Primeira Avaliação de Circuitos Elétricos II – $1^{0/2017}$

Departamento de Engenharia Elétrica — ENE/FT/UnB-1 Faculdade de Tecnologia Universidade de Brasília

Nome:	Turma:
Matrícula:/	
Data:/	
Questão 1	
Questão 2	
Questao 2	
Questão 3	
Questão 4	

Questão 1 — O diagrama de polos e zeros a seguir fazem parte da função transferência de um Circuito Linear Invariante no Tempo (CLIT), calcule a respectiva resposta ao degrau unitário.

Questão 2 — Determine $v_o(t)$ no circuito apresentado à direita quando $v_s(t)$ corresponde a forma de onda temporal mostrada na figura à esquerda.

$$L_1 = 1H$$
; $L_2 = 2H$; $R = 1\Omega$.

Questão 3 — Determine a função de transferência H(s)=Vo(s)/Vs(s). Qual o valor de A para que o circuito seja um oscilador? Determine h(t). $R=2\Omega$; $C=\frac{1}{2}F$.

Questão 4 – A figura a seguir mostra um circuito onde V_1 e V_2 são as fontes de sinais de entradas. Em t=0 a chave é trocada de posição (como indicado na figura). Em $t=0^{-}$ o circuito tinha atingido a situação de estado permanente. Calcule $v_o(t)$ (para $t \ge 0$) utilizando a Transformada de Laplace. São dados os seguintes parâmetros do circuito: $V_1 = 10 \ Volts$; $V_2 = 5 \ Volts$; $R = 2\Omega$; L = 1H;

