

الامتدان الوطني الموحد للبكالوريا الدورة العادية 2011

وزارة التربية السوطسنيسة و النعليسم العسالسي و تكويسن الأملسر و السحسث العلمسي (لمركز الرائمنر التنويم ولائمتمانات)

COLOGA	
سرحري	•

7	المعامل	الرياضيات الرياضيات	الماداة
3	ماة الإنجاز	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعب(ة) او المسلط

معلومات عامة

-يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟

-مدة إنجاز موضوع الامتحان: 3 ساعات ؛

عدد الصفحات : 3 صفحات (الصفحة الأولى تتضمن معلومات والصفحتان المتبقيتان تتضمنان تمارين الامتحان)؟

- يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؟

-ينبغي تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؛

-بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

معلومات خاصة

يتكون الموضوع من أربعة تمارين مستقلة فيما بينها و تتوزع حسب المجالات كما يلي :

النقطة الممنوحة	المجال	التمرين
2.5	حل معادلات ومتراجحات لوغاريتمية	التمرين الأول
3	المتتاليات العددية	التمرين الثايي
5	الأعداد العقدية	التمرين الثالث
9.5	دراسة دالة وحساب التكامل	التمرين الرابع

- بالنسبة للتمرين الأول ، In يرمز للوغاريتم النبيري .

NS22

الموضوع

التمرين الأول (2.5 ن)

0.5

1

1

0.5

1.5

1

1

1

0.5

1

1.5

$$x^2 + 4x - 5 = 0$$
 : المعادلة | IR أ – حل في

.
$$\ln(x^2+5) = \ln(x+2) + \ln(2x)$$
 : المعادلة $(0,+\infty)$ المعادلة $(0,+\infty)$

.
$$\ln x + \ln(x+1) \ge \ln(x^2+1)$$
 : المتراجحة $]0,+\infty[$ المجال $]0,+\infty[$

التمرين الثاني (3ن)

.
$$IN$$
 نعتبر المتتالية العددية $u_{n+1}=\frac{u_n}{5+8u_n}$ و $u_0=1$: المعرفة بما يلي المعرفة بما يلي

.
$$IN$$
 من n لكل $u_n > 0$ أن (1

. IN نضع
$$v_n = \frac{1}{u_n} + 2$$
 نضع (2

.
$$n$$
 بدلالة v_n بدلالة v_n بدلالة v_n بدلالة الماسية أساسيها الماسية أساسية أ

$$u_n = \frac{1}{3 \times 5^n - 2}$$
ب بين أن $u_n = \frac{1}{3 \times 5^n - 2}$ لكل $u_n = \frac{1}{3 \times 5^n - 2}$

التمرين الثالث(5ن)

$$z^2 - 18z + 82 = 0$$
 : المعادلة (1 المعادلة) المعادلة (1 العقدية)

$$B$$
 و A النقط ، $\left(O,\overrightarrow{u},\overrightarrow{v}\right)$ ، النقط معلم متعامد ممنظم مباشر ، النقط $c=11-i$ و $b=9-i$ و $a=9+i$. $c=11-i$

.
$$B$$
 قائم الزاوية ومتساوي الساقين في $\frac{c-b}{a-b}=-i$ ثم استنتج أن المثلث أن $\frac{c-b}{a-b}=-i$

$$4(1-i)$$
 ب – أعط الشكل المثلثي للعدد العقدي

.
$$AC \times BC = 4\sqrt{2}$$
 نم استنتج أن $(c-a)(c-b) = 4(1-i)$ ج - بين أن

د – ليكن
$$z$$
 لحق نقطة M من المستوى و z' لحق النقطة M صورة M بالدوران B الذي مركزه النقطة B و زاويته $\frac{3\pi}{2}$.

$$R$$
 بين أن : $z'=-iz+10+8i$ ثم تحقق من أن لحق النقطة $C'=-iz+10+8i$ هو أن $z'=-iz+10+8i$. $9-3i$

الامتحان الوطني الموحد للبكالوريا -الدورة العادية **١٦٥٥** - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

التمرين الرابع (9.5 ن)

