1. Определение произведения матриц

Поризведение матриц — это новая матрица, полученная путём вычисления скалярных произведений строк первой матрицы на столбцы второй матрицы. Операция возможна, если число столбцов первой матрицы равно числу строк второй. $A = \{a_{ij}\}_{m \times p}, \ B = \{b_{ij}\}_{p \times n}, \ A \cdot B = C, \ \text{где } C_{ij} = \Sigma_{i-1}^p a_{ik} \cdot b_{kj}$

2. Определение ступенчатой матрицы

Матрица называется ступенчатой, если выполнено следующее условие: если некоторая строка матрицы, отличная от первой, не является нулевой, то в начале этой строки стоит больше нулей, чем в начале предыдущей строки.

3. Определение элементарных преобразований матрицы

Элементарными преобразованиями матрицы называются следующие действия :

- 1) умножение строки на ненулевой скаляр 2) прибавление одной строки к другой
- 3) перестановка двух строк 4) перестановка двух столбцов
- 5) вычеркивание или добавление нулевой строки

4. Определение обратной матрицы

Обратная матрица A^{-1} – это такая матрица, что $AA^{-1}=A^{-1}A=I$, где I- единичная матрица. Она существует только у невырожденных квадратных матриц.

5. Определение ранга матрицы

Ранг матрицы— наивысший порядок отличных от нуля миноров этой матрицы Или же максимальное число линейно независимых строк (столбцов) матрицы.

- 6. Определение линейной независимости строк (столбцов) матрицы Линейная независимость строк (столбцов) матрицы означает, что никакая строка (столбец) не выражается через линейную комбинацию других строк (столбцов).
- 7. Определение определителя (инверсии, чётность/нечётность перестановок) Определитель матрицы это число, равное сумме n! членов, где каждый член равен произведению n элементов матрицы, взятых по одному из каждой строки и каждого столбца. Знак члена определяется как $(-1)^{r(J)}$, где r(J) число инверсий в перестановке номеров столбцов. | Инверсия это пара элементов в перестановке, в которой предыдущий элемент больше следующего.

Если количество инверсий чётное — перестановка чётная, если нечётное — нечётная.

- 8. Определение минора и алг. дополнения элемента. Определение минора k-го порядка. Минор эл-та a_{ij} матрицы n-го порядка это определитель матрицы (n-1)-го порядка, полученной из исходной матрицы вычёркиванием i-й строки и j-го столбца. Алгебраическое дополнение элемента a_{ij} это его минор, умноженный на $(-1)^{i+j}$, Минор k го порядка это определитель любой подматрицы размера $k \times k$, взятой из исходной матрицы.
- 9. Определение системы линейных уравнений

Система линейных уравнений — это совокупность уравнений вида: $\begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \vdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,\\ \text{где } a_{ij} \quad \text{коэффициенть при переменных, } b_i-\text{свободные члены, } x_i-\text{неизвестные.} \end{cases}$

10.Опр. совмест-ти, несовмест-ти, опред-ти, неопред-ти системы

Совместная система имеет хотя бы одно частное решение.

Несовместная система не имеет решений.

Определённая система имеет единственное решение.

Неопределённая система имеет бесконечно много решений.

11. Определение частного и общего решения системы уравнений

Общее решение системы — это множество всех её частных решений.

- 12. Опр. фундаментальной системы решений однородной системы линейных уравнений Система линейно независимых решений $\epsilon_1, \epsilon_2, \ldots, \epsilon_k$ называется фундаментальной, если каждое решение системы является линейной комбинацией решений $\epsilon_1, \epsilon_2, \ldots, \epsilon_k$
- 1. Свойства определителя
- 1) Определитель транспонированной матрицы равен определителю исходной : $|A^T| = |A|$.
- 2) Если две строки (столбца) линейно зависимы, то её определитель равен нулю.
- 3) При перестановке двух строк (столбцов) знак определителя меняется на противоположный.
- 4) Если в матрице есть строка (столбец), состоящая из нулей, её определитель равен нулю.
- 5) Умножение строки (столбца) на число умножает определитель на это число.
- 6) Определитель произведения матриц равен произведению их определителей : $|AB| = |A| \cdot |B|$.
- Если к одной строке (столбцу) прибавить линейную комбинацию других строк (столбцов), то определитель не изменится.
- ${f 2}$. Формула разложения определителя по элементам строки (столбца) Разложение определителя по элементам $i-\check{u}$ строки : $|A|=\sum_{j=1}^n a_{ij}C_{ij},$ где $C_{ij}=(-1)^{i+j}M_{ij}$ — алгебраическое дополнение элемента a_{ij} , а M_{ij} — его минор Аналогично можно разложить определитель по элементам j — го столбца.
- 3. Формула для нахождения обратной матрицы

Eсли квадратная матрица A невырождена $(|A| \neq 0)$, то обратная матрица вычисляется по формуле : $A^{-1} = rac{\hat{A}^{mp}}{|A|}$, где A^{mp} — матрица алгебраических дополнений.

Нахождение с помощью элементарных преобразований :

 $(A|E)\sim (E|B),\; B=A^{-1},\;$ где E-единичная матрица.

4. Формула Крамера

Для системы линейных уравнений Ax=b, где $A-\kappa$ вадратная невырожденная матрица ($|A|\neq 0$), решение выражается как : $x_i=\frac{|A_i|}{|A|}$, где A_i —матрица, полученная заменой i – го столбца матрицы A на столбец свободных членов b.

5. Теорема о ранге матрицы

Pанг матрицы A равен наибольшему порядку её ненулевого минора.

6. Теорема Кронекера — Капелли

Cucmeма линейных уравнений совместна \iff ранг матрицы системы равен рангу расширенной матрицы системы.