CSDS 440: Machine Learning

Soumya Ray (he/him, sray@case.edu)
Olin 516

Office hours T, Th 11:15-11:45 or by appointment

Today

Comparing Learning Algorithms

Sampling Distribution of Number of Errors

 Let R be a r.v. denoting the number of errors in an evaluation experiment

$$r = \sum_{x \in S} \delta(y_x, \hat{y}_x)$$

What is the sampling distribution of R?

Sampling Distribution of *R*

It is a Binomial distribution

$$B(R = r; n, p) =$$

$$\binom{n}{r} p^{r} (1-p)^{n-r}$$

Useful Binomial Facts

• Expectation of a Binomial random variable R with distribution $B(n,e_D)$

$$E(R) = ne_D$$

• Variance of a Binomial random variable with distribution $B(n,e_D)$

$$V(R) = ne_D(1-e_D)$$

Parameter Estimation

- Notice that in this case, we are working with a distribution whose parameters are unknown
 - We are trying to estimate e_D , given r and n

- Suppose we only did a single experiment with n examples and observed r errors
 - What is a good estimate of e_D ?

Parameter Estimation

- It is $e_S = r/n$. Why?
- This is the estimate that, under the Binomial distribution, maximizes the likelihood of the observed number of errors:

$$\hat{e}_D = \arg\max_p B(R = r; n, p) = e_S = \frac{r}{n}$$

Called the Maximum Likelihood Estimate, or MLE

Variance

 Given the sampling distribution, we can now talk about the variance in our estimate

$$\hat{e}_D = e_S = \frac{r}{n}$$

• Notice that the error rate r.v.
$$E_D = R/n$$

• So $V(E_D) = V\left(\frac{R}{n}\right) = \frac{1}{n^2}V(R)$
 $V(R) = ne_D(1-e_D)$
 $V(E_D) = \frac{e_D(1-e_D)}{n}$, using $\hat{e}_D = \frac{r}{n}$

- We use ID3 to learn a decision tree. On a test set with 100 examples the resulting tree misclassifies 20 examples.
 - What is the expected error rate of this tree?
 - What is the variance in our estimate?

$$\hat{e}_D = E(E_D) = r/n = 20/100 = 0.2$$

$$V(E_D) = \frac{\hat{e}_D(1 - \hat{e}_D)}{n} = (r/n)(1 - r/n)/n$$

$$= 0.2(1 - 0.2)/100 = 0.0016$$

- We use ID3 to learn a decision tree. On a test set with 10000 examples the resulting tree misclassifies 2000 examples.
 - What is the expected error rate of this tree?
 - What is the variance in our estimate?

$$\hat{e}_D = E(E_D) = r/n = 2000/10000 = 0.2$$

$$V(E_D) = \frac{\hat{e}_D(1 - \hat{e}_D)}{n} = (r/n)(1 - r/n)/n$$

$$= 0.2(1 - 0.2)/10000 = 0.16e - 4$$

Confidence Intervals

- How do we use the variance estimate?
 - We can use it to describe the uncertainty in our estimate of $E_{\cal D}$
 - We produce an interval around \hat{e}_D in which a new estimate of E_D will fall with probability C
 - Called the C% confidence interval for E_D

Confidence Interval for *R*

85% CI: With prob 0.85, the true r will be in the range (2,6).

Finding C% CI

• If *n* is large enough, the Binomial is well-approximated by a Gaussian distribution

$$p(r;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{r-\mu}{\sigma}\right)^2}; E(r) = \mu; V(r) = \sigma^2$$

With parameters

$$\mu = np$$

$$\sigma = \sqrt{np(1-p)}$$

Normal Approximation

How does this help?

• There are tables available that give the size of the interval around μ as a function of σ that contains C% of the probability, for various C

- For example, see table 5.1 in Mitchell
 - Thus an interval of width $\pm 1.96\sigma$ around μ contains the 95% confidence interval

- We use ID3 to learn a decision tree. On a test set with 100 examples the resulting tree misclassifies 20 examples.
 - What is the 95% CI?

$$\hat{e}_D = r/n = 20/100 = 0.2$$

$$V(E_D) = \frac{\hat{e}_D(1 - \hat{e}_D)}{n} = 0.2(1 - 0.2)/100 = 0.0016$$
So σ =0.04 and with prob
0.95, a different estimate would lie in the range $(0.2 \pm 1.96 \times 0.04) = (0.1216, 0.2784)$

- We use ID3 to learn a decision tree. On a test set with 10000 examples the resulting tree misclassifies 2000 examples.
 - What is the 95% CI?

$$\hat{e}_D = r/n = 2000/10000 = 0.2$$

$$V(E_D) = \frac{\hat{e}_D(1 - \hat{e}_D)}{n} = 0.2(1 - 0.2)/10000 = 0.16e - 4$$
So $\sigma = 0.4e - 2$ and with prob 0.95, a different estimate would lie in the range $(0.2 \pm 1.96 \times 0.004) = (0.19216, 0.20784)$

Recap: Issue #1

 Suppose we collect some test data from a binary classification problem and evaluate a classifier. The accuracy is x.

