

Image Source

Welcome to Week 15, Lecture 02!

Hypothesis Testing with Python

Agenda

- Assignments & Announcements
- Belt Exam (Eligibility & Material Covered)
- Hypothesis Testing with Python:
 - Quick Overview
 - o Apply Hands-On with CodeAlong

Assignments

This week's assignments:

- Project 3 Part 3(Core)
- Describing Distributions (Core)
- Hypothesis Testing with Insurance Data(Core)

Remember that Belt Exam eligibility is this Friday at 9AM

- Make sure you have all of week 1 and 2 assignments submitted and any resubmits from week 1.
- Note that content from this week (week 3 of the stack) is assessed on the exam!

Reminder:

- Optional Class Reviewing Mock Belt Exam Solution
 - Tomorrow, 06/09/22 @ 5 pm PST.
 - It is completely optional & will be recorded.
- Bonus Lecture Next Week:
 - It is completely optional & will be recorded.
 - Possible Topics:
 - Deep Dive into Object-Oriented Programming
 - Creating Your Own Python Package/Module
 - Creating Dashboards with Streamlit
 - Please answer the following poll to decide the topic and time slot: https://forms.gle/buxx4rznSEkpgaPR9
 - I will check Friday morning to determine the winner.

Belt Exam

Belt Exam Eligibility

- Final deadline for Belt Exam eligibility is Friday 06/10 at 9 AM PST.
- Requirements:
 - \circ All week 13 and week 14 assignments **submitted**.
 - All week 13 resubmits corrected.
 - It is YOUR responsibility to check your feedback doc for resubmission requests.
 - No more than 1 missed lecture.
- If you have a Friday one on one:

DO NOT UNLOCK YOUR EXAM BEFORE WE MEET!!!

What is on the belt exam?

- You will NOT have to make API calls on the exam
 - o Instead, you WILL be given a .json file that simulates the results of making API calls

You WILL be asked to:

- navigate the .json file to find information (EXTRACT)
- convert the json records into pandas dataframes
- make some stated transformations to the features (TRANSFORM)
- create a database using SQLAlchemy and add the pandas dataframes as tables in the database using Python
- Open the database in MySQL workbench and export it as .sql file (LOAD)
- Perform a hypothesis test on the data
- Submit your final repository as a zipped file downloaded from github.com
 - The .ipynb notebook
 - The .sql file

You WILL NOT need to:

- normalize the tables.
- create an ERD.
- Do any cleaning or analysis beyond what is stated/needed to perform the hypothesis test

Important Belt Exam Reminders

- Do NOT use a Public repository for your belt exam!!!
 - When you publish your repo, keep the "Keep Code Private" box checked!
 - If you accidentally make it Public, change it to Private IMMEDIATELY!
 - See this help article for how to change the visibility after publishing
- Use a private repository, commit and push your final work to GitHub, and then follow the instructions on the next slide to download a zip file of your private repo to turn in as your final submission.
- Your repo/zip file should contain:
 - o a jupyter notebook (.ipynb file) with your work
 - a .sql file of your exported database. (Instructions for exporting database from mysql workbench: https://login.codingdojo.com/m/376/12528/88194)
- If anything goes wrong when submitting your belt exam, IMMEDIATELY email me your zip file as a backup. jirving@codingdojo.com
 - Email submissions sent more than 24 hours after you unlock your exam will not be graded.

How to Download your final repository as a zip file on github.com

Hypothesis Testing with Python

Hypothesis Testing: Overview

- Before we can start performing a hypothesis test:
 - We need to have a well-defined hypothesis and null hypothesis.
 - We need to determine WHICH test would be appropriate for our question
- Once we know which test is appropriate, we will know what assumptions we need to check.
- After we've checked the assumptions, we conclude if we can run the test that we planned.
 - o If not, there is an alternative test that answers the same question, but uses different calculation to get the p-value.

Selecting the Right Test

Everything covered in the next few slides can be found in the:

"Guide: Choosing the Right Hypothesis Test" lesson.

