嗯哦哎啤 模拟赛

题目名称	西坤丝	地皮	谷拉符	泪音
题目类型	传统型	传统型	传统型	传统型
目录	sequence	dp	graph	rain
源程序文件名	sequence.cpp	dp.cpp	graph.cpp	rain.cpp
可执行文件名	sequence	dp	graph	rain
输入文件名	sequence.in	dp.in	graph.in	rain.in
输出文件名	sequence.out	dp.out	graph.out	rain.out
每个测试点时限	1s	1s	1s	1s
内存限制	512MiB	512MiB	512MiB	512MiB
子任务数目	5	4	7	5

1. 需要建立子文件夹。

- 2. 评测在 NOI-Linux 下进行,CPU 为 Intel(R) Core(TM) i5-9500 CPU @ 3.00GHz,时限以上述配置为准。
- 3. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 4. 结果比较方式为忽略行末空格、文末回车后的全文比较。
- 5. C/C++ 中函数 main() 的返回值类型必须是 int,值为 0。
- 6. 每题的时间限制均达到了 std 所用时间的 1.5 倍以上。所用时间以评测机为准。
- 7. 不保证题目严格按照难度排序,请选择适合自己的开题顺序。

A. 西坤丝 (sequence)

题目描述

Einniw 在西坤丝森林雇佣一队猎人为他打猎,他们共 n 个人,每个人的打猎能力为 a_i ,现在他们要组成一个队列。

为了避免在打猎过程中出现问题,对于给定的常数 len, k,将该队列的稳定度为:

$$\sum_{i=1}^{n-len+1} \operatorname{kthmax}(a[i:len])$$

其中 $\operatorname{kthmax}(x)$ 为数组 x 的第 k 大值,a[i:len] 表示数组 a 从下标 i 开始、长度为 len 的一个子 串。

现在,你可以任意重排这个队列,使得最终的稳定度最大,求出这个最大稳定度。

输入格式

本题多测。

第一行一个整数 T,表示数据组数。接下来共 T 组数据,对于每一组数据:

第一行三个整数 n, len, k, 含义如题目所述。第二行 n 个整数,表示 a_i 。

输出格式

对于T组数据,每一组数据输出一行2个数,表示最大和最小稳定度。

样例一

input

```
1
9 4 2
7 9 5 2 8 2 7 6 1
```

output

45 29

样例二

input

```
1
58 19 17
34 5 73 39 88 20 42 25 78 21 15 34 76 71 18 51 12 99 60 75 34 89 74 84 65 69 24 3
4 66 57 67 10 5 62 72 96 5 59 20 24 18 29 19 94 66 48 18 62 74 73 51 7 18 61 91
39 14
```

1579 264

样例三

见下发文件 ex_sequence3.in/ans。

限制与约定

对于所有数据, $1 \le T \le 5, 1 \le k \le len \le n, \sum n \le 3 \times 10^5, 1 \le a_i \le 10^9$ 。

子任务编号	特殊限制	分值
1	$\sum n \leq 10$	20
2	len = 1	10
3	len = n	10
4	k = 1	10
5	无特殊限制	50

时间限制: 1s

空间限制: 512MiB

B. 地皮 (dp)

题目描述

Einniw 是一个亿万富翁。他在 Tavyet 大陆上买下了一块长为 n 宽为 m 的地,被划分为 $n\times m$ 块 1 单位面积的地皮,他想要出售这些地皮来获取利润。

他根据行情,风水,位置等因素,给 n 行地皮每行定一个基础价值 a_i ,m 列每列定一个基础价值 b_j 。 之后,他将第 i 行第 j 列的地皮的价值计算为 a_i+b_j 。

经过对他的客户进行调研分析后发现,他的客户仅会买价值大于 x 的地皮。但是价值 $\le x$ 的地皮可不能就此浪费,因此 Einniw 准备把剩下没卖出去的地皮(即价值 $\le x$)分给他的手下当做工资。具体地,为了避免手下在划分地皮时发生冲突,他索性将地皮按连通块一块一块地分出去,使得没有两个手下分到的地皮有相邻边,且所有未卖出的地皮均被分给其中任意一个手下。现在他想知道,他最多能把他没卖出去的地皮分给多少个手下?

