MQCPack

Generated by Doxygen 1.8.16

1 Modules Index	1
1.1 Modules List	1
2 Data Type Index	3
2.1 Class Hierarchy	3
3 Data Type Index	5
3.1 Data Types List	5
4 File Index	7
4.1 File List	7
5 Module Documentation	9
5.1 mqc_algebra Module Reference	9
5.1.1 Function/Subroutine Documentation	
5.1.1.1 bin_coeff()	
5.1.1.2 factorial()	
5.1.1.3 matrix_symm2sq_complex()	
5.1.1.4 matrix symm2sq integer()	
5.1.1.5 matrix_symm2sq_real()	19
5.1.1.6 mqc_allocate_matrix()	
5.1.1.7 mqc_allocate_r4tensor()	
5.1.1.8 mqc_allocate_scalar()	
5.1.1.9 mqc_allocate_vector()	20
5.1.1.10 mqc_complexscalaradd()	21
5.1.1.11 mqc_complexscalardivide()	
5.1.1.12 mqc_complexscalarmultiply()	22
5.1.1.13 mqc_complexscalarsubtract()	23
5.1.1.14 mqc_complexvectorproduct()	23
5.1.1.15 mqc_crossproduct()	24
5.1.1.16 mqc_deallocate_matrix()	24
5.1.1.17 mqc_deallocate_r4tensor()	24
5.1.1.18 mqc_deallocate_scalar()	24
5.1.1.19 mqc_deallocate_vector()	25
5.1.1.20 mqc_elementmatrixdivide()	25
5.1.1.21 mqc_elementmatrixproduct()	25
5.1.1.22 mqc_elementvectorproduct()	25
5.1.1.23 mqc_givens_matrix()	25
5.1.1.24 mqc_input_complex_scalar()	26
5.1.1.25 mqc_input_integer_scalar()	26
5.1.1.26 mqc_input_real_scalar()	27

5.1.1.27 mqc_integergtscalar()
5.1.1.28 mqc_integerlescalar()
5.1.1.29 mqc_integerscalaradd()
5.1.1.30 mqc_integerscalardivide()
5.1.1.31 mqc_integerscalarmultiply()
5.1.1.32 mqc_integerscalarsubtract()
5.1.1.33 mqc_integervectorproduct()
5.1.1.34 mqc_length_vector()
5.1.1.35 mqc_matrix_cast_complex()
5.1.1.36 mqc_matrix_cast_real()
5.1.1.37 mqc_matrix_columns()
5.1.1.38 mqc_matrix_conjugate_transpose()
5.1.1.39 mqc_matrix_copy_complex2int()
5.1.1.40 mqc_matrix_copy_complex2real()
5.1.1.41 mqc_matrix_copy_int2complex()
5.1.1.42 mqc_matrix_copy_int2real()
5.1.1.43 mqc_matrix_copy_real2complex()
5.1.1.44 mqc_matrix_copy_real2int()
5.1.1.45 mqc_matrix_determinant()
5.1.1.46 mqc_matrix_diag2full()
5.1.1.47 mqc_matrix_diag2symm()
5.1.1.48 mqc_matrix_diagmatrix_put_complex()
5.1.1.49 mqc_matrix_diagmatrix_put_integer()
5.1.1.50 mqc_matrix_diagmatrix_put_real()
5.1.1.51 mqc_matrix_diagmatrix_put_vector()
5.1.1.52 mqc_matrix_diagonalize()
5.1.1.53 mqc_matrix_full2diag()
5.1.1.54 mqc_matrix_full2symm()
5.1.1.55 mqc_matrix_generalized_eigensystem()
5.1.1.56 mqc_matrix_havecomplex()
5.1.1.57 mqc_matrix_havediagonal()
5.1.1.58 mqc_matrix_havefull()
5.1.1.59 mqc_matrix_haveinteger()
5.1.1.60 mqc_matrix_havereal()
5.1.1.61 mqc_matrix_havesymmetric()
5.1.1.62 mqc_matrix_identity()
5.1.1.63 mqc_matrix_initialize()
5.1.1.64 mqc_matrix_inverse()
5.1.1.65 mqc_matrix_isallocated()

5.1.1.66 mqc_matrix_matrix_at()
5.1.1.67 mqc_matrix_matrix_contraction()
5.1.1.68 mqc_matrix_put()
5.1.1.69 mqc_matrix_norm()
5.1.1.70 mqc_matrix_rms_max()
5.1.1.71 mqc_matrix_rows()
5.1.1.72 mqc_matrix_scalar_at()
5.1.1.73 mqc_matrix_scalar_put()
5.1.1.74 mqc_matrix_set()
5.1.1.75 mqc_matrix_sqrt()
5.1.1.76 mqc_matrix_storagetype()
5.1.1.77 mqc_matrix_svd()
5.1.1.78 mqc_matrix_symm2diag()
5.1.1.79 mqc_matrix_symm2full()
5.1.1.80 mqc_matrix_symm2full_func()
5.1.1.81 mqc_matrix_symmetrize()
5.1.1.82 mqc_matrix_symmmatrix_put_complex()
5.1.1.83 mqc_matrix_symmmatrix_put_integer()
5.1.1.84 mqc_matrix_symmmatrix_put_real()
5.1.1.85 mqc_matrix_symmsymmr4tensor_put_complex()
5.1.1.86 mqc_matrix_symmsymmr4tensor_put_real()
5.1.1.87 mqc_matrix_test_diagonal()
5.1.1.88 mqc_matrix_test_symmetric()
5.1.1.89 mqc_matrix_trace()
5.1.1.90 mqc_matrix_transpose()
5.1.1.91 mqc_matrix_vector_at()
5.1.1.92 mqc_matrix_vector_put()
5.1.1.93 mqc_matrixmatrixdotproduct()
5.1.1.94 mqc_matrixmatrixproduct()
5.1.1.95 mqc_matrixmatrixsubtract()
5.1.1.96 mqc_matrixmatrixsum()
5.1.1.97 mqc_matrixscalarproduct()
5.1.1.98 mqc_matrixvectordotproduct()
5.1.1.99 mqc_outer()
5.1.1.100 mqc_output_complex_scalar()
5.1.1.101 mqc_output_integer_scalar()
5.1.1.102 mqc_output_mqcscalar_scalar()
5.1.1.103 mqc_output_real_scalar()
5.1.1.104 mgc print matrix algebra1()

5.1.1.105 mqc_print_r4tensor_algebra1()	. 47
5.1.1.106 mqc_print_scalar_algebra1()	. 48
5.1.1.107 mqc_print_vector_algebra1()	. 49
5.1.1.108 mqc_r4tensor_at()	
5.1.1.109 mqc_r4tensor_havecomplex()	. 49
5.1.1.110 mqc_r4tensor_haveinteger()	. 49
5.1.1.111 mqc_r4tensor_havereal()	. 49
5.1.1.112 mqc_r4tensor_initialize()	. 50
5.1.1.113 mqc_r4tensor_put()	. 50
5.1.1.114 mqc_realgtscalar()	. 50
5.1.1.115 mqc_reallescalar()	. 51
5.1.1.116 mqc_realltscalar()	. 52
5.1.1.117 mqc_realscalaradd()	. 52
5.1.1.118 mqc_realscalardivide()	. 53
5.1.1.119 mqc_realscalarmultiply()	. 54
5.1.1.120 mqc_realscalarsubtract()	. 54
5.1.1.121 mqc_realvectorproduct()	. 55
5.1.1.122 mqc_scalar_acos()	. 55
5.1.1.123 mqc_scalar_asin()	. 56
5.1.1.124 mqc_scalar_atan()	. 56
5.1.1.125 mqc_scalar_atan2()	. 57
5.1.1.126 mqc_scalar_cmplx()	. 58
5.1.1.127 mqc_scalar_complex_conjugate()	. 58
5.1.1.128 mqc_scalar_complex_imagpart()	. 59
5.1.1.129 mqc_scalar_complex_realpart()	. 60
5.1.1.130 mqc_scalar_cos()	. 60
5.1.1.131 mqc_scalar_get_abs_value()	. 61
5.1.1.132 mqc_scalar_get_intrinsic_complex()	. 61
5.1.1.133 mqc_scalar_get_intrinsic_integer()	. 62
5.1.1.134 mqc_scalar_get_intrinsic_real()	. 63
5.1.1.135 mqc_scalar_get_random_value()	. 63
5.1.1.136 mqc_scalar_havecomplex()	. 64
5.1.1.137 mqc_scalar_haveinteger()	. 64
5.1.1.138 mqc_scalar_havereal()	. 65
5.1.1.139 mqc_scalar_isallocated()	. 66
5.1.1.140 mqc_scalar_sin()	. 66
5.1.1.141 mqc_scalar_sqrt()	. 67
5.1.1.142 mqc_scalar_tan()	. 68
5.1.1.143 mqc_scalaradd()	. 68

5.1.1.144 mqc_scalarcomplexadd()	9
5.1.1.145 mqc_scalarcomplexdivide()	9
5.1.1.146 mqc_scalarcomplexexponent()	'0
5.1.1.147 mqc_scalarcomplexmultiply()	'1
5.1.1.148 mqc_scalarcomplexsubtract()	'1
5.1.1.149 mqc_scalardivide()	'2
5.1.1.150 mqc_scalareq()	'3
5.1.1.151 mqc_scalarexponent()	'3
5.1.1.152 mqc_scalarge()	'4
5.1.1.153 mqc_scalargt()	'5
5.1.1.154 mqc_scalargtinteger()	'6
5.1.1.155 mqc_scalargtreal()	'6
5.1.1.156 mqc_scalarintegeradd()	7
5.1.1.157 mqc_scalarintegerdivide()	'8
5.1.1.158 mqc_scalarintegerexponent()	'8
5.1.1.159 mqc_scalarintegermultiply()	'9
5.1.1.160 mqc_scalarintegersubtract()	0
5.1.1.161 mqc_scalarle()	0
5.1.1.162 mqc_scalarleinteger()	1
5.1.1.163 mqc_scalarlereal()	2
5.1.1.164 mqc_scalarlt()	3
5.1.1.165 mqc_scalarltreal()	4
5.1.1.166 mqc_scalarmatrixproduct()	4
5.1.1.167 mqc_scalarmultiply()	5
5.1.1.168 mqc_scalarne()	15
5.1.1.169 mqc_scalarrealadd()	6
5.1.1.170 mqc_scalarrealdivide()	17
5.1.1.171 mqc_scalarrealexponent()	17
5.1.1.172 mqc_scalarrealmultiply()	8
5.1.1.173 mqc_scalarrealsubtract()	19
5.1.1.174 mqc_scalarsubtract()	19
5.1.1.175 mqc_scalarvectordifference()	0
5.1.1.176 mqc_scalarvectorproduct()	0
5.1.1.177 mqc_scalarvectorsum()	0
5.1.1.178 mqc_set_array2tensor()	1
5.1.1.179 mqc_set_array2vector_complex()	1
5.1.1.180 mqc_set_array2vector_integer()	1
5.1.1.181 mqc_set_array2vector_real()	1
5.1.1.182 mqc_set_complexarray2matrix()	1

5.1.1.183 mqc_set_integerarray2matrix()	 91
5.1.1.184 mqc_set_matrix2complexarray()	 92
5.1.1.185 mqc_set_matrix2integerarray()	 92
5.1.1.186 mqc_set_matrix2matrix()	 92
5.1.1.187 mqc_set_matrix2realarray()	 92
5.1.1.188 mqc_set_realarray2matrix()	 92
5.1.1.189 mqc_set_vector2complexarray()	 92
5.1.1.190 mqc_set_vector2integerarray()	 93
5.1.1.191 mqc_set_vector2realarray()	 93
5.1.1.192 mqc_set_vector2vector()	 93
5.1.1.193 mqc_vector2diagmatrix()	 93
5.1.1.194 mqc_vector_abs()	 93
5.1.1.195 mqc_vector_argsort()	 93
5.1.1.196 mqc_vector_cast_complex()	 94
5.1.1.197 mqc_vector_cast_real()	 94
5.1.1.198 mqc_vector_cmplx()	 94
5.1.1.199 mqc_vector_complex_imagpart()	 94
5.1.1.200 mqc_vector_complex_realpart()	 94
5.1.1.201 mqc_vector_conjugate_transpose()	 94
5.1.1.202 mqc_vector_copy_complex2int()	 95
5.1.1.203 mqc_vector_copy_complex2real()	 95
5.1.1.204 mqc_vector_copy_int2complex()	 95
5.1.1.205 mqc_vector_copy_int2real()	 95
5.1.1.206 mqc_vector_copy_real2complex()	 95
5.1.1.207 mqc_vector_copy_real2int()	 95
5.1.1.208 mqc_vector_havecomplex()	 96
5.1.1.209 mqc_vector_haveinteger()	 96
5.1.1.210 mqc_vector_havereal()	 96
5.1.1.211 mqc_vector_initialize()	 96
5.1.1.212 mqc_vector_isallocated()	 96
5.1.1.213 mqc_vector_iscolumn()	 96
5.1.1.214 mqc_vector_maxloc()	 97
5.1.1.215 mqc_vector_maxval()	 97
5.1.1.216 mqc_vector_minloc()	 97
5.1.1.217 mqc_vector_minval()	 97
5.1.1.218 mqc_vector_norm()	 97
5.1.1.219 mqc_vector_pop()	 97
5.1.1.220 mqc_vector_power()	 98
5.1.1.221 mqc_vector_push()	 98

5.1.1.222 mqc_vector_scalar_at() S	98
5.1.1.223 mqc_vector_scalar_increment()	98
5.1.1.224 mqc_vector_scalar_put()	98
5.1.1.225 mqc_vector_shift()	98
5.1.1.226 mqc_vector_sort()	99
5.1.1.227 mqc_vector_sqrt()	99
5.1.1.228 mqc_vector_transpose()	99
5.1.1.229 mqc_vector_unshift()	99
5.1.1.230 mqc_vector_vector_at()	99
5.1.1.231 mqc_vector_put()	99
5.1.1.232 mqc_vectorcomplexdivide())0
5.1.1.233 mqc_vectorcomplexproduct()	
5.1.1.234 mqc_vectorintegerdivide()	
5.1.1.235 mqc_vectorintegerproduct()	
5.1.1.236 mqc_vectormatrixdotproduct()	
5.1.1.237 mqc_vectorrealdivide())0
5.1.1.238 mqc_vectorrealproduct()	
5.1.1.239 mqc_vectorscalardivide())1
5.1.1.240 mqc_vectorscalarproduct()	
5.1.1.241 mqc_vectorvectordifference()	
5.1.1.242 mqc_vectorvectordotproduct()	
5.1.1.243 mqc_vectorvectorsum()	
5.1.1.244 symindexhash()	
5.2 mqc_est Module Reference	
5.2.1 Function/Subroutine Documentation	
5.2.1.1 gen_det_str()	
5.2.1.2 get_one_gamma_matrix())4
5.2.1.3 mqc_build_ci_hamiltonian())4
5.2.1.4 mqc_eigenvalue_eigenvalue_dotproduct()	
5.2.1.5 mqc_eigenvalues_add_name()	
5.2.1.6 mqc_eigenvalues_allocate()	
5.2.1.7 mqc_eigenvalues_array_name()	
5.2.1.8 mqc_eigenvalues_array_type()	
5.2.1.9 mqc_eigenvalues_at()	
5.2.1.10 mqc_eigenvalues_dimension()	
5.2.1.11 mqc_eigenvalues_eigenvalues_multiply()	
5.2.1.12 mqc_eigenvalues_has_alpha()	
5.2.1.13 mqc_eigenvalues_has_beta()	
5.2.1.14 mqc_eigenvalues_integral_multiply())6

5.2.1.15 mqc_eigenvalues_isallocated()
5.2.1.16 mqc_eigenvalues_output_array()
5.2.1.17 mqc_eigenvalues_output_block()
5.2.1.18 mqc_eri_integral_contraction()
5.2.1.19 mqc_integral_add_name()
5.2.1.20 mqc_integral_allocate()
5.2.1.21 mqc_integral_array_name()
5.2.1.22 mqc_integral_array_type()
5.2.1.23 mqc_integral_at()
5.2.1.24 mqc_integral_conjugate_transpose()
5.2.1.25 mqc_integral_delete_energy_list()
5.2.1.26 mqc_integral_difference()
5.2.1.27 mqc_integral_dimension()
5.2.1.28 mqc_integral_eigenvalues_multiply()
5.2.1.29 mqc_integral_get_energy_list()
5.2.1.30 mqc_integral_has_alpha()
5.2.1.31 mqc_integral_has_alphabeta()
5.2.1.32 mqc_integral_has_beta()
5.2.1.33 mqc_integral_has_betaalpha()
5.2.1.34 mqc_integral_identity()
5.2.1.35 mqc_integral_initialize()
5.2.1.36 mqc_integral_multiply()
5.2.1.37 mqc_integral_isallocated()
5.2.1.38 mqc_integral_matrix_multiply()
5.2.1.39 mqc_integral_norm()
5.2.1.40 mqc_integral_output_array()
5.2.1.41 mqc_integral_output_block()
5.2.1.42 mqc_integral_output_orbitals()
5.2.1.43 mqc_integral_scalar_multiply()
5.2.1.44 mqc_integral_set_energy_list()
5.2.1.45 mqc_integral_sum()
5.2.1.46 mqc_integral_swap_orbitals()
5.2.1.47 mqc_integral_transpose()
5.2.1.48 mqc_matrix_integral_multiply()
5.2.1.49 mqc_matrix_spinblockghf()
5.2.1.50 mqc_matrix_undospinblockghf_eigenvalues()
5.2.1.51 mqc_matrix_undospinblockghf_integral()
5.2.1.52 mqc_print_eigenvalues()
5.2.1.53 mgc print integral()

5.2.1.54	mqc_print_twoeris()
5.2.1.55	mqc_print_wavefunction()
5.2.1.56	mqc_scalar_integral_multiply()
5.2.1.57	mqc_scf_eigenvalues_power()114
5.2.1.58	mqc_scf_integral_contraction()
5.2.1.59	mqc_scf_integral_determinant()
5.2.1.60	mqc_scf_integral_diagonalize()
5.2.1.61	mqc_scf_integral_generalized_eigensystem()
5.2.1.62	mqc_scf_integral_inverse()
5.2.1.63	mqc_scf_integral_trace()
5.2.1.64	mqc_scf_transformation_matrix()
5.2.1.65	mqc_twoeris_allocate()
5.2.1.66	mqc_twoeris_at()
5.2.1.67	slater_condon()
5.2.1.68	twoeri_trans()
0 B - 1 - 1 - 1 B	
6 Data Type Documentat	
. – •	Interface Reference
	Inction/Subroutine Documentation
	nqc_scalar_get_abs_value()
	nqc_vector_abs()
. — •	Interface Reference
	Inction/Subroutine Documentation
	nqc_scalar_acos()
	g Interface Reference
	nction/Subroutine Documentation
6.3.1.1 n	nqc_scalar_complex_imagpart()
6.3.1.2 n	nqc_vector_complex_imagpart()
6.4 mqc_algebra::asin	Interface Reference
6.4.1 Member Fu	nction/Subroutine Documentation
6.4.1.1 m	nqc_scalar_asin()
6.5 mqc_algebra::assig	gnment(=) Interface Reference
6.5.1 Member Fu	nction/Subroutine Documentation
6.5.1.1 m	nqc_input_complex_scalar()
6.5.1.2 n	nqc_input_integer_scalar()
6.5.1.3 n	nqc_input_real_scalar()125
6.5.1.4 n	nqc_output_complex_scalar()
6.5.1.5 n	nqc_output_integer_scalar()
6516m	ngc_output_mgcscalar_scalar()

6.5.1.7 mqc_output_real_scalar()
6.5.1.8 mqc_set_array2tensor()
6.5.1.9 mqc_set_array2vector_complex()
6.5.1.10 mqc_set_array2vector_integer()
6.5.1.11 mqc_set_array2vector_real()
6.5.1.12 mqc_set_complexarray2matrix()
6.5.1.13 mqc_set_integerarray2matrix()
6.5.1.14 mqc_set_matrix2complexarray()
6.5.1.15 mqc_set_matrix2integerarray()
6.5.1.16 mqc_set_matrix2matrix()
6.5.1.17 mqc_set_matrix2realarray()
6.5.1.18 mqc_set_realarray2matrix()
6.5.1.19 mqc_set_vector2complexarray()
6.5.1.20 mqc_set_vector2integerarray()
6.5.1.21 mqc_set_vector2realarray()
6.5.1.22 mqc_set_vector2vector()
6.6 mqc_est::assignment(=) Interface Reference
6.6.1 Member Function/Subroutine Documentation
6.6.1.1 mqc_eigenvalues_output_array()
6.6.1.2 mqc_integral_output_array()
6.7 mqc_algebra::atan Interface Reference
6.7.1 Member Function/Subroutine Documentation
6.7.1.1 mqc_scalar_atan()
6.8 mqc_algebra::atan2 Interface Reference
6.8.1 Member Function/Subroutine Documentation
6.8.1.1 mqc_scalar_atan2()
6.9 mqc_algebra::cmplx Interface Reference
6.9.1 Member Function/Subroutine Documentation
6.9.1.1 mqc_scalar_cmplx()
6.9.1.2 mqc_vector_cmplx()
6.10 mqc_algebra::conjg Interface Reference
6.10.1 Member Function/Subroutine Documentation
6.10.1.1 mqc_scalar_complex_conjugate()
6.11 mqc_algebra::contraction Interface Reference
6.11.1 Member Function/Subroutine Documentation
6.11.1.1 mqc_matrix_matrix_contraction()
6.12 mqc_est::contraction Interface Reference
6.12.1 Member Function/Subroutine Documentation
6.12.1.1 mqc_eri_integral_contraction()

6.12.1.2 mqc_scf_integral_contraction()
6.13 mqc_algebra::cos Interface Reference
6.13.1 Member Function/Subroutine Documentation
6.13.1.1 mqc_scalar_cos()
6.14 mqc_algebra::dagger Interface Reference
6.14.1 Member Function/Subroutine Documentation
6.14.1.1 mqc_matrix_conjugate_transpose()
6.14.1.2 mqc_vector_conjugate_transpose()
6.15 mqc_est::dagger Interface Reference
6.15.1 Member Function/Subroutine Documentation
6.15.1.1 mqc_integral_conjugate_transpose()
6.16 mqc_algebra::dot_product Interface Reference
6.16.1 Member Function/Subroutine Documentation
6.16.1.1 mqc_vectorvectordotproduct()
6.17 mqc_est::dot_product Interface Reference
6.17.1 Member Function/Subroutine Documentation
6.17.1.1 mqc_eigenvalue_eigenvalue_dotproduct()
6.18 mqc_algebra::matmul Interface Reference
6.18.1 Member Function/Subroutine Documentation
6.18.1.1 mqc_matrixmatrixdotproduct()
6.18.1.2 mqc_matrixvectordotproduct()
6.18.1.3 mqc_vectormatrixdotproduct()
6.19 mqc_est::matmul Interface Reference
6.19.1 Member Function/Subroutine Documentation
6.19.1.1 mqc_eigenvalues_eigenvalues_multiply()
6.19.1.2 mqc_eigenvalues_integral_multiply()
6.19.1.3 mqc_integral_eigenvalues_multiply()
6.19.1.4 mqc_integral_integral_multiply()
6.19.1.5 mqc_integral_matrix_multiply()
6.19.1.6 mqc_matrix_integral_multiply()
6.20 mqc_algebra::matrix_symm2sq Interface Reference
6.20.1 Member Function/Subroutine Documentation
6.20.1.1 matrix_symm2sq_complex()
6.20.1.2 matrix_symm2sq_integer()
6.20.1.3 matrix_symm2sq_real()
6.21 mqc_algebra::mqc_cast_complex Interface Reference
6.21.1 Member Function/Subroutine Documentation
6.21.1.1 mqc_matrix_cast_complex()
6.21.1.2 mqc_vector_cast_complex()

6.22 mqc_algebra::mqc_cast_real Interface Reference	44
6.22.1 Member Function/Subroutine Documentation	44
6.22.1.1 mqc_matrix_cast_real()	44
6.22.1.2 mqc_vector_cast_real()	44
6.23 mqc_est::mqc_determinant Type Reference	44
6.23.1 Member Data Documentation	45
6.23.1.1 nalpstr	45
6.23.1.2 nbetstr	45
6.23.1.3 ndets	45
6.23.1.4 order	45
6.23.1.5 strings	45
6.24 mqc_est::mqc_determinant_string Type Reference	45
6.24.1 Member Data Documentation	46
6.24.1.1 alpha	46
6.24.1.2 beta	46
6.25 mqc_algebra::mqc_have_complex Interface Reference	46
6.25.1 Member Function/Subroutine Documentation	46
6.25.1.1 mqc_matrix_havecomplex()	46
6.25.1.2 mqc_vector_havecomplex()	46
6.26 mqc_algebra::mqc_have_int Interface Reference	47
6.26.1 Member Function/Subroutine Documentation	47
6.26.1.1 mqc_matrix_haveinteger()	47
6.26.1.2 mqc_vector_haveinteger()	47
6.27 mqc_algebra::mqc_have_real Interface Reference	47
6.27.1 Member Function/Subroutine Documentation	47
6.27.1.1 mqc_matrix_havereal()	48
6.27.1.2 mqc_vector_havereal()	48
6.28 mqc_algebra::mqc_matrix Type Reference	48
6.28.1 Member Function/Subroutine Documentation	49
6.28.1.1 at()	49
6.28.1.2 dagger()	49
6.28.1.3 det()	49
6.28.1.4 diag()	49
6.28.1.5 eigensys()	49
6.28.1.6 identity()	50
6.28.1.7 init()	50
6.28.1.8 initialize()	50
6.28.1.9 inv()	50
6.28.1.10 mat()	50

6.28.1.11 mput()
6.28.1.12 norm()
6.28.1.13 print()
6.28.1.14 put()
6.28.1.15 rmsmax()
6.28.1.16 s_type()
6.28.1.17 set()
6.28.1.18 sqrt()
6.28.1.19 svd()
6.28.1.20 trace()
6.28.1.21 transpose()
6.28.1.22 vat()
6.28.1.23 vput()
6.28.2 Member Data Documentation
6.28.2.1 matc
6.28.2.2 mati
6.28.2.3 matr
6.29 mqc_algebra::mqc_matrix_diagmatrix_put Interface Reference
6.29.1 Member Function/Subroutine Documentation
6.29.1.1 mqc_matrix_diagmatrix_put_complex()
6.29.1.2 mqc_matrix_diagmatrix_put_integer()
6.29.1.3 mqc_matrix_diagmatrix_put_real()
6.29.1.4 mqc_matrix_diagmatrix_put_vector()
6.30 mqc_algebra::mqc_matrix_symmmatrix_put Interface Reference
6.30.1 Member Function/Subroutine Documentation
6.30.1.1 mqc_matrix_symmmatrix_put_complex()
6.30.1.2 mqc_matrix_symmmatrix_put_integer()
6.30.1.3 mqc_matrix_symmmatrix_put_real()
6.31 mqc_est::mqc_matrix_undospinblockghf Interface Reference
6.31.1 Member Function/Subroutine Documentation
6.31.1.1 mqc_matrix_undospinblockghf_eigenvalues()
6.31.1.2 mqc_matrix_undospinblockghf_integral()
6.32 mqc_algebra::mqc_print Interface Reference
6.32.1 Member Function/Subroutine Documentation
6.32.1.1 mqc_print_matrix_algebra1()
6.32.1.2 mqc_print_r4tensor_algebra1()
6.32.1.3 mqc_print_scalar_algebra1()
6.32.1.4 mqc_print_vector_algebra1()
6.33 mgc_est::mgc_print Interface Reference

6.33.1 Member Function/Subroutine Documentation	
6.33.1.1 mqc_print_eigenvalues()	
6.33.1.2 mqc_print_integral()	
6.33.1.3 mqc_print_twoeris()	
6.33.1.4 mqc_print_wavefunction()	
6.34 mqc_est::mqc_pscf_wavefunction Type Reference	
6.34.1 Member Data Documentation	
6.34.1.1 nactive	
6.34.1.2 ncore	
6.34.1.3 nfrz	
6.34.1.4 nval	
6.34.1.5 pscf_amplitudes	
6.34.1.6 pscf_energies	
6.35 mqc_algebra::mqc_r4tensor Type Reference	
6.35.1 Member Function/Subroutine Documentation	
6.35.1.1 at()	
6.35.1.2 init()	
6.35.1.3 initialize()	
6.35.1.4 print()	
6.35.1.5 put()	
6.36 mqc_algebra::mqc_scalar Type Reference	
6.36.1 Member Function/Subroutine Documentation	
6.36.1.1 abs()	
6.36.1.2 cval()	
6.36.1.3 ival()	
6.36.1.4 print()	
6.36.1.5 random()	
6.36.1.6 rval()	
6.37 mqc_est::mqc_scf_eigenvalues Type Reference	
6.37.1 Member Function/Subroutine Documentation	
6.37.1.1 addlabel()	
6.37.1.2 at()	
6.37.1.3 getblock()	
6.37.1.4 getlabel()	
6.37.1.5 power()	
6.37.1.6 print()	
6.38 mqc_est::mqc_scf_integral Type Reference	
6.38.1 Member Function/Subroutine Documentation	
6.38.1.1 addlabel()	

6.38.1.2 deleteelist()	64
6.38.1.3 det()	65
6.38.1.4 diag()	65
6.38.1.5 eigensys()	65
6.38.1.6 getblock()	65
6.38.1.7 getelist()	65
6.38.1.8 getlabel()	65
6.38.1.9 identity()	65
6.38.1.10 init()	66
6.38.1.11 inv()	66
6.38.1.12 norm()	66
6.38.1.13 orbitals()	66
6.38.1.14 print()	66
6.38.1.15 setelist()	66
6.38.1.16 swap()	66
6.38.1.17 trace()	67
6.39 mqc_algebra::mqc_set_array2vector Interface Reference	67
6.39.1 Member Function/Subroutine Documentation	67
6.39.1.1 mqc_set_array2vector_complex()	67
6.39.1.2 mqc_set_array2vector_integer()	67
6.39.1.3 mqc_set_array2vector_real()	67
6.40 mqc_est::mqc_twoeris Type Reference	68
6.40.1 Member Function/Subroutine Documentation	68
6.40.1.1 print()	68
6.41 mqc_algebra::mqc_vector Type Reference	68
6.41.1 Member Function/Subroutine Documentation	69
6.41.1.1 abs()	69
6.41.1.2 argsort()	69
6.41.1.3 at()	69
6.41.1.4 dagger()	69
6.41.1.5 diag()	69
6.41.1.6 init()	70
6.41.1.7 initialize()	70
6.41.1.8 maxloc()	70
6.41.1.9 maxval()	70
6.41.1.10 minloc()	70
6.41.1.11 minval()	70
6.41.1.12 norm()	70
6.41.1.13 pop()	71

	6.41.1.14 power()	1
	6.41.1.15 print()	71
	6.41.1.16 push()	71
	6.41.1.17 put()	71
	6.41.1.18 shift()	71
	6.41.1.19 size()	71
	6.41.1.20 sort()	72
	6.41.1.21 sqrt()	72
	6.41.1.22 transpose()	72
	6.41.1.23 unshift()	72
	6.41.1.24 vat()	72
	6.41.1.25 vput()	72
6.41.2 N	Member Data Documentation	72
	6.41.2.1 data_type	72
	6.41.2.2 length	73
	6.41.2.3 vecc	73
	6.41.2.4 veci	73
	6.41.2.5 vecr	73
6.42 mqc_est	::mqc_wavefunction Type Reference	73
	Member Function/Subroutine Documentation	
	6.42.1.1 print()	⁷ 4
6.42.2 N	Member Data Documentation	⁷ 4
	6.42.2.1 basis	
	6.42.2.2 charge	
	6.42.2.3 core_hamiltonian	
	6.42.2.4 density_matrix	
	6.42.2.5 fock_matrix	′5
	6.42.2.6 mo_coefficients	
	6.42.2.7 mo_energies	
	6.42.2.8 mo_symmetries	
	6.42.2.9 multiplicity	
	6.42.2.10 nalpha	
	6.42.2.11 nbasis	
	6.42.2.12 nbeta	
	6.42.2.13 nelectrons	
	6.42.2.14 overlap_matrix	
	6.42.2.15 scf_density_matrix	
	6.42.2.16 symmetry	
	6.42.2.17 wf_complex	77

6.42.2.18 wf_type
6.43 mqc_algebra::operator(*) Interface Reference
6.43.1 Member Function/Subroutine Documentation
6.43.1.1 mqc_complexscalarmultiply()
6.43.1.2 mqc_complexvectorproduct()
6.43.1.3 mqc_integerscalarmultiply()
6.43.1.4 mqc_integervectorproduct()
6.43.1.5 mqc_matrixmatrixproduct()
6.43.1.6 mqc_matrixscalarproduct()
6.43.1.7 mqc_realscalarmultiply()
6.43.1.8 mqc_realvectorproduct()
6.43.1.9 mqc_scalarcomplexmultiply()
6.43.1.10 mqc_scalarintegermultiply()
6.43.1.11 mqc_scalarmatrixproduct()
6.43.1.12 mqc_scalarmultiply()
6.43.1.13 mqc_scalarrealmultiply()
6.43.1.14 mqc_scalarvectorproduct()
6.43.1.15 mqc_vectorcomplexproduct()
6.43.1.16 mqc_vectorintegerproduct()
6.43.1.17 mqc_vectorrealproduct()
6.43.1.18 mqc_vectorscalarproduct()
6.44 mqc_est::operator(*) Interface Reference
6.44.1 Member Function/Subroutine Documentation
6.44.1.1 mqc_integral_scalar_multiply()
6.44.1.2 mqc_scalar_integral_multiply()
6.45 mqc_algebra::operator(**) Interface Reference
6.45.1 Member Function/Subroutine Documentation
6.45.1.1 mqc_scalarcomplexexponent()
6.45.1.2 mqc_scalarexponent()
6.45.1.3 mqc_scalarintegerexponent()
6.45.1.4 mqc_scalarrealexponent()
6.46 mqc_est::operator(+) Interface Reference
6.46.1 Member Function/Subroutine Documentation
6.46.1.1 mqc_integral_sum()
6.47 mqc_algebra::operator(+) Interface Reference
6.47.1 Member Function/Subroutine Documentation
6.47.1.1 mqc_complexscalaradd()
6.47.1.2 mqc_integerscalaradd()
6.47.1.3 mqc_matrixmatrixsum()

6.47.1.4 mqc_realscalaradd()
6.47.1.5 mqc_scalaradd()
6.47.1.6 mqc_scalarcomplexadd()
6.47.1.7 mqc_scalarintegeradd()
6.47.1.8 mqc_scalarrealadd()
6.47.1.9 mqc_scalarvectorsum()
6.47.1.10 mqc_vectorvectorsum()
6.48 mqc_est::operator(-) Interface Reference
6.48.1 Member Function/Subroutine Documentation
6.48.1.1 mqc_integral_difference()
6.49 mqc_algebra::operator(-) Interface Reference
6.49.1 Member Function/Subroutine Documentation
6.49.1.1 mqc_complexscalarsubtract()
6.49.1.2 mqc_integerscalarsubtract()
6.49.1.3 mqc_matrixmatrixsubtract()
6.49.1.4 mqc_realscalarsubtract()
6.49.1.5 mqc_scalarcomplexsubtract()
6.49.1.6 mqc_scalarintegersubtract()
6.49.1.7 mqc_scalarrealsubtract()
6.49.1.8 mqc_scalarsubtract()
6.49.1.9 mqc_scalarvectordifference()
6.49.1.10 mqc_vectorvectordifference()
6.50 mqc_algebra::operator(.dot.) Interface Reference
6.50.1 Member Function/Subroutine Documentation
6.50.1.1 mqc_matrixmatrixdotproduct()
6.50.1.2 mqc_matrixvectordotproduct()
6.50.1.3 mqc_vectormatrixdotproduct()
6.50.1.4 mqc_vectorvectordotproduct()
6.51 mqc_algebra::operator(.eq.) Interface Reference
6.51.1 Member Function/Subroutine Documentation
6.51.1.1 mqc_scalareq()
6.52 mqc_algebra::operator(.ewd.) Interface Reference
6.52.1 Member Function/Subroutine Documentation
6.52.1.1 mqc_elementmatrixdivide()
6.53 mqc_algebra::operator(.ewp.) Interface Reference
6.53.1 Member Function/Subroutine Documentation
6.53.1.1 mqc_elementmatrixproduct()
6.53.1.2 mqc_elementvectorproduct()
6.54 mgc, algebra: operator/ ge \ Interface Reference

