

III. országos magyar matematikaolimpia

XXX. EMMV

Déva, 2020. február 11–16.

XI. osztály – I. forduló

1. feladat. Az $(x_n)_{n\in\mathbb{N}^*}$ valós számsorozatot a következőképpen értelmezzük:

$$x_1 = 1$$
 és $x_{n+1} = n \cdot x_n + n - 1$,

bármely $n \ge 1$ esetén. Ha

$$a_n = \sum_{k=1}^n \frac{1}{1+x_k}$$
 és $b_n = \sum_{k=1}^n \frac{k-1}{1+x_{k+1}}$,

számítsd ki a következő határétékeket:

- a) $\lim_{n\to\infty} a_n$;
- b) $\lim_{n\to\infty}b_n$.

dr. Bencze Mihály, Brassó Szilágyi Judit, Kolozsvár

Megoldás.

a) Mivel $x_{n+1} + 1 = n(x_n + 1)$, minden $n \in \mathbb{N}^*$ esetén, így rendre írhatjuk, hogy (1 pont)

$$x_{n} + 1 = (n - 1) \cdot (x_{n-1} + 1)$$

$$x_{n-1} + 1 = (n - 2) \cdot (x_{n-2} + 1)$$

$$\vdots$$

$$x_{2} + 1 = 1 \cdot (x_{1} + 1).$$

Az egyenleteket összeszorozva kapjuk, hogy $x_n = 2(n-1)! - 1$, minden $n \in \mathbb{N}^*$ esetén.

(3 pont)

Innen

$$a_n = \sum_{k=1}^n \frac{1}{1+x_k} = \frac{1}{2} \sum_{k=1}^n \frac{1}{(k-1)!} = \frac{1}{2} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{(n-1)!} \right),$$
 tehát $\lim_{n \to \infty} a_n = \frac{e}{2}$. (2 pont)

b) Írhatjuk, hogy

$$b_{n} = \sum_{k=1}^{n} \frac{k-1}{1+x_{k+1}} = \frac{1}{2} \sum_{k=1}^{n} \frac{k-1}{k!}$$

$$= \frac{1}{2} \sum_{k=1}^{n} \left(\frac{1}{(k-1)!} - \frac{1}{k!} \right)$$

$$= \frac{1}{2} \left(\left(1 - \frac{1}{1!} \right) + \left(\frac{1}{1!} - \frac{1}{2!} \right) + \left(\frac{1}{2!} - \frac{1}{3!} \right) + \dots + \left(\frac{1}{(n-1))!} - \frac{1}{n!} \right) \right)$$

$$= \frac{1}{2} \left(1 - \frac{1}{n!} \right), \qquad (2 \text{ pont})$$

innen $\lim_{n\to\infty} b_n = \frac{1}{2}$.

Hivatalból (1 pont)

2. feladat. Ha $A \in \mathcal{M}_2(\mathbb{R})$, akkor igazold a

$$\frac{8}{3}\det(A^2 + A + I_2) \ge (1 - \det A)^2 + (1 + \operatorname{Tr} A)^2$$

egyenlőtlenséget!

dr. Bencze Mihály, Brassó Ugron Szabolcs, Sepsiszentgyörgy

Megoldás. Legyen az A mátrix karakterisztikus polinomja

$$p_A(x) = \det(A - xI_2) = x^2 - ax + b,$$

ahol a = Tr(A) és $b = \det(A)$. (2 pont) Teljesül, hogy

$$\det(A^2 + A + I_2) = \det(A - \varepsilon I_2) \det(A - \varepsilon^2 I_n) = p_A(\varepsilon) \cdot p_A(\varepsilon^2),$$

ahol
$$\varepsilon^3 = 1$$
 és $\varepsilon \neq 1$. (2 pont)
Azt kapjuk, hogy

$$\det(A^2 + A + I_2) = (\varepsilon^2 - a \cdot \varepsilon + b)(\varepsilon - a \cdot \varepsilon^2 + b) = a^2 + b^2 + ab + a - b + 1.$$
 (2 pont)

Igazoljuk, hogy

$$\frac{8}{3}(a^2 + b^2 + ab + a - b + 1) \ge (1 - b)^2 + (1 + a)^2.$$

Ezt rendezve kapjuk, hogy

$$5a^2 + 8ab + 2a + 5b^2 - 2b + 2 > 0$$
,

ami ekvivalens a

$$(2a+2b)^2 + (a+1)^2 + (b-1)^2 \ge 0$$
 (3 pont)

egyenlőtlenséggel, ami igaz bármely $a, b \in \mathbb{R}$ esetén.

