有机化学

自若鹏 重庆大学化学化工学院 理科楼LC220 ruopeng@cqu.edu.cn

第十四章 碳负离子反应

ω-H的酸性

×α-H的酸性

	pK_a
C_2H_6	50
C_2H_4	44
NH ₃	34
C_2H_2	25
CH ₃ COCH ₃	20
C ₂ H ₅ OH	15.9
H ₂ O	15.74
Ph-OH	10
H_2CO_3	6.5

酸性条件:

碱性条件:

$$H_3C-C-CH_3$$
 $OH^ H_2C-C-CH_3$ $OH_2C-C-CH_3$ $OH_2C-C-CH_3$ $OH_2C-C-CH_3$

单羰基化合物

以醛(酮)式为主

β-二羰基化合物

烯醇式含量增大

碱催化

CH₃CHO + CH₃CHO
$$\xrightarrow{10\%\text{NaOH}}$$
 CH₃CHCH₂CHO 60% 5° C, 4° 5h CH₃CHCH₂CHO 60% OH CH₃CH₂CHO + CH₃CH₂CHO $\xrightarrow{\overline{10\%}}$ CH₃CH₂CHCHCHO 72% CH₃CH₂CHCHCHO 72% CH₃CH₂CHCHCHO 72% CH₃CHCHCHO 72% CH₃CHCHO 72%

α-甲基-β-羟基戊醛

CH₃CHO
$$\stackrel{\frown}{\longrightarrow}$$
 CH₂CHO $\stackrel{\frown}{\longrightarrow}$ CH₃CHCH₂CHO $\stackrel{\frown}{\longrightarrow}$ CH₃CHCH₂CHO $\stackrel{\frown}{\longrightarrow}$ OH CH₃CHCH₂CHO

酸催化

O

$$H-H_2C-C-H+H$$
 $H-CH_2C-H$
 $H-CH_2C-H$
 $H-CH_2C-H$
 $H-CH_2C-H$

$$H_3C-C-H$$
 + $CH_2=C-OH$ $CH_3-C-C-C=OH$ H

$$CH_{3}-C-C+C \xrightarrow{H^{\dagger}} CH_{3}-C-C+C \xrightarrow{\Theta} CHO \xrightarrow{H_{2}O}$$

$$CH_3$$
- CH - CH_2 - CHO $\xrightarrow{-H^+}$ CH_3 - C - CH - CHO

B.酮的羟醛缩合反应

$$CH_{3}COCH_{3} + CH_{3}COCH_{3} \xrightarrow{Ba(OH)_{2}} CH_{3}CCH_{2}COCH_{3}$$

$$CH_{3}CCH_{2}COCH_{3}$$

$$CH_{3}$$

β-甲基-β-羟基-2-戊酮

提高产率方法:改变反应装置,用索氏提取器,移去产物酸性离子交换树脂催化,使生成的β-羟基酮脱水

交叉羟醛缩合反应

Claisen-Schmidt反应(克莱森-斯密特反应)不含 α -H的反应物(芳香醛、甲醛)与碱混合,将含 α -H的醛酮慢慢滴加至混合物

PhCHO + CH₃CHO
$$\xrightarrow{\text{$\widehat{\text{H}}$ OH}^-}$$
 PhCH=CHCHO + H₂O 90%

肉桂醛, 苄叉基乙醛, β -- 苯基丙烯醛

▶ 胺甲基(Mannich曼尼希)化反应

▶ 胺甲基(Mannich曼尼希)化反应

(1)
$$Ph-C-CH_3 + CH_2O + (CH_3)_2NH_2CI$$

$$Ph-C-CH_2-CH_2-CH_3 CI$$

$$CH_3$$

(2)
$$CH_2O + HN(CH_3)_2$$

$$OK \qquad H_2C=N(CH_3)_2 \qquad CH_2-N(CH_3)_2$$

▶ 胺甲基(Mannich曼尼希)化反应

例: Tropinone的合成(托品酮或颠茄酮)

1912 年Mannich 反应出现;1917 年Robinson用于合成Tropinone

CHO
$$+ H_3C-NH_2 + COOH$$

$$+ H_3C-NH_2 + COOH$$

$$+ COOH$$

$$+ COOH$$

$$+ COOH$$

$$+ COOH$$

$$+ COOH$$

$$+ COOH$$

➤ Michael 加成反应

Michael 加成——烯醇负离子与 α , β -不饱和羰基化合物的共轭加成

➤ Michael 加成反应

Robinson 增环反应

分子内醇醛缩合

六元环状烯酮

Robinson 增环

+ α, β-不饱和酮

- 1. Michael 加成
- 2. 分子内醇醛缩合

六元环状烯酮

▶ Robinson 增环反应

(2)
$$H_3CO_2C$$
 CH_3
 OCH_3
 $NaOCH_3$
 H_3CO_2C
 CH_3
 OCH_3
 OC

Claisen (酯)缩合(两个相同酯之间的缩合)

