4DM50: Dynamics and Control of Cooperation

Network synchronization II

Erik Steur e.steur@tue.nl

Recap

Partial synchronization

Partial synchronization with delays

Role of network topology

Systems of the form

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$

with CB > 0 and diffusive coupling functions

$$u_i = \sum\nolimits_{j \in \mathcal{N}_i} \gamma_{ij} (y_j - y_i)$$

where diffusion coefficients $\gamma_{ij} = \gamma_{ji} > 0$ and $j \in \mathcal{N}_i \iff i \in \mathcal{N}_j$

Diffusive coupling matrix

$$\Gamma = \begin{pmatrix} \sum_{j=2}^{N} \gamma_{1j} & -\gamma_{12} & \cdots & -\gamma_{1N} \\ -\gamma_{21} & \sum_{j=1, j \neq 2}^{N} \gamma_{2j} & \ddots & \vdots \\ \vdots & \ddots & \ddots & -\gamma_{(N-1)N} \\ -\gamma_{N1} & \cdots & -\gamma_{N(N-1)} & \sum_{j=1}^{N-1} \gamma_{Nj} \end{pmatrix}$$

with $\gamma_{ij} = 0$ if (and only if) $j \notin \mathcal{N}_i$

- Γ is singular
- $\Gamma = \Gamma^T$ is positive semi-definite
- \triangleright Eigenvalues of Γ (if and only if the network is connected):

The systems

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$

are strictly semi-passive with a radially unbounded storage function ${\cal S}$

The systems

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$

are strictly semi-passive with a radially unbounded storage function ${\cal S}$

That is: there exists $S: \mathbb{R}^n \to \mathbb{R}_+$ such that the dissipation inequality

$$\dot{S} \leq y_i^T u_i$$

is strict for all x_i outside some ball $\mathcal{B} \subset \mathbb{R}^n$

The systems

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$

are strictly semi-passive with a radially unbounded storage function S

That is: there exists $S: \mathbb{R}^n \to \mathbb{R}_+$ such that the dissipation inequality

$$\dot{S} \leq y_i^T u_i$$

is strict for all x_i outside some ball $\mathcal{B} \subset \mathbb{R}^n$

Result: networks of diffusively coupled strictly semi-passive systems have uniformly ultimately bounded solutions

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$

with ${\cal CB}$ (similar to) a positive definite matrix

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$

with CB (similar to) a positive definite matrix in new coordinates

$$\begin{cases} \dot{z}_i = q(z_i, y_i) \\ \dot{y}_i = a(z_i, y_i) + CBu_i \end{cases}$$

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$

with CB (similar to) a positive definite matrix in new coordinates

$$\begin{cases} \dot{z}_i = q(z_i, y_i) \\ \dot{y}_i = a(z_i, y_i) + CBu_i \end{cases}$$

Assumption: There exists a $(n-m) \times (n-m)$ matrix $P = P^T > 0$ such that the eigenvalues of

$$P\left(\frac{\partial q}{\partial z}(z,w)\right) + \left(\frac{\partial q}{\partial z}(z,w)\right)^T P$$

are negative and separated away from zero for all $(z, w) \in \mathbb{R}^{n-m} \times \mathcal{W}$

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$

with CB (similar to) a positive definite matrix in new coordinates

$$\begin{cases} \dot{z}_i = q(z_i, y_i) \\ \dot{y}_i = a(z_i, y_i) + CBu_i \end{cases}$$

Assumption: There exists a $(n-m) \times (n-m)$ matrix $P = P^T > 0$ such that the eigenvalues of

$$P\left(\frac{\partial q}{\partial z}(z,w)\right) + \left(\frac{\partial q}{\partial z}(z,w)\right)^T P$$

are negative and separated away from zero for all $(z, w) \in \mathbb{R}^{n-m} \times \mathcal{W}$ \Rightarrow subsystem $\dot{z}_i = q(z_i, y_i)$ is exponentially convergent w.r.t. input y_i

