

Bond Price Volatility

Financial Engineering and Computations

Dai, Tian-Shyr

此章內容

Financial Engineering & Computation 教課書的第四章 Bond Price Volatility

• C++財務程式設計的第三章(3-4,3-5)

Outline

- Price Volatility
- Duration
- Convexity
- Immunization

Price Volatility

- Price volatility measures the sensitivity of the percentage price change to changes in interest rates (interest rate risk).
- It is key to the risk management of interest-ratesensitive securities.
- Define price volatility by

$$-\frac{\partial P/P}{\partial y} \longrightarrow \text{It is also so-call modified duration!}$$

$$\frac{\partial P}{P}$$
(percent price change) $\approx -D \times \partial y$

Numerical Example: Percentage Change of Bond Price

- Consider a bond whose modified duration is 11.54 with a yield of 10%.
- If the yield increases instantaneously from 10% to 10.1 %, the approximate percentage price change will be

$$-11.54 \times 0.001 = -0.01154 = -1.154\%$$
.

General speaking, the duration we talk about is modified duration!

Maturity	Yield	Yesterday	Last Week	Last Month
3 Month	1.64	1.67	1.64	1.63
6 Month	1.86	1.87	1.88	1.87
2 Year	2.30	2.30	2.36	2.49
3 Year	2.15	2.14	2.17	2.35
5 Year	2.97	2.91	3.09	3.19
10 Year	3.67	3.70	3.81	3.93
30 Year	4.26	4.30	4.42	4.54

Behavior of Price Volatility

- Price volatility increases as the coupon rate decreases.
 - Bonds selling at a deep discount are more volatile than those selling near or above par.
 - Zero-coupon bonds are the most volatile.
- Price volatility increases as the required yield decreases.
 - So bonds traded with higher yields are less volatile.

Behavior of Price Volatility

- For bonds selling above par or at par, price volatility in creases as the term to maturity lengthens (see figure on next page).
 - Bonds with a longer maturity are more volatile.(But the *yields* of long-term bonds are less volatile than those of short-term bonds.)
- For bonds selling below par, price volatility first increa ses then decreases.
 - Longer maturity here cannot be equated with higher price volatility.

Figure 4.1 (**Premium bonds and par bonds**): Volatility with respect to terms to maturity

Figure 4.1 (discount bonds): Volatility with respect to terms to maturity.

Macaulay Duration

- The Macaulay duration (MD) is a weighted average of the times to an asset's cash flows.
- The weights are the cash flows' PVs divided by the asset's price. Formally,

$$MD \equiv \frac{1}{p} \sum_{i=1}^{n} \frac{iC_i}{(1+y)^i}$$

• The Macaulay duration, in periods, is equal to

$$MD = -(1+y)\frac{\partial P/P}{\partial y} \tag{4.2}$$

The Proof

$$P = \frac{C}{1+y} + \frac{C}{(1+y)^{2}} + \dots + \frac{C+F}{(1+y)^{n}}$$

$$\frac{\partial P}{\partial y} = \frac{-C}{(1+y)^{2}} + \frac{-2C}{(1+y)^{3}} + \dots + \frac{-n(C+F)}{(1+y)^{n+1}}$$

$$\frac{\partial P}{\partial y} = -\frac{1}{1+y} \left[\frac{C}{(1+y)} + \frac{2C}{(1+y)^{2}} + \dots + \frac{n(C+F)}{(1+R)^{n}} \right]$$

$$\frac{\partial P}{\partial y} \frac{1}{P} = -\frac{1}{1+y} \left[\frac{C}{(1+y)} + \frac{2C}{(1+y)^{2}} + \dots + \frac{n(C+F)}{(1+y)^{n}} \right] \frac{1}{P}$$

$$Define: MD = \frac{\frac{C}{(1+y)} + \frac{2C}{(1+y)^{2}} + \dots + \frac{n(C+F)}{(1+y)^{n}}}{P} = \frac{\sum_{i=1}^{n} iC_{i}}{P}$$

$$\frac{\partial P}{\partial y} \frac{1}{P} = -\frac{1}{1+y} MD \Rightarrow \frac{\partial P/P}{\partial y/1+y} = -MD$$