Test Selection Overview

STEP 1: Stating our Hypothesis

- STEP 2: Determine the category/type of test based on your data.
 - Answer 2 questions about what you are comparing to determine which test.
 - o Once you know which test, check the assumptions of the test.
- STEP 3: Does the data meet the assumptions of the selected test?
 - If you meet the assumptions, run the desired test.
 - o If you don't meet the assumptions, run the non-parametric equivalent test.
- STEP 4: Perform Test & Interpret Result
 - Run the selected statistical test to get your p-value and interpret it.
 - Do you reject your null hypothesis or did you fail to reject it?
- STEP 5: Post-hoc multiple comparison tests (if needed)

STEP 1: Stating our Hypothesis

State the null and alternate hypothesis

Null Hypothesis:

- The null hypothesis is the one that seems like it doesn't need to be stated! It is that there is nothing special going on. In our case:
- Null Hypothesis (H₀): There is NO difference between ratings for Jupyter notebooks and Google Colab

Alternate Hypothesis:

- The alternate hypothesis is usually what you would just think of as "the" hypothesis! It states that something significant is going on.
- Alternate Hypothesis: (H_a) There is a significant difference between ratings for Jupyter notebooks and Google Colab

Establish the significance Level (alpha)

- The most common significance value is alpha = 0.05.
- This means that if the likelihood of the results due to random chance (p) is less than 5%, we consider the results significant (and not just random).
- If we use a significance value of 0.01, it means than the likelihood of the results due to randomness (p) must be less than 1% in order for us to claim it is significant.
- Setting an alpha value establishes your willingness to accept Type 1 or Type 2 errors, and really it depends on your data and situation. When in doubt, consult a SME!

Examples of Type 1 and 2 Errors with Hypothesis Testing

STEP 2: Determine the category/type of test based on your data.

Test Selection Question 1

Question 1: Is my data Categorical or Numerical?

- What type of data is the target of your question?
- Are you asking about differences in a measured value or differences in which category/group something belongs to?

• Examples of Numeric Data:

- A company wants to compare the time spent on different versions of their homepage. Does one version make users stay on the page significantly longer?
- An instructor expects an exam average to be roughly 85%, and wants to know if the actual scores line up with this expectation. Was the test actually too easy or too hard?

Examples of Categorical Data:

- A pollster wants to know if men and women have significantly different flavor preferences for ice cream. Does a result where more men more often answer "chocolate" as their favorite reflect a significant difference in the population?
- Are men and women equally likely to be smokers?

Test Selection Question 2

• Question 2: How many samples/groups am I comparing?

- 1 Sample (i.e., comparing to an ideal target)
 - i.e., comparing an actual result against a desired target or Key Performance Indicator (KPI)
- o 2 Samples
 - i.e., comparing a control and treatment group or an A/B test
- More than 2 Samples
 - i.e., comparing three different variants of a landing page

Select the Right Test Using your Answers

What type of comparison?	Numeric Data	Categorical Data
Sample vs Known Quantity/Target	1 Sample T-Test	Binomial Test
2 Samples	2 Sample T-Test	Chi-Square
More than 2	ANOVA and/or Tukey	Chi-Square

STEP 3: Does the data meet the assumptions of the selected test?

Test Assumptions

- Each statistical test was built with **specific assumptions about the data.**
- If we do not meet a test's assumptions, we cannot trust the result.
- For numeric data, the assumptions are usually:
 - No significant outliers
 - Normally distributed GROUPS
 - Equal Variance between groups.
- For categorical data, the assumptions are usually:
 - The outcome is binary (e.g.: two groups, success vs failure)
 - The trials/observations are independent.
- For a list of the assumptions for each test:
 - See the <u>Choosing the Right Hypothesis Test lesson.</u>

Testing for/Removing Outliers

Z-Score Rule:

- Any value that has a z-score more than more than 3 standard deviations away from the mean is considered an outlier.
- Outliers must be removed from each group SEPARATELY!
 - Use **scipy.stats.zscore** to calculate z-scores. Any z-score that has an absolute value >3 is an outlier.

