MCQ

- 1) Given that \mathbf{A} , \mathbf{B} and \mathbf{X} are 2x2 matrices and that \mathbf{A}^{-1} exists. If $\mathbf{X}\mathbf{A} = \mathbf{A}\mathbf{B}$, then
 - (a) $\mathbf{X} = \mathbf{A}\mathbf{B}\mathbf{A}^{-1}$

 $\mathbf{X} = \mathbf{A}^{-1}\mathbf{B}\mathbf{A}$

(c) X = ABA

- (d) $\mathbf{X} = \mathbf{B}$
- 2) Given $\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, which of the following is true?
 - (a) A is a zero matrix

- (b) **A** is a diagonal matrix
- (c) A is a symmetric matrix
- (d) **A** is an identity matrix
- 3) Which of the following illustrates the conjugate of **Z**, as shown below?

Imaginary axis

Imaginary axis

Imaginary axis

Imaginary axis

Imaginary axis

- 4) If $\overline{\mathbf{Z}}$ is the conjugate of the complex number \mathbf{Z} , then
 - (a) $arg(\mathbf{Z}) = arg(\overline{\mathbf{Z}})$

(b) $\frac{Z}{\overline{Z}}$ is real

(c) $\mathbf{Z} \overline{\mathbf{Z}}$ is real

- (d) $\mathbf{Z} \overline{\mathbf{Z}} = 0$
- 5) Given that $\mathbf{Z} = r / \underline{\theta}$, where θ is a positive acute angle. Then
 - (a) $j\mathbf{Z} = r / \theta + 90^\circ$

(b) $jZ = r/90^{\circ}$

(c) $j\mathbf{Z} = r/\theta - 90^\circ$

(d) $j\mathbf{Z} = \mathbf{r} / - \boldsymbol{\theta}$

The curve y = f(x) has a maximum point at x = a. Which of the following statements can be true at x = a? 6)

(a)
$$\frac{dy}{dx} > 0$$
 and $\frac{d^2y}{dx^2} = 0$

(b)
$$\frac{dy}{dx} = 0$$
 and $\frac{d^2y}{dx^2} < 0$

(c)
$$\frac{dy}{dx} = 0$$
 and $\frac{d^2y}{dx^2} > 0$

(d)
$$\frac{dy}{dx} < 0$$
 and $\frac{d^2y}{dx^2} = 0$

- Given that P (3, 7) is a stationary point on the curve y = f(x). If f''(3) > 0, then P is 7)
 - a point of inflexion

a minimum point

a maximum point (c)

- none of these (d)
- If y = f(x) and $\frac{dy}{dt}$ is the rate of change of y w.r.t. time t, then the rate of change of x w.r.t t can be expressed as

(a)
$$\frac{dx}{dt} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$
(c)
$$\frac{dx}{dt} = \frac{dy}{dt} \cdot \frac{dx}{dy}$$

(b)
$$\frac{dx}{dt} = \frac{dy}{dx} \div \frac{dy}{dt}$$

(c)
$$\frac{dx}{dt} = \frac{dy}{dt} \cdot \frac{dx}{dy}$$

(b)
$$\frac{dx}{dt} = \frac{dy}{dx} \div \frac{dy}{dt}$$
(d)
$$\frac{dx}{dt} = \frac{dy}{dt} \div \frac{dx}{dy}$$

The diagram of f'(x) over $0 \le x \le 2$ is shown. 9)

At
$$x = 1$$
, $f(x)$ has

- (a) a maximum value
- (b) a minimum value
- a point of inflexion (c)
- (d) none of these

- If f(x) > 0 for all x, $\int_{-1}^{1} f(x) dx = 3$ and $\int_{-1}^{6} f(x) dx = 7$, then $\int_{1}^{6} 2f(x) dx = 6$
 - (a)

(c) 8

- (d) 14
- 11) If c is a value such that a < c < b, then $\int_{a}^{b} f(x) dx =$

- $\int_{a}^{b} f(x) dx \int_{c}^{b} f(x) dx$ (b) $\int_{c}^{b} f(x) dx \int_{a}^{b} f(x) dx$ $\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$ (d) $-\int_{a}^{b} f(x) dx \int_{c}^{b} f(x) dx$

Basic Question

1. (a) Find x if
$$\begin{vmatrix} x & x \\ 1 & x-1 \end{vmatrix} = 15$$
. (b) Find x if $\begin{vmatrix} 2 & x & 3 \\ 1 & 3 & -1 \\ 2 & -2 & 5 \end{vmatrix} = 9$.