Duration of 6-Year Eurobond, 1,000 Face Value, 8 Percent Coupon and Market Yields 8%

t	C_{t}	DF _t	$C_t \times DF_t$	$C_t \times DF_t \times t$		
1	80	0.9259	74.07	74.07		
2	80	0.8573	68.59	137.18		
3	80	0.7938	63.51	190.53		
4	80	0.7350	58.80	235.20		
5	80	0.6806	54.45	272.25		
6	1080	0.6302	680.58	4083.48		
			1000	4992.71		
MD=4992.71/1000=4.993 years						

C is cash flow, DF is discount factor

C++: Macaulay Duration的計算

• Macaulay Duration的計算

$$MD = \frac{1}{P} \left(\sum_{i=1}^{n} \frac{ic}{(1+r)^{i}} + \frac{nF}{(1+r)^{n}} \right)$$

- 利用for loop同時求算 $\frac{1}{P}$ 和 $\sum_{i=1}^{n} \frac{ic}{(1+r)^i} + \frac{nF}{(1+r)^n}$
- 相乘即為答案

完整程式碼

```
#include <stdio.h>
void main()
    int n;
    float c, r, Value=0,Discount,Duration=0;
    printf("請輸入期數:");
    scanf("%d",&n);
    printf("請輸入債息:");
    scanf("%f",&c);
    printf("請輸入利率:");
    scanf("%f",&r);
    for(int i=1;i<=n;i=i+1)</pre>
                                              → For迴圈: 計算 Duration, Value
     Discount=1;
     for(int j=1;j<=i;j++)</pre>
      Discount=Discount/(1+r):
                                           【For迴圈: 計算Discount factor
     Duration=Duration+i*Discount*c;
     Value=Value+Discount*c;
     if(i==n)__
                                            → If 條件式: i等於n時,考
                                              盧face value
      Value=Value+Discount*100;
      Duration=Duration+n*Discount*100;
    Duration=Duration/Value;
    printf("Duration=%f",Duration);
}
```


Homework 3

- Program Exercise課本(C++財務程式設計)第三章習題8,9。
- 8.請嘗試使用一些簡單的財務知識,來驗證本章的計算存續期間的範例程式產生的答案是否合理。假定債券支付的債息為0,則其存續期間應為多少?請問當債息提高(或下降),存續期間應提高還是下降?並將推論的結果輸入範例程式中,驗證推論的結果是否和程式的輸出相符合。

Homework 3

9.在本章實例演練中討論的存續期間(duration) 稱為Macaulay duration (MD),其定義經化簡可得 - dP/dr x(1+r) 。為了討論債券價格的變化和殖利率 變動的關係,可定義Modified duration, Modified duration 定義為 $\frac{-\partial P/P}{\partial r} = \frac{MD}{(1+r)}$ 。請修改本章計算存 續期間的範例程式,計算Modified duration。請利 用程式中已計算出的Modified duration,計算當殖 利率變動一個basis point時,該債券價格變動的百 分比。

Macaulay Duration

- The MD of a coupon bond is less than its maturity.
- The MD of a zero-coupon bond
- The MD of a Consol

MD of a Coupon Bond

• The MD of a coupon is

$$MD = \frac{1}{P} \left(\sum_{i=1}^{n} \frac{iC}{(1+y)^{i}} + \frac{nF}{(1+y)^{n}} \right)$$
 (4.3)

Where C is the period fixed interest flow.

The MD of a zero-coupon bond

- MD of a zero-coupon bond is it's final maturity (n).
- Proof: because no cash flows before maturity, the MD is

$$MD = \frac{\sum_{i=1}^{n} iC_i (1+y)^{-i}}{\sum_{t=1}^{n} C_t (1+y)^{-i}} = \frac{nC_n (1+y)^{-n}}{C_n (1+y)^{-n}} = n$$

The MD of a Consol Bond

- A consol bond pay a fixed coupon each period but it never matures. (Maturity date = ∞)
- The duration of a consol bond is: $MD_c = 1 + \frac{1}{y}$

$$Y$$

$$P = \frac{C}{y} \Rightarrow C = Py$$

$$MD = \frac{\frac{C}{(1+y)} + \frac{2C}{(1+y)^2} + \frac{3C}{(1+y)^3} + \dots + \frac{Py}{(1+y)^3} + \frac{2Py}{(1+y)^2} + \frac{3Py}{(1+y)^3} + \dots + \frac{Py}{(1+y)^3} + \dots + \frac{Py}{(1+y)$$

Where y is yield to maturity

The MD of Floating-rate instruments

- A floating-rate instrument makes interest rate payments based on some publicized index such as the London Interbank Offered Rate (LIBOR), the U.S. Tbill rate.
- Instead of being locked into a number, the coupon rate is reset periodically to reflect the prevailing interest rate.
- Floating-rate instrument are typically less sensitive to interest rate changes than are fixed-rate instrument.

