Electrónica III

Curso 2021

Comportamiento Dinámico

Rise and Fall time

$$= 5.0 \cdot (1 - e^{-t/(20 \cdot 10^{-9})}) \text{ V}$$

$$t = -RC \cdot \ln \frac{V_{\text{CC}} - V_{\text{OUT}}}{V_{\text{CC}}}$$

$$= -20 \cdot 10^{-9} \cdot \ln \frac{5.0 - V_{\text{OUT}}}{5.0}$$

$$t_{1.5} = 7.13 \text{ ns}$$

$$t_{3.5} = 24.08 \text{ ns}$$

$$T_{\text{r}} = t_{3,5} - t_{1,5} = 24,08 \text{ ns} - 7,13 \text{ ns} = 16,95 \text{ ns}$$

$$R_{\text{p}} \times C_{\text{L}} = 200 \times 100 \times 10^{-12} = 20 \times 10^{-9} \text{ ns}$$

Propagation time

AC CHARACTERISTICS (C_L = 50 pF, Input t_r = t_f = 6 ns)

		Vcc	Guara	nteed Lim		
Symbol	Parameter	(V)	-55 to 25°C	⊴85°C	≤125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A or B to Output Y (Figures 1 and 2)	2.0 3.0 4.5 6.0	75 30 15 13	95 40 19 16	110 55 22 19	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 2)	2.0 3.0 4.5 6.0	75 27 15 13	95 32 19 16	110 36 22 19	ns
C _{in}	Maximum Input Capacitance		10	10	10	pF

NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON Semiconductor High- Speed CMOS Data Book (DL129/D).

1	7	7CC 2 7 10 0 7	3 10	Pi
	C _{pd} Power dissipation capacitance per gate	No load, T _A = 25°C	20	pF

$$P_{TG} = C_{PD} \cdot V_{CC}^2 \cdot f$$

Potencia Interna

$$f = 1 MHz$$

$$V_{CC} = 5 V$$

$$C_{PD} = 20 pF$$

$$P_{TG} = 20 \text{ pF} \cdot 5^2 \cdot 1 \text{ MHz} = 0.5 \text{ mW}$$

$$P_{LG} = C_L \cdot V_{CC}^2 \cdot f$$
 —

Potencia en la carga

$$P_{DG} = P_{TG} + P_{LG} = C_{PD} \cdot V_{CC}^2 \cdot f + C_L \cdot V_{CC}^2 \cdot f$$

$$P_{DG} = P_{TG} + P_{LG} = (C_{PD} + C_L) \cdot V_{CC}^2 \cdot f$$

Potencia Total x

$$C_{L} = 10 \, pF$$

$$P_{DG} = P_{TG} + P_{LG} = (20 \text{ pF} + 10 \text{ pF}) \cdot 5^2 \cdot 1 \text{ MHz} = 0.75 \text{ mW}$$

$$P_{integrado} = P_{DG} \cdot 4 = 0.75 \text{ mW} \cdot 4 = 3 \text{ mW}$$

Potencia Total >

ICC	DC Supply Current, V _{CC} and 0	aND Pins	±50	mA	
P _D	Power Dissipation in Still Air,	SOIC Package† TSSOP Package†	500 450	mW	

Potencia Consumida Power dissipation capacitance

per gate

 $P_{DG} = P_{TG} + P_{LG} = (20 \text{ pF} + 10 \text{ pF}) . 3,3^2 . 1 \text{ MHz} = 0,33 \text{ mW}$

 $P_{CHIP} = P_{DG}$. 4 = 0,33 mW . 4 = 1,3 mW

No load, T_A = 25°C

$P_{TG} = C_{PD} \cdot V_{CC}^2 \cdot f$	$P_{TG} = C_{PD} \cdot V_{CC}^2 \cdot f$
f = 1 MHz	f = 1 MHz
$V_{CC} = 3.3 V$	$V_{CC} = 1.8 V$
$C_{PD} = 20 \text{ pF}$	$C_{PD} = 20 pF$
$P_{TG} = 20 \text{ pF} \cdot 3.3^2 \cdot 1 \text{ MHz} = 0.21 \text{ mW}$	$P_{TG} = 20 \text{ pF} \cdot 1.8^2 \cdot 1 \text{ MHz} = 0.06 \text{ mW}$
$P_{LG} = C_L \cdot V_{CC}^2 \cdot f$	$P_{LG} = C_L \cdot V_{CC}^2 \cdot f$
$P_{DG} = P_{TG} + P_{LG} = C_{PD} \cdot V_{CC}^2 \cdot f + C_L \cdot V_{CC}^2 \cdot f$	$P_{DG} = P_{TG} + P_{LG} = C_{PD} \cdot V_{CC}^2 \cdot f + C_L \cdot V_{CC}^2 \cdot f$
$P_{DG} = P_{TG} + P_{LG} = (C_{PD} + C_L) \cdot V_{CC}^2 \cdot f$	$P_{DG} = P_{TG} + P_{LG} = (C_{PD} + C_L) \cdot V_{CC}^2 \cdot f$
$C_L = 10 pF$	$C_L = 10 pF$

