Integración numérica

Análisis numérico (75.12/95.04/95.12)

Facultad de ingeniería – Universidad de Buenos Aires

<u>Objetivos</u>

$$\int_{x_1}^{x_n} f(x) := \lim_{\delta \to \infty} \sum_{i=1}^n \delta_i f(x_i)$$

- Reducir la expresión a términos calculables aceptando cierto nivel de error
- En algunos casos es la única manera de calcular la integral

Primer ejemplo: función a integrar

$$\int_{0}^{2} 1 + \frac{7}{x+1} \cos(e^{x}) dx$$

- ¿Primitiva?
- Evaluar la función puede ser costoso, por lo que queremos reducir las evaluaciones

Primer ejemplo: discretización del dominio de integración

$$\lim_{\Delta \to \infty} \sum_{i=1}^{n} \delta_i f(x_i) \implies \delta_i \approx \Delta = h : \text{finito}$$

- Para los métodos de nodos equiespaciados es necesario definir incrementos no infinitesimales
- Generalmente, a menor paso la aproximación mejora

Primer ejemplo: regla del rectángulo o punto medio

$$I_{rect} = \sum_{i=2}^{n} \Delta f(\frac{x_{i-1} + x_i}{2})$$

- Necesito conocer la función en los puntos medios
- Integra de manera exacta funciones lineales (precisión 1)
- Orden 2

Primer ejemplo: regla del rectángulo o punto medio

$$\begin{array}{c|c}
\hline
\alpha & 1(A) \\
\hline
0 & 4.78 \\
25 & 2.58 \\
\end{array}$$

$$\begin{array}{c|c}
\Delta = 0, 5 \\
n \\
x \cdot 1 + x \cdot
\end{array}$$

 $I_{rect} = \Delta f(0, 25) + \Delta f(0, 75) + \Delta f(1, 25) + \Delta f(1, 75)$

 $I_{rect} = 0,5(2,58-1,08-1,92+3,20)$

 $I_{rect} = 1,390$

 $0.5 \mid 0.637$

 $0.75 \mid -1.08 \mid$

 $1 \mid -2,19$

 $1,25 \mid -1,92 \mid$

 $1,5 \mid 0,360$

 $1,75 \mid 3,20$

Segundo ejemplo: Regla del trapecio

$$I_{trap} = \frac{h}{2} [f(x_0) + f(x_{n-1})] + \sum_{i=1}^{n-2} h f(x_i)$$

- La función se puede tener tabulada
- Integra de manera exacta funciones lineales (precisión 1)
- Orden 2

Segundo ejemplo: Regla del trapecio

X	f(x)	$\Delta = 0, 5$
0	4,78	$I_{trap} = \frac{h}{2} [f(x_0) + f(x_{n-1})] + \sum_{i=1}^{n-2} hf(x_i)$
0,5	0,637	$2^{\lfloor J(\omega_0) + J(\omega_{n-1}) \rfloor + \sum_{i=1}^{N} NJ(\omega_i)}$
1	-2,19	$I_{trap} = \frac{h}{2}[f(0) + f(2)] + h[f(0,5) + f(1) + f(1,5)]$
1,5	0,360	$I_{trap} = 0.25 \times (4.78 + 2.05) + 0.5 \times (0.637 - 2.19 + 0.36)$ $I_{trap} = 1.111$
2	2,05	

Segundo ejemplo: Regla del trapecio

X	I(X)	: Cómo cambia al arrar de la aprovimación ci al paca
0	4,78	¿Cómo cambia el error de la aproximación si el paso es la mitad del paso en el caso anterior?
0,25	2,58	
0,5	0,637	$\Delta = 0,25$
0,75	-1,08	
1	-2,19	
1,25	-1,92	h
1,5	0,360	$I_{trap} = \frac{h}{2}[f(0) + f(2)] + h[f(0, 25) + f(0, 5) + f(0, 75) + f(1) + f(1, 25) + f(1, 5) + f(1, 75)]$ $I_{trap} = 0, 125 \times (4, 78 + 2, 05) + 0, 25 \times (2, 58 + 0, 637 - 1.08 - 2, 19 - 1, 92 + 0, 36 + 3, 2)$
1,75	3,20	$I_{trap}(0,25) = 1,251$
2	$\begin{vmatrix} 3,20 \\ 2,05 \end{vmatrix}$	

