Functional Analysis

Daniel Mao

Copyright \bigodot 2021 Daniel Mao All Rights Reserved.

Contents

1	Bal	Balanced Sets					
	1.1	Definitions	1				
	1.2	Properties	1				
	1.3	Stability of Balance	2				
	1.4	Absorbing Sets	2				
2	Inn	er Product Spaces	3				
	2.1	Inner Products	3				
	2.2	Inequalities	4				
	2.3	Orthogonality	5				
3	Nor	rmed Linear Spaces	7				
	3.1	Definitions	7				
	3.2	Properties	7				
	3.3	Equivalence of Norms	8				
	3.4	Dual Norms	9				
	3.5	<i>p</i> -norms	10				
	3.6	Banach Spaces	11				
	3.7	Construction of Banach Spaces	12				
4	Que	Quotient Spaces 15					
	4.1	Definitions	15				
5	Top	pological Vector Spaces	17				
	5.1	Definitions	17				
	5.2	Topological Vector Spaces	17				
	5.3	Neighborhoods	18				

6	Seq	uence Spaces	19
	6.1	ℓ_p Space	19
	6.2	c_0 Space and c_{00} Space	20
	6.3	Hölder's Inequality	23
7	Fun	ction Spaces	25
	7.1	The \mathcal{L}^p Norm	25
8	Hilk	pert Space	27
	8.1	Hilbert Spaces	27
9	Equ	icontinuity in Metric Spaces	29
	9.1	Definitions	29
	9.2	Sufficient Conditions	29
10	Оре	erators	31
	10.1	Bounded Operators	31
	10.2	Space of Bounded Operators	35
	10.3	Dual Spaces	35
11	\mathbf{Adj}	oint Operator	37
	11.1	Definitions	37
	11.2	Properties of the Adjoint Operator	37
	11.3	Normal Operators	38
	11.4	Self-adjoint	38
12	Con	volution	39
13	Coe	rcive Functions	41
	13.1	Definitions	41
	13.2	Properties	41
14	Unc	classified Results	43

Balanced Sets

1.1 Definitions

Definition (Balanced Sets). Let X be a vector space over field \mathbb{F} . Let S be a subset of X. We say that S is **balanced** if

$$\forall a \in \mathbb{F} : |a| \le 1, \quad aS \subseteq S.$$

Definition (Balanced Hull). Let X be a vector space over field \mathbb{F} . Let S be a subset of X. We define the **balanced hull** of S, denoted by $\operatorname{balhull}(S)$, to be the smallest balanced set containing S.

Definition (Balanced Core). Let X be a vector space over field \mathbb{F} . Let S be a subset of X. We define the **balanced core** of S, denoted by $\operatorname{balcore}(S)$, to be the largest balanced set contained in S.

1.2 Properties

Proposition 1.2.1. Let X be a vector space over field \mathbb{F} . Let B be a balanced subset of X. Then

$$\forall a,b \in \mathbb{F}: |a| \leq |b|, \quad aB \subseteq bB.$$

Proposition 1.2.2. Balanced sets are path connected.

Proposition 1.2.3 (Act on Other Properties). • The balanced hull of a compact set is compact.

- The balanced hull of a totally bounded set is totally bounded.
- The balanced hull of a bounded set is bounded.

Proposition 1.2.4 (Act on Other Properties). • The balanced core of a closed set is closed.

Proposition 1.2.5. Let X be a vector space over field \mathbb{F} . Let a be a scalar in field \mathbb{F} . Then $a \operatorname{balhull}(S) = \operatorname{balhull}(aS)$.

1.3 Stability of Balance

Proposition 1.3.1 (Set Operations). • The union of balanced sets is also balanced.

• The intersection of balanced sets is also balanced.

Proposition 1.3.2 (Linear Mappings). • The scalar multiple of a balanced set is also balanced.

- The (Minkowski) sum of two balanced sets is also balanced.
- The image of a balanced set under a linear operator is also balanced.
- The inverse image of a balanced set under a linear operator is also balanced.

Proposition 1.3.3 (Topological Operations). The closure of a balanced set is also balanced.

Proposition 1.3.4. The convex hull of a balanced set is also balanced (and also convex).

1.4 Absorbing Sets

Definition (Absorbing Sets). Let X be a vector space over field \mathbb{F} . Let S be a subset of X. We say that S is **absorbing** if

$$\forall x \in X, \quad \exists r \in \mathbb{R} : r > 0, \quad \forall c \in \mathbb{F} : |c| \ge r, \quad x \in cA.$$

Proposition 1.4.1. Every absorbing set contains the origin.

Inner Product Spaces

2.1 Inner Products

2.1.1 Definitions

Definition (Inner Product). Let V be a vector space over field \mathbb{F} . We define an inner **product** on V, denoted by $\langle \cdot, \cdot \rangle$, to be a scalar-valued function defined on $V \times V$ such that

(1) Positive Definiteness

$$\forall x, y \in V, \quad \langle x, x \rangle \ge 0, \text{ and}$$

$$\forall x \in V, \quad \langle x, x \rangle = 0 \iff x = O_V.$$

(2) Sesqui-Linearity

$$\forall x,y,z,w \in V, \quad \langle x+y,z+w \rangle = \langle x,z \rangle + \langle y,z \rangle + \langle x,w \rangle + \langle y,w \rangle, \ \ and$$

$$\forall a,b \in \mathbb{F}, \forall x,y \in V, \quad \langle ax,by \rangle = a\bar{b}\langle x,y \rangle.$$

(3) Conjugate Symmetry

$$\forall x, y \in V, \quad \langle x, y \rangle = \overline{\langle y, x \rangle}.$$

Definition (Norm). Let V be an inner product space over field \mathbb{F} . We define the **norm**, denoted by $\|\cdot\|$, to be a function from V to \mathbb{R}_+ given by

$$||x|| := \sqrt{\langle x, x \rangle}$$

Definition (Orthogonal Vectors). Let V be an inner product space. Let x and y be vectors in V. We say that x and y are **orthogonal** if $\langle x, y \rangle = 0$.

Definition (Orthogonal Sets). Let S be a subset of V. We say that S is **orthogonal** if

$$\forall x, y \in S, \quad \langle x, y \rangle = 0.$$

2.1.2 Examples

Definition (Standard Inner Product). For $V = \mathbb{F}^n$, we define the **standard inner product** by

$$\langle x, y \rangle := \sum_{i=1}^{n} x_i \overline{y_i}.$$

Definition (Frobenius Inner Product). For $V = \mathbb{F}^{n \times n}$, we define the **Frobenius inner** product by

$$\langle M_1, M_2 \rangle := \operatorname{tr}(M_2^* M_1).$$

Definition. Let V be the space of continuous scalar-valued functions on $[0, 2\pi]$. We define the inner product on V by

$$\langle f, g \rangle := \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{g(x)} dx.$$

2.1.3 Properties

Proposition 2.1.1. Let V be a finite dimensional inner product space. Let \mathcal{B} be a basis for V. Let x and y be vectors in V. Then

$$x = y \iff \forall b \in \mathcal{B}, \quad \langle x, b \rangle = \langle y, b \rangle.$$

2.2 Inequalities

Theorem 1 (Minkowski).

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}}$$

Proposition 2.2.1 (Cauchy-Schwarz Inequality). Let V be an inner product space. Then

$$\forall x, y \in V, \quad |\langle x, y \rangle| \le ||x|| \cdot ||y||$$

Proposition 2.2.2 (Triangle Inequality). Let V be an inner product space. Then

$$\forall x, y \in V, \quad ||x + y|| < ||x|| + ||y||$$

Proposition 2.2.3 (Parallelogram Law). Let V be an inner product space. Then

$$\forall x, y \in V, \quad \|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2$$

5

2.3 Orthogonality

2.3.1 Orthogonal Sets

Definition (Orthogonality). Let V be an inner product space. We say that points x and y in V are **orthogonal** if $\langle x, y \rangle = 0$.

Definition (Orthogonal Sets). Let V be an inner product space and S be a subset of V. We say that S is **orthogonal** if any two vectors in S are orthogonal.

Proposition 2.3.1. Orthogonal sets are linearly independent.

2.3.2 Orthogonal Bases

Definition (Orthogonal Basis). Let V be an inner product space and S be a subset of V. We say that S is an **orthogonal basis** for V if it is an ordered basis for V and orthogonal.

Proposition 2.3.2. Let V be an inner product space. Let $S = \{v_1, ..., v_n\}$ be an orthogonal subset of V where each v_i is non-zero. Then

$$\forall y \in \text{span}(S), \quad y = \sum_{i=1}^{n} \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i.$$

Theorem 2 (Gram-Schmidt Process). Let V be an inner product space. Let $S = \{v_0, ..., v_n\}$ be a linearly independent subset of V. Then the set $S' = \{v'_0, ..., v'_n\}$ given by $v'_0 := v_0$ and

$$\forall i \in \{1, ..., n\}, \quad v'_i := v_i - \sum_{i=1}^{i-1} \frac{\langle v_i, v'_j \rangle}{\|v'_j\|} v'_j$$

is an orthogonal subset of V consisting of non-zero vectors. Furthermore, we have $\operatorname{span}(S') = \operatorname{span}(S)$.

