Mixed Integer Linear Programming

Combinatorial Problem Solving (CPS)

Javier Larrosa Albert Oliveras Enric Rodríguez-Carbonell

May 3, 2021

Mixed Integer Linear Programs

■ A mixed integer linear program (MILP, MIP) is of the form

$$\min_{x \in \mathbb{Z}} c^T x$$

$$Ax = b$$

$$x \ge 0$$

$$x_i \in \mathbb{Z} \quad \forall i \in \mathcal{I}$$

- If all variables need to be integer, it is called a (pure) integer linear program (ILP, IP)
- If all variables need to be 0 or 1 (binary, boolean), it is called a 0-1 linear program

Complexity: LP vs. IP

- Including integer variables increases enourmously the modeling power, at the expense of more complexity
- LP's can be solved in polynomial time with interior-point methods (ellipsoid method, Karmarkar's algorithm)
- Integer Programming is an NP-hard problem. So:
 - ◆ There is no known polynomial-time algorithm
 - There are little chances that one will ever be found
 - ◆ Even small problems may be hard to solve
- What follows is one of the many approaches (and one of the most successful) for attacking IP's

LP Relaxation of a MIP

■ Given a MIP

$$(IP) \quad \begin{aligned} \min & c^T x \\ Ax &= b \\ x &\geq 0 \\ x_i &\in \mathbb{Z} \quad \forall i \in \mathcal{I} \end{aligned}$$

its linear relaxation is the LP obtained by dropping integrality constraints:

$$(LP) \quad \begin{aligned} & \min \ c^T x \\ Ax &= b \\ & x \ge 0 \end{aligned}$$

 \blacksquare Can we solve IP by solving LP? By rounding?

■ The optimal solution of

$$\max x + y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

is (x,y) = (1,2), with objective 3

- The optimal solution of its LP relaxation is (x, y) = (4, 4.5), with objective 9.5
- No direct way of getting from (4, 4.5) to (1, 2) by rounding!
- Something more elaborate is needed: branch & bound

- Assume variables are bounded, i.e., have lower and upper bounds
- Let P_0 be the initial problem, $LP(P_0)$ be the LP relaxation of P_0
- If in optimal solution of $LP(P_0)$ all integer variables take integer values then it is also an optimal solution to P_0
- Else
 - Let x_j be integer variable whose value β_j at optimal solution of $LP(P_0)$ is such that $\beta_j \notin \mathbb{Z}$. Define

$$P_1 := P_0 \land x_j \le \lfloor \beta_j \rfloor$$

$$P_2 := P_0 \land x_j \ge \lceil \beta_j \rceil$$

- $lack feasibleSols(P_0) = feasibleSols(P_1) \cup feasibleSols(P_2)$
- lacktriangle Idea: solve P_1 , solve P_2 and then take the best

Let x_j be integer variable whose value β_j at optimal solution of $\operatorname{LP}(P_0)$ is such that $\beta_j \notin \mathbb{Z}$. Each of the problems

$$P_1 := P_0 \land x_j \le \lfloor \beta_j \rfloor \qquad P_2 := P_0 \land x_j \ge \lceil \beta_j \rceil$$

can be solved recursively

- We can build a binary tree of subproblems whose leaves correspond to pending problems still to be solved
- This procedure terminates as integer vars have finite bounds and, at each split, the domain of x_i becomes strictly smaller
- If $LP(P_i)$ has optimal solution where integer variables take integer values then solution is stored
- If $LP(P_i)$ is infeasible then P_i can be discarded (pruned, fathomed)

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$


```
Min - x - y
Subject To
-2 x + 2 y >= 1
-8 x + 10 y <= 13
End
CPLEX> optimize
Primal simplex - Optimal: Objective = - 8.5000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0 (0)
Deterministic time = 0.00 ticks (0.37 ticks/sec)
CPLEX> display solution variables x
Variable Name Solution Value
                             4.000000
X
CPLEX> display solution variables y
Variable Name Solution Value
                             4.500000
у
```

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

Min - x - y

```
Subject To
-2 x + 2 y >= 1
-8 x + 10 y <= 13
Bounds
y >= 5
End
CPLEX> optimize
Bound infeasibility column 'x'.
Presolve time = 0.00 sec. (0.00 ticks)
Presolve - Infeasible.
Solution time = 0.00 sec.
Deterministic time = 0.00 ticks (1.67 ticks/sec)
```

