Combined Distributional and Logical Semantics

Yiyi Chen

CIS, LMU Munich

18th July 2019

► The new postdoc doesn't work for Kim: she writes papers on semantics. And.. uh.. on these neural nets that have loops.

- ► The new postdoc doesn't work for Kim: she writes papers on semantics. And.. uh.. on these neural nets that have loops.
 - descriptive content of words, e.g. postdoc or write (i.e. have knowledge of the properties of the involved individuals and events)

- ► The new postdoc doesn't work for Kim: she writes papers on semantics. And.. uh.. on these neural nets that have loops.
 - descriptive content of words, e.g. postdoc or write (i.e. have knowledge of the properties of the involved individuals and events)
 - function words and structural markers, e.g. the, and

- ► The new postdoc doesn't work for Kim: she writes papers on semantics. And.. uh.. on these neural nets that have loops.
 - descriptive content of words, e.g. postdoc or write (i.e. have knowledge of the properties of the involved individuals and events)
 - function words and structural markers, e.g. the, and
 - singular/plural constructions a) a unique postdoc, b) a person named Kim and c) a number of entities that are papers, and d) abstract concepts refered to generically (semantics, neural nets)

- ► The new postdoc doesn't work for Kim: she writes papers on semantics. And.. uh.. on these neural nets that have loops.
 - descriptive content of words, e.g. postdoc or write (i.e. have knowledge of the properties of the involved individuals and events)
 - function words and structural markers, e.g. the, and
 - singular/plural constructions a) a unique postdoc, b) a person named Kim and c) a number of entities that are papers, and d) abstract concepts referred to generically (semantics, neural nets)
 - composition over the constituents of each sentence, shifting the meanings of write and paper towards authoring and scientific article

- ► The new postdoc doesn't work for Kim: she writes papers on semantics. And.. uh.. on these neural nets that have loops.
 - descriptive content of words, e.g. postdoc or write (i.e. have knowledge of the properties of the involved individuals and events)
 - function words and structural markers, e.g. the, and
 - singular/plural constructions a) a unique postdoc, b) a person named Kim and c) a number of entities that are papers, and d) abstract concepts refered to generically (semantics, neural nets)
 - composition over the constituents of each sentence, shifting the meanings of write and paper towards authoring and scientific article
 - inferences, for instance: the new postdoc is knowledgeable about semantics and what is Recurrent Neural Networks; she cannot be working for Kim, who is a syntactician; but she perhaps works for Sandy, who does Machine Learning.

▶ No single semantic framework has been proposed that would naturally cater to all these phenomena.

Formal Semantics

- Formal semantics adopts some of the tools standardly used to describe formal languages
 - ▶ it caters to ontological matters (what there is in the world)
 - reference to entities (how we talk about things)
 - meaning at the higher constituent level (composition)
 - interpretation at the sentential level (by giving propositions a truth value)
 - logical inferences that can be drawn from a particular sentence

Formal Semantics - describe the world via a model

- ► Model-theoretic, truth-conditional semantics interprets linguistic expressions with respect to some model.
- A model is represented in terms of sets.
- ► For instance, a world with three postdocs will contain a set of three sharing the property of being a *postdoc*.

Formal Semantics - reference to entities

- extension and intension
- extension the entities it refers to in the model
 - ▶ the extension of *postdoc* is the set of all postdocs in the model
- intension a function mapping possible worlds to extensions.

► The meaning of a complex expression is derivable from the meaning of its parts in a systematic and productive way.

- ► The meaning of a complex expression is derivable from the meaning of its parts in a systematic and productive way.
- A compositional formal semantics framework provides semantic representations of linguistic expressions in a logic, and rules for combining them.

- ► The meaning of a complex expression is derivable from the meaning of its parts in a systematic and productive way.
- A compositional formal semantics framework provides semantic representations of linguistic expressions in a logic, and rules for combining them.
- For any expression, it is possible to identify a number of potentially distinct individuals and the relationships between them.

- The meaning of a complex expression is derivable from the meaning of its parts in a systematic and productive way.
- A compositional formal semantics framework provides semantic representations of linguistic expressions in a logic, and rules for combining them.
- For any expression, it is possible to identify a number of potentially distinct individuals and the relationships between them.
- ▶ the sentence *The new postdoc has written several articles* can be transformed into the following logical form:
 - $ightharpoonup \exists x,y [new(postdoc(x)) \land article * (y) \land write(x,y)]$

- The meaning of a complex expression is derivable from the meaning of its parts in a systematic and productive way.
- A compositional formal semantics framework provides semantic representations of linguistic expressions in a logic, and rules for combining them.
- For any expression, it is possible to identify a number of potentially distinct individuals and the relationships between them.
- ▶ the sentence *The new postdoc has written several articles* can be transformed into the following logical form:
 - $ightharpoonup \exists x, y [new(postdoc(x)) \land article * (y) \land write(x,y)]$
- ▶ A complete account of compositionality relies on being able to interpret function words in the sentence.

