MATH3431 Machine Learning and Neural Networks III

Epiphany term 2025

Exercise sheet

Lecturer/Author: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Part 1. Convex learning problems

Exercise 1. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ such that $f(w) = g(\langle w, x \rangle + y)$ or some $x \in \mathbb{R}^d$, $y \in \mathbb{R}$. Show that: If g is convex function then f is convex function.

Solution. Let $u, v \in \mathbb{R}^d$ and $a \in [0, 1]$. It is

$$\begin{split} f\left(\alpha u + (1 - \alpha)v\right) &= g\left(<\alpha u + (1 - \alpha)v, x > + y\right) \\ &= g\left(<\alpha u, x > + < (1 - \alpha)v, x > + y\right) \\ &= g\left(\alpha\left(< u, x > + y\right) + (1 - \alpha)\left(< v, x > + y\right)\right) \qquad y = \alpha y + (1 - \alpha)y \\ &\leq \alpha g\left(< u, x > + y\right) + (1 - \alpha)g\left(< v, x > + y\right) \\ &= \alpha f\left(u\right) + (1 - \alpha)f\left(v\right) \end{split} \tag{g is convex}$$

Exercise 2. (*)Let functions g_1 be ρ_1 -Lipschitz and g_2 be ρ_2 -Lipschitz. Then, show that, f with $f(x) = g_1(g_2(x))$ is $\rho_1\rho_2$ -Lipschitz.

Solution.

$$|f(w_1) - f(w_2)| = |g_1(g_2(w_1)) - g_1(g_2(w_2))|$$

$$\leq \rho_1 |g_2(w_1) - g_2(w_2)|$$

$$\leq \rho_1 \rho_2 |w_1 - w_2|$$

Exercise 3. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ with $f(w) = g(\langle w, x \rangle + y)$ $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Let $g: \mathbb{R} \to \mathbb{R}$ be a β -smooth function. Then show that f is a $(\beta ||x||^2)$ -smooth.

Hint:: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

$$f(v) = g(\langle w, x \rangle + y)$$

$$\leq g(\langle w, x \rangle + y) + g'(\langle w, x \rangle + y) \langle v - w, x \rangle + \frac{\beta}{2} (\langle v - w, x \rangle)^{2} \qquad (g \text{ is smooth})$$

$$\leq g(\langle w, x \rangle + y) + g'(\langle w, x \rangle + y) \langle v - w, x \rangle + \frac{\beta}{2} (\|v - w\| \|x\|)^{2} \quad (Cauchy-Schwatz inequality)$$

$$= f(w) + \langle \nabla f(w), v - w \rangle + \frac{\beta \|x\|^{2}}{2} \|v - w\|^{2}$$

Exercise 4. (*)Show that $f: S \to \mathbb{R}$ is ρ -Lipschitz over an open convex set S if and only if for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \le \rho$.

Hint:: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

Solution. \Longrightarrow Let $f: S \to \mathbb{R}$ be ρ -Lipschitz over convex set $S, w \in S$ and $v \in \partial f(w)$.

- Since S is open we get that there exist $\epsilon > 0$ such as $u := w + \epsilon \frac{v}{\|v\|}$ where $u \in S$. So $\langle u w, v \rangle = \epsilon \|v\|$ and $\|u w\| = \epsilon$.
- From the subgradient definition we get

$$f(u) - f(w) \ge \langle u - w, v \rangle = \epsilon ||v||$$

• From the Lipschitzness of $f(\cdot)$ we get

$$f(u) - f(w) \le \rho ||u - w|| = \rho \epsilon$$

Therefore $||v|| \leq \rho$.

 \Leftarrow It is for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \leq \rho$.

• For any $u \in S$, it is

$$f\left(w\right)-f\left(u\right)\leq\left\langle v,w-u\right\rangle \qquad \qquad \text{(because }v\in\partial f\left(w\right)\text{)}$$
 (0.1)
$$\leq\left\|v\right\|\left\|w-u\right\| \qquad \text{by Cauchy-Schwarz inequality}$$

$$\leq\rho\left\|w-u\right\| \qquad \text{because }\left\|v\right\|\leq\rho$$

• Similarly it results $u, w \in S$

$$f(w) - f(u) \le \langle v, u - w \rangle ||v|| \le ||v|| ||u - w|| \le \rho ||u - w||$$

from (0.1) because w, u can be swaped in (0.1) as they both are any values in S.

