Team Number:	204
Project Name:	ClapSense
Team Member Names:	Caleb Yuen
Version:	1

A. List ALL major components (active devices, integrated circuits, etc.) except for			
All Major Components	Component Name	Part Number	
Microcontroller	PIC18F57Q43 Nano	DM182029	
Motor Driver (logic)	TB6612FNG	TB6612FNG	
DC Gearmotor (through driver)	DFRobot 6 V Metal Gearmotor	FIT0495-A	
Status LEDs (2×)			
District (LDD)			

Photoresistor (LDR)
Potentiometer (10 k)

B. Assign each major component above to ONE power rail below. Try to minimize +6V Power Rail Component Name Part Number

DC Gearmotor (via TB6612 VM) FIT0495-A FIT0495-A

c1. Regulator or Source Choice 9 V→6 V buck converter 0930

+5V Power Rail	Component Name	Part Number
Motor Driver (logic)	TB6612FNG	TB6612FNG

c2. Regulator or Source Choice 9 V→5 V buck converter 0930

+3.3V Power Rail	Component Name	Part Number
Microcontroller	PIC18F57Q43 Nano	DM182029
Status LEDs (2×)		
Photoresistor (LDR)		
Potentiometer (10 k)		

c3. Regulator or Source Choice $5 V\rightarrow 3.3 V LDO/buck conver (full part number)$

C. For each power rail above, select a specific voltage regulator using the same pr

D. Select a specific external power source (wall supply or battery) for your system

External Power Source 1	Component Name	Part Number
Plug-in Wall Supply (Barrel Jack)	AC/DC Adapter Model 0930	0930

Power Rails Connected to External

Power Source 1

+6V regulator +5V Regulator

+3.3V low-dropout regulator

External Power Source 2 Component Name Part Number

Power Source 2 Selection

Power Rails Connected to External Power Source 2

E. Calculate Battery Life (if applicable). For each battery, also check the worst-cas

Component Name Part Number

Battery

Notes

The Master Controller (Hub) subsystem of the ClapSense project uses a 9 V 2 A AC converters. The estimated total current draw is \approx 0.83 A (1.64 A peak with margin), well the 3.3 V

ower Budget Example

power sources, voltage regulators, resistors, capacitors, or passive element		
SupplyVoltageRange	#	Absolute
+3.3V	1	50
+5V	1	50
+6V	1	1200
+3.3V	2	20
+3.3V	1	10
+3.3V	1	5

the number of different power rails in the design.		
SupplyVoltageRange	#	AbsoluteMaximumCurrent (mA)
+6V	1	1200

Subtotal Safety Margin Total Current Required on +6V Rail

+8V - 24V in	1	1500
	Total R	emaining Current Available on +9V Rail
SupplyVoltageRange	#	AbsoluteMaximumCurrent (mA)

Subtotal Safety Margin Total Current Required on +5V Rail

	+8V - 24V in	1	1000
		Total R	emaining Current Available on +9V Rail
	SupplyVoltageRange	#	AbsoluteMaximumCurrent (mA)
,	+3.3V	1	50
	+3.3V	2	20
	+3.3V	1	10
	+3.3V	1	5

Subtotal Safety Margin Total Current Required on +3.3V Rail

+4.5V - 6V in 1 300

Total Remaining Current Available on +5V Rail

rocess as for major component selection. Confirm that the Total Remaining C

, and confirm that it can supply all of the regulators for all of the power rail		
SupplyVoltageRange	Output	AbsoluteMaximumCurrent (mA)
100-240 VAC	+9V	2000
	1	750
	1	13
	1	65

Total Remaining Current Available on External Power Source 1

SupplyVoltageRange	Output	AbsoluteMaximumCurrent (mA)

Total Remaining Current Available on External Power Source 2

se lifetime of the battery by indicating the capacity in mAh.	
SupplyVoltageRange	Capacity(mAh)

Battery Life

:/DC wall adapter (Model 0930) as the main source. Power is distributed to 6 V, 5 \ within adapter limits. The 6 V rail drives the motor and TB6612FNG VM, the 5 V rail powers the PIC18F57Q43 and sensor inputs.

TotalCurrent(mA) Unit
25 mA
10 mA
600 mA
20 mA
5 mA
2 mA
Total Commont/month
TotalCurrent(mA) Unit 600 mA
mA
0 mA
0 mA 0 mA
600 mA
25% 750 mA
/30 IIIA
1500 mA
750 mA
TotalCurrent(mA) Unit
10 mA
mA
0 mA
0 mA
0 mA
10 mA
25%
12.5 mA
1000 mA
987.5 mA
TotalCurrent(mA) Unit
TotalCurrent(mA) Unit 25 mA
TotalCurrent(mA) Unit 25 mA 20 mA
TotalCurrent(mA) Unit 25 mA

52	mA	
25%		
65	mA	
300	mA	
235	mA	
Current Available on each rail above is		

simultaneously. If you need multiple

simultanio del y in y ou modu manapio	
TotalCurrent(mA)	Unit
2000	mA
750	mA
13	mA
	mA
1172	mA
TotalCurrent(mA)	Unit
	mA
	mA
0	mA
RequiredByRegulators	
0	
#DIV/0!	hours

/, and 3.3 V rails through dedicated buck ail handles logic and power conversion, and