

MT00 Chapitre 1

Algèbre linéaire: Tour d'horizon

Equipe pédagogique de MT00 Elias Khoury UTSEUS Printemps 2024

- - Les systèmes linéaires
 - Espaces vectoriels
 - **Matrices**
 - Déterminant
 - Diagonalisation
 - 6 Espaces euclidiens

Les systèmes linéaires

- Les systèmes linéaires
- Espaces vectoriels
- Matrices
- 4 Déterminant
- 5 Diagonalisation
- 6 Espaces euclidiens

Notations

$$Ax = b$$

- A matrice des coefficients à n lignes et p colonnes
- Ecriture sous forme de système d'équations.
- b, second membre, vecteur de Rⁿ.
- x, les inconnues, vecteur de R^p.
- Système homogène lorsque $b = \vec{0}$

Types de solutions

Aucune solution.

$$\begin{cases} x+y = 5 \\ 2x+2y = 9 \end{cases}$$

Solution unique.

$$\begin{cases} x+y = 5 \\ 2x-y = 1 \end{cases}$$

Une infinité de solutions (droite, plan, espace,...).

$$\begin{cases} x+y = 5 \\ 2x+2y = 10 \end{cases}$$

Résolution d'un système homogène

- $\longrightarrow \vec{0}$ toujours solution.
- → Méthode quasi générale.
 - Descente de Gauss.
 - Identification des inconnues principales.
 - Basculer éventuellement les autres inconnues au second membre.
 - Résolution par remontée.
 - Obtention d'une base de solutions.

$$\begin{cases} x+y-2z+t &= 0\\ x+2y+z-4t &= 0\\ x+3y+4z-9t &= 0\\ x-y-8z+11t &= 0 \end{cases}$$

Espaces vectoriels

- Les systèmes linéaires
- Espaces vectoriels
- Matrices
- 4 Déterminant
- Diagonalisation
- 6 Espaces euclidiens

Définitions

- \longrightarrow Structure associée à un espace de vecteurs E (opération addition) et à un corps K (formé de scalaires, opération multiplication) et vérifiant 9 axiomes.
- \longrightarrow Les ensembles les plus connus pour K: R ou C.
- \longrightarrow Les ensembles les plus connus pour $E: \mathbb{R}^n$, \mathbb{C}^n et $\mathcal{F}([a,b],\mathbb{R})$.
- \longrightarrow Pour les autres espaces vectoriels, on montre qu'ils sont des sous-espaces vectoriels.

Définitions

- \longrightarrow Structure associée à un espace de vecteurs E (opération addition) et à un corps K (formé de scalaires, opération multiplication) et vérifiant 9 axiomes.
- \longrightarrow Les ensembles les plus connus pour K: R ou C.
- \longrightarrow Les ensembles les plus connus pour $E: \mathbb{R}^n$, \mathbb{C}^n et $\mathcal{F}([a,b],\mathbb{R})$.
- \longrightarrow Pour les autres espaces vectoriels, on montre qu'ils sont des sous-espaces vectoriels.

Propriété

Un sous-ensemble F de E est un sous-espace vectoriel de E si et seulement si :

- **1** $F \neq \emptyset$;
- $2 \quad [\overrightarrow{x} \in F, \overrightarrow{y} \in F \Rightarrow \overrightarrow{x} + \overrightarrow{y} \in F] \text{ (stabilité pour l'addition) };$
- 3 $\left[\lambda \in K, \overrightarrow{X} \in F \Rightarrow \lambda \cdot \overrightarrow{X} \in F\right]$ (stabilité pour la multiplication scalaire).

Exemples et contre-exemples

- $F = \{(x, y) \in R^2 | x + y = 0\}$
- F = combinaisons des vecteurs (1,2,3) et (4,5,0).
- F = |es polynômes de degré ≤ 4 .
- $F = \text{les polynômes P de degré} \le 4 \text{ tels que P(1)=0}$.
- $F = \{(x, y) \in R^2 | x^2 = y^2 \}$
- $F = \{(x, y) \in R^2 | x + y = 1\}$
- $F = \text{les polynômes P de degré} \le 4 \text{ tels que P(0)} = 1.$
- F = les polynômes P de degré 4.

