General concepts

Balanced chemical reactions are the math of chemistry

They show the relationship between the reactants and the products

How will chemical reactions proceed?

• Thermodynamics allows us to calculate the feasibility of reactions and to understand when/how equilibrium is established

Equilibrium

 Allows us to understand chemical processes such as ionic speciation, oxidation state distributions gas solubility, the carbonate system

An example:

If a solution of lead nitrate is added to a solution of sodium chloride, lead chloride precipitates:

■ $Pb(NO_3)_2(aq) + 2 NaCl(aq) \rightarrow PbCl_2(s) + 2 NaNO_3(aq)$

(This is a conventional equation)

An example:

If a solution of lead nitrate is added to a solution of sodium chloride, lead chloride precipitates:

■ $Pb(NO_3)_2(aq) + 2 NaCl(aq) \rightarrow PbCl_2(s) + 2 NaNO_3(aq)$ (This is a conventional equation)

To better describe the reaction, the formulas of the dissolved substances are replaced with the actual species in solution:

■
$$Pb^{2+}(aq) + 2 NO_3^{-}(aq) + 2 Na^{+}(aq) + 2 Cl^{-}(aq) \rightarrow$$

■
$$PbCl_2(s) + 2 Na^+(aq) + 2 NO_3^-(aq)$$

(This is an ionic equation)

We can then eliminate the "spectators".

The result is a *net ionic equation*, which tells exactly what chemical change took place, and nothing else:

■ $Pb^{2+}(aq) + 2 Cl^{-}(aq) \rightarrow PbCl_{2}(s)$

Conventional equation for reference:

■ $Pb(NO_3)_2(aq) + 2 NaCl(aq) \rightarrow PbCl_2(s) + 2 NaNO_3(aq)$

Steps in writing a net ionic equation:

- Write the conventional equation, including designations of state [(g), (l), (s), (aq)]. Balance the equation.
- Write the ionic equation by replacing each dissolved substance (aq) with the species in solution. Never change states in this step. Be sure the equation is balanced for both atoms and charge.
- Write the net ionic equation by removing the spectators. Reduce coefficients to lowest terms. Be sure the equation is balanced for both atoms and charge.

How do we know if a reaction will proceed?

Chemical equilibrium:

- Is a geochemical system at chemical equilibrium?
- If not, what reactions are most likely to occur?
- Solubility -
- Redox -
- Complexation -
- Carbonate system -

How do we know if a reaction will proceed?

Chemical equilibrium:

- Is a geochemical system at chemical equilibrium?
- If not, what reactions are most likely to occur?
- Solubility diatoms in surface seawater
- Redox organic matter oxidation
- Complexation iron speciation & plankton growth
- Carbonate system CaCO₃ stability in marine sediments

Chemical Equilibrium

Consider a reversible reaction taking place at constant temperature:

$$aA + bB \rightleftharpoons cC + dD$$

The *reactants* A and B combine to form *products* C and D.

Chemical Equilibrium

Consider a reversible reaction taking place at constant temperature:

$$aA + bB \rightleftharpoons cC + dD$$

The *reactants* A and B combine to form *products* C and D.

The concentrations of A and B decrease until they reach values that do not change with time:

Fig. 3-1. Course of reaction between A, B, C, and D. (a) Initially only A and B are present; (b) initially only C and D are present.

Chemical Equilibrium

$$K = \frac{\{C\}^c \{D\}^a}{\{A\}^a \{B\}^b}$$

- The time-invariant concentrations of reactants and products are called equilibrium concentrations.
- The ratio of these concentrations (or activities active concentrations) is characteristic for each reaction, and is called the equilibrium constant, K:
 - Note that at equilibrium, the forward and reverse reactions proceed at the same, stable rate.

Other than adding reactants and waiting until concentrations no longer change, how do we know what the equilibrium is?

Thermodynamics...

...or how to predict chemical reactions without doing experiments

- We want to answer these questions:
 - Will this reaction happen?
 - If so, how far can it proceed?
- We'll only review a small subset of thermodynamics...
 - Laws of Thermodynamics and how they apply to chemistry
 - Entropy, Enthalpy
 - Equilibrium
 - Using Gibbs free energy to determine if a reaction will proceed as written

Thermodynamics...

- Conservation of energy total energy remains constant (but can be converted from one form to another)
- 2. Entropy (disorder) tends to increase
- 3. Entropy is constant when the temperature equals absolute zero

Thermodynamics...

