荣品 3399 平台 LCD 调试说明

1. 荣品 3399 开发板支持 LCD 屏的接口类型:

3399 开发板: 支持 MIPI, EDP

2. 调试 LCD 屏相关的说明:

路径: kernel/arch/arm64/boot/dts/rockchip/rp-rk3399.dts 在如上的 dts 文件中包含了许多 dtsi 文件,分别对应了许多类型屏的配置 在调试屏的过程中,可通过这些屏相关的 dtsi 文件来进行配置调试 不同的屏以及不同的开发平台相应的参数都会有差异

3. MIPI 调试参数说明

```
在 MIPI 屏相关的 dtsi 文件中会有如下配置:
&mipi dsi {
        status = "okay";
        panel {
                compatible ="simple-panel-dsi";
                reg = <0>;
                power-supply = <&vcc3v3 sys>;
                backlight = <&backlight>;
                dsi_to_lvds = <0>;
                //系统是否旋转
                system rotate = <1>;
                //lcd 的 dpi
                lcd density = <160>;
                //使能脚对应的 GPIO
                //GPIO ACTIVE HIGH: 高电平
                //GPIO ACTIVE LOW: 低电平
                enable = <&gpio1 13 GPIO ACTIVE HIGH>;
                //使能脚延时
                delay,prepare = <10>;
                //复位脚的 GPIO
                reset = <&gpio1 0 GPIO ACTIVE HIGH>;
```

```
//复位脚延时
reset-delay-ms = <200>;
//dsi 的类型模式(这个参数一般不用改动)
dsi,flag s= <( MIPI DSI MODE VIDEO | MIPI DSI MODE VIDEO BURST
                MIPI_DSI_MODE_VIDEO_SYNC_PULSE )>;
//dsi 的格式(参考: 5.屏对应的各个参数的类型配置)
dsi,format = <MIPI DSI FMT RGB888>;
//MIPI 屏有几条 LINE
dsi,lanes = <4>;
//不同的 MIPI 屏的命令都会有差异(按照屏厂提供的配置)
panel-init-sequence = [
        39 00 02 FE 01
        39 00 02 24 C0
        39 00 02 25 53
        39 00 02 26 00
        39 00 02 27 0A
        39 00 02 29 0A
       05 78 01 11
       05 78 01 29
];
//如下初始化不用改变
panel-exit-sequence = [
       05 00 01 28
        05 78 01 10
];
status = "okay";
display-timings {
       //如下配置的是 timing0 不是 timing1
       //所以调用的是 timing0 中的配置
       //而不是 timing1 中的配置
        native-mode = <&timing0>;
        timing0: timing0 {
               //时钟
               clock-frequency = <700000000;
               //水平有效参数
               hactive = < 800 >;
               //垂直有效参数
               vactive = <1280>;
```

```
//hbp
                                     hback-porch = <40>;
                                     //hfp
                                    hfront-porch = <40>;
                                    //vbp
                                    vback-porch = <22>;
                                    //vfp
                                    vfront-porch = <16>;
                                     //h-sync
                                    hsync-len = <4>;
                                     //h-sync
                                     vsync-len = <2>;
                                    //如下参数基本不用改变,除非屏显示异常
                                     hsync-active = <0>;
                                     vsync-active = <0>;
                                     de-active = <0>;
                                     pixelclk-active = <0>;
                           timing1: timing1 {
                                    clock-frequency = <148000000>;
                                     hactive = <1920>;
                                     vactive = <1080>;
                                     hback-porch = <100>;
                                    hfront-porch = <160>;
                                     vback-porch = <25>;
                                     vfront-porch = <10>;
                                     hsync-len = <20>;
                                     vsync-len = <10>;
                                    hsync-active = <0>;
                                     vsync-active = <0>;
                                     de-active = <0>;
                                     pixelclk-active = <1>;
                           };
                  };
         };
};
```

