ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы измерительные SUM-1 для испытаний и диагностирования узлов и агрегатов машин и механизмов

Назначение средства измерений

Комплексы измерительные SUM-1 для испытаний и диагностирования узлов и агрегатов машин и механизмов (далее - комплексы) предназначены для измерений напряжения и силы постоянного тока, частоты, напряжения и силы переменного тока, электрического сопротивления, количества импульсов, поступающих с первичных преобразователей, преобразования в значения физических величин, а также для регистрации, архивирования и отображения результатов измерений.

Описание средства измерений

Принцип действия комплексов основан на преобразовании в АЦП входных сигналов физических величин, поступающих с первичных измерительных преобразователей (ПП), не входящих в состав комплексов, в цифровой код с последующим преобразованием в значения физических величин по заранее известным градуировочным характеристикам, и дальнейшей математической обработки значений физической величины с получением значений амплитуды, среднеквадратичного и абсолютного значения физической величины, частоты и количества циклов нагружения. Полученные значения индицируются на монитор, архивируются и оформляются в виде протоколов.

Конструктивно комплексы состоят из стойки управления и шкафа измерений. В стойке управления размещены: персональный компьютер (ПЭВМ) с клавиатурой и мышью, монитор, источник бесперебойного питания (рисунок 1).

В шкафу измерений (рисунок 2) размещены: установка измерительная LTR (рег.№ 35234-15) с модулями, источник питания.

В шкаф измерений могут быть установлены модули LTR27 (для измерений электрического сопротивления с датчиков температуры, силы тока с датчиков медленно меняющихся физических величин), модули LTR212M-1 и LTR212M-2 (вторичные приборы для измерительных каналов сопротивления тензорезисторов, соответствующего деформации и каналов измерений силы), модули LTR24-2 (вторичные приборы для измерительных каналов виброускорения), модули LTR24-1 (вторичные приборы для измерительных каналов перемещения), модули LTR34 (каналы цифроаналоговых преобразователей (ЦАП) для управления сервоклапанами гидроцилиндров) и модуль управления для эксцентриковых приводов.

Функционально комплексы состоят из измерительных каналов (ИК):

- ИК физических величин с использованием ПП с выходом (4-20) мА.

Измеряется сила электрического тока в диапазоне (4-20) мА. ИК позволяют вычислить значения медленно меняющихся физических величин по известной градуировочной характеристике с частотой дискретизации до $100~\Gamma$ ц;

- ИК физических величин с использованием резистивных ПП.

Измеряется сопротивление электрическому току. Сопротивление электрическому току резистивных ПП преобразуется в значение температуры, линейного перемещения по известной градуировочной характеристике;

- ИК физических величин с использованием тензорезисторов.

Измеряется напряжение постоянного или переменного тока с тензорезисторов, собранных по схеме: мост, полумост, четвертьмост. Разбаланс моста преобразуется в физическую величину по известной градуировочной характеристике. ИК позволяет вычислить значения деформации, силы, механического напряжения;

- ИК физических величин с использованием пьезоэлектрических ПП с внутренним предусилителем заряда (ICP).

Измеряется напряжение переменного тока от ПП. ИК позволяет вычислить значения виброускорения, виброскорости, виброперемещения;

- ИК физических величин с использованием ПП с выходом от минус 10 до 10 В.

Измеряется напряжение постоянного тока с последующим преобразованием в физическую величину по известной градуировочной характеристике. ИК позволяет вычислить значения избыточного (атмосферного) давления (разрежения), перепада давлений.

- ИК частоты приложения нагрузки.

ИК позволяет измерить частоту приложения нагрузки путем математической обработки значений переменной составляющей физической величины, действующей на ПП;

- ИК количества циклов приложения нагрузки.

ИК позволяет измерить количество циклов приложения нагрузки путем математической обработки значений переменной составляющей физической величины, действующей на ПП.

Комплексы позволяют использовать одновременно от 4 до 64 ИК.

Защита от несанкционированного доступа предусмотрена в виде специального замка на дверцах стойки управления и шкафа измерений, запираемого ключом.

Общий вид составных частей комплексов и места расположения механических замков представлены на рисунках 1, 2. Пломбирование комплексов не предусмотрено.

Рисунок 1 – Стойка управления

Рисунок 2 – Шкаф измерений (до 16 модулей)

Программное обеспечение

Программное обеспечение (ΠO) включает в себя системное (базовое) и специализированное ΠO (С ΠO).

