Rotacije opisane s kvaternioni Seminar

Timotej Mlakar Fakulteta za matematiko in fiziko Oddelek za matematiko

21. marec 2023

1 Uvod

Rotacije \mathbb{R}^3 navadno opisujemo z linearnimi preslikavami oziroma njim pripadajočimi matrikami. Zaradi narave matričnega množenja so lahko take operacije precej računsko časovno in prostorsko zahtevne. Tako lahko rotacije \mathbb{R}^3 predstavimo kot stranske učinke transformacij $\mathbb{E}^4 \simeq \mathbb{H}$.

Najprej se spomnimo rotacij na $\mathbb{R}^2 \simeq \mathbb{C}$. Naj bo $w = \frac{v}{|v|}$ za poljuben $v \in \mathbb{C}$. Preslikava $\varphi : \mathbb{C} \to \mathbb{C} : \varphi(z) = wz$ je bijektivna preslikava, ki zavrti celotno kompleksno ravnino za kot arg(z) okoli izhodišča.

Če v zapišemo v polarnem zapisu kot $|z|e^{i\theta}$, je tedaj preslikava

$$\varphi: [0, 2\pi] \times \mathbb{C} \to \mathbb{C}:$$

 $\varphi(\theta, z) = ze^{i\theta}$

zvezno odvedljiva na $[0, 2\pi] \times \mathbb{C}$. Za fiksen $z \in \mathbb{C}$ preslikava φ opiše krožnico z radijem |z|, za fiksen θ pa preslikava opiše rotacijo ravnine za kot θ .

Vemo torej, da se vsak $z\in\mathbb{C}$ da zapisati v polarnih koordinatah. Spomnemo se zapisa

$$z = |z|e^{i\theta} = |z|\cos\theta + |z|i\sin\theta,$$

kjer je $\theta \in \mathbb{R}$. Zapis ni enoličen, saj nam vsaka $\theta' = \theta + 2k\pi$; $k \in \mathbb{Z}$ opiše isto kompleksno število. Tak zapis bomo v podobnem smislu uporabili kasneje.

Definiramo $\Phi: \mathbb{R}^2 \to \mathbb{C}: (x,y) \mapsto x+iy$. S preprostim računom pokažemo, da je Φ izomorfizem.

Vidimo, da namesto množenja vektorja z matriko lahko rotacijo realne ravnine predstavimo s preprostim množenjem dveh kompleksnih števil. To motivira podobni razmislek za rotacije v \mathbb{R}^3 .

2 Kvaternionska algebra

2.1 Definicije in oznake

Definicija 1 Naj bo V 4-razsežen vektorski prostor nad R. Izberemo bazo $\{1, i, j, k\}$. Elementi V so oblike $\mathbf{q} = q_0 \mathbf{1} + q_1 i + q_2 j + q_3 k = q_0 + \vec{q}$. Vektorski prostor V opremimo z operacijo množenja tako, da definiramo množenje njegovih baznih elementov, in sicer

$$\begin{aligned} \mathbf{11} &= \mathbf{1}, \quad \mathbf{1}i = i, \quad \mathbf{1}j = j, \quad \mathbf{1}k = k, \\ &ij = k, \quad jk = i, \quad ki = j, \\ &i^2 = j^2 = k^2 = ijk = -1\mathbf{1}. \end{aligned}$$

Naj bosta $p, q \in \mathbb{H}$. Definiramo seštevanje in množenje s skalarjem kot običajno

$$p + q = (p_0 + q_0) + (\vec{p} + \vec{q}),$$

 $\lambda q = \lambda (q_0 + \vec{q}) = \lambda q_0 + (\lambda \vec{q}).$

Prav tako definiramo običajno množenje v skladu z definicijo množenja baznih elementov. Tedaj lahko produkt pg napišemo kot

$$pq = (p_0 + q_0 - \vec{p}\vec{q}) + (p_0\vec{q} + q_0\vec{p} + \vec{p} \times \vec{q}),$$

kjer je $\vec{p}\vec{q}$ običajni skalarni produkt v \mathbb{R}^3 . Tedaj V postane 4-razsežna algebra nad \mathbb{R} . Označimo \mathbb{H} in jo imenujemo Kvaternionska algebra.