2. Use Cramer's Rule to solve for x only, given that:

$$x - y + z = 0$$

$$4x + 6y = 8$$

$$6y + 2z = 4$$

3. The currents in amperes in a certain electrical circuit satisfy the following equations. Use Cramer's Rule to solve for I₂ **only**.

$$2I_1 + 4I_2 + I_3 = 5$$

 $I_1 - 6I_2 + 2I_3 = 0$
 $6I_2 + 3I_3 = 6$

4. Use inverse matrix matrix to solve the system of equations.

$$2x + y = 23$$
$$4x - 3y = 11$$

5. Calculate the product
$$\begin{pmatrix} 3 & 1 & 5 \\ 6 & -3 & 4 \end{pmatrix} \begin{pmatrix} 0 & -1 & 5 \\ 1 & 0 & 2 \\ 4 & 9 & 2 \end{pmatrix}$$
.

6. Find the matrix
$$A$$
 such that $A-3\begin{pmatrix} 1 & -2 \\ 5 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 8 & 7 \end{pmatrix}$.

7. Given a singular matrix
$$\mathbf{A} = \begin{pmatrix} x-2 & -2 \\ -5 & x+1 \end{pmatrix}$$
, find the value(s) of x .

8. If
$$A = \begin{pmatrix} 2 & 6 \\ -1 & p \end{pmatrix}$$

- (i) For what value(s) of p is A^2 is a diagonal matrix?
- (ii) With the value of p found in part (i), does matrix A has an inverse? Justify your answer.

9. Find the value of
$$k$$
 such that the matrix $\begin{bmatrix} 1 & 0 & k+1 \\ 0 & k & 2 \\ 2k-1 & 2 & 3 \end{bmatrix}$ is a symmetric matrix.

10. If
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -1 & -3 \\ 5 & 6 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 3 & -5 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 1 & 2 \\ -6 & 3 \end{pmatrix}$, $\mathbf{D} = (-1 & 2)$ and $\mathbf{X} = (x \ y)$, find

(a)
$$2\mathbf{A} + \mathbf{B}^{\mathrm{T}}$$

(c) the values of
$$x$$
 and y if $XC = D$.

- 11. If $z_1=6e^{j0.4}$ and $z_2=1.27-j2.72$, evaluate the following and express your answers in exponential form. (a) z_1z_2 (b) $\frac{z_1}{z_2}$ (c) z_1-z_2 (d) $\left(\overline{z_2}\right)^4$ 12. If $Z=2\angle 35^\circ$ and $W=3\angle -50^\circ$, evaluate the following and express your answers in polar form.
 - (a) $\frac{\overline{Z}}{W}$

(b) W^3Z

- (c) 2Z+W
- 13. The total impedance of a parallel connection is given by $Z=\frac{Z_1Z_2}{Z_1+Z_2}$, where $Z_1=1+j$ and $Z_2=\sqrt{2}\ \angle -45^\circ$.
 - (a) Show that Z is real.

- (b) Plot Z_1 and Z_2 in the same Argand diagram.
- 14. Given that $Z_1 = -3 + j4$ and $Z_2 = 5 \angle 90^\circ$, express $\frac{\overline{Z_1}}{Z_2}$, Z_1Z_2 and Z_2^5 in exponential form.
- 15. Simplify $j6 + j^2 12 + j^3 2$.
- 16. The total impedance Z_T of a circuit is given as $Z_T = \frac{{z_1}^2 + z_2}{2z_1 + z_3}$ Ω .

