The MOISCRUST dataset:

a spatio-temporal continuous soil moisture dataset from a Mediterranean semiarid dryland from 2006 to 2020 SUPPLEMENTARY MATERIALS

Joaquín Moreno^{1,2} Beatriz Gozalo² Sergio Asensio² Victoria Ochoa² Miguel Berdugo^{2,3} Blas M. Benito²

Fernando T. Maestre^{2,4}

Contents

1	data frame test	2
2	Reproducing this workflow	3
3	Installing and loading the required libraries	3
4	Data loading and preparation4.1 Loading the data4.2 Formatting dates and times4.3 Reordering columns4.4 To long format4.5 Data visualization4.6 Number of NA per time-series	5 6
5	Developing criteria to find candidates for gap filling	8
6	Gap filling 6.1 Gap filling, step by step	
7	Visualizing the interpolated time series	17
8	Data base formatting	19

9 Saving the data base in different formats

19

1 data frame test

A bit of text to see

how it looks.

```
library(tidyverse)
library(kableExtra)
x <- as.data.frame(matrix(NA, 10, 10))
kableExtra::kbl(x, booktabs = TRUE) %>%
    kable_styling(
    position = "center",
    latex_options = c("HOLD_position", "striped", "repeat_header"),
    bootstrap_options = c("striped", "hover")
    )
```

V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
NA									

¹ Corresponding author, e-mail: joaquin.moreno@ua.es

² Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Spain.

³ Institut Department of Environmental Systems Science, ETH Zürich. Universitätstrasse 16, 8092 Zurich, Switzerland.

⁴ Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain.

2 Reproducing this workflow

This workflow is packaged with renv to facilitate reproducibility. To run this interactive note-book in your machine, please, execute first the code chunk below. You will need to replace eval = FALSE with eval = TRUE in the header of the code chunk.

```
install.packages("renv")
library(renv)
renv::restore()
```

3 Installing and loading the required libraries

```
#automatic install of packages if they are not readily available
required_packages <- c(
 "data.table",
 "janitor",
 "tidyverse",
 "kableExtra",
 "foreach",
 "doParallel",
 "readr",
 "writexl",
 "RSQLite",
 "zip"
packages_to_install <- required_packages[
 !(required_packages %in% installed.packages()[,"Package"])
 ]
#installing missing packages
if(length(packages_to_install) > 0){
 install.packages(
  packages_to_install,
  dep = TRUE,
  Ncpus = parallel::detectCores() - 1
}
#loading packages
invisible(lapply(required_packages, library, character.only = TRUE))
```

```
#removing objects
rm(
    packages_to_install,
    required_packages
)

#knitr options
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE)
knit_hooks$set(document = function(x) {sub('\usepackage[]{color}', '\usepackage{xcolor}', x, fixed = TRUE)})
```

4 Data loading and preparation

4.1 Loading the data

```
#load, clean names, and rename time columns
moiscrust <- data.table::fread(file = "moiscrust_raw.csv") %>%
janitor::clean_names() %>%
dplyr::rename(
  date = dates,
  time = hour
) %>%
as.data.frame()
```

4.2 Formatting dates and times

```
#date to Year-month-day
moiscrust$date <- format(
as.POSIXct(
    strptime(
        moiscrust$date,
        "%d/%m/%Y",
        tz = ""
        )
        ),
        format = "%Y-%m-%d"
        )

#time to Hour-Minute
moiscrust$time <- format(
as.POSIXct(</pre>
```

```
strptime(
   moiscrust$time,
   "%H:%M:%S",
   tz = ""
  )
 ),
format = "%H:%M"
)
#joining date and time
moiscrust$date_time <- as.POSIXct(</pre>
 paste(
  moiscrust$date,
  moiscrust$time
 ),
format="%Y-%m-%d %H:%M"
)
#unique id for each observation
moiscrust$date_time_id <- 1:nrow(moiscrust)</pre>
#creating year, month, and day related columns
moiscrust$year <- lubridate::year(moiscrust$date)</pre>
moiscrust$year_day <- lubridate::yday(moiscrust$date)</pre>
moiscrust$month <- lubridate::month(moiscrust$date)</pre>
moiscrust$month_day <- lubridate::mday(moiscrust$date)</pre>
moiscrust$week <- lubridate::week(moiscrust$date)</pre>
moiscrust$week_day <- lubridate::wday(moiscrust$date)</pre>
```

