# Experimento 1 - Relatório



versão 2s2018

## **INSTRUÇÕES**

Uma versão impressa deste relatório deve ser entregue ao seu professor na data programada. Não serão aceitos relatórios entregues com atraso.

Nas questões discursivas, a sua nota não será baseada em você ter fornecido a "resposta correta" às questões, mas sim no empenho em respondê-las adequadamente. Ou seja, se a sua resposta à questão é coerente e se você justificou adequadamente a sua resposta.

Explicite todas as contas referentes às questões numéricas no Anexo I.

Inclua todas as páginas deste roteiro no seu relatório, incluindo esta.

## Rubrica de Avaliação – Experimento 1

|                                                  |           |               |            | Pontos |
|--------------------------------------------------|-----------|---------------|------------|--------|
| Empenho ao responder<br>as questões discursivas. | Excelente | Razoável      | Inadequada |        |
|                                                  | 5,0       |               | 0,0        |        |
| Questões numéricas                               | Sim       | Alguns erros  | Não        |        |
| estão corretas (incluindo unidades)?             | 3,0       |               | 0,0        |        |
| Resultados numéricos                             | Sim       | Mais ou menos | Não        |        |
| estão adequadamente desenvolvidos no anexo?      | 2,0       |               | 0,0        |        |
| TOTAL                                            |           |               |            |        |

### Declaração de Honestidade Acadêmica

Os autores deste relatório declaram conhecer o regulamento da UNICAMP (definido no Regimento Geral da UNICAMP, Título X, artigo 227, parágrafo VII) e da disciplina no que tange o recurso a meios fraudulentos com o propósito de lograr aprovação na disciplina. Em F129, a desonestidade acadêmica é considerada fraude. A desonestidade acadêmica inclui, dentre outros, a cola em provas e exame final, o plágio em relatórios, a falsificação e a fabricação de dados experimentais.

Obs.: Cada membro do grupo deve assinar os campos abaixo atestando ciência dos termos da declaração de honestidade acadêmica

Pedro Akoujo Pedro SA. Guildorme Desoli Ceoranolo Res

Nome: <u>Pedro Henrique Rodrigues de Araújo</u> RA: <u>223382</u>

Nome: <u>Pedro Sader Azevedo</u> RA: <u>243245</u>

Nome: <u>Guilherme Tezoli Bakaukas</u> RA: <u>217332</u>

Nome: <u>Leonardo Almeida Reis</u> RA: <u>239104</u>

2

# PARTE 1: ENTENDENDO A INCERTEZA DE LEITURA DE INSTRUMENTOS ANALÓGICOS E DIGITAIS

#### Atividade 1-1: Fazendo medições com um instrumento analógico

**Questão 1-1:** Quais foram os valores encontrados? Após todos terem realizado a sua medição, anote os valores abaixo.

Aluno 1 - Comprimento da caneta: 16,8 cm

Aluno 2 – Comprimento da caneta: 16,8 cm

Aluno 3 - Comprimento da caneta: 16,7 cm

Aluno 4 - Comprimento da caneta: 16,6 cm

**Questão 1-2:** Todos os valores de comprimento obtidos acima são iguais? Se não são, qual você acha que é a principal razão para eles diferirem entre si?

Resposta: Não. Cada aluno fez o próprio julgamento da medida devido à imprecisão do instrumento. Ou seja, como a régua não é milimetrada, tivemos que escolher o valor mais próximo possível da nossa estimativa da medida real.

**Questão 1-3:** Quais são os valores mais próximos da melhor aproximação que definitivamente <u>não</u> são possíveis como resultado da medição? Responda abaixo para os quatros casos anteriores:

| Aluno 1 | Valor mais baixo: 16,6 cm | Valor mais alto: 17,0 cm |
|---------|---------------------------|--------------------------|
| Aluno 2 | Valor mais baixo: 16,6 cm | Valor mais alto: 17,0 cm |
| Aluno 3 | Valor mais baixo: 16,5 cm | Valor mais alto: 16,9 cm |
| Aluno 4 | Valor mais baixo: 16,3 cm | Valor mais alto: 16,9 cm |

