In the Claims

- 1. (Currently Amended) An organic electroluminescent device comprising: a substrate;
- a thin film transistor formed on the substrate;
- a first electrode electrically coupled to the thin film transistor and having a surface treated by oxygen plasma;
- a chemical vapor deposition insulating film having a low dielectric constant and a thickness of about 1 µm or more formed on the first electrode and the substrate, the chemical vapor deposition film having an opening portion for exposing the first electrode;

an organic electroluminescent layer forming a base and a sidewall formed in the opening portion; and

a second electrode formed on the organic electroluminescent layer.

- 2. (Previously Presented) The device as claimed in claim 1, wherein the chemical vapor deposition insulating film comprises SiOC.
- 3. (Previously Presented) The device as claimed in claim 1, wherein the chemical vapor deposition insulating film has a dielectric constant less than about 3.5.
- 4. (Previously Presented) The device as claimed in claim 1, wherein the chemical vapor deposition insulating film is formed to have a thickness more than about 1 μ m between the first electrode and the organic electroluminescent layer.
 - 5-9. (Canceled)
 - 10. (Currently Amended) An organic electroluminescent device comprising: a substrate;
 - a thin film transistor formed on the substrate;
- a stripe shaped first electrode formed on the substrate electrically coupled to the thin film transistor;

a chemical vapor deposition insulating film having a low dielectric constant and a thickness of about 1 µm or more formed on the fist electrode and the substrate, the chemical vapor deposition insulating film having an opening portion formed on the first electrode with a an inverse-tapered shape;

an organic electroluminescent layer forming a base and a sidewall formed in the opening portion; and

a stripe-shaped second electrode formed on the organic electroluminescent layer, the stripe-shaped second electrode being arranged to cross the first electrode.

- 11. (Previously Presented) The device as claimed in claim 10, wherein the chemical vapor deposition insulating film is comprised of SiOC.
- 12. (Previously Presented) The device as claimed in claim 10, wherein the chemical vapor deposition insulating film has a dielectric constant less than about 3.5.
- 13. (Previously Presented) The device as claimed in claim 10, wherein the chemical vapor deposition insulating film has a thickness more than about 1 μ m between the first electrode and the organic electroluminescent layer.
- 14. (New) A method of manufacturing an organic electroluminescent device, the method comprising:

forming a thin film transistor on a substrate;

forming a first electrode electrically connected to the thin film transistor;

forming a chemical vapor deposition insulating film on the first electrode, the chemical vapor deposition insulating film having an opening portion for exposing the first electrode;

treating a surface of the first electrode by using oxygen plasma;

forming an organic electroluminescent layer on the opening portion; and forming a second electrode on the organic electroluminescent layer.

15. (New) The method of claim 14, wherein the chemical vapor deposition film comprises SiOC.

16.	(New) The method of claim 14, wherein the chemical vapor deposition film has a
dielectric constant that is less than about 3.5.	