

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 June 2003 (12.06.2003)

PCT

(10) International Publication Number
WO 03/048458 A1

- (51) International Patent Classification?: E01C 19/43, 23/02
- (72) Inventor; and
(75) Inventor/Applicant (for US only): WILEY, Patrick, Carl [CA/CA]; 6366 Selkirk Street, Chilliwack, British Columbia V2R 2L7 (CA).
- (21) International Application Number: PCT/CA02/01864
- (22) International Filing Date: 3 December 2002 (03.12.2002)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
10/000,448 4 December 2001 (04.12.2001) US
- (63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:
US 10/000,448 (CIP)
Filed on 4 December 2001 (04.12.2001)
- (71) Applicant (for all designated States except US): INTEGRATED PAVING CONCEPTS INC. [CA/CA]; 102 17957 - 55th Avenue, Surrey, British Columbia V3S 6C4 (CA).
- (74) Agents: BAILEY, Thomas, W. et al.; OYEN WIGGS GREEN & MUTALA, 480 - The Station, 601 West Cordova Street, Vancouver, British Columbia V6B 1G1 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GB, GH, GM, HR, HU, ID, IL, IN, IS, JP, KB, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SR, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KB, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD OF FORMING AN INLAID PATTERN IN AN ASPHALT SURFACE

WO 03/048458 A1

(57) Abstract: In one embodiment the method comprises the steps of providing a first template having a predetermined pattern; impressing the first template into the asphalt surface when the asphalt surface is in a pliable state to form an impression therein; removing the first template from the asphalt surface to expose the impression; providing a second template having a predetermined pattern matching the pattern of the first template; inserting the second template into the impression; and fixing the second template in position within the impression to form the inlaid pattern. The second template may consist of a preformed thermoplastic grid having a color and/or texture contrasting with the asphalt surface. In another embodiment the second template may include a light source for illuminating the template after it has been fixed in position. A heating method is described for gradually heating large asphalt surfaces using a reciprocating bank of infrared heaters to thermally fix the thermoplastic grid in place.

WO 03/048458 A1

Published:

— *with international search report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/048458

PCT/CA02/01864

**METHOD OF FORMING AN INLAID PATTERN IN
AN ASPHALT SURFACE**

Technical Field

5

[0001] This application relates to a method of forming an inlaid pattern in an asphalt surface. The pattern may be selected for functional or decorative purposes.

10 Background

[0002] Various methods for forming patterns in asphalt surfaces are known in the prior art. The Applicant is the owner of United States Letters Patent No. 5,215,402 which describes a method of forming a pattern in an asphalt surface using a removable template. The template is compressed into a pliable asphalt surface to imprint a predetermined pattern simulating, for example, the appearance of bricks, cobblestones, interlocking paving stones or the like. The template is then lifted clear of the asphalt surface and the asphalt is allowed to harden. A thin layer of a cementitious coating may be applied to the imprinted asphalt to enhance the brick and mortar or other desired effect.

25 [0003] In the above-described method the template does not remain inlaid within the asphalt surface. The visual effect is created by the combination of the imprinted pattern and the decorative coating. One drawback to this method is that the decorative coating may wear off over time, particularly in high traffic areas.

30 [0004] It is known in the prior art to install traffic markings on asphalt surfaces. However, such markings typically project above the asphalt surface. In regions receiving frequent snowfalls during the winter months traffic markings may be removed or damaged by snowplow usage.

WO 03/048458

PCT/CA02/01864

- 2 -

[0005] Another known method for producing traffic markings involves grinding grooves in asphalt surfaces and then pouring into the grooves a hot molten material which is allowed to set in place. However, this is a very time consuming procedure and is not well suited for forming
5 complicated patterns or covering large surface areas.

[0006] The need has therefore arisen for improved methods and materials for inlaying patterns in asphalt surfaces.

