# SCC.312 Languages and Compilation (Week 13)

Paul Rayson p.rayson@lancaster.ac.uk

### Last week's topics

Reminder



#### Regular Grammars

Language of the grammar – L(G)



#### Finite State Recognisers



- Non-deterministic and deterministic
- Subset construction algorithm



Regular Expressions



Equivalence



### Chomsky Hierarchy









#### This week's Lectures

The "Repeat State" Theorem



Context free Grammars



Pushdown Recognisers



Uses of Context Free Grammars

Syntax, Semantics and Ambiguity



### Learning objectives



- 1. identify the format of rules in context free grammars
- understand the limitations of context free grammars in representing strings
- 3. understand the concept of equivalence between two grammars

  Already covered last week
- 4. understand the concept of ambiguity in a grammar
- 5. generate a pushdown recogniser (PDR) that corresponds to a given context free grammar
- 6. understand the difference between deterministic and a non-deterministic context free grammar

### Regular Grammars

Reminder

- All productions are one of two formats:
  - $-X \rightarrow yZ$  (X, Z non terminals, y is a terminal)
  - $-X \rightarrow t$  (Note: t can be the empty string)
- Converted into Finite State Recognisers
- Recognise string of length n in n steps



# Using the Finite State Recogniser

- If a FSR can accept strings of infinite length then it must contain a loop
  - passes through a state more than once



### "Repeat State" Theorem – "vwx"

- The string that is accepted can be expressed as 3 concatenated sub strings
  - -VWX
    - v is the string accepted before the repeat state(s)
    - w is the repeated string
    - x is the string accepted after the repeat state(s)
      - v and x could be empty, but w is non-empty
- $vw^ix$  for all  $i \ge 0$
- Applies to any infinite regular language

### Example

- "Applies to any infinite regular language"
- $vw^ix$  for all  $i \ge 0$
- e.g. abiac for G₁
  - **v** = a
  - $w^i = b^i$
  - $\cdot x = ac$

# Using the Repeat State Theorem

- We can use the theorem to determine if a language is regular
- For example {a<sup>i</sup>b<sup>i</sup> : i ≥ 1} looks like it might be regular
- The Repeat State Theorem says we need a "repeatable sub string" in vwix
  - What is it? ab? a? b?

### FSRs and Counting

- Also if {a<sup>i</sup>b<sup>i</sup> : i ≥ 1} was regular we could parse it with a FSR
  - Needs to count the number of 'a's and check that there were the same number of 'b's
- FSRs can only count by going into a new state
  - As our FSR only has M states it cannot count above
     M
- This counted pattern is infinite so it cannot be regular

Note: some regular languages can be infinite

### Beyond Regular Languages

- By using the Repeat State Theorem and the counting limitations of FSRs we have shown that {a<sup>i</sup>b<sup>i</sup> : i ≥ 1} is not regular
- A similar argument can be used to check for matching parentheses (i.e. in a compiler)
- Obviously will need something more powerful than a regular grammar

### A simple Non-Regular Grammar

- terminals: a b
- non-terminals: S
- distinguished symbol: S
- productions:
  - $S \rightarrow ab$
  - $S \rightarrow aSb$

### A Derivation from the Grammar

- -S
- -aSb
- aaSbb
- aaabbb
- this grammar generates

```
\{ a^i b^i : i \ge 1 \}
```

### Context Free Grammars



Type 2



### Context Free Grammars

- The next type of phrase structure grammar is context free grammars that generate context free languages (CFLs)
- The productions have the format
  - $-X \rightarrow RHS$ 
    - X is a single non-terminal,
    - RHS (right hand side) is any mixture of terminals and/or non-terminals, and can be empty
- Regular grammars are a restricted form of context free grammars

### Identifying a CF Grammar

Is this a context free grammar?

 $S \rightarrow aSYZ \mid aYZ$ 

 $ZY \rightarrow YZ$ 

 $aY \rightarrow ab$ 

 $bY \rightarrow bb$ 

 $bZ \rightarrow bc$ 

 $cZ \rightarrow cc$ 

Not a CF Grammar



### Identifying a CF Grammar

Are either of these two grammars CF?