Opomba 1 Za $p, q \in \mathbb{H}, \lambda \in \mathbb{R}$ velja

$$(\lambda p)q = p(\lambda q) = \lambda(pq).$$

Definicija 2 Naj bo $q=q_0+\vec{q}\in\mathbb{H}.$ S $\overline{q}=q_0-\vec{q}$ označimo konjugirani kvaternion q.

Velja, da je $q\bar{q} \in \mathbb{R}$. Tako lahko definiramo še

$$q^{-1} = \frac{1}{q\overline{q}}\overline{q}.$$

Prav tako lahko vidimo da je $\overline{p \cdot q} = \overline{q} \cdot \overline{p}$. Ker množenje kvaternionov ni komutativno, v splošnem $\overline{pq} \neq \overline{qp}$. Ker je \mathbb{H} algebra, je na njej smiselno definirati skalarni produkt.

Definicija 3 Naj bosta $p, q \in \mathbb{H}$. Definiramo skalarni produkt kvaternionov

$$\langle p, q \rangle = \frac{1}{2} (\overline{p}q + \overline{q}p).$$

Norma porojena s skalarnim produktom je tedaj

$$|q| = ||q|| = \sqrt{\langle q, q \rangle}.$$

Opomba 2 Iz definicije skalarnega produkta takoj sledi $\langle q, q \rangle = q\overline{q} = \overline{q}q$. Podobno kot absolutna vrednost na \mathbb{R} in \mathbb{C} je norma na kvaternionih multiplikativna.

Za poljubna $p, q \in \mathbb{H}$ torej velja |pq| = |p||q|. Oglejmo si $|pq|^2$

$$|pq|^2 = \langle pq, pq \rangle = pq\overline{pq}.$$

Spomnimo se, da $\overline{p \cdot q} = \overline{q} \cdot \overline{p}$. Torej je

$$pq\overline{p}\overline{q} = p \cdot q \cdot \overline{q} \cdot \overline{p} = p|q|^2\overline{p}.$$

Ker je $|q|^2$ skalar, pri množenju komutira s kvaternioni. Torej

$$p|q|^2\overline{p} = |q|^2p\overline{p} = |q|^2|p|^2 = |p|^2|q|^2.$$

Sledi torej |pq| = |p||q|.

Podobno kot pri rotaciji kompleksne ravnine, kjer množimo s števili iz enotske krožnice, tukaj potrebujemo enotske kvaternione.

Definicija 4 Naj bo $q \in \mathbb{H}$. Kvaternion q imenujemo versor oziroma enotski kvaternion, če velja |q| = 1. Če je $q \in \mathbb{H}$ poljuben $|q| \neq 1$ versor kvaterniona q dobimo z normiranjem. Označimo ga z $U_q = \frac{q}{|q|}$. Množico versorjev označimo s \mathbf{Q}_e

Če velja $u \in \mathbb{H}, u = \vec{u}$ in |u| = 1, kvaternion u imenujemo čisti oziroma pravi versor. Množico pravih versorjev označimo z U_e .

Kvaternione oblike $q = q_0 \mathbf{1}, q_0 \in \mathbb{R}$ imenujemo skalarni kvaternioni.

Opomba 3 Za čista versorja $u, v \in U_e$ velja da $\langle u, v \rangle = 0 \iff uv + vu = 0$.

Naj bosta $u, v \in \mathbf{U}_e$. Za poljuben versor iz \mathbf{U}_e velja $\overline{u} = -u$. Pogledamo $\langle u, v \rangle$:

$$\langle u, v \rangle = \frac{1}{2}(\overline{u}v + \overline{v}u) = \frac{1}{2}(-uv - vu) = -\frac{1}{2}(uv + vu).$$

