Министерство науки и высшего образования РФ ФГБОУ ВО ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

ОТЧЁТ

о лабораторной работе №4

Документирование программы.

Дисциплина: Технологии и методы

программирования

Группа:18ПИ1

Выполнил: Асаян А.В.

Количество баллов:

Дата сдачи:

Проверил: к.т.н., доцент Лупанов М.Ю.

- 1 Цель работы
- 1.1 Освоить документирование программы на языке C++ с использованием программы Doxygen.
 - 2 Задания к практической работе
- 2.1 Сформировать блоки документирования для ранее разработанных модулей.
 - 2.2 Сформировать документацию в форматах HTML и PDF.
 - 3 Результат выполнения работы
- 3.1 Были сформированы блоки документирования для модулей modAlphaCipher и Perestanovka, разработанных в результате выполнения лабораторных работ № 1, № 2, № 3. Код заголовочного файла modAlphaCipher.h для модуля modAlphaCipher:

```
#pragma once
    #include <vector>
    #include <codecvt>
    #include <string>
    #include <map>
    /** @file
     * @author Асаян А.В.
     * @version 1.0
     * @date 28.05.2019
     * @copyright MBCT ПГУ
     * @warning Работа студента.
     * @brief Заголовочный файл для модуля modAlphaCipher
     * /
    class modAlphaCipher
    private:
        std::wstring numAlpha =
                 L"АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ"; ///<
Русский алфавит по порядку.
                             <wchar t,int> alphaNum;///<</pre>
                 std::map
Ассоциативный массив "номер по символу"
        std::vector <int> key;///< Ключ
         * @brief Валидация ключа.
         * @param [in] s Ключ
```

```
* @return Обработанный ключ.
         * /
        std::wstring getValidKey(const std::wstring & s);
         * @brief Валидация открытого текста.
         * @param [in] s Открытый текст.
         * @return Обработыннй открытый тест.
         std::wstring getValidOpenText(const std::wstring
& s);
        /**
                   @brief Валидация текста,
                                               требующего
расшифровки.
         * @param [in] s Текст, требующий расшифровки.
         * @return Шифр-текст.
         * /
                  std::wstring getValidCipherText(const
std::wstring & s);
        /**
         * @brief Преобразование "строка-вектор"
          * @param [in] s Строка, требущая конвертации в
целочисленный вектор.
         * @return Целочисленный вектор.
        std::vector<int> convert(const std::wstring& s);
         * @brief Преобразование "вектор-строка.
         * @param [in] v Вектор, требующий преобразования
в строку.
         * @return Строка.
        std::string convert(const std::vector<int>& v);
    public:
        /**
         *@brief Пустой конструктор для установки ключа.
         *@detail Конструктор запрещён.
        modAlphaCipher() = delete;
         *@brief Конструктор для установки ключа.
         *@details Устанавливает ключ, с помощью которого
будет осуществляться шифрование и расшифрование.
          *@param [in] skey Строка-ключ. Должна состоять
```

из букв русского алфавита в верхнем регистре. Не должна

быть пустой. Все символы в нижнем регистре будут автоматически преобразованы в верхний.

 $*@throw cipher_error$, если строка пустая или содержит символы не русского алфавита или ключ вырожденный.

```
*/
modAlphaCipher(const std::wstring& skey);
/**
```

*@brief Метод шифрования текста шифром Гронсфельда.

*@param [in] open_text Открытый текст.Не должен быть пустой строкой. Должен содержать только символы русского алфавита. Строчные символы автоматически преобразуются к прописным. Все не-буквы удаляются

*@throw cipher_error, если строка пустая.

std::string encrypt(const std::wstring&open_text);

*@brief Метод шифрования текста шифром Гронсфельда.

*@param [in] open_text Текст, требующий расшифровки.Не должен быть пустой строкой. Должен содержать только символы русского алфавита в верхнем регистре.

