Applications of Graph Integration to Function Comparison and Malware Classification

Michael Slawinski, Principal Data Scientist Andy Wortman, Research Engineer Associate Principal Oct 25, 2019

Cylance Inc.

Agenda

- 1. Overview of our Vectorization Method
- 2. The .NET Framework and Common Language Runtime (CLR)
- 3. Decompilation
- 4. Graph Integration
- 5. Results

Overview of our Vectorization

Method

Summary

Overall Goal

Construct a vectorization method to be leveraged by a classifier on .NET files

Our Vectorization Method - an overview

- 1. Decompile(file) $\longrightarrow \{G\}$
- 2. Define a set of functions $\{f: \operatorname{Vert}(G) \longrightarrow \mathbb{R}\}$ applicable to every possible G
- 3. Compute antiderivatives of functions defined in previous step
- 4. Compute component-wise mean/std of antiderivatives across all *G* resulting from decompilation of the given file

2

(CLIN)

The .NET Framework and

Common Language Runtime

(CLR)

.NET Framework - two main components

Framework Class Library (FCL)

- user interface
- data access
- database connectivity
- cryptography
- web application development

Common Language Runtime (CLR)

- is an application virtual machine which provides
 - security, memory management, exception handling
- compilation of high-level .NET code results in an Intermediate Language Binary
- the CLR JITs the code from IL to machine code run on the cpu

Decompilation

Decompilation

Definition

Decompilation is a program transformation by which compiled code is transformed into a high-level human-readable form.

Definition

An *Abstract Syntax Tree* is a tree representation of the abstract syntactic structure of the source code, where each node denotes a construct occurring in the source code.

Program control flow is understood by studying the structure of two types of control flow graphs resulting from decompilation.

 the function call graph describes the calling structure of the functions (subroutines) constituting the overall program

Decompilation

Definition

Decompilation is a program transformation by which compiled code is transformed into a high-level human-readable form.

Definition

An *Abstract Syntax Tree* is a tree representation of the abstract syntactic structure of the source code, where each node denotes a construct occurring in the source code.

Program control flow is understood by studying the structure of two types of control flow graphs resulting from decompilation.

- the function call graph describes the calling structure of the functions (subroutines) constituting the overall program
- Shortsighted Data Flow Graphs (SDFG) each obtained by merging all paths through the AST corresponding to a constituent function

Abstract Syntax Trees

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

$$5*3+(4+2\%2*8)$$

The semantic structure of this expression can be distilled by considering the following binary tree:

Distilled semantic structure = order of operations

CLR AST Dictionary - CLR-Specific or C#-specific AST Members in Blue

Control Flow

- if reference the conditional and execute accordingly
- break immediately exit the enclosing loop
- CLRWhile infinite loop

Expressions

Code that when evaluated **does** yield a value. Valid in places such as tests, for loops, conditionals, or as the right-hand side of assignments.

- BinaryOp expression computed from two operands and some operator
- Call function call, including list of args pass to the function

Statements

Code that when evaluated **does not** yield a value. E.g., a statement cannot be on the right-hand side of an assignment.

- Assignment storage of rh variable to the location yielded by Ih variable
- CLRVariableWithInitializer declaration and subsequent initialization

Construction of Shortsighted Data Flow Graph

Small code block resulting in a nonlinear SDFG.

Functions on SDFG Graphs - Motivation

We often study an object X by studying a set of functions defined on X

$$X^* := \{f : X \longrightarrow \mathbb{R}\}$$

Example 1

Consider the case of a distribution \mathcal{D} on a sample space Ω defined by the measure μ . We might choose to study \mathcal{D} by studying

$$f_n: \mathcal{D} \mapsto \int_{\Omega} x^n d\mu(x)$$

Example 2

Consider the set of invertible $n \times n$ matrices $GL_n(\mathbb{F})$ on some field \mathbb{F} . We might choose to study $GL_n(\mathbb{F})$ by studying

$$\operatorname{\mathsf{tr}},\operatorname{\mathsf{det}}:\operatorname{\mathit{GL}}_n(\mathbb{F})\longrightarrow \mathbb{R}$$

8

Functions on SDFG Graphs

Let G be a SDFG graph resulting from traversing a given AST corresponding to some source code function.

Example

Define

$$\mathsf{NumPass2Call} : \mathsf{Vert}(G) \longrightarrow \mathbb{R}$$

by

$$v \mapsto \#\mathsf{args}_v$$

where $\# \mathrm{args}_{v}$ is the number of arguments passed to the function called at v.

Other Examples:

- 1. BinaryOp : $v \mapsto \eta(\mathsf{whichOpCode}_v)$
- 2. CLRClassRef : $v \mapsto \eta(ReferencedClass_v)$

for some string-to-float hash function η .

Graph Antiderivative - Ingredients

In order to define an integral of a function

$$f: \operatorname{Vert}(G) \longrightarrow \mathbb{R}$$

for G a directed graph, we must define a measure μ on $\mathrm{Vert}(G)$ in such a way that f is measurable.

We do this by imposing a Markov chain structure on ${\it G}$ and taking μ to be the PageRank measure

$$\mathbb{P}: \mathrm{Vert}(G) \longrightarrow [0,1]$$

$$v \mapsto \mathsf{PageRank}(G)_v$$

where the PageRank vector is taken to be the steady-state probability distribution over the nodes resulting from the long-run behavior of the random-walk Markov Chain.