 Changes in enthalpy and entropy allows prediction of the feasibility of reactions

Definitions:

- Enthalpy total energy of an element or compound
- Entropy degree of disorder
 - (highly structured = low entropy, randomized = high entropy)
- Gibbs free energy the part of the total energy available to perform "useful" work

Energy of a system cannot be created or destroyed

A change in energy Energy (U) is equal to the change in heat and work

$$dU = dq - dw$$

dU = change in internal energy of the system

dq = heat absorbed by the system

dw = work done by the system

Energy of a system cannot be created or destroyed

A change in energy Energy (U) is equal to the change in heat and work

$$dU = dq - dw$$

dU = change in internal energy of the system

dq = heat absorbed by the system

dw = work done by the system

- Internal energy of system is increased by gaining heat (q)
- Internal energy of system is decreased when work (w) is done by the system

Heat (q) is measured in terms of:

```
q = amt (m; mol) x molar heat capacity (C; J K<sup>-1</sup> mol<sup>-1</sup>) x \Delta temp. (\DeltaT; K)
```

$$q = mC\Delta T$$

q is the heat of reaction

 Molar heat capacity = Heat energy per mole required to raise temperature of 6.022x10²³ molecules 1°C

Work of expansion:

$$w = P \Delta V$$

- where P = pressure and ΔV is change in volume
- at constant volume $\Delta V = 0$, therefore w =0 (no work is done)

 If fully reversible, change in pressure and volume compensate, no work is done (reversible process)

Work of expansion:

$$w = P \Delta V$$

- where P = pressure and ΔV is change in volume
- at constant volume $\Delta V = 0$, therefore w =0 (no work is done)
- For a system at constant volume (all non-gas reactions are at constant volume)

$$P\Delta V = w = 0$$
, $\Delta U = q_v$ $q_{v=}$ heat at constant volume

For a system at constant pressure (all reactions open to atmosphere)

$$\Delta U = q_p - P \Delta V$$

$$\Delta U = q_p - P \Delta V$$

Using the Ideal gas law $P\Delta V = \Delta nRT$, (n = amount of substance), R is the gas constant = 8.3 | 4 | Joules mol⁻¹ K⁻¹

therefore $\Delta U = q_p - \Delta nRT$

$$\Delta U = q_p - P \Delta V$$

Using the Ideal gas law $P\Delta V = \Delta nRT$, (n = amount of substance), R is the gas constant = 8.314 Joules mol⁻¹ K⁻¹

therefore $\Delta U = q_p - \Delta nRT$ rearranging:

 $q_p = \Delta U + \Delta nRT$; q_p is called the enthalpy (H)

For an infinitesimal change at constant pressure:

(U = Energy)

$$dH = dU + PdV$$

Heat of formation: ΔHf

■ $\Delta H_f^{\circ}_{298}$: heat of formation of 1 mole of a compound from its elements at 298°K

- ΔH is neg = exothermic reaction
- ΔH is pos = endothermic reaction (seen from system perspective)
- ullet ΔH is proportional to amount of material

Ex:
$$H_{2(g)} + I/2O_{2(g)} --> H_2O_{(g)}$$

This reaction releases 241.8 kJ of heat, : heat of formation is: -241.8 kJ

Heat of formation: ΔHf

ullet ΔH is equal in magnitude but opposite in sign for the reverse reaction, because it is a thermodynamic quantity

$$\Delta H_{\text{products}} = -\Delta H_{\text{reactants}}$$

ullet ΔH for reaction is same regardless of number of steps between reactants and products

$$\Delta H = \Delta U + \Delta nRT$$

 Can use component reactions to calculate enthalpy change for unknown reaction

Reaction Enthalpy $H_2 + 0.5 O_2 = H_2O \qquad \Delta H = -285.8 \text{ kJ mol}^{-1} \qquad \text{(a)}$ $C + O_2 = CO_2 \qquad \Delta H = -393.3 \text{ kJ mol}^{-1} \qquad \text{(b)}$ $C_2H_6 + 3.5 O_2 = 2 CO_2 + 3H_2O \qquad \Delta H = -1559.8 \text{ kJ mol}^{-1} \qquad \text{(c)}$

can use above to calculate ΔH for ethane formation:

$$2C + 3 H_2 = C_2H_6$$

 Can use component reactions to calculate enthalpy change for unknown reaction

Reaction Enthalpy $H_2 + 0.5 O_2 = H_2O$ $\Delta H = -285.8 \text{ kJ mol}^{-1}$

$$H_2 + 0.5 O_2 = H_2O$$
 $\Delta H = -285.8 \text{ kJ mol}^{-1}$ (a)
 $C + O_2 = CO_2$ $\Delta H = -393.3 \text{ kJ mol}^{-1}$ (b)

$$C_2H_6 + 3.5 O_2 = 2 CO_2 + 3H_2O$$
 $\Delta H = -1559.8 \text{ kJ mol}^{-1}$ (c)

can use above to calculate ΔH for ethane formation

$$2C + 3 H_2 = C_2H_6 : 2*b + 3*a - c$$

 Can use component reactions to calculate enthalpy change for unknown reaction

Reaction Enthalpy $H_2 + 0.5 O_2 = H_2O \qquad \Delta H = -285.8 \text{ kJ mol}^{-1} \qquad \text{(a)}$ $C + O_2 = CO_2 \qquad \Delta H = -393.3 \text{ kJ mol}^{-1} \qquad \text{(b)}$ $C_2H_6 + 3.5 O_2 = 2 CO_2 + 3H_2O \qquad \Delta H = -1559.8 \text{ kJ mol}^{-1} \qquad \text{(c)}$ can use above to calculate ΔH for ethane formation $2C + 3 H_2 = C_2H_6 \quad : \quad 2*b + 3*a - c$ $2C + 2O_2 + 3H_2 + 1.5 O_2 - C_2H_6 - 3.5 O_2 = 2CO_2 + 3H_2O - 2 CO_2 - 3H_2O$ canceling yields $2C + 3 H_2 = C_2H_6 \qquad \Delta H = 2* -393.3 + 3* -285.8 - (-1559.8)$ $= -84.2 \text{ kJ mol}^{-1}$

