

Introduction to Statistics

Cutting-edge training delivered by leading experts in the field of data analytics brought to you by the Business and Local Government Data Research Centre

- Exploring data
- Enhancing knowledge
- Empowering society

Offering grant funded data analytics research projects, training, events, webinars and data consultation services.

To find out more please contact Laura.brookes@essex.ac.uk

Agenda

- 1. Introduction
- 2. Data Types and Levels of Measurement
- 3. Central Tendency and Dispersion
- 4. Hypothesis Testing
- 5. T-tests
- 6. Covariance and Correlation
- 7. Linear Regression

What is Statistics?

- The analysis, interpretation and presentation of data
- Statistics help us solve a problem: we usually are not able to study the population of interest directly
 - Population entire set of items or subjects one wishes to study (e.g. counties, boroughs, UK citizens)
 - Sample subset of a population chosen for study
- We use statistics to make predictions (or inferences)
 about a population based on data from a sample of that
 population

Types of Statistical Analysis

- Descriptive statistics summarize data
- Inferential statistics make predictions within a sample to make inferences about a wider population

Introduction to Measurement

- Measurement is essential for quantitative research the assignment of numbers to objects or events
- Different data types will have different measurement levels
 - Continuous i.e. interval values such as population
 - Count counts vs. uncountable
 - Categorical but not ordered
 - Ordinal ordered categories, i.e. deprivation index
 - Binary two categories, i.e. yes/no

What is R?

- An environment for statistical computing and graphics
- It is free
- It packs powerful graphical facilities
- It is a simple and effective programming language
- Most statistical models are already implemented
- New models are often implemented in R first

What is R Studio?

- Working environment R
 - While you do not need R Studio to run R, it makes working with R much easier
 - Just like R, it works on PC, Mac & Linux
- Home of all things R: https://cran.r project.org/
- Keep R updated check for new versions
- To get help: Google the question or error message is always a good start
- https://stackoverflow.com/questions/tagged/r

R Syntax, data structures and types

http://venus.ifca.unican.es/RIntro/dataStruct.html

Vector

- Numeric vectors
 - a <- 5
 - a <- c(1, 50, 9, 42)

- Logical vectors
 - b <- a < 10

- Character vectors
 - a <- "this is text"

Matrix

 Matrix: two dimensional, store data of same mode; two coordinates to identify a unique matrix element

Data Frame

- Each row is a vector and observation
- Each column is a vector and variable
- Rows and column must be of equal length
- Missing values listed as NA (numerical) and "" (string)

Now we can open R Studio!

For the session materials visit the following web page:

https://esrc-blg.github.io/stats101

Descriptive Statistics

- Descriptive statistics are a good way to get a "feel" for the data
- The first step to data analysis
- Most interested in two qualities of the variables we are working with:
 - Central tendency
 - Dispersion

Central Tendency

- Working value of a "typical" observation, or the value of the observation at the center of a variable's distribution
- Measure of central tendency depends on type of variable:
 - Categorical mode
 - Ordinal median
 - Continuous/count/binary mean

Dispersion

- Dispersion measures the spread of values for a variable
- Again, the precise measure of dispersion depends on the level of measurement:
 - Categorical/binary proportion of each category
 - Ordinal range or interquartile range
 - Continuous/count variance/standard deviation

Range and interquartile range

- Range difference between the lowest and highest value of ordinal variable
- Interquartile range is better the difference between the
 25th percentile and the 75th percentile

Range and interquartile range

Interquartile range is better – the difference between the
 25th percentile and the 75th percentile

Variance

$$s^2 = \frac{\sum (x - \bar{x})^2}{n - 1}$$

- Approximately the average of the squared deviations (from the mean)
- Variance is zero if all observations are identical to mean and increases as observations become further from mean
- Not used frequently hard to interpret as it is squared!
- Squared because of negative numbers and outliers

Standard Deviation

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

- The typical distance an observation is from the mean of all observations (square root of variance)
- The greater the variability around the mean, the greater is standard deviation
- Interpretation is easier reverts back to original unit

Standard Deviation

- Tells you how large the dispersion is of continuous, count and binary variables
- Important are we know how of population falls within standard deviations

Maths functions in R

log(x)	Natural log.	sum(x)	Sum.
exp(x)	Exponential.	mean(x)	Mean.
max(x)	Largest element.	median(x)	Median.
min(x)	Smallest element.	quantile(x)	Percentage quantiles.
round(x, n)	Round to n decimal places.	rank(x)	Rank of elements.
signif(x, n)	Round to n significant figures.	var(x)	The variance.
cor(x, y)	Correlation.	sd(x)	The standard deviation.

...but we can also use the summary () function

...let's return to R Studio with some real data

Exploring Relationships

- After understanding the data, we often want to understand the relationships between two (or more) variables
 - i.e. between a predictor (independent variable) and an outcome of interest (dependent variable)
- Summary statistics are the first steps in trying to understand relationships in the data

Has a Relationship occurred by Chance?

- The Lady Tea Tasting Test (Fisher, 1925) assess chance through hypothesis testing
- 1920s Tea party, Dr. Bristol, claims to be able to distinguish whether the milk or the tea had been poured into the cup first (hypothesis)
- A test was arranged for 8 cups, 4 of each type in random order
- This is then tested against a null hypothesis, which states our hypothesis is false, and that chance is to blame!

