Machine Learning Lab 7

Sam Altshuler (PID: A59010373)

2/10/2022

PCA of UK food data

Import the UK foods dataset

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
# How many rows and columns does it have?
dim(x)</pre>
```

```
## [1] 17 5
```

The dataset has 17 rows and 5 columns. However the first column is the rownames. ## Check the data

head(x)

```
##
                   X England Wales Scotland N.Ireland
## 1
             Cheese
                         105
                                103
                                          103
                                                     66
## 2 Carcass_meat
                         245
                                227
                                          242
                                                    267
## 3
                         685
        Other_meat
                                803
                                         750
                                                    586
               Fish
                         147
                                160
                                         122
                                                     93
## 5 Fats_and_oils
                         193
                                          184
                                                    209
                                235
## 6
             Sugars
                         156
                                175
                                         147
                                                    139
```

Set the first column as rownames

```
rownames(x) <- x[,1]
#remove the first row since it was set to the rownames
x <- x[,-1]
head(x)</pre>
```

```
##
                   England Wales Scotland N. Ireland
## Cheese
                       105
                              103
                                       103
                                                   66
## Carcass_meat
                       245
                              227
                                       242
                                                  267
## Other_meat
                              803
                                       750
                                                  586
                       685
                                       122
## Fish
                       147
                              160
                                                   93
## Fats_and_oils
                       193
                              235
                                       184
                                                  209
## Sugars
                       156
                              175
                                       147
                                                  139
```

Now see what dim() returns

```
dim(x)
```

```
## [1] 17 4
```

You could also rename the rownames in the initial read.csv() by specifying which columns are the names.

```
x <- read.csv(url, row.names = 1)
head(x)</pre>
```

##		England	Wales	${\tt Scotland}$	N.Ireland
##	Cheese	105	103	103	66
##	Carcass_meat	245	227	242	267
##	Other_meat	685	803	750	586
##	Fish	147	160	122	93
##	Fats_and_oils	193	235	184	209
##	Sugars	156	175	147	139

This way is prefered so that you don't run the risk of deleting any of the data when doing the first style of data transformation.

Spotting major differences and trends

Barplot of the data, it's hard to get any valuable information between different components.

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


Change the barplot to have them stacked for each country.

barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))

Pairwise plots might be helpful

pairs(x, col=rainbow(10), pch=16)

This plot compares between the two countries the amount of consumption per category. If a value is on the diagonal line, it means they have the same amount of consumption for that food category. This is a fold-change of zero. However, it's still hard to determine main differences between one country from the other countries.

PCA to the rescue

Do PCA of this 17 dimension UK food data. The main function in base R is called prcomp()

```
# Need to transpose x to make it in the correct format for prcomp()
pca <- prcomp(t(x))</pre>
summary(pca)
## Importance of components:
                                PC1
                                         PC2
                                                  PC3
                                                             PC4
## Standard deviation
                           324.1502 212.7478 73.87622 4.189e-14
## Proportion of Variance
                             0.6744
                                      0.2905 0.03503 0.000e+00
## Cumulative Proportion
                             0.6744
                                      0.9650 1.00000 1.000e+00
```

The prcomp() function returns a list of objects

```
plot(pca)
```


The "PCA plot" is also known as a pca score plot. It is a plot of PC1 v PC2. Basically a new PCA axis to view the data.

```
attributes(pca)
```

```
## $names
## [1] "sdev" "rotation" "center" "scale" "x"
##
## $class
## [1] "prcomp"
```

Pay attention to the "x" attribute which is a matrix of the data (pca\$x).