Enthalpy change alone is not enough

Entropy change (dS) is also needed (2nd law of thermodynamics)

$$dS = \frac{dq_{rev}}{T}$$

 Change in entropy = amount of reversible heat absorbed by system divided by temperature

Enthalpy change alone is not enough

Entropy change (dS) is also needed (2nd law of thermodynamics)

$$dS = \frac{dq_{rev}}{T}$$

- Change in entropy = amount of reversible heat absorbed by system divided by temperature
- Together, when we consider both enthalpy (H) and entropy (S) we get the Gibbs free energy (G):

$$G = H - TS$$

Free Energy –

 A criterion for equilibrium is that the total free energy (Gibbs free energy, G_r) of the reaction is at a minimum:

Fig. 3-2. Variation of Gibbs free energy for the chemical reaction $aA + bB \rightleftharpoons cC + dD$. Only reactants are present at the far left side of the diagram and only products at the far right side.

- If we add more reactant or more product, the reaction will proceed spontaneously (without external help) as long as the value for G_r decreases.
- Thus, a reaction in the direction of decreasing G_r is spontaneous. A reaction in the direction of increasing G_r is not spontaneous, and will not occur in a closed system.

Free Energy - 2

As any reaction proceeds an incremental amount, the change in G_r can be calculated as:

$$\Delta G_r = \left(\sum_{i} v_i G_{fi}\right)_{products} - \left(\sum_{i} v_i G_{fi}\right)_{reactants}$$

where v_i is the stoichiometric coefficient (a,b,c,d) and G_{fi} is the free energy of formation per mole.

- 1. If $\Delta G < 0$, (*i.e.*, ΔG is negative and thus G_r decreases as the reaction proceeds), then the reaction proceeds spontaneously as written.
- 2. If $\Delta G > 0$, (*i.e.*, ΔG is positive and thus G_r increases as the reaction proceeds), then the reaction proceeds spontaneously in the opposite direction as written.
- 3. If $\Delta G = 0$, (*i.e.*, ΔG is at a minimum), then the reaction is at equilibrium and will not proceeds spontaneously in either direction.

Free Energy - 3

Values for ΔG for a reaction give us a powerful tool to predict if a reaction is possible. We calculate *in-situ* ΔG_r using this equation:

$$\Delta G_{r} = \Delta G_{r}^{\circ} + RT \ln \frac{\{C\}^{c} \{D\}^{d}}{\{A\}^{a} \{B\}^{b}}$$
 Std. state

where

$$\Delta G_r^{\circ} = \left(\sum_{i} v_i G_{fi}^{\circ}\right)_{products} - \left(\sum_{i} v_i G_{fi}^{\circ}\right)_{reactants}$$

(The the superscript zero (°) indicates standard state: 25°C (298°K),1 atm pressure, and activity = 1.)

G_{fi}° is the standard-state free energy of formation per mole of species i.

{ } = activity (active concentration)

R = the ideal gas constant = 1.987 cal °K⁻¹ mol⁻¹ = 8.31 J °K⁻¹ mol⁻¹

 $T = {}^{\circ}K$

Free Energy - 4

Standard free energy of formation (ΔG°_{fi}):

- G°_{fi} = 0 at standard state for all pure elements (solid reference).
- G°_{fi} = 0 for H⁺ at a concentration of 1 mole/liter at standard state (solution reference).
- Allows the measure of the energy change involved in forming compounds at standard state from their component elements at standard state.
- Measured values are listed in tables. Units are:
 - kJ/mol (SI units)
 - kcal/mol

TABLE 3-1 Thermodynamic Constants for Species of Importance in Water Chemistry.^a

Species	$\Delta \overline{H}_i^{\circ}$ kcal/mole	ΔG,° kcal/mole
$C\alpha^{2+}_{(aq)}$ $C\alpha CO_{3(s)}$, calcite $C\alpha O_{(s)}$	-129.77 -288.45 -151.9	-132.18 -269.78 -144.4
$C_{(s)}$, graphite $CO_{2(g)}$ $CO_{2(aq)}$ $CH_{4(g)}$ $H_2CO_{3(aq)}^{\circ}$ $HCO_{3(aq)}^{\circ}$ $CO_{3(aq)}^{\circ}$ $CO_{3(aq)}^{\circ}$ CH_3COO^{-} , acetate	0 -94.05 -98.69 -17.889 -167.0 -165.18 -161.63 -116.84	0 -94.26 -92.31 -12.140 -149.00 -140.31 -126.22 -89.0
H _(aq) H ₂₍₉₎	0	0
$Fe_{(aq)}^{2+}$ $Fe_{(aq)}^{3+}$ $Fe(OH)_{3(s)}$	-21.0 -11.4 -197.0	-20.30 -2.52 -166.0
$\mathrm{Mn}_{(aq)}^{2+}$ $\mathrm{MnO}_{2(s)}$	-53.3 -124.2	-5 4.4 -111.1
$\begin{array}{l} Mg^{2+}_{(aq)} \\ Mg(OH)_{2(s)} \end{array}$	-110.41 -221.00	-108.99 -199.27
$NO_{3(aq)}^{-}$ $NH_{3(q)}$ $NH_{3(aq)}$ $NH_{4(aq)}^{+}$ $HNO_{3(aq)}$	-49.372 -11.04 -19.32 -31.74 -49.372	$ \begin{array}{r} -26.43 \\ -3.976 \\ -6.37 \\ -19.00 \\ -26.41 \end{array} $
$O_{2(aq)}$ $O_{2(g)}$ $OH_{(aq)}$ $H_2O_{(g)}$	-3.9 0 -54.957 -57.7979 -68.3174	3.93 0 -37.595 -54.6357 -56.690
$SO_{4(aq)}^{2-}$ $HS_{(aq)}^{-}$ $H_2S_{(g)}$ $H_2S_{(aq)}$	-216.90 -4.22 -4.815 -9.4	-177.34 3.01 -7.892 -6.54

Be careful of units!

08		Al	PPENDIX I	o. STANDI	10 31.	ALL IN	01211120		B. STANDARD S		01 211120	,			3
Formula	Form	Mol. wt.	$\Delta_f H^\circ$	$\Delta_f G^\circ$	S°	С _р .	V° cm³ mol-1	Formula	Form	Mol. wt.	Δ _f H° kJm	$\Delta_f G^{\circ}$	S° Imol-	C _p · 1 K − 1 186.02	V°
		g mol ⁻¹	kJm	01 .	Jinoi	Λ.	CIII IIIOI	CaSO ₄ · 2H ₂ O	gypsum	172.1724	-2022.63	-1797.28	194.1	186.02	CIII IIIC
				19				Ca ₃ (PO ₄) ₂	β , whitlockite	310.1828	-4120.8	-3884.7	236.0	227.82	
duminum								$Ca_3(PO_4)_2$	α	310.1828	-4109.9	-3875.5	240.91	231.58	
					28.33	24.35	1	CaCO ₃	calcite	100.0894	-1206.92	-1128.79	92.9	81.88	36.93
Al	s	26.9815	0	0			-45.3	CaCO ₃	aragonite	100.0894	-1207.13	-1127.75	88.7	81.25	34.15
Al ³⁺	aq	26.9815	-531.	-485.	-321.7	_	-45.5	CaSiO ₃	wollastonite	116.1642	-1634.94	-1549.66	81.92	85.27	39.9
Al(OH) ²⁺	aq		-767.0	-693.7		_		CaSiO ₃	pseudowollastonite	116.1642	-1628.4	-1544.7	87.36	86.48	
Al(OH);	aq		-1010.7	-901.4	_	_		CaAl ₂ SiO ₆	Ca-Al pyroxene	218.1254	-3298.2	-3122.0	141.4	165.7	
$Al(OH)^{2}_{3}(aq)$	aq .		-1250.4	-1100.7	-	_	10.0	CaAl ₂ Si ₂ O ₈	anorthite	278.2102	-4227.9	-4002.3	199.28	211.42	100.7
Al(OH) ₄	aq	95.0111	-1490.0	-1307.0	102.9	_	45.60	CaTiO ₃	perovskite	135.9782	-1660.6	-1575.2	93.64	97.65	100.7
Al ₂ O ₃	α, corundum	101.9612	-1675.7	-1582.3	50.92	79.04	25.575	CaTiSiO ₅	sphene	196.0630	-2603.3	-2461.8	129.20	138.95	
	boehmite	119.9766	-1980.7	-1831.7	96.86	131.25	39.07	CaMg(CO ₃) ₂	dolomite	184.4108	-2326.3	-2163.4	155.18	157.53	64.36
Al ₂ O ₃ · H ₂ O	diaspore	119.9766	-1998.91	-1841.78	70.67	106.19	35.52	CaMgSi ₂ O ₆	diopside	216.5604	-3206.2	-3032.0	142.93	166.52	66.09
Al ₂ O ₃ · H ₂ O		156.0074	-2586.67	-2310.21	136.90	183.47	63.912	CalvigoryO6	aropaide	210.5004	3200.2	3032.0	172.00	100.02	00.08
$Al_2O_3 \cdot 3H_2O$	gibbsite	156.0074	-2576.5	-2510.21	-	_		Carbon	L						
$Al_2O_3 \cdot 3H_2O$	bayerite		-1276.	_		_		Carbon							
Al(OH) ₃	amorphous	78.0037			93.22	122.72	51.53	С	graphite	12.0112	10	0 1	5.740	8.527	5.29
Al ₂ SiO ₅	andalusite	162.0460	-2590.27	-2442.66	83.81	121.71	44.09	c	diamond	12.0112	1.895	2.900	2.377	6.113	3.41
Al ₂ SiO ₅	kyanite	162.0460	-2594.29	-2443.88			49.90			60.0094	-677.149	-527.81	-56.9		-6.
Al ₂ SiO ₅	sillimanite	162.0460	-2587.76	-2440.99	96.11	124.52		CO ₃ -	aq					_	
Al ₂ Si ₂ O ₇ · 2H ₂ O	kaolinite	258.1616	-4119.6	-3799.7	205.0	246.14	99.52	HCO ₃	aq	61.0174	-691.99	-586.77	91.2 197.674	29.142	24.2
Al ₂ Si ₂ O ₇ · 2H ₂ O	halloysite	258.1616	-4101.2	-3780.5	203.3	246.27	99.30	CO	g	28.0106	-110.525	-137.168			24465
Al ₂ Si ₂ O ₇ · 2H ₂ O	dickite	258.1616	-4118.3	-3795.9	197.1	239.49	99.30	CO ₂	g	44.0100	-393.509	-394.359 -385.98	213.74	37.11	24465 32.8
Al ₆ Si ₂ O ₁₃	mullite	426.0532	-6816.2	-6432.7	255.	326.10		CO ₂	aq	44.0100	-413.80		117.6	_	32.8
Al ₂ Si ₄ O ₁₀ (OH) ₂	pyrophyllite	360.3158	-5642.04	-5268.14	239.41	294.34	126.6	H ₂ CO ₃	aq	62.0254	-679.339	-623.109	283.65		2446
A12314O10 (O11)2	pyrophymic	000.0100						CH ₄	g	16.0432	-74.81	-50.72	186.264	35.309	2446
Barium	1							C ₂ H ₆	g	30.0704	-84.68	-32.82	229.60	52.63	2446
Barium	1							CN	g	26.0179	437.6 150.6	407.5	202.6	29.16	(
		137.3400	1 0	0	62.8	28.07	1	CN-	aq	26.0179		172.4	94.1		ĺ
Ba	s	137.3400	-537.64	-560.77	9.6	_	-12.9	HCN HCN	g	27.0259 27.0259	135.1 107.1	124.7 119.7	201.78 124.7	35.86	(
Ba ²⁺	aq .	153.3394	-553.5	-525.1	70.42	47.78		HCN	aq	27.0259	107.1	119.7	124.7	-	i.
BaO	S		-634.3	_	-	66.9		Chlorine							
BaO ₂	S	169.3388	-1207.1	-1156.8	96.36	71.21		стогте							
BaF ₂	S	175.3368		-1136.6 -456.	78.2	49.37		Cl	_	70.9060	1 0	0 1	233.066	33.907	24465
BaS	S	169.4040	-460.	-436. -1362.2	132.2	101.75	52.10	Cl ₂ Cl ⁻	g aq	35.4530	-167.159	-131.228	56.5	-136.4	17.3
BaSO ₄	barite	233.4016	-1473.2		112.1	85.35	45.81	HCl		36.4610	-167.159	-131.228	56.5	-136.4	17.3
BaCO ₃	witherite	197.3494	-1216.3	-1137.6		90.00	45.01	HCI	aq	36.4610	-92.307	-95.299	186.908	29.12	24465
BaSiO ₃	S	213.4242	-1623.60	-1540.21	109.6	90.00	1	HCI	g	30.4010	-92.507	-93.299	100.908	29.12	2446
Calcium								Copper							
	1							Cu		63.5400	10	0 1	33.15	24.435	E
Ca	s	40.0800	0	0	41.42	25.31		Cu Cu+	S	63.5400	71.67	49.98	40.6		í
Ca ²⁺	aq	40.0800	-542.83	-553.58	-53.1		-18.4	Cu ²⁺	aq	63.5400	64.77	49.98 65.49	-99.6	_	1
CaO	s	56.0794	-635.09	-604.03	39.75	42.80		CuO	aq	79.5394	-157.3	-129.7	42.63	42.30	ĺ
Ca(OH) ₂	portlandite	74.0948	-986.09	-898.49	83.39	87.49		CuO Cu ₂ O	tenorite cuprite	143.0794	-157.3	-129.7 -146.0	93.14	63.64	6
CaF ₂	fluorite	78.0768	-1219.6	-1167.3	68.87	• 67.03	24.542	Cu ₂ O		96.6040	-53.1	-53.6	66.5	47.82	ĺ
	s	72.1440	-482.4	-477.4	56.5	47.40		Cus Cu ₂ S	covellite chalcocite	159.1440	-53.1 -79.5	-53.6 -86.2	120.9	76.32	(
CaSO ₄	anhydrite	136.1416	Series (85.2 100)	-1321.79	106.7	99.66	45.94	Cu23	CHAICOCHE	135.1440	-79.5	-60.2	120.9	10.32	Ü

v2024

Sample Calculation #1

Consider the dissolution of CaCO₃ (calcite) in aqueous solution:

$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

Does the reaction proceed spontaneously as written?

Calculate the free energy of reaction at standard state (products and reactants at activity = 1, P = 1 atm, T = 25°C):

$$\Delta G^{\circ}_{r} = \left(\sum_{i} v_{i} G^{\circ}_{fi}\right)_{products} - \left(\sum_{i} v_{i} G^{\circ}_{fi}\right)_{reactants}$$

Sample Calculation #1

Consider the dissolution of CaCO₃ (calcite) in aqueous solution:

$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

Does the reaction proceed spontaneously as written?