If $z_1 = 3 \angle 0.5 \ \Omega$, $z_2 = 1.76 + j0.96 \ \Omega$, and $z_3 = 0.88 - j0.48 \ \Omega$, find

- (i) z_1^2 and $2z_1$, expressing your answers in rectangular form.
- (ii) $z_1^2 + z_2$ and express your answer in polar form.
- (iii) $2z_1 + z_3$ and express your answer in polar form.
- (iv) Hence find Z_T in polar form.
- 17. Solve for z in the following equations where z = x + jy: (a) $z^2 + j2z + 3 = 0$ (b) $z^2 + j2z - j = z$ (c) $z + 3\overline{z} = 8 - j6$
- 18. Solve the following equations for real values of x and y.
 - (a) $2x jy = \frac{1}{4 j}$ (b) x + jy = (2 + j3)(3 j4)
 - (c) $x jy = \frac{3 + j2}{j}$ (d) 3x + 2 = j(y + 2)
- 19. Find $\frac{dy}{dx}$ and simplify your answers where possible.
 - (a) $y = 6x^2 + 8\sqrt{x} \frac{1}{x^3} + 3$ (b) $y = 6x^5 + \sqrt{x} + \frac{1}{x}$ (c) $y = 4\sqrt{x} + 2\tan\left(\frac{x}{2}\right)$

(d)
$$y = 4\cos x + \frac{6}{x} - \ln x$$

(e)
$$y = x^2 e^{3x}$$

$$(f) \quad y = 2x^3 \cos 5x$$

(g)
$$y = \frac{\ln x}{\sin x}$$

(h)
$$y = (7 + 5x)^5$$

(i)
$$y = 5\cos(2x)$$

$$(j) y = \frac{e^x}{1+x}$$

(k)
$$3x^2 + y^2 = 9$$

(1)
$$y^2 - x^2 - 3y = 0$$

(m)
$$x^2 + 2y^2 + 3x - 7y = 9$$

(n)
$$y^2 + 6x = (x+3)^2$$

(o)
$$x^2 - 3xy^2 = 4$$

20. Find

(a)
$$\int (4+\sin 2x)\,dx$$

(b)
$$\int \left(2x^3 - \frac{1}{x} + \sec^2 x\right) dx$$

(b)
$$\int \left(2x^3 - \frac{1}{x} + \sec^2 x\right) dx$$
 (c)
$$\int \left(5\tan x \sec x + \frac{2}{x^2}\right) dx$$

(d)
$$\int (3e^{2x} - \frac{1}{2}\cos 2x) dx$$

(e)
$$\int \left(\sqrt{x} - \frac{3}{x} + \csc^2 4x \right) dx$$

$$(f) \int \left(5\cos\frac{x}{2} + \frac{2}{e^{2x}}\right) dx$$

(g)
$$\int (3x^5 - 2\sin(\pi x) + e) dx$$

21. Find the shaded area:

- The charge q (coulombs) on a conductor varies with time t (seconds) is given as $q = 10 (1 e^{-\frac{t}{10}})$ 22. Find the current i at t = 10s. (note: $i = \frac{dq}{dt}$)
- The current flowing to a L = 15 mH-inductor at time t (second) is given by 23. $i = 0.005 \sin \left(1000t + \frac{5}{8} \right)$ ampere. The voltage (volt) across the inductor is $V_L = L \frac{di}{dt}$. Find V_L .
- The electric current i(A) in a circuit at time t(s) is given by $i = \frac{1}{4} \left[2\sqrt{t} t \right]$ 24.

