数理逻辑期末考试汇总

Hank Wang

2020年9月10日

1 2020年春季期末

- 1 判断题(21分)
 - (1) 命题演算L的三条公理模式是相互独立的. >/
 - (2) 已知 Γ 和 Σ 都是相容公式集, 若 Γ \cup Σ 是不相容公式集, 则存在公式q使得 Γ \vdash q且 Σ \vdash $\neg q$.

 - (4) K_N 的所有模型中,等词一定解释为论域上的相等关系. \leftthreetimes
 - (5) $\forall x \forall y (R(x,y) \to R(y,x)) \to \forall x \exists y R(x,y)$ 是逻辑有效式. 🗶
 - (6) 重言式集合是命题语言范围内逻辑推理规律的形式化表达. 🖊
 - (7) 哥德尔不完备性定理证明中的不可判定命题是一个真命题. 🗸
- 2 简答题(12*2分)
 - (1) 简述关于逻辑研究内容的三种主要观点. "公设"在应用逻辑系统中的作用是什么. 并举例说明.
 - (2) 严格地说, 什么是"证明". 关于"证明"与"计算"之间关系已得到一些严格证明结果. 描述一个一阶逻辑中的, 得到严格证明的结果.
- 3 直接证明

$$\vdash (\neg p \to p) \to (q \to p)$$

- 4 三个箱子, 有且只有一个里面有金子. 三句话有且只有一个是真话:
 - (1) 第二个箱子没有金子
 - (2) 第二个箱子有金子
 - (3) 第一个箱子没有金子

请使用命题演算证明哪个箱子里有金子.

5 证明

$$\vdash \forall x_1 \forall x_2 (R_1(x_1) \to R_1(x_2)) \to (\exists x_1 R_1(x_1) \to \forall x_1 R_1(x_1))$$

6 证明

$$\mathcal{N} \vdash \overline{0} \times x \approx \overline{0}$$

2021/6/15 2020_sol

数理逻辑 2020 春期末试卷参考答案

Made by TA in 2021SP

1.判断题

- (1) 正确,因为已知任两条 L 中的公理都无法推出第三条.
- (2) 正确,由相容的定义可知.
- (3) 正确,可以归纳证明.
- (4) 错误,E 的任何相容扩充(包括 K_N)仍然有非正规模型
- (5) 错误, 取解释域 $M=\{\mathbb{N},\emptyset,\overline{R}\}$.其中, \mathbb{N} 为自然数集, $(\overline{x},\overline{y})\in\overline{R}$ 当且仅当 $\overline{x}>1$ 且 $\overline{y}>1$. 显然 M 不是原公式的模型.
- (6) 正确
- (7) 正确,定理证明中构造的 p 为 " p 在 K_N 中不可证".最后得出 p 是真命题.

2. 简答题

开放性问答,没有标准答案,大家想到什么就写什么吧.

3. 直接证明

$$\vdash (\neg p \to p) \to (q \to p)$$

思路:

如果是间接证明,可以用 否定肯定律 和 L1 ,经过 HS 规则得到结果,即

1.
$$(\neg p \rightarrow p) \rightarrow p$$
 否定肯定律

2.
$$p \rightarrow (q \rightarrow p)$$

3.
$$(\neg p \rightarrow p) \rightarrow (q \rightarrow p)$$
 1,2,HS

但是这里要求的是直接证明,所以只好老老实实推了.

