1. Zmienne i wyrażenia.

Wynik obliczeń wartości wyrażenia jest dostępny jako wartość zmiennej, której to wyrażenie przypisano. Dla polecenia w postaci:

```
>> zmienna = wyrażenie
```

po zatwierdzeniu klawiszem Enter, zostanie obliczona wartość wyrażenia i przypisana zmiennej.

Zmienna będzie wprowadzona do przestrzeni roboczej Matlaba. Jeśli zmienna już istniała, to przyjmie nową wartość. Na ekranie pojawi się odpowiedź:

```
zmienna =
   wartość wyrażenia
```

oraz znak zachęty >> pozwalający na dalszy dialog. Możliwe jest także wykonanie polecenia w postaci:

```
>> wyrażenie
```

Po naciśnięciu klawisza Enter również i w tym przypadku zostanie obliczona wartość wyrażenia. Natomiast wynik obliczeń będzie przypisany standardowej zmiennej roboczej ans. Odpowiedź na takie polecenie jest następująca:

```
ans =
    wartość wyrażenia
```

2. Formaty liczb.

Wykaz wszystkich dostępnych formatów uzyskuje się poleceniem **help format**. Możliwa jest także zmiana ustawienia formatów wyprowadzanych wartości liczbowych za pomocą następujących poleceń:

```
- 5 cyfr, reprezentacja stałoprzecinkowa,
format short
                     - 15 cyfr, reprezentacja stałoprzecinkowa,
format long
                    - 5 cyfr, reprezentacja zmiennoprzecinkowa,
format short e
format long e
                    - 15 cyfr, reprezentacja zmiennoprzecinkowa,
                    - wypisanie liczby w postaci ułamka,
format rat
format compact
                    - pomijanie pustych linii przy wyświetlaniu,
                     - wprowadzanie pustych linii przy wyświetlaniu,
format loose
                     - powrót do formatu domyślnego wypisywania liczb.
format
```

3. Zmienne w przestrzeni roboczej.

W Matlabie nie stosuje się deklaracji zmiennych. Zmienne wybranego typu określa użytkownik. Program automatycznie rozpoznaje typ zmiennej. Wyniki wykonanych operacji matematycznych lub funkcji zależą od rozpoznanego typu.

Wprowadzenie zmiennej a do przestrzeni roboczej i przypisanie jej wartości wektora, np. 3-elementowego, wykonuje się następująco (elementy wektora oddziela się spacjami lub przecinkami):

```
>> a = [1 2 3]
```

Potwierdzeniem wykonania komendy jest wyświetlenie na ekranie nazwy zmiennej i jej nowej wartości w postaci:

```
a =
1 2 3
```

Macierz wprowadza się, oddzielając elementy tego samego wiersza spacjami lub przecinkami, a wiersze oddziela się średnikami, np.:

```
>> A = [1 2 3; 8 5 -4; 4 1 -2]
A =

1 2 3

8 5 -4

4 1 -2
```

Zmiennym można również przypisać ciągi znaków, czyli łańcuchy.

```
>> s = 'Technika
```

Technika

Wykaz zmiennych przechowywanych w przestrzeni roboczej uzyskuje się przez podanie plecenia who lub whos.

Polecenie **workspace** otwiera dodatkowe okno z nagłówkiem **Workspace** i, podobnie jak **whos**, podaje pełną informację o zmiennych zgromadzonych w przestrzeni roboczej. Dodatkowo, umożliwia ono pełna edycje tablic. Okno to da sie otworzyć także przez wybór opcji **Desktop/Workspace**.

Zmienne wprowadzone do przestrzeni roboczej mogą być zapisywane do zewnętrznych plików poleceniem save. Wartości zapisane w takim pliku mogą być wykorzystywane w kolejnych sesjach Matlaba, po wydaniu polecenia load.

