Advanced Microeconomics III

Francisco Poggi

Information about the course

- Lectures: Mondays (10:15) and Tuesdays (15:30).
- Office hours: by email.
- Exercise session on Thursdays please work on the solutions on Wednesday (or Tuesday evening)
- You can collaborate in groups of at most 3, but you should submit your answer sheet individually (indicating your group members).
- Final exam: June 13.

Course material

Slides will be hosted on my website:

franciscopoggi.com/courses/microlll

- **Textbook**: "Microeconomic Theory" by Mas-Colell, Whinston, and Green, Oxford University Press, 1995 (MWG).
- The course covers Ch. 13, Ch. 14, and Ch. 23 D-F.

Course plan

- Week 1 (Apr 4): Akerlof
- Easter Break
- Week 2 (Apr 25): Spence
- Week 3 (May 2): Rothchild-Stiglitz
- Week 4 (May 9): Moral Hazard.
- Week 5 (May 16): Bayesian Implementation/Envelope Theorem
- Week 6 (May 23): Revenue Maximizing Auctions.
- Week 7 (May 30): Efficient Mechanisms.

Information economics

- What is "information"?
 - Informally: the ability to exclude some states of the world.
- What is "asymmetric information"?
- Asymmetric information is present in many economic relationships
 - Trade of used goods or novel goods
 - Labour markets
 - Financial Markets
 - Provision of public goods
 - Expert advise
- What is "economics of information"?
 - economics of markets with asymmetric information, i.e., welfare and distributional aspects of equilibria.

Modeling information

- Ω: state space.
- A (deterministic) signal $\sigma: \Omega \to S$ where S is the set of signal realizations.
- A partition of Ω is a collection \mathcal{E} of nonempty disjoint subsets whose union is Ω .
- ullet The partition generated by signal σ is the collection

$$\mathcal{E} = \{ \sigma^{-1}(\{s\}) : s \in S^* \}$$

where S^* is the range of σ .

Modeling information

• Suppose \mathcal{E}_1 and \mathcal{E}_2 are partitions of Ω . \mathcal{E}_1 is finer (coarser) than \mathcal{E}_2 if every element of \mathcal{E}_1 is a subset of some element of \mathcal{E}_2 . I.e,

for every $E \in \mathcal{E}_1$, there exists $E' \in \mathcal{E}_2$ such that $E \subseteq E'$.

- A: set of actions.
- Let A be the set of signal-contingent action plans $\alpha: S \to A$.
- Bayesian agent with utility $u: A \times \Omega \rightarrow R$ and prior P solves

$$\max_{\alpha \in \mathcal{A}} \sum_{\omega \in \Omega} u(\alpha(\sigma(\omega)), \omega) P(\omega)$$

Theorem

Theorem

Consider $\sigma_1:\Omega\to S_1$ and $\sigma_2:\Omega\to S_2$. The following are equivalent:

- 1. The partition \mathcal{E}_1 generated by σ_1 is finer than the partition \mathcal{E}_2 generated by σ_2 .
- 2. There exists a function $\gamma: S_1 \to S_2$ such that $\sigma_2 = \gamma \circ \sigma_1$.
- 3. Every Bayesian expected utility maximizer prefers σ_1 to σ_2 for every decision problem.
 - Blackwell Theorem extends this result to stochastic signals.

Akerlof's market for lemons

- QJE (1970).
- Around 40k citations.
- Nobel Prize (2001) with Spence and Stiglitz.

- Before QJE, paper was previously rejected by 3 top journals.
 - AER: trivial.
 - JPE: wrong.
 - REStud: trivial.

Akerlof's market for lemons

- Continuum of sellers (measure *N*).
- Continuum of buyers (measure larger than N).
- Each seller has a car of quality θ .
- Buyers and sellers have quasiliner preferences:
 - Payoff of a buyer that buys car of type θ at price p:

$$\theta - p$$

• Payoff of a seller that sells a car of type θ at price p is:

$$p-r(\theta)$$

- $(r(\theta))$ can be thought of as an opportunity cost.)
- Seller knows the quality of his car.
- $\theta \sim F$ with support in $[\theta, \bar{\theta}]$

Efficient allocation

Let $\Theta \subset [\underline{\theta}, \overline{\theta}]$ be the set of qualities that are traded.

