

PROJE 8 - SOĞUK HAVA DEPOSU TASARIMI PROJE RAPORU

HAZIRLAYANLAR:

30160304	Eren Çelik	celikere16@itu.edu.tr
30160605	Talat Çağıl Oral	oralt16@itu.edu.tr
30170027	Çağan Oğuzhan Cantürk	canturkc17@itu.edu.tr
30170172	Nazlı İlgaz Çaylı	cayli17@itu.edu.tr
30170191	Ceren Yazıcı	yazicic17@itu.edu.tr
30180702	Emre Kasım	kasim18@itu.edu.tr
140150021	Fulya Asena Uluç	ulucf15@itu.edu.tr

TESLİM TARİHİ : 15.06.2021

DERS ADI : MAK 380 - ISI VE KÜTLE DEĞİŞTİRİCİLERİ

DERS YÜRÜTÜCÜSÜ : DOÇ. DR. ERSİN SAYAR

GRUP 8

PROJE 8: SOĞUK HAVA DEPOSU TASARIMI

Ordu/Perşembe'de daha büyük kütleli balıkların (karagöz, levrek ve somon vb.) kafes balıkçılığı yapılmaktadır. Projede esas tüketimin olduğu İstanbul, Ankara, İzmir gibi illere Trabzon gibi doğu karadeniz bölgesi balıkları nakledilirken bir transit noktası olarak Ordu ilinin değerlendirilip değerlendirilemeyeceğini irdelemeniz beklenilmektedir.

Projede 100 ton küçük balık (esasen bölgede pek de yakalanamayan hamsi, istavrit, sardalya v.b. cinsi) en az 4- 10 gün süreyle depolayacak bir soğuk hava deposunun en az işletme maliyeti ile çalışmasını sağlayacak ısıl tasarımını yapınız. Günlük balık girişi toplam kapasitenin %30'u seviyesindedir. Depo yüksekliği en az 4 m olmalıdır. Soğuk hava deposu olarak kullanılacak binanın duvar ve çatı kesit özellikleri sırasıyla duvar için 23 cm dolu tuğla, dışı 3 cm. taraklı dış sıva ve çatı için 10 cm betonarme üzeri 2 kat kanaviçe asfalt yalıtımlı olarak verilmektedir. Bu verilerin dışında ısıl tasarımı tamamlayacak gerekli yapısal düzenlemeler, depolama alanlarının tespiti tasarımın kapsamındadır. Gerekli cihazları seçiniz ve maliyet analizlerini yapınız. Sistemin teknik çizimlerini yapınız.

1. ÜRÜN CİNSİ VE MİKTARININ BELİRLENMESİ

100 ton küçük balık (hamsi, istavrit, sardalya) 4-10 gün depolanmalı. Balıkların depoda bulundurulma süresine göre, kapasite belirlenir. Balık girişi günlük kapasitenin %30'u olacak şekildedir, sürekliliğin sağlanması için çıkan balık miktarının giren balık miktarına eşit olması gerekir.

Günlük 30 ton balık girişi için balık çıkışının olmadığı durum göz önüne alınarak hazırlanan Tablo 1'den de görüleceği gibi en az 400 ton kapasiteye gerek olması gerekmektedir.

Tablo 1. 100 ton balığın saklama süresine göre depo kapasitesinin belirlenmesi

Depolanma süresi (gün)	1	2	3	4	5	6	7	8	9	10
Kapasite (ton)	130	160	190	220	250	280	310	340	370	400
Günlük giriş (ton)	30	30	30	30	30	30	30	30	30	30
Günlük çıkış (ton)	0	0	0	0	0	0	0	0	0	0

Günlük 30 ton balık girişi ve günlük 30 ton balık çıkışının olduğu durum göz önüne alınarak hazırlanan Tablo 2'den de görüleceği gibi 400 ton kapasitede balık depolanabilir.

Tablo 2. 400 ton balığın saklama süresine göre depo kapasitesinin belirlenmesi

Depolanma süresi (gün)	1	2	3	4	5	6	7	8	9	10
Kapasite (ton)	400	400	400	400	400	400	400	400	400	400
Günlük giriş (ton)	30	30	30	30	30	30	30	30	30	30
Günlük çıkış (ton)	30	30	30	30	30	30	30	30	30	30

2. TESİSİN KURULACAĞI YERİN BELİRLENMESİ

Tablo 2. Ordu ili kuru termometre sıcaklıkları [https://ensotek.com/bilgi-bankasi/illere-gore-yas-termometre-degerleri]

Şehir	Yaz Kuru Termometre °C	Yaz Yaş Termometre °C
Ordu	30	23

Saklama konumu ve taşınacak illerin taşıma güzergahları Şekil 1'de verilmiştir..

Şekil 1. Deponun konumu ve taşıma güzergahları

3. ÜRÜNLERİN MUHAFAZA TÜRLERİ SEÇİLMESİ

Projede beklenti 4-10 süreyle bu balıkların depolanması yönündedir. Kısa süreli depolama yapılacaktır.

Tablo 3. Gıda Maddelerinin Soğuk ve Donmuş Saklama Şartları (TS 4855, 1986)

		Ī		I		Özgül Is:	ısı (kJ/kg	°K)
la de Meddeninin	Depo	Bağıl	Yaklaşık	 Ortala-	Yaklaşık			Gizli Isı
Gida Maddesinin	Sicakliği				Donma	üstünde.	altında.	
į Türü	°C °C	% I	Süresi		Nok.°C	İ	1	1
		' '	burcoz	1	i			kJ/kg
DENIZ BESINLERI								
Marina Balığı	-1 - 1	95-100	12 Gün	81	-2,2	3,550	1,855	270,17
		95-100	12 Gün	81	-2,2	3,550	1,855	270,17
Tatlisu Levreği	0 - 1	95-100	10 Gün	81	-2,2	3,550	1,855	270,17
Mezgit	-1 - 1	95-100		75	-2,2	3,349	1,779	250,16
Kalgan Balığı	0 - 2	180-90	10 Gün	61	-2,2	2,880	1,604	203,46
Kur. Balık	0 - 2	80-90	10 Gün	64	-2,2	2,981	1,641	213,47
Füme Balık	0 - 1	95-100		65	-2,2	3,014	1,654	216,81
Uskumru Alabalık	-1 - 1	95-100		64	1 -2,2	2,981	1,641	213,47
		95-100		70	1 -2,2	3,181	1,717	233,49
Orkunos, İstav-	1 0 - 2	1	2. 04.	1	į i			1
	0 - 2	95-100	14 Gün	i 70	-2,2	3,182	1,717	233,49
Palamut	-1 - 1	95-100		75	-2,2	3,350	1,800	250,00
Hamsi, Yayın Sazan	0 - 1	95-100		65	-2,2	3,000	1,650	220,00
Don. Balik	(-29)-		6-12 Ay	_	i -	-	1 -	-
DOIL DALIK	(-18)	1		i	İ		1	1
1	1 (10)		1	:	i			