Calculate the free energy of reaction at standard state (products and reactants at activity = 1, P = 1 atm, T = 25°C):

$$\Delta G^{\circ}_{r} = \left(\sum_{i} v_{i} G^{\circ}_{fi}\right)_{products} - \left(\sum_{i} v_{i} G^{\circ}_{fi}\right)_{reactants}$$

TABLE 3-1 Thermodynamic Constants for Species of Importance in Water Chemistry.^a

Species	$\Delta \overline{H}_{i}^{\circ}$ kcal/mole	$\Delta \overline{G}_i^{\circ}$ kcol/mole				
Cα ²⁺	-129.77	-132.18				
CaCO _{3(s)} , calcite	-288.45	-269.78				
CαO _(s)	-151.9	-144.4				
HCO _{3(aq)}	-165.18	-140.31				
CO _{3(ag)}	-161.63	-126.22				
CH₃COO ⁻ , acetate	-116.84	-89.0				

Sample Calculation #1

Consider the dissolution of CaCO₃ (calcite) in aqueous solution:

$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

Does the reaction proceed spontaneously as written?

Calculate the free energy of reaction at standard state (products and reactants at activity = 1, P = 1 atm, T = 25°C):

$$\Delta G^{\circ}_{r} = \left(\sum_{i} v_{i} G^{\circ}_{fi}\right)_{products} - \left(\sum_{i} v_{i} G^{\circ}_{fi}\right)_{reactants}$$

$$\Delta G_r^\circ = (1(-132.18) + 1(-126.22) - (1(-269.78)) \text{ kcal/mol}$$

$$= (-258.4 + 269.78) \text{ kcal/mol}$$

$$= +11.38 \text{ kcal/mol}$$

Therefore, <u>at standard state</u>, the reaction spontaneously proceeds in the opposite direction to what is written.

TABLE 3-1 Thermodynamic Constants for Species of Importance in Water Chemistry.^a

Species	$\Delta \overline{H}_{i}^{\circ}$ kcal/mole	$\Delta \overline{G}_{i}^{\circ}$ kcol/mole	
Cα ²⁺ _(aa)	-129.77	-132.18	
CaCO _{3(s)} , calcite	-288.45	-269.78	
CaO _(s)	-151.9	-144.4	
C _(s) , graphite	0	0	
CO _{2(g)}	-94.05	-94.26	
$CO_{2(aq)}$	-98.69	-92.31	
CU _{2(aq)}	-17. 88 9	-12.140	
CH _{4(g)}			
H ₂ CO _{3(aq)}	-167.0	-149.00	
HCO _{3(aq)}	-165.18	-140.31	
CO _{3(aq)}	-161.63	-126.22	
CH₃COO⁻, acetate	-116.84	-89.0	
$H_{(aq)}^+$	0	0	
H _{2(g)}	0	0	
	-21.0	00.00	
Fe ²⁺ _(aq)		-20.30	
$Fe_{(aq)}^{3+}$	-11.4	-2.52	
$Fe(OH)_{3(s)}$	-197.0	-166.0	
$Mn_{(aa)}^{2+}$	-53.3	-54.4	
MnO _{2(s)}	-124.2	-111.1	
$Mg_{(aq)}^{2+}$	-110.41	-108.99	
Mg(OH) _{2(s)}	-221.00	-199.27	
$NO_{3(aq)}^-$	-49.372	-26.43	
NH _{3(g)}	-11.04	-3.976	
NH _{3(aq)}	-19.32	-6.37	
NH _{4(aq)}	-31.74	-19.00	
HNO _{3(aq)}	-49.372	-26.41	
O _{2(aq)}	-3.9	3.93	
$O_{2(g)}$	0	0	
$OH_{(aq)}^-$	-54.957	-37.595	
$H_2O_{(g)}$	-57.7979	-5 4 .6357	
$H_2O_{(\ell)}$	-68.3174	-56.690	
SO _{4(aq)}	-216.90	-177.34	
$HS_{(aq)}^-$	-4.22	3.01	
$H_2S_{(g)}$	-4.815	-7. 892	
$H_2S_{(aq)}$	-4.813 -9.4	-6.54	
11 ₂ O _(aq)	-9.4	-0.34	

Equilibrium at In-Situ Conditions - I

We have already seem that:

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{\{C\}^{c} \{D\}^{d}}{\{A\}^{a} \{B\}^{b}}$$
In-situ Std. state

We can define a *reaction quotient*, **Q**, using in-situ conditions:

$$Q = \frac{\{C\}^c \{D\}^d}{\{A\}^a \{B\}^b}$$

Equilibrium at In-Situ Conditions - I

We have already seem that:

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{\{C\}^{c} \{D\}^{a}}{\{A\}^{a} \{B\}^{b}}$$
In-situ Std. state

We can define a *reaction quotient*, **Q**, using in-situ conditions:

$$Q = \frac{\{C\}^c \{D\}^d}{\{A\}^a \{B\}^b}$$

Thus:

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

In the case of equilibrium, Q = K and $\Delta G = 0$:

Thus:
$$0 = \Delta G^{\circ} + RT \ln K$$

$$\Delta G^{\circ} = -RT \ln K$$

Equilibrium at In-Situ Conditions - I

We have already seem that:

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{\{C\}^{c} \{D\}^{a}}{\{A\}^{a} \{B\}^{b}}$$
In-situ Std. state

