TEA018 - Hidrologia Ambiental Abstrações e Método SCS

Emílio G. F. Mercuri

www.ambiental.ufpr.br/professores/mercuri

Professor DEA / UFPR

Sumário

Abstrações

Мéторо SCS Hipóteses

Exemplo de aplicação

Abstrações

Abstrações: perdas por infiltração (armazenamento) e interceptação pela vegetação.

Equação da Continuidade (Balanço de massa para a água da chuva):

$$P = I_a + P_e + F_a \tag{1}$$

 I_a : Abstrações iniciais

Abstrações

000

Abstrações: perdas por infiltração (armazenamento) e interceptação pela vegetação.

Equação da Continuidade (Balanço de massa para a água da chuva):

$$P = I_a + P_e + F_a \tag{1}$$

 I_a : Abstrações iniciais

 P_e : Excesso de precipitação (chuva efetiva)

Abstrações

Abstrações: perdas por infiltração (armazenamento) e interceptação pela vegetação.

Equação da Continuidade (Balanço de massa para a água da chuva):

$$P = I_a + P_e + F_a \tag{1}$$

 I_a : Abstrações iniciais

 P_e : Excesso de precipitação (chuva efetiva)

 F_a : Abstrações contínuas (após o início do escoamento superficial)

Exemplo de aplicação

ABSTRAÇÕES

Abstrações: perdas por infiltração (armazenamento) e interceptação pela vegetação.

Equação da Continuidade (Balanço de massa para a água da chuva):

$$P = I_a + P_e + F_a \tag{1}$$

 I_a : Abstrações iniciais

 P_e : Excesso de precipitação (chuva efetiva)

 ${\cal F}_a$: Abstrações contínuas (após o início do escoamento superficial)

P: Precipitação total

Soil Conservation Service* (1972)

desenvolveu um método para cálculo do escoamento superficial / abstrações.

* Agência do Departamento de Agricultura dos EUA.

Em uma chuva de grande intensidade:

$$P_e \le P$$

Após o início da precipitação:

$$F_a \leq S$$

S: Armazenamento máximo (potencial máximo de retenção de água no solo)

Fa: Água armazenada na bacia (após o início do escoamento superficial)

Pe: Excesso de precipitação (chuva efetiva)

P: Precipitação total

 I_a : Abstrações iniciais

Hipótese do Método SCS

$$\frac{\text{Abstração atual}}{\text{Abstração Potencial}} = \frac{\text{Chuva Efetiva}}{\text{Chuva Total}} \longrightarrow \frac{F_a}{S} = \frac{P_e}{P - I_a}$$
 (2)

Isolando F_a da Equação 1 obtemos:

$$F_a = P - I_a - P_e \tag{3}$$

Isolando F_a da Equação 1 obtemos:

$$F_a = P - I_a - P_e \tag{3}$$

Substituindo a Eq. 3 na Eq. 2 e isolando P_e :

Isolando F_a da Equação 1 obtemos:

$$F_a = P - I_a - P_e \tag{3}$$

Substituindo a Eq. 3 na Eq. 2 e isolando P_e :

$$P_e = \frac{(P - I_a)^2}{(P - I_a + S)} \quad \blacksquare \tag{4}$$

A Eq. 4 fornece o cálculo da chuva efetiva pelo método SCS.

Abstrações

Isolando F_a da Equação 1 obtemos:

$$F_a = P - I_a - P_e \tag{3}$$

Substituindo a Eq. 3 na Eq. 2 e isolando P_e :

$$P_e = \frac{(P - I_a)^2}{(P - I_a + S)} \quad \blacksquare \tag{4}$$

A Eq. 4 fornece o cálculo da chuva efetiva pelo método SCS.

Estudo experimentais (p/ bacias pequenas) forneceram a relação empírica:

$$I_a = 0.2S \tag{5}$$

Isolando F_a da Equação 1 obtemos:

$$F_a = P - I_a - P_e \tag{3}$$

Substituindo a Eq. 3 na Eq. 2 e isolando P_e :

$$P_e = \frac{(P - I_a)^2}{(P - I_a + S)} \quad \blacksquare \tag{4}$$

A Eq. 4 fornece o cálculo da chuva efetiva pelo método SCS.

