Лекция 6

Ilya Yaroshevskiy

24 апреля 2021 г.

Содержание

1	Случайные величины	1
	1.1 Смысл измеримости	1
	1.2 Типы распределения	2
	1.2.1 Лискретные	2

1 Случайные величины

Обозначение. ξ — Случайная величина

Пример. ξ — число выпавших очков. $\xi \in \{1, 2, 3, 4, 5, 6\}$

 Π ример. ξ — время работы микросхемы до отказа

- 1. Время работы в часах $\xi = \{1, 2, 3, \dots\}$
- 2. Время работы измеряем точно $\xi \in [0, +\infty]$

 $\mathit{Пример}.\ \xi$ — температура воздуха в случайный момент времени. $\xi \in (-50^\circ, 50^\circ)$

Пример. Индикатор события A.

$$I_A(\omega) \in \begin{cases} 0 &, \omega \notin A \\ 1 &, \omega \in A \end{cases}$$

Определение. Пусть имеется вероятностное пространство (Ω, \mathcal{F}, p) . Функция $\xi: \Omega \to \mathbb{R}$ называется \mathcal{F} -измеримой, если $\forall x \in \mathbb{R}: \{\omega | \xi(\omega) < x\} \in \mathcal{F}$. Т.е прообраз $\xi^{-1}((-\infty, x)) \in \mathcal{F}$

Определение. Случайной величиной ξ заданной на вероятностном пространстве (Ω, \mathcal{F}, p) называется \mathcal{F} -измеримая функция Исправить, ставящая в соответствие каждому элементарному исходу ω некоторое вещественное число

Пример. Бросаем кость.

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- $\mathcal{F} = \{\emptyset, \Omega, \{1, 3, 5\}, \{2, 4, 6\}\}$
- $|\xi(i)| = i$

Если x=4, то $\{\omega|\xi(\omega)<4\}=\{1,2,3\}\not\in\mathcal{F}\Rightarrow\xi$ не является \mathcal{F} -измеримой

1.1 Смысл измеримости

Пусть случайная величина $\xi:\Omega\to\mathbb{R}$ — измеримая. Тогда $P(\xi< x)=P(\{\omega|\xi(\omega)< x\}),$ т.к. $A_x=\{\omega|\xi(\omega)< x\}\in\mathcal{F}.$ Тогда

$$\overline{A_x} = \{\omega | \xi(\omega) \ge x\} \in \mathcal{F}$$
 $A_x \setminus B_y = \{\omega | t \le \xi(\omega) lex\} \in \mathcal{F}$
 $B_x = \boxed{\text{Доделать}}$
 $B_x \setminus A_x = \{\omega | \xi(\omega) = x\} \in \mathcal{F}$

Отсюда видим, по теореме Каво? Исправить можно однозначно продолжить до любого Борелевского множества на прямой. $B \in \mathcal{B}$ — Борелевская σ -алгебра. $P(B \in \mathcal{B}) = P\{\omega | \xi(\omega) \in B\}$ Пусть случайная величина задана на вероятностном пространстве (Ω, \mathcal{F}, p) . Тогда:

- 1. $(\Omega, \mathcal{F}, p) \xrightarrow{\xi} (\mathbb{R}, \mathcal{B}, p)$ новое вероятностное пространство

 $\mathcal{F}_{\xi} \subset \mathcal{F}$ $\mathcal{F}_{\xi} - \sigma$ -алгебра порожденная величиной ξ

Задача 1. Найти σ -алгебру порожденную индикатором

Определение. Функция P(B) $B \in \mathcal{B}$ называется распределением вероятностей случайной величины $\xi(\omega)$. Т.е. распределение случайной величины это соответствие множествами на вещественной прямой и вероятностями случайной величины попасть в это множество

1.2 Типы распределения

- Дискретные
- Абсолютно непрерывные
- Смешанные
- Сингулярные (непрерывные но не абсолютно непрерывные)

1.2.1Дискретные

Случайная величина ξ имеет дискретное распределение, если она принимает не более чем счетное число значений, т.е. существует конечный или счетный набор чисел $\{x_1, x_2, \dots, x_n, \dots\}$, такой что

1.
$$p_i = p(\xi = x_i) > 0$$

2.
$$\sum_{i} p_{i} = 1$$

Доделать

Пример. Кость

Доделать

- 1. Основные числовые характеристики
 - (а) Математическое ожидание(среднее значение) Математическим ожиданием случайной величины ξ называется число:

$$E\xi = \sum_{i} x_i p_i$$

при условии что данный ряд сходится абсолютно, иначе говорят что математическое ожидание не существует

Обозначение. $\mathrm{E}\xi$

Примечание. Смысл: среднее значение, число вокруг которого группируется значения случайной величины. Физический смысл: центр масс. Статистический смысл: среднее арифметическое наблюдаемых значений при большом значении реальных экспериментов

(b) Дисперсия

Определение. Дисперсией $D\xi$ случайной величины ξ называется среднее квадратов отклонений ее от математического ожидания

$$D\xi = E(\xi - E\xi)^2$$

или

$$D\xi = \sum_{i} (x_i - E\xi)^2 p_i$$

При условии что данное среднее значение существует(конечно)

Примечание. Вычислять дисперсию удобнее по формуле

$$D\xi = E\xi^2 - (E\xi)^2 = \sum_{i} x_i^2 p_i - (E\xi)^2$$

Примечание. Смысл: квадрат среднего разброса(рассеяния) случайной величины около ее математического ожидания

