fix top spaces X, Y and x in X

 $\begin{array}{ll} \underline{Thm} & \text{if } f: X \text{ to } Y \text{ is a homotopy equiv., then} \\ & f_^*: \pi_1(X,\,x) \text{ to } \pi_1(Y,\,f(x)) \text{ is an iso} \end{array}$

Lem 1 if ϕ : G to G' and ψ : G' to G" are maps s.t. $\psi \circ \phi$ is bijective then ϕ is injective and ψ is surjective

Lem 2 let h : $X \times [0, 1]$ to Y be a homotopy set $f_0(s) = h(s, 0)$, $f_1(s) = h(s, 1)$, $\alpha(t) = h(0, t)$ [starting pt at time t]

then we have $f_{1, *} = \check{\alpha} \circ f_{0, *} : \pi_{1}(X, x) \text{ to } \pi_{1}(Y, f_{1}(x))$

here, α is a path in Y and $\check{\alpha}([\gamma]) = [\alpha'] * [\gamma] * [\alpha]$ thus $\check{\alpha}$ is an <u>automorphism</u> of $\pi_1(Y, f_1(x))$

Pf of Thm from Lem's

have g : Y to X s.t. $g \circ f$ is homotopic to id_X $f \circ g$ is homotopic to id_Y

by lem 2, $g_^* \circ f_^* = (g \circ f)_^* = \breve{\alpha}_X \circ id_\{X, \ ^*\} \\ = \breve{\alpha}_X \\ f_^* \circ g_^* = (f \circ g)_^* = \breve{\alpha}_Y \circ id_\{Y, \ ^*\} \\ = \breve{\alpha}_Y$

for some paths α_X , α_Y in X, Y, respectively

so, by lem 1, f_* is both injective and surjective i.e., f_* is bijective \Box

(Munkres §68–69) next: Seifert–van Kampen first: more group theory

Review on Quotient Groups

<u>Df</u> if H is a subgroup of G, then a left coset of H in G is a subset of G with the form

 $gH = \{gh \mid h \text{ in } H\}$ for some g

the set of left cosets is written G/H = {gH | g in G} similarly, a right coset is a set Hg = {hg | h in H}

Ex if G = Z and H = mZ, then

 $G/H = \{0 + mZ, 1 + mZ, ...\}$, which has melts

e.g., $Z/3Z = \{0 + 3Z, 1 + 3Z, 2 + 3Z\}$

- instead of using g = 0, 1, 2, we could have used other rep's: e.g., g = 0, -1, -2 [draw]
- the + law on Z descends to a + law on Z/3Z: (a + 3Z) + (b + 3Z) = (a + b) + 3Z well-def'd

Q when does the law on G descend to a well-defined law on G/H in which

 $g_1H \cdot g_2H = (g_1g_2)H$?

observe: if $Hg_2 = g_2H$, then $(g_1H)(g_2H) = g_1(g_2H)H = (g_1g_2)H$

 \underline{Df} we say H is a normal subgroup iff gH = Hg for all g in G

here, G/H forms a group: the quotient of G by H

recall: the kernel of a homomorphism ϕ : G to Q is

$$ker(\phi) = \{g \text{ in } G \mid \phi(g) = e_Q\}$$

Thm if φ: G to Q is surjective and H = ker(φ) then there is a well-def'd isomorphism [φ]: G/H to Q, namely, [φ](gH) = φ(g) ["first isomorphism thm"]

[will use thm to define presentations of groups]

Free Groups fix an arbitrary set X

Df let $X^{\pm} = X \sup \{x^{-1}\} \mid x \text{ in } X\}$, where x^{-1} is a formal symbol indexed by x

- a (signed) word in X is a finite sequence of elts of X⁺
- a word is <u>reduced</u> iff no consecutive elts look like "x, x^{-1}" or "x^{-1}, x"

an <u>elementary reduction</u> in a word w is the operation of deleting such consec elts from w

a <u>reduction</u> of w is a reduced[!] word obtained from w by successive elementary reductions

Ex let $X = \{g, h, k\}$ and [from Terry Tao] $w = g^{-1}k^{-1}gk k^{-1} g^{-1}h^{-1}gh k$

elementary reductions give g^{-1}k^{-1}h^{-1}ghk

<u>Thm</u> every word in X has a unique reduction

Pf existence: words have finite <u>length</u> uniqueness: induct on the length |w|

if w is empty, then done
else let w to u_1 to u_2 to ... to u_m
w to v_1 to v_2 to ... to v_n
be two chains of elementary reductions
with u m and v n reduced

<u>Claim</u> either u_1 = v_1 or there is a word w' obtained from both by a single elementary reduction

Pf of Claim either the elementary reductions from w to u_1, v_1 overlap or they do not: check each case separately

Claim Implies Thm

if u_1 = v_1, then u_m = v_n by the inductive hyp.

because |u_1| = |v_1| < |w|

otherwise, let w" be a reduction of w'

then w" is also a reduction of both u_1 and v_1

so u_m = w" = v_n, again by the inductive hyp.

Df let v|w denote concatenation of v and w

the free group generated by X is

 $F_X = \{ reduced words in X \}$

under the group law $v \cdot w = reduction(v|w)$ we call this <u>concatenation</u> as well, and drop the \cdot associativity:

reduct(reduct(u|v)|w)

- = reduct(u|v|w)
- = reduct(u|reduct(v|w))

[what is the id elt?] id_{F_X} = empty word [inverses should be clear]

Universal Property of Free Groups

for any group G, there is a bijection

{set-theoretic maps X to G} = {hom.'s F_X to G}

f : X to G goes to ϕ_f : F_X to G def by $\phi_f(x1^e1, x2^e2, ...) = f(x1)^e1^*f(x2)^e2^*...)$

[F_X is the "freest", or "most universal", way to build a group from an <u>arbitrary</u> set X]

if X is finite, and we only care about n = |X|, then we write F_n in place of F_X

 $\underline{\mathsf{Ex}}$ F_1 is a copy of Z

Groups via Generators and Relations

- Df a subset S sub G is a generating set for G iff either of the following hold: [they are equivalent]
- 1) no proper subgroup of G contains S
- 2) the homomorphism F_S to G induced by the inclusion S to G is surjective

here, G is iso to F_S/H, where H = ker(F_S to G) [but usually, F_S is much, much larger than G]

<u>Df</u> for any R sub G and generating set S:

R is a set of relations for G wrt S iff ker(F_S to G) is the minimal normal subgroup of G containing R

in this case, we write $G = \langle S \mid R \rangle$ and say G is gen'd by S modulo the relations R

 \underline{Ex} up to iso, a unique group of size 2: $G = \{e, s\}$ s.t. $e^*e = s^*s = e$ $s^*e = e^*s = s$ $S = \{s\}$ generates G

[F_S to G sends powers of s to powers of s]
ker(F_S to G) = {even powers of s}

altogether, $G = \langle s | s^2 \rangle$ [technically, $S = \{s\}$ and $R = \{s^2\}$, but we omit the brackets]