借用2020春季学期的助教写的否定肯定律的19步直接证明,有

2021/6/15 2020_sol

$$\begin{array}{c} (9) (\neg p \to p) \to (\neg p \to \neg (p \to (\neg p \to p))) & (7) (8) \, \text{MP} \\ (10) (\neg p \to \neg (p \to (\neg p \to p))) \to ((p \to (\neg p \to p)) \to p) & (L3) \\ (11) ((\neg p \to \neg (p \to (\neg p \to p))) \to ((p \to (\neg p \to p)) \to p)) \to ((\neg p \to p) \to ((\neg p \to p \to p))) \to ((p \to (\neg p \to p))) \to ((p \to (\neg p \to p)))) & (L1) \\ (12) (\neg p \to p) \to ((\neg p \to \neg (p \to (\neg p \to p))) \to ((p \to (\neg p \to p)) \to p)) & (10) (11) \, \text{MP} \\ (13) ((\neg p \to p) \to ((\neg p \to \neg (p \to (\neg p \to p)))) \to ((p \to (\neg p \to p)) \to p))) \to (((\neg p \to p) \to (\neg p \to p)))) \to (((\neg p \to p) \to ((\neg p \to p)))) \to (((\neg p \to p) \to (\neg p \to p)))) \to (((\neg p \to p) \to (\neg p \to p)))) \to (((\neg p \to p) \to ((p \to (\neg p \to p)))) \to (((\neg p \to p) \to ((p \to (\neg p \to p))) \to p))) & (12) (13) \, \text{MP} \\ (15) (\neg p \to p) \to ((p \to (\neg p \to p)) \to p)) \to (((\neg p \to p) \to ((\neg p \to p))) \to (((\neg p \to p) \to p))) \to (((\neg p \to p) \to ((\neg p \to p))) \to (((\neg p \to p) \to p)))) & (L2) \\ (17) (((\neg p \to p) \to (p \to (\neg p \to p))) \to (((\neg p \to p) \to p))) \to ((17) (18) \, \text{MP} \ \Box) & (L1) \\ (19) (\neg p \to p) \to p & ((17) (18) \, \text{MP} \ \Box) & (L1) \\ (19) (\neg p \to p) \to p & ((17) (18) \, \text{MP} \ \Box) & ((17) (18) \,$$

然后根据 HS 规则的直接证明:

只要把上述 HS 直接证明中的 p 换成 $\neg p \rightarrow p$, q 换成 p, r 换成 $q \rightarrow p$ 即可.

4. 推理题

设原子命题 X_1, X_2, X_3 分别代表第一个、第二个、第三个箱子里有金子.

由于只有一个箱子中有金子,则有约束条件

$$X_1 \to \neg X_2 \land \neg X_3 = 1 \tag{1}$$

$$X_2 \to \neg X_1 \land \neg X_3 = 1 \tag{2}$$

$$X_3 \to \neg X_1 \land \neg X_2 = 1 \tag{3}$$

又因为三句画中只有一句是真话,因此有约束条件

$$\neg X_2 \to \neg X_2 \land \neg \neg X_1 = 1 \tag{4}$$

$$X_2 \to \neg \neg X_2 \land \neg \neg X_1 = 1 \tag{5}$$

$$\neg X_1 \to \neg \neg X_2 \land \neg X_2 = 1 \tag{6}$$

逐个尝试,得到仅有 $(X_1, X_2, X_3) = (1, 0, 0)$ 时,满足约束.即第一个箱子里有金子.

2021/6/15 2020 sol

5. K 中证明

$$dash orall x_1 orall x_2 (R_1(x_1)
ightarrow R_1(x_2))
ightarrow (\exists x_1 R_1(x_1)
ightarrow orall x_1 R_1(x_1))$$

这里的题干中应该加一个条件: 关系 R 1 为一元关系.

以下可以从 $\{\forall x_1 \forall x_2 (R_1(x_1) \to R_1(x_2))\}$ 中可证:

$$1. \quad orall x_1 orall x_2 (R_1(x_1)
ightarrow R_1(x_2))$$

已知

$$2. \quad orall x_1 orall x_2(R_1(x_1)
ightarrow R_1(x_2))
ightarrow orall x_2(R_1(x_1)
ightarrow R_1(x_2))$$

K4

3.
$$\forall x_2(R_1(x_1) \to R_1(x_2))$$

1,2,MP

$$4. \quad \forall x_2(R_1(x_1) \rightarrow R_1(x_2)) \rightarrow (R_1(x_1) \rightarrow \forall x_2 R_1(x_2))$$

课本P76命题1的 1° K与

(由于关系 R_1 为一元关系,因此 x_2 不在 $R_1(x_1)$ 中自由出现.)

$$5. \quad R_1(x_1)
ightarrow orall x_2 R_1(x_2)$$

3.4.MP

课本P77命题2的 1°

(由于关系 R_1 为一元关系,因此 x_1 不在 $R_1(x_2)$ 中出现.)

