STAT 401A - Statistical Methods for Research Workers One-way ANOVA

Jarad Niemi (Dr. J)

Iowa State University

last updated: October 5, 2014

Mice lifetimes

Simple hypothesis

Consider the one-way ANOVA model: $Y_{ij} \sim N(\mu_j, \sigma^2)$ where $j = 1, \dots, J$.

Here are a few simple alternative hypotheses:

- Mean lifetimes for N/R50 and R/R50 diet are different.
- Mean lifetimes for N/R40 is different than for N/R50 and R/R50 combined.
- Mean lifetimes for high calorie (NP and N/N85) diets is different than for low calorie diets combined.

$$H_0: \gamma = 0$$
 $H_1: \gamma \neq 0:$
$$\gamma_1 = \mu_{R/R50} - \mu_{N/R50}$$

$$\gamma_2 = \frac{1}{2}(\mu_{N/R50} + \mu_{R/R50}) - \mu_{N/R40}$$

$$\gamma_3 = \frac{1}{2}(\mu_{NP} + \mu_{N/N85}) - \frac{1}{4}(\mu_{N/R50} + \mu_{R/R50} + \mu_{N/R40} + \mu_{lopro})$$

Contrasts

Definition

A linear combination of group means has the form

$$\gamma = C_1 \mu_1 + C_2 \mu_2 + \ldots + C_J \mu_J$$

where \mathcal{C}_j are known coefficients and μ_j are the unknown population means.

vspace0.2in

Definition

A linear combination with $C_1 + C_2 + \cdots + C_J = 0$ is a contrast.

Remark Contrast interpretation is usually best if $|C_1| + |C_2| + \cdots + |C_J| = 2$, i.e. both the positive and negative coefficients sum to 1.

Inference on contrasts

$$\gamma = C_1 \mu_1 + C_2 \mu_2 + \dots + C_J \mu_J$$

Estimated by

$$g = C_1 \overline{Y}_1 + C_2 \overline{Y}_2 + \dots + C_J \overline{Y}_J$$

with standard error

$$SE(g) = s_p \sqrt{\frac{C_1^2}{n_1} + \frac{C_2^2}{n_2} + \cdots + \frac{C_J^2}{n_J}}$$

t-statistic (compare to t_{n-J}) and CI:

$$t = \frac{g}{SE(g)}$$
 $g \pm t_{n-J}(1 - \alpha/2)SE(g)$

Contrasts for mice lifetime dataset

For these contrasts:

- Mean lifetimes for N/R50 and R/R50 diet are different.
- Mean lifetimes for N/R40 is different than for N/R50 and R/R50 combined.
- Mean lifetimes for high calorie (NP and N/N85) diets is different than for low calorie diets combined.

$$H_0: \gamma = 0$$
 $H_1: \gamma \neq 0:$

$$\begin{array}{ll} \gamma_1 &= \mu_{R/R50} - \mu_{N/R50} \\ \gamma_2 &= \frac{1}{2} (\mu_{N/R50} + \mu_{R/R50}) - \mu_{N/R40} \\ \gamma_3 &= \frac{1}{2} (\mu_{NP} + \mu_{N/N85}) - \frac{1}{4} (\mu_{N/R50} + \mu_{R/R50} + \mu_{N/R40} + \mu_{lopro}) \end{array}$$

-	N/N85	N/R40	N/R50	NP	R/R50	lopro
early rest - none @ 50kcal	0.00	0.00	-1.00	0.00	1.00	0.00
40kcal/week - 50kcal/week	0.00	1.00	-0.50	0.00	-0.50	0.00
lo cal - hi cal	-0.50	0.25	0.25	-0.50	0.25	0.25

Mice liftime examples

	Diet	n	mean	sd
1	N/N85	57	32.69	5.13
2	N/R40	60	45.12	6.70
3	N/R50	71	42.30	7.77
4	NP	49	27.40	6.13
5	R/R50	56	42.89	6.68
6	lopro	56	39.69	6.99

Contrasts:

	g	SE(g)	t	р	L	U
early rest - none @ 50kcal	0.59	1.19	0.49	0.62	-1.76	2.94
40kcal/week - 50kcal/week	2.53	1.05	2.41	0.02	0.46	4.59
lo cal - hi cal	12.45	0.78	15.96	0.00	10.92	13.98

SAS

```
DATA case0501;
  INFILE 'case0501.csv' DSD FIRSTOBS=2;
  INPUT lifetime diet $;
PROC MEANS DATA=case0501;
  CLASS diet;
  VAR lifetime;
  RUN;
```

