UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHRIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA

6^a Lista de SEL0417 – Fundamentos de Controle

Professor: Rodrigo Andrade Ramos

Referência:

DORF, Richard D. Modelos em Variáveis de Estado. *In*: SISTEMA de Controle Modernos. 8. ed. [S. l.: s. n.], 1998. cap. 10 e cap. 12.

NISE, Norman S. Modelagem no Domínio de Frequência. *In*: ENGENHARIA de Sistemas de Controle. 3. ed. [*S. l.*]: LTC, 2002. cap. 11 e cap. 12.

FRANKLIN, Gene F. Resposta Dinâmica. In: SISTEMAS de Controle para Engenharia. 6. ed.

[S. l.]: Bookman, 2013. cap. 6.

Exercício 1

Considerando o sistema de malha fechada da Figura 1, projete um compensador por avanço de fase $tt_C(s)$, de modo que a margem de fase seja de 45° , a margem de ganho não seja inferior a 8 dB, e a constante de erro estático de velocidade, K_v seja $4,0 \text{ s}^{-1}$. Trace o gráfico das curvas de resposta ao degrau unitário e à rampa unitária do sistema com e sem o compensador com o auxílio do Matlab (Dica: $K_v = \lim_{s\to 0} stt(s)$).

Figura 1:Sistema de malha fechada do Exercício 1.

Exercício 2

Considere o sistema mostrado na Figura 2. Projete um compensador de modo que a constante de erro estático de velocidade, K_v seja 50, a margem de fase seja de 50°, e a margem de ganho não seja inferior a 8 dB. Trace o gráfico das curvas de resposta ao degrau unitário e à rampa unitária do sistema com e sem o compensador com o auxílio do Matlab (Dica: $K_v = \lim_{s\to 0} stt(s)$).

Figura 2: Sistema de malha fechada do Exercício 2.

O projeto de um módulo de excursão lunar é um problema de controle interessante. O sistema de controle de orientação do veículo lunar está mostrado na Figura 3. O amortecimento do veículo é desprezível e a orientação do mesmo é controlada através de jatos de gás. O torque, como primeira aproximação, pode ser considerado proporcional ao sinal V(s), de forma que T(s) = K - 2V(s). O ganho de malha aberta pode ser escolhido pelo projetista de forma a possibilitar um amortecimento desejado para o sistema. Um amortecimento de $\zeta = 0.6$ com um tempo de acomodação de menos de 2,5% é necessário. Utilizando um controlador em avanço, selecione o compensador necessário através de técnicas de resposta em frequência.

Figura 3: Sistema de malha fechada do Exercício 3.

Em um complexo industrial, deseja-se controlar uma série de diferentes processos. Para tanto, foram levantadas as respostas da planta em malha aberta de alguns destes processos. Obtenha um controlador que garanta erro nulo de regime permanente na resposta ao degrau para estes quatro processos, através das respostas a um degrau unitário apresentadas nas Figuras 4 a 7.

Figura 4: Planta 1 (Exercício 4).

Figura 5: Planta 2 (exercício 4).

Figura 6: Planta 3 (Exercício 4).

Figura 7: Planta 5 (Exercício 4).

No mesmo processo industrial citado acima, foram observadas respostas no tempo de plantas cujos polos dominantes eram complexos conjugados ou que não apresentavam caracter isticas de sistemas de primeira ordem. Sendo assim, foram realizados testes em melha fechada para a determinação do ganho crítico do sistema, mostradas nas Figuras 8 a 11, sendo que o ganho crítico, K_{cr} , de cada um está apresentado juntamente com a Figura. Obtenha um controlador que garanta erro nulo na resposta do sistema em malha fechada a um degrau unitário.

Figura 8: Planta 5 (Exercício 5) – Kcr = 1,7.

Figura 9: Planta 6 (Exercício 5) – Kcr = 32.

Figura 10: Planta 7 (Exercício 5) – Kcr = 2.

Figura 11: Planta 8 (Exercício 5) – Kcr = 31.

De posse dos controladores obtidos nos Exercícios 5 e 6, ensaie os processos industriais a serem controlados com o auxílio do Matlab e verifique se os objetivos de controle foram atendidos, sabendo que as plantas possuem as seguintes funções de transferência:

• Planta 1:
$$G(s) = \frac{0.5 \cdot e^{-0.1s}}{s+1}$$

• Planta 2:
$$G(s) = \frac{0, 9 \cdot e^{-s}}{s+2}$$

• Planta 3:
$$G(s) = \frac{2 \cdot e^{-0.5s}}{(s+0.5)^2 (s^2+0.4s+16.04)}$$

• Planta 4:
$$G(s) = \frac{5000 \cdot e^{-0.2s}}{(s+2)(s^2+5s+406,3)}$$

• Planta 5:
$$G(s) = \frac{500(s+10)}{(s+2,5)(s^2+5s+406,3)}$$

• Planta 6:
$$G(s) = \frac{150(s+50)}{(s+10)(s^2+4s+104)(s^2+10s+425)}$$

• Planta 7:
$$G(s) = \frac{150(s-1)(s-10)}{(s+3)(s+5)(s^2+4s+8)(s^2+8s+41)}$$

$$\begin{array}{l} \bullet \text{ Planta 7: } G\left(s\right) = \frac{150\left(s-1\right)\left(s-10\right)}{\left(s+3\right)\left(s+5\right)\left(s^2+4s+8\right)\left(s^2+8s+41\right)} \\ \bullet \text{ Planta 8: } G\left(s\right) = \frac{-150\left(s-1,5\right)\left(s-2\right)\left(s-10\right)}{\left(s+3\right)\left(s+5\right)\left(s^2+12s+40\right)\left(s^2+4s+8\right)\left(s^2+8s+41\right)} \end{array}$$

Ainda, tente obter respostas melhores ao degrau com outras sintonias do controlador, minimizando o máximo overshoot e o tempo de acomodação do sistema em malha fechada (Dica: começe modificando o ganho K_p).

Exercício 7

O sistema de terceira ordem

$$KG(s) = \frac{K}{(s/0,5+1)(s+1)(s/2+1)}$$

Representa um sistema típico de controle de temperatura. Projete um compensador de avanço tal que Kp = 9 e a PM seja de pelo menos 25°.

Projete um controlador PI para o sistema da Figura abaixo que levará a um erro de estado estacionário nulo para uma entrada em rampa e a um sobressinal de 9,48% para uma entrada em degrau.

Figura 12: Controle de rolamento de veículo rebocado.

Exercício 9

Um motor e uma carta com atrito insignificante e um amplificador tensão-corrente, Ka, são usados no sistema de controle com realimentação mostrado na figura abaixo. Um projetista seleciona um controlador PIDA

Onde K1=5, K2=500 e K3=0,0475.

- a) Determinar os valores apropriados de Ka de modo que a margem de fase do sistema seja de 42°.
- b) Traçar o lugar das raízes para o ganho Ka e determinar as raízes do sistema para o valor de Ka da parte (a).
- c) Determinar o valor máximo de y(t) quando D(s)=1/s e R(s) =0 para o valor de Ka da parte (a).
- d) Determinar a resposta a um degrau de entrada, r(t), com e sem filtro prévio.