6.54.1 Member Function/Subroutine Documentation
6.54.1.1 mqc_scalarge()
6.55 mqc_algebra::operator(.gt.) Interface Reference
6.55.1 Member Function/Subroutine Documentation
6.55.1.1 mqc_integergtscalar()
6.55.1.2 mqc_realgtscalar()
6.55.1.3 mqc_scalargt()
6.55.1.4 mqc_scalargtinteger()
6.55.1.5 mqc_scalargtreal()
6.56 mqc_algebra::operator(.le.) Interface Reference
6.56.1 Member Function/Subroutine Documentation
6.56.1.1 mqc_integerlescalar()
6.56.1.2 mqc_reallescalar()
6.56.1.3 mqc_scalarle()
6.56.1.4 mqc_scalarleinteger()
6.56.1.5 mqc_scalarlereal()
6.57 mqc_algebra::operator(.lt.) Interface Reference
6.57.1 Member Function/Subroutine Documentation
6.57.1.1 mqc_realltscalar()
6.57.1.2 mqc_scalarlt()
6.57.1.3 mqc_scalarltreal()
6.58 mqc_algebra::operator(.ne.) Interface Reference
6.58.1 Member Function/Subroutine Documentation
6.58.1.1 mqc_scalarne()
6.59 mqc_algebra::operator(.outer.) Interface Reference
6.59.1 Member Function/Subroutine Documentation
6.59.1.1 mqc_outer()
6.60 mqc_algebra::operator(.x.) Interface Reference
6.60.1 Member Function/Subroutine Documentation
6.60.1.1 mqc_crossproduct()
6.61 mqc_algebra::operator(/) Interface Reference
6.61.1 Member Function/Subroutine Documentation
6.61.1.1 mqc_complexscalardivide()
6.61.1.2 mqc_integerscalardivide()
6.61.1.3 mqc_realscalardivide()
6.61.1.4 mqc_scalarcomplexdivide()
6.61.1.5 mqc_scalardivide()
6.61.1.6 mqc_scalarintegerdivide()
6.61.1.7 mqc_scalarrealdivide()

6.61.1.8 mqc_vectorcomplexdivide()	224
6.61.1.9 mqc_vectorintegerdivide()	224
6.61.1.10 mqc_vectorrealdivide()	224
6.61.1.11 mqc_vectorscalardivide()	224
6.62 mqc_algebra::real Interface Reference	225
6.62.1 Member Function/Subroutine Documentation	225
6.62.1.1 mqc_scalar_complex_realpart()	225
6.62.1.2 mqc_vector_complex_realpart()	225
6.63 mqc_algebra::sin Interface Reference	226
6.63.1 Member Function/Subroutine Documentation	226
6.63.1.1 mqc_scalar_sin()	226
6.64 mqc_algebra::sqrt Interface Reference	226
6.64.1 Member Function/Subroutine Documentation	227
6.64.1.1 mqc_scalar_sqrt()	227
6.65 mqc_algebra::tan Interface Reference	227
6.65.1 Member Function/Subroutine Documentation	227
6.65.1.1 mqc_scalar_tan()	228
6.66 mqc_est::transpose Interface Reference	228
6.66.1 Member Function/Subroutine Documentation	228
6.66.1.1 mqc_integral_transpose()	229
6.67 mqc_algebra::transpose Interface Reference	229
6.67.1 Member Function/Subroutine Documentation	229
6.67.1.1 mqc_matrix_transpose()	229
6.67.1.2 mqc_vector_transpose()	229
7 File Documentation	231
7.1 src/mgc algebra.F03 File Reference	
7.2 src/mgc est.F03 File Reference	
7.2 Stortings_osta oo i ile i telefende	
Index	243

Modules Index

1.1 Modules List

Here is a list of all modules with brief descriptions:

mqc_algebra	 																				 		9
mac est	 					 															 	. 1/	02

2 Modules Index

Data Type Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

mqc_algebra::abs	
mqc_algebra::acos	
mqc_algebra::aimag	
mqc_algebra::asin	
mqc_algebra::assignment(=)	
mqc_est::assignment(=)	
mqc_algebra::atan	
mqc_algebra::atan2	. 132
mqc_algebra::cmplx	
mqc_algebra::conjg	
mqc_algebra::contraction	
mqc_est::contraction	
mqc_algebra::cos	
mqc_algebra::dagger	
mqc_est::dagger	
mqc_algebra::dot_product	
mqc_est::dot_product	
mqc_algebra::matmul	
mqc_est::matmul	
mqc_algebra::matrix_symm2sq	
mqc_algebra::mqc_cast_complex	
mqc_algebra::mqc_cast_real	
mqc_est::mqc_determinant	
mqc_est::mqc_determinant_string	. 145
mqc_algebra::mqc_have_complex	
mqc_algebra::mqc_have_int	
mqc_algebra::mqc_have_real	
mqc_algebra::mqc_matrix	. 148
mqc_algebra::mqc_matrix_diagmatrix_put	
mqc_algebra::mqc_matrix_symmmatrix_put	. 154
mgc est::mgc matrix undospinblockghf	. 155

Data Type Index

mqc_algebra::mqc_print
mqc_est::mqc_print
mqc_algebra::mqc_r4tensor
mqc_algebra::mqc_scalar
mqc_est::mqc_scf_eigenvalues
mqc_est::mqc_scf_integral
mqc_algebra::mqc_set_array2vector
mqc_est::mqc_twoeris
mqc_algebra::mqc_vector
mqc_est::mqc_wavefunction
mqc_est::mqc_pscf_wavefunction
mqc_algebra::operator(*)
mqc_est::operator(*)
mqc_algebra::operator(**)
mqc_est::operator(+)
mqc_algebra::operator(+)
mqc_est::operator(-)
mqc_algebra::operator(-)
mqc_algebra::operator(.dot.)
mqc_algebra::operator(.eq.)
mqc_algebra::operator(.ewd.)
mqc_algebra::operator(.ewp.)
mqc_algebra::operator(.ge.)
mqc_algebra::operator(.gt.)
mqc_algebra::operator(.le.)
mqc_algebra::operator(.lt.)
mqc_algebra::operator(.ne.)
mqc_algebra::operator(.outer.)
mqc_algebra::operator(.x.)
mqc_algebra::operator(/)
mqc_algebra::real
mqc_algebra::sin
mqc_algebra::sqrt
mqc_algebra::tan
mqc_est::transpose
mgc algebra::transpose

Data Type Index

3.1 Data Types List

Here are the data types with brief descriptions:

mqc_algebra::abs	
mqc_algebra::acos	
mqc_algebra::aimag	
mqc_algebra::asin	
mqc_algebra::assignment(=)	
mqc_est::assignment(=)	
mqc_algebra::atan	
mqc_algebra::atan2	
mqc_algebra::cmplx	
mqc_algebra::conjg	
mqc_algebra::contraction	
mqc_est::contraction	
mqc_algebra::cos	
mqc_algebra::dagger	
mqc_est::dagger	
mqc_algebra::dot_product	
mqc_est::dot_product	
mqc_algebra::matmul	
mqc_est::matmul	
mqc_algebra::matrix_symm2sq	
mqc_algebra::mqc_cast_complex	
mqc_algebra::mqc_cast_real	
mqc_est::mqc_determinant	
mqc_est::mqc_determinant_string	. 145
mqc_algebra::mqc_have_complex	
mqc_algebra::mqc_have_int	
mqc_algebra::mqc_have_real	
mqc_algebra::mqc_matrix	. 148
mqc_algebra::mqc_matrix_diagmatrix_put	. 153
mqc_algebra::mqc_matrix_symmmatrix_put	. 154
mgc est::mgc matrix undospinblockghf	. 155

6 Data Type Index

mqc_algebra::mqc_print
mqc_est::mqc_print
mqc_est::mqc_pscf_wavefunction
mqc_algebra::mqc_r4tensor
mqc_algebra::mqc_scalar
mqc_est::mqc_scf_eigenvalues163
mqc_est::mqc_scf_integral
mqc_algebra::mqc_set_array2vector
mqc_est::mqc_twoeris
mqc_algebra::mqc_vector
mqc_est::mqc_wavefunction
mqc_algebra::operator(*)
mqc_est::operator(*)
mqc_algebra::operator(**)
mqc_est::operator(+)
mqc_algebra::operator(+)
mqc_est::operator(-)
mqc_algebra::operator(-)
$mqc_algebra::operator(.dot.) \\ \dots \\ $
mqc_algebra::operator(.eq.)
mqc_algebra::operator(.ewd.)
mqc_algebra::operator(.ewp.)
mqc_algebra::operator(.ge.)
mqc_algebra::operator(.gt.)
mqc_algebra::operator(.le.)
mqc_algebra::operator(.lt.)
mqc_algebra::operator(.ne.)
mqc_algebra::operator(.outer.)
mqc_algebra::operator(.x.)
mqc_algebra::operator(/)
mqc_algebra::real
mqc_algebra::sin
mqc_algebra::sqrt
mqc_algebra::tan
mqc_est::transpose
mgc algebra::transpose

File Index

4.1 File List

Here is a list of all files with brief descriptions:

src/mqc_algebra.F03																 											2	23	11
src/mgc_est.F03																											2	23	S

8 File Index

Module Documentation

5.1 mqc_algebra Module Reference

Data Types

- interface abs
- interface acos
- · interface aimag
- · interface asin
- interface assignment(=)
- interface atan
- interface atan2
- interface cmplx
- · interface conjg
- interface contraction
- interface cos
- interface dagger
- interface dot_product
- interface matmul
- interface matrix_symm2sq
- interface mgc cast complex
- interface mqc_cast_real
- interface mqc_have_complex
- interface mqc_have_int
- interface mqc_have_real
- type mqc_matrix
- interface mqc_matrix_diagmatrix_put
- interface mqc_matrix_symmmatrix_put
- interface mqc_print
- type mqc_r4tensor
- type mqc_scalar
- interface mqc_set_array2vector
- type mqc_vector
- interface operator(*)

10 Module Documentation

- interface operator(**)
- interface operator(+)
- interface operator(-)
- interface operator(.dot.)
- interface operator(.eq.)
- interface operator(.ewd.)
- interface operator(.ewp.)
- interface operator(.ge.)
- interface operator(.gt.)
- interface operator(.le.)
- interface operator(.lt.)
- interface operator(.ne.)
- interface operator(.outer.)
- interface operator(.x.)
- interface operator(/)
- interface real
- interface sin
- · interface sqrt
- · interface tan
- interface transpose

Functions/Subroutines

• integer(kind=int64) function factorial (n)

Factorial returns the factorial of an integer

integer(kind=int64) function bin_coeff (N, K)

Bin_Coeff returns the binomial coefficient of (n,k)

• subroutine mqc_allocate_scalar (Scalar, Data_type)

MQC_Allocate_Scalar is used to allocate a scalar type variable of the MQC_Scalar class

subroutine mqc_deallocate_scalar (Scalar)

MQC_Deallocate_Scalar is used to deallocate a scalar type variable of the MQC_Scalar class

logical function mqc_scalar_isallocated (Scalar)

MQC_Scalar_IsAllocated is used to determine the allocation status of an MQC_Scalar

subroutine mqc_input_integer_scalar (ScalarOut, ScalarIn)

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

subroutine mqc_input_real_scalar (ScalarOut, ScalarIn)

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

subroutine mqc_input_complex_scalar (ScalarOut, ScalarIn)

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar

subroutine mqc_output_mqcscalar_scalar (ScalarOut, ScalarIn)

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

• subroutine mqc_output_integer_scalar (ScalarOut, ScalarIn)

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

• subroutine mqc_output_real_scalar (ScalarOut, ScalarIn)

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

subroutine mqc_output_complex_scalar (ScalarOut, ScalarIn)

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar

• subroutine mgc print scalar algebra1 (Scalar, IOut, Header, Blank At Top, Blank At Bottom)

MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar

type(mqc_scalar) function mqc_scalar_cmplx (Scalar1, Scalar2)

MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars

type(mqc_scalar) function mqc_scalar_sqrt (Scalar)

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

type(mqc_scalar) function mqc_scalar_sin (Scalar)

MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

type(mgc scalar) function mgc scalar cos (Scalar)

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar

type(mqc_scalar) function mqc_scalar_tan (Scalar)

MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

type(mqc_scalar) function mqc_scalar_asin (Scalar)

MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

type(mqc_scalar) function mqc_scalar_acos (Scalar)

MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

type(mqc_scalar) function mqc_scalar_atan (Scalar)

MQC_Scalar_ATan is a function used to return the arctangent of an MQC_scalar

type(mqc_scalar) function mqc_scalar_atan2 (Scalar)

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

logical function mqc_scalar_havereal (Scalar)

MQC_Scalar_HaveReal is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type real

logical function mqc_scalar_haveinteger (Scalar)

MQC_Scalar_HaveInteger is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type integer

logical function mqc_scalar_havecomplex (Scalar)

MQC_Scalar_HaveComplex is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type complex

real(kind=real64) function mgc scalar get intrinsic real (Scalar)

MQC_Scalar_Get_Intrinsic_Real is a function that returns the MQC_scalar value as an intrinsic real

integer(kind=int64) function mgc scalar get intrinsic integer (Scalar)

MQC_Scalar_Get_Intrinsic_Integer is a function that returns the MQC_scalar value as an intrinsic integer

complex(kind=real64) function mqc scalar get intrinsic complex (Scalar)

MQC_Scalar_Get_Intrinsic_Complex is a function that returns the MQC_scalar value as an intrinsic complex

type(mgc scalar) function mgc scalar get abs value (Scalar)

MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable

subroutine mqc_scalar_get_random_value (Scalar)

MQC_Scalar_Get_Random_Value is a function that returns a random real value from a uniform distribution between zero and one

type(mqc_scalar) function mqc_scalaradd (Scalar1, Scalar2)

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

type(mqc_scalar) function mqc_scalarsubtract (Scalar1, Scalar2)

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects

type(mqc_scalar) function mqc_scalarmultiply (Scalar1, Scalar2)

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects

type(mqc_scalar) function mqc_scalardivide (Scalar1, Scalar2)

MQC_ScalarDivide is a function that divides two MQC_Scalar objects

12 Module Documentation

- type(mqc_scalar) function mqc_scalarexponent (Scalar1, Scalar2)
 - MQC_ScalarExponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar
- type(mqc scalar) function mqc scalarintegerexponent (Scalar, Intln)
 - MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer
- type(mqc_scalar) function mqc_scalarrealexponent (Scalar, RealIn)
 - MQC_ScalarRealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real
- type(mqc_scalar) function mqc_scalarcomplexexponent (Scalar, Compln)
 - MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex
- logical function mgc scalarne (Scalar1, Scalar2)
 - MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal
- logical function mgc scalareg (Scalar1, Scalar2)
 - MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal
- logical function mgc scalarlt (Scalar1, Scalar2)
 - MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar
- logical function mgc realltscalar (Realln, Scalar)
 - MQC_RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC_Scalar
- logical function mgc scalarItreal (Scalar, RealIn)
 - MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real
- logical function mqc_scalargt (Scalar1, Scalar2)
 - MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar
- logical function mqc_integergtscalar (Intln, Scalar)
 - MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar
- logical function mqc_scalargtinteger (Scalar, Intln)
 - MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer
- logical function mqc realgtscalar (RealIn, Scalar)
 - MQC_RealGTScalar is a function that returns TRUE if an intrinsic real is greater than a MQC_Scalar
- logical function mqc_scalargtreal (Scalar, RealIn)
 - MQC_ScalarGTReal is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic real
- logical function mqc_scalarle (Scalar1, Scalar2)
 - MQC_ScalarLE is a function that returns TRUE if the left MQC_Scalar is less than or equal the right MQC_Scalar
- logical function mqc_reallescalar (RealIn, Scalar)
 - MQC_RealLEScalar is a function that returns TRUE if an intrinsic real is less than or equal to a MQC_Scalar
- logical function mqc_scalarlereal (Scalar, RealIn)
 - MQC_ScalarLEReal is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic real
- logical function mgc integerlescalar (Intln, Scalar)
- MQC_IntegerLEScalar is a function that returns TRUE if an intrinsic integer is less than or equal to a MQC_Scalar
- logical function mgc scalarleinteger (Scalar, Intln)
- MQC_ScalarLEInteger is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic integer
- logical function mgc scalarge (Scalar1, Scalar2)
 - MQC_ScalarGE is a function that returns TRUE if the left MQC_Scalar is greater than or equal the right MQC_← Scalar
- type(mqc_scalar) function mqc_scalar_complex_conjugate (ScalarIn)
 - MQC_Scalar_Complex_Conjugate is a function that returns the complex conjugate of an MQC_Scalar
- type(mqc_scalar) function mqc_scalar_complex_realpart (ScalarIn)
 - MQC_Scalar_Complex_RealPart is a function that returns the real part of an MQC_Scalar
- type(mqc_scalar) function mqc_scalar_complex_imagpart (ScalarIn)
 - MQC_Scalar_Complex_ImagPart is a function that returns the inaginary part of an MQC_Scalar

type(mqc_scalar) function mqc_integerscalarmultiply (IntegerIn, Scalar)

MQC_IntegerScalarMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

type(mqc_scalar) function mqc_scalarintegermultiply (Scalar, IntegerIn)

MQC_ScalarIntegerMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

type(mqc_scalar) function mqc_realscalarmultiply (RealIn, Scalar)

MQC_RealScalarMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

• type(mgc scalar) function mgc scalarrealmultiply (Scalar, RealIn)

MQC_ScalarRealMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

type(mqc_scalar) function mqc_complexscalarmultiply (ComplexIn, Scalar)

MQC_ComplexScalarMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

• type(mqc_scalar) function mqc_scalarcomplexmultiply (Scalar, ComplexIn)

MQC_ScalarComplexMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

type(mqc scalar) function mqc integerscalardivide (IntegerIn, Scalar)

MQC_IntegerScalarDivide is a function that is used to divide an intrinsic integer by an MQC_Scalar

• type(mqc_scalar) function mqc_scalarintegerdivide (Scalar, IntegerIn)

MQC_ScalarIntegerDivide is a function that is used to divide an MQC_Scalar by an intrinsic integer

type(mgc_scalar) function mgc_realscalardivide (RealIn, Scalar)

MQC_RealScalarDivide is a function that is used to divide an intrinsic real by an MQC_Scalar

• type(mqc_scalar) function mqc_scalarrealdivide (Scalar, RealIn)

MQC_ScalarRealDivide is a function that is used to divide an MQC_Scalar by an intrinsic real

• type(mqc_scalar) function mqc_complexscalardivide (ComplexIn, Scalar)

MQC_ComplexScalarDivide is a function that is used to divide an intrinsic complex by an MQC_Scalar

• type(mqc_scalar) function mqc_scalarcomplexdivide (Scalar, ComplexIn)

MQC_ScalarComplexDivide is a function that is used to divide an MQC_Scalar by an intrinsic complex

• type(mgc_scalar) function mgc_integerscalaradd (IntegerIn, Scalar)

MQC_IntegerScalarAdd is a function that is used to multiply an intrinsic integer by an MQC_Scalar

• type(mqc_scalar) function mqc_scalarintegeradd (Scalar, IntegerIn)

MQC_ScalarIntegerAdd is a function that is used to sum an intrinsic integer by an MQC_Scalar

type(mqc_scalar) function mqc_realscalaradd (RealIn, Scalar)

MQC_RealScalarAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

• type(mqc_scalar) function mqc_scalarrealadd (Scalar, RealIn)

MQC_ScalarRealAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

• type(mqc_scalar) function mqc_complexscalaradd (ComplexIn, Scalar)

MQC_ComplexScalarAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

• type(mgc scalar) function mgc scalarcomplexadd (Scalar, ComplexIn)

MQC_ScalarComplexAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

• type(mqc_scalar) function mqc_integerscalarsubtract (IntegerIn, Scalar)

MQC_IntegerScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic integer

type(mqc_scalar) function mqc_scalarintegersubtract (Scalar, IntegerIn)

MQC_ScalarIntegerSubtract is a function that is used to subtract an intrinsic integer from an MQC_Scalar

• type(mqc_scalar) function mqc_realscalarsubtract (RealIn, Scalar)

MQC_RealScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic real

• type(mgc scalar) function mgc scalarrealsubtract (Scalar, RealIn)

MQC_ScalarRealSubtract is a function that is used to subtract an intrinsic real from an MQC_Scalar

type(mgc_scalar) function mgc_complexscalarsubtract (ComplexIn, Scalar)

MQC_ComplexScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic complex

• type(mgc scalar) function mgc scalarcomplexsubtract (Scalar, ComplexIn)

14 Module Documentation

MQC_ScalarComplexSubtract is a function that is used to subtract an intrinsic complex from an MQC_Scalar

- subroutine mgc allocate vector (N, Vector, Data Type)
- subroutine mgc deallocate vector (Vector)
- integer(kind=int64) function mqc_length_vector (Vector)
- logical function mgc vector havereal (Vector)
- logical function mqc_vector_haveinteger (Vector)
- logical function mqc_vector_havecomplex (Vector)
- logical function mqc vector iscolumn (Vector)
- subroutine mqc_vector_copy_int2real (Vector)
- subroutine mqc_vector_copy_int2complex (Vector)
- subroutine mgc vector copy real2int (Vector)
- subroutine mqc vector copy real2complex (Vector)
- subroutine mqc_vector_copy_complex2int (Vector)
- subroutine mqc_vector_copy_complex2real (Vector)
- type(mqc_scalar) function mqc_vector_scalar_at (Vec, I)
- type(mqc_vector) function mqc_vector_vector_at (Vec, I, J)
- subroutine mgc_set_vector2integerarray (ArrayOut, VectorIn)
- subroutine mqc set vector2realarray (ArrayOut, VectorIn)
- subroutine mqc_set_vector2complexarray (ArrayOut, VectorIn)
- subroutine mqc_set_array2vector_integer (VectorOut, ArrayIn)
- subroutine mgc set array2vector real (VectorOut, ArrayIn)
- subroutine mqc_set_array2vector_complex (VectorOut, ArrayIn)
- subroutine mgc set vector2vector (VectorOut, VectorIn)
- type(mgc_vector) function mgc_vectorvectorsum (Vector1In, Vector2In)
- type(mgc_vector) function mgc_vectorvectordifference (Vector1In, Vector2In)
- type(mgc_vector) function mgc_scalarvectorsum (ScalarIn, VectorIn)
- type(mgc_vector) function mgc_scalarvectordifference (ScalarIn, VectorIn)
- type(mqc_vector) function mqc_elementvectorproduct (Vector1In, Vector2In)
- type(mgc vector) function mgc vector transpose (Vector)
- type(mgc vector) function mgc vector conjugate transpose (Vector)
- type(mgc_scalar) function mgc_vectorvectordotproduct (Vector1, Vector2)
- type(mqc_matrix) function mqc_outer (VA, VB)
- type(mqc_vector) function mqc_crossproduct (Vector1In, Vector2In)
- subroutine mqc_print_vector_algebra1 (Vector, IOut, Header, Verbose, Blank_At_Top, Blank_At_Bottom)
- type(mgc vector) function mgc vector cast real (VA)
- type(mgc vector) function mgc vector cast complex (VA)
- subroutine mgc vector scalar put (Vector, Scalar, I)
- subroutine mgc vector scalar increment (Vector, Scalar, I)
- subroutine mgc vector vector put (Vector, VectorIn, I)
- subroutine mgc vector initialize (Vector, Length, Scalar)
- type(mqc_vector) function mqc_scalarvectorproduct (Scalar, Vector)
- type(mqc_vector) function mqc_vectorscalarproduct (vector, scalar)
- type(mgc vector) function mgc vectorscalardivide (vector, scalar)
- type(mgc_vector) function mgc_realvectorproduct (RealIn, Vector)
- type(mgc_vector) function mgc_vectorrealproduct (vector, realln)
- type(mqc_vector) function mqc_vectorrealdivide (vector, realln)
- type(mgc_vector) function mgc_integervectorproduct (intln, Vector)
- type(mqc_vector) function mqc_vectorintegerproduct (vector, intln)
- type(mqc_vector) function mqc_vectorintegerdivide (vector, intln)
- type(mgc vector) function mgc complexvectorproduct (Compln, Vector)
- type(mgc vector) function mgc vectorcomplexproduct (vector, compln)

- type(mqc_vector) function mqc_vectorcomplexdivide (vector, compln)
- type(mqc_scalar) function mqc_vector_norm (vector, methodIn)
- logical function mqc_vector_isallocated (Vector)
- subroutine mgc vector push (Vector, Scalar)
- subroutine mgc vector unshift (Vector, Scalar)
- type(mqc_scalar) function mqc_vector_pop (Vector)
- type(mgc_scalar) function mgc_vector_shift (Vector)
- type(mgc scalar) function mgc vector maxval (Vector)
- type(mgc scalar) function mgc vector minval (Vector)
- integer function mgc vector maxloc (Vector)
- integer function mqc_vector_minloc (Vector)
- type(mgc vector) function mgc vector argsort (Vector)
- subroutine mgc vector sort (Vector, idx)
- subroutine mqc_vector_sqrt (A)
- type(mgc vector) function mgc vector abs (A)
- subroutine mqc_vector_power (A, P)
- type(mqc_vector) function mqc_vector_complex_realpart (A)
- type(mqc_vector) function mqc_vector_complex_imagpart (A)
- type(mqc_vector) function mqc_vector_cmplx (Vector1, Vector2)
- character(len=64) function mqc_matrix_storagetype (Matrix)
- subroutine mgc matrix diagonalize (A, EVals, EVecs)
- type(mqc matrix) function mqc matrix cast real (MA)
- type(mgc matrix) function mgc matrix cast complex (MA)
- type(mqc_scalar) function mqc_matrix_scalar_at (Mat, I, J)
- type(mgc vector) function mgc matrix vector at (Mat, Rows, Cols)
- recursive subroutine mgc matrix vector put (Mat, VectorIn, Rows, Cols)
- type(mqc_matrix) function mqc_matrix_matrix_at (Mat, Rows, Cols)

MQC_Matrix_Matrix_At is a function that returns a submatrix of the matrix

- subroutine mqc_matrix_diagmatrix_put_vector (diagVectorIn, mat)
- subroutine mqc_matrix_diagmatrix_put_integer (mat, diagMatrixIn)
- subroutine mgc matrix diagmatrix put real (mat, diagMatrixIn)
- subroutine mqc_matrix_diagmatrix_put_complex (mat, diagMatrixIn)
- subroutine mqc_matrix_symmmatrix_put_integer (mat, symmMatrixIn)
- subroutine mqc_matrix_symmmatrix_put_real (mat, symmMatrixIn)
- subroutine mqc_matrix_symmmatrix_put_complex (mat, symmMatrixIn)
- recursive subroutine mgc matrix matrix put (Mat. MatrixIn, Rows, Cols)
- integer(kind=int64) function symindexhash (i, j, k, l)
- type(mqc_matrix) function mqc_elementmatrixproduct (A, B)
- type(mqc_matrix) function mqc_elementmatrixdivide (A, B)
- logical function mgc matrix test symmetric (Matrix, Option)
- logical function mgc matrix test diagonal (Matrix)
- subroutine mgc allocate matrix (M, N, Matrix, Data Type, Storage)
- subroutine mqc_deallocate_matrix (Matrix)
- logical function mqc_matrix_isallocated (Matrix)
- subroutine mgc set integerarray2matrix (MatrixOut, ArrayIn)
- subroutine mqc_set_realarray2matrix (MatrixOut, ArrayIn)
- subroutine mgc set complexarray2matrix (MatrixOut, ArrayIn)
- subroutine mqc_set_matrix2integerarray (ArrayOut, MatrixIn)
- subroutine mqc_set_matrix2realarray (ArrayOut, MatrixIn)
- subroutine mqc set matrix2complexarray (ArrayOut, MatrixIn)

- subroutine mqc_set_matrix2matrix (MatrixOut, MatrixIn)
- subroutine mgc print matrix algebra1 (Matrix, IOut, Header, Blank At Top, Blank At Bottom)
- subroutine mgc matrix copy int2real (Matrix)
- subroutine mgc matrix copy int2complex (Matrix)
- subroutine mgc matrix copy real2int (Matrix)
- subroutine mqc_matrix_copy_real2complex (Matrix)
- subroutine mqc_matrix_copy_complex2int (Matrix)
- subroutine mgc matrix copy complex2real (Matrix)
- integer(kind=int64) function mgc matrix rows (Matrix)
- integer(kind=int64) function mgc matrix columns (Matrix)
- logical function mgc matrix havereal (Matrix)
- logical function mgc matrix haveinteger (Matrix)
- logical function mgc matrix havecomplex (Matrix)
- logical function mgc matrix havefull (Matrix)
- logical function mqc_matrix_havesymmetric (Matrix)
- logical function mgc matrix havediagonal (Matrix)
- type(mqc_matrix) function mqc_matrix_transpose (Matrix)
- type(mgc matrix) function mgc matrix conjugate transpose (Matrix)
- type(mqc_matrix) function mqc_matrix_symmetrize (Matrix)
- subroutine mqc_matrix_full2symm (Matrix)
- subroutine mgc matrix symm2full (Matrix, Option)
- subroutine mqc_matrix_full2diag (Matrix)
- subroutine mgc matrix diag2full (Matrix)
- subroutine mqc_matrix_symm2diag (Matrix)
- subroutine mgc matrix diag2symm (Matrix)
- type(mqc_matrix) function mqc_matrix_symm2full_func (Matrix)
- subroutine matrix_symm2sq_integer (N, I_Symm, I_Sq)
- subroutine matrix_symm2sq_real (N, A_Symm, A_Sq)
- subroutine matrix symm2sq complex (N, A Symm, A Sq)
- type(mqc_matrix) function mqc_vector2diagmatrix (vector)
- type(mqc_matrix) function mqc_matrixmatrixsum (MA, MB)
- type(mqc_matrix) function mqc_matrixmatrixsubtract (MA, MB)
- type(mqc_matrix) function mqc_matrixmatrixproduct (MA, MB)
- type(mqc_matrix) function mqc_matrixmatrixdotproduct (MA, MB)
- type(mgc_vector) function mgc_matrixvectordotproduct (MA, VB)
- type(mqc vector) function mqc vectormatrixdotproduct (VA, MB)
- type(mqc matrix) function mqc_matrixscalarproduct (Matrix, Scalar)
- type(mgc matrix) function mgc scalarmatrixproduct (Scalar, Matrix)
- type(mgc scalar) function mgc matrix matrix contraction (Matrix1, Matrix2)
- subroutine mgc matrix scalar put (Matrix, Scalar, I, J)
- subroutine mgc matrix initialize (Matrix, Rows, Columns, Scalar, Storage)
- subroutine mqc_matrix_identity (matrix, n, m)
- subroutine mgc matrix set (matrix, scalar, storage)
- type(mgc_scalar) function mgc_matrix_norm (matrix, methodIn)
- type(mgc scalar) function mgc matrix determinant (a)
- type(mqc_matrix) function mqc_matrix_inverse (a)
- type(mqc_scalar) function mqc_matrix_trace (matrix)
- subroutine mqc_matrix_generalized_eigensystem (a, bln, eigenvals, reigenvecs, leigenvecs)
- subroutine mqc_matrix_svd (A, EVals, EUVecs, EVVecs)
- subroutine mgc matrix rms max (A, rms A, max A)
- subroutine mqc matrix sqrt (A, eVals, eVecs)

- type(mqc_matrix) function mqc_givens_matrix (m_size, angle, p, q)
- subroutine mqc_allocate_r4tensor (I, J, K, L, Tensor, Data_Type, Storage)
- subroutine mqc_deallocate_r4tensor (Tensor)
- type(mqc_scalar) function mqc_r4tensor_at (Tensor, I, J, K, L)
- subroutine mgc r4tensor put (Tensor, Element, I, J, K, L)
- subroutine mqc_print_r4tensor_algebra1 (Tensor, IOut, Header, blank_at_top, blank_at_bottom)
- subroutine mgc set array2tensor (TensorOut, ArrayIn)
- subroutine mgc r4tensor initialize (R4Tensor, I, J, K, L, Scalar)
- subroutine mqc_matrix_symmsymmr4tensor_put_real (r4Tensor, symmSymmMatrixIn)
- subroutine mqc_matrix_symmsymmr4tensor_put_complex (r4Tensor, symmSymmMatrixIn)
- logical function mqc_r4tensor_haveinteger (R4Tensor)
- logical function mqc_r4tensor_havereal (R4Tensor)
- logical function mqc_r4tensor_havecomplex (R4Tensor)

5.1.1 Function/Subroutine Documentation

5.1.1.1 bin_coeff()

Bin Coeff returns the binomial coefficient of (n,k)

Purpose:

Bin_Coeff is a function that returns the binomial coefficient given input integer N and input integer K corresponding to N choose K.

Parameters

in	N	
		N is Integer(kind=int64) The number of objects
in	K	
		K is Integer(kind=int64) The number of permutations

Author

L. M. Thompson

Date

2016

5.1.1.2 factorial()

```
integer(kind=int64) function mqc_algebra::factorial ( integer(kind=int64), intent(in) n)
```

Factorial returns the factorial of an integer

Purpose:

Factorial is a function that returns the factorial of an integer.

Parameters

in	N	
		N is Integer(kind=int64) The argument of the factorial function

Author

L. M. Thompson

Date

2016

5.1.1.3 matrix_symm2sq_complex()

```
subroutine mqc_algebra::matrix_symm2sq_complex ( integer(kind=int64),\ intent(in)\ N, \\ complex(kind=real64),\ dimension(:),\ intent(in)\ A\_Symm, \\ complex(kind=real64),\ dimension(n,n),\ intent(out)\ A\_Sq\ )
```

5.1.1.4 matrix_symm2sq_integer()

5.1.1.5 matrix_symm2sq_real()

```
subroutine mqc_algebra::matrix_symm2sq_real (
    integer(kind=int64), intent(in) N,
    real(kind=real64), dimension(:), intent(in) A_Symm,
    real(kind=real64), dimension(n,n), intent(out) A_Sq )
```

5.1.1.6 mqc_allocate_matrix()

```
subroutine mqc_algebra::mqc_allocate_matrix (
    integer(kind=int64), intent(in) M,
    integer(kind=int64), intent(in) N,
    class(mqc_matrix), intent(inout) Matrix,
    character(len=*), intent(in) Data_Type,
    character(len=*), intent(in) Storage)
```

5.1.1.7 mqc_allocate_r4tensor()

```
subroutine mqc_algebra::mqc_allocate_r4tensor (
    integer(kind=int64), intent(in) I,
    integer(kind=int64), intent(in) J,
    integer(kind=int64), intent(in) K,
    integer(kind=int64), intent(in) L,
    type(mqc_r4tensor), intent(inout) Tensor,
    character(len=*), intent(in) Data_Type,
    character(len=*), intent(in) Storage)
```

5.1.1.8 mqc_allocate_scalar()

MQC_Allocate_Scalar is used to allocate a scalar type variable of the MQC_Scalar class

Purpose:

```
MQC_Allocate_Scalar is a subroutine used to allocate a scalar type variable
of the MQC_Scalar class. The following options are available:

1. Data_Type = 'Real' declares the MQC_Scalar variable to be of real type.
2. Data_Type = 'Integer' declares the MQC_Scalar variable to be of integer type.
3. Data_Type = 'Complex' declares the MQC_Scalar variable to be of complex type.
```

Parameters

in,out	Scalar	
		Scalar is Type(MQC_Scalar) The name of the MQC_Scalar variable
in	Data_Type	
		<pre>Data_Type is Character(Len=*) = 'Real': the MQC_Scalar is real = 'Integer': the MQC_Scalar is integer = 'Complex': the MQC_Scalar is complex</pre>

Author

L. M. Thompson

Date

2016

5.1.1.9 mqc_allocate_vector()

5.1.1.10 mqc_complexscalaradd()

MQC_ComplexScalarAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

Purpose:

 $\mbox{MQC_ComplexScalarAdd}$ is a function that is used to sum an intrinsic complex by an $\mbox{MQC_Scalar.}$

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to sum
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to sum

Author

L. M. Thompson

Date

2019

5.1.1.11 mqc_complexscalardivide()

MQC_ComplexScalarDivide is a function that is used to divide an intrinsic complex by an MQC_Scalar

Purpose:

 $\texttt{MQC_ComplexScalarDivide}$ is a function that is used to divide an intrinsic complex by an $\texttt{MQC_Scalar.}$

Parameters

in	Complex← In	ComplexIn is Complex(kind=real64) The intrinsic complex variable numerator
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable denominator

Author

L. M. Thompson

Date

2019

5.1.1.12 mqc_complexscalarmultiply()

MQC_ComplexScalarMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

Purpose:

 $\texttt{MQC_ComplexScalarMultiply}$ is a function that is used to multiply an intrinsic complex by an $\texttt{MQC_Scalar}.$

Parameters

in	Complex↔ In	Complex is Complex(kind=real64) The intrinsic complex variable to multiply
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to multiply

Author

L. M. Thompson

Date

2019

5.1.1.13 mqc_complexscalarsubtract()

MQC_ComplexScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic complex

Purpose:

 ${\tt MQC_ComplexScalarSubtract}$ is a function that is used to subtract an ${\tt MQC_Scalar}$ from an intrinisic complex.

Parameters

in	Complex← In	ComplexIn is Complex(kind=real64) The intrinsic complex to subtract from
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract

Author

L. M. Thompson

Date

2019

5.1.1.14 mqc_complexvectorproduct()

5.1.1.15 mqc_crossproduct()

5.1.1.16 mqc_deallocate_matrix()

5.1.1.17 mqc_deallocate_r4tensor()

5.1.1.18 mqc_deallocate_scalar()

MQC_Deallocate_Scalar is used to deallocate a scalar type variable of the MQC_Scalar class

Purpose:

 $\texttt{MQC_Deallocate_Scalar}$ is a subroutine used to deallocate a scalar type variable of the $\texttt{MQC_Scalar}$ class.

