SOC Lab2 311510207 江尹凡

> Brief introduction about the overall system

設計濾波器試著搭配不同的 interface 跑整個流程,觀察不同 interface 的差異

What is observed & learned

Differences between MAXI and Stream interface

Stream 少了 address 的概念,所以在握手上也不用握地址,但因為沒有地址,所以必須搭配 DMA 做使用

MAXI: address、data 有各自獨立的通道,藉由握手後傳輸。

Differences between csim and cosim

c-sim: testbench、kernel 都是 c code, compile 後變.exe 跑在 host-cpu 上。

co-sim: testbench 還是 c code,但 kernel 是 verilog (跑在 simulation 裡面), tesbench、kernel 會是不同的 process 互相交換 data,比較 testbench kernel 分開跑。

Screen dump

FIRN11MAXI

C_sim

Synthesis Summary Report

= Per	formance	Estimates					
Timi *	ng: Summary:						
	Clock	Target	Estimated	Uncertaint	+ : y		
	p_clk			2.70 r			
	ency: Summary:			.	+	+	
	min l	max	min	(absolute) max	min	max 1	Туре
	?					?[n
+-				r	+	+	

Performence

-	+ Performance & Resource Estimates:													
	PS: '+' for module; 'o' for loop; '*	for da	taflow		1				1					
	Modules & Loops	Issue Type				Iteration Latency			 Pipelined	BRAM I	DSP	FF I	LUT	URAMI
		- -	0.001 0.001 7.301	- i	- - -	- - 21	- - 1	- - -	nol nol yesl	4 (1%) - -	33 (15%) 33 (15%) -	4624 (4%) 2975 (2%) -	2606 (4%) 1221 (2%) -	- - -

Utilization

T. 111						_					
= Utilization Est	1mates					_					
^k Summary:											
Name		DSP I	FF	LUT	URAM!						
DSP Expression FIFO Instance Memory Multiplexer Register	- - - 4 - -	- I - I - I 33 I - I - I		175	- - - -						
Total	++ 4	331	46241	2606	++ 0						
Available	280	220	106400	53200	01						
Utilization (%)	†† 1	15	41		1 01						
Detail: * Instance: +	Instan	.ce		+-		Module	-+ BRAM_18K	++ DSP		++ LUT	+ I UI
+ control_s_axi grp_fir_n11_m gmem_m_axi_U	_U axi_Pipelin	e_XFEF	R_LOOP_fu_	_238 lf	ontrol_s_a ir_n1l_max mem_m_axi	xi i_Pipeline_XFER_LOOP	0 0 4		2941 29751 8301	12211	
+ Total				·+- 			1 4	331	4099	23911	+

Interface

= Interface											
* Summary:					1						
RTL Ports	Dir	Bits	Protocol	Source Object	СТуре						
IS axi_control_AWVALID IS_axi_control_AWADDR IS_axi_control_WVALID IS_axi_control_WVALID IS_axi_control_WVALID IS_axi_control_WVALID IS_axi_control_WEADY IS_axi_control_AWYALID IS_axi_control_ARVALID IS_axi_control_ARVALID IS_axi_control_RVALID IS_axi_control_RVALID IS_axi_control_RRESD IS_axi_control_RRESD IS_axi_control_BREADY IS_axi_gmen_AWVALID IM_axi_gmen_AWVALID IM_axi_gmen_AWSIZE IM_IM_IM_IMIT_IMIT_IMIT_IMIT_IMIT_IMIT_	in out in out in out in in out in out in out out	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	saxil maxil	controll fir_n1l_maxi fir_n1l_maxi fir_n1l_maxi gmem gmem gmem gmem gmem gmem gmem gme	arrayl return valuel return valuel return valuel return valuel return valuel rointerl pointerl	m_axi_gmem_WDATA m_axi_gmem_WSTRB m_axi_gmem_WLAST m_axi_gmem_WUSER m_axi_gmem_ARVALID m_axi_gmem_ARVALID m_axi_gmem_ARADDR m_axi_gmem_ARADDR m_axi_gmem_ARID m_axi_gmem_ARSIZE m_axi_gmem_ARSIZE m_axi_gmem_ARSIZE m_axi_gmem_ARFROT m_axi_gmem_ARFROT m_axi_gmem_ARCOS m_axi_gmem_ARCOS m_axi_gmem_ARCOS m_axi_gmem_ARCOS m_axi_gmem_ARCOS m_axi_gmem_ARCOS m_axi_gmem_ARCOS m_axi_gmem_RACOS m_axi_gmem_BVALID m_axi_gmem_BVALID m_axi_gmem_BRESP m_axi_gmem_BRESP m_axi_gmem_BRESP m_axi_gmem_BRESP m_axi_gmem_BUSER m_axi_gmem_BUSER	out in out in in in in in in in i	32 4 1 1 1 1 64 4 3 2 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	m_axil	gmeni gmeni	pointerl

