



# Cryptography Primer





- https://www.cryptool.org/en/
- Cryptography E-Mates [Link]





#### **Objectives**

Identify the components of a cryptographic systems

• Examine a one-time pad to understand good properties of cryptographic systems.

• Explore a method for exchange secure keys in a cryptographic system.





#### **Cryptographic System**







#### **One-Time Pad Cryptographic System**

| Т  | 0  | Т  | Н  | Е  | S  | Т  | Α  | R  | S  |
|----|----|----|----|----|----|----|----|----|----|
| 84 | 79 | 84 | 72 | 69 | 83 | 84 | 65 | 82 | 83 |

PLAINTEXT DECIMAL

| 11 | 22 | 33 | 44 | 55 | 9 | 8 | 7 | 6 | 5 |
|----|----|----|----|----|---|---|---|---|---|
|    |    |    |    |    |   |   |   |   |   |

KEY

#### CIPHERTEXT = XOR (KEY, PLAINTEXT)

| 11 xor 84 | 22 xor 79 | 33 xor 84 | 44 xor 72 | 55 xor 69 | 9 xor 83 | 8 xor 84 | 7 xor 65 | 6 xor 82 | 5 xor 83 |
|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|
| 95        | 89        | 117       | 100       | 114       | 90       | 92       | 70       | 84       | 86       |

**CIPHERTEXT** 





#### **Cryptographic System Properties**

| Α  | A  | A  | А  | В  | В  | В  | В  | В  | С  |
|----|----|----|----|----|----|----|----|----|----|
| 65 | 65 | 65 | 65 | 66 | 66 | 66 | 66 | 66 | 67 |

PLAINTEXT

DECIMAL

| 11 | 22 | 33 | 44 | 55 | 9 | 8 | 7 | 6 | 5 |
|----|----|----|----|----|---|---|---|---|---|
|    |    |    |    |    |   |   |   |   |   |

KEY

----- CIPHERTEXT = XOR (KEY, PLAINTEXT)

| 11 xor 65 | 22 xor 65 | 33 xor 65 | 44 xor 65 | 55 xor 66 | 9 xor 66 | 8 xor 66 | 7 xor 66 | 6 xor 66 | 5 xor 67 |
|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|
| 74        | 87        | 96        | 109       | 118       | 75       | 74       | 69       | 68       | 70       |

**CIPHERTEXT** 

Lets examine an example encoding the plaintext AAAABBBC to understand some cryptographic properties

# Two of the same inputs yield different outputs

| Α  | А  | А  | А  | В  | В  | В  | В  | В  | С  |
|----|----|----|----|----|----|----|----|----|----|
| 65 | 65 | 65 | 65 | 66 | 66 | 66 | 66 | 66 | 67 |

PLAINTEXT

DECIMAL

| 11 | 22 | 33 | 44 | 55 | 9 | 8 | 7 | 6 | 5 |
|----|----|----|----|----|---|---|---|---|---|
|    |    |    |    |    |   |   |   |   |   |

KEY

----- CIPHERTEXT = XOR (KEY, PLAINTEXT)

| 11 xor 65 | 22 xor 65 | 33 xor 65 | 44 xor 65 | 55 xor 66 | 9 xor 66 | 8 xor 66 | 7 xor 66 | 6 xor 66 | 5 xor 67 |
|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|
| 74        | 87        | 96        | 109       | 118       | 75       | 74       | 69       | 68       | 70       |

**CIPHERTEXT** 

Notice how the first two As yield different results.

$$XOR(65,11) = 74$$

$$XOR(65,22) = 87$$



# Two different inputs yield the same output

| A  | Α  | А  | А  | В  | В  | В  | В  | В  | С  |
|----|----|----|----|----|----|----|----|----|----|
| 65 | 65 | 65 | 65 | 66 | 66 | 66 | 66 | 66 | 67 |

PLAINTEXT

DECIMAL

KEY

----- CIPHERTEXT = XOR (KEY, PLAINTEXT)

| 11 xor 65 | 22 xor 65 | 33 xor 65 | 44 xor 65 | 55 xor 66 | 9 xor 66 | 8 xor 66 | 7 xor 66 | 6 xor 66 | 5 xor 67 |
|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|
| 74        | 87        | 96        | 109       | 118       | 75       | 74       | 69       | 68       | 70       |

CIPHERTEXT

Notice how the first A and the third B yield the same ciphertext XOR(65, 11) == XOR(66, 8) = 74





#### Symmetric Key Challenges

• All the keys must be known by the sender and the receiver prior to secure communication.

What if we have a cryptographic enterprise of 5 users?

How many different keys would be in the enterprise to allow all 5
users to communicate with each other?



### **Key Distribution in Symmetric Key**





N = number of users

K = number of keys

K = N(N-1) / 2





#### Symmetric Key Challenges

• This might work for 5 users, but what about a cryptographic system of 2,500 users?

2,500 users would need to produce 2,500 \* (2,500-1) / 10 = 624,750 keys.

 And they'd all have to be shared prior to any secure communication.





#### Symmetric Key Challenges

• Storing and distributing 624,750 keys for 2,500 users presents some challenges.

• A centralized database of keys presents risks to users. What if the database is compromised or abused?

Is there a better way to distribute 624,750 between 2,500 users?





#### Is there a better way?









 $K = A^b \mod p$ 

Lets consider two users Alice and Bob. They need to establish a Key (K) but know the enemy is listening to them.

- 1. Alice and Bon pick their own secret numbers (a,b).
- 2. Alice then picks a primiative root (g) and a prime number (p) and sends (g,p,g<sup>a</sup> mod p) to Bob
- 3. Bob then sends g<sup>b</sup>mod p to AC.
- 4. Both Alice and Bob calculate the same karls



 $K = B^a \mod p$ 



#### Diffie Helman Key Exchange

Alice's Key = 
$$B^a \mod p = (g^b \mod p)^a \mod p$$
  
Bob's Key =  $A^b \mod p = (g^a \mod p)^b \mod p$ 

```
Since (g^b \mod p)^a = (g^a \mod p)^b
Alice's Key == Bob's Key
```





#### Diffie-Helman Key Exchange



a = 56789

g = 2

p = 104729

 $A = g^a \mod p = 2^{56789} \mod 104729 = 8836$ 

 $K = B^a \mod p = 31321^{56789} \mod 104729 = 15300$ 



Bob

b = 98765

 $B = g^b \mod p = 2^{98765} \mod 104729 = 31321$ 

 $K = A^b \mod p = 8836^{98765} \mod 104729 = 15300$