Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Interpreting Streamflow Forecasts

Introduction

Each month, five forecasts are issued for each forecast point and each forecast period. Unless otherwise specified, all streamflow forecasts are for streamflow volumes that would occur naturally without any upstream influences. Water users need to know what the different forecasts represent if they are to use the information correctly when making operational decisions. The following is an explanation of each of the forecasts.

Most Probable (50 Percent Chance of Exceeding) Forecast. This forecast is the best estimate of streamflow volume that can be produced given current conditions and based on the outcome of similar past situations. There is a 50 percent chance that the streamflow volume will exceed this forecast value. There is a 50 percent chance that the streamflow volume will be less than this forecast value.

The most probable forecast will rarely be exactly right, due to errors resulting from future weather conditions and the forecast equation itself. This does not mean that users should not use the most probable forecast; it means that they need to evaluate existing circumstances and determine the amount of risk they are willing to take by accepting this forecast value.

To Decrease the Chance of Having Too Little Water

If users want to make sure there is enough water available for their operations, they might determine that a 50 percent chance of the streamflow volume being lower than the most probable forecast is too much risk to take. To reduce the risk of not having enough water available during the forecast period, users can base their operational decisions on one of the forecasts with a greater chance of being exceeded (or possibly some point in-between). These include:

70 Percent Chance of Exceeding Forecast. There is a 70 percent chance that the streamflow-volume will exceed this forecast value. There is a 30 percent chance the streamflow volume will be less than this forecast value.

90 Percent Chance of Exceeding Forecast. There is a 90 percent chance that the streamflow volume will exceed this forecast value. There is a 10 percent chance the streamflow volume will be less than this forecast value.

To Decrease the Chance of Having Too Much Water

If users want to make sure they don't have too much water, they might determine that a 50 percent chance of the streamflow being higher than the most probable forecast is too much of a risk to take. To reduce the risk of having too much water available during the forecast period, users can base their operational decisions on one of the forecasts with a smaller chance of being exceeded. These include:

30 Percent Chance of Exceeding Forecast. There is a 30 percent chance that the streamflow volume will exceed this forecast value. There is a 70 percent chance the streamflow volume will be less than this forecast value.

10 Percent Chance of Exceeding Forecast. There is a 10 percent chance that the streamflow volume will exceed this forecast value. There is a 90 percent chance the streamflow volume will be less than this forecast value.

Using the forecasts—an example

Using the Most Probable Forecast. Using the example forecasts shown below, users can reasonably expect 36,000 acre-feet to flow past the gaging station on the Mary's River near Deeth between March 1 and July 31.

Using the Higher Exceedance Forecasts. If users anticipate a somewhat drier trend in the future (monthly and seasonal weather outlooks are available from the National Weather Service every two weeks), or if they are operating at a level where an unexpected shortage of water could cause problems, they might want to plan on receiving only 20,000 acre-feet (from the 70 percent chance of exceeding forecast). In seven out of ten years with similar conditions, streamflow volumes will exceed the 20,000 acre-foot forecast.

If users anticipate extremely dry conditions for the remainder of the season, or if they determine the risk of using the 70 percent chance of exceeding forecast is too great, then they might plan on receiving only 5000 acre-feet (from the 90 percent chance of exceeding forecast). Nine out of ten years with similar conditions, streamflow volumes will exceed the 5000 acre-foot forecast.

Using the Lower Exceedance Forecasts. If users expect wetter future conditions, or if the chance that five out of every ten years with similar conditions would produce streamflow volumes greater than 36,000 acre-feet was more than they would like to risk, they might plan on receiving 52,000 acre-feet (from the 30 percent chance of exceeding forecast) to minimize potential flooding problems. Three out of ten years with similar conditions, streamflows will exceed the 52,000 acre-foot forecast.

In years when users expect extremely wet conditions for the remainder of the season and the threat of severe flooding and downstream damage exists, they might choose to use the 76,000 acre-foot (10 percent chance of exceeding) forecast for their water management operations. Streamflow volumes will exceed this level only one year out of ten.

	STREAMFLOW FORECASTS										
		<drier conditionswetter="" future=""> </drier>									
FORECAST POINT	FORECAST PERIOD	1 90%	70% 50 (1000AF) (1	0% (Most P	robable)	30%	10%				
MARY'S RIVER nr Deeth	MAR-JUL	5.0	20.0	36	77	52	76	47			
	APR-JUL	8.0	17.0	31	74	45	67	42			
LAMOILLE CREEK nr Lamoille	MAR-JUL	6.0	16.0	24	79	32	43	31			
	APR-JUL	4.0	15.0	22	75	30	41	30			
					1	74		59			

For more information concerning streamflow forecasting ask your local SCS field office for a copy of "A Field Office Guide for Interpreting Steamflow Forecasts".

