CLOUD COMPUTING: AZURE

Hochschule Koblenz - BRICKMAKERS GmbH

ÜBERSICHT

- 1. Einführung
- 2. Azure Workshop
- 3. Azure Services Ausblick

CLOUD COMPUTING: AZURE Kapitel 1: Einführung

KAPITEL 1: EINFÜHRUNG

- 1. Über mich
- 2. BRICKMAKERS
- 3. Was ist Azure?
- 4. Übung 1

KAPITEL 1: EINFÜHRUNG 1.1 ÜBER MICH

- Jonas Österle
- B. Eng. Elektrotechnik, HS Koblenz
- BRICKMAKER seit 09/16
- Mitglied im Team Mobile
- Tätigkeiten:
 - Full-Stack Developer
 - Azure Verwaltung
 - Weiterbildung
 - Mentoring
 - Hochschule

KAPITEL 1: EINFÜHRUNG 1.2 BRICKMAKERS

- Entwicklungsagentur
 - Koblenz
 - Köln
- ca. 70 Mitarbeiter
- etwa 15 Werkstudenten von Uni & Hochschule
- Services:
 - Web Apps
 - Mobile Apps
 - UI UX Design
 - Online Marketing
 - Cloud Services
 - IoT & Digitalisierung

Cornelsen

Allianz (II)

Telefonica

■ STRATO

KAPITEL 1: EINFÜHRUNG 1.1 BRICKMAKERS

Kommt gerne auf einen Kaffee vorbei

oder besucht uns bei einem Meetup!

KAPITEL 1: EINFÜHRUNG 1.3 WAS IST AZURE?

- Cloud-Computing Plattform von Microsoft
 - seit 2010 verfügbar
 - hoch skalierbar
 - Hybrid Cloud
- Über 70+ Angebote
 - IaaS, PaaS, SaaS und weitere Services
- 54 globale Server Standorte
- $90\overline{\%}$ der Fortune-500 Unternehmen nutzen Azure $\overline{)}$

• [1]: https://azure.microsoft.com/de-de/overview/what-is-azure/

KAPITEL 1: EINFÜHRUNG 1.3 WAS IST AZURE?

Pizza as a Service – an analogy

KAPITEL 1: EINFÜHRUNG 1.4 ÜBUNG 1

Aufgabe:

- Nenne alle **dir** bekannten Frameworks und deren Programmiersprache (max. 5)
- Nenne alle **dir** bekannten Azure Dienste (max. 5)
- Wenn du keine kennst, so überlege welche Dienste Azure deiner Meinung nach mindestens besitzen sollte?

Die Antwort : Keine ist auch in Ordnung!

CLOUD COMPUTING: AZUREKapitel 2: Azure Workshop

KAPITEL 2: AZURE WORKSHOP

- 1. Überblick
- 2. Web App
- 3. App Service Plan
- 4. Ressource Group
- 5. Übung 2
- 6. Datenbanken: SQL
- 7. Datenbanken: Cosmos DB
- 8. Blob Storage
- 9. Deployment
- 10. Übung 3

KAPITEL 2: AZURE WORKSHOP 2.1 ÜBERBLICK

2.1 Überblick

- Theoretisches Wissen anwenden
- Erste praktische Erfahrungen und Eindruck in Azure
- Einrichten von verschiedenen Azure Services
 - 1. API
 - 2. Datenbank
 - 3. Blob Storage
 - 4. Search
 - 5. uvm.

ZIEL: Einen Überblick bekommen, welche Ideen man mit welchen Azure Services umsetzen kann.

2.1 Überblick

- Tools vorinstallieren:
 - Visual Studio: Code
 - .NET Core SDK

Sonstiges:

- Workshop klonen:
- https://github.com/microsoft/app-innovation-workshop
- Alle Unterlagen zum Workshop findet man auf <u>GitHub</u>
 - o Präsentation & Workshop https://github.com/jnes92/talks-cloud-computing-azure
 - Microsoft Workshop https://github.com/Microsoft/app-innovation-workshop

2.2 Web App

- Plattform für alle typischen Webanwendungen
 - Statische Webseite mit HTML, CSS
 - Webanwendungen (Frontend)
 - Backend Server (API)
- Betriebssystem Windows / Linux
- benötigt
 - App Service Plan
 - Ressource Group
- Name wird auch für URL verwendet
 - Benutzerdefinierte URLs möglich
- Bezahlung über Abonnement / Subscription

