Lecture 4: Perceptrons and Multilayer Perceptrons

Cognitive Systems II - Machine Learning SS 2005

Part I: Basic Approaches of Concept Learning

Perceptrons, Artificial Neuronal Networks

Biological Motivation

biological learning systems are built of complex webs of interconnected neurons

motivation:

- capture kind of highly parallel computation
- based on distributed representation

goal:

obtain highly effective machine learning algorithms, independent of whether these algorithms fit biological processes (no cognitive modeling!)

Biological Motivation

	Computer	Brain
computation units	1 CPU (> 10^7 Gates)	10^{11} neurons
memory units	512 MB RAM	10^{11} neurons
	500 GB HDD	10^{14} synapses
clock	$10^{-8} \sec$	$10^{-3} { m sec}$
transmission	$>10^9$ bits/sec	$>10^{14}$ bits/sec

Computer: serial, quick

Brain: parallel, slowly, robust to noisy data

Appropriate Problems

BACKPROPAGATION algorithm is the most commonly used ANN learning technique with the following characteristics:

- instances are representated as many attribute-value pairs
 - input values can be any real values
- target function output may be discrete-, real- or vector-valued
- training examples may contain errors
- Iong training times are acceptable
- fast evaluation of the learned target function may be required
 - many iterations may be neccessary to converge to a good approximation
- ability of humans to understand the learned target function is not important
 - learned weights are not intuitively understandable

Perceptrons

- **•** takes a vector of real-valued inputs $(x_1,...,x_n)$ weighted with $(w_1,...,w_n)$
- calculates the linear combination of these inputs

 - w_0 denotes a threshold value
 - x_0 is always 1
- lacksquare outputs 1 if the result is greater than 1, otherwise -1

Representational Power

- a perceptron represents a hyperplane decision surface in the n-dimensional space of instances
- some sets of examples cannot be separated by any hyperplane, those that can be separated are called linearly separable
- many boolean functions can be representated by a perceptron: AND, OR, NAND, NOR

Perceptron Training Rule

- **problem:** determine a weight vector \vec{w} that causes the perceptron to produce the correct output for each training example
- perceptron training rule:
 - $w_i = w_i + \Delta w_i$ where $\Delta w_i = \eta(t-o)x_i$ t target output o perceptron output η learning rate (usually some small value, e.g. 0.1)
- algorithm:
 - 1. initialize \vec{w} to random weights
 - 2. repeat, until each training example is classified correctly
 - (a) apply perceptron training rule to each training example
- convergence guaranteed provided linearly separable training examples and sufficiently small η

Delta Rule

- perceptron rule fails if data is not linearly separable
- delta rule converges toward a best-fit approximation
- uses gradient descent to search the hypothesis space
 - perceptron cannot be used, because it is not differentiable
 - hence, a unthresholded linear unit is appropriate
 - error measure: $E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d o_d)^2$
- to understand gradient descent, it is helpful to visualize the entire hypothesis space with
 - all possible weight vectors and
 - associated E values

Error Surface

• the axes w_0, w_1 represent possible values for the two weights of a simple linear unit

⇒ error surface must be parabolic with a single global minimum

Derivation of Gradient Descent

- problem: How calculate the steepest descent along the error surface?
- ullet derivation of E with respect to each component of $ec{w}$
- this vector derivate is called *gradient* of E, written $\nabla E(\vec{w})$

$$\nabla E(\vec{w}) \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, ..., \frac{\partial E}{\partial w_n}\right]$$

- $\ \ \, {\bf \searrow} E(\vec{w})$ specifies the steepest ascent, so $-{\bf \bigtriangledown} E(\vec{w})$ specifies the steepest descent
- training rule: $w_i = w_i + \Delta w_i$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$
 and $\frac{\partial E}{\partial w_i} = \sum_{d \in D} (t_d - o_d) (-x_{id})$

$$\Rightarrow \Delta w_i = \sum_{d \in D} (t_d - o_d) x_{id}$$

Incremental Gradient Descent

- application difficulties of gradient descent
 - convergence may be quite slow
 - in case of many local minima, the global minimum may not be found
- idea: approximate gradient descent search by updating weights incrementally, following the calculation of the error for each individual example
- $\Delta w_i = \eta(t-o)x_i$ where $E_d(\vec{w}) = \frac{1}{2}(t_d-o_d)^2$
- key differences:
 - weights are not summed up over all examples before updating
 - requires less computation
 - better for avoidance of local minima

Gradient Descent Algorithm

GRADIENT-DESCENT($training_examples, \eta$)

Each training example is a pair of the form $<\vec{x},t>$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate.

- ullet Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero
 - For each $<\vec{x},t>$ in $training_examples$, Do
 - Input the instance \vec{x} to the unit and compute the output o
 - For each linear unit weight w_i , Do $\Delta w_i = \Delta w_i + \eta(t-o)x_i^*$
 - For each linear unit weight w_i , Do $w_i \leftarrow w_i + \Delta w_i^{**}$

To implement incremental approximation, equation ** is deleted and equation * is replaced by $w_i \leftarrow w_i + \eta(t-o)x_i$.