Od tu sledi da $\langle u, v \rangle = 0 \iff uv + vu = 0.$

Pomembna opazka tu je še naslednja: naj bo $u \in \mathbf{U}_e$. Ker |u| = 1 sledi, da je u neničeln kvaternion. Ker je $\mathbf{U}_e \subset \mathbb{H}$ in je \mathbb{H} algebra, je vsak neničenli kvaternion obrnljiv. Vemo torej, da obstaja tak u^{-1} da je

$$uu^{-1} = 1.$$

Ker je za poljuben $q\in \mathbb{H}, q^{-1}=\frac{1}{\overline{q}q}\overline{q}$, za $u\in \mathbf{U}_e$ pa velja $u\overline{u}=|u|^2$, je

$$u^{-1} = \frac{\overline{u}}{|u|^2} = \frac{-u}{1} = -u.$$

Če združimo te dve dejstvi sledi, da

$$uu^{-1} = -uu = -u^2 = 1 \Rightarrow u^2 = -1.$$

2.2 Zapis kvaternionov v polarni obliki

Podobno kot kompleksna števila lahko kvaternione zapišemo v polarni obliki. T.j. kompleksno število z=x+iy lahko zapišemo kot $|z|(\cos\theta+i\sin\theta)$. Z eulerjevo formulo lahko to kompleksno število zapišemo kot $z=e^{i\theta}$.

V kompleksni ravnini je ta zapis dobro definiran, saj imamo le eno kompleksno enoto i. V kvaternionih pa imamo celo množico čistih enotskih kvaternionov \mathbf{U}_e , s katerimi lahko zapišemo kvaternion.

Trditev 1 Naj bo $q \in \mathbb{H}$. Tedaj obstajajo $r, \theta \in \mathbb{R}$ in $u \in U_e$, da

$$q = r(\mathbf{1}\cos\theta + u\sin\theta).$$

Opomba 4 Preden dokažemo trditev opazimo, da tukaj zagotavljamo le obstoj in ne enoličnosti.

Preprost protiprimer za enoličnost je $q \in \mathbf{Q}_e, q = \mathbf{1} \cos \theta + u \sin \theta$. Pogledamo $\theta' = -\theta$ in $u' = \overline{u} = -u$. Tedaj je

$$1\cos\theta' + u'\sin\theta' = 1\cos(-\theta) - u\sin(-\theta) = 1\cos\theta + u\sin\theta = q$$

Vidimo, da ima q torej 2 zapisa.

Opomba 5 Če v trditvi za r vzamemo 1, dobimo vse kvaternione oblike $\mathbf{1}\cos\theta + u\sin\theta$. Torej je množica $\{\mathbf{1}\cos\theta + u\sin\theta; \theta \in \mathbb{R}, u \in \mathbf{U}_e\}$ enaka \mathbf{Q}_e .

Dokaz: Naj bo $q \in \mathbb{H}$. Razpišemo $q = q_0 + \vec{q}$. Definiramo $q' = \frac{1}{|q|}(q_0 + \vec{q}) = q'_0 + \vec{q'}$. Velja $|q'| = \frac{1}{|q|}|q| = 1$.

Ker je $q'_0 \mathbf{1}$ pravokoten na $\vec{q'}$, velja pitagorov izrek:

$$|q_0'|^2 + |\vec{q'}|^2 = |q'|^2 = 1.$$

Naj bo $\theta \in \mathbb{R}$. Za q'_0 vzamemo $\mathbf{1} \cos \theta$. Podobno želimo narediti še s $\vec{q'}$. Ker je $\vec{q'}$ čisti kvaternion (t.j. $\vec{q'} \in \mathbb{H} - \mathbb{R}$), želimo k drugemu delu zapisa dati čisti enotski kvaternion. Naj bo torej $u \in \mathbf{U}_e$. Pogledamo $\mathbf{1} \cos \theta + u \sin \theta$.

$$|\mathbf{1}\cos\theta + u\sin\theta|^2 = \cos^2\theta + |u|^2\sin^2\theta.$$

Ker je $u \in \mathbf{U}_e$, je |u| = 1.

$$\Rightarrow \cos^2 \theta + \sin^2 \theta = 1.$$

Imamo torej $q' = q'_0 + \vec{q'} = 1 \cos \theta + u \sin \theta$. Sledi

$$q = |q| \cdot q' = |q| (\mathbf{1} \cos \theta + u \sin \theta).$$

Zaradi lažjega računanja bomo polarni zapis kvaternionov spremeniti v eksponentni zapis, saj nam to olajša delo pri računanju. Spet se najprej spomnimo kompleksne ravnine, kjer lahko vsak $z \in \mathbb{C}$ zapišemo kot $|z|e^{i\varphi}$ za nek $\varphi \in \mathbb{R}$. To naredimo, saj je tako algebraična manipulacija kompleksnih izrazov lažja.

