Translating to English

Variables must be eliminated: English doesn't use them.

```
\forall x (\exists y \exists z (\mathsf{Bought}(x,y) \land \mathsf{Bought}(x,z) \land \neg (y=z)) \to x = tony)
'For all x, if x bought two different things then x is equal to Tony.'
'Anything that bought two different things is Tony.'
Care: it doesn't say Tony did buy 2 things, just that no one else did.
```

Express the sub-concepts in logic. Then build these pieces into a whole logical sentence.

- Sub-concept 'x is bought'/'x has a buyer': $\exists y \; \mathsf{Bought}(y, x)$.
- Any bought thing isn't human: $\forall x (\exists y \ \mathtt{Bought}(y, x) \to \neg \ \mathtt{Human}(x)).$ Important: $\forall x \exists y (\mathtt{Bought}(y, x) \to \neg \ \mathtt{Human}(x))$ would not do.
- Every PC is bought: $\forall x (PC(x) \to \exists y \text{ Bought}(y, x)).$
- Some PC has a buyer: $\exists x (PC(x) \land \exists y \ Bought(y, x)).$
- No lecturer bought a PC: $\neg \exists x (\text{Lecturer}(x) \land \underbrace{\exists y (\text{Bought}(x, y) \land \text{PC}(y))}_{x \text{ bought a PC}}).$

You often need to say things like:

- 'All lecturers are human': $\forall x (\texttt{Lecturer}(x) \to \texttt{Human}(x))$. NOT $\forall x (\texttt{Lecturer}(x) \land \texttt{Human}(x))$. NOT $\forall x \texttt{Lecturer}(x) \to \forall x \texttt{Human}(x)$.
- 'Some lecturer is human': $\exists x (\texttt{Lecturer}(x) \land \texttt{Human}(x))$. NOT $\exists x (\texttt{Lecturer}(x) \rightarrow \texttt{Human}(x))$.
- Frank bought a PC: $\exists x (PC(x) \land Bought(frank, x))$

Translating to English

The patterns $\forall x(A \to B)$ and $\exists x(A \land B)$, are therefore very common.

 $\forall x(A \land B), \forall x(A \lor B), \exists x(A \lor B)$ also crop up: they say everything/something is A and/or B.

But $\exists x(A \to B)$, especially if x occurs free in A, is extremely rare. If you write it, check to see if you've made a mistake.

Counting

- There is at least one PC: $\exists x \ PC(x)$.
- There are at least two PCs: $\exists x \exists y (PC(x) \land PC(y) \land x \neq y),$ or (more deviously) $\forall x \exists y (PC(y) \land y \neq x).$
- There are at least three PCs: $\exists x \exists y \exists z (\mathsf{PC}(x) \land \mathsf{PC}(y) \land \mathsf{PC}(z) \land x \neq y \land y \neq z \land x \neq z),$ or $\forall x \forall y \exists z (\mathsf{PC}(z) \land z \neq x \land z \neq y).$
- There are no PCs: $\neg \exists x \ \mathsf{PC}(x)$

• There is at most one PC: 3 ways:

- 1. $\neg \exists x \exists y (PC(x) \land PC(y) \land x \neq y)$ This says 'not(there are at least two PCs)' — see above.
- 2. $\forall x \forall y (\mathsf{PC}(x) \land \mathsf{PC}(y) \to x = y)$
- 3. $\exists x \forall y (\mathsf{PC}(y) \to y = x)$

• There's exactly one PC: 2 ways:

- 1. 'There's at least one PC' \wedge 'there's at most one PC' $\exists x (PC(x) \wedge \forall y (PC(y) \rightarrow y = x))$
- 2. $\exists x \forall y (PC(y) \leftrightarrow y = x)$