Règles de preuve de pp

Table des matières

1	Introduction	2
2	Documents de référence	3
3	Syntaxe	4
4	Preuve et règles d'inférence	6
5	Règles d'inférence	8
	5.1 Conjonction	8
	5.2 Disjonctions	8
	5.3 Implications	9
	5.4 Équivalence	10
	5.5 Négation	10
	5.6 Axiomes	11
	5.7 Quantification universelle	11
	5.8 Quantification existentielle	14
	5.9 Vrai et Faux	15
	5.10 Règles STOP	15
	5.11 Règle INS	16
	5.12 Normalisation	16
	5.13 Règles sur les égalités	21
	5.14 Règles sur l'arithmétique	24
	5.15 Règles sur les booléens	25

Introduction

Le prouveur de prédicat est un programme de preuve automatique de formules du calcul des prédicats du premier ordre avec égalité. Il est couplé avec un "frontal" destiné à traduire des formules ensemblistes en prédicats du premier ordre avec égalité.

Ce document présente l'ensemble des règles d'inférences utilisées par le prouveur de prédicat. Il s'agit d'un extrait de la spécification du prouveur de prédicats, rédigée par Jean-Raymond Abrial et Nicolas Carré.

La syntaxe propre au prouveur de prédicat est détaillée au chapitre 3.

Après un rappel succinct de la preuve par règles d'inférences (chapitre 4), sont alors décrits :

- les règles d'inférence pour la logique propositionnelle (chapitre ??),
- les règles d'inférence pour la logique des prédicat (chapitre ??),
- les règles d'inférence pour la logique des prédicates avec égalité (chapitre ??).

Documents de référence

1. B-Book. J-R Abrial. Cambridge University Press, ISBN 0-521-49619-5

Syntaxe

Les formules qui peuvent être soumises au prouveur de prédicats relèvent de la syntaxe suivante :

$$prd ::= prd \land prd$$
 $prd \lor prd$
 $prd \implies prd$
 $prd \iff prd$
 $prd \iff prd$
 $\neg prd$
 $\forall vrb \cdot prd$
 $\exists vrb \cdot prd$
 $exp = exp$
 frm
 $vrb ::= vrb, idt$
 idt

Les symboles frm et exp désignent respectivement des prédicats et des expressions correspondant à des formules relevant d'une syntaxe élargissant la syntaxe présentée ci-dessus (formules ne contenant, bien entendu, aucun des connecteurs logiques de la syntaxe précédente). Ces formes syntaxiques servent à écrire des prédicats ou des expressions quelconques. Le symbole idt désigne un identificateur formé d'une ou plusieurs lettres.

Les opérateurs introduits dans la syntaxe précédente obéissent aux règles de priorité (relative) et d'associativité suivantes :

Opérateur	Priorité	Associativité	ASCII
	7	à droite	
\forall	6		!
3	6		#
,	5	à gauche	,
=	4	à gauche	=
_	3		not
٨	2	à gauche	and
V	2	à gauche	or
\implies	0	à gauche	=>
\iff	1	à gauche	<=>
\Diamond	11		forall
\Diamond	11		forall2

à noter qu'il est toujours possible de mettre des sous-formules entre parenthèses pour contourner les règles précédentes.

Dans la syntaxe, les opérateurs ont été présentés sous leur forme "mathématique", c'est celle que nous utiliserons dans ce document. Pour mettre en oeuvre le prouveur de prédicat on utilise la forme "ASCII" qui figure dans la dernière colonne du tableau précédent.

Version 1-0 5/26

Preuve et règles d'inférence

Les règles d'inférence sont définies sur le modèle de ?? (Chapitre 1). Nous renvoyons à cette référence pour plus de détails sur la nature de ces règles et sur la façon de les utiliser en "chaînage arrière" pour effectuer des preuves mécaniquement.

Rappelons seulement ici que les règles d'inférence relèvent de la forme générale suivante :

$$\Sigma_1$$
 \vdots
 Σ_n
 Σ

où les Σ_i sont des séquents, c'est-à-dire des constructions de la forme

$$H \vdash P$$

où H désigne une collection finie de prédicats constituant les $hypoth\`eses$ du séquent, et où P désigne un prédicat constituant la conclusion du séquent.

