Randomized Algorithm

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

Algorithm Course @ Shanghai Jiao Tong University

Outline

- Preliminaries
 - Monte Carlo & Las Vegas Algorithms
 - Review for Probability Theory
- 2 Introduction to Randomized Algorithm
 - Max 3-SAT Approximation Algorithm
 - Universal Hashing
- The Probabilistic Analysis
 - Max Cut
 - Load Balancing

Outline

- Preliminaries
 - Monte Carlo & Las Vegas Algorithms
 - Review for Probability Theory
- 2 Introduction to Randomized Algorithm
 - Max 3-SAT Approximation Algorithm
 - Universal Hashing
- The Probabilistic Analysis
 - Max Cut.
 - Load Balancing

Randomization

Algorithmic design patterns.

- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Randomization

Algorithmic design patterns.

- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Applications: Symmetry breaking protocols, graph algorithms, quick sort, hashing, load balancing, Monte Carlo integration, cryptography.

Example 1: Verifying Polynomial Identities

Suppose we have a program that multiplies together monomials, how to verify the correctness of its output?

$$F(x) = (x+1)(x-2)(x+3)(x-4)(x+5)(x-6)$$

$$G(x) = x^6 - 7x^3 + 25$$

$$F(x) \stackrel{?}{=} G(x)$$

Example 1: Verifying Polynomial Identities

Suppose we have a program that multiplies together monomials, how to verify the correctness of its output?

$$F(x) = (x+1)(x-2)(x+3)(x-4)(x+5)(x-6)$$

$$G(x) = x^6 - 7x^3 + 25$$

$$F(x) \stackrel{?}{=} G(x)$$

A straightforward way: First, multiply together the terms on the left-hand side by consecutively multiplying the i-th monomial with the product of the first i-1 monomials. Then, see if it matches the right-hand side.

More generally, given an polynomial F(x) with degree d, transforming F(x) to its canonical form requires $\Theta(d^2)$ multiplications of coefficients.

Example 1: Verifying Polynomial Identities (Cont.)

A randomized way: Let us utilize randomness to obtain a faster method to verify the identity. First, chooses an integer r uniformly at random in the range $\{1, \ldots, 100d\}$, then compute F(r) and G(r).

- If $F(x) \equiv G(x)$, then the algorithm gives the correct answer.
- If $F(x) \not\equiv G(x)$ and $F(x) \not= G(x)$, then the algorithm gives the correct answer.
- If $F(x) \not\equiv G(x)$ and F(x) = G(x), the algorithm gives the wrong answer.

Example 1: Verifying Polynomial Identities (Cont.)

A randomized way: Let us utilize randomness to obtain a faster method to verify the identity. First, chooses an integer r uniformly at random in the range $\{1, \ldots, 100d\}$, then compute F(r) and G(r).

- If $F(x) \equiv G(x)$, then the algorithm gives the correct answer.
- If $F(x) \not\equiv G(x)$ and $F(x) \not\equiv G(x)$, then the algorithm gives the correct answer.
- If $F(x) \not\equiv G(x)$ and F(x) = G(x), the algorithm gives the wrong answer.

Wrong answer case: r must be a root of F(x) - G(x) = 0. Note that a polynomial of degree up to d has no more than d roots, thus the chance that the algorithm chooses such a value and returns a wrong answer is no more than 1/100.

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 6/53

Example 2: Random QuickSort

QuickSort is a simple but very efficient sorting algorithm. Given an array A[1 ... n], the QuickSort proceeds as follows:

- If A has one or zero elements, return A. Otherwise continue.
- 2 Randomly choose an element of A as a pivot; call it x.
- **3** Compare every other element of A to x in order to divide the other elements into two sub-arrays A_1 and A_2 :
 - A₁ has all the elements of A that are less than x;
 - A_2 has all those that are greater than x.
- Use QuickSort to sort A_1 and A_2 .
- **Solution Solution Solution**

Example 2: Random QuickSort (Cont.)

Worst case: Suppose $A[1 \dots n] = [n, n-1, \dots, 1]$ and we choose A[1] as the pivot, so QuickSort perform n-1 comparisons. The division has yielded one sub-array of size 0 and another of size n-1, with the order $n-1, n-2, \dots, 1$. The next pivot chosen is n-1. so QuickSort performs n-2 comparisons and is left with one group of size n-2. Continuing in this fashion, QuickSort performs n(n-1)/2 comparisons.

Best case: Each time the pivot separate the array into 2 halfs.

Example 2: Random QuickSort (Cont.)

Worst case: Suppose $A[1 \dots n] = [n, n-1, \dots, 1]$ and we choose A[1] as the pivot, so QuickSort perform n-1 comparisons. The division has yielded one sub-array of size 0 and another of size n-1, with the order $n-1, n-2, \dots, 1$. The next pivot chosen is n-1. so QuickSort performs n-2 comparisons and is left with one group of size n-2. Continuing in this fashion, QuickSort performs n(n-1)/2 comparisons.

Best case: Each time the pivot separate the array into 2 halfs.

To summarize, since the pivot is randomly chosen, the runtime of QuickSort may range from $O(n^2)$ in the worst case to $O(n \log n)$ in the best.

Monte Carlo & Las Vegas Algorithms

Monte Carlo algorithms:

- have a fixed, deterministic running time.
- may produce incorrect results with a small probability.
- property: run a Monte Carlo algorithm multiple times to decrease the probability of outputting an incorrect result.