Assume that the initial charge is zero, (i) find the charge q as a function of t. $\{i = \frac{dq}{dt}\}$

- (ii) hence find q at t = 2 s.
- 25. The current i(A) flowing to a 0.01 F capacitor at time t(s) is given by $i = \cos t + 6 \sin 3t$ If the initial voltage is zero,
 - (i) find the voltage as a function of t. $\left\{ \text{Hint: } i = C \frac{dv}{dt} \right\}$
 - (ii) calculate the voltage at t = 0.1 s.
- The voltage v_L across a 0.1 H inductor at time t seconds is given by $v_L = 1 + \sin 5t \cos 10t$ (volts). 26. Find the current *i* flowing in the circuit after 0.1 second, if initially there is no current. (Note: $v_L = L \frac{di}{dt}$)
- At time t seconds, the current i flowing in a certain circuit is given by $i = \frac{7}{4} \cdot 1 e^{-10t}$ amperes. Given 27. that initially the charge q on the capacitor is zero, find the charge at time t seconds. (Note: $i = \frac{dq}{dt}$).
- Given the function $y = e^{\sin x + \cos x}$, find 28.
 - (i) the slope of the tangent line at $x = \frac{\pi}{2}$. (ii) the equation of the tangent line at $x = \frac{\pi}{2}$.
- Find the equation of the tangent line to the curve $xy + y^2 + 2 = 0$ at y = 1. 29.
- During the testing of an electrical component, the current I amperes and voltage V volts were found to 30. be related by the equation $2i+1=kV^n$, where k and n are constants. Rewrite the equation into a form suitable for a straight line graph. State clearly what should be plotted on each axis. Explain how the constants k and n can be obtained from the graph.
- 31. The linear equatin of the graph below is of the form lny = kx + lna, where a and k are constants. From the graph (which is not scale), determine the values of a and k.

Hence express the above equation into the original laws not involving logarithms. (Leave the equation in terms of a and k)

Intermediate/ Challenging Questions

1) The impedance of an electrical circuit is given by

$$Z = R + j\omega L + \frac{1}{j \omega C}$$

where R, ω , L and C are real.

Find ω (ω > 0) in terms of L and C if Z is real.

- Given that $\frac{1}{R} + j\omega C = \frac{j\omega C_1}{1+j\omega R_1 C_1}$, find R in terms of ω , R₁ and C₁.
- 3) The resultant impedance Z in a certain circuit is given by the formula

 1 1 1 1

$$\frac{1}{Z} = \frac{1}{(1-j2)^2} + \frac{1}{b(1+j)} ,$$

where b is a constant.

Given that Z is a real number, find the value of b.

4) The condition of balance of an AC bridge is

$$Z_1 Z_3 = Z_2 Z_4,$$

where $Z_1 = R + jX$, $Z_2 = 2 - j$, $Z_3 = 1 + j$ and $Z_4 = j8$.

Find the values of the resistance R and the reactance X.

- 5) Given that |z-3|=4 and the argument of z is $\frac{3\pi}{4}$, find z in rectangular form.
- The voltage v (volts) produced by a current i (amperes) in a wire is given by $v = \frac{3i}{4}$. Find the rate at which current is increasing if $\frac{dv}{dt} = 90 \ mV/s$.
- The total voltage v across a series RC circuit is given by $v = \sqrt{{v_R}^2 + {v_c}^2}$, where v_R and v_c are voltages across the resistor R and the capacitor C respectively. If v_R is constant at 4 volts and v_c is decreasing at a rate of 0.5 volts/second. Find
 - (i) $\frac{dv}{dv}$ in terms of v_c .
- (ii) the rate at which $\,v\,$ is changing when $\,v_c\,$ is 3 volts.
- 8). The electric field E at a point is given by

$$E = x + \frac{4}{x - 2}$$

where x is the distance from the centre of the charge (x > 0).

Find the value of x for E to be a minimum.

- 9) The power *P* is given by $P = \frac{12R}{25 + R^2}$ where *R* is the variable resistance. Find the value of *R* at the point where maximum or minimum power occur.
- The power P (watts) delivered to a load is $P = 120I 5I^2$, where I (amperes) is the current to the load. If the current is changing at a rate of 1.5 A/s, find the rate of change of the power when I = 10 amperes.
- 11) The energy E stored in a constant inductance L is related to the current i flowing through it as $E = \frac{1}{2}Li^2$ joules
 - (i) Find $\frac{dE}{di}$ in terms of L and i.
 - (ii) It is given that at a certain instant, L = 15 H, i = 2 A and $\frac{di}{dt} = 0.5$ A/s. Find the rate of change of E at that instant.