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$


```
Min - x - y
Subject To
-2 x + 2 y >= 1
-8 x + 10 y <= 13
Bounds
y <= 4
End
CPLEX> optimize
Dual simplex - Optimal: Objective = - 7.5000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0 (0)
Deterministic time = 0.00 ticks (2.68 ticks/sec)
CPLEX> display solution variables x
Variable Name Solution Value
                             3.500000
X
CPLEX> display solution variables y
Variable Name Solution Value
                             4.000000
```

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$


```
CPLEX> optimize
Row 'c1' infeasible, all entries at implied bounds.
Presolve time = 0.00 sec. (0.00 ticks)
Presolve - Infeasible.
Solution time = 0.00 sec.
Deterministic time = 0.00 ticks (1.11 ticks/sec)
```

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$


```
Min - x - y
Subject To
-2 x + 2 y >= 1
-8 x + 10 y <= 13
Bounds
x <= 3
y <= 4
End
CPLEX> optimize
Dual simplex - Optimal: Objective = - 6.7000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0 (0)
Deterministic time = 0.00 ticks (2.71 ticks/sec)
CPLEX> display solution variables x
Variable Name Solution Value
                             3.000000
X
CPLEX> display solution variables y
Variable Name Solution Value
                             3.700000
```

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$


```
Min - x - y
Subject To
-2 x + 2 y >= 1
-8 x + 10 y <= 13
Bounds
x <= 3
y = 4
End
CPLEX> optimize
Bound infeasibility column 'x'.
Presolve time = 0.00 sec. (0.00 ticks)
Presolve - Infeasible.
Solution time = 0.00 \text{ sec.}
Deterministic time = 0.00 ticks (1.12 ticks/sec)
```

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$


```
Min - x - y
Subject To
-2 x + 2 y >= 1
-8 x + 10 y <= 13
Bounds
x <= 3
v <= 3
End
CPLEX> optimize
Dual simplex - Optimal: Objective = - 5.5000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0 (0)
Deterministic time = 0.00 ticks (2.71 ticks/sec)
CPLEX> display solution variables x
Variable Name Solution Value
                             2.500000
X
CPLEX> display solution variables y
Variable Name Solution Value
                             3.000000
```

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

Solution time = 0.00 sec.

Deterministic time = 0.00 ticks (1.11 ticks/sec)

```
Min - x - y
Subject To
-2 x + 2 y >= 1
-8 x + 10 y <= 13
Bounds
x = 3
y <= 3
End
CPLEX> optimize
Bound infeasibility column 'y'.
Presolve time = 0.00 sec. (0.00 ticks)
Presolve - Infeasible.
```

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$


```
Min - x - y
Subject To
-2 x + 2 y >= 1
-8 x + 10 y <= 13
Bounds
x <= 2
v <= 3
End
CPLEX> optimize
Dual simplex - Optimal: Objective = - 4.9000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0.00 \text{ sec.}
Deterministic time = 0.00 ticks (2.71 ticks/sec)
CPLEX> display solution variables x
Variable Name
                    Solution Value
                              2,000000
X
CPLEX> display solution variables y
Variable Name
              Solution Value
                              2.900000
```

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$


```
Min - x - y
Subject To
-2 x + 2 y >= 1
-8 x + 10 y <= 13
Bounds
x <= 2
y = 3
End
CPLEX> optimize
Bound infeasibility column 'x'.
Presolve time = 0.00 sec. (0.00 ticks)
Presolve - Infeasible.
Solution time = 0.00 sec.
Deterministic time = 0.00 ticks (1.12 ticks/sec)
```

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$

$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$


```
Min - x - y
Subject To
-2 x + 2 y >= 1
-8 x + 10 y <= 13
Bounds
x <= 2
v <= 2
End
CPLEX> optimize
Dual simplex - Optimal: Objective = - 3.5000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0(0)
Deterministic time = 0.00 ticks (2.71 ticks/sec)
CPLEX> display solution variables x
Variable Name Solution Value
                             1.500000
X
CPLEX> display solution variables y
Variable Name Solution Value
                             2,000000
```