Zapisywanie zmiennych z przestrzeni roboczej realizuje się również, wykorzystując pliki binarne z rozszerzeniem .mat. Do MAT-pliku można wpisać jedną lub kilka zmiennych. Zapis binarny, w odróżnieniu od zapisu w kodzie ASCII, pozwala na zachowanie pełnej dokładności liczb binarnych.

W środowisku Windows operację zapisywania zmiennych wprowadzonych do przestrzeni Matlaba można wykonać poprzez uaktywnienie opcji **File/Save Workspace As**. Otwiera się wówczas okienko dialogowe, w którym należy napisać sesję, tj. nazwę pliku przechowującego wszystkie zmienne przestrzeni roboczei.

Pojedynczą zmienną można zachować w MAT-pliku następująco:

```
>> save L1 L1
```

gdzie pierwsze L1 to nazwa MAT-pliku (bez rozszerzenia), zaś drugie L1 to nazwa zmiennej.

Często zachodzi potrzeba usunięcia kilku zmiennych lub wszystkich zmiennych z przestrzeni roboczej. Jest to konieczne na przykład po ukazaniu się komunikatu:

```
>> out of memory
```

oznaczającego brak wolnej pamięci. Wszystkie zmienne z przestrzeni roboczej usuwa polecenie clear, jeśli jest użyte samodzielnie. Wybrane zmienne można usunąć, wydając polecenie clear:

```
>> clear lista nazw-zmiennych
```

4. Znaki i nazwy specjalne.

Znaki specjalne są przeznaczone do wprowadzania danych i komentarzy oraz pisania wyrażeń i poleceń. Matlab zawiera pewną liczbę wartości i zmiennych specjalnych, które są reprezentowane przez nazwy specjalne.

Pełne zestawienie znaków specjalnych Matlaba, wraz z objaśnieniami, ilustruje tabela 1. Można je uzyskać za pomoca polecenia help ops.

Tabela 1. Znaki specjalne

Symbol	Opis znaku specjalnego
:	generowanie wektorów, indeksowanie macierzy
	katalog macierzysty
;	koniec wiersza, wstrzymanie wypisania wypowiedzi
	kontynuacja polecenia w następnej linii
	kropka dziesiętna, element operatorów arytmetycznych używany przy wskazywaniu
િ	początek komentarza
=	przypisanie wartości
,	separator indeksów, argumentów funkcji, poleceń
[]	używane przy tworzeniu tablic, listy argumentów wyjściowych funkcji i w operacjach
	łączenia macierzy
•	wprowadzanie łańcuchów, operatorów transpozycji lub sprzężenia macierzy
!	wykonanie komendy systemu operacyjnego
{}	zaznaczanie wyrażeń liczonych w pewnej kolejności i listy argumentów wej. funkcji

Zestawienie wybranych nazw stosowanych w Matlabie, jako zmienne i stałe specjalne, wraz ich opisem, zamieszczono w tabeli 2.

Tabela 2. Nazwy stałych i zmiennych specjalnych

Nazwa	Opis zmiennej lub stałej		
pi	3,1415926535897		
eps	dokładność obliczeń		
i, j	jednostka urojona		
nargin	liczba argumentów wejściowych funkcji		
nargout	liczba argumentów wyjściowych funkcji		
flops	licznik operacji zmiennoprzecinkowych		
realmin	najmniejsza dostępna liczba rzeczywista		
realmax	największa dostępna liczba rzeczywista		
computer	nazwa komputera, na którym jest zainstalowany Matlab		
inf	nieskończoność		
nan	wartość nieokreślona (<i>Not a Number</i>)		
ans	zmienna robocza - przypisuje się jej automatycznie wartość wyrażenia nie		
ans	skojarzonego z żadną zmienną		
clock	aktualna data i czas jako elementy wektora		
now	aktualna data w postaci liczby		
date	aktualna data w postaci łańcucha		
tic, toc	funkcje do odmierzania czasu komputera		
etime	podaje wartość wybranego przedziału czasu		
cputime	upływający czas działania komputera		

5. Funkcje arytmetyczne i trygonometryczne.

Zestawienie wybranych elementarnych funkcji matematycznych, dostępnych w Matlabie zawiera tabela 3. Podano w niej także opis obliczeń wykonywanych przez te funkcje.

