Lec03.md 9/2/2025

Types of Intelligent Agents

1. Simple Reflex Agents

- **Definition**: Act only on the current percept (what they see right now). They follow simple "if-then" rules.
- **Example**: Thermostat → "If temperature < 20°C, turn on heater."
- Student Analogy: A student who hears "quiz today" and immediately panics no long-term thinking,
 just reacts.
- Real AI Example: Spam filter → "If email has word 'lottery,' mark as spam."

2. Model-Based Reflex Agents

- Definition: Keep an internal model of the world (memory of past states). Useful in partially observable
 environments.
- Example: Self-driving car → remembers a pedestrian walked behind a truck even if they're not visible now.
- **Student Analogy**: A student who remembers what was taught last lecture and uses it to understand today's lesson.
- **Real AI Example**: **Roomba vacuum** → builds a map of your house to clean efficiently.

3. Goal-Based Agents

- Definition: Take actions to achieve specific goals, not just reflexes.
- **Example**: GPS navigation \rightarrow goal = reach destination; chooses path accordingly.
- **Student Analogy**: A student aiming to graduate carefully chooses which courses to take (not just reacting each semester).
- Real Al Example: Chess-playing Al → goal = win the game.

4. Utility-Based Agents

- Definition: Maximize happiness (utility) by choosing the best among many options.
- Example: Choosing between 2 driving routes: both reach the destination, but one is faster and safer →
 higher utility.
- Student Analogy: A student wants to graduate but also maximize GPA, enjoy courses, and have free time
- Real Al Example: Netflix recommender → suggests movies to maximize enjoyment, not just any
 movie.

5. Learning Agents

• **Definition**: Improve performance over time by learning from experience.

Lec03.md 9/2/2025

- **Example**: A spam filter that adapts to new types of spam.
- **Student Analogy**: A student who reviews past mistakes, studies smarter, and performs better next time.

• **Real AI Example**: **AlphaGo** → learned by playing millions of games against itself and humans.

Ⅲ Comparison Table

Agent Type	Memory?	Goal- Oriented?	Optimizes (Utility)?	Learns?	Example (AI)	Analogy (Student Life)
Simple Reflex	× No	× No	X No	X No	Thermostat, Spam filter	Student panicking at "quiz today"
Model- Based Reflex	✓ Yes	X No	X No	X No	Roomba vacuum	Student remembering last lecture
Goal-Based	✓ Yes	✓ Yes	X No	X No	GPS navigation, Chess Al	Student planning path to graduation
Utility- Based	✓ Yes	✓ Yes	✓ Yes	X No	Netflix recommender	Student balancing GPA + free time
Learning Agent	✓ Yes	✓ Yes	✓ Yes	✓ Yes	AlphaGo, Adaptive spam filter	Student learning from past mistakes

Key Takeaway

- **Reflex** → "React."
- Model-Based → "Remember."
- Goal-Based → "Plan."
- Utility-Based → "Choose best."
- Learning Agent → "Improve."