Quelques équations différentielles souvent rencontrées dans un premier cours de physique

Cyrille Praz

25 décembre 2014

Exercice

On note x la position, \dot{x} la vitesse et \ddot{x} l'accélération d'un point matériel au cours du temps. On définit aussi sa position initiale $x_0 \equiv x(t=0)$ et sa vitesse initiale $v_0 \equiv \dot{x}(t=0)$. Trouver les équations horaires à partir des équations du mouvement ci-dessous. Faire apparaître explicitement les conditions initiales x_0 et v_0 dans le résultat final. Les quantités $m, g, k, L, \alpha, \Omega$ et b sont supposées positives et indépendantes du temps. De plus, on impose que $\Omega^2 \neq k/m$.

- 1. $m\ddot{x} = 0$
- 2. $m\ddot{x} = -mg$
- 3. $m\ddot{x} = -kx$
- 4. $m\ddot{x} = -kx mg$
- 5. $m\ddot{x} = -k(x L) mq$
- 6. $m\ddot{x} = -k[x \alpha \sin(\Omega t)]$
- 7. $m\ddot{x} = -k[x \alpha \sin(\Omega t)] mg$
- 8. $m\ddot{x} = -b\dot{x}$
- 9. $m\ddot{x} = -b\dot{x} mq$
- 10. $m\ddot{x} = -kx b\dot{x}$

Références

- J.-P. Ansermet, Mécanique, PPUR, Lausanne, 2009.
- J. Rappaz, Calcul différentiel et intégral, (notes polycopiées), Lausanne, 2010.

Corrigé

$1 \quad m\ddot{x} = 0$

On divise par m, puis on intègre successivement :

$$m\ddot{x} = 0 \tag{1}$$

$$\ddot{x} = 0 \tag{2}$$

$$\dot{x} = A \tag{3}$$

$$x = At + B \tag{4}$$

Les constantes d'intégration A et B sont liées aux conditions initiales. En prenant t=0 dans les deux dernières équations ci-dessus, on déduit que

$$x(t) = v_0 t + x_0 \tag{5}$$

$\mathbf{2} \quad m\ddot{x} = -mg$

On divise par m, puis on intègre successivement :

$$m\ddot{x} = -mg \tag{6}$$

$$\ddot{x} = -g \tag{7}$$

$$\dot{x} = -gt + A \tag{8}$$

$$x = -\frac{1}{2}gt^2 + At + B (9)$$

Les constantes d'intégration A et B sont liées aux conditions initiales. En prenant t=0 dans les deux dernières équations ci-dessus, on déduit que

$$x(t) = -\frac{1}{2}gt^2 + v_0t + x_0 \tag{10}$$

$3 \quad m\ddot{x} = -kx$

On divise par m et on introduit la notation $\omega = \sqrt{\frac{k}{m}}$:

$$m\ddot{x} = -kx\tag{11}$$

$$\ddot{x} = -\frac{k}{m}x\tag{12}$$

$$\ddot{x} = -\omega^2 x \tag{13}$$

Les solutions de cette dernière équation sont de la forme ¹

$$x = A\cos(\omega t) + B\sin(\omega t) \tag{14}$$

Les constantes d'intégration A et B sont liées aux conditions initiales. En prenant t=0 dans cette dernière équation on trouve que $A=x_0$. Pour trouver B, il faut prendre t=0 dans l'expression de la vitesse, déduite de la solution (14):

$$\dot{x} = -A\omega\sin(\omega t) + B\omega\cos(\omega t) \tag{15}$$

On trouve $B\omega = v_0$, soit $B = \frac{v_0}{\omega}$. Finalement,

$$x(t) = x_0 \cos(\omega t) + \frac{v_0}{\omega} \sin(\omega t)$$
 (16)

^{1.} On peut montrer que l'expression $A\cos(\omega t) + B\sin(\omega t)$ peut également s'écrire $C\cos(\omega t + \phi)$ avec C et ϕ deux autres constantes à déterminer. L'avantage de choisir la première expression comme solution de l'équation (13) est que les constantes A et B sont très faciles à fixer à partir des conditions initiales. L'avantage de la forme $C\cos(\omega t + \phi)$ est que la constante C, une fois déterminée, donne immédiatement l'amplitude des oscillations.

