ECON-GA 1025 Macroeconomic Theory I

John Stachurski

Fall Semester 2018

Today's Lecture

- Neumann series theorem
- Applications to finite state asset pricing
- Metric spaces
- Contractions and Banach's theorem
- Back to asset pricing

The Neumann Series Theorem

Let $A \in \mathcal{M}(n \times n)$ and let I be the $n \times n$ identity

The Neumann series theorem states that if r(A) < 1, then I-A is nonsingular and

$$(I - A)^{-1} = \sum_{i=0}^{\infty} A^{i}$$
 (1)

Example. If r(A) < 1, then x = Ax + b has the unique solution

$$x^* = \sum_{i=0}^{\infty} A^i b$$

Full proof of the NSL: See the course notes

To show that (1) holds we can prove that $(I-A)\sum_{i=0}^{\infty}A^i=I$

This is true, since

$$\left\| (I - A) \sum_{i=0}^{\infty} A^i - I \right\| = \left\| (I - A) \lim_{n \to \infty} \sum_{i=0}^n A^i - I \right\|$$

$$= \lim_{n \to \infty} \left\| (I - A) \sum_{i=0}^n A^i - I \right\|$$

$$= \lim_{n \to \infty} \left\| A^{n+1} \right\| = 0$$

Application: Finite State Asset Pricing

An asset is a claim to anticipated future economic benefit

Example. Stocks, bonds, housing

Example. A friend asks if he can borrow \$100

If you agree, then you are purchasing an asset

Risk Neutral Prices

What is the time t price of a stochastic payoff G_{t+1} ?

The risk neutral price is

$$p_t = \beta \mathbb{E}_t \, G_{t+1}$$

More generally, the price of G_{t+n} at t+n is

$$p_t = \beta^n \mathbb{E}_t G_{t+n}$$

Example. European call option that expires in n periods with strike price K has price

$$p_t = \beta^n \mathbb{E}_t \max\{S_{t+n} - K, 0\}$$

Pricing Dividend Streams

Now let's price the dividend stream $\{d_t\}$

We will price an ex dividend claim

- a purchase at time t is a claim to d_{t+1}, d_{t+2}, \ldots
- we seek p_t given β and these payoffs

The risk-neutral price satisfies

$$p_t = \beta \mathbb{E}_t \left(d_{t+1} + p_{t+1} \right)$$

That is, cost = expected benefit, discounted to present value A recursive expression with no natural termination point...

To solve

$$p_t = \beta \mathbb{E}_t \left(d_{t+1} + p_{t+1} \right)$$

let's assume that

- $d_t = d(x_t)$ for some nonnegative function d
- $\{x_t\}$ is a Markov chain on some finite set X with |X| = n
- $\Pi(x,y) := \mathbb{P}\{x_{t+1} = y \mid x_t = x\}$

We guess there is a solution of the form $p_t = p(x_t)$ for some function p

Thus, our aim is to find a p satisfying

$$p(x_t) = \beta \mathbb{E}_t [d(x_{t+1}) + p(x_{t+1})]$$

Equivalent: we seek a p with

$$p(x) = \beta \mathbb{E}_t [d(x_{t+1}) + p(x_{t+1}) | x_t = x]$$

for all $x \in X$

Equivalent: for all $x \in X$,

$$p(x) = \beta \sum_{y} [d(y) + p(y)] \Pi(x, y)$$

This is a functional equation in p

But also a **vector equation** in p, since X is finite!

Let's stack these equations:

$$p(x_1) = \beta \sum_{y} [d(y) + p(y)] \Pi(x_1, y)$$

$$\vdots$$

$$p(x_n) = \beta \sum_{y} [d(y) + p(y)] \Pi(x_n, y)$$

Treating $p=(p(x_1),\ldots,p(x_n))$ and $d=(d(x_1),\ldots,d(x_n))$ as column vectors, this is equivalent to

$$p = \beta \Pi d + \beta \Pi p$$

Does this have a unique solution and, if so, how can we find it?

