

RF Test Report:

Zinwave ORU FCC part 27 cellular

FCC ID: UPO302-1107

SC_TR_221_B

Contents

1	Revisi	on History	. 5
2	Purpo	se	. 5
3	Refere	ence Documents	. 5
4	Test I	nformation	. 6
	4.1	Client and manufacturer	. 6
	4.2	Test Locations	. 6
	4.3	Test sample	. 6
5	Test C	Configuration	. 7
	5.1	Test sample and Operating mode	. 7
	5.2	Support equipment	. 7
	5.3	Equipment arrangement	. 8
6	Summ	nary of Tests performed	. 9
	6.1	Comments on requirements in KDB 935210 D05 V01:	. 9
7	Deteri	mination of f ₀	10
8	Transı	mit Power: 2180 - 2200 MHz	11
	8.1	Test method	11
	8.2	Test results	11
9	Occup	ied bandwidth: 2180 - 2200 MHz	12
	9.1	Test method	12
	9.2	Test results	12
1	0 FCC C	SE inc. Band Edge: 2180 - 2200 MHz	13
	10.1	Requirement and test method	
	10.2	Test results	13
	10.2.1	Single frequency, inc. band edge	14
	10.2.2	Dual Channel: AWGN	
1	1 Transı	mit Power: 2345 - 2360 MHz	17
	11.1	Test method	
	11.2	Test results	17
1	2 Occup	ied Bandwidth: 2345 - 2360 MHz	
	12.1	Test method	
	12.2	Test results	
1		nc. Band Edge: 2345 - 2360 MHz	
_	13.1	Requirement and test method	
	13.2	Test results	
	13.2.1	Bottom Channel	
	13.2.1	Middle Channel	
	13.2.2	Top Channel	
	13.2.3	Dual Channel: AWGN	
1		mit Power: 2496 - 2690 MHz	
1.4	+ Hansi	HIII FUVVEL. Z470 = Z070 MILZ	//

14.1	Test method	27
14.2	Test results	
15 Occup	pied Bandwidth: 2496 - 2690 MHz	28
15.1	Test method	28
15.2	Test results	28
16 CSE i	nc. Band Edge: 2496 - 2690 MHz	
16.1	Requirement and test method	
16.2	Test results	29
16.2.1	Wideband single frequency	30
16.2.2	Dual Channel: AWGN	32
17 Radia	ted Spurious Emissions testing	33
17.1	Test method	
17.2	Pre-scans for single channel operation	34
17.2.1	2180 – 2200 MHz RSE	34
17.2.2	2345 - 2360 MHz RSE	35
17.2.3	2496 - 2690 MHz RSE	36
17.3	Final measurements for single channel operation	37
17.4	Pre-scans for dual channel operation	38
17.4.1	2180 - 2200 MHz RSE - dual channel	38
17.4.2	2345 - 2360 MHz RSE – dual channel	39
17.4.3	2496 - 2690 MHz RSE – dual channel	40
17.5	Final measurements for dual channel operation	41
18 Test e	equipment	42
	Tables	
Table 1: E	quipment under test	7
Table 2: S	Support Equipment	7
	Summary of tests performed	
	ransmit power and Peak-to-Average ratio	
	ransmit power and Peak-to-Average ratio	
	ransmit power and Peak-to-Average ratio	
Table 7: T	est Equipment	42

Figures

Figure 1: Test configuration – single channel	8
Figure 2: Test configuration – dual channel	8
Figure 3: Determination of f_0 for the bands of operation	10
Figure 4: Power and Peak to Average (PAR) plots	11
Figure 5: Input vs output plot for 2180 – 2200 MHz band	12
Figure 6: CSE including band edge for 2180 - 2200 MHz band	
Figure 7: CSE band edge for 2180 - 2200 MHz band - dual channel	16
Figure 8: Peak to Average (PAR) plots	17
Figure 9: Input vs output plot for 2345 – 2360 MHz band	18
Figure 10: CSE bottom channel: 2347.5 MHz	21
Figure 11: CSE middle channel: 2352.5 MHz	22
Figure 12: CSE top channel: 2357.5 MHz	24
Figure 13: CSE and band edge 2345 - 2360 MHz Band dual channel	26
Figure 14: Power and Peak to Average (PAR) plots	27
Figure 15: Input vs output plot for 2496 - 2690 MHz band	28
Figure 16: CSE and band edge 2496 - 2690 MHz Band	31
Figure 17: CSE and band edge 2496 - 2690 MHz Band dual channel	32
Figure 18: RSE pre-scans: 2180-2200 MHz band operation	34
Figure 19: RSE pre-scans: 2345 - 2360 MHz band operation	35
Figure 20: RSE pre-scans: 2496 - 2690 MHz band operation	36
Figure 21: RSE final measurements	37
Figure 22: RSE pre-scans: 2180-2200 MHz band operation – dual channel	38
Figure 23: RSE pre-scans: 2345 - 2360 MHz band operation – dual channel	39
Figure 24: RSE pre-scans: 2496 - 2690 MHz band operation – dual channel	40
Figure 25: RSE final measurements – dual channel	41

