Page web du module

https://sites.google.com/esp.sn/ifall/teachingsenseignements/l2-level-niveau-l2/l2_mobile

Introduction au développement Mobile

Ibrahima FALL

Ibrahima.Fall@esp.sn

Département Génie Informatique, Ecole Supérieure Polytechnique
Université Cheikh Anta Diop de Dakar
BP 5085 Dakar-Fann, Sénégal

Objectifs

Comprendre

- □ l'historique du développement mobile et les enjeux du monde du mobile
- □ les différentes formes de développement mobile
- □ le processus de création, de déploiement, et de mise à disposition et d'utilisation des applications mobiles

Plan de l'enseignement

- Introduction générale
 - □ Eléments de base en développement mobile
- Développement natif mobile
 - □ L'exemple d'Android

Chapitre 1 Introduction Générale

Terminaux mobiles. Caractéristiques du monde mobile. Opportunités offertes. Types d'applications mobiles.

Vous avez dit « développement mobile »?

- Développement d'applications pour des terminaux mobiles
- Terminal mobile
 - □ Possibilité d'être déplacé facilement
 - □ Connectivité étendue à Internet
 - □ Utilisation sans faire recours à une prise électrique
 - □ [Possibilité d'être transporté dans une poche et d'être utilisé avec une seule main]*

*Propriétés bien discutable

Vous avez dit « développement mobile »?

Exemples de terminaux mobiles

- Téléphones de base (feature phone), téléphones intelligents (smartphones), superphone, ...
 Tablettes,
 Téléviseurs,
- ☐ Montres, baladeurs musicaux (iPod Touch, ...)
- Consoles de jeux portables (Sony PSP, Nintendo DS, ...)
- □ Récepteurs GPS
- □ ...

- Des contraintes matérielles
 - □ Résolution et/ou taille physique petites de l'écran
 - Densité de pixels (en ppp, ou ppi) plus importante nécessaire
 - □ Du que l'appareil est utilisé plus prés (environ 20 à 30 cm)
 - □ Ecran d'orientation plus portrait que paysage
 - □ Eclairages moins confortables
 - □ Système d'entrée de texte au mieux malaisé, voire pénible

- Des contraintes matérielles (suite)
 - □ Système de pointage (curseurs, mini-joystick, tactile) à faible niveau de précision
 - □ Durée de vie limitée de la batterie
 - □ Plus faible puissance de calcul (CPU)
 - □ Capacité de stockage limitée, surtout en RAM
 - □ Réseau (souvent téléphonique) à faible débit et à coût élevé
 - Est-ce toujours vrai ?

- Un contexte différent
 - □ Etat d'esprit de l'utilisateur variable
 - Pressé, à la recherche d'un passe-temps, focalisé, distrait, etc.
 - □ Utilisateur très souvent en situation de mobilité
 - Accès rapide à une une information contextuelle
 - Possibilité de trouver ladite information sans être fortement concentré sur l'application utilisée
 - Accès à l'interface avec un minimum d'interaction manuelle, idéalement avec une seule main

- Un contexte différent (suite)
 - □ Relations sociales virtualisées
 - Besoin accrue de fonctionnalités de partage
 - Les réseaux sociaux sont le plus utilisés via des terminaux mobiles

. . . .

- Un domaine fragmenté
 - □ Beaucoup de types de terminaux
 - Téléphones de base (feature phones), téléphones intelligents (smartphones), superphones, ...
 - Tablettes,
 - Téléviseurs,
 - Montres, baladeurs musicaux (iPod Touch, ...)
 - Consoles de jeux portables (Sony PSP, Nintendo DS, ...)
 - Récepteurs GPS

- Un domaine fragmenté (suite)
 - □ Beaucoup de navigateurs
 - Plus nombreux et avec des mises à jour moins fréquentes
 - Opera Mobile, Opera Mini, NetFront, FireFox Mobile, IE Mobile, Obigo, Bolt, Skyfire, UC Browser, Vision Mobile, Ovi Browser, ...
 - → Une liste d'émulateurs est maintenue par Mobiforge pour les tests
 - http://mobiforge.com/emulators/page/mobileemulators

Disponibilité

- □ Plus de possesseurs de téléphones portables que d'ordinateurs
- □ Les utilisateurs de téléphones portables s'en séparent rarement
- □ Toujours allumés et prêts à l'emploi, requièrent peu de maintenance
- □ Peuvent être connectés partout, immédiatement, avec un minimum d'intervention de l'utilisateur

- Disponibilité (suite)
 - □ C'est ainsi que les utilisateurs peuvent être atteints dans presque toutes les situations
 - Transports
 - Lieux et situations d'attente
 - Entre amis, en famille, etc.
 - La chambre, la cuisine
 - Un lieu touristique
 - Un magasin
 - etc.

