M4P55 Commutative Algebra

Lectured by Prof Alexei Skorobogatov Typed by David Kurniadi Angdinata

Autumn 2019

Syllabus

Contents

0	Introduction	3
1	Rings and ideals	4
2	Polynomials and formal power series	5
3	Zero-divisors, nilpotents, units	5
4	Prime ideals and maximal ideals	6
5	Nilradical and the Jacobson radical	7

0 Introduction

The prerequisites are

- groups,
- rings,
- fields, and
- $\bullet\,$ a solid linear algebra.

This course is good for

- algebraic geometry, and
- algebraic number theory.

The following are books.

- M Reid, Undergraduate commutative algebra, 1995
- M F Atiyah and I G Macdonald, Introduction to commutative algebra, 1969

The following is the structure of the course.

- Generalities on rings, such as ideals, and examples.
- Localisation of rings between a ring R and the fraction field K of R, such as \mathbb{Z} and \mathbb{Q} .
- Finiteness conditions of Noetherian rings and Artinian rings.
- Integral closure and normal rings, such as $\mathbb{Z}[i] \subset \mathbb{Q}(i)$ and $\mathbb{Z}\left[\sqrt{-3}\right] \subset \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right] \subset \mathbb{Q}\left(\sqrt{-3}\right)$.
- Discrete valuation rings.
- Completion of rings with topology.

03/10/19

Lecture 1

Thursday

1 Rings and ideals

Definition 1.1. A commutative ring is a set $(A, +, \cdot, 0, 1)$ such that

- 1. (A, +, 0) is an abelian group,
- 2. for all $x, y, z \in A$,
 - $(x \cdot y) \cdot z = x \cdot (y \cdot z)$,
 - $\bullet \ x \cdot y = y \cdot x,$
 - $x \cdot (y+z) = x \cdot y + x \cdot z$, and
- 3. for all $x \in A$, $x \cdot 1 = 1 \cdot x = x$.

Remark 1.2.

- One is uniquely determined by 3, since $1' = 1' \cdot 1 = 1$.
- If 1 = 0, then $0 = x \cdot 0 = x \cdot 1 = x$, since

$$x \cdot 0 = x \cdot (0+0) = x \cdot 0 + x \cdot 0$$

so $x \cdot 0 = 0$. So every element is zero. Hence $R = \{0\}$.

Definition 1.3. A homomorphism of rings $f: A \to B$ is a map such that for all $x, y \in A$,

$$f(x + y) = f(x) + f(y),$$
 $f(xy) = f(x) f(y),$ $f(1) = 1.$

Example. If $A \subset B$ is closed under + and \cdot , and $1 \in A$, then

$$\begin{array}{ccc} A & \longrightarrow & B \\ x & \longmapsto & x \end{array}$$

is a homomorphism.

Remark 1.4.

- A composition of homomorphisms is a homomorphism.
- An **isomorphism** is a bijective homomorphism.

Definition 1.5. A subset I of a ring A is an **ideal** if I is a subgroup of the additive group (A, +) which is closed under multiplication by elements of A, so $xI \subset I$ for any $x \in A$. Sometimes this is written as $I \triangleleft A$. In this case the **quotient group** A/I is naturally a ring, where (x + I)(y + I) is defined as xy + I.

Proposition 1.6. Let I be an ideal of a commutative ring A. Then there is a natural bijection between the ideals $J \subset A$ such that $I \subset J$ and the ideals of A/I.

Proof. Let

$$\begin{array}{ccc} A & \longrightarrow & A/I \\ x & \longmapsto & x+I \end{array}$$

be the natural surjective map. Send J to its image under this map.

Definition 1.7. If $f: A \to B$ is a homomorphism, then

$$\operatorname{Ker} f = \{x \in A \mid f(x) = 0\}$$

is an ideal in A, and

$$\operatorname{Im} f = f(A) \cong A / \operatorname{Ker} f \subset B.$$

Lecture 2

Tuesday 08/10/19

2 Polynomials and formal power series

Definition 2.1. Let R be a ring. The **polynomial ring** with coefficients in R is

$$R[x] = \{a_0 + \dots + a_n x^n \mid a_i \in R, \ n \in \mathbb{Z}_{\geq 0}\}.$$

The addition is coefficient-wise, and the multiplication is given by the formula

$$\left(\sum_{i\geq 0} a_i x^i\right) \left(\sum_{j\geq 0} b_j x^j\right) = \sum_{i\geq 0} \left(\sum_{j+k=i, \ j\geq 0, \ k\geq 0} a_j b_k\right) x^i,$$

where all but finitely many coefficients are zero. Define

$$R[x_1, \dots, x_n] = R[x_1] \dots [x_n] = \left\{ \sum_{i_1, \dots, i_n \ge 0} a_{i_1, \dots, i_n} x_1^{i_1} \dots x_n^{i_n} \mid a_{i_1, \dots, i_n} \in R \right\},\,$$

where all but finitely many coefficients $a_{i_1,...,i_n}$ are equal to zero.