$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$


```
Min - x - y
Subject To
-2 x + 2 y >= 1
-8 x + 10 y <= 13
Bounds
x = 2
y <= 2
End
CPLEX> optimize
Bound infeasibility column 'y'.
Presolve time = 0.00 sec. (0.00 ticks)
Presolve - Infeasible.
Solution time = 0.00 sec.
Deterministic time = 0.00 ticks (1.11 ticks/sec)
```


$$\min -x - y$$

$$-2x + 2y \ge 1$$

$$-8x + 10y \le 13$$

$$x, y \ge 0$$

$$x, y \in \mathbb{Z}$$


```
Min - x - y
Subject To
-2 x + 2 y >= 1
-8 x + 10 y <= 13
Bounds
x <= 1
v <= 2
End
CPLEX> optimize
Dual simplex - Optimal: Objective = - 3.0000000000e+00
Solution time = 0.00 \text{ sec.} Iterations = 0.00 \text{ sec.}
Deterministic time = 0.00 ticks (2.40 ticks/sec)
CPLEX> display solution variables x
Variable Name Solution Value
                              1.000000
X
CPLEX> display solution variables y
Variable Name Solution Value
                              2,000000
```


Pruning in Branch & Bound

- We have already seen that if relaxation is infeasible, the problem can be pruned
- Now assume an (integral) solution has been previously found
- If solution has cost Z then any pending problem P_j whose relaxation has optimal value $\geq Z$ can be ignored, since

$$cost(P_j) \ge cost(LP(P_j)) \ge Z$$

The optimum will not be in any descendant of P_j !

■ This cost-based pruning of the search tree has a huge impact on the efficiency of Branch & Bound

Branch & Bound: Algorithm

```
S := \{P_0\}
                                                      /* set of pending problems */
Z := +\infty
                                                         /* best cost found so far */
while S \neq \emptyset do
     remove P from S
     solve LP(P)
     if LP(P) is feasible then /* if unfeasible P can be pruned */
           let \beta be optimal basic solution of LP(P)
          if \beta satisfies integrality constraints then
                if cost(\beta) < Z then store \beta; update Z
          else
                if cost(LP(P)) \ge Z then continue /* P can be pruned */
                let x_i be integer variable such that \beta_i \notin \mathbb{Z}
                S := S \cup \{ P \wedge x_i \leq |\beta_i|, P \wedge x_i \geq \lceil \beta_i \rceil \}
return Z
```

Heuristics in Branch & Bound

- Possible choices in Branch & Bound
 - Choice of the pending problem
 - Depth-first search
 - Breadth-first search
 - Best-first search: assuming a relaxation is solved when it is added to the set of pending problems, select the one with best cost value

Heuristics in Branch & Bound

- Possible choices in Branch & Bound
 - Choice of the pending problem
 - Depth-first search
 - Breadth-first search
 - Best-first search: assuming a relaxation is solved when it is added to the set of pending problems, select the one with best cost value
 - ◆ Choice of the branching variable: one that is
 - closest to halfway two integer values
 - most important in the model (e.g., 0-1 variable)
 - biggest in a variable ordering
 - the one with the largest/smallest cost coefficient

Heuristics in Branch & Bound

- Possible choices in Branch & Bound
 - Choice of the pending problem
 - Depth-first search
 - Breadth-first search
 - Best-first search: assuming a relaxation is solved when it is added to the set of pending problems, select the one with best cost value
 - Choice of the branching variable: one that is
 - closest to halfway two integer values
 - most important in the model (e.g., 0-1 variable)
 - biggest in a variable ordering
 - the one with the largest/smallest cost coefficient
- No known strategy is best for all problems!

■ If integer variables are not bounded, Branch & Bound may not terminate:

$$\min 0$$

$$1 \le 3x - 3y \le 2$$

$$x, y \in \mathbb{Z}$$

is infeasible but Branch & Bound loops forever looking for solutions!

