Lab01

Define supervised and unsupervised learning. What are the difference(s) between them?

- # Supervised learning is a machine learning approach that's defined by its use of labele d datasets. Supervised learning can be separated into two types of problems when data mining: classification and regression.
- # Unsupervised learning uses machine learning algorithms to analyze and cluster unlabele d data sets. Unsupervised learning models are used for three main tasks: clustering, ass ociation and dimensionality reduction.
- # The difference between superviced learning and unsuperviced learning is that supervise d learning uses labeled input and output data, while an unsupervised learning algorithm does not.

#Source: https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning

- # Explain the difference between a regression model and a classification model, specific ally in the context of machine learning.
- # The main difference between regression model and classification model is the data type of Y.
- # In a regression model, Y is quantitative and numerical values such as price and blood preesure.
- # In a classification model. Y is a qualitative and categorical values such as married/not married.
- # Name two commonly used metrics for regression ML problems. Name two commonly used metrics for classification ML problems.
- # Not covered yet
- # As discussed, statistical models can be used for different purposes. These purposes can generally be classified into the following three categories. Provide a brief description of each.
- # Descriptive models: Choose model to best visually emphasize a trend in data
- # Inferential models: often used to compare the differences between the treatment groups
 and aim is to testing theories, causal claims, stating relationship between outcome and
 predictor
- # Predictive models: predict future behavior and aim is to predict Y with minimum reduci ble error
- # Source: lecture2 power point

#Predictive models are frequently used in machine learning, and they can usually be described as either mechanistic or empirically-driven. Answer the following questions.

#Define mechanistic. Define empirically-driven. How do these model types differ? How are they similar?

#In general, is a mechanistic or empirically-driven model easier to understand? Explain your choice.

#Describe how the bias-variance tradeoff is related to the use of mechanistic or empiric ally-driven models.

#Not covered yet

A political candidate's campaign has collected some detailed voter history data from their constituents. The campaign is interested in two questions:

Given a voter's profile/data, how likely is it that they will vote in favor of the can didate?

Ans: This is an inferential model because the campaign tries to state the relationship between the predictor and outcomes.

How would a voter's likelihood of support for the candidate change if they had persona 1 contact with the candidate?

Ans: This is a predictive model because the campaign wants to know about the voter's f uture behavior after they had personal contact with the candidate with a minimum reducib le error.

Classify each question as either predictive or inferential. Explain your reasoning for each.

We are interested in highway miles per gallon, or the hwy variable. Create a histogram of this variable. Describe what you see/learn.\

library(ggplot2)

data("mpg")

hwy <- mpg\$hwy

hist(hwy)

Histogram of hwy

I learned that the histogram is right-skwed and the maximum is 45. The median number i s between 20-25.

Create a scatterplot. Put hwy on the x-axis and cty on the y-axis. Describe what you n
otice. Is there a relationship between hwy and cty? What does this mean?
plot(mpg\$hwy, mpg\$cty,
 xlab="hwy ", ylab="cty ")

abline(lm(mpg\$cty~mpg\$hwy), col="red")

I noticed that there is a positive linear relationship between hwy and cty.
This means that cty increases linearly while hwy increases.

Make a bar plot of manufacturer. Flip it so that the manufacturers are on the y-axis. Order the bars by height. Which manufacturer produced the most cars? Which produced the least?

counts <- table(mpg\$manufacturer)</pre>

barplot(sort(counts), main="Car manufacture Distribution", horiz=TRUE, las =2)

Car manufacture Distribution

sort(counts)

```
##
      lincoln land rover
                                          pontiac
                                                          jeep
                                                                     honda
                                                                                nissan
##
                              mercury
##
                                                                                    13
      hyundai
##
                   subaru
                                  audi
                                        chevrolet
                                                          ford volkswagen
                                                                                toyota
            14
                        14
                                    18
                                                19
                                                            25
                                                                        27
                                                                                    34
##
##
        dodge
##
            37
```

Based on the graph, lincoln produce the least and dodge produced the most.

Make a box plot of hwy, grouped by cyl. Do you see a pattern? If so, what?
boxplot(mpg\$hwy ~ mpg\$cyl)

#I can see the pattern: with the increase of cyl, the mean of hwy is decreasing and the range of each cyl group is also moving donward on the y-axis. There is a negative relationship between hwy and cyl.

Use the corrplot package to make a lower triangle correlation matrix of the mpg datase t. (Hint: You can find information on the package here.)

Which variables are positively or negatively correlated with which others? Do these re lationships make sense to you? Are there any that surprise you? library(corrplot)

corrplot 0.92 loaded

library(magrittr)
library(dplyr)

##
Attaching package: 'dplyr'

```
## The following objects are masked from 'package:stats':
##
## filter, lag
```

```
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

mpg_modified <- mpg %>% select(year, displ, cyl, cty, cyl, hwy) #by modifing the table,
 I only take the numerical values to do a corrplot, we can also try to transform categor
ical data to numerical data like 1 and 0

M = cor(mpg_modified)
corrplot(M)

#Based on the graph, I can see that displ and cty has a negative correlation, cty and cy 1 has a negative correlation. cyl and year has a weak position correlation. displ and ye ar has a weak positive correlation. cty and year does not have a mentionable correlation. hwy has a negative correlation with displ. cyl has a negative correlation with hwy. c ty has a positive relationship with hwy. These correlations make sense to me. If a car h as a low cty, then it is reasonable that it has a low hwy as well. Their relationship is positive for sure. I do not have any surprise since car pollution is not a new topic and we covered it in previous pstat class.