Example: Verifying polynomial identities.

Monte Carlo & Las Vegas Algorithms

Monte Carlo algorithms:

- have a fixed, deterministic running time.
- may produce incorrect results with a small probability.
- property: run a Monte Carlo algorithm multiple times to decrease the probability of outputting an incorrect result.

Example: Verifying polynomial identities.

Las Vegas algorithms:

- always produce the correct answer;
- rather than correctness being a random variable, the running time becomes the random variable.

Example: Random QuickSort.

Outline

- Preliminaries
 - Monte Carlo & Las Vegas Algorithms
 - Review for Probability Theory
- 2 Introduction to Randomized Algorithm
 - Max 3-SAT Approximation Algorithm
 - Universal Hashing
- The Probabilistic Analysis
 - Max Cut.
 - Load Balancing

Probability Space & Random Variables

Probability space: A probability space has three components:

- a sample space Ω , which is the set of all possible outcomes of the random process modeled by the probability space.
- a family of sets \mathcal{F} representing the allowable events, where each set in F is a subset of the sample space Ω .
- a probability function $Pr : \mathcal{F} \to R$.

Probability Space & Random Variables

Probability space: A probability space has three components:

- a sample space Ω , which is the set of all possible outcomes of the random process modeled by the probability space.
- a family of sets \mathcal{F} representing the allowable events, where each set in F is a subset of the sample space Ω .
- a probability function $Pr : \mathcal{F} \to R$.

Random variables: A random variable X on a sample space Ω is a real-valued function on Ω , i.e., $X:\Omega\to R$. A discrete random variable is a random variable that takes on only a finite or countably infinite number of values.

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 11/5:

Independence & Expectation

Independence: Two random variables *X* and *Y* are independent if and only if

$$\Pr[(X = x) \cap (Y = y)] = \Pr[X = x] \cdot \Pr[Y = y]$$

for all values x and y.

Independence & Expectation

Independence: Two random variables *X* and *Y* are independent if and only if

$$\Pr[(X = x) \cap (Y = y)] = \Pr[X = x] \cdot \Pr[Y = y]$$

for all values x and y.

Expectation: The expectation of a discrete random variable *X* is denoted by

$$E[X] = \sum_{i} i \cdot \Pr[X = i]$$

where the summation is over all values in the range of X. Note that the expectation is finite if $\sum_{i} |i| \cdot \Pr[X = i]$ converges; otherwise, the expectation is unbounded (not exist).

Linearity of Expectations

Linearity of expectations: For any finite collection of discrete random X_1, X_2, \ldots, X_n with finite expectations

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i].$$

Linearity of Expectations

Linearity of expectations: For any finite collection of discrete random X_1, X_2, \dots, X_n with finite expectations

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i].$$

For any constant c and discrete random variable X.

$$E[cX] = cE[X].$$

The Bernoulli Random Variables

Bernoulli random variables: Suppose that we run an experiment that succeeds with probability p and fails with probability 1 - p. Let X be a random variable such that

$$X = \begin{cases} 1 & \text{if the experiment succeeds} \\ 0 & \text{otherwise} \end{cases}$$

The variable *X* is called a Bernoulli or an indicator random variable. The expectation of a Bernoulli random variable is

$$E[X] = p \cdot 1 + (1 - p) \cdot 0 = p = Pr[X = 1].$$

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 14/5:

The Binomial Random Variables

Consider a sequence of n independent experiments, each of which succeeds with probability p. If we let X to represent the number of successes in the n experiments, then X obeys a binomial distribution.

The Binomial Random Variables

Consider a sequence of n independent experiments, each of which succeeds with probability p. If we let X to represent the number of successes in the n experiments, then X obeys a binomial distribution.

Binomial random variables: A binomial random variable X with parameters n and p, denoted by B(n,p), is defined by the following probability distribution on i = 0, 1, ..., n:

$$\Pr[X = i] = \binom{n}{i} p^{i} (1 - p)^{(n-i)}.$$

The expectation of a binomial random variable is

$$E[X] = \sum_{i=0}^{n} i \binom{n}{i} p^{i} (1-p)^{n-i} = np$$

The Geometric Random Variables

Suppose that we flip a coin independently until it lands on heads (the first success). What is the distribution of the number of flips X? Actually, X obeys the geometric distribution.

shability and Random Variable.

Robability space: 52, family of sets F, Pr: F -IR

Ranclom Variable: X: Sl→IR. X: discrete ~ IN

The Geometric Random Variables

Suppose that we flip a coin independently until it lands on heads (the first success). What is the distribution of the number of flips X? Actually, X obeys the geometric distribution.

Geometric random variables: A geometric random variable X with parameter p is given by the following probability distribution on $n = 1, 2, \ldots$:

$$\Pr[X = n] = (1 - p)^{n-1}p$$

The geometric random variables are memoryless, i.e.,

$$\Pr[X = n + k | X > k] = \Pr[X = n]$$

The expectation of a geometric random variable is

$$\mathrm{E}[X] = 1/p.$$

Coupon Collector

Coupon collector: Suppose each box of cereal contains one of *n* different coupons and the coupon in each box is chosen independently and uniformly at random from the *n* cases, how many boxes of cereal do you need to buy before you have at least one of each type of coupon?

