Date: 8-03-2025 Martin Cherryacking 1. a) false, it's basis is empty set. b) Trae since every finite generating set com be vetimed down be a linearly independent gentraging set. c) False, some vector spaces like P(x) have infinity Lost all at John mest have game wember of vectors. e) Tree by 1st Corollory of them. 1.10 (Replacement Thin) f) False, itis n+1 g) False, it's mon (1) True, this is exactly what Replacement Heaven ghows. bocs:5, which is not specified. i) true, by the 1.11, subspace of a Rimite-dimensional Vector space hous a dimension at most of this vector grade implying that it wust too be Rintle-dimensional. 1) True, fley are £03 and V respectively. 1) True by Corollary 2 of Replacement Theorem

I get is a basis it it's lin. Ind. and spans the weeklanding versor space. an biraction of local entry liquod to zero. (12,-u,1) + 6(0,3,-1) + ((6,0,-1) = 0), convert to system of the 2a + 6(=0) convert to augmented in a convert to augmented in a convert to augmented in a convert to a convert to augmented in a convert to a convert to augmented in a convert to a conve2060 -4a +36 = 0 la -6 - C = 0 Rz-7Kg-2R, 0-1-40 R3 - R3+2R2 0 -1-40 Since the are augmented matrix is in RE o o o o and has 31th column without a leading enty, this indicates the agricum hay inf. many colutions so the ser is linearly dependent and not a locusis Ron R: 6) Same goloing legic applies here: a(-1,3,1) + 6(2, -4,-3) + c(-3, 8,2) =0. Convert to sygtem of lin. eggs: (-a +26-3 c=0 emvent to augmented 301-46+81=0 $R_3 \rightarrow R_2 + R_1$ $R_2 \rightarrow R_2 + 3R_1$ $R_1 \rightarrow R_2 + 3R_1$ $R_2 \rightarrow R_2 + 3R_1$ $R_3 \rightarrow R_4 + R_1$ $R_4 \rightarrow R_4 + R_1$ $R_5 \rightarrow R_5 + R_5$ 0 -1 -10/ Since this augmented mottoix is in REF without l'accounce that don't have a leading entry, there is only one solution so this system which is for coefficients to all be 0, so the set is ind. Vext we need to cleck that the set spains (R3; thest paye)

That is an ourbitrary 3-tuple (or, as, az) in 123 be written as a linear combination or the versions in the set => $(a, a_2, d_3) = \times (-131) + y(2-4-3) + z(-3, 8, 2)$ Convert to system of lin. egus. -x + 24 - 3 2 = a, whilet to 3x -uy + pz = d2 x - 34 + 27 = a3 -1 30, +02 0 -1 -1 a, +a, 0 -1 -1 actas -3 5a, +a2 + 2a3 1 - 9, 7003 R2-R2-R3 1 0 = 0, + = 02 + = 03 0 1 - 50, - 30, - 303. R, -> R1 + 2R2 D 15 a + 5 a + 2 a 3 d3 010 30, + 302 - 303 00 1 - 5 a, -13 a, -2 a3 X = 16 9, + 3 02 + 3 03 = 23 9, + 3 0/2 - 13 95 spans $Z = -\frac{5}{3}Q_1 - \frac{1}{3}Q_2 - \frac{2}{3}Q_3$ and loasis

We will construct a basis (a subset of given our that indep and generates (R3) recursively. vecunsively.

In vecunsively.

It is clear that $\alpha(2, -3, 1) = 0$,

If the be 0, thus \$\int \int \int \int.

If \int \int \int \int \int. It II i'l hop part at the soft I american it should not be part of the set because it will make it is -4 times it let 10-211 + 10 [| 4 2] = 0 + 0 jependent. 12-31) +6 (1,4,-2) =0. In Q = 6=0 is He end solution Inearly independent set, continue... let by be in the set with U, and U2, same check is required: required: Q(3-3,1) +6(1,4,-2) +((1,37,-17)=0 Q(3-3,1)+6(1,4,-2)+((1,37,-17)=0 F2->E2+5E, Q-26-17C=0 201 + 6 + C = 0 Ex + SE -301 + 46 + 37 C = 0 Ex + SE -301 + 46 + 37 C = 0 Ex → Ex - 2E, - 26 -140=0 56 +350=0 Q-26-17C=0 2a+6+C=0 E2->-2E2 01-26-17C=0 E3->E3-5E2 01-26-17C=0 b +7C =0 56 + 35 (=0 0 = 0 $\Rightarrow \alpha = 30$ E1-> E1+2 E2 Q w -3 (=0 6+76=0 6=-71 0:0 Thus, there are infinety many solutions to this system, so Va Shouldn't be a part of the set. Let U5 be in a set with U1 olad U2, same dan is rec. 0(2, -8, 1) + b(1, 4, -2) + ((-3, -5, 8) = 0 20 + b - 3(=0) = (-2b + 8(=0) = 2 - 2b + 8(=0) -30 + 44b - 5(=0) = (-2b + 4) = (-2b + 4201+6-3(=0 a-26 +86=0

 $\frac{E_2 \rightarrow -\frac{1}{2}E_2}{6 - 9.56 = 0}$ a-26 tre 20 6 - 9.50=0 56-196=0 28.5620 Store (=0 => 6=0 => a=0, Hus the gelutten 15 for a, b, c ho be all o, go the set is line ind Since we reduced generating get on to its subset with Lin. ind. vectors, bey than 1.9 its a basis for Rs 4) Let 5 be a set of 4 polynomials set 5= 3 picos P2(x), P3(x), Pu(x) } w.1.g. Tet Heir degrees be distincts and in descending ender 5.+. 0,>2,72,764,20 respectively G is lin. ind. if: Offilx) + a, fi(x) + a, fi(x) + a, fi(x) =0 is trivial solution where $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$. Since He degroes are ordered in He way GA d, >d2 >d3 >d4 thus the highest power of x in the sum is x when were only come from a f. (x) polynamied. Let the leading coefficient of P.(x) be Co where G \$0, thus the coefficient in the Lopal sum is acciount ander for He sum to be equal to o polynamon, Q. C. must be 0, since c, wan't be 0, this implies that 04, 20. This eleminates for (x) from him, comb. cum such that; Q2 fx (x) + Q3 f3 (x)+Q4 (fulx) =0 Repeating same procedure as to P, we Lind that a, = a3 = ag must all be a Since Here is only one Glubien to this equeusion where $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$,

5) Let V E span (5). Then Here exist Si, ..., Sn ES and and the scalars married s.f. V= a, s, t... + ansn We want show that spain (SUEV3) = spain (S), that is span (S1, ..., Sn, V) = Span (S1, ..., Sn). to show this is true, we must show that a linear combination of grow (S) must be in span (S, \$..., Sh, v) and vice - verson. & sparsna spar largers 43/7... + apsn in span (SV in that span and v=a gpan (SV & V3) & gpan (9) span (5) & Span (5 U & U3): Let w & span (S). Then w is a lin. comb. of beckers in G. Gince & C SUSUB, any lin. coub. of vectors in & is also a lin. comb. of vectors in SUSU3 for where 1's coefficient is zero. Hance we span (SU {V}), proving span (S) & Span (SU {V}). Span (SU { V }) C span (S)! Let U & span (SUSUS), Hen 0 = 6,5, 1... + lans + c.v for some Scalor C. Synce v = d, s, +1. + a, s, bcs. V & span (s), qubstitutes the expuession for v gives v= bis, +... +bns, + cfa, +...+ Coly Sn, Kedrnauging and combining terms gives: U= (a, + cb,) S, + ... + (an + cbn) Sn. Since U is In-combon of vectors from S, UE Span(S) Thus spain (SV &V3) & spain (S). Thus, since subject in chessen held in both directions, spoin (SVGV3) = span (S)

G. Let A be an arbitrary 3×3 symetric matrix a they its general form is $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \end{pmatrix}$, that is $a_{1i} = a_{ii}$.

(a.s. $a_{12} & a_{23} & a_{2$ To compute its dimension, we must kind 15; 43 its loasis since of vectors in largessis is the dimension of that vector space. In M_2 M_3 M_4 M_4 M_5 Let β $M_6 = \begin{pmatrix} 100 \\ 000 \\ 000 \end{pmatrix}, \begin{pmatrix} 010 \\ 000 \\ 000 \end{pmatrix}, \begin{pmatrix} 000 \\ 010 \\ 000 \end{pmatrix}, \begin{pmatrix} 000 \\ 000 \\ 000 \end{pmatrix}, \begin{pmatrix} 000 \\ 000 \\ 000 \end{pmatrix}, \begin{pmatrix} 000 \\ 000 \\ 000 \end{pmatrix}$ 000) be the condidont books. It is Clear that 00, no vector is a linear combination of the no vector is a linear combination of the often in this set. We thus must show that this line and. Let spains the vector space. (Ed: + I grand this in addition) $+ a_{13} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} + a_{23} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} + a_{33} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{23} & a_{13} \\ a_{13} & a_{23} & a_{13} \end{pmatrix}$ that the set spans the vector space et 3x3 44m.
matrices since is generates an arbitrary matrix for
the vectors in the basis.

thus it is a lin. dependent subset of FCIR)
7. Given 48+ is lin dop. subset of F(R) if Rom
7. Given 48t is lin dep. 465et of F(R) if for scalars a, b, c not all 0, 019:n2(x) +69:n2(x) + 0:1=05
for all x E R
Using pythagorean trig. identify, $9:n^2x + cos^2x = 1$, thus $1.5:n^2(x) + 1(605^2(x) - 1.1 = 0) \text{ for } \alpha = 6 = 1 \text{ and } c = -1.$
1.5), a(x) +1 (605 (x) -1.1=0 for a = 6=1 and c=-1.
Gince Scalars are not all 0 and He non-trivial combination
holds her all x, the set is lin. dependent.
6) Adjustment for showing why He candidate set is
actually treowly independent. Well, suppose not, Hen:
$ \begin{array}{c} \left(\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) + \left(\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) + \left(\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) $
(000) (000)
1001) (000) (000)
+ a4 000 + a5 001 + a 000 for
+ a4 (000) + a5 (001) + a6 (000) for a, a2, a3, a4, a5, e6 not ell o, this is a contraction
u, , u,
gince it some of these, letis say of is not o
then entry in hirest column, and van may mot be a were
they the set is linearly insependent.
1 The second of