Applied Regression Analysis

Week 2

- 1. Linear regression I
- 2. Linear regression II
- 3. Assumptions for linear regression
- 4. Hypothesis testing and confidence intervals
- 5. Homework

Stanley Lemeshow, Professor of Biostatistics College of Public Health, The Ohio State University

Suppose we have the following observations on systolic blood pressure and age for a sample of 30 individuals:

indiyidual	ŞBP	ĄĢE	individual	SBP	ĄĢE
(i)	(y)	(x)	(<i>i</i>)	(y)	(x)
1	144	39	16	130	48
2	220	47	17	135	45
3	138	45	18	114	17
4	145	47	19	116	20
5	162	65	20	124	19
6	142	46	21	136	36
7	170	67	22	142	50
8	124	42	23	120	39
9	158	67	24	120	21
10	154	56	25	160	44
11	162	64	26	158	53
12	150	56	27	144	63
13	140	59	28	130	29
14	110	34	29	125	25
15	128	42	30	175	69

note: we have 30 pairs of observations that are denoted by

$$(x_1, y_1), (x_2, y_2), \dots, (x_{30}, y_{30}) = (39,144), (47,220), \dots, (69,175).$$

- These pairs may be considered as points in two dimensional space, so that we may plot them on a graph.
 - Such a graph is called a <u>scatter diagram</u>
 - . twoway (scatter sbp age)

Note: AGE and SBP seem to be related. How can this relationship be measured?

note: Scatter diagrams can take many shapes

Now, given a set of data, how can we determine the line of regression?

 We are looking for that line that minimizes the vertical distances to the data points

i.e., we want that line such that minimizes

$$\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i})^{2}$$

The solution to the best-fit problem is obtained by solving, simultaneously, the following equations:

$$\sum_{i} y_{i} = n\beta_{0} + \beta_{1} \sum_{i} x_{i}$$

$$\sum_{i} x_{i} y_{i} = \beta_{0} \sum_{i} x_{i} + \beta_{1} \sum_{i} x_{i}^{2}$$
come from calculus - first take derivative w.r.t. β_{0} then
$$\sum_{i} x_{i} y_{i} = \beta_{0} \sum_{i} x_{i} + \beta_{1} \sum_{i} x_{i}^{2}$$
w.r.t. β_{1} and set equal to zero

Solving for
$$\beta_0$$
 and β_1 we obtain
$$\hat{\beta}_1 = \frac{\widehat{Cov}(x,y)}{\widehat{Var}(x)} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} \quad \text{and} \quad \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$
or
$$\hat{\beta}_1 = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}$$

Example

Using the previous data on 30 individuals where we measured

$$X = AGE$$

$$Y = SBP$$

computations result in:

$$\hat{\beta}_{1} = \frac{\sum x_{i} y_{i} - \frac{\sum x_{i} \sum y_{i}}{n}}{\sum x_{i}^{2} - \frac{\left(\sum x_{i}\right)^{2}}{n}} = \frac{199576 - \frac{\left(1354\right)\left(4276\right)}{30}}{67894 - \frac{\left(1354\right)^{2}}{30}} = 0.97$$

and

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 142.53 - (0.97)(45.13) = 98.71$$

Thus, the equation for this straight line is given by

$$\hat{y} = 98.71 + 0.97x$$

or equivalently by

$$\hat{y} = 142.53 + 0.97(x - 45.13)$$

This line should now be plotted on the scatter diagram.

e.g.,

. scatter yhat sbp age, c(l .) s(i o)

Now, recall that

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

where

$$\hat{\mathbf{y}}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} \mathbf{X}_{i}$$