Tercer ejemplo: Regla de Simpson

$$I_{simp} = \frac{h}{3} [f(x_0) + 2 \sum_{i=1}^{\frac{N}{2}-1} f(x_{2i}) + 4 \sum_{i=1}^{\frac{N}{2}} f(x_{2i-1}) + f(x_n)]$$

- N, la cantidad de intervalos en los que se divide el recinto de integración, debe ser par
- Integra de manera exacta funciones cuadráticas (precisión 2)
- Orden 4

Tercer ejemplo: regla de Simpson

X	f(x)	$I_{simp} = \frac{h}{3} [f(x_0) + 2\sum_{i=1}^{\frac{N}{2}-1} f(x_{2i}) + 4\sum_{i=1}^{\frac{N}{2}} f(x_{2i-1}) + f(x_n)]$
0	4,78	7
0,5	0,637	$I_{simp} = \frac{h}{3}[f(0) + 2(f(1)) + 4(f(0,5) + f(1,5))) + f(2)]$
1	-2,19	$\frac{0,5}{3}[4,78+2\times(-2.19)]+4\times(0,638+0,36)+2,05]$
	0,360	$I_{simp} = 1.074$
	2,05	Si el paso hubiese sido la mitad ¿Cómo sería el error respecto a esta aproximación?

 Aplicar extrapolación de Richardson a aproximaciones de menor orden para mejorarlas

$$N_j(\frac{h}{2}) = N_{j-1}(\frac{h}{2}) + \frac{N_{j-1}(\frac{h}{2}) - N_{j-1}(h)}{2^{j-1} - 1}$$

$$\begin{bmatrix} I_{trap}(0,5) = 1,111 \\ I_{trap}(0,25) = 1,251 \end{bmatrix} N_j(\frac{h}{2}) = N_{j-1}(\frac{h}{2}) + \frac{N_{j-1}(\frac{h}{2}) - N_{j-1}(h)}{2^{j-1} - 1}$$

$$N_4(0,25) = I_{trap}(0,25) + \frac{I_{trap}(0,25) - I_{trap}(0,5)}{2^2 - 1}$$

$$N_4(0,25) = 1,298 = I_{simp}(0,25)$$

Paso	I_{trap} $O(2)$
1	1,220
0, 5	$1, 11^{I_{simp}(0,5) = I_{trap}(0,5) + \frac{a \cdot ap \cdot y + a \cdot ap \cdot y}{2^2 - 1}} = 1.075$ $I_{trap}(0,25) - I_{trap}(0,5)$
0,25	$\begin{array}{c} 1,220 \\ 1,111 \\ I_{simp}(0,5) = I_{trap}(0,5) + \frac{I_{trap}(0,5) - I_{trap}(1)}{2^2 - 1} = 1.075 \\ 1,251 \\ I_{simp}(0,25) = I_{trap}(0,25) + \frac{I_{trap}(0,25) - I_{trap}(0,5)}{2^2 - 1} = 1,298 \\ I_{simp}(0,125) = I_{trap}(0,125) + \frac{I_{trap}(0,125) - I_{trap}(0,25)}{2^2 - 1} = 1,288 \end{array}$
0,125	$1,279$ $I_{simp}(0,123) = I_{trap}(0,123) + \frac{2^2 - 1}{2}$

_	Paso	I_{trap} $O(2)$	I_{simp} $O(4)$	$I_{romb}O(6)$	I_{romb} $O(8)$
_	1	1,220	_		_
	0, 5	1,111	1,075	_	_
	0, 25	1,251	1,298	1,312	_
	0,125	1,279	1,288	1,287	1,285

Quinto ejemplo: cuadratura gaussiana

- Integra de manera exacta polinomios de grado 2n-1
- El método sólo funciona en el intervalo [-1,1]

$$\int_{-1}^{1} \phi(\mu) d\mu \approx \sum_{i=0}^{n-1} C_i \phi(\mu_i) \Longrightarrow \begin{cases} \mu_i \text{ Raices polinomio de Legendre de orden } n-1 \\ C_i : \text{ Coeficientes de Ganss} \end{cases}$$

Quinto ejemplo: cambio de variable

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} \phi(\mu)d\mu \Longrightarrow \begin{cases} x = \frac{b-a}{2}\mu + \frac{a+b}{2} \\ \frac{b-a}{2}dx = d\mu \end{cases}$$

$$\int_0^2 1 + \frac{7}{1+x} \cos(e^x) \, dx = \int_{-1}^1 1 + \frac{7}{2+\mu} \cos(e^{\mu+1}) \, d\mu$$