Vzamemo Taylorjev razvoj e^t . Velja

$$e^{t} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \cdots$$

V Taylorjev razvoj vstavimo $t = u\theta, u \in \mathbf{U}_e, \theta \in \mathbb{R}$. Dobimo

$$e^{u\theta} = 1 + u\theta + \frac{(u\theta)^2}{2} + \frac{(u\theta)^3}{6} + \frac{(u\theta)^4}{24} + \cdots$$

Spomnimo se, da ker je $u \in \mathbf{U}_e$, velja $u^2 = -1$. Ker e^t konvergira enakomerno povsod, lahko vrsto preuredimo, in sicer:

$$1 + u\theta + \frac{(u\theta)^2}{2} + \frac{(u\theta)^3}{6} + \frac{(u\theta)^4}{24} + \dots =$$

$$(1 + \frac{(u\theta)^2}{2} + \frac{(u\theta)^4}{24} + \dots) + (u\theta + \frac{(u\theta)^3}{6} + \dots) =$$

$$(1 - \frac{\theta^2}{2} + \frac{\theta^4}{24} - \dots) + u(\theta - \frac{\theta^3}{6} + \frac{\theta^5}{120} - \dots)$$

V levem in desnem oklepaju vidimo taylorjev razvoj funkcij cos in sin. Sledi torej

$$e^{u\theta} = \cos\theta + u\sin\theta$$
.

Zgornjo trditev lahko sedaj spremenimo v lepšo obliko, t.j. za vsak $q \in \mathbf{Q}_e$ obstajata $\theta \in \mathbb{R}$ in $u \in \mathbf{U}_e$, da velja $q = e^{u\theta}$.

3 Eulerjeva funkcija

Definicija 5 Za vse $n \in \mathbb{N}$ s $\varphi(n)$ označimo število celih števil iz množice $\{1, 2, \ldots, n\}$, ki so tuja številu n. Preslikavo $\varphi : \mathbb{N} \to \mathbb{N}$ imenujemo Eulerjeva funkcija.

Zgled 1 Tabela 1 prikazuje izračun prvih šest vrednosti funkcije $\varphi(n)$. V n-ti vrstici so krepko natisnjena števila med 1 in n, ki so tuja številu n. Slika 1 pa grafično prikazuje prvih 100 vrednosti funkcije $\varphi(n)$.

n	$\{1,2,\ldots,n\}$	$\varphi(n)$
1	$\{1\}$	1
2	$\{1, 2\}$	1
3	$\{1, 2, 3\}$	2
4	$\{1, 2, 3, 4\}$	2
5	$\{1, 2, 3, 4, 5\}$	4
6	$\{1, 2, 3, 4, 5, 6\}$	2

Tabela 1: Vrednosti funkcije $\varphi(n)$ za $n = 1, 2, \dots, 6$

Slika 1: Vrednosti funkcije
$$\varphi(n)$$
 za $n = 1, 2, \dots, 100$

Računanje $\varphi(n)$ po definiciji je pri velikem n zelo zamudno. Vendar ima Eulerjeva funkcija lepe lastnosti, zaradi katerih lahko njeno vrednost izračunamo tudi pri velikem argumentu, če ga le znamo razcepiti na prafaktorje.

Če je p praštevilo, med števili $1, 2, \ldots, p$ edinole število p ni tuje številu p, torej je $\varphi(p) = p - 1$. Skoraj prav tako preprosto lahko poiščemo vrednost $\varphi(n)$, če je n potenca nekega praštevila.

Trditev 2 Naj bo p praštevilo in $k \in \mathbb{N}$. Potem je $\varphi(p^k) = p^k - p^{k-1}$.

