Facultat de Matemàtiques i Estadística Examen parcial d'Àlgebra Lineal 6 de novembre de 2014

Problema 1 (1.5 punts). Sigui $f: U \to V$ una aplicació lineal i sigui $W \subseteq U$ un subespai tal que $W \subseteq \text{Ker } f$. Demostreu que l'aplicació $f_*: U/W \to V$ definida posant $f_*([\mathbf{u}]) = f(\mathbf{u})$ està ben definida i és lineal.

SOLUCIÓ: Es fa exactament igual que la demostració del teorema d'isomorfisme $G/\operatorname{Ker} f \simeq \operatorname{Im} f$. Ben definida vol dir que $[\boldsymbol{u}] = [\boldsymbol{v}] \Rightarrow f(\boldsymbol{u}) = f(\boldsymbol{v})$, i es demostra així:

$$[\boldsymbol{u}] = [\boldsymbol{v}] \Leftrightarrow \boldsymbol{u} - \boldsymbol{v} \in W \Rightarrow \boldsymbol{u} - \boldsymbol{v} \in \operatorname{Ker} f \Leftrightarrow f(\boldsymbol{u} - \boldsymbol{v}) = f(\boldsymbol{u}) - f(\boldsymbol{v}) = \boldsymbol{0} \Leftrightarrow f(\boldsymbol{u}) = f(\boldsymbol{v}).$$

Per veure que és lineal:

$$f_*([u] + [v]) = f_*([u + v]) = f(u + v) = f(u) + f(v) = f_*([u]) + f_*([v]),$$

 $f_*(\lambda[u]) = f_*([\lambda u]) = f(\lambda u) = \lambda f(u) = \lambda f_*([u]).$

Problema 2 (2.5 punts). Digueu si les afirmacions següents són certes o falses. Si són certes, demostreu-les i si són falses doneu un contraexemple.

- 1. Siguin $W_1, W_2, W_3 \subseteq V$ subespais. Si $W_1 + W_1 = W_1 \oplus W_2, W_2 + W_3 = W_2 \oplus W_3$ i $W_1 + W_3 = W_1 \oplus W_3$, aleshores $W_1 + W_2 + W_3 = W_1 \oplus W_2 \oplus W_3$.
- 2. Siguin $u_1, \ldots, u_m, v_1, \ldots, v_n, w$ vectors de V. Si $\langle u_1, \ldots, u_m \rangle = \langle v_1, \ldots, v_n \rangle$ aleshores $\langle u_1, \ldots, u_m, w \rangle = \langle v_1, \ldots, v_n, w \rangle$.
- 3. Siguin $u_1, \ldots, u_m, v_1, \ldots, v_n, w$ vectors de V. Si $\langle u_1, \ldots, u_m, w \rangle = \langle v_1, \ldots, v_n, w \rangle$ aleshores $\langle u_1, \ldots, u_m \rangle = \langle v_1, \ldots, v_n \rangle$.
- 4. Sigui $f: U \to V$ lineal i $W \subseteq U$ un subespai. Aleshores dim $W = \dim(W \cap \operatorname{Ker} f) + \dim f(W)$.
- 5. Sigui $f: U \to V$ lineal i $W \subseteq V$ un subespai. Aleshores dim $f^{-1}(W) = \dim \operatorname{Ker} f + \dim W$.

Solució:

- 1. És fals, el fet que les sumes de dos dels subespais siguin directes vol dir que la intersecció de dos dels subespais és zero, però (com s'ha dit a classe més d'una vegada) això no és suficient perquè la suma de tots tres sigui directa. Contraexemple a R²: W₁ = \langle (1,0) \rangle, W₂ = \langle (0,1) \rangle, W₃ = \langle (1,1) \rangle.
- 2. Cert: Si $\langle \boldsymbol{u}_i \rangle = \langle \boldsymbol{v}_j \rangle$, sumant-li el subespai $\langle \boldsymbol{w} \rangle$ a cada costat es té

$$\langle \boldsymbol{u}_1,\ldots,\boldsymbol{u}_m,\boldsymbol{w}\rangle = \langle \boldsymbol{u}_i\rangle + \langle \boldsymbol{w}\rangle = \langle \boldsymbol{v}_j\rangle + \langle \boldsymbol{w}\rangle = \langle \boldsymbol{v}_1,\ldots,\boldsymbol{v}_n,\boldsymbol{w}\rangle.$$

