ÇOKLU ÖLÇEKLİ GÖRÜNTÜ İŞLEME

- -Görüntülerin ölçek-uzay gösterimi
- -Çok ölçekli öznitelik algılama
- -Gaus ve Laplace piramidleri
- -Bazı Laplace piramidi uygulamaları
- -Ayrık dalgacık dönüşümü
- -Dalgacık kuramı
- -Dalgacık görüntü sıkıştırma

Görüntülerin çok ölçekli gösterimleri

-Görüntü öznitelikleri tüm ölçeklerde benzer görünür

- -Yön değişmezliğinin yanında, ölçek değişmezliği görüntü işleme algoritmalarında istenen bir özelliktir.
- -Çok ölçekli gösterimler hem yön değişmezliği, hem de ölçek değişmezliği algoritmalarının temelini oluşturur

Bir sinyalin ölçek-uzay gösterimi

Bir f(x) sinyalinden, en iyi ölçek(fine-scale) bilgisinin başarılı biçimde bastırıldığı parametrik sinyaller grubu türetilir

Gaus filtresiyle başarılı bir düzleştirme sonucu oluşan sinyaller grubu

2nci türevin sıfır geçişleri: daha kaba ölçeklerde daha az öznitelik

Görüntülerin ölçek uzay gösterimi

artan t değeri

Ölçeğin daha kaba değerleri Gerçek sinyal

-Gaus filtresiyle düzleştirilen görüntülerin parametrik grubu

$$f^{t}(x,y) = g^{t}(x,y) * f(x,y); t \ge 0 \quad \text{with } g^{t}(x,y) = \frac{1}{2\pi t} \exp\left(-\frac{x^{2} + y^{2}}{2t}\right)$$

$$F^{t}(\omega_{x}, \omega_{y}) = G^{t}(\omega_{x}, \omega_{y}) F(\omega_{x}, \omega_{y}) \quad \text{with } G^{t}(\omega_{x}, \omega_{y}) = \exp\left(-\frac{t}{2}(\omega_{x}^{2} + \omega_{y}^{2})\right)$$

-Ölçek değişmezliği

$$f'(x-\Delta x, y-\Delta y) = g'(x,y) * f(x-\Delta x, y-\Delta y)$$

-Rotasyon(Dönü) değişmezliği

$$f^{t}(x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta) = g^{t}(x, y) * f(x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$$

Görüntülerin ölçek uzay gösterimi

-Sırabağımsız yarıgrup özelliği

$$f^{t1+t2}(x,y) = g^{t1}(x,y) * f^{t2}(x,y)$$

$$= g^{t2}(x,y) * f^{t1}(x,y)$$

$$= g^{t1}(x,y) * g^{t2}(x,y) * f(x,y)$$

-Ayrıştırılabilirlik

$$g^{t}(x,y) = \frac{1}{2\pi t} \exp\left(-\frac{x^{2} + y^{2}}{2t}\right) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{x^{2}}{2t}\right) \cdot \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{y^{2}}{2t}\right)$$

$$G^{t}(\omega_{x},\omega_{y}) = \exp\left(-\frac{t}{2}(\omega_{x}^{2} + \omega_{y}^{2})\right) = \exp\left(-\frac{t}{2}\omega_{x}^{2}\right) \exp\left(-\frac{t}{2}\omega_{y}^{2}\right)$$

