Liesel in Statistical Research

Model Building, Simulation Studies, Technical Details

Johannes Brachem Gianmarco Calleger

Thomas Kneib Hannes Riebl

Paul F.V. Wiemann

Contents

- 1. Liesel in statistical research
 - Workflows
 - Case studies
- 2. Using Liesel...
 - ... with Conda
 - ... with Quarto
 - ... for simulation studies
- 3. Exercises

Liesel in statistical research

Workflows with Liesel

Case study 1: bivariate normal responses

Illustration of the bivariate normal distribution (from Wikipedia)

Case study 1: bivariate normal responses (cont'd)

Parameterization of a possible regression model:

Response parameter	Predictor and response function
First marginal mean	$\mu_1=\eta_1$
First marginal standard error	$\sigma_1 = \exp(\eta_2)$
Second marginal mean	$\mu_2=\eta_3$
Second marginal standard error	$\sigma_2 = \exp(\eta_4)$
Correlation	$ ho = anh(\eta_5)$

Case study 1: bivariate normal responses (cont'd)

Illustration of the tanh response function (from Wikipedia)

Case study 1: bivariate normal responses (cont'd)

Subclassing the TFP MVN distribution:

```
class BivariateNormal(tfd.MultivariateNormalTriL):
       def init (
           self, loc1=0.0, loc2=0.0, scale1=1.0, scale2=1.0, cor=0.0, ...
       ) :
                                        # build mean vector and covariance matrix
           super(). init (loc, scale tril, ...) # initialize mvn distribution
       Oclassmethod
       def parameter properties(cls, ...):
10
11
           return {
               "loc1": parameter properties.ParameterProperties (
12
13
                   default constraining bijector fn=lambda: tfb.Identity(),
14
15
               "scale1": parameter properties.ParameterProperties(
16
                   default constraining bijector fn=lambda: tfb.Exp(),
17
18
19
               "cor": parameter properties.ParameterProperties(
20
```

(From our template repository (more later))

Case study 2: multi-species count model

Experimental design of the Research Training Group 2300

Case study 2: multi-species count model (cont'd)

Example data for the multi-species count model:

> y[1:10, 1:4]			
	ceratophysella_denticulata	folsomia_manolachi	paratullbergia_callipygos	parisotoma_notabilis
1.1	2	31	2	1
1.2	3	10	11	1
1.3	2	7	1	21
1.4	0	12	1	3
1.5	1	79	3	9
2.1	6	0	0	13
2.2	0	0	0	12
2.3	2	0	0	3
2.4	0	0	0	5
2.5	0	0	4	0
	• • •		• • •	• • •

Case study 2: multi-species count model (cont'd)

Graph of the model variables

Case study 2: multi-species count model (cont'd)

Configuring the regression predictor in R:

```
1 gb <- liesel(..., builder = TRUE) # graph builder with the regression predictor
```

Combining it with the response structure in Python:

```
1 pdt vars = {var.name: var for var in r.qb.vars}
                                                                                          # extract predictor variables
  model = mscm.make model(...)
                                                                               # model with the mscm response structure
   , mscm vars = model.pop nodes and vars()
                                                                                           # extract response variables
   gb = lsl.GraphBuilder().add(
                                                                              # add root variables to new graph builder
       mscm vars["n"], mscm vars["y"], mscm vars["richness"], mscm vars["shannon"],
       mscm vars["richness landscape"], mscm vars["shannon landscape"]
9
10
   gb.transform(mscm vars["mu"], tfb.Exp)
                                                                                                  # transform parameter
                                                                                              # replace dummy predictor
12 gb.replace var(mscm vars["eta"], pdt vars["eta pdt"])
13 model = qb.build model()
                                                                                                 # build combined model
```

Case study 3: comparing samplers

Gaussian location-scale regression model

Case study 3: comparing samplers (cont'd)

	$ig $ eta_0	$oldsymbol{eta}_f$	$\tau_f^2 \text{ or } \log(\tau_f^2)$	γ_0	$m{\gamma}_g$	$\tau_g^2 \text{ or } \log(\tau_g^2)$
IWLS-Gibbs	IWLS	IWLS	Gibbs	IWLS	IWLS	Gibbs
NUTS-Gibbs	NUTS	NUTS	Gibbs	NUTS	NUTS	Gibbs
NUTS1	NUTS					
NUTS2	NUTS			NUTS		
HMC2	HMC			HMC		

Configuration of the sampling schemes

Case study 3: comparing samplers (cont'd)

Case study 3: comparing samplers (cont'd)

Using Liesel in practice

Using Liesel with Conda

We are providing a template repository for Liesel-based projects:

https://github.com/liesel-devs/liesel-template

Install Python, R, Liesel, RLiesel, Quarto and GNU Parallel with 5 commands:

```
git clone https://github.com/liesel-devs/liesel-template.git
cd liesel-template
micromamba env create -f environment.yml -p ./env
micromamba activate ./env
Rscript -e "remotes::install_github('liesel-devs/rliesel')"
```

With some caveats, of course... $^{-}(^{\vee})_{-}$ /

Using Liesel with Conda (cont'd)

Genealogy of Micromamba

Using Liesel with Conda (cont'd)