Dokaz: Število a je tuje številu p^k natanko tedaj, ko ni večkratnik praštevila p. Med števili $1,2,\ldots,p^k$ je natanko $p^k/p=p^{k-1}$ večkratnikov števila p, torej je $\varphi(p^k)=p^k-p^{k-1}.$ $\hfill \Box$

Izrek 1 Eulerjeva funkcija je multiplikativna.

Dokaz: Vzemimo tuji naravni števili a in b. Zapišimo vsa števila med 1 in ab v obliki tabele z a vrsticami in b stolpci:

Za vsako število velja, da je tuje številu ab natanko tedaj, ko je tuje številu a in tuje številu b. Vrednost $\varphi(ab)$ lahko torej dobimo tako, da preštejemo, koliko je v gornji tabeli števil, ki so tuja tako številu a kot tudi številu b.

Števila v posameznem stolpcu dajejo vsa isti ostanek pri deljenju z b. Torej so bodisi vsa tuja številu b bodisi mu ni tuje nobeno od njih. Stolpcev, katerih elementi so tuji številu b, je toliko, kot je takih števil v prvi vrstici tabele, teh pa je ravno $\varphi(b)$.

Različna števila v posameznem stolpcu dajo različne ostanke pri deljenju z a. Če namreč števili k_1b+r in k_2b+r , kjer je $0 \le k_1, k_2 \le a-1$, dasta isti ostanek pri deljenju z a, je njuna razlika $(k_1-k_2)b$ deljiva z a. Ker sta števili a in b tuji, sledi, da je z a deljiva razlika k_1-k_2 . To pa je možno le, če je $k_1=k_2$, saj je $-(a-1) \le k_1-k_2 \le a-1$. Ker je dolžina stolpca enaka a, dobimo pri deljenju elementov stolpca z a ravno vse možne ostanke $0,1,\ldots,a-1$. Torej je v vsakem stolpcu $\varphi(a)$ števil tujih a.

To velja tudi za $\varphi(b)$ stolpcev, katerih elementi so tuji številu b. Potemtakem je v gornji tabeli $\varphi(b)\varphi(a)$ števil, ki so tuja tako številu b kot tudi številu a. Torej je $\varphi(ab) = \varphi(a)\varphi(b)$, kar pomeni, da je Eulerjeva funkcija multiplikativna.

Zgled 2 Izračunajmo $\varphi(10^k)$. Ker je $10^k = 2^k 5^k$, je po izreku 1 in trditvi 2 $\varphi(10^k) = \varphi(2^k)\varphi(5^k) = (2^k - 2^{k-1})(5^k - 5^{k-1}) = 4 \times 10^{k-1}$.

Posledica 1

$$\varphi(n) = n \times \prod_{n \mid n} \left(1 - \frac{1}{p}\right),$$

kjer p preteče vse različne prafaktorje števila n.

Dokaz: Naj bo $n = \prod_{i=1}^r p_i^{k_i}$, kjer so p_1, p_2, \ldots, p_r različna praštevila in $k_1, k_2, \ldots, k_r \in \mathbb{N}$. Po izreku 1 in trditvi 2 je potem

$$\varphi(n) = \prod_{i=1}^{r} \varphi\left(p_i^{k_i}\right) = \prod_{i=1}^{r} \left(p_i^{k_i} - p_i^{k_i-1}\right)$$

$$= \left(\prod_{i=1}^{r} p_i^{k_i}\right) \times \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right) = n \times \prod_{p \mid n} \left(1 - \frac{1}{p}\right). \quad \Box$$

Trditev 3 Za vse $n \in \mathbb{N}$ velja enačba

$$\sum_{d \mid n} \varphi(d) = n, \tag{1}$$

kjer d preteče vse pozitivne delitelje števila n.

