} X + a$.

- 10. 如果 $X_n \xrightarrow{L} X$, $Y_n \xrightarrow{P} 0$, 试证: $X_n Y_n \xrightarrow{P} 0$.
- 证: 因 X 的分布函数 $F_X(x)$ 满足 $F_X(-\infty) = 0$, $F_X(+\infty) = 1$, $F_X(x)$ 单调不减且几乎处处连续,

则对任意的 h > 0,存在 M,使得 $F_X(x)$ 在 $x = \pm M$ 处连续,且 $F_X(M) > 1 - \frac{h}{4}$, $F_X(-M) < \frac{h}{4}$,

因
$$X_n \stackrel{L}{\to} X$$
,有 $\lim_{n \to +\infty} F_{X_n}(M) = F_X(M) > 1 - \frac{h}{4}$, $\lim_{n \to +\infty} F_{X_n}(-M) = F_X(-M) < \frac{h}{4}$,

则存在 N_1 , 当 $n > N_1$ 时, $F_{X_n}(M) > 1 - \frac{h}{4}$, $F_{X_n}(-M) < \frac{h}{4}$,

可得
$$P\{|X_n|>M\}=F_{X_n}(-M)+1-F_{X_n}(M)<\frac{h}{2}$$
,

因 $Y_n \stackrel{P}{\to} 0$,对任意的 $\varepsilon > 0$,有 $\lim_{n \to +\infty} P \left\{ |Y_n| > \frac{\varepsilon}{M} \right\} = 0$,存在 N_2 ,当 $n > N_2$ 时, $P \left\{ |Y_n| > \frac{\varepsilon}{M} \right\} < \frac{h}{2}$,

则当 $n > \max\{N_1, N_2\}$ 时,有

$$P\{\mid X_{n}Y_{n}\mid >\varepsilon\}\leq P\bigg\{\{\mid X_{n}\mid >M\}\bigcup\left\{\mid Y_{n}\mid >\frac{\varepsilon}{M}\right\}\bigg\}\leq P\{\mid X_{n}\mid >M\}+P\bigg\{\mid Y_{n}\mid >\frac{\varepsilon}{M}\bigg\}< h\ ,$$

故 $\lim_{n\to+\infty} P\{|X_nY_n|>\varepsilon\}=0$,即 $X_nY_n\stackrel{P}{\to}0$.

- 11. 如果 $X_n \stackrel{L}{\to} X$, $Y_n \stackrel{P}{\to} a$, 且 $Y_n \neq 0$, 常数 $a \neq 0$, 试证: $\frac{X_n}{Y_n} \stackrel{L}{\to} \frac{X}{a}$.
- 证: 设 y_0 是 $F_{X/a}(y)$ 的任一连续点,

则对任意的 $\varepsilon > 0$,存在 h > 0,当 $|y - y_0| < h$ 时, $|F_{X/a}(y) - F_{X/a}(y_0)| < \frac{\varepsilon}{\Lambda}$,

又设 y 是满足 $|y-y_0| < h$ 的 $F_{X/a}(y)$ 的任一连续点,

因
$$F_{X/a}(y) = P\left\{\frac{X}{a} \le y\right\} = P\{X \le ay\} = F_X(ay)$$
,有 $x = ay$ 是 $F_X(x)$ 的连续点,且 $X_n \stackrel{L}{\longrightarrow} X$,

有 $\lim_{n\to+\infty} F_{X_n}(x) = F_X(x)$, 存在 N_1 , 当 $n > N_1$ 时, $|F_{X_n}(x) - F_X(x)| < \frac{\varepsilon}{4}$, 即 $|F_{X_n/a}(y) - F_{X/a}(y)| < \frac{\varepsilon}{4}$, 则 当 $n > N_1$ 且 $|y - y_0| < h$ 时,

$$|F_{X_n/a}(y) - F_{X/a}(y_0)| \le |F_{X_n/a}(y) - F_{X/a}(y)| + |F_{X/a}(y) - F_{X/a}(y_0)| < \frac{\varepsilon}{2},$$

因 X 的分布函数 $F_X(x)$ 满足 $F_X(-\infty) = 0$, $F_X(+\infty) = 1$, $F_X(x)$ 单调不减且几乎处处连续,

存在 M,使得 $F_X(x)$ 在 $x=\pm M$ 处连续,且 $F_X(M)>1-\frac{\varepsilon}{12}$, $F_X(-M)<\frac{\varepsilon}{12}$,

因
$$X_n \stackrel{L}{\to} X$$
,有 $\lim_{n \to +\infty} F_{X_n}(M) = F_X(M) > 1 - \frac{\varepsilon}{12}$, $\lim_{n \to +\infty} F_{X_n}(-M) = F_X(-M) < \frac{\varepsilon}{12}$,

则存在 N_2 , 当 $n > N_2$ 时, $F_{X_n}(M) > 1 - \frac{\varepsilon}{12}$, $F_{X_n}(-M) < \frac{\varepsilon}{12}$,

可得 $P\{|X_n|>M\}=F_{X_n}(-M)+1-F_{X_n}(M)<\frac{\varepsilon}{6}$,

存在 $N_3 > 0$, 当 $n > N_3$ 时, $P\left\{|Y_n - a| > \frac{|a|}{2}\right\} < \frac{\varepsilon}{6}$, 有 $P\left\{|Y_n| < \frac{|a|}{2}\right\} < \frac{\varepsilon}{6}$, 且 $P\left\{|Y_n - a| > \frac{a^2h}{4M}\right\} < \frac{\varepsilon}{6}$,

可得当 $n > \max\{N_1, N_2, N_3\}$ 时

$$\begin{split} P\bigg\{\bigg|\frac{X_n}{Y_n} - \frac{X_n}{a}\bigg| > \frac{h}{2}\bigg\} &= P\bigg\{\bigg|\frac{X_n(a - Y_n)}{aY_n}\bigg| > \frac{h}{2}\bigg\} = P\bigg\{\frac{|X_n| \cdot |Y_n - a|}{|a| \cdot |Y_n|} > \frac{h}{2}\bigg\} \\ &\leq P\bigg\{\{|X_n| > M\} \cup \bigg\{|Y_n - a| > \frac{a^2h}{4M}\bigg\} \cup \bigg\{|Y_n| < \frac{|a|}{2}\bigg\}\bigg\} \\ &\leq P\{|X_n| > M\} + P\bigg\{|Y_n - a| > \frac{a^2h}{4M}\bigg\} + P\bigg\{|Y_n| < \frac{|a|}{2}\bigg\} < \frac{\varepsilon}{2}\,, \end{split}$$

$$\text{If } F_{X_n/Y_n}(y_0) = P\left\{\frac{X_n}{Y_n} \le y_0\right\} \le P\left\{\left\{\frac{X_n}{a} \le y_0 + \frac{h}{2}\right\} \cup \left\{\left|\frac{X_n}{Y_n} - \frac{X_n}{a}\right| > \frac{h}{2}\right\}\right\}$$

$$\leq P\left\{\frac{X_n}{a} \leq y_0 + \frac{h}{2}\right\} + P\left\{\left|\frac{X_n}{Y_n} - \frac{X_n}{a}\right| > \frac{h}{2}\right\} < F_{X_n/a}\left(y_0 + \frac{h}{2}\right) + \frac{\varepsilon}{2},$$

$$\exists \exists F_{X_n/a} \left(y_0 - \frac{h}{2} \right) = P\left\{ \frac{X_n}{a} \le y_0 - \frac{h}{2} \right\} \le P\left\{ \left\{ \frac{X_n}{Y_n} \le y_0 \right\} \cup \left\{ \left| \frac{X_n}{Y_n} - \frac{X_n}{a} \right| > \frac{h}{2} \right\} \right\}$$

$$\leq P\left\{\frac{X_n}{Y_n} \leq y_0\right\} + P\left\{\left|\frac{X_n}{Y_n} - \frac{X_n}{a}\right| > \frac{h}{2}\right\} < F_{X_n/Y_n}(y_0) + \frac{\varepsilon}{2},$$

$$\operatorname{EP} F_{X_n/a} \left(y_0 - \frac{h}{2} \right) - \frac{\varepsilon}{2} < F_{X_n/Y_n}(y_0) < F_{X_n/a} \left(y_0 + \frac{h}{2} \right) + \frac{\varepsilon}{2} ,$$

因当
$$n > N_1$$
 且 $|y - y_0| < h$ 时, $F_{X/a}(y_0) - \frac{\varepsilon}{2} < F_{X_n/a}(y) < F_{X/a}(y_0) + \frac{\varepsilon}{2}$,

在区间 $\left(y_0 + \frac{h}{2}, y_0 + h\right)$ 取 $F_{X/a}(y)$ 的任一连续点 y_1 ,满足 $|y_1 - y_0| < h$,当 $n > \max\{N_1, N_2, N_3\}$ 时,

$$F_{X_n/Y_n}(y_0) < F_{X_n/a}\left(y_0 + \frac{h}{2}\right) + \frac{\varepsilon}{2} \le F_{X_n/a}(y_1) + \frac{\varepsilon}{2} < F_{X/a}(y_0) + \varepsilon,$$

在区间 $\left(y_0 - h, y_0 - \frac{h}{2}\right)$ 取 $F_{X/a}(y)$ 的任一连续点 y_2 ,满足 $|y_2 - y_0| < h$,当 $n > \max\{N_1, N_2, N_3\}$ 时,

$$F_{X_n/Y_n}(y_0) > F_{X_n/a}\left(y_0 - \frac{h}{2}\right) - \frac{\varepsilon}{2} \ge F_{X_n/a}(y_2) - \frac{\varepsilon}{2} > F_{X/a}(y_0) - \varepsilon,$$

即对于 $F_{X/a}(y)$ 的任一连续点 y_0 , 当 $n > \max\{N_1, N_2, N_3\}$ 时, $|F_{X_n/Y_n}(y_0) - F_{X/a}(y_0)| < \varepsilon$,

故
$$F_{X_n/Y_n}(y) \stackrel{W}{\rightarrow} F_{X/a}(y)$$
, $\frac{X_n}{Y_n} \stackrel{L}{\rightarrow} \frac{X}{a}$.

12. 设随机变量 X_n 服从柯西分布, 其密度函数为

$$p_n(x) = \frac{n}{\pi(1 + n^2 x^2)}, -\infty < x < +\infty$$
.

试证: $X_n \stackrel{P}{\to} 0$.

证: 对任意的 $\varepsilon > 0$, $P\{|X_n| < \varepsilon\} = \int_{-\varepsilon}^{\varepsilon} \frac{n}{\pi(1+n^2x^2)} dx = \frac{1}{\pi} \arctan(nx) \Big|_{-\varepsilon}^{\varepsilon} = \frac{2}{\pi} \arctan(n\varepsilon)$,

$$\iiint_{n \to +\infty} P\{|X_n - 0| < \varepsilon\} = \frac{2}{\pi} \lim_{n \to +\infty} \arctan(n\varepsilon) = \frac{2}{\pi} \cdot \frac{\pi}{2} = 1,$$

故
$$X_n \stackrel{P}{\to} 0$$
.

13. 设随机变量序列{X_n}独立同分布,其密度函数为

$$p(x) = \begin{cases} \frac{1}{\beta}, & 0 < x < \beta; \\ 0, & 其他. \end{cases}$$

其中常数 $\beta > 0$,令 $Y_n = \max\{X_1, X_2, \dots, X_n\}$,试证: $Y_n \stackrel{P}{\rightarrow} \beta$.

证: 对任意的 $\varepsilon > 0$, $P\{|Y_n - \beta| < \varepsilon\} = P\{\beta - \varepsilon < Y_n < \beta + \varepsilon\} = P\{\max\{X_1, X_2, \dots, X_n\} > \beta - \varepsilon\}$ = $1 - P\{\max\{X_1, X_2, \dots, X_n\} \le \beta - \varepsilon\} = 1 - P\{X_1 \le \beta - \varepsilon\} P\{X_2 \le \beta - \varepsilon\} \dots P\{X_n \le \beta - \varepsilon\}$

$$=1-\left(\frac{\beta-\varepsilon}{\beta}\right)^n$$
,

$$\mathbb{I}\lim_{n\to+\infty} P\{|Y_n-\beta|<\varepsilon\} = \lim_{n\to+\infty} \left[1-\left(\frac{\beta-\varepsilon}{\beta}\right)^n\right] = 1,$$

故
$$Y_n \stackrel{P}{\to} \beta$$
.

14. 设随机变量序列 $\{X_n\}$ 独立同分布,其密度函数为

$$p(x) = \begin{cases} e^{-(x-a)}, & x \ge a; \\ 0, & x < a. \end{cases}$$

其中 $Y_n = \min\{X_1, X_2, \dots, X_n\}$, 试证: $Y_n \xrightarrow{P} a$.

证: 对任意的
$$\varepsilon > 0$$
, $P\{|Y_n - a| < \varepsilon\} = P\{a - \varepsilon < Y_n < a + \varepsilon\} = P\{\min\{X_1, X_2, \dots, X_n\} < a + \varepsilon\}$
= $1 - P\{\min\{X_1, X_2, \dots, X_n\} \ge a + \varepsilon\} = 1 - P\{X_1 \ge a + \varepsilon\} P\{X_2 \ge a + \varepsilon\} \dots P\{X_n \ge a + \varepsilon\}$

$$=1-\left(\int_{a+\varepsilon}^{+\infty} e^{-(x-a)} dx\right)^{n} = 1-\left(-e^{-(x-a)}\Big|_{a+\varepsilon}^{+\infty}\right)^{n} = 1-e^{-n\varepsilon},$$

 $\text{III} \lim_{n \to +\infty} P\{|Y_n - a| < \varepsilon\} = \lim_{n \to +\infty} (1 - e^{-n\varepsilon}) = 1 ,$

故 $Y_n \stackrel{P}{\to} a$.

- 15. 设随机变量序列 $\{X_n\}$ 独立同分布,且 $X_i \sim U(0,1)$. 令 $Y_n = \left(\prod_{i=1}^n X_i\right)^{\frac{1}{n}}$,试证明: $Y_n \xrightarrow{P} c$,其中 c 为常数,并求出 c.
- 证: 设 $Z_n = \ln Y_n = \frac{1}{n} \ln \left(\prod_{i=1}^n X_i \right) = \frac{1}{n} \sum_{i=1}^n \ln X_i$, 因 $X_i \sim U(0, 1)$,

$$\mathbb{E}(\ln X_i) = \int_0^1 \ln x dx = (x \ln x - x)\Big|_0^1 = -1, \quad E(\ln^2 X_i) = \int_0^1 \ln^2 x dx = (x \ln^2 x - 2x \ln x + 2x)\Big|_0^1 = 2,$$

$$Var(\ln X_i) = E(\ln^2 X_i) - [E(\ln X_i)]^2 = 1$$

可得
$$E(Z_n) = \frac{1}{n} \sum_{i=1}^n E(\ln X_i) = -1$$
, $Var(Z_n) = \frac{1}{n^2} \sum_{i=1}^n Var(\ln X_i) = \frac{1}{n}$,

由切比雪夫不等式,可得对任意的 $\varepsilon > 0$, $P\{|Z_n - E(Z_n)| \ge \varepsilon\} \le \frac{\operatorname{Var}(Z_n)}{\varepsilon^2} = \frac{1}{n\varepsilon^2}$,

$$\text{If } 0 \leq \lim_{n \to +\infty} P\{|Z_n - E(Z_n)| \geq \varepsilon\} \leq \lim_{n \to +\infty} \frac{1}{n\varepsilon^2} = 0 \text{, } \text{If } \lim_{n \to +\infty} P\{|Z_n - E(Z_n)| \geq \varepsilon\} = 0 \text{, } Z_n \xrightarrow{P} E(Z_n) = -1 \text{,}$$

因 $Y_n = e^{Z_n}$,且函数 e^x 是直线上的连续函数,根据本节第 3 题的结论,可得 $Y_n = e^{Z_n} \xrightarrow{P} e^{-1}$,

故 $Y_n \xrightarrow{P} c$, 其中 $c = e^{-1}$ 为常数.

- 16. 设分布函数列 $\{F_n(x)\}$ 弱收敛于分布函数F(x),且 $F_n(x)$ 和F(x)都是连续、严格单调函数,又设 ξ 服从(0,1)上的均匀分布,试证: $F_n^{-1}(\xi) \xrightarrow{P} F^{-1}(\xi)$.
- 证:因F(x)为连续的分布函数,有 $F(-\infty)=0$, $F(+\infty)=1$,

则对任意的 h > 0,存在 M > 0,使得 $F(M) > 1 - \frac{h}{2}$, $F(-M) < \frac{h}{2}$,

因 F(x) 是连续、严格单调函数,有 $F^{-1}(y)$ 也是连续、严格单调函数,

可得 $F^{-1}(y)$ 在区间 [F(-M-1), F(M+1)] 上一致连续,

对任意的 $\varepsilon > 0$,存在 $\delta > 0$,当 $y, y^* \in [F(-M-1), F(M+1)]$ 且 $|y-y^*| < \delta$ 时, $|F^{-1}(y) - F^{-1}(y^*)| < \varepsilon$,设 y^* 是 [F(-M), F(M)] 中任一点,记 $x^* = F^{-1}(y^*)$,有 $x^* \in [-M, M]$,不妨设 $0 < \varepsilon < 1$,

则对任意的 \bar{x} 若满足 $|\bar{x}-x^*| \ge \varepsilon$,就有 $|F(\bar{x})-y^*| \ge \delta$,

根据本节第7题的结论知, $\{F_n(x)\}$ 在 $(-\infty, +\infty)$ 上一致收敛于分布函数F(x),

则对 $\delta > 0$ 和任意实数 x,总存在 N > 0,当 n > N 时,都有 $|F_n(x) - F(x)| < \delta$,

因当 n > N 时, $|F_n(\bar{x}) - F(\bar{x})| < \delta$ 且 $|F(\bar{x}) - y^*| \ge \delta$,有 $F_n(\bar{x}) \ne y^*$,即 $\bar{x} \ne F_n^{-1}(y^*)$,

则对任意的 $0 < \varepsilon < 1$, 当 n > N 时, $F_n^{-1}(y^*)$ 满足 $|F_n^{-1}(y^*) - x^*| = |F_n^{-1}(y^*) - F^{-1}(y^*)| < \varepsilon$,

可得对任意的 $0 < \varepsilon < 1$, 当 n > N 时, $P\{|F_n^{-1}(\xi) - F^{-1}(\xi)| < \varepsilon\} \ge P\{\xi \in [F(-M), F(M)]\} > 1 - h$

由 h 的任意性可知 $\lim_{n\to+\infty} P\{|F_n^{-1}(\xi)-F^{-1}(\xi)|<\varepsilon\}=1$,

故
$$F_n^{-1}(\xi) \stackrel{P}{\rightarrow} F^{-1}(\xi)$$
.

17. 设随机变量序列 $\{X_n\}$ 独立同分布,数学期望、方差均存在,且 $E(X_n) = \mu$,试证:

$$\frac{2}{n(n+1)} \sum_{k=1}^{n} k \cdot X_k \stackrel{P}{\to} \mu.$$

证:
$$\Leftrightarrow Y_n = \frac{2}{n(n+1)} \sum_{k=1}^n k \cdot X_k$$
, 并设 $Var(X_n) = \sigma^2$,

则由切比雪夫不等式可得,对任意的 $\varepsilon > 0$, $1 \ge P\{|Y_n - \mu| < \varepsilon\} \ge 1 - \frac{\operatorname{Var}(Y_n)}{\varepsilon^2} = 1 - \frac{4n + 2}{3n(n+1)\varepsilon^2}\sigma^2$,

因
$$\lim_{n\to+\infty} \left[1-\frac{4n+2}{3n(n+1)\varepsilon^2}\sigma^2\right] = 1$$
,由夹逼准则可得 $\lim_{n\to+\infty} P\{|Y_n-\mu|<\varepsilon\}=1$,

故
$$Y_n = \frac{2}{n(n+1)} \sum_{k=1}^n k \cdot X_k \stackrel{P}{\to} \mu$$
.

18. 设随机变量序列 $\{X_n\}$ 独立同分布,数学期望、方差均存在,且 $E(X_n) = 0$, $Var(X_n) = \sigma^2$. 试证: $E(X_n) = 0$, $Var(X_n) = \sigma^2$.

试证:

$$\frac{1}{n}\sum_{k=1}^{n}X_{k}^{2} \stackrel{P}{\to} \sigma^{2}.$$

注: 此题与第19题应放在习题4.3中, 需用到4.3节介绍的辛钦大数定律.

证: 因随机变量序列 $\{X_n^2\}$ 独立同分布,且 $E(X_n^2) = \operatorname{Var}(X_n) + [E(X_n)]^2 = \sigma^2$ 存在,

故 $\{X_n^2\}$ 满足辛钦大数定律条件, $\{X_n^2\}$ 服从大数定律,即 $\frac{1}{n}\sum_{k=1}^n X_k^2 \stackrel{P}{\to} \sigma^2$.

19. 设随机变量序列 $\{X_n\}$ 独立同分布,且 $Var(X_n) = \sigma^2$ 存在,令

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $S_n^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$.

试证:

$$S_n^2 \xrightarrow{P} \sigma^2$$
.

$$\widetilde{\text{UE}}: \quad S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n} \sum_{i=1}^n (X_i^2 - 2X_i \overline{X} + \overline{X}^2) = \frac{1}{n} \left(\sum_{i=1}^n X_i^2 - 2\sum_{i=1}^n X_i \overline{X} + n \overline{X}^2 \right) = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2,$$

设 $E(X_n) = \mu$, $\{X_n\}$ 满足辛钦大数定律条件, $\{X_n\}$ 服从大数定律,即 $\overline{X} = \frac{1}{n} \sum_{k=1}^n X_k \stackrel{P}{\to} \mu$,

则根据本节第 2 题第(2)小问的结论知, $\bar{X}^2 \stackrel{P}{\rightarrow} \mu^2$,

因随机变量序列 $\{X_n^2\}$ 独立同分布,且 $E(X_n^2) = \operatorname{Var}(X_n) + [E(X_n)]^2 = \sigma^2 + \mu^2$ 存在,

则 $\{X_n^2\}$ 满足辛钦大数定律条件, $\{X_n^2\}$ 服从大数定律,即 $\frac{1}{n}\sum_{k=1}^n X_k^2 \xrightarrow{P} \sigma^2 + \mu^2$,

故根据本节第 2 题第(1)小问的结论知, $S_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 \xrightarrow{P} (\sigma^2 + \mu^2) - \mu^2 = \sigma^2$.

20. 将n个编号为1至n的球放入n个编号为1至n的盒子中,每个盒子只能放一个球,记

$$X_i = \begin{cases} 1, & 編号为i$$
的球放入编号为i的盒子; $0, & 反之. \end{cases}$

且
$$S_n = \sum_{i=1}^n X_i$$
,试证明:

$$\frac{S_n - E(S_n)}{n} \xrightarrow{P} 0.$$

且
$$i \neq j$$
 时, $P\{X_i X_j = 1\} = \frac{1}{n(n-1)}$, $P\{X_i X_j = 0\} = 1 - \frac{1}{n(n-1)}$,

则
$$E(X_i) = \frac{1}{n}$$
, $Var(X_i) = \frac{1}{n} \left(1 - \frac{1}{n} \right)$,

且
$$i \neq j$$
 时, $E(X_i X_j) = \frac{1}{n(n-1)}$, $Cov(X_i, X_j) = E(X_i X_j) - E(X_i) E(X_j) = \frac{1}{n(n-1)} - \frac{1}{n^2} = \frac{1}{n^2(n-1)}$,

有
$$E(S_n) = \sum_{i=1}^n E(X_i) = 1$$
, $Var(S_n) = \sum_{i=1}^n Var(X_i) + 2 \sum_{1 \le i < j \le n} Cov(X_i, X_j) = 1 - \frac{1}{n} + n(n-1) \cdot \frac{1}{n^2(n-1)} = 1$,

$$\overline{\Box} \stackrel{\text{def}}{\rightleftharpoons} E \left[\frac{S_n - E(S_n)}{n} \right] = \frac{1}{n} [E(S_n) - E(S_n)] = 0, \quad \operatorname{Var} \left[\frac{S_n - E(S_n)}{n} \right] = \frac{1}{n^2} \operatorname{Var}(S_n) = \frac{1}{n^2},$$

由切比雪夫不等式,可得对任意的 $\varepsilon > 0$,

$$P\left\{\left|\frac{S_n - E(S_n)}{n} - E\left[\frac{S_n - E(S_n)}{n}\right]\right| \ge \varepsilon\right\} \le \frac{1}{\varepsilon^2} \operatorname{Var}\left[\frac{S_n - E(S_n)}{n}\right] = \frac{1}{n^2 \varepsilon^2},$$

$$\text{for } 0 \leq \lim_{n \to +\infty} P \left\{ \left| \frac{S_n - E(S_n)}{n} - E \left\lceil \frac{S_n - E(S_n)}{n} \right\rceil \right| \geq \varepsilon \right\} \leq \lim_{n \to +\infty} \frac{1}{n^2 \varepsilon^2} = 0 \text{ ,}$$

故
$$\frac{S_n - E(S_n)}{n} \xrightarrow{P} 0$$
.

1. 设离散随机变量X的分布列如下,试求X的特征函数.

- 解: 特征函数 $\varphi(t) = e^{it \cdot 0} \times 0.4 + e^{it \cdot 1} \times 0.3 + e^{it \cdot 2} \times 0.2 + e^{it \cdot 3} \times 0.1 = 0.4 + 0.3 e^{it} + 0.2 e^{2it} + 0.1 e^{3it}$
- 2. 设离散随机变量 X 服从几何分布 $P\{X=k\} = (1-p)^{k-1}p$, $k=1,2,\cdots$. 试求 X 的特征函数. 并以此求 E(X) 和 Var(X).

解: 特征函数
$$\varphi(t) = \sum_{k=1}^{+\infty} e^{itk} \cdot (1-p)^{k-1} p = p e^{it} \sum_{k=1}^{+\infty} [e^{it} (1-p)]^{k-1} = \frac{p e^{it}}{1-(1-p)e^{it}};$$

因
$$\varphi'(t) = \frac{p e^{it} \cdot i \cdot [1 - (1 - p) e^{it}] - p e^{it} \cdot [-(1 - p) e^{it} \cdot i]}{[1 - (1 - p) e^{it}]^2} = \frac{ip e^{it}}{[1 - (1 - p) e^{it}]^2}, \quad \forall \varphi'(0) = \frac{ip}{p^2} = \frac{i}{p} = iE(X),$$

故
$$E(X) = \frac{1}{p}$$
;

$$\boxtimes \varphi''(t) = ip e^{it} \cdot i \cdot [1 - (1-p)e^{it}]^{-2} - 2ip e^{it} [1 - (1-p)e^{it}]^{-3} \cdot [-(1-p)e^{it} \cdot i] = \frac{-p e^{it} [1 + (1-p)e^{it}]}{[1 - (1-p)e^{it}]^3},$$

有
$$\varphi''(0) = \frac{-p(2-p)}{p^3} = -\frac{2-p}{p^2} = i^2 E(X^2)$$
,可得 $E(X^2) = \frac{2-p}{p^2}$,

故
$$Var(X) = \frac{2-p}{p^2} - \left(\frac{1}{p}\right)^2 = \frac{1-p}{p^2}$$
.

3. 设离散随机变量 X 服从巴斯卡分布

$$P\{X=k\} = {k-1 \choose r-1} p^r (1-p)^{k-r}, k=r, r+1, \cdots$$

试求X的特征函数.

解: 特征函数
$$\varphi(t) = \sum_{k=r}^{+\infty} e^{itk} \cdot \binom{k-1}{r-1} p^r (1-p)^{k-r} = \frac{p^r e^{itr}}{(r-1)!} \sum_{k=r}^{+\infty} (k-1) \cdots (k-r+1) (1-p)^{k-r} e^{it(k-r)}$$

$$= \frac{(p e^{it})^r}{(r-1)!} \sum_{k=r}^{+\infty} (k-1) \cdots (k-r+1) x^{k-r} \Big|_{x=(1-p)e^{it}} = \frac{(p e^{it})^r}{(r-1)!} \sum_{k=r}^{+\infty} \frac{d^{r-1}(x^{k-1})}{dx^{r-1}} \Big|_{x=(1-p)e^{it}}$$

$$= \frac{(p e^{it})^r}{(r-1)!} \cdot \frac{d^{r-1}}{dx^{r-1}} \left(\sum_{k=1}^{+\infty} x^{k-1} \right) \Big|_{x=(1-p)e^{it}} = \frac{(p e^{it})^r}{(r-1)!} \cdot \frac{d^{r-1}}{dx^{r-1}} \left(\frac{1}{1-x} \right) \Big|_{x=(1-p)e^{it}} = \frac{(p e^{it})^r}{(r-1)!} \cdot \frac{(r-1)!}{(1-x)^r} \Big|_{x=(1-p)e^{it}}$$

$$= \frac{(p e^{it})^r}{[1-(1-p)e^{it}]^r} = \left[\frac{p e^{it}}{1-(1-p)e^{it}} \right]^r.$$

4. 求下列分布函数的特征函数,并由特征函数求其数学期望和方差.

(1)
$$F_1(x) = \frac{a}{2} \int_{-\infty}^x e^{-a|t|} dt$$
, $(a > 0)$;

(2)
$$F_2(x) = \frac{a}{\pi} \int_{-\infty}^x \frac{1}{t^2 + a^2} dt$$
, $(a > 0)$.

解: (1) 因密度函数 $p_1(x) = F_1'(x) = \frac{a}{2} e^{-a|x|}$,

$$= \frac{a}{2} \left(\frac{1}{it+a} - \frac{1}{it-a} \right) = \frac{a^2}{t^2 + a^2};$$

因
$$\varphi'_1(t) = -\frac{a^2}{(t^2 + a^2)^2} \cdot 2t = -\frac{2a^2t}{(t^2 + a^2)^2}$$
,有 $\varphi'_1(0) = 0 = iE(X)$,

故 E(X)=0;

$$\boxtimes \varphi_1''(t) = -\frac{2a^2 \cdot (t^2 + a^2)^2 - 2a^2t \cdot 2(t^2 + a^2) \cdot 2t}{(t^2 + a^2)^4} = \frac{6a^2t^2 - 2a^4}{(t^2 + a^2)^3} ,$$

有
$$\varphi_1''(0) = \frac{-2a^4}{a^6} = -\frac{2}{a^2} = i^2 E(X^2)$$
,可得 $E(X^2) = \frac{2}{a^2}$,

故
$$Var(X) = \frac{2}{a^2} - 0^2 = \frac{2}{a^2}$$
;

(2) 因密度函数
$$p_2(x) = F_2'(x) = \frac{a}{\pi} \cdot \frac{1}{x^2 + a^2}$$
,

$$\mathbb{Q} \varphi_2(t) = \frac{a}{\pi} \int_{-\infty}^{+\infty} e^{itx} \cdot \frac{1}{x^2 + a^2} dx$$

由第(1) 小题的结论年

$$\varphi_1(t) = \frac{a^2}{t^2 + a^2} = \int_{-\infty}^{+\infty} e^{itx} p_1(x) dx$$

根据证转公式, 可得

$$p_1(x) = \frac{a}{2} e^{-a|x|} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} \varphi_1(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} \cdot \frac{a^2}{t^2 + a^2} dt ,$$

可得

$$\int_{-\infty}^{+\infty} e^{ity} \cdot \frac{1}{t^2 + a^2} dt = \frac{2\pi}{a^2} \cdot \frac{a}{2} e^{-a|-y|} = \frac{\pi}{a} e^{-a|y|},$$

故
$$\varphi_2(t) = \frac{a}{\pi} \int_{-\infty}^{+\infty} e^{itx} \cdot \frac{1}{x^2 + a^2} dx = \frac{a}{\pi} \cdot \frac{\pi}{a} e^{-a|t|} = e^{-a|t|};$$

因
$$\varphi_2'(t) = \begin{cases} a e^{at}, & t < 0, \\ -a e^{-at}, & t > 0, \end{cases}$$
 有 $\varphi_2'(0-0) = a \neq \varphi_2'(0+0) = -a$,即 $\varphi_2'(0)$ 不存在,

故 E(X) 不存在, Var(X) 也不存在.

5. 设 $X \sim N(\mu, \sigma^2)$, 试用特征函数的方法求X的 3 阶及 4 阶中心矩.

解: 因
$$X \sim N(\mu, \sigma^2)$$
,有 X 的特征函数是 $\varphi(t) = e^{i\mu t - \frac{\sigma^2 t^2}{2}}$,

$$\mathbb{M} \varphi'(t) = e^{i\mu t - \frac{\sigma^2 t^2}{2}} \cdot (i\mu - \sigma^2 t), \quad \varphi''(t) = e^{i\mu t - \frac{\sigma^2 t^2}{2}} \cdot (i\mu - \sigma^2 t)^2 + e^{i\mu t - \frac{\sigma^2 t^2}{2}} \cdot (-\sigma^2),$$

$$\boxtimes \varphi'''(t) = e^{i\mu t - \frac{\sigma^2 t^2}{2}} \cdot (i\mu - \sigma^2 t)^3 + e^{i\mu t - \frac{\sigma^2 t^2}{2}} \cdot 3(i\mu - \sigma^2 t) \cdot (-\sigma^2),$$

有
$$\varphi'''(0) = e^0 \cdot (i\mu)^3 + e^0 \cdot 3i\mu \cdot (-\sigma^2) = -i\mu^3 - 3i\mu\sigma^2 = i^3E(X^3) = -iE(X^3),$$

故 $E(X^3) = \mu^3 + 3\mu\sigma^2$;

又因
$$\varphi^{(4)}(t) = e^{i\mu t - \frac{\sigma^2 t^2}{2}} \cdot (i\mu - \sigma^2 t)^4 + e^{i\mu t - \frac{\sigma^2 t^2}{2}} \cdot 6(i\mu - \sigma^2 t)^2 \cdot (-\sigma^2) + e^{i\mu t - \frac{\sigma^2 t^2}{2}} \cdot 3(-\sigma^2)^2$$
,
有 $\varphi^{(4)}(0) = e^0 \cdot (i\mu)^4 + e^0 \cdot 6(i\mu)^2 \cdot (-\sigma^2) + e^0 \cdot 3\sigma^4 = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4 = i^4 E(X^4) = E(X^4)$,
故 $E(X^4) = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$.

- 6. 试用特征函数的方法证明二项分布的可加性: 若 $X \sim b(n, p)$, $Y \sim b(m, p)$, 且 X = Y 独立,则 $X + Y \sim b(n + m, p)$.
- 证: 因 $X \sim b(n, p)$, $Y \sim b(m, p)$, 且 X 与 Y 独立,有 X 与 Y 的特征函数分别为 $\varphi_X(t) = (pe^{it} + 1 p)^n$, $\varphi_Y(t) = (pe^{it} + 1 p)^m$, 则 X + Y 的特征函数为 $\varphi_{X+Y}(t) = \varphi_X(t) \cdot \varphi_Y(t) = (pe^{it} + 1 p)^{n+m}$, 这是二项分布 b(n+m, p)的特征函数,故根据特征函数的唯一性定理知 $X + Y \sim b(n+m, p)$.
- 7. 试用特征函数的方法证明泊松分布的可加性: 若 $X \sim P(\lambda_1)$, $Y \sim P(\lambda_2)$, 且 X 与 Y 独立,则 $X + Y \sim P(\lambda_1 + \lambda_2)$.
- 证: 因 $X \sim P(\lambda_1)$, $Y \sim P(\lambda_2)$, 且 X 与 Y独立,

有X与Y的特征函数分别为 $\varphi_{\mathbf{v}}(t) = e^{\lambda_{\mathbf{l}}(e^{it}-1)}$, $\varphi_{\mathbf{v}}(t) = e^{\lambda_{\mathbf{l}}(e^{it}-1)}$,

则 X+Y 的特征函数为 $\varphi_{X+Y}(t)=\varphi_X(t)\varphi_Y(t)=e^{(\lambda_1+\lambda_2)(e^{it}-1)}$, 这是泊松分布 $P(\lambda_1+\lambda_2)$ 的特征函数,

故根据特征函数的唯一性定理知 $X + Y \sim P(\lambda_1 + \lambda_2)$.

- 8. 试用特征函数的方法证明伽马分布的可加性: 若 $X \sim Ga(\alpha_1, \lambda)$, $Y \sim Ga(\alpha_2, \lambda)$, 且 X 与 Y 独立,则 $X + Y \sim Ga(\alpha_1 + \alpha_2, \lambda)$.
- 证: 因 $X \sim Ga(\alpha_1, \lambda)$, $Y \sim Ga(\alpha_2, \lambda)$, 且 X 与 Y 独立,

有
$$X$$
 与 Y 的特征函数分别为 $\varphi_X(t) = \left(1 - \frac{it}{\lambda}\right)^{-\alpha_1}$, $\varphi_Y(t) = \left(1 - \frac{it}{\lambda}\right)^{-\alpha_2}$,

则 X+Y 的特征函数为 $\varphi_{X+Y}(t)=\varphi_X(t)\varphi_Y(t)=\left(1-\frac{it}{\lambda}\right)^{-(\alpha_1+\alpha_2)}$,这是伽马分布 $Ga(\alpha_1+\alpha_2,\lambda)$ 的特征函数,

故根据特征函数的唯一性定理知 $X + Y \sim Ga(\alpha_1 + \alpha_2, \lambda)$.

- 9. 试用特征函数的方法证明 χ^2 分布的可加性: 若 $X \sim \chi^2(n)$, $Y \sim \chi^2(m)$, 且 X = Y 独立,则 $X + Y \sim \chi^2(n + m)$.
- 证: $\exists X \sim \chi^2(n)$, $Y \sim \chi^2(m)$, 且 X = Y独立,

有 X 与 Y 的特征函数分别为 $\varphi_{Y}(t) = (1-2it)^{\frac{n}{2}}, \quad \varphi_{Y}(t) = (1-2it)^{\frac{m}{2}},$

则 X+Y 的特征函数为 $\varphi_{X+Y}(t)=\varphi_X(t)\varphi_Y(t)=(1-2it)^{\frac{-n+m}{2}}$,这是 χ^2 分布 $\chi^2(n+m)$ 的特征函数,故根据特征函数的唯一性定理知 $X+Y\sim\chi^2(n+m)$.

- 10. 设 X_i 独立同分布,且 $X_i \sim Exp(\lambda)$, $i = 1, 2, \dots, n$. 试用特征函数的方法证明: $Y_n = \sum_{i=1}^n X_i \sim Ga(n, \lambda)$.
- 证: 因 $X_i \sim Exp(\lambda)$, $i = 1, 2, \dots, n$, 且 X_i 相互独立,

有 X_i 的特征函数为 $\varphi_{X_i}(t) = \frac{\lambda}{\lambda - it} = \left(1 - \frac{it}{\lambda}\right)^{-1}$,

则
$$Y_n = \sum_{i=1}^n X_i$$
 的特征函数为 $\varphi_{Y_n}(t) = \prod_{i=1}^n \varphi_{X_i}(t) = \left(1 - \frac{it}{\lambda}\right)^{-n}$,这是伽马分布 $Ga(n, \lambda)$ 的特征函数,

故根据特征函数的唯一性定理知 $Y_n \sim Ga(n, \lambda)$.

11. 设连续随机变量 X 的密度函数如下:

$$p(x) = \frac{1}{\pi} \cdot \frac{\lambda}{\lambda^2 + (x - \mu)^2}, \quad -\infty < x < +\infty,$$

其中参数 $\lambda > 0$, $-\infty < \mu < +\infty$, 常记为 $X \sim Ch(\lambda, \mu)$.

- (1) 试证 X 的特征函数为 $\exp\{i\mu t \lambda | t|\}$,且利用此结果证明柯西分布的可加性;
- (2) 当 μ = 0, λ = 1 时,记 Y=X,试证 $\varphi_{X+Y}(t)=\varphi_X(t)\cdot\varphi_Y(t)$,但是 X与 Y不独立;
- (3) 若 X_1, X_2, \dots, X_n 相互独立,且服从同一柯西分布,试证: $\frac{1}{n}(X_1 + X_2 + \dots + X_n)$ 与 X_1 同分布.
- 证: (1) 根据第 4 题第 (2) 小题的结论知: 若 X*的密度函数为 $p*(x) = \frac{1}{\pi} \cdot \frac{\lambda}{\lambda^2 + x^2}$, 即 $X* \sim Ch(\lambda, 0)$,

则 X*的特征函数为 φ * $(t) = e^{-\lambda |t|}$,且 $X = X^* + \mu$ 的密度函数为 $p(x) = \frac{1}{\pi} \cdot \frac{\lambda}{\lambda^2 + (x - \mu)^2}$

故 X 的特征函数为 $\varphi_X(t) = e^{i\mu t} \varphi^*(t) = e^{i\mu t} \cdot e^{-\lambda |t|} = e^{i\mu t - \lambda |t|}$;

若 $X_1 \sim Ch(\lambda_1, \mu_1)$, $X_2 \sim Ch(\lambda_2, \mu_2)$, 且相互独立,

有 X_1 与 X_2 的特征函数分别为 $\varphi_{X_1}(t) = e^{i\mu_1 t - \lambda_1 |t|}$, $\varphi_{X_2}(t) = e^{i\mu_2 t - \lambda_2 |t|}$,

则 $X_1 + X_2$ 的特征函数为 $\varphi_{X_1+X_2}(t) = \varphi_{X_1}(t)\varphi_{X_2}(t) = e^{i(\mu_1+\mu_2)t-(\lambda_1+\lambda_2)|t|}$,

这是柯西分布 $Ch(\lambda_1 + \lambda_2, \mu_1 + \mu_2)$ 的特征函数,

故根据特征函数的唯一性定理知 $X_1 + X_2 \sim Ch(\lambda_1 + \lambda_2, \mu_1 + \mu_2)$;

- (2) 当 μ = 0, λ = 1 时, $X \sim Ch(1,0)$,有X 的特征函数为 $\varphi_X(t) = e^{-|t|}$, 又因Y = X,有Y 的特征函数为 $\varphi_Y(t) = e^{-|t|}$,且X + Y = 2X,故X + Y 的特征函数为 $\varphi_{X+Y}(t) = \varphi_{2X}(t) = \varphi_X(2t) = e^{-|2t|} = e^{-|t|} \cdot e^{-|t|} = \varphi_X(t) \cdot \varphi_Y(t)$;但Y = X,显然有X = Y不独立:
- (3) 因 $X_i \sim Ch(\lambda, \mu)$, $i = 1, 2, \dots, n$, 且 X_i 相互独立,

有 X_i 的特征函数为 $\varphi_{X_i}(t) = e^{i\mu t - \lambda |t|}$,

则
$$Y_n = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$
 的特征函数为

$$\varphi_{Y_n}(t) = \prod_{i=1}^n \varphi_{\frac{1}{n}X_i}(t) = \prod_{i=1}^n \varphi_{X_i}\left(\frac{t}{n}\right) = e^{n\left(i\mu \frac{t}{n} - \lambda \left|\frac{t}{n}\right|\right)} = e^{i\mu t - \lambda |t|} = \varphi_{X_1}(t),$$

故根据特征函数的唯一性定理知 $\frac{1}{n}(X_1+X_2+\cdots+X_n)$ 与 X_1 同分布.

- 12. 设连续随机变量 X 的密度函数为 p(x),试证: p(x) 关于原点对称的充要条件是它的特征函数是实的偶函数.
- 证:方法一:根据随机变量 X 与-X 的关系

充分性: 设 X 的特征函数 $\varphi_X(t)$ 是实的偶函数,有 $\varphi_X(t) = \varphi_X(-t)$,

则–X 的特征函数 $\varphi_{-X}(t) = \varphi_X(-t) = \varphi_X(t)$,根据特征函数的唯一性定理知–X 与 X 同分布,

因 X 的密度函数为 p(x), 有-X 的密度函数为 p(-x),

故由-X与X同分布可知p(-x)=p(x),即p(x)关于原点对称;

必要性: 设 X 的密度函数 p(x) 关于原点对称, 有 p(-x) = p(x),

因-X的密度函数为p(-x),即-X与X同分布,

则—X 的特征函数
$$\varphi_{-X}(t) = \varphi_X(-t) = \varphi_X(t)$$
,且 $\varphi_X(t) = \varphi_{-X}(t) = E[e^{it(-X)}] = E[e^{-itX}] = \overline{E[e^{itX}]} = \overline{\varphi_X(t)}$,

故 X 的特征函数 $\varphi_X(t)$ 是实的偶函数.

方法二: 根据密度函数与特征函数的关系

充分性: 设连续随机变量 X 的特征函数 $\varphi_X(t)$ 是实的偶函数,有 $\varphi_X(t) = \varphi_X(-t)$,

因
$$p(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} \varphi(t) dt$$
, 有 $p(-x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-it(-x)} \varphi(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{itx} \varphi(t) dt$,

令 t=-u, 有 dt=-du, 且当 $t\to -\infty$ 时, $u\to +\infty$; 当 $t\to +\infty$ 时, $u\to -\infty$,

$$\text{If } p(-x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i(-u)x} \varphi(-u)(-du) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-iux} \varphi(-u) du = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-iux} \varphi(u) du = p(x) ,$$

故p(x) 关于原点对称;

必要性: 设 X 的密度函数 p(x) 关于原点对称, 有 p(-x) = p(x),

因
$$\varphi(t) = E(e^{-itX}) = \int_{-\infty}^{+\infty} e^{itx} p(x) dx$$
,有 $\varphi(-t) = \int_{-\infty}^{+\infty} e^{i(-t)x} p(x) dx = \int_{-\infty}^{+\infty} e^{-itx} p(x) dx$,

$$\iiint \varphi_X(-t) = \int_{-\infty}^{-\infty} e^{-it(-y)} p(-y)(-dy) = \int_{-\infty}^{+\infty} e^{ity} p(-y) dy = \int_{-\infty}^{+\infty} e^{ity} p(y) dy = \varphi_X(t),$$

$$\mathbb{H}\,\varphi_X(t)=\varphi_X(-t)=E[\mathrm{e}^{i(-t)X}]=E[\mathrm{e}^{-itX}]=\overline{E[\mathrm{e}^{itX}]}=\overline{\varphi_X(t)}\;,$$

故 X 的特征函数 $\varphi_X(t)$ 是实的偶函数.

13. 设 X_1, X_2, \dots, X_n 独立同分布,且都服从 $N(\mu, \sigma^2)$ 分布,试求 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 的分布.

证: 因 $X_i \sim N(\mu, \sigma^2)$, $i = 1, 2, \dots, n$, 且 X_i 相互独立,有 X_i 的特征函数为 $\varphi_{X_i}(t) = e^{i\mu t - \frac{\sigma^2 t^2}{2}}$,

则
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 的特征函数为 $\varphi_{\overline{X}}(t) = \prod_{i=1}^{n} \varphi_{1,X_i}(t) = \prod_{i=1}^{n} \varphi_{X_i}(\frac{t}{n}) = e^{i\left[i\mu \frac{t}{n} - \frac{1}{2}\sigma^2\left(\frac{t}{n}\right)^2\right]} = e^{i\mu t - \frac{\sigma^2 t^2}{2n}}$,

这是正态分布 $N\left(\mu, \frac{\sigma^2}{n}\right)$ 的特征函数,

故根据特征函数的唯一性定理知 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N \left(\mu, \frac{\sigma^2}{n} \right)$.

14. 利用特征函数方法证明如下的泊松定理:设有一列二项分布 $\{b(k,n,p_n)\}$,若 $\lim_{n\to\infty} np_n = \lambda$,则

$$\lim_{n \to \infty} b(k, n, p_n) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \cdots.$$

证: 二项分布 $b(n, p_n)$ 的特征函数为 $\varphi_n(t) = (p_n e^{it} + 1 - p_n)^n = [1 + p_n(e^{it} - 1)]^n$, 且 $n \to \infty$ 时, $p_n \to 0$,

这正是泊松分布 $P(\lambda)$ 的特征函数,

故根据特征函数的唯一性定理知 $\lim_{n\to\infty} b(k, n, p_n) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \cdots$

15. 设随机变量 $X \sim Ga(\alpha, \lambda)$, 证明: 当 $\alpha \to \infty$ 时, 随机变量 $(\lambda X - \alpha)/\sqrt{\alpha}$ 按分布收敛于标准正态变量.

证: 因
$$X \sim Ga(\alpha, \lambda)$$
,有 X 的特征函数为 $\varphi_X(t) = \left(1 - \frac{it}{\lambda}\right)^{-\alpha}$, 令 $Y = \frac{\lambda X - \alpha}{\sqrt{\alpha}} = \frac{\lambda}{\sqrt{\alpha}} X - \sqrt{\alpha}$,

则
$$Y$$
 的特征函数为 $\varphi_Y(t) = e^{-it\sqrt{\alpha}} \varphi_X\left(\frac{\lambda t}{\sqrt{\alpha}}\right) = e^{-it\sqrt{\alpha}} \left(1 - \frac{it}{\sqrt{\alpha}}\right)^{-\alpha}$,

可得
$$\ln \varphi_{Y}(t) = -it\sqrt{\alpha} - \alpha \ln \left(1 - \frac{it}{\sqrt{\alpha}}\right) = -\alpha \left[\frac{it}{\sqrt{\alpha}} + \ln \left(1 - \frac{it}{\sqrt{\alpha}}\right)\right]$$

$$\diamondsuit u = \frac{1}{\sqrt{\alpha}} , \quad \stackrel{\text{def}}{=} \alpha \to \infty$$
时,有 $u \to 0$,且 $\alpha = \frac{1}{u^2} , \quad \ln \varphi_Y(t) = -\frac{1}{u^2} [itu + \ln(1 - itu)] ,$

$$\text{III } \lim_{\alpha \to \infty} \ln \varphi_Y(t) = -\lim_{u \to 0} \frac{itu + \ln(1 - itu)}{u^2} = -\lim_{u \to 0} \frac{it + \frac{-it}{1 - itu}}{2u} = -\lim_{u \to 0} \frac{-(it)^2 u}{2u(1 - itu)} = -\lim_{u \to 0} \frac{t^2}{2(1 - itu)} = -\frac{t^2}{2},$$

可得 $\lim_{x\to\infty} \varphi_Y(t) = e^{-\frac{t^2}{2}}$,这正是标准正态分布 N(0,1)的特征函数,

故根据特征函数的唯一性定理知 $Y = \frac{\lambda X - \alpha}{\sqrt{\alpha}}$ 按分布收敛于标准正态变量.

1. 设 $\{X_k\}$ 为独立随机变量序列,且

$$P\{X_k = \pm \sqrt{\ln k}\} = \frac{1}{2}, \quad k = 1, 2, \dots$$

证明 $\{X_k\}$ 服从大数定律.

证: 因 $\{X_k\}$ 为独立随机变量序列,

$$\coprod E(X_k) = (-\sqrt{\ln k}) \cdot \frac{1}{2} + \sqrt{\ln k} \cdot \frac{1}{2} = 0,$$

$$\operatorname{Var}(X_k) = E(X_k^2) - [E(X_k)]^2 = E(X_k^2) = (-\sqrt{\ln k})^2 \cdot \frac{1}{2} + (\sqrt{\ln k})^2 \cdot \frac{1}{2} = \ln k, \quad k = 1, 2, \dots,$$

$$\iiint \frac{1}{n^2} \operatorname{Var} \left(\sum_{k=1}^n X_k \right) = \frac{1}{n^2} \sum_{k=1}^n \operatorname{Var} (X_k) = \frac{1}{n^2} \sum_{k=1}^n \ln k \le \frac{1}{n^2} \times n \ln n = \frac{\ln n}{n}, \quad \text{fi} \quad \lim_{n \to +\infty} \frac{1}{n^2} \operatorname{Var} \left(\sum_{k=1}^n X_k \right) = 0,$$

故 $\{X_k\}$ 满足马尔可夫大数定律条件, $\{X_k\}$ 服从大数定律.

2. 设 $\{X_k\}$ 为独立随机变量序列,且

$$P\{X_k = \pm 2^k\} = \frac{1}{2^{2k+1}}, \ P\{X_k = 0\} = 1 - \frac{1}{2^{2k}}, \ k = 1, 2, \dots$$

证明 $\{X_k\}$ 服从大数定律.

证: 因 $\{X_k\}$ 为独立随机变量序列,

$$Var(X_k) = E(X_k^2) = (-2^k)^2 \cdot \frac{1}{2^{2k+1}} + 0^2 \cdot \left(1 - \frac{1}{2^{2k}}\right) + (2^k)^2 \cdot \frac{1}{2^{2k+1}} = 1, \quad k = 1, 2, \dots,$$

即方差有共同的上界,

故 $\{X_k\}$ 满足切比雪夫大数定律条件, $\{X_k\}$ 服从大数定律.

3. 设 $\{X_n\}$ 为独立随机变量序列,且 $P\{X_1=0\}=1$,

$$P\{X_n = \pm \sqrt{n}\} = \frac{1}{n}, \ P\{X_n = 0\} = 1 - \frac{2}{n}, \ n = 2, 3, \dots$$

证明 $\{X_n\}$ 服从大数定律.

证: 因 $\{X_k\}$ 为独立随机变量序列, $E(X_1) = 0$, $Var(X_1) = 0$,

$$Var(X_k) = E(X_k^2) = (-\sqrt{k})^2 \cdot \frac{1}{k} + 0^2 \cdot \left(1 - \frac{2}{k}\right) + (\sqrt{k})^2 \cdot \frac{1}{k} = 2, \ k = 2, 3, \dots,$$

即方差有共同的上界,

故 $\{X_k\}$ 满足切比雪夫大数定律条件, $\{X_k\}$ 服从大数定律.

4. 在伯努利试验中,事件 A 出现的概率为 p. 令

$$X_n =$$
 $\begin{cases} 1, \quad \text{若在第} n 次及第 n + 1 次试验中 A 出现; \\ 0, \quad \text{其他.} \end{cases}$

证明 $\{X_n\}$ 服从大数定律.

证:因 X_k 的分布为

$$\begin{array}{c|ccc} X_k & 0 & 1 \\ \hline P & 1-p^2 & p^2 \end{array}$$

 $\mathbb{J} E(X_k) = p^2, \quad \text{Var}(X_k) = p^2(1 - p^2),$

又因当 $|i-k| \ge 2$ 时, X_i 与 X_k 相互独立,且 $Cov(X_k, X_{k+1}) = E(X_k X_{k+1}) - E(X_k)E(X_{k+1}) = p^3 - p^4$,

$$\iiint \frac{1}{n^2} \operatorname{Var} \left(\sum_{k=1}^n X_k \right) = \frac{1}{n^2} \left[\sum_{k=1}^n \operatorname{Var}(X_k) + 2 \sum_{k=1}^{n-1} \operatorname{Cov}(X_k, X_{k+1}) \right] = \frac{1}{n^2} \left[np^2 (1 - p^2) + 2(n - 1)(p^3 - p^4) \right],$$

$$\mathbb{E}\lim_{n\to+\infty}\frac{1}{n^2}\operatorname{Var}\left(\sum_{k=1}^nX_k\right)=0,$$

故 $\{X_n\}$ 满足马尔可夫大数定律条件, $\{X_n\}$ 服从大数定律.

5. 设 $\{X_n\}$ 为独立的随机变量序列,且

$$P\{X_n=1\}=p_n, P\{X_n=0\}=1-p_n, n=1, 2, \cdots,$$

证明 $\{X_n\}$ 服从大数定律.

- 证:因 $\{X_k\}$ 为独立随机变量序列,且 $E(X_k) = p_k$, $Var(X_k) = p_k(1-p_k) \le 1$,即方差有共同的上界,故 $\{X_n\}$ 满足切比雪夫大数定律条件, $\{X_n\}$ 服从大数定律.
- 6. 设 $\{X_n\}$ 为独立同分布的随机变量序列,其共同分布函数为

$$F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan \frac{x}{a}, \quad -\infty < x < +\infty$$
.

试问:辛钦大数定律对此随机变量序列是否适用?

解:因 $\{X_n\}$ 为独立同分布的随机变量序列,

且密度函数
$$p(x) = F'(x) = \frac{1}{\pi} \cdot \frac{1}{1 + \left(\frac{x}{a}\right)^2} \cdot \frac{1}{a} = \frac{a}{\pi} \cdot \frac{1}{a^2 + x^2}, \quad -\infty < x < +\infty$$

$$\iiint \int_{-\infty}^{+\infty} |x| p(x) dx = \int_{-\infty}^{+\infty} |x| \cdot \frac{a}{\pi} \cdot \frac{1}{a^2 + x^2} dx = 2 \int_{0}^{+\infty} \frac{a}{\pi} \cdot \frac{x}{a^2 + x^2} dx = \frac{a}{\pi} \ln(a^2 + x^2) \Big|_{0}^{+\infty} = +\infty ,$$

即 X_n 的数学期望不存在,

故辛钦大数定律对此随机变量序列不适用.

7. 设 $\{X_n\}$ 为独立同分布的随机变量序列,其共同分布为

$$P\{X_n = \frac{2^k}{k^2}\} = \frac{1}{2^k}, \quad k = 1, 2, \dots$$

试问{X_n}是否服从大数定律?

解: 因{ X_n }为独立同分布的随机变量序列,且 $E(X_n) = \sum_{k=1}^{+\infty} \frac{2^k}{k^2} \cdot \frac{1}{2^k} = \sum_{k=1}^{+\infty} \frac{1}{k^2}$ 收敛,

故 $\{X_n\}$ 满足辛钦大数定律条件, $\{X_n\}$ 服从大数定律.

8. 设 $\{X_n\}$ 为独立同分布的随机变量序列,其共同分布为

$$P{X_n = k} = \frac{c}{k^2 \lg^2 k}, \quad k = 2, 3, \dots,$$

其中

$$c = \left(\sum_{k=2}^{+\infty} \frac{1}{k^2 \lg^2 k}\right)^{-1}$$
,

试问{X_n}是否服从大数定律?

解: 因 $\{X_n\}$ 为独立同分布的随机变量序列,且 $E(X_n) = \sum_{k=2}^{+\infty} k \cdot \frac{c}{k^2 \lg^2 k} = c \sum_{k=2}^{+\infty} \frac{1}{k \lg^2 k}$ 收敛,故 $\{X_n\}$ 满足辛钦大数定律条件, $\{X_n\}$ 服从大数定律.

- 9. 设 $\{X_n\}$ 为独立的随机变量序列,其中 X_n 服从参数为 \sqrt{n} 的泊松分布,试问 $\{X_n\}$ 是否服从大数定律?
- 解:因 $\{X_k\}$ 为独立随机变量序列,且 $\mathrm{Var}(X_k) = \sqrt{k}$,

$$\text{In} \frac{1}{n^2} \operatorname{Var} \left(\sum_{k=1}^n X_k \right) = \frac{1}{n^2} \sum_{k=1}^n \operatorname{Var} (X_k) = \frac{1}{n^2} \sum_{k=1}^n \sqrt{k} \le \frac{1}{n^2} \times n \sqrt{n} = \frac{1}{\sqrt{n}}, \quad \text{fi} \lim_{n \to +\infty} \frac{1}{n^2} \operatorname{Var} \left(\sum_{k=1}^n X_k \right) = 0,$$

故 $\{X_n\}$ 满足马尔可夫大数定律条件, $\{X_n\}$ 服从大数定律.

10. 设 $\{X_n\}$ 为独立的随机变量序列,证明: 若诸 X_n 的方差 σ_n^2 一致有界,即存在常数c,使得

$$\sigma_n^2 \le c$$
, $n=1,2,\cdots$

则 $\{X_n\}$ 服从大数定律.

- 证: $\{X_n\}$ 满足切比雪夫大数定律条件, $\{X_n\}$ 服从大数定律.
- 11. (泊松大数定律)设 S_n 为 n 次独立试验中,事件 A 出现的次数,而事件 A 在第 i 次试验出现的概率为 p_i , $i=1,2,\cdots,n,\cdots$,则对任意的 $\varepsilon>0$,有

$$\lim_{n\to\infty} P\left(\left|\frac{S_n}{n} - \frac{1}{n}\sum_{i=1}^n p_i\right| < \varepsilon\right) = 1.$$

因 $\{X_n\}$ 独立,且 $E(X_i) = p_i$, $Var(X_i) = p_i(1 - p_i) < 1$,

则 $\{X_n\}$ 满足切比雪夫大数定律条件, $\{X_n\}$ 服从大数定律,即 $\lim_{n\to\infty}P\left(\left|\frac{1}{n}\sum_{i=1}^nX_i-\frac{1}{n}\sum_{i=1}^np_i\right|<\varepsilon\right)=1$,

故
$$\lim_{n\to\infty} P\left(\left|\frac{S_n}{n} - \frac{1}{n}\sum_{i=1}^n p_i\right| < \varepsilon\right) = 1$$
.

- 12. (伯恩斯坦大数定律)设 $\{X_n\}$ 是方差一致有界的随机变量序列,且当 $|k-l| \to +\infty$ 时,一致地有 $Cov(X_k, X_l) \to 0$,证明 $\{X_n\}$ 服从大数定律.
- 证: 设 $\operatorname{Var}(X_k) \leq c$, 且对任意的 $\varepsilon > 0$, 存在 M, 当 |k-l| > M 时, $\operatorname{Cov}(X_k, X_l) < \frac{\varepsilon}{2}$,

且当 $1 \le |k-l| \le M$ 时, $Cov(X_k, X_l) \le \sqrt{Var(X_k)} \sqrt{Var(X_l)} \le c$,

$$\operatorname{Id} \frac{1}{n^2} \operatorname{Var} \left(\sum_{k=1}^n X_k \right) = \frac{1}{n^2} \left[\sum_{k=1}^n \operatorname{Var}(X_k) + 2 \sum_{1 \le k < l \le n} \operatorname{Cov}(X_k, X_l) \right]$$

$$= \frac{1}{n^2} \left[\sum_{k=1}^{n} \text{Var}(X_k) + 2 \sum_{1 \le |k-l| \le M} \text{Cov}(X_k, X_l) + 2 \sum_{|k-l| > M} \text{Cov}(X_k, X_l) \right]$$

$$\leq \frac{1}{n^2} \left[nc + (M-1)(2n-M-1)c + (n-M)(n-M-1) \cdot \frac{\varepsilon}{2} \right]$$

$$\leq \frac{1}{n^2} \left[nc + (M-1) \cdot 2nc + n^2 \cdot \frac{\varepsilon}{2} \right] = \frac{(2M-1)c}{n} + \frac{\varepsilon}{2},$$

故 $\{X_n\}$ 满足马尔可夫大数定律条件, $\{X_n\}$ 服从大数定律.

13. (格涅坚科大数定律)设 $\{X_n\}$ 是随机变量序列,若记

$$Y_n = \frac{1}{n} \sum_{i=1}^n X_i$$
, $a_n = \frac{1}{n} \sum_{i=1}^n E(X_i)$.

则{Xn}服从大数定律的充要条件是

$$\lim_{n \to +\infty} E \left[\frac{(Y_n - a_n)^2}{1 + (Y_n - a_n)^2} \right] = 0.$$

证:以连续随机变量为例进行证明,设 Y_n 的密度函数为 p(y),必要性:设 $\{X_n\}$ 服从大数定律,即对任意的 $\varepsilon > 0$,都有

$$\lim_{n\to+\infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n E(X_i) \right| \ge \varepsilon \right\} = \lim_{n\to+\infty} P\left\{ \left| Y_n - a_n \right| \ge \varepsilon \right\} = 0,$$

不妨设 $0 < \varepsilon < 1$,有 $\varepsilon - \varepsilon^2 > 0$,存在 N > 0,当 n > N 时, $P\{|Y_n - a_n| \ge \varepsilon\} < \varepsilon - \varepsilon^2$,

$$\mathbb{M} E \left[\frac{(Y_n - a_n)^2}{1 + (Y_n - a_n)^2} \right] = \int_{-\infty}^{+\infty} \frac{(y - a_n)^2}{1 + (y - a_n)^2} p(y) dy = \int_{|y - a_n| < \varepsilon} \frac{(y - a_n)^2}{1 + (y - a_n)^2} p(y) dy + \int_{|y - a_n| \ge \varepsilon} \frac{(y - a_n)^2}{1 + (y - a_n)^2} p(y) dy$$

$$\leq \int\limits_{|y-a_n|<\varepsilon} \frac{\varepsilon^2}{1+\varepsilon^2} \, p(y) dy + \int\limits_{|y-a_n|\ge\varepsilon} p(y) dy = \frac{\varepsilon^2}{1+\varepsilon^2} + P\{|Y_n-a_n|\ge\varepsilon\} < \frac{\varepsilon^2}{1+\varepsilon^2} + \varepsilon - \varepsilon^2 < \varepsilon \ ,$$

故
$$\lim_{n\to+\infty} E \left[\frac{(Y_n - a_n)^2}{1 + (Y_n - a_n)^2} \right] = 0$$
;

充分性: 设
$$\lim_{n\to+\infty} E\left[\frac{(Y_n-a_n)^2}{1+(Y_n-a_n)^2}\right]=0$$
,

$$\mathbb{E} \left| P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_{i} - \frac{1}{n} \sum_{i=1}^{n} E(X_{i}) \right| \geq \varepsilon \right\} = P\left\{ \left| Y_{n} - a_{n} \right| \geq \varepsilon \right\} = \int_{|y - a_{n}| \geq \varepsilon} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy = \frac{1 + \varepsilon^{2}}{\varepsilon^{2}} \int_{|y - a_{n}| \geq \varepsilon} \frac{\varepsilon^{2}}{1 + \varepsilon^{2}} p(y) dy$$

$$\leq \frac{1+\varepsilon^2}{\varepsilon^2} \int_{|y-a_n| \geq \varepsilon} \frac{(y-a_n)^2}{1+(y-a_n)^2} p(y) dy \leq \frac{1+\varepsilon^2}{\varepsilon^2} \int_{-\infty}^{+\infty} \frac{(y-a_n)^2}{1+(y-a_n)^2} p(y) dy = \frac{1+\varepsilon^2}{\varepsilon^2} E\left[\frac{(Y_n-a_n)^2}{1+(Y_n-a_n)^2}\right],$$

故
$$\lim_{n\to+\infty} P\left\{\left|\frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right| \ge \varepsilon\right\} = \lim_{n\to+\infty} P\left\{\left|Y_n - a_n\right| \ge \varepsilon\right\} = 0$$
,即 $\left\{X_n\right\}$ 服从大数定律.

14. 设 $\{X_n\}$ 为独立同分布的随机变量序列,方差存在. 又设 $\sum_{n=1}^{+\infty} a_n$ 为绝对收敛级数. 令 $Y_n = \sum_{i=1}^n X_i$,证明 $\{a_n Y_n\}$ 服从大数定律.

证: 设
$$\operatorname{Var}(X_n) = \sigma^2$$
, $\sum_{n=1}^{+\infty} a_n = S$,

$$\begin{aligned} & \text{Im} \frac{1}{n^2} \operatorname{Var} \left(\sum_{k=1}^n a_k Y_k \right) = \frac{1}{n^2} \operatorname{Var} \left[\sum_{k=1}^n a_k \left(\sum_{i=1}^k X_i \right) \right] = \frac{1}{n^2} \operatorname{Var} \left[\sum_{i=1}^n X_i \left(\sum_{k=i}^n a_k \right) \right] = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var} (X_i) \cdot \left(\sum_{k=i}^n a_k \right)^2 \\ & \leq \frac{1}{n^2} \sum_{i=1}^n \sigma^2 S^2 = \frac{\sigma^2 S^2}{n} , \end{aligned}$$

有
$$\lim_{n\to+\infty} \frac{1}{n^2} \operatorname{Var}\left(\sum_{k=1}^n a_k Y_k\right) = 0$$
,

故 $\{a_nY_n\}$ 满足马尔可夫大数定律条件, $\{a_nY_n\}$ 服从大数定律.

15. 设 $\{X_n\}$ 为独立同分布的随机变量序列,方差存在,令 $Y_n = \sum_{i=1}^n X_i$. 又设 $\{a_n\}$ 为一列常数,如果存在常数 c > 0,使得对一切 n 有 $|na_n| \le c$,证明 $\{a_nY_n\}$ 服从大数定律. 证: 设 $\text{Var}(X_n) = \sigma^2$,

$$\begin{split} & \text{III} \frac{1}{n^2} \operatorname{Var} \left(\sum_{k=1}^n a_k Y_k \right) = \frac{1}{n^2} \operatorname{Var} \left[\sum_{k=1}^n a_k \left(\sum_{i=1}^k X_i \right) \right] = \frac{1}{n^2} \operatorname{Var} \left[\sum_{i=1}^n X_i \left(\sum_{k=i}^n a_k \right) \right] = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var} (X_i) \cdot \left(\sum_{k=i}^n a_k \right)^2 \\ & \leq \frac{1}{n^2} \sum_{i=1}^n \sigma^2 \cdot \left(\sum_{k=i}^n \frac{c}{k} \right)^2 = \frac{\sigma^2 c^2}{n^2} \sum_{i=1}^n \left(\sum_{k=i}^n \frac{1}{k^2} + 2 \sum_{1 \leq k < l \leq n} \frac{1}{k l} \right) = \frac{\sigma^2 c^2}{n^2} \sum_{i=1}^n \left(2 \sum_{k=i}^n \sum_{l=k}^n \frac{1}{k l} - \sum_{k=i}^n \frac{1}{k^2} \right) \\ & = \frac{\sigma^2 c^2}{n^2} \left(2 \sum_{i=1}^n \sum_{k=i}^n \sum_{l=k}^n \frac{1}{k l} - \sum_{i=1}^n \sum_{k=i}^n \frac{1}{k^2} \right) = \frac{\sigma^2 c^2}{n^2} \left(2 \sum_{l=1}^n \sum_{k=1}^l \frac{1}{k l} - \sum_{k=1}^n \frac{1}{k^2} \right) \\ & = \frac{\sigma^2 c^2}{n^2} \left(2 \sum_{l=1}^n \sum_{k=1}^l k \cdot \frac{1}{k l} - \sum_{k=1}^n k \cdot \frac{1}{k^2} \right) = \frac{\sigma^2 c^2}{n^2} \left(2 \sum_{l=1}^n \sum_{k=1}^l \frac{1}{l} - \sum_{k=1}^n \frac{1}{k} \right) = \frac{\sigma^2 c^2}{n^2} \left(2 \sum_{l=1}^n l \cdot \frac{1}{k l} - \sum_{k=1}^n \frac{1}{k} \right) \\ & = \frac{\sigma^2 c^2}{n^2} \left(2 n - \sum_{k=1}^n \frac{1}{k} \right) < \frac{\sigma^2 c^2}{n^2} \cdot 2n = \frac{2\sigma^2 c^2}{n} , \end{split}$$

有
$$\lim_{n\to+\infty} \frac{1}{n^2} \operatorname{Var}\left(\sum_{k=1}^n a_k Y_k\right) = 0$$
,

故 $\{a_nY_n\}$ 满足马尔可夫大数定律条件, $\{a_nY_n\}$ 服从大数定律.

16. 设 $\{X_n\}$ 为独立同分布的随机变量序列,其方差有限,且 X_n 不恒为常数. 如果 $S_n = \sum_{i=1}^n X_i$,试证: 随机变量序列 $\{S_n\}$ 不服从大数定律.

注:此题有误,条件 " X_n 不恒为常数"应该改为 " X_n 不恒为常数的概率大于 0"或 " $Var(X_n) > 0$ "

证: 设
$$T_n = \frac{1}{n} \sum_{k=1}^n S_k$$
,有 $T_n = \frac{1}{n} \sum_{k=1}^n \sum_{i=1}^k X_i = \frac{1}{n} \sum_{i=1}^n X_i = \frac{1}{n} \sum_{i=1}^n (n-i+1)X_i = X_1 + \frac{1}{n} \sum_{i=2}^n (n-i+1)X_i$,

$$i \exists Y_n = \frac{1}{n} \sum_{i=2}^n (n-i+1) X_i$$
,有 $T_n = X_1 + Y_n$,且 $X_1 与 Y_n$ 相互独立,

因 $\{X_n\}$ 独立同分布且 X_n 不恒为常数的概率大于0,有 $P\{X_1-E(X_1)<0\}$ 与 $P\{X_1-E(X_1)>0\}$ 都大于0,则存在 $\varepsilon>0$,使得 $P\{X_1-E(X_1)\leq -\varepsilon\}=p_1>0$ 且 $P\{X_1-E(X_1)\geq \varepsilon\}=p_2>0$,

因
$$Y_n = \frac{1}{n} \sum_{i=2}^n (n-i+1) X_i$$
 不恒为常数的概率也大于 0,

则 $P\{Y_n - E(Y_n) \le 0\}$ 与 $P\{Y_n - E(Y_n) \ge 0\}$ 至少有一个大于 0.5,

可得
$$P\left\{\left|\frac{1}{n}\sum_{i=1}^{n}S_{i}-\frac{1}{n}\sum_{i=1}^{n}E(S_{i})\right|\geq\varepsilon\right\}=P\left\{\left|T_{n}-E(T_{n})\right|\geq\varepsilon\right\}$$

$$\geq P\{X_1 - E(X_1) \leq -\varepsilon\}P\{Y_n - E(Y_n) \leq 0\} + P\{X_1 - E(X_1) \geq \varepsilon\}P\{Y_n - E(Y_n) \geq 0\} \geq 0.5\min\{p_1, p_2\},$$

故
$$\lim_{n\to+\infty} P\left\{\left|\frac{1}{n}\sum_{i=1}^n S_i - \frac{1}{n}\sum_{i=1}^n E(S_i)\right| \ge \varepsilon\right\} \ge 0.5 \min\{p_1, p_2\} > 0$$
, $\{S_n\}$ 不服从大数定律.

17. 分别用随机投点法和平均值法计算下列定积分:

(1)
$$J_1 = \int_0^1 \frac{e^x - 1}{e - 1} dx$$
;

(2)
$$J_2 = \int_{-1}^{1} e^x dx$$
.

解: 随机投点法:

计算定积分 $\int_0^1 f(x)dx$,且 $0 \le f(x) \le 1$,

用计算机产生在 (0,1) 区间上均匀分布的 n 对随机数 (x_i, y_i) , $i=1,2,\cdots,n$, 记录满足不等式 $y_i \leq f(x_i)$ 的数据对的个数 μ_n ,用频率 $\frac{\mu_n}{n}$ 作为积分 $\int_0^1 f(x) dx$ 的估计值.

计算一般的定积分 $\int_a^b g(x)dx$,

可通过变量替换 $y = \frac{x-a}{b-a}$ 化为关于 y 的函数在 0 与 1 之间的积分,

$$\int_{a}^{b} g(x)dx = (b-a)\int_{0}^{1} g[a+(b-a)y]dy,$$

进一步,若 $c \le g(x) \le d$,通过函数变换 $f(y) = \frac{g[a + (b - a)y] - c}{d - c}$, 使得 $0 \le f(y) \le 1$,可得

$$\int_{a}^{b} g(x)dx = (b-a)(d-c)\int_{0}^{1} f(y)dy + c(b-a),$$

用蒙特卡洛方法计算出 $\int_0^1 f(y)dy$, 进而就得到 $\int_0^b g(x)dx$ 的值.

(1) $J_1 = \int_0^1 \frac{e^x - 1}{e^{-1}} dx$,因积分区间为 [0, 1] 且 $\frac{e^x - 1}{e^{-1}}$ 在 [0, 1] 之间取值,

记
$$k_1$$
 为满足不等式 $y_i \leq \frac{e^{x_i} - 1}{e - 1}$ 的数对个数,

```
故 J_1 = \int_0^1 \frac{e^x - 1}{e - 1} dx \approx \frac{k_1}{n};
     MATLAB 程序:
     n=input('number of tests=');k=0;
      for i=1:n
           x=rand;y=rand;
           if y \le (\exp(x)-1)/(\exp(1)-1);
                 k=k+1;
           end
     end
     J1=k/n
(2) J_2 = \int_{-1}^{1} e^x dx, 因积分区间为 [-1, 1] 且 e^x在 [0, e] 之间取值,
     设 f_2(x) = \frac{e^{-1+2x}-0}{e^{-0}} = e^{-2+2x},记 k_2 为满足不等式 y_i \le e^{-2+2x_i} 的数对个数,
     故 J_2 = \int_{-1}^{1} e^x dx = 2 \left[ 0 + (e - 0) \int_{0}^{1} e^{-2 + 2t} dt \right] = 2 e^{\frac{k_2}{n}};
     MATLAB 程序:
     n=input('number of tests=');k=0;
      for i=1:n
           x=rand;y=rand;
           if y \le \exp(-2 + 2 * x);
                 k=k+1;
           end
     end
     J2=k/n*2*exp(1)
平均值法:
计算定积分 \int_0^1 f(x)dx,
用计算机产生在 (0,1) 区间上均匀分布的 n 个随机数 x_i, i=1,2,\cdots,n, 计算 f(x_i) 的平均值 \frac{1}{n}\sum_{i=1}^{n}f(x_i)
作为积分 \int_0^1 f(x)dx 的估计值.
计算一般的定积分 \int_{a}^{b} g(x)dx,
可通过变量替换 y = \frac{x-a}{b-a} 化为关于 y 的函数在 0 与 1 之间的积分,
           \int_{a}^{b} g(x)dx = (b-a)\int_{a}^{1} g[a+(b-a)y]dy = (b-a)\int_{a}^{1} f(y)dy,
用蒙特卡洛方法计算出 \int_0^1 f(y)dy, 进而就得到 \int_a^b g(x)dx 的值.
(1) J_1 = \int_0^1 \frac{e^x - 1}{e^x - 1} dx,因积分区间为 [0, 1],

    \text{th } J_1 = \int_0^1 \frac{e^x - 1}{e - 1} dx \approx \frac{1}{n} \sum_{i=1}^n \frac{e^{x_i} - 1}{e - 1};
```

MATLAB 程序:

n=input('number of tests=');

x=rand(n);

J1=mean((exp(x)-1)/(exp(1)-1))

(2) $J_2 = \int_{-1}^{1} e^x dx$, 因积分区间为 [-1, 1], 设 $f_2(x) = e^{-1+2x}$,

故
$$J_2 = \int_{-1}^{1} e^x dx = 2 \int_{0}^{1} e^{-1+2t} dt \approx \frac{2}{n} \sum_{i=1}^{n} e^{-1+2x_i}$$
.

MATLAB 程序:

n=input('number of tests=');

x=rand(n);

J2=2*mean(exp(-1+2*x))

习题 4.4

- 1. 某保险公司多年的统计资料表明,在索赔户中被盗索赔户占 20%,以 X 表示在随意抽查的 100 个索赔户中因被盗向保险公司索赔的户数.
 - (1) 写出X的分布列;
 - (2) 求被盗索赔户不少于 14 户且不多于 30 户的概率的近似值.
- 解: (1) 因 X 服从二项分布 b(100, 0.2),

故
$$X$$
 的分布列为 $P{X = k} = {100 \choose k} \times 0.2^k \times 0.8^{100-k}, \quad k = 0, 1, 2, \dots, 100;$

(2) $\boxtimes E(X) = np = 20$, Var(X) = np(1-p) = 16,

且 n = 100 较大,根据中心极限定理知 $\frac{X-20}{4} \stackrel{\sim}{\sim} N(0,1)$,

$$int P{14 ≤ X ≤ 30} = P{13.5 < X ≤ 30.5} ≈ Φ\left(\frac{30.5 - 20}{4}\right) - Φ\left(\frac{13.5 - 20}{4}\right) = Φ(2.625) - Φ(-1.625)$$

$$=\Phi(2.625)+\Phi(1.625)-1=0.9957+0.9479-1=0.9436.$$

- 2. 某电子计算机主机有 100 个终端,每个终端有 80%的时间被使用. 若各个终端是否被使用是相互独立的,试求至少有 15 个终端空闲的概率.
- 解:设X表示空闲的终端个数,有X服从二项分布b(100,0.2),

$$\boxtimes E(X) = np = 20$$
, $Var(X) = np(1-p) = 16$

且 n = 100 较大,根据中心极限定理知 $\frac{X-20}{4} \stackrel{\sim}{\sim} N(0,1)$,

故
$$P\{X \ge 15\} = P\{X > 14.5\} \approx 1 - \Phi\left(\frac{14.5 - 20}{4}\right) = 1 - \Phi(-1.375) = \Phi(1.375) = 0.9154$$
.

- 3. 有一批建筑房屋用的木柱,其中80%的长度不小于3 m,现从这批木柱中随机地取出100 根,问其中至少有30 根短于3 m的概率是多少?
- 解:设X表示短于3m的木柱根数,有X服从二项分布b(100,0.2),

$$\boxtimes E(X) = np = 20$$
, $Var(X) = np(1-p) = 16$,

且 n = 100 较大,根据中心极限定理知 $\frac{X-20}{4} \stackrel{\sim}{\sim} N(0,1)$,

故
$$P{X \ge 30} = P{X > 29.5} \approx 1 - \Phi\left(\frac{29.5 - 20}{4}\right) = 1 - \Phi(2.375) = 1 - 0.9912 = 0.0088$$
.

4. 掷一颗骰子 100 次,记第 i 次掷出的点数为 X_i , $i=1,2,\cdots,100$,点数之平均为 $\overline{X}=\frac{1}{100}\sum_{i=1}^{100}X_i$,试求

概率 $P{3 \le \overline{X} \le 4}$.

解: 因 X_i 的概率分布为 $P\{X_i = k\} = \frac{1}{6}, k = 1, 2, \dots, 6$

$$\mathbb{M} E(X_i) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = 3.5, \quad E(X_i^2) = 1^2 \times \frac{1}{6} + 2^2 \times \frac{1}{6} + \dots + 6^2 \times \frac{1}{6} = \frac{91}{6},$$

可得
$$\operatorname{Var}(X_i) = E(X_i^2) - [E(X_i)]^2 = \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12}$$
,

且 n = 100 较大,根据中心极限定理知 $\frac{\overline{X} - 3.5}{\sqrt{7/240}} \sim N(0, 1)$,

故
$$P{3 \le \overline{X} \le 4} \approx \Phi\left(\frac{4-3.5}{\sqrt{7/240}}\right) - \Phi\left(\frac{3-3.5}{\sqrt{7/240}}\right) = \Phi(2.9277) - \Phi(-2.9277) = 2 \times \Phi(2.9277) - 1$$

= 2 × 0.9983 - 1 = 0.9966.

5. 连续地掷一枚骰子80次,求点数之和超过300的概率.

解: 记第 i 次掷出的点数为 X_i , $i=1,2,\dots,80$, 有 X_i 的概率分布为 $P\{X_i=k\}=\frac{1}{6}$, $k=1,2,\dots,6$,

$$\mathbb{M} E(X_i) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = 3.5, \quad E(X_i^2) = 1^2 \times \frac{1}{6} + 2^2 \times \frac{1}{6} + \dots + 6^2 \times \frac{1}{6} = \frac{91}{6},$$

可得
$$\operatorname{Var}(X_i) = E(X_i^2) - [E(X_i)]^2 = \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12}$$
,

且
$$n = 80$$
 较大,根据中心极限定理知 $\frac{\sum_{i=1}^{80} X_i - 280}{\sqrt{700/3}} \stackrel{\sim}{\sim} N(0,1)$,

故
$$P\left\{\sum_{i=1}^{80} X_i > 300\right\} \approx 1 - \Phi\left(\frac{300 - 280}{\sqrt{700/3}}\right) = 1 - \Phi(1.3093) = 1 - 0.9048 = 0.0952$$
.

- 6. 有 20 个灯泡,设每个灯泡的寿命服从指数分布,其平均寿命为 25 天.每次用一个灯泡,当使用的灯泡坏了以后立即换上一个新的,求这些灯泡总共可使用 450 天以上的概率.
- 解: 记第 i 个灯泡的寿命为 X_i , $i = 1, 2, \dots, 20$, 有 $X_i \sim Exp(1/25)$, 则 $E(X_i) = 1/\lambda = 25$, $Var(X_i) = 1/\lambda^2 = 625$,

且
$$n = 20$$
 较大,根据中心极限定理知 $\frac{\sum_{i=1}^{20} X_i - 500}{\sqrt{12500}} \stackrel{\sim}{\sim} N(0,1)$,

故
$$P\left\{\sum_{i=1}^{20} X_i > 450\right\} = 1 - \Phi\left(\frac{450 - 500}{\sqrt{12500}}\right) = \Phi(0.4472) = 0.6726$$
.

7. 设 X_1, X_2, \dots, X_{48} 为独立同分布的随机变量,共同分布为 U(0, 5). 其算术平均为 $\overline{X} = \frac{1}{48} \sum_{i=1}^{48} X_i$,试求概率 $P\{2 \le \overline{X} \le 3\}$.

解: 因
$$X_i$$
 服从均匀分布 $U(0,5)$,有 $E(X_i) = \frac{a+b}{2} = 2.5$, $Var(X_i) = \frac{(b-a)^2}{12} = \frac{25}{12}$,

可得
$$E(\overline{X}) = \frac{1}{48} \sum_{i=1}^{48} E(X_i) = 2.5$$
, $Var(\overline{X}) = \frac{1}{48^2} \sum_{i=1}^{48} Var(X_i) = \frac{1}{48^2} \times 48 \times \frac{25}{12} = \frac{25}{576}$,

且 n = 48 较大,根据中心极限定理知 $\frac{\overline{X} - 2.5}{5/24} \sim N(0,1)$,

故
$$P\{2 \le \overline{X} \le 3\} \approx \Phi\left(\frac{3-2.5}{5/24}\right) - \Phi\left(\frac{2-2.5}{5/24}\right) = \Phi(2.4) - \Phi(-2.4) = 2 \times \Phi(2.4) - 1 = 2 \times 0.9918 = 0.9836$$
.

- 8. 某汽车销售点每天出售的汽车数服从参数为 $\lambda = 2$ 的泊松分布. 若一年 365 天都经营汽车销售,且每天出售的汽车数是相互独立的,求一年中售出 700 辆以上汽车的概率.
- 解:设 X_i 表示一年中第i日售出的汽车数,有 X_i 服从泊松分布P(2),可得 $E(X_i) = \lambda = 2$, $Var(X_i) = \lambda = 2$,

因一年中售出的汽车数为
$$Y = \sum_{i=1}^{365} X_i$$
,有 $E(Y) = \sum_{i=1}^{365} E(X_i) = 730$, $Var(Y) = \sum_{i=1}^{365} Var(X_i) = 730$,

且 n = 365 较大,根据中心极限定理知 $\frac{Y - 730}{\sqrt{730}} \sim N(0, 1)$,

故
$$P{Y \ge 700} = P{Y > 699.5} \approx 1 - \Phi\left(\frac{699.5 - 730}{\sqrt{730}}\right) = 1 - \Phi(-1.1289) = \Phi(1.1289) = 0.8705$$
.

- 9. 某餐厅每天接待 400 名顾客,设每位顾客的消费额(元)服从 (20,100) 上的均匀分布,且顾客的消费额是相互独立的.试求:
 - (1) 该餐厅每天的平均营业额;
 - (2) 该餐厅每天的营业额在平均营业额 ±760 元内的概率.
- 解:设 X_i 表示第i个顾客的消费额,有 X_i 服从均匀分布U(20,100),

则
$$E(X_i) = \frac{a+b}{2} = 60$$
, $Var(X_i) = \frac{(b-a)^2}{12} = \frac{1600}{3}$,

(1) 因该餐厅一天内的营业额为 $Y = \sum_{i=1}^{400} X_i$,

故该餐厅每天的平均营业额 $E(Y) = \sum_{i=1}^{400} E(X_i) = 400 \times 60 = 24000$ (元);

(2)
$$\boxtimes E(Y) = 24000$$
, $Var(Y) = \sum_{i=1}^{400} Var(X_i) = 400 \times \frac{1600}{3} = \frac{640000}{3}$,

且 n = 400 较大,根据中心极限定理知 $\frac{Y - 24000}{800/\sqrt{3}} \sim N(0,1)$,

故
$$P\{-760 \le Y - 24000 \le 760\} \approx \Phi\left(\frac{760}{800/\sqrt{3}}\right) - \Phi\left(\frac{-760}{800/\sqrt{3}}\right) = \Phi(1.6454) - \Phi(-1.6454)$$

$$=2\Phi(1.6454)-1=2\times0.9501-1=0.9002.$$

10. 一仪器同时收到 50 个信号 U_i , $i=1,2,\cdots,50$. 设 U_i 是相互独立的,且都服从 (0,10) 内的均匀分布,

试求
$$P\left\{\sum_{i=1}^{50}U_i>300\right\}$$
.

解: 因
$$U_i$$
 服从均匀分布 $U(0, 10)$,有 $E(U_i) = \frac{a+b}{2} = 5$, $Var(U_i) = \frac{(b-a)^2}{12} = \frac{25}{3}$

可得
$$E\left(\sum_{i=1}^{50} U_i\right) = \sum_{i=1}^{50} E(U_i) = 50 \times 5 = 250$$
, $Var\left(\sum_{i=1}^{50} U_i\right) = \sum_{i=1}^{50} Var(U_i) = 50 \times \frac{25}{3} = \frac{1250}{3}$,

且
$$n = 50$$
 较大,根据中心极限定理知 $\frac{\sum\limits_{i=1}^{50} U_i - 250}{\sqrt{1250/3}} \stackrel{\sim}{\sim} N(0,1)$,

故
$$P\left\{\sum_{i=1}^{50} U_i > 300\right\} \approx 1 - \Phi\left(\frac{300 - 250}{\sqrt{1250/3}}\right) = 1 - \Phi(2.4495) = 1 - 0.9928 = 0.0072$$
.

- 11. 计算机在进行加法运算时对每个加数取整数(取最为接近于它的整数). 设所有的取整误差是相互独立的,且它们都服从 (-0.5, 0.5) 上的均匀分布.
 - (1) 若将 1500 个数相加, 求误差总和的绝对值超过 15 的概率:
 - (2) 最多几个数加在一起可使得误差总和的绝对值小于 10 的概率不小于 90%.
- 解:设 X_i 表示第i个加数的取整误差,有 X_i 服从均匀分布U(-0.5, 0.5),

$$\mathbb{M} E(X_i) = \frac{a+b}{2} = 0, \quad \text{Var}(X_i) = \frac{(b-a)^2}{12} = \frac{1}{12}$$

(1) 因 1500 个数相加的误差总和为
$$Y = \sum_{i=1}^{1500} X_i$$
,有 $E(Y) = \sum_{i=1}^{1500} E(X_i) = 0$, $Var(Y) = \sum_{i=1}^{1500} Var(X_i) = 125$,

且
$$n = 1500$$
 较大,根据中心极限定理知 $\frac{Y-0}{\sqrt{125}} \sim N(0,1)$,

故
$$P\{|Y|>15\}\approx 2\left[1-\Phi\left(\frac{15}{\sqrt{125}}\right)\right]=2[1-\Phi(1.3416)]=2\times(1-0.9101)=0.1798$$
;

(2) 因
$$n$$
 个数相加的误差总和为 $\sum_{i=1}^{n} X_{i}$,有 $E\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} E(X_{i}) = 0$, $Var\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} Var(X_{i}) = \frac{n}{12}$,

不妨设 n 较大,根据中心极限定理知 $\frac{\sum\limits_{i=1}^{n}X_{i}-0}{\sqrt{n/12}}$ $\stackrel{\sim}{\sim}N(0,1)$,

$$| \Box P \left\{ \left| \sum_{i=1}^{n} X_{i} \right| < 10 \right\} \ge 0.9 , \quad | \overrightarrow{T} P \left\{ \left| \sum_{i=1}^{n} X_{i} \right| < 10 \right\} \approx \Phi \left(\frac{10}{\sqrt{n/12}} \right) - \Phi \left(\frac{-10}{\sqrt{n/12}} \right) = 2\Phi \left(\frac{10\sqrt{12}}{\sqrt{n}} \right) - 1 \ge 0.9 ,$$

则
$$\Phi\left(\frac{10\sqrt{12}}{\sqrt{n}}\right) \ge 0.95$$
,即 $\frac{10\sqrt{12}}{\sqrt{n}} \ge 1.6449$,

故 n ≤ 443.5338, 即 n 不超过 443.

- 12. 设各零件的重量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为 0.5 kg,标准差为 0.1 kg,问 5000 只零件的总重量超过 2510 kg 的概率是多少?
- 解: 设 X_i 表示第 i 个零件的重量,有 $E(X_i) = 0.5$, $Var(X_i) = 0.1^2 = 0.01$,

因 5000 只零件的总重量为
$$Y = \sum_{i=1}^{5000} X_i$$
 , 有 $E(Y) = \sum_{i=1}^{5000} E(X_i) = 2500$, $Var(Y) = \sum_{i=1}^{5000} Var(X_i) = 50$,

且
$$n = 5000$$
 很大,根据中心极限定理知 $\frac{Y - 2500}{\sqrt{50}} \sim N(0, 1)$,

故
$$P{Y > 2510}$$
 ≈ 1 – $\Phi\left(\frac{2510 - 2500}{\sqrt{50}}\right)$ = 1 – Φ (1.4142) = 1 – 0.9214 = 0.0786.

- 13. 某种产品由20个相同部件连接而成,每个部件的长度是均值为2 mm,标准差为0.02 mm 的随机变量. 假如这20个部件的长度相互独立同分布,且规定产品总长为(40±0.2) mm 时为合格品,求该产品的不合格品率.
- 解:设 X_i 表示第i个部件的长度,有 $E(X_i) = 2$, $Var(X_i) = 0.02^2 = 0.0004$,

因 20 个部件总长为
$$Y = \sum_{i=1}^{20} X_i$$
 , 有 $E(Y) = \sum_{i=1}^{20} E(X_i) = 40$, $Var(Y) = \sum_{i=1}^{20} Var(X_i) = 0.008$,

且
$$n = 20$$
 较大,根据中心极限定理知 $\frac{Y - 40}{\sqrt{0.008}} \sim N(0, 1)$,

故
$$P\{|Y-40| > 0.2\} \approx 2 \left[1-\Phi\left(\frac{0.2}{\sqrt{0.008}}\right)\right] = 2[1-\Phi(2.2361)] = 2 \times (1-0.9873) = 0.0254$$
.

- 14. 一个保险公司有 10000 个汽车投保人,每个投保人平均索赔 280 元,标准差为 800 元. 求总索赔额超过 2700000 元的概率.
- 解:设 X_i 表示第i个投保人索赔额,有 $E(X_i) = 280$, $Var(X_i) = 800^2 = 640000$,

因总索赔额
$$Y = \sum_{i=1}^{10000} X_i$$
,有 $E(Y) = \sum_{i=1}^{10000} E(X_i) = 2800000$, $Var(Y) = \sum_{i=1}^{10000} Var(X_i) = 64000000000$,

且
$$n = 10000$$
 很大,根据中心极限定理知 $\frac{Y - 2800000}{\sqrt{6400000000}} = \frac{Y - 2800000}{80000} \stackrel{.}{\sim} N(0,1)$,

故
$$P{Y > 2700000} \approx 1 - \Phi\left(\frac{2700000 - 2800000}{80000}\right) = 1 - \Phi\left(-\frac{10}{8}\right) = \Phi(1.25) = 0.8944$$
.