- After solving the relaxation of P, we have to solve the relaxations of $P \wedge x_j \leq \lfloor \beta_j \rfloor$ and $P \wedge x_j \geq \lceil \beta_j \rceil$
- These problems are similar. Do we have to start from scratch? Can be reuse somehow the computation for P?
- Idea: start from the optimal solution of the parent problem

 \blacksquare Let us assume that P is of the form

```
\begin{aligned}
\min \ c^T x \\
Ax &= b \\
x &\geq 0, & x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}
\end{aligned}
```

- \blacksquare Let B be an optimal basis of the relaxation
- Let x_j be integer variable which at optimal solution is assigned $\beta_j \notin \mathbb{Z}$
- Note that x_j must be basic
- lacksquare Let us consider the problem $P_1 = P \wedge x_j \leq |\beta_j|$
- We add a fresh slack variable s and a new equation: $P \wedge x_j + s = \lfloor \beta_j \rfloor$
- lacksquare Since s is fresh we have $(x_{\mathcal{B}},s)$ defines a basis for the relaxation of P_1

$$\begin{array}{lll} \min \; -x - y & \min \; -x - y \\ -2x + 2y \geq 1 & -2x + 2y - s_1 = 1 \\ -8x + 10y \leq 13 & \Rightarrow & -8x + 10y + s_2 = 13 \\ x, y \geq 0 & x, y \geq 0 \\ x, y \in \mathbb{Z} & x, y \in \mathbb{Z} \end{array}$$

lacksquare Optimal basis of the linear relaxation is $\mathcal{B}=(x,y)$ with tableau

$$\begin{cases} \min -\frac{17}{2} + \frac{9}{2}s_1 + s_2 \\ x = 4 - \frac{5}{2}s_1 - \frac{1}{2}s_2 \\ y = \frac{9}{2} - 2s_1 - \frac{1}{2}s_2 \end{cases}$$

For the subproblem with $y \le 4$ we add equation y + s = 4 $\mathcal{B} = (x, y, s)$ is a basis for this subproblem with tableau

$$\begin{cases} \min -\frac{17}{2} + \frac{9}{2}s_1 + s_2 \\ x = 4 - \frac{5}{2}s_1 - \frac{1}{2}s_2 \\ y = \frac{9}{2} - 2s_1 - \frac{1}{2}s_2 \\ s = 4 - y = -\frac{1}{2} + 2s_1 + \frac{1}{2}s_2 \end{cases}$$

- \blacksquare $(x_{\mathcal{B}}, s)$ defines a basis for the relaxation of P_1
- This basis is not feasible: the value in the basic solution assigned to s is $\lfloor \beta_j \rfloor \beta_j < 0$. We would need a Phase I to apply the primal simplex method!
- But since s is a slack the reduced costs have not changed: $(x_{\mathcal{B}}, s)$ satisfies the optimality conditions!
- Dual simplex method can be used: basis $(x_{\mathcal{B}}, s)$ is already dual feasible, no need of (dual) Phase I
- In practice often the dual simplex only needs very few iterations to obtain the optimal solution to the new problem

Cutting Planes

Let us consider a MIP of the form

$$\min_{x \in S} c^T x \text{ where } S = \left\{ \begin{array}{l} x \in \mathbb{R}^n \\ x \in \mathbb{R}^n \end{array} \middle| \begin{array}{l} Ax = b \\ x \ge 0 \\ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I} \end{array} \right\}$$

and its linear relaxation

$$\min_{x \in P} c^T x \quad \text{where } P = \left\{ \begin{array}{c} x \in \mathbb{R}^n & \left| \begin{array}{c} Ax = b \\ x \ge 0 \end{array} \right. \right\}$$

■ Let β be such that $\beta \in P$ but $\beta \notin S$.

A cut for β is a linear inequality $p^T x \leq q$ such that

- lacktriangle and $p^T eta > q$ (eta does not respect the cut)

Cutting Planes

Using Cuts for Solving MIP's

Let $p^T x \leq q$ be a cut (of some spurious feasible solution of the relaxation). Then the MIP

$$\min_{x \in S'} c^T x \text{ where } S' = \left\{ \begin{array}{l} x \in \mathbb{R}^n \\ x \in \mathbb{R}^n \end{array} \right. \left. \begin{array}{l} Ax = b \\ p^T x \le q \\ x \ge 0 \\ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I} \end{array} \right\}$$

has the same set of feasible solutions S but its LP relaxation is strictly more constrained

- Instead of splitting into subproblems (Branch & Bound), one can add the cut and solve the relaxation of the new problem
- In practice cuts are used together with Branch & Bound: If after adding some cuts no integer solution is found, then branch This technique is called Branch & Cut