Sous espace somme, somme directe

Propriété

Si F et G sont deux sous-espaces vectoriels du même e.v. E, alors $F \cap G$ est également un sous-espace vectoriel de E.

Ce n'est pas le cas pour $F \cup G$ en général...

Sous espace somme, somme directe

Propriété

Si F et G sont deux sous-espaces vectoriels du même e.v. E, alors $F\cap G$ est également un sous-espace vectoriel de E.

Ce n'est pas le cas pour $F \cup G$ en général...

Définition

Soient F et G deux sous-espaces vectoriels d'un même e.v. E, le sous-ensemble H de E défini par $H = \left\{ \overrightarrow{Z} = \overrightarrow{X} + \overrightarrow{y} / \overrightarrow{X} \in F, \overrightarrow{y} \in G \right\}$ est le sous-espace vectoriel somme de F et de G, noté F + G.

Sous espace somme, somme directe

Propriété

Si F et G sont deux sous-espaces vectoriels du même e.v. E, alors $F \cap G$ est également un sous-espace vectoriel de E.

Ce n'est pas le cas pour $F \cup G$ en général...

Définition

Soient F et G deux sous-espaces vectoriels d'un même e.v. E, le sous-ensemble H de E défini par $H = \{\overrightarrow{z} = \overrightarrow{x} + \overrightarrow{y}/\overrightarrow{x} \in F, \overrightarrow{y} \in G\}$ est le **sous-espace vectoriel somme** de F et de G, noté F + G.

Définition

On dit que F et G sont en **somme directe** si $F \cap G = \{\overrightarrow{0}\}$ et on note alors $H = F \oplus G$ au lieu de F + G.

Définition

On dit que deux s-e.v. F et G d'un même espace vectoriel E sont **supplémentaires** si F et G sont en somme directe et si, en plus, on a $E=F\oplus G$, i.e. si l'espace somme de F et de G est E tout entier.

Définition

On dit que deux s-e.v. F et G d'un même espace vectoriel E sont supplémentaires si F et G sont en somme directe et si, en plus, on a $E=F\oplus G$, i.e. si l'espace somme de F et de G est E tout entier.

Propriété

Si on a $H = F \oplus G$, alors

$$\forall \overrightarrow{z} \in H, \exists! \left(\overrightarrow{x}, \overrightarrow{y}\right) \in F \times G, \overrightarrow{z} = \overrightarrow{x} + \overrightarrow{y}$$

Définition

On dit que deux s-e.v. F et G d'un même espace vectoriel E sont **supplémentaires** si F et G sont en somme directe et si, en plus, on a $E=F\oplus G$, i.e. si l'espace somme de F et de G est E tout entier.

Propriété

Si on a $H = F \oplus G$, alors

$$\forall \overrightarrow{z} \in H, \exists! (\overrightarrow{x}, \overrightarrow{y}) \in F \times G, \overrightarrow{z} = \overrightarrow{x} + \overrightarrow{y}$$

Si on lit "montrer que E=F+G" (avec F et G deux sous-espaces de E), qu'est-ce que cela veut dire ?

Définition

On dit que deux s-e.v. F et G d'un même espace vectoriel E sont **supplémentaires** si F et G sont en somme directe et si, en plus, on a $E=F\oplus G$, i.e. si l'espace somme de F et de G est E tout entier.

Propriété

Si on a $H = F \oplus G$, alors

$$\forall \overrightarrow{z} \in H, \exists! (\overrightarrow{x}, \overrightarrow{y}) \in F \times G, \overrightarrow{z} = \overrightarrow{x} + \overrightarrow{y}$$

Si on lit "montrer que E=F+G" (avec F et G deux sous-espaces de E), qu'est-ce que cela veut dire ?

