Teoria

Definicja. Graf G nazywamy k-wolnym $(k \in \mathbb{N}_{\geqslant 3})$ jeśli nie zawiera k elementowej kliki, czyli podgrafu pełnego o k wierzchołkach.

Twierdzenie Turána. Maksymalna liczba krawędzi k-wolnego grafu G o n wierzchołkach wynosi:

$$\frac{k-2}{k-1} \cdot \frac{n^2 - r^2}{2} + \binom{r}{2},$$

gdzie r jest resztą z dzielenia n przez k-1.

Zadania

1. Niech $x_1, x_2, \ldots, x_n \in \mathbb{R}$. Pokaż, że:

$$\#\{(i,j) \in \{1,2,\ldots,n\}^2 : i < j \text{ oraz } 1 < |x_i - x_j| < 2\} \le \frac{n^2}{4}.$$

- 2. Pokaż, że wśród n punktów leżących na okręgu jednostkowym, istnieje co najwyżej $\frac{n^2}{3}$ odcinków o wierzchołkach w wybranych punktach i długości większej niż $\sqrt{2}$.
- 3. Danych jest 2n punktów na płaszczyźnie oraz $n^2 + 1$ odcinków łączących je. Pokaż, że pewne trzy odcinki tworzą trójkąt.
- 4. Wśród dowolnych trzech osób z grupy 2n ludzi, co najmniej dwie osoby się znają. Pokaż, że w tej grupie istnieje co najmniej $n^2 n$ par znajomych.
- 5. Pokaż, że wśród 21 punktów na okręgu o środku O, istnieje co najmniej 100 par punktów (A,B) takich, że $\angle AOB \leqslant 120^{\circ}$.
- 6. Każdy z 30 członków klubu miał początkowo kapelusz. Pewnego dnia każdy z nich wysłał swój kapelusz innemu członkowi klubu (można było otrzymać więcej niż jeden kapelusz). Udowodnij, że istnieje grupa 10 członków, z których żaden nie otrzymał kapelusza od innej osoby z tej grupy.
- 7. Danych jest 5n punktów na płaszczyźnie oraz $10n^2 + 1$ odcinków łączących je. Kolorujemy każdy z odcinków na niebiesko lub czerwono. Pokaż, że pewne trzy odcinki tworzą trójkąt jednokolorowy.
- 8. Pilot do telewizora do pracy potrzebuje dwóch naładownych baterii. Mamy n baterii, przy czym k z nich jest sprawnych ($2 \le k \le n$). Jedyny sposób na rozpoznanie czy wybraliśmy dobre baterie to włożyć je do pilota i sprawdzić czy działa. Chcemy mieć działający pilot, ile minimalnie prób musimy wykonać w najgorszym przypadku?
- 9. Dla dwóch punktów $A = (x_1, y_1), B = (x_2, y_2)$ na płaszczyźnie, zdefiniujmy wielkość:

$$d(A,B) := |x_1 - x_2| + |y_1 - y_2|.$$

Para punktów (A, B) jest dobra jeśli:

Wyznacz maksymalną liczbę dobrych par wśród 2020 punktów na płaszczyźnie.