Logika Ítéletlogika

Első témakör

2020/21. 2. félév

(Első témakör) Logika 2020/21. 2. félév 1 / 36

Logikai műveletek igazságtáblája

A lehetséges kétváltozós logikai műveletek közös igazságtáblája.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
X	Y	X∧Y	XVY	X⊃Y	X↔Y	‡	^	١	Ŋ	70	X⊂Y	¬X	¬Y	X	Y	i	h
i	i	i	i	i	i	h	h	h	h	h	i	h	h	i	i	i	h
i	h	h	i	h	h	i	i	h	i	h	i	h	i	i	h	i	h
h	i	h	i	i	h	i	i	h	h	i	h	i	h	h	i	i	h
h	h	h	h	i	i	h	i	i	h	h	i	i	i	h	h	i	h

A táblázat tartalmazza a 16 db 2-változós műveletet (a 4 db 1- és a 2 db 0-változós művelet is köztük van). Ezekből a logika tárgyalásánál a $\neg, \land, \lor, \supset$ műveleteket használjuk csak.

Példa feladatok

Feladat szerkezeti fára

Adjuk meg a következő formula szerkezeti fáját:

$$A \wedge \neg B \supset C \supset \neg A \wedge B$$

Az első részfeladat a formula helyes bezárójelezése:

$$((A \land \neg B) \supset (C \supset (\neg A \land B)))$$

A szerkezeti fa:

$$((A \land \neg B) \supset (C \supset (\neg A \land B)))$$

$$(A \land \neg B) \quad (C \supset (\neg A \land B))$$

$$A \quad \neg B \quad C \quad \neg A \land B$$

$$\begin{vmatrix} & & & \\ & & \\ & & \\ & & & \\$$

Feladat igazságtáblára

Adjuk meg a következő formula igazságtábláját: :

$$A \wedge \neg B \supset C \supset \neg A \wedge B$$
.

Az első részfeladat a formula helyes bezárójelezése:

$$((A \land \neg B) \supset (C \supset (\neg A \land B)))$$

Formula igazságtáblája:

Α	В	С	$((A \land \neg B) \supset (C \supset (\neg A \land B)))$
i	i	i	$((i \land \neg i) \supset (i \supset (\neg i \land i))) = \mathbf{i}$
i	i	h	$((i \land \neg i) \supset (h \supset (\neg i \land i))) = \mathbf{i}$
i	h	i	$((i \land \neg h) \supset (i \supset (\neg i \land h))) = \mathbf{h}$
h	i	i	$((h \land \neg i) \supset (i \supset (\neg h \land i))) = \mathbf{i}$
i	h	h	$((i \land \neg h) \supset (h \supset (\neg i \land h))) = \mathbf{i}$
h	i	h	$((h \land \neg i) \supset (h \supset (\neg h \land i))) = \mathbf{i}$
h	h	i	$((h \land \neg h) \supset (i \supset (\neg h \land h))) = \mathbf{i}$
h	h	h	$((h \land \neg h) \supset (h \supset (\neg h \land h))) = \mathbf{i}$

4 / 36

Igazságértékelés függvény

Egy formula **igaz-/hamis**halmazának előállításához keressük a formula bázisának interpretációira azokat a feltételeket, amelyek biztosítják, hogy ő az igazhalmaz illetve a hamishalmaz eleme legyen.

Ennek eszköze a φA^{α} igazságértékelés függvény ($\alpha=\mathbf{i}$ vagy \mathbf{h}), amely egy A formula esetén az igazságtábla felírása nélkül megadja a formula közvetlen részformuláin keresztül az A interpretációira vonatkozó $\varphi A^{\mathbf{i}}$ és a $\varphi A^{\mathbf{h}}$ feltételeket, amelyeket teljesítő interpretációkban a formula értéke \mathbf{i} vagy \mathbf{h} lesz.

A φA^{α} függvény értelmezési tartománya a formulák halmaza értékkészlete a formula interpretációira vonatkozó feltételek.

