1	MOTOPLARPG	HAZOATGLTT	FLAASLSAQN	EGWDSPICTE	GVVSVSWGE
51	TVMSCNISNA	FSHVNIKLRA	HGQESAIFNE	VAPGYFSRDG	WQLQVQGGV
101	QLVIKGARDS	HAGLYMWHLV	GHQRNNRQVT	LEVSGAEPQS	APDTGFWPVE
151	AVVTAVFILL	VALYMFAWYR	CRCSQQRREK	KFFLLEPQMK	VAALRAGAQQ
201	GLSRASAELW	TPDSEPTPRP	LALVFKPSPL	GALELLSPQP	LFPYAADP*

Figure 2

C12 promoter (1-195) and cDNA (196-2180)sequence

ATTCCTGCTT CCTTTAGCGT GAACGCGGGT GCGGTGCCTC CCGTGAAATA ATAAATTCAC CGTCACGCTT GTTGTGAACG CGGGTGGTTC CCGAAACTTG 101 GAGGCTTCCC GTAAACCCAG CTCCTTCCTC ATCTGGGAGG TGGGTCCCGC GCGGGTCCGC CGCCTCCTCC CTGGCCCCTC CCTCTCGTGT CTTTCATTTT 151 CCTGGGGCTC CGGGGCGCGG AGAAGCTGCA TCCCAGAGGA GCGCGTCCAG 201 GAGCGGACCC GGGAGTGTTT CAAGAGCCAG TGACAAGGAC CAGGGGCCCA 251 AGTCCCACCA GCCATGCAGA CCTGCCCCCT GGCATTCCCT GGCCACGTTT 301 CCCAGGCCT TGGGACCCTC CTGTTTTTGG CTGCCTCCTT GAGTGCTCAG AATGAAGGCT GGGACAGCCC CATCTGCACA GAGGGGGTAG TCTCTGTGTC 401 TTGGGGCGAG AACACCGTCA TGTCCTGCAA CATCTCCAAC GCCTTCTCCC 451 ATGTCAACAT CAAGCTGCGT GCCCACGGGC AGGAGAGCGC CATCTTCAAT 501 GAGGTGGCTC CAGGCTACTT CTCCCGGGAC GGCTGGCAGC TCCAGGTTCA 551 GGGAGGCGTG GCACAGCTGG TGATCAAAGG CGCCCGGGAC TCCCATGCTG 601 GGCTGTACAT GTGGCACCTC GTGGGACACC AGAGAAATAA CAGACAAGTC 651 ACGCTGGAGG TTTCAGGTGC AGAACCCCAG TCCGCCCCTG ACACTGGGTT CTGGCCTGTG CCAGCGGTGG TCACTGCTGT CTTCATCCTC TTGGTCGCTC TGGTCATGTT CGCCTGGTAC AGGTGCCGCT GTTCCCAGCA ACGCCGGGAG 801 AAGAAGTTCT TCCTCCTAGA ACCCCAGATG AAGGTCGCAG CCCTCAGAGC 851 GGGAGCCCAG CAGGGCCTGA GCAGAGCCTC CGCTGAACTG TGGACCCCAG 901 ACTCCGAGCC CACCCCAAGG CCGCTGGCAC TGGTGTTCAA ACCCTCACCA CTTGGAGCCC TGGAGCTGCT GTCCCCCCA ACCCTTGTTT CCATATGCCG 1001 CAGACCCATA GCCGCCTGCA AGGCAGAGAG GACACAGGAG AGCCAGCCCT 1051 1101 GAGTGCCGAC CTTGGGTGGC GGGGCCTGGG TCTCTCGTCC CACCCGGAGG GCACAGACAC CGGCTTGCTT GGCAGGCTGG GCCTCTGTGT CACCCACTCC 1151