4.3 Reordering columns

```
#names of the sensors

sensors <- c(

"retama5094",

"retama5062",

"retama5063",

"stipa5094",

"stipa5063",

"bs_cl5094",

"bs_cl5062",
```

```
"bs_cl5063",
 "bs_cm5094",
 "bs_cm5062",
 "bs_cm5063",
 "bs_ch5094",
 "bs_ch5062",
 "bs_ch5063"
#reordering columns of moiscrust to have time in the left side
moiscrust <- moiscrust[, c(
 "date_time",
 "date_time_id",
 "date",
 "time",
 "year",
 "year_day",
 "month",
 "month_day",
 "week",
 "week_day",
 sensors
)]
```

4.4 To long format

```
#to long format
moiscrust_long <- tidyr::pivot_longer(
  moiscrust,
  cols = all_of(sensors),
  names_to = "sensor",
  values_to = "soil_moisture"
)</pre>
```

4.5 Data visualization

```
ggplot(moiscrust_long) +
facet_wrap("year", scales = "free_x", ncol = 2) +
aes(x = year_day, y = sensor, fill = soil_moisture) +
geom_tile() +
```

```
coord_cartesian(expand = FALSE) +
theme_bw() +
scale_fill_viridis_c(direction = -1, na.value = "white", option = "B") +
theme(legend.position = "bottom") +
ylab("") +
xlab("Day of the year") +
ggtitle("MOISCRUST database (raw data)") +
labs(fill = expression("Volumetric water content (cm³ water / cm³ soil)")) +
theme(legend.key.width = unit(1, "cm"))
ggsave(width = 12, height = 17, filename = "MOISCRUST_raw.pdf")
```

4.6 Number of NA per time-series

```
#counting NA values per sensor
moiscrust_NA <- moiscrust_long %>%
group_by(sensor) %>%
summarise(na_count = sum(is.na(soil_moisture))) %>%
mutate(na_count_percent = round((na_count * 100) / nrow(moiscrust), 1))
#adding sensor sensor_group to the moiscrust_NA data frame
moiscrust_NA$sensor_group <- c(</pre>
"biocrust high",
"biocrust high",
"biocrust_high",
"biocrust_low",
"biocrust_low",
"biocrust_low",
"biocrust_medium",
"biocrust medium",
"biocrust medium",
"retama",
"retama",
"retama",
"stipa",
"stipa",
"stipa"
#reordering columns and arranging by na_count
moiscrust NA <- moiscrust NA[, c(
```

```
"sensor",

"sensor_group",

"na_count",

"na_count_percent"

)] %>%

dplyr::arrange(na_count) %>%

as.data.frame()

#showing the table

kableExtra::kbl(moiscrust_NA)
```

5 Developing criteria to find candidates for gap filling

```
#combining sensors in pairs x-y
sensors_pairs <- combn(
 x = sensors,
 m = 2
) %>%
 t() %>%
 as.data.frame()
#adding combinations y-x so all pairs have both directions
#removing repeated pairs
#joining with moiscrust_NA to get sensor groups
#add column same_sensor_group to check if x and y are or not in the same sensor group
#add empty columns to store % of shared data, model's R squared, and model ID
sensors_pairs <- sensors_pairs %>%
 rbind(
  data.frame(
   V1 = sensors_pairs$V2,
   V2 = sensors_pairs$V1
 ) %>%
 distinct(
  V1,
  V2,
  .keep_all = TRUE
 ) %>%
 left_join(
  moiscrust_NA[, c("sensor", "sensor_group")],
```

```
by = c("V1" = "sensor")
) %>%
left_join(
  moiscrust_NA[, c("sensor", "sensor_group")],
  by = c("V2" = "sensor")
) %>%
 rename(
 y = V1,
 x = V2,
  sensor_group_y = sensor_group.x, #not a mistake
  sensor_group_x = sensor_group.y, #not a mistake
) %>%
 mutate(
  same_sensor_group = ifelse(
   sensor_group_x == sensor_group_y,
  TRUE,
   FALSE
  ),
  valid_cases_shared_percent = NA,
  sensors_r_squared = NA,
  model_id = row_number()
)
#list to store models
sensors_pairs_models <- list()</pre>
#looping through sensors pairs to:
#fit Im model y ~ x and save it in sensors_pairs_models
for(i in 1:nrow(sensors_pairs)){
#names of the sensors y and x
y_i <- sensors_pairs[i, "y"]</pre>
x_i <- sensors_pairs[i, "x"]
#data of the sensor pair
sensor_pair_i <- moiscrust[, c(y_i, x_i)]</pre>
#complete cases of the sensor pair
sensor_pair_i <- sensor_pair_i[complete.cases(sensor_pair_i), ]
```

```
#common cases
 sensors_pairs[i, "valid_cases_shared_percent"] <-</pre>
  nrow(sensor_pair_i) / nrow(moiscrust) * 100
 #R squared of the sensor pair
 sensors_pairs[i, "sensors_r_squared"] <- cor(</pre>
  sensor_pair_i[, 1],
  sensor_pair_i[, 2]
  )
 #model formula y ~ x
 formula_i <- as.formula(paste(y_i, "~", x_i))
 #linear model
 sensors_pairs_models[[i]] <- Im(
  formula = formula_i,
  data = sensor_pair_i
 )
}
#selection score to find candidates during gap filling
#(sensors_r_squared * 100) +
#valid_cases_shared_percent +
#same_sensor_group (TRUE = 100, FALSE = 0)
sensors_pairs <- mutate(</pre>
 sensors_pairs,
 selection_score =
  (sensors_r_squared * 100) +
  valid_cases_shared_percent +
  ifelse(same_sensor_group == TRUE, 100, 0)
#removing objects we don't need
rm(
 sensor_pair_i,
 formula_i,
 i,
 x_i,
 y_i
```

```
#garbage collection
invisible(gc())
```

