群論 (第3回)の解答

問題 3-1 の解答

次の同値を示す.

$$\begin{cases} (1) & 1_G \in H. \\ (2) & x, y \in H \Rightarrow x * y \in H. \\ (3) & x \in H \Rightarrow x^{-1} \in H. \end{cases} \iff \begin{cases} (i) & 1_G \in H. \\ (ii) & x, y \in H \Rightarrow x * y^{-1} \in H. \end{cases}$$

⇒ を示す.

- (i) は (1) から従う.
- (ii) $x, y \in H$ とする. (3) より $y^{-1} \in H$ であり, (2) より $x * y^{-1} \in H$.

⇐ を示す.

- (1) は (i) から従う.
- (3) $x \in H$ とすると, $1_G \in H$ より, (ii) から $x^{-1} = 1_G * x^{-1} \in H$.
- (2) $x, y \in H$ とする. $y^{-1} \in H$ なので, (2) から $xy = x * (y^{-1})^{-1} \in H$.

問題 3-2 の解答

- (i) H_1, H_2 は G の部分群より, $1_G \in H_1$ かつ $1_G \in H_2$. 従って, $1_G \in H_1 \cap H_2$.
- (ii) $x, y \in H_1 \cap H_2$ とする. $x, y \in H_1$ であり, H_1 は G の部分群より $xy^{-1} \in H_1$. $x, y \in H_2$ であり, H_2 は G の部分群より $xy^{-1} \in H_2$. よって $xy^{-1} \in H_1 \cap H_2$.
- (i), (ii) より $H_1 \cap H_2$ は G の部分群である.

問題 3-3 の解答

(i) $\theta = 0$ とすると,

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos 0 & -\sin 0 \\ \sin 0 & \cos 0 \end{pmatrix} \in H.$$

(i), (ii) より H は $GL_2(\mathbb{C})$ の部分群である.

問題 3-4 の解答

H が G の部分群であることを示す.

(ii)
$$x, y \in H$$
 とすると, $xax^{-1} = a$ かつ $yay^{-1} = a$ となる. $a = y^{-1}ay$ より,

$$xy^{-1}a(xy^{-1})^{-1} = xy^{-1}ayx^{-1} = xax^{-1} = a.$$

よって $xy^{-1} \in H$.

(i), (ii) より H は部分群である.

次に $G = S_4$, a = (1 2 3) の場合に H を求める. 問 2-3 より

$$H = \{ \sigma \in G \mid \sigma(1\ 2\ 3)\sigma^{-1} = (1\ 2\ 3) \} = \{ \sigma \in G \mid (\sigma(1)\ \sigma(2)\ \sigma(3)) = (1\ 2\ 3) \}.$$

$$(\sigma(1)\ \sigma(2)\ \sigma(3))=(1\ 2\ 3)\ \mathcal{O}$$
とき、「 $\sigma(1)=1,\ \sigma(2)=2,\ \sigma(3)=3$ 」、「 $\sigma(1)=2,\ \sigma(2)=3,\ \sigma(3)=1$ 」、「 $\sigma(1)=3,\ \sigma(2)=1,\ \sigma(3)=2$ 」のいずれかが成り立つ、よって

$$H = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \right\}.$$