SC_TR_221_B Page 4 of 42

1 Revision History

Revision	Originator	Date	Comment	Signature
Α	C Blackham	23 Oct	1 st release	
	Director,	2016		
	Sulis Consultants Ltd			
В	C Blackham	31 Oct	Updated to	
	Director,	2016	correct	
	Sulis Consultants Ltd		typos	

2 Purpose

This document details the Zinwave Optical Remote Unit, ORU, model number 302-1107, whilst operating in the following bands under FCC Part 27:

2180 - 2200 MHz.

2345 - 2360 MHz.

2496 - 2690 MHz.

3 Reference Documents

[1]	47CFR2	Title 47 Code of Federal Regulations Part 2: frequency allocations and radio treaty matters; general rules and regulations
[2]	47 CFR27	Title 47 Code of Federal Regulations Part 27: Miscellaneous Communications Services
[3]	TIA-603-D	Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards
[4]	KDB 935210 D05 V01r01	Federal Communications Commission Office of Engineering and Technology Laboratory Division; Measurement guidance for Industrial and Non-consumer signal booster, repeater and amplifier devices
[5]	KDB971168 DO1 v02r02	Federal Communications Commission Office of Engineering and Technology Laboratory Division; Measurement guidance for certification of licensed digital transmitters.

SC_TR_221_B Page 5 of 42

4 Test Information

4.1 Client and manufacturer

Zinwave Ltd

Harston Mill

Harston

Cambridge

CB22 7GG

UK

4.2 Test Locations

Antenna port testing was performed by Charlie Blackham of Sulis Consultants Ltd between 15th September and 23rd October 2016, at Sulis Consultants offices as detailed on cover page

Radiated Spurious Emissions testing was performed at Hursley EMC Service on 23rd September 2016 under job number 16R471

4.3 Test sample

The results herein only refer to sample detailed in section 5

SC_TR_221_B Page 6 of 42

5 Test Configuration

5.1 Test sample and Operating mode

The equipment under test (EUT) was:

Manufacturer	Name	Model Number	Serial Number
Zinwave	ORU	302-1107	#10

Table 1: Equipment under test

Modifications during test: None

Procedure:

- Set the system to maximum gain using the network management software
- Connect the signal generator to the RF service module of the Primary Hub
- Raise the signal level until the maximum output power is reached
- Perform the required test.

Test modulations:

• The system supports operation with a number of wideband services, so testing was performed with AWGN signal as per KDB 935210 D05.

5.2 Support equipment

The following equipment shall be used, configured as shown in Figure 1:

Name	Part Number	Serial Number
Chassis	302-1001	00-17-68-00-09-B7
RF Service module	Service Module	SM 15 1/6
Optical module	Optical module	OM 15 5/6
Chassis	302-1001	00-17-68-00-09-67
Input Optical module	Optical module	OM 15 1/6
Optical module	Optical module	OM 6/6

Table 2: Support Equipment

SC_TR_221_B Page 7 of 42

5.3 Equipment arrangement

Figure 1: Test configuration - single channel

Figure 2: Test configuration - dual channel

SC_TR_221_B Page 8 of 42

6 Summary of Tests performed

Test	Band (MHz)	47 CFR Part	FCC limit	Section	Result
	2180 - 2200	VDB 035310 D05		7	N/A
Determination of fo	2345 - 2360	KDB 935210 D05 Section 3.3	None	7	N/A
.0	2496 - 2690	Section 5.5		7	N/A
	2180 - 2200	27.50(d)	1,640 W EIRP	8	Pass
Transmit Power	2345 - 2360	27.50(a)	2,000 W / 5 MHz EIRP	11	
	2496 - 2690	27.50(h)	2,000 W EIRP	14	Pass
Occupied	2180 - 2200	2.1049 KDB 935210 D05	None	9	Pass
Bandwidth	2345 - 2360			12	
	2496 - 2690	Section 3.4		15	Pass
Conducted	2180 - 2200	27.53(h)	-13dBm / MHz	10	Pass
Spurious Emissions inc. band edge	2345 - 2360	27.53(a)(1)	Various, see section 13.1	13	
Dand edge	2496 - 2690	27.53(m)	-13dBm / MHz	16	Pass
	2180 - 2200	27.53(h)	-13dBm / MHz	17	Pass
Radiated Spurious Emissions	2345 - 2360	27.53(a)(1)	Various, see section 13.1	17	
211110010110	2496 - 2690	27.53(m)	-13dBm / MHz	17	Pass

