

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD AZCAPOTZALCO

Cálculo y diseño de una cámara de refrigeración para la conservación de insulina en Santa Bárbara Azcapotzalco Ciudad de México

PRESENTA:

ISRAEL MONJARAZ RAMÍREZ

ASESORES:

MC. CUAUHTÉMOC JIMÉNEZ CASTILLO

DR. ALEJANDRO ZACARÍAS SANTIAGO

PROFESORES

Dr. LUIS ENRIQUE SOTO MUCIÑO
ING. JORGE OSVALDO NOLASCO QUINTERO

Contenido

Planteamiento del problema	3
Objetivos	4
Justificación	5
Antecedentes históricos	6
Ciencia aplicada al proyecto	7
Marco teórico	8
Criterios del proyecto	9
Cálculos	10
Costos	18
Conclusiones	21
Recomendaciones	22
Referencias	23

Planteamiento del problema

- La diabetes mellitus es una de las principales causas de muerte en México, con más de 55,000 defunciones reportadas en 2023 (INEGI,2024).
- La insulina debe mantenerse entre 2 °C y 8 °C. La $\bar{T} = 24$ °C en CDMX.
- La UMF40 solo cuenta con un refrigerador multiuso de distintos medicamentos.
- Se propone diseñar una cámara de refrigeración para la UMF 40 del IMSS, en Azcapotzalco, CDMX, considerando cálculo térmico, selección de equipo y análisis de costos, asegurando la conservación óptima del fármaco para los pacientes atendidos

3038 30° LOLIS AND GOSS AND GO

Grupo

Objetivos

Objetivo General

□ Diseñar y calcular una cámara de refrigeración para la conservación de insulina ubicada en la Ciudad de México.

Objetivos específicos

- ☐ Calcular la capacidad y carga térmica del sistema.
- ☐ Selección de elementos térmicos bajo las especificaciones obtenidas de la cámara.
- □ Determinar la capacidad de almacenamiento en función del espacio disponible en la clínica 40 de Azcapotzalco.
- ☐Generar una cámara de dimensiones óptimas comparadas a las del mercado.

Justificación

Temperaturas registradas de hasta: 39°C.

Atnder el mayor número de pacientes de la Ciudad de México.

Cumplir con los requerimientos de calidad y sanidad.

Temperatura de almacenaje del camarón: 2 *a* 8 °*C*

Antecedentes históricos de la refrigeración

Ciencias aplicadas al proyecto

Termodinámica Refrigeración Transferencia de calor Electrónica Automatización de procesos

Marco Teórico

Ciclo de refrigeración mecánica:

- Evaporador
- Condensador
- Compresor
- Módulo de expansión

Criterios del proyecto

Subcutánea.

Condiciones climatológicas del lugar

- Temperatura de bulbo seco: 25 °C
- Temperatura de bulbo húmedo: 20 °C
- Altitud: 2,240 msnm
- Presión atmosférica: 1,023 Pa

Requerimientos

Tipo de producto

Insulina

Condiciones de almacenaje

> Temperatura de almacenaje: 3°C

Condiciones de entrada del producto

Temperatura de ingreso: - 2°C (5°F)

Almacenaje del producto

Capacidad de la cámara

- Capacidad neta: 700 frascos
- Almacenamiento total de insulina: 75 kg
- Distribución de 50 kg diarios por UMF en CDMX.

Corrección por efecto solar

Sur:
$$A_s = l \times h = 0.6 \, m \times 0.512 \, m = 0.3072 \, m^2 \times \frac{10.76 \, ft^2}{1 \, m^2} = 3.299 \, ft^2$$

Oriente:
$$A_o = l \times h = 0.6 \, m \times 0.6 \, m = 0.36 \, m^2 \times \frac{10.76 \, ft^2}{1 \, m^2} = 3.867 \, ft^2$$

Poniente:
$$A_p = l \times h = 0.6 \, m \times 0.6 \, m = 0.36 \, m^2 \times \frac{10.76 \, ft^2}{1 \, m^2} = 3.867 \, ft^2$$

