Arranjos

Claudio Esperança Paulo Roma

Arranjos

- Arranjos de retas e planos são a terceira estrutura em importância em GC.
- Arranjos de retas são coleções de retas infinitas distribuídas no plano.
- Arranjos induzem uma **partição do espaço** em regiões convexas (faces), segmentos de reta (arestas), e pontos (vértices nas interseções das retas).
- A <u>partição induzida</u> é chamada de **arranjo**, e consideram-se as faces e arestas como conjuntos abertos (células disjuntas duas a duas).

Aplicações

- Grafos de visibilidade.
- Remoção de superfícies escondidas.
- Polígonos convexos vazios.
- Corte do sanduíche de presunto.
- k-Corredor mínimo.
- Linha cortante máxima.

Combinatória

- Em arranjos **simples** cada par de retas se intersectam em exatamente um ponto e não passam mais de duas retas pelo mesmo ponto.
- Arranjos degenerados podem conter retas paralelas ou três retas passando pelo mesmo ponto, mas dificultam a prova dos teoremas.

Teorema 1

- Um arranjo simples com *n* retas possui:
 - $F = \binom{n}{2} + n + 1$ faces
 - $A = n^2$ arestas
 - $V = \binom{n}{2}$ vértices
 - Nenhum arranjo degenerado excede essas quantidades.

Prova

- O número de vértices é imediato pois cada par de retas se intersecta em exatamente um ponto.
- O número de arestas pode ser verificado por indução:
 - Assuma um arranjo simples S com n 1 retas e $(n-1)^2$ arestas. Insira uma nova reta L em S.
 - Uma nova aresta é criada em cada uma das
 n 1 retas e L é dividida em n arestas por S.
 - Assim, $A = (n-1)^2 + (n-1) + n = n^2$.
- O número de faces pode ser verificado pela fórmula de Euler: V A + F = 2.

Propriedades

- Arranjos são fundamentalmente quadráticos:
 - V, $A \in F$ são $\Theta(n^2)$.
- A construção eficiente de arranjos é possível porque nenhuma reta corta as células em muitas pontos.
- De fato, o teorema da zona garante que o número de interseções é linear no número de retas.

Zona de Uma Reta

 Seja S um arranjo simples com n retas e uma reta L ∉ S. A zona Z(L) é o conjunto de células de S intersectadas por L.

Teorema da Zona

- O número total de arestas em todas as células que intersectam uma reta de um arranjo de n retas é O(n): $z_n \le 6n$.
 - Note-se que cada aresta na fronteira de duas células adjacentes não deve ser contada <u>duas vezes</u>.
- A prova assume *L* horizontal (basta mudar o sistema de coordenadas adequadamente).
- A zona de *L* é dividida em arestas que limitam faces à direita e à esquerda.
 - Como as faces são convexas, basta dividir cada face no vértice mais alto e mais baixo para se ter duas cadeias convexas de arestas.

Prova do Teorema da Zona

- O conjunto das arestas esquerdas de Z(L) possui no máximo 3n arestas.
- No caso base n = 1, há apenas uma aresta esquerda. Assuma-se verdadeiro para um conjunto de n - 1 retas retirando-se a reta l_1 , aquela mais à direita de S.

Prova do Teorema da Zona

- Pela hipótese indutiva há apenas 3(n-1) retas esquerdas em Z(L).
- Agora inclua-se de novo l_1 e veja-se quantas arestas esquerdas a mais aparecem.
 - Considere-se a face mais à direita do arranjo de n-1 retas. A reta l_1 intersecta L nesta face.
- Sejam e_a e e_b as duas arestas dessa face intersectadas por l_1 , uma acima e a outra abaixo de L.
- A inclusão de l_1 cria uma nova aresta esquerda ao longo de l_1 e divide e_a e e_b em duas novas arestas esquerdas.
 - Há então um incremento total de <u>3 arestas</u>.

Prova do Teorema da Zona

- Note-se que l_1 não pode contribuir com nenhuma outra aresta esquerda porque, dependendo da inclinação, a aresta e_a ou a aresta e_b ficará invisível de L.
 - Porém, podem aparecer outras arestas direitas, que não estão sendo contadas.
- Assim, o número total de arestas esquerda da zona de L é no máximo $3(n-1) + 3 \le 3n$.

