哈夫曼(Huffman)树

Huffman编码(最优编码)

问题的提出:

哈 2594

尔 2291

滨 1785

工 2504

业 5024

大 2083

学 4907

啊1601阿1602吖6325嗄6436腌7571锕7925埃1603挨1604哎1605唉1606哀1607皑1608癌1609蔼1610矮1611 6441赟7040赟7208暌7451砹7733锿7945霭8616鞍1616氨1617安1618俺1619按1620暗1621岸1622胺1623案 7281铵7907鹌8038黯8786肮1625昂1626盎1627凹1628敖1629熬1630鄡1631袄1632傲1633奥1634懊1635澳 6959鰛7033骜7081嫯7365骜8190骜8292鏊8643鰲8701鏖8773芭1637捌1638扒1639叭1640吧1641笆1642八 1649耙1650坝1651霸1652罢1653爸1654菱6056菝6135岜6517灞6917钯7857粑8446鲅8649魃8741白1655柏 1662換6267呗6334掰7494斑1663班1664搬1665扳1666般1667颁1668板1669版1670扮1671拌1672伴1673瓣 7851瘢8103癍8113舨8418邦1678帮1679梆1680榜1681膀1682绑1683棒1684磅1685蚌1686镑1687傍1688谤 1693剥1694薄1701雹1702保1703堡1704饱1705宝1706抱1707报1708暴1709豹1710鲍1711爆1712葆6165孢 1713碑1714悲1715卑1716北1717辈1718背1719贝1720钡1721倍1722狈1723备1724惫1725焙1726被1727孛 6703碚7753鹎8039褙8156鐾8645鞴8725奔1728苯1729本1730笨1731畚5946坌5948贲7458锛7928崩1732綳 7420逼1738鼻1739比1740鄙1741笔1742彼1743碧1744萞1745蔽1746毕1747毙1748毖1749市1750庇1751痹 1758臂1759瞬1760哗1761上,5616俾5734荜6074莘6109薜6221吡6333哗6357哗6589庳6656愎6725漟6868過 7815铋7873秕7985複8152筚8357箪8375篦8387舭8416櫱8437跸8547體8734鞭1762边1763编1764贮1765扁 1772谝1773鳫5650弁5945苄6048忭6677汴6774缏7134飚7614煸7652砭7730碥7760字8125褊8159蝙8289铳 7027骠7084村7228飑7609飙7613镖7958镳7980瘭8106裱8149鳔8707髟8752瞥1778歟1779别1780瘜1781蹩 1787傧5747豳6557缤7145玢7167槟7336殡7375膑7587镔7957髌8738蹩8762兵1788冰1789柄1790丙1791秉

编码(如电报码)

等长编码 不等长编码

特点:

编码长度 译码速度 传输速度

第3章 树与二叉树

增长树

√内结点 ○

外结点 □

如内结点数为 n,则外结点 S = n + 1

内结点路径长度 I = 2×1+3×2+1×3 = 11

外结点路径长度 E = 1×2+5×3+2×4 = 25

如内结点路径长度为I,则外结点路径长度 $E = I + 2 \times n$

设: $w_i = \{2,3,4,11\}$

求: $\sum w_j \cdot l_j$ (加权路长)

- (a) $11 \times 1 + 4 \times 2 + 2 \times 3 + 3 \times 3 = 34$
- (b) $2 \times 1 + 3 \times 2 + 4 \times 3 + 11 \times 3 = 53$
- (c) $2\times2+11\times2+3\times2+4\times2=40$

哈夫曼树(最优二叉树):在给定权值为 w_1 , w_2 … w_n 的 n 个叶结点所构成的所有扩充二叉树中, $WPL = \sum w_i \cdot l_i$ 最小的称为huffman树。

优化(分类统计的)判定过程

例:输入一批学生成绩,将百分制转换成五分制。并且已知:

分数	0-59	60-69	70-79	80-89	90-100
比例数	0.05	0.15	0.40	0.30	0.10

```
if (a<60) b="fail"
else if (a<70) b="pass"
else if (a<80) b="general"
else if(a<90) b="good"
else b="excellent"
如图 (a) 所示
```