Transmisión de muros y techos

$$U = \frac{1}{\frac{1}{hi} + \frac{e}{k} + \frac{1}{he}}$$

$$U = 0.088 \frac{BTU}{pie^2 \cdot hr \cdot {}^{\circ}F}$$

$$hi = 1.6 \frac{BTU}{pie^2 \cdot hr \cdot {}^{\circ}F}$$

$$he = 6 \frac{BTU \cdot Pulg}{pie^2 \cdot hr \cdot {}^{\circ}F}$$

Transferencia de calor

$$Q = (A)(U)(\Delta T + Correction)$$

$$Q_{Norte} = 10.6 \frac{BTU}{hr}$$

$$Q_{Sur} = 20.9 \frac{BTU}{hr}$$

$$Q_{oriente} = 23.1 \frac{BTU}{hr}$$

$$Q_{Poniente} = 23.14 \frac{BTU}{hr}$$

$$Q_{Techo} = 15.2 \frac{BTU}{hr}$$

$$Q_{Tmuros} = 108.1 \frac{BTU}{hr}$$

Espesor del aislante térmico

Calor del producto

 $k = 30.04 \frac{Btu \cdot in}{b \cdot ft^2 \circ F}$

$$Q_{Producto} = \dot{m}C_p (T_{entrada} - T_{almacenaje})$$
 $C_p = 0.35 \ \frac{BTU}{lb \ ^{\circ}F}$
 $Q_{Producto} = 192.5 \ \frac{BTU}{hr}$

Motores eléctricos

Fuente: Extraído del manual Fundamentos ASHRAE 1981

HP	BTU por (hp)/(hora)				
del motor	Motor y ventilador	Motor fuera y	Motor dentro y		
dei motor	dentro del cuarto	ventilador dentro	ventilador fuera		
1/8 a 1/2	4250	2.545	1,700		
/2 a 3	3,700	2,545	1,150		
3 a 20	2,950	2,545	400		

 $Q_{Motores} = (\#Motores)(HP)(Calor\ disipado\ por\ los\ motores)$

$$Q_{Motores} = 531.25 \; \frac{BTU}{hr}$$

Alumbrado

$$Q = (Largo_{Ext})(Ancho_{Ext})(F.C)(Dato\ de\ Norma)(FC_{Norma})$$

$$Q = 13.208 \frac{BTU}{hr}$$

Infiltración

Volumen de la cámara

$$V = 166 ft^3$$

Fuente: Extraído del manual de Fundamentos ASHRAE, (1981).

	Tachter Extracted dormandar do Fandamentos Herris I.E., (1001).								
Cambios de ai	re en 24 horas	Volumen ft^3	Cambios de ai	re er					
Arriba de 32°F	Abajo de 32°F	volumen ji	Arriba de 32°F	Aba					
44.0	33.5	6,000	6.5						
34,5	26.2	8.000	5.5						
29,5	22.5	10,000	4.9						
26.0	20.0	15.000	3.9						
23,0	18.0	20,000	3.5						
20.0	15.3	25,000	3.0						
17.5	13.5	30,000	2.7						
14.0	11.0	40,000	2.3						
12.0	9.3	50,000	2.0						
9.2	7.4	75,000	1.6						
8.2	6.3	100,000	1.4						
7.2	5.6								

Calor removido del aire infiltrado

$$T_{BS} = (39.6 \,^{\circ}\text{F})$$
 $T_{almacenaje} = 3 \,^{\circ}\text{C}$
 $HR = 50\%$

Fuente: Extraído del manual de Fundamentos ASHRAE 1981.								
Temperatura de		Te	empera	tura de	l aire e	xterior	°F	
la cámara de	8	5	9	0	9	5	1(00
Almacenamiento		Po	orciento	de Hu	ımedac	l Relati	va	
°F	60	60	70	80	50	60	50	60
25	0.39	0.43	0.69	0.91	0.93	1.20	2.54	1.51
20	0.62	0.56	0.89	1.12	1.14	1.41	2.68	1.71
15	0.65	0.69	1.08	1.31	1.33	1.60	2.80	1.91
10	0.77	0.82	1.26	149	1.51	1.78	2.93	2.09
5	0.89	0.94	1.43	1.66	1.68	1.94	3.05	2.25
0	1.01	1.05	1.59	1.81	1.83	2.10	3.16	2.41
-5	1.13	1.17	1.74	1.96	1.99	2.25	3.28	2.56
-10	1.24	1.29	1.88	2.10	2.13	2.39	3.40	2.70

Interpolando se obtiene=3.17

$$Q_{Infiltración} = (V) \left(\frac{Cambios}{24 \ hrs} \right) (Calor \ removido) \times f$$

$$Q_{Infiltración} = 117.27 \frac{BTU}{hr}$$

Carga térmica total

$$Q_{subtotal} = 962.358 \frac{BTU}{h} \left(\frac{24 \ hr}{22 \ hr} \right)$$

$$10 \% FS = 96.2358 Btu/h$$

$$Q_{total} = 2.8732 \ T.R.$$

Carga	BTU/hora
Muros	108.10
Producto	192.50
Infiltración	117.27
Iluminación	13.21
Motor	531.25
Subtotal	962.36
Total	1,058.60

Costos

Costos Directos

■ Mano de obra

Salario por instalación: \$ 10,250.00 MXN

Salario promedio mensual: \$8,300.00 MXN

Tiempo neto de instalación: 3 días

☐ Evaporador.