Les séquents $\Sigma_1, \ldots, \Sigma_n$ constituent les antécédents de la règle précédente, tandis que Σ constitue son conséquent. La plupart du temps le nombre d'antécédents est égal à 1, éventuellement à 2. Il peut aussi être nul, auquel cas la règle s'appelle un axiome.

Dans la suite, nous représenterons une règle de nom $\mathcal R$ par un tableau comme indiqué ci-dessous :

	Antécédents	Conséquent
	Σ_1	
\mathcal{R}		Σ
	Σ_n	

ppTrans

à noter que, parfois, certains "antécédents" ne sont pas des séquents, mais plutôt des "conditions annexes" (en anglais, side conditions) qui sont simplement écrites en français. Nous étendrons plus bas la notion de règle d'inférence présentée ici à celle de règle d'inférence dite "avec résultat" (section ??).

Version 1-0 7/26

Règles d'inférence

5.1 Conjonction

	Antécédents	Conséquent
AND1	$H \vdash \neg Q \implies R$	$H \vdash \neg (P \land Q) \implies R$
71101	$H \vdash \neg P \implies R$	
AND2	$H \vdash P \implies \neg Q$	$H \vdash \neg (P \land Q)$
AND3	$H \vdash P \implies (Q \implies R)$	$H \vdash (P \land Q) \implies R$
AND4	$H \vdash Q$	$H \vdash P \land Q$
711101	$H \vdash P$	
AND5	$P \wedge \cdots$ contient A	$H \vdash P \land \cdots \land (A \Longrightarrow B) \land \cdots \Longrightarrow R$
, (1403	$H \vdash P \land \cdots \land B \land \cdots \implies R$	

5.2 Disjonctions

	Antécédents	Conséquent
OR1	$H \; \vdash \; \neg P \; \Longrightarrow \; (\neg Q \; \Longrightarrow \; R)$	

	Antécédents	Conséquent
OR2	$H \vdash \neg Q$	$H \vdash \neg (P \lor Q)$
	$H \vdash \neg P$	
OR3	$H \vdash Q \implies R$	$H \vdash (P \lor Q) \implies R$
	$H \vdash P \implies R$	
OR4	$H \vdash \neg P \implies Q$	$H \vdash P \lor Q$

5.3 Implications

	Antécédents	Conséquent
IMP1	$H \vdash P \implies (\neg Q \implies R)$	$H \vdash \neg (P \implies Q) \implies R$
IMP2	$H dash \neg Q$	$H \vdash \neg (P \implies Q)$
	$H \vdash P$	
IMP3	$\begin{array}{c} H \vdash Q \implies R \\ H \vdash \neg P \implies R \end{array}$	$H \vdash (P \Longrightarrow Q) \implies R$
	$H \vdash \neg P \implies R$	(1 / 4)
IMP4	$H,P \; \vdash \; Q$	$H \vdash P \implies Q$
IMP5	P est dans H	$H \vdash P \Longrightarrow Q$
	$H \mathrel{\vdash} Q$	

	Antécédents	Conséquent	Résultat
IMP4'	$(H,P \vdash Q) \rightsquigarrow R$	$H \vdash P \implies Q$	$P \implies R$

Version 1-0 9/26

5.4 Équivalence

	Antécédents	Conséquent
EQV1	$H \vdash P \Longrightarrow (\neg Q \Longrightarrow R)$ $H \vdash \neg P \Longrightarrow (Q \Longrightarrow R)$	$H \vdash \neg (P \iff Q) \implies R$
	$H \vdash \neg P \Longrightarrow (Q \Longrightarrow R)$	(1 (, , , ,) , , 10
EQV2	$\begin{array}{c} H \vdash P \implies \neg Q \\ \\ H \vdash \neg Q \implies P \end{array}$	$H \vdash \neg (P \iff Q)$
	$H \vdash \neg Q \implies P$	(
EQV3	$ \begin{array}{cccc} & H \vdash P \implies (Q \Longrightarrow R) \\ & H \vdash \neg P \implies (\neg Q \Longrightarrow R) \end{array} $	$H \vdash (P \iff Q) \Longrightarrow R$
,	$ \mid H \vdash \neg P \implies (\neg Q \implies R) $	()
EQV4	$\begin{array}{ccc} H \vdash P \implies Q \\ \\ H \vdash Q \implies P \end{array}$	$H \vdash P \iff Q$
	$H \vdash Q \implies P$	Į ,