### L(G) for some Examples

These examples are context free



Note the difference: second example is any mixture of 'a's and 'b's in any order



# An Example Toy English Grammar

Reminder

- R1 a SENTENCE could be a NOUN-PHRASE followed by a VERB-PHRASE
- R2 a NOUN-PHRASE could be an ARTICLE followed by a NOUN
- R3 (alternatively) a NOUN-PHRASE could be an ARTICLE followed by an ADJECTIVE followed by a NOUN
- R4 a VERB-PHRASE could be a VERB followed by a NOUN-PHRASE
- R5 (alternatively) a VERB-PHRASE could be just a VERB

where, for example,

- R6 an ARTICLE could be a or the
- R7- a NOUN could be man, doctor, dalek, boy or dog
- R8 an ADJECTIVE could be big, small or red
- **R9** a VERB could be hates, likes or bites



### Context-Free Grammars



- if we look at the productions (string1→ string2)
  in the first example (the English-language one)
  in the first week, there is something special
  about them
- in each production there is exactly one nonterminal (and no terminals) on the left hand side
- a grammar with this property is called contextfree



### A Non-Context-Free Grammar

- also in the first week there was part of a grammar to handle subject-verb agreement:
  - R6: NOUN VERB → SINGULAR-NOUN S-FORM-OF-VERB
  - R7: NOUN VERB → PLURAL-NOUN SIMPLE-FORM-OF-VERB
- these are not context-free rules



# Rewritten as a Context-Free Grammar I

- SENTENCE → SINGULAR-NOUN-PHRASE SINGULAR-VERB-PHRASE
- SENTENCE → PLURAL-NOUN-PHRASE PLURAL-VERB-PHRASE
- SINGULAR-NOUN-PHRASE → ARTICLE SINGULAR-NOUN
- SINGULAR-NOUN-PHRASE → ARTICLE ADJECTIVE SINGULAR-NOUN
- PLURAL-NOUN-PHRASE → ARTICLE PLURAL-NOUN
- PLURAL-NOUN-PHRASE → ARTICLE ADJECTIVE PLURAL-NOUN
- SINGULAR-VERB-PHRASE → S-FORM-OF-VERB NOUN-PHRASE
- SINGULAR-VERB-PHRASE → S-FORM-OF-VERB
- PLURAL-VERB-PHRASE → SIMPLE-FORM-OF-VERB NOUN-PHRASE
- PLURAL-VERB-PHRASE → SIMPLE-FORM-OF-VERB
- NOUN-PHRASE → SINGULAR-NOUN-PHRASE
- NOUN-PHRASE → PLURAL-NOUN-PHRASE



# Rewritten as a Context-Free Grammar II

- ARTICLE → a
- ARTICLE → the
- SINGULAR-NOUN → man
- SINGULAR-NOUN → boy
- SINGULAR-NOUN → dog
- PLURAL-NOUN → men
- PLURAL-NOUN → boys
- PLURAL-NOUN → dogs
- ADJECTIVE → big
- ADJECTIVE → small
- ADJECTIVE → red
- SIMPLE-FORM-OF-VERB → hate
- SIMPLE-FORM-OF-VERB → like
- S-FORM-OF-VERB → hates
- S-FORM-OF-VERB → likes



# Rewritten as a Context-Free Grammar III

- using this grammar you can derive
  - the man hates the boy
  - the men hate the boy
- but not
  - the man hate the boy
  - the men hates the boy



# Grammar Equivalence



Reminder

- the two grammars agree on which strings are grammatical and which are not - the grammars are equivalent
- the grammars do not give the same structure to the string - they are only weakly equivalent



### The Agreement Grammar

- this new grammar (although repetitive) is probably the best way to represent the facts anyway - in a more complete grammar you would want to say that a is not an appropriate ARTICLE for a PLURAL-NOUN-PHRASE
- more generally, you would want to say that some ARTICLEs are appropriate for SINGULAR-NOUN-PHRASEs (a, this) and some for PLURAL-NOUN-PHRASEs (these), and some for both (the, some)



#### A Context Free Machine?

- We could not design finite state recognisers that are equivalent to context free languages
  - we need a machine that is more powerful
- It is called a Pushdown Recogniser (PDR)
- It is may sometimes be called a Pushdown Automaton (PDA)



### Pushdown Recogniser



Type 2



### Pushdown Recogniser

- A pushdown recogniser is a finite state machine with extra storage
- This is called the stack
  - It has two procedures, pop and push
  - It is restricted in accessibility. We can add or remove items only from the top of the stack
  - It is potentially infinite in size
  - It can contain terminals and non-terminals

Remember Stacks from 1st year?