Exercise 5. (*)Let $g_1(w), ..., g_r(w)$ be r convex functions, and let $f(\cdot) = \max_{\forall j} (g_j(\cdot))$. Show that for some w it is $\nabla g_k(w) \in \partial f(w)$ where $k = \arg \max_j (g_j(w))$ is the index of function $g_j(\cdot)$ presenting the greatest value at w.

Solution. Since g_k is convex, for all u

$$g_k(u) \ge g_k(w) + \langle u - w, \nabla g_k(w) \rangle$$

However $f(u) = \max_{\forall j} (g_j(u)) \ge g_k(u)$ for any j, and $f(w) = g_k(w)$ at w. Then

$$f(u) \ge g_k(u)$$

$$\ge g_k(w) + \langle u - w, \nabla g_k(w) \rangle$$

$$= f(w) + \langle u - w, \nabla g_k(w) \rangle$$

Then by the definition of the sub-gradient $\nabla g_k(w) \in \partial f(w)$

Exercise 6. (*)Consider the regression learning problem $(\mathcal{H}, \mathcal{Z}, \ell)$ with predictor rule $h(x) = \langle w, x \rangle$ labeled by some unknown parameter $w \in \mathcal{W}$, loss function $\ell(w, (x, y)) = (\langle w, x \rangle - y)^2$, feature $x \in \mathcal{X}$, and target $y \in \mathbb{R}$. Let $\mathcal{W} = \mathcal{X} = \{\omega \in \mathbb{R}^d : |\omega| \leq \rho\}$ for some $\rho > 0$.

- (1) Show that the resulting learning problem is Convex-Lipschitz-Bounded learning problem.
- (2) Specify the parameters of Lipschitnzess.

Solution. According to the definitions given in the lecture:

• Convex-Lipschitz-Bounded Learning Problem $(\mathcal{H}, \mathcal{Z}, \ell)$ with parameters ρ , and B, is called the learning problem whose the hypothesis class \mathcal{H} is a convex set, for all $w \in \mathcal{H}$ it is $||w|| \leq B$, and the loss function $\ell(\cdot, z)$ is convex and ρ -Lipschitz function for all $z \in \mathcal{Z}$.

I have:

Convexity: The function $g: \mathbb{R} \to \mathbb{R}$, defined by $g(a) = a^2$ is convex convex. Eg. $\frac{d^2}{da^2}g(a) = 1 \ge 0$ is non-negative. The convexity of $\ell(w, z = (x, y))$ for all z follows as a composition of g with a linear function.

Lipschitzness: The function $g(a) = a^2$ is 1-Lipschitz since It is

$$|g(a_2) - g(a_1)| = |a_2^2 - a_1^2| = |(a_2 + a_1)(a_2 - a_1)| \le 2\rho(a_2 - a_1) = 2\rho|a_2 - a_1|$$

Hence because $|x| \le \rho$, g(a) is $2\rho^2$ -Lipschitz as a composition.

Boundness: The norm of each hypothesis w is bounded by ρ according to the assumptions. Therefore,

- (1) the learning problem under consideration is a Convex-Lipschitz-Bounded learning problem.
- (2) the parameter of Lipschitzness is $2\rho^2$.

Exercise 7. (\star) If f is λ -strongly convex and u is a minimizer of f then for any w

$$f(w) - f(u) \ge \frac{\lambda}{2} \|w - u\|^2$$

Hint:: Use the definition, and set $\alpha \to 0$.

Solution.

Exercise 8. (*) Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex and β -smooth function.

(1) Show that for $v, w \in \mathbb{R}^d$

$$f(v) - f(w) \in \left(\left\langle \nabla f(w), v - w \right\rangle, \left\langle \nabla f(w), v - w \right\rangle + \frac{\beta}{2} \|v - w\|^2 \right)$$

(2) Show that for $v, w \in \mathbb{R}^d$ such that $v = w - \frac{1}{\beta} \nabla f(w)$, it is

$$\frac{1}{2\beta} \left\| \nabla f(w) \right\|^2 \le f(w) - f(v)$$

(3) Additionally assume that f(x) > 0 for all $x \in \mathbb{R}^d$. Show that for $w \in \mathbb{R}^d$,

$$\|\nabla f\left(w\right)\| \le \sqrt{2\beta f\left(w\right)}$$

Solution.