Proposition 2.3.3. Let V be an inner product space and $S = \{v_0, v_1, \ldots, v_n\}$ be an orthogonal subset of V. Then the set S' derived from the Gram-Schmidt process is exactly S.

Theorem 3 (Parseval's Identity). Let V be a finite-dimensional inner product space. Let $\mathcal{B} = \{v_1, ..., v_n\}$ be an orthogonal basis for V. Then

$$\forall x, y \in V, \quad \langle x, y \rangle = \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle}.$$

Theorem 4 (Bessel's Inequality). Let V be a finite-dimensional inner product space. Let $\mathcal{B} = \{v_1, ..., v_n\}$ be an orthogonal subset for V. Then

$$\forall x \in V, \quad ||x||^2 \ge \sum_{i=1}^n |\langle x, v_i \rangle|^2.$$

2.3.3 Orthogonal Complements

Definition (Orthogonal Complement). Let V be an inner product space and S be a non-empty subset of V. We define the **orthogonal complement** of S, denoted by S^{\perp} , to be the set of all points in V that are orthogonal to all vectors in S.

Proposition 2.3.4. Let V be a finite-dimensional inner product space. Then

- (1) $V^{\perp} = \{O_V\}$
- $(2) \{O_V\}^{\perp} = V$

Proposition 2.3.5. Orthogonal complements are always linear subspaces.

Proposition 2.3.6. Let V be an inner product space and W be a subspace of V with basis β . Then a vector in V is also in W^{\perp} if and only if it is orthogonal to all vectors in β .

Proposition 2.3.7 (Extension). Let V be an n-dimensional inner product space and $S = \{v_1, v_2, \ldots, v_k\}$ be an orthogonal subset of V. Then S can be extended to an orthogonal basis $B = \{v_1, v_2, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ for V.

2.3.4 Properties of the Orthogonal Complement Operator

Proposition 2.3.8. Let V be an inner product space. Then

- (1) $S \subseteq T$ implies $T^{\perp} \subseteq S^{\perp}$ for any subsets S and T of V.
- (2) $S \subseteq (S^{\perp})^{\perp}$ for any subset S of V.

Proposition 2.3.9. Let V be a finite-dimensional inner product space and W be a subspace of V. Then

- (1) $W = (W^{\perp})^{\perp}$
- (2) $V = W \oplus W^{\perp}$

Proposition 2.3.10. Let V be a finite-dimensional inner product space and W_1 and W_2 be subspaces of V. Then

(1)
$$(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$$

(2)
$$(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$$

2.3.5 Orthogonal Projection

Definition (Orthogonal Projection). Let V be a vector space. Let W be a finite-dimensional subspace of V. Let x be a vector in V. We define the **orthogonal projection** of x on W, denoted by (x), to be the vector u in W such that x = u + v where v is another vector in W^{\perp} .

Normed Linear Spaces

3.1 Definitions

Definition (Seminorm). Let \mathfrak{X} be a vector space over field \mathbb{F} . We define a **seminorm** on \mathfrak{X} , denoted by ν , to be a map from \mathfrak{X} to \mathbb{R} that satisfies the following conditions.

- (1) $\forall x \in \mathfrak{X}, \quad \nu(x) \ge 0.$
- (2) $\forall \lambda \in \mathbb{F}, \forall x \in \mathfrak{X}, \quad \nu(\lambda x) = \lambda \nu(x).$
- (3) Triangle Inequality.

$$\forall x, y \in \mathfrak{X}, \quad \nu(x+y) \le \nu(x) + \nu(y).$$

The idea behind the seminorm is that we are trying to give our vector space a notion of "length" of vectors.

Definition (Norm). Let \mathfrak{X} be a vector space over field \mathbb{F} . We define a **norm** on \mathfrak{X} , denoted by ν , to be a seminorm on \mathfrak{X} that satisfies the additional condition:

$$\forall x \in \mathfrak{X}, \quad \mu(x) = 0 \iff x = 0.$$

3.2 Properties

Proposition 3.2.1. Let $(V, \|\cdot\|_V)$ be a normed vector space over field \mathbb{F} . Then $(V, \|\cdot\|)$ is complete if and only if $(\overline{B(0,1)}, \|\cdot\|_V)$ is complete.

Proof.

For one direction, assume that $(V, \|\cdot\|)$ is complete.

We are to prove that $(\overline{B(0,1)}, \|\cdot\|_V)$ is complete.

Since $(\overline{B(0,1)}, \|\cdot\|_V)$ is a closed subspace of $(V, \|\cdot\|)$ and $(V, \|\cdot\|)$ is complete, $(\overline{B(0,1)}, \|\cdot\|_V)$ is also complete.

For the reverse direction, assume that $(\overline{B(0,1)}, \|\cdot\|_V)$ is complete.

We are to prove that $(V, \|\cdot\|_V)$ is complete.

Let $\{x_i\}_{i\in\mathbb{N}}$ be an arbitrary Cauchy sequence in $(V, \|\cdot\|_V)$.

Since $\{x_i\}_{i\in\mathbb{N}}$ is Cauchy in $(V, \|\cdot\|_V)$, $\{x_i\}_{i\in\mathbb{N}}$ is bounded in $(V, \|\cdot\|_V)$.

Let λ be a positive upper bound for $\{\|x_i\|_V\}_{i\in\mathbb{N}}$.

Since $\{x_i\}_{i\in\mathbb{N}}$ is Cauchy in $(V, \|\cdot\|_V)$, $\{x_i/\lambda\}_{i\in\mathbb{N}}$ is Cauchy in $(\overline{B(0,1)}, \|\cdot\|_V)$.

Since $\{x_i/\lambda\}_{i\in\mathbb{N}}$ is Cauchy in $(\overline{B(0,1)}, \|\cdot\|_V)$ and $(\overline{B(0,1)}, \|\cdot\|_V)$ is complete, $\{x_i/\lambda\}_{i\in\mathbb{N}}$ converges in $(\overline{B(0,1)}, \|\cdot\|_V)$.

Since $\{x_i/\lambda\}_{i\in\mathbb{N}}$ converges in $(\overline{B(0,1)}, \|\cdot\|_V), \{x_i\}_{i\in\mathbb{N}}$ converges in $(V, \|\cdot\|_V)$.

Since any Cauchy sequence in $(V, \|\cdot\|_V)$ converges in $(V, \|\cdot\|_V)$, $(V, \|\cdot\|_V)$ is complete.

3.3 Equivalence of Norms

Definition (Equivalence of Norms). Let \mathfrak{X} be a vector space over field \mathbb{F} . Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on V. We say that $\|\cdot\|_1$ and $\|\cdot\|_2$ are **equivalent** if

$$\exists c_1, c_2 > 0, \quad \forall v \in \mathfrak{X}, \quad c_1 \|v\|_1 \le \|v\|_2 \le c_2 \|v\|_2.$$

Or equivalently,

$$c_1||v||_2 \le ||v||_1 \le c_2||v||_2.$$

Proposition 3.3.1. The equivalence of norms is an equivalence relation.

Theorem 5. Let V be a finite dimensional vector space over field $\mathbb{F} = \{\mathbb{R}, \mathbb{C}\}$. Then any two norms on V are equivalent.

Proof.

Let $\|\cdot\|_p$ be an arbitrary p-norm on V and $\|\cdot\|$ be an arbitrary norm on V.

Let \mathcal{B} be the standard basis for V. Say $\mathcal{B} = \{e_1, e_2, \dots, e_n\}$.

Let v be an arbitrary vector in V.

$$||v|| = ||\sum_{i=1}^{n} v_i e_i||$$

$$\leq \sum_{i=1}^{n} |v_i| ||e_i||$$

$$\leq \left(\sum_{i=1}^{n} |v_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} ||e_i||^{\frac{p}{p-1}}\right)^{1-\frac{1}{p}}$$

3.4. DUAL NORMS 9

$$= \left(\sum_{i=1}^{n} \|e_i\|^{\frac{p}{p-1}}\right)^{1-\frac{1}{p}} \|v\|_p$$

:= $c_1 \|v\|_p$.

Proposition 3.3.2. Let X be a vector space. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on X. Then $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if and only if they generate the same metric topology.

Proof. Convergence to 0 is equivalent under either $\|\cdot\|_1$ or $\|\cdot\|_2$. i.e., equivalent norms give rise to the same set of sequences that are convergent. Convergence of sequences defines the topology.

Proposition 3.3.3. Let \mathfrak{X} be a vector space. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on \mathfrak{X} . Let ι be the identity map from $(\mathfrak{X}, \|\cdot\|_1)$ to $(\mathfrak{X}, \|\cdot\|_2)$. Then if $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent, iota is continuous, and in fact, a homeomorphism between $(\mathfrak{X}, \|\cdot\|_1)$ and $(\mathfrak{X}, \|\cdot\|_2)$.