Since Π a stochastic matrix we have $r(\Pi) = 1$

Hence
$$r(\beta\Pi)=\beta<1$$

Neumann series theorem implies that $p=\beta\Pi d+\beta\Pi p$ has the unique solution

$$p^* = (I - \beta \Pi)^{-1} \beta \Pi d = \sum_{i=1}^{\infty} (\beta \Pi)^i d$$

In particular, $p_t = p^*(x_t)$ is the risk-neutral price of the asset

Ex. Let u be a one period utility function and let lifetime value of consumption stream $\{c_t\}$ be defined recursively by

$$v_t = u(c_t) + \beta \mathbb{E}_t v_{t+1}$$

Assume that $\beta \in (0,1)$ and, in addition

- $c_t = c(x_t)$ for some nonnegative function d
- $\{x_t\}$ is a Markov chain on finite set X with |X| = n
- $\Pi(x,y) := \mathbb{P}\{x_{t+1} = y \mid x_t = x\}$

Guess there is a solution of the form $v_t = v(x_t)$ for some function vDerive an expression for v using Neumann series theory

An Uncountable State Space

Now let's try to solve

$$p_t = \beta \mathbb{E}_t \left(d_{t+1} + p_{t+1} \right)$$

again but with

- $d_t = d(x_t)$ for some nonnegative function d
- x_t takes values in \mathbb{R} with $x_{t+1} = F(x_t, \xi_{t+1})$
- $\{\xi_t\}$ is IID with common distribution ϕ

Example.
$$x_{t+1} = a x_t + b + \sigma \xi_{t+1}$$
 with $\{\xi_t\} \stackrel{\text{\tiny ID}}{\sim} N(0,1)$

We guess a solution of the form $p_t = p(x_t)$ for some function p

Now the unknown p is a function on $\mathbb R$

It solves the functional equation

$$p(x) = \beta \int [d(F(x,z)) + p(F(x,z))] \varphi(dz) \qquad (x \in \mathbb{R})$$

Can we prove existence of a solution?

Uniqueness?

If so, how to compute the solution?

We cannot use any previous results because p is not a finite vector Need a more general approach...

The approach in a nutshell

- 1. Introduce metric spaces
- Introduce operators, fixed points and contractions
- 3. Show that contractive operators have unique fixed points
 - Banach's contraction mapping theorem
- 4. Frame the asset pricing functional equation as a fixed point problem
 - Solutions to functional eq = fixed points of a pricing operator
- 5. Show the contraction property of the pricing operator
- 6. Conclude existence of unique solution

Metric Space

Let M be any nonempty set

A function $\rho \colon M \times M \to \mathbb{R}$ is called a **metric** on M if, for any $u,v,w \in M$,

- 1. $\rho(u,v) \geqslant 0$ with $\rho(u,v) = 0 \iff u = v$
- 2. $\rho(u, v) = \rho(v, u)$
- 3. $\rho(u,v) \leq \rho(u,w) + \rho(w,v)$

Together, the pair (M, ρ) is called a **metric space**

Example. (\mathbb{R}^d, ρ) with $\rho(u, v) := ||u - v||$ is a metric space

Let X be any set and let bX be all bounded functions in \mathbb{R}^X

For all f, g in bX, the pair (bX, $d_{\infty})$ is a metric space when

$$||f||_{\infty} := \sup_{x \in X} |f(x)|$$
 and $d_{\infty}(f,g) := ||f - g||_{\infty}$

Triangle inequality: given f, g, h in bX, we have

$$|f(x) - g(x)| = |f(x) - h(x) + h(x) - g(x)|$$

$$\leq |f(x) - h(x)| + |h(x) - g(x)|$$

$$\leq d_{\infty}(f, h) + d_{\infty}(h, g)$$

$$\therefore d_{\infty}(f,g) \leqslant d_{\infty}(f,h) + d_{\infty}(h,g)$$

Let X be any countable set, fix $p \geqslant 1$ and define

$$||h||_p := \left\{ \sum_{x \in X} |h(x)|^p \right\}^{1/p}$$
 and $d_p(g,h) = ||g - h||_p$

