Clustering Analysis Basics

Ke Chen

Outline

- Introduction
- Data Types and Representations
- Distance Measures
- Major Clustering Approaches
- Summary

Introduction

- Cluster: A collection/group of data objects/points
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis
 - find similarities between data according to characteristics underlying the data and grouping similar data objects into clusters
- Clustering Analysis: Unsupervised learning
 - no predefined classes for a training data set
 - Two general tasks: identify the "natural" clustering number and properly grouping objects into "sensible" clusters
- Typical applications
 - as a stand-alone tool to gain an insight into data distribution
 - as a preprocessing step of other algorithms in intelligent systems

Introduction

Illustrative Example 1: how many clusters?

Introduction

Illustrative Example 2: are they in the same cluster?

Blue shark, sheep, cat, dog Lizard, sparrow, viper, seagull, gold fish, frog, red mullet

- 1. Two clusters
- 2. Clustering criterion: How animals bear their progeny

Gold fish, red mullet, blue shark Sheep, sparrow, dog, cat, seagull, lizard, frog, viper

- 1. Two clusters
- 2. Clustering criterion: Existence of lungs

Introduction

Real Applications: <u>Google News</u>

Introduction

Real Applications: Genetics Analysis

Introduction

Real Applications: Emerging Applications

Organize computing clusters

Market segmentation.

Social network analysis

Astronomical data analysis

Introduction

- A technique demanded by many real world tasks
 - Bank/Internet Security: fraud/spam pattern discovery
 - Biology: taxonomy of living things such as kingdom, phylum, class, order, family, genus and species
 - City-planning: Identifying groups of houses according to their house type, value, and geographical location
 - Climate change: understanding earth climate, find patterns of atmospheric and ocean
 - Finance: stock clustering analysis to uncover correlation underlying shares
 - Image Compression/segmentation: coherent pixels grouped
 - Information retrieval/organisation: Google search, topic-based news
 - Land use: Identification of areas of similar land use in an earth observation database
 - Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
 - Social network mining: special interest group automatic discovery

Quiz

Of the following examples, which would you address using an unsupervised learning algorithm? (Check all that apply.)

- Given email labeled as spam/not spam, learn a spam filter.
- Given a set of news articles found on the web, group them into set of articles about the same story.
- Given a database of customer data, automatically discover market segments and group customers into different market segments.
- Given a dataset of patients diagnosed as either having diabetes or not, learn to classify new patients as having diabetes or not.

Data Types and Representations

- Discrete vs. Continuous
 - Discrete Feature
 - Has only a finite set of values
 e.g., zip codes, rank, or the set of words in a collection of documents
 - Sometimes, represented as integer variable

Continuous Feature

- Has real numbers as feature values e.g, temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous features are typically represented as floating-point variables

Data Types and Representations

- Data representations
 - Data matrix (object-by-feature structure)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

- n data points (objects) with p dimensions (features)
- Two modes: row and column represent different entities
- Distance/dissimilarity matrix (object-by-object structure)

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

- n data points, but registers only the distance
- A symmetric/triangular matrix
- Single mode: row and column for the same entity (distance)

Data Types and Representations

Examples

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Data Matrix

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix (i.e., Dissimilarity Matrix) for Euclidean Distance

Distance Measures

Minkowski Distance (http://en.wikipedia.org/wiki/Minkowski_distance)

For
$$\mathbf{x} = (x_1 \ x_2 \cdots x_n)$$
 and $\mathbf{y} = (y_1 \ y_2 \cdots y_n)$

$$d(\mathbf{x}, \mathbf{y}) = \left(|x_1 - y_1|^p + |x_2 - y_2|^p + \dots + |x_n - y_n|^p \right)^{\frac{1}{p}}, \quad p > 0$$

- p = 1: Manhattan (city block) distance

$$d(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2| \dots + |x_n - y_n|$$

- p = 2: Euclidean distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2 + \dots + |x_n - y_n|^2}$$

- Do not confuse p with n, i.e., all these distances are defined based on all numbers of features (dimensions).
- A generic measure: use appropriate p in different applications

Distance Measures

Example: Manhatten and Euclidean distances

L1	p1	p2	р3	р4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

Distance Matrix for Manhattan Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Data Matrix

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix for Euclidean Distance

Distance Measures

Cosine Measure (Similarity vs. Distance)

For
$$\mathbf{x} = (x_1 \ x_2 \cdots x_n)$$
 and $\mathbf{y} = (y_1 \ y_2 \cdots y_n)$

$$\cos(\mathbf{x}, \mathbf{y}) = \frac{x_1 y_1 + \dots + x_n y_n}{\sqrt{x_1^2 + \dots + x_n^2} \sqrt{y_1^2 + \dots + y_n^2}}$$
$$d(\mathbf{x}, \mathbf{y}) = 1 - \cos(\mathbf{x}, \mathbf{y})$$

- Property: $0 \le d(\mathbf{x}, \mathbf{y}) \le 2$
- Nonmetric vector objects: keywords in documents, gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, ...