Clearly, if $SSE = 0 \Rightarrow perfect fit$

i.e.,
$$y_i = \hat{y}_i$$
, all i

as the fit gets worse, SSE gets larger

. sum sbp age, detail

		sbp		
	Percentiles	Smallest		
1%	110	110		
5 %	114	114		
10%	118	116	Obs	30
25%	125	120	Sum of Wgt.	30
50%	141		Mean	142.5333
		Largest	Std. Dev.	22.58125
75 %	158	162		
90%	166	170	Variance	509.9126
95%	175	175	Skewness	1.291729
99%	220	220	Kurtosis	5.684303
		age		
	Percentiles	Smallest		
1%	17	17		
5%	19	19		
10%	20.5	20	Obs	30
25%	36	21	Sum of Wgt.	30
50%	45.5		Mean	45.13333
		Largest	Std. Dev.	15.2942
75 %	56	65		
90%	66	67	Variance	233.9126
95 %	67	67	Skewness	2395541
99%	69	69	Kurtosis	2.167069
J J 6	0,9	0,9	MUL COSES	2.1

. regress sbp age

Source	1	SS	df		MS			Number of obs	=	30
	-+-					_		F(1, 28)	=	21.33
Model	1	6394.02269	1	6394	.0226	9		Prob > F	=	0.0001
Residual	1	8393.44398	28	299.	76585	6		R-squared	=	0.4324
	-+-					_		Adj R-squared	=	0.4121
Total	1	14787.4667	29	509.	91264	4		Root MSE	=	17.314
sbp	ı	Coef.	Std.	Err.		t	P> t	[95% Conf.		
age	·	.9708704	.2102			. 618	0.000	.5402629	1	.401478
_cons	I	98.71472	10.00	047	9	.871	0.000	78.22969	1	19.1997

Now, one of the assumptions for regression analysis is that of homoscedasticity

(i.e., the variance of y is the same for any x)

Here,
$$\sigma_{y|x_1}^2 = \sigma_{y|x_2}^2 = \sigma_{y|x_3}^2 = \sigma_{y|x_4}^2$$

i.e., $\sigma_{v|x}^2$ is the same for all *i*

We will denote this common value σ^2

i.e.,
$$\sigma_{y|x}^2 \equiv \sigma^2$$
 for all x .

An estimate of σ^2 is given by the formula

$$s_{y|x}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = \frac{1}{n-2} (SSE)$$

$$= \frac{n-1}{n-2} (s_{y}^{2} - \hat{\beta}_{1}^{2} s_{x}^{2})$$
sample variance of y

sample variance of x

lose 2 d.f. one for β_0 one for β ,

where

$$s_{x}^{2} = \frac{\sum (x_{i} - \overline{x})^{2}}{n-1} = \frac{\sum x_{i}^{2} - \frac{\left(\sum x_{i}\right)^{2}}{n}}{n-1}$$

lose 1 d.f. for and estimating μ

$$s_y^2 = \frac{\sum (y_i - \overline{y})^2}{n-1} = \frac{\sum y_i^2 - \frac{(\sum y_i)^2}{n}}{n-1}$$

in our example

$$s_{y}^{2} = 509.91$$

$$s_{x}^{2} = 233.91$$

$$\hat{\beta}_{1} = 0.97$$

$$s_{y|x}^{2} = \frac{n-1}{n-2} \left(s_{y}^{2} - \hat{\beta}_{1}^{2} s_{x}^{2} \right) = \frac{29}{28} \left(509.91 - .097^{2} \left(233.91 \right) \right)$$

$$s_{y|x}^{2} = 299.77$$

$$\sqrt{s_{y|x}^2} = s_{y|x}$$
 is called the "standard error of estimate"

here

$$s_{y|x} = \sqrt{s_{y|x}^2} = \sqrt{299.77} = 17.31$$

Now, if we assume that for any fixed value of x, y has a normal distribution, we can test hypotheses and construct confidence intervals for β_0 or β_1 .

Under this assumption, it can be shown that

$$\hat{\beta}_0 \sim N \left(\beta_0, \sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{(n-1)s_x^2} \right) \right)$$
 and
$$\hat{\beta}_1 \sim N \left(\beta_1, \frac{\sigma^2}{s_x^2(n-1)} \right)$$

Since we don't know σ^2 we estimate it with $s_{y|x}^2$ and use the t-distribution with n-2 degrees of freedom.