- ► The meaning of a complex expression is derivable from the meaning of its parts in a systematic and productive way.
- ► A compositional formal semantics framework provides semantic representations of linguistic expressions in a logic, and rules for combining them.
- ► For any expression, it is possible to identify a number of potentially distinct individuals and the relationships between them.
- ▶ the sentence *The new postdoc has written several articles* can be transformed into the following logical form:
 - ▶ $\exists x, y [new(postdoc(x)) \land article * (y) \land write(x, y)]$
- ► A complete account of compositionality relies on being able to interpret function words in the sentence.
- ► Formalization of quantifiers (also negations, modals), to describe entities with assigning them properties.

Formal Semantics - the meaning of a sentence

- In truth-theoretic semantics, the meaning of a sentence is a function from possible worlds to truth values.
- ➤ 'Snow is white' is true if and only if snow is white. (Tarski 1994)
- the notion of satisfaction
- A predicate can be truthfully applied to a term if the corresponding property in a world applies to the referent of the term.

Formal Semantics - inference

- Being able to give an interpretation to a sentence with respect to truth or speaker belief is an essential part of explaining the implicit aspects of meaning, in particular inference.
- ▶ infer from a postdoc is writing to a human is writing
- proof theory provides classes of inference that are algorithmically decidable.
- a postdoc may be cast as an individual entity which is a human, holds a doctorate

Formal Semantics - problems

- Fail to represent content words in their richness.
 - the distinction between near-synonyms such as man/gentlemen/chap/lad/guy/dude/bloke
- ► Formal semantics limits what it encodes of human linguistic experience.
 - analogical reasoning
- Human knowledge is not always certain and consistent, nevertheless, people can communicate with each other.

Distributional Semantics

- the meaning representation for a linguistic expression is a function of the contexts in which it occurs.
- contexts: the words surrounding the target word, syntactic relations, etc.
- Distributional representations are vectors or more complex algebraic objects such as matrices and tensors
- The semantic information is distributed across all the dimensions of the vector
- It is encoded in the form of continuous values, which allows for very rich and nuanced information.

Distributional Semantics

the collection of words in a lexicon forms a vector space or semantic space, in which semantic relations can be modeled as geometric relations.

Distributional Semantics - human judgements

- explore synonymy: puma-cougar
- noun categorization: car IS-A vehicle; banana IS-A fruit
- selectional preference: eat topinambur vs. *eat sympathy
- analogy: masion is to stone like carpenter is to wood
- relation classification: exam-anxiety: CAUSE-EFFECT

Distributional Semantics - meaning nuances

Table 1Near-synonyms in semantic space: The words closest to *man, chap, lad, dude,* and *guy* in the distributional model of Baroni, Dinu, and Kruszewski (2014), based on the UKWaC. Taken from Baroni (2016).

Distributional Semantics - compositionality

- Compositional Distributional Semantics allows us to model semantic phenomena that are very challenging for Formal Semantics.
- polysemy
 - During that postdoc, I didn't publish anything. (event)
 - ► The **postdoc** shook her head. (human)

Formal Distributional Semantics - Case Study

Input Sentence

Shakespeare wrote Macbeth

Intial semantic analysis

 $write_{arg0,arg1}(shakespeare, macbeth)$

Entity Typing

write_{arg0:PER,arg1:BOOK}(shakespeare:PER, macbeth:BOOK)

Distributional semantic analysis

relation37(shakespeare:PER, macbeth:BOOK)

Figure 2: Layers used in our model.

