

Chapter 12: Query Processing

- Overview
- Measures of Query Cost
- Selection Operation
- Sorting
- Join Operation
- Other Operations
- Evaluation of Expressions

Basic Steps in Query Processing

- 1. Parsing and translation
- 2. Optimization

Basic Steps in Query Processing (Cont.)

- Parsing and translation
 - translate the query into its internal form. This is then translated into relational algebra.
 - Parser checks syntax, verifies relations
- Evaluation
 - The query-execution engine takes a query-evaluation plan, executes that plan, and returns the answers to the query.

Basic Steps in Query Processing: Optimization

- A relational algebra expression may have many equivalent expressions
 - E.g., $\sigma_{salary<75000}(\prod_{salary}(instructor))$ is equivalent to $\prod_{salary}(\sigma_{salary<75000}(instructor))$
- Each relational algebra operation can be evaluated using one of several different algorithms
 - Correspondingly, a relational-algebra expression can be evaluated in many ways.
- Annotated expression specifying detailed evaluation strategy is called an evaluation-plan.
 - E.g., can use an index on salary to find instructors with salary < 75000,
 - or can perform complete relation scan and discard instructors with salary ≥ 75000

Basic Steps: Optimization (Cont.)

- Query Optimization: Amongst all equivalent evaluation plans choose the one with lowest cost.
 - Cost is estimated using statistical information from the database catalog
 - e.g. number of tuples in each relation, size of tuples, etc.
- In this chapter we study
 - How to measure query costs
 - Algorithms for evaluating relational algebra operations
 - How to combine algorithms for individual operations in order to evaluate a complete expression
- In Chapter 14
 - We study how to optimize queries, that is, how to find an evaluation plan with lowest estimated cost

Measures of Query Cost

- Cost is generally measured as total elapsed time for answering query
 - Many factors contribute to time cost
 - disk accesses, CPU, or even network communication
- Typically disk access is the predominant cost, and is also relatively easy to estimate. Measured by taking into account
 - Number of seeks* average-seek-cost
 - Number of blocks read * average-block-read-cost
 - Number of blocks written * average-block-write-cost
 - Cost to write a block is greater than cost to read a block
 - data is read back after being written to ensure that the write was successful

Measures of Query Cost (Cont.)

- For simplicity we just use the **number of block transfers** from disk and the **number of seeks** as the cost measures
 - t_T time to transfer one block
 - t_S time for one seek
 - Cost for b block transfers plus S seeks
 b * t_T + S * t_S
- We ignore CPU costs for simplicity
 - Real systems do take CPU cost into account
- We do not include cost to writing output to disk in our cost formulae

Measures of Query Cost (Cont.)

- Several algorithms can reduce disk IO by using extra buffer space
 - Amount of real memory available to buffer depends on other concurrent queries and OS processes, known only during execution
 - We often use worst case estimates, assuming only the minimum amount of memory needed for the operation is available
- Required data may be buffer resident already, avoiding disk I/O
 - But hard to take into account for cost estimation

Selection Operation

- **■** File scan
- Algorithm A1 (linear search). Scan each file block and test all records to see whether they satisfy the selection condition.
 - Cost estimate = b_r block transfers + 1 seek
 - b_r denotes number of blocks containing records from relation r
 - If selection is on a key attribute, can stop on finding record
 - $ightharpoonup cost = (b_r/2)$ block transfers + 1 seek
 - Linear search can be applied regardless of
 - selection condition or
 - ordering of records in the file, or
 - availability of indices
- Note: binary search generally does not make sense since data is not stored consecutively
 - except when there is an index available,
 - and binary search requires more seeks than index search

Selections Using Indices

- Index scan search algorithms that use an index
 - selection condition must be on search-key of index.
- A2 (primary index, equality on key). Retrieve a single record that satisfies the corresponding equality condition
 - $Cost = (h_i + 1) * (t_T + t_S)$
- A3 (primary index, equality on nonkey) Retrieve multiple records.
 - Records will be on consecutive blocks
 - Let b = number of blocks containing matching records
 - $Cost = h_i^* (t_T + t_S) + t_S + t_T^* b$

Selections Using Indices

- A4 (secondary index, equality on nonkey).
 - Retrieve a single record if the search-key is a candidate key
 - $ightharpoonup Cost = (h_i + 1) * (t_T + t_S)$
 - Retrieve multiple records if search-key is not a candidate key
 - each of n matching records may be on a different block
 - Cost = $(h_i + n) * (t_T + t_S)$
 - Can be very expensive!

