T1. (24-July-2018)[Turn checking] Explain how to check whether three points on xy-plane make a right turn. Prove that your procedure always gives computationally correct result when the points have integer coordinates.

Solution See the above figure. Let p, q, r be three points in order to define a turn at q. Take the 2D vectors \vec{pq} and \vec{qr} , and compute their cross product $\vec{r} = \vec{pq} \times \vec{qr}$. The vector \vec{r} is a vector perpendicular to xy-plane. If \vec{r} is directed along +z-axis, then we have a left turn, otherwise it's a right turn. The calculations are as follows.

$$\vec{r} = ((x_q - x_p)\hat{i} + (y_q - y_p)\hat{j}) \times ((x_r - x_q)\hat{i} + (y_r - y_q)\hat{j})$$

$$= ((x_q - x_p)(y_r - y_q) - (y_q - y_p)(x_r - x_q))\hat{k}$$

$$= d\hat{k}, \text{ where } d = (x_q - x_p)(y_r - y_q) - (y_q - y_p)(x_r - x_q).$$

If d < 0, then \vec{r} is directed along -z-axis, and we get a right turn.

T2. (24-July-2018)[Convex hull] Prove that $O(n \log n)$ is optimal for convex hull computation.

Solution Let A[1..n] be a 1D array having n real numbers, namely a_1, a_2, \ldots, a_n . Construct a 2D point set $P = \{p_1, p_2, \ldots, p_n\}$ such that $p_i = (a_i, a_i^2)$ for $i = 1, 2, \ldots, n$. Let there be an algorithm AlgoCHull that can compute the convex hull of a 2D point set in less than $O(n \log n)$ time. As all points of P are lying on a parabola—a convex curve, the vertices of the convex hull of P will be all these n points. As a result, these n points of P will be reported by AlgoCHull in anticlockwise order as the vertices of the convex hull of P. We will consider the x-coordinates in that order and hence get the sorted sequence of A in less than $O(n \log n)$ time, which means sorting is doable in less than $O(n \log n)$ time—a contradiction.

T3. (6-Aug-2018)[k-regular] Prove that any k-regular bipartite graph always admits a perfect matching.

Solution Let (X,Y) be the vertex-set partition of V in G(V,E), i.e., $x \in X$ and $y \in Y \ \forall (x,y) \in E$. As G is k-regular, |X| = |Y|. Convert G to a flow network G'(V',E') with the newly added source s and sink $t, V' = V \cup \{s,t\}, E' = E \cup \{(s,x): x \in X\} \cup \{(y,t): y \in Y\}, c(u,v) = 1 \ \forall (u,v) \in E'$. Apply a flow as follows: $f(s,x) = 1 \ \forall x \in X, f(y,t) = 1 \ \forall y \in Y, f(x,y) = 1/k \ \forall (x \in X, y \in Y)$. It is easy to verify that f is a flow, as it satisfies the capacity constraint and flow conservation. Clearly, the value of this flow is $|f| = \sum_{x \in X} f(s,x) = |X|$, and hence it is the max-flow. Its value indicates a perfect matching, since its cardinality is |V|/2 = |X|.