I Alphabet et mot

Définition : Alphabet
Définition : Mot
Le mot vide (contenant aucune lettre) est noté ε . Σ^* est l'ensemble des mots sur Σ . $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$. Σ^n est l'ensemble des mots de longueur n sur Σ .
Définition : Égalité de mots
Deux mots $u=u_1u_n$ et $v=v_1v_p$ sur le même alphabet Σ sont égaux s'ils ont la même longueur $(n=p)$ et si pour tout $i \in \{1,,n\}, \ u_i=v_i$.
Définition : Concaténation et puissance
Definition: Concatenation of pulsatine
Exercice 1. Soient Σ un alphabet, $a, b \in \Sigma$ et $u \in \Sigma^*$. On suppose $au = ub$.
Montrer que $a = b$ et qu'il existe $k \in \mathbb{N}$ tel que $u = a^k$.

${\bf D\'efinition: Pr\'efixe, suffixe, facteur, sous-mot}$

- u est un préfixe de m s'il existe un mot v tel que m=uv.
- u est un suffixe de m s'il existe un mot v tel que m=vu.
- u est un facteur (substring en anglais) de m s'il existe des mots v, w tels que m = vuw.
- u est un sous-mot (subsequence en anglais) de m si u est une sous-suite (ou : suite extraite) de m.

Exemple : abc est un sous-mot de aabacb, mais pas un facteur.

II Langage

Définition : Langage	
Exemples:	
. L'ensemble L_1 des mots du dictionnaire français sur $\Sigma = \{a, b,, z\}$.	
2. L'ensemble L_2 des formules arithmétiques sur $\Sigma = \{0,, 9, +, -, /, *\}$.	
3. L'ensemble L_3 des programmes OCaml sur $\Sigma = \{a,, z, !, <, >,\}$.	
I. L'ensemble L_4 des ADN sur $\Sigma = \{A, C, G, T\}$.	
Définition : Concaténation	
Définition : Puissance	
Exemple: Σ^n est l'ensemble des mots de longueur n sur l'alphabet Σ . Exercice 2. Soit L un langage.	
1. À quelle condition a t-on $L \subseteq L^2$?	
2. Quel lien a t-on entre L^2 et $\{u^2 \mid u \in L\}$?	
2. Quel nen a t-on entre L et $\{u \mid u \in L\}$:	
Définition : Étoile de Kleene	
Definition : Etone de Kleene	
Remarque : L^* contient toujours ε car $L^0 = {\varepsilon}$.	
Exercice 3.	
Montrer que $(L^*)^* = L^*$.	

III Langages réguliers

Définition : Langage régulier (ou : langage rationnel)	
	_

Définition inductive équivalente :

Propriété

- Tout langage fini est régulier
- L_1 et L_2 réguliers $\implies L_1 \cup L_2$ régulier
- L_1 et L_2 réguliers $\implies L_1L_2$ régulier
- L régulier $\implies L^*$ régulier

Par récurrence immédiate, si $L_1, ..., L_n$ sont réguliers alors $L_1 \cup ... \cup L_n$ et $L_1L_2...L_n$ sont réguliers.

Attention : une union infinie de langages réguliers n'est pas forcément régulière.

Exemples:

- 1. Soit m un mot. Alors $\{m\}$ est fini donc est un langage régulier, qu'on note aussi m par abus de langage.
- 2. Σ est fini donc est régulier. Σ^* est l'étoile d'un langage régulier donc est régulier.
- 3. Soit m un mot. L'ensemble des mots ayant comme facteur m est égal à $\Sigma^* m \Sigma^*$ donc est un langage régulier.
- 4. Soit $m = m_1 \cdots m_n$ un mot. L'ensemble des mots ayant comme sous-mot m est égal à $\Sigma^* m_1 \Sigma^* m_2 \cdots \Sigma^* m_n \Sigma^*$ donc est un langage régulier.

Exercice 4.

