Basic Concepts

Convex Optimization Lecture 4 - Convex Optimization Problems

Instructor: Yuanzhang Xiao

University of Hawaii at Manoa

Fall 2017

Today's Lecture

- 1 Basic Concepts
- Operations That Produce Equivalent Problems
- 3 Important Examples
- 4 Quasiconvex Optimization Problems

Outline

- 1 Basic Concepts
- Operations That Produce Equivalent Problems
- Important Examples
- 4 Quasiconvex Optimization Problems

Optimization Problems

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $h_i(x) = 0, i = 1,..., p$

Important Examples

- $x \in \mathbb{R}^n$: optimization variables
- $f_0: \mathbb{R}^n \to \mathbb{R}$: objective/cost function
- $f_i: \mathbb{R}^n \to \mathbb{R}, i = 1..., m$: inequality constraint functions
- $h_i: \mathbb{R}^n \to \mathbb{R}, i = 1, \dots, p$: equality constraint functions

The problem is called unconstrained if there are no constraints.

Basic Terminology

domain:
$$\mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i$$

- $x \in \mathcal{D}$ are implicit constraints
- example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

an unconstrained problem with implicit constraints $a_i^T x < b_i$

feasible point: a point $x \in \mathcal{D}$ is feasible if it satisfies all the constraints $f_i(x) \leq 0$, i = 1, ..., m and $h_i(x) = 0$, i = 1, ..., pfeasible problem: the problem is feasible if there exists at least one feasible point, and infeasible otherwise feasible set: the set of all feasible points

Optimality

the optimal value p^* is

$$p^* = \inf \{ f_0(x) | f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p \}$$

Important Examples

- $p^* = \infty$: the problem is *infeasible*
- $p^* = -\infty$: the problem is unbounded below

 x^* is an optimal point, or solves the problem, if x^* is feasible and $f_0(x^*) = p^*$

a feasible point x is ϵ -suboptimal if $f_0(x) \leq p^* + \epsilon$

x is locally-optimal if there exists R > 0 such that x solves

minimize
$$f_0(z)$$

subject to $f_i(z) \le 0, i = 1, ..., m$
 $h_i(z) = 0, i = 1, ..., p$
 $\|z - x\|_2 \le R$

Examples

Basic Concepts

000000000

Unconstrained problems with variable $x \in \mathbb{R}$:

- $f_0(x) = 1/x$, dom $f_0 = \mathbb{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, $\operatorname{dom} f_0 = \mathbb{R}_{++}$: $p^* = -\infty$, unbounded below, no optimal point
- $f_0(x) = x \log x$, dom $f_0 = \mathbb{R}_{++}$: $p^* = -1/e$, optimal point $x^* = 1/e$
- $f_0(x) = x^3 3x$, dom $f_0 = \mathbb{R}$: $p^* = -\infty$, local optimum at x = 1

Convex Optimization Problems

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $a_i^T x = b_i, i = 1,..., p$

Important Examples

- $f_0, f_i, i = 1..., m$ must be convex
- equality constraints must be affine

Equivalent form:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b$

Properties of Convex Optimization Problems

the feasible set of convex optimization problem is convex

minimize a convex objective function over a convex set

any locally-optimal point is globally optimal

Optimality Conditions For Differentiable Objectives

Suppose the objective f_0 is differentiable and the feasible set is X. Then x is optimal if and only if $x \in X$ and

$$\nabla f_0(x)^T (y-x) \ge 0$$
 for all $y \in X$

• $\nabla f_0(x)^T = 0$, or

Basic Concepts

00000000

• $\nabla f_0(x)$ defines a supporting hyperplane to X at x:

Optimality Conditions For Special Cases

Unconstrained optimization: x is optimal if and only if

$$x \in \mathsf{dom} f_0, \ \nabla f_0(x) = 0$$

Important Examples

Equality constrained optimization:

minimize
$$f_0(x)$$
 subject to $Ax = b$

x is optimal if and only if there exists ν such that

$$x \in dom f_0$$
, $Ax = b$, $\nabla f_0(x) + A^T \nu = 0$

Minimization over nonnegative orthant:

minimize
$$f_0(x)$$
 subject to $x \ge 0$

x is optimal if and only if

$$x \in \text{dom} f_0, \ x \ge 0, \ x_i \cdot (\nabla f_0(x))_i = 0, \ i = 1, \dots, n$$

Outline

Basic Concepts

- Basic Concepts
- Operations That Produce Equivalent Problems
- Important Examples
- 4 Quasiconvex Optimization Problems