GENERAL OUTLOOK

- IDAHO -

SUMMARY

APRIL 1, 1991
HEAVY PRECIPITATION DURING EARLY MARCH HAS IMPROVED SNOWPACKS CONSIDERABLY IN CENTRAL AND SOUTHERN IDAHO, BUT THE WATER SUPPLY OUTLOOK STILL REMAINS CRITICALLY LOW FOR MANY BASINS. STREAMFLOW FORECASTS CALL FOR NEAR AVERAGE CONDITIONS IN NORTHERN IDAHO, 28 TO 64 PERCENT OF AVERAGE IN CENTRAL IDAHO, AND 65 TO 86 PERCENT OF AVERAGE IN THE UPPER SNAKE BASIN IN EASTERN IDAHO AND WESTERN WYOMING. THESE LOW FORECASTS, COUPLED WITH VERY LOW RESERVOIR STORAGE, INDICATE THE POTENTIAL FOR CRITICAL IRRIGATION WATER SHORTAGES IN CENTRAL AND SOUTHERN IDAHO. ALL WATER USERS SHOULD KEEP IN TOUCH WITH THEIR LOCAL IRRIGATION DISTRICTS FOR MORE SPECIFIC INFORMATION.

SNOWPACK

Heavy snowfall during the first half of March improved snowpack conditions considerably in many drainage basins in central and southern Idaho. The Big Wood River basin essentially doubled its snowpack during the first four days of March. However, conditions still remain well below normal in most basins in the southern half of the state. Snowpacks currently range from 80 to 95% of normal in northern Idaho, 50 to 70% in the central part of the state, 60 to 70% along the southern edge of the state, and 70 to 80% in eastern Idaho and the upper Snake basin in western Wyoming. April 1 is typically the peak of snowpack accumulation, and the melt season could begin any time. The timing of snowmelt, coupled with spring precipitation, will determine the effectiveness of Idaho's snowpack in producing runoff.

PRECIPITATION

Most of the state received above normal precipitation during March, with the heaviest amounts falling in the central mountains where it was needed the most. SNOTEL stations in the Wood and Lost River basins reported almost twice the normal precipitation for the month. Amounts were closer to average in northern Idaho and along the southern edge of the state. Most of the mountain precipitation fell in the form of snow, improving snowpack conditions considerably. Temperatures around the state were slightly above normal, with Boise reporting a 1.6 degree departure from normal and Pocatello reporting 3 degrees above normal. The National Weather Service's 30 day outlook for April calls for near normal precipitation and near normal temperatures for the entire state.

RESERVOIRS

Most reservoir levels across the state improved only slightly during the month of March. Currently, reservoir levels are near average in the Snake River, above average in Dworshak and in the Payette basin, and below to well below average in northern, central and southern Idaho. The lowest levels include Magic (23% of average, 14% of capacity), Salmon Falls (36% of average, 12% of capacity) and Oakley (39% of average, 17% of capacity). Reservoirs on the mainstem of the Snake River are not expected to fill totally, but an adequate irrigation supply is expected. Irrigators who rely on stored irrigation water should keep in touch with their local reservoir operators and irrigation districts for more specific information.

STREAMFLOW

March streamflow was near normal in the upper Snake River, slightly below normal in the Clearwater and Henrys Fork, and well below normal throughout central and southern Idaho. Above normal snow accumulation in March has resulted in an increase in most runoff projections since last month. Forecasts for the coming runoff season vary widely around the state, reflecting the diverse snowpack situation. Central and southern Idaho forecasts are in the well below normal category, ranging from 28% of average for the Big Wood River to 62% for the Salmon River. Forecasts for eastern Idaho are below average, ranging from 56% of normal for the Bear River to 76% on the Teton River. Northern Idaho streams are forecast to produce near normal seasonal volumes, ranging from 95% of average for the St. Joe to 110% for the Priest. The Clearwater River at Spalding is forecast to produce 79% of average. Water users in basins with below normal forecasts should keep in touch with their local irrigation districts for more specific information concerning their water supply.