Now set

$$\ell_p(\mathsf{X}) := \left\{ h \in \mathbb{R}^\mathsf{X} : \|h\|_p < \infty \right\}$$

The pair $(\ell_p(X), d_p)$ is a metric space

The triangle inequality (in this case, the **Minkowski inequality**) follows from the **Hölder inequality**

$$||fg||_1 \le ||f||_p ||g||_q$$
 whenever $p, q \in [1, \infty]$ with $1/p + 1/q = 1$

Example. If $X = \{x_1, \dots, x_d\}$ and p = 2, then

$$||h||_p := \left\{ \sum_{x \in X} |h(x)|^p \right\}^{1/p}$$

$$= \left\{ \sum_{i=1}^d |h(x_i)|^2 \right\}^{1/2}$$

= Euclidean norm of h

(Remember that h is identified with the vector $(h(x_1), \ldots, h(x_d))$)

In particular, $(\ell_2(X), d_2)$ "is" regular Euclidean space for such X

The case $p = +\infty$ is also admitted, with

$$||h||_{\infty} := \sup_{x \in \mathsf{X}} |h(x)|$$

Then
$$\ell_{\infty}(X) = \{h \in \mathbb{R}^X : ||h||_{\infty} < \infty\}$$

This space $\ell_{\infty}(X)$ coincides with bX when X is countable

For any $h \in \ell_{\infty}(X)$ with X finite we have

$$||h||_{\infty} = \lim_{p \to \infty} ||h||_p$$

Let (M, ρ) be any metric space

Given any point $u \in M$, the ϵ -ball around u is the set

$$B_{\epsilon}(u) := \{ v \in M : \rho(u, v) < \epsilon \}$$

A point $u \in G \subset M$ is called **interior** to G if there exists an ϵ -ball $B_{\epsilon}(u)$ such that $B_{\epsilon}(u) \subset G$

A set G in M is called **open** if all of its points are interior to G

A set F in M is called **closed** if F^c is open

A sequence $\{u_n\} \subset M$ is said to **converge to** $u \in M$ if

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ s.t. } n \geqslant N \implies u_n \in B_{\epsilon}(u)$$

Completeness

A sequence $\{u_n\}\subset M$ is called **Cauchy** if, given any $\epsilon>0$, there exists an $N\in\mathbb{N}$ such that $n,m\geqslant N$ implies $\rho(u_n,u_m)<\epsilon$

Ex. Show that if $M = \mathbb{R}$, $\rho(u,v) = |u-v|$ and $u_n = 1/n$, then $\{u_n\}$ is Cauchy.

A metric space (M,ρ) is called **complete** if every Cauchy sequence in M converges to some point in M

Under completeness, sequences that "look convergent" do in fact converge to some point in the space

Examples.

- Ordinary Euclidean space $(\mathbb{R}^d,\|\cdot\|)$ is complete
- (bX, d_{∞}) is complete for any choice of X
- $(\ell_p(X), d_p)$ is complete for any discrete X
- If M=(0,1] and $\rho(u,y)=|u-y|$, then (M,ρ) is not complete

Let (M, ρ) be any metric space

Fact. If $F \subset M$ is closed in M, then (F, ρ) is complete

Example. Let X be a metric space and let bcX := all continuous functions in (bX, d_{∞})

This set is closed because uniform limits of continuous functions are continuous

Hence (bcX, d_{∞}) is complete

Fixed Points and Contractions

Let (M, ρ) be a metric space

A map T from M to itself is called a **self-mapping** on M

A point $x \in M$ is called a **fixed point** of T if Tx = x

There can be none, one or many...

Examples.

