(OPTICS)

CHAPTER: 1: INTEFERENCE

Cohesent Sources:

Two light sources are said to be coherent if
they emit continuous light waves of same frequency,
nearly equal or equal amplitude and some or constant

10 produce asherent source.

- i) the sources must be monochromatic ie, wavelength.
- i) the phase relation between the waves at the in different sources but even in different parts of the

Two virtual sources formed from a single source can act as wherent sources.

Inteference

The phenomenon of getting dark and bright finger due to superposition of two coherent light sources is called interference.

Interference are of two types: constructive and destructive.

a) Constructive Interference The phenomenon of getting bright fringes due to superposition of crest of one wave to crest of other wave is called constructive interference. 1): Permutive Interference: The phenomenon of getting dark fringes due to superposition of though of one wave to arest of another wave is called destructive interference. # Phuse and Puth Difference For phase difference of 211, path difference is 1x5

Therefore, for phase difference of 5, path difference is 1x5

211 Therefore, for path difference of x, phase difference = $2\pi x$

H Superposition of Two Waves

Let us consider two waves with amplitude

a, and as having constant phase difference & and

frequency Lv. In complex form, they can be

represented as.

y₁ = a₁e iwt — (i)

y₂ = a₂e i(wt+b) — (ii)

y₂ = a₂e after superposition.

Let y be the raultant wave after superposition. 80, $y = y_1 + y_2$ $9 = q_1 e^{iwt} + q_2 e^{i(wt+s0)}$ $9 = q_1 e^{iwt} + q_2 e^{i(wt+s0)}$ $9 = q_1 e^{iwt} + q_2 e^{i(wt+s0)}$

Let amplitude of resultant wave is Ro and phase difference wirt first wave is .

This is written as.

y = Roe i(wt+0) = Roe it = (iv)

Comparing with eqn (iii), we get. $Roe^{i\phi} = q_1 + q_2e^{i\delta}$

 $R_0 \cos \phi + i R_0 \sin \phi = q_1 + q_2 \cos \delta + i q_2 \sin \delta - (u)$

Equating real and imaginary part in (v), we get $R_0 \cos \phi = q_1 + q_2 \cos \delta - (vi)$ $R_0 \sin \phi = q_2 \sin \delta - (vii)$

Dividing (vi) from (vii)

 $\frac{Rosind}{Roses} = \frac{a_2 sinb}{a_1 + a_2 cosb}$

 $tan\phi = a_2 sin \delta$ $a_1 + a_2 cos \delta$ (viii)

Squaring and adding eqn (vi) and (vii), we get

 $R_0^{2} = q_1^2 + q_2^2 + 2q_1 q_2 \cos \delta - (ix)$

We know, Ida2.

 $I = I_1 + I_2 + 2\sqrt{1}I_2 \cos 6 - (x)$

*) For maximum intensity:

ie S= 2nt for ne I to non-negative

Intensity is maximum when phase difference is better superposing waves is equal to even integral multiplication

 $l_{max} = \frac{1}{1 + I_2} + 2\sqrt{I_1 I_2}$ $l_{max} = (\sqrt{I_1} + \sqrt{I_2})^2 - (xi)$

*) For minimum intensity:

ie, S= (2n+1) T for nE I non-negative.

Intensity is minimum when phase difference bet?

superposing waves is equal to odd integral multiple of

Inin = II + 12 - 2 V472 $\frac{\min}{1 + 12} = 2 \sqrt{412}$ $\frac{1}{\min} = \left(\sqrt{41} - \sqrt{62}\right)^2 - \left(\frac{\pi}{1}\right)$

Dividing egn (xii) from (xi), we get.

 $l_{max} = (\sqrt{11} + \sqrt{12})^2 = (a_1 + a_2)^2$ $l_{min} = (\sqrt{11} - \sqrt{12})^2 = (a_1 - a_2)^2$

Analytical Treatment of Interesce Let us consider two interfering waves $y_1 = a \sin(wt + b) - (ii)$ Then, resultant wave after superposition. is adding (i) and (ii). 4= 4,+42 on $y = a \sin wt + a \sin (wt + S)$ $= a \left[\sin wt + \sin (wt + S) \right]$ $\int 2 \sin 1 (2wt + S) \cos 1 (-S) \right]$ $= a \left[2 \cos 2 \right]$ = $2a \sin(\omega t + \psi) \cos(\frac{6}{2})$ Here, $\psi = \frac{\pi}{2}\delta$ y = R sin (wt+ b) Here, R= 2a ca (5) is amplitude of resultant wave. We know! 12 R2 $|1| = 4a^2 \cos^2 \phi = 4a^2 \cos^2 \left(\frac{8}{2}\right)$

(*) Bright fringes

Maximum intensity of resultant wave I = 4Io

For fath difference: S= 0, 211, 411, -..., 21912

For phase difference: a= 0, 1, 21, 32, ..., n >

ie, thus for bright fringe, the path difference between the waves should be equal to integral multiple of wavelength n.h.

