Problemas del método de la potencia para hallar valores y vectores propios.

- (1) Hacer un programa que, dada una matriz cuadrada \mathbf{A} halle una aproximación del valor propio de máximo módulo junto con un vector propio con una tolerancia ϵ y un valor inicial $\mathbf{x}^{(0)}$. Aplicar el método de la potencia para hallar el valor propio de módulo máximo junto con un vector propio correspondiente a la matriz $\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 4 & -2 \\ 0 & -1 & 2 \end{bmatrix}$ usando como valor inicial $\mathbf{x}^{(0)} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$ con una tolerancia de 0.0001.

correspondiente a la matriz
$$\mathbf{A} = \begin{bmatrix} 4 & 1 & 1 & 1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{bmatrix}$$
 usando como valor inicial $\mathbf{x}^{(0)} = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 3 \end{bmatrix}$ con una

tolerancia de 0.0001.

- (3) Hacer un programa que dada una matriz \mathbf{A} , un valor inicial $\mathbf{x}^{(0)}$, una tolerancia ϵ y un valor a, halle el valor propio de la matriz \mathbf{A} más cercano a a junto con un vector propio asociado. Usar el programa anterior para hallar el valor propio más cercano a 2 para las matrices de los dos primeros problemas con una tolerancia de 0.0001 y $\mathbf{x}^{(0)} = \mathbf{0}$.
- (4) Hacer un programa que, dada una matriz cuadrada \mathbf{A} , el valor propio de módulo máximo λ_1 junto con un vector propio $\mathbf{v}^{(1)}$, halle todos los demás valores y vectores propios de la matriz usando el método de la deflación de Wielandt completo. Usar dicho programa para hallar todos los valores y vectores propios de las matrices de los dos primeros problemas.
- (5) **Deflación de Hotelling**. Sea \mathbf{A} una matriz simétrica con valor propio de módulo máximo λ_1 y con vector propio asociado $\mathbf{v}^{(1)}$. Sean $\lambda_2, \ldots, \lambda_n$ con $|\lambda_2| \geq \cdots \geq |\lambda_n|$ los otros valores propios con vectores propios asociados $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$. Demostrar que la matriz $\mathbf{B} = \mathbf{A} \frac{\lambda_1}{(\mathbf{v}^{(1)})^{\top}\mathbf{v}^{(1)}}\mathbf{v}^{(1)}(\mathbf{v}^{(1)})^{\top}$ tiene como valores propios $0, \lambda_2, \ldots, \lambda_n$ con vectores propios asociados $\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \ldots, \mathbf{v}^{(n)}$. Hacer un programa que aplique dicho método y usarlo para hallar el valor propio λ_2 junto con el vector propio $\mathbf{v}^{(2)}$ a la matriz del problema 2. Hallar los demás valores propios y vectores propios asociados.