The MD of Floating-rate instruments

- Assume that the fixed coupon rate *c* in first *j* period, **y** in *n-j* period, also market yield is **y** now. The first reset date is *j* period from now, and reset will be performed thereafter.
- Let the principal be \$1 for simplicity. The cash flow of the floating-rate instrument is

• The MD of a floating-rate instrument is $MD_{Fix} - \sum_{i=j+1}^{n} \frac{1}{(1+y)^i}$

Denote the MD of an otherwise identical fixed-rate bond.

Homework 4

Prove that

$$MD_{floating} = MD_{Fix} - \sum_{i=j+1}^{n} \frac{1}{(1+y)^{i-1}}$$

Where the bond is priced at par, and the principal be \$1 for simplicity.

Conversion

• To convert the MD to be year based, modify(4.3) as follow:

$$\frac{1}{p} \left(\sum_{i=1}^{n} \frac{i}{k} \frac{C}{\left(1 + \frac{y}{k}\right)^{i}} + \frac{n}{k} \frac{F}{\left(1 + \frac{y}{k}\right)^{n}} \right)$$

Where y is the *annual yield* and k is the compounding frequency per annum.

- Equation (4.2) also becomes $MD = -(1 + \frac{y}{k}) \frac{\partial P/p}{\partial y}$
- Note from the definition that $MD(in \ years) = \frac{MD(in \ periods)}{k}$

Difference of formulas

• Macaulay Duration:
$$MD = -\frac{\partial P/P}{\partial y/(1+y)}$$

• Modified Duration:
$$D = \frac{MD}{1+y} = -\frac{\partial P/P}{\partial y}$$

• Dollar Duration:
$$DD = D \times P = -\frac{\partial P}{\partial y}$$

Effective Duration

• A general numerical formula for volatility is the effective duration, defined as

$$\frac{P_{-} - P_{+}}{P_{0}(y_{+} - y_{-})} \tag{4.5}$$

where P_{-} is the price if the yield is decreased by Δy , P^{+} is the price if the yield is increased by Δy , P_{0} is the initial price, y is the initial yield, and Δy is small.

• We can compute the effective duration of just about any financial instrument.

Effective Duration

- Most useful where yield changes alter the cash flow or securities whose cash flow is so complex that simple formulas are unavailable
- Duration of a security can be longer than its maturity or negative.
 - Consider a cash flow: -1 @ time 1 and 2 @time 2
 - Consider a cap
- Neither makes sense under the maturity interpretation.
- An alternative is to use

$$\frac{P_0 - P_+}{P_0 \Delta y}.$$

Immunization and MD

- A portfolio immunizes a liability if its value at horizon covers the liability for small rate changes now.
- How do we find such a bond portfolio?
 - →A bond portfolio whose MD equals the horizon and whose PV equals the PV of the single future liability.
 - At horizon, losses from the interest on interest will be compensated by gains in the sale price when interest rates fall.
 - Losses from the sale price will be compensated by the gains in the interest on interest when interest rates rise

Immunization

- Assume the liability is *L* at time *m* and the current interest rate is *y*. We are looking for a portfolio such that
 - (1) FV is L at the horizon m;
 - (2) $\partial FV/\partial y = 0$;
 - (3) FV is convex around y.
- Condition (1) says the obligation is met.
- Conditions (2) and (3) mean *L* is the portfolio's minimum **FV** at horizon for small rate changes.

The Proof (1)

• Let $FV \equiv P(1+y)^m$, where P is the PV of the portfolio. Now,

$$\frac{\partial FV}{\partial y} = m(1+y)^{m-1}P + (1+y)^m \frac{\partial P}{\partial y}$$
 (4.8)

• Imposing Condition (2) leads to

$$m = -(1+y)\frac{\partial P/P}{\partial y} \tag{4.9}$$

• The MD is equal to the horizon m.