The Lady Tea Tasting Test (Fisher, 1925)

 To figure out the frequency of different possibilities, we assess many ways there are to pick 4 cups out of 8? (70)

Successful	Selected	Unselected	Total Possible
guesses	Possibilities	Possibilities	Combinations
0	MMMM	TTTT	1 × 1
1	MMMT, MMTM, MTMM, TMMM	TTTM, TTMT, TMTT, MTTT	4 × 4
2	MMTT, MTMT, MTTM, TMTM, TTMM, TMMT	TTMM, TMTM, TMMT, MTMT, MMTT, MTTM	6 × 6
3	MTTT, TMTT, TTMT, TTTM	TMMM, MTMM, MMTM, MMMT	4 × 4
4	TTTT	MMMM	1×1
		Total	70

- Perhaps Dr. Bristol cannot tell the difference null hypothesis
- What is the probability of observe what we observe?
- Dr. Bristol correctly identifies 4 out of 4 is the test statistic

What were the chances?

 If Dr. Bristol was only really guessing, the probability that she would have correctly identified all four cups of tea:

$$1/70 = 0.014$$

- This is the **p-value**, the probability of observing the data we observe
- Convention is that if less than
 0.05 we can reject the null

Hypothesis Testing

- To recap, there are several main elements to any hypothesis test of relationships
 - Must develop a hypothesis and null hypothesis
 - Calculate test-statistic
 - Which is used to calculate a p-value
 - From this we can decide whether to reject null hypothesis, i.e. reject whether the result occurred simply due to chance

t-statistic (is a test statistic)

- Remember the standard deviations?
- Well the t-statistic is easy to interpret as you are looking for the magic 1.96 deviations from the mean
- Anything above this figure is outside of 95% of the population (p < 0.05).
- Too rare to have occurred by chance

https://www.khanacademy.org/math/ap-statistics/two-sample-inference/two-sample-t-test-means/v/two-sample-t-test-means

To sum up

- A p-value of 0.05 implies we will incorrectly reject the null hypothesis 5% of the time
- A p-value of 0.01 implies we will incorrectly reject the null hypothesis 1% of the time
- With the Tea Tasting test we are 1.4% likely to incorrectly reject the null

Type I error (false positive)

Type II error (false negative)

Which approach is appropriate for continuous outcomes?

- Differences in Means
 - Appropriate when our independent variable is
 binary in nature, i.e. comparing genders
- Correlation and covariance
 - Useful when our independent variable is a count or
 continuous as you cannot use difference in means
- (and then) Linear Regression
 - Because there are limitations with the above
 - Bivariate essentially a t-test
 - Multivariate multiple independent variables

Difference in Means

- Binary IV and continuous DV
- We are interested in the difference between two of conditional means and an outcome
 - i.e. is there a difference in crime committed by males and females
- Think of this as exploring "Risk Stratification"

Covariance

$$\frac{\sum (x - \overline{x})(y - \overline{y})}{n - 1}$$

- Continuous IV and continuous DV
- Assesses whether low and high values match
- Can classify three types of relationship: positive, negative and no relationship.

Covariance

- Positive if values in Y also correspond with X and increase together and negative when Y and X decrease together
- No relationship where corresponding values do not increase/decrease together

Covariance

$$\frac{\sum (x - \overline{x})(y - \overline{y})}{n - 1}$$

- Higher values indicate a more dependent relationship
- But hard to interpret:
 - Covariance does not tell us the distance between data points and the covariance line
 - Covariance is sensitive to scale larger values are further from the mean, leading to higher covariance

Correlation

- Correlation measures
 direction and how far the
 points are to the line
- Scaled between -1 (negative relationship close to line) and 1 (positive relationship close to the line)
- 0 means we cannot reject null hypothesis.
- On same scale so can compare relationships

Correlation

- But there are limitations:
 - Correlation is impacted by sample size
 - Correlation plots straight lines so misses non-linear relationships
 - Also cannot explain the magnitude of the relationship, or slope
- Can be more intuitive to plot two continuous variables
- Let's do this in R Studio!

Linear Regression

- A linear regression model approximates the relationship between our independent X and our dependent variable Y
- Essential draws a straight line of best fit through the data,
 which can be expressed as:

$$Y = \alpha + \beta X$$

- a is the intercept: the value of Y where X = 0
- β is the slope: the amount that Y increases when X increases by one unit changed by different values

Linear Regression

- The simplest way to summarize the relationship between two variables is to assume that they are linearly related
- We can express this with the bivariate linear regression

model:

• $Yi = \beta 0 + \beta 1Xi + ui$

- ∘ Observations i = 1, . . . , n
- Y is the dependent variable
- X is the independent variable
- \circ $\beta 0$ is the intercept or constant
- β1 is the slope
- ui is the error term or residuals (model fit)
- \circ $\beta0$ and $\beta1$ are the coefficients of the regression line
- Let's run this in R!

Thank you

Join in the conversation online:

@BLGDataResearch #Data2Life

LinkedIn: ESRC Business and Local Government
Data Research Centre

YouTube: ESRC Business and Local Government Data Research Centre

Email: BLGDataResearch@essex.ac.uk