Proposition 3.3.4. Let $(\mathfrak{X}, \|\cdot\|_1)$ be a Banach space. Let $S \in \mathcal{B}(\mathfrak{X})$ be a bounded linear map that is invertible. Define a norm $\|\cdot\|_2$ on \mathfrak{X} as

$$||x||_2 := ||Sx||_1.$$

Then $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.

Proof. On one hand, since S is bounded, $\exists c_1$ such that $\forall x \in \mathfrak{X}$, $||Sx||_1 \leq c_1 ||x||_1$. That is, $||x||_2 \leq c_1 ||x||_1$.

On the other hand, since S is invertible, S^{-1} exists and is also bounded. Since S^{-1} is bounded, $\exists c_2$ such that $\forall x \in \mathfrak{X}, \|S^{-1}x\|_1 \leq c_2\|x\|_1$. Consider x = Sx, we get $\forall x \in \mathfrak{X}, \|S^{-1}Sx\|_1 \leq c_2\|Sx\|_1$. That is, $\|x\|_1 \leq c_2\|x\|_2$.

So
$$\|\cdot\|_1$$
 and $\|\cdot\|_2$ are equivalent.

3.4 Dual Norms

Definition (Dual Norm). Let $(V, \|\cdot\|)$ be an normed vector space. We define the **dual** norm of $\|\cdot\|$, denoted by $\|\cdot\|_{\circ}$, to be a function given by

$$||v||_{\circ} := \max_{||w||=1} v \cdot w = \max_{||w|| \neq 0} \frac{|v \cdot w|}{||w||}.$$

Proposition 3.4.1. Dual norms of norms are indeed norms.

Proposition 3.4.2. Let $(V, \|\cdot\|)$ be a normed vector space. Let v, w be vectors in the space. Then

$$|v \cdot w| \le ||v|| \cdot ||w||_{\circ}.$$

3.5 p-norms

Definition (p-norm). Let V be a finite-dimensional normed vector space over field \mathcal{F} . Let $\mathcal{B} = \{b_1, ..., b_n\}$ be a basis for V where $n = \dim(V)$. Let v be a vector in a normed vector space. For $p \in [1, +\infty)$, we define the p-norm of v, denoted by $||v||_p$, to be the number given by

$$||v||_p = \left(\sum_{i=1}^n |(v_{\mathcal{B}})_i|^p\right)^{\frac{1}{p}}.$$

Definition (Infinity Norm - 1). Let $\mathfrak{X} = \mathbb{K}^n$ where \mathbb{K} is a field and $n \in \mathbb{N}$. We define the *infinity norm* on \mathfrak{X} , denoted by $\|\cdot\|_{\infty}$, to be a function given by

$$||v||_{\infty} := \max\{|v_i|\}_{i=1}^n$$
.

Definition (Infinity Norm - 2). Let $\mathfrak{X} = \mathbb{K}^{\mathbb{N}}$. We define the **infinity norm** on \mathfrak{X} , denoted by $\|\cdot\|_{\infty}$, to be a function given by

$$||v||_{\infty} := \sup_{i \in \mathbb{N}} |v_i|.$$

Definition (Infinity Norm - 3). Let $\mathfrak{X} = \mathcal{C}([0,1],\mathbb{C})$. We define the **infinity norm** on \mathfrak{X} , denoted by $\|\cdot\|_{\infty}$, to be a function given by

$$\nu(f) := \sup_{x \in [0,1]} |f(x)|.$$

Proposition 3.5.1. Let $\mathfrak{X} := \mathcal{C}([0,1],\mathbb{C})$. Let x be an arbitrary number in [0,1]. Define a function ν_x on \mathfrak{X} by $\nu_x(f) := |f(x)|$. Define a function ν on \mathfrak{X} by $\nu(f) := \sup_{x \in [0,1]} |f(x)|$. Then ν_x is a seminorm on \mathfrak{X} for each x and ν is a norm on \mathfrak{X} and we have $\nu = \sup_{x \in [0,1]} \nu$.

Proposition 3.5.2. *p-norms are indeed norms.*

Proposition 3.5.3. For any vector v in \mathbb{R}^n , we have

$$\lim_{p \to \infty} \|v\|_p = \|v\|_{\infty}.$$

i.e.,

$$\lim_{p\to\infty}\left(\sum_{i=1}^n|v_i|^p\right)^{\frac{1}{p}}=\max\{|v_i|\}_{i=1}^n.$$

Proof. Let p be an arbitrary number in $[1, +\infty)$. Let k be an arbitrary index in $\{1, ..., n\}$. Then

$$|v_k| \le (\sum_{i=1}^n |v_k|^p)^{1/p} = ||v||_p.$$

So

$$\max\{|v_k|\} = ||v||_{\infty} \le ||v||_p.$$

11

So

$$\lim_{p \to \infty} \|v\|_p \ge \|v\|_{\infty}. \tag{1}$$

On the other hand, note that

$$\left(\sum_{i=1}^{n} |v_i|^p\right) / \|v\|_{\infty}^p = \sum_{i=1}^{n} \left(\frac{|v_i|}{\|v\|_{\infty}}\right)^p$$

decreases as p increases. So it is bounded above. Say

$$(\sum_{i=1}^{n} |v_i|^p) / \|v\|_{\infty}^p \le C$$

for some $C \in \mathbb{R}$. Then

$$\left(\sum_{i=1}^{n} |v_i|^p\right)^{1/p} = ||v||_p \le C^{1/p} ||v||_{\infty}.$$

So

$$\lim_{p \to \infty} \|v\|_p \le \lim_{p \to \infty} C^{1/p} \|v\|_{\infty} = \|v\|_{\infty}.$$
 (2)

From (1) and (2) we get

$$\lim_{p \to \infty} \|v\|_p = \|v\|_{\infty}.$$

Proposition 3.5.4. Let p be an arbitrary number in $[1, +\infty)$. Then the dual norm of the p-norm $\|\cdot\|_p$ is the q-norm $\|\cdot\|_q$ where q is such that satisfies

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Proposition 3.5.5. Let p and q be numbers in $[1, +\infty]$. Let v be a vector in \mathbb{R}^n . Then if $p \leq q$,

$$||x||_q \le ||x||_p \le n^{\frac{1}{p} - \frac{1}{q}} \cdot ||x||_q.$$

Proposition 3.5.6. Let w and z be vectors in \mathbb{E}^d . Then

$$||w + z||_2^2 + ||w - z||_2^2 = 2(||w||_2^2 + ||z||_2^2).$$

3.6 Banach Spaces

Definition (Banach Space). Let $(\mathfrak{X}, \|\cdot\|)$ be a normed linear space. Let d be the metric induced by $\|\cdot\|$. We say that \mathfrak{X} is a **Banach space** if (\mathfrak{X}, d) is a complete metric space. i.e., we define a Banach space to be a complete normed linear space.

Proposition 3.6.1. Let $(\mathfrak{X}, \|\cdot\|)$ be a normed vector space over field \mathbb{F} . Then $(\mathfrak{X}, \|\cdot\|)$ is a Banach space if and only if every absolutely summable series in X is summable.

Example 3.6.1. $(\mathcal{C}([0,1],\mathbb{F}),\|\cdot\|_{\infty})$ is a Banach space.

Example 3.6.2 (Disc Algebra). Define $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$. Define $\mathcal{A}(\mathbb{D}):=\{f\in\mathcal{C}(\overline{\mathbb{D}}):f|_{\mathbb{D}}\text{ is holomorphic }\}$. Define $\|\cdot\|_{\infty}$ by $\|f\|_{\infty}:=\sup_{z\in\overline{\mathbb{D}}}|f(z)|$. Then $(\mathcal{A}(\mathbb{D}),\|\cdot\|_{\infty})$ is a Banach space.

Example 3.6.3. Let (X, Ω, μ) be a measure space. Let p be a number in $[1, +\infty)$. Define

$$\mathcal{L}^p(X,\mu) := \operatorname{span}\{f: X \to [0,+\infty] \mid f \text{ is measurable and } \int_X |f|^p < +\infty\}.$$

Define an equivalence relation on $\mathcal{L}^p(X,\mu)$ by $f \equiv g$ if and only if

$$\mu(\{x \in X : f(x) \neq g(x)\}) = 0.$$

Define a space $L^p(X,\mu) := \mathcal{L}^p(X,\mu)/\equiv$. Then $L^p(X,\mu)$ is a Banach space when equipped with the norm

$$||[f]||_p := \left(\int_X |f|^p\right)^{1/p}.$$

Example 3.6.4. Let $\mathcal{P}_{\mathbb{C}}[0,1]$ denote the set of all polynomials with complex coefficients. For each $p \in [1, +\infty)$, define a norm

$$||f||_p := \left(\int_0^1 |f|^p\right)^{1/p}.$$

For $p = +\infty$, define a norm

$$||f||_{\infty} := \sup_{x \in [0,1]} |f(z)|.$$

3.7 Construction of Banach Spaces

Definition. Let $(\mathfrak{X}, \|\cdot\|_{\mathfrak{X}})$ and $(\mathfrak{Y}, \|\cdot\|_{\mathfrak{Y}})$ be two Banach spaces over field \mathbb{K} . Let $p \in [1, +\infty)$. We define

$$\mathfrak{X} \oplus_p \mathfrak{Y} := \{(x,y) : x \in \mathfrak{X}, y \in \mathfrak{Y}\}$$

and

$$\|(x,y)\|_p := (\|x\|_{\mathfrak{X}}^p + \|y\|_{\mathfrak{Y}}^p)^{1/p}.$$

For $p = +\infty$, we define

$$\mathfrak{X} \oplus_{\infty} \mathfrak{Y} := \{(x,y) : x \in \mathfrak{X}, y \in \mathfrak{Y}\}$$

and

$$||(x,y)||_{\infty} := \max(||x||_{\mathfrak{X}}, ||y||_{\mathfrak{Y}}).$$

• Note that the norms behave similarly to what the p norm would do.

