컴퓨터응용통계 범주형 자료분석

최경미

예제 11.3 적합도 검정

- 휴대전화 브랜드 A, B, C의 시장점유율이 1:2:1인지 조사하기 위해서 100명을 무작위로 뽑아 휴대전화 보유현황을 조사하여, A 20개, B 55개, C 25개를 얻었다고 가정하자.
- 이 빈도를 100으로 나누어 계산한 상대빈도를 막대의 높이로 나타낸 막대그래프(barplot)은 아래와 같다.

브랜드	А	В	С	합
빈도 (상대빈도 %)	20 (20%)	55 (55%)	25 (25%)	100 (100%)

$$p_A = \frac{1}{4}$$
, $p_B = \frac{1}{2}$, $p_C = \frac{1}{4}$?

범주형 자료(categorical data)

- 질병여부, 후보나 브랜드는 집단(group)을 나타낸다.
- 빈도표(frequency table), 상대빈도표(relative frequency table), 막대그래프(bar plot), 모자이크 그 래프 등을 사용한다.
- 적합도 검정 (Goodness-of-fit test): 이들 비율(proportion)이 가정된 분포에 적합한지 검정한다.

11.3 적합도 검정

• 가설

$$H_0$$
: $p_1 = p_{10}^{1/4}$, $p_2 = p_{20}^{1/2}$, ..., $p_K = p_{K0}^{1/4}$ H_1 : H_0 0 아니다.

- 표본크기 n
- 집단 i의 관측빈도(Observed frequency)= $O_i = n_i$
- 귀무가설 H_0 이 참일 때 기대빈도(Expected frequency)= $E_i = np_{i0}$
- 둘의 차이가 작으면 귀무가설 H_0 이 적합하고, 둘의 차이가 크면 귀무가설 H_0 이 적합하지 않다.
- 피어슨(Pearson) χ^2 -검정통계량

$$\chi^2 = \sum_{\substack{\text{모든 셀} \ i}} \frac{(O_i - E_i)^2}{E_i} = \sum_{\substack{\text{모든 셸} \ i}} \frac{(n_i - np_{i0})^2}{np_{i0}}$$

- 귀무가설 H_0 이 참일 때, 검정통계량의 분포는 근사적으로 $\chi^2 \sim \chi^2 (k-1)$ 을 따른다.
- $\chi^2 \ge \chi_{\alpha}^2(k-1)$ 이면, H_0 을 기각한다.
- 자유도 = 추정하는 확률 p_i 의 개수=k-1

관측빈도 (O), 표본

집단(group)	1	2		К	합
관측빈도	n_1	n_2	•••	n_K	n
(counts)	O_1	O_2		O_K	

기대빈도 (E), H_0 에서 가정하는 모집단

집단(group)	1	2	 K	합
확률(prob)	p_1	p_2	 p_K	1
기대빈도	$E_1 = np_1$	$E_2 = np_2$	 $E_K = np_K$	

예제 11.3 적합도 검정

휴대전화 브랜드 A, B, C의 시장점유율이 1:2:1인지 조사하기 위해서 100명을 무작위로 뽑아 휴대전화 보유현황을 조사하여, A 20개, B 55개, C 25개를 얻었다고 가정하자.

$$H_0: p_A = \frac{1}{4}, p_B = \frac{1}{2}, p_C = \frac{1}{4} \quad H_1: H_0 이 아니다$$

브랜드 집단	Α	В	C
O_i	20	55	25
E_i	$E_1 = 100 \times \frac{1}{4} = 25$	$E_2 = 100 \times \frac{1}{2} = 50$	$E_3 = 100 \times \frac{1}{4} = 25$
$\frac{(O_i - E_i)^2}{E_i}$	$\frac{(20-25)^2}{25}$	$\frac{(55-50)^2}{50}$	$\frac{(25-25)^2}{25}$

$$\chi^2 = \frac{(20-25)^2}{25} + \frac{(55-50)^2}{50} + \frac{(25-25)^2}{25} = 1.5 \le \chi^2_{0.05}(2) = qchisq(0.95,2) = 5.99$$

유의수준 0.05에서 귀무가설 H_0 : $p_A = \frac{1}{4}$, $p_B = \frac{1}{2}$, $p_C = \frac{1}{4}$ 을 기각하지 않는다.

휴대전화의 브랜드 A, B, C별 시장점유율이 1:2:1이라고 볼 수 있다.

Chi-squared test for given probabilities←

data: x←

X-squared = 1.5, df = 2, p-value = 0.4724 \leftrightarrow > 0.05. H_0 을 기각한다.

> X2\$observed

관측빈도←

> X2\$expected

기대빈도↩

11.4 독립성 검정

- 흡연과 폐암의 관계를 알아보자.
- 설명변수 X는 흡연/비흡연, 반응변수 Y는 폐암/비폐 암이다.

설명변수 X = 조건 노출 여부 (Exposed or not)

반응변수 Y = 사건 발생 여부 (Event or not)

- i,j 셀의 빈도 n_{ij}
- 행의 합 $n_{i\bullet} = n_{i1} + n_{i2}$, (i = 1,2)
- 열의 합 $n_{\bullet j} = n_{1j} + n_{2j}$, (j = 1,2)
 - i,j 셀의 확률 p_{ij}
- 행의 합 $p_{i\bullet} = p_{i1} + p_{i2}$ (i = 1,2)
- 열의 합 $p_{\bullet j} = p_{1j} + p_{2j} (j = 1,2)$

Y=0 Y=1

	표본 (O)	Y=1 (No Event)	Y=2 (Event)	total
X=	(Not Exposed)	n_{11}	n_{12}	n_1 .
X=	X=2	n_{21}	n_{22}	n_{2ullet}
	total	$n_{ullet 1}$	$n_{ullet 2}$	n

H_0 모집단	Y=1 (No Event)	Y=0 (Event)	total
X=1 (Not Expos ed)	p_{11}	p_{12}	p_{1ullet}
X=2 (Exposed)	p ₂₁	p ₂₂	p _{2•}
total	p•1	p•2	1

11.4 독립성 검정

- H_0 : 조건에 대한 노출 여부와 사건발생은 독립이다. H_1 : H_0 이 아니다.
- 관측빈도 $O_{ij} = n_{ij}$
- 귀무가설이 참일 때,

기대빈도
$$E_{ij} = n\hat{p_{ij}} = n\hat{p_{i\bullet}p_{\bullet j}} = n\,\hat{p}_{i\bullet}\hat{p}_{\bullet j} = n\,\frac{n_{i\bullet}}{n}\,\frac{n_{\bullet j}}{n}$$
, i, j = 1,2

• 피어슨 검정통계량은

$$\chi^2 = \sum_{모든 첼} \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}}$$

- 귀무가설 H_0 이 참일 때, $\chi^2 \sim \chi^2(1)$
- 검정통계량 $\chi^2 \ge \chi^2_{\alpha}(1)$ 이면, H_0 을 기각하고, X와 Y가 독립이 아니다.
- 자유도= (행의 수-1)× (열의 수-1) = (2-1)(2-1)=1
- 설명변수 X가 r개의 범주 (집단), 반응변수 Y가 c개의 범주 (집단)을 나타내면, $r \times c$ 교차표에서 피어슨 검정통계량의 분포는 근사적으로 다음과 같다.

$$\chi^2 \sim \chi^2((r-1)(c-1))$$

표본	Y=1	Y=2	total
(O)	(No Even)	(Event)	
X=1 (Not Exposed)	n_{11}	n_{12}	n_{1ullet}
X=2 (Exposed)	n_{21}	n_{22}	n_{2ullet}
total	$n_{\bullet 1}$	$n_{\bullet 2}$	n

모집단	Y=1	Y=0	total
	(No Event)	(Event)	
X=1 (Not	p_{11}	p_{12}	p_{1ullet}
Exposed)			
X=2	p ₂₁	p ₂₂	$p_{2\bullet}$
(Exposed)			
total	p•1	p•2	1

A,B 독립 $\Leftrightarrow P(A \cap B) = P(A)P(B)$

 $p_{11} = p_{1} \cdot p_{1}$

 $p_{12} = p_{1} \cdot p_{2}$

 $p_{21} = p_{2} \cdot p_{1}$

 $p_{22} = p_2 \cdot p_{22}$

예제 11.4 (가짜 폐암 자료)

행비율 열비율 전체비율	폐암에 걸림	폐암에 걸리지 않음	행합
흡연	6	34	40
	0.150	0.850	0.286
	0.667	0.260	
	0.043	0.243	
비흡연	3	97	100
	0.030	0.970	0.714
	0.333	0.740	
	0.021	0.693	
열합	9	131	140
	0.064	0.936	

 H_0 : 흡연과 폐암은 독립이다.

 H_1 : 흡연과 폐암은 독립이 아니다.

