Vinh T. Nguyen

Dr. Rattikorn Hewett

CS 5381 - Analysis of Algorithms November 22, 2017

1. QUESTION 13

Using the Figures below as a model, illustrate the operation of BUCKET-SORT on the array $A = \langle .79, .13, .16, .64, .39, .20, .89, .53, .71, .42 \rangle$.

2. QUESTION 14

Question: What is the worst-case running time for the bucket-sort algorithm? What simple change to the bucket-sort algorithm preserves its linear expected running time and makes its worst-case running time O(nlgn)?

Answer:

The worst-case running time for the bucket-sort algorithm when one bucket contains all the inputs. For example, when the inputs contains all .1x (where x is any number from 0-9) as this is not expected. Because the bucket-sort use insert sort to sort the list in the bucket. This insertion sort take the worst-running time $O(n^2)$. So the worst-case running time for the bucket-sort algorithm is: $O(n^2)$.

Because bucket-sort uses insertion sort to sort the list, we just simply change the insertion sort by another algorithms that have the worst-case running time O(nlogn). For example Heapsort or Merge sort.

3. QUESTION 15

Question: Find an optimal parenthesization of a matrix-chain product whose sequence dimension is <5, 10, 3, 12, 5, 50, 6>

Answer:

index	0	1	2	3	4	5	6
P	5	10	3	12	5	50	6

N = length(A) - 1 = 7-1=6

Construct a table

	1	0						
	2		0					
	3			0				
j	4				0			
	5					0		
	6						0	
		1	2	3	4	5	6	
	i							

First iteration.

$$\overline{m[1,2]} = m[1,1] + m[2,2] + P_0P_1P_2 = 0 + 0 + 5x10x3 = 150$$

$$m[2,3] = m[2,2] + m[3,3] + P_1P_2P_3 = 0 + 0 + 10x3x12 = 360$$

$$m[3,4] = m[3,3] + m[4,4] + P_2P_3P_4 = 0 + 0 + 3x12x5 = 180$$

$$m[4,5] = m[4,4] + m[5,5] + P_3P_4P_5 = 0 + 0 + 12x5x50 = 3000$$

$$m[5,6] = m[5,5] + m[6,6] + P_4P_5P_6 = 0 + 0 + 5x50x6 = 1500$$

	1	0							
	2	150	0						
	3		360	0					
j	4			180	0				
	5				3000	0			
	6					1500	0		
		1	2	3	4	5	6		
	i								

2nd iteration.

$$m[1,3] = m[1,1] + m[2,3] + P_0P_1P_3 = 0 + 360 + 5x10x12 = 960$$
 k=1
 $m[1,3] = m[1,2] + m[3,3] + P_0P_2P_3 = 150 + 0 + 5x3x12 = 330$ k=2
 $min(m[1,3]) = 330$ when k=2

$$m[3,5] = m[3,3] + m[4,5] + P_2P_3P_5 = 0 + 3000 + 3x12x50 = 4,800$$
 k=3
 $m[3,5] = m[3,4] + m[5,5] + P_2P_4P_5 = 180 + 0 + 3x5x50 = 930$ k=4
 $min(m[3,5]) = 930$ when k=4

$$m[4,6] = m[4,4] + m[5,6] + P_3P_4P_6 = 0 + 1500 + 12x5x6 = 1,860$$
 k=4 $m[4,6] = m[4,5] + m[6,6] + P_3P_5P_6 = 3000 + 0 + 12x50x6 = 6,600$ k=5 $min(m[4,6]) = 1,860$ when k=4

	1	0						
	2	150	0					
	3	330	360	0				
j	4		330	180	0			
	5			930	3000	0		
	6				1,860	1500	0	
		1	2	3	4	5	6	
	i							

3rd iteration.

$$\begin{array}{l} m[2,5] = m[2,2] + m[3,5] + P_1P_2P_5 = 0 + 930 + 10x3x50 = 2,430 & k=2 \\ m[2,5] = m[2,3] + m[4,5] + P_1P_3P_5 = 360 + 3000 + 10x12x50 = 9,360 & k=3 \\ m[2,5] = m[2,4] + m[5,5] + P_1P_4P_5 = 330 + 0 + 10x5x50 = 2,830 & k=4 \\ min(m[2,5]) = 2,430 & when k=2 & k=2 & k=4 \\ min(m[2,5]) = 2,430 & k=2 & k=4 & k=4 \\ min(m[2,5]) = 2,430 & k=2 & k=4 & k=4 \\ min(m[2,5]) = 2,430 & k=2 & k=4 & k=4 \\ min(m[2,5]) = 2,430 & k=2 & k=4 & k=4 \\ min(m[2,5]) = 2,430 & k=2 & k=4 & k=4 \\ min(m[2,5]) = 2,430 & k=2 & k=4 & k=4 \\ min(m[2,5]) = 2,430 & k=2 & k=4 & k=4 \\ min(m[2,5]) = 2,430 & k=2 & k=4 & k=4 \\ min(m[2,5]) = 2,430 & k$$

