PS1 Exercise 1

· Couterexample:

 $X = \{a, b, d\}$ $B = \{\{a,b\}, \{b,d\}, \{a,d\}\}$

 $C(\{a,b\}) = a$

 $c(\{b,d\}) = b$

 $c(\{a,d\}) = q$

Why?

Suppose not. i.e. it is not an counterexample. then there $\exists \geq ,$ [et's denote as \geq^1 rationalize $C(\cdot)$

b i∈ {1,2,3} A; ⊆ B

 $C(Ai) = C(Ai, \geq^1)$ $C(\{0,b\}) = 0 \implies 0 \geq 1b$

 $C(\{b,a\}) = b \implies b \geqslant 1 d$

 $c(\{\alpha,\widehat{\alpha}\}) = d \implies \alpha \geq^{1} d$

 $0 \ge 1 b$, $b \ge 1 d$, but $0 \ge 1 d$

 \geq^{1} fails transitivity. $\Rightarrow \geq^{1}$ is not rational contradiction!

ll Az

Az

Αı

 Question Does WARP satisfy in my example? V Yes. Just check the definition. Exercise 2 (* core question) · Pre order: reflexive and transitive (a) $X = \{a, b, d, e\}$ The issue is that > not complete. $\alpha \geq \beta \geq \alpha$ $0 \geq 0$, $b \geq b$, $d \geq d$, $e \geq e$ arb, brd, ard, erb, erd since $u: X \rightarrow IR$, if exists, then Mare IR, Mere IR we know that IR is complete either $Wa) \ge N(e)$ or $N(e) \ge N(a)$ but we don't have are or era. M

(b) Start from a simple case (the easiest one I guess) $X = \{a, b, d\}$ we have > define on s.t. > is reflexive and a>b Then construct the set of [complete] transitive extension of >, T;*(>) all the cases $T^{1st}(\geq): Q \geq b \geq 1$ It just means we have T2nd(>): C=20=3b ara brb drd T3nd(>): 0 &c > b azb By LRT, Y je {1, 2,3} Moreover, in terms of set there exists \mathcal{U}^j ς, \bullet . $\alpha \Rightarrow (\alpha, \alpha) \in \mathcal{F}$ $a \ge b \Rightarrow (a,b) \in \ge$ (b.a) e > The general proof: Denote T(z) where $z \in T(z)$ is the complete and transitive extension of >. Theorem (Sziplrain) — check chapter 1. Since I is finite. So there is finite such T(z), denote the cardinality as J. Tith je {1, 2, ..., j, ..., J}

By the Utility Representation Theorem, for every jth complete preorder on a finite set X, there is a utility function $ui: X \rightarrow IR$. such that a > b ⇔ w(a) ≥ w(b) 四 (C) Counter example: X = {a, b, d} $a \succcurlyeq a$, $b \succcurlyeq b$, $d \succcurlyeq d$, $d \succcurlyeq a$. $C(\{a,b\}) = \{a,b\} \quad C(\{b,a\}) = \{b,a\} \quad C(\{a,a\}) = \{d\}$ a RB RDd but dPa violate GARP. WTS: (α) [C(A) = faeA | there is no beA, b>a}] [WARNI z,y & A, B. $\exists \ A \in C(A) \Rightarrow A \in C(A)$ $\chi \in C(A \sqcup \{\chi\} \sqcup \{y\}) \iff \text{there is no } b \in A, s.t. b > \chi.$ 1.e. 767X yec(B) 👄 7 ceB. C>4 ⇒ 7 x 7 4

