Dataset Split:

70% training 10% validation 20% testing

Feature Selection:

Top N most frequent words (stop words excluded) in the dataset N = 2500

Results:

KNN: K = 3

Classifier	Without Feature Selection				
	Training	Validation	Testing	Offline Efficiency Cost	Online Efficiency Cost
Decision Tree	99.71%	69.67%	72.0%	1853 ms	7 us
KNN	84.9%	74.67%	75.5%	33 us	20 ms

Classifier	With Feature Selection				
	Training	Validation	Testing	Offline Efficiency Cost	Online Efficiency Cost
Decision Tree	99.38%	73.67%	74.33%	799 ms	3 us
KNN	86.95%	75.33%	78.0%	22 us	14 ms

Feature selection improves both online and offline efficiency cost

This is to be expected because the size of input is reduced.

Decision Tree			
Offline Efficiency Cost Online Efficiency Cost			
Without Feature Selection	1853 ms	7 us	
With Feature Selection	799 ms	3 us	

KNN			
	Offline Efficiency Cost	Online Efficiency Cost	
Without Feature Selection	33 us	20 ms	
With Feature Selection	22 us	14 ms	

Feature selection improves accuracy on testing dataset

Feature selection helps focus on the most important predictors.

Accuracy on Testing Dataset			
Classifier Without Feature Selection With Feature Selection			
Decision Tree	72.0%	74.33%	
KNN	75.5%	78.0%	

KNN has better offline efficiency & Decision tree has better online efficiency

These results are due to the nature of KNN & decision trees. KNN adopts a lazy learning approach and decision trees adopt an eager learning approach.

With Feature Selection			
Classifier Offline Efficiency Online Efficiency			
Decision Tree	1853 ms	7 us	

KNN	33 us	20 ms
-----	-------	-------

Without Feature Selection			
Classifier Offline Efficiency Online Efficiency			
Decision Tree	799 ms	3 us	
KNN	22 us	14 ms	