Coupon Collector

Coupon collector: Suppose each box of cereal contains one of n different coupons and the coupon in each box is chosen independently and uniformly at random from the n cases, how many boxes of cereal do you need to buy before you have at least one of each type of coupon?

Analysis: Let X be the number of boxes bought until at least one of every type of coupon is obtained, and X_i be the number of boxes bought while you had exactly i-1 different coupons, then clearly $X = \sum_{i=1}^{n} X_i$.

Coupon Collector (Cont.)

The advantage of breaking the random variable X into a sum of n random variables is that each X_i is a geometric random variable. When exactly i-1 coupons have been found, the probability of obtaining a new coupon is $p_i = 1 - (i-1)/n$.

Coupon Collector (Cont.)

The advantage of breaking the random variable X into a sum of n random variables is that each X_i is a geometric random variable. When exactly i-1 coupons have been found, the probability of obtaining a new coupon is $p_i = 1 - (i-1)/n$.

Then we have

$$E[X] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \frac{n}{n-i+1} = n \sum_{i=1}^{n} \frac{1}{i} = nH(n)$$

Here $H(n) = \sum_{i=1}^{n} 1/i$ is called harmonic number and it can be proved that $\ln(n+1) < H(n) < 1 + \ln n$.

Coupon Collector (Cont.)

The advantage of breaking the random variable X into a sum of n random variables is that each X_i is a geometric random variable. When exactly i-1 coupons have been found, the probability of obtaining a new coupon is $p_i = 1 - (i-1)/n$.

Then we have

$$E[X] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \frac{n}{n-i+1} = n \sum_{i=1}^{n} \frac{1}{i} = nH(n)$$

Here $H(n) = \sum_{i=1}^{n} 1/i$ is called harmonic number and it can be proved that $\ln(n+1) < H(n) < 1 + \ln n$.

Thus, the expected number of boxed required to buy is $\Theta(n \log n)$.

Outline

- Preliminaries
 - Monte Carlo & Las Vegas Algorithms
 - Review for Probability Theory
- 2 Introduction to Randomized Algorithm
 - Max 3-SAT Approximation Algorithm
 - Universal Hashing
- The Probabilistic Analysis
 - Max Cut
 - Load Balancing

Maximum 3-Satisfiability

Maximum 3-Satisfiability: Given a 3-SAT formula with k clauses, find a truth assignment that satisfies as many clauses as possible.

$$C_1 = x_2 \lor \bar{x}_3 \lor \bar{x}_4$$

$$C_2 = x_2 \lor x_3 \lor \bar{x}_4$$

$$C_3 = \bar{x}_1 \lor x_2 \lor x_4$$

$$C_4 = \bar{x}_1 \lor \bar{x}_2 \lor x_3$$

Remark: It is an NP-hard search problem.

Maximum 3-Satisfiability

Maximum 3-Satisfiability: Given a 3-SAT formula with k clauses, find a truth assignment that satisfies as many clauses as possible.

$$C_1 = x_2 \lor \bar{x}_3 \lor \bar{x}_4$$

$$C_2 = x_2 \lor x_3 \lor \bar{x}_4$$

$$C_3 = \bar{x}_1 \lor x_2 \lor x_4$$

$$C_4 = \bar{x}_1 \lor \bar{x}_2 \lor x_3$$

Remark: It is an NP-hard search problem.

A Simple idea: Flip a coin, and set each variable true with probability 1/2, independently for each variable.

Maximum 3-Satisfiability: Analysis

Claim: Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is 7k/8.

Claim: Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is 7k/8.

Proof: Consider random variable

$$X_i = \begin{cases} 1 & \text{if } C_i \text{ is satisfied} \\ 0 & \text{otherwise} \end{cases}$$

Let X = number of clauses satisfied by assignment X_i .

$$E[X] = \sum_{i=1}^{k} E[X_i] = \sum_{i=1}^{k} Pr[clause C_i \text{ is satisfied}] = \left(1 - \left(\frac{1}{2}\right)^3\right) k = \frac{7}{8}k$$

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 21/53

The Probabilistic Method

Corollary: For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses. Since a random variable is at least its expectation some of the time.

The Probabilistic Method

Corollary: For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses. Since a random variable is at least its expectation some of the time.

Probabilistic method: Paul Erdos proved the existence of a non-obvious property by showing that a random construction produces it with positive probability!

Question: Note that a random variable can almost always be below its mean, how can we turn this idea into a 7/8-approximation algorithm?

Question: Note that a random variable can almost always be below its mean, how can we turn this idea into a 7/8-approximation algorithm?

Lemma: The probability that a random assignment satisfies $\geq 7k/8$ clauses is at least 1/8k.

Question: Note that a random variable can almost always be below its mean, how can we turn this idea into a 7/8-approximation algorithm?

Lemma: The probability that a random assignment satisfies $\geq 7k/8$ clauses is at least 1/8k.

Proof: Let p_i be probability that exactly i clauses are satisfied. Let p be probability that $\geq 7k/8$ clauses are satisfied, then

$$\begin{split} \frac{7}{8}k &= \mathrm{E}[X] = \sum_{i \geq 0} i p_i = \sum_{i < 7k/8} i p_i + \sum_{i \geq 7k/8} i p_i \\ &\leq (\frac{7k-1}{8}) \sum_{i < 7k/8} p_i + k \sum_{i \geq 7k/8} p_i \leq (\frac{7k-1}{8}) \cdot 1 + k \cdot p \end{split}$$

Rearranging terms yields $p \ge 1/8k$.