Quinto ejemplo: puntos de Gauss

Points	Function Arguments
2	$x_0 = -0.577350269$ $x_1 = 0.577350269$
3	$x_0 = -0.774596669$ $x_1 = 0.0$ $x_2 = 0.774596669$
4	$x_0 = -0.861136312$ $x_1 = -0.339981044$ $x_2 = 0.339981044$ $x_3 = 0.861136312$
5	$x_0 = -0.906179846$ $x_1 = -0.538469310$ $x_2 = 0.0$ $x_3 = 0.538469310$ $x_4 = 0.906179846$
6	$x_0 = -0.932469514$ $x_1 = -0.661209386$ $x_2 = -0.238619186$ $x_3 = 0.238619186$ $x_4 = 0.661209386$ $x_5 = 0.932469514$

- Los puntos de Gauss o los ceros de los polinomios de Legendre se eligen de la tabla de acuerdo a la precisión se requiera.
- Son simétricos respecto a x=0 y no dependen de la función a integrar.
- Elegir más puntos implica una mayor precisión.

Quinto ejemplo: puntos de Gauss

Points	Function Arguments
2	$x_0 = -0.577350269$ $x_1 = 0.577350269$
3	$x_0 = -0.774596669$ $x_1 = 0.0$ $x_2 = 0.774596669$
4	$x_0 = -0.861136312$ $x_1 = -0.339981044$ $x_2 = 0.339981044$ $x_3 = 0.861136312$
5	$x_0 = -0.906179846$ $x_1 = -0.538469310$ $x_2 = 0.0$ $x_3 = 0.538469310$ $x_4 = 0.906179846$
6	$x_0 = -0.932469514$ $x_1 = -0.661209386$ $x_2 = -0.238619186$ $x_3 = 0.238619186$ $x_4 = 0.661209386$ $x_5 = 0.932469514$

$$\mu_0 = -0,775$$
 $\mu_1 = 0$
 $\mu_2 = 0,775$

Quinto ejemplo: coeficientes de Gauss

• Para n = 3 integra de manera exacta polinomios de grado 5

$$\int_{-1}^{1} \phi(\mu) d\mu = \sum_{i=0}^{n-1} C_i \phi(\mu_i)$$

$$\int_{-1}^{1} 1 dx = 2 = C_0 \phi(\mu_0) + C_1 \phi(\mu_1) + C_2 \phi(\mu_2)
\int_{-1}^{1} x dx = 0 = C_0 \phi(\mu_0) + C_1 \phi(\mu_1) + C_2 \phi(\mu_2)
\int_{-1}^{1} x^2 dx = \frac{2}{3} = C_0 \phi(\mu_0) + C_1 \phi(\mu_1) + C_2 \phi(\mu_2)$$

Quinto ejemplo: coeficientes de Gauss

$$\int_{-1}^{1} 1 dx = 2 = C_0 + C_1 + C_2$$

$$\int_{-1}^{1} x dx = 0 = C_0 \mu_0 + C_1 \mu_1 + C_2 \mu_2$$

$$\int_{-1}^{1} x^2 dx = \frac{2}{3} = C_0 \mu_0^2 + C_1 \mu_1^2 + C_2 \mu_2^2$$

Quinto paso: coeficientes de Gauss

$$\begin{pmatrix} 1 & 1 & 1 & 2 \\ -0,775 & 0 & 0,775 & 0 \\ -0,775^2 & 0 & 0,775^2 & \frac{2}{3} \end{pmatrix} \begin{array}{c} C_0 = 0,556 \\ C_1 = 0,889 \\ C_2 = 0,556 \end{array}$$

Quinto ejemplo: resolución

$$\int_{-1}^{1} \phi(\mu) d\mu = \sum_{i=0}^{n-1} C_i \phi(\mu_i) \qquad f(x) \neq \phi(\mu) = 1 + \frac{7}{2+x} \cos(e^{x+1})$$

$$I_{gauss}(n=3) = C_0\phi(-0.775) + C_1\phi(0) + C_2\phi(0.775)$$

$$I_{gauss}(n=3) = 0,556 \times 2,79 + 0,889 \times (-2.19) + 0,556 \times 3,34$$