- There are several techniques for deriving cuts
- \blacksquare Some are problem-specific (e.g., for the travelling salesman problem)
- Here we will see a generic technique: Gomory cuts
- Let us consider a basis B and let β be the associated basic solution. Note that for all $j \in \mathcal{R}$ we have $\beta_j = 0$
- Let x_i be a basic variable such that $i \in \mathcal{I}$ and $\beta_i \notin \mathbb{Z}$
- E.g., this happens in the optimal basis of the relaxation when the basic solution does not meet the integrality constraints
- lacksquare Let the row of the tableau corresponding to x_i be of the form

$$x_i = \beta_i + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$$

lacksquare Let $x \in S$. Then $x_i \in \mathbb{Z}$ and

$$x_i = \beta_i + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$$
$$x_i - \beta_i = \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$$

- Let $\delta = \beta_i |\beta_i|$. Then $0 < \delta < 1$
- Hence

$$x_{i} - \lfloor \beta_{i} \rfloor = x_{i} - \beta_{i} + \beta_{i} - \lfloor \beta_{i} \rfloor$$

$$= x_{i} - \beta_{i} + \delta$$

$$= \delta + x_{i} - \beta_{i}$$

$$= \delta + \sum_{i \in \mathcal{R}} \alpha_{ij} x_{j}$$

$$\delta = \beta_i - \lfloor \beta_i \rfloor$$
 $x_i - \lfloor \beta_i \rfloor = \delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$

■ Let us define

$$\mathcal{R}^+ = \{ j \in \mathcal{R} \mid \alpha_{ij} \ge 0 \} \qquad \mathcal{R}^- = \{ j \in \mathcal{R} \mid \alpha_{ij} < 0 \}$$

Assume $\sum_{j\in\mathcal{R}} \alpha_{ij} x_j \geq 0$.

$$\delta = \beta_i - \lfloor \beta_i \rfloor$$
 $x_i - \lfloor \beta_i \rfloor = \delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$

Let us define

$$\mathcal{R}^+ = \{ j \in \mathcal{R} \mid \alpha_{ij} \ge 0 \} \qquad \mathcal{R}^- = \{ j \in \mathcal{R} \mid \alpha_{ij} < 0 \}$$

Assume $\sum_{j\in\mathcal{R}} \alpha_{ij} x_j \geq 0$.

Then $\delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j > 0$ and $x_i - \lfloor \beta_i \rfloor \in \mathbb{Z}$ imply

$$\delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \ge 1$$

$$\sum_{j \in \mathcal{R}^+} \alpha_{ij} x_j \ge \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \ge 1 - \delta$$

$$\sum_{j \in \mathcal{R}^+} \frac{\alpha_{ij}}{1 - \delta} x_j \ge 1$$

$$\delta = \beta_i - \lfloor \beta_i \rfloor \qquad x_i - \lfloor \beta_i \rfloor = \delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$$

Let us define

$$\mathcal{R}^+ = \{ j \in \mathcal{R} \mid \alpha_{ij} \ge 0 \} \qquad \mathcal{R}^- = \{ j \in \mathcal{R} \mid \alpha_{ij} < 0 \}$$

Assume $\sum_{j\in\mathcal{R}} \alpha_{ij} x_j \geq 0$.

Then $\delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j > 0$ and $x_i - \lfloor \beta_i \rfloor \in \mathbb{Z}$ imply

$$\delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \ge 1$$

$$\sum_{j \in \mathcal{R}^+} \alpha_{ij} x_j \ge \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \ge 1 - \delta$$

$$\sum_{j \in \mathcal{R}^+} \frac{\alpha_{ij}}{1 - \delta} x_j \ge 1$$

Moreover
$$\sum_{j \in \mathcal{R}^-} \left(\frac{-\alpha_{ij}}{\delta}\right) x_j \ge 0$$

$$\delta = \beta_i - \lfloor \beta_i \rfloor$$
 $x_i - \lfloor \beta_i \rfloor = \delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$

■ Let us define

$$\mathcal{R}^+ = \{ j \in \mathcal{R} \mid \alpha_{ij} \ge 0 \} \qquad \mathcal{R}^- = \{ j \in \mathcal{R} \mid \alpha_{ij} < 0 \}$$