Системное ПО включает в себя операционную систему MS Windows.

СПО включает в себя программу POSUM, обеспечивающую сбор измерительной информации от ИК, обработку, преобразование и визуализацию результатов измерений в цифровом и графическом виде, обеспечение режимов градуировки и тестирования ИК. Метрологически значимой частью программы POSUM являются подпрограмма SignalParameters.jar.

Идентификационные данные метрологически значимой части СПО представлены в таблице 1.

Таблица 1 – Идентификационные данные ПО

тионици т тідентіфікаціюнные динные т	
Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	SignalParameters.jar
Номер версии (идентификационный но-	0.0.0.001
мер) ПО	
Цифровой идентификатор ПО	6F7DAF3CA2FA577AF6C56020EA449518
Другие идентификационные признаки,	MD-5
если имеются	

Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню «средний» согласно Р 50.2.077-2014. Метрологически значимая часть СПО и измеренные данные достаточно защищены с помощью специальных средств защиты от преднамеренных и непреднамеренных изменений.

Метрологические и технические характеристики

Метрологические характеристики приведены в таблице 2.

Таблица 2 – Метрологические характеристики комплексов

Наименование характеристики	Значение	Количество ИК
ИК физических величин с использованием ПП с выходом (4 – 20) мА		
Диапазон измерений силы постоянного тока, мА		
Диапазон измерений силы постоянного тока, соответствую-	от 4 до 20	от 0 до 16
щей коэффициенту линейного преобразования ПП, относи-		
ельные единицы (о.е.) от 0,2 до 1		01 0 до 10
Пределы допускаемой приведенной к верхнему пределу (к	±0,4	
ВП) погрешности измерений силы постоянного тока, %		
ИК физических величин с использованием резистивных ПП		
Диапазон измерений электрического сопротивления, Ом		
Диапазон измерений электрического сопротивления, соот-	от 0 до 250	
ветствующего коэффициенту линейного преобразования	01 0 до 230	от 0 до 8
ПП, (о.е.) от 0 до 1		ОГОДОО
Пределы допускаемой приведенной (к ВП) погрешности из-		
мерений электрического сопротивления, %	±0,2	
ИК физических величин с использованием тензорезисторов		
Диапазон измерений напряжения разбаланса тензометриче-		
ского моста, мВ		
Диапазон измерений напряжения разбаланса тензометриче-	от -75 до +75	
ского моста, соответствующего коэффициенту линейного		от 0 до 64
преобразования, (о.е.) от -1 до +1		ОГОДООТ
Пределы допускаемой приведенной (к ВП) погрешности из-	$\pm 0,4$	
мерений напряжения разбаланса тензометрического мос-		
та, %		

Продолжение таблицы 2

ИК физических величин с использованием пьезоэлектрическ	их ПП с внутрен	ним предусили-	
телем заряда (ICP)			
Диапазон измерений среднеквадратичного значения напря-			
жения переменного тока, В	от 0 до 5	от 0 до 64	
Диапазон измерений среднеквадратичного значения напря-			
жения переменного тока, соответствующего коэффициенту			
линейного преобразования ПП, (о.е.) от 0 до 1			
Пределы допускаемой приведенной (к ВП) погрешности из-	±0,4		
мерений напряжения переменного тока, %			
ИК физических величин с использованием ПП с выхо	дом от минус 10	до 10 В	
Диапазон измерений напряжения постоянного тока, В			
Диапазон измерений напряжения постоянного тока, соот-	от -10 до +10	от 0 до 64	
ветствующего коэффициенту линейного преобразования			
III, (o.e.) от -1 до +1		от о до от	
Пределы допускаемой приведенной (к ВП) погрешности из-			
мерений напряжения постоянного тока, %	±0,4		
Диапазон измерений напряжения переменного тока, В	от 0 до 10	от 0 до 64	
Диапазон измерений напряжения переменного тока, соот-			
ветствующего коэффициенту линейного преобразования			
ПП, (о.е.) от 0 до 1	01 0 д0 04		
Пределы допускаемой приведенной (к ВП) погрешности из-	±0,4		
мерений напряжения переменного тока, %			
ИК частоты приложения нагрузки			
Диапазон измерений частоты приложения нагрузки, Гц	от 1 до 500		
Пределы допускаемой приведенной (к ВП) погрешности из-		от 0 до 8	
мерений частоты приложения нагрузки, %	$\pm 0,5$		
ИК количества циклов приложения нагрузки			
Диапазон измерений количества циклов нагружения, шт	от 1 до 10 ⁷		
Пределы допускаемой приведенной (к ВП) погрешности из-		от 0 до 8	
мерений количества циклов нагружения, %	$\pm 0,5$		