Igazságértékelés függvény

A φ -igazságértékelés függvény definiálása szerkezeti rekurzióval

- Ha A prímformula (ítéletváltozó), akkor $\varphi A^{\mathbf{i}}$ feltételt pontosan azok az \mathcal{I} interpretációk teljesítik, amelyekben $\mathcal{I}(A) = i$, a $\varphi A^{\mathbf{h}}$ feltételt pedig azok, amelyekben $\mathcal{I}(A) = h$.
- ② A $\varphi(\neg A)^i$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^h feltételek.
- ③ A $\varphi(A \wedge B)^i$ feltételek pontosan akkor teljesülnek, ha teljesülnek mind a φA^i , mind a φB^i feltételek.
- A $\varphi(A \lor B)^i$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^i vagy a φB^i feltételek.
- **5** A $\varphi(A\supset B)^{\mathbf{i}}$ feltételek pontosan akkor teljesülnek, ha teljesülnek a $\varphi A^{\mathbf{h}}$ vagy a $\varphi B^{\mathbf{i}}$ feltételek.

A $\varphi(\neg A)^{\mathbf{h}}$, a $\varphi(A \wedge B)^{\mathbf{h}}$, a $\varphi(A \vee B)^{\mathbf{h}}$, és a $\varphi(A \supset B)^{\mathbf{h}}$ feltételek értelemszerűen adódnak.

(Első témakör) Logika 2020/21. 2. félév 6 / 36

Igazságértékelés szabályok grafikus ábrázolása

(Első témakör) Logika 2020/21. 2. félév 8 / 36

	1.ág			2.ág		3.ág		
X	Y	Z	X	Y	Ζ	X	Y	Z
h	*	*	*	i	i	h	*	*

	1.ág			2.ág		3.ág			
X	Y	Z	X	Y	Ζ	X	Y	Z	
h	*	*	*	i	i	h	*	*	

Az igazhalmaz:

74	Az igazilalili				
X	Y	Z			
i	i	i			
h	i	i			
h	i	h			
h	h	i			
h	h	h			

A hamishalmazt az igazhalmazban nem szereplő interpretációk alkotják.

A **hamishalmaz**t a formula hamissá válás feltételeinek megkeresésével rekurzív módon is megkapjuk.

A hamishalmazt az igazhalmazban nem szereplő interpretációk alkotják. A **hamishalmaz**t a formula hamissá válás feltételeinek megkeresésével rekurzív módon is megkapjuk.

$$\varphi(X \supset Y \land Z \lor \neg X)^{h}$$

$$\varphi^{X^{i}}$$

$$\varphi(Y \land Z \lor \neg X)^{h}$$

$$\varphi(\neg X)^{h}$$

$$\varphi(Y \land Z)^{h}$$

$$\varphi^{X^{i}}$$

$$\varphi^{X^{i}}$$

(Első témakör) Logika 2020/21. 2. félév 9 / 36

A hamishalmazt az igazhalmazban nem szereplő interpretációk alkotják.

A **hamishalmaz**t a formula hamissá válás feltételeinek megkeresésével rekurzív módon is megkapjuk.

$$\varphi(X \supset Y \land Z \lor \neg X)^{h}$$

$$\varphi X^{i}$$

$$\varphi(Y \land Z \lor \neg X)^{h}$$

$$\varphi(\neg X)^{h}$$

$$\varphi(Y \land Z)^{h}$$

$$\varphi(Y \land Z)^{h}$$

$$\varphi X^{i}$$

$$\varphi X^{i}$$

	1.ág			2.ág	
X	Y	Z	X	Y	Z
i	h	*	i	*	h

A hamishalmazt az igazhalmazban nem szereplő interpretációk alkotják.