RECREATIONAL OUTLOOK

Heavy snowfall during March has improved the outlook for whitewater boating in the coming spring and summer. Runoff conditions should be near to slightly below average in the northern half of the state for the Selway, Lochsa, St. Joe, and Moyie Rivers. Southern Idaho snowpacks are still below normal, and boaters should expect earlier and lower than normal peak flows and an early return to low flow conditions. On the positive side, rivers will be accessible earlier than normal, with a shorter period of potentially hazardous high flows, and the water will be clearer for fishing and warmer for swimming. Due to above average reservoir storage, the Payette River system will have an excellent boating season. The southwestern desert rivers (Owyhee, Jarbidge, and Bruneau) will have a short season with low flow conditions.

Upper Columbia River Basin

April 1, 1991

WATER SUPPLY OUTLOOK

The Idaho Panhandle received slightly above normal snowfall during the month of March, and snowpacks now range from 85% of average in the Clark Fork basin to 108% in the Kootenai basin. Reservoirs report below normal storages for April 1, ranging from 70% of average in Pend Oreille Lake to 78% in Coeur d'Alene and Priest Lakes. Streamflow forecasts call for near normal runoff this spring and summer. All indications point to an adequate water supply for most users in the upper Columbia River basin this spring and summer.

STREAMFLOW FORECASTS

		. <	- DRIER	- FUTURE CO	ONDITIONS	HETTER	·>	
FORECAST POINT	FORECAST	!		CHANCE OF E	EXCEEDING +		!	
TORECAST FORIAL	PER100	90%	70% :	50% (MOST		301	10%	25 YR.
	10.100	(1000AF)	(1000AF)		(X AVG.)	(1000AF)	(1000AF) :	(1000AF)
			1		1			
(OOTENAL at Leonia (1,2)	APR-SEP	9220	10300	10800	128 ;	11300	12400	8441
	APR-JUL	8020	8960	9390	128 :	9820	10800	7340
	APR-JUN	6450	7210	7550	128	7900	8650	5899
CLARK FK at Whitehorse Rpds (1,2)	APR-SEP	11100	13000	13800	103	14600	16500	13370
	APR-JUL	10100	11700	12500	103 :	13300	14900	12150
	APR-JUN	8640	10100	10700	103	11300	12800	10360
PEND OREILLE LAKE inflow (1,2)	APR-SEP	13000	15000	15900	106	16800	18800	14930
	APR-JUL	11900	13700	14500	106 ;	15300	17200	13650
	APR-JUN	10200	11700	12500	106	13300	14800	11780
PRIEST nr Priest-River (1,2)	APR-SEP	765	915	985	110	1050	1200	. 893
1	APR-JUL	720	860	925	110	990	1120	838
COEUR D'ALENE at Enaville (1)	APR-SEP	595	765	840	101	915	1090	830
	APR-JUL	565	725	800	101	875	1030	789
ST. JOE at Calder	APR-SEP	965	1120	1220	95 :	1320	1490	1281
	APR-JUL	910	1050	1150	95	1250	1400	1211
SPOKANE nr Post Falls (1,2)	APR-SEP	1840	2440	2710	96	2980	3550	2820
	APR-JUL	1770	2350	2610	96 ;	2870	3450	2723
			*********		407770000000000			
RESERVOIA	R STORAGE	(1000AF)		WATER	RSHED SNOWPA	CK ANALYSIS	

	RESERVOIR STORAGE		(1000AF)		HATERSHED SN	OMPACK AN	LYSIS	
RESERVO1R	USEABLE : CAPACITY:	THIS	LAST	RAGE ++	HATERSHED	NO. COURSES	THIS YEAR	
in appropriate the second seco		YEAR	YEAR	AVG.	******	AVG'D	LAST YR.	
HUNGRY HORSE	3451.0	1714.0	2168.0	2098.0	Kootenai ab Bonners Ferry	53	114	117
FLATHEAD LAKE	1791.0	858.2	802.9	753.0	Moyie River	3	137	136
PEND OREILLE	1561.2	572.6	605.8	813.7	Pend Oreille River	136	107	98
NOXON RAPIDS	335.0	331.7	318.9	213.6	Clark Fork River	99	100	87
COEUR D'ALENE	291.2	182.2	212.8	234.3	Priest River	5	107	96
PRIEST LAKE	97.7	31.0	71.6	39.8	Rathdrum Creek	2	59	63
					Hayden Lake	3	61	72
					Coeur d'Alene River	10	92	87
					St. Joe River	10	107	97
					Spokane River	23	98	92
					Palouse River	1	94	92

^{+ 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Clearwater River Basin April 1, 1991

WATER SUPPLY OUTLOOK

The Clearwater River basin received near normal snowfall during the month of March. Snowpacks are now near to slightly below normal, ranging from 82% of average in the Lochsa basin to 94% in the North Fork Clearwater. Storage in Dworshak Reservoir is above normal, with 129% of average storage. Streamflow prospects for the coming spring and summer call for slightly below normal runoff, ranging from 79% of average for the Clearwater at Spalding to 83% for the inflow to Dworshak Reservoir. Water supplies should be adequate for most users this year in the Clearwater River basin.