*@throw cipher_error, если строка пустая, содержит символы не русского алфавита или символы в нижнем регистре.

```
std::string decrypt(const std::wstring&
cipher_text);
};
class cipher_error: public std::invalid_argument
{
   public:
        explicit cipher_error (const std::string&
what_arg):
        std::invalid_argument(what_arg) {}
        explicit cipher error (const char* what arg):
```

Код заголовочного файла Perestanovka.h для модуля Perestanovka:

std::invalid argument(what arg) {}

```
/** @file
```

};

```
* @author Асаян А.В.

* @version 1.0

* @date 28.05.2019

* @copyright ИБСТ ПГУ

* @warning Работа студента.

* @brief Заголовочный файл для модуля Perestanovka

*/

#pragma once

#include <string>

#include <stdexcept>

/** @brief Шифрование методом табличной маршрутной перестановки.

* @details Ключ устанавливается в конструкторе.
```

- \star Для зашифровывания и расшифровывания предназначены методы shifr и rashifr.
 - * @warning Реализация только для английского языка.
 */

class Perestanovka{
private:

int k;///< Ключ

std::string getValidOpenText(const std::string & s);//< Метод проверки открытого текста.

std::string getValidCipherText(const std::string & s);//< Метод проверки зашифрованного текста.

public:

/** @brief Конструктор без параметра.

* @details Конструктор запрещён.

* /

Perestanovka() = delete;

- /** @brief Конструктор для установки ключа.
 - * param [in] k ключ, целое, положительное число.
 - * @throw cipher_error, если ключ меньше или равен 1.

Perestanovka(const int k);

/**

- * @brief Метод для шифрования текста методом маршрутной табличной перестановки.
- * @details Запись в таблицу происходит слева направо, сверху вниз. Считывание из таблицы сверху вниз, справа налево
- * @param [in] t Открытый текст. Не должен быть пустой строкой. Текст не должен быть меньше или равен длине ключа. Все не-буквы будут автоматически удалены.
 - * @return Зашифрованный текст.

* @throw cipher_error, если строка пустая или меньше или равна длине ключа.

```
*/
    std::string shifr(const std::string& t);
/**
```

- * @brief Метод для расшифровки зашифрованного текста по известному ключу.
- * @param [in] z Зашифрованный текст. Должен содержать только символы английского алфавита в верхнем регистре. Строка не должна быть пустой.
 - * @return Расшифрованный текст.
- * @throw cipher_error, если строка пустая или встречена не английская буква в верхнем регистре.

3.2 Была сформирована документация в формате HTML и PDF. Документация для модулей modAlphaCipher и Perestanovka представлена в приложении A и приложении Б.

4. Вывод

В результате выполнения лабораторной работы были изучены основные возможности пакета Doxygen. Было освоено документирование в стиле Doxygen. Были получены практические навыки по редактированию конфигурационного файла, формированию документации в форматах HTML и PDF, созданию блоков документирования в программе.

ПРИЛОЖЕНИЕ А.

Документация модуля modAlphaCipher.

Шифрование методом Гронсфельда.

1.0

Создано системой Doxygen 1.8.11

Оглавление

1	Иер	архиче	ский список классов	1
	1.1	Иерар	хия классов	1
2	Алф	равитні	ий указатель классов	3
	2.1	Класс	ы	3
3	Спи	сок фа	йлов	5
	3.1	Файлі	J	5
4	Кла	ссы		7
	4.1	Класс	cipher_error	7
	4.2	Класс	modAlphaCipher	8
		4.2.1	Конструктор(ы)	8
			4.2.1.1 modAlphaCipher(const std::wstring &skey)	8
		4.2.2	Методы	9
			4.2.2.1 convert(const std::wstring &s)	9
			4.2.2.2 convert(const std::vector< int > &v)	9
			4.2.2.3 decrypt(const std::wstring &cipher_text)	9
			4.2.2.4 encrypt(const std::wstring &open_text)	10
			4.2.2.5 getValidCipherText(const std::wstring &s)	10
			4.2.2.6 getValidKey(const std::wstring &s)	10
			4.2.2.7 getValidOpenText(const std::wstring &s)	1
		4.2.3	Данные класса	1
			4.2.3.1 numAlpha	l 1
5	Фай	ілы	1	3
	5.1	Файл	f modAlphaCipher.h	13
		5.1.1	Подробное описание	13
Δ 1	пфаві	итный :	указатель	5

Иерархический список классов

1.1 Иерархия классов

Иерархия классов.

nvalid_argument	
cipher_error	
modAlphaCipher	8

T.T.	,	
Иерархический	і список	классов

Алфавитный указатель классов

2.1 Классы

T/	_			
классы	C	ИΧ	кратким	описанием

cipher_error																			7
modAlphaCipher																 			8

Алфавитный	указатель	классов
TITTO	JIMOMICUID	IMICCOOL

Список файлов

ว 1	Ф. ч
٠ 5 . ا	- Фаилы

Полный список документированных файлов.

