Statistical Inference and Multivariate Analysis (MA324)

Lecture 33

Principal Component Analysis

Indian Institute of Technology Guwahati

Jan-May 2023

Principal Component Analysis

- Concerned with explaining the variance-covariance structure of a set of variables through a few linear combinations of these variables.
- Objectives
 - Data Reduction.
 - Interpretation.
- Serves as intermediate steps in a larger study (Multiple Linear Regression, Cluster Analysis).
- Wide application areas: including image analysis, finance, health sector, cryptography, data-privacy etc.

Population Pricipal Components

- Let $X_1, X_2, ..., X_p$ be p-random variables with variance-covariance matrix Σ .
- First we want to find a linear combination of $X = (X_1, X_2, ..., X_p)$, say a'_1X , such that $Var(a'_1X)$ is maximum.
- Note that $Var(a'_1 \widetilde{X}) = a'_1 \Sigma a_1$. Now by multiplying a_1 by a constant, we can increase $a'_1 \Sigma a_1$ arbitrarily.
- Therefore, a more precise aim is:

$$\max_{\underline{a_1}} Var(\underline{a_1'X}) = \max_{\underline{a_1}} \underline{a_1'} \Sigma \underline{a_1},$$

subject to $a_1'a_1=1$

- Thus, 1^{st} principal component = linear combination a'_1X which maximizes $Var(a'_1X)$ subject to $a'_1a_1=1$
- Next, we want to find another linear cobination, say $a_2'\tilde{X}$, such that $Var(a_2'\tilde{X})$ is maximum subject to $a_2'\tilde{a_2}=1$ and $Cov(a_1'\tilde{X},a_2'\tilde{X})=0$.
- We proceed in the following manner
 - i^{th} principle component = linear combination $a'_i X$ that maximizes $Var(a'_i X)$ subject to $a'_i a_i = 1$ and $Cov(a'_k X, a'_i X) = 0$ for k < i.
- $\bullet \ \ \text{Notice that} \ Cov(a_k'\tilde{\chi},a_i'\tilde{\chi})=a_i'\Sigma a_k, \ \text{and} \ Var(a_i'\tilde{\chi})=a_i'\Sigma a_i.$

Theorem: Maximization of Quadratic Forms

Let $B_{p \times p}$ be a symmetric non-negative definite matrix with eigen-values $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p \geq 0$ and associated normalized eigen-vectors $e_1, e_2, ..., e_p$.

Then,

$$\begin{split} \max_{\underline{x} \neq \underline{0}} \frac{\underline{\underline{x}'B\underline{x}}}{\underline{\underline{x}'\underline{x}}} &= \lambda_1 \left(= \frac{\underline{e_1}'B\underline{e_1}}{\underline{e_1}'\underline{e_1}} \right) \ attained \ at \ \underline{\underline{x}} = \underline{e_1}, \\ \min_{\underline{x} \neq \underline{0}} \frac{\underline{\underline{x}'B\underline{x}}}{\underline{\underline{x}'\underline{x}}} &= \lambda_p \ attained \ at \ \underline{\underline{x}} = \underline{e_p} \end{split}$$

Moreover,

$$\max_{\underline{x} \neq \underline{0}, \underline{x} \perp e_{\underline{1}}, ..., e_{k-1}} \frac{\underline{x}^{'}B\underline{x}}{\underline{x}\underline{x}^{'}} = \lambda_k \ attained \ at \ \underline{x} = \underline{e_k}, k = 1, 2, ..., p$$

Theorem

Let $\Sigma_{p \times p}$ be the variance-covariance matrix of $X = (X_1, ..., X_p)$. Let Σ have the eigen-value-eigen-vector pair $(\lambda_1, e_1), (\lambda_2, e_2), ..., (\lambda_p, e_p)$ where $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p \geq 0$. Then the i^{th} principal component is given by,

$$Y_i = e_i^{'} X, \quad i = 1, 2, ..., p.$$

With these choices $Var(Y_i) = \lambda_i$ and $Cov(Y_i, Y_j) = 0$ for $i \neq j$. Moreover, if some λ_i are equal, the choices of e_i are not unique, and hence Y_i are not unique.

Theorem

$$\sum_{i=1}^p Var(X_i) = \sigma_{11} + \sigma_{22} + \ldots + \sigma_{pp} = tr(\Sigma) = \lambda_1 + \lambda_2 + \ldots + \lambda_p = \sum_{i=1}^p Var(Y_i).$$

- Therefore, the proportion of total variance explained by i^{th} principal component is $\frac{\lambda_i}{\lambda_1 + \dots + \lambda_n}$, $i = 1, 2, \dots, p$.
- e_{ik} measures the importance of X_k to the i^{th} principal component.
- ullet Particularly, e_{ik} is proportional to the correlation coefficient between Y_i and X_k .

Theorem

If $Y_1 = e_1{}'\tilde{X}, Y_2 = e_2{}'\tilde{X}, \cdots, Y_p = e_p{}'\tilde{X}$ are the principal components obtained from the covariance matrix Σ , and ρ_{Y_i,X_k} denotes the correlation coefficient between the Y_i and X_k , then

$$\rho_{Y_i, X_k} = \frac{e_{ik} \sqrt{\lambda_i}}{\sqrt{\sigma_{kk}}},$$

where $(\lambda_i, e_i), i = 1, \dots, p$ are the eigenvalue-eigenvector pairs for Σ .

