§1.4 化零多项式

(Hamilton-Cayley) 定理 1.12: 设 $A \in C^{n \times n}$, $f(\lambda) = \det(\lambda I - A)$, 则 f(A) = 0.

例 1: 已知矩阵

$$A = \left(\begin{array}{rrr} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{array}\right)$$

试计算 (1)
$$A^7 - A^5 - 19A^4 + 28A^3 + 6A - 4I$$
, (2) A^{-1} , (3) A^{100} .

解: $\psi(\lambda) = \det(\lambda I - A) = \lambda^3 - 4\lambda^2 + 5\lambda - 2$

由 $\psi(A)=0$,有

$$egin{aligned}
otag & egin{aligned}
otag & eta(\lambda) &= \det(\lambda I - A) &= \lambda^3 - 4\lambda^2 + 5\lambda - 2 \\
otag & eta(\lambda) &= \lambda^7 - \lambda^5 - 19\lambda^4 + 28\lambda^3 + 6\lambda - 4, \end{aligned} \\
otag & eta(\lambda) &= (\lambda^4 + 4\lambda^3 + 10\lambda^2 + 3\lambda - 2)\psi(\lambda) - 3\lambda^2 + 22\lambda - 8 \end{aligned}$$

$$g(A) = -3A^{2} + 22A - 8I = \begin{pmatrix} -21 & 16 & 0 \\ -64 & 43 & 0 \\ 19 & -3 & 24 \end{pmatrix}$$

(2) 由
$$\psi(A) = 0$$
,得 $A(A^2 - 4A + 5I) = 2I$,故

$$A^{-1} = \frac{1}{2}(A^2 - 4A + 5I) = \begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 0 \\ -3/2 & 1/2 & 1/2 \end{pmatrix}$$

(3) 设
$$\lambda^{100} = q(\lambda)\psi(\lambda) + b_2\lambda^2 + b_1\lambda + b_0$$
, 由 $\psi(2) = \psi(1) = \psi'(1) = 0$, 得

$$\begin{cases} 2^{100} = 4b_2 + 2b_1 + b_0 \\ 1 = b_2 + b_1 + b_0 \\ 100 = 2b_2 + b_1 \end{cases}$$

解得
$$\begin{cases} b_0 = 2^{100} - 200 \\ b_1 = -2^{101} + 302 \\ b_2 = 2^{100} - 101 \end{cases}$$

故

$$A^{100} = b_2 \lambda^2 + b_1 \lambda + b_0 = \begin{pmatrix} -199 & 100 & 0 \\ -400 & 201 & 0 \\ 201 - 2^{100} & 2^{100} - 101 & 2^{100} \end{pmatrix}$$

§1.5 酉空间与酉矩阵

1. 定义1.20 若任意 $\alpha = (a_1, a_2, \dots, a_n)^T$, $\beta = (b_1, b_2, \dots, b_n)^T \in C^n$, 均有复数

$$(\alpha, \beta) = \beta^{\mathrm{H}} \alpha = \sum_{i=1}^{n} a_i \bar{b}_i$$

与之对应,则称 (α, β) 为 α 与 β 的内积,称定义了内积的 C^n 为 n 维酉空间(或 U 空间,或复内积空间),其中 β^H 表示向量 β 的共轭转置。

2. 内积的性质

- $(1) (x,y) = \overline{(y,x)};$
- (2) $(\lambda x, y) = \lambda(x, y)$;
- (3) (x + y, z) = (x, z) + (y, z);
- (4) $(x,x) \ge 0$, 仅当 x = 0 时才有 (x,x) = 0;
- (5) $(x,y)(y,x) \le (x,x)(y,y)$ (Cauchy-Schwarz 不等式).

3. 定义1.21 设 $\alpha \in C^n$,非负实数 $\sqrt{(\alpha,\alpha)}$ 称为向量 α 的长度或模或范数,记为 $\|\alpha\|$ 或 $|\alpha|$. 若 $\|\alpha\| = 1$,则称 α 为单位向量。

4. 向量长度的性质

- (1) $||x|| \ge 0$, ||x|| = 0 当且仅当 x = 0 (非负性):
- $(2) \|\boldsymbol{\lambda}\boldsymbol{x}\| = |\boldsymbol{\lambda}|\|\boldsymbol{x}\| \quad (\boldsymbol{\mathcal{F}}\underline{\boldsymbol{\lambda}}\boldsymbol{\psi}\boldsymbol{\psi});$
- (3) $\|x + y\| \le \|x\| + \|y\|$ (三角不等式).