Table 3: Summary of tests performed

6.1 Comments on requirements in KDB 935210 D05 V01:

Section	Comment
3.1 General	As the bands under investigation are for LTE operation only, one signal sources shall be used: • "wideband" 4.2 MHz AWGN
3.2 Measuring the EUT AGC	Not applicable to ORU and 3000 DAS
threshold	"Devices intended to be directly connected to an RF source only need to be evaluated for any over-the-air transmit paths."
	There are no such over-the-air paths so increased input level testing is not required
3.7 EUT frequency stability measurements	Not required as DAS does not contain oscillator and therefore has no ability to change frequency.

SC_TR_221_B Page 9 of 42

7 Determination of fo

As per kDB 935210 D05 section 3.3, but measurement was performed over the service band frequency range only.

Figure 3: Determination of f_0 for the bands of operation

SC_TR_221_B Page 10 of 42

8 Transmit Power: 2180 - 2200 MHz

8.1 Test method

The equipment was configured with maximum gain of 25dB and connected as per figure 1.

The signal generator was set to provide -5dBm to the input of the hub and the frequency set to an appropriate channel to include f_0 as determined in section 7.

Measurements were made in accordance with KDB 971168 D01 using an RMS detector and the Peak to Average ratio was measured using the CCDF function of the analyser.

8.2 Test results

Frequency	TX power (dBm)	TX power EIRP (dBm)	TX power EIRP (W)	Limit EIRP (W)	0.1% PAR	Result
2182.5	18.69	26.69	0.47	3280.0	8.38 dB	Pass

Table 4: Transmit power and Peak-to-Average ratio

Peak to Average (PAR) ratio was measured using the analyser in-built CCDF function.

Figure 4: Power and Peak to Average (PAR) plots

SC_TR_221_B Page 11 of 42

9 Occupied bandwidth: 2180 - 2200 MHz

9.1 Test method

KDB 935210 D05 section 3.4.

The occupied bandwidth was measured using the inbuilt function on the Signal Analyser set to measure the 99% occupied bandwidth. Measurement was made using peak detector and max hold.

The two plots are overlaid on the same graph by using different vertical axes for input and output signals.

9.2 Test results

Figure 5: Input vs output plot for 2180 – 2200 MHz band

SC_TR_221_B Page 12 of 42

10 FCC CSE inc. Band Edge: 2180 - 2200 MHz

10.1 Requirement and test method

27.53

- (h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.
- (3) Measurement procedure.
- (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (ii) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (iii) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

The licensed band of operation was considered to be a single 5 MHz channel for the 5 MHz operation.

Some emissions > 1 MHz from bandedge were measured using the spectrum analyser adjacent channel power function that integrated power from a lower resolution bandwidth into the 1 MHz required by the rule part.

10.2 Test results

Plots are included for all modes up to 7GHz.

No emissions above noise floor above 7 GHz for any frequency of operation

Single channel measurements were > 25 dB below the limit

Dual channel measurements were > 9 dB below the limit

SC_TR_221_B Page 13 of 42

10.2.1 Single frequency, inc. band edge

SC_TR_221_B Page 14 of 42

Figure 6: CSE including band edge for 2180 - 2200 MHz band

SC_TR_221_B Page 15 of 42

10.2.2 Dual Channel: AWGN

Figure 7: CSE band edge for 2180 - 2200 MHz band - dual channel

SC_TR_221_B Page 16 of 42

11 Transmit Power: 2345 - 2360 MHz

11.1 Test method

The equipment was configured with maximum gain of 25dB and connected as per figure 1.

The signal generator was set to provide -6 dBm to the input of the hub and the frequency set to an appropriate channel to include f_0 as determined in section 7.

Measurements were made in accordance with KDB 971168 D01 using an RMS detector and the Peak to Average ratio was measured using the CCDF function of the analyser.

