

PLANO DE ENSINO

I. IDENTIFICAÇÃO			
Unidade Acadêmica: Regional Jataí			
Curso: Bacharelado em Ciência da Computação			
Disciplina: Inteligência Artificial			
Carga horária semestral: 64	Teórica: 32 Prática: 32		
Semestre/ano: 2016.2	Turma/turno: A		
Professor (a): Esdras Lins Bispo Junior			

II. Ementa

Introdução à Inteligência Artificial. Representação do Conhecimento. Sistemas Especialistas. Resolução de Problemas. Algoritmos Genéticos. Redes Neurais Artificiais. Aprendizado de Máquina. Agentes Inteligentes. Mineração de Dados.

III. Objetivo Geral

Oferecer o embasamento conceitual e teórico da área da inteligência artificial aplicando os conhecimentos no desenvolvimento de sistemas e analisando criticamente os desafios envolvidos.

IV. Objetivos Específicos

- Definir inteligência artificial, motivação e aplicações.
- Analisar as principais áreas de aplicação da inteligência artificial, técnicas, metodologias e algoritmos tradicionalmente propostos;
- Discutir o estado da arte na área da inteligência artificial, perspectivas de evolução e desafios a serem vencidos.

V. Conteúdo

- 1. INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL (IA)
- a. O que é inteligência artificial?
- b. Fundamentos da IA
- c. História da IA
- 2. AGENTES INTELIGENTES
- a. Agentes e ambientes
- b. Medidas de desempenho

- c. Tipos de agentes
- 3.RESOLUÇÃO DE PROBLEMAS
- a. Busca em profundidade e em largura
- b. Busca A*
- c. Busca competitiva
- 4. REPRESENTAÇÃO DO CONHECIMENTO
- a. Agentes lógicos
- b. Sistemas especialistas
- c. Ontologias: RDF, OWL e SPARQL
- 5. REDES NEURAIS ARTIFICIAIS (RNA)
- a. Surgimento das RNAs
- b. RNAs de única camada
- c. RNAs de múltiplas camadas
- 6. COMPUTAÇÃO NATURAL
- a. Surgimento da Computação Natural
- b. Algoritmos Genéticos (AG)
- c. Utilização de AG em RNAs
- 7. APRENDIZADO DE MÁQUINA
- a. Aprendizagem em árvores de decisão
- b. Aprendizagem por agrupamento
- c. Aprendizagem por reforço
- 8. MINERAÇÃO DE DADOS
- a. Descoberta de conhecimento em banco de dados (KDD)
- b. Recuperação da Informação
- c. Clusterização

VI. Metodologia

- Aulas expositivas utilizando quadro negro (ou branco) e DataShow;
- Atendimento individual ou em grupos;
- Aplicação de listas de exercícios.
- TIC Tecnologia de Informação e Comunicação:
- Aplicação de atividades utilizando o ambiente virtual (AVA).
- Tempo de Aula: 50 minutos*
- *Obs.: Para complementar os 10 minutos, esta disciplina fará uso do AVA para

supervisionar atividades práticas, em consonância com a resolução abaixo:

RESOLUÇÃO CNE/CES Nº 3, DE 02 DE JULHO DE 2007

I – preleções e aulas expositivas;

II – atividades práticas supervisionadas, tais como laboratórios, atividades em biblioteca, iniciação científica, trabalhos individuais e em grupo, práticas de ensino e outras atividades no caso das licenciaturas.

VII. Processos e critérios de avaliação

Será ministrado 01 (hum) projeto que será analisado da seguinte forma:

- Implementação equivalente a 15% da média final;
- Apresentação equivalente a 15% da média final.

Serão ministradas 02 (duas) provas que serão analisadas da seguinte forma:

- Primeira prova equivalente a 40% da média final;
- Segunda prova equivalente a 30% da média final.

Serão propostos exercícios-bônus durante toda a disciplina.

O cálculo da média final será dada da seguinte forma:

MF = MIN(10, PONT)

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina.

VIII. Local de divulgação dos resultados das avaliações

Os resultados das avaliações serão divulgados através do ambiente virtual de aprendizagem (AVA).

XI. Bibliografia básica e complementar

BÁSICA:

RUSSELL, S.; NORVIG, P. Inteligência Artificial. Rio de Janeiro: Editora Campus, 2004.

KOVÁCS, Zsolt László. Redes neurais artificiais: fundamentos e aplicações. 4 ed. rev. São Paulo: Livraria da Física, 2006.

GOLDBERG, David E. Genetic algorithms in search, optimization, and machine learning. 29 ed. Boston: Addison-Wesley, 2009.

SHAW, Ian S.; GODOY Marcelo. Controle e Modelagem Fuzzy. 2 ed. São Paulo: Edgard Blücher Ltda, 2007.

COMPLEMENTAR:

HAYKIN, S. Neural networks and learning machines. 3rd ed. New York: Prentice Hall, 2009.

ARTERO, Almir Olivette. Inteligência artificial: teórica e pratica. São Paulo: Livraria da Física, 2008.

CARVALHO, Luís Alfredo Vidal de. Data Mining: a mineração de dados no marketing, medicina, economia, engenharia e administração. São Paulo: Ciência Moderna, 2005.

BROOKSHEAR, J. Glenn. Ciência da computação: uma visão abrangente. 7 ed. Porto Alegre: Bookman, 2005.

X. Cronograma

Nº da Aula Conteúdo CH T/P

01	Apresentação da disciplina e Introdução à IA	2h	Т
02	Introdução à IA e Apresentação do projeto	2h	Ρ
03	Agentes inteligentes	2h	Т
04	Agentes inteligentes	2h	Р
05	Resolução de problemas	2h	Т
06	Resolução de problemas	2h	Р
07	Representação do conhecimento	2h	Т
80	Representação do conhecimento	2h	Р
09	Sistemas especialistas	2h	Т
10	Sistemas especialistas	2h	Ρ
11	Redes Neurais Artificiais	2h	Т
12	Redes Neurais Artificiais	2h	Ρ
13	Computação Natural	2h	Т
14	Computação Natural	2h	Р
15	Revisão	2h	Т
16	Prova 01	2h	Р
17	Resolução da Prova 01 e Entrega de notas	2h	Т
18	Aprendizado de máquina	2h	Т
19	Projeto	2h	Р

20	Aprendizado de máquina	2h	Т
21	Projeto	2h	Р
22	Mineração de Dados	2h	Т
23	Projeto	2h	Р
24	Mineração de Dados	2h	Т
25	Projeto	2h	Ρ
26	Revisão	2h	Т
27	Prova 02	2h	Ρ
28	Resolução da Prova 02 e Entrega de Notas	2h	Т
29	Apresentação dos Projetos	2h	Ρ
30	Apresentação dos Projetos	2h	Ρ
31	Confraternização	2h	Ρ
32	Fechamento das médias finais	2h	Т

Data	1945, 00 de setembre de 0040
Data	Jataí, 02 de setembro de 2016.

Esdras Lins Bispo Junior Professor Assistente – Ciência da Computação