5. 定义1.22 设 $\alpha, \beta \in C^n$. 若 $(\alpha, \beta) \in 0$,则称 $\alpha = \beta$ 正交,记作 $\alpha \perp \beta$. 若 $\alpha_i \neq 0$ $(i = 1, 2, \dots, m)$,且两 两正交,即当 $i \neq j$ 时, $(\alpha_i, \alpha_j) = 0$,则称 $\alpha_1, \dots, \alpha_m$ 为正交向量组。若正交向量组 $\alpha_1, \dots, \alpha_m$ 还满足 $\|\alpha_i\| = 1, i = 1, 2, \dots, m$,则称 其为标准正交向量组。

显然,若 $\alpha_1, \cdots, \alpha_m$ 为正交向量组,则单位化后的向量

组

$$\frac{1}{\|\alpha_1\|}\alpha_1,\cdots,\frac{1}{\|\alpha_m\|}\alpha_m$$

即为标准正交向量组。

- 6. 定理1.17 正交向量组必线性无关。
- 7. 通过 Schmidt 正交化过程, 可由任一组线性无关的 向量组 导出一正交向量组。

从线性无关向量组 $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_s$ 导出正交向量组

$$y_1, y_2, \cdots, y_s \colon y_1 = x_1,$$

$$y_j = x_j - \frac{(x_j, y_1)}{(y_1, y_1)} y_1 - \dots - \frac{(x_j, y_{j-1})}{(y_{j-1}, y_{j-1})} y_{j-1}$$

$$(j = 2, \dots, s)$$

8. 定义1.24: 设 $A \in C^{n \times n}$, 若有 $A^H A = I$ 或 $A^{-1} = A^H$, 则称 A 为 酉矩阵。

9. 酉矩阵的性质:

- (1) 若 A 是酉矩阵,则 $A^{-1}, A^{H}, A^{T}, \bar{A}, A^{K} (k = 1, 2, \cdots)$ 也是酉矩阵;
- (2) 若 A, B 是酉矩阵,则 AB 也是酉矩阵;
- (3) 若 A 是酉矩阵,则 $|\det A| = 1$;
- (4) **A** 是酉矩阵的充要条件是, 它的 **n** 个列(行) 向量是标准正交向量组;
- (5) A 是酉矩阵的充要条件是,对任意 $\alpha, \beta \in C$,有 $(A\alpha, A\beta) = (\alpha, \beta)$;
- (6) 若 A 是酉矩阵, λ 为 A 的特征值,则 $|\lambda| = 1$ 。

§1.6 酉相似标准型

1. Schur 定理: 设 $A \in C^{n \times n}$,则 A 可酉相似于上三角 矩阵 T,即存在酉矩阵 U 使得 $U^{-1}AU = U^{H}AU = T$.

定义1.25 设 A ∈ C^{n×n}, 如果 A^H = A,则
 称A为Hermite矩阵;如果 A^H = -A,则称 A 为 反Hermite矩阵。

- 定义1.25 设 A ∈ C^{n×n}, 如果 A^H = A,则
 称A为Hermite矩阵;如果 A^H = -A,则称 A 为 反Hermite矩阵。
- 3. 定义: 若 $A^HA = AA^H$, 则称 A 为 正规矩阵。

- 定义1.25 设 A ∈ C^{n×n}, 如果 A^H = A,则
 称A为Hermite矩阵;如果 A^H = -A,则称 A 为 反Hermite矩阵。
- 3. 定义: 若 $A^HA = AA^H$, 则称 A 为 正规矩阵 。

易知,酉矩阵,正交矩阵, Hermite 矩阵, 实对称 矩阵,反 Hermite 矩阵, 实反对称矩阵, 对角矩阵 等都是正规矩阵。

- 3. A 酉相似于对角矩阵的充要条件是 A 为正规矩阵。
- 4. Hermite 矩阵的特征值为实数,反 Hermite 矩阵的特征值为零或纯虚数。
- 5. 设 λ 为正规矩阵 A 的特征值, x 是对应的特征向量,则 $\overline{\lambda}$ 是 A^H 的特征值,对应特征向量仍为 x.

6. 定理1.21 设 $A \in C^{n \times n}$,则 A 酉相似于对角矩阵的充分必要条件为 A 是正规矩阵。

- 6. 定理1.21 设 $A \in C^{n \times n}$,则 A 酉相似于对角矩阵的充分必要条件为 A 是正规矩阵。
- 7. 推论1.12 设 **A ∈ C^{n×n}** 是正规矩

阵, $\lambda \in C$, $x \in C^n$, 则下列条件等价:

- (1) x 是 A 的属于特征值 λ 的特征向量: $Ax = \lambda x$;
- (2) \mathbf{x} 是 \mathbf{A}^H 的属于持征值 $\bar{\lambda}$ 的特征向

量: $A^H x = \bar{\lambda} x$.

