表 1: 问题规模与基础参数表

参数类别	参数符号	数值/范围	说明
	I	54	总地块数(34 露天 +20 大棚)
	$ I_A $	6	平旱地数量(A1-A6)
+ 計計 - 計構	$ I_B $	14	梯田数量 (B1-B14)
地块规模	$ I_C $	6	山坡地数量 (C1-C6)
	$ I_D $	8	水浇地数量(D1-D8)
	$ I_{E,F} $	20	大棚数量(16 普通 +4 智慧)
	J	41	总作物种类数
	$ J_{grain} $	15	粮食作物 (1-15 号)
作物规模	$ J_{rice} $	1	水稻 (16 号)
	$ J_{veg} $	21	蔬菜作物(17-37 号)
	$ J_{mushroom} $	4	食用菌 (38-41 号)
	$ J_{bean} $	8	豆类作物(1-5,17-19 号)
时间规模	T	7	优化年数(2024-2030)
	S	2	种植季数(春夏/秋冬)
	γ_i	1/2	地块年种植季上限
约束参数	轮作周期	3 年	豆类轮作要求
	最小面积	0.5 亩	单地块最小种植面积
	管理面积	5 亩	单作物单季最小总面积

表 2: 分层分治算法对比与选择依据

地块组	算法方法	复杂度分析	性能指标	选择依据
粮食地块组	动态规划	时间 $O(T J K)$	0.087 秒	轮作约束复杂
A/B/C 类	状态 (t, j, cnt)	空间 $O(T J)$	315 状态	时序决策耦合
(26 个地块)	全局最优	相对值 861	稳定性优秀	保证最优解
水浇地组	整数规划	时间 $O(2^n J S)$	0.164 秒	模式选择离散
D类	模式枚举	空间 $O(n J S)$	656 变量	线性约束多
(8 个地块)	精确求解	相对值 656	稳定性良好	Gurobi 高效
大棚组	贪心算法	时间 $O(n \log J)$	0.003 秒	面积小 0.6 亩
E/F 类	收益排序	空间 $O(n)$	108 操作	高价值作物
(20 个大棚)	局部最优	相对值 107	稳定性优秀	快速决策
分层分治	并行求解	总复杂度线性降低	总时间 0.254 秒	问题分解降维
整体策略	结果整合	累积存储	约束检查 < 0.01 秒	算法适配匹配
(54 个地块)	约束验证	$\max\{861, 656, 107\}$	性能提升 79 倍	并行执行高效

表 3: 两种销售情景的目标函数与关键约束对比

40 14	表 3: 网种销售情京的日标函数与大				
组件	情景一: 超产滞销	情景二: 超产折价销售			
目标函数	$\max Z_1 = \sum_{t,j} [P_j \cdot \min(q_{j,t}, D_{j,t}) -$	$\max Z_2 = \sum_{t,j} [P_j \cdot q_{j,t}^{sell} + 0.5P_j \cdot$			
	$\sum_{i,s} x_{i,j,t,s} \cdot C_{i,j,s}$	$q_{j,t}^{excess} - \sum_{i,s} x_{i,j,t,s} \cdot C_{i,j,s}$			
四奴	超产部分:完全浪费(收益=0)	超产部分:按 50% 价格出售			
	非线性: min 函数	线性化:辅助变量 $q_{j,t}^{sell}, q_{j,t}^{excess}$			
	1. 地块面积: $\sum_{j} x_{i,j,t,s} \leq A_i \forall i,t,s$				
	2. 适应性: $x_{i,j,t,s} = 0$ 若 $\beta_{i,j,s} = 0$				
关键					
约束					
	5. 豆类轮作: $\sum_{t'=t}^{t+2} \sum_{j \in J_{bean}} \sum_{s} x_{i,j,t',s} \ge 0.5$				
	6. 管理便利: 单作物 ≥ 5 亩, 单地块 ≥ 0.5 亩				
决策 变量	连续变量: $x_{i,j,t,s} \ge 0$	连续变量: $x_{i,j,t,s} \ge 0$			
	$0-1$ 变量: $y_{i,j,t} \in \{0,1\}$	0-1 变量: $y_{i,j,t} \in \{0,1\}$			
	总变量数: ~ 31,248	辅助变量: $q_{j,t}^{sell}, q_{j,t}^{excess}$ (+574 个)			
线性化 处理	min 函数: 枚举离散情况	分解: $q_{j,t} = q_{j,t}^{sell} + q_{j,t}^{excess}$			
	重茬约束:大 M 法	约束: $q_{j,t}^{sell} \le D_{j,t}, q_{j,t}^{excess} \ge 0$			
	$x_{i,j,t,s} \le M \cdot y_{i,j,t}$	完全线性,标准 MILP 求解			
预期	保守策略:控制种植面积	激进策略: 适度超产获利			
结果	销售限制严格遵守	预期收益提升 8-15%			