Co-simulation transcript/waveform

INFO: [COSIM 212-200] *** C/RTL co-simulation finished: PASS ***
INFO: [COSIM 212-211] II is measurable only when transaction number is greater than 1 in RTL simulation. Otherwise, they will be marked as all NA. If user wants to calculate them, please INFO: [HLS 200-111] Finished Command cosim design CPU user time: 14.55 seconds. CPU system time: 2.5 seconds. Elapsed time: 19.39 seconds; current allocated memory: 11.129 MB.
INFO: [HLS 200-112] Total CPU user time: 16.31 seconds. Total CPU system time: 2.8 seconds. Total elapsed time: 21.45 seconds; peak allocated memory: 1.101 GB.
Finished C/RTL cosimulation.

fir_n11_maxi.wcfg												?	
Q 🔛 @ Q 💥 💉 📭 [4	H 1º	±r +Γ 1	- - + −	×									
						2,410.221 ns							
Name	Value		2,380.000 r	s 2,390.000 ns	2,400.000 ns	2,410.000 ns	2,420.000 ns	2,430.000 ns	2,440.000 ns	2,450.000 ns	2,460.000 ns	2,470.000 ns	2,48
∨ 📜 Read Channel			 										
> 👹 m_axi_gmem_RRESP[1:0	0						0						
> 👹 m_axi_gmem_RUSER[0:0	Z						z						
> 👹 m_axi_gmem_RID[0:0]	0						0						
> 👹 m_axi_gmem_RDATA[31	00000002		00000000		00000001	00000002	00000003	00000004	00000005	00000006	66000007	00000008	
> W m_axi_gmemRUSER[0	0						0						
> 🖬 m_axi_gmemEGION[3:	0						0						
> W m_axi_gmem_ARQOS[3:0	0						0						
> W m_axi_gmem_ARPROT[2	0						0						
> 👹 m_axi_gmemACHE[3:0	3						3						
> 👹 m_axi_gmem_ARLOCK[1:	0						0						
> W m_axi_gmemURST[1:0	1						1						
> W m_axi_gmem_ARSIZE[2:	2						2						
> W m_axi_gmem_ARLEN[7:0	00						00						
> W m_axi_gmem_ARID[0:0]	0						0						
> 👹 m_axi_gmemDDR[63:0	00000000	0000000000	000000 000	0000000	00000	000 🗸 0000000	0000	0000	0000X	<u> </u>	000000000000000000000000000000000000000	c	
Write Channel													
> 👹 m_axi_gmem_BUSER[0:0	Z						Z						
> W m_axi_gmem_BID[0:0]	0						0						

