CE 311K: Linear System of Equations

Krishna Kumar

University of Texas at Austin krishnak@utexas.edu

December 2, 2019

Linear System of Equations

Linear System of Equations

Solving Linear System of Equations

$$3x_1 + 2x_2 = 18$$
$$-x_1 + 2x_2 = 2$$

Solving Linear System of Equations

Singularity and III-conditioned

Solving Linear System of Equations

- Direct Methods
 - Gauss Elimination
 - @ Gauss-Jordan Elimination
 - U decomposition
- Iterative Methods
 - Jacobi iterative
 - @ Gauss-Seidel

Direct methods

Consider a system of 3 linear equations for simplicity:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$

Matrix form is:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Concise form: Ax = b

Systems that can be solved easily

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \quad \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix}$$

Solve by "back substitution' Upper triangle system (U)

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Start with the last equation 3: $x_3 = b_3/a_{33}$

Equation 2: $a_{22}x_2 + a_{23}x_3 = b_2$ so

$$x_2 = \frac{b_2 - a_{23}x_3}{a_{22}}$$

Equation 1: $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$ so

$$x_1 = \frac{b_1 - (a_{12}x_2 + a_{13}x_3)}{a_{11}}$$

General for 'n' systems: $x_n = b_n/a_{nn} \ x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij} x_j}{a_{ii}}$

Gauss Elimination

Consider a system of 3 linear equations:

$$\begin{bmatrix} 2 & 4 & 6 \\ 4 & 11 & 21 \\ 6 & 21 & 52 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 24 \\ 72 \\ 158 \end{bmatrix}$$

Divide row 2 by -2 and row 3 by -3

$$\begin{bmatrix} 2 & 4 & 6 \\ 0 & 3 & 9 \\ 0 & 9 & 34 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 24 \\ 24 \\ 86 \end{bmatrix}$$

Second reduction:

$$\begin{bmatrix} 2 & 4 & 6 \\ 0 & 3 & 9 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 24 \\ 24 \\ 14 \end{bmatrix}$$

```
Consider a system of 3 finant equations:  \begin{bmatrix} 2 & 4 & 6 \\ 4 & 11 & 21 \\ 2 & 1 & 62 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ 2 & 12 \end{bmatrix} \begin{bmatrix} 24 \\ n_3 \\ 21 & 22 \end{bmatrix}  Divide row 2 by -3 and row 3 by -3  \begin{bmatrix} 2 & 4 & 6 \\ 2 & 1 & 21 \\ 2 & 1 & 22 \end{bmatrix} \begin{bmatrix} 24 \\ n_1 \\ n_2 \end{bmatrix} \begin{bmatrix} 24 \\ n_3 \\ n_4 \end{bmatrix} \begin{bmatrix} 24 \\ n_4 \\ n_4 \end{bmatrix} \begin{bmatrix} 24 \\ n_3 \\ n_4 \end{bmatrix} \begin{bmatrix} 24 \\ n_4 \\
```

```
\begin{array}{l} a = np.array([[2,4,6],\ [4,11,21],\ [6,\ 21,\ 52]])\\ b = np.array([24,\ 72,\ 158])\\ x = np.linalg.solve(a,\ b) \end{array}
```

Gauss Elimination: Limitations

- lacktriangle Prone to round off errors, when we have many (>100) equations.
- ② If coefficient matrix is sparse (lots of zeros), elimination methods are very inefficient.

Gauss Seidel Iterative approach

For conciseness, we limit to 3×3 equations. If diagonal elements are all non-zero, then the equations can be solved as:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$x_1 = \frac{b_1 - a_{12}x_2 - a_{13}x_3}{a_{11}}$$

$$x_2 = \frac{b_2 - a_{21}x_1 - a_{23}x_3}{a_{22}}$$

$$x_3 = \frac{b_3 - a_{31}x_1 - a_{32}x_2}{a_{33}}$$

Gauss Seidel Iterative approach

Using Gauss-Seidel solve for [x]

$$4x_1 + x_2 + 2x_3 = 4$$
$$3x_1 + 5x_2 + x_3 = 7$$
$$x_1 + x_2 + 3x_3 = 3$$

Assuming an initial guess of $x_1, x_2, x_3 = 0$. End of first iteration.

$$x_1 = \frac{4 - x_2 - 2x_3}{4} = \frac{4 - 0 - 0}{4} = 1$$

$$x_2 = \frac{7 - 3x_1 - x_3}{5} = \frac{7 - 3 * 1 - 0}{5} = 0.8$$

$$x_3 = \frac{3 - x_1 - x_2}{3} = \frac{3 - 1 - 0.8}{3} = 0.4$$

Gauss Seidel Convergence criteria

Convergence can be checked using the relative error.

$$|\varepsilon_{\mathsf{a},i}| = \left| \frac{x_i^k - x_i^{k-1}}{x_i^k} * 100\% \right| < \varepsilon_{\mathsf{s}}$$

where k, and k-1 represents the current and previous iterations

Truss analysis

Truss analysis: Force balance

Node 1
$$\sum F_{y,1} = V_1 + F_{14} \sin \alpha = 0$$

$$\sum F_{x,1} = H_1 + F_{12} + F_{14} \sin \alpha = 0$$

$$\sum F_{y,2} = F_{24} \sin \beta + F_{25} \sin \gamma = 100$$

$$\sum F_{x,2} = -F_{12} + F_{23} - F_{24} \cos \beta + F_{25} \cos \gamma = 0$$

$$\sum F_{y,3} = V_3 + F_{35} \sin \delta = 0$$

$$\sum F_{x,3} = -F_{23} - F_{35} \cos \delta = 0$$

$$\sum F_{x,3} = -F_{14} \sin \alpha - F_{24} \sin \beta = 0$$

$$\sum F_{y,4} = -F_{14} \cos \alpha + F_{24} \cos \beta + F_{45} = 0$$

$$\sum F_{x,4} = -F_{14} \cos \alpha + F_{24} \cos \beta + F_{45} = 0$$

$$\sum F_{y,5} = -F_{25} \sin \gamma - F_{35} \sin \delta = 0$$

$$\sum F_{y,5} = -F_{25} \cos \gamma + F_{35} \cos \delta - F_{45} = 0$$

Truss analysis: Matrix formulation

1	$\begin{bmatrix} 0 \end{bmatrix}$		V_1	1	0	0	0	0	0	$sin \alpha$	0	0	0	[1
	0		H_{1}		0	0	0	0	0	cosα	1	0	1	0
	100		V_3		0	0	sin y	sin $oldsymbol{eta}$	0	0	0	0	0	0
	0		F_{12}		0	0	cos y	$\cos oldsymbol{eta}$	1	0	- 1	0	0	0
	0	_	$ F_{14} $		0	$sinoldsymbol{\delta}$	0	0	0	0	0	1	0	0
	0	[-	$ F_{23} $		0	- $\cos \delta$	0	0	- 1	0	0	0	0	0
	0		F_{24}		0	0	0	- sin β	0	- $sin \alpha$	0	0	0	0
	0		$oldsymbol{F}_{25}$	Ш	1	0	0	$\cos oldsymbol{eta}$	0	- $\cos \alpha$	0	0	0	0
	0		F_{35}		0	sin δ	- sin y	0	0	0	0	0	0	0
	0		$oxed{F_{45}}$		- 1	$\cos \delta$	cos y	0	0	0	0	0	0	0