```
Exercise 5.1
Of which Chomsky type are the following productions?
(1) B \rightarrow cA = Type: 0, 2, 3
(2) cA \rightarrow B = Type: 0
(3) cA \rightarrow BaB = Type: 0
(4) C \rightarrow aBc = Type: 0,2
0: (NT or terminal)* NT(NT or terminal)* \rightarrow (NT or terminal)*
1: \sigma NT\sigma \rightarrow \sigma (NT \text{ or terminal}) + \sigma
     \sigma = (NT \text{ or terminal})^*
2: (NT) \rightarrow (NT \text{ or terminal})*
3: (NT) \rightarrow (terminal to NT)
     (NT) \rightarrow (terminal)
     (NT) \rightarrow (\epsilon)
Exercise 5.2 - obligatory (4 points)
The following DTD (document type definition) for XML documents is given:
<!DOCTYPE a [
                             ( b or 5)
<!ELEMENT a (b | c)>
                             (C, d 15 optional)
<!ELEMENT b (c, d?)*>
<!ELEMENT c (#PCDATA)>
<!ELEMENT d (#PCDATA)>
Which of the following XML documents are valid with respect to this DTD? Indicate all
errors which are contained in the documents.
    (1) Valid
                                                   (2) Invalid
                                                   <a>>
     <a>>
         <C>
                                                              <b>
                                                                   <c>12 </c>
              хуż
                                                                   < d > 34 < /d >
         <\^c>
    </a>
                                                                   <d>/56 </d>
    <c> should contain only
                                                   </a>
    elementary text
                                                   - the second element <d>
                                                   is not possible. A <c>
                                                   must follow.
    (3) Invalid
    <å>
                                                   (<mark>4</mark>) Valid
              <d> 555 </d>
              <c> 444 </c>
```

<b>

<c> rrr </c>

<d> 333 </d>

</b>

| ٠ | <c>666</c>                         | ° <c> SSS°</c> °   |  |  |  |  |
|---|------------------------------------|--------------------|--|--|--|--|
|   | .                                  | . <d> ttt </d> .   |  |  |  |  |
|   | - element b should be 2nd to       | <c> uuu </c>       |  |  |  |  |
| • | element c.                         |                    |  |  |  |  |
| ۰ | - a should only contain elements a | a>                 |  |  |  |  |
| • |                                    | are in the correct |  |  |  |  |
|   |                                    | itian              |  |  |  |  |

# Exercise 5.3 - obligatory (6 points)

Let A =  $(Q, \Sigma, \delta, z0, E)$  be a deterministic finite automaton (DFA), where

Z = {z0, z1, z2, z3, z4, z5}  
S = {a, b}  

$$\delta$$
 (z0,a) = z1  $\delta$ (z0, b) = z2  
 $\delta$  (z1,a) = z1  $\delta$ (z1, b) = z3  
 $\delta$  (z2,a) = z5  $\delta$ (z2, b) = z2  
 $\delta$  (z3,a) = z3  $\delta$ (z3, b) = z4  
 $\delta$  (z4,a) = z3  $\delta$ (z4, b) = z4  
 $\delta$  (z5,a) = z5  $\delta$ (z5, b) = z2

<mark>a</mark>) Draw A as a transition diagram.

 $E = \{z3, z4\}$ 



- b) Which of the following strings are accepted by A.
- (1) ba = not accepted
- (2) bbb = not accepted
- (3) baabab = not accepted

(4) abababbaaababbba = accepted, stops at z3
c) Which language L(A) is accepted by A? L(A) = (a+, b, a\*, b+, a+)  $S \rightarrow AB$   $A \rightarrow aA \mid E$   $B \rightarrow bC$   $C \rightarrow aC \mid bD \mid E$   $D \rightarrow bD \mid aC \mid E$ 

#### Exercise 5.4

What language does the following DEA accept? (can be specified as a regular expression)



Z = {z0, z1, z2, z3}  
S = {a, b}  

$$\delta$$
 (z0,a) = z0  $\delta$ (z0, b) = z1  
 $\delta$  (z1,a) = z3  $\delta$ (z1, b) = z2

$$\delta(z_2,a) = z_1 \delta(z_2,b) = z_3$$

$$\delta$$
 (z3,a) = z3  $\delta$ (z3, b) = z3  
E = {z0, z1}

$$S \rightarrow AB$$
  
 $\dot{A} \rightarrow \dot{a}A \mid \dot{\epsilon}$ 

$$B \rightarrow b(ba)* | \epsilon$$

### Exercise 5.5

a) Let  $S = \{0,1\}$ . Define a deterministic finite automaton (DFA) that accepts the language

L1 = {w ε S\* | |w| is odd

$$Z = \{z0, z1, z2, z3\}$$
  
 $S = \{0, 1\}$ 

$$\delta$$
 (z0,1) = z1  $\delta$ (z0, 0) = z2

$$\delta(z1,0) = \dot{z}3 \, \delta(\dot{z}1,1) = z0\dot{\delta}(z2,0) = \dot{z}0 \, \delta(\dot{z}2,1) = z3$$

$$\delta$$
 (z3,0) = z1  $\delta$ (z3, 1) = z2.

$$E = \{z3\}$$



b) Let S = {0,1}. Define a DFA that accepts the language L2 = {  $11w00 \mid w \in S^*$ } U {  $00w11 \mid w \in S^*$ }.

c) Let  $S = \{a, b\}$ . Define a DFA accepting all strings w  $\epsilon$  S\* that start with character b and contain an odd number of a characters.