TS 4855 'den alınan bu tabloya dayanarak; hamsi vb. küçük balıkların 10 güne kadar depolanması için gereken sıcaklık -1 ile 1°C arasındadır. Bu aralıktan 0°C dereceyi seçiyoruz. Burada bağıl nem %95-%100 arasındadır.

4. ODA SAYISI BELİRLENMELİ

Soğuk depo tesisinin birden fazla odadan oluşmasının avantajları vardır:

- Soğutma grubu elemanlarından birisi arızalı olduğunda sadece arızanın olduğu oda boş kalacaktır.
- Aynı yerde farklı çeşit maddeler saklanamayacağından işletmeciye çeşit avantajı sağlar.
- > Odada az ürün nedeniyle boş kalma durumu daha az olacak veya hiç olmayacaktır.

Yukarıdaki avantajlara ek olarak projede bize belirtilen balık türlerinin sayına (hamsi, istavrit, sardalya, iki tane de farklı bir balık türü olmak) bağlı olarak 5 tane oda sayısı seçelim. Böylelikle toplamda 5 farklı balık türünü birbirlerine karışmadan depolayabileceğiz. Zira karışma olduğu durumda balıkların tadı, kokusu vs. gibi lezzet parametreleri çok etkilenir ve balık piyasasında olumsuz sonuçlar oluşabilir.

5. HER BİR ODANIN BOYUTLANDIRILMASI

5.1. Deponun Tavan Yüksekliğinin Belirlenmesi:

Depo yüksekliği minimum 4 metre alınacaktır, bu kriter dikkate alınarak, TS 4855 'de önerilen değerlerden yararlanarak depo yüksekliği 6 metre seçilir.

Tablo 4. Uygun tavan yükseklikleri

```
NOT: Bu yükseklik:
- 3,00 m
- 4,50 m
- 6,00 m
- 7,50 m
- 9,00 m
olmak üzere beş ayrı yükseklikten biri olarak seçilmesinde yarar vardır.
```

TS 4855'te verilen çizelgeye göre 3 m tavan yüksekliği olan depolarda 1 m^2 'de istif edilebilecek gıda maddesi miktarları verilmektedir.

Tablo 5. Tavan yükselliği 3 m olan Soğuk Depolarda 1 m2 Alana İstif Edilebilcek Gıda Maddesi Miktarı (TS 4855, 1986)

	GUK SAKLAMA	1 4 116 1111
Gida Maddesinin Cinsi	Ambalaj Durumu	Istif Miktarı
Kapalı fıçı içinde gıda maddeleri (salamura ba- ğırsak, turşu, meyva	Fiçi	1.000 kg
suları, salça, bira vb.		[
Çeşitli su ürünleri	Kasa	750 kg
Çeşitli gövde et ve	Moneray ve askı	200-300 kg
sakatat	1	1
Kanatlı hayvan etleri	Özel Kasa	500 kg
	NMUŞ SAKLAMA	
K.Baş ve B.Baş Gövde Elleri	01.1. +.116	!
	Çıplak İstif	1000 kg
Sakatat, kanatli hayvan		!
etleri ve deniz ürünleri	Özel Kasa	750 kg
Süt, meyva suları vb.	Teneke	1500 kg

Buradan soğuk saklanmış su ürünleri için metrekareye 750 kg ürün denk gelmektedir. Balıkların depolanacağı efektif tavan yüksekliği 6 metre olarak hesaplanmıştır. Buradan oran orantı yapılırsa metrekarede kasalar ile: $750 \times 6/3 = 1500 \ kg$ balık depolanabileceği sonucuna ulaşılır.

Depolanacak balık miktarı 400 ton olarak belirlendiğinden balıkların kaplayacağı hacim

$$\frac{400000 \, kg}{1500 \, kg/\, m^3} = 266.67 \, m^3$$

olarak bulunur.

Evaporatör için 1 metre ve hava sirkülasyonu için 0.5 metre bırakılır. Buna göre depolanacak ürünün maksimum yüksekliği:

• Ürünün maksimum yüksekliği h = 6 - 1.5 = 4.5 molarak bulunur.

Ürün maksimum yüksekliği 4.5 metre olarak belirlenmiştir. Ürünün kaplayacağı alan:

$$\frac{355.6}{4.5}$$
 = 59.26 m^2

bulunur.

5.2. Soğuk hava odalarının boyutlandırılması

5 tane oda seçmiş idik. Toplamda 400 ton küçük balık depolanacak ve metrekareye 1500 kg balık düşüyor. Her bir odayı 80 ton kapasiteli yapalım. Buna göre bir odada ürünün kapladığı alan

$$A = \frac{80000 \, kg}{1500 \, kg/m^2} = 53.33 \, m^2$$

olacaktır.

Şimdi burada odanın iç kısmının taban alanı dikdörtgen olacak şekilde seçilsin ve ürünün kapladığı alana göre kısa ve uzun kenar uzunlukları $6 m \times 9 = 54 m^2$ sağlayacak şekilde seçilsin. Oda içinde gerek hava sirkülasyonu gerekse forklift için her iki boyuttan olmak üzere 2 metrelik koridorlar, kenarların köşe kısımlarından da 0.5 m olacak şekilde boşluklar bırakılır. Buradan hareketle kısa ve uzun kenarlara 3 m ilave uzunluk eklenmelidir. Yeni uzunluklar:

ightharpoonup Kısa kenar: $6 + 3 = 9 \, m$

 \triangleright Uzun kenar: 9 + 3 = 12 m olacak şekilde düzenlenir.

