Millern exam: Manday, Oct. 14, in class, 50 mins.

5 questions

QI] General browledge of groups.

How to tell when groups ove not isomorphic.

Qi] Prove Mat his groups one isomorphic.

Qij Prove on disprove the following statement:

(something similar to one of the problems on A4)

Qij Know props of homonorphisms.

Qij Know def. of C6(S).

This guestion is based on the notes on Mounal products.

Hint for AS]

7. Let M and N be normal subgroups of G such that G = MN. Prove that $G/(M \cap N) \cong (G/M) \times (G/N)$. [Draw the lattice.]

Idea 1:

Find a homm.

\$: G=GlmxGlm, from that berd=mnV.

Try \$(9/= (91,91).

- · d 15 a ham.
- · kurd= MNV ~
- · & is onto (the hard port)

Idea?: By and Isom. Arm: G/m = N/mnn and G/n = M/mnn

"Define" o: G -> N/MNN x M/MNN)

by $\phi(NN) = (n(MNN), m(MNN))$.

(* well-def? N.7.5:

If $m_1n_1=m_2n_2$ has $n_1(mnN)=n_2(mnN)$ and $n_1(mnN)=m_2(mnN)$.

I ham?

hand.

Gapy: ker &= mnN, & 15 mhz.

9. Let p be a prime and let G be a group of order $p^a m$, where p does not divide m. Assume P is a subgroup of G of order p^a and N is a normal subgroup of G of order $p^b n$, where p does not divide p. Prove that $|P \cap N| = p^b$ and $|PN/N| = p^{a-b}$. (The subgroup P of G is called a *Sylow p-subgroup* of G. This exercise shows that the intersection of any Sylow p-subgroup of G with a normal subgroup P is a Sylow P-subgroup of P.)

IGI=pam, ptm, IPI=pa, IM=pbn, ptn

G

PN/D = P/PND

PN/D = P/PND

PND

PND

IPND

UR MR to deduce that IPND=pb.

8. Let A be a finite abelian group (written multiplicatively) and let p be a prime. Let

$$A^p = \{a^p \mid a \in A\}$$
 and $A_p = \{x \mid x^p = 1\}$

(so A^p and A_p are the image and kernel of the p^{th} -power map, respectively).

- (a) Prove that $A/A^p \cong A_p$. [Show that they are both elementary abelian and they have the same order.]
- (b) Prove that the number of subgroups of A of order p equals the number of subgroups of A of index p. [Reduce to the case where A is an elementary abelian p-group.]

Portb)

Step 1: Prove half the # of enbyroups of order p in Ap.

is equal to the # of enbyroups of order p in Ap.

Prove that # of enbyroups of index p in A IZ

equal to the # to f enbyroups of index p in A/AP

By (a), this reduces the problem to the case when

A is elementary p-group.

Step 2: Court both quartities, when A is an elem.

p-group.