Jupyter Notebook execution results

```
In [1]:
# coding: utf-8
# In[ ]:
from __future__ import print_function
import sys, os
import numpy as np
from time import time
import matplotlib.pyplot as plt
sys.path.append('/home/xilinx')
os.environ['XILINX_XRT'] = '/usr'
from pynq import Overlay
from pynq import allocate
if __name__ == "__main__":
    print("Entry:", sys.argv[0])
    print("System argument(s):", len(sys.argv))
    print("Start of \"" + sys.argv[0] + "\"")
    ol = Overlay("FIRN11MAXI.bit")
    ipFIRN11 = ol.fir_n11_maxi_0
    fiSamples = open("samples_triangular_wave.txt", "r+")
    numSamples = 0
    line = fiSamples.readline()
    while line:
        numSamples = numSamples + 1
        line = fiSamples.readline()
    inBufferθ = allocate(shape=(numSamples,), dtype=np.int32)
    outBuffer0 = allocate(shape=(numSamples,), dtype=np.int32)
    fiSamples.seek(0)
    for i in range(numSamples):
        line = fiSamples.readline()
        inBuffer0[i] = int(line)
    fiSamples.close()
    n32Taps = [0, -10, -9, 23, 56, 63, 56, 23, -9, -10, 0]
    \#n32Taps = [1, 0, 0, 0, 0, 0, 0, 0, 0, 1]
    n32DCGain = 0
    timeKernelStart = time()
    for i in range(numTaps):
        n32DCGain = n32DCGain + n32Taps[i]
        ipFIRN11.write(0x40 + i * 4, n32Taps[i])
    if n32DCGain < 0:
       n32DCGain = 0 - n32DCGain
    ipFIRN11.write(0x28, len(inBuffer0) * 4)
    ipFIRN11.write(0x10, inBuffer0.device_address)
ipFIRN11.write(0x1C, outBuffer0.device_address)
    ipFIRN11.write(0x00, 0x01)
    while (ipFIRN11.read(0x00) & 0x4) == 0x0:
        continue
    timeKernelEnd = time()
```

```
print("Kernel execution time: " + str(timeKernelEnd - timeKernelStart) + " s")

plt.title("FIR Response")
plt.xlabel("Sample Point")
plt.ylabel("Magnitude")
xSeq = range(len(inBuffer0))
if n32DCGain == 0:
    plt.plot(xSeq, inBuffer0, 'b.', xSeq, outBuffer0, 'r.')
else:
    plt.plot(xSeq, inBuffer0, 'b.', xSeq, outBuffer0 / n32DCGain, 'r.')
plt.grid(True)
plt.show() # In Jupyter, press Tab + Shift keys to show plot then redo run

print("========")
print("Exit process")
```


FIRN11Stream

C_sim

Synthesis Summary Report

Performence

Έ	= Synthesis Summary Report of 'fir_n11_s	trm'												
1	Feneral Information: * Date: * Date: * Version: * Project: * Lab2_1 * Solution: * Product family: * Target device: * Performance & Resource Estimates:	77 on May												
	PS: '+' for module; 'o' for loop; '*'	for data:	flow		L .					_	ь.			
	Modules & Loops	l Issue I Type				Iteration Latency		Trip Count		BRAM	DSP	l FF	LUT	URAMI
	+ fir_nl1_strm + fir_nl1_strm_Pipeline_XFER_LOOP o XFER_LOOP	Timing Timing	-0.641	-	- - -	- - 15	- - 11	-	nol nol yesl	-	3 (1%) 3 (1%) -		951 (1%) 695 (1%) -	- - - -

Utilization

Utilization Est	timates										
* Summary:											
Name	BRAM_18K	DSP I	FF I	LUT	URAM						
DSP Expression FIFO Instance Memory Multiplexer Register		- - - 3 - -	- 01 - 1082 - 361	42 875 - 34							
Total	·+	31	1118	951	0						
Available	-+ 280	2201	1064001	53200	.+) 0						
Utilization (%)	. 01	1	11	1	0						
- Detail: * Instance: +	Instar	· · · · · · · · · · · · · · · · · · ·		·+- 		Module	++ Bram_18K	DSP	+ FF	+ LUT I	URA
+ control_s_axi grp_fir_nll_s			_LOOP_fu_	 c _118 f	control			01 01 31	++ 154۱	1801	
+ Total +				·+- ·+-			++ 0 ++	31	1082	+ 875 +	