- 15. 有两个班级同时上一门课,甲班有 25 人,乙班有 64 人. 该门课程期末考试平均成绩为 78 分,标准 差为 14 分. 试问甲班的平均成绩超过 80 分的概率大,还是乙班的平均成绩超过 80 分的概率大?
- 解: 设 X_i 表示第 i 个同学的考试成绩,有 $E(X_i) = 78$, $Var(X_i) = 14^2 = 196$,

因平均成绩
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
,有 $E(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = 78$, $Var(\overline{X}) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{196}{n}$,

且 n = 25 或 64 较大,根据中心极限定理知 $\frac{\overline{X} - 78}{\sqrt{196/n}} \stackrel{\cdot}{\sim} N(0,1)$,

则
$$P\{\overline{X} > 80\} \approx 1 - \Phi\left(\frac{80 - 78}{\sqrt{196/25}}\right) = 1 - \Phi\left(\frac{\sqrt{n}}{7}\right)$$

因甲班有25人,甲班的平均成绩超过80分的概率

$$P\{\overline{X} > 80\} \approx 1 - \Phi\left(\frac{\sqrt{25}}{7}\right) = 1 - \Phi(0.7143) = 1 - 0.7625 = 0.2375$$
,

乙班有64人,乙班的平均成绩超过80分的概率

$$P\{\overline{X} > 80\} \approx 1 - \Phi\left(\frac{\sqrt{64}}{7}\right) = 1 - \Phi(1.1429) = 1 - 0.8735 = 0.1265$$

故甲班的平均成绩超过80分的概率大.

- 16. 进行独立重复试验,每次试验中事件 A 发生的概率为 0.25. 试问能以 95%的把握保证 1000 次试验中事件 A 发生的频率与概率相差多少? 此时 A 发生的次数在什么范围内?
- 解:设X表示 1000 次试验中事件A发生的次数,X服从二项分布 b(1000, 0.25),

$$\boxtimes E(X) = np = 250$$
, $Var(X) = np(1-p) = 187.5$,

且
$$n = 1000$$
 较大,根据中心极限定理知 $\frac{X - 250}{\sqrt{187.5}} \sim N(0,1)$,

设 1000 次试验中事件 A 发生频率与概率相差不超过 a 的概率为 95%,即 $P\left\{\left|\frac{X}{1000}-0.25\right| \le a\right\}=0.95$,

$$\text{FIF}\ P\{\mid X-250\mid \leq 1000a\} \approx \Phi\!\left(\frac{1000a}{\sqrt{187.5}}\right) - \Phi\!\left(\frac{-1000a}{\sqrt{187.5}}\right) = 2\Phi\!\left(\frac{1000a}{\sqrt{187.5}}\right) - 1 = 0.95 \text{ ,}$$

故
$$\Phi\left(\frac{1000a}{\sqrt{187.5}}\right) = 0.975$$
,即 $\frac{1000a}{\sqrt{187.5}} = 1.96$, $a = 0.0268$;

可见能以 95%的把握保证
$$\left| \frac{X}{1000} - 0.25 \right| \le 0.0268$$
,即 $\left| X - 250 \right| \le 26.8$,223.2 $\le X \le 276.8$,

故 A 发生的次数在 223 次到 277 次之间.

- 17. 设某生产线上组装每件产品的时间服从指数分布,平均需要 10 min,且各件产品的组装时间是相互独立的.
 - (1) 试求组装 100 件产品需要 15h 至 20h 的概率;
 - (2) 保证有95%的可能性,问16个h内最多可以组装多少件产品.
- 解:设 X_i 表示组装第i件产品的时间,有 X_i 服从指数分布 $Exp(\lambda)$ 且 $E(X_i)=10$,

则
$$\lambda = 0.1$$
, $E(X_i) = \frac{1}{\lambda} = 10$, $Var(X_i) = \frac{1}{\lambda^2} = 100$.

(1) 因组装 100 件产品需要的时间为 $Y = \sum_{i=1}^{100} X_i$,

$$\text{If } E(Y) = \sum_{i=1}^{100} E(X_i) = 1000 \text{ , } Var(Y) = \sum_{i=1}^{100} Var(X_i) = 10000 \text{ ,}$$

且
$$n = 100$$
 较大,根据中心极限定理知 $\frac{Y - 1000}{100} \sim N(0, 1)$,

故
$$P\{15 \times 60 \le Y \le 20 \times 60\} = P\{900 \le Y \le 1200\} \approx \Phi\left(\frac{1200 - 1000}{100}\right) - \Phi\left(\frac{900 - 1000}{100}\right)$$

$$=\Phi(2)-\Phi(-1)=\Phi(2)+\Phi(1)-1=0.9772+0.8413-1=0.8185;$$

(2) 因组装 n 件产品需要的时间为 $\sum_{i=1}^{n} X_i$,

$$\text{III } E\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} E(X_{i}) = 10n \text{ , } Var\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} Var(X_{i}) = 100n \text{ ,}$$

不妨设
$$n$$
 较大,根据中心极限定理知 $\frac{\sum\limits_{i=1}^{n}X_{i}-10n}{10\sqrt{n}}$ $\stackrel{\sim}{\sim}N(0,1)$,

因
$$P\left\{\sum_{i=1}^{n} X_{i} \le 16 \times 60\right\} \ge 0.95$$
,有 $P\left\{\sum_{i=1}^{n} X_{i} \le 960\right\} \approx \Phi\left(\frac{960-10n}{10\sqrt{n}}\right) \ge 0.95$,

可得
$$\frac{960-10n}{10\sqrt{n}} \ge 1.6449$$
,即 $10n+16.449\sqrt{n}-960 \le 0$,解方程得 $\sqrt{n} \le 9.01$,

故 n ≤ 81.1801,即 n 不超过 81.

18. 某种福利彩票的奖金额 X 由抽奖决定, 其分布列为

若一年中要开出300个奖,问需要多少奖金总额,才有95%的把握能够发放奖金.

解:设 X_i 表示第i次抽奖的奖金额

则
$$E(X_i) = 5 \times 0.2 + 10 \times 0.2 + 20 \times 0.2 + 30 \times 0.1 + 40 \times 0.1 + 50 \times 0.1 + 100 \times 0.1 = 29$$

可得
$$Var(X_i) = E(X_i^2) - [E(X_i)]^2 = 1605 - 29^2 = 764$$
,

因一年开出的奖金总额为
$$Y = \sum_{i=1}^{300} X_i$$
,有 $E(Y) = \sum_{i=1}^{300} E(X_i) = 8700$, $Var(Y) = \sum_{i=1}^{300} Var(X_i) = 229200$,

且
$$n = 300$$
 较大,根据中心极限定理知 $\frac{Y - 8700}{\sqrt{229200}} \sim N(0, 1)$,

设需要准备的奖金总额为
$$a$$
 万元,有 $P{Y \le a} \approx \Phi\left(\frac{a - 8700}{\sqrt{229200}}\right) = 0.95$,

故
$$\frac{a-8700}{\sqrt{229200}}$$
 = 1.6449,即 a = 9487.49(万元).

- 19. 一家有 500 间客房的大旅馆的每间客房装有一台 2 kW (千瓦)的空调机. 若开房率为 80%, 需要多少 kW 的电力才能有 99%的可能性保证有足够的电力使用空调机.
- 解:设X表示开房的房间数,有X服从二项分布b(500,0.8),

因
$$E(X) = np = 400$$
, $Var(X) = np(1-p) = 80$,

且
$$n = 500$$
 较大,根据中心极限定理知 $\frac{X - 400}{\sqrt{80}} \stackrel{.}{\sim} N(0, 1)$,

设需要的电力为
$$a$$
 kW,有 $P{2X \le a} = P{X \le 0.5a} \approx \Phi\left(\frac{0.5a - 400}{\sqrt{80}}\right) = 0.99$,

故
$$\frac{0.5a-400}{\sqrt{80}}$$
 = 2.3263,即 a = 841.615 kW.

20. 设某元件是某电器设备的一个关键部件, 当该元件失效后立即换上一个新的元件. 假定该元件的平均

寿命为 100 小时,标准差为 30 小时,试问应准备多少备件,才能以 0.95 以上的概率,保证这个系统能连续运行 2000 小时以上?

解:设 X_i 表示第i个元件的使用寿命,有 $E(X_i) = 100$, $Var(X_i) = 30^2 = 900$,

因准备 n 个备件时系统连续运行时间 $Y = \sum_{i=1}^{n} X_i$,

有
$$E(Y) = \sum_{i=1}^{n} E(X_i) = 100n$$
, $Var(Y) = \sum_{i=1}^{n} Var(X_i) = 900n$,

且 n 应大于 20 较大,根据中心极限定理知 $\frac{Y-100n}{\sqrt{900n}} \stackrel{\sim}{\sim} N(0,1)$,

$$\text{FIF} P\{Y > 2000\} \approx 1 - \Phi\left(\frac{2000 - 100n}{\sqrt{900n}}\right) = \Phi\left(\frac{100n - 2000}{30\sqrt{n}}\right) \ge 0.95 \text{ ,}$$

即
$$\frac{100n-2000}{30\sqrt{n}} \ge 1.645$$
, $100n-49.35\sqrt{n}-2000 \ge 0$, 解得 $n \ge 22.3321$,

故至少应准备23个备件.

- 21. 独立重复地对某物体的长度 a 进行 n 次测量,设各次测量结果 X_i 服从正态分布 $N(a, 0.2^2)$. 记 \overline{X} 为 n 次测量结果的算术平均值,为保证有 95%的把握使平均值与实际值 a 的差异小于 0.1,问至少需要测量多少次?
- 解: 因 X_i 服从正态分布 $N(a, 0.2^2)$ 且相互独立,有 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 服从正态分布,

$$|\exists P\{ | \overline{X} - a | < 0.1 \} = \Phi\left(\frac{0.1}{0.2/\sqrt{n}}\right) - \Phi\left(\frac{-0.1}{0.2/\sqrt{n}}\right) = \Phi\left(\frac{\sqrt{n}}{2}\right) - \Phi\left(-\frac{\sqrt{n}}{2}\right) = 2\Phi\left(\frac{\sqrt{n}}{2}\right) - 1 \ge 0.95 ,$$

可得
$$\Phi\left(\frac{\sqrt{n}}{2}\right) \ge 0.975$$
,即 $\frac{\sqrt{n}}{2} \ge 1.96$,

故 $n \ge 15.3664$, 即至少需要测量 16 次.

- 22. 某工厂每月生产 10000 台液晶投影机,但它的液晶片车间生产液晶片合格率为 80%,为了以 99.7%的可能性保证出厂的液晶投影机都能装上合格的液晶片,试问该液晶片车间每月至少应该生产多少片液晶片?
- 解: 设每月应该生产n片液晶片,其中合格液晶片有X片,有X服从二项分布b(n,0.8),

$$\boxtimes E(X) = np = 0.8 n$$
, $Var(X) = np(1-p) = 0.16 n$,

且 n 应大于 10000, n 很大, 根据中心极限定理知 $\frac{X-0.8n}{0.4\sqrt{n}} \sim N(0,1)$,

则
$$\frac{0.8n-10000}{0.4\sqrt{n}} \ge 2.7478$$
,即 $0.8n-1.0991\sqrt{n}-10000 \ge 0$,解方程得 $\sqrt{n} \ge 112.4924$,

故 $n \ge 12654.55$,即 n 至少为 12655.

- 23. 某产品的合格率为 99%,问包装箱中应该装多少个此种产品,才能有 95%的可能性使每箱中至少有 100 个合格产品.
- 解:设包装箱中应该装n个此种产品,其中合格产品有X个,有X服从二项分布b(n,0.99),

 $\boxtimes E(X) = np = 0.99 n$, Var(X) = np(1-p) = 0.0099 n,

且 n 应大于 100, n 较大,根据中心极限定理知 $\frac{X-0.99n}{\sqrt{0.0099n}} \stackrel{\sim}{\sim} N(0,1)$,

$$|\exists P\{X \ge 100\} \approx 1 - \Phi\left(\frac{100 - 0.99n}{\sqrt{0.0099n}}\right) = \Phi\left(\frac{0.99n - 100}{\sqrt{0.0099n}}\right) \ge 0.95,$$

则
$$\frac{0.99n-100}{\sqrt{0.0099n}} \ge 1.6449$$
,即 $0.99n-0.1637\sqrt{n}-100 \ge 0$,解方程得 $\sqrt{n} \ge 10.1334$,

故 $n \ge 102.69$, 即 n 至少为 103.

- 24. 为确定某城市成年男子中吸烟者的比例 p,任意调查 n 个成年男子,记其中的吸烟人数为 m,问 n 至 少为多大才能保证 m/n 与 p 的差异小于 0.01 的概率大于 95%.
- 解: 因 m 服从二项分布 b(n,p),有 E(m) = np, Var(m) = np(1-p),

不妨设 n 较大,根据中心极限定理知 $\frac{m-np}{\sqrt{np(1-p)}} \sim N(0,1)$,

$$|E| P\left\{ \left| \frac{m}{n} - p \right| < 0.01 \right\} \approx \Phi\left(\frac{0.01n}{\sqrt{np(1-p)}} \right) - \Phi\left(\frac{-0.01n}{\sqrt{np(1-p)}} \right) = 2\Phi\left(\frac{0.01\sqrt{n}}{\sqrt{p(1-p)}} \right) - 1 > 0.95 ,$$

則
$$\Phi\left(\frac{0.01\sqrt{n}}{\sqrt{p(1-p)}}\right) > 0.975$$
, $\frac{0.01\sqrt{n}}{\sqrt{p(1-p)}} > 1.96$, 即 $n > 196^2 p(1-p)$,

因 $p(1-p) \le 0.25$,

故只需 $n > 196^2 \times 0.25 = 9604$.

25. 设 $X \sim Ga(n, 1)$, 试问n应该多大, 才能满足

$$P\left\{\left|\frac{X}{n}-1\right|>0.01\right\}<0.01$$
.

解: 设 X_i 独立同分布,且都服从 Exp(1),有 $E(X_i) = 1$, $Var(X_i) = 1$, $X = \sum_{i=1}^n X_i \sim Ga(n,1)$,

则
$$E(X) = \sum_{i=1}^{n} E(X_i) = n$$
 , $Var(X) = \sum_{i=1}^{n} Var(X_i) = n$,

不妨设n较大,根据中心极限定理知 $\frac{X-n}{\sqrt{n}}$ $\stackrel{\sim}{\sim} N(0,1)$,

$$|E| P\left\{ \left| \frac{X}{n} - 1 \right| > 0.01 \right\} = P\left\{ \left| \frac{X - n}{\sqrt{n}} \right| > 0.01\sqrt{n} \right\} \approx 2[1 - \Phi(0.01\sqrt{n})] < 0.01,$$

则 $\Phi(0.01\sqrt{n}) > 0.995$, 即 $0.01\sqrt{n} > 2.5758$, n > 66348.9660,

故 n 应该至少为 66349.

26. 设 $\{X_n\}$ 为一独立同分布的随机变量序列,已知 $E(X_i^k)=a_k,\ k=1,2,3,4$. 试证明: 当 n 充分大时,

 $Y_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ 近似服从正态分布,并指出此正态分布的参数.

注:此题应将随机变量 X_n 与其平方和的平均值的使用不同的记号,这里已改记为 Y_n

$$\text{iif:} \quad \boxtimes E(Y_n) = \frac{1}{n} \sum_{i=1}^n E(X_i^2) = a_2, \quad \operatorname{Var}(Y_n) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i^2) = \frac{1}{n^2} \sum_{i=1}^n \left\{ E(X_i^4) - [E(X_i^2)]^2 \right\} = \frac{1}{n} (a_4 - a_2^2),$$

当
$$n$$
 充分大时,根据中心极限定理知 $\frac{Y_n - a_2}{\sqrt{(a_4 - a_2^2)/n}} \stackrel{.}{\sim} N(0, 1)$,

故当
$$n$$
 充分大时, $Y_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ 近似服从正态分布 $N\left(a_2, \frac{a_4 - a_2^2}{n}\right)$.

27. 用概率论的方法证明:

$$\lim_{n \to \infty} \left(1 + n + \frac{n^2}{2!} + \dots + \frac{n^n}{n!} \right) e^{-n} = \frac{1}{2}.$$

证: 首先证明泊松分布的正态逼近: 设 $X \sim P(\lambda)$, 记 $Y_{\lambda}^* = \frac{X - \lambda}{\sqrt{\lambda}}$, 则 Y_{λ}^* 按分布收敛于标准正态分布,

设 $X \sim P(\lambda)$, 有 X 的特征函数为 $\varphi(v) = e^{\lambda(e^{iv}-1)}$

则
$$Y_{\lambda}^* = \frac{X - \lambda}{\sqrt{\lambda}} = \frac{1}{\sqrt{\lambda}} X - \sqrt{\lambda}$$
 的特征函数为 $\varphi_{Y_{\lambda}^*}(v) = e^{-i\sqrt{\lambda}v} \varphi\left(\frac{v}{\sqrt{\lambda}}\right) = e^{-i\sqrt{\lambda}v} \cdot e^{\lambda(e^{\frac{iv}{\sqrt{\lambda}}}-1)} = e^{\frac{iv}{\sqrt{\lambda}}}$,

因
$$e^x = 1 + x + \frac{x^2}{2} + o(x^2)$$
,有 $e^{\frac{iv}{\sqrt{\lambda}}} = 1 + \frac{iv}{\sqrt{\lambda}} + \frac{-v^2}{2\lambda} + o\left(\frac{1}{\lambda}\right)$,即 $e^{\frac{iv}{\sqrt{\lambda}}} - 1 - \frac{iv}{\sqrt{\lambda}} = -\frac{v^2}{2\lambda} + o\left(\frac{1}{\lambda}\right)$,

$$\text{III} \lim_{\lambda \to +\infty} \varphi_{Y_{\lambda}^{*}}(v) = \lim_{\lambda \to +\infty} e^{\lambda \left[\frac{-v^{2}}{2\lambda} + o\left(\frac{1}{\lambda}\right) \right]} = \lim_{\lambda \to +\infty} e^{\frac{-v^{2}}{2} + o(1)} = e^{\frac{-v^{2}}{2}},$$

这正是标准正态分布的特征函数,

则 Y_{λ}^* 按分布收敛于标准正态分布,即对任意实数 y,都满足 $\lim_{\lambda \to +\infty} F_{Y_{\lambda}^*}(y) = \Phi(y)$,

特别是取
$$\lambda = n$$
, $y = 0$, 有 $\lim_{n \to +\infty} F_{Y_n^*}(0) = \Phi(0) = \frac{1}{2}$,

故
$$\lim_{n\to\infty} \left(1+n+\frac{n^2}{2!}+\cdots+\frac{n^n}{n!}\right) e^{-n} = \frac{1}{2}.$$

第五章 统计量及其分布

习题 5.1

- 1. 某地电视台想了解某电视栏目(如:每日九点至九点半的体育节目)在该地区的收视率情况,于是委 托一家市场咨询公司进行一次电话访查.
 - (1) 该项研究的总体是什么?
 - (2) 该项研究的样本是什么?
- 解:(1)总体是该地区的全体用户;
 - (2) 样本是被访查的电话用户.
- 2. 某市要调查成年男子的吸烟率,特聘请 50 名统计专业本科生作街头随机调查,要求每位学生调查 100 名成年男子,问该项调查的总体和样本分别是什么,总体用什么分布描述为官?
- 解:总体是任意 100 名成年男子中的吸烟人数;样本是这 50 名学生中每一个人调查所得到的吸烟人数;总体用二项分布描述比较合适.
- 3. 设某厂大量生产某种产品,其不合格品率 p 未知,每 m 件产品包装为一盒.为了检查产品的质量,任意抽取 n 盒,查其中的不合格品数,试说明什么是总体,什么是样本,并指出样本的分布.
- 解: 总体是全体盒装产品中每一盒的不合格品数: 样本是被抽取的n盒产品中每一盒的不合格品数:

总体的分布为
$$X \sim b(m, p)$$
, $P\{X = x\} = \binom{m}{x} p^x q^{m-x}$, $x = 0, 1, \dots, n$,

样本的分布为
$$P\{X_1 = x_1, X_2 = x_2, \dots, X_n = x_n\} = \binom{m}{x_1} p^{x_1} q^{m-x_1} \cdot \binom{m}{x_2} p^{x_2} q^{m-x_2} \cdot \cdot \cdot \binom{m}{x_n} p^{x_n} q^{m-x_n}$$

$$=\prod_{i=1}^n \binom{m}{x_i} \cdot p^{\sum_{i=1}^n x_t} q^{mn-\sum_{i=1}^n x_t}.$$

- 4. 为估计鱼塘里有多少鱼,一位统计学家设计了一个方案如下:从鱼塘中打捞出一网鱼,计有n条,涂上不会被水冲刷掉的红漆后放回,一天后再从鱼塘里打捞一网,发现共有m条鱼,而涂有红漆的鱼则有k条,你能估计出鱼塘里大概有多少鱼吗?该问题的总体和样本又分别是什么呢?
- 解:设鱼塘里有N条鱼,有涂有红漆的鱼所占比例为 $\frac{n}{N}$,

而一天后打捞出的一网鱼中涂有红漆的鱼所占比例为
$$\frac{k}{m}$$
,估计 $\frac{n}{N} \approx \frac{k}{m}$,

故估计出鱼塘里大概有 $N \approx \frac{mn}{k}$ 条鱼;

总体是鱼塘里的所有鱼;样本是一天后再从鱼塘里打捞出的一网鱼.

- 5. 某厂生产的电容器的使用寿命服从指数分布,为了了解其平均寿命,从中抽出n件产品测其使用寿命,试说明什么是总体,什么是样本,并指出样本的分布。
- 解: 总体是该厂生产的全体电容器的寿命;

样本是被抽取的n件电容器的寿命;

总体的分布为 $X \sim e(\lambda)$, $p(x) = \lambda e^{\lambda x}$, x > 0,

样本的分布为
$$p(x_1, x_2, \dots, x_n) = \lambda e^{\lambda x_1} \cdot \lambda e^{\lambda x_2} \cdots \lambda e^{\lambda x_n} = \lambda^n e^{\lambda \sum_{i=1}^n x_i}$$
, $x_i > 0$.

6. 美国某高校根据毕业生返校情况纪录,宣布该校毕业生的年平均工资为 5 万美元,你对此有何评论?解:返校的毕业生只是毕业生中一部分特殊群体,样本的抽取不具有随机性,不能反应全体毕业生的情况.

习题 5.2

1. 以下是某工厂通过抽样调查得到的 10 名工人一周内生产的产品数

149 156 160 138 149 153 153 169 156 156 试由这批数据构造经验分布函数并作图.

解: 经验分布函数

$$F_n(x) = \begin{cases} 0, & x < 138, \\ 0.1, & 138 \le x < 149, \\ 0.3, & 149 \le x < 153, \\ 0.5, & 153 \le x < 156, \\ 0.8, & 156 \le x < 160, \\ 0.9, & 160 \le x < 169, \\ 1, & x \ge 169. \end{cases}$$

作图略.

2. 下表是经过整理后得到的分组样本

组序	1	2	3	4	5	
分组区间	(38,48]	(48,58]	(58,68]	(68,78]	(78,88]	_
频数	3	4	8	3	2	

试写出此分布样本的经验分布函数.

解: 经验分布函数

$$F_n(x) = \begin{cases} 0, & x < 37.5, \\ 0.15, & 37.5 \le x < 47.5, \\ 0.35, & 47.5 \le x < 57.5, \\ 0.75, & 57.5 \le x < 67.5, \\ 0.9, & 67.5 \le x < 77.5, \\ 1, & x \ge 77.5. \end{cases}$$

3. 假若某地区 30 名 2000 年某专业毕业生实习期满后的月薪数据如下:

909	1086	1120	999	1320	1091
1071	1081	1130	1336	967	1572
825	914	992	1232	950	775
1203	1025	1096	808	1224	1044
871	1164	971	950	866	738

- (1) 构造该批数据的频率分布表(分6组);
- (2) 画出直方图.

解: (1) 最大观测值为 1572,最小观测值为 738,则组距为 $d = \frac{1572 - 738}{6} \approx 140$,

区间端点可取为 735, 875, 1015, 1155, 1295, 1435, 1575, 1576,

频率分布表为

组序	分组区间	组中值	频数	频率	累计频率
1	(735, 875]	805	6	0.2	0.2
2	(875, 1015]	945	8	0.2667	0.4667
3	(1015, 1155]	1085	9	0.3	0.7667
4	(1155, 1295]	1225	4	0.1333	0.9

5	(1295, 1435]	1365	2	0.06667	0.9667
6	(1435, 1575]	1505	1	0.03333	1
合计			30	1	

(2) 作图略.

4. 某公司对其 250 名职工上班所需时间(单位:分钟)进行了调查,下面是其不完整的频率分布表:

所需时间	频率
0~10	0.10
10~20	0.24
20~30	
30~40	0.18
40~50	0.14

- (1) 试将频率分布表补充完整.
- (2) 该公司上班所需时间在半小时以内有多少人?

解: (1) 频率分布表为

组序	分组区间	组中值	频数	频率	累计频率
1	(0, 10]	5	25	0.1	0.1
2	(10, 20]	15	60	0.24	0.34
3	(20, 30]	25	85	0.34	0.68
4	(30, 40]	35	45	0.18	0.86
5	(40, 50]	45	35	0.14	1
合计			250	1	

- (2) 上班所需时间在半小时以内有 25 + 60 + 85 = 170 人.
- 5. 40 种刊物的月发行量(单位: 百册)如下:

5954	5022	14667	6582	6870	1840	2662	4508
1208	3852	618	3008	1268	1978	7963	2048
3077	993	353	14263	1714	11127	6926	2047
714	5923	6006	14267	1697	13876	4001	2280
1223	12579	13588	7315	4538	13304	1615	8612

- (1) 建立该批数据的频数分布表,取组距为1700(百册);
- (2) 画出直方图.
- 解: (1) 最大观测值为 353,最小观测值为 14667,则组距为 d=1700, 区间端点可取为 0,1700,3400,5100,6800,8500,10200,11900,13600,15300,

频率分布表为

组序	分组区间	组中值	频数	频率	累计频率
1	(0, 1700]	850	9	0.225	0.225
2	(1700, 3400]	2550	9	0.225	0.45
3	(3400, 5100]	4250	5	0.125	0.575
4	(5100, 6800]	5950	4	0.1	0.675
5	(6800, 8500]	7650	4	0.1	0.775
6	(8500, 10200]	9350	1	0.025	0.8
7	(10200, 11900]	11050	1	0.025	0.825
8	(11900, 13600]	12750	3	0.075	0.9
9	(13600, 15300]	14450	4	0.1	1
合计			30	1	

(2) 作图略.

6. 对下列数据构造茎叶图

472	425	447	377	341	369	412	399
400	382	366	425	399	398	423	384
418	392	372	418	374	385	439	408
429	428	430	413	405	381	403	479
381	443	441	433	399	379	386	387

解: 茎叶图为

7. 根据调查,某集团公司的中层管理人员的年薪(单位:千元)数据如下:

40.6	39.6	37.8	36.2	38.8
38.6	39.6	40.0	34.7	41.7
38.9	37.9	37.0	35.1	36.7
37.1	37.7	39.2	36.9	38.3

试画出茎叶图.

解: 茎叶图为

习题 5.3

1. 在一本书上我们随机的检查了10页,发现每页上的错误数为:

 $4 \ \ \, 5 \ \ \, 6 \ \ \, 0 \ \ \, 3 \ \ \, 1 \ \ \, 4 \ \ \, 2 \ \ \, 1 \ \ \, 4$

试计算其样本均值、样本方差和样本标准差.

解: 样本均值
$$\bar{x} = \frac{1}{10}(4+5+6+\cdots+1+4)=3$$
;
样本方差 $s^2 = \frac{1}{9}[(4-3)^2+(5-3)^2+(6-3)^2+\cdots+(1-3)^2+(4-3)^2] \approx 3.7778$;
样本标准差 $s = \sqrt{3.7778} \approx 1.9437$.

2. 证明:对任意常数
$$c, d$$
,有 $\sum_{i=1}^{n} (x_i - c)(y_i - d) = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) + n(\overline{x} - c)(\overline{y} - d)$.

$$\begin{split} \text{if:} \quad & \sum_{i=1}^{n} (x_i - c)(y_i - d) = \sum_{i=1}^{n} [(x_i - \overline{x}) + (\overline{x} - c)][(y_i - \overline{y}) + (\overline{y} - d)] \\ & = \sum_{i=1}^{n} [(x_i - \overline{x})(y_i - \overline{y}) + (\overline{x} - c)(y_i - \overline{y}) + (x_i - \overline{x})(\overline{y} - d) + (\overline{x} - c)(\overline{y} - d)] \\ & = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) + (\overline{x} - c)\sum_{i=1}^{n} (y_i - \overline{y}) + (\overline{y} - d)\sum_{i=1}^{n} (x_i - \overline{x}) + n(\overline{x} - c)(\overline{y} - d) \\ & = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) + 0 + 0 + n(\overline{x} - c)(\overline{y} - d) = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) + n(\overline{x} - c)(\overline{y} - d) \; . \end{split}$$

3. 设 x_1 , ···, x_n 和 y_1 , ···, y_n 是两组样本观测值,且有如下关系: $y_i = 3x_i - 4$, i = 1, ···, n, 试求样本均值 \overline{x} 和 \overline{y} 间的关系以及样本方差 s_x^2 和 s_y^2 间的关系.

$$\Re \colon \ \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (3x_i - 4) = \frac{1}{n} \left(3\sum_{i=1}^{n} x_i - 4n \right) = \frac{3}{n} \sum_{i=1}^{n} x_i - 4 = 3\overline{x} - 4;$$

$$s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2 = \frac{1}{n-1} \sum_{i=1}^{n} [(3x_i - 4) - (3\overline{x} - 4)]^2 = \frac{9}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 9s_x^2.$$

4.
$$\exists \overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$
, $s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$, $n = 1, 2, \dots$, $\exists \overline{x} = \overline{x}_n + \frac{1}{n+1} (x_{n+1} - \overline{x}_n)$, $s_{n+1}^2 = \frac{n-1}{n} s_n^2 + \frac{1}{n+1} (x_{n+1} - \overline{x}_n)^2$.

$$\overrightarrow{\text{if:}} \quad \overline{x}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i = \frac{n}{n+1} \cdot \frac{1}{n} \sum_{i=1}^{n} x_i + \frac{1}{n+1} x_{n+1} = \frac{n}{n+1} \overline{x}_n + \frac{1}{n+1} x_{n+1} = \overline{x}_n + \frac{1}{n+1} (x_{n+1} - \overline{x}_n) ;$$

$$\begin{split} s_{n+1}^2 &= \frac{1}{n} \sum_{i=1}^{n+1} (x_i - \overline{x}_{n+1})^2 = \frac{1}{n} \left[\sum_{i=1}^{n+1} (x_i - \overline{x}_n)^2 - (n+1)(\overline{x}_n - \overline{x}_{n+1})^2 \right] \\ &= \frac{1}{n} \left[\sum_{i=1}^{n} (x_i - \overline{x}_n)^2 + (x_{n+1} - \overline{x}_n)^2 - (n+1) \cdot \frac{1}{(n+1)^2} (x_{n+1} - \overline{x}_n)^2 \right] \\ &= \frac{1}{n} \left[(n-1) \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}_n)^2 + \frac{n}{n+1} (x_{n+1} - \overline{x}_n)^2 \right] = \frac{n-1}{n} s_n^2 + \frac{1}{n+1} (x_{n+1} - \overline{x}_n)^2 \,. \end{split}$$

5. 从同一总体中抽取两个容量分别为n,m的样本,样本均值分别为 \overline{x}_1 , \overline{x}_2 ,样本方差分别为 s_1^2 , s_2^2 ,将两组样本合并,其均值、方差分别为 \overline{x} , s^2 ,证明:

$$\overline{x} = \frac{n\overline{x_1} + m\overline{x_2}}{n+m}$$
, $s^2 = \frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-1} + \frac{nm(\overline{x_1} - \overline{x_2})^2}{(n+m)(n+m-1)}$.

$$\widetilde{\text{IIE}}: \quad \overline{x} = \frac{1}{n+m} \left(\sum_{i=1}^{n} x_{1i} + \sum_{j=1}^{m} x_{2j} \right) = \frac{1}{n+m} \left(\sum_{i=1}^{n} x_{1i} + \sum_{j=1}^{m} x_{2j} \right) = \frac{n\overline{x}_1 + m\overline{x}_2}{n+m} ;$$

$$s^2 = \frac{1}{n+m-1} \left[\sum_{i=1}^{n} (x_{1i} - \overline{x}_1)^2 + \sum_{j=1}^{m} (x_{2j} - \overline{x}_2)^2 \right]$$

$$= \frac{1}{n+m-1} \left[\sum_{i=1}^{n} (x_{1i} - \overline{x}_1)^2 + n(\overline{x}_1 - \overline{x}_1)^2 + \sum_{j=1}^{m} (x_{2j} - \overline{x}_2)^2 + m(\overline{x}_2 - \overline{x}_1)^2 \right]$$

$$= \frac{1}{n+m-1} \left[(n-1)s_1^2 + n\left(\overline{x}_1 - \frac{n\overline{x}_1 + m\overline{x}_2}{n+m}\right)^2 + (m-1)s_2^2 + m\left(\overline{x}_2 - \frac{n\overline{x}_1 + m\overline{x}_2}{n+m}\right)^2 \right]$$

$$= \frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-1} + \frac{1}{n+m-1} \cdot \frac{nm^2(\overline{x}_1 - \overline{x}_2)^2 + mn^2(\overline{x}_2 - \overline{x}_1)^2}{(n+m)^2}$$

$$= \frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-1} + \frac{nm(\overline{x}_1 - \overline{x}_2)^2}{(n+m)(n+m-1)}.$$

6. 设有容量为 n 的样本 A,它的样本均值为 \overline{x}_A ,样本标准差为 s_A ,样本极差为 R_A ,样本中位数为 m_A . 现对样本中每一个观测值施行如下变换: y = ax + b,如此得到样本 B,试写出样本 B 的均值、标准差、极差和中位数

解:
$$\overline{y}_{B} = \frac{1}{n} \sum_{i=1}^{n} y_{i} = \frac{1}{n} \sum_{i=1}^{n} (ax_{i} + b) = \frac{1}{n} (a \sum_{i=1}^{n} x_{i} + nb) = a \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} + b = a \overline{x}_{A} + b;$$

$$s_{B} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \overline{y}_{B})^{2}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (ax_{i} + b - a \overline{x}_{A} - b)^{2}} = |a| \cdot \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x}_{A})^{2}} = |a| s_{A};$$

$$R_{B} = y_{(n)} - y_{(1)} = a x_{(n)} + b - a x_{(1)} - b = a [x_{(n)} - x_{(1)}] = a R_{A};$$

$$\stackrel{\text{\psi}}{=} n \ \text{\begin{subarray}{c} \beta \begin{subarray}{c} \\ n \end{subarray}} = a x_{\binom{n+1}{2}} + b = a m_{A0.5} + b,$$

当
$$n$$
 为偶数时, $m_{B0.5} = \frac{1}{2} \left[y_{\left(\frac{n}{2}\right)} + y_{\left(\frac{n}{2}+1\right)} \right] = \frac{1}{2} \left[ax_{\left(\frac{n}{2}\right)} + b + ax_{\left(\frac{n}{2}+1\right)} + b \right] = \frac{a}{2} \left[x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)} \right] + b = am_{A0.5} + b$,

故 $m_{B0.5} = a m_{A0.5} + b$.

7. 证明: 容量为 2 的样本 x_1, x_2 的方差为 $s^2 = \frac{1}{2}(x_1 - x_2)^2$.

$$\text{i.e.} \quad s^2 = \frac{1}{2-1} \left[(x_1 - \frac{x_1 + x_2}{2})^2 + (x_2 - \frac{x_1 + x_2}{2})^2 \right] = \frac{(x_1 - x_2)^2}{4} + \frac{(x_2 - x_1)^2}{4} = \frac{1}{2} (x_1 - x_2)^2.$$

8. 设 x_1, \dots, x_n 是来自U(-1, 1)的样本,试求 $E(\overline{X})$ 和 $Var(\overline{X})$.

解: 因
$$X_i \sim U(-1, 1)$$
,有 $E(X_i) = \frac{-1+1}{2} = 0$, $Var(X_i) = \frac{(1+1)^2}{12} = \frac{1}{3}$,
故 $E(\overline{X}) = E(\frac{1}{n}\sum_{i=1}^n X_i) = \frac{1}{n}\sum_{i=1}^n E(X_i) = 0$, $Var(\overline{X}) = Var(\frac{1}{n}\sum_{i=1}^n X_i) = \frac{1}{n^2}\sum_{i=1}^n Var(X_i) = \frac{1}{n^2} \cdot n \cdot \frac{1}{3} = \frac{1}{3n}$.

- 9. 设总体二阶矩存在, X_1, \dots, X_n 是样本,证明 $X_i \overline{X} 与 X_j \overline{X} \quad (i \neq j)$ 的相关系数为 $-(n-1)^{-1}$.
- 证: 因 X_1, X_2, \dots, X_n 相互独立,有 $Cov(X_l, X_k) = 0$, $(l \neq k)$,

則
$$\operatorname{Cov}(X_i - \overline{X}, X_j - \overline{X}) = \operatorname{Cov}(X_i, X_j) - \operatorname{Cov}(X_i, \overline{X}) - \operatorname{Cov}(\overline{X}, X_j) + \operatorname{Cov}(\overline{X}, \overline{X})$$

$$= 0 - \operatorname{Cov}(X_i, \frac{1}{n}X_i) - \operatorname{Cov}(\frac{1}{n}X_j, X_j) + \operatorname{Var}(\overline{X})$$

$$= -\frac{1}{n}\operatorname{Var}(X_i) - \frac{1}{n}\operatorname{Var}(X_j) + \operatorname{Var}(\overline{X}) = -\frac{1}{n}\sigma^2 - \frac{1}{n}\sigma^2 + \frac{1}{n}\sigma^2 = -\frac{1}{n}\sigma^2,$$

$$\mathbb{H}.\operatorname{Var}(X_i - \overline{X}) = \operatorname{Var}(X_i) + \operatorname{Var}(\overline{X}) - 2\operatorname{Cov}(X_i, \overline{X}) = \sigma^2 + \frac{1}{n}\sigma^2 - 2\operatorname{Cov}(X_i, \frac{1}{n}X_i)$$

$$= \sigma^2 + \frac{1}{n}\sigma^2 - \frac{2}{n}\sigma^2 = \frac{n-1}{n}\sigma^2 = \operatorname{Var}(X_j - \overline{X}),$$

故
$$\operatorname{Corr}(X_i - \overline{X}, X_j - \overline{X}) = \frac{\operatorname{Cov}(X_i - \overline{X}, X_j - \overline{X})}{\sqrt{\operatorname{Var}(X_i - \overline{X})} \cdot \sqrt{\operatorname{Var}(X_j - \overline{X})}} = \frac{-\frac{1}{n}\sigma^2}{\sqrt{\frac{n-1}{n}\sigma^2} \cdot \sqrt{\frac{n-1}{n}\sigma^2}} = -\frac{1}{n-1}.$$

10. 设 x_1, x_2, \dots, x_n 为一个样本, $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$ 是样本方差,试证:

$$\frac{1}{n(n-1)} \sum_{i < j} (x_i - x_j)^2 = s^2.$$

$$\text{iff:} \quad \boxtimes s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - n \overline{x}^2 \right),$$

$$\mathbb{J} \underbrace{\sum_{i < j} (x_i - x_j)^2 = \frac{1}{2} \sum_{i = 1}^n \sum_{j = 1}^n (x_i - x_j)^2 = \frac{1}{2} \sum_{i = 1}^n \sum_{j = 1}^n (x_i^2 + x_j^2 - 2x_i x_j) = \frac{1}{2} \left(\sum_{i = 1}^n \sum_{j = 1}^n x_i^2 + \sum_{i = 1}^n \sum_{j = 1}^n x_j^2 - 2\sum_{i = 1}^n \sum_{j = 1}^n x_i x_j \right)}$$

$$= \frac{1}{2} \left(n \sum_{i = 1}^n x_i^2 + n \sum_{j = 1}^n x_j^2 - 2\sum_{i = 1}^n x_i \sum_{j = 1}^n x_j \right) = \frac{1}{2} \left(2n \sum_{i = 1}^n x_i^2 - 2n\overline{x} \cdot n\overline{x} \right) = n \left(\sum_{i = 1}^n x_i^2 - n\overline{x}^2 \right) = n(n - 1)s^2,$$

故
$$\frac{1}{n(n-1)}\sum_{i< j}(x_i-x_j)^2=s^2$$
.

11. 设总体 4 阶中心矩 $\nu_4 = E[X - E(X)]^4$ 存在,试对样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$,有

$$Var(S^{2}) = \frac{n(v_{4} - \sigma^{4})}{(n-1)^{2}} - \frac{2(v_{4} - 2\sigma^{4})}{(n-1)^{2}} + \frac{v_{4} - 3\sigma^{4}}{n(n-1)^{2}},$$

其中 σ^2 为总体 X的方差.

$$\begin{split} &= \frac{1}{(n-1)^2} \left\{ n(v_4 - \sigma^4) - 2(v_4 - \sigma^4) + \frac{1}{n}(v_4 - 3\sigma^4) + 2\sigma^4 \right\} \\ &= \frac{1}{(n-1)^2} \left\{ n(v_4 - \sigma^4) - 2(v_4 - 2\sigma^4) + \frac{1}{n}(v_4 - 3\sigma^4) \right\} = \frac{n(v_4 - \sigma^4)}{(n-1)^2} - \frac{2(v_4 - 2\sigma^4)}{(n-1)^2} + \frac{v_4 - 3\sigma^4}{n(n-1)^2} \,. \end{split}$$

12. 设总体 X 的 3 阶矩存在,设 X_1, X_2, \cdots, X_n 是取自该总体的简单随机样本, \overline{X} 为样本均值, S^2 为样本方差,试证: $Cov(\overline{X}, S^2) = \frac{v_3}{n}$,其中 $v_3 = E[X - E(X)]^3$.

证: 因
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n [(X_i - \mu) - (\overline{X} - \mu)]^2 = \frac{1}{n-1} \left[\sum_{i=1}^n (X_i - \mu)^2 - n(\overline{X} - \mu)^2 \right], \quad 其中\mu = E(X),$$

见 $Cov(\overline{X}, S^2) = Cov(\overline{X} - \mu, S^2) = Cov\left(\overline{X} - \mu, \frac{1}{n-1} \left[\sum_{i=1}^n (X_i - \mu)^2 - n(\overline{X} - \mu)^2 \right] \right)$

$$= \frac{1}{n-1} \left[\sum_{i=1}^n Cov(\overline{X} - \mu, (X_i - \mu)^2) - nCov(\overline{X} - \mu, (\overline{X} - \mu)^2) \right],$$

因 $E(\overline{X} - \mu) = E(X_i - \mu) = 0$, $E(X_i - \mu)^2 = \sigma^2$, $E(X_i - \mu)^3 = \nu_3$, 且当 $i \neq j$ 时, $X_i - \mu$ 与 $X_j - \mu$ 相互独立,

$$\mathbb{II} \sum_{i=1}^{n} \text{Cov}(\overline{X} - \mu, (X_{i} - \mu)^{2}) = \sum_{i=1}^{n} \text{Cov}\left(\frac{1}{n} \sum_{k=1}^{n} (X_{k} - \mu), (X_{i} - \mu)^{2}\right) = \frac{1}{n} \sum_{i=1}^{n} \text{Cov}(X_{i} - \mu, (X_{i} - \mu)^{2})$$

$$= \frac{1}{n} \sum_{i=1}^{n} [E(X_{i} - \mu)^{3} - E(X_{i} - \mu)E(X_{i} - \mu)^{2}] = \frac{1}{n} \cdot n v_{3} = v_{3},$$

$$\mathbb{E} \operatorname{Cov}(\overline{X} - \mu, (\overline{X} - \mu)^{2}) = E(\overline{X} - \mu)^{3} - E(\overline{X} - \mu)E(\overline{X} - \mu)^{2} = E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i} - \mu)\right]^{3}$$

$$= \frac{1}{n^{3}}E\left[\sum_{i=1}^{n}(X_{i} - \mu)^{3}\right] = \frac{1}{n^{3}}\sum_{i=1}^{n}E(X_{i} - \mu)^{3} = \frac{1}{n^{3}} \cdot n v_{3} = \frac{1}{n^{2}}v_{3},$$

故
$$\operatorname{Cov}(\overline{X}, S^2) = \frac{1}{n-1} \left(v_3 - n \cdot \frac{1}{n^2} v_3 \right) = \frac{1}{n-1} \cdot \frac{n-1}{n} v_3 = \frac{v_3}{n}.$$

13. 设 \overline{X}_1 与 \overline{X}_2 是从同一正态总体 $N(\mu, \sigma^2)$ 独立抽取的容量相同的两个样本均值. 试确定样本容量n,使得两样本均值的距离超过 σ 的概率不超过0.01.

解: 因
$$E(\overline{X}_1) = E(\overline{X}_2) = \mu$$
, $Var(\overline{X}_1) = Var(\overline{X}_2) = \frac{\sigma^2}{n}$, \overline{X}_1 与 \overline{X}_2 相互独立,且总体分布为 $N(\mu, \sigma^2)$, 则 $E(\overline{X}_1 - \overline{X}_2) = \mu - \mu = 0$, $Var(\overline{X}_1 - \overline{X}_2) = \frac{\sigma^2}{n} + \frac{\sigma^2}{n} = \frac{2\sigma^2}{n}$, 即 $\overline{X}_1 - \overline{X}_2 \sim N\left(0, \frac{2\sigma^2}{n}\right)$, 因 $P\{|\overline{X}_1 - \overline{X}_2| > \sigma\} = 2\left[1 - \Phi\left(\frac{\sigma}{\sigma \sqrt{2/n}}\right)\right] = 2 - 2\Phi\left(\sqrt{\frac{n}{2}}\right) \le 0.01$, 有 $\Phi\left(\sqrt{\frac{n}{2}}\right) \ge 0.995$, $\sqrt{\frac{n}{2}} \ge 2.5758$,

故 $n \ge 13.2698$, 即 n 至少 14 个.

14. 利用切比雪夫不等式求抛均匀硬币多少次才能使正面朝上的频率落在 (0.4, 0.6) 间的概率至少为 0.9. 如何才能更精确的计算这个次数? 是多少?

解: 设
$$X_i = \begin{cases} 1, & \text{第 } i \text{ 次正面朝上}, \\ 0, & \text{第 } i \text{ 次反面朝上}, \end{cases}$$
 有 $X_i \sim B(1, 0.5)$,且正面朝上的频率为 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,

则
$$E(X_i) = 0.5$$
, $Var(X_i) = 0.25$, 且 $E(\overline{X}) = 0.5$, $Var(\overline{X}) = \frac{0.25}{n}$,

由切比雪夫不等式得
$$P{0.4 < \overline{X} < 0.6} = P{|\overline{X} - 0.5| < 0.1} \ge 1 - \frac{0.25}{0.1^2 n} = 1 - \frac{25}{n}$$

故当
$$1 - \frac{25}{n} \ge 0.9$$
时,即 $n \ge 250$ 时, $P\{0.4 < \overline{X} < 0.6\} \ge 0.9$;

利用中心极限定理更精确地计算,当 n 很大时 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 的渐近分布为正态分布 $N(0.5, \frac{0.25}{n})$,

$$\text{III } P\{0.4 < \overline{X} < 0.6\} = F(0.6) - F(0.4) = \Phi(\frac{0.6 - 0.5}{\sqrt{\frac{0.25}{n}}}) - \Phi(\frac{0.4 - 0.5}{\sqrt{\frac{0.25}{n}}}) = \Phi(0.2\sqrt{n}) - \Phi(-0.2\sqrt{n})$$

$$=2\Phi(0.2\sqrt{n})-1\geq 0.9$$
,

即 $\Phi(0.2\sqrt{n}) \ge 0.95$, $0.2\sqrt{n} \ge 1.64$,

故当 $n \ge 67.24$ 时,即 $n \ge 68$ 时, $P\{0.4 < \overline{X} < 0.6\} \ge 0.9$.

15. 从指数总体 $Exp(1/\theta)$ 抽取了 40 个样品, 试求 \overline{X} 的渐近分布.

解: 因
$$E(\overline{X}) = E(X) = \theta$$
, $Var(\overline{X}) = \frac{Var(X)}{n} = \frac{1}{40}\theta^2$, 故 \overline{X} 的渐近分布为 $N(\theta, \frac{1}{40}\theta^2)$.

16. 设 X_1 , …, X_{25} 是从均匀分布 U(0,5) 抽取的样本,试求样本均值 \overline{X} 的渐近分布.

解: 因
$$E(\overline{X}) = E(X) = \frac{5}{2}$$
, $Var(\overline{X}) = \frac{Var(X)}{n} = \frac{(5-0)^2}{25 \times 12} = \frac{1}{12}$, 故 \overline{X} 的渐近分布为 $N(\frac{5}{2}, \frac{1}{12})$.

17. 设 X_1 , …, X_{20} 是从二点分布b(1,p)抽取的样本,试求样本均值 \overline{X} 的渐近分布.

解: 因
$$E(\overline{X}) = E(X) = p$$
, $Var(\overline{X}) = \frac{Var(X)}{n} = \frac{p(1-p)}{20}$, 故 \overline{X} 的渐近分布为 $N(p, \frac{p(1-p)}{20})$.

18. 设 X_1 , …, X_8 是从正态分布N(10,9)中抽取的样本,试求样本均值 \overline{X} 的标准差.

解: 因
$$Var(\overline{X}) = \frac{Var(X)}{n} = \frac{9}{8}$$
, 故 \overline{X} 的标准差为 $\sqrt{Var(\overline{X})} = \frac{3\sqrt{2}}{4}$.

19. 切尾均值也是一个常用的反映样本数据的特征量,其想法是将数据的两端的值舍去,而用剩下的当中的值为计算样本均值,其计算公式是

$$\overline{X}_{\alpha} = \frac{X_{([n\alpha]+1)} + X_{([n\alpha]+2)} + \dots + X_{(n-[n\alpha])}}{n-2[n\alpha]},$$

其中 $0 < \alpha < 1/2$ 是切尾系数, $X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}$ 是有序样本. 现我们在高校采访了 16 名大学生,了解他们平时的学习情况,以下数据是大学生每周用于看电视的时间:

15 14 12 9 20 4 17 26 15 18 6 10 16 15 5 8 取
$$\alpha$$
= 1/16,试计算其切尾均值.

解:因 $n\alpha$ = 1,且有序样本为 4, 5, 6, 8, 9, 10, 12, 14, 15, 15, 15, 16, 17, 18, 20, 26, 故切尾均值 $\bar{x}_{1/16} = \frac{1}{16-2}(5+6+8+\cdots+20) = 12.8571$.

20. 有一个分组样本如下:

区间	组中值	频数
(145,155)	150	4
(155,165)	160	8
(165,175)	170	6
(175,185)	180	2

试求该分组样本的样本均值、样本标准差、样本偏度和样本峰度.

解:
$$\bar{x} = \frac{1}{20}(150 \times 4 + 160 \times 8 + 170 \times 6 + 180 \times 2) = 163$$
;

$$s = \sqrt{\frac{1}{19}[(150 - 163)^2 \times 4 + (160 - 163)^2 \times 8 + (170 - 163)^2 \times 6 + (180 - 163)^2 \times 2]} = 9.2338;$$

故样本偏度 $\gamma_1 = \frac{b_3}{b_2^{3/2}} = 0.1975$,样本峰度 $\gamma_2 = \frac{b_4}{b_2^2} - 3 = -0.7417$.

21. 检查四批产品,其批次与不合格品率如下:

批号	批量	不合格品率
1	100	0.05
2	300	0.06
3	250	0.04
4	150	0.03

试求这四批产品的总不合格品率,

解:
$$\overline{p} = \frac{1}{800} (100 \times 0.05 + 300 \times 0.06 + 250 \times 0.04 + 150 \times 0.03) = 0.046875$$
.

22. 设总体以等概率取 1, 2, 3, 4, 5, 现从中抽取一个容量为 4 的样本,试分别求 $X_{(1)}$ 和 $X_{(4)}$ 的分布.

解: 因总体分布函数为

$$F(x) = \begin{cases} 0, & x < 1, \\ \frac{1}{5}, & 1 \le x < 2, \\ \frac{2}{5}, & 2 \le x < 3, \\ \frac{3}{5}, & 3 \le x < 4, \\ \frac{4}{5}, & 4 \le x < 5, \\ 1, & x \ge 5, \end{cases}$$

$$\emptyset \mid F_{(1)}(x) = P\{X_{(1)} \le x\} = 1 - P\{X_{(1)} > x\} = 1 - P\{X_1 > x, X_2 > x, X_3 > x, X_4 > x\} = 1 - [1 - F(x)]^4$$

$$= \begin{cases} 0, & x < 1, \\ \frac{369}{625}, & 1 \le x < 2, \\ \frac{544}{625}, & 2 \le x < 3, \\ \frac{609}{625}, & 3 \le x < 4, \\ \frac{624}{625}, & 4 \le x < 5, \\ 1, & x \ge 5, \end{cases}$$

 $\coprod F_{(4)}(x) = P\{X_{(4)} \le x\} = P\{X_1 \le x, X_2 \le x, X_3 \le x, X_4 \le x\} = [F(x)]^4$

$$= \begin{cases} 0, & x < 1, \\ \frac{1}{625}, & 1 \le x < 2, \\ \frac{16}{625}, & 2 \le x < 3, \\ \frac{81}{625}, & 3 \le x < 4, \\ \frac{256}{625}, & 4 \le x < 5, \\ 1, & x \ge 5, \end{cases}$$

故 X(1) 和 X(4) 的分布为

$$\frac{X_{(1)}}{P} \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ \frac{369}{625} & \frac{175}{625} & \frac{65}{625} & \frac{15}{625} & \frac{1}{625} \end{vmatrix} ; \quad \frac{X_{(4)}}{P} \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ \frac{1}{625} & \frac{15}{625} & \frac{175}{625} & \frac{369}{625} \end{vmatrix} .$$

23. 设总体 X 服从几何分布,即 $P\{X=k\}=pq^{k-1},\ k=1,2,\cdots$,其中 $0 为该总体的样本。求 <math>X_{(n)},X_{(1)}$ 的概率分布。

解: 因
$$P\{X \le k\} = \sum_{j=1}^{k} pq^{j-1} = \frac{p(1-q^k)}{1-q} = 1-q^k$$
, $k = 1, 2, \dots$

故
$$P\{X_{(n)}=k\}=P\{X_{(n)}\leq k\}-P\{X_{(n)}\leq k-1\}=\prod_{i=1}^n P\{X_i\leq k\}-\prod_{i=1}^n P\{X_i\leq k-1\}=(1-q^k)^n-(1-q^{k-1})^n$$
;

$$\mathbb{E} P\{X_{(1)} = k\} = P\{X_{(1)} > k-1\} - P\{X_{(1)} > k\} = \prod_{i=1}^n P\{X_i > k-1\} - \prod_{i=1}^n P\{X_i > k\} = q^{n(k-1)} - q^{nk} \ .$$

- 24. 设 X_1, \dots, X_{16} 是来自N(8, 4) 的样本, 试求下列概率
 - (1) $P\{X_{(16)} > 10\};$
 - (2) $P\{X_{(1)} > 5\}$.

解: (1)
$$P{X_{(16)} > 10} = 1 - P{X_{(16)} \le 10} = 1 - \prod_{i=1}^{16} P{X_i \le 10} = 1 - [F(10)]^{16} = 1 - [\Phi(\frac{10 - 8}{2})]^{16}$$

= 1 - [Φ(1)]¹⁶ = 1 - 0.8413¹⁶ = 0.9370:

(2)
$$P\{X_{(1)} > 5\} = \prod_{i=1}^{16} P\{X_i > 5\} = [1 - F(5)]^{16} = [1 - \Phi(\frac{5 - 8}{2})]^{16} = [\Phi(1.5)]^{16} = 0.9332^{16} = 0.3308$$
.

25. 设总体为韦布尔分布, 其密度函数为

$$p(x; m, \eta) = \frac{mx^{m-1}}{\eta^m} \exp\left\{-\left(\frac{x}{\eta}\right)^m\right\}, \ x > 0, m > 0, \eta > 0.$$

现从中得到样本 X_1, \dots, X_n ,证明 $X_{(1)}$ 仍服从韦布尔分布,并指出其参数.

解: 总体分布函数
$$F(x) = \int_0^x p(t) dt = \int_0^x \frac{mt^{m-1}}{\eta^m} e^{-\left(\frac{t}{\eta}\right)^m} dt = \int_0^x e^{-\left(\frac{t}{\eta}\right)^m} d\left(\frac{t}{\eta}\right)^m = -e^{-\left(\frac{t}{\eta}\right)^m} \Big|_0^x = 1 - e^{-\left(\frac{x}{\eta}\right)^m}, \quad x > 0,$$

则 $X_{(1)}$ 的密度函数为

$$p_{1}(x) = n[1 - F(x)]^{n-1} p(x) = ne^{-(n-1)\left(\frac{x}{\eta}\right)^{m}} \cdot \frac{mx^{m-1}}{\eta^{m}} e^{-\left(\frac{x}{\eta}\right)^{m}} = \frac{mnx^{m-1}}{\eta^{m}} e^{-n\left(\frac{x}{\eta}\right)^{m}} = \frac{mx^{m-1}}{(\eta/\sqrt[m]{\eta})^{m}} e^{-\left(\frac{x}{\eta/\sqrt[m]{\eta}}\right)^{m}},$$

故 $X_{(1)}$ 服从参数为 $\left(m, \frac{\eta}{\sqrt[\eta]{n}}\right)$ 的韦布尔分布.

26. 设总体密度函数为 $p(x) = 6x(1-x), 0 < x < 1, X_1, \dots, X_9$ 是来自该总体的样本,试求样本中位数的分布.

解: 总体分布函数
$$F(x) = \int_0^x p(t) dt = \int_0^x 6t(1-t) dt = (3t^2 - 2t^3)\Big|_0^x = 3x^2 - 2x^3$$
, $0 < x < 1$,

因样本容量 n=9,有样本中位数 $m_{0.5}=x_{\left(\frac{n+1}{2}\right)}=x_{(5)}$, 其密度函数为

$$p_5(x) = \frac{9!}{4! \cdot 4!} [F(x)]^4 [1 - F(x)]^4 p(x) = \frac{9!}{4! \cdot 4!} (3x^2 - 2x^3)^4 (1 - 3x^2 + 2x^3)^4 \cdot 6x(1 - x).$$

27. 证明公式

$$\sum_{k=0}^{r} \binom{n}{k} p^k (1-p)^{n-k} = \frac{n!}{r!(n-r-1)!} \int_p^1 x^r (1-x)^{n-r-1} dx , \quad \sharp \to 0 \le p \le 1.$$

证: 设总体 X 服从区间(0,1)上的均匀分布, X_1, X_2, \dots, X_n 为样本, $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ 是顺序统计量,则样本观测值中不超过 p 的样品个数服从二项分布 b(n,p),即最多有 r 个样品不超过 p 的概率为

$$P\{X_{(r+1)} > p\} = \sum_{k=0}^{r} \binom{n}{k} p^k (1-p)^{n-k} ,$$

因总体X的密度函数与分布函数分别为

$$p(x) = \begin{cases} 1, & 0 < x < 1; \\ 0, & \text{ i.e.} \end{cases} \qquad F(x) = \begin{cases} 0, & x < 0; \\ x, & 0 \le x < 1; \\ 1, & x \ge 1. \end{cases}$$

则 X(r+1)的密度函数为

$$p_{r+1}(x) = \frac{n!}{r!(n-r-1)!} [F(x)]^r [1-F(x)]^{n-r-1} p(x) = \begin{cases} \frac{n!}{r!(n-r-1)!} x^r (1-x)^{n-r-1}, & 0 < x < 1, \\ 0, & \text{ 其他.} \end{cases}$$

故
$$\sum_{k=0}^{r} {n \choose k} p^k (1-p)^{n-k} = P\{X_{(r+1)} > p\} = \frac{n!}{r!(n-r-1)!} \int_p^1 x^r (1-x)^{n-r-1} dx$$
.

28. 设总体 X 的分布函数 F(x)是连续的, $X_{(1)}, \dots, X_{(n)}$ 为取自此总体的次序统计量,设 $\eta_i = F(X_{(i)})$,试证: (1) $\eta_1 \le \eta_2 \le \dots \le \eta_n$,且 η_i 是来自均匀分布 U(0, 1)总体的次序统计量;

(2)
$$E(\eta_i) = \frac{i}{n+1}$$
, $Var(\eta_i) = \frac{i(n+1-i)}{(n+1)^2(n+2)}$, $1 \le i \le n$;

(3) η_i 和 η_i 的协方差矩阵为

$$\begin{pmatrix} \frac{a_1(1-a_1)}{n+2} & \frac{a_1(1-a_2)}{n+2} \\ \frac{a_1(1-a_2)}{n+2} & \frac{a_2(1-a_2)}{n+2} \end{pmatrix}$$

其中
$$a_1 = \frac{i}{n+1}$$
 , $a_2 = \frac{j}{n+1}$.

注: 第(3) 问应要求 *i*<*j*.

解: (1) 首先证明 Y = F(X)的分布是均匀分布 U(0, 1),

因分布函数 F(x)连续,对于任意的 $y \in (0,1)$,存在 x,使得 F(x) = y,

$$\iiint F_Y(y) = P\{Y = F(X) \le y\} = P\{F(X) \le F(x)\} = P\{X \le x\} = F(x) = y,$$

即 Y = F(X)的分布函数是

$$F_{Y}(y) = \begin{cases} 0, & y < 0; \\ y, & 0 \le y < 1; \\ 1, & y \ge 1. \end{cases}$$

可得 Y = F(X)的分布是均匀分布 U(0, 1),即 $F(X_1)$, $F(X_2)$,…, $F(X_n)$ 是均匀分布总体 U(0, 1)的样本,因分布函数 F(x)单调不减, $\eta_i = F(X_{(i)})$,且 $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ 是总体 X 的次序统计量,

故 $\eta_1 \le \eta_2 \le \cdots \le \eta_n$, 且 η_i 是来自均匀分布 U(0,1)总体的次序统计量;

(2) 因均匀分布 U(0,1) 的密度函数与分布函数分别为

$$p_{Y}(y) = \begin{cases} 1, & 0 < y < 1; \\ 0, & \cancel{y} < 0; \end{cases}$$

$$F_{Y}(y) = \begin{cases} 0, & y < 0; \\ y, & 0 \le y < 1; \\ 1, & y \ge 1. \end{cases}$$

则 $\eta_i = F(X_{(i)})$ 的密度函数为

$$p_{i}(y) = \frac{n!}{(i-1)!(n-i)!} [F_{Y}(y)]^{i-1} [1 - F_{Y}(y)]^{n-i} p_{Y}(y) = \begin{cases} \frac{n!}{(i-1)!(n-i)!} y^{i-1} (1-y)^{n-i}, & 0 < y < 1, \\ 0, & \text{ 其他.} \end{cases}$$

即 η_i 服从贝塔分布 Be(i, n-i+1), 即Be(a, b), 其中a=i, b=n-i+1,

(3) 当 i < j 时, (η_i, η_i) 的联合密度函数为

$$p_{ij}(y,z) = \frac{n!}{(i-1)!(j-i-1)!(n-j)!} [F_Y(y)]^{i-1} [F_Y(z) - F_Y(y)]^{j-i-1} [1 - F_Y(z)]^{n-j} p_Y(y) p_Y(z) I_{y < z}$$

$$= \frac{n!}{(i-1)!(j-i-1)!(n-j)!} y^{i-1} (z-y)^{j-i-1} (1-z)^{n-j} I_{0 < y < z < 1},$$

$$p_{ij}(y,z) = \frac{n!}{(i-1)!(j-i-1)!(n-j)!} p_Y(y) p_Y(z) I_{y < z}$$

$$\mathbb{M} E(\eta_i \eta_j) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} yz \cdot p_{ij}(y, z) dy dz = \frac{n!}{(i-1)!(j-i-1)!(n-j)!} \int_0^1 dz \int_0^z y^i (z-y)^{j-i-1} \cdot z (1-z)^{n-j} dy ,$$

$$\diamondsuit$$
 $y=zu$, 有 $dy=zdu$, 且当 $y=0$ 时, $u=0$; 当 $y=z$ 时, $u=1$,

$$=z(1-z)^{n-j}\cdot z^{j}\int_{0}^{1}u^{i}(1-u)^{j-i-1}du=z^{j+1}(1-z)^{n-j}\cdot B(i+1,j-i)=\frac{i!(j-i-1)!}{j!}z^{j+1}(1-z)^{n-j},$$

即
$$E(\eta_i\eta_j) = \frac{n!}{(i-1)!(j-i-1)!(n-j)!} \int_0^1 \frac{i!(j-i-1)!}{j!} z^{j+1} (1-z)^{n-j} dz$$

$$= \frac{n!}{(i-1)!(j-i-1)!(n-j)!} \cdot \frac{i!(j-i-1)!}{j!} B(j+2,n-j+1)$$

$$= \frac{n!}{(i-1)!(j-i-1)!(n-j)!} \cdot \frac{i!(j-i-1)!}{j!} \cdot \frac{(j+1)!(n-j)!}{(n+2)!} = \frac{i(j+1)}{(n+1)(n+2)},$$
可得 $Cov(\eta_i,\eta_j) = E(\eta_i\eta_j) - E(\eta_i)E(\eta_j) = \frac{i(j+1)}{(n+1)(n+2)} - \frac{i}{n+1} \cdot \frac{j}{n+1} = \frac{i(n+1-j)}{(n+1)^2(n+2)},$
因 $a_1 = \frac{i}{n+1}, \quad a_2 = \frac{j}{n+1},$
则 $Cov(\eta_i,\eta_j) = \frac{i(n+1-j)}{(n+1)^2(n+2)} = \frac{a_1(1-a_2)}{n+2},$
且 $Var(\eta_i) = \frac{i(n+1-i)}{(n+1)^2(n+2)} = \frac{a_1(1-a_1)}{n+2}, \quad Var(\eta_j) = \frac{j(n+1-j)}{(n+1)^2(n+2)} = \frac{a_2(1-a_2)}{n+2},$
故 η_i 的协方差矩阵为

$$\begin{pmatrix} \operatorname{Var}(\eta_i) & \operatorname{Cov}(\eta_i, \eta_j) \\ \operatorname{Cov}(\eta_i, \eta_j) & \operatorname{Var}(\eta_j) \end{pmatrix} = \begin{pmatrix} \frac{a_1(1 - a_1)}{n + 2} & \frac{a_1(1 - a_2)}{n + 2} \\ \frac{a_1(1 - a_2)}{n + 2} & \frac{a_2(1 - a_2)}{n + 2} \end{pmatrix}.$$

29. 设总体 X 服从 N(0,1), 从此总体获得一组样本观测值

$$x_1 = 0$$
, $x_2 = 0.2$, $x_3 = 0.25$, $x_4 = -0.3$, $x_5 = -0.1$, $x_6 = 2$, $x_7 = 0.15$, $x_8 = 1$, $x_9 = -0.7$, $x_{10} = -1$.

- (1) 计算 x = 0.15 (即 $x_{(6)}$) 处的 $E[F(X_{(6)})]$, $Var[F(X_{(6)})]$;
- (2) 计算 $F(X_{(6)})$ 在 x = 0.15 的分布函数值.

解: (1) 根据第 28 题的结论知
$$E[F(X_{(i)})] = \frac{i}{n+1}$$
, $Var[F(X_{(i)})] = \frac{i(n+1-i)}{(n+1)^2(n+2)}$, 且 $n = 10$, 故 $E[F(X_{(6)})] = \frac{6}{11}$, $Var[F(X_{(6)})] = \frac{6 \times 5}{11^2 \times 12} = \frac{5}{242}$;

(2) 因 $F(X_{(i)})$ 服从贝塔分布 Be(i, n-i+1),即这里的 $F(X_{(6)})$ 服从贝塔分布 Be(6, 5),

则
$$F(X_{(6)})$$
在 $x = 0.15$ 的分布函数值为 $F_6(0.15) = \frac{10!}{5! \cdot 4!} \int_0^{0.15} x^5 (1-x)^4 dx$,

故根据第27题的结论知

$$F_6(0.15) = \frac{10!}{5! \cdot 4!} \int_0^{0.15} x^5 (1-x)^4 dx = 1 - \sum_{k=0}^{5} {10 \choose k} \times 0.15^k \times 0.85^{10-k} = 0.0014.$$

30. 在下列密度函数下分别寻求容量为n的样本中位数 $m_{0.5}$ 的渐近分布.

(1)
$$p(x) = 6x(1-x), 0 < x < 1;$$

(2)
$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\};$$

(3)
$$p(x) = \begin{cases} 2x, & 0 < x < 1; \\ 0, & 其他. \end{cases}$$

$$(4) \quad p(x) = \frac{\lambda}{2} e^{-\lambda |x|}.$$

解: 样本中位数 $m_{0.5}$ 的渐近分布为 $N\left(x_{0.5}, \frac{1}{4n \cdot p^2(x_{0.5})}\right)$, 其中 p(x)是总体密度函数, $x_{0.5}$ 是总体中位数,

故样本中位数 $m_{0.5}$ 的渐近分布为 $N\left(0.5, \frac{1}{9n}\right)$;

(2)
$$\boxtimes p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, \notin 0.5 = F(x_{0.5}) = F(\mu),$$

则
$$x_{0.5} = \mu$$
 ,有 $\frac{1}{4n \cdot p^2(\mu)} = \frac{1}{4n \times \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^2} = \frac{\pi\sigma^2}{2n}$,

故样本中位数 $m_{0.5}$ 的渐近分布为 $N\left(\mu, \frac{\pi\sigma^2}{2n}\right)$;

(3) 因
$$p(x) = \begin{cases} 2x, & 0 < x < 1; \\ 0, & 其他. \end{cases}$$
 有 $0.5 = F(x_{0.5}) = \int_0^{x_{0.5}} 2x dx = x^2 \Big|_0^{x_{0.5}} = x_{0.5}^2,$

则
$$x_{0.5} = \frac{1}{\sqrt{2}}$$
,有 $\frac{1}{4n \cdot p^2 \left(\frac{1}{\sqrt{2}}\right)} = \frac{1}{4n \times \left(2 \times \frac{1}{\sqrt{2}}\right)^2} = \frac{1}{8n}$,

故样本中位数 $m_{0.5}$ 的渐近分布为 $N\left(\frac{1}{\sqrt{2}},\frac{1}{8n}\right)$;

(4)
$$\boxtimes p(x) = \frac{\lambda}{2} e^{-\lambda |x|}, \ \ \text{fi} \ 0.5 = F(x_{0.5}) = F(0),$$

则
$$x_{0.5} = 0$$
,有 $\frac{1}{4n \cdot p^2(0)} = \frac{1}{4n \times \left(\frac{\lambda}{2}\right)^2} = \frac{1}{n\lambda^2}$,

故样本中位数 $m_{0.5}$ 的渐近分布为 $N\left(0, \frac{1}{n\lambda^2}\right)$.

31. 设总体 X 服从双参数指数分布, 其分布函数为

$$F(x) = \begin{cases} 1 - \exp\left\{-\frac{x - \mu}{\sigma}\right\}, & x > \mu; \\ 0, & x \le \mu. \end{cases}$$

其中, $-\infty < \mu < +\infty$, $\sigma > 0$, $X_{(1)} \le \cdots \le X_{(n)}$ 为样本的次序统计量. 试证明 $(n-i-1)\frac{2}{\sigma}(X_{(i)} - X_{(i-1)})$ 服从

自由度为 2 的 χ^2 分布 ($i=2,\dots,n$).

注: 此题有误, 讨论的随机变量应为 $(n-i+1)\frac{2}{\sigma}(X_{(i)}-X_{(i-1)})$.

z-y=t 0 μ

证: 因 $(X_{(i-1)}, X_{(i)})$ 的联合密度函数为

$$\begin{split} p_{(i-1)i}(y,z) &= \frac{n!}{(i-2)!(n-i)!} [F(y)]^{i-2} [1-F(z)]^{n-i} \, p(y) \, p(z) \, \mathbf{I}_{y < z} \\ &= \frac{n!}{(i-2)!(n-i)!} \left[1 - \exp\left\{ -\frac{y-\mu}{\sigma} \right\} \right]^{i-2} \left[\exp\left\{ -\frac{z-\mu}{\sigma} \right\} \right]^{n-i} \cdot \frac{1}{\sigma} \exp\left\{ -\frac{y-\mu}{\sigma} \right\} \cdot \frac{1}{\sigma} \exp\left\{ -\frac{z-\mu}{\sigma} \right\} \, \mathbf{I}_{\mu < y < z} \\ &= \frac{n!}{(i-2)!(n-i)!\sigma^2} \exp\left\{ -\frac{y-\mu}{\sigma} \right\} \left[1 - \exp\left\{ -\frac{y-\mu}{\sigma} \right\} \right]^{i-2} \left[\exp\left\{ -\frac{z-\mu}{\sigma} \right\} \right]^{n-i+1} \, \mathbf{I}_{\mu < y < z} \, , \end{split}$$

则 $T = X_{(i)} - X_{(i-1)}$ 的密度函数为

$$p_T(t) = \int_{-\infty}^{+\infty} p_{(i-1)i}(y, y+t) \cdot 1 \cdot dy$$

$$= \frac{n!}{(i-2)!(n-i)!\sigma^{2}} \int_{\mu}^{+\infty} \exp\left\{-\frac{y-\mu}{\sigma}\right\} \left[1 - \exp\left\{-\frac{y-\mu}{\sigma}\right\}\right]^{i-2} \left[\exp\left\{-\frac{y+t-\mu}{\sigma}\right\}\right]^{n-i+1} dy$$

$$= \frac{n!}{(i-2)!(n-i)!\sigma^{2}} \left[\exp\left\{-\frac{t}{\sigma}\right\}\right]^{n-i+1} \int_{\mu}^{+\infty} \left[\exp\left\{-\frac{y-\mu}{\sigma}\right\}\right]^{n-i+1} \left[1 - \exp\left\{-\frac{y-\mu}{\sigma}\right\}\right]^{i-2} (-\sigma) d\left[\exp\left\{-\frac{y-\mu}{\sigma}\right\}\right]$$

$$= \frac{n!}{(i-2)!(n-i)!\sigma^{2}} \left[\exp\left\{-\frac{t}{\sigma}\right\}\right]^{n-i+1} \int_{1}^{0} u^{n-i+1} (1-u)^{i-2} (-\sigma) du$$

$$= \frac{n!}{(i-2)!(n-i)!\sigma} \exp\left\{-\frac{(n-i+1)t}{\sigma}\right\} \int_0^1 u^{n-i+1} (1-u)^{i-2} du$$

$$= \frac{n!}{(i-2)!(n-i)!\sigma} \exp\left\{-\frac{(n-i+1)t}{\sigma}\right\} B(n-i+2,i-1)$$

$$= \frac{n!}{(i-2)!(n-i)!\sigma} \exp\left\{-\frac{(n-i+1)t}{\sigma}\right\} \cdot \frac{(n-i+1)!(i-2)!}{n!} = \frac{n-i+1}{\sigma} \exp\left\{-\frac{(n-i+1)t}{\sigma}\right\}, \quad t > 0,$$

可得 $S = (n-i+1)\frac{2}{\sigma}(X_{(i)} - X_{(i-1)}) = (n-i+1)\frac{2}{\sigma}T$ 的密度函数为

$$p_{s}(s) = p_{T}\left(\frac{\sigma}{2(n-i+1)}s\right) \cdot \frac{\sigma}{2(n-i+1)} = \frac{n-i+1}{\sigma} \exp\left\{-\frac{s}{2}\right\} \cdot \frac{\sigma}{2(n-i+1)} = \frac{1}{2} \exp\left\{-\frac{s}{2}\right\}, \quad s > 0,$$

故 $S = (n-i+1)\frac{2}{\sigma}(X_{(i)}-X_{(i-1)})$ 服从参数为 $\frac{1}{2}$ 的指数分布,也就是服从自由度为 2 的 χ^2 分布.

32. 设总体 X 的密度函数为

$$p(x) = \begin{cases} 3x^2, & 0 < x < 1; \\ 0, & \text{其他.} \end{cases}$$

 $X_{(1)} \le X_{(2)} \le \cdots \le X_{(5)}$ 为容量为 5 的取自此总体的次序统计量,试证 $\frac{X_{(2)}}{X_{(4)}}$ 与 $X_{(4)}$ 相互独立.

证: 因总体 X 的密度函数和分布函数分别为

$$p(x) = \begin{cases} 3x^2, & 0 < x < 1; \\ 0, & \text{ i.e.} \end{cases} \qquad F(x) = \begin{cases} 0, & x < 0; \\ x^3, & 0 \le x < 1; \\ 1, & x \ge 1. \end{cases}$$

则(X(2), X(4))的联合密度函数为

$$\begin{split} p_{24}(x_{(2)}, x_{(4)}) &= \frac{5!}{1! \cdot 1! \cdot 1!} [F(x_{(2)})]^1 [F(x_{(4)}) - F(x_{(2)})]^1 [1 - F(x_{(4)})]^1 p(x_{(2)}) p(x_{(4)}) \mathbf{I}_{x_{(2)} < x_{(4)}} \\ &= 120 x_{(2)}^3 (x_{(4)}^3 - x_{(2)}^3) (1 - x_{(4)}^3) \cdot 3 x_{(2)}^2 \cdot 3 x_{(4)}^2 \mathbf{I}_{0 < x_{(2)} < x_{(4)} < 1} = 1080 x_{(2)}^5 x_{(4)}^2 (x_{(4)}^3 - x_{(2)}^3) (1 - x_{(4)}^3) \mathbf{I}_{0 < x_{(2)} < x_{(4)} < 1} \end{split}$$

设
$$Y_1 = \frac{X_{(2)}}{X_{(4)}}$$
, $Y_2 = X_{(4)}$, 有 $X_{(2)} = Y_1 Y_2$, $X_{(4)} = Y_2$,

则 $(X_{(2)}, X_{(4)})$ 关于 (Y_1, Y_2) 的雅可比行列式为

$$J = \frac{\partial(x_{(2)}, x_{(4)})}{\partial(y_1, y_2)} = \begin{vmatrix} y_2 & y_1 \\ 0 & 1 \end{vmatrix} = y_2,$$

且 $0 < X_{(2)} \le X_{(4)} < 1$ 对应于 $0 < Y_1 < 1, 0 < Y_2 < 1$,可得 (Y_1, Y_2) 的联合密度函数为

$$\begin{split} p(y_1, y_2) &= p_{24}(y_1 y_2, y_2) \cdot |J| = 1080(y_1 y_2)^5 y_2^2 [y_2^3 - (y_1 y_2)^3] (1 - y_2^3) I_{0 < y_1 < 1, \ 0 < y_2 < 1} \cdot y_2 \end{split}$$

$$= 1080 y_1^5 (1 - y_1^3) I_{0 < y_1 < 1} \cdot y_2^{11} (1 - y_2^3) I_{0 < y_2 < 1},$$

由于 (Y_1, Y_2, \dots, Y_n) 的联合密度函数 $p(y_1, y_2)$ 可分离变量,

故
$$Y_1 = \frac{X_{(2)}}{X_{(4)}}$$
与 $Y_2 = X_{(4)}$ 相互独立.

33. (1) 设 $X_{(1)}$ 和 $X_{(n)}$ 分别为容量 n 的最小和最大次序统计量,证明极差 $R_n = X_{(n)} - X_{(1)}$ 的分布函数

$$F_{R_n}(x) = n \int_{-\infty}^{+\infty} [F(y+x) - F(y)]^{n-1} p(y) dy$$

其中 F(y)与 p(y)分别为总体的分布函数与密度函数;

(2) 利用(1) 的结论, 求总体为指数分布 $Exp(\lambda)$ 时, 样本极差 R_n 的分布.

注:第(1)问应添上x>0的要求.

解:(1)方法一:增补变量法

因 $(X_{(1)}, X_{(n)})$ 的联合密度函数为

$$p_{1n}(y,z) = \frac{n!}{(n-2)!} [F(z) - F(y)]^{n-2} p(y) p(z) I_{y< z} = n(n-1) [F(z) - F(y)]^{n-2} p(y) p(z) I_{y< z},$$

对于其函数 $R_n = X_{(n)} - X_{(1)}$, 增补变量 $W = X_{(1)}$,

$$\begin{cases} w = y; \\ r = z - y. \end{cases}$$
 反函数为
$$\begin{cases} y = w; \\ z = w + r. \end{cases}$$

其雅可比行列式为

$$J = \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 1 ,$$

则 R_n 的密度函数为

$$p_{R_n}(r) = \int_{-\infty}^{+\infty} n(n-1)[F(w+r) - F(w)]^{n-2} p(w)p(w+r) I_{r>0} dw,$$

故 $R_n = X_{(n)} - X_{(1)}$ 的分布函数为

$$\begin{split} F_{R_n}(x) &= \int_{-\infty}^x p_{R_n}(r) dr = \int_{-\infty}^x dr \int_{-\infty}^{+\infty} n(n-1) [F(w+r) - F(w)]^{n-2} p(w) p(w+r) \mathbf{I}_{r>0} dw \\ &= \int_{-\infty}^{+\infty} dw \int_{-\infty}^x n(n-1) [F(w+r) - F(w)]^{n-2} p(w) p(w+r) \mathbf{I}_{r>0} dr \\ &= \int_{-\infty}^{+\infty} n(n-1) p(w) dw \int_{0}^x [F(w+r) - F(w)]^{n-2} p(w+r) dr \\ &= \int_{-\infty}^{+\infty} n(n-1) p(w) dw \int_{0}^x [F(w+r) - F(w)]^{n-2} dF(w+r) \\ &= \int_{-\infty}^{+\infty} n(n-1) p(w) dw \cdot \frac{1}{n-1} [F(w+r) - F(w)]^{n-1} \Big|_{0}^x \\ &= n \int_{-\infty}^{+\infty} [F(w+x) - F(w)]^{n-1} p(w) dw \\ &= n \int_{-\infty}^{+\infty} [F(y+x) - F(y)]^{n-1} p(y) dy , \quad x > 0; \end{split}$$

方法二: 分布函数法

因(X(1), X(n))的联合密度函数为

$$p_{1n}(y,z) = \frac{n!}{(n-2)!} [F(z) - F(y)]^{n-2} p(y) p(z) I_{y < z} = n(n-1) [F(z) - F(y)]^{n-2} p(y) p(z) I_{y < z},$$

故 $R_n = X_{(n)} - X_{(1)}$ 的分布函数为

$$F_{R_{n}}(x) = P\{R_{n} = X_{(n)} - X_{(1)} \le x\} = \int_{-\infty}^{+\infty} dy \int_{-\infty}^{y+x} p_{1n}(y, z) dz$$

$$= n(n-1) \int_{-\infty}^{+\infty} dy \int_{y}^{y+x} [F(z) - F(y)]^{n-2} p(y) p(z) dz$$

$$= n(n-1) \int_{-\infty}^{+\infty} dy \cdot p(y) \int_{y}^{y+x} [F(z) - F(y)]^{n-2} d[F(z)]$$

$$= n(n-1) \int_{-\infty}^{+\infty} dy \cdot p(y) \cdot \frac{1}{n-1} [F(z) - F(y)]^{n-1} \Big|_{y}^{y+x} = n \int_{-\infty}^{+\infty} [F(y+x) - F(y)]^{n-1} p(y) dy , \quad x > 0;$$

(2) 因指数分布 Exp(\(\lambda\)的密度函数与分布函数分别为

$$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0; \\ 0, & x \le 0. \end{cases} \quad F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0; \\ 0, & x \le 0. \end{cases}$$

故 $R_n = X_{(n)} - X_{(1)}$ 的分布函数为

$$\begin{split} F_{R_n}(x) &= n \int_{-\infty}^{+\infty} [F(y+x) - F(y)]^{n-1} p(y) dy = n \int_{0}^{+\infty} [(1 - e^{-\lambda(y+x)}) - (1 - e^{-\lambda y})]^{n-1} \cdot \lambda e^{-\lambda y} dy \\ &= n \int_{0}^{+\infty} (e^{-\lambda y})^{n-1} (1 - e^{-\lambda x})^{n-1} \cdot (-1) d e^{-\lambda y} = n (1 - e^{-\lambda x})^{n-1} \cdot \left(-\frac{1}{n}\right) (e^{-\lambda y})^{n} \Big|_{0}^{+\infty} = (1 - e^{-\lambda x})^{n-1}, \quad x > 0. \end{split}$$

34. 设 X_1, \dots, X_n 是来自 $U(0, \theta)$ 的样本, $X_{(1)} \le \dots \le X_{(n)}$ 为次序统计量,令

$$Y_i = \frac{X_{(i)}}{X_{(i+1)}}$$
, $i = 1, \dots, n-1$, $Y_n = X_{(n)}$,

证明 Y_1, \dots, Y_n 相互独立.

解: 总体密度函数
$$p(x) = \frac{1}{\theta} I_{0 < x < \theta}$$
,

且
$$(X_{(1)}, X_{(2)}, \dots, X_{(n)})$$
 联合密度函数为 $p(x_{(1)}, x_{(2)}, \dots, x_{(n)}) = n! \cdot \frac{1}{\theta^n} I_{0 < x_{(1)} \le x_{(2)} \le \dots \le x_{(n)} < \theta}$

由于
$$Y_i = \frac{X_{(i)}}{X_{(i+1)}}$$
, $i = 1, 2, ..., n-1$, $Y_n = X_{(n)}$,

有
$$X_{(1)}=Y_1Y_2\cdots Y_n$$
 , $X_{(2)}=Y_2\cdots Y_n$, … , $X_{(n-1)}=Y_{n-1}Y_n$, $X_{(n)}=Y_n$, 则 $(X_{(1)},X_{(2)},\cdots,X_{(n)})$ 关于 (Y_1,Y_2,\cdots,Y_n) 的雅可比行列式为

$$\frac{\partial(x_{(1)}, x_{(2)}, \dots, x_{(n)})}{\partial(y_1, y_2, \dots, y_n)} = \begin{vmatrix} y_2 \dots y_n & y_1 y_3 \dots y_n & \dots & y_1 y_2 \dots y_{n-1} \\ 0 & y_3 \dots y_n & \dots & y_2 y_3 \dots y_{n-1} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{vmatrix} = y_2 y_3^2 \dots y_n^{n-1},$$

且 $0 < X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)} < \theta$ 对应于 $0 < Y_1 \le 1, 0 < Y_2 \le 1, \cdots, 0 < Y_{n-1} \le 1, 0 < Y_n < \theta$,可得 (Y_1, Y_2, \cdots, Y_n) 的联合密度函数为

$$p(y_1, y_2, \dots, y_n) = n! \cdot \frac{1}{\theta^n} y_2 y_3^2 \cdots y_n^{n-1} I_{0 < y_1 \le 1} I_{0 < y_2 \le 1} \cdots I_{0 < y_{n-1} \le 1} I_{0 < y_n < \theta},$$

由于 (Y_1, Y_2, \dots, Y_n) 的联合密度函数 $p(y_1, y_2, \dots, y_n)$ 可分离变量,故 Y_1, Y_2, \dots, Y_n 相互独立.

35. 对下列数据构造箱线图

472	425	447	377	341	369	412	419
400	382	366	425	399	398	423	384
418	392	372	418	374	385	439	428
429	428	430	413	405	381	403	479
381	443	441	433	419	379	386	387

解:
$$x_{(1)} = 341$$
, $m_{0.25} = \frac{1}{2}(x_{(10)} + x_{(11)}) = 383$, $m_{0.5} = \frac{1}{2}(x_{(20)} + x_{(21)}) = 408.5$, $m_{0.75} = \frac{1}{2}(x_{(30)} + x_{(31)}) = 428$, $x_{(n)} = 479$,

箱线图

36. 根据调查,某集团公司的中层管理人员的年薪数据如下(单位:千元)

40.6	39.6	43.8	36.2	40.8	37.3	39.2	42.9
38.6	39.6	40.0	34.7	41.7	45.4	36.9	37.8
44.9	45.4	37.0	35.1	36.7	41.3	38.1	37.9
37.1	37.7	39.2	36.9	44.5	40.4	38.4	38.9
39.9	42.2	43.5	44.8	37.7	34.7	36.3	39.7
42.1	41.5	40.6	38.9	42.2	40.3	35.8	39.2

试画出箱线图.

解:
$$x_{(1)} = 34.7$$
, $m_{0.25} = \frac{1}{2}(x_{(12)} + x_{(13)}) = 37.5$, $m_{0.5} = \frac{1}{2}(x_{(24)} + x_{(25)}) = 39.4$, $m_{0.75} = \frac{1}{2}(x_{(36)} + x_{(37)}) = 41.6$,
 $x_{(n)} = 45.4$,
 箱线图

习题 5.4

1. 在总体 N(7.6, 4) 中抽取容量为 n 的样本,如果要求样本均值落在 (5.6, 9.6) 内的概率不小于 0.95,则

n 至少为多少?

解: 因总体
$$X \sim N(7.6, 4)$$
,有 $\overline{X} \sim N(7.6, \frac{4}{n})$, $\frac{\overline{X} - 7.6}{2/\sqrt{n}} \sim N(0, 1)$,

$$\text{III } P\{5.6 < \overline{X} < 9.6\} = P\{-\sqrt{n} < \frac{\overline{X} - 7.6}{2/\sqrt{n}} < \sqrt{n}\} = \Phi(\sqrt{n}) - \Phi(-\sqrt{n}) = 2\Phi(\sqrt{n}) - 1 \ge 0.95 \text{ ,}$$

 $\mathbb{H} \Phi(\sqrt{n}) \ge 0.975$, $\sqrt{n} \ge 1.96$, $n \ge 3.8416$,

故取 $n \ge 4$.

2. 设 x_1, \dots, x_n 是来自 $N(\mu, 16)$ 的样本,问 n 多大时才能使得 $P\{|\overline{X} - \mu| < 1\} \ge 0.95$ 成立?

解: 因总体
$$X \sim N(\mu, 16)$$
,有 $\overline{X} \sim N\left(\mu, \frac{16}{n}\right)$, $\frac{\overline{X} - \mu}{4/\sqrt{n}} \sim N(0, 1)$,

$$\text{ If } P\{\mid \overline{X} - \mu \mid <1\} = P\{\left|\frac{\overline{X} - \mu}{4/\sqrt{n}}\right| < \frac{\sqrt{n}}{4}\} = \Phi\left(\frac{\sqrt{n}}{4}\right) - \Phi\left(-\frac{\sqrt{n}}{4}\right) = 2\Phi\left(\frac{\sqrt{n}}{4}\right) - 1 \geq 0.95 \text{ ,}$$

$$\mathbb{H}\Phi\left(\frac{\sqrt{n}}{4}\right) \ge 0.975, \quad \frac{\sqrt{n}}{4} \ge 1.96, \quad n \ge 61.4656,$$

故取 $n \ge 62$.

3. 由正态总体 N (100, 4) 抽取二个独立样本,样本均值分别为 \bar{x} , \bar{y} ,样本容量分别为 15, 20,试求 $P\{|\bar{x}-\bar{y}|>0.2\}$.

解: 因
$$\overline{X} \sim N(100, \frac{4}{15})$$
, $\overline{Y} \sim N(100, \frac{4}{20})$,即 $\overline{X} - \overline{Y} \sim N(0, \frac{4}{15} + \frac{4}{20})$, $\frac{\overline{X} - \overline{Y}}{\sqrt{\frac{4}{15} + \frac{4}{20}}} \sim N(0, 1)$,

故
$$P\{|\overline{X} - \overline{Y}| > 0.2\} = P\{\frac{|\overline{X} - \overline{Y}|}{\sqrt{\frac{4}{15} + \frac{4}{20}}} > \frac{0.2}{\sqrt{\frac{4}{15} + \frac{4}{20}}} = 0.29\} = 2[1 - \Phi(0.29)] = 2 - 2 \times 0.6141 = 0.7718$$
.

4. 由正态总体 $N(\mu, \sigma^2)$ 抽取容量为 20 的样本,试求 $P\{10\sigma^2 < \sum_{i=1}^{20} (X_i - \mu)^2 < 30\sigma^2\}$.

解: 因
$$\frac{\sum_{i=1}^{20}(X_i-\mu)^2}{\sigma^2}$$
 $\sim \chi^2(20)$,

故
$$P\{10\sigma^2 < \sum_{i=1}^{20} (X_i - \mu)^2 < 30\sigma^2\} = P\{10 < \frac{\sum_{i=1}^{20} (X_i - \mu)^2}{\sigma^2} < 30\} = \int_{10}^{30} p_{\chi^2(20)}(x) dx = 0.8983$$
.

注:最后一步的积分利用 MATLAB 计算,命令窗口输入: chi2cdf(30,20)- chi2cdf(10,20) 这里 chi2cdf(x, n)表示自由度为 n 的 χ^2 分布在点 x 处的分布函数值.

5. 设 x_1 , …, x_{16} 是来自 $N(\mu, \sigma^2)$ 的样本, 经计算 $\bar{x} = 9$, $s^2 = 5.32$, 试求 $P\{|\bar{X} - \mu| < 0.6\}$.

解: 因
$$\frac{\overline{X} - \mu}{s / \sqrt{n}} = \frac{\overline{X} - \mu}{\sqrt{5.32} / \sqrt{16}} \sim t(15)$$
,

故
$$P\{|\overline{X} - \mu| < 0.6\} = P\{\frac{|\overline{X} - \mu|}{\sqrt{5.32}/\sqrt{16}} < \frac{0.6}{\sqrt{5.32}/\sqrt{16}} = 1.0405\} = \int_{-1.0405}^{1.0405} p_{t(15)}(x) dx = 0.6854$$
.

注:最后一步的积分利用 MATLAB 计算,命令窗口输入: 2*tcdf(1.0405,15)-1 这里 tcdf(x, n) 表示自由度为 n 的 t 分布在点 x 处的分布函数值.

6. 设 x_1 , …, x_n 是来自 $N(\mu, 1)$ 的样本,试确定最小的常数c,使得对任意的 $\mu \ge 0$,有 $P\{|\overline{X}| < c\} \le \alpha$.