Importance of Equivalent Problems

a general nonconvex optimization problem

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1+x_2^2) \le 0$
 $h_1(x) = (x_1 + x_2)^2 = 0$

Important Examples

an equivalent convex problem:

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $\bar{f}_1(x) = x_1 \le 0$
 $\bar{h}_1(x) = x_1 + x_2 = 0$

operations that produce equivalent problems

- some preserve convexity (useful in reducing complexity)
- some do not preserve convexity (useful in converting nonconvex problems to convex problems)

Change of Variables (Do Not Preserve Convexity)

 $\phi: \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one mapping

define

$$\bar{f}_i(z) = f_1(\phi(z)), i = 0, ..., m$$

 $\bar{h}_i(z) = h_i(\phi(z)), i = 1, ..., p$

equivalent problem with change of variable $x = \phi(z)$:

minimize
$$ar{f}_0(z)$$

subject to $ar{f}_i(z) \leq 0, \ i=1,\ldots,m$
 $ar{h}_i(z)=0, \ i=1,\ldots,p$

over variables z

Transformation of Functions (Do Not Preserve Convexity)

$$\psi_0: \mathbb{R} \to \mathbb{R}^n$$
 is increasing $\psi_1, \dots, \psi_m: \mathbb{R} \to \mathbb{R}^n$ satisfy $\psi_i(u) \leq 0$ if and only if $u \leq 0$ $\psi_{m+1}, \dots, \psi_{m+p}: \mathbb{R} \to \mathbb{R}^n$ satisfy $\psi_i(u) = 0$ if and only if $u = 0$

define

$$f_i(x) = \psi_i(f_i(x)), i = 0,..., m$$

 $\bar{h}_i(x) = \psi_{m+i}(h_i(x)), i = 1,..., p$

equivalent problem with transformation of functions:

$$\begin{aligned} & \text{minimize}_{x} & & \overline{f}_{0}(x) \\ & \text{subject to} & & \overline{f}_{i}(x) \leq 0, \ i = 1, \ldots, m \\ & & & \overline{h}_{i}(x) = 0, \ i = 1, \ldots, p \end{aligned}$$

Slack Variables (Preserve Convexity)

slack variables $s_i > 0$, $i = 1, \ldots$

equivalent problem with slack variables:

minimize
$$f_0(x)$$

subject to $s_i \ge 0, i = 1, ..., m$
 $f_i(x) + s_i = 0, i = 1, ..., m$
 $h_i(z) = 0, i = 1, ..., p$

Important Examples

over variables $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^m$

eliminating (complicated) inequality constraints by adding variables

Eliminating Equality Constraints (Preserve Convexity)

Important Examples

$$F \in \mathbb{R}^{n \times k}$$
 such that $\mathcal{R}(F) = \mathcal{N}(A)$ $(k \ge n - \text{rank}A)$
 x_0 such that $Ax_0 = b$

any x s.t. Ax = b can be written as $x = Fz + x_0$, where $z \in \mathbb{R}^k$

equivalent problem with no equality constraints:

minimize
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0, i = 1, ..., m$

over variables $z \in \mathbb{R}^k$

eliminating equality constraints and reducing variables by exploiting the structure of Ax = b

original problem of the form:

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \le 0, i = 1,..., m$
 $h_i(x) = 0, i = 1,..., p$

introduce
$$y_i = A_i x + b_i$$
, $i = 0, ..., m$

Operations

equivalent problem with added equality constraints:

minimize
$$f_0(y_0)$$

subject to $f_i(y_i) \leq 0, i = 1, ..., m$
 $y_i = A_i x + b_i, i = 0, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

over variables x and y_0, \ldots, y_m

independent objective functions and inequality constraints

Optimizing Over Some Variables (Preserve Convexity)

original problem of the form

minimize
$$f_0(x_1, x_2)$$

subject to $f_i(x_1) \leq 0, i = 1, \dots, m_1$
 $\overline{f_i}(x_2) \leq 0, i = 1, \dots, m_2$

over variables (x_1, x_2)

define
$$\hat{f}_0(x_1) = \inf \{ f_0(x_1, z) | \bar{f}_i(z) \le 0, i = 1, \dots, m_2 \}$$

equivalent problem:

minimize
$$\bar{f}_0(x_1)$$

subject to $f_i(x_1) \leq 0, i = 1, \dots, m_1$

reduce variables (especially if $\inf_z f_0(x_1, z)$ is easy to solve) popular now for distributed implementation (e.g., ADMM)

epigraph form:

minimize
$$t$$

subject to $f_0(x) - t \le 0$
 $f_i(x_i) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$

over variables x and $t \in \mathbb{R}$

nice (i.e., linear) objective function

Important Examples •000000000000

Outline

- Basic Concepts
- Operations That Produce Equivalent Problems
- 3 Important Examples
- 4 Quasiconvex Optimization Problems

