2D Sonar Simulator: Camille Wardlaw, Manuel Valencia, Demircan Tas

(a) Internal Team Meeting and PM Plan

Team Meeting: Monday September 22, 9–11am (all team members present)

Graded Project Milestones: PM1: required for all. PM2 or PM3: linear sparse system solvers. PM5: required since the problem involves time simulation. PM6: possible, for model order reduction of large grids. We will not have PM4 graded because our problem is fully linear.

(b) System Description

Figure 1: 2D Cartesian grid in (x, z) space.

The sonar simulator models wave propagation on a uniform rectangular grid in (x, z) space. Each grid point (i, j) represents a small control volume of fluid.

Formulation Type: Nodal formulation with nodes representing grid points (i, j) with $i \in [0, N_x - 1]$ and $j \in [0, N_z - 1]$.

Nodal Quantities: Acoustic pressure $p_{i,j}$ [Pa], and time derivative of pressure $w = \partial p_{i,j}/\partial t$ [Pa/s]

Nodal Equation: We use the scalar acoustic wave equation with linear damping:

$$\frac{\partial^2 p}{\partial t^2} + \alpha \frac{\partial p}{\partial t} = c^2 \nabla^2 p + s(x, z, t)$$

where p(x, z, t) is acoustic pressure [Pa], c is sound speed [m/s], α is a bulk absorption coefficient [1/s], and s is a source term.

First-Order Formulation: Introduce $w = \partial p/\partial t$. The PDE becomes a first-order system:

$$\frac{d}{dt} \begin{bmatrix} p \\ w \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & I \\ c^2 \nabla^2 & -\alpha I \end{bmatrix}}_{A} \begin{bmatrix} p \\ w \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ s \end{bmatrix}}_{Bu(t)}$$

This yields a linear time-invariant ODE system $\dot{\mathbf{x}} = A\mathbf{x} + Bu$ with state vector $\mathbf{x} = [p; w] \in \mathbb{R}^{2N}$. Here s(x, z, t) = b(x, z) u(t) is factored into a spatial vector b and temporal input u(t).

Spatial Discretization The Laplacian $\nabla^2 p$ is approximated by a 5-point finite-difference stencil:

$$(\nabla^2 p)_{i,j} \approx \frac{p_{i+1,j} - 2p_{i,j} + p_{i-1,j}}{\Delta x^2} + \frac{p_{i,j+1} - 2p_{i,j} + p_{i,j-1}}{\Delta z^2}$$

Boundary rows in the discrete Laplacian L are modified for:

- Top boundary: pressure-release (p = 0)
- Bottom: rigid wall $(\partial p/\partial z = 0)$

• Left/right: simple absorbing (one-sided stencil approximation)

State-Space Matrices With $N = N_x N_z$ grid nodes:

$$A = \begin{bmatrix} 0_{N \times N} & I_N \\ L & -\alpha I_N \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ b \end{bmatrix}$$

where $L \in \mathbb{R}^{N \times N}$ is the discrete Laplacian scaled by c^2 .

Note: The left/right boundary condition is a simple one-sided stencil to reduce reflections; it is not a full PML or impedance-matched boundary. The source vector b has a single nonzero entry at the sonar location $(i_{\text{src}}, j_{\text{src}})$:

$$b_{k_{\rm src}} = \frac{1}{\Delta x \Delta z}$$

Components and Component Quantities: Components represent the acoustic propagation paths between nodes. However, on the nodal formulation, there are no explicit branch variables. Neighbor-to-neighbor coupling is carried by the Laplacian operator ∇^2 , which plays the role of implicit components connecting adjacent nodes.

Parameters: $\mathbf{p} = \{c, \alpha, N_x, N_z, L_x, L_z, i_{\text{src}}, j_{\text{src}}, \text{hydrophones}\}$

Hydrophone array (implementation):

hydrophones =
$$\{z_{pos}, x_{indices}, n_{phones}\}$$

We denote the source index as (i_{src}, j_{src}) in the derivation; in code these correspond to 'p['sonar_ix']', 'p['sonar_iz']'.

Input: Gaussian-windowed pulse, source excitation.

$$u(t) = A_0 \sin(2\pi f_0 t) \exp\left[-\frac{(t - t_0)^2}{\sigma^2}\right]$$

Outputs: Received pressure at hydrophone locations $(i_{rx,h}, j_{rx,h}), h = 1, ..., H$:

$$\mathbf{y}(t) = \begin{bmatrix} p_{k_{\text{rx},1}}(t) \\ p_{k_{\text{rx},2}}(t) \\ \vdots \\ p_{k_{\text{rx},H}}(t) \end{bmatrix} \in \mathbb{R}^{H}$$

or equivalently, in compact state-space form: $\mathbf{y}(t) = C\mathbf{x}(t)$, where $C \in \mathbb{R}^{H \times 2N}$ is a selector matrix that picks the pressure components of the state vector at the chosen hydrophone indices.

Units and Normalization:

- p in Pascals [Pa], $w = \dot{p}$ in [Pa/s], c in [m/s], α in [1/s].
- L embeds the spatial scaling $c^2/\Delta x^2$ and $c^2/\Delta z^2$.
- The source enters $\dot{w} = c^2 L p \alpha w + b u(t)$, with $b_{k_{\rm src}} = 1/(\Delta x \Delta z)$. With this choice, u(t) must have units $[{\rm Pa} \cdot {\rm m}^2/{\rm s}^2]$ so that b u(t) has units $[{\rm Pa}/{\rm s}^2]$. In practice we use a normalized u(t) for demonstration; amplitudes are chosen for numerical clarity rather than physical calibration.

Algorithm 1 Function evalf(x,p,u)

- 1: **Input:** state $\mathbf{x} = [p; w]$, parameters \mathbf{p} , input u(t)
- 2: Output: right-hand side $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{p}, u)$
- 3: Partition \mathbf{x} into nodal fields:

$$p \in \mathbb{R}^N, \quad w \in \mathbb{R}^N$$

- 4: Initialize $f_p, f_w \in \mathbb{R}^N$
- 5: Enforce nodal equations:

$$f_p = w$$
 (definition of $w = \dot{p}$)
 $f_w = c^2 L p - \alpha w + b u(t)$

where L is the discrete Laplacian matrix and b the source vector

- 6: Apply boundary conditions by modifying rows of L and b as needed
- 7: Assemble output:

$$f(\mathbf{x}, \mathbf{p}, u) = \begin{bmatrix} f_p \\ f_w \end{bmatrix}$$

Algorithm 2 Function jacobian(x, p, u) — ODE form (BCs enforced outside f)

- 1: State: $\mathbf{x} = \begin{bmatrix} p \\ w \end{bmatrix} \in \mathbb{R}^{2N}$ Dynamics: $\dot{p} = w$, $\dot{w} = c^2 L p \alpha w + b \, u(t)$
- 2: **Return:** $J = \frac{\partial f}{\partial x} \in \mathbb{R}^{2N \times 2N}$
- 3: Precompute / have available: sparse $L \in \mathbb{R}^{N \times N}$, identity I_N
- 4: Assemble block Jacobian (time-invariant here):

$$J = \begin{bmatrix} \frac{\partial \dot{p}}{\partial p} & \frac{\partial \dot{p}}{\partial w} \\ \frac{\partial \dot{w}}{\partial p} & \frac{\partial \dot{w}}{\partial w} \end{bmatrix} = \begin{bmatrix} 0 & I_N \\ c^2 L & -\alpha I_N \end{bmatrix}.$$

- 5: Note: input u(t) does not appear in J (it is additive via bu(t)).
- 6: Return J