Name: Jada Dixon

Date:

Topic: Energetics

Title: Heat of Solution

Aim: To investigate the Heats of Solution of NH₄NO₃ and NaOH

Apparatus beaker, thermometer, insulated cup, measuring cylinder, stirring rod, balance, and Materials: NH₄NO₃ and NaOH crystals

Background: The enthalpy of solution of a salt is the energy change which occurs when 1mol of a salt dissolves completely in a given amount of solvent under standard conditions. The enthalpies of solution of NH_4NO_3 and NaOH are +25.69kJmol⁻¹ and -44.51kJmol⁻¹ respectively. This indicates that the dissolution of NH_4NO_3 is endothermic and that of NaOH is exothermic.

Method:

- 1. 5g of NH₄NO₃ was weighed on a balance.
- 2. 25cm³ of water was measured and poured in an insulated cup.
- 3. A thermometer was used to measure the initial temperature of the water.
- 4. The 5g of NH_4NO_3 was added to the insulated cup all at once and stirred to dissolve the solute as quickly as possible.
- 5. The final temperature on dissolution was recorded.
- 6. Steps 1-5 were repeated using NaOH instead of NH₄NO₃

Observations:

Salt	Mass of Salt (g)	Initial	Final	ΔT (°C)
		Temperature (°C)	Temperature (°C)	
NH ₄ NO ₃	5g	26.5	15.5	-11
NaOH	5g	26.5	68.7	42.2

Discussion: Answer the following questions.

1. Calculate the number of moles of NH₄NO₃.

$$\frac{\#M_0|}{\#M_0|aV} = \frac{Mass}{Molav} = \frac{Mass}{Molav}$$

$$\frac{\#M_0|}{\#M_0|} = \frac{5\pi}{80.04\%/m_0}$$

$$\frac{\#M_0|}{\#M_0|} = \frac{0.625m_0}{10.04\%/m_0}$$

2. Calculate the number of moles of NaOH.

3. Calculate the heat change for the dissolution of NH₄NO₃.

4. Calculate the heat change for the dissolution of NaOH.

5. Calculate the enthalpy of solution of NH₄NO₃.

6. Calculate the enthalpy of solution of NaOH.

- 7. Why was an insulated cup used instead of a beaker?

 An insulated cup was used so that little to no heat escaped.
- 8. Why did the values obtained in questions 5 and 6 differ from those stated in the background?

The values obtained were different due to a different in the temperature. The formula to calculate q is MC Δ t, and there would be a different temperature in the room which the experiment took place in, which would make Δ t higher or lower.

9. **Conclusion:** In conclusion, the heat of solution of NH₄NO₃ was +1155J, and the enthalpy of solution was +18430 joules per mole. It was an endothermic reaction. The heat of solution and enthalpy of NaOH was -4431J and -35488 joules per mole respectively and it was an exothermic reaction.