Distance Measures

Example: Cosine measure

$$\mathbf{x}_1 = (3, 2, 0, 5, 2, 0, 0), \mathbf{x}_2 = (1, 0, 0, 0, 1, 0, 2)$$

$$3 \times 1 + 2 \times 0 + 0 \times 0 + 5 \times 0 + 2 \times 1 + 0 \times 0 + 0 \times 2 = 5$$

$$\sqrt{3^2 + 2^2 + 0^2 + 5^2 + 2^2 + 0^2 + 0^2} = \sqrt{42} \approx 6.48$$

$$\sqrt{1^2 + 0^2 + 0^2 + 0^2 + 1^2 + 0^2 + 2^2} = \sqrt{6} \approx 2.45$$

$$\cos(\mathbf{x}_1, \mathbf{x}_2) = \frac{5}{6.48 \times 2.45} \approx 0.32$$

$$d(\mathbf{x}_1, \mathbf{x}_2) = 1 - \cos(\mathbf{x}_1, \mathbf{x}_2) = 1 - 0.32 = 0.68$$

Distance Measures

- Distance for Binary Features
 - For binary features, their value can be converted into 1 or 0.
 - Contingency table for binary feature vectors, x and y

1	
$\frac{1}{\mathbf{v}}$	·
0	^
x 1 0	X

a: number of features that equal 1 for both x and y

b: number of features that equal 1 for x but that are 0 for y

c: number of features that equal 0 for \mathbf{x} but that are 1 for \mathbf{y}

d: number of features that equal 0 for both \mathbf{x} and \mathbf{y}

Distance Measures

- Distance for Binary Features
 - Distance for symmetric binary features

Both of their states equally valuable and carry the same weight; i.e., no preference on which outcome should be coded as 1 or 0, e.g. gender

$$d(\mathbf{x}, \mathbf{y}) = \frac{b+c}{a+b+c+d}$$

Distance for asymmetric binary features

Outcomes of the states not equally important, e.g., the *positive* and *negative* outcomes of a disease test; the rarest one is set to 1 and the other is 0.

$$d(\mathbf{x}, \mathbf{y}) = \frac{b+c}{a+b+c}$$

Distance Measures

Example: Distance for binary features

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	1	0	1	0	0	0
Mary	F	1	0	1	0	1	0
Jim	M	1	1	0	0	0	0

- "Y": yes"P": positive"N": negative
- gender is a symmetric feature (less important)
- the remaining features are asymmetric binary
- set the values "Y" and "P" to 1, and the value "N" to 0

$$d(\text{Jack, Mary}) = \frac{0+1}{2+0+1} = 0.33$$

$$d(\text{Jack, Jim}) = \frac{1+1}{1+1+1} = 0.67$$

$$d(\text{Jim, Mary}) = \frac{1+2}{1+1+2} = 0.75$$

Distance Measures

- Distance for nominal features
 - A generalization of the binary feature so that it can take more than two states/values, e.g., red, yellow, blue, green,
 - There are two methods to handle variables of such features.
 - Simple mis-matching

 $d(\mathbf{x}, \mathbf{y}) = \frac{\text{number of mis-matching features between } \mathbf{x} \text{ and } \mathbf{y}}{\text{total number of features}}$

Convert it into binary variables

creating new binary features for all of its nominal states

e.g., if an feature has three possible nominal states: red, yellow and blue, then this feature will be expanded into three binary features accordingly. Thus, distance measures for binary features are now applicable!

Distance Measures

- Distance for nominal features (cont.)
 - Example: Play tennis

	Outlook	Temperature	Humidity	Wind
D_1	010	100	10	10
D_2	100	100	01	10

Simple mis-matching

$$d(D_1, D_2) = \frac{2}{4} = 0.5$$

- Creating new binary features
 - Using the same number of bits as those features can take

Outlook = {Sunny, Overcast, Rain}
$$\longrightarrow$$
 (100, 010, 001)

Temperature = {High, Mild, Cool} \longrightarrow (100, 010, 001)

Humidity = {High, Normal} \longrightarrow (10, 01)

Wind = {Strong, Weak} \longrightarrow (10, 01) $d(D_1, D_2) = \frac{2+2}{10} = 0.4$

- Partitioning approach
 - Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square distance cost
 - Typical methods: k-means, k-medoids, CLARANS,

- Hierarchical approach
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Agglomerative, Diana, Agnes, BIRCH, ROCK,

- Density-based approach
 - Based on connectivity and density functions
 - Typical methods: DBSACN, OPTICS, DenClue,

- Model-based approach
 - A generative model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
 - Typical methods: Gaussian Mixture Model (GMM), COBWEB,

The University

- Spectral clustering approach
 - Convert data set into weighted graph (vertex, edge), then cut the graph into sub-graphs corresponding to clusters via spectral analysis
 - Typical methods: Normalised-Cuts

The University

- Clustering ensemble approach
 - Combine multiple clustering results (different partitions)
 - Typical methods: Evidence-accumulation based, graph-based

Summary

- Clustering analysis groups objects based on their (dis)similarity and has a broad range of applications.
- Measure of distance (or similarity) plays a critical role in clustering analysis and distance-based learning.
- Clustering algorithms can be categorized into partitioning, hierarchical, density-based, model-based, spectral clustering as well as ensemble approaches.
- There are still lots of research issues on cluster analysis;
 - finding the number of "natural" clusters with arbitrary shapes
 - dealing with mixed types of features
 - handling massive amount of data Big Data
 - coping with data of high dimensionality
 - performance evaluation (especially when no ground-truth available)