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 23/5

Johnson's algorithm: Repeatedly generate random truth assignments until one of them satisfies $\geq 7k/8$ clauses.

Johnson's algorithm: Repeatedly generate random truth assignments until one of them satisfies $\geq 7k/8$ clauses.

Theorem: Johnson's algorithm is a 7/8-approximation algorithm.

Johnson's algorithm: Repeatedly generate random truth assignments until one of them satisfies > 7k/8 clauses.

Theorem: Johnson's algorithm is a 7/8-approximation algorithm.

Proof: By previous lemma, each iteration succeeds with probability $\geq 1/8k$. By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most 8k.

Outline

- Preliminaries
 - Monte Carlo & Las Vegas Algorithms
 - Review for Probability Theory
- 2 Introduction to Randomized Algorithm
 - Max 3-SAT Approximation Algorithm
 - Universal Hashing
- The Probabilistic Analysis
 - Max Cut
 - Load Balancing

Dictionary Data Type

Dictionary: Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S are efficient.

Dictionary Data Type

Dictionary: Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S are efficient.

Dictionary interface:

- create (): initialize a dictionary with $S = \phi$.
- insert (u): add element $u \in U$ to S.
- delete (u): delete *u* from *S* (if *u* is currently in *S*).
- lookup(u): is *u* in *S*?

Dictionary Data Type

Dictionary: Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S are efficient.

Dictionary interface:

- create (): initialize a dictionary with $S = \phi$.
- insert (u): add element $u \in U$ to S.
- delete (u): delete *u* from *S* (if *u* is currently in *S*).
- lookup(u): is *u* in *S*?

Challenge: Universe U can be extremely large so defining an array of size |U| is infeasible.

Applications: File systems, databases, Google, compilers, checksums P2P networks, associative arrays, cryptography, web caching, etc.

Hashing

Hash function: $h: U \to \{0, 1, ..., n-1\}.$

Hashing: Create an array H of size n. When processing element u, access array element H[h(u)].

Hashing

Hash function: $h: U \to \{0, 1, ..., n-1\}.$

Hashing: Create an array H of size n. When processing element u, access array element H[h(u)].

Collision: When h(u) = h(v) but $u \neq v$.

- A collision with a 50% probability is expected after $\Theta(\sqrt{n})$ random insertions (Birthday Paradox).
- Separate chaining: H[i] stores linked list of elements u with h(u) = i.

H[1]	jocularly	seriously		
H[2]	null			
H[3]	suburban	untravelled		

◆ロト ◆団 ト ◆ 圭 ト ◆ 圭 ・ か Q (*)

. . .

Ad-Hoc Hash Function

Algorithm 1: Ad-hoc Hash Function

Input: A string $s[1 \dots l]$, an integer n

Output: The hash value of s

- 1 $hash \leftarrow 0$;
- 2 for $i \leftarrow 1$ to l do
- 3 $hash \leftarrow (31 \times hash) + s[i];$
- 4 **return** *hash* mod *n*;

Equivalent to
$$h = 31^{l-1}s_1 + \ldots + 31^2s_{l-2} + 31s_{l-1} + s_l \mod n$$

Randomized Algorithm

Ad-Hoc Hash Function

Algorithm 1: Ad-hoc Hash Function

Input: A string $s[1 \dots l]$, an integer n

Output: The hash value of s

- 1 $hash \leftarrow 0$;
- 2 for $i \leftarrow 1$ to l do
- 3 $hash \leftarrow (31 \times hash) + s[i];$
- 4 **return** *hash* mod *n*;

Equivalent to
$$h = 31^{l-1}s_1 + \ldots + 31^2s_{l-2} + 31s_{l-1} + s_l \mod n$$

Deterministic Hashing: If $|U| \ge n^2$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to the same slot (Pigeonhole Principle). Thus, $\Theta(n)$ time per search in worst-case.

Question: But isn't ad-hoc hash functions good enough in practice?

Algorithmic Complexity Attacks

When can't we live with ad-hoc hash function?

- Obvious situations: Aircraft Control, Nuclear Reactors.
- Surprising situations: Denial-of-Service Attacks. (malicious adversary learns your ad hoc hash function (e.g., by reading Java API) and causes a big pile-up in a single slot that grinds performance to a halt.)

Algorithmic Complexity Attacks

When can't we live with ad-hoc hash function?

- Obvious situations: Aircraft Control, Nuclear Reactors.
- Surprising situations: Denial-of-Service Attacks. (malicious adversary learns your ad hoc hash function (e.g., by reading Java API) and causes a big pile-up in a single slot that grinds performance to a halt.)

Real world exploits. [Crosby-Wallach 2003]

- Bro server: Send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem.
- Perl 5.8.0: Insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: Save files with carefully chosen names.

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 29/5

Ideal Hashing Performance

Ideal hash function: Maps *m* elements uniformly at random to *n* hash slots.

- Running time depends on length of chains.
- Average length of chain $\alpha = m/n$.
- Choose $n \approx m \Rightarrow$ on average O(1) per insert, lookup, or delete.

Ideal Hashing Performance

Ideal hash function: Maps *m* elements uniformly at random to *n* hash slots.

- Running time depends on length of chains.
- Average length of chain $\alpha = m/n$.
- Choose $n \approx m \Rightarrow$ on average O(1) per insert, lookup, or delete.