Bu değerlere göre bir tane odanın alanı: $9 \times 12 = 108 \, m^2$ bulunur.

Deponun tamamında odaların kapladığı alan: $108 \times 5 = 540 \, m^2$ olur.

5.2.1. Kasa ve Palet Seçimleri

Bloksan şirketinin internet sitesi üzerinden kasa tipleri gözden geçirilmiştir. Balık kasaları gerektiğinde bir insanın taşıyabileceği ihtimalini göz önünde bulundurarak ve yeterli depolama ağırlığını elde etmek için şekilde görüldüğü gibi 15 kg'lık SBK-15 kodlu delikli kasa tipi seçilmiştir.

Palet olarak: Variofit sitesinden Pallet attachment type 68 şeçilir.

Article no.	Dimensions		Usable height	Stacking	Weight	Load
	m	ım	mm		kg	kg
	width	depth				
pa - 080.012	1200	800	800	3	37.5	2000
pa - 080.013	1200	800	1000	3	40.5	2000
pa - 080.014	1200	800	1200	3	44.0	2000
pa - 080.015	1200	800	1600	3	51.5	2000
pa - 100.007	1200	1000	800	3	39.0	2000
pa - 100.008	1200	1000	1000	3	41.0	2000
pa - 100.009	1200	1000	1200	3	45.0	2000
pa - 100.010	1200	1000	1600	3	53.0	2000

Buradaki tablodan pa-100.010 seçilir. Bu durumda tek bir sütunda 3 kat üst üste palet yığılacaktır. Kasanın geometrisine göre hesap yapılınca bir paletin taban alanına, 1200 mm'lik kenarda 3, 100 mm'lik kenarda 2 adet olmak üzere toplamda 6 adet kasa sığabiliyor ve bir palete üst üste 7 sıra kasa koyulabiliyor. Buna göre, bir palette toplamda 42 adet kasa olacak.

Bir palet sütununda da $42 \times 3 = 126$ adet kasa olmuş olacak.

Daha önce yapmış olduğumuz oda taban ölçülerine göre (6 m x 9 m):

Kısa kenarda 5 adet palet, uzun kenarda 9 adet palet olacak şekilde palet sütunları yerleştirilecektir.

Bu durumda kısa kenarda 15 adet kasa, uzun kenarda 18 adet kasa olmuş olur.

1 odada toplamda: $5 \times 9 \times 3 = 135$ adet palet; $135 \times 42 = 5670$ adet kasa olmuş olur. Bir odada yaklaşık 80 ton balık olacak.

Seçilmiş olan kasa türü $\frac{80000}{5670} \cong 14.1 \text{ kg balık taşıma kapasitesine sahiptir.}$

Toplamda 5 oda var. Buna göre: $135 \times 5 = 675$ adet palet; $5670 \times 5 = 28350$ adet kasa gerekir.

1 Adet Palet

5.3. Ön soğutma odasının boyutlandırılması

Ön soğutma odasının 3 m yükseklikte olacaktır. 3 m yükseklik için istif miktarı 1 m^2 başına 750 kg'dır. Günlük balık girişi 30 ton olarak belirlendiğinden balıkların kaplayacağı hacim

$$\frac{30000 \, kg}{750 \, kg/m^2} = 40 \, m^2$$

olarak bulunur.

Şimdi burada odanın iç kısmının taban alanı dikdörtgen olacak şekilde seçilsin ve ürünün kapladığı alana göre kısa ve uzun kenar uzunlukları 6 $m \times 6.667$ m = 40 m^2 sağlayacak şekilde seçilsin. Oda içinde gerek hava sirkülasyonu gerekse forklift için her iki boyuttan olmak üzere 2 metrelik koridorlar, kenarların köşe kısımlarından da 0.5 m olacak şekilde boşluklar bırakılır. Buradan hareketle kısa ve uzun kenarlara 3 m ilave uzunluk eklenmelidir. Yeni uzunluklar:

- \triangleright Kısa kenar:6 + 3 = 9 m
- Vzun kenar: 6.667 + 3.333 = 10 m olacak şekilde düzenlenir.

Bu değerlere göre ön soğutma odasının alanı: $9 \times 1 = 90 m^2$ bulunur.

5.4. Koridorlar

Soğuk depo yapısı içerisinde soğuk odalara ulaşmak, yükleme ve boşaltmada ulaşım için düşünülen yapı alanlarıdır. TS 4855 'de koridor genişliğinin tavan yüksekliğine eşit olarak alınabileceği belirtilmektedir.

Tablo 6. Uygun koridor genişlikleri

```
NQT: Koridor genişliği soğuk depo tavan yüksekliğine eşit olarak,
- 3,00 m
- 4,50 m
- 6,00 m
- 7,50 m
- 9,00 m
seçilebilir.
```

Buna dayanarak ana koridor genişliği 6 m seçilir.

6. MİMARİ PROJE HAZIRLANMASI

6.1. Tavan (çatı) tasarımı

Çatı için 10 cm betonarme üzeri 2 kat kanaviçe asfalt yalıtımlı olarak verilmiştir. Kanaviçe asfalt yalıtım 2 cm olmak üzere 2 kat alınmıştır.

Şekil 2. Tavan tasarımı

Tavan özellikleri belirlenirken TS 4855 standartlarında belirtilen yalıtım özelliklerine ulaşmak için tavan tasarımına 2 kat 5 cm ve 1 kat 4 cm olmak üzere 14 cm strafor ve 3 cm sıva eklenmiştir.

6.2. Dış Duvar tasarımı

Dış duvar için 23 cm dolu tuğla, dışı 3 cm. taraklı dış sıva verilmiştir.

Şekil 3. Dış duvar tasarımı

Bunlara ek olarak 2 kat 5 cm olmak üzer 10 cm strafor ve 3 cm sıva eklenerek TS 4855 standartlarında belirtilen yalıtım özelliklerine ulaşılmıştır.

