Deep Learning with Keras:: CHEATSHEET

Intro

Keras is a high-level neural networks API developed with a focus on enabling fast experimentation. It supports multiple back-ends, including TensorFlow, Jax and Torch.

Backends like TensorFlow are lower level mathematical libraries for building deep neural network architectures. The keras 3 R package

https://keras.posit.co

makes it easy to use Keras with any backend in R. https://www.manning.com/books/deep-learning-with-r-second-edition

The "Hello, World!" of deep learning

INSTALLATION

The keras R package uses the Python keras library. You can install all the prerequisites directly from R.

https://keras.rstudio.com/reference/install_keras.html library(keras3) reticulate::install_python() install keras()

This installs the required libraries in virtual environment named 'r-keras'. It will automatically detect if a GPU is available.

TRAINING AN IMAGE RECOGNIZER ON MNIST DATA

Working with keras models

DEFINE A MODEL

Functional API: keras_input() and keras_model() Define a Functional Model with inputs and outputs. inputs <- keras_input(<input-shape>) outputs <- inputs |> layer_dense() |> layer_... model <- keras_model(inputs, outputs)</pre>

Sequential API: keras_model_sequential() Define a Sequential Model composed of a linear stack model <-

keras_model_sequential(<input-shape>) |> layer_dense() |> layer_...

Subclassing API: Model()

Subclass the base Model class

COMPILE A MODEL

compile(object, optimizer, loss, metrics, ...) Configure a Keras model for training

FIT A MODEL

fit(object, x = NULL, y = NULL, batch size = NULL, epochs = 10. verbose = 1, callbacks = NULL....) Train a Keras model for a fixed number of epochs (iterations)

Ways to customize training:

- Provide callbacks to fit():
- Define a custom Callback().
- Subclass Model() and implement a custom train_step method.
- Define a custom loop training loop. Optionally call train_on_batch() to run a single gradient update on a single batch of data, or call model\$optimizer\$apply(gradients, weights)

EVALUATE A MODEL

evaluate(object, x = NULL, y = NULL, batch_size = NULL) Evaluate a Keras model

PREDICT

predict() Generate predictions from a Keras model

predict_on_batch() Returns predictions for a single batch of samples.

SAVE/LOAD A MODEL

save_model(); load_model() Save/Load models using the ".keras" file format.

save_model_weights(); load_model_weights() Save/load model weights to/from ".h5" files.

save_model_config(); load_model_config() Save/load model architecture to/from a ".json" file.

freeze_weights(); unfreeze_weights() Freeze and unfreeze weights

Deploy

Export just the forward pass of the trained model for inference serving.

export_savedmodel(model, "my-saved-model/1") Save a TF SavedModel for inference.

rsconnect::deployTFModel("my-saved-model") Deploy a TF SavedModel to Connect for inference.

CORE LAYERS

layer_dense() Add a denselyconnected NN layer to an output

layer_einsum_dense() Add a dense layer with arbitrary dimensionality

layer_activation() Apply an activation function to an output

layer dropout() Applies Dropout to the input

layer_reshape() Reshapes an output to a certain shape

layer_permute() Permute the dimensions of an input according to a given pattern

layer_repeat_vector() Repeats the input n times

layer_lambda(object, f) Wraps arbitrary expression as a layer

layer_activity_regularization() Layer that applies an update to the cost function based input activity

layer_masking() Masks a sequence by using a mask value to skip timesteps

layer_flatten() Flattens an input

input layer: use MNIST images mnist <- dataset_mnist()</pre> x train <- mnist\$train\$x; y train <-</pre> x_test <- mnist\$test\$x; y_test <- mnist\$test\$y</pre> # reshape and rescale x_train <- array_reshape(x_train, c(nrow(x_train), 784))</pre> x test <- array reshape(x test, c(nrow(x test), 784))</pre> x_train <- x_train / 255; x_test <- x_test / 255</pre> y_train <- to_categorical(y_train, 10)</pre> y_test <- to_categorical(y_test, 10)</pre> # defining the model and layers model <- keras_model_sequential(input_shape = c(784))</pre> model |> layer_dense(units = 256, activation = 'relu') |> layer_dropout(rate = 0.4) |> layer_dense(units = 128, activation = 'relu') |> layer_dense(units = 10, activation = 'softmax') # compile (define loss and optimizer) model |> compile(loss = 'categorical_crossentropy', optimizer = optimizer_rmsprop(), metrics = c('accuracy') # train (fit) model |> fit(x_train, y_train, epochs = 30, batch_size = 128, validation split = 0.2 model |> evaluate(x_test, y_test) model |> predict(x_test) # save the full model save_model(model, "mnist-classifier.keras") # deploy for serving inference. dir.create("serving-mnist-classifier") export savedmodel(modek, "serving-mnist-classifier/1") rsconnect::deployTFModel("serving-mnist-classifier")