- **3. feladat.** Az $(x_n)_{n\geq 1}$ sorozatot a következőképpen értelmezzük: $x_1 \in (0,1)$ és $x_{n+1} = x_n x_n^{k+1}$, minden $n \in \mathbb{N}^*$ esetén, ahol $k \in \mathbb{N}^*$ rögzített.
 - a) Igazold, hogy a sorozat konvergens és számítsd ki a határértékét!
 - b) Számítsd ki a $\lim_{n\to\infty} n^{\frac{1}{k}}x_n$ határértéket!

dr. Bencze Mihály, Brassó Ványi Emese, Szatmárnémeti

Megoldás.

- a) Indukcióval igazoljuk, hogy $x_n \in (0,1)$, minden $n \in \mathbb{N}^*$ esetén. Ha $x_n \in (0,1)$, akkor $x_n^k \in (0,1)$. Innen következik, hogy $1-x_n^k \in (0,1)$, tehát $x_{n+1}=x_n(1-x_n^k) \in (0,1)$, vagyis $(x_n)_{n\geq 1}$ korlátos. (1 pont) Ugyanakkor $x_{n+1}-x_n=-x_n^{k+1}<0$, tehát a sorozat szigorúan csökkenő. Mivel a sorozat monoton és korlátos, így konvergens is. (1 pont) Létezik $\lim_{n\to\infty} x_n=l$. Határértékre térve a rekurziós összefüggésben az $l=l-l^{k+1}$ összefüggést kapjuk, ahonnan l=0. (1 pont)
- b) Legyen $y_n = n^{\frac{1}{k}} \cdot x_n$, ekkor $y_n^k = n \cdot x_n^k$. Kiszámítjuk a $\lim_{n \to \infty} y_n^k$ határértéket. (1 pont) Teljesül, hogy $\lim_{n \to \infty} y_n^k = \lim_{n \to \infty} \frac{n}{\frac{1}{x_n^k}}.$

Mivel $x_n^k \in (0,1)$ és x_n^k szigorúan csökkenő, valamint $\lim_{n\to\infty} x_n = 0$, az $\frac{1}{x_n^k}$ sorozat növekvő és nem korlátos. (1 pont)

A következőket írhatjuk:

$$\lim_{n \to \infty} \frac{n+1-n}{\frac{1}{x_{n+1}^k} - \frac{1}{x_n^k}} = \lim_{n \to \infty} \frac{x_n^k x_{n+1}^k}{x_n^k - x_{n+1}^k} = \lim_{n \to \infty} \frac{x_n^k x_n^k (1-x_n^k)^k}{x_n^k - x_n^k (1-x_n^k)^k} = \lim_{n \to \infty} \frac{x_n^k (1-x_n^k)^k}{1 - (1-x_n^k)^k} \qquad \textbf{(1 pont)}$$

$$= \lim_{n \to \infty} \frac{x_n^k (1-x_n^k)^k}{k x_n^k - C_k^2 x_n^{2k} + \dots - (-1)^k x_n^{k^2}} = \lim_{n \to \infty} \frac{(1-x_n^k)^k}{k - C_k^2 x_n^k + \dots - (-1)^k x_n^{k^2-k}}$$

$$= \frac{1}{k},$$

mivel $\lim_{n\to\infty}x_n^k=0$, az előző alpont alapján. (1 pont)

A Cesaro–Stolz tétel értelmében, azt kapjuk, hogy $\lim_{n\to\infty}y_n^k=\frac{1}{k}$, ahonnan $\lim_{n\to\infty}y_n=\sqrt[k]{\frac{1}{k}}$.

(1 pont)

Hivatalból (1 pont)

4. feladat. Legyen $n \geq 2$ egy természetes szám és $A, B \in \mathcal{M}_n(\mathbb{C})$, úgy, hogy $\det(A) = 1$ és a B mátrix összes eleme egyes. Igazold, hogy ha $det(A^{-1} + B) = 1$, akkor A elemeinek összege nulla!

