Morphological Multi-scale Decomposition and efficient representations with Auto-Encoders

•••

Research Internship Project - April 23rd 2018 - September 28th 2018

Bastien PONCHON 11 Juin 2018

Objectives

Object Detection using low dimensional representation

Brain Tumor detection on multi-modal brain images

MRI image

TEP

Blood vessels detection on Pelvis images

MRI image

Representation Learning and Dimensionality Reduction

Goals:

- Learning the underlying structure and latent feature in the input.
- Capturing the posterior distribution of the underlying explanatory factors for the observed input.

Many techniques:

- Linear: Principal Components Analysis, Non-Negative Matrix Factorization...
- Non Linear: Isomap, Kernel PCA, Multi-Dimensional Scaling...

Why using Auto-encoders:

- Able to learn a wide range of (non-linear) functions.
- O Universal approximator theorem: a feedforward neural network with at least one hidden layer can represent an approximation of any function (within a broad class) to an arbitrary degree of accuracy, provided that it has enough hidden units.

Enhancement using Mathematical Morphology

Idea:

- Training and applying the auto-encoder on multi-scale decompositions of the images rather than on the original images.
- o **Input**: $x\in\mathbb{R}^{d imes d imes c imes l}$ instead of $x\in\mathbb{R}^{d imes d imes c}$, d image dimension, c number of channels, l number of decompositions

Motivations:

- Capturing structures into redundant representations preserving level-sets.
- Orienting the representation learned by the Auto-Encoder.

Objective of the project:

- Comparing the learned representations with and without prior Morphological Decompositions.
- Various latent representation dimensions (code size).
- Various Auto-Encoder architectures and flavours.
- Various types of decomposition.

Auto-Encoders

Introduction to Auto-Encoders

An Auto-Encoder is a neural network made of two elements:

- An Encoder: $f: \mathbf{x} \longmapsto f(\mathbf{x}) = \mathbf{h} \in \mathbb{R}^k$, k is the code size A Decoder: $g: \mathbf{h} \longmapsto g(\mathbf{h}) = \mathbf{\hat{x}} \in \mathbb{R}^N$ with $N = d \times d \times c$ or $N = d \times d \times c \times l$
- $g \circ f$ is trained to approximate identity
 - Reconstruction error: $L(\mathbf{x}, \hat{\mathbf{x}})$ where $\hat{\mathbf{x}} = g(f(\mathbf{x}))$ is the reconstruction of input sample \mathbf{x}
 - L can be of various type: mean squared error, binary cross-entropy, etc.
- The capacity of the AE increases with the code size and the neural network depth.

Under-complete Auto-Encoders:

- Learning a code of size k < N: dimensionality reduction.
- Similar to PCA when linear Encoder and Decoder and squared reconstruction error.

Regularized Auto-Encoders:

- Limiting the model capacity by enforcing some properties by additional loss functions
 - Sparsity of the representation, smallness of the derivatives of the representation, robustness to noise, etc.

Adding Sparsity Constraints

Regularization of the representation learned by the Auto-Encoders:

- Enforcing most code coefficients $\mathbf{h}_i, i \in [1, k]$ to be close to 0 (to be inactive)
- Capturing a more robust representation of the manifold structure.

Common implementation:

- Adding a sparsity regularizer loss to the AE loss function: $L_{AE} = \frac{1}{m} \sum_{j=1}^{m} L(\mathbf{x}^{(j)}, \hat{\mathbf{x}}^{(j)}) + \frac{\frac{\lambda}{2} \sum_{l=1}^{L} ||W_l||_2^2}{\sum_{i=1}^{k} S(t_i)}$ With: $t_i = \frac{1}{m} \sum_{j=1}^{m} h_i^{(j)}$, the mean of the activation of the latent code coefficient i on a batch of m
- input samples
- Various sparsity regularizers S: $S(t) = KL(\rho,t) = \rho\log\frac{\rho}{t} + (1-\rho)\log\frac{1-\rho}{1-t}$ $S(t) = \sqrt{t^2 + \epsilon}$ or $S(t) = \log(1+t^2)$

Weight decay

Sparsity constraint

Other methods exist: Intrinsic Plasticity, Weights pruning, etc.

Adding Non-Negativity Constraints

Another type of Auto-Encoder regularization

- Enforcing the positivity of the parameters and states of the network
- Motivation: part-based representation of the inputs (non negative) as composition of images

Common implementation:

Replacing the weight decay term $\frac{\lambda}{2} \sum_{s=1}^{S} ||W_s||_2^2$ in the AE cost function by an asymmetric decay term $\frac{\lambda}{2} \sum_{s=1}^{S} \sum_{i,j} f(W_{s,i,j})$ with:

$$f(w_{i,j}^{(s)}) = egin{cases} lpha(w_{i,j}^{(s)})^2 & ext{if } w_{i,j}^{(s)} < 0 \ \gamma(w_{i,j}^{(s)})^2 & ext{if } w_{i,j}^{(s)} \geq 0 \end{cases} \quad ext{and} \quad 0 \leq \gamma < lpha \leq 1$$

A new popular approach : Variational Auto-Encoders

Using the Auto-Encoder as a generative model:

A stochastic AE:

In practice :