解: 因
$$\overline{X} \sim N(\mu, \frac{1}{n})$$
, $\frac{\overline{X} - \mu}{1/\sqrt{n}} \sim N(0, 1)$,

$$\text{If } P\{|\overline{X}| < c\} = P\{\sqrt{n}(-c - \mu) < \frac{|\overline{X} - \mu|}{1/\sqrt{n}} < \sqrt{n}(c - \mu)\} = \Phi(\sqrt{n}(c - \mu)) - \Phi(\sqrt{n}(-c - \mu)) \le \alpha ,$$

设
$$f(\mu) = \Phi(\sqrt{n}(c-\mu)) - \Phi(\sqrt{n}(-c-\mu))$$
,

令
$$f'(\mu) = -\sqrt{n}\varphi(\sqrt{n}(c-\mu)) + \sqrt{n}\varphi(\sqrt{n}(-c-\mu)) = 0$$
,其中 $\varphi(x)$ 是标准正态分布的密度函数,

得
$$\varphi(\sqrt{n}(c-\mu)) = \varphi(\sqrt{n}(-c-\mu))$$
, 由 $\varphi(x)$ 的对称性得 $\sqrt{n}(c-\mu) = \sqrt{n}(c+\mu)$, 即 $\mu = 0$,

因
$$f''(\mu) = n\varphi'(\sqrt{n}(c-\mu)) - n\varphi'(\sqrt{n}(-c-\mu))$$
,且当 $x < 0$ 时, $\varphi'(x) > 0$,当 $x > 0$ 时, $\varphi'(x) < 0$,

则
$$f''(0) = n\varphi'(\sqrt{nc}) - n\varphi'(-\sqrt{nc}) < 0$$
, 即 $\mu = 0$ 时, $f(\mu)$ 达到最大值,

$$\stackrel{\text{\tiny def}}{=} \mu = 0 \text{ iff}, \quad f(0) = \Phi(\sqrt{nc}) - \Phi(-\sqrt{nc}) = 2\Phi(\sqrt{nc}) - 1 \leq \alpha \text{ , } \text{ iff } \Phi(\sqrt{nc}) \leq \frac{1+\alpha}{2} \text{ , } \text{ } \sqrt{nc} \leq u_{\frac{1+\alpha}{2}} \text{ , }$$

故取
$$c = \frac{u_{\frac{1+\alpha}{2}}}{\sqrt{n}}$$
.

7. 设随机变量 $X \sim F(n, n)$, 证明 $P\{X < 1\} = 0.5$.

证: 因
$$X \sim F(n, n)$$
, 有 $\frac{1}{X} \sim F(n, n)$, 且 $X > 0$,

则
$$P\{X < 1\} = P\{\frac{1}{X} < 1\} = P\{X > 1\}$$
,且显然 $P\{X < 1\} + P\{X > 1\} = 1$,故 $P\{X < 1\} = 0.5$.

8. 设
$$X \sim F(n, m)$$
, 证明 $Z = \frac{n}{m} X / \left(1 + \frac{n}{m} X\right)$ 服从贝塔分布, 并指出其参数.

证: 因
$$X \sim F(n, m)$$
, 密度函数 $p_F(x) = \frac{\Gamma\left(\frac{n+m}{2}\right)\left(\frac{n}{m}\right)^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{m}{2}\right)} x^{\frac{n}{2}-1} \left(1 + \frac{n}{m}x\right)^{-\frac{n+m}{2}}, x > 0,$

而
$$z = \frac{n}{m}x / \left(1 + \frac{n}{m}x\right)$$
在 $x > 0$ 时严格单调增加,反函数为 $x = \frac{m}{n} \cdot \frac{z}{1-z}$,其导数 $\frac{\mathrm{d}x}{\mathrm{d}z} = \frac{m}{n} \cdot \frac{1}{(1-z)^2}$,

则Z的密度函数为

$$\begin{split} p_{Z}(z) &= \frac{\Gamma\left(\frac{n+m}{2}\right)\left(\frac{n}{m}\right)^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{m}{2}\right)} \left(\frac{m}{n} \cdot \frac{z}{1-z}\right)^{\frac{n}{2}-1} \left(1 + \frac{z}{1-z}\right)^{-\frac{n+m}{2}} \cdot \frac{m}{n} \cdot \frac{1}{(1-z)^{2}} \\ &= \frac{\Gamma\left(\frac{n+m}{2}\right)}{\Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{m}{2}\right)} \left(\frac{z}{1-z}\right)^{\frac{n}{2}-1} \left(\frac{1}{1-z}\right)^{-\frac{n+m}{2}} \cdot \frac{1}{(1-z)^{2}} = \frac{\Gamma\left(\frac{n+m}{2}\right)}{\Gamma\left(\frac{n}{2}\right)\Gamma\left(\frac{m}{2}\right)} z^{\frac{n}{2}-1} (1-z)^{\frac{m}{2}-1}, \end{split}$$

故 Z 服从参数为 $\left(\frac{n}{2},\frac{m}{2}\right)$ 的 β 分布.

注: 分布 $\beta(p,q)$ 的密度函数为 $p_{\beta}(x) = \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} x^{p-1} (1-x)^{q-1}$.

9. 设是来自
$$N(0, \sigma^2)$$
 的样本,试求 $Y = \left(\frac{x_1 + x_2}{x_1 - x_2}\right)^2$ 的分布.

解: 因 $X_1 \sim N(0, \sigma^2)$, $X_2 \sim N(0, \sigma^2)$, 有 $X_1 + X_2 \sim N(0, 2\sigma^2)$, $X_1 - X_2 \sim N(0, 2\sigma^2)$,

因 (X_1, X_2) 服从二维正态分布,知 $(X_1 + X_2, X_1 - X_2)$ 也服从二维正态分布,

则
$$X_1 + X_2$$
 与 $X_1 - X_2$ 相互独立,有 $\frac{(X_1 + X_2)^2}{2\sigma^2}$ 与 $\frac{(X_1 - X_2)^2}{2\sigma^2}$ 相互独立,

故由
$$F$$
 分布定义知 $Y = \left(\frac{X_1 + X_2}{X_1 - X_2}\right)^2 = \frac{(X_1 + X_2)^2}{2\sigma^2} / \frac{(X_1 - X_2)^2}{2\sigma^2} \sim F(1, 1)$.

注: F 分布结构为 $F = \frac{X/n}{Y/m} \sim F(n,m)$, 其中 $X \sim \chi^2(n)$, $Y \sim \chi^2(m)$, 且 X 与 Y 相互独立.

10. 设总体为N(0,1), x_1, x_2 为样本, 试求常数k, 使得

$$P\left\{\frac{(X_1 + X_2)^2}{(X_1 - X_2)^2 + (X_1 + X_2)^2} > k\right\} = 0.05.$$

解: 因
$$X_1 \sim N(0, 1)$$
, $X_2 \sim N(0, 1)$, 有 $\frac{(X_1 + X_2)^2}{2} / \frac{(X_1 - X_2)^2}{2} = \frac{(X_1 + X_2)^2}{(X_1 - X_2)^2} \sim F(1, 1)$,

$$\operatorname{IV} P \left\{ \frac{(X_1 + X_2)^2}{(X_1 - X_2)^2 + (X_1 + X_2)^2} > k \right\} = P \left\{ \frac{(X_1 - X_2)^2}{(X_1 + X_2)^2} + 1 < \frac{1}{k} \right\} = P \left\{ \frac{(X_1 - X_2)^2}{(X_1 + X_2)^2} < \frac{1}{k} - 1 \right\} = 0.05,$$

得
$$P\left\{\frac{(X_1 - X_2)^2}{(X_1 + X_2)^2} \ge \frac{1 - k}{k}\right\} = 0.95$$
,即 $P\left\{\frac{(X_1 + X_2)^2}{(X_1 - X_2)^2} \le \frac{k}{1 - k}\right\} = 0.95$,

故
$$\frac{k}{1-k} = F_{0.95}(1,1)$$
, $k = \frac{F_{0.95}(1,1)}{1+F_{0.95}(1,1)} = \frac{161.45}{1+161.45} = 0.9938$.

注: 此题
$$\frac{(X_1+X_2)^2}{2} \sim \chi^2(1)$$
, $\frac{(X_1+X_2)^2+(X_1-X_2)^2}{2} \sim \chi^2(2)$,

但
$$\frac{\frac{(X_1+X_2)^2}{2}}{\frac{(X_1+X_2)^2+(X_1-X_2)^2}{2}} = \frac{2(X_1+X_2)^2}{(X_1+X_2)^2+(X_1-X_2)^2}$$
并不服从 $F(1,2)$,因为二者不独立。

11. 设 x_1 , …, x_n 是来自 $N(\mu_1, \sigma^2)$ 的样本, y_1 , …, y_m 是来自 $N(\mu_2, \sigma^2)$ 的样本,c, d 是任意两个不为 0 的常

数,证明
$$t = \frac{c(\overline{x} - \mu_1) + d(\overline{y} - \mu_2)}{s_w \sqrt{\frac{c^2}{n} + \frac{d^2}{m}}} \sim t(n + m - 2)$$
,其中 $s_w^2 = \frac{(n - 1)S_x^2 + (m - 1)S_y^2}{n + m - 2}$.

解: 因
$$\overline{X} \sim N(\mu_1, \frac{\sigma^2}{n})$$
, $\overline{Y} \sim N(\mu_2, \frac{\sigma^2}{m})$, 有 $c(\overline{X} - \mu_1) + d(\overline{Y} - \mu_2) \sim N(0, \frac{c^2\sigma^2}{n} + \frac{d^2\sigma^2}{m})$,

则
$$rac{c(\overline{X}-\mu_1)+d(\overline{Y}-\mu_2)}{\sigma\sqrt{rac{c^2}{n}+rac{d^2}{m}}}\sim N(0,1)$$
 ,

又因
$$\frac{(n-1)S_x^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sigma^2} \sim \chi^2(n-1)$$
, $\frac{(m-1)S_y^2}{\sigma^2} = \frac{\sum_{j=1}^m (Y_j - \overline{Y})^2}{\sigma^2} \sim \chi^2(m-1)$, 且相互独立,

则
$$\frac{(n-1)S_x^2 + (m-1)S_y^2}{\sigma^2} \sim \chi^2(n+m-2)$$
,且与 $c(\overline{X} - \mu_1) + d(\overline{Y} - \mu_2)$ 相互独立,

故由t分布定义知

$$\frac{\frac{c(\overline{X} - \mu_1) + d(\overline{Y} - \mu_2)}{\sigma \sqrt{\frac{c^2}{n} + \frac{d^2}{m}}}}{\sqrt{\frac{(n-1)S_x^2 + (m-1)S_y^2}{\sigma^2} / (n+m-2)}} = \frac{c(\overline{X} - \mu_1) + d(\overline{Y} - \mu_2)}{\sqrt{\frac{(n-1)S_x^2 + (m-1)S_y^2}{n+m-2}} \cdot \sqrt{\frac{c^2}{n} + \frac{d^2}{m}}} \sim t(n+m-2),$$

注: t 分布结构为 $T = \frac{X}{\sqrt{Y/n}} \sim t(n)$, 其中 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, 且 X 与 Y 相互独立.

12. 设
$$x_1$$
, \dots , x_n , x_{n+1} 是来自 $N(\mu, \sigma^2)$ 的样本, $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$, $s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$,试求常数 c ,使得

$$t_c = c \frac{x_{n+1} - \overline{x}_n}{s_n}$$
 服从 t 分布,并指出分布的自由度.

解: 因
$$\overline{X}_n \sim N(\mu, \frac{\sigma^2}{n})$$
, $X_{n+1} \sim N(\mu, \sigma^2)$, 有 $X_{n+1} - \overline{X}_n \sim N(0, \sigma^2 + \frac{\sigma^2}{n})$,
$$\mathbb{P} \frac{X_{n+1} - \overline{X}_n}{\sigma \sqrt{\frac{n+1}{n}}} \sim N(0, 1), \quad \mathbb{Z} \mathbb{E} \frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2(n-1), \quad \mathbb{E} \mathbb{E} X_{n+1} - \overline{X}_n \text{相互独立},$$

则由
$$t$$
 分布定义知
$$\frac{\frac{X_{n+1} - \overline{X}_n}{\sigma \sqrt{\frac{n+1}{n}}}}{\sqrt{\frac{(n-1)S_n^2}{\sigma^2}/(n-1)}} = \sqrt{\frac{n}{n+1}} \frac{X_{n+1} - \overline{X}_n}{S_n} \sim t(n-1),$$

故当
$$c = \sqrt{\frac{n}{n+1}}$$
时, $c = \frac{X_{n+1} - \overline{X}_n}{S_n}$ 服从自由度为 $n-1$ 的 t 分布.

- 13. 设从两个方差相等的正态总体中分别抽取容量为 15, 20 的样本,其样本方差分别为 s_1^2 , s_2^2 , 试求 $P\{S_1^2/S_2^2>2\}$.
- 解: 因 $\frac{(n_1-1)S_1^2}{\sigma^2} = \frac{14S_1^2}{\sigma^2} \sim \chi^2(14)$, $\frac{(n_2-1)S_2^2}{\sigma^2} = \frac{19S_2^2}{\sigma^2} \sim \chi^2(19)$,且相互独立,

则由
$$F$$
 分布定义知 $\frac{\frac{14S_1^2}{\sigma^2}/14}{\frac{19S_2^2}{\sigma^2}/19} = \frac{S_1^2}{S_2^2} \sim F(14,19)$,

故
$$P\{S_1^2/S_2^2 > 2\} = \int_2^{+\infty} p_{F(14,19)}(x) dx = 1 - \int_0^2 p_{F(14,19)}(x) dx = 0.0798$$
.

注:最后一步的积分利用 MATLAB 计算,命令窗口输入: 1-fcdf(2,14,19) 这里 fcdf(x, n, m)表示自由度为 n, m 的 F 分布在点 x 处的分布函数值.

14. 设 X_1, X_2, \dots, X_{15} 是总体 $N(0, \sigma^2)$ 的一个样本,求

$$Y = \frac{X_1^2 + X_2^2 + \dots + X_{10}^2}{2(X_{11}^2 + X_{12}^2 + \dots + X_{15}^2)}$$

的分布.

解: 因 X_1, X_2, \dots, X_{15} 相互独立,且 $X_i \sim N(0, \sigma^2)$,有 $\frac{X_i}{\sigma} \sim N(0, 1)$, $i = 1, 2, \dots, 15$,
则由 χ^2 分布的构成可知 $\frac{X_1^2 + X_2^2 + \dots + X_{10}^2}{\sigma^2} \sim \chi^2(10)$, $\frac{X_{11}^2 + X_{12}^2 + \dots + X_{15}^2}{\sigma^2} \sim \chi^2(5)$,且相互独立,
故由 F 分布的构成可知 $Y = \frac{X_1^2 + X_2^2 + \dots + X_{10}^2}{2(X_{11}^2 + X_{12}^2 + \dots + X_{15}^2)} = \frac{\frac{X_1^2 + X_2^2 + \dots + X_{10}^2}{\sigma^2}}{\frac{X_{11}^2 + X_{12}^2 + \dots + X_{15}^2}{2(X_{11}^2 + X_{12}^2 + \dots + X_{15}^2)}} \sim F(10, 5)$.

15. 设(X_1, X_2, \dots, X_{17})是来自正态分布 $N(\mu, \sigma^2)$ 的一个样本, \overline{X} 与 S^2 分别是样本均值与样本方差.求 k,使得 $P\{\overline{X} > \mu + kS\} = 0.95$.

解: 因(X_1, X_2, \dots, X_{17})是来自正态分布 $N(\mu, \sigma^2)$ 的一个样本,n = 17,有 $\frac{\overline{X} - \mu}{S/\sqrt{17}} \sim t(16)$,

则
$$P\{\overline{X} > \mu + kS\} = P\left\{\frac{\overline{X} - \mu}{S/\sqrt{17}} > \sqrt{17}k\right\} = 0.95$$
,即 $\sqrt{17}k = -t_{0.95}(16) = -1.7459$,

故 k = -0.4234.

16. 设总体 X 服从 $N(\mu, \sigma^2)$, $\sigma^2 > 0$,从该总体中抽取简单随机样本 X_1, X_2, \dots, X_{2n} $(n \ge 1)$,其样本均值 $\overline{X} = \frac{1}{2n} \sum_{i=1}^{2n} X_i$,求统计量 $Y = \sum_{i=1}^n (X_i + X_{n+i} - 2\overline{X})^2$ 的数学期望.

解: 因
$$E(X_i) = \mu$$
, $Var(X_i) = \sigma^2$, $E(\overline{X}) = \frac{1}{2n} \sum_{i=1}^{2n} E(X_i) = \mu$, $Var(\overline{X}) = \frac{1}{4n^2} \sum_{i=1}^{2n} Var(X_i) = \frac{\sigma^2}{2n}$,

$$\begin{split} & \coprod Y = \sum_{i=1}^{n} \left[(X_{i}^{2} + X_{n+i}^{2} + 2X_{i}X_{n+i}) - 4\overline{X}(X_{i} + X_{n+i}) + 4\overline{X}^{2} \right] \\ & = \sum_{i=1}^{n} (X_{i}^{2} + X_{n+i}^{2}) + 2\sum_{i=1}^{n} X_{i}X_{n+i} - 4\overline{X}\sum_{i=1}^{n} (X_{i} + X_{n+i}) + 4n\overline{X}^{2} \\ & = \sum_{i=1}^{2n} X_{i}^{2} + 2\sum_{i=1}^{n} X_{i}X_{n+i} - 4\overline{X} \cdot 2n\overline{X} + 4n\overline{X}^{2} = \sum_{i=1}^{2n} X_{i}^{2} + 2\sum_{i=1}^{n} X_{i}X_{n+i} - 4n\overline{X}^{2} , \end{split}$$

故
$$E(Y) = \sum_{i=1}^{2n} E(X_i^2) + 2\sum_{i=1}^n E(X_i X_{n+i}) - 4nE(\overline{X}^2)$$

$$= \sum_{i=1}^{2n} [\operatorname{Var}(X_i) + E(X_i)^2] + 2\sum_{i=1}^n E(X_i) E(X_{n+i}) - 4n[\operatorname{Var}(\overline{X}) + E(\overline{X})^2]$$

$$= 2n(\sigma^2 + \mu^2) + 2n\mu^2 - 4n\left(\frac{\sigma^2}{2n} + \mu^2\right) = 2(n-1)\sigma^2.$$

17. 证明: 若随机变量 $T \sim t(k)$, 则对 r < k 有

$$E(T^r) = \begin{cases} 0, & r \text{ 为奇数;} \\ \frac{k^{\frac{r}{2}} \Gamma\left(\frac{r+1}{2}\right) \Gamma\left(\frac{k-r}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{k}{2}\right)}, & r \text{ 为偶数.} \end{cases}$$

并由此写出 E(T), Var(T).

证:因 $T \sim t(k)$,有T的密度函数为

$$p(x) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k\pi}\Gamma\left(\frac{k}{2}\right)} \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}}, -\infty < x < +\infty,$$

$$\text{In } E(T^r) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k\pi}\Gamma\left(\frac{k}{2}\right)} \int_{-\infty}^{+\infty} x^r \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}} dx ,$$

因当
$$x \to \infty$$
时, $x^r \left(1 + \frac{x^2}{k}\right)^{\frac{k+1}{2}} \sim x^r \cdot \left(\frac{x^2}{k}\right)^{\frac{k+1}{2}} = k^{\frac{k+1}{2}} x^r \cdot x^{-(k+1)} = \frac{k^{\frac{k+1}{2}}}{x^{k-r+1}}$,

则对 r < k,有反常积分 $\int_{-\infty}^{+\infty} x^r \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}} dx$ 收敛,即 E(T')存在,

当
$$r$$
 为奇数时, $x^r \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}}$ 为奇函数, 有 $\int_{-\infty}^{+\infty} x^r \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}} dx = 0$, 即 $E(T^r) = 0$,

当
$$r$$
 为偶数时, $x^r \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}}$ 为偶函数,有 $\int_{-\infty}^{+\infty} x^r \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}} dx = 2 \int_0^{+\infty} x^r \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}} dx$,

且当x=0时,t=1; 当 $x \to +\infty$ 时, $t \to 0$,

$$\iint_{-\infty}^{+\infty} x^{r} \left(1 + \frac{x^{2}}{k} \right)^{\frac{k+1}{2}} dx = 2 \int_{1}^{0} k^{\frac{r}{2}} t^{-\frac{r}{2}} (1-t)^{\frac{r}{2}} \cdot t^{\frac{k+1}{2}} \cdot (-1)^{\frac{k^{\frac{1}{2}}}{2}} t^{-\frac{3}{2}} (1-t)^{-\frac{1}{2}} dt = k^{\frac{r+1}{2}} \int_{0}^{1} t^{\frac{k-r-2}{2}} (1-t)^{\frac{r-1}{2}} dt$$

$$= k^{\frac{r+1}{2}} B \left(\frac{k-r}{2}, \frac{r+1}{2} \right) = k^{\frac{r+1}{2}} \frac{\Gamma \left(\frac{k-r}{2} \right) \Gamma \left(\frac{r+1}{2} \right)}{\Gamma \left(\frac{k+1}{2} \right)},$$

取 r=1, r 为奇数, 当 k=1 时, E(T)不存在; 当 k>1 时, E(T)=0; 取 r=2, r 为偶数,

故当 $k \le 2$ 时, $E(T^2)$ 不存在,即 Var(T)不存在;

18. 证明: 若随机变量 $F \sim F(k, m)$, 则当 $-\frac{k}{2} < r < \frac{m}{2}$ 时, 有

$$E(F^{r}) = \frac{m^{r} \Gamma\left(\frac{k}{2} + r\right) \Gamma\left(\frac{m}{2} - r\right)}{k^{r} \Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{m}{2}\right)},$$

由此写出 E(F), Var(F).

证: 因 $F \sim F(k, m)$, 有 F 的密度函数为

$$p(x) = \frac{\Gamma\left(\frac{k+m}{2}\right)\left(\frac{k}{m}\right)^{\frac{k}{2}}}{\Gamma\left(\frac{k}{2}\right)\Gamma\left(\frac{m}{2}\right)} x^{\frac{k-1}{2}} \left(1 + \frac{k}{m}x\right)^{-\frac{k+m}{2}}, \quad x > 0,$$

$$\text{If } E(F') = \frac{\Gamma\left(\frac{k+m}{2}\right)\left(\frac{k}{m}\right)^{\frac{k}{2}}}{\Gamma\left(\frac{k}{2}\right)\Gamma\left(\frac{m}{2}\right)} \int_{0}^{+\infty} x' \cdot x^{\frac{k-1}{2}} \left(1 + \frac{k}{m}x\right)^{\frac{k+m}{2}} dx = \frac{\Gamma\left(\frac{k+m}{2}\right)\left(\frac{k}{m}\right)^{\frac{k}{2}}}{\Gamma\left(\frac{k}{2}\right)\Gamma\left(\frac{m}{2}\right)} \int_{0}^{+\infty} x^{\frac{k}{2}+r-1} \left(1 + \frac{k}{m}x\right)^{\frac{k+m}{2}} dx ,$$

因当
$$x \to 0$$
时, $x^{\frac{k}{2}+r-1} \left(1 + \frac{k}{m}x\right)^{\frac{k+m}{2}} \sim x^{\frac{k}{2}+r-1}$;当 $x \to \infty$ 时, $x^{\frac{k}{2}+r-1} \left(1 + \frac{k}{m}x\right)^{\frac{k+m}{2}} \sim \left(\frac{k}{m}\right)^{\frac{k+m}{2}} x^{\frac{m}{2}+r-1}$,

则当
$$\frac{k}{2}+r-1>-1$$
且 $-\frac{m}{2}+r-1<-1$ 时,即 $-\frac{k}{2}< r<\frac{m}{2}$,反常积分 $\int_0^{+\infty}x^{\frac{k}{2}+r-1}\left(1+\frac{k}{m}x\right)^{-\frac{k+m}{2}}dx$ 收敛,

$$\diamondsuit t = \left(1 + \frac{k}{m}x\right)^{-1}, \quad \text{fi} \quad x = \frac{m}{k}\left(\frac{1}{t} - 1\right), \quad dx = \frac{m}{k} \cdot \left(-\frac{1}{t^2}\right)dt,$$

且当x=0时,t=1; 当 $x \to +\infty$ 时, $t \to 0$,

$$\iint_0^{+\infty} x^{\frac{k}{2}+r-1} \left(1 + \frac{k}{m}x\right)^{-\frac{k+m}{2}} dx = \int_1^0 \left(\frac{m}{k}\right)^{\frac{k}{2}+r-1} \left(\frac{1-t}{t}\right)^{\frac{k}{2}+r-1} \cdot t^{\frac{k+m}{2}} \cdot \frac{m}{k} \left(-\frac{1}{t^2}\right) dt = \left(\frac{m}{k}\right)^{\frac{k}{2}+r} \int_0^1 t^{\frac{m}{2}-r-1} (1-t)^{\frac{k}{2}+r-1} dt \\ = \left(\frac{m}{k}\right)^{\frac{k}{2}+r} B\left(\frac{m}{2}-r, \frac{k}{2}+r\right) = \left(\frac{m}{k}\right)^{\frac{k}{2}+r} \frac{\Gamma\left(\frac{m}{2}-r\right)\Gamma\left(\frac{k}{2}+r\right)}{\Gamma\left(\frac{m+k}{2}\right)} \, ,$$

取 r=1,

当 $m \le 2$ 时, E(F)不存在;

$$\stackrel{\text{def}}{=} m > 2 \text{ Fe}, \quad E(F) = \frac{m\Gamma\left(\frac{k}{2}+1\right)\Gamma\left(\frac{m}{2}-1\right)}{k\Gamma\left(\frac{k}{2}\right)\Gamma\left(\frac{m}{2}\right)} = \frac{m \cdot \frac{k}{2}\Gamma\left(\frac{k}{2}\right) \cdot \Gamma\left(\frac{m}{2}-1\right)}{k\Gamma\left(\frac{k}{2}\right) \cdot \left(\frac{m}{2}-1\right)\Gamma\left(\frac{m}{2}-1\right)} = \frac{m}{m-2} ;$$

取 r=2,

当 $m \le 4$ 时, $E(F^2)$ 不存在, 即 Var(F)不存在;

$$\stackrel{\text{def}}{=} m > 4 \text{ Hz}, \quad E(F^2) = \frac{m^2 \Gamma\left(\frac{k}{2} + 2\right) \Gamma\left(\frac{m}{2} - 2\right)}{k^2 \Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{m}{2}\right)} = \frac{m^2 \cdot \left(\frac{k}{2} + 1\right) \frac{k}{2} \Gamma\left(\frac{k}{2}\right) \cdot \Gamma\left(\frac{m}{2} - 2\right)}{k^2 \Gamma\left(\frac{k}{2}\right) \cdot \left(\frac{m}{2} - 1\right) \left(\frac{m}{2} - 2\right) \Gamma\left(\frac{m}{2} - 2\right)} = \frac{m^2 (k + 2)}{k(m - 2)(m - 4)},$$

故
$$\operatorname{Var}(F) = E(F^2) - [E(F)]^2 = \frac{m^2(k+2)}{k(m-2)(m-4)} - \left(\frac{m}{m-2}\right)^2 = \frac{2m^2(m+k-2)}{k(m-2)^2(m-4)}$$
.

19. 设 X_1, X_2, \dots, X_n 是来自某连续总体的一个样本. 该总体的分布函数 F(x) 是连续严格单增函数,证明: 统计量 $T = -2\sum_{i=1}^n \ln F(X_i)$ 服从 $\chi^2(2n)$.

证: 因 $Y_i = -2\ln F(X_i)$ 的分布函数:

$$F_{Y}(y) = P\{-2\ln F(X_{i}) \le y\} = P\{X_{i} \ge F^{-1}(e^{-\frac{y}{2}})\} = 1 - F[F^{-1}(e^{-\frac{y}{2}})] = 1 - e^{-\frac{y}{2}}, \quad y > 0,$$

则 $Y_i = -2\ln F(X_i)$ 服从指数分布 $Exp\left(\frac{1}{2}\right)$,也就是服从自由度为 2 的 χ^2 分布 χ^2 (2),

因 X_1, X_2, \cdots, X_n 相互独立,有 Y_1, Y_2, \cdots, Y_n 相互独立,

故由 χ^2 分布的可加性知 $T = -2\sum_{i=1}^n \ln F(X_i)$ 服从 $\chi^2(2n)$.

- 20. 设 X_1, X_2, \dots, X_n 是来自正态分布 $N(\mu, \sigma^2)$ 的一个样本, $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ 是样本方差,试求满足 $P\left\{\frac{S_n^2}{\sigma^2} \le 1.5\right\} \ge 0.95$ 的最小 n 值.
- 解: 因 $\frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2(n-1)$,有 $P\left\{\frac{S_n^2}{\sigma^2} \le 1.5\right\} = P\left\{\frac{(n-1)S_n^2}{\sigma^2} \le 1.5(n-1)\right\} \ge 0.95$ 则 $1.5(n-1) \ge \chi_{0.95}^2(n-1)$,即 $1.5 \ge \frac{\chi_{0.95}^2(n-1)}{n-1}$,

 因 $\frac{\chi_{0.95}^2(k)}{k}$ 单调下降,且 $\frac{\chi_{0.95}^2(25)}{25} = 1.5061$, $\frac{\chi_{0.95}^2(26)}{26} = 1.4956$,故 $n-1 \ge 26$,即 n至少为 27.
- 21. 设 X_1, X_2, \dots, X_n 独立同分布服从 $N(\mu, \sigma^2)$, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$,记 $\xi = \frac{X_1 \overline{X}}{S}$. 试

找出 ξ 与t分布的联系,因而定出 ξ 的密度函数(提示:作正交变换 $Y_1 = \sqrt{n}\overline{X}$, $Y_2 = \sqrt{\frac{n}{n-1}}(X_1 - \overline{X})$,

$$Y_i = \sum_{j=1}^n c_{ij} X_j$$
, $j = 3, \dots, n$.

解: 因 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = (X_1, X_2, \dots, X_n) \cdot \frac{1}{n} (1, 1, \dots, 1)^T$,

$$X_1 - \overline{X} = \frac{n-1}{n} X_1 - \frac{1}{n} \sum_{i=2}^n X_i = (X_1, X_2, \dots, X_n) \cdot \frac{1}{n} (n-1, -1, \dots, -1)^T$$

且向量
$$\alpha_1 = \frac{1}{\sqrt{n}}(1,1,\dots,1)^T$$
, $\alpha_2 = \frac{1}{\sqrt{n(n-1)}}(n-1,-1,\dots,-1)^T$ 正交并都是单位向量,

将单位向量 α_1, α_2 扩充为n维向量空间的一组标准正交基 $\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n$,

令
$$C = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$$
, C 为正交阵, 设 $(Y_1, Y_2, \dots, Y_n)^T = C^T(X_1, X_2, \dots, X_n)^T$,即 $\overrightarrow{Y} = C^T \overrightarrow{X}$,

因 $X_1, X_2, X_3, \dots, X_n$ 相互独立且都服从方差同为 σ^2 的正态分布,

可知 $Y_1, Y_2, Y_3, \dots, Y_n$ 相互独立且都服从方差同为 σ^2 的正态分布,

$$\stackrel{\text{def}}{=} i \geq 2 \text{ Iff}, \quad E(Y_i) = E(\alpha_i^T \overrightarrow{X}) = \alpha_i^T (\mu, \mu, \dots, \mu)^T = \alpha_i^T \cdot \mu \cdot \sqrt{n} \alpha_1 = 0$$

则 Y_2,Y_3,\cdots,Y_n 相互独立且都服从正态分布 $N(0,\sigma^2)$,即 $\frac{Y_i}{\sigma}\sim N(0,1)$, i=2,3,...,n,

$$\boxtimes \sum_{i=1}^{n} Y_i^2 = \overrightarrow{Y}^T \overrightarrow{Y} = \overrightarrow{X}^T C C^T \overrightarrow{X} = \overrightarrow{X}^T E \overrightarrow{X} = \sum_{i=1}^{n} X_i^2,$$

$$\exists X_1 = \alpha_1^T \overrightarrow{X} = \frac{1}{\sqrt{n}} (X_1 + X_2 + \dots + X_n) = \sqrt{n} \overline{X} ,$$

$$Y_2 = \alpha_2^T \vec{X} = \frac{1}{\sqrt{n(n-1)}} [(n-1)X_1 - X_2 - \dots - X_n] = \sqrt{\frac{n}{n-1}} (X_1 - \overline{X}) = \sqrt{\frac{n}{n-1}} S\xi,$$

则
$$(n-1)S^2 = \sum_{i=1}^n (X_i - \overline{X})^2 = \sum_{i=1}^n X_i^2 - n\overline{X}^2 = \sum_{i=1}^n Y_i^2 - Y_1^2 = \sum_{i=2}^n Y_i^2$$
,有 $(n-1)S^2 - Y_2^2 = \sum_{i=3}^n Y_i^2$,

即
$$\frac{Y_2}{\sigma} \sim N(0,1)$$
 , $\frac{(n-1)S^2 - Y_2^2}{\sigma^2} = \sum_{i=3}^n \left(\frac{Y_i}{\sigma}\right)^2 \sim \chi^2(n-2)$, 且相互独立,

故
$$T = \frac{\frac{Y_2}{\sigma}}{\sqrt{\frac{(n-1)S^2 - Y_2^2}{\sigma^2} / (n-2)}} = \frac{\sqrt{n-2} \cdot \sqrt{\frac{n}{n-1}} S \xi}{\sqrt{(n-1)S^2 - \frac{n}{n-1}} S^2 \xi^2} = \frac{\sqrt{n(n-2)} \xi}{\sqrt{(n-1)^2 - n \xi^2}} \sim t(n-2)$$
.

22. 设 X_1, X_2, \dots, X_m 相互独立, X_i 服从 $\chi^2(n_i)$, $i = 1, 2, \dots, m$. 令 $U_1 = \frac{X_1}{X_1 + X_2}$, $U_2 = \frac{X_1 + X_2}{X_1 + X_2 + X_3}$,…,

$$U_{m-1} = rac{X_1 + \dots + X_{m-1}}{X_1 + \dots + X_m}$$
. 证明: U_1, \dots, U_{m-1} 相互独立,且 U_i 服从 $Be\left(rac{n_1 + \dots + n_i}{2}, rac{n_{i+1}}{2}
ight)$, $i = 1, \dots, m-1$,

(提示: 令 $U_m = X_1 + \cdots + X_m$, 作变换 $X_1 = U_1 \cdots U_m$, $X_2 = U_2 \cdots U_m - U_1 \cdots U_m$, \cdots , $X_m = U_m - U_{m-1}U_m$). 证: 因 X_1, X_2, \cdots, X_m 相互独立, X_i 服从 $\chi^2(n_i)$, $i = 1, 2, \cdots, m$,

则 (X_1, X_2, \cdots, X_m) 的联合密度函数为

$$p_X(x_1, x_2, \dots, x_m) = \prod_{i=1}^m \frac{\left(\frac{1}{2}\right)^{\frac{n_i}{2}}}{\Gamma\left(\frac{n_i}{2}\right)} x_i^{\frac{n_i}{2} - 1} e^{-\frac{x_i}{2}} I_{x_i > 0} = \frac{\left(\frac{1}{2}\right)^{\frac{1}{2} \sum_{i=1}^m n_i}}{\prod_{i=1}^m \Gamma\left(\frac{n_i}{2}\right)} \prod_{i=1}^m x_i^{\frac{n_i}{2} - 1} e^{-\frac{1}{2} \sum_{i=1}^m x_i} I_{x_1, x_2, \dots, x_m > 0},$$

$$\boxtimes U_1 = \frac{X_1}{X_1 + X_2}, \quad U_2 = \frac{X_1 + X_2}{X_1 + X_2 + X_3}, \quad \cdots, \quad U_{m-1} = \frac{X_1 + \cdots + X_{m-1}}{X_1 + \cdots + X_m}, \quad \boxtimes X_i > 0, \quad i = 1, 2, \cdots, m,$$

则 $0 < U_i < 1$, $i = 1, 2, \dots, m-1$, $U_m > 0$,

$$\Leftrightarrow U_m = X_1 + \dots + X_m$$
, $f(X_1 = U_1 \dots U_m, X_2 = U_2 \dots U_m - U_1 \dots U_m, \dots, X_m = U_m - U_{m-1} U_m)$

设
$$Y_1 = U_1 \cdots U_m$$
, $Y_2 = U_2 \cdots U_m$, \cdots , $Y_{m-1} = U_{m-1} U_m$, $Y_m = U_m$,

有
$$X_1 = Y_1$$
, $X_2 = Y_2 - Y_1$, …, $X_m = Y_m - Y_{m-1}$,

则 (X_1, X_2, \cdots, X_m) 关于 (U_1, U_2, \cdots, U_m) 的雅可比行列式为

$$J = \left| \frac{\partial(x_1, x_2, \dots, x_m)}{\partial(u_1, u_2, \dots, u_m)} \right| = \left| \frac{\partial(x_1, x_2, \dots, x_m)}{\partial(y_1, y_2, \dots, y_m)} \right| \cdot \left| \frac{\partial(y_1, y_2, \dots, y_m)}{\partial(u_1, u_2, \dots, u_m)} \right|$$

$$= \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{vmatrix} \begin{vmatrix} u_2 \cdots u_m & u_1 u_3 \cdots u_m & u_1 u_2 u_4 \cdots u_m & \cdots & u_1 \cdots u_{m-2} u_m & u_1 \cdots u_{m-1} \\ 0 & u_3 \cdots u_m & u_2 u_4 \cdots u_m & \cdots & u_2 \cdots u_{m-2} u_m & u_2 \cdots u_{m-1} \\ 0 & 0 & u_4 \cdots u_m & \cdots & u_3 \cdots u_{m-2} u_m & u_3 \cdots u_{m-1} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 0 & \cdots & u_m & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{vmatrix}$$

$$=u_2u_3^2\cdots u_m^{m-1},$$

可得 (U_1, U_2, \cdots, U_m) 的联合密度函数为

$$p_U(u_1, u_2, \cdots, u_m)$$

$$=\frac{\left(\frac{1}{2}\right)^{\frac{1}{2}\sum_{i=1}^{n_i}n_i}}{\prod_{i=1}^{m}\Gamma\left(\frac{n_i}{2}\right)}(u_1u_2\cdots u_m)^{\frac{n_1}{2}-1}\cdot\prod_{i=2}^{m}\left[(1-u_{i-1})u_i\cdots u_m)\right]^{\frac{n_i}{2}-1}e^{-\frac{u_m}{2}}I_{0< u_1, u_2, \cdots, u_{m-1}< 1, u_m>0}\cdot u_2u_3^2\cdots u_m^{m-1}$$

$$=\frac{\left(\frac{1}{2}\right)^{\frac{1}{2}\sum_{i=1}^{m}n_{i}}}{\prod_{i=1}^{m}\Gamma\left(\frac{n_{i}}{2}\right)}u_{1}^{\frac{n_{1}}{2}-1}(1-u_{1})^{\frac{n_{2}}{2}-1}\cdot u_{2}^{\frac{n_{1}+n_{2}}{2}-1}(1-u_{2})^{\frac{n_{3}}{2}-1}\cdots u_{m-1}^{\frac{n_{1}+n_{2}+\cdots+n_{m-1}}{2}-1}(1-u_{m-1})^{\frac{n_{m}}{2}-1}$$

$$\cdot u_m^{\frac{n_1+n_2+\cdots+n_m}{2}-1} e^{-\frac{u_m}{2}} I_{0 < u_1, u_2, \dots, u_{m-k} < 1, u_k > 0}$$

$$=\frac{\Gamma\left(\frac{n_{1}+n_{2}}{2}\right)}{\Gamma\left(\frac{n_{1}}{2}\right)\Gamma\left(\frac{n_{2}}{2}\right)}u_{1}^{\frac{n_{1}}{2}-1}(1-u_{1})^{\frac{n_{2}}{2}-1}I_{0< u_{1}<1}\cdot\frac{\Gamma\left(\frac{n_{1}+n_{2}+n_{3}}{2}\right)}{\Gamma\left(\frac{n_{1}+n_{2}}{2}\right)\Gamma\left(\frac{n_{3}}{2}\right)}u_{2}^{\frac{n_{1}+n_{2}}{2}-1}(1-u_{2})^{\frac{n_{3}}{2}-1}I_{0< u_{2}<1}$$

$$\cdots \frac{\Gamma\left(\frac{n_{1}+n_{2}+\cdots+n_{m}}{2}\right)}{\Gamma\left(\frac{n_{1}+n_{2}+\cdots+n_{m-1}}{2}\right)\Gamma\left(\frac{n_{m}}{2}\right)} u_{m-1}^{\frac{n_{1}+n_{2}+\cdots+n_{m-1}-1}{2}} (1-u_{m-1})^{\frac{n_{m}-1}{2}} I_{0< u_{m-1}< 1}$$

$$\cdot \frac{\left(\frac{1}{2}\right)^{\frac{n_1+n_2+\cdots+n_m}{2}}}{\Gamma\left(\frac{n_1+n_2+\cdots+n_m}{2}\right)} u_m^{\frac{n_1+n_2+\cdots+n_m}{2}-1} e^{-\frac{u_m}{2}} I_{u_m>0}$$

由于 (U_1, U_2, \dots, U_m) 的联合密度函数 $p_U(u_1, u_2, \dots, u_m)$ 可分离变量,

故
$$U_1, U_2, \dots, U_m$$
相互独立,且 U_i 服从 $Be\left(\frac{n_1+\dots+n_i}{2}, \frac{n_{i+1}}{2}\right), i=1,\dots,m-1; U_m$ 服从 $\chi^2(n_1+\dots+n_m)$.

习题 5.5

1. 设 X_1 , …, X_n 是来自几何分布 $P\{X=x\} = \theta(1-\theta)^x$, x=0,1,2, …的样本, 证明 $T=\sum_{i=1}^n X_i$ 是充分统计量.

证:方法一:根据充分统计量的定义 样本联合概率函数

$$p(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n \theta (1-\theta)^{x_i} = \theta^n (1-\theta)^{\sum_{i=1}^n x_i},$$

因 X_i+1 的概率函数为 $P\{X_i+1=x\}=\theta(1-\theta)^x$, $x=1,2,\cdots$, 即服从几何分布 $Ge(\theta)$, $i=1,2,\cdots$, n,

则根据几何分布与负二项分布的关系可知 $\sum_{i=1}^{n} (X_i + 1) = T + n$ 服从负二项分布 $Nb(n, \theta)$,即概率函数为

$$P\{T+n=k\} = {k-1 \choose n-1} \theta^n (1-\theta)^{k-n}, \quad k=n, n+1, n+2, \dots,$$

即
$$T = \sum_{i=1}^{n} X_i$$
 的概率函数为 $p_T(t;\theta) = {t+n-1 \choose n-1} \theta^n (1-\theta)^t$, $t = 0, 1, 2, \dots$,

可得在 T = t 时,即 $t = \sum_{i=1}^{n} x_i$, X_1, X_2, \dots, X_n 的条件概率函数为

$$p(x_1, x_2, \dots, x_n; \theta \mid T = t) = \frac{p(x_1, x_2, \dots, x_n; \theta)}{p_T(t; \theta)} = \frac{\theta^n (1 - \theta)^{\sum_{i=1}^n x_i}}{\binom{t + n - 1}{n - 1} \theta^n (1 - \theta)^t} = \frac{1}{\binom{t + n - 1}{n - 1}},$$

这与参数 θ 无关,

故根据充分统计量的定义可知 $T = \sum_{i=1}^{n} X_i \ \mathbb{E} \theta$ 的充分统计量.

方法二:根据因子分解定理

样本联合概率函数

$$p(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n \theta (1-\theta)^{x_i} = \theta^n (1-\theta)^{\sum_{i=1}^n x_i},$$

因
$$T = \sum_{i=1}^{n} X_i$$
,有 $t = \sum_{i=1}^{n} x_i$,即 $p(x_1, x_2, \dots, x_n; \theta) = \theta^n (1 - \theta)^t$,

取
$$g(t; \theta) = \theta^{n} (1 - \theta)^{t}$$
, $h(x_{1}, x_{2}, \dots, x_{n}) = 1$ 与参数 θ 无关,

故根据因子分解定理可知 $T = \sum_{i=1}^{n} X_i$ 是 θ 的充分统计量.

- 2. 设 X_1 , …, X_n 是来自泊松分布 $P(\lambda)$ 的样本, 证明 $T = \sum_{i=1}^n X_i$ 是充分统计量.
- 证:方法一:根据充分统计量的定义 样本联合概率函数

$$p(x_1, x_2, \dots, x_n; \lambda) = \prod_{i=1}^n \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} = \frac{\lambda^{\sum_{i=1}^n x_i}}{x_1! x_2! \cdots x_n!} e^{-n\lambda} = \lambda^{\sum_{i=1}^n x_i} e^{-n\lambda} \cdot \frac{1}{x_1! x_2! \cdots x_n!},$$

根据泊松分布的可加性可知 $T = \sum_{i=1}^{n} X_{i}$ 服从泊松分布 $P(n\lambda)$, 即概率函数为

$$p_T(t;\lambda) = \frac{(n\lambda)^t}{t!} e^{-n\lambda}, \quad t = 0, 1, 2, \dots,$$

可得在 T = t 时,即 $t = \sum_{i=1}^{n} x_i$, X_1, X_2, \dots, X_n 的条件概率函数为

$$p(x_1, x_2, \dots, x_n; \theta \mid T = t) = \frac{p(x_1, x_2, \dots, x_n; \theta)}{p_T(t; \theta)} = \frac{\sum_{i=1}^{n} x_i e^{-n\lambda} \cdot \frac{1}{x_1! x_2! \cdots x_n!}}{\frac{n^t \lambda^t}{t!} e^{-n\lambda}} = \frac{t!}{n^t \cdot x_1! x_2! \cdots x_n!},$$

这与参数λ 无关,

故根据充分统计量的定义可知 $T = \sum_{i=1}^{n} X_i$ 是 λ 的充分统计量.

方法二:根据因子分解定理 样本联合概率函数

$$p(x_1, x_2, \dots, x_n; \lambda) = \prod_{i=1}^n \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} = \frac{\lambda^{\sum_{i=1}^n x_i}}{x_1! x_2! \cdots x_n!} e^{-n\lambda} = \lambda^{\sum_{i=1}^n x_i} e^{-n\lambda} \cdot \frac{1}{x_1! x_2! \cdots x_n!},$$

因
$$T = \sum_{i=1}^{n} X_i$$
,有 $t = \sum_{i=1}^{n} x_i$,即 $p(x_1, x_2, \dots, x_n; \lambda) = \lambda^t e^{-n\lambda} \cdot \frac{1}{x_1! x_2! \cdots x_n!}$,

取
$$g(t;\lambda) = \lambda^t e^{-n\lambda}$$
, $h(x_1, x_2, \dots, x_n) = \frac{1}{x_1! x_2! \dots x_n!}$ 与参数 λ 无关,

故根据因子分解定理可知 $T = \sum_{i=1}^{n} X_i$ 是 λ 的充分统计量.

3. 设总体为如下离散型分布,

 X_1 , …, X_n 是来自该总体的样本,

- (1) 证明次序统计量 $(X_{(1)}, \dots, X_{(n)})$ 是充分统计量.
- (2) 以 n_i 表示 X_1 , …, X_n 中等于 a_i 的个数, 证明 $(n_1, ..., n_k)$ 是充分统计量.
- 证: 设样本 (X_1, X_2, \dots, X_n) 中有 $n_1 \wedge a_1$, $n_2 \wedge a_2$, …, $n_k \wedge a_k$, 显然次序统计量 $(X_{(1)}, X_{(2)}, \dots, X_{(n)})$ 中同样有 $n_1 \wedge a_1$, $n_2 \wedge a_2$, …, $n_k \wedge a_k$, 样本联合概率函数

$$p(x_1, x_2, \dots, x_n; p_1, p_2, \dots, p_k) = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k},$$

- (2) 因 $T_2 = (n_1, \dots, n_k)$,取 $g(n_1, n_2, \dots, n_k; p_1, p_2, \dots, p_k) = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$, $h(x_1, x_2, \dots, x_n) = 1$,故根据因子分解定理可知 $T_2 = (n_1, n_2, \dots, n_k)$ 是 (p_1, p_2, \dots, p_k) 的充分统计量;
- (1) 因 $T_1 = (X_{(1)}, X_{(2)}, \dots, X_{(n)})$, 显然 (n_1, n_2, \dots, n_k) 与 $(X_{(1)}, X_{(2)}, \dots, X_{(n)})$ 一一对应,故由第(2)小题结论知 $T_1 = (X_{(1)}, X_{(2)}, \dots, X_{(n)})$ 是 (p_1, p_2, \dots, p_k) 的充分统计量.
- 4. 设 X_1 , …, X_n 是来自正态分布 $N(\mu, 1)$ 的样本,证明 $T = \sum_{i=1}^n X_i$ 是充分统计量
- 证:方法一:根据充分统计量的定义 样本联合密度函数

$$p(x_1, x_2, \dots, x_n; \mu) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{\frac{(x_i - \mu)^2}{2}} = \frac{1}{(\sqrt{2\pi})^n} e^{\frac{-\frac{1}{2} \sum_{i=1}^n (x_i^2 - 2\mu x_i + \mu^2)}{2}} = \frac{1}{(\sqrt{2\pi})^n} e^{\frac{-\frac{1}{2} \sum_{i=1}^n x_i^2 + \mu \sum_{i=1}^n x_i - \frac{1}{2}n\mu^2}},$$

根据正态分布的可加性可知 $T = \sum_{i=1}^{n} X_{i}$ 服从正态分布 $N(n\mu, n)$, 即密度函数为

$$p_T(t) = \frac{1}{\sqrt{2\pi} \cdot \sqrt{n}} e^{-\frac{(t-n\mu)^2}{2n}} = \frac{1}{\sqrt{2\pi} \cdot \sqrt{n}} e^{-\frac{t^2}{2n} + \mu t - \frac{1}{2}n\mu^2},$$

可得在 T = t 时,即 $t = \sum_{i=1}^{n} x_i$, X_1, X_2, \dots, X_n 的条件概率函数为

$$p(x_{1}, x_{2}, \dots, x_{n}; \mu \mid T = t) = \frac{p(x_{1}, x_{2}, \dots, x_{n}; \mu)}{p_{T}(t)}$$

$$= \frac{\frac{1}{(\sqrt{2\pi})^{n}} e^{-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2} + \mu \sum_{i=1}^{n} x_{i} - \frac{1}{2} n \mu^{2}}}{\frac{1}{\sqrt{2\pi} \cdot \sqrt{n}} e^{-\frac{t^{2}}{2n} + \mu t - \frac{1}{2} n \mu^{2}}} = \frac{\sqrt{n}}{(\sqrt{2\pi})^{n-1}} e^{-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2} + \frac{t^{2}}{2n}}} = \frac{\sqrt{n}}{(\sqrt{2\pi})^{n-1}} e^{-\frac{1}{2} \left(\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}\right)},$$

这与参数 μ 无关,

故根据充分统计量的定义可知 $T = \sum_{i=1}^{n} X_i$ 是 μ 的充分统计量.

方法二: 根据因子分解定理

样本联合密度函数

$$p(x_1, x_2, \dots, x_n; \mu) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{\frac{(x_i - \mu)^2}{2}} = \frac{1}{(\sqrt{2\pi})^n} e^{\frac{-\frac{1}{2}\sum_{i=1}^n (x_i^2 - 2\mu x_i + \mu^2)}{2}} = \frac{1}{(\sqrt{2\pi})^n} e^{\frac{-\frac{1}{2}\sum_{i=1}^n x_i^2 + \mu \sum_{i=1}^n x_i - \frac{1}{2}n\mu^2}},$$

取
$$g(t;\mu) = \frac{1}{(\sqrt{2\pi})^n} e^{\mu t - \frac{1}{2}n\mu^2}$$
, $h(x_1, x_2, \dots, x_n) = e^{-\frac{1}{2}\sum_{i=1}^n x_i^2}$ 与参数 μ 无关,

故根据因子分解定理可知 $T = \sum_{i=1}^{n} X_i$ 是 μ 的充分统计量.

5. 设 X_1 , …, X_n 是来自 $p(x; \theta) = \theta x^{\theta-1}$, 0 < x < 1, $\theta > 0$ 的样本,试给出一个充分统计量.解:样本联合密度函数

$$p(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n \theta \, x_i^{\theta-1} \mathbf{I}_{0 < x_i < 1} = \theta^n (x_1 x_2 \cdots x_n)^{\theta-1} \mathbf{I}_{0 < x_1, x_2, \dots, x_n < 1} ,$$

令
$$T = X_1 X_2 \cdots X_n$$
 ,有 $t = x_1 x_2 \cdots x_n$,即 $p(x_1, x_2, \cdots, x_n; \theta) = \theta^n t^{\theta-1} \mathbf{I}_{0 < x_1, x_2, \cdots, x_n < 1}$,

取
$$g(t; \theta) = \theta^n t^{\theta-1}$$
, $h(x_1, x_2, \dots, x_n) = I_{0 \le n \le r_2 \dots r_n \le 1}$ 与参数 θ 无关,

故根据因子分解定理可知 $T = X_1 X_2 \cdots X_n$ 是 θ 的充分统计量.

6. 设 X_1 , …, X_n 是来自韦布尔分布 $p(x;\theta) = mx^{m-1}\theta^{-m} e^{-(x/\theta)^m}$, x > 0, $\theta > 0$ 的样本 (m > 0 已知),试给出一个充分统计量.

解: 样本联合密度函数

$$p(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n m x_i^{m-1} \theta^{-m} e^{-(x_i/\theta)^m} \mathbf{I}_{x_i>0} = m^n (x_1 x_2 \dots x_n)^{m-1} \theta^{-mn} e^{-\sum_{i=1}^n (x_i/\theta)^m} \mathbf{I}_{x_1, x_2, \dots, x_n>0}$$

$$= \theta^{-mn} e^{-\frac{1}{\theta^m} \sum_{i=1}^n x_i^m} \cdot m^n (x_1 x_2 \dots x_n)^{m-1} \mathbf{I}_{x_1, x_2, \dots, x_n>0},$$

$$\diamondsuit T = \sum_{i=1}^{n} X_{i}^{m}, \quad \overleftarrow{a} t = \sum_{i=1}^{n} x_{i}^{m}, \quad \boxtimes p(x_{1}, x_{2}, \dots, x_{n}; \theta) = \theta^{-mn} e^{-\frac{1}{\theta^{m}}t} \cdot m^{n} (x_{1}x_{2} \cdots x_{n})^{m-1} I_{x_{1}, x_{2}, \dots, x_{n} > 0},$$

取
$$g(t;\theta) = \theta^{-mn} e^{-\frac{1}{\theta^m}t}$$
, $h(x_1, x_2, \dots, x_n) = m^n (x_1 x_2 \dots x_n)^{m-1} \mathbf{I}_{x_1, x_2, \dots, x_n > 0}$ 与参数 θ 无关,

故根据因子分解定理知 $T = \sum_{i=1}^{n} X_{i}^{m} \in \theta$ 的充分统计量.

7. 设 X_1 , …, X_n 是来 Pareto 分布 $p(x; \theta) = \theta a^{\theta} x^{-(\theta+1)}$, x > a, $\theta > 0$ 的样本 (a > 0 已知),试给出一个充分统计量.

解: 样本联合密度函数

$$p(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n \theta a^{\theta} x_i^{-(\theta+1)} \mathbf{I}_{x_i > a} = \theta^n a^{n\theta} (x_1 x_2 \dots x_n)^{-(\theta+1)} \mathbf{I}_{x_1, x_2, \dots, x_n > a},$$

令
$$T = X_1 X_2 \cdots X_n$$
 ,有 $t = x_1 x_2 \cdots x_n$,即 $p(x_1, x_2, \cdots, x_n; \theta) = \theta^n a^{n\theta} t^{-(\theta+1)} \mathbf{I}_{x_1, x_2, \cdots, x_n > a}$,

取
$$g(t; \theta) = \theta^n a^{n\theta} t^{-(\theta+1)}$$
, $h(x_1, x_2, \dots, x_n) = I_{x_1, x_2, \dots, x_n > a}$ 与参数 θ 无关,

故根据因子分解定理知 $T = X_1 X_2 \cdots X_n$ 是 θ 的充分统计量.

8. 设 X_1 , …, X_n 是来自 Laplace 分布 $p(x;\theta) = \frac{1}{2\theta}e^{-|x|/\theta}$, $\theta > 0$ 的样本,试给出一个充分统计量.解:样本联合密度函数

$$p(x_1, x_2, \dots, x_n; \mu) = \prod_{i=1}^n \frac{1}{2\theta} e^{\frac{|x_i|}{\theta}} = \frac{1}{(2\theta)^n} e^{\frac{-\frac{1}{\theta} \sum_{i=1}^n |x_i|}{\theta}},$$

$$\diamondsuit T = \sum_{i=1}^{n} |X_i|, \quad \overleftarrow{\uparrow} t = \sum_{i=1}^{n} |x_i|, \quad \textcircled{II} \ p(x_1, x_2, \dots, x_n; \mu) = \frac{1}{(2\theta)^n} e^{\frac{1}{\theta^t}},$$

取
$$g(t;\theta) = \frac{1}{(2\theta)^n} e^{\frac{1}{\theta}t}$$
, $h(x_1, x_2, \dots, x_n) = 1$ 与参数 θ 无关,

故根据因子分解定理知 $T = \sum_{i=1}^{n} |X_i| \in \theta$ 的充分统计量.

9. 设 X_1, \dots, X_n 独立同分布, X_1 服从以下分布,求相应的充分统计量:

(1) 负二项分布
$$X_1 \sim p(x_1; \theta) = \binom{x_1 + r - 1}{r - 1} \theta^r (1 - \theta)^{x_1}, \quad x_1 = 0, 1, 2, \dots, r$$
已知;

(2) 离散均匀分布
$$X_1 \sim p(x_1; m) = \frac{1}{m}, \quad x_1 = 1, 2, \dots, m, m 未知;$$

(3) 对数正态分布
$$X_1 \sim p(x_1; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}x_1} \exp\left\{-\frac{1}{2\sigma^2}(\ln x_1 - \mu)^2\right\}, \quad x_1 > 0;$$

(4) 瑞利(Rayleigh)分布
$$X_1 \sim p(x_1; \mu, \sigma) = 2\lambda x_1 e^{-\lambda x_1^2} \cdot I_{x_1 \ge 0}$$
.

注:第(4)小题有误,密度函数应为 $p(x_1; \lambda)$,即参数应为 λ ,而不是 μ , σ .

解:(1)样本联合密度函数为

$$p(x_{1}, x_{2}, \dots, x_{n}; \theta) = \prod_{i=1}^{n} \binom{x_{i} + r - 1}{r - 1} \theta^{r} (1 - \theta)^{x_{i}} = \theta^{nr} (1 - \theta)^{\sum_{i=1}^{n} x_{i}} \cdot \prod_{i=1}^{n} \binom{x_{i} + r - 1}{r - 1},$$

$$\Leftrightarrow T = \sum_{i=1}^{n} X_{i} , \quad \text{ff } t = \sum_{i=1}^{n} x_{i} , \quad \text{III} \ p(x_{1}, x_{2}, \dots, x_{n}; \theta) = \theta^{nr} (1 - \theta)^{t} \cdot \prod_{i=1}^{n} \binom{x_{i} + r - 1}{r - 1},$$

$$\text{IVI} \ g(t, \theta) = \theta^{nr} (1 - \theta)^{t}, \quad h(x_{1}, x_{2}, \dots, x_{n}) = \prod_{i=1}^{n} \binom{x_{i} + r - 1}{r - 1} = \text{Sim} \theta \times \mathcal{K},$$

故根据因子分解定理知 $T = \sum_{i=1}^{n} X_i$ 是参数 θ 的充分统计量;

(2) 样本联合密度函数为

$$\begin{split} p(x_1,x_2,\cdots,x_n;m) &= \prod_{i=1}^n \frac{1}{m} \cdot \mathbf{I}_{1 \leq x_i \leq m, \, x_i \text{为整数}} = \frac{1}{m^n} \cdot \mathbf{I}_{1 \leq x_1, \, x_2, \cdots, \, x_n \leq m, \, x_1, \, x_2, \cdots, \, x_n \text{为整数}} \,, \\ &= \frac{1}{m^n} \cdot \mathbf{I}_{1 \leq x_{(1)} \leq x_{(n)} \leq m, \, x_1, \, x_2, \cdots, \, x_n \text{为整数}} = \frac{1}{m^n} \cdot \mathbf{I}_{x_{(n)} \leq m} \cdot \mathbf{I}_{x_{(1)} \geq 1, \, x_1, \, x_2, \cdots, \, x_n \text{为整数}} \,, \\ & \diamondsuit T = X_{(n)} = \max_{1 \leq i \leq n} \{X_i\} \,, \quad \text{f} \,\, t = x_{(n)}, \quad \mathbb{D} \,\, p(x_1, \, x_2, \cdots, \, x_n; m) = \frac{1}{m^n} \cdot \mathbf{I}_{t \leq m} \cdot \mathbf{I}_{x_{(1)} \geq 1, \, x_1, \, x_2, \cdots, \, x_n \text{为整数}} \,, \\ & \mathbb{D} \,\, g(t;m) = \frac{1}{m^n} \cdot \mathbf{I}_{t \leq m} \,, \quad h(x_1, \, x_2, \cdots, \, x_n) = \mathbf{I}_{x_{(1)} \geq 1, \, x_1, \, x_2, \cdots, \, x_n \text{为整数}} \, = \text{5} \, \text{5}$$

(3) 样本联合密度函数为

$$\begin{split} p(x_1, x_2, \cdots, x_n; \mu, \sigma) &= \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma x_i} \exp\left\{-\frac{1}{2\sigma^2} (\ln x_i - \mu)^2\right\} \cdot \mathbf{I}_{x_i > 0} \\ &= \frac{1}{(\sqrt{2\pi}\sigma)^n x_1 x_2 \cdots x_n} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (\ln^2 x_i - 2\mu \ln x_i + \mu^2)\right\} \cdot \mathbf{I}_{x_1, x_2, \cdots, x_n > 0} \\ &= \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left\{-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n \ln^2 x_i - 2\mu \sum_{i=1}^n \ln x_i + n\mu^2\right)\right\} \cdot \frac{1}{x_1 x_2 \cdots x_n} \mathbf{I}_{x_1, x_2, \cdots, x_n > 0}, \\ &\Leftrightarrow T_1 &= \sum_{i=1}^n \ln X_i \;, \quad T_2 &= \sum_{i=1}^n \ln^2 X_i \;, \quad \text{ff } t_1 &= \sum_{i=1}^n \ln x_i \;, \quad t_2 &= \sum_{i=1}^n \ln^2 x_i \;, \\ & \text{If } p(x_1, x_2, \cdots, x_n; \mu, \sigma) &= \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left\{-\frac{1}{2\sigma^2} (t_2 - 2\mu t_1 + n\mu^2)\right\} \cdot \frac{1}{x_1 x_2 \cdots x_n} \cdot \mathbf{I}_{x_1, x_2, \cdots, x_n > 0}, \\ & \text{If } g(t; \mu, \sigma) &= \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left\{-\frac{1}{2\sigma^2} (t_2 - 2\mu t_1 + n\mu^2)\right\}, \\ & h(x_1, x_2, \cdots, x_n) &= \frac{1}{x_1 x_2 \cdots x_n} \cdot \mathbf{I}_{x_1, x_2, \cdots, x_n > 0} \; \text{if } \text{i$$

故根据因子分解定理知 $(T_1, T_2) = \left(\sum_{i=1}^n \ln X_i, \sum_{i=1}^n \ln^2 X_i\right)$ 是参数 (μ, σ) 的充分统计量;

(4) 样本联合密度函数为

- 10. 设 X_1 , …, X_n 是来自正态分布 $N(\mu, \sigma^2)$ 的样本.
 - (1) 在 μ 已知时给出 σ^2 的一个充分统计量;
 - (2) 在 σ^2 已知时给出 μ 的一个充分统计量.

解: 因总体密度函数为

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}},$$

则样本联合密度函数为

$$p(x_1, x_2, \dots, x_n; \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = \frac{1}{(\sqrt{2\pi\sigma})^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2},$$

取
$$g(t;\sigma^2) = \frac{1}{(\sqrt{2\pi}\sigma)^n} e^{-\frac{t}{2\sigma^2}}$$
, $h(x_1, x_2, \dots, x_n) = 1$ 与参数 σ^2 无关,

故根据因子分解定理知 $T_1 = \sum_{i=1}^{n} (X_i - \mu)^2$ 是参数 σ^2 的充分统计量;

(2) 在 σ^2 已知时,

$$p(x_1, x_2, \dots, x_n; \mu) = \frac{1}{(\sqrt{2\pi\sigma})^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i^2 - 2\mu x_i + \mu^2)} = \frac{1}{(\sqrt{2\pi\sigma})^n} e^{-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n\mu^2 \right)}$$

$$= \frac{1}{(\sqrt{2\pi\sigma})^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i^2 - 2\mu x_i + \mu^2)} = \frac{1}{(\sqrt{2\pi\sigma})^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i} \cdot e^{-\frac{n\mu^2}{2\sigma^2}} \cdot e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2},$$

取
$$g(t;\mu) = \frac{1}{(\sqrt{2\pi\sigma})^n} e^{\frac{\mu}{\sigma^2}t} \cdot e^{\frac{n\mu^2}{2\sigma^2}}, \quad h(x_1, x_2, \dots, x_n) = e^{\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2}$$
与参数 μ 无关,

故根据因子分解定理知 $T_2 = \sum_{i=1}^n X_i$ 是参数 μ 的充分统计量.

11. 设 X_1, \dots, X_n 是来自均匀分布 $U(\theta_1, \theta_2)$ 的样本,试给出一个充分统计量.

解: 样本联合密度函数

$$p(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n \frac{1}{\theta_2 - \theta_1} I_{\theta_1 < x_i < \theta_2} = \frac{1}{(\theta_2 - \theta_1)^n} I_{\theta_1 < x_1, x_2, \dots, x_n < \theta_2} = \frac{1}{(\theta_2 - \theta_1)^n} I_{\theta_1 < x_{(1)} \le x_{(n)} < \theta_2},$$

$$\diamondsuit (T_1, T_2) = (X_{(1)}, X_{(n)}), \quad \overleftarrow{\pi}(t_1, t_2) = (x_{(1)}, x_{(n)}), \quad \textcircled{IV} \ p(x_1, x_2, \dots, x_n; \theta) = \frac{1}{(\theta_2 - \theta_1)^n} I_{\theta_1 < t_1 \le t_2 < \theta_2},$$

取
$$g(t_1, t_2; \theta_1, \theta_2) = \frac{1}{(\theta_2 - \theta_1)^n} I_{\theta_1 < t_1 \le t_2 < \theta_2}$$
, $h(x_1, x_2, \dots, x_n) = 1$ 与参数 θ_1 , θ_2 无关,

故根据因子分解定理知 $(T_1, T_2) = (X_{(1)}, X_{(n)})$ 是 (θ_1, θ_2) 的充分统计量.

12. 设 X_1 , …, X_n 是来自均匀分布 $U(\theta, 2\theta)$, $\theta > 0$ 的样本, 试给出充分统计量. 解: 样本联合密度函数

$$p(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n \frac{1}{\theta} I_{\theta < x_i < 2\theta} = \frac{1}{\theta^n} I_{\theta < x_1, x_2, \dots, x_n < 2\theta} = \frac{1}{\theta^n} I_{\theta < x_{(1)} \le x_{(n)} < 2\theta},$$

$$\diamondsuit (T_1, T_2) = (X_{(1)}, X_{(n)}), \quad \overleftarrow{\pi}(t_1, t_2) = (x_{(1)}, x_{(n)}), \quad \boxtimes p(x_1, x_2, \dots, x_n; \theta) = \frac{1}{\theta^n} I_{\theta < t_1 \le t_2 < 2\theta}$$

取
$$g(t_1, t_2; \theta) = \frac{1}{\theta^n} I_{\theta < t_1 \le t_2 < 2\theta}$$
, $h(x_1, x_2, \dots, x_n) = 1$ 与参数 θ 无关,

故根据因子分解定理知 $(T_1, T_2) = (X_{(1)}, X_{(n)})$ 是 θ 的充分统计量.

13. 设 X_1 , …, X_n 来自伽玛分布族 $\{Ga(\alpha, \lambda) \mid \alpha > 0, \lambda > 0\}$ 的一个样本,寻求 (α, λ) 的充分统计量. 解: 总体 X 的密度函数为

$$p(x;\alpha,\lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} I_{x>0},$$

样本联合密度函数为

$$p(x_1, x_2, \dots, x_n; \alpha, \lambda) = \prod_{i=1}^n \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x_i^{\alpha-1} e^{-\lambda x_i} I_{x_i>0} = \frac{\lambda^{n\alpha}}{\Gamma(\alpha)^n} (x_1 x_2 \dots x_n)^{\alpha-1} e^{-\lambda \sum_{i=1}^n x_i} I_{x_1, x_2, \dots, x_n>0},$$

$$\diamondsuit (T_1, T_2) = \left(X_1 X_2 \cdots X_n, \sum_{i=1}^n X_i \right), \quad \overleftarrow{\pi} (t_1, t_2) = \left(x_1 x_2 \cdots x_n, \sum_{i=1}^n x_i \right),$$

则
$$p(x_1, x_2, \dots, x_n; \alpha, \lambda) = \frac{\lambda^{n\alpha}}{\Gamma(\alpha)^n} t_1^{\alpha-1} e^{-\lambda t_2} I_{x_1, x_2, \dots, x_n > 0}$$
,

取
$$g(t_1, t_2; \alpha, \lambda) = \frac{\lambda^{n\alpha}}{\Gamma(\alpha)^n} t_1^{\alpha-1} e^{-\lambda t_2}, \quad h(x_1, x_2, \dots, x_n) = I_{x_1, x_2, \dots, x_n > 0}$$
与参数 α, λ 无关,

故
$$(T_1, T_2) = \left(X_1 X_2 \cdots X_n, \sum_{i=1}^n X_i\right)$$
是参数 (α, λ) 的充分统计量.

14. 设 X_1 , …, X_n 是来自贝塔分布族 {Be(a,b) | a > 0, b > 0} 的一个样本,寻求(a,b)的充分统计量.解: 总体 X 的密度函数为

$$p(x;a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} I_{0 < x < 1},$$

样本联合密度函数

$$\begin{split} p(x_1, x_2, \cdots, x_n; a, b) &= \prod_{i=1}^n p(x_i; a, b) = \prod_{i=1}^n \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x_i^{a-1} (1-x_i)^{b-1} I_{0 < x_i < 1} \\ &= \left[\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \right]^n \left(\prod_{i=1}^n x_i \right)^{a-1} \left[\prod_{i=1}^n (1-x_i) \right]^{b-1} I_{0 < x_1, x_2, \cdots, x_n < 1} , \\ &\Leftrightarrow (T_1, T_2) &= \left(\prod_{i=1}^n X_i, \prod_{i=1}^n (1-X_i) \right), \quad \not\exists \ (t_1, t_2) = \left(\prod_{i=1}^n X_i, \prod_{i=1}^n (1-x_i) \right), \end{split}$$

$$\mathbb{P}(x_1, x_2, \dots, x_n; a, b) = \left[\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\right]^n t_1^{a-1} t_2^{b-1} \cdot \mathbf{I}_{0 < x_1, x_2, \dots, x_n < 1},$$

取
$$g(t_1, t_2; a, b) = \left[\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\right]^n t_1^{a-1} t_2^{b-1}$$
, $h(x_1, x_2, \dots, x_n) = I_{0 < x_1, x_2, \dots, x_n < 1}$ 与参数 a, b 无关,

故根据因子分解定理知
$$(T_1,T_2)=\left(\prod_{i=1}^n X_i,\prod_{i=1}^n (1-X_i)\right)$$
是 a,b 的充分统计量.

15. 若 $X = (X_1, \dots, X_n)$ 为从分布族 $f(x; \theta) = C(\theta) \exp\left\{\sum_{i=1}^k Q_i(\theta)T_i(x)\right\} h(x)$ 中抽取的简单样本,试证

$$T(X) = \left(\sum_{j=1}^{n} T_1(X_j), \dots, \sum_{j=1}^{n} T_k(X_j)\right)$$

为充分统计量.

证: 样本联合密度函数为

$$\begin{split} p(x_1,x_2,\cdots,x_n;\theta) &= \prod_{j=1}^n C(\theta) \exp\left\{\sum_{i=1}^k Q_i(\theta) T_i(x_j)\right\} h(x_j) \\ &= C(\theta)^n \exp\left\{\sum_{j=1}^n \sum_{i=1}^k Q_i(\theta) T_i(x_j)\right\} \cdot \prod_{j=1}^n h(x_j) = C(\theta)^n \exp\left\{\sum_{i=1}^k Q_i(\theta) \sum_{j=1}^n T_i(x_j)\right\} \cdot \prod_{j=1}^n h(x_j) \,, \\ \boxtimes T(X) &= \left(\sum_{j=1}^n T_1(X_j), \cdots, \sum_{j=1}^n T_k(X_j)\right), \quad \bar{T}(X) &= (t_1, \cdots, t_k) = \left(\sum_{j=1}^n T_1(x_j), \cdots, \sum_{j=1}^n T_k(x_j)\right), \\ \boxtimes P(x_1, x_2, \cdots, x_n; \theta) &= C(\theta)^n \exp\left\{\sum_{i=1}^k Q_i(\theta) t_i\right\} \cdot \prod_{j=1}^n h(x_j) \,, \\ \boxtimes P(X) &= \left(\sum_{j=1}^n T_1(X_j), \cdots, \sum_{j=1}^n T_k(X_j)\right) \,, \quad h(x_1, x_2, \cdots, x_n) &= \prod_{j=1}^n h(x_j) \, \exists \hat{\sigma} \otimes \hat{\sigma}$$

- 16. 设 X_1, \dots, X_n 是来自正态总体 $N(\mu, \sigma_1^2)$ 的样本, Y_1, \dots, Y_m 是来自另一正态总体 $N(\mu, \sigma_2^2)$ 的样本,这两个样本相互独立,试给出 $(\mu, \sigma_1^2, \sigma_2^2)$ 的充分统计量.
- 解:两个总体的密度函数分别为

$$p_X(x; \mu, \sigma_1^2) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{\frac{(x-\mu)^2}{2\sigma_1^2}}, \quad p_Y(y; \mu, \sigma_2^2) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{\frac{(y-\mu)^2}{2\sigma_2^2}},$$

全部样本的联合密度函数为

$$\begin{split} p(x_1, \cdots, x_n, y_1, \cdots, y_m; \mu, \sigma_1^2, \sigma_2^2) &= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma_1}} e^{\frac{(x_i - \mu)^2}{2\sigma_1^2}} \cdot \prod_{j=1}^m \frac{1}{\sqrt{2\pi\sigma_2}} e^{\frac{(y_j - \mu)^2}{2\sigma_2^2}} \\ &= \frac{1}{(\sqrt{2\pi})^{n+m} \sigma_1^n \sigma_2^m} e^{\frac{1}{2\sigma_1^2} \sum_{i=1}^n (x_i^2 - 2\mu x_i + \mu^2) - \frac{1}{2\sigma_2^2} \sum_{j=1}^m (y_j^2 - 2\mu y_j + \mu^2)} \\ &= \frac{1}{(\sqrt{2\pi})^{n+m} \sigma_1^n \sigma_2^m} e^{\frac{1}{2\sigma_1^2} \left(\sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n\mu^2 \right) - \frac{1}{2\sigma_2^2} \left(\sum_{j=1}^m y_j^2 - 2\mu \sum_{j=1}^m y_j + m\mu^2 \right)}, \end{split}$$

$$\diamondsuit (T_1, T_2, T_3, T_4) = \left(\sum_{i=1}^n X_i, \sum_{j=1}^m Y_j, \sum_{i=1}^n X_i^2, \sum_{j=1}^m Y_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^m y_j, \sum_{i=1}^n x_i^2, \sum_{j=1}^m y_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^m y_j, \sum_{i=1}^n x_i^2, \sum_{j=1}^m y_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^m y_j, \sum_{i=1}^n x_i^2, \sum_{j=1}^m y_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^m y_j, \sum_{i=1}^n x_i^2, \sum_{j=1}^m y_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^m y_j, \sum_{i=1}^n x_i^2, \sum_{j=1}^m y_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^m y_j, \sum_{i=1}^n x_i^2, \sum_{j=1}^m y_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^n x_i^2, \sum_{j=1}^m y_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^n x_i^2, \sum_{j=1}^n x_i^2, \sum_{j=1}^n x_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^n x_i^2, \sum_{j=1}^n x_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^n x_i, \sum_{j=1}^n x_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^n x_i, \sum_{j=1}^n x_i, \sum_{j=1}^n x_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^n x_i, \sum_{j=1}^n x_i, \sum_{j=1}^n x_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^n x_i, \sum_{j=1}^n x_i, \sum_{j=1}^n x_j^2 \right), \quad \overleftarrow{\pi} (t_1, t_2, t_3, t_4) = \left(\sum_{i=1}^n x_i, \sum_{j=1}^n x_i, \sum_{j=1}^n x_i, \sum_{j=1}^n x_j, \sum_{j=1$$

$$\text{If } p(x_1,\dots,x_n,y_1,\dots,y_m;\mu,\sigma_1^2,\sigma_2^2) = \frac{1}{(\sqrt{2\pi})^{n+m}\sigma_1^n\sigma_2^m} e^{-\frac{1}{2\sigma_1^2}(t_2-2\mu t_1+n\mu^2)\frac{1}{2\sigma_2^2}(t_4-2\mu t_3+m\mu^2)},$$

$$\mathbb{R} g(t_1, t_2, t_3, t_4; \mu, \sigma_1^2, \sigma_2^2) = \frac{1}{(\sqrt{2\pi})^{n+m} \sigma_1^n \sigma_2^m} e^{-\frac{1}{2\sigma_1^2} (t_2 - 2\mu t_1 + n\mu^2) - \frac{1}{2\sigma_2^2} (t_4 - 2\mu t_3 + m\mu^2)},$$

$$h(x_1, \dots, x_n, y_1, \dots, y_m) = 1$$
 与参数 $\mu, \sigma_1^2, \sigma_2^2$ 无关,

故
$$(T_1, T_2, T_3, T_4) = \left(\sum_{i=1}^n X_i, \sum_{j=1}^m Y_j, \sum_{i=1}^n X_i^2, \sum_{j=1}^m Y_j^2\right)$$
是参数 $(\mu, \sigma_1^2, \sigma_2^2)$ 的充分统计量.

17. 设
$$\begin{pmatrix} X_i \\ Y_i \end{pmatrix}$$
, $i = 1, \dots, n$ 是来自正态分布族

$$\left\{ N\!\!\left(\!\!\left(\begin{matrix} \theta_1 \\ \theta_2 \end{matrix}\!\right)\!\!,\! \left(\begin{matrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{matrix}\!\right) \!\!\right)\!\!, \quad -\infty < \theta_1,\, \theta_2 < +\infty, \; \sigma_1,\, \sigma_2 > 0, \; |\rho| \leq 1 \right\}$$

的一个二维样本,寻求(μ_1 , σ_1 , μ_2 , σ_2 , ρ)的充分统计量.

注: 此题有误, 应改为寻求(θ_1 , σ_1 , θ_2 , σ_2 , ρ)的充分统计量.

解: 总体密度函数为

$$p(x, y; \theta_1, \sigma_1, \theta_2, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\theta_1)^2}{\sigma_1^2} - 2\rho\frac{(x-\theta_1)(y-\theta_2)}{\sigma_1\sigma_2} + \frac{(y-\theta_2)^2}{\sigma_2^2}\right]},$$

样本联合密度函数为

$$\begin{split} p(x_1, y_1, \cdots, x_n, y_n; \theta_1, \sigma_1, \theta_2, \sigma_2, \rho) &= \prod_{i=1}^n \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{\frac{1}{2(1-\rho^2)} \left[\frac{(x_i - \theta_1)^2}{\sigma_1^2} 2\rho \frac{(x_i - \theta_1)(y_i - \theta_2)}{\sigma_1\sigma_2} + \frac{(y_i - \theta_2)^2}{\sigma_2^2} \right]} \\ &= \frac{1}{(2\pi\sigma_1\sigma_2\sqrt{1-\rho^2})^n} e^{\frac{1}{2(1-\rho^2)} \left[\frac{1}{\sigma_1^2} \sum_{i=1}^n (x_i^2 - 2\theta_1x_i + \theta_1^2) - \frac{2\rho}{\sigma_1\sigma_2} \sum_{i=1}^n (x_iy_i - \theta_2x_i - \theta_1y_i + \theta_1\theta_2) + \frac{1}{\sigma_2^2} \sum_{i=1}^n (y_i^2 - 2\theta_2y_i + \theta_2^2) \right]} \\ &= \frac{1}{(2\pi\sigma_1\sigma_2\sqrt{1-\rho^2})^n} e^{\frac{1}{2(1-\rho^2)} \left[\frac{1}{\sigma_1^2} \left(\sum_{i=1}^n x_i^2 - 2\theta_1 \sum_{i=1}^n x_i + n\theta_1^2 \right) - \frac{2\rho}{\sigma_1\sigma_2} \left(\sum_{i=1}^n x_iy_i - \theta_2 \sum_{i=1}^n y_i + n\theta_1\theta_2 \right) + \frac{1}{\sigma_2^2} \left(\sum_{i=1}^n y_i^2 - 2\theta_2 \sum_{i=1}^n y_i + n\theta_2^2 \right) \right]} d\theta_1^2} d\theta_2^2 d\theta_1^2 d\theta_2^2 d\theta_2^2$$

$$\diamondsuit (T_1, T_2, T_3, T_4, T_5) = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n Y_i, \sum_{i=1}^n X_i^2, \sum_{i=1}^n Y_i^2, \sum_{i=1}^n X_i Y_i \right),$$

有
$$(t_1, t_2, t_3, t_4, t_5) = \left(\sum_{i=1}^n x_i, \sum_{i=1}^n y_i, \sum_{i=1}^n x_i^2, \sum_{i=1}^n y_i^2, \sum_{i=1}^n x_i y_i\right)$$

则 $p(x_1, y_1, \dots, x_n, y_n; \theta_1, \sigma_1, \theta_2, \sigma_2, \rho)$

$$=\frac{1}{(2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}})^{n}}e^{\frac{1}{2(1-\rho^{2})}\left[\frac{1}{\sigma_{1}^{2}}(t_{3}-2\theta_{1}t_{1}+n\theta_{1}^{2})-\frac{2\rho}{\sigma_{1}\sigma_{2}}(t_{5}-\theta_{2}t_{1}-\theta_{1}t_{2}+n\theta_{1}\theta_{2})+\frac{1}{\sigma_{2}^{2}}(t_{4}-2\theta_{2}t_{2}+n\theta_{2}^{2})}\right]},$$

 $\mathfrak{R} g(t_1, t_2, t_3, t_4, t_5; \theta_1, \sigma_1, \theta_2, \sigma_2, \rho)$

$$=\frac{1}{(2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}})^{n}}e^{-\frac{1}{2(1-\rho^{2})}\left[\frac{1}{\sigma_{1}^{2}}(t_{3}-2\theta_{1}t_{1}+n\theta_{1}^{2})-\frac{2\rho}{\sigma_{1}\sigma_{2}}(t_{5}-\theta_{2}t_{1}-\theta_{1}t_{2}+n\theta_{1}\theta_{2})+\frac{1}{\sigma_{2}^{2}}(t_{4}-2\theta_{2}t_{2}+n\theta_{2}^{2})}\right]},$$

 $h(x_1, y_1, \dots, x_n, y_n) = 1$ 与参数 θ_1 , σ_1 , θ_2 , σ_2 , ρ 无关,

故
$$(T_1, T_2, T_3, T_4, T_5) = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n Y_i, \sum_{i=1}^n X_i^2, \sum_{i=1}^n X_i^2, \sum_{i=1}^n X_i Y_i\right)$$
是参数 $(\theta_1, \sigma_1, \theta_2, \sigma_2, \rho)$ 的充分统计量.

18. 设二维随机变量 $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ 服从二元正态分布,其均值向量为零向量,协方差阵为

$$\begin{pmatrix} \sigma^2 + r^2 & \sigma^2 - r^2 \\ \sigma^2 - r^2 & \sigma^2 + r^2 \end{pmatrix}, \quad \sigma > 0, r > 0.$$

证明: 二维统计量 $T = ((X_1 + X_2)^2, (X_1 - X_2)^2)$ 是该二元正态分布族的充分统计量.

注: 此题有误, 应改为
$$T = \left(\sum_{i=1}^{n} (X_{1i} + X_{2i})^2, \sum_{i=1}^{n} (X_{1i} - X_{2i})^2\right).$$

证: 因二元正态分布 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ 的均值向量为 $\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$, 协方差阵为 $\begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$,

则
$$\mu_1 = \mu_2 = 0$$
, $\sigma_1^2 = \sigma_2^2 = \sigma^2 + r^2$, $\rho \sigma_1 \sigma_2 = \sigma^2 - r^2$, 有 $\rho = \frac{\sigma^2 - r^2}{\sigma^2 + r^2}$, $1 - \rho^2 = \frac{4\sigma^2 r^2}{(\sigma^2 + r^2)^2}$,

可得

$$-\frac{1}{2(1-\rho)^2} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1 \sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} \right]$$

$$= -\frac{1}{2} \frac{(\sigma^2 + r^2)^2}{4\sigma^2 r^2} \left(\frac{x_1^2}{\sigma^2 + r^2} - 2\frac{\sigma^2 - r^2}{\sigma^2 + r^2} \cdot \frac{x_1 x_2}{\sigma^2 + r^2} + \frac{x_2^2}{\sigma^2 + r^2} \right)$$

$$= -\frac{1}{8\sigma^2 r^2} [(\sigma^2 + r^2)x_1^2 - 2(\sigma^2 - r^2)x_1 x_2 + (\sigma^2 + r^2)x_2^2]$$

$$= -\frac{1}{8\sigma^2 r^2} [\sigma^2 (x_1 - x_2)^2 + r^2 (x_1 + x_2)^2],$$

即总体密度函数为

$$p(x_1, x_2; \sigma, r) = \frac{1}{4\pi\sigma r} e^{-\frac{1}{8\sigma^2 r^2} [\sigma^2 (x_1 - x_2)^2 + r^2 (x_1 + x_2)^2]},$$

样本联合密度函数为

$$p(x_{11}, x_{21}, \dots, x_{1n}, x_{2n}; \sigma, r) = \prod_{i=1}^{n} \frac{1}{4\pi\sigma r} e^{\frac{1}{8\sigma^{2}r^{2}} [\sigma^{2}(x_{1i}-x_{2i})^{2}+r^{2}(x_{1i}+x_{2i})^{2}]}$$

$$= \frac{1}{(4\pi\sigma r)^{n}} e^{\frac{1}{8\sigma^{2}r^{2}} \left[\sigma^{2} \sum_{i=1}^{n} (x_{1i}-x_{2i})^{2}+r^{2} \sum_{i=1}^{n} (x_{1i}+x_{2i})^{2}\right]},$$

$$\Leftrightarrow T = \left(\sum_{i=1}^{n} (X_{1i}+X_{2i})^{2}, \sum_{i=1}^{n} (X_{1i}-X_{2i})^{2}\right), \quad \not \exists t = (t_{1},t_{2}) = \left(\sum_{i=1}^{n} (x_{1i}+x_{2i})^{2}, \sum_{i=1}^{n} (x_{1i}-x_{2i})^{2}\right),$$

$$\not \mathbb{P}[p(x_{11},x_{21},\dots,x_{1n},x_{2n};\sigma,r) = \frac{1}{(4\pi\sigma r)^{n}} e^{\frac{1}{8\sigma^{2}r^{2}}(\sigma^{2}t_{2}+r^{2}t_{1})},$$

$$\not \mathbb{P}[p(x_{11},x_{21},\dots,x_{1n},x_{2n};\sigma,r) = \frac{1}{(4\pi\sigma r)^{n}} e^{\frac{1}{8\sigma^{2}r^{2}}(\sigma^{2}t_{2}+r^{2}t_{1})}, \quad h(x_{11},x_{21},\dots,x_{1n},x_{2n}) = 1 \quad \exists \vec{s} \Rightarrow \vec{w}, r \in \mathcal{F},$$

故 $T = \left(\sum_{i=1}^{n} (X_{1i} + X_{2i})^2, \sum_{i=1}^{n} (X_{1i} - X_{2i})^2\right)$ 是参数 (σ, r) 的充分统计量.

19. 设 X_1 , …, X_n 是来自两参数指数分布 $p(x;\theta,\mu) = \frac{1}{\theta} e^{-(x-\mu)/\theta}$, $x > \mu$, $\theta > 0$ 的样本,证明 $(\bar{x}, x_{(1)})$ 是充分统计量.

解: 样本联合密度函数

$$p(x_1,x_2,\cdots,x_n;\theta,\mu) = \prod_{i=1}^n \frac{1}{\theta} \mathrm{e}^{\frac{-x_i-\mu}{\theta}} \mathrm{I}_{x_i>\mu} = \frac{1}{\theta^n} \mathrm{e}^{\frac{\sum_{i=1}^n x_i-n\mu}{\theta}} \mathrm{I}_{x_1,x_2,\cdots,x_n>\mu} = \frac{1}{\theta^n} \mathrm{e}^{\frac{-n\bar{x}-n\mu}{\theta}} \mathrm{I}_{x_{(1)}>\mu} \,,$$

$$\diamondsuit(T_1,T_2) = (\overline{X},X_{(1)}) \,, \quad \overleftarrow{f}(t_1,t_2) = (\overline{x},x_{(1)}) \,, \quad \textcircled{ID} \ p(x_1,x_2,\cdots,x_n;\theta,\mu) = \frac{1}{\theta^n} \mathrm{e}^{\frac{-nt_1-n\mu}{\theta}} \mathrm{I}_{t_2>\mu} \,,$$

$$\textcircled{R} \ g(t_1,t_2;\theta,\mu) = \frac{1}{\theta^n} \mathrm{e}^{\frac{-nt_1-n\mu}{\theta}} \mathrm{I}_{t_2>\mu} \,, \quad h(x_1,x_2,\cdots,x_n) = 1 \,\, \\ = \,\, \overleftarrow{\phi} \,\,$$

故根据因子分解定理知 $(T_1,T_2)=(\overline{X},X_{(1)})$ 是参数 (θ,μ) 的充分统计量.

20. 设 $Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, $i = 1, \dots, n$, 诸 Y_i 独立, x_1, \dots, x_n 是已知常数,证明 $\left(\sum_{i=1}^n Y_i, \sum_{i=1}^n x_i Y_i, \sum_{i=1}^n Y_i^2\right)$ 是充分统计量.

解:联合密度函数

$$p(y_{1}, y_{2}, \dots, y_{n}; \beta_{0}, \beta_{1}, \sigma^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(y_{i} - \beta_{0} - \beta_{1}x_{i})^{2}}{2\sigma^{2}}} = \frac{1}{(\sqrt{2\pi\sigma})^{n}} e^{\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i})^{2}}$$

$$= \frac{1}{(\sqrt{2\pi\sigma})^{n}} e^{\frac{1}{2\sigma^{2}} \left[\sum_{i=1}^{n} y_{i}^{2} - 2\beta_{0} \sum_{i=1}^{n} y_{i} - 2\beta_{1} \sum_{i=1}^{n} x_{i}y_{i} + \sum_{i=1}^{n} (\beta_{0} + \beta_{1}x_{i})^{2} \right]},$$

$$\diamondsuit (T_1, T_2, T_3) = (\sum_{i=1}^n Y_i, \sum_{i=1}^n x_i Y_i, \sum_{i=1}^n Y_i^2), \quad \overleftarrow{\pi}(t_1, t_2, t_3) = (\sum_{i=1}^n y_i, \sum_{i=1}^n x_i y_i, \sum_{i=1}^n y_i^2),$$

$$\text{If } p(y_1, y_2, \dots, y_n; \beta_0, \beta_1, \sigma^2) = \frac{1}{(\sqrt{2\pi}\sigma)^n} e^{\frac{1}{2\sigma^2} \left[t_3 - 2\beta_0 t_1 - 2\beta_1 t_2 + \sum_{i=1}^n (\beta_0 + \beta_1 x_i)^2\right]},$$

$$\mathbb{R} g(T_1, T_2, T_3; \beta_0, \beta_1, \sigma^2) = \frac{1}{(\sqrt{2\pi}\sigma)^n} e^{-\frac{1}{2\sigma^2} \left[t_3 - 2\beta_0 t_1 - 2\beta_1 t_2 + \sum_{i=1}^n (\beta_0 + \beta_i x_i)^2\right]},$$

$$h(y_1, y_2, \dots, y_n) = 1$$
与参数 $\beta_0, \beta_1, \sigma^2$ 无关,

故根据因子分解定理知 $(T_1,T_2,T_3)=(\sum_{i=1}^nY_i,\sum_{i=1}^nx_iY_i,\sum_{i=1}^nY_i^2)$ 是参数 $(\beta_0,\beta_1,\sigma^2)$ 的充分统计量.

第六章 参数估计

习题 6.1

1. 设 X_1, X_2, X_3 是取自某总体容量为 3 的样本,试证下列统计量都是该总体均值 μ 的无偏估计,在方差存在时指出哪一个估计的有效性最差?

$$(1) \quad \hat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3; \qquad (2) \quad \hat{\mu}_2 = \frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3; \qquad (3) \quad \hat{\mu}_3 = \frac{1}{6}X_1 + \frac{1}{6}X_2 + \frac{2}{3}X_3.$$

$$\begin{split} \text{iiE:} \quad & \boxtimes E(\hat{\mu}_1) = \frac{1}{2}E(X_1) + \frac{1}{3}E(X_2) + \frac{1}{6}E(X_3) = \frac{1}{2}\mu + \frac{1}{3}\mu + \frac{1}{6}\mu = \mu \;, \\ & E(\hat{\mu}_2) = \frac{1}{3}E(X_1) + \frac{1}{3}E(X_2) + \frac{1}{3}E(X_3) = \frac{1}{3}\mu + \frac{1}{3}\mu + \frac{1}{3}\mu = \mu \;, \\ & E(\hat{\mu}_3) = \frac{1}{6}E(X_1) + \frac{1}{6}E(X_2) + \frac{2}{3}E(X_3) = \frac{1}{6}\mu + \frac{1}{6}\mu + \frac{2}{3}\mu = \mu \;, \end{split}$$

故 $\hat{\mu}_1, \hat{\mu}_2, \hat{\mu}_3$ 都是总体均值 μ 的无偏估计;

故 $Var(\hat{\mu}_1) < Var(\hat{\mu}_1) < Var(\hat{\mu}_3)$, 即 $\hat{\mu}_2$ 有效性最好, $\hat{\mu}_1$ 其次, $\hat{\mu}_3$ 最差.

2. 设 X_1, X_2, \dots, X_n 是来自 $Exp(\lambda)$ 的样本,已知 \overline{X} 为 $1/\lambda$ 的无偏估计,试说明 $1/\overline{X}$ 是否为 λ 的无偏估计.解:因 X_1, X_2, \dots, X_n 相互独立且都服从指数分布 $Exp(\lambda)$,即都服从伽玛分布 $Ga(1, \lambda)$,

由伽玛分布的可加性知 $Y = \sum_{i=1}^{n} X_{i}$ 服从伽玛分布 $Ga(n, \lambda)$,密度函数为

$$p_{Y}(y) = \frac{\lambda^{n}}{\Gamma(n)} y^{n-1} e^{-\lambda y} I_{y>0},$$

$$\text{III } E\left(\frac{1}{\overline{X}}\right) = E\left(\frac{n}{Y}\right) = \int_0^{+\infty} \frac{n}{y} \cdot \frac{\lambda^n}{\Gamma(n)} y^{n-1} e^{-\lambda y} dy = \frac{n\lambda^n}{\Gamma(n)} \int_0^{+\infty} y^{n-2} e^{-\lambda y} dy = \frac{n\lambda^n}{\Gamma(n)} \cdot \frac{\Gamma(n-1)}{\lambda^{n-1}} = \frac{n}{n-1} \lambda ,$$

故 $1/\bar{X}$ 不是 λ 的无偏估计.

3. 设 $\hat{\theta}$ 是参数 θ 的无偏估计,且有 $Var(\hat{\theta}) > 0$,试证 $(\hat{\theta})^2$ 不是 θ^2 的无偏估计.

证: 因
$$E(\hat{\theta}) = \theta$$
, 有 $E[(\hat{\theta})^2] = Var(\hat{\theta}) + [E(\hat{\theta})]^2 = Var(\hat{\theta}) + \theta^2 > \theta^2$, 故 $(\hat{\theta})^2$ 不是 θ^2 的无偏估计.

4. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, \dots, X_n 是来自该总体的一个样本. 试确定常数 c 使 $c\sum_{i=1}^n (X_{i+1} - X_i)^2$ 为 σ^2 的无

解: 因
$$E[(X_{i+1}-X_i)^2] = Var(X_{i+1}-X_i) + [E(X_{i+1}-X_i)]^2 = Var(X_{i+1}) + Var(X_i) + [E(X_{i+1})-E(X_i)]^2 = 2\sigma^2$$
,

1

$$\text{If } E\bigg[c\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2\bigg]=c\sum_{i=1}^{n-1}E[(X_{i+1}-X_i)^2]=c\cdot(n-1)\cdot2\sigma^2=2c(n-1)\sigma^2 \ ,$$

故当
$$c = \frac{1}{2(n-1)}$$
 时, $E\left[c\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2\right] = \sigma^2$,即 $c\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2$ 是 σ^2 的无偏估计.

5. 设 X_1, X_2, \dots, X_n 是来自下列总体中抽取的简单样本,

$$p(x;\theta) = \begin{cases} 1, & \theta - \frac{1}{2} \le x \le \theta + \frac{1}{2}; \\ 0, & 其他. \end{cases}$$

证明样本均值 \overline{X} 及 $\frac{1}{2}(X_{(1)}+X_{(n)})$ 都是 θ 的无偏估计,问何者更有效?

证: 因总体
$$X \sim U\left(\theta - \frac{1}{2}, \theta + \frac{1}{2}\right)$$
, 有 $Y = X - \theta + \frac{1}{2} \sim U(0, 1)$,

$$\text{III} \ \overline{X} = \overline{Y} + \theta - \frac{1}{2} \ , \quad X_{(1)} = Y_{(1)} + \theta - \frac{1}{2} \ , \quad X_{(n)} = Y_{(n)} + \theta - \frac{1}{2} \ , \quad \text{III} \ \frac{1}{2} (X_{(1)} + X_{(n)}) = \frac{1}{2} (Y_{(1)} + Y_{(n)}) + \theta - \frac{1}{2} \ , \quad \text{III} \ \frac{1}{2} (X_{(1)} + X_{(n)}) = \frac{1}{2} (Y_{(1)} + Y_{(n)}) + \theta - \frac{1}{2} \ , \quad \text{III} \ \frac{1}{2} (X_{(1)} + X_{(n)}) = \frac{1}{2} (X_{(1)} + X_{(n)}) + \theta - \frac{1}{2} \ , \quad \text{III} \ \frac{1}{2} (X_{(1)} + X_{(n)}) = \frac{1}{2} (X_{(1)} + X_{(n)}) + \theta - \frac{1}{2} \ , \quad \text{III} \ \frac{1}{2} (X_{(1)} + X_{(n)}) = \frac{1}{2} (X_{(1)} + X_{(n)}) + \theta - \frac{1}{2} \ , \quad \text{III} \ \frac{1}{2} (X_{(1)} + X_{(n)}) = \frac{1}{2} (X_{(1)} + X_{(n)}) + \theta - \frac{1}{2} \ , \quad \text{III} \ \frac{1}{2} (X_{(1)} + X_{(n)}) = \frac{1}{2} (X_{(1)} + X_{(n)}) + \theta - \frac{1}{2} \ , \quad \text{III} \ \frac{1}{2} (X_{(1)} + X_{(n)}) = \frac{1}{2} (X_{(1)} + X_{(n)}) + \theta - \frac{1}{2} \ , \quad \text{III} \ \frac{1}{2} (X_{(1)} + X_{(n)}) = \frac{1}{2} (X_{(1)} + X_{(n)}) + \theta - \frac{1}{2} \ , \quad \text{III} \ \frac{1}{2} (X_{(1)} + X_{(n)}) = \frac{1}{2} (X_{(1)} + X_{(n)}) + \theta - \frac{1}{2} \ , \quad \text{III} \ \frac{1}{2} (X_{(1)} + X_{(n)}) = \frac{1}{2} (X_{(1)} + X_{(n)}) + \theta - \frac{1}{2} \ , \quad \text{III} \ \frac{1}{2} (X_{(1)} + X_{(n)}) = \frac{1}{2} (X_{(1)} + X_{(n)}) + \theta - \frac{1}{2} (X_{(n)} + X_{(n)}) + \theta - \frac{1}{2} (X_{($$

可得
$$E(\overline{X}) = E(\overline{Y}) + \theta - \frac{1}{2} = E(Y) + \theta - \frac{1}{2} = \theta$$
, $Var(\overline{X}) = Var(\overline{Y}) = \frac{1}{n}Var(Y) = \frac{1}{12n}$,

因Y的密度函数与分布函数分别为

$$p_{Y}(y) = I_{0 < y < 1}, \quad F_{Y}(y) = \begin{cases} 0, & y < 0; \\ y, & 0 \le y < 1; \\ 1, & y \ge 1. \end{cases}$$

有 Y(1)与 Y(n)的密度函数分别为

$$p_1(y) = n[1 - F_Y(y)]^{n-1} p_Y(y) = n(1 - y)^{n-1} I_{0 < y < 1}, \quad p_n(y) = n[F_Y(y)]^{n-1} p_Y(y) = ny^{n-1} I_{0 < y < 1},$$

且(Y(1), Y(n))的联合密度函数为

$$p_{1n}(y_{(1)}, y_{(n)}) = n(n-1)[F_Y(y_{(n)}) - F_Y(y_{(1)})]^{n-2} p_Y(y_{(1)}) p_Y(y_{(n)}) I_{y_{(1)} < y_{(n)}}$$
$$= n(n-1)(y_{(n)} - y_{(1)})^{n-2} I_{0 < y_{(1)} < y_{(n)} < 1},$$

$$\begin{split} & \mathbb{I} \mathbb{I} E(Y_{(1)}) = \int_0^1 y \cdot n(1-y)^{n-1} dy = n \cdot \frac{\Gamma(2)\Gamma(n)}{\Gamma(2+n)} = \frac{1}{n+1} , \quad E(Y_{(n)}) = \int_0^1 y \cdot ny^{n-1} dy = \frac{n}{n+1} , \\ & E(Y_{(1)}^2) = \int_0^1 y^2 \cdot n(1-y)^{n-1} dy = n \cdot \frac{\Gamma(3)\Gamma(n)}{\Gamma(3+n)} = \frac{2}{(n+1)(n+2)} , \quad E(Y_{(n)}^2) = \int_0^1 y^2 \cdot ny^{n-1} dy = \frac{n}{n+2} , \\ & E(Y_{(1)}Y_{(n)}) = \int_0^1 dy_{(n)} \int_0^{y_{(n)}} y_{(1)}y_{(n)} \cdot n(n-1)(y_{(n)} - y_{(1)})^{n-2} dy_{(1)} = \int_0^1 dy_{(n)} \int_0^{y_{(n)}} y_{(1)}y_{(n)} \cdot n \cdot (-1)d(y_{(n)} - y_{(1)})^{n-1} \\ & = \int_0^1 dy_{(n)} \left[-ny_{(1)}y_{(n)}(y_{(n)} - y_{(1)})^{n-1} \Big|_0^{y_{(n)}} + \int_0^{y_{(n)}} n(y_{(n)} - y_{(1)})^{n-1} \cdot y_{(n)} dy_{(1)} \right] \\ & = \int_0^1 dy_{(n)} \left[-y_{(n)} \cdot (y_{(n)} - y_{(1)})^n \Big|_0^{y_{(n)}} \right] = \int_0^1 y_{(n)}^{n+1} dy_{(n)} = \frac{1}{n+2} y_{(n)}^{n+2} \Big|_0^1 = \frac{1}{n+2} , \end{split}$$

$$\mathbb{E} Var(Y_{(1)}) = \frac{2}{(n+1)(n+2)} - \left(\frac{1}{n+1}\right)^2 = \frac{n}{(n+1)^2(n+2)}, \quad Var(Y_{(n)}) = \frac{n}{n+2} - \left(\frac{n}{n+1}\right)^2 = \frac{n}{(n+1)^2(n+2)},$$

$$\mathbb{E}\operatorname{Cov}(Y_{(1)}, Y_{(n)}) = \frac{1}{n+2} - \frac{1}{n+1} \cdot \frac{n}{n+1} = \frac{1}{(n+1)^2(n+2)}$$

可得
$$E\left[\frac{1}{2}(X_{(1)}+X_{(n)})\right]=\frac{1}{2}[E(Y_{(1)})+E(Y_{(n)})]+\theta-\frac{1}{2}=\theta$$
,

$$\operatorname{Var}\left[\frac{1}{2}(X_{(1)} + X_{(n)})\right] = \frac{1}{4}\left[\operatorname{Var}(Y_{(1)}) + \operatorname{Var}(Y_{(n)}) + 2\operatorname{Cov}(Y_{(1)}, Y_{(n)})\right] = \frac{2n+2}{4(n+1)^2(n+2)} = \frac{1}{2(n+1)(n+2)},$$

因
$$E(\overline{X}) = \theta$$
, $E\left[\frac{1}{2}(X_{(1)} + X_{(n)})\right] = \theta$,

故 \overline{X} 及 $\frac{1}{2}(X_{(1)}+X_{(n)})$ 都是 θ 的无偏估计;

因当
$$n > 1$$
 时, $Var(\overline{X}) = \frac{1}{12n} > Var\left[\frac{1}{2}(X_{(1)} + X_{(n)})\right] = \frac{1}{2(n+1)(n+2)}$,

故
$$\frac{1}{2}(X_{(1)}+X_{(n)})$$
比样本均值 \overline{X} 更有效.

6. 设 X_1, X_2, X_3 服从均匀分布 $U(0, \theta)$,试证 $\frac{4}{3}X_{(3)}$ 及 $4X_{(1)}$ 都是 θ 的无偏估计量,哪个更有效?

解: 因总体 X 的密度函数与分布函数分别为

$$p(x) = \frac{1}{\theta} I_{0 < x < \theta}, \quad F(x) = \begin{cases} 0, & x < 0; \\ \frac{x}{\theta}, & 0 \le x < \theta; \\ 1, & x \ge \theta. \end{cases}$$

有 X(1)与 X(3)的密度函数分别为

$$p_1(x) = 3[1 - F(x)]^2 p(x) = \frac{3(\theta - x)^2}{\theta^3} I_{0 < x < \theta}, \quad p_3(x) = 3[F(x)]^2 p(x) = \frac{3x^2}{\theta^3} I_{0 < x < \theta},$$

$$\text{If } E(X_{(1)}) = \int_0^\theta x \cdot \frac{3(\theta - x)^2}{\theta^3} dx = \frac{3}{\theta^3} \left(\theta^2 \cdot \frac{x^2}{2} - 2\theta \cdot \frac{x^3}{3} + \frac{x^4}{4} \right) \Big|_0^\theta = \frac{\theta}{4},$$

$$E(X_{(3)}) = \int_0^\theta x \cdot \frac{3x^2}{\theta^3} dy = \frac{3}{\theta^3} \cdot \frac{x^4}{4} \bigg|_0^\theta = \frac{3\theta}{4},$$

$$E(X_{(1)}^2) = \int_0^\theta x^2 \cdot \frac{3(\theta - x)^2}{\theta^3} dx = \frac{3}{\theta^3} \left(\theta^2 \cdot \frac{x^3}{3} - 2\theta \cdot \frac{x^4}{4} + \frac{x^5}{5} \right) \Big|_0^\theta = \frac{\theta^2}{10},$$

$$E(X_{(3)}^2) = \int_0^\theta x^2 \cdot \frac{3x^2}{\theta^3} dy = \frac{3}{\theta^3} \cdot \frac{x^5}{5} \bigg|_0^\theta = \frac{3\theta^2}{5} ,$$

$$\mathbb{EP} \operatorname{Var}(X_{(1)}) = \frac{\theta^2}{10} - \left(\frac{\theta}{4}\right)^2 = \frac{3\theta^2}{80}, \quad \operatorname{Var}(X_{(3)}) = \frac{3\theta^2}{5} - \left(\frac{3\theta}{4}\right)^2 = \frac{3\theta^2}{80},$$

故 $4X_{(1)}$ 及 $\frac{4}{3}X_{(3)}$ 都是 θ 的无偏估计;

因
$$\operatorname{Var}(4X_{(1)}) = 16 \cdot \frac{3\theta^2}{80} = \frac{3\theta^2}{5}$$
, $\operatorname{Var}\left(\frac{4}{3}X_{(3)}\right) = \frac{16}{9} \cdot \frac{3\theta^2}{80} = \frac{\theta^2}{15}$, 有 $\operatorname{Var}(4X_{(1)}) > \operatorname{Var}\left(\frac{4}{3}X_{(3)}\right)$, 故 $\frac{4}{3}X_{(3)}$ 比 $4X_{(1)}$ 更有效.

- 7. 设从均值为 μ ,方差为 $\sigma^2 > 0$ 的总体中,分别抽取容量为 n_1 和 n_2 的两独立样本, \overline{X}_1 和 \overline{X}_2 分别是这两个样本的均值. 试证,对于任意常数 a, b (a+b=1), $Y=a\overline{X}_1+b\overline{X}_2$ 都是 μ 的无偏估计,并确定常数 a, b 使 Var(Y) 达到最小.
- 解: 因 $E(Y) = aE(\overline{X}_1) + bE(\overline{X}_2) = a\mu + b\mu = (a+b)\mu = \mu$,故 $Y \neq \mu$ 的无偏估计;

故当
$$a = \frac{n_1}{n_1 + n_2}$$
, $b = 1 - a = \frac{n_2}{n_1 + n_2}$ 时, $\mathrm{Var}(Y)$ 达到最小 $\frac{1}{n_1 + n_2} \sigma^2$.

- 8. 设总体 X 的均值为 μ , 方差为 σ^2 , X_1 , …, X_n 是来自该总体的一个样本, $T(X_1, …, X_n)$ 为 μ 的任一线性无偏估计量. 证明: \overline{X} 与 T 的相关系数为 $\sqrt{\mathrm{Var}(\overline{X})/\mathrm{Var}(T)}$.
- 证: 因 $T(X_1, \dots, X_n)$ 为 μ 的任一线性无偏估计量,设 $T(X_1, \dots, X_n) = \sum_{i=1}^n a_i X_i$,

则
$$E(T) = \sum_{i=1}^{n} a_i E(X_i) = \mu \sum_{i=1}^{n} a_i = \mu$$
,即 $\sum_{i=1}^{n} a_i = 1$,

因 X_1, \dots, X_n 相互独立, 当 $i \neq j$ 时, 有 $Cov(X_i, X_j) = 0$,

$$\text{In } \operatorname{Cov}(\overline{X},T) = \operatorname{Cov}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i},\sum_{i=1}^{n}a_{i}X_{i}\right) = \sum_{i=1}^{n}\operatorname{Cov}\left(\frac{1}{n}X_{i},a_{i}X_{i}\right) = \sum_{i=1}^{n}\frac{a_{i}}{n}\operatorname{Cov}(X_{i},X_{i}) = \frac{\sigma^{2}}{n}\sum_{i=1}^{n}a_{i} = \frac{\sigma^{2}}{n},$$

$$\boxtimes \operatorname{Var}(\overline{X}) = \frac{1}{n} \operatorname{Var}(X) = \frac{\sigma^2}{n} = \operatorname{Cov}(\overline{X}, T)$$

故
$$\overline{X}$$
与 T 的相关系数为 $Corr(\overline{X},T) = \frac{Cov(\overline{X},T)}{\sqrt{Var(\overline{X})}\sqrt{Var(T)}} = \frac{Var(\overline{X})}{\sqrt{Var(\overline{X})}\sqrt{Var(T)}} = \sqrt{\frac{Var(\overline{X})}{Var(T)}}$.

9. 设有 k 台仪器,已知用第 i 台仪器测量时,测定值总体的标准差为 σ_i ($i=1,\dots,k$). 用这些仪器独立 地对某一物理量 θ 各观察一次,分别得到 X_1,\dots,X_k ,设仪器都没有系统误差. 问 a_1,\dots,a_k 应取何值,

方能使
$$\hat{\theta} = \sum_{i=1}^{k} a_i X_i$$
 成为 θ 的无偏估计,且方差达到最小?

解: 因
$$E(\hat{\theta}) = E\left(\sum_{i=1}^k a_i x_i\right) = \sum_{i=1}^k a_i E(x_i) = \sum_{i=1}^k a_i \theta = \left(\sum_{i=1}^k a_i\right) \theta$$
,

则当
$$\sum_{i=1}^k a_i = 1$$
 时, $\hat{\theta} = \sum_{i=1}^k a_i x_i$ 是 θ 的无偏估计,

因
$$\operatorname{Var}(\hat{\theta}) = \operatorname{Var}\left(\sum_{i=1}^{k} a_i x_i\right) = \sum_{i=1}^{k} a_i^2 \operatorname{Var}(x_i) = \sum_{i=1}^{k} a_i^2 \sigma_i^2$$
,

讨论在
$$\sum_{i=1}^{k} a_i = 1$$
 时, $\sum_{i=1}^{k} a_i^2 \sigma_i^2$ 的条件极值,

设拉格朗日函数 $L(a_1, \dots, a_k, \lambda) = \sum_{i=1}^k a_i^2 \sigma_i^2 + \lambda \left(\sum_{i=1}^k a_i - 1\right)$,

$$\begin{cases}
\frac{\partial L}{\partial a_1} = 2a_1\sigma_1^2 + \lambda = 0, \\
\dots \dots \dots \dots \dots \\
\frac{\partial L}{\partial a_k} = 2a_k\sigma_k^2 + \lambda = 0, \\
\frac{\partial L}{\partial \lambda} = \sum_{i=1}^k a_i - 1 = 0,
\end{cases}$$

得
$$\lambda = -\frac{2}{\sigma_1^{-2} + \dots + \sigma_k^{-2}}$$
 , $a_i = \frac{\sigma_i^{-2}}{\sigma_1^{-2} + \dots + \sigma_k^{-2}}$, $i = 1, \dots, k$,

故当
$$a_i = \frac{\sigma_i^{-2}}{\sigma_1^{-2} + \dots + \sigma_k^{-2}}$$
 , $i = 1, \dots, k$ 时, $\hat{\theta} = \sum_{i=1}^k a_i x_i$ 是 θ 的无偏估计,且方差达到最小.

10. 设 X_1, X_2, \dots, X_n 是来自 $N(\theta, 1)$ 的样本,证明 $g(\theta) = |\theta|$ 没有无偏估计(提示:利用 $g(\theta)$ 在 $\theta = 0$ 处不可导).

证: 反证法: 假设 $T = T(X_1, X_2, \dots, X_n)$ 是 $g(\theta) = |\theta|$ 的任一无偏估计,

因 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ 是 θ 的一个充分统计量,即在取定 $\overline{X} = x$ 条件下,样本条件分布与参数 θ 无关,

则 $S = E(T \mid \overline{X})$ 与参数 θ 无关,且 S 是关于 \overline{X} 的函数, $E(S) = E[E(T \mid \overline{X})] = E(T) = g(\theta) = |\theta|$,

可得 $S = S(\overline{X})$ 是 $g(\theta) = |\theta|$ 的无偏估计,

因 X_1, X_2, \dots, X_n 是来自 $N(\theta, 1)$ 的样本,由正态分布可加性知 \overline{X} 服从正态分布 $N\left(\theta, \frac{1}{n}\right)$

$$\mathbb{M} E(S) = \int_{-\infty}^{+\infty} S(x) \cdot \frac{\sqrt{n}}{\sqrt{2\pi}} e^{-\frac{\sqrt{n}}{2}(x-\theta)^2} dx = \frac{\sqrt{n}}{\sqrt{2\pi}} \cdot e^{-\frac{\sqrt{n}}{2}\theta^2} \int_{-\infty}^{+\infty} S(x) \cdot e^{-\frac{\sqrt{n}}{2}x^2 + \sqrt{n}\theta x} dx,$$

因 $E(S) = |\theta|$, 可知对任意的 θ , 反常积分 $\int_{-\infty}^{+\infty} |S(x)| \cdot e^{-\frac{\sqrt{n}}{2}x^2 + \sqrt{n}\theta x} dx$ 收敛,

则由参数 θ 的任意性以及该反常积分在 $-\infty$ 与 $+\infty$ 两个方向的收敛性知 $\int_{-\infty}^{+\infty} |S(x)| \cdot e^{\frac{\sqrt{n}}{2}x^2 + \sqrt{n} \cdot |\theta| \cdot |x|} dx$ 收敛,

$$\exists \frac{\partial}{\partial \theta} \left[S(x) \cdot e^{\frac{\sqrt{n}}{2}x^2 + \sqrt{n}\theta x} \right] = S(x) \cdot e^{\frac{\sqrt{n}}{2}x^2 + \sqrt{n}\theta x} \cdot \sqrt{n}x , \quad \exists |y| \le e^{|y|}, \quad \exists \left| e^{\frac{\sqrt{n}}{2}x^2 + \sqrt{n}\theta x} \cdot \sqrt{n}x \right| \le e^{\frac{\sqrt{n}}{2}x^2 + \sqrt{n}(|\theta| + 1) \cdot |x|},$$

则由
$$\int_{-\infty}^{+\infty} |S(x)| \cdot e^{-\frac{\sqrt{n}}{2}x^2 + \sqrt{n} \cdot (|\theta| + 1) \cdot |x|} dx$$
 的收敛性知 $\int_{-\infty}^{+\infty} \frac{\partial}{\partial \theta} \left[S(x) \cdot e^{-\frac{\sqrt{n}}{2}x^2 + \sqrt{n}\theta x} \right] dx$ 一致收敛,

可得
$$E(S) = \frac{\sqrt{n}}{\sqrt{2\pi}} \cdot e^{\frac{-\sqrt{n}}{2}\theta^2} \int_{-\infty}^{+\infty} S(x) \cdot e^{\frac{-\sqrt{n}}{2}x^2 + \sqrt{n}\theta x} dx$$
 关于参数 θ 可导,与 $E(S) = |\theta|$ 在 $\theta = 0$ 处不可导矛盾,

故 $g(\theta) = |\theta|$ 没有无偏估计.

11. 设总体 X 服从正态分布 $N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 为来自总体 X 的样本,为了得到标准差 σ 的估计量,考虑统计量:

$$Y_1 = \frac{1}{n} \sum_{i=1}^{n} |X_i - \overline{X}|, \quad \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad n \ge 2,$$

$$Y_2 = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{n} |X_i - X_j|, n \ge 2,$$

求常数 C_1 与 C_2 , 使得 C_1Y_1 与 C_2Y_2 都是 σ 的无偏估计.

解: 设 $Y \sim N(0, \theta^2)$, 有

$$E[|Y|] = \int_{-\infty}^{+\infty} |y| \cdot \frac{1}{\sqrt{2\pi\theta}} e^{\frac{-y^2}{2\cdot\theta^2}} dy = 2 \int_{0}^{+\infty} y \cdot \frac{1}{\sqrt{2\pi\theta}} e^{\frac{-y^2}{2\theta^2}} dy = -2 \frac{\theta}{\sqrt{2\pi}} e^{\frac{-y^2}{2\theta^2}} \Big|_{-\infty}^{+\infty} = \sqrt{\frac{2}{\pi}} \theta,$$

因 $X_i - \overline{X}$ 是独立正态变量 X_1, X_2, \dots, X_n 的线性组合,

$$\coprod E(X_i - \overline{X}) = E(X_i) - E(\overline{X}) = \mu - \mu = 0,$$

$$\operatorname{Var}(X_i - \overline{X}) = \operatorname{Var}(X_i) + \operatorname{Var}(\overline{X}) - 2\operatorname{Cov}(X_i, \overline{X}) = \sigma^2 + \frac{1}{n}\sigma^2 - 2\operatorname{Cov}\left(X_i, \frac{1}{n}X_i\right) = \frac{n-1}{n}\sigma^2,$$

$$\text{If } X_i - \overline{X} \sim N\!\!\left(0, \frac{n-1}{n}\sigma^2\right), \quad E[\mid X_i - \overline{X}\mid] = \sqrt{\frac{2}{\pi}} \cdot \sqrt{\frac{n-1}{n}}\sigma = \sqrt{\frac{2(n-1)}{n\pi}}\sigma \;,$$

可得
$$E(C_1Y_1) = C_1E(Y_1) = C_1 \cdot \frac{1}{n} \sum_{i=1}^n E[|X_i - \overline{X}|] = C_1 \cdot \frac{1}{n} \cdot n \cdot \sqrt{\frac{2(n-1)}{n\pi}} \sigma = C_1 \sqrt{\frac{2(n-1)}{n\pi}} \sigma$$
,

故当
$$C_1 = \sqrt{\frac{n\pi}{2(n-1)}}$$
 时, $E[C_1Y_1] = \sigma$, C_1Y_1 是 σ 的无偏估计;

当 i ≠ j 时, X_i 与 X_j 相互独立,都服从正态分布 $N(\mu, \sigma^2)$,

有
$$E(X_i - X_j) = E(X_i) - E(X_j) = \mu - \mu = 0$$
, $Var(X_i - X_j) = Var(X_i) + Var(X_j) = \sigma^2 + \sigma^2 = 2\sigma^2$,

则
$$X_i - X_j \sim N(0, 2\sigma^2)$$
, $E[|X_i - X_j|] = \sqrt{\frac{2}{\pi}} \cdot \sqrt{2}\sigma = \frac{2}{\sqrt{\pi}}\sigma$,

当 i = j 时, $X_i - X_j = 0$, $E[|X_i - X_j|] = 0$,

可得
$$E(C_2Y_2) = C_2E(Y_2) = C_2 \cdot \frac{1}{n(n-1)} \sum_{i=1}^n \sum_{j=1}^n E[|X_i - X_j|] = C_2 \cdot \frac{1}{n(n-1)} \cdot (n^2 - n) \cdot \frac{2}{\sqrt{\pi}} \sigma = C_2 \cdot \frac{2}{\sqrt{\pi}} \sigma$$

故当 $C_2 = \frac{\sqrt{\pi}}{2}$ 时, $E[C_2Y_2] = \sigma$, C_2Y_2 是 σ 的无偏估计.

习题 6.2

- 解: 平均寿命 μ 的矩估计 $\hat{\mu} = \bar{x} = 1143.75$; 标准差 σ 的矩估计 $\hat{\mu} = s^* = 89.8523$.
- 解: 因 $X \sim U(0, \theta)$, 有 $E(X) = \frac{\theta}{2}$, 即 $\theta = 2E(X)$, 故 θ 的矩估计 $\hat{\theta} = 2\bar{x} = 2 \times 1.34 = 2.68$.
- 3. 设总体分布列如下, X_1, \dots, X_n 是样本,试求未知参数的矩估计.
 - (1) $P{X=k} = \frac{1}{N}$, $k=0,1,2,\dots,N-1$, N (正整数) 是未知参数;
 - (2) $P{X=k} = (k-1)\theta^2 (1-\theta)^{k-2}, k=2,3,\dots, 0 < \theta < 1.$
- 解: (1) 因 $E(X) = \frac{1}{N}[0+1+\cdots+(N-1)] = \frac{N-1}{2}$, 即 N = 2E(X) + 1, 故 N 的矩估计 $\hat{N} = 2\overline{X} + 1$;

(2)
$$\boxtimes E(X) = \sum_{k=2}^{+\infty} k \cdot (k-1)\theta^2 (1-\theta)^{k-2} = \theta^2 \sum_{k=2}^{+\infty} \frac{d^2}{d\theta^2} (1-\theta)^k = \theta^2 \frac{d^2}{d\theta^2} \left[\sum_{k=2}^{+\infty} (1-\theta)^k \right]$$

$$=\theta^2 \frac{d^2}{d\theta^2} \left[\frac{(1-\theta)^2}{1-(1-\theta)} \right] = \theta^2 \frac{d^2}{d\theta^2} \left(\frac{1}{\theta} - 2 + \theta \right) = \theta^2 \cdot \frac{2}{\theta^3} = \frac{2}{\theta},$$

则
$$\theta = \frac{2}{E(X)}$$
,

故 θ 的矩估计 $\hat{\theta} = \frac{2}{\overline{X}}$.

- 4. 设总体密度函数如下, X_1, \dots, X_n 是样本,试求未知参数的矩估计.
 - (1) $p(x;\theta) = \frac{2}{\theta^2}(\theta x), \quad 0 < x < \theta, \quad \theta > 0;$
 - (2) $p(x;\theta) = (\theta+1)x^{\theta}, 0 < x < 1, \theta > 0;$
 - (3) $p(x;\theta) = \sqrt{\theta} x^{\sqrt{\theta}-1}, \ 0 < x < 1, \ \theta > 0;$
 - (4) $p(x;\theta,\mu) = \frac{1}{\theta} e^{\frac{x-\mu}{\theta}}, x > \mu, \theta > 0.$

解: (1) 因
$$E(X) = \int_0^\theta x \cdot \frac{2}{\theta^2} (\theta - x) dx = \frac{2}{\theta^2} \left(\theta \cdot \frac{x^2}{2} - \frac{x^3}{3} \right) \Big|_0^\theta = \frac{\theta}{3}$$
, 即 $\theta = 3 E(X)$, 故 θ 的矩估计 $\hat{\theta} = 3\overline{X}$;

(2)
$$\boxtimes E(X) = \int_0^1 x \cdot (\theta + 1) x^{\theta} dx = (\theta + 1) \cdot \frac{x^{\theta + 2}}{\theta + 2} \Big|_0^1 = \frac{\theta + 1}{\theta + 2}, \quad \boxtimes \theta = \frac{2E(X) - 1}{1 - E(X)},$$

故 θ 的矩估计 $\hat{\theta} = \frac{2\overline{X} - 1}{1 - \overline{X}};$

$$(3) \ \boxtimes E(X) = \int_0^1 x \cdot \sqrt{\theta} x^{\sqrt{\theta} - 1} dx = \sqrt{\theta} \cdot \frac{x^{\sqrt{\theta} + 1}}{\sqrt{\theta} + 1} \bigg|_0^1 = \frac{\sqrt{\theta}}{\sqrt{\theta} + 1} \ , \ \ \boxtimes \theta = \left[\frac{E(X)}{1 - E(X)} \right]^2 \ ,$$

故 θ 的矩估计 $\hat{\theta} = \left(\frac{\overline{X}}{1-\overline{X}}\right)^2$;

(4)
$$\boxtimes E(X) = \int_{\mu}^{+\infty} x \cdot \frac{1}{\theta} e^{\frac{-x-\mu}{\theta}} dx = \int_{\mu}^{+\infty} x \cdot (-1) d e^{\frac{-x-\mu}{\theta}} = -x e^{\frac{-x-\mu}{\theta}} \Big|_{\mu}^{+\infty} + \int_{\mu}^{+\infty} e^{\frac{-x-\mu}{\theta}} dx = \mu - \theta e^{\frac{-x-\mu}{\theta}} \Big|_{\mu}^{+\infty} = \mu + \theta$$

$$E(X^{2}) = \int_{\mu}^{+\infty} x^{2} \cdot \frac{1}{\theta} e^{-\frac{x-\mu}{\theta}} dx = \int_{\mu}^{+\infty} x^{2} \cdot (-1) d e^{-\frac{x-\mu}{\theta}} = -x^{2} e^{-\frac{x-\mu}{\theta}} \Big|_{\mu}^{+\infty} + \int_{\mu}^{+\infty} 2x e^{-\frac{x-\mu}{\theta}} dx = \mu^{2} + 2\theta E(X)$$

$$= \mu^{2} + 2\mu\theta + 2\theta^{2},$$

则
$$Var(X) = E(X^2) - [E(X)]^2 = \theta^2$$
,即 $\theta = \sqrt{Var(X)}$, $\mu = E(X) - \sqrt{Var(X)}$,

故 θ 的矩估计 $\hat{\theta} = S^*$, $\hat{\mu} = \overline{X} - S^*$.

5. 设总体为 $N(\mu, 1)$, 现对该总体观测 n 次,发现有 k 次观测值为正,使用频率替换方法求 μ 的估计.

解: 因
$$p = P\{X > 0\} = P\{X - \mu > -\mu\} = 1 - \Phi(-\mu) = \Phi(\mu)$$
, 即 $\mu = \Phi^{-1}(p)$,

故 μ 的矩估计 $\hat{\mu} = \Phi^{-1}(\hat{p}) = \Phi^{-1}\left(\frac{k}{n}\right)$.

- 6. 甲、乙两个校对员彼此独立对同一本书的样稿进行校对,校完后,甲发现 a 个错字,乙发现 b 个错字,其中共同发现的错字有 c 个,试用矩法给出如下两个未知参数的估计:
 - (1) 该书样稿的总错字个数;
 - (2) 未被发现的错字数.
- 解: (1) 设N为该书样稿总错别字个数,且A、B分别表示甲、乙发现错别字,有A与B相互独立,

则
$$P(AB) = P(A)P(B)$$
,使用频率替换方法,即 $\hat{p}_{AB} = \frac{c}{N} = \hat{p}_A \hat{p}_B = \frac{a}{N} \cdot \frac{b}{N}$, 得 $N = \frac{ab}{c}$,

故总错字个数 N 的矩估计 $\hat{N} = \frac{ab}{c}$;

(2) 设 k 为未被发现的错字数,因 $P(\overline{AB}) = 1 - P(A \cup B) = 1 - P(A) - P(B) + P(AB)$,

使用频率替换方法,即
$$\hat{p}_{\overline{AB}} = \frac{k}{N} = 1 - \hat{p}_{A} - \hat{p}_{B} + \hat{p}_{AB} = 1 - \frac{a}{N} - \frac{b}{N} + \frac{c}{N}$$
,即 $k = N - a - b + c$,

故未被发现的错字数 k 的矩估计 $\hat{k} = \hat{N} - a - b + c = \frac{ab}{c} - a - b + c$.

7. 设总体 X 服从二项分布 b(m,p), 其中 m,p 为未知参数, X_1, \dots, X_n 为 X 的一个样本,求 m 与 p 的矩估

计.

解: 因
$$E(X) = mp$$
, $Var(X) = mp(1-p)$, 有 $1-p = \frac{Var(X)}{E(X)}$

$$\mathbb{M} p = 1 - \frac{\text{Var}(X)}{E(X)}, \quad m = \frac{E(X)}{p} = \frac{[E(X)]^2}{E(X) - \text{Var}(X)},$$

故
$$m$$
 的矩估计 $\hat{m} = \frac{\overline{X}^2}{\overline{X} - S^{*2}}$, p 的矩估计 $\hat{p} = 1 - \frac{S^{*2}}{\overline{X}}$.

习题 6.3

1. 设总体概率函数如下, X_1, \dots, X_n 是样本,试求未知参数的最大似然估计.

(1)
$$p(x;\theta) = \sqrt{\theta}x^{\sqrt{\theta}-1}$$
, $0 < x < 1$, $\theta > 0$;

(2)
$$p(x;\theta) = \theta c^{\theta} x^{-(\theta+1)}$$
, $x > c$, $c > 0$ 己知, $\theta > 1$.

解: (1) 因
$$L(\theta) = \prod_{i=1}^{n} \sqrt{\theta} x_i^{\sqrt{\theta}-1} \mathbf{I}_{0 < x_i < 1} = \theta^{\frac{n}{2}} (x_1 x_2 \cdots x_n)^{\sqrt{\theta}-1} \mathbf{I}_{0 < x_1, x_2, \cdots, x_n < 1}$$
,

$$\stackrel{\underline{}}{=} 0 < x_1, x_2, \cdots, x_n < 1 \quad \forall , \quad \ln L(\theta) = \frac{n}{2} \ln \theta + (\sqrt{\theta} - 1) \ln(x_1 x_2 \cdots x_n) ,$$

故
$$\theta$$
的最大似然估计 $\hat{\theta} = \left[\frac{n}{\ln(X_1 X_2 \cdots X_n)}\right]^2$;

(2)
$$\boxtimes L(\theta) = \prod_{i=1}^{n} \theta c^{\theta} x_i^{-(\theta+1)} \mathbf{I}_{x_i > c} = \theta^n c^{n\theta} (x_1 x_2 \cdots x_n)^{-(\theta+1)} \mathbf{I}_{x_1, x_2, \cdots, x_n > c},$$

$$\stackrel{\text{def}}{=} x_1, x_2, \dots, x_n > c \text{ iff}, \quad \ln L(\theta) = n \ln \theta + n \theta \ln c - (\theta + 1) \ln (x_1 x_2 \dots x_n),$$

故
$$\theta$$
的最大似然估计 $\hat{\theta} = \frac{n}{\ln(X_1 X_2 \cdots X_n) - n \ln c}$.

2. 设总体概率函数如下, X_1, \dots, X_n 是样本,试求未知参数的最大似然估计.

(1)
$$p(x;\theta) = c\theta^{c}x^{-(c+1)}$$
, $x > \theta$, $\theta > 0$, $c > 0$ 已知;

(2)
$$p(x;\theta,\mu) = \frac{1}{\theta} e^{-\frac{x-\mu}{\theta}}, x > \mu, \theta > 0;$$

(3)
$$p(x;\theta) = (k\theta)^{-1}, \ \theta < x < (k+1)\theta, \ \theta > 0.$$

解: (1) 因
$$L(\theta) = \prod_{i=1}^{n} c \theta^{c} x_{i}^{-(c+1)} \mathbf{I}_{x_{i} > \theta} = c^{n} \theta^{nc} (x_{1} x_{2} \cdots x_{n})^{-(c+1)} \mathbf{I}_{x_{1}, x_{2}, \cdots, x_{n} > \theta}$$

显然 θ 越大, θ^{nc} 越大,但只有 $x_1, x_2, \dots, x_n > \theta$ 时,才有 $L(\theta) > 0$,即 $\theta = \min\{x_1, x_2, \dots, x_n\}$ 时, $L(\theta)$ 达到最大,

故
$$\theta$$
的最大似然估计 $\hat{\theta} = X_{(1)} = \min\{X_1, X_2, \dots, X_n\}$;

(2)
$$\boxtimes L(\theta,\mu) = \prod_{i=1}^{n} \frac{1}{\theta} e^{\frac{-x_{i}-\mu}{\theta}} I_{x_{i}>\mu} = \frac{1}{\theta^{n}} e^{\frac{-1}{\theta} \left(\sum_{i=1}^{n} x_{i}-n\mu\right)} I_{x_{1},x_{2},\cdots,x_{n}>\mu}$$
,

$$\stackrel{\text{def}}{=} x_1, x_2, \dots, x_n > \mu \text{ iff, } \ln L(\theta, \mu) = -n \ln \theta - \frac{1}{\theta} \left(\sum_{i=1}^n x_i - n \mu \right),$$

$$\Rightarrow \frac{d \ln L(\theta, \mu)}{d \theta} = -\frac{n}{\theta} + \frac{1}{\theta^2} \left(\sum_{i=1}^n x_i - n \mu \right) = 0$$
,解得 $\theta = \frac{1}{n} \left(\sum_{i=1}^n x_i - n \mu \right) = \overline{x} - \mu$,

且显然 μ 越大, $e^{\frac{-1}{\theta}\left(\sum_{i=1}^{n}x_{i}-n\mu\right)}$ 越大,但只有 $x_{1},x_{2},\dots,x_{n}>\mu$ 时,才有 $L(\theta,\mu)>0$,即 $\mu=\min\{x_{1},x_{2},\dots,x_{n}\}$ 时, $L(\theta,\mu)$ 才能达到最大,

故 μ 的最大似然估计 $\hat{\mu}=X_{(1)}=\min\{X_1,X_2,\cdots,X_n\}$, θ 的最大似然估计 $\hat{\theta}=\overline{X}-\hat{\mu}=\overline{X}-X_{(1)}$;

(3)
$$\boxtimes L(\theta) = \prod_{i=1}^{n} (k\theta)^{-1} \mathbf{I}_{\theta < x_i < (k+1)\theta} = (k\theta)^{-n} \mathbf{I}_{\theta < x_1, x_2, \dots, x_n < (k+1)\theta}$$

显然 θ 越小, $(k\theta)^{-n}$ 越大,但只有 $\theta < x_1, x_2, \dots, x_n < (k+1)\theta$ 时,才有 $L(\theta) > 0$,即 $\theta = \frac{1}{k+1} \max\{x_1, x_2, \dots, x_n\}$ 时, $L(\theta)$ 达到最大,

故 θ 的最大似然估计为 $\hat{\theta} = \frac{X_{(n)}}{k+1} = \frac{1}{k+1} \max\{X_1, X_2, \dots, X_n\}$.

- 3. 设总体概率函数如下, X_1, \dots, X_n 是样本,试求未知参数的最大似然估计.
 - (1) $p(x;\theta) = \frac{1}{2\theta} e^{-|x|/\theta}, \ \theta > 0;$
 - (2) $p(x;\theta) = 1$, $\theta 1/2 < x < \theta + 1/2$;

(3)
$$p(x; \theta_1, \theta_2) = \frac{1}{\theta_2 - \theta_1}, \quad \theta_1 < x < \theta_2.$$

解: (1) 因
$$L(\theta) = \prod_{i=1}^{n} \frac{1}{2\theta} e^{-|x_i|/\theta} = \frac{1}{2^n \theta^n} e^{-\frac{1}{\theta} \sum_{i=1}^{n} |x_i|}$$
, 有 $\ln L(\theta) = -n \ln 2 - n \ln \theta - \frac{1}{\theta} \sum_{i=1}^{n} |x_i|$,

$$\diamondsuit \frac{d \ln L(\theta)}{d \theta} = -n \cdot \frac{1}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^n |x_i|, \quad \textcircled{\#} \theta = \frac{1}{n} \sum_{i=1}^n |x_i|,$$

故 θ 的最大似然估计 $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} |X_i|$;

(2)
$$\boxtimes L(\theta) = \prod_{i=1}^{n} \mathbf{I}_{\theta-1/2 < x_{i} < \theta+1/2} = \mathbf{I}_{\theta-1/2 < x_{1}, x_{2}, \cdots, x_{n} < \theta+1/2}$$

即 $\theta - 1/2 < x_{(1)} \le x_{(n)} < \theta + 1/2$,可得当 $x_{(n)} - 1/2 < \theta < x_{(1)} + 1/2$ 时,都有 $L(\theta) = 1$,故 θ 的最大似然估计 $\hat{\theta}$ 是 $(x_{(n)} - 1/2, x_{(1)} + 1/2)$ 中任何一个值;

$$(3) \boxtimes L(\theta_1, \theta_2) = \prod_{i=1}^n \frac{1}{\theta_2 - \theta_1} \mathbf{I}_{\theta_1 < x_i < \theta_2} = \frac{1}{(\theta_2 - \theta_1)^n} \mathbf{I}_{\theta_1 < x_1, x_2, \cdots, x_n < \theta_2},$$

显然 θ_1 越大且 θ_2 越小时, $L(\theta_1, \theta_2)$ 越大,但只有 $\theta_1 < x_1, x_2, \dots, x_n < \theta_2$ 时,才有 $L(\theta_1, \theta_2) > 0$,即 $\theta_1 = \min\{x_1, x_2, \dots, x_n\}$ 且 $\theta_2 = \max\{x_1, x_2, \dots, x_n\}$ 时, $L(\theta_1, \theta_2)$ 达到最大,

故 θ_1 的最大似然估计 $\hat{\theta}_1 = X_{(1)} = \min\{X_1, X_2, \dots, X_n\}$,

$$\theta_2$$
的最大似然估计 $\hat{\theta}_2 = X_{(n)} = \max\{X_1, X_2, \dots, X_n\}$.

4. 一地质学家为研究密歇根湖的湖滩地区的岩石成分,随机地自该地区取 100 个样品,每个样品有 10 块石子,记录了每个样品中属石灰石的石子数. 假设这 100 次观察相互独立,求这地区石子中石灰石的比例 *p* 的最大似然估计. 该地质学家所得的数据如下:

样本中的石子数	0	1	2	3	4	5	6	7	8	9	10
样品个数	0	1	6	7	23	26	21	12	3	1	0

解:总体X为样品的 10 块石子中属石灰石的石子数,即X服从二项分布 B(10,p),其概率函数为

$$p(x) = {10 \choose x} p^x (1-p)^{10-x}, x = 1, 2, \dots, 10,$$

$$\mathbb{E} \ln \ln L(p) = \sum_{i=1}^{100} \ln \binom{10}{x_i} + \sum_{i=1}^{100} x_i \cdot \ln p + \left(1000 - \sum_{i=1}^{100} x_i\right) \cdot \ln(1-p),$$

故比例 p 的最大似然估计 $\hat{p} = \frac{1}{1000} \times 499 = 0.499$.

5. 在遗传学研究中经常要从截尾二项分布中抽样,其总体概率函数为

$$P\{X=k;p\} = \frac{\binom{m}{k} p^k (1-p)^{m-k}}{1-(1-p)^m}, \quad k=1,2,\dots,m.$$

若已知 m=2, X_1 , …, X_n 是样本, 试求 p 的最大似然估计.

解: 当
$$m=2$$
 时, X 只能取值 1 或 2, 且 $P\{X=1\}=\frac{2p(1-p)}{1-(1-p)^2}=\frac{2-2p}{2-p}$, $P\{X=2\}=\frac{p^2}{1-(1-p)^2}=\frac{p}{2-p}$,

$$\mathbb{H} P\{X=x;p\} = \left(\frac{2-2p}{2-p}\right)^{2-x} \left(\frac{p}{2-p}\right)^{x-1} = \frac{(2-2p)^{2-x} p^{x-1}}{2-p}, \quad x=1,2,$$

$$\mathbb{H} \ln L(p) = \left(2n - \sum_{i=1}^{n} x_i\right) \cdot \ln(2 - 2p) + \left(\sum_{i=1}^{n} x_i - n\right) \cdot \ln p - n \ln(2 - p),$$

故 p 的最大似然估计 $\hat{p} = 2 - \frac{2}{\overline{X}}$.

6. 已知在文学家萧伯纳的 "An Intelligent Woman's Guide to Socialism"一书中,一个句子的单词数 X 近似地服从对数正态分布,即 $Z=\ln X\sim N(\mu,\sigma^2)$. 今从该书中随机地取 20 个句子,这些句子中的单词数分别为

求该书中一个句子单词数均值 $E(X) = e^{\mu + \sigma^2/2}$ 的最大似然估计.

解: 因 $Z = \ln X \sim N(\mu, \sigma^2)$,

则
$$\mu$$
的最大似然估计 $\hat{\mu} = \bar{z} = \frac{1}{n} \sum_{i=1}^{n} z_i = \frac{1}{n} \sum_{i=1}^{n} \ln x_i = \frac{1}{20} (\ln 52 + \ln 24 + \dots + \ln 30) = 3.09$,

 σ^2 的最大似然估计

$$\hat{\sigma}^2 = s_z^{*2} = \frac{1}{n} \sum_{i=1}^{n} (z_i - \bar{z})^2 = \frac{1}{20} [(\ln 52 - 3.09)^2 + (\ln 24 - 3.09)^2 + \dots + (\ln 30 - 3.09)^2] = 0.51,$$

故由最大似然估计的不变性知 $E(X) = e^{\mu + \sigma^2/2}$ 的最大似然估计 $E(X) = e^{\frac{\bar{z} + s_z^{*2}}{2}} = e^{3.09 + 0.51/2} = 28.31$.

- 7. 总体 $X \sim U(\theta, 2\theta)$, 其中 $\theta > 0$ 是未知参数,又 X_1, \dots, X_n 为取自该总体的样本, \overline{X} 为样本均值.
 - (1) 证明 $\hat{\theta} = \frac{2}{3}\overline{X}$ 是参数 θ 的无偏估计和相合估计;
 - (2) 求 θ 的最大似然估计,它是无偏估计吗?是相合估计吗?

解: (1) 因
$$X \sim U(\theta, 2\theta)$$
,有 $E(X) = \frac{\theta + 2\theta}{2} = \frac{3}{2}\theta$, $Var(X) = \frac{(2\theta - \theta)^2}{12} = \frac{1}{12}\theta^2$, 故 $E(\hat{\theta}) = \frac{2}{3}E(\overline{X}) = \frac{2}{3}E(X) = \frac{2}{3} \cdot \frac{3}{2}\theta = \theta$,即 $\hat{\theta} = \frac{2}{3}\overline{X}$ 是参数 θ 的无偏估计;
$$\text{因 } Var(\hat{\theta}) = \frac{4}{9}Var(\overline{X}) = \frac{4}{9n}Var(X) = \frac{4}{9n} \cdot \frac{1}{12}\theta^2 = \frac{\theta^2}{27n} \text{, } f \lim_{n \to \infty} E(\hat{\theta}) = \theta \text{, } \lim_{n \to \infty} Var(\hat{\theta}) = 0 \text{,}$$
 故 $\hat{\theta} = \frac{2}{3}\overline{X}$ 是参数 θ 的相合估计;

(2)
$$\boxtimes L(\theta) = \prod_{i=1}^n \frac{1}{\theta} \mathbf{I}_{\theta < x_i < 2\theta} = \frac{1}{\theta^n} \mathbf{I}_{\theta < x_1, x_2, \dots, x_n < 2\theta}$$

显然 θ 越小, $\frac{1}{\theta^n}$ 越大,但只有 $\theta < x_1, x_2, \dots, x_n < 2\theta$ 时,才有 $L(\theta) > 0$,

即
$$\theta = \frac{1}{2} \max\{x_1, x_2, \dots, x_n\}$$
时, $L(\theta)$ 达到最大,

故 θ 的最大似然估计为 $\hat{\theta}^* = \frac{1}{2} X_{(n)} = \frac{1}{2} \max\{X_1, X_2, \dots, X_n\};$

因
$$X$$
 的密度函数为 $p(x) = \begin{cases} \frac{1}{\theta}, & \theta < x < 2\theta; \\ 0, & 其他. \end{cases}$,分布函数为 $F(x) = \begin{cases} 0, & x < \theta; \\ \frac{x - \theta}{\theta}, & \theta \leq x < 2\theta; \\ 1, & x \geq 2\theta. \end{cases}$

则
$$X_{(n)}$$
 的密度函数 $p_n(x) = n[F(x)]^{n-1} p(x) = \begin{cases} \frac{n(x-\theta)^{n-1}}{\theta^n}, & \theta < x < 2\theta; \\ 0, & 其他. \end{cases}$

$$\exists E(X_{(n)} - \theta) = \int_{\theta}^{2\theta} (x - \theta) \cdot \frac{n(x - \theta)^{n-1}}{\theta^n} dx = \frac{n}{\theta^n} \cdot \frac{(x - \theta)^{n+1}}{n+1} \bigg|_{\theta}^{2\theta} = \frac{n}{n+1} \theta, \quad \not\exists E(X_{(n)}) = \frac{2n+1}{n+1} \theta,$$

$$\mathbb{E}\left[\left(X_{(n)} - \theta\right)^{2}\right] = \int_{\theta}^{2\theta} (x - \theta)^{2} \cdot \frac{n(x - \theta)^{n-1}}{\theta^{n}} dx = \frac{n}{\theta^{n}} \cdot \frac{(x - \theta)^{n+2}}{n+2} \Big|_{\theta}^{2\theta} = \frac{n}{n+2} \theta^{2},$$

则
$$Var(X_{(n)}) = Var(X_{(n)} - \theta) = \frac{n}{n+2}\theta^2 - \left(\frac{n}{n+1}\theta\right)^2 = \frac{n}{(n+1)^2(n+2)}\theta^2$$
,

故 $\hat{\theta}^* = \frac{1}{2} X_{(n)}$ 不是参数 θ 的无偏估计,应该修偏为 $\hat{\theta} = \frac{n+1}{2n+1} X_{(n)}$ 才是 θ 的无偏估计,

故 θ 的最大似然估计 $\hat{\theta}^* = \frac{1}{2} X_{(n)}$ 是参数 θ 的相合估计.

- 8. 设 X_1 , …, X_n 是来自密度函数为 $p(x;\theta) = e^{-(x-\theta)}$, $x > \theta$ 的样本.
 - (1) 求 θ 的最大似然估计 $\hat{\theta}_1$,它是否是相合估计?是否是无偏估计?
 - (2) 求 θ 的矩估计 $\hat{\theta}_2$, 它是否是相合估计?是否是无偏估计?

解: (1) 似然函数
$$L(\theta) = \prod_{i=1}^n e^{-(x_i - \theta)} I_{x_i > \theta} = e^{-\sum_{i=1}^n x_i + n\theta} I_{x_1, x_2, \dots, x_n > \theta}$$
,

显然 θ 越大, $\operatorname{e}^{-\sum\limits_{i=1}^{n}x_i+n\theta}$ 越大,但只有 $x_1,x_2,\,\cdots,x_n>\theta$ 时,才有 $L(\theta)>0$,即 $\theta=\min\{x_1,x_2,\,...,x_n\}$ 时, $L(\theta)$ 达到最大,

故 θ 的最大似然估计 $\hat{\theta}_1 = X_{(1)} = \min\{X_1, X_2, \cdots, X_n\};$

因X的密度函数与分布函数分别为

$$p(x) = \begin{cases} e^{-(x-\theta)}, & x > \theta; \\ 0, & x \le \theta. \end{cases} \quad F(x) = \begin{cases} 1 - e^{-(x-\theta)}, & x > \theta; \\ 0, & x \le \theta. \end{cases}$$

则 $X_{(1)}$ 的密度函数为

$$p_1(x) = n[1 - F(x)]^{n-1} p(x) = \begin{cases} ne^{-n(x-\theta)}, & x > \theta; \\ 0, & x \le \theta. \end{cases}$$

可得 $X_{(1)}$ – θ 服从指数分布 Exp(n),

因
$$E(X_{(1)} - \theta) = \frac{1}{n}$$
, $Var(X_{(1)} - \theta) = \frac{1}{n^2}$,
则 $E(\hat{\theta}_1) = E(X_{(1)}) = \theta + \frac{1}{n} \neq \theta$, $Var(\hat{\theta}_1) = Var(X_{(1)}) = Var(X_{(1)} - \theta) = \frac{1}{n^2}$,故 $\hat{\theta}_1 = X_{(1)}$ 不是 θ 的无偏估计;

故 $\hat{\theta}_1 = X_{(1)}$ 是 θ 的相合估计;

(2) 因总体 X 的密度函数为 $p(x;\theta) = e^{-(x-\theta)}, x > \theta$,有 $X - \theta$ 服从指数分布 Exp(1),则 $E(X - \theta) = E(X) - \theta = 1$,即 $\theta = E(X) - 1$,

故 θ 的矩估计 $\hat{\theta}_2 = \overline{X} - 1$;

因
$$E(X) = \theta + 1$$
, $Var(X) = Var(X - \theta) = \theta^2$,

$$\mathbb{M} E(\hat{\theta}_2) = E(\overline{X}) - 1 = E(X) - 1 = \theta , \quad \operatorname{Var}(\hat{\theta}_2) = \operatorname{Var}(\overline{X}) = \frac{1}{n} \operatorname{Var}(X) = \frac{\theta^2}{n} ,$$

故 $\hat{\theta}_2 = \overline{X} - 1$ 是 θ 的无偏估计;

故 $\hat{\theta}_2 = \overline{X} - 1$ 是 θ 的相合估计.

- 9. 设总体 $X \sim Exp(1/\theta)$, X_1, \dots, X_n 是样本, θ 的矩估计和最大似然估计都是 \overline{X} ,它也是 θ 的相合估计和 无偏估计,试证明在均方误差准则下存在优于 \overline{X} 的估计(提示:考虑 $\hat{\theta}_a = a\overline{X}$,找均方误差最小者).
- 证: 因 $X \sim Exp(1/\theta)$, 有 $E(X) = \theta$, $Var(X) = \theta^2$, 且 X 的密度函数为

$$p(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0; \\ 0, & x \le 0. \end{cases}$$

故 $\theta = E(X)$, 即 θ 的矩估计为 $\hat{\theta} = \overline{X}$;

因似然函数
$$L(\theta) = \prod_{i=1}^n \frac{1}{\theta} e^{\frac{x_i}{\theta}} \mathbf{I}_{x_i > 0} = \frac{1}{\theta^n} e^{\frac{-\frac{1}{\theta} \sum_{i=1}^n x_i}{\theta}} \mathbf{I}_{x_1, x_2, \cdots, x_n > 0}$$
,

$$\stackrel{\underline{}}{=} x_1, x_2, \dots, x_n > 0 \quad \exists f, \quad \ln L(\theta) = -n \ln \theta - \frac{1}{\theta} \sum_{i=1}^n x_i,$$

$$\diamondsuit \frac{d \ln L(\theta)}{d \theta} = -\frac{n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^n x_i = 0 , \quad \textcircled{\#} \theta = \frac{1}{n} \sum_{i=1}^n x_i = \overline{x} ,$$

故 θ 的最大似然估计也为 $\hat{\theta} = \overline{X}$;

$$\boxtimes E(\overline{X}) = E(X) = \theta$$
, $Var(\overline{X}) = \frac{1}{n} Var(X) = \frac{\theta^2}{n}$,

故 \bar{X} 是 θ 的无偏估计;

故 \bar{X} 是 θ 的相合估计:

设
$$\hat{\theta}_a = a\overline{X}$$
,有 $E(\hat{\theta}_a) = aE(\overline{X}) = a\theta$, $Var(\hat{\theta}_a) = a^2 Var(\overline{X}) = \frac{a^2\theta^2}{n}$,

则
$$MSE(\overline{X}) = Var(\overline{X}) + [E(\overline{X}) - \theta]^2 = \frac{\theta^2}{n} + (\theta - \theta)^2 = \frac{\theta^2}{n}$$
,

$$MSE(\hat{\theta}_{a}) = Var(\hat{\theta}_{a}) + [E(\hat{\theta}_{a}) - \theta]^{2} = \frac{a^{2}\theta^{2}}{n} + (a\theta - \theta)^{2} = \left(\frac{a^{2}}{n} + a^{2} - 2a + 1\right)\theta^{2}$$

$$= \left(\frac{n+1}{n}a^2 - 2a + \frac{n}{n+1} + \frac{1}{n+1}\right)\theta^2 = \left[\frac{n+1}{n}\left(a - \frac{n}{n+1}\right)^2 + \frac{1}{n+1}\right]\theta^2,$$

故当
$$a = \frac{n}{n+1}$$
 时, $\hat{\theta}_a = \frac{n}{n+1} \overline{X}$ 的均方误差 $MSE(\hat{\theta}_a) = \frac{\theta^2}{n+1}$ 小于 \overline{X} 的均方误差 $MSE(\overline{X}) = \frac{\theta^2}{n}$.

- 10. 为了估计湖中有多少条鱼,从中捞出 1000 条,标上记号后放回湖中,然后再捞出 150 条鱼,发现其中有 10 条鱼有记号.问湖中有多少条鱼,才能使 150 条鱼中出现 10 条带记号的鱼的概率最大?
- 解: 设湖中有 N 条鱼, 有湖中每条鱼带记号的概率为 $p = \frac{1000}{N}$,

看作总体 X 服从两点分布 b(1,p),从中抽取容量为 150 的样本 X_1, X_2, \dots, X_{150} ,有 $\sum_{i=1}^{150} x_i = 10$,

似然函数
$$L(p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$
,有 $\ln L(p) = \sum_{i=1}^n x_i \cdot \ln p + \left(n - \sum_{i=1}^n x_i\right) \cdot \ln(1-p)$,

令
$$\frac{d \ln L(p)}{dp} = \sum_{i=1}^n x_i \cdot \frac{1}{p} + \left(n - \sum_{i=1}^n x_i\right) \cdot \frac{-1}{1-p} = 0$$
,得 $p = \frac{1}{n} \sum_{i=1}^n x_i = \overline{x}$,即 p 的最大似然估计为 $\hat{p} = \overline{X}$,

因
$$N = \frac{1000}{p}$$
, 由最大似然估计的不变性知 $\hat{N} = \frac{1000}{\overline{X}}$,

故湖中有
$$\hat{N} = \frac{1000}{\frac{1}{150} \times 10} = 15000$$
条鱼时,才能使 150条鱼中出现 10条带记号的鱼的概率最大.

11. 证明:对正态分布 $N(\mu, \sigma^2)$,若只有一个观测值,则 μ, σ^2 的最大似然估计不存在.

证: 若只有一个观测值, 似然函数
$$L(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$
,

对于任一固定的 σ , 当 $\mu = x$ 时, $L(\mu)$ 取得最大值 $\frac{1}{\sqrt{2\pi\sigma}}$,

但显然 σ 越小, $\frac{1}{\sqrt{2\pi\sigma}}$ 越大,且 σ 可任意接近于 0,即 $\frac{1}{\sqrt{2\pi\sigma}}$ 不存在最大值,故 μ , σ^2 的最大似然估计不存在.

习题 6.4

1. 设总体概率函数是 $p(x;\theta)$, X_1 , \cdots , X_n 是其样本, $T = T(X_1, \cdots, X_n)$ 是 θ 的充分统计量,则对 $g(\theta)$ 的任一

估计 \hat{g} ,令 $\tilde{g} = E(\hat{g}|T)$,证明: $MSE(\tilde{g}) \leq MSE(\hat{g})$. 这说明,在均方误差准则下,人们只需要考虑基于充分估计量的估计.

解: 因 $\tilde{g} = E(\hat{g} | T)$,由 Rao-Blackwell 定理知 $E(\tilde{g}) = E(\hat{g})$, $Var(\tilde{g}) \le Var(\hat{g})$,

故 $MSE(\tilde{g}) = Var(\tilde{g}) + [E(\tilde{g}) - g(\theta)]^2 \le Var(\hat{g}) + [E(\hat{g}) - g(\theta)]^2 = MSE(\hat{g})$.

2. 设 T_1 , T_2 分别是 θ_1 , θ_2 的 UMVUE,证明:对任意的(非零)常数 a, b, aT_1+bT_2 是 $a\theta_1+b\theta_2$ 的 UMVUE.证: 因 T_1 , T_2 分别是 θ_1 , θ_2 的 UMVUE,

有 $E(T_1) = \theta_1$, $E(T_2) = \theta_2$, 且对任意的满足 $E(\varphi) = 0$ 的 φ 都有 $Cov(T_1, \varphi) = Cov(T_2, \varphi) = 0$,则 $E(aT_1 + bT_2) = aE(T_1) + bE(T_2) = a\theta_1 + b\theta_2$,且 $Cov(aT_1 + bT_2, \varphi) = aCov(T_1, \varphi) + bCov(T_2, \varphi) = 0$,故 $aT_1 + bT_2$ 是 $a\theta_1 + b\theta_2$ 的 UMVUE.

- 3. 设 $T \neq g(\theta)$ 的 UMVUE, $\hat{g} \neq g(\theta)$ 的无偏估计,证明,若 $Var(\hat{g}) < +\infty$,则 $Cov(T, \hat{g}) \geq 0$.
- 证: 因 \hat{g} 和T都是 $g(\theta)$ 的无偏估计,有 $E(\hat{g}) = E(T) = g(\theta)$,即 $E(\hat{g} T) = 0$,

又因 $T \neq g(\theta)$ 的 UMVUE,有 $Cov(T, \hat{g} - T) = 0$,即 $Cov(T, \hat{g}) - Cov(T, T) = 0$,

故 $Cov(T, \hat{g}) = Cov(T, T) \ge 0$.

- 4. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, \dots, X_n 为样本,证明, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ 分别为 μ , σ^2 的 UMVUE.
- 证: 因 $X \sim N(\mu, \sigma^2)$,有 \overline{X} 是 μ 的无偏估计, S^2 是 σ^2 的无偏估计,且样本 X_1, \cdots, X_n 的联合密度函数为

$$p(x_1,\dots,x_n;\mu,\sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} = \frac{1}{(\sqrt{2\pi}\sigma)^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i-\mu)^2},$$

对任意的满足 $E(\varphi) = 0$ 的 $\varphi(x_1, \dots, x_n)$,有 $E(\varphi) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \varphi \cdot e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2} dx_1 \dots dx_n = 0$,

对 $E(\varphi) = 0$ 两端关于 μ 求偏导数,得

$$\frac{\partial E(\varphi)}{\partial \mu} = 0 = \frac{1}{(\sqrt{2\pi}\sigma)^n} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \varphi \cdot \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) \cdot e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2} dx_1 \cdots dx_n$$

$$= \frac{1}{(\sqrt{2\pi}\sigma)^n} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \varphi \cdot \frac{1}{\sigma^2} (n\overline{x} - n\mu) \cdot e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2} dx_1 \cdots dx_n$$

$$= \frac{n}{\sigma^2} E[(\overline{X} - \mu)\varphi] = \frac{n}{\sigma^2} [E(\overline{X}\varphi) - \mu E(\varphi)] = \frac{n}{\sigma^2} E(\overline{X}\varphi) ,$$

则 $E(\overline{X}\varphi) = 0$, $Cov(\overline{X}, \varphi) = E(\overline{X}\varphi) - E(\overline{X}) \cdot E(\varphi) = 0$,

故 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 是 μ 的 UMVUE;

对 $E(\overline{X}\varphi) = 0$ 两端再关于 μ 求偏导数,得

$$\frac{\partial E(\overline{X}\varphi)}{\partial \mu} = 0 = \frac{1}{(\sqrt{2\pi}\sigma)^n} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \overline{x} \varphi \cdot \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) \cdot e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2} dx_1 \cdots dx_n$$

$$= \frac{1}{(\sqrt{2\pi}\sigma)^n} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \overline{x} \varphi \cdot \frac{1}{\sigma^2} (n\overline{x} - n\mu) \cdot e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2} dx_1 \cdots dx_n$$

$$= \frac{n}{\sigma^2} E[(\overline{X} - \mu) \overline{X}\varphi] = \frac{n}{\sigma^2} [E(\overline{X}^2\varphi) - \mu E(\overline{X}\varphi)] = \frac{n}{\sigma^2} E(\overline{X}^2\varphi) ,$$

则 $E(\overline{X}^2\varphi)=0$,

对 $(\sqrt{2\pi}\sigma)^n E(\varphi) = 0$ 两端关于 σ^2 求偏导数,得

$$\frac{\partial \left[\left(\sqrt{2\pi}\sigma\right)^{n} E(\varphi)\right]}{\partial \sigma^{2}} = 0 = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \varphi \cdot \frac{1}{2\sigma^{4}} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \cdot e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}} dx_{1} \cdots dx_{n}$$

$$= \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \varphi \cdot \frac{1}{2\sigma^{4}} \left(\sum_{i=1}^{n} x_{i}^{2} - 2n\overline{x}\mu + n\mu^{2} \right) \cdot e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}} dx_{1} \cdots dx_{n}$$

$$= \frac{\left(\sqrt{2\pi}\sigma\right)^{n}}{2\sigma^{4}} E\left[\left(\sum_{i=1}^{n} X_{i}^{2} - 2n\overline{X}\mu + n\mu^{2} \right) \varphi \right]$$

$$= \frac{\left(\sqrt{2\pi}\sigma\right)^{n}}{2\sigma^{4}} \left[E\left(\varphi \sum_{i=1}^{n} X_{i}^{2} \right) - 2n\mu E(\overline{X}\varphi) + n\mu^{2} E(\varphi) \right] = \frac{\left(\sqrt{2\pi}\sigma\right)^{n}}{2\sigma^{4}} E\left(\varphi \sum_{i=1}^{n} X_{i}^{2} \right),$$

$$\mathbb{I} E\left(\varphi \sum_{i=1}^n X_i^2\right) = 0,$$

则 $Cov(S^2, \varphi) = E(S^2\varphi) - E(S^2) \cdot E(\varphi) = 0$,

故
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 是 σ^2 的 UMVUE.

5. 设总体的概率函数为 $p(x;\theta)$,满足定义 6.4.2 的条件,若二阶导数 $\frac{\partial^2}{\partial \theta^2} p(x;\theta)$ 对一切的 $\theta \in \Theta$ 存在,证明费希尔信息量 $I(\theta) = -E\left(\frac{\partial^2}{\partial \theta^2} \ln p(X;\theta)\right)$.

$$\begin{split} \text{i.f.} & \boxtimes \frac{\partial}{\partial \theta} \ln p = \frac{1}{p} \cdot \frac{\partial p}{\partial \theta} \;, \quad \frac{\partial^2}{\partial \theta^2} \ln p = \frac{\partial}{\partial \theta} \left(\frac{1}{p} \cdot \frac{\partial p}{\partial \theta} \right) = -\frac{1}{p^2} \cdot \left(\frac{\partial p}{\partial \theta} \right)^2 + \frac{1}{p} \cdot \frac{\partial^2 p}{\partial \theta^2} = -\left(\frac{\partial}{\partial \theta} \ln p \right)^2 + \frac{1}{p} \cdot \frac{\partial^2 p}{\partial \theta^2} \;, \\ & \boxtimes E \left(\frac{\partial^2}{\partial \theta^2} \ln p \right) = -E \left(\frac{\partial}{\partial \theta} \ln p \right)^2 + E \left(\frac{1}{p} \cdot \frac{\partial^2 p}{\partial \theta^2} \right) = -I(\theta) + \int_{-\infty}^{+\infty} \frac{1}{p} \cdot \frac{\partial^2 p}{\partial \theta^2} \cdot p dx = -I(\theta) + \int_{-\infty}^{+\infty} \frac{\partial^2 p}{\partial \theta^2} dx \end{split}$$

$$= -I(\theta) + \frac{\partial^2}{\partial \theta^2} \left(\int_{-\infty}^{+\infty} p(x) dx \right) = -I(\theta) .$$

- 6. 设总体密度函数为 $p(x;\theta) = \theta x^{\theta-1}, 0 < x < 1, \theta > 0, X_1, \dots, X_n$ 是样本.
 - (1) 求 $g(\theta) = 1/\theta$ 的最大似然估计;
 - (2) 求 $g(\theta)$ 的有效估计.

解: (1) 似然函数
$$L(\theta) = \prod_{i=1}^n \theta x_i^{\theta-1} \mathbf{I}_{0 < x_i < 1} = \theta^n (x_1 x_2 \cdots x_n)^{\theta-1} \mathbf{I}_{0 < x_1, x_2, \cdots, x_n < 1}$$
,

$$\stackrel{\text{def}}{=} 0 < x_1, x_2, \dots, x_n < 1 \text{ fr}, \ln L(\theta) = n \ln \theta + (\theta - 1) \ln (x_1 x_2 \dots x_n),$$

故
$$g(\theta) = 1/\theta$$
 的最大似然估计为 $\hat{g} = 1/\hat{\theta} = -\frac{1}{n} \sum_{i=1}^{n} \ln X_i$;

(2)
$$\boxtimes E(\ln X) = \int_0^1 \ln x \cdot \theta x^{\theta-1} dx = \int_0^1 \ln x \cdot d(x^{\theta}) = x^{\theta} \ln x \Big|_0^1 - \int_0^1 x^{\theta} \cdot \frac{1}{x} dx = 0 - \frac{1}{\theta} x^{\theta} \Big|_0^1 = -\frac{1}{\theta},$$

$$E(\ln X)^{2} = \int_{0}^{1} (\ln x)^{2} \cdot \theta x^{\theta - 1} dx = \int_{0}^{1} (\ln x)^{2} d(x^{\theta}) = x^{\theta} (\ln x)^{2} \Big|_{0}^{1} - \int_{0}^{1} x^{\theta} \cdot \frac{2 \ln x}{x} dx = -\frac{2}{\theta} E(\ln X) = \frac{2}{\theta^{2}},$$

则
$$Var(\ln X) = E(\ln X)^2 - [E(\ln X)]^2 = \frac{2}{\theta^2} - \left(-\frac{1}{\theta}\right)^2 = \frac{1}{\theta^2}$$
,

可得
$$E(\hat{g}) = -\frac{1}{n} \sum_{i=1}^{n} E(\ln X_i) = -\frac{1}{n} \cdot n \cdot \left(-\frac{1}{\theta}\right) = \frac{1}{\theta} = g(\theta)$$
,即 $\hat{g} = -\frac{1}{n} \sum_{i=1}^{n} \ln X_i$ 是 $g(\theta)$ 的无偏估计,

因
$$p(x; \theta) = \theta x^{\theta-1} I_{0 < x < 1}$$
, 当 $0 < x < 1$ 时, $\ln p(x; \theta) = \ln \theta + (\theta - 1) \ln x$,

$$\mathbb{I} \frac{\partial}{\partial \theta} \ln p(x;\theta) = \frac{1}{\theta} + \ln x , \quad \frac{\partial^2}{\partial \theta^2} \ln p(x;\theta) = -\frac{1}{\theta^2} , \quad \mathbb{I} \mathbb{I} I(\theta) = -E \left[\frac{\partial^2}{\partial \theta^2} \ln p(X;\theta) \right] = \frac{1}{\theta^2} ,$$

可得
$$g(\theta) = 1/\theta$$
 无偏估计方差的 C-R 下界为
$$\frac{\left[g'(\theta)\right]^2}{nI(\theta)} = \frac{\left(-\frac{1}{\theta^2}\right)^2}{n \cdot \frac{1}{\theta^2}} = \frac{1}{n\theta^2} = \operatorname{Var}(\hat{g}),$$

故
$$\hat{g} = -\frac{1}{n} \sum_{i=1}^{n} \ln X_i$$
 是 $g(\theta) = 1/\theta$ 的有效估计.

7. 设总体密度函数为 $p(x;\theta) = \frac{2\theta}{x^3} e^{\frac{\theta}{x^2}}, x > 0, \theta > 0$,求 θ 的费希尔信息量 $I(\theta)$.

解: 因
$$p(x;\theta) = \frac{2\theta}{x^3} e^{-\frac{\theta}{x^2}} I_{x>0}$$
, 当 $x > 0$ 时, $\ln p(x;\theta) = \ln 2 + \ln \theta - 3 \ln x - \frac{\theta}{x^2}$,

$$\mathbb{I} \frac{\partial}{\partial \theta} \ln p(x; \theta) = \frac{1}{\theta} - \frac{1}{x^2}, \quad \frac{\partial^2}{\partial \theta^2} \ln p(x; \theta) = -\frac{1}{\theta^2},$$

故
$$I(\theta) = -E \left[\frac{\partial^2}{\partial \theta^2} \ln p(X; \theta) \right] = \frac{1}{\theta^2}$$
.

8. 设总体密度函数为 $p(x; \theta) = \theta c^{\theta} x^{-(\theta+1)}, x > c, c > 0$ 已知, $\theta > 0$,求 θ 的费希尔信息量 $I(\theta)$. 解: 因 $p(x; \theta) = \theta c^{\theta} x^{-(\theta+1)} \mathbf{I}_{x > c}$,当 x > c 时, $\ln p(x; \theta) = \ln \theta + \theta \ln c - (\theta+1) \ln x$,

解: 因
$$p(x;\theta) = \theta c^{\theta} x^{-(\theta+1)} I_{x>c}$$
, 当 $x>c$ 时, $\ln p(x;\theta) = \ln \theta + \theta \ln c - (\theta+1) \ln x$,

$$\operatorname{II} \frac{\partial}{\partial \theta} \ln p(x; \theta) = \frac{1}{\theta} + \ln c - \ln x , \quad \frac{\partial^2}{\partial \theta^2} \ln p(x; \theta) = -\frac{1}{\theta^2} ,$$

故
$$I(\theta) = -E \left[\frac{\partial^2}{\partial \theta^2} \ln p(X; \theta) \right] = \frac{1}{\theta^2}$$
.

9. 设总体分布列为 $P\{X=x\} = (x-1)\theta^2(1-\theta)^{x-2}, x=2,3,\cdots,0<\theta<1$, 求 θ 的费希尔信息量 $I(\theta)$.

解: 因
$$p(x; \theta) = (x-1)\theta^2(1-\theta)^{x-2}$$
,有 $\ln p(x; \theta) = \ln (x-1) + 2\ln \theta + (x-2)\ln (1-\theta)$,

$$\iiint \frac{\partial}{\partial \theta} \ln p(x; \theta) = \frac{2}{\theta} - \frac{x - 2}{1 - \theta}, \quad \frac{\partial^2}{\partial \theta^2} \ln p(x; \theta) = -\frac{2}{\theta^2} - \frac{x - 2}{(1 - \theta)^2},$$

可得
$$I(\theta) = -E\left[\frac{\partial^2}{\partial \theta^2} \ln p(X;\theta)\right] = -E\left(-\frac{2}{\theta^2} - \frac{X-2}{(1-\theta)^2}\right) = \frac{2}{\theta^2} + \frac{1}{(1-\theta)^2}[E(X)-2]$$

$$=\theta^2 \frac{d^2}{d\theta^2} \left[\frac{(1-\theta)^2}{1-(1-\theta)} \right] = \theta^2 \frac{d^2}{d\theta^2} \left(\frac{1}{\theta} - 2 + \theta \right) = \theta^2 \cdot \frac{2}{\theta^3} = \frac{2}{\theta},$$

故
$$I(\theta) = \frac{2}{\theta^2} + \frac{1}{(1-\theta)^2} \left(\frac{2}{\theta} - 2\right) = \frac{2}{\theta^2 (1-\theta)}$$
.

10. 设 X_1 , …, X_n 是来自 $Ga(\alpha, \lambda)$ 的样本, $\alpha > 0$ 已知,试证明, \overline{X}/α 是 $g(\lambda) = 1/\lambda$ 的有效估计,从而也

证: 因总体
$$X \sim Ga(\alpha, \lambda)$$
, 有 $E(X) = \frac{\alpha}{\lambda}$, $Var(X) = \frac{\alpha}{\lambda^2}$,

则
$$E\left(\frac{\overline{X}}{\alpha}\right) = \frac{1}{\alpha}E(\overline{X}) = \frac{1}{\alpha}E(X) = \frac{1}{\alpha} \cdot \frac{\alpha}{\lambda} = \frac{1}{\lambda} = g(\lambda)$$
,即 $\frac{\overline{X}}{\alpha}$ 是 $g(\lambda) = \frac{1}{\lambda}$ 的无偏估计,

因
$$p(x;\lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} I_{x>0}$$
, 当 $x > 0$ 时, $\ln p(x;\lambda) = \alpha \ln \lambda - \ln \Gamma(\alpha) + (\alpha - 1) \ln x - \lambda x$,

$$\text{Im} \frac{\partial}{\partial \lambda} \ln p(x;\lambda) = \frac{\alpha}{\lambda} - x \;, \quad \frac{\partial^2}{\partial \lambda^2} \ln p(x;\lambda) = -\frac{\alpha}{\lambda^2} \;, \quad \text{Im} I(\lambda) = -E \left[\frac{\partial^2}{\partial \lambda^2} \ln p(X;\lambda) \right] = \frac{\alpha}{\lambda^2} \;,$$

可得
$$g(\lambda) = 1/\lambda$$
 无偏估计方差的 C-R 下界为 $\frac{[g'(\lambda)]^2}{nI(\lambda)} = \frac{\left(-\frac{1}{\lambda^2}\right)^2}{n \cdot \frac{\alpha}{\lambda^2}} = \frac{1}{n\alpha\lambda^2} = \operatorname{Var}\left(\frac{\overline{X}}{\alpha}\right)$,

故 $\frac{\overline{X}}{\alpha}$ 是 $g(\lambda) = \frac{1}{\lambda}$ 的有效估计,从而也是UMVUE.

11. 设 X_1 , …, X_m i.i.d. ~ $N(a, \sigma^2)$, Y_1 , …, Y_n i.i.d. ~ $N(a, 2\sigma^2)$, 求a 和 σ^2 的 UMVUE.

解:根据充分性原则,UMVUE 必为充分统计量,先求参数 (a, σ^2) 的充分统计量 因样本 $X_1, \dots, X_m, Y_1, \dots, Y_n$ 的联合密度函数为

$$\begin{split} p(x_1,\cdots,x_m,y_1,\cdots,y_n;a,\sigma^2) &= \prod_{i=1}^m \frac{1}{\sqrt{2\pi}\sigma} \mathrm{e}^{\frac{(x_i-a)^2}{2\sigma^2}} \cdot \prod_{j=1}^n \frac{1}{\sqrt{2\pi}\cdot\sqrt{2}\sigma} \mathrm{e}^{\frac{(y_j-a)^2}{4\sigma^2}} \\ &= \frac{1}{(\sqrt{2})^{m+2n}\cdot(\sqrt{\pi}\sigma)^{m+n}} \mathrm{e}^{\frac{-1}{2\sigma^2}\left[\sum_{i=1}^m (x_i-a)^2 + \frac{1}{2}\sum_{j=1}^n (y_j-a)^2\right]} \\ &= \frac{1}{(\sqrt{2})^{m+2n}\cdot(\sqrt{\pi}\sigma)^{m+n}} \mathrm{e}^{\frac{-1}{2\sigma^2}\left[\sum_{i=1}^m x_i^2 + \frac{1}{2}\sum_{j=1}^n y_j^2 - 2a\left(\sum_{i=1}^m x_i + \frac{1}{2}\sum_{j=1}^n y_j\right) + \left(m + \frac{n}{2}\right)a^2\right]}, \\ &\Leftrightarrow (T_1,T_2) = \left(\sum_{i=1}^m X_i + \frac{1}{2}\sum_{j=1}^n Y_j, \sum_{i=1}^m X_i^2 + \frac{1}{2}\sum_{j=1}^n Y_j^2\right), \quad \vec{\exists} \ (t_1,t_2) = \left(\sum_{i=1}^m x_i + \frac{1}{2}\sum_{j=1}^n y_j, \sum_{i=1}^m x_i^2 + \frac{1}{2}\sum_{j=1}^n y_j^2\right), \end{split}$$

$$\text{If } p(x_1,\dots,x_m,y_1,\dots,y_n;a,\sigma^2) = \frac{1}{(\sqrt{2})^{m+2n} \cdot (\sqrt{\pi}\sigma)^{m+n}} e^{-\frac{1}{2\sigma^2}[t_2-2at_1+(m+0.5n)a^2]},$$

取
$$g(t_1, t_2; a, \sigma^2) = \frac{1}{(\sqrt{2})^{m+2n}(\sqrt{\pi}\sigma)^{m+n}} e^{-\frac{1}{2\sigma^2}[t_2-2at_1+(m+0.5n)a^2]}$$
, $h(x_1, \dots, x_m, y_1, \dots, y_n) = 1$ 与参数 a, σ^2 无关,

可得
$$(T_1, T_2) = \left(\sum_{i=1}^m X_i + \frac{1}{2}\sum_{j=1}^n Y_j, \sum_{i=1}^m X_i^2 + \frac{1}{2}\sum_{j=1}^n Y_j^2\right)$$
 是参数 (a, σ^2) 的充分统计量;

因
$$E(T_1) = \sum_{i=1}^m E(X_i) + \frac{1}{2} \sum_{j=1}^n E(Y_j) = (m+0.5n)a$$
,有 $E\left(\frac{T_1}{m+0.5n}\right) = E\left(\frac{m\overline{X}+0.5n\overline{Y}}{m+0.5n}\right) = a$,

则
$$\hat{a} = \frac{m\overline{X} + 0.5n\overline{Y}}{m + 0.5n}$$
 是参数 a 的无偏估计,

对任意的满足 $E(\varphi) = 0$ 的统计量 $\varphi(x_1, \dots, x_m, y_1, \dots, y_n)$,

有
$$E(\varphi) = \frac{1}{(\sqrt{2})^{m+2n} \cdot (\sqrt{\pi}\sigma)^{m+n}} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \varphi \cdot e^{-\frac{1}{2\sigma^2}(t_2-2at_1)} \cdot e^{-\frac{1}{2\sigma^2}(m+0.5n)a^2} dx_1 \cdots dx_m dy_1 \cdots dy_n = 0$$

则
$$\int_{-\infty}^{+\infty}\cdots\int_{-\infty}^{+\infty}\varphi\cdot e^{-\frac{1}{2\sigma^2}(t_2-2at_1)}dx_1\cdots dx_mdy_1\cdots dy_n=0$$
,

两端关于
$$a$$
 求偏导数,得 $\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \varphi \cdot e^{\frac{1}{2\sigma^2}(t_2-2at_1)} \cdot \frac{1}{2\sigma^2} \cdot 2t_1 dx_1 \cdots dx_m dy_1 \cdots dy_n = 0$,

$$\mathbb{E} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} t_1 \varphi \cdot e^{-\frac{1}{2\sigma^2}(t_2 - 2at_1)} dx_1 \cdots dx_m dy_1 \cdots dy_n = 0,$$

則
$$E(T_1\varphi) = 0$$
,有 $E(\hat{a}\varphi) = \frac{1}{m+0.5n}E(T_1\varphi) = 0$,即 $Cov(\hat{a},\varphi) = E(\hat{a}\varphi) - E(\hat{a})E(\varphi) = 0$,

故
$$\hat{a} = \frac{m\overline{X} + 0.5n\overline{Y}}{m + 0.5n}$$
 是参数 a 的 UMVUE;

$$\mathbb{E} E(T_1^2) = \text{Var}(T_1) + [E(T_1)]^2 = \sum_{i=1}^m \text{Var}(X_i) + \frac{1}{4} \sum_{i=1}^n \text{Var}(Y_i) + [(m+0.5n)a]^2$$

$$= (m + 0.5n)\sigma^2 + (m + 0.5n)^2 a^2,$$

$$\text{If } E\left(T_2 - \frac{T_1^2}{m+0.5n}\right) = (m+n-1)\sigma^2 \; , \quad \text{If } E\left[\frac{1}{m+n-1}\left(T_2 - \frac{T_1^2}{m+0.5n}\right)\right] = \sigma^2 \; ,$$

$$\mathbb{R}\hat{\sigma}^2 = \frac{1}{m+n-1} \left(T_2 - \frac{T_1^2}{m+0.5n} \right) = \frac{1}{m+n-1} \left[\sum_{i=1}^m X_i^2 + \frac{1}{2} \sum_{j=1}^n Y_j^2 - \frac{1}{m+0.5n} \left(\sum_{i=1}^m X_i + \frac{1}{2} \sum_{j=1}^n Y_j \right)^2 \right],$$

可知 $\hat{\sigma}^2$ 是参数 σ^2 的无偏估计,

两端关于
$$\sigma^2$$
求偏导数,得 $\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \varphi \cdot e^{-\frac{1}{2\sigma^2}(t_2-2at_1)} \cdot \frac{1}{2\sigma^4} \cdot (t_2-2at_1)dx_1 \cdots dx_m dy_1 \cdots dy_n = 0$

$$\mathbb{E} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} (t_2 - 2at_1) \varphi \cdot e^{-\frac{1}{2\sigma^2}(t_2 - 2at_1)} dx_1 \cdots dx_m dy_1 \cdots dy_n = 0$$

则
$$E[(T_2-2aT_1)\varphi]=0$$
,有 $E(T_2\varphi)-2a\ E(T_1\varphi)=0$,可得 $E(T_2\varphi)=0$,

$$\mathbb{Z} \boxtimes \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} t_1 \varphi \cdot e^{-\frac{1}{2\sigma^2}(t_2 - 2at_1)} dx_1 \cdots dx_m dy_1 \cdots dy_n = 0,$$

两端关于
$$a$$
 求偏导数,得 $\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} t_1 \varphi \cdot e^{-\frac{1}{2\sigma^2}(t_2-2at_1)} \cdot \frac{1}{2\sigma^2} \cdot 2at_1 dx_1 \cdots dx_m dy_1 \cdots dy_n = 0$,

$$\mathbb{E} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} t_1^2 \varphi \cdot e^{-\frac{1}{2\sigma^2}(t_2 - 2at_1)} dx_1 \cdots dx_m dy_1 \cdots dy_n = 0,$$

则
$$E(T_1^2 \varphi) = 0$$
,有 $E(\hat{\sigma}^2 \varphi) = \frac{1}{m+n-1} \left[E(T_2 \varphi) - \frac{E(T_1^2 \varphi)}{m+0.5n} \right] = 0$,

$$\mathbb{P}\operatorname{Cov}(\hat{\sigma}^2, \varphi) = E(\hat{\sigma}^2 \varphi) - E(\hat{\sigma}^2)E(\varphi) = 0,$$

故
$$\hat{\sigma}^2 = \frac{1}{m+n-1} \left[\sum_{i=1}^m X_i^2 + \frac{1}{2} \sum_{j=1}^n Y_j^2 - \frac{1}{m+0.5n} \left(\sum_{i=1}^m X_i + \frac{1}{2} \sum_{j=1}^n Y_j \right)^2 \right]$$
是参数 σ^2 的 UMVUE.

- 12. 设 X_1 , ···, X_n i.i.d. ~ $N(\mu, 1)$,求 μ^2 的 UMVUE. 证明此 UMVUE 达不到 C-R 不等式的下界,即它不是有效估计.
- 解:根据充分性原则,UMVUE 必为充分统计量,先求参数 μ^2 的充分统计量,因样本 X_1 , …, X_n 的联合密度函数为

$$p(x_1, \dots, x_n; \mu) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{\frac{-(x_i - \mu)^2}{2}} = \frac{1}{(\sqrt{2\pi})^n} e^{\frac{-\frac{1}{2} \sum_{i=1}^n (x_i^2 - 2\mu x_i + \mu^2)}{2}} = \frac{1}{(\sqrt{2\pi})^n} e^{\frac{-\frac{1}{2} \left(\sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n\mu^2\right)}{2}}$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{n\mu \bar{x} - \frac{1}{2}n\mu^2} \cdot e^{\frac{-\frac{1}{2} \sum_{i=1}^n x_i^2}{2}},$$

令
$$T = \overline{X}$$
 , 有 $t = \overline{x}$, 即 $p(x_1, \dots, x_n; \mu) = \frac{1}{(\sqrt{2\pi})^n} e^{n\mu t - \frac{1}{2}n\mu^2} \cdot e^{-\frac{1}{2}\sum_{i=1}^n x_i^2}$,

取
$$g(t;\mu) = \frac{1}{(\sqrt{2\pi})^n} e^{\frac{n\mu t - \frac{1}{2}n\mu^2}{2}}$$
, $h(x_1, x_2, \dots, x_n) = e^{\frac{-\frac{1}{2}\sum_{i=1}^n x_i^2}{2}}$ 与参数 μ 无关,

可得 $T = \overline{X}$ 是参数 μ 的充分统计量;

$$\boxtimes E(\overline{X}^2) = \operatorname{Var}(\overline{X}) + [E(\overline{X})]^2 = \frac{1}{n} \operatorname{Var}(X) + [E(X)]^2 = \frac{1}{n} + \mu^2, \quad \boxtimes E(\overline{X}^2 - \frac{1}{n}) = \mu^2,$$

可知
$$\hat{\mu}^2 = \overline{X}^2 - \frac{1}{n}$$
 是参数 μ^2 的无偏估计,

对任意的满足 $E(\varphi) = 0$ 的统计量 $\varphi(x_1, \dots, x_n)$,

有
$$E(\varphi) = \frac{1}{(\sqrt{2\pi})^n} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \varphi \cdot e^{-\frac{1}{2} \sum_{i=1}^n x_i^2 + n\mu \bar{x} - \frac{1}{2} n\mu^2} dx_1 \cdots dx_n = 0$$

$$\iiint \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \varphi \cdot e^{-\frac{1}{2} \sum_{i=1}^{n} x_i^2 + n\mu \bar{x}} dx_1 \cdots dx_n = 0,$$

两端关于
$$\mu$$
求偏导数,得 $\int_{-\infty}^{+\infty}\cdots\int_{-\infty}^{+\infty}\varphi\cdot \mathrm{e}^{-\frac{1}{2}\sum\limits_{i=1}^{n}x_{i}^{2}+n\mu\bar{x}}\cdot n\bar{x}dx_{1}\cdots dx_{n}=0$,

两端关于
$$\mu$$
再求偏导数,得 $\int_{-\infty}^{+\infty}\cdots\int_{-\infty}^{+\infty}\varphi\cdot \mathrm{e}^{-\frac{1}{2}\sum\limits_{i=1}^{n}x_{i}^{2}+n\mu\bar{x}}\cdot(n\bar{x})^{2}dx_{1}\cdots dx_{n}=0$,

$$\exists \exists \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \overline{x}^2 \varphi \cdot \mathrm{e}^{\frac{-1}{2} \sum_{i=1}^n x_i^2 + n\mu \overline{x}} dx_1 \cdots dx_n = 0 \ ,$$

則
$$E(\overline{X}^2\varphi) = 0$$
,有 $E(\hat{\mu}^2\varphi) = E(\overline{X}^2\varphi) - \frac{1}{n}E(\varphi) = 0$,即 $Cov(\hat{\mu}^2, \varphi) = E(\hat{\mu}^2\varphi) - E(\hat{\mu}^2)E(\varphi) = 0$,

故
$$\hat{\mu}^2 = \overline{X}^2 - \frac{1}{n}$$
 是参数 μ^2 的 UMVUE;

因
$$\overline{X} \sim N\left(\mu, \frac{1}{n}\right)$$
,有 $E(\overline{X}) = \mu$, $Var(\overline{X}) = E[(\overline{X} - \mu)^2] = \frac{1}{n}$, $E[(\overline{X} - \mu)^3] = 0$, $E[(\overline{X} - \mu)^4] = \frac{3}{n^2}$,

$$\mathbb{P}[E(\overline{X}^4) = E[(\overline{X} - \mu + \mu)^4] = E[(\overline{X} - \mu)^4] + 4\mu E[(\overline{X} - \mu)^3] + 6\mu^2 E[(\overline{X} - \mu)^2] + 4\mu^3 E(\overline{X} - \mu) + \mu^4$$

$$= \frac{3}{n^2} + \frac{6\mu^2}{n} + \mu^4,$$

可得
$$\operatorname{Var}(\hat{\mu}^2) = \operatorname{Var}(\overline{X}^2) = E(\overline{X}^4) - [E(\overline{X}^2)]^2 = \frac{3}{n^2} + \frac{6\mu^2}{n} + \mu^4 - \left(\frac{1}{n} + \mu^2\right)^2 = \frac{2}{n^2} + \frac{4\mu^2}{n}$$

因总体密度函数
$$p(x;\mu) = \frac{1}{\sqrt{2\pi}} e^{\frac{(x-\mu)^2}{2}}$$
, 有 $\ln p(x;\mu) = -\ln \sqrt{2\pi} - \frac{(x-\mu)^2}{2}$,

则
$$\frac{\partial}{\partial \mu} \ln p(x; \mu) = x - \mu$$
,即 $I(\mu) = E \left(\frac{\partial}{\partial \mu} \ln p(X; \mu) \right)^2 = E(X - \mu)^2 = 1$,

可得
$$g(\mu) = \mu^2$$
 无偏估计方差的 C-R 下界为 $\frac{[g'(\mu)]^2}{nI(\mu)} = \frac{(2\mu)^2}{n} = \frac{4\mu^2}{n} < \text{Var}(\hat{\mu}^2)$,

故
$$\hat{\mu}^2 = \overline{X}^2 - \frac{1}{n}$$
 不是参数 μ^2 的有效估计.

13. 对泊松分布 $P(\theta)$.

