05/11/21: Randomized Computation
· fair coin toss Probabilistic Turing Machines
Defn:- A probabilistic Turing machine (PTM)
18 a TM with two transition function
δ_0 , δ_1 .
On an input x, the PTM in each Step chooses to apply one of these
Step chooses to apply one of these
transitions with prob. 1/2.
There random choices are indépendent of each step.
For T: N -> N, we say that M
runs in T(n) - time if for any input x,
M halls on a within T(1x1) steps
regardles of the random choices.

M runs on x t-steps. paths = # Computation = # accepting compotation path Pr[M(x) = 1]# rejecting computation path Pr[M(n) = 0] = We say that $M \text{ accepts } X \text{ if } Pr[M(x)=1] \ge \frac{2}{3}$ M rejects x if $P(M(x)=0] > \frac{2}{3}$ Defn: BPTIME(T(n)): We say that a PTM M décides à language L C foist in Time T(n) if for every X < \ \(\frac{9}{11} \right\}^n, M halfs in T(1×1) - time and 1) if $x \in L$, $Pr[M(n)=1] \ge \frac{7}{3}$

2) if $x \notin L$, $Pr[M(n) = 0] = \frac{2}{3}$
or, in other words, $Pr[M(n)=1] \leq \frac{1}{3}$
BPP := UBPTIME (nc)
Bounded error Probabilistic Polynomial Time
Alternative Defn? - DTM M, input x, random string $Y(n) \in \{0,1\}$
(1) $x \in L$ => $P_{Y \in \{0,113\}}P(x) \left[M(x,y) = 1 \right] \ge \frac{2}{3}$ (2) $x \notin L$ => $P_{Y \in \{0,113\}}P(x) \left[M(x,y) = 0\right] \ge \frac{2}{3}$.
Primality testing: Given a number N, test whether
N'is prime or not.
Input size: log N. [AKS'04] - Primality testing EP.

and 0 ≤ M < N for every number N QR(M) (mod N) = +1 if M = A² (mod N) and gcd (A, N) = 1 -1 otherwise. Facts: (i) for every odd prine P and M < P QR(M) (noel P) = $M^{\frac{p-1}{2}}$ (moel P) fon an odd integer N, and M < N(2i) \overline{J} acobi Symbol $(N) = \overline{M} QR(M)$ (moel Pi) When N= IT Pi. (iii) For every odd composite N no of M's eti, N-1] e.t. gcd(N,M) = 1 and $\left(\frac{N}{M}\right) = M^{\frac{N-1}{2}} \pmod{N}$ is at most half. $\left(\frac{N}{2}\right)$ 1) Choose v. a. r. a number $M \leq N-L$. 2) If gcd (M, N) > 1 then reject. 3) if $\left(\frac{N}{M}\right) \neq M^{\frac{N-1}{2}}$ (moel N) then reject. 4) Ofherwise accept.

- Polynomial Identity test
Broblem: Giner a multivariate polynomial
P(x,,, xn). Pest whether this
polynomial 18 identically zero.
Identically zero: On every input this polynomial evaluates to zero.
$P(x_{1}, x_{n}) = \sum_{i=1}^{n} C_{e_{1}, \dots, e_{n}} \sum_{i=1}^{n} \chi_{i}^{e_{i}}$ $(e_{1}, \dots, e_{n}) \geq 0 \qquad \text{Coeffecient of a monomial.}$
$S(x_1, x_2, x_3, x_4) = 2x_1 + 3x_2^2x_1 + 4x_1^2x_2$ $+ (0 x_1x_2x_3 + 15 x_1^2x_3x_4 + 10$
if every variable has deg $\leq d$. and no. of vars $\leq n$.
(e,,-,en) = defines a monomial.

(d+1)" = # monomial. potentially it can have.

if a polynomial evaluates to zero on every input then every coefficient in this polynomial equals 0.

In other words $Q(x_1, x_2, x_m)$ is identically zero if it is a zero polynomial.

Arithmetic Ckts. Algebraic ckts.

$$(x_1 + x_2)^2 - x_1^2 - x_2^2 - 2x_1x_2 \equiv 0$$

Given an algebraic Ukt of sixe s. what is the maximum deg of the polynomial it computes? deg $\leq 2^{S}$.

potentially

degree can double. (1+x1) (1+x2) (1+x4). # monomials < 24. TI (1+xi): # mono mials \le 2" 2n gate. II (1+xi) - x,x,...xn

fact :- let P(x,, ., xm) be a non-zero polynomial of total degree $\leq d$. let F be a Set of Constants. Then if a,,, am an chosen uniformly at random (with replacement) forom F then $P_{a_1,...,a_m} \left[P(a_1,...,a_m) = 0 \right] \leq \frac{d}{|f|}$ (Schwartz-Zipple-De Milo- Lipton Lemma) refurning to PIT problem deg < 2^S |F| > f = 2 S+1 algo!- choose a random in put (a,,-,am) from F

Step 2: Evaluate the ckt at (a,,-, am). 87ep3;-if C(a,,-,am) 70 teren reject. Stefy. Otherwise except. achat is the prob. of failure? suppose Cis identically zero LAlway accept. Cis not identically Zero: Suppose

Prob. that you accept < d $\leq \frac{2^{s}}{2^{s+1}}$ 5 2 Js PIT EIP? (OPEN). $L := \left\{ P(x_1, -x_m) \mid P(x_1, -y_m) \mid is \right\}$ identically zero? Does LE CONP? I E NP? Bibartite graphs Perfect Matching

Perfecting Matching is a set of edges M 5-1. every vertex in the graph has degree exactly I in M. Problem!- Ceinen a bipartite graph Does it have a perfect matching? 2 defending if

there is an edje from there is an edje from i-th vertex on left to jth vertex on the right. $\begin{bmatrix} \chi_{11} & \chi_{12} & 0 \\ \chi_{21} & 0 & 0 \\ 0 & 0 & \chi_{33} \end{bmatrix}$ $\det \left(\begin{bmatrix} a_{11} & a_{12} - a_{1n} \\ \vdots & \vdots \\ a_{n1} & - - - a_{nn} \end{bmatrix} \right)$

0 x₁₂ x₁₃ 0 x₁₁ x₂₂ 0 0 3 4 4 0 232 0 234 $det(X) = \underbrace{\sum_{i \in S_q} (\pm i) \cdot \prod_{i \in I} \chi_{i \circ (i)}}_{i \in I}$ different pernutation will not cancel out.

pernutation (=> perfect matching 3 0 0 3 det(X) 70 iff the bipartite
graph has a perfect matching.

deg = n. just evaluate det (X) on a set of 2n integers if it outputs +0 then
perfect matching exist. if it outputs =0 then (possibly perfect matching does n't exist).