Interface

= Interface					
* Summary:					
RTL Ports	Dir	Bits	Protocol	Source Object	Г С Туре
Is axi control AWVALID	in l	11	s axil	contr	oll arrayl
ls_axi_control_AWREADY	outl		s axil	contr	
ls axi control AWADDR	l in		s_axil	contr	
ls_axi_control_WVALID	l inl	11	s axil	contr	
Is axi control WREADY	l outl	11	s axil	contr	oll arrayl
ls_axi_control_WDATA	l inl	321	s_axil	contr	oll arrayl
ls axi control WSTRB	l inl		s axil	contr	
ls_axi_control_ARVALID	l inl	11	s_axil	contr	oll arrayl
ls_axi_control_ARREADY	l outl	11	s axil	contr	oll arrayl
ls_axi_control_ARADDR	l inl	71	s axil	contr	oll arrayl
ls_axi_control_RVALID	l outl	11	s_axil	contr	oll arrayl
ls_axi_control_RREADY	l inl	11	s axil	contr	oll arrayl
ls_axi_control_RDATA	l outl		s_axil	contr	oll arrayl
ls_axi_control_RRESP	l outl	21	s_axil	contr	oll arrayl
ls_axi_control_BVALID	l outl	11	s_axil	contr	oll arrayl
s_axi_control_BREADY	l inl		s_axil	contr	oll arrayl
ls_axi_control_BRESP	l outl		s_axil	contr	
lap_clk	l inl	11	ap_ctrl_hsl	fir_nll_st	rml return valuel
lap_rst_n	l inl	11	ap_ctrl_hsl	fir_nll_st	
linterrupt	l outl		ap_ctrl_hsl	fir_n11_st	rml return valuel
lpstrmInput_TDATA	l inl		axisl	pstrmInput_V_data	_VI pointerl
pstrmInput_TVALID	l inl	11	axisl	pstrmInput_V_dest	
lpstrmInput_TREADY	l outl	11	axisl	pstrmInput_V_dest	VI pointerI
lpstrmInput_TDEST	l inl	11	axisl	pstrmInput_V_dest	VI pointerI
lpstrmInput_TKEEP	l inl	41	axisl	pstrmInput_V_keep	_VI pointerl
lpstrmInput_TSTRB	l inl	41	axisl	pstrmInput_V_strb	_VI pointerl
lpstrmInput_TUSER	l inl	11	axisl	pstrmInput_V_user	VI pointerl
lpstrmInput_TLAST	l inl	11	axisl	pstrmInput_V_last	_VI pointerl
lpstrmInput_TID	l inl	11	axisl	pstrmInput_V_id	VI pointerI
lpstrmOutput_TDATA	l outl	321	axisl	pstrmOutput_V_data	VI pointerI
pstrmOutput_TVALID	l outl	11	axisl	pstrmOutput_V_dest	VI pointerl
pstrmOutput_TREADY	l inl	11	axisl	pstrmOutput_V_dest	VI pointerI
pstrmOutput_TDEST	l outl	11	axisl	pstrmOutput_V_dest	VI pointerl
lpstrmOutput_TKEEP	l outl	41	axisl	pstrmOutput_V_keep	VI pointerI
pstrmOutput_TSTRB	l outl	41	axisl	pstrmOutput_V_strb	VI pointerl
lpstrmOutput_TUSER	l outl		axisl	pstrmOutput_V_user	VI pointerl
lpstrmOutput_TLAST	l outl		axisl	pstrmOutput_V_last	
pstrmOutput_TID	l outl	11	axisl	pstrmOutput_V_id	
pstrmUutput_IID	ı outl ++	۱۱ +	ax1sl ++	pstrmUutput_V_1d 	_vı pointer +