(1)
$$Rightarrow I\left(\frac{1}{\theta}\right)$$
;

(2) 找一个函数 $g(\cdot)$, 使 $g(\theta)$ 的费希尔信息与 θ 无关.

解: 因总体概率函数为
$$p(x;\alpha) = \frac{\theta^x}{x!} e^{-\theta}$$
,有 $\ln p(x;\theta) = x \ln \theta - \ln x! - \theta$

$$\mathbb{M}\frac{\partial}{\partial \theta}\ln p(x;\theta) = x \cdot \frac{1}{\theta} - 1 = \frac{x - \theta}{\theta}, \quad \mathbb{H}I(\theta) = E\left[\frac{\partial}{\partial \theta}\ln p(X;\theta)\right]^2 = \frac{1}{\theta^2}E(X - \theta)^2 = \frac{1}{\theta^2}\operatorname{Var}(X) = \frac{1}{\theta},$$

令
$$\alpha = g(\theta)$$
可导,有 $\frac{\partial}{\partial \theta} \ln p = \frac{\partial}{\partial \alpha} \ln p \cdot \frac{d\alpha}{d\theta} = g'(\theta) \cdot \frac{\partial}{\partial \alpha} \ln p$,

$$\mathbb{M} I(\theta) = E \left[\frac{\partial}{\partial \theta} \ln p \right]^2 = [g'(\theta)]^2 E \left[\frac{\partial}{\partial \alpha} \ln p \right]^2 = [g'(\theta)]^2 I(\alpha) = [g'(\theta)]^2 I[g(\theta)], \quad \mathbb{H} I[g(\theta)] = \frac{I(\theta)}{[g'(\theta)]^2},$$

(1) 因
$$g(\theta) = \frac{1}{\theta}$$
, 有 $g'(\theta) = -\frac{1}{\theta^2}$,

故
$$I\left(\frac{1}{\theta}\right) = \frac{I(\theta)}{\left[g'(\theta)\right]^2} = \frac{1/\theta}{\left(-1/\theta^2\right)^2} = \theta^3;$$

(2) 要使得
$$I[g(\theta)] = \frac{I(\theta)}{[g'(\theta)]^2} = \frac{1}{\theta [g'(\theta)]^2} = c$$
 为常数与 θ 无关,

$$\mathbb{P}[g'(\theta)]^2 = \frac{1}{c\theta}, \quad g'(\theta) = \frac{1}{\sqrt{c\theta}}, \quad \mathbb{P}[g(\theta)] = \frac{2}{\sqrt{c}}\sqrt{\theta},$$

取
$$g(\theta) = \sqrt{\theta}$$
,有 $g'(\theta) = \frac{1}{2\sqrt{\theta}}$,

故
$$I[g(\theta)] = \frac{I(\theta)}{\left[g'(\theta)\right]^2} = \frac{1/\theta}{\left[1/(2\sqrt{\theta})\right]^2} = 4 与 \theta$$
 无关.

14. 设 X_1 , …, X_n 为独立同分布变量, $0 < \theta < 1$,

$$P\{X_1 = -1\} = \frac{1-\theta}{2}, \quad P\{X_1 = 0\} = \frac{1}{2}, \quad P\{X_1 = 1\} = \frac{\theta}{2}.$$

- (1) 求 θ 的 MLE $\hat{\theta}_1$, 并问 $\hat{\theta}_1$ 是否无偏的;
- (2) 求 θ 的矩估计 $\hat{\theta}_2$;
- (3) 计算 θ 的无偏估计的方差的 C-R 下界.
- 解: (1) 方法一: 设 X_1 , …, X_n 中取值-1, 0, 1 分别有 n_{-1} , n_0 , n_1 次,有 n_{-1} + n_0 + n_1 = n,

则似然函数
$$L(\theta) = \left(\frac{1-\theta}{2}\right)^{n_0} \left(\frac{1}{2}\right)^{n_0} \left(\frac{\theta}{2}\right)^{n_1} = \frac{(1-\theta)^{n_{-1}}\theta^{n_1}}{2^n}$$
,有 $\ln L(\theta) = n_{-1}\ln(1-\theta) + n_1\ln\theta - n\ln2$,

$$\diamondsuit \frac{d \ln L(\theta)}{d \theta} = n_{-1} \cdot \frac{-1}{1-\theta} + n_{1} \cdot \frac{1}{\theta} = 0 , \quad \textcircled{#} \theta = \frac{n_{1}}{n_{-1} + n_{1}} ,$$

故
$$\theta$$
的 MLE $\hat{\theta}_1 = \frac{n_1}{n_{-1} + n_1}$;

方法二: 总体 X 概率函数为

$$p(x;\theta) = \left(\frac{1-\theta}{2}\right)^{\frac{x(x-1)}{2}} \left(\frac{1}{2}\right)^{-(x+1)(x-1)} \left(\frac{\theta}{2}\right)^{\frac{x(x+1)}{2}} = \frac{1}{2}(1-\theta)^{\frac{x^2-x}{2}}\theta^{\frac{x^2+x}{2}}, \quad x = -1, 0, 1,$$

则似然函数
$$L(\theta) = \prod_{i=1}^n \frac{1}{2} (1-\theta)^{\frac{x_i^2 - x_i}{2}} \theta^{\frac{x_i^2 + x_i}{2}} = \frac{1}{2^n} (1-\theta)^{\frac{1}{2} \left(\sum_{i=1}^n x_i^2 - \sum_{i=1}^n x_i\right)} \theta^{\frac{1}{2} \left(\sum_{i=1}^n x_i^2 + \sum_{i=1}^n x_i\right)},$$

有
$$\ln L(\theta) = \frac{1}{2} \left(\sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \right) \ln(1-\theta) + \frac{1}{2} \left(\sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} x_i \right) \ln \theta - n \ln 2$$

故
$$\theta$$
的 MLE $\hat{\theta}_1 = \frac{1}{2} + \frac{\sum_{i=1}^n X_i}{2\sum_{i=1}^n X_i^2}$;

(注: 因 X_i 全部可能取值-1, 0, 1, 有 $\sum_{i=1}^n X_i^2 = n_{-1} + n_1$, $\sum_{i=1}^n X_i = n_1 - n_{-1}$, 即以上两个结果一致)

$$\boxtimes E(\hat{\theta}_1) = E\left(\frac{n_1}{n_{-1} + n_1}\right) = E\left[E\left(\frac{n_1}{n_{-1} + n_1}\middle| n_{-1} + n_1\right)\right],$$

且
$$P\{X=1 \mid X=-1$$
或 $X=1\}=\frac{P\{X=1\}}{P\{X=-1$ 或 $X=1\}}=\frac{\frac{\theta}{2}}{\frac{1-\theta}{2}+\frac{\theta}{2}}=\theta$,

则在 $n_{-1} + n_1 = m$ 的条件下, n_1 服从二项分布 $b(m, \theta)$, $E(n_1 | n_{-1} + n_1 = m) = m\theta$,

可得
$$E\left(\frac{n_1}{n_{-1}+n_1}\middle|n_{-1}+n_1=m\right)=\frac{1}{m}E(n_1\middle|n_{-1}+n_1=m)=\theta$$
,即 $E\left(\frac{n_1}{n_{-1}+n_1}\middle|n_{-1}+n_1\right)=\theta$,

故
$$E(\hat{\theta}_1) = E\left[E\left(\frac{n_1}{n_{-1}+n_1}\middle|n_{-1}+n_1\right)\right] = E(\theta) = \theta$$
, $\hat{\theta}_1$ 是 θ 的无偏估计;

(2) 因
$$E(X) = (-1) \times \frac{1-\theta}{2} + 0 \times \frac{1}{2} + 1 \times \frac{\theta}{2} = \theta - \frac{1}{2}$$
,有 $\theta = E(X) + \frac{1}{2}$,故 θ 的矩估计 $\hat{\theta}_2 = \overline{X} - \frac{1}{2}$;

(3) 因总体
$$X$$
 概率函数为 $p(x;\theta) = \frac{1}{2}(1-\theta)^{\frac{x^2-x}{2}}\theta^{\frac{x^2+x}{2}}$, $x = -1, 0, 1$,

有
$$\ln p(x;\theta) = \frac{x^2 - x}{2} \ln(1 - \theta) + \frac{x^2 + x}{2} \ln \theta - \ln 2$$
,

$$\mathbb{I} \frac{\partial}{\partial \theta} \ln p(x; \theta) = \frac{x^2 - x}{2} \cdot \frac{-1}{1 - \theta} + \frac{x^2 + x}{2} \cdot \frac{1}{\theta},$$

$$\mathbb{H}\frac{\partial^2}{\partial \theta^2} \ln p(x;\theta) = \frac{x^2 - x}{2} \cdot \frac{-1}{(1 - \theta)^2} - \frac{x^2 + x}{2} \cdot \frac{1}{\theta^2} = -\frac{[(1 - \theta)^2 + \theta^2]x^2 + [(1 - \theta)^2 - \theta^2]x}{2\theta^2(1 - \theta)^2},$$

可得费希尔信息量
$$I(\theta) = -E\left[\frac{\partial^2}{\partial \theta^2} \ln p(X;\theta)\right] = \frac{[(1-\theta)^2 + \theta^2]E(X^2) + [(1-\theta)^2 - \theta^2]E(X)}{2\theta^2(1-\theta)^2}$$
,

$$\text{If }I(\theta) = \frac{(2\theta^2-2\theta+1)\cdot\frac{1}{2}+(1-2\theta)\cdot\left(\theta-\frac{1}{2}\right)}{2\theta^2(1-\theta)^2} = \frac{\theta-\theta^2}{2\theta^2(1-\theta)^2} = \frac{1}{2\theta(1-\theta)}\,,$$

故
$$\theta$$
的 C-R 下界为 $\frac{1}{nI(\theta)} = \frac{2\theta(1-\theta)}{n}$.

- 15. 设总体 $X \sim Exp(1/\theta)$, X_1 , …, X_n 是样本, θ 的矩估计和最大似然估计都是 \overline{X} ,它也是 θ 的相合估计和 无偏估计,试证明在均方误差准则下存在优于 \overline{X} 的估计(提示:考虑 $\hat{\theta}_a = a\overline{X}$,找均方误差最小者).
- 注: 此题与习题 6.3 第 9 题相同,这里省略.

习题 6.5

- 1. 设一页书上的错别字个数服从泊松分布 $P(\lambda)$,有两个可能取值: 1.5 和 1.8,且先验分布为 $P\{\lambda=1.5\}=0.45$, $P\{\lambda=1.8\}=0.55$, 现检查了一页,发现有 3 个错别字,试求 λ 的后验分布.
- 解: 总体 X表示一页书上的错别字个数, $X \sim P(\lambda)$,样本为 $X_1 = 3$,有 $P\{X_1 = k\} = \frac{\lambda^k}{k!} e^{-\lambda}$, $k = 0, 1, 2, \cdots$,则 $P\{X_1 = 3\} = P\{\lambda = 1.5\} P\{X_1 = 3 \mid \lambda = 1.5\} + P\{\lambda = 1.8\} P\{X_1 = 3 \mid \lambda = 1.8\}$ $= 0.45 \times \frac{1.5^3}{6} \cdot e^{-1.5} + 0.55 \times \frac{1.8^3}{6} \cdot e^{-1.8} = 0.0565 + 0.0884 = 0.1449$,

故参数
$$\lambda$$
 的后验分布为 $P\{\lambda=1.5 \mid X_1=3\}=\frac{P\{\lambda=1.5\}P\{X_1=3 \mid \lambda=1.5\}}{P\{X_1=3\}}=\frac{0.0565}{0.1449}=0.3899$,

$$P\{\lambda = 1.8 \mid X_1 = 3\} = \frac{P\{\lambda = 1.8\}P\{X_1 = 3 \mid \lambda = 1.8\}}{P\{X_1 = 3\}} = \frac{0.0884}{0.1449} = 0.6101.$$

- 2. 设总体为均匀分布 $U(\theta, \theta+1)$, θ 的先验分布是均匀分布 U(10, 16). 现有三个观测值: 11.7, 12.1, 12.0. 求 θ 的后验分布.
- 解: 参数 θ 的先验分布为 $\pi(\theta) = \frac{1}{6} I_{10<\theta<16}$,

总体X的条件分布为 $p(x|\theta) = I_{\theta < x < \theta + 1}$,

有样本 X_1, X_2, X_3 的联合条件分布为 $p(x_1, x_2, x_3 | \theta) = I_{\theta \le x_1, x_2, x_3 \le \theta + 1}$,

则样本 X_1, X_2, X_3 和参数 θ 的联合分布为

$$h(x_1, x_2, x_3, \theta) = \frac{1}{6} I_{\theta < x_1, x_2, x_3 < \theta + 1, 10 < \theta < 16} = \frac{1}{6} I_{x_{(3)} - 1 < \theta < x_{(1)}, 10 < \theta < 16},$$

可得样本 X_1, X_2, X_3 的边际分布为 $m(x_1, x_2, x_3) = \int_{-\infty}^{+\infty} \frac{1}{6} I_{x_{(3)} - 1 < \theta < x_{(1)}, 10 < \theta < 16} d\theta = \int_{11.1}^{11.7} \frac{1}{6} d\theta = 0.1$

故参数 θ 的后验分布为 $\pi(\theta \mid x_1, x_2, x_3) = \frac{h(x_1, x_2, x_3, \theta)}{m(x_1, x_2, x_3)} = \frac{5}{3} \mathbf{I}_{11.1 < \theta < 11.7}$.

3. 设 X_1, \dots, X_n 是来自几何分布的样本,总体分布列为

$$P\{X=k \mid \theta\} = \theta(1-\theta)^k, \quad k=0,1,2,\dots,$$

 θ 的先验分布是均匀分布 U(0,1).

- (1) 求 θ 的后验分布;
- (2) 若 4 次观测值为 4, 3, 1, 6, 求 θ 的贝叶斯估计.
- 解: (1) 参数 θ 的先验分布为 $\pi(\theta) = I_{0 < \theta < 1}$, 因样本 X_1, \dots, X_n 的联合条件分布为

$$p(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n \theta (1-\theta)^{x_i} = \theta^n (1-\theta)^{x_1+\dots+x_n}, \ x_1, \dots, x_n = 0, 1, 2, \dots,$$

则样本 X_1, \dots, X_n 和参数 θ 的联合分布为

$$h(x_1, \dots, x_n, \theta) = \theta^n (1 - \theta)^{x_1 + \dots + x_n} \mathbf{I}_{0 < \theta < 1}, x_1, \dots, x_n = 0, 1, 2, \dots,$$

样本 X_1, \dots, X_n 的边际分布为

$$m(x_1, \dots, x_n) = \int_0^1 \theta^n (1 - \theta)^{x_1 + \dots + x_n} d\theta = \frac{\Gamma(n+1)\Gamma(x_1 + \dots + x_n + 1)}{\Gamma(n+x_1 + \dots + x_n + 2)}, \quad x_1, \dots, x_n = 0, 1, 2, \dots,$$

故参数 的后验分布为

$$\pi(\theta \mid x_1, \dots, x_n) = \frac{h(x_1, \dots, x_n, \theta)}{m(x_1, \dots, x_n)} = \frac{\Gamma(n + x_1 + \dots + x_n + 2)}{\Gamma(n + 1)\Gamma(x_1 + \dots + x_n + 1)} \theta^n (1 - \theta)^{x_1 + \dots + x_n} \mathbf{I}_{0 < \theta < 1};$$

(2)
$$\boxtimes E(\theta \mid x_1, \dots, x_n) = \int_0^1 \theta \cdot \pi(\theta \mid x_1, \dots, x_n) d\theta = \frac{\Gamma(n + x_1 + \dots + x_n + 2)}{\Gamma(n+1)\Gamma(x_1 + \dots + x_n + 1)} \int_0^1 \theta^{n+1} (1 - \theta)^{x_1 + \dots + x_n} d\theta$$

$$= \frac{\Gamma(n+x_1+\cdots+x_n+2)}{\Gamma(n+1)\Gamma(x_1+\cdots+x_n+1)} \cdot \frac{\Gamma(n+2)\Gamma(x_1+\cdots+x_n+1)}{\Gamma(n+x_1+\cdots+x_n+3)} = \frac{n+1}{n+x_1+\cdots+x_n+2},$$

则贝叶斯估计
$$\hat{\theta}_B = E(\theta \mid X_1, \dots, X_n) = \frac{n+1}{n+X_1+\dots+X_n+2}$$
,

因样本观测值为 4, 3, 1, 6, 即 $x_1 + \cdots + x_n = 15$, n = 4,

故
$$\hat{\theta}_B = \frac{4+1}{4+14+2} = \frac{1}{4}$$
.

验证: 泊松分布的均值λ的共轭先验分布是伽玛分布.

证: 设参数 λ 的先验分布是伽玛分布 $Ga(\alpha, \beta)$, 密度函数为 $\pi(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda} I_{\lambda>0}$,

因样本 X_1, \dots, X_n 的联合条件分布为

$$p(x_1, \dots, x_n \mid \lambda) = \prod_{i=1}^n \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} = \frac{\lambda^{x_1 + \dots + x_n}}{x_1! \cdots x_n!} e^{-n\lambda}, \quad x_1, \dots, x_n = 0, 1, 2, \dots,$$

则样本 X_1, \dots, X_n 和参数 λ 的联合分布为

$$h(x_1, \dots, x_n, \lambda) = \frac{\beta^{\alpha} \lambda^{x_1 + \dots + x_n + \alpha - 1}}{\Gamma(\alpha) x_1! \cdots x_n!} e^{-(n+\beta)\lambda} I_{\lambda > 0}, \quad x_1, \dots, x_n = 0, 1, 2, \dots,$$

样本 X_1, \dots, X_n 的边际分布为

$$m(x_{1}, \dots, x_{n}) = \int_{0}^{+\infty} \frac{\beta^{\alpha} \lambda^{x_{1} + \dots + x_{n} + \alpha - 1}}{\Gamma(\alpha) x_{1}! \cdots x_{n}!} e^{-(n+\beta)\lambda} d\lambda = \frac{\beta^{\alpha}}{\Gamma(\alpha) x_{1}! \cdots x_{n}!} \int_{0}^{+\infty} \lambda^{x_{1} + \dots + x_{n} + \alpha - 1} e^{-(n+\beta)\lambda} d\lambda$$
$$= \frac{\beta^{\alpha}}{\Gamma(\alpha) x_{1}! \cdots x_{n}!} \cdot \frac{\Gamma(x_{1} + \dots + x_{n} + \alpha)}{(n+\beta)^{x_{1} + \dots + x_{n} + \alpha}}, \quad x_{1}, \dots, x_{n} = 0, 1, 2, \dots,$$

即参数2的后验分布为

$$\pi(\lambda \mid x_1, \dots, x_n) = \frac{h(x_1, \dots, x_n, \lambda)}{m(x_1, \dots, x_n)} = \frac{(n+\beta)^{x_1+\dots+x_n+\alpha}}{\Gamma(x_1+\dots+x_n+\alpha)} \lambda^{x_1+\dots+x_n+\alpha-1} e^{-(n+\beta)\lambda} I_{\lambda>0},$$

后验分布仍为伽玛分布 $Ga(x_1 + \cdots + x_n + \alpha, n + \beta)$,

故伽玛分布是泊松分布的均值λ的共轭先验分布.

- 5. 验证:正态总体方差(均值已知)的共轭先验分布是倒伽玛分布.
- 证: 设参数 σ^2 的先验分布是倒伽玛分布 $IGa(\alpha, \lambda)$, 密度函数为 $\pi(\sigma^2) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \left(\frac{1}{\sigma^2}\right)^{\alpha+1} e^{-\frac{\lambda}{\sigma^2}}$,

又设总体分布为 $N(\mu_0, \sigma^2)$, 其中 μ_0 已知, 密度函数为 $p(x|\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu_0)^2}{2\sigma^2}}$,

有样本 X_1, \dots, X_n 的联合条件分布为

$$p(x_1, \dots, x_n \mid \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu_0)^2}{2\sigma^2}} = \frac{1}{(\sqrt{2\pi})^n \sigma^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu_0)^2},$$

则样本 X_1, \dots, X_n 和参数 σ^2 的联合分布为

$$h(x_1, \dots, x_n, \sigma^2) = \frac{\lambda^{\alpha}}{(\sqrt{2\pi})^n \Gamma(\alpha)} \cdot \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2} + \alpha + 1} e^{-\frac{1}{\sigma^2} \left[\lambda + \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu_0)^2\right]},$$

样本 X_1, \dots, X_n 的边际分布为

$$\begin{split} m(x_1, \dots, x_n) &= \int_0^{+\infty} \frac{\lambda^{\alpha}}{(\sqrt{2\pi})^n \Gamma(\alpha)} \cdot \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2} + \alpha + 1} e^{-\frac{1}{\sigma^2} \left[\lambda + \frac{1}{2} \sum_{i=1}^n (x_i - \mu_0)^2\right]} d(\sigma^2) \\ &= \frac{\lambda^{\alpha}}{(\sqrt{2\pi})^n \Gamma(\alpha)} \cdot \int_{+\infty}^0 t^{\frac{n}{2} + \alpha + 1} e^{-t \left[\lambda + \frac{1}{2} \sum_{i=1}^n (x_i - \mu_0)^2\right]} \left(-\frac{1}{t^2}\right) dt \\ &= \frac{\lambda^{\alpha}}{(\sqrt{2\pi})^n \Gamma(\alpha)} \cdot \int_0^{+\infty} t^{\frac{n}{2} + \alpha - 1} e^{-t \left[\lambda + \frac{1}{2} \sum_{i=1}^n (x_i - \mu_0)^2\right]} dt = \frac{\lambda^{\alpha}}{(\sqrt{2\pi})^n \Gamma(\alpha)} \cdot \frac{\Gamma\left(\frac{n}{2} + \alpha\right)}{\left[\lambda + \frac{1}{2} \sum_{i=1}^n (x_i - \mu_0)^2\right]^{\frac{n}{2} + \alpha}}, \end{split}$$

即参数 σ^2 的后验分布为

$$\pi(\sigma^{2} \mid x_{1}, \dots, x_{n}) = \frac{\left[\lambda + \frac{1}{2} \sum_{i=1}^{n} (x_{i} - \mu_{0})^{2}\right]^{\frac{n}{2} + \alpha}}{\Gamma\left(\frac{n}{2} + \alpha\right)} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2} + \alpha + 1} e^{-\frac{1}{\sigma^{2}}\left[\lambda + \frac{1}{2} \sum_{i=1}^{n} (x_{i} - \mu_{0})^{2}\right]},$$

后验分布仍为倒伽玛分布 $IGa\left(\frac{n}{2}+\alpha,\lambda+\frac{1}{2}\sum_{i=1}^{n}(x_i-\mu_0)^2\right)$,

故倒伽玛分布是参数 σ^2 的共轭先验分布.

6. 设 X_1 , …, X_n 是来自如下总体的一个样本,

$$p(x \mid \theta) = \frac{2x}{\theta^2}, \quad 0 < x < \theta.$$

- (1) 若 θ 的先验分布为均匀分布 U(0,1), 求 θ 的后验分布;
- (2) 若 θ 的先验分布为 $\pi(\theta) = 3\theta^2$, $0 < \theta < 1$, 求 θ 的后验分布.

解: 样本 X_1, \dots, X_n 的联合条件分布为

$$p(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n \frac{2x_i}{\theta^2} \mathbf{I}_{0 < x_i < \theta} = \frac{2^n x_1 \cdots x_n}{\theta^{2n}} \mathbf{I}_{0 < x_1, \dots, x_n < \theta},$$

(1) 因参数 θ 的先验分布为 $\pi(\theta) = I_{0 < \theta < 1}$,则样本 X_1, \dots, X_n 和参数 θ 的联合分布为

$$h(x_1, \dots, x_n, \theta) = \frac{2^n x_1 \dots x_n}{\theta^{2n}} \mathbf{I}_{0 < x_1, \dots, x_n < \theta < 1} = \frac{2^n x_1 \dots x_n}{\theta^{2n}} \mathbf{I}_{x_1, \dots, x_n > 0, x_{(n)} < \theta < 1},$$

样本 X_1, \dots, X_n 的边际分布为

$$m(x_1, \dots, x_n) = \int_{x_{(n)}}^1 \frac{2^n x_1 \cdots x_n}{\theta^{2n}} \mathbf{I}_{x_1, \dots, x_n > 0} d\theta = \frac{2^n x_1 \cdots x_n}{2n - 1} [x_{(n)}^{-(2n - 1)} - 1] \cdot \mathbf{I}_{x_1, \dots, x_n > 0},$$

故参数 θ 的后验分布为

$$\pi(\theta \mid x_1, \dots, x_n) = \frac{h(x_1, \dots, x_n, \theta)}{m(x_1, \dots, x_n)} = \frac{2n - 1}{\theta^{2n} [x_{(n)}^{-(2n - 1)} - 1]} \mathbf{I}_{x_{(n)} < \theta < 1};$$

(2) 因参数 θ 的先验分布为 $\pi(\theta) = 3\theta^2 I_{0<\theta<1}$ 则样本 X_1, \dots, X_n 和参数 θ 的联合分布为

$$h(x_1, \dots, x_n, \theta) = \frac{3 \cdot 2^n x_1 \cdots x_n}{\theta^{2n-2}} \mathbf{I}_{0 < x_1, \dots, x_n < \theta < 1} = \frac{3 \cdot 2^n x_1 \cdots x_n}{\theta^{2n-2}} \mathbf{I}_{x_1, \dots, x_n > 0, x_{(n)} < \theta < 1},$$

样本 X_1, \dots, X_n 的边际分布为

$$m(x_1, \dots, x_n) = \int_{x_{(n)}}^1 \frac{3 \cdot 2^n x_1 \cdots x_n}{\theta^{2n-2}} \mathbf{I}_{x_1, \dots, x_n > 0} d\theta = \frac{3 \cdot 2^n x_1 \cdots x_n}{2n-3} [x_{(n)}^{-(2n-3)} - 1] \cdot \mathbf{I}_{x_1, \dots, x_n > 0},$$

故参数 θ 的后验分布为

$$\pi(\theta \mid x_1, \dots, x_n) = \frac{h(x_1, \dots, x_n, \theta)}{m(x_1, \dots, x_n)} = \frac{2n - 3}{\theta^{2n - 2} [x_{(n)}^{-(2n - 3)} - 1]} I_{x_{(n)} < \theta < 1}.$$

7. 设 X_1, \dots, X_n 是来自如下总体的一个样本,

$$p(x \mid \theta) = \theta x^{\theta - 1}, \quad 0 < x < 1.$$

若取 θ 的先验分布为伽玛分布, 即 $\theta \sim Ga(\alpha, \lambda)$, 求 θ 的后验期望估计.

解: 参数 θ 的先验分布为 $Ga(\alpha, \lambda)$, 密度函数为 $\pi(\theta) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\lambda \theta} I_{\theta>0}$,

因样本 X_1, \dots, X_n 的联合条件分布为

$$p(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n \theta \, x_i^{\theta-1} \mathbf{I}_{0 < x_i < 1} = \theta^n (x_1 \cdots x_n)^{\theta-1} \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e^{(\theta-1) \ln(x_1 \cdots x_n)} \, \mathbf{I}_{0 < x_1, \dots, x_n < 1} = \theta^n \, e$$

则样本 X_1, \dots, X_n 和参数 θ 的联合分布为

$$h(x_1, \dots, x_n, \theta) = \frac{\lambda^{\alpha}}{\Gamma(\alpha) \cdot (x_1 \cdots x_n)} \theta^{n+\alpha-1} e^{-[\lambda - \ln(x_1 \cdots x_n)]\theta} \mathbf{I}_{0 < x_1, \dots, x_n < 1, \theta > 0},$$

样本 X_1, \dots, X_n 的边际分布为

$$m(x_1, \dots, x_n) = \int_0^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha) \cdot (x_1 \dots x_n)} \theta^{n+\alpha-1} e^{-[\lambda - \ln(x_1 \dots x_n)]\theta} \mathbf{I}_{0 < x_1, \dots, x_n < 1} d\theta$$

$$= \frac{\lambda^{\alpha}}{\Gamma(\alpha) \cdot (x_1 \cdots x_n)} \cdot \frac{\Gamma(n+\alpha)}{\left[\lambda - \ln(x_1 \cdots x_n)\right]^{n+\alpha}} \mathbf{I}_{0 < x_1, \cdots, x_n < 1},$$

即参数 θ 的后验分布为

$$\pi(\theta \mid x_1, \dots, x_n) = \frac{h(x_1, \dots, x_n, \theta)}{m(x_1, \dots, x_n)} = \frac{\left[\lambda - \ln(x_1 \dots x_n)\right]^{n+\alpha}}{\Gamma(n+\alpha)} \theta^{n+\alpha-1} e^{-\left[\lambda - \ln(x_1 \dots x_n)\right]\theta} I_{\theta>0},$$

后验分布仍为伽玛分布 $Ga(n + \alpha, \lambda - \ln(x_1 \cdots x_n))$:

$$\boxtimes E(\theta \mid x_1, \dots, x_n) = \int_0^1 \theta \cdot \pi(\theta \mid x_1, \dots, x_n) d\theta = \frac{\left[\lambda - \ln(x_1 \cdots x_n)\right]^{n+\alpha}}{\Gamma(n+\alpha)} \int_0^1 \theta^{n+\alpha} e^{-\left[\lambda - \ln(x_1 \cdots x_n)\right]\theta} d\theta$$

$$= \frac{\left[\lambda - \ln(x_1 \cdots x_n)\right]^{n+\alpha}}{\Gamma(n+\alpha)} \cdot \frac{\Gamma(n+\alpha+1)}{\left[\lambda - \ln(x_1 \cdots x_n)\right]^{n+\alpha+1}} = \frac{n+\alpha}{\lambda - \ln(x_1 \cdots x_n)},$$

故参数 θ 的后验期望估计 $\hat{\theta}_B = \frac{n + \alpha}{\lambda - \ln(X_1 \cdots X_n)}$.

- 8. 设 X_1 , …, X_n 是来自均匀分布 $U(0, \theta)$ 的样本, θ 的先验分布是帕雷托(Pareto)分布,密度函数为 $\pi(\theta) = \frac{\beta \theta_0^{\beta}}{\theta^{\beta+1}}, \ \theta > \theta_0$,其中 β , θ 0 是两个已知的常数.
 - (1) 验证: 帕雷托分布是 θ 的共轭先验分布;

- (2) 求 θ 的贝叶斯估计.
- 解: (1) 参数 θ 的先验分布是帕雷托分布,密度函数为 $\pi(\theta) = \frac{\beta \theta_0^{\beta}}{\theta^{\beta+1}} I_{\theta > \theta_0}$,

因样本 X_1, \dots, X_n 的联合条件分布为

$$p(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n \frac{1}{\theta} \mathbf{I}_{0 < x_i < \theta} = \frac{1}{\theta^n} \mathbf{I}_{0 < x_1, \dots, x_n < \theta},$$

则样本 X_1, \dots, X_n 和参数 θ 的联合分布为

$$h(x_1, \dots, x_n, \theta) = \frac{\beta \theta_0^{\beta}}{\theta^{n+\beta+1}} \mathbf{I}_{0 < x_1, \dots, x_n < \theta, \theta > \theta_0} = \frac{\beta \theta_0^{\beta}}{\theta^{n+\beta+1}} \mathbf{I}_{x_1, \dots, x_n > 0, \theta > \max\{x_1, \dots, x_n, \theta_0\}},$$

样本 X_1, \dots, X_n 的边际分布为

$$m(x_{1}, \dots, x_{n}) = \int_{\max\{x_{1}, \dots, x_{n}, \theta_{0}\}}^{+\infty} \frac{\beta \theta_{0}^{\beta}}{\theta^{n+\beta+1}} I_{x_{1}, \dots, x_{n}>0} d\theta = \beta \theta_{0}^{\beta} \cdot \frac{1}{(n+\beta) [\max\{x_{1}, \dots, x_{n}, \theta_{0}\}]^{n+\beta}} I_{x_{1}, \dots, x_{n}>0},$$

即参数 θ 的后验分布为

$$\pi(\theta \mid x_1, \dots, x_n) = \frac{(n+\beta)[\max\{x_1, \dots, x_n, \theta_0\}]^{n+\beta}}{\theta^{n+\beta+1}} \mathbf{I}_{\theta > \max\{x_1, \dots, x_n, \theta_0\}},$$

后验分布仍为帕雷托分布,其参数为 $n + \beta$ 和 $\max\{x_1, \dots, x_n, \theta_0\}$,故帕雷托分布是参数 θ 的共轭先验分布;

(2)
$$\boxtimes E(\theta \mid x_{1}, \dots, x_{n}) = \int_{\max\{x_{1}, \dots, x_{n}, \theta_{0}\}}^{+\infty} \theta \cdot \pi(\theta \mid x_{1}, \dots, x_{n}) d\theta$$

$$= \int_{\max\{x_{1}, \dots, x_{n}, \theta_{0}\}}^{+\infty} \frac{(n+\beta)[\max\{x_{1}, \dots, x_{n}, \theta_{0}\}]^{n+\beta}}{\theta^{n+\beta}} d\theta$$

$$= (n+\beta)[\max\{x_{1}, \dots, x_{n}, \theta_{0}\}]^{n+\beta} \cdot \frac{[\max\{x_{1}, \dots, x_{n}, \theta_{0}\}]^{-(n+\beta)+1}}{n+\beta-1} = \frac{n+\beta}{n+\beta-1} \max\{x_{1}, \dots, x_{n}, \theta_{0}\},$$

故 θ 的贝叶斯估计 $\hat{\theta}_B = \frac{n+\beta}{n+\beta-1} \max\{X_1, \dots, X_n, \theta_0\}$.

- 9. 设指数分布 $Exp(\theta)$ 中未知参数 θ 的先验分布为伽玛分布 $Ga(\alpha, \lambda)$,现从先验信息得知: 先验均值为 0.0002,先验标准差为 0.01,试确定先验分布.
- 解: 因伽玛分布 $Ga(\alpha, \lambda)$ 密度函数为 $\pi(\theta) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\lambda \theta} I_{\theta>0}$,

则由
$$E(\theta) = \frac{\alpha}{\lambda} = 0.0002$$
, $Var(\theta) = \frac{\alpha}{\lambda^2} = (0.01)^2 = 0.0001$,解得 $\lambda = 2$, $\alpha = 0.0004$,

故参数 θ 的先验分布为伽玛分布 Ga(0.0004, 2).

10. 设 X_1, \dots, X_n 为来自如下幂级数分布的样本,总体分布密度为

$$p(x_1; c, \theta) = cx_1^{c-1}\theta^{-c}I_{0 \le x_1 \le \theta} \quad (c > 0, \theta > 0),$$

- (1) 证明: 若 c 已知,则 θ 的共轭先验分布为帕雷托分布;
- (2) 若 θ 已知,则c的共轭先验分布为伽玛分布.
- 证: 样本 X_1 , …, X_n 的联合条件分布为

$$p(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n c x_i^{c-1} \theta^{-c} \mathbf{I}_{0 < x_i < \theta} = c^n (x_1 \cdots x_n)^{c-1} \theta^{-nc} \mathbf{I}_{0 < x_1, \dots, x_n < \theta},$$

30

(1) 设参数 θ 的先验分布是帕雷托分布,密度函数为 $\pi(\theta) = \frac{\beta \theta_0^{\beta}}{\theta^{\beta+1}} I_{\theta > \theta_0}$,

则样本 X_1, \dots, X_n 和参数 θ 的联合分布为

$$h(x_1, \dots, x_n, \theta) = \frac{\beta \theta_0^{\beta} c^n (x_1 \dots x_n)^{c-1}}{\theta^{nc+\beta+1}} \mathbf{I}_{0 < x_1, \dots, x_n, \theta_0 < \theta} = \frac{\beta \theta_0^{\beta} c^n (x_1 \dots x_n)^{c-1}}{\theta^{nc+\beta+1}} \mathbf{I}_{x_1, \dots, x_n > 0, \theta > \max\{x_1, \dots, x_n, \theta_0\}},$$

样本 X_1, \dots, X_n 的边际分布为

$$m(x_{1}, \dots, x_{n}) = \int_{\max\{x_{1}, \dots, x_{n}, \theta_{0}\}}^{+\infty} \frac{\beta \theta_{0}^{\beta} c^{n} (x_{1} \dots x_{n})^{c-1}}{\theta^{nc+\beta+1}} I_{x_{1}, \dots, x_{n}>0} d\theta$$

$$= \beta \theta_{0}^{\beta} c^{n} (x_{1} \dots x_{n})^{c-1} \frac{\left[\max\{x_{1}, \dots, x_{n}, \theta_{0}\}\right]^{-(nc+\beta)}}{nc+\beta} I_{x_{1}, \dots, x_{n}>0},$$

即参数 θ 的后验分布为

$$\pi(\theta \mid x_1, \dots, x_n) = \frac{(nc + \beta)[\max\{x_1, \dots, x_n, \theta_0\}]^{nc + \beta}}{\theta^{nc + \beta + 1}} \mathbf{I}_{\theta > \max\{x_1, \dots, x_n, \theta_0\}},$$

后验分布仍为帕雷托分布,其参数为 $nc + \beta$ 和 $max\{x_1, \dots, x_n, \theta_0\}$,故帕雷托分布是参数 θ 的共轭先验分布;

(2) 设参数 c 的先验分布为伽玛分布 $Ga(\alpha, \lambda)$, 密度函数为 $\pi(c) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} c^{\alpha-1} e^{-\lambda c} I_{c>0}$,

则样本 X_1, \dots, X_n 和参数 θ 的联合分布为

$$h(x_1, \dots, x_n, c) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} c^{n+\alpha-1} (x_1 \dots x_n)^{c-1} e^{-\lambda c} \theta^{-nc} \mathbf{I}_{0 < x_1, \dots, x_n < \theta, c > 0}$$

$$= \frac{\lambda^{\alpha}}{\Gamma(\alpha) \cdot (x_1 \dots x_n)} c^{n+\alpha-1} e^{-[\lambda + n \ln \theta - \ln(x_1 \dots x_n)]c} \mathbf{I}_{0 < x_1, \dots, x_n < \theta, c > 0},$$

样本 X_1, \dots, X_n 的边际分布为

$$\begin{split} m(x_1, \cdots, x_n) &= \int_0^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha) \cdot (x_1 \cdots x_n)} c^{n+\alpha-1} e^{-[\lambda + n \ln \theta - \ln(x_1 \cdots x_n)]c} I_{0 < x_1, \dots, x_n < \theta} d\theta \\ &= \frac{\lambda^{\alpha}}{\Gamma(\alpha) \cdot (x_1 \cdots x_n)} \cdot \frac{\Gamma(n+\alpha)}{[\lambda + n \ln \theta - \ln(x_1 \cdots x_n)]^{n+\alpha}} I_{0 < x_1, \dots, x_n < \theta} , \end{split}$$

即参数 的后验分布为

$$\pi(c \mid x_1, \dots, x_n) = \frac{\left[\lambda + n \ln \theta - \ln(x_1 \dots x_n)\right]^{n+\alpha}}{\Gamma(n+\alpha)} c^{n+\alpha-1} e^{-\left[\lambda + n \ln \theta - \ln(x_1 \dots x_n)\right]c} I_{c>0},$$

后验分布仍为伽玛分布,其参数为 $n + \alpha$ 和 $\lambda + n \ln \theta - \ln (x_1 \cdots x_n)$,故伽玛分布是参数 c 的共轭先验分布.

11. 某人每天早上在汽车站等公共汽车的时间 (单位: min) 服从均匀分布 $U(0,\theta)$, 其中 θ 未知,假设 θ 的 先验分布为

$$\pi(\theta) = \begin{cases} \frac{192}{\theta^4}, & \theta \ge 4; \\ 0, & \theta < 4. \end{cases}$$

假如此人在三个早上等车的时间分别为 5,3,8 分钟, 求 θ 后验分布.

解: 参数 θ 的先验分布为 $\pi(\theta) = \frac{192}{\theta^4} I_{\theta>4}$,

因样本 X_1, \dots, X_n 的联合条件分布为

$$p(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n \frac{1}{\theta} \mathbf{I}_{0 < x_i < \theta} = \frac{1}{\theta^n} \mathbf{I}_{0 < x_1, \dots, x_n < \theta}$$

则样本 X_1, \dots, X_n 和参数 θ 的联合分布为

$$h(x_1, \dots, x_n, \theta) = \frac{192}{\theta^{n+4}} \mathbf{I}_{0 < x_1, \dots, x_n < \theta, \theta > 4} = \frac{192}{\theta^{n+4}} \mathbf{I}_{x_1, \dots, x_n > 0, \theta > \max\{x_1, \dots, x_n, 4\}},$$

样本 X_1 , …, X_n 的边际分布为

$$m(x_1, \dots, x_n) = \int_{\max\{x_1, \dots, x_n, 4\}}^{+\infty} \frac{192}{\theta^{n+4}} \mathbf{I}_{x_1, \dots, x_n > 0} d\theta = \frac{192}{(n+3) [\max\{x_1, \dots, x_n, 4\}]^{n+3}} \mathbf{I}_{x_1, \dots, x_n > 0},$$

即参数 的后验分布为

$$\pi(\theta \mid x_1, \dots, x_n) = \frac{(n+3)[\max\{x_1, \dots, x_n, 4\}]^{n+3}}{\theta^{n+4}} I_{\theta > \max\{x_1, \dots, x_n, 4\}},$$

后验分布仍为帕雷托分布,其参数为 n+3 和 $\max\{x_1, \dots, x_n, 4\}$,

因样本观测值为 5, 3, 8, 即 $\max\{x_1, \dots, x_n, 4\} = 8$, n = 3,

故参数 θ 的后验分布为帕雷托分布,其参数为6和8,密度函数为

$$\pi(\theta \mid x_1, x_2, x_3) = \frac{6 \times 8^6}{\theta^7} I_{\theta > 8}.$$

- 12. 从正态分布 $N(\theta, 2^2)$ 中随机抽取容量为 100 的样本,又设 θ 的先验分布为正态分布,证明:不管先验分布的标准差为多少,后验分布的标准差一定小于 1/5.
- 解:设 θ 的先验分布为正态分布 $N(\mu, \sigma^2)$,根据书上 P336 例 6.5.3 的结论可知, θ 的后验分布为

$$N\left(\frac{2^{-2}n\overline{X} + \mu\sigma^{-2}}{2^{-2}n + \sigma^{-2}}, \frac{1}{2^{-2}n + \sigma^{-2}}\right) = N\left(\frac{25\overline{X} + \mu\sigma^{-2}}{25 + \sigma^{-2}}, \frac{1}{25 + \sigma^{-2}}\right),$$

故后验分布的标准差为 $\sqrt{\frac{1}{25+\sigma^{-2}}} < \frac{1}{5}$.

13. 设随机变量 X 服从负二项分布, 其概率分布为

$$f(x \mid p) = {x-1 \choose k-1} p^k (1-p)^{x-k}, \quad x = k, k+1, \dots,$$

证明其成功概率 p 共轭先验分布族为贝塔分布族.

证: 设参数 p 的先验分布是贝塔分布 Be(a,b),密度函数为 $\pi(p) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} p^{a-1} (1-p)^{b-1} I_{0 ,因样本 <math>X_1$, \cdots , X_n 的联合条件分布为

$$p(x_1, \dots, x_n \mid p) = \prod_{i=1}^n {x_i - 1 \choose k - 1} p^k (1 - p)^{x_i - k} = \prod_{i=1}^n {x_i - 1 \choose k - 1} \cdot p^{nk} (1 - p)^{\sum_{i=1}^n x_i - nk},$$

则样本 X_1, \dots, X_n 和参数p的联合分布为

$$h(x_1, \dots, x_n, p) = \prod_{i=1}^n {x_i - 1 \choose k - 1} \cdot \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} p^{nk+a-1} (1-p)^{\sum_{i=1}^n x_i - nk+b-1} \mathbf{I}_{0$$

样本 X_1, \dots, X_n 的边际分布为

$$m(x_1, \dots, x_n) = \int_0^1 \prod_{i=1}^n \binom{x_i - 1}{k - 1} \cdot \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} p^{nk+a-1} (1 - p)^{\sum_{i=1}^n x_i - nk + b - 1} dp$$

$$= \prod_{i=1}^n \binom{x_i - 1}{k - 1} \cdot \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \cdot \frac{\Gamma(nk + a) \cdot \Gamma\left(\sum_{i=1}^n x_i - nk + b\right)}{\Gamma\left(\sum_{i=1}^n x_i + a + b\right)},$$

即参数 p 的后验分布为

$$\pi(p \mid x_1, \dots, x_n) = \frac{\Gamma\left(\sum_{i=1}^n x_i + a + b\right)}{\Gamma(nk+a) \cdot \Gamma\left(\sum_{i=1}^n x_i - nk + b\right)} p^{nk+a-1} (1-p)^{\sum_{i=1}^n x_i - nk + b-1} \mathbf{I}_{0$$

后验分布仍为贝塔分布,其参数为 nk + a 和 $\sum_{i=1}^{n} x_i - nk + b$,

故贝塔分布是参数p的共轭先验分布.

14. 从一批产品中抽检 100 个,发现 3 个不合格,假定该产品不合格率 θ 的先验分布为贝塔分布 Be(2, 200),求 θ 的后验分布.

解:参数 θ 的先验分布是贝塔分布 Be(2,200),密度函数为 $\pi(\theta) = \frac{\Gamma(202)}{\Gamma(2)\Gamma(200)}\theta(1-\theta)^{199}I_{0<\theta<1}$,因样本 X_1 ,…, X_n 的联合条件分布为

$$p(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i} = \theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i},$$

则样本 X_1, \dots, X_n 和参数 θ 的联合分布为

$$h(x_1, \dots, x_n, \theta) = \frac{\Gamma(202)}{\Gamma(2)\Gamma(200)} \theta^{1 + \sum_{i=1}^{n} x_i} (1 - \theta)^{n + 199 - \sum_{i=1}^{n} x_i} \mathbf{I}_{0 < \theta < 1},$$

样本 X_1, \dots, X_n 的边际分布为

$$m(x_1, \dots, x_n) = \int_0^1 \frac{\Gamma(202)}{\Gamma(2)\Gamma(200)} \theta^{1 + \sum_{i=1}^n x_i} (1 - \theta)^{n + 199 - \sum_{i=1}^n x_i} d\theta$$

$$= \frac{\Gamma(202)}{\Gamma(2)\Gamma(200)} \cdot \frac{\Gamma\left(2 + \sum_{i=1}^n x_i\right) \Gamma\left(n + 200 - \sum_{i=1}^n x_i\right)}{\Gamma(n + 200)} ,$$

即参数的后验分布为

$$\pi(\theta \mid x_1, \dots, x_n) = \frac{\Gamma(n+202)}{\Gamma\left(2 + \sum_{i=1}^n x_i\right) \Gamma\left(n+200 - \sum_{i=1}^n x_i\right)} \theta^{1 + \sum_{i=1}^n x_i} (1 - \theta)^{n+199 - \sum_{i=1}^n x_i} I_{0 < \theta < 1},$$

后验分布仍为贝塔分布, 其参数为 $2 + \sum_{i=1}^{n} x_i$ 和 $n + 200 - \sum_{i=1}^{n} x_i$,

$$\boxtimes n = 100, \quad \sum_{i=1}^{n} x_i = 3,$$

故参数 θ 的后验分布为贝塔分布 Be(5,297), 密度函数为

$$\pi(\theta \mid x_1, \dots, x_n) = \frac{\Gamma(302)}{\Gamma(5)\Gamma(297)} \theta^4 (1 - \theta)^{296} I_{0 < \theta < 1}.$$

习题 6.6

- 1. 某厂生产的化纤强度服从正态分布,长期以来其标准差稳定在 $\sigma = 0.85$,现抽取了一个容量为 n = 25 的样本,测定其强度,算得平均值为 $\bar{x} = 2.25$,试求这批化纤平均强度的置信水平为 0.95 的置信区间.
- 解: 已知 σ^2 ,估计 μ ,选取枢轴量 $U = \frac{\overline{X} \mu}{\sigma/\sqrt{n}} \sim N(0,1)$,置信区间为 $\left[\overline{X} \pm u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$,

置信度 $1-\alpha=0.95$, $u_{1-\alpha/2}=u_{0.975}=1.96$, $\bar{x}=2.25$, $\sigma=0.85$,n=25,

故
$$\mu$$
 的 0.95 置信区间为 $\left[\bar{x} \pm u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right] = \left[2.25 \pm 1.96 \times \frac{0.85}{\sqrt{25}} \right] = [1.9168, 2.5832].$

- 2. 总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知,问样本容量 n 取多大时才能保证 μ 的置信水平为 95%的置信区间的长度不大于 k.
- 解: 已知 σ^2 ,估计 μ ,选取枢轴量 $U = \frac{\overline{X} \mu}{\sigma/\sqrt{n}} \sim N(0,1)$,置信区间为 $\left[\overline{X} \pm u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$,长度为 $2u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$,

置信度
$$1-\alpha=0.95$$
, $u_{1-\alpha/2}=u_{0.975}=1.96$,有置信区间的长度 $2u_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}=2\times1.96\times\frac{\sigma}{\sqrt{n}}\leq k$,

故
$$\sqrt{n} \ge 3.92 \times \frac{\sigma}{k}$$
, 即 $n \ge \frac{15.3664\sigma^2}{k^2}$.

- 3. 0.50, 1.25, 0.80, 2.00 是取自总体 X 的样本,已知 $Y = \ln X$ 服从正态分布 $N(\mu, 1)$.
 - (1) 求μ的置信水平为95%的置信区间;
 - (2) 求 X 的数学期望的置信水平为 95%的置信区间.

解: (1) 已知
$$\sigma^2$$
,估计 μ ,选取枢轴量 $U = \frac{\overline{Y} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$,置信区间为 $\left[\overline{Y} \pm u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$,

置信度
$$1-\alpha=0.95$$
, $u_{1-\alpha/2}=u_{0.975}=1.96$, $\sigma=1$, $n=4$,

$$\overline{y} = \frac{1}{4} (\ln 0.50 + \ln 1.25 + \ln 0.80 + \ln 2.00) = 0$$
,

故
$$\mu$$
 的 95%置信区间为 $\left[\bar{y}\pm u_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right] = \left[0\pm 1.96\times\frac{1}{\sqrt{4}}\right] = \left[-0.98,0.98\right];$

(2) 因 $Y = \ln X$ 服从正态分布 $N(\mu, 1)$,有 $X = e^Y$,且 Y 的密度函数为 $p(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-\mu)^2}{2}}$,

$$\text{If } E(X) = \int_{-\infty}^{+\infty} e^{y} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-\mu)^{2}}{2}} dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{y^{2}-2\mu y + \mu^{2}-2y}{2}} dy$$

$$=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty} e^{-\frac{y^2-2(\mu+1)y+(\mu+1)^2-2\mu-1}{2}} dy = e^{\mu+\frac{1}{2}}\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-\mu-1)^2}{2}} dy = e^{\mu+\frac{1}{2}},$$

故 E(X) 的 95%置信区间为 $[e^{-0.98+0.5}, e^{0.98+0.5}] = [0.6188, 4.3929].$

- 4. 用一个仪表测量某一物理量 9 次,得样本均值 $\bar{x} = 56.32$,样本标准差 s = 0.22.
 - (1) 测量标准差 σ 大小反映了测量仪表的精度, 试求 σ 的置信水平为 0.95 置信区间;
 - (2) 求该物理量真值的置信水平为 0.99 的置信区间.

解: (1) 估计
$$\sigma^2$$
,选取枢轴量 $\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$,置信区间为 $\left[\frac{(n-1)\cdot S^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)\cdot S^2}{\chi^2_{\alpha/2}(n-1)}\right]$,

置信度 $1-\alpha=0.95$, n=9, $\chi^2_{\alpha/2}(n-1)=\chi^2_{0.025}(8)=2.1797$, $\chi^2_{1-\alpha/2}(n-1)=\chi^2_{0.975}(8)=17.5345$, s=0.22,

故
$$\sigma^2$$
的 0.95 置信区间为 $\left[\frac{(n-1)\cdot s^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)\cdot s^2}{\chi^2_{\alpha/2}(n-1)}\right] = \left[\frac{8\times0.22^2}{17.5345}, \frac{8\times0.22^2}{2.1797}\right] = [0.0221, 0.1776],$

即 σ 的 0.95 置信区间为[$\sqrt{0.0221}$, $\sqrt{0.1776}$]=[0.1486, 0.4215].

(2) 未知
$$\sigma^2$$
,估计 μ ,选取枢轴量 $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$,置信区间为 $\left[\overline{X} \pm t_{1-\alpha/2}(n-1)\frac{S}{\sqrt{n}}\right]$,置信度 $1 - \alpha = 0.99$, $n = 9$, $t_{1-\alpha/2}(n-1) = t_{0.995}(8) = 3.3554$, $\overline{x} = 56.32$, $s = 0.22$,故 μ 的 0.99 置信区间为 $\left[\overline{x} \pm t_{1-\alpha/2}(n-1)\frac{s}{\sqrt{n}}\right] = \left[56.32 \pm 3.3554 \times \frac{0.22}{\sqrt{9}}\right] = [56.0739, 56.5661]$.

- 5. 已知某种材料的抗压强度 $X \sim N(\mu, \sigma^2)$,现随机地抽取 10 个试件进行抗压试验,测得数据如下: 482 493 457 471 510 446 435 418 394 469
 - (1) 求平均抗压强度 μ 的置信水平为 95%的置信区间;
 - (2) 若已知 σ = 30, 求平均抗压强度 μ 的置信水平为 95%的置信区间;
 - (3) 求 σ 的置信水平为95%的置信区间.

解: (1) 未知
$$\sigma^2$$
,估计 μ ,选取枢轴量 $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$,置信区间为 $\left[\overline{X} \pm t_{1-\alpha/2}(n-1)\frac{S}{\sqrt{n}}\right]$,置信度 $1 - \alpha = 0.95$, $n = 10$, $t_{1-\alpha/2}(n-1) = t_{0.975}(9) = 2.2622$, $\overline{x} = 457.5$, $s = 35.2176$,故 μ 的 95%置信区间 $\left[\overline{x} \pm t_{1-\alpha/2}(n-1)\frac{s}{\sqrt{n}}\right] = \left[457.5 \pm 2.2622 \times \frac{35.2176}{\sqrt{10}}\right] = [432.3064, 482.6936]$;

(2) 已知
$$\sigma^2$$
,估计 μ ,选取枢轴量 $U = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$,置信区间为 $\left[\overline{X} \pm u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$,
置信度 $1 - \alpha = 0.95$, $u_{1-\alpha/2} = u_{0.975} = 1.96$, $\overline{x} = 457.5$, $\sigma = 30$, $n = 10$,
故 μ 的 95%置信区间为 $\left[\overline{x} \pm u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right] = \left[457.5 \pm 1.96 \times \frac{30}{\sqrt{10}}\right] = [438.9058, 476.0942]$;

(3) 估计
$$\sigma^2$$
,选取枢轴量 $\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$,置信区间为 $\left[\frac{(n-1)\cdot S^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)\cdot S^2}{\chi^2_{\alpha/2}(n-1)}\right]$,

置信度
$$1-\alpha=0.95$$
, $n=10$, $\chi^2_{\alpha/2}(n-1)=\chi^2_{0.025}(9)=2.7004$, $\chi^2_{1-\alpha/2}(n-1)=\chi^2_{0.975}(9)=19.0228$, $s=35.2176$,

故 σ^2 的 0.95 置信区间为

$$\left[\frac{(n-1)\cdot s^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)\cdot s^2}{\chi^2_{\alpha/2}(n-1)}\right] = \left[\frac{9\times35.2176^2}{19.0228}, \frac{9\times35.2176^2}{2.7004}\right] = [586.7958, 4133.6469],$$

即 σ 的 0.95 置信区间为[$\sqrt{586.7958}$, $\sqrt{4133.6469}$]=[24.2239, 64.2934].

6. 在一批货物中随机抽取 80 件,发现有 11 件不合格品,试求这批货物的不合格品率的置信水平为 0.90 的置信区间.

解: 大样本,估计概率
$$p$$
,选取枢轴量 $U = \frac{\overline{X} - p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{\cdot}{\sim} N(0,1)$,

置信区间为
$$\frac{1}{1+u_{\mathrm{l}-\alpha/2}^2/n}$$
 $\left[\overline{X} + \frac{u_{\mathrm{l}-\alpha/2}^2}{2n} \pm u_{\mathrm{l}-\alpha/2}\sqrt{\frac{\overline{X}(1-\overline{X})}{n} + \frac{u_{\mathrm{l}-\alpha/2}^2}{4n^2}}\right]$

置信度
$$1-\alpha=0.90$$
, $u_{1-\alpha/2}=u_{0.95}=1.645$, $n=80$, $\bar{x}=\frac{11}{80}=0.1375$,

故p的0.90置信区间

$$\frac{1}{1+u_{1-\alpha/2}^2/n} \left[\overline{x} + \frac{u_{1-\alpha/2}^2}{2n} \pm u_{1-\alpha/2} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}} + \frac{u_{1-\alpha/2}^2}{4n^2} \right]$$

$$= \frac{1}{1+1.645^2/80} \left[0.1375 + \frac{1.645^2}{160} \pm 1.645 \times \sqrt{\frac{0.1375 \times 0.8625}{80} + \frac{1.645^2}{4 \times 80^2}} \right] = [0.0859, 0.2128].$$

注: p的 0.90 近似置信区间

$$\left[\overline{x} \pm u_{1-\alpha/2} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}} \right] = \left[0.1375 \pm 1.645 \times \sqrt{\frac{0.1375 \times 0.8625}{80}} \right] = [0.0742, 0.2008];$$

p的 0.90 修正置信区间(修正频率 $\bar{x}^* = \frac{11+2}{80+4} = 0.1548$)

$$\left[\overline{x} * \pm u_{1-\alpha/2} \sqrt{\frac{\overline{x} * (1-\overline{x}^*)}{n+4}}\right] = \left[0.1548 \pm 1.645 \times \sqrt{\frac{0.1548 \times 0.8452}{84}}\right] = \left[0.0898, 0.2197\right].$$

7. 设 X_1, \dots, X_n 是来自泊松分布 $P(\lambda)$ 的样本,证明: λ 的近似 $1-\alpha$ 置信区间为

$$\left[\frac{2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2 - \sqrt{\left(2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2\right)^2 - 4\overline{X}^2}}{2}, \frac{2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2 + \sqrt{\left(2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2\right)^2 - 4\overline{X}^2}}{2}\right].$$

证: 总体
$$X \sim P(\lambda)$$
,有 $n\overline{X} = X_1 + \dots + X_n \sim P(n\lambda)$, $E(\overline{X}) = \lambda$, $Var(\overline{X}) = \frac{\lambda}{n}$, 当 n 很大时, $\overline{X} \sim N\left(\lambda, \frac{\lambda}{n}\right)$,

选取枢轴量
$$U = \frac{\overline{X} - \lambda}{\sqrt{\lambda/n}} \sim N(0,1)$$
, 置信度为 $1 - \alpha$, 即 $P\left\{-u_{1-\alpha/2} \leq \frac{\overline{X} - \lambda}{\sqrt{\lambda/n}} \leq u_{1-\alpha/2}\right\} = 1 - \alpha$,

$$\text{If } -u_{1-\alpha/2}\sqrt{\frac{\lambda}{n}} \leq \overline{X} - \lambda \leq u_{1-\alpha/2}\sqrt{\frac{\lambda}{n}} \text{ , } \text{ } \text{If } (\overline{X} - \lambda)^2 \leq u_{1-\alpha/2}^2 \cdot \frac{\lambda}{n} \text{ , } \text{ } \lambda^2 - \left(2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2\right)\lambda + \overline{X}^2 \leq 0 \text{ , }$$

解得
$$\frac{2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2 - \sqrt{\left(2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2\right)^2 - 4\overline{X}^2}}{2} \le \lambda \le \frac{2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2 + \sqrt{\left(2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2\right)^2 - 4\overline{X}^2}}{2},$$

置信区间为
$$\frac{2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2 - \sqrt{\left(2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2\right)^2 - 4\overline{X}^2}}{2}, \frac{2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2 + \sqrt{\left(2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2\right)^2 - 4\overline{X}^2}}{2} \right].$$

8. 某商店某种商品的月销售量服从泊松分布,为合理进货,必须了解销售情况.现记录了该商店过去的一些销售量,数据如下:

试求平均月销售量的置信水平为 0.95 的置信区间.

解:估计泊松分布的参数 λ ,由第7题的结论可知 λ 的近似 $1-\alpha$ 置信区间为

$$\left[\frac{2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2 \pm \sqrt{\left(2\overline{X} + \frac{1}{n}u_{1-\alpha/2}^2\right)^2 - 4\overline{X}^2}}{2} \right] = \left[\overline{X} + \frac{1}{2n}u_{1-\alpha/2}^2 \pm \sqrt{\left(\overline{X} + \frac{1}{2n}u_{1-\alpha/2}^2\right)^2 - \overline{X}^2} \right],$$

置信度 $1-\alpha=0.95$, $u_{1-\alpha/2}=u_{0.975}=1.96$, $\bar{x}=11.9792$, n=48, 故 λ 的 0.95 置信区间

$$\left[\overline{x} + \frac{1}{2n} u_{1-\alpha/2}^2 \pm \sqrt{\left(\overline{x} + \frac{1}{2n} u_{1-\alpha/2}^2 \right)^2 - \overline{x}^2} \right]$$

$$= \left[11.9792 + \frac{1.96^2}{2 \times 48} \pm \sqrt{\left(11.9792 + \frac{1.96^2}{2 \times 48} \right)^2 - 11.9792^2} \right] = [11.0392, 12.9992].$$

- 9. 设从总体 $X \sim N(\mu_1, \sigma_1^2)$ 和总体 $Y \sim N(\mu_2, \sigma_2^2)$ 中分别抽取容量为 $n_1 = 10, n_2 = 15$ 的独立样本,可计算 得 $\bar{x} = 82, \ s_x^2 = 56.5, \ \bar{y} = 76, \ s_y^2 = 52.4$.
 - (1) 若已知 $\sigma_1^2=64$, $\sigma_2^2=49$, 求 $\mu_1-\mu_2$ 的置信水平为 95%的置信区间;
 - (2) 若已知 $\sigma_1^2 = \sigma_2^2$, 求 $\mu_1 \mu_2$ 的置信水平为95%的置信区间;
 - (3) 若对 σ_1^2 , σ_2^2 一无所知,求 $\mu_1 \mu_2$ 的置信水平为95%的近似置信区间;
 - (4) 求 σ_1^2/σ_2^2 的置信水平为95%的置信区间.

解: (1) 已知
$$\sigma_1^2$$
, σ_2^2 , 估计 $\mu_1 - \mu_2$, 选取枢轴量 $U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$,

置信区间为
$$\left[\overline{X} - \overline{Y} \pm u_{1-\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right]$$
,

置信度 $1-\alpha=0.95$, $u_{1-\alpha/2}=u_{0.975}=1.96$, $\bar{x}=82$, $\bar{y}=76$, $\sigma_1^2=64$, $\sigma_2^2=49$, $n_1=10$, $n_2=15$,故 $\mu_1-\mu_2$ 的 95%置信区间为

$$\left[\overline{x} - \overline{y} \pm u_{1-\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right] = \left[82 - 76 \pm 1.96 \times \sqrt{\frac{64}{10} + \frac{49}{15}} \right] = \left[-0.0939, 12.0939 \right];$$

(2) 未知
$$\sigma_1^2$$
, σ_2^2 ,但 $\sigma_1^2 = \sigma_2^2$,估计 $\mu_1 - \mu_2$,选取枢轴量 $T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$,

置信区间为
$$\left[\overline{X} - \overline{Y} \pm t_{1-\alpha/2}(n_1 + n_2 - 2) \cdot S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right]$$
,

置信度 $1-\alpha=0.95$, $n_1=10$, $n_2=15$, $t_{1-\alpha/2}(n_1+n_2-2)=t_{0.975}(23)=2.0687$,

$$\overline{x} = 82$$
, $s_x^2 = 56.5$, $\overline{y} = 76$, $s_y^2 = 52.4$, $\overline{f} s_w = \sqrt{\frac{9 \times 56.5 + 14 \times 52.4}{23}} = 7.3488$,

故 $\mu_1 - \mu_2$ 的 95%置信区间为

$$\left[\overline{x} - \overline{y} \pm t_{1-\alpha/2}(n_1 + n_2 - 2) \cdot s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right] = \left[82 - 76 \pm 2.0687 \times 7.3488 \times \sqrt{\frac{1}{10} + \frac{1}{15}}\right]$$

$$= [-0.2063, 12.2063];$$

(3) 未知 σ_1^2, σ_2^2 , 估计 $\mu_1 - \mu_2$,

选取枢轴量
$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_x^2}{n_1} + \frac{S_y^2}{n_2}}} \sim t(l_0)$$
, l_0 是最接近 $l = \frac{\left(\frac{S_x^2}{n_1} + \frac{S_y^2}{n_2}\right)^2}{\frac{S_x^4}{n_1^2(n_1 - 1)} + \frac{S_y^4}{n_2^2(n_2 - 1)}}$ 的整数,

近似置信区间为
$$\mu_1 - \mu_2 \in \left[\overline{X} - \overline{Y} \pm t_{1-\alpha/2}(l_0) \cdot \sqrt{\frac{S_x^2 + S_y^2}{n_1}}\right]$$
,

因
$$n_1 = 10$$
, $n_2 = 15$, $s_x^2 = 56.5$, $s_y^2 = 52.4$, 有 $l = \frac{\left(\frac{56.5}{10} + \frac{52.4}{15}\right)^2}{\frac{56.5^2}{10^2 \times 9} + \frac{52.4^2}{15^2 \times 14}} = 18.9201$, 即取 $l_0 = 19$,

置信度为 $1-\alpha=0.95$, $t_{1-\alpha/2}(l_0)=t_{0.975}(19)=2.0930$, $\overline{x}=82$, $s_x^2=56.5$, $\overline{y}=76$, $s_y^2=52.4$, 故 $\mu_1-\mu_2$ 的 95%置信区间为

$$\left[\overline{x} - \overline{y} \pm t_{1-\alpha/2}(l_0) \cdot \sqrt{\frac{s_x^2}{n_1} + \frac{s_y^2}{n_2}}\right] = \left[82 - 76 \pm 2.0930 \times \sqrt{\frac{56.5}{10} + \frac{52.4}{15}}\right] = \left[-0.3288, 12.3288\right];$$

(4) 估计方差比
$$\frac{\sigma_1^2}{\sigma_2^2}$$
, 选取枢轴量 $F = \frac{S_x^2/\sigma_1^2}{S_y^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$,

置信区间为
$$\left[\frac{S_x^2}{S_y^2} \cdot \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}, \frac{S_x^2}{S_y^2} \cdot \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}\right]$$
,

置信度 $1-\alpha=0.95$, $n_1=10$, $n_2=15$, $F_{1-\alpha/2}(n_1-1,n_2-1)=F_{0.975}(9,14)=3.21$,

$$F_{\alpha/2}(n_1 - 1, n_2 - 1) = F_{0.025}(9, 14) = \frac{1}{F_{0.075}(14, 9)} = \frac{1}{3.80}, \quad s_x^2 = 56.5, \quad s_y^2 = 52.4,$$

故 $\frac{\sigma_1^2}{\sigma_2^2}$ 的 95%置信区间为

$$\left[\frac{s_x^2}{s_y^2} \cdot \frac{1}{F_{0.975}(9,14)}, \frac{s_x^2}{s_y^2} \cdot \frac{1}{F_{0.025}(9,14)}\right] = \left[\frac{56.50}{52.4} \times \frac{1}{3.21}, \frac{56.50}{52.4} \times 3.80\right] = [0.3359, 4.0973].$$

- 10. 假设人体身高服从正态分布,今抽测甲、乙两地区 18 岁~25 岁女青年身高得数据如下:甲地区抽取 10 名,样本均值 1.64 m,样本标准差 0.2 m;乙地区抽取 10 名,样本均值 1.62 m,样本标准差 0.4 m.
 - (1) 两正态总体方差比的置信水平为95%的置信区间;
 - (2) 两正态总体均值差的置信水平为95%的置信区间.

解: (1) 估计方差比
$$\frac{\sigma_1^2}{\sigma_2^2}$$
, 选取枢轴量 $F = \frac{S_x^2/\sigma_1^2}{S_y^2/\sigma_2^2} \sim F(n_1-1, n_2-1)$,

置信区间为
$$\left[\frac{S_x^2}{S_y^2} \cdot \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}, \frac{S_x^2}{S_y^2} \cdot \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)}\right]$$

置信度
$$1-\alpha=0.95$$
, $n_1=10$, $n_2=10$, $F_{1-\alpha/2}(n_1-1,n_2-1)=F_{0.975}(9,9)=4.03$, $s_x=0.2$, $s_y=0.4$,

故
$$\frac{\sigma_1^2}{\sigma_2^2}$$
的 95%置信区间为

$$\left[\frac{s_x^2}{s_y^2} \cdot \frac{1}{F_{0.975}(9,9)}, \frac{s_x^2}{s_y^2} \cdot \frac{1}{F_{0.025}(9,9)}\right] = \left[\frac{0.2^2}{0.4^2} \times \frac{1}{4.03}, \frac{0.2^2}{0.4^2} \times 4.03\right] = [0.0620, 1.0075];$$

(2) 未知 σ_1^2 , σ_2^2 , 估计 $\mu_1 - \mu_2$,

选取枢轴量
$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_x^2}{n_1} + \frac{S_y^2}{n_2}}} \sim t(l_0)$$
, l_0 是最接近 $l = \frac{\left(\frac{S_x^2}{n_1} + \frac{S_y^2}{n_2}\right)^2}{\frac{S_x^4}{n_1^2(n_1 - 1)} + \frac{S_y^4}{n_2^2(n_2 - 1)}}$ 的整数,

近似置信区间为
$$\mu_1 - \mu_2 \in \left[\overline{X} - \overline{Y} \pm t_{1-\alpha/2}(l_0) \cdot \sqrt{\frac{S_x^2}{n_1} + \frac{S_y^2}{n_2}}\right]$$
,

因
$$n_1 = 10$$
, $n_2 = 10$, $s_x = 0.2$, $s_y = 0.4$, 有 $l = \frac{\left(\frac{0.2^2}{10} + \frac{0.4^2}{10}\right)^2}{\frac{0.2^4}{10^2 \times 9} + \frac{0.4^4}{10^2 \times 9}} = 13.2353$, 即取 $l_0 = 13$,

置信度为 $1-\alpha=0.95$, $t_{1-\alpha/2}(l_0)=t_{0.975}(13)=2.1604$, $\overline{x}=1.64$, $s_x=0.2$, $\overline{y}=1.62$, $s_y=0.4$,

故 $\mu_1 - \mu_2$ 的 95%置信区间为

$$\left[\overline{x} - \overline{y} \pm t_{1-\alpha/2}(l_0) \cdot \sqrt{\frac{s_x^2}{n_1} + \frac{s_y^2}{n_2}} \right] = \left[1.64 - 1.62 \pm 2.1604 \times \sqrt{\frac{0.2^2}{10} + \frac{0.4^2}{10}} \right] = \left[-0.2855, 0.3255 \right].$$

- 11. 设总体 X 的密度函数为 $\lambda e^{-\lambda x} I_{x>0}$,其中 $\lambda > 0$ 为未知参数, X_1, \dots, X_n 为抽自此总体的简单随机样本,求 λ 的置信水平为 $1-\alpha$ 的置信区间.
- 解: 总体 X 服从指数分布 $Exp(\lambda)$,有 $Y=2\lambda X\sim Exp\left(\frac{1}{2}\right)=Ga\left(1,\frac{1}{2}\right)=\chi^2(2)$, $n\overline{Y}=Y_1+\cdots+Y_n\sim\chi^2(2n)$,

选取枢轴量 $\chi^2=2n\lambda\overline{X}\sim\chi^2(2n)$, 置信度为 $1-\alpha$, 即 $P\{\chi^2_{\alpha/2}(2n)\leq 2n\lambda\overline{X}\leq\chi^2_{1-\alpha/2}(2n)\}=1-\alpha$,

则
$$\chi^2_{\alpha/2}(2n) \le 2n\lambda \overline{X} \le \chi^2_{1-\alpha/2}(2n)$$
,即 $\frac{\chi^2_{\alpha/2}(2n)}{2n\overline{X}} \le \lambda \le \frac{\chi^2_{1-\alpha/2}(2n)}{2n\overline{X}}$,

故 λ 的置信水平为 $1-\alpha$ 的置信区间为 $\left[\frac{\chi^2_{\alpha/2}(2n)}{2n\overline{X}}, \frac{\chi^2_{1-\alpha/2}(2n)}{2n\overline{X}}\right]$.

12. 设某电子产品的寿命服从指数分布,其密度函数为 $\lambda e^{-\lambda x} I_{x>0}$,现从此批产品中抽取容量为 9 的样本,测得寿命为(单位:千小时)

15, 45, 50, 53, 60, 65, 70, 83, 90,

求平均寿命 1/λ 的置信水平为 0.9 的置信区间和置信上、下限.

解: 估计指数分布的参数 λ ,由第 11 题的结论可知 λ 的 $1-\alpha$ 置信区间为 $\left[\frac{\chi_{\alpha/2}^2(2n)}{2n\overline{X}}, \frac{\chi_{1-\alpha/2}^2(2n)}{2n\overline{X}}\right]$

则平均寿命 $1/\lambda$ 的 $1-\alpha$ 置信区间为 $\left[\frac{2n\overline{X}}{\chi^2_{1-\alpha/2}(2n)}, \frac{2n\overline{X}}{\chi^2_{\alpha/2}(2n)}\right]$

单侧置信上、下限分别为 $\frac{2n\overline{X}}{\chi^2_{\alpha}(2n)}$ 、 $\frac{2n\overline{X}}{\chi^2_{1-\alpha}(2n)}$,

置信度 $1-\alpha=0.9$, n=9, $\chi^2_{\alpha/2}(2n)=\chi^2_{0.05}(18)=9.3905$, $\chi^2_{1-\alpha/2}(2n)=\chi^2_{0.95}(18)=28.8693$, $\overline{x}=59$,

$$\chi_{\alpha}^{2}(2n) = \chi_{0.1}^{2}(18) = 10.8649$$
, $\chi_{1-\alpha}^{2}(2n) = \chi_{0.9}^{2}(18) = 25.9894$,

故平均寿命 1/λ 的 0.9 置信区间为

$$\left[\frac{2n\overline{X}}{\chi_{1-\alpha/2}^{2}(2n)}, \frac{2n\overline{X}}{\chi_{\alpha/2}^{2}(2n)}\right] = \left[\frac{2\times9\times59}{28.8693}, \frac{2\times9\times59}{9.3905}\right] = [36.7865, 113.0930];$$

单侧置信上、下限分别为

$$\frac{2n\overline{X}}{\chi_{\alpha}^{2}(2n)} = \frac{2 \times 9 \times 59}{10.8649} = 97.7460 , \quad \frac{2n\overline{X}}{\chi_{1-\alpha}^{2}(2n)} = \frac{2 \times 9 \times 59}{10.8649} = 40.8628 .$$

13. 设总体 X 的密度函数为

$$p(x;\theta) = \frac{1}{\pi[1 + (x - \theta)^2]}, \quad -\infty < x < +\infty, \quad -\infty < \theta < +\infty,$$

 X_1, \dots, X_n 为抽自此总体的简单随机样本,求位置参数 θ 的置信水平近似为 $1-\alpha$ 的置信区间.

解: 总体X服从柯西分布,根据书上P276例 5.3.10 的结论可知,样本中位数 $m_{0.5} \sim N\left(\theta, \frac{\pi^2}{4n}\right)$,

选取枢轴量
$$U = \frac{m_{0.5} - \theta}{\pi/(2\sqrt{n})} \sim N(0,1)$$
, 置信度为 $1 - \alpha$, 即 $P \left\{ -u_{1-\alpha/2} \le \frac{m_{0.5} - \theta}{\pi/(2\sqrt{n})} \le u_{1-\alpha/2} \right\} = 1 - \alpha$,

$$\text{III} - u_{1-\alpha/2} \leq \frac{m_{0.5} - \theta}{\pi/(2\sqrt{n})} \leq u_{1-\alpha/2} \text{, } \text{III} \ m_{0.5} - u_{1-\alpha/2} \frac{\pi}{2\sqrt{n}} \leq \theta \leq m_{0.5} + u_{1-\alpha/2} \frac{\pi}{2\sqrt{n}} \text{,}$$

故
$$\theta$$
的置信水平为 $1-\alpha$ 的近似置信区间为 $\left[m_{0.5}-u_{1-\alpha/2}\frac{\pi}{2\sqrt{n}},m_{0.5}+u_{1-\alpha/2}\frac{\pi}{2\sqrt{n}}\right]$.

注:因柯西分布数学期望不存在,由样本均值构造枢轴量得到的置信区间不是一个好的估计,总体 X 服从柯西分布 $Ch(1,\theta)$,根据书上习题 4.2 第 11 题的结论可知,柯西分布具有可加性,则 $n\overline{X}=X_1+\cdots+X_n\sim Ch(n,n\theta)$,有 $Y=n\overline{X}-n\theta\sim Ch(n,0)$,其密度函数与分布函数分别为

$$p_Y(y) = \frac{n}{\pi(n^2 + y^2)}$$
, $F_Y(y) = \int_{-\infty}^{y} \frac{n}{\pi(n^2 + t^2)} = \frac{1}{\pi} \arctan \frac{t}{n} \Big|_{x=0}^{y} = \frac{1}{2} + \frac{1}{\pi} \arctan \frac{y}{n}$,

可得其
$$p$$
 分位数 y_p 满足 $F_Y(y_p) = \frac{1}{2} + \frac{1}{\pi} \arctan \frac{y_p}{n} = p$,即 $y_p = n \tan \left(\pi p - \frac{\pi}{2} \right)$,

选取枢轴量 $Y=n\overline{X}-n\theta\sim Ch(n,0)$, 置信度为 $1-\alpha$, 即 $P\left\{y_{\alpha/2}\leq n\overline{X}-n\theta\leq y_{1-\alpha/2}\right\}=1-\alpha$,

$$\text{If } y_{\alpha/2} = -n\tan\frac{\pi(1-\alpha)}{2} \le n\overline{X} - n\theta \le y_{1-\alpha/2} = n\tan\frac{\pi(1-\alpha)}{2}, \quad \text{If } \overline{X} - \tan\frac{\pi(1-\alpha)}{2} \le \theta \le \overline{X} + \tan\frac{\pi(1-\alpha)}{2},$$

故
$$\theta$$
 的置信水平为 $1-\alpha$ 的置信区间为 $\left[\overline{X}-\tan\frac{\pi(1-\alpha)}{2},\overline{X}+\tan\frac{\pi(1-\alpha)}{2}\right]$.

但是该置信区间长度 $2\tan\frac{\pi(1-\alpha)}{2}$ 与样本容量 n 无关,不会随 n 的增加而缩短,不是一个好的估计.

14. 设 X_1 , …, X_n 为抽自正态总体 $N(\mu, 16)$ 的简单随机样本, 为使得 μ 的置信水平为 $1-\alpha$ 的置信区间的长度不大于给定的 L,试问样本容量 n 至少要多少?

解: 已知
$$\sigma^2$$
,估计 μ ,选取枢轴量 $U = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$,置信区间为 $\left[\overline{X} \pm u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$,长度为 $2u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$,

因
$$\sigma^2 = 16$$
,有 $2u_{1-\alpha/2} \frac{4}{\sqrt{n}} \le L$,

故
$$\sqrt{n} \ge \frac{8u_{1-\alpha/2}}{L}$$
,即 $n \ge \frac{64u_{1-\alpha/2}^2}{L^2}$.

15. 设 X_1, \dots, X_n 为抽自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本. 试证

$$\left[\overline{X} - (\mu + k\sigma)\right] / \left[\sum_{i=1}^{n} (X_i - \overline{X})^2\right]^{1/2}$$

为枢轴量, 其中 k 为已知常数.

$$\text{iif:} \quad \boxtimes \frac{\overline{X} - (\mu + k\sigma)}{\left[\sum_{i=1}^{n} (X_i - \overline{X})^2\right]^{1/2}} = \frac{\overline{X} - (\mu + k\sigma)}{\left[(n-1)S^2\right]^{1/2}} = \frac{\overline{X} - \mu}{S\sqrt{n-1}} - \frac{k\sigma}{\left[(n-1)S^2\right]^{1/2}} = \sqrt{n(n-1)} \frac{\overline{X} - \mu}{S/\sqrt{n}} - \frac{k}{\left[\frac{(n-1)S^2}{\sigma^2}\right]^{1/2}} \,,$$

且
$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$
, $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, 分布都与未知参数 μ , σ^2 无关,

故
$$[\overline{X}-(\mu+k\sigma)]/\Big[\sum_{i=1}^n(X_i-\overline{X})^2\Big]^{1/2}$$
的分布与未知参数 μ , σ^2 无关,即为枢轴量.

- 16. 设 X_1 , …, X_n 是来自 $U(\theta-1/2, \theta+1/2)$ 的样本,求 θ 的置信水平为 $1-\alpha$ 的置信区间(提示:证明 $\frac{X_{(n)}+X_{(1)}}{2}-\theta$ 为枢轴量,并求出对应的密度函数).
- 证: 因总体 X 的密度函数与分布函数分别为

$$p(x) = I_{\theta - 0.5 < x < \theta + 0.5}, \quad F(x) = \begin{cases} 0, & x < \theta - 0.5; \\ x - \theta + 0.5, & \theta - 0.5 \le x < \theta + 0.5; \\ 1, & x \ge \theta + 0.5. \end{cases}$$

则(X(1), X(n))的联合密度函数为

由卷积公式得 $U = X_{(1)} + X_{(n)}$ 的密度函数,

当 $2\theta - 1 < u < 2\theta$ 时,

$$p_U(u) = \int_{\theta - \frac{1}{2}}^{\frac{u}{2}} n(n-1)[(u - x_{(1)}) - x_{(1)}]^{n-2} dx_{(1)} = -\frac{n}{2} (u - 2x_{(1)})^{n-1} \Big|_{\theta - \frac{1}{2}}^{\frac{u}{2}} = \frac{n}{2} (u - 2\theta + 1)^{n-1},$$

当 $2\theta \le u < 2\theta + 1$ 时,

$$p_U(u) = \int_{u-\theta-\frac{1}{2}}^{\frac{u}{2}} n(n-1)[(u-x_{(1)})-x_{(1)}]^{n-2} dx_{(1)} = -\frac{n}{2}(u-2x_{(1)})^{n-1}\Big|_{u-\theta-\frac{1}{2}}^{\frac{u}{2}} = \frac{n}{2}(2\theta+1-u)^{n-1},$$

当 $u \le 2\theta - 1$ 或 $u \ge 2\theta + 1$ 时, $p_U(u) = 0$,

令
$$Y = \frac{U}{2} - \theta = \frac{X_{(n)} + X_{(1)}}{2} - \theta$$
, Y的密度函数与分布函数分别为

$$p_{Y}(y) = 2p_{U}(2y + 2\theta) = \begin{cases} n(1+2y)^{n-1}, & -0.5 < y < 0; \\ n(1-2y)^{n-1}, & 0 \le y < 0.5; \\ 0, & \sharp \text{th}. \end{cases} \qquad F_{Y}(y) = \begin{cases} 0, & y < -0.5; \\ \frac{1}{2}(1+2y)^{n}, & -0.5 \le y < 0; \\ 1-\frac{1}{2}(1-2y)^{n}, & 0 \le y < 0.5; \\ 1, & y \ge 0.5. \end{cases}$$

分布与未知参数 θ 无关,Y为枢轴量,

当
$$p < 0.5$$
 时,其 p 分位数 y_p 满足 $F_Y(y_p) = \frac{1}{2}(1+2y_p)^n = p$,即 $y_p = \frac{(2p)^{\frac{1}{n}}-1}{2}$,

当
$$p \ge 0.5$$
 时,其 p 分位数 y_p 满足 $F_Y(y_p) = 1 - \frac{1}{2}(1 - 2y_p)^n = p$,即 $y_p = \frac{1 - \left[2(1 - p)\right]^{\frac{1}{n}}}{2}$,

选取枢轴量
$$Y = \frac{X_{(n)} + X_{(1)}}{2} - \theta$$
, 置信度为 $1 - \alpha$, 即 $P \left\{ y_{\alpha/2} \le \frac{X_{(n)} + X_{(1)}}{2} - \theta \le y_{1-\alpha/2} \right\} = 1 - \alpha$,

$$\text{for } y_{\alpha/2} = \frac{\alpha^{\frac{1}{n}} - 1}{2} \leq \frac{X_{(n)} + X_{(1)}}{2} - \theta \leq y_{1-\alpha/2} = \frac{1 - \alpha^{\frac{1}{n}}}{2} \; , \quad \text{for } \frac{X_{(n)} + X_{(1)}}{2} - \frac{1 - \alpha^{\frac{1}{n}}}{2} \leq \theta \leq \frac{X_{(n)} + X_{(1)}}{2} + \frac{1 - \alpha^{\frac{1}{n}}}{2} \; ,$$

故
$$\theta$$
的置信水平为 $1-\alpha$ 的置信区间为 $\left[\frac{X_{(n)}+X_{(1)}}{2}-\frac{1-\alpha^{\frac{1}{n}}}{2},\frac{X_{(n)}+X_{(1)}}{2}+\frac{1-\alpha^{\frac{1}{n}}}{2}\right].$

- 17. 设 X_1 , …, X_n 为抽自均匀分布 $U(\theta_1, \theta_2)$ 的简单随机样本,记 $X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$ 为其次序统计量. 求: (1) $\theta_2 \theta_1$ 的置信水平为 1α 的置信区间;
 - (2) 求 $\frac{\theta_2 + \theta_1}{2}$ 的置信水平为 1α 的置信区间.
- 解: 因总体 X 的密度函数与分布函数分别为

$$p(x) = \frac{1}{\theta_2 - \theta_1} \mathbf{I}_{\theta_1 < x < \theta_2}, \quad F(x) = \begin{cases} 0, & x < \theta_1; \\ \frac{x - \theta_1}{\theta_2 - \theta_1}, & \theta_1 \le x < \theta_2; \\ 1, & x \ge \theta_2. \end{cases}$$

则(X(1), X(n))的联合密度函数为

$$\begin{split} p_{1n}(x_{(1)},x_{(n)}) &= n(n-1)[F(x_{(n)}) - F(x_{(1)})]^{n-2} p(x_{(1)}) p(x_{(n)}) \cdot \mathbf{I}_{x_{(1)} \le x_{(n)}} \\ &= \frac{n(n-1)(x_{(n)} - x_{(1)})^{n-2}}{(\theta_2 - \theta_1)^n} \mathbf{I}_{\theta_1 < x_{(1)} \le x_{(n)} < \theta_2} \,, \end{split}$$

$$p_U(u) = \int_{\theta_1}^{\theta_2 - u} \frac{n(n-1)[(u + x_{(1)}) - x_{(1)}]^{n-2}}{(\theta_2 - \theta_1)^n} dx_{(1)} = \frac{n(n-1)u^{n-2}(\theta_2 - \theta_1 - u)}{(\theta_2 - \theta_1)^n},$$

当 $u \le 0$ 或 $u \ge \theta_2 - \theta_1$ 时, $p_U(u) = 0$,

令
$$Y = \frac{U}{\theta_2 - \theta_1} = \frac{X_{(n)} - X_{(1)}}{\theta_2 - \theta_1}$$
, Y的密度函数与分布函数分别为

$$p_{Y}(y) = (\theta_{2} - \theta_{1})p_{U}((\theta_{2} - \theta_{1})y) = \begin{cases} n(n-1)y^{n-2}(1-y), & 0 < y < 1; \\ 0, & \text{ 其他.} \end{cases}$$

$$F_{Y}(y) = \begin{cases} 0, & y < 0; \\ ny^{n-1} - (n-1)y^{n}, & 0 \le y < 1; \\ 1, & y \ge 1. \end{cases}$$

可得 Y 服从贝塔分布 Be(n-1,2), 其分布与未知参数 θ_1 , θ_2 无关,Y 为枢轴量,

其
$$p$$
分位数 $y_p = Be_p(n-1,2)$ 满足方程 $F_Y(y_p) = ny_p^{n-1} - (n-1)y_p^n = p$,

选取枢轴量 $Y = \frac{X_{(n)} - X_{(1)}}{\theta_{n} - \theta_{n}}$,置信度为 $1 - \alpha$,即

$$P\left\{Be_{\alpha/2}(n-1,2) \leq \frac{X_{(n)} - X_{(1)}}{\theta_2 - \theta_1} \leq Be_{1-\alpha/2}(n-1,2)\right\} = 1 - \alpha,$$

$$\text{III } Be_{\alpha/2}(n-1,2) \leq \frac{X_{(n)} - X_{(1)}}{\theta_2 - \theta_1} \leq Be_{1-\alpha/2}(n-1,2) , \quad \text{III } \frac{X_{(n)} - X_{(1)}}{Be_{1-\alpha/2}(n-1,2)} \leq \theta_2 - \theta_1 \leq \frac{X_{(n)} - X_{(1)}}{Be_{\alpha/2}(n-1,2)} ,$$

故
$$\theta_2 - \theta_1$$
的置信水平为 $1 - \alpha$ 的置信区间为 $\left[\frac{X_{(n)} - X_{(1)}}{Be_{1-\alpha/2}(n-1,2)}, \frac{X_{(n)} - X_{(1)}}{Be_{\alpha/2}(n-1,2)} \right];$

(2) 由变量替换公式得 $(U, V) = (X_{(n)} - X_{(1)}, X_{(n)} + X_{(1)})$ 的联合密度函数,有 $X_{(1)} = \frac{V - U}{2}, X_{(n)} = \frac{V + U}{2}$

雅可比行列式为
$$J = \begin{vmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} = -\frac{1}{2}$$

$$p_{UV}(u,v) = p_{1n}\left(\frac{v-u}{2},\frac{v+u}{2}\right) \cdot |J| = \frac{n(n-1)u^{n-2}}{2(\theta_2-\theta_1)^n} \cdot I_{0 < u < \theta_2-\theta_1, 2\theta_1+u < v < 2\theta_2-u},$$

令 $V^* = V - (\theta_2 + \theta_1)$, 有 (U, V^*) 的联合密度函数为

$$p_{UV^*}(u, v^*) = p_{UV}(u, v^* + (\theta_2 + \theta_1)) = \frac{n(n-1)u^{n-2}}{2(\theta_2 - \theta_1)^n} \cdot \mathbf{I}_{0 < u < \theta_2 - \theta_1, u - (\theta_2 - \theta_1) < v < (\theta_2 - \theta_1) - u},$$

由增补变量法得
$$Z = \frac{V^*}{2U} = \frac{(X_{(n)} + X_{(1)}) - (\theta_2 + \theta_1)}{2(X_{(n)} - X_{(1)})}$$
 的密度函数,

$$\stackrel{\underline{w}}{=} z < 0 \text{ ft}, \quad p_{Z}(z) = \int_{0}^{\frac{\theta_{Z} - \theta_{1}}{1 - 2z}} \frac{n(n-1)u^{n-2}}{2(\theta_{Z} - \theta_{1})^{n}} \cdot 2u \cdot du = \frac{(n-1)u^{n}}{(\theta_{Z} - \theta_{1})^{n}} \Big|_{0}^{\frac{\theta_{Z} - \theta_{1}}{1 - 2z}} = \frac{n-1}{(1 - 2z)^{n}},$$

$$\stackrel{\underline{u}}{=} z \ge 0 \text{ ft}, \quad p_Z(z) = \int_0^{\frac{\theta_2 - \theta_1}{1 + 2z}} \frac{n(n-1)u^{n-2}}{2(\theta_2 - \theta_1)^n} \cdot 2u \cdot du = \frac{(n-1)u^n}{(\theta_2 - \theta_1)^n} \Big|_0^{\frac{\theta_2 - \theta_1}{1 + 2z}} = \frac{n-1}{(1 + 2z)^n},$$

则Z的分布函数为

$$F_{Z}(z) = \begin{cases} \frac{1}{2} (1 - 2z)^{1-n}, & z < 0; \\ 1 - \frac{1}{2} (1 + 2z)^{1-n}, & z \ge 0. \end{cases}$$

分布与未知参数 θ_1 , θ_2 无关, Z 为枢轴量,

当
$$p < 0.5$$
时,其 p 分位数 z_p 满足 $F_Z(z_p) = \frac{1}{2}(1-2z_p)^{1-n} = p$,即 $z_p = \frac{1-(2p)^{\frac{1}{1-n}}}{2}$,

当
$$p \ge 0.5$$
 时,其 p 分位数 z_p 满足 $F_Z(z_p) = 1 - \frac{1}{2}(1 + 2z_p)^{1-n} = p$,即 $z_p = \frac{[2(1-p)]^{\frac{1}{1-n}} - 1}{2}$,

选取枢轴量
$$Z = \frac{(X_{(n)} + X_{(1)}) - (\theta_2 + \theta_1)}{2(X_{(n)} - X_{(1)})}$$
, 置信度为 $1 - \alpha$, 即

$$P\left\{z_{\alpha/2} \le \frac{(X_{(n)} + X_{(1)}) - (\theta_2 + \theta_1)}{2(X_{(n)} - X_{(1)})} \le z_{1-\alpha/2}\right\} = 1 - \alpha,$$

$$\text{If } z_{\alpha/2} = -\frac{\alpha^{\frac{1}{1-n}} - 1}{2} \leq \frac{(X_{(n)} + X_{(1)}) - (\theta_2 + \theta_1)}{2(X_{(n)} - X_{(1)})} \leq z_{1-\alpha/2} = \frac{\alpha^{\frac{1}{1-n}} - 1}{2} \; ,$$

$$| \mathbb{H} \frac{X_{(n)} + X_{(1)}}{2} - \frac{\alpha^{\frac{1}{1-n}} - 1}{2} (X_{(n)} - X_{(1)}) \le \frac{\theta_2 + \theta_1}{2} \le \frac{X_{(n)} + X_{(1)}}{2} + \frac{\alpha^{\frac{1}{1-n}} - 1}{2} (X_{(n)} - X_{(1)}) ,$$

故 $\frac{\theta_2+\theta_1}{2}$ 的置信水平为 $1-\alpha$ 的置信区间为

$$\left[\frac{X_{(n)}+X_{(1)}}{2}-\frac{\alpha^{\frac{1}{1-n}}-1}{2}(X_{(n)}-X_{(1)}),\frac{X_{(n)}+X_{(1)}}{2}+\frac{\alpha^{\frac{1}{1-n}}-1}{2}(X_{(n)}-X_{(1)})\right].$$

18. 设 X_1, \dots, X_m i.i.d. ~ $U(0, \theta_1)$, Y_1, \dots, Y_n i.i.d. ~ $U(0, \theta_2)$, $\theta_1 > 0$, $\theta_2 > 0$ 皆未知, 且两样本独立, 求 $\frac{\theta_1}{\theta_2}$

的一个置信水平为 $1-\alpha$ 的置信区间(提示:令 $T_1=X_{(m)}$, $T_2=Y_{(n)}$,证明 $\frac{T_2}{T_1}\cdot\frac{\theta_1}{\theta_2}$ 的分布与 θ_1 , θ_2 无关,

并求出对应的密度函数)

证: 令 $T_1 = X_{(m)}$, $T_2 = Y_{(n)}$, 有 $T_1 与 T_2$ 相互独立, 其联合密度函数为

$$p(t_1,t_2) = p_m(t_1)p_n(t_2) = \frac{mt_1^{m-1}}{\theta_1^m} \mathbf{I}_{0 < t_1 < \theta_1} \cdot \frac{nt_2^{n-1}}{\theta_2^n} \mathbf{I}_{0 < t_2 < \theta_2} = \frac{mnt_1^{m-1}t_2^{n-1}}{\theta_1^m \theta_2^n} \mathbf{I}_{0 < t_1 < \theta_1, \ 0 < t_2 < \theta_2},$$

由增补变量法得 $U = \frac{T_2}{T_1}$ 的密度函数,

当
$$0 < u < \frac{\theta_2}{\theta_1}$$
时,

$$p_{U}(u) = \int_{0}^{\theta_{1}} \frac{mnt_{1}^{m-1}(ut_{1})^{n-1}}{\theta_{1}^{m}\theta_{2}^{n}} \cdot t_{1} \cdot dt_{1} = \frac{mnu^{n-1}}{\theta_{1}^{m}\theta_{2}^{n}} \cdot \frac{t_{1}^{m+n}}{m+n} \bigg|_{0}^{\theta_{1}} = \frac{mn}{m+n} u^{n-1} \cdot \left(\frac{\theta_{1}}{\theta_{2}}\right)^{n},$$

$$p_{U}(u) = \int_{0}^{\frac{\theta_{2}}{u}} \frac{mnt_{1}^{m-1}(ut_{1})^{n-1}}{\theta_{1}^{m}\theta_{2}^{n}} \cdot t_{1} \cdot dt_{1} = \frac{mnu^{n-1}}{\theta_{1}^{m}\theta_{2}^{n}} \cdot \frac{t_{1}^{m+n}}{m+n} \Big|_{0}^{\frac{\theta_{2}}{u}} = \frac{mn}{m+n} u^{-m-1} \cdot \left(\frac{\theta_{2}}{\theta_{1}}\right)^{m},$$

当 $u \le 0$ 时, $p_U(u) = 0$,

令 $Y = U \cdot \frac{\theta_1}{\theta_2} = \frac{T_2}{T_1} \cdot \frac{\theta_1}{\theta_2} = \frac{Y_{(n)}}{X_{(m)}} \cdot \frac{\theta_1}{\theta_2}$, Y 的密度函数与分布函数分别为

$$p_{Y}(y) = \frac{\theta_{2}}{\theta_{1}} p_{U} \left(\frac{\theta_{2}}{\theta_{1}} y \right) = \begin{cases} 0, & y \leq 0; \\ \frac{mn}{m+n} y^{n-1}, & 0 < y < 1; \\ \frac{mn}{m+n} y^{-m-1}, & y \geq 1. \end{cases} \qquad F_{Y}(y) = \begin{cases} 0, & y < 0; \\ \frac{m}{m+n} y^{n}, & 0 \leq y < 1; \\ 1 - \frac{n}{m+n} y^{-m}, & y \geq 1. \end{cases}$$

分布与未知参数*θ*I, *θ*. 无关, *Y* 为枢轴量,

当
$$p < \frac{m}{m+n}$$
 时,其 p 分位数 y_p 满足 $F_Y(y_p) = \frac{m}{m+n} y_p^n = p$,即 $y_p = \left[\frac{(m+n)p}{m}\right]^{\frac{1}{n}}$,

当
$$p \ge \frac{m}{m+n}$$
 时,其 p 分位数 y_p 满足 $F_Y(y_p) = 1 - \frac{n}{m+n} y_p^{-m} = p$,即 $z_p = \left\lceil \frac{n}{(m+n)(1-p)} \right\rceil^{\frac{1}{m}}$,

选取枢轴量
$$Y = \frac{Y_{(n)}}{X_{(m)}} \cdot \frac{\theta_1}{\theta_2}$$
, 置信度为 $1 - \alpha$, 即 $P \left\{ y_{\alpha/2} \le \frac{Y_{(n)}}{X_{(m)}} \cdot \frac{\theta_1}{\theta_2} \le y_{1-\alpha/2} \right\} = 1 - \alpha$,

$$\text{If } y_{\alpha/2} = \left\lceil \frac{(m+n)\alpha}{2m} \right\rceil^{\frac{1}{n}} \leq \frac{Y_{(n)}}{X_{(m)}} \cdot \frac{\theta_1}{\theta_2} \leq y_{1-\alpha/2} = \left\lceil \frac{2n}{(m+n)\alpha} \right\rceil^{\frac{1}{m}},$$

$$\operatorname{EP}\frac{X_{(m)}}{Y_{(n)}}\left[\frac{(m+n)\alpha}{2m}\right]^{\frac{1}{n}} \leq \frac{\theta_1}{\theta_2} \leq \frac{X_{(m)}}{Y_{(n)}}\left[\frac{2n}{(m+n)\alpha}\right]^{\frac{1}{m}},$$

故
$$\frac{\theta_1}{\theta_2}$$
 的置信水平为 $1-\alpha$ 的置信区间为 $\left[\frac{X_{(m)}}{Y_{(n)}}\left[\frac{(m+n)\alpha}{2m}\right]^{\frac{1}{n}}, \frac{X_{(m)}}{Y_{(n)}}\left[\frac{2n}{(m+n)\alpha}\right]^{\frac{1}{m}}\right].$

19. 设总体 X 的密度函数为

$$p(x; \theta) = e^{-(x-\theta)} I_{x>\theta}, -\infty < \theta < \infty$$

 X_1, \dots, X_n 为抽自此总体的简单随机样本.