Parameters

in,out	Scalar	
		Scalar is Type(MQC_Scalar) The name of the MQC_Scalar variable to deallocate

Author

L. M. Thompson

Date

2016

5.1.1.19 mqc_deallocate_vector()

5.1.1.20 mqc_elementmatrixdivide()

5.1.1.21 mqc_elementmatrixproduct()

5.1.1.22 mqc_elementvectorproduct()

5.1.1.23 mqc_givens_matrix()

```
type(mqc_matrix) function mqc_algebra::mqc_givens_matrix (
    integer(kind=int64), intent(in) m_size,
    real(kind=real64), intent(in) angle,
    integer(kind=int64), intent(in) p,
    integer(kind=int64), intent(in) q)
```

5.1.1.24 mqc_input_complex_scalar()

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar

Purpose:

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Complex(kind=real64) The value of the input variable

Author

L. M. Thompson

Date

2017

5.1.1.25 mqc_input_integer_scalar()

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

Purpose:

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Integer(kind=int64) The value of the input variable

Author

L. M. Thompson

Date

2016

5.1.1.26 mqc_input_real_scalar()

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

Purpose:

 ${\tt MQC_Input_Integer_Scalar}$ is a subroutine is used to set an intrinsic real to an ${\tt MQC_Scalar}$.

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Real(kind=real64) The value of the input variable

Author

L. M. Thompson

Date

2016

5.1.1.27 mqc_integergtscalar()

MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar

Purpose:

 $MQC_IntegerGTS$ calar is a function that returns TRUE if an intrinsic integer is greater than a MQC_S calar.

When dealing with complex numbers, the function returns TRUE if the intrinsic integer is greater than the real part of the MQC_Scalar and FALSE if the intrinsic integer is less than the real part of the MQC_Scalar. If the intrinsic integer is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise.

Parameters

in	Intln	
		<pre>IntIn is Integer(kind=int64) The intrinsic integer that will be tested.</pre>
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.28 mqc_integerlescalar()

MQC_IntegerLEScalar is a function that returns TRUE if an intrinsic integer is less than or equal to a MQC_← Scalar

Purpose:

 ${\tt MQC_IntegerLEScalar}$ is a function that returns TRUE if an intrinsic integer is less than or equal to a ${\tt MQC_Scalar}$.

When dealing with complex numbers, the function returns TRUE if the intrinsic integer is less than or equal to the real part of the MQC_Scalar and FALSE if the intrinsic integer is greater than the real part of the MQC_Scalar.

Parameters

in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.29 mqc_integerscalaradd()

MQC IntegerScalarAdd is a function that is used to multiply an intrinsic integer by an MQC Scalar

Purpose:

 $\ensuremath{\mathtt{MQC_IntegerScalarAdd}}$ is a function that is used to sum an intrinsic integer by an $\ensuremath{\mathtt{MQC_Scalar.}}$

Parameters

in	Integer↔ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to sum
in	Scalar	
		Scalar is Type(MQC_Scalar)
		The MQC_Scalar variable to sum
	l	

Generated by Doxygen

Author

L. M. Thompson

Date

2019

5.1.1.30 mqc_integerscalardivide()

MQC_IntegerScalarDivide is a function that is used to divide an intrinsic integer by an MQC_Scalar

Purpose:

 $\texttt{MQC_IntegerScalarDivide}$ is a function that is used to divide an intrinsic integer by an $\texttt{MQC_Scalar.}$

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable numerator
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable denominator

Author

L. M. Thompson

Date

2019

5.1.1.31 mqc_integerscalarmultiply()

MQC_IntegerScalarMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

Purpose:

 $\texttt{MQC_IntegerScalarMultiply}$ is a function that is used to multiply an intrinsic integer by an $\texttt{MQC_Scalar.}$

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to multiply
in	Scalar	Scalar is Type(MQC_Scalar) The MQC_Scalar variable to multiply

Author

L. M. Thompson

Date

2019

5.1.1.32 mqc_integerscalarsubtract()

MQC_IntegerScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic integer

Purpose:

 $\texttt{MQC_IntegerScalarSubtract}$ is a function that is used to subtract an $\texttt{MQC_Scalar}$ from an intrinisic integer.

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer to subtract from
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract

```
Author
```

L. M. Thompson

Date

2019

5.1.1.33 mqc_integervectorproduct()

5.1.1.34 mqc_length_vector()

5.1.1.35 mqc_matrix_cast_complex()

5.1.1.36 mqc_matrix_cast_real()

5.1.1.37 mqc_matrix_columns()

5.1.1.38 mqc_matrix_conjugate_transpose()

5.1.1.39 mqc_matrix_copy_complex2int()

5.1.1.40 mqc_matrix_copy_complex2real()

5.1.1.41 mqc_matrix_copy_int2complex()

5.1.1.42 mqc_matrix_copy_int2real()

5.1.1.43 mqc_matrix_copy_real2complex()

5.1.1.44 mqc_matrix_copy_real2int()

5.1.1.45 mqc_matrix_determinant()

5.1.1.46 mqc_matrix_diag2full()

5.1.1.47 mqc_matrix_diag2symm()

5.1.1.48 mqc_matrix_diagmatrix_put_complex()

5.1.1.49 mqc_matrix_diagmatrix_put_integer()

5.1.1.50 mqc_matrix_diagmatrix_put_real()

5.1.1.51 mqc_matrix_diagmatrix_put_vector()

5.1.1.52 mqc matrix diagonalize()

5.1.1.53 mqc_matrix_full2diag()

5.1.1.54 mqc_matrix_full2symm()

5.1.1.55 mqc matrix generalized eigensystem()

5.1.1.56 mqc_matrix_havecomplex()

5.1.1.57 mqc_matrix_havediagonal()

5.1.1.58 mqc_matrix_havefull()

5.1.1.59 mqc_matrix_haveinteger()

5.1.1.60 mqc_matrix_havereal()

5.1.1.61 mqc_matrix_havesymmetric()

5.1.1.62 mqc_matrix_identity()

5.1.1.63 mqc matrix initialize()

5.1.1.64 mqc_matrix_inverse()

5.1.1.65 mqc_matrix_isallocated()

5.1.1.66 mqc_matrix_matrix_at()

MQC_Matrix_Matrix_At is a function that returns a submatrix of the matrix

Parameters

in	Mat	
		Mat is Class(MQC_Matrix)
		Name of the input matrix variable
in	rows	
		Rows is Integer(kind=int64), Dimension(:) If = [A,B]: output is submatrix of rows A to B If (A,B)>0 row count is from first index If (A,B)<0 row count is from last index If = [0]: submatrix of rows equivalent to [1,-1]
in	Cols	
		Cols is Integer(kind=int64), Dimension(:) If = [A,B]: output is submatrix of columns A to B If (A,B)>0 column count is from first index If (A,B)<0 column count is from last index If = [0]: submatrix of columns equivalent to [1,-1]

Author

L. M. Thompson

Date

2017

5.1.1.67 mqc_matrix_matrix_contraction()

5.1.1.68 mqc_matrix_matrix_put()

5.1.1.69 mqc_matrix_norm()

5.1.1.70 mqc_matrix_rms_max()

5.1.1.71 mqc_matrix_rows()

5.1.1.72 mqc_matrix_scalar_at()

5.1.1.73 mqc_matrix_scalar_put()

5.1.1.74 mqc_matrix_set()

5.1.1.75 mqc_matrix_sqrt()

5.1.1.76 mqc_matrix_storagetype()

5.1.1.77 mqc_matrix_svd()

5.1.1.78 mqc_matrix_symm2diag()

5.1.1.79 mqc_matrix_symm2full()

5.1.1.80 mqc_matrix_symm2full_func()

5.1.1.81 mqc matrix symmetrize()

5.1.1.82 mqc_matrix_symmmatrix_put_complex()

5.1.1.83 mqc_matrix_symmmatrix_put_integer()

5.1.1.84 mqc_matrix_symmmatrix_put_real()

5.1.1.85 mqc_matrix_symmsymmr4tensor_put_complex()

5.1.1.86 mqc_matrix_symmsymmr4tensor_put_real()

5.1.1.87 mqc_matrix_test_diagonal()

5.1.1.88 mqc_matrix_test_symmetric()

5.1.1.89 mqc_matrix_trace()

5.1.1.90 mqc_matrix_transpose()

5.1.1.91 mqc_matrix_vector_at()

5.1.1.92 mqc_matrix_vector_put()

5.1.1.93 mqc_matrixmatrixdotproduct()

5.1.1.94 mqc_matrixmatrixproduct()

5.1.1.95 mqc_matrixmatrixsubtract()

5.1.1.96 mqc_matrixmatrixsum()

5.1.1.97 mqc_matrixscalarproduct()

5.1.1.98 mqc_matrixvectordotproduct()

5.1.1.99 mqc_outer()

5.1.1.100 mqc_output_complex_scalar()

MQC Output Complex Scalar is a subroutine used to output an intrinsic complex equal to an MQC Scalar

Purpose:

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Complex(kind=real64) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2017

5.1.1.101 mqc_output_integer_scalar()

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

Purpose:

 ${\tt MQC_Output_Integer_Scalar} \ is \ a \ subroutine \ used \ to \ output \ an \ intrinsic \ integer \ equal \ to \ an \ {\tt MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Integer(kind=int64) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2016

5.1.1.102 mqc_output_mqcscalar_scalar()

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

Purpose:

 ${\tt MQC_Output_MQCScalar_Scalar} \ \ \text{is a subroutine used to output an MQC_scalar equal to an MQC_Scalar.}$

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2016

5.1.1.103 mqc_output_real_scalar()

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

Purpose:

 ${\tt MQC_Output_Complex_Scalar} \ is \ a \ subroutine \ used \ to \ output \ an \ intrinsic \ real \ equal \ to \ an \ {\tt MQC_Scalar}.$

Parameters

in,out	ScalarOut	
		ScalarOut is Real(kind=real64) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2016

5.1.1.104 mqc_print_matrix_algebra1()

5.1.1.105 mqc_print_r4tensor_algebra1()

5.1.1.106 mqc_print_scalar_algebra1()

MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar

Purpose:

 ${\tt MQC_Print_Scalar_Algebra1}$ is a subroutine used to print an ${\tt MQC_Scalar}$. Blank_At_Top and Blank_At_Bottom are optional logical arguments to print blank lines before or after output.

Parameters

in	Scalar	
		Scalar is Class(MOC Scalar)
		The variable to be printed
in	<i>IOut</i>	
		IOut is Integer(kind=int64) The Fortran file number to print to
in	Header	
		Header is Character(Len=*) The title to print along with Scalar
in	Blank_At_Top	
		Blank_At_Top is Logical,Optional = .True.: print blank line above output = .False.: do not print blank line above output
in	Blank_At_Bottom	
		Blank_At_Bottom is Logical,Optional = .True.: print blank line below output = .False.: do not print blank line below output

Author

L. M. Thompson

Date

2016

5.1.1.107 mqc_print_vector_algebra1()

5.1.1.108 mqc_r4tensor_at()

5.1.1.109 mqc_r4tensor_havecomplex()

```
logical function mqc_algebra::mqc_r4tensor_havecomplex ( type \, (mqc\_r4tensor) \, , \, \, intent \, (in) \, \, \textit{R4Tensor} \, )
```

5.1.1.110 mgc r4tensor haveinteger()

```
logical function mqc_algebra::mqc_r4tensor_haveinteger ( type \, (mqc\_r4tensor) \, , \, \, intent \, (in) \, \, \textit{R4Tensor} \, )
```

5.1.1.111 mqc_r4tensor_havereal()

5.1.1.112 mqc_r4tensor_initialize()

5.1.1.113 mqc_r4tensor_put()

5.1.1.114 mqc_realgtscalar()

MQC_RealGTScalar is a function that returns TRUE if an intrinsic real is greater than a MQC_Scalar

Purpose:

```
\ensuremath{\mathtt{MQC\_RealGTScalar}} is a function that returns TRUE if an intrinsic real is greater than a \ensuremath{\mathtt{MQC\_Scalar}}.
```

When dealing with complex numbers, the function returns TRUE if the intrinsic real is greater than the real part of the MQC_Scalar and FALSE if the intrinsic real is less than the real part of the MQC_Scalar. If the intrinsic real is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise.

Parameters

in	Real← In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.115 mqc_reallescalar()

MQC_RealLEScalar is a function that returns TRUE if an intrinsic real is less than or equal to a MQC_Scalar

Purpose:

 ${\tt MQC_RealLES}$ calar is a function that returns TRUE if an intrinsic real is less than or equal to a ${\tt MQC_Scalar}$.

When dealing with complex numbers, the function returns TRUE if the intrinsic real is less than or equal to the real part of the MQC_Scalar and FALSE if the intrinsic real is greater than the real part of the MQC_Scalar.

Parameters

in	Real← In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.116 mqc_realltscalar()

MQC_RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC_Scalar

Purpose:

 $\mbox{MQC_RealLTScalar}$ is a function that returns TRUE if an intrinsic real is less than a $\mbox{MQC_Scalar.}$

When dealing with complex numbers, the function returns TRUE if the intrinsic real is less than the real part of the MQC_Scalar and FALSE if the intrinsic real is greater than the real part of the MQC_Scalar. If the intrinsic real is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise.

Parameters

in	Real← In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.117 mqc_realscalaradd()

MQC_RealScalarAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

Purpose:

 $\mbox{MQC_RealScalarAdd}$ is a function that is used to sum an intrinsic real by an $\mbox{MQC_Scalar.}$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to sum
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to sum

Author

L. M. Thompson

Date

2019

5.1.1.118 mqc_realscalardivide()

MQC_RealScalarDivide is a function that is used to divide an intrinsic real by an MQC_Scalar

Purpose:

 $\texttt{MQC_RealScalarDivide}$ is a function that is used to divide an intrinsic real by an $\texttt{MQC_Scalar.}$

Parameters

in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real variable numerator
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable denominator

Author

L. M. Thompson

Date

2019

5.1.1.119 mqc_realscalarmultiply()

MQC_RealScalarMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

Purpose:

 $\mbox{MQC_RealScalarMultiply}$ is a function that is used to multiply an intrinsic real by an $\mbox{MQC_Scalar.}$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to multiply
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to multiply

Author

L. M. Thompson

Date

2019

5.1.1.120 mqc_realscalarsubtract()

MQC_RealScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic real

Purpose:

 $\mbox{MQC_RealScalarSubtract}$ is a function that is used to subtract an $\mbox{MQC_Scalar}$ from an intrinisic real.

Parameters

in	Real← In	RealIn is Real(kind=real64) The intrinsic real to subtract from
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract

Author

L. M. Thompson

Date

2019

5.1.1.121 mqc_realvectorproduct()

5.1.1.122 mqc_scalar_acos()

MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_ACos} \ \ {\tt is} \ \ {\tt a} \ \ {\tt function} \ \ {\tt used} \ \ {\tt to} \ \ {\tt return} \ \ {\tt the} \ \ {\tt arccosine} \ \ {\tt of} \ \ {\tt an} \ \ {\tt MQC_scalar}.$

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.123 mqc_scalar_asin()

MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_ASin}$ is a function used to return the arcsin of an ${\tt MQC_scalar}.$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.124 mqc_scalar_atan()

MQC_Scalar_ATan is a function used to return the arctangent of an MQC_scalar

Purpose:

 $\texttt{MQC_Scalar_ATan}$ is a function used to return the arctangent of an $\texttt{MQC_scalar}$.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar)
		The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.125 mqc_scalar_atan2()

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

Purpose:

 ${\tt MQC_Scalar_ATan2}$ is a function used to return the arctangent of an ${\tt MQC_scalar}$ accounting for quadrant of Argand diagram.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.126 mqc_scalar_cmplx()

MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars

Purpose:

 ${\tt MQC_Scalar_Cmplx}$ is a function used to set a complex ${\tt MQC_Scalar}$ type variable from two other ${\tt MQC_Scalar}$ variables.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar)
		The real part of MQC_Scalar_Cmplx
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The imaginary part of MQC_Scalar_Cmplx

Author

L. M. Thompson

Date

2019

5.1.1.127 mqc_scalar_complex_conjugate()

MQC_Scalar_Complex_Conjugate is a function that returns the complex conjugate of an MQC_Scalar

Purpose:

 ${\tt MQC_Scalar_Complex_Conjugate}$ is a function that returns the complex conjugate of an ${\tt MQC_Scalar}$.

Parameters

in	Scalar←	
	In	ScalarIn is Type(MQC_Scalar)
		The MQC_Scalar input variable

Author

L. M. Thompson

Date

2018

5.1.1.128 mqc_scalar_complex_imagpart()

```
\label{type mqc_scalar} type (mqc\_scalar) \ function \ mqc\_algebra::mqc\_scalar\_complex\_imagpart \ ( \\ type (mqc\_scalar), \ intent(in) \ \textit{ScalarIn} \ )
```

MQC_Scalar_Complex_ImagPart is a function that returns the inaginary part of an MQC_Scalar

Purpose:

 $\texttt{MQC_Scalar_Complex_RealPart}$ is a function that returns the imaginary part of an $\texttt{MQC_Scalar.}$

Parameters

in	Scalar⊷	
	In	ScalarIn is Type(MQC_Scalar)
		The MQC_Scalar input variable

Author

L. M. Thompson

Date

2019

5.1.1.129 mqc_scalar_complex_realpart()

MQC_Scalar_Complex_RealPart is a function that returns the real part of an MQC_Scalar

Purpose:

 $\texttt{MQC_Scalar_Complex_RealPart}$ is a function that returns the real part of an $\texttt{MQC_Scalar.}$

Parameters

in	Scalar←	
	In	ScalarIn is Type(MQC_Scalar)
		The MQC_Scalar input variable

Author

L. M. Thompson

Date

2019

5.1.1.130 mqc_scalar_cos()

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_Cos}$ is a function used to return the cosine of an ${\tt MQC_scalar}.$

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.131 mqc_scalar_get_abs_value()

MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable

Purpose:

 ${\tt MQC_Scalar_Get_ABS_Value}$ is a function that returns the absolute value of ${\tt MQC_scalar}$ variable.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested

Author

A. Mahler

Date

2018

5.1.1.132 mqc_scalar_get_intrinsic_complex()

MQC_Scalar_Get_Intrinsic_Complex is a function that returns the MQC_scalar value as an intrinsic complex

Purpose:

 ${\tt MQC_Scalar_Get_Intrinsic_Complex}$ is a function that returns the ${\tt MQC_scalar}$ value as an intrinsic complex.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested

Author

L. M. Thompson

Date

2017

5.1.1.133 mqc_scalar_get_intrinsic_integer()

MQC_Scalar_Get_Intrinsic_Integer is a function that returns the MQC_scalar value as an intrinsic integer

Purpose:

 ${\tt MQC_Scalar_Get_Intrinsic_Integer}$ is a function that returns the ${\tt MQC_scalar}$ value as an intrinsic integer.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested

Author

L. M. Thompson

Date

2017

5.1.1.134 mqc_scalar_get_intrinsic_real()

MQC_Scalar_Get_Intrinsic_Real is a function that returns the MQC_scalar value as an intrinsic real

Purpose:

 ${\tt MQC_Scalar_Get_Intrinsic_Real}$ is a function that returns the ${\tt MQC_scalar}$ value as an intrinsic real.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested

Author

L. M. Thompson

Date

2017

5.1.1.135 mqc_scalar_get_random_value()

MQC_Scalar_Get_Random_Value is a function that returns a random real value from a uniform distribution between zero and one

Purpose:

 $\mbox{MQC_Scalar_Get_Random_Value}$ is a function that returns a random real value from a uniform distribution between zero and one.

in,out	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be filled

Author

X. Dong

Date

2019

5.1.1.136 mqc scalar havecomplex()

MQC_Scalar_HaveComplex is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type complex

Purpose:

 ${\tt MQC_Scalar_HaveComplex}$ is a function that returns TRUE or FALSE indicating whether an ${\tt MQC_scalar}$ is of type complex.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar to be tested

Author

L. M. Thompson

Date

2017

5.1.1.137 mqc_scalar_haveinteger()

MQC_Scalar_HaveInteger is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type integer

Purpose:

 ${\tt MQC_Scalar_HaveInteger}$ is a function that returns TRUE or FALSE indicating whether an ${\tt MQC_scalar}$ is of type integer.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar to be tested

Author

L. M. Thompson

Date

2017

5.1.1.138 mqc_scalar_havereal()

MQC_Scalar_HaveReal is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type real

Purpose:

 $\mbox{MQC_Scalar_HaveReal}$ is a function that returns TRUE or FALSE indicating whether an $\mbox{MQC_scalar}$ is of type real.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar to be tested

Author

L. M. Thompson

Date

2017

5.1.1.139 mqc_scalar_isallocated()

MQC_Scalar_IsAllocated is used to determine the allocation status of an MQC_Scalar

Purpose:

 ${\tt MQC_Scalar_IsAllocated}$ is a subroutine used to determine the allocation status of an ${\tt MQC_Scalar.}$

Parameters

in,	out	Scalar	
			Scalar is $Type(MQC_Scalar)$ The name of the MQC_Scalar variable to check allocation status

Author

L. M. Thompson

Date

2017

5.1.1.140 mqc_scalar_sin()

MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_Sin}$ is a function used to return the sine of an ${\tt MQC_scalar}$.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar)
		The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.141 mqc_scalar_sqrt()

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_Sqrt}$ is a function used to return the square root of an ${\tt MQC_scalar}.$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2016

5.1.1.142 mqc_scalar_tan()

MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_Tan}$ is a function used to return the tangent of an ${\tt MQC_scalar}.$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

5.1.1.143 mqc_scalaradd()

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

Purpose:

 ${\tt MQC_ScalarAdd}$ is a function that sums two ${\tt MQC_Scalar}$ objects.

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar to be summed
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MOC Scalar to be summed

Author

L. M. Thompson

Date

2016

5.1.1.144 mqc_scalarcomplexadd()

MQC_ScalarComplexAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

Purpose:

 $\ensuremath{\mathtt{MQC_ScalarComplexAdd}}$ is a function that is used to sum an intrinsic complex by an $\ensuremath{\mathtt{MQC_Scalar.}}$

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to sum
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to sum

Author

L. M. Thompson

Date

2019

5.1.1.145 mqc_scalarcomplexdivide()

MQC_ScalarComplexDivide is a function that is used to divide an MQC_Scalar by an intrinsic complex

Purpose:

 ${\tt MQC_ScalarComplexDivide}$ is a function that is used to divide an ${\tt MQC_Scalar}$ by an intrinsic complex.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable numerator
in	Complex←	
	In	ComplexIn is Complex(kind=real64) The intrinsic complex variable denominator

Author

L. M. Thompson

Date

2019

5.1.1.146 mqc_scalarcomplexexponent()

MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex

Purpose:

 $\texttt{MQC_ScalarComplexExponent}$ is a function that raises an $\texttt{MQC_Scalar}$ to the power of an intrinsic complex.

in	Scalar	
		Scalar1 is Type(MQC_Scalar) The base value
in	Comp⇔	
	In	CompIn is Complex(kind=real64) The power value

Author

L. M. Thompson

Date

2019

5.1.1.147 mqc_scalarcomplexmultiply()

MQC_ScalarComplexMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarComplexMultiply}$ is a function that is used to multiply an intrinsic complex by an $\texttt{MQC_Scalar.}$

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to multiply
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to multiply

Author

L. M. Thompson

Date

2019

5.1.1.148 mqc_scalarcomplexsubtract()

MQC_ScalarComplexSubtract is a function that is used to subtract an intrinsic complex from an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarComplexSubtract}$ is a function that is used to subtract an intrinsic complex from an $\mbox{MQC_Scalar.}$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract from
in	Complex←	
	In	ComplexIn is Complex(kind=real64) The intrinsic complex to subtract

Author

L. M. Thompson

Date

2019

5.1.1.149 mqc_scalardivide()

MQC_ScalarDivide is a function that divides two MQC_Scalar objects

Purpose:

 ${\tt MQC_ScalarDivide}$ is a function that divides ${\tt MQC_Scalar}$ objects.

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The numerator
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The denominator

Author

L. M. Thompson

Date

2016

5.1.1.150 mqc_scalareq()

MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal

Purpose:

```
\ensuremath{\mathsf{MQC\_ScalarEQ}} is a function that returns TRUE if two \ensuremath{\mathsf{MQC\_Scalar}} variables are equal.
```

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.1.151 mqc_scalarexponent()

MQC_ScalarExponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar

Purpose:

 ${\tt MQC_ScalarExponent}$ is a function that raises one ${\tt MQC_Scalar}$ to the power of another ${\tt MQC_Scalar}.$

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The base value
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The power value

Author

L. M. Thompson

Date

2016

5.1.1.152 mqc_scalarge()

MQC_ScalarGE is a function that returns TRUE if the left MQC_Scalar is greater than or equal the right MQC←_Scalar

Purpose:

 ${\tt MQC_ScalarGE}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is greater than or equal to the right ${\tt MQC_Scalar}.$

When dealing with complex numbers, the function returns TRUE if the left real part is is greater than or equal to the right real part and FALSE if the left real part is less than the right real part.

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MOC Scalar)

Author

L. M. Thompson

Date

2016

5.1.1.153 mqc_scalargt()

MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar

Purpose:

 ${\tt MQC_ScalarGT}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is greater than the right ${\tt MQC_Scalar}$.

When dealing with complex numbers, the function returns TRUE if the left real part is greater than the right real part and FALSE if the left real part is less than the right real part. If the left real part is equal to the right real part, the function returns TRUE if the left imaginary part is greater than the right imaginary part and FALSE otherwise.

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.1.154 mqc_scalargtinteger()

MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer

Purpose:

 ${\tt MQC_ScalarGTInteger}$ is a function that returns TRUE if a ${\tt MQC_Scalar}$ is greater than an intrinsic integer.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is greater than the intrinsic integer and FALSE if the real part of the MQC_Scalar is less than the intrinsic integer. If the real part of the MQC_Scalar is equal to the intrinsic integer, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.155 mqc_scalargtreal()

MQC_ScalarGTReal is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic real

Purpose:

 $\ensuremath{\mathtt{MQC_Scalar}}$ GTReal is a function that returns TRUE if a $\ensuremath{\mathtt{MQC_Scalar}}$ is greater than an intrinsic real.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is greater than the intrinsic real and FALSE if the real part of the MQC_Scalar is less than the intrinsic real. If the real part of the MQC_Scalar is equal to the intrinsic real, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Intln	
		RealIn is Real(kind=int64) The intrinsic real that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.156 mqc_scalarintegeradd()

MQC_ScalarIntegerAdd is a function that is used to sum an intrinsic integer by an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarIntegerSum}$ is a function that is used to sum an intrinsic integer by an $\mbox{MQC_Scalar}.$

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to sum
in	Scalar	
Generated	by Doxygen	Scalar is Type(MQC_Scalar) The MQC_Scalar varibale to sum

Author

L. M. Thompson

Date

2019

5.1.1.157 mqc_scalarintegerdivide()

MQC_ScalarIntegerDivide is a function that is used to divide an MQC_Scalar by an intrinsic integer

Purpose:

 $\texttt{MQC_ScalarIntegerDivide}$ is a function that is used to divide an $\texttt{MQC_Scalar}$ by an intrinsic integer.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable numerator
in	Integer← In	IntegerIn is Integer(kind=int64)
		The intrinsic integer variable denominator

Author

L. M. Thompson

Date

2019

5.1.1.158 mqc_scalarintegerexponent()

MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer

Purpose:

 $\mbox{MQC_ScalarIntegerExponent}$ is a function that raises an $\mbox{MQC_Scalar}$ to the power of an intrinsic integer.

Parameters

in	Scalar	
		Scalar1 is Type(MQC_Scalar) The base value
in	Intln	
		IntIn is Integer(kind=int64) The power value

Author

L. M. Thompson

Date

2019

5.1.1.159 mqc_scalarintegermultiply()

MQC_ScalarIntegerMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarIntegerMultiply}$ is a function that is used to multiply an intrinsic integer by an $\texttt{MQC_Scalar.}$

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to multiply
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar varibale to multiply

Author

L. M. Thompson

Date

2019

5.1.1.160 mqc_scalarintegersubtract()

MQC_ScalarIntegerSubtract is a function that is used to subtract an intrinsic integer from an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarIntegerSubtract}$ is a function that is used to subtract an intrinsic integer from an $\texttt{MQC_Scalar.}$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract from
in	Integer←	
	In	IntegerIn is Integer(kind=int64) The intrinsic integer to subtract

Author

L. M. Thompson

Date

2019

5.1.1.161 mqc_scalarle()

MQC_ScalarLE is a function that returns TRUE if the left MQC_Scalar is less than or equal the right MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarLE}$ is a function that returns TRUE if the left $\texttt{MQC_Scalar}$ is less than or equal to the right $\texttt{MQC_Scalar}$.

When dealing with complex numbers, the function returns TRUE if the left real part is less than or equal to the right real part and FALSE if the left real part is greater than the right real part.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.1.162 mqc_scalarleinteger()

MQC_ScalarLEInteger is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic integer

Purpose:

 ${\tt MQC_ScalarLEInteger}$ is a function that returns TRUE if a ${\tt MQC_Scalar}$ is less than or equal to an intrinsic integer.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than or equal to the intrinsic integer and FALSE if the real part of the MQC_Scalar is greater than the intrinsic integer.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.163 mqc_scalarlereal()

MQC_ScalarLEReal is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic real

Purpose:

 $\texttt{MQC_ScalarLEReal}$ is a function that returns TRUE if a $\texttt{MQC_Scalar}$ is less than or equal to an intrinsic real.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than or equal to the intrinsic real and FALSE if the real part of the MQC_Scalar is greater than the intrinsic real.

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Intln	
		RealIn is Real(kind=int64) The intrinsic real that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.164 mqc_scalarlt()

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar

Purpose:

 ${\tt MQC_ScalarLT}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is less than the right ${\tt MQC_Scalar}$.

When dealing with complex numbers, the function returns TRUE if the left real part is less than the right real part and FALSE if the left real part is greater than the right real part. If the left real part is equal to the right real part, the function returns TRUE if the left imaginary part is less than the right imaginary part and FALSE otherwise.

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.1.165 mqc_scalarItreal()

MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real

Purpose:

 ${\tt MQC_ScalarLTReal}$ is a function that returns TRUE if a ${\tt MQC_Scalar}$ is less than an intrinsic real.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than the intrinsic real and FALSE if the real part of the MQC_Scalar is greater than the intrinsic real. If the real part of the MQC_Scalar is equal to the intrinsic real, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Real⊷	
	In	RealIn is Real(kind=real64) The intrinsic real that will be tested.

Author

L. M. Thompson

Date

2019

5.1.1.166 mqc_scalarmatrixproduct()

5.1.1.167 mqc_scalarmultiply()

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects

Purpose:

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects.

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar to be multiplied
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar to be multiplied

Author

L. M. Thompson

Date

2016

5.1.1.168 mqc_scalarne()

MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal

Purpose:

 $\ensuremath{\mathtt{MQC_ScalarNE}}$ is a function that returns TRUE if two $\ensuremath{\mathtt{MQC_Scalar}}$ variables are not equal.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

5.1.1.169 mqc_scalarrealadd()

MQC_ScalarRealAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

Purpose:

 $\ensuremath{\mathsf{MQC_ScalarRealSum}}$ is a function that is used to sum an intrinsic real by an $\ensuremath{\mathsf{MQC_Scalar}}.$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to sum
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to sum

Author

L. M. Thompson

Date

2019

5.1.1.170 mqc_scalarrealdivide()

MQC_ScalarRealDivide is a function that is used to divide an MQC_Scalar by an intrinsic real

Purpose:

 $\mbox{MQC_ScalarRealDivide}$ is a function that is used to divide an $\mbox{MQC_Scalar}$ by an intrinsic real.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable numerator
in	Real←	
	In	RealIn is Real(kind=real64) The intrinsic real variable denominator

Author

L. M. Thompson

Date

2019

5.1.1.171 mqc_scalarrealexponent()

MQC_ScalarRealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real

Purpose:

 $\texttt{MQC_ScalarRealExponent}$ is a function that raises an $\texttt{MQC_Scalar}$ to the power of an intrinsic real.

Parameters

in	Scalar	
		Scalarl is Type(MQC_Scalar) The base value
in	Real⊷	
	In	RealIn is Real(kind=real64) The power value

Author

L. M. Thompson

Date

2019

5.1.1.172 mqc_scalarrealmultiply()

MQC_ScalarRealMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarRealMultiply}$ is a function that is used to multiply an intrinsic real by an $\texttt{MQC_Scalar.}$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to multiply
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to multiply

Author

L. M. Thompson

Date

2019

5.1.1.173 mqc_scalarrealsubtract()

MQC_ScalarRealSubtract is a function that is used to subtract an intrinsic real from an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarRealSubtract}$ is a function that is used to subtract an intrinsic real from an $\texttt{MQC_Scalar.}$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract from
in	Real←	
	In	RealIn is Real(kind=real64) The intrinsic real to subtract

Author

L. M. Thompson

Date

2019

5.1.1.174 mqc_scalarsubtract()

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects

Purpose:

 $\texttt{MQC_ScalarSubtract}$ is a function that subtracts two $\texttt{MQC_Scalar}$ objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar from which Scalar2 will be subtracted
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar which will be subtracted from Scalar1

Author

L. M. Thompson

Date

2016

5.1.1.175 mqc_scalarvectordifference()

5.1.1.176 mqc_scalarvectorproduct()

5.1.1.177 mqc_scalarvectorsum()

5.1.1.178 mqc_set_array2tensor()

5.1.1.179 mqc_set_array2vector_complex()

5.1.1.180 mqc_set_array2vector_integer()

5.1.1.181 mqc_set_array2vector_real()

5.1.1.182 mqc_set_complexarray2matrix()

5.1.1.183 mqc_set_integerarray2matrix()

5.1.1.184 mqc_set_matrix2complexarray()

5.1.1.185 mqc_set_matrix2integerarray()

5.1.1.186 mqc_set_matrix2matrix()

5.1.1.187 mqc_set_matrix2realarray()

5.1.1.188 mqc_set_realarray2matrix()

5.1.1.189 mqc_set_vector2complexarray()

5.1.1.190 mqc_set_vector2integerarray()

5.1.1.191 mqc_set_vector2realarray()

5.1.1.192 mqc_set_vector2vector()

5.1.1.193 mqc_vector2diagmatrix()

5.1.1.194 mqc_vector_abs()

5.1.1.195 mqc_vector_argsort()

5.1.1.196 mqc_vector_cast_complex()

5.1.1.197 mqc vector cast real()

5.1.1.198 mqc_vector_cmplx()

5.1.1.199 mqc_vector_complex_imagpart()

5.1.1.200 mqc_vector_complex_realpart()

5.1.1.201 mqc_vector_conjugate_transpose()

```
\label{type mqc_vector} type (mqc\_vector) \ \ function \ mqc\_algebra:: mqc\_vector\_conjugate\_transpose \ ( \\ class (mqc\_vector) \ , \ intent(in) \ \textit{Vector} \ )
```

5.1.1.202 mqc_vector_copy_complex2int()

5.1.1.203 mqc_vector_copy_complex2real()

5.1.1.204 mqc_vector_copy_int2complex()

5.1.1.205 mqc_vector_copy_int2real()

5.1.1.206 mqc_vector_copy_real2complex()

5.1.1.207 mqc_vector_copy_real2int()

5.1.1.208 mqc_vector_havecomplex()

5.1.1.209 mqc_vector_haveinteger()

5.1.1.210 mqc_vector_havereal()

5.1.1.211 mqc_vector_initialize()

5.1.1.212 mqc_vector_isallocated()

5.1.1.213 mqc_vector_iscolumn()

5.1.1.214 mqc_vector_maxloc()

5.1.1.215 mqc_vector_maxval()

5.1.1.216 mqc_vector_minloc()

5.1.1.217 mqc_vector_minval()

5.1.1.218 mqc_vector_norm()

5.1.1.219 mqc_vector_pop()

5.1.1.220 mqc_vector_power()

5.1.1.221 mqc_vector_push()

5.1.1.222 mqc_vector_scalar_at()

5.1.1.223 mqc_vector_scalar_increment()

5.1.1.224 mqc_vector_scalar_put()

5.1.1.225 mqc_vector_shift()

5.1.1.226 mqc_vector_sort()

5.1.1.227 mqc_vector_sqrt()

5.1.1.228 mqc_vector_transpose()

5.1.1.229 mqc_vector_unshift()

5.1.1.230 mqc_vector_vector_at()

5.1.1.231 mqc_vector_vector_put()

5.1.1.232 mqc_vectorcomplexdivide()

5.1.1.233 mqc_vectorcomplexproduct()

5.1.1.234 mqc_vectorintegerdivide()

5.1.1.235 mqc_vectorintegerproduct()

5.1.1.236 mqc_vectormatrixdotproduct()

5.1.1.237 mqc_vectorrealdivide()

5.1.1.238 mqc_vectorrealproduct()

5.1.1.239 mqc_vectorscalardivide()

5.1.1.240 mqc_vectorscalarproduct()

5.1.1.241 mqc_vectorvectordifference()

5.1.1.242 mqc_vectorvectordotproduct()

5.1.1.243 mqc_vectorvectorsum()

5.1.1.244 symindexhash()

5.2 mqc_est Module Reference

Data Types

- interface assignment(=)
- interface contraction
- · interface dagger
- interface dot product
- · interface matmul
- · type mgc determinant
- type mqc_determinant_string
- interface mqc_matrix_undospinblockghf
- interface mqc_print
- type mgc pscf wavefunction
- type mqc_scf_eigenvalues
- type mqc_scf_integral
- type mqc_twoeris
- · type mgc wavefunction
- interface operator(*)
- interface operator(+)
- interface operator(-)
- · interface transpose