Definition 2.2. The ring of formal power series with coefficients in R is

$$R[[t]] = \{a_0 + a_1t + \dots \mid a_i \in R\}.$$

The addition is coefficient-wise, and the multiplication is given by the formula

$$\left(\sum_{i\geq 0} a_i t^i\right) \left(\sum_{j\geq 0} b_j t^j\right) = \sum_{i\geq 0} \left(\sum_{j+k=i, \ j\geq 0, \ k\geq 0} a_j b_k\right) x^i.$$

Define

$$R[[t_1,\ldots,t_n]] = R[[t_1]]\ldots[[t_n]].$$

In R[[t]] many products equal one unlike in R[t], for example $(1-t)(1+t+\ldots)=1$.

3 Zero-divisors, nilpotents, units

Definition 3.1. Let A be a ring. An element $x \in A$ is a **zero-divisor** if $x \neq 0$ but xy = 0 for some $y \neq 0$ in A. A ring without zero-divisors is called an **integral domain**. An element $x \in A$ is **nilpotent** if $x^n = 0$ for some $n \in \mathbb{Z}_{>0}$. A **unit** $x \in A$ is an element such that xy = 1 for some $y \in A$. The units of A form a group under multiplication, denoted by A^* , or A^{\times} .

Definition 3.2. Let $x \in A$. Then the set

$$\langle x \rangle = \{ xy \mid y \in A \}$$

is an ideal. Such ideals are called principal ideals.

Remark. $x \in A^*$ if and only if $\langle x \rangle = A$, and R is a field if and only if $R^* = R \setminus \{0\}$.

Proposition 3.3. Let A be a non-zero ring. Then the following are equivalent.

- 1. A is a field.
- 2. There are no ideals in A other than $\langle 0 \rangle$ and A.
- 3. Every non-zero homomorphism $f: A \to B$ is injective.

Proof.

 $1 \implies 2$ Clear.

 $2 \implies 3 \text{ Ker } f \subset A \text{ is an ideal. Since } f \neq 0, \text{ Ker } f \neq A. \text{ Hence Ker } f = 0.$

3 \Longrightarrow 1 Take any $x \neq 0$ in A. Look at $\langle x \rangle$. Define $B = A/\langle x \rangle$. Then take $f: A \to B$ to be the natural surjective map. If f is not identically zero, we get a contradiction with 3.

4 Prime ideals and maximal ideals

Definition 4.1. An ideal $I \subset A$ is called **prime** if $I \neq A$ and if whenever $xy \in I$, then $x \in I$ or $y \in I$. An ideal $J \subset A$ is called **maximal** if there is no ideal J' such that $J \subseteq J' \subseteq A$.

Notation. The set of prime ideals of A is called the **spectrum** of A and is denoted by Spec A.

Lemma 4.2. An ideal $I \subset A$ is prime if and only if A/I is an integral domain.

Proof. Obvious.

Lemma 4.3. An ideal $J \subset A$ is maximal if and only if A/J is a field.

Proof. Obvious.

Proposition 4.4. If $f: A \to B$ is a ring homomorphism and $I \subset B$ is a prime ideal, then $f^{-1}(I)$ is a prime ideal of A.

Proof. It is easy to see that $f^{-1}(I)$ is an ideal in A. Suppose $xy \in f^{-1}(I)$ for some $x, y \in A$. Then $f(x) f(y) = f(xy) \in I$. Since I is prime, $f(x) \in I$ or $f(y) \in I$, so $x \in f^{-1}(I)$ or $y \in f^{-1}(I)$.

So we get a canonical map

$$\begin{array}{cccc} f^{*} & : & \operatorname{Spec} B & \longrightarrow & \operatorname{Spec} A \\ & I \subset B & \longmapsto & f^{-1}\left(I\right) \subset A \end{array}.$$

Lecture 3 Wednesday 09/10/19

Remark 4.5. If $f: A \to B$ is a ring homomorphism, then $f^{-1}(\mathfrak{p})$, where $\mathfrak{p} \subset B$ is a prime ideal, is a prime ideal. But this is false for maximal ideals. Let $A = \mathbb{Z}$, let $B = \mathbb{Q}$, and let f(x) = x. Then $\langle 0 \rangle \subset \mathbb{Q}$ is a maximal ideal and $f^{-1}(\langle 0 \rangle) = \langle 0 \rangle \subset \mathbb{Z}$ is not a maximal ideal. For example, $\langle 0 \rangle \subsetneq \langle 2 \rangle \subsetneq \mathbb{Z}$.