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение переменного тока, В	220±22
- частота переменного тока, Гц	50±2
Потребляемая мощность, кВ·А, не более:	1,0
Габаритные размеры, (длина×ширина×высота), мм, не более	
Стойка управления	600×600×1420
Шкаф измерения	500×600×360
Масса (без кабелей) кг, не более	100
Условия эксплуатации:	
- температура окружающей среды, °С	от +10 до +30
- относительная влажность воздуха при температуре 25 °C, %	от 30 до 80
- атмосферное давление, кПа	от 86,0 до 106

Знак утверждения типа

Наносится на монитор стойки управления в виде наклейки и титульный лист Руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплектность средства измерений приведена в таблице 4.

Таблица 4 - Комплект средства измерений

Наименование СИ	Обозначение	Количество
Стойка управления	SUM-1 Стойка управления	1
Шкаф измерений	SUM-1 Шкаф измерений	1
Комплект кабелей измерительных	АИЕЛ 421457.002	1
Программное обеспечение	POSUM	1
Руководство по эксплуатации	АИЕЛ 421457.002 РЭ	1
Паспорт	АИЕЛ 421457.002 ПС	1
Методика поверки	АИЕЛ 421457.002 МП	1

Поверка

осуществляется по документу АИЕЛ 421457.002 МП «Комплексы измерительные SUM-1 для испытаний и диагностирования узлов и агрегатов машин и механизмов. Методика поверки», утвержденному Φ ГУП «ВНИИМС» 30.09.2019 г.

Основные средства поверки:

- калибратор-вольтметр универсальный H4-12, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 37463-08 (далее рег. №);
 - магазин сопротивления Р4831-М1 (2 шт.) (рег. №38510-08);
- генератор сигналов произвольной формы и стандартных функций AFG3011C (рег. №53102-13);
 - частотомер электронно-счетный ЧЗ-88 (рег. №41190-09);
 - мультиметр 3458А (рег. №25900-03).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых комплексов с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к комплексам измерительным SUM-1 для испытаний и диагностирования узлов и агрегатов машин и механизмов

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Общие положения

ГОСТ 8.027-2001 ГСИ. Государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы

ГОСТ Р 8.648-2015 ГСИ. Государственная поверочная схема для средств измерений переменного электрического напряжения до $1000~\rm B$ в диапазоне частот от $1\cdot 10^{-2}$ до $2\cdot 10^9~\rm \Gamma \mu$

Приказ Федерального агентства по техническому регулированию и метрологии № 2091 от 01 октября 2018 года. Об утверждении Государственной поверочной схемы для средств измерений силы постоянного электрического тока в диапазоне от $1 \cdot 10^{-16}$ до 100 А

Приказ Федерального агентства по техническому регулированию и метрологии от 31 июля 2018 г. N 1621. Об утверждении Государственной поверочной схемы для средств измерений времени и частоты

Приказ Федерального агентства по техническому регулированию и метрологии от 15 февраля 2016 г. № 146. Об утверждении Государственной поверочной схемы для средств измерений электрического сопротивления

Комплексы измерительные SUM-1 для испытаний и диагностирования узлов и агрегатов машин и механизмов. Технические условия. АИЕЛ 421457.002 ТУ

Изготовитель

Общество с ограниченной ответственностью «Авиаагрегат-Н»

(ООО «Авиаагрегат-Н»)

ИНН 6150045308

Юридический адрес: 346400, Ростовская область, г. Новочеркасск, Баклановский проспект, дом №200, корпус A, офис 401

Адрес: 346421, Ростовская область, г. Новочеркасск, ул. 26 Бакинских комиссаров, д. 11в, а/я 113

Телефон/факс: (8635) 26-04-55, 24-51-24

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: (495) 437-55-77 Факс: (495) 437-56-66 E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

ΔR	Кулешов
A.D.	Кулешов

M.п. « ___ » _____ 2019 г.