Montrer que les langages suivants sont réguliers sur $\Sigma = \{a, b\}$:

- 1. Mots commençants par a:
- 2. Mots commençants par a et finissant par b : ______
- 3. Mots de taille paire : _____
- 4. Mots de taille impaire : _____

IV Expressions régulières

Les expressions régulières sont une notation plus concise pour représenter un langage régulier :

Définition: Expression régulière (ou : expression rationnelle)

L'ensemble des expressions régulières sur un alphabet Σ est le plus petit langage \mathcal{R} sur $\Sigma \cup \{\emptyset, \varepsilon, |, *, (,)\}$ vérifiant :

- $\forall a \in \Sigma, a \in \mathcal{R}$
- $\emptyset \in \mathcal{R}, \, \varepsilon \in \mathcal{R}$
- $\forall e_1, e_2 \in \mathcal{R}, (e_1|e_2) \in \mathcal{R} \text{ et } (e_1e_2) \in \mathcal{R}$
- $\forall e \in \mathcal{R}, e^* \in \mathcal{R}$

On peut les représenter informatiquement par le type OCaml :

```
type 'a regexp =
| Vide | Epsilon | L of 'a (* L a est la lettre a *)
| Union of 'a regexp * 'a regexp
| Concat of 'a regexp * 'a regexp
| Etoile of 'a regexp
```

Définition : Langage d'une expression régulière

Si e est une expression régulière, on définit le langage L(e) récursivement :

- $L(a) = \{a\} \text{ si } a \in \Sigma$
- $L(\emptyset) = \emptyset, L(\varepsilon) = \{\varepsilon\}$
- $L(e|e') = L(e) \cup L(e')$
- L(ee') = L(e)L(e')
- $L(e^*) = L(e)^*$

Remarques:

- Par abus de langage, on confond souvent e et L(e).
- Les expressions rationnelles sont une façon plus pratique de décrire les langages réguliers, en utilisant | au lieu de ∪ et en omettant les parenthèses.

Théorème

Soit L un langage.

L est régulier si et seulement si il existe une expression régulière e telle que L=L(e).

Exemples:

- $(a|b)^*$: ensemble de tous les mots $(= \Sigma^*)$.
- $(a|b)^*bb$: mots finissant par bb.

Exercice 5.

Donner une expression régulière pour les langages suivants, sur $\Sigma = \{a, b\}$:

- 1. Mots contenant au plus un a: ______
- 2. Mots de taille $n \equiv 1 \mod 3$: ___
- 3. Mots contenant un nombre pair de a : _____
- 4. Mots contenant un nombre impair de a: _____
- 5. Écritures en base 2 des entiers divisibles par 4 : __

V Induction structurelle

Théorème : Induction structurelle sur les langages réguliers

Soit $\mathcal{P}(L)$ une propriété sur les langages réguliers L telle que :

- $\mathcal{P}(L)$ est vraie pour les langages L finis (cas de base)
- $\mathcal{P}(L_1) \wedge \mathcal{P}(L_2) \implies \mathcal{P}(L_1L_2)$
- $\mathcal{P}(L_1) \wedge \mathcal{P}(L_2) \implies \mathcal{P}(L_1 \cup L_2)$
- $\mathcal{P}(L) \implies \mathcal{P}(L^*)$

Alors $\mathcal{P}(L)$ est vraie pour tout langage régulier L.

Preuve: _

De même pour les expressions régulières :

Soit $\mathcal{P}(e)$ une propriété sur les expressions régulières telle que : • $\mathcal{P}(\emptyset)$, $\mathcal{P}(\varepsilon)$ sont vraies (cas de base) • $\mathcal{P}(a)$ est vraie pour $a \in \Sigma$ (cas de base) • $\mathcal{P}(e_1) \wedge \mathcal{P}(e_2) \implies \mathcal{P}(e_1e_2)$ • $\mathcal{P}(e_1) \wedge \mathcal{P}(e_2) \implies \mathcal{P}(e_1 \cup e_2)$ • $\mathcal{P}(e) \implies \mathcal{P}(e^*)$ Alors $\mathcal{P}(e)$ est vraie pour toute expression régulière e .
Exercice 6. Si $m = m_1m_n$ est un mot, on définit son miroir $\widetilde{m} = m_nm_1$. Si L est un langage, on définit son miroir $\widetilde{L} = \{\widetilde{m} \mid m \in L\}$.
1. Donner une expression régulière du miroir de $a(a b)^*b$.
2. Soit e une expression régulière de langage L . Montrer que \widetilde{L} est régulier.
3. Écrire une fonction Caml miroir : 'a regexp -> 'a regexp renvoyant le miroir d'une expression régulière.

Théorème : Induction structurelle sur les expressions régulières