6.3. İç Duvar tasarımı

İç duvar için sırasıyla 3 cm sıva, 5 cm strafor, 23 cm dolu tuğla, 5 cm strafor ve 3 cm sıva kullanılmıştır.

6.4. Döşeme tasarımı

Soğuk hava deposu ile toprak arasında oluşan ısı geçişini azaltmak için standartlar çerçevesinde şekilde gösterildiği gibi bir zemin tasarımı yapılmıştır.

Şekil 5. Döşeme tasarımı

Toprağın üstüne sırasıyla 6 cm blokaj, 4 cm strafor, 40 cm grebeton, 4 cm strafor, 10 cm harç ve 3 cm karo mozaik döşenmiştir.

6.5. Mimari plan

Şekil 6. Mimari plan kesiti

7. SOĞUTMA YÜKÜ HESABI

Soğutma yükünün hesabının amacı soğutma sistemi elemanlarını (kompresör, yoğuşturucu, buharlaştırıcı, termostatik genleşme valfi, soğutucu akışkan boruları ve diğer soğutma aksamı) doğru ve ekonomik bir şekilde seçilebilmektedir. Soğutma elemanlarının doğru seçimi ile sistemin verimli, bekleneni verecek tarzda ve aksamadan senelerce çalışması sağlanmış olabilecektir. Soğutma yükünü meydana getiren ısı kazançlarını dört grupta toplamak mümkündür:

Soğutma yükü hesabı için öncelikle ısı yüklerinin belirlenme gerekir. Bunun için aşağıdaki yönerge takip edilecektir.

Isı yükleri aşağıda gösterildiği üzere dört ana başlık altında toplanabilir.

- Transmisyon Isisi: Tavan, duvar, döşemeden soğutmak istediğimiz ortama gelen ısıdır.
- İnflitrasyon İsisi: Soğuk odanın kapısının açılmasıyla birlikte hava değişimi ile gelen isidir.

- Mallardan Gelen Isı: Soğuk odaya muhafaza edilmek üzere konan değişik türden malların meydana getirdiği ısıdır. Bunlar dört başlıkta incelenebilir:
 - O Donma noktasına soğutana kadar gelen ısı
 - O Donma 18181
 - Olgunlaşma 18181
 - o Mallarla ilgili yan ısılar
- Muhtelif Isılar: Depo içerisinde çalışan insanlardan, aydınlatmadan, evaporatör elektrik motorlarından, defrostlardan gelen ısılardır.

Soğutma yükünü tespit ederken düzen ve kolaylık açısından Soğutma Yükü Tablosu kullanılmıştır.

7.1. İç ve Dış Duvarlar ile Döşeme ve Tavanın Toplam ısı transfer katsayılarının tespit edilmesi

Oda Boyutlarını baz olarak denklem (1) kullanılarak hesaplanacaktır.

 x_i : Kalınlık

 k_n : isi iletim katsayisi

K: Isi transfer katsayısı

$$K = \frac{1}{\frac{1}{h_1} + \frac{x_1}{k_1} + \frac{x_2}{k_2} + \dots + \frac{x_n}{k_n} + \frac{1}{h_2}}$$
 (1)

a. İç Duvar

Ön soğutma ve soğuk muhafaza için yalıtım kalınlığı 10 cm Şoklama ve donmuş muhafaza için yalıtım kalınlığı 20 cm

 $h_{i\varsigma} = 7$

Malzeme	Kalınlık	Isı iletim katsayısı
	(cm)	(kcal/m h °C)
Siva	3+3	0.6
İç Tuğla	23	0.6
Styropor	5+5	0.034

$$K = \frac{1}{\frac{1}{7} + \frac{0.03 + 0.03}{0.6} + \frac{0.23}{0.6} + \frac{0.5 + 0.5}{0.034} + \frac{1}{7}}$$

$$K = 0.269$$

b. Dış Duvar

Dış duvar için 23 cm dolu tuğla, dışı 3 cm. taraklı dış sıva verilmiştir.

DEPO DIŞI

Malzeme	Kalınlık	Isı iletim katsayısı
	(cm)	(kcal/m h °C)
Siva	3+3	0.6
İç Tuğla	23	0.6
Styropor	5+5	0.034

$$h_{i\varsigma} = 7$$

$$h_{dis}=20$$

$$K = \frac{1}{\frac{1}{7} + \frac{0.03 + 0.03}{0.6} + \frac{0.23}{0.6} + \frac{0.5 + 0.5}{0.034} + \frac{1}{20}}$$

$$K = 0.275$$

c. Döşeme

Soğuk hava deposu ile toprak arasında oluşan ısı geçişini azaltmak için standartlar çerçevesinde şekilde gösterildiği gibi bir zemin tasarımı yapılmıştır.

Malzeme Kalınlık Isı iletim (cm) katsayısı (kcal/m h °C) Blokaj 6 0.5 Grebeton 40 0.9 **Styropor** 4+40.034 Grebeton 5 0.9

Harç	10	1.2
Karo Mozaik	3	1.1

Toprağın üstüne sırasıyla 6 cm blokaj, 4 cm strafor, 40 cm grebeton, 4 cm strafor, 10 cm harç ve 3 cm karo mozaik döşenmiştir.

$$K = \frac{1}{\frac{1}{8} + \frac{0.03}{1.1} + \frac{0.1}{1.2} + \frac{0.05}{0.9} + \frac{0.04 + 0.04}{0.034} + \frac{0.4}{0.9} + \frac{0.06}{0.5}}$$

$$K = 0.311$$

d. Tavan

Çatı için 10 cm betonarme üzeri 2 kat kanaviçe asfalt yalıtımlı olarak verilmiştir. Kanaviçe asfalt yalıtım 2 cm olmak üzere 2 kat alınmıştır.