Exemple

Si on prend
$$E = \mathbb{R}^3$$
, $F = \{(x, y, z) \in \mathbb{R}^3 / x = y\}$ et $G = \{(x, y, z) \in \mathbb{R}^3 / x = z\}$, a-t-on $E = F + G$? A-t-on $E = F \oplus G$?

Famille libre - Famille liée

Définition

Une famille de vecteurs de $E\left(\vec{v_1},\vec{v_2},\ldots,\vec{v_p}\right)$ est liée si au moins un des vecteurs peut s'exprimer en fonction d'une combinaison linéaire des autres i.e. s'il existe des nombres $\lambda_1,\lambda_2,\ldots,\lambda_p$ de K qui **ne sont pas tous nuls** tels que

$$\lambda_1 \overrightarrow{v_1} + \lambda_2 \overrightarrow{v_2} + \dots + \lambda_p \overrightarrow{v_p} = \overrightarrow{0}$$

Définition

Une famille $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_p}\}$ qui n'est pas liée est une famille **libre** (!) ce qui signifie que l'on a, dans ce cas :

$$\left[\lambda_{1}\overrightarrow{v_{1}} + \lambda_{2}\overrightarrow{v_{2}} + \dots + \lambda_{p}\overrightarrow{v_{p}} = \overrightarrow{0}\right] \Leftrightarrow \left[\lambda_{1} = \lambda_{2} = \dots = \lambda_{p} = 0\right]$$

$$E = R^4$$
, $\vec{v_1} = (1, 1, 1, 1)$, $\vec{v_2} = (1, 0, 0, 0)$, $\vec{v_3} = (0, 0, 0, 0)$, $\vec{v_4} = (3, 2, 2, 2)$

On retire successivement les vecteurs dépendants afin d'obtenir la dimension de (l'espace engendré par) la famille de vecteurs.

Famille génératrice

Définition

Une famille de vecteurs $(\vec{v_1}, \vec{v_2}, \dots, \vec{v_p})$ est génératrice de E si tout élément de E peut s'écrire comme combinaison linéaire des vecteurs $\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}$ i.e.

$$\forall \overrightarrow{x} \in E, \exists \lambda_1 \in K, \exists \lambda_2 \in K, \dots, \exists \lambda_p \in K, \overrightarrow{x} = \lambda_1 \overrightarrow{v_1} + \lambda_2 \overrightarrow{v_2} + \dots + \lambda_p \overrightarrow{v_p}$$

$$E = R^2$$
, $\vec{v_1} = (1,1)$, $\vec{v_2} = (1,0)$, $\vec{v_3} = (1,3)$, $\vec{v_4} = (0,0)$

$$E = R^3$$
, $\vec{v_1} = (1, 1, 0)$, $\vec{v_2} = (1, 0, 0)$, $\vec{v_3} = (2, 2, 0)$, $\vec{v_4} = (0, 0, 0)$

Base et dimension

Définition

Une famille de vecteurs $(\vec{v_1}, \vec{v_2}, \dots, \vec{v_p})$ est une base de E si cette famille est libre et génératrice de E.

- \longrightarrow Le nombre p (s'il existe) de vecteurs de la base de E est la dimension de l'espace E (dimension finie).
- $\longrightarrow \mathsf{Infinit\'e} \ \mathsf{potentie} | \mathsf{le} \ \mathsf{de} \ \mathsf{bases}, \ \mathsf{mais} \ \mathsf{toujours} \ | \mathsf{e} \ \mathsf{m\'eme} \ \mathsf{nombre} \ \mathsf{d'\'e} | \mathsf{\'e} \mathsf{ments}.$
 - $\{(1,0,0),(0,1,0),(0,0,1)\}$ base (canonique)de R^3 (dimension 3).
 - $\{(1,-1),(0,1)\}$ base de R^2 (dimension 2).
 - $\{(1, X, X^2)\}$, base des polynômes de degré ≤ 2 (dimension 3).
 - $\mathcal{F}([a,b],R)$ de dimension infinie.