- (1) 证明: $X_{(1)} \theta$ 的分布与 θ 无关,并求出此分布;
- (2) 求 θ 的置信水平为 $1-\alpha$ 的置信区间.

解:(1)总体 X 的分布函数为

$$F(x;\theta) = [1 - e^{-(x-\theta)}] \cdot I_{x>\theta},$$

则 X(1)的密度函数为

$$p_1(x) = n[1 - F(x)]^{n-1} p(x) = n e^{-n(x-\theta)} I_{x>\theta}$$

可得 $Y = X_{(1)} - \theta$ 的密度函数为

$$p_{Y}(y) = p_{1}(y + \theta) = n e^{-ny} I_{y>0}$$
,

故 $Y = X_{(1)} - \theta$ 的分布与 θ 无关,服从指数分布 Exp(n);

(2) 因 $Y=X_{(1)}-\theta$ 的分布函数为

$$F_Y(y) = (1 - e^{-ny})I_{y>0}$$
,

其p分位数 y_p 满足 $F_y(y_p) = 1 - e^{-ny_p} = p$, 即 $y_p = -\frac{1}{n}\ln(1-p)$,

选取枢轴量 $Y=X_{(1)}-\theta$,置信度为 $1-\alpha$,即 $P\{y_{\alpha/2}\leq X_{(1)}-\theta\leq y_{1-\alpha/2}\}=1-\alpha$,

$$\text{ for } y_{\alpha/2} = -\frac{1}{n} \ln \left(1 - \frac{\alpha}{2} \right) \leq X_{(1)} - \theta \leq y_{1-\alpha/2} = -\frac{1}{n} \ln \frac{\alpha}{2} \text{ , } \text{ for } X_{(1)} + \frac{1}{n} \ln \frac{\alpha}{2} \leq \theta \leq X_{(1)} + \frac{1}{n} \ln \left(1 - \frac{\alpha}{2} \right) \text{ , }$$

故 θ 的置信水平为 $1-\alpha$ 的置信区间为 $\left[X_{(1)}+\frac{1}{n}\ln\frac{\alpha}{2},X_{(1)}+\frac{1}{n}\ln\left(1-\frac{\alpha}{2}\right)\right]$.

第七章 假设检验

习题 7.1

1. 设 X_1 , …, X_n 是来自 $N(\mu, 1)$ 的样本,考虑如下假设检验问题 H_0 : $\mu = 2$ vs H_1 : $\mu = 3$,

若检验由拒绝域为 $W = \{\bar{x} \ge 2.6\}$ 确定.

- (1) 当 n = 20 时求检验犯两类错误的概率;
- (2) 如果要使得检验犯第二类错误的概率 $\beta \le 0.01$, n 最小应取多少?
- (3) 证明: $\exists n \to \infty$ 时, $\alpha \to 0$, $\beta \to 0$.
- 解: (1) 犯第一类错误的概率为

$$\alpha = P\{\overline{X} \in W \mid H_0\} = P\{\overline{X} \ge 2.6 \mid \mu = 2\} = P\left\{\frac{\overline{X} - \mu}{1/\sqrt{n}} \ge \frac{2.6 - 2}{1/\sqrt{20}} = 2.68\right\} = 1 - \Phi(2.68) = 0.0037,$$

犯第二类错误的概率为

$$\beta = P\{\overline{X} \notin W \mid H_1\} = P\{\overline{X} < 2.6 \mid \mu = 3\} = P\left\{\frac{\overline{X} - \mu}{1/\sqrt{n}} < \frac{2.6 - 3}{1/\sqrt{20}} = -1.79\right\} = \Phi(-1.79) = 0.0367;$$

(2)
$$|\exists \beta = P\{\overline{X} < 2.6 \mid \mu = 3\} = P\left\{\frac{\overline{X} - \mu}{1/\sqrt{n}} < \frac{2.6 - 3}{1/\sqrt{n}} = -0.4\sqrt{n}\right\} = \Phi(-0.4\sqrt{n}) \le 0.01$$
,

则 $\Phi(0.4\sqrt{n}) \ge 0.99$, $0.4\sqrt{n} \ge 2.33$, $n \ge 33.93$, 故 $n \le 0.95$ 为 34;

(3)
$$\alpha = P\{\overline{X} \ge 2.6 \mid \mu = 2\} = P\left\{\frac{\overline{X} - \mu}{1/\sqrt{n}} \ge \frac{2.6 - 2}{1/\sqrt{n}} = 0.6\sqrt{n}\right\} = 1 - \Phi(0.6\sqrt{n}) \to 0 \quad (n \to \infty),$$

$$\beta = P\{\overline{X} < 2.6 \mid \mu = 3\} = P\left\{\frac{\overline{X} - \mu}{1/\sqrt{n}} < \frac{2.6 - 3}{1/\sqrt{n}} = -0.4\sqrt{n}\right\} = \Phi(-0.4\sqrt{n}) \to 0 \quad (n \to \infty).$$

2. 设 X_1, \dots, X_{10} 是来自 0-1 总体 b(1, p) 的样本,考虑如下检验问题

$$H_0$$
: $p = 0.2$ vs H_1 : $p = 0.4$,

取拒绝域为 $W = \{\bar{x} \ge 0.5\}$, 求该检验犯两类错误的概率.

解: 因
$$X \sim b(1, p)$$
, 有 $\sum_{i=1}^{10} X_i = 10\overline{X} \sim b(10, p)$,

$$\beta = P\{\overline{X} \notin W \mid H_1\} = P\{\overline{X} < 0.5 \mid p = 0.4\} = P\{10\overline{X} < 5 \mid p = 0.4\} = \sum_{k=0}^{4} C_{10}^k \cdot 0.4^k \cdot 0.6^{10-k} = 0.6331.$$

3. 设 X_1 , …, X_{16} 是来自正态总体 $N(\mu, 4)$ 的样本,考虑检验问题

$$H_0: \mu = 6 \text{ vs } H_1: \mu \neq 6,$$

拒绝域取为 $W = \{|\bar{x} - 6| \ge c\}$, 试求 c 使得检验的显著性水平为 0.05,并求该检验在 $\mu = 6.5$ 处犯第二类错误的概率.

1

则 $\Phi(2c) = 0.975$,2c = 1.96,故 c = 0.98;

dx β = $P{\overline{X} ∈ W | H_1}$ = $P{|\overline{X} - 6| < 0.98 | μ = 6.5}$ = $P{-1.48 < \overline{X} - 6.5 < 0.48 | μ = 6.5}$

$$= P \left\{ -2.96 < \frac{\overline{X} - 6.5}{2/\sqrt{16}} < 0.96 \right\} = \Phi(0.96) - \Phi(-2.96) = 0.83.$$

4. 设总体为均匀分布 $U(0, \theta)$, X_1, \dots, X_n 是样本,考虑检验问题 $H_0: \theta \ge 3$ vs $H_1: \theta < 3$,

拒绝域取为 $W = \{\overline{x}_{(n)} \leq 2.5\}$,求检验犯第一类错误的最大值 α ,若要使得该最大值 α 不超过 0.05,n至少应取多大?

解: 因均匀分布最大顺序统计量 $X_{(n)}$ 的密度函数为 $p_n(x) = \frac{nx^{n-1}}{\theta^n} I_{0 < x < \theta}$

$$\text{If } \alpha = P\{\overline{X} \in W \mid H_0\} = P\{X_{(n)} \le 2.5 \mid \theta = 3\} = \int_0^{2.5} \frac{nx^{n-1}}{3^n} dx = \frac{x^n}{3^n} \bigg|_0^{2.5} = \frac{2.5^n}{3^n} = \left(\frac{5}{6}\right)^n,$$

要使得
$$\alpha \le 0.05$$
,即 $\left(\frac{5}{6}\right)^n \le 0.05$, $n \ge \frac{\ln 0.05}{\ln(5/6)} = 16.43$,

故 n 至少为 17.

- 5. 在假设检验问题中, 若检验结果是接受原假设, 则检验可能犯哪一类错误? 若检验结果是拒绝原假设, 则又有可能犯哪一类错误?
- 答: 若检验结果是接受原假设, 当原假设为真时, 是正确的决策, 未犯错误;

当原假设不真时,则犯了第二类错误.

若检验结果是拒绝原假设, 当原假设为真时, 则犯了第一类错误;

当原假设不真时,是正确的决策,未犯错误.

6. 设 X_1 , …, X_{20} 是来自 0-1 总体 b(1,p) 的样本,考虑如下检验问题 $H_0: p = 0.2$ vs $H_1: p \neq 0.2$,

取拒绝域为
$$W = \left\{ \sum_{i=1}^{20} x_i \ge 7$$
或 $\sum_{i=1}^{20} x_i \le 1 \right\}$,

- (1) 求 $p = 0, 0.1, 0.2, \dots, 0.9, 1$ 的势并由此画出势函数的图;
- (2) 求在 p = 0.05 时犯第二类错误的概率.

解: (1) 因
$$X \sim b(1, p)$$
, 有 $\sum_{i=1}^{20} X_i \sim b(20, p)$, 势函数 $g(p) = P\left\{\sum_{i=1}^{20} X_i \in W \middle| p\right\} = 1 - \sum_{k=2}^{6} {20 \choose k} p^k (1-p)^{20-k}$,

故
$$g(0) = 1 - \sum_{k=2}^{6} {20 \choose k} \times 0^k \times 1^{20-k} = 1$$
, $g(0.1) = 1 - \sum_{k=2}^{6} {20 \choose k} \times 0.1^k \times 0.9^{20-k} = 0.3941$,

$$g(0.2) = 1 - \sum_{k=2}^{6} {20 \choose k} \times 0.2^k \times 0.8^{20-k} = 0.1559$$
, $g(0.3) = 1 - \sum_{k=2}^{6} {20 \choose k} \times 0.3^k \times 0.7^{20-k} = 0.3996$,

$$g(0.4) = 1 - \sum_{k=2}^{6} {20 \choose k} \times 0.4^k \times 0.6^{20-k} = 0.7505$$
, $g(0.5) = 1 - \sum_{k=2}^{6} {20 \choose k} \times 0.5^k \times 0.5^{20-k} = 0.9424$,

$$g(0.6) = 1 - \sum_{k=2}^{6} {20 \choose k} \times 0.6^k \times 0.4^{20-k} = 0.9935$$
, $g(0.7) = 1 - \sum_{k=2}^{6} {20 \choose k} \times 0.7^k \times 0.3^{20-k} = 0.9997$,

$$g(0.8) = 1 - \sum_{k=2}^{6} {20 \choose k} \times 0.8^k \times 0.2^{20-k} = 0.9999998$$

$$g(0.9) = 1 - \sum_{k=2}^{6} {20 \choose k} \times 0.9^k \times 0.1^{20-k} \approx 1$$
,

$$g(1) = 1 - \sum_{k=2}^{6} {20 \choose k} \times 1^k \times 0^{20-k} = 1;$$

(2) 在p = 0.05 时犯第二类错误的概率

$$\beta = P\left\{\sum_{i=1}^{20} X_i \notin W \mid p = 0.05\right\} = \sum_{k=2}^{6} {20 \choose k} \times 0.05^k \times 0.95^{20-k} = 0.2641.$$

7. 设一个单一观测的样本取自密度函数为 p(x)的总体,对 p(x)考虑统计假设:

 H_0 : $p_0(x) = I_{0 < x < 1}$ vs H_1 : $p_1(x) = 2x I_{0 < x < 1}$.

若其拒绝域的形式为 $W = \{x: x \ge c\}$,试确定一个 c,使得犯第一类,第二类错误的概率满足 $\alpha + 2\beta$ 为最小,并求其最小值.

则
$$\alpha + 2\beta = 1 - c + 2c^2 = \frac{7}{8} + 2\left(\frac{1}{16} - \frac{1}{2}c + c^2\right) = \frac{7}{8} + 2\left(\frac{1}{4} - c\right)^2$$
,

故当 $c = \frac{1}{4}$ 时, $\alpha + 2\beta$ 为最小,其最小值为 $\frac{7}{8}$.

- 8. 设 X_1, X_2, \dots, X_{30} 为取自柏松分布 $P(\lambda)$ 的随机样本.
 - (1) 试给出单侧假设检验问题 H_0 : $\lambda \le 0.1$ vs H_1 : $\lambda > 0.1$ 的显著水平 $\alpha = 0.05$ 的检验;
 - (2) 求此检验的势函数 $\beta(\lambda)$ 在 $\lambda = 0.05, 0.2, 0.3, \dots, 0.9$ 时的值,并据此画出 $\beta(\lambda)$ 的图像.

解: (1) 因
$$n\overline{X} = X_1 + X_2 + \cdots + X_{30} \sim P(30\lambda)$$
,

假设 H_0 : $\lambda \leq 0.1$ vs H_1 : $\lambda > 0.1$,

统计量 $n\overline{X} \sim P(30\lambda)$,

当
$$\mathrm{H}_0$$
 成立时,设 $n\overline{X} \sim P(3)$,其 p 分位数 $P_p(3)$ 满足 $\sum_{k=0}^{P_p(3)-1} \frac{3^k}{k!} \mathrm{e}^{-3}$

显著水平 $\alpha = 0.05$,可得 $P_{1-\alpha}(3) = P_{0.95}(3) = 6$,右侧拒绝域 $W = \{n\bar{x} \ge 7\}$;

(2)
$$\boxtimes \beta(\lambda) = P\{n\overline{X} \in W \mid \lambda\} = P\{n\overline{X} \ge 7 \mid \lambda\} = 1 - \sum_{k=0}^{6} \frac{(30\lambda)^k}{k!} e^{-30\lambda}$$
,

故
$$\beta(0.05) = 1 - \sum_{k=0}^{6} \frac{1.5^k}{k!} e^{-1.5} = 0.0001$$
, $\beta(0.2) = 1 - \sum_{k=0}^{6} \frac{6^k}{k!} e^{-6} = 0.3937$,

$$\beta(0.3) = 1 - \sum_{k=0}^{6} \frac{9^k}{k!} e^{-9} = 0.7932$$
, $\beta(0.4) = 1 - \sum_{k=0}^{6} \frac{12^k}{k!} e^{-12} = 0.9542$,

$$\beta(0.5) = 1 - \sum_{k=0}^{6} \frac{15^k}{k!} e^{-15} = 0.9924$$
, $\beta(0.6) = 1 - \sum_{k=0}^{6} \frac{18^k}{k!} e^{-18} = 0.9990$,

$$\beta(0.7) = 1 - \sum_{k=0}^{6} \frac{21^k}{k!} e^{-21} = 0.9999$$
,

$$\beta(0.8) = 1 - \sum_{k=0}^{6} \frac{24^k}{k!} e^{-24} \approx 1$$
,

$$\beta(0.9) = 1 - \sum_{k=0}^{6} \frac{27^k}{k!} e^{-27} \approx 1.$$

习题 7.2

说明:本节习题均采用拒绝域的形式完成,在可以计算检验的p值时要求计算出p值.

1. 有一批枪弹,出厂时,其初速率 $v \sim N$ (950, 1000) (单位: m/s). 经过较长时间储存,取 9 发进行测试,得样本值(单位: m/s)如下:

914 920 910 934 953 945 912 924 940.

据经验,枪弹经储存后其初速率仍服从正态分布,且标准差保持不变,问是否可认为这批枪弹的初速率有显著降低(α = 0.05)?

解:设枪弹经储存后其初速率 $X \sim N(\mu, 1000)$, 假设 H_0 : $\mu = 950$ vs H_1 : $\mu < 950$,

已知
$$\sigma^2$$
, 选取统计量 $U = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$,

显著性水平 $\alpha = 0.05$, $u_{1-\alpha} = u_{0.95} = 1.645$, 左侧拒绝域 $W = \{u \le -1.645\}$, 因 $\bar{x} = 928$, $\mu = 950$, $\sigma = 10$, n = 9,

则
$$u = \frac{928 - 950}{10/\sqrt{9}} = -6.6 \in W$$
,并且检验的 p 值 $p = P\{U \le -6.6\} = 2.0558 \times 10^{-11} < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,即可以认为这批枪弹的初速率有显著降低.

- 2. 已知某炼铁厂铁水含碳量服从正态分布 $N(4.55, 0.108^2)$. 现在测定了 9 炉铁水,其平均含碳量为 4.484,如果铁水含碳量的方差没有变化,可否认为现在生产的铁水平均含碳量仍为 4.55 (α = 0.05)?
- 解: 设现在生产的铁水含碳量 $X \sim N(\mu, 0.108^2)$, 假设 H_0 : $\mu = 4.55$ vs H_1 : $\mu \neq 4.55$,

已知
$$\sigma^2$$
, 选取统计量 $U = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$,

显著性水平 $\alpha = 0.05$, $u_{1-\alpha/2} = u_{0.975} = 1.96$,双侧拒绝域 $W = \{|u| \ge 1.96\}$,因 $\bar{x} = 4.484$, $\mu = 4.55$, $\sigma = 0.108$,n = 9 ,

则
$$u = \frac{4.484 - 4.55}{0.108/\sqrt{9}} = -1.8333 \notin W$$
,并且检验的 p 值 $p = 2P\{U \le -1.8333\} = 0.0668 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 即可以认为现在生产的铁水平均含碳量仍为 4.55.

3. 由经验知某零件质量 $X \sim N(15, 0.05^2)$ (单位: g),技术革新后,抽出 6 个零件,测得质量为 14.7 15.1 14.8 15.0 15.2 14.6.

已知方差不变,问平均质量是否仍为 15g (取 $\alpha = 0.05$)?

解: 设技术革新后零件质量 $X \sim N(\mu, 0.05^2)$, 假设 H_0 : $\mu = 15$ vs H_1 : $\mu \neq 15$,

已知
$$\sigma^2$$
, 选取统计量 $U = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$,

显著性水平 $\alpha = 0.05$, $u_{1-\alpha/2} = u_{0.975} = 1.96$,双侧拒绝域 $W = \{|u| \ge 1.96\}$,

因 $\bar{x} = 14.9$, $\mu = 15$, $\sigma = 0.05$, n = 6 ,

则
$$u = \frac{14.9 - 15}{0.05/\sqrt{6}} = -4.8990 \in W$$
,并且检验的 p 值 $p = 2P\{U \le -4.8990\} = 9.6326 \times 10^{-7} < \alpha = 0.05$,

故拒绝 H_0 ,接受 H_1 ,即不能认为平均质量仍为 15g.

4. 化肥厂用自动包装机包装化肥,每包的质量服从正态分布,其平均质量为 100 kg,标准差为 1.2 kg.某日开工后,为了确定这天包装机工作是否正常,随机抽取 9 袋化肥,称得质量如下:

设方差稳定不变,问这一天包装机的工作是否正常($取\alpha = 0.05$)?

解:设这天包装机包装的化肥每包的质量 $X \sim N(\mu, 1.2^2)$,假设 H_0 : $\mu = 100$ vs H_1 : $\mu \neq 100$,

已知
$$\sigma^2$$
, 选取统计量 $U = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$,

显著性水平 $\alpha = 0.05$, $u_{1-\alpha/2} = u_{0.975} = 1.96$,双侧拒绝域 $W = \{|u| \ge 1.96\}$,

因 $\bar{x} = 99.9778$, $\mu = 100$, $\sigma = 1.2$, n = 9,

则
$$u = \frac{99.9778 - 100}{1.2/\sqrt{9}} = -0.0556 \notin W$$
,并且检验的 p 值 $p = 2P\{U \le -0.0556\} = 0.9557 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 即可以认为这一天包装机的工作正常.

5. 设需要对某正态总体的均值进行假设检验

$$H_0$$
: $\mu = 15$, H_1 : $\mu < 15$.

已知 $\sigma^2 = 2.5$,取 $\alpha = 0.05$,若要求当 H_1 中的 $\mu \le 13$ 时犯第二类错误的概率不超过 0.05,求所需的样本容量.

解: 设该总体 $X \sim N(\mu, 2.5)$, 假设 H_0 : $\mu = 15$ vs H_1 : $\mu < 15$,

已知
$$\sigma^2$$
, 选取统计量 $U = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$,

显著性水平 $\alpha = 0.05$, $u_{1-\alpha} = u_{0.95} = 1.645$,左侧拒绝域 $W = \{u \le -1.645\}$,

因
$$\mu$$
= 15, σ^2 = 2.5,有 $u = \frac{\bar{x}-15}{\sqrt{2.5}/\sqrt{n}}$,

当μ≤13 时犯第二类错误的概率为

$$\beta = P \left\{ \frac{\overline{X} - 15}{\sqrt{2.5} / \sqrt{n}} > -1.65 \mid \mu \le 13 \right\} = P \left\{ \frac{\overline{X} - \mu}{\sqrt{2.5} / \sqrt{n}} > -1.65 + \frac{15 - \mu}{\sqrt{2.5} / \sqrt{n}} \mid \mu \le 13 \right\}$$

$$\le P \left\{ \frac{\overline{X} - \mu}{\sqrt{2.5} / \sqrt{n}} > -1.65 + \frac{15 - 13}{\sqrt{2.5} / \sqrt{n}} \right\} = 1 - \Phi(-1.65 + 1.2649 \sqrt{n}) \le 0.05 ,$$

则 $\Phi(-1.65 + 1.2649\sqrt{n}) \ge 0.95$,即 $-1.65 + 1.2649\sqrt{n} \ge 1.65$, $\sqrt{n} \ge 2.6089$, $n \ge 6.8064$,

故样本容量 n 至少为 7.

6. 从一批钢管抽取 10 根, 测得其内径(单位: mm) 为:

100.36 100.31 99.99 100.11 100.64 100.85 99.42 99.91 99.35 100.10. 设这批钢管内直径服从正态分布 $N(\mu, \sigma^2)$,试分别在下列条件下检验假设(α = 0.05).

$$H_0$$
: $\mu = 100$ vs H_1 : $\mu > 100$.

- (1) 已知 σ = 0.5;
- (2) σ 未知.
- 解: 设这批钢管内直径 $X \sim N(\mu, \sigma^2)$, 假设 H_0 : $\mu = 100$ vs H_1 : $\mu > 100$,
 - (1) 已知 σ^2 , 选取统计量 $U = \frac{\overline{X} \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$,

显著性水平 α = 0.05, $u_{1-\alpha}$ = $u_{0.95}$ = 1.645,右侧拒绝域 W = {u \geq 1.645},因 \bar{x} = 100.104, μ = 100, σ = 0.5,n = 10,

则
$$u = \frac{100.104 - 100}{0.5/\sqrt{10}} = 0.6578 \notin W$$
,并且检验的 p 值 $p = P\{U \ge 0.6578\} = 0.2553 > \alpha = 0.05$,

故接受 H_0 , 拒绝 H_1 , 即不能认为 $\mu > 100$.

(2) 未知 σ^2 , 选取统计量 $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$,

显著性水平 α = 0.05, $t_{1-\alpha}(n-1) = t_{0.95}(9) = 1.8331$,右侧拒绝域 $W = \{t \ge 1.8331\}$,因 $\overline{x} = 100.104$, $\mu = 100$,s = 0.4760,n = 10,

则
$$t = \frac{100.104 - 100}{0.4760 / \sqrt{10}} = 0.6910 \notin W$$
,并且检验的 p 值 $p = P\{T \ge 0.6910\} = 0.2535 > \alpha = 0.05$,

故接受 H_0 , 拒绝 H_1 , 即不能认为 $\mu > 100$.

- 7. 假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了 36 位考生的成绩,算得平均成绩 为 66.5 分,标准差为 15 分,问在显著性水平 0.05 下,是否可以认为这次考试全体考生的平均成绩为 70 分?
- 解: 设这次考试考生的成绩 $X \sim N(\mu, \sigma^2)$,假设 H_0 : $\mu = 70$ vs H_1 : $\mu \neq 70$,

未知
$$\sigma^2$$
, 选取统计量 $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$,

显著性水平 $\alpha = 0.05$, $t_{1-\alpha/2}(n-1) = t_{0.975}(35) = 2.0301$,双侧拒绝域 $W = \{|t| \ge 2.0301\}$,因 $\bar{x} = 66.5$, $\mu = 70$,s = 15,n = 36,

则
$$t = \frac{66.5 - 70}{15/\sqrt{36}} = -1.4 \notin W$$
, 并且检验的 p 值 $p = 2P\{T \le -1.4\} = 0.1703 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 即可以认为这次考试全体考生的平均成绩为 70 分.

- 8. 一个小学校长在报纸上看到这样的报道:"这一城市的初中学生平均每周看 8 h 电视."她认为她所在学校的学生看电视的时间明显小于该数字.为此她在该校随机调查了 100 个学生,得知平均每周看电视的时间 $\bar{x}=6.5$ h,样本标准差为 s=2 h.问是否可以认为这位校长的看法是对的(取 $\alpha=0.05$)?
- 解: 设学生看电视的时间 $X \sim N(\mu, \sigma^2)$, 假设 H_0 : $\mu = 8$ vs H_1 : $\mu < 8$,

未知
$$\sigma^2$$
,选取统计量 $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$, $n = 100$,大样本,有 $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim N(0,1)$,

显著性水平 $\alpha = 0.05$, $t_{1-\alpha}(n-1) = t_{0.95}(99) \approx u_{0.95} = 1.645$,左侧拒绝域 $W \approx \{t \le -1.645\}$,因 $\overline{x} = 6.5$, $\mu = 8$,s = 2,n = 100,

则
$$t = \frac{6.5 - 8}{2/\sqrt{100}} = -7.5 \in W$$
, 并且检验的 p 值 $p = P\{T \le -7.5\} = 3.1909 \times 10^{-14} < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,即可以认为这位校长的看法是对的.

- 9. 设在木材中抽出 100 根,测其小头直径,得到样本平均数 \bar{x} = 11.2 cm,样本标准差为 s = 2.6 cm,问该 批木材小头的平均直径能否认为不低于 12 cm(取 α = 0.05)?
- 解: 设该批木材小头的直径 $X \sim N(\mu, \sigma^2)$,假设 H_0 : $\mu = 12$ vs H_1 : $\mu < 12$,

未知
$$\sigma^2$$
, 选取统计量 $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$, $n = 100$, 大样本, 有 $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim N(0,1)$,

显著性水平 $\alpha = 0.05$, $t_{1-\alpha}(n-1) = t_{0.95}(99) \approx u_{0.95} = 1.645$,左侧拒绝域 $W \approx \{t \le -1.645\}$,因 $\bar{x} = 11.2$, $\mu = 12$,s = 2.6,n = 100,

则
$$t = \frac{11.2 - 12}{2.6/\sqrt{100}} = -3.0769 \in W$$
,并且检验的 p 值 $p = P\{T \le -3.0769\} = 0.0010 < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,即不能认为这批木材小头的平均直径不低于 12 cm.

10. 考察一鱼塘中鱼的含汞量,随机地取 10条鱼测得各条鱼的含汞量(单位: mg)为:

设鱼的含汞量服从正态分布 $N(\mu, \sigma^2)$, 试检验假设 H_0 : $\mu = 1.2$ vs H_1 : $\mu > 1.2$ (取 $\alpha = 0.10$).

解: 设鱼的含汞量 $X \sim N(\mu, \sigma^2)$, 假设 H_0 : $\mu = 1.2$ vs H_1 : $\mu > 1.2$,

未知
$$\sigma^2$$
, 选取统计量 $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$,

显著性水平 $\alpha=0.1$, $t_{1-\alpha}(n-1)=t_{0.9}(9)=1.3830$, 右侧拒绝域 $W=\{t\geq 1.3830\}$, 因 $\overline{x}=0.97$, $\mu=1.2$, s=0.3302, n=10,

则
$$t = \frac{0.97 - 1.2}{0.3302/\sqrt{10}} = -2.2030 \notin W$$
,并且检验的 p 值 $p = P\{T \ge -2.2030\} = 0.9725 > \alpha = 0.10$,

故接受 H_0 , 拒绝 H_1 , 即不能认为 $\mu > 1.2$.

11. 如果一个矩形的宽度 w 与长度 l 的比 $\frac{w}{l} = \frac{1}{2}(\sqrt{5}-1) \approx 0.618$,这样的矩形称为黄金矩形. 下面列出某工艺品工厂随机取的 20 个矩形宽度与长度的比值.

 $0.693 \quad 0.749 \quad 0.654 \quad 0.670 \quad 0.662 \quad 0.672 \quad 0.615 \quad 0.606 \quad 0.690 \quad 0.628$

0.668 0.611 0.606 0.609 0.553 0.570 0.844 0.576 0.933 0.630.

设这一工厂生产的矩形的宽度与长度的比值总体服从正态分布, 其均值为 μ , 试检验假设 (取 α = 0.05) H_0 : μ = 0.618 vs H_1 : $\mu \neq$ 0.618.

解:设这一工厂生产的矩形的宽度与长度的比值 $X \sim N(\mu, \sigma^2)$,假设 H_0 : $\mu = 0.618$ vs H_1 : $\mu \neq 0.618$,

未知
$$\sigma^2$$
, 选取统计量 $T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$,

显著性水平 $\alpha = 0.05$, $t_{1-\alpha/2}(n-1) = t_{0.975}(19) = 2.0930$,双侧拒绝域 $W = \{|t| \ge 2.0930\}$,

 $\boxtimes \overline{x} = 0.6620$, $\mu = 0.618$, s = 0.0918, n = 20,

则
$$t = \frac{0.6620 - 0.618}{0.0918/\sqrt{20}} = 2.1422 \in W$$
,并且检验的 p 值 $p = 2P\{T \ge 2.1422\} = 0.0453 < \alpha = 0.05$,

故拒绝 H_0 ,接受 H_1 ,即不能认为 $\mu = 0.618$.

12. 下面给出两种型号的计算器充电以后所能使用的时间(h)的观测值

设两样本独立且数据所属的两总体的密度函数至多差一个平移量. 试问能否认为型号 A 的计算器平均使用时间明显比型号 B 来得长(取 α = 0.01)?

解: 设两种型号的计算器充电以后所能使用的时间分别为 $X\sim N(\mu_1,\sigma_1^2)$, $Y\sim N(\mu_2,\sigma_2^2)$,且 $\sigma_1^2=\sigma_2^2$,

假设 H_0 : $\mu_1 = \mu_2$ vs H_1 : $\mu_1 > \mu_2$,

未知
$$\sigma_1^2$$
 , σ_2^2 , 但 $\sigma_1^2 = \sigma_2^2$, 选取统计量 $T = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$,

显著性水平 $\alpha = 0.01$, $t_{1-\alpha}(n_1 + n_2 - 2) = t_{0.99}(21) = 2.5176$,右侧拒绝域 $W = \{t \ge 2.5176\}$,因 $\bar{x} = 5.5$, $\bar{y} = 4.3667$, $s_x = 0.5235$, $s_y = 0.4677$, $n_1 = 11$, $n_2 = 12$,

$$s_w = \sqrt{\frac{(n_1 - 1)s_x^2 + (n_2 - 1)s_y^2}{n_1 + n_2 - 2}} = \sqrt{\frac{10 \times 0.5235^2 + 11 \times 0.4677^2}{21}} = 0.4951,$$

则
$$t = \frac{5.5 - 4.3667}{0.4951 \times \sqrt{\frac{1}{11} + \frac{1}{12}}} = 5.4844 \in W$$
,并且检验的 p 值 $p = P\{T \ge 5.4844\} = 9.6391 \times 10^{-6} < \alpha = 0.01$,

故拒绝 H₀,接受 H₁,即可以认为型号 A的计算器平均使用时间明显比型号 B来得长.

13. 从某锌矿的东、西两支矿脉中,各抽取样本容量分别为9与8的样本进行测试,得样本含锌平均数及样本方差如下:

东支:
$$\bar{x}_1 = 0.230$$
, $s_1^2 = 0.1337$;

西支:
$$\bar{x}_2 = 0.269$$
, $s_2^2 = 0.1736$.

若东、西两支矿脉的含锌量都服从正态分布且方差相同,问东、西两支矿脉含锌量的平均值是否可以看作一样(取 α = 0.05)?

解: 设东、西两支矿脉的含锌量分别为 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, 且 $\sigma_1^2 = \sigma_2^2$,

假设 H_0 : $\mu_1 = \mu_2$ vs H_1 : $\mu_1 \neq \mu_2$,

未知
$$\sigma_1^2$$
 , σ_2^2 ,但 $\sigma_1^2=\sigma_2^2$,选取统计量 $T=\frac{\overline{X}_1-\overline{X}_2}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2)$,

显著性水平 $\alpha = 0.05$, $t_{1-\alpha/2}(n_1 + n_2 - 2) = t_{0.975}(15) = 2.1314$, 双侧拒绝域 $W = \{|t| \ge 2.1314\}$,

因 $\overline{x}_1 = 0.230$, $s_1^2 = 0.1337$, $\overline{x}_2 = 0.269$, $s_2^2 = 0.1736$, $n_1 = 9$, $n_2 = 8$,

$$s_w = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} = \sqrt{\frac{8 \times 0.1337 + 7 \times 0.1736}{15}} = 0.3903,$$

则
$$t = \frac{0.230 - 0.269}{0.3903 \times \sqrt{\frac{1}{9} + \frac{1}{8}}} = -0.2056 \notin W$$
,并且检验的 p 值 $p = 2P\{T \le -0.2056\} = 0.8399 > \alpha = 0.05$,

故接受 H_0 ,拒绝 H_1 ,即可以认为东、西两支矿脉含锌量的平均值是一样的.

14. 在针织品漂白工艺过程中,要考察温度对针织品断裂强力(主要质量指标)的影响. 为了比较 70℃ 与80℃的影响有无差别,在这两个温度下,分别重复做了8次试验,得数据如下(单位:N):

70°C 时的强力: 20.5 18.8 19.8 20.9 21.5 19.5 21.0 21.2,

80°C 时的强力: 17.7 20.3 20.0 18.8 19.0 20.1 20.0 19.1.

根据经验,温度对针织品断裂强力的波动没有影响.问在70℃时的平均断裂强力与80℃时的平均断 裂强力间是否有显著差别? (假设断裂强力服从正态分布, $\alpha = 0.05$)

解: 设在 70°C 和 80°C 时的断裂强力分别为 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$,且 $\sigma_1^2 = \sigma_2^2$,

假设 H_0 : $\mu_1 = \mu_2$ vs H_1 : $\mu_1 \neq \mu_2$,

未知
$$\sigma_1^2$$
 , σ_2^2 , 但 $\sigma_1^2 = \sigma_2^2$, 选取统计量 $T = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$,

显著性水平 $\alpha = 0.05$, $t_{1-\alpha/2}(n_1 + n_2 - 2) = t_{0.975}(14) = 2.1448$,双侧拒绝域 $W = \{|t| \ge 2.1448\}$, 因 $\overline{x} = 20.4$, $\overline{y} = 19.375$, $s_x = 0.9411$, $s_y = 0.8876$, $n_1 = 8$, $n_2 = 8$,

$$s_w = \sqrt{\frac{(n_1 - 1)s_x^2 + (n_2 - 1)s_y^2}{n_1 + n_2 - 2}} = \sqrt{\frac{7 \times 0.9411^2 + 7 \times 0.8876^2}{14}} = 0.9148 ,$$

则
$$t = \frac{20.4 - 19.375}{0.9148 \times \sqrt{\frac{1}{8} + \frac{1}{8}}} = 2.2410 \in W$$
,并且检验的 p 值 $p = 2P\{T \ge 2.2410\} = 0.0418 < \alpha = 0.05$,

故拒绝 H_0 ,接受 H_1 ,即可以认为 70℃ 时的平均断裂强力与 80℃ 时的平均断裂强力间有显著差别.

15. 一药厂生产一种新的止痛片,厂方希望验证服用新药片后至开始起作用的时间间隔较原有止痛片至少 缩短一半, 因此厂方提出需检验假设

 H_0 : $\mu_1 = 2\mu_2$ vs H_1 : $\mu_1 > 2\mu_2$.

此处 μ_1, μ_2 分别是服用原有止痛片和服用新止痛片后至开始起作用的时间间隔的总体的均值.设两总 体均为正态分布且方差分别为已知值 σ_1^2, σ_2^2 ,现分别在两总体中取一样本 X_1, \dots, X_n 和 Y_1, \dots, Y_m , 设两个样本独立. 试给出上述假设检验问题的检验统计量及拒绝域.

解:设服用原有止痛片和新止痛片后至开始起作用的时间间隔分别为 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, 因 X_1, \dots, X_n 和 Y_1, \dots, Y_m 分别 X 和 Y 为来自的样本,且两个样本独立,

则
$$\overline{X} \sim N(\mu_1, \frac{\sigma_1^2}{n})$$
, $\overline{Y} \sim N(\mu_2, \frac{\sigma_2^2}{m})$, 且 \overline{X} 与 \overline{Y} 独立, 有 $\overline{X} - 2\overline{Y} \sim N(\mu_1 - 2\mu_2, \frac{\sigma_1^2}{n} + \frac{4\sigma_2^2}{m})$,

标准化,得
$$\frac{(\overline{X}-2\overline{Y})-(\mu_1-2\mu_2)}{\sqrt{\frac{\sigma_1^2}{n}+\frac{4\sigma_2^2}{m}}} \sim N(0,1)$$
,

假设 H_0 : $\mu_1 = 2\mu_2$ vs H_1 : $\mu_1 > 2\mu_2$,

已知
$$\sigma_1^2$$
, σ_2^2 , 选取统计量 $U = \frac{\overline{X} - 2\overline{Y}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{4\sigma_2^2}{m}}} \sim N(0,1)$,

显著性水平 α ,右侧拒绝域 $W = \{u \ge u_{1-\alpha}\}$.

16. 对冷却到-0.72℃ 的样品用 A、B 两种测量方法测量其融化到 0℃ 时的潜热,数据如下:

方法 A: 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03 80.02 80.00 80.02,

方法 B: 80.02 79.94 79.98 79.97 80.03 79.95 79.97 79.97.

假设它们服从正态分布,方差相等,试检验:两种测量方法的平均性能是否相等? (取 $\alpha = 0.05$).

解: 设用 A、B 两种测量方法测量的潜热分别为 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, 且 $\sigma_1^2 = \sigma_2^2$,

假设 H_0 : $\mu_1 = \mu_2$ vs H_1 : $\mu_1 \neq \mu_2$,

未知
$$\sigma_1^2$$
, σ_2^2 ,但 $\sigma_1^2 = \sigma_2^2$,选取统计量 $T = \frac{\overline{X} - \overline{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$,

显著性水平 $\alpha = 0.05$, $t_{1-\alpha/2}(n_1 + n_2 - 2) = t_{0.975}(19) = 2.0930$,双侧拒绝域 $W = \{|t| \ge 2.0930\}$,因 $\bar{x} = 80.0208$, $\bar{y} = 79.9787$, $s_x = 0.0240$, $s_y = 0.0.314$, $n_1 = 8$, $n_2 = 8$,

$$s_w = \sqrt{\frac{(n_1 - 1)s_x^2 + (n_2 - 1)s_y^2}{n_1 + n_2 - 2}} = \sqrt{\frac{12 \times 0.0240^2 + 7 \times 0.0314^2}{19}} = 0.0269,$$

则
$$t = \frac{80.0208 - 79.9787}{0.0269 \times \sqrt{\frac{1}{13} + \frac{1}{8}}} = 3.4722 \in W$$
,并且检验的 p 值 $p = 2P\{T \ge 3.4722\} = 0.0026 < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,可以认为两种测量方法的平均性能不相等.

17. 为了比较测定活水中氯气含量的两种方法,特在各种场合收集到8个污水样本,每个水样均用这两种方法测定氯气含量(单位: mg/l),具体数据如下:

2. 1. 2. 1.			
水样号	方法一 (x)	方法二 (y)	差 $(d=x-y)$
1	0.36	0.39	-0.03
2	1.35	0.84	0.51
3	2.56	1.76	0.80
4	3.92	3.35	0.57
5	5.35	4.69	0.66
6	8.33	7.70	0.63
7	10.70	10.52	0.18
8	10.91	10.92	-0.01

设总体为正态分布,试比较两种测定方法是否有显著差异.请写出检验的p值和结论(取 $\alpha = 0.05$).

解:设用这两种测定方法测定的氯气含量之差为 $D = X - Y \sim N(\mu_d, \sigma_d^2)$,成对数据检验,

假设 H_0 : $\mu_d = 0$ vs H_1 : $\mu_d \neq 0$,

未知
$$\sigma_d^2$$
, 选取统计量 $T = \frac{\overline{D}}{S_d/\sqrt{n}} \sim t(n-1)$,

显著水平 $\alpha = 0.05$, $t_{1-\alpha/2}(n-1) = t_{0.975}(7) = 2.3646$,双侧拒绝域 $W = \{|t| \ge 2.3646\}$,因 $\overline{d} = 0.4138$, $s_d = 0.3210$,n = 8,

则
$$t = \frac{0.4138}{0.3210/\sqrt{8}} = 3.6461 \in W$$
,并且检验的 p 值 $p = 2P\{T \ge 3.6461\} = 0.0082 < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,可以认为两种测定方法有显著差异.

18. 一工厂的;两个化验室每天同时从工厂的冷却水取样,测量水中的含气量(10⁻⁶)一次,下面是7天的记录:

室甲: 1.15 1.86 0.75 1.82 1.14 1.65 1.90,

室乙: 1.00 1.90 0.90 1.80 1.20 1.70 1.95.

设每对数据的差 $d_i = x_i - y_i$ $(i = 1, 2, \dots, 7)$ 来自正态总体,问两化验室测定结果之间有无显著差异?($\alpha = 0.01$)

解:设两个化验室测定的含气量数据之差为 $D=X-Y\sim N(\mu_d,\sigma_d^2)$,成对数据检验,

假设 H_0 : $\mu_d = 0$ vs H_1 : $\mu_d \neq 0$,

未知
$$\sigma_d^2$$
, 选取统计量 $T = \frac{\overline{D}}{S_d/\sqrt{n}} \sim t(n-1)$,

显著水平 $\alpha = 0.01$, $t_{1-\alpha/2}(n-1) = t_{0.995}(6) = 3.7074$,双侧拒绝域 $W = \{|t| \ge 3.7074\}$,因 $\overline{d} = -0.0257$, $s_d = 0.0922$,n = 7,

则
$$t = \frac{-0.0257}{0.0922/\sqrt{7}} = -0.7375 \notin W$$
,并且检验的 p 值 $p = 2P\{T \le -0.7375\} = 0.4886 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 可以认为两化验室测定结果之间没有显著差异.

- 19. 为比较正常成年男女所含红血球的差异,对某地区 156 名成年男性进行测量,其红血球的样本均值为 465.13($10^4/\text{mm}^3$),样本方差为 54.80²;对该地区 74 名成年女性进行测量,其红血球的样本均值为 422.16,样本方差为 49.20².试检验:该地区正常成年男女所含红血球的平均值是否有差异?(取 α = 0.05)
- 解:设该地区正常成年男女所含红血球分别为 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$,

假设 H_0 : $\mu_1 = \mu_2$ vs H_1 : $\mu_1 \neq \mu_2$,

未知
$$\sigma_1^2$$
, σ_2^2 , 大样本场合, 选取统计量 $U=\frac{\overline{X}-\overline{Y}}{\sqrt{\frac{S_x^2}{n_1}+\frac{S_y^2}{n_2}}} \stackrel{\cdot}{\sim} N(0,1)$,

显著水平 α = 0.05, $u_{1-\alpha/2}$ = $u_{0.975}$ = 1.96,双侧拒绝域 W= { $|t| \ge 1.96$ },

则
$$u = \frac{465.13 - 422.16}{\sqrt{\frac{54.80^2}{156} + \frac{49.20^2}{74}}} = 5.9611 \in W$$
,并且检验的 p 值 $p = 2P\{U \ge 5.9611\} = 2.5055 \times 10^{-9} < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,可以认为该地区正常成年男女所含红血球的平均值有差异.

20. 为比较不同季节出生的女婴体重的方差,从去年 12 月和 6 月出生的女婴中分别随机地抽取 6 名及 10 名,测其体重如下(单位: g):

12月: 3520 2960 2560 2960 3260 3960,

6月: 3220 3220 3760 3000 2920 3740 3060 3080 2940 3060.

假定新生女婴体重服从正态分布,问新生女婴体重的方差是否是冬季的比夏季的小(取 α = 0.05)?

解:设 12月和6月出生的女婴体重分别为 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$,

假设 H_0 : $\sigma_1^2 = \sigma_2^2$ vs H_1 : $\sigma_1^2 < \sigma_2^2$,

选取统计量
$$F = \frac{S_x^2}{S_y^2} \sim F(n_1 - 1, n_2 - 1)$$
,

显著水平
$$\alpha = 0.05$$
, $F_{\alpha}(n_1 - 1, n_2 - 1) = F_{0.05}(5, 9) = \frac{1}{F_{0.95}(9, 5)} = \frac{1}{4.77} = 0.21$,左侧拒绝域 $W = \{f \le 0.21\}$,

因
$$s_x^2 = 491.5960^2$$
, $s_y^2 = 306.5217^2$,

则
$$f = \frac{491.5960^2}{306.5217^2} = 2.5721 \notin W$$
,并且检验的 p 值 $p = P\{F \le 2.5721\} = 0.8967 > \alpha = 0.05$,

故接受 H_0 ,拒绝 H_1 ,新生女婴体重的方差冬季的不比夏季的小.

21. 已知维尼纶纤度在正常条件下服从正态分布,且标准差为 0.048. 从某天产品中抽取 5 根纤维,测得 其纤度为

问这一天纤度的总体标准差是否正常(取 $\alpha = 0.05$)?

解: 设这一天维尼纶纤度 $X \sim N(\mu, \sigma^2)$,假设 H_0 : $\sigma^2 = 0.048^2$ vs H_1 : $\sigma^2 \neq 0.048^2$,

选取统计量
$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
,

显著性水平
$$\alpha = 0.05$$
, $\chi^2_{\alpha/2}(n-1) = \chi^2_{0.025}(4) = 0.4844$, $\chi^2_{1-\alpha/2}(n-1) = \chi^2_{0.975}(4) = 11.1433$,

双侧拒绝域 $W = \{\chi^2 \le 0.4844 \ \text{或} \chi^2 \ge 11.1433\}$,

因
$$\sigma^2 = 0.048^2$$
, $s^2 = 0.0882^2$, $n = 5$,

则
$$\chi^2 = \frac{4 \times 0.0882^2}{0.048^2} = 13.5069 \in W$$
 ,并且检验的 p 值 $p = 2P\{\chi^2 \ge 13.5069\} = 0.0181 < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,即可以认为这一天纤度的总体方差不正常.

- 22. 某电工器材厂生产一种保险丝. 测量其熔化时间,依通常情况方差为 400,今从某天产品中抽取容量为 25 的样本,测量其熔化时间并计算得 $\bar{x} = 62.24$, $s^2 = 404.77$,问这天保险丝熔化时间分散度与通常有无显著差异(取 $\alpha = 0.05$,假定熔化时间服从正态分布)?
- 解: 设这天保险丝熔化时间分散度 $X \sim N(\mu, \sigma^2)$,假设 H_0 : $\sigma^2 = 400$ vs H_1 : $\sigma^2 \neq 400$,

选取统计量
$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
,

显著性水平
$$\alpha = 0.05$$
, $\chi^2_{\alpha/2}(n-1) = \chi^2_{0.025}(24) = 12.4012$, $\chi^2_{1-\alpha/2}(n-1) = \chi^2_{0.975}(24) = 39.3641$,

双侧拒绝域 $W = \{\chi^2 \le 12.4012$ 或 $\chi^2 \ge 39.3641\}$,

因
$$\sigma^2 = 400$$
, $s^2 = 404.77$, $n = 25$,

则
$$\chi^2 = \frac{24 \times 404.77}{400} = 24.2862 \notin W$$
,并且检验的 p 值 $p = 2P\{\chi^2 \ge 24.2862\} = 0.8907 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 即可以认为这天保险丝熔化时间分散度与通常没有显著差异.

- 23. 某种导线的质量标准要求其电阻的标准差不得超过 0.005 (Ω). 今在一批导线中随机抽取样品 9 根,测得样本标准差 s=0.007 (Ω),设总体为正态分布. 问在显著水平 $\alpha=0.05$ 下,能否认为这批导线的标准差显著地偏大?
- 解: 设这批导线的电阻 $X \sim N(\mu, \sigma^2)$,假设 H_0 : $\sigma^2 = 0.005^2$ vs H_1 : $\sigma^2 > 0.005^2$,

选取统计量
$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
,

显著性水平 $\alpha = 0.05$, $\chi^2_{l-\alpha}(n-1) = \chi^2_{0.95}(8) = 15.5073$,右侧拒绝域 $W = \{\chi^2 \ge 15.5073\}$,

因
$$\sigma^2 = 0.005^2$$
, $s^2 = 0.007^2$, $n = 9$,

则
$$\chi^2 = \frac{8 \times 0.007^2}{0.005^2} = 15.68 \in W$$
 ,并且检验的 p 值 $p = P\{\chi^2 \ge 15.68\} = 0.0472 < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,即可以认为这批导线的标准差显著地偏大.

24. 两台车床生产同一种滚珠,滚珠直径服从正态分布. 从中分别抽取 8 个和 9 个产品,测得其直径为甲车床: 15.0 14.5 15.2 15.5 14.8 15.1 15.2 14.8;

比较两台车床生产的滚珠直径的方差是否有明显差异($取\alpha = 0.05$).

解: 设两台车床生产的滚珠直径分别为 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$,

假设
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ vs H_1 : $\sigma_1^2 \neq \sigma_2^2$,

选取统计量
$$F = \frac{S_x^2}{S_y^2} \sim F(n_1 - 1, n_2 - 1)$$
,

显著性水平
$$\alpha = 0.05$$
, $F_{\alpha/2}(n_1 - 1, n_2 - 1) = F_{0.025}(7, 8) = \frac{1}{F_{0.975}(8, 7)} = \frac{1}{4.9} = 0.2041$,

$$F_{1-\alpha/2}(n_1-1,n_2-1)=F_{0.975}(7,8)=4.53$$
,双侧拒绝域 $W=\{F\leq 0.2041$ 或 $F\geq 4.53\}$,

$$\exists s_x^2 = 0.3091^2, \quad s_y^2 = 0.1616^2,$$

则
$$F = \frac{0.3091^2}{0.1616^2} = 3.6591 \notin W$$
,并且检验的 p 值 $p = 2P\{F \ge 3.6591\} = 0.0892 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 即可以认为两台车床生产的滚珠直径的方差没有明显差异.

25. 有两台机器生产金属部件,分别在两台机器所生产的部件中各取一容量为 m=14 和 n=12 的样本,测得部件质量的样本方差分别为 $s_1^2=15.46$, $s_2^2=9.66$,设两样本相互独立,试在显著性水平 $\alpha=0.05$ 下检验假设

$$H_0: \sigma_1^2 = \sigma_2^2 \text{ vs } H_1: \sigma_1^2 > \sigma_2^2.$$

解: 设两台机器生产金属部件质量分别为 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$,

假设
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ vs H_1 : $\sigma_1^2 > \sigma_2^2$,

选取统计量
$$F = \frac{S_1^2}{S_2^2} \sim F(m-1, n-1)$$
,

显著性水平 $\alpha = 0.05$, $F_{1-\alpha}(m-1, n-1) = F_{0.95}(13, 11) = 2.7614$,右侧拒绝域 $W = \{F \ge 2.7614\}$,

$$\boxtimes s_1^2 = 15.46$$
, $s_2^2 = 9.66$,

则
$$F = \frac{15.46}{9.66} = 1.6004 \notin W$$
,并且检验的 p 值 $p = P\{F \ge 1.6004\} = 0.2206 > \alpha = 0.05$,

故接受 H_0 , 拒绝 H_1 , 即可以认为 $\sigma_1^2 = \sigma_2^2$.

26. 测得两批电子器件的样品的电阻(单位: Ω)为

B批(y) 0.135 0.140 0.142 0.136 0.138 0.140.

设这两批器材的电阻值分别服从 $N(\mu_1, \sigma_1^2)$, $N(\mu_2, \sigma_2^2)$,且两样本独立.

- (1) 试检验两个总体的方差是否相等($\chi \alpha = 0.05$)?
- (2) 试检验两个总体的均值是否相等($\mathbf{Q} = 0.05$)?
- 解:设两批电子器件样品的电阻分别为 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$,
 - (1) 假设 H_0 : $\sigma_1^2 = \sigma_2^2$ vs H_1 : $\sigma_1^2 \neq \sigma_2^2$,

选取统计量
$$F = \frac{S_x^2}{S_y^2} \sim F(n_1 - 1, n_2 - 1)$$
,

显著性水平
$$\alpha = 0.05$$
, $F_{\alpha/2}(n_1 - 1, n_2 - 1) = F_{0.025}(5, 5) = \frac{1}{F_{0.975}(5, 5)} = \frac{1}{7.15} = 0.1399$,

$$F_{1-\alpha/2}(n_1-1,n_2-1)=F_{0.975}(5,5)=7.15$$
, 双侧拒绝域 $W=\{F\leq 0.1399 \text{ 或 } F\geq 7.15\}$,

$$\boxtimes s_x^2 = 0.002805^2 , \quad s_y^2 = 0.002665^2 ,$$

则
$$F = \frac{0.002805^2}{0.002665^2} = 1.1080 \notin W$$
,并且检验的 p 值 $p = 2P\{F \ge 1.1080\} = 0.9131 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 即可以认为两个总体的方差相等;

(2) 假设 H_0 : $\mu_1 = \mu_2$ vs H_1 : $\mu_1 \neq \mu_2$,

未知
$$\sigma_1^2$$
 , σ_2^2 ,但 $\sigma_1^2=\sigma_2^2$,选取统计量 $T=\frac{\overline{X}-\overline{Y}}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2)$,

显著性水平 $\alpha = 0.05$, $t_{1-\alpha/2}(n_1 + n_2 - 2) = t_{0.975}(10) = 2.2281$,双侧拒绝域 $W = \{|t| \ge 2.2281\}$,因 $\bar{x} = 0.1407$, $\bar{y} = 0.1385$, $s_x = 0.002805$, $s_y = 0.002665$, $n_1 = 6$, $n_2 = 6$,

$$s_w = \sqrt{\frac{(n_1 - 1)s_x^2 + (n_2 - 1)s_y^2}{n_1 + n_2 - 2}} = \sqrt{\frac{5 \times 0.002805^2 + 5 \times 0.002665^2}{10}} = 0.002736,$$

则
$$t = \frac{0.1407 - 0.1385}{0.002736 \times \sqrt{\frac{1}{6} + \frac{1}{6}}} = 1.3718 \notin W$$
,并且检验的 p 值 $p = 2P\{T \ge 1.3718\} = 0.2001 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 即可以认为两个总体的均值相等.

- 27. 某厂使用两种不同的原料生产同一类型产品,随机选取使用原料 A 生产的样品 22 件,测得平均质量为 2.36 (kg),样本标准差为 0.57 (kg). 取使用原料 B 生产的样品 24 件,测得平均质量为 2.55 (kg),样本标准差为 0.48 (kg). 设产品质量服从正态分布,两个样本独立. 问能否认为使用原料 B 生产的产品质量较使用原料 A 显著大(取 α = 0.05)?
- 解: 设两种原料生产的产品质量分别为 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$,

假设 H_0 : $\mu_1 = \mu_2$ vs H_1 : $\mu_1 < \mu_2$,

未知
$$\sigma_1^2$$
, σ_2^2 ,大样本,选取统计量 $U = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_x^2 + S_y^2}{n_1}}} \stackrel{\sim}{\sim} N(0,1)$,

显著性水平 α = 0.05, $u_{1-\alpha}$ = $u_{0.95}$ = 1.645,左侧拒绝域 $W \approx \{u \le -1.645\}$,因 \overline{x} = 2.36, \overline{y} = 2.55, s_x = 0.57, s_y = 0.48, n_1 = 22, n_2 = 24,

有
$$u = \frac{2.36 - 2.55}{\sqrt{\frac{0.57^2}{22} + \frac{0.48^2}{24}}} = -1.2171 \notin W$$
,并且检验的 p 值 $p = P\{U \le -1.2171\} = 0.1118 > \alpha = 0.05$,

故接受 H_0 , 拒绝 H_1 , 即可以认为使用原料 B 生产的产品质量较使用原料 A 不是显著大.

习题 7.3

1. 从一批服从指数分布的产品中抽取 10 个进行寿命测试,观测值如下(单位: h):

根据这批数据能否认为其平均寿命不低于 $1100 \, h$ (取 $\alpha = 0.05$)?

解: 设这批产品的寿命 $X \sim Exp(1/\theta)$, 假设 H_0 : $\theta = 1100$ vs H_1 : $\theta < 1100$,

选取统计量
$$\chi^2 = \frac{2n\overline{X}}{\theta} \sim \chi^2(2n)$$
,

显著性水平 α = 0.05, $\chi^2_{\alpha}(2n) = \chi^2_{0.05}(20) = 10.8508$,左侧拒绝域 $W = \{\chi^2 \le 10.8508\}$,

因
$$\bar{x} = 942.8$$
, $n = 10$, $\theta = 1100$,

则
$$\chi^2 = \frac{2 \times 10 \times 942.8}{1100} = 17.1418 \notin W$$
,并且检验的 p 值 $p = P\{\chi^2 \le 17.1418\} = 0.3563 > \alpha = 0.05$,

故接受 H_0 , 拒绝 H_1 , 即可以认为其平均寿命不低于 1100 h.

2. 某厂一种元件平均使用寿命为 1200 h,偏低,现厂里进行技术革新,革新后任选 8 个元件进行寿命试验,测得寿命数据如下:

假定元件寿命服从指数分布,取 $\alpha = 0.05$,问革新后元件的平均寿命是否有明显提高?

解: 设革新后元件的寿命 $X \sim Exp(1/\theta)$, 假设 H_0 : $\theta = 1200$ vs H_1 : $\theta > 1200$,

选取统计量
$$\chi^2 = \frac{2n\overline{X}}{\theta} \sim \chi^2(2n)$$
,

显著性水平 α = 0.05, $\chi^2_{1-\alpha}(2n) = \chi^2_{0.95}(16) = 26.2962$,右侧拒绝域 $W = \{\chi^2 \ge 26.2962\}$,

因 $\bar{x} = 2103.875$, n = 8, $\theta = 1200$,

则
$$\chi^2 = \frac{2 \times 8 \times 2103.875}{1200} = 28.0517 \in W$$
,并且检验的 p 值 $p = P\{\chi^2 \ge 28.0517\} = 0.0312 < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,即可以认为革新后元件的平均寿命有明显提高.

- 3. 有人称某地成年人中大学毕业生比例不低于 30%,为检验之,随机调查该地 15 名成年人,发现有 3 名大学毕业生,取 α = 0.05,问该人看法是否成立?并给出检验的 p 值.
- 解: 设该地 n 名成年人中大学毕业生人数为 $n\overline{X} = \sum_{i=1}^{n} X_{i}$, 有 $n\overline{X} \sim b(n, p)$,

假设 H_0 : p = 0.3 vs H_1 : p < 0.3,

选取统计量 $n\overline{X} \sim b(n, p)$,

显著性水平 $\alpha = 0.05$, n = 15, p = 0.3,

有
$$\sum_{k=0}^{1} C_{15}^{k} \cdot 0.3^{k} \cdot 0.7^{15-k} = 0.0353 < 0.05 < \sum_{k=0}^{2} C_{15}^{k} \cdot 0.3^{k} \cdot 0.7^{15-k} = 0.1268$$
,左侧拒绝域 $W = \{n\bar{x} \leq 1\}$,

因
$$n\overline{x} = 3 \notin W$$
, 并且检验的 p 值 $p = P\{n\overline{X} \le 3\} = \sum_{k=0}^{3} C_{15}^{k} \cdot 0.3^{k} \cdot 0.7^{15-k} = 0.2969$,

故接受 H₀, 拒绝 H₁, 即可以认为该人看法成立.

4. 某大学随机调查 120 名男同学,发现有 50 人非常喜欢看武侠小说,而随机调查的 85 名女同学中有 23 人喜欢,用大样本检验方法在 $\alpha=0.05$ 下确认: 男女同学在喜爱武侠小说方面有无显著差异? 并给出检验的 p 值.

解:设 n_1 名男同学中有 $n_1\overline{X} = \sum_{i=1}^{n_1} X_i$ 人喜欢看武侠小说, n_2 名女同学中有 $n_2\overline{Y} = \sum_{i=1}^{n_2} Y_i$ 人喜欢看武侠小说,

有
$$n_1\overline{X}\sim B(n_1,\,p_1)$$
 , $n_2\overline{Y}\sim B(n_2,\,p_2)$, 大样本, 有 $\overline{X}\sim N\!\!\left(p_1,\frac{p_1(1-p_1)}{n_1}\right)$, $\overline{Y}\sim N\!\!\left(p_2,\frac{p_2(1-p_2)}{n_2}\right)$,

$$\mathbb{M}\,\overline{X} - \overline{Y} \stackrel{\sim}{\sim} N \left(p_1 - p_2, \frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2} \right), \quad \mathbb{M}\,\frac{(\overline{X} - \overline{Y}) - (p_1 - p_2)}{\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}} \stackrel{\sim}{\sim} N(0,1),$$

当 $p_1 = p_2 = p$ 但未知时,此时用总频率 $\hat{p} = \frac{n_1 \overline{X} + n_2 \overline{Y}}{n_1 + n_2}$ 作为 p 的点估计替换 p,在大样本场合,有

$$U = \frac{\overline{X} - \overline{Y}}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0,1) ,$$

假设 H_0 : $p_1 = p_2$ vs H_1 : $p_1 \neq p_2$,

大样本,选取统计量
$$U = \frac{\overline{X} - \overline{Y}}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \stackrel{\sim}{\sim} N(0,1)$$
,

显著性水平 α = 0.05, $u_{1-\alpha/2} = u_{0.975} = 1.96$,双侧拒绝域 $W = \{|u| \ge 1.96\}$,

因
$$n_1 = 120$$
, $n_2 = 85$, $n_1 \overline{x} = 50$, $n_2 \overline{y} = 23$, 有 $\hat{p} = \frac{n_1 \overline{x} + n_2 \overline{y}}{n_1 + n_2} = \frac{50 + 23}{120 + 85} = 0.3561$,

則
$$u = \frac{\frac{50}{120} - \frac{23}{85}}{\sqrt{0.3561 \times (1 - 0.3561)} \sqrt{\frac{1}{120} + \frac{1}{85}}} = 2.1519 \in W$$
,

并且检验的 p 值 $p = 2P\{U \ge 2.1519\} = 0.0314 < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,可以认为男女同学在喜爱武侠小说方面有显著差异.

5. 假定电话总机在单位时间内接到的呼叫次数服从泊松分布,现观测了 40 个单位时间,接到的呼叫次数如下:

在显著性水平 0.05 下能否认为单位时间内平均呼叫次数不低于 2.5 次? 并给出检验的 p 值.

解:设电话总机在单位时间内接到的呼叫次数
$$X \sim P(\lambda)$$
,有 $n\overline{X} = \sum_{i=1}^{n} X_i \sim P(n\lambda)$,

大样本,有
$$\frac{n\overline{X}-n\lambda}{\sqrt{n\lambda}}=\frac{\overline{X}-\lambda}{\sqrt{\lambda/n}} \sim N(0,1)$$
,

假设 H_0 : $\lambda = 2.5$ vs H_1 : $\lambda < 2.5$,

大样本,选取统计量
$$U = \frac{\overline{X} - \lambda}{\sqrt{\lambda/n}} \sim N(0, 1)$$
,

显著性水平 α = 0.05, $u_{1-\alpha}$ = $u_{0.95}$ = 1.645,左侧拒绝域 W= { $u \le -1.645$ },因 \bar{x} = 1.975,n = 40, λ = 2.5,

则
$$u = \frac{1.975 - 2.5}{\sqrt{2.5/40}} = -2.1 \in W$$
, 并且检验的 p 值 $p = P\{U \le -2.1\} = 0.0179 < \alpha = 0.05$,

故拒绝 H_0 ,接受 H_1 ,不能认为单位时间内平均呼叫次数不低于 2.5 次;

- 6. 通常每平方米某种布上的疵点数服从泊松分布,现观测该种布 100 m²,发现有 126 个疵点,在显著性水平 0.05 下能否认为该种布每平方米上平均疵点数不超过 1 个?并给出检验的 p 值.
- 解: 设每平方米该种布上的疵点数 $X \sim P(\lambda)$, 有 $n\overline{X} = \sum_{i=1}^{n} X_i \sim P(n\lambda)$,

大样本,有
$$\frac{n\overline{X}-n\lambda}{\sqrt{n\lambda}}=\frac{\overline{X}-\lambda}{\sqrt{\lambda/n}}\sim N(0,1)$$
,

假设 H_0 : $\lambda = 1$ vs H_1 : $\lambda > 1$,

大样本,选取统计量
$$U = \frac{\overline{X} - \lambda}{\sqrt{\lambda/n}} \sim N(0, 1)$$
,

显著性水平 $\alpha = 0.05$, $u_{1-\alpha} = u_{0.95} = 1.645$, 右侧拒绝域 $W = \{u \ge 1.645\}$, 因 $\bar{x} = 1.26$, n = 100, $\lambda = 1$,

则
$$u = \frac{1.26 - 1}{\sqrt{1/100}} = 2.6 \in W$$
,并且检验的 p 值 $p = P\{U \ge 2.6\} = 0.0047 < \alpha = 0.05$,

故拒绝 H_0 ,接受 H_1 ,不能认为该种布每平方米上平均疵点数不超过 1 个;

7. 某厂的一批电子产品,其寿命 T 服从指数分布,其密度函数为

$$p(t; \theta) = \theta^{-1} \exp\{-t/\theta\} I_{t>0},$$

从以往生产情况知平均寿命 θ = 2000 h. 为检验当日生产是否稳定,任取 10 件产品进行寿命试验,到全部失效时停止. 试验得失效寿命数据之和为 30200. 试在显著性水平 α = 0.05 下检验假设

$$H_0$$
: $\theta = 2000$ vs H_1 : $\theta \neq 2000$.

解: 假设 H_0 : $\theta = 2000$ vs H_1 : $\theta \neq 2000$,

选取统计量
$$\chi^2 = \frac{2n\overline{X}}{\theta} \sim \chi^2(2n)$$
,

显著性水平 $\alpha = 0.05$, $\chi^2_{\alpha/2}(2n) = \chi^2_{0.025}(20) = 9.5908$, $\chi^2_{1-\alpha/2}(2n) = \chi^2_{0.975}(20) = 34.1696$,

双侧拒绝域 $W = \{\chi^2 \le 9.5908$ 或 $\chi^2 \ge 34.1696\}$,

则
$$\chi^2 = \frac{2 \times 10 \times 3020}{2000} = 30.20 \notin W$$
,并且检验的 p 值 $p = P\{\chi^2 \ge 30.20\} = 0.0667 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 即可以认为其平均寿命等于 2000 h.

- 8. 设 X_1, X_2, \dots, X_n 为取自两点分布b(1, p)的随机样本.
 - (1) 试求单侧假设检验问题 H_0 : $p \le 0.01$ vs H_1 : p > 0.01 的显著水平 $\alpha = 0.05$ 的检验;
 - (2) 若要这个检验在 p = 0.08 时犯第二类错误的概率不超过 0.10,样本容量 n 应为多大?
- 解: (1) 假设 H_0 : p = 0.01 vs H_1 : p > 0.01,

若为小样本,选取统计量 $n\overline{X} = \sum_{i=1}^{n} X_i \sim b(n, p)$,

显著性水平 $\alpha = 0.05$, p = 0.01,

$$\mathbb{E} C_2 = \min \left\{ \sum_{k=0}^n C_n^k \cdot 0.01^k \cdot 0.99^{n-k} \le 0.05 \right\} = \min \left\{ \sum_{k=0}^{c-1} C_n^k \cdot 0.01^k \cdot 0.99^{n-k} \ge 0.95 \right\},$$

当 $n \le 5$ 时, $c_2 = 1$;当 $6 \le n \le 35$ 时, $c_2 = 2$;当 $36 \le n \le 82$ 时, $c_2 = 3$;当 $83 \le n \le 137$ 时, $c_2 = 4$;右侧拒绝域 $W = \{n\overline{x} \ge c_2\}$,

根据 $n\bar{x}$,作出决策;

若为大样本,选取统计量
$$U = \frac{\overline{X} - p}{\sqrt{p(1-p)/n}} \stackrel{.}{\sim} N(0,1)$$
,

显著性水平 $\alpha = 0.05$, $u_{1-\alpha} = u_{0.95} = 1.645$, 右侧拒绝域 $W = \{u \ge 1.645\}$, 计算 u, 作出决策;

(2)
$$\not\equiv p = 0.08 \ \text{H}$$
, $n\overline{X} = \sum_{i=1}^{n} X_i \sim b(n, 0.08)$,

则犯第二类错误的概率

$$\beta = P\{n\overline{X} \notin W \mid p = 0.08\} = P\{n\overline{X} < c_2 \mid p = 0.08\} = \sum_{n=0}^{c_2 - 1} C_n^k \cdot 0.08^k \cdot 0.92^{n - k} \le 0.10 \text{ ,}$$

当 $n \le 5$ 时, $c_2 = 1$, $\beta = 0.92^n \ge 0.6591$;

$$\stackrel{\text{def}}{=} 6 \le n \le 35 \text{ ps}, \quad c_2 = 2, \quad \beta = \sum_{k=0}^{1} C_n^k \cdot 0.08^k \cdot 0.92^{n-k} \ge 0.2184;$$

当 $36 \le n \le 82$ 时, $c_2 = 3$,

若
$$n = 64$$
, $\beta = \sum_{k=0}^{2} C_n^k \cdot 0.08^k \cdot 0.92^{n-k} = 0.1050$; 若 $n = 65$, $\beta = \sum_{k=0}^{2} C_n^k \cdot 0.08^k \cdot 0.92^{n-k} = 0.0991$;

故 $n \ge 65$.

9. 有一批电子产品共 50 台,产销双方协商同意找出一个检验方案,使得当次品率 $p \le p_0 = 0.04$ 时拒绝的概率不超过 0.05,而当 $p > p_1 = 0.30$ 时,接受的概率不超过 0.1,请你帮助找出适当的检验方案.

解: 设这批电子产品中的次品数为
$$n\overline{X} = \sum_{i=1}^{n} X_i$$
, 有 $n\overline{X} \sim b(n, p)$,

假设 H_0 : p = 0.04 vs H_1 : p > 0.04,

小样本,选取统计量 $n\overline{X} \sim b(n, p)$,

显著性水平 α = 0.05, p = 0.04,

$$\mathbb{E} C_2 = \min \left\{ \sum_{k=0}^n C_n^k \cdot 0.04^k \cdot 0.96^{n-k} \le 0.05 \right\} = \min \left\{ \sum_{k=0}^{c-1} C_n^k \cdot 0.04^k \cdot 0.96^{n-k} \ge 0.95 \right\},$$

当 n=1 时, $c_2=1$; 当 $2 \le n \le 9$ 时, $c_2=2$; 当 $10 \le n \le 21$ 时, $c_2=3$; 当 $22 \le n \le 35$ 时, $c_2=4$;

当 $36 \le n \le 50$ 时, $c_2 = 5$;右侧拒绝域 $W = \{n\bar{x} \ge c_2\}$,

根据 $n\bar{x}$,作出决策;

在
$$p = p_1 = 0.30$$
 时, $n\overline{X} = \sum_{i=1}^n X_i \sim b(n, 0.30)$,

则犯第二类错误的概率

$$\beta = P\{n\overline{X} \notin W \mid p = 0.30\} = P\{n\overline{X} < c_2 \mid p = 0.30\} = \sum_{k=0}^{c_2-1} C_n^k \cdot 0.30^k \cdot 0.70^{n-k} \le 0.10,$$

当 n=1 时, $c_2=1$, $\beta=0.70$;

$$\stackrel{\text{\tiny \perp}}{=} 2 \le n \le 9$$
 时, $c_2 = 2$, $\beta = \sum_{k=0}^{1} C_n^k \cdot 0.30^k \cdot 0.70^{n-k} \ge 0.1960$;

当 $10 \le n \le 21$ 时, $c_2 = 3$,

若
$$n = 15$$
, $\beta = \sum_{k=0}^{2} C_n^k \cdot 0.30^k \cdot 0.70^{n-k} = 0.1268$; 若 $n = 16$, $\beta = \sum_{k=0}^{2} C_n^k \cdot 0.30^k \cdot 0.70^{n-k} = 0.0994$;

故随机抽取 n=16 台该电子产品,当其中次品数小于 $c_2=3$ 时接受,次品数不小于 $c_2=3$ 时拒绝.

10. 若在猜硬币正反面游戏中,某人在 100 次试猜中共猜中 60 次,你认为他是否有诀窍? (取 α = 0.05).

解:设在
$$n=100$$
 次试猜中的猜中次数为 $n\overline{X}=\sum_{i=1}^{n}X_{i}$, p 为猜中的概率,有 $n\overline{X}\sim b(n,p)$,

假设 H_0 : p = 0.5 vs H_1 : p > 0.5,

大样本,选取统计量
$$U = \frac{\overline{X} - p}{\sqrt{p(1-p)/n}} \stackrel{.}{\sim} N(0,1)$$
,

显著性水平 $\alpha = 0.05$, $u_{1-\alpha} = u_{0.95} = 1.645$, 双侧拒绝域 $W = \{u \ge 1.645\}$,

则
$$u = \frac{0.6 - 0.5}{\sqrt{0.5 \times 0.5/100}} = 2 \in W$$
, 并且检验的 p 值 $p = P\{U \ge 2\} = 0.0228 < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,即可以认为他有诀窍.

- 11. 设有两工厂生产的同一种产品,要检验假设 H_0 : 它们的废品率 p_1, p_2 相同,在第一、二工厂的产品各抽取 n_1 = 1500 个及 n_2 = 1800 个,分别有废品 300 个及 320 个,问在 5%显著性水平上应接受还是拒绝 H_0 .
- 解: 设在抽取的第一、二工厂的 $n_1 = 1500$ 及 $n_2 = 1800$ 个产品中废品数分别为 $n_1 \overline{X} = \sum_{i=1}^{n_1} X_i$, $n_2 \overline{Y} = \sum_{j=1}^{n_2} \overline{Y}_j$,

则
$$n_1 \overline{X} \sim b(n_1, p_1)$$
 , $n_2 \overline{Y} \sim b(n_2, p_1)$, 大样本,有 $\overline{X} \sim N \left(p_1, \frac{p_1(1-p_1)}{n_1} \right)$, $\overline{Y} \sim N \left(p_2, \frac{p_2(1-p_2)}{n_2} \right)$,

设两个总体相互独立,有
$$\overline{X}-\overline{Y}\sim N\left(p_1-p_2, \frac{p_1(1-p_1)}{n_1}+\frac{p_2(1-p_2)}{n_2}\right)$$
,

则
$$\frac{(\overline{X} - \overline{Y}) - (p_1 - p_2)}{\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}} \stackrel{\sim}{\sim} N(0,1)$$
 ,

当 $p_1 = p_2 = p$ 但未知时,此时用总频率 $\hat{p} = \frac{n_1 \overline{X} + n_2 \overline{Y}}{n_1 + n_2}$ 作为 p 的点估计替换 p,在大样本场合,有

$$U = \frac{\overline{X} - \overline{Y}}{\sqrt{\hat{p}(1-\hat{p})} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0,1) ,$$

假设 H_0 : $p_1 = p_2$ vs H_1 : $p_1 \neq p_2$,

选取统计量
$$U = \frac{\overline{X} - \overline{Y}}{\sqrt{\hat{p}(1-\hat{p})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0,1)$$
,

显著水平 α = 0.05,有 $u_{1-\alpha/2}$ = $u_{0.975}$ = 1.96,双侧拒绝域 W = { $|u| \ge 1.96$ },

$$\mathbb{A} u = \frac{0.2 - 0.1778}{\sqrt{0.1879 \times 0.8121} \sqrt{\frac{1}{1500} + \frac{1}{1800}}} = 1.4665 \notin W ,$$

并且检验的 p 值 $p = 2P\{U \ge 1.4665\} = 0.1425 > \alpha = 0.05$,

故接受 H_0 , 拒绝 H_1 , 即可以认为它们的废品率 p_1, p_2 相同.

习题 7.4

1. 设 X_1 , …, X_n 为来自 b(1, p)的样本,试求假设 H_0 : $p = p_0$ vs H_1 : $p \neq p_0$ 的似然比检验.解: 因样本联合密度函数为

$$p(x_1, \dots, x_n; p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^n x_i} (1-p)^{\sum_{i=1}^n x_i} = p^{n\overline{x}} (1-p)^{n(1-\overline{x})},$$

则似然函数 $L(p) = p^{n\overline{x}}(1-p)^{n(1-\overline{x})}$,有 $\ln L(p) = n\overline{x} \ln p + n(1-\overline{x}) \ln(1-p)$,

令
$$\frac{d \ln L(p)}{dp} = \frac{n\overline{x}}{p} - \frac{n(1-\overline{x})}{1-p} = 0$$
,得,即,

$$\mathbb{U}\sup_{p}p(x_{1},\cdots,x_{n};p)=\overline{x}^{n\overline{x}}(1-\overline{x})^{n(1-\overline{x})},$$

当 $p = p_0$ 时,似然函数 $p(x_1, \dots, x_n; p) = p_0^{n\overline{x}} (1 - p_0)^{n(1 - \overline{x})}$,即 $\sup_{p = p_0} p(x_1, \dots, x_n; p) = p_0^{n\overline{x}} (1 - p_0)^{n(1 - \overline{x})}$,

故似然比检验统计量为
$$\Lambda(X_1,\cdots,X_n) = \frac{\sup\limits_{\substack{p \ p = p_0}} p(X_1,\cdots,X_n;p)}{\sup\limits_{\substack{p = p_0}} p(X_1,\cdots,X_n;p)} = \left(\frac{\overline{X}}{p_0}\right)^{n\overline{X}} \left(\frac{1-\overline{X}}{1-p_0}\right)^{n(1-\overline{X})}.$$

- 2. 设 X_1 , …, X_n 为来自正态分布 $N(\mu, \sigma^2)$ 的样本,试求假设 H_0 : $\sigma^2 = \sigma_0^2$ vs H_1 : $\sigma^2 \neq \sigma_0^2$ 的似然比检验.
- 解: 因样本联合密度函数为

$$p(x_1, \dots, x_n; \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = (2\pi)^{-\frac{n}{2}} \sigma^{-n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2},$$

则似然函数 $L(\mu, \sigma^2) = (2\pi)^{\frac{n}{2}} \sigma^{-n} e^{\frac{-1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}$,

有
$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$
,

$$\frac{\partial \ln L}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{i=1}^n 2(x_i - \mu) \cdot (-1) = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = \frac{1}{\sigma^2} \left(\sum_{i=1}^n x_i - n\mu \right) = 0;$$

$$\frac{\partial \ln L}{\partial \sigma^2} = -\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0.$$

得
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$
, $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$,

$$\mathbb{I} \sup_{\mu,\sigma^2} p(x_1,\dots,x_n;\mu,\sigma^2) = (2\pi)^{\frac{-n}{2}} \left[\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 \right]^{\frac{-n}{2}} e^{\frac{-n}{2}} = (2\pi)^{\frac{-n}{2}} \left[\frac{(n-1)s^2}{n} \right]^{\frac{-n}{2}} e^{\frac{-n}{2}},$$

当
$$\sigma^2 = \sigma_0^2$$
时,似然函数 $L(\mu) = (2\pi)^{\frac{n}{2}} \sigma_0^{-n} e^{\frac{1}{2\sigma_0^2} \sum_{i=1}^n (x_i - \mu)^2}$

有
$$\ln L(\mu) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma_0^2 - \frac{1}{2\sigma_0^2} \sum_{i=1}^n (x_i - \mu)^2$$
,

$$\iiint \sup_{\mu} p(x_1, \dots, x_n; \mu, \sigma_0^2) = (2\pi)^{\frac{-n}{2}} \sigma_0^{-n} e^{-\frac{1}{2\sigma_0^2} \sum_{i=1}^n (x_i - \bar{x})^2} = (2\pi)^{\frac{-n}{2}} \sigma_0^{-n} e^{-\frac{(n-1)s^2}{2\sigma_0^2}},$$

故似然比检验统计量为

$$\Lambda(X_1, \dots, X_n) = \frac{\sup_{\mu, \sigma^2} p(X_1, \dots, X_n; \mu, \sigma^2)}{\sup_{\mu} p(X_1, \dots, X_n; \mu, \sigma_0^2)} = \left[\frac{(n-1)S^2}{n\sigma_0^2}\right]^{-\frac{n}{2}} e^{\frac{-\frac{n}{2} + (n-1)S^2}{2\sigma_0^2}},$$

这与统计量
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1)$$
 相对应.

- 3. 设 X_1 , …, X_n 为来自指数分布 $Exp(\lambda_1)$ 的样本, Y_1 , …, Y_m 为来自指数分布 $Exp(\lambda_2)$ 的样本,且两组样本独立,其中 λ_1 , λ_2 是未知的正参数.
 - (1) 求假设 H_0 : $\lambda_1 = \lambda_2$ vs H_1 : $\lambda_1 \neq \lambda_2$ 的似然比检验;

- (2) 证明上述检验法的拒绝域仅依赖于比值 $\sum_{i=1}^{n} X_{i} / \sum_{i=1}^{m} Y_{i}$;
- (3) 求统计量 $\sum_{i=1}^{n} X_i / \sum_{i=1}^{m} Y_i$ 在原假设成立下的分布.

解:(1)因样本联合密度函数为

$$p(x_1, \dots, x_n, y_1, \dots, y_m; \lambda_1, \lambda_2) = \prod_{i=1}^n \lambda_1 e^{-\lambda_1 x_i} \prod_{i=1}^m \lambda_2 e^{-\lambda_2 y_i} = \lambda_1^n \lambda_2^m e^{-\lambda_1 \sum_{i=1}^n x_i - \lambda_2 \sum_{i=1}^m y_i},$$

则似然函数 $L(\lambda_1, \lambda_2) = \lambda_1^n \lambda_2^m \operatorname{e}^{-\lambda_1 \sum_{i=1}^n x_i - \lambda_2 \sum_{i=1}^m y_i}$, $\ln L(\lambda_1, \lambda_2) = n \ln \lambda_1 + m \ln \lambda_2 - \lambda_1 \sum_{i=1}^n x_i - \lambda_2 \sum_{i=1}^m y_i$,

$$\Rightarrow \begin{cases}
\frac{\partial \ln L}{\partial \lambda_1} = \frac{n}{\lambda_1} - \sum_{i=1}^n x_i = 0; \\
\frac{\partial \ln L}{\partial \lambda_2} = \frac{n}{\lambda_2} - \sum_{i=1}^m y_i = 0.
\end{cases}$$

得
$$\lambda_1 = \frac{n}{\sum_{i=1}^n x_i}$$
 , $\lambda_2 = \frac{m}{\sum_{i=1}^m y_i}$,

$$\mathbb{I} \sup_{\lambda_{1}, \lambda_{2}} p(x_{1}, \dots, x_{n}, y_{1}, \dots, y_{m}; \lambda_{1}, \lambda_{2}) = \frac{n^{n} m^{m}}{\left(\sum_{i=1}^{n} x_{i}\right)^{n} \left(\sum_{i=1}^{m} y_{i}\right)^{m}} e^{-n-m},$$

当
$$\lambda_1 = \lambda_2$$
 时,似然函数 $L(\lambda_1) = \lambda_1^{n+m} e^{-\lambda_1 \left(\sum_{i=1}^n x_i + \sum_{i=1}^m y_i\right)}$, $\ln L(\lambda_1) = (n+m) \ln \lambda_1 - \lambda_1 \left(\sum_{i=1}^n x_i + \sum_{i=1}^m y_i\right)$,

$$\iiint \sup_{\lambda_1 = \lambda_2} p(x_1, \dots, x_n, y_1, \dots, y_m; \lambda_1, \lambda_2) = \frac{(n+m)^{n+m}}{\left(\sum_{i=1}^n x_i + \sum_{i=1}^m y_i\right)^{n+m}} e^{-n-m},$$

故似然比检验统计量为

$$\Lambda(X_{1}, \dots, X_{n}, Y_{1}, \dots, Y_{m}) = \frac{\sup_{\lambda_{1}, \lambda_{2}} p(X_{1}, \dots, X_{n}, Y_{1}, \dots, Y_{m}; \lambda_{1}, \lambda_{2})}{\sup_{\lambda_{1} = \lambda_{2}} p(X_{1}, \dots, X_{n}, Y_{1}, \dots, Y_{m}; \lambda_{1}, \lambda_{2})} = \frac{n^{n} m^{n} \left(\sum_{i=1}^{n} X_{i} + \sum_{i=1}^{m} Y_{i}\right)^{n+m}}{(n+m)^{n+m} \left(\sum_{i=1}^{n} X_{i}\right)^{n} \left(\sum_{i=1}^{m} Y_{i}\right)^{m+m}}$$

$$=\frac{n^{n}m^{n}}{(n+m)^{n+m}}\left(\frac{\sum_{i=1}^{n}X_{i}+\sum_{i=1}^{m}Y_{i}}{\sum_{i=1}^{n}X_{i}}\right)^{n}\cdot\left(\frac{\sum_{i=1}^{n}X_{i}+\sum_{i=1}^{m}Y_{i}}{\sum_{i=1}^{m}Y_{i}}\right)^{m}=\frac{n^{n}m^{n}}{(n+m)^{n+m}}\left(1+\frac{\sum_{i=1}^{m}Y_{i}}{\sum_{i=1}^{n}X_{i}}\right)^{n}\cdot\left(1+\frac{\sum_{i=1}^{n}X_{i}}{\sum_{i=1}^{m}Y_{i}}\right)^{m};$$

(2)因似然比检验统计量
$$\Lambda(X_1,\cdots,X_n,Y_1,\cdots,Y_m) = \frac{n^n m^n}{(n+m)^{n+m}} \left(1 + \sum_{i=1}^m Y_i \bigg/ \sum_{i=1}^n X_i \right)^n \cdot \left(1 + \sum_{i=1}^n X_i \bigg/ \sum_{i=1}^m Y_i \right)^m$$
,故拒绝域仅依赖于比值 $\sum_{i=1}^n X_i \bigg/ \sum_{i=1}^m Y_i \bigg/ \sum_{i=1}^m Y_$

(3) 因
$$X_i \sim Exp(\lambda_1)$$
,有 $2\lambda_1 X_i \sim Exp\left(\frac{1}{2}\right) = Ga\left(1, \frac{1}{2}\right) = \chi^2(2)$,且 X_1, \dots, X_n 相互独立,

则
$$2\lambda_1 \sum_{i=1}^n X_i \sim \chi^2(2n)$$
, 同理 $2\lambda_2 \sum_{i=1}^m Y_i \sim \chi^2(2m)$,

因两组样本独立,

故
$$F = \frac{2\lambda_1 \sum_{i=1}^n X_i / (2n)}{2\lambda_2 \sum_{i=1}^m Y_i / (2m)} = \frac{m}{n} \cdot \frac{\sum_{i=1}^n X_i}{\sum_{i=1}^m Y_i} \sim F(2n, 2m)$$
.

- 4. 设 X_1 , …, X_n 为来自正态分布 $N(\mu, \sigma^2)$ 的 i.i.d.样本,其中 μ, σ^2 未知. 证明关于假设 H_0 : $\mu \leq \mu_0$ vs H_1 : $\mu > \mu_0$ 的单侧 t 检验是似然比检验(显著性水平 $\alpha < 1/2$).
- 证: 因样本联合密度函数为

$$p(x_1, \dots, x_n; \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = (2\pi)^{-\frac{n}{2}} \sigma^{-n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2},$$

则似然函数 $L(\mu, \sigma^2) = (2\pi)^{-\frac{n}{2}} \sigma^{-n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2}$

有
$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$
,

$$\oint \begin{cases}
\frac{\partial \ln L}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} 2(x_i - \mu) \cdot (-1) = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu) = \frac{1}{\sigma^2} \left(\sum_{i=1}^{n} x_i - n\mu \right) = 0; \\
\frac{\partial \ln L}{\partial \sigma^2} = -\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^{n} (x_i - \mu)^2 = 0.
\end{cases}$$

得
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$
, $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$,

$$\iiint \sup_{\mu,\sigma^2} p(x_1,\dots,x_n;\mu,\sigma^2) = (2\pi)^{\frac{-n}{2}} \left[\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 \right]^{\frac{-n}{2}} e^{\frac{-n}{2}} = (2\pi)^{\frac{-n}{2}} \left[\frac{(n-1)s^2}{n} \right]^{\frac{-n}{2}} e^{\frac{-n}{2}},$$

当
$$\mu \le \mu_0$$
时,若 $\bar{x} \le \mu_0$,有 $\sup_{\mu \le \mu_0, \sigma^2} p(x_1, \dots, x_n; \mu, \sigma^2) = \sup_{\mu, \sigma^2} p(x_1, \dots, x_n; \mu, \sigma^2)$,

则似然比检验统计量
$$\Lambda(X_1,\cdots,X_n) = \frac{\sup\limits_{\mu,\sigma^2} p(X_1,\cdots,X_n;\mu,\sigma^2)}{\sup\limits_{\mu\leq\mu_0,\sigma^2} p(X_1,\cdots,X_n;\mu,\sigma^2)} = 1$$
,

若 $\bar{x} > \mu_0$,似然函数上确界应在 $\mu = \mu_0$ 时取得,

即似然函数
$$L(\sigma^2) = (2\pi)^{-\frac{n}{2}}\sigma^{-n} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu_0)^2}$$
,有 $\ln L(\sigma^2) = -\frac{n}{2}\ln(2\pi)^{-\frac{n}{2}} - \frac{n}{2}\ln\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu_0)^2$,

$$? = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_0)^2 = \frac{1}{n} \left[\sum_{i=1}^{n} (x_i - \overline{x})^2 + n(\overline{x} - \mu_0)^2 \right] = \frac{(n-1)s^2}{n} + (\overline{x} - \mu_0)^2 ,$$

$$\mathbb{I} \sup_{\mu \leq \mu_0, \, \sigma^2} p(x_1, \dots, x_n; \, \mu, \, \sigma^2) = (2\pi)^{\frac{-n}{2}} \left[\frac{(n-1)s^2}{n} + (\overline{x} - \mu_0)^2 \right]^{\frac{-n}{2}} e^{\frac{-n}{2}},$$

故似然比检验统计量为

$$\Lambda(X_1, \dots, X_n) = \frac{\sup_{\mu, \sigma^2} p(X_1, \dots, X_n; \mu, \sigma^2)}{\sup_{\mu \le \mu_0, \sigma^2} p(X_1, \dots, X_n; \mu, \sigma^2)} = \left[\frac{(n-1)S^2}{n} \right]^{\frac{n}{2}} \left[\frac{(n-1)S^2}{n} + (\overline{X} - \mu_0)^2 \right]^{\frac{n}{2}}$$

$$= \left[1 + \frac{1}{n-1} \left(\frac{\overline{X} - \mu_0}{S/\sqrt{n}}\right)^2\right]^{\frac{n}{2}},$$

这与关于假设 H_0 : $\mu \le \mu_0$ vs H_1 : $\mu > \mu_0$ 的单侧 t 检验的统计量 $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$ 相对应.