3.1 MIPI 命令的数据类型的使用

命令用 05 单个参数用 15 或 39 多个参数用 39 如上的类型使用是一般情况下的使用方法,但是用户需要按照手册提供的配置进行配置是最为合理的。

4. EDP 调试参数说明

```
在 EDP 屏相关的 dtsi 文件中会有如下配置
      edp panel: edp-panel {
              compatible = "simple-panel";
              //bus-format 的参数默认不用修改
              //参考: 5.2. EDP 屏对应的各个参数的类型配置
              bus-format = <MEDIA_BUS_FMT_RGB666_1X18>;
              backlight = <&backlight>;
              power = < &vcc3v3 sys>;
              //系统是否旋转
              system rotate = <0>;
              //lcd 的 dpi
              lcd density = <240>;
              //使能脚的高低电平控制
              enable = <&gpio1 13 GPIO ACTIVE HIGH>;
              //延时
              delay,prepare = <10>;
              //复位脚的高低电平控制
              reset = <&gpio1 0 GPIO_ACTIVE_HIGH>;
              //延时
              reset-delay-ms = <200>;
              ddc-i2c-bus = <&i2c4>;
              ports {
                      panel_in_edp: endpoint {
                             //此处参数基本不用改变
                              remote-endpoint = <&edp out panel>;
                      };
              };
           //如下代码参数不用修改
           &edp {
                   status = "okay";
                   ports {
                           edp_out: port@1 {
                                    reg = <1>;
                                    #address-cells = <1>;
                                    \#size-cells = <0>;
                                    edp out panel: endpoint@0 {
                                            reg = <0>;
                                            remote-endpoint = <&panel in edp>;
                                    };
                            };
                   };
           };
```

5. 屏对应的各个参数的类型配置

5.1. MIPI 屏对应的各个参数的类型配置

路径: kernel/include/dt-bindings/display/drm_mipi_dsi.h

dsi,format

#define MIPI_DSI_FMT_RGB888	0
#define MIPI_DSI_FMT_RGB666	1
#define MIPI_DSI_FMT_RGB666_PACKED	2
#define MIPI DSI FMT RGB565	3

5.2. EDP 屏对应的各个参数的类型配置

路径: kernel/include/dt-bindings/display/media-bus-format.h

bus-format

#define MEDIA_BUS_FMT_RGB444_1X12	0x1016
#define MEDIA BUS FMT RGB444 2X8 PADHI BE	0x1001
#define MEDIA BUS FMT RGB444 2X8 PADHI LE	0x1002
#define MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE	0x1003
#define MEDIA BUS FMT RGB555 2X8 PADHI LE	0x1004
#define MEDIA_BUS_FMT_RGB565_1X16	0x1017
#define MEDIA_BUS_FMT_BGR565_2X8_BE	0x1005
#define MEDIA_BUS_FMT_BGR565_2X8_LE	0x1006
#define MEDIA_BUS_FMT_RGB565_2X8_BE	0x1007
#define MEDIA_BUS_FMT_RGB565_2X8_LE	0x1008
#define MEDIA_BUS_FMT_RGB666_1X18	0x1009
#define MEDIA_BUS_FMT_RBG888_1X24	0x100e
#define MEDIA_BUS_FMT_RGB666_1X24_CPADHI	0x1015
#define MEDIA_BUS_FMT_RGB666_1X7X3_SPWG	0x1010
#define MEDIA BUS FMT BGR888 1X24	0x1013
#define MEDIA_BUS_FMT_GBR888_1X24	0x1014
#define MEDIA_BUS_FMT_RGB888_1X24	0x100a
#define MEDIA_BUS_FMT_RGB888_2X12_BE	0x100b
#define MEDIA_BUS_FMT_RGB888_2X12_LE	0x100c
#define MEDIA BUS FMT RGB888 1X7X4 SPWG	0x1011
#define MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA	0x1012
#define MEDIA_BUS_FMT_ARGB8888_1X32	0x100d
#define MEDIA_BUS_FMT_RGB888_1X32_PADHI	0x100f