 $g(x) = (1-x)e^x - 1$: نعتبر الدالة العددية g المعرفة على المعرفة - I

.
$$IR$$
 نکل $g'(x) = -xe^x$: أ - بين أن $g'(x) = -xe^x$

$$g(0)=0$$
 بين أن الدالة g تناقصية على $g(0)+\infty$ وتزايدية على $g(0)=0$ و تحقق من أن $g(0)=0$

.
$$IR$$
 نکل $g(x) \le 0$ نکل (2 من $g(x) \le 0$

$$f(x) = (2-x) e^x - x$$
: بما يلى بالدالة العددية المعرفة على بالدالة العددية المعرفة على الدالة العددية الع

. (
$$1cm$$
 الوحدة) ($O,\vec{i}\,,\vec{j}$ المنحنى الممثل للدالة f في معلم متعامد ممنظم (C الوحدة

.
$$\lim_{x \to +\infty} f(x) = -\infty$$
 : بين أن -5 (1 0.5

0.5

0.25

0.5

1

$$\lim_{x\to +\infty} \frac{f(x)}{x} = -\infty$$
 : بين أن $\lim_{x\to +\infty} \frac{f(x)}{x} = -\infty$: بين أن $\lim_{x\to +\infty} \frac{f(x)}{x} = -\infty$: اتجاهه .

. (
$$\lim_{x \to \infty} xe^x = 0$$
: نذکر أن) $\lim_{x \to \infty} [f(x) + x]$ ثم احسب $\lim_{x \to \infty} f(x) = +\infty$: 0.75

$$y=-x$$
 مقارب مائل للمنحنى (C) بجوار بحوار $y=-x$ مقارب مائل للمنحنى المستقيم (D) بجوار $y=-x$

.
$$IR$$
 نكل x ككل $f'(x) = g(x)$: اكل $f'(x) = g(x)$

$$\cdot f'(0) = 0$$
 ب – أول هندسيا النتيجة

$$\cdot$$
 f ج - بین أن الدالة f تناقصیة قطعا علی R ثم ضع جدول تغیرات الدالة

. (
$$e^{\frac{3}{2}} > 3$$
 نقبل أن المعادلة $f(x) = 0$ تقبل حلا وحيدا α في α وأن $\alpha < 2$ بين أن المعادلة α

.
$$A(2,-2)$$
 و النقطة (C) و (C) و استنتج أن (C) و المعادلة $f(x)+x=0$ المعادلة R

.
$$IR$$
 على $f(x) + x$ ادرس إشارة $f(x) + x$ على 0.25

$$-2,+\infty$$
[وتحت (D) على $-\infty,2$ [وتحت (C) على (C) على (D) على (D) على (D)

.
$$(0,2)$$
 أ – بين أن المنحنى (C) يقبل نقطة انعطاف وحيدة زوج إحداثيتيها هو $(0,2)$

$$(O, \vec{i}, \vec{j})$$
ب – أنشئ المستقيم (D) والمنحنى

.
$$\int_{-1}^{0} (2-x)e^{x} dx = 3 - \frac{4}{e}$$
 if it is relative to the point of $\int_{-1}^{0} (2-x)e^{x} dx = 3 - \frac{4}{e}$

0.25 ب – استنتج ب
$$cm^2$$
 مساحة حيز المستوى المحصور بين المنحنى (C) والمستقيم $x=0$ والمستقيمين $x=0$ و $x=1$

أجوبة امتحان الدورة العادية 2011

التمرين الأول:

. $x^2 + 4x - 5 = 0$: المعادلة \mathbb{R} المعادلة $\Delta = 4^2 - 4(-5) = 16 + 20 = 36$: لدينا

: المعادلة تقبل حلين حقيقيين x_1 و x_2 معرفين بما يلي الني :

$$x_1 = \frac{-4-6}{2} = -5$$
 $x_2 = \frac{-4+6}{2} = 1$

 $\ln(x^2 + 5) = \ln(x + 2) + \ln(2x)$: لنحل في]0; + ∞ [المعادلة $\ln(x^2+5) = \ln(2x(x+2))$: نستعمل قواعد الدالة $\ln \ln \ln n$ نجد

$$\ln(x^2 + 5) = \ln(2x^2 + 4x)$$
 : يعني

 $e^{\ln(x^2+5)} = e^{\ln(2x^2+4x)}$: (5) $x^2 + 5 = 2x^2 + 4x$: يعنى

 $x^2 + 4x - 5 = 0$: e a since

و هذه المعادلة تقبل في ${\mathbb R}$ الحلين 5- و 1 .

