PH133 Logic Lectures 3 & 4

Lecturer: s.butterfill@warwick.ac.uk

An argument is *logically valid* just if there's no possible situation in which the premises are true and the conclusion false

How to order reference columns

(from lecture 2)

Proofs with ∧Intro and ∨Intro

Example

¬, ⊥

Р	¬P	上	P∧¬P
Т	F	F	F
F	Т	F	F

Proof example

Rules of Proof for →

Proof example for \rightarrow *Intro*

Proof example for \rightarrow *Elim (to complete)*

Not all proofs have premises

A rule of proof for \lor

VElim:

P1 ∨ P2

P1

P1

P2

P2

P2

Compared a conclusion from a disjunction, prove the conclusion from each of the disjuncts.

Quantifiers -- ∀, ∃

Everything is broken: $\forall x \text{ Broken}(x)$ Something is broken: $\exists x \text{ Broken}(x)$

What does \exists mean? We give the meaning of \exists by specifying what it takes for a sentence containing \exists to be true:

- 1. Give every object a name.
- 2. For each name in turn, create a new sentence like this: delete the quantifier and replace all instances of the variable it binds with that name
- 3. If ALL of the new sentences are true, so is the original.

Example proof