6 Gap filling

To fill the gaps we go row by row, and for each cell, we find the model that better fits the criteria

```
#creating data frame of predictors
x <- moiscrust[, sensors]
#creating data frame to store model results
y <- matrix(
 data = NA,
 nrow = nrow(moiscrust),
 ncol = 12
 ) %>%
 as.data.frame()
#new colnames
colnames(y) <- c(
 "interpolated",
 "model_estimate",
 "model_ci_lower",
 "model_ci_upper",
 "model_predictor",
 "same_sensor_group",
 "sensors_r_squared",
 "valid_cases_shared_percent",
 "selection_score",
 "date_time_id",
 "sensor",
 "sensor_group"
 )
#transferring time id
y[, "date_time_id"] <- moiscrust[, "date_time_id"]</pre>
y[, "interpolated"] <- FALSE
```

6.1 Gap filling, step by step

The steps to fill the gaps in the MOISCRUST database go as follows:

1. A given sensor name is selected: "stipa5063"

```
sensor = "stipa5063"
```

2. The sensors pairs from the table sensors_pairs where the selected sensor is y (the response variable) are selected.

```
sensors_pair <- sensors_pairs %>%

dplyr::filter(y == sensor)
```

3. The first row of the dataset x is selected.

```
x_row <- x[1, ]
```

- **3.1.** If there is a recorded value of soil moisture for the sensor "stipa5063", goes to the next row, until there is a row with NA.
- **4.** If there is an empty value, the potential candidate predictors are selected from the row by removing sensors with NA, and the target sensor.

```
predictor_candidates <- as.vector(x[1, ])
predictor_candidates <- predictor_candidates[which(
   !is.na(predictor_candidates) &
        names(predictor_candidates) != sensor
)]</pre>
```

5. From these predictors, the one with the highest selection score is selected from sensors_pair generated in the step **2.**.

```
best_predictor <- sensors_pair %>%

dplyr::filter(x %in% names(predictor_candidates)) %>%

dplyr::arrange(desc(selection_score)) %>%

dplyr::slice(1)
```

6. The model to use, stored in the list sensors_pairs_models, is selected from the value best_predictor\$model_id, and used to predict a value for the empty cell.

```
predict(
  object = sensors_pairs_models[[best_predictor$model_id]],
  newdata = x_row,
  se.fit = TRUE,
  type = "response",
  interval = "confidence"
)$fit
```

7. These values and others available in best_predictor are transferred to the same row in the

matrix y.

8. Once all the sensors and rows have been processed this way, the matrix y is joined with moiscrust_long, and its interpolated values are transferred to the soil_moisture column, along with other columns indicating the quality of the interpolation.