11.2 Test results

Frequency	TX power (dBm)	TX power EIRP (dBm)	TX power EIRP (W)	Limit EIRP (W)	0.1% PAR	Result
2357.5	15.7	23.7	0.23	2000.0	8.29 dB	Pass

Table 5: Transmit power and Peak-to-Average ratio

Peak to Average (PAR) ratio was measured using the analyser in-built CCDF function.

Figure 8: Peak to Average (PAR) plots

SC_TR_221_B Page 17 of 42

12 Occupied Bandwidth: 2345 - 2360 MHz

12.1 Test method

KDB 935210 D05 section 3.4.

The occupied bandwidth was measured using the inbuilt function on the Signal Analyser set to measure the 99% occupied bandwidth. Measurement was made using peak detector and max hold.

The two plots are overlaid on the same graph by using different vertical axes for input and output signals.

12.2 Test results

Figure 9: Input vs output plot for 2345 – 2360 MHz band

SC_TR_221_B Page 18 of 42

13 CSE inc. Band Edge: 2345 - 2360 MHz

13.1 Requirement and test method

27.53 (a) For operations in the 2305-2320 MHz band and the 2345-2360 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power P (with averaging performed only during periods of transmission) within the licensed band(s) of operation, in watts, by the following amounts:

- (1) For base and fixed stations' operations in the 2305-2320 MHz band and the 2345-2360 MHz band:
 - (i) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, and not less than 75 + 10 log (P) dB on all frequencies between 2320 and 2345 MHz;
 - (ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 70 + 10 log (P) dB on all frequencies between 2287.5 and 2300 MHz, 72 + 10 log (P) dB on all frequencies between 2285 and 2287.5 MHz, and 75 + 10 log (P) dB below 2285 MHz;
- (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2362.5 MHz, 55 + 10 log (P) dB on all frequencies between 2362.5 and 2365 MHz, 70 + 10 log (P) dB on all frequencies between 2365 and 2367.5 MHz, 72 + 10 log (P) dB on all frequencies between 2367.5 and 2370 MHz, and 75 + 10 log (P) dB above 2370 MHz.
- (5) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the channel blocks at 2305, 2310, 2315, 2320, 2345, 2350, 2355, and 2360 MHz, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e., 1 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

The licensed band of operation was considered to be a single 5 MHz channel for the 5 MHz operation.

Some emissions > 1 MHz from bandedge were measured using the spectrum analyser adjacent channel power function that integrated power from a lower resolution bandwidth into the 1 MHz required by the rule part.

13.2 Test results

Measurements were performed on the following three channels, each representing a 5 MHz licensed band:

Bottom channel: 2347.5 MHz
Middle channel: 2352.5 MHz
Top channel: 2357.5 MHz

Plots are included for all modes up to 7GHz.

No emissions above noise floor above 7 GHz for any frequency of operation

SC_TR_221_B Page 19 of 42

13.2.1 Bottom Channel

SC_TR_221_B Page 20 of 42

Figure 10: CSE bottom channel: 2347.5 MHz

13.2.2 Middle Channel

SC_TR_221_B Page 21 of 42

Figure 11: CSE middle channel: 2352.5 MHz

SC_TR_221_B Page 22 of 42

13.2.3 Top Channel

SC_TR_221_B Page 23 of 42

Figure 12: CSE top channel: 2357.5 MHz

SC_TR_221_B Page 24 of 42

13.2.4 Dual Channel: AWGN

SC_TR_221_B Page 25 of 42

Figure 13: CSE and band edge 2345 - 2360 MHz Band dual channel

SC_TR_221_B Page 26 of 42

14 Transmit Power: 2496 - 2690 MHz

14.1 Test method

The equipment was configured with maximum gain of 25dB and connected as per figure 1.

The signal generator was set to provide -5 dBm to the input of the hub and the frequency set to an appropriate channel to include f_0 as determined in section 7.

Measurements were made in accordance with KDB 971168 D01 using an RMS detector and the Peak to Average ratio was measured using the CCDF function of the analyser.

14.2 Test results

Frequency	TX power (dBm)	TX power EIRP (dBm)	TX power EIRP (W)	Limit EIRP (W)	0.1% PAR	Result
2498.5	19.80	27.80	0.60	2000.0	7.94 dB	Pass

Table 6: Transmit power and Peak-to-Average ratio

Plots may be seen in figures 7 and 13.

Peak to Average (PAR) ratio was measured using the analyser in-built CCDF function.

