Lecture inf620 2025 - Random Forest (Bag) and Boost Depto de Informática - UFV

Ricardo Ferreira ricardo@ufv.br

2025

Introduction

- Class Material (click here for the Colab)
- Review: Supervised Learning with Decision Trees
- Problems: Classification and Regression
- TODAY's class: Ensemble Techniques
 - Random Forest and Bagging

Review of Decision Trees

- Definition: Classification model that uses a tree structure for decision making
- Main characteristics:
 - Splits data into subsets based on attribute conditions
 - Hierarchical structure with decision nodes and class leaves
 - Easily interpretable and visually intuitive
 - Can lead to overfitting

Tree

Tree in Computing

Review: Example of a Decision Tree

- Root: First decision based on length
- Decisions: Based on fruit width
- Fruits: Final classification

Example of a Decision Tree

How to classify?

Overfitting

Review: Example of a Random Forest (3 Trees)

Review: Example of a Random Forest (3 Trees)

Random Forest - Basic Concepts

• Ensemble method based on multiple decision trees

- Combines two main concepts:
 - Bagging (Bootstrap Aggregating)
 - Random Attribute Selection

Final result by voting or averaging

Random Forest - Characteristics

Bagging

- Samples with replacement
- Independent training
- Reduces variance

Attribute Selection

- Random subset
- Lower correlation
- Greater diversity

Advantages of Random Forest

Overfitting Reduction

- Combination of multiple models
- Better generalization

Robustness

- Less sensitive to noise
- Tolerant to outliers

Features

- Natural variable importance
- Facilitates interpretation

Best Practices

Main Hyperparameters

- Number of trees
- Maximum depth
- Learning rate

Validation

- Cross-validation
- Early stopping
- Continuous monitoring

Random Forest - Bagging

Random Forest - Bagging/Bootstrap

Click here for statquest

Random Forest - Bagging/Bootstrap

- Use a random subset of variables or columns at each step
 - In this example we will only consider 2 variables at each step

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes

Click here for statquest

Random Forest - Bagging/Bootstrap

Click here for statquest

Missing Data

Missing data in Random Forest

- Missing data in the original dataset used to create the RF
- Missing data in a new sample that you want to categorize

New Sample

non campic				
Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	???	

Original Dataset

Original Dataset				
Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	???	???	No
	No Yes Yes	Chest Good Blood Circ. No No No Yes Yes Yes	Chest Good Blocked Arteries No No No No No Yes Yes Yes No	Chest Blood Blocked Pain Circ. Blood Arteries Weight No No No No 125 Yes Yes Yes 180 Yes Yes No 210

Click here statquest

Missing Data

Missing data in Random Forest

1. Missing data in the original dataset used to create the RF

Original Dataset

			Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	No	198.5	No

• Refining "Weight"

Weighted average =
$$(125 \times 0.1) + (180 \times 0.1) + (210 \times 0.8)$$

= 198.5

Click here statquest

Bag or Boost

Boosting and Bagging

Bag or Boost

Boosting and Bagging

XGBoost

Boosting and Bagging

Evolution of Machine Learning Algorithms

1750 1943	Naive Bayes Neural Network: Threshold Logic		CART (Classification And	
1957	K-means & KNN	1984	Regression Tree) Breiman, Friedman,	
1963	Support Vector Machine	1904	Olshen & Stone	
1986	Neural Networks: Backpropagation	1995	Random Forest Combines multiple	
1987	Convolutional Networks	1995	decision trees	
2009	Deep Learning: ImageNet	2001	Gradient Boosting Decision Trees	
2012	AlexNet		Decision Trees	
2016	Inception, ResNet		Evolution of Decision Trees	
	Core Algorithms			