Estudo experimentais (p/ bacias pequenas) forneceram a relação empírica:

$$I_a = 0.2S \tag{5}$$

Substituindo 5 em 4:

$$P_e = \frac{(P - 0.2S)^2}{(P + 0.8S)} \quad \blacksquare \tag{6}$$

Equação amplamente utilizada em modelos hidrológicos. Mas como quantificar S?

O S.C.S. padronizou as curvas $(P,\!P_e)$ usando o coeficiente adimensional ${\bf CN}$ (Curve Number)

CN: "Número de Curva" (número de escoamento) (0 \leq CN \leq 100)

O S.C.S. padronizou as curvas (P,P_e) usando o coeficiente adimensional CN (Curve Number)

CN: "Número de Curva" (número de escoamento) (0 \leq CN \leq 100)

Gráfico $P \times P_e$:

O S.C.S. padronizou as curvas (P,P_e) usando o coeficiente adimensional CN (Curve Number)

CN: "Número de Curva" (número de escoamento) ($0 \le CN \le 100$)

Gráfico $P \times P_e$:

O S.C.S. padronizou as curvas (P,P_e) usando o coeficiente adimensional CN (Curve Number)

CN: "Número de Curva" (número de escoamento) ($0 \le CN \le 100$)

Gráfico $P \times P_e$:

CN = 100 (superficies impermeáveis), CN < 100 (sup. naturais)

O S.C.S. padronizou as curvas (P,P_e) usando o coeficiente adimensional CN (Curve Number)

CN: "Número de Curva" (número de escoamento) ($0 \le CN \le 100$)

Gráfico $P \times P_e$:

CN = 100 (superfícies impermeáveis), CN < 100 (sup. naturais)

$$CN = \frac{1000}{10 + S}$$
 (S em polegadas) $CN = \frac{25400}{254 + S}$ (S em mm) (7)

Em resumo, sabendo o **tipo e cobertura do solo** (\rightarrow CN), no método usa-se:

$$S = \frac{1000}{\text{CN}} - 10$$
 ou $S = \frac{25400}{\text{CN}} - 254$

Em resumo, sabendo o **tipo e cobertura do solo** (\rightarrow CN), no método usa-se:

$$S = \frac{1000}{\text{CN}} - 10$$
 ou $S = \frac{25400}{\text{CN}} - 254$
$$P_e = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$

Em resumo, sabendo o **tipo e cobertura do solo** (\rightarrow CN), no método usa-se:

$$S = \frac{1000}{\text{CN}} - 10$$
 ou $S = \frac{25400}{\text{CN}} - 254$
$$P_e = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$

Os Números de Curva das equações acima são válidos para **condições normais de umidade antecedente** (AMC II - *antecedent moisture condition*).

Em resumo, sabendo o **tipo e cobertura do solo** (\rightarrow CN), no método usa-se:

$$S = \frac{1000}{\text{CN}} - 10$$
 ou $S = \frac{25400}{\text{CN}} - 254$
$$P_e = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$

Os Números de Curva das equações acima são válidos para **condições normais de umidade antecedente** (AMC II - *antecedent moisture condition*).

Para condições secas (AMC I):

$$CN(I) = \frac{4.2CN(II)}{10 - 0.058CN(II)}$$

Em resumo, sabendo o **tipo e cobertura do solo** (\rightarrow CN), no método usa-se:

$$S = \frac{1000}{\text{CN}} - 10$$
 ou $S = \frac{25400}{\text{CN}} - 254$
$$P_e = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$

Os Números de Curva das equações acima são válidos para **condições normais de umidade antecedente** (AMC II - *antecedent moisture condition*).