Dokaz: Za vse delitelje d števila n označimo

$$A_d = \left\{ \frac{kn}{d}; \ k \in \mathbb{Z}, \ 0 \le k < d, \ D(k, d) = 1 \right\}.$$

Recimo, da je $k_1n/d_1 = k_2n/d_2$, kjer je $D(k_1, d_1) = D(k_2, d_2) = 1$. Potem je $k_1d_2 = k_2d_1$, od koder sledi, da d_1 deli d_2 in obratno, kar pomeni, da je $d_1 = d_2$. Od tod zaključimo, da so si množice A_d paroma tuje, torej je

$$\left| \bigcup_{d \mid n} A_d \right| = \sum_{d \mid n} |A_d| = \sum_{d \mid n} \varphi(d).$$

Po drugi strani pa je

$$\bigcup_{d \mid n} A_d = \{0, 1, \dots, n - 1\}.$$

Res, naj bo $kn/d \in A_d$. Ker d deli n, je število kn/d celo, iz $0 \le k < d$ pa sledi $0 \le kn/d < n$, torej $kn/d \in \{0, 1, \ldots, n-1\}$. Vzemimo zdaj še poljuben $j \in \{0, 1, \ldots, n-1\}$ in označimo: k = j/D(n, j), d = n/D(n, j). Potem je $j = kD(n, j) = kn/d \in A_d$.

To pa pomeni, da je
$$\left|\bigcup_{d\mid n} A_d\right| = n$$
 in izrek je dokazan.

Izrek 2 (Eulerjev izrek) Naj bosta $n \in \mathbb{N}$ in $a \in \mathbb{Z}$ tuji števili. Potem je

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Dokaz: Naj bodo $k_1, k_2, \ldots, k_{\varphi(n)}$ vsa števila med 1 in n, ki so tuja n. Če za indeksa $i, j \in \{1, 2, \ldots, \varphi(n)\}$ velja $k_i a \equiv k_j a \pmod{n}$, sledi $n | (k_i a - k_j a)$ in zato $n | (k_i - k_j)$, saj sta števili n in a tuji. To pa je mogoče le, če je i = j. Števila $k_1 a, k_2 a, \ldots, k_{\varphi(n)} a$ so torej med seboj paroma nekongruentna po modulu n. Ker so tuja številu n, je množica njihovih ostankov pri deljenju z n enaka množici $\{k_1, k_2, \ldots, k_{\varphi(n)}\}$. Zato je $k_1 a \cdot k_2 a \cdots k_{\varphi(n)} a \equiv k_1 \cdot k_2 \cdots k_{\varphi(n)}$ (mod n), od tod pa po krajšanju s produktom $k_1 \cdot k_2 \cdots k_{\varphi(n)}$, ki je tuj številu n, dobimo $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Posledica 2 (mali Fermatov izrek) Naj bo p praštevilo in $a \in \mathbb{Z}$ celo število, ki ni deljivo s p. Potem je

$$a^{p-1} \equiv 1 \pmod{p}$$
.

4 Möbiusova funkcija

Definicija 6 Za vse $n \in \mathbb{N}$ naj bo

$$\mu(n) = \begin{cases} 0, & \check{c}e \ n \ deljiv \ s \ kvadratom \ pra\check{s}tevila, \\ (-1)^r, & sicer, \end{cases}$$

kjer je r število različnih prafaktorjev števila n. Preslikavo $\mu: \mathbb{N} \to \mathbb{Z}$ imenujemo Möbiusova funkcija.

Zgled 3 Tabela 2 prikazuje prvih nekaj vrednosti funkcije $\mu(n)$.

Tabela 2: Vrednosti funkcije $\mu(n)$

Izrek 3 Möbiusova funkcija je multiplikativna.

Dokaz: Vzemimo tuji naravni števili a in b. Če je število ab deljivo s kvadratom praštevila, velja to tudi za a ali za b. V tem primeru je torej $\mu(ab)=0=\mu(a)\mu(b)$. Če pa število ab ni deljivo s kvadratom praštevila, velja to tudi za a in za b. Naj bo r število različnih prafaktorjev števila a, s pa število različnih prafaktorjev števila b. Potem je število različnih prafaktorjev števila ab enako ab0 enako ab1 tem primeru ab2 enako ab3 enako ab4 enako ab4 enako ab5 enako ab6 enako ab6 enako ab8 enako ab9 enako ab9

Trditev 4 Za vse $n \in \mathbb{N}$ velja enačba

$$\sum_{d \mid n} \mu(d) = \begin{cases} 1, & n = 1, \\ 0, & n > 1, \end{cases}$$
 (2)

kjer d preteče vse pozitivne delitelje števila n.

