Blatt 2

Beweis:

 $, \Leftarrow$ ":(IH) After pass *i* of the outer loop, it holds

$$d[v_j] < \infty \quad \forall j \le i$$

Assumption: $s \leadsto_G v = (v_0 =: s, v_1, \dots, v_k =: v)$

(IB) i = 0: $d[v_i] = d[s] = 0 < \infty$

(IS) $i > 0, i - 1 \rightarrow i$: We know, after the i - 1th pass: $d[v_0] < \infty \quad \forall j \le i - 1$

In the *i*-th pass: (v_{i-1}, v_i) is relaxed

 \Rightarrow after relaxing $d[v_i] \leq d[v_{i-1}] + w(v_{i-1}, v_i) \leq \infty$

" \Rightarrow ": We know $d[v] < \infty$. Show: $s \leadsto_G v$

 $d[v] < \infty \Rightarrow v = s$ or $v \neq s$ and

There was a Relax-operation on an edge $(v_1, v) \in E$, which updated $d[v] \Rightarrow d[v_1] < \infty$

 \Rightarrow either $v_1 = s \Rightarrow (s = v_1, v)$ is a path from s to v in G or $v_1 \neq s$ and there was a Relax-operation on an edge $(v_2, v_1) \in E$, which updated $d[v_1] \Rightarrow d[v_2] < \infty$ \Rightarrow either $v_2 = s \Rightarrow \ldots$ or \ldots

After at most |V|-1 iterations of this argumentation we get that there exists a Relax-operation or an edge $(s=v_k,v_{k-1}) \in E$ which updated $d[v_{k-1}]=d[v_k]<\infty$ $\Rightarrow v_k=s \Rightarrow (s=v_k,v_{k-1},\ldots,v_1,v)$ is a path in G from s to v.