بما أن :]0; +∞[﴾ 5− و]0; +∞[. 1 €

فإن المعادلة : $\ln(x^2+5) = \ln(x+2) + \ln(2x)$ تقبل حلا وحيدا في]∞+;0[و هو 1.

 $\ln x + \ln(x+1) \ge \ln(x^2+1)$ المتراجحة [0; +∞] لنحل في $\ln(x^2 + x) \ge \ln(x^2 + 1)$: هذه المتراجحة تصبح بما أن الدالة ln تقابل من \mathbb{R}^+_* نحو \mathbb{R} فإن المتراجحة تصبح:

 $x^2 + x \ge x^2 + 1$

و بالتالي : مجموعة حلول المتراجحة هي جميع الأعداد الحقيقية الأكبر من $\mathcal{S} = [1; +\infty[$ أو تساوي 1 . أو بتعبير آخر :

التمرين الثاني:

 $(P_n):\,(orall n \epsilon \mathbb{N})\,;\,u_n>0$: نعتبر العبارة (P_n) المعرفة بما يلي $u_0 = 1 > 0$: اذن0 > 1 > 1و هذا يعنى أن العبارة (P_0) صحيحة .

 $(\forall n \in \mathbb{N})$; $u_n > 0$: نفترض أن

 $(\forall n \in \mathbb{N})$; $5 + 8u_n > 5 > 0$: إذن

و هذا يعني أن الكميتين u_n و u_n و هذا يعني أن الكميتين قطعا .

كمية موجبة قطعا . $(\forall n \in \mathbb{N})$; $\frac{u_n}{5 + 8u_n} > 0$: في

 $(\forall n \in \mathbb{N})$; $u_{n+1} > 0$: يعني ان : العبارة (P_{n+1}) صحيحة .

 $((P_0)$ est vraie حصلنا إذن على النتائج التالية: $(P_n) \Rightarrow (P_{n+1}) ; (\forall n \in \mathbb{N})$

 $(\forall n \epsilon \mathbb{N}) \; ; \; u_n > 0 \;\; :$ إذن حسب مبدأ الترجع

$|v_{n+1}| = \frac{1}{u_{n+1}} + 2 = \frac{1}{\left(\frac{u_n}{5 + 8u_n}\right)} + 2 = \frac{5 + 8u_n}{u_n} + 2$; i.e.

EXCEL

<u></u>

 $= \frac{5 + 10u_n}{u_n} = \frac{5}{u_n} + 10 = 5\left(\frac{1}{u_n} + 2\right) = 5v_n$

 $(\forall n \in \mathbb{N})$; $v_{n+1} = 5 v_n$: إذن

و هذا يعنى أن المتتالية $(v_n)_{n\in\mathbb{N}}$ هندسية و أساسها هو العدد 5 .

: الشكل على المنا الحد العام v_n الهذه المتتالية يُكتب على الشكل

 $v_n = \frac{1}{u_n} + 2$ الدينا . N الدينا n ليكن

$$v_n = v_0 5^{n-0} = \left(\frac{1}{u_0} + 2\right) 5^n = \left(\frac{1}{1} + 2\right) 5^n = 3 \times 5^n$$

$(\forall n \in \mathbb{N})$; $v_n = 3 \times 5^n$: إذن

 $(\forall n \in \mathbb{N})$; $v_n = \frac{1}{u_n} + 2$: نعلم أن

 $(\forall n \in \mathbb{N})$; $v_n - 2 = \frac{1}{u_n}$: إذن

 $(\forall n \in \mathbb{N})$; $u_n = \frac{1}{v_n - 2}$: يعني

 $(\forall n \in \mathbb{N})$; $u_n = \frac{1}{3 \times 5^n - 2}$: الإذن

 $\lim 5^n = +\infty$: إذن

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \left(\frac{1}{3 \times 5^n - 2} \right) = \frac{1}{+\infty} = 0$$
 و منه :