(*) Park frances
Minimum intensity of multant wave: I=0

For phase difference: 8= 17, 312, 512, -, (2n+1) 12

OSI

For path difference: $S = \lambda$, 3λ , 5λ , $(2n+1)\lambda$

ig for dark fringe, the path difference between the waves should be equal to half and integral multiple of wavelength (2n+1) 1

* Intensity distribution $T = 4I_0 \cos^2(\frac{8}{2})$ or, $I = 4a^2 \cos^2(\frac{8}{2})$ Here Imax = 4a2 = 4Lo Imin = 0 intensity for each dark to and bright fringe is same. Intensity distribution curve is as shown. Young's Double Slit Experiment

Consider a source of monochromatic light S Let d be the width between slit A and B and D be the distance of suren form slit. Let P be the position of nth bright or dark fringe. Let & he the angle made by NP with NO. A perpendicular AH is drawn to BP. Since A and B are two close to each other,

AH meets NP practically at right angles such as that

\$\Delta BAH = \theta . From APNO, $tan\theta = \frac{90}{D} = \frac{20}{D} - (i)$ and from ABAM,
sin 0 = BM — [ii) For small angle sin 8 2 8 2 tan 8 . Equating (i) and (ii), we get. $\frac{BH}{d} = \frac{2n}{D} \qquad \frac{!BH}{2} = \frac{2nd}{D} - (10)$

Here, BM is the path difference.

Nows for bright fringe,

BM = n A

 $\frac{\partial n}{\partial x} = \frac{\partial n}{\partial x} =$

Egp (iv) gives distance of nth bright fringe from wenter of fringe system.

for $(n-1)^{+n}$ bright fringe, $2n-1 = (n-1) \lambda D - (v)$

Hence, fringe width $(\beta) = \alpha n - \alpha n - 1$ $= n \lambda D - n \lambda D + \lambda D$ d d d $\therefore \beta = \lambda D - (a)$

Now, for dark fringe.

BM = (2n+1) 1
2

an 2n = (2n+1)2
2

.: ×n = (2n+1) 10 - (vi)

Cap (vi) gives distance of nth dark finge from the center of fringe dis system.

for $(n-1)^{+n}$ dark fringe, $2n-1 = [2(n-1)+1] \lambda D = (2n-1)\lambda D - (wi)$

8u, fringe width $(\beta) = \chi n - \chi n - 1$ $= (2n+1) \lambda B D - (2n-1) \lambda D$ = 2d

1. B = AD - (h)

Here, B=10 for both dark and fringe width. Hence, fringer in Young's double slift experiment are equally width space.

tringe undth of both bright and dark fringe is equal.

Histoperence on thin films Due to Reflected light

Let us consider a thin film of
thickness t and refractive index M as in figure.

A ray of light AB strikes at point B

with angle of incident (?) gets reflected along Bt and also refracted along BC with angle of refraction (r).

At C, it again reflects Valong CD and
finally emerges out along DF.

A N F

BDN = i and & BDM = r.

BC is produced to meet DP at P so that DP = 2t and &HPD = r.

emerging from B and D respectively. Then,

x = µ (BC+CD) - BN - (i).

From Snell's law, $H = 810^{\circ} = BN/BD = BN$ $810^{\circ} = BH/BD = BH$

+BH= :BN= MBH - (ii)

And CD = CP. So eg? (i) become,

n= M(BC+CP) - MBM. = M(BP-BM) ! n= MPM. — (iii)

From 1 MPD

COST = PH = PH
PD 2t

1. PM = 2toesr

Hence, path difference is $\alpha = 2\mu t \cos r$ — (iv)

According to stoke's law of reflection,

when a light wave is reflected along from the surface of an optically denser medium, it suffers that suffers no volume when reflected at the surface of the optically rares medium. * For bright fringe! : 2 pt cost + 1 = n1 on 2 pt car = (2n-1) 1 *) for dark fringe! 1= (2n+1) 1 or, 2 pt as r + 1 = (2n+1)1 1.2 put cosr = n). _ (b) Egn (a) and (b) are required conditions for bright and dark frings for interference due to reflected light.

