Question 36.

In Handout #7, we defined differentiability for functions on open sets. Now we give a definition that works over arbitrary sets. For this problem, you will need to read Plazza Post.

Let $A \subseteq \mathbf{R}^n$ be an arbitrary set, let $f: A \to \mathbf{R}$ be a function, and let $p \in A$ be a point. We say that f is **differentiable** at p if there exists an open neighborhood U of p and a function $\hat{f}: U \to \mathbf{R}$ such that \hat{f} is differentiable at p (in the sense of Handout #7) and $\hat{f}|_{U \cap A} = f|_{U \cap A}$.

- (a) Prove that f is differentiable at every point of A if and only if f extends to a differentiable function defined on an open set containing A.
- (b) Suppose further that A is closed. Prove that f is differentiable at every point of A if and only if f extends to a differentiable function on \mathbf{R}^n .

Question 37.

The following set is called the n-simplex:

$$\Delta_n := \{ \vec{x} = (x_1, \dots, x_n) \in \mathbf{R}^n : x_1, \dots, x_n \ge 0 \text{ and } x_1 + \dots + x_n \le 1 \}.$$

You can assume, without proof, that Δ_n is Jordan measurable. Find, with proof, an explicit formula for $\mu(\Delta_n)$ in terms of n.

Proof.