

Linear models and generalized linear models in R

Julien Martin 03 February, 2024

What is a linear regression

Simple linear regression

$$Y_i = eta_0 + eta_1 x_i + \epsilon \ \epsilon \sim N(0, \sigma_\epsilon^2)$$

or in distributional notation

$$Y \sim N(eta_0 + eta_1 x, \sigma^2_\epsilon)$$

General linear model

$$Y_i = eta_0 + eta_1 x_{1i} + eta_1 x_{2i} + \ldots + \epsilon \ \epsilon \sim N(0, \sigma_\epsilon^2)$$

and

$$Y \sim N(eta_0 + eta_1 x_{1i} + eta_1 x_{2i} + \dots, \sigma^2)$$

Linear model assumptions

Some are made on the residuals and others on the independent variables. None are made on the (unconditionned) dependent variable.

Residuals are assumed to:

- have a mean of zero
- be independent
- be normally distributed
- be homoscedastic

Independent variables are assumed to:

- have a linear relation with Y
- be measured without error
- to be independent from each other

Maximum likelihood

Technique used for estimating the parameters of a given distribution, using some observed data

For Example: Population is known to follow a "normal distribution" but "mean" and "variance" are unknown, MLE can be used to estimate them using a limited sample of the population.

Likelihood vs probability

We maximize the likelihood and make inferences on the probability

Likelihood

How likely it is to get those parameters given the data.

Probability

$$P(data|null\ parameters)$$

Probability to get the data given the null parameters. Or how probable it is to get those data according to the null model.

Maximum likelihood approach

$$L(parameters|data) = \prod_{i=1}^n f(data_i|parameters)$$

where f is the probability density function of your model.

Working with product is more painful than with sum, we can take the log:

$$ln(L(parameters|data)) = \sum_{i=1}^{n} ln(f(data_i|parameters))$$

Need to solve:

$$rac{\delta ln(L(parameters|data)}{\delta parameters} = 0$$

For multiple regression, the parameters β s are given by $\beta=(X^TX)^{-1}X^Ty$ Equivalent to minimizing residuals (but you don't want to see the proof)

Doing linear models in R

Simply use lm() function. It works for everything anova, ancova, t-test.

We will use data of sturgeon measurements at different locations in Canada.

Fitting a model and checking assumptions

First we load the needed packages for:

- data manipulation: tidyverse
- fancy plots: ggplot2
- type III anova: car
- fancy and nicer visual assumptions checks: performance
- formal assumptions tests: 1mtest

```
library(car)
library(performance)
library(lmtest)
library(tidyverse)
```

Data exploration

R Code

Plot

```
ggplot(data = dat, aes(x = age, y = fklngth)) +
  facet_grid(. ~ locate) +
  geom_point() +
  stat_smooth(method = lm, se = FALSE) +
  stat_smooth(se = FALSE, color = "red") +
  labs(
    y = "Fork length",
    x = "Age"
)
```

Creating log10 transform

```
dat <- dat %>%
  mutate(
    lage = log10(age),
    lfkl = log10(fklngth)
)
```

Data exploration: with log

Code

Plot

```
ggplot(data = dat, aes(x = lage, y = lfkl)) +
  facet_grid(. ~ locate) +
  geom_point() +
  stat_smooth(method = lm, se = FALSE) +
  stat_smooth(se = FALSE, color = "red") +
  labs(
    y = "log 10 Fork length",
    x = "Log 10 Age"
)
```

Fit the model

```
m1 <- lm(lfkl ~ lage + locate + lage:locate, data = dat)
summary(m1)
##
## Call:
## lm(formula = lfkl ~ lage + locate + lage:locate, data = dat)
##
## Residuals:
                10 Median
##
       Min
                                 30
                                        Max
## -0.09375 -0.01864 -0.00253 0.02090 0.08030
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         1.24287
                                   0.04370 28.443 < 2e-16 ***
## lage
                         0.31431 0.03292 9.546 3.08e-15 ***
## locateNELSON
                        0.04902 -2.912 0.00455 **
## lage:locateNELSON
                        -0.14276
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02823 on 88 degrees of freedom
## Multiple R-squared: 0.5664, Adjusted R-squared: 0.5516
## F-statistic: 38.31 on 3 and 88 DF, p-value: 6.197e-16
```

Anova for factors

Assumptions (classic plot)

```
par(mfrow = c(2, 2))
plot(m1)
```


Assumptions (Nicer plot)

check_model(m1)