Tabela 3. Funkcje matematyczne i trygonometryczne

Nazwa	Opis funkcji
abs	wartość bezwzględna, moduł liczby zespolonej, wektor wartości znaków łańcucha wg kodu ASCII
acos, acosh	arcus cosinus, arcus cosinus hiperboliczny
acot, acoth	arcus cotangens, arcus cotangens hiperboliczny
acs, acsh	arcus cosecans, arcus cosecans hiperboliczny
angle	kąt fazowy liczby zespolonej w radianach $[-\pi, +\pi]$
besseli	modyfikowana funkcja Bessela 1-go rodzaju
besselj	funkcja Bessela 1-go rodzaju
besselk	modyfikowana funkcja Bessela 2-go rodzaju
bessely	funkcja Bessela 2-go rodzaju
beta	funkcja Beta
betains	niepełna funkcja Beta
betaln	logarytm funkcji Beta
cart2pol	zmiana współrzędnych prostokątnych na biegunowe
cart2sph	zmiana współrzędnych prostokątnych na sferyczne
ceil	zaokrąglenie w kierunku +∞
conj	liczba sprzężona do liczby danej w argumencie
cos, cosh	cosinus, cosinus hiperboliczny
cot, coth	cotangens, cotangens hiperboliczny
csc, csch	cosecans, cosecans hiperboliczny
ellipj	funkcja eliptyczna Jacobiego
ellipke	całka eliptyczna
erf, erfc,	funkcje błędu Erf
erfcx, erfinv	

exp	e do potęgi danej przez argument		
expint	całka z (exp(-f)/t)dt w granicach od x do ∞		
fix	zaokrąglenie w kierunku zera		
floor	zaokrąglenie w kierunku -∝		
gamaln	logarytm z funkcji Gamma		
gamma, gammainc	funkcja Gamma, niepełna funkcja Gamma		
gcd	największy wspólny podzielnik		
imag	część urojona liczby zespolonej		
lcm	najmniejsza wspólna wielokrotność		
legendre	funkcja Legendre'a		
log	logarytm naturalny (przy podstawie e)		
log10	logarytm przy podstawie 10		
log2	logarytm przy podstawie 2		
pol2cart	zmiana współrzędnych biegunowych na prostokątne		
pow2	potęgowanie przy podstawie 2		
rat, rate	rozkład na iloraz dwóch liczb całkowitych		
real	część rzeczywista liczby zespolonej		
rem	reszta z dzielenia		
round	zaokrąglenie do najbliższej liczby całkowitej		
sec, sech	secans, secans hiperboliczny		
sign	znak funkcji		
sin, sinh	sinus, sinus hiperboliczny		
sph2cart	zmiana współrzędnych sferycznych na prostokątne		
sqrt	pierwiastek kwadratowy		
tan, tanh	tangens, tangens hiperboliczny		

6. Zapis sekwencji poleceń.

Wprowadzanie z klawiatury kolejnych kroków realizowanego algorytmu lub skomplikowanych wyrażeń matematycznych jest uciążliwe. Wpisywany zestaw poleceń wygodniej jest zapisać w zewnętrznym pliku tekstowym o dowolnej nazwie z rozszerzeniem *.m. Do tworzenia i modyfikowania M-plików można wykorzystać wbudowany edytor Matlaba lub dowolny edytor tekstowy.

W edytorze Matlaba można utworzyć nowy M-plik, wybierając z menu opcję File/New/M-File lub poprzez kliknięcie w ikonę paska narzędziowego New M-File. W rezultacie otworzy się okno edytora, w którym można zapisać tekst M-pliku. Przy modyfikacji M-pliku już istniejącego, należy wybrać opcję File/Open... lub kliknąć w ikonę paska narzędziowego Open file. Wywołanie wbudowanego edytora można też zrealizować wpisując z okna głównego Matlaba edit i nazwę pliku poddawanego edycji, badź samo edit, w przypadku tworzenia nowego M-pliku.