Assume $\sum_{j\in\mathcal{R}} \alpha_{ij} x_j < 0$.

$$\delta = \beta_i - \lfloor \beta_i \rfloor$$
 $x_i - \lfloor \beta_i \rfloor = \delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$

■ Let us define

$$\mathcal{R}^+ = \{ j \in \mathcal{R} \mid \alpha_{ij} \ge 0 \} \qquad \mathcal{R}^- = \{ j \in \mathcal{R} \mid \alpha_{ij} < 0 \}$$

Assume $\sum_{j\in\mathcal{R}} \alpha_{ij} x_j < 0$.

Then $\delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j < 1$ and $x_i - \lfloor \beta_i \rfloor \in \mathbb{Z}$ imply

$$\delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \le 0$$

$$\sum_{j \in \mathcal{R}^-} \alpha_{ij} x_j \le \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \le -\delta$$

$$\sum_{j \in \mathcal{R}^{-}} \left(\frac{-\alpha_{ij}}{\delta} \right) x_j \ge 1$$

$$\delta = \beta_i - \lfloor \beta_i \rfloor$$
 $x_i - \lfloor \beta_i \rfloor = \delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j$

■ Let us define

$$\mathcal{R}^+ = \{ j \in \mathcal{R} \mid \alpha_{ij} \ge 0 \} \qquad \mathcal{R}^- = \{ j \in \mathcal{R} \mid \alpha_{ij} < 0 \}$$

Assume $\sum_{j\in\mathcal{R}} \alpha_{ij} x_j < 0$.

Then $\delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j < 1$ and $x_i - \lfloor \beta_i \rfloor \in \mathbb{Z}$ imply

$$\delta + \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \le 0$$

$$\sum_{j \in \mathcal{R}^-} \alpha_{ij} x_j \le \sum_{j \in \mathcal{R}} \alpha_{ij} x_j \le -\delta$$

$$\sum_{j \in \mathcal{R}^-} \left(\frac{-\alpha_{ij}}{\delta}\right) x_j \ge 1$$

Moreover
$$\sum_{j \in \mathcal{R}^+} \frac{\alpha_{ij}}{1-\delta} x_j \geq 0$$

In any case

$$\sum_{j \in \mathcal{R}^{-}} \left(\frac{-\alpha_{ij}}{\delta} \right) x_j + \sum_{j \in \mathcal{R}^{+}} \frac{\alpha_{ij}}{1 - \delta} x_j \ge 1$$

for any $x \in S$.

However, when $x = \beta$ this inequality is not satisfied (set $x_j = 0$ for $j \in \mathcal{R}$)

■ In the example:

$$\begin{cases} \min -\frac{17}{2} + \frac{9}{2}s_1 + s_2 \\ x = 4 - \frac{5}{2}s_1 - \frac{1}{2}s_2 \\ y = \frac{9}{2} - 2s_1 - \frac{1}{2}s_2 \end{cases}$$

y violates the integrality condition,

we have
$$\delta = \frac{1}{2}$$
, $\sum_{j \in \mathcal{R}} \alpha_{ij} x_j = -2s_1 - \frac{1}{2}s_2$

The cut is $4s_1 + s_2 \ge 1$, which projected on x, y is $y \le 4$.

Ensuring All Vertices Are Integer

Consider an IP of the form

```
\min_{Ax = b} c^T xAx = bx \ge 0x \in \mathbb{Z}
```

- Let us assume A, b have coefficients in \mathbb{Z}
- Are there any sufficient conditions to ensure that the simplex algorithm will directly provide an integer solution, without branch & bound/cut?

