Test/ Debugger: imgCropMULTI

Summary: Works through step by step the preprocessing and cropping stages. Useful for code debugging and investigating preprocessing quality of a particular frame.

User notes:

- 1) Make sure relevant function files, videos and individual video frames are located in the same folder as this live script. So far, only works on horizontal flow videos.
- 2) There are some user-defined inputs, particularly video/ image file name. Other processing parameters can also be adjusted as see fit.

V2.0. SWC, 19 Feb 2021.

```
close all
clear
```

1) Load video

```
vid_file_name = 'SDS001_S05cSt 12 uL_23 uL SDS_50 mM 062.avi'; %<----- user-
defined input!!
% vid_file_name = 'DYE003_52%Gl_W_0.003_Ink_S0_SPAN80_0.003_2kfps_.avi';
vid = VideoReader(vid_file_name); %read video
totframes = vid.NumFrames %check total num of frames in video

totframes = 724</pre>
```

2a) Background generation - 'Basic' Statistical Approach

Shows 3 methods: i) Median, ii) Mode and iii) Mean

```
Processed video: SDS001_SO5cSt 12 uL_23 uL SDS_50 mM 062.avi
Median; Elapsed time = 35.28
Mode; Elapsed time = 149.61
Mean; Elapsed time = 80.70
```


2b) Background generation - 'Complex' Statistical Approach (Adapted from ADM method)

3) Load test image

```
% Load images
I = imread('SDS001_687.jpg');  %<----- user-defined input!!

% check images loaded correctly
figure; imshow(I);</pre>
```


4) Background Subtraction

```
%% From Mean background generation
subMean = rescale(1-(double(I) - double(avg_bg))); % std diff with inversion
subMean2 = rescale(abs(double(I) - double(avg_bg))); % abs subtraction

%% From Median background generation
subMed = rescale(1-(double(I) - double(med_bg))); % std diff with inversion
subMed2 = rescale(abs(double(I) - double(med_bg))); % abs diff

%% From Mode background generation
subMax = rescale(1-(double(I) - double(mod_bg))); % std diff with inversion
subMax2 = rescale(abs(double(I) - double(mod_bg))); % abs diff

%% From complex background generation method
subCom = rescale(1-(double(I) - double(bg))); % std diff with inversion
subCom2 = rescale(abs(double(I) - double(bg))); % absdiff

figure;
montage({subMean subMed subMax subCom}, 'Size', [4 1]); title('standard diff + inversion');
```

standard diff + inversion


```
figure; montage({subMean2 subMed2 subMax2 subCom2}, 'Size', [4 1]);
title('absolute diff');
```

absolute diff


```
% figure; imshow(subMean); title('mean')
% figure; imshow(subMed); title('median')
% figure; imshow(subMax); title('mode')
% figure; imshow(subCom); title('complex')
```

5) Convert to binary image

```
bin1 = imbinarize(imadjust((subMean)), graythresh(subMean)); %graythresh uses
Otsu's Method
bin2 = imbinarize(imadjust((subMed)), graythresh(subMed));
bin3 = imbinarize(imadjust((subMax)), graythresh(subMax));
bin4 = imbinarize(imadjust((subCom)), graythresh(subCom));

figure; montage({bin1 bin2 bin3 bin4}, 'Size', [4 1]); title('standard difference + inversion');
```

standard difference + inversion

```
806
\bigcirc
9000000
```

```
bin21 = imbinarize(imadjust((subMean2)), graythresh(subMean2));
bin22 = imbinarize(imadjust((subMed2)), graythresh(subMed2));
bin23 = imbinarize(imadjust((subMax2)), graythresh(subMax2));
bin24 = imbinarize(imadjust((subCom2)), graythresh(subCom2));
```

figure; montage({bin21 bin22 bin23 bin24}, 'Size', [4 1]); title('absolute
difference');

absolute difference

6) Morphological fill

• only use best result from previous parts

```
Img = bin4; % choose a binary image to process

fill1 = imfill(Img, 'holes'); %fill fully closed drops
figure; imshow(fill1)
```


minA = 50; % anything with area less than this will be treated as noise object
cfill1 = bwareaopen(fill1,minA); %noise object removal
figure; imshow(cfill1);


```
rg = regionprops('table',cfill1,'Area') %detect ROI
```

```
rg = 13×1 table

Area
```