7.
$$R_1(x_1) \to \forall x_1 R_1(x_1)$$

5,6,MP HS

8.
$$\forall x_1(R_1(x_1)
ightarrow \forall x_1R_1(x_1))$$

7,Gen

9.
$$\forall x_1(R_1(x_1) \to \forall x_1R_1(x_1)) \to (\exists x_1R_1(x_1) \to \forall x_1R_1(x_1))$$
 课本P77命题2的 **文 2** (x_1 不在 $\forall x_1R_1(x_2)$ 中自由出现.)

10. $\exists x_1 R_1(x_1) \to \forall x_1 R_1(x_1)$

8,9,MP

即有 $\{ \forall x_1 \forall x_2 (R_1(x_1) \to R_1(x_2)) \} \vdash \exists x_1 R_1(x_1) \to \forall x_1 R_1(x_1).$

又因为上述证明中所用的 Gen 变元 x_1, x_2 不在 $\forall x_1 \forall x_2 (R_1(x_1) \rightarrow R_1(x_2))$ 中自由出现,因此由演 绎定理, $\vdash \forall x_1 \forall x_2 (R_1(x_1) \to R_1(x_2)) \to (\exists x_1 R_1(x_1) \to \forall x_1 R_1(x_1))$

$6.K_N$ 中证明

$$K_N \vdash \overline{0} imes x pprox \overline{0}$$

证明序列如下:

1.
$$\overline{0} \times \overline{0} \approx \overline{0}$$

N₅

$$2. \quad \overline{0} \times x' pprox \overline{0} \times x + \overline{0}$$

N₆

2021/6/15

2020_sol

3. $\overline{0} \times x + \overline{0} \approx \overline{0} \times x$

N3

 $4. \quad \overline{0} \times x' \approx \overline{0} \times x + \overline{0} \to (\overline{0} \times x + \overline{0} \approx \overline{0} \times x \to \overline{0} \times x' \approx \overline{0} \times x)$

课本P107命题2的 3° (传递性)

5. $\overline{0} \times x + \overline{0} \approx \overline{0} \times x \rightarrow \overline{0} \times x' \approx \overline{0} \times x$

2,4,MP

6. $\overline{0} \times x' \approx \overline{0} \times x$

3,5,MP

7. $\overline{0} \times x' \approx \overline{0} \times x \rightarrow (\overline{0} \times x \approx \overline{0} \rightarrow \overline{0} \times x' \approx \overline{0})$

课本P107命题2的3°(传递性)

8. $\overline{0} \times x \approx \overline{0} \rightarrow \overline{0} \times x' \approx \overline{0}$

6,7,MP

9. $\forall x (\overline{0} \times x \approx \overline{0} \to \overline{0} \times x' \approx \overline{0})$

8,Gen

 $10. \quad \overline{0} \times \overline{0} \approx \overline{0} \to (\forall x (\overline{0} \times x \approx \overline{0} \to \overline{0} \times x' \approx \overline{0}) \to \forall x (\overline{0} \times x \approx \overline{0}))$

N7

 $11. \quad \forall x(\overline{0}\times x\approx \overline{0}\to \overline{0}\times x'\approx \overline{0})\to \forall x(\overline{0}\times x\approx \overline{0}) \quad \text{ 1,10,MP}$

12. $\forall x (\overline{0} \times x \approx \overline{0})$

9,11,MP

13. $\forall x(\overline{0} \times x \approx \overline{0}) \rightarrow \overline{0} \times x \approx \overline{0}$

K4

14. $\overline{0} \times x \approx \overline{0}$

12,13,MP

2 2018年春季期末

1 判断题(3%*8)

- (1) $(p \rightarrow q) \rightarrow ((r \rightarrow \neg p) \rightarrow (r \rightarrow \neg q))$ 是重言式. [x]
- (2) 所有的自然数是整数不能在L中表达, 但能在K中较好地表达. [√]
- (3) Г的一个正规模型不一定把≈解释为相等. [x]
- (4) $f(a, x_2)$ 对 $R_1^2(b, x_1) \to \forall x_1 R_2^2(x_1, x_2)$ 中的 x_2 是自由的. [✓]
- (5) 递归函数是 K_N 可表示的. [\checkmark]
- (6) ⊢ p的判定可以用真值表的方法. [x]
- (7) $\Gamma \models p$, 则p的每个模型也是 Γ 的模型. [x]

(8)

2 简答题

(1) 本学期你学习数理逻辑的最大收获是什么?