We can define a *reaction quotient*, **Q**, using in-situ conditions:

$$Q = \frac{\{C\}^{c} \{D\}^{d}}{\{A\}^{a} \{B\}^{b}}$$

Thus:

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

In the case of equilibrium, Q = K and $\Delta G = 0$:

Thus:
$$0 = \Delta G^{\circ} + RT \ln K$$

 $\Delta G^{\circ} = -RT \ln K$

Substituting (for the general case): $\Delta G = -RT \ln K + RT \ln Q = RT \ln Q/K$

Equilibrium at In-Situ Conditions - 2

$\Delta G = RT \ln Q/K$

This allows us to develop a set of criteria to determine in which direction a reaction will proceed under *non-standard* conditions. This is because Q/K will determine the *sign* of Δ G:

- 1. If Q/K < 1, then Δ G is negative, and the reaction is spontaneous as written.
- 2. If Q/K = 1, then ΔG = 0 and the system is at equilibrium.
- 3. If Q/K > 1, then Δ G is positive, and the reaction is spontaneous in the opposite direction as written.

Ion behavior in seawater does not equal concentration

- Seawater is a complex solvent
- lons interact differently than we might assume from simple, single ion pairs

Ex. Consider the dissolution of NaCl in water:

$$NaCl_{(s)} \rightarrow Na^+_{(aq)} + Cl^-_{(aq)}$$

If the reaction goes to completion, get I mole Na⁺ and I mole Cl⁻ (i.e., 2 moles of ions total)

Expect freezing point depression of -3.72°C, but in fact get -3.01°C

- NaCl is acting as though there were less than 2 moles of ions
- Thus, solution is non-ideal

Activity

lonic interactions cause non-ideality

As ionic strength increases, interactions and non- ideality increase

To understand these effects, we need to know the <u>effective</u> concentration of ions $\equiv ACTIVITY$

Activity of an ion *i* is defined: $a_i \equiv \{i\} \equiv \gamma_i [i]$

$$a_i = \gamma_i[\quad]_i$$

where: $\gamma_i = activity coefficient$ for the ion "i" (dimensionless)

[i] \equiv ion concentration (measured, mol kg⁻¹)

 $\{i\}$ = ion activity, to be used instead of concentration

Note that dimension conventions can differ between texts/subfields

In dilute aqueous solutions:

- lons behave independently of one another
- $\gamma = 1$
- Activity = measured molality

As concentrations of ions in solution increase:

- Electrostatic and covalent interactions increase between ions
- Activities of ions decrease from measured (analytical) concentrations

As Ionic strength (I) increases, activity decreases

- $I = \frac{1}{2} \sum m_i z_i^2$ (the sum of total charge from ions squared times the concentration of each ion)
- A I.0 M solution of NaCl has an I of I.0M
- A I M solution of MgCl₂ has an I of 3.0 M
- Ionic strength of SW is approx. 0.7

Approximations of activity coeff.

Debye-Huckel equation

log $\gamma_i = -A z_i^2 VI$ A = a constant for the ion i $z_i = i$ on charge I = s olution ionic strength

Note:

Ionic strength of SW is ~0.7! (i.e. way off the top of scale shown here)

Fig. 3-4. Activity coefficients of aqueous ions based on the extended DeBye–Hückel equation (Eq. 3-35) and the Güntelberg approximation (Eq. 3-36).

Activity in SW

- Different than solutions of individual salts
 - lons from different salts can form pairs, such that the "true" activity (a_i) is even lower than that calculated from lab studies of electrical activity

$$a_i = \left(\% \frac{free_i}{100}\right) \times \gamma_i \times [\quad]_i = \gamma_{iT}[\quad]_i$$

Activities – How to Calculate

- 1. For ions and molecules in solution, $\{i\}$ is related to the molar concentration, [i], by $\{i\} = \gamma_i[i]$ where $\gamma_i =$ activity coefficient. As the solution becomes dilute (most cases of interest to us), γ_i approaches 1 and $\{i\}$ approaches [i].
- 2. For the solvent in a solution, $\{i\} = \gamma_i X_i$ where X_i is the mole fraction. As the solution becomes more dilute, γ_i approaches 1. The activity generally is assumed to be 1 for the dilute solutions of concern to us. Activity of water = 1
- 3. For pure solids or liquids in equilibrium with a solution, $\{i\} = 1$.
- 4. For gases in equilibrium with a solution, $\{i\} = \gamma_i P_i$ where P_i is the partial pressure of the gas in atmospheres. As the total pressure decreases, γ_i approaches 1. When reactions take place at atmospheric pressure, the activity of a gas can be approximated closely by its partial pressure.
- 5. For mixtures of liquids, $\{i\} = X_i$ where X_i is the mole fraction.

Sample Calculation #2

Again consider the dissolution of CaCO₃ (calcite):

$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

In the surface ocean, does the reaction proceed spontaneously as written?

Use $\Delta G^{\circ} = -RT \ln K$

From Sample Calculation #1, we know: $\Delta G^{\circ} = +11.38$ kcal/mole

Sample Calculation #2

Again consider the dissolution of CaCO₃ (calcite):

$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$

In the surface ocean, does the reaction proceed spontaneously as written?