- Then we (or someone else) repeats the experiment with another set of test data from the same problem, collected independently of the first set.
 - What can we say about the accuracy in this case?

Summary: Issue #1

- Determine sampling distribution of measure
- Estimate sampling distribution parameters using MLE on test set
 - (If necessary, approximate using standard distribution such as Gaussian)
- Use tables to figure C% Cl
 - Usually use C=95
 - The true measure will lie in that interval with $C\ \%$ probability

Issue #2

 We have a conjecture, "Classifier/Algorithm A is better than B for this learning problem"

- How do we verify or reject this conjecture?
 - Fundamental question in all of science
 - "Theory A explains these observations better than B"

One answer: Use statistical hypothesis testing

2.1 Comparing Classifiers

- Suppose we have two classifiers and we want to estimate the difference between their accuracies
 - We observe their errors e_{S,C_1} and e_{S,C_2} in separate experiments
 - They look different, but this could just be random variation in the sample
- We want to know, "What is the probability that $e_{D,C_1} \neq e_{D,C_2}$?"

Sampling Distribution

 Here the appropriate measure is the difference of the error rates

$$F = E_{D,C_1} - E_{D,C_2}$$

What is the sampling distribution of F?

$$E(F) = e_{S,C_1} - e_{S,C_2} = \left(\frac{r_1}{n_1} - \frac{r_2}{n_2}\right)$$

$$V(F) = V(E_{D,C_1}) + V(E_{D,C_2}) = \frac{e_{S,C_1}(1 - e_{S,C_1})}{n_1} + \frac{e_{S,C_2}(1 - e_{S,C_2})}{n_2}$$

Comparing Classifiers

- Establish a "Null hypothesis" that we will try to reject with high (say 95%) probability
 - E.g. E_{D,C_1} - $E_{D,C_2} = 0$
 - Presumed true until hypothesis test shows otherwise
 - Negation is called "alternative hypothesis"
- Find sampling distribution of LHS and determine if RHS lies within 95% CI of mean
 - If it does, null hypothesis CANNOT be rejected
 - If it does not, null hypothesis CAN be rejected

On a test set with 100 examples a decision tree misclassifies 20 examples.
 On the same test set, a neural network misclassifies 25 examples. Are these two classifiers actually different on this problem?

$$F = r_1 / n_1 - r_2 / n_2 = 0.05$$

 $V(F) = 0.2(1 - 0.2) / 100 + 0.25(1 - 0.25) / 100$
 $= 0.0016 + 0.001875 = 0.003475$
So $\sigma = 0.059$ and the 95% CI is
 $(0.05 \pm 1.96 \times 0.059) = (-0.1245, 0.2245)$
Since zero lies in the 95% CL the pull by poth

Since zero lies in the 95% CI, the null hypothesis CANNOT be rejected (with 95% confidence).

• On a test set with 1000 examples a decision tree misclassifies 200 examples. On the same test set, a neural network misclassifies 250 examples. Are these two classifiers actually different on this problem?

$$F = r_1 / n_1 - r_2 / n_2 = 0.05$$

$$V(F) = 0.2(1 - 0.2) / 1000 + 0.25(1 - 0.25) / 1000$$

$$= 0.00016 + 0.0001875 = 0.0003475$$

So σ =0.019 and the 95% CI is

$$(0.05\pm1.96\times0.019)=(0.014,0.086)$$

Since zero does not lie in the 95% CI, the null hypothesis CAN be rejected (with 95% confidence).