 $\lim_{n \to \infty} u_n = 0 :$ إذن

التمرين الثالث:

 $z^2 - 18z + 82 = 0$: لنحل في ${\mathbb C}$ المعادلة $\Delta = (-18)^2 - 4 \times 82 = -4 = (2i)^2$: لينا

إذن المعادلة تقبل حلين عقديين z_1 و z_2 معرفين بما يلي :

$$z_1 = \frac{18 - 2i}{2} = 9 - i \qquad z_2 = \frac{18 + 2i}{2} = 9 + i$$

$\frac{c-b}{a-b} = \frac{(11-i)-(9-i)}{(9+i)-(9-i)} = \frac{2}{2i} = \frac{1}{i} = \frac{1\times i}{i\times i} = -i \quad :$ لينا

 $\begin{cases} \arg\left(\frac{c-b}{a-b}\right) \equiv \arg(-i) \ [2\pi] \end{cases} \qquad \frac{c-b}{a-b} = -i \ : فإذا المحتابة الأخيرة نحصل على المحتابة المحتابة الأخيرة نحصل على المحتابة المحتا$

$$\left\{egin{arg} lpha egin{arg} a-b \ arg(-i) \ [2\pi] \end{array}
ight. \quad a-b \ |c-b| \ \end{array}
ight.$$
من هذه الكتابة الأخيرة نحصل على :

 $\left| \left| \frac{c-b}{a-b} \right| = |-i|$ $\begin{cases} \arg\left(\frac{c-b}{a-b}\right) \equiv \frac{-\pi}{2} \left[2\pi\right] \\ \left|\frac{c-b}{a-b}\right| = 1 \end{cases}$:

الصفحة: 114

@@%@@%@@%@@%@@%@@%@@%@@%@@%@@%@@%@@% $\left\{ \left(\overrightarrow{\overline{BA}}; \overrightarrow{\overline{BC}} \right) \equiv \frac{-\pi}{2} \left[2\pi \right] \right\} \left\{ \left(\overrightarrow{\overline{BA}}; \overrightarrow{\overline{BC}} \right) \equiv \frac{-\pi}{2} \left[2\pi \right] \right\}$ (|c-b| = |a-b|)و من هذه الكتابة الأخيرة نستنتج أن ABC مثلث قائم الزاوية و متساوي $g(x) = (1-x)e^x - 1$: ليكن x عنصرا من $\mathbb R$. لدينا الساقين في نفس النقطة B. $g'(x) = -e^x + (1-x)e^x = -xe^x$: $|\dot{\varphi}|$

مثلث قائم ABC نقول أن $\overline{BA};\overline{BC}$ مثلث قائم ملاحظة : إذا كان $(\forall x \in \mathbb{R})$; $g'(x) = -xe^x$: إذن ABC الغراوية $\left(\overline{\overrightarrow{BA}};\overline{\overrightarrow{BC}}
ight)\equiv-rac{\pi}{2}\,\left[2\pi
ight]$ نقول أن مثلث قائم الزاوية غير مباشر. $-xe^x \le 0$: فإن $x \in [0, +\infty[$ $\forall x \in [0; +\infty[; g'(x) \leq 0]$ و منه :

 $-xe^x \ge 0$: فإن $x \in]-\infty; 0]$: إذا كان $|4(1-i)| = 4\sqrt{1^2 + (-1)^2} = 4\sqrt{2}$: لدينا $\forall x \in [0; +\infty[; g'(x) \geq 0]$: و منه $4(1-i) = 4\sqrt{2}e^{i\theta}$: إذن و هذا يعنى أن الدالة g تزايدية على $[0,\infty)$ لنبحث الآن عن العمدة θ. $g(0) = (1-0)e^0 - 1 = 0$: $e^0 - 1 = 0$

