Установка нужных версий библиотек

Ввод []:

```
from sklearn.tree import DecisionTreeRegressor, plot_tree
import pandas as pd
import matplotlib.pyplot as plt
```

Критерии останова или как не переобучить дерево решений ¶

План

- Вводная часть
 - получение данных
 - обучение модели
- Зачем это нужно?
- Какие есть подходы?
- Как ими пользоваться?

Вводная часть

Получение данных

Будем работать с набором данных для задачи регрессии (целевая переменная - стоимость дома) california_housing, который можно получить из стандартных датасетов в sklearn'e.

После fetch_california_housing() возвращается словарь с данными (data), целевой переменной (target), названиями характеристик в данных (feature_names) и описанием данных (DESCR).

```
from sklearn.datasets import fetch_california_housing

data = fetch_california_housing()
data
```

Downloading Cal. housing from https://ndownloader.figshare.com/files/59760 36 (https://ndownloader.figshare.com/files/5976036) to /root/scikit_learn_data

Out[4]:

```
{'DESCR': '.. _california_housing_dataset:\n\nCalifornia Housing dataset\n
-----\n\n**Data Set Characteristics:**\n\n
of Instances: 20640\n\n
                           :Number of Attributes: 8 numeric, predictive at
                               :Attribute Information:\n
tributes and the target\n\n
                                                median house age in block
median income in block\n

    HouseAge

                          average number of rooms\n
          - AveRooms
                                                           - AveBedrms
average number of bedrooms\n
                                    - Population
                                                    block population\n
                average house occupancy\n

    AveOccup

                                                 - Latitude
                                                                 house blo
ck latitude\n
                     - Longitude
                                     house block longitude\n\n
                                                                  :Missing
Attribute Values: None\n\nThis dataset was obtained from the StatLib repos
itory.\nhttp://lib.stat.cmu.edu/datasets/\n\nThe target variable is the me
dian house value for California districts.\n\nThis dataset was derived fro
m the 1990 U.S. census, using one row per census\nblock group. A block gro
up is the smallest geographical unit for which the U.S.\nCensus Bureau pub
lishes sample data (a block group typically has a population\nof 600 to 3,
000 people).\n\nIt can be downloaded/loaded using the\n:func:`sklearn.data
sets.fetch_california_housing` function.\n\n.. topic:: References\n\n
Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,\n
tatistics and Probability Letters, 33 (1997) 291-297\n',
 'data': array([[
                    8.3252
                              , 41.
                                                  6.98412698, ...,
                                                                      2.55
555556,
           37.88
                      , -122.23
                                     ],
           8.3014
                         21.
                                          6.23813708, ...,
        2.10984183,
                      , -122.22
           37.86
                                     ],
        7.2574
                          52.
                                          8.28813559, ...,
                                                              2.80225989,
                      , -122.24
           37.85
                                     ],
                                          5.20554273, ...,
          1.7
                          17.
                                                              2.3256351,
           39.43
                       -121.22
                                     ],
           1.8672
                         18.
                                          5.32951289, ...,
                                                              2.12320917,
           39.43
                       -121.32
        Γ
           2.3886
                          16.
                                          5.25471698, ...,
                                                              2.61698113,
                      , -121.24
           39.37
                                     ]]),
 'feature names': ['MedInc',
  'HouseAge',
  'AveRooms',
  'AveBedrms',
  'Population',
  'AveOccup',
  'Latitude',
  'Longitude'],
 'target': array([4.526, 3.585, 3.521, ..., 0.923, 0.847, 0.894])}
```

```
X = data.data
features = data.feature_names
y = data.target
```

Из признаков (характеристик данных) и целевой переменной сформируем датафрейм, в качестве названий колонок возьмем названия признаков.

Ввод []:

```
df_full = pd.DataFrame(X, columns=features)
df_full['target'] = y
df_full.head()
```

Out[6]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25
4								•

Для простоты понимания ограничимся десятью объектами из выборки.