Case Study - Initial Semantic Analysis

- ▶ mapping sentences into logical forms: $\exists x \exists y (Shakespeare(x) \land Macbeth(y) \land write(x, y))$
- extract the predicate-argument structure from the logical form: write_{arg0,arg1} (shakespeare, macbeth)

Case Study - Disambiguating Polysemous Predicates

- to disambiguate, we use typed predicates:
- ► born_{arg0:PER,argIn:DAT} and born_{arg0:PER,argIn:LOC}

Case Study - Disambiguation

 $\frac{\sum_{\substack{P \in P \text{ Secists } x.(\text{-actress}(x) \& \text{TrueP } \& \text{ exists } x.(\text{-actress}(x) \& \text{TrueP } \& \text{ exists } x.(\text{-actress}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actress}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actress}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actress}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actress}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actress}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actress}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actress}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actress}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actress}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ TrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ FrueP } \& \text{ exists } x.(\text{-actres}(x) \& \text{ e$

```
\frac{VP_{a,b,crue}/N}{VP_{a,b,crue}/N} \times \frac{NP_{a,b,crue}/N}{NN_{a}} \times \frac{NP_{a,b,crue}/N}{NN_{a}} \times \frac{NP_{a,b,crue}/N}{NN_{a}} \times \frac{NP_{a,b,crue}/N}{NN_{a}} \times \frac{NP_{a,b,crue}/N}{NN_{a}} \times \frac{NP_{a,b,crue}/N}{NN_{a}} \times \frac{NP_{a,b,crue}/N}{NP_{a,b,crue}/N} \times \frac{NP_{a,
```

- ▶ $\exists x \exists y (victim(x) \land suit(y) \land file(x,y))$
- ▶ to disambiguate, we use typed predicates:
- wear_{arg0:PER,arg1:CLOTHES} and file_{arg0:PER,arg1:LEGAL}

Case study - Distributional Relation Clustering

	(Shakespeare, Macbeth)	(Dickens, Oliver Twist)	(Rowling, Harry Potter)	(Council, Dublin)	(Sharon, Ronnie)
write	10	20	10	0	0
suggest	0	0	0	10	5

- ► The type of a predicate must match the type of its arguments, so the type distribution of a binary predicate is simply the joint distribution of the two argument type distributions.
- write_{arg0,arg1}(Shakespeare, Macbeth) , with shakespeare having type distribution (PER=0.9, LOC=0.1) and Macbeth (BOOK:0.7, DAT=0.3), etc.

	(Shakespeare, Macbeth)	(Dickens, Oliver Twist)	(Rowling, Harry Potter)	(Council, Dublin)	(Sharon, Ronnie)
write_{arg0:PER,arg1:Book}	10.63	20.63	10.63	0.00	0.27
suggest_{arg0:ORG, arg1:LOC}	0.25	0.25	0.25	10.12	0.63
suggest_{arg0:PER, arg1:PER}	0.25	0.25	0.25	0.12	5.63

Implementation

	(afrikaans, dutch)	(dione, dodona)	(council of whitby, english history)	(yasujiro ozu, late spring)	(russia, brahmos)	(fiji, kingdom of tonga)	(world cup, olympic football)	(dublin, county donegal)	(carpenter, escape from new york)	(norway, ethiopian)	 (fryderyk chopin, warsaw lyceum)	(motorola, apple)		(iraq, persian gulf)	
star	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	
be	1	1	0	0	0	1	0	0	0	0	 0	0	0	0	
appoint	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	
established	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	
carry	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	
give	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	
hold	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	
express	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	
have	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	
consist	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	
play	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	
remain	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	
lose	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	

▶ 1418 predicates, 14859 argument pairs

Implementation

	(boc tower, hong kong)	(chaplin, chaplin)	(walter gropius, bauhaus)	(hawali state supreme court, ali 'iölani hale)	(thurgot, saint andrews)	(santiniketan, indian)	(goldwater, reagan)	(dostum, rabbani)	(coloman, béla)	(rockies, oakland athletics)	 (bali strait, java)	(brown, sarah macaulay)	(statemvertaling, dutch)	(sagan, aaas 's)	(spain, coimbra)	(france, cascade mountains)	(love, brian wilson)	(lenin, reds)	(kelly, daisy bell)	(mclean, lisa kindred)
star-PER- MISC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.00	0.00	0.0	1.0	0.0
star-PER- PER	0.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.00	0.38	0.0	0.0	0.00	0.00	0.78	0.0	0.0	1.0
star-ORG- PER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.62	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.0
star-MISC- MISC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	1.0	0.0	0.00	0.00	0.00	0.0	0.0	0.0
star-MISC- PER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.00	0.22	0.0	0.0	0.0
star-LOC- MISC	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.43	0.00	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.0
star-PER- LOC	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.04	0.00	0.1	0.0	0.0
star-PER- ORG	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	1.0	0.00	0.00	0.00	0.9	0.0	0.0
be-ORG- ORG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.00	0.00	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.0
be-LOC- MISC	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.43	0.00	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.0
be-PER- MISC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.00	0.00	0.0	1.0	0.0
be-PER-LOC	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.04	0.00	0.1	0.0	0.0
be-ORG-LOC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.03	0.00	0.00	0.0	0.0	0.0
be-PER-PER	0.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.00	0.38	0.0	0.0	0.00	0.00	0.78	0.0	0.0	1.0

