Math 214 – Foundations of Mathematics Homework 3/20 Sam Harrington

(Due Thursday, April 3)

Proposition 7.3: For all $n \in \mathbb{N}$, $\mathbf{v}(n) = k$ if and only if $10^{k-1} \le n < 10^k$.

Proof. Let $n \in N$

We begin by assuming $\mathbf{v}(n) = k$, by def of $\mathbf{v}(n)$ k is the min of the set $\{t \in \mathbb{N} : n < 10^t\}$ Because k is in the set, $n < 10^k$, Also b/c k is the min, $k \le t$ for all t.

For the purpose of contradiction, assume $10^{k-1} > n$.

This implies k-1 is in the set above; however we stated k is the minimum of the set a contradiction leading to $10^{k-1} \le n < 10^k$

Now assume $10^{k-1} \le n < 10^k$.

Because $n < 10^k$, this implies k is in the set defined above.

For the purpose of contradiction, let $x = \mathbf{v}(n)$ in which $k \neq x$, that is $x \leq t$ for all t.

Leading to k > x. and $x \le k - 1$:

 $10^{k-1} \leqslant n < 10^x \leqslant 10^{k-1} : 10^{k-1} < 10^{k-1}$ a contradiction. $\mathbf{v}(n) = k$.

Proving $\mathbf{v}(n) = k$ if and only if $10^{k-1} \leqslant n < 10^k$

Proposition 7.12(vi). Let $n = \sum_{i=0}^{\mathbf{v}(n)-1} x_i 10^i$, where each x_i is a digit. Prove

$$n \equiv x_0 + x_1 + \dots + x_{\mathbf{v}(n)-1} \pmod{9}.$$

Proof. Let $n = \sum_{i=0}^{\mathbf{v}(n)-1} x_i 10^i$, where each x_i is a digit.

$$n = \sum_{i=0}^{\mathbf{v}(n)-1} x_i 10^i$$

$$n \equiv \sum_{i=0}^{\mathbf{v}(n)-1} x_i 10^i \pmod{9}$$

$$1 \equiv 10 \pmod{9}$$

$$1 \equiv 10^i \pmod{9}$$

$$n \equiv \sum_{i=0}^{\mathbf{v}(n)-1} x_i(1) \pmod{9}$$

$$n \equiv x_0 + x_1 + \dots + x_{\mathbf{v}(n)-1} \pmod{9}.$$