Práctica 8: Teorema de Taylor

Ejercicio 1 Sea $f(x) = \ln(x+1)$. Encuentre un polinomio p(x) de grado 3 tal que p(0) = f(0), p'(0) = f'(0), p''(0) = f''(0) y p'''(0) = f'''(0).

Ejercicio 2 Calcule el polinomio de Taylor de las siguientes funciones hasta el orden indicado en el punto dado.

a)
$$f(x) = \frac{1}{1-x}$$
 orden 5 $x_0 = 0$

b)
$$f(x) = \operatorname{sen} x$$
 orden 4 $x_0 = 0$

c)
$$f(x) = \operatorname{sen} x$$
 orden 5 $x_0 = 0$

$$d) f(x) = \cos x \qquad \text{orden} \qquad 5 \qquad x_0 = 0$$

$$e) f(x) = \ln x$$
 orden $4 x_0 = 1$

$$f) f(x) = \sqrt{x}$$
 orden 3 $x_0 = 4$

$$g) f(x) = e^x \qquad \text{orden} \qquad 5 \qquad x_0 = 0$$

h)
$$f(x) = (1+x)^6$$
 orden 6 $x_0 = 0$

Ejercicio 3 Compruebe que el polinomiio de Taylor de orden n de la función $f(x)=e^x$ es $p(x)=1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots+\frac{x^n}{n!}$.

Ejercicio 4 Obtenga el polinomio de Taylor de orden n de las siguientes funciones en $x_0 = 0$.

a)
$$f(x) = \frac{1}{1-x}$$
 d) $f(x) = e^{2x}$

b)
$$f(x) = \cos x$$
 e) $f(x) = \frac{1}{1 - x^2}$

c)
$$f(x) = \sin x$$

f) $f(x) = \ln(1+x)$

Ejercicio 5 Sea $q(x) = x^4 - 8x^3 - 4x^2 + 3x - 2$.

- a) Halle los polinomios de Taylor de q en $x_0 = 0$ de orden 1 a 6.
- b) Haga lo mismo, sin hacer las cálculos, para

$$p(x) = x^{20} + x^{19} + x^3 + x^2 + x + 1.$$

Ejercicio 6 Si el polinomio de Taylor de f de orden 5 en x=2 es

$$p(x) = (x-2)^5 + 3(x-2)^4 + 3(x-2)^2 - 8$$

calcule $f^{(4)}(2)$ y f'''(2). ¿Se puede conocer el valor de $f^{(6)}(2)$? ¿Cuánto vale $f^{(6)}(2)$ si el polinomio p es de orden 7?

Ejercicio 7 Los polinomios de Taylor de orden 4 en x=2 de las funciones f y g son, respectivamente

$$p(x) = -2 + 3(x - 2) - 3(x - 2)^{2} + (x - 2)^{3} y q(x) = 5 + 12(x - 2)^{2} - 7(x - 2)^{4}$$

Halle el polinomio de Taylor de orden 2 de t(x) = f(x)g(x) y $s(x) = \frac{f(x)}{g(x)}$ en x = 2.

Ejercicio 8 Sea $f(x) = \ln(1+x)$ y sea p(x) su polinomio de Taylor de orden 3 en $x_0 = 0$.

Demuestre (usando el Teorema generalizado del Valor Medio (teorema de Cauchy)) que $\frac{f(x) - p(x)}{x^4} = \frac{f^{(4)}(c)}{4!}$ para algún valor de c entre 0 y x.

Ejercicio 9 Escriba la expresión del resto en cada caso:

a)
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + R_4(x)$$

b)
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + x^5 + R_5(x)$$

c) sen
$$x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + R_5(x)$$

d) sen
$$x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + R_6(x)$$

e)
$$\ln x = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 + R_3(x)$$

Ejercicio 10 Para la función $f(x) = \cos x$

- a) Obtenga el polinomio de Taylor de orden 4 $p_4(x)$.
- b) Escriba la expresión de $R_4\left(\frac{1}{2}\right)$.

c) Pruebe que
$$\left| R_4 \left(\frac{1}{2} \right) \right| \le \frac{1}{2^5 5!} < 0,0003$$

Ejercicio 11 Se quiere aproximar $\sqrt[3]{e}$:

- a) Pruebe que el polinomio de Taylor de orden 5 en x=0 de $f(x)=e^x$ lo consigue con un error menor que $\frac{1}{174960}$.
- b) ¿De qué orden hay que tomar al polinomio de Taylor de la misma función para que el error sea menor que 10^{-8} ? (use que e < 3).