Synchronization of diffusively coupled systems

Given a network of diffusively coupled systems

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases} \tag{1}$$

$$u_i = \sum_{j \in \mathcal{N}_i} \gamma_{ij} (y_j - y_i) \tag{2}$$

Synchronization of diffusively coupled systems

Given a network of diffusively coupled systems

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$
 (1)

$$u_i = \sum_{j \in \mathcal{N}_i} \gamma_{ij} (y_j - y_i) \tag{2}$$

Assumptions:

- \triangleright system (8) is strictly semi-passive with a radially unbounded storage function S
- ▶ the subsystem

$$\dot{z}_i = q(z_i, w(t))$$

associated to (8) satisfies the test for exponential convergence

Given a network of diffusively coupled systems

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases} \tag{1}$$

$$u_i = \sum_{j \in \mathcal{N}_i} \gamma_{ij} (y_j - y_i) \tag{2}$$

Result:

- solutions of the diffusively coupled systems are uniformly ultimately bounded
- there exists a positive constant $\bar{\lambda}$ such that for

$$\lambda_2 \geq \bar{\lambda}$$
 (λ_2 is the smallest non-zero eigenvalue of Γ)

Then the set $\mathcal{M} := \{x \in \mathbb{R}^{Nn} | x_1 = x_2 = \cdots = x_N \}$ contains a globally asymptotically stable subset, i.e. the systems synchronize

Synchronization of diffusively coupled systems

8/35

Extensions to

Directed networks

Synchronization of diffusively coupled systems

Extensions to

- ▶ Directed networks
- ► Time-delay coupling

$$u_i(t) = \sigma \sum\nolimits_{j \in \mathcal{N}_i} a_{ij} (y_j(t - \tau) - y_i(t))$$

and

$$u_i(t) = \sigma \sum_{j \in \mathcal{N}_i} a_{ij} (y_j(t - \tau) - y_i(t - \tau))$$

Extensions to

- Directed networks
- ► Time-delay coupling

Recap

Partial synchronization

Partial synchronization with delays

Role of network topology

What if a network does not fully synchronize?

What if a network does not fully synchronize?

▶ no synchronization of any pair of systems

Partial synchronization

What if a network does not fully synchronize?

- no synchronization of any pair of systems
- ▶ spatiotemporal patterns (e.g. traveling/rotating waves)

Partial synchronization

What if a network does not fully synchronize?

- ▶ no synchronization of any pair of systems
- ▶ spatiotemporal patterns (e.g. traveling/rotating waves)
- ▶ some form of incomplete network synchronization

Partial synchronization

What if a network does not fully synchronize?

- no synchronization of any pair of systems
- ▶ spatiotemporal patterns (e.g. traveling/rotating waves)
- ▶ some form of incomplete network synchronization

Partial synchronization = asymptotic match of the states of some, but not all systems

 $\begin{aligned} \text{Partial synchronization} &= \\ & & \text{existence of partial synchronization manifold } \mathcal{P} \end{aligned}$

```
\begin{aligned} \text{Partial synchronization} &= \\ & & \text{existence of partial synchronization manifold } \mathcal{P} \\ & & + \text{asymptotic stability of } \mathcal{P} \end{aligned}
```



```
\begin{aligned} \text{Partial synchronization} &= \\ & & \text{existence of partial synchronization manifold } \mathcal{P} \\ & & + \text{asymptotic stability of } \mathcal{P} \end{aligned}
```

Questions:

▶ How to find \mathcal{P} ?


```
\begin{aligned} \text{Partial synchronization} &= \\ & & \text{existence of partial synchronization manifold } \mathcal{P} \\ & & + \text{asymptotic stability of } \mathcal{P} \end{aligned}
```

Questions:

- ▶ How to find \mathcal{P} ?
- \blacktriangleright When is \mathcal{P} stable?