Para condições secas (AMC I):

$$CN(I) = \frac{4.2CN(II)}{10 - 0.058CN(II)}$$

Para condições úmidas (AMC III):

$$\mathrm{CN(III)} = \frac{23\mathrm{CN(II)}}{10 + 0.13\mathrm{CN(II)}}$$

As C.N. foram tabeladas para 4 grupos de solos:

Grupo A : Areias, loesse (solo de coloração amarelada) e solos siltosos profundos

As C.N. foram tabeladas para 4 grupos de solos:

Grupo A : Areias, loesse (solo de coloração amarelada) e solos siltosos profundos

Grupo B : Loess raso, solo franco-arenoso (17% argila)

As C.N. foram tabeladas para 4 grupos de solos:

Grupo A : Areias, loesse (solo de coloração amarelada) e solos siltosos profundos

Grupo B : Loess raso, solo franco-arenoso (17% argila)

Grupo C : Solos argilo-arenosos, Franco-arenosos rasos, solos com matéria orgânica e argila

As C.N. foram tabeladas para 4 grupos de solos:

Grupo A : Areias, loesse (solo de coloração amarelada) e solos siltosos profundos

Grupo B : Loess raso, solo franco-arenoso (17% argila)

Grupo C : Solos argilo-arenosos, Franco-arenosos rasos, solos com matéria orgânica e argila

Grupo D : Solos que absorvem bastante umidade (argilas de comportamento plástico, solos salinos)

Tabela dos CN para **uso e grupo de solos** (Enviar em PDF aos discentes):

Runoff curve numbers for selected agricultural, suburban, and urban land uses (antecedent moisture condition II, $I_a = 0.2S$)

Land Use Description			Hydrologic Soil Group					
		A	В	C	D			
Cultivated land1: withou	72	81	88	91				
with o	62	71	78	81				
Pasture or range land: p	oor condition	68 79		86	89			
good condition		39	61	74	80			
Meadow: good condition	n	30 58 71		71	78			
Wood or forest land: thin stand, poor cover, no mulch		45	66	77	83			
good cover2			55	70	77			
Open Spaces, lawns, pa	arks, golf courses, cemeteries, etc.							
good condition: grass cover on 75% or more of the area		39	61	74	80			
fair condition: gra-	ss cover on 50% to 75% of the area	49 69 79		84				
Commercial and busine	ss areas (85% impervious)	89	92	94	95			
Industrial districts (72%	impervious)	81 88 91		93				
Residential3:								
Average lot size	Average % impervious4							
1/8 acre or less	65	77	85	90	92			
1/4 acre	38	61	75	83	87			
1/3 acre	30 Mercuri, EGF	57	72	81	86			
1/2	26		70	00	ا مو			

Abstrações 000

Determine o escoamento superficial para precipitação de 127 mm em bacia de 4 km². Dados:

► Grupos Hidrológicos dos solos

Abstrações

Determine o escoamento superficial para precipitação de 127 mm em bacia de 4 km². Dados:

► Grupos Hidrológicos dos solos 50% dos solos grupo B, 50% dos solos grupo C

Determine o escoamento superficial para precipitação de 127 mm em bacia de 4 km². Dados:

- ► Grupos Hidrológicos dos solos 50% dos solos grupo B, 50% dos solos grupo C
- ► Antecedente de umidade II

Abstrações

Determine o escoamento superficial para precipitação de 127 mm em bacia de 4 km². Dados:

- ► Grupos Hidrológicos dos solos 50% dos solos grupo B, 50% dos solos grupo C
- Antecedente de umidade II
- Uso do solo:

Determine o escoamento superficial para precipitação de 127 mm em bacia de 4 km². Dados:

- Grupos Hidrológicos dos solos
 - 50% dos solos grupo B, 50% dos solos grupo C
- ► Antecedente de umidade II
- Uso do solo:

40%área residencial 30% impermeável

Abstrações

Determine o escoamento superficial para precipitação de 127 mm em bacia de 4 km². Dados:

- ► Grupos Hidrológicos dos solos
 - 50% dos solos grupo B, 50% dos solos grupo C
- ► Antecedente de umidade II
- Uso do solo:

40% área residencial 30% impermeável 12% área residencial 65% impermeável

Abstrações

Determine o escoamento superficial para precipitação de 127 mm em bacia de 4 km². Dados:

- Grupos Hidrológicos dos solos
 - 50% dos solos grupo B, 50% dos solos grupo C
- Antecedente de umidade II
- Uso do solo:

40% área residencial 30% impermeável 12% área residencial 65% impermeável 18% arruamento

Abstrações

Determine o escoamento superficial para precipitação de 127 mm em bacia de 4 km². Dados:

- Grupos Hidrológicos dos solos
 - 50% dos solos grupo B, 50% dos solos grupo C
- Antecedente de umidade II
- Uso do solo:

40% área residencial 30% impermeável

12% área residencial 65% impermeável

18% arruamento

16% gramíneas (boa qualidade)

Abstrações

Determine o escoamento superficial para precipitação de 127 mm em bacia de 4 km². Dados:

- Grupos Hidrológicos dos solos
 - 50% dos solos grupo B, 50% dos solos grupo C
- Antecedente de umidade II
- Uso do solo:
 - 40% área residencial 30% impermeável
 - 12% área residencial 65% impermeável
 - 18% arruamento
 - 16% gramíneas (boa qualidade)
 - 14% áreas pavimentadas

Determine o escoamento superficial para precipitação de 127 mm em bacia de 4 km². Dados:

- Grupos Hidrológicos dos solos
 - 50% dos solos grupo B, 50% dos solos grupo C
- ► Antecedente de umidade II
- ► Uso do solo:
 - 40% área residencial 30% impermeável
 - 12% área residencial 65% impermeável
 - 18% arruamento
 - 16% gramíneas (boa qualidade)
 - 14% áreas pavimentadas

Solução: 1) Determinação do CN médio:

Uso / tipo de solo	В				\mathbf{C}			
	%	CN	Produto	_	%	CN	Produto	
Residencial (30% impermeável)	20	72	1440		20	81	1620	
Residencial (65% impermeável)	6	85	510		6	90	540	
Ruas	9	98	882		9	98	882	
Grama	8	61	488		8	74	592	
Pavimento	7	98	686		7	98	686	
Valor Médio	50		4006		50		4320	

Determine o escoamento superficial para precipitação de 127 mm em bacia de 4 km². Dados:

- Grupos Hidrológicos dos solos
 - 50% dos solos grupo B, 50% dos solos grupo C
- ► Antecedente de umidade II
- Uso do solo:

40% área residencial 30% impermeável

12% área residencial 65% impermeável

18% arruamento

16% gramíneas (boa qualidade)

14% áreas pavimentadas

Solução: 1) Determinação do CN médio:

Uso / tipo de solo	В				\mathbf{C}			
	%	CN	Produto	-9	6	CN	Produto	
Residencial (30% impermeável)	20	72	1440	2	:0	81	1620	
Residencial (65% impermeável)	6	85	510		6	90	540	
Ruas	9	98	882		9	98	882	
Grama	8	61	488		8	74	592	
Pavimento	7	98	686		7	98	686	
Valor Médio	50		4006	5	0		4320	

$$CN_{m\acute{e}dio} = \frac{4006 + 4320}{100} = 83,26$$

Solução:

1. Determinação do CN médio

$$CN_{m\acute{e}dio} = \frac{4006 + 4320}{100} = 83,26$$

Abstrações

Solução:

1. Determinação do CN médio

$$CN_{m\acute{e}dio} = \frac{4006 + 4320}{100} = 83,26$$

2. Determinação do armazenamento máximo da bacia ${\cal S}$

$$S = \frac{25400}{\text{CN}} - 254 = 51,07\,\text{mm}$$

Solução:

1. Determinação do CN médio

$$\mathrm{CN}_{\text{m\'edio}} = \frac{4006 + 4320}{100} = 83{,}26$$

2. Determinação do armazenamento máximo da bacia ${\cal S}$

$$S = \frac{25400}{\text{CN}} - 254 = 51,07 \,\text{mm}$$

3. Determinação da precipitação efetiva = escoamento superficial

$$P_e = \frac{(P - 0.2S)^2}{(P + 0.8S)} = \frac{(127 - 0.2(51.07))^2}{(127 + 0.8(51.07))} = 81,26 \,\text{mm} \quad \blacksquare$$