

Detailed Course 2.0 on Linear Algebra For IIT JAM' 23

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Gajendra Purohit

Enroll Now

USE CODE GPSIR FOR 10% OFF

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Eigen value &eigen vector

Characteristic polynomial: Let A be square matrix of order n then $C_A(x) = det(xI - A) = det(A - xI)$ is a polynomial of degree n called the characteristic polynomial of A and the equation $C_A(x) = det(A - xI) = 0$ is called characteristic equation.

2 • Asked by Dr Anurag

Please help me with this doubt

- 19. Let A be an $n \times n$ matrix over \mathbb{C} such that every nonzero vector of \mathbb{C}^n is an eigenvector of A. Then
 - (a.) All eigenvalues of A are equal.
 - (b.) All eigenvalues of A are distinct.
 - (c.) $A = \lambda I$ for some $\lambda \in \mathbb{C}$, where I is the $n \times n$ identity matrix.
 - (d.) If χ_A and m_A denote the characteristic polynomial and the minimal polynomial respectively, then $\chi_A = m_A$.

24

Eigen value and Eigen vector :Let A be any matrix of order n then roots of characteristic equation is called eigen value. i.e. If A is matrix and $[A - \lambda I]X = 0$ then λ is eigen value and X is eigen vector corresponding to λ

Note: Eigen vector corresponding to distinct eigen value are LI

Result : If λ is eigen value of A then

- (1) Eigen value of αA is $\alpha \lambda$
- (2) Eigen value of A^n is λ^n .
- (3) Sum of all eigen value = Trace (A)
- (4) Product of all eigen value = det(A)
- (5) Eigen value of A^{-1} is λ^{-1} .
- (6) Eigen value of Adj(A) is $\frac{|A|}{\lambda}$
- (7) If sum of each row in A is equal to k then k must be eigen value and it is largest eigen value.

Q.1. Let A be a 3 \times 3 matrix with eigen value 1, -1, 0. Then the determinant of I + A^{100} is

(a) 6

(b) 4

(c)9

(d) 100

Q.2. Let
$$A = \begin{pmatrix} 2 & -1 & 3 \\ 2 & -1 & 3 \\ 3 & 2 & -1 \end{pmatrix}$$
. Then the largest eigenvalue of A

is

(a) 1

(b) 2

(c) 3

(d)4

Eigen value for different type of matrix

- (1) Eigen values of symmetric matrix and hermitian matrix are real.
- (2) Eigen value of skew-symmetric and skew-hermitian matrix are either zero or purely imaginary.
- (3) Eigen values of involutory matrix are either 1 or both.
- (4) Eigen values of idempotent matrix are either 0 or 1 or both.
- (5) Eigen values of nilpotent matrix are 0.
- (6) Eigen values of orthogonal matrix and unitary matrix are unit modulus.

(7) Eigen value of permutation matrix.

Let $\sigma = c_1.c_2.....c_k$ product of disjoint cycles such that $l(c_i) = r_i$ where $l(c_i) = length$ of c_i .

Then characteristic of A is $e(x) = \prod (x^{r_i} - 1)$

i.e.
$$\sigma = (12)(3) \in S_3$$

 $c_1 = (12) \text{ and } l(c_1) = 2 = r_1$
 $c_2 = (3) \text{ and } l(c_2) = 1 = r_2$ then $c(x) = (x^2 - 1)(x - 1)$

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q.3. Which of the following properties are true?

- (a) If λ is an eigen value of A then 2λ is an eigen value of A^{-1} .
- (b) If λ is an eigen value of A then $1/\lambda$ is an eigen value of A^{-1} .
- (c) If λ is an eigen value of an orthogonal matrix, then $1/\lambda$ is also its eigen value.
- (d) All of the above.

Q.4. The square matrix A is said to be an idempotent if $A^2 = A$.

An idempotent matrix is non-singular iff

- (a) All E.V. are real
- (b) All E.V. are real non-negative
- (c) All E.V. are either 0 or 1
- (d) All E.V. are 1

Q.5 The trace of the matrix $A = \begin{bmatrix} 3 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is

(a)
$$1 + 3^{15}$$

(b)
$$2 + 3^{15}$$

(c)
$$3^{15}$$

Q.6. Let A be 3×3 matrix with real entries such that 1, -1, 2 are its eigenvalues if $B = A^3 + 2A^2 + I$, then

- (a) det(B) = 50
- (b) \det (B) = 136
- (c) det(B) = 23
- (d) det(B) = 17

Q.7.. Let A and B be n × n real matrices and let $C = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$

.Which of the following statements are true?

- (a) If λ is an eigenvalue of A + B then λ is an eigen value of C
- (b) If λ is an eigenvalue of A B then λ is an eigen value of C
- (c) If λ is an eigen value of A or B then λ is an eigen value of C
- (d) All eigen values of C are real

Which of the following eigen values of the matrix. Q.8.

- (a) 1
- (c) i

Q.1. Let $M_n(R)$ be the set of $n \times n$ matrices with real entries.

Which of the following is true?

- (a) Any matrix $A \in M_4(R)$ has a real eigen value.
- (b) Any matrix $A \in M_5(R)$ has a real eigen value.
- (c) Any matrix $A \in M_2(R)$ has a real eigen value
- (d) None of these

RANK BOOSTER COURSE UNIT 2 CSIR NET 2022

23rd AUGUST

Gajendra Purohit

Enroll Now

GPSIR
FOR 10% OFF

Enroll Now

GPSIR FOR 10% OFF

unacademy

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR