

"RFID and Wireless Technologies for Transportation Industry"

Radisson SAS Scandinavia Hotel, Oslo, 30 April 2008

# Research Activities RFID and Wireless Technologies for Transportation Industry



O. Vermesan, M. Viktil SINTEF





# **Technology Trends**

- Costs of storage, processing and communications are dropping.
- RFID devices are:
  - Smaller and cheaper;
  - More functionalities;
  - Communicative and interconnected;
  - Uniquely identified.
- Move from centralized to distributed-pervasive computing.
- New tools emerging for aggregating, sharing, searching and distributing data.



### **Wireless Communications in ITS**

- WiMAX
- Wi-Fi
- Dedicated Short Reach Communications (DSRC)





### **Wireless Communications - RFID**

| Type                         | Standard           | Applications                                                            | Frequency Band |                               |                                                   |                             |         |
|------------------------------|--------------------|-------------------------------------------------------------------------|----------------|-------------------------------|---------------------------------------------------|-----------------------------|---------|
|                              | S                  |                                                                         | LF (kHz)       | HF (MHz)                      | UHF (MHz)                                         | MW                          | (GHz)   |
|                              |                    |                                                                         | 125/134        | 13.56                         | 840-956                                           | 2.45                        | 5.8     |
| RFID<br>Tags                 | ISO 18000          | Any application                                                         | 18000-2        | 18000-3<br>Mode 1<br>Mode 2   | 18000-6<br>Type A<br>Type B<br>Type C (EPC<br>G2) | 18000-4<br>Mode 1<br>Mode 2 | 18000-5 |
|                              | EPC G2             | Retail, logistics,<br>healthcare and life<br>sciences (HLS)<br>industry |                |                               | EPC C1G2                                          |                             |         |
|                              | ISO/IEC<br>11784/5 | Animal tagging                                                          |                |                               |                                                   |                             |         |
| RFID<br>Contactless<br>Cards | ISO/IEC<br>14443   | Proximity cards,<br>ticketing                                           |                | ISO 14443<br>Type A<br>Type B |                                                   |                             |         |
|                              | ISO/IEC<br>15693   | Vicinity cards, access control                                          |                |                               |                                                   |                             |         |
|                              | ISO/IEC<br>10536   | Contact less identification cards                                       |                |                               |                                                   |                             |         |



### **Wireless Communications - DSRC**

- 5.9 GHz DSRC is the emerging communication technology that offers standardized ITS products
- U.S. DOT and the automotive OEMs will be the strategic players making deployment decisions in the 2008-2009 timeframe.
- 5.9 GHz DSRC systems provide a significant enhancement in communication capabilities over all previous ITS communications systems. DSRC will support multiple uses in vehicle/public safety and commercial applications that cannot be achieved today. DSRC is a cost-effective communications service, especially when compared with current cellular and satellite systems.



### **Wireless Communications in ITS**

- DSRC systems are not compatible with each other
  - U.S. 915 MHz DSRC
  - Europe 5.8 GHz DSRC
- 5.9 GHz DSRC has many advantages, and it is under development by various research and standards organizations.
  - The technology is envisioned as a gradual replacement of all existing DSRC systems. For several years new and old systems will co-exist.



### **Wireless Communications in ITS**

- The commercial introduction of 5.9 GHz systems is expected in 2008-2009 when IEEE ratifies the 802.11p standard
  - Today the 5.9 GHz systems market is mostly limited to research and testing
  - The 5.9 GHz technology and market maturing is expected in the 2012-2014 timeframe.
- Another communications technology that is enhancing ITS characteristics is a standard trunked radio, known in the U.S. as Project 25 radio.
  - Project 25 radio is using digital technology, is frequency efficient and originally was developed for public safety organizations.



### RFID – Is this possible?

- Enabler for economic growth, increased innovation and competitiveness.
- More efficient markets.
- Productivity gains.
- Customer convenience and products recalls.
- Better service.
- Expedite processing; no bar code line of sight required.
- Improve product visibility.
- Respecting privacy, and providing security.



