### MLEA - TP 2

Florent D'Halluin

**EPITA 2010** 

8 Juillet 2009

### Plan

- Classification
  - Estimer l'efficacité d'un classifieur
    - K-Fold cross-validation
    - Courbe ROC
  - Classification de données continues
    - KNN
    - Normal distribution
  - Classification de données discrètes
    - Naïve Bayes classifier
    - Continuousification
- Clustering
  - Estimer l'efficacité du clustering
  - Méthodes de clustering
    - K-MEANS
    - Distance maximale
    - K-MFANS++



### K-Fold cross-validation

- Divise les données en k sections
- k itérations
- k-1 sections d'apprentissage
- 1 section de test
- Résultat: moyenne des taux de reconnaissances et écart-type
- Ici, k = 10

### Courbe ROC

- Se base sur le taux de certitude de chaque point reconnu
- Fonction du taux de vrais positifs et de faux positifs



Figure: Courbe ROC pour plusieurs classifieurs, sur donut.

### **KNN**

- On peut calculer la distance entre deux points du dataset
- Trouver les K plus proches voisins

### Normal distribution

- Modéliser les données d'apprentissage par une distribution normale (moyenne, écart-type)
- Maximiser la probabilité à postériori

# Comparaison



Figure: Comparaison de classifieurs sur une partie du dataset optdigits (training).

## Naïve Bayes classifier

- Données à caractéristiques indépendantes
- Estimer certaines probabilités à partir des données d'apprentissage (P(C = c)etP(Xi = xi|C))
- Maximiser P(C = c | X = x)

### Continuousification

- Rendre des données discrètes continues (pour utiliser KNN)
- Conserver la dépendance entre les variables
- Naïf: Une valeur arbitraire par valeur observée
- NBF: Une dimension par valeur observée
- VDM/MDV: Estimer et utiliser les probabilité conditionnelles

# Comparaison



Figure: Comparaison de classifieurs sur une partie du dataset mushroom.

# Estimer l'efficacité du clustering

- Détecter la convergence vers un extrémum local
- Somme des distances intra-cluster
- Vitesse de convergence: nombre d'itérations

#### K-MEANS

- Choisir k centres au hasard
- Calculer les clusters et les nouveaux centres
- Itérer jusqu'à la convergence

### K-MEANS - centres initiaux



Figure: K-MEANS clustering sur le dataset teddy-toy, centres initiaux.

### Distance maximale

- Optimiser le choix des centres initiaux
- Maximiser la distance avec les centres déjà choisis
- Sensible au bruit

### Distance maximale - centres initiaux



Figure: K-MEANSPP (max distance) clustering sur le dataset teddy-toy, centres initiaux.

#### K-MEANS++

- Optimiser le choix des centres initiaux
- Choisir en fonction de la distance aux centres déjà choisis
- Résistant au bruit
- Efficace

### K-MEANS++ - centres initiaux



Figure: K-MEANSPP clustering sur le dataset teddy-toy, centres initiaux.

# Comparaison - distances intra-cluster



Figure: Somme des distances intra-cluster pour le dataset teddy-toy.

# Comparaison - nombre d'itération



Figure: Nombre d'itérations pour le dataset teddy-toy.

# Questions