# Machine Learning

#### **MIRI Master**

Lluís A. Belanche belanche@cs.upc.edu





Soft Computing Research Group
Dept. de Ciències de la Computació (Computer Science)
Universitat Politècnica de Catalunya

Spring Semester 2016-2017

LECTURE 5: Generative Bayesian classifiers —LDA/QDA/RDA,
Naive Bayes and kNN

#### Discriminant functions for the Gaussian density

■ We showed that the Bayes rule minimizing the probability of error could be formulated in terms of a family of **discriminant functions**:

"assign the feature vector x to class  $\omega_k$  whenever  $g_k(x)$  is the largest,  $1 \leq k \leq K$ "

• When  $X_{|\Omega=\omega_k} \sim \mathcal{N}(\mu_k, \Sigma_k)$ , this family can be reduced to very simple expressions. Using Bayes rule and the natural log, the discriminant function for class  $\omega_k$  becomes:

$$g_k(x) = \ln \left\{ P(\omega_k) p(x|\omega_k) \right\} = \ln \left. P(\omega_k) - \ln \left\{ (2\pi)^{\frac{d}{2}} |\Sigma_k|^{\frac{1}{2}} \right\} - \frac{1}{2} (x - \mu_k)^{\top} \Sigma_k^{-1} (x - \mu_k)^{\top}$$

Eliminating constant terms:

$$g_k(x) = \ln P(\omega_k) - \frac{1}{2} \Big( \ln |\Sigma_k| + (x - \mu_k)^{\top} \Sigma_k^{-1} (x - \mu_k) \Big)$$

This expression is called a quadratic discriminant function, and the decision boundaries  $g_i(x) = g_j(x)$  are general hyper-quadrics in d-dimensional space

### Discriminant functions for the Gaussian density



Figure 2.16 from Duda et al. book

#### Discriminant functions for the Gaussian density

If we assume that all class-conditional distributions  $p(x|\omega_k)$  have the same covariance matrix  $\Sigma$ , after some polishing we get:

$$g_k(x) = \ln P(\omega_k) + \mu_k^{\top} \Sigma^{-1} x - \frac{1}{2} \mu_k^{\top} \Sigma^{-1} \mu_k$$

Reorganizing terms we obtain  $g_k(x) = w_k^{\top} x + w_{k0}$ , where

$$w_k = \Sigma^{-1} \mu_k$$
 
$$w_{k0} = -\frac{1}{2} \mu_k^\top \Sigma^{-1} \mu_k + \ln P(\omega_k)$$

These are linear discriminant functions (linear in x) and the decision boundaries  $g_i(x) = g_j(x)$  are hyper-planes in d-dimensional space

#### Discriminant functions for the Gaussian density

If we further assume that all  $X_i, X_j$  pairs are **statistically independent**, that is,  $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_d^2)$ , we get:

$$g_k(x) = \ln P(\omega_k) - \frac{1}{2} \sum_{i=1}^d \frac{(\mu_{ki} - x_i)^2}{\sigma_i^2}$$

If we further assume that all  $X_i$  have the **same variance**  $\sigma^2$ , that is  $\Sigma = \sigma^2 I_d$ , we get:

$$g_k(\boldsymbol{x}) = \text{In } P(\omega_k) - \frac{1}{2\sigma^2} \|\boldsymbol{\mu}_k - \boldsymbol{x}\|^2$$

If we further assume that all classes have the same prior  $P(\omega_k) = 1/K$ , we get:

$$g_k(\boldsymbol{x}) = -\|\boldsymbol{\mu}_k - \boldsymbol{x}\|^2$$

#### Discriminant functions for the Gaussian density

In all cases, we have a **minimum-distance** classifier in  $\mathbb{R}^d$ :

lacktriangle In the general case (some covariance matrices are different), the classifier uses a different Mahalanobis distance (a <u>fully-weighted Euclidean distance</u>) from x to each class

