Задача А. Паросочетание

Имя входного файла: matching.in
Имя выходного файла: matching.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дан двудольный невзвешенный граф. Необходимо найти максимальное паросочетание.

Формат входного файла

В первой строке входного файла три целых числа n, m и k ($1 \le n, m \le 200, 1 \le k \le n \times m$) — количество чисел в первой и второй долях, а также число ребер соответственно. Далее следуют k строк, в каждой из которых два числа a_i и b_i , что означает ребро между вершиной с номером a_i первой доли и вершиной с номером b_i второй доли. Вершины в обеих долях нумеруются с единицы.

Формат выходного файла

В выходной файл выведите одно число — максимальное число ребер в паросочетании.

matching.in	matching.out
3 3 5	3
1 1	
1 3	
2 1	
2 2	
3 2	

Задача В. Максимальный поток

Имя входного файла: maxflow.in Имя выходного файла: maxflow.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Задан ориентированный граф, каждое ребро которого обладает целочисленной пропускной способностью. Найдите максимальный поток из вершины с номером 1 в вершину с номером n.

Формат входного файла

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 100, \ 1 \le m \le 1000$). Следующие m строк содержат по три числа: номера вершин, которые соединяет соответствующее ребро графа и его пропускную способность. Пропускные способности не превосходят 10^5 .

Формат выходного файла

В выходной файл выведите одно число — величину максимального потока из вершины с номером 1 в вершину с номером n.

maxflow.in	maxflow.out
4 5	3
1 2 1	
1 3 2	
3 2 1	
2 4 2	
3 4 1	

Задача С. Минимальный разрез

Имя входного файла: cut.in
Имя выходного файла: cut.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Задан неориентированный граф, каждое ребро которого обладает целочисленной пропускной способностью. Вершина с номером 1 — исток. Вершина с номером n — сток. Требуется найти минимальный S-T разрез в этом графе.

Напомним, что S-T разрезом в графе называется пара дизъюнктных множеств вершин S и T, таких что $S \cup T = V$, $s \in S$, $t \in T$. Мощностью разреза называется сумма пропускных способностей ребер, один из концов которого принадлежит S, а другой T.

Формат входного файла

Первая строка входного файла содержит n и m — количество вершин и ребер графа соответственно $(2 \le n \le 500, \ 1 \le m \le 10^4)$. В следующих m строках содержатся по три числа: номера вершин u и v, которые соединяет ребро (u, v) и его пропускная способность. Пропускные способности не превосходят 10^9 .

Формат выходного файла

В первой строке выходного файла выведите натуральное число k — количество вершин в множестве S. В следующей строке выведите k чисел, разделенных пробелом — номера вершин в множестве S.

cut.in	cut.out
4 4	2
1 2 2	1 2
2 4 1	
1 3 1	
3 4 2	

Задача D. Покрытие путями

Имя входного файла: paths.in
Имя выходного файла: paths.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Задан ориентированный ациклических граф. Требуется определить минимальное количество непересекающихся путей, покрывающих все вершины.

Формат входного файла

Первая строка входного файла содержит n и m — количество вершин и ребер графа соответственно ($2 \le n \le 1000, \ 0 \le m \le 10^5$). В следующих m строках содержатся по два числа: номера вершин u и v, которые соединяет ребро (u, v).

Формат выходного файла

В первой строке выходного файла выведите натуральное число k — минимальное количество путей, необходимых, чтобы покрыть все вершины.

paths.in	paths.out
3 3	1
1 3	
3 2	
1 2	

Задача Е. Декомпозиция потока

Имя входного файла: decomposition.in Имя выходного файла: decomposition.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Задан ориентированный граф, каждое ребро которого обладает целочисленной пропускной способностью. Найдите максимальный поток из вершины с номером 1 в вершину с номером n и постройте декомпозицию этого потока.

Формат входного файла

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 500, 1 \le m \le 10000$). Следующие m строк содержат по три числа: номера вершин, которые соединяет соответствующее ребро графа и его пропускную способность. Пропускные способности не превосходят 10^9 .

Формат выходного файла

В первую строку выходного файла выведите одно число — количество путей в декомпозции максимального потока из вершины с номером 1 в вершину с номером n. Следующий строки должны содержать описания элементарых потоков, на который был разбит максимальный. Описание следует выводить в следующем формате: величина потока, количество ребер в пути, вдоль которого течет данный поток и номера ребер в этом пути. Ребра нумеруются с единицы в порядке появления во входном файле.

decomposition.in	decomposition.out
4 5	3
1 2 1	1 2 1 4
1 3 2	1 3 2 3 4
3 2 1	1 2 2 5
2 4 2	
3 4 1	

Задача F. Циркуляция

Имя входного файла: circulation.in Имя выходного файла: circulation.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Назовем *циркуляцией* поток величины 0. Дан ориентированный граф с нижними и верхними пропускными способностями, то есть для любых вершин i и j должно быть верно, что $l_{ij} \leq f_{ij} \leq c_{ij}$, где l_{ij} — нижняя граница, а c_{ij} — верхняя. Требуется найти циркуляцию в данном графе, удовлетворяющую данным ограничениям.