7. Typy danych.

W Matlabie typy danych dzielą się ogólnie na:

- Typy fundamentalne tworzenie zmiennych wybranego typu lub/i zmianę typu istniejącej zmiennej realizuje się za pomocą funkcji: double, sparse, char, cell, struct, uint8. Można przyjąć, że funkcje te są jednocześnie nazwami typów danych (klas) dostępnych w Matlabie.
- Typy definiowane przez użytkownika tworzenie zmiennych, czyli obiektów według typów określonych przez użytkownika dokonuję się za pomocą funkcji class.

Fundamentalne typy danych:

- Tablice dwuwymiarowe złożone są z elementów rzeczywistych lub zespolonych, zapisywanych zawsze w podwójnej precyzji.
- Macierze pełne dla tego typu macierzy w pamięci wewnętrznej jest przechowywana wartość każdego ich elementu składowego (w odróżnieniu od macierzy rzadkich).
- Macierze rzadkie ten typ macierzy charakteryzuje się zapamiętywaniem jedynie wartości elementów niezerowych oraz ich indeksów.
- Tablice znakowe elementami takich tablic są znaki lub ciągi znaków, czyli łańcuchy.

- Tablice wielowymiarowe elementami tablic wielowymiarowych mogą być liczby rzeczywiste i zespolone, znaki, bloki lub struktury. W celu określenia elementu takiej tablicy używa się więcej, niż dwóch indeksów pierwszy indeks jest numerem wiersza, drugi jest numerem kolumny, trzeci i wyższe odpowiadają numerom kolejnych wymiarów.
- Tablice blokowe ich elementami są bloki, które zawierają inne tablice. W blokach można znowu umieszczać tablice o dowolnych wymiarach i typach.
- **Struktury** struktury, podobnie jak tablice blokowe, mogą przechowywać inne tablice o dowolnych wymiarach i elementach. Struktury różnią się od tablic blokowych sposobem odwoływania się do elementów składowych. Pola struktur mają swoje nazwy własne.
- uint8 tablica, której elementy są ośmiobitowymi liczbami całkowitymi, jest stosowana do przechowywania liczb z zakresu 0÷255.

Informację o wymiarach i typach zmiennych można uzyskać poleceniem whos.

8. Operatory.

Wyrażenie będące zapisem jakiegoś algorytmu buduje się z zastosowaniem różnych operatorów określających operacje, jakie będą wykonywane na argumentach wchodzących w skład wyrażenia.

Priorytet działania operatorów jest następujący:

- · operatory arytmetyczne,
- operatory relacji,
- operatory logiczne.

Priorytet operatorów można zmieniać, ujmując wybrane wyrażenie w nawiasy okrągłe. Gdy stosuje się dwa operatory o tym samym priorytecie, wówczas działania wykonywane są kolejno w kierunku od lewej do prawej.

W Matlabie za pomocą operatorów przeprowadza się 2 rodzaje operacji:

- **operacje macierzowe** na przykład iloczyn **x*y** oznacza, że obliczenia zostaną przeprowadzone zgodnie z zasadami rachunku macierzowego,
- **operacje tablicowe** na przykład iloczyn **x.*****y** realizuje mnożenie elementów wektorów lub macierzy o tych samych indeksach, tj. (**x**(i,j)***y**(i,j)).

