Logika és számításelmélet

I. rész Logika Második előadás

Tartalom

Ítéletlogika - Szemantika (folytatás)

Formulák és formulahalmazok szemantikus tulajdonsága

Szemantikus következményfogalom

Formalizálás az ítéletlogikábar

Igazságértékelés függvény

Egy formula **igaz-/hamis**halmazának előállításához keressük a formula bázisának interpretációira azokat a feltételeket, amelyek biztosítják, hogy ő az igazhalmaz illetve a hamishalmaz eleme legyen.

Ennek eszköze a φA^{α} igazságértékelés függvény ($\alpha=\mathbf{i}$ vagy \mathbf{h}), amely egy A formula esetén az igazságtábla felírása nélkül megadja a formula közvetlen részformuláin keresztül az A interpretációira vonatkozó $\varphi A^{\mathbf{i}}$ és a $\varphi A^{\mathbf{h}}$ feltételeket, amelyeket teljesítő interpretációkban a formula értéke \mathbf{i} vagy \mathbf{h} lesz.

A φA^{α} függvény értelmezési tartománya a formulák halmaza értékkészlete a formula interpretációira vonatkozó feltételek.

Igazságértékelés függvény

A φ -igazságértékelés függvény definiálása szerkezeti rekurzióval

- $\textbf{1} \ \, \text{Ha} \, A \, \operatorname{pr\text{\'imformula}} \, \big(\text{\'it\'eletv\'altoz\'o} \big), \, \operatorname{akkor} \, \varphi A^{\mathbf{i}} \, \, \operatorname{felt\'etelt} \\ \, \operatorname{pontosan} \, \operatorname{azok} \, \operatorname{az} \, \mathcal{I} \, \, \operatorname{interpret\'aci\'ok} \, \operatorname{teljes\'itik}, \, \operatorname{amelyekben} \\ \, \mathcal{I}(A) = i, \, \operatorname{a} \, \varphi A^{\mathbf{h}} \, \, \operatorname{felt\'etelt} \, \operatorname{pedig} \, \operatorname{azok}, \, \operatorname{amelyekben} \, \mathcal{I}(A) = h.$
- 2 A $\varphi(\neg A)^{\bf i}$ feltételek pontosan akkor teljesülnek, ha teljesülnek a $\varphi A^{\bf h}$ feltételek.
- 3 A $\varphi(A \wedge B)^i$ feltételek pontosan akkor teljesülnek, ha teljesülnek mind a φA^i , mind a φB^i feltételek.
- **4** A $\varphi(A \vee B)^i$ feltételek pontosan akkor teljesülnek, ha teljesülnek a φA^i vagy a φB^i feltételek.
- **6** A $\varphi(A\supset B)^{\mathbf{i}}$ feltételek pontosan akkor teljesülnek, ha teljesülnek a $\varphi A^{\mathbf{h}}$ vagy a $\varphi B^{\mathbf{i}}$ feltételek.

A $\varphi(\neg A)^{\mathbf{h}}$, a $\varphi(A \wedge B)^{\mathbf{h}}$, a $\varphi(A \vee B)^{\mathbf{h}}$, és a $\varphi(A \supset B)^{\mathbf{h}}$ feltételek értelemszerűen adódnak.

Igazságértékelés szabályok grafikus ábrázolása

1.ág			2.ág			3.ág		
X	Y	Z	$X \mid Y \mid Z$			X	Y	Z
h	~	~	~	i	i	h	~	2

1.ág			2.ág			3.ág		
X	Y	Z	X	Y	Z	X	Y	Z
h	~	\sim	~	i	i	h	~	~

Az igazhalmaz:

, iz igazmanna							
X	Y	Z					
i	i	i					
h	i	i					
h	i	h					
h	h	i					
h	h	h					

A hamishalmazt az igazhalmazban nem szereplő interpretációk alkotják.

A hamishalmazt az igazhalmazban nem szereplő interpretációk alkotják.

$$\varphi(X\supset Y\wedge Z\vee \neg X)^{\mathbf{h}} \text{ (-implikációs)}$$

$$\varphi X^{\mathbf{i}}$$

$$\varphi(Y\wedge Z\vee \neg X)^{\mathbf{h}} \text{ (-diszjunkciós)}$$

$$\varphi(\neg X)^{\mathbf{h}}$$

$$\varphi(Y\wedge Z)^{\mathbf{h}}$$

$$\varphi(Y\wedge Z)^{\mathbf{h}}$$

$$\varphi X^{\mathbf{i}}$$

A hamishalmazt az igazhalmazban nem szereplő interpretációk alkotják.