Answers:

(MCQ)

11. (c)

(Basic Question)

1) (a)
$$x = 5$$
, $x = -3$

(b)
$$x = -1$$

(2)
$$x = 10/11$$

(3)
$$I_2 = 0.5A$$

(4)
$$x=8$$
, $y=7$

$$(5) \quad \begin{pmatrix} 21 & 42 & 27 \\ 13 & 30 & 32 \end{pmatrix}$$

$$\begin{pmatrix}
2 & -3 \\
23 & 7
\end{pmatrix}$$

(7)
$$x=4, -3$$

(8) (i)
$$p = -2$$

8(ii) Yes, because
$$|A| \neq 0$$
 (9) $k = 2$

(9)
$$k = 2$$

10)(a)
$$\begin{pmatrix} 1 & 6 \\ -2 & -3 \\ 11 & 7 \end{pmatrix}$$
 (b) $\begin{pmatrix} -11 & 8 \\ 17 & -11 \\ -31 & 28 \end{pmatrix}$

(b)
$$\begin{pmatrix} -11 & 8 \\ 17 & -11 \\ -31 & 28 \end{pmatrix}$$

(c)
$$x = 3/5$$
, $y = 4/15$

(11) (a)
$$18e^{-j0.734}$$

(b)
$$2e^{j1.534}$$

(c)
$$6.61e^{j0.87}$$

(d)
$$81e^{-j1.75}$$

(12) (a)
$$\frac{2}{3} \angle 15^{\circ}$$

(b)
$$54\angle -115^{\circ}$$
 (c) $5.2\angle -0.04^{\circ}$

(c)
$$5.2\angle -0.04^{\circ}$$

13)
$$z = 1$$
 or $1 \angle 0^{\circ}$

(14)
$$e^{j2.5}$$
 , $25e^{-j2.5}$, $3125e^{j\frac{\pi}{2}}$

$$j\frac{\pi}{2}$$

(15)
$$-12 + j4$$

(i)
$$4.8627 + j7.5732$$
, $5.2655 + j2.8766$

(17) (a)
$$j$$
, $-j3$

(b)
$$Z = 0.5 - j \ 0.134$$
 or $0.5 - j \ 1.866$

6 (c)
$$2+j3$$

(18) (a)
$$x=2/17$$
, $y=-1/17$

(b)
$$x = 18, y = 1$$

(19) (a)
$$y' = 12x + \frac{4}{\sqrt{x}} + \frac{3}{x^4}$$
 (b) $y' = 30x^4 + \frac{1}{2\sqrt{x}} - \frac{1}{x^2}$ (c) $y' = \frac{2}{\sqrt{x}} + \sec^2\left(\frac{x}{2}\right)$

(b)
$$y' = 30x^4 + \frac{1}{2\sqrt{x}} - \frac{1}{x^2}$$

(c)
$$y' = \frac{2}{\sqrt{x}} + \sec^2\left(\frac{x}{2}\right)$$

(d)
$$y' = -4\sin x - \frac{6}{x^2} - \frac{1}{x}$$

(e)
$$y' = xe^{3x}(3x+2)$$

(f)
$$y' = 2x^2(3\cos 5x - 5x\sin 5x)$$

(g)
$$y' = \frac{\sin x - x \cos x \ln x}{x \sin^2 x}$$
 (h) $y' = 25(7 + 5x)^4$ (i) $y' = -10\sin 2x$

(h)
$$y' = 25(7+5x)^4$$

$$(i) y' = -10\sin 2x$$

(j)
$$y' = \frac{xe^x}{(1+x)^2}$$

(k)
$$\frac{dy}{dx} = -\frac{3x}{y}$$

$$(1) \frac{dy}{dx} = \frac{2x}{2y - 3}$$

(m)
$$\frac{dy}{dx} = \frac{-2x-3}{4y-7}$$
 or $\frac{2x+3}{7-4y}$ (n) $\frac{dy}{dx} = \frac{x}{y}$

