Graph Algorithms in VLSI CAD

Susmita Sur-Kolay I. S. I. Kolkata

Motivation

A VLSI layout

Its graph representation

Layout Problem

Interconnection information among circuit modules

maximal planar subgraph extraction

Routing Problem

- An electrical signal net connected with a set of modules
- Edge costs indicate the cost of connections
- Objective: Connect all the modules with minimum cost

Data Structures and Algorithms for VLSI Design

Objectives:

- To understand how a layout is represented and manipulated
- To review basic graph algorithms
- Abstraction of VLSI design problems as an optimization/search problems in appropriate graphs

Standard graphs used in studying VLSI design problems

Basic algorithms on those graphs

Basic Graph search algorithms

A graph

Depth first search tree

Breadth first search tree

Basic Graph search algorithms

Algorithm DEPTH-FIRST SEARCH(*u*)

begin

```
MARK(u) = 1;

for each vertex v, such that (u,v) \in E

if MARK(v) = 0 then

DEPTH-FIRST-SEARCH(v);

end.
```

Algorithm BREADTH-FIRST-SEARCH(*u*)

```
begin
  put the start vertex in Q;
  while Q not empty do
    u = first element of Q
    for each vertex v, such that (u,v) ∈ E
       process v;
      put v in Q;
  endwhile
end.
```

Algorithm for MST

- Instance: A connected weighted undirected graph G(V,E)
- Solution space: All trees that span nodes of G
- Objective: Minimize I(T) = S_{e∈T} I(e)
- Algorithm:

```
A = f;

for each vertex v \in V

do Make-Set (v)

sort the edges of E by non-decreasing weights

for each edge (u,v) \in E (* in order by non-decreasing weight *)

do if FIND-Set(u) \neq FIND-Set(v)

then A \leftarrow A\cup {(u,v)}

UNION (u,v)
```

Return A

Single Source Shortest Path

Applications: Routing multi-terminal nets

Input: A directed graph G(V,E) with <u>non-negative</u> edge weights

Output: A set S containing the weight of the <u>shortest path</u> of each node from the <u>source node</u> s.

DIJKSTRA's Algorithm

Data Structure: Each node is attached with a pointer π to point its predecessor on the Shortest path

```
Algorithm DIJKSTRA(G, w, s)
                                                        Procedure RELAX (u,v,w)
begin
                                                        begin
  S = \phi; Q = V(G); (* Q \rightarrow Priority Queue *)
                                                           if d(v) > d(u) + w(u, v) then
                                                             d(v) = d(u) + w(u,v);
  while Q \neq \emptyset do
    u = \text{EXTRACT-MIN}(Q); \quad S = S \cup \{u\};
                                                             \pi(\mathbf{v}) = u;
    for each vertex v \in Adj(u) do
                                                           endif
      RELAX (u,v,w);
                                                        end.
  endwhile
end.
```

Bipartite Matching

Definition: Given an undirected graph G(V, E),

- A matching is a subset of edges E' ⊆ E such that for all vertices v ∈ V, at most one edge of E' is incident on v.
- A maximum matching is a matching with maximum cardinality.
- A matching is called **bipartite matching** if the graph G is bipartite.

Given a bipartite graph G(V, E), where $V = L \cup R$, construct a weighted digraph G'(V', E') as follows:

- $V' = V \cup \{s, t\}$
- $E' = \{(s, u) : u \in L\} \cup \{(u, v) : u \in L, v \in R, (u, v) \in E\} \cup \{(v, t) : v \in R\}$
- Assign unit capacity to each edge.

Result: If M is a matching in G, then there is a integer valued flow f in G' with |f| = |M|.

Conversely, if f is an integer valued flow in G, then there is a matching M with cardinality |M| = |f|.

Problem: Find the maximum flow in the network *G*'.

Matching edges are those edges of G through which flow pass.

Max-flow Min-cut Problem

Given a digraph G(V, E) with each edge having capacity $c(u, v) \ge 0$, and two designated nodes s (source) and t (sink),

Flow f(u,v): a real-valued function (may be "+" / "-"/0), and satisfies

Capacity constraint: For all $u, v \in V$, we require $f(u, v) \leq c(u, v)$.