# RFID – Is this possible?





### **RFID – Market Drivers**





### **RFID – Market Constrains**



Key Constraints for Market Development



### **Aeronautics Vision**

- The green aircraft
- The electrical aircraft
- The intelligent aircraft
- The efficient aircraft
- The connected aircraft (wire and wireless)
- Enabling ICTs
  - Data Fusion / Management
  - Wireless Communication (RF/RFID)
  - Sensors / Actuator Systems
  - Wireless Sensor Networks
  - Integration and miniaturization







# Wireless Interconnectivity

- Wireless technologies reduce internally hardwired communications - Research and development
  - Passive and/or active RF/RFID sensor networks
  - Tracking/RFID
  - Wireless instruments
  - Wireless PDAs, laptops
  - Wireless voice communication
  - Sensor web/mesh technology
  - Wireless sensor and RFID placement allowing better decision making





# **Logistics Aeronautics**

|                                | Consumer                                          | Aeronautics                                               |  |  |
|--------------------------------|---------------------------------------------------|-----------------------------------------------------------|--|--|
| Product Lifetime               | Lifetime measured in months.                      | Typical aircraft component may have a life of 25-50 years |  |  |
| <b>Product Characteristics</b> | Low value and low complexity                      | High value and high complexity                            |  |  |
| Application Areas              | Supply chain logistics applications are critical  | service, repair and spares                                |  |  |
| Environmental Conditions       | The supply chains are relatively well controlled. | -                                                         |  |  |



# RFID and ID systems in Aeronautics

| Product Lifetime 25-50 Years                        | Development of more robust technologies. Networked RFID solutions (product life cycle information 25 years.) Better product visibility during usage phase.                                                                              |  |  |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Product<br>Characteristics<br>Higher Value          | haracteristics technologies                                                                                                                                                                                                             |  |  |  |
| Application Areas Product Usage Information         | Some Logistics / Predominantly in the product usage phase Responsiveness of operations; Safety, Airline Operations, Aircraft health monitoring, Track & Trace, Maintenance Processes, Product Recalls, Refurbishment, Reuse, Recycling. |  |  |  |
| Environmental Conditions Harsh Operation Conditions | Further development of RFID technologies; RFID deployed in critical environments RFID Usage in harsh environments near (Metals/Chemicals)                                                                                               |  |  |  |



# **Embedded Smart RFID Sensor Systems Avionics**

- Live-cycle costs
- Redundancy principles
- Dedicated solution, supplier specific
- Replacement issues
- Low part numbers, niche products, high costs
- Performance, low bandwidth
- Harsh environments
- Temperature variations







# Distributed RFID and Wireless Smart Sensor Systems

- RFID Sensors
- Wireless communication
- Electronics and Systems Integration
- Information Technologies
- Systems Engineering,

Cockpit displays

Computer

Maintenance technologies

Ethernet

- Sensor data collection
- Exploit moving nodes
- Exploit network coding for
- efficiency

Wireless LAN

RFID Integration



**Vireless devices** 

(Ca)

Smart Sensor

Sensor Network

**Smart RFID Sensor** 

Passive RFID (



# **Real Time Location Systems**

- Intelligent long range active RFID systems to identify, locate and track assets at a distance of up to 100m and to deliver superior real time visibility in dynamic, demanding environments.
- Long range (100m) RFID tag not with read/write capability, and 360° visibility of wireless regardless of tag orientation.
- Features:
  - Sensor location layout map
  - Planned number of readers and access point antennas
  - Placement of active RFID Tags on the assets.



#### **RFID** for Traffic

- RFID derived position among vehicles (V2V)
- RFID for communication between the vehicle and infrastructure (V2I and I2V),

  http://www.compexinc.com/

LANE LEVEL position

**Vehicle Identification System** 

- ■Determine if a vehicle registration has expired.
- ■Monitor traffic and vehicle speed in construction zones or other pertinent areas.
- Ticketing parking.