输入格式

共3行。

第一行三个正整数 n, m, x。

第二行 n 个正整数 a_i 。

第三行 m 个正整数 b_i 。

输出格式

一行,一个正整数,表示最多能分给多少个手下。

样例一

input

```
4 4 6
2 5 5 1
5 7 1 3
```

output

2

样例二

input

```
6 9 4
1 1 4 5 1 4
9 9 8 2 4 4 3 5 3
```

output

6

样例三

见下发文件 ex_dp3.in/ans。

限制与约定

对于所有数据, $1 \leq n, m, x, a_i, b_j \leq 2 imes 10^5$ 。

子任务编号	特殊限制	分值
1	$1 \leq n imes m \leq 10^6$	20
2	$\forall 1 \leq i, j \leq m, b_i = b_j$	10
3	$1 \leq n, m \leq 10^5$	30
4	无特殊限制	40

时间限制: 1s

空间限制: 512MiB

C. 古拉符 (graph)

题目描述

在古拉符星球上,有n个国家,每个国家的综合国力为 a_i 。

这个星球上的飞机航线规划非常奇怪,具体来说,对于任意 i < j,从 i 国家到 j 国家存在一条单向航线当且仅当这两个国家满足其中至少一条性质:

- 1. 建交关系: $|a_i a_j| = A$ 。
- 2. 掠夺关系: $a_i = a_i \times B$ 或 $a_i = a_i \times B$ 。
- 3. 盟友关系: $a_i \equiv a_j \pmod{C}$.

其中A, B, C均为给定的常数。

现在 Einniw 想要进行 k 次环游世界的旅行。每次旅行的起点任意,但是之后只能通过这些航线旅行,且他不愿意经过重复的国家。因此,他想要知道他最多能够访问多少个国家。

输入格式

共2行。

第一行五个整数 n, k, A, B, C,表示国家数,旅行次数,以及三个定值。

第二行 n 个正整数 a_i ,表示综合国力。

请自行得出具体航线的走向。

输出格式

一行,一个正整数表示最多访问的国的数量。

样例一

input

14 4 1 0 7 8 14 20 7 26 22 7 26 2 16 19 20 5 6

output

12

样例二

见下发文件 ex_graph2.in/ans。

限制与约定

对于所有数据, $1 \leq k \leq n \leq 3000, 1 \leq a_i \leq 10^9, 0 \leq A, B, C \leq 2 \times 10^9$ 。

子任务编号	特殊限制	分值
1	k=1	10
2	$B=0, C=2 imes 10^9$	5
3	$A=10^{9}, C=2 imes 10^{9}$	5
4	$A=10^9, B=0$	5
5	$n \leq 10$	15
6	$n \le 100$	30
7	无特殊限制	30

时间限制: 1s

空间限制: 512MiB

D. 泪音 (rain)

题目描述

在一个风狂雨骤的无限大的二维平面内,每一个 1×1 的方格上都有概率落雨。具体地,记当前格子的落雨概率为 p,在 1 时刻时 $p=\frac{1}{k}$ 。

在每个时刻的结束时,有 p 的概率落雨,此时 p 重置为 $\frac{1}{k}$; 另外 1-p 的概率不落雨,此时 $p\leftarrow p+\frac{1}{k}$ 。显然,每一个格子至多间隔 k 秒落一次雨滴。

现在 Einniw 身在 (0,0),他想要避雨逃回家中。他从 l 时刻开始,预计在 r 时刻逃到家。

期间他的行动轨迹可以用一串长度为 r-l 的仅包含 LRUD 的字符串描述,其中 LRUD 分别表示他在这一时刻往左/右/上/下花一个时刻的时间跑一格。

我们称 Einniw 淋到雨当且仅当存在一个时刻 $t\in [l,r]$ 结束时,Einniw 所在的格子有雨滴落下。**注意 Einniw 出发以及到家的时刻也可以淋到雨**。

Einniw 现在不想淋雨。请你告诉他淋到雨的概率,对 998244353 取模。

输入格式

共2行。

第一行三个正整数 k, l, r,表示落雨常数,出发时刻,到家时刻。

第二行一个字符串 S, 表示 Einniw 的行动轨迹。

输出格式

一行一个整数,表示淋雨概率。

具体地,设淋雨概率为 $p=\frac{a}{b}$,那么请输出 $a\times b^{-1} \mod 998244353$ 的值。

样例一

input

2 1 6 LDRUD

output

995502593

样例二

input

7 10 20 UUUUUURDLU

output

665205887

样例三

见下发文件 ex_rain3.in/ans。

样例四

见下发文件 ex_rain4.in/ans。

限制与约定

对于所有数据, $1 \leq k \leq 20, 1 \leq l < r \leq 10^9, |S| = r - l \leq 10^4$ 。保证 S 仅含 LRUD 。

子任务编号	特殊性质	分值
1	$k \leq 2, 1 \leq l < r \leq 7$	10
2	$1 \leq l < r \leq 10^3$	20
3	保证 S 仅含 $\mathbb U$, $1 \leq l \leq r \leq 10^6$	10
4	$ S \leq 2500$	20
5	无特殊限制	40

时间限制: 1s

空间限制: 512MiB