以5,15,40,30,10 为权构造一株扩充二 叉树如图(b)所示,将 判定框中的条件分开, 可得到(c),从而实现 判定过程的最优化。

- (a) $5 \times 1 + 15 \times 2 + 40 \times 3 + 30 \times 3 + 10 \times 4 = 285$
- (b) $40 \times 1 + 30 \times 2 + 15 \times 3 + 5 \times 4 + 10 \times 4 = 205$

(c) $5 \times 3 + 15 \times 3 + 40 \times 2 + 30 \times 2 + 10 \times 2 = 220$

哈夫曼树(最优二叉树)

在给定权值为 \mathbf{w}_1 , \mathbf{w}_2 … \mathbf{w}_n 的 \mathbf{n} 个叶结点所构成的所有扩充二叉树中,WPL = $\sum \mathbf{w}_i \cdot \mathbf{l}_i$ 最小的称为huffman树。

→ 哈夫曼树的特点:

- 权值越大的叶子结点越靠近根结点,而权值越小的叶子结点越远 离根结点。(构造哈夫曼树的核心思想)
- 只有度为**0**(叶子结点)和度为**2**(分支结点)的结点,不存在度 为**1**的结点。
- n个叶结点的哈夫曼树的结点总数为2n-1个。
- ■哈夫曼树不唯一,但WPL唯一。

→ 哈夫曼树的构造方法:

- (1) 初始化:由给定的n个权值 $\{w_1, w_2, ..., w_n\}$ 构造n棵只有一个根结点、左右子树均空的二叉树,从而得到一个二叉树集合 $F=\{T_1, T_2, ..., T_n\}$;
- (2) 选取与合并: 在**F**中选取根结点的权值最小的两棵二叉树分别作为 左、右子树构造一棵新的二叉树,这棵新二叉树的根结点的权值为其 左、右子树根结点的权值之和;
- (3) 删除与加入: 在**F**中删除作为左、右子树的两棵二叉树,并将新建立的二叉树加入到**F**中;
- (4) 重复(2)、(3)两步,当集合**F**中只剩下一棵二叉树时,这棵二叉树便 是哈夫曼树。

- → 哈夫曼树的构造示例: W={2,3,4,11}
 - 初始化:
 - 选取与合并:

- 删除与加入:
- 重复:

$$F = \{ 9 \ 11 \}$$

▶ 哈夫曼树的存储结构----静态三叉链表

weight parent Ichild rchild typedef struct { // 结点型 double weight; // 权值 int lchild; // 左孩子链 rchild; // 右孩子链 parent; // 双亲链 **HTNODE**; typedef HTNODE HuffmanT[2n-1]; (2n-1)-**HuffmanT T**;

▶ 哈夫曼树构造算法的实现示例:

(7)(5)(2)(4)

	weight	paren	t lchild	l rchild
0	7	-1	-1	-1
1	5	-1	-1	-1
2	2	-1	-1	-1
3	4	-1	-1	-1
4		-1	-1	-1
5		-1	-1	-1
6		-1	-1	-1
		初始	化	

少人为日

▶ 哈夫曼树构造算法的实现示例:

▼門八文州彻坦并仏Ⅱ	weight	paren	t lchild	l rchild
0	7	-1	-1	-1
1	5	-1	-1	-1
$\stackrel{\mathbf{p1}}{\longrightarrow} 2$	2	4 🔾	-1	-1
$\stackrel{\mathbf{p2}}{\longrightarrow} 3$	4	4 -1	-1	-1
$\stackrel{i}{\longrightarrow} 4$	6	-1	2 🔾	3 -1
$\begin{array}{c} (7) (5) (6) \\ \end{array}$		-1	-1	-1
\bigcirc		-1	-1	-1
		计程		1

▶ 哈夫曼树构造算法的实现示例:

H/(2/11102)	Т	weight	paren	t lchild	l rchild
	0	7	-1	-1	-1
p _	<u>l</u> 1	5	5 -1	-1	-1
	2	2	4	-1	-1
(7) (11)	3	4	4	-1	-1
	4	6	5 - 1	2	3
$\begin{array}{c} (5) & (6) \\ \end{array}$	5 − 5	11	-1	1 🖳	4 -1
2 4	6		-1	-1	-1
			过程		

2018/11/17

▶ 哈夫曼树构造算法的实现示例:

47(2)(4)(4)		weight	parent	t lchild	l rchild
	$\stackrel{\mathbf{p1}}{\longrightarrow} 0$	7	6 4	-1	-1
	1	5	5	-1	-1
18)	2	2	4	-1	-1
(7) (11)	3	4	4	-1	-1
	4	6	5	2	3
(5) (6)	$\stackrel{\mathbf{p2}}{\longrightarrow} 5$	11	6 -1	1	4
\bigcirc	4) $\stackrel{i}{\longrightarrow}$ 6	18	-1	0 🔾	5 -1
			讨程		

人工作工

▶ 哈夫曼树构造算法的实现

```
void CreartHT(HuffmanTT)//构造huffam树,T[2n-2]为其根
{ int i ,p1 ,p2;
                                   //1.初始化
  InitHT(T);
                                  //2.输入权值
  InputW(T);
                                  //3. n-1次合并*/
  for (i = n; i < 2n-1; i++)
    SelectMin(T, i-1, &p1, &p2);
                                  //3.1
    T[p1].parent = T[p2].parent = i; //3.2
    T[i].lchild=p1;
    T[i].rchild=p2;
    T[i].weight = T[p1].weight + T[p2].weight;
```


- → 哈夫曼树的构造示例: W={2,3,4,11}
 - 初始化:
 - 选取与合并:

- 删除与加入:
- 重复:

哈夫曼树的应用----哈夫曼编码

- ■编码: 是指将文件(字符集)中的每个字符转换为一个唯一的(二)进制串。
- ■译码(解码): 是指将(二)进制串转换为对应的字符。
- § 对于给定的字符集,可能存在多种编码方案,但应选择最优的
- 3.编码的前缀性:
 - ■对字符集进行编码时,如果任意一个字符的编码都不是其它任何字符编码的前缀,则称这种编码具有前缀性或前缀编码。
- ■注意
- ✓等长编码具有前缀性;
- ✓变长编码可能使译码产生二义性,即不具有前缀性。

如, E(00), T(01), W(0001), 则译码时无法确定信息串是ET还是W。

2018/11/17 Slide 3-144

哈夫曼树的应用----哈夫曼编码

- ◆ 相关术语
 - 平均编码长度:
 - 对于给定的字符集(一组对象),可能存在多种编码方案,但应 选择最优的。
 - 平均编码长度:设每个(对象)字符 c_j 的出现的概率为 p_j ,其二进制位串长度(码长)为 l_j ,则 $\sum p_j$ l_j 表示该组对象(字符)的平均编码长度。
 - 最优前缀码: 使得平均编码长度 $\sum p_j \cdot l_j$ 最小的前缀编码称为最优的前缀码。

字符	a	b	c	d	e	f	平均
概率	0.45	0.13	0.12	0.16	0.09	0.05	码长
等长	000	001	010	011	100	101	3
变长	0	101	100	111	1101	1100	2.24

 $= \lceil \log_2 |C| \rceil$ $= \sum \mathbf{p_j} \cdot \mathbf{l_j}$

▶ 哈夫曼编码示例

字符	a	b	c	d	e	\mathbf{f}	平均	
概率	0.45	0.13	0.12	0.16	0.09	0.05	码长	
等长	000	001	010	011	100	101	3	$=\lceil \log_2 C \rceil$
变长	0	101	100	111	1101 3	100	2.24	$= \sum \mathbf{p_j} \cdot \mathbf{l_j}$

_	ch	bits				
0	a	0				
1	b	101				
2 3	c	100				
3	d	111				
4 5	e	1101				
6	\overline{f}	1100				
•	编码表 H					

◆ 哈夫曼编码表的存储结构

typedef struct{

char ch; //存储被编码的字符 char bits[n+1]; //字符编码位串

}CodeNode;

typedef CodeNode HuffmanCode[n];

HuffmanCode H;

9		
a: .45	0 .55	
0	$(.25)_{1}$ $(.30)_{1}$	
c: .12	b: .13 d: .16	
	f: .05 e: .09	

ch weight parent lchild rchild

	CII	UILS
0	a	0/0
1	b	101\0
2	c	100\0
3	d	111\0
4	e	1101\0
5	f	1100\0
d	编	码表H

_	ch	weight	parent	lchild	rchild
0	a	0.45	10	-1	-1
1	b	0.13	7	-1	-1
2	c	0.12	7	-1	-1
3	d	0.16	8	-1	-1
4	e	0.09	6	-1	-1
5	f	0.05	6	-1	-1
6		0.14	8	5	4
7		0.25	9	2	1
8		0.30	9	6	3
9		0.55	10	7	8
10		1.00	-1	0	9