Challenge: Achieve idealized randomized guarantees, but with a hash function where you can easily find items where you put them.

Approach: Use randomization in the choice of h. (Your adversary knows the randomized algorithm you're using, but doesn't know random choices that the algorithm makes)

Universal Hashing

Universal family of hash functions: For any pair of elements $u, v \in U$ and a randomly chosen $h \in H$, we have

$$\Pr_{h \in H}[h(u) = h(v)] \le 1/n$$
 [Carter-Wegman 1980s]

Example: $U = \{a, b, c, d, e, f\}, n = 2.$

	a	b	c	d	e	f
h1(x)	0	1	0	1	0	1
h2(x)	0	0	0	1	1	1

$$\Pr_{h \in H}[h(a) = h(b)] = 1/2$$

 $\Pr_{h \in H}[h(a) = h(c)] = 1$
 $\Pr_{h \in H}[h(a) = h(d)] = 0$

Not universal hashing.

	a	b	c	d	e	f
h1(x)	0	1	0	1	0	1
h2(x)	0	0	0	1	1	1
h3(x)	0	0	1	0	1	1
h4(x)	1	0	0	1	1	0

$$Pr_{h \in H}[h(a) = h(b)] = 1/2$$

 $Pr_{h \in H}[h(a) = h(c)] = 1/2$

. . .

Universal hashing.

Universal Hashing: Analysis

Proposition: Let H be a universal family of hash functions, $h \in H$ is chosen uniformly at random from H. Given $u \in U$, for any subset $S \subseteq U$ of size at most n, the expected number of items in S that collide with u is at most 1.

Universal Hashing: Analysis

Proposition: Let H be a universal family of hash functions, $h \in H$ is chosen uniformly at random from H. Given $u \in U$, for any subset $S \subseteq U$ of size at most n, the expected number of items in S that collide with u is at most 1.

Proof: For any element $s \in S$, define indicator random variable $X_s = 1$ if h(s) = h(u) and 0 otherwise. Let X be a random variable counting the total number of collisions with u.

$$E_{h \in H}[X] = \sum_{s \in S} E[X_s] = \sum_{s \in S} \Pr[X_s = 1] \le \sum_{s \in S} \frac{1}{n} = \frac{|S|}{n} \le 1$$

Question: How to design a universal family of hash functions?

Designing a Universal Family of Hash Functions

Theorem: There exists a prime between n and 2n [Chebyshev 1850].

Designing a Universal Family of Hash Functions

Theorem: There exists a prime between n and 2n [Chebyshev 1850].

Integer encoding: Choose a prime number $p \approx n$ (no need for randomness here). Identify each element $u \in U$ with a base-p integer of r digits: $x = (x_1, x_2, \dots, x_r)$.

Hash function: Let A = set of all r-digit, base-p integers. For each $a = (a_1, a_2, \dots, a_r)$ where $0 \le a_i < p$, define

$$h_a(x) = \sum_{i=1}^r a_i x_i \mod p$$

Hash function family: $H = \{h_a \mid a \in A\}.$

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 33/53

Designing a Universal Family of Hash Functions

Proof: Let $x = (x_1, x_2, ..., x_r)$ and $y = (y_1, y_2, ..., y_r)$ be two distinct elements of U. Our goal is to show that $\Pr[h_a(x) = h_a(y)] \le 1/n$.

- Since $x \neq y$, there exists an integer j such that $x_j \neq y_j$.
- $h_a(x) = h_a(y)$ iff $a_j(y_j x_j) = \sum_{i \neq j} a_i(x_i y_i) \mod p$.
- Assume a was chosen uniformly at random by first selecting all coordinates a_i where $i \neq j$, then selecting a_j at random. Thus, we can assume a_i is fixed for all coordinates $i \neq j$.
- Since p is prime, $a_j \cdot z = m \mod p$ has at most one solution among p possibilities. ($\underbrace{a}_j = y_j x_j, m = \sum_{i \neq j} a_i(x_i y_i)$, see lemma on next slide)
- Thus $\Pr[h_a(x) = h_a(y)] = 1/p \le 1/n$.

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 34/5

Number Theory Facts

Fact. Let p be prime, and let $z \neq 0 \mod p$. Then $\alpha z = m \mod p$ has at most one solution $0 \leq \alpha < p$.

Proof:

Suppose α and β are two different solutions.

Then $(\alpha - \beta)z = 0 \mod p$; hence $(\alpha - \beta)z$ is divisible by p.

Since $z \neq 0 \mod p$, we know that z is not divisible by p; it follows that $(\alpha - \beta)$ is divisible by p.

This implies $\alpha = \beta$.

Outline

- Preliminaries
 - Monte Carlo & Las Vegas Algorithms
 - Review for Probability Theory
- 2 Introduction to Randomized Algorithm
 - Max 3-SAT Approximation Algorithm
 - Universal Hashing
- The Probabilistic Analysis
 - Max Cut
 - Load Balancing

Max Cut

Max Cut problem: Let G = (V; E) be an undirected graph. For $U \subset V$, let

$$\delta(U) = \{ uv \in E : u \in U \text{ and } v \notin U \}$$

The set $\delta(U)$ is called the **cut** determined by vertex set U. The Max Cut problem is to solve

$$\max\{|\delta(U)|:U\subseteq V\}$$

Max Cut

Max Cut problem: Let G = (V; E) be an undirected graph. For $U \subset V$, let

$$\delta(U) = \{ uv \in E : u \in U \text{ and } v \notin U \}$$

The set $\delta(U)$ is called the **cut** determined by vertex set U. The Max Cut problem is to solve

$$\max\{|\delta(U)|:U\subseteq V\}$$

Goal: Let OPT denote the size of the maximum cut. We want an α -approximation algorithm, i.e., the set U output by the algorithm is guaranteed to have $|\delta(U)| \geq \alpha \cdot OPT$. If the algorithm is randomized, we want this guarantee to hold with some probability close to 1.