### Pushdown Recogniser Stack

- As the PDR reads a symbol, it can remove (pop)
  that symbol off the top of the stack and replace
  (push) it with one or more symbols
- \( \perp \) is the stack bottom marker

JFlap uses Z as stack bottom marker





### Pushdown Recogniser Stack

- Can push more than one symbol at a time
  - PUSH(abc) is PUSH(c), PUSH(b), PUSH(a)
  - Easier to allow a sequence
  - Does not affect the power of the PDR
- Pushing the empty string (ε) leaves the stack unchanged
- Not allowed to pop the empty string

JFlap does allow this but in the practicals and coursework you shouldn't do this



### Pushdown Recogniser Arcs

 We show what is popped and what is pushed on the arcs of our push down recogniser using the following format:

#### a/b/cd

- a/b/cd the symbol read in the input string
- a/b/cd symbol popped off the stack
- a/b/cd symbol(s) pushed onto the stack



### Pushdown Recogniser Arcs

- If in state A, about to read a, and b is on the top of the stack
- Then POP(b), PUSH(c) and move to state
   B





### Pushdown Recogniser Arcs

- The symbol b must be on top of the stack for it to be popped off otherwise an error occurs and we fail to parse the string
- The empty string  $(\varepsilon)$  can be used to ignore (i.e. not read) the input symbol (e.g.  $\varepsilon/b/c$ )
  - Remain positioned at the same input symbol



- We mark 3 states the start state (1), an intermediate state (2) and the halt state (H)
  - Note: in this PDR the states are numbers not letters





- We add an arc from state 1 to 2 labelled
   ε/⊥/S⊥
  - where S is the start symbol





We add an arc from state 2 to H labelled
 ε/⊥/⊥





 For each production X → Z we have an arc from state 2 to 2 labelled ε/X/Z

$$-e.g. S \rightarrow bA \quad A \rightarrow bAA \mid a$$





 For each terminal (t) in the grammar we have an arc from state 2 to 2 labelled t/t/ε

$$-$$
 e.g. S  $\rightarrow$  bA, A  $\rightarrow$  bAA | a





# Constructing a PDR for G<sub>5</sub>

 Lets look again at our non-regular language



### How to ... (summary)

- we have three states a start state 1, a state 2, and a finish state H
- 2. we have an arc from 1 to 2 labelled " $\epsilon / \perp / S \perp$ " (where S is the distinguished symbol)
- 3. we have an arc from 2 to H labelled " $\epsilon / \perp / \perp$ "
- 4. for each production  $X \rightarrow s$  we have an arc from 2 to 2 labelled " $\epsilon / X / s$ "
- 5. for each terminal t in the grammar we have an arc from 2 to 2 labelled "t / t /  $\epsilon$ "
  - here the ε means "push nothing on the stack"

# Parsing With the PDR for G<sub>5</sub>

- We can now try to parse with our PDR
  - We can try aaabbb and aaabb





### Using the PDA on aaabbb

- start in state 1 looking at a with ⊥ on the stack
- in state 2 looking at a with S⊥ on the stack
- in state 2 looking at a with aSb⊥ on the stack
- in state 2 looking at (the 2nd) a with Sb⊥ on the stack
- in state 2 looking at (the 2nd) a with aSbb⊥ on the stack
- in state 2 looking at (the 3rd) a with Sbb⊥ on the stack



### Using the PDA on aaabbb

- in state 2 looking at b with bbb
   \\_ on the stack
- in state 2 looking at (the 2nd) b with bb⊥ on the stack
- in state 2 looking at (the 3rd) b with b⊥ on the stack
- in state 2 looking at end of input with ⊥ on the stack
- in state H looking at end of input with ⊥ on the stack



### Parsing With a PDR

- A PDR is effectively doing a derivation on the stack from the start symbol S
- A string is valid if it can get to H with no input string left
- and the terminals it has generated in the derivation match from left to right against the input string





https://pixabay.com/photos/spaghetti-pasta-food-restaurant-863304/