Basic Concepts

Linear Optimization Problem / Linear Program (LP)

minimize
$$c^T x + d$$

subject to $Gx \le h$
 $Ax = b$

with variable $x \in \mathbb{R}^n$, problem data $G \in \mathbb{R}^{m \times n}$, $A \in \mathbb{R}^{p \times n}$

the "simplest" convex optimization problems

Examples of Linear Programs

diet problem: choose quantities x_1, \ldots, x_n of n foods

- healthy diet requires nutrient i in quantity at least b_i
- one unit of food j contains amount a_{ij} of nutrient i, costs c_i

Important Examples

00000000000000

find the cheapest diet that satisfies nutritional requirements:

minimize
$$c^T x$$

subject to $Ax \ge b$
 $x \ge 0$

Examples of Linear Programs

Chebyshev center of a polyhedron:

- polyhedron: $\mathcal{P} = \{x \mid a_i^T x \leq b_i, i = 1, \dots, m\}$
- represent the largest ball lies in \mathcal{P} as $\mathcal{B} = \{x_c + u \mid ||u||_2 \le r\}$

Important Examples

000000000000000

observe that ball \mathcal{B} lies in halfspace $a_i^T x \leq b_i$

$$\Leftrightarrow \sup \left\{ a_i^T (x_c + u) | \|u\|_2 \le r \right\} = a_i^T x_c + r \|a_i\|_2$$

find the Chebyshev center x_c :

maximize
$$r$$

subject to $a_i^T x_c + ||a_i||_2 r \le b_i, i = 1, ..., m$

over variables x_c and r.

Examples of Linear Programs

piecewise-linear minimization: minimize

$$f(x) = \max_{i=1,\ldots,m} (a_i^T x + b_i)$$

Important Examples

first write the epigraph form

minimize
$$t$$

subject to $\max_{i=1,...,m} (a_i^T x + b_i) \le t$

then write the equivalent LP

minimize
$$t$$

subject to $a_i^T x + b_i \le t, i = 1, ..., m$

Linear-Fractional Programming

minimize a ratio of affine functions over a polyhedron:

minimize
$$f_0(x) = \frac{c^T x + d}{e^T x + f}$$

subject to $Gx \le h$
 $Ax = b$

where
$$dom f_0 = \{x \mid e^T x + f > 0\}$$

change of variables:
$$y = \frac{x}{e^T x + f}$$
, $z = \frac{1}{e^T x + f}$

the equivalent LP

minimize
$$c^T y + dz$$

subject to $Gy - hz \le 0$
 $Ay - bz = 0$
 $e^T y + fz = 1$
 $z > 0$

Quadratic Optimization Problems

quadratic program (QP):

minimize
$$(1/2)x^T P x + q^T x + r$$

subject to $Gx \le h$
 $Ax = b$

Important Examples

000000000000000

where $P \in \mathbb{S}^n_+$, $G \in \mathbb{R}^{m \times n}$, $A \in \mathbb{R}^{p \times n}$

quadratically constrained quadratic program (QCQP):

minimize
$$(1/2)x^T P_0 x + q_0^T x + r_0$$

subject to $(1/2)x^T P_i x + q_i^T x + r_i \le 0, i = 1, ..., m$
 $Ax = b$

where $P_i \in \mathbb{S}^n_+$, $i = 0, 1, \ldots, m$

Examples of Quadratic Programs

(constrained) regression/least-square:

minimize
$$||Ax - b||_2^2$$

subject to $I_i \le x_i \le u_i, i = 1, ..., m$

Important Examples

equivalent QP:

minimize
$$x^T (A^T A)x - 2(A^T b)^T x + b^T b$$

subject to $I_i \le x_i \le u_i, i = 1, ..., m$

distance between polyhedra:

• polyhedra $\mathcal{P}_1 = \{x | A_1 x \le b_1\}$ and $\mathcal{P}_2 = \{x | A_2 x \le b_2\}$