х

5.5 Négation

	Antécédents	Conséquent
NOT1	$H \vdash P \implies R$	$ H \vdash \neg \neg P \implies R $
NOT2	$H \vdash P$	$H \vdash \neg \neg P$

Version 1-0 10/26

5.6 Axiomes

	Antécédents	Conséquent
AXM1	$\neg P$ est dans H	$H \vdash P \implies Q$
AXM2	P est dans H	$H \vdash \neg P \implies Q$
AXM3	P est dans H	$H \vdash P$
AXM4	R est dans H	$H \vdash P \implies R$
AXM5	$\neg Q$ est dans H	$H \; \vdash \; P \; \implies \; (Q \; \implies \; R)$
AXM6	Q est dans H	$H \; \vdash \; P \; \implies \; (\neg Q \; \implies \; R)$
AXM7		$H \vdash P \implies P$
AXM8	$P \wedge \cdots$ contient R	$H \vdash P \land \cdots \implies R$
AXM9	$\forall x \cdot \neg (VRAI \land P) \text{ est dans H}$	$H \vdash R \implies Q$
7.0.0019	On a E tel que $[x := E] P = R$	

5.7 Quantification universelle

	Antécédents	Conséquent
ALL1	x et y sont distinctes	$H \vdash \neg(\forall x \cdot \forall y \cdot P) \implies R$
	$ \mid H \vdash \neg (\forall (x,y) \cdot P) \implies R $	(
ALL2	x et y sont distinctes	$ H \vdash \neg (\forall x \cdot \forall y \cdot P) $
, , , , , ,	$H \vdash \neg (\forall (x,y) \cdot P)$	

Version 1-0 11/26

	Antécédents	Conséquent
ALL3	x et y sont distinctes	$ \mid H \vdash (\forall x \cdot \forall y \cdot P) \implies R $
7.220	$H \vdash (\forall (x,y) \cdot P) \implies R$	(
ALL4	x et y sont distinctes	$ \mid H \; \vdash \; \forall x \cdot \forall y \cdot P $
	$H \; \vdash \; \forall (x,y) \cdot P$	J
ALL5	x non libre dans R	$ H \vdash \neg(\forall x \cdot P) \implies R $
	$H \vdash \forall x \cdot (\neg P \implies R)$	() ()
	x est libre dans R	
ALL5	y n'est libre ni dans P ni dans ${\cal R}$	$H \vdash \neg(\forall x \cdot P) \implies R$
/ LLS	S est le résultat de la substitution $[x:=y] P$	
	$H \; \vdash \; \forall y \cdot (\neg S \; \implies \; R)$	
ALL6	$H \vdash (\forall x \cdot P) \implies FAUX$	$H \vdash \neg(\forall x \cdot P)$
	x non libre dans H	
ALL7	$(H \vdash P) \leadsto R$	$ \mid H \vdash (\forall x \cdot P) \implies Q $
	$H \vdash (\lozenge x \cdot R) \implies Q$	
	x est libre dans H	
	y n'est libre ni dans A ni dans H	
ALL7	P est le résultat de la substitution $[x:=y]$ A	$ \mid H \vdash (\forall x \cdot A) \implies Q $
	$(H \vdash P) \leadsto R$	
	$(H \vdash P) \leadsto R$ $H \vdash (\lozenge x \cdot R) \implies Q$	
ALL8	x non libre dans H	$H \vdash \forall x \cdot P$
ALLO	$H \mathrel{\vdash} P$	III V & · I
	x est libre dans H	
ALL8	y n'est libre ni dans P ni dans H	$H \vdash \forall x \cdot P$
on 1-0	R est le résultat de la substitution $[x := y] P$	12/26
	$H \vdash R$	

	Antécédents	Conséquent
ALL9	$H, (\forall \ x \cdot T) \ \vdash \ Q$	$H \vdash (\lozenge x \cdot T) \implies Q$