	Area	
1	1030	
2	6552	
3	3340	
4	10979	
5	1358	
6	2835	
7	2985	
8	2674	
9	5312	
10	5347	
11	5518	
12	21744	
13	136	

```
[bwl n] = bwlabel(cfill1,8); %assign label to each detected ROI
minA = 0.2*max(rg.Area)
```

minA = 4.3488e+03

```
pos = find(rg.Area < minA); %find ROIs that have holes so have not been filled;

bwl2 = ismember(bwl,pos); %segment out ROIs that need further manipulation
(morphological close)
    % figure; imshow(bwl2);

bwl2 = imclose(bwl2,strel('disk',15)); %morphological close
    fill2 = imfill(bwl2,'holes'); %fill fully closed drops (drops at border not
filled!)
    % figure; imshow(fill2)

fill2_bord = fill_border_drops(bwl2); % fill objects at border (custom
function)
    % figure; imshow(fill2_bord)

fill2 = fill2 | fill2_bord; %resulting filled image
figure; imshow(fill2);</pre>
```



```
L = cfill1 | fill2; %combine to form a final mask
figure; imshow(L);
```


7) Drop Segmentation

• attempt to separate drops that were wrongly fused together from previous steps

```
L2 = imerode(L, strel('diamond',3));
figure; imshow(L2)
```


8) Identify Bounding Box of ROI

ROI = regionprops('table', L2)

ROI	= 13×3 table			
	Area	Cent	roid	•••
1	2566	170.7459	24.0312	
2	5593	172.1244	160.3776	
3	2799	173.2262	281.8703	
4	9484	206.3501	398.4884	
5	3889	175.3762	766.1718	
6	2342	174.3143	543.7882	
7	2481	174.8057	635.8142	
8	2197	389.6208	380.1379	
9	4599	507.4895	378.6912	
10	4645	637.6366	378.5522	
11	4813	754.0143	378.2595	
12	19507	988.7090	377.3733	
13	31	1.2797e+03	380.1290	

% first entry in ROI table is the drop nearest to left frame border
leadEdge = ROI.Centroid(1,1) + 1.4*(ROI.BoundingBox(1,3) /2) % estimate point
of entrance to main channel

leadEdge = 210.6459

% remove any drops outside of main flow channel

ROI(ROI.Centroid(:,1) < leadEdge, :) = []</pre>

 $ROI = 6 \times 3 \text{ table}$

	Area	Cent	roid	
1	2197	389.6208	380.1379	
2	4599	507.4895	378.6912	
3	4645	637.6366	378.5522	
4	4813	754.0143	378.2595	
5	19507	988.7090	377.3733	
6	31	1.2797e+03	380.1290	

```
% remove small objects
ROI(ROI.Area < 200, :) = []</pre>
```

 $ROI = 5 \times 3$ table

	Area	Cent	troid	
1	2197	389.6208	380.1379	
2	4599	507.4895	378.6912	
3	4645	637.6366	378.5522	
4	4813	754.0143	378.2595	
5	19507	988.7090	377.3733	

Assumptions:

- · horizontal flow in main channel
- entrance region is captured in video (i.e., video does not just purely show a segment of main flow)
- drop identified as that nearest to left frame border is not a random noise object (and thus the width is not representative of a regular drop)

9) Plot results

```
figure; imshow(I);
hold on

% visualise centroid
plot(ROI.Centroid(:,1), ROI.Centroid(:,2), 'b+')

% visualise bounding box
for i=1:height(ROI)
    rectangle('Position',ROI.BoundingBox(i,:),'EdgeColor','b')
end
```

% visualise estimated leading edge for analysed region
plot([leadEdge leadEdge], [0 vid.Height])

6) Crop and show individual drops

```
roiTable = ROI.BoundingBox;
cropSize = [128 128];
for i = 1: height(roiTable)
    dim = 1.4*max([roiTable(i,3:4)]); % this will be the width/ height of
square cropped area
    % x-coord of centroid of cropping region
    cx = roiTable(i,1) + roiTable(i,3)/2;
    % y-coord of centroid of cropping region
    cy = roiTable(i,2) + roiTable(i,4)/2;
    % coordinates of bottom-left vertex of intended crop region
    xmin = cx - dim/2;
    ymin = cy - dim/2;
    % crop region defined as [x-coord of bottom left point, y-coord of
    % bottom left point, width, height]
    Img = imcrop(I, [xmin, ymin, dim, dim]);
    % resize cropped image
    Img = imresize(Img, cropSize);
    %show image
```

end

