# Art of Problem Solving 2002 IMO Shortlist

### IMO Shortlist 2002

| _ | Geometry                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Let $B$ be a point on a circle $S_1$ , and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$ . Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$ . Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$ . |
| 2 | Let $ABC$ be a triangle for which there exists an interior point $F$ such that $\angle AFB = \angle BFC = \angle CFA$ . Let the lines $BF$ and $CF$ meet the sides $AC$ and $AB$ at $D$ and $E$ respectively. Prove that                                                                                                                                                                                                               |
|   | $AB + AC \ge 4DE$ .                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 | The circle $S$ has centre $O$ , and $BC$ is a diameter of $S$ . Let $A$ be a point of $S$ such that $\angle AOB < 120^{\circ}$ . Let $D$ be the midpoint of the arc $AB$ which does not contain $C$ . The line through $O$ parallel to $DA$ meets the line $AC$ at $I$ . The perpendicular bisector of $OA$ meets $S$ at $E$ and at $F$ . Prove that $I$ is the incentre of the triangle $CEF$ .                                       |
| 4 | Circles $S_1$ and $S_2$ intersect at points $P$ and $Q$ . Distinct points $A_1$ and $B_1$ (not at $P$ or $Q$ ) are selected on $S_1$ . The lines $A_1P$ and $B_1P$ meet $S_2$ again at $A_2$ and $B_2$ respectively, and the lines $A_1B_1$ and $A_2B_2$ meet at $C$ . Prove that, as $A_1$ and $B_1$ vary, the circumcentres of triangles $A_1A_2C$ all lie on one fixed circle.                                                      |
| 5 | For any set $S$ of five points in the plane, no three of which are collinear, let $M(S)$ and $m(S)$ denote the greatest and smallest areas, respectively, of triangles determined by three points from $S$ . What is the minimum possible value of $M(S)/m(S)$ ?                                                                                                                                                                       |
| 6 | Let $n \geq 3$ be a positive integer. Let $C_1, C_2, C_3, \ldots, C_n$ be unit circles in the plane, with centres $O_1, O_2, O_3, \ldots, O_n$ respectively. If no line meets more than two of the circles, prove that                                                                                                                                                                                                                 |
|   | $\sum_{1 \le i < j \le n} \frac{1}{O_i O_j} \le \frac{(n-1)\pi}{4}.$                                                                                                                                                                                                                                                                                                                                                                   |



# Art of Problem Solving 2002 IMO Shortlist

| 6 | which is a multiple of $m^{n-1}$ . Show that there exist integers $e_1, e_2, \ldots, e_n$ , no all zero, with $ e_i  < m$ for all $i$ , such that $e_1a_1 + e_2a_2 + \ldots + e_na_n$ is a multiple of $m^n$ .  Find all pairs of positive integers $m, n \geq 3$ for which there exist infinitely many positive integers $a$ such that                                                                                                                                                                                 |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5 | has infinitely many solutions in positive integers $a, b, c$ ?  Let $m, n \geq 2$ be positive integers, and let $a_1, a_2, \ldots, a_n$ be integers, none of                                                                                                                                                                                                                                                                                                                                                            |  |
|   | $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{abc} = \frac{m}{a+b+c}$                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 4 | Is there a positive integer $m$ such that the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 3 | Let $p_1, p_2, \ldots, p_n$ be distinct primes greater than 3. Show that $2^{p_1p_2\cdots p_n} + 1$ has at least $4^n$ divisors.                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2 | Let $n \geq 2$ be a positive integer, with divisors $1 = d_1 < d_2 < \ldots < d_k = n$ . Prove that $d_1d_2 + d_2d_3 + \ldots + d_{k-1}d_k$ is always less than $n^2$ , and determine when it is a divisor of $n^2$ .                                                                                                                                                                                                                                                                                                   |  |
| 1 | What is the smallest positive integer $t$ such that there exist integers $x_1, x_2, \ldots, x_t$ with $x_1^3 + x_2^3 + \ldots + x_t^3 = 2002^{2002} ?$                                                                                                                                                                                                                                                                                                                                                                  |  |
| _ | Number Theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 8 | Let two circles $S_1$ and $S_2$ meet at the points $A$ and $B$ . A line through $A$ meets $S_1$ again at $C$ and $S_2$ again at $D$ . Let $M$ , $N$ , $K$ be three points on the line segments $CD$ , $BC$ , $BD$ respectively, with $MN$ parallel to $BD$ and $MK$ parallel to $BC$ . Let $E$ and $F$ be points on those arcs $BC$ of $S_1$ and $BD$ of $S_2$ respectively that do not contain $A$ . Given that $EN$ is perpendicular to $BC$ and $FK$ is perpendicular to $BD$ prove that $\angle EMF = 90^{\circ}$ . |  |
| 7 | The incircle $\Omega$ of the acute-angled triangle $ABC$ is tangent to its side $BC$ at a point $K$ . Let $AD$ be an altitude of triangle $ABC$ , and let $M$ be the midpoint of the segment $AD$ . If $N$ is the common point of the circle $\Omega$ and the line $KM$ (distinct from $K$ ), then prove that the incircle $\Omega$ and the circumcircle of triangle $BCN$ are tangent to each other at the point $N$ .                                                                                                 |  |



## **Art of Problem Solving**

### 2002 IMO Shortlist

is itself an integer.

