L17 p. 2

LECTURE 17

• Readings: Section 7.3

Lecture outline

- Review
- Steady-state behavior
- Steady-state convergence theorem
- Balance equations
- Birth-death processes

Warmup

$$P(X_1 = 2, X_2 = 6, X_3 = 7 \mid X_0 = 1) =$$

$$P(X_3 = 7 | X_0 = 2) =$$

L17 p. 3

ste-time random process

Review: Discrete-time Markov chain X_n

- Discrete-time random process
- ullet Takes values in a finite set, usually $\{1,\ldots,m\}$
- Markov property:

$$P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, ..., X_0 = i_0)$$

= $P(X_{n+1} = j | X_n = i) = p_{ij}$

- n-step transition probabilities: $r_{ij}(n) = P(X_n = j | X_0 = i)$
- Chapman-Kolmogorov equation:

$$r_{ij}(n) = \sum_{k=1}^{m} r_{ik}(n-1) p_{kj}$$

L17 p. 4

Review: Limits of *n*-step transition probabilities

- Does $r_{ij}(n)$ converge as $n \to \infty$?
- ullet Does the limit depend on i?

L17 p. 5

Review: Classification of states/classes

• State *i* is **recurrent** when:

for every j accessible from $i,\ i$ is accessible from j

- When a state is not recurrent, it is transient
- A **recurrent class** is a set of states accessible from each other, with no other state accessible from them
- ullet A recurrent class is **periodic** when its states can be grouped into d>1 groups so that all transitions from one group lead to the next group

L17 p. 6

Steady-state probabilities: Example

L17 p. 8

Steady-state convergence theorem

Markov chain with a single recurrent class, which is aperiodic, converges to a steady-state PMF on the states

$$\pi_j = \lim_{n \to \infty} \mathbf{P}(X_n = j), \qquad j = 1, 2, ..., m.$$

"Convergence" includes lack of dependence on initial state:

$$\lim_{n\to\infty} r_{ij}(n) = \pi_j, \quad \text{for all } i.$$

 $\hbox{- Constraint derived from } r_{ij}(n) \; = \; \sum_{k=1}^m r_{ik}(n-1) \, p_{kj} \\ - \; \hbox{Take limit } n \to \infty \hbox{:} \qquad \qquad \pi_j \; = \; \sum_{k=1}^m \pi_k \, p_{kj}, \quad \hbox{for all } j$

 $\sum_{j=1}^{m} \pi_j = 1$ Additional equation:

0.8

Balance equations: Example

L17 p. 9

Alternate balance equations

L17 p. 10

Birth-death processes

• Special case: $p_i=p$ and $q_i=q$ for all i, $\rho=\frac{p}{q}=$ load factor $\pi_{i+1} = \pi_i \frac{p}{a} = \pi_i \rho$ so $\pi_i = \pi_0 \rho^i$, $i = 0, 1, \dots, m$

L17 p. 11

Long-term frequency interpretations

• Under the convergence conditions,

$$\lim_{n\to\infty}\frac{v_{ij}(n)}{n}\ =\ \pi_j$$

where $v_{ij}(\boldsymbol{n})$ is the expected number of **visits** to j in n transitions starting from i

• Under the convergence conditions,

$$\lim_{n\to\infty} \frac{q_{jk}(n)}{n} \ = \ \pi_j \, p_{jk}$$

where $q_{jk}(n)$ is the expected number of $j \to k$ transitions in n transitions starting from i

L17 p. 12

Long-term frequencies: Example