#### 3. Preencha os campos nas figuras abaixo para um dos casos acima.





**Questão 1-4:** Quais foram os valores encontrados? Após todos terem realizado a sua medição, anotem os valores abaixo.

| Aluno | Comprimento da<br>caneta (cm) | Valor impossível mais<br>baixo (cm) | Valor impossível<br>mais alto (cm) |
|-------|-------------------------------|-------------------------------------|------------------------------------|
| 1     | 16,65                         | 16,55                               | 16,75                              |
| 2     | 16,75                         | 16,65                               | 16,85                              |
| 3     | 16,61                         | 16,52                               | 16,70                              |
| 4     | 16,68                         | 16,65                               | 16,71                              |

#### 5. Preencha os quatro campos na figura abaixo para um dos casos acima.



Questão 1-5: Todos os valores de comprimento são iguais?

Resposta: Não.

**Questão 1-6:** Se os valores são diferentes, você acha que ajudaria dividir a escala em outras 10 partes (escala de centenas de mícrons)? Se os valores são os

mesmos, o que você acha que aconteceria se usássemos uma régua com escala de centenas de mícrons?

Resposta: O olho humano não conseguiria captar a divisão em mícrons, o que dificultaria a medição. Evidência disso é que nossos resultados apresentaram divergência na casa dos milímetros, mesmo quando realizamos medidas com a régua milimetrada. Isso indica que o limite de precisão do olho humano é provavelmente da ordem de grandeza dos milímetros.

**Questão 1-7:** Quantas destas subdivisões adicionais (em relação à régua milimetrada) você acha que são possíveis na prática? Justifique a sua resposta.

Resposta: Na prática, mais nenhuma divisão em relação à régua milimetrada seria possível. Primeiramente, pois fazer dez marcações em apenas um milímetro seria dificultado pela própria espessura das marcações. Além disso, o olho humano seria incapaz de perceber nitidamente as marcações adicionais, tornando-as inúteis para o aumento de precisão do instrumento.

**Questão 1-8:** Você acha que conseguiria eventualmente medir o comprimento "verdadeiro" da caneta desta maneira (aumentando cada vez mais o número de subdivisões)? Justifique a sua resposta.

Resposta: Não. Mesmo que fosse possível criar sucessivas subdivisões no aparelho de medição, sempre haveria dúvida em relação à próxima casa decimal. Além disso, a limitação de precisão do olho humano pôde ser empiricamente averiguada como da ordem dos milímetros.

**Questão 1-9:** Como que os intervalos de valores das figuras nos itens (3) e (5) se comparam? Qual dos dois casos fornece um melhor conhecimento a respeito do valor do mensurando e por que?

Resposta: Os intervalos de valores nas figuras do item (3), em média 0,45,cm foram maiores do que os intervalos de valores no item (5), em média 0,16cm. Por isso, é possível inferir que o instrumento utilizado no item (5) tem maior precisão de medição que o instrumento utilizado no item (3).

#### Atividade 1-2: Fazendo medições com um instrumento digital

**Questão 1-10:** Se o valor verdadeiro da massa do objeto fosse o indicado na coluna à esquerda da tabela abaixo, o que a balança indicaria? Note que a balança terá que fazer um arredondamento, pois pode mostrar apenas <u>uma</u> casa decimal. Preencha a tabela abaixo para os vários casos.

| Massa verdadeira do objeto (g) | Leitura da balança (g) |  |
|--------------------------------|------------------------|--|
| 83,36                          | 83,4                   |  |
| 83,34                          | 83,3                   |  |
| 83,44                          | 83,4                   |  |
| 83,46                          | 83,5                   |  |

**Questão 1-11:** Qual o valor que você registraria como sendo a leitura da balança? Você precisou fazer algum julgamento ("chute") para chegar a este valor, tal como no caso da régua da atividade anterior?

Resposta: 83,4. Não houve chute, pois o instrumento digital mostra na tela a sua leitura. Mesmo assim, o resultado exibido não é infinitamente preciso, pois tem um arredondamento padronizado das casas decimais que não são mostradas.