- Personnalisation
 - □ Les téléphones sont des objets très personnels
 - Possibilité pour l'utilisateur d'être identifié de manière permanente
 - Stockage de grands nombres d'informations personnelles (carnets d'adresses, messages, agendas, etc.)
 - Adaptation de l'expérience utilisateur au contexte d'emploi (avec l'aide des capteurs abrités)

- Innovation
 - □ Une montée en puissance accrue des composants matériels
 - Interactions tactiles
 - Détection de mouvements et déplacements
 - □ Exemple: secouer pour choisir un élément aléatoire
 - Interactions vocales
 - □ Reconnaissance, synthèse, intégration de la voix au Web, ...
 - Un œil sur le monde
 - □ Témoignages vidéo et photo, ...
 - Géolocalisation
 - Possibilité d'accès par programmes à des information de géolocalisation, ...

Types d'applications mobiles

- 3 scénarii de développement possibles
 - □Web
 - □ Natif
 - □Hybride

Applications Web

- Codées en utilisant les technologies Web
 - □ En adaptation continue
 - □ WAP, XHTML MP, XHTML Basic, ..., HTML5

Avantages du Web mobile

- Tendance multi-écrans et disponibilité sur toutes les plateformes
- Plusieurs standards sont en cours de réalisation au W3C pour l'accès aux composants des terminaux mobiles
- Simplicité technologique
 - □On y fait du web

Inconvénients du Web mobile

- Absence de visibilité des applications codées en HTML au sein des kiosques de téléchargement
- Manque de fluidité
 - □ Applications moins réactives
- La compatibilité WebKit entre chacune des plateformes ne serait pas au rendezvous

Applications natives

- Développées avec des langages spécifiques à chaque système d'exploitation
- Exemple
 - □ Objective-C (iOS)
 - ☐ Java (Android)
 - □ C# (Windows Phone)

Avantages du natif

- Utilisation d'un langage spécifique à chaque plateforme
 - □ Accès facile aux ressources/informations du mobile (IMEI, modèle, touches, réseaux mobiles, ...)
 - □ Possibilité d'une meilleure ergonomie qualitative et d'une intégration des fonctionnalités haut de gamme
 - Réalité augmentée, cartographie, jeux, ...
- Bonnes visibilité et fluidité des applications
 - □ Facilement repérables au sein des plateformes de téléchargement
- Plus réactives

Inconvénient du natif

- Coûts de développement cumulés souvent jugés exorbitants.
 - Une application nécessite plusieurs compétences

Applications hybrides

- Développées majoritairement en utilisant les technologies Web et où la partie native se différenciera selon les plateformes ciblées
- Remarque
 - □ Les outils de développement cross-platform commencent à percer

Avantage des applications hybrides

- Bénéficier des avantages des applications natives sans développer l'intégralité du produit dans le langage de chaque plateforme
- Diminuer les coûts d'équipement en mutualisant les vues web
- Etre visible sur les stores des mobiles.

Qu'est-ce que c'est? Environnements de développement. Principaux éléments d'une application Android

Un peu d'histoire ...

- À l'origine, Android Incorporated, nom d'une PME américaine
 - □ créée en 2003
 - Objectif
 - Développer un système d'exploitation mobile plus intelligent qui devait permettre à l'utilisateur d'interagir avec son environnement.
 - □ puis rachetée par Google en 2005
 - Volonté de s'introduire sur le marché des produits mobiles.
 - Concurrence: Symbian, Windows phone

- Chaque constructeur concevait un SE spécifique pour son téléphone
 - □aucune base commune entre les SE de constructeurs différents
 - □ Conséquence
 - Développement mobile orienté matériel
 - Basé sur des langages de bas niveau comme C et C++

- Janvier 2007: la révolution iPhone
 - \Box SE = iOS (iPhone OS)
 - □ Téléphone capable d'aller sur Internet, de lire des vidéos, etc.
 - □ Un désastre pour les concurrents d'Apple
 - Ils estiment qu'il leur aurait fallut des années de pour atteindre l'iOS

- Novembre 2007: naissance de l'Open Handset Alliance (OHA)
 - □ Engagement à l'ouverture, vision partagée du futur, plan de mise en oeuvre concret
 - □ Fournir la plateforme nécessaire à un développement novateur, plus rapide, de meilleure qualité et sans coût de licence
 - □ https://www.openhandsetalliance.com/