Malzeme	Kalınlık (cm)	Isı iletim katsayısı (kcal/m h °C)
Siva	3	0.60
Betonarme	10	1.30
Strofor	5+5+4	0.034
Kanaviçe Asfalt	2+2	0,15

$$h_{ic} = 5$$

$$h_{dis}=20$$

$$K = \frac{1}{\frac{1}{5} + \frac{0,03}{0,6} + \frac{0,1}{1,3} + \frac{0,05 + 0,05 + 0,04}{0,034} + \frac{0,02 + 0,02}{0,15} + \frac{1}{20}}$$

$$K = 0.221$$

Bulunan ısı iletim katsayıları değeriyle excel yardımıyla toplam ışı geçişi bulunabilir durumdadır. Bunun için temelde aşağıda verilen formülden yararlanışmıştır. Ek olarak hesaplamarın yapıldığı excel dosyası .rar formatının içerisne eklenmiştir.

$$Q = k * A * delta T$$

Depo planını hatırlarsak; oda 4 çift cepheden iç duvarla çevrilmiş iken bu durum 1,2,3 ve 5 için bu durum 1 cephedir. Ek olarak ön soğutma odasının boyutları da farklı olduğu için ayrı hesaplanmıştır. Sonuç olarak:

Soğutma Odaları 1,2,3,5 Başına Transmisyon Isısı Hesabı								
Tip	En [m]	Boy [m]	Yüzey Alanı [m^2]	Adet	K	delta T	Geçen Isı [kcal/sa]	
İç Duvar	12000	6000	72	1	0.2	25	360	
Dış Duvar	9000	6000	54	2	0.27	30	874.8	
Döşeme	9000	12000	108	1	0.202	25	545.4	
Tavan	9000	12000	108	1	0.205	30	664.2	
Saatlik Toplam Isı [kcal/sa]			2444.4	Günlük Topla	m Isı [kcal/	day]:	58665.6	

(Soğutma odaları 1,2,3,5 için oda başına toplam ısı yükü)

Soğutma Odası 4 Transmisyon Isısı Hesabı								
Tip	En [m]	Boy [m]	Yüzey Alanı [m^2]	Adet	К	delta T	Geçen Isı [kcal/sa]	
İç Duvar	12000	6000	72	1	0.2	25	360	
Dış Duvar	9000	6000	54	1	0.27	30	437.4	
Döşeme	9000	12000	108	1	0.202	25	545.4	
Tavan	9000	12000	108	1	0.205	30	664.2	
Saatlik Toplam Isı [kcal/sa]			2007	Günlük 1	Foplam Isı [k	cal/day]:	48168	

(Soğutma odası 4 için toplam ısı yükü)

Ön Soğutma Odası Transmisyon Isısı Hesabı								
Tip	En [m]	Boy [m]	Yüzey Alanı [m^2]	Adet	К	delta T	Geçen İsi [kcal/sa]	
İç Duvar	9000	6000	54	1	0.2	25	270	
Dış Duvar	8500	6000	51	2	0.27	30	826.2	
Döşeme	9000	12000	108	1	0.202	25	545.4	
Tavan	9000	12000	108	1	0.205	30	664.2	
Saatlik Toplam Isı [kcal/sa]			2305.8	Günlük Toplam Isı [kcal/day]:		55339.2		

(Ön soğutma odası için toplam ısı yükü)

Sonrasında oda başna bulunan ısı yüklerini toplarsak:

 $=4*oda(1,2,3,5)+oda(4)+oda(\ddot{o}n)$

 $toplam\ transmisyon\ isisi = 338169,6\ [kcal]/gün\ olmaktadır.$

Bütün Odaların ısı yükü [kcal/day]: 338169.6

7.2. İnfiltrasyon - Hava Değişimi Isısının Hesabı

ISTANBUL TEKNİK ÜNİVERSİTESİ

İnfiltrasyon 18181 = Hava Değişimi \times Oda Hacmi \times ($h_d - h_o$) \times ρ Aşağıdaki hava değişimi değerlerine göre soğuk odaya giren harici havanın 181 tutumu ile soğuk oda şartlarındaki havanın 181 tutumu farkı ve havanın özgül ağırlığı uygulanmak suretiyle infiltrasyon 18181 hesaplanabilir.

ODA İÇ	24 Saat' lik Değişimi Sa		oda iç	24 Saat' lik Hava Değişim Sayısı		
HACMÍ (m³)	Oda Sıcaklığı	Oda Sıcaklığı	HACMI (m ³)	Oda Sıcaklığı	Oda Sıcaklığı	
(/	0 °C Üzerinde	0 °C Altında	(/	0 °C Üzerinde	0 °C Altında	
5	50.1	3.8	500	3.7	2.8	
10	31.1	24.2	625	3.3	2.5	
15	25.3	19.6	750	2.9	2.3	
20	21.2	16.9	1000	2.5	1.9	
25	18.7	14.9	1250	2.2	1.7	
30	16.7	13.5	1800	1.66	1.42	
40	14.3	11.7	2400	1.43	1.22	
50	12.8	10.2	3000	1.35	1.11	
75	10.1	8.0	4000	1.23	0.99	
100	8.7	6.7	5000	1.17	0.93	
125	7.7	6.0	6000	1.11	0.86	
150	7.0	5.4	8000	1.05	0.85	
200	5.9	4.6	10000	0.97	0.83	
250	5.3	4.1	12000	0.91	0.81	
375	4.2	3.2	14000	0.87	0.80	

Tablo 5. Soğuk oda kapı açılmaların meydana gelen hava değişmi.

Yalıtımlı oda hacmi = $12 \times 9 \times 6 = 648$ m3 olup Tablo 5'den normal kullanma kabul edilerek hava değişimi iterasyon yardımıyla 3.28 olarak tespit edilir.. Oda ısı tutumu +2 °C ve %90 RH için aşağıda tablo 6'da belirtilen psikometrik diyagram yardımıyla ho = 3 kcal/kg olarak tespit edilir.

Tablo 6. Psikometrik Diyagram

Harici hava ise, soğuk oda giriş kapısına komşu hacimden girecektir ve bu hacim havasının ısı tutumu, 30 °C, %50 RH için hd = 15.6 Kcal/kg bulunur. Bu şartlarda havanın özgül ağırlığı da yaklaşık $\rho = 1.143$ kg/m3 olmaktadır.

$$Infiltrasyon \, isisi = 3.28 \times 648 \times (15.6 - 3) \times 1.143$$

İnfiltrasyon ısısı = $27997 \, kcal$ olarak hesaplamıştır.