6.2 Applying gap filling to the whole dataset

The code applies the algorithm explained above to every sensor and row. Sensors are processed in parallel to speed up the gap-filling operation.

```
#setup for parallel execution
if(.Platform$OS.type == "windows"){
 temp_cluster <- parallel::makeCluster(
  parallel::detectCores() - 1,
  type = "PSOCK"
 )
} else {
 temp_cluster <- parallel::makeCluster(
  parallel::detectCores() - 1,
  type = "FORK"
 )
doParallel::registerDoParallel(cl = temp_cluster)
#parallelized loop (each sensor is processed in one separated thread)
moiscrust_interpolation <- foreach::foreach(
 sensor_i = sensors
) %dopar% {
 #subset sensors_pairs
 sensors_pair_i <- sensors_pairs %>%
  dplyr::filter(y == sensor_i)
 #scanning the rows of x one by one
 for(row_i in 1:nrow(x)){
  #if is not NA, next iteration
  if(!is.na(x[row_i, sensor_i])){next}
  #getting target row row
  x_row_i <- x[row_i,]
```

```
#getting predictor candidates available in x_row_i
 predictor_candidates_i <- as.vector(x_row_i)</pre>
 predictor_candidates_i <- predictor_candidates_i[which(</pre>
  !is.na(predictor_candidates_i) &
   names(predictor_candidates_i) != sensor_i
  )]
 #selecting the predictor candidate with the best selection_score score
 best_predictor_i <- sensors_pair_i %>%
  dplyr::filter(x %in% names(predictor_candidates_i)) %>%
  dplyr::arrange(desc(selection_score)) %>%
  dplyr::slice(1)
 #if there is no best candidate available, next iteration
 if(nrow(best_predictor_i) == 0){next}
 #compute estimates with the model of the best predictor
 y[row_i, c(
  "model_estimate",
  "model_ci_lower",
  "model_ci_upper"
  )] <- predict(
   object = sensors_pairs_models[[best_predictor_i$model_id]],
   newdata = x_row_i,
   se.fit = TRUE,
   type = "response",
   interval = "confidence"
   )$fit
 #adding interpolation flag
 y[row_i, "interpolated"] <- TRUE
 y[row_i, "model_predictor"] <- best_predictor_i$x
 y[row_i, "sensors_r_squared"] <- best_predictor_i$sensors_r_squared
 y[row_i, "selection_score"] <- best_predictor_i$selection_score
 y[row_i, "valid_cases_shared_percent"] <- best_predictor_i$valid_cases_shared_percent
 y[row_i, "sensor_group"] <- best_predictor_i$sensor_group_y
 y[row_i, "same_sensor_group"] <- best_predictor_i$same_sensor_group
}
#adding sensor_i name
```

```
y[, "sensor"] <- sensor_i

return(y)
}
#stop cluster
parallel::stopCluster(temp_cluster)
#removing loop objects
rm(
    x,
    y,
    temp_cluster
)</pre>
```

To data frame and joining with moiscrust_long

```
#naming the output
names(moiscrust_interpolation) <- sensors</pre>
#to data frame
moiscrust_interpolation_long <- do.call(</pre>
 "rbind",
 moiscrust_interpolation
)
#joining with moiscrust_long
moiscrust_long <- dplyr::left_join(
 moiscrust_long,
 moiscrust_interpolation_long,
 by = c("date_time_id", "sensor")
)
#transferring estimates to the soil_moisture column
moiscrust_long$soil_moisture <- ifelse(</pre>
 is.na(moiscrust_long$soil_moisture),
 moiscrust_long$model_estimate,
 moiscrust_long$soil_moisture
)
#adding a interpolation_quality flag following the criteria in the paper
```

```
moiscrust_long$interpolation_quality <- ifelse(</pre>
 moiscrust_long$sensors_r_squared > 0.85 &
 moiscrust_long$valid_cases_shared_percent > 20,
 "acceptable",
 "poor"
)
#filling NA with "observation"
moiscrust_long[
 is.na(moiscrust_long$interpolation_quality), "interpolation_quality"
 ] <- "observation"
#adding NA where there are no values
moiscrust_long[is.na(moiscrust_long$soil_moisture), "interpolation_quality"] <- NA
#computing number of NA cases again
moiscrust_NA <- moiscrust_long %>%
 group_by(sensor) %>%
 summarise(na_count_after = sum(is.na(soil_moisture))) %>%
 mutate(na_count_percent_after = round((na_count_after * 100) / nrow(moiscrust), 1)) %>%
 left_join(
 y = moiscrust_NA,
  by = "sensor"
 ) %>%
 transmute(
  sensor,
  na_count_before = na_count,
  na_count_after,
  na_count_percent_before = na_count_percent,
  na_count_percent_after
 )
#removing moiscrust_interpolation
rm(moiscrust_interpolation)
```

The interpolation has removed all gaps where there was a value to interpolate from.

```
kableExtra::kbl(
moiscrust_NA,
col.names = c(
    "Sensor",
    "NA before interpolation",
```

```
"NA after interpolation",
"NA % before interpolation",
"NA % after interpolation"
)
```