(с) Среднее квадратичное отклонение

Определение. Средним квадратичным отклонением $(\sigma_{\xi} = \sigma(\xi))$ случайной величины ξ называется число

$$\sigma = \sqrt{D\xi}$$

Примечание. Смысл: характеризует средний разброс случайной величины около ее математического ожидания

Пример. Бросаем кость

$$E\xi = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

$$D\xi = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + 3^2 \cdot \frac{1}{6} + 4^2 \cdot \frac{1}{6} + 5^2 \cdot \frac{1}{6} + 6^2 \cdot \frac{1}{6} - 3.5^2 = 2.92$$

$$\sigma = \sqrt{2.92} \approx 1 \neq 1$$

2. Свойства математического ожидания и дисперсии

Определение. Случайная величина ξ имеет вырожденное распределение, если $\xi(\omega)=C=const\ \forall \omega\in\Omega$ или $p(\xi=C)=1$

$$E\xi = C = const$$

$$D\xi = 0$$

Доказательство. Доделать

Определение (Свойство сдвига).

$$E(\xi + C) + E\xi + C$$

$$D(\xi + C) = D\xi$$

Доказательство. Доделать

Определение.

$$E(C\xi) = CE\xi$$

$$D(C\xi) = C^2 D\xi$$

Доказательство. Доделать

Определение.

$$E(\xi + \eta) = E\xi + E\eta$$

Доказательство.

ullet Пусть x_i, y_i — соответствующие значения случайных величин xi и mu

$$E(\xi + \eta) = \sum_{i,j} (x_i + y_j) p(\xi = x_i, \eta = y_j) = \sum_i x_i \sum_j p(\xi = x_i, \eta = y_j) + \sum_j y_j \sum_j p(\xi = x_i, \eta = y_j)$$

Определение. Дискретные случайные величины **независимы** если $\forall i, j \ p(\xi = x_i, \eta = y_j) = p(\xi = x_i) \cdot p(\eta = y_j)$

Примечание. Если xi и η независимы, то

$$E(\xi\eta) = E\xi \cdot E\eta$$

обратное не верно

Доказательство.

$$E(\xi\eta) = \sum_{ij} (x_i y_j) p(\xi = x_i, \eta = y_j) = \sum_i x_i \sum_j y_j (\xi = x_i, \eta = y_j) =$$

$$= \sum_i x_i \sum_j y_j p(\xi = x_j) p(\eta = y_j) = \sum_i x_i p(\xi = x_i) \cdot \sum_j y_j p(\eta = y_j) = E\xi \cdot E\eta$$

Доказательство.

$$D\xi = E\xi^2 - (E\xi)^2$$

$$D\xi = E(\xi - E\xi)^2 = E(\xi - 2\xi E\xi + (E\xi)^2) = E\xi^2 - 2E\xi E\xi + E(E\xi)^2 = E\xi^2 - 2(E\xi)^2 + (E\xi)^2 = E\xi^2 - (E\xi)^2$$

Примечание.

$$D(\xi + \eta) = D\xi + D\eta + 2\text{Cov}(\xi, eta)$$

, где $\mathrm{Cov}(\xi,\eta) = E(\xi\eta) - E\xi \cdot E\eta$ — ковариация

Доказательство.

$$D(\xi + \eta) = E(\xi + \eta)^2 - (E(\xi + \eta))^2 = E\xi^2 + 2E\xi\eta + E\eta^2 - (E\xi)^2 - 2E\xi \cdot E\eta - (E\eta)^2 = D\xi + D\eta + 2(E(\xi\eta) - E\xi \cdot E\eta)$$

Примечание. Если случайные величины ξ и η независимые, то

$$D(\xi + \eta) = D\xi + \eta$$

Доказательство. По свойству $Cov(\xi, \eta) = 0$

Примечание. Среднее квадратичное отклонение — минимум отклонения случайной величины от точек вещественной прямой, т.е.

$$D\xi = \min_{a} (y - a)$$
 Исправить

Доказательство.

$$E(\xi - a)^{2} = E((\xi - E\xi) + (E\xi - a))^{2} = E(\xi - E\xi)^{2} + \underbrace{2E(\xi - E\xi) \cdot (E\xi - a)}_{0} + (E\xi - a)^{2} =$$

$$= D\xi + (E\xi - a)^{2} \le D\xi$$

3. Другие числовые характеристики

Примечание.

$$m_k = E\xi^k$$

— момент k-того порядка

В частности $m_1 = E\xi$

Примечание.

$$E|\xi|^k$$

— абсолютный момент k-того порядка

Примечание.

$$\mu_k = E(\xi - E\xi)^k$$

— центральный момент k-того порядка

В частности $\mu_2 = D\xi$

 Π римечание.

$$E|\xi - E\xi|^2$$

— абсолютный центральный момент k-того порядка

Примечание. Центральные моменты можно выразить через относительные моменты Доделать

Примечание. Модой Мо называется такое значение случайной величины, где вероятность события является наибольшей

$$p(\xi = Mo) = \max_{i} p_i$$

Определение. Медианой Ме называется значение случайной величины такое что,

$$p(\xi < \mathrm{Me}) = p(\xi > \mathrm{Me}) = \frac{1}{2}$$