Use
$$\Delta G^{\circ} = -RT \ln K$$

From Sample Calculation #1, we know: $\Delta G^{\circ} = +11.38$ kcal/mole

Thus:
$$11.38 \frac{kcal}{mol} = -\left(1.987 \frac{cal}{°K \ mol}\right) \left(\frac{1 \ kcal}{1000 \ cal}\right) (298°K) \ln(k)$$

(all units cancel out)

In K = -19.22

$$K = 4.5 \times 10^{-9}$$
 ("equilibrium constant")

Sample Calculation #2 (cont.)

Surface seawater: $\{\text{CaCO}_3\} \equiv 1$ $[\text{Ca}^{2+}] = 0.01 \text{ mol/L}; \quad \gamma_{\text{T}} = 0.23; \quad \{\text{Ca}^{2+}\} = 0.0023 \text{ mol/L}$ $[\text{CO}_3^{2-}] = 23 \text{ mmol/L}; \quad \gamma_{\text{T}} = 0.029; \quad \{\text{CO}_3^{2-}\} = 6.7 \times 10^{-6} \text{ mol/L}$ $Q = \frac{\{Ca^{2+}\}\{CO_3^{2-}\}}{\{CaCO_3\}} = \frac{(2.3x10^{-3})\times(6.7x10^{-6})}{1} = 1.53x10^{-8}$

$$\frac{Q}{K} = \frac{1.53 \times 10^{-8}}{4.5 \times 10^{-9}} = 3.4$$

Sample Calculation #2 (cont.)

Surface seawater:

$${CaCO_3} \equiv 1$$

[Ca²⁺] = 0.01 mol/L;
$$\gamma_T$$
 = 0.23; {Ca²⁺} = 0.0023 mol/L
[CO₃²⁻] = 23 mmol/L; γ_T = 0.029; {CO₃²⁻} = 6.7 x 10⁻⁶ mol/L

$$Q = \frac{\{Ca^{2+}\}\{CO_3^{2-}\}}{\{CaCO_3\}} = \frac{(2.3x10^{-3})\times(6.7x10^{-6})}{1} = 1.53x10^{-8}$$
$$\frac{Q}{K} = \frac{1.53x10^{-8}}{4.5x10^{-9}} = 3.4$$

Therefore:

- The reaction goes in the opposite direction as written (Q/K > 1)
- CaCO₃ precipitates in the surface ocean
- Surface seawater is supersaturated with respect to calcite

Note: No information is given on the *kinetics* of the reaction!

Temperature and Pressure Effects - I

The amount of heat that is released or taken up by a reaction is called the *enthalpy change* (ΔH°).

Similarly to ΔG° , we can calculate ΔH° using tabulated data:

$$\Delta H_r^{\circ} = \left(\sum_{i} v_i H_{fi}^{\circ}\right)_{products} - \left(\sum_{i} v_i H_{fi}^{\circ}\right)_{reactants}$$

where v_i is the stoichiometric coefficient (a,b,c,d), and H°_{fi} is the enthalpy of formation of species *i* (kcal/mol or kJ/mol) at standard state.

The van't Hoff equation gives the temperature dependence of K:

$$\left(\frac{\partial \ln K}{\partial T}\right)_P = \frac{\Delta H_r^{\circ}}{RT^2}$$

For a small change in T, ΔH° does not change much, so we can integrate directly:

$$\ln\left(\frac{K_{T^*}}{K_{298}}\right) = \frac{\Delta H_r^{\circ}}{R} \left(\frac{1}{298} - \frac{1}{T^*}\right)$$

where T* is the temperature of interest.

Temperature and Pressure Effects - 2

The *change in the partial molar volume* (ΔV°) during a reaction at standard state is also calculated using tabulated data:

$$\Delta V_r^{\circ} = \left(\sum_{i} v_i V_{fi}^{\circ}\right)_{products} - \left(\sum_{i} v_i V_{fi}^{\circ}\right)_{reactants}$$

where v_i is the stoichiometric coefficient (a,b,c,d), and V_{fi}° is the partial molar volume of formation of species i (cm³/mol) at standard state.

The pressure dependence of K is also known:

$$\left(\frac{\partial \ln K}{\partial P}\right)_T = \frac{\Delta V_r^{\circ}}{RT}$$

Again integrating directly:

$$\ln\left(\frac{K_{P^*}}{K_{1\text{atm}}}\right) = \frac{\Delta V_r^{\circ}}{RT} \left(P^* - 1\text{atm}\right)$$

where P* is the pressure of interest (in atm).

- For exothermic reactions InK increases as I/T increases, (T decreases), favouring product formation
- For endothermic reactions InK increases as I/T decreases (T increases) favouring product formation

Equilibrium vs. kinetics

- Equilibrium calculations give the energy available from a reaction & the direction it will proceed
 - Usually simpler & require less info than those for kinetics
- Often a good approximation for many systems
- In some cases, equilibrium calculations can predict kinetic rate constants
- HOWEVER, most natural water reactions are not at equilibrium and knowledge of kinetics is often required
 - States of dynamic equilibrium, reaction rates, are topics outside of the scope of this course