Construção Incremental

- O arranjo deve ser representado por uma estrutura de dados adequada. Seja $L = \{l_1, l_2, ..., l_n\}$.
- Deve ser adicionada uma reta por vez, não importando a ordem.
- Suponha-se que i-1 retas já foram adicionadas e calcule-se o esforço para incluir l_i . Pode-se considerar que há uma caixa envolvendo o arranjo.
- Cada reta intersecta a caixa duas vezes. Logo, as i-1 retas dividem a caixa em 2(i-1) arestas. Determinase então onde l_i intersecta a caixa e quais dessas arestas são intersectadas. Isso determina qual a face do arranjo que l_i atravessa primeiro.

Complexidade

- Assim, pode-se pular de face em face do arranjo por adjacência.
 - A aresta de saída de uma face é determinada caminhando-se <u>por todas</u> as arestas da face no sentido anti-horário. Quando encontrada, basta pular para a face do outro lado da aresta.
- Nesse processo, são encontradas no máximo i 1 retas que delimitam i faces (como sempre o arranjo é considerado simples).
- Pelo teorema da zona, cada face é limitada por no máximo O(i) arestas.
 - Logo, a complexidade total de pior caso é $\sum_{i=1}^{n} i = O(n^2)$, que é o tamanho do arranjo e portanto assintoticamente ótima.

Ordenando Seqüências Angulares

 Seja um conjunto de *n* pontos do plano. Para cada ponto deseja-se executar uma varredura angular, no sentido anti-horário, visitando todos os outros *n* – 1 pontos do conjunto.

Ordenação Angular

- Para cada ponto é possível determinar os ângulos entre esse ponto e todos os demais n – 1 pontos e ordenar os ângulos.
 - $O(n \log n)$ por ponto.
 - Total de $O(n^2 \log n)$.
 - Com arranjos é possível $O(n^2)$.
- No plano primal, um ponto $p = (p_x, p_y)$ e uma linha l: (y = ax b) são mapeados em uma linha dual p* e um ponto dual l*.
 - $l^* = (a,b)$.
 - $p^* : (b = p_x a p_y)$

Ordenação Angular

- Seja a reta dual p^* e seus pontos de interseção com cada reta dual p_i^* . Surge uma seqüência de vértices no arranjo ao longo de p^* .
 - A coordenada a de cada vértice no arranjo dual é a inclinação de alguma reta pp_i.
 - Da esquerda para a direita, os vértices ao longo da reta p^* estão ordenados por <u>inclinação</u>.
 - Dada a ordenação por inclinação, pode-se testar quais pontos primais estão à esquerda de p (coordenada x menor) e separá-los dos pontos à direita de p.
 - Concatene-se a sequência ordenada direita com a sequência ordenada esquerda.
 - O resultado é uma seqüência angular ordenada de -90º a 270º.

3-Corredor Mais Estreito

- Seja um conjunto de n pontos no plano e um inteiro k, $1 \le k \le n$. Deseja-se determinar o par de retas paralelas mais estreitas que contêm pelo menos k pontos do conjunto.
 - Será usada a distância vertical ao invés da perpendicular.
 - Aqui k = 3, os pontos estão em posição geral, e dois pontos não têm a mesma coordenada x.

Corredor Mais Estreito

- No espaço dual há um conjunto de *n* retas.
 - A inclinação de cada reta é a coordenada x do ponto correspondente.
 - O 3-corredor mais estreito no plano primal são duas retas <u>paralelas</u> l_a e l_b .
 - Seus duais são os pontos l_a^* e l_b^* de mesma coordenada x.
 - A distância vertical é a diferença dos deslocamentos y das duas retas primais.
 - A distância vertical do corredor é igual a distância vertical do segmento de reta.

Corredor Mais Estreito

- No plano primal há 3 pontos no corredor acima de l_b e abaixo de l_a .
 - Pela reversão da ordem, no plano dual há três retas duais que passam abaixo de l_b^* e acima de l_a^* .
- Esse problema é equivalente ao das linhas cortantes mais curtas.
 - Dadas n linhas, determinar o segmento vertical mais curto que corta três linhas do arranjo.
 - Uma das extremidades está sobre um vértice do arranjo e a outra extremidade está sobre uma reta do arranjo.
 - No problema do corredor uma das retas passa por dois pontos e a outra reta passa por um ponto.