Figure 14: Power and Peak to Average (PAR) plots

SC_TR_221_B Page 27 of 42

15 Occupied Bandwidth: 2496 - 2690 MHz

15.1 Test method

KDB 935210 D05 section 3.4.

The occupied bandwidth was measured using the inbuilt function on the Signal Analyser set to measure the 99% occupied bandwidth. Measurement was made using peak detector and max hold.

The two plots are overlaid on the same graph by using different vertical axes for input and output signals.

15.2 Test results

Figure 15: Input vs output plot for 2496 - 2690 MHz band

SC_TR_221_B Page 28 of 42

16 CSE inc. Band Edge: 2496 - 2690 MHz

16.1 Requirement and test method

27.53.

- (m) For BRS and EBS stations, the power of any emissions outside the licensee's frequency bands of operation shall be attenuated below the transmitter power (P) measured in watts in accordance with the standards below. If a licensee has multiple contiguous channels, out-of-band emissions shall be measured from the upper and lower edges of the contiguous channels.
- (2) For digital base stations, the attenuation shall be not less than 43 + 10 log (P) dB, unless a documented interference complaint is received from an adjacent channel licensee with an overlapping Geographic Service Area. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS No. 1 on the same terms and conditions as adjacent channel BRS or EBS licensees. Provided that a documented interference complaint cannot be mutually resolved between the parties prior to the applicable deadline, then the following additional attenuation requirements shall apply:
- (6) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed; for mobile digital stations, in the 1 megahertz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least two percent may be employed, except when the 1 megahertz band is 2495-2496 MHz, in which case a resolution bandwidth of at least one percent may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 megahertz or 1 percent of emission bandwidth, as specified; or 1 megahertz or 2 percent for mobile digital stations, except in the band 2495-2496 MHz). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

The licensed band of operation was considered to be a single 5 MHz channel for the 5 MHz operation.

Some emissions > 1 MHz from bandedge were measured using the spectrum analyser adjacent channel power function that integrated power from a lower resolution bandwidth into the 1 MHz required by the rule part.

16.2 Test results

Single channel measurements were > 3.5 dB below the limit Dual channel measurements were > 3 dB below the limit

Plots are included for all modes up to 7GHz.

No emissions above noise floor above 7 GHz for any frequency of operation

SC_TR_221_B Page 29 of 42

16.2.1 Wideband single frequency

SC_TR_221_B Page 30 of 42

Figure 16: CSE and band edge 2496 - 2690 MHz Band

SC_TR_221_B Page 31 of 42

16.2.2 Dual Channel: AWGN

Figure 17: CSE and band edge 2496 - 2690 MHz Band dual channel

SC_TR_221_B Page 32 of 42

17 Radiated Spurious Emissions testing

17.1 Test method

Pre-scan measurements were performed with a spectrum analyser, using a peak detector and max hold.

Measurement bandwidths for pre-scan emissions were 100 kHz RBW for frequencies below 1 GHz and 1 MHz for frequencies above 1 GHz.

Measurement bandwidths for final emissions measurements by substitution were 1 MHz except for 1 MHz band immediately adjacent to band edge.

All measurements below 18 GHz were performed at 3m distance and emissions above 18 GHz were measured at 1m.

The cabinet radiation was performed while transmit antenna port was terminated with a 50Ω load.

Initial pre-scan measurements were performed against a field strength limit determined by

E = EIRP - 20log D + 104.8

Where pre-scans showed any emissions of note, final measurement was made using substitution method, with results presented in sections 17.3 and 17.5.

SC_TR_221_B Page 33 of 42

17.2 Pre-scans for single channel operation

Emissions were investigated with device transmitting on bottom, middle and top channels.

Worst case pre-scans are shown below:

17.2.1 2180 – 2200 MHz RSE

Figure 18: RSE pre-scans: 2180-2200 MHz band operation

SC_TR_221_B Page 34 of 42

17.2.2 2345 - 2360 MHz RSE

Figure 19: RSE pre-scans: 2345 - 2360 MHz band operation

SC_TR_221_B Page 35 of 42

17.2.3 2496 - 2690 MHz RSE

Figure 20: RSE pre-scans: 2496 - 2690 MHz band operation

SC_TR_221_B Page 36 of 42

17.3 Final measurements for single channel operation

The only emissions of note were in the 2345-2360 MHz band where the limit line is more stringent.

Measurements were made using RMS detector and trace averaging.