The technique is called quadratic discriminant analysis (QDA)

lacktriangle In case all covariance matrices are equal, the classifier uses the same Mahalanobis distance from x to all classes

The technique is called **linear discriminant analysis** (LDA)

- lacktriangle In case all covariance matrices are diagonal, the classifier uses a simply-weighted Euclidean distance from x to all classes
- lacktriangle In case all covariance matrices are a multiple of the identity matrix, the classifier uses an unweighted Euclidean distance from x to all classes

#### A numerical example (I)

Derive a linear discriminant function for the two-class classification problem defined by the following Gaussian class-conditional densities:

$$\mu_1 = (0,0,0)^{\top}, \mu_2 = (1,1,1)^{\top}, \Sigma_1 = \Sigma_2 = \operatorname{diag}\left(\frac{1}{4},\frac{1}{4},\frac{1}{4}\right), P(\omega_2) = 2P(\omega_1)$$

**Solution**: since all the  $X_i, X_j$  are statistically independent  $(i \neq j)$  and have the same variance  $\sigma^2 = \frac{1}{4}$ , that is  $\Sigma = \frac{1}{4}I$ , we get:

$$g_1(x) = \ln P(\omega_1) - \frac{1}{2} \frac{\|\mu_1 - x\|^2}{\sigma^2} = \ln \frac{1}{3} - \frac{1}{2} \frac{\|(0, 0, 0) - x\|^2}{\frac{1}{4}}$$

$$g_2(x) = \ln P(\omega_2) - \frac{1}{2} \frac{\|\mu_2 - x\|^2}{\sigma^2} = \ln \frac{2}{3} - \frac{1}{2} \frac{\|(1, 1, 1) - x\|^2}{\frac{1}{4}}$$

#### A numerical example (II)

Then we can build an optimal dichotomizer:

$$g(x) = g_1(x) - g_2(x) \stackrel{\omega_1}{\underset{\leftarrow}{>}} 0, \quad x = (x_1, x_2, x_3)^{\top}$$

$$g(x) = -\ln 2 - 2||x||^2 + 2||(1, 1, 1) - x||^2 \overset{\omega_1}{\underset{\leftarrow}{>}} 0$$

Which results in: 
$$(x_1 + x_2 + x_3) \stackrel{\omega_2}{\underset{<}{>}} \frac{3}{2} - \frac{1}{4} \ln 2$$

The **prediction** for the test example  $x^* = (0.1, 0.7, 0.8)^{\top}$  is  $x^* \in \omega_2$ , given that  $0.1 + 0.7 + 0.8 = 1.6 > \frac{3}{2} - \frac{1}{4} \ln 2 \approx 1.32$ 

#### **Graphical examples**

(all graphics from CSCE 666 Pattern Analysis — courtesy of Ricardo Gutiérrez Osuna)

Three-class 2D problem with equal priors

$$\mu_1 = \begin{bmatrix} 3 & 2 \end{bmatrix}^T$$
  $\mu_2 = \begin{bmatrix} 7 & 4 \end{bmatrix}^T$   $\mu_3 = \begin{bmatrix} 2 & 5 \end{bmatrix}^T$ 

$$\Sigma_1 = \begin{bmatrix} 2 & \\ & 2 \end{bmatrix}$$
  $\Sigma_1 = \begin{bmatrix} 2 & \\ & 2 \end{bmatrix}$ 







Three-class 2D problem with equal priors

$$\mu_1 = [3 \ 2]^T$$
  $\mu_2 = [5 \ 4]^T$   $\mu_3 = [2 \ 5]^T$ 

$$\Sigma_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
  $\Sigma_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$   $\Sigma_3 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 







CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU

6

Three-class 2D problem with equal priors

$$\mu_1 = [3 \ 2]^T \qquad \mu_2 = [5 \ 4]^T \qquad \mu_3 = [2 \ 5]^T$$

$$\Sigma_1 = \begin{bmatrix} 1 & .7 \\ .7 & 2 \end{bmatrix} \qquad \Sigma_2 = \begin{bmatrix} 1 & .7 \\ .7 & 2 \end{bmatrix} \qquad \Sigma_3 = \begin{bmatrix} 1 & .7 \\ .7 & 2 \end{bmatrix}$$







Three-class 2D problem with equal priors

$$\mu_1 = \begin{bmatrix} 3 \ 2 \end{bmatrix}^T$$
  $\mu_2 = \begin{bmatrix} 5 \ 4 \end{bmatrix}^T$   $\mu_3 = \begin{bmatrix} 2 \ 5 \end{bmatrix}^T$ 

$$\Sigma_1 = \begin{bmatrix} .5 \\ & .5 \end{bmatrix}$$
  $\Sigma_2 = \begin{bmatrix} 1 \\ & 1 \end{bmatrix}$   $\Sigma_3 = \begin{bmatrix} 2 \\ & 2 \end{bmatrix}$ 





 Three-class 2D problem with equal priors

$$\mu_1 = [3 \ 2]^T$$

$$\mu_2 = [5 \ 4]^T$$

$$\mu_1 = [3 \ 2]^T$$
  $\mu_2 = [5 \ 4]^T$   $\mu_3 = [3 \ 4]^T$ 

$$\Sigma_1 = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$$
  $\Sigma_2 = \begin{bmatrix} 1 & -1 \\ -1 & 7 \end{bmatrix}$   $\Sigma_3 = \begin{bmatrix} .5 & .5 \\ .5 & 3 \end{bmatrix}$ 

$$\Sigma_2 = \begin{bmatrix} 1 & -1 \\ -1 & 7 \end{bmatrix}$$

$$\Sigma_3 = \begin{bmatrix} .5 & .5 \\ .5 & 3 \end{bmatrix}$$









CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU

#### Computations in practice

In practical situations, only an i.i.d data sample S is available. Let  $S_k \subset S$  be the subset of observations known to belong to class  $\omega_k$ . Then  $S_1, \ldots, S_K$  is a partition of S.

We can use unbiased estimates for the vector means and for the class priors:

$$\widehat{\boldsymbol{\mu}}_k = \frac{1}{|S_k|} \sum_{\boldsymbol{x} \in S_k} \boldsymbol{x}; \qquad \widehat{P}(\omega_k) = \frac{|S_k|}{|S|}$$

1. If we know (or assume) that covariance matrices are **different** (wish to use **QDA**):

$$\widehat{oldsymbol{\Sigma}}_k = rac{1}{|S_k|-1} \sum_{oldsymbol{x} \in S_k} (oldsymbol{x} - \widehat{oldsymbol{\mu}}_k) (oldsymbol{x} - \widehat{oldsymbol{\mu}}_k)^ op$$

2. If we know (or assume) that covariance matrices are equal (wish to use LDA):

$$\hat{\Sigma}_{\text{pooled}} = \frac{1}{|S| - K} \sum_{k=1}^{K} (|S_k| - 1) \hat{\Sigma}_k$$

#### **Discussion**

- Bayesian classifiers are optimal when the class-conditional densities and priors are known; the methods are well-principled, fast and reliable
- For Gaussian classes, we get a quadratic classifier QDA (if all covariance matrices are equal, a linear classifier LDA); using a specific distance function corresponds to certain statistical assumptions:
  - If the class-conditional densities are far from the assumptions, the model will be poor
  - Even if the class-conditional densities are Gaussian, the parameters should be reliably estimated (particularly for QDA)
  - Once we use sample statistics instead of population parameters, we loose optimality!
- The question whether these assumptions hold can rarely be answered in practice; in most cases we are limited to posing and answering the question "does this classifier give satisfactory predictions or not?"