Ensuring All Vertices Are Integer

- lacktriangle Let us assume A, b have coefficients in \mathbb{Z}
- We will see sufficient conditions to ensure that all vertices of the relaxation are integer
- For instance, when the matrix A is totally unimodular: the determinant of every square submatrix is 0 or ± 1

- lacktriangle Let us assume A, b have coefficients in $\mathbb Z$
- We will see sufficient conditions to ensure that all vertices of the relaxation are integer
- For instance, when the matrix A is totally unimodular: the determinant of every square submatrix is 0 or ± 1

In that case all bases have inverses with integer coefficients

Recall Cramer's rule: if B is an invertible matrix, then

$$B^{-1} = \frac{1}{\det(B)} \operatorname{adj}(B)$$

where adj(B) is the adjugate matrix of B

Recall also that

$$adj(B) = ((-1)^{i+j} det(M_{ji}))_{1 \le i, j \le n},$$

where M_{ij} is matrix B after removing the *i*-th row and the *j*-th column

- Sufficient condition for total unimodularity of a matrix A: (Hoffman & Gale's Theorem)
 - 1. Each element of A is 0 or ± 1
 - 2. No more than two non-zeros appear in each columm
 - 3. Rows can be partitioned in two subsets R_1 and R_2 s.t.
 - (a) If a column contains two non-zeros of the same sign, the row of one of them belongs to one subset, and the row of the other, to the other subset
 - (b) If a column contains two non-zeros of different signs, the rows of both of them belong to the same subset

- Let us consider an assignment problem
- \blacksquare n = # of workers = # of tasks
- Each worker must be assigned to exactly one task
- Each task is to be performed by exactly one worker
- lacksquare $c_{ij}=$ cost when worker i performs task j

- Let us consider an assignment problem
- lacksquare = # of workers = # of tasks
- Each worker must be assigned to exactly one task
- Each task is to be performed by exactly one worker
- lacksquare $c_{ij} = \operatorname{cost}$ when worker i performs task j

$$x_{ij} = \begin{cases} 1 & \text{if worker } i \text{ performs task } j \\ 0 & \text{otherwise} \end{cases}$$

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = 1 \qquad \forall i \in \{1, \dots, n\}$$

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad \forall j \in \{1, \dots, n\}$$

$$x_{ij} \in \{0, 1\} \qquad \forall i, j \in \{1, \dots, n\}$$

■ This problem satisfies Hoffman & Gale's conditions

- Several kinds of IP's satisfy Hoffman & Gale's conditions:
 - Assignment
 - **♦** Transportation
 - Maximum flow
 - ♦ Shortest path
 - **♦** ...
- Usually ad-hoc graph algorithms are more efficient for these problems than the simplex method as presented here

- Several kinds of IP's satisfy Hoffman & Gale's conditions:
 - Assignment
 - ◆ Transportation
 - Maximum flow
 - ♦ Shortest path
 - **♦** ...
- Usually ad-hoc graph algorithms are more efficient for these problems than the simplex method as presented here
- But:
 - ◆ The simplex method can be specialized: network simplex method
 - ◆ Simplex techniques can be applied if the problem is not a purely network one but has extra constraints

- Sometimes we want to have an indicator variable of a contraint: a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)
- E.g., let us to encode $\delta = 1 \leftrightarrow a^T x \leq b$, where δ is a 0/1 var

- Sometimes we want to have an indicator variable of a contraint: a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)
- E.g., let us to encode $\delta = 1 \leftrightarrow a^T x \leq b$, where δ is a 0/1 var
- Assume $a^Tx \in \mathbb{Z}$ for all feasible solution xLet U be an upper bound of $a^Tx - b$ for all feasible solutions Let L be a lower bound of $a^Tx - b$ for all feasible solutions

- Sometimes we want to have an indicator variable of a contraint: a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)
- E.g., let us to encode $\delta = 1 \leftrightarrow a^T x \leq b$, where δ is a 0/1 var
- Assume $a^Tx \in \mathbb{Z}$ for all feasible solution xLet U be an upper bound of $a^Tx - b$ for all feasible solutions Let L be a lower bound of $a^Tx - b$ for all feasible solutions
 - 1. $\delta = 1 \to a^T x \leq b$ can be encoded with $a^T x b \leq U(1 \delta)$

- Sometimes we want to have an indicator variable of a contraint: a 0/1 variable equal to 1 iff the constraint is true (= reification in CP)
- E.g., let us to encode $\delta = 1 \leftrightarrow a^T x \leq b$, where δ is a 0/1 var
- Assume $a^Tx \in \mathbb{Z}$ for all feasible solution xLet U be an upper bound of $a^Tx - b$ for all feasible solutions Let L be a lower bound of $a^Tx - b$ for all feasible solutions
 - 1. $\delta = 1 \to a^T x \leq b$ can be encoded with $a^T x b \leq U(1 \delta)$