13

• We can similarly define the direct sum of finitely many Banach spaces.

Proposition 3.7.1. $\|\cdot,\cdot\|_p$ is a norm on $\mathfrak{X} \oplus_p \mathfrak{Y}$.

Proposition 3.7.2. $\mathfrak{X} \oplus_p \mathfrak{Y}$ is complete with respect to $\|\cdot, \cdot\|_p$.

Quotient Spaces

4.1 Definitions

Definition. Let \mathfrak{V} be a vector space. Let \mathfrak{W} be a subspace of \mathfrak{V} . We define a **quotient** space, denoted by $\mathfrak{V}/\mathfrak{W}$, to be a set $\{v + \mathfrak{W} : v \in \mathfrak{V}\}$ with operations

$$(v_1 + \mathfrak{W}) + (v_2 + \mathfrak{W}) := (v_1 + v_2) + \mathfrak{W}$$
 and
$$\kappa(v + \mathfrak{W}) := (\kappa v) + \mathfrak{W}.$$

Definition (Quotient Map). Let $(\mathfrak{X}, \|\cdot\|)$ be a normed linear space. Let \mathfrak{M} be a linear manifold in \mathfrak{X} . We define the **quotient map** on \mathfrak{X} with respect to \mathfrak{M} , denoted by $q_{\mathfrak{M}}$, to be a function from \mathfrak{X} to $\mathfrak{X}/\mathfrak{M}$ given by

$$q_{\mathfrak{M}}(x) := x + \mathfrak{M}$$

Proposition 4.1.1. Quotient maps are contractive. i.e.,

$$\forall x \in \mathfrak{X}, \quad \|x + \mathfrak{M}\|_{\mathfrak{X}/\mathfrak{M}} \le \|x\|_{\mathfrak{X}}.$$

Proposition 4.1.2. Let \mathfrak{X} be a normed linear space. Let \mathfrak{M} be a closed subspace of \mathfrak{X} . Let q be the canonical quotient map from \mathfrak{X} to $\mathfrak{X}/\mathfrak{M}$. Then

• q is a continuous map. i.e.,

$$\forall open \ set \ W \subseteq \mathfrak{X}/\mathfrak{M}, \quad q^{-1}(W) \ is open \ in \ \mathfrak{X}.$$

• q is an open map. i.e.,

$$\forall$$
 open set $G \subseteq \mathfrak{X}$, $q(G)$ is open in $\mathfrak{X}/\mathfrak{M}$.

Proof. Since q is contractive, q is continuous and hence (1).

Definition (Seminorm on Quotient Spaces). Let $(\mathfrak{X}, \|\cdot\|)$ be a normed linear space. Let \mathfrak{M} be a linear manifold in \mathfrak{X} . We define a **seminorm** on $\mathfrak{X}/\mathfrak{M}$ to be a function from $\mathfrak{X}/\mathfrak{M}$ to \mathbb{R} given by

$$p(x+\mathfrak{M}) := \inf\{\|x+m\| : m \in \mathfrak{M}\}.$$

Proposition 4.1.3. Seminorms on quotient spaces are indeed seminorms.

Proposition 4.1.4. A seminorm on a quotient space $\mathfrak{X}/\mathfrak{M}$ is a norm if and only if \mathfrak{M} is closed.

Topological Vector Spaces

5.1 Definitions

5.2 Topological Vector Spaces

Definition (Vector Topology). Let X be a vector space over a topological field \mathbb{K} . We define a **vector topology** on X to be a topology on X such that vector addition and scalar multiplication are continuous.

Proposition 5.2.1 (Stability under Linear Combinations). Let X be a normed vector space over \mathbb{F} . Let K be a compact set in the space. Let C be a closed set in the space. Then $\forall \alpha, \beta \in \mathbb{F}, S := \alpha K + \beta C is \ closed$.

Proof.

The case where $\beta = 0$ is trivial. I will assume $\beta \neq 0$.

Let $\alpha, \beta \in \mathbb{F}$ be arbitrary.

Let $\{s_i\}_{i\in\mathbb{N}}$ be an arbitrary sequence in S that converges.

Say the limit is s_{∞} .

Since $s_i \in S$ for any $i \in \mathbb{N}$ and $S = \alpha K + \beta C$, $s_i = \alpha k_i + \beta c_i$ for some $k_i \in K$ and some $c_i \in C$, for any $i \in \mathbb{N}$.

Since $\{k_i\}_{i\in\mathbb{N}}$ is a sequence in K and K is compact, there exists a convergent subsequence $\{k_i\}_{i\in\mathbb{N}}$ in K.

Say $\{k_i\}_{i\in I}$ converges to $k_\infty \in K$.

Since $\{s_i\}_{i\in\mathbb{N}}$ converges to s_{∞} , $\{s_i\}_{i\in I}$ also converges to s_{∞} .

Since $s_i = \alpha k_i + \beta c_i$, $c_i = \beta^{-1}(s_i - \alpha k_i)$.

Define $c_{\infty} := \beta^{-1}(s_{\infty} - \alpha k_{\infty})$

Since $\{s_i\}_{i\in I}$ converges to s_{∞} and $\{k_i\}_{i\in I}$ converges to k_{∞} and $c_i = \beta^{-1}(s_i - \alpha k_i)$, $\{c_i\}_{i\in I}$ converges to c_{∞} .

Since $\{c_i\}_{i\in I}$ is a sequence in C and converges to c_∞ and C is closed, $c_\infty\in C$.

Since $s_{\infty} = \alpha k_{\infty} + \beta c_{\infty}$ and $k_{\infty} \in K$ and $c_{\infty} \in C$, $s_{\infty} \in \alpha K + \beta C$.

Since for any sequence in S that converges, the limit is also in S, S is closed.

Remark. The sum of two closed sets may not be closed.

Proof.

Counter-example 1

Consider $A := \{n : n \in \mathbb{N}\}$ and $B := \{n + \frac{1}{n} : n \in \mathbb{N}\}.$

(https://math.stackexchange.com/questions/124130/sum-of-two-closed-sets-in-mathbb-r-is-closed) Their sum contains the sequence $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ but does not contain 0.

Counter-example 2

Consider $A:=\mathbb{R}\times\{0\}$ and $B:=\{(x,y)\in\mathbb{R}^2: x,y>0, xy\geq 1\}.$

Their sum is $\mathbb{R} \times \mathbb{R}_{++}$.

5.3 Neighborhoods

Sequence Spaces

6.1 ℓ_p Space

Definition ($\ell_p^{(n)}$ Space). We define the $\ell_p^{(n)}$ space to be the set of all sequences $\{x_i\}_{i=1}^{i=n}$ such that

Definition (ℓ_p Space). We define the ℓ_p space to be the set of all sequences x such that $||x||_p$ is finite, equipped with the p-norm $||\cdot||_p$.

Proposition 6.1.1. For $p \in [1, +\infty)$, $(\ell_p, ||\cdot||_p)$ is complete.

Proof.

Let $\{x_n\}_{n\in\mathbb{N}}$ be an arbitrary Cauchy sequence in ℓ_p .

Since $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy in ℓ_p , $\forall \varepsilon > 0$, $\exists N(\varepsilon) \in \mathbb{N}$ such that $\forall m, n > N$, we have $||x_m - x_n||_p < \varepsilon$.

Since $||x_m - x_n||_p < \varepsilon$ and $|x_m^{(i)} - x_n^{(i)}| \le ||x_m - x_n||_p$ for any $i \in \mathbb{N}$, $|x_m^{(i)} - x_n^{(i)}| < \varepsilon$ for any $i \in \mathbb{N}$.

Since for any $i \in \mathbb{N}$ and any positive number ε , there exists an integer $N(\varepsilon)$ such that for any indices m, n > N, we have $|x_m^{(i)} - x_n^{(i)}| < \varepsilon$, by definition, $\{x_n^{(i)}\}_{n \in \mathbb{N}}$ is Cauchy in \mathbb{F} .

