Matrice Invertibili A	 det A ≠ 0 det(A⁻¹) = 1/det A A non invertibile se A^N = 0 Il prodotto di due matrici diagonali è diagonale Una matrice diagonale non è per forza invertibile (potrebbe avere degli zeri nella diagonale) Teorema di Binét: det(AB) = det A · det B Ogni matrice diagonale è simmetrica
Sistemi lineari	 Rouché-Capelli: ∞#incognite-rk(A) con #incognite ≠ rk(A) Se #incognite = rk(A) allora esiste una sola soluzione (#incognite sono le colonne, le soluzioni sono le righe) Gauss: R_i = R_i + (-a_{jj}/a_{jj})R_j
Vettori	• $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} x_1 + w_1 \\ x_2 + w_2 \end{bmatrix}$ • Dipendenza lineare: $\alpha v_1 + \beta v_2 = 0$ • Indipendenza lineare: $\alpha v_1 + \beta v_2 = 0 \rightarrow \alpha = \beta = 0$ • I vettori sono base di R^N quando la matrice composta dai vettori ha rango N • $v_1 \in \langle v_2, v_3 \rangle \rightarrow v_1 = \alpha v_2 + \beta v_3$
Vario	•

Qui ci andranno gli esercizi già fatti

$\sqrt{25} = 5$	$\sqrt{100} = 10$	$\sqrt{225} = 15$	$\sqrt{400} = 20$	$\sqrt{625} = 25$	$\sqrt{900} = 30$
$\sqrt{16} = 4$	$\sqrt{81} = 9$	$\sqrt{196} = 14$	$\sqrt{361} = 19$	$\sqrt{576} = 24$	$\sqrt{841} = 29$
$\sqrt{9} = 3$	$\sqrt{64} = 8$	$\sqrt{169} = 13$	$\sqrt{324} = 18$	$\sqrt{529} = 23$	$\sqrt{784} = 28$
$\sqrt{4}=2$	$\sqrt{49} = 7$	$\sqrt{144} = 12$	$\sqrt{289} = 17$	$\sqrt{484} = 22$	$\sqrt{729} = 27$
$\sqrt{1} = 1$	$\sqrt{36} = 6$	$\sqrt{121} = 11$	$\sqrt{256} = 16$	$\sqrt{441} = 21$	$\sqrt{676} = 26$