7.3. Mallardan Gelen Isi Hesabi

Soğuk odaya muhafaza edilmek üzere konan değişik türden malların meydana getirdiği ısı, bazı durumlarda soğutma yükünün en önemli ve en büyük bölümünü teşkil edebilmektedir. Ayrıca soğuk odaya konulan mal cinsi önceden belli olabildiği halde birim zamandaki hareket miktarı kullananın ihtiyaç ve isteğine göre değişebilmektedir. Mal hareketinin aşırı şekilde ve uygulamadaki durumundan çok daha fazla olarak alınması, gereksiz yere büyük kapasiteli soğuk oda cihazı seçilip kullanılmasına sebep olacak, gerçek durumdakinden daha düşük alınması ise soğuk oda cihazının yetersiz kalmasına sebep olacaktır.

Mallardan gelen ısı, saklanılan ürünlerin belirli fazlarda ürettikleri ısı miktarları ile ağırlıkları ve soğutma süreleri kullanılarak hesaplanır. Bu hesaplara ürünlerle birlikte dış sıcaklıkta gelen kasa, kutu vs. soğutma yükü de eklenir.

Gıda Maddesinin Cinsi	Muh.	Bağıl	Depolama	Su	Donma	Isinma Isisi Kcal/Kg.C0		Donma
	Sicakliği °C	Nem %	Süresi	Miktarı % Ağırlık	Noktası °C	Donma Öncesi	Donma Sonrası	Isisi Kcal/Kg
Enginar	0	90-95	1-2 Hafta	84	-1.5	0.87	0.45	67.2
Karnabahar	0	95	2-4 Hafta	92	-1	0.94	0.48	73.7
Lahana	0	90-95	3-4 Ay	92	-1	0.94	0.47	73.9
Havuç-Ambalajlı	0	98-100	4-6 Hafta	88	-1.4	0.91	0.46	70.5
Patlican	+7/+10	90-95	7-10 Gün	93	-1	0.95	0.48	74.5
Şalgam Kökü	0	95	4-5 Ay	92	-1	0.94	0.48	73.7
Marul	0	95	2 Hafta	95	-0(-)	0.96	0.48	76.2
Mantar-Taze	0	90	3-4 Gün	91	-1	0.93	0.47	72.8
Soğan-Kuru	0	65-75	1-8 Ay	88	-1	0.91	0.47	70.4
Soğan-Taze	0	95	3-4 Hafta	89	-0.9	0.92	0.47	71.3
Maydanoz	0	95	1-2 Ay	85	-1	0.88	0.46	68.0
Bezelye-Yeşil	0	95	1-3 Hafta	74	-0.6	0.80	0.42	59.2
Yeşil Biber	+7/10	90-95	2-3 Hafta	92	-0.7	0.94	0.48	73.7
Patates-Taze	+10/+13	90	2 Ay	81	-0.6	0.85	0.44	65.0
Turp-Kış	0	95-100	2-4 Ay	95	-0.7	0.97	0.49	76.1
Kabak	0/+4.5	85-95	5-14 Gün	94	-0.5	0.96	0.48	75.3
Domates-Yeşil	+13/+21	85-90	1-3 Hafta	93	-0.6	0.95	0.48	74.5
Domates - Krzarmis	+7/+10	85.90	4-7 Cin	94	-0.5	0.95	0.48	75.2
Balık-Taze	-1/+2	90-95	5-15 Gün	60-80	-2.2	0.7/0.9		50/68.3
Balık-Dondurulmuş	-23/-29	90-95	6-12 Ay	62-85		-	0.38/0.4	50/68.3
Karides	-1/+1	90-100	Gün	76	-2.2	0.81	0.43	60.8
Istakoz	+5/+10	Deniz suyu	Canh	79	-2.2	0.84	0.44	62.5
Et -Sığır-Taze	0/+1	88-92	1-6 Hafta	62/77	-2	0.7/0.8	-	49.6/61.
Et-Dana-Taze	0/+1	90-95	5-10 Gün	64-70	-2	0.71/0.76	0.39/0.4	51.5/56
Et-Siğir-Donmuş	-18/-23	90-95	9-12 Ay	-	- 1		0.39/0.4	49.6/61.
Et-Kuzu-Taze	0/+1	85-90	5-12 Gün	60-70	-2	0.68/0.76		48/56
Et-Kuzu-Donmuş	-18/-23	90-95	8-10 Ay				0.38/0.4	48/56
Tavuk/Hindi-Taze	0	85-90	1 Hafta	74	-3	0.8		59.3
Tavuk/Hindi-Donmuş	-18/-23	90-95	8-12 Ay			-	0.42	59.3

Donma noktasının üstündeki sıcaklıklarda soğutma

$$Q = \frac{G \times C \times (T2 - T1)}{soğutma zamanı}$$

Burada;

Q1= Donma noktası üstündeki sıcaklıklarda soğutma yükü (kcal/h)

G = Soğuk odaya konulan mal miktarı (kg)

C = Donmadan önce ısınma ısısı (kcal/kgC^o)

T1 = Malın son sıcaklığı (C°)

T2 = Malın soğuk odaya konmadan önceki sıcaklığı (C°)

Projede, alınan mal miktarı 30 ton, küçük balıklar için ortalama donmadan önce ısınma ısısı ise 0,81kcal/kg°C alınmıştır. Balıkların giriş sıcaklığı dışarısının sıcaklığı yani 30°C kabul edilmiştir.

$$Q = \frac{30000 \times 0.81 \times (30 - 0)}{24} = 30375 kcal/sa$$

III. Mallardan Gelen Isı							
Isı Cinsi		Ağırlık	ΔΤ	Isiliiia	Jogac	Saatteki	Günlük
	Mal	[kg]	[oC]	Donma ISISI	Süresi	İsı	lsı
	Cinsi	(G)		Olgunla şma।ऽ।ऽ।	[Saat]	Kazancı	Kazancı
						(keal/h)	[kcal]
Don. Nok. Soğ.	Küçük balık	30000	30	0.81	24	30375	
Donma	_	-	-	-	-	-	
Donmuş	_	-	-	_	-	_	
Olgunlaşm	_	-	ı	_	_	-	
Mallarla ilgili Yanısı	sa, kut	2000	30	0.5	24	1250	
Toplam Isisi		31625	x 24				759000

7.4. Oda İçinde Meydana Gelen Muhtelif İsılar

Soğuk hava deposu tasarımında meydana gelen bir başka ısıl kayıp da aydınlatma, insan, odadaki elektronik cihazlar gibi sürekli bulunan ve ısı yayan maddelerden kaynaklanmaktadır.