Functions/Subroutines

- subroutine mqc_print_wavefunction (wavefunction, iOut, label)
- subroutine mqc_print_integral (integral, iOut, header, blank_at_top, blank_at_bottom)
- subroutine mqc_print_eigenvalues (eigenvalues, iOut, header, blank_at_top, blank_at_bottom)
- subroutine mqc_print_twoeris (twoERIs, iOut, header, blank_at_top, blank_at_bottom)
- · logical function mgc integral isallocated (Integral)
- logical function mqc_eigenvalues_isallocated (Eigenvalues)
- logical function mqc_integral_has_alpha (integral)
- logical function mgc integral has beta (integral)
- logical function mqc_integral_has_alphabeta (integral)
- · logical function mgc integral has betaalpha (integral)
- logical function mqc_eigenvalues_has_alpha (eigenvalues)
- logical function mqc_eigenvalues_has_beta (eigenvalues)
- character(len=64) function mgc integral array type (integral)
- character(len=64) function mqc eigenvalues array type (eigenvalues)

- character(len=64) function mqc_integral_array_name (integral)
- character(len=64) function mqc_eigenvalues_array_name (eigenvalues)
- subroutine mqc_integral_add_name (integral, arrayName)
- subroutine mqc_eigenvalues_add_name (eigenvalues, arrayName)
- integer(kind=int64) function mqc_integral_dimension (integral, label, axis)
- integer(kind=int64) function mqc_eigenvalues_dimension (eigenvalues, label)
- subroutine mgc twoeris allocate (twoERIs, storageType, integralType, alpha, beta, alphaBeta, betaAlpha)
- subroutine mqc_integral_allocate (integral, arrayName, arrayType, alpha, beta, alphaBeta, betaAlpha)
- subroutine mqc_eigenvalues_allocate (eigenvalues, arrayName, arrayType, alpha, beta)
- subroutine mqc integral identity (integral, nAlpha, nBeta, label, nAlpha2, nBeta2)
- subroutine mqc_integral_initialize (integral, nAlpha, nBeta, scalar, label, nAlpha2, nBeta2)
- type(mgc matrix) function mgc integral output block (integral, blockName)
- type(mgc scf integral) function mgc integral output orbitals (integral, orbString, alphaOrbsIn, betaOrbsIn, axis)
- type(mgc scf integral) function mgc integral swap orbitals (integral, alphaOrbsIn, betaOrbsIn, axis)
- type(mgc vector) function mgc eigenvalues output block (eigenvalues, blockName)
- subroutine mqc_integral_output_array (matrixOut, integralIn)
- subroutine mgc eigenvalues output array (vectorOut, eigenvaluesIn)
- type(mqc_scf_integral) function mqc_integral_matrix_multiply (integralA, matrixB, label)
- type(mqc_scf_integral) function mqc_matrix_integral_multiply (matrixA, integralB, label)
- type(mqc_scf_integral) function mqc_integral_sum (integralA, integralB)
- type(mqc_scf_integral) function mqc_integral_difference (integralA, integralB)
- type(mqc_scf_integral) function mqc_integral_integral_multiply (integralA, integralB, label)
- type(mqc_scf_integral) function mqc_scalar_integral_multiply (scalar, integral)
- type(mqc_scf_integral) function mqc_integral_scalar_multiply (integral, scalar)
- type(mqc_scf_integral) function mqc_integral_eigenvalues_multiply (integralA, eigenvaluesB, label)
- type(mqc_scf_integral) function mqc_eigenvalues_integral_multiply (eigenvaluesA, integralB, label)
- type(mqc_scf_eigenvalues) function mqc_eigenvalues_eigenvalues_multiply (eigenvaluesA, eigenvaluesB, label)
- type(mqc_scalar) function mqc_eigenvalue_eigenvalue_dotproduct (eigenvalueA, eigenvalueB)
- type(mqc_scf_integral) function mqc_integral_transpose (integral, label)
- type(mqc_scf_integral) function mqc_integral_conjugate_transpose (integral, label)
- type(mqc_scalar) function mqc_integral_norm (integral, methodIn)
- subroutine mgc matrix spinblockghf (array, nelec, multi, elist)
- · subroutine mqc matrix undospinblockghf eigenvalues (eigenvaluesIn, vectorOut)
- subroutine mgc matrix undospinblockghf integral (integralIn, matrixOut)
- type(mqc_scalar) function mqc_scf_integral_contraction (integral1, integral2)
- type(mgc scf integral) function mgc eri integral contraction (eris, integral, label)
- subroutine mqc_scf_integral_generalized_eigensystem (integralA, integralB, eVals, rEVecs, IEVecs)
- subroutine mqc_scf_integral_diagonalize (integral, eVals, eVecs)
- type(mqc_scf_integral) function mqc_scf_integral_inverse (integral)
- type(mgc scalar) function mgc scf integral trace (integral)
- type(mgc scalar) function mgc scf integral determinant (integral)
- subroutine mqc_integral_set_energy_list (integral, elist)
- integer(kind=int64) function, dimension(:), allocatable mqc_integral_get_energy_list (integral)
- subroutine mqc_integral_delete_energy_list (integral)
- subroutine mqc_scf_eigenvalues_power (eigenvalues, power)
- type(mqc_scalar) function mqc_twoeris_at (twoERIs, i, j, k, I, spinBlock)
- type(mqc_scalar) function mqc_integral_at (integral, i, j, spinBlock)
- type(mqc_scalar) function mqc_eigenvalues_at (eigenvalues, i, spinBlock)
- subroutine mqc_scf_transformation_matrix (overlap, transform_matrix, nBasUse)
- subroutine gen det str (IOut, IPrint, NBasisIn, NAlphaIn, NBetaIn, Determinants, NCoreIn)

- subroutine twoeri_trans (IOut, IPrint, MO_Coeff, ERIs, MO_ERIs, UHF)
- type(mqc_matrix) function get_one_gamma_matrix (iOut, iPrint, nBasisIn, nState, determinants, ci_amplitudes, nCoreIn, nOrbsIn)

5.2.1 Function/Subroutine Documentation

5.2.1.1 gen det str()

```
subroutine mqc_est::gen_det_str (
    integer(kind=int64) IOut,
    integer(kind=int64) IPrint,
    type(mqc_scalar) NBasisIn,
    type(mqc_scalar) NAlphaIn,
    type(mqc_scalar) NBetaIn,
    type(mqc_determinant) Determinants,
    type(mqc_scalar), optional NCoreIn )
```

5.2.1.2 get one gamma matrix()

5.2.1.3 mqc_build_ci_hamiltonian()

5.2.1.4 mqc_eigenvalue_eigenvalue_dotproduct()

5.2.1.5 mqc_eigenvalues_add_name()

5.2.1.6 mgc eigenvalues allocate()

5.2.1.7 mqc_eigenvalues_array_name()

5.2.1.8 mqc_eigenvalues_array_type()

5.2.1.9 mqc_eigenvalues_at()

5.2.1.10 mqc_eigenvalues_dimension()

5.2.1.11 mqc_eigenvalues_eigenvalues_multiply()

5.2.1.12 mqc_eigenvalues_has_alpha()

5.2.1.13 mqc_eigenvalues_has_beta()

5.2.1.14 mqc_eigenvalues_integral_multiply()

5.2.1.15 mqc_eigenvalues_isallocated()

5.2.1.16 mqc_eigenvalues_output_array()

5.2.1.17 mqc_eigenvalues_output_block()

5.2.1.18 mqc_eri_integral_contraction()

5.2.1.19 mqc_integral_add_name()

5.2.1.20 mqc_integral_allocate()

5.2.1.21 mqc_integral_array_name()

5.2.1.22 mqc_integral_array_type()

5.2.1.23 mqc_integral_at()

5.2.1.24 mqc_integral_conjugate_transpose()

5.2.1.25 mqc_integral_delete_energy_list()

5.2.1.26 mqc_integral_difference()

5.2.1.27 mqc_integral_dimension()

5.2.1.28 mqc_integral_eigenvalues_multiply()

5.2.1.29 mqc_integral_get_energy_list()

5.2.1.30 mqc_integral_has_alpha()

5.2.1.31 mgc integral has alphabeta()

5.2.1.32 mqc_integral_has_beta()

5.2.1.33 mqc_integral_has_betaalpha()

5.2.1.34 mqc_integral_identity()

5.2.1.35 mqc_integral_initialize()

5.2.1.36 mqc_integral_integral_multiply()

5.2.1.37 mqc_integral_isallocated()

5.2.1.38 mqc_integral_matrix_multiply()

5.2.1.39 mqc_integral_norm()

5.2.1.40 mqc_integral_output_array()

5.2.1.41 mqc_integral_output_block()

5.2.1.42 mqc_integral_output_orbitals()

5.2.1.43 mqc_integral_scalar_multiply()

5.2.1.44 mqc_integral_set_energy_list()

5.2.1.45 mqc integral sum()

5.2.1.46 mgc integral swap orbitals()

5.2.1.47 mqc_integral_transpose()

5.2.1.48 mqc_matrix_integral_multiply()

5.2.1.49 mgc matrix spinblockghf()

5.2.1.50 mqc_matrix_undospinblockghf_eigenvalues()

5.2.1.51 mqc_matrix_undospinblockghf_integral()

5.2.1.52 mgc print eigenvalues()

5.2.1.53 mqc_print_integral()

5.2.1.54 mqc print twoeris()

5.2.1.55 mgc print wavefunction()

5.2.1.56 mqc_scalar_integral_multiply()

5.2.1.57 mqc_scf_eigenvalues_power()

5.2.1.58 mqc_scf_integral_contraction()

5.2.1.59 mqc_scf_integral_determinant()

5.2.1.60 mqc_scf_integral_diagonalize()

5.2.1.61 mqc_scf_integral_generalized_eigensystem()

5.2.1.62 mqc scf integral inverse()

5.2.1.63 mqc_scf_integral_trace()

5.2.1.64 mqc_scf_transformation_matrix()

5.2.1.65 mqc_twoeris_allocate()

5.2.1.66 mqc twoeris at()

5.2.1.67 slater_condon()

5.2.1.68 twoeri_trans()

```
subroutine mqc_est::twoeri_trans (
    integer(kind=int64) IOut,
    integer(kind=int64) IPrint,
    type(mqc_scf_integral), intent(in) MO_Coeff,
    type(mqc_twoeris), intent(in) ERIs,
    type(mqc_twoeris), intent(out) MO_ERIs,
    logical UHF)
```

Chapter 6

Data Type Documentation

6.1 mqc_algebra::abs Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scalar_get_abs_value (Scalar)
 MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable
- type(mqc_vector) function mqc_vector_abs (A)

6.1.1 Member Function/Subroutine Documentation

6.1.1.1 mqc_scalar_get_abs_value()

MQC_Scalar_Get_ABS_Value is a function that returns the absolute value of MQC_scalar variable

Purpose:

```
{\tt MQC\_Scalar\_Get\_ABS\_Value} is a function that returns the absolute value of {\tt MQC\_scalar} variable.
```

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The MQC_Scalar to be tested

Author

A. Mahler

Date

2018

6.1.1.2 mqc_vector_abs()

The documentation for this interface was generated from the following file:

• src/mqc algebra.F03

6.2 mqc_algebra::acos Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_scalar_acos (Scalar)
 MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

6.2.1 Member Function/Subroutine Documentation

6.2.1.1 mqc_scalar_acos()

MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_ACos}$ is a function used to return the arccosine of an ${\tt MQC_scalar}$.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.3 mqc_algebra::aimag Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scalar_complex_imagpart (ScalarIn)
 MQC_Scalar_Complex_ImagPart is a function that returns the inaginary part of an MQC_Scalar
- type(mqc_vector) function mqc_vector_complex_imagpart (A)

6.3.1 Member Function/Subroutine Documentation

6.3.1.1 mqc_scalar_complex_imagpart()

MQC_Scalar_Complex_ImagPart is a function that returns the inaginary part of an MQC_Scalar

Purpose:

```
\texttt{MQC\_Scalar\_Complex\_RealPart} is a function that returns the imaginary part of an \texttt{MQC\_Scalar.}
```

Parameters

in	Scalar←	
	In	ScalarIn is Type(MQC_Scalar)
		The MQC_Scalar input variable

Author

L. M. Thompson

Date

2019

6.3.1.2 mqc_vector_complex_imagpart()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.4 mqc_algebra::asin Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_scalar_asin (Scalar)
 MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

6.4.1 Member Function/Subroutine Documentation

6.4.1.1 mqc_scalar_asin()

```
\label{type mqc_scalar} type (mqc\_scalar) \ function \ mqc\_algebra::asin::mqc\_scalar\_asin \ ( \\ type (mqc\_scalar), \ intent(in) \ \textit{Scalar} \ )
```

MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

Purpose:

 MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar .

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.5 mqc_algebra::assignment(=) Interface Reference

Public Member Functions

• subroutine mqc_input_integer_scalar (ScalarOut, ScalarIn)

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

• subroutine mqc_input_real_scalar (ScalarOut, ScalarIn)

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

subroutine mqc_input_complex_scalar (ScalarOut, ScalarIn)

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar

subroutine mqc_output_mqcscalar_scalar (ScalarOut, ScalarIn)

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

• subroutine mqc_output_integer_scalar (ScalarOut, ScalarIn)

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

subroutine mqc_output_real_scalar (ScalarOut, ScalarIn)

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

• subroutine mqc_output_complex_scalar (ScalarOut, ScalarIn)

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar

- subroutine mqc_set_vector2vector (VectorOut, VectorIn)
- subroutine mqc_set_vector2integerarray (ArrayOut, VectorIn)
- subroutine mqc_set_vector2realarray (ArrayOut, VectorIn)
- subroutine mqc_set_vector2complexarray (ArrayOut, VectorIn)
- subroutine mqc_set_array2vector_integer (VectorOut, ArrayIn)
- subroutine mqc_set_array2vector_real (VectorOut, ArrayIn)
- subroutine mqc_set_array2vector_complex (VectorOut, ArrayIn)
- subroutine mqc_set_matrix2matrix (MatrixOut, MatrixIn)
- subroutine mqc_set_matrix2integerarray (ArrayOut, MatrixIn)
- subroutine mgc set matrix2realarray (ArrayOut, MatrixIn)
- subroutine mqc_set_matrix2complexarray (ArrayOut, MatrixIn)
- subroutine mqc_set_integerarray2matrix (MatrixOut, ArrayIn)
- subroutine mqc_set_realarray2matrix (MatrixOut, ArrayIn)
- subroutine mqc_set_complexarray2matrix (MatrixOut, ArrayIn)
- subroutine mqc set array2tensor (TensorOut, ArrayIn)

6.5.1 Member Function/Subroutine Documentation

6.5.1.1 mqc input complex scalar()

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar

Purpose:

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Complex(kind=real64) The value of the input variable

Author

L. M. Thompson

Date

2017

6.5.1.2 mqc_input_integer_scalar()

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

Purpose:

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Integer(kind=int64) The value of the input variable

Author

L. M. Thompson

Date

2016

6.5.1.3 mqc_input_real_scalar()

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

Purpose:

 ${\tt MQC_Input_Integer_Scalar}$ is a subroutine is used to set an intrinsic real to an ${\tt MQC_Scalar}$.

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Real(kind=real64) The value of the input variable

Author

L. M. Thompson

Date

2016

6.5.1.4 mqc_output_complex_scalar()

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar

Purpose:

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Complex(kind=real64) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2017

6.5.1.5 mqc_output_integer_scalar()

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

Purpose:

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Integer(kind=int64) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2016

6.5.1.6 mqc_output_mqcscalar_scalar()

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

Purpose:

 ${\tt MQC_Output_MQCScalar_Scalar} \ \ is \ \ a \ \ subroutine \ \ used \ \ to \ \ output \ \ an \ \ MQC_Scalar \ \ equal \ \ to \ \ an \ \ MQC_Scalar.$

Parameters

in,out	ScalarOut	
		ScalarOut is Type(MQC_Scalar) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2016

6.5.1.7 mqc_output_real_scalar()

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

Purpose:

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar.

Parameters

in,out	ScalarOut	
		ScalarOut is Real(kind=real64) The name of the output variable
in	ScalarIn	
		ScalarIn is Type(MQC_Scalar) The value of the input variable

Author

L. M. Thompson

Date

2016

6.5.1.8 mqc_set_array2tensor()

6.5.1.9 mqc_set_array2vector_complex()

6.5.1.10 mqc_set_array2vector_integer()

6.5.1.11 mqc_set_array2vector_real()

6.5.1.12 mqc_set_complexarray2matrix()

6.5.1.13 mqc_set_integerarray2matrix()

6.5.1.14 mqc_set_matrix2complexarray()

6.5.1.15 mqc_set_matrix2integerarray()

6.5.1.16 mqc_set_matrix2matrix()

6.5.1.17 mqc_set_matrix2realarray()

6.5.1.18 mqc_set_realarray2matrix()

6.5.1.19 mqc_set_vector2complexarray()

6.5.1.20 mqc_set_vector2integerarray()

6.5.1.21 mqc_set_vector2realarray()

6.5.1.22 mqc_set_vector2vector()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.6 mqc_est::assignment(=) Interface Reference

Public Member Functions

- subroutine mqc_integral_output_array (matrixOut, integralIn)
- subroutine mqc_eigenvalues_output_array (vectorOut, eigenvaluesIn)

6.6.1 Member Function/Subroutine Documentation

6.6.1.1 mqc_eigenvalues_output_array()

6.6.1.2 mqc_integral_output_array()

The documentation for this interface was generated from the following file:

src/mqc est.F03

6.7 mgc algebra::atan Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_scalar_atan (Scalar)

MQC_Scalar_ATan is a function used to return the arctangent of an MQC_scalar

6.7.1 Member Function/Subroutine Documentation

6.7.1.1 mqc_scalar_atan()

MQC Scalar ATan is a function used to return the arctangent of an MQC scalar

Purpose:

MQC_Scalar_ATan is a function used to return the arctangent of an MQC_scalar.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.8 mqc_algebra::atan2 Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_scalar_atan2 (Scalar)

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

6.8.1 Member Function/Subroutine Documentation

6.8.1.1 mqc scalar atan2()

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

Purpose:

 $\mbox{MQC_Scalar_ATan2}$ is a function used to return the arctangent of an $\mbox{MQC_scalar}$ accounting for quadrant of Argand diagram.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.9 mqc_algebra::cmplx Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scalar_cmplx (Scalar1, Scalar2)
 - MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars
- type(mqc_vector) function mqc_vector_cmplx (Vector1, Vector2)

6.9.1 Member Function/Subroutine Documentation

6.9.1.1 mqc scalar cmplx()

MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars

Purpose:

 ${\tt MQC_Scalar_Cmplx}$ is a function used to set a complex ${\tt MQC_Scalar}$ type variable from two other ${\tt MQC_Scalar}$ variables.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The real part of MQC_Scalar_Cmplx
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The imaginary part of MQC_Scalar_Cmplx

Author

L. M. Thompson

Date

2019

6.9.1.2 mqc_vector_cmplx()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.10 mgc algebra::conjg Interface Reference

Public Member Functions

• type(mqc_scalar) function mqc_scalar_complex_conjugate (ScalarIn)

MQC_Scalar_Complex_Conjugate is a function that returns the complex conjugate of an MQC_Scalar

6.10.1 Member Function/Subroutine Documentation

6.10.1.1 mqc_scalar_complex_conjugate()

MQC Scalar Complex Conjugate is a function that returns the complex conjugate of an MQC Scalar

Purpose:

 ${\tt MQC_Scalar_Complex_Conjugate}$ is a function that returns the complex conjugate of an ${\tt MQC_Scalar}$.

Parameters

i	in	Scalar⊷	
		In	ScalarIn is Type(MQC_Scalar)
			The MQC_Scalar input variable

Author

L. M. Thompson

Date

2018

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.11 mqc_algebra::contraction Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_matrix_matrix_contraction (Matrix1, Matrix2)

6.11.1 Member Function/Subroutine Documentation

6.11.1.1 mqc_matrix_matrix_contraction()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.12 mqc_est::contraction Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scf_integral_contraction (integral1, integral2)
- type(mqc_scf_integral) function mqc_eri_integral_contraction (eris, integral, label)

6.12.1 Member Function/Subroutine Documentation

6.12.1.1 mqc_eri_integral_contraction()

6.12.1.2 mqc_scf_integral_contraction()

The documentation for this interface was generated from the following file:

src/mqc_est.F03

6.13 mgc algebra::cos Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_scalar_cos (Scalar)

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar

6.13.1 Member Function/Subroutine Documentation

6.13.1.1 mqc_scalar_cos()

MQC Scalar Cos is a function used to return the cosine of an MQC scalar

Purpose:

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc algebra.F03

6.14 mqc_algebra::dagger Interface Reference

Public Member Functions

- type(mqc_vector) function mqc_vector_conjugate_transpose (Vector)
- type(mqc_matrix) function mqc_matrix_conjugate_transpose (Matrix)

6.14.1 Member Function/Subroutine Documentation

6.14.1.1 mqc matrix conjugate transpose()

6.14.1.2 mqc_vector_conjugate_transpose()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.15 mqc_est::dagger Interface Reference

Public Member Functions

• type(mqc_scf_integral) function mqc_integral_conjugate_transpose (integral, label)

6.15.1 Member Function/Subroutine Documentation

6.15.1.1 mgc integral conjugate transpose()

The documentation for this interface was generated from the following file:

src/mqc est.F03

6.16 mgc algebra::dot product Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_vectorvectordotproduct (Vector1, Vector2)

6.16.1 Member Function/Subroutine Documentation

6.16.1.1 mqc_vectorvectordotproduct()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.17 mqc_est::dot_product Interface Reference

Public Member Functions

• type(mqc_scalar) function mqc_eigenvalue_eigenvalue_dotproduct (eigenvalueA, eigenvalueB)

6.17.1 Member Function/Subroutine Documentation

6.17.1.1 mqc_eigenvalue_eigenvalue_dotproduct()

The documentation for this interface was generated from the following file:

src/mqc est.F03

6.18 mgc algebra::matmul Interface Reference

Public Member Functions

- type(mgc matrix) function mgc matrixmatrixdotproduct (MA, MB)
- type(mqc_vector) function mqc_matrixvectordotproduct (MA, VB)
- type(mqc_vector) function mqc_vectormatrixdotproduct (VA, MB)

6.18.1 Member Function/Subroutine Documentation

6.18.1.1 mqc_matrixmatrixdotproduct()

6.18.1.2 mqc_matrixvectordotproduct()

6.18.1.3 mqc_vectormatrixdotproduct()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.19 mgc est::matmul Interface Reference

Public Member Functions

- type(mqc_scf_integral) function mqc_integral_matrix_multiply (integralA, matrixB, label)
- type(mqc_scf_integral) function mqc_matrix_integral_multiply (matrixA, integralB, label)
- type(mqc_scf_integral) function mqc_integral_integral_multiply (integralA, integralB, label)
- type(mqc_scf_integral) function mqc_integral_eigenvalues_multiply (integralA, eigenvaluesB, label)
- type(mqc_scf_integral) function mqc_eigenvalues_integral_multiply (eigenvaluesA, integralB, label)
- type(mqc_scf_eigenvalues) function mqc_eigenvalues_eigenvalues_multiply (eigenvaluesA, eigenvaluesB, label)

6.19.1 Member Function/Subroutine Documentation

6.19.1.1 mqc eigenvalues eigenvalues multiply()

6.19.1.2 mqc_eigenvalues_integral_multiply()

6.19.1.3 mqc_integral_eigenvalues_multiply()

6.19.1.4 mqc_integral_integral_multiply()

6.19.1.5 mqc_integral_matrix_multiply()

6.19.1.6 mqc_matrix_integral_multiply()

The documentation for this interface was generated from the following file:

• src/mqc est.F03

6.20 mqc_algebra::matrix_symm2sq Interface Reference

Public Member Functions

- subroutine matrix_symm2sq_integer (N, I_Symm, I_Sq)
- subroutine matrix_symm2sq_real (N, A_Symm, A_Sq)
- subroutine matrix_symm2sq_complex (N, A_Symm, A_Sq)

6.20.1 Member Function/Subroutine Documentation

6.20.1.1 matrix_symm2sq_complex()

```
subroutine mqc_algebra::matrix_symm2sq::matrix_symm2sq_complex (
    integer(kind=int64), intent(in) N,
    complex(kind=real64), dimension(:), intent(in) A_Symm,
    complex(kind=real64), dimension(n,n), intent(out) A_Sq)
```

6.20.1.2 matrix symm2sq integer()

```
subroutine mqc_algebra::matrix_symm2sq::matrix_symm2sq_integer (
    integer(kind=int64), intent(in) N,
    integer(kind=int64), dimension(:), intent(in) I_Symm,
    integer(kind=int64), dimension(n,n), intent(out) I_Sq)
```

6.20.1.3 matrix_symm2sq_real()

```
subroutine mqc_algebra::matrix_symm2sq::matrix_symm2sq_real (
    integer(kind=int64), intent(in) N,
    real(kind=real64), dimension(:), intent(in) A_Symm,
    real(kind=real64), dimension(n,n), intent(out) A_Sq)
```

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.21 mqc_algebra::mqc_cast_complex Interface Reference

Public Member Functions

- type(mqc_vector) function mqc_vector_cast_complex (VA)
- type(mgc matrix) function mgc matrix cast complex (MA)

6.21.1 Member Function/Subroutine Documentation

6.21.1.1 mqc_matrix_cast_complex()

6.21.1.2 mqc_vector_cast_complex()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.22 mgc algebra::mgc cast real Interface Reference

Public Member Functions

- type(mgc vector) function mgc vector cast real (VA)
- type(mqc_matrix) function mqc_matrix_cast_real (MA)

6.22.1 Member Function/Subroutine Documentation

6.22.1.1 mqc_matrix_cast_real()

6.22.1.2 mqc vector cast real()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.23 mqc_est::mqc_determinant Type Reference

Public Attributes

- type(mqc_determinant_string) strings
- character(len=64) order
- integer(kind=int64) ndets
- integer(kind=int64) nalpstr
- integer(kind=int64) nbetstr

6.23.1 Member Data Documentation

6.23.1.1 nalpstr

integer(kind=int64) mqc_est::mqc_determinant::nalpstr

6.23.1.2 nbetstr

integer(kind=int64) mqc_est::mqc_determinant::nbetstr

6.23.1.3 ndets

integer(kind=int64) mqc_est::mqc_determinant::ndets

6.23.1.4 order

character(len=64) mqc_est::mqc_determinant::order

6.23.1.5 strings

type(mqc_determinant_string) mqc_est::mqc_determinant::strings

The documentation for this type was generated from the following file:

• src/mqc_est.F03

6.24 mqc_est::mqc_determinant_string Type Reference

Public Attributes

- type(mqc_matrix) alpha
- type(mqc_matrix) beta

6.24.1 Member Data Documentation

6.24.1.1 alpha

```
type(mqc_matrix) mqc_est::mqc_determinant_string::alpha
```

6.24.1.2 beta

```
type(mqc_matrix) mqc_est::mqc_determinant_string::beta
```

The documentation for this type was generated from the following file:

• src/mqc_est.F03

6.25 mqc_algebra::mqc_have_complex Interface Reference

Public Member Functions

- logical function mqc_vector_havecomplex (Vector)
- logical function mqc_matrix_havecomplex (Matrix)

6.25.1 Member Function/Subroutine Documentation

6.25.1.1 mqc_matrix_havecomplex()

6.25.1.2 mqc_vector_havecomplex()

The documentation for this interface was generated from the following file:

src/mqc_algebra.F03

6.26 mgc algebra::mgc have int Interface Reference

Public Member Functions

- logical function mgc vector haveinteger (Vector)
- logical function mqc_matrix_haveinteger (Matrix)

6.26.1 Member Function/Subroutine Documentation

6.26.1.1 mqc matrix haveinteger()

6.26.1.2 mqc_vector_haveinteger()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.27 mqc_algebra::mqc_have_real Interface Reference

Public Member Functions

- logical function mqc_vector_havereal (Vector)
- logical function mqc_matrix_havereal (Matrix)

6.27.1 Member Function/Subroutine Documentation

6.27.1.1 mqc_matrix_havereal()

6.27.1.2 mqc vector havereal()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.28 mqc_algebra::mqc_matrix Type Reference

Public Member Functions

- Procedure, public print => mqc_print_matrix_algebra1
- Procedure, public initialize => mqc_matrix_initialize
- Procedure, public init => mqc matrix initialize
- Procedure, public identity => mqc_matrix_identity
- Procedure, public set => mqc_matrix_set
- Procedure, public norm => mqc_matrix_norm
- Procedure, public transpose => mqc_matrix_transpose
- Procedure, public dagger => mqc_matrix_conjugate_transpose
- Procedure, public diag => mgc matrix diagonalize
- Procedure, public svd => mqc_matrix_svd
- Procedure, public eigensys => mqc_matrix_generalized_eigensystem
- Procedure, public inv => mgc matrix inverse
- Procedure, public det => mqc_matrix_determinant
- Procedure, public trace => mqc matrix trace
- Procedure, public rmsmax => mqc_matrix_rms_max
- Procedure, public sqrt => mqc_matrix_sqrt
- Procedure, public at => mqc_matrix_scalar_at
- Procedure, public vat => mqc matrix vector at
- Procedure, public mat => mqc_matrix_matrix_at
- Procedure, public put => mqc matrix scalar put
- Procedure, public vput => mqc matrix vector put
- Procedure, public mput => mqc matrix matrix put
- Procedure, public s type => mqc matrix storagetype

Public Attributes

- real(kind=real64), dimension(:,:), allocatable matr
- integer(kind=int64), dimension(:,:), allocatable mati
- complex(kind=real64), dimension(:,:), allocatable matc

6.28.1 Member Function/Subroutine Documentation

6.28.1.1 at() Procedure, public mqc_algebra::mqc_matrix::at () 6.28.1.2 dagger() Procedure, public mqc_algebra::mqc_matrix::dagger () 6.28.1.3 det() Procedure, public mqc_algebra::mqc_matrix::det ()

6.28.1.5 eigensys()

Procedure, public mqc_algebra::mqc_matrix::eigensys ()

Procedure, public mqc_algebra::mqc_matrix::diag ()

6.28.1.6 identity()

Procedure, public mqc_algebra::mqc_matrix::identity () 6.28.1.7 init() Procedure, public mqc_algebra::mqc_matrix::init () 6.28.1.8 initialize() Procedure, public mqc_algebra::mqc_matrix::initialize () 6.28.1.9 inv() Procedure, public mqc_algebra::mqc_matrix::inv () 6.28.1.10 mat() Procedure, public mqc_algebra::mqc_matrix::mat () 6.28.1.11 mput() Procedure, public mqc_algebra::mqc_matrix::mput () 6.28.1.12 norm()

Procedure, public mqc_algebra::mqc_matrix::norm ()

6.28.1.13 print()

Procedure, public mqc_algebra::mqc_matrix::print ()

6.28.1.14 put()

Procedure, public mqc_algebra::mqc_matrix::put ()

6.28.1.15 rmsmax()

Procedure, public mqc_algebra::mqc_matrix::rmsmax ()

6.28.1.16 s_type()

Procedure, public mqc_algebra::mqc_matrix::s_type ()

6.28.1.17 set()

Procedure, public mqc_algebra::mqc_matrix::set ()

6.28.1.18 sqrt()

Procedure, public mqc_algebra::mqc_matrix::sqrt ()

6.28.1.19 svd()

Procedure, public mqc_algebra::mqc_matrix::svd ()

6.28.1.20 trace()

Procedure, public mqc_algebra::mqc_matrix::trace ()

6.28.1.21 transpose()

Procedure, public mqc_algebra::mqc_matrix::transpose ()

6.28.1.22 vat()

Procedure, public mqc_algebra::mqc_matrix::vat ()

6.28.1.23 vput()

Procedure, public mqc_algebra::mqc_matrix::vput ()

6.28.2 Member Data Documentation

6.28.2.1 matc

complex(kind=real64), dimension(:,:), allocatable mqc_algebra::mqc_matrix::matc

6.28.2.2 mati

6.28.2.3 matr

```
real(kind=real64), dimension(:,:), allocatable mqc_algebra::mqc_matrix::matr
```

The documentation for this type was generated from the following file:

• src/mqc algebra.F03

6.29 mgc algebra::mgc matrix diagmatrix put Interface Reference

Public Member Functions

- subroutine mqc_matrix_diagmatrix_put_integer (mat, diagMatrixIn)
- subroutine mqc_matrix_diagmatrix_put_real (mat, diagMatrixIn)
- subroutine mqc_matrix_diagmatrix_put_complex (mat, diagMatrixIn)
- subroutine mqc_matrix_diagmatrix_put_vector (diagVectorIn, mat)

6.29.1 Member Function/Subroutine Documentation

6.29.1.1 mgc matrix diagmatrix put complex()

6.29.1.2 mqc_matrix_diagmatrix_put_integer()

6.29.1.3 mgc matrix diagmatrix put real()

6.29.1.4 mqc_matrix_diagmatrix_put_vector()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.30 mqc_algebra::mqc_matrix_symmmatrix_put Interface Reference

Public Member Functions

- subroutine mqc_matrix_symmmatrix_put_integer (mat, symmMatrixIn)
- subroutine mqc_matrix_symmmatrix_put_real (mat, symmMatrixIn)
- subroutine mqc_matrix_symmmatrix_put_complex (mat, symmMatrixIn)

6.30.1 Member Function/Subroutine Documentation

6.30.1.1 mqc_matrix_symmmatrix_put_complex()

6.30.1.2 mqc_matrix_symmmatrix_put_integer()

6.30.1.3 mqc_matrix_symmmatrix_put_real()

The documentation for this interface was generated from the following file:

src/mqc algebra.F03

6.31 mgc est::mgc matrix undospinblockghf Interface Reference

Public Member Functions

- subroutine mqc_matrix_undospinblockghf_eigenvalues (eigenvaluesIn, vectorOut)
- subroutine mgc matrix undospinblockghf integral (integralIn, matrixOut)

6.31.1 Member Function/Subroutine Documentation

6.31.1.1 mqc_matrix_undospinblockghf_eigenvalues()

6.31.1.2 mqc_matrix_undospinblockghf_integral()

The documentation for this interface was generated from the following file:

src/mqc_est.F03

6.32 mqc_algebra::mqc_print Interface Reference

Public Member Functions

- subroutine mqc_print_scalar_algebra1 (Scalar, IOut, Header, Blank_At_Top, Blank_At_Bottom)
 - MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar
- subroutine mqc_print_vector_algebra1 (Vector, IOut, Header, Verbose, Blank_At_Top, Blank_At_Bottom)
- subroutine mqc_print_matrix_algebra1 (Matrix, IOut, Header, Blank_At_Top, Blank_At_Bottom)
- subroutine mgc print r4tensor algebra1 (Tensor, IOut, Header, blank at top, blank at bottom)

6.32.1 Member Function/Subroutine Documentation

6.32.1.1 mqc_print_matrix_algebra1()

6.32.1.2 mqc print r4tensor algebra1()

6.32.1.3 mqc_print_scalar_algebra1()

MQC Print Scalar Algebra1 is a subroutine used to print an MQC Scalar

Purpose:

 $\mbox{MQC_Print_Scalar_Algebra1}$ is a subroutine used to print an $\mbox{MQC_Scalar}$. Blank_At_Top and Blank_At_Bottom are optional logical arguments to print blank lines before or after output.