$$I_{aauss}(n=3)=1,461$$

Quinto ejemplo: cuadratura de Gauss para n=5

Points	Weighting Factors	Function Arguments
2	$c_0 = 1.0000000$ $c_1 = 1.0000000$	$x_0 = -0.577350269$ $x_1 = 0.577350269$
3	$c_0 = 0.5555556$ $c_1 = 0.8888889$ $c_2 = 0.5555556$	$x_0 = -0.774596669$ $x_1 = 0.0$ $x_2 = 0.774596669$
4	$c_0 = 0.3478548$ $c_1 = 0.6521452$ $c_2 = 0.6521452$ $c_3 = 0.3478548$	$x_0 = -0.861136312$ $x_1 = -0.339981044$ $x_2 = 0.339981044$ $x_3 = 0.861136312$
5	$c_0 = 0.2369269$ $c_1 = 0.4786287$ $c_2 = 0.5688889$ $c_3 = 0.4786287$ $c_4 = 0.2369269$	$x_0 = -0.906179846$ $x_1 = -0.538469310$ $x_2 = 0.0$ $x_3 = 0.538469310$ $x_4 = 0.906179846$
6	$c_0 = 0.1713245$ $c_1 = 0.3607616$ $c_2 = 0.4679139$ $c_3 = 0.4679139$ $c_4 = 0.3607616$ $c_5 = 0.1713245$	$x_0 = -0.932469514$ $x_1 = -0.661209386$ $x_2 = -0.238619186$ $x_3 = 0.238619186$ $x_4 = 0.661209386$ $x_5 = 0.932469514$

 Al tener los pesos y puntos de Gauss tabulados no es necesario aplicar coeficientes indeterminados

Quinto ejemplo: cuadratura de Gauss para n=5

Points	Weighting Factors	Function Arguments	
2	$c_0 = 1.0000000$ $c_1 = 1.0000000$	$x_0 = -0.577350269$ $x_1 = 0.577350269$	
3	$c_0 = 0.5555556$ $c_1 = 0.8888889$ $c_2 = 0.5555556$	$x_0 = -0.774596669$ $x_1 = 0.0$ $x_2 = 0.774596669$	
4	$c_0 = 0.3478548$ $c_1 = 0.6521452$ $c_2 = 0.6521452$ $c_3 = 0.3478548$	$x_0 = -0.861136312$ $x_1 = -0.339981044$ $x_2 = 0.339981044$ $x_3 = 0.861136312$	
5	$c_0 = 0.2369269$ $c_1 = 0.4786287$ $c_2 = 0.5688889$ $c_3 = 0.4786287$ $c_4 = 0.2369269$	$x_0 = -0.906179846$ $x_1 = -0.538469310$ $x_2 = 0.0$ $x_3 = 0.538469310$ $x_4 = 0.906179846$	

$$I_{gauss}(n=6) = 0,237\phi(-0,906) + 0,479\phi(-0,538) + 0,569\phi(0) + 0,479\phi(0,538) + 0,237\phi(0,906)$$

$$I_{gauss}(n=5) = 1,283$$

Comparación de resultados

Metodo	Paso	Nodos	Integral	$ E_{abs} $
I_{ref}	0	∞	1,285	0,0005
I_{rect}	0,5	4	1,390	0, 1
I_{trap}	1	3	1,220	0, 1
I_{trap}	0,5	5	1,110	0, 2
I_{trap}	0, 25	9	1,251	0,04
I_{trap}	0,125	17	1,279	0,01
I_{simp}	0, 5	5	1,075	0,2
I_{simp}	0,25	9	1,298	0,02
I_{simp}	0,125	17	1,288	0,003
I_{romb} 0(6)	0, 25	9	1,312	0,03
I_{romb} 0(6)	0,125	17	1,287	0,002
I_{romb} 0(8)	0,125	17	1,285	0,0005
I_{gauss}	_	3	1,461	0,2
I_{gauss}	_	5	1,283	0,002

Cuadro comparativo

Trap	pecios	Simpson			
Ventajas	Ventajas Desventajas		Desventajas		
Nodos tabulados	O(2)	O(4)	La cantidad de segmentos		
Nodos tabulados	(2)	0(4)	debe ser par		
Nodos equiespaciados		Nodos tabulados	Nodos equiespaciados		
Ron	nberg	Gauss			
Ventajas	Ventajas Desventajas		Desventajas		
Mejora el orden de la integral	Mejora el orden de la integral Necesita de muchos resultados		Cambio de variable		
		Buena precisión	Necesita de la		
		Buena precision	función analítica		