- If $f \colon \mathbb{R} \to \mathbb{R}$ is the identity f(x) = x, then every $x \in \mathbb{R}$ is a fixed point
- If $f \colon \mathbb{R} \to \mathbb{R}$ is defined by f(x) = x + 1, then no $x \in \mathbb{R}$ is a fixed point

Figure: Fixed points in one dimension

Contractions

Self-mapping T on (M, ρ) is called a **contraction mapping with modulus** λ if

$$\exists \lambda < 1$$
 s.t. $\rho(Tx, Ty) \leq \lambda \rho(x, y)$ for all $x, y \in M$

Example. The nicest case: Tx = ax + b on $\mathbb R$ where a and b are parameters

For any $x, y \in \mathbb{R}$ we have

$$|Tx - Ty| = |ax + b - ay - b|$$

$$= |ax - ay|$$

$$= |a(x - y)|$$

$$= |a||x - y|$$

Hence $|a| < 1 \implies T$ is a contraction mapping on $\mathbb R$

Banach Contraction Mapping Theorem

Fact. If M is complete and T is a contraction mapping on M then

- 1. T has a unique fixed point $\bar{x} \in M$
- 2. $T^n x \to \bar{x}$ as $n \to \infty$ for any $x \in M$

Proof of uniqueness: Suppose that $x,y \in M$ with

$$Tx = x$$
 and $Ty = y$

Then

$$\rho(x,y) = \rho(Tx,Ty) \leqslant \lambda \rho(x,y)$$

Since $\lambda < 1$, it must be that $\rho(x,y) = 0$, and hence x = y

Sketch of existence proof: Fix $x \in M$ and let

$$d:=\rho(Tx,x)$$

It can be shown that $\rho(T^{n+1}x,T^nx) \leq \lambda^n d$ for all n

One can then show that $\{x_n\}:=\{T^nx\}$ is Cauchy The Cauchy property implies convergence to some $\bar{x}\in M$ It can then be shown that \bar{x} is a fixed point

By the way, why does M need to be complete?

An example of failure when ${\it M}$ is not complete:

$$Tx = x/2$$
 and $M = (0, \infty)$

Back to Asset Pricing

Recall that we wanted to solve for $\{p_t\}$ in

$$p_t = \beta \mathbb{E}_t \left(d_{t+1} + p_{t+1} \right)$$

Here $\beta \in (0,1)$,

- $d_t = d(x_t)$ for some nonnegative function d
- $x_{t+1} = F(x_t, \xi_{t+1})$ in \mathbb{R} with $\{\xi_t\} \stackrel{\text{\tiny IID}}{\sim} \varphi$

Guess a solution of the form $p_t = p(x_t)$

Assumption: d is bounded and d and F are both continuous

Reduces to the functional equation

$$p(x) = \beta \int \left[d(F(x,z)) + p(F(x,z)) \right] \varphi(dz) \qquad (x \in \mathbb{R}) \quad (2)$$

We seek a solution in $bc\mathbb{R}$ — paired with metric d_{∞}

Consider the operator T on $bc\mathbb{R}$ defined by

$$Tp(x) = \beta \int [d(F(x,z)) + p(F(x,z))] \varphi(dz) \qquad (x \in \mathbb{R})$$

Important: $p \in bc\mathbb{R}$ solves (2) iff p is a fixed point of T

T is called the equilibrium price operator

Steps:

- 1. Show that T is a self-mapping on $bc\mathbb{R}$
- 2. Show that T is a contraction mapping on $bc\mathbb{R}$ of modulus β
- 3. Conclude that T has a unique fixed point in $bc\mathbb{R}$
- 4. Hence the pricing equation has a unique solution p^* in $bc\mathbb{R}$

Additional remarks

- $T^n p \to p^*$ as $n \to \infty$ for all $p \in bc\mathbb{R}$
- So we have a method to compute the solution