Finding modes of partial synchronization

Look for symmetries

- ▶ in the coupling configuration (network)
- ▶ in the system dynamics

Finding modes of partial synchronization

Look for symmetries

- ▶ in the coupling configuration (network)
- ▶ in the system dynamics

Network symmetries

Rearrangement of some nodes of the network leave the network unchanged

Original network

Rearranged network

Rearrangement of some nodes of the network leave the network unchanged

Permutation $\pi: \{1, \ldots, N\} \to \{1, \ldots, N\}$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ \pi(1) = 2 & \pi(2) = 1 & \pi(3) = 4 & \pi(4) = 3 \end{pmatrix}$$

Permutation matrix associated to π

$$\Pi = \left(\Pi_{ij}\right)$$

with

$$\Pi_{ij} = \begin{cases} 1 & \text{if } \pi(i) = j \\ 0 & \text{otherwise} \end{cases}$$

Permutation matrix associated to π

$$\Pi = \left(\Pi_{ij}\right)$$

with

$$\Pi_{ij} = \begin{cases} 1 & \text{if } \pi(i) = j \\ 0 & \text{otherwise} \end{cases}$$

Result: if the permutation matrix Π and the coupling matrix Γ commute,

$$\Pi\Gamma = \Gamma\Pi$$
,

then the set

$$\ker(I_{Nn} - \Pi \otimes I_n)$$

is invariant w.r.t. dynamics of the coupled systems

▶ The set

$$\ker(I_{Nn}-\Pi\otimes I_n)$$

is described by equations of the form

$$x_i = x_j$$
 (for $\pi(i) = j$)

Remarks

► The set

$$\ker(I_{Nn} - \Pi \otimes I_n)$$

is described by equations of the form

$$x_i = x_j$$
 (for $\pi(i) = j$)

▶ A sufficient and necessary condition for the set

$$\ker(I_{Nn} - \Pi \otimes I_n)$$

to be invariant is that there exists a matrix X that solves the matrix equation

$$(I_N - \Pi)\Gamma = X(I_N - \Pi)$$

Remarks

► The set

$$\ker(I_{Nn} - \Pi \otimes I_n)$$

is described by equations of the form

$$x_i = x_j$$
 (for $\pi(i) = j$)

▶ A sufficient and necessary condition for the set

$$\ker(I_{Nn}-\Pi\otimes I_n)$$

to be invariant is that there exists a matrix X that solves the matrix equation

$$(I_N - \Pi)\Gamma = X(I_N - \Pi)$$

 Π and L commute $\Rightarrow X = \Gamma$ is a solution

Original network

 ${\it Rearranged\ network}$

Permutation $\pi: \{1, \ldots, 4\} \rightarrow \{1, \ldots, 4\}$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ \pi(1) = 2 & \pi(2) = 1 & \pi(3) = 4 & \pi(4) = 3 \end{pmatrix} \Rightarrow \Pi = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Original network

Rearranged network

$$\Pi\Gamma = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \gamma_1 + \gamma_2 & -\gamma_1 & 0 & -\gamma_2 \\ -\gamma_1 & \gamma_1 + \gamma_2 & -\gamma_2 & 0 \\ 0 & -\gamma_2 & \gamma_1 + \gamma_2 & -\gamma_1 \\ -\gamma_2 & 0 & -\gamma_1 & \gamma_1 + \gamma_2 \end{pmatrix}$$

Original network

Rearranged network

$$= \begin{pmatrix} -\gamma_1 & \gamma_1 + \gamma_2 & -\gamma_2 & 0\\ \gamma_1 + \gamma_2 & -\gamma_1 & 0 & -\gamma_2\\ -\gamma_2 & 0 & -\gamma_1 & \gamma_1 + \gamma_2\\ 0 & -\gamma_2 & \gamma_1 + \gamma_2 & -\gamma_1 \end{pmatrix} =$$