More layers

CONVOLUTIONAL LAYERS

layer_conv_1d() 1D, e.g. temporal convolution

layer_conv_2d_transpose()
Transposed 2D (deconvolution)

layer_conv_2d() 2D, e.g. spatial convolution over images

layer_conv_3d_transpose()
Transposed 3D (deconvolution)
layer_conv_3d() 3D, e.g. spatial
convolution over volumes

layer_conv_lstm_2d()
Convolutional LSTM

POOLING LAYERS

layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
Maximum pooling for 1D to 3D

Preprocessing

IMAGE PREPROCESSING

Load Images

image_dataset_from_directory()

Create a TF Dataset from image files in a directory.

image_load(), image_from_array(),
image_to_array(), image_array_save()
Work with PIL Image instances

Transform Images

op_image_crop()

op_image_extract_patches()

op_image_pad()

op image resize()

op_image_affine_transform()

op_image_map_coordinates()

op_image_rgb_to_grayscale()

Operations that transform image tensors in deterministic ways.

image_smart_resize()

Resize images without aspect ratio distortion.

Image Layers

Builtin image preprocessing layers. Note, any image operation function can also be used as a layer, or used in layer_lambda().

Image Preprocessing Layers

layer_resizing()

layer_rescaling()

layer_center_crop()

Image Augmentation Layers

Preprocessing layers that randomly augment image inputs during training.

layer_random_crop()

layer_random_flip()

layer_random_translation()

layer_random_rotation()

layer_random_zoom()

layer_random_contrast()

layer random brightness()

SEQUENCE PREPROCESSING

timeseries_dataset_from_array()

Creates a dataset of sliding windows over a timeseries provided as array.

audio_dataset_from_directory()

Generate a TF Dataset from audio files.

pad_sequences()

Pad sequences to the same length

Preprocessing

TEXT PREPROCESSING

text dataset from directory()

Generates a TF Dataset from text files in a directory.

layer_text_vectorization(), get_vocabulary(), set_vocabulary() Map text to integer sequences.

NUMERICAL FEATURES PREPROCESSING

layer_normalization()

Normalizes continuous features.

layer_discretization()

Buckets continuous features by ranges.

Categorical Features Preprocessing

layer_category_encoding() Encode integer features.

layer_hashing()

Hash and bin categorical features.

layer_hashed_crossing()

Cross features using the "hashing trick".

layer_string_lookup()

Map strings to (possibly encoded) indices.

layer_integer_lookup()

Map integers to (possibly encoded) indices.

TABULAR DATA

One-stop utility for preprocessing and encoding structured data. Define a feature space from a list of table columns (features).

feature_space <-

layer_feature_space(features = list(<features>))

Adapt the feature space to a dataset adapt(feature_space, dataset)

Use the adapted **feature_space** preprocessing layer in the data input pipeline

(**tfdatasets::dataset_map()** or incorporate it a layer in a Keras Model.

Available features:

feature_float()

feature_float_rescaled()

feature_float_normalized()

feature float discretized()

feature_integer_categorical()
feature_integer_hashed()

feature_string_categorical()
feature_string_hashed()

feature_cross()
feature_custom()

Pre-trained models

Keras applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

application_xception()
xception_preprocess_input()
Xception v1 model

application_inception_v3()
inception_v3_preprocess_input()

Inception v3 model, with weights pre-trained on ImageNet

application_inception_resnet_v2()
inception_resnet_v2_preprocess_input()

Inception-ResNet v2 model, with weights trained on ImageNet

application_vgg16(); application_vgg19()
VGG16 and VGG19 models

application_resnet50() ResNet50 model

application_mobilenet()
mobilenet_preprocess_input()
mobilenet_decode_predictions()
mobilenet_load_model_hdf5()

MobileNet model architecture

IMAGENET

<u>ImageNet</u> is a large database of images with labels, extensively used for deep learning

imagenet_preprocess_input()
imagenet_decode_predictions()

Preprocesses a tensor encoding a batch of images for ImageNet, and decodes predictions

Callbacks

A callback is a set of functions to be applied at given stages of the training procedure. You can use callbacks to get a view on internal states and statistics of the model during training.

callback_early_stopping() Stop training when a monitored quantity has stopped improving callback_learning_rate_scheduler() Learning rate scheduler

callback_tensorboard() TensorBoard basic
visualizations