First consider β_1

In order to test $H_0: \beta_1 = \beta_1^0$, where β_1^0 is some hypothesized value for β_1 , the test statistic is

$$t = \frac{\hat{\beta}_1 - \beta_1^{(0)}}{s_{y|x}}$$

$$\frac{s_{y|x}}{s_x \sqrt{n-1}}$$

and

$$t \sim t(n-2)$$

or, setting up confidence intervals for β ,

$$|\hat{\beta}_1 - t_{1-\alpha/2}(n-2)| \left[\frac{s_{y|x}}{s_x \sqrt{n-1}}\right] \le \beta_1 \le \hat{\beta}_1 + t_{1-\alpha/2}(n-2) \left[\frac{s_{y|x}}{s_x \sqrt{n-1}}\right]$$

e.g.

In the current example, suppose we wish to test

$$H_0: \beta_1 = 0$$
vs. $H_a: \beta_1 \neq 0$

then,

$$t = \frac{\hat{\beta}_1 - \beta_1^{(0)}}{s_{y|x} \over s_x \sqrt{n-1}} = \frac{0.97 - 0}{17.31} = 4.62$$

and we reject
$$H_0$$
 if $t > t_{.975} (28) = 2.0484$
or if $t < t_{.025} (28) = -2.0484$

∴ reject
$$H_0$$
 at α =.05 (In fact, p < .001)

This means that x provides significant information for the prediction of y. That is, $\hat{y} = \bar{y} + \hat{\beta}_1(x - \bar{x})$ is far better than the naive model for predicting y.

A better model might exist (e.g, one with a curvilinear term), but there is a definite linear component.

to a truly nonlinear relationship

note: if H_0 : $\beta_1 = 0$ is not rejected it means either

* Important point: whether or not H_0 : β_1 = 0 is rejected, the straight-line model may not be appropriate. Some other function may better describe the relationship between x and y.

Now Consider β_0

In order to test $H_0: \beta_0 = \beta_0^{(0)}$, the test statistic used is

$$t = \frac{\hat{\beta}_{0} - \beta_{0}^{(0)}}{s_{y|x} \sqrt{\frac{1}{n} + \frac{\bar{x}^{2}}{(n-1)s_{x}^{2}}}}$$

and

$$t \sim t(n-2)$$

and confidence intervals may be constructed as

$$\hat{\beta}_{0} - t_{1-\alpha/2} \left(n - 2 \right) \left[s_{y|x} \sqrt{\frac{1}{n} + \frac{\overline{X}^{2}}{\left(n - 1 \right) s_{x}^{2}}} \right] \leq \beta_{0} \leq \hat{\beta}_{0} + t_{1-\alpha/2} \left(n - 2 \right) \left[s_{y|x} \sqrt{\frac{1}{n} + \frac{\overline{X}^{2}}{\left(n - 1 \right) s_{x}^{2}}} \right]$$

e.g.,
Continuing this example, to test

$$H_0: \beta_0 = 75$$

vs. $H_a: \beta_0 \neq 75$

$$t = \frac{\hat{\beta}_0 - \beta_0^{(0)}}{s_{y|x}\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{(n-1)s_x^2}}} = \frac{98.71 - 75}{17.31\sqrt{\frac{1}{30} + \frac{(45.13)^2}{(29)(15.29)}}} = 2.37$$

and again reject H_0 at the α =.05 level

and

$$98.71 - 2.0484 (17.31) \sqrt{\frac{1}{30} + \frac{(45.13)^{2}}{29(15.29)^{2}}} \le \beta_{0} \le 98.71 + 2.0484 (17.31) \sqrt{\frac{1}{30} + \frac{(45.13)^{2}}{29(15.29)^{2}}}$$

$$78.23 \le \beta_{0} \le 119.20$$

Now, if you give me a value of x, I'll give you a confidence interval for $\mu_{v|x}$.