Parameters

in	Scalar	
		Scalar is Class(MQC_Scalar) The variable to be printed
in	<i>IOut</i>	
		IOut is Integer(kind=int64) The Fortran file number to print to

Parameters

in	Header	
		Header is Character(Len=*) The title to print along with Scalar
in	Blank_At_Top	
		Blank_At_Top is Logical,Optional = .True.: print blank line above output = .False.: do not print blank line above output
in	Blank_At_Bottom	
		Blank_At_Bottom is Logical,Optional = .True.: print blank line below output = .False.: do not print blank line below output

Author

L. M. Thompson

Date

2016

6.32.1.4 mqc_print_vector_algebra1()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.33 mqc_est::mqc_print Interface Reference

Public Member Functions

- subroutine mqc_print_wavefunction (wavefunction, iOut, label)
- subroutine mqc_print_integral (integral, iOut, header, blank_at_top, blank_at_bottom)
- subroutine mqc_print_eigenvalues (eigenvalues, iOut, header, blank_at_top, blank_at_bottom)
- subroutine mqc_print_twoeris (twoERIs, iOut, header, blank_at_top, blank_at_bottom)

6.33.1 Member Function/Subroutine Documentation

6.33.1.1 mqc_print_eigenvalues()

6.33.1.2 mqc_print_integral()

6.33.1.3 mqc_print_twoeris()

6.33.1.4 mqc_print_wavefunction()

The documentation for this interface was generated from the following file:

src/mqc_est.F03

6.34 mqc_est::mqc_pscf_wavefunction Type Reference

Inheritance diagram for mqc_est::mqc_pscf_wavefunction:

Public Attributes

- integer(kind=int64) ncore
- integer(kind=int64) nval
- integer(kind=int64) nactive
- integer(kind=int64) nfrz
- type(mqc_matrix) pscf_amplitudes
- type(mqc_vector) pscf_energies

Additional Inherited Members

6.34.1 Member Data Documentation

6.34.1.1 nactive

integer(kind=int64) mqc_est::mqc_pscf_wavefunction::nactive

6.34.1.2 ncore

 $\verb|integer(kind=int64)| mqc_est::mqc_pscf_wavefunction::ncore|\\$

6.34.1.3 nfrz

integer(kind=int64) mqc_est::mqc_pscf_wavefunction::nfrz

6.34.1.4 nval

integer(kind=int64) mqc_est::mqc_pscf_wavefunction::nval

6.34.1.5 pscf amplitudes

 $\verb|type|(mqc_matrix|) mqc_est::mqc_pscf_wavefunction::pscf_amplitudes||$

6.34.1.6 pscf_energies

type(mqc_vector) mqc_est::mqc_pscf_wavefunction::pscf_energies

The documentation for this type was generated from the following file:

• src/mqc_est.F03

6.35 mqc_algebra::mqc_r4tensor Type Reference

Public Member Functions

- Procedure, public print => mqc_print_r4tensor_algebra1
- Procedure, public at => mqc_r4tensor_at
- Procedure, public put => mqc_r4tensor_put
- Procedure, public initialize => mqc_r4tensor_initialize
- Procedure, public init => mqc_r4tensor_initialize

6.35.1 Member Function/Subroutine Documentation

6.35.1.1 at()

Procedure, public mqc_algebra::mqc_r4tensor::at ()

6.35.1.2 init()

```
Procedure, public mqc_algebra::mqc_r4tensor::init ( )
```

6.35.1.3 initialize()

```
Procedure, public mqc_algebra::mqc_r4tensor::initialize ( )
```

6.35.1.4 print()

```
Procedure, public mqc_algebra::mqc_r4tensor::print ( )
```

6.35.1.5 put()

```
Procedure, public mqc_algebra::mqc_r4tensor::put ( )
```

The documentation for this type was generated from the following file:

• src/mqc_algebra.F03

6.36 mqc_algebra::mqc_scalar Type Reference

Public Member Functions

- Procedure, public print => mqc_print_scalar_algebra1
- Procedure, public rval => mqc_scalar_get_intrinsic_real
- Procedure, public ival => mqc_scalar_get_intrinsic_integer
- Procedure, public cval => mqc_scalar_get_intrinsic_complex
- Procedure, public abs => mqc_scalar_get_abs_value
- Procedure, public random => mqc_scalar_get_random_value

6.36.1 Member Function/Subroutine Documentation

6.36.1.1 abs()

Procedure, public mqc_algebra::mqc_scalar::abs ()

6.36.1.2 cval()

Procedure, public mqc_algebra::mqc_scalar::cval ()

6.36.1.3 ival()

Procedure, public mqc_algebra::mqc_scalar::ival ()

6.36.1.4 print()

Procedure, public mqc_algebra::mqc_scalar::print ()

6.36.1.5 random()

Procedure, public mqc_algebra::mqc_scalar::random ()

6.36.1.6 rval()

Procedure, public mqc_algebra::mqc_scalar::rval ()

The documentation for this type was generated from the following file:

• src/mqc_algebra.F03

6.37 mqc_est::mqc_scf_eigenvalues Type Reference

Public Member Functions

- Procedure, public print => mqc_print_eigenvalues
- Procedure, public getlabel => mqc_eigenvalues_array_name
- Procedure, public addlabel => mqc_eigenvalues_add_name
- Procedure, public getblock => mqc_eigenvalues_output_block
- Procedure, public power => mqc_scf_eigenvalues_power
- Procedure, public at => mqc_eigenvalues_at

6.37.1 Member Function/Subroutine Documentation

6.37.1.1 addlabel() Procedure, public mqc_est::mqc_scf_eigenvalues::addlabel () 6.37.1.2 at() Procedure, public mqc_est::mqc_scf_eigenvalues::at () 6.37.1.3 getblock() Procedure, public mqc_est::mqc_scf_eigenvalues::getblock () 6.37.1.4 getlabel() Procedure, public mqc_est::mqc_scf_eigenvalues::getlabel () 6.37.1.5 power() Procedure, public mqc_est::mqc_scf_eigenvalues::power ()

6.37.1.6 print()

```
Procedure, public mqc_est::mqc_scf_eigenvalues::print ( )
```

The documentation for this type was generated from the following file:

• src/mqc_est.F03

6.38 mgc est::mgc scf integral Type Reference

Public Member Functions

- Procedure, public print => mqc_print_integral
- Procedure, public getlabel => mgc integral array name
- Procedure, public addlabel => mqc_integral_add_name
- Procedure, public getblock => mqc_integral_output_block
- Procedure, public identity => mqc integral identity
- Procedure, public init => mqc integral initialize
- Procedure, public diag => mgc scf integral diagonalize
- Procedure, public eigensys => mqc scf integral generalized eigensystem
- Procedure, public inv => mqc_scf_integral_inverse
- Procedure, public trace => mqc_scf_integral_trace
- Procedure, public det => mqc_scf_integral_determinant
- Procedure, public norm => mqc_integral_norm
- Procedure, public setelist => mqc_integral_set_energy_list
- Procedure, public getelist => mqc_integral_get_energy_list
- Procedure, public deleteelist => mqc_integral_delete_energy_list
- Procedure, public orbitals => mqc_integral_output_orbitals
- Procedure, public swap => mqc_integral_swap_orbitals

6.38.1 Member Function/Subroutine Documentation

6.38.1.1 addlabel()

```
Procedure, public mqc_est::mqc_scf_integral::addlabel ( )
```

6.38.1.2 deleteelist()

```
Procedure, public mqc_est::mqc_scf_integral::deleteelist ( )
```

6.38.1.3 det() Procedure, public mqc_est::mqc_scf_integral::det () 6.38.1.4 diag() Procedure, public mqc_est::mqc_scf_integral::diag () 6.38.1.5 eigensys() Procedure, public mqc_est::mqc_scf_integral::eigensys () 6.38.1.6 getblock() Procedure, public mqc_est::mqc_scf_integral::getblock () 6.38.1.7 getelist()

Procedure, public mqc_est::mqc_scf_integral::getelist ()

6.38.1.8 getlabel()

Procedure, public mqc_est::mqc_scf_integral::getlabel ()

6.38.1.9 identity()

Procedure, public mqc_est::mqc_scf_integral::identity ()

6.38.1.10 init()

Procedure, public mqc_est::mqc_scf_integral::init ()

6.38.1.11 inv()

Procedure, public mqc_est::mqc_scf_integral::inv ()

6.38.1.12 norm()

Procedure, public mqc_est::mqc_scf_integral::norm ()

6.38.1.13 orbitals()

Procedure, public mqc_est::mqc_scf_integral::orbitals ()

6.38.1.14 print()

Procedure, public mqc_est::mqc_scf_integral::print ()

6.38.1.15 setelist()

Procedure, public mqc_est::mqc_scf_integral::setelist ()

6.38.1.16 swap()

Procedure, public mqc_est::mqc_scf_integral::swap ()

6.38.1.17 trace()

```
Procedure, public mqc_est::mqc_scf_integral::trace ( )
```

The documentation for this type was generated from the following file:

src/mqc est.F03

6.39 mqc_algebra::mqc_set_array2vector Interface Reference

Public Member Functions

- subroutine mqc_set_array2vector_integer (VectorOut, ArrayIn)
- subroutine mgc set array2vector real (VectorOut, ArrayIn)
- subroutine mqc_set_array2vector_complex (VectorOut, ArrayIn)

6.39.1 Member Function/Subroutine Documentation

6.39.1.1 mqc_set_array2vector_complex()

6.39.1.2 mgc set array2vector integer()

6.39.1.3 mqc_set_array2vector_real()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.40 mgc est::mgc twoeris Type Reference

Public Member Functions

• procedure, public print => mgc print twoeris

6.40.1 Member Function/Subroutine Documentation

6.40.1.1 print()

```
procedure, public mqc_est::mqc_twoeris::print ( )
```

The documentation for this type was generated from the following file:

src/mqc est.F03

6.41 mqc_algebra::mqc_vector Type Reference

Public Member Functions

- Procedure, public print => mqc_print_vector_algebra1
- Procedure, public initialize => mqc_vector_initialize
- Procedure, public size => mqc_length_vector
- Procedure, public init => mgc vector initialize
- Procedure, public norm => mqc_vector_norm
- Procedure, public transpose => mqc_vector_transpose
- Procedure, public dagger => mqc_vector_conjugate_transpose
- Procedure, public at => mqc vector scalar at
- Procedure, public vat => mqc_vector_vector_at
- Procedure, public put => mqc_vector_scalar_put
- Procedure, public vput => mqc_vector_vector_put
- Procedure, public push => mqc_vector_push
- Procedure, public unshift => mqc_vector_unshift
- Procedure, public pop => mqc_vector_pop
- Procedure, public shift => mqc_vector_shift
- Procedure, public maxval => mqc_vector_maxval
- Procedure, public minval => mqc_vector_minloc
- Procedure, public maxloc => mqc_vector_maxval
- Procedure, public minloc => mqc_vector_minloc
- Procedure, public argsort => mqc_vector_argsort
- Procedure, public sort => mqc_vector_sort
- Procedure, public sqrt => mqc_vector_sqrt
- Procedure, public abs => mqc_vector_abs
- Procedure, public power => mqc vector power
- Procedure, public diag => mqc matrix diagmatrix put vector

Public Attributes

- integer(kind=int64) length =0
- character(len=64) data_type
- real(kind=real64), dimension(:), allocatable vecr
- integer(kind=int64), dimension(:), allocatable veci
- complex(kind=real64), dimension(:), allocatable vecc

6.41.1 Member Function/Subroutine Documentation

6.41.1.1 abs() Procedure, public mqc_algebra::mqc_vector::abs () 6.41.1.2 argsort() Procedure, public mqc_algebra::mqc_vector::argsort () 6.41.1.3 at() Procedure, public mqc_algebra::mqc_vector::at () 6.41.1.4 dagger() Procedure, public mqc_algebra::mqc_vector::dagger () 6.41.1.5 diag()

Procedure, public mqc_algebra::mqc_vector::diag ()

6.41.1.6 init()

Procedure, public mqc_algebra::mqc_vector::init ()

6.41.1.7 initialize()

Procedure, public mqc_algebra::mqc_vector::initialize ()

6.41.1.8 maxloc()

Procedure, public mqc_algebra::mqc_vector::maxloc ()

6.41.1.9 maxval()

Procedure, public mqc_algebra::mqc_vector::maxval ()

6.41.1.10 minloc()

Procedure, public mqc_algebra::mqc_vector::minloc ()

6.41.1.11 minval()

Procedure, public mqc_algebra::mqc_vector::minval ()

6.41.1.12 norm()

Procedure, public mqc_algebra::mqc_vector::norm ()

6.41.1.13 pop() Procedure, public mqc_algebra::mqc_vector::pop () 6.41.1.14 power() Procedure, public mqc_algebra::mqc_vector::power () 6.41.1.15 print() Procedure, public mqc_algebra::mqc_vector::print () 6.41.1.16 push() Procedure, public mqc_algebra::mqc_vector::push () 6.41.1.17 put() Procedure, public mqc_algebra::mqc_vector::put () 6.41.1.18 shift() Procedure, public mqc_algebra::mqc_vector::shift ()

Generated by Doxygen

6.41.1.19 size()

Procedure, public mqc_algebra::mqc_vector::size ()

6.41.1.20 sort()

Procedure, public mqc_algebra::mqc_vector::sort ()

6.41.1.21 sqrt()

Procedure, public mqc_algebra::mqc_vector::sqrt ()

6.41.1.22 transpose()

Procedure, public mqc_algebra::mqc_vector::transpose ()

6.41.1.23 unshift()

Procedure, public mqc_algebra::mqc_vector::unshift ()

6.41.1.24 vat()

Procedure, public mqc_algebra::mqc_vector::vat ()

6.41.1.25 vput()

Procedure, public mqc_algebra::mqc_vector::vput ()

6.41.2 Member Data Documentation

6.41.2.1 data_type

character(len=64) mqc_algebra::mqc_vector::data_type

6.41.2.2 length

integer(kind=int64) mqc_algebra::mqc_vector::length =0

6.41.2.3 vecc

complex(kind=real64), dimension(:), allocatable mqc_algebra::mqc_vector::vecc

6.41.2.4 veci

integer(kind=int64), dimension(:), allocatable mqc_algebra::mqc_vector::veci

6.41.2.5 vecr

real(kind=real64), dimension(:), allocatable mqc_algebra::mqc_vector::vecr

The documentation for this type was generated from the following file:

• src/mqc_algebra.F03

6.42 mqc_est::mqc_wavefunction Type Reference

Inheritance diagram for mqc_est::mqc_wavefunction:

Public Member Functions

Procedure, public print => mqc_print_wavefunction

Public Attributes

- type(mqc_scf_integral) mo_coefficients
- type(mqc_scf_eigenvalues) mo_energies
- type(mqc_scf_eigenvalues) mo_symmetries
- type(mgc scf integral) core hamiltonian
- type(mqc_scf_integral) fock_matrix
- type(mqc_scf_integral) density_matrix
- type(mqc_scf_integral) scf_density_matrix
- type(mqc_scf_integral) overlap_matrix
- type(mqc_scalar) nalpha
- type(mqc_scalar) nbeta
- type(mqc_scalar) nelectrons
- type(mqc_scalar) nbasis
- type(mqc_scalar) charge
- type(mqc_scalar) multiplicity
- character(len=256) basis
- character(len=256) symmetry
- character(len=256) wf_type
- logical wf_complex

6.42.1 Member Function/Subroutine Documentation

6.42.1.1 print()

Procedure, public mqc_est::mqc_wavefunction::print ()

6.42.2 Member Data Documentation

6.42.2.1 basis

character(len=256) mqc_est::mqc_wavefunction::basis

6.42.2.2 charge

type(mqc_scalar) mqc_est::mqc_wavefunction::charge

6.42.2.3 core_hamiltonian

type(mqc_scf_integral) mqc_est::mqc_wavefunction::core_hamiltonian

6.42.2.4 density_matrix

type(mqc_scf_integral) mqc_est::mqc_wavefunction::density_matrix

6.42.2.5 fock_matrix

 $\verb|type|(mqc_scf_integral|) mqc_est::mqc_wavefunction::fock_matrix|\\$

6.42.2.6 mo coefficients

type(mqc_scf_integral) mqc_est::mqc_wavefunction::mo_coefficients

6.42.2.7 mo_energies

6.42.2.8 mo_symmetries

type(mqc_scf_eigenvalues) mqc_est::mqc_wavefunction::mo_symmetries

6.42.2.9 multiplicity

type(mqc_scalar) mqc_est::mqc_wavefunction::multiplicity

6.42.2.10 nalpha

type(mqc_scalar) mqc_est::mqc_wavefunction::nalpha

6.42.2.11 nbasis

type(mqc_scalar) mqc_est::mqc_wavefunction::nbasis

6.42.2.12 nbeta

type(mqc_scalar) mqc_est::mqc_wavefunction::nbeta

6.42.2.13 nelectrons

type(mqc_scalar) mqc_est::mqc_wavefunction::nelectrons

6.42.2.14 overlap_matrix

 $\verb|type(mqc_scf_integral)| mqc_est:: mqc_wavefunction:: overlap_matrix|\\$

6.42.2.15 scf_density_matrix

type(mqc_scf_integral) mqc_est::mqc_wavefunction::scf_density_matrix

6.42.2.16 symmetry

character(len=256) mqc_est::mqc_wavefunction::symmetry

6.42.2.17 wf_complex

```
logical mqc_est::mqc_wavefunction::wf_complex
```

6.42.2.18 wf type

```
character(len=256) mqc_est::mqc_wavefunction::wf_type
```

The documentation for this type was generated from the following file:

src/mqc_est.F03

6.43 mgc algebra::operator(*) Interface Reference

Public Member Functions

- type(mgc scalar) function mgc scalarmultiply (Scalar1, Scalar2)
 - MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects
- type(mqc_scalar) function mqc_integerscalarmultiply (IntegerIn, Scalar)
 - MQC_IntegerScalarMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar
- type(mqc_scalar) function mqc_scalarintegermultiply (Scalar, IntegerIn)
 - MQC_ScalarIntegerMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar
- type(mqc_scalar) function mqc_realscalarmultiply (RealIn, Scalar)
 - MQC_RealScalarMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar
- type(mqc_scalar) function mqc_scalarrealmultiply (Scalar, RealIn)
 - MQC_ScalarRealMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar
- type(mqc_scalar) function mqc_complexscalarmultiply (ComplexIn, Scalar)
 - MQC_ComplexScalarMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar
- type(mgc scalar) function mgc scalarcomplexmultiply (Scalar, ComplexIn)
 - MQC_ScalarComplexMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar
- type(mgc vector) function mgc scalarvectorproduct (Scalar, Vector)
- type(mqc_vector) function mqc_vectorscalarproduct (vector, scalar)
- type(mqc matrix) function mqc scalarmatrixproduct (Scalar, Matrix)
- type(mgc matrix) function mgc matrixscalar product (Matrix, Scalar)
- type(mgc_vector) function mgc_realvectorproduct (RealIn, Vector)
- type(mqc_vector) function mqc_vectorrealproduct (vector, realIn)
- type(mqc_vector) function mqc_integervectorproduct (intln, Vector)
- type(mgc_vector) function mgc_vectorintegerproduct (vector, intln)
- type(mgc_vector) function mgc_complexvectorproduct (Compln, Vector)
- type(mqc_vector) function mqc_vectorcomplexproduct (vector, compln)
- type(mqc matrix) function mqc matrixmatrixproduct (MA, MB)

6.43.1 Member Function/Subroutine Documentation

6.43.1.1 mqc_complexscalarmultiply()

MQC_ComplexScalarMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

Purpose:

 $\texttt{MQC_ComplexScalarMultiply}$ is a function that is used to multiply an intrinsic complex by an $\texttt{MQC_Scalar.}$

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to multiply
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to multiply

Author

L. M. Thompson

Date

2019

6.43.1.2 mqc_complexvectorproduct()

6.43.1.3 mqc_integerscalarmultiply()

MQC_IntegerScalarMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

Purpose:

 $\mbox{MQC_IntegerScalarMultiply}$ is a function that is used to multiply an intrinsic integer by an $\mbox{MQC_Scalar.}$

Parameters

in	Integer↔ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to multiply
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to multiply

Author

L. M. Thompson

Date

2019

6.43.1.4 mqc_integervectorproduct()

6.43.1.5 mqc_matrixmatrixproduct()

6.43.1.6 mqc_matrixscalarproduct()

6.43.1.7 mqc_realscalarmultiply()

MQC_RealScalarMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

Purpose:

 $\mbox{MQC_RealScalarMultiply}$ is a function that is used to multiply an intrinsic real by an $\mbox{MQC_Scalar.}$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to multiply
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to multiply

Author

L. M. Thompson

Date

2019

6.43.1.8 mqc_realvectorproduct()

6.43.1.9 mqc_scalarcomplexmultiply()

MQC_ScalarComplexMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarComplexMultiply}$ is a function that is used to multiply an intrinsic complex by an $\mbox{MQC_Scalar}.$

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to multiply
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to multiply

Author

L. M. Thompson

Date

2019

6.43.1.10 mqc_scalarintegermultiply()

```
\label{type mqc_scalar} type (\texttt{mqc\_scalar}) \ function \ \texttt{mqc\_algebra::operator(*)::mqc\_scalar}integermultiply ($$ type (\texttt{mqc\_scalar}), intent(in) $$ Scalar, $$ integer(kind=int64), intent(in) $$ IntegerIn ()$
```

MQC_ScalarIntegerMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarIntegerMultiply}$ is a function that is used to multiply an intrinsic integer by an $\mbox{MQC_Scalar.}$

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to multiply
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar varibale to multiply

Author

L. M. Thompson

Date

2019

6.43.1.11 mqc_scalarmatrixproduct()

6.43.1.12 mqc_scalarmultiply()

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects

Purpose:

 ${\tt MQC_ScalarMultiply}$ is a function that multiplies two ${\tt MQC_Scalar}$ objects.

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar to be multiplied
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar to be multiplied

Generated by Doxygen

Author

L. M. Thompson

Date

2016

6.43.1.13 mqc_scalarrealmultiply()

MQC_ScalarRealMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarRealMultiply}$ is a function that is used to multiply an intrinsic real by an $\mbox{MQC_Scalar.}$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to multiply
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to multiply

Author

L. M. Thompson

Date

2019

6.43.1.14 mqc_scalarvectorproduct()

```
\label{type mqc_vector} type (\texttt{mqc\_scalar}), \ \texttt{intent(in)} \ \ \textit{Scalar}, \\ type (\texttt{mqc\_scalar}), \ \texttt{intent(in)} \ \ \textit{Scalar}, \\ type (\texttt{mqc\_vector}), \ \texttt{intent(in)} \ \ \textit{Vector} \ )
```

6.43.1.15 mqc_vectorcomplexproduct()

6.43.1.16 mqc_vectorintegerproduct()

6.43.1.17 mqc_vectorrealproduct()

6.43.1.18 mqc_vectorscalarproduct()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.44 mqc_est::operator(*) Interface Reference

Public Member Functions

- type(mqc_scf_integral) function mqc_scalar_integral_multiply (scalar, integral)
- type(mqc_scf_integral) function mqc_integral_scalar_multiply (integral, scalar)

6.44.1 Member Function/Subroutine Documentation

6.44.1.1 mqc_integral_scalar_multiply()

6.44.1.2 mqc scalar integral multiply()

The documentation for this interface was generated from the following file:

src/mgc est.F03

6.45 mqc_algebra::operator(**) Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scalarexponent (Scalar1, Scalar2)
 - MQC_ScalarExponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar
- type(mqc_scalar) function mqc_scalarintegerexponent (Scalar, Intln)
 - MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer
- type(mqc_scalar) function mqc_scalarrealexponent (Scalar, RealIn)
 - MQC_ScalarRealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real
- type(mqc_scalar) function mqc_scalarcomplexexponent (Scalar, Compln)

MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex

6.45.1 Member Function/Subroutine Documentation

6.45.1.1 mqc scalarcomplexexponent()

MQC ScalarComplexExponent is a function that raises an MQC Scalar to the power of an intrinsic complex

Purpose:

 ${\tt MQC_ScalarComplexExponent}$ is a function that raises an ${\tt MQC_Scalar}$ to the power of an intrinsic complex.

Parameters

in	Scalar	
		Scalar1 is Type(MQC_Scalar) The base value
in	Comp⇔	
	In	CompIn is Complex(kind=real64) The power value

Author

L. M. Thompson

Date

2019

6.45.1.2 mqc_scalarexponent()

MQC_ScalarExponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarExponent}$ is a function that raises one $\texttt{MQC_Scalar}$ to the power of another $\texttt{MQC_Scalar.}$

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The base value
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The power value

Author

L. M. Thompson

Date

2016

6.45.1.3 mqc_scalarintegerexponent()

MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer

Purpose:

 $\mbox{MQC_ScalarIntegerExponent}$ is a function that raises an $\mbox{MQC_Scalar}$ to the power of an intrinsic integer.

Parameters

in	Scalar	
		Scalar1 is Type(MQC_Scalar) The base value
in	Intln	
		IntIn is Integer(kind=int64) The power value

Author

L. M. Thompson

Date

2019

6.45.1.4 mqc_scalarrealexponent()

MQC_ScalarRealExponent is a function that raises an MQC_Scalar to the power of an intrinsic real

Purpose:

 $\ensuremath{\mathtt{MQC_ScalarRealExponent}}$ is a function that raises an $\ensuremath{\mathtt{MQC_Scalar}}$ to the power of an intrinsic real.

Parameters

in	Scalar	
		Scalarl is Type(MQC_Scalar) The base value
in	Real←	
	In	RealIn is Real(kind=real64) The power value

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.46 mqc_est::operator(+) Interface Reference

Public Member Functions

• type(mqc_scf_integral) function mqc_integral_sum (integralA, integralB)

6.46.1 Member Function/Subroutine Documentation

6.46.1.1 mqc_integral_sum()

The documentation for this interface was generated from the following file:

src/mqc_est.F03

6.47 mgc algebra::operator(+) Interface Reference

Public Member Functions

type(mgc scalar) function mgc scalaradd (Scalar1, Scalar2)

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

type(mqc_scalar) function mqc_integerscalaradd (IntegerIn, Scalar)

MQC_IntegerScalarAdd is a function that is used to multiply an intrinsic integer by an MQC_Scalar

type(mqc_scalar) function mqc_scalarintegeradd (Scalar, IntegerIn)

MQC ScalarIntegerAdd is a function that is used to sum an intrinsic integer by an MQC Scalar

type(mqc_scalar) function mqc_realscalaradd (RealIn, Scalar)

MQC_RealScalarAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

• type(mqc_scalar) function mqc_scalarrealadd (Scalar, RealIn)

MQC ScalarRealAdd is a function that is used to sum an intrinsic real by an MQC Scalar

type(mqc_scalar) function mqc_complexscalaradd (ComplexIn, Scalar)

MQC_ComplexScalarAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

• type(mqc_scalar) function mqc_scalarcomplexadd (Scalar, ComplexIn)

MQC_ScalarComplexAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

- type(mqc_vector) function mqc_vectorvectorsum (Vector1In, Vector2In)
- type(mgc vector) function mgc scalarvectorsum (ScalarIn, VectorIn)
- type(mqc_matrix) function mqc_matrixmatrixsum (MA, MB)

6.47.1 Member Function/Subroutine Documentation

6.47.1.1 mqc_complexscalaradd()

MQC_ComplexScalarAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

Purpose:

 $MQC_ComplexScalarAdd$ is a function that is used to sum an intrinsic complex by an MQC_Scalar .

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to sum
in	Scalar	
		Scalar is Type(MQC_Scalar)
Generated	by Doxygen	The MQC_Scalar variabel to sum

Author

L. M. Thompson

Date

2019

6.47.1.2 mqc_integerscalaradd()

MQC_IntegerScalarAdd is a function that is used to multiply an intrinsic integer by an MQC_Scalar

Purpose:

 $\texttt{MQC_IntegerScalarAdd}$ is a function that is used to sum an intrinsic integer by an $\texttt{MQC_Scalar.}$

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable to sum
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to sum

Author

L. M. Thompson

Date

2019

6.47.1.3 mqc_matrixmatrixsum()

6.47.1.4 mqc_realscalaradd()

MQC_RealScalarAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

Purpose:

 $\mbox{MQC_RealScalarAdd}$ is a function that is used to sum an intrinsic real by an $\mbox{MQC_Scalar.}$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to sum
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to sum

Author

L. M. Thompson

Date

2019

6.47.1.5 mqc_scalaradd()

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

Purpose:

 ${\tt MQC_ScalarAdd}$ is a function that sums two ${\tt MQC_Scalar}$ objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar to be summed
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar to be summed

Author

L. M. Thompson

Date

2016

6.47.1.6 mqc_scalarcomplexadd()

MQC_ScalarComplexAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarComplexAdd}$ is a function that is used to sum an intrinsic complex by an $\texttt{MQC_Scalar.}$

Parameters

in	Complex← In	Complex is Complex(kind=real64) The intrinsic complex variable to sum
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variabel to sum

Author

L. M. Thompson

Date

2019

6.47.1.7 mqc_scalarintegeradd()

MQC_ScalarIntegerAdd is a function that is used to sum an intrinsic integer by an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarIntegerSum}$ is a function that is used to sum an intrinsic integer by an $\mbox{MQC_Scalar}.$

Parameters

in	Integer⊷ In	<pre>IntegerIn is Integer(kind=int64) The intrinsic integer variable to sum</pre>
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar varibale to sum

Author

L. M. Thompson

Date

2019

6.47.1.8 mqc_scalarrealadd()

MQC_ScalarRealAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

Purpose:

 $\ensuremath{\mathsf{MQC_ScalarRealSum}}$ is a function that is used to sum an intrinsic real by an $\ensuremath{\mathsf{MQC_Scalar}}.$

Parameters

in	realIn	
		RealIn is Real(kind=real64) The intrinsic real variable to sum
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to sum

Author

L. M. Thompson

Date

2019

6.47.1.9 mqc_scalarvectorsum()

```
\label{type mqc_vector} type (\texttt{mqc\_scalar}), \ \texttt{intent(in)} \ \ \textit{ScalarIn}, \\ type (\texttt{mqc\_scalar}), \ \texttt{intent(in)} \ \ \textit{ScalarIn}, \\ type (\texttt{mqc\_vector}), \ \texttt{intent(in)} \ \ \textit{VectorIn} \ )
```

6.47.1.10 mqc_vectorvectorsum()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.48 mqc_est::operator(-) Interface Reference

Public Member Functions

• type(mqc_scf_integral) function mqc_integral_difference (integralA, integralB)

6.48.1 Member Function/Subroutine Documentation

6.48.1.1 mqc_integral_difference()

The documentation for this interface was generated from the following file:

src/mgc est.F03

6.49 mqc_algebra::operator(-) Interface Reference

Public Member Functions

• type(mgc scalar) function mgc scalarsubtract (Scalar1, Scalar2)

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects

• type(mqc_scalar) function mqc_integerscalarsubtract (IntegerIn, Scalar)

MQC_IntegerScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic integer

• type(mqc_scalar) function mqc_scalarintegersubtract (Scalar, IntegerIn)

MQC_ScalarIntegerSubtract is a function that is used to subtract an intrinsic integer from an MQC_Scalar

type(mqc_scalar) function mqc_realscalarsubtract (RealIn, Scalar)

MQC_RealScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic real

• type(mqc_scalar) function mqc_scalarrealsubtract (Scalar, RealIn)

MQC_ScalarRealSubtract is a function that is used to subtract an intrinsic real from an MQC_Scalar

type(mqc_scalar) function mqc_complexscalarsubtract (ComplexIn, Scalar)

MQC_ComplexScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic complex

• type(mqc_scalar) function mqc_scalarcomplexsubtract (Scalar, ComplexIn)

MQC_ScalarComplexSubtract is a function that is used to subtract an intrinsic complex from an MQC_Scalar

- type(mgc_vector) function mgc_vectorvectordifference (Vector1In, Vector2In)
- type(mgc_vector) function mgc_scalarvectordifference (ScalarIn, VectorIn)
- type(mqc_matrix) function mqc_matrixmatrixsubtract (MA, MB)

6.49.1 Member Function/Subroutine Documentation

6.49.1.1 mqc_complexscalarsubtract()

MQC_ComplexScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic complex

Purpose:

```
{\tt MQC\_ComplexScalarSubtract} is a function that is used to subtract an {\tt MQC\_Scalar} from an intrinisic complex.
```

Parameters

in	Complex← In	ComplexIn is Complex(kind=real64) The intrinsic complex to subtract from
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract

Author

L. M. Thompson

Date

2019

6.49.1.2 mqc_integerscalarsubtract()

MQC_IntegerScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic integer

Purpose:

 $\texttt{MQC_IntegerScalarSubtract}$ is a function that is used to subtract an $\texttt{MQC_Scalar}$ from an intrinisic integer.

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer to subtract from
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract

Author

L. M. Thompson

Date

2019

6.49.1.3 mqc_matrixmatrixsubtract()

6.49.1.4 mqc_realscalarsubtract()

MQC_RealScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic real

Purpose:

 ${\tt MQC_RealScalarSubtract}$ is a function that is used to subtract an ${\tt MQC_Scalar}$ from an intrinisic real.

Parameters

in	Real← In	RealIn is Real(kind=real64) The intrinsic real to subtract from
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract

Author

L. M. Thompson

Date

2019

6.49.1.5 mqc_scalarcomplexsubtract()

MQC_ScalarComplexSubtract is a function that is used to subtract an intrinsic complex from an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarComplexSubtract}$ is a function that is used to subtract an intrinsic complex from an $\mbox{MQC_Scalar.}$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract from
in	Complex←	
	In	ComplexIn is Complex(kind=real64) The intrinsic complex to subtract

Author

L. M. Thompson

Date

2019

6.49.1.6 mqc_scalarintegersubtract()

MQC_ScalarIntegerSubtract is a function that is used to subtract an intrinsic integer from an MQC_Scalar

Purpose:

 $\mbox{MQC_ScalarIntegerSubtract}$ is a function that is used to subtract an intrinsic integer from an $\mbox{MQC_Scalar.}$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract from
in	Integer←	
	In	IntegerIn is Integer(kind=int64) The intrinsic integer to subtract

Author

L. M. Thompson

Date

2019

6.49.1.7 mqc_scalarrealsubtract()

MQC_ScalarRealSubtract is a function that is used to subtract an intrinsic real from an MQC_Scalar

Purpose:

 $\texttt{MQC_ScalarRealSubtract}$ is a function that is used to subtract an intrinsic real from an $\texttt{MQC_Scalar.}$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable to subtract from
in	Real↔	
	In	RealIn is Real(kind=real64) The intrinsic real to subtract

Author

L. M. Thompson

Date

2019

6.49.1.8 mqc_scalarsubtract()

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects

Purpose:

 ${\tt MQC_ScalarSubtract}$ is a function that subtracts two ${\tt MQC_Scalar}$ objects.

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar from which Scalar2 will be subtracted
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar which will be subtracted from Scalar1

Author

L. M. Thompson

Date

2016

6.49.1.9 mqc_scalarvectordifference()

6.49.1.10 mqc_vectorvectordifference()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.50 mgc algebra::operator(.dot.) Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_vectorvectordotproduct (Vector1, Vector2)
- type(mgc vector) function mgc vectormatrixdotproduct (VA, MB)
- type(mgc_vector) function mgc_matrixvectordotproduct (MA, VB)
- type(mqc_matrix) function mqc_matrixmatrixdotproduct (MA, MB)

6.50.1 Member Function/Subroutine Documentation

6.50.1.1 mqc_matrixmatrixdotproduct()

6.50.1.2 mgc matrixvectordotproduct()

6.50.1.3 mqc_vectormatrixdotproduct()

6.50.1.4 mqc_vectorvectordotproduct()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.51 mqc_algebra::operator(.eq.) Interface Reference

Public Member Functions

logical function mqc_scalareq (Scalar1, Scalar2)
 MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal

6.51.1 Member Function/Subroutine Documentation

6.51.1.1 mqc_scalareq()

MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal

Purpose:

```
{\tt MQC\_ScalarEQ} is a function that returns TRUE if two {\tt MQC\_Scalar} variables are equal.
```

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mgc algebra.F03

6.52 mqc_algebra::operator(.ewd.) Interface Reference

Public Member Functions

type(mqc_matrix) function mqc_elementmatrixdivide (A, B)

6.52.1 Member Function/Subroutine Documentation

6.52.1.1 mqc_elementmatrixdivide()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.53 mqc_algebra::operator(.ewp.) Interface Reference

Public Member Functions

- type(mqc_vector) function mqc_elementvectorproduct (Vector1In, Vector2In)
- type(mqc_matrix) function mqc_elementmatrixproduct (A, B)

6.53.1 Member Function/Subroutine Documentation

6.53.1.1 mqc_elementmatrixproduct()

6.53.1.2 mqc_elementvectorproduct()

The documentation for this interface was generated from the following file:

• src/mqc algebra.F03

6.54 mqc_algebra::operator(.ge.) Interface Reference

Public Member Functions

logical function mqc_scalarge (Scalar1, Scalar2)

MQC_ScalarGE is a function that returns TRUE if the left MQC_Scalar is greater than or equal the right MQC_← Scalar

6.54.1 Member Function/Subroutine Documentation

6.54.1.1 mqc_scalarge()

MQC_ScalarGE is a function that returns TRUE if the left MQC_Scalar is greater than or equal the right MQC←_Scalar

Purpose:

```
\mbox{MQC\_ScalarGE} is a function that returns TRUE if the left \mbox{MQC\_Scalar} is greater than or equal to the right \mbox{MQC\_Scalar}.
```

When dealing with complex numbers, the function returns TRUE if the left real part is is greater than or equal to the right real part and FALSE if the left real part is less than the right real part.

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.55 mqc_algebra::operator(.gt.) Interface Reference

Public Member Functions

- logical function mqc_scalargt (Scalar1, Scalar2)
 - MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar
- logical function mqc_scalargtinteger (Scalar, Intln)
 - MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer
- logical function mqc_integergtscalar (Intln, Scalar)
 - MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar
- logical function mqc_scalargtreal (Scalar, RealIn)
 - MQC_ScalarGTReal is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic real
- logical function mqc_realgtscalar (RealIn, Scalar)

MQC_RealGTScalar is a function that returns TRUE if an intrinsic real is greater than a MQC_Scalar

6.55.1 Member Function/Subroutine Documentation

6.55.1.1 mqc_integergtscalar()

MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar

Purpose:

 $\ensuremath{\mathtt{MQC_IntegerGTScalar}}$ is a function that returns TRUE if an intrinsic integer is greater than a $\ensuremath{\mathtt{MQC_Scalar}}.$

When dealing with complex numbers, the function returns TRUE if the intrinsic integer is greater than the real part of the MQC_Scalar and FALSE if the intrinsic integer is less than the real part of the MQC_Scalar. If the intrinsic integer is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise.

Parameters

	in	Intln	
			IntIn is Integer(kind=int64) The intrinsic integer that will be tested.
ľ	in	Scalar	
			Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

6.55.1.2 mqc_realgtscalar()

MQC_RealGTScalar is a function that returns TRUE if an intrinsic real is greater than a MQC_Scalar

Purpose:

 $\ensuremath{\mathtt{MQC_RealGTScalar}}$ is a function that returns TRUE if an intrinsic real is greater than a $\ensuremath{\mathtt{MQC_Scalar}}.$

When dealing with complex numbers, the function returns TRUE if the intrinsic real is greater than the real part of the MQC_Scalar and FALSE if the intrinsic real is less than the real part of the MQC_Scalar. If the intrinsic real is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise.