$$\varphi(X\supset Y\wedge Z\vee \neg X)^{\mathbf{h}} \text{ (}\neg \mathsf{implik\'aci\'os)}$$

$$\varphi X^{\mathbf{i}}$$

$$\varphi(Y\wedge Z\vee \neg X)^{\mathbf{h}} \text{ (}\neg \mathsf{diszjunkci\'os)}$$

$$\varphi(\neg X)^{\mathbf{h}}$$

$$\varphi(Y\wedge Z)^{\mathbf{h}}$$

$$\varphi(Y\wedge Z)^{\mathbf{h}}$$

$$\varphi X^{\mathbf{i}}$$

	1.ág		2.ág			
X	Y	Z	X	Y	Z	
i	h	>	i	~	h	

A hamishalmazt az igazhalmazban nem szereplő interpretációk alkotják.

$$\varphi(X\supset Y\wedge Z\vee \neg X)^{\mathbf{h}} \text{ (}\neg \mathsf{implik\'aci\'os)}$$

$$\varphi X^{\mathbf{i}}$$

$$\varphi(Y\wedge Z\vee \neg X)^{\mathbf{h}} \text{ (}\neg \mathsf{diszjunkci\'os)}$$

$$\varphi(\neg X)^{\mathbf{h}}$$

$$\varphi(Y\wedge Z)^{\mathbf{h}}$$

$$\varphi X^{\mathbf{i}}$$

$$\varphi X^{\mathbf{h}}$$

	1.ág		2.ág			
X	Y	Z	X	Y	Z	
i	h	>	i	~	h	

	A hamishalmaz							
	X	Y	Z					
Γ	i	i	h					
	i	h	i					
Г	i	h.	h.					

Tartalom

Ítéletlogika - Szemantika (folytatás

Formulák és formulahalmazok szemantikus tulajdonságai

Szemantikus következményfogalom

Formalizálás az ítéletlogikábar

Formulák szemantikus tulajdonságai

Interpretáció kielégít egy formulát

Az ítéletlogikában egy $\mathcal I$ interpretáció kielégít egy B formulát $(\mathcal I\models_0 B)$. ha a formula helyettesítési értéke i az $\mathcal I$ interpretációban. A formulát kielégítő $\mathcal I$ interpretációt a formula modelljének is szokás nevezni.

Kielégíthetőség/kielégíthetetlenség/tautológia formulákra (Tk.4.3.1.)

Egy B formula **kielégíthető**, ha legalább egy interpretáció kielégíti.

Egy B formula **kielégíthetetlen**, ha egyetlen interpretáció sem elégíti ki.

Egy B formula **tautológia** ($\models_0 B$), ha minden interpretáció kielégíti. A tautologiát **ítéletlogikai törvény**nek is nevezik.

Példák

Példák ítéletlogikai törvényekre (Tk 71.0 és 74.0)

$$\models_0 A \supset (B \supset A)$$

$$\models_0 (A \supset B \supset C) \supset (A \supset B) \supset A \supset C$$

$$\models_0 A \supset B \supset (A \land B)$$

$$\models_0 ((A \supset B) \supset A) \supset A$$

Formulahalmazok szemantikus tulajdonságai

Legyen $\mathcal{F} = \{A_1, A_2, \dots, A_n\}$ formulahalmaz.

Interpretáció kielégít egy formulahalmazt

Az ítéletlogikában egy $\mathcal I$ interpretáció **kielégít** egy F formulahalmazt ($\mathcal I\models_0\mathcal F$), ha a formulahalmaz minden formulájának helyettesítési értéke i az $\mathcal I$ interpretációban.

Kielégíthetőség/kielégíthetetlenség formulahalmazokra (Tk.4.3.12.)

Egy $\mathcal F$ formulahalmaz **kielégíthető**, ha legalább egy interpretáció kielégíti.

Egy ${\mathcal F}$ formulahalmaz **kielégíthetetlen**, ha bármely interpretációban legalább egy formulája h (nincs olyan interpretáció, ami kielégítené).

Tartalom

Ítéletlogika - Szemantika (folytatás

Formulák és formulahalmazok szemantikus tulajdonsága

Szemantikus következményfogalom

Formalizálás az ítéletlogikábar

Szemantikus következmény (Tk.4.4.1.)

Egy G formula szemantikus vagy tautologikus következménye az $\mathcal{F}=\{F_1,F_2,\ldots,F_n\}$ formulahalmaznak,

ha minden olyan \mathcal{I} interpretációra, amelyre $\mathcal{I} \models_0 \{F_1, F_2, \dots, F_n\}$ fennáll, $\mathcal{I} \models_0 G$ is fennáll (ha \mathcal{I} modellje $\{F_1, F_2, \dots, F_n\}$ -nek, akkor modellje G-nek is).