$$4 \quad m\ddot{x} = -kx - mg$$

Cette équation est semblable à la dernière avec une constante en plus. Pour la résoudre, on va se ramener au cas précédent avec un changement de variable u = f(x) qui va absorber la constante et tel que $\ddot{u} = \ddot{x}$, afin que u ait les mêmes unités que x. Pour commencer, on divise par -k afin de mettre le x à nu :

$$m\ddot{x} = -kx - mg \tag{17}$$

$$-\frac{m}{k}\ddot{x} = \underbrace{x + \frac{mg}{k}}_{u} \tag{18}$$

On fait maintenant le changement de variable $u = x + \frac{mg}{k}$, qui est bien tel que $\ddot{u} = \ddot{x}$. Ainsi, l'équation devient

$$\ddot{u} = -\omega^2 u \tag{19}$$

avec $\omega = \sqrt{\frac{k}{m}}$. Les solutions de cette dernière équation sont de la forme

$$u = A\cos(\omega t) + B\sin(\omega t) \tag{20}$$

Autrement dit:

$$x = A\cos(\omega t) + B\sin(\omega t) - \frac{mg}{k}$$
(21)

Les constantes d'intégration A et B sont liées aux conditions initiales. En prenant t=0 dans cette dernière équation on trouve que $A-\frac{mg}{k}=x_0$, soit $A=x_0+\frac{mg}{k}$. Pour trouver B, il faut prendre t=0 dans l'expression de la vitesse, déduite de la solution (21):

$$\dot{x} = -A\omega\sin(\omega t) + B\omega\cos(\omega t) \tag{22}$$

On trouve $B\omega = v_0$, soit $B = \frac{v_0}{\omega}$. Finalement,

$$x(t) = \left(x_0 + \frac{mg}{k}\right)\cos(\omega t) + \frac{v_0}{\omega}\sin(\omega t) - \frac{mg}{k}$$
 (23)

$$5 \quad m\ddot{x} = -k(x-L) - mg$$

Cette équation ressemble beaucoup à la dernière, seule la constante change. La même méthode est donc applicable. Pour commencer, on groupe les termes kL et -mg et on divise par -k afin de mettre le x à nu :

$$m\ddot{x} = -k(x - L) - mg \tag{24}$$

$$m\ddot{x} = -kx + kL - mg \tag{25}$$

$$-\frac{m}{k}\ddot{x} = \underbrace{x - L + \frac{mg}{k}}_{u} \tag{26}$$

On fait maintenant le changement de variable $u=x-L+\frac{mg}{k},$ qui est bien tel que $\ddot{u}=\ddot{x}.$ Ainsi, l'équation devient

$$\ddot{u} = -\omega^2 u \tag{27}$$

avec $\omega = \sqrt{\frac{k}{m}}$. Les solutions de cette dernière équation sont de la forme

$$u = A\cos(\omega t) + B\sin(\omega t) \tag{28}$$

Autrement dit:

$$x = A\cos(\omega t) + B\sin(\omega t) + L - \frac{mg}{k}$$
(29)

Les constantes d'intégration A et B sont liées aux conditions initiales. En prenant t=0 dans cette dernière équation on trouve que $A+L-\frac{mg}{k}=x_0$, soit $A=x_0-L+\frac{mg}{k}$. Pour trouver B, il faut prendre t=0 dans l'expression de la vitesse, déduite de la solution (29):

$$\dot{x} = -A\omega\sin(\omega t) + B\omega\cos(\omega t) \tag{30}$$

On trouve $B\omega = v_0$, soit $B = \frac{v_0}{\omega}$. Finalement,

$$x(t) = \left(x_0 - L + \frac{mg}{k}\right)\cos(\omega t) + \frac{v_0}{\omega}\sin(\omega t) + L - \frac{mg}{k}$$
(31)

6
$$m\ddot{x} = -k[x - \alpha\sin(\Omega t)]$$

À cause du terme proportionnel à $\sin(\Omega t)$, cette équation est dite inhomogène ². On apprend de la théorie que la solution générale x(t) de cette équation est la somme de deux termes $s_1(t)$ et $s_2(t)$ définis comme suit :