Una altra manera: la igualtat $\langle \boldsymbol{u}_i \rangle = \langle \boldsymbol{v}_j \rangle$ vol dir que cadascun dels vectors d'un costat és combinació lineal dels de l'altre; a partir d'això es veu immediatament que també $\langle \boldsymbol{u}_1, \dots, \boldsymbol{u}_m, \boldsymbol{w} \rangle = \langle \boldsymbol{v}_1, \dots, \boldsymbol{v}_n, \boldsymbol{w} \rangle$ ja que cada vector d'un costat és combinació lineal dels de l'altre.

- 3. Fals. Essencialment el motiu és que en una igualtat de sumes de subespais $U+W_1=U+W_2$ no es pot "simplificar U" i deduir que $W_1=W_2$. Contraexemple a \mathbb{R}^2 amb n=m=1: $\mathbf{u}_1=(1,0), \ \mathbf{v}_1=(0,1), \ \mathbf{w}=(1,1)$.
- 4. Cert. Aquesta fórmula dóna la dimensió de l'espai imatge f(W). Sigui $f|_W: W \to V$ la restricció de f al subespai W. La seva imatge és $\operatorname{Im}(f|_W) = f(W)$. El seu nucli són els vectors $\mathbf{w} \in W$ tals que $f(\mathbf{w}) = \mathbf{0}$, o sigui, que són de $\operatorname{Ker} f$; per tant $\operatorname{Ker}(f|_W) = W \cap \operatorname{Ker} f$. Aleshores $\dim W = \dim \operatorname{Ker}(f|_W) + \dim \operatorname{Im}(f|_W) = \dim(W \cap \operatorname{Ker} f) + \dim f(W)$.
- 5. Aquesta és falsa. De fet, la igualtat correcta que dóna la dimensió de l'espai antiimatge seria dim $f^{-1}(W) = \dim \operatorname{Ker} f + \dim(W \cap \operatorname{Im} f)$, i es demostraria de manera anàloga que com s'ha fet a l'apartat anterior. Sempre que $W \notin \operatorname{Im} f$ es té un contraexemple. Per exemple, sigui $f \colon U \to V$ l'aplicació lineal trivial (tot va al zero) i sigui $W \subseteq V$ un subespai diferent de l'espai trivial $\{0\}$. Aleshores $f^{-1}(W) = \operatorname{Ker} f = U$ però en canvi dim $U \neq \dim U + \dim W$.

Problema 3 (3 punts). La matriu $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ es diu inversa per l'esquerra d'una matriu $B \in \mathcal{M}_{n \times m}(\mathbb{K})$ si $AB = I_m$. Es diu pseudo-inversa per l'esquerra si existeix un escalar $\lambda \in \mathbb{K}$ tal que $AB = \lambda I_m$.

- 1. Les matrius inverses per l'esquerra d'una matriu \boldsymbol{B} fixada, són un subespai vectorial de $\mathcal{M}_{m\times n}(\mathbb{K})$?
- 2. Demostreu que si n < m aleshores \boldsymbol{B} no té cap inversa per l'esquerra.
- 3. Es considera la matriu

$$\boldsymbol{B} = \begin{pmatrix} 1 & -2 \\ 2 & -4 \\ -3 & a \end{pmatrix} \in \mathcal{M}_{3 \times 2}(\mathbb{R})$$

que depèn d'un paràmetre $a \in \mathbb{R}$. Digueu per a quins valors del paràmetre la matriu té inversa per l'esquerra i, quan en tingui, calculeu totes les seves inverses per l'esquerra.

4. Demostreu que el conjunt de les matrius pseudo-inverses per l'esquerra d'una matriu \boldsymbol{B} fixada és un subespai vectorial de $\mathcal{M}_{m\times n}(\mathbb{K})$.

