

ECONOMETRIA I

Curso de Ciências Econômicas

Prof. Lindomar Pegorini Daniel

ECONOMETRIA I

UNIDADE 1: INTRODUÇÃO AO MODELO DE REGRESSÃO LINEAR

Tópico 1.2 – Introdução à econometria

Aula 4 – Modelo de regressão linear

Prof. Lindomar Pegorini Daniel

BASE DE DADOS

Cada trabalhador (pessoa) é uma observação

_	obs	Salário	Feminino	Não branco	Sindicato	Escolaridade	Experiência
	1	11,55	1	0	0	12	20
	2	5,00	0	0	0	9	9
	3	12,00	0	0	0	16	15
	4	7,00	0	1	1	14	38
	5	21,15	1	1	0	16	19
	6	6,92	1	0	0	12	4
	7	10,00	1	0	0	12	14
	8	8,00	1	1	0	12	32
	9	15,63	0	0	0	18	7
	10	18,22	1	0	0	18	5
	11	20,00	0	0	0	20	31
	12	4,35	1	0	0	12	7
	13	5,00	0	0	0	5	31
	14	8,25	0	1	0	12	14
	15	15,00	0	0	1	12	15
	16	19,00	1	1	1	14	26
	17	18,00	0	1	1	14	23
	18	7,07	0	0	1	16	4
	19	8,00	0	0	0	14	16
	20	25,00	0	0	0	14	27
	21	17,30	1	0	0	12	44
_	22	16,00	1	0	0	12	38

ECONOMETRIA

Y responde a X de alguma forma

$$Y_i = f(X_i)$$

Dependente

Explicada

Regressando

Explicativa

Regressor

ECONOMETRIA

$$Y_i = f(X_i)$$

Vendas = f(Temperatura, Panfletos, Chuva)

Salário por hora = f(Feminino, Escolaridade, Experiência)

REGRESSÃO

Original:

• Galton, Francis. "Family likeness in stature". Proceedings of Royal Society, Londres, 1886. v. 40, p. 42-72.

• Moderna:

• Estudo da dependência de uma variável em relação a outras com o objetivo de prever o valor médio da primeira.

MODELO DE REGRESSÃO LINEAR

$$Y_i = f(X_i)$$

$$Y_i = B_1 + B_2 X_{2i} + B_3 X_{3i} + ... + B_k X_{ki} + u_i$$

Populacional

$$Y_i = b_1 + b_2 X_{2i} + b_3 X_{3i} + ... + b_k X_{ki} + e_i$$

Amostral

MODELO DE REGRESSÃO LINEAR

$$Y_i = f(X_i)$$

Populacional

$$Y_i = BX + u_i$$

Forma reduzida

Amostral

$$Y_i = bX + e_i$$

Forma reduzida

FUNÇÃO DE REGRESSÃO AMOSTRAL

$$Y_i = b_1 + b_2 X_{2i} + b_3 X_{3i} + ... + b_k X_{ki} + e_i$$

Determinística

Aleatória

$$Y_i =$$

$$\widehat{\mathbf{Y}}_{\mathbf{i}}$$

Resíduo

$$Y_i = b_1 + b_2 X_{2i} + b_3 X_{3i} + ... + b_k X_{ki} + e_i$$

Intercepto

$$Y_i = b_1 + b_2 X_{2i} + b_3 X_{3i} + ... + b_k X_{ki} + e_i$$

$$Y_i = b_1 + b_2 X_{2i} + b_3 X_{3i} + ... + b_k X_{ki} + e_i$$

Coeficientes angulares

$$Y_i = b_1 + b_2 X_{2i} + b_3 X_{3i} + ... + b_k X_{ki} + e_i$$

Vendas vs Temperatura

MÉDIA INCONDICIONAL

Salário	Escolaridade
11,55	12
5,00	9
12,00	16
7,00	14
21,15	16
6,92	12
10,00	12
8,00	12
15,63	18
18,22	18
20,00	20
4,35	12
5,00	5
8,25	12
15,00	12
19,00	14
18,00	14
7,07	16
8,00	14
25,00	14
17,30	12
16,00	12
5,00	12

MÉDIA INCONDICIONAL

Salário	Escolaridade
11,55	12
5,00	9
12,00	16
7,00	14
21,15	16
6,92	12
10,00	12
8,00	12
15,63	18
18,22	18
20,00	20
4,35	12
5,00	5
8,25	12
15,00	12
19,00	14
18,00	14
7,07	16
8,00	14
25,00	14
17,30	12
16,00	12
5,00	12

$$\overline{X} = \frac{\sum_{i=1}^{N} X_i}{n}$$

MÉDIA CONDICIONAL

Escolaridade	observações	Média do Salário por hora	
0	4	5,57	
1	7	5,70	
5	9	6,99	
7	17	9,95	
9	19	7,28	
10	29	8,12	
11	40	7,83	– Média
12	711	10,30	
14	104	13,03	
16	233	16,25	
18	82	20,21	
20	34	24,68	
Total	1289	12,37	

Média condicional

MÍNIMOS QUADRADOS ORDINÁRIOS

$$Y_i = bX + e_i$$

$$V_i = b_1 + b_2X_i + e_i$$

$$\mathbf{b_1} = \overline{\mathbf{Y}} - \mathbf{b_2} \overline{\mathbf{X}}$$

$$b_2 = \frac{\sum x_i y_i}{\sum x_i^2}$$

onde

$$x_i = (X_i - \overline{X})$$
$$y_i = (Y_i - \overline{Y})$$

MÍNIMOS QUADRADOS ORDINÁRIOS

$$\mathbf{b}_1 = \overline{\mathbf{Y}} - \mathbf{b}_2 \overline{\mathbf{X}}$$

$$b_2 = \frac{\sum x_i y_i}{\sum x_i^2}$$

ANÁLISE DA REGRESSÃO DAS VENDAS

$$Y_i = b_1 + b_2 X_i + b_3 X_i + b_4 X_i + e_i$$

Vendas = $b_1 + b_2$ Temperatura + b_3 Panfletos + b_4 Preço + e_i

Vendas = 12,3 + 0,72Temperatura + 0,02Panfletos + 0,40Preço + e_i

ANÁLISE DA REGRESSÃO DO SALÁRIO

$$Y_i = b_1 + b_2 X_i + b_3 X_i + b_4 X_i + b_5 X_i + b_6 X_i + e_i$$

Salário por hora = $b_1 + b_2$ Feminino + b_3 Nãobranco + b_4 Sindicato b_5 Escolaridade + b_6 Experiência + e_i

Salário por hora = -7,18 - 3,07Feminino -1,57Nãobranco + 1,10Sindicato 1,37Escolaridade + 0,17Experiência + e_i

MODELO DE REGRESSÃO LINEAR

- Próxima atividade:
 - Atividade prática: Laboratório 4

- E-mail:
 - lindomar.pegorini@unemat.br