IV. ODA İÇİNDE MEYDANA GELEN MUHTELİF ISILAR

a)İnsan= 2 kişi x 239 kcal/h	1434
b)Aydınlatma= 100 W x 8 adet x 0,86 x 3 saat/gün	2064
toplam	3498kcal

Burada bir insanın saat başına yaydığı ısı 239kcal olarak alınmıştır.

Aydınlatma için de 100watt değerinde 8 adet ampul düşünülmüştür.

Bu değer günlük bazındadır ve 3498 kcal olarak hesaplanmıştır.

Sonuç olarak bulunan değerler yardımıyla deponun günlük toplam ısı yükünü hesaplarsak;

$$= 3498 + 759000 + 27997,09 + 338169,6 = 1128664,69 kcal/gün$$

Makinaların 24 saatlik çalıştığını varsayarsak bu değer saatlik olarak :

 $\frac{1128664,69}{24}$ = 47027,6958 [*kcal/saat*] olarak hesaplanır.

8. SOĞUTMA YÜKÜNE GÖRE SOĞUTMA GRUBU ELEMANLARI SEÇİLMELİ

Toplam ısı kazancımız oldukça yüksek bir değerdedir. Maliyet de göz önünde bulundurulduğunda, bu ısıyı tek başına karşılayabilecek bir soğutma grubu elemanı bulunamamıştır. Tasarımımızda 6 oda bulunması sebebiyle her oda için birer soğutma elemanı seçilmesi uygun görülmüştür. Böylece, toplam ısı kazancını 6'e bölerek gerekli seçimler yapılmıştır.

8.1. Evaporatör (Buharlaştırıcı) Seçimi

Soğutucu ekipmanlar Karyap markasının Ürün Seçim Programı kullanılarak seçilmiştir.

KHD6-55-302 modelinden 6 adet kullanılması uygun görülmüştür.

• Gerekli Kapasite : 47030/6 = 7838,33 (*kcal/sa*)

• Oda Sıcaklığı: 0°C

• Soğutucu Akışkan : R22

		Ölçüler		
 Boyut L	1140 mm	Giriş	1/2 mm	
Boyut H	250 mm	Çıkış	3/4 mm	
Boyut A	850 mm			

Kapasite Bilgileri									
	Kapasite 7896 W Isı Transfer Alanı 17,5 m²								
	Lamel Aralığı	6mm	Test Basıncı	35 Bar					
	Akışkan	R22	Kızgınlık	ок					
	Rakım	0	Lamel Malzemesi	Alüminyüm					
	Oda Sıcaklığı/Delta T	0/1 °C	Enerji Verimlilik Sınıfı	A					
	Evaporasyon	-1							
			Fan Bilgileri						
	Fan Çapı	300 mm	Hava Atım Mesafesi	8 m					
	Fan Sayısı	2 Adet	Ses Seviyesi	61 dBA					
	Fan Gücü	36 W	Ízolasyon Sınıfı	F					
	Hava Debisi	1870 m³/h	Koruma Sınıfı	IP44					
	Fan Toplam Akımı	0.41 A	Çalışma Sıcaklığı	-20/+60 ℃					
	Fan Devri	1320 d/d	Voltaj/Frekans/Faz	230 V / 50 Hz / Monofaz					

8.2. Kompresör Seçimi

- Soğuk hava deposu kompresörleri BITZER markasının Ürün Seçim Programı kullanılarak seçilmiştir.
- 2FES-3-40S modelinden 6 tane kullanılması uygun görülmüştür.
- Gerekli kapasite: 6× 7880 W

Compressor	2FES-3-40S
Capacity steps	100%
Cooling capacity	7,88 kW
Cooling capacity *	7,88 kW
Evaporator capacity	7,88 kW
Power input	1,69 kW
Current (400V)	3,62 A
Voltage range	380-420V
Condenser capacity	9,57 kW
COP/EER	4,67
COP/EER *	4,67
Mass flow	154,7 kg/h
Operating mode	Standard
Discharge gas temp. w/o cooling	83,4 °C

8.3. Kondenser Seçimi

• Gerekli kapasite : 6 × 9750 W

• Son durumda;

 $6 \times (9570 + 1,69) = 6 \times 11,26 \, kW$

kapasiteye ihtiyaç duyulur.

Unit type	<u>LH84E/</u> <u>2CES-4-40S</u>
Capacity steps	100%
Cooling capacity	12,50 kW
Evaporator capacity	12,50 kW
Power input	4,10 kW
Current (400V)	6,83 A
Voltage range	380-420V
Mass flow	265 kg/h
Condensing SDT	43,4 °C
Liquid subcooling	3,00 K
Operating mode	Standard

9. SOĞUTMA DEVRESİ PROJESİ ÇİZİLMESİ

Soğutma tesisatı, sistemde dolaşan soğutucu akışkana, soğutma koşullarına, sistem büyüklüğüne bağlı olarak belirlenen sistem ekipmanlarının tümünü içeren şemadır.

Sistemde bulunan cihazlar:

- Yarı Hermetik Vidalı Kompresör
- Yoğuşturucu
- Buharlaştırıcı
- Kısılma Vanası
- Sıvı Deposu
- Gaz Filtresi
- Selenoid Valf (1 tane 2 yollu, 1 tane 4 yollu)
- Gözetleme Camı
- Akümülatör
- Tek Yollu Vana (2 tane)

Sistemimizde kompresör, yoğuşturucu ve buharlaştırıcı seçim kriterleri ve özellikleri Bölüm 8'de belirtilmiştir. Tesisatta bulanan diğer yardımcı cihazlarının seçim sebepleri ve özellikleri şu şekildedir:

Gaz Filtresi

Üretim ya da montaj esnasında soğutma çevrimine giren nem, toz gibi pislikleri tutmaya yarar.