Skew symmetry: For all $u, v \in V$, we require f(u, v) = -f(v, u).

Flow conservation: For all $u \in V - \{s, t\}$, we require $S_{v \in V} f(u, v) = 0$.

Objective: maximize value of the flow $|f| = S_{v \in V} f(s, v)$

A flow network

11/16 S 10 1/4 4/9 15/20 7/7 t 8/13 V₂ 11/14 V₄ 4/4

A flow augmenting path

Augmented flow

The residual network (c(u,v) = c(u,v) - f(u,v))

Ford-Fulkerson Method (*G*, *s*, *t*)

```
(* Initialize flow f to 0 *)
          for each edge (u,v) \in E
                     do f[u,v] \leftarrow 0; f[v,u] \leftarrow 0;
    while an augmenting path p from s to t exists in the residual network
                    use breadth-first search to find a shortest path
                    from s to t in residual network *)
          do (* augment flow f along p *)
                    c_f(p) \leftarrow \min\{c_f(u,v) : (u,v) \text{ is in } p\}
                    for each edge (u,v) in p
                               do f[u,v] \leftarrow f[u,v] + c_f(p);
                                    c[u,v] \leftarrow c[u,v] - c_t(p);
                                    f[u,v] \leftarrow -f[v,u];
```

return f

Time complexity : $O(E |f^*|)$

where f* is the maximum flow.

Execution Trace

Significant NP-complete graph problems

Independent set problem

Instance: Graph G = (V, E), and a positive integer $k \le |V|$.

Question: Does G contain an independent set of size k or more, i.e., a

subset

 $V \subset V$ such that no two vertices of V' are adjacent, and $|V'| \ge k$

Clique problem

Instance: Graph G = (V, E), and a positive integer $k \le |V|$.

Question: Does G contain a clique of size k or more, i.e., a subset $V' \subset V$ such that every pair vertices of V' are adjacent, and |V'| > k.

Graph k-colorability

Instance: Graph G = (V, E), and a positive integer $k \le |V|$.

Question: Is G k-colorable, i.e., does there exist a function

 $f: V \rightarrow \{1, 2, ..., k\}$ such that $f(u) \neq f(v)$ whenever $\{u, v\} \in E$?

Special Classes of graphs in VLSI CAD

- Planar graphs
- Interval graphs
- Circle graphs
- Permutation graphs

Planar Graphs

A planar graph

Its planar embedding

- A graph G is planar if it can be drawn in the plane without edges crossing.
- The importance of this type of graphs stems from the fact that several graph problems which are hard in general, are easy if G is known to be planar.
- This class of graphs is useful in circuit layout design

Two smallest non-planar graphs

Kuratowski's Theorem: G is planar if and only if G is not subgraph-homeomorphic to K_5 or $K_{3,3}$.

Characterization of Planar graphs

Euler's Theorem: If P is an arbitrary planar embedding of a connected planar graph G with n vertices and m edges, and if P has f faces (including outer face), then

$$n - m + f = 2$$

Results on planar graphs

- If G is planar with n vertices and m edges, then $m \le 3n$ -6. If each face of G consists of 3 edges (excepting the outer face), then m = 3n-6. If each face in G has four edges then m = 2n-4.
- If G is a planar graph with n > 4 vertices, then G has at least four vertices whose degrees are at most 5.
- The time complexity for testing whether a graph is planar or not is O(n), where n is the number of nodes in the graph.
- A planar embedding of a planar graph can be obtained in O(n) time.
- The problem of computing maximum clique, maximum independent set, minimum coloring, etc. are all polynomial time computable.
- The most important problem of finding maximal planar subgraph of an arbitrary undirected graph is NP-hard.

Interval Graphs

Graphs associated with a set of intervals

(a) Intervals, (b) overlap graph,(c) containment graph, (d) interval graph

Definition: A graph G(V,E) is an interval graph if its vertices can be represented by a set of non-empty intervals on the real axis such that edges exist between pairs of vertices if their corresponding intervals overlap.

