Geometric Formulation of Hamiltonian Mechanics

0-) Symplectic Geometry : works for autonomous system: H≠H(t)

Definition: Let M2n be an even-dimensional manifold. A symplectic structure on M is a closed non-degenerate 2-form

11-) Non degenerate + X =0 there exist(3) y w(X,y) =0 : matrix with rank 2

The pair (M2n, w) is called symplectic manifold.

. Define SL as an inverse of w

Dap were - So ! since wis non-degenerate, this is unique. So, a defines an Isomorphism between TM and TXM

This allows us to "identify vectors with covectors".

w: TM -> TRM / Va -> VB = VamaB or V -> w(V,0) = V-100

D: TM -> TM, Mx -> MR = DFd Mx or M -> D.M

This is, we can lise or lower indices, similar to the metric but where metric

is symmetric, w and it are auti-symmetric.

· Given a function of on M, w defines a Hamiltonian vector field Kf

Theorem: A Hamiltonian vector field preserves symplectic structure Lx w=0 : Hamiltonian vector fields which means vector fields which are generated by functions on the phase space, they behave nicely wit w.

Proof:
$$2x_f w = x_f x_f dw + d(x_f \cdot w) = 0$$

Consequence : (Liouville's Theorem) o A Hamiltonian vector flow preserves the volume element on M E= win = I win - in times

· Given 2 functions fig on M, w defines their Poisson bracket by Lfig3 = df. r. dg = - w(Xf, Xg)

Satisfies properties of P.B. Linearity, antisymmetry , Liebniz property * Interesting is Jacobi identity and dw=0

One can also get

· Darboux Theorem: Since wis antisymmetric relosed and non-degenerate

There exist a condimit

W= dPoAdqP These do not mean vector or 1-form, pard q can be thought as coordinates w= dp1 Adq1 + dp2 Adq2 --

Consequence

is a volume form on M

- The poisson brackets take the canonical form

If =
$$\int f \in -\int f dA da' - a f$$

$$= \frac{1}{2} - x_{g} = x_{g}(f) = \frac{1}{2} = x_{g}(f) = \frac{1}{2} = x_{g}(f) = x_$$

b-) Hamiltonian Mechanics.

1 Basic theory

Configuration space C for a system with n dof is a manifold of dimension 1, equipped with local coordinates (q1-qn)

Phase space = Cotangent bundle TTC. It has dimension 2n and local coordinates (91-91, p1-pn)

· Cartains 1-form & E T*(T*C) = 1-form space over phase space

& = Pidqi . Natural symplectic on TXC w = d0 = dpi Adqi : Natural symplectic on TXC

- The dynamics is defined by specifying Hamiltonian H: TEC-JR H=H(q',P), H+HH): Autonomous system

This defines dynamical Hamiltonian vector field XH= d= d= r.dH= (, H)

This field generates its integral curves

(t) = (qi(t), Pi(t)) OH = q', OH = -Pi Hamilton's equations -> Defermine

· Finally, people interested in o(t) rather than o(t)

· LxH w=0: since XH is a Hamiltonian vector flow (Liouville's theorem)

· Legerdie transformation L => fl is a map TC => T*C that identifies $q \stackrel{\longrightarrow}{=} P_3$ according to $(q^{\dagger}, q^{\dagger}) = Z \in T_c \stackrel{Legending}{=} T_c \ni 2^{\frac{1}{2}} = (q^{\dagger}P_3)$ $P_3 \stackrel{\longrightarrow}{=} \frac{OL}{OP_3} , q^{\dagger} = \frac{OH}{OP_3} , H = q^{\dagger}P_3 - L_1 = q^{\dagger}(q^{\dagger}P_1)$

This is on the level of phase space and hence is more general than usually presented, we can distinguish two cases based on the canonical projection TX: T(TXC) -> TC of the vector field y:

TX(y) - vector field which lives on C, symmetry of C -- Isometry * Not well defined on "C". - dynamical (hidden) symmetics Example Kepler problem F=- k ? We have Isometries: stationary - E: energy

we have Isometries: stationary - E: energy

spherical symmetry: L: Angular momentum flowever, there also exist an additional conserved vector A=PXZ-mlcf called the Captace-Runge-Lent vector . This is an example of dynamical symmetry (no associated cyclic coordinate can be found). . Note that there are two constraints CFILIA 3 = 7-2=5 independent conserved 1=3 dof we need for Omplete integrability 1 independent integrals of motion = "Maximally super integrable", only n of them in Involution 2n-1 in Kepler, if you have more than n (4) Nambu Mechanics · Hamiltonian mechanics · Even dimensional phose space ofig3 = I (dfidg) : Binary operation . w, 2-form · Dynamics are described with single Hamiltonian 1-) Why do we restrict to even dimensional space, can not we have Postulated existence of a Nambu tensor M: non degenerate p-form such that DM=0 This defines a generalized Poisson bracket Sfirfi-, fp]= M(Xfi, Xfi-, Xfp)= M(dfi-dfp)

Confact Geometry Definition: A vector X for which w(X, Y)=0 for all y is called null vector of 2-form W. X -1 W = 0 : X is noll vector w. ce = X ce w. X = 0 : X eigen vector Definition A 2-form w is non-singular when the vector space generated by its null vectors has minimal possible dimension I dim=0 even dimensions: M2n

1-dimensional space of

nul rectors

dim=1 odd dimensions: M2n+1 Definition. when w is closed and non-singular, the pair (Mant, w) is called contact geometry 1-) This is an odd dimensional version of symplectic geometry Remarks ii-) w is generated by antact 1-form 0: and defermines a unique vortex direction X: Specifically, Reeb vector is a normalized vortex direction: Olix = 1 111-) (nteresting branch of mathematics the so called special Riemannian Sasaki manifolds: (Mrn, Kahler 2-form w)

Sasaki manifolds: (Mrnt, Reeb vector X) 1xw= X-1 dw + d(x-1w)=0 iv) Lxw=0 V-) Darboux Thorem since w is closed and non-singular, there exists a coordinate system $X^{\alpha} = (q^{\beta}, P_{\beta}, t)$ such that $X = dP_1 \wedge dq_1$ was $t = dP_1 \wedge dq_1$ $X = \frac{\partial}{\partial t}$

HI-H+OF, P= OF, P= - OF

Hamilton-Jacobi Theory Revised

Idea: Let's make a special camprical transformation so that (Q3, Port) are

Darboux coordinates for w, that is

We have seen previously that such a canonical transformation is generated by F=5 where

Classical mechanics finds natural description in terms of symplectic and

Classical mechanics finds not				
contact geometries. Hamiltonian Flamiltonian Symplectic(2n) contact (2n+1)			Lagrangian	
contact geo	Hamilt	I contact (2n+1)	1 39 mp	general a fair in particular communication of the planets of the communication of the communi
marifold Mr	P.S. TRC	Extended PS: TXCXIR	Velocity P.S.	
Dynamics	H=H(91P)	H=H(91Pit)	L=L(q1q)	
1-form	Carton D=Pidqi	Ontacti On-Pidgi-Hdt	La grange OL = OL dq'	- 0.500
5-to1w	symplectic wed due 0	cut1=d0H	cagrange symplectic	
Tom for dynamical freld X	XH	XH XH =0	XL: LxL th = dL XL J WL = - dE	or
		1		