ICC	DC Supply Current, V _{CC} and GND Pins		±5U	mA
P _D	Power Dissipation in Still Air,	SOIC Package† TSSOP Package†	500 450	mW

 $P_{DG} = P_{TG} + P_{LG} = (20 \text{ pF} + 10 \text{ pF}) \cdot 1.8^{2} \cdot 1 \text{ MHz} = 0.097 \text{ mW}$

 $P_{CHIP} = P_{DG}$. 4 = 0,097 mW . 4 = 0,4 mW

20

pF

Consideraciones en Conmutación

Características de una pista de Circuito Impreso Inductancia = 10 nH por pulgada Resistencia = 10 m Ω por pulgada Capacidad = 1 pF por pulgada

Capacidad de Entrada por Pin : Cin = 10 pf

Frecuencia de Operación : Giga Hertz Tensión de Operación: 5 Volt – 3,3 Volt – 1,8 Volt

		0.0	13	10	19	l
C _{in}	Maximum Input Capacitance		10	10	10	pF

$$V = L \cdot \frac{dI}{dt}$$

$$\left(\frac{dI}{dt}\right)_{\text{Max-resistor}} = \frac{\Delta V}{T_t} \cdot \frac{1}{R}$$

R : Resistencia de Carga

 ΔV = Tensión de conmutación

T_t: Tiempo de Transición (t_r o t_f , el menor de ambos)

Symbol	Parameter
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 2)

Voc	Guara	inteed Lin	nit	
V _{CC} (V)	-55 to 25°C	⊴85°C	≤125°C	Unit
2.0	75	95	110	ns
3.0	27	32	36	
4.5	15	19	22	
6.0	13	16	19	

$$\left(\frac{dI}{dt}\right)_{\text{Max-resistor}} = \frac{\Delta V}{T_t} \cdot \frac{1}{R}$$

$$R = 1 K\Omega$$

$$\Delta V = 5 \text{ Volt}$$

$$T_{t} = 15 \text{ ns}$$

=
$$5 \text{ V} / (15 \text{ ns} . 1 \text{ K}\Omega) = 3.3 . 10^5 \text{ A/s}$$

Si lo aplico a mi fórmula

$$V = L \cdot \frac{dI}{dt}$$

 $V = 10 . 10^{-9} . 3,3 . 10^5 = 3,3 \text{ mV}$

5,0 V 3,3 V
$$NMH = 1,4 \text{ V} \qquad 0,9 \text{ V} \qquad Vcc - 0,1 \text{ V} \qquad HIGH \qquad Volumin \\ 0.7 \text{ V_{CC}} \qquad HIGH \qquad Volumin \\ ABNORMAL \qquad V_{ILmax} \qquad Uolumin \\ V_{ILmax} \qquad Volumin \\ V_{OLmax} \qquad Volumin \\ O,1 \text{ V} \qquad 0,1 \text{ V} \qquad 0,1$$

Que pasa si

 $R = 250 \Omega$

 $\Delta V = 5 \text{ Volt}$

 $T_t = 1 \text{ ns}$

 $V = 10 \cdot 10^{-9} \times 20 \cdot 10^6 = 200 \text{ mV}$

Supongamos que trabajamos en 3,3 Volt

 $R = 250 \Omega$

 $\Delta V = 3.3 \text{ Volt}$

 $T_t = 1 \text{ ns}$

 $= 5 \text{ V} / (1 \text{ ns} . 250 \,\Omega) = 20 . \, 10^6 \text{ A/s} \\ = 3.3 \text{ V} / (1 \text{ ns} . 250 \,\Omega) = 13.2 . \, 10^6 \text{ A/s} \\ = 1.8 \text{ V} / (1 \text{ ns} . 250 \,\Omega) = 7.2 . \, 10^6 \text{ A/s}$

 $V = 10 . 10^{-9} x 13,2 . 10^6 = 132 \text{ mV}$

Finalmente en 1,8 Volt

 $R = 250 \Omega$

 $\Delta V = 1.8 \text{ Volt}$

 $T_t = 1 \text{ ns}$

 $V = 10 \cdot 10^{-9} \times 7.2 \cdot 10^6 = 72 \text{ mV}$

$$\left(\frac{dI}{dt}\right)_{\text{Max-capacitor}} = \frac{1.52\Delta V}{T_t^2} \cdot C$$

A modo de ejemplo:

$$C = 50 pF$$

 $\frac{\text{IN8}}{V_{\text{IN8}}}$

 V_{GND}

$\Delta V = 5 \text{ Volt}$ $T_t = 5 \text{ ns}$ = $(1,52.5 \text{ V}/(5 \text{ ns})^2).50 \text{ pF} = 1,52.10^7 \text{ A/s}$ $V = 10 . 10^{-9} x (1,52 . 10^{7}) = 152 \text{ mV}$