Dokaz: Zadošča seštevati po tistih deliteljih d števila n, ki imajo same različne prafaktorje (sicer je $\mu(d)=0$). Imenujmo takšne delitelje enostavni. Naj bo r število različnih prafaktorjev števila n. Število enostavnih deliteljev števila n, ki imajo natanko k prafaktorjev, je potem $\binom{r}{k}$, prispevek takega delitelja h gornji vsoti pa znaša $\mu(d)=(-1)^k$. Torej je

$$\sum_{d \mid n} \mu(d) = \sum_{k=0}^{r} (-1)^k \binom{r}{k} = \begin{cases} 1, & r = 0, \\ 0, & r > 0 \end{cases} = \begin{cases} 1, & n = 1, \\ 0, & n > 1. \end{cases} \square$$

Opomba 6 Enačbo (2) bi lahko uporabili tudi za (rekurzivno) definicijo funkcije $\mu(n)$:

$$\mu(n) \ = \ \left\{ \begin{array}{ll} 1, & n = 1, \\ -\sum\limits_{d \mid n, \, d < n} \mu(d), & n > 1. \end{array} \right.$$

Möbiusova funkcija igra pomembno vlogo pri Möbiusovem obratu, ki nam omogoča izraziti aritmetično funkcijo f(n), če poznamo funkcijo $g(n) = \sum_{d|n} f(d)$, kjer d preteče vse pozitivne delitelje števila n.

Izrek 4 (Möbiusov obrat) Za aritmetični funkciji f, g velja:

$$g(n) = \sum_{d \mid n} f(d) \iff f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$$

Dokaz: Najprej vzemimo, da je $g(n) = \sum_{d|n} f(d)$ za vse $n \in \mathbb{N}$. Potem je

$$\sum_{d|n} \mu\left(\frac{n}{d}\right) g(d) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \sum_{k|d} f(k) = \sum_{k|n} f(k) \sum_{k|d|n} \mu\left(\frac{n}{d}\right)$$
$$= \sum_{k|n} f(k) \sum_{a|(n/k)} \mu(a) = f(n).$$

Drugo enakost smo dobili z zamenjavo vrstnega reda seštevanja, tretjo z uvedbo nove spremenljivke a = n/d, četrta pa sledi iz (2).

Vzemimo zdaj, da je $f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$ za vse $n \in \mathbb{N}$. Potem je

$$\sum_{d|n} f(d) = \sum_{d|n} \sum_{k|d} \mu\left(\frac{d}{k}\right) g(k) = \sum_{k|n} g(k) \sum_{k|d|n} \mu\left(\frac{d}{k}\right)$$
$$= \sum_{k|n} g(k) \sum_{b|(n/k)} \mu(b) = g(n).$$

Drugo enakost smo dobili z zamenjavo vrstnega reda seštevanja, tretjo z uvedbo nove spremenljivke b = d/k, četrta pa sledi iz (2).

Zgled 4 • Iz enačbe (1) sledi z Möbiusovim obratom, da je

$$\varphi(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) d.$$

• Za vse $n \in \mathbb{N}$ s $\tau(n)$ označimo število vseh pozitivnih deliteljev števila n. Torej je $\tau(n) = \sum_{d \mid n} 1$, od koder sledi z Möbiusovim obratom, da je

$$\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \tau(d) \ = \ 1.$$

• Za vse $n \in \mathbb{N}$ s $\sigma(n)$ označimo vsoto vseh pozitivnih deliteljev števila n. Torej je $\sigma(n) = \sum_{d \mid n} d$, od koder sledi z Möbiusovim obratom, da je

$$\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \sigma(d) = n.$$

5 Kolobar aritmetičnih funkcij

Definicija 7 Za aritmetični funkciji $f, g: \mathbb{N} \to \mathbb{C}$ in za vse $n \in \mathbb{N}$ naj bo

$$(f * g)(n) = \sum_{d \mid n} f(d)g\left(\frac{n}{d}\right).$$

Aritmetična funkcija f * g je Dirichletova konvolucija funkcij f in g.