• Gains from trade:

$$\int_{\theta}^{\bar{\theta}} 1_{\{\theta \in \Theta\}} \cdot [\theta - r(\theta)] \cdot \mathsf{N} \ \mathsf{dF}(\theta)$$

Efficient allocation Θ* solves:

$$\max_{\Theta \in \mathcal{P}([\underline{\theta}, \bar{\theta}])} \int_{\theta}^{\bar{\theta}} 1_{\{\theta \in \Theta\}} \cdot [\theta - r(\theta)] \cdot \textit{N} \ \textit{dF}(\theta)$$

Solution:

$$\theta \in \Theta^* \qquad \Leftrightarrow \qquad \theta \ge r(\theta)$$

$$\Theta^* = \{ \theta \in [\underline{\theta}, \overline{\theta}] : \theta \ge r(\theta) \}$$

Efficient allocation

Benchmark: symmetric information

- Suppose car quality is observable.
- Competitive equilibrium: price $\hat{p}(\theta)$ such that demand quantity and supply quantity is equal for all car qualities.

Demand for car of quality
$$\theta = \begin{cases} 0 & \text{if } p > \theta \\ [0, N'] & \text{if } p = \theta \\ N' & \text{if } p < \theta \end{cases}$$

Supply for car of quality
$$\theta = \begin{cases} N & \text{if} \quad p > r(\theta) \\ [0, N] & \text{if} \quad p = r(\theta) \\ 0 & \text{if} \quad p < r(\theta) \end{cases}$$

Benchmark: symmetric information

• For qualities efficient to trade:

$$\theta > r(\theta)$$
 \Rightarrow $\hat{p}(\theta) = \theta$ and $\hat{Q}(\theta) = N$

• For qualities efficient not to trade:

$$\theta < r(\theta)$$
 \Rightarrow $\hat{p}(\theta) \in (\theta, r(\theta)) \text{ and } \hat{Q}(\theta) = 0$

Observation

With symmetric information the competitive equilibrium is efficient. Welfare theorems.

Asymmetric Information: competitive equilibrium

• Since car quality is not observable by the buyers, all car qualities should have the same price.

- A competitive equilibrium is a price \hat{p} and a set $\hat{\Theta} \in \mathcal{P}([\underline{\theta}, \overline{\theta}])$ such that
 - Demand:

$$\hat{p} = E[\theta | \theta \in \hat{\Theta}]$$

• Supply:

$$\hat{\Theta} = \{\theta : r(\theta) \le \hat{p}\}$$

Example

$$r(\theta) = \bar{r} \text{ and } F(r) \in (0,1).$$

- Case $p > \bar{r}$:
 - then $\Theta = [\underline{\theta}, \overline{\theta}].$
 - Equilibrium price $\hat{p} = E[\theta]$ if $E[\theta] > \bar{r}$.
 - Inefficient.

- $p < \bar{r}$
 - then $\Theta = \emptyset$.
 - Equilibrium price $\hat{p} < \bar{r}$ if $E[\theta] < \bar{r}$.
 - Also inefficient.

Example

Adverse selection

- In the previous example:
 - Willingness to sell of sellers is independent of the quality.
 - But efficient allocation depends on the quality.

- Adverse selection occurs when $r(\theta)$ is increasing in θ .
 - For any price, only the relatively worse cars $(\theta \le r^{-1}(p))$ are going to be sold.
- Market may fail completely even when it is efficient that all cars are sold.

Possibility of market breakdown

Existence of CE with no market breakdown

Assumptions:

- 1. Negative Selection: r is strictly increasing.
- 2. No atoms: F is continuous.
- 3. No market breakdown: There exists a price such that $E[\theta|r(\theta) \le p] > p$.

Proposition

Assume 1-3. Then a competitive equilibrium with some trade exists.

Existence of CE with no market breakdown

Existence of CE with market breakdown

Assumptions:

3'. Market breakdown: $E[\theta|r(\theta) < p]$ for all p.

Proposition

Assume 1, 2 and 3'. Then a competitive equilibrium with no trade exists. Moreover, no equilibrium with a positive mass of trade exists.

Parametric Examples

- Example 1: constant cost.
 - *F* uniform on [0, 1].
 - $r(\theta) = \overline{r}$.
- For which \bar{r} is the CE efficient?

- Example 2: linear cost.
 - *F* uniform on [0, 1].
 - $r(\theta) = \alpha \cdot \theta$.
- For which α is the CE efficient?

