Corrigé exercice 91:

1. La fonction f est dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, $f'(x) = (-8x - 10)e^{-0.5x} + (-4x^2 - 10x + 8) \times (-0.5e^{-0.5x}) = e^{-0.5x}(2x^2 - 3x - 14)$. Une exponentielle étant toujours positive, f' a le même signe que $x \mapsto 2x^2 - 3x - 14$. Cette fonction du second degré admet pour racine -2 et $\frac{7}{2}$, d'où le tableau de variations suivant.

On calcule $f(-2) \approx 33.6$ et $f(\frac{7}{2}) \approx -12.2$.

2. Sur [-4; -2], on a le tableau de variations suivant.

x	-4	-2
f'(x)	+	
f	f(-4)	f(-2)

On calcule $f(-4) \approx -116$ et $f(-2) \approx 33,6$.La fonction f est continue et strictement croissante sur [-4;-2] et $0 \in [f(-4);f(-2)]$. Par application du théorème de la bijection, l'équation f(x) = 0 admet une unique solution α sur [-4;-2].

3. On reconnaît l'algorithme de dichotomie. En effet à chaque boucle on calcule le centre de l'intervalle, puis l'image par f de celui-ci.

	Initialisation	Passage 1	Passage 2	Passage 3	Passage 4	Passage 5
m		-3	-3,5	-3,25	-3,125	-3,1875
Signe de p		< 0	> 0	> 0	< 0	> 0
a	-4	-4	-3,5	-3,25	-3,25	-3,1875
b	-2	-3	-3	-3	-3,125	-3,125
b-a	2	1	0,5	0,25	0,125	0,0625
b - a > 0,1	Vrai	Vrai	Vrai	Vrai	Vrai	Faux

4. On obtient que $-3{,}1875 < \alpha < -3{,}125$.