Parameters

in	Real← In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

6.55.1.3 mqc_scalargt()

MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar

Purpose:

 ${\tt MQC_ScalarGT}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is greater than the right ${\tt MQC_Scalar}.$

When dealing with complex numbers, the function returns TRUE if the left real part is greater than the right real part and FALSE if the left real part is less than the right real part. If the left real part is equal to the right real part, the function returns TRUE if the left imaginary part is greater than the right imaginary part and FALSE otherwise.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

6.55.1.4 mqc_scalargtinteger()

MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer

Purpose:

 $\texttt{MQC_ScalarGTInteger}$ is a function that returns TRUE if a $\texttt{MQC_Scalar}$ is greater than an intrinsic integer.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is greater than the intrinsic integer and FALSE if the real part of the MQC_Scalar is less than the intrinsic integer. If the real part of the MQC_Scalar is equal to the intrinsic integer, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise.

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer that will be tested.

L. M. Thompson

Date

2019

6.55.1.5 mqc_scalargtreal()

MQC_ScalarGTReal is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic real

Purpose:

 ${\tt MQC_ScalarGTReal}$ is a function that returns TRUE if a ${\tt MQC_Scalar}$ is greater than an intrinsic real.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is greater than the intrinsic real and FALSE if the real part of the MQC_Scalar is less than the intrinsic real. If the real part of the MQC_Scalar is equal to the intrinsic real, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Intln	
		RealIn is Real(kind=int64) The intrinsic real that will be tested.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

6.56 mqc algebra::operator(.le.) Interface Reference

Public Member Functions

• logical function mgc scalarle (Scalar1, Scalar2)

MQC ScalarLE is a function that returns TRUE if the left MQC Scalar is less than or equal the right MQC Scalar

logical function mqc_scalarlereal (Scalar, RealIn)

MQC_ScalarLEReal is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic real

logical function mqc_reallescalar (RealIn, Scalar)

MQC RealLEScalar is a function that returns TRUE if an intrinsic real is less than or equal to a MQC Scalar

logical function mqc_scalarleinteger (Scalar, Intln)

MQC_ScalarLEInteger is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic integer

logical function mqc_integerlescalar (Intln, Scalar)

MQC_IntegerLEScalar is a function that returns TRUE if an intrinsic integer is less than or equal to a MQC_Scalar

6.56.1 Member Function/Subroutine Documentation

6.56.1.1 mqc_integerlescalar()

MQC_IntegerLEScalar is a function that returns TRUE if an intrinsic integer is less than or equal to a MQC_ \leftarrow Scalar

Purpose:

MQC_IntegerLES calar is a function that returns TRUE if an intrinsic integer is less than or equal to a MQC_S calar.

When dealing with complex numbers, the function returns TRUE if the intrinsic integer is less than or equal to the real part of the MQC_Scalar and FALSE if the intrinsic integer is greater than the real part of the MQC_Scalar.

in	Intln	
		<pre>IntIn is Integer(kind=int64) The intrinsic integer that will be tested.</pre>
in	Scalar	

L. M. Thompson

Date

2019

6.56.1.2 mqc_reallescalar()

MQC_RealLEScalar is a function that returns TRUE if an intrinsic real is less than or equal to a MQC_Scalar

Purpose:

 ${\tt MQC_RealLES}$ calar is a function that returns TRUE if an intrinsic real is less than or equal to a ${\tt MQC_Scalar}$.

When dealing with complex numbers, the function returns TRUE if the intrinsic real is less than or equal to the real part of the MQC_Scalar and FALSE if the intrinsic real is greater than the real part of the MQC_Scalar.

Parameters

in	Real← In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

6.56.1.3 mqc_scalarle()

MQC_ScalarLE is a function that returns TRUE if the left MQC_Scalar is less than or equal the right MQC_Scalar

Purpose:

 ${\tt MQC_ScalarLE}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is less than or equal to the right ${\tt MQC_Scalar}$.

When dealing with complex numbers, the function returns TRUE if the left real part is less than or equal to the right real part and FALSE if the left real part is greater than the right real part.

Parameters

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

6.56.1.4 mqc_scalarleinteger()

MQC_ScalarLEInteger is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic integer

Purpose:

 $\mbox{MQC_ScalarLEInteger}$ is a function that returns TRUE if a $\mbox{MQC_Scalar}$ is less than or equal to an intrinsic integer.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than or equal to the intrinsic integer and FALSE if the real part of the MQC_Scalar is greater than the intrinsic integer.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Intln	
		IntIn is Integer(kind=int64) The intrinsic integer that will be tested.

Author

L. M. Thompson

Date

2019

6.56.1.5 mqc_scalarlereal()

MQC_ScalarLEReal is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic real

Purpose:

 $\mbox{MQC_ScalarLEReal}$ is a function that returns TRUE if a $\mbox{MQC_Scalar}$ is less than or equal to an intrinsic real.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than or equal to the intrinsic real and FALSE if the real part of the MQC_Scalar is greater than the intrinsic real.

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Intln	
		RealIn is Real(kind=int64) The intrinsic real that will be tested.

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.57 mqc_algebra::operator(.lt.) Interface Reference

Public Member Functions

logical function mqc_scalarIt (Scalar1, Scalar2)

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar

logical function mgc scalarItreal (Scalar, RealIn)

MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real

logical function mqc_realltscalar (RealIn, Scalar)

MQC_RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC_Scalar

6.57.1 Member Function/Subroutine Documentation

6.57.1.1 mgc realitscalar()

MQC_RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC_Scalar

Purpose:

```
\mbox{MQC\_RealLTScalar} is a function that returns TRUE if an intrinsic real is less than a \mbox{MQC\_Scalar.}
```

When dealing with complex numbers, the function returns TRUE if the intrinsic real is less than the real part of the MQC_Scalar and FALSE if the intrinsic real is greater than the real part of the MQC_Scalar. If the intrinsic real is equal to the real part of the MQC_Scalar, the function returns TRUE if the imaginary part of MQC_Scalar is greater than zero and FALSE otherwise.

Parameters

in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real that will be tested.
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2019

6.57.1.2 mqc_scalarlt()

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar

Purpose:

 ${\tt MQC_ScalarLT}$ is a function that returns TRUE if the left ${\tt MQC_Scalar}$ is less than the right ${\tt MQC_Scalar}$.

When dealing with complex numbers, the function returns TRUE if the left real part is less than the right real part and FALSE if the left real part is greater than the right real part. If the left real part is equal to the right real part, the function returns TRUE if the left imaginary part is less than the right imaginary part and FALSE otherwise.

in	Scalar1	
		Scalarl is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

L. M. Thompson

Date

2016

6.57.1.3 mqc_scalarItreal()

MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real

Purpose:

 ${\tt MQC_ScalarLTReal}$ is a function that returns TRUE if a ${\tt MQC_Scalar}$ is less than an intrinsic real.

When dealing with complex numbers, the function returns TRUE if the real part of the MQC_Scalar is less than the intrinsic real and FALSE if the real part of the MQC_Scalar is greater than the intrinsic real. If the real part of the MQC_Scalar is equal to the intrinsic real, the function returns TRUE if the imaginary part of MQC_Scalar is less than zero and FALSE otherwise.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar that will be tested.
in	Real⊷	
	In	RealIn is Real(kind=real64) The intrinsic real that will be tested.

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

6.58 mgc algebra::operator(.ne.) Interface Reference

Public Member Functions

• logical function mqc_scalarne (Scalar1, Scalar2)

MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal

6.58.1 Member Function/Subroutine Documentation

6.58.1.1 mqc_scalarne()

MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal

Purpose:

```
MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal.
```

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The first MQC_Scalar that will be tested.
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The second MQC_Scalar that will be tested.

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

6.59 mgc algebra::operator(.outer.) Interface Reference

Public Member Functions

type(mqc_matrix) function mqc_outer (VA, VB)

6.59.1 Member Function/Subroutine Documentation

6.59.1.1 mqc_outer()

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.60 mqc_algebra::operator(.x.) Interface Reference

Public Member Functions

type(mqc_vector) function mqc_crossproduct (Vector1In, Vector2In)

6.60.1 Member Function/Subroutine Documentation

6.60.1.1 mqc_crossproduct()

The documentation for this interface was generated from the following file:

6.61 mqc_algebra::operator(/) Interface Reference

Public Member Functions

• type(mgc scalar) function mgc scalardivide (Scalar1, Scalar2)

MQC_ScalarDivide is a function that divides two MQC_Scalar objects

type(mqc_scalar) function mqc_integerscalardivide (IntegerIn, Scalar)

MQC_IntegerScalarDivide is a function that is used to divide an intrinsic integer by an MQC_Scalar

type(mqc_scalar) function mqc_scalarintegerdivide (Scalar, IntegerIn)

MQC ScalarIntegerDivide is a function that is used to divide an MQC Scalar by an intrinsic integer

type(mqc_scalar) function mqc_realscalardivide (RealIn, Scalar)

MQC_RealScalarDivide is a function that is used to divide an intrinsic real by an MQC_Scalar

• type(mqc_scalar) function mqc_scalarrealdivide (Scalar, RealIn)

MQC ScalarRealDivide is a function that is used to divide an MQC Scalar by an intrinsic real

• type(mqc_scalar) function mqc_complexscalardivide (ComplexIn, Scalar)

MQC_ComplexScalarDivide is a function that is used to divide an intrinsic complex by an MQC_Scalar

• type(mqc_scalar) function mqc_scalarcomplexdivide (Scalar, ComplexIn)

MQC_ScalarComplexDivide is a function that is used to divide an MQC_Scalar by an intrinsic complex

- type(mgc vector) function mgc vectorscalardivide (vector, scalar)
- type(mgc vector) function mgc vectorrealdivide (vector, realln)
- type(mgc_vector) function mgc_vectorintegerdivide (vector, intln)
- type(mqc_vector) function mqc_vectorcomplexdivide (vector, compln)

6.61.1 Member Function/Subroutine Documentation

6.61.1.1 mqc_complexscalardivide()

MQC_ComplexScalarDivide is a function that is used to divide an intrinsic complex by an MQC_Scalar

Purpose:

 $\texttt{MQC_ComplexScalarDivide}$ is a function that is used to divide an intrinsic complex by an $\texttt{MQC_Scalar.}$

in	Complex⊷ In	ComplexIn is Complex(kind=real64) The intrinsic complex variable numerator
in	Scalar	
Generated	by Doxygen	Scalar is Type(MQC_Scalar) The MQC_Scalar variable denominator

L. M. Thompson

Date

2019

6.61.1.2 mqc_integerscalardivide()

MQC_IntegerScalarDivide is a function that is used to divide an intrinsic integer by an MQC_Scalar

Purpose:

 $\mbox{MQC_IntegerScalarDivide}$ is a function that is used to divide an intrinsic integer by an $\mbox{MQC_Scalar.}$

Parameters

in	Integer⊷ In	IntegerIn is Integer(kind=int64) The intrinsic integer variable numerator
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable denominator

Author

L. M. Thompson

Date

2019

6.61.1.3 mqc_realscalardivide()

MQC_RealScalarDivide is a function that is used to divide an intrinsic real by an MQC_Scalar

Purpose:

 $\texttt{MQC_RealScalarDivide}$ is a function that is used to divide an intrinsic real by an $\texttt{MQC_Scalar.}$

Parameters

in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real variable numerator
in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable denominator

Author

L. M. Thompson

Date

2019

6.61.1.4 mqc_scalarcomplexdivide()

MQC_ScalarComplexDivide is a function that is used to divide an MQC_Scalar by an intrinsic complex

Purpose:

 $\texttt{MQC_ScalarComplexDivide}$ is a function that is used to divide an $\texttt{MQC_Scalar}$ by an intrinsic complex.

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable numerator
in	Complex← In	ComplexIn is Complex(kind=real64) The intrinsic complex variable denominator

L. M. Thompson

Date

2019

6.61.1.5 mqc_scalardivide()

MQC_Scalar Divide is a function that divides two MQC_Scalar objects

Purpose:

MQC_ScalarDivide is a function that divides MQC_Scalar objects.

Parameters

in	Scalar1	
		Scalar1 is Type(MQC_Scalar) The numerator
in	Scalar2	
		Scalar2 is Type(MQC_Scalar) The denominator

Author

L. M. Thompson

Date

2016

6.61.1.6 mqc_scalarintegerdivide()

MQC_ScalarIntegerDivide is a function that is used to divide an MQC_Scalar by an intrinsic integer

Purpose:

 ${\tt MQC_ScalarIntegerDivide}$ is a function that is used to divide an ${\tt MQC_Scalar}$ by an intrinsic integer.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable numerator
in	Integer←	
	In	IntegerIn is Integer(kind=int64) The intrinsic integer variable denominator

Author

L. M. Thompson

Date

2019

6.61.1.7 mqc_scalarrealdivide()

MQC_ScalarRealDivide is a function that is used to divide an MQC_Scalar by an intrinsic real

Purpose:

 $\ensuremath{\mathsf{MQC_ScalarRealDivide}}$ is a function that is used to divide an $\ensuremath{\mathsf{MQC_Scalar}}$ by an intrinsic real.

in	Scalar	
		Scalar is Type(MQC_Scalar) The MQC_Scalar variable numerator
in	Real⊷ In	RealIn is Real(kind=real64) The intrinsic real variable denominator

L. M. Thompson

Date

2019

6.61.1.8 mqc_vectorcomplexdivide()

6.61.1.9 mqc_vectorintegerdivide()

6.61.1.10 mqc_vectorrealdivide()

6.61.1.11 mqc_vectorscalardivide()

The documentation for this interface was generated from the following file:

6.62 mgc algebra::real Interface Reference

Public Member Functions

- type(mqc_scalar) function mqc_scalar_complex_realpart (ScalarIn)
 MQC_Scalar_Complex_RealPart is a function that returns the real part of an MQC_Scalar
- type(mqc_vector) function mqc_vector_complex_realpart (A)

6.62.1 Member Function/Subroutine Documentation

6.62.1.1 mqc_scalar_complex_realpart()

MQC_Scalar_Complex_RealPart is a function that returns the real part of an MQC_Scalar

Purpose:

 $MQC_Scalar_Complex_RealPart$ is a function that returns the real part of an MQC_Scalar

Parameters

in	Scalar←	
	In	ScalarIn is Type(MQC_Scalar)
		The MQC_Scalar input variable

Author

L. M. Thompson

Date

2019

6.62.1.2 mqc_vector_complex_realpart()

The documentation for this interface was generated from the following file:

6.63 mgc algebra::sin Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_scalar_sin (Scalar)
 MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

6.63.1 Member Function/Subroutine Documentation

6.63.1.1 mqc_scalar_sin()

MQC Scalar Sin is a function used to return the sine of an MQC scalar

Purpose:

 ${\tt MQC_Scalar_Sin}$ is a function used to return the sine of an ${\tt MQC_scalar}.$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.64 mqc_algebra::sqrt Interface Reference

Public Member Functions

• type(mqc_scalar) function mqc_scalar_sqrt (Scalar)

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

6.64.1 Member Function/Subroutine Documentation

6.64.1.1 mqc scalar sqrt()

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

Purpose:

 $\ensuremath{\mathtt{MQC_Scalar_Sqrt}}$ is a function used to return the square root of an $\ensuremath{\mathtt{MQC_scalar_}}$

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2016

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.65 mqc_algebra::tan Interface Reference

Public Member Functions

type(mqc_scalar) function mqc_scalar_tan (Scalar)
 MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

6.65.1 Member Function/Subroutine Documentation

6.65.1.1 mqc_scalar_tan()

MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

Purpose:

 ${\tt MQC_Scalar_Tan}$ is a function used to return the tangent of an ${\tt MQC_scalar_tan}$.

Parameters

in	Scalar	
		Scalar is Type(MQC_Scalar) The argument of the function

Author

L. M. Thompson

Date

2019

The documentation for this interface was generated from the following file:

• src/mqc_algebra.F03

6.66 mqc_est::transpose Interface Reference

Public Member Functions

• type(mqc_scf_integral) function mqc_integral_transpose (integral, label)

6.66.1 Member Function/Subroutine Documentation

6.66.1.1 mqc_integral_transpose()

The documentation for this interface was generated from the following file:

• src/mqc_est.F03

6.67 mgc algebra::transpose Interface Reference

Public Member Functions

- type(mqc_vector) function mqc_vector_transpose (Vector)
- type(mqc_matrix) function mqc_matrix_transpose (Matrix)

6.67.1 Member Function/Subroutine Documentation

6.67.1.1 mqc_matrix_transpose()

6.67.1.2 mqc_vector_transpose()

The documentation for this interface was generated from the following file:

Chapter 7

File Documentation

7.1 src/mqc_algebra.F03 File Reference

Data Types

- type mqc_algebra::mqc_scalar
- type mqc_algebra::mqc_vector
- type mqc_algebra::mqc_matrix
- type mqc_algebra::mqc_r4tensor
- interface mqc_algebra::mqc_print
- interface mqc_algebra::contraction
- interface mqc_algebra::conjg
- interface mqc_algebra::mqc_have_real
- interface mqc_algebra::mqc_have_int
- interface mqc_algebra::mqc_have_complex
- interface mqc_algebra::mqc_cast_real
- interface mqc_algebra::mqc_cast_complex
- interface mqc_algebra::matmul
- interface mqc_algebra::transpose
- · interface mqc_algebra::dagger
- interface mgc_algebra::cmplx
- interface mqc_algebra::sqrt
- interface mqc_algebra::abs
- interface mqc_algebra::real
- interface mqc_algebra::aimag
- interface mqc_algebra::sin
- interface mgc algebra::cos
- interface mqc_algebra::tan
- interface mqc_algebra::asin
- interface mqc_algebra::acos
- interface mqc_algebra::atan
- interface mqc_algebra::atan2
- interface mqc_algebra::mqc_set_array2vector
- interface mqc_algebra::mqc_matrix_symmmatrix_put

- interface mqc_algebra::mqc_matrix_diagmatrix_put
- interface mqc_algebra::matrix_symm2sq
- interface mqc_algebra::dot_product
- interface mqc_algebra::assignment(=)
- interface mgc_algebra::operator(+)
- interface mgc_algebra::operator(-)
- interface mqc_algebra::operator(*)
- interface mgc_algebra::operator(/)
- interface mqc_algebra::operator(**)
- interface mqc_algebra::operator(.ne.)
- interface mgc_algebra::operator(.eq.)
- interference all all and a second of the
- interface mqc_algebra::operator(.lt.)
- interface mqc_algebra::operator(.gt.)
- interface mqc_algebra::operator(.le.)
- interface mqc_algebra::operator(.ge.)
- interface mqc_algebra::assignment(=)
- interface mqc_algebra::operator(.dot.)
- interface mqc_algebra::operator(*)
- interface mqc_algebra::operator(/)
- interface mqc_algebra::operator(+)
- interface mqc_algebra::operator(-)
- interface mqc_algebra::operator(.ewp.)
- interface mqc_algebra::operator(.ewd.)
- interface mqc_algebra::operator(.x.)
- interface mqc_algebra::operator(.outer.)
- interface mqc_algebra::assignment(=)
- interface mqc_algebra::operator(+)
- interface mqc_algebra::operator(-)
- interface mqc_algebra::operator(*)
- interface mqc_algebra::operator(.dot.)
- interface mqc_algebra::assignment(=)

Modules

• module mqc_algebra

Functions/Subroutines

• integer(kind=int64) function mqc_algebra::factorial (n)

Factorial returns the factorial of an integer

integer(kind=int64) function mqc_algebra::bin_coeff (N, K)

Bin_Coeff returns the binomial coefficient of (n,k)

subroutine mgc algebra::mgc allocate scalar (Scalar, Data type)

MQC_Allocate_Scalar is used to allocate a scalar type variable of the MQC_Scalar class

subroutine mgc algebra::mgc deallocate scalar (Scalar)

MQC_Deallocate_Scalar is used to deallocate a scalar type variable of the MQC_Scalar class

logical function mgc algebra::mgc scalar isallocated (Scalar)

MQC_Scalar_IsAllocated is used to determine the allocation status of an MQC_Scalar

• subroutine mqc_algebra::mqc_input_integer_scalar (ScalarOut, ScalarIn)

MQC_Input_Integer_Scalar is a subroutine is used to set an intrinsic integer to an MQC_Scalar

subroutine mgc algebra::mgc input real scalar (ScalarOut, ScalarIn)

MQC_Input_Real_Scalar is a subroutine is used to set an intrinsic real to an MQC_Scalar

• subroutine mgc algebra::mgc input complex scalar (ScalarOut, ScalarIn)

MQC_Input_Complex_Scalar is a subroutine is used to set an intrinsic complex to an MQC_Scalar

subroutine mqc_algebra::mqc_output_mqcscalar_scalar (ScalarOut, ScalarIn)

MQC_Output MQCScalar_Scalar is a subroutine used to output an MQC_scalar equal to an MQC_Scalar

subroutine mqc_algebra::mqc_output_integer_scalar (ScalarOut, ScalarIn)

MQC_Output_Integer_Scalar is a subroutine used to output an intrinsic integer equal to an MQC_Scalar

subroutine mqc_algebra::mqc_output_real_scalar (ScalarOut, ScalarIn)

MQC_Output_Real_Scalar is a subroutine used to output an intrinsic real equal to an MQC_Scalar

subroutine mgc algebra::mgc output complex scalar (ScalarOut, ScalarIn)

MQC_Output_Complex_Scalar is a subroutine used to output an intrinsic complex equal to an MQC_Scalar

subroutine mgc algebra::mgc print scalar algebra1 (Scalar, IOut, Header, Blank At Top, Blank At Bottom)

MQC_Print_Scalar_Algebra1 is a subroutine used to print an MQC_Scalar

• type(mgc scalar) function mgc algebra::mgc scalar cmplx (Scalar1, Scalar2)

MQC_Scalar_Cmplx is a function used to set a complex MQC_Scalar type variable from two other MQC_scalars

type(mgc scalar) function mgc algebra::mgc scalar sqrt (Scalar)

MQC_Scalar_Sqrt is a function used to return the square root of an MQC_scalar

type(mqc scalar) function mqc algebra::mqc scalar sin (Scalar)

MQC_Scalar_Sin is a function used to return the sine of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_cos (Scalar)

MQC_Scalar_Cos is a function used to return the cosine of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_tan (Scalar)

MQC_Scalar_Tan is a function used to return the tangent of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_asin (Scalar)

MQC_Scalar_ASin is a function used to return the arcsin of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_acos (Scalar)

MQC_Scalar_ACos is a function used to return the arccosine of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_atan (Scalar)

MQC_Scalar_ATan is a function used to return the arctangent of an MQC_scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_atan2 (Scalar)

MQC_Scalar_ATan2 is a function used to return the arctangent of an MQC_scalar accounting for quadrant of Argand diagram

logical function mqc_algebra::mqc_scalar_havereal (Scalar)

MQC_Scalar_HaveReal is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type real

logical function mqc_algebra::mqc_scalar_haveinteger (Scalar)

MQC_Scalar_HaveInteger is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type integer

logical function mqc_algebra::mqc_scalar_havecomplex (Scalar)

MQC_Scalar_HaveComplex is a function that returns TRUE or FALSE indicating whether an MQC_scalar is of type complex

real(kind=real64) function mqc_algebra::mqc_scalar_get_intrinsic_real (Scalar)

MQC_Scalar_Get_Intrinsic_Real is a function that returns the MQC_scalar value as an intrinsic real

integer(kind=int64) function mqc_algebra::mqc_scalar_get_intrinsic_integer (Scalar)

MQC_Scalar_Get_Intrinsic_Integer is a function that returns the MQC_scalar value as an intrinsic integer

complex(kind=real64) function mqc_algebra::mqc_scalar_get_intrinsic_complex (Scalar)

MQC_Scalar_Get_Intrinsic_Complex is a function that returns the MQC_scalar value as an intrinsic complex

type(mqc scalar) function mqc algebra::mqc scalar get abs value (Scalar)

MQC Scalar Get ABS Value is a function that returns the absolute value of MQC scalar variable

subroutine mqc_algebra::mqc_scalar_get_random_value (Scalar)

MQC_Scalar_Get_Random_Value is a function that returns a random real value from a uniform distribution between zero and one

type(mqc_scalar) function mqc_algebra::mqc_scalaradd (Scalar1, Scalar2)

MQC_ScalarAdd is a function that sums two MQC_Scalar objects

type(mgc_scalar) function mgc_algebra::mgc_scalarsubtract (Scalar1, Scalar2)

MQC_ScalarSubtract is a function that subtracts two MQC_Scalar objects

type(mqc_scalar) function mqc_algebra::mqc_scalarmultiply (Scalar1, Scalar2)

MQC_ScalarMultiply is a function that multiplies two MQC_Scalar objects

type(mqc_scalar) function mqc_algebra::mqc_scalardivide (Scalar1, Scalar2)

MQC_ScalarDivide is a function that divides two MQC_Scalar objects

• type(mgc scalar) function mgc algebra::mgc scalarexponent (Scalar1, Scalar2)

MQC_ScalarExponent is a function that raises one MQC_Scalar to the power of another MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_scalarintegerexponent (Scalar, Intln)

MQC_ScalarIntegerExponent is a function that raises an MQC_Scalar to the power of an intrinsic integer

• type(mqc_scalar) function mqc_algebra::mqc_scalarrealexponent (Scalar, RealIn)

MQC ScalarRealExponent is a function that raises an MQC Scalar to the power of an intrinsic real

type(mqc_scalar) function mqc_algebra::mqc_scalarcomplexexponent (Scalar, Compln)

MQC_ScalarComplexExponent is a function that raises an MQC_Scalar to the power of an intrinsic complex

logical function mqc_algebra::mqc_scalarne (Scalar1, Scalar2)

MQC_ScalarNE is a function that returns TRUE if two MQC_Scalar variables are not equal

• logical function mqc_algebra::mqc_scalareq (Scalar1, Scalar2)

MQC_ScalarEQ is a function that returns TRUE if two MQC_Scalar variables are equal

logical function mqc_algebra::mqc_scalarlt (Scalar1, Scalar2)

MQC_ScalarLT is a function that returns TRUE if the left MQC_Scalar is less than the right MQC_Scalar

logical function mqc_algebra::mqc_realltscalar (RealIn, Scalar)

MQC_RealLTScalar is a function that returns TRUE if an intrinsic real is less than a MQC_Scalar

logical function mqc_algebra::mqc_scalarltreal (Scalar, RealIn)

MQC_ScalarLTReal is a function that returns TRUE if a MQC_Scalar is less than an intrinsic real

logical function mqc_algebra::mqc_scalargt (Scalar1, Scalar2)

MQC_ScalarGT is a function that returns TRUE if the left MQC_Scalar is greater than the right MQC_Scalar

logical function mqc_algebra::mqc_integergtscalar (Intln, Scalar)

MQC_IntegerGTScalar is a function that returns TRUE if an intrinsic integer is greater than a MQC_Scalar

logical function mqc_algebra::mqc_scalargtinteger (Scalar, Intln)

MQC_ScalarGTInteger is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic integer

logical function mqc_algebra::mqc_realgtscalar (RealIn, Scalar)

MQC_RealGTScalar is a function that returns TRUE if an intrinsic real is greater than a MQC_Scalar

logical function mqc_algebra::mqc_scalargtreal (Scalar, RealIn)

MQC_ScalarGTReal is a function that returns TRUE if a MQC_Scalar is greater than an intrinsic real

logical function mqc_algebra::mqc_scalarle (Scalar1, Scalar2)

MQC_ScalarLE is a function that returns TRUE if the left MQC_Scalar is less than or equal the right MQC_Scalar

logical function mqc_algebra::mqc_reallescalar (RealIn, Scalar)

MQC_RealLEScalar is a function that returns TRUE if an intrinsic real is less than or equal to a MQC_Scalar

logical function mqc_algebra::mqc_scalarlereal (Scalar, RealIn)

MQC_ScalarLEReal is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic real

logical function mqc_algebra::mqc_integerlescalar (Intln, Scalar)

MQC_IntegerLEScalar is a function that returns TRUE if an intrinsic integer is less than or equal to a MQC_Scalar

logical function mqc_algebra::mqc_scalarleinteger (Scalar, Intln)

MQC_ScalarLEInteger is a function that returns TRUE if a MQC_Scalar is less than or equal to an intrinsic integer

logical function mgc algebra::mgc scalarge (Scalar1, Scalar2)

MQC_ScalarGE is a function that returns TRUE if the left MQC_Scalar is greater than or equal the right MQC_← Scalar

type(mgc scalar) function mgc algebra::mgc scalar complex conjugate (ScalarIn)

MQC_Scalar_Complex_Conjugate is a function that returns the complex conjugate of an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_complex_realpart (ScalarIn)

MQC_Scalar_Complex_RealPart is a function that returns the real part of an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_scalar_complex_imagpart (ScalarIn)

MQC_Scalar_Complex_ImagPart is a function that returns the inaginary part of an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_integerscalarmultiply (IntegerIn, Scalar)

MQC_IntegerScalarMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

type(mqc scalar) function mqc algebra::mqc scalarintegermultiply (Scalar, IntegerIn)

MQC_ScalarIntegerMultiply is a function that is used to multiply an intrinsic integer by an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_realscalarmultiply (RealIn, Scalar)

MQC_RealScalarMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_scalarrealmultiply (Scalar, RealIn)

MQC_ScalarRealMultiply is a function that is used to multiply an intrinsic real by an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_complexscalarmultiply (ComplexIn, Scalar)

MQC_ComplexScalarMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

• type(mqc_scalar) function mqc_algebra::mqc_scalarcomplexmultiply (Scalar, ComplexIn)

MQC_ScalarComplexMultiply is a function that is used to multiply an intrinsic complex by an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_integerscalardivide (IntegerIn, Scalar)

MQC_IntegerScalarDivide is a function that is used to divide an intrinsic integer by an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_scalarintegerdivide (Scalar, IntegerIn)

MQC_ScalarIntegerDivide is a function that is used to divide an MQC_Scalar by an intrinsic integer

type(mqc_scalar) function mqc_algebra::mqc_realscalardivide (RealIn, Scalar)

MQC_RealScalarDivide is a function that is used to divide an intrinsic real by an MQC_Scalar

• type(mqc_scalar) function mqc_algebra::mqc_scalarrealdivide (Scalar, RealIn)

MQC_ScalarRealDivide is a function that is used to divide an MQC_Scalar by an intrinsic real

type(mqc_scalar) function mqc_algebra::mqc_complexscalardivide (ComplexIn, Scalar)

MQC_ComplexScalarDivide is a function that is used to divide an intrinsic complex by an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_scalarcomplexdivide (Scalar, ComplexIn)

MQC_ScalarComplexDivide is a function that is used to divide an MQC_Scalar by an intrinsic complex

type(mqc_scalar) function mqc_algebra::mqc_integerscalaradd (IntegerIn, Scalar)

MQC_IntegerScalarAdd is a function that is used to multiply an intrinsic integer by an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_scalarintegeradd (Scalar, IntegerIn)

MQC_ScalarIntegerAdd is a function that is used to sum an intrinsic integer by an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_realscalaradd (RealIn, Scalar)

MQC_RealScalarAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

type(mqc_scalar) function mqc_algebra::mqc_scalarrealadd (Scalar, RealIn)

MQC_ScalarRealAdd is a function that is used to sum an intrinsic real by an MQC_Scalar

- type(mqc_scalar) function mqc_algebra::mqc_complexscalaradd (ComplexIn, Scalar)
 - MQC_ComplexScalarAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar
- type(mgc scalar) function mgc algebra::mgc scalarcomplexadd (Scalar, ComplexIn)
 - MQC_ScalarComplexAdd is a function that is used to sum an intrinsic complex by an MQC_Scalar
- type(mgc scalar) function mgc algebra::mgc integerscalarsubtract (IntegerIn, Scalar)
 - MQC IntegerScalarSubtract is a function that is used to subtract an MQC Scalar from an intrinisic integer
- type(mgc scalar) function mgc algebra::mgc scalarintegersubtract (Scalar, IntegerIn)
 - MQC_ScalarIntegerSubtract is a function that is used to subtract an intrinsic integer from an MQC_Scalar
- type(mqc_scalar) function mqc_algebra::mqc_realscalarsubtract (RealIn, Scalar)
 - MQC_RealScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic real
- type(mqc_scalar) function mqc_algebra::mqc_scalarrealsubtract (Scalar, RealIn)
 - MQC_ScalarRealSubtract is a function that is used to subtract an intrinsic real from an MQC_Scalar
- type(mgc scalar) function mgc algebra::mgc complexscalarsubtract (ComplexIn, Scalar)
 - MQC_ComplexScalarSubtract is a function that is used to subtract an MQC_Scalar from an intrinisic complex
- type(mqc scalar) function mqc algebra::mqc scalarcomplexsubtract (Scalar, ComplexIn)
 - MQC_ScalarComplexSubtract is a function that is used to subtract an intrinsic complex from an MQC_Scalar
- subroutine mgc algebra::mgc allocate vector (N, Vector, Data Type)
- subroutine mgc algebra::mgc deallocate vector (Vector)
- integer(kind=int64) function mgc_algebra::mgc_length_vector (Vector)
- logical function mgc algebra::mgc vector havereal (Vector)
- logical function mgc algebra::mgc vector haveinteger (Vector)
- logical function mgc algebra::mgc vector havecomplex (Vector)
- logical function mgc algebra::mgc vector iscolumn (Vector)
- subroutine mgc algebra::mgc vector copy int2real (Vector)
- subroutine mqc_algebra::mqc_vector_copy_int2complex (Vector)
- subroutine mqc_algebra::mqc_vector_copy_real2int (Vector)
- subroutine mqc_algebra::mqc_vector_copy_real2complex (Vector)
- subroutine mgc algebra::mgc vector copy complex2int (Vector)
- subroutine mqc_algebra::mqc_vector_copy_complex2real (Vector)
- type(mqc_scalar) function mqc_algebra::mqc_vector_scalar_at (Vec, I)
- type(mqc_vector) function mqc_algebra::mqc_vector_vector_at (Vec, I, J)
- subroutine mqc_algebra::mqc_set_vector2integerarray (ArrayOut, VectorIn)
- subroutine mqc_algebra::mqc_set_vector2realarray (ArrayOut, VectorIn)
- subroutine mqc algebra::mqc set vector2complexarray (ArrayOut, VectorIn)
- subroutine mqc_algebra::mqc_set_array2vector_integer (VectorOut, ArrayIn)
- subroutine mgc algebra::mgc set array2vector real (VectorOut, ArrayIn)
- subroutine mqc_algebra::mqc_set_array2vector_complex (VectorOut, ArrayIn)
- subroutine mgc algebra::mgc set vector2vector (VectorOut, VectorIn)
- type(mqc_vector) function mqc_algebra::mqc_vectorvectorsum (Vector1In, Vector2In)
- type(mqc_vector) function mqc_algebra::mqc_vectorvectordifference (Vector1In, Vector2In)
- type(mqc vector) function mqc algebra::mqc scalarvectorsum (ScalarIn, VectorIn)
- type(mqc_vector) function mqc_algebra::mqc_scalarvectordifference (ScalarIn, VectorIn)
- type(mgc vector) function mgc algebra::mgc elementvectorproduct (Vector1In, Vector2In)
- type(mqc_vector) function mqc_algebra::mqc_vector_transpose (Vector)
- type(mgc vector) function mgc algebra::mgc vector conjugate transpose (Vector)
- type(mqc_scalar) function mqc_algebra::mqc_vectorvectordotproduct (Vector1, Vector2)
- type(mqc_matrix) function mqc_algebra::mqc_outer (VA, VB)
- type(mgc vector) function mgc algebra::mgc crossproduct (Vector1In, Vector2In)

