Random Variables and Distributions

Definition: Discrete Random Variable (RV)

Let $((\Omega, \mathbb{F}, P))$ be a discrete probability space. A random variable (X) is a function $(X : \Omega \times \mathbb{X})$ where (\mathcal{X}) is a set, and we may assume it to be discrete.

A *real* random variable is one whose image is contained in \(\mathbb{R}\). A (The *image* and the *range* of a random variable \(X\) are given by the image and the range of \(X\) in the function-theoretic sense.) The image of a *binary* random variable is a set \($\{x_0, x_1\}\$ \) with only two elements.

Definition: Probability distribution

Let $\(X\)$ be a random variable. The probability distribution of $\(X\)$ is the function $\(P_X : \mathcal{X} \to [0,1]\)$ defined as $\[P_X(x) := P[X = x], \]$ where $\(X = x\)$ denotes the event $\(\ \nabla \times \mathbb{X} \to \mathbb{X})$.

Alternatively, one can write $(P_X(x) = P[X^{-1}(x)])$ to express that the probability of (x) is precisely the (P)-measure of the pre-image of (x) under the random variable (X).

We say that $\(P_X)$ is a **uniform** distribution if the associated probability measure is uniform, i.e. $\(P_X(x) = \frac{1}{\| \mathbb{X} \|})$. The **support** of a random variable or a probability distribution is defined as $\(\text{x}_{\sup}(P_X) := \{x \in \mathbb{X} \}$ mathcal $\{X\} \in P_X(x) > 0\}$, the points of the range which have strictly positive probability. We often slightly abuse notation and write $\(\text{x}_{\sup}(X))$ instead. When given two or more random variables defined on the same probability space, we can consider the probability that each of the variables take on a certain value:

Definition: Joint probability distribution

Let \(X\) and \(Y\) be two random variables defined on the same probability space, with respective ranges \(\mathcal{X}\) and \(\mathcal{Y}\). The pair \(XY\) is a random variable with probability distribution \(P_{XY} : \mathcal{X} \times [P_{XY}(x,y) := P[X = x, Y = y]. \]

This definition naturally extends to three and more random variables. Unless otherwise stated, a collection of random variables is assumed to be defined on

created: 2018-12-12

Information Theory | Random Variables and Distributions

the same (implicit) probability space, so that their joint distribution is always well-defined. If $\(P_{XY} = P_X \cdot P_Y)$, in the sense that $\(P_{XY}(x,y) = P_X(x)P_Y(y)\)$ for all $\(x \in A_X)$ and $\(y \in A_Y)$, then the random variables $\(X)$ and $\(Y)$ are said to be **independent**. If a set of variables $\(X_1, \cdot A_Y)$ are all mutually independent and all have the same distribution (i.e., $\(P_{X_i} = P_{X_j}\)$ for all $\(i,j)$), then they are **independent and identically distributed**, or **i.i.d**. From a joint distribution, we can always find out the "original" (or **marginal**) distribution of one of the random variables (for example, $\(X)$) by **marginalizing** out the variable that we want to discard (for example, $\(Y)$): $\[P_X(x) = \sum_{y \in A_Y} (x,y) \cdot T_Y(x,y) \cdot T_Y(x,y)$

Definition: Conditional probability distribution

If \(\mathcal{A}\) is an event with \(P[\mathcal{A}] > 0\), then the conditional probability distribution of \(X\) given \(\mathcal{A}\) is given by \[P_{X|\mathbb{A}}(x) = \frac{P[X=x, \mathcal{A}]}{P[\mathbb{A}]}. \] If \(Y\) is another random variable and \(P_Y(y) > 0\), then we write \[P_{X} Y Y(x) y) := P_{X} Y = y\(x) = \frac{P_{X} Y(x,y)}{P_Y(y)} \] for the conditional distribution of \(X\), given \(Y = y\).

Note that again, both \((\mathcal{X},P_{X | \mathbb{A}})\) and \((\mathcal{X},P_{X | Y=y})\) themselves form probability spaces. Note also that if \(X\) and \(Y\) are independent, then \[P_{X | Y}(x | y) = \frac{P_{XY}(x,y)}{P_{Y}(y)} = \frac{P_{XY}(x,y)}{P_{Y}(y)} = P_{X(x)} \cdot \frac{P_{Y}(y)}{P_{Y}(y)} = P_{X}(x), \] which aligns well with our intuition of independent variables: the distribution of \(X\) remains unchanged when \(Y\) is fixed to a specific value.

Example: Fair die (continued)

Consider again the throw of a six-sided fair die. Let the random variable \(X\) describe the number of (distinct) integer divisors for the outcome, that is \[X(1) = 1 \ \ \ \ \ X(2) = 2 \ \ \ \ \ \ X(3) = 2 \ \ \ \ \ \ X(4) = 3 \ \ \ \ \ \ X(5) = 2 \ \ \ \ \ \ X(6) = 4 \] \\(X\) is a real random variable, with range \(\mathcal{X} = \{1,2,3,4\\). The associated probability distribution is \[P_X(1) = P[\{1\}] = \frac{1}{6}, \hspace{4mm} P_X(2) = P[\{2,3,5\}] = \frac{1}{2}, \hspace{4mm} P_X(3) = P[\{4\}] = \frac{1}{6}, \hspace{4mm} P_X(4) = P[\{6\}] = \frac{1}{6} \, . \] If we now condition on the event \(\mathcal{A} = \{2,4,6\}\) (the outcome of the die being even), we get that \[P_{X} = \mathcal{A}\) \\(1) = 0, \hspace{6mm} P_{X} = \mathcal{A}\) \\(1) = \frac{1}{3}, \hspace{6mm} P_{X} = \mathcal{A}\) \\(1) = \frac{1}{3}, \hspace{6mm} P_{X} = \mathcal{A}\)

created: 2018-12-12

Information Theory | Random Variables and Distributions

If \(X\) is a random variable and \(f: \mathbb{X} \to \mathbb{Y}\) is a surjective function, then \(f(X)\) is a random variable, defined by composing the map \(f\) with the map \(X\). Its image is \(\mathcal{Y}\). Clearly, \[P_{f(X)}(y) = \sum_{x \in \mathbb{X}} P_X(x). \] For example, \(1/P_X(X)\) denotes the real random variable obtained from another random variable \(X\) by composing with the map \(1/P_X\) that assigns \(1/P_X(x) \in \mathbb{R}\) to \(x \in \mathbb{R}\).

created: 2018-12-12