	Antécédents	Conséquent	Résultat
ALL7'	x non libre dans H $ (H \vdash P) \leadsto R $ $ (H \vdash (\diamondsuit x \cdot R) \implies Q) \leadsto S $	$H \vdash (\forall x \cdot P) \implies Q$	S
ALL7'	x est libre dans H y n'est libre ni dans A ni dans H P est le résultat de la substitution $[x:=y]A$ $(H \vdash P) \leadsto R$ $(H \vdash (\diamondsuit x \cdot R) \implies Q) \leadsto S$	$H \vdash (\forall x \cdot A) \implies Q$	S
ALL8'	x non libre dans H $(H \vdash P) \rightsquigarrow Q$	$H \vdash \forall x \cdot P$	$\forall x \cdot Q$
ALL8′	x est libre dans H y n'est libre ni dans P ni dans H R est le résultat de la substitution $[x:=y] P$ $(H \vdash R) \rightsquigarrow Q$	$H \vdash \forall x \cdot P$	$\forally\cdot Q$
ALL9'	$(H, (\forall x \cdot P) \vdash Q) \rightsquigarrow R$	$H \vdash (\lozenge x \cdot P) \implies Q$	$(\forall x \cdot P) \implies R$

Version 1-0 13/26

5.8 Quantification existentielle

	Antécédents	Conséquent
XST1	x et y sont distinctes $H \vdash \neg (\exists (x,y) \cdot P) \implies R$	$H \vdash \neg (\exists x \cdot \exists y \cdot P) \implies R$
XST2	x et y sont distinctes $H \vdash \neg (\exists (x,y) \cdot P)$	$H \vdash \neg (\exists x \cdot \exists y \cdot P)$
XST3	x et y sont distinctes $H \vdash (\exists (x,y) \cdot P) \implies R$	$H \vdash (\exists x \cdot \exists y \cdot P) \implies R$
XST4	x et y sont distinctes $H \; \vdash \; \exists (x,y) \cdot P$	$H \vdash \exists x \cdot \exists y \cdot P$
XST5	$H \vdash (\forall x \cdot \neg P) \implies R$	$H \vdash \neg (\exists x \cdot P) \implies R$
XST51	$H \vdash (\forall x \cdot P) \implies R$	$H \vdash \neg (\exists x \cdot \neg P) \implies R$
XST6	$H \vdash \forall x \cdot \neg P$	$H \vdash \neg (\exists x \cdot P)$
XST61	$H \vdash \forall x \cdot P$	$H \vdash \neg (\exists x \cdot \neg P)$
XST7	x non libre dans R $H \vdash \forall x \cdot (P \implies R)$	$H \vdash (\exists x \cdot P) \implies R$
XST7	x est libre dans R y n'est libre ni dans P ni dans R Q est le résultat de la substitution $[x:=y] P$ $H \vdash \forall y \cdot (Q \implies R)$	$H \vdash (\exists x \cdot P) \implies R$

Version 1-0 14/26

	Antécédents	Conséquent
	x non libre dans H	
XST8	$(H \vdash \neg P) \leadsto R$	$H \vdash \exists x \cdot P$
	$H \vdash (\forall x \cdot R) \implies FAUX$	
	x est libre dans H	
XST8	y n'est libre ni dans A ni dans H	
	P est le résultat de la substitution $[x := y] A$	$H \vdash (\exists x \cdot A)$
	$(H \vdash \neg P) \rightsquigarrow R$	
	$H \vdash (\forall x \cdot R) \implies FAUX$	

5.9 Vrai et Faux

	Antécédents	Conséquent
VR1		$H \vdash \neg VRAI \implies R$
VR2	H ⊢ FAUX	H ⊢ ¬VRAI
VR3	$H \vdash R$	$H \vdash VRAI \implies R$
VR4		H ⊢ VRAI
FX1	$H \vdash R$	$H \vdash \neg FAUX \implies R$
FX2		H ⊢ ¬FAUX
FX3		$H \vdash FAUX \implies R$

5.10 Règles STOP

	Antécédents	Conséquent
STOP	P n'est pas le prédicat $FAUX$	$H \vdash P$
	$H \vdash \neg P \implies FAUX$	