Selections Involving Comparisons

- Can implement selections of the form $\sigma_{A \leq V}(r)$ or $\sigma_{A \geq V}(r)$ by using
 - a linear file scan,
 - or by using indices in the following ways:
- A5 (primary index, comparison). (Relation is sorted on A)
 - For $\sigma_{A \ge V}(r)$ use index to find first tuple $\ge V$ and scan relation sequentially from there
 - For $\sigma_{A \leq V}(r)$ just scan relation sequentially till first tuple > V; do not use index
- A6 (secondary index, comparison).
 - For $\sigma_{A \ge V}(r)$ use index to find first index entry $\ge v$ and scan index sequentially from there, to find pointers to records.
 - ▶ For $\sigma_{A \le V}(r)$ just scan leaf pages of index finding pointers to records, till first entry > V
 - In either case, retrieve records that are pointed to
 - requires an I/O for each record

Implementation of Complex Selections

- **Conjunction:** $\sigma_{\theta 1} \wedge \sigma_{\theta 2} \wedge \dots \sigma_{\theta n}(r)$
- A7 (conjunctive selection using one index).
 - Select a combination of θ_i and algorithms A1 through A7 that results in the least cost for $\sigma_{\theta_i}(r)$.
 - Test other conditions on tuple after fetching it into memory buffer.
- A8 (conjunctive selection using composite index).
 - Use appropriate composite (multiple-key) index if available.
- A9 (conjunctive selection by intersection of identifiers).
 - Requires indices with record pointers.
 - Use corresponding index for each condition, and take intersection of all the obtained sets of record pointers.
 - Then fetch records from file
 - If some conditions do not have appropriate indices, apply test in

Algorithms for Complex Selections

- Disjunction: $\sigma_{\theta 1} \vee \theta_{\theta 2} \vee \dots \theta_{\theta n} (r)$.
- A10 (disjunctive selection by union of identifiers).
 - Applicable if all conditions have available indices.
 - Otherwise use linear scan.
 - Use corresponding index for each condition, and take union of all the obtained sets of record pointers.
 - Then fetch records from file
- Negation: $\sigma_{\neg\theta}(r)$
 - Use linear scan on file
 - If very few records satisfy $\neg \theta$, and an index is applicable to θ
 - Find satisfying records using index and fetch from file

Join Operation

- Several different algorithms to implement joins
 - Nested-loop join
 - Block nested-loop join
 - Indexed nested-loop join
 - Merge-join
 - Hash-join
- Choice based on cost estimate
- Examples use the following information
 - Number of records of student: 5,000 takes: 10,000
 - Number of blocks of student: 100 takes: 400

Nested-Loop Join

```
To compute the theta join r \bowtie_{\theta} s for each tuple t_r in r do begin for each tuple t_s in s do begin test pair (t_r, t_s) to see if they satisfy the join condition \theta if they do, add t_r \cdot t_s to the result. end end
```

- \blacksquare r is called the **outer relation** and s the **inner relation** of the join.
- Requires no indices and can be used with any kind of join condition.
- Expensive since it examines every pair of tuples in the two relations.

Nested-Loop Join (Cont.)

In the worst case, if there is enough memory only to hold one block of each relation, the estimated cost is

$$n_r * b_s + b_r$$
 block transfers, plus $n_r + b_r$ seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability cost estimate is
 - with student as outer relation:
 - \rightarrow 5000 * 400 + 100 = 2,000,100 block transfers,
 - > 5000 + 100 = 5100 seeks
 - with takes as the outer relation
 - ▶ 10000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (*student*) fits entirely in memory, the cost estimate will be 500 block transfers.
- Block nested-loops algorithm (next slide) is preferable.

Block Nested-Loop Join

Variant of nested-loop join in which every block of inner relation is paired with every block of outer relation.

```
for each block B_r of r do begin
for each block B_s of s do begin
for each tuple t_r in B_r do begin
for each tuple t_s in B_s do begin
Check if (t_r, t_s) satisfy the join condition
if they do, add t_r \cdot t_s to the result.
end
end
end
```


Block Nested-Loop Join (Cont.)

- Worst case estimate: $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
 - Each block in the inner relation s is read once for each block in the outer relation
- Best case: $b_r + b_s$ block transfers + 2 seeks.
- Improvements to nested loop and block nested loop algorithms:
 - In block nested-loop, use M-2 disk blocks as blocking unit for outer relations, where M= memory size in blocks; use remaining two blocks to buffer inner relation and output
 - Cost = $[b_r / (M-2)] * b_s + b_r$ block transfers + $2[b_r / (M-2)]$ seeks
 - If equi-join attribute forms a key or inner relation, stop inner loop on first match
 - Scan inner loop forward and backward alternately, to make use of the blocks remaining in buffer (with LRU replacement)
 - Use index on inner relation if available (next slide)

Indexed Nested-Loop Join

- Index lookups can replace file scans if
 - join is an equi-join or natural join and
 - an index is available on the inner relation's join attribute
 - Can construct an index just to compute a join.
- For each tuple t_r in the outer relation r, use the index to look up tuples in s that satisfy the join condition with tuple t_r .
- Worst case: buffer has space for only one page of *r*, and, for each tuple in *r*, we perform an index lookup on *s*.
- Cost of the join: $b_r(t_T + t_S) + n_r * c$
 - Where c is the cost of traversing index and fetching all matching s tuples for one tuple or r
 - c can be estimated as cost of a single selection on s using the join condition.
- If indices are available on join attributes of both *r* and *s*, use the relation with fewer tuples as the outer relation.