$\operatorname{modAlphaCipher.h}$								
Заголовочный файл для модуля modAlphaCipher	 							13

6 Список файлов

Классы

4.1 Класс cipher_error

 Γ раф наследования:cipher_error:

 Γ раф связей класса cipher_error:

8 Классы

Открытые члены

```
• cipher error (const std::string &what arg)
```

• cipher error (const char *what arg)

Объявления и описания членов класса находятся в файле:

• modAlphaCipher.h

4.2 Kласс modAlphaCipher

Открытые члены

• modAlphaCipher ()=delete

Пустой конструктор для установки ключа. Конструктор запрещён.

• modAlphaCipher (const std::wstring &skey)

Конструктор для установки ключа.

• std::string encrypt (const std::wstring &open text)

Метод шифрования текста шифром Гронсфельда.

• std::string decrypt (const std::wstring &cipher text)

Метод шифрования текста шифром Гронсфельда.

Закрытые члены

 - std::wstring get Valid
Key (const std::wstring &s)

Валидация ключа.

• std::wstring getValidOpenText (const std::wstring &s)

Валидация открытого текста.

• std::wstring getValidCipherText (const std::wstring &s)

Валидация текста, требующего расшифровки.

• std::vector< int > convert (const std::wstring &s)

Преобразование "строка-вектор".

• std::string convert (const std::vector< int > &v)

Преобразование "вектор-строка.

Закрытые данные

• std::wstring numAlpha

Русский алфавит по порядку.

• std::map< wchar_t, int > alphaNum

Ассоциативный массив "номер по символу".

• std::vector< int > key

Ключ

4.2.1 Конструктор(ы)

4.2.1.1 modAlphaCipher::modAlphaCipher (const std::wstring & skey)

Конструктор для установки ключа.

Устанавливает ключ, с помощью которого будет осуществляться шифрование и расшифрование.

Аргументы

in	skey	Строка-ключ. Должна состоять из букв русского алфавита в верхнем регистре. Не
		должна быть пустой. Все символы в нижнем регистре будут автоматически
		преобразованы в верхний.

Исключения

cipher_error,если	строка пустая или содержит символы не русского алфавита или ключ
	вырожденный.

4.2.2 Методы

4.2.2.1 std::vector< int > modAlphaCipher::convert (const std::wstring & s) [inline], [private]

Преобразование "строка-вектор".

Аргументы

in	s	Строка, требущая конвертации в целочисленный вектор.
----	---	--

Возвращает

Целочисленный вектор.

4.2.2.2 std::string modAlphaCipher::convert (const std::vector< int > & v) [inline], [private]

Преобразование "вектор-строка.

Аргументы

in	v	Вектор, требующий преобразования в строку.

Возвращает

Строка.

4.2.2.3 std::string modAlphaCipher::decrypt (const std::wstring & cipher_text)

Метод шифрования текста шифром Гронсфельда.

Аргументы

in	open_text	Текст, требующий расшифровки.Не должен быть пустой строкой. Должен
		содержать только символы русского алфавита в верхнем регистре.

10 Классы

Исключения

cipher_error,если	строка пустая, содержит символы не русского алфавита или символы в
	нижнем регистре.

4.2.2.4 std::string modAlphaCipher::encrypt (const std::wstring & open_text)

Метод шифрования текста шифром Гронсфельда.

Аргументы

in	open_text	Открытый текст.Не должен быть пустой строкой. Должен содержать только	
		символы русского алфавита. Строчные символы автоматически	
		преобразуются к прописным. Все не-буквы удаляются	

Исключения

cipher_error,если	строка пустая.
-------------------	----------------

4.2.2.5 std::wstring modAlphaCipher::getValidCipherText (const std::wstring & s) [inline], [private]

Валидация текста, требующего расшифровки.