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 37/53

Max Cut

A brief summary of what is known about this problem.

- Folklore: there is an algorithm with $\alpha = 1/2$. In fact, there are several such algorithms.
- Goemans and Williamson (1995): there is an algorithm with $\alpha = 0.878...$
- Hastad (2001): no efficient algorithm has $\alpha > 16/17$, unless P = NP.
- Khot, Kindler, Mossel, O'Donnel and Oleszkiewicz (2004-2005): no efficient algorithm has $\alpha = 0.878...$, assuming the Unique Games Conjecture. (Khot won the Nevanlinna Prize in 2014 partially for this result.)

Max Cut: A Randomized Algorithm

A randomized algorithm achieving $\alpha = 1/2$: simply let U be a uniformly random subset of V. (This is equivalent to independently adding each vertex to U with probability 1/2)

Max Cut: A Randomized Algorithm

A randomized algorithm achieving $\alpha = 1/2$: simply let U be a uniformly random subset of V. (This is equivalent to independently adding each vertex to U with probability 1/2)

Claim: Let *U* be the set chosen by the algorithm. Then $E[|\delta(U)|] \ge OPT/2$.

Proof: For every edge $uv \in E$, let x_{uv} be the indicator random variable which is 1 if $uv \in \delta(U)$. Then

$$\mathrm{E}\left[|\delta(U)|\right] = \mathrm{E}\left[\sum_{uv \in E} X_{uv}\right] = \sum_{uv \in E} \mathrm{E}[X_{uv}] = \sum_{uv \in E} \Pr[X_{uv} = 1]$$

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 39/53

Max Cut: A Randomized Algorithm (Cont.)

Note that

$$Pr[X_{uv} = 1] = Pr[(u \in U \land v \notin U) \lor (u \notin U \land v \in U)]$$

$$= Pr[u \in U \land v \notin U] + Pr[u \notin U \land v \in U]$$

$$= Pr[u \in U] \cdot Pr[v \notin U] + Pr[u \notin U] \cdot Pr[v \in U]$$

$$= \frac{1}{2}$$

$$\Rightarrow E[|\delta(U)|] = \sum_{uv \in E} \frac{1}{2} = \frac{|E|}{2} \ge \frac{OPT}{2}$$

since clearly $OPT \leq |E|$.

Max Cut: A Randomized Algorithm (Cont.)

Note that

$$Pr[X_{uv} = 1] = Pr[(u \in U \land v \notin U) \lor (u \notin U \land v \in U)]$$

$$= Pr[u \in U \land v \notin U] + Pr[u \notin U \land v \in U]$$

$$= Pr[u \in U] \cdot Pr[v \notin U] + Pr[u \notin U] \cdot Pr[v \in U]$$

$$= \frac{1}{2}$$

$$\Rightarrow E[|\delta(U)|] = \sum_{uv \in E} \frac{1}{2} = \frac{|E|}{2} \ge \frac{OPT}{2}$$

since clearly $OPT \leq |E|$.

Question: We have shown that the algorithm outputs a cut whose expected size is large. We might instead prefer a different sort of guarantee: with high probability, the algorithm outputs a cut that is large.

Markov's Inequality

Concentration Inequalities: A random variable with good concentration is one that is close to its mean with good probability.

Markov's Inequality

Concentration Inequalities: A random variable with good concentration is one that is close to its mean with good probability.

Markov's Inequality: The simplest concentration inequality. It gives weak bounds while needs no almost no assumptions about the random variable.

Let X be a non-negative random variable, for all a > 0,

$$\Pr[X \ge a] \le \frac{\mathrm{E}[X]}{a}$$
.

Markov's Inequality

Concentration Inequalities: A random variable with good concentration is one that is close to its mean with good probability.

Markov's Inequality: The simplest concentration inequality. It gives weak bounds while needs no almost no assumptions about the random variable.

Let X be a non-negative random variable, for all a > 0,

$$\Pr[X \ge a] \le \frac{\mathrm{E}[X]}{a}.$$

Proof: Let *Y* be the indicator random variable that is 1 if $X \ge a$, since *X* is non-negative, we have $Y \le X/a$. Then

$$\Pr[X \ge a] = \Pr[Y \ge 1] = \operatorname{E}[Y] \le \operatorname{E}[X/a] = \frac{\operatorname{E}[X]}{a}$$

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 41/53

Application to Max Cut

The Reverse Markov Inequality: Let X be a random variable that is never larger than b. Then, for all a < b,

$$\Pr[X \le a] = \frac{\mathrm{E}[b - X]}{b - a}$$

Application to Max Cut

The Reverse Markov Inequality: Let X be a random variable that is never larger than b. Then, for all a < b,

$$\Pr[X \le a] = \frac{\mathrm{E}[b - X]}{b - a}$$

Proof: By the Markov inequality, $\Pr[b - X \ge c] \le \frac{\mathbb{E}[b - X]}{c}(c > 0)$. That is, $\Pr[X \le b - c] \le \frac{\mathbb{E}[b - X]}{c}$. Let $a = b - c \le b$, then $\Pr[X \le a] \le \frac{\mathbb{E}[b - X]}{b}$.