**Questão 1-12:** Baseado apenas na leitura da balança digital do item (1), qual seria o <u>menor</u> dos seguintes intervalos dentro do qual é mais <u>provável</u> que a massa do objeto se encontre: 83,395 g – 83,404 g; 83,35 g – 83,44 g; 83,3 g – 83,5; 83 g – 84 g? *Dica: Reveja a sua resposta à Questão 1-10 acima.* 

Resposta: 83,35 g-83,44 g

**Questão 1-13:** Você consegue prever com certeza qual será o último dígito mostrado no painel da balança?

Resposta: Não.

**Questão 1-14:** Você consegue dizer qual é a <u>probabilidade</u> do último dígito ser um 6, por exemplo? Esta probabilidade é igual ou diferente para qualquer outro valor para o último dígito?

Resposta: 10%. A probabilidade é a mesma para qualquer outro dígito.

**Questão 1-15:** Qual o valor que você registraria como sendo a leitura da balança? Você precisou fazer algum julgamento ("chute") para chegar a este valor?

Resposta: 83,36. Novamente não houve chute, pois a balança é digital.

**Questão 1-16:** Baseado apenas na leitura da balança digital, qual seria o <u>menor</u> dos seguintes intervalos dentro do qual é mais <u>provável</u> que a massa do objeto se encontre: 83,3595 g -83,3604 g; 83,355 g -83,364 g; 83,35 g -83,37; 83,3 g -83,4 g?

Resposta: 83,355 g-83,364 g

**4.** Considerando as suas respostas às questões anteriores (Questões 1-14 e 1-16), esboce na figura abaixo a curva de probabilidade que melhor representa, na sua opinião, a distribuição dos valores de massa do objeto. Preencha os três campos na figura.



**Questão 1-17:** Seria possível projetar e construir uma balança digital que poderia mostrar uma leitura com um número infinito de casas decimais? Explique a sua resposta.

Resposta: Não seria possível projetar uma balança infinitamente precisa. Como anteriormente discutido na questão 1-8, o aumento da resolução do instrumento de medida implica a diminuição da sua imprecisão, mas nunca a anulação da mesma.

# PARTE 2: PRATICANDO MEDIÇÕES COM UMA ESFERA DE AÇO

#### Atividade 2-1: Medindo o diâmetro e a massa da esfera

1. Primeiro, meça o diâmetro da esfera com uma régua. Preencha a figura abaixo.



**2.** Agora meça o diâmetro da mesma esfera com o paquímetro que lhe foi disponibilizado. Preencha a figura abaixo.



**Questão 2-1:** Como que os intervalos de valores possíveis das figuras nos itens (1) e (2) se comparam? Qual dos dois instrumentos de medição fornece um melhor conhecimento a respeito do valor do mensurando e por que?

Resposta: O intervalo de medições possíveis no item (2), emque utilizamos régua, foi dez vezes maior que o intervalo de medidas possíveis no item (3), em que utilizamos paquímetro. Assim, podemos inferir que o paquímetro é um instrumento de medida muito mais preciso que a régua, quando medindo objetos esféricos. Um dos motivos possíveis é a diminuição da imprecisão por paralaxe, que é afeta à régua mais do que ao paquímetro.

**3.** Meça a massa da esfera com a balança digital disponibilizada e preencha a figura abaixo.



**Questão 2-2:** Qual é a incerteza-padrão associada à leitura da régua em (1)?  $u_{r\acute{e}gua} = 0.2/\sqrt{6}$ .

**Questão 2-3:** Qual é a incerteza-padrão associada à leitura do paquímetro em (2)?  $u_{paquímetro} = 0.02/\sqrt{6}$ .

**Questão 2-4:** Qual é a incerteza-padrão associada à leitura da balança digital do item (3)?  $u_{balanca} = 0.045/\sqrt{3}$ .

#### Atividade 2-2: Medindo a altura da esfera em uma rampa

Questão 2-5: Qual é a altura do centro da esfera? Anote o valor abaixo.

Altura do centro da esfera: h = 19,7 cm.

Questão 2-6: Qual é a incerteza-padrão associada à leitura da régua?

 $u_{r\acute{e}aua} = 0.2/\sqrt{6}$ .