Version 1-0 15/26

	Antécédents	Conséquent	Résultat
STOP'		$H \vdash P$	P

5.11 Règle INS

	Antécédents	Conséquent
INS	Détermination des intanciations Q_1, Q_2, \ldots, Q_n	H ⊢ FAUX
	$H \vdash Q_1 \implies (Q_2 \implies \dots (Q_n \implies FAUX)\dots)$	THE THORE

5.12 Normalisation

Version 1-0 16/26

	Antécédents	Conséquent
NRM1	x non libre dans P	$H \vdash (\lozenge x \cdot P) \Longrightarrow S$
INIXIVII	$H \vdash P \Longrightarrow S$	$\Pi \vdash (\Diamond x \cdot T) \longrightarrow S$
NRM2	x non libre dans P	$ H \vdash \Diamond x \cdot (P \implies Q) \implies S $
	$H \vdash (P \implies \Diamond x \cdot Q) \implies S$	V (1 / Q) / ~
	x non libre dans Q	
NRM3	Q n'est pas le prédicat $FAUX$	$H \vdash \Diamond x \cdot (P \implies Q) \implies S$
	$H \vdash (Q \Longrightarrow S) \land ((\forall x \cdot \neg P) \Longrightarrow S)$	
NRM4	x non libre dans Q	$ H \vdash \Diamond x \cdot (P \implies (Q \implies R)) \implies S $
	$H \vdash (Q \implies \Diamond x \cdot (P \implies R)) \implies S$	
NRM5	$H \vdash \Diamond x \cdot (P \land Q \implies R) \implies S$	$H \vdash \Diamond x \cdot (P \implies (Q \implies R)) \implies S$
NRM6	$H \vdash \Diamond x \cdot (R \implies P) \implies$	$ H \vdash \Diamond x \cdot (R \implies P \land Q) \implies S $
	$(\lozenge x \cdot (R \implies Q) \implies S)$	V a (10 / 1 / V V) / 2
NRM7	$H \vdash (\lozenge x \cdot P) \Longrightarrow$	$ H \vdash \Diamond x \cdot (P \land Q) \implies S $
	$((\diamondsuit x \cdot Q) \implies S)$	
NRM8	x et y sont distincts	$ \mid H \vdash (\Diamond x \cdot \forall y \cdot Q) \implies S $
	$H \vdash (\diamondsuit(x,y) \cdot Q) \implies S$	(v = · g · u) / ~
	x et y ne sont pas distinctes	
	z est distincte de x et de y	
NRM8	K est le résultat de	$ \mid H \vdash (\Diamond x \cdot \forall y \cdot Q) \implies S $
	la substitution $[y := z] Q$	
	$H \vdash (\diamondsuit(x,y)\cdot K) \implies S$	

Version 1-0 17/26

	Antécédents	Conséquent
	x et y sont distincts	
NRM9	y non libre dans P	$ \mid H \; \vdash \; \diamondsuit x \cdot (P \; \Longrightarrow \; \forall y \cdot Q) \; \Longrightarrow \; S $
	$H \; \vdash \; \diamondsuit \; (x,y) \cdot (P \implies Q) \implies S$	
	x et y ne sont pas distinctes	
	ou y est libre dans P	
	z est distincte de x et non libre	
NRM9	dans P et dans Q	$ \mid H \vdash \Diamond x \cdot (P \implies \forall y \cdot Q) \implies S $
	K est le résultat de	
	la substitution $[y := z] Q$	
	$H \vdash \Diamond(x,z) \cdot (P \implies K) \implies S$	
NRM10	$H \vdash \heartsuit x \cdot \neg (P \land Q) \implies R$	$H \vdash \Diamond x \cdot (P \land Q \implies FAUX) \implies R$
NRM11	$H \vdash \lozenge x \cdot \neg (VRAI \land P) \implies R$	$H \vdash \Diamond x \cdot (P \implies FAUX) \implies R$
NRM12	$H \vdash \heartsuit x \cdot \neg (P \land Q) \implies R$	$H \vdash \Diamond x \cdot (P \implies \neg Q) \implies R$
NRM13	$H \vdash \triangledown x \cdot \neg (P \land \neg Q) \implies R$	$H \vdash \Diamond x \cdot (P \implies Q) \implies R$
NRM14	$H \vdash \triangledown x \cdot \neg (VRAI \land P) \implies R$	$H \vdash (\lozenge x \cdot \neg P) \implies R$
NRM15	$H \vdash \triangledown x \cdot \neg (VRAI \land \neg P) \implies R$	$H \vdash (\lozenge x \cdot P) \implies R$
NRM16	$\forall x \cdot P$ est dans H	$H \vdash (\lozenge x \cdot P) \implies Q$
	Q	(* * *) / * *
NRM17	$\forall x \cdot \neg (VRAI \land P) \text{ est dans } H$	$ H \vdash \lozenge y \cdot \neg (VRAI \land \neg R) \implies Q $
	On a E tel que $[x := E] P = R$	