Application to Max Cut

The Reverse Markov Inequality: Let X be a random variable that is never larger than b. Then, for all a < b,

$$\Pr[X \le a] = \frac{\mathrm{E}[b - X]}{b - a}$$

Proof: By the Markov inequality, $\Pr[b - X \ge c] \le \frac{\mathbb{E}[b - X]}{c}(c > 0)$. That is, $\Pr[X \le b - c] \le \frac{\mathbb{E}[b - X]}{c}$. Let $a = b - c \le b$, then $\Pr[X \le a] \le \frac{\mathbb{E}[b - X]}{b}$.

Application to Max Cut: Let $X = |\delta(U)|$ and b = |E|, and note that X is never larger than b. Fix any $\epsilon \in [0, 1/2]$ and set $a = (1/2 - \epsilon)|E|$. By the Reverse Markov inequality, we have

Application to Max Cut (Cont.)

$$\Pr\left[|\delta(U)| \le \left(\frac{1}{2} - \epsilon\right)b\right] = \frac{\mathrm{E}[b - |\delta(U)|]}{b - (1/2 - \epsilon)b} = \frac{b - \mathrm{E}[|\delta(U)|]}{(1/2 + \epsilon)b}$$
$$= \frac{b - b/2}{(1/2 + \epsilon)b} = \frac{1}{1 + 2\epsilon} \le 1 - \epsilon$$

It shows that, with probability at least ϵ , the algorithm outputs a set U satisfying

$$|\delta(U)| > (\frac{1}{2} - \epsilon)OPT$$

Thus, with high probability, the algorithm outputs a cut that is large (can repeat multiple times and choose the best one).

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 43/53

Outline

- Preliminaries
 - Monte Carlo & Las Vegas Algorithms
 - Review for Probability Theory
- 2 Introduction to Randomized Algorithm
 - Max 3-SAT Approximation Algorithm
 - Universal Hashing
- The Probabilistic Analysis
 - Max Cut
 - Load Balancing

Load Balancing

Load balancing problems: System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Load Balancing

Load balancing problems: System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Centralized controller: Assign jobs in round-robin manner. Each processor receives at most $\lceil m/n \rceil$ jobs.

Load Balancing

Load balancing problems: System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Centralized controller: Assign jobs in round-robin manner. Each processor receives at most $\lceil m/n \rceil$ jobs.

Decentralized controller: Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?

Chernoff Bounds (Above Mean Version)

Theorem: Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \cdots + X_n$ and $\mu = E[X]$. For any $\delta > 0$, we have

$$\Pr[X > (1+\delta)\mu] < \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}$$

Chernoff Bounds (Above Mean Version)

Theorem: Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \cdots + X_n$ and $\mu = E[X]$. For any $\delta > 0$, we have

$$\Pr[X > (1+\delta)\mu] < \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}$$

Proof: We apply a number of simple transformations.

• For any t > 0, by Markov's inequality,

$$\Pr[X > (1+\delta)\mu] = \Pr[e^{tX} > e^{t(1+\delta)\mu}] \le \mathbb{E}[e^{tX}]/e^{t(1+\delta)\mu}$$

• Now $E[e^{tX}] = E[e^{t\sum_i X_i}] = \prod_i E[e^{tX_i}]$

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 46/53

Chernoff Bounds (Above Mean Version) (Cont.)

• Let $p_i = \Pr[X_i = 1]$, then

$$E[e^{tX_i}] = p_i e^t + (1 - p_i)e^0 = 1 + p_i(e^t - 1) \le e^{p_i(e^t - 1)}$$

since
$$1 + x < e^x$$
 for $\forall x > 0$. $(e^x = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + o(x^3))$

• Combining everything, we have

$$\Pr[X > (1+\delta)\mu] \le \prod_{i=1}^{n} E[e^{tX_i}]/e^{t(1+\delta)\mu}$$

$$\le \prod_{i=1}^{n} e^{p_i(e^t-1)}/e^{t(1+\delta)\mu} \le e^{(e^t-1)\mu}/e^{t(1+\delta)\mu}$$

• Choose $t = \ln(1 + \delta)$ and we finally obtain the theorem.