$O_{ij}\left(E_{ij}\right)$	폐암 = 1	폐암 = 0	행합
흡연 = 1	6 (2.57)	34 (37.43)	40
흡연 = 0	3 (6.43)	97 (93.57)	100
열합	9	131	140

•
$$E_{11} = 140 \frac{40}{140} \frac{9}{140} = 2.57$$

•
$$E_{12} = 140 \frac{40}{140} \frac{131}{140} = 37.43$$

•
$$E_{21} = 140 \frac{100}{140} \frac{9}{140} = 6.43$$

•
$$E_{22} = 140 \frac{100}{140} \frac{131}{140} = 93.57$$

•
$$\chi^2 = \frac{(6-2.57)^2}{2.57} + \frac{(34-37.43)^2}{37.43}$$

$$+ \frac{(3-6.43)^2}{6.43} + \frac{(97-93.57)^2}{93.57}$$

$$= 4.9902$$

$$> \chi^2_{0.05}((2-1)(2-1)) = 3.84$$

- 유의수준 0.05에서 귀무가설 " H_0 : 흡연과 폐암은 독립이다"를 기각한다.
- 유의수준 0.05에서 흡연이 폐암에 영향을 미친 다고 볼 수 있다 (p = 0.02549 < 0.05)
- 흡연자와 비흡자 집단에서 폐암의 비율이 다르다.

R

```
# 표 11.5 ←
```

> r1<-<u>c(</u>6,34)←

6 34 3 97

> r2<-c(3,97)←

- > M<-as.table(rbind(r1,r2))←
- > <u>dimnames(M)</u> <- list(smoking = c("Smoking", "No smoking"), <u>LungCancer</u> = c("Cancer", "No cancer")) # 행과 열의 이름↔
- > library(gmodels)←
- > CrossTable(mytable)←

```
H_0: 흡연과 폐암은 독립이다.
```

 H_1 : 흡연과 폐암은 독립이 아니다.

> X2<-chisq.test(M)←

경고메시지(들): ↩

In chisq.test(M): 카이제곱 approximation은 정확하지 않을 수도 있습니다↩

> X2←

Pearson's Chi-squared test with Yates' continuity correction←

data: M←

X-squared = 4.9902, df = 1, p-value = 0.02549€

 \leftarrow

> X2\$observed

관측빈도↩

LungCancer←

smoking Cancer No cancer←

Smoking 6 34←

No smoking 3 97←

> X2\$expected # 기대빈도 ←

LungCancer←

smoking Cancer No cancer←

Smoking 2.571429 37.42857←

No smoking <u>6.428571</u> 93.57143₽

 \vdash

홍익대학교 최경미

연습문제

2. R의 타이타닉 (Titanic)의 남자 어른 자료에서 객실등급과 생존여부에 대한 교자표 <표1>과 같이 얻고,이에 대한 <mark>핀어슨</mark> 통계량을 아래와 같이 얻었다. 다음 설명 중 틀린 것은 어느 것인가? ②←

<표1> 타이타닉의 객실 등급과 생존에 대한 교차표↔

남자(Male) 어른(Adult)	생존여부	(survived)↔	↵
객실등급(class)∉	No⋳	Yes↩	4
1 등실↩	118↩	57↩	4
2 등실↩	154↩	14₽	↵
3 등실↩	387∉	75↩	₽

41

> mytable <- <u>Titanic(</u>1:3,"Male","Adult",] \(\text{ } \)
> mytable \(\text{ } \)

Survived \(\text{ } \)

Class No Yes \(\text{ } \)

1st \(\frac{118}{154} \)
2nd \(\frac{154}{14} \)
3rd \(\frac{387}{387} \)
> chisq test(mytable) \(\text{ } \)

Pearson's Chi-squared test \(\text{ } \)

data: \(\text{ mytable} \)

X-squared = 36.56, \(\text{ df} = 2, \text{ p-value} = 1.151e-08 \(\text{ } \)

\(\text{ } \)

\(\text{ } \)

- ① H₀: 객실 등급이 생존에 영향을 미치지 않는다.↩
- ② 검정통계량 χ²은 36.56이며, 자유도는 4이다.
- ③ 유의수준 0.05에서 귀무가설을 기각한다.↩
- ④ 유의수준 0.05에서 객실등급이 생존여부에 영향을 미친다.₽
- ⑤ 위 보기 중 답 없음↔

🔭: 객실등급과 생존여부는 독립이다.

 $H_{1\cdot}$ 객실등급과 생존여부는 독립이 아니다.

🄏 객실등급 별 생존율이 동일하다.

 $m{H}_1$: 객실등급 별 생존율이 동일하지 않다.