Step 1: T is a self-mapping on $bc\mathbb{R}$

Proof: For $p \in bc\mathbb{R}$ and $x \in \mathbb{R}$ we have

$$|Tp(x)| = \left| \beta \int \left[d(F(x,z)) + p(F(x,z)) \right] \varphi(dz) \right|$$

$$\leq \beta \int |d(F(x,z)) + p(F(x,z))| \varphi(dz)$$

$$\leq \beta \int |d(F(x,z))| \varphi(dz) + \beta \int |p(F(x,z))| \varphi(dz)$$

Hence
$$|Tp(x)| \leq \beta(\|d\|_{\infty} + \|p\|_{\infty})$$

In particular, Tp is bounded on ${\mathbb R}$

Step 1 continued: T is a self-mapping on $bc\mathbb{R}$

Proof: For $p \in bc\mathbb{R}$, $x \in \mathbb{R}$ and $x_n \to x$, we have

$$\lim_{n \to \infty} Tp(x_n) = \beta \lim_{n \to \infty} \int \left[d(F(x_n, z)) + p(F(x_n, z)) \right] \varphi(dz)$$

$$= \beta \int \left[\lim_{n \to \infty} d(F(x_n, z)) + \lim_{n \to \infty} p(F(x_n, z)) \right] \varphi(dz)$$

$$= \beta \int \left[d(F(x, z)) + p(F(x, z)) \right] \varphi(dz)$$

Hence $\lim_{n\to\infty} Tp(x_n) = Tp(x)$

In particular, Tp is continuous on ${\mathbb R}$

Step 2: T is a contraction on $bc\mathbb{R}$ of modulus β

Proof: For $p, q \in bc\mathbb{R}$ and $x \in \mathbb{R}$ we have

$$|Tp(x) - Tq(x)| = \left| \beta \int [p(F(x,z)) - q(F(x,z))] \varphi(dz) \right|$$

$$\leq \beta \int |p(F(x,z)) - q(F(x,z))| \varphi(dz)$$

$$\leq \beta \int ||p - q||_{\infty} \varphi(dz) = \beta ||p - q||_{\infty}$$

Taking the supremum over $x \in \mathbb{R}$ gives

$$||Tp - Tq||_{\infty} \leq \beta ||p - q||_{\infty}$$

Step 3: From Banach's CMT we see that T has a unique fixed point in $bc\mathbb{R}$

Step 4: Hence the pricing equation has a unique solution in $bc\mathbb{R}$

We are done...

Question: Why did we use $bc\mathbb{R}$ as our space rather than $b\mathbb{R}$?

Extension: Lucas 1978

In Lucas (1978), the price process obeys

$$p_t = \beta \mathbb{E}_t \frac{u'(c_{t+1})}{u'(c_t)} (d_{t+1} + p_{t+1})$$

where c_t is consumption and u is utility

In equilibrium, $c_t = d_t = d(x_t)$ for all t

Taking
$$q_t := p_t \, u'(c_t)$$
 and $\kappa(x) := u'(d(x))d(x)$, we get
$$q_t = \beta \, \mathbb{E}_t \left[\kappa(x_{t+1}) + q_{t+1} \right]$$

Lucas adopts the following assumptions

- $x_{t+1} = F(x_t, \xi_{t+1})$ in \mathbb{R} with $\{\xi_t\} \stackrel{\text{\tiny IID}}{\sim} \varphi$
- d and F are both continuous, $d \ge 0$
- u is continuously differentiable, strictly increasing, bounded and concave with u(0)=0

Proposition: The function $\kappa(x) := u'(d(x))d(x)$ is bounded on $\mathbb R$

Proof: this is immediate if u'(t)t is bounded over $t\geqslant 0$

Ex. Show that $\exists M < \infty$ with $|u'(t)t| \leqslant M$ for all $t \geqslant 0$

Proposition: The map $\kappa(x) := u'(d(x))d(x)$ is continuous on $\mathbb R$

Why?

Now we go back to

$$q_t = \beta \mathbb{E}_t \left[\kappa(x_{t+1}) + q_{t+1} \right]$$

and guess that $q_t = q(x_t)$ for some function q on \mathbb{R}

This leads to the equilibrium pricing equation

$$q(x) = \beta \int \left[\kappa(F(x,z)) + q(F(x,z)) \right] \varphi(dz)$$

Proposition: There exists a function q in $bc\mathbb{R}$ that solves the equilibrium pricing equation

Ex. Check the details