Equilibrium Multiplicity

Equilibrium Multiplicity

- When there are multiple equilibria, these can be Pareto ranked:
 - Buyers make zero expected profits in all equilibria.
 - in 'higher' equilibria more sellers sell, and those who sell make higher profits.

Are some of these equilibria more likely than others?

Game-theoretic approach

- Same underlying structure with F and $r(\cdot)$ common knowledge.
 - Three players: Buyer 1, Buyer 2, Seller.

- Timing:
 - Buyers offer prices p_1, p_2 simultaneously.
 - Nature chooses car quality θ according to F.
 - Seller decides who to sell, if anybody.

Pure-Strategy Subgame-perfect Nash Equilibria

- We assume: negative selection, no atoms, and no market breakdown.
- Let p^* the highest competitive equilibrium price.
- Extra assumption: "genericity"

$$\exists \epsilon > 0$$
: for all $p > p^*$ $E[\theta | r(\theta) \le p] > p$

Proposition

Assume Negative selection, no atoms, no market breakdown and genericity. Then in any SPNE, both buyers offer the price p^* .

Pure-Strategy Subgame-Perfect Nash Equilibria

- At stage 2: in any SPNE the seller
 - sells at price $\max\{p_1, p_2\}$ if $> r(\theta)$
 - keeps the good if $\max\{p_1, p_2\} < r(\theta)$
- Each buyer's SPNE expected payoff is zero.
 - Proof by contradiction.
- Total Payoff:

$$F(r^{-1}(p))[E[\theta|r(\theta) < p] - p]$$

- Then p must be a CE price or below $r(\underline{\theta})$.
- If $p < p^*$ there is a profitable deviation.

Market with one buyer

- Variant: only one buyer (and one seller as before).
 - In general the equilibrium differs from two-buyer case.

- However: under assumptions 'no atoms' and 'market breakdown' we have as before
 - equilibrium with no trade.
 - no equilibrium with trade.

- Ball, Bazerman, Carroll (1991): Laboratory Experiment of Akerlof's market with one buyer.
 - One firm (acquirer) is considering making an offer to buy another firm (target).
 - Complication is that acquirer is uncertain about the ultimate value of the firm.
 - Target's management has an accurate estimate of the value.
 - What final price offer should the acquirer make for the target?

• Experiment:

- Subjects play "acquirer".
- Computer plays "target".
- Acquirer knows that, under old management, market value of target takes any value between 0 and 100M with equal probabilities.
- Value under new management is 50% higher than under old management.
- Target knows its value.
- Acqurer makes a price offer, then target accepts or rejects.
- feedback: realized profit.
- play 20 times.
- profit proportional.

Fig. 1. Mean bids across trials for subjects in Experiment 1.

- Possible explanation: feedback too 'weak' to allow market unraveling.
 - Probability of positive profit at p > 0?

Relationship between information and trade

- Buyer and Seller can potentially trade a good of uncertain quality.
- Good's quality equally likely to be of three types: $\omega \in \{L, M, H\}$.
- Buyer's valuation:

$$b(\omega) = \begin{cases} 14 & \text{if } \omega = L \\ 28 & \text{if } \omega = M \\ 42 & \text{if } \omega = H \end{cases}$$

Seller's valuation:

$$b(\omega) = \begin{cases} 0 & \text{if } \omega = L \\ 20 & \text{if } \omega = M \\ 40 & \text{if } \omega = H \end{cases}$$

• Trade is always efficient.

Relationship between information and trade

• Case 1: Buyer and Seller are equally uninformed.

$$E[b(\omega)] = 28 > 20 = E[s(\omega)]$$

- Trade can take place for all qualities at any price between 20 and 28.
- Case 2: Seller partially uninformed: {{L}, {M,H}}
 - There is no price at which L, M, H are traded.

$$E[b(\omega)] = 28 < 30 = E[s(\omega)|\omega \in \{M, H\}]$$

• L can be traded at a price in [0, 14].

Relationship between information and trade

- Case 3: Seller is perfectly informed.
 - L and M can be traded at a price in [20, 21].

$$E[b|\omega \in \{L, M\}] = 21 > 20 = E[s|\omega = M]$$

- Example shows that market can expand in the face of greater information asymmetry.
- Relationship between information asymmetry and trade might be nonmonotonic.