哈夫曼树T

→ 哈夫曼编码算法的实现

```
void CharSetHuffmanEncoding( HuffmanT T, HuffmanCode H)
                                                     bits
                                                ch
{ //根据Huffman树T 求Huffman编码表 H
 int c, p, i; // c 和p 分别指示T 中孩子和双亲的位置
                                             ()
 char cd[n+1]; // 临时存放编码
 int start; // 指示编码在cd 中的位置
 cd[n]='\0'; // 编码结束符
                                             3
 for(i=0;i<n;i++){ // 依次求叶子T[i]的编码
  H[i].ch=getchar(); // 读入叶子T[i]对应的字符
                                             5
                 // 编码起始位置的初值
  start=n;
                 // 从叶子T[i]开始上溯
  c = i;
                                                编码表 H
   while((p=T[c].parent)>=0){ // 直到上溯到T[c]是树根位置
    cd[--start]=(T[p].lchild==c)? '0': '1';
    // 若T[c]是T[p]的左孩子,则生成代码0,否则生成代码1
          // 继续上溯
    c=p;
   strcpy(H[i].bits,&cd[start]); //复制编码为串于编码表H
```

编码:依次读入文件的字符c ,在huffman编码表H 中找到此字符,若H[i].ch==c,则将c 转换为H[i].bits中的编码串

- → 译码:依次读入文件的二进制码,在huffman树中从根结点T[m-1]出发,若读入0,则走左支,否则,走右支,一旦到达某叶结点T[i]时便译出相应的字符H[i].ch。然后重新从根出发继续译码,直到文件结束。
- → 哈夫曼编码一定具有前缀性;
- → 哈夫曼编码是最小冗余码;
- ▶ 哈夫曼编码方法,使出现概率大的字符对应的码长较短;
- → 哈夫曼编码不唯一,可以用于加密;
- ◆ 哈夫曼编码译码简单唯一,没有二义性。
- ▶ 国际流行两种图像压缩编码标准:在多媒体技术如视频信号的压缩技术中用到了 哈夫曼编码。JPEG、MPEG
- ▶ 哈夫曼编码是一种无失真编码,即对源数据压缩后形成的编码,进行恢复时, 完全恢复源数据,但它对静态的数据是可行的。

判定树

- → 八枚硬币问题:
 - 假定有八枚硬币a、b、c、d、e、f、g、h,已知其中1枚是伪造的假币,假币的重量与真币不同,或重或轻。要求以天平为工具,用最少的比较次数挑出假币。
- → 八枚硬币问题的判定树

2018/11/17 Slide 3-151

→ 八枚硬币问题的判定树

2018/11/17 Slide 3-152

判定树

- → 判定树的特点:
 - 一个判定树是一个算法的描述;
 - 每个内部结点对应一个部分解;
 - 每个叶子对应一个解;
 - 每个内部结点连接与一个获得新信息的测试;
 - 从每个结点出发的分支标记着不同的测试结果;
 - 一个解决过程的执行对应于通过根到叶的一条路
 - ■一个判定树是所有可能的解的集合

3.7 树型结构的应用

用树结构表示集合

- **→** ADT集合MFSET
 - ■集合:
 - ●性质相同的元素所组成的整体(有限且互不相交)
 - ■集合上的基本操作
 - •Union(S_i , S_j , S): If $S_i \cap S_j = \Phi$, $S = S_i \cup S_i$;
 - ●Find(i, S): 求包含i 的集合;
 - ●Initial(A, x): 建立集合A, 使之只包含x。
 - 例如, $S_1 = \{1, 7, 8, 9\}$, $S_2 = \{2, 5, 10\}$, $S_3 = \{3, 4, 6\}$,则 $S_1 \cup S_2 = \{1, 2, 5, 7, 8, 9, 10\}$

用树结构表示集合

- → ADT集合MFSET的实现
 - ■集合的树结构表示(父链表示)
 - •令集合的元素对应于数组的下标,
 - ●而相应的元素值表示其父结点所对应的数组单元下标。
 - ●"并":把其中之一当成另一棵树的子树即可。
 - ●"包含":求元素所在的树根。