- 1. $s_1(t)$ est la solution générale de l'équation homogène $m\ddot{x} = -kx$
- 2. $s_2(t)$ est une solution particulière de l'équation $m\ddot{x} = -k[x \alpha \sin(\Omega t)]$

On sait par les exercices précédents que la solution générale de l'équation homogène est de la forme

$$s_1(t) = A\cos(\omega t) + B\sin(\omega t) \tag{32}$$

avec $\omega = \sqrt{\frac{k}{m}}$. Pour le calcul d'une solution particulière de l'équation inhomogène, on pose $s_2(t) = C \sin(\Omega t)$ et on vérifie qu'ainsi posé, $s_2(t)$ vérifie effectivement l'équation différentielle. Pour déterminer C, on injecte cette dernière expression dans l'équation, on simplifie par $\sin(\Omega t)$ et on isole C (on rappelle que la donnée précise que $\Omega^2 \neq \omega^2$):

$$m\ddot{x} = -k[x - \alpha \sin(\Omega t)] \tag{33}$$

$$-mC\Omega^{2}\sin(\Omega t) = -kC\sin(\Omega t) + k\alpha\sin(\Omega t)$$
(34)

$$-mC\Omega^2 = -kC + k\alpha \tag{35}$$

$$C = \frac{k\alpha}{k - m\Omega^2} \tag{36}$$

$$C = \frac{\omega^2}{\omega^2 - \Omega^2} \cdot \alpha \tag{37}$$

En mettant les termes ensemble, on a donc

$$x = s_1 + s_2 = A\cos(\omega t) + B\sin(\omega t) + \frac{\omega^2}{\omega^2 - \Omega^2} \cdot \alpha\sin(\Omega t)$$
 (38)

Les constantes d'intégration A et B sont liées aux conditions initiales. En prenant t=0 dans cette dernière équation on trouve que $A=x_0$. Pour trouver B, il faut prendre t=0 dans l'expression de la vitesse, déduite de (38). On trouve que $B\omega+C\Omega=v_0$, soit $B=\frac{v_0-C\Omega}{\omega}$ et donc finalement :

$$x(t) = x_0 \cos(\omega t) + \left[\frac{v_0}{\omega} - \frac{\omega^2}{\omega^2 - \Omega^2} \cdot \frac{\Omega}{\omega} \cdot \alpha \right] \sin(\omega t) + \frac{\omega^2}{\omega^2 - \Omega^2} \cdot \alpha \sin(\Omega t)$$
 (39)

On voit qu'à la limite $\Omega \to \omega$, l'amplitude des oscillations diverge : on parle de résonnance. Dans un cas réel, les amplitudes d'oscillation restent finies, car il existe des termes de frottement et des limitations mécaniques des composants du système dont on a pas tenu compte ici.

^{2.} En réalité, les exercices 4 et 5 étaient aussi des cas d'équation inhomogène à cause des termes constants -mg et kL, mais un simple changement de variable permettait de se débarrasser de ces derniers. Ici, on est contraint d'appliquer la méthode générale de résolution d'équation inhomogène, car le terme supplémentaire proportionnel à $\sin(\Omega t)$ n'est pas constant.

7
$$m\ddot{x} = -k[x - \alpha \sin(\Omega t)] - mg$$

Cette équation est semblable à la dernière avec une constante en plus. Pour la résoudre, on va se ramener au cas précédent avec un changement de variable u = f(x) qui va absorber la constante et tel que $\ddot{u} = \ddot{x}$, afin que u ait les mêmes unités que x. Pour commencer, on divise par -k afin de mettre le x à nu et on commute les deux derniers termes de l'équation :

$$m\ddot{x} = -k[x - \alpha \sin(\Omega t)] - mg \tag{40}$$

$$-\frac{m}{k}\ddot{x} = \underbrace{x + \frac{mg}{k}}_{x} - \alpha \sin(\Omega t) \tag{41}$$

