IT Technology 2. sem

Loop avoidance with RSTP

University College

Authors
Tihamer Biliboc
tiha0006@edu.eal.dk
Sebastian Thomle Mason
seba7286@edu.eal.dk
Anthony James Peak
anth0662@edu.eal.dk
Laurynas Medvedevas
laur176n@edu.eal.dk
Kasper Jensen
kasp7547@edu.eal.dk

Sunday 24 Mar 2019

Table of Contents

Put the router configuration and the topology diagram in GitHub	9
Explain what "convergence time" means when using STP	8
A filled out test plan Test "connection" from e.g. PC3 to web server 1 without and with STP.	7
Show and comment on Interfaces and routing tables in/on the SRX	5
A Low Level Design	4
An inventory of used devices.	3
A HLD with explanation	2

A HLD with explanation

In the topology above, 3 SRX routers are connected together, each with multiple redundant connections or aggregated links (802.3ad).

There are 2 parallel networks that simultaneously use this network hardware which are separated using tagged traffic (802.1q).

There are 6 PC's that are connected in total, with 2 on each SRX router (one PC operates on zone OPERATIONS and the other on zone SALES).

An inventory of used devices.

- SRX-B2
 - SRX240 Router
- SRX-B3
 - SRX240 Router
- SRX-B4
 - SRX240 Router
- Bunch of straight through ethernet cables with RJ45 connectors
- 1 Cisco Hub
- 3 PCs
- 3 x USB to RJ45 converter cable

A Low Level Design

LOW LEVEL DESIGN ass11						
INSTANCE TYPE	INTERFACE	IP ADDRESS	VLAN ID	MASK	CONNECTS TO	Comments
SRX240-B2	ge-0/0/1	192.168.10.2	VLAN-10	/24	PC1	OPERATIONS vlan
	ge-0/0/2	192.168.11.2	VLAN-20	/24	PC2	SALES vlan
	ge-0/0/3				SRX240-B3	ae0
	ge-0/0/4				SRX240-B3	ae0
	ge-0/0/7				SRX240-B4	ae1
	ge-0/0/8				SRX240-B4	ae1
SRX240-B3	ge-0/0/1	192.168.10.1	VLAN-10	/24	PC3	OPERATIONS vlan
	ge-0/0/2	192.168.11.1	VLAN-20	/24	PC4	SALES vlan
	ge-0/0/3				SRX240-B2	ae0
	ge-0/0/4				SRX240-B2	ae0
	ge-0/0/7				SRX240-B4	ae1
	ge-0/0/8				SRX240-B4	ae1
SRX240-B4	ge-0/0/1	192.168.10.3	VLAN-10	/24	PC5	OPERATIONS vlan
	ge-0/0/2	192.168.11.3	VLAN-20	/24	PC6	SALES vlan
	ge-0/0/3				SRX240-B3	ae0
	ge-0/0/4				SRX240-B3	ae0
	ge-0/0/7				SRX240-B2	ae1
	ge-0/0/8				SRX240-B2	ae1
PC1	eth0	192.168.10.100		/24	SRX240-B2	
PC2	eth0	192.168.11.100		/24	SRX240-B2	
PC3	eth0	192.168.10.20		/24	SRX240-B3	
PC4	eth0	192.168.11.20		/24	SRX240-B3	
PC5	eth0	192.168.10.88		/24	SRX240-B4	
PC6	eth0	192.168.11.88		/24	SRX240-B4	

Show and comment on Interfaces and routing tables in/on the SRX

Below is the routing table and interface list for SRXB-3.

```
root@SRXB-3> show route terse
inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
A Destination
                   P Prf
                          Metric 1 Metric 2 Next hop
                                                                  AS path
* 192.168.10.0/24
                                                >vlan.10
                   D 0
* 192.168.10.1/32
                    L
                        0
                                                 Local
* 192.168.11.0/24
                        0
                    D
                                                >vlan.11
                                                 Local
* 192.168.11.1/32
                        0
                    L
```

As shown above, the router knows what interfaces to forward traffic out on.

```
root@SRXB-3> show interfaces terse
Interface
                        Admin Link Proto
                                                                  Remote
                                            Local
ge-0/0/1
                              down
                        up
ge-0/0/1.0
                              down eth-switch
                        up
ge-0/0/2
                              down
                        up
qe-0/0/2.0
                              down eth-switch
                        up
```