- The Encoder maps each input to the parameters of some distribution
 - Usually the mean and variance of a multi-dimensional Gaussian distribution
- The decoder map a sample from this distribution to a reconstruction of the input
- Loss of the Variational Auto-Encoder:

$$L_{VAE} = oxed{-KL(p_{ heta_E}(\mathbf{h}|\mathbf{x}^{(i)})|p_{ heta}(\mathbf{h}))} + oxed{\log(p_{ heta_D}(\mathbf{\hat{x}}^{(i)}|\mathbf{h}^{(i)}))} - ext{Regularization}}$$
 ~ Reconstruction Loss

Multi-Scale Morphological Decomposition

Additive Morphological Decomposition

One of the considered Morphological Decomposition:

- From Classification of hyperspectral images by tensor modeling and additive morphological decomposition, S. Velasco-Forero, J. Angulo
- Our Given a set of m anti-extensive operators $\underline{\Phi}^i$, and extensive operators $\overline{\Phi}^i$ such that:

$$egin{aligned} & \underline{\Phi}^m(\underline{\Phi}^{m-1}(\mathbf{I})) \leq \ldots \leq \underline{\Phi}^2(\underline{\Phi}^1(\mathbf{I})) \leq \underline{\Phi}^1(\mathbf{I}) \leq \mathbf{I} \ & \overline{\Phi}^m(\overline{\Phi}^{m-1}(\mathbf{I})) \geq \ldots \geq \overline{\Phi}^2(\overline{\Phi}^1(\mathbf{I})) \geq \overline{\Phi}^1(\mathbf{I}) \geq \mathbf{I} \end{aligned}$$

The Additive Morphological Decomposition decomposes the image ${f I}$ as: ${f I}=S+\sum_{i=1}^m R_i$ with the m residuals:

$$R_i^-=rac{R_i^--R_i^+}{2} \qquad egin{array}{c} R_i^-=\underline{\Phi}^{i-1}(\underline{\Phi}^{i-2}(\mathbf{I}))-\underline{\Phi}^i(\underline{\Phi}^{i-1}(\mathbf{I})) \ R_i^+=\overline{\Phi}^i(\overline{\Phi}^{i-1}(\mathbf{I}))-\overline{\Phi}^{i-1}(\overline{\Phi}^{i-2}(\mathbf{I})) \end{array}$$

- $_{ ilde{>}}$ The input of our representation learning algorithm is then of size N=d imes d imes c imes (m+1)
- Example of morphological operators: operator by reconstruction indexed by scale of structuring element.

Implementation

Fashion MNIST Data Set

Zalando Research proposal as a remplacement to the original MNIST data set:

Choice of Architecture: InfoGAN

Inspired from InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets, Xi Chen et al.

- Designed for representation learning
- State-of-the art deep-learning tricks: convolutional layers, Batch Normalization, IRELU activations, etc.

Encoder:

Decoder:

- o Limits:
 - Network high capacity and expensive training.

Implementation

Adding Sparsity Constraints

Implemented sparsity constraint:

L1-regularization of activity of the last layer of the encoder

Noticed effects:

- Poor reconstruction ability.
- Collapsing of the code coefficients with very low standard deviation.
- However a t-SNE on the learned representation still show some structure in the latent space.

How to compare encodings?

Reconstruction Errors

Reconstruction error is not a good metric of the efficiency of the learned representation:

 A high enough capacity can get an arbitrary good reconstruction, without learning the underlying structure in the images

Code Visualization

How to Compare Encodings?

t-SNE

Visualizing the embedding of our data as a two or three dimensional space.

 Iteratively minimizes the KL divergence between two probability distributions modeling the local similarity of points in both the high dimensional space and the 2-dimensional space

Limits:

- The algorithm converges to a local minimum
- t-SNE is sensitive to the value of a perplexity defining a notion of 'neighborhood' in the high dimensional space.
- Cluster sizes and distances in the visualization are meaningless.

Activation Maximization

Generating an input image that maximize one of the components of the learned representation: $rg \max_{\mathbf{x}} \mathbf{h}_i(\mathbf{x})$

Trying to visualize the learned structure in the images.

Classification Results

A common way of determining the efficiency of a learned representation

Training a classifier on the learned representations.

Approximation of the learned encoding function

Approximating the function learned by the Encoder by other known function.

o Approximation with a linear function: comparing the input and the reconstruction with ${f ilde x}={f Wh}$ where ${f ilde W}={f XH}^\dagger$

Example:

o infoGAN architecture with code of size 5:

$$||\mathbf{ ilde{X}_{test}}-\mathbf{X_{test}}||=1029.5 \ ||\mathbf{ ilde{X}_{test}}-\mathbf{\hat{X}_{test}}||=955.4$$
 Decreases with code size

Linear and shallow Auto-Encoder with code of size 5:

$$||\mathbf{\tilde{X}_{test}} - \mathbf{X_{test}}|| = 543.2$$

 $||\mathbf{\tilde{X}_{test}} - \mathbf{\hat{X}_{test}}|| = 496.2$

Conclusion

Conclusion

To Do List

- Coming back to more shallow network architecture:
 - Dictionary images visualization abilities.
 - A decomposition closer to linear.
- o Implementation and testing of several sparsity regularizers.
- o Implementation and testing of several morphological decomposition.