最大的收获是让自己一定程度上克服了对直觉的依赖,转而借助逻辑来考虑事情.这种品质是十分重要的.在数学发展的历史上,就有很多克服直觉而获得的新创造,甚至是推翻了原有不合理的理论.比如哥德尔就能够在大家都在依照自己的直觉,想要尝试去证明完备的大势之下,毅然证明出了哥德尔不完备性定理.

- (2) <u>直观地解释"模型"的含义</u>.模型相当于一个给定的问题的讨论域,在这个讨论域下,前提集的内容都是成立的,那么也就能够以此为基础去进行推导,进而得到其他命题的真伪.
- (3) Godel不完全性定理证明的主要步骤?
 - 1° 先构造一个公式 $p(\overline{m})$, 其直观理解是"它从 K_N 不可证"
 - 2° 证明 $\vdash p(\overline{m})$ 和 $\vdash \neg p(\overline{m})$ 都不成立
 - 3°从而得到不完备
- $3 \vdash p \rightarrow \neg \neg p$ 的直接证明和简化证明.
 - 直接证明:

```
双百年即且按证明
(1) \neg \neg p \rightarrow ((\neg \neg p \rightarrow \neg \neg p) \rightarrow \neg \neg p)
                                                                                                                                                                                                                                                                                                                                  (L1)
(2)(\neg\neg p \to ((\neg\neg p \to \neg\neg p) \to \neg\neg p)) \to ((\neg\neg p \to (\neg\neg p \to \neg\neg p)) \to ((\neg\neg p \to (\neg\neg p \to \neg\neg p)) \to ((\neg\neg p \to (\neg\neg p \to \neg\neg p)) \to ((\neg\neg p \to (\neg\neg p \to \neg\neg p)) \to ((\neg\neg p \to (\neg\neg p \to \neg\neg p)) \to ((\neg\neg p \to (\neg\neg p \to \neg\neg p)) \to ((\neg\neg p \to (\neg\neg p \to \neg\neg p)) \to ((\neg\neg p \to (\neg\neg p \to \neg\neg p)) \to ((\neg\neg p \to (\neg\neg p \to \neg\neg p)) \to ((\neg\neg p \to (\neg\neg p \to \neg\neg p)) \to ((\neg\neg p \to (\neg\neg p \to \neg\neg p)) \to ((\neg\neg p \to (\neg\neg p \to (\neg\neg p \to \neg\neg p)) \to ((\neg\neg p \to (\neg\neg p \to (\neg p \to 
(\neg \neg p \rightarrow \neg \neg p))
                                                                                                                                                                                                                                                                                                                                  (L2)
(3)(\neg \neg p \to (\neg \neg p \to \neg \neg p)) \to (\neg \neg p \to \neg \neg p)
                                                                                                                                                                                                                                                                                                       MP(1)(2)
(4) \neg \neg p \rightarrow (\neg \neg p \rightarrow \neg \neg p)
                                                                                                                                                                                                                                                                                                                                  (L1)
(5) \neg \neg p \rightarrow \neg \neg p
                                                                                                                                                                                                                                                                                                       MP(3)(4)
(6) \neg \neg p \rightarrow (\neg \neg \neg \neg p \rightarrow \neg \neg p)
                                                                                                                                                                                                                                                                                                                                  (L1)
(7)(\neg \neg \neg \neg p \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg \neg \neg p)
                                                                                                                                                                                                                                                                                                                                 (L3)
(8)((\neg\neg\neg\neg p \to \neg\neg p) \to (\neg p \to \neg\neg\neg p)) \to (\neg\neg p \to ((\neg\neg\neg\neg p \to p \to p \to p)))
\neg \neg p) \rightarrow (\neg p \rightarrow \neg \neg \neg p)))
                                                                                                                                                                                                                                                                                                                                 (L1)
(9)\neg\neg p \to ((\neg\neg\neg\neg\neg p \to \neg\neg p) \to (\neg p \to \neg\neg\neg p))
                                                                                                                                                                                                                                                                                                       MP(7)(8)
(10)(\neg\neg p \to ((\neg\neg\neg\neg p \to \neg\neg p) \to (\neg p \to \neg\neg\neg p))) \to ((\neg\neg p \to \neg\neg\neg p)))