# Lane level Accuracy in Urban Areas

- Collision avoidance
- Enhancement of driver's situation awareness
- Traffic signal priority for emergency and transit vehicles
- Traffic signal violation warning
- Lane change warning
- Stop sign movement assistant –Assessing which gaps are safe for driver
- Detection of approaching vehicles



# Lane level Accuracy in Urban Areas

- Congestion Mitigation -> Congestion pricing (High occupancy tolling lanes -HOT and TOT lanes. Price additional lane capacity)
- Incident and work zone management: Route vehicles off road or around incident LANE BY LANE
- Load balancing across lanes
- Alternative approach to the current loop detector
- Wireless communication to/from vehicles based on lane level position sensing
- RFID enables real time sensing of lane level vehicle position



# RFID Vehicle Lane level positioning

- RFID reader embedded i vehicle front bumper as part of electronic "license plate" type device
- Lateral field of view = 1 lane width
- Passive RFID tags down centre of lane/embed RFID tags in tape that replaces standard lane marking tape
- RFID tag stores the following information:
  - Road identifier
  - Lane identifier
  - Direction of travel identifier
  - Longitudinal distance from reference
  - Other relevant data(dependent on application)





### RFID V2V and V2I

- Detection of pedestrian<sup>-</sup> cyclists and bikers
- Calculation of the relati position of the vulnerab road users
- Detection of dangerous situation
- Actualization of the strategies of warning ar intervention

















**PERVASIVE** NETWORKING

Floating car data

**V2V** communication



#### **Further research**

- RFID based vehicle positioning can be combined with V2V, V2I, I2V to enable VII applications
- Engineering and design issues: range, power, frequencies, environmental effects, robustness of tag and reader, noise immunity
- Applications dominated by supply chain logistics and asset/inventory management
  - Focus on improved efficiency
- Applications dominated by real time positioning and information accuracy
  - Focus on transportation safety and congestion mitigation applications.
- Interoperability



The "Internet of Things"

- Privacy Considerations:
  - Accountability
  - Purpose identified at time of collection
  - Informed consent for collection
  - Limited use and disclosure
  - Retention of data is limited
  - Quality of data (accuracy, completenes
  - Security of data
  - Openness about policies and practices
  - Individual access to data and correction





# **Security and Privacy**

- Privacy Questions
  - Admissibility as evidence in court?
  - Release in "anonymized" form?
  - Accessible to insurance companies?
  - Transparency of process?
  - Who owns the data?
  - Can we trust the ....?





- End users have many choices (RFID-HF/UHF/MW, GPS etc.)
- Application of RFID can provide enhanced inventory visibility, and current methods and metrics must considered to determine business case
- Global activities
- Retailers and manufacturers are showing increasing interest in having providers supply RFID solution
- Collaboration with hardware and software providers to help understand industry's intricacies that can impact RFID deployment to assure operational viability



- Security and privacy protection schemes for inter enterprise sharing
- Standardization and adoption of business messaging and transaction protocols
- Rapid and cost-effective enterprise application integration
- Generalization for efficient internetworking as well as specialization to support domain specific applications, such as product and food safety, cargo security
- Client-side technologies for low-cost, reconfigurable and easy deployment of network application functions
- Real-time data and mobile solutions for time-critical requirements, such as air freight forwarding, trucking and courier delivery.



- Integration of RFID, e-seal, GPS or RF positioning, wireless communication and environmental sensors for application use
- Interoperability among e-seal technologies, information platforms, regional and global standards for truly global coverage for containerized logistics
- Application scenarios referenced from cases such as cross border customs clearance, quarantine-required logistics traceability, secured transportation, storage security, asset management, logistics tracking and route monitoring, and innovations in advanced e-seal applications



- Integration of key functions such as identification (e.g. RFID) and sensor data (e.g. temperature, humidity, vibration, etc) in logistics operations.
- Tools to facilitate the development of track-and-monitor logistics applications.
- Information delivery infrastructure for the tracking data,
   e.g. RFID to 3G, GPRS, TCP, Wi-Fi, GPS, etc
- Algorithms and methodologies for handling information security, integrity and transfer of the sensor data for privacy and auditing requirements



### The RFID Movement







Which side are you on?