Problem I:

Observations:

- 1. As the sample size increases, the frequency of the discrete random values generated becomes more and more uniform.
- 2. The above histogram(s) with 100 bins justify the statement-(1).

Problem II:

- a) Since, g(x) = 1, for U[0.00, 1.00], $f(x) \ll c.g(x) \implies f(x) \ll c.$ Using elementary calculus, tha maxima for f(x) occurs at x = 2.1094.
- b) For sample size 100:

For sample size 1,000:

For sample size 10,000:

For sample size 1,00,000:

For sample size 10,00,000:

Clearly, from the above graphs, we can observe that for larger values of sample, f(x) and the frequency of random numbers generated converge!

\sim	١.
ι.	
_	,

Sample Size	10	100	1,000	10,000	1,00,000	10,00,000
c - avgIterations	0.1094	0.1294	0.0136	0.0022	0.0070	0.0022

From the above table, we can observe that, as the sample size of random values generated increases, the computed value $\,c=2.1094$, converges to the average iterations required to generate each random number!

d) For c = 2.50 and c = 3.00, I observed that in this case also, the average iterations required to generate random numbers converged to c for higher values of sample size!

For c = 2.50.

1010 200,						
Sample Size	10	100	1,000	10,000	1,00,000	10,00,000
c - avgIterations	0.7000	0.4100	0.0110	0.0042	0.0023	0.0003

For c = 3.00,

Sample Size	10	100	1,000	10,000	1,00,000	10,00,000
c - avgIterations	0.2000	0.0600	0.0060	0.0429	0.0026	0.0027

Problem III:

Legend:

- 1. Orange = Actual Probability Distribution
- 2. Blue = Sample Probability Distribution

Observations:

- 1. As the sample size increases, the sample probability distribution converges with the required probability distribution!
- 2. The average number of iterations required to generate #sample_size random numbers, always converges to the chosen value of c, for a sufficiently large sample size!