Jelölés: $\{F_1, F_2, \dots, F_n\} \models_0 G$

Tétel

Ha egy G formula bármely \mathcal{F} feltételhalmaznak következménye, akkor G tautológia ($\models_0 G$).

Tehát (F,G) akkor helyes következtetésforma, ha teljesül, hogy $F\models_0 G$ és létezik olyan $\mathcal I$ interpretáció, melyre $\mathcal I\models_0 F$.

Tétel (Tk.4.4.3.)

Ha \mathcal{F} -nek következménye G_1 ($\mathcal{F} \models_0 G_1$) és \mathcal{F} -nek következménye G_2 ($\mathcal{F} \models_0 G_2$) valamint $\{G_1, G_2\}$ -nek következménye A ($\{G_1, G_2\} \models_0 A$), akkor \mathcal{F} -nek következménye A ($\mathcal{F} \models_0 A$).

Eldöntésprobléma

Eldöntésproblémának nevezik a logikában annak eldöntését, hogy egy (F,G) pár a szemantikus következményfogalom szerint helyes gondolkodásforma-e.

Tétel (Tk.4.4.4.)

 \mathcal{F} -nek akkor és csak akkor következménye G, ha az $\mathcal{F} \cup \neg G$ vagy $F_1 \wedge F_2 \wedge \ldots \wedge F_n \wedge \neg G$ kielégíthetetlen.

Ennek alapján az egyik **szemantikus eldöntésprobléma**: tetszőleges ítéletlogikai formuláról eldönteni, hogy kielégíthetetlen-e.

Tétel (dedukciós) (Tk.4.4.7.)

$$\{F_1,F_2,\ldots,F_n\}\models_0 G$$
 akkor és csak akkor, ha $\{F_1,F_2,\ldots,F_{n-1}\}\models_0 (F_n\supset G)$

Tétel (eldöntésprobléma) (Tk.4.4.8.)

$$\{F_1, F_2, \dots, F_n\} \models_0 G$$
 akkor és csak akkor, ha
 $\models_0 F_1 \supset (F_2 \supset \dots (F_{n-1} \supset (F_n \supset G)) \dots)$

Ennek alapján a másik szemantikus eldöntésprobléma: tetszőleges ítéletlogikai formuláról eldönteni, hogy tautológia-e.

Tautologikusan ekvivalens

Definíció 1. változat (Tk.4.3.7.)

Két vagy több formula igazságtáblája lehet azonos, ekkor azt mondjuk, hogy a formulák **tautologikusan ekvivalensek**. Ennek jelölésére a \sim_0 szimbólumot használjuk.

Definíció 2. változat

Az A és B formulák **tautologikusan ekvivalensek**, ha $A \models_0 B$ és $B \models_0 A$.

Ekkor $\models_0 (A \supset B) \land (B \supset A)$.

Példák

Példák átalakítási szabályokra

$$X\supset Y\sim_0\neg X\vee Y\\ \neg\neg X\sim_0 X$$

De Morgan szabályok:

Egyszerűsítési szabályok:

- 2 $(X \wedge k) \vee (\neg X \wedge k) \sim_0 k$ ahol d elemi diszjunkció és k elemi konjunkció.

Következtetési módok I.

Definíció (Tk.4.4.14.)

Legyen a $\mathcal F$ feltételhalmazban szereplő változók száma n. Ekkor a **legszűkebb következmény** az az $\{i,h\}^n \to \{i,h\}$ leképezés, amely pontosan azokhoz az interpretációkhoz rendel i értéket, amelyek kielégítik az $\mathcal F$ -et.

Előrekövetkeztetés

Ismert az $\mathcal F$ feltételhalmaz, és keressük $\mathcal F$ lehetséges következményeit. Megkeressük $\mathcal F$ legszűkebb következményét, R-t. Következmény minden olyan G formula, amelyre $R \supset G$ tautológia, azaz R igazhalmaza része G igazhalmazának.

Előrekövetkeztetés – példa

$$\mathcal{F} = \{Z \supset M \lor P, Z, \neg P\}$$

P	M	Z	$Z\supset M\vee P$	Z	$\neg P$	lszk.	köv.
i	i	i	i	i	h	h	h/i
i	i	h	i	h	h	h	h/i
i	h	i	i	i	h	h	h/i
i	h	h	i	h	h	h	h/i
h	i	i	i	i	i	i	i
h	i	h	i	h	i	h	h/i
h	h	i	h	i	i	h	h/i
h	h	h	i	h	i	h	h/i

Csak egy igazságértékre kielégíthető a feltételhalmaz.