2.3 App Service Plan

- PaaS: Plattform as a Service
- bestimmt die Hardware, die für App Services zur Verfügung steht
- Standort ist wählbar
 - Westeuropa, Nordamerika, etc.
 - gute Wahl verringert Latenzzeiten
- ist jederzeit skalierbar (horizontal, vertikal)
- Bezahlung erfolgt per App Service Plan (ASP)
 - viele verschiedene Preisoptionen
 - Rechnung pro Stunde
 - Option Free 1 (F1) ist kostenlos
 - Option Standard 1 (S1) ab etwa 30 € / Monat

2.3 App Service Plan

- Plan kann mehrere App Services beinhalten
 - o die Ressourcen werden dann geteilt
 - o auf Performance-Diebe achten
- Anspruchsvolle Apps sollten so konfiguriert sein
 - auto-scale based on CPU and memory
- Zwei Optionen zur Skalierung von ASP:
 - Per-Plan: kontrolliert auf wievielen Servern alle Apps gleichzeitig laufen
 - Per-App: kontrolliert maximale für die App zugewiesene Server

2.4 Ressource Group

- Jeder Service gehört zu einer Ressource group
 - dient als *logischer Ordner*
 - o trennt Projekte oder Abteilungen
- Erlaubt Gruppenfunktionen (bspw. löschen)
- Kostenüberblick pro Gruppe

2. AZURE WORKSHOP Übung 2

Ausgangslage:

- leeres Azure
- Quellcode

Welche Schritte müssen erledigt werden, damit wir unsere API in Azure hosten könnnen?

Tipp:

Es sind insgesamt 2 große Aufgaben, die jeweils 3 Unteraufgaben besitzen.

2. AZURE WORKSHOP Übung 2

- 1. Anlegen der Azure Dienste
 - Ressourcengruppe
 - App Service Plan
 - Web App
- 2. App Deployment
 - Quellcode kompilieren
 - Artefakt hochladen
 - Verifizieren

KAPITEL 2: AZURE WORKSHOP

Hands-On

2.5 Datenbanken: SQL

- besteht aus SQL Server + SQL Datenbank
- basiert auf Microsoft SQL Server Datenbank Engine
- zuverlässig und sicher
- keine garantierte Antwortzeit
 - o abhängig von gewähltem Tarif
 - für Standard S1 ≈ 15ms (r/w)
- Standardlösung

2.6 Datenbanken: Cosmos DB

- beste Option für NoSQL
- global verteilt
- Mehrere APIs verfügbar (ua. SQL, MongoDB)
- flexibel nutzbar, einfach skalierbar in andere Regionen
- Geschwindigkeit & Zuverlässigkeit
 - o 99.99%
 - o read < 10ms
 - write < 15ms

2.7 Blob Storage

- Objektspeicherlösung von Microsoft
- optimiert für das Speichern großer Mengen von unstrukturierten Daten
 - Bilder oder Dokumente
 - Dateien für verteilten Zugriff
 - Audio- und Video-Streaming
 - o Speichern von Daten für Sicherung / Wiederherstellung
- Zugriff über REST-API, CLI, Bibliotheken
- CLI: Command Line Interface

KAPITEL 2: AZURE WORKSHOP

Hands-On

2.8 Deployment

- Optionen des Deployments
 - Manueller Build
 - Build mit Tools vereinfacht Upload
 - Continuous Integration automatisiert Build-Schritte
 - Continuous Deployment automatisiert Upload
- CI & CD erlauben eine vollautomatisierten Ablauf
- Manuellen Upload benötigt Credentials
- Tools: Einmaliger Login mit Azure Account üblich
- CI / CD : Konfiguration notwendig

2.8 Deployment

- Häufig genutzte Umgebungen
 - Lokale Umgebung: zum Entwickeln
 - **Development**: CI & CD: *develop-Branch*
 - **Staging** CI & CD: *master-Branch*
 - o **Production**: nach Verifizieren von Stage

2.8 Deployment

- Probleme beim Deployment:
 - Server kurzzeitig nicht verfügbar
 - Neuer Code könnte neue Bugs verursachen
 - Tests beim Buildvorgang helfen
 - o manche Apps benötigen Warmup
- Vorgehen
 - App Services verfügen über Slots
 - Deploy Slot B -> Test B -> Swap A & B
 - Falls notwendig: Warmup auf Slot B vor Swap

2. AZURE WORKSHOP Übung 3

Wann sollte man Continuous Integration & Deployment in ein Projekt integrieren ?