Exercise 9. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ be a λ -strongly convex function. Assume that w^* is a minimizer of f i.e.

$$w^* = \operatorname*{arg\,min}_{w} \left\{ f\left(w\right) \right\}$$

Show that for any $w \in \mathbb{R}^d$ it holds

$$f(w) - f(w^*) \ge \frac{\lambda}{2} \|w - w^*\|^2$$

Hint: Use the definition of λ -strongly convex function, properly rearrange it, and ...

Solution.

Exercise 10. (*)Show that the function $J(x; \lambda) = \lambda ||x||^2$ is 2λ -strongly convex

Solution. We just need to check that for all w, u, and $\alpha \in (0,1)$ we have

$$J(aw + (1 - \alpha)u; \lambda) \le aJ(w; \lambda) + (1 - \alpha)J(u; \lambda) - \frac{2\lambda}{2}\alpha(1 - \alpha)\|w - u\|^2 \iff \|aw + (1 - \alpha)u\|_2^2 \le a\|w\|_2^2 + (1 - \alpha)\|u\|_2^2 - a(1 - \alpha)\|w - u\|_2^2 \iff 0 \le 0$$

Exercise 11. $(\star\star\star\star)$ Consider a learning problem $(\mathcal{H}, \mathcal{Z}, \ell)$ with $\mathcal{H} \subset \mathbb{R}^d$, d > 0, and loss function $\ell : \mathcal{H} \times \mathcal{Z} \to \mathbb{R}_+$ which is convex, β -smooth and non-negative. Let \mathfrak{A} be a learning algorithm with output $\mathfrak{A}(\mathcal{S})$ trained against training dataset $\mathcal{S} = \{z_1, ..., z_m\}$ of IID samples $z_1, ..., z_m \sim g$ Page 4 Created on 2025/01/15 at 19:32:11 by Georgios Karagiannis

where g is a data generating distribution. In particular, consider that $\mathfrak{A}(\mathcal{S})$ is the Regularized Loss Minimization learning rule that outputs a hypothesis in

$$\min_{w} \left\{ \hat{R}_{\mathcal{S}}\left(w\right) + \lambda \left\|w\right\|_{2}^{2} \right\}$$

for $\lambda \geq \frac{2\beta}{m}$ where $\hat{R}_{\mathcal{S}}(w) = \frac{1}{m} \sum_{i=1}^{m} \ell(w, z_i)$ for all $w \in \mathcal{H}$.

(1) Prove that

$$E_{S\sim g}\left(\hat{R}_{S}\left(\mathfrak{A}\left(S\right)\right)\right)\leq R_{g}\left(w\right)+\lambda\left\Vert w\right\Vert_{2}^{2}$$

for all $w \in \mathcal{H}$. $R_g(\cdot)$ denotes the risk function under the real data generating distribution q.

(2) Prove that

$$E_{\mathcal{S}\sim g}\left(R_g\left(\mathfrak{A}\left(\mathcal{S}\right)\right) - \hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right) \leq \frac{48\beta}{\lambda m} E_{\mathcal{S}\sim g}\left(\hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right).$$

Hint:: If needed you can use the following:

Let $S^{(i)} = \{z_1, ..., z_{i-1}, z', z_{i+1}, ..., z_m\}$ be a set resulting from S by replacing its i-th element z_i with an independently drawn $z' \sim g$. Then

$$24\beta\ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)+\lambda m\ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)+24\beta\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z'\right)-\lambda m\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z_{i}\right)\geq0$$

- (3) Show that the learning algorithm \mathfrak{A} is on-average-replace-one-stable with rate ε . Specify that rate ε as a function of β , λ , m and possibly any other user specified constants if needed. Explain how the shrinkage parameter λ , the training dataset size m, and the smoothness parameter β affect the stability of the learning algorithm \mathfrak{A} .
- (4) Show that the expected risk is bounded as follows

$$\mathbb{E}_{\mathcal{S} \sim g} \left(R_g \left(\mathfrak{A} \left(\mathcal{S} \right) \right) \right) \le \left(1 + \frac{48\beta}{\lambda m} \right) \left(R_g \left(w \right) + \lambda \|w\|_2^2 \right)$$

for all $w \in \mathcal{H}$.

Solution.