Következtetési módok II.

Visszakövetkeztetés

Az $\mathcal F$ feltételhalmaz és a B következményformula ismeretében eldöntjük, hogy B valóban következménye-e $\mathcal F$ -nek. Mivel $\mathcal F\models_0 B$ pontosan akkor, ha az $\mathcal F\cup\{\neg B\}$ formulahalmaz kielégíthetetlen.

Más szóval B pontosan akkor következménye \mathcal{F} -nek, ha minden olyan interpretációban, ahol B hamis, az \mathcal{F} kielégíthetetlen.

Példa

Legyen $\mathcal{F}=\{Z\supset M\lor P,Z,\neg P\}$ és lássuk be, hogy M következmény. Be kell látni, hogy, ha $\neg M$ igaz egy interpretációban, akkor \mathcal{F} nem lesz kielégíthető. Ahhoz,hogy minden feltételformula i legyen $Z=i,\ P=h$ mellett $Z\supset M\lor P$ -nek igaznak kellene lennie, viszont ha M hamis, akkor $Z\supset M\lor P=h$ lehet csak. Tehát M következménye F-nek.

Tartalom

Ítéletlogika - Szemantika (folytatás

Formulák és formulahalmazok szemantikus tulajdonsága

Szemantikus következményfogalom

Formalizálás az ítéletlogikában

Formalizálás az ítéletlogikában ¹

Tegyük fel, hogy adott valamilyen köznapi vagy matematikai probléma. Ennek természetes nyelvű egyszerű vagy összetett kijelentő mondatokkal való leírását ismerjük.

Az **egyszerű kijelentő mondatok** formalizálására bevezetünk egy **azonosítót (állításjel, ítéletváltozó)**.

Az összetett mondatot analizáljuk, átalakítjuk azonos értelmű, de egyszerű kijelentő mondatokból olyan nyelvtani összekötőkkel felírt mondattá, ahol a nyelvtani összekötők egyben logikai összekötők (logikai műveletek).

¹Tk.54-55.o.

Példa Tk. 54.0

Betörtek egy áruházba. A nyomozási jegyzőkönyv a következőket tartalmazza:

Ha férfi a tettes, akkor kistermetű.

Ha kistermetű, akkor az ablakon mászott be.

A tettes férfi vagy legalábbis férfiruhát hordott.

Ha férfiruhát hordott és feltéve, hogy a szemtanú vallomása hiteles akkor az ablakon mászott be.

A helyszíni szemle megállapította, hogy az ablakon senki sem mászott be.

A nyomozók azt sejtik, hogy a tettes nem férfi.

Példa Tk. 54.0

Betörtek egy áruházba. A nyomozási jegyzőkönyv a következőket tartalmazza:

Ha férfi a tettes (F), akkor kistermetű (K). $F \supset K$ Ha kistermetű, akkor az ablakon mászott be (A). $K \supset A$ A tettes férfi vagy legalábbis férfiruhát hordott (R). $F \lor R$

Ha férfiruhát hordott és feltéve, hogy a szemtanú vallomása hiteles

(H), akkor az ablakon mászott be. $(R \wedge H) \supset A$

A helyszíni szemle megállapította, hogy az ablakon senki sem mászott be. $\neg A$

A nyomozók azt sejtik, hogy a tettes nem férfi. $\neg F$

A feltételhalmaz: $\{F\supset K,\ K\supset A,\ F\vee R,\ (R\wedge H)\supset A,\ \neg A\}$ A feltételezés szerinti következmény: $\neg F$

Példa Tk. 54.0

Előrekövetkeztetés:

Az $\{F\supset K,\ K\supset A,\ F\vee R,\ (R\wedge H)\supset A,\ \neg A\}$ formulahalmazt egyetlen interpretáció elégíti ki:

 $A=h,\ F=h,\ K=h,\ R=i,\ H=h,$ azaz a legszűkebb következényt leíró formula: $\neg A \wedge \neg F \wedge \neg K \wedge R \wedge \neg H$ $(\neg A \wedge \neg F \wedge \neg K \wedge R \wedge \neg H) \supset \neg F \text{ tautológia, így } \neg F$ következmény.

Visszakövetkeztetés:

 $\neg F$ következmény, mivel a negáltját hozzávéve a feltételhalmazhoz, a kapott formulahalmaz: $\{F\supset K,\ K\supset A,\ F\lor R,\ (R\land H)\supset A,\ \neg A,\ F\}$ kielégíthetetlen.