On fait maintenant le changement de variable $u = x + \frac{mg}{k}$, qui est bien tel que $\ddot{u} = \ddot{x}$. Ainsi, l'équation devient

$$-\frac{m}{k}\ddot{u} = u - \alpha \sin(\Omega t) \tag{42}$$

Cette équation a été résolue dans l'exercice précédent, sa solution est

$$u = A\cos(\omega t) + B\sin(\omega t) + \frac{\omega^2}{\omega^2 - \Omega^2} \cdot \alpha\sin(\Omega t)$$
 (43)

avec $\omega = \sqrt{\frac{k}{m}}$. Autrement dit :

$$x = A\cos(\omega t) + B\sin(\omega t) + \frac{\omega^2}{\omega^2 - \Omega^2} \cdot \alpha \sin(\Omega t) - \frac{mg}{k}$$
(44)

Les constantes d'intégration A et B sont liées aux conditions initiales. En prenant t=0 dans cette dernière équation on trouve que $A-\frac{mg}{k}=x_0$, soit $A=x_0+\frac{mg}{k}$. Pour trouver B, il faut prendre t=0 dans l'expression de la vitesse, déduite de (44). On trouve que $B\omega+C\Omega=v_0$, soit $B=\frac{v_0-C\Omega}{\omega}$ avec la constante C définie en (37) et donc finalement :

$$x(t) = \left(x_0 + \frac{mg}{k}\right)\cos(\omega t) + \left[\frac{v_0}{\omega} - \frac{\omega^2}{\omega^2 - \Omega^2} \cdot \frac{\Omega}{\omega} \cdot \alpha\right]\sin(\omega t) + \frac{\omega^2}{\omega^2 - \Omega^2} \cdot \alpha\sin(\Omega t) - \frac{mg}{k}$$

8 $m\ddot{x} = -b\dot{x}$

Pour commencer, on divise par m, on fait le changement de variable $v = \dot{x}$ et on introduit la notation $\tau = \frac{m}{h}$. Ce premier changement de variable n'est pas nécessaire, on pourrait en effet travailler avec \dot{x} et \ddot{x} à la place de v et \dot{v} , mais dans ce cas, la solution de l'équation (48) sauterait moins aux yeux :

$$m\ddot{x} = -b\dot{x} \tag{45}$$

$$\ddot{x} = -\frac{b}{m}\dot{x} \tag{46}$$

$$\dot{v} = -\frac{b}{m}v\tag{47}$$

$$\dot{v} = -\frac{b}{m}v \tag{47}$$

$$\dot{v} = -\frac{1}{\tau}v \tag{48}$$

Les solutions de cette dernière équation sont de la forme

$$v = A e^{-\frac{t}{\tau}} \tag{49}$$

Par intégration, on obtient ensuite

$$x = -A\tau e^{-\frac{t}{\tau}} + B \tag{50}$$

Les constantes d'intégration A et B sont liées aux conditions initiales. En prenant t=0 dans les deux dernières équations on trouve que $A=v_0$ et $-A\tau+B=x_0$, soit $B = x_0 + v_0 \tau$. On trouve ainsi

$$x = -v_0 \tau e^{-\frac{t}{\tau}} + x_0 + v_0 \tau \tag{51}$$

Ce qui peut se récrire en mettant le facteur $v_0\tau$ en évidence

$$x(t) = v_0 \tau \left(1 - e^{-\frac{t}{\tau}}\right) + x_0$$
 (52)

$9 \quad m\ddot{x} = -b\dot{x} - mg$

Cette équation est semblable à la dernière avec une constante en plus. Pour la résoudre, on va se ramener au cas précédent. Comme avant, on fait le changement de variable non nécessaire mais bien pratique $v = \dot{x}$:

$$m\ddot{x} = -b\dot{x} - mg \tag{53}$$

$$m\dot{v} = -bv - mq \tag{54}$$

Il faut maintenant faire un deuxième changement de variable u = f(v) qui va absorber la constante et tel que $\dot{u} = \dot{v}$, afin que u ait les mêmes unités que v. On commence par diviser la dernière équation par -b pour mettre le v à nu :

$$-\frac{m}{b}\dot{v} = \underbrace{v + \frac{mg}{b}}_{y} \tag{55}$$

On fait maintenant le changement de variable $u = v + \frac{mg}{b}$, qui est bien tel que $\dot{u} = \dot{v}$. Ainsi, l'équation devient