Since $\{x_n^{(i)}\}_{n\in\mathbb{N}}$ is Cauchy in \mathbb{F} and \mathbb{F} is complete, $\{x_n^{(i)}\}_{n\in\mathbb{N}}$ converges.

Let $x_0^{(i)} = x_n^{(i)}$. Let $x_0 = \{x_0^{(i)}\}_{i \in \mathbb{N}}$.

$$||x_0||_p = (\sum_{i=1}^{\infty} |x_0^{(i)}|^p)^{\frac{1}{p}}$$

6.2 c_0 Space and c_{00} Space

Definition (c_0 Space). We define c_0 to be

$$c_0 := \big\{ \{x_n\}_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \lim_{n \to \infty} x_n = 0 \big\}.$$

Definition (c_{00} Space). We define c_{00} to be

$$c_{00} := \{(x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \exists N \in \mathbb{N}, \forall n > N, x_n = 0\}.$$

i.e., the set of all eventually zero sequences of real numbers. i.e., the set of all sequences with finite support.

Proposition 6.2.1. The c_{00} is not complete in $(\ell_1, \|\cdot\|_1)$.

Proof. Define a sequence of vectors $(\mathfrak{x}_i)_{i\in\mathbb{N}}$ by $\mathfrak{x}_i^j:=\frac{1}{j^2}$ for $j\in\{1..i\}$ and $\mathfrak{x}_i^j:=0$ for j>i. Then $(\mathfrak{x}_i)_{i\in\mathbb{N}}$ converges to something that is not in c_{00} .

Proposition 6.2.2. The closure of c_{00} in the space $(\mathbb{R}^{\omega}, d_1)$ is ℓ_1 .

Proof. For one direction, we are to prove that $\operatorname{cl}(c_{00}) \subseteq \ell_1$. Let x be an arbitrary element in $\operatorname{cl}(c_{00})$. Since $x \in \operatorname{cl}(c_{00})$, there exists another element $y \in c_{00}$ such that $d_1(x,y) < 1$. Let $N \in \mathbb{N}$ be such that $\forall n > N, y_n = 0$. Then

$$\begin{aligned} &d_1(x,y) < 1\\ \iff &\sum_{n \in \mathbb{N}} |x_n - y_n| < 1\\ \iff &\sum_{n=1}^N |x_n - y_n| + \sum_{n > N} |x_n - y_n| < 1\\ \iff &\sum_{n=1}^N |x_n - y_n| + \sum_{n > N} |x_n| < 1\\ \iff &\sum_{n=1}^N ||x_n| - |y_n|| + \sum_{n > N} |x_n| < 1\\ \iff &\sum_{n=1}^N \left(|x_n| - |y_n|\right) + \sum_{n > N} |x_n| < 1\\ \iff &\sum_{n=1}^N |x_n| - \sum_{n=1}^N |y_n| + \sum_{n > N} |x_n| < 1\\ \iff &\sum_{n \in \mathbb{N}} |x_n| - \sum_{n=1}^N |y_n| < 1\\ \iff &\sum_{n \in \mathbb{N}} |x_n| < 1 + \sum_{n=1}^N |y_n|.\end{aligned}$$

21

Since $\sum_{n\in\mathbb{N}} |x_n|$ is bounded, $x\in\ell_1$.

For the reverse direction, we are to prove that $\ell_1 \subseteq \operatorname{cl}(c_{00})$. Let x be an arbitrary element in ℓ_1 . For $i \in \mathbb{N}$, define $x^i = \{x^i_j\}_{j \in \mathbb{N}}$ as $x^i_j = x_j$ for $j \leq i$ and $x^i_j = 0$ for j > i. Then $\forall i \in \mathbb{N}, x^i \in c_{00}$. Then

$$\lim_{i \in \mathbb{N}} d_1(x^i, x)$$

$$= \lim_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} |x_j^i - x_j|$$

$$= \lim_{i \in \mathbb{N}} \sum_{j > i} |x_j^i - x_j|$$

$$= \lim_{i \in \mathbb{N}} \sum_{j > i} |x_j|$$

$$= 0.$$

That is, $\lim_{i\in\mathbb{N}} d_1(x^i, x) = 0$. So $\lim_{i\in\mathbb{N}} x^i = x$. So $x \in cl(c_{00})$.

Proposition 6.2.3. The closure of c_{00} in the space $(\mathbb{R}^{\omega}, d_{\infty})$ is c_0 .

Proof. For one direction, we are to prove that $\operatorname{cl}(c_{00}) \subseteq c_0$. Let x be an arbitrary element in $\operatorname{cl}(c_{00})$. Let ε be an arbitrary positive real number. Since $x \in \operatorname{cl}(c_{00})$, there exists another element y in c_{00} such that $d_{\infty}(x,y) < \varepsilon$. That is, $\forall j \in \mathbb{N}, |x_j - y_j| < \varepsilon$. Since $y \in c_{00}$, $\exists N \in \mathbb{N}$ such that $\forall j > N, y_j = 0$. So $\forall j > N, |x_j| < \varepsilon$. That is,

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall j > N, \quad |x_j| < \varepsilon.$$

By definition of convergence of limits, $\lim_{j\in\mathbb{N}} x_j = 0$. So $x \in c_0$.

For the reverse direction, we are to prove that $c_0 \subseteq \operatorname{cl}(c_{00})$. Let x be an arbitrary element in c_0 . For $i \in \mathbb{N}$, define x^i as $x^i_j = x_j$ for $j \leq i$ and $x^i_j = 0$ for j > i. Then $\forall i \in \mathbb{N}$, $x^i \in c_{00}$. Let ε be an arbitrary positive real number. Since $x \in c_0$,

$$\exists N \in \mathbb{N}, \quad \forall j > N, \quad |x_j| < \varepsilon/2.$$

Let i > N. Then

$$d_{\infty}(x^{i}, x)$$

$$= \sup_{j \in \mathbb{N}} |x_{j}^{i} - x_{j}|$$

$$= \sup_{j > i} |x_{j}^{i} - x_{j}|$$

$$= \sup_{j > i} |x_{j}|$$

$$\leq \varepsilon/2 < \varepsilon.$$

That is,

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall i > N, \quad d_{\infty}(x^i, x) < \varepsilon.$$

By definition of convergence of sequences, $\lim_{i \in \mathbb{N}} x^i = x$. So $x \in cl(c_{00})$.

Proposition 6.2.4. Let $A := \{ \{x_n\}_{n \in \mathbb{N}} \in c_{00} : \sum_{n \in \mathbb{N}} x_n = 0 \}$. Then A is a subset of ℓ^1 and is closed in (ℓ^1, d_1) . i.e. cl(A) = A in (ℓ^1, d_1) .

Proof. Let $x = \{x^i\}_{i \in \mathbb{N}}$ be a sequence in ℓ^1 , where each $x^i = \{x^i_j\}_{j \in \mathbb{N}}$ is an element in A, that converges in (ℓ^1, d_1) . Say $\lim_{i \to \infty} x^i = x^{\infty}$.

First I claim that $x^{\infty} \in c_{00}$.

Now I claim that $\sum_{j\in\mathbb{N}} x_j^{\infty} = 0$. i.e. $x^{\infty} \in A$. Since $x^{\infty} \in c_{00}$,

$$\exists N \in \mathbb{N}, \quad \forall j > N, \quad x_i^{\infty} = 0.$$

Define $y_i := \sum_{j=1}^N x_j^i$. Define $y_\infty := \sum_{j=1}^N x_j^\infty$. It is easy to see that $\lim_{i \in \mathbb{N}} y_i = y_\infty$. Assume for the sake of contradiction that $y_\infty \neq 0$. i.e. $\{y_i\}_{i \in \mathbb{N}}$ does not converge to 0. Then

$$\exists \varepsilon_0 > 0, \quad \forall M \in \mathbb{N}, \quad \exists i_0 > M, \quad |y_{i_0} - 0| = |y_{i_0}| \ge \varepsilon_0.$$
 (1)

Since $\lim_{i\to\infty} x^i = x^\infty$,

$$\exists M_0 \in \mathbb{N}, \quad \forall i > M_0, \quad d_1(x^i, x^\infty) < \varepsilon_0.$$
 (2)

Consider statement (1) for a particular M, M_0 , we have

$$\exists i_0 > M_0, \quad |y_{i_0}| \ge \varepsilon_0. \tag{3}$$

That is,

$$\left|\sum_{j=1}^{N} x_j^{i_0}\right| \ge \varepsilon_0. \tag{3'}$$

Consider statement (2) for a particular i, i_0 , we have

$$d_1(x^{i_0}, x^{\infty}) < \varepsilon_0. \tag{4}$$

From statement (4) we can derive:

$$d_1(x^{i_0}, x^{\infty}) < \varepsilon_0$$

$$\iff \sum_{j \in \mathbb{N}} |x_j^{i_0} - x_j^{\infty}| < \varepsilon_0$$

$$\iff \sum_{j=1}^N |x_j^{i_0} - x_j^{\infty}| + \sum_{j>N} |x_j^{i_0} - x_j^{\infty}| < \varepsilon_0$$