CLEARWATER RIVER BASIN

		¦	- DRIER -			FORECASTS ONDITIONS	÷ • • • • • •	- WETTER		->	1	
FORECAST POINT	FORECAST PERIOD	90% (1000AF)	70%	; 5	OZ (MOST	PROBABLE) (% AVG.)	1	30% 1000AF)	10%		1 1 2 3 0 0	25 YR. (1000AF)
DWORSHAK RESERVOIR inflow (1)	APR-SEP APR-JUL	1840 1720	2290 2150		2500 2340	83 83 ·	! !	2710 2530	316 296			3010 2822
CLEARWATER at Orofino (1)	APR-SEP APR-JUL	2750 2600	3670 3470		4090 3870	79 79		4510 4270	543 514			5163 4889
CLEARWATER at Spalding (1,2)	APR-SEP APR-JUL	4710 4430	6000 5650		6590 6210	79 78	3 3 1 1 3 3 1 1 3	7180 6770	8479 799			8378 7916
RESERVO	IR STORAGE	(1000AF)	·	!	WAT	ERSHED	SNOWPAC	K ANAL	 YSIS		
RESERVOIR	USEABLE : CAPACITY:		BLE STOR/ LAST	AGE **		 RSHED		NO.		THIS	YEAR	AS % OF
		YEAR	YEAR	AVG.				AVG'		LAST	YR.	AVERAGE
DWORSHAK	3467.8	2568.0	2400.8	1996.2	Nort	h Fork Clear	water	13		107		94
					Loch	sa River		5		100		81
					: Selw	ay River		7		103		83
					: Clea	rwater River		22		105		89

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Salmon River Basin April 1, 1991

WATER SUPPLY OUTLOOK

Above normal snowfall in the Salmon River basin has improved snowpacks significantly from the figures reported last month. Currently, snowpacks range from 63% of average in the Salmon basin above Salmon to 80% of average in the Lemhi. Streamflow forecasts have improved slightly as a result, and currently range from 58% for the Salmon at Salmon to 62% for the Salmon at Whitebird. In spite of this improvement, water users should be prepared for lower than normal peak flows and an earlier than normal return to low flow conditions this summer.

SALMON RIVER BASIN

			,		STREAMFLOW	FORECAS	rs				
FODECACT DOINT	ENDERACT	(- DRIER		FUTURE CO				·>	:	
FORECAST POINT	FORECAST : PERIOD :	90% (1000AF)	70% (1000AF)	1	CHANCE OF E 50% (MOST (1000AF)	PROBABLE	E) ;	30% 1000AF)	10% (1000AF)	:	25 YR. (1000AF)
			,	;			:				
SALMON at Salmon (1)	APR-SEP APR-JUL	260 220	510 435		625 530	58 58	•	740 625	980 840		1077 919
SALMON at White Bird (1)	APR-SEP APR-JUL	2780 2510	3840 3470		4320 3900	62 62		4800 4330	5860 5290		7007 6322
	RESERVOIR STORAGE	(1	000AF)		:		WATERSHED	SNOWPAC	K ANALYSIS	ŝ	
OCCEDIOLD	USEABLE : CAPACITY:		LE STORAGE	**		CIED		NO. COUR		S YEAR	AS % OF
RESERVOIR		THIS YEAR	LAST YEAR	AVG.		SHED		AVG'		r yr.	AVERAGE
					Salmo	n River	ab Salmon	9	97		63
					Lemhi	River		12	104		80
					: Salmon	n River	Total	31	101		70

^{+ 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Weiser, Payette, and Boise River Basin April 1, 1991

WATER SUPPLY OUTLOOK

SNOTEL sites in the west central mountains reported over 150% of normal precipitation during the month of Snowpacks have improved as a result but are still well below normal. April 1 snow surveys show snowpacks ranging from 50% of average in the Mann Creek basin to 64% in the Middle and North forks of the Boise River. Reservoir storage is above normal in the Payette basin and below normal in the Boise Streamflow forecasts call for well below normal runoff, ranging from 36% for the Weiser near Weiser to 57% for the Boise near Twin Springs. users should be prepared for potentially short water supplies, especially in the Weiser and Boise River basins, and should keep in touch with their local irrigation districts for more specific information.