- subroutine mqc_algebra::mqc_print_vector_algebra1 (Vector, IOut, Header, Verbose, Blank_At_Top, Blank_At
 Bottom)
- type(mqc vector) function mqc algebra::mqc vector cast real (VA)
- type(mqc_vector) function mqc_algebra::mqc_vector_cast_complex (VA)
- subroutine mgc algebra::mgc vector scalar put (Vector, Scalar, I)
- subroutine mqc_algebra::mqc_vector_scalar_increment (Vector, Scalar, I)
- subroutine mqc_algebra::mqc_vector_vector_put (Vector, VectorIn, I)
- subroutine mgc algebra::mgc vector initialize (Vector, Length, Scalar)
- type(mgc vector) function mgc algebra::mgc scalarvectorproduct (Scalar, Vector)
- type(mgc vector) function mgc algebra::mgc vectorscalarproduct (vector, scalar)
- type(mgc vector) function mgc algebra::mgc vectorscalardivide (vector, scalar)
- type(mqc_vector) function mqc_algebra::mqc_realvectorproduct (RealIn, Vector)
- type(mgc vector) function mgc algebra::mgc vectorrealproduct (vector, realln)
- type(mqc_vector) function mqc_algebra::mqc_vectorrealdivide (vector, realIn)
- type(mgc vector) function mgc algebra::mgc integervectorproduct (intln, Vector)
- type(mgc vector) function mgc algebra::mgc vectorintegerproduct (vector, intln)
- type(mgc vector) function mgc algebra::mgc vectorintegerdivide (vector, intln)
- type(mgc vector) function mgc algebra::mgc complexvectorproduct (Compln, Vector)
- type(mqc_vector) function mqc_algebra::mqc_vectorcomplexproduct (vector, compln)
- type(mgc vector) function mgc algebra::mgc vectorcomplexdivide (vector, compln)
- type(mgc scalar) function mgc algebra::mgc vector norm (vector, methodIn)
- logical function mgc algebra::mgc vector isallocated (Vector)
- subroutine mqc_algebra::mqc_vector_push (Vector, Scalar)
- subroutine mqc_algebra::mqc_vector_unshift (Vector, Scalar)
- type(mqc scalar) function mqc algebra::mqc vector pop (Vector)
- type(mqc_scalar) function mqc_algebra::mqc_vector_shift (Vector)
- type(mgc_scalar) function mgc_algebra::mgc_vector_maxval (Vector)
- type(mqc_scalar) function mqc_algebra::mqc_vector_minval (Vector)
- integer function mqc_algebra::mqc_vector_maxloc (Vector)
- integer function mqc_algebra::mqc_vector_minloc (Vector)
- type(mqc_vector) function mqc_algebra::mqc_vector_argsort (Vector)
- subroutine mqc_algebra::mqc_vector_sort (Vector, idx)
- subroutine mgc_algebra::mgc_vector_sqrt (A)
- type(mgc vector) function mgc algebra::mgc vector abs (A)
- subroutine mqc_algebra::mqc_vector_power (A, P)
- type(mgc vector) function mgc algebra::mgc vector complex realpart (A)
- type(mqc_vector) function mqc_algebra::mqc_vector_complex_imagpart (A)
- type(mqc_vector) function mqc_algebra::mqc_vector_cmplx (Vector1, Vector2)
- character(len=64) function mqc_algebra::mqc_matrix_storagetype (Matrix)
- subroutine mqc_algebra::mqc_matrix_diagonalize (A, EVals, EVecs)
- type(mgc matrix) function mgc algebra::mgc matrix cast real (MA)
- type(mgc matrix) function mgc algebra::mgc matrix cast complex (MA)
- type(mgc scalar) function mgc algebra::mgc matrix scalar at (Mat, I, J)
- type(mqc_vector) function mqc_algebra::mqc_matrix_vector_at (Mat, Rows, Cols)
- recursive subroutine mgc algebra::mgc matrix vector put (Mat, VectorIn, Rows, Cols)
- type(mqc_matrix) function mqc_algebra::mqc_matrix_matrix_at (Mat, Rows, Cols)

MQC_Matrix_Matrix_At is a function that returns a submatrix of the matrix

- subroutine mqc_algebra::mqc_matrix_diagmatrix_put_vector (diagVectorIn, mat)
- subroutine mqc_algebra::mqc_matrix_diagmatrix_put_integer (mat, diagMatrixIn)
- subroutine mgc algebra::mgc matrix diagmatrix put real (mat, diagMatrixIn)
- subroutine mgc algebra::mgc matrix diagmatrix put complex (mat, diagMatrixIn)

- subroutine mqc_algebra::mqc_matrix_symmmatrix_put_integer (mat, symmMatrixIn)
- subroutine mgc algebra::mgc matrix symmmatrix put real (mat, symmMatrixIn)
- subroutine mgc algebra::mgc matrix symmmatrix put complex (mat, symmMatrixIn)
- recursive subroutine mqc_algebra::mqc_matrix_matrix_put (Mat, MatrixIn, Rows, Cols)
- integer(kind=int64) function mgc_algebra::symindexhash (i, j, k, l)
- type(mqc matrix) function mqc algebra::mqc elementmatrixproduct (A, B)
- type(mqc_matrix) function mqc_algebra::mqc_elementmatrixdivide (A, B)
- logical function mgc algebra::mgc matrix test symmetric (Matrix, Option)
- logical function mgc algebra::mgc matrix test diagonal (Matrix)
- subroutine mgc algebra::mgc allocate matrix (M, N, Matrix, Data Type, Storage)
- subroutine mgc_algebra::mgc_deallocate_matrix (Matrix)
- logical function mgc algebra::mgc matrix isallocated (Matrix)
- subroutine mgc algebra::mgc set integerarray2matrix (MatrixOut, ArrayIn)
- subroutine mgc algebra::mgc set realarray2matrix (MatrixOut, ArrayIn)
- subroutine mqc_algebra::mqc_set_complexarray2matrix (MatrixOut, ArrayIn)
- subroutine mqc_algebra::mqc_set_matrix2integerarray (ArrayOut, MatrixIn)
- subroutine mqc_algebra::mqc_set_matrix2realarray (ArrayOut, MatrixIn)
- subroutine mgc algebra::mgc set matrix2complexarray (ArrayOut, MatrixIn)
- subroutine mqc_algebra::mqc_set_matrix2matrix (MatrixOut, MatrixIn)
- subroutine mqc_algebra::mqc_print_matrix_algebra1 (Matrix, IOut, Header, Blank_At_Top, Blank_At_Bottom)
- subroutine mgc algebra::mgc matrix copy int2real (Matrix)
- subroutine mqc_algebra::mqc_matrix_copy_int2complex (Matrix)
- subroutine mgc algebra::mgc matrix copy real2int (Matrix)
- subroutine mqc_algebra::mqc_matrix_copy_real2complex (Matrix)
- subroutine mqc algebra::mqc matrix copy complex2int (Matrix)
- subroutine mqc_algebra::mqc_matrix_copy_complex2real (Matrix)
- integer(kind=int64) function mqc_algebra::mqc_matrix_rows (Matrix)
- integer(kind=int64) function mqc_algebra::mqc_matrix_columns (Matrix)
- logical function mgc algebra::mgc matrix havereal (Matrix)
- logical function mgc algebra::mgc matrix haveinteger (Matrix)
- logical function mgc algebra::mgc matrix havecomplex (Matrix)
- logical function mgc algebra::mgc matrix havefull (Matrix)
- logical function mgc_algebra::mgc_matrix_havesymmetric (Matrix)
- logical function mqc_algebra::mqc_matrix_havediagonal (Matrix)
- type(mgc matrix) function mgc algebra::mgc matrix transpose (Matrix)
- type(mgc matrix) function mgc algebra::mgc matrix conjugate transpose (Matrix)
- type(mgc matrix) function mgc algebra::mgc matrix symmetrize (Matrix)
- subroutine mgc_algebra::mgc_matrix_full2symm (Matrix)
- subroutine mqc_algebra::mqc_matrix_symm2full (Matrix, Option)
- subroutine mgc algebra::mgc matrix full2diag (Matrix)
- subroutine mgc algebra::mgc matrix diag2full (Matrix)
- subroutine mqc_algebra::mqc_matrix_symm2diag (Matrix)
- subroutine mqc_algebra::mqc_matrix_diag2symm (Matrix)
- type(mgc matrix) function mgc algebra::mgc matrix symm2full func (Matrix)
- subroutine mgc_algebra::matrix_symm2sg_integer (N, I_Symm, I_Sg)
- subroutine mqc_algebra::matrix_symm2sq_real (N, A_Symm, A_Sq)
- subroutine mqc_algebra::matrix_symm2sq_complex (N, A_Symm, A_Sq)
- type(mqc_matrix) function mqc_algebra::mqc_vector2diagmatrix (vector)
- type(mqc_matrix) function mqc_algebra::mqc_matrixmatrixsum (MA, MB)
- type(mgc matrix) function mgc algebra::mgc matrixmatrixsubtract (MA, MB)
- type(mgc matrix) function mgc algebra::mgc matrixmatrixproduct (MA, MB)

- type(mqc_matrix) function mqc_algebra::mqc_matrixmatrixdotproduct (MA, MB)
- type(mqc_vector) function mqc_algebra::mqc_matrixvectordotproduct (MA, VB)
- type(mqc_vector) function mqc_algebra::mqc_vectormatrixdotproduct (VA, MB)
- type(mqc matrix) function mqc algebra::mqc matrixscalarproduct (Matrix, Scalar)
- type(mgc matrix) function mgc algebra::mgc scalarmatrixproduct (Scalar, Matrix)
- type(mgc scalar) function mgc algebra::mgc matrix matrix contraction (Matrix1, Matrix2)
- subroutine mqc_algebra::mqc_matrix_scalar_put (Matrix, Scalar, I, J)
- subroutine mqc algebra::mqc matrix initialize (Matrix, Rows, Columns, Scalar, Storage)
- subroutine mqc_algebra::mqc_matrix_identity (matrix, n, m)
- subroutine mgc algebra::mgc matrix set (matrix, scalar, storage)
- type(mgc scalar) function mgc algebra::mgc matrix norm (matrix, methodln)
- type(mqc_scalar) function mqc_algebra::mqc_matrix_determinant (a)
- type(mqc_matrix) function mqc_algebra::mqc_matrix_inverse (a)
- type(mgc scalar) function mgc algebra::mgc matrix trace (matrix)
- subroutine mgc algebra::mgc matrix generalized eigensystem (a, bln, eigenvals, reigenvecs, leigenvecs)
- subroutine mgc algebra::mgc matrix svd (A, EVals, EUVecs, EVVecs)
- subroutine mgc algebra::mgc matrix rms max (A, rms A, max A)
- subroutine mqc_algebra::mqc_matrix_sqrt (A, eVals, eVecs)
- type(mqc matrix) function mqc algebra::mqc givens matrix (m size, angle, p, q)
- subroutine mgc algebra::mgc allocate r4tensor (I, J, K, L, Tensor, Data Type, Storage)
- subroutine mqc_algebra::mqc_deallocate_r4tensor (Tensor)
- type(mgc scalar) function mgc algebra::mgc r4tensor at (Tensor, I, J, K, L)
- subroutine mqc_algebra::mqc_r4tensor_put (Tensor, Element, I, J, K, L)
- subroutine mqc_algebra::mqc_print_r4tensor_algebra1 (Tensor, IOut, Header, blank_at_top, blank_at_bottom)
- subroutine mqc_algebra::mqc_set_array2tensor (TensorOut, ArrayIn)
- subroutine mqc_algebra::mqc_r4tensor_initialize (R4Tensor, I, J, K, L, Scalar)
- subroutine mgc algebra::mgc matrix symmsymmr4tensor put real (r4Tensor, symmSymmMatrixIn)
- subroutine mgc algebra::mgc matrix symmsymmr4tensor put complex (r4Tensor, symmSymmMatrixIn)
- logical function mqc_algebra::mqc_r4tensor_haveinteger (R4Tensor)
- logical function mgc algebra::mgc r4tensor havereal (R4Tensor)
- logical function mqc_algebra::mqc_r4tensor_havecomplex (R4Tensor)

7.2 src/mqc_est.F03 File Reference

Data Types

- type mqc est::mqc scf integral
- type mgc est::mgc scf eigenvalues
- type mgc est::mgc wavefunction
- type mqc_est::mqc_pscf_wavefunction
- type mqc_est::mqc_determinant_string
- type mgc est::mgc determinant
- type mqc_est::mqc_twoeris
- interface mqc_est::mqc_print
- · interface mgc est::matmul
- interface mqc_est::dot_product
- interface mqc_est::transpose
- interface mgc est::dagger

- interface mqc_est::contraction
- interface mqc_est::mqc_matrix_undospinblockghf
- interface mgc est::assignment(=)
- interface mqc_est::operator(+)
- interface mgc est::operator(-)
- interface mqc est::operator(*)

Modules

· module mgc est

Functions/Subroutines

- subroutine mqc_est::mqc_print_wavefunction (wavefunction, iOut, label)
- subroutine mgc est::mgc print integral (integral, iOut, header, blank at top, blank at bottom)
- subroutine mqc_est::mqc_print_eigenvalues (eigenvalues, iOut, header, blank_at_top, blank_at_bottom)
- subroutine mgc est::mgc print twoeris (twoERIs, iOut, header, blank at top, blank at bottom)
- logical function mqc_est::mqc_integral_isallocated (Integral)
- logical function mqc_est::mqc_eigenvalues_isallocated (Eigenvalues)
- logical function mqc est::mqc integral has alpha (integral)
- logical function mgc est::mgc integral has beta (integral)
- logical function mqc_est::mqc_integral_has_alphabeta (integral)
- · logical function mgc est::mgc integral has betaalpha (integral)
- logical function mqc est::mqc eigenvalues has alpha (eigenvalues)
- logical function mgc est::mgc eigenvalues has beta (eigenvalues)
- character(len=64) function mqc est::mqc integral array type (integral)
- character(len=64) function mqc_est::mqc_eigenvalues_array_type (eigenvalues)
- character(len=64) function mqc_est::mqc_integral_array_name (integral)
- character(len=64) function mqc_est::mqc_eigenvalues_array_name (eigenvalues)
- subroutine mqc_est::mqc_integral_add_name (integral, arrayName)
- subroutine mqc_est::mqc_eigenvalues_add_name (eigenvalues, arrayName)
- integer(kind=int64) function mgc est::mgc integral dimension (integral, label, axis)
- integer(kind=int64) function mgc est::mgc eigenvalues dimension (eigenvalues, label)
- subroutine mqc_est::mqc_twoeris_allocate (twoERIs, storageType, integralType, alpha, beta, alphaBeta, beta
 — Alpha)
- subroutine mgc est::mgc integral allocate (integral, arrayName, arrayType, alpha, beta, alphaBeta, betaAlpha)
- subroutine mqc_est::mqc_eigenvalues_allocate (eigenvalues, arrayName, arrayType, alpha, beta)
- subroutine mgc est::mgc integral identity (integral, nAlpha, nBeta, label, nAlpha2, nBeta2)
- subroutine mqc_est::mqc_integral_initialize (integral, nAlpha, nBeta, scalar, label, nAlpha2, nBeta2)
- type(mgc matrix) function mgc est::mgc integral output block (integral, blockName)
- type(mqc_scf_integral) function mqc_est::mqc_integral_output_orbitals (integral, orbString, alphaOrbsIn, beta
 OrbsIn, axis)
- type(mgc scf integral) function mgc est::mgc integral swap orbitals (integral, alphaOrbsIn, betaOrbsIn, axis)
- type(mqc_vector) function mqc_est::mqc_eigenvalues_output_block (eigenvalues, blockName)
- subroutine mqc_est::mqc_integral_output_array (matrixOut, integralIn)
- subroutine mqc_est::mqc_eigenvalues_output_array (vectorOut, eigenvaluesIn)
- type(mqc_scf_integral) function mqc_est::mqc_integral_matrix_multiply (integralA, matrixB, label)
- type(mgc scf integral) function mgc est::mgc matrix integral multiply (matrixA, integralB, label)
- type(mqc scf integral) function mqc est::mqc integral sum (integralA, integralB)

- type(mqc_scf_integral) function mqc_est::mqc_integral_difference (integralA, integralB)
- type(mqc_scf_integral) function mqc_est::mqc_integral_integral_multiply (integralA, integralB, label)
- type(mgc scf integral) function mgc est::mgc scalar integral multiply (scalar, integral)
- type(mqc_scf_integral) function mqc_est::mqc_integral_scalar_multiply (integral, scalar)
- type(mgc scf integral) function mgc est::mgc integral eigenvalues multiply (integralA, eigenvaluesB, label)
- type(mgc scf integral) function mgc est::mgc eigenvalues integral multiply (eigenvaluesA, integralB, label)
- type(mqc_scf_eigenvalues) function mqc_est::mqc_eigenvalues_eigenvalues_multiply (eigenvaluesA, eigenvaluesB, label)
- type(mqc scalar) function mqc est::mqc eigenvalue eigenvalue dotproduct (eigenvalueA, eigenvalueB)
- type(mqc_scf_integral) function mqc_est::mqc_integral_transpose (integral, label)
- type(mgc scf integral) function mgc est::mgc integral conjugate transpose (integral, label)
- type(mqc_scalar) function mqc_est::mqc_integral_norm (integral, methodIn)
- subroutine mqc_est::mqc_matrix_spinblockghf (array, nelec, multi, elist)
- subroutine mgc est::mgc matrix undospinblockghf eigenvalues (eigenvalues In, vectorOut)
- subroutine mqc_est::mqc_matrix_undospinblockghf_integral (integralIn, matrixOut)
- type(mqc_scalar) function mqc_est::mqc_scf_integral_contraction (integral1, integral2)
- type(mgc scf integral) function mgc est::mgc eri integral contraction (eris, integral, label)
- subroutine mqc_est::mqc_scf_integral_generalized_eigensystem (integralA, integralB, eVals, rEVecs, IEVecs)
- subroutine mgc est::mgc scf integral diagonalize (integral, eVals, eVecs)
- type(mqc_scf_integral) function mqc_est::mqc_scf_integral_inverse (integral)
- type(mqc_scalar) function mqc_est::mqc_scf_integral_trace (integral)
- type(mgc scalar) function mgc est::mgc scf integral determinant (integral)
- subroutine mqc est::mqc_integral_set_energy_list (integral, elist)
- integer(kind=int64) function, dimension(:), allocatable mgc_est::mgc_integral get_energy_list (integral)
- subroutine mgc est::mgc integral delete energy list (integral)
- subroutine mqc_est::mqc_scf_eigenvalues_power (eigenvalues, power)
- type(mqc_scalar) function mqc_est::mqc_twoeris_at (twoERIs, i, j, k, I, spinBlock)
- type(mqc_scalar) function mqc_est::mqc_integral_at (integral, i, j, spinBlock)
- type(mqc_scalar) function mqc_est::mqc_eigenvalues_at (eigenvalues, i, spinBlock)
- subroutine mgc est::mgc scf transformation matrix (overlap, transform matrix, nBasUse)
- subroutine mgc est::gen det str (IOut, IPrint, NBasisIn, NAlphaIn, NBetaIn, Determinants, NCoreIn)
- type(mqc_scalar) function mqc_est::slater_condon (IOut, IPrint, NBasisIn, Determinants, L_A_String, L_B_String, R A String, R B String, Core Hamiltonian, ERIs, UHF)
- subroutine mgc est::twoeri trans (IOut, IPrint, MO Coeff, ERIs, MO ERIs, UHF)
- subroutine mqc_est::mqc_build_ci_hamiltonian (IOut, IPrint, NBasis, Determinants, MO_Core_Ham, MO_ERIs, UHF, CI_Hamiltonian)
- type(mqc_matrix) function mqc_est::get_one_gamma_matrix (iOut, iPrint, nBasisIn, nState, determinants, ci_
 amplitudes, nCoreIn, nOrbsIn)

Index

abs	eigensys
mqc_algebra::mqc_scalar, 161	mqc_algebra::mqc_matrix, 149
mqc_algebra::mqc_vector, 169	mqc_est::mqc_scf_integral, 165
addlabel	1 = 1 = 0
mqc_est::mqc_scf_eigenvalues, 163	factorial
mqc_est::mqc_scf_integral, 164	mqc_algebra, 18
alpha	fock_matrix
mqc_est::mqc_determinant_string, 146	mqc_est::mqc_wavefunction, 175
argsort	
mqc_algebra::mqc_vector, 169	gen_det_str
at	mqc_est, 104
mqc_algebra::mqc_matrix, 149	get_one_gamma_matrix
mqc_algebra::mqc_r4tensor, 160	mqc_est, 104
mqc_algebra::mqc_vector, 169	getblock
mqc_est::mqc_scf_eigenvalues, 163	mqc_est::mqc_scf_eigenvalues, 163
4-7 4-7 7- 8	mqc_est::mqc_scf_integral, 165
basis	getelist
mqc_est::mqc_wavefunction, 174	mqc_est::mqc_scf_integral, 165
beta	getlabel
mqc_est::mqc_determinant_string, 146	mqc_est::mqc_scf_eigenvalues, 163
bin_coeff	mqc_est::mqc_scf_integral, 165
mqc_algebra, 17	1
1 = 0	identity
charge	mqc_algebra::mqc_matrix, 149
mqc_est::mqc_wavefunction, 174	mqc_est::mqc_scf_integral, 165
core_hamiltonian	init
mqc_est::mqc_wavefunction, 174	mqc_algebra::mqc_matrix, 150
cval	mqc_algebra::mqc_r4tensor, 160
mqc_algebra::mqc_scalar, 162	mqc_algebra::mqc_vector, 169
7 - 7	mqc_est::mqc_scf_integral, 165
dagger	initialize
mqc_algebra::mqc_matrix, 149	mqc_algebra::mqc_matrix, 150
mqc_algebra::mqc_vector, 169	mqc_algebra::mqc_r4tensor, 161
data_type	mqc_algebra::mqc_vector, 170
mqc_algebra::mqc_vector, 172	inv
deleteelist	mqc_algebra::mqc_matrix, 150
mqc_est::mqc_scf_integral, 164	mqc_est::mqc_scf_integral, 166
density_matrix	ival
mqc_est::mqc_wavefunction, 175	mqc_algebra::mqc_scalar, 162
det	mqc_aigebramqc_scalar, 102
mgc algebra::mgc matrix, 149	length
mgc est::mgc scf integral, 164	mqc_algebra::mqc_vector, 172
diag	mqo_aigebramqo_vector, 172
mqc_algebra::mqc_matrix, 149	mat
mqc_algebra::mqc_vector, 169	mqc algebra::mqc matrix, 150
mgc_est::mgc_scf_integral_165	matc
1100 Gal. 1100 av 11150101. 100	maic

mqc_algebra::mqc_matrix, 152	mqc_input_complex_scalar, 25
mati	mqc_input_integer_scalar, 26
mqc_algebra::mqc_matrix, 152	mqc_input_real_scalar, 27
matr	mqc_integergtscalar, 28
mqc_algebra::mqc_matrix, 152	mqc_integerlescalar, 28
matrix_symm2sq_complex	mqc_integerscalaradd, 29
mqc_algebra, 18	mqc_integerscalardivide, 30
mqc_algebra::matrix_symm2sq, 142	mqc_integerscalarmultiply, 30
matrix_symm2sq_integer	mqc_integerscalarsubtract, 31
mqc_algebra, 18	mqc_integervectorproduct, 32
mqc algebra::matrix symm2sq, 143	mqc_length_vector, 32
matrix_symm2sq_real	mqc_matrix_cast_complex, 32
mqc_algebra, 19	mqc_matrix_cast_real, 32
mqc_algebra::matrix_symm2sq, 143	mqc_matrix_columns, 32
maxloc	mqc_matrix_conjugate_transpose, 32
mqc_algebra::mqc_vector, 170	mgc matrix copy complex2int, 33
maxval	mqc_matrix_copy_complex2real, 33
mgc algebra::mgc vector, 170	mqc_matrix_copy_int2complex, 33
minloc	mqc_matrix_copy_int2real, 33
mgc algebra::mgc vector, 170	mgc matrix copy real2complex, 33
minval	mqc_matrix_copy_real2int, 33
mqc_algebra::mqc_vector, 170	mqc_matrix_determinant, 34
mo coefficients	mqc_matrix_diag2full, 34
mqc_est::mqc_wavefunction, 175	mqc_matrix_diag2symm, 34
mo energies	mqc_matrix_diagmatrix_put_complex, 34
mqc_est::mqc_wavefunction, 175	mqc_matrix_diagmatrix_put_integer, 34
mo_symmetries	mqc_matrix_diagmatrix_put_real, 34
mqc_est::mqc_wavefunction, 175	mqc_matrix_diagmatrix_put_vector, 35
mput	mqc_matrix_diagonalize, 35
mqc_algebra::mqc_matrix, 150	mqc_matrix_full2diag, 35
mqc_algebra, 9	mqc_matrix_full2symm, 35
bin_coeff, 17	mqc_matrix_generalized_eigensystem, 35
factorial, 18	mqc_matrix_havecomplex, 35
matrix_symm2sq_complex, 18	mqc_matrix_havediagonal, 36
matrix_symm2sq_integer, 18	mqc_matrix_havefull, 36
matrix_symm2sq_real, 19	mqc_matrix_haveinteger, 36
mqc_allocate_matrix, 19	mqc_matrix_havereal, 36
mqc_allocate_r4tensor, 19	mqc_matrix_havesymmetric, 36
mqc_allocate_scalar, 19	mqc_matrix_identity, 36
mqc_allocate_vector, 20	mqc_matrix_initialize, 37
mqc_complexscalaradd, 20	mqc_matrix_inverse, 37
mqc_complexscalardivide, 21	mqc_matrix_isallocated, 37
mqc_complexscalarmultiply, 22	mqc_matrix_matrix_at, 37
mqc_complexscalarsubtract, 23	mqc_matrix_matrix_contraction, 38
mqc_complexvectorproduct, 23	mqc_matrix_matrix_put, 38
mqc_crossproduct, 23	mqc_matrix_norm, 38
mqc_deallocate_matrix, 24	mqc_matrix_rms_max, 39
mqc_deallocate_r4tensor, 24	mqc_matrix_rows, 39
mqc_deallocate_scalar, 24	mqc_matrix_scalar_at, 39
mqc_deallocate_vector, 25	mqc_matrix_scalar_put, 39
mqc_elementmatrixdivide, 25	mqc_matrix_set, 39
mgc elementmatrixproduct, 25	mgc matrix sqrt, 40
mgc_elementvectorproduct, 25	mqc_matrix_storagetype, 40
mqc_givens_matrix, 25	mqc_matrix_svd, 40
40_800	43

	1 1 1 1 1 1 1 04
mqc_matrix_symm2diag, 40	mqc_scalar_get_intrinsic_complex, 61
mqc_matrix_symm2full, 40	mqc_scalar_get_intrinsic_integer, 62
mqc_matrix_symm2full_func, 41	mqc_scalar_get_intrinsic_real, 62
mqc_matrix_symmetrize, 41	mqc_scalar_get_random_value, 63
mqc_matrix_symmmatrix_put_complex, 41	mqc_scalar_havecomplex, 64
mqc_matrix_symmmatrix_put_integer, 41	mqc_scalar_haveinteger, 64
mqc_matrix_symmmatrix_put_real, 41	mqc_scalar_havereal, 65
mqc_matrix_symmsymmr4tensor_put_complex, 41	mqc_scalar_isallocated, 66
mqc_matrix_symmsymmr4tensor_put_real, 42	mqc_scalar_sin, 66
mqc_matrix_test_diagonal, 42	mqc_scalar_sqrt, 67
mqc_matrix_test_symmetric, 42	mqc_scalar_tan, 67
mqc_matrix_trace, 42	mqc_scalaradd, 68
mqc_matrix_transpose, 42	mqc_scalarcomplexadd, 69
mqc_matrix_vector_at, 42	mqc_scalarcomplexdivide, 69
mqc_matrix_vector_put, 43	mqc_scalarcomplexexponent, 70
mqc_matrixmatrixdotproduct, 43	mqc_scalarcomplexmultiply, 71
mqc_matrixmatrixproduct, 43	mqc_scalarcomplexsubtract, 71
mqc_matrixmatrixsubtract, 43	mqc_scalardivide, 72
mqc_matrixmatrixsum, 43	mqc_scalareq, 73
mqc_matrixscalarproduct, 44	mqc_scalarexponent, 73
mqc_matrixvectordotproduct, 44	mqc_scalarge, 74
mqc_outer, 44	mqc_scalargt, 75
mqc_output_complex_scalar, 44	mqc_scalargtinteger, 75
mgc output integer scalar, 45	mqc_scalargtreal, 76
mqc_output_mqcscalar_scalar, 46	mqc_scalarintegeradd, 77
mqc_output_real_scalar, 46	mqc_scalarintegerdivide, 78
mqc_print_matrix_algebra1, 47	mqc_scalarintegerexponent, 78
mqc_print_r4tensor_algebra1, 47	mqc_scalarintegermultiply, 79
mqc_print_scalar_algebra1, 47	mqc_scalarintegersubtract, 80
mqc_print_vector_algebra1, 48	mqc_scalarle, 80
mqc_r4tensor_at, 49	mqc_scalarleinteger, 81
mqc_r4tensor_havecomplex, 49	mqc_scalarlereal, 82
mqc_r4tensor_haveinteger, 49	mqc_scalarlt, 83
mqc_r4tensor_havereal, 49	mqc_scalarltreal, 83
mqc_r4tensor_initialize, 49	mqc_scalarmatrixproduct, 84
mqc_r4tensor_put, 50	mgc_scalarmultiply, 84
mqc_realgtscalar, 50	mqc_scalarne, 85
mgc reallescalar, 51	mqc_scalarrealadd, 86
mqc_realltscalar, 51	mqc_scalarrealdivide, 87
mgc realscalaradd, 52	mqc_scalarrealexponent, 87
mqc_realscalardivide, 53	mqc_scalarrealmultiply, 88
mqc_realscalarmultiply, 54	mqc_scalarrealsubtract, 89
mgc realscalarsubtract, 54	mgc scalarsubtract, 89
mqc_realvectorproduct, 55	mqc_scalarvectordifference, 90
mqc_scalar_acos, 55	mgc scalarvectorproduct, 90
	. —
mqc_scalar_asin, 56	mqc_scalarvectorsum, 90
mqc_scalar_atan, 56	mqc_set_array2tensor, 90
mqc_scalar_atan2, 57	mqc_set_array2vector_complex, 91
mqc_scalar_cmplx, 57	mqc_set_array2vector_integer, 91
mqc_scalar_complex_conjugate, 58	mqc_set_array2vector_real, 91
mqc_scalar_complex_imagpart, 59	mqc_set_complexarray2matrix, 91
mqc_scalar_complex_realpart, 59	mqc_set_integerarray2matrix, 91
mqc_scalar_cos, 60	mqc_set_matrix2complexarray, 91
mqc_scalar_get_abs_value, 61	mqc_set_matrix2integerarray, 92

mqc_set_matrix2matrix, 92	mqc_vectorscalarproduct, 101
mqc_set_matrix2realarray, 92	mqc_vectorvectordifference, 101
mqc_set_realarray2matrix, 92	mqc_vectorvectordotproduct, 101
mqc_set_vector2complexarray, 92	mqc_vectorvectorsum, 101
mqc_set_vector2integerarray, 92	symindexhash, 101
mqc_set_vector2realarray, 93	mqc_algebra::abs, 119
mqc_set_vector2vector, 93	mqc_scalar_get_abs_value, 119
mqc_vector2diagmatrix, 93	mqc_vector_abs, 120
mqc_vector_abs, 93	mqc_algebra::acos, 120
mqc_vector_argsort, 93	mqc_scalar_acos, 120
mqc_vector_cast_complex, 93	mqc_algebra::aimag, 121
mqc_vector_cast_real, 94	mqc_scalar_complex_imagpart, 121
mqc_vector_cmplx, 94	mqc_vector_complex_imagpart, 122
mqc_vector_complex_imagpart, 94	mqc_algebra::asin, 122
mqc_vector_complex_realpart, 94	mqc_scalar_asin, 122
mqc_vector_conjugate_transpose, 94	mqc_algebra::assignment(=), 123
mqc_vector_copy_complex2int, 94	mqc_input_complex_scalar, 124
mqc_vector_copy_complex2real, 95	mqc_input_integer_scalar, 124
mqc_vector_copy_int2complex, 95	mqc_input_real_scalar, 125
mqc_vector_copy_int2real, 95	mqc_output_complex_scalar, 126
mqc_vector_copy_real2complex, 95	mgc output integer scalar, 126
mqc_vector_copy_real2int, 95	mqc_output_mqcscalar_scalar, 127
mqc_vector_havecomplex, 95	mqc_output_real_scalar, 128
mqc_vector_haveinteger, 96	mqc_set_array2tensor, 128
mqc_vector_havereal, 96	mqc_set_array2vector_complex, 128
mqc_vector_initialize, 96	mqc_set_array2vector_integer, 129
mqc_vector_isallocated, 96	mqc_set_array2vector_real, 129
mqc_vector_iscolumn, 96	mqc_set_complexarray2matrix, 129
mqc_vector_maxloc, 96	mqc_set_integerarray2matrix, 129
mqc_vector_maxval, 97	mqc_set_matrix2complexarray, 129
mqc_vector_minloc, 97	mqc_set_matrix2integerarray, 129
mqc_vector_minval, 97	mqc_set_matrix2matrix, 130
mqc_vector_norm, 97	mqc_set_matrix2realarray, 130
mqc_vector_pop, 97	mqc_set_realarray2matrix, 130
mgc vector power, 97	mqc_set_vector2complexarray, 130
mgc vector push, 98	mqc_set_vector2integerarray, 130
mqc_vector_scalar_at, 98	mqc_set_vector2realarray, 130
mgc vector scalar increment, 98	mgc set vector2vector, 131
mqc_vector_scalar_put, 98	mqc_algebra::atan, 132
mqc_vector_shift, 98	mqc_scalar_atan, 132
mgc vector sort, 98	mqc_algebra::atan2, 132
•	
mqc_vector_sqrt, 99	mqc_scalar_atan2, 133
mqc_vector_transpose, 99	mqc_algebra::cmplx, 133
mqc_vector_unshift, 99	mqc_scalar_cmplx, 134
mqc_vector_vector_at, 99	mqc_vector_cmplx, 134
mqc_vector_vector_put, 99	mqc_algebra::conjg, 135
mqc_vectorcomplexdivide, 99	mqc_scalar_complex_conjugate, 135
mqc_vectorcomplexproduct, 100	mqc_algebra::contraction, 135
mqc_vectorintegerdivide, 100	mqc_matrix_matrix_contraction, 136
mqc_vectorintegerproduct, 100	mqc_algebra::cos, 137
mqc_vectormatrixdotproduct, 100	mqc_scalar_cos, 137
mqc_vectorrealdivide, 100	mqc_algebra::dagger, 137
mqc_vectorrealproduct, 100	mqc_matrix_conjugate_transpose, 138
mgc vectorscalardivide, 101	mgc vector conjugate transpose, 138

mqc_algebra::dot_product, 139	mqc_matrix_diagmatrix_put_integer, 153
mqc_vectorvectordotproduct, 139	mqc_matrix_diagmatrix_put_real, 153
mqc_algebra::matmul, 140	mqc_matrix_diagmatrix_put_vector, 153
mqc_matrixmatrixdotproduct, 140	mqc_algebra::mqc_matrix_symmmatrix_put, 154
mqc_matrixvectordotproduct, 140	mqc_matrix_symmmatrix_put_complex, 154
mqc_vectormatrixdotproduct, 140	mqc_matrix_symmmatrix_put_integer, 154
mqc_algebra::matrix_symm2sq, 142	mqc_matrix_symmmatrix_put_real, 154
matrix_symm2sq_complex, 142	mqc_algebra::mqc_print, 155
matrix_symm2sq_integer, 143	mqc_print_matrix_algebra1, 155
matrix_symm2sq_real, 143	mqc_print_r4tensor_algebra1, 156
mqc_algebra::mqc_cast_complex, 143	mqc_print_scalar_algebra1, 156
mqc_matrix_cast_complex, 143	mqc_print_vector_algebra1, 157
mqc_vector_cast_complex, 143	mqc_algebra::mqc_r4tensor, 160
mqc_algebra::mqc_cast_real, 144	at, 160
mqc_matrix_cast_real, 144	init, 160
mqc_vector_cast_real, 144	initialize, 161
mqc_algebra::mqc_have_complex, 146	print, 161
mqc_matrix_havecomplex, 146	put, 161
mqc_vector_havecomplex, 146	mqc_algebra::mqc_scalar, 161
mqc_algebra::mqc_have_int, 147	abs, 161
mgc matrix haveinteger, 147	cval, 162
mqc_vector_haveinteger, 147	ival, 162
mqc_algebra::mqc_have_real, 147	print, 162
mqc_matrix_havereal, 147	random, 162
mqc_vector_havereal, 148	rval, 162
mqc_algebra::mqc_matrix, 148	mqc_algebra::mqc_set_array2vector, 167
at, 149	mqc_set_array2vector_complex, 167
dagger, 149	mqc_set_array2vector_integer, 167
det, 149	mqc_set_array2vector_real, 167
diag, 149	mqc_algebra::mqc_vector, 168
eigensys, 149	abs, 169
identity, 149	argsort, 169
init, 150	at, 169
initialize, 150	dagger, 169
inv, 150	data_type, 172
mat, 150	diag, 169
matc, 150	init, 169
	initialize, 170
mati, 152 matr, 152	length, 172
	maxloc, 170
mput, 150 norm, 150	maxval, 170
	minloc, 170
print, 150	
put, 151	minval, 170 norm, 170
rmsmax, 151	· · · · · · · · · · · · · · · · · · ·
s_type, 151	pop, 170
set, 151	power, 171
sqrt, 151	print, 171
svd, 151	push, 171
trace, 151	put, 171
transpose, 152	shift, 171
vat, 152	size, 171
vput, 152	sort, 170
mqc_algebra::mqc_matrix_diagmatrix_put, 153	sqrt, 172
mqc_matrix_diagmatrix_put_complex, 153	transpose, 172