7 Visualizing the interpolated time series

Quality of the interpolation

```
ggplot(moiscrust_long) +
facet_wrap(
  "year",
  scales = "free_x",
  ncol = 2
 ) +
 aes(
  x = year_day,
 y = sensor,
  fill = factor(
   interpolation_quality,
   levels = c(
    "observation",
    "acceptable",
    "poor"
    )
   )
 ) +
geom_tile() +
coord_cartesian(expand = FALSE) +
theme_bw() +
scale_fill_viridis_d(
  direction = -1,
  begin = 0.1,
  end = 0.8,
  na.value = "white",
  option = "B"
 ) +
 theme(legend.position = "top") +
ylab("") +
xlab("Day of the year") +
```

```
ggtitle("MOISCRUST database (data quality)") +
labs(
  fill = expression("Data quality")) +
theme(legend.key.width = unit(1, "cm"))

ggsave(
  width = 12,
  height = 17,
  filename = "MOISCRUST_interpolated_quality.pdf"
)
```

The r squared between the predicted sensor values and the predictor are shown with transparency. Interpolated records with higher transparency may have lower quality.

```
ggplot(moiscrust_long) +
facet_wrap(
  "year",
 scales = "free_x",
 ncol = 2
 ) +
 aes(
 x = year_day,
 y = sensor,
 fill = soil_moisture
 ) +
geom_tile() +
coord_cartesian(expand = FALSE) +
theme_bw() +
scale_fill_viridis_c(
  direction = -1,
  na.value = "white",
 option = "B"
 ) +
 theme(legend.position = "top") +
ylab("") +
xlab("Day of the year") +
ggtitle("MOISCRUST database (observed and interpolated records)") +
labs(fill = expression("Volumetric water content (cm³ water / cm³ soil)")) +
theme(legend.key.width = unit(0.8, "cm"))
ggsave(width = 12, height = 17, filename = "MOISCRUST_interpolated.pdf")
```

8 Data base formatting

The dataset moiscrust_long is the database in long format already.

Its columns are:

- · date time: date and time in POSIX format.
- date_time_id: integer, unique ID for each value of date_time.
- date: date in format year-month-day.
- time: time in format hour-minute.
- year: integer, year.
- year_day: integer, day of the year.
- month: integer, month number.
- week: integer, week of the year.
- week_day: integer, day of the week.
- sensor: character, sensor name.
- soil_moisture: numeric, soil moisture value in m^3water/m^3soil .
- interpolated: boolean, TRUE for interpolated records and FALSE for observations.
- model_estimate: numeric, prediction of the linear model.
- model_ci_lower: numeric, lower bound of the confidence interval of the estimate.
- model_ci_upper: numeric, upper bound of the confidence interval of the estimate.
- model_predictor: character, name of the sensor used as predictor in the linear model.
- same_sensor_group: boolean, TRUE if the sensor and its predictor are in the same group ("stipa", "retama", "biocrust_low", "biocrust_medium", "biocrust_high").
- sensors_r_squared: numeric, R squared between sensor and model_predictor.
- valid_cases_shared_percent: numeric, percentage of shared valid cases between sensor and model_predictor, taking the total number of values in date_time_id as reference.
- selection_score: numeric, value used to select the model_predictor, based on the sum of same_sensor_group (100 if TRUE and 0 if FALSE), sensors_r_squared multiplied by 100, and valid_cases_shared_percent.
- interpolation_quality: character, with the values "observation" for observations, "acceptable" for interpolated values where sensors_r_squared is higher than 0.85 and valid_cases_shared_percent is higher than 20, and "poor" for interpolated values below at least one of these thresholds.

9 Saving the data base in different formats

To expand its usability as much as possible, we provide the data in four different formats: .RData, .csv, .xlsx, and SQLite.

#create directory for the database
dir.create("database")

```
#rename dataset
moiscrust <- moiscrust_long
#save as RData
save(
 moiscrust,
 file = "database/moiscrust.RData"
 )
#save as csv
write_excel_csv(
 x = moiscrust,
 path = "database/moiscrust.csv"
)
#save as excel file
write_xlsx(
x = moiscrust,
 path = "database/moiscrust.xlsx"
)
#save as SQLite
drv <- dbDriver("SQLite")</pre>
tfile <- "database/moiscrust.db"
con <- dbConnect(drv, dbname = "database/moiscrust.db")</pre>
dbWriteTable(con, "moiscrust", moiscrust, overwrite = TRUE)
dbDisconnect(con)
#compressing the file
zip(
 zipfile = "database.zip",
 files = "database"
```