Perceptron vs. Delta Rule

perceptron training rule:

- uses thresholded unit
- converges after a finite number of iterations
- output hypothesis classifies training data perfectly
- linearly separability neccessary

delta rule:

- uses unthresholded linear unit
- converges asymptotically toward a minimum error hypothesis
- termination is not guaranteed
- linear separability not neccessary

Multilayer Networks (ANNs)

- capable of learning nonlinear decision surfaces
- normally directed and acyclic ⇒ Feed-forward Network
- based on sigmoid unit
 - much like a perceptron
 - but based on a smoothed, differentiable threshold function

$$\sigma(net) = \frac{1}{1 + e^{-net}}$$
$$\lim_{net \to +\infty} \sigma(net) = 1$$
$$\lim_{net \to -\infty} \sigma(net) = 0$$

BACKPROPAGATION

- learns weights for a feed-forward multilayer network with a fixed set of neurons and interconnections
- employs gradient descent to minimize error
- ightharpoonup redefinition of E
 - has to sum the errors over all units
 - $E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} o_{kd})^2$
- **problem:** search through a large H defined over all possible weight values for all units in the network

BACKPROPAGATION algorithm

 $\mathsf{BACKPROPAGATION}(training_examples, \eta, n_{in}, n_{out}, n_{hidden})$

The input from unit i to unit j is denoted x_{ji} and the weight from unit i to unit j is denoted w_{ji} .

- ullet create a feed-forward network with n_{in} inputs. n_{hidden} hidden untis, and n_{out} output units
- Initialize all network weights to small random numbers
- Until the termination condition is met, Do
 - For each $<\vec{x},\vec{t}>$ in $training_examples$, Do

Propagate the input forward through the network:

1. Input \vec{x} to the network and compute o_u of every unit u

Propagate the errors back trough the network:

- 2. For each network output unit k, calculate its error term δ_k $\delta_k \leftarrow o_k (1 o_k)(t_k o_k)$
- 3. For each **hidden unit** h, calculate its error term δ_h $\delta_h \leftarrow o_h (1 o_h) \sum_{k \in outputs} w_{kh} \delta_k$
- 4. Update each weight w_{ji} $w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$ where $\Delta w_{ji} = \eta \delta_j x_{ji}$

Termination conditions

- fixed number of iterations
- error falls below some threshold
- error on a separate validation set falls below some threshold
- important:
 - too few iterations reduce error insufficiently
 - too many iterations can lead to overfitting the data

Adding Momentum

- one way to avoid local minima in the error surface or flat regions
- ullet make the weight update in the n^{th} iteration depend on the update in the $(n-1)^{th}$ iteration

$$\Delta w_{ji}(n) = \eta \delta_j x_{ji} + \alpha \Delta w_{ji}(n-1)$$

$$0 \le \alpha \le 1$$

Representational Power

boolean functions:

 every boolean function can be representated by a two-layer network

continuous functions:

every continuous function can be approximated with arbitrarily small error by a two-layer network (sigmoid units at the hidden layer and linear units at the output layer)

arbitrary functions:

 each arbitrary function can be approximated to arbitrary accuracy by a three-layer network

Inductive Bias

every possible assignment of network weights represents a syntactically different hypothesis

•
$$H = \{\vec{w} | \vec{w} \in \Re^{(n+1)}\}$$

inductive bias: smooth interpolation between data points

Illustrative Example - Face Recognition

task:

- classifying camera image of faces of various people
- images of 20 people were made, including approximately 32 different images per person
- image resolution 120×128 with each pixel described by a greyscale intensity between 0 and 255
- identifying the direction in which the persons are looking (i.e., left, right, up, ahead)

Illustrative Example - Design Choices

input encoding:

- image encoded as a set of 30×32
- pixel intensitiy values ranging from 0 to 255 linearly scaled from 0 to 1
- ⇒ reduces the number of inputs and network weights
- ⇒ reduces computational demands

output encoding:

- network must output one of four values indicating the face direction
- 1-of-n output encoding: 1 output unit for each direction.
- ⇒ more degrees of freedom
- ⇒ difference between highest and second-highest output can be used as a measure of classification confidence

Illustrative Example - Design Choices

network graph structure:

- BACKPROPAGATION works with any DAG of sigmoid units
- question of how many units and how to interconnect them
- using standard design: hidden layer and output layer where every unit in the hidden layer is connected with every unit in the output layer
- \Rightarrow 30 hidden units
- \Rightarrow test accuracy of 90%

Advanced Topics

- hidden layer representations
- alternative error functions
- recurrent networks
- dynamically modifying network structure

Summary

- able to learn discrete-, real- and vector-valued target functions
- noise in the data is allowed
- perceptrons learn hyperplane decision surfaces (linear separability)
- multilayer networks even learn nonlinear decision surfaces
- BACKPROPAGATION works on arbitrary feed-forward networks and uses gradient-descent to minimize the squared error over the set of training examples
- an arbitrary function can be approximated to arbitrary accuracy by a three-layer network
- Inductive Bias: smooth interpolation between data points