(1) We have

$$\hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right) \leq \hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right) + \lambda \left\|\mathfrak{A}\left(\mathcal{S}\right)\right\|_{2}^{2}$$

$$\leq \hat{R}_{\mathcal{S}}\left(w\right) + \lambda \left\|w\right\|_{2}^{2}; \quad \forall w \in \mathcal{W}$$

and by taking expectations w.r.t. S, it is

(0.2)
$$\mathbb{E}_{\mathcal{S} \sim g} \left(\hat{R}_{\mathcal{S}} \left(\mathfrak{A} \left(\mathcal{S} \right) \right) \right) \leq R_g \left(w \right) + \lambda \left\| w \right\|_2^2; \quad \forall w \in \mathcal{W}$$

because $\mathbb{E}_{S \sim g} \left(\hat{R}_{S} \left(\cdot \right) \right) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{S \sim g} \left(\ell \left(\cdot, z_{i} \right) \right) = R_{g} \left(\cdot \right).$

(2) From a well known theorem to us, it is

$$E_{\mathcal{S} \sim g}\left(R_{g}\left(\mathfrak{A}\left(\mathcal{S}\right)\right) - \hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right) = E_{\mathcal{S},z',i}\left(\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z_{i}\right) - \ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)\right)$$

Now I ll gonna work on the second term as this is what I ve given in the hint...

It is

$$24\beta\ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)+\lambda m\ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)+24\beta\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z'\right)-\lambda m\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z_{i}\right)\geq0\Leftrightarrow$$

$$\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z_{i}\right)-\ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)\leq\frac{24\beta}{\lambda m}\left(\ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)+\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z'\right)\right)$$

Taking expectations

$$E_{\mathcal{S},z',i}\left(\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z_{i}\right)-\ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)\right)\leq\frac{24\beta}{\lambda m}E_{\mathcal{S},z',i}\left(\ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)+\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z'\right)\right)$$

Due to the sampling it is

$$E_{\mathcal{S}}\left(\ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)\right)=E_{\mathcal{S},z',i}\left(\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z'\right)\right)=E_{\mathcal{S}\sim g}\left(\hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right)$$

So I get

$$E_{\mathcal{S},z',i}\left(\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z_{i}\right)-\ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)\right)\leq\frac{48\beta}{\lambda m}E_{\mathcal{S}\sim g}\left(\hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right).$$

So I get

$$E_{\mathcal{S}\sim g}\left(R_g\left(\mathfrak{A}\left(\mathcal{S}\right)\right) - \hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right) \leq \frac{48\beta}{\lambda m} E_{\mathcal{S}\sim g}\left(\hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right).$$

(3) Okay, let's say, I did not do the previous part. I see it is

$$E_{\mathcal{S}\sim g}\left(R_g\left(\mathfrak{A}\left(\mathcal{S}\right)\right) - \hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right) \leq \frac{48\beta}{\lambda m} E_{\mathcal{S}\sim g}\left(\hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right).$$

From a well known theorem to us, it is

$$E_{\mathcal{S}\sim g}\left(R_{g}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)-\hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right)=E_{\mathcal{S},z',i}\left(\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z_{i}\right)-\ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)\right)$$

So

$$\mathbb{E}_{\mathcal{S},z',i}\left(\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z_{i}\right)-\ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)\right)\leq\frac{48\beta}{\lambda m}\mathbb{E}_{\mathcal{S}\sim g}\left(\hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right)$$

but the expectation depends on m... so

$$E_{\mathcal{S},z',i}\left(\ell\left(\mathfrak{A}\left(\mathcal{S}^{(i)}\right),z_{i}\right)-\ell\left(\mathfrak{A}\left(\mathcal{S}\right),z_{i}\right)\right) \leq \frac{48\beta}{\lambda m}E_{\mathcal{S}\sim g}\left(\hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right) \\
\leq \frac{48\beta}{\lambda m}E_{\mathcal{S}\sim g}\left(\hat{R}_{\mathcal{S}}\left(0\right)\right) \\
\leq \frac{48\beta}{\lambda m}E_{\mathcal{S}\sim g}\left(\max\hat{R}_{\mathcal{S}}\left(0\right)\right) \\
\leq \frac{48\beta}{\lambda m}E_{\mathcal{S}\sim g}\left(\frac{1}{m}\sum_{i=1}^{n}\underbrace{\max\ell\left(0,z_{i}\right)}_{=C}\right) \\
\leq \frac{48\beta}{\lambda m}C$$

so it is the learning algorithm $\mathfrak A$ is on-average-replace-one-stable with rate

$$\varepsilon = \frac{48\beta}{\lambda m}C$$

and $C = \max \ell(0, z_i)$...or whatever constant they pick.