Görüntülerin ölçek uzay gösterimi

- $g^t(x,y) \ge 0$ ve tek doruklu olduğundan yerel eksteremumun (f(x,y) ve tüm kısmi türevlerinin) oluşmaması (non-creation)
- -Difüzyon eşitliğine çözüm

$$\begin{split} \frac{\partial}{\partial t} f^{t}(x, y) &= \frac{1}{2} \nabla^{2} f^{t}(x, y) \\ \frac{\partial}{\partial t} F^{t}(\omega_{x}, \omega_{y}) &= \frac{\partial}{\partial t} G^{t}(\omega_{x}, \omega_{y}) F(\omega_{x}, \omega_{y}) \\ &= \frac{\partial}{\partial t} \exp\left(-\frac{t}{2}(\omega_{x}^{2} + \omega_{y}^{2})\right) F(\omega_{x}, \omega_{y}) \\ &= -\frac{1}{2}(\omega_{x}^{2} + \omega_{y}^{2}) \exp\left(-t(\omega_{x}^{2} + \omega_{y}^{2})\right) F(\omega_{x}, \omega_{y}) \\ &= -\frac{1}{2}(\omega_{x}^{2} + \omega_{y}^{2}) F^{t}(\omega_{x}, \omega_{y}) \end{split}$$

Gaus Laplace'ı ve Gaus Farkı

Ölçek uzay ve yerel minimum

Çok ölçekli kenar algılama

Farklı ölçekli Laplace görüntülerinin sıfır geçişleri

İstenmeyen kenarlar kaldırılmış

Gaus türevleri

Otomatik ölçek seçimi ile imge bölgesi (Blob) algılama

- -Ölçek uzay gösterimi tüm ölçekleri sağlar; anahtar nokta algılama için hangi ölçek en iyidir?
- -Harris Laplace:Ölçeği normalize edilmiş

Laplace'ın yerel $t \cdot \nabla^2 f^t(x, y)$

(x,y,t) maksimumunu algıla

Otomatik ölçek seçimi ile imge bölgesi (Blob) algılama

Harris Laplace örneği (200 en güçlü nokta)

SIFT imge bölgesi (Blob) algılama

-SIFT(Ölçek Değişmezliği ÖznitelikDönüşümü -Görüntüyü ölçek uzay gösterimine parçala Maksimum yerel ve yatay ölçekleri tespit et -Karesel fonksiyonu , alt piksel / alt ölçek doğruluğunu maksimum belirlemek için 3 boyutlu uygula

Ölçeklemeye dayanıklılık

Tekrarlanabilme

Orani Harris-Laplacian SIFT (Lowe) 0.9 Harris 8.0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 2.5 3.5 Ölçek

SURF imge bölgesi (Blob) algılama

- -SURF : Hızlandırılmış güçlü öznitelikler
- -Hessian matrisine dayanır

$$\mathbf{H}^{t}(x,y) =$$

-Gaus türevleri basit yaklaşıklığı

If
$$\frac{\mathbf{H}^{t}(x,y)}{\mathbf{H}^{t}(x,y)} = \begin{bmatrix}
\frac{\partial^{2}}{\partial x^{2}} f^{t}(x,y) & \frac{\partial^{2}}{\partial x \partial y} f^{t}(x,y) \\
\frac{\partial^{2}}{\partial x \partial y} f^{t}(x,y) & \frac{\partial^{2}}{\partial y^{2}} f^{t}(x,y)
\end{bmatrix}$$
aşıklığı

$$D_{xy}$$
 $\det\left(\mathbf{H}\right) \approx D_{xx}D_{yy} - \left(0.9D_{xy}\right)^2$

- -3x3x3 komşulukta maksimum olmayan bastırma
- -Det(H)'ın x,y görüntü uzayı ve t ölçeğindeki maksimumunun aradeğerlemesi

SURF imge bölgesi (Blob) algılama

Görüntü piramitleri

Yaklaşıklama filtresi Örnek seyreltici

upsampler: örnek çoğaltıcı

interpolation: örnek çoğaltma

Grüntü piramidi örneği

Gaus piramidi pramidi

Laplace

Aşkın tam gösterim

Laplace ya da Gaus piramidi örneklerinin sayısı=

$$\left(1 + \frac{1}{4} + \frac{1}{4^2} + \dots + \frac{1}{4^P}\right) \le \frac{4}{3}$$
 X Gerçek görüntü örneği sayısı