				511	REAMFLOW F	ORECASTS			
		(DRIER		FUTURE CON	101T10NS	WETTER	> ;	
FORECAST POINT	FORECAST :					CEE01NG + PROBABLE) :		: 10% :	25 YR.
							000AF) (I		(1000AF)
WEISER or Heiser (1)	APR-SEP	31	103	:	161	36	220	350	444
negoti iii neroti iii	APR-JUL	29	95		150	36	205	325	414
SE PAYETTE at Lowman	APR-5EP		235		255	50	275	305	512
	APR-JUL		200	1	220	1	240	265	454
DEADWOOD RESERVOIR inflow (1)	APR-JUL	44	62	:	69	48	76	94	143
WF PAYETTE at Cascade (1,2)	APR-SEP APR-JUL	159 149	245 225		280 260	49 ; 49 ;	315 295	395 370	568 531
F PAYETTE or Banks (2)	APR-SEP	200	285	1	340	46	395	480	737
W PATELIE OF OBOKS 127	APR-JUL	190	265		320	46	375	450	691
PAYETTE nr Horseshoe Bend (1,2)	APR-SEP	505	765		875	47	985	1250	1862
	APR-JUL	465	705	:	810	47 :	910	1150	1717
BOISE or Twin Springs (1)	APR-SEP APR-JUL	305 270	380 340		415 375	57 ; 56 ;	450 410	525 480	722 664
				;					
SF BOISE at Anderson Rnch Dm (1,2)	APR-SEP APR-JUL	147 132	220 199		255 230	41 :	290 260	365 330	619 578
BOISE or Boise (1,2)	APR-SEP	525	700	:	780	48	860	1040	1628
	APR-JUL APR-JUN	480 455	645 585		720 640	48 ;	795 700	960 825	1508 1334
	74 11 001	100	500		0.0			023	1001
RESERVOIR	CIODACC		(1000AF)		1 1	MATERCHER	ENGLIDACE A	NAL VE1E	
KEOCH VOI N	JIURAGE		(1000Ar)		; ;	MATERSHED	5NOWPACK A	MWE1212	
RESERVOIR -	USEABLE : CAPACITY:		ABLE STOR LAST YEAR	AGE **	: WATERS	SHED	NO. COURSES AVG'O		EAR A5 % OF R. AVERAGE
MANN CREEK	11.3	5.8	8.8	8.7	: Mann C	Creek	2	93	50
CASCADE	703.2	471.5	497.5	377.6	: Weiser	River	6	91	57
DEADWOOD	162.0	90.2	95.4	90.8	: : North	Fork Payette	7	102	62
ANDERSON RANCH	464.2	175.4	269.1	278.1	: South	Fork Payette	7	97	59
ARROHROCK	286.6	206.7	173.0	227.8	: : Payett	te River Total	14	100	61
LUCKY PEAK	307.0	95.4	137.4	153.2	: : Middle	& North Fork 8oi	se 7	100	64
AKE LOWELL (DEER FLAT)	177.0	114.2	115.0	152.9	: : South	Fork Boise River	9	102	54
					: Boise	River Total	17	104	60
					: : Canyon	: Creek	2	0	0
					!				

^{• 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

Big Wood, Little Wood, Big Lost, and Little Lost River Basin April 1, 1991

WATER SUPPLY OUTLOOK

Heavy snowfall during the first half of March essentially doubled the snowpack in the east central mountains, but conditions are still well below average. Currently, snowpacks range from 38% of average in the Camas Creek basin to 64% in the Little Lost basin. Streamflow forecasts have improved slightly as a result of the heavy March snowfall but are still well below normal. Reservoir storage is very low in Magic Reservoir, with only 23% of normal storage (14% of capacity). All water users in the Wood and Lost River basins should be prepared for CRITICALLY SHORT WATER SUPPLIES this spring and summer and should keep in touch with their local irrigation districts for more specific information.