- L'OHA
 - □ Initiallement 35 entreprises évoluant dans l'univers du mobile, dont Google
 - □ Aujourd'hui plus de 80 membres

- Membres de l'OHA
 - □ Fabricants de matériels
 - Alcatel, Asus, Dell, Haier, HTC, Huawei, LG, Lenovo, Toshiba, ...
 - □ Opérateurs mobiles
 - Bouygues, China Mobile, T-Mobile, Telefonica, Vodafone, ...
 - □ Editeurs de logiciels
 - □ Google, Cooloris, Ebay, Motoya, NXP, Nuance, Skypop, ...

- Membres de l'OHA (suite)
 - □ Fabricants de semi-conducteurs
 - Intel, Nvidia, AKM, Broadcom, Marvell, Mediatek, ...
 - □ Sociétés commerciales
 - Aplix, Accentur, noser, TAT, Wind river,

- Logiciel phare de l'OHA
 - □ ANDROID
 - Pas la seule activité
- Octobre 2008: premier téléphone Android
 - ☐ T-Mobile G1, USA
- Déja en 2012
 - □ 300 millions de terminaux compatibles Android
 - Produits par 39 fabricants dans plus de 123 pays et reconnus par 231 opérateurs téléphoniques !!!

Les principes de base

- Ils encouragent à développer sous Android
 - □ Open source
 - □ (presque) gratuit
 - □ Facile à développer et à vendre
 - API à disposition, Play Store
 - □ Flexible
 - SE très portable et pour beaucoup de types de terminaux
 - Même des fours micro-ondes
 - □ ...

Android n'est pas

- Une implémentation de Java ME
 - □ Code écrit en Java mais non exécuté par une JVM comme pour JME
 - □ Non plus le bytecode Java n'est pas nativement exécutable sous Android
- Un téléphone mobile
 - □ Plutôt un système conçu pour supporter de nombreux matériels
- La réponse de Google à l'iPhone
 - □ iPhone=matériel+plateforne logicielle propriétaire
-

Android est

- Une combinaison de 3 composants dépendants et nécessaires
 - □ Un SE open-source libre pour appareils mobiles
 - □ Une plateforme de développement open-source pour la création d'applications pour mobiles
 - □ Des équipements, en particulier des téléphones portables, qui exécutent le SE ainsi que les applications développées

Android comprend

- Un modèle de conception matérielle de référence
 - □ Décrit les capacités nécessaires au support de la pile logicielle
- Un SE Linux
 - □ Taillé sur mesure pour les appareils mobiles
 - □ Assure l'interface de bas niveau avec le matériel, la gestion de la mémoire et le contrôle des processus
- Des bibliothèques open-sources
 - □ Pour le développement d'applications

Android comprend

- Un moteur d'exécution et d'hébergement des applications
 - Machine virtuelle DALVIK et bibliothéques de base
- Des applications préinstallées essentielles
 - □client de courrier électronique, SMS, contacts, calendrier, navigateur, musique, photos, prise photos et vidéos, calculatrices, horloge, ...

Android comprend

- Dans la majeure partie des cas, les appareils Android sont également livrés avec des applications Google propriétaires
 - □ Chrome, Client Google Play Store, app. Google Maps, client Gmail, client Google Talk, lecteur YouTube, ...
- Certains constructeurs ou opérateurs rajoutent eux aussi des applications sur les nouveaux appareils

Quelques avantages qu'offrent Android

- Applications Google Maps
- Services d'arrière-plan et applications
- Données partagées et communications interprocessus
- Toutes les applications sont égales
 - Natives ou développées par des tiers

Introduction au kit de développement

- Apercu technique de la pile logicielle
- Les éléments constitutifs du SDK
- Les bibliothèques Android
- La machine virtuelle Dalvik

■ Le noyau Linux

- Le noyau Linux
 - □Gere les services de base
 - pilotes du matériel, gestion des processus et de la mémoire, réseau, gestion de l'alimentation
 - □ Fournit une couche d'abstraction entre le matériel et le reste de la pile

Les bibliothèques

- Les bibliothèques
 - □ Bibliothèques C/C++ de base exécutées audessus du noyau: libc, SSL
 - Multimédia
 - □ Gestion de surface (affichage)
 - ☐ Graphisme (SGL, OpenGL, etc.)
 - □ Support natif des bases de données (SQLite) ;
 - □ Intégration d'un navigateur web et la sécurité sur Internet: SSL, WebKit