► Claisen 缩合举例:

b-羰基酯 (1,3-二羰基类化合物)

Claisen 缩合机理

$$RCH_{-}C_{-}OR'$$
 $RCH_{-}C_{-}OR'$ $RCH_{2}_{-}C_{-}OR'$ $RCH_{2}_{-}C_{-}OR'$ $RCH_{2}_{-}C_{-}OR'$ $RCH_{2}_{-}C_{-}OR'$ $RCH_{2}_{-}C_{-}OR'$ $RCH_{2}_{-}C_{-}OR'$ $RCH_{2}_{-}C_{-}OR'$ 稳定的烯醇负离子

交叉酯缩合 (两个不同酯之间的缩合)

$$R'-CH_2-C-OR$$
 + $R''-CH_2-C-OR$ O 四种产物 均有 α 氢

产物单一 有合成意义

Dieckmann 缩合 (分子内酯缩合) 对称二羧酸酯的 Dieckmann 缩合

碱为催化量时反应可逆

▶碳负离子的烷基化、酰基化反应

▶碳负离子的烷基化

不对称酮的烯醇负离子化

生成条件

弱碱 常温或加热 强碱时酮过量 (使可逆)

热力学控制

强碱 低温 酮不过量 (使不可逆)

动力学控制

▶β-二碳基化合物在有机合成的应用

双活化位置,反应优先发生

其它活化基团如:
$$-CN$$
, $-NO_2$, $-Ar$
双活化例子 $C \equiv N$ $N \equiv C$ $C \equiv N$ Ar $C \equiv N$ H

▶乙酰乙酸乙酯在有机合成的应用

酮式水解和酸式水解

合成上可用于制备取代乙酸

应用:通过酰基化制备β-二酮类化合物

$$H_3C$$
 OC_2H_5 $OC_2H_$

▶丙二酸二乙酯在有机合成中的应

制备取代乙酸

Eto OEt NaOEt Eto OEt
$$(1)$$
 OH (2) H $^+$, Δ 单取代乙酸 (2) H $^+$, Δ (3) OH

二取代乙酸

▶丙二酸二乙酯在有机合成中的应

制备二元羧酸

▶Perkin 反应

ArCHO +
$$(RCH_2CHO)_2O \xrightarrow{RCH_2COOK(Na)} \xrightarrow{H_3O^+} ArCH=C-COOH$$
 制备α,β - 不饱和羧酸

PhCHO +
$$(CH_3CHO)_2O$$
 $\xrightarrow{CH_3COONa}$ $\xrightarrow{H_3O^+}$ PhCH=C—COOH H 肉桂酸,苄叉基乙酸

CHO +
$$(CH_3CO)_2O$$
 $\xrightarrow{CH_3COONa}$ $\xrightarrow{H_3O}^+$ O CH=CHCOOH

PhCHO +
$$(CH_3CH_2CO)_2O$$
 $\xrightarrow{CH_3CH_2COONa}$ $\xrightarrow{H_3O}$ PhHC=C-COOH CH_3 $\xrightarrow{CH_3COONa}$ $\xrightarrow{CH_3COONa}$ OH

▶Knoevenagel (克脑文格) 反应

CHO +
$$CH_2(CN)_2$$
 PhCH₂NH₂ CH= $C(CN)_2$ + H_2O

CH CH= $C(CN)_2$ + H_2O

CH= $C(CN)_2$ + H_2O

PhCHO + CH_3NO_2 NaOH PhCH₂= $CHNO_2$ + H_2O

▶Darzen (达尔森) 反应

R—CO—R'(H) + CI—C—COOEt — EtONa — R—CO—COOEt — H)R' — R' — 制备
$$\alpha$$
, β - 环氧酸酯 — COOCH3 — CH3ONa,吡啶,-20℃ — COOCH3

▶Darzen (达尔森) 反应

▶Benzoin (安息香) 缩合反应

羟醛缩合

42

■本章要求

■ 羰基α位 H 的弱酸性及烯醇负离子

α 位的烷酰基化反应

■成环的反应及其它类型的负碳离子反应