#### Regularized Discriminant Analysis

- If  $d > |S_k|$  for some k, QDA cannot be applied, because the class covariance matrix  $\widehat{\Sigma}_k$  is singular
- If d>N, neither QDA nor LDA can be used, because both  $\widehat{\Sigma}_k$  and  $\widehat{\Sigma}_{\text{pooled}}$  are singular
- These problems can be overcome by applying **regularization**:

$$\widehat{\Sigma}_k(\lambda, \gamma) := (1 - \gamma) \left[ (1 - \lambda) \widehat{\Sigma}_k + \lambda \widehat{\Sigma}_{pooled} \right] + \frac{\gamma}{d} Tr \left[ \widehat{\Sigma}_k(\lambda) \right] I_d$$

LDA is  $(\lambda, \gamma) = (1, 0)$  and QDA is  $(\lambda, \gamma) = (0, 0)$ 

#### Pros & Cons

- Assumption of Gaussianity may be far from true
- Needs sufficient examples per class if we wish to use QDA
- Requires matrix inversions (costly or numerically delicate)
- Adaptable to all class-conditional distributions (not only Gaussian), even with mixed variables
- Very resistant to overfitting the data sample
- Accepts class priors and losses for misclassifications

■ We showed that the 0/1 loss Bayes rule minimizing the probability of error could be formulated in terms of discriminant functions:

$$g_k(\mathbf{x}) = P(\omega_k)P(\mathbf{x}|\omega_k), k = 1, \dots, K.$$

■ We can expand the conditional probability:

$$P(\omega_k)P(x|\omega_k) = P(\omega_k)P(X_1 = x_1 \land X_2 = x_2 \land \dots \land X_d = x_d \mid \omega_k)$$
  
=  $P(\omega_k)P(X_1 = x_1|\omega_k) \prod_{j=2}^d P(X_j = x_j \mid \omega_k, X_1 = x_1 \land \dots \land X_{j-1} = x_{j-1})$ 

assuming  $X_1, \ldots, X_d$  are pairwise independent given the class:

$$= P(\omega_k)P(X_1 = x_1 | \omega_k) \prod_{j=2}^{d} P(X_j = x_j | \omega_k)$$

$$= P(\omega_k) \prod_{j=1}^d P(X_j = x_j \mid \omega_k) \equiv \mathsf{NB}_k(\boldsymbol{x})$$

### **Example**

| Outlook  | Temperature | Humidity | Wind   | PlayTennis? |
|----------|-------------|----------|--------|-------------|
| Sunny    | Hot         | High     | Weak   | No          |
| Sunny    | Hot         | High     | Strong | No          |
| Overcast | Hot         | High     | Weak   | Yes         |
| Rain     | Mild        | High     | Weak   | Yes         |
| Rain     | Cool        | Normal   | Weak   | Yes         |
| Rain     | Cool        | Normal   | Strong | No          |
| Overcast | Cool        | Normal   | Strong | Yes         |
| Sunny    | Mild        | High     | Weak   | No          |
| Sunny    | Cool        | Normal   | Weak   | Yes         |
| Rain     | Mild        | Normal   | Weak   | Yes         |
| Sunny    | Mild        | Normal   | Strong | Yes         |
| Overcast | Mild        | High     | Strong | Yes         |
| Overcast | Hot         | Normal   | Weak   | Yes         |
| Rain     | Mild        | High     | Strong | No          |

#### **Example**

The prediction for  $x^* = (\mathsf{Sunny}, \mathsf{Hot}, \mathsf{Normal}, \mathsf{Weak})^{ op}$  is  $x^* \in \mathsf{Yes}$ :