Kılcal borunun veya termostatik genleşme vanasının çıkışındaki düşük sıcaklık bölümünde, sisteme kaçan nem, donma eğilimi gösterir ve soğutucu akışkanın düzenli akışını engelleyerek hidrolize veya elektrik arızasına neden olur. Toz ise kılcal borunun ve termostatik genleşme vanalarının tıkanmasına neden olur. Bu sebeple sıvı tankı ile kısılma vanası arasında gaz filtresi kullanımı uygun görülmüştür.

Selenoid Valf

Soğutma devresini tam açmak veya kapamak için kullanılan vanadır. Elektrik bobinine enerji verilerek veya verilen enerji kesilerek kontrol edilir. Tesisatta sıvı hattında bir adet iki yollu selenoid valf ve sıcak defrost hattı için 1 adet 4 yollu vana kullanılmıştır.

Gözetleme Camı

Bir soğutucu devresinde akış ile ilgili hızlı ve güvenli bilgi elde etmekiçin kullanılır. Sıvı fazdaki akışkanın durumu ve nem içeriğini gösterir. Nem Göstergeleri bu sistemin bir parçasıdır. Nem miktarı arttıkça renk değişimi gözlenir. (Yeşil,dry= kuru - Sarı,wet = nemli) Sıvı hattında kullanılmıştır.

Akümülatör

Tesisatta oluşabilecek basınç farklılıklarını gidermek amacıyla bir adet akümülatör kullanılmıştır. Bu cihaz emme hattında konumlandırılmıştır.

Tek Yönlü Vana

Tesisatta akışın ters yöne akmasına engel olurlar. Sistemimizde gerek sıcak defrost hattının bulunması gerek yükseklik farklılıkları sebebiyle 2 adet tek yönlü vana kullanılmıştır.

Şekil 7. Soğutma Devresi Tesisatı

10. BORU ÇAPI HESABI YAPILMASI

Bir soğutma devresinde, soğutucu akışkanın fiziksel özelliklerinin birbirinden belirgin şekilde farklı olduğu üç ayrı bölüm vardır.

- Emiş (Dönüş) Hattı: En kritik ve en çok dikkat gerektiren boru hattıdır. Bir yandan boru çapının gereksiz büyük tutulması hem yağın sürüklenmemesine hem de boru maliyetinin artmasına neden olurken diğer yandan küçük seçilmesi aşırı basınç/sıcaklık kaybına ve yüksek akış hızlarına, dolayısıyla gürültüye sebep olacaktır.
- <u>Basma (Gidiş) Hattı</u>: Burada da emiş hattındaki genel hususlar göz önünde tutulmalıdır ancak basınç kaybı yönünden durum emiş kadar kritik değildir.
- <u>Sıvı Hattı:</u> Sıvı hattında önemli konu köpürmenin önlenmesidir. Köpürmenin nedeni, basınç kaybı sonucu sıcaklık-basınç dengesinin, doymuş sıvı konumuna doğru bozulmasıdır. Önlenmesi için 2°C-7°C arası aşırı soğutma yapılabilir.

Boru güzergâh seçiminde en önemli husus, boru tesisatının birbirine bağladığı soğutma elemanları arasında mümkün olduğu kadar kısa, doğrusal ve az bağlantılı olarak seçilmesidir. Bu sayede hem boru israfı önlenecek hem de basınç kayıpları düşük seviyede tutulacaktır.

 $T_{buhar} = -1$ °C için su buharının doyma basıncı $P_d = 481,6 \ kPa$ $T_{voğ} = 43,4$ °C için su buharının doyma basıncı $P_d = 1668,6 \ kPa$

 $h_1 = 401,5 \text{ kJ/kg}$ $T_2 = 83,4 \text{ °C}$ $s_1 = 1,7515 \text{ kJ/kg.K}$ $P_2 = 3917 \text{ kPa}$ $\rho_1 = 20,587 \text{kg/}m^3$ $\rho_1 = 20,587 \text{kg/}m^3$

7896/

Bu tarz işlemler için bakır boru en çok kullanılan boru tipidir. Bunun sebebi; bakır borular özellikle 4" değerine kadar (amonyak hariç) korozyona dayanıklı olması, montaj kolaylığı ve hafifliğidir.

Boru çapı tablosu hazırlanırken;

- Boru tipi ve kullanılacağı yer belirlenir.
- Botu hattı için sınırlamalar yazılır.
- Akışkan debisi ile birlikte çapa bağlı akışkan hız denklemi türetilir.

- Boru hattında kullanılan elemanların kayıpları ve sayıları belirlenir.
- Eşdeğer boru boyu bulunur ve eşdeğer boru boyuna göre 100m de basınç veya buna karşılık gelen sıcaklık gradyeni hesaplanır.

11. MALİYET HESABI YAPILMASI

Soğuk hava deposunda kullanılan ana ve yardımcı cihazların maliyetleri performans/fiyat kriteri göz önünde bulundurularak optimize edilmeye çalışılmış ve aşağıdaki tablo oluşturulmuştur.

Tablo 6. Maliyet tablosu

Cihaz	Adet	Birim fiyatı	Toplam
Kompresör	6	1000 €	6000 €
Evaporatör	6	700 €	4200 €
Kondenser	6	1400 €	8400 €
Selenoid vana (2 yollu)	1	13 €	12 €
Selenoid vana (4 yollu)	1	30 €	30 €
Kısılma vanası	1	26 €	26€
Tek yönlü vana	2	10 €	20 €
Sıvı deposu	1	40 €	40 €
Gözetleme camı	1	25 €	25 €

Akümülatör	1	90 €	90 €
Palet	675	220 €	148500 €
Kasa	28350	1 €	28350 €

Buradaki envanter için toplam maliyet 195693 € olarak hesaplanır.

KAYNAKÇA

https://bloksan.com.tr/portfolio/balik-kutulari/

https://www.variofit.com/en/products/4-pallet-mounted-frame/215-pallet-mounted-frame/0420-pallet-converter-type-68