Semantics-Preserving Locality Embedding for Zero-Shot Learning

Shih-Yen Tao¹, Yao-Hung Hubert Tsai², Yi-Ren Yeh³, Yu-Chiang Frank Wang⁴

¹Language Technologies Institute, ²Machine Learning Department}, Carnegie Mellon University, USA ³Department of Mathematics, National Kaohsiung Normal University, Taiwan ⁴Department of Electrical Engineering, National Taiwan University, Taiwan

Introduction

Zero-Shot Learning: recognize images of unseen categories

- Each class is typically described by a semantic vector:
- **Supervised**: Attributes
- *Unsupervised*: Word2Vec, Glove, Wordnet Vector

Highlights of Our Method

- Matching cross-domain concepts via subspace learning
- Semantics-preserving locality embedding exploits the locality of within-class image data with semantics info jointly embedded.
- Applicable in both inductive & transductive settings

Inductive ZSL

ESZSL [ICML'15], LatEm [CVPR'16], SSE [ICCV'15], Sync [CVPR'16], JLSE [CVPR'16], SOC [NIPS'09], Devise [NIPS'13]

Transductive ZSL (i.e., unseen test data presented & semantic vectors known) TMV[PAMI'15], SMS[AAAI'16]

Approach

Illustration

- **Notations**
- Seen image data $D = \{X, Y\} = \{x_i, y_i\}_{i=1}^N, x_i \in \mathbb{R}^{d_f}$
- Unseen image data $D^U = \{X^U, Y^U\} = \{x_i^U, y_i^U\}_{i=1}^{N^U}, x_i^U \in \mathbb{R}^{d_f}$
- Y and Y^U : disjoint label sets $L=\{1,2,\ldots,C\}$ and $\hat{L^U}=\{1^U,2^U,\ldots,C^U\}$
- Semantic vectors for seen/unseen classes

$$S = \{s_i \in R^{d_S}\}_{i=1}^C, S^U = \{s_i^U \in R^{d_S}\}_{i=1}^C$$

Goal

- Find transformations $A_F \in \mathbb{R}^{d_F \times d_k}$ and $A_S \in \mathbb{R}^{d_S \times d_k}$, respectively.
- Result in improved separation btw projected data of different labels.
- **Semantics-Preserving Locality Embedding**

Objective function:

 $\min E_C(A_S, A_F) + \rho_1 E_S(A_F) + \rho_2 \sigma(A_S, A_F)$, s. t. $ZHZ^T = I$, where $Z = [A_S^T S, A_F^T X], \sigma(A_S, A_F)$ as L₂ regularizer, and H centering matrix.

Concept matching $E_{\mathcal{C}}(A_{\mathcal{S}}, A_{\mathcal{F}})$:

- Visual concept: Class mean
- Semantic concept: Semantic vector (1 for each class)

$$E_C(A_S, A_F) = \sum_{j=1}^{C} \left\| A_S^T s_j - \frac{1}{N_j} \sum_{i=1}^{N_j} A_F^T x_i^j \right\|^2$$

Within-class locality $E_S(A_F)$:

$$E_S(A_F) = \frac{1}{2} \sum_{j=1}^{C} \{ \frac{1}{N_i^2} \sum_{i=1}^{N_j} \sum_{k=1}^{N_j} ||A_F^T x_i^j - A_F^T x_k^j||^2 \}$$

From Inductive to Transductive ZSL

Objective function:

 $\min E_C(A_S, A_F) + E_C^U(A_S, A_F) + \rho_1 \{E_S(A_F) + E_S^U(A_F)\} + \rho_2 \sigma(A_S, A_F)$ **Self-learning strategy:**

✓ Predict pseudo labels and update transformations iteratively

Experiments

Datasets

	AWA	CUB	DOG	SUN
# of seen classes	40	150	85	645/646
# of unseen classes	10	50	28	72/71
# of images	30473	11786	19499	14340
Dim of Attributes	-	312	85	102
Dim of Word2Vec	400	400	400	-
Dim of Glove	400	400	200	-
Dim of Wordnet	-	-	163	-

- Visual features: 1024-dim GoogLeNet feature
- Evaluation: Classification acc. of unseen classes

- Visualization
- Different colors denote different classes

SOC [NIPS'09] **OURS** SSE [ICCV'16] JLSE [CVPR'16]

Evaluation (Inductive ZSL)

Evaluation (Transductive ZSL)

Conclusions

- Semantics-preserving locality embedding: Concept matching + within-class locality
- Our method improves the separation between data of distinct semantic info, and thus is particularly preferable for ZSL.
- Our method can be easily generalized to the transductive setting.
- Promising inductive/transductive ZSL results on benchmark datasets.