▶ 4560 typed predicates, 14859 argument pairs

Result - Clustering Untyped Predicates

cluster 1, 1345 predicates

- cluster 2, 1 predicate
- data_index cluster
 1 be 1
- cluster 3, 72 predicates

Result - Clustering typed Predicates

```
x = StandardScaler().fit_transform(features_df)
pcad = PCA(n components=18)
x_4d = pca.fit_transform(x)

#Sef a 3 MNeans clustering
kmeans = NNeans(n_clusters = 4)

#Define our own color map
X_clustered = kmeans.fit_predict(x_4d)
LABEL_COLOR_MPP = (0::r', 1::g', 2::b', 3:'orange')
label_color = [LABEL_COLOR_MPP[t] for l in X_clustered]

# Plot the scatter digram
plt.figuref[gisize = (7,7))
plt.scatter(x_4d[:,e],x_4d[:,2],c= label_color, alpha=0.5, cmap='viridis')
plt.show()
```


Result - Clustering typed Predicates

cluster 1, 425 typed predicates			30	ster 2, 53 typed edicates	•	41	ster 3, 7 typed edicates	cluster 4, 665 typed predicates					
		data index	cluster		data_index	cluster		data_index		1	star-PER-PER		
	16	be-LOC-LOC	0	2	star-ORG-PER	1	0	star-PER-MISC	2	13	be-PER-PER		
	35	established-LOC-LOC	Θ	3	star-MISC-MISC	1	10	be-PER-MISC	2	26	appoint-PER-PER		
	48	carry-LOC-LOC	Θ	4	star-MISC-PER	1	29	appoint-PER-MISC	2	42	established-PER-PER		
	70	give-LOC-LOC	0	5	star-LOC-MISC	1	38	established-PER-MISC	2	69	give-PER-PER		
	74	hold-LOC-LOC	Θ	6	star-PER-LOC	1	52	carry-PER-MISC	2	81	hold-PER-PER		
	93	have-LOC-LOC	Θ	7	star-PER-ORG	1	65	give-PER-MISC	2	90	have-PER-PER		
	106	consist-LOC-LOC	Θ	8	be-ORG-ORG	1	79	hold-PER-MISC	2	108	consist-PER-PER		
	121	play-LOC-LOC	0	9	be-LOC-MISC	1	85	express-PER-MISC	2	115	play-PER-PER		
	129	remain-LOC-LOC	0	11	be-PER-LOC	1	95	have-PER-MISC	2	139	remain-PER-PER		
	145	lose-LOC-LOC	Θ	12	be-ORG-LOC	1	105	consist-PER-MISC	2	148	lose-PER-PER		
	161	beat-LOC-LOC	0	14	be-PER-0RG	1	116	play-PER-MISC	2	158	beat-PER-PER		
	165	clash-LOC-LOC	Θ	15	be-MISC-MISC	1	138	remain-PER-MISC	2	166	clash-PER-PER		
	173	establish-LOC-LOC	0	17	be-MISC-PER	1	153	lose-PER-MISC	2	180	leave-PER-PER		
	185	leave-LOC-LOC	Θ	18	be-LOC-ORG	1	174	establish-PER-MISC	2		bury-PER-PER		
	196	incorporate-LOC-LOC	Θ	19	be-LOC-PER	1	176	leave-PER-MISC	2	191			
	213	lead-LOC-LOC	Θ	20	be-MISC-LOC	1	194	incorporate-PER-MISC	2	193	incorporate-PER-PER		
	233	write-LOC-LOC	Θ	21	be-ORG-MISC	1	202	emplov-PER-MISC		208	employ-PER-PER		
	244	serve-LOC-LOC	Θ	22	be-ORG-PER	i			2	221	lead-PER-PER		
	300	follow-LOC-LOC	0	23	be-MISC-ORG	ī	214	lead-PER-MISC	2	227	write-PER-PER		
	315	offer-LOC-LOC	Θ	24	appoint-ORG-PER	i	226	write-PER-MISC	2	245	serve-PER-PER		
	322	separate-LOC-LOC	Θ	25	appoint-PER-ORG	î	248	serve-PER-MISC	2	257	bear-PER-PER		
	331	manage-LOC-LOC	Θ	27	appoint-PER-LOC	î	262	bear-PER-MISC	2	264	introduce-PER-PER		
	335	cause-LOC-LOC	0	28	appoint-MISC-PER	î	265	introduce-PER-MISC	2	281	oppose-PER-PER		
	341	link-LOC-LOC	0	30	established-ORG-ORG	î	273	condemn-PER-MISC	2	288	deliver-PER-PER		
	348	become-LOC-LOC	0	31	established-PER-LOC	î	283	oppose-PER-MISC	2	295	follow-PER-PER		
	365 377	provide-LOC-LOC	0	32	established-MISC-LOC	î	286	repeal-PER-MISC	2	308	offer-PER-PER		
	377	continue-LOC-LOC form-LOC-LOC	0	33	established-ORG-MISC	î	287	deliver-PER-MISC	2	323	separate-PER-PER		
	410	feature-LOC-LOC	0	34	established-LOC-ORG	î	302	follow-PER-MISC	2	339	cause-PER-PER		
	417	contribute-LOC-LOC	0	36	established-MISC-MISC	î	310	offer-PER-MISC	2	343	link-PER-PER		
	417	CONTITIBUTE-FOC-FOC		37	established-MISC-ORG	î	333	manage-PER-MISC	2	353	become-PER-PER		
	4173	categorize-LOC-LOC				_	337	cause-PER-MISC	2		Decome TER TER		
	4174	rent-LOC-LOC	0	4517	reside-ORG-LOC	1		Caase FER Hase		4410	narrate-PER-PER		
	4177	rest-LOC-LOC	0	4518	promulgate-LOC-MISC	î	4384	superimpose-PER-MISC	2	4411	grab-PER-PER		
	4196	double-LOC-LOC	0	4519	notify-PER-ORG	î	4385	subjugate-PER-MISC	2	4412	shower-PER-PER		
	4204	centre-LOC-LOC	0	4521	purify-PER-LOC	1	4392	fax-PER-MISC	2	4412	alert-PER-PER		
	4209	depart-LOC-LOC	0	4521	prescribed-LOC-MISC	1	4392	frontline-PER-MISC	2	4421	fare-PER-PER		
	4211	resolve-LOC-LOC	0	4523	orchestrate-PER-LOC	1							
			-	4327	or chestrate-PER-LUC	1	4400	manifest-PER-MISC	2	4424	protected-PER-PER		