Résultats "plus pratiques"

Théorème

Soit $\mathcal{B} = \{\overrightarrow{e_1}, \overrightarrow{e_2}, \dots, \overrightarrow{e_n}\}$ une famille de vecteurs de E. Il est équivalent de constater que :

- $oldsymbol{1} \mathcal{B}$ est une base ;
- 2 \mathcal{B} est une famille génératrice *minimale*;
- 3 \mathcal{B} est une famille libre maximale.

Propriété

Soient E un espace vectoriel de dimension n, F et G deux sous-espaces vectoriels de E tels que $F \cap G = \{ \overline{0} \}$. Alors :

- 1 Toute famille libre comportant n vecteurs est une base;
- 2 Toute famille génératrice comportant *n* vecteurs est une base ;
- $3 \dim(F) \leq \dim(E)$;
- $4 \dim(F \oplus G) = \dim(F) + \dim(G) (\leq \dim(E));$
- $\{E = F \oplus G\} \Leftrightarrow \{\dim(F) + \dim(G) = \dim(E)\}$

Matrices

- Les systèmes linéaires
- Espaces vectoriels
- Matrices
- 4 Déterminant
- 5 Diagonalisation
- 6 Espaces euclidiens

Application linéaire

Définition

E et F deux espaces vectoriels. f une application de E vers F est linéaire si elle vérifie:

$$\forall \vec{x} \in E , \forall \vec{y} \in E , \forall \lambda \in K , f(\lambda \vec{x} + \vec{y}) = \lambda f(\vec{x}) + f(\vec{y})$$

- $E = R^2, F = R^3 f(x, y) = (x + y, x 3y, y)$
- $E = F = R^2$ Rotation de centre 0 et d'angle 90 degrés.
- $E = F = R^3$ Projection au sol parallèlelement à (Oz).
- $E = F = R^2$ Symétrie axiale d'axe y = x.
- $E = \text{polynômes de degré 2}, F = R^2 f(P) = (P(0), P'(1))$

Image et Noyau

Définition

E et F deux espaces vectoriels. f une application linéaire de E vers F.

- Le noyau de f est l'espace vectoriel $\ker(f) = \{\vec{x} \in E | f(\vec{x}) = 0\}$ (ensemble des vecteurs de E où f s'annule)
- L'image de f est l'espace vectoriel Im(f), partie de F et espace image des vecteurs de E par f.

•
$$E = R^2$$
, $F = R^3$ $f(x,y) = (x + y, x - 3y, y)$
 $ker(f) = (0,0)$ base de $Im(f) = \{(1,1,0), (1,-3,1)\}$

• $E = F = R^2$ Rotation de centre 0 et d'angle 90 degrés.

$$ker(f) = (0,0) \ Im(f) = R^2$$

• $E = F = R^3$ Projection au sol parallèlelement à (Oz).

$$ker(f) = (Oz)$$
 $Im(f) = le sol (z=0)$

Image et Noyau (suite)

•
$$E = F = R^2$$
 Symétrie axiale d'axe $y = x$.

$$ker(f) = (0,0) \ Im(f) = R^2$$

•
$$E = \text{polynômes de degré 2}, F = R^2 f(P) = (P(0), P'(1))$$

base du noyau
$$P(X) = X^2 - 2X$$
 $Im(f) = R^2$

 \longrightarrow On appelle rang de f la dimension de l'image dim(Im(f)).

Image et Noyau (suite)

• $E = F = R^2$ Symétrie axiale d'axe y = x.

$$ker(f) = (0,0) \ Im(f) = R^2$$

• $E = \text{polynômes de degré 2}, F = R^2 f(P) = (P(0), P'(1))$

base du noyau
$$P(X) = X^2 - 2X$$
 $Im(f) = R^2$

 \longrightarrow On appelle rang de f la dimension de l'image dim(Im(f)).

Théorème du rang

dim(E) = rg(f) + dim(ker(f))

→ L'utilisation de la dimension permet de faciliter de très nombreux calculs.

Matrices

→ Obtenir une écriture simple et complète de toutes les applications linéaires.

Définition

E et F deux espaces vectoriels.