$$m[3,6] = m[3,3] + m[4,6] + P_2P_3P_6 = 0 + 1,860 + 3x12x6 = 2,076$$

$$m[3,6] = m[3,4] + m[5,6] + P_2P_4P_6 = 180 + 1,500 + 3x5x6 = 1,770$$

$$m[3,6] = m[3,5] + m[6,6] + P_2P_5P_6 = 930 + 0 + 3x50x6 = 1,830$$

$$m[3,6] = m[3,5] + m[6,6] + P_2P_5P_6 = 930 + 0 + 3x50x6 = 1,830$$

$$m[3,6] = m[3,5] + m[6,6] + P_2P_5P_6 = 930 + 0 + 3x50x6 = 1,830$$

$$m[3,6] = m[3,6] + m[6,6] +$$

	1	0							
	2	150	0						
	3	330	360	0					
j	4	405	330	180	0				
	5		2,430	930	3000	0			
	6			1,770	1,860	1500	0		
		1	2	3	4	5	6		
	i								

4th iteration.

$$m[1,5] = m[1,1] + m[2,5] + P_0P_1P_5 = 0 + 2,430 + 5x10x50 = 4,930$$
 k=1

$$m[1,5] = m[1,2] + m[3,5] + P_0P_2P_5 = 150 +930 + 5x3x50 = 1,830 \\ m[1,5] = m[1,3] + m[4,5] + P_0P_3P_5 = 330 +3000 + 5x12x50 = 6,330 \\ m[1,5] = m[1,4] + m[5,5] + P_0P_4P_5 = 405 +0 + 5x5x50 = 1,655 \\ min(m[1,5]) = 1,655 \text{ when k=4}$$

$$\begin{array}{ll} m[2,6] = m[2,2] + m[3,6] + P_1P_2P_6 = 0 + 1,770 + 10x3x6 = 1,950 & k=2 \\ m[2,6] = m[2,3] + m[4,6] + P_1P_3P_6 = 360 + 1,860 + 10x12x6 = 2,940 & k=3 \\ m[2,6] = m[2,4] + m[5,6] + P_1P_4P_6 = 330 + 1,500 + 10x5x6 = 2,130 & k=4 \\ m[2,6] = m[2,5] + m[6,6] + P_1P_5P_6 = 2,430 + 0 + 10x50x6 = 5,430 & k=5 \\ min(m[2,6]) = 1,950 & when k=2 & k=2 & k=3 \\ \end{array}$$

	1	0							
	2	150	0						
	3	330	360	0					
j	4	405	330	180	0				
	5	1,655	2,430	930	3000	0			
	6		1,950	1,770	1,860	1500	0		
		1	2	3	4	5	6		
	i								

5th iteration.

$$\begin{array}{lll} m[1,6] = m[1,1] + m[2,6] + P_0 P_1 P_6 = 0 + 1950 + 5*10*6 = 2,250 & k = 1 \\ m[1,6] = m[1,2] + m[3,6] + P_0 P_2 P_6 = 150 + 1770 + 5*3*6 = 2,010 & k = 2 \\ m[1,6] = m[1,3] + m[4,6] + P_0 P_3 P_6 = 330 + 1860 + 5*12*6 = 2,550 & k = 3 \\ m[1,6] = m[1,4] + m[5,6] + P_0 P_4 P_6 = 405 + 1500 + 5*5*6 = 2,055 & k = 4 \\ m[1,6] = m[1,5] + m[6,6] + P_0 P_5 P_6 = 1655 + 0 + 5*50*6 = 3,155 & k = 5 \\ \end{array}$$

min(m[2,6]) = 2,010 when k=2

	1	0					
	2	150	0				
	3	330	360	0			
j	4	405	330	180	0		
	5	1,655	2,430	930	3000	0	
	6	2010	1,950	1,770	1,860	1500	0
		1	2	3	4	5	6
		•	•	i	•	•	

S table

	1	0							
	2	0	0						
	3	2	0	0					
j	4	2	2	0	0				
	5	4	2	4	0	0			
	6	2	2	4	4	0	0		
		1	2	3	4	5	6		
	i								

A1 = 5x10 A4=12x5 A2 = 10x3 A5 = 5x50A3 = 3x12 A6 = 50x6

From S table above we have.

m[1,6] = 2 => we have the first cut after A2: (A1xA2)x(A3xA4xA5xA6)m[3,6] = 4 => we have the second cut after A4: (A1xA2)x((A3xA4)xA5xA6)

So the final result is: (A1xA2)x((A3xA4)x(A5xA6))

4. QUESTION 17

Question: Explain why memorization is ineffective in speeding up a good divide-and-conquer algorithm such as merge-sort?

Answer:

Divide-and-conquer algorithm breaks a big problem into NON-OVERLAPPING subproblems. Each recursive call is distinctive and can not be reusable. That's why memorization is ineffective on this algorithm.