6.3. HÖLDER'S INEQUALITY

$$\implies \sum_{j>N} |x_j^{i_0} - x_j^{\infty}| < \varepsilon_0$$

$$\iff \sum_{j>N} |x_j^{i_0} - 0| < \varepsilon_0$$

$$\iff \sum_{j>N} |x_j^{i_0}| < \varepsilon_0$$

$$\implies |\sum_{j>N} x_j^{i_0}| < \varepsilon_0$$

$$\implies |\sum_{j>N} x_j^{i_0}| < \varepsilon_0$$

$$\iff |\sum_{j\in\mathbb{N}} x_j^{i_0} - \sum_{j=1}^N x_j^{i_0}| < \varepsilon_0$$

$$\iff |0 - \sum_{j=1}^N x_j^{i_0}| < \varepsilon_0$$

$$\iff |\sum_{j=1}^N x_j^{i_0}| < \varepsilon_0$$

$$\iff |\sum_{j=1}^N x_j^{i_0}| < \varepsilon_0$$

This contradicts to statement (3'). So the original assumption that $y_{\infty} \neq 0$ is false. i.e. $y_{\infty} = 0$. It follows that $\sum_{j \in \mathbb{N}} x_j^{\infty} = 0$. This completes the proof.

6.3 Hölder's Inequality

Theorem 6 (Hölder's Inequality). Let $\mathfrak{X} = \mathbb{R}^n$ for some $n \in \mathbb{N}$. Let $x = (x_i)_{i=1}^n$ and $y = (y_i)_{i=1}^n$ be vectors in \mathfrak{X} . Then $\forall p, q \in (1, +\infty) : 1/p + 1/q = 1$, $||xy||_1 \le ||x||_p ||y||_q$. i.e.,

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}.$$

23

Function Spaces

7.1 The \mathcal{L}^p Norm

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}.$$

Hilbert Space

8.1 Hilbert Spaces

Definition (Hilbert Space). We define a **Hilbert space** to be a complete inner product space.

Example 8.1.1. ℓ^2 is a Hilbert space.

Equicontinuity in Metric Spaces

9.1 Definitions

Definition ((Pointwise) Equicontinuity). Let (X, d_X) and (Y, d_Y) be metric spaces. Let \mathcal{F} be a collection of functions from X to Y. Let x_0 be a point in X. We say that \mathcal{F} is (pointwise) equicontinuous at point x_0 if for any positive number ε , there exists some number $\delta(x_0, \varepsilon)$ such that for any function f in \mathcal{F} and any point x in X, we have

$$d_{Y}(f(x), f(x_{0})) < \varepsilon$$

whenever $d_X(x, x_0) < \delta(x_0, \varepsilon)$ is satisfied.

Definition (Uniform Equicontinuity). Let (X, d_X) and (Y, d_Y) be metric spaces. Let \mathcal{F} be a collection of functions from X to Y. We say that \mathcal{F} is uniformly equicontinuous if for any positive number ε , there exists some number $\delta(\varepsilon)$ such that for any function f in \mathcal{F} and any points x_1 and x_2 in X, we have

$$d_Y(f(x_1), f(x_2)) < \varepsilon$$

whenever $d_X(x_1, x_2) < \delta(\varepsilon)$ is satisfied.

9.2 Sufficient Conditions

Proposition 9.2.1. The closure of an equicontinuous family of functions is equicontinuous.

Proof.

Let (X, d_X) and (Y, d_Y) be metric spaces.

Let \mathcal{F} be an equicontinuous family of functions from X to Y.

We are to prove that $cl(\mathcal{F})$ is equicontinuous.

Let x_0 be an arbitrary point in X.

Let ε be an arbitrary positive number.

Since \mathcal{F} is equicontinuous at point x_0 , there exists some $\delta(x_0, \varepsilon)$ such that for any function f in \mathcal{F} and any point x in X such that $d_X(x, x_0) < \delta(x_0, \varepsilon)$, we have $d_Y(f(x), f(x_0)) < \varepsilon/3$. Let f be an arbitrary function in $cl(\mathcal{F})$.

Let x be an arbitrary point in X such that $d_X(x, x_0) < \delta(x_0, \varepsilon)$.

Since $f \in cl(\mathcal{F})$, there exists some function $f_0 \in \mathcal{F}$ such that $d_{\infty}(f, f_0) < \varepsilon/3$.

Since $d_{\infty}(f, f_0) < \varepsilon/3$, $d_Y(f(x), f_0(x)) < \varepsilon/3$ and $d_Y(f(x_0), f_0(x_0)) < \varepsilon/3$.

Since $f_0 \in \mathcal{F}$ and $d_X(x, x_0) < \delta(x_0, \varepsilon), d_Y(f_0(x), f_0(x_0)) < \varepsilon/3$.

Since $d_Y(f(x), f_0(x)) < \varepsilon/3$ and $d_Y(f(x_0), f_0(x_0)) < \varepsilon/3$ and $d_Y(f_0(x), f_0(x_0)) < \varepsilon/3$, $d_Y(f(x), f(x_0)) < \varepsilon$.

Since for any positive number ε , there exists some $\delta(x_0,\varepsilon)$ such that for any function f in $cl(\mathcal{F})$ and any point x in X such that $d_X(x,x_0) < \delta(x_0,\varepsilon)$, we have $d_Y(f(x),f(x_0)) < \varepsilon$, by definition of equicontinuous, $cl(\mathcal{F})$ is equicontinuous at point x_0 .

Since $cl(\mathcal{F})$ is equicontinuous at point x_0 for any point x_0 in X, $cl(\mathcal{F})$ is equicontinuous.

Operators

10.1 Bounded Operators

Definition (Bounded Operator). Let \mathfrak{X} and \mathfrak{Y} be normed linear spaces. Let T be a linear map from \mathfrak{X} to \mathfrak{Y} . We say that T is a **bounded operator** if

$$\exists k \in \mathbb{R}, \quad \forall x \in \mathfrak{X}, \quad ||Tx||_{\mathfrak{Y}} \le k||x||_{\mathfrak{X}}.$$

Definition (Operator Norm). Let \mathfrak{X} and \mathfrak{Y} be normed linear spaces. Let T be a bounded operator from \mathfrak{X} to \mathfrak{Y} . We define the **operator norm** of T, denoted by ||T||, to be the number given by

$$||T|| := \inf\{k \in \mathbb{R} : \forall x \in \mathfrak{X}, ||Tx||_{\mathfrak{Y}} \le k||x||_{\mathfrak{X}}\}.$$

Proposition 10.1.1.

$$||T|| = \sup\{||Tx||_{\mathfrak{Y}} : x \in \mathfrak{X}, ||x||_{\mathfrak{X}} = 1\}.$$

Proposition 10.1.2. Let X and Y be normed linear spaces. Let T be a linear map from X to Y. Then T is bounded if and only if T is continuous.

Proposition 10.1.3. Let $(\mathfrak{X}, \|\cdot\|)$ be a Banach space. Let S be a map in $\mathcal{B}(\mathfrak{X})$ that is invertible. Then

$$||S^{-1}|| = (\inf\{||Sx|| : ||x|| = 1\})^{-1}.$$

Proof.

$$\begin{split} \|S^{-1}\| &= \sup\{\|S^{-1}x\| : \|x\| = 1\} \\ &= \sup\{\frac{\|S^{-1}x\|}{\|x\|} : \|x\| \neq 0\} \\ &= \sup\{\frac{\|S^{-1}Sx\|}{\|Sx\|} : \|x\| \neq 0\} \end{split}$$

$$= \sup\{\frac{\|x\|}{\|Sx\|} : \|x\| \neq 0\}$$
$$= \sup\{\|Sx\|^{-1} : \|x\| = 1\}$$
$$= (\inf\{\|Sx\| : \|x\| = 1\})^{-1}.$$

That is,

$$||S^{-1}|| = (\inf\{||Sx|| : ||x|| = 1\})^{-1}.$$

Example 10.1.1 (The Multiplication Operator). Let $\mathfrak{X} = (\mathcal{C}([0,1],\mathbb{C}), \|\cdot\|_{\infty})$. Let f be a function in \mathfrak{X} . We define the **multiplication operator** on \mathfrak{X} , w.r.t. f, denoted by M_f , as

$$M_f(g) = fg.$$

Then M_f is bounded and $||M_f|| = ||f||_{\infty}$.