#2.2: Comparing Learning Algorithms

- This is different from the classifier comparison because the training set will vary as well
- Let A(Tr) and B(Tr) denote the classifiers learned by algorithms A and B on train set Tr

• Let
$$E_A = E_{Tr \sim D^n}(\Pr_{x \sim D}(y_x \neq \hat{y}_x | A(Tr)))$$

= $E_{Tr \sim D^n}(E_{D,A(Tr)})$

• We are looking for an estimate of $E_A - E_B$

Paired Testing

- When comparing algorithms, we'll usually train and test them on the same data
- This will usually give us better (narrower) Cl's than if we use separate train/test sets
- This is called paired testing

$$E_A - E_B = E_{Tr \sim D} n (E_{D,A(Tr)} - E_{D,B(Tr)})$$
 $vs.$
 $E_A - E_B = E_{Tr \sim D} n (E_{D,A(Tr)}) - E_{Tr \sim D} n (E_{D,B(Tr)})$

Comparing Algorithms

 Our null hypothesis is: "the error rates of the two algorithms are equal", i.e. neither is any better than the other

- To evaluate an algorithm we'll usually use nfold CV
 - This gives an estimate of E_{A} in the previous slide

Comparing Algorithms

• Perform cross validation to measure the quantities of interest, $E_{\!\scriptscriptstyle A}$ and $E_{\!\scriptscriptstyle B}$

Get a number of measurements

 Each measurement will vary because of variation in the training/testing sample

Fold	Error rate of Algorithm A	Error rate of Algorithm B	E_A $-E_B$
1	5%	3%	2%
2	1%	3%	-2%
3	8%	4%	4%
4	5%	1%	4%
5	1%	4%	-3%
Average	4%	3%	1%

Our initial estimate of the difference between A and B is 1%. But maybe this is just due to randomness in the data? Well, suppose we could do 5-fold cv many many times and plot average $E_A - E_B$. What would that look like?

t-distribution

The *t*-test

- If n was large enough, can use Gaussian here with sample means and variances to get a CI
 - Note here n is the number of folds, NOT the number of test examples

- For small n, use a t-test
 - Key difference: Sample variance is adjusted to produce a distribution with more mass in the tails
 - As n increases, approximation with Gaussian improves

t-distribution parameters

- $E_A E_B$ has a t-distribution with parameters δ , s and "degrees of freedom" n-1
- Mean δ is the average of $E_A E_B$ across n folds
- Standard Deviation s is given by:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (\delta_i - \delta)^2}{n(n-1)}}$$

• Degrees of freedom n is related to the number of experiments we did (in 5-fold cv n=5)

Using the *t*-test

Let
$$\delta_i = e_{S,A(Tr_i)} - e_{S,B(Tr_i)}$$

Let
$$\delta = \frac{1}{n} \sum_{i=1}^{n} \delta_i$$
; Let $s = \sqrt{\frac{\sum_{i=1}^{n} (\delta_i - \delta)^2}{n(n-1)}}$

• Then use the t-distribution table to check if zero is contained in the 95% CI centered around δ

$$0 \in \mathcal{S} \pm t_{C,n-1} s \, ?$$
 From table

Fold	Error rate of Algorithm A	Error rate of Algorithm B	E_A – E_B
1	5%	3%	2%
2	1%	3%	-2%
3	8%	4%	4%
4	5%	1%	4%
5	1%	4%	-3%
Average	4%	3%	1%

• For our table, δ =0.01 and s=0.015 and $t_{0.95.4}$ =2.776 ($t_{0.95.9}$ =2.262)

• The 95% CI is [-0.031, 0.051]

- Clearly zero lies in the 95% CI, so the null hypothesis cannot be rejected
 - So maybe A and B are not different after all

One-way ANOVA

- If we need to compare more than two algorithms, can use this
- Null hypothesis: All the algorithms have equal errors
- Compares "between-means" variances to average variances within each sample with F-test
- If "between" variances are much more than "within" variances then means are unlikely to be the same

Mann-Whitney-Wilcoxon signed-rank test

- What if the classifier produces confidence estimates?
- If we can rank the predictions, we can calculate a statistic called "U" based on the ranks

$$U_1 = \sum_{i} R_{1,i} - \frac{n_1(n_1 + 1)}{2}$$

- ullet For large enough samples, U can be approximated with a normal distribution as well
- We can show that the area under ROC is a "normalized" version of \boldsymbol{U}

Bootstrap

 All previous methods relied on knowing the sampling distribution of the statistic we are interested in

 The bootstrap is a procedure where we get the properties of the statistic using *empirical* resampling from the observations

- Suppose we have a set of iid examples and we want to get a CI for F1
- Repeatedly draw an equal sized sample (with replacement) from our test examples and measure F1
 - A "bootstrap replicate"
- This creates an empirical sampling distribution
- Then for the original data, measure F1 and ask how unusual that is in the empirical distribution

Pros and Cons

 Very easy to do, makes few assumptions, can estimate very complex things

- Assumes sample is representative
 - If not, can produce biased estimates