

Expectation Maximization (EM)

Basic Notions [Dempster, Laird & Rubin 1977]

- Consider points $p = (x_1, ..., x_d)$ from a *d*-dimensional Euclidean vector space
- Clusters are represented by probability distributions
- Typically: mixture of Gaussian distributions
- Representation of a cluster C
 - Center point μ_C of all points in the cluster

• $d \times d$ Covariance matrix Σ_C for the points in the cluster C

Density function for cluster C:

$$P(x \mid C) = \frac{1}{\sqrt{(2\pi)^d |\Sigma C|}} \cdot e^{\frac{1}{2} \cdot (x - \mu_C)^T \cdot (\Sigma_C)^{-1} \cdot (x - \mu_C)}$$

 $(x-\mu_C)$

WS 2003/04 Data Mining Algorithms 6-126

EM: Gaussian Mixture – 2D examples

A single Gaussian density function

A Gaussian Mixture Model, k = 3

EM – Basic Notions

- Density function for clustering $M = \{C_1, ..., C_k\}$
 - Let W_i denote the fraction of cluster C_i in the entire data set D

$$P(x) = \sum_{i=1}^{k} W_i \cdot P(x \mid C_i)$$

- Assignment of points to clusters
 - A point may belong to several clusters with different probabilities

$$P(C_i \mid x) = W_i \cdot \frac{P(x \mid C_i)}{P(x)}$$

- Maximize E(M), a measure for the quality of a clustering M
 - E(M) indicates the probability that the data D have been generated by following the distribution model M

$$E(M) = \sum_{x \in D} \log(P(x))$$

WS 2003/04 Data Mining Algorithms 6-128

EM - Algorithm

ClusteringbyExpectationMaximization (point set D, int k)

Generate an initial model $M' = (C_1', ..., C_k')$

repeat

```
// (re-) assign points to clusters
```

Compute $P(x|C_i)$, P(x) and $P(C_i|x)$ for each object x from D and each cluster (= Gaussian) C_i

// (re-) compute the models

Compute a new model $M = \{C_1, ..., C_k\}$ by recomputing W_i , μ_C and Σ_C for each Cluster C_i

Replace M' by M

until $|E(M) - E(M')| < \varepsilon$ return M

EM – Recomputation of Parameters

- Weight W_i of cluster C_i $W_i = \frac{1}{n} \sum_{x \in D} P(C_i \mid x)$
- Center μ_i of cluster C_i $\mu_i = \frac{\sum_{x \in D} x \cdot P(C_i \mid x)}{\sum_{x \in D} P(C_i \mid x)}$
- Shape matrix Σ_i of cluster C_i

$$\Sigma_{i} = \frac{\sum_{x \in D} P(C_{i} \mid x)(x - \mu_{i})^{2}}{\sum_{x \in D} P(C_{i} \mid x)}$$

WS 2003/04 Data Mining Algorithms 6-130

EM - Discussion

- Convergence to (possibly local) minimum
- Computational effort:
 - O(n * | M| * #iterations)
 - #iterations is quite high in many cases
- Both result and runtime strongly depend on ...
 - ... the initial assignment
 - ... a proper choice of parameter k (= desired number of clusters)
- Modification to obtain a really partitioning variant
 - Objects may belong to several clusters
 - Assign each object to the cluster to which it belongs with the highest probability

Clustering (II) – Summary

- Advanced Clustering Topics
 - Incremental Clustering, Generalized DBSCAN, Outlier Detection
- Scaling Up Clustering Algorithms
 - BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering
- Sets of Similarity Queries (Similarity Join)
- Subspace Clustering
- Expectation Maximization: a statistical approach

WS 2003/04 Data Mining Algorithms 6-132