				ST	REAMFLOW	FORECASTS				
		(- DRIER -		TUTURE CO	ONOITIONS	HETTER	>		
FORECAST POINT	FORECAST			СН	ANCE OF E	XCEEDING +				
	PERIOO		70 z	1 50	OZ (MOST	PROBABLE) : (Z AVG.) ;	30%	10X (1000AF)		2S YR. (1000AF)
BIG WOOD or Bellevue	APR-SEP	23	SS	:	76	36	97	120		014
ord wood in derrevue	APR-JUL	18.0	48		68	34	88	129 118		214 198
81G WOOD bl Magic Dam (2)	APR-SEP	20	59		93	28	127	176		338
	APR-JUL	19.0	52		85	26 ;	118	166		322
LITTLE WOOD or Carey	APR-SEP APR-JUL	22 19.0	34 30		· 43	40 38	52 46	64 57		107 99
BIG LOST at Howell Ranch or Chilly	APR-SEP	80	104	:	120	55 ;	136			
DIG EDST AT HOWELT KANCH HE CHILLY	APR-JUL	69	91		105	S5 ;	119	160 141		219 192
	APR-JUN	\$5	70		81	55	92	107		148
BIG LOST bl Mackay Reservoir (2)	APR-SEP	58	78		92	47	106	126		195
	APR-JUL	44	63	i	76	47	89	108		162
LITTLE LOST by Wet Ck	APR-SEP	15.0	21	;	25	63	29	35		40
	APR-JUL	12.9	17.1	:	20	63	23	27		32
LITTLE LOST or Howe	APR-SEP	21	25	i	28	64	31	35		44
	APR-JUL	16.0	19.0		21	64	23	26		33
				;						
RESERVOIR	STORAGE	(1	1000AF)		; ; ;	WATER	SHED SNOWPAG	CK ANALYSIS		
05050	USEABLE ;		BLE STORA				NO.			AS X OF
RESERVOIR	CAPACITY:	YEAR	LAST YEAR	AVG.		RSHED		RSES D LAST	YR.	AVERAGE
MAGIC -	191.5	27.5	51.7	117.4	Big	Hood ab Magic	10	94		57
LITTLE HOOD	30.0	14.7	22.6	18.4	Cama	s Creek	5	138		38
CAREY VALLEY		NO REPORT	ſ		: Big!	Hood Total	- 15	99		53
MACKAY	44.5	26.6	27.6	33.3	: Litt	le Wood River	3	132		58
					i Fish	Creek	3	132		48

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

Little Lost River

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Willow Creek, Blackfoot, Upper Snake, and Portneuf River Basin April 1, 1991

WATER SUPPLY OUTLOOK

Above normal snowfall in eastern Idaho and the upper Snake River basin in western Wyoming has improved the water supply outlook somewhat in these areas. Snowpacks now range from 56% of average in the Camas-Beaver Creek basin to 90% in the Gros Ventre River basin. Streamflow forecasts have improved in response to the abundant March snowfall and now range from 65% of average for the Henry's Fork near Rexburg to 86% for the Snake near Moran. Reservoir storage in nine key reservoirs on the Snake system is near average for this time of year, with 68% of useable capacity. Water supplies should be barely adequate for most users this summer, but water users should keep in touch with their local irrigation districts for more specific information.

STREAMFLOW FORECASTS

		(- DR1ER	FUTURE CO	ONOTTIONS	WETTER	> ;	
FORECAST POINT	FORECAST PER100		70% (1000AF)	: 50% (MOST	PROBABLE)		10X : (1000AF) :	25 YR. (1000AF)
HENRYS FORK or Ashton (2)	APR-SEP APR-JUL	465 345	505 370	530 390	71 70	555 410	595 435	746 557
HENRYS FORK or Rexburg (2)	APR-SEP APR-JUL	765 600	930 720	1030 800	65 63	1130	1290 1000	1595 1260
FALLS or Squirrel (1,2)	APR-JUL	220	260	280	75	300	340	373
TETON ab S Leigh Ck nr Driggs	APR-SEP APR-JUL	123 91	138 102	148 110	76 76	158 118	173 129	194 145
TETON or St. Anthony	APR-SEP APR-JUL	300 240	330 265	: : 355 : 285	74 74	380 305	410 330	. 479 387
SNAKE nr Moran (1,2)	APR-SEP	610	715	760	86	805	910	888
PALISADES RESERVOIR inflow (1,2)	APR-SEP	2360	2780	2970	77	3160	3580	3852
SNAKE nr Heise (2)	APR-SEP APR-JUL	2390 2020	2870	3190 2700	77 77	3510 2980	3990 3380	4142 3524
SNAKE nr 81ackfoot (1,2)	APR-SEP APR-JUL	3070 2480	3650 2960	4030 3260	71 71	4410 3560	5000 4040	5680 4589
PORTNEUF at Topaz	APR-JUL APR-SEP	37 48	46 60	52 67	69 70	58 75	68 86	75 96