5. 按孟德尔遗传规律,让开淡红花的豌豆随机交配,子代可区分为红花、淡红花和白花三类,且其比例是 1:2:1,为了验证这个理论,观察一次实验,得到红花、淡红花和白花的豌豆株数分别为 26,66,28,这些数据与孟德尔定律是否一致(α=0.05)?

解: 假设
$$H_0$$
: $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{2}$, $p_3 = \frac{1}{4}$,

选取统计量
$$\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i} \sim \chi^2(r-1)$$
,

显著性水平 $\alpha=0.05,\ r=3,\ \chi^2_{1-\alpha}(r-1)=\chi^2_{0.95}(2)=5.9915$,右侧拒绝域 $W=\{\chi^2\geq 5.9915\}$,

因 n = 120, p_i , n_i 及计算结果如下表:

花色	红花	淡红花	白花	合计
n_i	26	66	28	120
p_i	1/4	1/2	1/4	1
$n_i - np_i$	-4	6	-2	0
$(n_i - np_i)^2 / (np_i)$	0.5333	0.6	0.1333	1.2666

有 $\chi^2 = 1.2666 \notin W$,并且检验的 p 值 $p = P\{\chi^2 \ge 1.2666\} = 0.5308 > \alpha = 0.05$,故接受 H_0 ,拒绝 H_1 ,即可以认为这些数据与孟德尔定律一致.

6. 掷一颗骰子60次,结果如下:

试在显著性水平为 0.05 下检验这颗骰子是否均匀.

解: 假设
$$H_0$$
: $p_1 = p_2 = \cdots = p_6 = \frac{1}{6}$,

选取统计量
$$\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i} \stackrel{\cdot}{\sim} \chi^2(r-1)$$
,

显著性水平 $\alpha=0.05$,r=6, $\chi^2_{1-\alpha}(r-1)=\chi^2_{0.95}(5)=11.0705$,右侧拒绝域 $W=\{\chi^2\geq 11.0705\}$,

因 n = 60, p_i , n_i 及计算结果如下表:

点数	1	2	3	4	5	6	合计
n_i	7	8	12	11	9	13	60
p_i	1/6	1/6	1/6	1/6	1/6	1/6	1
$n_i - np_i$	-3	-2	2	1	-1	3	0
$(n_i - np_i)^2 / (np_i)$	0.9	0.4	0.4	0.1	0.1	0.9	2.8

有 $\chi^2 = 2.8 \notin W$,并且检验的 p 值 $p = P{\chi^2 \ge 2.8} = 0.7308 > \alpha = 0.05$,

故接受 H_0 , 拒绝 H_1 , 即可以认为这颗骰子是均匀的.

7. 检查了一本书的 100 页,记录各页中的印刷错误的个数,其结果如下:

错误个数	0	1	2	3	4	5	≥6
	35	40	19	3	2	1	0

问能否认为一页的印刷错误个数服从泊松分布(取 α = 0.05)?

解: 假设 H₀:
$$p_i = \frac{\lambda^i}{i!} e^{-\lambda}$$
, $i = 0, 1, \dots, 5$ 且 $p_6 = \sum_{i=0}^{+\infty} \frac{\lambda^i}{i!} e^{-\lambda}$,

需估计一个参数
$$\lambda$$
 , $k=1$, 选取统计量 $\chi^2 = \sum_{i=0}^{r-1} \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \stackrel{.}{\sim} \chi^2(r-k-1)$,

显著性水平 $\alpha=0.05,\ r=7,\ \chi^2_{1-\alpha}(r-k-1)=\chi^2_{0.95}(5)=11.0705$,右侧拒绝域 $W=\{\chi^2\geq 11.0705\}$,

因
$$n = 100$$
, $\hat{\lambda} = \bar{x} = \frac{100}{100} = 1$, \hat{p}_i , n_i 及计算结果如下表:

错误个数	0	1	2	3	4	5	≥6	合计
n_i	35	40	19	3	2	1	0	100
\hat{p}_i	0.3679	0.3679	0.1839	0.0613	0.0153	0.0031	0.0006	1
$n_i - n\hat{p}_i$	-1.7879	3.2120	0.6060	-3.1313	0.4672	0.6934	-0.0594	0
$(n_i - n\hat{p}_i)^2 / (n\hat{p}_i)$	0.0869	0.2804	0.0200	1.5992	0.1424	1.5685	0.0594	3.7568

有 $\chi^2 = 3.7568 \notin W$,并且检验的 p 值 $p = P\{\chi^2 \ge 3.7568\} = 0.5849 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 即可以认为一页的印刷错误个数服从泊松分布.

8. 某建筑工地每天发生事故数现场记录如下:

试在显著性水平 $\alpha = 0.05$ 下检验这批数据是否服从泊松分布.

解: 假设 H₀:
$$p_i = \frac{\lambda^i}{i!} e^{-\lambda}$$
, $i = 0, 1, \dots, 5$ 且 $p_6 = \sum_{i=6}^{+\infty} \frac{\lambda^i}{i!} e^{-\lambda}$,

需估计一个参数
$$\lambda$$
 , $k=1$, 选取统计量 $\chi^2 = \sum_{i=0}^{r-1} \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \stackrel{\cdot}{\sim} \chi^2(r-k-1)$,

显著性水平 α = 0.05,r = 7, $\chi^2_{1-\alpha}(r-k-1) = \chi^2_{0.95}(5) = 11.0705$,右侧拒绝域 $W = \{\chi^2 \ge 11.0705\}$,

因
$$n = 200$$
, $\hat{\lambda} = \overline{x} = \frac{148}{200} = 0.74$, \hat{p}_i , n_i 及计算结果如下表:

一天发生的事故数	0	1	2	3	4	5	≥6	合计
n_i	102	59	30	8	0	1	0	200
\hat{p}_i	0.4771	0.3531	0.1306	0.0322	0.0060	0.0009	0.0001	1
$n_i - n\hat{p}_i$	6.5772	-11.6129	3.8732	1.5554	-1.1922	0.8236	-0.0243	0
$\frac{(n_i - n\hat{p}_i)^2 / (n\hat{p}_i)}{}$	0.4533	1.9098	0.5742	0.3754	1.1923	3.8437	0.0243	8.3730

有 χ^2 = 8.3730 \notin W,并且检验的 p 值 p = P{ χ^2 ≥ 8.3730} = 0.1368 > α = 0.05,

故接受 H₀, 拒绝 H₁, 即可以认为这批数据服从泊松分布.

9. 在一批灯泡中抽取 300 只作寿命试验, 其结果如下:

在显著性水平为 0.05 下能否认为灯泡寿命服从指数分布 Exp (0.005)?

解: 假设
$$H_0$$
: $p_i = e^{-100(i-1)\lambda} - e^{-100i\lambda}$, $i = 1, 2, 3 且 $p_4 = e^{-300\lambda}$,$

选取统计量
$$\chi^2 = \sum_{i=1}^r \frac{(n_i - np_i)^2}{np_i} \stackrel{\cdot}{\sim} \chi^2(r-1)$$
,

显著性水平 α = 0.05,r= 4, $\chi^2_{1-\alpha}(r-1) = \chi^2_{0.95}(3) = 7.8147$,右侧拒绝域 $W = \{\chi^2 \ge 7.8147\}$,

因 n = 300, $\lambda = 0.005$, p_i , n_i 及计算结果如下表:

寿命(h)	< 100	[100, 200)	[200, 300)	≥ 300	合计
n_i	121	78	43	58	300
p_i	0.3935	0.2387	0.1447	0.2231	1
$n_i - np_i$	2.9592	6.4046	-0.4248	-8.9390	0
$(n_i - np_i)^2 / (np_i)$	0.0742	0.5729	0.0042	1.1937	1.8450

有 χ^2 = 1.8450 \notin W,并且检验的 p 值 p = P{ χ^2 ≥ 1.8450} = 0.6052 > α = 0.05,

故接受 H_0 , 拒绝 H_1 , 即可以认为灯泡寿命服从指数分布 Exp(0.005).

10. 下表是上海 1875 年到 1955 年的 81 年间,根据其中 63 年观察到的一年中(5 月到 9 月)下暴雨次数的整理资料

试检验一年中暴雨次数是否服从泊松分布(α =0.05)?

解: 假设
$$H_0$$
: $p_i = \frac{\lambda^i}{i!} e^{-\lambda}$, $i = 0, 1, \dots, 8 \perp p_9 = \sum_{i=9}^{+\infty} \frac{\lambda^i}{i!} e^{-\lambda}$,

需估计一个参数
$$\lambda$$
 , $k=1$, 选取统计量 $\chi^2 = \sum_{i=0}^{r-1} \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \sim \chi^2(r-k-1)$,

显著性水平 $\alpha=0.05$, r=10, $\chi^2_{1-\alpha}(r-k-1)=\chi^2_{0.95}(8)=15.5073$, 右侧拒绝域 $W=\{\chi^2\geq 15.5073\}$,

因
$$n = 100$$
, $\hat{\lambda} = \bar{x} = \frac{180}{63} = 2.8571$, \hat{p}_i , n_i 及计算结果如下表:

暴雨次数	0	1	2	3	4	5	6	7	8	≥9	合计
n_i	4	8	14	19	10	4	2	1	1	0	63
\hat{p}_{i}	0.0574	0.1641	0.2344	0.2233	0.1595	0.0911	0.0434	0.0177	0.0063	0.0028	1
$n_i - n\hat{p}_i$	0.3817	-2.3379	-0.7684	4.9349	-0.0465	-1.7409	-0.7337	-0.1158	0.6015	-0.1749	0
$\frac{(n_i - n\hat{p}_i)^2 / (n\hat{p}_i)}{}$	0.0403	0.5287	0.0400	1.7314	0.0002	0.5279	0.1969	0.0120	0.9079	0.1749	4.1603

有 χ^2 = 4.1603 \notin W,并且检验的 p 值 p = P{ χ^2 ≥ 4.1603} = 0.1576 > α = 0.05,

故接受 Ho, 拒绝 H₁, 即可以认为上海一年中暴雨次数服从泊松分布.

11. 某种配偶的后代按体格的属性分为三类,各类的数目分别是 10, 53, 46. 按照某种遗传模型其频率之比应为 p^2 : 2p(1-p): $(1-p)^2$,问数据与模型是否相符(α = 0.05)?

解: 假设
$$H_0$$
: $p_1 = p^2$, $p_2 = 2p(1-p)$, $p_3 = (1-p)^2$,

需估计一个参数
$$p$$
, $k=1$, 选取统计量 $\chi^2 = \sum_{i=1}^r \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} \sim \chi^2(r-k-1)$,

显著性水平 α = 0.05,r= 3, $\chi^2_{1-\alpha}(r-k-1) = \chi^2_{0.95}(1) = 3.8415$,右侧拒绝域 $W = \{\chi^2 \ge 3.8415\}$,

设后代的各类数目分别为 n_1, n_2, n_3 次, 有 $n_1 + n_2 + n_3 = n_3$

则似然函数
$$L(p) = (p^2)^{n_1} [2p(1-p)]^{n_2} [(1-p)^2]^{n_3} = 2^{n_2} p^{2n_1+n_2} (1-p)^{n_2+2n_3}$$
,

有
$$\ln L(p) = n_2 \ln 2 + (2n_1 + n_2) \ln p + (n_2 + 2n_3) \ln (1 - p)$$
,

因
$$n = 109$$
, $\hat{p} = \frac{2n_1 + n_2}{2n} = \frac{73}{218} = 0.3349$, \hat{p}_i , n_i 及计算结果如下表:

后代类别	1	2	3	合计
n_i	10	53	46	109
\hat{p}_i	0.1121	0.4455	0.4424	1
$n_i - n\hat{p}_i$	-2.2225	4.4450	-2.2225	0
$\frac{\left(n_i - n\hat{p}_i\right)^2 / (n\hat{p}_i)}{\left(n\hat{p}_i\right)^2 + \left(n\hat{p}_i\right)^2}$	0.4041	0.4069	0.1024	0.9135

有 $\chi^2 = 0.9135 \notin W$,并且检验的 p 值 $p = P\{\chi^2 \ge 0.9135\} = 0.6608 > \alpha = 0.05$,故接受 H_0 ,拒绝 H_1 ,即可以认为数据与模型相符.

12. 按有无特性 A 与 B 将 n 个样品分成四类,组成 2×2 列联表:

	В	\overline{B}	合计
A	а	b	a+b
\overline{A}	c	d	c+d
合计	a+c	b+d	n

其中n=a+b+c+d,试证明此时列联表独立性检验的 χ^2 统计量可以表示成

$$\chi^{2} = \frac{n(ad - bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}.$$

证: 假设 H_0 : $p_{ij} = p_{i} \cdot p_{\cdot j}$, i = 1, 2; j = 1, 2,

选取统计量
$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{(n_{ij} - n\hat{p}_{ij})^2}{n\hat{p}_{ij}} \sim \chi^2(1)$$
,

則
$$\hat{p}_{11} = \hat{p}_{1} \cdot \hat{p}_{.1} = \frac{(a+b)(a+c)}{n^{2}}, \quad \hat{p}_{12} = \frac{(a+b)(b+d)}{n^{2}}, \quad \hat{p}_{21} = \frac{(c+d)(a+c)}{n^{2}}, \quad \hat{p}_{22} = \frac{(c+d)(b+d)}{n^{2}},$$

$$\dot{\mathcal{D}}_{11} = \frac{1}{n^{2}} \cdot \hat{p}_{.1} = \frac{(a+b)(a+c)}{n^{2}}, \quad \hat{p}_{12} = \frac{(a+b)(b+d)}{n^{2}}, \quad \hat{p}_{21} = \frac{(c+d)(a+c)}{n^{2}}, \quad \hat{p}_{22} = \frac{(c+d)(b+d)}{n^{2}},$$

$$\dot{\mathcal{D}}_{11} = \hat{p}_{11} \cdot \hat{p}_{.1} = \frac{(a+b)(a+c)}{n^{2}}, \quad \hat{p}_{12} = \frac{(c+d)(a+c)}{n^{2}}, \quad \hat{p}_{21} = \frac{(c+d)(b+d)}{n^{2}}, \quad \hat{p}_{22} = \frac{(c+d)(b+d)}{n^{2}},$$

$$\dot{\mathcal{D}}_{12} = \frac{(c+d)(a+c)}{n^{2}}, \quad \dot{p}_{12} = \frac{(c+d)(a+c)}{n^{2}}, \quad \dot{p}_{21} = \frac{(c+d)(a+c)}{n^{2}}, \quad \dot{p}_{22} = \frac{(c+d)(b+d)}{n^{2}},$$

$$\dot{\mathcal{D}}_{12} = \frac{(c+d)(a+c)}{n}, \quad \dot{p}_{21} = \frac{(c+d)(a+c)}{n}, \quad \dot{p}_{22} = \frac{(c+d)(b+d)}{n},$$

$$\dot{\mathcal{D}}_{12} = \frac{(c+d)(b+d)}{n} + \frac{(c+d)(a+c)}{n} + \frac{(c+d)(a+c)}{n} + \frac{(c+d)(a+c)}{n} + \frac{(c+d)(b+d)}{n} + \frac{(c+d)(a+c)^{2}}{n(c+d)(a+c)} + \frac{(ad-bc)^{2}}{n(c+d)(b+d)} + \frac{(ad-bc)^{2}}{n(c+d)(b+d)} + \frac{(ad-bc)^{2}}{n(a+b)(c+d)(a+c)(b+d)} + \frac{(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)} + \frac{(ad-bc)^{2}}{(a+b)(a+c)(b+d)} + \frac{(ad-bc)^{2}}{(a+b)(a+c)(b+d)} +$$

13. 在研究某种新措施对猪白痢的防治效果问题时,获得了如下数据:

	存活数	死亡数	合计	死亡率
对照	114	36	150	24%
新措施	132	18	150	12%
合计	246	54	300	36%

试问新措施对防治该种疾病是否有显著疗效(α =0.05)?

解: 假设 H_0 : $p_{ij} = p_i \cdot p_{\cdot j}$, i = 1, 2; j = 1, 2,

选取统计量
$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{(n_{ij} - n\hat{p}_{ij})^2}{n\hat{p}_{ij}} \sim \chi^2(1)$$
,

显著性水平 α = 0.05, $\chi^2_{1-\alpha}(1) = \chi^2_{0.95}(1) = 3.8415$,右侧拒绝域 $W = \{\chi^2 \ge 3.8415\}$,

且 $\hat{p}_{ii} = \hat{p}_{i} \cdot \hat{p}_{\cdot i}$, i, j = 1, 2, n_{ij} 及计算结果如下表:

措施	对具	照	新措	新措施		
效果	存活	死亡	存活	死亡	合计	
n_{ij}	114	36	132	18	300	
\hat{p}_{ij}	0.41	0.09	0.41	0.09	1	
$n_{ij} - n\hat{p}_{ij}$	-9	9	9	-9	0	
$(n_i - n\hat{p}_i)^2 / (n\hat{p}_i)$	0.6585	3	0.6585	3	7.3170	

有 $\chi^2 = 7.3170 \in W$,并且检验的 p 值 $p = P\{\chi^2 \ge 7.3170\} = 0.0068 < \alpha = 0.05$,

故拒绝 H_0 ,接受 H_1 ,即可以认为新措施对防治该种疾病有显著疗效.

14. 某单位调查了520名中年以上的脑力劳动者,其中136人有高血压史,另外384人则无. 在有高血压

史的 136 人中,经诊断为冠心病及可疑者的有 48 人,在无高血压史的 384 人中,经诊断为冠心病及可疑者的有 36 人. 从这个资料,对高血压与冠心病有无关系作检验,取 $\alpha=0.01$.

解: 假设 H_0 : $p_{ij} = p_i \cdot p_{ij}$, i = 1, 2; j = 1, 2,

选取统计量
$$\chi^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{(n_{ij} - n\hat{p}_{ij})^2}{n\hat{p}_{ij}} \sim \chi^2(1)$$
,

显著性水平 $\alpha = 0.01$, $\chi^2_{1-\alpha}(1) = \chi^2_{0.99}(1) = 6.6349$, 右侧拒绝域 $W = \{\chi^2 \ge 6.6349\}$,

且 $\hat{p}_{ij} = \hat{p}_{i\cdot} \cdot \hat{p}_{\cdot j}$, i, j = 1, 2, n_{ij} 及计算结果如下表:

血压	Ī	青	但	合计	
冠心病	有	无	有	无	пи
n_{ij}	48	88	36	348	520
\hat{p}_{ij}	0.0422	0.2193	0.1193	0.6192	1
$n_{ij} - n\hat{p}_{ij}$	26.0308	-26.0308	-26.0308	26.0308	
$(n_i - n\hat{p}_i)^2 / (n\hat{p}_i)$	30.8432	5.9423	10.9236	2.1046	49.8136

有 χ^2 = 49.8136 \in W,并且检验的 p 值 p = $P\{\chi^2 \ge 49.8136\}$ = 1.6906 \times 10 $^{-12} < \alpha$ = 0.05,故拒绝 H_0 ,接受 H_1 ,即可以认为高血压与冠心病有关系.

15. 在一项是否应提高小学生的计算机课程的比例的调查结果如下:

年龄	同意	不同意	不知道
55 岁以上	32	28	14
36~55岁	44	21	17
15~35岁	47	12	13

问年龄因素是否影响了对问题的回答($\alpha = 0.05$)?

解: 假设 H_0 : $p_{ij} = p_i \cdot p_{-j}$, i = 1, 2, 3; j = 1, 2, 3,

选取统计量
$$\chi^2 = \sum_{i=1}^3 \sum_{j=1}^3 \frac{(n_{ij} - n\hat{p}_{ij})^2}{n\hat{p}_{ij}} \dot{\sim} \chi^2(4)$$
,

显著性水平 α = 0.05, $\chi^2_{l-\alpha}(4) = \chi^2_{0.95}(4) = 9.4877$,右侧拒绝域 $W = \{\chi^2 \ge 9.4877\}$,

$$\hat{p}_{1.} = \frac{32 + 28 + 14}{228} = 0.3246 , \quad \hat{p}_{2.} = \frac{44 + 21 + 17}{228} = 0.3596 , \quad \hat{p}_{3.} = \frac{47 + 12 + 13}{228} = 0.3158 ,$$

$$\hat{p}_{.1} = \frac{32 + 44 + 47}{228} = 0.5395 , \quad \hat{p}_{.2} = \frac{28 + 21 + 12}{228} = 0.2675 , \quad \hat{p}_{.3} = \frac{14 + 17 + 13}{228} = 0.1930 ,$$

且 $\hat{p}_{ii} = \hat{p}_{i} \cdot \hat{p}_{.i}$, i, j = 1, 2, n_{ii} 及计算结果如下表:

年龄		55 岁以上			36~55 岁			15~35 岁	!	合计
回答	同意	不同意	不知道	同意	不同意	不知道	同意	不同意	不知道	ΉИ
n_{ij}	32	28	14	44	21	17	47	12	13	228
\hat{p}_{ij}	0.1751	0.0868	0.0626	0.1940	0.0962	0.0694	0.1704	0.0845	0.0609	1
$n_{ij} - n\hat{p}_{ij}$	-7.9211	8.2018	-0.2807	-0.2368	-0.9386	1.1754	8.1579	-7.2632	-0.8947	0
$(n_i - n\hat{p}_i)^2 / (n\hat{p}_i)$	1.5717	3.3977	0.0055	0.0013	0.0402	0.0873	1.7134	2.7386	0.0576	9.6132

有 $\chi^2 = 9.6132 \in W$,并且检验的 p 值 $p = P{\chi^2 \ge 9.6132} = 0.0475 < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,即可以认为年龄因素影响了对问题的回答.

习题 7.5

1. 在检验了一个车间生产的 20 个轴承外座圈的内径后得到下面数据(单位: mm)

15.04 15.36 14.57 14.53 15.57 14.69 15.37 14.66 14.52 15.41

15.34 14.28 15.01 14.76 14.38 15.87 13.66 14.97 15.29 14.95

- (1) 作正态概率图,并作初步判断;
- (2) 请用 W 检验方法检验这组数据是否来自正态分布($\alpha = 0.05$)?
- 解: (1) 将数据按从小到大的顺序排列,并计算修正频率 $\frac{i-3/8}{n+1/4}$, $i=1,2,\cdots,n$,且 n=20,

-	数据	13.66	14.28	14.38	14.52	14.53	14.57	14.66	14.69	14.76	14.95
	修正频率	0.0309	0.0802	0.1296	0.1790	0.2284	0.2778	0.3272	0.3765	0.4259	0.4753
	数据	14.97	15.01	15.04	15.29	15.34	15.36	15.37	15.41	15.57	15.87
	修正频率	0.5247	0.5741	0.6235	0.6728	0.7222	0.7716	0.8210	0.8704	0.9198	0.9691

所描点近似在一条直线上,初步判断这组数据来自正态分布总体;

(2) 假设 H₀:数据来自正态分布总体,

选取统计量
$$W = \frac{\left[\sum\limits_{i=1}^{n}(a_{i}-\overline{a})(X_{(i)}-\overline{X})\right]^{2}}{\sum\limits_{i=1}^{n}(a_{i}-\overline{a})^{2}\sum\limits_{i=1}^{n}(X_{(i)}-\overline{X})^{2}} = \frac{\left[\sum\limits_{i=1}^{[n/2]}a_{i}(X_{(n+1-i)}-X_{(i)})\right]^{2}}{\sum\limits_{i=1}^{n}(X_{(i)}-\overline{X})^{2}}$$

显著性水平 α = 0.05, $W_{\alpha}(n) = W_{0.05}(20) = 0.905$,左侧拒绝域 $W = \{w \le 0.905\}$,将数据按从小到大的顺序排列,并列出 W 检验的系数 $a_i(20)$,

	13.66									
$a_{i}(20)$	0.4734	0.3211	0.2565	0.2085	0.1686	0.1334	0.1013	0.0711	0.0422	0.0140
数据	14.97	15.01	15.04	15.29	15.34	15.36	15.37	15.41	15.57	15.87
$a_{i}(20)$	-0.0140	-0.0422	-0.0711	-0.1013	-0.1334	-0.1686	-0.2085	-0.2565	-0.3211	-0.4734

有 \bar{x} = 14.9115, 计算可得w = 0.9743 $\notin W$,

故接受 H₀, 拒绝 H₁, 即可以认为这组数据来自正态分布总体.

2. 抽查克矽平治疗矽肺患者 10 名,得到他们治疗前后的血红蛋白量之差如下:

$$2.7 \quad -1.2 \quad -1.0 \quad 0 \quad 0.7 \quad 2.0 \quad 3.7 \quad -0.6 \quad 0.8 \quad -0.3$$

- (1) 作正态概率图,并作初步判断;
- (2) 请用 W 检验方法检验治疗前后的血红蛋白量之差是否来自正态分布($\alpha = 0.05$)?

解: (1) 将数据按从小到大的顺序排列,并计算修正频率 $\frac{i-3/8}{n+1/4}$, $i=1,2,\cdots,n$,且 n=10,

数据	-1.2	-1.0	-0.6	-0.3	0	0.7	0.8	2.0	2.7	3.7
修正频率	0.0610	0.1585	0.2561	0.3537	0.4512	0.5488	0.6463	0.7439	0.8415	0.9390

所描点近似在一条直线上,初步判断这组数据来自正态分布总体;

(2) 假设 H₀:数据来自正态分布总体,

选取统计量
$$W = \frac{\left[\sum\limits_{i=1}^{n}(a_{i}-\overline{a})(X_{(i)}-\overline{X})\right]^{2}}{\sum\limits_{i=1}^{n}(a_{i}-\overline{a})^{2}\sum\limits_{i=1}^{n}(X_{(i)}-\overline{X})^{2}} = \frac{\left[\sum\limits_{i=1}^{[n/2]}a_{i}(X_{(n+1-i)}-X_{(i)})\right]^{2}}{\sum\limits_{i=1}^{n}(X_{(i)}-\overline{X})^{2}},$$

显著性水平 $\alpha = 0.05$, $W_{\alpha}(n) = W_{0.05}(10) = 0.842$,左侧拒绝域 $W = \{w \le 0.842\}$,

将数据按从小到大的顺序排列,并列出 W 检验的系数 $a_i(10)$,

数据	-1.2	-1.0	-0.6	-0.3	0	0.7	0.8	2.0	2.7	3.7
$a_i(10)$	0.5739	0.3291	0.2141	0.1224	0.0399	-0.0399	-0.1224	-0.2141	-0.3291	-0.5739

有 $\bar{x} = 0.68$, 计算可得 $w = 0.9252 \notin W$,

故接受 H₀, 拒绝 H₁, 即可以认为这组数据来自正态分布总体.

- 3. 某种岩石中的一种元素的含量在25个样本中为
 - $0.32 \quad 0.25 \quad 0.29 \quad 0.25 \quad 0.28 \quad 0.30 \quad 0.23 \quad 0.23 \quad 0.40 \quad 0.32 \quad 0.35 \quad 0.19 \quad 0.34$

 $0.33 \quad 0.33 \quad 0.28 \quad 0.28 \quad 0.22 \quad 0.30 \quad 0.24 \quad 0.35 \quad 0.24 \quad 0.30 \quad 0.23 \quad 0.22$

有人认为该样本来自对数正态分布总体,请用W检验方法作检验($\alpha = 0.05$).

解: 设总体 X 服从对数正态分布 $LN(\mu, \sigma^2)$,

则 $Y = \ln X$ 服从正态分布 $N(\mu, \sigma^2)$,

假设 H₀:数据来自正态分布总体,

选取统计量
$$W = \frac{\left[\sum\limits_{i=1}^{n}(a_i - \overline{a})(Y_{(i)} - \overline{Y})\right]^2}{\sum\limits_{i=1}^{n}(a_i - \overline{a})^2\sum\limits_{i=1}^{n}(Y_{(i)} - \overline{Y})^2} = \frac{\left[\sum\limits_{i=1}^{[n/2]}a_i(Y_{(n+1-i)} - Y_{(i)})\right]^2}{\sum\limits_{i=1}^{n}(Y_{(i)} - \overline{Y})^2}$$
,

显著性水平 $\alpha = 0.05$, $W_{\alpha}(n) = W_{0.05}(25) = 0.918$,左侧拒绝域 $W = \{w \le 0.918\}$,

将数据按从小到大的顺序排列,并列出 W 检验的系数 $a_i(25)$,

数据 Y_i	-1.6607	-1.5141	-1.5141	-1.4697	-1.4697	-1.4697	-1.4271	-1.4271	-1.3863	-1.3863
$a_{i}(25)$	0.4450	0.3069	0.2543	0.2148	0.1822	0.1539	0.1283	0.1046	0.0823	0.0610
数据 Y _i	-1.2730	-1.2730	-1.2730	-1.2379	-1.2040	-1.2040	-1.2040	-1.1394	-1.1394	-1.1087
$a_i(25)$	0.0403	0.0200	0	-0.0200	-0.0403	-0.0610	-0.0823	-0.1046	-0.1283	-0.1539
数据 Y_i	-1.1087	-1.0788	-1.0498	-1.0498	-0.9163					
$a_i(25)$	-0.1822	-0.2148	-0.2543	-0.3069	-0.4450					

有 \bar{v} = -1.2794, 计算可得 w = 0.9687 \notin W,

故接受 H_0 ,拒绝 H_1 ,即可以认为数据 Y_i 来自正态分布总体,即原数据来自对数正态分布总体。

4. 对第 3 题的数据, 试用 EP 检验方法检验这些数据是否来自正态总体 (取 α = 0.05).

解:假设H₀:数据来自正态分布总体,

选取统计量
$$T_{\text{EP}} = 1 + \frac{n}{\sqrt{3}} + \frac{2}{n} \sum_{i=2}^{n} \sum_{j=1}^{i-1} \exp \left\{ -\frac{(x_j - x_i)^2}{2s_*^2} \right\} - \sqrt{2} \sum_{i=1}^{n} \exp \left\{ -\frac{(x_i - \overline{x})^2}{4s_*^2} \right\},$$

显著性水平 α = 0.05, $T_{1-\alpha, EP}(n) = T_{0.95, EP}(25) = 0.370$,右侧拒绝域 $W = \{w \ge 0.370\}$,计算可得 $T_{EP} = 0.0831 \notin W$,

故接受 H₀, 拒绝 H₁, 即可以认为这些数据来自正态分布总体.

习题 7.6

说明:除非特别指出,以下检验的显著性水平均取为 $\alpha = 0.05$.

1. 在某保险种类中,一次关于 2008 年的索赔数额(单位:元)的随机抽样为(按升序排列):

4.632 4.728 5.052 5.064 5.484 6.972 7.596 9.480

14.760 15.012 18.720 21.240 22.836 52.788 67.200

已知 2007 年的索赔数额的中位数为 5063 元. 是否 2008 年索赔的中位数比前一年有所变化?请用双侧符号检验方法检验,求检验的 p 值,并写出结论.

解: 假设 H_0 : $x_{0.5} = 5063$ vs H_1 : $x_{0.5} \neq 5063$,

选取统计量 $S^+ \sim b(n, 0.5)$,

显著性水平 α = 0.05, n = 15,

有
$$\sum_{k=0}^{3} C_{15}^{k} \cdot 0.5^{k} \cdot 0.5^{15-k} = 0.0176 < 0.025 < \sum_{k=0}^{4} C_{15}^{k} \cdot 0.5^{k} \cdot 0.5^{15-k} = 0.0592$$
,

$$\sum_{k=12}^{15} C_{15}^k \cdot 0.5^k \cdot 0.5^{15-k} = 0.0176 < 0.025 < \sum_{k=11}^{15} C_{15}^k \cdot 0.5^k \cdot 0.5^{15-k} = 0.0592,$$

双侧拒绝域 $W = \{S^+ \le 3 \text{ 或 } S^+ \ge 12\},$

因 $S^+ = 12 \in W$, 并且检验的 p 值 $p = 2P\{S^+ \ge 12\} = 0.0352 < \alpha = 0.05$,

故拒绝 H₀,接受 H₁,即可以认为 2008 年索赔的中位数比前一年有所变化.

2. 1984年一些国家每平方公里可开发水资源数据如下表所示(单位:万度/年):

国家	苏联	巴西	美国	加拿大	扎伊尔	印度	哥伦比亚	日本	阿根廷	印度尼西亚	墨西哥
水资源	4.9	4.1	7.5	5.4	28.1	8.5	26.3	34.9	6.9	7.9	4.9

国家	瑞典	意大利	奥地利	南斯拉夫	挪威	瑞士	罗马尼亚	西德	英国	法国	西班牙
水资源	22.3	16.8	58.6	24.8	37.4	78.0	10.1	8.8	1.7	11.5	13.4

而当年中国的该项指标为 20 万度/年,请用符号检验方法检验: 这 22 个国家每平方公里可开发的水资源的中位数不高于中国. 求检验的 p 值,并写出结论.

解: 假设 H_0 : $x_{0.5} = 20$ vs H_1 : $x_{0.5} > 20$,

选取统计量 $S^+ \sim b(n, 0.5)$,

显著性水平 α = 0.05, n = 22,

有
$$\sum_{k=16}^{22} C_{22}^k \cdot 0.5^k \cdot 0.5^{22-k} = 0.0262 < 0.05 < \sum_{k=15}^{22} C_{22}^k \cdot 0.5^k \cdot 0.5^{22-k} = 0.0669$$
,

右侧拒绝域 $W = \{S^+ \ge 16\}$,

因 $S^+ = 8 \notin W$,并且检验的 p 值 $p = P\{S^+ \ge 8\} = 0.9331 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 即可以认为这 22 个国家每平方公里可开发的水资源的中位数不高于中国.

3. 下面是亚洲十个国家 1996 年的每 1000 个新生儿中的死亡数 (按从小到大的次序排列):

国家	日本	以色列	韩国	斯里兰卡	中国	叙利亚	伊朗	印度	孟加拉国	巴基斯坦
新生儿死亡数	4	6	9	15	23	31	36	65	77	88

以 M 表示 1996 年 1000 个新生儿中的死亡数的中位数,试检验: H_0 : $M \ge 34$ vs H_1 : M < 34. 求检验的 p 值,并写出结论.

解: 假设 H_0 : $M \ge 34$ vs H_1 : M < 34,

选取统计量 $S^+ \sim b(n, 0.5)$,

显著性水平 α = 0.05, n = 10,

有
$$\sum_{k=0}^{2} C_{10}^{k} \cdot 0.5^{k} \cdot 0.5^{10-k} = 0.0107 < 0.05 < \sum_{k=0}^{3} C_{10}^{k} \cdot 0.5^{k} \cdot 0.5^{10-k} = 0.0547$$
,

左侧拒绝域 $W = \{S^+ \leq 2\}$,

因 $S^+ = 4 \notin W$,并且检验的 p 值 $p = P\{S^+ \le 4\} = 0.3770 > \alpha = 0.05$,

故接受 H_0 , 拒绝 H_1 , 即可以认为 1996 年 1000 个新生儿中的死亡数的中位数不低于 34.

4. 某烟厂称其生产的每支香烟的尼古丁含量在 12 mg 以下. 实验室测定的该烟厂的 12 支香烟的尼古丁含量(单位: mg)分别为

16.7 17.7 14.1 11.4 13.4 10.5 13.6 11.6 12.0 12.6 11.7 13.7

是否该烟厂所说的尼古丁含量比实际的要少?求检验的p值,并写出结论.

注:对于非正态总体,小样本场合不能用样本均值进行检验,下面用中位数进行检验.

解: 假设 H_0 : $x_{0.5} = 12$ vs H_1 : $x_{0.5} > 12$,

选取统计量 $S^+ \sim b(n, 0.5)$,

显著性水平 α = 0.05, n= 12,

有
$$\sum_{k=10}^{12} C_{12}^k \cdot 0.5^k \cdot 0.5^{12-k} = 0.0193 < 0.05 < \sum_{k=9}^{12} C_{12}^k \cdot 0.5^k \cdot 0.5^{12-k} = 0.0730$$
,

右侧拒绝域 $W = \{S^+ \ge 10\}$,

因 $S^+ = 8 \notin W$,并且检验的 p 值 $p = P\{S^+ \ge 8\} = 0.1938 > \alpha = 0.05$,

故接受 H_0 , 拒绝 H_1 , 即可以认为该烟厂所说的尼古丁含量不比实际的要少.

5. 9 名学生到英语培训班学习,培训前后各进行了一次水平测验,成绩为

学生编号i	1	2	3	4	5	6	7	8	9
入学前成绩 x_i	76	71	70	57	49	69	65	26	59
入学前成绩 x_i 入学后成绩 y_i $z_i = x_i - y_i$	81	85	70	52	52	63	83	33	62
$z_i = x_i - y_i$	-5	-14	0	5	-3	6	-18	-7	-3

- (1) 假设测验成绩服从正态分布, 问学生的培训效果是否显著?
- (2) 不假定总体分布,采用符号检验方法检验学生的培训效果是否显著?
- (3) 采用符号秩和检验方法检验学生的培训效果是否显著. 三种检验方法结论相同吗?
- 解: (1) 如果测验成绩服从正态分布,采用配对T检验,

假设 H_0 : $\mu_z = 0$ vs H_1 : $\mu_z < 0$,

未知
$$\sigma_z^2$$
, 选取统计量 $T = \frac{\overline{Z}}{S_z/\sqrt{n}} \sim t(n-1)$,

显著水平 $\alpha = 0.05$, n = 9, $t_{1-\alpha}(n-1) = t_{0.95}(8) = 1.8595$, 左侧拒绝域 $W = \{t \le -1.8595\}$, 因 $\bar{z} = -4.3333$, $s_z = 7.9373$,

则
$$t = \frac{-4.3333}{7.9373/\sqrt{9}} = -1.6378 \notin W$$
,并且检验的 p 值 $p = P\{T \le -1.6378\} = 0.07 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 即可以认为培训效果不显著;

(2) 假设 H_0 : $z_{0.5} = 0$ vs H_1 : $z_{0.5} < 0$, 选取统计量 $S^+ \sim b(n, 0.5)$, 显著性水平 $\alpha = 0.05$, n = 9,

有
$$\sum_{k=0}^{1} C_9^k \cdot 0.5^k \cdot 0.5^{9-k} = 0.0195 < 0.05 < \sum_{k=0}^{2} C_9^k \cdot 0.5^k \cdot 0.5^{9-k} = 0.0898$$
,

左侧拒绝域 $W = \{S^+ \le 1\}$,

因 $S^+ = 2 \notin W$,并且检验的 p 值 $p = P\{S^+ \le 2\} = 0.0898 > \alpha = 0.05$,

故接受 H₀, 拒绝 H₁, 即可以认为培训效果不显著;

(3) 假设 H_0 : $\theta = 0$ vs H_1 : $\theta < 0$,

选取统计量
$$W^+ = \sum_{i=1}^n R_i \cdot \mathbf{I}_{z_i > 0}$$
,

显著性水平 $\alpha = 0.05$,n = 9, $W_{\alpha}^{+}(n) = W_{0.05}^{+}(9) = 8$,左侧拒绝域 $W = \{W^{+} \leq 8\}$,

因
$$W^+ = \sum_{i=1}^9 R_i \cdot \mathbf{I}_{z_i > 0} = R_4 + R_6 = 4.5 + 6 = 10.5 \notin W$$
,

故接受 H₀, 拒绝 H₁, 即可以认为培训效果不显著; 即三种检验方法结论相同.

6. 为了比较用来做鞋子后跟的两种材料的质量,选取了 15 个男子(他们的生活条件各不相同),每人穿着一双新鞋,其中一只是以材料 A 做后跟,另一只以材料 B 做后跟,其厚度均为 10 mm,过了一个月再测量厚度,得到数据如下:

序号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
材料A	6.6	7.0	8.3	8.2	5.2	9.3	7.9	8.5	7.8	7.5	6.1	8.9	6.1	9.4	9.1
材料 B	7.4	5.4	8.8	8.0	6.8	9.1	6.3	7.5	7.0	6.5	4.4	7.7	4.2	9.4	9.1

问是否可以认定以材料 A 制成的后跟比材料 B 的耐穿?

- (1) 设 $d_i = x_i y_i$ $(i = 1, 2, \dots, 15)$ 来自正态总体,结论是什么?
- (2) 采用符号秩和检验方法检验,结论是什么?
- 解: (1) 如果测验成绩服从正态分布, 采用配对 T 检验,

假设 H_0 : $\mu_d = 0$ vs H_1 : $\mu_d > 0$,

未知
$$\sigma_d^2$$
, 选取统计量 $T = \frac{\overline{D}}{S_d/\sqrt{n}} \sim t(n-1)$,

显著水平 α = 0.05,n = 15, $t_{1-\alpha}(n-1) = t_{0.95}(14) = 1.7613$,左侧拒绝域 $W = \{t \ge 1.7613\}$,因 $\overline{d} = 0.5533$, $s_d = 1.0225$,

则
$$t = \frac{0.5533}{1.0225/\sqrt{15}} = 2.0959 \in W$$
,并且检验的 p 值 $p = P\{T \ge 2.0959\} = 0.0274 < \alpha = 0.05$,

故拒绝 H_0 ,接受 H_1 ,即可以认为以材料 A 制成的后跟比材料 B 的耐穿;

(2) 假设 H_0 : $\theta = 0$ vs H_1 : $\theta > 0$,

选取统计量
$$W^+ = \sum_{i=1}^n R_i \cdot \mathbf{I}_{d_i > 0}$$
,

显著性水平
$$\alpha$$
 = 0.05, n = 15, $W_{1-\alpha}^+(n) = \frac{n(n+1)}{2} - W_{\alpha}^+(n) = 120 - W_{0.05}^+(15) = 120 - 30 = 90$,右侧拒绝域 $W = \{W^+ \ge 90\}$,

$$\boxtimes W^+ = \sum_{i=1}^{15} R_i \cdot I_{d_i > 0} = R_2 + R_4 + R_6 + R_7 + R_8 + R_9 + R_{10} + R_{11} + R_{12} + R_{13}$$

$$= 12 + 3.5 + 3.5 + 12 + 8.5 + 6.5 + 8.5 + 14 + 10 + 15 = 93.5 \in W$$

故拒绝 H_0 ,接受 H_1 ,即可以认为以材料 A 制成的后跟比材料 B 的耐穿.

7. 某饮料商用两种不同的配方推出了两种新的饮料,现抽取了 10 位消费者,让他们分别品尝两种饮料 并加以评分,从不喜欢到喜欢,评分由 1~10,评分结果如下:

品尝者	1	2	3	4	5	6	7	8	9	10
A 饮料	10	8	6	8	7	5	1	3	9	7
B 饮料	6	5	2	2	4	6	4	5	9	8

问两种饮料评分是否有显著差异?

- (1) 采用符号检验方法作检验;
- (2) 采用符号秩和检验方法作检验.
- 解: (1) 假设 H_0 : $d_{0.5} = 0$ vs H_1 : $d_{0.5} \neq 0$, 选取统计量 $S^+ \sim b(n, 0.5)$,

显著性水平 α = 0.05, n = 10,

有
$$\sum_{k=0}^{1} C_{10}^{k} \cdot 0.5^{k} \cdot 0.5^{10-k} = 0.0107 < 0.025 < \sum_{k=0}^{2} C_{10}^{k} \cdot 0.5^{k} \cdot 0.5^{10-k} = 0.0547$$
,

$$\sum_{k=9}^{10} C_{10}^k \cdot 0.5^k \cdot 0.5^{10-k} = 0.0107 < 0.025 < \sum_{k=8}^{10} C_{10}^k \cdot 0.5^k \cdot 0.5^{10-k} = 0.0547 ,$$

双侧拒绝域 $W = \{S^+ \le 1 \text{ 或 } S^+ \ge 9\},$

因 $S^+ = 6 \notin W$,并且检验的 p 值 $p = 2P\{S^+ \ge 6\} = 0.7539 > \alpha = 0.05$,

故接受 Ho, 拒绝 H1, 即可以认为两种饮料评分没有显著差异:

(2) 假设 H_0 : $\theta = 0$ vs H_1 : $\theta \neq 0$,

选取统计量
$$W^+ = \sum_{i=1}^n R_i \cdot \mathbf{I}_{d_i > 0}$$
,

显著水平
$$\alpha$$
= 0.05, n = 10, $W_{\alpha/2}^+(n) = W_{0.025}^+(10) = 8$, $W_{1-\alpha/2}^+(n) = \frac{n(n+1)}{2} - W_{\alpha/2}^+(n) = 55 - 8 = 47$,双侧拒绝域 $W = \{W^+ \le 8 \text{ 或 } W^+ \ge 47\}$,

故接受 H₀, 拒绝 H₁, 即可以认为两种饮料评分没有显著差异.

8. 测试在有精神压力和没有精神压力时血压的差别,10个志愿者进行了相应的试验.结果为(单位:毫 米汞柱收缩压):

无精神压力时										
有精神压力时	127	119	123	113	125	132	121	131	116	124

该数据是否表明有精神压力下的血压有所增加?

解:采用符号秩和检验方法作检验,

假设 H_0 : $\theta = 0$ vs H_1 : $\theta < 0$,

选取统计量
$$W^+ = \sum_{i=1}^n R_i \cdot \mathbf{I}_{d_i > 0}$$
,

显著水平
$$\alpha = 0.05$$
, $n = 10$, $W_{\alpha}^{+}(n) = W_{0.05}^{+}(10) = 10$,

左侧拒绝域 $W = \{W^+ \le 10\}$,

因
$$W^+ = \sum_{i=1}^{10} R_i \cdot \mathbf{I}_{d_i > 0} = R_4 = 4 \in W$$
,

故拒绝 H₀,接受 H₁,即可以认为有精神压力下的血压有所增加.

第八章 方差分析与回归分析

本章前三节研究方差分析,讨论多个正态总体的比较,后两节研究回归分析.讨论两个变量之间的相关关系.

§8.1 方差分析

8.1.1 问题的提出

上一章讨论了单个或两个正态总体的假设检验,这里讨论多个正态总体的均值比较问题.

通常为了研究某一因素对某项指标的影响情况,将该因素在多种情形下进行抽样检验,作出比较.一般将该因素称为一个因子,所检验的每种情形称为水平.在每个水平下需要考察的指标都分别构成一个总体,比较它们的总体均值是否相等.对每一个总体都分别抽取一个样本,样本容量称为重复数.

如果只对一个因子中的多个水平进行比较,称为单因子方差分析,对多个因子的水平进行比较,称为 多因子方差分析.本章只进行单因子方差分析.

例 在饲料养鸡增肥的研究中,现有三种饲料配方: A_1, A_2, A_3 ,为比较三种饲料的效果,特选 24 只相似的雏鸡随机均分为三组,每组各喂一种饲料,60 天后观察它们的重量. 实验结果如下表所示:

饲料				鸡	重/g			
A_1	1073	1009	1060	1001	1002	1012	1009	1028
A_2	1107	1092	990	1109	1090	1074	1122	1001
A_3	1093	1029	1080	1021	1022	1032	1029	1048

在此例中,就是要考察饲料对鸡增重的影响,需要比较三种饲料对鸡增肥的作用是否相同.这里,饲料就是一个因子,三种饲料配方就是该因子的三个水平,每种饲料喂养的雏鸡 60 天后的重量分别构成一个总体,这里共有3个总体,每一个总体抽取样本的重复数都是8,比较这3个总体的均值是否相等.

8.1.2 单因子方差分析的统计模型

设因子 A 有 r 个水平 A_1 , A_2 , …, A_r ,在每个水平下需要考察的指标都构成一个总体,即有 r 个总体,分别记为 Y_1 , Y_2 , …, Y_r ,对每一个总体都分别抽取一个样本,首先考虑重复数相等的情形,设重复数都是 m ,总体 Y_i 的样本 Y_{i1} , Y_{i2} , …, Y_{im} , $i=1,2,\dots,r$. 作出以下假定:

- (1) 每一个总体都服从正态分布, 即 $Y_i \sim N(\mu_i, \sigma_i^2)$, $i = 1, 2, \dots, r$;
- (2) 各个总体的方差都相等, 即 $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_r^2$, 都记为 σ_2^2 ;
- (3) 各个总体及抽取的样本相互独立,即 Y_{ij} 相互独立, $i = 1, 2, \dots, r$, $j = 1, 2, \dots, m$. 需要比较它们的总体均值是否相等,即检验的原假设与备择假设为

$$H_0$$
: $\mu_1 = \mu_2 = \cdots = \mu_r$ vs H_1 : $\mu_1, \mu_2, \cdots, \mu_r$ 不全相等,

如果 H_0 成立,就可以认为这r个水平下的总体均值相同,称为因子A不显著;反之,如果 H_0 不成立,就称为因子A 显著.

在水平 A_i 下的样品 Y_{ij} 与该水平下的总体均值 μ_i 之差 $\varepsilon_{ij} = Y_{ij} - \mu_i$ 为随机误差. 由于 $Y_{ij} \sim N(\mu_i, \sigma^2)$,因此随机误差 $\varepsilon_{ij} \sim N(0, \sigma^2)$. 对所有 r 个水平下的总体均值求平均,即

$$\mu = \frac{1}{r}(\mu_1 + \mu_2 + \dots + \mu_r) = \frac{1}{r}\sum_{i=1}^r \mu_i$$

称为总均值. 每个水平 A_i 下的总体均值 μ_i 与总均值 μ 之差 $a_i = \mu_i - \mu$ 称为该水平 A_i 下主效应. 显然所有主效应 a_i 之和等于 0,即

$$\sum_{i=1}^r a_i = 0 ,$$

检验所有水平下的总体均值是否相等,也就是检验所有主效应 a_i 是否全等于 0. 这样单因子方差分析在重复数相等的情形下,统计模型为

$$\begin{cases} Y_{ij} = \mu + a_i + \varepsilon_{ij}, & i = 1, 2, \dots, r, \quad j = 1, 2, \dots, m \\ \sum_{i=1}^{r} a_i = 0; \\ \varepsilon_{ii} \quad 相互独立, \quad 且都服从N(0, \sigma^2). \end{cases}$$

检验的原假设与备择假设为

$$H_0$$
: $a_1 = a_2 = \cdots = a_r = 0$ vs H_1 : a_1, a_2, \cdots, a_r 不全等于 0.

8.1.3 平方和分解

一. 试验数据

对于 r 个总体下的试验数据 Y_{ij} , $i=1,2,\cdots,r$, $j=1,2,\cdots,m$, 记 T_i 表示第 i 个总体下试验数据总和, \overline{Y}_i 表示第 i 个总体下样本均值, n=rm 表示总的样本容量, T 表示总的试验数据总和, \overline{Y} 表示总的样本均值, 即

$$T_i = \sum_{i=1}^m Y_{ij}$$
, $\overline{Y}_{i.} = \frac{T_i}{m} = \frac{1}{m} \sum_{i=1}^m Y_{ij}$, $i = 1, 2, \dots, r$,

$$T = \sum_{i=1}^{r} T_{i} = \sum_{i=1}^{r} \sum_{j=1}^{m} Y_{ij} , \quad \overline{Y} = \frac{1}{n} T = \frac{1}{rm} \sum_{i=1}^{r} \sum_{j=1}^{m} Y_{ij} = \frac{1}{r} \sum_{i=1}^{r} \overline{Y}_{i.} ,$$

用 \bar{Y}_i 作为 μ_i 的点估计, \bar{Y} 作为 μ 的点估计. 又记 $\bar{\varepsilon}_i$ 表示第i个总体下随机误差平均值, $\bar{\varepsilon}$ 表示总的随机误差平均值,即

$$\overline{\varepsilon}_{i.} = \frac{1}{m} \sum_{j=1}^{m} \varepsilon_{ij}$$
, $i = 1, 2, \dots, r$,

$$\overline{\varepsilon} = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{m} \varepsilon_{ij} = \frac{1}{r} \sum_{i=1}^{r} \overline{\varepsilon}_{i}.$$

显然有 $\overline{Y}_{i\cdot} = \mu_i + \overline{\varepsilon}_{i\cdot}$, $\overline{Y} = \mu + \overline{\varepsilon}$.

在单因子方差分析中通常将试验数据及基本计算结果写成表格形式

因子水平		试验	数据	和	和的平方	平方和	
A_1	<i>Y</i> ₁₁	Y_{12}		Y_{1m}	T_1	T_1^2	$\sum Y_{1j}^2$
A_2	Y_{21}	Y_{22}		Y_{2m}	T_2	T_2^2	$\sum Y_{2j}^2$
1							
A_r	Y_{r1}	Y_{r2}	•••	Y_{rm}	T_r	T_r^2	$\sum Y_{rj}^2$
Σ					T	$\sum_{i=1}^r T_i^2$	$\sum_{i=1}^r \sum_{j=1}^m Y_{ij}^2$

二. 组内偏差与组间偏差

数据 Y_{ij} 与样本总均值 \overline{Y} 之差 Y_{ii} $-\overline{Y}$ 称为样本总偏差,可以分成两部分之和:

$$Y_{ii} - \overline{Y} = (Y_{ii} - \overline{Y}_{i\cdot}) + (\overline{Y}_{i\cdot} - \overline{Y}),$$

其中

$$Y_{ii} - \overline{Y}_{i\cdot} = (\mu_i + \varepsilon_{ii}) - (\mu_i + \overline{\varepsilon}_{i\cdot}) = \varepsilon_{ii} - \overline{\varepsilon}_{i\cdot}$$

是第 i 个总体内数据与该总体内样本均值的偏差, 称为组内偏差, 反映第 i 个总体内的随机误差;

$$\overline{Y}_{i.} - \overline{Y} = (\mu_i + \overline{\varepsilon}_{i.}) - (\mu + \overline{\varepsilon}) = a_i + \overline{\varepsilon}_{i.} - \overline{\varepsilon}$$

是第 i 个总体内样本均值与总样本均值的偏差, 称为组间偏差, 反映第 i 个总体的主效应.

三. 偏差平方和及其自由度

在统计学中,对于 k 个独立数据 Y_1, Y_2, \dots, Y_k , 平均值 $\overline{Y} = \frac{1}{k} \sum_{i=1}^k Y_i$, 称 $Y_i 与 \overline{Y}$ 之差为偏差,所有偏差

的平方和

$$Q = \sum_{i=1}^{k} (Y_i - \overline{Y})^2$$

称为这k个数据的偏差平方和,反映这k个数据的分散程度.由于所有偏差之和

$$\sum_{i=1}^{k} (Y_i - \overline{Y}) = \sum_{i=1}^{k} Y_i - k \overline{Y} = 0,$$

即这 k 个偏差由 k 个独立数据受到一个约束条件形成,可以证明它们与 k-1 个独立(随机)变量可以相互线性表示,称之为等价于 k-1 个独立(随机)变量.一般地,若 k 个独立数据受到 k-1 个不相关的约束条件,则它们等价于 k-1 个独立(随机)变量.在统计学中,把形成平方和的变量所等价的独立变量个数,称为该平方和的自由度,通常记为 k-1 如上述偏差平方和 k-1 的自由度为 k-1 ,即 k-1 即 k-1 。

由于平方和的大小与变量个数(或自由度)有关,为了对偏差进行比较,通常考虑偏差平方和与其自

由度之商,称为均方和,记为 MS,反映一组数据的平均分散程度,如样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ 就

是样本数据偏差的均方和.

四. 总平方和分解公式

总偏差平方和记为 S_T 或 SST, 其自由度记为 f_T , 有

$$S_T = \sum_{i=1}^r \sum_{j=1}^m (Y_{ij} - \overline{Y})^2$$
, $f_T = rm - 1 = n - 1$;

组内偏差平方和记为 S_e 或 SSE, 其自由度记为 f_e , 有

$$S_e = \sum_{i=1}^r \sum_{i=1}^m (Y_{ij} - \overline{Y}_{i.})^2$$
, $f_e = r(m-1) = n - r$;

组间偏差平方和记为 S_A 或 SSA, 其自由度记为 f_A , 有

$$S_A = \sum_{i=1}^r \sum_{i=1}^m (\overline{Y}_{i.} - \overline{Y})^2 = m \sum_{i=1}^r (\overline{Y}_{i.} - \overline{Y})^2$$
, $f_A = r - 1$.

组内偏差平方和反映所有总体内的随机误差,组间偏差平方和反映所有总体的主效应.

定理 总偏差平方和 S_T 可以分解为组内偏差平方和 S_e 与组间偏差平方和 S_A 之和,其自由度也可作相应的分解,即 $S_T = S_e + S_A$, $f_T = f_e + f_A$,称之为平方和分解公式.

$$\begin{split} \text{iif:} \quad S_T &= \sum_{i=1}^r \sum_{j=1}^m (Y_{ij} - \overline{Y})^2 = \sum_{i=1}^r \sum_{j=1}^m [(Y_{ij} - \overline{Y}_{i\cdot}) + (\overline{Y}_{i\cdot} - \overline{Y})]^2 \\ &= \sum_{i=1}^r \sum_{j=1}^m (Y_{ij} - \overline{Y}_{i\cdot})^2 + \sum_{i=1}^r \sum_{j=1}^m (\overline{Y}_{i\cdot} - \overline{Y})^2 + 2\sum_{i=1}^r \sum_{j=1}^m (Y_{ij} - \overline{Y}_{i\cdot})(\overline{Y}_{i\cdot} - \overline{Y}) \\ &= S_e + S_A + 2\sum_{i=1}^r [(\overline{Y}_{i\cdot} - \overline{Y}) \sum_{j=1}^m (Y_{ij} - \overline{Y}_{i\cdot})] = S_e + S_A + 2\sum_{i=1}^r [(\overline{Y}_{i\cdot} - \overline{Y}) \times 0] = S_e + S_A + 0 = S_e + S_A, \end{split}$$

且显然有 $f_T = n - 1 = (n - r) + (r - 1) = f_e + f_A$.

8.1.4 检验方法

由于组内偏差平方和反映所有总体内的随机误差,组间偏差平方和反映所有总体的主效应,通过比较组内偏差平方和与组间偏差平方和检验因子的显著性.下面将证明在假设所有主效应都等于0成立的条件下,它们的均方和之商服从F分布.

定理 在单因子方差分析模型中,组内偏差平方和 S_e 与组间偏差平方和 S_A 满足

(1)
$$E(S_e) = (n-r)\sigma^2$$
, $\mathbb{E}\frac{S_e}{\sigma^2} \sim \chi^2(n-r)$;

(2)
$$E(S_A) = (r-1)\sigma^2 + m\sum_{i=1}^r a_i^2$$
, 且当 H_0 : $a_1 = a_2 = \cdots = a_r = 0$ 成立时, $\frac{S_A}{\sigma^2} \sim \chi^2(r-1)$;

(3) S_e 与 S_A 相互独立.

证:根据第五章的定理结论知:

设
$$X_1, X_2, \dots, X_n$$
 相互独立且都服从正态分布 $N(\mu, \sigma^2)$,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S_0 = \sum_{i=1}^n (X_i - \overline{X})^2$,

则 \overline{X} 与 S_0 相互独立,且 $\frac{S_0}{\sigma^2} \sim \chi^2(n-1)$.

(1)
$$S_e = \sum_{i=1}^r \sum_{j=1}^m (Y_{ij} - \overline{Y}_{i\cdot})^2$$
, $Y_{i1}, Y_{i2}, \cdots, Y_{im}$ 相互独立且都服从正态分布 $N(\mu_i, \sigma^2)$, $\overline{Y}_{i\cdot} = \frac{1}{m} \sum_{i=1}^m Y_{ij}$,

则
$$\sum_{i=1}^{m} (Y_{ij} - \overline{Y}_{i.})^2$$
 与 $\overline{Y}_{i.}$ 相互独立,且 $\frac{1}{\sigma^2} \sum_{i=1}^{m} (Y_{ij} - \overline{Y}_{i.})^2 \sim \chi^2(m-1)$,

因在不同水平下的样本都相互独立,

则
$$\sum_{i=1}^r \sum_{j=1}^m (Y_{ij} - \overline{Y}_{i.})^2$$
 与 $\overline{Y}_{1.}$, $\overline{Y}_{2.}$, \cdots , $\overline{Y}_{r.}$ 也相互独立,且根据独立 χ^2 变量的可加性知

$$\frac{1}{\sigma^2} \sum_{i=1}^r \sum_{j=1}^m (Y_{ij} - \overline{Y}_{i.})^2 \sim \chi^2(rm - r)$$
,

故
$$\frac{S_e}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^r \sum_{j=1}^m (Y_{ij} - \overline{Y}_{i\cdot})^2 \sim \chi^2(n-r)$$
,即得 $E(S_e) = (n-r)\sigma^2$;

$$(2) S_A = m \sum_{i=1}^r (\overline{Y}_{i\cdot} - \overline{Y})^2 = m \sum_{i=1}^r (a_i + \overline{\varepsilon}_{i\cdot} - \overline{\varepsilon})^2 = m \sum_{i=1}^r a_i^2 + m \sum_{i=1}^r (\overline{\varepsilon}_{i\cdot} - \overline{\varepsilon})^2 + 2m \sum_{i=1}^r a_i (\overline{\varepsilon}_{i\cdot} - \overline{\varepsilon}),$$

因 ε_{ij} $(i=1,2,\cdots,r,\ j=1,2,\cdots,m)$ 相互独立且都服从正态分布 $N(0,\sigma^2)$,

有
$$\bar{\varepsilon}_{i.} = \frac{1}{m} \sum_{j=1}^{m} \varepsilon_{ij}$$
 $(i = 1, 2, \dots, r)$ 相互独立且都服从正态分布 $N(0, \frac{\sigma^2}{m})$, $\bar{\varepsilon} = \frac{1}{r} \sum_{i=1}^{r} \bar{\varepsilon}_{i.}$,

$$\mathbb{M} \, \mathrm{E}(\overline{\varepsilon}_{i \cdot} - \overline{\varepsilon}) = \mathrm{E}(\overline{\varepsilon}_{i \cdot}) - \mathrm{E}(\overline{\varepsilon}) = 0 \, \, \underline{\mathrm{H}} \, \frac{\sum_{i=1}^{r} (\overline{\varepsilon}_{i \cdot} - \overline{\varepsilon})^{2}}{\frac{\sigma^{2}}{m}} \sim \chi^{2}(r-1) \, , \quad \mathbb{H} \, \mathrm{E}\left[\sum_{i=1}^{r} (\overline{\varepsilon}_{i \cdot} - \overline{\varepsilon})^{2}\right] = (r-1) \frac{\sigma^{2}}{m} \, ,$$

故
$$\mathrm{E}(S_A) = m \sum_{i=1}^r a_i^2 + m \mathrm{E}\left[\sum_{i=1}^r (\overline{\varepsilon}_{i\cdot} - \overline{\varepsilon})^2\right] + 2m \sum_{i=1}^r a_i \mathrm{E}(\overline{\varepsilon}_{i\cdot} - \overline{\varepsilon}) = m \sum_{i=1}^r a_i^2 + (r-1)\sigma^2$$
,

$$\stackrel{\mbox{\tiny \perp}}{=} H_0$$
: $a_1 = a_2 = \cdots = a_r = 0$ 成立时, $S_A = m \sum_{i=1}^r (\overline{Y}_{i\cdot} - \overline{Y})^2 = m \sum_{i=1}^r (\overline{\varepsilon}_{i\cdot} - \overline{\varepsilon})^2$,

故
$$\frac{S_A}{\sigma^2} = \frac{\sum_{i=1}^r (\overline{\varepsilon}_{i.} - \overline{\varepsilon})^2}{\frac{\sigma^2}{m}} \sim \chi^2(r-1);$$

(3) 因
$$S_e = \sum_{i=1}^r \sum_{j=1}^m (Y_{ij} - \overline{Y}_{i\cdot})^2 与 \overline{Y}_{1\cdot}, \overline{Y}_{2\cdot}, \cdots, \overline{Y}_{r\cdot}$$
相互独立,有 S_e 与 $\overline{Y} = \frac{1}{r} \sum_{i=1}^r \overline{Y}_{i\cdot}$ 相互独立,

$$oximes S_A = m {\sum_{i=1}^r} (\overline{Y}_{i\cdot} - \overline{Y})^2$$
 ,

故 S_e 与 S_A 相互独立.

由于 $\frac{S_e}{\sigma^2} \sim \chi^2(n-r)$, 当 H_0 : $a_1 = a_2 = \cdots = a_r = 0$ 成立时, $\frac{S_A}{\sigma^2} \sim \chi^2(r-1)$,且 S_e 与 S_A 相互独立,则根据 F 分布的定义可知:当 H_0 成立时,有

$$F = \frac{\frac{S_A}{\sigma^2} / (r-1)}{\frac{S_e}{\sigma^2} / (n-r)} = \frac{S_A / f_A}{S_e / f_e} = \frac{MS_A}{MS_e} \sim F(r-1, n-r).$$

由于 $\mathrm{E}(S_A)=(r-1)\sigma^2+m\sum_{i=1}^r a_i^2$,则 F 越大,即 S_A 越大时,越有可能发生 $a_i\neq 0$,则检验的拒绝域为右侧.

步骤: 假设 H_0 : $a_1=a_2=\cdots=a_r=0$ vs H_1 : a_1,a_2,\cdots,a_r 不全等于 0,

统计量
$$F = \frac{S_A/f_A}{S_e/f_e} = \frac{MS_A}{MS_e} \sim F(r-1, n-r)$$
,

显著水平 α ,右侧拒绝域 $W = \{f \geq f_{1-\alpha}(r-1, n-r)\}$,计算 f,并作出判断.

这是F检验法.

通常列成方差分析表:

来源	平方和	自由度	均方和	F 比
因子	S_A	$f_A = r - 1$	$MS_A = S_A / f_A$	$F = MS_A / MS_e$
误差	S_{e}	$f_e = n - r$	$MS_e = S_e / f_A$	
总和	S_T	$f_T = n - 1$		

为了计算方便,可给出三个偏差平方和的计算公式. 对于一组数据 X_1, X_2, \dots, X_n ,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,

则有

$$\sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} X_i^2 - n\overline{X}^2 = \sum_{i=1}^{n} X_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} X_i \right)^2,$$

记

$$T_i = \sum_{i=1}^m Y_{ij}$$
 , $T = \sum_{i=1}^r T_i = \sum_{i=1}^r \sum_{i=1}^m Y_{ij}$,

可得

$$\begin{split} S_T &= \sum_{i=1}^r \sum_{j=1}^m (Y_{ij} - \overline{Y})^2 = \sum_{i=1}^r \sum_{j=1}^m Y_{ij}^2 - n \overline{Y}^2 = \sum_{i=1}^r \sum_{j=1}^m Y_{ij}^2 - \frac{1}{n} \left(\sum_{i=1}^r \sum_{j=1}^m Y_{ij} \right)^2 = \sum_{i=1}^r \sum_{j=1}^m Y_{ij}^2 - \frac{1}{n} T^2 \;, \\ S_A &= m \sum_{i=1}^r (\overline{Y}_{i\cdot} - \overline{Y})^2 = m \left[\sum_{i=1}^r \overline{Y}_{i\cdot}^2 - r \overline{Y}^2 \right] = m \sum_{i=1}^r \left(\frac{1}{m} \sum_{j=1}^m Y_{ij} \right)^2 - m r \left(\frac{1}{n} \sum_{i=1}^r \sum_{j=1}^m Y_{ij} \right)^2 = \frac{1}{m} \sum_{i=1}^r T_i^2 - \frac{1}{n} T^2 \;, \\ S_e &= S_T - S_A = \sum_{i=1}^r \sum_{j=1}^m Y_{ij}^2 - \frac{1}{m} \sum_{i=1}^r T_i^2 \;. \end{split}$$

例 在饲料养鸡增肥的研究中,现有三种饲料配方: A_1, A_2, A_3 ,为比较三种饲料的效果,特选 24 只相似的雏鸡随机均分为三组,每组各喂一种饲料,60 天后观察它们的重量. 实验结果如下表所示:

饲料	鸡重/g								
A_1	1073	1009	1060	1001	1002	1012	1009	1028	
A_2	1107	1092	990	1109	1090	1074	1122	1001	
A_3	1093	1029	1080	1021	1022	1032	1029	1048	

在显著水平 $\alpha = 0.05$ 下检验这三种饲料对雏鸡增重是否有显著差别.

解: 假设 H_0 : $a_1 = a_2 = a_3 = 0$ vs H_1 : a_1, a_2, a_3 不全等于 0,

统计量
$$F = \frac{S_A/f_A}{S_e/f_e} = \frac{MS_A}{MS_e} \sim F(r-1, n-r)$$
,平方和

显著水平 α = 0.05,n= 24,r= 3,m= 8,右侧拒绝域 W= {f \geq f_{0.95}(2, 21)} = {f \geq 3.47}, 试验数据计算表

因子水平		试验数据 Y _{ij}						T_i	T_i^2	$\sum_{j=1}^m Y_{ij}^{2}$	
A_1	1073	1009	1060	1001	1002	1012	1009	1028	8194	67141636	8398024
A_2	1107	1092	990	1109	1090	1074	1122	1001	8585	73702225	9230355
A_3	1093	1029	1080	1021	1022	1032	1029	1048	8354	69789316	8728984
总和									25133	210633177	26357363

计算可得

$$S_A = \frac{1}{m} \sum_{i=1}^r T_i^2 - \frac{1}{n} T^2 = \frac{1}{8} \times 210633177 - \frac{1}{24} \times 25133^2 = 9660.0833$$
,

$$S_e = \sum_{i=1}^r \sum_{j=1}^m Y_{ij}^2 - \frac{1}{m} \sum_{i=1}^r T_i^2 = 26357363 - \frac{1}{8} \times 210633177 = 28215.875$$
,

方差分析表

来源	平方和	自由度	均方和	F比
因子	9660.0833	2	4830.0417	3.5948
误差	28215.875	21	1343.6131	
总和	37875.9583	23		

有F比 $f = 3.5948 \in W$,

故拒绝 H₀,接受 H₁,可以认为这三种饲料对雏鸡增重有显著差别,

并且检验的 p 值 $p = P\{F \ge 3.5948\} = 1 - 0.9546 = 0.0454 < \alpha = 0.05$.

8.1.5 参数估计

在方差分析问题中,可对总均值 μ ,误差的方差 σ^2 作参数估计.

当检验结果为因子不显著时,各水平下指标的总体均值与总体方差都相同,可将所有水平的指标看作一个统一的总体,全部试验数据是来自正态总体 $Y \sim N(\mu, \sigma^2)$ 的一个容量为 n = rm 的样本,因此样本均

值
$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{m} Y_{ij} = \frac{T}{n}$$
,样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^{r} \sum_{j=1}^{m} (Y_{ij} - \bar{Y})^2 = \frac{S_T}{n-1}$.这样总均值 μ 和误差的方差 σ^2 的点估

计分别为 $\hat{\mu} = \overline{Y}$, $\sigma^2 = S^2$, 置信度为 $1 - \alpha$ 的置信区间分别是

$$\mu \in [\overline{Y} \pm t_{1-\alpha/2}(n-1)\frac{S}{\sqrt{n}}], \quad \sigma^2 \in [\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}].$$

当检验结果为因子显著时,还可进一步对主效应 a;作参数估计.

一. 点估计

由于试验数据 Y_{ij} , $(i=1,2,\cdots,r,\ j=1,2,\cdots,m)$ 相互独立且都服从正态分布 $N(\mu+a_i,\sigma^2)$,根据最大似然估计法,得到总均值 μ ,误差的方差 σ^2 及主效应 a_i 的点估计.似然函数

$$L(\mu, a_1, a_2, \dots, a_r, \sigma^2) = \prod_{i=1}^r \prod_{j=1}^m p(y_{ij}) = \prod_{i=1}^r \prod_{j=1}^m \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y_{ij} - \mu - a_i)^2}{2\sigma^2}\right\}$$
$$= \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^r \sum_{j=1}^m (y_{ij} - \mu - a_i)^2\right\},$$

取对数,得

$$\ln L = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^r\sum_{j=1}^m(y_{ij} - \mu - a_i)^2.$$

令关于μ的偏导数等于0,有

$$\frac{\partial \ln L}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{i=1}^r \sum_{j=1}^m 2(y_{ij} - \mu - a_i) \cdot (-1) = \frac{1}{\sigma^2} \left(\sum_{i=1}^r \sum_{j=1}^m y_{ij} - n\mu - m \sum_{i=1}^r a_i \right)$$

$$= \frac{1}{\sigma^2} \left(\sum_{i=1}^r \sum_{j=1}^m y_{ij} - n\mu - 0 \right) = \frac{1}{\sigma^2} \left(\sum_{i=1}^r \sum_{j=1}^m y_{ij} - n\mu \right) = 0,$$

得 $\mu = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{m} y_{ij} = \overline{y}$, 故总均值 μ 的最大似然估计为 $\hat{\mu} = \overline{Y}$.

令关于 a_k 的偏导数等于0,有

$$\frac{\partial \ln L}{\partial a_k} = -\frac{1}{2\sigma^2} \sum_{j=1}^m 2(y_{kj} - \mu - a_k) \cdot (-1) = \frac{1}{\sigma^2} \left(\sum_{j=1}^m y_{kj} - m\mu - ma_k \right) = 0, \quad k = 1, 2, \dots, r,$$

得 $a_k = \frac{1}{m} \sum_{j=1}^m y_{kj} - \mu = \overline{y}_{k\cdot} - \mu$,故主效应 a_i 的最大似然估计为 $\hat{a}_i = \overline{Y}_{i\cdot} - \hat{\mu} = \overline{Y}_{i\cdot} - \overline{Y}$, $i = 1, 2, \dots, r$,相应,

第 i 个水平下的总体均值 μ_i 的最大似然估计为 $\hat{\mu}_i = \hat{\mu} + \hat{a}_i = \overline{Y}_i$.

令关于 σ^2 的偏导数等于0,有

$$\frac{\partial \ln L}{\partial (\sigma^2)} = -\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^r \sum_{j=1}^m (y_{ij} - \mu - a_i)^2 = 0,$$

得 $\sigma^2 = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^m (y_{ij} - \mu - a_i)^2$, 故误差的方差 σ^2 的最大似然估计为 $\hat{\sigma_M^2} = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^m (Y_{ij} - \overline{Y_{i\cdot}})^2 = \frac{S_e}{n}$. 由于

 $\mathrm{E}(S_e) = (n-r)\sigma^2$,可知 $\overset{\hat{\sigma}_0}{\sigma_M}$ 不是 σ^2 的无偏估计,修偏得 σ^2 的无偏估计 $\overset{\hat{\sigma}_0}{\sigma} = \frac{S_e}{n-r} = MS_e$.

一、署信区间

对总均值 μ ,误差的方差 σ^2 及第i个水平下的总体均值 μ_i 给出置信区间.

第 i 个水平下总体均值 μ_i 的点估计为 $\hat{\mu}_i = \overline{Y}_{i.} = \frac{1}{m} \sum_{j=1}^m Y_{ij}$,因试验数据 Y_{ij} ,($i=1,2,\cdots,r,\ j=1,2,\cdots,m$)

相互独立且都服从正态分布 $N(\mu_i, \sigma^2)$,则有 $\overline{Y}_i \sim N(\mu_i, \frac{\sigma^2}{m})$,即

$$rac{\overline{Y}_{i\cdot} - \mu_i}{\sigma/\sqrt{m}} \sim N(0,1)$$
 ,

但 σ 未知,用 $\hat{\sigma} = \sqrt{\frac{S_e}{n-r}}$ 替换.由于 $\frac{S_e}{\sigma^2} \sim \chi^2(n-r)$ 且 S_e 与 \overline{Y}_i 相互独立,则根据 χ^2 分布的定义可得

$$rac{\overline{Y_{i\cdot} - \mu_i}}{\sigma/\sqrt{m}} = rac{\overline{Y_{i\cdot} - \mu_i}}{\hat{\sigma}/\sqrt{m}} \sim t(n-r),$$

故第 i 个水平下总体均值 μ_i 的置信度为 $1-\alpha$ 的置信区间是

$$\mu_i \in [\overline{Y}_{i\cdot} \pm t_{1-\alpha/2}(n-r)\frac{\hat{\sigma}}{\sqrt{m}}].$$

总均值 μ 的点估计为 $\hat{\mu} = \overline{Y} = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{m} Y_{ij}$,因数据 Y_{ij} , $(i=1,2,\cdots,r,\ j=1,2,\cdots,m)$ 相互独立且都服

从正态分布 $N(\mu_i, \sigma^2)$, 有 \overline{Y} 服从正态分布, 且

$$\mathrm{E}(\overline{Y}) = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^m \mathrm{E}(Y_{ij}) = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^m \mu_i = \frac{m}{n} \sum_{i=1}^r \mu_i = \mu \; ,$$

$$\operatorname{Var}(\overline{Y}) = \frac{1}{n^2} \sum_{i=1}^r \sum_{j=1}^m \operatorname{Var}(Y_{ij}) = \frac{1}{n^2} \sum_{i=1}^r \sum_{j=1}^m \sigma^2 = \frac{1}{n^2} \cdot n\sigma^2 = \frac{\sigma^2}{n}$$
,

得
$$\overline{Y} \sim N(\mu, \frac{\sigma^2}{n})$$
,即

$$\frac{\overline{Y}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$$
,

但 σ 未知,用 $\hat{\sigma} = \sqrt{\frac{S_e}{n-r}}$ 替换.由于 $\frac{S_e}{\sigma^2} \sim \chi^2(n-r)$ 且 S_e 与 \bar{Y} 相互独立,则根据t分布的定义可得

$$\frac{\frac{\overline{Y} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{S_e}{\sigma^2} / (n-r)}} = \frac{\overline{Y} - \mu}{\hat{\sigma} / \sqrt{n}} \sim t(n-r),$$

故总均值 μ 的置信度为 $1-\alpha$ 的置信区间是

$$\mu \in [\overline{Y} \pm t_{1-\alpha/2}(n-r)\frac{\hat{\sigma}}{\sqrt{n}}].$$

误差的方差 σ^2 的点估计为 $\hat{\sigma^2} = \frac{S_e}{n-r}$,且 $\frac{S_e}{\sigma^2} \sim \chi^2(n-r)$,故误差的方差 σ^2 的置信度为 $1-\alpha$ 的置信区间是

$$\sigma^{2} \in \left[\frac{S_{e}}{\chi_{1-\alpha/2}^{2}(n-r)}, \frac{S_{e}}{\chi_{\alpha/2}^{2}(n-r)}\right] = \left[\frac{(n-r)\hat{\sigma^{2}}}{\chi_{1-\alpha/2}^{2}(n-r)}, \frac{(n-r)\hat{\sigma^{2}}}{\chi_{\alpha/2}^{2}(n-r)}\right].$$

例 由前面的鸡饲料对鸡增重问题的数据给出总均值 μ ,误差的方差 σ^2 及三个水平下总体均值 μ_1,μ_2,μ_3 的点估计和置信区间(α = 0.05).

解:前面已检验知因子显著,则三个水平下总体均值 μ_1, μ_2, μ_3 的点估计为

$$\hat{\mu}_1 = \overline{Y}_{1.} = \frac{T_1}{m} = \frac{8194}{8} = 1024.25 ,$$

$$\hat{\mu}_2 = \overline{Y}_{2.} = \frac{T_2}{m} = \frac{8585}{8} = 1073.125 ,$$

$$\hat{\mu}_3 = \overline{Y}_{3.} = \frac{T_3}{m} = \frac{8354}{8} = 1044.25 ,$$

总均值μ 的点估计为

$$\hat{\mu} = \overline{Y} = \frac{T}{n} = \frac{25133}{24} = 1047.2083 ,$$

误差的方差 σ^2 的点估计为

$$\hat{\sigma}^2 = \frac{S_e}{n-r} = MS_e = 1343.6131$$
,

置信度为 0.95 的置信区间是

$$\begin{split} &\mu_1 \in [\overline{Y_1}. \pm t_{0.975}(21) \frac{\hat{\sigma}}{\sqrt{m}}] = [1024.25 \pm 2.0796 \times \frac{\sqrt{1343.6131}}{\sqrt{8}}] = [997.2992, \ 1051.2008] \,, \\ &\mu_2 \in [\overline{Y_2}. \pm t_{0.975}(21) \frac{\hat{\sigma}}{\sqrt{m}}] = [1073.125 \pm 2.0796 \times \frac{\sqrt{1343.6131}}{\sqrt{8}}] = [1046.1742, \ 1100.0758] \,, \\ &\mu_3 \in [\overline{Y_3}. \pm t_{0.975}(21) \frac{\hat{\sigma}}{\sqrt{m}}] = [1044.25 \pm 2.0796 \times \frac{\sqrt{1343.6131}}{\sqrt{8}}] = [1017.2992, \ 1071.2008] \,, \\ &\mu \in [\overline{Y} \pm t_{0.975}(21) \frac{\hat{\sigma}}{\sqrt{n}}] = [1047.2083 \pm 2.0796 \times \frac{\sqrt{1343.6131}}{\sqrt{24}}] = [1031.6482, \ 1062.7684] \,, \\ &\sigma^2 \in \left[\frac{S_e}{\chi_{0.975}^2(21)}, \ \frac{S_e}{\chi_{0.025}^2(21)} \right] = \left[\frac{28215.875}{35.4789}, \ \frac{28215.875}{10.2829} \right] = [795.2861, \ 2743.9608] \,. \end{split}$$

8.1.6 重复数不等的情形

如果每个水平下试验次数不全相等,称为重复数不等的情形,其检验方法与在重复数相等的情形下类似,只是在对数据的表述和处理上有几点区别.

一. 数据

设第 i 个水平 A_i 下的重复数为 m_i , 所取得的样本为 $Y_{i1},Y_{i2},\cdots,Y_{im_i}$, $i=1,2,\cdots,r$. 显然重复数总数为 n,即 $m_1+m_2+\cdots+m_r=n$.

二. 总均值

总均值 μ 是各水平下总体均值 μ_i 的以频率 $\frac{m_i}{n}$ 为权数的加权平均,即

$$\mu = \frac{m_1}{n} \mu_1 + \frac{m_2}{n} \mu_2 + \dots + \frac{m_r}{n} \mu_r = \frac{1}{n} \sum_{i=1}^r m_i \mu_i.$$

三. 主效应约束条件

第 i 个水平下主效应 $a_i = \mu_i - \mu$,则满足

$$\sum_{i=1}^{r} m_i a_i = \sum_{i=1}^{r} m_i \mu_i - n\mu = 0.$$

四.模型

单因子方差分析在重复数不等的情形下,统计模型为

$$\begin{cases} Y_{ij} = \mu + a_i + \varepsilon_{ij}, & i = 1, 2, \dots, r, \quad j = 1, 2, \dots, m_i; \\ \sum_{i=1}^r m_i a_i = 0; \\ \varepsilon_{ij} 相互独立,且都服从 $N(0, \sigma^2)$.$$

检验 H_0 : $a_1 = a_2 = \cdots = a_r = 0$ vs H_1 : a_1, a_2, \cdots, a_r 不全等于 0.

五. 平方和的计算 记

$$T_i = \sum_{i=1}^{m_i} Y_{ij} \text{ , } \overline{Y}_{i.} = \frac{T_i}{m_i} = \frac{1}{m_i} \sum_{j=1}^{m_i} Y_{ij} \text{ , } T = \sum_{i=1}^r \sum_{j=1}^{m_i} Y_{ij} = \sum_{i=1}^r T_i \text{ , } \overline{Y} = \frac{T}{n} = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^{m_i} Y_{ij} = \frac{1}{n} \sum_{i=1}^r m_i \overline{Y}_{i.} \text{ , } \overline{Y} = \frac{T}{n} = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^m Y_{ij} = \frac{1}{n} \sum_{i=1}^r m_i \overline{Y}_{i.} \text{ , } \overline{Y} = \frac{T}{n} = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^m Y_{ij} = \frac{1}{n} \sum_{i=1}^r m_i \overline{Y}_{i.} \text{ , } \overline{Y} = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^r Y_{ij} = \frac{1}{n} \sum_{i=1}^r m_i \overline{Y}_{i.} \text{ , } \overline{Y} = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^r Y_{ij} = \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^r Y_{ij} = \frac{1}{n} \sum_{i=1}^r Y_{ij} = \frac{1}{n} \sum_{i=1}^r Y_{ij} = \frac{1}{n} \sum_{j=1}^r Y_{ij} = \frac{1}{n} \sum_$$

则各平方和的计算公式为

$$S_T = \sum_{i=1}^r \sum_{j=1}^{m_i} (Y_{ij} - \overline{Y})^2 = \sum_{i=1}^r \sum_{j=1}^{m_i} Y_{ij}^2 - n \overline{Y}^2 = \sum_{i=1}^r \sum_{j=1}^{m_i} Y_{ij}^2 - \frac{T^2}{n}$$
 ,

$$S_A = \sum_{i=1}^r \sum_{j=1}^{m_i} (\overline{Y}_{i\cdot} - \overline{Y})^2 = \sum_{i=1}^r m_i (\overline{Y}_{i\cdot} - \overline{Y})^2 = \sum_{i=1}^r m_i \overline{Y}_{i\cdot}^2 - n \overline{Y}^2 = \sum_{i=1}^r \frac{T_i^2}{m_i} - \frac{T^2}{n},$$

$$S_e = S_T - S_A = \sum_{i=1}^r \sum_{j=1}^{m_i} Y_{ij}^2 - \sum_{i=1}^r \frac{T_i^2}{m_i} \ .$$

例 某食品公司对一种食品设计了四种新包装,为了考察哪种包装最受顾客欢迎,选了 10 个地段繁华程度相似、规模相近的商店做试验,其中两种包装各指定两个商店销售,另两种包装各指定三个商店销售.在试验期内各店货架排放的位置、空间都相同,营业员的促销方法也基本相同,经过一段时间,记录其销售量数据,见下表

包装类型	销售量数据						
A_1	12	18					
A_2	14	12	13				
A_3	19	17	21				
A_4	24	30					

在显著水平 $\alpha = 0.01$ 下检验这四种包装对销售量是否有显著影响。

解: 假设 H_0 : $a_1 = a_2 = a_3 = a_4 = 0$ vs H_1 : a_1, a_2, a_3, a_4 不全等于 0,

统计量
$$F = \frac{S_A/f_A}{S_e/f_e} = \frac{MS_A}{MS_e} \sim F(r-1, n-r)$$
,

显著水平 α = 0.01,n = 10,r = 4,右侧拒绝域 W = $\{f \ge f_{0.99}(3,6)\}$ = $\{f \ge 9.78\}$,

销售量数据计算表

因子水平	4	消售量数据 Y	, ij	m_i	T_i	T_i^2/m_i	$\sum_{j=1}^m Y_{ij}^2$
A_1	12	18		2	30	450	468
A_2	14	12	13	3	39	507	509
A_3	19	17	21	3	57	1083	1091
A_4	24	30		2	54	1458	1476
总和				10	180	3498	3544

计算可得

$$S_A = \sum_{i=1}^r \frac{T_i^2}{m_i} - \frac{1}{n}T^2 = 3498 - \frac{1}{10} \times 180^2 = 258$$

$$S_e = \sum_{i=1}^r \sum_{j=1}^m Y_{ij}^2 - \sum_{i=1}^r \frac{T_i^2}{m_i} = 3544 - 3498 = 46$$
,

方差分析表

来源	平方和	自由度	均方和	F 比
因子	258	3	86	11.2174
误差	46	6	7.6667	
总和	304	9		

有 F 比 $f = 11.2174 \in W$

故拒绝 H₀,接受 H₁,可以认为这四种包装对销售量有显著影响,

并且检验的 p 值 $p = P\{F \ge 11.2174\} = 1 - 0.9929 = 0.0071 < \alpha = 0.01$.

由于因子显著,则四个水平下总体均值 $\mu_1, \mu_2, \mu_3, \mu_4$ 的点估计为

$$\hat{\mu}_1 = \overline{Y}_1 = \frac{T_1}{m_1} = \frac{30}{2} = 15$$
 ,

$$\hat{\mu}_2 = \overline{Y}_2 = \frac{T_2}{m_2} = \frac{39}{3} = 13$$
,

$$\hat{\mu}_3 = \overline{Y}_{3.} = \frac{T_3}{m_3} = \frac{57}{3} = 19$$
,

$$\hat{\mu}_4 = \overline{Y}_{4.} = \frac{T_4}{m_4} = \frac{54}{2} = 27$$
 ,

总均值μ 的点估计为

$$\hat{\mu} = \overline{Y} = \frac{T}{n} = \frac{180}{10} = 18$$
,

误差的方差 σ^2 的点估计为

$$\hat{\sigma}^2 = \frac{S_e}{n-r} = MS_e = 7.6667$$
,

置信度为 0.99 的置信区间是

$$\mu_1 \in [\overline{Y}_1 \pm t_{0.995}(6) \frac{\hat{\sigma}}{\sqrt{m_1}}] = [15 \pm 3.7074 \times \frac{\sqrt{7.6667}}{\sqrt{2}}] = [7.7413, 22.2587],$$

$$\mu_2 \in [\overline{Y}_2 \pm t_{0.995}(6) \frac{\hat{\sigma}}{\sqrt{m_2}}] = [13 \pm 3.7074 \times \frac{\sqrt{7.6667}}{\sqrt{3}}] = [7.0733, 18.9267],$$

$$\mu_3 \in [\overline{Y}_{3.} \pm t_{0.995}(6) \frac{\hat{\sigma}}{\sqrt{m_3}}] = [19 \pm 3.7074 \times \frac{\sqrt{7.6667}}{\sqrt{3}}] = [13.0733, 24.9267],$$

$$\mu_4 \in [\overline{Y}_4, \pm t_{0.995}(6) \frac{\hat{\sigma}}{\sqrt{m_4}}] = [27 \pm 3.7074 \times \frac{\sqrt{7.6667}}{\sqrt{2}}] = [19.7413, 34.2587],$$

$$\mu \in [\overline{Y} \pm t_{0.995}(6) \frac{\hat{\sigma}}{\sqrt{n}}] = [18 \pm 3.7074 \times \frac{\sqrt{7.6667}}{\sqrt{10}}] = [14.7538, 21.2462],$$

$$\sigma^{2} \in \left[\frac{S_{e}}{\chi_{0.995}^{2}(6)}, \frac{S_{e}}{\chi_{0.005}^{2}(6)} \right] = \left[\frac{46}{18.5476}, \frac{46}{0.6757} \right] = \left[2.4801, 68.0775 \right].$$

§8.2 多重比较

上一节是将多个总体作为一个整体进行检验. 如果检验结果是因子 A 显著,则可以认为各水平下的均值 μ_i 不全相等,但却不能直接说明 μ_i 中哪些可以认为相等,哪些可以认为不等. 这一节是对各个 μ_i 两两之间进行比较,对 μ_i 一 μ_i ,也就是效应差 a_i 一 a_i 作出估计、检验.

8.2.1 效应差的置信区间

效应差 $a_i - a_j = \mu_i - \mu_j$ 的点估计为 $\overline{Y}_i - \overline{Y}_i$. 因 $Y_{ik} \sim N(\mu_i, \sigma^2)$, $(i = 1, 2, ..., r, k = 1, 2, ..., m_i)$, 则

$$\overline{Y}_{i.} = \frac{1}{m_i} \sum_{k=1}^{m_i} Y_{ik} \sim N(\mu_i, \frac{\sigma^2}{m_i}), \quad \overline{Y}_{j.} = \frac{1}{m_i} \sum_{k=1}^{m_j} Y_{jk} \sim N(\mu_j, \frac{\sigma^2}{m_i}),$$

且当 $i \neq j$ 时, \overline{Y}_i 与 \overline{Y}_i 相互独立,可得

$$\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot} \sim N(\mu_i - \mu_j, (\frac{1}{m_i} + \frac{1}{m_j})\sigma^2)$$
,

即

$$\frac{(\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}) - (\mu_i - \mu_j)}{\sigma \sqrt{\frac{1}{m_i} + \frac{1}{m_j}}} \sim N(0, 1),$$

但 σ 未知,用 $\hat{\sigma} = \sqrt{\frac{S_e}{n-r}}$ 替换.由于 $\frac{S_e}{\sigma^2} \sim \chi^2(n-r)$ 且 S_e 与 $\overline{Y}_{i\cdot}$, $\overline{Y}_{j\cdot}$ 相互独立,则根据t分布的定义可得

$$\frac{(\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}) - (\mu_i - \mu_j)}{\sigma \sqrt{\frac{1}{m_i} + \frac{1}{m_j}}} = \frac{(\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}) - (\mu_i - \mu_j)}{\hat{\sigma} \sqrt{\frac{1}{m_i} + \frac{1}{m_j}}} \sim t(n - r),$$

故效应差 $a_i - a_j = \mu_i - \mu_j$ 的置信度为 $1 - \alpha$ 的置信区间是

$$\mu_i - \mu_j \in [\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot} \pm t_{1-\alpha/2}(n-r) \cdot \hat{\sigma}\sqrt{\frac{1}{m_i} + \frac{1}{m_i}}].$$

例 由前面的鸡饲料对鸡增重问题的数据给出各效应差 $\mu_i - \mu_i$ 的点估计和置信区间($\alpha = 0.05$).

