Derivation of Normal Distribution Conjugate

Junlong Aaron Zhou

October 15, 2020

Here we show the normal distribution is the conjugate prior for the mean of normal distribution.

The setup is like follows:

$$\mu \sim N(\mu_0, \sigma_0^2)$$
$$y_i \sim N(\mu, \sigma^2)$$

The derivation is as follows:

$$\begin{split} P(\mu|Y) &= \frac{\text{Likelihood} \times \text{Prior}}{P(Y)} \\ &\propto \prod \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y_i - \mu)^2}{2\sigma^2}} * \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}} \\ &\propto exp(-\frac{1}{2}(\frac{\sum(y_i - \mu)^2}{\sigma^2} + \frac{(\mu - \mu_0)^2}{\sigma_0^2})) \\ &= exp(-\frac{1}{2}(\frac{\sum(y_i^2 - 2\mu y_i + \mu^2)}{\sigma^2} + \frac{\mu^2 - 2\mu \mu_0 + \mu_0^2}{\sigma_0^2})) \\ &\propto exp(-\frac{1}{2}(\frac{\mu * 2n\bar{y}_i + n\mu^2}{\sigma^2} + \frac{\mu^2 - 2\mu \mu_0}{\sigma_0^2})) \\ &= exp(-\frac{1}{2}(\mu^2 * (\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}) - \mu * (\frac{2n\bar{y}_i}{\sigma^2} + \frac{2\mu_0}{\sigma_0^2}))) \\ &= exp(-\frac{1}{2})(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2})(\mu^2 - 2\mu * ((\frac{n\bar{y}_i}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}) * \frac{1}{(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2})}) \\ &= exp(-\frac{1}{2})(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2})(\mu^2 - 2\mu * \frac{\sigma_0^2 n\bar{y}_i + \sigma^2 \mu_0}{\sigma_0^2 n + \sigma^2}) \\ &= exp(-\frac{1}{2})(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2})(\mu^2 - 2\mu * \frac{\frac{\mu_0}{\sigma_0^2} + \frac{n\bar{y}}{\sigma^2}}{\frac{1}{\sigma_0^2} + \frac{n\bar{y}}{\sigma^2}}) \\ &\propto exp(-\frac{1}{2})(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2})(\mu - \frac{\frac{\mu_0}{\sigma_0^2} + \frac{n\bar{y}}{\sigma^2}}{\frac{1}{\sigma^2} + \frac{n}{\sigma^2}})^2 \end{split}$$

where for all the "proportional to" part, note we can disgard any term unrelated to μ , because

it would only serve as a constant term in the posterior distribution. Similarly, in the last line, we just add a constant to make it a quadratic form.

So we arrive at a normal distribution with mean being $\frac{\frac{\mu_0}{\sigma_0^2} + \frac{n\bar{y}}{\sigma^2}}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}}$ and variance being $\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}$.