

	<pre>HYPER PARAMETER TUNING DT = DecisionTreeClassifier () Parameters = { 'criterion' : ['gini' , 'entropy'],</pre>
In [21]:	<pre>Parameters = GS.best_params_ print ("The best parameters of decision tree are : \n\n" , Parameters) The best parameters of decision tree are : {'criterion': 'entropy', 'max_depth': None, 'max_features': 'log2', 'splitter': 'best'} TRAINING AND TESTING DT = DecisionTreeClassifier (**Parameters) DT.fit (Train_X , Train_Y) Y_DT = DT.predict (Test_X)</pre>
Out[21]:	Accuracy_DT = np.round (accuracy_score (Test_Y , Y_DT) * 100 , 2) print ("The accuracy of the test data is : " , Accuracy_DT) Confusion_Matrix_DT = sns.heatmap (confusion_matrix (Test_Y , Y_DT) , fmt = '0.0f' , annot = True , cmap = ' Confusion_Matrix_DT The accuracy of the test data is : 75.76 <axessubplot:> 7</axessubplot:>
	-6 -7 -1 -2 -7 -1 0 0 0 -5 -7 -4 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7
In [22]:	Train_Accuracy = np.round (accuracy_Score (Train_Y , Y_DT_Train) * 100 , 2) if int (Train_Accuracy - Accuracy_DT) > 5.0 :
	<pre>print ("There is overfitting") else : print ("There is no overfitting\n") print ("\nThe Training accuracy is : {} \n\nThe Testing accuracy is : {}".format(Train_Accuracy _ Accuracy_DT There is overfitting The Training accuracy is : 100.0 The Testing accuracy is : 75.76</pre>
In [23]:	<pre>ENSEMBLE TECHNIQUES: BOOSTING GRADIENT BOOSTING HYPER PARAMETER TUNING GB = GradientBoostingClassifier () Parameters = { 'loss' : ['log_loss' ,'deviance', 'exponential'] ,</pre>
In [24]:	GS.fit (Train_X , Train_Y) Parameters = GS.best_params_ print ("The the most optimum parameters are : \n\n" , Parameters) The the most optimum parameters are : {'learning_rate': 0.1, 'loss': 'log_loss', 'n_estimators': 150} TRAINING AND TESTING GB = GradientBoostingClassifier (**Parameters)
Out[24]:	GB.fit (Train_X , Train_Y) Y_GB = GB.predict (Test_X) Accuracy_GB = np.round (accuracy_score (Test_Y , Y_GB) * 100 , 2) print ("Accuracy of gradient boosting is : " , Accuracy_GB) Confusion_Matrix_GB = sns.heatmap (confusion_matrix (Test_Y , Y_GB) , annot = True , fmt = '0.0f' , cmap = '. Confusion_Matrix_GB Accuracy of gradient boosting is : 87.88 <pre></pre>
	0 - 8 1 0 0 0 0 -8 H - 1 9 0 0 0 0 -7 -6 N - 0 1 0 2 0 0 -4 -3
In [25]:	Train_Accuracy = np.round (accuracy_score (Train_Y , Y_GB_Train) * 100 , 2)
	<pre>if int (Train_Accuracy - Accuracy_GB) > 5.0 : print ("There is overfitting") else : print ("There is no overfitting\n") print ("\nThe Training accuracy is : {} \n\nThe Testing accuracy is : {}".format(Train_Accuracy , Accuracy_GB There is overfitting The Training accuracy is : 100.0</pre>
In [26]:	<pre>The Testing accuracy is: 87.88 EXTREME GRADIENT BOOSTING HYPER PARAMETER TUNING XGB = XGBClassifier () Parameters = { 'n_estimators': [100, 200, 300], 'learning_rate': [0.5 , 0.1, 0.001], 'max_depth': [3, 5, 7]</pre>
	<pre>LE = LabelEncoder () Train_Y = LE.fit_transform (Train_Y) Test_Y = LE.fit_transform (Test_Y) GS = GridSearchCV (estimator = XGBClassifier () , param_grid = Parameters) GS.fit (Train_X , Train_Y) Parameters = GS.best_params_</pre>
In [27]:	<pre>print ("The the most optimum parameters are : \n\n" , Parameters) The the most optimum parameters are : {'learning_rate': 0.1, 'max_depth': 7, 'n_estimators': 200} TRAINING AND TESTING XGB = XGBClassifier (**Parameters) XGB.fit (Train_X , Train_Y) Y_XGB = XGB.predict (Test_X) Accuracy_XGB = np.round (accuracy_score (Test_Y , Y_XGB) * 100 , 2)</pre>
Out[27]:	0-81000000-10-10
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
In [28]:	CHECKING FOR OVER FITTING Y_XGB_Train = XGB.predict (Train_X) Train_Accuracy = np.round (accuracy_score (Train_Y , Y_XGB_Train) * 100 , 2) if int (Train_Accuracy - Accuracy_XGB) > 5.0 : print ("There is overfitting")
	<pre>print ("There is overfitting") else : print ("There is no overfitting\n") print ("\nThe Training accuracy is : {} \n\nThe Testing accuracy is : {}".format(Train_Accuracy , Accuracy_XG) There is overfitting The Training accuracy is : 100.0 The Testing accuracy is : 93.94 COMPARISON</pre>
In [29]: Out[29]:	Accuracies = [Accuracy_DT , Accuracy_LR , Accuracy_GB , Accuracy_RF , Accuracy_XGB] Accuracies_Names = ['Accuracy_DT' , 'Accuracy_LR' , 'Accuracy_GB' , 'Accuracy_RF' , 'Accuracy_XGB'] Performance_Metrics = { 'Accuracies' : Accuracies , 'Values' : Accuracies_Names } Performance_Metrics = pd.DataFrame(Performance_Metrics) Performance_Metrics Accuracies Values 75.76 Accuracy_DT 1 63.64 Accuracy_LR
	2 87.88 Accuracy_GB 3 87.88 Accuracy_RF 4 93.94 Accuracy_XGB CONCLUSION The results clearly demonstrate that the XGBoost algorithm outperforms the other methods, achieving the highest
	accuracy among all evaluated classifiers. Random Forest also performed admirably, showing competitive performance with an accuracy close to XGBoost. However, Decision Tree and Logistic Regression exhibited relatively lower accuracies, indicating that they might not be the best choices for this specific dataset.