10 Summary of Invention

[0007] In accordance with the invention, a method of forming an inlaid pattern in an asphalt surface is disclosed. The method includes the steps of:

15

- (a) providing a first template having a predetermined pattern;
- (b) impressing the first template into the asphalt surface when the asphalt surface is in a pliable state to form an impression
20 therein;
- (c) removing the first template from the asphalt surface to expose the impression;
- (d) providing a second template having a predetermined pattern matching the pattern of the first template;
25
- (e) inserting the second template into the impression; and
- (f) fixing the second template in position within the impression to form the inlaid pattern.
30

WO 03/048458

PCT/CA02/01864

- 3 -

- [0008] The method may include the step of heating the asphalt surface in situ at the impression site prior to impressing the first template into the asphalt surface.
- 5 [0009] The step of fixing the second template in position within the impression comprises heating the second template to cause the second template to bond to the asphalt surface. For example, the second template may be heated to a temperature within the range of about 100° F - 400° F and more preferably within the range of 150° F - 350° F.
- 10 [0010] The second template may comprise a pre-formed thermoplastic grid of unitary construction. The color of the grid may be selected to contrast with the color of the asphalt surface. In another embodiment the grid may include a light source for lighting the grid once it has been set in place in the asphalt surface. In other embodiments the grid may be luminescent or fluorescent, such as when subjected to light of a suitable wavelength. In one embodiment the first and/or second templates may include a plurality of frame elements defining open areas therebetween, the open areas comprising approximately 50 - 90% of the total surface area of each template.
- 15 [0011] In one embodiment the second template may comprise an upper surface which is substantially flush with the surface of the asphalt when the second template is fixed in position. Alternatively, a portion of the second template may be raised above the asphalt surface or recessed below the asphalt surface when it is set in place.
- 20 [0012] The second template may be formed from a plurality of frame elements each having a relatively narrow width to facilitate compression of the template into the asphalt surface. For example, the frame elements may have a width between $\frac{1}{4}$ inch and 4 inches.

WO 03/048458

PCT/CA02/01864

- 4 -

[0013] In a further alternative embodiment the asphalt surface may be heated in situ and the template may be compressed into the asphalt surface directly while the asphalt is in a pliable state and without deforming the desired predetermined pattern. The template is then fixed in place as in the embodiment described above. Templates adapted for impression forming and inlaid applications are described herein.

[0014] In one aspect of the invention a method of forming an inlaid pattern in an asphalt surface is described comprising:

- (a) gradually heating the asphalt surface in situ until it is in a pliable state by periodically passing an infrared heater thereover;
- (b) forming an impression in the asphalt surface;
- (c) introducing a settable material into the impression; and
- (d) allowing the settable material to set within the impression to form the inlaid pattern.

In another aspect of the invention the method of forming an inlaid pattern comprises:

- (a) forming an impression in the asphalt surface;
- (b) placing a thermoplastic template into the impression; and

WO 03/048458

PCT/CA02/01864

- 5 -

- (c) gradually heating the thermoplastic template by periodically passing at least one heater thereover until the template adheres to the asphalt surface.
- 5 The heater is preferably a reciprocating infrared heater capable of heating a relatively large surface area, such as greater than 10 square feet, while permitting visual monitoring of the work site. For example, a heating apparatus having a frame extendable over the asphalt surface may be provided and the infrared heater(s) may reciprocate on the frame to gradually heat the asphalt surface and/or the inlaid template.
- 10

Brief Description of Drawings

- 15 [0015] In drawings which illustrate embodiments of the invention, but which should not be construed as restricting the spirit or scope of the invention in any way,
- 20 [0016] Figure 1(a) is a perspective view of a portable heater for pre-heating an asphalt surface;
- [0017] Figure 1(b) is a perspective view of a first template defining a predetermined pattern for imprinting an asphalt surface;
- 25 [0018] Figure 1(c) is a perspective view of the first template being forcefully compressed into the asphalt surface using a compaction apparatus;
- 30 [0019] Figure 1(d) is a perspective view of the first template being lifted clear of the asphalt surface to expose an impression having the predetermined pattern;

WO 03/048458

PCT/CA02/01864

- 6 -

- [0020] Figure 1(e) is a perspective view of a second template having a pattern matching the pattern of the first template and showing the second template being lowered into the impression formed in the asphalt surface;
- 5 [0021] Figure 1(f) is a perspective view of a portable heater for re-heating the asphalt surface to fix the second template in position within the impression;
- 10 10 [0022] Figure 2(a) is a perspective view of a portable heater for pre-heating an asphalt surface as in Figure 1(a);
- 15 [0023] Figure 2(b) is a perspective view of a template defining a predetermined pattern and suitable for direct compression into the asphalt surface;
- 20 [0024] Figure 2(c) is a perspective view of the template of Figure 2(b) being forcefully compressed into the asphalt surface using a compaction apparatus without deforming the predetermined pattern;
- [0025] Figure 2(d) is a perspective view of a portable heater for re-heating the asphalt surface to fix the second template in position;
- 25 [0026] Figure 3 is a perspective view of a template of Figures 1 and 2;
- [0027] Figure 4(a) is a diagrammatic side elevational view of the method of Figure 2 wherein the template is delivered from a spool mounted on a vehicle having a drum roller; and
- 30

WO 03/048458

PCT/CA02/01864

- 7 -

[0028] Figure 4(b) is a plan elevational view of the method of Figure 4(a).