Ввод []:

```
df = df_full.iloc[:10]
df
```

Out[7]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude 1
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	- 122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	- 122.25
5	4.0368	52.0	4.761658	1.103627	413.0	2.139896	37.85	- 122.25
6	3.6591	52.0	4.931907	0.951362	1094.0	2.128405	37.84	-122.25
7	3.1200	52.0	4.797527	1.061824	1157.0	1.788253	37.84	- 122.25
8	2.0804	42.0	4.294118	1.117647	1206.0	2.026891	37.84	- 122.26
9	3.6912	52.0	4.970588	0.990196	1551.0	2.172269	37.84	-122.25
4								•

Разобьем выборку на две: обучающую и тестовую.

Ввод []:

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
    df[features],
    df['target'],
    test_size=0.2,
    shuffle=True,
    random_state=3
)

X_train.shape, y_train.shape, X_test.shape, y_test.shape
```

Out[8]:

```
((8, 8), (8,), (2, 8), (2,))
```

Обучение дерева решений

Инициализируем дерево решений для задачи регрессии и обучим на обучающей выборке (X_train) и целевой переменной для обучающих объектов (y train).

Ввод []:

```
from sklearn.tree import DecisionTreeRegressor

tree = DecisionTreeRegressor(random_state=1)
tree.fit(X_train, y_train)
```

Out[9]:

Теперь визуализируем наше обученное дерево решений. Оно получилось не очень большим. Получилось 7 узлов с вопросами и 8 листов с предсказаниями, кстати именно столько объектов и было в обучающей выборке.

```
from sklearn.tree import plot_tree

plt.figure(figsize=(20, 15))
plot_tree(tree, feature_names=features, filled=True);
```


Узнаем, насколько дерево решений обучилось хорошо, для этого сделаем предсказания моделью для обучающей выборке и для тестовой, а затем посчитаем метрику качества средне-квадратичную ошибку.

Ввод []:

```
from sklearn.metrics import mean_squared_error

pred_train = tree.predict(X_train)
pred_test = tree.predict(X_test)

mse_train = mean_squared_error(y_train, pred_train)
mse_test = mean_squared_error(y_test, pred_test)

print(f'MSE на обучении {mse_train:.2f}')
print(f'MSE на тесте {mse_test:.2f}')
```

MSE на обучении 0.00 MSE на тесте 0.26

Метрика на обучении получилась очень маленькая, равная нулю, это говорит нам о том, что во все истинные значения наша модель идеально попала.

Все значения целевого признака из обучения полностью совпадают с предсказанными значениями:

```
pd.DataFrame({
    'true': y_train,
    'pred': pred_train
})
```

Out[25]:

	true	pred
1	3.585	3.585
2	3.521	3.521
9	2.611	2.611
6	2.992	2.992
7	2.414	2.414
0	4.526	4.526
3	3.413	3.413
8	2.267	2.267

На тестовой выборке картина далеко не такая идеальная:

Ввод []:

```
pd.DataFrame({
    'true': y_test,
    'pred': pred_test
})
```

Out[26]:

	true	pred	
5	2.697	3.413	
4	3.422	3.521	

На тесте отклонения истинных значений от предсказанных больше - это и отображается в метрике MSE на тестовых данных.

Зачем нужны критерии останова?

А вот мы плавно и подошли к тому, зачем же нужны критерии останова. Чтобы бороться с переобучением, но давайте для начала вспомним, что же это за зверь.

Когда есть разница между метриками качества на обучении и тесте, это говорит о **переобучении** - явление, когда построенная модель хорошо объясняет примеры из обучающей выборки, но относительно плохо работает на примерах, не участвовавших в обучении (на примерах из тестовой выборки).

Переобучение визуально показано на картинке ниже, в этом случае модель слишком хорошо запомнила обучающую выборку, подогналась под примеры и не стала изучать общую закономерность в данных.

Как раз деревья решений страдают от переобучения чаще, модель засчет большого количества вопросов может повторять довольно сложные закономерности, иногда настолько хорошо, что попросту запоминает всё, что видела в обучающем наборе данных.

Более подробно про переобучение и недообучение можно посмотреть в видео (https://youtu.be/m7P7bnLxlc4) и почитать в ноутбуке (https://colab.research.google.com/drive/1MNpLMZGJCBwdNjY_PgJIKHtll6zvUEyU).

Какие есть критерии останова у дерева решений?

Чтобы посмотреть, какие критерии останова есть у модели, можно посмотреть на её инициализацию и вывести список аргументов.

Ввод []:

?DecisionTreeRegressor()

Здесь есть как аргументы, относящиеся к особенностям построения дерева, к примеру criterion - функция потерь, с помощью которой ищется самое лучшее разбиение или же random_state, который отвечает за фиксацию псевдорандома.

Так и есть более интересующие нас аргументы, которые и помогают бороться с переобучением. Из основных:

- max_depth
- min_samples_leaf
- max leaf nodes

Остальные критерии останова можете поизучать сами, или если интересно послушать моё объяснение, то можете написать об этом в комментариях.

max depth

Посмотрим на эти критерии по очереди. Первый max_depth.

Наши деревья решений очень любят задавать вопросы к данным и они настолько сильно этим увлекаются, что порой перебарщивают и по итогу становятся очень сложными и ветвистыми, критерий останова по максимальной глубине дерева призван помочь с этим, засчет ограничения уровней с вопросами.

Когда мы обучили дерево решений первый раз, то не писали агрумент max_depth, в этом случае глубина может быть сколь угодно большой. В этом случае глубина вышла 4. При этом max_depth отвечает именно за уровни с вопросами, а не их количество.

```
plt.figure(figsize=(20, 15))
plot_tree(tree, feature_names=features, filled=True);
```


Давайте попытаемся снизить переобучение с помощью max_depth, поставим ему значение поменьше, тем самым запретим дереву быть слишком сложным.

Поставим к примеру значение равное 2. Теперь видим, что есть только два уровня с вопросами, вопросов 3 штуки, а листев с предсказаниями 4.

```
tree = DecisionTreeRegressor(random_state=1, max_depth=2)
tree.fit(X_train, y_train)

plt.figure(figsize=(15, 10))
plot_tree(tree, feature_names=features, filled=True);
```


min_samples_leaf

Едем дальше и сейчас смотрим на критерий останова min_samples_leaf - минимальное количество объектов в одном листе.

С чем нам поможет данный критерий? Снова вспомним, что наши деревья решений любители допрашивать данные и они очень любят определенность, по этому они могут докапаться до истины посредством отделения каждого объекта в индивидуальный лист, критерий останова по минимальному количеству объектов в одном листе помогает не допускать ужасного сценария переобучения.

По умолчанию min_samples_leaf равен 1, а значит мы позволяем дереву строить листья с одним объектом в листе, из-за этого получаем идеальную подгонку обучающей выборки и далеко неидеальную картину на тесте.

Изменим аргумент на значение 2, чтобы дерево пыталось строить более обобщенную модель.

Видим, что теперь samples в каждом конечном узле равно два, значит там находится по два объекта, как мы и просили у дерева.

```
tree = DecisionTreeRegressor(random_state=1, min_samples_leaf=2)
tree.fit(X_train, y_train)

plt.figure(figsize=(15, 10))
plot_tree(tree, feature_names=features, filled=True);
```


max leaf nodes

И остается у нас на сегодня критерий останова max_leaf_nodes - максимальное количество листьев.

Чем больше листьев, тем больше переобучение, потому что модель более сложная.

По умолчанию max_leaf_nodes paseн None, а значит ничем не ограничен и дерево будет строиться пока есть силы для подгонки.

В самом первом, самом переобученном дереве было 8 листьев, ровно столько же, сколько у нас есть объектов в обучении, сделаем количество листьев поменьше, чтобы и переобучения было поменьше.

И видим, что теперь количество листьев действительно равно 5.