- $\hat{P}(\text{No}) \cdot \hat{P}(\text{Sunny}|\text{No}) \cdot \hat{P}(\text{Hot}|\text{No}) \cdot \hat{P}(\text{Normal}|\text{No}) \cdot \hat{P}(\text{Weak}|\text{No})$ =  $\frac{5}{14} \cdot \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{2}{5} = \frac{6}{875} \approx 6.86 \cdot 10^{-3}$
- $\hat{P}(\text{Yes}) \cdot \hat{P}(\text{Sunny}|\text{Yes}) \cdot \hat{P}(\text{Hot}|\text{Yes}) \cdot \hat{P}(\text{Normal}|\text{Yes}) \cdot \hat{P}(\text{Weak}|\text{Yes})$   $= \frac{9}{14} \cdot \frac{2}{9} \cdot \frac{2}{9} \cdot \frac{6}{9} \cdot \frac{6}{9} = \frac{8}{567} \approx 0,0141$

Note that the true posteriors would be:

$$\hat{P}(\text{No}|x^*) = \frac{6/875}{6/875 + 8/567} \approx 0.329, \qquad \hat{P}(\text{Yes}|x^*) = \frac{8/567}{6/875 + 8/567} \approx 0.671$$

#### **Extensions**

1. A numerical suggestion: take logs!

$$NB_k(x) = \ln P(\omega_k) + \sum_{j=1}^d \ln P(X_j = x_j \mid \omega_k)$$

- 2. How do we deal with ...
  - a) Missing values
  - b) Null empirical probabilities
  - c) Continuous r.v.

#### Missing values

These values can be handled in two ways:

- 1. Ignoring the values in the probability counts in which they are involved
- 2. Adding a further modality named "Missing"

The second possibility is indicated when their number is significant, they can appear in future examples or when the "missingness" is related to the class

#### Null empirical probabilities

In test examples  $x^*$ , it may happen that some variable  $X_j$  has a value  $x_j^*$  not present in the sample used to create the classifier. In this case,  $\widehat{P}(X_j = x_j^* \mid \omega_k) = 0$  and therefore we are in trouble ...

A possible workaround is the **Laplace correction**:

$$\widehat{P}_L(X_j = x_j^* \mid \omega_k) = \frac{|\{x \in S_k \land X_j = x_j\}| + p}{|\{x \in S_k\}| + p \cdot V_k}, \ p \in \mathbb{N}$$

where p is the "weight" assigned to the prior probability and  $V_k$  is the number of modalities of variable k

**Example**. Take p=1 and  $V_k=3$  and assume  $|\{x\in S_k \land X_j=x_j\}|=0$ . Then  $\widehat{P}_L(X_j=x_j^*\mid \omega_k)=\frac{1}{|\{x\in S_k\}|+3}$ . Can you give an interpretation?

#### Continuous variables

There are at least three ways of handling continuous variables in this classifier:

- 1. Assume a particular pdf for the variable and estimate its parameters
- 2. Discretize the variable and use the standard discrete classifier
- 3. Do not assume a particular pdf for the variable and use KDE

#### Discretization

- Discretization is an attractive option, specially in presence of a limited number of examples:
  - 1. It greatly reduces the amount of noise
  - 2. It makes the probability estimations more reliable
  - 3. However, it may entail a loss of information:
    - a) We may remove more variability than desired
    - b) We loose information on ordering
- A simple method is to (carefully) use the histogram; alternatively, we may use a special-purpose algorithm, such as CAIM

#### **Further questions**

- 1. How is the classifier affected by irrelevant variables?
  - ightarrow Not much affected, given that often they are evenly distributed across the classes
- 2. How is the classifier affected by redundant variables?
  - ightarrow Quite affected, given that, assumed independent, their contribution is multiplied
- 3. Can you show me an example of conditional independence given the class?

Let X be a set. A **metric** in X is a two-place function  $d: X \to \mathbb{R}^+ \cup \{0\}$  satisfying, forall  $x, y, z \in X$ :

1. 
$$d(x,y) = 0 \iff x = y$$

2. 
$$d(x,y) = d(y,x)$$

3. 
$$d(x,y) \le d(x,z) + d(z,y)$$

We say that the pair (X, d) is a **metric space**.