E de dimension n avec une base $B=(\vec{e_1},\vec{e_2},\ldots,\vec{e_n})$

F de dimension p avec une base $B' = (\vec{f_1}, \vec{f_2}, \dots, \vec{f_p})$

f est entièrement déterminée par la matrice A de f de B vers B', tableau à p lignes et n colonnes.

La j-ème colonne de A contient les coordonnée de $f(\vec{e_i})$ dans la base B'.

 \longrightarrow On choisit naturellement les bases les plus simples (canoniques) pour B et B'.

→ Matrices particulières: carrée, diagonale, triangulaire, identité, vecteur colonne, vecteur ligne.

•
$$E = R^2, F = R^3 f(x, y) = (x + y, x - 3y, y)$$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -3 \\ 0 & 1 \end{pmatrix}$$

Matrices (suite)

• $E = F = R^2$ Rotation de centre 0 et d'angle 90 degrés.

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

• $E = F = R^3$ Projection au sol parallèlelement à (Oz).

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• $E = F = R^2$ Symétrie axiale d'axe y = x.

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

• $E = \text{polynômes de degré 2}, F = R^2 f(P) = (P(0), P'(1))$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

Opérations matricielles

- Addition: C = A + B. Addition terme à terme. Correspond à additioner deux applications lináires (même dimension).
- Multiplication par une constante: $C = \lambda A$. Chaque coefficient est multiplié par λ . Correspond à la matrice de l'application linéaire λf .
- Produit matriciel: C = AB. Multiplication ligne par colonne. Le nombre de colonnes de A doit être égal au nombre de lignes de B. Correspond à la matrice de l'application linéaire de la composition des deux applications linéaires.
 - → On peut effectuer les opérations par bloc si les matrices sont simples.

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} , B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

$$C = \begin{pmatrix} 0 & 1 & -1 \\ 3 & 5 & 2 \\ 2 & 3 & 1 \\ 1 & 3 & 0 \end{pmatrix}$$

Opérations matricielles (suite)

- Transposition: $C = A^T$. Interversion lignes/colonnes: $c_{i,j} = a_{j,i}$.
- Inverse : $C = A^{-1}$. A doit être carrée et la famille des vecteurs colonnes libre. A^{-1} correspond à la matrice de l'application réciproque de f.
- \longrightarrow En particulier, $AA^{-1} = I$.
- \longrightarrow De nombreuses techniques sont employées pour inverser une matrice (système linéaire AX=Y, déterminant, polynôme minimal,...)

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix} , A^{-1} = \begin{pmatrix} 1 & 2 & -4 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

Evaluation, Système linéaire, Noyau, Image

- Déterminer l'image d'un vecteur $\vec{y} = f(\vec{x})$ revient à effectuer le produit Y = AX où Y est le vecteur colonne associé à \vec{y}
- Tout système linéaire peut se mettre sous forme matricielle AX = Y. Si la solution est unique, on peut alors écrire $A^{-1}Y = X$.
- Résoudre $f(\vec{x}) = \vec{0}$ revient à résoudre l'équation AX = 0. L'ensemble des vecteurs X vérifiant cette égalité est appelé noyau de A Ker(A).
- L'image de A Im(A) correspond à l'ensemble des combinaisons linéaires des colonnes de A.

Matrice de passage

- \longrightarrow On peut être amené à travailler d'une (ancienne) base $B=(\vec{e_1},\vec{e_2},\ldots,\vec{e_n})$ vers une (nouvelle) base $B'=(\vec{f_1},\vec{f_2},\ldots,\vec{f_n})$.
- \longrightarrow La matrice de passage permet de faciliter les calculs de changement de base (pour un vecteur, une matrice,...).

Définition

La matrice de pasage P contient dans ses vecteurs colonnes les coordoonées des vecteurs de la nouvelle base en fonction des vecteurs de l'ancienne base.

$$E = R^3$$
, $B = \{(1,0,0), (0,1,0), (0,0,1)\}$, $B' = \{(1,2,3), (4,5,6), (7,8,9)\}$,
$$P = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$

utseu

Formules de changement de base

 $\longrightarrow P$ est inversible et P^{-1} est naturellement la matrice de passage de la nouvelle base vers l'ancienne.

