专题 08 《不等式》复习

》考点剖析	·	
<mark>题型一</mark>	· 比较大小	3
<mark>题型二</mark>	利用不等式的性质求取值范围	
题型三	· /41 /2—// 1 3/4	
题型四	利用基本不等式证明不等式	
]	
	双基过关	
B组	巩固提高	. <mark>. 4</mark>
<mark>C 组</mark>	综合训练	5
D 组	拓展延伸	7

一、知识梳理

- (一) 基本内容
- 1. 不等式的性质: (1) 对称性: $a > b \Leftrightarrow b < a$ (2) 传递性: $a > b, b > c \Rightarrow a > c$
- (3) 加法法则: $a > b \Rightarrow a + c > b + c$; $a > b, c > d \Rightarrow a + c > b + d$
- (4) 乘法法则: $a > b, c > 0 \Rightarrow ac > bc$; $a > b, c < 0 \Rightarrow ac < bc$; $a > b > 0, c > d > 0 \Rightarrow ac > bd$
- (5) 倒数法则: $a > b, ab > 0 \Rightarrow \frac{1}{a} < \frac{1}{b}$ (6) 乘方法则: $a > b > 0 \Rightarrow a^n > b^n \left(n \in N^* \exists n > 1 \right)$
- (7) 开方法则: $a > b > 0 \Rightarrow \sqrt[n]{a} > \sqrt[n]{b} (n \in N^* \exists n > 1)$
- 2. 应用不等式的性质比较两个实数的大小——作差法
- 3. 一元二次不等式及其解法: $ax^2 + bx + c > 0$ 或 $ax^2 + bx + c < 0$ ($a \neq 0$)的解集:

设相应的一元二次方程 $ax^2+bx+c=0$ $(a\neq 0)$ 的两根为 x_1,x_2 $\exists x_1\leq x_2$, $\Delta=b^2-4ac$,

则不等式的解的各种情况如下表:

$\Delta > 0$	$\Delta = 0$	$\Delta < 0$

二次函数 $y = ax^2 + bx + c(a > 0)$ 的图象	M1 O M2	○ x₁=x₂ x	→ X
一元二次方程 $ax^2 + bx + c = 0(a > 0)$ 的解集	有两相异实根 $x_1, x_2 (x_1 < x_2)$	有两相等实根 $x_1 = x_2 = -\frac{b}{2a}$	无实根
$ax^2 + bx + c > 0(a > 0)$ 的解集	$\left\{x \middle x < x_1 \overrightarrow{\boxtimes} x > x_2\right\}$	$\left\{ x \middle x \neq -\frac{b}{2a} \right\}$	R
$ax^2 + bx + c < 0(a > 0)$ 的解集	$\left\{ x \left x_1 < x < x_2 \right. \right\}$	Ø	Ø

4. 分式不等式和绝对值不等式的解法

(1) 分式不等式可以转化为整式不等式,同样接下来第一步把最高次项的系数化为正数,对于 $\frac{f(x)}{g(x)} > 0$ 转

化的方法有两种: 一种是转化为不等式组 $\begin{cases} f(x) > 0 \\ g(x) > 0 \end{cases}$ 或 $\begin{cases} f(x) < 0 \\ g(x) < 0 \end{cases}$; 一种是转化为 f(x)g(x) > 0.

【注】对于不是标准形式的,要先<u>移项通分</u>化到形如 $\frac{f(x)}{g(x)} > 0$ 或 $\frac{f(x)}{g(x)} < 0$ 再按照上面的方法求解.

- (2) 绝对值的不等式有两种常见的解法: 一种是根据绝对值的意义作<mark>分类讨论</mark>,即|a|= $\begin{cases} a & (a \ge 0) \\ -a & (a < 0) \end{cases}$;
- 二是当不等式的两边都为非负时,两边平方,去掉绝对值号后再求解.
- 5. 平均值不等式: $\frac{a+b}{2} \ge \sqrt{ab}$
- (1) 对任意正数 a 和 b ,有 $a+b \geq 2\sqrt{ab}$,当且仅当 a=b 时等号成立【积定和最小】
- (2) 对任意正数 a 和 b ,有 $ab \le (\frac{a+b}{2})^2$,当且仅当 a=b 时等号成立【和定积最大】
- 6. 三角不等式: $|a|+|b| \ge a+b|$, 当且仅当 $ab \ge 0$ 时等号成立

(二) 应注意的问题

- 1. 应用不等式的性质时,要注意性质成立的条件;
- 2. 解一元二次不等式,要和一元二次方程以及二次函数结合;

3. 平均值不等式 $\frac{a+b}{2} \ge \sqrt{ab}$ 成立的条件是: "一正二定三相等".

