ESTRUCTURAS ALGEBRAICAS. Hoja de problemas 3

- 1. Demostrad que S_3 es isomorfo a un subgrupo de S_4 .
- 2. Hallad dos ciclos que no conmuten. Hallad una potencia de un ciclo que no sea un ciclo.
- 3. Escribid las siguientes permutaciones como un producto de ciclos disjuntos.
 - (a) (1,2)(2,3)(3,4)
 - (b) (2,4,6)(1,4,7)(1,3,5)
 - (c) (1,2)(5,3,2,1,4)(2,3)
 - (d) (1,2,3,4)(2,3,4,5)
- 4. Escribid las siguientes permutaciones como un producto de transposiciones.
 - (a) (1,4)(2,7)(5,2,3)(3,4)(1,4,7,2)
 - (b) (7,2,3,6)(8,5)(5,7,1)(1,5,3,7)(4,8,6)
- 5. Sea $\tau_1 \dots \tau_t$ la descomposición en ciclos de $\sigma \in S_n$. Demostrad que el orden de σ es el mínimo común múltiplo de las longitudes de τ_1, \dots, τ_t .
- 6. Encontrad todos los números m para los que S_5 contiene un elemento de orden m y todos los números m para los que S_7 contiene un elemento de orden m.
- 7. Calculad el orden de cada una de las permutaciones siguientes:

```
\alpha = (4,5,6)(5,6,7)(6,7,1)(1,2,3)(2,3,4)(3,4,5)
\beta = (4,5)(4,3,1)
\gamma = (3,4,5)(2,3,4)(1,2,3)(6,7,1)(5,6,7)(4,5,6)
```

- 8. Demostrad que el subgrupo G de S_4 generado por los elementos $\sigma = (1, 4, 3, 2)$ y $\tau = (2, 4)$ es isomorfo a D_8 .
- 9. Si σ es un k-ciclo con k impar, demostrad que existe un ciclo τ tal que $\tau^2 = \sigma$.
- 10. Sea σ un k-ciclo. Demostrad que σ^2 es un ciclo si y sólo si k es impar.
- 11. Sea σ un producto de ciclos disjuntos de igual longitud. Demostrad que σ es una potencia de un ciclo.
- 12. Indicad cuáles de estas permutaciones son pares:
 - (a) (2,4,6,8)
 - (b) (2,4,6)(1,3,4)
 - (c) (1,2)(1,2,3)(1,2,3,4)
- 13. Calculad el orden y el signo de la permutación $\sigma = (5,7,3,9)(4,2)(3,8,5)(1,6,4)$ de S_9 . Calculad σ^{26} y σ^{-1} .
- 14. Encontrad la descomposición en ciclos disjuntos de todas las potencias del ciclo (1,2,3,4,5,6).
- 15. Dadas las permutaciones $\alpha = (1,2)(3,4)$ y $\beta = (5,6)(1,3)$, encontrad una permutación $\gamma \in S_6$ tal que $\gamma \alpha \gamma^{-1} = \beta$.
- 16. Demostrad que no existe ninguna permutación $\alpha \in S_8$ tal que $\alpha(1,2,3)\alpha^{-1}=(1,3)(5,7,8)$.
- 17. Calculad el conjugado de β_i mediante α_i para:

```
\alpha_1 = (1,2) \qquad \beta_1 = (1,2)(2,3) 

\alpha_2 = (1,2,3) \qquad \beta_2 = (3,4,5) 

\alpha_3 = (1,4)(2,3) \qquad \beta_3 = (3,2,1)(4,5) 

\alpha_4 = (1,3)(2,4,7) \qquad \beta_4 = (2,5,6)(1,4,3)
```

- 18. Comprobad que A_4 no es abeliano. Encontrad todos los subgrupos de A_4 de orden 2 y todos los de orden 4, determinad cuáles de ellos son normales en A_4 , y sus respectivas clases de isomorfismo.
- 19. Comprobad que A_5 está generado por los 3-ciclos.