$$\dot{u} = -\frac{1}{\tau}u\tag{56}$$

où on a noté $\tau = \frac{m}{b}$. Les solutions de cette dernière équation sont de la forme

$$u = A e^{-\frac{t}{\tau}} \tag{57}$$

En revenant à v, on obtient

$$v = A e^{-\frac{t}{\tau}} - g\tau \tag{58}$$

Et après intégration

$$x = -A\tau e^{-\frac{t}{\tau}} - g\tau t + B \tag{59}$$

Les constantes d'intégration A et B sont liées aux conditions initiales. En prenant t=0 dans les deux dernières équations on trouve que $A-g\tau=v_0$, soit $A=v_0+g\tau$ et $-A\tau+B=x_0$, soit $B=x_0+(v_0+g\tau)\tau$. On trouve ainsi, après mise en évidence du facteur $(v_0+g\tau)\tau$,

$$x(t) = \tau \left(v_0 + g\tau\right) \left(1 - e^{-\frac{t}{\tau}}\right) - g\tau t + x_0$$
 (60)

$10 \quad m\ddot{x} = -kx - b\dot{x}$

Pour commencer, on divise par m, on introduit les notations $\lambda = \frac{b}{2m}$ et $\omega = \sqrt{\frac{k}{m}}$ et on passe tous les termes du côté gauche de l'égalité. On arrive donc à

$$\ddot{x} + 2\lambda \dot{x} + \omega^2 x = 0 \tag{61}$$

Trois cas sont maintenant à distinguer :

10.1 $\lambda^2 < \omega^2$

Dans ce cas, on parle d'amortissement faible et les solutions de (61) sont de la forme

$$x = e^{-\lambda t} \left[A \cos \left(\sqrt{\omega^2 - \lambda^2} \cdot t \right) + B \sin \left(\sqrt{\omega^2 - \lambda^2} \cdot t \right) \right]$$
 (62)

Les constantes d'intégration A et B sont liées aux conditions initiales. En prenant t=0 dans cette dernière équation et dans l'expression de la vitesse déduite de (62), on obtient

$$x(t) = e^{-\lambda t} \left[x_0 \cos\left(\sqrt{\omega^2 - \lambda^2} \cdot t\right) + \frac{v_0 + \lambda x_0}{\sqrt{\omega^2 - \lambda^2}} \cdot \sin\left(\sqrt{\omega^2 - \lambda^2} \cdot t\right) \right]$$
 (63)

10.2 $\lambda^2 = \omega^2$

Dans ce cas, on parle d'amortissement critique et les solutions de (61) sont de la forme

$$x = e^{-\lambda t} (A + Bt) \tag{64}$$

Les constantes d'intégration A et B sont liées aux conditions initiales. En prenant t=0 dans cette dernière équation et dans l'expression de la vitesse déduite de (64), on obtient

$$x(t) = e^{-\lambda t} \left[x_0 + (v_0 + \lambda x_0) t \right]$$
(65)

10.3 $\lambda^2 > \omega^2$

Dans ce cas, on parle d'amortissement fort et les solutions de (61) sont de la forme

$$x = e^{-\lambda t} \left(A e^{\sqrt{\lambda^2 - \omega^2} \cdot t} + B e^{-\sqrt{\lambda^2 - \omega^2} \cdot t} \right)$$
 (66)

Les constantes d'intégration A et B sont liées aux conditions initiales. En prenant t=0 dans cette dernière équation et dans l'expression de la vitesse déduite de (66), on obtient

$$x(t) = e^{-\lambda t} \left[\frac{\left(\sqrt{\lambda^2 - \omega^2} + \lambda\right) x_0 + v_0}{2\sqrt{\lambda^2 - \omega^2}} \cdot e^{\sqrt{\lambda^2 - \omega^2} \cdot t} + \frac{\left(\sqrt{\lambda^2 - \omega^2} - \lambda\right) x_0 - v_0}{2\sqrt{\lambda^2 - \omega^2}} \cdot e^{-\sqrt{\lambda^2 - \omega^2} \cdot t} \right]$$