Larger training sample size m, and larger regularization parameter λ (eg more parsimonious model) lead to a more stable learning algorithm. Smaller smoothness parameter (the gradient changes less wrt the argument) leads to more stable learning algorithm.

(4) We use the decomposition discussed in the lectures,

$$\mathbf{E}_{\mathcal{S}\sim g}\left(R_{g}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right) = \underbrace{\mathbf{E}_{\mathcal{S}\sim g}\left(\hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right)}_{\leq \mathbf{E}_{\mathcal{S}\sim g}\left(\hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right) + \underbrace{\mathbf{E}_{\mathcal{S}\sim g}\left(\hat{R}_{g}\left(\mathfrak{A}\left(\mathcal{S}\right)\right) - \hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right)}_{\leq \mathbf{E}_{\mathcal{S}\sim g}\left(\hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right) + \underbrace{\frac{48\beta}{\lambda m}}_{\leq \mathcal{S}\sim g}\left(\hat{R}_{\mathcal{S}}\left(\mathfrak{A}\left(\mathcal{S}\right)\right)\right) \\
\leq \left(1 + \frac{48\beta}{\lambda m}\right)\left(R_{g}\left(w\right) + \lambda \|w\|_{2}^{2}\right), \ \forall w \in \mathcal{H}$$

Part 2. Stochastic learning

Exercise 12. (\star) Assume a Bayesian model

$$\begin{cases} z_{i}|w & \stackrel{\text{ind}}{\sim} f\left(z_{i}|w\right), \ i = 1, ..., n \\ w & \sim f\left(w\right) \end{cases}$$

and consider that our objective is the discovery of MAP estimate w^* i.e.

$$w^* = \arg\min_{\forall w \in \Theta} \left(-\log\left(L_n\left(w\right)\right) - f\left(w\right)\right) = \arg\min_{\forall w \in \Theta} \left(-\sum_{i=1}^n \log\left(f\left(z_i|w\right)\right) - \log\left(f\left(w\right)\right)\right)$$

by using SGD with update

$$w^{(t+1)} = w^{(t)} + \eta_t \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f\left(z_j | w^{(t)}\right) \right) + \nabla_w \log \left(f\left(w^{(t)}\right) \right) \right)$$

for some randomly selected set $\mathcal{J}^{(t)} \subseteq \{1,...,n\}^m$ of m integers from 1 to n via simple random sampling (SRS) with replacement. Show that

$$\mathbb{E}_{\mathcal{J}^{(t)} \sim \text{simple-random-sampling}} \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f\left(z_j | w^{(t)}\right) \right) \right) = \sum_{i=1}^n \nabla_w \log \left(f\left(z_i | w^{(t)}\right) \right)$$

Solution. It is

$$E_{\mathcal{J}^{(t)} \sim SRS} \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f \left(z_j | w^{(t)} \right) \right) \right) = \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} E_{\mathcal{J}^{(t)} \sim SRS} \left(\nabla_w \log \left(f \left(z_j | w^{(t)} \right) \right) \right)$$

$$= \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} E_{\mathcal{J}^{(t)} \sim SRS} \left(\nabla_w \log \left(f \left(z_j | w^{(t)} \right) \right) \right)$$

$$= \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \frac{1}{n} \sum_{i=1}^{n} \nabla_w \log \left(f \left(z_i | w^{(t)} \right) \right)$$

$$= \sum_{i=1}^{n} \nabla_w \log \left(f \left(z_i | w^{(t)} \right) \right)$$

It is $E_{\mathcal{J}^{(t)} \sim SRS}\left(\nabla_w \log\left(f\left(z_j|w^{(t)}\right)\right)\right) = \frac{1}{n}\sum_{i=1}^n \nabla_w \log\left(f\left(z_i|w^{(t)}\right)\right)$ because the expectation is under the probability I get randomly an integer and for the *j*th on the probability is 1/n due to the random scheme. Also $|\mathcal{J}^{(t)}| = m$.