Example

Original network

Rearranged network

$$\begin{pmatrix} \gamma_1 + \gamma_2 & -\gamma_1 & 0 & -\gamma_2 \\ -\gamma_1 & \gamma_1 + \gamma_2 & -\gamma_2 & 0 \\ 0 & -\gamma_2 & \gamma_1 + \gamma_2 & -\gamma_1 \\ -\gamma_2 & 0 & -\gamma_1 & \gamma_1 + \gamma_2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \Gamma \Pi$$

Other permutation matrices that commute with

$$\Gamma = \begin{pmatrix} \gamma_1 + \gamma_2 & -\gamma_1 & 0 & -\gamma_2 \\ -\gamma_1 & \gamma_1 + \gamma_2 & -\gamma_2 & 0 \\ 0 & -\gamma_2 & \gamma_1 + \gamma_2 & -\gamma_1 \\ -\gamma_2 & 0 & -\gamma_1 & \gamma_1 + \gamma_2 \end{pmatrix}$$

are:

$$\Pi_2 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Other permutation matrices that commute with

$$\Gamma = \begin{pmatrix} \gamma_1 + \gamma_2 & -\gamma_1 & 0 & -\gamma_2 \\ -\gamma_1 & \gamma_1 + \gamma_2 & -\gamma_2 & 0 \\ 0 & -\gamma_2 & \gamma_1 + \gamma_2 & -\gamma_1 \\ -\gamma_2 & 0 & -\gamma_1 & \gamma_1 + \gamma_2 \end{pmatrix}$$

are:

$$\Pi_2 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

and

$$\Pi_3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Finding modes of partial synchronization

Look for symmetries

- ▶ in the coupling configuration (network)
- ▶ in the system dynamics

Suppose

ightharpoonup there is a matrix J such that

$$Jf(x_i) = f(Jx_i)$$

Suppose

ightharpoonup there is a matrix J such that

$$Jf(x_i) = f(Jx_i)$$

▶ J commutes with BC: J(BC) = (BC)J

Suppose

 \triangleright there is a matrix J such that

$$Jf(x_i) = f(Jx_i)$$

- ▶ J commutes with BC: J(BC) = (BC)J
- there is a permutation matrix Π that commutes with Γ :

$$\Pi\Gamma = \Gamma\Pi$$

Suppose

ightharpoonup there is a matrix J such that

$$Jf(x_i) = f(Jx_i)$$

- ▶ J commutes with BC: J(BC) = (BC)J
- there is a permutation matrix Π that commutes with Γ :

$$\Pi\Gamma = \Gamma\Pi$$

Then the set

$$\ker(I_{Nn} - \Pi \otimes J)$$

is invariant w.r.t. dynamics of the coupled systems

Example: Lorenz system with input u and output $y = x_1$:

$$\begin{cases} \dot{x}_1 = \sigma(x_2 - x_1) + u \\ \dot{x}_2 = x_1(\rho - x_3) - x_2 \\ \dot{x}_3 = -\gamma x_3 + x_1 x_2 \end{cases}$$

Example: Lorenz system with input u and output $y = x_1$:

$$\begin{cases} \dot{x}_1 = \sigma(x_2 - x_1) + u \\ \dot{x}_2 = x_1(\rho - x_3) - x_2 \\ \dot{x}_3 = -\gamma x_3 + x_1 x_2 \end{cases}$$

has symmetry defined by

$$J = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 1 \end{pmatrix}$$

Example: Lorenz system with input u and output $y = x_1$:

$$\begin{cases} \dot{x}_1 = \sigma(x_2 - x_1) + u \\ \dot{x}_2 = x_1(\rho - x_3) - x_2 \\ \dot{x}_3 = -\gamma x_3 + x_1 x_2 \end{cases}$$

has symmetry defined by

$$J = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 1 \end{pmatrix}$$

The set $\ker(I_{Nn} - \Pi \otimes J)$ is invariant for coupled Lorenz systems as

$$J(BC) = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix} = (BC)J$$

Network of diffusively coupled systems

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$
 (3)

$$u_i = \sum_{j \in \mathcal{N}_i} \gamma_{ij} (y_j - y_i) \tag{4}$$

Network of diffusively coupled systems

$$\begin{cases}
\dot{x}_i = f(x_i) + Bu_i \\
y_i = Cx_i
\end{cases}$$
(3)

$$u_i = \sum_{j \in \mathcal{N}_i} \gamma_{ij} (y_j - y_i) \tag{4}$$

Assumptions:

- \triangleright system (8) is strictly semi-passive with a radially unbounded storage function S
- ▶ the subsystem

$$\dot{z}_i = q(z_i, w(t))$$

associated to (8) satisfies the test for exponential convergence

• there is a permutation matrix Π that commutes with Γ

Network of diffusively coupled systems

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$
 (3)

$$u_i = \sum_{j \in \mathcal{N}_i} \gamma_{ij} (y_j - y_i) \tag{4}$$

Result:

- solutions of the diffusively coupled systems are uniformly ultimately bounded
- there exists a positive constant $\bar{\lambda}$ such that for

$$\lambda' \geq \bar{\lambda}$$
 (λ' is the smallest eigenvalue of Γ with eigenvector in range($I_N - \Pi$))

Then $\ker(I_{Nn} - \Pi \otimes I_n)$ contains a globally asymptotically stable subset

$$\Gamma = \begin{pmatrix} \gamma_1 + \gamma_2 & -\gamma_1 & 0 & -\gamma_2 \\ -\gamma_1 & \gamma_1 + \gamma_2 & -\gamma_2 & 0 \\ 0 & -\gamma_2 & \gamma_1 + \gamma_2 & -\gamma_1 \\ -\gamma_2 & 0 & -\gamma_1 & \gamma_1 + \gamma_2 \end{pmatrix} \qquad \gamma_2$$

$$\Gamma = \begin{pmatrix} \gamma_1 + \gamma_2 & -\gamma_1 & 0 & -\gamma_2 \\ -\gamma_1 & \gamma_1 + \gamma_2 & -\gamma_2 & 0 \\ 0 & -\gamma_2 & \gamma_1 + \gamma_2 & -\gamma_1 \\ -\gamma_2 & 0 & -\gamma_1 & \gamma_1 + \gamma_2 \end{pmatrix} \qquad \gamma_2 \downarrow \qquad \gamma_2 \downarrow \gamma_2$$

Recall: The following permutation matrices commute with Γ

$$\Pi_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad \Pi_2 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \quad \Pi_3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\Gamma = \begin{pmatrix} \gamma_1 + \gamma_2 & -\gamma_1 & 0 & -\gamma_2 \\ -\gamma_1 & \gamma_1 + \gamma_2 & -\gamma_2 & 0 \\ 0 & -\gamma_2 & \gamma_1 + \gamma_2 & -\gamma_1 \\ -\gamma_2 & 0 & -\gamma_1 & \gamma_1 + \gamma_2 \end{pmatrix} \qquad \gamma_2$$

Eigenvalues and eigenvectors of Γ

$$\lambda_{1} = 0 \qquad \lambda_{2} = 2\gamma_{1} \qquad \lambda_{3} = 2\gamma_{2} \qquad \lambda_{4} = 2\gamma_{1} + 2\gamma_{2}$$

$$v_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \qquad v_{2} = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} \qquad v_{3} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \qquad v_{4} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

$$\Gamma = \begin{pmatrix} \gamma_1 + \gamma_2 & -\gamma_1 & 0 & -\gamma_2 \\ -\gamma_1 & \gamma_1 + \gamma_2 & -\gamma_2 & 0 \\ 0 & -\gamma_2 & \gamma_1 + \gamma_2 & -\gamma_1 \\ -\gamma_2 & 0 & -\gamma_1 & \gamma_1 + \gamma_2 \end{pmatrix} \qquad \gamma_2$$

- $v_2 \in \text{range}(I_n \Pi_1), \text{range}(I_n \Pi_3)$
- $v_3 \in \text{range}(I_n \Pi_2), \text{range}(I_n \Pi_3)$
- $v_4 \in \operatorname{range}(I_n \Pi_1), \operatorname{range}(I_n \Pi_2)$

hence

- $\Pi_1: \ \lambda' = 2\gamma_1$
- $\Pi_2: \ \lambda' = 2\gamma_2$
- $\Pi_3: \ \lambda' = \min(2\gamma_1, 2\gamma_2)$

$$\Gamma = \begin{pmatrix} \gamma_1 + \gamma_2 & -\gamma_1 & 0 & -\gamma_2 \\ -\gamma_1 & \gamma_1 + \gamma_2 & -\gamma_2 & 0 \\ 0 & -\gamma_2 & \gamma_1 + \gamma_2 & -\gamma_1 \\ -\gamma_2 & 0 & -\gamma_1 & \gamma_1 + \gamma_2 \end{pmatrix} \qquad \gamma_2$$

- $v_2 \in \text{range}(I_n \Pi_1), \text{range}(I_n \Pi_3)$
- $v_3 \in \text{range}(I_n \Pi_2), \text{range}(I_n \Pi_3)$
- ▶ $v_4 \in \text{range}(I_n \Pi_1), \text{range}(I_n \Pi_2)$

hence

- ▶ Π_1 : $\lambda' = 2\gamma_1 \Rightarrow x_1 = x_2$ and $x_3 = x_4$ if $\gamma_1 > \gamma_2$ is suff. large
- ▶ Π_2 : $\lambda' = 2\gamma_2 \Rightarrow x_1 = x_2$ and $x_3 = x_4$ if $\gamma_2 > \gamma_1$ is suff. large

Example

Recap

Partial synchronization

Partial synchronization with delays

Role of network topology

25/35

(5)

(6)

Systems

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$
 with diffusive time-delay coupling (transmission delay)

$$u_i(t) = \sigma \sum_{j \in \mathcal{N}_i} a_{ij} (y_j(t - \tau) - y_i(t))$$

or (sensor/actuator delay)

$$u_i(t) = \sigma \sum_{i \in \mathcal{N}_i} a_{ij} (y_j(t - \tau) - y_i(t)(t - \tau))$$

(5)

or (sensor/actuator delay)

$$u_i(t) = \sigma \sum_{j \in \mathcal{N}_i} a_{ij} (y_j(t - \tau) - y_i(t)(t - \tau))$$

$$u_{i}(t) = \sigma \nabla$$

$$u_i(t) = \sigma \sum_{j \in \mathcal{N}_i} a_{ij} (y_j(t - \tau) - y_i(t))$$

For now: Coupled systems (5), (7) with $a_{ij} = a_{ji}$ and $j \in \mathcal{N}_i \iff i \in \mathcal{N}_j$ (similar results are obtained for directed networks and/or coupled systems (5)-(6))

$$\sum a_{ii}(v_i(t-\tau)-v_i(t))$$

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$

Coupling matrix

$$L = \begin{pmatrix} \sum_{j=2}^{N} a_{1j} & -a_{12} & \cdots & -a_{1N} \\ -a_{21} & \sum_{j=1, j \neq 2}^{N} a_{2j} & \ddots & \vdots \\ \vdots & \ddots & \ddots & -a_{(N-1)N} \\ -a_{N1} & \cdots & -a_{N(N-1)} & \sum_{j=1}^{N-1} a_{Nj} \end{pmatrix}$$

with
$$a_{ij} = 0$$
 if (and only if) $j \notin \mathcal{N}_i$

Coupling matrix

$$L = \begin{pmatrix} \sum_{j=2}^{N} a_{1j} & -a_{12} & \cdots & -a_{1N} \\ -a_{21} & \sum_{j=1, j \neq 2}^{N} a_{2j} & \ddots & \vdots \\ \vdots & \ddots & \ddots & -a_{(N-1)N} \\ -a_{N1} & \cdots & -a_{N(N-1)} & \sum_{j=1}^{N-1} a_{Nj} \end{pmatrix}$$

with $a_{ij} = 0$ if (and only if) $j \notin \mathcal{N}_i$

Note that

$$u(t) = -\sigma(L \otimes I_m)y(t - \tau)$$

(compare with the delay-free case!)

Look for symmetries in the coupling matrix L

Finding modes of partial synchronization

Look for symmetries in the coupling matrix L

Result: if a permutation matrix Π and the coupling matrix L commute,

$$\Pi L = L\Pi$$
,

then the set

$$\{\phi \in \mathcal{C} \mid \phi(\theta) \in \ker(I_{Nn} - \Pi \otimes I_n), \quad -\tau \le \theta \le 0\}$$

is forward invariant w.r.t. dynamics of the coupled systems

Eigenvalues of L:

$$0=\lambda_1<\lambda_2\leq\ldots\leq\lambda_N$$

Eigenvalues of L:

$$0 = \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_N$$

Given a permutation matrix Π , denote:

 λ ' the smallest eigenvalue of L with eigenvector in range $(I_N - \Pi)$

Eigenvalues of L:

$$0 = \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_N$$

Given a permutation matrix Π , denote:

- λ ' the smallest eigenvalue of L with eigenvector in range $(I_N \Pi)$
- λ^* the largest eigenvalue of L with eigenvector in range $(I_N \Pi)$

Eigenvalues of L:

$$0 = \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_N$$

Given a permutation matrix Π , denote:

- λ the smallest eigenvalue of L with eigenvector in range $(I_N \Pi)$
- ▶ λ^* the largest eigenvalue of L with eigenvector in range $(I_N \Pi)$

Assumptions:

- \triangleright system (5) is strictly semi-passive with a radially unbounded storage function S
- ▶ the subsystem $\dot{z}_i = q(z_i, w(t))$ associated to (5) satisfies the test for exponential convergence
- the permutation matrix Π that commutes with L

TU/e Technische Universiteit Eindhoven University of Technolog

$$L = \begin{pmatrix} a_1 + a_2 & -a_1 & 0 & -a_2 \\ -a_1 & a_1 + a_2 & -a_2 & 0 \\ 0 & -a_2 & a_1 + a_2 & -a_1 \\ -a_2 & 0 & -a_1 & a_1 + a_2 \end{pmatrix} \quad a_2$$

$$L = \begin{pmatrix} a_1 + a_2 & -a_1 & 0 & -a_2 \\ -a_1 & a_1 + a_2 & -a_2 & 0 \\ 0 & -a_2 & a_1 + a_2 & -a_1 \\ -a_2 & 0 & -a_1 & a_1 + a_2 \end{pmatrix} \qquad \begin{matrix} a_1 \\ a_2 \\ a_1 \\ a_1 \end{matrix}$$

Eigenvalues and eigenvectors of L if $a_1 \leq a_2$

$$\lambda_{1} = 0 \qquad \lambda_{2} = 2a_{1} \qquad \lambda_{3} = 2a_{2} \qquad \lambda_{4} = 2a_{1} + 2a_{2}$$

$$v_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \qquad v_{2} = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} \qquad v_{3} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \qquad v_{4} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

$$L = \begin{pmatrix} a_1 + a_2 & -a_1 & 0 & -a_2 \\ -a_1 & a_1 + a_2 & -a_2 & 0 \\ 0 & -a_2 & a_1 + a_2 & -a_1 \\ -a_2 & 0 & -a_1 & a_1 + a_2 \end{pmatrix} \qquad \begin{matrix} a_1 \\ a_2 \\ a_2 \\ 4 \\ a_1 \\ 3 \end{matrix}$$