The plano-worvex lens is placed on a plane glass plate q with curved surface touching glass plate. q.

since there is thin air film in between the plane leng and plane glass plate interference takes place between

the light rays reflected from lower surface of plane glass plate G.

The intersect fringer consists of dark and bright whenther rings called Newton's ring observed through travelling microscope.

Let R be the radius of aurunture of lens L,
to thickness of thin Vair film

r = radius of n th dark or hoght fringe.

From figure, $t = R - \sqrt{R^2 - r^2}$

 $i: t = R - R \left[1 - \left(\frac{r}{R} \right)^{2} \right]^{\frac{1}{2}} - (i).$

Expanding using binomial theorem and neglecting highes hower of (r/n), we get.

 $t = R - R \left[1 - \frac{r^2}{2R^2} \right]$

or, & = R12 2R

 $\frac{1}{R} \cdot 2t = \frac{1^2}{R} - \frac{1}{R}$

For bright fringe,

2 m+ ces 0 = (2n-1) 1

For air, $\mu=1$ and for small θ , $\cot\theta \approx 1$ $2t = (2n-1) \lambda - (iii)$

From egn (ii) and (iii),

 $\frac{r^2}{R} = (2n-1)\lambda$

1: r = (2n-1) 1R

Equi(0) gives the radius of nth bright fringe from centre

For diameter of nth bright ring,

 $D_n = 2r = 2/(2n-1)\lambda R - (I)$

for dark fringe, 2 utcos 8 = n x for oir, $\mu=1$ and for small θ , $\cos\theta\approx1$ 2t = 2nx - (iv) from egn (ii) and (iv), Ry2 = 11) or, r= Vn2R - (4) (go (b) gives radius of n#n dark fringe from centre For diameter of nth dark ring, $Dn = 2r = 2\sqrt{n\lambda R} - (D)$ So, when n=0, $D_n=2\sqrt{0}\times\lambda\hat{R}=0$ ie, corresponds to central dark ring. case of reflected light. Now,

Dy-D1 = 4VAR - 2VAR = 2VAR D16-D9 = 93VAR 8VAR - 6VAR = 2VAR.

Thus, this shows that as we move for from center. The rings are found to be closely backed.

With increasing number of fringer, fringe width decreases.

N) Determination of wavelength of Sodium light:

Dn = 2 Vn AR

Squaring, we get, Dn = 4n AR — (i)

For mith dark ring (m>n)

Dm2 = 4mxR - (ii)

Subtracting egn (i) from (ii),

 $Dm^2 - Dn^2 = 4m\lambda R - 4n\lambda R$

 $1! \lambda = \frac{0m^2 - 0n^2}{4R(m-n)}$ (A)

1	Egn(A) measures wavelength of sodium light.
+	X) Determination of R.I. of transparent tigt Irquid
-	
	The experimental setup is
	given below.
	We know,
	Der diameta of noth fringe.
	Dn = 2 Vn 2R
	$D_n = 2\sqrt{n\lambda R}$
	So, for nth and mth dark sing without liquid.
	$Dm^2 - Dn^2 = 4(m-n) 1R - (i)$
	The state of the s
	Suppose liquid is poured then, not dask ring has.
	Extabent. For small to, cost 251.
	$2\mu t = n\lambda$.
	$2t = \frac{r^2}{r}$
	K
	Thus,
	$\mu_{\gamma'^2} = n\lambda \qquad \gamma' = \left(\frac{n\lambda R}{M} - (ii)\right)$

Soy diametes (0n') = 2r' = 2 / nAR - (iii)

Now for diameter of nth and mth (m>n) dark ning with liquid.

Dm'2 - On'2 = 4(m-n) AR -(iv)

from egn (i) and (iv),

Dm'2 - On12 = Dm2- On2

 $\frac{1}{1} H = \frac{Dm^2 - Dn^2}{Dm^{12} - Dn^{12}} - (B)$

Egn (B) is the required relation for measurement 9 R.T. y given transparent liquid.

To determine R.J. graphically, we plot the graph y and x axis respectively as shown in figure. Since, $M = \frac{p_{m}^{2} - p_{n}^{2}}{p_{m'}^{2} - p_{n'}^{2}}$ M = Slope of line AB

slope of line CD 80,