6: Matching

Videregående kvantitative metoder i studiet af politisk adfærd

Frederik Hjorth fh@ifs.ku.dk fghjorth.github.io @fghjorth

Institut for Statskundskah Københavns Universitet

10. oktober 2016

- Formalia
- Opsamling fra sidst
- Rubins kausalmodel
- Matching
- Ladd & Lenz (2009)
- Kig fremad

- frivillig R-workshop kl. 13-16, lokale 2.0.30
- midterm løses på workshoppen, frigives på github.com/fghjorth/vkme16 kl. 12.59

Centrale tendenser i evalueringen:

- flere R-opgaver
- gerne R-workshop før semesteret
- nogle pensumtekster dur ikke (især fsva. paneldata)
- lidt for meget repetition
- generel ros til underviseren

Uge	Dato	Tema	Litteratur	Case
1	5/9	Introduktion til R	lmai kap 1	
2	12/9	Regression I: OLS	GH kap 3, MM kap 2	Gilens & Page (2014
3	26/9	Regression II: Paneldata	GH kap 11	Larsen et al. (2016)
4	29/9	Regression III: Multileveldata, interaktioner	GH kap 12	Berkman & Plutzer
5	3/10	Introduktion til kausal inferens	Hariri (2012), Samii (2016)	
6	10/10	Matching	Justesen & Klemmensen (2014)	Ladd & Lenz (2009)
	17/10	*Efterårsferie*		

	Uge	Dato	Tema	Litteratur	Case
-		17/10	*Efterårsferie*		
	7	24/10	Eksperimenter I	MM kap 1, GG kap $1+2$	Bond et al. (2012)
	8	31/10	Eksperimenter II	GG kap 3+4+5	Gerber & Green (2000
	9	7/11	Instrumentvariable	MM kap 3	Arunachalam & Watso
	10	14/11	Regressionsdiskontinuitetsdesigns	MM kap 4	Eggers & Hainmueller
	11	21/11	Difference-in-difference designs	MM kap 5	Enos (2016)
	12	28/11	'Big data' og maskinlæring	Grimmer (2015), Varian (2014)	, ,
	13	5/12	Scraping af data fra online-kilder	MRMN kap 9	
	14	12/12	Tekst som data	Grimmer & Stewart (2013), Imai kap 5	

Spørgsmål?

Frederik Hjorth

- implementering af multilevelmodeller i R
- multikollinearitetsproblemer i Gilens & Page
- introduktion til kausal inferens: 'credibility-revolutionen'
- endogenitet
- post-treatment adjustment bias

Opsamling

Spørgsmål?

Lad os antage en påvirket gruppe (T=1) og en upåvirket gruppe (T=0).

Rubins kausalmodel:

$$\delta_i = Y_{i1} - Y_{i0} \tag{1}$$

M.a.o.: effekten δ_i er forskellen mellem Y_i når T=1 og Y_i når T=0

kaldes også 'the potential outcomes framework'

Problem: T er altid enten 1 eller $0 \to vi$ observerer altid kun Y_{i1} eller $Y_{i1} \to vi$ kan aldrig observere δ_i

denne uobserverbarhed kaldes the fundamental problem of causal inference

 \rightarrow model dependence

Matching •0000000

Løsning: fokuser på dele af data med common support

Figur 1: Intervaller i data med højt og lavt overlap

I N-dimensionelle data defineres support ud fra datas 'konvekse hylster' (convex hull)

Klassisk tilgang i matching: exact matching

Men: ofte ikke tilstrækkeligt mange eksakte matches ightarrow behov for dimensionalitetsreduktion

Efter PSM-estimation: fx. nearest neighbor matching (men: bias-variance tradeoff)

Alternativ: radius (caliper) matching

Sidenhen skepsis om PSM's fortræffeligheder, jf. fx. King & Nielsen (2016), "Why Propensity Scores Should Not Be Used for Matching"

Centralt problem ved PSM: misspecifikation i PS-modellen kan give bias (og er inefficient selv ved korrekt specifikation)

Alternativ: Coarsened Exact Matching \rightarrow variable opdeles i grove, meningsfulde kategorier og matches iht. kategori

I CEM måles balance med \mathcal{L}_1 :

$$\mathcal{L}_{1} = \frac{1}{2} \sum_{\ell_{1} \dots \ell_{k}} |f_{\ell_{1} \dots \ell_{k}} - g_{\ell_{1} \dots \ell_{k}}|$$
 (2)

fuld common support $\rightarrow \mathcal{L}_1 = 0$; ingen common support $\rightarrow \mathcal{L}_1 = 1$

Fremgangsmåde med CEM:

- evaluér balance med imbalance() (ekskl. treatment og outcome)
- definér kategorier for matching-variable
- 3 kør CEM med cem() m. information fra (2)
- evaluér balance igen
- 6 hvis tilfredsstillende balance, estimér effekt kun m. matchet data

Spørgsmål?

Frederik Hjorth

•0

IT'S THE SUN WOT WON IT

00

Næste gang:

efterårsferie!

Frederik Hjorth

Tak for i dag!

Kig fremad