Hackathon Project Phases Template for the Advancing Nutrition Science through Gemini Al web project.

Hackathon Project Phases Template

Project Title:

Advancing Nutrition Science using GeminiAl

Team Name:

Digital Miners

Team Members:

- M.Veda Shree
- M.Sanjana
- K.Lakshanya
- L.Pravalika

Phase-1: Brainstorming & Ideation

Objective:

To advance nutrition science by utilizing Google Gemini AI to generate accurate and comprehensive dietary analyses and personalized meal recommendations..

Key Points:

1. Problem Statement:

- o The heterogeneity of individual dietary needs remains inadequately addressed by current generalized nutritional guidance, leading to suboptimal health outcomes.
- A critical deficiency exists in the synthesis and personalized application of complex nutritional data, hindering effective dietary management for diverse populations.

2. Proposed Solution:

- NutriGen AI is a web application providing secure user authentication and a platform for accessing nutritional data, designed for future integration with Gemini AI for personalized dietary recommendations.
- It offers a web-based interface for food item analysis and user management, with plans to expand functionality via API integration and enhanced AI-driven features.

3. Target Users:

- Health-conscious users and professionals looking for accessible, Al-powered nutritional analysis and recommendations.
- Professionals in the health and wellness sector who require Al-powered nutritional analysis and recommendations.
- o **Individuals** seeking personalized dietary insights and meal planning to improve their health and nutritional awareness.

4. Expected Outcome:

 NutriGen AI innovatively delivers secure, user-authenticated access to placeholder nutritional data, paving the way for future generative AI-powered, real-time dietary insights.

Phase-2: Requirement Analysis

Objective:

Define the technical and functional requirements for the NutriGen Al web.

Key Points:

1. Technical Requirements:

Programming Language: HTML

Backend: Nde.js (integrated with API)Frontend: HTML, CSS, JAVASCRIPT

Database: Server.js

2. Functional Requirements:

- Leverage GeminiAl to analyze nutritional data and create personalized dietary recommendations.
- Generate tailored meal plans and recipes that cater to individual needs and preferences.
- o Provide accessible and **understandable nutritional information** to promote healthier choices.
- Facilitate research by identifying patterns and generating hypotheses within nutrition science.

3. Constraints & Challenges:

- o Data quality and privacy are major hurdles in using AI for personalized nutrition.
- Ensuring Al recommendations are accurate, trustworthy, and ethically sound is a key challenge.

Phase-3: Project Design

Objective:

Develop the architecture and user flow of the application.

Key Points:

1. System Architecture:

- User Input & Front-End: Users interact through a web/mobile interface, sending requests to the back-end.
- Back-End Processing & API Integration: The server processes requests, integrates with the Gemini API for AI analysis, and manages data.
- Data Storage & Output: Processed data is stored/retrieved from databases, and results are delivered back to the user interface.

2. User Flow:

- Step 1: Users log in or register to access the app.
- o Step 2: They can then **input** a food item and see its nutritional data.
- Step 3: The app securely stores user credentials.

3. UI/UX Considerations:

- Keep the interface clean and easy to navigate.
- o Provide clear feedback and helpful error messages.
- o **Present nutritional data** in a readable and understandable format.

Phase-4: Project Planning (Agile Methodologies)

Objective:

Break down development tasks for efficient completion.

Sprint	Task	Priority	Duration	Deadline	Assigned To	Dependencies	Expected Outcome
Sprint 1	Data Collection & Preprocessing	High	6 hours (Day 1)	End of Day 1	Veda	Access to high- quality nutrition databases, and Gemini Al integration	Clean, Structured and relevant nutrition data
Sprint 1	Frontend UI Development		2 hours (Day 1)	End of Day 1	Pravalika & Sanjana	API response format finalized, Gemini AI outputs standard	Interactive UI for users to input nutrition-related queries
Sprint 2	Building Solution	High	3 hours (Day 2)	Mid-Day 2	Lakshanya & Sanjana	Pre-trained Gemini Al model, labelled nutritional datasets	A refined model for accurate nutrition analysis
Sprint 2	Error Handling & Debugging	High	1.5 hours (Day 2)	Mid-Day 2	Veda	API logs, Gemini AI error reports, and user feedback	Improved model accuracy and stability
Sprint 3	Validation & Accuracy testing		1.5 hours (Day 2)	Mid-Day 2	Pravalika & Lakshanya	Ground truth nutritional data, test cases	Reliable Al driven nutrition insights
Sprint 3	Final Presentation & Deployment	⊘ Low	1 hour (Day 2)	End of Day 2	Entire Team	Working AI prototype	Demo-ready Al- powered nutrition tool

Sprint Planning with Priorities

Sprint 1 – Setup & Integration (Day 1)

- (High Priority) Set up the environment & install dependencies.
- (High Priority) Integrate Google Gemini API.
- (Medium Priority) Build a basic UI with input fields.

Sprint 2 – Core Features & Debugging (Day 2)

- (High Priority) Implement search & comparison functionalities.
- (High Priority) Debug API issues & handle errors in queries.

Sprint 3 – Testing, Enhancements & Submission (Day 2)

- (Medium Priority) Test API responses, refine UI, & fix UI bugs.
- (Low Priority) Final demo preparation & deployment.

Phase-5: Project Development

Objective:

Implement core features of the Advancing Nutrition Science through GeminiAI.

Key Points:

- 1. Technology Stack Used:
 - o Frontend: HTML, CSS, JAVASCRIPT
 - o **Backend:** Node.js (integrated with API)
 - Programming Language: HTML
- 2. Development Process:
 - Personalized nutrition insights via Gemini API.
 - o Gemini-powered synthesis of nutrition research.
 - Interactive AI nutrition consultations.

3. Challenges & Fixes:

o Challenge: Nutrient deficiencies in diets.

Fix: Promote balanced meal planning and fortification of staple foods with essential vitamins and minerals.

o Challenge: Misinformation about nutrition.

Fix: Encourage evidence-based dietary guidelines and public awareness campaigns led by experts.

Phase-6: Functional & Performance Testing

Objective:

Ensure that the Advancing Nutrition Science through Gemini AI works as expected.

Test Case ID	0.4	Total Occupants	Formation 1 Outcome		T4
	Category	Test Scenario	Expected Outcome	Status	Tester
	Functional Testing	Query "Best protein sources for muscle gain"	Relevant high-protein foods should be		Veda
TC-001			displayed	✓ Passed	
TC-002	Functional Testing	Query "Healthy meal plan for diabetics"	Al should suggest a balanced meal plan for diabetes.	✓ Passed	Lakshanya
TC-003	Performance Testing	API response time under 500ms	Al should return results quickly.	⚠ Needs Optimization	Tester-3
TC-004	Bug Fixes & Improvements	Fixed incorrect Calorie counts in nutrition database	Data accuracy should be improved.	✓ Fixed	Developer tool
TC-005	Final Validation	Ensure UI is responsive across devices.	UI should work on devices.	X Failed - UI broken on web	Tester 2
TC-006	Deployment Testing	Host the AI-powered nutrition.	App should be accessible online.	Ø Deployed	DevOps

Final Submission

- 1. Project Report Based on the templates
- 2. Demo Video (3-5 Minutes)
- 3. GitHub/Code Repository Link
- 4. Presentation