Version 1-0 18/26

$\forall x \cdot \neg (VRAI \land \neg P) \text{ est dans } H$	$H \vdash \heartsuit y \cdot \neg (VRAI \land R) \implies Q$
On a E tel que $[x := E] P = R$	
P est dans H	$ \mid H \vdash \triangledown x \cdot \neg (VRAI \land R) \implies Q $
On a E tel que $[x := E] R = P$	
x non libre dans E	$ H \vdash \heartsuit(x,y) \cdot \neg (P \land x = E) \implies $
$H \; \vdash \; \heartsuit y \cdot \neg [x := E] P \; \implies \; Q$	(4) 3)
x non libre dans E	$H \vdash \heartsuit(x,y) \cdot \neg (P \land E = x) \implies$
$H \; \vdash \; \lozenge y \cdot \neg [x := E] P \; \implies \; Q$	
x non libre dans E	$H \vdash \heartsuit x \cdot \neg (P \land x = E) \implies Q$
$H \; \vdash \; \neg \left[x := E \right] P \; \implies \; Q$	$(1 \wedge x \wedge (1 \wedge x - L)) \longrightarrow Q$
x non libre dans E	$H \vdash \heartsuit x \cdot \neg (P \land E = x) \implies Q$
$H \; \vdash \; \neg \left[x := E \right] P \; \implies \; Q$	$(I \land V L - L) \longrightarrow Q$
P n'est pas de la forme $A \wedge B$	$H \vdash \heartsuit x \cdot \neg P \implies O$
$H \vdash \lozenge x \cdot \neg (VRAI \land P) \implies Q$	
x non libre dans P	$H \vdash forall2\left(x\right) \cdot P$
H dash P	TTT TOTALL (x) T
y non libre dans P	$H \vdash forall2\left(x,y,\ldots\right) \cdot P$
$H \vdash forall2\left(x,\ldots\right) \cdot P$	(w, y,) 1
$(x_i \le 0)$ est dans $(P \land \ldots \land Q)$	
$(-x_i \le 0)$ est dans $(P \land \ldots \land Q)$	H M()
On a R tel que	$H \vdash \heartsuit(x_1, \dots, x_n) \cdot \\ \neg (P \land \dots \land Q)$
$[x_i := 0](P \land \ldots \land Q) = R$	$\neg (P \land \dots \land Q)$
$H \vdash \Diamond(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) \cdot \neg R$	
$(x \le 0)$ est dans $(P \land \ldots \land Q)$	19/26
$(-x \le 0)$ est dans $(P \land \dots \land Q)$	$H \vdash (\circ (x) \cdot$
	P est dans H On a E tel que $[x := E]R = P$ x non libre dans E $H \vdash \bigvee y \cdot \neg [x := E]P \implies Q$ x non libre dans E $H \vdash \bigvee y \cdot \neg [x := E]P \implies Q$ x non libre dans E $H \vdash \neg [x := E]P \implies Q$ x non libre dans E $H \vdash \neg [x := E]P \implies Q$ x non libre dans E x x x x x x x