Аргументы

in	s	Текст, требующий расшифровки.
----	---	-------------------------------

Возвращает

Шифр-текст.

4.2.2.6 std::wstring modAlphaCipher::getValidKey (const std::wstring & s) [inline], [private]

Валидация ключа.

Аргументы

in	S	Ключ
111	۵	123110-1

Возвращает

Обработанный ключ.

4.2.2.7 std::wstring modAlphaCipher::getValidOpenText (const std::wstring & s) [inline], [private]

Валидация открытого текста.

Аргументы

in	S	Открытый текст.
----	---	-----------------

Возвращает

Обработыннй открытый тест.

- 4.2.3 Данные класса
- $4.2.3.1 \quad {\tt std::wstring} \ {\tt modAlphaCipher::numAlpha} \quad [{\tt private}]$

Инициализатор

= L"АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЦТЫЬЭЮЯ"

Русский алфавит по порядку.

Объявления и описания членов классов находятся в файлах:

- $\bullet \ modAlphaCipher.h$
- $\bullet \ \, mod Alpha Cipher.cpp$

Классы 12

Файлы

5.1 Файл modAlphaCipher.h

Заголовочный файл для модуля modAlphaCipher.

```
#include <vector>
#include <codecvt>
#include <string>
#include <map>
Граф включаемых заголовочных файлов для modAlphaCipher.h:
```


Классы

- $\bullet \ class \ modAlphaCipher \\$
- $\bullet \ class \ cipher_error$

5.1.1 Подробное описание

Заголовочный файл для модуля modAlphaCipher.

14 Файлы

Автор

Асаян А.В.

Версия

1.0

Дата

28.05.2019

Aвторство

ИБСТ ПГУ

Предупреждения

Работа студента.

Предметный указатель

```
cipher_error, 7
convert
     modAlphaCipher, 9
decrypt
     modAlphaCipher, 9
encrypt
     modAlphaCipher, 10
{\it getValidCipherText}
     \bmod Alpha Cipher,\, {\color{blue}10}
\operatorname{getValidKey}
     modAlphaCipher, 10
getValidOpenText
     modAlphaCipher, 10
modAlphaCipher, 8
     convert, 9
     decrypt, 9
     encrypt, 10
     \operatorname{getValidCipherText},\, \underline{10}
     getValidKey, 10
     get Valid Open Text, 10
     modAlphaCipher, 8
     numAlpha, 11
\bmod Alpha Cipher.\,h,\, {\color{blue}13}
numAlpha
     \bmod Alpha Cipher,\, \color{red} 11
```

ПРИЛОЖЕНИЕ Б.

Документация модуля Perestanovka.

Шифр табличной маршрутной перестановки.

1.0

Создано системой Doxygen 1.8.11

Оглавление

1	ский список классов	1		
	1.1	Иерар	охия классов	1
2	Алф	авитні	ый указатель классов	3
	2.1	Класс	Ы	3
3	Спи	сок фа	йлов	5
	3.1	Файлн	ы	5
4	Кла	ссы		7
	4.1	Класс	cipher_error	7
	4.2	Класс	Perestanovka	8
		4.2.1	Подробное описание	8
		4.2.2	Конструктор(ы)	9
			4.2.2.1 Perestanovka()=delete	9
			4.2.2.2 Perestanovka(const int k)	9
		4.2.3	Методы	9
			4.2.3.1 rashifr(const std::string &z)	9
			4.2.3.2 shifr(const std::string &t)	9
5	Фай	лы	J	11
	5.1	Файл	Perestanovka.h	11
		5.1.1	Подробное описание	11
AJ	ıфави	итный ;	указатель	13

Иерархический список классов

1.1 Иерархия классов

Иерархия классов.

invalid argument
cipher_error
Perestanovka

T.T.	,	
Иерархический	і список	классов

Алфавитный указатель классов

2.1 Классы

Классы	c	их	кратким	описанием
тлассы		$H\Lambda$	кратким	описанием

cipher_error	7
Perestanovka	
Шифрование методом табличной маршрутной перестановки	8

