Positional Number Systems

Huneans are used to base 10 They are bused on powers of 10. Position no. = power (p) 10? ic, 3 x 105 + 2 x 104 + 5 x 103

Indicating the numbers

Subscripte are used to determe deciruls and bisnary numbers. ten, 10, d are used for deginels two, 2,6 are used for busines.

25 3 ten

> -d x base i will start at the right besinning with B

Binary Numbers

· Base 2 is used in computers.

· Digits go from O-1.

· Binary dyits are known as bits.

· tare bit

2-Base how to worke at 3210 1101 2°=1 2'=2 22=4 23=8

Bit - Most loss 2 out of information in a digital comp.

Byte - 8 bits word - 2° bytes

Representing postive interes

Least significant bit - Utmest 17th 2° Most significant bit - utmest 1eft 2"

Endianness

Enianness defines the order in which bytes are arranged into words.

Endien	First bushe	last byte	
Biz	prost 5.3mbilant	(easy	

1			
Small	Neart Significant	ness	

Signed Magnetude representations

+ and - signs may be assigned. But have lead to less bits for achief numbers

(-2) 1 0000010

(+2) 0 0000010

. This can lead to programming headache as both to and -0 are orly.

Carry ons.

Andlinetas 111-caryons 5-yns 0 1001100 0 100111

If cours ons exceed the bit count, then you will get an error. (Overflers)

2's complement

For possible Megers, you leave it as is. For negative inheres, you filip the binary members eg 110 - 001, then add 1.

radix complement

overhow may accour in 2's complement but does not result in error

3 27 ÷16

338 111

100111161101

1+4+8+32+64+128+256+2048 2541

158 r 13 9ED herea 317 r 5

3775

832

40 0x (4x8 = 32 400 0x (4x64 256

480 = 320 470 = 312 4755

5+40+(7×64)+4×512 Och (4755)