The Proof (2)

• Employ coupon bond for immunization, because

$$FV = \sum_{i=1}^{n} \frac{C}{(1+y)^{i-m}} + \frac{F}{(1+y)^{n-m}}$$

• It follows that

$$\frac{\partial^2 FV}{\partial^2 v} > 0, \text{ for } y > -1 \tag{4.10}$$

• Because the FV is convex for y>1, the minimum value of FV is indeed L.

Example: Immunization by using duration technique

- Suppose that we are in 2007, and the insurer has to make a guarantee payment \$1,469 to a policyholder in 5 years, 2012. The amount is equivalent to investing \$1,000 at an annually compound rate of 8% over 5 years.
- Strategy1: Buy five-year maturity discount bonds.
- Strategy2: Buy five-year duration coupon bonds.

- If the insurer buy 1.469 units of these bonds at a total cost of \$1000 in 2007, these investment would produce exactly \$1469 on maturity in five years.
- The reason is that the duration of this bond portfolio exactly matches the target horizon for the insurer's future liability.

$$P = \frac{1000}{1.08^5} = 680.58 \Rightarrow total \cos t = 1.469 \times 680.58 = 1000$$

cash flow in five years =
$$$1000 \times 1.469 = $1469$$

Strategy2: Buy five-year duration coupon bonds.

• The gain or losses on reinvestment income that result from an interest rate change are exactly offset by losses or gains from the bond proceeds on sale.

	YTM fall to 7%	YTM is 8%	YTM rise to 9%
Coupons (5×\$80)	400	400	400
Reinvestment income	60	69	78
Sale of bond at end of the 5th year	1009	1000	991
	\$1469	\$1469	\$1469

Cash matching

Immunization

• If there is no single bond whose MD match the horizon, a portfolio of two bonds A and B, can be assembled by the solution of

$$1 = \omega_A + \omega_B$$

$$D = \omega_A D_A + \omega_B D_B \quad (See \text{ next page})$$

Here, $\mathbf{D_i}$ is the MD of bond i and $\boldsymbol{\omega_i}$ is the weight of bond i in the portfolio.

• Make sure that D falls between D_A and D_B to guarantee $\omega_A > 0, \omega_B > 0$, and positive portfolio convexity.

Set
$$D = \frac{1}{P} \sum_{i=1}^{n} \frac{iC_i}{(1+y)^i}$$

$$D_A = \frac{1}{P_A} \sum_{i=1}^{n_A} \frac{iA_i}{(1+y)^i} , D_B = \frac{1}{P_B} \sum_{i=1}^{n_B} \frac{iB_i}{(1+y)^i}$$

 $(A_i, B_i : \text{cashflow of } A \text{ and } B \text{ at i-th period })$

$$\therefore W_A D_A + W_B D_B = \frac{W_A}{P_A} \sum_{i=1}^{n_A} \frac{iA_i}{(1+y)^i} + \frac{W_B}{P_B} \sum_{i=1}^{n_B} \frac{iB_i}{(1+y)^i}$$

Set
$$P = W_A P + W_B P$$

we can buy $\frac{W_A P}{P_A}$ units of A, and $\frac{W_B P}{P_B}$ units of B.

then
$$D = \frac{1}{P} \sum_{i=1}^{n_A} \frac{i \frac{W_A P}{P_A} A_i}{(1+y)^i} + \frac{1}{P} \sum_{i=1}^{n_B} \frac{i \frac{W_B P}{P_B} B_i}{(1+y)^i} = \frac{W_A}{P_A} \sum_{i=1}^{n_A} \frac{i A_i}{(1+y)^i} + \frac{W_B}{P_B} \sum_{i=1}^{n_B} \frac{i B_i}{(1+y)^i}$$

$$\therefore D = W_A D_A + W_B D_B$$

In Class Exercise

• The liability has an MD of 3 years, but the money manager has access to only two kinds of bonds with MDs of 1 year and 4 years. What is the right proportion of each bond in the portfolio in order to match the liability's MD?

Limitations of Duration

- Duration matching can be costly.
- Immunization is a dynamic problem.
 - Because continuous rebalancing may not be easy to do and involves costly transaction fees.
 - There is a trade-off between being perfectly immunized and the transaction costs of maintaining.
- Large interest rate and convexity (see next figure).
 - —Duration accurately measures the price sensitivity of fixedincome securities for small change in interest rates.