l	unshift, 172	mqc_matrixvectordotproduct, 201
1	vat, 172	mqc_vectormatrixdotproduct, 201
1	vecc, 173	mqc_vectorvectordotproduct, 201
'	veci, 173	mqc_algebra::operator(.eq.), 202
	vecr, 173	mqc_scalareq, 202
,	vput, 172	mqc_algebra::operator(.ewd.), 203
mqc_	algebra::operator(**), 185	mqc_elementmatrixdivide, 203
ı	mqc_scalarcomplexexponent, 185	mqc_algebra::operator(.ewp.), 203
ı	mqc_scalarexponent, 186	mqc_elementmatrixproduct, 203
ı	mqc_scalarintegerexponent, 187	mqc_elementvectorproduct, 204
ı	mqc_scalarrealexponent, 187	mqc_algebra::operator(.ge.), 204
mqc_	_algebra::operator(*), 177	mqc_scalarge, 204
ı	mqc_complexscalarmultiply, 178	mqc_algebra::operator(.gt.), 205
ı	mqc_complexvectorproduct, 178	mqc_integergtscalar, 205
ı	mqc_integerscalarmultiply, 178	mqc_realgtscalar, 206
ı	mqc_integervectorproduct, 179	mqc_scalargt, 207
ı	mqc_matrixmatrixproduct, 179	mqc_scalargtinteger, 208
	mqc_matrixscalarproduct, 179	mqc_scalargtreal, 209
	mqc_realscalarmultiply, 180	mqc_algebra::operator(.le.), 210
	mqc_realvectorproduct, 180	mqc_integerlescalar, 210
	mqc_scalarcomplexmultiply, 180	mqc_reallescalar, 211
	mqc_scalarintegermultiply, 181	mqc_scalarle, 211
	mqc_scalarmatrixproduct, 182	mqc_scalarleinteger, 212
	mqc_scalarmultiply, 182	mqc_scalarlereal, 213
	mqc_scalarrealmultiply, 183	mqc_algebra::operator(.lt.), 214
	mqc_scalarvectorproduct, 183	mqc_realltscalar, 214
	mqc_vectorcomplexproduct, 183	mqc_scalarlt, 215
	mqc_vectorintegerproduct, 184	mqc_scalarItreal, 216
	mqc_vectorrealproduct, 184	mqc_algebra::operator(.ne.), 217
	mqc_vectorscalarproduct, 184	mqc_scalarne, 217
	algebra::operator(+), 189	mqc_algebra::operator(.outer.), 218
	mqc_complexscalaradd, 189	mqc_outer, 218
	mqc_integerscalaradd, 190	mqc_algebra::operator(.x.), 218
	mqc_matrixmatrixsum, 190	mqc_crossproduct, 218
	mqc_realscalaradd, 190	mqc_algebra::operator(/), 219
	mqc_scalaradd, 191	mqc_complexscalardivide, 219
	mqc_scalarcomplexadd, 192	mqc_integerscalardivide, 220
		mqc_realscalardivide, 220
	mqc_scalarintegeradd, 193 mqc_scalarrealadd, 193	mqc_scalarcomplexdivide, 221
	mqc_scalarvectorsum, 194	mgc scalardivide, 222
	mqc_vectorvectorsum, 194	mqc_scalarintegerdivide, 222
	• —	• — •
	algebra::operator(-), 195	mqc_scalarrealdivide, 223
	mqc_complexscalarsubtract, 195	mqc_vectorcomplexdivide, 224
	mqc_integerscalarsubtract, 196	mqc_vectorintegerdivide, 224
	mqc_matrixmatrixsubtract, 197	mqc_vectorrealdivide, 224
	mqc_realscalarsubtract, 197	mqc_vectorscalardivide, 224
	mqc_scalarcomplexsubtract, 197	mqc_algebra::real, 225
	mqc_scalarintegersubtract, 198	mqc_scalar_complex_realpart, 225
	mqc_scalarrealsubtract, 199	mqc_vector_complex_realpart, 225
	mqc_scalarsubtract, 200	mqc_algebra::sin, 226
	mqc_scalarvectordifference, 200	mqc_scalar_sin, 226
	mqc_vectorvectordifference, 200	mqc_algebra::sqrt, 226
	algebra::operator(.dot.), 201	mqc_scalar_sqrt, 227
ı	mqc_matrixmatrixdotproduct, 201	mqc_algebra::tan, 227

mqc_scalar_tan, 227	mqc_est, 105
mqc_algebra::transpose, 229	mqc_eigenvalues_eigenvalues_multiply
mqc_matrix_transpose, 229	mgc est, 106
mqc_vector_transpose, 229	mqc_est::matmul, 141
mqc_allocate_matrix	mqc_eigenvalues_has_alpha
mgc algebra, 19	mqc_est, 106
mqc_allocate_r4tensor	mqc_eigenvalues_has_beta
mqc_algebra, 19	mqc_est, 106
mqc_allocate_scalar	mqc_eigenvalues_integral_multiply
mqc_algebra, 19	mqc_est, 106
mqc_allocate_vector	mqc_est::matmul, 141
mqc_algebra, 20	mqc_eigenvalues_isallocated
mqc_build_ci_hamiltonian	mqc_est, 106
mqc_est, 104	mqc_eigenvalues_output_array
mqc_complexscalaradd	mqc_est, 106
mqc_algebra, 20	mqc_est::assignment(=), 131
mqc_algebra::operator(+), 189	mqc_eigenvalues_output_block
mqc_complexscalardivide	mqc_est, 107
mqc_algebra, 21	mqc_elementmatrixdivide
mqc_algebra::operator(/), 219	mqc_algebra, 25
mqc_complexscalarmultiply	mqc_algebra::operator(.ewd.), 203
mqc_algebra, 22	mqc_elementmatrixproduct
mqc_algebra::operator(*), 178	mqc_algebra, 25
mqc_complexscalarsubtract	mqc_algebra::operator(.ewp.), 203
mqc_algebra, 23	mqc_elementvectorproduct
	. —
mqc_algebra::operator(-), 195	mqc_algebra, 25
mqc_complexvectorproduct	mqc_algebra::operator(.ewp.), 204
mqc_algebra, 23	mqc_eri_integral_contraction
mqc_algebra::operator(*), 178	mqc_est, 107
mqc_crossproduct	mqc_est::contraction, 136
mqc_algebra, 23	mqc_est, 102
mqc_algebra::operator(.x.), 218	gen_det_str, 104
mqc_deallocate_matrix	get_one_gamma_matrix, 104
mqc_algebra, 24	mqc_build_ci_hamiltonian, 104
mqc_deallocate_r4tensor	mqc_eigenvalue_eigenvalue_dotproduct, 104
mqc_algebra, 24	mqc_eigenvalues_add_name, 105
mqc_deallocate_scalar	mqc_eigenvalues_allocate, 105
mqc_algebra, 24	mqc_eigenvalues_array_name, 105
mqc_deallocate_vector	mqc_eigenvalues_array_type, 105
mqc_algebra, 25	mqc_eigenvalues_at, 105
mqc_eigenvalue_eigenvalue_dotproduct	mqc_eigenvalues_dimension, 105
mqc_est, 104	mqc_eigenvalues_eigenvalues_multiply, 106
mqc_est::dot_product, 139	mqc_eigenvalues_has_alpha, 106
mqc_eigenvalues_add_name	mqc_eigenvalues_has_beta, 106
mqc_est, 105	mqc_eigenvalues_integral_multiply, 106
mqc_eigenvalues_allocate	mqc_eigenvalues_isallocated, 106
mqc_est, 105	mqc_eigenvalues_output_array, 106
mqc_eigenvalues_array_name	mqc_eigenvalues_output_block, 107
mqc_est, 105	mqc_eri_integral_contraction, 107
mqc_eigenvalues_array_type	mqc_integral_add_name, 107
mqc_est, 105	mqc_integral_allocate, 107
mqc_eigenvalues_at	mqc_integral_array_name, 107
mqc_est, 105	mqc_integral_array_type, 108
mqc_eigenvalues_dimension	mqc_integral_at, 108

mqc_integral_conjugate_transpose, 108	mqc_eigenvalue_eigenvalue_dotproduct, 139
mqc_integral_delete_energy_list, 108	mqc_est::matmul, 141
mqc_integral_difference, 108	mqc_eigenvalues_eigenvalues_multiply, 141
mqc_integral_dimension, 108	mqc_eigenvalues_integral_multiply, 141
mqc_integral_eigenvalues_multiply, 109	mqc_integral_eigenvalues_multiply, 141
mqc_integral_get_energy_list, 109	mqc_integral_integral_multiply, 141
mqc_integral_has_alpha, 109	mqc_integral_matrix_multiply, 142
mqc_integral_has_alphabeta, 109	mqc_matrix_integral_multiply, 142
mqc_integral_has_beta, 109	mqc_est::mqc_determinant, 144
mqc_integral_has_betaalpha, 109	nalpstr, 145
mqc_integral_identity, 110	nbetstr, 145
mqc_integral_initialize, 110	ndets, 145
mqc_integral_integral_multiply, 110	order, 145
mqc_integral_isallocated, 110	strings, 145
mqc_integral_matrix_multiply, 110	mqc_est::mqc_determinant_string, 145
mqc_integral_norm, 111	alpha, 146
mqc_integral_output_array, 111	beta, 146
mqc_integral_output_block, 111	mqc_est::mqc_matrix_undospinblockghf, 155
mqc_integral_output_orbitals, 111	mqc_matrix_undospinblockghf_eigenvalues, 155
mqc_integral_scalar_multiply, 111	mqc_matrix_undospinblockghf_integral, 155
mqc_integral_set_energy_list, 112	mqc_est::mqc_print, 157
mqc_integral_sum, 112	mqc_print_eigenvalues, 158
mqc_integral_swap_orbitals, 112	mqc_print_integral, 158
mqc_integral_transpose, 112	mqc_print_twoeris, 158
mqc_matrix_integral_multiply, 112	mqc_print_wavefunction, 158
mqc_matrix_spinblockghf, 113	mqc_est::mqc_pscf_wavefunction, 159
mqc_matrix_undospinblockghf_eigenvalues, 113	nactive, 159
mqc_matrix_undospinblockghf_integral, 113	ncore, 159
mqc_print_eigenvalues, 113	nfrz, 159
mqc_print_integral, 113	nval, 159
mqc_print_twoeris, 114	pscf_amplitudes, 160
mqc_print_wavefunction, 114	pscf energies, 160
mqc_scalar_integral_multiply, 114	mgc est::mgc scf eigenvalues, 163
mqc_scf_eigenvalues_power, 114	addlabel, 163
mqc_scf_integral_contraction, 114	at, 163
mgc scf integral determinant, 115	getblock, 163
mqc_scf_integral_diagonalize, 115 mqc_scf_integral_generalized_eigensystem, 115	getlabel, 163
	power, 163
mqc_scf_integral_inverse, 115	print, 163
mqc_scf_integral_trace, 115	mqc_est::mqc_scf_integral, 164
mqc_scf_transformation_matrix, 115	addlabel, 164
mqc_twoeris_allocate, 116	deleteelist, 164
mqc_twoeris_at, 116	det, 164
slater_condon, 116	diag, 165
twoeri_trans, 116	eigensys, 165
qc_est::assignment(=), 131	getblock, 165
mqc_eigenvalues_output_array, 131	getelist, 165
mqc_integral_output_array, 131	getlabel, 165
qc_est::contraction, 136	identity, 165
mqc_eri_integral_contraction, 136	init, 165
mqc_scf_integral_contraction, 136	inv, 166
qc_est::dagger, 138	norm, 166
mqc_integral_conjugate_transpose, 138	orbitals, 166
qc_est::dot_product, 139	print, 166

setelist, 166	mqc_integerscalardivide
swap, 166	mqc_algebra, 30
trace, 166	mqc_algebra::operator(/), 220
mqc_est::mqc_twoeris, 168	mqc_integerscalarmultiply
print, 168	mqc_algebra, 30
mqc_est::mqc_wavefunction, 173	mqc_algebra::operator(*), 178
basis, 174	mqc_integerscalarsubtract
charge, 174	mqc_algebra, 31
core_hamiltonian, 174	mqc_algebra::operator(-), 196
density_matrix, 175	mqc_integervectorproduct
fock_matrix, 175	mqc_algebra, 32
mo_coefficients, 175	mqc_algebra::operator(*), 179
mo_energies, 175	mqc_integral_add_name
mo_symmetries, 175	mqc_est, 107
multiplicity, 175	mqc_integral_allocate
nalpha, 175	mqc_est, 107
nbasis, 176	mqc_integral_array_name
nbeta, 176	mqc_est, 107
nelectrons, 176	mqc_integral_array_type
overlap_matrix, 176	mqc_est, 108
print, 174	mqc_integral_at
scf_density_matrix, 176	mqc_est, 108
symmetry, 176	mqc_integral_conjugate_transpose
wf_complex, 176	mqc_est, 108
wf_type, 177	mqc_est::dagger, 138
mqc_est::operator(*), 184	mqc_integral_delete_energy_list
mqc_integral_scalar_multiply, 184	mqc_est, 108
mqc_scalar_integral_multiply, 185	mqc_integral_difference
mqc_est::operator(+), 188	mqc_est, 108
mqc_integral_sum, 188	mqc_est::operator(-), 195
mqc_est::operator(-), 194	mqc_integral_dimension
mqc_integral_difference, 195	mqc_est, 108
mqc_est::transpose, 228	mqc_integral_eigenvalues_multiply
mqc_integral_transpose, 228	mqc_est, 109
mqc_givens_matrix	mqc_est::matmul, 141
mqc_algebra, 25	mqc_integral_get_energy_list
mqc_input_complex_scalar	mqc_est, 109
mqc_algebra, 25	mqc_integral_has_alpha
mqc_algebra::assignment(=), 124	mqc_est, 109
mqc_input_integer_scalar	mqc_integral_has_alphabeta
mqc_algebra, 26	mqc_est, 109
mqc_algebra::assignment(=), 124	mqc_integral_has_beta
mqc_input_real_scalar	mqc_est, 109
mqc_algebra, 27	mqc_integral_has_betaalpha
mqc_algebra::assignment(=), 125	mqc_est, 109
mqc_integergtscalar	mqc_integral_identity
mqc_algebra, 28	mqc_est, 110
mqc_algebra::operator(.gt.), 205	mqc_integral_initialize
mqc_integerlescalar	mqc_est, 110
mqc_algebra, 28	mqc_integral_integral_multiply
mqc_algebra::operator(.le.), 210	mqc_est, 110
mqc_integerscalaradd	mqc_est::matmul, 141
mqc_algebra, 29	mqc_integral_isallocated
mqc_algebra::operator(+), 190	mqc_est, 110

mqc_integral_matrix_multiply	mqc_matrix_diag2symm
mqc_est, 110	mqc_algebra, 34
mqc_est::matmul, 142	mqc_matrix_diagmatrix_put_complex
mqc_integral_norm	mqc_algebra, 34
mqc_est, 111	mqc_algebra::mqc_matrix_diagmatrix_put, 153
mqc_integral_output_array	mgc matrix diagmatrix put integer
mqc_est, 111	mqc_algebra, 34
mqc_est::assignment(=), 131	mqc_algebra::mqc_matrix_diagmatrix_put, 153
mqc_integral_output_block	mqc_matrix_diagmatrix_put_real
mqc_est, 111	mqc_algebra, 34
mqc_integral_output_orbitals	mqc_algebra::mqc_matrix_diagmatrix_put, 153
mqc_est, 111	mqc_matrix_diagmatrix_put_vector
mqc_integral_scalar_multiply	mqc_algebra, 35
mqc_est, 111	mqc_algebra::mqc_matrix_diagmatrix_put, 153
	mqc_matrix_diagonalize
mqc_est::operator(*), 184	mqc_algebra, 35
mqc_integral_set_energy_list	mqc_matrix_full2diag
mqc_est, 112	mqc_algebra, 35
mqc_integral_sum	. — -
mqc_est, 112	mqc_matrix_full2symm
mqc_est::operator(+), 188	mqc_algebra, 35
mqc_integral_swap_orbitals	mqc_matrix_generalized_eigensystem
mqc_est, 112	mqc_algebra, 35
mqc_integral_transpose	mqc_matrix_havecomplex
mqc_est, 112	mqc_algebra, 35
mqc_est::transpose, 228	mqc_algebra::mqc_have_complex, 146
mqc_length_vector	mqc_matrix_havediagonal
mqc_algebra, 32	mqc_algebra, 36
mqc_matrix_cast_complex	mqc_matrix_havefull
mqc_algebra, 32	mqc_algebra, 36
mqc_algebra::mqc_cast_complex, 143	mqc_matrix_haveinteger
mqc_matrix_cast_real	mqc_algebra, 36
mqc_algebra, 32	mqc_algebra::mqc_have_int, 147
mqc_algebra::mqc_cast_real, 144	mqc_matrix_havereal
mqc_matrix_columns	mqc_algebra, 36
mqc_algebra, 32	mqc_algebra::mqc_have_real, 147
mqc_matrix_conjugate_transpose	mqc_matrix_havesymmetric
mqc_algebra, 32	mqc_algebra, 36
mqc_algebra::dagger, 138	mqc_matrix_identity
mqc_matrix_copy_complex2int	mqc_algebra, 36
mqc_algebra, 33	mqc_matrix_initialize
mqc_matrix_copy_complex2real	mqc_algebra, 37
mqc_algebra, 33	mqc_matrix_integral_multiply
mqc_matrix_copy_int2complex	mqc_est, 112
mqc_algebra, 33	mqc_est::matmul, 142
mqc_matrix_copy_int2real	mqc_matrix_inverse
mqc_algebra, 33	mqc_algebra, 37
mqc_matrix_copy_real2complex	mqc_matrix_isallocated
mqc_algebra, 33	mqc_algebra, 37
mqc_matrix_copy_real2int	mqc_matrix_matrix_at
mqc_algebra, 33	mqc_algebra, 37
mqc_matrix_determinant	mqc_matrix_matrix_contraction
mqc_algebra, 34	mqc_algebra, 38
mqc_matrix_diag2full	mqc_algebra::contraction, 136
mqc_algebra, 34	mqc_matrix_matrix_put

mqc_algebra, 38	mqc_matrix_undospinblockghf_integral
mqc_matrix_norm	mqc_est, 113
mqc_algebra, 38	mqc_est::mqc_matrix_undospinblockghf, 155
mqc_matrix_rms_max	mqc_matrix_vector_at
mqc_algebra, 39	mqc_algebra, 42
mqc_matrix_rows	mqc_matrix_vector_put
mqc_algebra, 39	mqc_algebra, 43
mqc_matrix_scalar_at	mqc_matrixmatrixdotproduct
mqc_algebra, 39	mqc_algebra, 43
mqc_matrix_scalar_put	mqc_algebra::matmul, 140
mqc_algebra, 39	mqc_algebra::operator(.dot.), 201
mqc_matrix_set	mqc_matrixmatrixproduct
mqc_algebra, 39	mqc_algebra, 43
mqc_matrix_spinblockghf	mqc_algebra::operator(*), 179
mqc_est, 113	mqc_matrixmatrixsubtract
mqc_matrix_sqrt	mqc_algebra, 43
mqc_algebra, 40	mqc_algebra::operator(-), 197
mqc_matrix_storagetype	mqc_matrixmatrixsum
mqc_algebra, 40	mqc_algebra, 43
mqc_matrix_svd	mqc_algebra::operator(+), 190
mqc_algebra, 40	mqc_matrixscalarproduct
mqc_matrix_symm2diag	mqc_algebra, 44
mqc_algebra, 40	mqc_algebra::operator(*), 179
mqc_matrix_symm2full	mqc_matrixvectordotproduct
mqc_algebra, 40	mqc_algebra, 44
mqc_matrix_symm2full_func	mqc_algebra::matmul, 140
mqc_algebra, 41	mqc_algebra::operator(.dot.), 201
mqc_matrix_symmetrize	mqc_outer
mqc_algebra, 41	mqc_algebra, 44
mqc_matrix_symmmatrix_put_complex	mqc_algebra::operator(.outer.), 218
mqc_algebra, 41	mqc_output_complex_scalar
mqc_algebra::mqc_matrix_symmmatrix_put, 154	mqc_algebra, 44
mqc_matrix_symmmatrix_put_integer	mqc_algebra::assignment(=), 126
mqc_algebra, 41	mqc_output_integer_scalar
mqc_algebra::mqc_matrix_symmmatrix_put, 154	mqc_algebra, 45
mqc_matrix_symmmatrix_put_real	mqc_algebra::assignment(=), 126
mqc_algebra, 41	mqc_output_mqcscalar_scalar
mqc_algebra::mqc_matrix_symmmatrix_put, 154	mqc_algebra, 46
mqc_matrix_symmsymmr4tensor_put_complex	mqc_algebra::assignment(=), 127
mqc_algebra, 41	mqc_output_real_scalar
mqc_matrix_symmsymmr4tensor_put_real	mqc_algebra, 46
mqc_algebra, 42	mqc_algebra::assignment(=), 128
mqc_matrix_test_diagonal	mqc_print_eigenvalues
mqc_algebra, 42	mqc_est, 113
mqc_matrix_test_symmetric	mqc_est::mqc_print, 158
mqc_algebra, 42	mqc_print_integral
mqc_matrix_trace	mqc_est, 113
mqc_algebra, 42	mqc_est::mqc_print, 158
mqc_matrix_transpose	mqc_print_matrix_algebra1
mqc_algebra, 42	mqc_algebra, 47
mqc_algebra::transpose, 229	mqc_algebra::mqc_print, 155
mqc_matrix_undospinblockghf_eigenvalues	mqc_print_r4tensor_algebra1
mqc_est, 113	mqc_algebra, 47
mqc_est::mqc_matrix_undospinblockghf, 155	mqc_algebra::mqc_print, 156

mqc_print_scalar_algebra1	mqc_scalar_atan
mqc_algebra, 47	mqc_algebra, 56
mqc_algebra::mqc_print, 156	mqc_algebra::atan, 132
mqc_print_twoeris	mqc_scalar_atan2
mqc_est, 114	mqc_algebra, 57
mqc_est::mqc_print, 158	mqc_algebra::atan2, 133
mqc_print_vector_algebra1	mqc_scalar_cmplx
mqc_algebra, 48	mqc_algebra, 57
mqc_algebra::mqc_print, 157	mqc_algebra::cmplx, 134
mqc_print_wavefunction	mqc_scalar_complex_conjugate
mqc_est, 114	mqc_algebra, 58
mqc_est::mqc_print, 158	mqc_algebra::conjg, 135
mqc_r4tensor_at	mqc_scalar_complex_imagpart
mqc_algebra, 49	mqc_algebra, 59
mqc_r4tensor_havecomplex	mqc_algebra::aimag, 121
mqc_algebra, 49	mqc_scalar_complex_realpart
mqc_r4tensor_haveinteger	mqc_algebra, 59
mqc_algebra, 49	mqc_algebra::real, 225
mqc_r4tensor_havereal	mqc_scalar_cos
mqc_algebra, 49	mqc_algebra, 60
mqc_r4tensor_initialize	mqc_algebra::cos, 137
mqc_algebra, 49	mqc_scalar_get_abs_value
mqc_r4tensor_put	mqc_algebra, 61
mqc_algebra, 50	mqc_algebra::abs, 119
mqc_realgtscalar	mqc_scalar_get_intrinsic_complex
mqc_algebra, 50	mqc_algebra, 61
mqc_algebra::operator(.gt.), 206	mqc_scalar_get_intrinsic_integer
mqc_reallescalar	mqc_algebra, 62
mqc_algebra, 51	mqc_scalar_get_intrinsic_real
mqc_algebra::operator(.le.), 211	mqc_algebra, 62
mqc_realltscalar	mqc_scalar_get_random_value
mqc_algebra, 51	mqc_algebra, 63
mqc_algebra::operator(.lt.), 214	mqc_scalar_havecomplex
mqc_realscalaradd	mqc_algebra, 64
mqc_algebra, 52	mqc_scalar_haveinteger
mqc_algebra::operator(+), 190	mqc_algebra, 64
mqc_realscalardivide	mqc_scalar_havereal
mqc_algebra, 53	mqc_algebra, 65
mqc_algebra::operator(/), 220	mqc_scalar_integral_multiply
mqc_realscalarmultiply	mqc_est, 114
mqc_algebra, 54	mqc_est::operator(*), 185
mqc_algebra::operator(*), 180	mqc_scalar_isallocated
mqc_realscalarsubtract	mqc_algebra, 66
mqc_algebra, 54	mqc_scalar_sin
mqc_algebra::operator(-), 197	mqc_algebra, 66
mqc_realvectorproduct	mqc_algebra::sin, 226
mgc algebra, 55	mqc_scalar_sqrt
mqc_algebra::operator(*), 180	mqc_algebra, 67
mqc_scalar_acos	mqc_algebra::sqrt, 227
mqc_algebra, 55	. —
. — •	mqc_scalar_tan
mqc_algebra::acos, 120	mqc_algebra, 67
mqc_scalar_asin	mqc_algebra::tan, 227
mqc_algebra, 56	mqc_scalaradd
mqc_algebra::asin, 122	mqc_algebra, 68

mqc_algebra::operator(+), 191	mqc_algebra::operator(.le.), 211
mqc_scalarcomplexadd	mqc_scalarleinteger
mqc_algebra, 69	mqc_algebra, 81
mqc_algebra::operator(+), 192	mqc_algebra::operator(.le.), 212
mqc_scalarcomplexdivide	mqc_scalarlereal
mqc_algebra, 69	mqc_algebra, 82
mqc_algebra::operator(/), 221	mqc_algebra::operator(.le.), 213
mqc_scalarcomplexexponent	mqc_scalarlt
mqc_algebra, 70	mqc_algebra, 83
mqc_algebra::operator(**), 185	mqc_algebra::operator(.lt.), 215
mqc_scalarcomplexmultiply	mqc_scalarltreal
mqc_algebra, 71	mqc_algebra, 83
mqc_algebra::operator(*), 180	mqc_algebra::operator(.lt.), 216
mqc_scalarcomplexsubtract	mqc_scalarmatrixproduct
mqc_algebra, 71	mqc_algebra, 84
mqc_algebra::operator(-), 197	mqc_algebra::operator(*), 182
mqc_scalardivide	mqc_scalarmultiply
mqc_algebra, 72	mqc_algebra, 84
mqc_algebra::operator(/), 222	mqc_algebra::operator(*), 182
mqc_scalareq	mqc_scalarne
mqc_algebra, 73	mqc_algebra, 85
mqc_algebra::operator(.eq.), 202	mqc_algebra::operator(.ne.), 217
mqc_scalarexponent	mqc_scalarrealadd
mqc_algebra, 73	mqc_algebra, 86
mqc_algebra::operator(**), 186	mqc_algebra::operator(+), 193
mqc_scalarge	mqc_scalarrealdivide
mqc_algebra, 74	mqc_algebra, 87
mqc_algebra::operator(.ge.), 204	mqc_algebra::operator(/), 223
mqc_scalargt	mqc_scalarrealexponent
mqc_algebra, 75	mqc_algebra, 87
mqc_algebra::operator(.gt.), 207	mqc_algebra::operator(**), 187
mqc_scalargtinteger	mqc_scalarrealmultiply
mqc_algebra, 75	mqc_algebra, 88
mqc_algebra::operator(.gt.), 208	mqc_algebra::operator(*), 183
mqc_scalargtreal	mqc_scalarrealsubtract
mqc_algebra, 76	mqc_algebra, 89
mqc_algebra::operator(.gt.), 209	mqc_algebra::operator(-), 199
mgc scalarintegeradd	mqc_scalarsubtract
mqc_algebra, 77	mqc_algebra, 89
mqc_algebra::operator(+), 193	mqc_algebra::operator(-), 200
mqc_scalarintegerdivide	mqc_scalarvectordifference
mqc_algebra, 78	mqc_algebra, 90
mqc_algebra::operator(/), 222	mqc_algebra::operator(-), 200
mqc_scalarintegerexponent	mqc_scalarvectorproduct
mqc_algebra, 78	mqc_algebra, 90
mqc_algebra::operator(**), 187	mqc_algebra::operator(*), 183
mqc_scalarintegermultiply	mqc_scalarvectorsum
mqc_algebra, 79	mqc_algebra, 90
mqc_algebra::operator(*), 181	mqc_algebra::operator(+), 194
mqc_scalarintegersubtract	mqc_scf_eigenvalues_power
mqc_algebra, 80	mqc_est, 114
mqc_algebra::operator(-), 198	mqc_scf_integral_contraction
mqc_scalarle	mqc_est, 114
mqc_algebra, 80	mqc_est::contraction, 136
-1 	

mqc_scf_integral_determinant	mqc_set_vector2realarray
mgc est, 115	mqc_algebra, 93
mqc_scf_integral_diagonalize	mqc_algebra::assignment(=), 130
mqc_est, 115	mqc_set_vector2vector
mqc_scf_integral_generalized_eigensystem	mqc_algebra, 93
mqc_est, 115	mqc_algebra::assignment(=), 131
• —	
mqc_scf_integral_inverse	mqc_twoeris_allocate
mqc_est, 115	mqc_est, 116
mqc_scf_integral_trace	mqc_twoeris_at
mqc_est, 115	mqc_est, 116
mqc_scf_transformation_matrix	mqc_vector2diagmatrix
mqc_est, 115	mqc_algebra, 93
mqc_set_array2tensor	mqc_vector_abs
mqc_algebra, 90	mqc_algebra, 93
mqc_algebra::assignment(=), 128	mqc_algebra::abs, 120
mqc_set_array2vector_complex	mqc_vector_argsort
mqc_algebra, 91	mqc_algebra, 93
mqc_algebra::assignment(=), 128	mqc_vector_cast_complex
mqc_algebra::mqc_set_array2vector, 167	mqc_algebra, 93
mqc_set_array2vector_integer	mqc_algebra::mqc_cast_complex, 143
mqc_algebra, 91	mqc_vector_cast_real
mqc_algebra::assignment(=), 129	mqc_algebra, 94
mqc_algebra::mqc_set_array2vector, 167	mqc_algebra::mqc_cast_real, 144
mqc_set_array2vector_real	mqc_vector_cmplx
mqc_algebra, 91	mqc_algebra, 94
mqc_algebra::assignment(=), 129	mqc_algebra::cmplx, 134
mqc_algebra::mqc_set_array2vector, 167	mqc_vector_complex_imagpart
mqc_set_complexarray2matrix	mqc_algebra, 94
mqc_algebra, 91	mqc_algebra::aimag, 122
mqc_algebra::assignment(=), 129	mqc_vector_complex_realpart
mqc_set_integerarray2matrix	mqc_algebra, 94
mqc_algebra, 91	mqc_algebra::real, 225
mqc_algebra::assignment(=), 129	mqc_vector_conjugate_transpose
mqc_set_matrix2complexarray	mqc_algebra, 94
	. — -
mqc_algebra, 91	mqc_algebra::dagger, 138
mqc_algebra::assignment(=), 129	mqc_vector_copy_complex2int
mqc_set_matrix2integerarray	mqc_algebra, 94
mqc_algebra, 92	mqc_vector_copy_complex2real
mqc_algebra::assignment(=), 129	mqc_algebra, 95
mqc_set_matrix2matrix	mqc_vector_copy_int2complex
mqc_algebra, 92	mqc_algebra, 95
mqc_algebra::assignment(=), 130	mqc_vector_copy_int2real
mqc_set_matrix2realarray	mqc_algebra, 95
mqc_algebra, 92	mqc_vector_copy_real2complex
mqc_algebra::assignment(=), 130	mqc_algebra, 95
mqc_set_realarray2matrix	mqc_vector_copy_real2int
mqc_algebra, 92	mqc_algebra, 95
mqc_algebra::assignment(=), 130	mqc_vector_havecomplex
mqc_set_vector2complexarray	mqc_algebra, 95
mqc_algebra, 92	mqc_algebra::mqc_have_complex, 146
mqc_algebra::assignment(=), 130	mqc_vector_haveinteger
mqc_set_vector2integerarray	mqc_algebra, 96
mqc_algebra, 92	mqc_algebra::mqc_have_int, 147
mqc_algebra::assignment(=), 130	mqc_vector_havereal

mqc_algebra, 96	mqc_vectorintegerproduct
mqc_algebra::mqc_have_real, 148	mqc_algebra, 100
mqc_vector_initialize	mqc_algebra::operator(*), 184
mqc_algebra, 96	mqc_vectormatrixdotproduct
mqc_vector_isallocated	mqc_algebra, 100
mgc algebra, 96	mqc_algebra::matmul, 140
mqc_vector_iscolumn	mqc_algebra::operator(.dot.), 201
mqc_algebra, 96	mqc_vectorrealdivide
mqc_vector_maxloc	mqc_algebra, 100
mqc_algebra, 96	mqc_algebra::operator(/), 224
mqc_vector_maxval	mqc_vectorrealproduct
mqc_algebra, 97	mqc_algebra, 100
mqc_vector_minloc	mqc_algebra::operator(*), 184
mqc_algebra, 97	mqc_vectorscalardivide
mqc_vector_minval	mqc_algebra, 101
mqc_algebra, 97	mqc_algebra::operator(/), 224
mqc_vector_norm	mqc_vectorscalarproduct
mqc_algebra, 97	mqc_algebra, 101
mqc_vector_pop	mqc_algebra::operator(*), 184
mqc_algebra, 97	mqc_vectorvectordifference
mqc_vector_power	mqc_algebra, 101
mqc_algebra, 97	mqc_algebra::operator(-), 200
mqc_vector_push	mqc_vectorvectordotproduct
mqc_algebra, 98	mqc_algebra, 101
mqc_vector_scalar_at	mqc_algebra::dot_product, 139
mqc_algebra, 98	mqc_algebra::operator(.dot.), 201
mqc_vector_scalar_increment	mqc_vectorvectorsum
mqc_algebra, 98	mqc_algebra, 101
mqc_vector_scalar_put	mqc_algebra::operator(+), 194
mqc_algebra, 98	multiplicity
mqc_vector_shift	mqc_est::mqc_wavefunction, 175
mqc_algebra, 98	mqc_estmqc_wavefunction, 175
mqc_vector_sort	nactive
• — —	mqc_est::mqc_pscf_wavefunction, 159
mqc_algebra, 98	
mqc_vector_sqrt mqc_algebra, 99	nalpha mqc_est::mqc_wavefunction, 175
	• — • —
mqc_vector_transpose mqc_algebra, 99	nalpstr
mqc_algebra::transpose, 229	mqc_est::mqc_determinant, 145 nbasis
mgc vector unshift	mgc est::mgc wavefunction, 176
. — —	nbeta
mqc_algebra, 99	mgc est::mgc wavefunction, 176
mqc_vector_vector_at	. –
mqc_algebra, 99	nbetstr
mqc_vector_vector_put	mqc_est::mqc_determinant, 145
mqc_algebra, 99	ncore
mqc_vectorcomplexdivide	mqc_est::mqc_pscf_wavefunction, 159
mqc_algebra, 99	ndets
mqc_algebra::operator(/), 224	mqc_est::mqc_determinant, 145
mqc_vectorcomplexproduct	nelectrons
mqc_algebra, 100	mqc_est::mqc_wavefunction, 176
mqc_algebra::operator(*), 183	nfrz
mqc_vectorintegerdivide	mqc_est::mqc_pscf_wavefunction, 159
mqc_algebra, 100	norm
mqc_algebra::operator(/), 224	mqc_algebra::mqc_matrix, 150

mqc_algebra::mqc_vector, 170	mqc_algebra::mqc_vector, 171
mqc_est::mqc_scf_integral, 166	slater_condon
nval	mqc_est, 116
mqc_est::mqc_pscf_wavefunction, 159	sort
1.5. 1	mqc_algebra::mqc_vector, 171
orbitals	sqrt
mqc_est::mqc_scf_integral, 166	mqc_algebra::mqc_matrix, 151
order	mqc_algebra::mqc_vector, 172
mqc_est::mqc_determinant, 145	src/mqc_algebra.F03, 231
overlap_matrix	src/mqc_est.F03, 239
mqc_est::mqc_wavefunction, 176	strings
	mqc_est::mqc_determinant, 145
pop	svd
mqc_algebra::mqc_vector, 170	mqc_algebra::mqc_matrix, 151
power	swap
mqc_algebra::mqc_vector, 171	mqc_est::mqc_scf_integral, 166
mqc_est::mqc_scf_eigenvalues, 163	symindexhash
print	mqc_algebra, 101
mqc_algebra::mqc_matrix, 150	symmetry
mqc_algebra::mqc_r4tensor, 161	mqc_est::mqc_wavefunction, 176
mqc_algebra::mqc_scalar, 162	
mqc_algebra::mqc_vector, 171	trace
mqc_est::mqc_scf_eigenvalues, 163	mqc_algebra::mqc_matrix, 151
mqc_est::mqc_scf_integral, 166	mqc_est::mqc_scf_integral, 166
mqc_est::mqc_twoeris, 168	transpose
mqc_est::mqc_wavefunction, 174	mqc_algebra::mqc_matrix, 152
pscf_amplitudes	mqc_algebra::mqc_vector, 172
mqc_est::mqc_pscf_wavefunction, 160	twoeri_trans
pscf_energies	mqc_est, 116
mqc_est::mqc_pscf_wavefunction, 160	
push	unshift
mqc_algebra::mqc_vector, 171	mqc_algebra::mqc_vector, 172
put	
mqc_algebra::mqc_matrix, 151	vat
mqc_algebra::mqc_r4tensor, 161	mqc_algebra::mqc_matrix, 152
mqc_algebra::mqc_vector, 171	mqc_algebra::mqc_vector, 172
	vecc
random	mqc_algebra::mqc_vector, 173
mqc_algebra::mqc_scalar, 162	veci
rmsmax	mqc_algebra::mqc_vector, 173
mqc_algebra::mqc_matrix, 151	vecr
rval	mqc_algebra::mqc_vector, 173
mqc algebra::mqc scalar, 162	vput
	mqc_algebra::mqc_matrix, 152
s_type	mqc_algebra::mqc_vector, 172
mqc_algebra::mqc_matrix, 151	
scf_density_matrix	wf_complex
mqc_est::mqc_wavefunction, 176	mqc_est::mqc_wavefunction, 176
set	wf_type
mqc_algebra::mqc_matrix, 151	mqc_est::mqc_wavefunction, 177
setelist	
mqc_est::mqc_scf_integral, 166	
shift	
mqc_algebra::mqc_vector, 171	
size	