解: 因 $m_1 = m_2 = m_3 = 8$, n = 24, r = 3, 有

$$\overline{Y}_{1.} = \frac{T_1}{m_1} = \frac{8194}{8} = 1024.25$$
, $\overline{Y}_{2.} = \frac{T_2}{m_2} = \frac{8585}{8} = 1073.125$, $\overline{Y}_{3.} = \frac{T_3}{m_3} = \frac{8354}{8} = 1044.25$,

则各效应差 $\mu_i - \mu_i$ 的点估计分别为

$$\begin{split} &\mu_1 \stackrel{\wedge}{-} \mu_2 = \overline{Y}_{\text{l.}} - \overline{Y}_{\text{2.}} = 1024.25 - 1073.125 = -48.875 \; , \\ &\mu_1 \stackrel{\wedge}{-} \mu_3 = \overline{Y}_{\text{l.}} - \overline{Y}_{\text{3.}} = 1024.25 - 1044.25 = -20 \; , \\ &\mu_2 \stackrel{\wedge}{-} \mu_3 = \overline{Y}_{\text{2.}} - \overline{Y}_{\text{3.}} = 1073.125 - 1044.25 = 28.875 \; ; \end{split}$$

因
$$\hat{\sigma} = \sqrt{\frac{S_e}{n-r}} = \sqrt{\frac{28215.875}{21}} = 36.6553$$
,有 $t_{0.975}(21) \cdot \hat{\sigma} \sqrt{\frac{1}{m_i} + \frac{1}{m_j}} = 2.0796 \times 36.6553 \times 0.5 = 38.1142$,

则各效应差 $\mu_i - \mu_i$ 的置信度为 0.95 的置信区间分别是

$$\mu_1 - \mu_2 \in [\overline{Y}_{1.} - \overline{Y}_{2.} \pm t_{0.975}(21) \cdot \hat{\sigma} \sqrt{\frac{1}{8} + \frac{1}{8}}] = [-48.875 \pm 38.1142] = [-86.9892, -10.7608],$$

$$\mu_1 - \mu_3 \in [\overline{Y}_1 - \overline{Y}_3] \pm t_{0.975}(21) \cdot \hat{\sigma} \sqrt{\frac{1}{8} + \frac{1}{8}}] = [-20 \pm 38.1142] = [-58.1142, 18.1142],$$

$$\mu_2 - \mu_3 \in [\overline{Y}_{2.} - \overline{Y}_{3.} \pm t_{0.975}(21) \cdot \hat{\sigma}\sqrt{\frac{1}{8} + \frac{1}{8}}] = [28.875 \pm 38.1142] = [-9.2392, 66.9892].$$

例 由前面的食品包装对销售量影响问题的数据给出各效应差 $\mu_i - \mu_j$ 的点估计和置信区间($\alpha = 0.01$)。解:因 $m_1 = 2$, $m_2 = 3$, $m_3 = 3$, $m_4 = 2$,n = 10,r = 4,有

$$\overline{Y}_{1.} = \frac{T_1}{m_1} = \frac{30}{2} = 15$$
, $\overline{Y}_{2.} = \frac{T_2}{m_2} = \frac{39}{3} = 13$, $\overline{Y}_{3.} = \frac{T_3}{m_3} = \frac{57}{3} = 19$, $\overline{Y}_{4.} = \frac{T_4}{m_4} = \frac{54}{2} = 27$,

则各效应差 $\mu_i - \mu_i$ 的点估计分别为

$$\mu_{1} \stackrel{\wedge}{-} \mu_{2} = \overline{Y}_{1.} - \overline{Y}_{2.} = 15 - 13 = 2 , \quad \mu_{1} \stackrel{\wedge}{-} \mu_{3} = \overline{Y}_{1.} - \overline{Y}_{3.} = 15 - 19 = -4 ,$$

$$\mu_{1} \stackrel{\wedge}{-} \mu_{4} = \overline{Y}_{1.} - \overline{Y}_{4.} = 15 - 27 = -12 , \quad \mu_{2} \stackrel{\wedge}{-} \mu_{3} = \overline{Y}_{2.} - \overline{Y}_{3.} = 13 - 19 = -6 ,$$

$$\mu_{2} \stackrel{\wedge}{-} \mu_{4} = \overline{Y}_{2.} - \overline{Y}_{4.} = 13 - 27 = -14 , \quad \mu_{3} \stackrel{\wedge}{-} \mu_{4} = \overline{Y}_{3.} - \overline{Y}_{4.} = 19 - 27 = -8 ;$$

因
$$\hat{\sigma} = \sqrt{\frac{S_e}{n-r}} = \sqrt{\frac{46}{6}} = 2.7689$$
,有 $t_{0.995}(6) \cdot \hat{\sigma} = 3.7074 \times 2.7689 = 10.2653$,则各效应差 $\mu_i - \mu_j$ 的置信

度为 0.99 的置信区间分别是

$$\begin{split} &\mu_1 - \mu_2 \in [\overline{Y}_{1\cdot} - \overline{Y}_{2\cdot} \pm t_{0.995}(6) \cdot \hat{\sigma} \sqrt{\frac{1}{2} + \frac{1}{3}}] = [2 \pm 10.2653 \times 0.9129] = [-7.3709, 11.3709] \,, \\ &\mu_1 - \mu_3 \in [\overline{Y}_{1\cdot} - \overline{Y}_{3\cdot} \pm t_{0.995}(6) \cdot \hat{\sigma} \sqrt{\frac{1}{2} + \frac{1}{3}}] = [-4 \pm 10.2653 \times 0.9129] = [-13.3709, 5.3709] \,, \\ &\mu_1 - \mu_4 \in [\overline{Y}_{1\cdot} - \overline{Y}_{4\cdot} \pm t_{0.995}(6) \cdot \hat{\sigma} \sqrt{\frac{1}{2} + \frac{1}{2}}] = [-12 \pm 10.2653 \times 1] = [-22.2653, -1.7347] \,, \\ &\mu_2 - \mu_3 \in [\overline{Y}_{2\cdot} - \overline{Y}_{3\cdot} \pm t_{0.995}(6) \cdot \hat{\sigma} \sqrt{\frac{1}{3} + \frac{1}{3}}] = [-6 \pm 10.2653 \times 0.8165] = [-14.3816, 2.3816] \,, \\ &\mu_2 - \mu_4 \in [\overline{Y}_{2\cdot} - \overline{Y}_{4\cdot} \pm t_{0.995}(6) \cdot \hat{\sigma} \sqrt{\frac{1}{3} + \frac{1}{2}}] = [-14 \pm 10.2653 \times 0.9129] = [-23.3709, -4.6291] \,, \\ &\mu_3 - \mu_4 \in [\overline{Y}_{3\cdot} - \overline{Y}_{4\cdot} \pm t_{0.995}(6) \cdot \hat{\sigma} \sqrt{\frac{1}{3} + \frac{1}{2}}] = [-8 \pm 10.2653 \times 0.9129] = [-17.3709, 1.3709] \,. \end{split}$$

8.2.2 多重比较问题

对各个 μ_i 两两之间进行比较,也就是检验任意两个水平 A_i 与 A_j 下的总体均值是否相等,即检验假设 $H_0^{ij}: \mu_i = \mu_i$ vs $H_1^{ij}: \mu_i \neq \mu_i$, $i,j=1,2,\cdots,r$.

对于每一个假设 H_0^{ij} 可以采取上一章两个正态总体的均值比较方法进行检验,但这里需要同时检验 $C_r^2 = \frac{r(r-1)}{2}$ 个这种假设.

设需要同时检验 k 个假设 H_0^i , $i=1,2,\cdots,k$,每一个假设的显著水平是 α ,即在 H_0^i 成立的条件下,接受 H_0^i 的概率为 $1-\alpha$,但在所有 k 个假设 H_0^i 都成立的条件下,要同时接受所有假设 H_0^i 的概率就可能远小于 $1-\alpha$. 事实上,此时对每一个假设 H_0^i ,拒绝 H_0^i 的概率为 α ,而对所有 k 个假设 H_0^i , $i=1,2,\cdots,k$,至少拒绝其中一个 H_0^i 的概率最大时可能达到 $k\alpha$,即同时接受所有假设 H_0^i 的概率就可能只有 $1-k\alpha$.

可见,需要同时检验多个假设时,一般不应逐个检验每一个假设,而是采用多重比较方法同时检验多个假设. 多重比较方法,就是针对所有假设,构造一个统一的拒绝域,再逐个进行比较.

这里,需要检验假设

$$H_0^{ij}$$
: $\mu_i = \mu_i$ vs H_1^{ij} : $\mu_i \neq \mu_i$, $1 \leq i < j \leq r$,

在 H_0^{ij} 成立的条件下, $\overline{Y}_{i\cdot}$ 与 $\overline{Y}_{j\cdot}$ 不应相差太大.对每一个假设 H_0^{ij} ,拒绝域可以取为 $W^{ij} = \{|\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}| \geq c_{ij}\}$,其中 c_{ij} 是常数.对所有的假设 H_0^{ij} ,统一的拒绝域取为 $W = \bigcup_{1 \leq i < j \leq r} W^{ij} = \bigcup_{1 \leq i < j \leq r} \{|\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}| \geq c_{ij}\}$.

分成重复数相等与不等两种场合进行讨论.

8.2.3 重复数相等场合的 T 法

重复数相等时,各水平是平等的,由对称性,可以要求所有的 c_{ij} 相等,记为 c,即统一的拒绝域为 $W = \bigcup_{1 \leq i < j \leq r} \{ |\overline{Y}_{i.} - \overline{Y}_{j.}| \geq c \} = \{ \max_{1 \leq i < j \leq r} |\overline{Y}_{i.} - \overline{Y}_{j.}| \geq c \} = \{ \max_{1 \leq i < r} \overline{Y}_{i.} - \min_{1 \leq i \leq r} \overline{Y}_{i.} \geq c \} .$

因 Y_{ij} , $(i=1,2,\cdots,r,\ j=1,2,\cdots,m)$ 相互独立且都服从正态分布 $N(\mu_i,\sigma^2)$,有 $\overline{Y}_i \sim N(\mu_i,\frac{\sigma^2}{m})$. 当 所有的假设 H_0^{ij} 都成立时,即 $\mu_1 = \mu_2 = \cdots = \mu_r = \mu$,有 $\overline{Y}_i \sim N(\mu,\frac{\sigma^2}{m})$,则

$$\frac{\overline{Y}_{i\cdot} - \mu}{\sigma/\sqrt{m}} \sim N(0,1).$$

但 σ 未知,用 $\hat{\sigma} = \sqrt{\frac{S_e}{n-r}}$ 替换。由于 $\frac{S_e}{\sigma^2} \sim \chi^2(n-r)$ 且 S_e 与 \overline{Y}_i 相互独立,则根据t分布的定义可得

$$\frac{\frac{\overline{Y}_{i\cdot} - \mu}{\sigma/\sqrt{m}}}{\sqrt{\frac{S_e}{\sigma^2}/(n-r)}} = \frac{\overline{Y}_{i\cdot} - \mu}{\hat{\sigma}/\sqrt{m}} \sim t(n-r) = t(f_e).$$

统一的拒绝域 W 的形式可改写为

$$W = \{ \max_{1 \leq i \leq r} \overline{Y}_{i\cdot} - \min_{1 \leq i \leq r} \overline{Y}_{i\cdot} \geq c \} = \left\{ \max_{1 \leq i \leq r} \frac{\overline{Y}_{i\cdot} - \mu}{\hat{\sigma} / \sqrt{m}} - \min_{1 \leq i \leq r} \frac{\overline{Y}_{i\cdot} - \mu}{\hat{\sigma} / \sqrt{m}} \geq \frac{c}{\hat{\sigma} / \sqrt{m}} \right\},$$

其中 $Q = \max_{1 \le i \le r} \frac{\overline{Y}_{i.} - \mu}{\hat{\sigma} / \sqrt{m}} - \min_{1 \le i \le r} \frac{\overline{Y}_{i.} - \mu}{\hat{\sigma} / \sqrt{m}} = \frac{\max_{1 \le i \le r} \overline{Y}_{i.} - \min_{1 \le i \le r} \overline{Y}_{i.}}{\hat{\sigma} / \sqrt{m}}$ 是从分布为 $t(f_e)$ 的总体中抽取容量为r的样本所得的

最大与最小顺序统计量之差(极差),称之为t化极差统计量,其分布记为 $q(r,f_e)$. 显然,t化极差统计量 Q的分布 $q(r,f_e)$ 只与水平个数t以及t分布的自由度t0,有关,而与参数t0,t0,000 加入 无关。

分布 $q(r, f_e)$ 的准确形式比较复杂,通常采用随机模拟方法得到其分位数 $q_{1-\alpha}(r, f_e)$. 对于给定的容量 r 及自由度 f_e ,随机模拟方法是

- (1) 随机生成 r 个标准正态分布 N(0,1) 随机数 x_1, x_2, \dots, x_r ,将这 r 个随机数按由小到大的顺序排列,得到其最小随机数 $x_{(1)}$ 和最大随机数 $x_{(r)}$;
- (2) 随机生成 1 个自由度为 f_e 的 χ^2 分布 χ^2 (f_e) 随机数 y_i

(3) 计算
$$q = \frac{x_{(r)} - x_{(1)}}{\sqrt{y/f_e}}$$
;

(4) 重复(1) 至(3) 步 N 次,得到 t 化极差统计量 Q 的 N 个观测值,只要 N 非常大(如 10^4 或 10^5 次),就可得 $q(r, f_e)$ 的各种分位数 $q_{1-\alpha}(r, f_e)$ 的近似值.

当显著水平为
$$\alpha$$
 时,拒绝域 $W = \left\{Q \geq \frac{c}{\hat{\sigma}/\sqrt{m}}\right\} = \left\{Q \geq q_{1-\alpha}(r,f_e)\right\}$,有 $q_{1-\alpha}(r,f_e) = \frac{c}{\hat{\sigma}/\sqrt{m}}$,可得
$$c = q_{1-\alpha}(r,f_e) \cdot \frac{\hat{\sigma}}{\sqrt{m}}$$
,

再逐个将 $|\overline{Y}_{i} - \overline{Y}_{j}|$ 与c比较,得出每一对 μ_{i} 与 μ_{j} 是否有显著差异的结论.

步骤: 假设
$$H_0^{ij}$$
: $\mu_i = \mu_j$ vs H_1^{ij} : $\mu_i \neq \mu_j$, $1 \leq i < j \leq r$,

统计量
$$Q = \max_{1 \le i \le r} \frac{\overline{Y}_{i.} - \mu}{\hat{\sigma} / \sqrt{m}} - \min_{1 \le i \le r} \frac{\overline{Y}_{i.} - \mu}{\hat{\sigma} / \sqrt{m}} = \frac{\max_{1 \le i \le r} \overline{Y}_{i.} - \min_{1 \le i \le r} \overline{Y}_{i.}}{\hat{\sigma} / \sqrt{m}}$$
,

显著水平
$$\alpha$$
,右侧拒绝域 $W = \left\{ Q \ge \frac{c}{\hat{\sigma}/\sqrt{m}} \right\} = \left\{ Q \ge q_{1-\alpha}(r, f_e) \right\},$

计算
$$c=q_{1-\alpha}(r,f_e)\cdot \frac{\hat{\sigma}}{\sqrt{m}}$$
,逐个将 $|\overline{Y}_{i\cdot}-\overline{Y}_{j\cdot}|$ 与 c 比较,得出结论.

例 由前面的鸡饲料对鸡增重影响问题的数据对各因子作多重比较($\alpha = 0.05$).

解: 假设
$$H_0^{ij}$$
: $\mu_i = \mu_j$ vs H_1^{ij} : $\mu_i \neq \mu_j$, $1 \leq i < j \leq 3$,

统计量
$$Q = \max_{1 \le i \le r} \frac{\overline{Y}_{i.} - \mu}{\hat{\sigma} / \sqrt{m}} - \min_{1 \le i \le r} \frac{\overline{Y}_{i.} - \mu}{\hat{\sigma} / \sqrt{m}} = \frac{\max_{1 \le i \le r} \overline{Y}_{i.} - \min_{1 \le i \le r} \overline{Y}_{i.}}{\hat{\sigma} / \sqrt{m}}$$
,

显著水平 $\alpha = 0.05$,r = 3, $f_e = n - r = 21$,右侧拒绝域 $W = \{Q \ge q_{0.95}(3, 21)\} = \{Q \ge 3.57\}$,

因
$$m=8$$
, $\hat{\sigma}=\sqrt{\frac{S_e}{n-r}}=\sqrt{\frac{28215.875}{21}}=36.6553$,有 $c=3.57\times\frac{36.6553}{\sqrt{8}}=46.2658$,

由于 $|\overline{Y}_{1.}-\overline{Y}_{2.}|$ =|1024.25-1073.125|=48.875>c,故 μ_1 与 μ_2 有显著差异;

$$|\overline{Y}_{1.} - \overline{Y}_{3.}| = |1024.25 - 1044.25| = 20 < c$$
, 故 $\mu_1 与 \mu_3$ 没有显著差异;

$$|\overline{Y}_{2} - \overline{Y}_{3}| = |1073.125 - 1044.25| = 28.875 < c$$
, 故 μ_{2} 与 μ_{3} 没有显著差异;

8.2.4 重复数不等场合的 S 法

重复数不等时,因

$$\frac{(\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}) - (\mu_i - \mu_j)}{\sigma \sqrt{\frac{1}{m_i} + \frac{1}{m_j}}} \sim N(0, 1),$$

但 σ 未知,用 $\hat{\sigma} = \sqrt{\frac{S_e}{n-r}}$ 替换.由于 $\frac{S_e}{\sigma^2} \sim \chi^2(n-r)$ 且 S_e 与 $\overline{Y}_{i\cdot}$, $\overline{Y}_{j\cdot}$ 相互独立,则根据t分布的定义可得

$$\frac{(\bar{Y}_{i.} - \bar{Y}_{j.}) - (\mu_{i} - \mu_{j})}{\hat{\sigma}\sqrt{\frac{1}{m_{i}} + \frac{1}{m_{j}}}} \sim t(n - r) = t(f_{e}),$$

当所有的假设 H_0^{ij} 都成立时,即 $\mu_1 = \mu_2 = \cdots = \mu_r = \mu$,有

$$T_{ij} = \frac{\overline{Y}_{i.} - \overline{Y}_{j.}}{\hat{\sigma} \sqrt{\frac{1}{m_i} + \frac{1}{m_j}}} \sim t(f_e), \quad \stackrel{\text{\tiny def}}{=} F_{ij} = \frac{(\overline{Y}_{i.} - \overline{Y}_{j.})^2}{\hat{\sigma}^2 \left(\frac{1}{m_i} + \frac{1}{m_j}\right)} \sim F(1, f_e),$$

从而统一的拒绝域可以取为

$$\begin{split} W &= \bigcup_{1 \leq i < j \leq r} \{ |\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}| \geq c \sqrt{\frac{1}{m_i} + \frac{1}{m_j}} \} = \bigcup_{1 \leq i < j \leq r} \{ \frac{|\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}|}{\sqrt{\frac{1}{m_i} + \frac{1}{m_j}}} \geq c \} \\ &= \{ \max_{1 \leq i < j \leq r} \frac{|\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}|}{\hat{\sigma} \sqrt{\frac{1}{m_i} + \frac{1}{m_j}}} \geq \frac{c}{\hat{\sigma}} \} = \{ \max_{1 \leq i < j \leq r} \frac{(\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot})^2}{\hat{\sigma}^2 \left(\frac{1}{m_i} + \frac{1}{m_j}\right)} \geq \frac{c^2}{\hat{\sigma}^2} \} = \{ \max_{1 \leq i < j \leq r} F_{ij} \geq \frac{c^2}{\hat{\sigma}^2} \} \;, \end{split}$$

可以证明, $\frac{\max\limits_{1\leq i< j\leq r} F_{ij}}{r-1} \stackrel{\sim}{\sim} F(r-1, f_e)$.

当显著水平为
$$\alpha$$
 时,拒绝域 $W = \left\{ F \ge \frac{c^2}{(r-1)\hat{\sigma}^2} \right\} = \left\{ F \ge f_{1-\alpha}(r-1, f_e) \right\}$,有 $f_{1-\alpha}(r-1, f_e) = \frac{c^2}{(r-1)\hat{\sigma}^2}$,

可得

$$c = \hat{\sigma}\sqrt{(r-1)f_{1-\alpha}(r-1, f_e)},$$

因此

$$c_{ij} = c \sqrt{\frac{1}{m_i} + \frac{1}{m_j}} = \hat{\sigma} \sqrt{(r-1) f_{1-\alpha}(r-1, f_e) \left(\frac{1}{m_i} + \frac{1}{m_j}\right)},$$

再逐个将 $|\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot}|$ 与 $c_{ij} = c\sqrt{\frac{1}{m_i} + \frac{1}{m_j}}$ 比较,得出每一对 μ_i 与 μ_j 是否有显著差异的结论.

步骤: 假设 H_0^{ij} : $\mu_i = \mu_j$ vs H_1^{ij} : $\mu_i \neq \mu_j$, $1 \leq i \leq j \leq r$,

统计量
$$F = \frac{\max\limits_{1 \leq i < j \leq r} F_{ij}}{r-1} = \max\limits_{1 \leq i < j \leq r} \frac{(\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot})^2}{(r-1)\hat{\sigma}^2 \left(\frac{1}{m_i} + \frac{1}{m_j}\right)} \stackrel{.}{\sim} F(r-1, f_e)$$
 ,

显著水平 α ,右侧拒绝域 $W = \left\{ F \ge \frac{c^2}{(r-1)\hat{\sigma}^2} \right\} = \left\{ F \ge f_{1-\alpha}(r-1, f_e) \right\}$,

计算
$$c_{ij}=c\sqrt{\frac{1}{m_i}+\frac{1}{m_j}}=\hat{\sigma}\sqrt{(r-1)f_{1-\alpha}(r-1,f_e)\left(\frac{1}{m_i}+\frac{1}{m_j}\right)}$$
 ,

逐个将 $|\bar{Y}_{i} - \bar{Y}_{i}|$ 与 c_{ij} 比较,得出结论.

例 由前面的食品包装对销售量影响问题的数据对各因子作多重比较 ($\alpha = 0.01$).

解:假设 H_0^{ij} : $\mu_i = \mu_j$ vs H_1^{ij} : $\mu_i \neq \mu_j$, $1 \leq i < j \leq 4$,

统计量
$$F = \frac{\max\limits_{1 \le i < j \le 4} F_{ij}}{(r-1)} = \max\limits_{1 \le i < j \le 4} \frac{(\overline{Y}_{i\cdot} - \overline{Y}_{j\cdot})^2}{(r-1)\hat{\sigma}^2 \left(\frac{1}{m_i} + \frac{1}{m_j}\right)} \stackrel{\sim}{\sim} F(r-1, f_e)$$
,

显著水平 α = 0.01,r= 4, f_e = n-r = 6,右侧拒绝域 W = $\{F \ge f_{0.99}(3,6)\}$ = $\{F \ge 9.78\}$,

因
$$m_1 = m_4 = 2$$
, $m_2 = m_3 = 3$, $\hat{\sigma} = \sqrt{\frac{S_e}{n-r}} = \sqrt{\frac{46}{6}} = 2.7689$, 有 $c = 2.7689 \times \sqrt{3 \times 9.78} = 14.9981$,

$$\text{ If } c_{12}=c_{13}=c_{24}=c_{34}=c\sqrt{\frac{1}{2}+\frac{1}{3}}=13.6914 \text{ , } c_{14}=c\sqrt{\frac{1}{2}+\frac{1}{2}}=14.9981 \text{ , } c_{23}=c\sqrt{\frac{1}{3}+\frac{1}{3}}=12.2459 \text{ , } c_{14}=c\sqrt{\frac{1}{2}+\frac{1}{2}}=14.9981 \text{ , } c_{14}=c\sqrt{\frac{1}{3}+\frac{1}{3}}=12.2459 \text{ , } c_{15}=c\sqrt{\frac{1}{3}+\frac{1}{3}}=12.2459 \text{ , }$$

由于
$$|\overline{Y}_{1.} - \overline{Y}_{2.}| = |15 - 13| = 2 < c_{12}$$
, 故 $\mu_1 与 \mu_2$ 没有显著差异;

$$|\bar{Y}_{1.} - \bar{Y}_{3.}| = |15 - 19| = 4 < c_{13}$$
, 故 $\mu_1 与 \mu_3$ 没有显著差异;

$$|\overline{Y}_{1\cdot} - \overline{Y}_{4\cdot}| = |15 - 27| = 12 < c_{14}$$
,故 $\mu_1 与 \mu_4$ 没有显著差异;

$$|\overline{Y}_{2} - \overline{Y}_{3}| = |13 - 19| = 6 < c_{23}$$
, 故 μ_{2} 与 μ_{3} 没有显著差异;

$$|\bar{Y}_{2} - \bar{Y}_{4}| = |13 - 27| = 14 > c_{24}$$
, 故 μ_{2} 与 μ_{4} 有显著差异;

$$|\bar{Y}_{3.} - \bar{Y}_{4.}| = |19 - 27| = 8 < c_{34}$$
,故 $\mu_3 与 \mu_4$ 没有显著差异.

§8.3 方差齐性检验

在单因子方差分析统计模型中,总是假设各个水平下的总体方差都相等,即 $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_r^2 = \sigma^2$,称之为方差齐性. 但方差齐性不一定自然成立,需要对其进行检验,检验的原假设与备择假设为

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_r^2$ vs H_1 : $\sigma_1^2, \sigma_2^2, \cdots, \sigma_r^2$ 不全相等,

称为方差齐性检验.

各水平下的总体方差 σ_i^2 分别是以该水平下的样本方差 S_i^2 作为点估计,以由 $S_1^2, S_2^2, \cdots, S_r^2$ 构成的函数作为检验的统计量.

分成重复数相等与不等两种场合进行讨论.

8.3.1 重复数相等场合的 Hartley 检验法

重复数相等时, 样本方差

$$S_{i}^{2} = \frac{1}{m-1} \sum_{j=1}^{m} (Y_{ij} - \overline{Y}_{i.})^{2} = \frac{1}{m-1} \left[\sum_{j=1}^{m} Y_{ij}^{2} - m \overline{Y}_{i.}^{2} \right] = \frac{1}{m-1} \left[\sum_{j=1}^{m} Y_{ij}^{2} - \frac{T_{i}^{2}}{m} \right], \quad i = 1, 2, \dots, r,$$

各水平是平等的,以r个水平下样本方差 S_i^2 , $(i=1,2,\cdots,r)$ 的最大值与最小值之比作为检验的统计量H,即

$$H = \frac{\max\{S_1^2, S_2^2, \dots, S_r^2\}}{\min\{S_1^2, S_2^2, \dots, S_r^2\}}.$$

在方差齐性成立的条件下,统计量 H 的分布只与水平个数 r 及样本方差 S_i^2 的自由度 f=m-1 有关,记为 H(r,f). 分布 H(r,f)的准确形式比较复杂,通常采用随机模拟方法得到其分位数 $H_{1-\alpha}(r,f)$. 显然有 $H \geq 1$,且 H 的观测值越接近 1,方差齐性越应该成立,因此拒绝域取为 $W = \{H \geq H_{1-\alpha}(r,f)\}$.

步骤: 假设
$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_r^2$ vs H_1 : $\sigma_1^2, \sigma_2^2, \cdots, \sigma_r^2$ 不全相等,

统计量
$$H = \frac{\max\{S_1^2, S_2^2, \dots, S_r^2\}}{\min\{S_1^2, S_2^2, \dots, S_r^2\}}$$
,

显著水平 α , 右侧拒绝域 $W = \{H \ge H_{1-\alpha}(r,f)\}$, 计算 H , 并作出判断.

这称之为 Hartley 检验法.

例 由前面的鸡饲料对鸡增重影响问题的数据采用 Hartley 检验法进行方差齐性检验 ($\alpha = 0.05$).

解: 假设 H_0 : $\sigma_1^2 = \sigma_2^2 = \sigma_3^2$ vs H_1 : $\sigma_1^2, \sigma_2^2, \sigma_3^2$ 不全相等,

统计量
$$H = \frac{\max\{S_1^2, S_2^2, S_3^2\}}{\min\{S_1^2, S_2^2, S_3^2\}}$$
,

显著水平 α = 0.05,且 r= 3,f= m – 1,右侧拒绝域 W= { $H \ge H_{0.95}(3,7)$ } = { $H \ge 6.94$ },根据试验数据计算表,可得

$$T_1 = 8194$$
, $T_2 = 8585$, $T_3 = 8354$, $\sum_{j=1}^{m} Y_{1j}^2 = 8398024$, $\sum_{j=1}^{m} Y_{2j}^2 = 9230355$, $\sum_{j=1}^{m} Y_{3j}^2 = 8728984$,

则

$$S_1^2 = \frac{1}{7}(8398024 - \frac{8194^2}{8}) = 759.9286$$
,
$$S_2^2 = \frac{1}{7}(9230355 - \frac{8585^2}{8}) = 2510.9821$$
,
$$S_3^2 = \frac{1}{7}(8728984 - \frac{8354^2}{8}) = 759.9286$$
, 可得 $H = \frac{2510.9821}{759.9286} = 3.3042 \notin W$,

故拒绝 H₀,接受 H₁,可以认为三个水平下的总体方差满足方差齐性.

8.3.2 重复数不等场合大样本情形的 Bartlett 检验法

重复数不等时,样本方差

$$S_i^2 = \frac{1}{m_i - 1} \sum_{j=1}^{m_i} (Y_{ij} - \overline{Y}_{i.})^2 = \frac{1}{m_i - 1} \left[\sum_{j=1}^{m_i} Y_{ij}^2 - m_i \overline{Y}_{i.}^2 \right] = \frac{1}{m_i - 1} \left[\sum_{j=1}^{m_i} Y_{ij}^2 - \frac{T_i^2}{m_i} \right], \quad i = 1, 2, \dots, r,$$

记 $Q_i = \sum_{j=1}^{m_i} (Y_{ij} - \overline{Y}_{i.})^2 = \sum_{j=1}^{m_i} Y_{ij}^2 - \frac{T_i^2}{m_i}$ 为第 i 个水平下的偏差平方和, $f_i = m_i - 1$ 为其自由度,有 $S_i^2 = \frac{Q_i}{f_i}$,且

$$\sum_{i=1}^{r} Q_i = \sum_{i=1}^{r} \sum_{j=1}^{m_i} (Y_{ij} - \overline{Y}_{i.})^2 = S_e,$$

$$\sum_{i=1}^{r} f_i = \sum_{i=1}^{r} m_i - r = n - r = f_e,$$

则组内偏差均方和

$$MS_e = \frac{S_e}{f_e} = \frac{1}{f_e} \sum_{i=1}^r Q_i = \frac{1}{f_e} \sum_{i=1}^r f_i S_i^2 = \sum_{i=1}^r \frac{f_i}{f_e} S_i^2 ,$$

即 MS_e 等于样本方差 $S_1^2, S_2^2, \cdots, S_r^2$ 以各自自由度所占比例为权数的加权算术平均,而相应的加权几何平均记为 GMS_e ,即

$$GMS_e = \prod_{i=1}^r (S_i^2)^{\frac{f_i}{f_e}}.$$

以 MS_e 与 GMS_e 之商的一个函数作为检验统计量.可以证明,大样本情形,在方差齐性成立的条件下,

$$B = \frac{f_e}{C} \ln \frac{MS_e}{GMS_e} = \frac{1}{C} [f_e \ln(MS_e) - \sum_{i=1}^r f_i \ln(S_i^2)] \sim \chi^2(r-1),$$

其中常数

$$C = 1 + \frac{1}{3(r-1)} \left(\sum_{i=1}^{r} \frac{1}{f_i} - \frac{1}{f_e} \right).$$

由于算术平均必大于等于几何平均,即 $MS_e \geq GMS_e$,当且仅当所有 S_i^2 都相等时等号成立,即 B 的观测值越小,方差齐性越应该成立,因此拒绝域取为 $W = \{B \geq \chi_{1-\alpha}^2(r-1)\}$.

步骤: 假设 H_0 : $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_r^2$ vs H_1 : $\sigma_1^2, \sigma_2^2, \cdots, \sigma_r^2$ 不全相等,

统计量
$$B = \frac{f_e}{C} \ln \frac{MS_e}{GMS_e} \stackrel{.}{\sim} \chi^2(r-1)$$
,其中 $GMS_e = \prod_{i=1}^r (S_i^2)^{\frac{f_i}{f_e}}$, $C = 1 + \frac{1}{3(r-1)} \left(\sum_{i=1}^r \frac{1}{f_i} - \frac{1}{f_e} \right)$,

显著水平 α ,右侧拒绝域 $W = \{B \ge \chi^2_{1-\alpha}(r-1)\}$,

计算 B, 并作出判断.

这称之为 Bartlett 检验法. 它适用于每一个样本容量 m_i 都不小于 5 的情形,在重复数相等或不等时,都可采用.

例 由前面的鸡饲料对鸡增重影响问题的数据采用 Bartlett 检验法进行方差齐性检验(α = 0.05).

解: 假设 H_0 : $\sigma_1^2 = \sigma_2^2 = \sigma_3^2$ vs H_1 : $\sigma_1^2, \sigma_2^2, \sigma_3^2$ 不全相等,

统计量
$$B = \frac{f_e}{C} \ln \frac{MS_e}{GMS_e} \stackrel{.}{\sim} \chi^2(r-1)$$
,其中 $GMS_e = \prod_{i=1}^r (S_i^2)^{\frac{f_i}{f_e}}$, $C = 1 + \frac{1}{3(r-1)} \left(\sum_{i=1}^r \frac{1}{f_i} - \frac{1}{f_e} \right)$,

显著水平 $\alpha = 0.05$,且 r = 3,右侧拒绝域 $W = \{B \ge \chi_{0.95}^2(2)\} = \{B \ge 5.9915\}$,

根据试验数据计算表,可得

$$S_{1}^{2} = 759.9286, \quad S_{2}^{2} = 2510.9821, \quad S_{3}^{2} = 759.9286,$$

$$f_{1} = f_{2} = f_{3} = m - 1 = 7, \quad f_{e} = n - r = 21, \quad MS_{e} = 1343.6131,$$

$$GMS_{e} = (S_{1}^{2})^{\frac{f_{1}}{f_{e}}} (S_{2}^{2})^{\frac{f_{2}}{f_{e}}} (S_{3}^{2})^{\frac{f_{3}}{f_{e}}} = 759.9286^{\frac{1}{3}} \times 2510.9821^{\frac{1}{3}} \times 759.9286^{\frac{1}{3}} = 1131.8696,$$

$$C = 1 + \frac{1}{3(r-1)} \left(\sum_{i=1}^{r} \frac{1}{f_{i}} - \frac{1}{f_{e}} \right) = 1 + \frac{1}{3 \times 2} \left(\frac{1}{7} + \frac{1}{7} + \frac{1}{7} - \frac{1}{21} \right) = 1.0635,$$

可得
$$B = \frac{f_e}{C} \ln \frac{MS_e}{GMS_e} = \frac{21}{1.0635} \ln \frac{1343.6131}{1131.8696} = 3.8363 \notin W$$
,

故拒绝 H₀,接受 H₁,可以认为三个水平下的总体方差满足方差齐性.

8.3.3 重复数不等场合小样本情形的修正 Bartlett 检验法

但 Bartlett 检验法只能适用于每一个样本容量 m_i 都不小于 5 的情形. 当样本容量小于 5 时,Box 提出了修正 Bartlett 检验法. 沿用 Bartlett 检验法的记号,修正的 Bartlett 检验统计量为

$$B' = \frac{r_2 BC}{r_1 (A - BC)} ,$$

其中

$$r_1 = r - 1$$
, $r_2 = \frac{r + 1}{(C - 1)^2}$, $A = \frac{r_2}{2 - C + \frac{2}{r_2}}$,

可以证明, 在方差齐性成立的条件下,

$$B' = \frac{r_2 BC}{r_1 (A - BC)} \stackrel{\cdot}{\sim} F(r_1, r_2) ,$$

显然, 若 B'的观测值越小,则 B 的值越小,方差齐性越应该成立,因此拒绝域取为 $W = \{B' \geq f_{1-\alpha}(r_1, r_2)\}$.

步骤: 假设 H_0 : $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_r^2$ vs H_1 : $\sigma_1^2, \sigma_2^2, \cdots, \sigma_r^2$ 不全相等,

统计量

显著水平 α ,右侧拒绝域 $W = \{B' \geq f_{1-\alpha}(r_1, r_2)\}$,

计算B', 并作出判断,

这称之为修正 Bartlett 检验法. 不论重复数相等或不等,样本容量 m_i 是大还是小都适用.

例 由前面的食品包装对销售量影响问题的数据采用修正 Bartlett 检验法进行方差齐性检验($\alpha = 0.01$).

解: 假设 H_0 : $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$ vs H_1 : $\sigma_1^2, \sigma_2^2, \sigma_3^2, \sigma_4^2$ 不全相等,

统计量
$$B' = \frac{r_2 BC}{r_1 (A - BC)} \stackrel{\sim}{\sim} F(r_1, r_2)$$
, 其中 $r_1 = r - 1$, $r_2 = \frac{r + 1}{(C - 1)^2}$, $A = \frac{r_2}{2 - C + \frac{2}{r_2}}$,

显著水平 $\alpha = 0.01$,且 r = 4, $f_1 = f_4 = m_1 - 1 = 1$, $f_2 = f_3 = m_2 - 1 = 2$, $f_e = n - r = 6$,有

$$C = 1 + \frac{1}{3(r-1)} \left(\sum_{i=1}^{r} \frac{1}{f_i} - \frac{1}{f_e} \right) = 1 + \frac{1}{3 \times 3} \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{1} - \frac{1}{6} \right) = 1.3148$$

则

$$r_1 = r - 1 = 3$$
, $r_2 = \frac{r+1}{(C-1)^2} = \frac{5}{0.3148^2} = 50.4498$,

右侧拒绝域 $W = \{B' \ge f_{0.99}(3, 50.4498)\} = \{B' \ge 4.1954\}$,根据试验数据计算表,可得

$$\frac{T_1^2}{m_1} = 450$$
, $\frac{T_2^2}{m_2} = 507$, $\frac{T_3^2}{m_3} = 1083$, $\frac{T_4^2}{m_4} = 1458$,

$$\sum_{i=1}^{m_1} Y_{1j}^2 = 468, \quad \sum_{i=1}^{m_2} Y_{2j}^2 = 509, \quad \sum_{i=1}^{m_3} Y_{3j}^2 = 1091, \quad \sum_{i=1}^{m_4} Y_{4j}^2 = 1476,$$

则

$$S_1^2 = \frac{1}{1}(468 - 450) = 18, \quad S_2^2 = \frac{1}{2}(509 - 507) = 1,$$

$$S_3^2 = \frac{1}{2}(1091 - 1083) = 4, \quad S_4^2 = \frac{1}{1}(1476 - 1458) = 18,$$

$$MS_e = 7.6667, \quad GMS_e = (S_1^2)^{\frac{f_1}{f_e}}(S_2^2)^{\frac{f_2}{f_e}}(S_3^2)^{\frac{f_3}{f_e}}(S_4^2)^{\frac{f_4}{f_e}} = 18^{\frac{1}{6}} \times 1^{\frac{2}{6}} \times 4^{\frac{2}{6}} \times 18^{\frac{1}{6}} = 4.1602,$$

$$B = \frac{f_e}{C} \ln \frac{MS_e}{GMS_e} = \frac{6}{1.3148} \ln \frac{7.6667}{4.1602} = 2.7897,$$

$$A = \frac{r_2}{2 - C + \frac{2}{r_2}} = \frac{50.4498}{2 - 1.3148 + \frac{2}{50.4498}} = 69.6024$$

可得
$$B' = \frac{r_2 BC}{r_1 (A - BC)} = \frac{50.4498 \times 2.7897 \times 1.3148}{3 \times (69.6024 - 2.7897 \times 1.3148)} = 0.9355 \notin W$$
,

故拒绝 H₀,接受 H₁,可以认为四个水平下的总体方差满足方差齐性.

8.4.1 变量之间的关系

实际工作中,通常需要考虑两个(随机)变量之间的关系,如圆的半径与面积的关系,人的身高与体重的关系,一个国家的 GDP 与年份的关系等等.

通常变量之间的关系分成两类:确定性关系与相关关系.确定性关系是指给定其中一个变量的值,就能确定另一个变量的值,如圆的半径与面积的关系,通常可以用函数表示.相关关系是指两个变量的取值有一些的联系,但不能由一个变量完全确定另一个变量,如人的身高与体重的关系.

对于具有相关关系的两个变量一般不能给出二者确切的函数关系,但可以在平均意义下给出二者的近似关系,如人的身高与体重之间没有确切的函数关系,但在平均意义下,有

体重
$$(kg) =$$
 身高 $(cm) - 105$,或体重 $(kg) = 24 \times$ 身高 $(m)^2$.

回归分析就是分析相关关系的两个变量在平均意义下的函数关系表达式——回归函数.

对于具有相关关系的两个变量,类似于函数关系,也是以其中一个为自变量,另一个为因变量. 因变量是随机变量,而自变量可以是普通变量,也可以是随机变量. 但不论自变量是普通变量还是随机变量,进行回归分析时,总是将其看作可控的,称为可控变量,一般不再看作随机变量.

设可控变量 x 与随机变量 Y 具有相关关系,以 x 为自变量,Y 为因变量。当给定变量 x 的值时,不能确定变量 Y 的值,Y 是一个与 x 取值有关的随机变量。用 Y 在 x 每一取值下的数学期望作为理论回归函数

$$f(x) = E(Y \mid x) = \int_{-\infty}^{+\infty} yp(y \mid x)dy,$$

且因变量 $Y = f(x) + \varepsilon$, 其中 ε 是随机误差, 通常设 $\varepsilon \sim N(0, \sigma^2)$.

精确的理论回归函数 f(x) 一般很难得到,通常是首先根据观测数据作出散点图,再选择一个合适的回归函数形式,进一步估计其中的某些参数.

例 合金的强度 Y (× 10 7 Pa) 与合金中碳的含量 x (%) 有关. 为了掌握这两个变量的关系,收集了 12 组数据 (x_i, y_i), $i = 1, 2, \cdots$, 12. 作出散点图,并选择一个合适的回归函数形式.

序号	x / %	$y/10^{7} \text{Pa}$	序号	x / %	$y/10^7$ Pa	
1	0.10	42.0	7	0.16	49.0	
2	0.11	43.0	8	0.17	53.0	
3	0.12	45.0	9	0.18	50.0	
4	0.13	45.0	10	0.20	55.0	
5	0.14	45.0	11	0.21	55.0	
6	0.15	47.5	12	0.23	60.0	

合金钢强度 v 与碳含量 x 的数据

解:根据观测数据作 (x_i, y_i) 散点图

可以看出这些点近似位于一条直线上, 回归函数取为线性函数

$$Y = \beta_0 + \beta_1 x + \varepsilon ,$$

其中 β_0 , β_1 为未知参数, ϵ 为随机误差.

例 炼钢厂出钢水时用的钢包,在使用过程中由于钢水的侵蚀,其容积不断增大. 钢包容积用盛满钢水时的质量 Y(kg) 表示,相应的试验次数用 x 表示. 根据表中的数据,作出散点图,并选择一个合适的回归函数形式.

	M GID // A M M M M M M M M M M M M M M M M M						
序-	号 x (次) y (kg)	序号	x (次)	y (kg)		
1	2	106.42	8	11	110.59		
2	3	108.20	9	14	110.60		
3	4	109.58	10	15	110.90		
4	5	109.50	11	16	110.76		
5	7	110.00	12	18	111.00		
6	8	109.93	13	19	111.20		
7	10	110.49					

钢包的质量 y 与试验次数 x 的数据

解:根据观测数据作 (x_i, y_i) 散点图

可以看出这些点并不是位于一条直线上,根据散点图,回归函数可以取为非线性函数

$$Y = a + \frac{b}{r} + \varepsilon ,$$

其中 a, b 为未知参数, ε 为随机误差.

如果回归函数 Y = f(x) 是一个线性函数,就称为线性回归,否则称为非线性回归. 这一节讨论线性回归问题,下一节在讨论一些特殊的非线性回归问题.

8.4.2 一元线性回归模型

如果根据观测数据所作的散点图中,各点近似位于一条直线上,回归函数取为线性函数

$$Y = \beta_0 + \beta_1 x + \varepsilon ,$$

其中 eta_0 , eta_1 为未知参数, ϵ 为随机误差. 假定 ϵ 服从均值为 0,方差为 σ^2 的正态分布,即

$$\varepsilon \sim N(0, \sigma^2),$$

可得

$$Y \sim N(\beta_0 + \beta_1 x, \sigma^2)$$
.

对于每一组数据 (x_i, Y_i) ,有

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2).$$

进一步假定收集数据时,每一次观测都是独立进行的,且误差方差 σ^2 与x无关。这样,各个 ε_i 相互独立,且服从相同的正态分布 $N(0,\sigma^2)$.

一元线性回归模型

$$\begin{cases} Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, & i = 1, 2, \dots, n; \\ & \delta \varepsilon_i \text{相互独立, 且服从相同的正态分布} N(0, \sigma^2). \end{cases}$$

根据观测数据 (x_i, y_i) , 对参数 β_0 , β_1 作出估计, 得到 $\hat{\beta}_0$, $\hat{\beta}_1$, 取

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x ,$$

称为 Y 关于 x 的经验回归函数,也称为回归方程. 若给定 x 的值 x_0 ,可得 $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$,称为随机变量 Y 在 x_0 处的回归值或预测值.

8.4.3 回归系数的最小二乘估计

一般采用最小二乘法估计回归参数 β_0 , β_1 . 方法是选取 β_0 , β_1 的值,使得总的误差平方和达到最小,所得 β_0 , β_1 的值作为其估计值 $\hat{\beta}_0$, $\hat{\beta}_1$,称为最小二乘估计(Least Squares Estimation).

对于 n 组观测数据 (x_i, y_i) , $i = 1, 2, \dots, n$, 总的误差平方和

$$Q = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2,$$

选取 β_0 , β_1 的值, 使得 Q 达到最小. 令 Q 关于 β_0 , β_1 的偏导数等于 0, 得

$$\begin{cases} \frac{\partial Q}{\partial \beta_0} = \sum_{i=1}^n 2(y_i - \beta_0 - \beta_1 x_i) \cdot (-1) = 0; \\ \frac{\partial Q}{\partial \beta_1} = \sum_{i=1}^n 2(y_i - \beta_0 - \beta_1 x_i) \cdot (-x_i) = 0. \end{cases}$$

称为正规方程组,经过整理,可得

$$\begin{cases} n\beta_0 + \beta_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i; \\ \beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i. \end{cases}$$

为了简便,在作回归分析时,一般将求和号" $\sum_{i=1}^n$ "简记为" \sum ",并记 $\bar{x} = \frac{1}{n}\sum x_i$, $\bar{y} = \frac{1}{n}\sum y_i$,有

$$\begin{cases} \beta_0 + \beta_1 \overline{x} = \overline{y}; \\ n\beta_0 \overline{x} + \beta_1 \sum_i x_i^2 = \sum_i x_i y_i. \end{cases}$$

$$\begin{cases} \beta_1 = \frac{\sum x_i y_i - n\overline{x}\overline{y}}{\sum x_i^2 - n\overline{x}^2} = \frac{l_{xy}}{l_{xx}}; \\ \beta_0 = \overline{y} - \beta_1 \overline{x}. \end{cases}$$

故取 β_0 , β_1 的最小二乘估计为

$$\begin{cases} \hat{\beta}_1 = \frac{l_{xY}}{l_{xx}}; \\ \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x}. \end{cases}$$

例 根据前例中合金钢强度和碳含量数据,求回归方程.

解:根据试验数据得出计算表:

试验数据计算表

$\Sigma x_i = 1.9$	n = 12	$\Sigma y_i = 589.5$
$\bar{x} = 0.1583$		$\bar{y} = 49.125$
$\Sigma x_i^2 = 0.3194$	$\Sigma x_i y_i = 95.805$	$\Sigma y_i^2 = 29304.25$
$n\overline{x}^2 = 0.3008$	$n\overline{x}\overline{y} = 93.3375$	$n\overline{y}^2 = 28959.1875$
$l_{xx} = 0.018567$	$l_{xy} = 2.4675$	$l_{yy} = 345.0625$
	$\hat{\beta}_1 = l_{xy}/l_{xx} = 132.8995$	
	$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 28.0826$	

故回归方程为 $\hat{Y} = 28.0826 + 132.8995x$.

定理 线性回归模型中参数 eta_0 , eta_1 和随机变量 Y 的最小二乘估计 \hat{eta}_0 , \hat{eta}_1 和 \hat{Y} 的分布为

(1)
$$\hat{\beta}_0 \sim N \left(\beta_0, \left(\frac{1}{n} + \frac{\overline{x}^2}{l_{xx}} \right) \sigma^2 \right), \quad \hat{\beta}_1 \sim N \left(\beta_1, \frac{\sigma^2}{l_{xx}} \right);$$

(2)
$$\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) = -\frac{\overline{x}}{l_{xx}} \sigma^2;$$

(3) 对给定的
$$x_0$$
, $\hat{Y_0} = \hat{\beta}_0 + \hat{\beta}_1 x_0 \sim N \left[\beta_0 + \beta_1 x_0, \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}} \right] \sigma^2 \right]$.

证: (1) 因
$$\sum (x_i - \overline{x}) = \sum x_i - n\overline{x} = 0$$

有
$$l_{xx} = \sum (x_i - \overline{x})^2 = \sum (x_i - \overline{x})x_i - \sum (x_i - \overline{x})\overline{x} = \sum (x_i - \overline{x})x_i - \overline{x} \cdot 0 = \sum (x_i - \overline{x})x_i$$
,
$$l_{xy} = \sum (x_i - \overline{x})(y_i - \overline{y}) = \sum (x_i - \overline{x})y_i - \sum (x_i - \overline{x})\overline{y} = \sum (x_i - \overline{x})y_i - \overline{y} \cdot 0 = \sum (x_i - \overline{x})y_i$$
則 $\hat{\beta}_1 = \frac{l_{xy}}{l_{xx}} = \frac{\sum (x_i - \overline{x})Y_i}{l_{xx}} = \sum \frac{x_i - \overline{x}}{l_{xx}}Y_i$,

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x} = \frac{1}{n} \sum Y_i - \sum \frac{x_i - \overline{x}}{l_{xx}} Y_i \cdot \overline{x} = \sum \left[\frac{1}{n} - \frac{(x_i - \overline{x})\overline{x}}{l_{xx}} \right] Y_i ,$$

可见 \hat{eta}_0 , \hat{eta}_1 都是独立正态变量 Y_1,Y_2,\cdots,Y_n 的线性组合,即 \hat{eta}_0 , \hat{eta}_1 都服从正态分布,

因
$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$
, 有 $E(Y_i) = \beta_0 + \beta_1 x_i$, $Var(Y_i) = \sigma^2$,

則
$$E(\hat{\beta}_{1}) = \sum \frac{x_{i} - \overline{x}}{l_{xx}} E(Y_{i}) = \sum \frac{x_{i} - \overline{x}}{l_{xx}} (\beta_{0} + \beta_{1}x_{i}) = \frac{\beta_{0}}{l_{xx}} \sum (x_{i} - \overline{x}) + \frac{\beta_{1}}{l_{xx}} \sum (x_{i} - \overline{x})x_{i} = 0 + \frac{\beta_{1}}{l_{xx}} l_{xx} = \beta_{1}$$
,
$$Var(\hat{\beta}_{1}) = \sum \frac{(x_{i} - \overline{x})^{2}}{l_{xx}^{2}} Var(Y_{i}) = \sum \frac{(x_{i} - \overline{x})^{2}}{l_{xx}^{2}} \sigma^{2} = \frac{\sigma^{2}}{l_{xx}^{2}} \sum (x_{i} - \overline{x})^{2} = \frac{\sigma^{2}}{l_{xx}^{2}} \cdot l_{xx} = \frac{\sigma^{2}}{l_{xx}} ,$$

$$E(\hat{\beta}_{0}) = E(\overline{Y} - \hat{\beta}_{1}\overline{x}) = E(\overline{Y}) - E(\hat{\beta}_{1})\overline{x} = \frac{1}{n} \sum E(Y_{i}) - \beta_{1}\overline{x} = \frac{1}{n} \sum (\beta_{0} + \beta_{1}x_{i}) - \frac{1}{n} \sum \beta_{1}x_{i} = \beta_{0} ,$$

$$Var(\hat{\beta}_{0}) = \sum \left[\frac{1}{n} - \frac{(x_{i} - \overline{x})\overline{x}}{l_{xx}} \right]^{2} Var(Y_{i}) = \sum \left[\frac{1}{n^{2}} + \frac{(x_{i} - \overline{x})^{2}\overline{x}^{2}}{l_{xx}^{2}} - \frac{2(x_{i} - \overline{x})\overline{x}}{nl_{xx}} \right] \sigma^{2}$$

$$= n \cdot \frac{1}{n^{2}} \sigma^{2} + \frac{\overline{x}^{2}}{l_{xx}^{2}} \sigma^{2} \sum (x_{i} - \overline{x})^{2} - \frac{2\overline{x}}{nl_{xx}} \sigma^{2} \sum (x_{i} - \overline{x}) = \frac{1}{n} \sigma^{2} + \frac{\overline{x}^{2}}{l_{xx}^{2}} \sigma^{2} \cdot l_{xx} - 0 = \left(\frac{1}{n} + \frac{\overline{x}^{2}}{l_{xx}^{2}} \right) \sigma^{2} ,$$

$$\dot{\Omega} \hat{\beta}_{0} \sim N \left(\beta_{0}, \left(\frac{1}{n} + \frac{\overline{x}^{2}}{l_{xx}} \right) \sigma^{2} \right), \quad \hat{\beta}_{1} \sim N \left(\beta_{1}, \frac{\sigma^{2}}{l_{xx}} \right);$$

(2) 因 Y_1, Y_2, \dots, Y_n 相互独立,有 $i \neq j$ 时, $Cov(Y_i, Y_j) = 0$,

故
$$\operatorname{Cov}(\hat{\beta}_{0}, \hat{\beta}_{1}) = \operatorname{Cov}\left(\sum \left[\frac{1}{n} - \frac{(x_{i} - \overline{x})\overline{x}}{l_{xx}}\right]Y_{i}, \sum \frac{x_{i} - \overline{x}}{l_{xx}}Y_{i}\right) = \sum \left[\frac{1}{n} - \frac{(x_{i} - \overline{x})\overline{x}}{l_{xx}}\right]\frac{x_{i} - \overline{x}}{l_{xx}}\operatorname{Cov}(Y_{i}, Y_{i}) + 0$$

$$= \sum \left[\frac{x_{i} - \overline{x}}{nl_{xx}} - \frac{(x_{i} - \overline{x})^{2}\overline{x}}{l_{xx}^{2}}\right]\sigma^{2} = \frac{1}{nl_{xx}}\sigma^{2}\sum (x_{i} - \overline{x}) - \frac{\overline{x}}{l_{xx}^{2}}\sigma^{2}\sum (x_{i} - \overline{x})^{2}$$

$$= 0 - \frac{\overline{x}}{l_{xx}^{2}}\sigma^{2} \cdot l_{xx} = -\frac{\overline{x}}{l_{xx}}\sigma^{2};$$

(3) 对给定的
$$x_0$$
, $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 = \sum_{i=1}^{n} \left[\frac{1}{n} - \frac{(x_i - \overline{x})\overline{x}}{l_{xx}} \right] Y_i + \sum_{i=1}^{n} \frac{x_i - \overline{x}}{l_{xx}} Y_i \cdot x_0 = \sum_{i=1}^{n} \left[\frac{1}{n} + \frac{(x_i - \overline{x})(x_0 - \overline{x})}{l_{xx}} \right] Y_i$

可见 \hat{Y}_0 也是独立正态变量 Y_1, Y_2, \dots, Y_n 的线性组合,即 \hat{Y}_0 服从正态分布,

因
$$E(\hat{Y}_0) = E(\hat{\beta}_0) + E(\hat{\beta}_1)x_0 = \beta_0 + \beta_1x_0$$

8.4.4 回归方程的显著性检验

由前面回归系数的最小二乘法可见,对于任意一组数据 (x_i, y_i) , $i = 1, 2, \dots, n$, 都可得到一个回归方程 $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x$,但这两个变量并不一定具有相关关系,得到的回归方程不一定有实际意义,因此需要对回归方程进行显著性检验.

线性回归方程的目的是寻找变量 Y 随变量 x 的线性变化的规律. 对于线性回归问题 $Y = \beta_0 + \beta_1 x + \varepsilon$,如果 $\beta_1 = 0$,则变量 Y 的变化只是由随机误差 ε 造成,与变量 x 的变化无关,表明 Y 与 x 没有相关关系,反之,如果 $\beta_1 \neq 0$,则变量 Y 的变化与变量 x 的变化有关,表明 Y 与 x 具有相关关系. 因此可通过检验假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,判断 Y 与 x 是否具有相关关系. 如果接受 H_0 ,则回归方程不显著;如果接受 H_1 ,则回归方程显著.

有三种等价的检验方法: F 检验, t 检验, r 检验. 检验时, 可采用任一检验方法.

一. F 检验

采用方差分析的思想进行检验.

设数据为 (x_i, y_i) , $i = 1, 2, \dots, n$, 线性回归模型 $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, 回归系数 β_0 , β_1 的最小二乘估计为 $\hat{\beta}_0$, $\hat{\beta}_1$, 且 $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ 为 y_i 的回归值.

记
$$\overline{Y} = \frac{1}{n} \sum Y_i$$
,称 $Y_i - \overline{Y}$ 为偏差, $Y_i - \hat{Y}_i$ 为残差, $\hat{Y}_i - \overline{Y}_i$ 为回归差,显然有 $Y_i - \overline{Y}_i = (Y_i - \hat{Y}_i) + (\hat{Y}_i - \overline{Y}_i)$,称 $S_T \stackrel{\triangle}{=} \sum (Y_i - \overline{Y}_i)^2 = l_{YY}$ 为总偏差平方和, $S_e \stackrel{\triangle}{=} \sum (Y_i - \hat{Y}_i)^2$ 为残差平方和, $S_R \stackrel{\triangle}{=} \sum (\hat{Y}_i - \overline{Y}_i)^2$ 为回归平方和.**结论** (平方和分解) $S_T = S_e + S_R$.

证: 因 $\hat{\beta}_0$, $\hat{\beta}_1$ 是正规方程

$$\begin{cases} \sum (Y_i - \beta_0 - \beta_1 x_i) = 0; \\ \sum (Y_i - \beta_0 - \beta_1 x_i) \cdot x_i = 0. \end{cases}$$

的解,可知

$$\begin{cases} \sum (Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = \sum (Y_i - \hat{Y}_i) = 0; \\ \sum (Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) \cdot x_i = \sum (Y_i - \hat{Y}_i) \cdot x_i = 0. \end{cases}$$

$$\text{In} \sum (Y_i - \hat{Y_i})(\hat{Y_i} - \overline{Y}) = \sum (Y_i - \hat{Y_i})(\hat{\beta}_0 + \hat{\beta}_1 x_i - \overline{Y}) = (\hat{\beta}_0 - \overline{Y}) \sum (Y_i - \hat{Y_i}) + \hat{\beta}_1 \sum (Y_i - \hat{Y_i}) \cdot x_i = 0 \text{ ,}$$

故
$$S_T = \sum (Y_i - \overline{Y})^2 = \sum (Y_i - \hat{Y}_i + \hat{Y}_i - \overline{Y})^2 = \sum (Y_i - \hat{Y}_i)^2 + \sum (\hat{Y}_i - \overline{Y})^2 + \sum 2(Y_i - \hat{Y}_i)(\hat{Y}_i - \overline{Y}) = S_e + S_R$$
.

定理 线性回归模型中平方和 S_R 与 S_e 的数学期望为 $E(S_R) = \sigma^2 + \beta_1^2 l_{xx}$, $E(S_e) = (n-2)\sigma^2$.

证: 因
$$\sum (Y_i - \hat{Y}_i) = 0$$
,有 $\overline{Y} = \frac{1}{n} \sum Y_i = \frac{1}{n} \sum \hat{Y}_i = \frac{1}{n} \sum (\hat{\beta}_0 + \hat{\beta}_1 x_i) = \hat{\beta}_0 + \hat{\beta}_1 \cdot \frac{1}{n} \sum x_i = \hat{\beta}_0 + \hat{\beta}_1 \overline{x}$,

则 $S_R = \sum (\hat{Y}_i - \overline{Y})^2 = \sum (\hat{\beta}_0 + \hat{\beta}_1 x_i - \hat{\beta}_0 - \hat{\beta}_1 \overline{x})^2 = \hat{\beta}_1^2 \sum (x_i - \overline{x})^2 = \hat{\beta}_1^2 l_{xx}$,

因 $\hat{\beta}_1 \sim N \left(\beta_1, \frac{\sigma^2}{l_{xx}} \right)$,即 $E(\hat{\beta}_1) = \beta_1$, $Var(\hat{\beta}_1) = \frac{\sigma^2}{l_{xx}}$,有 $E(\hat{\beta}_1^2) = Var(\hat{\beta}_1) + [E(\hat{\beta}_1)]^2 = \frac{\sigma^2}{l_{xx}} + \beta_1^2$,

故
$$E(S_R) = E(\hat{\beta}_1^2) \cdot l_{xx} = \left(\frac{\sigma^2}{l_{xx}} + \beta_1^2\right) \cdot l_{xx} = \sigma^2 + \beta_1^2 l_{xx};$$

$$\boxtimes S_T = \sum (Y_i - \overline{Y})^2, \quad \underline{\square} Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2), \quad \overline{Y} = \frac{1}{n} \sum Y_i,$$

$$\mathbb{P}[E(\overline{Y}) = E(\hat{\beta}_0 + \hat{\beta}_1 \overline{x}) = E(\hat{\beta}_0) + E(\hat{\beta}_1) \overline{x} = \beta_0 + \beta_1 \overline{x}, \quad \text{Var}(\overline{Y}) = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}(Y_i) = \frac{1}{n^2} \cdot n\sigma^2 = \frac{\sigma^2}{n},$$

因 Y_1, Y_2, \dots, Y_n 相互独立, 有 $i \neq j$ 时, $Cov(Y_i, Y_j) = 0$,

则
$$Cov(Y_i, \overline{Y}) = Cov(Y_i, \frac{1}{n}\sum Y_i) = \frac{1}{n}Cov(Y_i, Y_i) = \frac{\sigma^2}{n}$$
,

因
$$E(Y_i - \overline{Y}) = E(Y_i) - E(\overline{Y}) = \beta_0 + \beta_1 x_i - \beta_0 - \beta_1 \overline{x} = \beta_1 (x_i - \overline{x})$$
,

$$\mathbb{M} E(S_T) = \sum E(Y_i - \overline{Y})^2 = \sum \{ \text{Var}(Y_i - \overline{Y}) + [E(Y_i - \overline{Y})]^2 \} = \sum \left[\frac{(n-1)\sigma^2}{n} + \beta_1^2 (x_i - \overline{x})^2 \right]$$

$$= (n-1)\sigma^2 + \beta_1^2 \sum_i (x_i - \overline{x})^2 = (n-1)\sigma^2 + \beta_1^2 l_{xx},$$

故
$$E(S_e) = E(S_T) - E(S_R) = (n-1)\sigma^2 + \beta_1^2 l_{xx} - \sigma^2 - \beta_1^2 l_{xx} = (n-2)\sigma^2$$
.

注: 此定理表明 $\frac{S_e}{n-2}$ 是 σ^2 的无偏估计,记为 $\hat{\sigma}^2$.

定理 线性回归模型中平方和 S_R 与 S_e 的分布为

(1)
$$\frac{S_e}{\sigma^2} \sim \chi^2(n-2);$$

(2) 若 H₀:
$$\beta_1 = 0$$
 成立, 则 $\frac{S_R}{\sigma^2} \sim \chi^2(1)$;

(3) S_R 与 S_{o} 、 \overline{Y} 相互独立.

证: 因
$$S_T = \sum (Y_i - \overline{Y})^2 = \sum Y_i^2 - n\overline{Y}^2$$
,

$$\text{III} \sum Y_i^2 = n\overline{Y}^2 + S_T = n\overline{Y}^2 + S_R + S_e = n\overline{Y}^2 + \hat{\beta}_1^2 l_{xx} + S_e ,$$

因
$$\overline{Y} = \frac{1}{n} \sum Y_i$$
 , $\hat{\beta}_1 = \frac{l_{xY}}{l_{xx}} = \sum \frac{x_i - \overline{x}}{l_{xx}} Y_i$, 有 $n\overline{Y}^2 = \left(\sum \frac{1}{\sqrt{n}} Y_i\right)^2$, $\hat{\beta}_1^2 l_{xx} = \left(\sum \frac{x_i - \overline{x}}{\sqrt{l_{xx}}} Y_i\right)^2$,

有
$$\alpha_1^T \alpha_1 = n \cdot \frac{1}{n} = 1$$
, $\alpha_2^T \alpha_2 = \frac{1}{l_{xx}} \sum_i (x_i - \overline{x})^2 = 1$, $\alpha_1^T \alpha_2 = \frac{1}{\sqrt{n l_{xx}}} \sum_i (x_i - \overline{x}) = 0$,

则 α_1 , α_2 是两个相互正交的单位向量,可将 α_1 , α_2 扩充为 R^n 中的一组标准正交基 α_1 , α_2 , α_3 , ···, α_n , 令 $C = (\alpha_1, \alpha_2, \cdots, \alpha_n)$, C 为正交阵,

设
$$(Z_1, Z_2, \dots, Z_n)^T = C^T (Y_1, Y_2, \dots, Y_n)^T$$
, 即 $\vec{Z} = C^T \vec{Y}$,

因 Y_1, Y_2, \dots, Y_n 相互独立且都服从方差同为 σ^2 的正态分布,

由 $\S5.4$ 节引理可知 Z_1, Z_2, \dots, Z_n 相互独立且都服从方差同为 σ^2 的正态分布,

(1)
$$\boxtimes \sum_{i=1}^{n} Z_{i}^{2} = \overrightarrow{Z}^{T} \overrightarrow{Z} = \overrightarrow{Y}^{T} C C^{T} \overrightarrow{Y} = \overrightarrow{Y}^{T} E \overrightarrow{Y} = \sum_{i=1}^{n} Y_{i}^{2}$$
, $\coprod Z_{1} = \alpha_{1}^{T} \overrightarrow{Y} = \frac{1}{\sqrt{n}} (Y_{1} + Y_{2} + \dots + Y_{n}) = \sqrt{n} \overrightarrow{Y}$,

$$Z_{2} = \alpha_{2}^{T} \vec{Y} = \frac{1}{\sqrt{l_{xx}}} [(x_{1} - \overline{x})Y_{1} + (x_{2} - \overline{x})Y_{2} + \dots + (x_{n} - \overline{x})Y_{n}] = \sqrt{l_{xx}} \hat{\beta}_{1},$$

則
$$S_e = \sum_{i=1}^n Y_i^2 - n\overline{Y}^2 - \hat{\beta}_1^2 l_{xx} = \sum_{i=1}^n Z_i^2 - Z_1^2 - Z_2^2 = \sum_{i=3}^n Z_i^2$$
 ,

$$\begin{split} \boxtimes E(\overrightarrow{Y}) &= (\beta_0 + \beta_1 x_1, \beta_0 + \beta_1 x_2, \dots, \beta_0 + \beta_1 x_n)^T \\ &= (\beta_0 + \beta_1 \overline{x} + \beta_1 (x_1 - \overline{x}), \beta_0 + \beta_1 \overline{x} + \beta_1 (x_2 - \overline{x}), \dots, \beta_0 + \beta_1 \overline{x} + \beta_1 (x_n - \overline{x}))^T \\ &= (\beta_0 + \beta_1 \overline{x}) \cdot \sqrt{n} \alpha_1 + \beta_1 \cdot \sqrt{l_{xx}} \alpha_2 \,, \end{split}$$

则当 $i \ge 3$ 时, $E(Z_i) = E(\alpha_i^T \vec{Y}) = \alpha_i^T [(\beta_0 + \beta_1 \bar{x}) \cdot \sqrt{n}\alpha_1 + \beta_1 \cdot \sqrt{l_{xx}}\alpha_2] = 0$,

可知 Z_3 , \dots , Z_n 相互独立且都服从正态分布 $N(0, \sigma^2)$,

故
$$\frac{S_e}{\sigma^2} = \sum_{i=3}^n \left(\frac{Z_i}{\sigma}\right)^2 \sim \chi^2(n-2)$$
;

(2) 因
$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{l_{xx}}\right)$$
, 当 H_0 : $\beta_1 = 0$ 成立时,有 $\hat{\beta}_1 \sim N\left(0, \frac{\sigma^2}{l_{xx}}\right)$,即 $\frac{\sqrt{l_{xx}}\hat{\beta}_1}{\sigma} \sim N(0, 1)$,故 $\frac{S_R}{\sigma^2} = \left(\frac{\sqrt{l_{xx}}\hat{\beta}_1}{\sigma}\right)^2 \sim \chi^2(1)$;

(3) 因
$$S_R = Z_2^2$$
, $S_e = \sum_{i=3}^n Z_i^2$, $\overline{Y} = \frac{1}{\sqrt{n}} Z_1$, 且 Z_1, Z_2, \dots, Z_n 相互独立, 故 $S_R = S_e$ 、 \overline{Y} 相互独立.

由于 $\frac{S_e}{\sigma^2} \sim \chi^2(n-2)$, 当 H_0 : $\beta_1 = 0$ 成立时, $\frac{S_R}{\sigma^2} \sim \chi^2(1)$,且 S_R 与 S_e 相互独立,则根据 F 分布的定义可知: 当 H_0 成立时,有

$$F = \frac{\frac{S_R}{\sigma^2}/1}{\frac{S_e}{\sigma^2}/(n-2)} = \frac{S_R}{S_e/(n-2)} \sim F(1, n-2) .$$

由于 $E(S_R) = \sigma^2 + \beta_1^2 l_{xx}$,则 F 越大,即 S_R 越大时,越有可能发生 $\beta_1 \neq 0$,则检验的拒绝域为右侧.步骤:假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,

统计量
$$F = \frac{S_R}{S/(n-2)} \sim F(1, n-2)$$
,

显著水平 α ,右侧拒绝域 $W = \{f \geq F_{1-\alpha}(1, n-2)\}$,计算 f,并作出判断.

计算公式:
$$S_R = \hat{\beta}_1^2 l_{xx}$$
, $S_T = l_{yy}$, $S_e = S_T - S_R = l_{yy} - \hat{\beta}_1^2 l_{xx}$.

二.T检验

因
$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{l_{xx}}\right)$$
, $\frac{S_e}{\sigma^2} \sim \chi^2(n-2)$,且 $\hat{\beta}_1 = \sqrt{\frac{S_R}{l_{xx}}}$ 与 S_e 相互独立,有 $\frac{\hat{\beta}_1 - \beta_1}{\sigma/\sqrt{l_{xx}}} \sim N(0,1)$,则根据 t 分

布的定义可知:

$$T = \frac{\frac{\hat{\beta}_{1} - \beta_{1}}{\sigma / \sqrt{l_{xx}}}}{\sqrt{\frac{S_{e}}{\sigma^{2}} / (n-2)}} = \frac{(\hat{\beta}_{1} - \beta_{1})\sqrt{l_{xx}}}{\sqrt{\frac{S_{e}}{n-2}}} = \frac{(\hat{\beta}_{1} - \beta_{1})\sqrt{l_{xx}}}{\hat{\sigma}} \sim t(n-2) .$$

步骤: 假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,

统计量
$$T = \frac{\hat{\beta}_1 \sqrt{l_{xx}}}{\hat{\sigma}} \sim t(n-2)$$
,其中 $\hat{\sigma} = \sqrt{\frac{S_e}{n-2}}$,

显著水平 α , 双侧拒绝域 $W = \{|t| \ge t_{1-\alpha/2}(n-2)\}$,计算 t,并作出判断.

注意到
$$T^2 = \frac{\hat{\beta}_1^2 l_{xx}}{\hat{\sigma}^2} = \frac{S_R}{S_e/(n-2)} = F$$
,可见 T 检验与 F 检验本质上是一致的.

三. 相关系数检验

对应于总体相关系数
$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(Y)}} = \frac{E\{[X-E(X)][Y-E(Y)]\}}{\sqrt{E[X-E(X)]^2}\sqrt{E[Y-E(Y)]^2}}$$
,定义样本相关

系数
$$r = \frac{\displaystyle\sum_{i=1}^{n}(X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\displaystyle\sum_{i=1}^{n}(X_i - \overline{X})^2} \cdot \sqrt{\displaystyle\sum_{i=1}^{n}(Y_i - \overline{Y})^2}}$$
,有 $|r| \le 1$,且当 $|r| = 1$ 时, X_i 与 Y_i 具有完全的线性关系,即存在

常数 a、b,使得 $Y_i = aX_i + b$. 如果 |r| 越接近 1,表明 X_i 与 Y_i 的线性关系越强; 如果 |r| 越接近 0,表明 X_i 与 Y_i 的线性关系越弱.

对于假设 H_0 : $\beta_1 = 0$, 可将拒绝域取为 $W = \{|r| \ge c\}$ 的形式.

因
$$r = \frac{l_{xY}}{\sqrt{l_{xx}} \cdot \sqrt{l_{YY}}}$$
,则 $r^2 = \frac{l_{xY}^2}{l_{xx} \cdot l_{YY}} = \frac{\hat{\beta}_1^2 l_{xx}}{l_{YY}} = \frac{S_R}{S_T} = \frac{S_R}{S_R + S_e} = \frac{\frac{S_R}{S_e/(n-2)}}{\frac{S_R}{S_e/(n-2)} + (n-2)} = \frac{F}{F + (n-2)}$,可见相关

系数检验 (r 检验) 与 F 检验本质上是一致的.

为了方便使用,根据F分布的分位数,可得|r|的分位数

$$r_{1-\alpha}(n-2) = \sqrt{\frac{F_{1-\alpha}(n-2,1)}{F_{1-\alpha}(n-2,1) + n - 2}}$$
.

步骤: 假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,

统计量
$$r = \frac{l_{xY}}{\sqrt{l_{xx}} \cdot \sqrt{l_{YY}}}$$
,

显著水平 α , 拒绝域 $W = \{|r| \ge r_{1-\alpha}(n-2)\}$, 计算样本相关系数 r, 并作出判断.

例 根据前例中合金钢强度和碳含量数据,对回归方程作显著性检验 ($\alpha = 0.01$).

解:根据试验数据可得 $l_{xx} = 0.018567$, $l_{xy} = 2.4675$, $l_{yy} = 345.0625$,

则
$$\hat{\beta}_1 = \frac{l_{xy}}{l_{yy}} = 132.8995$$
, $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 28.0826$,

故回归方程为 $\hat{Y} = 28.0826 + 132.8995x$;

(1) F 检验: 假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,

统计量
$$F = \frac{S_R}{S_e/(n-2)} \sim F(1, n-2)$$
,

显著水平 α = 0.01,n = 12, $F_{1-\alpha}(1, n-2) = F_{0.99}(1, 10) = 10.04$,右侧拒绝域 $W = \{f \ge 10.04\}$,

因
$$S_R = \hat{\beta}_1^2 l_{xx} = 132.8995^2 \times 0.018567 = 327.9294$$
, $S_T = l_{yy} = 345.0625$,有 $S_e = S_T - S_R = 17.1331$,

则
$$f = \frac{327.9294}{17.1331/10} = 191.4013 \in W$$
,

故拒绝 H₀,接受 H₁,回归方程显著;

方差分析表

来源	平方和	自由度	均方和	F比
回归	327.9294	1	327.9294	191.4013
残差	17.1331	10	1.7133	
总和	345.0625	11		

(注: 检验的 p 值为 $p = P\{F \ge 191.4013\} = 7.5853 \times 10^{-8}$)

(2) t 检验: 假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,

统计量
$$T = \frac{\hat{\beta}_1 \sqrt{l_{xx}}}{\hat{\sigma}} \sim t(n-2)$$
,其中 $\hat{\sigma} = \sqrt{\frac{S_e}{n-2}}$,

显著水平 α = 0.01,n = 12, $t_{1-\alpha/2}(n-2) = t_{0.995}(10) = 3.1693$,双侧拒绝域 $W = \{|t| \ge 3.1693\}$,

因
$$\hat{\beta}_1 = 132.8995$$
, $l_{xx} = 0.018567$, $\hat{\sigma} = \sqrt{\frac{17.1331}{10}} = 1.3089$,

则
$$t = \frac{132.8995 \times \sqrt{0.018567}}{1.3089} = 13.8348 \in W$$
,

故拒绝 H₀,接受 H₁,回归方程显著;

(3) r 检验: 假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,

统计量
$$r = \frac{l_{xY}}{\sqrt{l_{xx}} \cdot \sqrt{l_{YY}}}$$
,

显著水平 α = 0.01,n= 12, $r_{1-\alpha}(n-2) = r_{0.99}(10) = 0.708$,拒绝域 $W = \{|r| \ge 0.708\}$,因 $l_{xx} = 0.018567$, $l_{xy} = 2.4675$, $l_{yy} = 345.0625$,

则
$$r = \frac{l_{xy}}{\sqrt{l_{xx}} \cdot \sqrt{l_{yy}}} = \frac{2.4675}{\sqrt{0.018567} \times \sqrt{345.0625}} = 0.9749 \in W$$
,

故拒绝 H₀,接受 H₁,回归方程显著.

三种检验本质上是一样的.

8.4.5 估计与预测

当经检验回归方程为显著时,可对回归系数 β_1 与 β_0 ,误差方差 σ^2 ,点 x_0 处函数值的期望 $E(Y_0)$ 分别作出估计,以及对函数值 Y_0 作出预测.

一. 估计

参数
$$\beta_1, \beta_0, \sigma^2, E(Y_0) = \beta_0 + \beta_1 x_0$$
点估计分别是 $\hat{\beta}_1 = \frac{l_{xY}}{l_{xx}}, \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x}, \hat{\sigma}^2 = \frac{S_e}{n-2}, E(\hat{Y}_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0$.

因
$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{l_{xx}}\right)$$
,有 $\frac{\hat{\beta}_1 - \beta_1}{\sigma/\sqrt{l_{xx}}} \sim N(0, 1)$,用 $\hat{\sigma} = \sqrt{\frac{S_e}{n-2}}$ 替换 σ ,有 $T = \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}/\sqrt{l_{xx}}} \sim t(n-2)$,可得 β_1

的
$$1-\alpha$$
 置信区间为 $\left[\hat{\beta}_1 \pm t_{1-\alpha/2}(n-2) \cdot \frac{\hat{\sigma}}{l_{xx}}\right]$.

因
$$\hat{\beta}_0 \sim N\left(\beta_0, \left(\frac{1}{n} + \frac{\overline{x}^2}{l_{xx}}\right)\sigma^2\right)$$
,有 $\frac{\hat{\beta}_0 - \beta_0}{\sigma\sqrt{\frac{1}{n} + \frac{\overline{x}^2}{l_{xx}}}} \sim N(0, 1)$,用 $\hat{\sigma} = \sqrt{\frac{S_e}{n-2}}$ 替换 σ ,有 $\frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}\sqrt{\frac{1}{n} + \frac{\overline{x}^2}{l_{xx}}}} \sim t(n-2)$,

可得
$$\beta_0$$
的 $1-\alpha$ 置信区间为 $\left[\hat{\beta}_0 \pm t_{1-\alpha/2}(n-2)\cdot\hat{\sigma}\sqrt{\frac{1}{n}+\frac{\overline{x}^2}{l_{xx}}}\right]$.

因
$$\frac{S_e}{\sigma^2} = \frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-2)$$
,可得 σ^2 的 $1-\alpha$ 置信区间为
$$\left[\frac{(n-2)\hat{\sigma}^2}{\chi^2_{1-\alpha/2}(n-2)}, \frac{(n-2)\hat{\sigma}^2}{\chi^2_{\alpha/2}(n-2)}\right].$$

因
$$E(\hat{Y}_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 \sim N \left(\beta_0 + \beta_1 x_0, \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}} \right] \sigma^2 \right),$$
 有 $\frac{(\hat{\beta}_0 + \hat{\beta}_1 x_0) - (\beta_0 + \beta_1 x_0)}{\sigma \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}}} \sim N(0, 1),$ 用

$$\hat{\sigma} = \sqrt{\frac{S_e}{n-2}} \text{ 替换} \sigma \text{ , } \quad \hat{\pi} \frac{(\hat{\beta}_0 + \hat{\beta}_1 x_0) - (\beta_0 + \beta_1 x_0)}{\hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}}} \sim t(n-2) \text{ , } \quad \vec{\eta} \notin E(Y_0) = \beta_0 + \beta_1 x_0 \text{ 的 } 1 - \alpha \text{ 置信区间为}$$

$$\left[\hat{\beta}_0 + \hat{\beta}_1 x_0 \pm t_{1-\alpha/2} (n-2) \cdot \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}}\right].$$

二. Y_0 的预测区间

因函数值 $Y_0 = \beta_0 + \beta_1 x_0 + \varepsilon$ 的预测值为 $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$,与期望值 $E(Y_0) = \beta_0 + \beta_1 x_0$ 的点估计 $E(\hat{Y}_0)$ 相同,但 Y_0 的预测区间需要考虑随机误差 ε 的影响,因而不同于 $E(Y_0)$ 的置信区间。期望值 $E(Y_0)$ 的置信区间是对 $\beta_0 + \beta_1 x_0$ 作出估计的取值范围,而函数值 Y_0 的预测区间是对 $\beta_0 + \beta_1 x_0 + \varepsilon$ 作出预测的取值范围。

因
$$Y_0 = \beta_0 + \beta_1 x_0 + \varepsilon \sim N(\beta_0 + \beta_1 x_0, \sigma^2)$$
, $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 \sim N\left(\beta_0 + \beta_1 x_0, \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}\right]\sigma^2\right)$,且相互独立,

则有
$$Y_0 - \hat{Y_0} \sim N \left(0, \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}} \right] \sigma^2 \right)$$
,即 $\frac{Y_0 - \hat{Y_0}}{\sigma \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}}} \sim N(0, 1)$,用 $\hat{\sigma} = \sqrt{\frac{S_e}{n-2}}$ 替换 σ ,有

$$\frac{Y_0 - \hat{Y}_0}{\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{---}}}} \sim t(n-2)$$
,可得 Y_0 的 $1 - \alpha$ 预测区间为
$$\left[\hat{\beta}_0 + \hat{\beta}_1 x_0 \pm t_{1-\alpha/2} (n-2) \cdot \hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{---}}}\right].$$

将 Y_0 的预测区间与 $E(Y_0)$ 的置信区间比较,就是根号中多了个 1,这是由随机误差 ε 造成的. 预测区间在 $x_0 = \overline{x}$ 处区间长度最短. 当 n 很大时,有 $t_{1-\alpha/2}(n-2) \approx u_{1-\alpha/2}$, $\sqrt{1+\frac{1}{n}+\frac{(x_0-\overline{x})^2}{l_{xx}}} \approx 1$,即预测区间

近似为[$\hat{\beta}_0 + \hat{\beta}_1 x_0 \pm u_{1-\alpha/2} \cdot \hat{\sigma}$].

例 为了考察某企业产量与成本的关系,调查获得5组数据:

产量 (吨)	25	28	30	32	35
成本 (万元)	384	395	412	417	430

求: (1) 产量与成本的线性回归方程; (2) 对回归方程作显著性检验(α =0.01); (3) 回归系数 β ₁与 β ₀,误差方差 σ ²以及产量为 40 时平均成本 $E(Y_0)$ 的置信区间(α =0.01); (4) 产量为 40 时成本 Y_0 的预测区间(α =0.01).

解:(1)根据试验数据得出计算表:

试验数据计算表

$\Sigma x_i = 150$	n = 12	$\Sigma y_i = 2038$
$\overline{x} = 30$		$\bar{y} = 407.6$
$\Sigma x_i^2 = 4558$	$\sum x_i y_i = 61414$	$\Sigma y_i^2 = 832014$
$n\overline{x}^2 = 4500$	$n\overline{x}\overline{y} = 61140$	$n\overline{y}^2 = 830688.8$
$l_{xx} = 58$	$l_{xy} = 274$	$l_{yy} = 1325.2$
	$\hat{\beta}_1 = l_{xy}/l_{xx} = 4.7241$	
	$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 265.8759$	

故回归方程为 $\hat{Y} = 265.8759 + 4.7241x$:

(2) F 检验: 假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,

统计量
$$F = \frac{S_R}{S_e/(n-2)} \sim F(1, n-2)$$
,

显著水平 α = 0.01,n = 5, $F_{1-\alpha}(1, n-2) = F_{0.99}(1, 3) = 34.12$,右侧拒绝域 $W = \{f \ge 34.12\}$,

因
$$S_R = \hat{\beta}_1^2 l_{xx} = 4.7241^2 \times 58 = 1294.4138$$
, $S_T = l_{yy} = 1325.2$,有 $S_e = S_T - S_R = 30.7862$,

则
$$f = \frac{1294.4138}{30.7862/3} = 126.1358 \in W$$
,

故拒绝 H₀,接受 H₁,回归方程显著;

方差分析表

来源	平方和	自由度	均方和	F比
回归	1294.4138	1	1294.4138	126.1358
残差	30.7862	3	10.2621	
总和	1325.2	4		

(注: 检验的 p 值为 $p = P\{F \ge 126.1358\} = 0.0015$);

或 r 检验: 假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,

统计量
$$r = \frac{l_{xY}}{\sqrt{l_{xx}} \cdot \sqrt{l_{yy}}}$$
,

显著水平 α = 0.01,n = 5, $r_{1-\alpha}(n-2) = r_{0.99}(3) = 0.959$,拒绝域 $W = \{|r| \ge 0.959\}$,因 $l_{xx} = 0.018567$, $l_{xy} = 2.4675$, $l_{yy} = 345.0625$,

则
$$r = \frac{l_{xy}}{\sqrt{l_{xx}} \cdot \sqrt{l_{yy}}} = \frac{274}{\sqrt{58} \times \sqrt{1325.2}} = 0.9883 \in W$$
,

故拒绝 H₀,接受 H₁,回归方程显著;

(3) 因
$$n = 5$$
, $\alpha = 0.01$, 有 $\bar{x} = 30$, $\hat{\sigma} = \sqrt{\frac{S_e}{n-2}} = \sqrt{\frac{30.7862}{3}} = 3.2034$

$$t_{1-\alpha/2}(n-2) = t_{0.995}(3) = 5.8409$$
,

$$\chi^2_{\alpha/2}(n-2) = \chi^2_{0.005}(3) = 0.0717$$
, $\chi^2_{1-\alpha/2}(n-2) = \chi^2_{0.995}(3) = 14.8603$,

故回归系数 β_1 的 0.99 置信区间为

$$\left[\hat{\beta}_1 \pm t_{1-\alpha/2}(n-2) \cdot \frac{\hat{\sigma}}{l_{xx}}\right] = \left[4.7241 \pm 5.8409 \times \frac{3.2034}{58}\right] = \left[4.4015, 5.0467\right]$$

= [4.4015, 5.0467],

回归系数岛的 0.99 置信区间为

$$\left[\hat{\beta}_0 \pm t_{1-\alpha/2}(n-2) \cdot \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{l_{xx}}}\right] = \left[265.8759 \pm 5.8409 \times 3.2034 \times \sqrt{\frac{1}{5} + \frac{30^2}{58}}\right]$$

= [191.6961, 340.0556];

误差方差 σ^2 的 0.99 置信区间为

$$\left[\frac{(n-2)\hat{\sigma}^2}{\chi^2_{1-\alpha/2}(n-2)}, \frac{(n-2)\hat{\sigma}^2}{\chi^2_{\alpha/2}(n-2)}\right] = \left[\frac{3\times3.2034^2}{14.8603}, \frac{3\times3.2034^2}{0.0717}\right] = [2.0717, 429.3753];$$

产量 $x_0 = 40$ (吨) 时平均成本 $E(Y_0)$ 的 0.99 置信区间为

$$\left[\hat{\beta}_{0} + \hat{\beta}_{1}x_{0} \pm t_{1-\alpha/2}(n-2) \cdot \hat{\sigma}\sqrt{\frac{1}{n} + \frac{(x_{0} - \overline{x})^{2}}{l_{xx}}}\right]$$

$$= \left[265.8759 + 4.7241 \times 40 \pm 5.8409 \times 3.2034 \times \sqrt{\frac{1}{5} + \frac{(40 - 30)^{2}}{58}}\right]$$

$$= [428.8867, 480.7960];$$

(4) 产量为40时成本Y₀的预测区间为

$$\left[\hat{\beta}_{0} + \hat{\beta}_{1}x_{0} \pm t_{1-\alpha/2}(n-2) \cdot \hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_{0} - \overline{x})^{2}}{l_{xx}}}\right]$$

$$= \left[265.8759 + 4.7241 \times 40 \pm 5.8409 \times 3.2034 \times \sqrt{1 + \frac{1}{5} + \frac{(40 - 30)^{2}}{58}}\right]$$

$$= [422.8453, 486.8374].$$

§8.5 一元非线性回归

回归分析时,首先根据观测数据作出散点图,如果由散点图判断出回归函数不是线性函数时,则需要选取适当的非线性函数,通常是多项式或者可将其化为线性函数,常见的有双曲线函数 $\frac{1}{y} = a + \frac{b}{x}$,幂函数 $y = ax^b$,指数函数 $y = ae^{bx}$,对数函数 $y = a + b \ln x$,S 形曲线 $y = \frac{1}{a + be^{-x}}$ 等.

如果是多项式,则可令 $x_1 = x$, $x_2 = x^2$, …, $x_n = x^n$, 再采用多元线性回归进行处理. 如果可化为线性函数,则先换元化为线性函数,再采用一元线性回归进行处理.

如双曲线函数
$$\frac{1}{v} = a + \frac{b}{x}$$
, 令 $u = \frac{1}{x}$, $v = \frac{1}{v}$, 化为线性函数 $v = a + bu$;

幂函数 $y = ax^b$, 有 $\ln y = \ln a + b \ln x$, 令 $u = \ln x$, $v = \ln y$, 化为线性函数 $v = \ln a + bu$; 指数函数 $v = ae^{bx}$, 有 $\ln y = \ln a + bx$, 令 u = x, $v = \ln y$, 化为线性函数 $v = \ln a + bu$;

指数函数
$$y = a e^{b/x}$$
, 有 $\ln y = \ln a + \frac{b}{x}$, 令 $u = \frac{1}{x}$, $v = \ln y$, 化为线性函数 $v = \ln a + bu$;

对数函数 $y = a + b \ln x$, 令 $u = \ln x$, v = y, 化为线性函数 v = a + bu;

S 形曲线
$$y = \frac{1}{a + be^{-x}}$$
,有 $\frac{1}{v} = a + be^{-x}$,令 $u = e^{-x}$,v = $\frac{1}{v}$,化为线性函数 $v = a + bu$.

这一节讨论可化为线性函数的情形,

8.5.1 确定可能的函数形式

根据 (x_i, y_i) 的散点图,估计函数形式 y = f(x),化为线性函数 v = a + bu (或 $v = \ln a + bu$ 等),再根据 (u_i, v_i) 的散点图,判断是否近似在一条直线上. 若是,则对 (u, v) 作一元线性回归;否则,更换函数形式.

8.5.2 参数估计

对 (u,v) 作一元线性回归,得回归方程 $\hat{v} = \hat{a} + \hat{b}u$,再化为 (x,y) 的非线性回归方程 $\hat{y} = f(x)$.

8.5.3 曲线回归方程的比较

对于非线性回归问题,通常需选取多个非线性函数,再根据结果进行比较. 但此时 (u, v) 的线性拟合程度并不能完全反映 (x, y) 的非线性拟合程度,而应该直接根据 v_i 的值进行判定.

称 Y_i 的观测值 y_i 与回归值 $\hat{y}_i = f(x_i)$ 之差 $y_i - \hat{y}_i$ 为残差, $\sum (y_i - \hat{y}_i)^2$ 为残差平方和,显然残差平方和越小,表明拟合程度越高.

在一元线性回归问题中,相关系数的平方为
$$r^2 = \frac{l_{xy}^2}{l_{xx}l_{yy}} = \frac{S_R}{S_T} = 1 - \frac{S_e}{S_T} = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$$
,而在一元非

线性回归问题中,称 $R^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$ 为决定系数,决定系数越接近 1,表明拟合程度越高.

注:由于一元非线性回归问题中平方和分解不成立,可能出现决定系数小于0的情况.

在一元线性回归问题中,误差标准差
$$\hat{\sigma} = \sqrt{\frac{S_e}{n-2}} = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}}$$
,而在一元非线性回归问题中,称

$$s = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}}$$
 为剩余标准差,剩余标准差越小,表明拟合程度越高.

例 炼钢厂出钢水时用的钢包,在使用过程中由于钢水的侵蚀,其容积不断增大. 钢包容积用盛满钢水时的质量 Y(kg) 表示,相应的试验次数用 x 表示. 根据表中的数据,作出散点图,并选择一个合适的回归函数形式.

钢包的质量、	y与试验次数 x	的数据
	— WOULD SK 1	1133770

序号	x (次)	y (kg)	序号	x (次)	y (kg)
1	2	106.42	8	11	110.59
2	3	108.20	9	14	110.60
3	4	109.58	10	15	110.90
4	5	109.50	11	16	110.76
5	7	110.00	12	18	111.00
6	8	109.93	13	19	111.20
7	10	110.49			

解:根据观测数据作 (x_i, y_i) 散点图

可以看出这些点并不是位于一条直线上,根据散点图,回归函数可以取为以下几个非线性函数:

$$\frac{1}{y} = a + \frac{b}{x}$$
, $y = a + \frac{b}{x}$, $y = a + b \ln x$, $y = a + b\sqrt{x}$, $y - 100 = ae^{-\frac{x}{b}}$,

其中 a,b 为未知参数. 化为 u 与 v 的线性函数后,作 (u_i,v_i) 散点图,只有 $\frac{1}{v}=a+\frac{b}{x}$ 或 $y=a+\frac{b}{x}$ 合适.

对于 $y = a + \frac{b}{x}$, 令 $u = \frac{1}{x}$, $v = \frac{1}{y}$, 化为线性函数 v = a + bu, 根据 (u_i, v_i) 作一元线性回归, 得: $\hat{a} = 0.00896663$, $\hat{b} = 0.00082917$,

回归方程为 $\hat{u}=0.00896663+0.00082917v$,即 $\frac{1}{\hat{y}}=0.00896663+\frac{0.00082917}{x}$,

故
$$\hat{y} = \frac{x}{0.00896663x + 0.00082917}$$
,

$$\mathbb{E}\sum_{i}(y_i-\hat{y}_i)^2=0.5743$$
, $\sum_{i}(y_i-\bar{y})^2=21.2105$,

故决定系数
$$R^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2} = 1 - \frac{0.5743}{21.2105} = 0.9729$$
,

剩余标准差
$$s = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{\frac{0.5743}{11}} = 0.2285$$
;

对于 $y = a + \frac{b}{x}$, 令 $u = \frac{1}{x}$, v = y, 化为线性函数 v = a + bu, 根据 (u_i, v_i) 作一元线性回归,得:

$$\hat{a} = 111.4875$$
, $\hat{b} = -9.8334$,

回归方程为 \hat{u} = 111.4875 – 9.8334v,即 \hat{y} = 111.4875 – $\frac{9.8334}{r}$,

$$\mathbb{E} \sum_{i} (y_i - \hat{y}_i)^2 = 0.5496$$
, $\sum_{i} (y_i - \overline{y})^2 = 21.2105$,

故决定系数
$$R^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2} = 1 - \frac{0.5496}{21.2105} = 0.9741$$
,

剩余标准差
$$s = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{\frac{0.5743}{11}} = 0.2235$$
;

经过比较,选取 $y = a + \frac{b}{x}$ 的形式更好,回归方程为 $\hat{y} = 111.4875 - \frac{9.8334}{x}$.