Convexity

Convexity is defined as

convexity (in period)
$$\equiv \frac{\partial^2 P}{\partial y^2} \frac{1}{P}$$
 (4.14)

- The convexity of a coupon bond is positive.
- For a bond with positive convexity, the price rises more for a rate decline than it falls for a rate increase of equal magnitude.
- Between two bonds with the same duration, the one with a higher convexity is more valuable.

Figure 4.6: Linear and quadratic approximation to bond price changes.

Convexity

- The approximation $\Delta P/P \approx -$ (modified) duration \times yield change works for small yield changes.
- To improve upon it for larger yield changes, use

$$\frac{\Delta P}{P} \approx \frac{\partial P}{\partial y} \frac{1}{P} \Delta y + \frac{1}{2} \frac{\partial^2 P}{\partial y^2} \frac{1}{P} (\Delta y)^2 = -duration \times \Delta y + \frac{1}{2} \times convexity \times (\Delta y)^2$$

• Formula:

CX = Scaling factor(The capital loss from 1bp rise + The capital gain from 1bp fall) = $10^8 \left(\frac{\Delta P^-}{P} + \frac{\Delta P^+}{P} \right)$

• Example: To calculate convexity of the 8 percent coupon, 8 percent yield, six-year maturity Eurobond that had a price of \$1000:

$$CX = 10^{8} \left(\frac{999.53785 - 1000}{1000} + \frac{1000.46243 - 1000}{1000} \right)$$
$$= 10^{8} (0.00000028) = 28$$

Example

- Given convexity C, the percentage price change expressed in percentage terms is approximated by $-D \times \Delta r + C \times (\Delta r)^2 / 2$ when the yield increases instantaneously by $\Delta r\%$.
- For example, if D = 10, C = 150, and $\Delta r = 2\%$, price will drop by 17% because

$$\Delta P/P = -10 \times 2\% + 1/2 \times 150 \times (2\%)^2 = -17\%$$

In Class Exercise

• Show that the convexity of a n-period zerocoupon bond is $n(n+1)/(1+y)^2$

Immunization (barbell Portfolio)

- Two bond portfolios with varying duration pairs D_A , D_B can be assembled to satisfy $D = \omega_A D_A + \omega_B D_B$ However, which one is to be preferred?
- Let there be n kinds of bonds, with bond i having duration D_i and convexity C_i , where $D_1 < D_2 < ... < D_n$. We then solve the follow constrained optimization problem:

maximize
$$\omega_1 C_1 + \omega_2 C_2 + \dots + \omega_n C_n$$

subject to $\omega_1 + \omega_2 + \dots + \omega_n = 1$
 $\omega_1 D_1 + \omega_2 D_2 + \dots + \omega_n D_n = D$

The solution usually implies a barbell portfolio, which consists of very short-term bonds and very long-term bonds..


```
function f(x_1, x_2, ...., x_n)

subject to g(x_1, x_2, ...., x_n) = 0

F(x_1, x_2, ...., x_n, \lambda) = f(x_1, x_2, ...., x_n) + \lambda \bullet g(x_1, x_2, ...., x_n)

Fx_1(x_1, x_2, ...., x_n, \lambda) = 0

Fx_2(x_1, x_2, ...., x_n, \lambda) = 0

\vdots

Fx_n(x_1, x_2, ...., x_n, \lambda) = 0

g(x_1, x_2, ...., x_n) = 0
```

A Simple Example

min
$$f(x, y) = 5x^2 + 6y^2 - xy$$

s.t $x + 2y = 24$

$$g(x, y) = x + 2y - 24 = 0$$

$$F(x, y, \lambda) = 5x^{2} + 6y^{2} - xy + \lambda(x + 2y - 24)$$

$$F_x(x, y, \lambda) = 10x - y + \lambda = 0....(1)$$

$$F_y(x, y, \lambda) = 12y - x + 2\lambda = 0..(2)$$

$$g = x + 2y - 24 = 0$$
....(3)