Example of Nested-Loop Join Costs

- \blacksquare Compute student \bowtie takes, with student as the outer relation.
- Let takes have a primary B+-tree index on the attribute ID, which contains 20 entries in each index node.
- Since *takes* has 10,000 tuples, the height of the tree is 4, and one more access is needed to find the actual data
- student has 5000 tuples
- Cost of block nested loops join
 - 400*100 + 100 = 40,100 block transfers + 2 * 100 = 200 seeks
 - assuming worst case memory
 - may be significantly less with more memory
- Cost of indexed nested loops join
 - 100 + 5000 * 5 = 25,100 block transfers and seeks.
 - CPU cost likely to be less than that for block nested loops join

Merge-Join

- Sort both relations on their join attribute (if not already sorted on the join attributes).
- Merge the sorted relations to join them
 - Join step is similar to the merge stage of the sort-merge algorithm.
 - 2. Main difference is handling of duplicate values in join attribute every pair with same value on join attribute must be matched

 a1 a2 a1 a3
 - 3. Detailed algorithm in book

Merge-Join (Cont.)

- Can be used only for equi-joins and natural joins
- Each block needs to be read only once (assuming all tuples for any given value of the join attributes fit in memory
- Thus the cost of merge join is: $b_r + b_s$ block transfers $+ [b_r/b_b] + [b_s/b_b]$ seeks
 - + the cost of sorting if relations are unsorted.
- hybrid merge-join: If one relation is sorted, and the other has a secondary B+-tree index on the join attribute
 - Merge the sorted relation with the leaf entries of the B+-tree.
 - Sort the result on the addresses of the unsorted relation's tuples
 - Scan the unsorted relation in physical address order and merge with previous result, to replace addresses by the actual tuples
 - Sequential scan more efficient than random lookup

Hash-Join

- Applicable for equi-joins and natural joins.
- \blacksquare A hash function h is used to partition tuples of both relations
- h maps JoinAttrs values to $\{0, 1, ..., n\}$, where JoinAttrs denotes the common attributes of r and s used in the natural join.
 - r_0, r_1, \ldots, r_n denote partitions of r tuples
 - ▶ Each tuple $t_r \in r$ is put in partition r_i where $i = h(t_r [JoinAttrs])$.
 - r_0 , r_1 ..., r_n denotes partitions of s tuples
 - ▶ Each tuple $t_s \in s$ is put in partition s_i , where $i = h(t_s [JoinAttrs])$.
- Note: In book, r_i is denoted as $H_{ri,}$ s_i is denoted as H_{si} and n is denoted as n_h .

Hash-Join (Cont.)

Hash-Join (Cont.)

- r tuples in r_i need only to be compared with s tuples in s_i Need not be compared with s tuples in any other partition, since:
 - an r tuple and an s tuple that satisfy the join condition will have the same value for the join attributes.
 - If that value is hashed to some value i, the r tuple has to be in r_i and the s tuple in s_i .

Hash-Join Algorithm

The hash-join of r and s is computed as follows.

- 1. Partition the relation *s* using hashing function *h*. When partitioning a relation, one block of memory is reserved as the output buffer for each partition.
- 2. Partition *r* similarly.
- 3. For each i:
 - (a) Load s_i into memory and build an in-memory hash index on it using the join attribute. This hash index uses a different hash function than the earlier one h.
 - (b) Read the tuples in r_i from the disk one by one. For each tuple t_r locate each matching tuple t_s in s_i using the inmemory hash index. Output the concatenation of their attributes.

Relation s is called the **build input** and r is called the **probe input**.

Hash-Join algorithm (Cont.)

