Adatbázisrendszerek 6. előadás: Az ER modell

Jelölések, az ER séma leképezése relációs sémára

2024. április 12.

Egyedtípusok

6. előadás: ER modell

Az ER modell jelölésrendszere

ER séma leképezés: relációs sémára

Péld:

Definíció

Azokat az egyedtípusokat, amelyek nem rendelkeznek saját kulcsattribútumokkal, gyenge egyedtípusoknak nevezzük. Ezzel ellentétben azokat a (hagyományos) egyedtípusokat, amelyekeknek van kulcsattribútumuk, erős egyedtípusoknak nevezzük.

Definíció

A gyenge egyedtípusoknak részleges kulcsuk (diszkriminátoruk) van, amely azon attribútumok halmaza, amelyek egyértelműen azonosítják azokat a gyenge egyedeket, amelyek ugyanazon tulajdonos egyed(ek)hez kapcsolódnak.

Egyedtípusok

6. előadás: ER modell

Az ER modell jelölésrendszere

ER séma leképezés relációs sémára

Tulajdonságtípusok

6. előadás: ER modell

Az ER modell jelölésrendszere

leképezés relációs sémára

Példa

A modell kezeli

- az egyszerű és összetett,
- az egyértékű és halmazértékű (többértékű), valamint
- a tárolt és származtatott

tulajdonságtípusokat.

Jelölések

Kapcsolattípusok

6. előadás: ER modell

Az ER modell jelölésrendszere

ER séma leképezése relációs sémára

Példa

A modellben tetszőleges fokszámú kapcsolattípus ábrázolható. A következő két ábrán egy-egy másodfokú (bináris) kapcsolattípus látható.

Jelölések

6. előadás: ER modell

Az ER modell jelölésrendszere

ER séma leképezése relációs sémára

Az ER modell jelölésrendszere

ER séma leképezése relációs sémára

6. előadás: <u>E</u>R modell

Az ER modell jelölésrendszere

ER séma leképezése relációs sémára

Az ER modell jelölésrendszere

ER séma leképezése relációs sémára

ER séma leképezése relációs sémára

6. előadás: ER modell

Az ER modell jelölésren

ER séma leképezése relációs sémára

- Erős egyedtípusok leképezése
- 2 Gyenge egyedtípusok leképezése
- Bináris 1 : 1 számosságú kapcsolattípusok leképezése
 - a külső kulcs használata
 - (b összevonás
 - c kereszthivatkozás v. kapcsoló reláció használata
- 4 Bináris 1 : N számosságú kapcsolattípusok leképezése
- **5** Bináris *M* : *N* számosságú kapcsolattípusok leképezése
- 6 Többértékű attribútumok leképezése
- 7 N-edfokú kapcsolattípusok leképezése

Az ER modell

ER séma leképezése relációs sémára

Példa

Az ER séma minden *E* erős egyedtípusához rendeljünk hozzá egy *R* relációsémát, amely tartalmazza *E* összes egyszerű attribútumát. Az összetett attribútumoknak csak az egyszerű komponenseit adjuk hozzá *R* attribútumaihoz. Válasszuk *E* kulcsjelölt attribútumhalmazainak egyikét az *R* relációséma elsődleges kulcsául. Ha az *E*-ből választott kulcs összetett, akkor annak egyszerű attribútumai együttesen fogják alkotni *R* elsődleges kulcsát.

Az ER modell jelölésrend szere

ER séma leképezése relációs sémára

Példa

Az ER séma minden W gyenge egyedtípusához rendeljünk hozzá egy R relációsémát, melynek attribútumai legyenek W összes egyszerű attribútuma és W összetett attribútumainak egyszerű komponensei. Továbbá adjuk hozzá R attribútumaihoz külső kulcs attribútumként azoknak a relációsémáknak az elsődleges kulcs attribútumait, amelyeket a domináns egyedtípusoknak feleltettünk meg; ezzel képezzük le a W-hez tartozó azonosító kapcsolattípust. R elsődleges kulcsa a tulajdonos egyedtípusok elsődleges kulcsainak és a W gyenge egyedtípus diszkriminátorának az együttese.

Ha egy E_2 gyenge egyedtípus tulajdonosa a szintén gyenge E_1 egyedtípus, akkor E_1 -et E_2 előtt kell leképezni, mert az E_2 leképezéséhez szükség van az E_1 -ből képzett reláció elsődleges kulcsára.

Bináris 1 : 1 számosságú kapcsolattípusok leképezése 13

6. előadás: ER modell

Az ER modell jelölésren

ER séma leképezése relációs sémára

Péld:

Minden bináris 1:1 számosságú R kapcsolattípus esetén meg kell határozni az R-ben részt vevő egyedtípusokból képzett S és T relációkat. Három lehetséges megközelítés létezik:

- külső kulcs használata,
- összevonás,
- keresztreferencia vagy kapcsoló reláció használata.