A **hamishalmaz**t a formula hamissá válás feltételeinek megkeresésével rekurzív módon is megkapjuk.

$$\varphi(X \supset Y \land Z \lor \neg X)^{h}$$

$$\varphi(X \supset Y \land Z \lor \neg X)^{h}$$

$$\varphi(Y \land Z \lor \neg X)^{h}$$

$$\varphi(\neg X)^{h}$$

$$\varphi(Y \land Z)^{h}$$

$$\varphi(X \supset Y \land Z)^{h}$$

$$\varphi(X \supset Y \land Z)^{h}$$

A h	A hamishalmaz						
X	Y	Ζ					
i	i	h					
i	h	i					
•	- 1	,)				

	1.ág			2.ág	
X	Y	Z	X	Y	Z
i	h	*	i	*	h

Tartalom

1 Formulák, formulahalmazok szemantikus tulajdonságai

Szemantikus következményfogalom

Formalizálás

(Első témakör) Logika 2020/21. 2. félév 10 / 36

Formulák szemantikus tulajdonságai

Interpretáció kielégít egy formulát

Az ítéletlogikában egy $\mathcal I$ interpretáció kielégít egy B formulát $(\mathcal I \models_0 B)$. ha a formula helyettesítési értéke i az $\mathcal I$ interpretációban. A formulát kielégítő $\mathcal I$ interpretációt a formula modelljének is szokás nevezni.

Kielégíthetőség/kielégíthetetlenség/tautológia formulákra (Tk.4.3.1.)

Egy B formula kielégíthető, ha legalább egy interpretáció kielégíti.

Egy B formula **kielégíthetetlen**, ha egyetlen interpretáció sem elégíti ki.

Egy B formula **tautológia** ($\models_0 B$), ha minden interpretáció kielégíti. A tautologiát **ítéletlogikai törvény**nek is nevezik.

(Első témakör) Logika 2020/21. 2. félév 11 / 36

Példák ítéletlogikai törvényekre (Tk 71.0 és 74.0)

$$\models_0 A \supset (B \supset A)$$

$$\models_0 (A \supset B \supset C) \supset (A \supset B) \supset A \supset C$$

$$\models_0 A \supset B \supset (A \land B)$$

$$\models_0 ((A \supset B) \supset A) \supset A$$

(Első témakör) Logika 2020/21. 2. félév 12 / 36

Formulahalmazok szemantikus tulajdonságai

Legyen $\mathcal{F} = \{A_1, A_2, \dots, A_n\}$ formulahalmaz.

Interpretáció kielégít egy formulahalmazt

Az ítéletlogikában egy $\mathcal I$ interpretáció **kielégít** egy F formulahalmazt $(\mathcal I\models_0\mathcal F)$, ha a formulahalmaz minden formulájának helyettesítési értéke i az $\mathcal I$ interpretációban.

Kielégíthetőség/kielégíthetetlenség formulahalmazokra (Tk.4.3.12.)

Egy ${\mathcal F}$ formulahalmaz **kielégíthető**, ha legalább egy interpretáció kielégíti.

Egy \mathcal{F} formulahalmaz **kielégíthetetlen**, ha bármely interpretációban legalább egy formulája h (nincs olyan interpretáció, ami kielégítené).

(Első témakör) Logika 2020/21. 2. félév 13 / 36

Szemantikus következmény (Tk.4.4.1.)

Egy G formula **szemantikus** vagy **tautologikus következménye** az $\mathcal{F} = \{F_1, F_2, \dots, F_n\}$ formulahalmaznak, ha minden olyan \mathcal{I} interpretációra, amelyre $\mathcal{I} \models_0 \{F_1, F_2, \dots, F_n\}$ fennáll, $\mathcal{I} \models_0 G$ is fennáll (ha \mathcal{I} modellje $\{F_1, F_2, \dots, F_n\}$ -nek, akkor modellje G-nek is).

Jelölés: $\{F_1, F_2, \dots, F_n\} \models_0 G$

Tétel

Ha egy G formula bármely $\mathcal F$ feltételhalmaznak következménye, akkor G tautológia ($\models_0 G$).

Tehát (F,G) akkor helyes következtetésforma, ha teljesül, hogy $F\models_0 G$ és létezik olyan $\mathcal I$ interpretáció, melyre $\mathcal I\models_0 F$.

4 D > 4 B > 4 B > 4 B > 9 Q (~

Tartalom

Formulák, formulahalmazok szemantikus tulajdonságai

2 Szemantikus következményfogalom

Formalizálás

(Első témakör) Logika 2020/21. 2. félév 15 / 36

Tétel (Tk.4.4.3.)