Q16

Ground Bounce

Circuitos Especiales

Schmitt Trigger

Three State

Three State

Open Drain

V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu A$		2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		V _{in} =V _{IH} or V _{IL}	$ I_{out} \le 2.4 \text{ mA}$ $ I_{out} = 4.0 \text{ mA}$ $ I_{out} \le 5.2 \text{ mA}$	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	

$$R_{pull\,up} = V_{cc}/I_{OLmax} = 5 \text{ V}/4 \text{ mA} = 1250 \Omega = 1,2 \text{ K}\Omega = 1\text{K}2$$

Si la capacidad de carga es C_L = 100 pF

$$t_f = R_n x C_L = 100 \Omega x 100 pF = 10 ns$$

$$t_r = R_{pull up} x C_L = 1$$
, 2 K Ω x 100 pF = 120 ns

Familias CMOS

					Family		
Description	Part	Symbol	Condition	нс	нст	AHC	AHCT
Typical propagation delay (ns)	'00 '138	$t_{\rm PD}$		9 18	10 20	3.7 5.7	5 7.6
Quiescent power-supply current (µA)	'00 '138	$I_{\rm CC}$	$V_{\text{in}} = 0 \text{ or } V_{\text{CC}}$ $V_{\text{in}} = 0 \text{ or } V_{\text{CC}}$	2.5 40	2.5 40	5.0 40	5.0 40
Quiescent power dissipation (mW)	'00 '138		$V_{\text{in}} = 0 \text{ or } V_{\text{CC}}$ $V_{\text{in}} = 0 \text{ or } V_{\text{CC}}$	0.0125 0.2	0.0125 0.2	0.025 0.2	0.025 0.2
Power-dissipation capacitance (pF)	'00 '138	C_{PD} C_{PD}		22 55	15 51	2.4 13	2.6 14
Dynamic power dissipation (mW/MHz)	'00 '138			0.55 1.38	0.38 1.28	0.06 0.33	0.065 0.35
Total power dissipation (mW)	'00 '00 '138 '138 '138		f = 100 kHz f = 1 MHz f = 10 MHz f = 100 kHz f = 1 MHz f = 10 MHz	0.068 0.56 5.5 0.338 1.58 14.0	0.050 0.39 3.8 0.328 1.48 13.0	0.031 0.085 0.63 0.23 0.53 3.45	0.032 0.09 0.68 0.24 0.55 3.7

			Family			
Description	Symbol	Condition	нс	нст	AHC	AHCT
LOW-level output current (mA)	$I_{\rm OLmaxC} \\ I_{\rm OLmaxT}$	CMOS load TTL load	0.02 4.0	0.02 4.0	0.05 8.0	0.05 8.0
LOW-level output voltage (V)	$V_{ m OLmaxC}$ $V_{ m OLmaxT}$	$\begin{split} I_{\text{out}} &\leq \text{I}_{\text{OLmaxC}} \\ I_{\text{out}} &\leq \text{I}_{\text{OLmaxT}} \end{split}$	0.1 0.33	0.1 0.33	0.1 0.44	0.1 0.44
HIGH-level output current (mA)	I_{OHmaxC} I_{OHmaxT}	CMOS load TTL load	-0.02 -4.0	-0.02 -4.0	-0.05 -8.0	-0.05 -8.0
HIGH-level output voltage (V)	$V_{ m OHminC} \ V_{ m OHminT}$	$\begin{array}{l} \mid I_{\rm out} \mid \leq \mid {\rm I_{OHmaxC}} \mid \\ \mid I_{\rm out} \mid \leq \mid {\rm I_{OHmaxT}} \mid \end{array}$	4.4 3.84	4.4 3.84	4.4 3.80	4.4 3.80

Familias TTL

				Family		
Description	Symbol	745	74LS	74AS	74ALS	74F
Maximum propagation delay (ns)		3	9	1.7	4	3
Power consumption per gate (mW)		19	2	8	1.2	4
LOW-level input voltage (V)	$V_{\rm ILmax}$	0.8	0.8	0.8	0.8	0.8
LOW-level output voltage (V)	$V_{\rm OLmax}$	0.5	0.5	0.5	0.5	0.5
HIGH-level input voltage (V)	V_{IHmin}	2.0	2.0	2.0	2.0	2.0
HIGH-level output voltage (V)	V_{OHmin}	2.7	2.7	2.7	2.7	2.7
LOW-level input current (mA)	$I_{\rm ILmax}$	-2.0	-0.4	-0.5	-0.2	-0.6
LOW-level output current (mA)	$I_{\rm OLmax}$	20	8	20	8	20
HIGH-level input current (μA)	I_{IHmax}	50	20	20	20	20
HIGH-level output current (μA)	I_{OHmax}	-1000	-400	-2000	-400	-1000

	Inputs		output
	A	В	Y
Г	0	0	1
l	0	1	1
l	1	0	1
	1	1	0