Theorem 4.6. Let A be a non-zero ring. Then A has at least one maximal ideal. In particular, Spec A is not empty.

The proof is based on Zorn's lemma. Let S be a set. Then a partial order is a binary relation \leq such that

- $x \le x$ for all $x \in S$,
- $x \le y \le z$ implies that $x \le z$, and
- $x \le y$ and $y \le x$ imply that x = y,

where not all pairs are comparable. A chain $T \subset S$ is a subset in which every two elements are comparable.

Lemma 4.7 (Zorn). Suppose that S is a partially ordered set such that every chain $T \subset S$ has an upper bound, that is an element $t \in S$ such that $x \leq t$ for all $x \in T$. Then S has a maximal element, that is there exists $s \in S$ such that if $x \in S$ and $x \geq s$, then x = s.

Zorn's lemma is equivalent to the axiom of choice.

Proof of Theorem 4.6. Let Σ be the set of all ideals of A which are not equal to A. Then $\langle 0 \rangle \in \Sigma$, so $\Sigma \neq \emptyset$. Equip Σ with partial order given by inclusion. Enough to check the assumption of Zorn's lemma. Suppose T is a chain of ideals, so it is a collection of ideals J_i for $i \in T$. Consider instead

$$I = \bigcup_{i \in T} J_i.$$

Claim that T is a chain implies that I is an ideal. Then $x \in I$ implies that $x \in J_i$ for some i. Take any $x, y \in I$. Then $x \in J_i$ and $y \in J_k$ for some $i, k \in T$, so T is a chain, hence $i \leq k$ or $k \leq i$, so $J_i \subset J_k$ or $J_k \subset J_i$. Without loss of generality assume $J_i \subset J_k$. Then $x, y \in J_k$, so $x + y \in J_k \subset I$. Clearly, I is an upper bound.

Corollary 4.8. Any ideal of A is contained in a maximal ideal of A.

Proof. If $I \subset A$ is an ideal, apply Theorem 4.6 to A/I.

Corollary 4.9. Any non-unit of A is contained in a maximal ideal.

Proof. Apply Corollary 4.8 to $\langle a \rangle$.

Example. The maximal ideals of \mathbb{Z} are $\langle p \rangle$, where p is prime.

Definition 4.10. A ring A is **local** if A has exactly one maximal ideal.

Example. Any field is a local ring. If k is a field, then k[[t]] is a local ring.

Lemma 4.11 (Prime avoidance). Let A be a ring and let $\mathfrak{p} \subset A$ be a prime ideal. Suppose that I_1, \ldots, I_n are ideals in A such that $\bigcap_{j=1}^n I_j \subset \mathfrak{p}$. Then $I_j \subset \mathfrak{p}$ for some j. If, moreover, $\bigcap_{j=1}^k I_j = \mathfrak{p}$, then $I_j = \mathfrak{p}$ for some j.

Proof. Suppose that I_j is not a subset of \mathfrak{p} for any j. Then there exists $x_j \in I_j$ such that $x_j \notin \mathfrak{p}$. Hence

$$x_1,\ldots,x_n\in I_1\ldots I_n\subset\bigcap_{j=1}^nI_j\subset\mathfrak{p},$$

so $x_1(x_2...x_n) \in \mathfrak{p}$. Then $x_1 \notin \mathfrak{p}$ implies that $x_2...x_n \in \mathfrak{p}$. Since \mathfrak{p} is prime we get a contradiction. For the second claim, we know that some $I_j \subset \mathfrak{p}$. But $\mathfrak{p} = \bigcap_{j=1}^k I_j \subset I_k$ for all k. Hence $\mathfrak{p} = I_j$.

5 Nilradical and the Jacobson radical

Lecture 4 Thursday 10/10/19

Proposition 5.1. The set $\mathcal{N}(A)$ consisting of all nilpotents of the ring A and zero is an ideal. Then $\mathcal{N}(A)$ is called the **nilradical** of A. The quotient $A/\mathcal{N}(A)$ has no nilpotents.