Ha \mathcal{F} -nek következménye G_1 ($\mathcal{F} \models_0 G_1$) és \mathcal{F} -nek következménye G_2 ($\mathcal{F} \models_0 G_2$) valamint $\{G_1, G_2\}$ -nek következménye A ($\{G_1, G_2\} \models_0 A$), akkor \mathcal{F} -nek következménye A ($\mathcal{F} \models_0 A$).

Eldöntésprobléma

Eldöntésproblémának nevezik a logikában annak eldöntését, hogy egy (F,G) pár a szemantikus következményfogalom szerint helyes gondolkodásforma-e.

Tétel (Tk.4.4.4.)

 \mathcal{F} -nek akkor és csak akkor következménye G, ha az $\mathcal{F} \cup \neg G$ formulahalmaz vagy $F_1 \wedge F_2 \wedge \ldots \wedge F_n \wedge \neg G$ formula kielégíthetetlen.

Ennek alapján az egyik **szemantikus eldöntésprobléma**: tetszőleges ítéletlogikai formuláról eldönteni, hogy kielégíthetetlen-e.

Tétel (dedukciós) (Tk.4.4.7.) $\{F_1, F_2, \dots, F_n\} \models_0 G \text{ akkor \'es csak akkor, ha}$ $\{F_1, F_2, \dots, F_{n-1}\} \models_0 (F_n \supset G)$

Tétel (eldöntésprobléma) (Tk.4.4.8.)

$$\{F_1, F_2, \dots, F_n\} \models_0 G$$
 akkor és csak akkor, ha
 $\models_0 F_1 \supset (F_2 \supset \dots (F_{n-1} \supset (F_n \supset G))\dots)$

Ennek alapján a másik **szemantikus eldöntésprobléma**: tetszőleges ítéletlogikai formuláról eldönteni, hogy tautológia-e.

(Első témakör) Logika 2020/21. 2. félév 18 / 36

Dedukciós tétel bizonyítási elve (nem kell vizsgára, csak magyarázat)

F_1		F_{n-1}	F _n	G
i	i	i	i	i
i	i	i	h	i/h
i	h	i	i	i/h

$ F_1 $		$ F_{n-1} $	$F_n\supset G$
i	i	i	$i \supset i = i$
i	i	i	$h\supset\{i/h\}=i$
i	h	i	$\{i/h\}$

A fenti 2 "igazságtábla" (nincs benne konkrét interpretáció) mutatja a 3 lehetséges helyettesítési érték fajtát, amelyek előfordulhatnak.

Az első, amikor a formulahalmaz minden eleme igaz, és a következmény is. Ez az eset az, amikor az eredeti következmény ($\{F_1,..,F_n\}\models_0 G$) feltétele és az átalakított következmény ($\{F_1,..,F_{n-1}\}\models_0 F_n\supset G$) feltétele is teljesül.

A második eset, amikor minden formulahalmazbeli formula helyettesítési értéke igaz, kivéve annak, amelyet átviszünk a jobb oldalra. Ilyenkor a bal oldali következmény feltételét nem kell vizsgálnunk, hiszen nem igaz minden formulahalmazbeli forula, így a következmény értéke lényegtelen. Viszont ha megtörténik az F_n formula átvitele a következményformulába, akkor egy olyan formulahalmazunk lesz, amely minden eleme igazra helyettesítődik, szóval az átalakított következményben a helyes feltételt is vizsgálni kell. A feltétel teljesülni fog, hiszen a $h \supset i$ vagy $h \supset h$ formula szerint helyettesítődik, ami igaz.

A harmadik eset az összes többi esetet foglalja magában (egy konkrétat kiemelve), amikor a formulahalmazban másutt is előfordulhat minimum egy hamis érték. Ezek azok az esetek, amikor sem az eredeti, sem az átalakított következményben nem fog teljesülni, hogy a feltételhalmaz minden eleme igaz, így a követkemény szempontjából lényegtelenek a további helyettesítési értékek.