# Exercise 5.6 - obligatory (6 points)

Let  $S = \{a, b, c\}.$ 

a) Define a DFA that accepts all strings ending with bb.



$$A = (Z, S, \delta, z0, E)$$

$$Z = \{z0, z1, z2, z3\}$$

$$S = \{a, b, c\}$$

$$\delta:Z\times\Sigma\to Z$$

$$\delta$$
 (z0, a) = z0

$$\delta$$
 (z0, b) = z2

$$\delta (z_0, c) = z_1$$

$$\delta$$
 (z1, a) = z0

| $\delta$ (z1, b) = z2     | ٠                                                                   | ٠      | ٠           | ٠     | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |  |
|---------------------------|---------------------------------------------------------------------|--------|-------------|-------|---|---|---|---|---|---|---|---|---|--|
| $\delta(z_{1,c}) = z_{1}$ |                                                                     |        |             |       | • |   |   |   |   |   |   |   |   |  |
| $\delta$ (z2, a) = z0     |                                                                     |        |             |       |   |   |   |   |   |   |   |   |   |  |
| $\delta$ (z2, b) = z3     | ٠                                                                   | ٠      | ٠           | ٠     | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |  |
| $\delta (z_{c}) = z_{1}$  |                                                                     |        |             | ٠     | ٠ | ٠ |   | ٠ |   |   |   |   | ۰ |  |
| $\delta$ (z3, a) = z0     |                                                                     |        |             |       |   |   |   |   |   |   |   |   |   |  |
| $\delta$ (z3, b) = z3     | ٠                                                                   | ٠      | ٠           | ٠     | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |  |
| $\delta$ (z3,c) = z1      |                                                                     |        |             |       | • |   |   |   |   |   |   |   |   |  |
|                           | z0 is initial state                                                 |        |             |       |   |   |   |   |   |   |   |   |   |  |
| E = { 23 }                | ٠                                                                   | ٠      | ٠           | ٠     | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |  |
|                           | •                                                                   |        | •           | •     | • | • |   |   |   |   | • |   | • |  |
| Ending with b             | b with                                                              | n {a,b | o} *        | ٠     | ٠ | ٠ |   | ٠ | ٠ |   | • |   |   |  |
| (10) b                    | Č                                                                   |        | b b         | •     | • | • | ٠ | ٠ | ٠ | • | ٠ | ٠ | ٠ |  |
|                           |                                                                     |        | b           |       | ٠ | • | ٠ | ٠ | • | ٠ | ٠ |   | ٠ |  |
|                           | •                                                                   | ٠      | ٠           | •     | ٠ | • | ٠ | ٠ | ٠ | • | ٠ | ٠ | • |  |
| b) Define a DF            | b) Define a DFA that accepts the language of the regular expression |        |             |       |   |   |   |   |   |   |   |   |   |  |
| (c+a b)a*                 | ٠                                                                   | ٠      | •           | ٠     | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | • | ٠ | ٠ |  |
|                           | С                                                                   |        |             | a     | ٠ | ٠ | ٠ | ٠ | ٠ | • |   | ٠ | ٠ |  |
|                           |                                                                     |        | (           |       | ۰ |   |   |   |   |   |   |   |   |  |
| (zo)                      | Z1 )                                                                |        | —√((        | Z2 )  |   |   |   |   |   |   |   |   |   |  |
| •                         |                                                                     | a      |             |       | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |  |
| ь                         |                                                                     |        | (           | a     | • |   |   |   |   |   | • |   | • |  |
|                           |                                                                     |        |             |       | ٠ | ٠ |   |   |   | • |   |   | ٠ |  |
| Z3                        | a                                                                   |        | <b>-</b> (( | Z4 )) |   |   |   |   |   |   |   |   |   |  |
| B = (Z, S, δ, z0          | , E)                                                                |        |             |       |   |   |   |   |   |   |   |   |   |  |

B = 
$$(Z, S, \delta, z0, E)$$
  
Z =  $\{z0, z1, z2, z3, z4\}$   
S =  $\{a, b, c\}$ 

$$\delta: Z \times \Sigma \rightarrow Z$$

$$\delta(z0,c) = z1$$

$$\delta(z1,c) = z1$$

$$\delta(z1,a) = z2$$

$$\delta(z2,a) = z2$$

$$δ (z0, b) = z3$$
 $δ (z3, a) = z4$ 
 $δ (z4, a) = z4$ 

z0 is initial state  $E = \{z2, z3, z4\}$ 

# Exercise 5.7

Define a DFA that accepts all floating-point numbers that are build as following:

• The integer part preceding the decimal point and the fractional part after the

decimal point can consist of an arbitrary number of digits (one or more).

• If there is an exponent, it begins with 'e' or 'E', has an optional sign '+' or '-' and an arbitrary number of digits (one or more).

Here are some examples:

123.4500

12.345e6

0.20E+678 1004.5e-6789

You can omit error states.



$$A = (Z, S, \delta, z0, E)$$

$$Z = \{z0, z1, z2, z3, z4, z5\}$$

$$S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, -, e, E\}$$

$$\delta: Z \times \Sigma \to Z$$

$$\delta$$
 (z0, 0-9) = z1

$$\delta$$
 (z1; 0-9) = z1.

$$\delta$$
 (z1, .) = z2

$$\delta$$
 (z2, 0-9) = z2

$$\delta$$
 (z2; {e, E}) = z3

$$\delta(z3, \{+, -\}) = z4$$

$$\delta$$
 (z3, 0-9) = z5

$$\delta (z5, 0-9) = z5$$

$$E = \{z2, z5\}$$