[0029] 5 Figure 5 is perspective view of an apparatus comprising reciprocating infrared heaters for gradually heating a template inlaid in an asphalt surface.

[0030] Figure 6 is an end elevational view of the reciprocating heaters of Figure 5.

10

[0031] Figure 7 is a graph showing the gradual increase in the asphalt surface temperature with successive passes of the reciprocating heaters of Figure 5.

15 Description

[0032] 20 Throughout the following description, specific details are set forth in order to provide a more thorough understanding of the invention. However, the invention may be practiced without these particulars. In other instances, well known elements have not been shown or described in detail to avoid unnecessarily obscuring the invention. Accordingly, the specification and drawings are to be regarded in an illustrative, rather than a restrictive, sense.

25 [0033] 30 With reference to the drawings, this application relates to methods and apparatus for imprinting an asphalt surface 10. As used in this patent application "asphalt" means a paving compound for constructing roads, driveways, walkways and the like which consists of a combination of bituminous binder, such as tar, and an aggregate, such as sand or gravel.

WO 03/048458

PCT/CA02/01864

- 8 -

[0034] As shown in Figure 1(b), a first template 12 is provided for imprinting a predetermined pattern in asphalt surface 10. The predetermined pattern may serve a specific function, such as a crosswalk marking, or it may be purely decorative. In the illustrated embodiment 5 first template 12 comprises a flexible grid defining a plurality of open areas (Figure 3). However, it should be appreciated that the structure of first template 12 may vary without departing from the invention. For example, template 12 may have a flat, continuous top surface and a plurality of projections formed on its bottom surface arranged in the desired pattern.

10

[0035] Template 12 is compressed into asphalt surface 10 when surface 10 is in a pliable state. For example, template 12 may be compressed into hot, freshly rolled asphalt (which is typically on the order of 150° - 400° F depending upon the type of asphalt). Alternatively, a 15 portable surface heater 14 may be provided (Figure 1(a)) for preheating a preexisting asphalt surface 10 to a pliable state. As used in this patent application the term heating "in situ" refers to heating a pre-existing asphalt surface at the work site rather than using hot asphalt heated off-site.

20

[0036] Template 12 may be compressed into surface 10 with a mechanical compactor, such as a vibrating plate compactor 16 or a drum roller (Figure 1(c)). After template 12 has been compressed into asphalt surface 10, it is removed to expose an impression 18 in the desired pattern 25 (Figure 1(d)). For example, impression 18 may consist of a plurality of channels or simulated grout lines. By way of another example, impression 18 may be the outline of a corporate logo or decorative design.

[0037] The next step in the process is to provide a second template 30 20 configured to fit within impression 18. As shown in Figure 1(e)), second template 20 preferably has a shape and layout matching at least

WO 03/048458

PCT/CA02/01864

- 9 -

partly the pattern of first template 12. In one embodiment of the invention second template 20 may match the pattern of first template 12 (and hence impression 18) exactly. In an alternative embodiment of the invention, second template 20 may partially but not completely match the pattern of 5 first template 12. In this case second template 20 partially fills impression 18 when it is inlaid within asphalt surface 10.

[0038] Second template 20 is positioned within impression 18 as shown in Figure 1(e). If necessary, the impressed asphalt surface 10 may 10 be reheated before positioning template 20 within impression 18. In one embodiment of the invention second template 20 may consist of a preformed grid formed from a thermoplastic material. A suitable thermoplastic material is available from Lafarge Road Markings and is sold under the trademark THERMALINE™. Rubber, plastic or other materials 15 suitable for inlaying in asphalt surface 10 could also optionally be employed. Template 20 may have a color and/or texture designed to contrast with asphalt surface 10. In one possible arrangement the depth of template 20 is less than or equal to the depth of impression 18 so that template 20 does not extend above the plane of asphalt surface 10 when it 20 is inlaid in position. This could be an advantage, for example, in the case of traffic markings which may be slippery and hence potentially hazardous to motorists and bicyclists if not inlaid. In another possible arrangement, the depth of template 20 exceeds that of impression 18 so that template 20 is raised above the plane of asphalt surface 10 when set in position. In this 25 latter arrangement template 20 is both visually and tactiley distinguishable from asphalt surface 10. This may be useful, for example, in regulating the speed of vehicles traversing a paved roadway or the like.