Tabela 4. Operatory działań

Symbol operacji macierzowej	Nazwa operacji	Symbol operacji tablicowej
+	dodawanie	+
_	odejmowanie	_
*	mnożenie	.*
^	potęgowanie	.^
/	dzielenie prawostronne	./
\	dzielenie lewostronne	.\
1	sprzężenie macierzy	
. 1	transpozycja macierzy	
kron	iloczyn tensorowy Kroneckera	

Tabela 5. Operatory relacji i operatory logiczne

	- p j j -	personal programme		
Symbol	Operator relacji	Symbol	Operator logiczny	
<	mniejszy od	&	AND	
<=	mniejszy lub równy		OR	
>	większy od	~	NOT	
>=	większy lub równy	xor	EXCLUSIVE OR	
==	równy			
~=	różny od			

9. Porównywanie łańcuchów.

Łańcuchy można porównywać, korzystając np. z funkcji stromp lub strnomp. Operatory relacji (>, >=, <, <=, ==, ~=) działają w ten sposób, że dokonują porównania odpowiednich wartości znaków w kodzie ASCII. Możliwe jest zatem porównywanie łańcucha lub tablicy znaków z wartością skalarną.

10. Ćwiczenia.

- ♦ Wyświetl pomoc dla polecenia sqrt:
- >> help sqrt
- ♦ Przypisz zmiennej a wartość 100:
- >> a = 10
- ♦ Wyświetl wartość zmiennej a:
- >> disp(a)
- ♦ Przypisz zmiennej b wartość 3.14:
- >> b = 3.14
- Wyświetl listę zmiennych znajdujących się w pamięci Matlaba:
- >> who
- ♦ Wyświetl szczegółową listę zmiennych wraz z ich rozmiarem i typem danych:
- >> whos
- ♦ Usuń z pamięci wszystkie zmienne:
- >> clear all
- ♦ Wyświetl ponownie listę zmiennych:
- >> who
- ♦ Wyczyść okno poleceń z poprzednio wyświetlanego tekstu:
- >> clc
- Utwórz zmienną \mathbf{x} , sprawdź jej wartość, a następnie oblicz \sqrt{x} .
- ♦ Utwórz zmienne a = -0,002, b = 20,0342·10⁻¹², a następnie sprawdź ich wartości.
- ◆ Przypisz zmiennej y wartość 7 bez zwracania wyniku obliczeń.
- ◆ Zapisz w jednym wierszu 3 polecenia: x = 1, y = 2, z = 3.
- Oblicz wartość funkcji sin (x) dla x zmieniającego się od -π do π z krokiem 0,1.
- >> x = -pi:0.1:pi;
- >> sin(x)
- Przypisz zmiennej s łańcuch Matlab, a następnie dokonaj jego konwersji na wektor kodów ASCII.
- >> s = 'Matlab'
- >> a = double(s)
- Dokonaj konwersji odwrotnej, tj zamień wektor kodów ASCII na łańcuch znaków.
- >> b = char(a)
- Wyświetl liczbę znaków łańcucha przypisanego zmiennej b.
- >> length(b)
- ♦ Zdefiniuj zmienne k = 2 i pi = 5.
- >> k = 2; pi = 5;
- Oblicz wyrażenie $x = k\pi$.
- >> x = k * pi
- ♦ Zapisz zmienne k i pi w pliku o nazwie wynik.mat.
- >> save wynik k pi
- Przywróć domyślną wartość stałej pi.
- >> clear pi
- Oblicz ponownie $x = k\pi$ i porównaj wynik z wynikiem wcześniejszym.
- ♦ Wczytaj zmienne z pliku wynik.mat, oblicz x i porównaj wynik z wynikiem wcześniejszym.
- >> load wynik, x = k * pi

11. Zadania.

Zadanie 1.

Wykonaj polecenia:

- a) wyświetl wszystkie zmienne lokalne,
- b) zapisz zmienne w pliku dane,
- c) usuń wszystkie zmienne,
- d) wyświetl zawartość katalogu roboczego (dir).

Zadanie 2.

Oblicz:

- a) $e^{2\sin(2\pi)}$
- b) $\cos\left(\frac{\pi}{3}\right)^4$,
- c) $\ln \sqrt{5}$.