Exercise 13. (*) Let $\{v_t; t = 1, ..., T\}$ be a sequence of vectors with $v_t \in \mathbb{R}^d$ and $d \in \mathbb{N} - \{0\}$. Consider an algorithm producing $\{w^{(t)}; t = 1, 2, 3, ...\}$ with

$$w^{(1)} = 0$$
$$w^{(t+1)} = w^{(t)} - \eta v_t$$

 $w_t \in \mathbb{R}^d$ and $d \in \mathbb{N} - \{0\}$. Show that

(1) it is

$$\langle w^{(t)} - w^*, v_t \rangle = \frac{1}{2\eta} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \left\| v_t \right\|^2$$

Hint:: Recall that

$$\|x+y\|_{2}^{2}=\|x\|_{2}^{2}+\|y\|_{2}^{2}+2\left\langle x,y\right\rangle ,\;\forall x,y\in\mathbb{R}^{d},d\in\mathbb{N}-\{0\}$$

(2) it is

$$\sum_{t=1}^{T} \langle w^{(t)} - w^*, v_t \rangle = \frac{1}{2\eta} \sum_{t=1}^{T} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$$

(3) (continue) it is

$$\sum_{t=1}^{T} \langle w^{(t)} - w^*, v_t \rangle \le \frac{\|w^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$$

Solution.

(1) It is

$$\left\langle w^{(t)} - w^*, v_t \right\rangle = \frac{1}{\eta} \left\langle w^{(t)} - w^*, \eta v_t \right\rangle$$
$$= \frac{1}{\eta} \left(-\left\langle w^{(t)} - w^*, -\eta v_t \right\rangle \right)$$

Then by using the Hint as

$$\langle x, y \rangle = \frac{1}{2} \left(\|x + y\|_2^2 - \|x\|_2^2 - \|y\|_2^2 \right)$$

for $x = w^{(t)} - w^* \in \mathbb{R}^d$ and $y = -\eta v_t \in \mathbb{R}^d$, I get

$$\left\langle w^{(t)} - w^*, v_t \right\rangle = \frac{1}{2\eta} \left(-\left\| w^{(t)} - w^* - \eta v_t \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 + \left\| - \eta v_t \right\|^2 \right)$$

$$= \frac{1}{2\eta} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 + \eta^2 \left\| v_t \right\|^2 \right)$$

$$= \frac{1}{2\eta} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \left\| v_t \right\|^2$$

(2) So

$$\begin{split} \sum_{t=1}^{T} \left\langle w^{(t)} - w^*, v_t \right\rangle &= \frac{1}{2\eta} \sum_{t=1}^{T} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2 \\ &= \frac{1}{2\eta} \left(\left\| w^{(1)} - w^* \right\|^2 - \left\| w^{(T+1)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2 \end{split}$$

(3) So

$$\sum_{t=1}^{T} \left\langle w^{(t)} - w^*, v_t \right\rangle = \frac{1}{2\eta} \left(\left\| w^{(1)} - w^* \right\|^2 - \left\| w^{(T+1)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \left\| v_t \right\|^2$$

$$\leq \frac{1}{2\eta} \left\| w^{(1)} - w^* \right\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \left\| v_t \right\|^2$$

$$= \frac{1}{2\eta} \left\| w^* \right\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \left\| v_t \right\|^2$$

Exercise 14. (*) Let $\{v_t; t = 1, ..., T\}$ be a sequence of vectors. Consider an algorithm producing $\{w^{(t)}; t = 1, 2, 3, ...\}$ with

$$w^{(1)} = 0$$

$$w^{(t+\frac{1}{2})} = w^{(t)} - \eta v_t$$

$$w^{(t+1)} = \arg\min_{w \in \mathcal{H}} \left(\left\| w - w^{(t+\frac{1}{2})} \right\| \right)$$

for t = 1, ..., T.

Hint: You can use the following Lemma

(**Projection Lemma**): Let \mathcal{H} be a closed convex set and let v be the projection of w onto \mathcal{H} ,i.e.

$$v = \operatorname*{arg\,min}_{x \in \mathcal{H}} \|x - w\|^2$$

then for every $u \in \mathcal{H}$ it is

$$||v - u||^2 \le ||w - u||^2$$

Show that

(1) it is

$$\langle w^{(t)} - w^*, v_t \rangle \le \frac{1}{2\eta} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \left\| v_t \right\|^2$$

(2) it is

$$\sum_{t=1}^{T} \langle w^{(t)} - w^*, v_t \rangle \le \frac{1}{2\eta} \sum_{t=1}^{T} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \left\| v_t \right\|^2$$

(3) (continue) it is

$$\sum_{t=1}^{T} \langle w^{(t)} - w^*, v_t \rangle \le \frac{\|w^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$$

Comment: Above we show that Lemma ?? from "Handout ??: Gradient descent" holds even when a projection step is included. Hence, even if a projection step is included after the update step of the recursion of GD algorithm or the SGD algorithm the analysis in Section ?? in "Handout ??: Gradient descent" holds. Hence, even if a projection step is included after the update step of the recursion of SGD algorithm or the SGD algorithm the analysis in Section ?? in "Handout ??: Stochastic gradient descent" holds.