Ejercicio 12 Utilice el polinomio de Taylor de orden 4 en $x_0 = 0$ de $f(x) = \operatorname{sen} x$ para aproximar el valor de $\operatorname{sen}(0, 25)$ y dé una cota para el error que se comete al tomar esta aproximación.

Ejercicio 13 Sea $f(x) = x \ln x$.

- a) Halle el polinomio de Taylor $\,p\,$ de orden $\,3$ de $\,f\,$ en $\,x=1.$ Escriba la expresión del resto.
- b) Estime, acotando el resto, el error que se comete al calcular f(1,5) por medio de p(1,5).

Ejercicio 14 ¿Cuántos términos es suficiente tomar en el desarrollo de Taylor en x=0 de $f(x)=e^x$ para obtener un polinomio que aproxime a dicha función en todo el intervalo [-1,1] con un error menor que 10^{-4} ? Use el polinomio hallado para encontrar las primeras tres cifras decimales del número e.

Ejercicio 15 Sea $f(x) = \ln(1+x)$. ¿De qué orden hay que tomar el polinomio de Taylor en x = 0 para poder calcular $\ln(1, 15)$ con un error que no supere a 0,001?

Ejercicio 16 Halle un intervalo que contenga a $x=0\,$ tal que la diferencia entre

- a) $\cos x$ y $1 \frac{x^2}{2!} + \frac{x^4}{4!}$ sea menor que 5,10⁻⁵.
- b) sen x y x sea menor que 10^{-3} .

PROBLEMAS VARIOS

Ejercicio 1 Halle los valores de a y de b de modo que el polinomio de Taylor de orden 2 de $f(x) = a \ln (1 + bx)$ en x = 0 sea $p(x) = 2x + \frac{3}{2}x^2$.

Ejercicio 2 Sea $f(x) = 1 + 3x + \operatorname{sen} x$. Escriba p(x), el polinomio de Taylor de f de orden 4 en x = 0 y calcule, estimando el resto, el error que se comete al calcular $f\left(\frac{1}{3}\right)$ con $p\left(\frac{1}{3}\right)$.

Ejercicio 4 Calcule el polinomio de Taylor de orden 2 en x=0 de $f(x)=\sqrt[3]{1+x}$. Estime el error que se comete al calcular los valores de la función por medio del polinomio hallado cuando $-\frac{1}{2} \le x < 1$.

Ejercicio 5 Determine los valores de $\,a\,$ y $\,b\,$ para que el polinomio de Taylor de

$$f(x) = \ln(1+x) + ax^2 + bx$$

en x = 0 empiece con la potencia de x de exponente lo más grande posible.

Ejercicio 6 La función $f(x) = \sqrt[n]{ax+1}$ tiene como polinomio de Taylor de orden 2 en x=0 a

$$p(x) = 1 + 5x - \frac{75}{2}x^2.$$

Halle los valores de a y de n.

Ejercicio 7 La función f satisface la ecuación (5x+1)f'(x)+f(x)=1, f(0)=2. Encuentre el polinomio de Taylor de orden f en f0.

Ejercicio 8 Sea $f(x) = \sqrt{ax+1}$ y $p(x) = 1 + 2x + bx^2$. Determine los valores de a y de b para que p(x) sea el polinomio de Taylor de f de orden p(x) en p(x)

Ejercicio 9 Se sabe que la función f(x) cumple $f''(x) = \sqrt{3x^2 + 5x + a} + 7$ y que su polinomio de Taylor de orden 2 en $x_0 = 1$ es

$$p(x) = 2 - 7(x - 1) + 4(x - 1)^{2}.$$

Halle el valor de a y calcule el polinomio de Taylor de f de orden 3 en $x_0 = 1$.

Ejercicio 10 Sea $f(x) = 3 + (x+2)e^{ax}$. Halle $a \in \mathbb{R}$ sabiendo que la recta tangente en (0; f(0)) tiene ecuación y = 5 + 10x. Calcule $p_2(x)$ el polinomio de Taylor de orden 2 en $x_0 = 0$ de f.

Ejercicio 11 Sea $g(x) = 1 - 3x + \sqrt{f(x)}$. Si el polinomio de Taylor de orden 2 en $x_0 = 0$ de g es $p(x) = 2 - x + 3x^2$, halle el polinomio de Taylor de orden 2 de f en $x_0 = 0$.

Ejercicio 12 Sea $g(x) = 3 + 2x + \cos(f(x))$. Sabiendo que

$$p(x) = 2x + 5x^2 - 3x^3$$

es el polinomio de Taylor de orden 3 en $x_0=0$ de g, halle el polinomio de Taylor de orden 2 de f en $x_0=0$.