Band-edge Frequency (MHz)	Frequency being measured	Measurement bandwidth	Emission level (dBm)	Limit (dBm)	Result
2345.0	Band edge – 1MHz	1 MHz	-61.8	-45.0	Pass
2345.0	Band edge	100 kHz	-74.6	-45.0	Pass
2360.0	Band edge + 1MHz	1 MHz	-60.6	-45.0	Pass
2360.0	Band edge	100 kHz	-74.6	-45.0	Pass

Figure 21: RSE final measurements

SC_TR_221_B Page 37 of 42

17.4Pre-scans for dual channel operation

Emissions were investigated with device transmitting in two modes:

- Bottom and adjacent channels.
- Top and adjacent channels

Worst case pre-scans are shown below

17.4.1 2180 – 2200 MHz RSE – dual channel

Figure 22: RSE pre-scans: 2180-2200 MHz band operation – dual channel

SC_TR_221_B Page 38 of 42

17.4.2 2345 - 2360 MHz RSE – dual channel

Figure 23: RSE pre-scans: 2345 - 2360 MHz band operation - dual channel

SC_TR_221_B Page 39 of 42

17.4.3 2496 - 2690 MHz RSE – dual channel

Figure 24: RSE pre-scans: 2496 - 2690 MHz band operation - dual channel

SC_TR_221_B Page 40 of 42

17.5 Final measurements for dual channel operation

The only emissions of note were in the 2345-2360 MHz band where the limit line is more stringent.

Measurements were made using RMS detector and trace averaging.

Band-edge Frequency (MHz)	Frequency being measured	Measurement bandwidth	Emission level (dBm)	Limit (dBm)	Result
2345.0	Band edge – 1MHz	1 MHz	-62.0	-45.0	Pass
2345.0	Band edge	100 kHz	-74.4	-45.0	Pass
2360.0	Band edge + 1MHz	1 MHz	-60.9	-45.0	Pass
2360.0	Band edge	100 kHz	-74.0	-45.0	Pass

Figure 25: RSE final measurements - dual channel

SC_TR_221_B Page 41 of 42

18 Test equipment

Description	Manufacturer	Model	Serial Number	Calibration				
Signal Analyser	Rohde & Schwarz	FSV 7	Zinwave 000073	R&S 20-516458 Due 14 Nov 16				
Signal Generator	Rohde & Schwarz	SMBV100A	Microlease asset 45440	Ref: 45440 Due 19 Nov 15				
Cable	Utiflex	BUA01G	FA210A0009M30309	ABEX UK. Ref: green bua01g Due 08 Oct 17				
Spectrum analyser (9kHz- 26.5GHz)	HP	8593EM	3536A00137	HEMC Cal due 17/12/2016				
Signal Generator	Rohde & Schwarz	SMJ100A	100156	Verified as part of system test				
Signal Generator	Agilent	E4432B	G83934071A					
Attenuator	Mini-circuits	VAT 10	3 0433					
Cable (input)	Mini-circuits	CBL-1M- SMNM+	120274					
Cable (input)	Mini-circuits	CBL-1M- SMNM+	120295					
2-way splitter (input)	Mini-circuits	ZN2PD2-63-S+	UU21401232					
RSE testing at Hursley EMC Services Ltd. All calibration maintained under UKAS ISO17025 accreditation no 1874								
Pre-amplifier (30-1000MHz)	НР	8447D	1937A02341	HEMC Cal due 14/09/2017				
Pre-amplifier (1.0-26.5GHz)	HP	8449B	3008A01394	HEMC Cal due 25/08/2017				
Pink 30M-2G Antenna	CHASE	CBL 6141	4013	HEMC Cal due 01/10/2018				
1-10GHz Horn	Schwarzbeck	BBHA 9120 571	571	HEMC Cal due 24/02/2019				
Horn antenna (2-18GHz)	Q-par Angus	WBH218HN	5367	HEMC Cal due 22/06/2019				
18 to 40GHz Horn	Q-par Angus	WBH18-40k	10300	HEMC Cal due Internal				
7GHz Receiver	Rohde & Schwarz	ESCI7	1.167E+09	HEMC Cal due 20/05/2017				
Spectrum analyser (9kHz- 26.5GHz)	HP	8593EM	3536A00137	HEMC Cal due 17/12/2016				
Synthesized sweeper	HP	8341B	2819A1509	HEMC Cal due 14/10/2017				
Spectrum Analyser	Agilent	E4407B	MY44220967	HEMC Cal due 30/11/20116				

Table 7: Test Equipment

SC_TR_221_B Page 42 of 42