Recall: The following permutation matrix commutes with Γ

$$\Pi_3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

and $v_2, v_3 \in \text{range}(I_n - \Pi_3)$

$$L = \begin{pmatrix} a_1 + a_2 & -a_1 & 0 & -a_2 \\ -a_1 & a_1 + a_2 & -a_2 & 0 \\ 0 & -a_2 & a_1 + a_2 & -a_1 \\ -a_2 & 0 & -a_1 & a_1 + a_2 \end{pmatrix} \qquad \begin{matrix} a_1 \\ a_2 \\ a_2 \\ a_1 \\ a_1 \\ 3 \end{matrix}$$

Recall: The following permutation matrix commutes with Γ

$$\Pi_3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

and $v_2, v_3 \in \text{range}(I_n - \Pi_3) \Rightarrow \lambda' = 2a_1 \text{ and } \lambda^* = 2a_2 < \lambda_4 = 2a_1 + 2a_2$

Recap

Partial synchronization

Partial synchronization with delays

Role of network topology

Network of diffusively time-delay coupled systems

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$
 (8)

$$u_i(t) = \sigma \sum_{j \in \mathcal{N}_i} a_{ij} (y_j(t - \tau) - y_i(t - \tau))$$
(9)

with $a_{ij} = a_{ji}$ and $j \in \mathcal{N}_i \iff i \in \mathcal{N}_j$

Network of diffusively time-delay coupled systems

$$\begin{cases} \dot{x}_i = f(x_i) + Bu_i \\ y_i = Cx_i \end{cases}$$
 (8)

$$u_i(t) = \sigma \sum_{j \in \mathcal{N}_i} a_{ij} (y_j(t - \tau) - y_i(t - \tau))$$
 (9)

with $a_{ij} = a_{ji}$ and $j \in \mathcal{N}_i \iff i \in \mathcal{N}_j$

Assumptions:

- \triangleright system (8) is strictly semi-passive with a radially unbounded storage function S
- ▶ the subsystem

$$\dot{z}_i = q(z_i, w(t))$$

associated to (8) satisfies the test for exponential convergence

Recall:

$$L = \begin{pmatrix} \sum_{j=2}^{N} a_{1j} & -a_{12} & \cdots & -a_{1N} \\ -a_{21} & \sum_{j=1, j \neq 2}^{N} a_{2j} & \ddots & \vdots \\ \vdots & \ddots & \ddots & -a_{(N-1)N} \\ -a_{N1} & \cdots & -a_{N(N-1)} & \sum_{j=1}^{N-1} a_{Nj} \end{pmatrix}$$

with $a_{ij} = 0$ if (and only if) $j \notin \mathcal{N}_i$

Eigenvalues of L:

$$0 = \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_N$$

▶ Suppose two coupled systems synchronize for

$$(\sigma,\tau)\in\mathcal{S}$$

▶ Suppose two coupled systems synchronize for

$$(\sigma, \tau) \in \mathcal{S}$$

▶ Determine scaled copies of S:

$$S_j^* := \left\{ (\sigma, \tau) \in \mathbb{R}_+ \times \overline{\mathbb{R}}_+ \left| \left(\frac{\lambda_j}{2} \sigma, \tau \right) \in S \right. \right\}$$

with scaling factors the eigenvalues of L

▶ Suppose two coupled systems synchronize for

$$(\sigma, \tau) \in \mathcal{S}$$

▶ Determine scaled copies of S:

$$S_{j}^{*} := \left\{ (\sigma, \tau) \in \mathbb{R}_{+} \times \overline{\mathbb{R}}_{+} \left| \left(\frac{\lambda_{j}}{2} \sigma, \tau \right) \in S \right. \right\}$$

with scaling factors the eigenvalues of L

▶ Result: Network synchronizes if

$$(\sigma, \tau) \in \mathcal{S}_2^* \cap \mathcal{S}_N^*$$