> Kajántó Sándor, BBTE Lukács Andor, BBTE

Első megoldás. A feltétel alapján

$$1 = \det(A)\det(A^{-1} + B) = \det(AB + I_n).$$
 (2 pont)

Ha $A = [a_{ij}]_{1 \le i,j \le n}$, akkor

$$AB = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix} = \begin{pmatrix} s_1 & s_1 & \dots & s_1 \\ s_2 & s_2 & \dots & s_2 \\ \vdots & \vdots & \ddots & \vdots \\ s_n & s_n & \dots & s_n \end{pmatrix},$$
 (2 pont)

ahol s_k jelöli az A mátrix k-adik sorában lévő elemek összegét, minden $k \in \{1,2,\ldots,n\}$ esetén. Ekkor a következőket írhatjuk

$$1 = \begin{vmatrix} s_{1} + 1 & s_{1} & \dots & s_{1} \\ s_{2} & s_{2} + 1 & \dots & s_{2} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n} & s_{n} & \dots & s_{n} + 1 \end{vmatrix} = \left(1 + \sum_{k=1}^{n} s_{k}\right) \begin{vmatrix} 1 & 1 & \dots & 1 \\ s_{2} & s_{2} + 1 & \dots & s_{2} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n} & s_{n} & \dots & s_{n} + 1 \end{vmatrix}$$

$$= \left(1 + \sum_{k=1}^{n} s_{k}\right) \begin{vmatrix} 1 & 0 & \dots & 0 \\ s_{2} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ s_{n} & 0 & \dots & 1 \end{vmatrix} = 1 + \sum_{k=1}^{n} s_{k}.$$

$$(1 \text{ pont})$$

$$= \left(1 + \sum_{k=1}^{n} s_k\right) \begin{vmatrix} 1 & 0 & \dots & 0 \\ s_2 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ s_n & 0 & \dots & 1 \end{vmatrix} = 1 + \sum_{k=1}^{n} s_k.$$
 (1 pont)

Innen következik, hogy A elemeinek összege $\sum_{k=1}^{n} s_k = 0$. (1 pont)

Megjegyzés. Ha $1 = \det(A^{-1} + B) \det(A) = \det(BA + I_n)$ -ből indulunk ki, akkor BA mátrix elemei az oszloponkénti összegek lesznek és így az $1 = 1 + \sum_{k=1}^{n} o_k$ egyenlőséghez jutunk.

 $M\acute{a}sodik\ megold\acute{a}s$. Észrevesszük, hogy A elemeinek összege Tr(AB). Egyrészt

$$1 = \det(A)\det(A^{-1} + B) = \det(AB + I_n) = p_{AB}(-1),$$

ahol p_{AB} az AB karakterisztikus polinomja. Másrészt, mivel $\operatorname{rang}(A) = n$ és $\operatorname{rang}(B) = 1$, ezért rang(AB) = 1. A karakterisztikus polinom tulajdonságai alapján ez azt eredményezi, hogy

$$p_{AB}(x) = (-1)^n x^n + (-1)^{n-1} \operatorname{Tr}(AB) x^{n-1},$$

minden $x \in \mathbb{C}$ esetén. Az előbbiek alapján

$$1 = p_{AB}(-1) = 1 + \text{Tr}(AB),$$

ahonnan Tr(AB) = 0, vagyis A elemeinek összege nulla.

Harmadik megoldás. Ha $A=[a_{ij}]_{1\leq i,j\leq n}$ és $A^{-1}=[\alpha_{ij}]_{1\leq i,j\leq n}$, a $\det(A)=1$ feltételből következik, hogy $\alpha_{ij}=(-1)^{i+j}\delta_{ji}$ az a_{ji} algebrai komplementuma. Hasonlóan, az $(A^{-1})^{-1}=A$ összefüggésből (és mivel $\det(A^{-1})=1$), következik, hogy $a_{ij}=(-1)^{i+j}d_{ji}$ az α_{ji} algebrai komplementuma. Legyen O_k az A^{-1} mátrix k-adik oszlopa, valamint $V=\begin{pmatrix} 1 & 1 & \dots & 1 \end{pmatrix}^T$ a B mátrix k-adik oszlopa, minden $k\in\{1,2\dots,n\}$ esetén. A determináns tulajdonságai alapján írhatjuk, hogy

$$\det(A^{-1} + B) = \det(O_1 + V, O_2 + V, \dots, O_n + V)$$

$$= \det A + \sum_{k=1}^n \det(O_1, \dots, O_{k-1}, V, O_{k+1}, \dots, O_n)$$

$$= \det A + \sum_{k=1}^n \sum_{l=1}^n (-1)^{k+l} d_{kl}$$

$$= \det A + \sum_{k=1}^n \sum_{l=1}^n a_{lk}.$$

A megadott feltételek alapján innen következik, hogy A elemeinek összege nulla.