$$x = \frac{2}{3}y$$
 代入(3),得 $y = 9, x = 6$

Use Lagrange Multiplier Method to obtain the optimal bond portfolio

$$\max \ \omega_{1}C_{1} + \omega_{2}C_{2} + \dots + \omega_{n}C_{n}$$

$$s.t \quad \omega_{1} + \omega_{2} + \dots + \omega_{n} = 1$$

$$\omega_{1}D_{1} + \omega_{2}D_{2} + \dots + \omega_{n}D_{n} = D$$

$$g_{1}(\omega_{1}, \omega_{2}, \dots, \omega_{n}) = \omega_{1} + \omega_{2} + \dots + \omega_{n} - 1 = 0$$

$$g_{2}(\omega_{1}, \omega_{2}, \dots, \omega_{n}) = \omega_{1}D_{1} + \omega_{2}D_{2} + \dots + \omega_{n}D_{n} - D = 0$$

$$F(\omega_{1}, \omega_{2}, \dots, \omega_{n}) = \omega_{1}C_{1} + \omega_{2}C_{2} + \dots + \omega_{n}C_{n} + \lambda_{1}(\omega_{1} + \omega_{2} + \dots + \omega_{n} - 1) + \lambda_{2}(\omega_{1}D_{1} + \omega_{2}D_{2} + \dots + \omega_{n}D_{n} - D)$$

Example: Immunization (Convexity is desirable)

- Consider a pension fund manger with a 15-year payout horizon. To immunize the risk of interest rate changes, the manger purchase bonds with a 15-year duration. Consider two alternative strategies to achieve this:
- Strategy1: Invest 100 percent of resources in a 15-year deep-discount bond with an 8 percent yield. (Bullet portfolio)
- Strategy2: Invest 50 percent in the very short-term money market and 50 percent in 30-year deep-discount bond with an 8 percent yield. (Barbell portfolio)

Example: Immunization (Convexity is desirable)

• Strategy1:

Duration =15

Convexity = 206

value of the convexity = $1/2 \times \text{convexity} \times \triangle y^2 = 25.75\%$

• Strategy2:

Duration = $1/2 \times 0 + 1/2 \times 30 = 15$ Convexity = $1/2 \times 0 + 1/2 \times 797 = 398.5$ High convexity is more valuable

 $\sqrt{y=5\%}$

Value of the convexity = $1/2 \times \text{convexity} \times \triangle y^2 = 49.81\%$

• The manger may seek to attain greater convexity in the asset portfolio than in the liability portfolio, as a result, both positive and negative shocks to interest rates would have beneficial effects on the net worth.

Categories of Immunization

- Cash matching
- Rebalancing

Cash matching

- Cash matching is the approach that a stream of liability can always be immunized with a matching stream of zero-coupon binds.
- Two problem with this approach are that (1) zero-coupon bonds may be missing for certain matruity.(2) they typically carry lower yield.
- Recall example (Immunization by using duration technique).

Rebalancing

ensure that the MD remains matched to the horizon.

- Immunization has to be rebalanced constantly to
- The MD decreases as time passes.
- But, except for zero-coupon bonds, the decrement is not identical to that in the time to maturity.
 - Consider a coupon bond whose MD matches horizon.
 - Since the bond's maturity date lies beyond the horizon date, its MD will remain positive at horizon.
 - So immunization needs to be reestablished even if interest rates never change.

Hedging

- Hedging aims to offsets the price fluctuations of the position to be hedged by the hedging instrument in the opposite direction, leaving the total wealth unchanged.
- Define dollar duration as

$$DD \equiv modified \ duration \times price(\% \ of \ par) = -\frac{\partial P}{\partial y}$$

• The approximate dollar price change per \$100 of par value is

 $price\ change \approx -\ dollar\ duration \times yield\ change$

Hedging

• Because securities may react to interest rate changes differently, we define yield beta to measure relative yield changes.

$$yield\ beta \equiv \frac{change\ in\ yield\ for\ the\ hedged\ security}{change\ in\ yield\ for\ the\ hedging\ security}$$

• Let the hedge ratio be

$$h \equiv \frac{dollar\ duration\ of\ the\ hedged\ security}{dollar\ duration\ of\ the\ hedging\ security} \times yield\ beta \tag{4.13}$$

• Then hedging is accomplished when the value of the hedging security is h times that of the hedged security.

Example 4.2.2

• Suppose we want to hedge bond A with a duration of seven by using bond B with a duration of eight. Under the assumption that yield beta is one and both bonds are selling at par, the hedge ratio is 7/8, This means that an investor who is long \$1 million of bond A should short \$7/8 million of bond B.