Straightforward residual diagnostics for glm/glmer using the package DHARMa

Lisa Hülsmann

Standard residuals of generalized models are hard to interpret

plot(yourGLM)

- distributions are asymmetric
- residuals are never visually homogenous – even if the model is perfect
- more difficult for hierarchical models (random effects)
- but diagnostics are equally important
 - overdispersion (no variance parameter)
 - zero-inflation

Solution: Use the DHARMa package that is based on simulated residuals

- package developed by Florian Hartig
- user-friendly residual diagnostics for a large variety of models
- simulateResiduals()
 - generates residuals via simulation from the model
- plotResiduals()
 - plot residuals against predictors
- several test functions e.g.
 - testDispersion()
 - testZeroInflation()
 - ...

How to interpret the resulting plots

A misspecified model: here overdispersion

DHARMa scaled residual plots

Identify sources of mismatch: plot residuals against predictors

plotResiduals (YOURPREDICTOR, simulationOutput\$scaledResiduals)

Several more advanced features

- calculating residuals per group
- temporal or spatial autocorrelation
- checking different levels of stochasticity in hierarchical models
- DHARMa can also be used for lm/lmer, glmmTMB, smaMM or posterior predictive simulations from Bayesian software

You can also find nice examples for typical misspecifications there.

https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html

Exercise

<u>Data</u>: abundance of myFavouriteSpecies in response to temperature and precipitation, with several observations made on a number of plots

count	temperature	precipitation	plot [‡]
2	-0.13159197	-0.031600868	1
1	0.15144222	-0.958592258	1
1	-0.10013614	-0.401583887	1
0	-0.97284735	-0.977506335	1
0	0.63306416	-0.647717534	1

Task:

- fit a glmm with both predictors and use plot as a random effect (family = poisson)
- use the following workflow to check the model

```
simulationOutput <- simulateResiduals(YOURMODEL)
plot(simulationOutput)
plotResiduals(YOURPREDICTOR, simulationOutput$scaledResiduals)</pre>
```

- also try out the functions testDispersion() and testZeroInflation()
- what is wrong in the model? correct it and run the tests again
- How are species abundances influenced by temperature and precipitation

First model attempt

Clearly improved model