Semantic Parsing Using Relation Clusters

- binary predicates as packed predicates: functions from argument types to relations.
- born_{arg0:PER,argIn:LOC} → rel49("birthplace") and born_{arg0:PER,argIn:DAT} → rel53("birthdate")

```
born \vdash (S \backslash NP)/PP[in] :
\lambda y \lambda x \cdot \begin{cases} (x: PER, y: LOC) \Rightarrow rel49 \\ (x: PER, y: DAT) \Rightarrow rel53 \end{cases} (x, y)
```

- ▶ born_{arg0,argIn} applied to arguments *Obama* and *Hawaii* with type distributions (PER = 0.9, LOC = 0.1) and (LOC = 0.7, DAT = 0.3), the distribution over relations will be (rel49 = P(PER) * P(LOC) = 0.63, rel53 = P(PER) * P(DAT) = 0.27, etc)
- ▶ 1961 has type-distribution (LOC = 0.1, DAT = 0.9)
- ▶ Obama was bron in Hawaii in 1961:

```
 \begin{cases} rel49 = 0.63 \\ rel53 = 0.27 \\ \cdots \end{cases} (ob, hw) \wedge \begin{cases} rel49 = 0.09 \\ rel53 = 0.81 \\ \cdots \end{cases} (ob, 1961)
```

Problems and Future Work

- Problems
 - the experiment heavily depends on the predicate-argument structure
 - only proper nouns are used (entity types are only applied on the proper nouns)
 - sparsity

Problems and Future Work

Problems

- the experiment heavily depends on the predicate-argument structure
- only proper nouns are used (entity types are only applied on the proper nouns)
- sparsity

Future Work

- build CCG parser integrated predicate-argument (other structures as well) extractor
- implement other clustering method to capture other semantic relations (such as hierarchical clustering to capture hypernym relations)
- explore resources to improve clustering accuracy (such as WordNet and Ontonets)

References

- Mike Lewis, Mark Steedman, Combined Distributional and Logical Semantics, 2013
- ► Gemma Boleda, Aurélie Herbelot, Formal Distributional Semantics: Introduction to the Special Case
- Pascual Martínez-Gómez, Koji Mineshima, Yusuke Miyao, Daisuke Bekki. ccg2lambda: A Compositional Semantics System. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics - System Demonstrations, pages 85–90, Berlin, Germany, August 7-12, 2016