(n)
$$\frac{dy}{dx} = \frac{x}{y}$$

(o)
$$\frac{dy}{dx} = \frac{2x - 3y^2}{6xy}$$

(20) (a)
$$4x - \frac{1}{2}\cos 2x + C$$
 (b) $\frac{x^4}{2} - \ln|x| + \tan x + C$ (c) $5\sec x - \frac{2}{x} + C$

(b)
$$\frac{x^4}{2} - \ln|x| + \tan x + C$$

(c)
$$5 \sec x - \frac{2}{x} + C$$

(d)
$$\frac{3}{2}e^{2x} - \frac{1}{4}\sin 2x + C$$

(d)
$$\frac{3}{2}e^{2x} - \frac{1}{4}\sin 2x + C$$
 (e) $\frac{2}{3}x^{\frac{3}{2}} - 3\ln|x| - \frac{1}{4}\cot 4x + C$ (f) $10\sin \frac{x}{2} - e^{-2x} + C$

$$10\sin\frac{x}{2} - e^{-2x} + C$$

(g)
$$\frac{1}{2}x^6 + \frac{2}{\pi}\cos \pi x + ex + C$$

(21) (a) 4.5 (b) 3.33 (22) 0.368
(23)
$$V_L = 0.075 \cos \left(1000t + \frac{5}{8} \right)$$
 (24) (i) $q = \frac{1}{3}t^{\frac{3}{2}} - \frac{1}{8}t^2$ (ii) 0.44

(24) (i)
$$q = \frac{1}{3}t^{3/2} - \frac{1}{8}t^2$$

(25) (i)
$$v_c = 100(\sin t - 2\cos 3t + 2)$$
 (ii) 18.92

(27)
$$q = \frac{7}{4} \left(t + \frac{1}{10} e^{-10t} \right) - \frac{7}{40}$$

(28) (i) Slope at
$$x = \frac{\pi}{2}$$
, $\frac{dy}{dx}\Big|_{x=\frac{\pi}{2}} = -e$

(28) (i) Slope at $x = \frac{\pi}{2}$, $\frac{dy}{dx}\Big|_{x=\frac{\pi}{2}} = -e$ (ii) Equation is $y = e + \frac{\pi}{2}e - ex$ or y = 6.99 - ex

(29)
$$y = x + 4$$

(30)
$$ln(2i + 1) = lnk + n lnV$$
; $lnk = intercept on Vertical-axis$; $n = gradient of the straight line$

(31)
$$k = -0.625$$
, $a = 115.58$; $y = ae^{kx}$

(Intermediate/Challenging Questions)

(1)
$$\omega = \sqrt{\frac{1}{LC}}$$

(1)
$$\omega = \sqrt{\frac{1}{LC}}$$
 (2) $R = \frac{1 + \omega^2 R_1^2 C_1^2}{\omega^2 R_1 C_1^2}$ (3) $b = \frac{25}{8}$ (5) $Z = -0.898 + j 0.898$ (6) $\frac{di}{dt} = 120 \text{ mA/s}$

(3)
$$b = \frac{25}{8}$$

$$(4) R = 12 , X = 4$$

$$(5) Z = -0.898 + j \ 0.898$$

(6)
$$\frac{di}{dt} = 120 \text{ mA/s}$$

(7) (i)
$$\frac{dv}{dv_c} = \frac{v_c}{\sqrt{16 + v_c^2}}$$
 (ii) $\frac{dv}{dt} = -0.3 \text{ V/s}$

(ii)
$$\frac{dv}{dt} = -0.3 \text{ V/s}$$

(8)
$$x = 4$$

(9)
$$R=5$$
 ohms

(11) (i)
$$\frac{dE}{di} = Li$$