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm 47/53

Chernoff Bounds (Below Mean Version)

Theorem: Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \cdots + X_n$. Then for any $\mu \leq \mathrm{E}[X]$ and for any $0 < \delta < 1$, we have

$$\Pr[X < (1 - \delta)\mu] < e^{-\delta^2 \mu/2}$$

Chernoff Bounds (Below Mean Version)

Proof: The proof is similar but not quite symmetric since only makes sense to consider $\delta < 1$.

$$\begin{split} \Pr\left[X \leq (1-\delta)\mu\right] &= \Pr\left[\exp(\theta X) \geq \exp\left(\theta(1-\delta)\mu\right)\right] \\ &\quad \text{(by monotonicity and } \theta < 0) \\ &\leq \frac{\operatorname{E}[\exp(\theta X)]}{\exp\left(\theta(1-\delta)\mu\right)} \text{ (by Markov's inequality)} \\ &\leq \frac{\prod_{i} \exp\left(\left(e^{\theta}-1\right)p_{i}\right)}{\exp\left(\theta(1-\delta)\mu\right)} \text{ (by linearity and } 1+x < e^{x}) \\ &= \exp\left(\left(e^{\theta}-1\right)\Sigma_{i}p_{i} - \theta(1-\delta)\mu\right) \\ &\leq \exp\left(\left(e^{\theta}-1\right)\mu - \theta(1-\delta)\mu\right) \\ &\leq \exp\left(\left(e^{\theta}-1\right)\mu - \theta(1-\delta)\mu\right) \\ &\text{(since } e^{\theta}-1 < 0 \text{ and } \mu = \sum_{i} p_{i}) \\ &= \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu} \text{ (by choosing } \theta = \ln(1-\delta) < 0) \end{split}$$

Chernoff Bounds (Below Mean Version)

Proof (Cont.): Suppose $x \in [0, 1]$. Then $(1 - x) \ln(1 - x) + x \ge x^2/2$. (Consider the monotonicity of $F(x) = (1 - x) \ln(1 - x) + x - x^2/2$, then $F(x) \ge 0$ for $x \in [0, 1]$)

This inequality implies that $\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right) \le e^{-\delta^2/2}$. (by the monotonicity of e^{-x})

Load Balancing for *n* Jobs

n **jobs case:** Let X_i denotes the number of jobs assigned to processor i, $Y_{ij} = 1$ if job j assigned to processor i, and 0 otherwise. Then, We have $X_i = \sum_j Y_{ij}$, $E[Y_{ij}] = 1/n$ and $\mu = E[X_i] = 1$.

Load Balancing for *n* Jobs

n **jobs case:** Let X_i denotes the number of jobs assigned to processor i, $Y_{ij} = 1$ if job j assigned to processor i, and 0 otherwise. Then, We have $X_i = \sum_j Y_{ij}$, $\mathrm{E}[Y_{ij}] = 1/n$ and $\mu = \mathrm{E}[X_i] = 1$.

Applying Chernoff bounds with $\delta = c - 1$ yields $\Pr[X_i > c] < e^{c-1}/c^c$. Let $n = x^x$ and we choose c = ex,

$$\Pr[X_i > c] < \frac{e^{c-1}}{c^c} < (\frac{e}{c})^c = (\frac{1}{x})^{ex} < (\frac{1}{x})^{2x} = \frac{1}{n^2}$$

By Union Bound $(\Pr[\cup_i[A_i]] < \sum_i \Pr[A_i])$, we have $\Pr[\exists X_i > c] \le \sum_i \Pr[X_i > c] < 1/n$.

Thus, with probability $\geq 1 - 1/n$, every processor receives less than ex jobs. Next, we analyze how to approximate x.

Load Balancing for *n* Jobs (Cont.)

Theorem: $x = \frac{\log n}{\log \log n}$ is an approximate solution for $x^x = n$.

Load Balancing for *n* Jobs (Cont.)

Theorem: $x = \frac{\log n}{\log \log n}$ is an approximate solution for $x^x = n$.

Proof: We take an log on $n = x^x$ and obtain $\log n = x \log x$, plug x in it and we have

$$x \log x = \frac{\log n}{\log \log n} (\log \log n - \log \log \log n) = \Theta(\log n)$$

Algorithm@SJTU Xiaofeng Gao Randomized Algorithm

Load Balancing for *n* Jobs (Cont.)

Theorem: $x = \frac{\log n}{\log \log n}$ is an approximate solution for $x^x = n$.

Proof: We take an log on $n = x^x$ and obtain $\log n = x \log x$, plug x in it and we have

$$x \log x = \frac{\log n}{\log \log n} (\log \log n - \log \log \log n) = \Theta(\log n)$$

Thus, we conclude that, with probability $\geq 1 - 1/n$, every processor receives less than $e \frac{\log n}{\log \log n}$ jobs.

Load balancing: Many Jobs

Theorem: Suppose the number of jobs $m = 16n \log n$. Then on average, each of the n processors handles $\mu = 16 \log n$ jobs. With high probability, every processor will have between half and twice the average load.

Load balancing: Many Jobs

Theorem: Suppose the number of jobs $m = 16n \log n$. Then on average, each of the n processors handles $\mu = 16 \log n$ jobs. With high probability, every processor will have between half and twice the average load.

Proof: Let X_i denotes the number of jobs assigned to processor i, $Y_{ij} = 1$ if job j assigned to processor i, and 0 otherwise. Applying Chernoff bounds with $\delta = 1$ yields

$$\Pr[X_i > 2\mu] < (\frac{e}{4})^{16\log n} < (\frac{1}{e^2})^{\log n} = \frac{1}{n^2}$$

$$\Pr[X_i < \frac{1}{2}\mu] < e^{-\frac{1}{2}(\frac{1}{2})^2 16\log n} = \frac{1}{n^2}$$

By Union Bound, $\Pr[\exists X_i > 2\mu] \leq \sum_i \Pr[X_i > 2\mu] < n/n^2 = 1/n$, similarly, $\Pr[\exists X_i < \mu/2] < 1/n$. Thus, with probability $\geq 1 - 2/n$, every processor will have between half and twice the average load.