Fuente: Elaboración propia, basado de (Bohn, 2024).

Opción	Proveedor/Marca	Ventajas	Desventajas	Costo	Elección
IEM MABE	MABE	 Diseñado para equipos pequeños Adecuada al equipo Proveedor Mexicano 	- Al ser de gama baja su tiempo de vida es menor.	\$40.00 USD	√
Reach IN (TA)	BOHN	Equipo completoDiseño compactoVendido por EU	- El equipo viene armado y no es conveniente comprarlo porque no se usarán toda su capacidad.	\$1,750.00 USD	x
Reach IN (TL)	BOHN	Gabinete de aluminioDiseño compactoVendido por EU	- El equipo está diseñado para cámaras de al menos 2m de alto.	\$7,750.00 USD	x

Se concluye la selección de equipo con un evaporador lem de la Marca MABE.

□ Unidad condensadora

Costos

Carga térmica: 0.0882 T.R.= 1058.6 BTU/h

Temperatura de condensación del refrigerante: 35 °C (95

°F)

Fuente: Elaboración propia, basado de (Bohn de México, 2014).

Opción	Proveedor/Marca	Ventajas	Desventajas	Costo ¹⁰	Elección
IMCON012 1/8 HP	ICE SHADOW	 Cumple con la carga térmica necesaria. Facilidad de mantenimiento. Supervisor de consumo de combustible. Silencioso. 	- El deshielo eléctrico aumenta la carga térmica.	\$90 USD	✓
CH161L6B 1/4 HP	BOHN	Marca Líder en el mercad.Facilidad de mantenimiento.Carga térmica aproximada.	 No cumple con la carga térmica requerida. Costo elevado . Diseñado para equipos un poco más grandes 	\$9,095.00 USD	x
CH111L6 1/4HP	BOHN	Marca Líder en el mercad.Facilidad de mantenimiento.Carga térmica cerca a la necesitada.	 No cumple con la carga térmica requerida. Costo elevado Diseñado para equipos un poco más grandes 	\$7,750.00 USD	x

Entonces, se concluye con la selección de equipo del condensador modelo IMCON012 de 1/8 de la marca ICE SHADOW

Costos

\Box Espuma de poliuretano Volumen total a llenar: 5 ft^3

Precio del kit Expanding pour foam: \$250.00 MXN.

Precio total: \$76200 MXN

Resumen de costos directos

Cuadro 5.4: Tabla resumen de los costos directos del proyecto. (Elaboración propia)

Num Unidades	Unidad	Descripción	Proveedor	Precio Unitario (MXN)	Precio Total (MXN)
1	Condensador	Condensador de BAJA, marca ICE SHADOW 1/8 HP	Mercado Libre o ICE SHADOW	\$1,812.03	\$1,812.03
1	Evaporador	Evaporador de BAJA, marca: lem MABE	MABE	\$805.35	\$805.35
1	Motor eléctrico	Motor APFM-51E 120V, Marca: APPLI PARTS	APPLI PARTS	\$805.35	\$805.35
3	Poliuretano	Poliuretano expandido universal	HOME DEPOT	\$254.00	\$762.00
1	Instalación de equipo	Instalación de equipo de refrigeración	Contrato	\$10,250.00	\$10,250.00
				IVA 16 % Importe Final	\$2,309.56 \$12,744.29

Costos indirectos

Costos Indirectos

☐ Costos de ingeniería

Salario promedio mensual =\$8,300.00 MX

Horas semanales trabajadas = 423 h

Semanas que tienes un mes= 4

Salario promedio por hora = \$49.06 MX

Tiempo invertido en el proyecto					
Horas/día	Horas/semana	Horas/mes	Meses	Horas totales	Costo total
2	10	40	7	280	\$13,736.8 MXN.

Tiempo invertido en el proyecto						
Horas/día	Horas/semana	Horas/mes	Meses	Horas totales	Costo total	
2	10	40	7	280	\$13,736.8 MXN.	

