

INSURANCE CROSS SELLS PREDICTION

BY WAIWIT CHAROENWILATPONG

CONTENT

Objective

Descriptive Analytics

Diagnostics Analytics

Predictive Analytics

Business use case

IMPLEMENTATION

OBJECTIVE

OBJECTIVE

Insurance Cross Sales Prediction is algorithm which is aiming to find Health Insurance Customers who has potential to purchase Vehicle Insurance.

DESCRIPTIVE ANALYTICS

DATASET INFORMATION

- Simulation Data source: <u>https://www.kaggle.com/datasets/anmolkumar/health-insurance-cross-sell-prediction</u>
- 381,109 records for model development (from train.csv)
 - 224,999 records for training
 - 156,110 records for testing
- 127,037 records for use cases explanation (from test.csv)

DATASET INFORMATION (CONTINUE)

Column Name	Description	Alias
id	Customer Unique ID	id
gender	Customer Gender	gender
age	Customer Age	age
driving_license	Obtaining Driving License (0: Doesn't Have, 1: Have)	license
region_code	Unique code for Region of Customer	region
previously_insured	Obtaining Vehicle Insurance (0: Doesn't Have, 1: Have)	prev
vehicle_age	Age of Vehicle	v_age
vehicle_damage	Customer's Vehicle got damage in the past (0: Didn't get damage, 1: Got damage)	v_dmg
annual_premium	Amount to pay as premium in a year	prem
policy_sales_channel	Anonymized code of channel outreached customer	channel
vintage	Number of day which customer associate with company	vintage
response	Offer Response (0: Not interest, 1: Interest)	resp

DIAGNOSTICS ANALYTICS

DEPENDENCE BETWEEN CATEGORICAL VARIABLES

Chi-Square testing shows dependency between categorical variables are presented as chart.

Customer age, region, and sales channel <u>are not</u> <u>independent with</u> customer gender, having license, vehicle age, having insurance, and having vehicle damage record. While vintage is <u>not independent</u> with having insurance and having vehicle damage record only.

So, we should recheck dependency between age, region, sales channel, and vintage

DEPENDENCE BETWEEN OUTCOME AND CATEGORY VARIABLES (CONTINUE)

Chart shows dependence between *response*, *age*, *region*, *channel*, and *vintage*. however, <u>vintage</u> is <u>independent</u> to others.

This means population can be distinguished in the same manner between *response*, *age*, *region*, and *channel*; but differently from *vintage*.

ANNUAL PREMIUM VS CATEGORY VARIABLES (INNER CIRCLE)

These are ANOVA testing results between annual premium and *age, region,* and *channel.*

Even though, p-value shows all variables have potential to distinguish population by mean of annual premium, but F-value indicated *region* is the best among them.

ANNUAL PREMIUM VS CATEGORY VARIABLES (VINTAGE)

ANOVA testing results between annual premium and *vintage* reveals that <u>mean of premium is the same among population</u> even being grouped by vintage.

ANNUAL PREMIUM VS CATEGORY VARIABLES SUMMARY

ANOVA testing results are indicated that combination between annual premium and region of customer might have potential to reveal difference of customer's interest.

✓ One-way ANOVA ② No split ▼						
	Sa	imples			Hypothesis	
Region_Code		Count	Mean	Tested	Annual Premium means are identical in all	
28.0	-	59071	36116.046402	hypothesis	populations	
8.0	\vdash \Box \vdash	18974	34292.711289	Significance	0.05	
46.0	$\vdash \!\!\! \square \!\!\! \vdash$	11587	26804.264434	level		
41.0	\vdash	10568	30113.307627		Results	
15.0	\vdash	7843	29115.7121	F-value	1043.1590355	
30.0	H	7200	25509.934444			
	i m i			<i>p</i> -value	0	

VISUALIZATION WITH CUSTOMER RESPONSE

In the chart, we can see patterns of customer, who is probably interested by condition of region and premium amount.

So, it is possible to use this pattern to determine possibility of interest in vehicle insurance.

PREDICTIVE ANALYTICS

PREDICTION MODEL CANDIDATES

From this chart, it is obvious that conditions of customer's interest is based-on ranges of premium amount within each region. So, Random Forest might work well on this case. However, amount of premium might have variance; therefore, Logistic Regression might be considered as option.

MODEL TRAINING RESULT

The training result shows performance of each model, plus Ensemble for alternative. It seems all models work equally.

Model	AUC
Random Forest	61.4%
Logistic Regression	61.3%
Ensemble	61.7%

MODEL TESTING RESULT

From the testing results, It shows that models work better slightly if it has regression part.

Therefore, we will continue with Ensemble Model.

Model	AUC
Random Forest	61.4%
Logistic Regression	61.7%
Ensemble	61.9%

BUSINESS USE CASE EXAMPLE

CROSS SELLS STRATEGY

This is an example that we use the predict models.

Once we get prediction result from model, we can group customer to 3 groups as table.

With additional information such as, region and amount, we can see "Region 28.0" has high potential to sell vehicle insurance.

Category	Probability	# Customers	Top Region Code
Hi-Potential	60% +	26,642	28.0 (26,617), 38.0 (25)
Lo-Potential	55 – 60 %	9,368	28.0 (8,777), 38.0 (416), 19.0 (175)
Poor Interest	50 – 60 %	6,252	-
Ignore	Low Probability	84,775	-
Total		127,037	28.0 (35,394), 38.0 (441), 19.0 (175)

THANK YOU

By Waiwit Charoenwilatpong 6410414003