

Course Methods Test 3 Year 12

Student name:	Teacher name:			
Task type:	Response/Investigation			
Reading time for this test: 5 mins				
Working time allowed fo	r this task: 40 mins			
Number of questions:	6			
Materials required:	No classpads			
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters			
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper			
Marks available:	38 marks			
Task weighting:	_14%			
Formula sheet provided:	No but some formulae given on page 2			
Note: All part questions	worth more than 2 marks require working to obtain full marks.			

Useful formulae

Logarithms

$x = \log_a b \iff a^x = b$	$a^{\log_a b} = b$ and $\log_a(a^b) = b$	
$\log_a mn = \log_a m + \log_a n$	$\log_a \frac{m}{n} = \log_a m - \log_a n$	
$\log_a(m^k) = k \log_a m$	$\log_e x = \ln x$	

$\frac{d}{dx} \ln x = \frac{1}{x}$		$\int \frac{1}{x} dx = \ln x + c, x > 0$		
$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$		$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c, f(x) > 0$		
If $y = uv$	J	If $y = f(x) g(x)$		
then	or	then		
$\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$		y'=f'(x) g(x) + f(x) g'(x)		
If $y = \frac{u}{v}$		If $y = \frac{f(x)}{g(x)}$		
then	or	then		
$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		$y' = \frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}$		
If $y = f(u)$ and $u = g(x)$)	If $y = f(g(x))$		
then	or	then		
$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$		y' = f'(g(x)) g'(x)		
$\frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$	and	$\int_{a}^{b} f'(x) dx = f(b) - f(a)$		
	then $\frac{d}{dx}(uv) = v \frac{du}{dx} + u \frac{dv}{dx}$ If $y = \frac{u}{v}$ then $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$ If $y = f(u)$ and $u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	If $y = uv$ then or $\frac{d}{dx}(uv) = v \frac{du}{dx} + u \frac{dv}{dx}$ If $y = \frac{u}{v}$ then or $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$ If $y = f(u)$ and $u = g(x)$ then or $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$		

Q1 (2 & 2 = 4 marks)

Express each of the following as a single logarithm.

a)
$$\log_a b + 3\log_a (ab) - 4\log_a b$$
.

b)
$$5 + 3\log_5 c - \log_5(c^3) + \log_5 b$$
.

Q2 (2 & 2 = 4 marks)

Solve each of the following, giving your answer in **exact** form.

a)
$$2^{2x} - 12(2^x) + 32 = 0$$

b)
$$7^x + 3(7^{x+2}) = 31$$

Q3 (1, 3 & 3 = 7 marks)

The Richter scale, R, of an earthquake of intensity I is given by $R = \log_{10} \left(\frac{I}{I_o} \right)$ where I_o is a minimum intensity level used for comparison.

- a) Determine R for an earthquake with intensity $10000I_a$.
- b) An earthquake measuring 5 on the Richter scale is how many times as intense as that of one measuring 4 on the Richter scale?
- c) If an earthquake registers x on the Richter scale and a second earthquake registers x+4 on the Richter scale, how many more times as intense is the second earthquake?

Q4 (3 marks)

Consider the function $f(x) = \log_2 x$ which undergoes a transformation f(ax+b) where a & b are constants. The graph y = f(ax+b) is plotted below, determine the values of a & b showing reasoning.

Q5 (3 & 5 = 8 marks)

Consider the function $g(x) = (x^2 + 3) \ln(x^3 + 3x)$.

a) Determine g'(x).(Simplify)

b) Use the result from part a to determine $\int 2x \ln(x^3 + x) dx$.

Q6 (3, 3, 3 & 3 = 12 marks)

Consider the continuous random variable $\it X$ and its probability density function which is graphed below.

- a) Determine the following exactly.
- i) P(2 < X < 7).(Simplify)

ii) P(X > 3 | X < 5).(No need to simplify)

Q6 continued

iii) E(X) i.e the mean. (No need to simplify)

b) Derive the cumulative probability function $P(X \le x)$ for $0 \le x \le 10$.

End of test Working out space