Tautologikusan ekvivalens

Definíció 1. változat (Tk.4.3.7.)

Két vagy több formula igazságtáblája lehet azonos, ekkor azt mondjuk, hogy a formulák **tautologikusan ekvivalensek**. Ennek jelölésére a \sim_0 szimbólumot használjuk.

Definíció 2. változat

Az A és B formulák **tautologikusan ekvivalensek**, ha $A \models_0 B$ és $B \models_0 A$.

Ekkor $\models_0 (A \supset B) \land (B \supset A)$.

(Első témakör) Logika 2020/21. 2. félév 20 / 36

Átalakítási szabályok

$$X \supset Y \sim_0 \neg X \lor Y$$
$$\neg \neg X \sim_0 X$$

De Morgan szabályok:

Egyszerűsítési szabályok:

ahol d elemi diszjunkció és k elemi konjunkció.

(Első témakör) Logika 2020/21. 2. félév 21 / 36

Következtetési módok I.

Definíció (Tk.4.4.14.)

Legyen a $\mathcal F$ feltételhalmazban szereplő változók száma n. Ekkor a **legszűkebb következmény** az az $\{i,h\}^n \to \{i,h\}$ leképezés, amely pontosan azokhoz az interpretációkhoz rendel i értéket, amelyek kielégítik az $\mathcal F$ -et.

Előrekövetkeztetés

Ismert az $\mathcal F$ feltételhalmaz, és keressük $\mathcal F$ lehetséges következményeit. Megkeressük $\mathcal F$ legszűkebb következményét, R-t. Következmény minden olyan G formula, amelyre $R\supset G$ tautológia, azaz R igazhalmaza része G igazhalmazának.

Előrekövetkeztetés – példa

$$\mathcal{F} = \{Z \supset M \lor P, Z, \neg P\}$$

Р	М	Z	$Z\supset M\lor P$	Z	$\neg P$	lszk.	köv.
i	i	i	i	i	h	h	h/i
i	i	h	i	h	h	h	h/i
i	h	i	i	i	h	h	h/i
i	h	h	i	h	h	h	h/i
h	i	i	i	i	i	i	i
h	i	h	i	h	i	h	h/i
h	h	i	h	i	i	h	h/i
h	h	h	i	h	i	h	h/i

Csak egy igazságértékre kielégíthető a feltételhalmaz.

(Első témakör) Logika 2020/21. 2. félév 23 / 36

Következtetési módok II.

Visszakövetkeztetés

Az $\mathcal F$ feltételhalmaz és a B következményformula ismeretében eldöntjük, hogy B valóban következménye-e $\mathcal F$ -nek. Mivel $\mathcal F\models_0 B$ pontosan akkor, ha az $\mathcal F\cup\{\neg B\}$ formulahalmaz kielégíthetetlen.

Más szóval B pontosan akkor következménye \mathcal{F} -nek, ha minden olyan interpretációban, ahol B hamis, az \mathcal{F} kielégíthetetlen.

Példa

Legyen $\mathcal{F}=\{Z\supset M\lor P,Z,\neg P\}$ és lássuk be, hogy M következmény. Be kell látni, hogy, ha $\neg M$ igaz egy interpretációban, akkor \mathcal{F} nem lesz kielégíthető. Ahhoz,hogy minden feltételformula i legyen Z=i, P=h mellett $Z\supset M\lor P$ -nek igaznak kellene lennie, viszont ha M hamis, akkor $Z\supset M\lor P=h$ lehet csak. Tehát M következménye F-nek.

Tartalom

Formulák, formulahalmazok szemantikus tulajdonságai

Szemantikus következményfogalom

Formalizálás

(Első témakör) Logika 2020/21. 2. félév 25 / 36

Formalizálás az ítéletlogikában ¹

Tegyük fel, hogy adott valamilyen köznapi vagy matematikai probléma. Ennek természetes nyelvű egyszerű vagy összetett kijelentő mondatokkal való leírását ismerjük.

Az **egyszerű kijelentő mondatok** formalizálására bevezetünk egy **azonosítót (állításjel, ítéletváltozó)**.