An important application of Interval Graph

Channel-Width-Minimization problem in the jog free manhattan channel routing model.

A routing instance:

[l_i, r_i] leftmost and rightmost terminals of net n_i.

- Horizontal constraint between n_i and $n_j \Rightarrow [l_i, r_i] \cap [l_i, r_i] \neq \emptyset$
- Vertical constraint from net n_i to $n_i \Rightarrow$ one of the two outside terminals of both the nets share a common column.
- In this case, we say that n_i is below n_i or n_i is above n_i.
- $t_i \Rightarrow$ the track assigned to net n_i

level 1

---- level 2

Application of Interval Graph (contd.)

A Jog-free manhattan channel routing model ⇒ A routing instance

$$I = (t_1, t_2, ..., t_n)$$
 such that

- (i) if n_i and n_i overlap then $t_i \neq t_i$ and
- (ii) If n_i is below n_i , then $t_i < t_i$

Horizontal constraint graph $G_h(I) = (V_h, E_h) \Rightarrow$ an undirected graph where $V_h = \text{Set of nets of } I$;

$$E_h = \{(n_i, n_j), \text{ if } n_i \text{ and } n_j \text{ overlaps}\}$$

© S. Sur-Kolay, ISI Kolkata: JU VLSI CAD course Oct. 22, 2005 **Optimization Problem**: Find the track assignment for the nets with minimum number of tracks

Solution: Find all maximal cliques of the Horizontal constraint graph.

Data structures:

 $S \Rightarrow$ an array containing 2n elements corresponding to $\{(l_i, r_i), i = 1, 2, ..., n\}$. Each element S[j] is attached with two additional fields, called *interval_id* and *tag* $S[j].interval_id$ contains = i if the j-th element of S is equal to l_i or r_i S[j].tag = L/R depending on whether S[j] corresponds to a left/right end point.

Algorithm:

```
Sort elements of S in increasing order of their values;
```

```
for i = 1 to 2n do
   if S[i].tag = L then
      insert S[i].interval id in list L; new clique flag \leftarrow 1;
   if S[i].tag = R then
      if new_clique_flag = 1 then
```

return all the elements in *L* as a clique;

remove S[i].interval_id from list L; set new_clique_flag $\leftarrow 0$;

Size of the largest clique is the minimum track requirement for this routing problem. © S. Sur-Kolay, ISI Kolkata: JU VLSI CAD course

Demonstration and Complexity Results

Sorted sequence: a_i c_i b_i c_r e_i a_r b_r d_i e_r d_r

Time complexity results of different problems on Interval Graph

Largest clique : O(nlogn).

Maximum independent set $O(n\log n)$

Permutation Graphs

 Π = a permutation $[\pi_1, \pi_2, , \pi_v]$ of n integers. (e.g. [4,3,6,1,5,2], here $\pi_1 = 4, \pi_2 = 3$ etc.) π_i^{-1} = position in the sequence where number i is found. (e.g. $\pi_4^{-1} = 1, \pi_3^{-1} = 2$, etc.)

Permutation graph: An undirected graph $G_{\pi}(V,E)$ such that

$$V = \{1, 2, ..., n\}$$

E = $\{(i,j) \mid \text{if } i < j \text{ and } \pi_j^{-1} < \pi_i^{-1}\}$ (* i.e., the larger of the integers appear to the left of the smaller one in π *).

(in other words, (i,j)
$$\in$$
 E if (i-j)×($\pi_i^{-1} - \pi_j^{-1}$) < 0.)

A graph and its permutation labeling

Important uses:

Recognizing monotone channels (for routing) among a set of rectangular circuit modules on a VLSI floorplan.

Properties of permutation graphs

- Number of edges : $O(n^2)$.
- Transitively orientable
- Complement graph is also permutation graph.
- Running time Complexities:
- Chromatic number: $O(n \log n)$
- Maximum independent set: $O(n \log n)$
- Largest clique: O(n logn)

Note: In the permutation labeling,

an increasing subsequence represents an independent set, an decreasing subsequence represents a clique.

Circle Graphs

• An undirected graph G is a circle graph if it is isomorphic to the intersection graph of a finite collection of chords of a circle.

