Rozwiązywanie równań Laplace'a

Oscar Teeninga

1. Platforma testowa

CPU: Intel Core i9 9880H 8C/16T

GPU: NVIDIA Tesla K40d

2. Wyniki

Jak można wyczytać z wykresu, GPU znacznie szybciej radzi sobie z problemem wraz ze wzrostem, pomimo, że należy zabezpieczyć pamięć przed dostępem. Przyśpieszenie jest tym większe, im większy jest kwadrat. Przy ok. 105x105 osiągamy lepszy rezultat dla GPU. Dla porównania, 1000x1000 w przypadku GPU wykonuje się ~5.8 s, natomiast dla CPU jest to już ~786s. Widać dużą przewagę obliczeń po stronie GPU. Warto zauważyć, że najwięcej czasu dla małych rozmiarów tablicy jest kopiowanie danych do pamięci GPU. Dla BLOCKSIZE = 32 nie dostawałem błędów.

Laplace

siz e	сри	gpu
10	27,69643	4865,96
20	120,31907	4613,5
30	297,59451	4594,32
40	591,42569	4578,83
50	928,36662	4571,27
60	1418,53040	4737,29
70	2000,66015	4760,98
80	2568,50626	4561,48
90	3366,41404	4672,55
100	4261,59336	4651,94
110	5001,90895	4570,62
120	6083,81418	4739,56
130	7160,93930	5155,71
140	8300,59057	5055,5
150	9557,88606	5077,74
160	11132,86902	5155,99
170	12393,89255	5559,79
180	14022,30545	5670,8
190	16100,63340	6151,21
200	17496,67194	6122,88