Laplace piramidiyle görüntü analizi

Girdi resim

Filtreleme

<u>Analysis</u>

Örnek seyrelt

Filtreleme

Örnek seyreltme

Tanımlama/ Algılama/ Bölütleme Sonuç

interpolator: örnek çoğaltıcı işleme

Gaus piramdi yüz algılama

[Rowley, Baluja, Kanade, 1995]

Laplace piramidiyle görüntü işleme

Genişletilmiş Laplace piramidi

Görüntü alanında (domain) mozaikleme (mosaicing)

Laplace piramitlerini harmanlayarak mozaikleme

Genişletilmiş Laplace piramitleri

Laplace piramitlerinin harmanlanması

Tek boyutlu ayrık dalgacık dönüşümü

-Çift band süzgeç takımının, bir önceki seviyenin alçak geçiren bandına tekrarlı uygulaması 2 kat band bölüşümü

sağlar

Akan analiz/sentez süzgeç takımı

2 boyutlu ayrık dalgacık dönüşümü

Tekrarlama: Z dönüşümü ve ölçek seyreltme

-Ayrık zamanlı fourier dönüşümünün genel ifadesi

$$x(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n} ; \quad z \in \mathbb{C} ; r^{-} < |z| < r^{+}$$

- -Birim çemberde Fourier dönüşümü: yerine (substitute) $z = e^{j\omega}$
- -Faktör 2 ile örnek seyreltme ve örnek

$$x(z)$$
 \longrightarrow $2 \downarrow$ \longrightarrow $\frac{1}{2}[x(z)+x(-z)]$

Çift-kanal süzgeç takımı

$$\begin{split} \hat{x}(z) &= \frac{1}{2} g_0(z) \big[h_0(z) x(z) + h_0(-z) x(-z) \big] + \frac{1}{2} g_1(z) \big[h_1(z) x(z) + h_1(-z) x(-z) \big] \\ &= \frac{1}{2} \big[h_0(z) g_0(z) + h_1(z) g_1(z) \big] x(z) + \frac{1}{2} \big[h_0(-z) g_0(z) + h_1(-z) g_1(z) \big] x(-z) \end{split}$$

Aliasing

$$g_0(z) = h_1(-z)$$
$$-g_1(z) = h_0(-z)$$

ise: katlanma ihmali

Örnek: Kusursuz yeniden oluşturma ile çift kanal süzgeç takımı

- -itme tepkileri, analiz filtreleri: düşük geçiş yüksek geçiş
 - $\left(\frac{-1}{4}, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, \frac{-1}{4}\right)$ $\left(\frac{1}{4}, \frac{-1}{2}, \frac{1}{4}\right)$

- -JPEG2000 şartı
- -Frekans tepkileri

-itme tepkileri, sentez filtreleri: düşük geçiş yüksek geçiş

$$\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$$
 $\left(\frac{1}{4}, \frac{1}{2}, \frac{-3}{2}, \frac{1}{2}, \frac{1}{4}\right)$

"Biorthogonal 5/3 filters" "LeGall filters"

Kaldırma(Lifting)

-Analiz filtreleri

- -L "Kaldırma(Lifting) adımları"
- -İlk adım, çift örneklerden tek örneklerin tahmin edilmesi olarak yorumlanabilir

Kaldırma

-Sentez filtreleri

- -Kusursuz yeniden yapılandırma (biorthogonality) direkt, kaldırma yapısı içerisine inşa edilir
- -Hem uygulama hem de filtre/dalgacık tasarımı için güçlü

Örnek: 5/3 filtrelerin kaldırma uygulamaları

-Çift ve tek giriş kanalındaki birim dürtüye tepki (çıkış işareti)ni hesaplayarak doğrula

Eşlenik dördün filtreler

-Katlanma ihmalini aşağıdaki formül ile gerçekleştir

prototip filtresi
$$h_0(z)=g_0(z^{-1})\equiv f\left(z\right)$$

$$h_1\left(z\right)=g_1(z^{-1})=zf\left(-z^{-1}\right)$$
 [Smith, Barnwell, 1986]

