Lezione 1 - Introduzione

Il futuro di internet

Nel 2016 il traffico globale di internet per anno era di **1.2 ZB**, e crescerà di 3 volte prima del 2021; con questo andamento il numero di devices connessi alle reti IP nel 2021 sarà **tre volte la popolazione mondiale**. E sempre nel 2021, il traffico di devices mobile, ovvero **smartphones**, supererà il traffico dei computers.

Questa evoluzione ci porterà all'utilizzo di internet come una tecnologia dominante per "trasportare" qualsiasi tipo di informazione.

Introduzione del corso

Il corso punta ad analizzare

- Come le reti di computers funzionano
- Strumenti e tecniche per supportare la programmazione di sistemi in rete

Il corso si concentrerà principalmente sugli strati **ad alto livello** dei software di reti di computers. Pertanto, affronteremo lo studio di:

- L'internet e le relative API per applicazioni basate sullo scambio di messaggi
- Il Web e le relative tecnologie di programmazione
- I principi di comunicazione tra devices mobili

Programma generale

Introduzione alle reti di computer

- Network model.
- Network types and access networks.
- Networking software.
- Layered architectures.
- Concepts of protocol, service and interface.
- The OSI reference model and the TCP/IP architecture.

Livello applicazione

- Client/server model (C/S).
- Socket API.
- Concurrent programming and asynchronous I/O.
- DNS.
- The Web.
- Web components.
- HTTP, HTTP/2.
- Websocket.
- Other Internet services based on the C/S model.
- IoT protocols: CoAP and MQTT.

Layer di trasporto

- Addressing.
- Multiplexing and demultiplexing.
- Principles of reliable transmission.
- ARQ protocol.

- Flow control.
- Congestion control.
- TCP, UDP protocols.
- Congestion control in TCP.
- QUIC protocol.

Layer di rete

- Packet switching networks.
- Datagram and virtual circuit networks.
- Addressing.
- Routing.
- IP protocol.
- Datagram fragmentation.
- Routing in the Internet.
- Subnetting, super netting, CIDR. NAT e NAPT.
- Introduction to SDN: separation between data plane and control-plane.

Data link layer

- Multiple access to channel.
- ARP protocol.
- IEEE 802.3 and 802.11

Programmazione di applicazioni web

- REST paradigm and RESTful services.
- JAX-RS.
- Introduction to HTML, CSS, DOM, Javascript and libraries for Single Page Applications.
- Other Web technologies (es. Servlet).

Programmazione IoT

- MQTT Broker.
- Implementation of CoAP c/s and MQTT clients.

Introduzione alle reti

Sistemi di reti

Ai nostri giorni quasi ogni dispositivo è connesso e scambia dati con altri dispositivi e con persone. Alcuni esempi di sistemi conessi possono essere:

- Reti aziendali
- L'Internet
- II Web
- Internet of things

Un modello per le reti di computer

Network - rete

Un sistema usato per connettere i computer attraverso un **singolo mezzo di trasmissione**.

Internet

Un insieme di reti interconnesse da un sistema in grado di connettere reti di tipo diverso.

Bandwidth - larghezza di banda

La definizione varia a seconda del tipo di trasmissione:

Trasmissione analogica

Differenza tra le frequenze per le quali le prestazioni di un dispositivo rientrano entro specifici limiti.

Trasmissione digitale

La quantità massima di informazioni inviate per unità di tempo attraverso un collegamento di rete. E' misurato in **bit per secondi (bps)** anche noto come **bit rate**;

Ad esempio 1 Mbps corrisponde a 10⁶ bit per secondo.

Inoltre, la larghezza di banda e la larghezza di bit sono collegati:

Throughput

La larghezza di banda rappresenta il numero massimo di **bit rate** di un circuito, o canale (di trasmissione); non considera **l'overhead** dovuto al protocollo ed alla **degradazione delle performance** per via di **inefficienze del sistema**.

Il throughput rappresenta il reale bit rate:

- Dipende dalla progettazione della rete e configurazione di essa.
- Con il termine **goodput** intendiamo la quantità di dati **utili** trasmessi **con successo, per unità di tempo**.

Delay - Latenza di trasmissione

Componenti di delay in un collegamento (p2p fisico):

- Delay di propagazione
- Delay di trasmissione

Delay = delay di propagazione + delay di trasmissione

Delay di propagazione

Il delay di propagazione è il tempo necessario per un **bit** per essere spedito da un computer A ad un computer B.

distanza / velocità di propagazione.

Delay di trasmissione

E' il tempo necessario per un messaggio di **grandezza M** per essere trasmesso (iniettato) **nel canale**

Grandezza messaggio / bandwidth

Reti complesse

Nelle reti complesse il delay comprende anche:

- **Delay di "processing"** ovvero il tempo necessario a processare un messaggio in un **router**.
- Queuing delay ovvero il tempo speso da un messaggio in una coda di router.

Altre metriche

RTT - Round Trip Time

Tempo necessario per un bit per essere inviato da A a B **e per ritornare ad A**. Questo valore è più semplice da misurare rispetto al delay.

Jitter

Variazione **statistica** del delay.

Perdita di pacchetti

Numero in percentuale dei pacchetti persi per via della saturazione di buffers o violazione di integritò.

Delay x Bandwidth

Bandwidth e delay sono importanti in diversi casi:

- Propagazione il delay è importante per messaggi molto piccoli
- bandwidth è importante per messaggi grandi.

La moltiplicazione delay x bandwidth rappresenta la quantità di dati in transito attraverso il canale; ad esempio: delay = 100ms, bandwidth = 45 Mbps -> C = 562 KB

Tipi di rete ed accesso alle reti

Tipi di reti di computer

LAN

WAN

Internet

Insieme di diverse reti connesse da sistemi configurati per effettuare il **routing del traffico**:

Accesso ad internet

I computers possono accedere ad internet attraverso diverse reti:

- Reti mobili
- Reti telefoniche
- Link dedicato

Gli accessi alle reti sono connetti a ISP (internet service provider) Regionali, Nazionali o globali.

Accesso "casalingo"

Accesso aziendale

Tipicamente è usato da imprese ed università; la velocità di trasmissione può essere di 10 Mbps, 100 Mbps, fino a 10Gbps.

Accesso wireless

Con questo tipo di accesso possiamo accedere ad internet senza l'uso dei cavi:

fine lezione 1