[0039] In one embodiment of the invention templates 12 and 20 are 30 formed from a plurality of frame elements 13 which are relatively narrow in width and are arranged in a grid (Figure 3). This ensures that such

WO 03/048458

PCT/CA02/01864

- 10 -

templates can be readily compressed into asphalt surface 10. Also, in high traffic areas, frame elements 13 of relatively narrow width are less subject to wear. For example, frame elements 13 may have a width less than the width of a standard automobile tire. A width size between $\frac{1}{4}$ inch
5 and 4 inches is suitable for many applications. Ordinarily frame elements 13 will not be less than $\frac{1}{4}$ inch in width to ensure that they are readily visible once template 20 is fixed in position (although they may be some applications where very narrow frame elements 13 could be employed).
10 Also, there are applications where very wide frame elements 13 or templates 12, 20 having continuous surfaces could be employed as discussed further below.

[0040] The thickness of frame elements 13 is also variable depending upon the application. The preferred thickness range is between 20 - 160
15 mil with 40 - 130 mil being the most preferred range. If the frame elements are very thin template 20 will be overly fragile. Conversely, if frame elements 13 are too thick templates 12, 20 will be difficult to compress into place. The optimum size and dimensions of frame elements 13 may depend in part on the pliability of asphalt surface 10 (i.e. whether
20 the asphalt is relatively coarse or mastic in composition)

[0041] As shown in Figure 3, frame elements 13 of templates 12, 20 may define a plurality of open areas 15. In one embodiment of the invention open areas 15 comprise approximately 50 - 90% of the total
25 surface area of templates 12, 20. Conversely closed areas defined by frame elements 13 comprise approximately 10 - 50% of the total surface area of templates 12, 20. The above ratios facilitate impression of templates 12, 20 into asphalt surface 10 using a conventional roller or plate compactor 16. For example, each frame element 13 could be $\frac{1}{2}$ inch wide
30 and the spaces between elements 13 could be 3 $\frac{1}{2}$ wide. The total surface area of the template 12, 20 could be 4 square feet (i.e. 2' X 2'). Using a

WO 03/048458

PCT/CA02/01864

- 11 -

standard plate compactor 16, downward compressive force will applied to frame elements 13 only and hence the effective compressive force (i.e. pounds per square inch of frame elements 13) will be sufficient to readily compress template 12 or 20 into surface 10. However, if the ratio of 5 closed areas to open areas as defined above is increased by substantially increasing the width of frame elements 13, then the effective compressive force per surface area of frame elements 13 will be correspondingly reduced. Accordingly, a larger compactor 16 having a higher compressive force rating may be required to impress templates 12, 20 into asphalt 10 surface 10. It is advantageous to manufacture templates 12, 20 which can be readily compressed using commonly available equipment. In one suitable embodiment the total closed surface area of template 12, 20 underlying compactor 16 may be approximately 10 - 50% of the surface area of the plate portion of compactor 16 which applies a compressive 15 force (Figure 1(c)).

[0042] The final step in the installation procedure is to fix second template 20 in position within impression 18. In the embodiment illustrated in Figure 1(f), portable surface heater 14 is passed over the 20 surface of second template 20 after it has been positioned within impression 18 to reheat surface 10. If template 20 is formed from a thermoplastic material as described above, this causes template 20 to flow into the interstices of impression 18 thereby enhancing adhesion to asphalt surface 10. Once template 20 is fully seated within impression 18, heater 14 is 25 removed and template 20 is allowed to set in place. Alternatively template 20 may be pre-heated prior to its placement within impression 18 to facilitate template seating. Depending upon the material used, the second template 20 may be pre-heated or heated in situ to a temperature within the range of 100° - 400° F, or more particularly 150° - 350° F.

WO 03/048458

PCT/CA02/01864

- 12 -

[0043] Another possible means for fixing template 20 within impression 18 is by the use of conventional glue adhesives. For example