Az **összetett mondatot** analizáljuk, átalakítjuk azonos értelmű, de egyszerű kijelentő mondatokból olyan nyelvtani összekötőkkel felírt mondattá, ahol **a nyelvtani összekötők egyben logikai összekötők** (logikai műveletek).

¹Tk.54-55.o.

Példa Tk. 54.0

Betörtek egy áruházba. A nyomozási jegyzőkönyv a következőket tartalmazza:

Ha férfi a tettes, akkor kistermetű.

Ha kistermetű, akkor az ablakon mászott be.

A tettes férfi vagy legalábbis férfiruhát hordott.

Ha férfiruhát hordott és feltéve, hogy a szemtanú vallomása hiteles akkor az ablakon mászott be.

A helyszíni szemle megállapította, hogy az ablakon senki sem mászott be.

A nyomozók azt sejtik, hogy a tettes nem férfi.

Példa Tk. 54.0

Betörtek egy áruházba. A nyomozási jegyzőkönyv a következőket tartalmazza:

Ha férfi a tettes (F), akkor kistermetű (K). $F \supset K$

Ha kistermetű, akkor az ablakon mászott be (A). $K \supset A$

A tettes férfi vagy legalábbis férfiruhát hordott (R). $F \vee R$

Ha férfiruhát hordott és feltéve, hogy a szemtanú vallomása hiteles (H), akkor az ablakon mászott be. $(R \wedge H) \supset A$

A helyszíni szemle megállapította, hogy az ablakon senki sem mászott be. $\neg A$

A nyomozók azt sejtik, hogy a tettes nem férfi. $\neg F$

A feltételhalmaz: $\{F \supset K, K \supset A, F \lor R, (R \land H) \supset A, \neg A\}$

A feltételezés szerinti következmény: ¬F

(Első témakör) Logika 2020/21. 2. félév 28 / 36

Példa Tk. 54.o

Előrekövetkeztetés:

Az $\{F\supset K,\ K\supset A,\ F\lor R,\ (R\land H)\supset A,\ \neg A\}$ formulahalmazt egyetlen interpretáció elégíti ki: $A=h,\ F=h,\ K=h,\ R=i,\ H=h,$ azaz a legszűkebb következényt leíró formula: $\neg A\land \neg F\land \neg K\land R\land \neg H$ $(\neg A\land \neg F\land \neg K\land R\land \neg H)\supset \neg F$ tautológia, így $\neg F$ következmény.

Visszakövetkeztetés:

 $\neg F$ következmény, mivel a negáltját hozzávéve a feltételhalmazhoz, a kapott formulahalmaz: $\{F\supset K,\ K\supset A,\ F\lor R,\ (R\land H)\supset A,\ \neg A,\ F\}$ kielégíthetetlen.

Vizsgálat: formula tautológia - igazságtáblával

Α	В	$A\supset B\supset (A\wedge B)$
i	i	i
i	h	i
h	i	i
h	h	i

A formula helyettesítési értéke minden interpretáció esetén igaz! \Rightarrow A formula kielégíthető és tautológia.

Vizsgálat: formula tautológia - igazságértékelés fával

$$\varphi(A \supset (B \supset (A \land B)))^{h} (1)$$

$$\varphi(A)^{i}$$

$$\varphi(B \supset (A \land B))^{h} (2)$$

$$\varphi(B)^{i}$$

$$\varphi(A \land B)^{h} (3)$$

$$\varphi(A)^{h} \varphi(B)^{h}$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

Minden előállt úton ellentmondásra jutunk. A bal oldali ágon az A értéke miatt, a jobb oldali ágon pedig a B ítéletváltozó értéke miatt. Így a formula hamishalmaza üres, vagyis az igazhalmaza az összes interpretációt tartalmazza. Ezek szerint a formula helyettesítési értéke minden interpretációban igaz, a formula tautológia. (Az igaz feltételt is lehetett volna számolni, de akkor ellenőrizni kell, hogy a kiszámolt igazhalmaz tartalmazza-e az összes interpretációt.)

