

Acting

Decision Making

Maximum Expected Utility

Simple Decision Making

A simple decision making situation \mathcal{D} :

- A set of possible actions $Val(A) = \{a^1, ..., a^K\}$
- A set of states $Val(X) = \{x^1, ..., x^N\}$
- A distribution P(X | A)
- A utility function U(X, A),

Expected Utility

$$EU[\underline{\mathcal{D}}[a]] = \sum_{\mathbf{x}} \underline{P(\mathbf{x} \mid a)} \underline{U(\mathbf{x}, a)}$$

• Want to choose action at that maximizes the expected utility

$$a^* = \operatorname{argmax}_a \operatorname{EU}[\mathcal{D}[a]]$$

Simple Influence Diagram

More Complex Influence Diagram

Information Edges

Expected Utility with Information

$$\mathrm{EU}[\mathcal{D}[\delta_A]] = \sum_{m{x},a} P_{\delta_A}(m{x},a) U(m{x},a)$$

• Want to choose the decision rule δ_A that maximizes the expected utility

$$\operatorname{argmax}_{\delta_A} \operatorname{EU}[\mathcal{D}[\delta_A]]$$

$$MEU(\mathcal{D}) = \max_{\delta_A} EU[\mathcal{D}[\delta_A]]$$

Finding MEU Decision Rules

Finding MEU Decision Rules

More Generally

$$EU[\mathcal{D}[\delta_{A}]] = \sum_{\mathbf{x},a} P_{\mathbf{D}A}(\mathbf{x},a)U(\mathbf{x},a)$$

$$= \sum_{X_{1},...,X_{n},A} \left(\left(\prod_{i} P(X_{i} \mid \mathbf{Pa}_{X_{i}}) \right) U(\mathbf{Pa}_{U})\delta_{A}(A \mid \mathbf{Z}) \right)$$

$$= \sum_{\mathbf{Z},A} \delta_{A}(A \mid \mathbf{Z}) \sum_{\mathbf{W}} \left(\left(\prod_{i} P(X_{i} \mid \mathbf{Pa}_{X_{i}}) \right) U(\mathbf{Pa}_{U}) \right)$$

$$= \sum_{\mathbf{Z},A} \delta_{A}(A \mid \mathbf{Z}) \mu(A,\mathbf{Z})$$

$$\delta_{A}^{*}(a \mid \mathbf{z}) = \begin{cases} 1 & a = \operatorname{argmax}_{A} \mu(A,\mathbf{z}) \\ 0 & \text{otherwise} \end{cases}$$

MEU Algorithm Summary

- To compute MEU & optimize decision at A:
 - Treat A as random variable with arbitrary CPD
 - Introduce utility factor with scope Pa_{\cup}
- Eliminate all variables except A, Z (A's parents) to produce factor $\mu(A, Z)$,
 - For each z, set:

$$\delta_A^*(a \mid \boldsymbol{z}) = \begin{cases} 1 & a = \operatorname{argmax}_A \mu(A, \boldsymbol{z}) \\ 0 & \text{otherwise} \end{cases}$$

Decision Making under Uncertainty

- MEU principle provides rigorous foundation
- PGMs provide structured representation for probabilities, actions, and utilities
- PGM inference methods (VE) can be used for
 - Finding the optimal strategy
 - Determining overall value of the decision situation
- Efficient methods also exist for:
 - Multiple utility components
 - Multiple decisions

END END END

Acting

Decision Making

Utility Functions

Utilities and Preferences

1. Heries

Utility = Payoff?

St. Petersburg Paradox

- Fair coin is tossed repeatedly until it comes up heads, say on the nth toss
- Payoff = $$2^n$

$$\frac{1}{2}$$
*2 + $\frac{1}{4}$ *4 + $\frac{1}{8}$ *8+... = ∞

most people value ≈ 82

Typical Utility Curve

Multi-Attribute Utilities

 All attributes affecting preferences must be integrated into one utility function

money time, pleasure, ...

- · Human life
 - Micromorts 1000000 chance I death 2 \$20 1930
 - QALY (quality-adjusted life year)

Example: Prenatal diagnosis

Summary

- Our utility function determines our preferences about decisions that involve uncertainty
- Utility generally depends on multiple factors
 - Money, time, chances of death, ...
- · Relationship is usually nonlinear
 - Shape of utility curve determines attitude to risk
- Multi-attribute utilities can help decompose high-dimensional function into tractable pieces

Acting

Decision Making

Value of
Perfect
Information

Value of Information

alue of perfect information

- $VPI(A \mid X)$ is the value of observing X before choosing an action at A
- \mathcal{D} = original influence diagram
- $\mathcal{D}_{X \to A}$ = influence diagram with edge $X \to A$

$$VPI(A \mid X) := MEU(\mathcal{D}_{X \rightarrow A}) - MEU(\mathcal{D})$$

Finding MEU Decision Rules

$$neu(0_{S\to F})$$
 - $MEu(0)$
3.25 2 = 1.25

Value of Information

 $VPI(A \mid X) := MEU(\mathcal{D}_{X \to A}) - MEU(\mathcal{D})$

- · Theorem:
 - $-VPI(A \mid X) \ge 0$
 - $VPI(A \mid X) = 0$ if and only if the optimal decision rule for \mathcal{D} is still optimal for $\mathcal{D}_{X \to A}$

Value of Information Example

Value of Information Example

$$EU(\mathcal{D}[c_1]) = 0.35$$

$$EU(\mathcal{D}[c_2]) = 0.33$$

$$MEU(\mathcal{D}_{S_1 \to C}) = \underline{0.43}$$

Value of Information Example

$$EU(D[c_1]) = 0.788$$

$$EU(\mathcal{D}[c_2]) = 0.779$$

$$MEU(\mathcal{D}_{S_1 \rightarrow C}) = 0.8142$$

Summary

- Influence diagrams provide clear and coherent semantics for the value of making an observation
 - Difference between values of two IDs
- Information is valuable if and only if it induces a change in action in at least one context

END END END