 $(\heartsuit(x)\cdot$

	Antécédents	Conséquent
	$(a+x_i \leq 0)$ est dans $(P \land \ldots \land Q)$	
	$(b-x_i \leq 0)$ est dans $(P \land \ldots \land Q)$	H⊢
NRM29	solveur(a+b) = 0	$(\heartsuit(x_1,\ldots,x_n)\cdot$
INITIVIZE	On a S tel que	
	$[x_i := b](P \land \dots \land Q) = S$	$\implies R$
	$H \vdash \Diamond(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) \cdot \neg S \implies R$	
	$(x_i + a \le 0)$ est dans $(P \land \ldots \land Q)$	
	$(-x_i + b \le 0)$ est dans $(P \land \dots \land Q)$	н⊢
NRM29_1	solveur(a+b) = 0	$(\heartsuit(x_1,\ldots,x_n)\cdot$
141(1/129_1	On a S tel que	$\neg (P \land \ldots \land Q)$
	$[x_i := b](P \land \dots \land Q) = S$	$\implies R$
	$H \vdash \Diamond(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) \cdot \neg S \implies R$	
	$(a+x \le 0)$ est dans $(P \land \dots \land Q)$	
	$(b-x \le 0)$ est dans $(P \land \dots \land Q)$	н⊢
NRM30	solveur(a+b) = 0	(
TVICIVISO	On a S tel que	$\neg (P \land \ldots \land Q)$
	$[x := b](P \land \dots \land Q) = S$	$\implies R$
	$H \vdash \neg S \implies R$	
	$(x+a \le 0)$ est dans $(P \land \dots \land Q)$	
	$(-x+b \le 0)$ est dans $(P \land \ldots \land Q)$	н⊢
NRM30_1	solveur(a+b) = 0	$(\heartsuit x)$
WWW.30_1	On a S tel que	
	$[x := b](P \land \dots \land Q) = S$	$\implies R$
1-0	$H \vdash \neg S \implies R$	2

5.13 Règles sur les égalités

	Antécédents	Conséquent
EVR1		$H \vdash \neg (E = E) \implies P$
EVR11	$n \in \mathbb{N}$ $m \in \mathbb{N}$ $n \neq m$	$H \vdash (n=m) \implies P$
EVR2	H ⊢ FAUX	$H \vdash \neg (E = E)$
EVR3	H ⊢ <i>P</i>	$H \vdash (E = E) \implies P$
EVR4		$H \vdash (E = E)$

Version 1-0 21/26

	Antécédents	Conséquent
EAXM1	$\neg (F = E)$ est dans H	$H \vdash (E = F) \implies P$
EAXM2	(F = E) est dans H	$H \vdash \neg (E = F) \implies P$
EAXM31	(F=E) est dans H	$H \vdash (E = F)$
EAXM32	$\neg (F = E)$ est dans H	$H \; \vdash \; \lnot(E = F)$
EIMP51	$\neg (F = E)$ est dans H	$H \vdash \neg (E = F) \implies P$
	$H \vdash P$	
EIMP52	(F=E) est dans H	$ H \vdash (E = F) \implies P $
	H ⊢ <i>P</i>	, ,
EQC1	$H \vdash \neg (a = c) \ \lor \ \neg (b = d) \implies P$	$H \vdash \neg ((a,b) = (c,d)) \implies P$
EQC2	$ \mid H \vdash (a = c) \land (b = d) \implies P $	$H \vdash ((a,b) = (c,d)) \implies P$
EQS1	$H \vdash E = F \implies R$	$H \vdash eql_set(E,F) \implies R$
EQS2	$H \vdash FAUX \implies R$	$H \vdash \neg \operatorname{eql_set}(E, F) \implies R$
	$\forall x \cdot \neg (VRAI \ \land \ p = q) \text{ est dans H}$	
EAXM91	On a E tel que $[x := E](q = p)$	$ \mid H \; \vdash \; (a=b) \; \Longrightarrow \; Q $
	se réduise à $(a = b)$	