Interface ge-0/0/1 and ge-0/0/2 connect from the routers to the PCs.

```
ge-0/0/3 up up up ge-0/0/3.0 up up aenet --> ae0.0 ge-0/0/4 up down ge-0/0/4.0 up down aenet --> ae0.0
```

Interface ge-0/0/3 through 0/0/6 are aggregated, although only 3 and 4 are used currently.

```
      ge-0/0/7
      up
      up

      ge-0/0/7.0
      up
      up
      aenet
      --> ae1.0

      ge-0/0/8
      up
      down

      ge-0/0/8.0
      up
      down aenet
      --> ae1.0
```

Interface ge-0/0/7 through 0/0/10 are aggregated, although only 7 and 8 are used currently.

```
ae0upupae0.0upupeth-switchae1upupae1.0upupeth-switch
```

The aggregated interfaces are used to connect the three routers in a loop.

```
vlan up up vlan.10 up up inet 192.168.10.1/24 vlan.11 up up inet 192.168.11.1/24
```

Vlan.10 is used for Operations, and vlan.11 is used for Sales.

A filled out test plan

	TEST PLAN		
ASSERTION	METHOD	EXPECTED RESULT	SUCCESS
VLAN10 (SRX-B2) can ping VLAN10 (SRX-B3) with 2 cables connecting the routers	PING from PC1 to PC3	Ping replies received	1
VLAN10 (SRX-B2) can ping VLAN10 (SRX-B4) with 2 cables connecting the routers	PING from PC2 to PC4	Ping replies received	√
VLAN10 (SRX-B3) can ping VLAN10 (SRX-B4) with 2 cables connecting the routers	PING from PC2 to PC4	Ping replies received	1
VLAN10 (SRX-B2) can ping VLAN10 (SRX-B3) with 1 cable connecting the routers	PING from PC1 to PC3	Ping replies received	1
VLAN10 (SRX-B2) can ping VLAN10 (SRX-B4) with 1 cable connecting the routers	PING from PC1 to PC3	Ping replies received	1
VLAN10 (SRX-B3) can ping VLAN10 (SRX-B4) with 1 cable connecting the routers	PING from PC1 to PC3	Ping replies received	1
VLAN10 (SRX-B2) can't ping VLAN10 (SRX-B3) with 0 cables connecting the routers	PING from PC1 to PC3	Ping replies not received	1
VLAN10 (SRX-B2) can't ping VLAN10 (SRX-B4) with 0 cables connecting the routers	PING from PC1 to PC3	Ping replies not received	1
VLAN10 (SRX-B3) can't ping VLAN10 (SRX-B4) with 0 cables connecting the routers	PING from PC1 to PC3	Ping replies not received	1
The order of the cables connecting the routers doesn't matter	Swap the cables and PING from PC2 to PC4	Ping replies received	1
Capturing Tagged packets with Wireshark	PING from PC2 to PC4 through a HUB	802.1Q appears in captured packets	1

Test "connection" from e.g. PC3 to web server 1 without and with STP.

When STP is turned on, pinging between the hosts works.

56607 6.055125	192.168.10.88	192.168.10.255	UDP	309 54915 → 54915 Len=263
56608 6.055194	HewlettP 5d:e0:2b	Broadcast	ARP	64 Who has 192.168.10.88? Tell 192.168.10.100
56609 6.055264	HewlettP_2a:a9:63	HewlettP_5d:e0:2b	ARP	64 192.168.10.88 is at b4:b5:2f:2a:a9:63
56610 6.055342	192.168.10.1	192.168.10.88	ICMP	74 Destination unreachable (Network unreachable)
56611 6.055421	192.168.10.1	192.168.10.88	ICMP	74 Destination unreachable (Network unreachable)
56612 6.055501	192.168.10.1	192.168.10.88	ICMP	74 Destination unreachable (Network unreachable)

When STP is turned off, the network is flooded with traffic, and pinging fails.

Explain what "convergence time" means when using STP

While STP can take up to 50 seconds to respond to a topology change, RSTP is typically able to respond to changes within 6 seconds. This response time is called convergence time.

Put	the router	configuration	and the to	pology	diagram in	GitHub
	*****		***************************************		····	

Diagram¹

Config²

¹ https://github.com/Sebski123/Network/blob/master/ITT2/ass11LoopAvoidanceWithRSTP/Diagrams/ITT_ass11.pdf ² https://github.com/Sebski123/Network/blob/master/ITT2/ass11LoopAvoidanceWithRSTP/Router_configs/ass11.json