CLAIMS

- 1. Method for assigning to a set of products (P₁, P₂, P₃, P₄) a set of corresponding continuous demand densities (D_{P1c}, D_{P2c}, D_{P3c}, D_{P4c}) comprising the following steps:
- a conversion step (10) wherein for each product (P₁, P₂, P₃, P₄) its demand time series (H(P₁), H(P₂), H(P₃), H(P₄)) is converted into a discrete demand density (D_{P1d}, D_{P2d}, D_{P3d}, D_{P4d}),

5

10

20

- a normalization step (20) wherein said discrete demand densities (D_{P1d}, D_{P2d}, D_{P3d}, D_{P3d}, D_{P4d}) are transformed into normalized discrete demand densities (D^N_{P1d}, D^N_{P2d}, D^N_{P3d}, D^N_{P4d}),
- a clustering step (30) wherein each of said normalized discrete demand densities (D^N_{P1d}, D^N_{P2d}, D^N_{P3d}, D^N_{P4d}) is assigned to a cluster (C₁, C₂) and wherein for each said cluster (C₁, C₂) a cluster-representative discrete density (R_{fC1}, R_{fC2}) is determined,
- a selection step (40) wherein for each cluster-representative discrete density (R_{fC}) out of a predetermined set (L_D) of continuous model densities (D^m_{Mc}) a cluster-representative continuous density (D^m_{Cc}) is selected,
- a parameter-determination step (50) wherein for each product (P₁, P₂, P₃, P₄) for its cluster-representative continuous density (D^m_{Cc}) product-individual density parameters (p(P)) are determined under use of which for each product (P₁, P₂, P₃, P₄) a continuous density (D^m_{P1c}, D^m_{P2c}, D^m_{P3c}, D^m_{P4c}) is determined,
 - a adjustment step (70) wherein for each product (P₁, P₂, P₃, P₄) average and variance of said continuous density (D^m_{P1c}, D^m_{P2c}, D^m_{P3c}, D^m_{P4c}) are adjusted to form said continuous demand density (D_{P1c}, D_{P2c}, D_{P3c}, D_{P4c}).
 - 2. Method according to claim 1, further comprising a clustering correction step (60) wherein for each product (P_1, P_2, P_3, P_4) a distance (d_p) between its continuous density $(D^m_{P1c}, D^m_{P2c}, D$

 D^{m}_{P3c} , D^{m}_{P4c}) and its normalized discrete demand density (D^{N}_{P1d} , D^{N}_{P2d} , D^{N}_{P3d} , D^{N}_{P4d}), is determined and wherein for those of said products (P_1 , P_2 , P_3 , P_4) whose distance (d_p) exceeds a predetermined threshold value (t_h), in a substitute-selection step (63) for the corresponding normalized discrete demand density (D^{N}_{P1d} , D^{N}_{P2d} , D^{N}_{P3d} , D^{N}_{P4d}) out of said predetermined set (L_D) of continuous model densities (D^{m}_{Mc}) a substitute continuous density (D^{m}_{P1cS} , D^{m}_{P2cS} , D^{m}_{P3cS} , D^{m}_{P4cS}) is selected, which is defined for that product (P_1 , P_2 , P_3 , P_4) as its continuous density (D^{m}_{P1c} , D^{m}_{P2c} , D^{m}_{P3c} , D^{m}_{P4c}).

- 3. Method according to claim 1, wherein in the conversion step (10) the demand time series is substantially segregated from demand trend and periodic demand.
- 4. Method according to claim 1, wherein in the normalization step (20) normalization information is maintained for the adjustment step (70).

5

20

- 5. Method according to claim 1, wherein for each of the clusters (C_1, C_2) an initial cluster representative (X_1, X_2) is provided, and wherein the clustering step (30) comprises for each of the normalized discrete demand densities $(D^{N}_{P1d}, D^{N}_{P2d}, D^{N}_{P3d}, D^{N}_{P4d})$
- a distance determination step wherein for each said initial cluster representative (X_1, X_2) its distance $(d_C(X_i, D^N_{Pid}))$ from the normalized discrete demand density (D^N_{Pid}) is determined, and
 - a modification step wherein the one initial cluster representative (X_i) is modified towards the normalized discrete demand density (D^N_{Pid}) to which it has the smallest distance $(d_C(X_i, D^N_{Pid}))$, said modified cluster representative (X_i) being thereafter defined as new initial cluster representative (X_i) .
 - 6. Method according to claim 5, wherein the distance determination step and the modification step are repeated one or more times for each of the normalized discrete

demand densities $(D^{N}_{P1d}, D^{N}_{P2d}, D^{N}_{P3d}, D^{N}_{P4d})$, starting with the initial cluster representatives (X_1, X_2) that are present after the previous last modification step.

7. Method according to claim 5, wherein the initial cluster representatives (X_1, X_2) that are present after the last modification step are selected in the clustering step (30) as the cluster-representative discrete density (R_{IC}) .

5

15

- 8. Method according to claim 1, wherein in the clustering step (30) a said cluster representative (X_1, X_2) is substantially not modified when its distance $(d_C(X_i, D^N_{Pid}))$ to those normalized discrete demand densities $(D^N_{P1d}, D^N_{P2d}, D^N_{P3d}, D^N_{P4d})$ that belong to the corresponding cluster (C_1, C_2) , is below a predetermined value.
- 9. Method according to claim 1, wherein the predetermined set (L_D) of continuous model densities (D^m_{Mc}) contains the model densities (D^m_{Mc}) with its parameters (p) in an undetermined form and wherein the parameters (p) for the clusters (C₁, C₂) are determined in the selection step (40).
 - 10. Method according to claim 1, wherein in the normalization step (20) the demand value for 0 pieces of the products (P₁, P₂, P₃, P₄) in the discrete demand densities (D_{P1d}, D_{P2d}, D_{P3d}, D_{P4d}) is rescaled inversely to the demand values for more than 0 pieces of the same product (P₁, P₂, P₃, P₄).
 - 11. Method according to claim 1, wherein in the selection step (40) the demand value for 0 pieces of the products (P₁, P₂, P₃, P₄) is suppressed.
- 20 12. Method according to claim 1, further comprising a safety stock determination step (80) wherein with a given service level (SL(P₁), SL(P₂), SL(P₃), SL(P₄)) from the continuous demand density (D_{P1c}, D_{P2c}, D_{P3c}, D_{P4c}) for one or more of the products (P₁, P₂, P₃, P₄) a product safety stock level (s_i(P₁), s_i(P₂), s_i(P₃), s_i(P₄)) is determined.

13. Method according to claim 12, further comprising a product order step (110) wherein via an output device an order for a said product (P₁, P₂, P₃, P₄) is initiated towards a product-providing entity, in the event that a current stock level S(P₁), S(P₂), S(P₃), S(P₄) of that product (P₁, P₂, P₃, P₄) falls below a minimum quantity (Q_m(P₁), Q_m(P₂), Q_m(P₃), Q_m(P₄)) that is the sum of the average of the discrete demand density (D_{P1d}, D_{P2d}, D_{P3d}, D_{P4d}) for said product (P₁, P₂, P₃, P₄) during the product's lead time (LT(P₁), LT(P₂), LT(P₃), LT(P₄)), and the determined safety stock level (s_i(P₁), s_i(P₂), s_i(P₃), s_i(P₄)) for said product (P₁, P₂, P₃, P₄).

5

10

- 14. Computer program product comprising program code means for performing a method according to claim 1.
- 15. Computer program product according to claim 14, comprising the program code means stored on a computer-readable medium.

* * *