Алфавитный	указатель	классов
TITTO	JIMOMICUID	IMICCOOL

Список файлов

2	1	đ	0	벍	тт	тт
·).	1	Ψ	6	и	./ [Ы

Полный список документированных	файлов
---------------------------------	--------

Perestanovka.h	
Заголовочный файл для модуля Perestanovka	11

6 Список файлов

Классы

4.1 Класс cipher_error

 Γ раф наследования:cipher_error:

 Γ раф связей класса cipher_error:

8 Классы

Открытые члены

- cipher error (const std::string &what arg)
- cipher error (const char *what arg)

Объявления и описания членов класса находятся в файле:

• Perestanovka.h

4.2 Класс Perestanovka

Шифрование методом табличной маршрутной перестановки.

#include <Perestanovka.h>

Открытые члены

• Perestanovka ()=delete

Конструктор без параметра.

• Perestanovka (const int k)

Конструктор для установки ключа.

• std::string shifr (const std::string &t)

Метод для шифрования текста методом маршрутной табличной перестановки.

• std::string rashifr (const std::string &z)

Метод для расшифровки зашифрованного текста по известному ключу.

Закрытые члены

• std::string getValidOpenText (const std::string &s)

Метод проверки открытого текста.

• std::string getValidCipherText (const std::string &s)

Метод проверки зашифрованного текста.

Закрытые данные

• int k

Ключ

4.2.1 Подробное описание

Шифрование методом табличной маршрутной перестановки.

Ключ устанавливается в конструкторе. Для зашифровывания и расшифровывания предназначены методы shifr и rashifr.

Предупреждения

Реализация только для английского языка.

4.2 Класс Perestanovka 9

- 4.2.2 Конструктор(ы)
- 4.2.2.1 Perestanovka::Perestanovka () [delete]

Конструктор без параметра.

Конструктор запрещён.

4.2.2.2 Perestanovka::Perestanovka (const int k)

Конструктор для установки ключа.

Аргументы

in	k	- ключ, целое, положительное число.
----	---	-------------------------------------

Исключения

cipher_error,если	ключ меньше или равен 1.
-------------------	--------------------------

- 4.2.3 Методы
- 4.2.3.1 std::string Perestanovka::rashifr (const std::string & z)

Метод для расшифровки зашифрованного текста по известному ключу.

Аргументы

in	Z	Зашифрованный текст. Должен содержать только символы английского алфавита в
		верхнем регистре. Строка не должна быть пустой.

Возвращает

Расшифрованный текст.

Исключения

4.2.3.2 std::string Perestanovka::shifr (const std::string & t)

Метод для шифрования текста методом маршрутной табличной перестановки.

Запись в таблицу происходит слева направо, сверху вниз. Считывание из таблицы сверху вниз, справа налево

10 Классы

Аргументы

in	t	Открытый текст. Не должен быть пустой строкой. Текст не должен быть меньше или
		равен длине ключа. Все не-буквы будут автоматически удалены.

Возвращает

Зашифрованный текст.

Исключения

cipher_error,если строка пустая или меньше или равна длине ключа.

Объявления и описания членов классов находятся в файлах:

- Perestanovka.h
- Perestanovka.cpp

Файлы

5.1 Файл Perestanovka.h

Заголовочный файл для модуля Perestanovka.

```
#include <string>
#include <stdexcept>
Граф включаемых заголовочных файлов для Perestanovka.h:
```


Классы

• class Perestanovka

Шифрование методом табличной маршрутной перестановки.

• class cipher error

5.1.1 Подробное описание

Заголовочный файл для модуля Perestanovka.

Автор

Асаян А.В.

12 Файлы

Версия

1.0

Дата

28.05.2019

Авторство

ивст пгу

Предупреждения

Работа студента.

Предметный указатель

```
cipher_error, 7

Perestanovka, 8

Perestanovka, 9

rashifr, 9

shifr, 9

Perestanovka.h, 11

rashifr

Perestanovka, 9

shifr

Perestanovka, 9
```