>>考点剖析

题型一 比较大小

例 1. (1) $\left(\sqrt{3} + \sqrt{2}\right)^2$ _____6 + 2 $\sqrt{6}$; (2) $\left(\sqrt{3} - \sqrt{2}\right)^2$ _____ $\left(\sqrt{6} - 1\right)^2$;

(3) $\frac{1}{\sqrt{5-2}}$ $\frac{1}{\sqrt{6-\sqrt{5}}}$;

(4) (a+3)(a+5)____(a+2)(a-4), a>0;

(5) $(x^2+1)^2 = x^4 + x^2 + 1(x \neq 0)$

题型二 利用不等式的性质求取值范围

例 2. 如果 30 < x < 42, 16 < y < 24,则

(1) x+y 的取值范围是______; (2) x-2y 的取值范围是_____;

例 3. 已知函数 $f(x) = ax^2 - c$,满足 $-4 \le f(1) \le -1$, $-1 \le f(2) \le 5$,那么 f(3) 的取值范围是_____

题型三 解一元二次不等式

例 4. 解不等式: (1) $2x^2 + 7x - 4 > 0$ (2) $-x^2 + 8x - 3 > 0$

例 5. 已知关于x的方程 $(k-1)x^2+(k+1)x+k+1=0$ 两个相异实根,求实数k的取值范围.

3

题型四 利用基本不等式证明不等式

例 6. 求证 $(a^2+b^2)(c^2+d^2) \ge (ac+bd)^2$.

例7. (1) 若 x > 0, y > 0,且 $\frac{2}{x} + \frac{8}{y} = 1$,求: I. xy的最小值; II. x + y的最小值.

(2) 求
$$f(x) = 4x + \frac{9}{x-5}(x > 5)$$
 的最小值.

<u>▶过关检测</u>						
A 组 双基过关						
	【难度系数: ★	时间:8分钟 分值:20分】				
1.	(23-24 高一下·上海·开学考试)对于实数 a	, b , c , " $ac^2 > bc^2$ "是" $a > b$ "的()条件				
	A. 充分不必要 B	. 必要不充分				
	C. 充要 D). 既不充分也不必要				
2.	(23-24 高一上·上海闵行·期末) 已知 $a,b \in$	R ,则" $a > 1, b > 1$ "是" $ab > 1$ "的()				
	A. 充分不必要条件 B	. 必要不充分条件				
	C. 充要条件 D). 既不充分也不必要条件				
3.	(22-23 高一上·上海松江·期末)设 x , $y \in$	$(0,+\infty)$,且 $x+4y=1$,则 $\frac{1}{x}+\frac{1}{y}$ 的最小值为()				
	A. 6 B. 7	D. 9				
4.	(23-24 高一上·上海宝山·期末) 不等式 $\frac{2x}{3x}$	$\frac{-1}{+1} > 0$ 的解集为				
5.	(23-24 高一上·上海·期末) 函数 $f(x) = 2x^2$	$-4x+7$, $x \in [-1,8]$ 的最小值是				
6.	(23-24 高一上·上海·期中) 已知正实数 a,b	满足 <i>ab</i> = 4,则 a + 2 b 的最小值是				
7.	(23-24 高一上·上海浦东新·阶段练习)已知	$\prod x > 5$,则 $x + \frac{1}{x - 5}$ 的最小值是				
8.	(22-23 高一上·上海宝山·阶段练习)已知 a	$a \times b \in \mathbb{R}$,且 $a^2 + 4b^2 = 1$,则 ab 的最大值是				

B组 巩固提高

【难度系数: ★★ 时间: 10 分钟 分值: 20 分】

9. (23-24 高一上·上海闵行·期末) 若 $xy = 1(x, y \in \mathbb{R})$,则 $x^2 + y^2$ 的最小值为______.