Testing for Normally Distributed Groups - 1

- Use a statistical test to check for if groups normally distributed:
 - D'Agostino-Pearson's normality test: <u>Scipy.stats.normaltest</u>
- To interpret the p-value from the normal test you must check the null hypothesis of the normaltest.

scipy.stats.normaltest

```
scipy.stats.normaltest(a, axis=0, nan_policy='propagate') [source]
```

Test whether a sample differs from a normal distribution.

This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D'Agostino and Pearson's [1], [2] test that combines skew and kurtosis to produce an omnibus test of normality.

Testing for Normally Distributed Groups - 2

• However, if your group n's are large enough, its ok if you do not pass a normaltest.

Parametric Test	Sample size guidelines for non-normal data		
1-sample t-test	Greater than 20		
2-sample t-test	Each group should be greater than 15		
One-Way ANOVA	If have 2-9 groups, each group n >= 15. If have 10-12 groups, each group n>20.		

Testing for Equal Variance

- Use a statistical test to check for if groups have equal variance:
 - Levene's Test: <u>Scipy.stats.levene</u>
- To interpret the p-value from Levene's test you must check the null hypothesis of the test:

scipy.stats.levene

```
scipy.stats.levene(*args, center='median', proportiontocut=0.05) ¶ [source]
```

Perform Levene test for equal variances.

The Levene test tests the null hypothesis that all input samples are from populations with equal variances.

Final Test Selection

- Then we select the non-parametric equivalent of our original parametric test.
- All functions below are located in the stats module of scipy.
 - See this cheat sheet for more info on each of them cheatsheet: Hypothesis Testing with Scipy

raidified tests (means) unction		Parametric tests (mear	ns)Function	Nonpa
---------------------------------	--	------------------------	-------------	-------

from scipy import stats

Nonparametric tests (medians)Function

1-sample t test	stats.ttest_1samp()	1-sample Wilcoxon	scipy.stats.wilcoxon
2-sample t test	<pre>stats.ttest_ind()</pre>	Mann-Whitney U test	scipy.stats.mannwhitneyu()
One-Way ANOVA	stats.f_oneway()	Kruskal-Wallis	stats.kruskal
Binomial test	stats.binom_test()	N/A	N/A
Chi-Square test	stats.chi2_contingency()	N/A	N/A

• Perform the test to get your test-statistic and the associated p-value.

STEP 4: Perform Test & Interpret Result

Perform Final Test & Interpret

- Perform the final test selection after checking assumptions:
 - See this cheat sheet for more info on using the scipy functions. <u>cheatsheet: Hypothesis Testing with Scipy</u>
- Whichever statistical test you use, you will be given a <u>p-value</u> in your results.
 - The p-value is the probability of your situation occurring due to random chance.
- Interpret Your P-Value:
 - If the p-value is > alpha:
 - We fail to reject the null hypothesis. There is no significant difference between groups.
 - If the p-value is < alpha:
 - Reject the null hypothesis. There is a significant difference between groups. We have supported the alternative hypothesis.
 - If you have multiple groups (i.e. ANOVA, Kruskal-Wallis), see Step 4: Post-Hoc Tests in order to determine which groups were different.

STEP 5: Post-hoc multiple comparison tests (if needed)

Post-Hoc Tests

- When our hypothesis includes more than 2 groups, our p-value indicates there IS a significant difference between groups, but we not WHICH groups.
 - We must run a pairwise Tukey's test to know which groups were significantly different.
- Tukey pairwise comparison test
 - Statsmodels.stats.multicomp.pairwise_tukeyhsd
 - Tukey's test will run separate tests on pair of groups to get a separate p-value for each. But it does it in a smart way that prevents false positives.

Activity

Hypothesis Testing CodeAlong/Activity

- We will be answering questions about crowdfunded loans from the website Kiva.
- The data and questions to answer are already in the activity repo:
 - https://github.com/coding-dojo-data-science/data-enrichment-wk15-lect02-activity
- You are welcome to Code Along with me, but the second hypothesis will be more time-intensive so don't feel bad if you can't keep up with Hypothesis #2!
- Branch from class:
 - o <u>"06-08-22-class"</u>
 - Notebook:

https://github.com/coding-dojo-data-science/data-enrichment-wk15-lect02-activity/blob/06-08-22-class/Class-Wk15-L02-Hypothesis-Testing.ipynb