Exercices - NLP Trad. Automatique

Exercice 1

Distinguez trois types de modèles dans le NLP.

Exercice 2

Expliquez simplement ce qu'est un Réseau de Neurones Récurrents.

Exercice 3

Distinguez **position absolue** et **position relative** d'un token dans une séquence.

Exercice 4

Qu'est-ce que le Byte Pair Encoding (BPE) ?

Exercice 5

Dans le contexte des datasets pour l'entraînement de modèles NLP de traduction automatique, comment distingue-t-on **corpus parallèles/alignés** et **corpus comparables**? Dans quelle catégorie range-t-on *Wikipedia*?

Exercice 6

Comment distingue-t-on l'auto-attention (self-attention) de la cross-attention?

Exercice 7

- a) Quelle est la formule permettant de calculer le score de précision BLEU entre une traduction candidate et une traduction de référence?
- b) Prenez les deux phrases « le chat mange » et « le chat dort » et exprimez sous la forme d'une fraction le score de précision BLEU en décomposant les phrases en mots.
- c) Prenez les deux mêmes phrases et exprimez le score de précision en décomposant les phrases en bigrammes (paires de mots).

Corrigé ex. 1

Encodeur seul (encoder-only).

Exemple: BERT.

Objectif d'entraînement : MLM – Masked Language Modeling (prédire des tokens masqués).

Usage typique : compréhension du texte (classification, NER, recherche sémantique).

Décodeur seul (decoder-only).

Exemples: EuroLLM, GPT, LLaMA, Mistral.

Objectif d'entraînement : autoregressif (prédire le prochain jeton).

Usage typique : génération de texte, complétion, agents conversationnels.

Encodeur-décodeur (seq2seq).

Exemple: T5.

Objectif d'entraînement : modélisation conditionnelle (apprendre $p(y \mid x)$), souvent via des tâches de débruitage / denoising.

Usage typique : traduction, résumé, réécriture, question-réponse extractive / générative.

Corrigé ex. 2

L'idée d'un RNN, c'est de prédire, de proche en proche, le mot suivant, en s'appuyant sur un état intermédiaire caché. La prédiction se fait donc de manière séquentielle, ce qui a pour effet de réduire la capacité de ces modèles à encapsuler du contexte. Cet inconvénient est compensé en partie par de la rétropropagation.

Corrigé ex. 3

La **position absolue** correspond à la position du token dans la séquence (par exemple, c'est le *i*-ème token de la séquence). La **position relative** correspond à la position d'un token par rapport à un autre. Typiquement, si p est la position absolue d'un token et q celle d'un autre, la position relative est |p-q|.

Corrigé ex. 4

Le Byte Pair Encoding (BPE) est une idée simple utilisée à l'origine pour la compression et devenue très populaire en traitement du langage naturel pour créer des sous-mots (subwords) et pour tokeniser.

Principe (apprentissage du vocabulaire).

- 1. On part d'une séquence de symboles (au départ, des caractères).
- 2. On **compte** les paires de symboles adjacentes les plus fréquentes.

- 3. On fusionne la paire la plus fréquente en un nouveau symbole.
- 4. On **répète** ces fusions un certain nombre de fois (ou jusqu'à ce qu'il n'y ait plus de gains).

En NLP, on applique ce procédé sur un corpus pour apprendre un **vocabulaire** de sous-mots. Ensuite, pour tokeniser un texte, on refait les mêmes fusions dans le même ordre : les mots rares sont découpés en morceaux fréquents.

Corrigé ex. 5

Corpus parallèle / aligné

Deux (ou plus) collections de textes qui sont des traductions l'une de l'autre, alignées au moins au niveau phrase (souvent segment ou mot via alignements).

Exemples: Europarl, OpenSubtitles (après alignement).

Usage typique : entraînement/évaluation directe de modèles de traduction (supervisée), extraction de lexiques bilingues.

— Corpus comparable

Collections de textes dans différentes langues qui **traitent des mêmes thèmes/domaines/époques** mais **ne sont pas des traductions** entre elles (pas d'alignement phrase-à-phrase garanti).

Exemples : articles de presse du même jour dans plusieurs langues, articles Wikipedia.

Usage typique : pré-entraînement, adaptation domaine/registre, induction lexicale, apprentissage semi/auto-supervisé.

Wikipedia est majoritairement un corpus comparable.

Corrigé ex. 6

	Auto-attention	Attention croisée
Ce qui fait attention à quoi	Les éléments d'une séquence font atten-	Les éléments de la séquence A font atten-
	tion à eux-mêmes (chaque token regarde	tion à la séquence B (les tokens d'une sé-
	les autres tokens de la même séquence).	quence cible regardent les tokens d'une sé-
		quence source).
Q, K, V proviennent de	Q, K, V du même input X .	Q de la cible Y ; K , V de la source X .
Utilisation typique	Construction de représentations au sein	Conditionnement sur un contexte ex-
	d'une entrée : couches d'encodeur dans	terne : décodeur faisant attention aux sor-
	BERT; auto-attention causale (masquée)	ties de l'encodeur (traduction)
	dans les décodeurs	
Masquage	Peut être bidirectionnel (encodeurs) ou	Généralement pas de masque causal; peut
	causal/masqué par anticipation (déco-	masquer le padding ou la structure—la vi-
	deurs).	sibilité concerne quelles positions sources
		sont vues, pas les tokens futurs.
Complexité	$O(n^2)$ pour une longueur de séquence n .	$O(n_{\text{cible}} \cdot n_{\text{source}})$; utile quand un côté est
		court/fixe.

Corrigé ex. 7

a) Formule générale:

 $Pr\'{e}cis°(Candidate, Target) = \frac{nombre \ de \ n\text{-grammes concordants entre Candidate et Target}}{nombre \ total \ de \ n\text{-grammes dans Target}}$

b) Avec des 1-grammes (unigrammes)

Soit n = 1.

- Candidate : « le chat mange »
- Target : « le chat dort »

1-grammes dans Candidate: { « le », « chat », « mange »}

1-grammes dans $Target : \{ \langle \langle le \rangle \rangle, \langle \langle chat \rangle \rangle, \langle \langle dort \rangle \rangle \}$

1-grammes concordants : {« le », « chat »} \Rightarrow 2 mots en commun

Nombre total de 1-grammes dans Target: 3

$$Précision = \frac{2}{3} \approx 0.67 = 67 \%$$

c) Avec des 2-grammes (bigrammes)

Un bigramme est une paire de mots consécutifs. Ici, (le, chat) est un seul bigramme. Appliquons la formule avec n = 2.

- Candidate : « le chat mange la souris »
- **Target** : « le chat dort »

2-grammes dans Candidate: {« le chat », « chat mange », « mange la », « la souris »}

2-grammes dans $Target: \{ « le chat », « chat dort » \}$

2-grammes concordants : {« le chat »} \Rightarrow 1 bigramme en commun

Nombre total de 2-grammes dans Target: 2

Précision =
$$\frac{1}{2} = 0.5 = 50 \%$$