Proof. Suppose $x \in A$ is nilpotent, so $x^n = 0$. For any $a \in A$, $(ax)^n = a^n x^n = 0$. Let x and y be nilpotents. Say $x^n = y^m = 0$. Then

$$(x+y)^{n+m} = \sum_{i,j>0, i+j=n+m} a_{ij}x^iy^j, \quad a_{ij} \in A.$$

Clearly, either $i \geq n$ or $j \geq m$. Then $a_{ij}x^iy^j = 0$. Therefore, $(x+y)^{n+m} = 0$, hence $x+y \in \mathcal{N}(A)$. If $x + \mathcal{N}(A)$ is nilpotent in $A/\mathcal{N}(A)$, then $x^n + \mathcal{N}(A) = \mathcal{N}(A)$ is the trivial coset. Hence $x^n \in \mathcal{N}(A)$. Thus $(x^n)^m = 0$ for some m.

Definition 5.2. A ring A such that $\mathcal{N}(A) = 0$ is called a **reduced ring**.

Proposition 5.3. $\mathcal{N}(A)$ is the intersection of all prime ideals of A.

Proof.

- \subset Let I be the intersection of all prime ideals of A. Let $f \in A$ be such that $f^n = 0$. Take any prime ideal $\mathfrak{p} \subset A$. We know that $f^n = 0 \in \mathfrak{p}$. Then $f(f \dots f) \in \mathfrak{p}$ and \mathfrak{p} prime implies that $f \in \mathfrak{p}$, so $f \in I$.
- \supset Let us prove the converse. Suppose f is not nilpotent, so $f^n \neq 0$ for all $n \geq 1$. We will show that there exists a prime ideal $\mathfrak{p} \subset A$ that does not contain f. Let us consider all ideals of A that do not contain f^m , where $m \in \mathbb{Z}_{>0}$. Let Σ be the set of ideals $J \subset A$ such that

$$J \cap \{f^m \mid m \ge 1\} = \emptyset.$$

The zero ideal $\langle 0 \rangle$ is in Σ . So $\Sigma \neq \emptyset$. Equip Σ with a partial order given by inclusion. Applying Zorn's lemma we obtain that Σ contains a maximal element. Call it \mathfrak{p} . By construction, $\mathfrak{p} \cap \{f^m \mid m \geq 1\} = \emptyset$, so $f \notin \mathfrak{p}$. It remains to prove that \mathfrak{p} is prime. Enough to prove that if $x \notin \mathfrak{p}$ and $y \notin \mathfrak{p}$, then $xy \notin \mathfrak{p}$. Consider the ideal $\mathfrak{p} + \langle x \rangle \supseteq \mathfrak{p}$. Since \mathfrak{p} is maximal in Σ , thus $\mathfrak{p} + \langle x \rangle$ is not in Σ . By definition of Σ there exists $n \geq 1$ such that $f^n \in \mathfrak{p} + \langle x \rangle$. Similarly, there exists $m \geq 1$ such that $f^m \in \mathfrak{p} + \langle y \rangle$. Then $(\mathfrak{p} + \langle x \rangle) (\mathfrak{p} + \langle y \rangle) \subset \mathfrak{p} + \langle xy \rangle$. In particular, $f^{n+m} = f^n \cdot f^m \in \mathfrak{p} + \langle xy \rangle$. If $xy \in \mathfrak{p}$, then $f^{n+m} \in \mathfrak{p}$, which is not possible. Therefore, $xy \notin \mathfrak{p}$. So \mathfrak{p} is a prime ideal that does not contain f.

Definition 5.4. The **Jacobson radical** $\mathcal{J}(A)$ is the intersection of all maximal ideals of A.

Proposition 5.5. $x \in \mathcal{J}(A)$ if and only if $1 - xy \in A^*$ for all $y \in A$.

Proof.

- \implies Let $x \in \mathcal{J}(A)$. Suppose there exists $y \in A$ such that 1-xy is not a unit. By Corollary 4.9 every non-unit is contained in a maximal ideal. Say $M \subset A$ is a maximal ideal and $1-xy \in M$. But $x \in \mathcal{J}(A) \subset M$. Then $1 = (1-xy) + xy \in M$, but then $M \neq A$. A contradiction.
- Given $x \in A$ such that $1 xy \in A^*$ for all $y \in A$, we must have $x \in \mathcal{J}(A)$. If $x \notin \mathcal{J}(A)$, then there exists a maximal ideal $M \subset A$ such that $x \notin M$. Then $M + \langle x \rangle = A \ni 1$. Thus 1 = m + xy, where $y \in A$. But by assumption $1 xy \in A^*$, so $m \in A^*$. But then M = A. A contradiction.

Definition 5.6. Let I be an ideal of A. The **radical** of I is the set

$$\operatorname{rad} I = \left\{ x \in A \mid \exists n \ge 1, \ x^n \in I \right\}.$$

Proposition 5.7. The radical of I is the intersection of all prime ideals of A that contain I.

Proof. Apply Proposition 5.3 to A/I.