Version 1-0 22/26

	Antécédents	Conséquent
EAXM92	$\forall x \cdot \neg (VRAI \land \neg (p = q)) \text{ est dans } H$	$H \; \vdash \; \neg (a = b) \implies Q$
	On a E tel que $[x:=E]$ $(q=p)$ se réduise à $(a=b)$	$(u = 0) \longrightarrow \mathbb{Q}$
	x est une variable	
	x non libre dans H	
OPR1	x non libre dans E	
	Q est le résultat de la substitution $[x := E] P$	
	$H \vdash Q$	
	x est une variable	
	x non libre dans H	
OPR2	x non libre dans E	$ \mid H \; \vdash \; (E = x) \; \implies \; P $
	Q est le résultat de la substitution $[x:=E] P$	
	H dash Q	
	$\neg Q$ est dans H	
ECTR1	le remplacement de E par F dans ${\bf Q}$ donne R	$ \mid H \vdash (E = F) \implies P $
	R est dans H	
	$\neg Q$ est dans H	
ECTR2	le remplacement de E par F dans ${\bf Q}$ donne R	$ \mid H \; \vdash \; (F = E) \; \implies \; P $
	R est dans H	
	E = F est dans H	
ECTR3	le remplacement de E par F dans P donne R	$H \vdash \neg P \implies Q$
	R est dans H	
	F = E est dans H	
ECTR4	le remplacement de E par F dans P donne R	$H \vdash \neg P \implies Q$
rsion 1-0	R est dans H	23/26

	Antécédents	Conséquent
ECTR5	E = F est dans H	
	le remplacement de E par F dans P donne R	$H \vdash P \implies Q$
	$\neg R$ est dans H	
ECTR6	F = E est dans H	
	le remplacement de E par F dans P donne R	$H \vdash P \implies Q$
	$\neg R$ est dans H	

5.14 Règles sur l'arithmétique

	Antécédents	Conséquent
AR1	$H \vdash R$	
AR2	a est numérique b est numérique	$H \vdash a \leq b \implies R$
	a > b	
AR3	$H \vdash 1 - a \le 0 \implies R$	$ \mid H \vdash \neg (a \le 0) \implies R \mid $
AR4	$F \leq 0$ est dans H	$H \vdash E < 0 \implies R$
	E+F>0	$H \vdash L \subseteq 0 \longrightarrow H$
AR5	$a\ll 0$ est dans H	$H \vdash -a \le 0 \implies R$
	$H \vdash a = 0 \implies (-a \le 0 \implies R)$	w <u>-</u> 0 / 10
AR6	$-a\ll 0$ est dans H	$H \vdash a \leq 0 \implies R$
	$H \vdash a = 0 \implies (a \le 0 \implies R)$	

Version 1-0 24/26

	Antécédents	Conséquent
AR7	$c+b\ll 0$ est dans H	
	a+c=0	$ H \vdash a - b \le 0 \implies R $
	$H \vdash a = b \implies (a - b \le 0 \implies R)$	
AR8	$a-b\ll 0$ est dans H	
	a+c=0	$H \vdash c + b \le 0 \implies R$
	$H \vdash a = b \implies (c + b \le 0 \implies R)$	
AR9	solveur(E) = F	$H \vdash E \le 0 \implies R$
	$H \vdash F \leq 0 \implies R$	
AR10	solveur(P) = Q	$H \vdash P \implies R$
	$H \vdash Q \implies R$	
AR11		
AR12	$H, (a \leq b) \vdash P$	$H \vdash (a \ll b) \implies P$

5.15 Règles sur les booléens

	Antécédents	Conséquent
BOOL11	$ H, (v = TRUE), \neg (v = FALSE) \vdash P $	$H \vdash (v = TRUE) \implies P$
BOOL12		$H \vdash (v = FALSE) \implies P$
BOOL21	$ \mid H \vdash (v = TRUE) \implies P $	$H \vdash (TRUE = v) \implies P$
BOOL22	$H \vdash (v = FALSE) \implies P$	$H \vdash (FALSE = v) \implies P$

Version 1-0 25/26

	Antécédents	Conséquent
BOOL31	$H \vdash (v = FALSE) \implies P$	$H \vdash \neg(v = TRUE) \implies P$
BOOL32		$H \vdash \neg(v = FALSE) \implies P$
BOOL41		$H \vdash \neg (TRUE = v) \implies P$
BOOL42		$H \vdash \neg (FALSE = v) \implies P$
BOOL51		$H \vdash (TRUE = FALSE) \implies P$
BOOL52		$H \vdash (FALSE = TRUE) \implies P$

Version 1-0 26/26