	RESERVOIR STORAGE		(1000AF)	;	WATERSHED SN	IOWPACK AN	ALYSIS	
RESERVOIR	USEA8LE : CAPACITY:		EABLE STOR	RAGE ++	WATERSHED	NO. COURSES	THIS YEAR	R AS % DF
KESEKYOIK		YEAR	YEAR	AVG.		AVG'D	LAST YR.	AVERAGE
ISLAND PARK	127.6	100.4	126.2	119.3	Camas-8eaver Creeks	5	100	56
GRASSY LAKE	15.2	13.4	12.9	11.2	Henrys Fork River	13	103	77
JACKSON LAKE	824.7	556.5	579.8	525.9	Teton River	9	116	79
PALISADES	1357.0	532.3	1142.1	968.2	Snake above Palisades	30	105	77
AMERICAN FALLS	1700.0	1501.0	1527.3	1452.5	Snake above Jackson Lake	10	108	82
BROWNLEE	975.3	821.0	636.3	449.1	Gros Ventre River	2	104	90
BLACKF00T	348.7	100.8	169.7	260.7	Hoback River	5	102	76
HENRYS LAKE	90.4	84.0	88.1	80.1	Greys River	5	99	68
RIRIE	96.5	49.2	53.8	53.1	Salt River	6	112	74
				6 1	Willow Creek	8	139	81
				,	81ackfoot River	9	116	75
				,	Portneuf River	12	123	68
					Toponce Creek	3	130	65

^{+ 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1985 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Southside Snake River Basin April 1, 1991

WATER SUPPLY OUTLOOK

Slightly above normal snowfall during March has improved snowpack conditions somewhat along the southern edge of the state. Currently, snowpacks range from 63% of average in the Owyhee and Bruneau basins to 67% in the Raft River. As a result, some streamflow forecasts have improved slightly from those reported last month but still only call for 30 to 57% of normal runoff. Storage is still very low in Oakley, Salmon Falls, and Owyhee reservoirs. Water users could face critically low water supplies this summer and should keep in touch with their local irrigation districts for more specific information.

				STI	REAMFLOW	FORECASTS			
		<	DRIER -		FUTURE CO	NDITIONS	WETTER	>	
FORECAST POINT	FORECAST PERIOD	90%	70%	1 50	0% (MOST	XCEEDING + PROBABLE) : (% AVG.) :		10%	25 YR. (1000AF)
OAKLEY RESERVOIR inflow	APR-SEP APR-JUL	2.3	8.1 6.5		13.0 11.0	39 37	17.9 15.5	23 21	33 30
SALMON FALLS CK nr San Jacinto	APR-SEP APR-JUL APR-JUN	5.0 4.0 4.0	21 20 19.0		35 34 31	39 40 39	49 48 43	71 68 62	90 86 80
BRUNEAU nr Hot Spring	APR-SEP APR-JUL	69 67	108 105		135 130	57 : 58 :	162 155	200 193	237 224
OWYHEE nr Gold Ck (2)	APR-JUL	1.9	9.2		14.1	50	19.0	26	28
DWYHEE nr Owyhee (2)	APR-JUL	14.0	34		48	56	62	82	86
DWYHEE nr Rome	APR-JUL	21	74		124	30	205	320	413
DWYHEE RESERVOIR inflow (1,2)	APR-SEP APR-JUL	18.0 17.0	99 94		145 136	32 32	210 200	355 330	452 425
RESERVO	IR STORAGE	(1000AF)			WATERS	SHED SNOWPAC	<pre>ANALYSIS</pre>	
DECEDIATE .	USEABLE :		BLE STORA			CHED	NO.		YEAR AS % OF
RESERVOIR	CAPACITY:	YEAR	YEAR	AVG.		SHEU	COURS AVG'(YR. AVERAGE
DAKLEY	77.4	13.3	17.5	34.0	Raft	River	8	110	67
SALMON FALLS	182.6	22.7	36.9	62.3	Goose	-Trapper Creek	(s 5	113	65
DWYHEE	715.0	289.4	555.8	579.0	: Salmo	n Fails Creek	9	98	65
					: Brune	au River	8	93	67
					: Owyhe	e River	17	199	69

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Great Basin April 1, 1991

WATER SUPPLY OUTLOOK

The southeast corner of the state received near normal precipitation during March after five successive below normal months. Consequently, most snowpacks have improved slightly from the figures reported last month and range from 61% of average in the Cub River basin to 74% in the Malad River basin. Streamflow forecasts have not improved and still call for well below normal flows. Reservoir storage remains very low in Bear Lake and Montpelier Creek Reservoir, with only 36 and 20% of capacity, respectively. Water users should be prepared for critically short water supplies and should keep in touch with their local irrigation districts for more specific information.