6. 通过规格书进行屏相关的参数配置

通过如下规格书的部分截图举例说明

3.Pin Description

Pin NO.	Symbol	Description			
1	NC	OPEN			
2-3	VDDIN	Power SUPPLY 3.3V			
4	GND	Ground			
5 RESET		Global reset signal			
6	NC	OPEN			
7	GND	Ground			
8	MIPI TDNO	MIPI data input.			
9	MIPI TDPO	MIPI data input.			
10	GND	Ground			
11	MIPI TDN1	MIPI data input.			
12	MIPI TDP1	MIPI data input.			
13	GND	Ground			
14	MIPI TCN	MIPI clock input.			
15	MIPI TCP	MIPI clock input.			
16	GND	Ground			
17	MIPI TDN2	MIPI data input.			
18	MIPI TDP2	MIPI data input.			
19	GND	Ground			
20	MIPI TDN3	MIPI data input.			
21	MIPI TDP3	MIPI data input.			
22	GND	Ground			
23-24	NC	OPEN			
25	GND	Ground			
26	NC	OPEN			
27	CABC	PWM control signal for LED driver			
28-29	NC	OPEN			
30	GND	Ground			
31-32	LEDK	LED Cathode			
33-34	NC	OPEN			
35	AVEE	Analog supply negative voltage			
36-37	NC	OPEN			
38	AVDD	Analog supply positive voltage			
39-40	LEDA	LED Anode			

从如上图片汇总的接口定义看我们调试的 LCD 为 MIPI 类型

查看屏的描述

Item	Standard Value	Unit	
Display Size	10.1"	-	
Number of Pixels	800(H)x1280(V)	pixels	
Active Area	135.36 (H) *216.576(V)	mm	
Pixel pitch	0.1692(H) × 0.1692(V)	mm	
Outline Dimension	143(H) ×228.6(V) ×2.4(T)	mm	
Pixel Arrangement	RGB Vertical Stripe	-	
Display Mode	Normally Black	8	
Viewing Direction	All Viewing direction	-	
System interface	4 lane MIPI	7.0	
NTSC	50 (type)	%	

由上图可知:

mipi dsi_lane 是4

水平有效像素 是 800

垂直有效像素 是 1280

查看 LCD 手册的时序

a) Horizontal Data Transaction Timing

15 Power up sequence

从如上图可知: 屏的初始化信号时序配置 屏的上电时序配置

Item	Symbol	Min.	Тур.	Max.	Unit
Frame Rate		55	60	65	Hz
Frame Period	t1	803	823	1023	line
Vertical Display Time	t2	800	800	800	line
Vertical Blanking Time	t3	3	23	223	line
1 Line Scanning Time	t4	1334	1440	1961	clock
Horizontal Display Time	t5	1280	1280	1280	clock
Horizontal Blanking Time	t6	54	160	681	clock
Clock Rate	t7	64.3	71.1	82	MHz

如上图所示:

修改时序与时钟需要注意的是,我们一般调试会先选择 Typ 里的作为调试基础。

7. LCD 调试过程中遇到的问题

调试 LCD 之前,必须要保证 LCD 屏的 IO 脚与我司开发板中屏相关的 IO 脚正确对应。

1>不亮背光

检查当前的背光脚状态是否正确

2>只亮背光

检查屏的供电,复位脚等 IO 脚电位是否正确

检查 LCD 的时钟、上电时序、分辨率等参数是否正确

若是 MIPI 屏, 且如上都没有问题, 联系屏厂 FAE, 确认 MIPI 初始化数据是否有问题

3>花屏

检查屏的上电时序、时钟等参数是否正确

4>显示颜色异常

检查屏的时钟相关参数的配置是否正确

5>屏偏

检查屏的前沿、后沿等参数是否正确

若是 MIPI 屏,则必须要保证 MIPI 初始化命令是正确的

如上的配置需要参数屏对应的手册进行参数的配置

8. 注意事项

不同的平台,不同的硬件,参数会有一些差异,调试过程中需要按照当前的调试的现象进行参数的修改。