 $\longrightarrow X$ coordonnées dans l'ancienne base et X' coordonnées dans la nouvelle base.

$$X = PX'$$

 \longrightarrow Soit une application linéaire f de E dans E. Soit A la matrice de f de l'ancienne base vers l'ancienne base. Soit A' la matrice de f de la nouvelle base vers la nouvelle base.

$$A' = P^{-1}AP$$

→ Si les espaces (et donc les bases) de départ et d'arrivée diffèrent, il existe une formule générale analogue de type

$$A' = Q^{-1}AP$$

où P est la matrice de passage des bases de E et Q est la matrice de passage des bases de F.

Déterminant

- Les systèmes linéaires
- Espaces vectoriels
- Matrices
- 4 Déterminant
- Diagonalisation
- 6 Espaces euclidiens

Définition

 \longrightarrow On peut associer à une matrice carrée de taille n une notion de n-D volume algébrique (longueur, aire, volume).

Définition

Le déterminant d'une matrice carrée vérifie les propriétés suivantes:

- Il s'agit d'une forme multi-linéaire (linéaire suivant chaque colonne)
- Un déterminant est nul si les colonnes sont liées.
- Les matrices identités ont un déterminant 1.
- → Il existe une définition alternative à base de permutations.
- \longrightarrow Ces deux définitions sont assez peu utilisées en pratique.

Opérations élémentaires

Matrice de taille 2:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

- Matrice triangulaire (en particulier diagonale): le déterminant est le produit des éléments diagonaux
- Matrice contenant une ligne ou colonne de 0: le déterminant est nul.
- Si A est de taille n, $det(\lambda A) = \lambda^n det(A)$
- Rajouter à une colonne une combinaison des autres colonnes.
- Rajouter à une ligne une combinaison des autres lignes.
- det(AB) = det(A)det(B)
- $det(A^T) = det(A)$

Développement suivant une colonne ou ligne

→ A effectuer de préférence lorsque de nombreux sont zéros sont présents sur une ligne ou colonne.

Définition

On appelle cofacteur de l'élément aii le scalaire suivant:

$$cof(a_{ij}) = (-1)^{i+j} det(A_{ij})$$

où A_{ii} est obtenue en retranchant la i-ème ligne et j-ème colonne de A.

Théorème

Développement suivant la i-ème ligne:

$$det(A) = \sum_{j=1..n} a_{ij} cof(a_{ij})$$

Développement suivant la j-ème colonne:

$$det(A) = \sum_{i=1, p} a_{ij} cof(a_{ij})$$

Exemples

$$A = \begin{vmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix}$$

$$b_{ij} = min(i, j)$$

$$c_{ij} = max(i, j)$$

$$D = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^{2} & y^{2} & z^{2} \end{vmatrix}$$

Propriétés

Théorème

Une matrice est inversible si et seulement si son déterminant est non nul.

Théorème

Soit Co(A) la matrice formée des cofacteurs. Si A est inversible alors:

$$A^{-1} = \frac{Co(A)^T}{\det(A)}$$

- → On préfèrera un calcul direct ou l'utilisation d'un système linéaire pour

inverser par exemple
$$A = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{pmatrix}$$

Diagonalisation

- Les systèmes linéaires
- Espaces vectoriels
- Matrices
- 4 Déterminant
- 5 Diagonalisation
- 6 Espaces euclidiens

Objectifs

- → Dans cette section, on ne considère que des applications de E dans E (endomorphismes de taille n).
- \longrightarrow On souhaite utiliser une application linéaire f et ses convolutions $f \circ f \circ f$. On dispose de deux bases possibles:
 - Une base $B=(\vec{e_1},\ldots,\vec{e_n})$ où la matrice associée A est quelconque, i.e. ne contenant que très peu de zéros.
 - Une base $B'=(\vec{e_1'},\ldots,\vec{e_n'})$ où la matrice associée A' est diagonale.
- \longrightarrow Quelle est la complexité K (nombre d'opérations) afin de calculer la p-ème convolée de f?
 - Avec la base B, $K = (p-1)*((2n-1)n^2)$.
 - Avec la base B', K = (p-1) * (n).
- \longrightarrow Si on note λ_i le i-ème élément diagonal de A', cela signifie par définition que:

$$f(\vec{e_i'}) = \lambda_i \vec{e_i'}$$

- \longrightarrow Nous avons mis en évidence les propriétés des valeurs propres (λ_i) et des vecteurs propres $(\vec{e_i'})$
- ---- On souhaite obtenir une base de vecteurs propres.

