TooManyCells identifies and visualizes relationships of single-cell clades

Gregory W. Schwartz et al. (2020/04)

Outlines

- 1. Describe the method in human language
- 2. The Development of key concepts
- 3. How it works
- 4. How it helps my project

1 TooManyCells: Clustering Algorithm

Seurat Nearest neighbor clustering determine a unique position of each cell based on their coordination in latent space (e.g. PCA).

too-many-cells algorithm recursively divides cells into two clusters each time and relates clusters while branching the tree.

1 TooManyCells: Clustering Algorithm

2 Development of Key Concepts: Computer Vision

Normalized Cuts and Image Segmentation (Jianbo Shi et al. 2000)

- Similarity between pixels are calculated by color change in euclidean space **A**.
- Define Normalized Cuts, Graph Laplacian Matrix L
- Bring up a brilliant idea that it is possible to optimally biparition a picture by the second smallest eigenvector of matrix L

2 Development of Key Concepts: Text Mining

Normalized Cuts and Image Segmentation (Jianbo Shi et al. 2000)

- Similarity between pixels are calculated by color change in euclidean space A.
- Define Normalized Cuts, Graph Laplacian Matrix L
- Bring up a brilliant idea that it is possible to optimally biparition a picture by the second smallest eigenvector of matrix **L**

Efficient Spectral Neighborhood Blocking for Entity Resolution (Liangcai et al 2011)

- Use q-gram, TF-IDF and cosine similarity to describe the similarities A among records
- Build "Graph" Laplacian Matrix L based on A
- Fast way to calculate the second eigenvector in **sparse** matrix
- Introduce Newman-Girvan modularity from social network research to decide when to stop splitting.

Record#	Address	
1	600 MOUNTAIN AVENUE	
2	700 MOUNTAIN AVE	
3	600-700 MOUNTAIN AVE	
4	100 DIAMOND HILL RD	
5	100 DIAMOND HILL ROAD	
6	123 SPRINGFIELD AVENUE	
7	123 SPRINFGIELD AVE	

2 Development of key concepts: Single Cells

Normalized Cuts and Image Segmentation (Jianbo Shi et al. 2000)

- Similarity between pixels are calculated by color change in euclidean space **A**.
- Define Normalized Cuts, Graph Laplacian Matrix L
- Bring up a brilliant idea that it is possible to optimally biparition a picture by the second smallest eigenvector of matrix **L**

Efficient Spectral Neighborhood Blocking for Entity Resolution (Liangcai et al 2011)

- Use q-gram, TF-IDF and cosine similarity to describe the similarities **A** among records
- Build "Graph" Laplacian Matrix L based on A
- Fast way to calculate the second eigenvector in sparse matrix
- Introduce Newman-Girvan modularity from social network research to decide when to stop splitting.

TooManyCells identifies and visualizes relationships of single-cell clades (Gregory W. Schwartz et al. 2020)

- TF-IDF and cosine similarity to describe the similarities A among cells.
- Implement Liangcai's clustering algorithm
- Add more downstream analysis tools: preprocessing options, normalization methods, visualization, Differentially Expression, Diversity Analysis and Cluster Purity...

Record#	Address	
1	600 MOUNTAIN AVENUE	
2	700 MOUNTAIN AVE	
3	600-700 MOUNTAIN AVE	
4	100 DIAMOND HILL RD	
5	100 DIAMOND HILL ROAD	
6	123 SPRINGFIELD AVENUE	
7	123 SPRINFGIELD AVE	

Suppose you have a similarity matrix \mathbf{A} where A(i, j) represents the similarity between item i and j. Then we can calculate the degree matrix $\mathbf{D} = \text{diag}(\mathbf{A1})$, there d(i) is $\text{sum}_{j} A(i, j)$. Define graph laplace matrix:

$$\mathcal{L}(\mathbf{A}) = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$$

It is shown that the second smallest eigenvector can be used to optimally bipartition the dataset.

Suppose **B1** (m x n) is a SC-seq UMI read matrix. Use **TF-IDF** to normalize the counts.

$$\mathbf{B}_2 = \log(\mathbf{m}/\mathbf{d}_i)\mathbf{B}_1(i,j)$$
 (If the degree is high, then we add a penalty to the frequency.)

Suppose you have a similarity matrix \mathbf{A} where A(i, j) represents the similarity between item i and j. Then we can calculate the degree matrix $\mathbf{D} = \text{diag}(\mathbf{A1})$, there d(i) is $\text{sum}_{j} A(i, j)$. Define graph laplace matrix:

$$\mathcal{L}(\mathbf{A}) = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$$

It is shown that the second smallest eigenvector can be used to optimally bipartition the dataset.

Suppose **B1** (m x n)is a SC-seq UMI read matrix. Use **TF-IDF** to normalize the counts **B2**. Use Cosine Similarity to represent the distance between two cells.

$$\mathbf{A}(i,j) = \frac{\sum_{k=1}^{n} \mathbf{B}_{2}(i,k) \mathbf{B}_{2}(j,k)}{\sqrt{\sum_{k=1}^{n} \mathbf{B}_{2}^{2}(i,k)} \sqrt{\sum_{k=1}^{n} \mathbf{B}_{2}^{2}(j,k)}}$$

Suppose you have a similarity matrix \mathbf{A} where A(i, j) represents the similarity between item i and j. Then we can calculate the degree matrix $\mathbf{D} = \text{diag}(\mathbf{A1})$, there d(i) is sum_{j} A(i, j). Define graph laplace matrix:

$$\mathcal{L}(\mathbf{A}) = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$$

It is shown that the second smallest eigenvector can be used to optimally bipartition the dataset.

Suppose **B1** (m x n)is a SC-seq UMI read matrix. Use **TF-IDF** to normalize the counts **B2**. Use Cosine Similarity to represent the distance between two cells.

$$\mathbf{A}(i,j) = \frac{\sum_{k=1}^{n} \mathbf{B}_{2}(i,k) \mathbf{B}_{2}(j,k)}{\sqrt{\sum_{k=1}^{n} \mathbf{B}_{2}^{2}(i,k)} \sqrt{\sum_{k=1}^{n} \mathbf{B}_{2}^{2}(j,k)}}$$

Suppose you have a similarity matrix **A** where A(i, j) represents the similarity between item i and j. Then we can calculate the degree matrix **D** = diag(**A1**), there d(i) is sum $\{i\}$ A(i, j).

Define graph laplace matrix:

$$\mathcal{L}(\mathbf{A}) = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$$

It is shown that the second smallest eigenvector can be used to optimally bipartition the dataset.

Use Newman-Girvan Modularity as stopping criteria.

$$Q(C_1, C_2) = \sum_{k=1}^{2} \left(\frac{O_{kk}}{L} - \left(\frac{L_k}{L} \right)^2 \right)$$

Q > 0 denotes non-random communities

Q < 0 demonstrates communities randomly found

4 TooManyCells on Traf6 dataset

After integration, apply tooManyCells algorithm on 20-dim latent subspace.

But there are too many subsets in binary tree and we should consider pruning the branches.

4 TooManyCells on Traf6 dataset

MAD * 5				
Cluster	Size	WT%		
10	255	67.06		
11	159	72.32		
7	203	65.51		
8	218	65.51		
13	208	52.40		
14	218	52.40		
15	231	58.44		
16	251	62.15		
22	231	55.41		
21	2674	49.92		
18	240	58.75		
19	236	59.32		