Solució:

- 1. No ho són: tot subespai vectorial conté el zero (en aquest cas, la matriu zero), i la matriu zero A = 0 no és inversa per l'esquerra de B ja que $0B = 0 \neq I_m$.
- 2. Sigui \boldsymbol{A} inversa per l'esquerra de \boldsymbol{B} , de manera que $\boldsymbol{A}\boldsymbol{B} = \boldsymbol{I}_m$. Aleshores les files de \boldsymbol{I}_m són la base canònica de \mathbb{K}^m i són combinacions lineals de les n files de \boldsymbol{B} ; per tant aquestes n files generen un espai de dimensió m i ha de ser $n \geq m$.

També es pot fer argumentant per columnes: les columnes de I_m , que són la base canònica de l'espai \mathbb{K}^m de dimensió m, són combinacions lineals de les n columnes de A, i novament això implica que ha de ser $n \ge m$.

3. Les matrius inverses per l'esquerra de B són les matrius

$$\begin{pmatrix} x & y & z \\ t & u & v \end{pmatrix} \in \mathcal{M}_{2\times 3}(\mathbb{R}), \quad \text{tals que} \qquad \begin{pmatrix} x & y & z \\ t & u & v \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & -4 \\ -3 & a \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Aquesta condició equival al sistema d'equacions:

$$x + 2y - 3z = 1$$
, $-2x - 4y + az = 0$, $t + 2u - 3v = 0$, $-2t - 4u + av = 0$.

Sumant el doble de la primera equació a la segona i el doble de la tercera a la quarta el sistema es converteix en:

$$x + 2y - 3z = 1$$
, $(a - 6)z = 0$, $t + 2u - 3v = 0$, $(a - 6)v = 1$

Aquest sistema té solució si, i només si, $a \neq 6$. En aquest cas, la seva forma esglaonada reduïda és:

$$x + 2y = 1$$
, $z = 0$, $t + 2u = 3/(a - 6)$, $v = 1/(a - 6)$

És un sistema en sis variables de rang quatre, i dos graus de llibertat. Agafant y i u com a variables lliures les seves solucions són les matrius següents:

$$\begin{pmatrix} 1 - 2y & y & 0 \\ -2u + \frac{3}{a-6} & u & \frac{1}{a-6} \end{pmatrix}, \quad y, u \in \mathbb{R}.$$

- 4. Sigui $U \subseteq \mathcal{M}_{m \times n}$ el subconjunt de les pseudo-inverses per l'esquerra d'una matriu \boldsymbol{B} fixada. Aleshores:
 - $A_1, A_2 \in U \Leftrightarrow A_1B = \lambda_1 I_m, A_2B = \lambda_2 I_m$, per a alguns escalars $\lambda_1, \lambda_2 \in \mathbb{K}$. Aleshores $(A_1 + A_2)B = A_1B + A_2B = \lambda_1 I_m + \lambda_2 I_m = (\lambda_1 + \lambda_2)I_m$, amb $\lambda_1 + \lambda_2 \in \mathbb{K}$; això assegura que també $A_1 + A_2$ és pseudo-inversa per l'esquerra de la matriu B.
 - $A \in U \Leftrightarrow AB = \lambda I_m$ per a algun escalar $\lambda \in \mathbb{K}$. Per a tot escalar $x \in \mathbb{K}$ es té $(xA)B = x(AB) = x(\lambda I_m) = (x\lambda)I_m$, amb $x\lambda \in \mathbb{K}$, i per tant xA també és pseudo-inversa per l'esquerra.

Problema 4 (3 punts). Sigui $V = \mathbb{R}_3[X]$; sigui $W = \{P(X) \in U : P(0) = P(1) = 0\}$ i f l'endomorfisme de V que envia cada polinomi P(X) a la seva derivada P'(X).

- 1. Doneu una base i un complementari de W.
- 2. Amplieu la base de W trobada a l'apartat anterior a una base de $\mathbb{R}_3[X]$ afegint-li vectors de la base següent: $\boldsymbol{v}_1 = 1 X + 2X^2 + 2X^3$, $\boldsymbol{v}_2 = 1 + X + X^2 + X^3$, $\boldsymbol{v}_3 = X 3X^2 + 2X^3$, $\boldsymbol{v}_4 = X^2 + X^3$.
- 3. Digueu si les sumes següents són o no suma directa: Ker(f) + Im(f), Ker(f) + W, $Ker(f \circ f) + W$, i digueu si els subespais que se sumen són o no complementaris.
- 4. Sigui $\mathbf{A} \in \mathcal{M}_4(\mathbb{R})$ la matriu de f en la base \mathbf{v}_i de l'apartat 2. Calculeu \mathbf{A}^{2014} .