Résolution d'équations différentielles

 $\longrightarrow P$ est inversible et P^{-1} est naturellement la matrice de passage de la nouvelle base vers l'ancienne.

--- homogène à coefficients constants et sans second membre.

$$y'' = 5y' - 6y , y(0) = 1 , y'(0) = 0$$

$$H(t) = D = \begin{pmatrix} y(t) \\ y'(t) \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 \\ -6 & 5 \end{pmatrix} P = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$

$$H(t) = K\vec{v}_1 e^{2t} + L\vec{v}_2 e^{3t}$$

$$y(t) = 3e^{2t} - 2e^{3t}$$

Systèmes différrentiels

→ Systèmes couplés.

$$\begin{cases} x'(t) &= 4x(t) - 2y(t) \\ y'(t) &= 3x(t) - y(t) \end{cases}$$
$$x(0) = y(0) = 1$$
$$\begin{cases} x(t) &= -4e^{t} + 5e^{2t} \\ y(t) &= -6e^{t} + 5e^{2t} \end{cases}$$

Espaces euclidiens

- Les systèmes linéaires
- Espaces vectoriels
- Matrices
- 4 Déterminant
- Diagonalisation
- 6 Espaces euclidiens

Produit scalaire

Définition

Un produit scalaire vérifie:

- forme bilinéaire
- forme symétrique
- forme positive
- forme définie
- \longrightarrow Produit scalaire usuel dans R^n .
- \longrightarrow Produit scalaire à base de matrices rélles symétriques définies positives.

Norme et distance

Définition

Une norme vérifie:

- positivité
- séparation
- homogénéité
- inégalité triangulaire
- → norme la plus classique: la norme euclidienne.
- \longrightarrow Norme 1,2,infinie.
- → Définir une distance à partir d'une norme.
- → distance euclidienne, distance de Manhattan (taxicab), distance de

Tchebychev (chessboard)

→ Autres distances (orthodromique)

Orthogonalité

- → Deux vecteurs sont orthogonaux si leur produit scalaire est nul.
- → famille orthonormale.
- \longrightarrow Gain en terme de complexité à utiliser une base orthonormale
- → La notion d'orthogonalité est essentielle pour définir le principe de plus court chemin, de distance à une droite/plan, de projection.
- \longrightarrow Existence de procédé d'orthogonalisation en présence d'une base quelconque.
- \longrightarrow Matrices orthogonales $(P^TP = I)$.

Exemple de problèmes d'optimisation dans les espaces euclidiens

 \longrightarrow La droite des moindres carrés ($Y = X\beta + \varepsilon$)

$$\widehat{\beta} = (X^T X)^{-1} X^T Y$$

— Traitement des résidus à l'aide de modèles statistiques (régression linéaire multiple gaussienne).

- → Machine Learning Support Vecteur Machine Méthode à noyau.
- \longrightarrow Hyperplan (affine) de séparation (poids et biais).
- → Distance d'un point à un hyperplan, problème de max-min (minimisation).
- → Méthode à noyau (kernel trick).
- --- Généralisation multiclasse.
- → Analyse en composantes principales
- \longrightarrow Matrice de covariance.
- \longrightarrow Trouver l'axe sur lequel la dispersion est la plus forte (variance).
- \longrightarrow Axes les plus pertinents correspondent à obtenir des vecteurs propres associés aux valeurs propres de plus grande amplitude.
- → Première étape avant d'effectuer une classification (CAH).