```
tree = DecisionTreeRegressor(random_state=1, max_leaf_nodes=5)
tree.fit(X_train, y_train)

plt.figure(figsize=(15, 10))
plot_tree(tree, feature_names=features, filled=True);
```


Как этим пользоваться?

Данные критерии конечно же можем использовать вместе для более высокого качества работы модели, да и по факту они все связаны между собой: чем меньше уровней с вопросами (max_depth), тем меньше вопросов и меньше листьев (max_leaf_nodes), тем больше количество объектов в одном листе (min_samples_leaf).

Давайте возьмем весь датасет и попытаемся подобрать самые лучшие параметры дерева решений.

Ввод []:

```
X_train, X_test, y_train, y_test = train_test_split(
    df_full[features],
    df_full['target'],
    test_size=0.2,
    shuffle=True,
    random_state=3
)
X_train.shape, y_train.shape, X_test.shape
Out[11]:
```

((16512, 8), (16512,), (4128, 8), (4128,))

Пока обучимся на параметрах по умолчанию:

- max depth=None
- min_samples_leaf=1
- max_leaf_nodes=None

Ввод []:

```
tree = DecisionTreeRegressor(random_state=1)
tree.fit(X_train, y_train)
```

Out[12]:

И естественно видим переобучение, метрика на обучении идеальная, мы каждый объект предсказали правильно, а вот на тесте совсем не симпатично. Будем исправлять.

Ввод []:

```
pred_train = tree.predict(X_train)
pred_test = tree.predict(X_test)

mse_train = mean_squared_error(y_train, pred_train)
mse_test = mean_squared_error(y_test, pred_test)

print(f'MSE на обучении {mse_train:.2f}')
print(f'MSE на тесте {mse_test:.2f}')
```

```
MSE на обучении 0.00
MSE на тесте 0.52
```

Т.к. пока вообще не знаем откуда стартовать, то давайте пойдем по порядку и поизменяем максимальную глубину, возьмем случайное число из головы и поставим.

Разница в метриках стала меньше, а значит переобучение тоже уменьшилось, плюс наша метрика на тесте стала лучше.

MSE на обучении 0.04 MSE на тесте 0.49

Давайте поиграемся с максимальным количеством листьев, поставим число 500, может повезет.

Ввод []:

MSE на обучении 0.19 MSE на тесте 0.40

Вроде как повезло, тенденция отличная, переобучения меньше, а метрика на тесте всё улучшается.

Действуем дальше и можем изменить минимальное количество объектов в одном листе, сделаем его больше.

MSE на обучении 0.22 MSE на тесте 0.35

Пока мы делаем всё отлично. Остается дальше нащупывать дорогу и двигаться по ней.

Ввод []:

MSE на обучении 0.23 MSE на тесте 0.36

Уменьшив max_depth с 15 до 13 мы потеряли более хорошую метрику на тесте, не есть хорошо, так что пробуем другое.

```
MSE на обучении 0.23
MSE на тесте 0.35
```

C max depth=14 вышло лучше.

И так можно делать очень долго, пока вы не будете довольны своей моделью. В целом, немного поизменяв параметры, я осталась довольна этими метриками.

Ввод []:

```
MSE на обучении 0.28
MSE на тесте 0.34
```

Советую изменять только один параметр за раз и мониторить, что произошло, что поменялось:

- если стало хуже, нужно откатиться
- если стало лучше, вы сделали всё верно.

Нужно нащупывать границы в параметрах, когда модель начинает вести себя лучше и не переобучаться.

Наверняка может показаться, что как будто что-то не то, как будто есть запах рутины, мы руками очень много и долго ищем параметры. И правильно кажется, естественно есть инструменты, позволяющие это автоматизировать. Про них можем пообщаться в следующих роликах.

Summary

Пришла пора подвести итоги сегодняшнего занятия. Посмотрели на основные критерии останова в модели дерево решений. Они помогают снизить сложность модели, а значит снизить переобучение, а значит увеличить качество модели.

Что делать, что бы уменьшить переобучение	Смысл	Критерий останова
▼ уменьшать	максимальное кол-во уровней с вопросами чем глубже дерево, тем оно сложнее	max_depth
▲ увеличивать	минимальное кол-во объектов в одном листе если в листе один объект - это скорее всего сложная модель с низким уровнем обощения	min_samples_leaf
▼ уменьшать	максимальное вол-во листьев чем больше листьев, тем больше вероятность сделать индивидуальный лист для объекта	max_leaf_nodes