Exercices de Géométrie Différentielle 1

Séance 8 - 30/11/2021

1. Soit M et N deux variété lisse. Montrer qu'il existe un difféomorphisme naturelle

$$T(M \times N) \cong TM \times TN.$$

2. Une matrice G est orthogonale et de déterminant égale à 1 si et seulement si il existe il existe une matrice antisymétrique A telle que

$$G = \exp A = \sum_{n=0}^{\infty} \frac{A^n}{n!}.$$

Soit $V_B \in \mathfrak{X}(SO(n))$, définit par $V_B(A) = AB$, où B est une matrice antisymétrique. On pose $\gamma_B(t) = \exp tB$, montrer que γ_B est une courbe intégrale de V_B .

3. Soient M une n-variété lisse et $m \in M$. Pour tous $f \in C^{\infty}(M)$ et $V \in T_mM$, on définit $d_m f(V) \in \mathbb{R}$ en pausent

$$f_{*m}(V) = d_m f(V) \frac{d}{dt}|_{f(m)}.$$

Montrer les affirmation suivante :

- (i) $d_m f$ est linéaire en V, de sorte que $d_m f \in (T_m M)^*$.
- (ii) Si V est représenter par une courbe γ centrée en m, alors

$$d_m f(V) = \frac{d}{dt}|_{t=0} f \circ \gamma(t) = \partial_{[\gamma]} f.$$

(iii) Une application $v:M\to TM$ telle que $\pi\circ v=id_M$ est lisse si et seulement si la fonction

$$M \to \mathbb{R} : m \to d_m f(v(m))$$

est lisse pour tous $f \in C^{\infty}(M)$.

- A. Soient M une variété compact et $f: M \to \mathbb{R}$ une fonction lisse. Supposons qu'il existe un champs de vecteur V telle que $df(V) \equiv 1$ partout. Montrer que $f^{-1}(\{t_0\})$ est difféomorphe à $f^{-1}(\{t_1\})$ pour tout valeur régulière t_0, t_1 de f.
- B. On considère la parabole $P = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 = x_1^2 + x_2^2\}$ et

$$V = x_1 \partial_1 + x_2 \partial_2 + 2x_3 \partial_3 \in \mathbb{R}^3.$$

Montrer que en tout point de P, V est tangent à P et calculer le flow de V.

1