Solució:

1. Sigui $P(X) = a_0 + a_1X + a_2X^2 + a_3X^3$. Aleshores P(0) = P(1) = 0 equival al sistema de dues equacions $a_0 = a_0 + a_1 + a_2 + a_3$. Resolent-lo es troba una base de les solucions; per exemple: $X - X^3$ i $X^2 - X^3$. Un complementari està generat pels vectors que amplien aquesta base a una base de tot l'espai; per exemple: $\langle 1, X \rangle$ o $\langle 1, X^2 \rangle$ o $\langle 1 + X, 1 + X^2 \rangle$ són complementaris, ja que en afegir els dos vectors als dos anteriors es té una base, però per exemple $\langle X, X^2 \rangle$ no ho és, de complementari.

2. El primer vector $\mathbf{v}_1 = 1 - X + 2X^2 + 2X^3$ és clarament independent dels dos vectors $X - X^3$ i $X^2 - X^3$, ja que té terme constant no nul. El vector \mathbf{v}_2 és la combinació lineal $\mathbf{v}_2 = \mathbf{v}_1 + 2(X - X^3) - (X^2 - X^3)$ i, per tant, no es pot afegir si es vol formar una base. El vector \mathbf{v}_3 també ho és; de fet, $\mathbf{v}_3 \in W$ ja que $\mathbf{v}_3(0) = \mathbf{v}_3(1) = 0$. Per tant tampoc es pot afegir aquest. Finalment el vector \mathbf{v}_4 no és combinació lineal de $\mathbf{v}_1, X - X^3, X^2 - X^3$, i per tant afegint aquest vector es té una base. Així la base que es demana és:

$${X-X^3, X^2-X^3, v_1, v_4}.$$

De la discussió anterior queda clar que l'única altra possibilitat d'obtenir una base afegint vectors de la base donada (tot i que el problema només demana trobar-ne una i no cal fer res més) és:

$${X-X^3, X^2-X^3, v_2, v_4}.$$

- 3. El subespai W té equacions $a_0 = a_1 + a_2 + a_3 = 0$ i base $X X^3, X^2 X^3$. Ker f està format pels polinomis de derivada zero, o sigui els polinomis constants; les seves equacions són $a_1 = a_2 = a_3 = 0$ i una base és el polinomi constant 1. Im f està generat per les imatges dels vectors d'una base: les derivades dels polinomis $1, X, X^2$ i X^3 , que són 1, 2X i $3X^2$; una base d'aquest espai és $1, X, X^2$ i una equació que el defineixi és $a_3 = 0$. Aleshores $\operatorname{Ker} f \cap \operatorname{Im} f = \langle 1 \rangle$ té dimensió 1 i la suma no és directa, $\operatorname{Ker} f \cap W = \{0\}$ i la suma sí que és directa, però els espais no són complementaris ja que la suma de dimensions és $1 + 2 = 3 < 4 = \dim \mathbb{R}_3[X]$. Finalment, com que $f \circ f$ és la segona derivada, el seu nucli està format pels polinomis amb segona derivada zero, que són els de grau ≤ 1 , per tant una base és 1, X i unes equacions són $a_2 = a_3 = 0$; clarament $\operatorname{Ker}(f \circ f) \cap W = \{0\}$ i per tant la suma també és directa; en aquest cas sí que són complementaris perquè les dimensions sumen 4.
- 4. Calcular la matriu de f en la base de l'apartat 2 pot resultar una mica pesat, i encara més elevar aquesta matriu a 2014. De totes maneres, com que el producte de matrius és la matriu de la composició d'aplicacions lineals, el problema es pot resoldre component f amb si mateixa 2014 vegades i calculant la matriu de l'aplicació lineal corresponent. Com que f consisteix en derivar, fer f diverses vegades és derivar diverses vegades. En derivar un polinomi de grau ≤ 3 quatre vegades o més el resultat sempre és zero. Per tant, l'aplicació lineal f^{2014} és l'aplicació lineal zero i la matriu A^{2014} és la matriu de l'aplicació lineal zero, que, sigui en la base que sigui, és la matriu zero.