9 - Multi-Robot Planning

Dr. Marija Popović

Multi-Robot Systems

 A set of robots which can cooperate and communicate with each other to accomplish certain tasks

Environmental monitoring

Shelving

Construction

Single-Robot vs. Multi-Robot

- Advantages:
 - Better spatial distribution
 - Improved robustness
 - Potentially lower cost
 - Diverse range of applications
- Disadvantages:
 - Computational complexity
 - Communication
 - Interference
 - Maintenance

Taxonomy

Collective behaviour

- Cooperative: Robots work together to complete a task
- Competitive: Robots compete against each other for self-interest or have conflicting utility functions

Communication methods

- Explicit: Robots use communication media
- Implicit: Robots infer information through the environment

Taxonomy

Decision-making approach

- Centralised: Central control agent with global information that can communicate to robots
- Decentralised: No central control agent can be hierarchical or distributed

Problem formulation

- Discrete vs. continuous
- Known vs. unknown goals
- Labelled vs. unlabelled problem
- Coupled vs. decoupled state representation

Problem Variations

Known labelled goals: Plan paths to assigned goals

Problem Variations

Problem Variations

Reward: Explore environment, find targets, maximise map accuracy, collect measurements, etc.

Multi-Robot Planning Strategies

Centralised vs. Decentralised

- Centralised: One entity plans for the entire robot team
 - Coupled planning: joint configuration space
 - Decoupled planning: each path planned separately
- Decentralised: Robots are completely independent and plan their own paths individually
- Hybrid

Centralised Planning: Coupled

- Plan directly in joint configuration space
- For K robots:

$$\mathcal{C} = \mathcal{C}_1 \times \mathcal{C}_2 \times \ldots \times \mathcal{C}_K$$

- Use standard planning methods, e.g. A*, to find a complete solution
- Problem space dimensions grow linearly with number of robots
- Computationally intractable even with small teams

Centralised Planning: Decoupled

- First, plan for each robot separately
- Then, coordinate individual plans
 - Resolve conflicts and avoid collisions
 - Online or offline
- Not complete, not optimal

Figure 6: A "bad" example for decoupled planning.

Centralised Planning: Decoupled

- First, plan for each robot separately
- Then, coordinate individual plans
 - Resolve conflicts and avoid collisions
 - Online or offline
- Not complete, not optimal
- Coordination strategies:
 - Priority schemes
 - Scheduling techniques

Decentralised Planning

- Information processed locally - computationally efficient and robust
- Suboptimal
- Implicit or explicit communication
- Coordination strategies for collision avoidance, e.g. local replanning

Hybrid Planning: Market-based

- Market-based: Auction protocol to coordinate between different robots
- Assemble team information to allocate limited shared resources
- Robots bid based on utility/cost
- Subteam coordination possible

Decentralised MCTS

Monte Carlo Tree Search (MCTS)

- Completely observable MDP
- Build search tree of state-action sequences
- Rollout: simulate episodes and collect rewards

Decentralised MCTS

- Idea: Execute a decentralised MCTS wrt. a belief over the other agents' future action sequences
 - Best et al. (2018). "Dec-MCTS: Decentralized planning for multi-robot active perception," in: IJRR. 38(2): 316-337.

• Advantages:

- Applicable with any objective function
- Anytime planning
- Robust
- Scalable to large robot teams

Decentralised MCTS

- Idea: Execute a decentralised MCTS wrt. a belief over the other agents' future action sequences
 - Best et al. (2018). "Dec-MCTS: Decentralized planning for multi-robot active perception," in: IJRR. 38(2): 316-337.

Procedure:

- 1. Grow MCTS search tree wrt. other robots' plans
- 2. Update prob. distribution over next actions
- 3. Communicate prob. distribution over next actions to other robots
- 4. Receive prob. distributions from other robots over their next actions

Algorithm

Robot's utility function

Algorithm

Robot's utility function

Results

Generalised team orienteering problem

Results

100 trials

Performance

Communication Robustness

Summary

- Multi-agent systems
- Decision-making approaches
 - Centralised
 - Decentralised
 - Hybrid (market-based)
- Decentralised MCTS
 - General multi-robot planning algorithm

Further Reading

- Yan et al. (2013), "A Survey and Analysis of Multi-Robot Coordination," in: Artificial Intelligence. 10(12).
- Lifeng and Tokekar (2021), "Multi-Robot Coordination and Planning in Uncertain and Adverserial Environments," in: Current Robotics Reports.
- Parker, L.E. (2009). "Multiple Mobile Robot Teams, Path Planning and Motion Coordination", in: Encyclopaedia of Complexity and Systems Science.
- Bernardine Dias, M. et al. (2006). "Market-Based Multirobot Coordination: A Survey and Analysis", in: Proceedings of the IEEE. 1257-1270.
- Best et al. (2018). "Dec-MCTS: Decentralized planning for multi-robot active perception," in: IJRR. 38(2): 316-337.

Thank you for your attention