**Questão 2-7:** O quanto (em mm) você está (in)certo em relação a localização do centro da esfera?

Resposta: 0,6 mm

**Questão 2-8:** Qual é a incerteza-padrão associada à localização do centro da esfera?  $u_{centro} = 0,3\sqrt{3}$ .

**Questão 2-9:** Qual é a leitura que você faz agora da altura do centro da esfera observada a partir desta nova posição? Anote o valor abaixo.

Altura do centro da esfera: h = 20.8 cm.

**Questão 2-10:** Há alguma diferença entre os dois valores? Comente.

Resposta: Sim. Os valores são muito discrepantes devido à imprecisão introduzida pelo efeito de paralaxe.

**Questão 2-11:** Qual seria uma estimativa mais razoável para a incerteza introduzida por paralaxe na sua medição na situação em que procura-se minimizar o ângulo de observação?

Resposta: 0,8cm

**Questão 2-12:** Qual é a incerteza-padrão associada ao efeito de paralaxe?

$$u_{paralaxe} = 0.4/\sqrt{3}$$

**Questão 2-13:** Qual é o valor da incerteza-padrão combinada da sua medição?

$$U_c = 0.3$$

**8.** Preencha a tabela abaixo, chamada de *planilha de incertezas*, resumindo as três principais componentes de incerteza da sua medição.

| Componente de<br>incerteza              | Incerteza-padrão<br>(mm) | Função de densidade de<br>probabilidade |  |
|-----------------------------------------|--------------------------|-----------------------------------------|--|
| Leitura da régua                        | 0,2/√6                   | Triangular                              |  |
| Centro da esfera                        | 0,3/√3                   | Retangular                              |  |
| Efeito de paralaxe                      | 0,4/√3                   | Retangular                              |  |
| Incerteza-padrão combinada: $u_c = 0.3$ |                          |                                         |  |

### ANEXO I: Desenvolvimento das contas

Explicite aqui todas as contas referentes às questões numéricas. Pode ser preenchido à mão.

```
Questão 1-3) Área = base x altura / 2 = 1 → altura = 2/base
Gráfico 1
altura = 2/(17,0-16,6) = 5
Gráfico 2
altura = 2/(17,0-16,6) = 5
Gráfico 3
altura = 2/(16,9-16,5) = 5
Gráfico 4
altura = 2/(16,9-16,3) = 3,33
Questão 1-4) Área = base x altura / 2 = 1 → altura = 2/base
Gráfico 1
altura = 2/(16,75-16,55) = 10
Gráfico 2
altura = 2/(16,85-16-65) = 10
Gráfico 3
altura = 2/(16,70-16,52) = 11,11
Gráfico 4
altura = 2/(16,71-16,65) = 33,33
Questão 1-14)
Probabilidade = casos favoráveis/espaço amostral = 1/10 = 10/100 = 10%
Questão 1-16) Área= base x altura = 1 → altura = 1/base
altura = 1/(83,364-83,355) = 111,111
Questão 2-1) Área = base x altura = 1 → altura=1/base
Gráfico 1
altura = 1/(2,4-2,0) = 5
Gráfico 2
altura = 1/(2,21-2,17) = 50
```

```
Gráfico 3
altura = 1/(43,94-43,85) = 22,22
```

Questão 2-2) u = 0,4 /2 
$$\sqrt{6}$$
 = 0,2 /  $\sqrt{6}$  Questão 2-3) u = 0,04/2  $\sqrt{6}$  = 0,02 /  $\sqrt{6}$  Questão 2-4) u = 0,09/2  $\sqrt{3}$  = 0,045 /  $\sqrt{3}$  Questão 2-6) idem à questão 2-2 Questão 2-8) 0,6/2  $\sqrt{3}$  = 0,3 /  $\sqrt{3}$  Questão 2-12) 0,8/2  $\sqrt{3}$  = 0,4 /  $\sqrt{3}$  Questão 2-13) ((0,2 /  $\sqrt{6}$  )^2 + (0,3 /  $\sqrt{3}$  )^2 + (0,4 /  $\sqrt{3}$  )^2)^(1/2) = (0,27/3)^(1/2) = (0,09)^(1/2) = 0,3