The MEANS Procedure Analysis Variable : lifetime

N					
Obs	N	Mean	Std Dev	Minimum	Maximum
57	57	32.6912281	5.1252972	17.9000000	42.3000000
60	60	45.1166667	6.7034058	19.6000000	54.6000000
71	71	42.2971831	7.7681947	18.6000000	51.9000000
49	49	27.4020408	6.1337010	6.4000000	35.5000000
56	56	42.8857143	6.6831519	24.2000000	50.7000000
56	56	39.6857143	6.9916945	23.4000000	49.7000000
	0bs 57 60 71 49 56	0bs N 57 57 60 60 71 71 49 49 56 56	Obs N Mean 57 57 32.6912281 60 60 45.1166667 71 71 42.2971831 49 49 27.4020408 56 56 42.8857143	Obs N Mean Std Dev 57 57 32.6912281 5.1252972 60 60 45.1166667 6.7034058 71 71 42.2971831 7.7681947 49 49 27.4020408 6.1337010 56 56 42.8857143 6.6831519	Obs N Mean Std Dev Minimum 57 57 32.6912281 5.1252972 17.9000000 60 60 45.1166667 6.7034058 19.600000 71 71 42.2971831 7.7681947 18.6000000 49 49 27.4020408 6.1337010 6.4000000 56 56 42.8857143 6.6831519 24.2000000

SAS

```
PROC GLM;
 CLASS diet:
 MODEL lifetime = diet / CLPARM;
 ESTIMATE 'early rest - none @ 50kcal' diet 0 1 -1 0 0 0;
 ESTIMATE '40kcal/week - 50kcal/week' diet 0 2 -1 0 -1 0 / DIVISOR = 2;
 ESTIMATE 'lo cal - hi cal' diet -2 1 1 -2 1 1 / DIVISOR = 4;
 RUN;
 QUIT;
```

The GLM Procedure

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	5	12733.94181	2546.78836	57.10	<.0001
Error	343	15297.41532	44.59888		
Corrected Total	348	28031.35713			

		Standard		
Parameter	Estimate	Error	t Value	Pr > t
early rest - none @ 50kcal	0.5885312	1.19355007	0.49	0.6223
40kcal/week - 50kcal/week	2.5252180	1.04854904	2.41	0.0166
lo cal - hi cal	12.4496851	0.78001425	15.96	< .0001

Parameter	95% Confider	nce Limits
early rest - none @ 50kcal	-1.7590676	2.9361299
40kcal/week - 50kcal/week	0.4628224	4.5876136
lo cal - hi cal	10.9154718	13.9838985

C+----

R

```
library(multcomp)
m = lm(Lifetime~Diet-1, case0501) # The -1 indicates no intercept (see Ch 7)
summary(m)
Call:
lm(formula = Lifetime ~ Diet - 1, data = case0501)
Residuals:
       10 Median 30
   Min
                                Max
-25.517 -3.386 0.814 5.183 10.014
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
DietN/N85 32.691
                     0.885
                             37.0
                                  <2e-16 ***
DietN/R40 45.117
                     0.862 52.3
                                  <2e-16 ***
DietN/R50 42.297 0.793 53.4
                                  <2e-16 ***
DietNP
      27.402 0.954
                             28.7
                                  <2e-16 ***
DietR/R50 42.886 0.892
                             48.1
                                  <2e-16 ***
                     0.892 44.5 <2e-16 ***
Dietlopro 39.686
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.68 on 343 degrees of freedom
Multiple R-squared: 0.972, Adjusted R-squared: 0.972
F-statistic: 2.01e+03 on 6 and 343 DF, p-value: <2e-16
K
```

```
N/N85 N/R40 N/R50 NP R/R50 lopro
early rest - none @ 50kcal 0.0 0.00 -1.00 0.0 1.00 0.00
40kcal/week - 50kcal/week 0.0 1.00 -0.50 0.0 -0.50 0.00
                         -0.5 0.25 0.25 -0.5 0.25 0.25
lo cal - hi cal
```

```
t = glht(m, linfct=K)
summarv(t)
Simultaneous Tests for General Linear Hypotheses
Fit: lm(formula = Lifetime ~ Diet - 1, data = case0501)
Linear Hypotheses:
                             Estimate Std. Error t value Pr(>|t|)
early rest - none @ 50kcal == 0 0.589 1.194 0.49 0.946
40kcal/week - 50kcal/week == 0 2.525 1.049 2.41 0.049 *
                      12.450 0.780 15.96 <1e-04 ***
lo cal - hi cal == 0
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
confint(t, calpha=univariate calpha())
Simultaneous Confidence Intervals
Fit: lm(formula = Lifetime ~ Diet - 1, data = case0501)
Quantile = 1.967
95% confidence level
Linear Hypotheses:
                             Estimate lwr upr
```

lo cal - hi cal == 0

early rest - none @ 50kcal == 0 0.589 -1.759 2.936 40kcal/week - 50kcal/week == 0 2.525 0.463 4.588 12.450 10.915 13.984

Summary

- Contrasts are linear combinations that sum to zero
- t-test tools are used to calculate pvalues and confidence intervals