Algorithmic Game Theory Assignment 3

Palash Dey Indian Institute of Technology, Kharagpur

- 1. How many MSNEs are there in the following normal form game?
 - \triangleright The set of players $(N): \{1, 2\}$
 - \triangleright The set of strategies: $S_1 = \{A, B\}, S_2 = \{A, B, C\}$

Player 2

▶ Payoff matrix:

		A	В	С
Player 1	Α	(5,0)	(5,4)	(0,3)
	В	(0, 4)	(0,3)	(5, 2)

- (a) 0
- (b) 1
- (c) 2
- (d) infinite

The correct answer is (b).

- 2. How many MSNEs are there in the following normal form game?
 - \triangleright The set of players $(N): \{1, 2\}$
 - $\, \rhd \, \text{ The set of strategies: } S_{\mathfrak{i}} = \{A,B,C\} \, \text{for } \mathfrak{i} \in \{1,2\}$

Player 2

▷ Payoff matrix:

- (a) 0
- (b) 1
- (c) 2
- (d) infinite

The correct answer is (d).

Justification: Apply iterated elimination of strongly dominated strategy

- 3. In a normal form game, suppose the row and column players have m and n strategies respectively. What is the running time of the support enumeration algorithm on this game?
 - (a) $0(2^m + 2^n)$
 - (b) $(2^m + 2^n)(m + n)^{O(1)}$
 - (c) $O(2^{m+n})$
 - (d) $2^{m+n}(m+n)^{O(1)}$

The correct answer is (d).

- 4. Yao's lemma is used to
 - (a) upper bound the worst case expected running time of any algorithm for a problem
 - (b) upper bound the average case running time of any algorithm for a problem
 - (c) lower bound the worst case expected running time of any algorithm for a problem
 - (d) lower bound the average case running time of any algorithm for a problem

The correct answer is (c).

Justification: Refer to week-3 Lecture-4

- 5. Which of the following values of x make the strategy profile (C, C) a strongly dominant strategy equilibrium of the game below?
 - \triangleright The set of players (N): $\{1, 2\}$
 - ightharpoonup The set of strategies: $S_{\mathfrak{i}}=\{A,B\}$ for every $\mathfrak{i}\in[2]$
 - $\begin{tabular}{lll} Player 2 \\ \hline \triangleright Payoff matrix: \\ Player 1 & \hline {NC} & C \\ \hline {NC} & (-4,-4) & (-2,x) \\ \hline {C} & (x,-2) & (x,x) \\ \hline \end{tabular}$
 - (a) 0
 - (b) -2
 - (c) -4
 - (d) -6

The correct answer is (a).

- 6. Which of the following values of x make the strategy profile (C, C) a weakly dominant strategy equilibrium but not a strongly dominant strategy equilibrium of the game below?
 - \triangleright The set of players (N): $\{1, 2\}$
 - ightharpoonup The set of strategies: $S_{\mathfrak{i}}=\{A,B\}$ for every $\mathfrak{i}\in[2]$
 - Player 2

 Payoff matrix:

 Player 1

 NC (-4, -4) (-2, x) (x, x)
 - (a) 0
 - (b) -2
 - (c) -4
 - (d) -6

The correct answer is (b).

- 7. Which of the following values of x make the strategy profile (C, C) not even a weakly dominant strategy equilibrium of the game below?
 - \triangleright The set of players (N): $\{1, 2\}$
 - \triangleright The set of strategies: $S_i = \{A, B\}$ for every $i \in [2]$

(a) 0

- (b) -1
- (c) -2
- (d) -3

The correct answer is (d).

- 8. What type of equilibrium the game in Braess's paradox (with cost function and other details as discussed in the lecture) has after adding the high-capacity edge?
 - (a) strongly dominant strategy equilibrium
 - (b) weakly dominant strategy equilibrium but not a strongly dominant strategy equilibrium
 - (c) very weakly dominant strategy equilibrium but not a weakly dominant strategy equilibrium
 - (d) pure strategy Nash equilibrium but not a very weakly dominant strategy equilibrium

The correct answer is (b).

- 9. There are n players. Each player announces a number in the set $\{1, 2, ..., 150\}$. A prize of 1 is split equally between all the people whose number is closest to $\frac{2}{5}$ of the average number. How many MSNEs this normal form game has?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) infinite

The correct answer is (b).

Justification: Apply iterated elimination of strongly dominated strategy.

10. Consider the following two player normal form game.

$$\begin{array}{l} \rhd \ S_1=\{x\in\mathbb{R}:0\leqslant x\leqslant 2\}, S_2=\{x\in\mathbb{R}:4\leqslant x\leqslant 6\}\\ \\ \rhd \ u_1(x,y)=-u_2(x,y)=|x-y| \ \text{for every} \ x\in S_1 \ \text{and} \ y\in S_2 \end{array}$$

Which one of the following is an MSNE of the above game?

- (a) (0.4)
- (b) (uniform distribution over S_1 , uniform distribution over S_2)
- (c) (0,6)
- (d) (truncated normal distribution over S_1 , truncated normal distribution over S_2)

The correct answer is (a).