-İtme(dürtü) tepkileri

$$h_0[k] = g_0[-k] = f[k]$$

$$h_1[k] = g_1[-k] = (-1)^{k+1} f[-(k+1)]$$

- -Kusursuz yeniden yapılandırma ile: ortonormal altband dönüşümü
- -Kusursuz yeniden yapılandırma: güç tamamlayıcı prototip filtreyi bul $\left|F\left(e^{j\omega}\right)\right|^2+\left|F\left(e^{j(\omega\pm\pi)}\right)\right|^2=2$

Dalgacık esasları

- -Sonlu enerji fonksiyonları x=x(t)'nin Hilbert uzayı $\mathcal{L}^2(\mathbb{R})$ 'yi hesaba kat
- L² (R) için dalgacık esası: doğrusal bağımsız foksiyonlar grubu ana dalgacık

$$\psi_n^{(m)}(t) = \sqrt{2^{-m}} \psi(2^{-m}t - n)$$

- Bu $\mathcal{L}^2(\mathbb{R})$ 'yi kapsar . Öyleyse $\mathbf{x} \in \mathcal{L}^2(\mathbb{R})$ aşağıdaki gibi yazılabilir

$$\mathbf{x} = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} y^{(m)} [n] \psi_n^{(m)}$$

Çoklu kararlılık(multi-resolution) analizi

Yuvalanan alt uzaylar $... \subset V^{(2)} \subset V^{(1)} \subset V^{(0)} \subset V^{(-1)} \subset V^{(-2)} \subset ... \subset \mathcal{L}^2(\mathbb{R})$

- *Yukarı tamlık
- *Aşağı tamlık
- *Öz benzeşlik (self-similarity)
- *Öteleme değişmezliği

$$\bigcup_{m \in \mathbb{Z}} V^{(m)} = \mathcal{L}^2(\mathbb{R})$$

$$\bigcap_{m \in \mathbb{Z}} V^{(m)} = \{\mathbf{0}\}$$

$$x(t) \in V^{(0)} \text{ iff } x(2^{-m}t) \in V^{(m)}$$

$$x(t) \in V^{(0)} \text{ iff } x(t-n) \in V^{(0)} \text{ for all } n \in \mathbb{Z}$$

 $\varphi_n(t) = \varphi(t-n)$ tamsayı dönüşümlü bir $\varphi(t)$ ölçekleme fonksiyonu mevcuttur. Öyle ki $\{\varphi_n\}_{n\in\mathbb{Z}}$ $V^{(0)}$ için ortonormal bir temel oluşturur.

Çoklu çözünürlük Fourier analizi

Altband filtrelerle ilişkisi

 $V^{(0)} \subset V^{(-1)}$ olduğundan ölçekleme fonksiyonunun tekrarlı tanımı $\varphi(t) = \sum_{n=0}^{\infty} g_n[n] \varphi_n^{(-1)}(t) = \sqrt{2} \sum_{n=0}^{\infty} g_n[n] \varphi(2t-n)$

$$\varphi(t) = \sum_{n=-\infty}^{\infty} g_0[n] \varphi_n^{(-1)}(t) = \sqrt{2} \sum_{n=-\infty}^{\infty} g_0[n] \varphi(2t-n)$$
linear combination
of scaling functions in $V^{(-1)}$

Orthonormality

$$\begin{split} & \delta\left[\mathbf{n}\right] = \left\langle \varphi_0^{(0)}, \varphi_n^{(0)} \right\rangle \\ &= \int_{-\infty}^{\infty} \left(\sum_{i} g_0\left[i\right] \varphi_i^{(-1)}\left(t\right) \sum_{j} g_0\left[j\right] \varphi_{j+2n}^{(-1)}\left(t\right) \right) dt \\ &= \sum_{i,j} g_0\left[i\right] g_0\left[j-2n\right] \left\langle \varphi_i^{(-1)}, \varphi_j^{(-1)} \right\rangle = \sum_{i} g_0\left[i\right] g_0\left[i-2n\right] \end{split}$$

g0 [k] unit norm and orthogonal to its 2-translates: corresponds to synthesis lowpass filter of orthonormal subband transform