Laurentiu Panaitopol, Romania

| _ | Algebra |
|---|---------|
|   |         |

Find all functions f from the reals to the reals such that

$$f(f(x) + y) = 2x + f(f(y) - x)$$

for all real x, y.

Let  $a_1, a_2, ...$  be an infinite sequence of real numbers, for which there exists a real number c with  $0 \le a_i \le c$  for all i, such that

$$|a_i - a_j| \ge \frac{1}{i+j}$$
 for all  $i, j$  with  $i \ne j$ .

Prove that  $c \geq 1$ .

Let P be a cubic polynomial given by  $P(x) = ax^3 + bx^2 + cx + d$ , where a, b, c, d are integers and  $a \neq 0$ . Suppose that xP(x) = yP(y) for infinitely many pairs x, y of integers with  $x \neq y$ . Prove that the equation P(x) = 0 has an integer root.

**4** Find all functions f from the reals to the reals such that

$$(f(x) + f(z))(f(y) + f(t)) = f(xy - zt) + f(xt + yz)$$

for all real x, y, z, t.

5 Let n be a positive integer that is not a perfect cube. Define real numbers a, b, c by

$$a = \sqrt[3]{n}$$
,  $b = \frac{1}{a - [a]}$ ,  $c = \frac{1}{b - [b]}$ ,

where [x] denotes the integer part of x. Prove that there are infinitely many such integers n with the property that there exist integers r, s, t, not all zero, such that ra + sb + tc = 0.



## **Art of Problem Solving**

### 2002 IMO Shortlist

6 Let A be a non-empty set of positive integers. Suppose that there are positive integers  $b_1, \ldots b_n$  and  $c_1, \ldots, c_n$  such that

- for each i the set  $b_iA + c_i = \{b_ia + c_i : a \in A\}$  is a subset of A, and
- the sets  $b_iA + c_i$  and  $b_jA + c_j$  are disjoint whenever  $i \neq j$

Prove that

$$\frac{1}{b_1} + \ldots + \frac{1}{b_n} \le 1.$$

| _ | Combinatorics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Let $n$ be a positive integer. Each point $(x, y)$ in the plane, where $x$ and $y$ are non-negative integers with $x + y < n$ , is coloured red or blue, subject to the following condition: if a point $(x, y)$ is red, then so are all points $(x', y')$ with $x' \le x$ and $y' \le y$ . Let $A$ be the number of ways to choose $n$ blue points with distinct $x$ -coordinates, and let $B$ be the number of ways to choose $n$ blue points with distinct $y$ -coordinates. Prove that $A = B$ .                                   |
| 2 | For $n$ an odd positive integer, the unit squares of an $n \times n$ chessboard are coloured alternately black and white, with the four corners coloured black. A it tromino is an $L$ -shape formed by three connected unit squares. For which values of $n$ is it possible to cover all the black squares with non-overlapping trominos? When it is possible, what is the minimum number of trominos needed?                                                                                                                         |
| 3 | Let $n$ be a positive integer. A sequence of $n$ positive integers (not necessarily distinct) is called <b>full</b> if it satisfies the following condition: for each positive integer $k \geq 2$ , if the number $k$ appears in the sequence then so does the number $k-1$ , and moreover the first occurrence of $k-1$ comes before the last occurrence of $k$ . For each $n$ , how many full sequences are there ?                                                                                                                  |
| 4 | Let $T$ be the set of ordered triples $(x,y,z)$ , where $x,y,z$ are integers with $0 \le x,y,z \le 9$ . Players $A$ and $B$ play the following guessing game. Player $A$ chooses a triple $(x,y,z)$ in $T$ , and Player $B$ has to discover $A$ 's triple in as few moves as possible. A move consists of the following: $B$ gives $A$ a triple $(a,b,c)$ in $T$ , and $A$ replies by giving $B$ the number $ x+y-a-b + y+z-b-c + z+x-c-a $ . Find the minimum number of moves that $B$ needs to be sure of determining $A$ 's triple. |



## Art of Problem Solving 2002 IMO Shortlist

| 5 | Let $r \geq 2$ be a fixed positive integer, and let $F$ be an infinite family of sets, each of size $r$ , no two of which are disjoint. Prove that there exists a set of size $r-1$ that meets each set in $F$ .                                                                                                          |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | Let $n$ be an even positive integer. Show that there is a permutation $(x_1, x_2,, x_n)$ of $(1, 2,, n)$ such that for every $i \in \{1, 2,, n\}$ , the number $x_{i+1}$ is one of the numbers $2x_i, 2x_i - 1, 2x_i - n, 2x_i - n - 1$ . Hereby, we use the cyclic subscript convention, so that $x_{n+1}$ means $x_1$ . |
| 7 | Among a group of 120 people, some pairs are friends. A weak quartet is a set of four people containing exactly one pair of friends. What is the maximum possible number of weak quartets?                                                                                                                                 |

Contributors: orl, grobber, pohoatza, pavel25, Philip\_Leszczynski, dzeta