Making an RGB Hologram

Maggie, Daniel, Brenna

Background

Holography - from 2D to 3D imaging systems

Capturing phase information via. Analog wavefront reconstruction

As the recording media is exposed under undisturbed circumstances, the contrast between the object and reference wavefronts allows us to store interference patterns

Since the changes in atomic structure of the emulsion during exposure are permanent, these interference patterns can then be read back out using any concentrated illumination, producing the illusion of a multidimensional image

Reflection Hologram

RGB Hologram Motivation

Writing with one laser = monochromatic hologram (not necessarily the color of object)

Can we preserve object's color in a hologram by writing with multiple lasers?

Potential uses:

- Enhanced medical imaging
- Enhanced visual data storage

Setup

Experiment 1

HeNe laser and Argon laser write simultaneously

Experiment 2

HeNe laser and Argon laser write separately

Experiment 2

HeNe laser and Argon laser write separately

Experiment 1

HeNe laser and Argon laser write simultaneously

Writing Simultaneously

No hologram formed

Why?

Troubleshooting required

Troubleshooting

Writing with only red HeNe laser

Results - Red

- HeNe Red Laser
 - High resolution hologram
 - Exposure time: 2 minutes
 - Guessed exposure time

Individual Red Laser Test

Troubleshooting

Writing with green laser only

Results - Green

- Argon Multimode Laser
 - Multimode worked
 - PROBLEM: cooling system → vibrations

Replacement Green Laser

- Green only
- Power not adjustable
- Concerns with coherence length
- Write time: 3 minutes

Multimode Laser Result

Replacement Laser Result

Repeating with New Laser

Replaced green laser with a smaller one - no vibrations

Results - Red and Green

Individual Exposures

Conclusion: individual exposures better

Simultaneous Exposure

Effect on Color

Red-only hologram

Red and green hologram

Notes on Equipment

- Manufacturer Notes on Emulsion Material
 - o Lifetime: minimum 12 months
 - Unideal holograms from April 2023
 - Recommended exposure parameters
 - Blue 80 mJ/cm2
 - Green 30 mJ/cm2
 - Red 20mJ/cm2
 - Guess exposure time
 - "Instant"
 - Developing phase chemical baths
 - Potential tradeoff between quality and convenience
- Lasers
 - No online specs sheet perhaps too old?
 - Can probably guess exposure time

Future Directions

Adding blue

- Put Argon on another table
- Still noisy

Optimize exposure time

- Ball-parked duration and power
- Fine tuning

Better write setup

- Larger write beams
- Object much closer to emulsion
- Optimize laser power