7. 推论1.13 正规矩阵属于不同特征值的特征向量是正交的。

7. 推论1.13 正规矩阵属于不同特征值的特征向量是正交的。

证明:设 λ,μ 是正规矩阵A的两个不同特征值,x,y是对应的特征向量,即 $Ax = \lambda x$, $Ay = \mu y$,由推论1.12知也有 $A^H y = \bar{\mu} y$. 于是

$$\lambda(x,y) = (\lambda x,y) = y^H A x = (A^H y)^H x = (\bar{u}y)^H x = \mu y$$
即 $(\lambda - \mu)(x,y) = 0$,因 $\lambda \neq \mu$,得 $(x,y) = 0$. 所以 x 与 y 正交。

- 8. 推论1.15 设 $A = C^{n \times n}$ 是正规矩阵,则
 - (1) **A** 是Hermite矩阵的充要条件是 **A** 的特征值均为 实数;
 - (2) **A** 是反Hermite矩阵的充要条件是 **A** 的特征值为 零或纯虚数:
 - (3) A 是酉矩阵的充要条件是 A 的特征值的模均为1。

9. 定义1.27 设 $A \in C^{n \times n}$ 为Hermite矩阵,如果对任意 $0 \neq x \in C^n$ 都有

$$x^H Ax > 0 (x^H Ax \ge 0)$$

则称 A 为Hermite正定矩阵(半正定矩阵)。

- 10. 定理1.22 设 **A** ∈ **C**^{n×n} 为Hermite矩阵,则下列命题 等价:
 - (1) A 是Hermite正定矩阵; (Hermite半正定矩阵)
 - (2) 对任意 **n** 阶可逆矩阵 **P**, **P**^H**AP** 为Hermite正定矩阵; (Hermite半正定矩阵)
 - (3) A 的特征值均为正数; (非负实数)
 - (4) 存在矩阵 $P \in C_n^{n \times n}$, 使 $A = P^H P$. $(P \in C^{n \times n})$

11. 定理1.24 设 **A** = **(a_{ij})** ∈ **C^{n×n}** 是Hermite矩阵,又设

$$A_k = \begin{pmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} \end{pmatrix}, \quad \Delta_k = \det A_k, \quad k = 1, 2, \cdots$$

分别称之为 A 的 k 阶顺序主子阵和顺序主子式,则 A 正定的充分必要条件为 A 的 n 个顺序主子式均为 正数,即 $\Delta_k = \det A_k > 0, k = 1, 2, \cdots, n$.

- 12. 定理1.26 设 **A ∈ C^{m×n}**,则
 - (1) **A^HA** 和 **AA^H** 的特征值均为非负实数;
 - (2) **A^HA** 与 **AA^H** 的非零特征值相同;
 - (3) $\operatorname{rank}(A^H A) = \operatorname{rank}(AA^H) = \operatorname{rank} A$.

证明: (3) 由 Ax = 0,有 $A^{H}Ax = 0$. 反之,若 $A^{H}Ax = 0$,则

$$0 = x^{H}A^{H}Ax = (Ax)^{H}(Ax) = (Ax, Ax).$$

故 Ax = 0. 此即说明方程组 Ax = 0 与 $A^HAx = 0$ 同解,从而它们解空间的维数相同,即

$$n - \operatorname{rank} A = n - \operatorname{rank} (A^H A),$$

所以 $rank A = rank (A^H A)$. 将此式中 $A 用 A^H$ 代替,可得

$$\operatorname{rank}\left[\left(A^{H}\right)^{H}A^{H}\right]=\operatorname{rank}\left(AA^{H}\right)=\operatorname{rank}A^{H}=\operatorname{rank}A.$$

例:设 $A \in C^{n \times n}$ 是 Hermite 矩阵,证明 A 是 Hermite 正定矩阵的充要条件是, 存在 Hermite 正定矩阵 B 使得 $A = B^2$.

证明: \iff 因为 B 是 Hermite 正定矩阵,所以 $B \in C_n^{n \times n}$, 从而 $A = BB = B^H B$ 为正定矩阵。 \implies 因为 A 是 Hermite 正定矩阵, 所以存在酉矩阵 U 使得

$$U^HAU = diag(\lambda_1, \lambda_2, \cdots, \lambda_n)$$

其中 $\lambda_i > 0$ $(i = 1, 2, \dots, n)$ 为 A 的特征值。

那么

$$A = U \operatorname{diag}(\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_n}) \operatorname{diag}(\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_n}) U^H$$

$$= U \operatorname{diag}(\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_n}) U^H U \operatorname{diag}(\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_n}) U^H$$

$$= B^2$$

其中 $B = U \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n}) U^H$ 为正定矩阵。