CALVIN Benchmark

Arya Miryala

Why do we need a new benchmark?

"push the button"

Short-Horizon Task

Long-Horizon Task

- Progress in robot learning depends on benchmarks → lets researchers compare methods fairly.
- Most existing benchmarks focus on **short**, **simple tasks** (e.g., pushing or grasping).
- Real-world robotics needs **long-horizon tasks** (multi-step sequences).
- Language adds flexibility and generalization, but also makes tasks harder.
- CALVIN fills this gap: a benchmark for language-conditioned, long-horizon manipulation.

What is CALVIN?

- Language-conditioned benchmark for **long-horizon manipulation**.
- Train on multiple environments, evaluate on **unseen** tasks/environments.
- Tests **generalization**: can policies handle new instructions/contexts?
- Supports imitation learning (IL) & reinforcement learning (RL).

Train on multiple environments, test on unseen tasks and settings

How are CALVIN Tasks Structured?

- Each task is given as a **natural-language instruction**,
 - e.g. "open the drawer" or "place the red block in the slider."
- The robot receives multi-modal observations:
 - RGB-D camera images
 - Language embedding of the instruction
 - Proprioceptive data (joint angles, gripper state, etc.)
- The policy must output low-level control actions (joint or end-effector commands).
- Tasks can be **composed sequentially** to form long-horizon goals
 - benchmark tests whether a single model can complete multiple instructions in a row.
- Training uses demonstration data; evaluation measures success rate on seen vs. unseen instructions and environments.

Observation Space								
RGB static camera	$200 \times 200 \times 3$							
Depth static camera	200×200							
RGB gripper camera	$84 \times 84 \times 3$							
Depth gripper camera	84×84							
Tactile image	$120 \times 160 \times 2$							
	EE position (3)							
	EE orientation (3)							
Proprioceptive state	Gripper width (1							
	Joint positions (7)							
	Gripper action (1)							
Action Space								
Absolute cartesian pose	EE position (3)							
(w.r.t. world frame)	EE orientation (3)							
	Gripper action (1)							
Relative cartesian displacement	EE position (3)							
(w.r.t. gripper frame)	EE orientation (3)							
	Gripper action (1)							
(w.r.t. world frame) Relative cartesian displacement	EE orientation (3) Gripper action (1) EE position (3) EE orientation (3)							

Fig. 3: CALVIN supports a range of sensors commonly utilized for visuomotor control: RGB-D images from both a static and a gripper camera, proprioceptive information, and vision-based tactile sensing (bottom-left).

Observation and action spaces in CALVIN: the robot receives visual, tactile, and proprioceptive inputs and outputs low-level control actions.

The CALVIN Simulation Environments

- CALVIN uses four tabletop environments (A–D) with variations in:
 - a. Object placements
 - b. Lighting conditions
 - c. Textures and background setup
- Each environment includes interactive elements such as drawers, sliders, switches, and colored blocks
- These differences test scene-level generalization the ability to perform the same instruction in new physical layouts
- The environments are built in simulation to allow for **consistent resets and reproducible evaluation**
- Env D is held out entirely for testing to evaluate transfer to unseen environments

Four tabletop environments with varying layouts and objects; Env D is held out for testing generalization

The CALVIN Dataset

- Contains language-conditioned demonstrations pairing visual observations, robot actions, and natural-language instructions.
- Covers hundreds of thousands of trajectories across 20 + manipulation tasks.
- Each trajectory can be short (e.g., "push the button") or **long-horizon** (e.g., "open the drawer, then place the red block inside").
- The dataset is divided into:
 - Seen tasks/environments → used for training
 - b. **Unseen tasks/environments** → used for testing generalization
- Enables study of compositional generalization—models must recombine learned sub-skills to solve new multi-step tasks

