

ASSIGNMENT:03

➤ NAME: Arghya Dutta

➤ DEPARTMENT: DCMP&MS

> EMAIL ID: arghya.dutta@tifr.res.in

Question 1: It is quiet similar to uniform PDF

Question 2: It is very similar to uniform PDF

Question 3:

Congruential random number generator took 0.27117085456848145 seconds The inbuilt random no. generator took 0.0005223751068115234 seconds

So , inbuilt rnd took much less time .

pg. 2

Question 4: At first I generated the random numbers using the answer of the 1^{st} question and then here is the exponential PDF

Question 5:

Question 6:

Question 7:

For the 2nd distribution 0.00031493668421800884 It is 'Not sufficiently random

For the 1st distribution chi square = 29.49166666666667 0.9989631111032784 It is 'Not sufficiently random

Question 8:

To find the volume of a sphere we'll generate random numbers over some "square" volume and count how many land inside the sphere...

Here for 2 D sphere, we take two uniform distribution of random variable of $x_1 \& x_2$ between 0 to R. Then the condition for taking count is $x_1^2 + x_2^2 < R^2$. (R is radius of sphere)

The volume of a 2 D sphere from the Monte Carlo simulation is 3.133 .#output For higher (let n) dimensional case we use the same concept, we should take the uniform random variable for x_1 , x_2 , x_3 ... x_n and the condition is $x_1^2 + x_2^2 + \dots + x_n^2 < R^2$. No. of points inside the sphere, $p = \frac{Z_n}{n} = \frac{V_{sphere}}{2^d}$ or $V_{sphere} = 2^d * \left(\frac{Z_n}{n}\right)$.

The volume of a 10 D sphere from the Monte Carlo simulation is 2.54976 .#output

Question 9:

Here we 1^{st} define a 'func,, which evaluates the given probability density. Then define a 'density' function . Here is the algorithm

- 1. Start with a **random** sample
- 2. Determine the probability **density** associated with the sample
- 3. Propose a **new**, arbitrary sample (and determine its probability density)
- 4. Compare densities (via division), quantifying the **desire** to move
- 5. Generate a random number, compare with desire to move, and decide: move or stay
- 6. Repeat the same

For this program I took help from-

https://towardsdatascience.com/bayesian-statistics-metropolis-hastings-from-scratch-in-python-c3b10cc4382

Question 10:

best fit parameters $[-7.84593667e-03\ 3.71609178e+00\ 1.88347025e+01]$

