Matrizes

Fabio Lubacheski fabio.lubacheski @mackenzie.br

Matrizes

Em matemática uma **matriz** é um conjunto retangular de números, símbolos ou expressões, organizados em **linhas** e **colunas**. Cada um dos itens de uma matriz é chamado de **elemento**.

Matrizes

Para representar uma matriz em uma linguagem de programação utilizamos o mesmo conceito de vetores, com a diferença que um vetor armazena informações com indexação em uma única dimensão (índice), também chamado de *array* unidimensional.

Uma matriz estende o conceito de vetor, pois uma informação é referenciada por dois índices, um para cada dimensão (array bidimensional)

Matriz	0	1	2
0			
1			
2			

Em Python, uma matriz pode ser representada como uma lista de listas, onde um elemento da lista contém uma linha da matriz, que por sua vez corresponde a uma lista com os elementos da coluna da matriz. Se quisermos criar uma matriz com 5 linhas e em cada linha 5 colunas, poderíamos escrever o trecho de cógido abaixo

```
linha_com_zeros = [0,0,0,0,0]
A = [ linha_com_zeros ] * 5
A[1][1] = 2
```

Será que funciona o trecho acima?

```
linha_com_zeros = [0,0,0,0,0]
A = [ linha_com_zeros ] * 5
A[1][1] = 2
```

Não funciona!! Pois A variável **linha_com_zeros** contém uma referência ao vetor **[0, 0, 0, 0]**. No trecho de código acima, na tentativa de cria uma matriz **A**, essa mesma referência é copiada 5 vezes.

Para **criarmos** (**alocar**) uma matriz é necessário criarmos 5 linhas diferentes devemos usar o trecho de código abaixo:

```
A = [None]*5 # cria (aloca) 5 linhas
for i in range(5):
   A[i]=[0]*5 # aloca uma nova linha com 5 colunas
```

Matrizes também podem ser criadas e inicializadas junto:

```
A=[[0,4,5], [-5,6,8]]
M=[['A','B'],['C','D'],['E','F']]
```

O acesso aos elementos de uma matriz é feito através de dois índices: um para a **linha** e, outro, para a **coluna**. Por exemplo, considerando-se a matriz A do slide anterior, o acesso A [0] [1] irá recuperar o valor 4 (linha 0, coluna 1).

Para sabermos o numero de linhas da matriz basta utilizar a propriedade len:

```
>>> len(A)
```

Para o número de colunas podemos usar:

```
>>> len(A[0])
```

Lembrando que todas as linhas temos o mesmo número de colunas

Assim. se quisermos ler valores para todas as posições da matriz deveríamos fazer o seguinte:

```
for i in len(A): # anda na linha
  for j in len(A[0]): # anda na coluna
    A[i][j]=int(input())
```

E para imprimir os elementos da matriz teríamos?

```
for i in len(A): # anda na linha
  for j in len(A[0]): # anda na coluna
    print("A[",i,"]","[",j,"]=",A[i][j])
```

1) Dado a matriz A_{nxm} , faça uma função que recebe a matriz A_{nxm} por parâmetro, em seguida a função aloca e devolve sua transposta A^t , onde $A[i][j] = A^t[j][i]$ para qualquer i e j.

Exemplo, se A_{3x2} $\begin{bmatrix} 0 & 6 \\ -1 & 2 \\ 5 & 0 \end{bmatrix}$ a matriz transposta representada por A_{2x3}^t , será $\begin{bmatrix} 0 & -1 & 5 \\ 6 & 2 & n \end{bmatrix}$

- 2) Escreva uma função que receba uma matriz *nxm* de números inteiros e devolva o maior valor presente nesta matriz.
- 3) O traço de uma matriz é a soma dos elementos de sua **diagonal principal**. Implemente uma função que receba uma matriz quadrada (número de linhas = número de colunas) e devolva o seu traço.

- 4) Dizemos que uma matriz quadrada A é **simétrica** se e somente se A[i][j] = A[j][i].
 - Implemente uma função para verificar se uma matriz de números inteiros é simétrica, se a matriz for simétrica sua função retorna **true** e **false** caso contrário.
- 5) Escreva uma função que recebe por parâmetros duas matrizes, A e B, com n linhas e m colunas.
 - Sua função deve calcular a soma de A + B e armazena na matriz Cnxm e ao final retornar a matriz C.
- 6) Dadas a matriz A_{nxn} e o vetor B com n elementos, calcule a multiplicação de A por B, e armazene na matriz C_{nxI} .
- 7) Dadas duas matrizes A_{mxn} e B_{nxp} . Obter a matriz C_{mxp} onde C = AxB.

8) Dizemos que uma matriz quadrada inteira é um **quadrado mágico** se a soma dos elementos de cada linha, a soma dos elementos de cada coluna e a soma dos elementos das diagonais principal e secundária são todas iguais. A matriz abaixo é um quadrado mágico:

$$\begin{pmatrix} 8 & 0 & 7 \\ 4 & 5 & 6 \\ 3 & 10 & 2 \end{pmatrix}$$

Escreva uma função que recebe uma matriz quadrada Anxn e retorna true se a matriz for um quadrado mágico e false caso contrário

9) Dado uma tabela representando as distâncias (em KM) entre várias cidades, por exemplo, para 5 cidades teríamos:

		Cidades						
		1	2	3	4	5		
Cidades	1		15	30	5	12		
	2	15	1	10	17	28		
	3	30	10	_	3	11		
	4	5	17	3		80		
	5	12	28	11	80			

Escreva uma função que recebe uma tabela e um percurso, por parâmetro, a função calcula a distância de um percurso pelas cidades. cidades.

Se tivermos o seguinte percurso entre as cidades 1, 2, 3, 2, 5, 1, 4, teremos a distância: 15 + 10 + 10 + 28 + 12 + 5 = 80 km.

10) Um produto tem preço de custo igual a P em dezembro de 2017. A cada mês esse preço sofre um aumento de acordo com a seguinte tabela de taxas:

Ano de 2018

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
Taxa	0,20	0,21	0,19	0,18	0,03	0,08	0,10	0,15	0,20	0,30	0,32	0,40

Dado uma lista de produtos com o seu custo em dezembro de 2017, obter o seu preço para o mês de dezembro de 2018. Considere que a lista de produtos contém no máximo 20 produtos.

11) Problemas no UriOnline:

Dama

https://www.urionlinejudge.com.br/judge/pt/problems/view/1087

Jogo da Matriz

https://www.urionlinejudge.com.br/judge/pt/problems/view/2710

Matriz Quadrada I

https://www.urionlinejudge.com.br/judge/pt/problems/view/1435

Matriz Quadrada II

https://www.urionlinejudge.com.br/judge/pt/problems/view/1478

Fim