10. (23-24 高一上·上海·期中) 对任意满足 a+b=2 的正实数 a,b , 不等式 $\frac{2}{a}+\frac{1}{b}>m$ 恒成立,则实数 m 的 取值范围是____ 11. (23-24 高一下·上海·开学考试) 若对于任意 $x \in \mathbb{R}$, $ax^2 - ax + 1 > 0$ 恒成立,则实数 a 的取值范围是_____. 12. (23-24 高一下·上海·开学考试)已知关于x的不等式 $ax^2-x+a<0$ 的解集非空,则实数a的取值范围 13. (23-24 高一上·上海·期末) 已知a、b、 $c \in \mathbb{R}$,则"a > b"是" $ac^2 > bc^2$ "的()条件 B. 充分非必要 C. 必要非充分 D. 既非充分也非必要 14. (23-24 高一下·上海·开学考试)设 $a,b \in \mathbb{R}$,若 $\frac{1}{a} < \frac{1}{b} < 0$,则(). B. |a| < |b| C. a+b > ab D. $2^a < 2^b$ A. a < b15. (23-24 高一下·上海闵行·阶段练习) 已知函数 $f(x) = ax^2 + 2ax - 3$ 对任意实数 x 都有 f(x) < 0 成立,则实 数*a* 的取值范围是 . 16. (23-24 高一上·上海浦东新·期末)已知对于实数 x, y, 满足 $|2x+y| \le 1$, $|x-y| \le 2$, 则|4x+5y|的最大 值为_____. 17. (21-22 高一上·上海嘉定·期末)已知a,b,c都是实数,一元二次方程 $ax^2 + bx + c = 0$ 有两个非零实根 x_1,x_2 , 且 b = 2c , 则 $\frac{1}{x} + \frac{1}{x} =$ ______. 18. (22-23 高一上·上海奉贤·期末) (1) 已知a、b ∈ \mathbf{R} ,求证: $a^2 + 2b^2 + 1 \ge 2b(a+1)$,并写出等号成立 的条件. (2) 若正数a、b的算术平均值是2,求a+1、b+1的几何平均值的最大值. C 组 综合训练 【难度系数: ★★★ 时间: 15 分钟 分值: 30 分】 19. (23-24 高一上·上海杨浦·期末) 如果a > b > 0,那么下列式子中一定成立的是() A. $\frac{1}{a} > \frac{1}{b}$ B. $a^2 < b^2$ C. $\frac{a}{b} < 1$ D. $a^2 > ab$ 20. (23-24 高一上·上海普陀·期中)已知a > b > 0,那么,当代数式 $a^2 + \frac{9}{b(a-b)}$ 取最小值时,a+2b的 值为() A. $2\sqrt{2}$ B. $2\sqrt{3}$ C. $2\sqrt{5}$ D. $2\sqrt{6}$ 21. (23-24 高一上·上海·期中)已知 a、b 均为正实数,则" $a+b+\frac{1}{a}+\frac{1}{b}=4$ "是" $(a+b)\left(\frac{1}{a}+\frac{1}{b}\right)=4$ "的() 条件.

A. 充分非必要 B. 必要非充分

- C. 充分必要
- D. 既非充分又非必要
- 22. (23-24 高一下·上海嘉定·阶段练习) 若不等式 $-2 < x^2 + mx m^2 < 1$ 的解集为(n,2),则 $m+n = _____$
- 23. (23-24 高一下·上海·开学考试)对任意 $x,y \in [0,+\infty)$,且 $x \neq y$,不等式 $|\sqrt{x+c} \sqrt{y+c}| < |x-y|$ 恒成立, 则实数c的取值范围为
- 24. (23-24 高一下·上海·开学考试) 已知 $p: x^2 (2a+3)x + a(a+3) \le 0$, q: |x-1| < 1, 若 $p \ne q$ 的必要不充 分条件,则实数a的取值范围是 .
- 25. (23-24 高一下·上海·开学考试)设 $a \in \mathbb{R}$,若x > 0 时均有 $(x-1)(x^2 + ax 1) \ge 0$,则a = 1.
- 26. (23-24 高一上·上海嘉定·期末) 已知 $b,c \in \mathbb{R}$, 关于x的不等式 $ax^2 + bx + c < 0$ 的解集为(-2,3),则 *bc* = ______.(用 *a* 表示)
- 27. (23-24 高一上·上海·阶段练习)已知0 < x < 4,则 $\frac{1}{4-x} + \frac{2}{x}$ 的最小值为______.
- 28. (23-24 高一上·上海·期中) 已知 $y_1 = m(x-2m)(x+m+3)$, $y_2 = x-1$.
- (1) $\overline{H} = 1$,解关于x的不等式组 $\begin{cases} y_1 > 0 \\ y_2 < 0 \end{cases}$
- (2)若对任意 $x \in \mathbb{R}$,都有 $y_1 < 0$ 或 $y_2 < 0$ 成立,求m的取值范围;
- (3)在(2)的条件下,存在x<-4,使得y,y,<0,求m的取值范围.
- 29. (22-23 高一上·上海奉贤·期末)某新建居民小区欲建一面积为700m²的矩形绿地,并在绿地四周铺设 人行道.设计要求绿地外南北两侧人行道宽 3m,东西两侧人行道宽 4m,如图所示(图中单位: m).设矩 形绿地的南北侧边长为x米.