Az első megközelítés a leghasznosabb, és azt célszerű alkalmazni, hacsak bizonyos feltételek nem állnak fenn, ahogy azt mindjárt látni fogjuk.

Bináris 1 : 1 számosságú kapcsolattípusok leképezése 14

6. előadás: ER modell

Az ER modell jelölésrend

ER séma leképezése relációs sémára

Példa

II Külső kulcs használata: Válasszuk ki az egyik relációt (mondjuk S-t) és vegyük fel S külső kulcsaként T elsődleges kulcsát. Célszerű S-nek azt a relációt választani, amelyiket abból az egyedtípusból képeztünk le, amelyik totális résztvevője az R kapcsolatnak. Vegyük fel továbbá R egyszerű attribútumait, illetve R összetett attribútumainak egyszerű komponenseit S attribútumaiként. (Azt is megtehetnénk, hogy S (a totális résztvevő) elsődleges kulcsát vesszük fel T külső kulcsaként, de ebben az esetben T minden olyan rekordjánál, amelyik nem vesz részt a kapcsolatban, ehhez a külső kulcshoz null értéket kellene rendelni.)

Bináris 1 : 1 számosságú kapcsolattípusok leképezése 15

6. előadás: ER modell

Az ER modell jelölésrend

ER séma leképezése relációs sémára

Péld:

- Összevonás: Egy másik lehetőség az 1:1 kapcsolatok leképezésére, ha a két egyedtípust és a kapcsolatot egyetlen relációba vonjuk össze. Ezt akkor tehetjük meg, ha mindkét egyedtípus totális résztvevője a kapcsolatnak.
- Mereszthivatkozás vagy kapcsoló reláció használata: A harmadik lehetőség, hogy felveszünk egy harmadik R relációt abból a célból, hogy kereszthivatkozással lássuk el a két egyedtípusból képzett S és T relációk elsődleges kulcsait. Ahogy látni fogjuk, ezt a megközelítést alkalmazzuk a bináris M:N kapcsolatoknál is. Az R relációt kapcsoló relációnak nevezzük, mert R minden rekordja egy kapcsolat-előfordulást reprezentál, amely S egy rekordját T egy rekordjával kapcsolja össze.

Bináris 1 : **N** számosságú kapcsolattípusok leképezése

6. előadás: ER modell

Az ER modell jelölésrend szere

ER séma leképezése relációs sémára

Példa

Minden bináris 1:N számosságű R kapcsolattípus esetén meg kell határozni azt az S relációt, amelyiket a kapcsolattípus N-oldali egyedtípusából képeztünk. Vegyük fel S külső kulcsaként az R-ben részt vevő másik egyedtípusból képzett T reláció elsődleges kulcsát; mindezt azért tesszük, mert az N-oldali egyed-előfordulások a másik oldalról legfeljebb egy egyed-előforduláshoz tartoznak. Vegyük fel továbbá R egyszerű attribútumait, illetve R összetett attribútumainak egyszerű komponenseit S attribútumaiként.

Bináris 1 : **N** számosságú kapcsolattípusok leképezése

6. előadás: ER modell

Az ER modell jelölésrend

ER séma leképezése relációs sémára

Pelda

Egy másik megközelítés szerint most is használhatunk kapcsoló relációt (kereszthivatkozást), ahogy az 1:1 kapcsolatoknál tettük. Ekkor egy külön R relációt hozunk létre, amelynek attribútumai S és T elsődleges kulcsai, és amelynek elsődleges kulcsa megyegyezik S elsődleges kulcsával. Ezt a módszert célszerű alkalmazni akkor, ha S-ben kevés rekord vesz részt a kapcsolatban, ugyanis ekkor a külső kulcsos megközelítés használatakor rengeteg null érték szerepelne a külső kulcsban.

Bináris *M* : *N* számosságú kapcsolattípusok leképezése

6. előadás: ER modell

Az ER modell jelölésrend

ER séma leképezése relációs sémára

Pelda

Minden bináris M:N számosságú R kapcsolattípus esetén hozzunk létre egy új S relációt, amely R-et reprezentálja. Vegyük fel S külső kulcsaként a kapcsolatban részt vevő egyedtípusokból képzett relációk elsődleges kulcsait; ezek együttese alkotja S elsődleges kulcsát. Vegyük fel továbbá R egyszerű attribútumait, illetve R összetett attribútumainak egyszerű komponenseit S attribútumaiként.