Formal tests

Normality of residuals

```
shapiro.test(residuals(m1))

##

## Shapiro-Wilk normality test
##

## data: residuals(m1)
## W = 0.97639, p-value = 0.09329
```

Formal tests

Heteroscedasticity

```
##
## studentized Breusch-Pagan test
##
## data: m1
## BP = 1.8366, df = 3, p-value = 0.607
```

Formal tests

Linearity

```
resettest(m1, power = 2:3, type = "fitted", data = dat)

##
## RESET test
##
## data: m1
## RESET = 1.6953, df1 = 2, df2 = 86, p-value = 0.1896
```

Generalized linear models

Generalized linear models

An extension to linear models

GLM expresses the transformed conditional expectation of the dependent variable Y as a linear combination of the regression variables X

Model has 3 components

- a dependent variable Y with a response distribution to model it: Gaussian, Binomial, Bernouilli, Poisson, negative binomial, zero-inflated ..., zero-truncated ..., ...
- linear predictors (or independent variables)

$$\eta=eta_0+eta_1X_1{+}\ldots{+}eta_kX_k$$

· a link function such that

$$E(Y|X) = \mu = g^{-1}(\eta)$$

Dependent variable

- when continuous and follows *conditional* normal distribution, called **Linear regression**
- Binary outcomes (success/failure), follows a *Binomial distribution*, called **Logistic regression**
- Count data (number of events), follows a *Poisson*, called **Poisson** regression

Classic link functions

• Identity link (form used in linear regression models)

$$g(\eta) = \mu$$

• Log link (used when μ cannot be negative, e.g. Poisson data)

$$g(\eta) = log(\mu)$$

Logit link (used when \mu is bounded between 0 and 1, e.g. binary data)

$$g(\eta) = log\left(rac{\mu}{1-\mu}
ight)$$

Linear regression

- Y: continuous
- Response distribution: Gaussian
- Link function: identity

$$g(\eta) = \mu \ \mu(X_1,\ldots,X_k) = eta_0 + eta_1 X_1 {+} \ldots {+} eta_k X_k$$

Logistic regression

- Y: binary or proportion
- Response distribution: Binomial or bernoulli
- Link function: logit

$$g(\eta) = ln\left(rac{\mu}{1-\mu}
ight) \ \mu(X_1,\ldots,X_k) = rac{1}{1+e^{-(eta_0+eta_1X_1+\ldots+eta_kX_k)}}$$

Poisson regression

- Y: discrete variable (integers)
- Response distribution: Poisson or Negative binomial
- Link function: natural logarithm

$$g(\eta) = ln(\mu) \ \mu(X_1,\ldots,X_k) = e^{eta_0 + eta_1 X_1 + \ldots + eta_k X_k}$$

Model assumptions

- Easy answer none or really few
- More advanced answer I am not sure, it is complicated
- Just check residuals I as usual
- Technically only 3 assumption:
 - Variance is a function of the mean specific to the distribution used
 - observations are independent
 - linear relation on the latent scale

GLMs do not care if the residual errors are Gaussian as long as the specified mean-variance relationship is satisfied by the data

what about DHaRMA? It's complicated

Choosing a link function

A link function should map the stuctural component from $(-\infty, \infty)$ to the distribution interval (e.g. (0,1) for binomial)

So number of link function possible is extremley large.

Choice of **link** function heavily influenced by field tradiditon

For binomial models

- **logit** assume modelling probability of an observation to be one
- **probit** assume binary outcome from a hidden gaussian variable (*i.e.* threshold model)
- logit & probit are really similar, both are symmetric but probit tapers faster. logit coefficient easier to interpret directly
- **cologlog** not-symmetrical

Logistic regression

Data

Here is some data to play with from a study on bighorn sheep.