■ Le moteur d'exécution

- Le moteur d'exécution
 - □ Fait d'un téléphone un téléphone Android
 - et non une implémentation mobile de Linux
 - Motorise les applications
 - □ Forme les bases du framework applicatif
 - avec l'aide des bibliothèques
 - □ Comprend essentiellement
 - les bibliothèques de base
 - la machine virtuelle Dalvik

- Le moteur d'exécution
 - □ Les applications sont écrites en Java
 - Mais sont exécutées par une machine virtuelle spécifique
 - □ Dalvik
 - □ Chaque application est exécutée dans un processus distinct dans sa propre instance Dalvik
 - Le moteur d'exécution Android qui engloge Dalvik gère la mémoire et les processus
 - □ Exemple: il arrête et tue les processus si nécessaire pour gérer les ressources

- Le moteur d'exécution
 - □ ...
 - □ La machine virtuelle Dalvik
 - Optimisée pour garantir qu'un appareil peut exécuter plusieurs instances de façon efficace
 - □ Les exécutables Dalvik (.dex), ont un format optimisé pour garantir une empreinte mémoire minimale
 - Dépend du noyau Linux pour les taches de bas niveau (gestion des threads, de la sécurité, des processus, de la mémoire, etc.)
 - NB: La NDK (Native Development Kit) existe
 - □ Permet de créer de nouvelles bibliothèques
 - □ Donne accès à OpenGL
 - □ Code en C/C++

- Le moteur d'exécution
 - \square ...
 - □Les bibliothèques de base
 - Le code Android s'écrit en Java alors que Dalvik n'est pas une JVM
 - Ce sont les bibliothèques de base qui fournissent la plupart des fonctionnalités disponibles dans les bibliothèques de base Java ainsi que dans les bibliothè ques spéciques à Android.

Le framework applicatif

- Le framework applicatif
 - □Fournit l'API pour le développement des applications Android
 - □Offre une abstraction générique pour l'accès au matériel
 - □Gère l'interface utilisateur ainsi que les ressources de l'application

La couche applicative

- La couche applicative
 - □Accueille toutes les applications (natives ou tierces)
 - □Est exécutée par le moteur d'exé cution Android
 - Utilise les classes et services du framework applicatif

- Le SDK d'Android fournit ce qu'il faut pour produire des applications
 - □ Développer
 - □ Tester
 - □Déboguer

- Les API Android
 - □ Donnent accès à la pile Android.
 - □Utilisées par tout le monde
 - Pour développer des applications tierces comme natives
- Des outils de développement
 - □ Pour transformer le code source Android en applications exécutables

- Le Virtual Device Manager
 - □ Le gestionnaire d'appareils Android virtuels (AVD)
 - Simule une configuration matérielle
- L'émulateur Android
 - □ S'exécute au sein d'un AVD
 - □ Permet de voir à quoi ressemble une application et comment elle se comportera sur un vrai appareil Android.
 - Est indépendant de tout matériel
 - □ Fournit alors un meilleur environnement de test que n'importe quel terminal physique

- Une documentation complète
 - □ Une référence
 - □ Détaille ce qui est inclus dans chaque package et classe, et comment les utiliser
 - □ En plus de documenter le code, explique comment dé marrer et donne des explications détaillées sur les fondamentaux du développement
- Des exemples de code
 - □ Le SDK propose une sélection d'applications exemples

- Un support en ligne
 - Android a rapidement généré une communauté vivante de développeurs
 - Les Google Groups
 - http://developer.android.com/resources/ community-groups.html
 - https://developer.android.com/support
 - StackOverflow
 - http://www.stackoverflow.com/questions/ tagged/android
 - etc.

Eléments constitutifs du SDK: quelques autres outils de développement

- DDMS
- AAPT
- ADB
- Logcat
- Dx
- Lint
- Hierarchy Viewer
- Etc.

Les bibliothèques Android

- On les découvre en développant
- Correspondent aux APIs qui donnent accès à la pile Android
- Permettent de gérer des
 - □ Activités, vues, contenus, etc.

...

Environnements de développements

- Environnements dédiés
 - □ Taillés sur mesure
 - □ Exemple: Android Studio
- Environnements génériques
 - □ Exemple: Eclipse
 - ADT (Adroid Development Tool)
 - □un plugin développé et maintenu directement par des équipes de Google
 - □Netbeans, etc.