Proof. Let g be an arbitrary function in \mathfrak{X} . Then

$$||M_f g||_{\infty} = ||fg||_{\infty}$$

$$= \sup_{x \in [0,1]} |f(x)g(x)|$$

$$= \sup_{x \in [0,1]} |f(x)||g(x)|$$

$$\leq \sup_{x \in [0,1]} |f(x)| \sup_{x \in [0,1]} |g(x)|$$

$$= ||f||_{\infty} ||g||_{\infty}.$$

That is, $||M_f g||_{\infty} \leq ||f||_{\infty} ||g||_{\infty}$. So $||f||_{\infty}$ is an element of the set $S = \{k \in \mathbb{R} : \forall g \in \mathfrak{X}, ||M_f g||_{\mathfrak{Y}} \leq k ||g||_{\mathfrak{X}}\}$. So $||M_f|| = \inf(S) \leq ||f||_{\infty}$. Consider g_0 given by $g_0(x) = 1$. Then g_0 in \mathfrak{X} . Then

$$||M_f g_0||_{\infty} = ||f g_0||_{\infty} = ||f||_{\infty} = ||f||_{\infty} ||g_0||_{\infty}.$$

Let k be an arbitrary element in S. Assume for the sake of contradiction that $k < ||f||_{\infty}$. Then

$$||f||_{\infty} ||g_0||_{\infty} = ||M_f g_0||_{\infty}$$

 $\leq k ||g_0||_{\infty}$
 $< ||f||_{\infty} ||g_0||_{\infty}.$

This leads to a contradiction. So $\forall k \in S, \ k \geq \|f\|_{\infty}$. So $\|f\|_{\infty}$ is a lower bound for the set S. So $\|M_f\| = \inf(S) \geq \|f\|_{\infty}$. Since $\|M_f\| \leq \|f\|_{\infty}$ and $\|M_f\| \geq \|f\|_{\infty}$, we get $\|M_f\| = \|f\|_{\infty}$.

Example 10.1.2 (The Volterra Operator). Let $\mathfrak{X} = (\mathcal{C}([0,1],\mathbb{C}), \|\cdot\|_{\infty})$. Define

$$Vf := x \mapsto \int_0^x f(t)dt.$$

Then the Volterra Operator is bounded and $||V|| \leq 1$.

Proof. Let f be an arbitrary function in \mathfrak{X} with $||f||_{\infty} = 1$. Then $\forall x \in [0,1]$,

$$|Vf(x)| = \left| \int_0^x f(t)dt \right|$$

$$\leq \int_0^x |f(t)|dt$$

$$\leq \int_0^x \sup_{t \in [0,1]} |f(t)|dt$$

$$= \int_0^x ||f||_{\infty} dt$$

$$= \int_0^x 1dt$$

$$= x$$

That is, $\forall x \in [0,1], |Vf(x)| \le 1$. So $||Vf||_{\infty} \le 1$. Since $\forall f \in \mathfrak{X} : ||f||_{\infty} = 1, ||Vf||_{\infty} \le 1$, we get $||V|| \le 1$.

Example 10.1.3 (The Diagonal Operator). Let $\mathfrak{X} = \ell^2(\mathbb{N})$. Let

$$D = \begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & d_3 & \\ & & & \ddots \end{bmatrix}.$$

Then D is bounded if and only if $(d_i)_{i\in\mathbb{N}}$ is bounded and $||D|| = ||(d_i)_{i\in\mathbb{N}}||_{\infty}$.

Proof. Case 1.

$$||Dx||_{2}^{2} = \sum_{i \in \mathbb{N}} |d_{i}x_{i}|^{2}$$

$$= \leq \sum_{i \in \mathbb{N}} ||(d_{j})_{j \in \mathbb{N}}||_{\infty} |x_{i}|^{2}$$

$$= ||(d_{j})_{j \in \mathbb{N}}||_{\infty} \sum_{i \in \mathbb{N}} |x_{i}|^{2}$$

$$= ||(d_{j})_{j \in \mathbb{N}}||_{\infty} ||x||_{2}^{2}.$$

Case 2.

If $(d_i)_{i\in\mathbb{N}}\notin\ell^{\infty}$, $\exists (d_{n_i})_{i\in\mathbb{N}}\to\infty$.

$$||De_{n_i}||_2 = ||d_{n_i}e_{n_i}||_2$$
$$= |d_{n_i}|||e_{n_i}||_2$$
$$= |d_{n_i}|.$$

So $||D|| \ge ||De_{n_i}||_2 \to \infty$.

Example 10.1.4 (Weighted Shifts).

• Let $\mathcal{H} = \ell_{\mathbb{N}}^2$. Let $(w_n)_{n \in \mathbb{N}} \in \ell_{\mathbb{N}}^{\infty}$. We define an unilateral forward weighted shift W on \mathcal{H} as

$$W(x_n) := (0, w_1 x_1, w_2 x_2, w_3 x_3, \dots).$$

i.e.,

$$W = \begin{bmatrix} 0 & & & & & \\ w_1 & 0 & & & & \\ & w_2 & 0 & & & \\ & & w_3 & 0 & & \\ & & & \ddots & \ddots \end{bmatrix}.$$

Then W is bounded and $||W|| = \sup\{|w_n| : n \in \mathbb{N}\}.$

• Let $\mathcal{H} = \ell_{\mathbb{N}}^2$. Let $(v_n)_{n \in \mathbb{N}} \in \ell_{\mathbb{N}}^{\infty}$. We define an unilateral backward weighted shift V on \mathcal{H} as

$$V(x_n) := (v_1x_2, v_2x_3, v_3x_4, \dots).$$

Then V is bounded and $||V|| = \sup\{|v_n| : n \in \mathbb{N}\}.$

• Let $\mathcal{H} = \ell_{\mathbb{Z}}^2$. Let $(u_n)_{n \in \mathbb{Z}} \in \ell_{\mathbb{Z}}^{\infty}$. We define a **bilateral weighted shift** U on \mathcal{H} as

$$U(x_n) := (u_{n-1}x_{n-1})_{n \in \mathbb{Z}}.$$

Then U is bounded and $||U|| = \sup\{|u_n| : n \in \mathbb{Z}\}.$

Example 10.1.5 (The Composition Operators). Let $\mathfrak{X} = \mathcal{C}([0,1],\mathbb{C})$. Let $\varphi \in \mathcal{C}([0,1],[0,1])$. We define the **composition operator** on \mathfrak{X} , denoted by C_{φ} as

$$C_{\varphi}(f) := f \circ \varphi.$$

Then C_{φ} is contractive.

Proof.

$$||C_{\varphi}(f)|| = \sup_{x \in [0,1]} |(f \circ \varphi)(x)|$$

$$\leq ||f||_{\infty}.$$

10.2 Space of Bounded Operators

Proposition 10.2.1. Let \mathfrak{X} and \mathfrak{Y} be normed linear spaces. Then $\mathcal{B}(\mathfrak{X},\mathfrak{Y})$ is a vector space and the operator norm is a norm on $\mathcal{B}(\mathfrak{X},\mathfrak{Y})$.

Proposition 10.2.2. Let \mathfrak{X} and \mathfrak{Y} be normed linear spaces. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two equivalent norms on $\mathcal{B}(\mathfrak{X},\mathfrak{Y})$. Then $T \in \mathcal{B}(\mathfrak{X},\mathfrak{Y},\|\cdot\|_1)$ if and only if $T \in \mathcal{B}(\mathfrak{X},\mathfrak{Y},\|\cdot\|_2)$.

Proposition 10.2.3. Let \mathfrak{X} and \mathfrak{Y} be normed linear spaces. Let $\mathcal{B}(\mathfrak{X},\mathfrak{Y})$ be the space of bounded linear operators from \mathfrak{X} to \mathfrak{Y} . Then if \mathfrak{Y} is complete, $\mathcal{B}(\mathfrak{X},\mathfrak{Y})$ is complete.

10.3 Dual Spaces

Definition ((Topological) Dual Space). Let \mathfrak{X} be a normed linear space over field \mathbb{K} . We define the (topological) dual space of \mathfrak{X} , denoted by \mathfrak{X}^* , to be the space $\mathcal{B}(\mathfrak{X}, \mathbb{K})$.

Definition (Linear Functionals). We call the elements of \mathfrak{X}^* linear functionals.

Proposition 10.3.1. Let X be a normed linear space. Then there exists a contractive map from X to its double dual X^{**} .

Adjoint Operator

11.1 Definitions

Definition (Adjoint Matrix). Let A be an $m \times n$ matrix. We define the **adjoint** of A, denoted by A^* , to be an $n \times m$ matrix given by

$$(A^*)_{ij} := \overline{(A)_{ji}}.$$

Definition (Adjoint Operator). Let V and W be inner product spaces. Let T be a linear map from V to W. We define the **adjoint** of T, denoted by T^* , to be a map from W to V such that

$$\forall x \in V, \forall y \in W, \quad \langle T(x), y \rangle_W = \langle x, T^*(y) \rangle_V.$$

Proposition 11.1.1 (Existence). Let V be a finite-dimensional inner product space and T be a linear operator on V. Then the adjoint of T exists.

Proposition 11.1.2 (Uniqueness). Let V be an inner product space and T be a linear operator on V. Then the adjoint of T is unique, provided that it exists.

11.2 Properties of the Adjoint Operator

Proposition 11.2.1. Let V be an inner product space. Then

- (1) $(I_V)^* = I_V$ where I_V is the identity operator on V.
- (2) $T^{**} = T$ for any linear operator T on V.