Task	Natural language instructions			
rotate red block right	"rotate the red block 90			
	degrees to the right"			
	"turn the red block right"			
push blue block left	"go slide the blue			
	block to the left"			
	"push left the blue block"			
move slider left	"grasp the door handle,			
	then slide the door to the left"			
	"slide the door to the left"			
open drawer	"grasp the handle of the			
	drawer and open it"			
	"go open the drawer"			
lift red block	"lift the red block			
	from the table"			
	"pick up the red block"			
pick pink block	"pick up the pink			
from drawer	block lying in the drawer"			
place in slider	"put the grasped			
	object in the slider"			
stack blocks	"stack blocks on top			
	of each other"			
unstack blocks	"collapse the stacked blocks"			
	"go to the tower of blocks			
	and take off the top one"			
turn on light bulb	"toggle the light switch			
	to turn on the light bulb"			
turn off green light	"push the button to			
	turn off the green light"			

Fig. 4: Example crowd-sourced natural language instructions to specify manipulation tasks in CALVIN.

Learning Approaches in CALVIN

Task	Condition
Rotate	The object has to be rotated clockwise more
red/blue/pink	than 60° around the z-axis while not being
block right	rotated more than 30° around the x or y-axis.
Rotate	The object has to be rotated counterclockwise
red/blue/pink	more than 60° around z while not being rotated
block left	more than 30° around the x or y-axis.
Push	The object has to move more than 10 cm to the
red/blue/pink	right while having surface contact in both
block right	frames.
Push	The object has to move more than 10 cm to the
red/blue/pink	left while having surface contact in both
block left	frames.
Move slider	The sliding door has to be pushed at least 12
left/right	cm to the left/right.
Open/close	The drawer has to be pushed in/pulled out at
drawer	least 10 cm.
Lift	The object has to be grasped from the table
red/blue/pink	surface and lifted at least 5 cm high. In the first
block table	frame the gripper may not touch the object.
Lift	The object has to be grasped from the sliding
red/blue/pink	cabinet's surface and lifted at least 3 cm. In the
block slider	first frame the gripper may not touch the object.
Lift	The object has to be grasped from the drawer's
red/blue/pink	surface and lifted at least 5 cm high. In the first
block drawer	frame the gripper may not touch the object.
Place in	The object has to be placed in the sliding
slider/drawer	cabinet/drawer. It must be lifted by the gripper
	in the first frame.
Push into	The object has to be pushed into the drawer. It
drawer	has to touch the table surface in the first frame.
Stack blocks	A block has to be placed on top of another
	block. It may not be in contact with the gripper
	in the final frame.
Unstack	A block has to be removed from the top of
blocks	another block. It may not be in contact with the
	gripper in the first frame.
Turn on/off	The switch has to be pushed up/down to turn
light bulb	on/off the yellow light bulb.
Turn on/off	The button has to be pressed to turn on/turn off
LED	the green LED light.

Fig. 6: List of all 34 tasks with their respective success criteria.

- CALVIN benchmarks a variety of policy learning methods for long-horizon, language-conditioned control.
- Multi-Context Imitation Learning (MCIL):
 - a. Learns from demonstration data across multiple environments.
 - b. Uses language embeddings to generalize to unseen instructions.
 - Most effective and sample-efficient method in the benchmark.
- Reinforcement Learning (RL) baselines (e.g., PPO):
 - Learn policies from trial-and-error reward feedback.
 - Struggle with sparse rewards and long-horizon dependencies.
- Language-conditioned baselines:
 - Combine pretrained vision-language encoders (like CLIP) with control networks.
 - Test how well language understanding transfers to manipulation.
- focus is on **evaluating generalization**—how well each method handles unseen instructions and environments (Env D).

Understanding CALVIN's Task Complexity

Fig. 7: Visualization of the subtask distribution across the 1000 nstruction chains used for the Long Horizon MTLC evaluation. We show the percentage in which each subtask appears in the distribution.