Important Examples

• distance inf $\{\|x_1 - x_2\|_2 \mid x_1 \in \mathcal{P}_1, x_2 \in \mathcal{P}_2\}$

equivalent QP:

minimize
$$||x_1 - x_2||_2^2$$

subject to $A_1x_1 \le b_1$
 $A_2x_2 \le b_2$

Examples of Quadratic Programs

linear program with random cost

- cost function (vector) $c \in \mathbb{R}^n$ is random
- mean value $\mathbb{E}c = \bar{c}$, variance $\mathbb{E}(c \bar{c})(c \bar{c})^T = \Sigma$
- mean cost $\mathbb{E}c^Tx = \bar{c}^Tx$
- variance of cost $var(c^Tx) = \mathbb{E}(c^Tx \mathbb{E}c^Tx)^2 = x^T\Sigma x$

Important Examples

000000000000000

• minimize the risk-sensitive cost $\mathbb{E}c^Tx + \gamma \text{var}(c^Tx)$

equivalent QP:

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x$$

subject to $Gx \leq h$
 $Ax = b$

Second-Order Cone Programming

second-order cone program (SOCP):

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, ..., m$
 $Fx = g$

Important Examples

where $A_i \in \mathbb{R}^{n_i \times n}$. $F \in \mathbb{R}^{p \times n}$

reduce to LP when $A_i = 0$

reduce to QCQP when $c_i = 0$

Examples of Second-Order Cone Programming

robust linear programming:

a linear program with uncertainty in a_i:

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i$, $i = 1, ..., m$

Important Examples

- a_i in a ellipsoid $a_i \in \mathcal{E}_i = \{\bar{a}_i + P_i u \mid ||u||_2 \leq 1\}$
- robust linear program:

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$ for all $a_i \in \mathcal{E}_i, i = 1, ..., m$

equivalent SOCP:

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \le b_i, i = 1, \dots, m$

Geometric Programming

monomial function with domain \mathbb{R}^n_{++} :

$$cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$$

Important Examples

00000000000000

where c > 0, $a_i \in \mathbb{R}$

posynomial function with domain \mathbb{R}^{n}_{++} :

$$\sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$$

where $c_i > 0$, $a_{ik} \in \mathbb{R}$

geometric programming:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1, i = 1, ..., m$
 $h_i(x) = 1, i = 1, ..., p$

where f_0, \ldots, f_m are posynomials, h_1, \ldots, h_p are monomials

Convex Reformulation of Geometric Programming

change of variables: $y_i = \log x_i$

monomials become

$$c(e^{y_1})^{a_1}\cdots(e^{y_n})^{a_n}=e^{a^Ty+b}$$

posynomials become:

$$\sum_{k=1}^{K} e^{a_k^T y + b_k}$$

transformation of functions - taking logarithm

minimize
$$\log \left(\sum_{k=1}^K e^{a_{0k}^T y + b_{0k}}\right)$$

subject to $\log \left(\sum_{k=1}^K e^{a_{0k}^T y + b_{0k}}\right) \leq 0, \ i = 1, \dots, m$
 $a_{m+i}^T y + b_{m_i} = 0, \ i = 1, \dots, p$

Outline

Basic Concepts

- 1 Basic Concepts
- 2 Operations That Produce Equivalent Problems
- 3 Important Examples
- 4 Quasiconvex Optimization Problems

Quasiconvex Optimization Problems

quasiconvex optimization problem:

Basic Concepts

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $Ax = b$

where f_0 is quasiconvex, f_1, \ldots, f_m are convex

locally optimal points may not be globally optimal

Convex Representation of Sublevel Sets

for any f_0 quasiconvex, there exists a family of convex functions $\{\phi_t\}_{t\in\mathbb{R}}$ such that

$$f(x) \le t \Leftrightarrow \phi_t(x) \le 0$$

Important Examples

t-sublevel set of f_0 is 0-sublevel set of ϕ_t

existence:
$$\phi_t(x) = \begin{cases} 0 & f(x) \le t \\ \infty & \text{otherwise} \end{cases}$$
 good for any f , but useless in practice

useful example:

- f(x) = p(x)/q(x) where p is convex and q is concave
- $\phi_t(x) = p(x) tq(x)$

Quasiconvex Optimization as Convex Feasibility Problems

given t, a feasibility problem:

Basic Concepts

minimize
$$0$$
 subject to $\phi_t(x) \leq 0$ $f_i(x) \leq 0, \ i=1,\ldots,m$ $Ax=b$

- feasible $\Rightarrow p^* < t$
- infeasible $\Rightarrow t < p^*$

use bisection method to find $t = p^*$