- 20. ¿Cuántos homomorfismos hay de D_6 en A_4 ?
- 21. Utilizad la representación regular (por la izquierda) de Q_8 para encontrar elementos x e y de S_8 con la propiedad que $\langle x, y \rangle \cong Q_8$.
- 22. (i) Demostrad que si Q_8 actúa sobre un conjunto A de cardinal menor o igual que 7, entonces el estabilizador de cada elemento de A es no-trivial.
 - (ii) Demostrad que si Q_8 actúa sobre un conjunto A de cardinal menor o igual que 7, entonces el núcleo de la acción debe contener al elemento $-1 \in Q_8$.
 - (iii) Demostrad que Q_8 no puede ser isomorfo a un subgrupo de S_n para $n \leq 7$.
- 23. Sea G un grupo no-conmutativo de orden 15. Demostrad que Z(G) = 1 y que la Ecuación de Clases de G sólo puede ser 15 = 1 + 3 + 3 + 3 + 5.
- 24. Demostrad que $Z(S_n) = 1$ para todo $n \ge 3$.
- 25. Sea p un primo. Sea P un subgrupo de S_p que tenga orden p. Demostrad que todo subgrupo de S_p que sea conjugado a P contiene exactamente p-1 p-ciclos. Deducid que $|N_{S_p}(P)| = p(p-1)$.
- 26. Demostrad que, para la acción mediante evaluación de $G = S_n$ sobre el conjunto $A = \{1, 2, ..., n\}$, y dado cualquier $i \in A$, el estabilizador G_i de i no es normal en G. Demostrad también que $G_i \cong S_{n-1}$.
- 27. Fijamos un m-ciclo σ en S_n , con $m \leq n$. Escribimos H_{σ} para el subgrupo de S_n que fija los m enteros que aparecen escritos en el ciclo σ .
 - (i) Determinad el número de conjugados de σ .
 - (ii) Determinad el orden de $C_{S_n}(\sigma)$.
 - (iii) Demostrad que $C_{S_n}(\sigma) = \{\sigma^i \tau : 0 \le i \le m-1, \tau \in H_\sigma\}.$
- 28. Determinad el cardinal de cada clase de conjugación en S_4 . Determinad el centralizador en S_4 de un representante de cada clase de conjugación de S_4 . En particular, encontrad $\sigma \in S_4$ con $C_{S_4}(\sigma) \cong D_8$. Encontrad $\tau \in S_5$ con $C_{S_4}(\tau) \cong D_8$.
- 29. Fijada la permutación $\sigma = (1, 2, 3, 4, 5)$ en S_5 , demostrad que:
 - (a) La clase de conjugación de σ en S_5 tiene cardinal 4!.
 - (b) $C_{S_5}(\sigma) = \langle \sigma \rangle$.
 - (c) Observad que el subgrupo $\langle \sigma \rangle$ contiene 4 elementos de orden 5. Indicad, usando (a), cuántos conjugados tiene el grupo $\langle \sigma \rangle$. Concluid que la inclusión $C_{S_5}(\sigma) < N_{S_5}(\langle \sigma \rangle)$ es estricta.
- 30. Comprobad que $C_{A_5}((1,2)(3,4))$ no puede contener ningún 3-ciclo ni ningún 5-ciclo.
- 31. Sea G un grupo y sea H un subgrupo de G. Escribimos A para el conjunto de co-conjuntos por la izquierda de H en G.
 - (i) Demostrad que G actúa sobre A mediante multiplicación por la izquierda,

$$g \cdot (g'H) := (gg')H.$$

- (ii) Demostrad que esta acción es transitiva.
- (iii) Demostrad que el estabilizador de $H \in A$ es $H \subseteq G$.
- (iv) Demostrad que el núcleo de la acción es $\bigcap_{g \in G} gHg^{-1}$.
- (v) Demostrad que el núcleo de la acción es el subgrupo normal de G más grande que está contenido en H.