Mögliche Szenarien:

- kleines Studentenprojekt (1P) für einen Kurs, nur 1 Deployment notwendig
- agiles Projekt mit kleinem Team
- Microsoft Windows
- großes Projekt (> 4P), aber niemand kennt CI/CD
- großes Projekt mit erfahrenen Entwicklern mit DevOps Erfahrung

2. AZURE WORKSHOP Übung 3

Positiv

- bei vielen abhängigen Umgebungen (>1)
- je größer das Projekt, desto mehr rentiert sich die Konfiguration
- Buildzeit kann produktiv genutzt werden
- Qualitätskontrolle im CD Prozess

Negativ

- bei kleinen Projekten
- fehlendes Wissen von CI

Szenarien

- nicht notwendig, außer man möchte
- einen Versuch wert
- Ja & wird auch so gemacht
- eher nicht, evtl. nach Schulung **ALLER** Mitarbeiter
- Ja

CLOUD COMPUTING: AZURE

Kapitel 3: Azure Services - Ausblick

KAPITEL 3: AZURE SERVICES - AUSBLICK

- 1. Azure Search Engine
- 2. Azure Functions
- 3. Artificial Intelligence
- 4. Azure Bot Service
- 5. Internet of Things IoT Suite

3.1 Azure Search Engine

- KI basierter Cloudsuchdienst
 - Suchfeatures integriert aus Office, Bing
 - o mit Vorschlägen bei falscher Eingabe
 - Standortbezogene Suche
- stellt viele Funktionen zur Verfügung
- wird direkt mit *Datenbank* verknüpft
- kognitive Suche mit integrierten Skills
 - Zeichenerkennung in Scans
 - Entitätserkennung
 - Schlüsselbegriffserkennung

3.1 Azure Search Engine

Lease Information

3.2 Azure Functions

- serverlose Architektur (App Service ohne ASP)
- keine Ressourcen zugeteilt
- Ressourcen sind dynamisch verwaltet
- skaliert nach Anforderung
- Unterstützt C#, JavaScript, ...
- arbeitet mit Triggern (bspw. HTTPTrigger, BlobTrigger, etc.)
- besitzen Warmup Zeit

3. AZURE SERVICES - AUSBLICK 3.3 Artificial Intelligence

- Cognitive Services
 - Bildanalyse (Emotionen, Personenerkennung)
 - Language Understanding Intelligent Service (allg. NLP) für Bots
 - Empfehlungen und semantisches Suchen
 - o etc.
- speziell eingerichtete Virtuelle Machinen
 - o GPU bspw. Nvidia Tesla
 - GPU Cluster verfügbar
- Azure Machine Learning Studio
- NLP: Natural Language Processing

3.4 Azure Bot Service

- Erstellen und Verwalten von Chat Bots
- mit *Cognitive Services* können Bots den *Intent* der Nachricht auslesen
- Verfügbarkeit in vielen Kanälen
 - Email oder SMS
 - Facebook Messenger
 - Slack, MS Teams
 - Skype
 - Telegram

3.4 Azure Bot Service

Availability & Communication

Microsoft Teams shows you the availability of your colleagues for optimal productivity. Via the timeout web app you can easily send in a sick note from the comfort of your bed.

Push notifications help make interaction faster and more direct. No more annoying paperwork.

3. AZURE SERVICES - AUSBLICK 3.5 Internet of Things - IoT Suite

1. IoT Hub

- sichere Kommunikation: Backend <-> IoT Geräten
- Empfängt den Datenfluss der Sensordaten (reagiert nicht)
- skalierbar an Hand Ereignisse pro Sekunde
- Monitoring Tools

2. Stream Analytics

- Überwacht den IoT Hub und führt Aktionen aus
- Formatierung, Datentransfer, Pattern-Überwachung

3. Machine Learning Integration

- Patterns sind häufig komplex
- Integration mit ML Studio
- o trainiertes Model kann direkt genutzt werden

4. Datenspeicher und Visualisierung

- o übliche Lösungen wie SQL Datenbank
- PowerBI als Visualisierung

NAME 1	TYP ↑↓
WestEuropePlan	App Service-Plan
wifithermfkt	App Service
wifithermfktstorage	Speicherkonto
wifithermometer	Azure Cosmos DB account
wifiThermometer	App Service-Plan
₩ifiThermometerAnalyticsJob	Stream Analytics job
wifithermometerB2CTenant.onmicrosoft.com	B2C-Mandant
wifithermometerfrontend	App Service
□ 🔀 wifiThermometerJnk	IoT Hub

VIELEN DANK

für Ihre Aufmerksamkeit!