FORECAST POINT	FORECAST	1 -			STREAMFLOW FORECASTS FUTURE CONDITIONS CHANCE OF EXCEEDING +			WETTER -		
	PERIOD	90% (1000AF)	70% (1000A			PROBABLE) (% AVG.)	: 3	02 00AF) (10% (1000AF)	25 YR. (1000AF)
BEAR nr Harer	APR-SEP	9.0	108		175	56	1 0 0	240	340	310
MONTPELIER CK nr Montpelier	APR-SEP	1.6	5.7	i	8.5	61	1	1.3	15.4	13.9
CUB nr Preston	APR-SEP APR-JUL	15.0	23		31 28	60 60		34	42	52 47
RESERV	OIR STORAGE	()	1000AF)		:	HATI	ershed s	NOWPACK	ANALYSIS	
RESERVOIR	USEABLE ; CAPACITY;	## USEAL	BLE STOR	AGE ++	WATER	OCUET)		NO.		ÆAR AS % OF
KESEKVUIK		YEAR	YEAR	AVG.		IONEU		AVG'D		R. AVERAGE
BEAR LAKE	1421.0	518.0	746.6	1002.1	Bear	River (above	e Harer)	12	104	70
HONTPELIER CREEK	4.0	0.8	0.6	1.6	Montp	elier Creek		6	124	67
					: Mink	Creek		6	141	70
					Cub R	liver		4	156	61
					: Malad	River		7	209	57

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Basin Outlook Reports

and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

USDA, Soil Conservation Service Snow Survey Data Collection Office 3244 Elder Street, Room 124 Boise, Idaho 83705 (208) 334-1614 FTS 554-1614

How forecasts are made

Most of the annual streamflow in the Western United States originates as snowfall that has accumulated high in the mountains during winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Predictions are based on careful measurements of snow water equivalent at selected index points. Precipitation, temperature, soil moisture and antecedent streamflow data are combined with snowpack data to prepare runoff forecasts. Streamflow forecasts are coordinated by Soil Conservation Service and National Weather Service hydrologists. This report presents a comprehensive picture of water supply conditions for areas dependent upon surface runoff. It includes selected streamflow forecasts, summarized snowpack and precipitation data, reservoir storage data, and narratives describing current conditions.

Snowpack data are obtained by using a combination of manual and automated SNOTEL measurement methods. Manual readings of snow depth and water equivalent are taken at locations called snow courses on a monthy or semi-monthly schedule during the winter. In addition, snow water equivalent, precipitation and temperature are monitored on a daily basis and transmitted via meteor burst telemetry to central data collection facilities. Both monthy and daily data are used to project snowmelt runoff.

Forecast uncertainty originates from two sources: (1) uncertainty of future hydrologic and climatic conditions, and (2) error in the forecasting procedure. To express the uncertainty in the most probable forecast, four additional forecasts are provided. The actual streamflow can be expected to exceed the most probable forecast 50% of the time. Similarly, the actual streamflow volume can be expected to exceed the 90% forecast volume 90% of the time. The same is true for the 70%, 30%, and 10% forecasts. Generally, the 90% and 70% forecasts reflect drier than normal hydrologic and climatic conditions; the 30% and 10% forecasts reflect wetter than normal conditions. As the forecast season progresses, a greater portion of the future hydrologic and climatic uncertainty will become known and the additional forecasts will move closer to the most probable forecast.

All programs and services of the USDA Soil Conservation Service are offered on a nondiscriminatory basis, without regard to race, color, national origin, religion, sex, age, marital status, or handicap.

BELTSVILLE MD 20705 10301 BALTIMORE BOULEVARD SERIALS BRANCH ROOM GOZ NATIONAL AGRICULTURAL LIBRARY G12345678

> OFFICIAL BUSINESS Boise, ID 83705 Room 124 3244 Elder Street

Conservation IIOS

Agriculture Department of United States

Basin Outlook Reports

In addition to basin outlook reports, a Water Supply Forecast for the Western United States is published by the Soil Conservation Service and National Weather Service monthly, January through May. Reports may be obtained from the Soil Conservation Service, West National Technical Center, 511 Northwest Broadway, Room 248, Portland, OR 97209-3489

Issued by

William (Bill) Richards Chief Soil Conservation Service U.S. Department of Agriculture

Released by

Paul H. Calverley State Conservationist Soil Conservation Service Boise, Idaho

Prepared by

Peter L. Palmer, Data Collection Office Supervisor Philip S. Morrisey, Hydrologist Susan R. Ellis, Statistical Assistant D. Rick Eastlund, Electronics Technician Bill J. Patterson, Electronics Technician

:I2I33 aTD224

16-7