Data Exploration and Solution Planning

Project Title: Identifying Data Integration Quality for Multi – Source

Analytics Team Members:

1. Name: GeethaPriya KA

CAN_ID: 33738378

Institution Name: Vemana Institute of Technology

Overview of Data Integration Quality Assessment

Phase 1 documents the progress made in understanding data integration quality issues, identifying inconsistencies, and planning for the model design. This phase focuses entirely on **exploratory data analysis (EDA)** and leveraging **visualizations** to assess data quality from multiple sources before applying any integration models.

Objectives:

- Develop visualizations to assess the consistency, completeness, and accuracy of integrated data.
- Identify integration anomalies such as duplicate records, schema mismatches, and missing data patterns.
- Establish quality metrics and benchmarks for evaluating data integration effectiveness.

2. Data Cleaning and Preparation

2.1 Handling Missing Values

Using a multi-source dataset, missing values were identified and addressed as follows:

• **Numerical Features:** Imputed using the median to maintain statistical integrity while reducing the effect of outliers.

• Categorical Features: Assigned a placeholder value "Unknown" to retain missing categorical entries for further analysis.

Code Example:

```
# Handling missing values
import pandas as pd

# Load the dataset

data = pd.read_csv("multi_source_data.csv")

# Impute numerical columns

numerical_cols = data.select_dtypes(include=['float64', 'int64']).columns

data[numerical_cols] = data[numerical_cols].fillna(data[numerical_cols].median())

# Impute categorical columns

categorical_cols = data.select_dtypes(include=['object']).columns

data[categorical_cols] = data[categorical_cols].fillna('Unknown')
```

2.2 Managing Outliers

Outliers in integrated datasets can result from inconsistent data sources, affecting analysis quality:

- **Detection:** Visualized using boxplots and identified through **Z-score analysis** to highlight extreme values.
- Treatment:
 - **Winsorization:** Capped extreme values within the 1st and 99th percentiles to reduce impact.
 - **Exclusion:** Removed entries with clear evidence of integration issues (e.g., negative values in fields that should be positive).

Code Example:

```
# Managing outliers
import numpy as np
# Capping extreme values
data['Value'] = np.clip(data['Value'], data['Value'].quantile(0.01), data['Value'].quantile(0.99))
# Removing corrupted rows
data = data[data['Value'] > 0]
```

2.3 Resolving Duplicates and Inconsistencies

- Duplicate records from multiple sources were identified and removed to ensure unique entries.
- Schema inconsistencies such as different column formats across sources were standardized.
- **Logical inconsistencies**, such as mismatched timestamps or conflicting values across sources, were resolved.

Code Example:

```
# Removing duplicates
data = data.drop_duplicates()
# Standardizing column formats
data.columns = [col.strip().lower().replace(" ", "_") for col in data.columns]
```

3. Data Visualization

3.1 Tools for Visualization

To assess data integration quality, the following Python libraries were utilized:

- Matplotlib: For foundational static plots to analyze data distribution and completeness.
- **Seaborn:** For correlation heatmaps and feature relationships across multiple data sources.
- **Plotly:** For interactive exploration of integration inconsistencies and anomalies.

3.2 Key Visualizations and Insights

Data Completeness Heatmap

 Visualized missing data patterns across multiple sources to identify inconsistencies in integration.

Schema Consistency Check

• Boxplots and histograms were used to compare numerical distributions across different data sources, revealing mismatches in format or scale.

Correlation Heatmap

• Showed relationships between attributes from different sources, highlighting inconsistencies in expected correlations.

Duplicate and Anomaly Detection

• Scatterplots were used to detect duplicate records and inconsistencies across sources, such as mismatched timestamps or redundant entries.

Example Code for Visualizations:

```
import matplotlib.pyplot as plt
import seaborn as sns
# Correlation heatmap for multi-source data consistency
plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(), annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap of Integrated Data")
plt.show()
# Boxplot for comparing numerical distributions across sources
plt.figure(figsize=(10, 6))
sns.boxplot(data=data, orient='h')
plt.title("Distribution of Numerical Features Across Sources")
plt.show()
```

4. Model Research and Selection Rationale

4.1 Research into Techniques

Based on the characteristics of multi-source integrated data, the following techniques were evaluated for assessing data integration quality:

1. Anomaly Detection with Isolation Forest:

- Chosen for its ability to identify inconsistencies and integration anomalies in high-dimensional datasets.
- o Effective in detecting duplicate, missing, or misaligned records.

2. Autoencoder Neural Networks:

- o Tested for learning latent representations of properly integrated data.
- Struggled with varying quality across multiple sources, requiring extensive tuning.

3. Rule-Based Data Validation (Constraint Checking):

- o Applied schema and consistency rules to detect integration errors.
- o Useful for predefined quality metrics but lacked adaptability to unseen errors.

Justification for Isolation Forest:

- Robustness: Effectively identified inconsistencies, missing links, and duplicate records.
- Scalability: Performed efficiently on large multi-source datasets with varying structures.
- Interpretability: Provided anomaly scores to rank potential integration quality issues.

5. Data Transformation and Feature Engineering

5.1 Feature Scaling

- **Standardization:** Applied to ensure numerical features from different sources have a common scale.
- Min-Max Scaling: Used to normalize attributes with varying ranges between 0 and 1.

Code Example:

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler

# Standardization

scaler = StandardScaler()

data['Value_Standardized'] = scaler.fit_transform(data[['Value']])

# Min-Max Scaling

data['Feature_Scaled'] = MinMaxScaler().fit_transform(data[['Feature']])
```

5.2 Encoding Categorical Variables

• One-Hot Encoding: Transformed categorical attributes from multiple sources into interpretable binary features.

Code Example:

```
#One-Hot Encoding
import pandas as pd
encoded_data = pd.get_dummies(data, columns=['SourceSystem', 'CategoryFeature'])
```

5.3 Dimensionality Reduction

• PCA (Principal Component Analysis): Applied to reduce redundancy while retaining key information in integrated data.

Code Example:

```
from sklearn.decomposition import PCA
```

Applying PCA to reduce dimensions while preserving 95% variance

 $pca = PCA(n_components=0.95)$

data_pca = pca.fit_transform(data.drop(columns=['Target']))

6. Feasibility Assessment

6.1 EDA Results

- **Hypotheses:** Formed based on observed integration inconsistencies, such as missing values, schema mismatches, and duplicate records.
- **Algorithm Testing:** Conducted mock anomaly scoring using Isolation Forest to simulate integration quality detection.
- **Business Alignment:** Insights aligned with common data integration challenges in multi-source analytics, such as inconsistency in timestamp formats and variations in categorical values.

6.2 Metrics for Future Evaluation

- Data Consistency Score: Measures schema conformity and alignment across sources.
- Completeness Ratio: Quantifies the percentage of missing or imputed values.
- **Precision and Recall (for Anomaly Detection):** Ensures data integration issues are flagged accurately.

7. Conclusion

Phase 1 established a comprehensive foundation for assessing data integration quality by analyzing inconsistencies through EDA and visualization. Research into modeling techniques highlighted Isolation Forest as the optimal choice for anomaly detection in multi-source data.

Lessons Learned

- **EDA Importance:** Early-stage visualizations revealed key integration issues such as missing values and format mismatches.
- Iterative Cleaning: Improved data quality, ensuring reliability in downstream analytics.
- **Model Research:** Comparative evaluations clarified the effectiveness of different anomaly detection approaches for integration assessment.