- The value n and the hash function h is chosen such that each s_i should fit in memory.
 - Typically n is chosen as [b_s/M] * f where f is a "fudge factor", typically around 1.2
 - The probe relation partitions s_i need not fit in memory
- Recursive partitioning required if number of partitions *n* is greater than number of pages *M* of memory.
 - instead of partitioning n ways, use M-1 partitions for s
 - Further partition the M-1 partitions using a different hash function
 - Use same partitioning method on r
 - Rarely required: e.g., with block size of 4 KB, recursive partitioning not needed for relations of < 1GB with memory size of 2MB, or relations of < 36 GB with memory of 12 MB

Cost of Hash-Join

- If recursive partitioning is not required: cost of hash join is $3(b_r + b_s) + 4 * n_h$ block transfers + $2(\lceil b_r/b_b \rceil + \lceil b_s/b_b \rceil)$ seeks
- If recursive partitioning required:
 - number of passes required for partitioning build relation s is $\lceil log_{M-1}(b_s) 1 \rceil$
 - best to choose the smaller relation as the build relation.
 - Total cost estimate is:

$$2(b_r + b_s) \lceil log_{M-1}(b_s) - 1 \rceil + b_r + b_s$$
 block transfers + $2(\lceil b_r/b_b \rceil + \lceil b_s/b_b \rceil) \lceil log_{M-1}(b_s) - 1 \rceil$ seeks

- If the entire build input can be kept in main memory no partitioning is required
 - Cost estimate goes down to $b_r + b_s$.

Example of Cost of Hash-Join

instructor \times teaches

- Assume that memory size is 20 blocks
- lacksquare $b_{instructor}$ = 100 and $b_{teaches}$ = 400.
- instructor is to be used as build input. Partition it into five partitions, each of size 20 blocks. This partitioning can be done in one pass.
- Similarly, partition *teaches* into five partitions, each of size 80. This is also done in one pass.
- Therefore total cost, ignoring cost of writing partially filled blocks:
 - 3(100 + 400) = 1500 block transfers + $2(\lceil 100/3 \rceil + \lceil 400/3 \rceil) = 336$ seeks

Other Operations

- Duplicate elimination can be implemented via hashing or sorting.
 - On sorting duplicates will come adjacent to each other, and all but one set of duplicates can be deleted.
 - Optimization: duplicates can be deleted during run generation as well as at intermediate merge steps in external sort-merge.
 - Hashing is similar duplicates will come into the same bucket.

■ Projection:

- perform projection on each tuple
- followed by duplicate elimination.

Other Operations: Aggregation

- Aggregation can be implemented in a manner similar to duplicate elimination.
 - Sorting or hashing can be used to bring tuples in the same group together, and then the aggregate functions can be applied on each group.
 - Optimization: combine tuples in the same group during run generation and intermediate merges, by computing partial aggregate values
 - For count, min, max, sum: keep aggregate values on tuples found so far in the group.
 - When combining partial aggregate for count, add up the aggregates
 - For avg, keep sum and count, and divide sum by count at the end

Other Operations: Outer Join

- Outer join can be computed either as
 - A join followed by addition of null-padded non-participating tuples.
 - by modifying the join algorithms.
- Modifying merge join to compute $r \implies s$
 - In $r \implies s$, non participating tuples are those in $r \Pi_B(r \bowtie s)$
 - Modify merge-join to compute $r \implies s$:
 - During merging, for every tuple t_r from r that do not match any tuple in s, output t_r padded with nulls.
 - Right outer-join and full outer-join can be computed similarly.

Evaluation of Expressions

- So far: we have seen algorithms for individual operations
- Alternatives for evaluating an entire expression tree
 - Materialization: generate results of an expression whose inputs are relations or are already computed, materialize (store) it on disk. Repeat.
 - Pipelining: pass on tuples to parent operations even as an operation is being executed
- We study above alternatives in more detail

Materialization

- Materialized evaluation: evaluate one operation at a time, starting at the lowest-level. Use intermediate results materialized into temporary relations to evaluate next-level operations.
- E.g., in figure below, compute and store

$$\sigma_{building = "Watson"}(department)$$

then compute the store its join with *instructor*, and finally compute the projection on *name*.

Materialization (Cont.)

- Materialized evaluation is always applicable
- Cost of writing results to disk and reading them back can be quite high
 - Our cost formulas for operations ignore cost of writing results to disk, so
 - Overall cost = Sum of costs of individual operations + cost of writing intermediate results to disk
- **Double buffering**: use two output buffers for each operation, when one is full write it to disk while the other is getting filled
 - Allows overlap of disk writes with computation and reduces execution time

Pipelining

- Pipelined evaluation: evaluate several operations simultaneously, passing the results of one operation on to the next.
- E.g., in previous expression tree, don't store result of

$$\sigma_{building = "Watson"}(department)$$

- instead, pass tuples directly to the join. Similarly, don't store result of join, pass tuples directly to projection.
- Much cheaper than materialization: no need to store a temporary relation to disk.
- Pipelining may not always be possible e.g., sort, hash-join.
- For pipelining to be effective, use evaluation algorithms that generate output tuples even as tuples are received for inputs to the operation.
- Pipelines can be executed in two ways: demand driven and producer driven