Формат входного файла

В первой строке входного файла 2 целых числа N и M ($1 \le N \le 200$, $0 \le M \le 15000$). Далее следуют M строк, описывающие ребра графа. Каждая строка содержит 4 целых положительных числа i, j, l_{ij} и c_{ij} ($0 \le l_{ij} \le c_{ij} \le 10^5$), что означает, что ребро ведет из вершины с номером i в вершину с номером j с нижней границей l_{ij} и верхней c_{ij} . Гарантируется, что если в графе есть ребро из i в j, то нет ребра из j в i.

Формат выходного файла

Если не существует циркуляции удовлетворяющей данным ограничения, выведите NO. Иначе на первой строке выведите YES. Далее в M строках должно содержаться по одному числу. В i-ой строке — величина потока по ребру на i-ой строке во входном файле. Напомним, что для любых i и j должно быть верно, что $l_{ij} \leq f_{ij} \leq c_{ij}$.

circulation.in	circulation.out
4 6	NO
1 2 1 2	
2 3 1 2	
3 4 1 2	
4 1 1 2	
1 3 1 2	
4 2 1 2	
4 6	YES
1 2 1 3	1
2 3 1 3	2
3 4 1 3	3
4 1 1 3	2
1 3 1 3	1
4 2 1 3	1

Задача G. Задача о назначениях

Имя входного файла: assignment.in Имя выходного файла: assignment.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана целочисленная матрица C размера $n \times n$. Требуется выбрать n ячеек так, чтобы в каждой строке и каждом столбце была выбрана ровно одна ячейка и сумма значений в выбранных ячейках было минимальна.

Формат входного файла

Первая строка входного файла содержит n ($2 \le n \le 300$). Каждая из последующих n строк содержит по n чисел: C_{ij} Все значения во входном файле неотрицательны и не превосходят 10^6 .

Формат выходного файла

В первую строку выходного файла выведите одно число — искомая минимизуруемая величина. Далее выведите n строк по два числа в каждой — номер строки и столбца клетки, участвующей в оптимальном назначении.

Пары чисел можно выводить в произвольном порядке.

assignment.in	assignment.out
2	2
1 2	1 1
2 1	2 2

Задача Н. Максимальный поток минимальной стоимости

Имя входного файла: mincost.in Имя выходного файла: mincost.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Задан ориентированный граф, каждое ребро которого обладает пропускной способностью и стоимостью. Найдите максимальный поток минимальной стоимости из вершины с номером 1 в вершину с номером n.

Формат входного файла

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 100, \ 1 \le m \le 1000$). Следующие m строк содержат по четыре целых числа числа: номера вершин, которые соединяет соответствующее ребро графа, его пропускную способность и его стоимость. Пропускные способности и стоимости не превосходят 10^5 .

Формат выходного файла

В выходной файл выведите одно число — цену максимального потока минимальной стоимости из вершины с номером 1 в вершину с номером n. Ответ не превышает $2^{63}-1$. Гарантируется, что в графе нет циклов отрицательной стоимости.

mincost.in	mincost.out
4 5	12
1 2 1 2	
1 3 2 2	
3 2 1 1	
2 4 2 1	
3 4 2 3	

Задача І. k паросочетаний

Имя входного файла: multiassignment.in Имя выходного файла: multiassignment.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан полный взвешенный двудольный граф с равным количеством вершин в долях. Требуется выбрать k максимальных попарно не пересекающихся паросочетаний так, чтобы их суммарный вес был минимален.

Формат входного файла

Первая строка входного файла содержит n и k — количество вершин в каждой из долей и количество паросочетаний $(2 \le n \le 50, 1 \le k \le n)$. Каждая из последующих n строк содержит по n чисел: C_{ij} — вес ребра, ведущего из i-й вершины левой доли в j-ю правой.

Все значения во входном файле неотрицательны и не превосходят 10^6 .

Формат выходного файла

В первую строку выходного файла выведите одно число — искомый суммарный вес паросочетаний. Следующие k строк должны содержать n чисел — номера вершины, правой доли, соответствующие вершинам левой.

multiassignment.in	multiassignment.out
3 2	6
1 2 1	1 2 3
1 1 2	3 1 2
2 1 1	

Задача Ј. Назначение на узкое место

Имя входного файла: minimax.in Имя выходного файла: minimax.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан полный взвешенный двудольный граф с равным количеством вершин в долях. Требуется найти полное паросочетание, в котором минимальное ребро максимально.

Формат входного файла

Первая строка входного файла содержит n и k — количество вершин в каждой из долей и количество паросочетаний ($2 \le n \le 300, 1 \le k \le n$). Каждая из последующих n строк содержит по n чисел: C_{ij} — вес ребра, ведущего из i-й вершины левой доли в j-ю правой.

Все значения во входном файле неотрицательны и не превосходят 10^6 .

Формат выходного файла

В первую строку выходного файла выведите одно число — вес минимального ребра в паросочетании.

minimax.in	minimax.out
2	2
1 2	
2 1	