• The graph obtained by considering the intersection of lines in a switchbox is equivalent to a circle graph.

Graphs related to a set of rectangles

Rectangle intersection graphs

Results on rectangle intersection graphs

- Satisfies Helly's Property.
- All maximal cliques are computable in polynomial time.
- Maximal independent set problem is NP-hard.

- Applications:
- Compaction
- Finding free area for placing a block
- Other geometric optimization problems.

Rectangle Neighborhood Graphs

 Useful in global routing for describing physical adjacency relationship among the circuit modules.

Rectangular duals

Given a graph G(V,E), its *rectangular dual* is a set of rectangles $R = \{R_1, R_2, ..., R_n\}$ where each vertex v_i corresponds to the rectangle $R_i \in R$ and two rectangles are adjacent if the corresponding vertices are adjacent.

- Note: Not all graphs are rectangularly dualizable.
- Use: In floorplanning phase of physical design.

Triangulated Graphs

An undirected graph is called triangulated if every cycle of length strictly greater than 3 possesses a chord.

Characterizing a triangulated graph

A vertex x of G is called *simplicial* if its adjacency set Adj(x) induces a complete subgraph (clique) of G.

A vertex elimination scheme: Repeatedly locate a simplicial vertex and eliminate it from the graph until no other vertex remains, or at some stage no simplicial vertex exists.

Theorem: In the former case, the graph G is triangulated.

In the latter case, the graph G is not triangulated.

Let G = (V,E) be an undirected graph and let $s = [v_1, v_2, ..., v_n]$ be an ordering of the vertices. We say that s is a *perfect vertex* elimination scheme if each v_i is a simplicial vertex of the induced subgraph $G_{\{v_i, v_2, ..., v_n\}}$. In other words, each set

$$X_i = \{v_j \in Adj(v_i) \mid j > i\}$$

is complete.

Theorem: An undirected graph G is triangulated if it has a perfect vertex elimination scheme. Moreover, any simplicial vertex can start a perfect vertex elimination scheme.

Relationship between different graph classes

Perfect Graphs

Consider the following parameters of an undirected graph:

- ♦ w(G) ⇒ the clique number of the graph G: the size of the largest complete subgraph of G.
- $\chi(G) \Rightarrow$ the *chromatic number* of the graph G: the fewest number of colors needed to properly color the vertices of G.
- ♦ α(G) ⇒ the size of the maximum independent set of the graph G: the size of the largest subset of vertices such that there exists no arc among any pair of vertices among the members in this set.
- ♦ k(G) ⇒ the clique cover number of the graph G: the fewest number of complete subgraphs needed to cover the vertices of G.

Relation among these parameters

- Intersection of a clique and a maximal independent set may be at most one vertex.
- For any graph G, $\omega(G) \leq \chi(G)$.
- For any graph G, $\alpha(G) \leq k(G)$.
- If G^c is the complement of graph G
 then α(G) = ω(G^c), and k(G) = χ(G^c).

Perfect graph theorem:

For an undirected graph G=(V,E), the following statements are equivalent:

- 1. $\omega(G_A) = \chi(G_A)$, for all $A \subseteq V$.
- 2. $\alpha(G_A) = k(G_A)$, for all $A \subseteq V$.
- 3. $\omega(G_A) \times \alpha(G_A) \ge |A|$, for all $A \subseteq V$.

Important results on perfect graphs

The following problems are polynomial time solvable for perfect graphs:

- Minimum COLORING
- Maximum CLIQUE
- Largest INDEPENDENT SET
- Minimum CLIQUE COVER

- 1. Introduction to Algorithms
 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
 Prentice Hall of India Pvt. Ltd.
- 2. Algorithms for VLSI Physical Design Automation Naveed Sherwani Kluwer Academic Publishers
- 3. Combinatorial Algorithms for Integrated Circuit Layout Thomas Lengauer John Wiley & Sons.
- 4. Algorithmic Graph Theory and Perfect Graphs Martin Charles Golumbic Academic Press
- 5. Introduction to Graph Theory
 Douglas B. West
 Prentice Hall of India Pvt. Ltd.