- CALVIN includes a mix of short and long-horizon tasks, covering diverse manipulation primitives (e.g., open drawer, push block, toggle switch)
- Tasks are chained together to form multi-step, language-conditioned instructions
- The task distribution is balanced enough to prevent bias toward any single action, but still complex enough to challenge compositional generalization
- Performance drops on long-horizon tasks highlight how chaining multiple skills remains an open research problem
- These insights explain why imitation learning outperforms RL—it leverages structured demonstrations for multi-step reasoning

Benchmark Results on CALVIN

- Multi-Context Imitation Learning (MCIL) achieved the highest success rates, showing strong generalization across unseen tasks.
- Reinforcement Learning (RL) baselines (e.g., PPO) performed significantly worse — they often failed to complete long-horizon tasks due to sparse rewards.
- Language-conditioned models using pre trained encoders (e.g., CLIP-based) showed moderate performance but lacked full compositional understanding
- Models trained on multi-environment data generalized better than those trained in a single context
- Performance drops notably from seen tasks → unseen tasks, highlighting the difficulty of long-horizon generalizationS

Input				Train → Test	MTLC	LH-MTLC					
Static Camera Gripper Camera Tactile				(34 tasks)	No. Instructions in a Row (1000 chains)				chains)		
RGB	D	RGB	D	RGB			1	2	3	4	5
~	X	X	X	X	$D \rightarrow D$	53.9%	48.9%	12.9%	2.6%	0.5%	0.08%
~	X	X	X	X	$A,B,C,D \rightarrow D$	35.6%	28.2%	2.5%	0.3%	0%	0%
~	X	X	X	X	$A,B,C \rightarrow D$	38.6%	20.2%	0.2%	0%	0%	0%
V	X	V	X	X	$D \rightarrow D$	51.8%	34.4%	5.8%	1.1%	0.2%	0.08%
V	X	V	X	Х	$A,B,C,D \rightarrow D$	49.7%	37.3%	2.7%	0.17%	0%	0%
V	X	V	X	X	$A,B,C \rightarrow D$	38.0%	30.4%	1.3%	0.17%	0%	0%
~	X	X	Х	V	$D \rightarrow D$	54.2%	28.5%	3.2%	0%	0%	0%
~	X	X	X	V	$A,B,C,D \rightarrow D$	47.9%	22.7%	2.3%	0.3%	0%	0%
~	X	X	X	V	$A,B,C \rightarrow D$	43.7%	17.3%	0.8%	0.08%	0%	0%
V	V	~	V	X	$D \rightarrow D$	46.1%	28.2%	4.6%	0.3%	0.08%	0%
V	V	V	V	X	$A,B,C,D \rightarrow D$	40.7%	14.4%	1.8%	0.08%	0.08%	0%
V	V	V	V	X	$A,B,C \rightarrow D$	30.8%	21.1%	1.3%	0%	0%	0%

Fig. 8: Baseline performance of MCIL [6] on the CALVIN Challenge for different combinations of training and test environments and sensor suites.

My Work / Key Takeaways

- Set up and ran complex robotics codebases (CALVIN / ManiSkill) involving Hydra configs, simulation rendering, and policy evaluation
 - a. Logs in github repo: https://github.com/aryamiryala/CALVIN_Replication
- Tried running MCIL learning but ran into too many errors and ran out of time to debug

Benchmark Contribution:

CALVIN introduces a **unified benchmark** for language-conditioned, long-horizon robot manipulation, filling a gap between vision-language models and embodied control.

Task Design:

Focuses on **sequential**, **compositional tasks** (e.g., "open drawer, then move block") that require **multi-step reasoning**—not just single-action imitation.

Dataset & Environment:

Provides large-scale demonstrations in simulated tabletop scenes with multiple objects and natural-language instructions, enabling reproducible research.

Model Insights:

Shows that multi-context imitation learning (MCIL) and language-conditioned policies can generalize across unseen tasks, scenes, and instructions—but still struggle with long-term temporal credit assignment.

Evaluation Framework:

Establishes **clear metrics** for generalization and compositionality, setting a baseline for future multimodal policy-learning approaches