2.
$$\delta=1\leftarrow a^Tx\leq b$$

$$\delta=0\rightarrow a^Tx>b$$

$$\delta=0\rightarrow a^Tx\geq b+1$$
 can be encoded with $a^Tx-b\geq (L-1)\delta+1$

- Sometimes it is convenient to think constraints from a logical perspective, and then translate them into linear inequalities
- If $x_1, \ldots, x_n, y_1, \ldots, y_m$ are 0/1 (= Boolean) variables then

$$x_1 \lor \ldots \lor x_n \lor \neg y_1 \lor \ldots \lor \neg y_m$$

is equivalent to

$$x_1 + \ldots + x_n + (1 - y_1) + \ldots + (1 - y_m) \ge 1$$
.

Example (Logical Constraints)

Let X_i represent "Ingredient i is in the blend", $i \in \{A, B, C\}$. Express the sentence

"If ingredient A is in the blend, then ingredient B or C (or both) must also be in the blend" with linear constraints.

Example (Logical Constraints)

Let X_i represent "Ingredient i is in the blend", $i \in \{A, B, C\}$. Express the sentence

"If ingredient A is in the blend, then ingredient B or C (or both) must also be in the blend"

with linear constraints.

- We need to express $X_A \to (X_B \vee X_C)$.
- lacksquare Equivalently, $eg X_A \lor X_B \lor X_C$.
- $\neg X_A \lor X_B \lor X_C$ is equivalent to $(1-x_A)+x_B+x_C \ge 1$.
- \blacksquare So $x_B + x_C \ge x_A$

Example (Fixed Setup Charge)

Let x be the quantity of a product with unit production cost c_1 . If the product is manufactured at all, there is a setup cost c_0

Cost of producing
$$x$$
 units $= \begin{cases} 0 & \text{if} \quad x = 0 \\ c_0 + c_1 x & \text{if} \quad x > 0 \end{cases}$

Want to minimize costs. Model as a MIP?

(for simplicity, additional constraints are not specified and can be omitted)

Example (Fixed Setup Charge)

Let x be the quantity of a product with unit production cost c_1 . If the product is manufactured at all, there is a setup cost c_0

Cost of producing
$$x$$
 units $= \begin{cases} 0 & \text{if} \quad x = 0 \\ c_0 + c_1 x & \text{if} \quad x > 0 \end{cases}$

Want to minimize costs. Model as a MIP?

(for simplicity, additional constraints are not specified and can be omitted)

Let δ be 0/1 var such that $x>0\to \delta=1$ (i.e., $\delta=0\to x\le 0$): add constraint $x-U\delta\le 0$, where U is the upper bound on x

Then the cost is $c_0\delta + c_1x$.

No need to express $x>0\leftarrow \delta=1$, i.e. $x=0\rightarrow \delta=0$ Minimization will make $\delta=0$ if possible (i.e., if x=0)

Example (Capacity Expansion)

Let a^Tx be the consumption of a limited resource in a production process Want to relax the constraint $a^Tx \leq b$ by increasing capacity b. Capacity can be expanded to b_i

$$b = b_0 < b_1 < b_2 < \cdots < b_t$$

with costs, respectively,

$$0 = c_0 < c_1 < c_2 < \cdots < c_t$$

Want to minimize costs. Model as a MIP? (for simplicity, additional constraints are not specified and can be omitted)

Example (Capacity Expansion)

Let a^Tx be the consumption of a limited resource in a production process Want to relax the constraint $a^Tx \leq b$ by increasing capacity b. Capacity can be expanded to b_i

$$b = b_0 < b_1 < b_2 < \dots < b_t$$

with costs, respectively,

$$0 = c_0 < c_1 < c_2 < \cdots < c_t$$

Want to minimize costs. Model as a MIP? (for simplicity, additional constraints are not specified and can be omitted) Let 0/1 variables δ_i mean "capacity expanded to b_i ". Then:

- $\blacksquare \quad \sum_{i=0}^{t} \delta_i = 1$
- $\blacksquare \quad a^T x \leq \sum_{i=0}^t b_i \delta_i$
- \blacksquare Cost function: $\sum_{i=0}^{t} c_i \delta_i$