Trditev 5 Naj bodo f, g, h aritmetične funkcije. Potem velja:

- (i) f * g = g * f,
- (ii) (f * g) * h = f * (g * h),
- (iii) f * (g + h) = f * g + f * h.

Dokaz:

(i) Trditev sledi iz zapisa Dirichletove konvolucije v simetrični obliki

$$(f * g)(n) = \sum_{de=n} f(d)g(e),$$
 (3)

kjer seštevamo po vseh urejenih parih naravnih števil (d, e), katerih produkt je enak n.

(ii) Z uporabo enačbe (3) izračunamo

$$((f * g) * h)(n) = \sum_{de=n} (f * g)(d)h(e) = \sum_{de=n} \left(\sum_{ab=d} f(a)g(b)\right)h(e)$$

$$= \sum_{ab=n} f(a)g(b)h(e) = \sum_{ac=n} f(a)\sum_{be=c} g(b)h(e)$$

$$= \sum_{ac=n} f(a)(g * h)(c) = (f * (g * h))(n).$$

Četrto enakost smo dobili z uvedbo nove spremenljivke c = be.

(iii) Z uporabo enačbe (3) izračunamo

$$(f * (g + h))(n) = \sum_{de=n} f(d)(g + h)(e) = \sum_{de=n} f(d)(g(e) + h(e))$$

$$= \sum_{de=n} f(d)g(e) + \sum_{de=n} f(d)h(e)$$

$$= (f * g + f * h)(n). \square$$

Iz trditve 5 sledi, da je množica vseh aritmetičnih funkcij $f: \mathbb{N} \to \mathbb{C}$ z operacijama + in * komutativen kolobar. Imenujemo ga *Dirichletov kolobar* in označimo z \mathcal{D} .

Funkcija $\varepsilon \in \mathcal{D}$, ki za vse $n \in \mathbb{N}$ zadošča enačbi

$$\varepsilon(n) = \begin{cases} 1, & n = 1, \\ 0, & n > 1, \end{cases}$$

je enica kolobarja \mathcal{D} , saj za vse $f \in \mathcal{D}$ in $n \in \mathbb{N}$ velja

$$(f * \varepsilon)(n) = \sum_{de=n} f(d)\varepsilon(e) = f(n)\varepsilon(1) = f(n).$$

Brez težav se lahko prepričamo tudi, da je \mathcal{D} cel kolobar in da je funkcija $f \in \mathcal{D}$ obrnljiva natanko tedaj, ko $f(1) \neq 0$.

Zdaj lahko enačbo (2) prepišemo v obliki

$$\mu * \mathbf{1} = \varepsilon,$$

kjer 1 označuje konstantno funkcijo z vrednostjo 1. Z drugimi besedami, Möbiusova funkcija je inverz konstantne funkcije 1 glede na Dirichletovo konvolucijo:

$$\mu = 1^{-1}$$
.

Möbiusov obrat lahko torej zapišemo v obliki

$$q = f * \mathbf{1} \iff f = q * \mu,$$

kjer njegova veljavnost postane očitna. Zgled 4 pa lahko prepišemo v obliki

$$\begin{split} \varphi * \mathbf{1} &= \mathrm{id}_{\mathbb{N}} &\implies \varphi = \mu * \mathrm{id}_{\mathbb{N}}, \\ \tau &= \mathbf{1} * \mathbf{1} &\implies \mu * \tau = \mathbf{1}, \\ \sigma &= \mathrm{id}_{\mathbb{N}} * \mathbf{1} &\implies \mu * \sigma = \mathrm{id}_{\mathbb{N}}. \end{split}$$

Angleško-slovenski slovar strokovnih izrazov

proper pravi
pure pravi, čisti
versor versor, enotski kvaternion
dot product skalarni produkt
by-product stranski učinek

Literatura

- [1] M. Aigner in G. M. Ziegler, *Proofs from THE BOOK*, 2. izdaja, Springer, Berlin–Heidelberg–New York, 2001.
- [2] N. Calkin in H. S. Wilf, Recounting the rationals, *Amer. Math. Monthly* **107** (2000), 360–363.
- [3] J. Grasselli, *Elementarna teorija števil*, DMFA založništvo, Ljubljana, 2009.