Solution.

(1) It is

$$\left\langle w^{(t)} - w^*, v_t \right\rangle = \frac{1}{\eta} \left\langle w^{(t)} - w^*, \eta v_t \right\rangle$$

$$= \frac{1}{2\eta} \left(-\left\| w^{(t)} - w^* - \eta v_t \right\|^2 + \left\| w^{(t)} - w^* \right\| + \eta^2 \|v_t\|^2 \right)$$

$$= \frac{1}{2\eta} \left(-\left\| w^{(t+\frac{1}{2})} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\| + \eta^2 \|v_t\|^2 \right)$$

$$= \frac{1}{2\eta} \left(-\left\| w^{(t+\frac{1}{2})} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\| \right) + \frac{\eta}{2} \|v_t\|^2$$

$$\leq \frac{1}{2\eta} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\| \right) + \frac{\eta}{2} \|v_t\|^2$$

because from the Projection Lemma

$$\left\| w^{(t+1)} - w^* \right\|^2 \le \left\| w^{\left(t + \frac{1}{2}\right)} - w^* \right\|^2$$

$$(2)$$
 So

$$\sum_{t=1}^{T} \left\langle w^{(t)} - w^*, v_t \right\rangle \le \frac{1}{2\eta} \sum_{t=1}^{T} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\| \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$$

$$= \frac{1}{2\eta} \left(\left\| w^{(1)} - w^* \right\|^2 - \left\| w^{(T+1)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$$

(3) So

$$\begin{split} \sum_{t=1}^{T} \left\langle w^{(t)} - w^*, v_t \right\rangle &\leq \frac{1}{2\eta} \left(\left\| w^{(1)} - w^* \right\|^2 - \left\| w^{(T+1)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \left\| v_t \right\|^2 \\ &\leq \frac{1}{2\eta} \left\| w^{(1)} - w^* \right\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \left\| v_t \right\|^2 \\ &= \frac{1}{2\eta} \left\| w^* \right\|^2 + \frac{\eta}{2} \sum_{t=1}^{T} \left\| v_t \right\|^2 \end{split}$$

Exercise 15. (\star) Consider the binary classification problem with inputs $x \in \mathcal{X}$ where $\mathcal{X} :=$ $\{x \in \mathbb{R}^d : ||x||_2 \le L\}$ for some given value L > 0, target $y \in \mathcal{Y}$ where $\mathcal{Y} := \{-1, +1\}$, and prediction rule $h_w: \mathbb{R}^d \to \{-1, +1\}$ with

$$(0.3) h_w(x) = \operatorname{sign}\left(w^{\top}x\right)$$

$$(0.4) = \operatorname{sign}\left(\sum_{j=1}^{d} w_j x_j\right)$$

Let the hypothesis class is

$$(0.5) \mathcal{H} = \left\{ x \to w^{\top} x : \forall w \in \mathbb{R}^d \right\}$$

In other words, the hypothesis $h_w \in \mathcal{H}$ is parametrized by $w \in \mathbb{R}^d$, it receives an input vector $x \in \mathcal{X} := \mathbb{R}^d$ and it returns the label $y = \text{sign}\left(w^\top x\right) \in \mathcal{Y} := \{\pm 1\}$ where

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi < 0\\ +1, & \text{if } \xi > 0 \end{cases}$$

Consider a loss function $\ell: \mathbb{R}^d \to \mathbb{R}_+$ with

(0.6)
$$\ell(w, z = (x, y)) = \max(0, 1 - yw^{\top}x) + \lambda ||w||_{2}^{2}$$

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi < 0\\ +1, & \text{if } \xi > 0 \end{cases}$$

 ± 1 means either -1 or +1, $\mathbb{R}_+ := (0, +\infty)$, and $\|x\|_2 := \sqrt{\sum_{\forall j} (x_j)^2}$ for the Euclidean distance. Page 11 Created on 2025/01/15 at 19:32:11 by Geo

by Georgios Karagiannis

¹We use standard notation

for some given value $\lambda > 0$.