☐ Costos de adquisición

Concepto	Cantidad	Precio por unidad	Costo total
Bolígrafos	3 unidades	\$ 7.00 MXN	\$21.00 MXN
Hojas	1 paquete	\$129.00MXN	\$129.00 MXN
Folders	5 unidades	\$5.00 MXN	\$25.00 MXN
Impresiones	150 hojas	\$1.00 MXN	\$150.00 MXN
Libro Buenas prácticas	•		
de refrigeración y aire acondicionado	1 unidad	\$250.00 MXN	\$250.00 MXN
Libro Refrigeración	1 unidad	\$700.00 MXN	\$700.00 MXN
Internet	7 meses	\$599.00 MXN	\$4193.00 MXN
Software(SolidWorks)	Licencia 1 año	\$84,602.00 MXN	\$84,602.00 MXN
Laptops	1 equipos	\$22,000.00 MXN	\$22,000.00 MXN
Pasajes	20 vueltas	\$20.00	\$400.00 MXN
•		TOTAL	\$112,470.00 MXN

Costos indirectos

☐ Costos para el desarrollo del proyecto

Horas/mes	Num. meses	Total de horas	Salario/hora	Total
2	7	14	\$49.06 MXN	\$ 686.84 MXN

☐ Protección económica del proyecto

)	Concepto	Cantidad (MXN)
	Sub-costo Protección económica (30 %) Costo total	\$139,637.84 \$41,891.35 \$181,529.19

☐ Costo total del proyecto

Concepto	Cantidad (MXN)
Costo total	\$181,529.19
Porcentaje de venta (34 %)	\$61,719.93
Costo de venta	\$243,249.12

☐ Costo de venta del proyecto

Concepto	Cantidad (MXN)
Costo total	\$181,529.19
Porcentaje de venta (34 %)	\$61,719.93
Costo de venta	\$243,249.12

Conclusiones

Este proyecto representa un avance significativo en la conservación de medicamentos críticos como la insulina en un entorno urbano como la Ciudad de México. A lo largo del desarrollo, se abordaron aspectos clave como la carga térmica, las condiciones específicas del entorno y los materiales de aislamiento, lo que permitió seleccionar equipos eficientes y adecuados, como el condensador y el motor eléctrico, garantizando un funcionamiento óptimo y sostenible. Además, se consideraron los costos directos e indirectos para asegurar la viabilidad financiera a largo plazo, cumpliendo con los estándares internacionales de conservación médica. En conclusión, la cámara de refrigeración diseñada no solo resuelve un desafío particular, sino que establece un precedente para proyectos similares, contribuyendo al fortalecimiento del sistema de salud al reducir pérdidas de medicamentos y mejorar la atención a los pacientes.

Recomendaciones

- No revolver los medicamentos aunque sean similares puesto que cada uno introduce un calor latente a abatir distinto.
- 2. No exceder la carga máxima de la cámara.
- 3. Mantenimiento regular: Realizar inspecciones periódicas y limpiar los componentes para asegurar su eficiencia, programando revisiones profesionales para evitar fallos mayores.
- Control de temperatura: Monitorear constantemente la temperatura interna y verificar el funcionamiento de las alarmas para asegurar que la cámara mantenga el rango deseado.
- 5. Manejo adecuado: Evitar sobrecargar la cámara y distribuir los elementos de manera uniforme para asegurar una refrigeración homogénea y eficiente.
- 6. Cuidados del sistema: Inspeccionar las conexiones eléctricas y los cables para garantizar que estén seguros y libres de desgaste o daños.
- 7. Sellos y puertas: Revisar las juntas de las puertas para detectar posibles fugas de aire y asegurarse de que las puertas se cierren correctamente para mantener la temperatura interna constante.

Referencias

- ASHRAE. (6 de Abril de 2021). *ASHRAE climatic design conditions*. Obtenido de ASHRAE climatic design conditions: http://ashrae-meteo.info/v2.0/
- Hernández Goríbar, E. (1995). Aire acondicionado y refrigeración. Ciudad de México:
 Limusa
- Juan C. De la Vega, M. A. (2017). Información Tecnológica. *Avances en Tecnología de Atmósferas Controladas y sus Aplicaciones en la Industria. Una Revisión*, 85.
- Morán, M. J., & Shapiro, H. N. (2011). Fundamental of engineering Thermodynamic.
 United States: WileyPLUS.
- Yunus A, C. (2011). Termodinamica. New York: The McGraw-Hill.

Gracias por su atención