数组下标:代表元素名

根结点的下标:集合名

用树结构表示集合

◆ 集合的存储结构

#define n 元素的个数

typedef int MFSET[n+1];

/* 集合的"型"为MFSET,元素的"型"为int */

→ 基本操作的实现

void Union(int i, int j ,MFSET parent)

[parent[i]=j;/* 归并,结果树之根为j */

用树结构表示集合

→ 基本操作的实现
int Find(int i, MFSET parent)
{ parent[x]=0;
} //O(1)
while(parent[tmp]!=0)/* >0,未到根 */
tmp=parent[tmp]; /* 上溯 */
return tmp;

用树结构表示集合

- ▶ 性能分析: 看下列操作序列
 - Union(1, 2, parent), Find(1, parent)
 - Union(2, 3, parent), Find(1, parent)!
 - Union(3, 4, parent), Find(1, parent)

Union(n-1,n, parent), Find(1, parent)

原因:在"并" 操作时,将结 点多的并入结 点少的,从而 形成单链树。

每次执行Union的时间都是O(1) , 共n-1次,所需时间O(n); 每个Find(1, parent),需要从1开始找到根,当1位于第i层时, Find(1, parent) 所需时间为O(i),共n-2次,所需时间为O(∑

 $= O(n^2)$

用树结构表示集合

- → 改进的ADT MFSET的实现
 - ■基本想法:
 - ●改进"并"操作的原则,即将结点少的并入结点多的; 另外,相应的存储结构也要提供支持—以加权规则压缩 高度。
 - ■存储结构:

```
typedef struct{
    int father;
    int count; // 加权
```

- } MFSET[**n+1**];
- ■基本操作的实现:

用树结构表示集合

→ 改进的ADT MFSET的实现

```
void Union(int A,int B,MFSET C)
  if(C[A].count > C[B].count) \{ // |B| < |A| \}
      C[B].father = A; // # \lambda A
      C[A].count += C[B].count;
   else { //|A|<|B|
     C[A].father = B; //并入B
     C[B].count += C[A].count;
```


用树结构表示集合

→ 改进的ADT MFSET的实现 int Find(int x, MFSET C) int tmp=x; while(C[tmp].father!=0)//>0,未到根 tmp=C[tmp].father; // 上溯 return tmp; void Initial(int A ,MFSET C) C[x].father=0; C[x].count=1;

用树结构表示集合

- ◆ 集合的等价分类
 - 等价关系: 集合S上具有自反性、对称性和传递性的二元关系R.
 - 等价类: x∈S, y∈S, x≡y ⇔ (x, y)∈R或 xRy。
 - 集合S上的一个等价关系唯一确定一个等价类的集合S/R(商集)。
 - 等价分类: 把一个集合分成若干个等价类的过程(分清、分净)
 - 等价分类算法:
 - ●例如集合S = {1,2,3,4,5,6,7}的等价对分别是: 1≡2,5≡6,3≡4,1≡4


```
void Equivalence (MFSET S) //等价分类算法
  int i ,j , k ,m;
  for(i=1; i<=n+1;i++)
     Initial(i,S);   //使集合S只包含元素i
            // 读入等价对
  cin>>i>>j;
  while(!(i==0&&j==0){ // 等价对未读完
     k=Find(i,S); //求i的根
     m=Find(j,S); // 求j的根
     if(k!=m) //if k==m,i,j已在一个树中,不需合并
        Union(i,j,S); //合并
     cin<<i<<j;
```


树的应用—表达式求值

- ▶ 用树结构表示表达式----表达式树
 - 叶结点表示操作数;
 - 非叶结点表示运算符:
 - 二元运算符有两棵子树对应于它的操作数;
 - 一元运算符有一棵子树对应于它的操作数。

树的应用—表达式求值

- ◆ 表达式求值方法
 - 把中缀表达式转换为后缀表达式(栈结构、树结构);根据后缀表 达式计算表达式的值
 - 利用后序遍历算法,先计算左子树的值,然后再计算右子树的值。 当到达某结点时,该结点的左右操作数都以求出。

2018/11/17 Slide 3-166

本章小结

