```
In [1]: import numpy as np
import pandas as pd
```

Data Set

```
In [2]: data = pd.read_csv('Titanic-Dataset.csv')
```

In [4]: data.head()

		- u u	Pclass	Name	Sex	Age	SibSp	raicii	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	PassengerId	891 non-null	int64				
1	Survived	891 non-null	int64				
2	Pclass	891 non-null	int64				
3	Name	891 non-null	object				
4	Sex	891 non-null	object				
5	Age	714 non-null	float64				
6	SibSp	891 non-null	int64				
7	Parch	891 non-null	int64				
8	Ticket	891 non-null	object				
9	Fare	891 non-null	float64				
10	Cabin	204 non-null	object				
11	Embarked	889 non-null	object				
dtyp	<pre>dtypes: float64(2), int64(5), object(5)</pre>						

memory usage: 83.7+ KB

Data Cleaning

```
In [7]: data.isnull().sum()
 Out[7]: PassengerId
                             0
          Survived
                             0
          Pclass
                             0
          Name
                             0
                             0
          Sex
          Age
                          177
          SibSp
                             0
          Parch
                             0
          Ticket
                             0
          Fare
                             0
          Cabin
                          687
          Embarked
                             2
          dtype: int64
 In [8]: data.drop(columns=['Cabin'],inplace=True)
          data['Age'].fillna(data['Age'].median(),inplace=True)
In [16]:
          data['Embarked'].fillna(data['Embarked'].mode()[0],inplace=True)
In [17]:
         data.isnull().sum()
Out[17]: PassengerId
          Survived
                          0
          Pclass
                          0
          Name
                          0
          Sex
                          0
          Age
                          0
                          0
          SibSp
          Parch
                          0
          Ticket
                          0
          Fare
                          0
          Embarked
          dtype: int64
In [20]: data.drop_duplicates(inplace=True)
In [25]:
          data.head()
Out[25]:
              Passengerld
                         Survived Pclass
                                                     SibSp Parch
                                                                     Fare Embarked
                                            Sex
                                                Age
           0
                       1
                                                                                  S
                                0
                                       3
                                                22.0
                                                                0
                                                                   7.2500
                                           male
                       2
                                                                                  С
           1
                                1
                                       1
                                         female
                                                38.0
                                                         1
                                                                0 71.2833
           2
                       3
                                1
                                         female
                                                26.0
                                                         0
                                                                0
                                                                   7.9250
                                                                                  S
           3
                       4
                                                                                  S
                                         female
                                                35.0
                                                                  53.1000
                       5
                                                35.0
                                                                   8.0500
                                                                                  S
                                           male
          data.drop(columns=['PassengerId'],inplace=True)
```

In [30]: data

011+[30].						
UHTIKUI	\sim		_	$\Gamma \supset$	0	٦.
	u	ш	т	IΚ	и	1 *

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	S
886	0	2	male	27.0	0	0	13.0000	S
887	1	1	female	19.0	0	0	30.0000	S
888	0	3	female	28.0	1	2	23.4500	S
889	1	1	male	26.0	0	0	30.0000	С
890	0	3	male	32.0	0	0	7.7500	Q

891 rows × 8 columns

Preprocessing

In [33]: data = pd.get_dummies(data,columns=['Sex','Embarked'],dtype=int)

In [35]: data

Out[35]:

-											
:		Survived	Pclass	Age	SibSp	Parch	Fare	Sex_female	Sex_male	Embarked_C	Em
	0	0	3	22.0	1	0	7.2500	0	1	0	
	1	1	1	38.0	1	0	71.2833	1	0	1	
	2	1	3	26.0	0	0	7.9250	1	0	0	
	3	1	1	35.0	1	0	53.1000	1	0	0	
	4	0	3	35.0	0	0	8.0500	0	1	0	
	886	0	2	27.0	0	0	13.0000	0	1	0	
	887	1	1	19.0	0	0	30.0000	1	0	0	
	888	0	3	28.0	1	2	23.4500	1	0	0	
	889	1	1	26.0	0	0	30.0000	0	1	1	
	890	0	3	32.0	0	0	7.7500	0	1	0	

891 rows × 11 columns

In [37]: from sklearn.preprocessing import StandardScaler
stscaler = StandardScaler()

```
In [39]: data[['Age','Fare']] = stscaler.fit_transform(data[['Age','Fare']])
         data[['Age','Fare']]
In [46]:
Out[46]:
                    Age
                             Fare
             0 -0.565736 -0.502445
                0.663861
                        0.786845
               -0.258337 -0.488854
                0.433312  0.420730
                0.433312 -0.486337
           886 -0.181487 -0.386671
           887 -0.796286 -0.044381
           888 -0.104637 -0.176263
           889
               -0.258337 -0.044381
           890
                0.202762 -0.492378
          891 rows × 2 columns
In [47]:
          import matplotlib.pyplot as plt
          import seaborn as sns
```

```
In [50]: plt.hist(data['Age'],bins=30)
    plt.title('Age Distribution')
    plt.xlabel('Age')
    plt.show()
```



```
In [54]: sns.boxplot(x='Survived',y='Age',data=data)
plt.title('Age Vs Survived')
plt.show()
```



```
In [55]: corr_matrix = data.corr()
```


Correlation Analysis

In [69]: sns.pairplot(data,hue='Survived',diag_kind='kde')
plt.show()

C:\Users\lahir\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWa
rning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Conclusion

EDA is a crucial step in the data analysis process.

It helps in understanding the underlying patterns and relationships in the data.

Provides a solid foundation for further modeling and analysis.

By Lahiru Sadakelum