(\neg \neg \neg \neg p \rightarrow \neg \neg p)) \rightarrow (\neg \neg p \rightarrow (\neg p \rightarrow \neg \neg \neg p)))
                                                                                                                                                                                                                                                                                                                                  (L2)
(11)(\neg \neg p \rightarrow (\neg \neg \neg \neg p \rightarrow \neg \neg p)) \rightarrow (\neg \neg p \rightarrow (\neg p \rightarrow \neg \neg \neg p))MP(9)(10)
(12)\neg \neg p \rightarrow (\neg \neg \neg \neg p \rightarrow \neg \neg p)
(13) \neg \neg p \rightarrow (\neg p \rightarrow \neg \neg \neg p)
                                                                                                                                                                                                                                                                                             MP(11)(12)
(14)(\neg p \rightarrow \neg \neg \neg p) \rightarrow (\neg \neg p \rightarrow p)
                                                                                                                                                                                                                                                                                                                                 (L3)
(15)((\neg p \rightarrow \neg \neg \neg p) \rightarrow (\neg \neg p \rightarrow p)) \rightarrow (\neg \neg p \rightarrow ((\neg p \rightarrow \neg \neg \neg p) \rightarrow (\neg p \rightarrow \neg p \rightarrow p))) \rightarrow (\neg p \rightarrow p \rightarrow p \rightarrow p))
(\neg \neg p \rightarrow p))
(16)\neg \neg p \to ((\neg p \to \neg \neg \neg p) \to (\neg \neg p \to p))
                                                                                                                                                                                                                                                                                           MP(14)(15)
(17)(\neg \neg p \rightarrow ((\neg p \rightarrow \neg \neg \neg p) \rightarrow (\neg \neg p \rightarrow p))) \rightarrow ((\neg \neg p \rightarrow (\neg p \rightarrow p))) \rightarrow ((\neg p \rightarrow p \rightarrow p))) \rightarrow ((\neg p \rightarrow p \rightarrow p))) \rightarrow ((\neg p \rightarrow p \rightarrow p \rightarrow p))) \rightarrow ((\neg p \rightarrow p \rightarrow p \rightarrow p \rightarrow p \rightarrow p)))
\neg \neg \neg p)) \rightarrow (\neg \neg p \rightarrow (\neg \neg p \rightarrow p)))
                                                                                                                                                                                                                                                                                                                                  (L2)
(18)(\neg \neg p \to (\neg p \to \neg \neg \neg p)) \to (\neg \neg p \to (\neg \neg p \to p))
                                                                                                                                                                                                                                                                                           MP(16)(17)
(19) \neg \neg p \rightarrow (\neg \neg p \rightarrow p)
                                                                                                                                                                                                                                                                                             MP(13)(18)
(20)(\neg \neg p \to (\neg \neg p \to p)) \to ((\neg \neg p \to \neg \neg p) \to (\neg \neg p \to p))
                                                                                                                                                                                                                                                                                                                                 (L2)
(21)(\neg \neg p \rightarrow \neg \neg p) \rightarrow (\neg \neg p \rightarrow p)
                                                                                                                                                                                                                                                                                             MP(19)(20)
(22) \neg \neg p \rightarrow p
                                                                                                                                                                                                                                                                                                  MP(5)(21)
```