Graph Integration

Markov Chains and the PageRank Vector

Definition

A discrete-time $Markov\ chain$ is a sequence of random variables X_1, X_2, \ldots such that

$$P(X_{n+1} = x | X_1 = x_1, \dots, X_n = x_n) = P(X_{n+1} = x | X_n = x_n)$$

Given G, order the vertices $\{v_i\}$ of the graph G and define the $n \times n$ probability transition matrix T by

$$t_{ij} = egin{cases} 1/|v_i^{ ext{out}}| & \textit{if } (v_i, v_j) \in \operatorname{Edges}(G) \ 0 & \text{otherwise} \end{cases}$$

where v_i^{out} is the set of edges emanating from vertex v_i and n = |Vert(G)|.

To ensure the irreducibility of our transition matrix, we smooth T to

$$M = (1 - p)T + pB$$
 (Perron-Frobenius)

where

$$B = \frac{1}{n} \begin{bmatrix} 1 & 1 & \dots \\ \vdots & \ddots & \\ 1 & & 1 \end{bmatrix}$$

PageRank Measure

The PageRank vector \mathbb{P} is given by the left eigenvector of M and corresponds to

$$\lim_{n\to\infty} M^n \frac{1}{|\operatorname{Vert}(G)|} \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}$$

and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

$$P(X_t = v_i | X_{t-1} = v_j) = (1 - p)t_{ij} + p\frac{1}{n}$$

Construction of the Graph Integral

Consider a function $f : Vert(G) \longrightarrow \mathbb{R}$ for G a finite directed graph.

Let $\mathbb{P} = \{p_v\}$ be the PageRank measure on $\mathrm{Vert}(G)$. We can then define a measure ν_f on $\mathrm{Vert}(G)$ by

$$u_f(S) = \int_S f d\mathbb{P}$$

$$= \sum_{\alpha_j \in \mathsf{image}(f)} \alpha_j \mathbb{P}(f^{-1}(\alpha_j) \cap S)$$

$$= \sum_{v \in S} f(v) p_v$$

Let $\mathcal P$ be a partition of [0,1] and let $\mathcal G_q=\{v|p_v\leq q\}.$

$$G_{q_1} \subseteq G_{q_2} \subseteq \cdots \subseteq G_{q_{|\mathcal{P}|}} = \operatorname{Vert}(G)$$

allows us to define our graph antiderivative $F_{f,G}$ of f by

$$\begin{split} F_{f,G} &:= (\nu_f(G_{q_1}), \nu_f(G_{q_2}), \dots, \nu_f(G_{q_{|\mathcal{P}|}})) \\ &= (\mathbb{E}[f|_{G_{q_1}}], \mathbb{E}[f|_{G_{q_2}}], \dots, \mathbb{E}[f|_{G_{|\mathcal{P}|}}]) \end{split}$$

The Graph Antiderivative Visualized

Antiderivative

$$\Gamma imes \operatorname{Fun}(\bigsqcup_{\Gamma} \operatorname{Vert}(G), \mathbb{R}) \longrightarrow \operatorname{Fun}(\mathcal{P}, \mathbb{R})$$

$$(G, f) \mapsto (F_{f,G} : q \mapsto \mathbb{E}[f|_{G_q}]),$$

Graph Integration: Example

Consider a SDFG G given by:

$$\begin{split} &\mathrm{Edge}(\mathcal{G}) = \{(v_1, v_2), (v_1, v_3), (v_2, v_4), (v_3, v_4)\} \\ &\mathsf{PageRank}(\mathcal{G}) = \langle \rho_{v_1} = 0.10, \rho_{v_2} = 0.15, \rho_{v_3} = 0.25, \rho_{v_4} = 0.50 \rangle \end{split}$$

Assume the nodes $v_1, v_4 \in \mathrm{Vert}(G)$ both correspond to function calls $\phi_{v_i}(args_{v_i})$, where $args_{v_i}$ represent the set of arguments passed to ϕ_{v_i} . Define

$$\mathsf{NumPass2Call} : \mathsf{Vert}(\mathit{G}) \longrightarrow \mathbb{R}$$

by

$$v_i \mapsto egin{cases} \#\mathsf{args}_{v_i} & \mathsf{if} \ i \in \{1,4\} \\ 0 & \mathsf{otherwise} \end{cases}$$

Let $\mathcal{P} = (0.05, 0.12, 0.95)$.

Then $F_{\text{NumPass2Call},G}: \mathcal{P} \longrightarrow \mathbb{R}$ takes the form

$$\begin{pmatrix} 0.05 \\ 0.12 \\ 0.95 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 0.1*\#\mathsf{args}_{v_1} \\ 0.1*\#\mathsf{args}_{v_1} + 0.5*\#\mathsf{args}_{v_4} \end{pmatrix}$$

Results

Vectorization Efficacy

Name of referenced class at v

Type of argument referenced at v

Type of literal occurring at v

Value/type of literal expression at v

Model Results - Random Forest

Table 1: Graph Antiderivative-based vectorization

Class	Precision	Recall	F1-score	Support
Benign Malware	97.88% 98.94%	99.37% 96.47%	98.62% 97.69%	696827 424420
avg/total	98.28%	98.27%	98.27%	1121247
False Positive Rate False Negative Rate	1.10% 1.72%			

Table 2: Text-only vectorization

Class	Precision	Recall	F1-score	Support
Benign Malware	90.61% 87.80%	87.04% 91.18%	88.79% 89.46%	696827 424420
avg/total	89.19%	89.13%	89.13%	1121247
False Positive Rate False Negative Rate	8.79% 12.96%			