We will look at the relation between reproduction and age

Loading ans tweaking the data

```
mouflon0 <- read.csv("data/mouflon.csv")
mouflon <- mouflon0 %>%
    arrange(age) %>%
    mutate(
    reproduction = case_when(
        age >= 13 ~ 0,
        age <= 4 ~ 1,
        .default = reproduction
    )
)</pre>
```

First plot

Code

Plot

```
bubble <- data.frame(
   age = rep(2:16, 2),
   reproduction = rep(0:1, each = 15),
   size = c(table(mouflon$age, mouflon$reproduction))
) %>%
   mutate(size = ifelse(size == 0, NA, size))
ggplot(
   bubble,
   aes(x = age, y = reproduction, size = size)
) +
   geom_point(alpha = 0.8) +
   scale_size(range = c(.1, 20), name = "Nb individuals")
```

Fitting the logistic regression

```
m1 <- glm(reproduction ~ age,
  data = mouflon,
  family = binomial
 summary(m1)
##
## Call:
## glm(formula = reproduction ~ age, family = binomial, data = mouflon)
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 3.19921 0.25417 12.59 <2e-16 ***
           -0.36685 0.03287 -11.16 <2e-16 ***
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 928.86 on 715 degrees of freedom
## Residual deviance: 767.51 on 714 degrees of freedom
    (4 observations deleted due to missingness)
## AIC: 771.51
##
## Number of Fisher Scoring iterations: 4
```

Checking assumptions

simulationOutput <- simulateResiduals(m1)
plot(simulationOutput)</pre>

Plotting predictions

plotting the model prediction on the link (latent) scale

```
mouflon$logit_ypred <- 3.19921 - 0.36685 * mouflon$age
plot(logit_ypred ~ jitter(age), mouflon)
points(mouflon$age, mouflon$logit_ypred, col = "red", type = "l", lwd = 2)</pre>
```


Plotting predictions

plotting on the observed scale

```
mouflon$ypred <- exp(mouflon$logit_ypred) / (1 + exp(mouflon$logit_ypred))
plot(reproduction ~ jitter(age), mouflon)
points(mouflon$age, mouflon$ypred, col = "red", type = "l", lwd = 2)</pre>
```


Plotting predictions

but it can be much simpler

Code

Plot

```
dat_predict <- data.frame(
   age = seq(min(mouflon$age), max(mouflon$age), length = 1
) %>%
   mutate(
     reproduction = predict(m1, type = "response", newdata
)

ggplot(mouflon, aes(x = age, y = reproduction)) +
   geom_jitter(height = 0.01) +
   geom_line(data = dat_predict, aes(x = age, y = reproduct
```

Your turn

we can do the same things with more complex models

```
m2 <- glm(
  reproduction ~ age + mass_sept + as.factor(sex_lamb) +
    mass_gain + density + temp,
  data = mouflon,
  family = binomial
)</pre>
```

check model

check_model(m2)

with DHaRMA

simulationOutput <- simulateResiduals(m2)
plot(simulationOutput)</pre>

Poisson regression

Data

data on galapagos islands species richness

Fit 3 models:

- model of total number of species
- model of proportion of endemics to total
- model of species density

```
gala <- read.csv("data/gala.csv")
plot(Species ~ Area, gala)</pre>
```


Histogram of gala\$Species


```
modpl <- glm(Species ~ Area + Elevation + Nearest, family = poisson, gala)
summary(modpl)</pre>
```

```
##
## Call:
## glm(formula = Species ~ Area + Elevation + Nearest, family = poisson,
##
      data = gala)
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.548e+00 3.933e-02 90.211 < 2e-16 ***
             -5.529e-05 1.890e-05 -2.925 0.00344 **
## Area
## Elevation 1.588e-03 5.040e-05 31.502 < 2e-16 ***
## Nearest
               5.921e-03 1.466e-03 4.039 5.38e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
##
      Null deviance: 3510.7 on 29 degrees of freedom
## Residual deviance: 1797.8 on 26 degrees of freedom
## AIC: 1966.7
##
## Number of Fisher Scoring iterations: 5
```

res <- simulateResiduals(modpl) testDispersion(res)</pre>

DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated

Simulated values, red line = litted model. p-value (two.sided) = t

DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated

data: simulationOutput

##

##

```
c(mean(gala$Species), var(gala$Species))
```

[1] 85.23333 13140.73678

```
par(mfrow=c(1,2))
hist(gala$Species)
hist(rpois(nrow(gala), mean(gala$Species)))
```

Histogram of gala\$Species gram of rpois(nrow(gala), mean(gala\$

testZeroInflation(res)

DHARMa zero-inflation test via comparison to expected zeros with simulation under H0 = fitted model

Simulated values, red line = fitted model. p-value (two.sided) = 1

##
DHARMa zero-inflation test via comparison to expected zeros with
simulation under H0 = fitted model
##
data: simulationOutput
ratioObsSim = NaN, p-value = 1

par(mfrow = c(2, 2))
plot(modpl)

Happy coding

