

Revisiting K-mer Profile for Effective and Scalable Genome Representation Learning

Abdulkadir Celikkanat Andres R. Masegosa and Thomas D. Nielsen

VILLUM FONDEN

Metagenomics Binning Problem

Metagenomics Binning Problem

k-mers / k-grams

- *k-mers* are used to address several challenges:
 - Variable-length sequences.
 - The ambiguity in read direction
 - Complementary strands

Identifiable reads

CTGCTCGCCCTTGGTCGGAATGCA

Theorem. Let \mathbf{r} be a read of length ℓ . There exists no other distinct read having the same k-mer profile if and only if it does not satisfy any of the following conditions:

- 1. $r_1 \cdots r_{k-1} = r_{\ell-k-2} \cdots r_{\ell}$ and $r_i \neq r_1$ for some $1 < i < \ell k 2$.
- 2. $r_i \cdots r_{i+k-2} = r_j \cdots r_{j+k-2}$ and $r_g \cdots r_{g+k-2} = r_h \cdots r_{h+k-2}$ for some indices $1 \le i < g < j < h \le \ell k + 2$ where $r_{i+k-1} \cdots r_{g-1} \ne r_{j+k-1} \cdots r_{h-1}$.
- 3. $r_i \cdots r_{i+k-2} = r_j \cdots r_{j+k-2} = r_h \cdots r_{h+k-2}$ for some indices $1 \le i < j < h \le \ell k + 2$ where $r_{i+k-1} \cdots r_{j-1} \ne r_{j+k-1} \cdots r_{h-1}$.
- *Identifiable reads* can be uniquely reconstructed from their given k-mer profile.

Identifiable reads

- Identifiable reads can be uniquely reconstructed from their given k-mer profile.
 - But using large values of k is impractical.

Lipschitz equivalent spaces.

Proposition. Let $M_1=(\aleph_\ell,d_{\mathcal H})$ and $M_2=(\mathbb N^{|\Sigma^k|},\|\cdot\|_1)$ be the metric spaces denoting the set of identifiable reads and their corresponding k-mer profiles equipped with edit and ℓ_1 distances, respectively. The k-mer profile function, $c:M_1\to M_2$, mapping given any read, $\mathbf r$, to its corresponding k-mer profile, $c_{\mathbf r}:=c(\mathbf r)$, is a Lipschitz equivalence, i.e. it satisfies

$$\forall \mathbf{r}, \mathbf{q} \in \Sigma^{\ell} \quad \alpha_l d_{\mathcal{H}}(\mathbf{r}, \mathbf{q}) \le ||c_{\mathbf{r}} - c_{\mathbf{q}}||_1 \le \alpha_u d_{\mathcal{H}}(\mathbf{r}, \mathbf{q})$$
(1)

for $\alpha_l = 1/\ell$ and $\alpha_u = k|\Sigma|^k$, so M_1 and M_2 are Lipschitz equivalent.

Linear read embeddings

k-mer profile: First, consider the definition of *k-mer profiles*:

$$\mathcal{E}_{kmer}(\mathbf{r}) \coloneqq \sum_{\mathbf{x} \in \Sigma^{k}} c_{\mathbf{r}}(\mathbf{x}) \mathbf{z}_{\mathbf{x}}$$

where \mathbf{z}_{x} represents the canonical basis vector for the k-mer $\mathbf{x} \in \Sigma^{k}$, i.e. $(\mathbf{z}_{\mathbf{x}} \in \{(u_{1}, ..., u_{|\Sigma|^{k}}) \in \{0,1\}^{|\Sigma^{k}|}: \Sigma_{i} u_{i} = 1\})$.

• k-mers are not independent!

Linear read embeddings

Poisson model:

• $o_{{f x},{f y}}$ indicates the number of average co-appearances of k-mers i ${f x}$ and ${f y}$ per read within a window size ω

$$o_{\mathbf{x},\mathbf{y}} \sim Pois(\lambda_{\mathbf{x},\mathbf{y}})$$
 $\lambda_{\mathbf{x},\mathbf{y}} \coloneqq \exp(-\|\mathbf{z}_{\mathbf{x}} - \mathbf{z}_{\mathbf{y}}\|)$

• The embedding of read, \mathbf{r} , is given by

$$\mathcal{E}_{Pois}(\mathbf{r}) := \frac{1}{\sum_{\mathbf{x} \in \Sigma^k} c_{\mathbf{r}}(\mathbf{x}) \mathbf{z}_{\mathbf{x}}} \sum_{\mathbf{x} \in \Sigma^k} c_{\mathbf{r}}(\mathbf{x}) \mathbf{z}_{\mathbf{x}}$$

Non-linear read embeddings

Non-linear model:

i) Read Dataset

ii) Positive and Negative Pairs

iii) k-mer Profiles

iv) Learning Representations

$$\mathcal{L}_{\text{NL}}\Big(\{y_{ij}\}_{(i,j)\in\mathcal{I}}|\Omega\Big) := -\frac{1}{|\mathcal{I}|}\sum_{(i,j)\in\mathcal{I}}y_{ij}\log p_{ij} + (1-y_{ij})\log(1-p_{ij}) \qquad p_{ij} = \exp\left(-\|\mathcal{E}_{\text{NL}}(\mathbf{r}_i) - \mathcal{E}_{\text{NL}}(\mathbf{r}_j)\|^2\right)$$

$$p_{ij} = \exp\left(-\|\mathcal{E}_{\scriptscriptstyle \mathrm{NL}}(\mathbf{r}_i) - \mathcal{E}_{\scriptscriptstyle \mathrm{NL}}(\mathbf{r}_j)\|^2\right)$$

Experiments

Conclusion

- We provide a theoretical analysis of the k-mer space, offering insights into why k-mers serve as powerful and informative features for genomic tasks.
- We show that scalable, lightweight models can provide competitive performance in the metagenomic binning task, highlighting their efficiency in handling complex datasets.
- We demonstrate that models based on k-mers remain viable alternatives to large-scale genome foundation models.

Thank you!

For the implementation, datasets, and more details, please visit the address:

https://github.com/abdcelikkanat/revisitingkmers