It can be demonstated that

$$\sigma_{\hat{y}_{x_0}}^2 = \sigma^2 \left(\frac{1}{n} + \frac{\left(x_0 - \overline{x} \right)^2}{\left(n - 1 \right) s_x^2} \right)$$

and this is estimated by

$$s_{\hat{y}_{x_0}}^2 = s_{y|x}^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{(n-1)s_x^2} \right)$$

and a 100(1- α)% confidence interval estimate for $\mu_{y|x}$ is

$$\hat{\pmb{y}}_{x_0} - \pmb{t}_{1-\alpha/2} \left(\pmb{n} - \pmb{2} \right) \pmb{s}_{\hat{y}_{x_0}} \leq \mu_{y \mid x} \leq \hat{\pmb{y}}_{x_0} + \pmb{t}_{1-\alpha/2} \left(\pmb{n} - \pmb{2} \right) \pmb{s}_{\hat{y}_{x_0}}$$

Example:

Suppose we want a 90% confidence interval for the mean SBP of 65 year old individuals

$$\hat{y}_{x_0} = \hat{y}_{65} = 142.53 + (0.97)(65 - 45.13)$$

= 161.80

$$s_{\hat{y}_{65}} = 17.31 \left(\frac{1}{30} + \frac{\left(65 - 45.13\right)^2}{\left(29\right)\left(15.29\right)^2} \right)^{\frac{1}{2}} = 5.24$$

$$161.80 - 1.7011(5.24) \le \mu_{y|65} \le 161.80 + 1.7011(5.24)$$
$$152.89 \le \mu_{y|65} \le 170.71$$

Suppose we now wish to estimate the response y of a single <u>individual</u> based on the fitted regression function.

It can be demonstrated that the "prediction interval" (PI) is given by

$$\hat{Y}_{x_0} - t_{1-\alpha/2} \left(n - 2 \right) s_{y|x} \sqrt{1 + \frac{1}{n} + \frac{\left(x_0 - \overline{x} \right)^2}{\left(n - 1 \right) s_x^2}} \le Y_{x_0} \le \hat{Y}_{x_0} + t_{1-\alpha/2} \left(n - 2 \right) s_{y|x} \sqrt{\frac{1}{n} + \frac{1}{n} + \frac{\left(x_0 - \overline{x} \right)^2}{\left(n - 1 \right) s_x^2}}$$

This is not a parameter. Hence, we use the expression "PI" rather than "CI". Note that this is the only difference from the previous expression.

Example

Suppose we want a 90% prediction interval for SBP for an individual whose age is 65

again,
$$\hat{Y}_{65} = 161.80$$

$$S_{y|x}\sqrt{1+\frac{1}{n}+\frac{\left(X_{0}-\overline{X}\right)^{2}}{\left(n-1\right)S_{x}^{2}}}=17.31\sqrt{1+\frac{1}{30}+\frac{\left(65-45.13\right)^{2}}{\left(29\right)\left(15.29\right)^{2}}}=18.09$$

note how much larger this is than before (5.24)

$$161.80 - (1.7011)(18.09) \le Y_{65} \le 161.80 + (1.7011)(18.09)$$
$$131.03 \le Y_{65} \le 192.57$$

prediction interval is much wider than confidence interval was

Note that whether we are constructing confidence intervals or prediction intervals, the expressions contain the term

$$\frac{\left(x_{0}-\overline{x}\right)^{2}}{\left(n-1\right)s_{x}^{2}}$$

This means that the farther x_0 is from \bar{x} , the larger will be the variance and the wider will be the interval.

Diagramatically:

symbol(o i i i i i)

Hence, we can make more precise estimates for $\mu_{y|x}$ or Y_{x_0} when we are close to \bar{x} . As we move away from \bar{x} our confidence intervals and prediction intervals increase in width.