Olçekleme fonksiyonlarından dalgacık

$$W^{(p)}$$
 $V^{(p)}$ nin $V^{(p-1)}$ de orthogonal tümleyenidir. $W^{(p)} \perp V^{(p)}$ and $W^{(p)} \cup V^{(p)} = V^{(p-1)}$

Orthonormal dalgacık temeli $\left\{ \psi_{n}^{(0)} \right\}$ for $W^{(0)} \subset \overline{V^{(-1)}}$

$$\left\{\psi_n^{(0)}\right\}$$
 for $W^{(0)} \subset V^{(-1)}$

$$\psi\left(t\right) = \underbrace{\sum_{n=-\infty}^{\infty} g_1\left[n\right] \varphi_n^{(-1)}\left(t\right)}_{\text{linear combination of scaling functions in } V^{(-1)}} = \sqrt{2} \sum_{n=-\infty}^{\infty} g_1\left[n\right] \varphi_n\left(2t-n\right)$$

Dördün yüksek geçiren snetez filtresi eşlenik kullanımı

$$g_1[n] = (-1)^{n+1} g_0[-(n-1)]$$

Karşılıklı orthonormal fonksiyonlar, $\{\psi_n^{(0)}\}_{n\in\mathbb{Z}}$ and $\{\varphi_n^{(0)}\}_{n\in\mathbb{Z}}$, together span $V^{(-1)}$.

Orthonormal dalgacık temelini oluşturmak için $\psi(t)$ 'nin genleştirilmiş versiyonuna yayılım kolaylığı

$$\left\{\psi_n^{(m)}\right\}_{n,m\in\mathbb{Z}}$$
 for $\mathcal{L}^2(\mathbb{R})$

Sürekli sinyal için dalgacık katsayısı hesabı

-Ayrık süzgeç takımıyla sinyal süzgeci

*Sürekli sinyal için
$$x^{(0)}(t) = \sum_{n \in \mathbb{Z}} y_0^{(0)}[n] \varphi(t-n) = \sum_{n \in \mathbb{Z}} y_0^{(0)}[n] \varphi_n^{(0)} \in V^{(0)}$$

as superposition of
$$x^{(1)}(t) \in V^{(1)}$$
 and $w^{(1)}(t) \in W^{(1)}$

$$x^{(0)}(t) = \sum_{i \in \mathbb{Z}} y_0^{(1)}[i] \varphi_n^{(1)} + \sum_{j \in \mathbb{Z}} y_1^{(1)}[j] \psi_n^{(1)}$$

$$= \sum_{n \in \mathbb{Z}} \varphi_n^{(0)} \left(\sum_{i \in \mathbb{Z}} y_0^{(1)}[n] g_0[n-2i] + \sum_{j \in \mathbb{Z}} y_1^{(1)}[j] g_1[n-2i] \right)$$

$$y_0^{(0)}[n]$$

- -Analiz filtreleri $h_0[k]$, $h_1[k]$
- ile sinyal analizi
- -Ayrık dalgacık dönüşümü

1 boyutlu ayrık dalgacık dönüşümü

sampling: örnekleme

çoğaltma

interpolation: örnek

Örnek: Daubechies dalgacığı, order 2

Örnek: Daubechies dalgacığı, order 9

JPEG ve JPEG2000 karşılaştırması

Lenna, 256x256 RGB Baseline JPEG: 4572 bytes

Lenna, 256x256 RGB JPEG-2000: 4572 bytes

JPEG ve JPEG2000 karşılaştırması

JPEG with optimized Huffman tables 8268 bytes

JPEG2000 8192 bytes