- (1)当人行道的占地面积不大于 $418m^2$ 时,求x的取值范围;
- (2)问 x 取多少时,才能使人行道的占地面积最小. (结果精确到 0.1m).
- 30. (23-24 高一上·上海·期中) 问题: 正数 a,b 满足 a+b=1,求 $\frac{1}{a}+\frac{2}{b}$ 的最小值. 其中一种解法是:

$$\frac{1}{a} + \frac{2}{b} = \left(\frac{1}{a} + \frac{2}{b}\right)(a+b) = 1 + \frac{b}{a} + \frac{2a}{b} + 2 \ge 3 + 2\sqrt{2} , \quad \text{当且仅当} \frac{b}{a} = \frac{2a}{b} \, \text{且} \, a + b = 1 \, \text{时}, \quad \text{即} \, a = \sqrt{2} - 1 \, \text{且} \, b = 2 - \sqrt{2} \, \text{时}$$

取等号. 学习上述解法并解决下列问题:

- (1)若正实数 x, y 满足 $\frac{1}{x} + \frac{3}{v} = 1$, 求 x + y 的最小值;
- (2)若实数 a, b, x, y 满足 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, 试比较 $a^2 b^2 \pi (x y)^2$ 的大小,并指明等号成立的条件;

(3)利用(2)的结论,求代数式 $M = \sqrt{3m-5} - \sqrt{m-2}$ 的最小值,并求出使得M最小的m的值.

D组 拓展延伸

【难度系数: ★★★ 时间: 20 分钟 分值: 30 分】31. (23-24 高一上·上海徐汇·期中)已知实数 x, y, z 满足 $x^2 + y^2 + z^2 + xy + yz + zx = 1$, 则下列说法错误的是()

- A. xyz 的最大值是 $\frac{\sqrt{6}}{6}$
- B. x+y+z 的最大值是 $\frac{\sqrt{6}}{2}$
- C. x 的最大值是 $\frac{\sqrt{6}}{2}$

- D. x+y的最大值是 $\sqrt{2}$
- 32. (23-24 高一上·上海松江·期中)高一的珍珍阅读课外书籍时,发现笛卡尔积是代数和图论中一个很重要的课题.对于非空数集 A,B,定义 $A\otimes B=\{(x,y)|x\in A$ 且 $y\in B\}$,将 $A\otimes B$ 称为"A 与 B 的笛卡尔积"
- (2)试证明: " $A_1 \otimes A_2 = A_2 \otimes A_1$ "是" $A_1 = A_2$ "的充要条件;
- (3)若集合H是有限集,将集合H的元素个数记为|H|.已知 $|A_1 \otimes A_2| = m^3 (m \in \mathbb{N}^*)$,且存在实数a满足

 $\sqrt{\frac{|A_1 \otimes A_1| + |A_2 \otimes A_2|}{|A_2 \otimes A_1|}} \ge a \, \text{对任意} \, m \in \mathbb{N}^* \, \text{恒成立.求} \, a \, \text{的取值范围,并指明当} \, a \, \text{取到最值时} \, |A_1| \, \text{和} \, |A_2| \, 满足的关系$

式及 m 应满足的条件.

- 33. (23-24 高一上·上海浦东新·期末)已知函数 $g(x) = mx^2 2mx + n(m > 0, n > 0)$,在 $x \in [1,2]$ 时最大值为 2,最小值为 1.设 $f(x) = \frac{g(x)}{x}$.
- (1)求实数m, n的值;
- (2)若存在 $x \in [-1,1]$, 使得不等式 $g(2^x) k \cdot 4^x + 1 < 0$ 成立,求实数k的取值范围;
- (3) 若关于x的方程 $f(|\log_3 x|) + \frac{2a}{|\log_3 x|} 3a 1 = 0$ 有四个不同的实数解,求实数a的取值范围.
- 34. (2023 高一·上海·专题练习) (1) 已知x > 0, y > 0,且 $\frac{1}{x} + \frac{9}{y} = 1$,求x + y的最小值;
- (2) 已知正实数x,y满足2x+y+6=xy, 求xy的最小值;
- (3) 已知实数x,y满足 $x^2 + y^2 + xy = 1$, 求x + y的最大值.
- 35. (23-24 高一上·上海普陀·期中)设t 是不小于 1 的实数.若对任意 $a,b \in [-1,t]$,总存在 $c,d \in [-1,t]$,使 得(a+c)(b+d)=1,则称这样的t满足"性质 1"
- (1)分别判断 t > 2 和 $1 \le t < \frac{3}{2}$ 时是否满足"性质 1";
- (2)先证明:若 $u,v \ge \frac{1}{2}$, 且 $u+v \ge \frac{5}{2}$, 则 $uv \ge 1$; 并由此证明当 $\frac{3}{2} \le t \le 2$ 时, 对任意 $a,b \in [-1,t]$, 总存在

 $c_1, d_1 \in [-1, t]$,使得 $(a + c_1)(b + d_1) \ge 1$.

(3)求出所有满足"性质 1"的实数 t