Linha Cortante Mais Curta

- A linha cortante mais curta pode ser determinada por varredura, usando-se uma linha vertical.
 - Sempre que se encontra um vértice do arranjo calcula-se a distância às retas imediatamente acima e abaixo desse vértice.
 - O problema pode ser resolvido em tempo $O(n^2)$ e espaço O(n).

Caminhos Mais Curtos

- Dados *n* obstáculos poligonais disjuntos no plano e dois pontos *s* e *t*, determinar o caminho mais curto de *s* até *t* que evite o interior de todos os obstáculos.
- O complemento do interior dos obstáculos forma o **espaço vazio**.
- A métrica utilizada é a distância Euclidiana.
 - Caminho mais curto é uma curva poligonal.
 - As arestas da curva poligonal mais curta possuem vértices coincidentes com vértices dos obstáculos, s e t e não intersectam o interior dos obstáculos.

Grafo de Visibilidade

- O grafo de visibilidade GV definido por *s* e *t* e pelo conjunto dos obstáculos possui vértices coincidentes com *s*, *t* e com os vértices dos obstáculos.
- Existe uma aresta entre dois vértices do grafo se eles forem <u>visíveis</u> um ao outro ou se forem vértices de arestas dos obstáculos.
- O caminho mais curto pode ser descoberto a partir do grafo de visibilidade.
- O grafo de visibilidade <u>não é planar</u> e por isso pode possuir $\Omega(n^2)$ arestas.

Conjunto de Obstáculos

 Cada aresta do grafo de visibilidade é etiquetada com o seu comprimento Euclidiano e o caminho mais curto pode ser encontrado pelo algoritmo de Dijkstra.

Computando GV

 O algoritmo dispara raios a partir de todos os vértices com inclinação variando de -∞ a +∞, no sentido anti-horário (varredura angular múltipla).

Computando GV

- Um evento significante ocorre sempre que o tiro pula de uma aresta para outra. Isso acontece quando o ângulo atinge a inclinação da reta que liga dois vértice visíveis v e w.
 - É complicado descobrir que vértices são visíveis.
 - Por isso ocorrem eventos em todos os ângulos entre dois vértices, visíveis ou não.
 - Por dualidade, a inclinação de um evento corresponde a coordenada a da interseção das linhas v^* e w^* .
 - Assim, varrendo o arranjo todos os eventos são gerados.

Cenários dos Eventos

- Há dois tiros emanando de cada vértice v: um para frente, que atinge a reta f(v), e outro para trás, que atinge a reta t(v).
 - Se o tiro n\(\tilde{a}\) atingir reta alguma usa-se um valor nulo.
 - Se v e w são extremidades do mesmo segmento, então são visíveis e a aresta (v, w) é adicionada ao grafo.
- Vértices não visíveis.
 - Determina-se se w está no mesmo lado de f(v) ou t(v). Assuma-se f(v), pois o outro caso é simétrico.
 - Calcula-se o ponto de contato do tiro a partir de v na direção θ com o segmento f(v). Se o choque com f(v) ocorrer estritamente antes de w, então descobriu-se que w não é visível de v (não é um evento).

Cenários dos Eventos

- Segmento de entrada.
 - Considere-se um segmento incidente em w. Ou a varredura está para entrar no segmento ou está acabando de deixá-lo. Se está entrando, o segmento é o novo f(v).
- Segmento de saída.
 - Se a linha de varredura está deixando o segmento, um novo tiro deve ser dado para achar o próximo segmento intersectado.
 - Como varre-se w ao mesmo tempo de v, sabe-se que o tiro de w atinge f(w). Basta então fazer f(v) = f(w).

segmento

Complexidade

- Fila de prioridade para eventos.
- Ponteiros para f(v) e t(v) em cada vértice.
- Fila de prioridade está disponível no arranjo de retas dos duais dos vértices dos segmentos.
- Com uma varredura topológica do arranjo, todos os eventos são processados em $O(n^2)$.
 - Note-se que a varredura angular de todos os vértices pode ser feita em $O(n^2)$.