```
pca$x
```

```
PC1
                                 PC2
                                              PC3
                                                            PC4
##
## England
             -144.99315
                            2.532999 -105.768945
                                                   2.842865e-14
                                       56.475555
## Wales
             -240.52915
                          224.646925
                                                   7.804382e-13
## Scotland
              -91.86934 -286.081786
                                       44.415495 -9.614462e-13
## N.Ireland 477.39164
                           58.901862
                                                   1.448078e-13
                                        4.877895
plot(pca\$x[,1], pca\$x[,2], xlab = "PC1", ylab = "PC2") + text(pca\$x[,1], pca\$x[,2], labels = colnames(x)
```


integer(0)

Digging Deeper

```
# focusing on PC1 since it accounts for >90% of all variance in the dataset
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```


Now for PC2

```
# focusing on PC1 since it accounts for >90% of all variance in the dataset
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```


Biplots are another way to view this data. The arrows from the center show the amount of variance that single dimension is responsible for in each principal component.

biplot(pca)

 $\#\mathrm{PCA}$ of RNA-seq data

Import the expression data.

```
url2 <- "https://tinyurl.com/expression-CSV"</pre>
rna.data <- read.csv(url2, row.names=1)</pre>
head(rna.data)
##
          wt1 wt2
                    wt3
                         wt4 wt5 ko1 ko2 ko3 ko4 ko5
## gene1
          439 458
                    408
                         429 420
                                       88
## gene2
          219 200
                    204
                         210 187 427 423 434 433 426
  gene3 1006 989
                   1030
                        1017
                             973 252 237 238 226 210
## gene4
                    829
                         856 760 849 856 835 885 894
          783 792
## gene5
          181 249
                    204
                         244 225 277 305 272 270 279
          460 502
                         491 493 612 594 577 618 638
## gene6
                    491
dim(rna.data)
```

[1] 100 10

There are 100 genes and 10 samples in this data set (genes are rows and samples are columns). Perform the PCA analysis and do a simple plot.

```
pca <- prcomp(t(rna.data), scale = TRUE)
summary(pca)</pre>
```

```
## Importance of components:
                             PC1
                                                     PC4
                                                             PC5
##
                                    PC2
                                            PC3
                                                                     PC6
                                                                             PC7
## Standard deviation
                          9.6237 1.5198 1.05787 1.05203 0.88062 0.82545 0.80111
## Proportion of Variance 0.9262 0.0231 0.01119 0.01107 0.00775 0.00681 0.00642
## Cumulative Proportion 0.9262 0.9493 0.96045 0.97152 0.97928 0.98609 0.99251
                              PC8
                                      PC9
                                               PC10
## Standard deviation
                          0.62065 0.60342 3.348e-15
## Proportion of Variance 0.00385 0.00364 0.000e+00
## Cumulative Proportion 0.99636 1.00000 1.000e+00
```

```
#simple plot
plot(pca$x[,1], pca$x[,2], xlab = "PC1", ylab = "PC2")
```


About 93% of the variance can be shown in the PC1 dimension. Plot the Scree-plot to show the elbow point.

```
plot(pca, main="Quick scree plot")
```

Quick scree plot

We can also generate our own Scree plot.

```
# Variance caught per principal component
pca.var <- pca$sdev^2

# percent variance is usually easier to look at than just variance
pca.var.per <- round(pca.var/sum(pca.var)*100, 1)
pca.var.per</pre>
```

```
## [1] 92.6 2.3 1.1 1.1 0.8 0.7 0.6 0.4 0.4 0.0
```

Now use this data to make our own scree plot.

Scree Plot

Now we can make the PCA plot a bit easier to look at.

Use ggplot because it's more fun.

```
# Load in the ggplot package
library(ggplot2)

## Warning: package 'ggplot2' was built under R version 4.0.3

df <- as.data.frame(pca$x)

# Basic plot once again!
ggplot(df) +
   aes(PC1, PC2) +
   geom_point()</pre>
```


Add in some colors and other aesthetics.

```
# Add a wt and ko condition column
df$samples <- colnames(rna.data)
df$condition <- substr(colnames(rna.data), 1, 2)

#Plot with labels and colors
p <- ggplot(df) +
   aes(PC1, PC2, label = samples, col = condition) +
   geom_label(show.legend = FALSE)
p</pre>
```


Add some more labels

PCA of RNASeq Data

PC1 separates wild-type from knock out conditions

