1. Вступ

У даній курсовій роботі необхідно виконати синтез автомата і синтез комбінаційних схем. Розробка виконується на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ».

2. Синтез автомата

2.1. Побудова графічної схеми алгоритму і розмітка станів автомата

Відповідно до «Технічного завдання ІАЛЦ.463626.002 ТЗ» складаємо графічну схему алгоритму з урахуванням тривалості сигналів і виконуємо розмітку станів автомата (рисунок 4.1).

Рисунок 4.1 Графічна схема алгоритму з розміченими станами

Зм.	Арк.	№ докум.	Підп.	Дата

2.2. Побудова графу автомата

Згідно з графічною схемою алгоритму побудуємо граф автомата і виконаємо кодування станів автомата (рисунок 4.2).

Рисунок 4.2 Граф автомата з закодованими вершинами

2.3. Побудова таблиці переходів

Для синтезу логічної схеми автомату необхідно виконати синтез функцій збудження тригерів та вихідних функцій автомата. Кількість станів автомата дорівнює 9 кількість тригерів знайдемо за формулою K>=]log₂ N[=]log₂ 9[= 4. Так як для побудови даного автомата необхідно використовувати Т-тригери, запишемо таблицю переходів цього типу тригерів (рисунок 4.3).

	T	
0	T=0	
0 —	T=1	$\longrightarrow 0$ $\longrightarrow 1$
1	T=1	$\longrightarrow 0$
1 —	T=0	→ 0 → 1

Зм.	Арк.	№ докум.	Підп.	Дата

Рисунок 4.3 Таблиця переходів Т-тригера

2.4. Синтез комбінаційних схем для функцій збудження пригерів та вихідних сигналів

Використовуючи дані з рисунку 4.2, заповнимо структурну таблицю автомата (таблиця 4.1).

Таблиця 4.1 Структурна таблиця автомата

Переходи	Старий стан			Новий стан			Вхідні сигнали		Вихідні сигнали			Функції збудження тригерів						
	Q4	Q3	<i>Q2</i>	Q1	Q4	Q3	<i>Q2</i>	Q1	X1	<i>X2</i>	Y1	<i>Y2</i>	<i>Y3</i>	<i>Y</i> 4	<i>T</i> 4	<i>T3</i>	<i>T2</i>	<i>T1</i>
z1-z2	0	0	0	0	0	0	0	1	-	-	0	0	0	0	0	0	0	1
z2-z3	0	0	0	1	0	0	1	0	1	-	0	1	0	0	0	0	1	1
z2-z4	0	0	0	1	0	0	1	1	0	-	0	1	0	0	0	0	1	0
<i>z3–z4</i>	0	0	1	0	0	0	1	1	-	-	0	1	0	0	0	0	0	1
z4-z5	0	0	1	1	0	1	0	0	0	-	0	0	0	0	0	1	1	1
z4-z7	0	0	1	1	0	1	1	0	1	-	0	0	0	0	0	1	0	1
z5-z6	0	1	0	0	0	1	0	1	-	_	0	0	1	0	0	0	0	1
z6-z8	0	1	0	1	0	1	1	1	-	_	0	0	1	0	0	0	1	0
z7-z8	0	1	1	0	0	1	1	1	-	_	0	0	0	1	0	0	0	1
z8-z9	0	1	1	1	1	0	0	0	0	-	1	0	0	0	1	1	1	1
z8-z8	0	1	1	1	0	1	1	1	1	-	1	0	0	0	0	0	0	0
z9-z1	1	0	0	0	0	0	0	0	-	-	0	1	0	0	1	0	0	0

2.5. Синтез комбінаційних схем для функцій збудження пригерів та вихідних сигналів

На основі структурної таблиці автомата (таблиці 4.1) виконаємо синтез комбінаційних схем для вихідних сигналів і функцій збудження тригерів. Аргументами функцій збудження тригерів є коди станів та вхідні сигнали, для вихідних сигналів — тільки коди станів. Виконаємо мінімізацію функцій методом діаграм Вейча. Враховуючи заданий елементний базис (2АБО-НЕ,4І) мінімізувати функцію будемо за ДДНФ

3M.	Арк.	№ докум.	Підп.	Дата