

PIA+COMM

An Intelligent Search Engine
Supporting Scientific Communities

Dipl. soc. tec. Michael Hahne

MA Corinna Jung

Dipl.-Inform. Jérôme Kunegis

Dipl.-Inform. Andreas Lommatzsch

Dipl.-Inform. André Paus

INFORMATIK 2006

PIA+COMM – INFORMATIK 2006 Outline

- **⇒** Introduction
- **⇒** Community Model
- **⇒** Community Supporting Features
- ⇒ Conclusion and Outlook

Project Data

- ⇒ Project goal: an intelligent search engine with integrated support for scientific communities
- ⇒ Iterative system development process
- ⇒ Formative evaluation: continuous user questioning and user feedback integration

PIA+COMM – Introduction

PIA+COMM supports all aspects of information needs of scientific communities!

⇒ Supply of large, scientific information sources: databases, portals, multimedia content, ...

⇒ Advanced information search and management

- ⇒ Advanced data analysis, feature extraction, meta data calculation for classification and indexing
- □ Integration of community building and functionalities supporting communities

System Components

Features:

- Keyword suggestion
- Document clustering
- Alerts

The Gradual Community Model I

The Gradual Community Model II

Collective short-term relations

Criterion 1 + C2 + C3 + C4 + C5 + C6 + C7 +

+ community stereotype (C8)

+ role differential (C9)

C6: coordination, information

C1: finding similar users

The Gradual Community Model II

type	minimal community criteria	features
potential communities	pool of actors with something in common (C1)	C1: Finding Similar Users
short-term pair relations	Criterion 1 + mutual awareness (C2) + character / issue of interaction (C3)	C2: User-radar, User-page C3: offer several interaction channels
long-term pair relations	Criterion 1 + C2 + C3 + continuous interaction (C4) + external input (K 5)	C4: repository C5: Community Based Document Recommendation
collective short-term relations	Criterion 1 + C2 + C3 + community interaction (C6) + positive community feeling (C7)	C6: coordination, information control, distribution C7: conflict management, comparison
collective long-term relations	Criterion 1 + C2 + C3 + C4 + C5 + C6 + C7 + community stereotype (C8) + role differential (C9)	C8: external representation C9: internal representation

pool of actors with something in common (C1)

C1: Finding Similar Users

Criterion 1

- + mutual awareness (C2)
- + character / issue of interaction (C3)

C2: User-radar, User-page

C3: offer several interaction

channels

pool of actors with something in common (C1)

C1: Finding Similar Users

Criterion 1

- + mutual awareness (C2)
- + character / issue of interaction (C3)

C2: User-radar, User-page

C3: offer several interaction

channels

Criterion 1

- + mutual awareness (C2)
- + character / issue of interaction (C3)

C2: User-radar, User-page

C3: offer several interaction

channels

Finding Similar Users

- ⇒ We want to determine how similar two users are to each other
- ⇒ Users read documents
- ⇒ Users rate documents

- ⇒ Finding documents read in common: Not enough documents are present
- **⇒** Therefore: Finding similarities between documents

Document Features

- **⇒** Contained words
- ⇒ Weighted by number of appearences (term frequency)
- **⇒** Weighted by rarity (inverse document frequency)
- **⇒** Phrases
- **⇒** Synonyms, Metadata, References

Example

Properties

User-Radar

Community Based Document Recommendation

- ⇒ Virtual communities tend to decay fast as member contributions decrease
- ⇒ Provide not only single users with documents, but find conitinuously up-to-date documents for the whole community!
- ⇒ This might help to keep communities alive
- ⇒ Train a classificator which identifies documents relevant for the whole community

Community Based Document Recommendation

- ⇒ Unusual information retrieval task
- ⇒ Usually: single user, using query
- ⇒ Here:

 - ⇒ No query given
- ⇒ Because no benchmarks are available, we have to use synthetic benchmarks

Community Based Document Recommendation

The training set consists of all documents which community members have

- ⇒ Explicitly rated as relevant
- ⇒ Saved (implicitly relevant)
- **⇒** Explicitly rated as irrelevant
- ⇒ Documents in search results which have not been rated (implicitly irrelevant)

Potential Support Vector Machine P-SVM

Linear classification

$$y_i = sign(w \cdot x_i)$$

Nonlinear classification

$$y_i = sign(k(w,x)_i)$$

SVM:

$$w = \sum \alpha_i x_i$$

documents x_i

 $K_{ii} = k(x_i, x_i)$ positive definite, square

P-SVM:

$$w = \sum \alpha_i t_i$$

documents x_i

$$K_{ij} = k(t_i, x_j)$$

no restrictions

Community Support Features Potential Support Vector Machine P-SVM

Support Feature selection

- ⇒ Saves time (more features than documents in training set)

Conclusion and Outlook

Conclusion and Outlook

Туре	Minimal community criteria	Features
potential communities	pool of actors with something in common (C1)	C1: Finding Similar Users
short-term pair relations	Criterion 1 + mutual awareness (C2) + character / issue of interaction (C3)	C2: User-radar, User-page C3: offer several interaction channels
long-term pair relations	Criterion 1 + C2 + C3 + continuous interaction (C4) + external input (K 5)	C4: repository C5: Community Based Document Recommendation
collective short-term relations	Criterion 1 + C2 + C3 + community interaction (C6) + positive community feeling (C7)	C6: coordination, information control, distribution C7: conflict management, comparison
collective long-term relations	Criterion 1 + C2 + C3 + C4 + C5 + C6 + C7 + community stereotype (C8) + role differential (C9)	C8: external representation C9: internal representation