(6 ...

ii) Now & find yind by first convolving he that and he that: y = x + 1 + (h + 1) + h + 1 = x + 1 + (h + 1) + h + 1 = x + 1 + (h + 1) + h + 1 = x + 1 + (h + 1) + h + 1 = x + 1 + (h + 1) + h + 1 = x + 1 + 1 + 1 = x + 1 + 1 = x + 1

$$= \times \left[\ln J \times \left(\sum_{h=0}^{2} \left(-\frac{1}{2} \right)^{h} + \frac{1}{2} \sum_{h=0}^{2-2} \left(-\frac{1}{2} \right)^{h} \right) = \times \left[\ln J \times \left(\frac{3}{2} + \frac{3}{2} \cdot \frac{1}{2} \left(-\frac{1}{2} \right)^{n} + \frac{1}{3} \cdot \frac{3}{2} \cdot \left(-\frac{1}{2} \right)^{n} \right) = \times \left[\ln J \times \left(\frac{3}{2} + \frac{3}{2} \cdot \frac{1}{2} \left(-\frac{1}{2} \right)^{n} + \frac{1}{3} \cdot \frac{3}{2} \cdot \left(-\frac{1}{2} \right)^{n} \right) = \times \left[\ln J \times d \right] = \frac{1}{2}$$

where $\frac{1}{2} = \frac{1}{2} = 0$

 $= \sum_{h=-\infty}^{\infty} x \ln \left[u \ln h \right] = \sum_{h=-\infty}^{\infty} u \ln \left[u \ln h \right] = \sum_{h=-\infty}^{\infty} 1 = i \ln h$ if $n \gg 0$ = $\frac{1}{\ln h} \ln 1 = y \ln 1$ (same as b.

c) Consider the same cascade with hyEn1= sin 8n and he[n]=anuEn], late 1 and x En1= S[n]-a S[n-1]. Find y[n].

y[= x[n] * h,[n] * h,[n] = (8[n]-a8[n-1]) * sin8n * a" u[n] = (8[n]-a8[n-1]) * a" u[n] * sin8n=

= (a" u[n] - a: aⁿ⁻¹ "u[n-1] ou) * sin8n = (a"(utn] - utn-1]) * sin8n = 20m

=
$$\left(\begin{cases} a^n & \text{if } n > 0 & \text{if } n < 1 \end{cases}\right) *_{\text{sin}} 8n = \left(\begin{cases} 6 & \text{in} \end{cases} *_{\text{sin}} 8n = \text{sin} & \text{sin} \end{cases} = \text{year} \right)$$