Proposition 11.2.2. Let V be an inner product space and T be a linear operator on V. Then T^* is also linear.

Proposition 11.2.3. Let V be an inner product space. Then

(1) For any linear operators T and U,

$$(T+U)^* = T^* + U^*.$$

(2) For any linear operator T,

$$(cT)^* = \overline{c} \cdot T^*.$$

(3) For any linear operator T and U,

$$(TU)^* = U^*T^*.$$

Proposition 11.2.4. Let V be a finite-dimensional inner product space and T be a linear operator on V. Then if T is invertible, T^* is also invertible.

Proposition 11.2.5. Let V be an inner product space and T be an invertible linear operator on V. Then $(T^{-1})^* = (T^*)^{-1}$.

11.3 Normal Operators

Definition (Normal). Let V be an inner product space and T be a linear operator on V. We say that T is **normal** if $TT^* = T^*T$.

11.4 Self-adjoint

Convolution

Definition (Convolution). Let f and g be functions from \mathbb{R} to \mathbb{R} . We define the **convolution** of f and g, denoted by f * g, to be a function on \mathbb{R} given by

$$(f*g)(t) := \int_{-\infty}^{+\infty} f(\tau)g(t-\tau)dt.$$

Coercive Functions

13.1 Definitions

Definition (Coercive). Let f be a function from \mathbb{R}^d to \mathbb{R}^* . We say that f is coercive if $\lim_{\|x\|\to\infty} f(x) = +\infty$.

13.2 Properties

Proposition 13.2.1. Let f be a proper lower semi-continuous function from \mathbb{R}^d to \mathbb{R}^* . Let K be a compact set in \mathbb{R}^d . Assume $K \cap \text{dom}(f) \neq \emptyset$. Then f attains its minimum over K.

Proof.

Define $m := \inf_{x \in K} f(x)$.

Since $m = \inf_{x \in K} f(x)$, there exists a sequence $\{x_i\}_{i \in \mathbb{N}}$ in K such that $\lim_{i \to \infty} f(x_i) = m$.

Since K is compact and $\{x_i\}_{i\in\mathbb{N}}\subseteq K$, there exists a convergent subsequence $\{x_i\}_{i\in I}$ in K where I is an infinite subset of \mathbb{N} .

Say the limit is x_{∞} where $x_{\infty} \in K$.

Since $\lim_{i\to\infty} f(x_i) = m$, we get $\lim_{i\in I, i\to\infty} f(x_i) = m$.

Since $\lim_{i \in I, i \to \infty} f(x_i) = m$, we get $\lim \inf_{i \in I, i \to \infty} f(x_i) = m$.

Since f is lower semi-continuous and $\lim_{i \in I, i \to \infty} x_i = x_\infty$, we get $f(x_\infty) \le \liminf_{i \in I, i \to \infty} x_i$.

That is, $f(x_{\infty}) \leq m$.

Since $m = \inf_{x \in K} f(x)$, we have $\forall x \in K, f(x) \geq m$.

In particular, $f(x_{\infty}) \geq m$.

Since $f(x_{\infty}) \geq m$ and $f(x_{\infty}) \leq m$, $f(x_{\infty}) = m$.

Since f is proper, $f(x_{\infty}) = m \neq -\infty$.

So f attains its minimum at point x_{∞} .

Proposition 13.2.2. Let f be a proper, lower semi-continuous, and coercive function from \mathbb{R}^d to \mathbb{R}^* . Let C be a closed subset of \mathbb{R}^d . Assume $C \cap \text{dom}(f) \neq \emptyset$. Then f attains its minimum over C.

Proof.

Since $C \cap \text{dom}(f) \neq \emptyset$, take $x \in C \cap \text{dom}(f)$.

Since f is coercive, $\exists R$ such that $\forall y, ||y|| > R$, we have $f(y) \geq f(x)$.

Since $x \in C \cap \text{dom}(f)$ and $\forall y, ||y|| > R$, we have $f(y) \geq f(x)$, the set of minimizers of f over C is the same as the set of minimizers of f over $C \cap \text{ball}[0, R]$.

Since C and ball [0, R] are both closed, $C \cap \text{ball}[0, R]$ is closed.

Since ball[0, R] is bounded, $C \cap \text{ball}[0, R]$ is bounded.

Since $C \cap \text{ball}[0, R]$ is closed and bounded, by the Heine-Borel Theorem, $C \cap \text{ball}[0, R]$ is compact.

Since f is proper and lower semi-continuous and $C \cap \text{ball}[0, R]$ is compact, f attains its minimum over $C \cap \text{ball}[0, R]$.

So f attains its minimum over C.

Unclassified Results

Proposition 14.0.1. Let (X,d) be a compact metric space. Let L(X) be the set of all Lipschitz functions from X to \mathbb{R} . Let C(X) be the set of all continuous functions from X to \mathbb{R} . Then L(X) is dense in C(X).

Proposition 14.0.2. Let $(V, \|\cdot\|)$ be a normed vector space. Let S be a subset of V. Let p be a vector in V. Then we have the followings.

(1)
$$p + int(S) = int(p + S)$$
,

(2)
$$p + cl(S) = cl(p + S)$$
.

Proof.

Proof of (1).

For one direction, let x be an arbitrary point in the set (p + int(S)).

We are to prove that $x \in int(p+S)$.

Since $x \in (p + int(S)), (x - p) \in int(S)$.

Since $(x-p) \in int(S)$, by definition of interior, there exists a radius r such that

$$B(x-p,r) \subseteq S$$
.

It follows that $B(x,r) \subseteq p + S$.

Since there exists a radius r such that $B(x,r) \subseteq p+S$, by definition of interior,

$$x \in int(p+S)$$
.

For the reverse direction, let x be an arbitrary point in int(p+S).

We are to prove that $x \in p + int(S)$.

Since $x \in int(p+S)$, by definition of interior, there exists a radius r such that

$$B(x,r) \subseteq (p+S).$$

It follows that $B(x-p,r) \subseteq S$.

Since there exists a radius r such that $B(x-p,r) \subseteq S$, by definition of interior,

$$(x-p) \in int(S)$$
.

Since $(x - p) \in int(S)$, we get $x \in (p + int(S))$.

Proof of (2).

For one direction, let x be an arbitrary point in the set (p + cl(S)).

We are to prove that $x \in cl(p+S)$.

Since $x \in (p + cl(S))$, we get $(x - p) \in cl(S)$.

Since $(x-p) \in cl(S)$, by definition of closure, for any radius r, we have

$$B(x-p,r) \cap S \neq \emptyset$$
.

It follows that $B(x,r) \cap (p+S) \neq \emptyset$.

Since for any radius r, $B(x,r) \cap (p+S) \neq \emptyset$, by definition of closure, we get

$$x \in cl(p+S)$$
.

For the reverse direction, let x be an arbitrary point in cl(p+S).

We are to prove that $x \in (p + cl(S))$.

Since $x \in cl(p+S)$, by definition of closure, for any radius r, we have

$$B(x,r) \cap (p+S) \neq \emptyset$$
.

It follows that $B(x-p,r) \cap S \neq \emptyset$.

Since for any radius r, $B(x-p,r) \cap S \neq \emptyset$, by definition of closure, we get

$$(x-p) \in cl(S)$$
.

Since $(x - p) \in cl(S)$, we get $x \in (p + cl(S))$.

Proposition 14.0.3. Let $(V, \|\cdot\|)$ be a normed vector space. Let S be a subset of V. Let λ be a non-zero real number. Then

- (1) $\lambda int(S) = int(\lambda S)$.
- (2) $\lambda \operatorname{cl}(S) = \operatorname{cl}(\lambda S)$.

Proof.

Proof of (1).

For one direction, let x be an arbitrary point in $\lambda int(S)$.

We are to prove that $x \in int(\lambda S)$.

Since $x \in \lambda int(S)$, we get $x/\lambda \in int(S)$.

Since $x/\lambda \in int(S)$, by definition of interior, there exists a radius r such that

$$B(x/\lambda, r) \subseteq S$$
.

Let y be an arbitrary point in $B(x, \lambda r)$.

Since $y \in B(x, \lambda r)$, we get $||y - x|| \le \lambda r$.

Since $||y - x|| \le \lambda r$, we get $||y/\lambda - x/\lambda|| \le r$.

Since $||y/\lambda - x/\lambda|| \le r$, we get $y/\lambda \in B(x/\lambda, r)$.

Since $y/\lambda \in B(x/\lambda, r)$ and $B(x/\lambda, r) \subseteq S$, we get $y/\lambda \in S$.

Since $y/\lambda \in S$, we get $y \in \lambda S$.

Since any point in $B(x, \lambda r)$ is also in λS , we get $B(x, \lambda r) \subseteq \lambda S$.

Since there exists a radius r such that $B(x, \lambda r) \subseteq \lambda S$, by definition of interior, we get

$$x \in int(\lambda S)$$
.

For the reverse direction,