Audio Coding - Practice Lessons

Seminar 4 - Perceptual Model / Masking

Perceptual Audio Encoder

Goal: Using the Psychoacoustics model reduce the amount of audible quantization noise.

<u>Step 1:</u>

- Generate a signal consisting of two sinusoids:
- i. Sin_1 200 Hz
- ii. Sin_2 600 Hz
- iii. Signal duration 3 min, Sampling rate 44100
- Apply STFT to the signal (1024 subbands)

Goal: Using the Psychoacoustics model reduce the amount of audible quantization noise.

Step 2:

- Transformation from STFT to Bark scale
 - For the input to the psycho-acoustic model, group the STFT subbands into groups of width of 1/2 Bark
 - Use the function of frequency to Bark for it
 - Within each group, add the powers (squares of the values) of the subbands

Step 2:

Spreading function

Compute the spreading function, centered on each group

Observe that each spreading function extends over all other bark

groups.

Source: U. Zölzer, "Digital Audio Signal Processing"

<u>Step 3:</u>

- Masking threshold
 - Then add up the contributions of all spreading functions within each 1/2 Bark group.
 - This now is our masking threshold as a power, T^2
 - This should be equal to our quantization error power, $T^2 = \frac{\Delta^2}{12}$ with quantization step size Δ .
- Include the plots of:
 - Spectrum of the signal
 - Magnitude Spectrum mapped to 1/2 Bark Bands
 - Masking Threshold in Bark Domain
 - Masking Threshold back in Linear Domain
 - Masking Threshold including Threshold in Quiet for our signal