Assume there is available a dataset of examples $S_n = \{z_i = (x_i, y_i); i = 1, ..., n\}$ of size n. Do the following:

(1) Show that the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1 - x)$ is convex in \mathbb{R} ; and show that the loss (0.6) is convex.

Hint:: You may use Proposition ?? from Handout ??: Elements of convex learning problems.

(2) Show that the loss $\ell(w, z)$ for $\lambda = 0$ (0.6) is L-Lipschitz (with respect to w) when $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}$.

Hint: You may use the definition of Lipschitz function. Without loss of generality, you can consider any $w_1 \in \mathbb{R}^d$ and $w_2 \in \mathbb{R}^d$ such that $1 - yw_2^\top x \le 1 - yw_1^\top x$, and then take cases $1 - yw_2^\top x > \text{or} < 0$ and $1 - yw_1^\top x > \text{or} < 0$ to deal with the max.

(3) Construct the set of sub-gradients $\partial f(x)$ for $x \in \mathbb{R}$ of the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1-x)$. Show that the vector v with

$$v = \begin{cases} 2\lambda w, & yw^{\top}x > 1\\ 2\lambda w, & yw^{\top}x = 1\\ -yx + 2\lambda w, & yw^{\top}x < 1 \end{cases}$$

is $v \in \partial_w \ell(w, z = (x, y))$, aka a sub-gradient of $\ell(w, z = (x, y))$ at w, for any $w \in \mathbb{R}^d$.

(4) Write down the algorithm of online AdaGrad (Adaptive Stochastic Gradient Descent) with learning rate $\eta_t > 0$, batch size m, and termination criterion $t > T_{\text{max}}$ for some $T_{\text{max}} > 0$ in order to discover w^* such as

(0.7)
$$w^* = \arg\min_{\forall w: h_w \in \mathcal{H}} \left(\mathbb{E}_{z \sim g} \left(\ell \left(w, z = (x, y) \right) \right) \right)$$

The formulas in your algorithm should be implemented for the above learning problem and tailored to 0.3, 0.5, and 0.6.

- (5) Use the R code given below in order to generate the dataset of observed examples $S_n = \{z_i = (x_i, y_i)\}_{i=1}^n$ that contains $n = 10^6$ examples with inputs x of dimension d = 2. Consider $\lambda = 0$. Use a seed $w^{(0)} = (0, 0)^{\top}$.
 - (a) By using appropriate values for m, η_t and T_{max} , code in R the algorithm you designed in part 4, and run it.
 - (b) Plot the trace plots for each of the dimensions of the generated chain $\{w^{(t)}\}$ against the iteration t.
 - (c) Report the value of the output w_{adaGrad}^* (any type) of the algorithm as the solution to (0.7).
 - (d) To which cluster y (i.e., -1 or 1) $x_{\text{new}} = (1,0)^{\top}$ belongs?

```
# R code. Run it before you run anything else
data_generating_model <- function(n,w) {</pre>
z <- rep( NaN, times=n*3 )
z <- matrix(z, nrow = n, ncol = 3)</pre>
z[,1] \leftarrow rep(1,times=n)
z[,2] \leftarrow runif(n, min = -10, max = 10)
p \leftarrow w[1]*z[,1] + w[2]*z[,2] p \leftarrow exp(p) / (1+exp(p))
z[,3] \leftarrow rbinom(n, size = 1, prob = p)
ind <-(z[,3]==0)
z[ind,3] < -1
x < z[,1:2]
y < -z[,3]
return(list(z=z, x=x, y=y))
n_obs <- 1000000
w_{true} <- c(-3,4)
set.seed(2023)
out <- data_generating_model(n = n_obs, w = w_true)</pre>
set.seed(0)
z_{obs} \leftarrow out$z #z=(x,y)
x \leftarrow \text{out}
y <- out$y
#z_obs2=z_obs
\#z_obs2[z_obs[,3]==-1,3]=0
#w_true <- as.numeric(glm(z_obs2[,3]~ 1+ z_obs2[,2],family = "binomial"</pre>
)$coefficients)
```

Solution.

Part 3. Support Vector Machines

Part 4. The kernel trick

Part 5. Multi-class classification

- Part 6. Artificial Neural Networks
- Part 7. Gaussian process regression
- Part 8. Revision