Packages managed by Micromamba:

```
1 (env) $ micromamba list
   List of packages in environment: "env"
                                Version
                                                                  Channel
                                              Build
     Name
     _libgcc_mutex
                                              conda_forge
                                0.1
                                                                  conda-forge
                                             2_gnu
                                4.5
     _openmp_mutex
                                                                  conda-forge
     r-mutex
                               1.0.1
                                              anacondar 1
                                                                  conda-forge
                               1.6.3
                                             pyhd8ed1ab 0
     astunparse
                                                                  conda-forge
     atk-1.0
                                2.38.0
10
                                             hd4edc92 1
                                                                  conda-forge
    binutils impl linux-64
                                2.40
11
                                             hf600244 0
                                                                  conda-forge
12
    bwidget
                               1.9.14
                                             ha770c72 1
                                                                  conda-forge
13
    bzip2
                               1.0.8
                                             hd590300 5
                                                                  conda-forge
14
     c-ares
                               1.23.0
                                             hd590300 0
                                                                  conda-forge
15
    ca-certificates
                                2023.11.17
                                             hbcca054 0
                                                                  conda-forge
                                             h3faef2a 0
                               1.18.0
16
    cairo
                                                                  conda-forge
     cffi
                               1.16.0
                                             py311hb3a22ac 0
17
                                                                  conda-forge
     cfqv
                                3.3.1
                                              pyhd8ed1ab 0
18
                                                                  conda-forge
                                             pyhd8ed1ab 0
19
     colorama
                                0.4.6
                                                                  conda-forge
20
                                             hca28451_0
                                8.5.0
     curl
                                                                  conda-forge
```

Using Liesel with Quarto

Combining RLiesel and Liesel in Quarto with R and Python code cells:

```
1 # A small Quarto example
 4 library(rliesel)
 6 \text{ y} < - \text{rnorm}(10)
 7 model <- liesel(y)</pre>
    ```{python}
 import liesel.model as 1sl
12 import liesel.goose as gs
13
14 lsl.plot vars(r.model)
15
16 builder = lsl.dist reg mcmc(r.model, seed=1337, num chains=4)
17 builder.set duration(warmup duration=1000, posterior duration=1000)
 engine = builder.build()
19 engine.sample all epochs()
20
```

# Using Liesel with Quarto (cont'd)

quarto render quarto-example.qmd compiles this to:

### A small Quarto example

```
library(rliesel)
```

Please make sure you are using a virtual or conda environment with Liesel installed, e.g. using `reticulate::use\_virtualenv()` or `reticulate::use\_condaenv()`. See `vignette("versions", "reticulate")`.

After setting the environment, check if the installed versions of RLiesel and Liesel are compatible with `check\_liesel\_version()`.

```
y <- rnorm(10)
model <- liesel(y)</pre>
```

Installed Liesel version 0.2.8 is compatible, continuing to set up model

```
import liesel.model as lsl
import liesel.goose as gs

lsl.plot_vars(r.model)
```

# Using Liesel for simulation studies

**TABLE 3** Possible targets of a simulation study and relevant performance measures

Statistical Task	Target	Examples of Performance Measures	Example
Analysis			
Estimation	Estimand	Bias, empirical SE, mean-squared error, coverage	Kuss compares a number of existing methods in terms of bias, power, and coverage. <sup>26</sup>
Testing	Null hypothesis	Type I error rate, power	Chaurasia and Harel compare new methods inn terms of type I and II error rates. <sup>27</sup>
Model selection	Model	Correct model rate, sensitivity or specificity for covariate selection	Wu et al compare four new methods in terms of "true positive" and "false positive" rates of covariate selection <sup>28</sup>
Prediction	Prediction/s	Measures of predictive accuracy, calibration, discrimination	Ferrante compares four methods in terms of mean absolute prediction error, etc. <sup>29</sup>
Design			
Design a study	Selected design	Sample size, expected sample size, power/precision	Zhang compares designs across multiple data-generating mechanisms in terms of number of significant test results (described as "gain") and frequency of achieving the (near) optimal design. <sup>30</sup>

Possible aims of simulation studies (from Morris et. al., Using simulation studies to evaluate statistical methods)

# Using Liesel for simulation studies (cont'd)

```
1 ---
2 params:
3 seed: 42
4 ---
5
6 ```{r}
7 set.seed(params$seed)
8 sample(10, 1)
9 ```
```

quarto render quarto-params.qmd compiles this to:

```
set.seed(params$seed)
sample(10, 1)
```

[1] 1

## Using Liesel for simulation studies (cont'd)

quarto render quarto-params.qmd -P seed:1337 compiles this to:

```
set.seed(params$seed)
sample(10, 1)
```

[1] 10

# Using Liesel for simulation studies (cont'd)



We have good experience with GNU Parallel for simulation studies with Liesel.

#### One brief example:

```
1 NREPS=4
2
2 parallel --jobs 4 --keep-order --plus --progress "
4 mkdir -p jobs/job-{0#} &&
5 cp scenario.qmd jobs/job-{0#} &&
6 quarto render jobs/job-{0#}/scenario.qmd -P job:{#} &&
7 rm jobs/job-{0#}/scenario.qmd" ::: $(seq $NREPS)
```

### Options for the remaining time

- 1. Finish the exercise sheets. We are here to help and answer questions.
- 2. Install and run Liesel and RLiesel using the template repository.
- 3. Which models would **you** like to build with Liesel for your own research? New response structures, covariate effects, prior hierarchies?
- 4. What use cases do you have for parallelized simulation studies?