Vizsgálat: formula kielégíthetetlen - igazságtáblával

Α	В	$(\neg A \land B) \land (B \supset A)$
i	i	h
i	h	h
h	i	h
h	h	h

A formula helyettesítési értéke minden interpretáció esetén hamis! \Rightarrow A formula kielégíthetetlen.

(Első témakör) Logika 2020/21. 2. félév 32 / 36

Vizsgálat: formula kielégíthetelen - igazságértékelés fával

$$\varphi((\neg A \land B) \land (B \supset A))^{i} (1)$$

$$\varphi(\neg A \land B)^{i} (2)$$

$$\varphi(B \supset A)^{i} (4)$$

$$\varphi(\neg A)^{i} (3)$$

$$\varphi(B)^{i}$$

$$\varphi(A)^{h}$$

$$\varphi(B)^{h} \varphi(A)^{i}$$

$$\varphi(B)^{h} \varphi(A)^{i}$$

Minden ágon ellentmondásra jutottunk, vagyis a formula igazhalmaza üres. Így a formula helyettesítési értéke minden interpretációban hamis, vagyis kielégíthetetlen.

(Első témakör) Logika 2020/21. 2. félév 33 / 36

Formulahalmaz igazságtáblája

Adott a következő formulahalmaz: $\{\neg A, A \lor B, B \supset \neg A\}$. Adjuk meg a formula helyettesítési értékeit a különböző interpretációkban igazságtáblával.

Α	В	$\neg A$	$A \vee B$	$B\supset \neg A$
i	i	h	i	h
i	h	h	i	i
h	i	i	i	i
h	h	i	h	i

A (h,i) (A,B bázissal) interpretációban minden formulahalmazbeli formula helyettesítési értéke igaz, így ebben az interpretációban a formulahalmaz kielégíthető.

Formulahalmaz szemantikai tulajdonságai

Adott a következő formulahalmaz: $\{\neg A, A \lor B, B \supset \neg A\}$. Ha egy formulahalmaz szemantikai tulajdonságait szeretnénk vizsgálni, akkor lehet egy közös igazságtáblán is számolni, vagy átalakíthatjuk a feladatot formula vizsgálatára.

A követekező formulahalmaz $\{\neg A, A \lor B, B \supset \neg A\}$ átalakítható a következő formulára $\neg A \land (A \lor B) \land (B \supset \neg A)$.

Α	В	$\neg A \land (A \lor B) \land (B \supset \neg A)$
i	i	h
i	h	h
h	i	i
h	h	h

A leolvasható eredmény ugyanaz. Vagyis az (h,i) interpretációban kielégíthető a formula, így az eredeti formulahalmaz is. Ha például minden helyettesítési érték hamis lenne, akkor a formula kielégíthetetlen, visszatérve az eredeti feladatra a formulahalmaz is kielégíthetetlen. Ha minden helyettesítési érték igaz lenne, akkor a formula tautológia, visszaérve az eredeti formulahalmazra csak azt mondhatjuk el, hogy kielégíthető, vagy minden interpretációban kielégíthető, hiszen formulahalmazokon tautológi fogalmát nem használjuk.

Szemantikus következmény igazáságtáblával

Helyes-e a következő szemantikus következmény: $\{\neg A, \neg A \lor B, B \supset A\} \models_0 \neg A \supset B$.

Α	В	$\neg A$	$\neg A \lor B$	$B\supset \neg A$	$\neg A \supset B$
i	i	h	i	h	i
i	h	h	h	i	i
h	i	i	i	i	i
h	h	i	i	i	h

A formulahalmaz a (h,i) és (h,h) interpretációkban kielégíthető, így ezekben az esetekben kell vizsgálni a következmény formula helyettesítési értékét is. A (h,i) interpretációban igaz, eddig még jónak tűnik a következmény. Viszont ha megnézzük a (h,h) interpretációt, ott hamis lesz a következmény helyettesítési értéke, így a következmény nem helyes!

◆ロ > ◆団 > ◆豆 > ◆豆 > 豆 の Q (*)