1. The **1NN technique** classifies any  $x \in X$  in the same class of the "nearest neighbour" of x in S, that is:

the class of 
$$x$$
 is the class of  $\underset{x' \in S \setminus \{x\}}{\arg\min} d(x,x')$ 

2. The **kNN technique** considers the  $k \ge 1$  "nearest neighbours" of x in S and votes for the most represented class:

the class of  $\boldsymbol{x}$  is the majority class among its k closest elements in S

- ties may happen and are broken randomly
- lacktriangle for two-class problems and odd k there can be no ties

#### **Asymptotic analysis**

**Theorem (Cover & Hart '65)**. Call  $\epsilon_{1NN}$  the probability of error of 1NN and  $\epsilon_B$  be the Bayes error, then:

$$\epsilon_B \le \epsilon_{1NN} \le \epsilon_B \left( 2 - \epsilon_B \frac{K}{K - 1} \right) \le 2\epsilon_B$$

in the limit  $N \to \infty$ .

In particular, for two-class problems (K = 2),

$$\epsilon_B \le \epsilon_{1NN} \le 2\epsilon_B (1 - \epsilon_B)$$

#### On possible metrics

Euclidean distance

$$d(x, y) = ||x - y||_2 = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$$

Manhattan (aka Chebyshev, city-block) distance

$$d(x, y) = ||x - y||_1 = \sum_{i=1}^{d} |x_i - y_i|$$

Maximum distance

$$d(x, y) = ||x - y||_{\infty} = \max_{i=1,...,d} |x_i - y_i|$$

#### On possible metrics

Minkowskian distances

$$d_p(x, y) = ||x - y||_p = \left(\sum_{i=1}^d |x_i - y_i|^p\right)^{1/p}, \quad p \ge 1$$

(not a metric for p < 1, since it violates the triangle inequality)



Minkowskian metrics: points on the perimeter have equal distance from center of figure

#### **kNN** in action

#### **Example I**

- Three-class 2D problem with non-linearly separable, multimodal likelihoods
- We use the kNN rule (k = 5) and the Euclidean distance
- The resulting decision boundaries and decision regions are shown below







#### **Example II**

- Two-dim 3-class problem with unimodal likelihoods with a common mean; these classes are also not linearly separable
- We used the kNN rule (k = 5), and the Euclidean distance as a metric







CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU

11

#### Characteristics of the kNN classifier

- Simple to understand and implement; no training time
- Nearly optimal in the large sample limit
- Uses local information, therefore highly adaptive behavior
- Lends itself very easily to parallel implementations
- Large storage requirements
- No explicit model (data ≡ model)
- Large testing time
- Likely to break in large dimensions
- Choice of best *k* is very difficult

### Influence of k

#### **kNN** versus 1NN



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU

14

### Influence of k

As k is increased ...

- We get smoother decision regions
- Less influence of "noise" (local fluctuations of class)
- We can get some probabilistic information
- Variance decreases
- Locality is lost
- The computational burden is increased
- Bias increases

### Importance of standardization



The horizontal axis contains all the discriminatory information, the second axis is white noise. Top: both axes are scaled properly (kNN (k = 5) finds correct decision boundaries. Bottom: the scale of the vertical axis has been increased 100 times.

## **Machine Learning**

#### **Syllabus**

- 1. Introduction to Machine Learning
- 2. Theoretical issues (I): regression
- 3. Linear regression and beyond
- 4. Theoretical issues (II): classification
- 5. Generative classifiers
- 6. Discriminative classifiers

- 7. Clustering
- 8. Learning with kernels (I): The SVM
- 9. Learning with kernels (II): Kernel functions
- 10. Learning with kernels (III): Other kernel methods
- 11. Artificial neural networks (I): the MLP
- 12. Artificial neural networks (II): the RBF
- 13. Ensemble methods: Random Forests
- 14. Advanced topics and frontiers