

Modèles de Régression

Projet HMMA307

Selena Iskounen

Sommaire 1

- 1. Comparaison modèle de régression à effet mixte et un modèle de régression linéaire
- 2. Comparaison de deux groupes à l'aide de la régression linéaire
- 3. Application de la causalité au sens de Granger

Nous allons comparé le modèle de régression à un effet aléatoire au modèle de régression linéaire sur les données *aids* :

- 1. id: identité du patient,
- 2. time: temps de mort ou de censure,
- 3. death: décès pendant l'étude,
- 4. *obtime* : nombre de mois à partir de la première observation.
- 5. drug: type de traitement,
- 6. sexe: femme/homme,
- 7. prevOI: infection antérieur ou pas,
- 8. AZT : intolérance ou echec à l'AZT (zidovudine).

Equation du modèle de régression à effet aléatoire :

$$y_{ij} = \beta_0 + \beta_1 \times x_{ij} + \beta_2 \times z_{ij} + x_3 \times u_{ij} + \beta_4 \times s_{ij} + \beta_5 \times r_{ij} + \alpha_{ij} + \epsilon_{ij}$$

- β_o représente l'intercepte du modèle
- x_{ij} la variable ostime, z_{ij} la variable drug
- u_{ij} la variable gender, s_{ij} la variable prevOI
- r_{ii} la variable AZT, ϵ_{ii} les résidus
- α_{ii} l'effet aléatoire.

Equation du modèle de régression linéaire :

$$y_{ij} = \beta_0 + \beta_1 \times x_{ij} + \beta_2 \times z_{ij} + \beta_3 \times u_{ij} + \beta_4 \times s_{ij} + \beta_5 \times r_{ij} + \epsilon_{ij}$$

- β_o représente l'intercepte du modèle
- x_{ij} la variable ostime, z_{ij} la variable drug
- u_{ij} la variable gender, s_{ij} la variable prevOI
- r_{ii} la variable AZT, ϵ_{ii} les résidus
- α_{ij} l'effet aléatoire.

Résultat du la régression a effet mixte sur les données aids

	Coef	Std.Err	Z	P> z
Intercept	5.499	0.710	7.742	0.000
drug[T.ddI]	0.448	0.380	1.180	0.238
gender[T.male]	-0306	0.652	-0.469	0.639
prevOI[T.noAIDS]	4.66	0.478	9.663	0.000
AZT[T.intolerantce]	0.261	0.472	0.554	0.579
Group var	15.253	0.683		

Résultat de la régression linéaire sur aids

	Coef	Std.Err	z	P> z
obstime	-0.0840	0.025	-3.325	0.001
ddI	2.2923	0.135	16.937	0.000
male	1.6945	0.176	9.611	0.000
noAIDS	4.2548	0.176	24.217	0.000
intolerantce	2.1173	0.144	14.729	0.000

Conclusion

Le modèle linéaire avec un effet mixte ne faisait pas mieux que le modèle de régression linéaire classique.

Comparaison de deux groupes grâce a une régression linéaire

Nous souhaitons savoir si il a une différence significatives entre les effets des variables suivantes sur le prix des logements de plus de 6 chambres (groupe *B*) et de moins de 6 chambres (groupe *A*) :

- 1. CRIM: variable correspondante au nombres de crimes.
- 2. TAX : variable correspondante au montant des taxes.
- 3. *LSTAT* : variable correspondante au statut sociale de propriétaire.

Comparaison de deux groupes grâce a une régression linéaire

Résultats de la régression linéaire :

	Coef goupe B	Coef groupe A
Intercept	37.5979	25.5981
CRIM	-0.02872	-0.1209
TAX B	0.000102	-0.000255
LSTAT B	-1.2238	-0.3719

Comparaison de deux groupes grâce à une régression linéaire

Conclusion

- Le nombre de crimes à un léger effet sur le prix des appartements du groupe B.
- Le montant des taxes à le même effet sur le prix des appartements des deux groupes.
- Le statut social du propriétaire à plus d'effet sur les appartements du groupe *B*.

Causalité au sens de Granger

Sur les données *ChickEgg* nous souhaitons savoir si le nombre d'oeufs engendre le nombre de poules et inversement. Pour répondre à cette problématique, nous allons utilisé le test de causalité au sens de Granger.

Les hypothèses:

 H_o : les décalages du nombre d'oeufs n'engendrent pas des décalages sur le nombre de poulets.

 H_1 : les décalages du nombre d'oeufs engendrent des décalages sur le nombre de poulets.

Causalité au sens de Granger

Résultat du test sur les données ChickEgg:

	Chicken	Egg
F	5.4050	0.5916
p-value	0.003	0.06238
df denom	44	44
df num	3	3

Causalité au sens de Granger

Conclusion

- Rejet de H₀ pour les poulets. (p-value < 0.05)
- Non rejet de H₀ pour les oeufs. (p-value > 0.05)

Nous ne pouvons pas affirmer qu'il y ait un effet de causalité entre les poules et les oeufs.

Résumé

Dans ce projet nous avons appliquer des modèles de régression pour répondre à des problématique tel que :

- 1. Quel est le plus performant entre un modèle de régression à effet mixte et un modèle linaire?
- 2. Quels sont les variables qui ont un effet significatif sur plusieurs groupes?
- 3. Quelle variable engendre l'autre sur une période donnée?

Merci de votre attention!