TPs

- Mise en place d'un environnement de développement
- Développement de la première application

- Une application Android
 - □ formée de composants à faible couplage
- Un manifeste d'application
 - Est utilisé pour décrire chacun des composants et leurs interactions,
 - □ Permet de préciser
 - les métadonnées de l'application,
 - ses exigences matérielles et logicielles,
 - ses bibliothèques externes,
 - les permissions qu'elle exige,
 - etc.
 - □ Est défini en XML

- Briques de base de toute application Android
 - □ Activités, fragments, vues
 - □ Services
 - □ Fournisseurs de contenus
 - □ Intentions
 - □ Récepteurs de diffusion
 - □Widgets
 - Notifications

- Activités
 - □ Couche de présentation
 - Chaque écran est une activité
 - Utilisent des vues ou des fragments pour former les UI qui afficheront l'information et répondront aux actions de l'utilisateur
 - □ Equivalentes aux Form dans le développement classique
- Vue
 - □ Permettent de créer une UI
 - □ Exemples: boutons, champs, etc.

- Fragments
 - □ Permettent de diviser une activité en composants ré utilisables et autonomes,
 - □ Avec pour chacun son propre cycle de vie et sa propre UI
 - □ Facilitent la création d'interfaces dynamiques et souples
 - pouvant s'adapter à un large éventail de types de terminaux, de tailles et de densités d'écrans différents
- Chaque fragment est un module indépendant et est lié à l'activité dans laquelle il se trouve

- Services
 - □ S'exécutent sans UI
 - □ Mettent à jour les sources de données et les activités visibles
 - Déclenchent des notifcations et diffusent des intentions
 - □ Servent à exécuter des traitements continus ne né cessitent pas d'intervention de l'utilisateur
 - recherches sur le réseau
 - tâches devant continuer à s'exécuter même lorsque les activités ne sont pas actives ou visibles

- Fournisseurs de contenus
 - □ Sources de données partageables
 - □ Gèrent et stockent les données de l'application
 - □ Intéragissent généralement avec des bases de donné es SQL
 - □ Meilleur moyen de partager des données entre applications
 - □ Les appareils Android disposent de plusieurs fournisseurs de contenus natifs qui exposent des bases de données très utiles
 - Exemples
 - □ médias, contacts, etc.

- Intentions
 - Cadre de communication inter applications par passage de message
 - □ Peuvent servir de lancer/arreîter des activités et services
 - ou demander l'exécution d'une action sur des donné es particulières
 - □ Différentes catégories
 - Intentions explicites
 - Intentions implicites
 - Intentions à diffusion

- Récepteurs de diffusion
 - □Consommateurs des messages diffusés par les intentions
 - S'ils répondent à certains critères spécifiques
 - □ Peuvent démarrer de facon automatique une application pour répondre à une intention entrante
 - □ldéaux pour créer des applications basées sur des événements

- Widgets
 - □Composants visuels qui sont géné ralement ajoutés à l'écran d'accueil
 - interactifs et dynamiques
 - □Sont une variante des récepteurs de diffusion

- Notifications
 - permettent d'envoyer un signal aux utilisateurs
 - sans dérober le focus ni interrompre l'activité en cours
 - Moyen privilégié d'attirer l'attention de l'utilisateur à partir d'un service ou d'un récepteur de diffusion
 - □ Exemple
 - Lorsqu'un appareil reçoit un message texte ou un appel entrant, il vous alerte en clignotant, en émettant un son, en affichant une icone ou un message
 - Ces mêmes événements peuvent donc être déclenchés depuis une application tierce

Eléments constitutifs d'une application Android

- L'architecture d'Android encourage la ré utilisation de composants
 - permettant de publier et de partager les activités, les services et les données avec d'autres applications
 - avec un accès géré par des restrictions de sécurité à mettre en place

Services applicatifs essentiels à une application Android

- Sont les pierres angulaires qui fournissent le framework utilisé pour les applications
- Gestionnaire des activités et gestionnaire des fragments
 - □ Contrôlent le cycle de vie des activités et fragments, notamment la gestion de la pile des activités
- Vues
 - □ Utilisées pour construire les UI des activités
- Gestionnaire des notifcations
 - □ Fournit un mécanisme cohérent et non intrusif pour envoyer des signaux aux utilisateurs

Services applicatifs essentiels à une application Android

- Fournisseurs de contenu
 - □ Permettent aux applications de partager des données
- Gestionnaire de ressources
 - □ Permet à des ressources autres que du code, comme les chaînes de caractères ou les graphiques, d'être externalisées
- Intentions
 - □ Offrent un mécanisme de transfert de données entre les applications et leurs composants