CLAIMS

I claim:

5

10

15

1. A compound of general formula (I)

$$R_n^{i+} Y_i^{n-} \qquad (I),$$

wherein R is a group of general formula (A):

$$\begin{array}{c|c} R_1 & OH_2 & R_1 \\ \hline N_1 & & \\ R_2 & & \\ \hline R_3 & & \\ X & & \\ R_3 & & \\ \end{array} \qquad (A),$$

wherein

 R_1 and R_3 are independently selected from the substituted and unsubstituted group consisting of C_1 - C_{10} -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_2 - C_{10} -alkenyl, C_6 - C_{14} -aryl and a heterocycle, and hydrogen;

 R_2 is selected from the substituted and unsubstituted group consisting of C_1 - C_6 -alkylene, C_3 - C_6 -cycloalkylene, C_3 - C_6 -cycloalkenylene, C_2 - C_6 -alkenylene, C_6 - C_{14} -arylene and a heterocycle;

 R_1 and R_2 and/or R_2 and R_3 can form a heterocycle optionally containing further nitrogen atoms;

X is a halogen;

Y is a physiologically compatible anion; i and n are independently natural numbers ≥ 1 , and physiologically compatible addition salts,

provided that the compound of general formula (I) is not:

$$\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

20

2. The compound according to claim 1, wherein Y in general formula (I) is Cl.

3. A medicament, containing a compound of general formula (I)

$$R_n^{i+} Y_i^{n-}$$
 (I),

wherein R is a group of general formula (A)

$$R_1$$
 OH_2 R_1 R_2 OH_2 $OH_$

5 wherein

15

20

25

 R_1 and R_3 are independently selected from the substituted and unsubstituted group consisting of C_1 - C_{10} -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkenyl, C_2 - C_{10} -alkenyl, C_6 - C_{14} -aryl and a heterocycle, and hydrogen;

R₂ is selected from the substituted and unsubstituted group consisting of C₁-C₆-alkylene,

C₃-C₆-cycloalkylene, C₃-C₆-cycloalkenylene, C₂-C₆-alkenylene, C₆-C₁₄-arylene and a heterocycle;

 R_1 and R_2 and/or R_2 and R_3 can form a heterocycle optionally containing further nitrogen atoms;

X is a halogen;

Y is a physiologically compatible anion; i and n are independently natural numbers ≥ 1 , and physiologically compatible addition salts.

4. The medicament according to claim 3, wherein R of general formula (I) is:

5. The medicament according to claim 3, wherein R of general formula (I) is:

- 6. A method of preventing or treating cancer diseases comprising using a compound of general formula (I) according to claim 1.
 - 7. A compound of general formula (II)

$$R_b^+ Y_b^+$$
 (II),

wherein R_b is a group of general formula (B)

$$\begin{array}{c|c} R_1 & OH_2 & R_1' \\ \hline N_{1} & OH_2 & R_1' \\ \hline R_2 & OH_2 & R_2' \\ \hline R_3 & OH_2 & R_3' \\ \hline \end{array} \tag{B},$$

wherein

 R_1 ' and R_3 ' are independently selected from the substituted and unsubstituted group consisting of C_1 - C_{10} -alkyl, C_3 - C_6 -cycloalkyl, C_2 - C_{10} -alkenyl, C_6 - C_{14} -aryl and a heterocycle, and hydrogen;

R₂' is selected from the substituted and unsubstituted group consisting of C₁-C₆-alkylene, C₃-C₆-cycloalkylene, C₂-C₆-alkenylene, C₆-C₁₄-arylene and a heterocycle;

 $R_1{}^{\prime}$ and $R_2{}^{\prime}$ or $R_2{}^{\prime}$ and $R_3{}^{\prime}$ can form a heterocycle optionally including further nitrogen atoms; and

 Y_b is selected from the group consisting of a metal halogen, a halogen, a pseudohalogen, HCO₃ and R'COO, where R' is selected from the substituted and unsubstituted group consisting of C_1 - C_6 -alkeyl, C_2 - C_6 -alkeyl and aryl.

8. The compound according to claim 7, wherein R_b in general formula (B) is:

5

10

15

20

9. The compound according to claim 7, wherein R_b in general formula (B) is:

5

- 10. The compound according to claim 7, wherein Y_b in general formula (II) is Cl.
- 11. A medicament containing a compound of general formula (II) according to claim 7.
- 12. A method of preventing or treating cancer diseases comprising applying a compound of general formula (II) according to claim 7.