简化证明:课本P₂₆

$$4 \vdash \forall x_1 R_1^2(x_1, x_2) \rightarrow \neg \exists x_2 \forall x_1 R_1^2(x_1, x_2)$$
是否正确?证明你的结论
$$\partial M = \{N, \emptyset, \{\geq\}\}, \ I \exists x_2 \exists x_1 \exists x_2 \exists x_1 \exists x_2 \exists x_1 R_1^2(x_1, x_2)) = t, \ \exists I (\neg \exists x_2 \forall x_1 R_1^2(x_1, x_2)) = f,$$
 从而片 $\forall x_1 R_1^2(x_1, x_2) \rightarrow \neg \exists x_2 \forall x_1 R_1^2(x_1, x_2)$ 也就是片 $\forall x_1 R_1^2(x_1, x_2) \rightarrow \neg \exists x_2 \forall x_1 R_1^2(x_1, x_2)$

5 将公式 $(\forall x_1 R_1^2(x_1, x_2) \to \neg \exists x_2 R_1^1(x_2)) \to \forall x_1 \forall x_2 R_2^2(x_1, x_2)$ 化为前東合取范式

1.
$$(\forall x_1 R_1^2(x_1, x_2) \to \neg \exists x_2 R_1^1(x_2)) \to \forall x_3 \forall x_4 R_2^2(x_3, x_4)$$

2.
$$\forall x_3 \forall x_4 ((\forall x_1 R_1^2(x_1, x_2) \to \neg \exists x_2 R_1^1(x_2)) \to R_2^2(x_3, x_4))$$

3.
$$\forall x_3 \forall x_4 ((\forall x_1 R_1^2(x_1, x_2) \rightarrow \forall x_2 \neg R_1^1(x_2)) \rightarrow R_2^2(x_3, x_4))$$

4.
$$\forall x_3 \forall x_4 ((\exists x_1 (R_1^2(x_1, x_2) \to \forall x_5 \neg R_1^1(x_5)))) \to R_2^2(x_3, x_4))$$

5.
$$\forall x_3 \forall x_4 \forall x_1 ((\forall x_5 (R_1^2(x_1, x_2) \to \neg R_1^1(x_5))) \to R_2^2(x_3, x_4))$$

6.
$$\forall x_3 \forall x_4 \forall x_1 \exists x_5 ((R_1^2(x_1, x_2) \to \neg R_1^1(x_5)) \to R_2^2(x_3, x_4))$$

7.
$$\forall x_3 \forall x_4 \forall x_1 \exists x_5 (\neg (\neg R_1^2(x_1, x_2) \lor \neg R_1^1(x_5)) \lor R_2^2(x_3, x_4))$$

8.
$$\forall x_3 \forall x_4 \forall x_1 \exists x_5 ((R_1^2(x_1, x_2) \land R_1^1(x_5)) \lor R_2^2(x_3, x_4))$$

9.
$$\forall x_3 \forall x_4 \forall x_1 \exists x_5 (R_1^2(x_1, x_2) \lor R_2^2(x_3, x_4)) \land (R_1^1(x_5) \lor R_2^2(x_3, x_4)))$$

6— Γ 是公式集,其中的公式都形如 $p(a_1,a_2)$,直观解释为 a_1 是 a_2 的父母,谓词 $A(a_1,a_2)$ 的直观解释为 a_1 是 a_2 的 祖先,且有

$$\Gamma \cup \{A(x_1, x_2) \leftrightarrow p(x_1, x_2)\} \vdash A(a_1, a_2)$$

试写出 $p(x_1, x_2)$ 在一阶逻辑中的形式.

3 2017年春季期末

- 1 判断题3×10分
- 2 简答题 14分

 - (2) 哥德尔不完备性定理怎么构造不可证明命题p(m)的? 抄书
- 3 直接证明与简化证明

$$\{p \to (q \to r)\} \vdash (((q \to p) \to q) \to (q \to p)) \to (((q \to p) \to q) \to r)$$

这踏马是小测题.

- 直接证明
 - $1) p \to (q \to r) \qquad (己知)$
 - 2) $(((q \to p) \to q) \to ((q \to p) \to r)) \to (((q \to p) \to q) \to (q \to p)) \to (((q \to p) \to q) \to r)$ (L2)
 - 3) $(((q \rightarrow p) \rightarrow (q \rightarrow r)) \rightarrow (((q \rightarrow p) \rightarrow q) \rightarrow ((q \rightarrow p) \rightarrow r))$ (L2)
 - 4) $(q \to (p \to r)) \to ((q \to p) \to (q \to r))$ (L2)
 - 5) $q \to (p \to q)$ (L1)
 - 6) $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$ (L2)
 - 7) $(p \rightarrow q) \rightarrow (p \rightarrow r)$ (MP 1, 6)
 - 8) $((p \to q) \to (p \to r)) \to (q \to ((p \to q) \to (p \to r)))$ (L1)
 - 9) $q \to ((p \to q) \to (p \to r))$ (MP 7.8)
 - 10) $(q \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))) \rightarrow ((q \rightarrow (p \rightarrow q)) \rightarrow (q \rightarrow (p \rightarrow r)))$ (L2)
 - 11) $(q \to (p \to q)) \to (q \to (p \to r))$ (MP 9, 10)
 - 12) $q \to (p \to r)$ (MP 5, 11)
 - 13) $(q \to p) \to (q \to r)$ (MP 12, 4)
 - 14) $((q \rightarrow p) \rightarrow q) \rightarrow ((q \rightarrow p) \rightarrow r)$ (MP 13, 3)
 - 15) $(((q \rightarrow p) \rightarrow q) \rightarrow (q \rightarrow p)) \rightarrow (((q \rightarrow p) \rightarrow q) \rightarrow r)$ (MP 14, 2)