> $4(1-i)=4\sqrt{2}\cos\theta+i$ و من أجل ذلك ننطلق من $\theta:=4\sqrt{2}\sin\theta$ ننطلق من أجل ذلك ننطلق من أجل غالم المراجع و من أجل ذلك ننطلق من أ $\int 4 = 4\sqrt{2}\cos\theta$ $\int_{-4} = 4\sqrt{2} \sin \theta$

$$\begin{cases} \cos \theta = \cos \left(\frac{-\pi}{4}\right) \\ \sin \theta = \sin \left(\frac{-\pi}{4}\right) \end{cases} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{-\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{-\sqrt{2}}{2}} : \underbrace{\begin{cases} \sin \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt{2}}{2} \end{cases}}_{\text{sin } \theta = \frac{\sqrt{2}}{2}} : \underbrace{\begin{cases} \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = \frac{\sqrt$$

$$4(1-i) = 4\sqrt{2}e^{\frac{-i\pi}{4}}$$
 : و بالتالي

 $\theta \equiv \frac{-\pi}{4} [2\pi]$: إذن

(c-a)(c-b) = (11-i-9-i)(11-i-9+i) : لينا (c-a)(c-b) = 4(1-i) : و منه |(c-a)(c-b)| = |4(1-i)| : يعنى

 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (2 - x)e^x - x = (2 - \infty)e^{+\infty} - \infty$

 $=(-\infty)(+\infty)-\infty=-\infty-\infty=-\infty$

. $[0; +\infty]$ على أن الدالة q تناقصية على أن الدالة

: نفصل بین حالتین χ عنصرا من \mathbb{R} نفصل بین حالتین

. $[0; +\infty]$ الأن $g(x) \leq g(0)$: فإن

.] $-\infty$; 0] لأن g تزايدية على $g(x) \leq g(0)$: فإن

 $x \ge 0$: إذا كان الأولى المحالة الأولى

 $(\forall x \geq 0)$; $g(x) \leq 0$: و منه $x \leq 0$: إذا كان الثانية إلى المحالة الثانية

 $(\forall x \leq 0)$; $g(x) \leq 0$: $g(x) \le 0$: نلاحظ في كلتا الحالتين أن

 $(\forall x \in \mathbb{R})$; $g(x) \leq 0$: إذن

 $|\lim_{x\to+\infty}f(x)|=-\infty$ إذن

###[[[[[[((**2**|**1**||)|)|)]]]]}}

EXCEL

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{2}{x} - 1\right) e^x - 1 = (0 - 1)(+\infty) - 1$$

$$= \left(\frac{2}{x} - 1\right) e^{+\infty} - 1 = (0 - 1)(+\infty) - 1$$

$$= (-1)(+\infty) - 1 = -\infty - 1 = -\infty$$
(2)
$$\lim_{x \to +\infty} f(x) = -\infty$$

نستنج إذن من النتيجتين (1) و (2) أن المنحنى (الله فرعا شلجميا $_{\odot}$ في اتجاه محور الأراتيب بجوار $_{\odot}+$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (2 - x)e^{x} - x$$

$$= \lim_{x \to -\infty} \left(2e^{x} - xe^{x} - x \right)$$

$$= 2 \times 0 - 0 - (-\infty) = 0 + \infty = +\infty$$

) رمضان 2013

 $\begin{array}{ccc} \mathcal{R}_B\left(\frac{3\pi}{2}\right) \,:\, (\mathcal{P}) & \longmapsto \\ M(z) & \longmapsto \end{array}$ (\mathcal{P}) ادينا \mathcal{R} دوران معرف بما يلي \cdots

ننطلق من المعطى:
$$\mathcal{R}(M)=M'$$
 ننطلق من المعطى: $(z^{'}-b)=e^{\frac{i3\pi}{2}}(z-b)$: إذن حسب التعريف العقدي للدوران $(z^{'}-9+i)=-i(z-9+i)$ يعني $z^{'}-9+i=-iz+9i+1$ يعني :

$$z^{'}=-iz+8i+10$$
 يعني :

$$(\mathcal{P}) \mapsto (\mathcal{P})$$
 إذن الدوران \mathcal{R} يصبح : يصبح $M(z) \mapsto M'(-iz+8i+10)$

$$-ic + 8i + 10 = -i(11 - i) + 8i + 10$$
 : لدينا
= $-11i - 1 + 8i + 10 = -3i + 9 = c' = aff(C')$

$$\mathcal{R}(\mathcal{C}) = \mathcal{C}'$$
 : إذن حسب الكتابة العقدية للدوران \mathcal{R} نستنتج أن

$$aff(C') = c^{'} = 9 - 3i$$
 : و كذلك

أجوبة امتحان الدورة العادية 2011 من إعداد الأستاذ بدر الدين الفاتحى: (

الصفحة : 115

(3) $\lim_{x \to -\infty} f(x) = +\infty$ $f(2) = (2-2)e^2 - 2 = -2 < 0$: فينا كذلك : (2) f(2) < 0 : إذن $\lim_{x \to -\infty} (f(x) + x) = \lim_{x \to -\infty} (2 - x)e^{x}$ $f\left(\frac{3}{2}\right) = \frac{1}{2}e^{\frac{3}{2}} - \frac{3}{2}$: $\frac{3}{2}$ $= \lim_{x \to -\infty} 2e^{x} - xe^{x} = 0 - 0 = 0$ $\frac{1}{2}e^{\frac{3}{2}} > \frac{3}{2}$: فإن $e^{\frac{3}{2}} > 3$: ناما أن $(4) \left| \lim_{x \to -\infty} (f(x) + x) = 0 \right| : \frac{1}{2}$ $(3) f\left(\frac{3}{2}\right) > 0$: أي $\frac{1}{2}e^{\frac{3}{2}} - \frac{3}{2} > 0$: و منه ullet(4) $f(2) \cdot f(\frac{3}{2}) < 0$: نستنج أن (3) و (2) من النتيجتين $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \left(\frac{2}{x} - 1\right) e^x - 1$ إذن من النتيجتين (1) و (4) نستنتج حسب مبرهنة القيم الوسيطية (TVI) $= \left(\frac{2}{-\infty} - 1\right)e^{-\infty} - 1 = (0 - 1)(0) - 1 = -1$ و بالتالي : المعادلة f(x)=0 تقبل حلا وحيدا α محصور بين 2 و النقطة ذات الأفصول lpha هي نقطة تقاطع $(oldsymbol{\mathscr{C}})$ و محور الأفاصيل . من النهايات (3) و (4) و (5) نستنتج أن المستقيم (5) الذي معادلته بجوار (B):y=-1x+0 . مقارب مائل للمنحنى $(2-x)e^{x}-x+x=0$: تصبح f(x)+x=0 $(2-x)e^x = 0$: يعنى $(\forall x \in \mathbb{R})$; $e^x \neq 0$: نعلم أن $f(x) = (2-x)e^x - x$: ليكن x عنصرا من \mathbb{R} . لدينا x = 2 : و منه 2 - x = 0 : إذن $f'(x) = -e^x + (2-x)e^x - 1$ y=-x إذن أفصول نقطة تقاطع (\mathscr{C}) و المستقيم (D) ذو المعادلة $=(-1+2-x)e^x-1$ f(2) = -2 : see for equation f(2) = -2 $= (1-x)e^x - 1$ و بالتالي : (G) و (D) يتقاطعان في النقطة (C; -2) . = g(x) $(\forall x \in \mathbb{R})$; f'(x) = g(x) : إذْن $(\forall x \in \mathbb{R})$; $f(x) + x = (2 - x)e^x$: لدينا (2-x) تتعلق فقط بإشارة f(x) + x إذن : إشارة النتيجة f'(0)=0 تعنى هندسيا أن المنحنى (\mathscr{C}) يقبل مماسا أفقيا $(\forall x \in \mathbb{R})$; $e^x > 0$: و ذلك لأن (موازى لمحور الأفاصيل) بجوار النقطة ذات الأفصول 0 . . f(x) + x = 0 : فإن x = 2 : إذا كان . f(x) + x < 0 : فإن x > 2 : إذا كان . f(x) + x > 0 : فإن x < 2 : إذا كان $(\forall x \in \mathbb{R})$; f'(x) = g(x) : لدينا $(\forall x \in \mathbb{R}) \; ; \; g(x) \leq 0 \;\; :$ أن $(2 \; (I \; u) + 1)$ نستنتج من السؤال ب) أنه: $(\forall x \in \mathbb{R})$; $f'(x) \leq 0$: إذن f(x) < : فإن x > 2 فإن • . \mathbb{R} على أن الدالة f تناقصية على f(x) > : فإن x < 2 فإن • و نضع جدول تغیرات f کما یلی : -[4:0] يوجد فوق المستقيم (D) على المجال [S].]2; $+\infty$ [على المجال يوجد أسفل (D) على يوجد f'(x). f'' لدر اسة نقط الإنعطاف ندرس النقط التي تنعدم فيها المشتقة الثانية f f''(x) = 0 : عنصرا من $\mathbb R$. و نرید أن نحل المعادلة x $f^{''}(x) = g^{'}(x) = -xe^{x}$: لدينا $-xe^x=0$: إذن المعادلة تصبح $(\forall x \in \mathbb{R})$; $e^0 \neq 0$: نعلم أن x=0 : إذن المعادلة تصبح \mathbb{R} دالة متصلة و تناقصية قطعا على fو منه: فالمعادلة تقبل حلا وحيدا و هو الصفر. $f(\mathbb{R}) = \mathbb{R}$ إذن f تقابل من \mathbb{R} نحو يعني أن ﴿كَمُ يُقبِلُ نَقطَةُ انْعَطَافُ وَاحْدَةُ أَفْصُولُهَا ٥ . . f بالدالة $\mathbb R$ بالدالة و منه كل عنصر من $\mathbb R$ بالدالة f(0) = 2و أرتوبها أهو $(\exists ! \ \alpha \in \mathbb{R}) \; ; \; f(\alpha) = 0 \quad :$ لدينا $\epsilon \in \mathbb{R} :$ لدينا (\mathscr{C}) نقطة انعطاف للمنحنى B(0;2). α يعنى أن المعادلة α و هو العدد α يعنى أن المعادلة و العدد α . (2). $\left[\frac{3}{3}; 2\right]$ و لدينا f دالة متصلة على المجال f

EXCEL

+∞

) رمضان 2013 من إعداد الأستاذ بدر الدين الفاتحى: (الصفحة: 116 أجوبة امتحان الدورة العاديـة 2011

 $\mathcal{A} = \left(3 - \frac{4}{e}\right) unité^2 :$

 $l'unit\acute{e} = 2cm$: فإن $||\vec{i}|| = ||\vec{j}|| = 2 cm$: بما أن $||\vec{i}|| = ||\vec{j}|| = 2 cm$ الذن : $|l'unit\acute{e}|^2 = 4 cm^2$

$$\mathcal{A} = 4\left(3 - \frac{4}{e}\right) cm^2 = \left(12 - \frac{16}{e}\right) cm^2$$
 : و بالنالي

أضفت الصورة الأولى لنرى بوضوح ما يقع بجوار ∞ .

$$\int_{-1}^{0} \underbrace{(2-x)}_{u} \underbrace{e^{x}}_{v'} dx = [uv]_{-1}^{0} - \int_{-1}^{0} u'v \, dx \qquad \vdots \qquad \vdots$$

$$= [(2-x)e^{x}]_{-1}^{0} - \int_{-1}^{0} -e^{x} \, dx$$

$$= [(2-x)e^{x}]_{-1}^{0} + \int_{-1}^{0} e^{x} \, dx$$

$$= [(2-x)e^{x}]_{-1}^{0} + [e^{x}]_{-1}^{0}$$

$$= (2-\frac{3}{2}) + \left(1 - \frac{1}{e}\right) = 3 - \frac{4}{e}$$

$$\int_{-1}^{0} (2-x) e^{x} dx = 3 - \frac{4}{e} : الذن$$

لتكن ${\cal A}$ مساحة الحيز من المستوى المحصور بين المنحنى ${\cal G}$ و المستقيم (D) و المستقيمين اللذين معادلتاهما x=0 و x=0 نعلم أن التكامل يقيس هندسيا طول أو مساحة أو حجم .

$$\mathcal{A} = \int_{-1}^{0} |f(x) - (-x)| \, dx = \int_{-1}^{0} |f(x) + x| \, dx$$
 : إذْن

من خلال در اسة إشارة (f(x) + x) حسب (f(x) + x) من خلال در اسة إشارة $(\forall x < 2)$; f(x) + x > 0

 $(\forall x < 2)$; |f(x) + x| = f(x) + x : الإذن