1201	TGGGTGCGTG	CAGACCCTTC	CCCTCCACCC	CCCAGGTCTT	CCAAGCTCTG
1251	CTTCCTCAGT	TTCCAAAATG	GAACCACCTC	ACCTCCGCAG	CACCCGACTT
1301	ACCAGGACGC	ATGCCCCTCC	CTCTGCCCTC	ATCAAACCCA	CAGACCCGGA
1351	CTCCCTTTCT	GCCACCCCAG	GCTGGTCCGG	CCCCAGGTGT	GGGGTCCGCT
1401	CTCTCCACTC	CCAGGGCTCC	GCGCCCAAGT	GAGGGGGCCC	CTGCCGGAGC
1451	CTCAGACACA	CTGGAGTTCA	GGGCTGGGGG	GGCCTTGGCA	CATACCTGTC
1501	CCTTGGCTAT	GAGCAGGCTT	TGGGGGCCCT	TCCGCGGCAG	CCCCGGGGGC
1551	CGAGGTAGG	TCTGGGGGCT	TAGAGGCTGG	GATGGCTCCT	GGCCCCACCG
1601	CCAGGGGGCA	AGCGCAGGCC	GGGCTGGGAG	GCGGCGGCGG	CGGCTCGGGC
1651	TGGGGGGTCA	GGTGGACGCT	GCCTCCGGGG	CTGGTCGCGC	ATCCCTCAGT
1701	CCCTCGGCCA	CCCGGGGGTC	GCTCCCTCGT	GCCCACCGCA	CCTGCCGAGC
1751	CTCTTTGGAC	CCAGATCTGT	TCATGCTTTT	GTCTTCGTCA	CTGCGGCGGG
1801	GCCCTTTGAT	GTCTTCATCT	GTATGGGGTG	GAAAAATCAC	CGGGAATCCC
1851	CCTTCAGTTC	TTTGAAAAAG	TTCCATGACT	CGAATATCTG	AAATGAAGAA
1901	AACAAACCGA	CTCACAAACC	TCCAAGTAGC	TCCAAATGCA	ATTTTTAAAA
1951	TGGAAAACAA	AAATCTGAAA	GAAACGTCTT	TAGTGGCTTT	AAGCCCCAAA
2001	ACGTCCCTAA	GGCGTCCTCG	AGATGAAGAC	GGGGGGAGC	CCCAGCCAGG
2051	TGGAGACCCC	GCAGGACGCG	GCGGCGCCCG	GTGACCGAGG	CCTCGCACAG
2101	CCGGCCGCCC	TGAGGGTCGG	GCCGAGCCAG	GGTCCAAGAG	GGGCGCGTTT
2151	GTGTCTCGGG	TTAAAATAAG	GTTCCGTCCG		

Figure 3: K12 Expression

Figure 3 (cont)

neelde hymus sesis vesis sm.mes sm.me

Normal tissue (human)

₩. ₩. O

Figure 4. Western blot probed with antiserum to K12. Concentrated media from K562 cells transfected with:

- 1) empty vector
- 2) K12 and 7 amino acid flag
- 3) K12 with C terminus addition
- 4) Full length K12
- 5) ZR75-1 cells (not transfected)
- 6) Molecular weight standards (smallest is 32 kDa

Soluble protein extracts from K562 cells transfected with:

- 7) empty vector
- 8) K12 with 7 amino acid flag
- 9) Full length K12
- 10) ZR75-1 cells (not transfected)

Figure 5: Subcellular Localization of K12 to the Golgi

Figure 5
Same field of view of ZR75-1 cells that were grown on slides, acetone-fixed and double stained with,

A: antigen -purified anti-K12 polyclonal antibody followed by FITC-conjugated goat anti-rabbit IgG secondary antibody.

B: Rhodamine conjugated Wheat Germ Agglutinin (an immunochemical marker for Golgi bodies)

Figure 6 Immunoperoxidase staining of normal breast tissue, A, and colloid breast carcinoma, B, with monoclonal antibody 7C3 against K12. Panel C is a isotype matched P3 control. Dark brown staining reflects monoclonal antibody binding to K12 antigen.

Conditioned Media Proliferation Assay

Figure 7: Growth Curves for K562 cells grown in conditioned media from:

KDcmK+, K562 cells secreting K12 into the media, or

KDcmD+, K562 cells transfected with an empty vector and producing no detectable K12 in media.

The first that the first that the first the first the first that the first t

بالزائر