• 简化证明:

以下公式由 $\{p \to (q \to r), ((q \to p) \to q) \to (q \to p), (q \to p) \to q\}$ 可证:

- $1) (q \to p) \to q \qquad (己知)$
- 2) $((q \to p) \to q) \to (q \to p)$ (己知)
- 3) $q \rightarrow p$ (MP 1, 2)
- 4) q (MP 3, 1)
- 5) p (MP 4, 3)
- 6) $p \to (q \to r)$ (己知)
- 7) $q \rightarrow r$ (MP 5, 6)
- 8) r (MP 4, 7)

故由演绎定理, 知 $\{p \to (q \to r)\}$ $\vdash (((q \to p) \to q) \to (q \to p)) \to (((q \to p) \to q) \to r)$

4 证明

$$\vdash \exists x_1 \forall x_2 R(x_1, x_2) \rightarrow \forall x_2 \exists x_1 R(x_1, x_2)$$

- 1) $R(x_1, x_2) \to \exists x_1 R(x_1, x_2)$ (\exists_1 规则)
- 2) $\forall x_2((R(x_1, x_2) \to \exists x_1 R(x_1, x_2)))$ (1, Gen)
- 3) $\forall x_2((R(x_1, x_2) \to \exists x_1 R(x_1, x_2)) \to (\forall x_2 R(x_1, x_2) \to \forall x_2 \exists x_1 R(x_1, x_2))$ (练习15.2)
- 4) $\forall x_2 R(x_1, x_2) \to \forall x_2 \exists x_1 R(x_1, x_2)$ (MP 2, 3)

由演绎定理:

$$\{ \forall x_2 R(x_1, x_2) \} \vdash \forall x_2 \exists x_1 R(x_1, x_2) \}$$

由 \exists_2 规则(Gen变元 x_2 不在 $\forall x_2 R(x_1, x_2)$ 中自由出现,且 x_1 不在 $\forall x_2 \exists x_1 R(x_1, x_2)$ 中自由出现):

$$\{\exists x_1 \forall x_2 R(x_1, x_2)\} \vdash \forall x_2 \exists x_1 R(x_1, x_2)$$

由演绎定理(Gen变元 x_2 不在 $\exists x_1 \forall x_2 R(x_1, x_2)$ 中自由出现):

$$\exists x_1 \forall x_2 R(x_1, x_2) \rightarrow \forall x_2 \exists x_1 R(x_1, x_2)$$

5 前東范式

$$\exists x_1 R(x_1, x_2) \lor (R'(x_2) \rightarrow \neg \forall x_1 \exists x_2 (x_2 \approx x_1))$$

- 1) $(\neg \exists x_1 R(x_1, x_2)) \rightarrow (R'(x_2) \rightarrow \exists x_4 \forall x_3 \neg (x_3 \approx x_4))$ $(\lor, \forall \exists n \exists n \in \mathbb{Z}, \overline{n})$
- 2) $\forall x_1 \neg R(x_1, x_2) \rightarrow \exists x_4 \forall x_3 (R'(x_2) \rightarrow \neg (x_3 \approx x_4))$ (78页命题2的2°, \exists 的定义, 两个双否律)

- 3) $\exists x_4 \forall x_3 (\forall x_1 \neg R(x_1, x_2) \rightarrow (R'(x_2) \rightarrow \neg (x_3 \approx x_4)))$ (78页命题2的2°)
- 4) $\exists x_4 \forall x_3 \exists x_1 (\neg R(x_1, x_2) \to (R'(x_2) \to \neg (x_3 \approx x_4)))$ (78页命题2的3°)
- 6 构造一个 K_p 偏序运算

?