Co-simulation transcript/waveform

INFO [HLS SIM]: The maximum depth reached by any hls::stream() instance in the design is 600
INFO: [COSIM 212-1000] *** C/RTL co-simulation finished: PASS ***
INFO: [COSIM 212-211] II is measurable only when transaction number is greater than 1 in RTL simulation. Otherwise, they will be marked as all NA. If user wants to calculate them, ple
INFO: [HLS 200-111] Finished Command cosim design CPU user time: 14.53 seconds. CPU system time: 1.5 seconds. Elapsed time: 17.03 seconds; current allocated memory: 12.328 MB.
INFO: [HLS 200-112] Total CPU user time: 16.3 seconds. Total CPU system time: 1.79 seconds. Total elapsed time: 19.11 seconds; peak allocated memory: 1.102 GB.
Finished C/RTL cosimulation.

Jupyter Notebook execution results

```
In [2]:
# coding: utf-8
# In[3]:
from __future__ import print_function
import sys, os
import numpy as np
from time import time
import matplotlib.pyplot as plt
sys.path.append('/home/xilinx')
os.environ['XILINX_XRT'] = '/usr'
from pynq import Overlay
from pynq import allocate
if __name__ == "__main__":
    print("Entry:", sys.argv[0])
    print("System argument(s):", len(sys.argv))
    print("Start of \"" + sys.argv[0] + "\"")
    ol = Overlay("FIRN11Stream.bit")
    ipFIRN11 = ol.fir_n11_strm_0
    ipDMAIn = ol.axi_dma_in0
    ipDMAOut = ol.axi_dma_out0
    fiSamples = open("samples_triangular_wave.txt", "r+")
    line = fiSamples.readline()
    while line:
        numSamples = numSamples + 1
        line = fiSamples.readline()
    inBuffer0 = allocate(shape=(numSamples,), dtype=np.int32)
    outBuffer0 = allocate(shape=(numSamples,), dtype=np.int32)
    fiSamples.seek(0)
    for i in range(numSamples):
       line = fiSamples.readline()
        inBuffer0[i] = int(line)
    fiSamples.close()
    numTaps = 11
    n32Taps = [0, -10, -9, 23, 56, 63, 56, 23, -9, -10, 0]
    \#n32Taps = [1, 0, 0, 0, 0, 0, 0, 0, 0, 1]
    n32DCGain = 0
    timeKernelStart = time()
    for i in range(numTaps):
        n32DCGain = n32DCGain + n32Taps[i]
       ipFIRN11.write(0x40 + i * 4, n32Taps[i])
    if n32DCGain < 0:
       n32DCGain = 0 - n32DCGain
    ipFIRN11.write(0x10, len(inBuffer0) * 4)
    ipFIRN11.write(0x00, 0x01)
    ipDMAIn.sendchannel.transfer(inBuffer0)
    ipDMAOut.recvchannel.transfer(outBuffer0)
    ipDMAIn.sendchannel.wait()
```

```
ipDMAOut.recvchannel.wait()
timeKernelEnd = time()
print("Kernel execution time: " + str(timeKernelEnd - timeKernelStart) + " s")

plt.title("FIR Response")
plt.xlabel("Sample Point")
plt.ylabel("Magnitude")
xSeq = range(len(inBuffer0))
if n32DCGain == 0:
    plt.plot(xSeq, inBuffer0, 'b.', xSeq, outBuffer0, 'r.')
else:
    plt.plot(xSeq, inBuffer0, 'b.', xSeq, outBuffer0 / n32DCGain, 'r.')
plt.grid(True)
plt.show() # In Jupyter, press Tab + Shift keys to show plot then redo run

print("=========="")
print("Exit process")
```

Entry: /usr/local/share/pynq-venv/lib/python3.8/site-packages/ipykernel_la
uncher.py
System argument(s): 3
Start of "/usr/local/share/pynq-venv/lib/python3.8/site-packages/ipykernel
_launcher.py"
Kernel execution time: 0.0016837120056152344 s

Exit process

In []: