

Project Guide 01

Fundamentals of Artificial Intelligence

MSc in Applied Artificial Intelligence, 2025-26

Version: 2025-10-06

Introduction

- The goal of the project is to develop an intelligent agent, documenting the design and implementation steps
- Each work group needs to be made up of 2 students
- The project must be available in a Github repository
 - The code and documentation must be merged into a Jupyter Notebook
 - The repository must contain all files required to run the solution
 - The repository must be shared with the lecturer
- A ZIP file of the repository must be submitted on Moodle before the deadline
- The project must be later presented and defended by the students

Collaborative Platforms

For hosting the project, you have 2 options: Google Colab or GitHub

Use Google Colab

- One of the members of the group must create a folder in Google Drive using the nomenclature "FA25_G##", where G## corresponds to the group
- The folder needs to be shared with the group members and the lecturer.

Use the **GitHub platform**

- One of the members of the group must create a private repository
- Use the nomenclature "FAI25_G##", where G## corresponds to the group
- Add the other members of the group as collaborators
- The lecturer should also be added to the repository and the project

The project should be submitted in the **Moodle** platform as a **ZIP file**.

Theme — Class Timetable

CSP Problems can have an huge search space

A problem can have many of solutions of different categories:

- A possible solution is any solution, a <u>complete assignment</u>, whether or not it breaks any number of constraints.
- A feasible solution is a solution that does not break any (negative) hard constraints.
- An optimal solution is a solution with the highest score.
- The **best solution found** is the solution with the highest score found by an implementation in a given amount of time.

A problem can include different types of constraints

- **Hard constraints** mandatory to get a valid solution.
- **Soft constraints** preferred but not strictly required. so can be violated under certain circumstances.

Classes Timetable

- Each new academic year, the IPCA administrative team faces difficulties in creating class schedules.
- It is necessary to meet all restrictions related to teachers, courses, classrooms, etc.
- The project aims to provide a tool for generating class schedules for undergraduate courses at the higher education institution.

Source: https://meet.nyu.edu/academics/creating-your-ideal-course-schedule-as-an-nyu-student/

Timetable example

	Monday		Tuesday		Wednesday		Thursday		Friday	
9h00 -	Algorithms and Data Structures		Software Design and Modelling		Algorithms and Data Structures		Machine Learning			
11h00	Timeslot_1 Roor	n A	Timeslot_5	Room G	Timeslot_9	Room A	Timeslot_13	Room A	Timeslot_17	
11h00 -	Machine Learning		Object Oriented Programming				Software Design and Modelling		Object Oriented Programming	
13h00	Timeslot_2 Roor	n A	Timeslot_6	Lab 02	Timeslot_10		Timeslot_14	Room G	Timeslot_18	Lab 02
14h00 -	Discrete Mathem	atics			Discrete M	athematics				
16h00	Timeslot_3 Roor	n C	Timeslot_7		Timeslot_11	Room C	Timeslot_15		Timeslot_19	
16h00 -										
18h00	Timeslot_4		Timeslot_8		Timeslot_12		Timeslot_16		Timeslot_20	

Hard Constraints

- Classes last 2 hours.
- All classes have 10 lessons per week.
- Each course may have one or two lessons per week.
- A class cannot have more than 3 lessons per day.
- The timetable for a course may be subject to teacher availability.

Soft Constraints

- The lessons of the same course must be in distinct days.
- Each class should have, if possible, only four days of lessons.
- Each day, lessons should be consecutive.

Challenges

After implemented previous hard and soft constraints, you are invited to try to add some more.

Hard constraints

- When online classes are scheduled, limited to a maximum of three, they must be scheduled on the same day.
- Somes classes are required to be assigned to a specific classroom.

Soft constraints

 The number of classrooms used by each class should be minimised.

Jupyter Notebook

Tools

- The project must be implemented in Python using a Jupyter Notebook and the Constraint library. Please check these links:
 - Constraint library site https://pypi.org/project/python-constraint/
 - Constraint library documentation http://labix.org/doc/constraint/
- Two datasets will be available in Moodle
 - a small, simpler dataset
 - a larger, more complex one
- The notebook must be well structured
 - Each step in a distinct block
 - Text blocks documenting the reasoning and decisions
 - Comments in the code blocks

Notebook structure

- Introduction
 - Establish here the context and the purpose of project
 - Identify the teammates: student name and number
- Agent design
 - Formulate the problem as a Constraint Satisfaction Problem (CSP)
 - Present the variables, their domain and the constraints definition
 - Highlight the heuristics applied

Notebook structure (2)

- Agent running
 - Find how many solutions exist for the problem
 - Provide the best solution you can find
 - o you can use an evaluation function to select the best solution from all available
 - Perform a critical analysis of the results
 - Provide execution times for the solvers used
 - o identify some future improvements to the agent
- Conclusion
 - Draw up a conclusion about the outcomes, the development process and the tools used.
 - The structure of the notebook can be adapted according to each project characteristics.

Thank you!