Vegyük észre, hogy egy M:N kapcsolatot nem tudunk egyetlen külső kulccsal reprezentálni az egyik résztvevő relációban (ahogy az 1:1 és 1:N kapcsolattípusok esetén tettük) az M:N számosság miatt; mindenképpen létre kell hoznunk egy külön S kapcsoló relációt.

Bináris *M* : *N* számosságú kapcsolattípusok leképezése

6. előadás: ER modell

Az ER modell jelölésrend szere

ER séma leképezése relációs sémára

Pelda

Azt is vegyük észre, hogy az 1:1 és 1: N kapcsolattípusokat mindig leképezhetjük az M: N kapcsolattípusok leképezéséhez hasonló módon, a kereszthivatkozás (kapcsoló reláció) használatával úgy, ahogy azt korábban láttuk. Ez a megközelítés különösen hasznos akkor, ha kevés kapcsolat-előfordulás létezik, mert így elkerülhetjük a sok null érték felbukkanását a külső kulcsokban. Ebben az esetben a kapcsoló reláció elsődleges kulcsát a kapcsolatban részt vevő egyedtípusokból képzett relációkra hivatkozó külső kulcsok közül csak az egyik alkotja. 1 : N számosságú kapcsolattípus esetén a kapcsoló reláció elsődleges kulcsa az N-oldali egyedtípusból képzett relációra hivatkozó külső kulcs lesz. 1:1 számosságú kapcsolattípus esetén bármelyik külső kulcsot használhatjuk a kapcsoló reláció elsődleges kulcsaként, ha abban a relációban nincs null érték.

ER modell

6. előadás:

modell jelölésrend szere

ER séma leképezése relációs sémára

Példa

Minden egyes A többértékű attribútum esetén hozzunk létre egy új R relációt. Ez az R reláció tartalmazzon egy, az A-nak megfelelő attribútumot, valamint annak a relációnak a K elsődleges kulcsát -R külső kulcsaként -, amelyet az A-t tartalmazó egyedtípusból vagy kapcsolattípusból képeztünk. R elsődleges kulcsát A és K együttese alkotja. Ha a többértékű attribútum összetett, akkor az egyszerű komponenseit vegyük fel R attribútumaiként.

N-edfokú kapcsolattípusok leképezése

6. előadás: ER modell

Az ER modell jelölésrend szere

ER séma leképezése relációs sémára

Pela

Minden N-edfokú R kapcsolattípus esetén, ahol N > 2, hozzunk létre egy új S relációt, amely R-et reprezentálja. Vegyük fel S külső kulcsaként a kapcsolatban részt vevő egyedtípusokból képzett relációk elsődleges kulcsait. Vegyük fel továbbá R egyszerű attribútumait, illetve R összetett attribútumainak egyszerű komponenseit S attribútumaiként. S elsődleges kulcsa általában az összes külső kulcs együttese. Ha azonban az R-ben részt vevő valamely E egyedtípusból csak egy rekord vehet részt a kapcsolatban (számossági megszorítás), akkor S elsődleges kulcsának nem kell tartalmaznia az E-ből képzett E' relációra hivatkozó külső kulcsot.

Az ER modell jelölésrend: szere

ER séma leképezése relációs sémára

Példa

Erős egyedtípusok leképezése:

DOLGOZÓ (Vnév, Knév, <u>Szsz</u>, Szdátum, Lakcím, Nem, Fizetés) OSZTÁLY (Onév, <u>Oszám</u>) PROJEKT (Pnév, Pszám, Phelyszín)

Az ER modell jelölésrendszere

ER séma leképezése relációs sémára

Példa

Erős egyedtípusok leképezése:

DOLGOZÓ(Vnév, Knév, <u>Szsz,</u> Szdátum, Lakcím, Nem, Fizetés)

OSZTÁLY(Onév, <u>Oszám</u>)

PROJEKT (Pnév, <u>Pszám</u>, Phelyszín)

A gyenge egyedtípus leképezése:

DOLGOZÓ (Vnév, Knév, Szsz, Szdátum, Lakcím, Nem, Fizetés)

OSZTÁLY(Onév, Oszám)

PROJEKT (Pnév, Pszám, Phelyszín)

 $\mathsf{HOZZ}\mathsf{\acute{A}TARTOZ}\mathsf{\acute{O}}(\ \underline{\mathsf{Dszsz}},\ \mathsf{Hozz\acute{a}tartoz\acute{o}}_{\mathtt{n\acute{e}v}},\ \mathsf{Nem},\ \mathsf{Szd\acute{a}tum},\ \mathsf{Kapcsolat}\)$

Példa

Erős egyedtípusok leképezése:

DOLGOZÓ (Vnév, Knév, Szsz, Szdátum, Lakcím, Nem, Fizetés) OSZTÁLY (Onév, Oszám) PROJEKT (Pnév, Pszám, Phelyszín)

A gyenge egyedtípus leképezése:

DOLGOZÓ (Vnév, Knév, Szsz, Szdátum, Lakcím, Nem, Fizetés) OSZTÁLY (Onév, Oszám)

PROJEKT (Pnév, Pszám, Phelyszín)

HOZZÁTARTOZÓ (Dszsz, Hozzátartozó név, Nem, Szdátum, Kapcsolat)

A bináris 1 : 1 számosságú kapcsolattípus leképezése (külső kulcs használatával):

DOLGOZÓ (Vnév, Knév, Szsz, Szdátum, Lakcím, Nem, Fizetés) OSZTÁLY(Onév, Oszám, Vez szsz, Vez kezdő dátum) PROJEKT (Pnév, Pszám, Phelyszín) HOZZÁTARTOZÓ (Dszsz, Hozzátartozó név, Nem, Szdátum, Kapcsolat)

Az ER modell jelölésrend szere

ER séma leképezése relációs sémára

Példa

A bináris 1 : N számosságú kapcsolattípusok leképezése:

DOLGOZÓ (Vnév, Knév, <u>Szsz</u>, Szdátum, Lakcím, Nem, Fizetés, Főnök_szsz, Osz) OSZTÁLY (Onév, <u>Oszám,</u> Vez_szsz, Vez_kezdő_dátum)

PROJEKT (Pnév, Pszám, Phelyszín, Osz)

 $\mathsf{HOZZ} \\ \mathsf{\acute{A}TARTOZ} \\ \mathsf{\acute{O}} \big(\ \underline{\mathsf{Dszsz}}, \ \mathsf{Hozz} \\ \mathsf{\acute{a}tartoz} \\ \mathsf{\acute{o}}_{-} \\ \mathsf{n\acute{e}v}, \ \mathsf{Nem}, \ \mathsf{Szd} \\ \mathsf{\acute{a}tum}, \ \mathsf{Kapcsolat} \ \big)$

Az ER modell jelölésrend szere

ER séma leképezése relációs sémára

Példa

```
A bináris 1 : N számosságú kapcsolattípusok leképezése:
```

DOLGOZÓ (Vnév, Knév, <u>Szsz</u>, Szdátum, Lakcím, Nem, Fizetés, Főnök_szsz, Osz)

OSZTÁLY (Onév, <u>Oszám</u>, Vez_szsz, Vez_kezdő_dátum)

PROJEKT (Pnév, <u>Pszám</u>, Phelyszín, Osz)

HOZZÁTARTOZÓ (<u>Dszsz</u>, Hozzátartozó név, Nem, Szdátum, Kapcsolat)

A bináris M: N számosságú kapcsolattípus leképezése:

DOLGOZÓ(Vnév, Knév, $\underline{Szsz},$ Szdátum, Lakcím, Nem, Fizetés, Főnök $_szsz,$ Osz)

OSZTÁLY(Onév, Oszám, Vez_szsz, Vez_kezdő_dátum)

PROJEKT (Pnév, Pszám, Phelyszín, Osz)

 $\mathsf{HOZZ} \check{\mathsf{ATARTOZ}} \check{\mathsf{O}} (\ \underline{\mathsf{Dszsz}}, \ \mathsf{Hozz} \check{\mathsf{atartoz}} \check{\mathsf{o}} \underline{\mathsf{név}}, \ \mathsf{Nem}, \ \mathsf{Szd} \check{\mathsf{atum}}, \ \mathsf{Kapcsolat} \)$

DOLGOZIK_RAJTA(<u>Dszsz</u>, <u>Psz</u>, Órák)

Az ER modell jelölésrend szere

EK séma leképezése relációs sémára

Példa

A többértékű attribútum leképezése:

DOLGOZÓ(Vnév, Knév, <u>Szsz</u>, Szdátum, Lakcím, Nem, Fizetés, Főnök_szsz, Osz)

OSZTÁLY(Onév, <u>Oszám</u>, Vez_szsz, Vez_kezdő_dátum)

PROJEKT(Pnév, <u>Pszám</u>, Phelyszín, Osz)

HOZZÁTARTOZÓ(<u>Dszsz</u>, <u>Hozzátartozó_név</u>, Nem, Szdátum, Kapcsolat)

DOLGOZIK_RAJTA(<u>Dszsz</u>, <u>Psz</u>, Órák)

OSZT HELYSZÍNEK(<u>Oszám</u>, Ohelyszín)