Optimization Models EECS 127 / EECS 227AT

Laurent El Ghaoui

EECS department **UC** Berkeley

Fall 2018

1/23

LECTURE 8

Least Squares and Variants

If others would but reflect on mathematical truths as deeply and continuously as I have, they would make my discoveries.

C.F. Gauss (1777 - 1855)

Outline

- Least Squares and Minimum-norm solutions
- 2 Solving systems of linear equations and LS problems
- 3 Direct and inverse mapping of a unit ball
- Variants of the Least-Squares problem
 - ℓ_2 -regularized LS
- Examples

3 / 23

Least Squares

- When $y \notin \mathcal{R}(A)$, the system of linear equations is infeasible: there is no x such that Ax = y (as it happens frequently for overdetermined systems).
- In such cases it may however make sense to determine an "approximate solution" to the system, that is a solution that renders the *residual* vector $r \doteq Ax y$ as "small" as possible.
- In the most common case, we measure the residual via the Euclidean norm, whence the problem becomes

$$\min_{x} \quad \|Ax - y\|_{2}^{2}.$$

 From this, that is a solution that minimizes the sum of the squares of the equation residuals:

$$||Ax - y||_2^2 = \sum_{i=1}^m r_i^2, \quad r_i \doteq a_i^\top x - y_i,$$

where a_i^{\top} denotes the *i*-th row of A.

Least Squares

Geometric interpretation

- Since vector Ax lies in $\mathcal{R}(A)$, the problem amounts to determining a point $\tilde{y} = Ax^*$ in $\mathcal{R}(A)$ at minimum distance form y.
- The Projection Theorem then tells us that this point is indeed the orthogonal projection of y onto the subspace $\mathcal{R}(A)$.

Least Squares

Solution

• $y - Ax^* \in \mathcal{R}(A)^{\perp} = \mathcal{N}(A^{\top})$, hence

$$A^{\top}(y - Ax^*) = 0$$

• Solutions x^* to the LS problem must satisfy the Normal Equations:

$$A^{\top}Ax = A^{\top}y$$

- This system always admits a solution.
- If A is full column rank (i.e., rank(A) = n), then the solution is unique, and it is given by

$$x^* = (A^\top A)^{-1} A^\top y.$$

Minimum-norm solutions

- When matrix A has more columns than rows (m < n: underdetermined), and $y \in \mathcal{R}(A)$, we have that $\dim \mathcal{N}(A) \geq n m > 0$, hence the system y = Ax has infinite solutions and that the set of solutions is $\mathcal{S}_{\bar{x}} = \{x : x = \bar{x} + z, z \in \mathcal{N}(A)\}$, where \bar{x} is any vector such that $A\bar{x} = y$.
- We single out from $S_{\bar{x}}$ the one solution x^* with minimal Euclidean norm. That is, we solve

$$\min_{x:Ax=y} \|x\|_2,$$

which is equivalent to $\min_{x \in S_{\bar{x}}} ||x||_2$.

- The solution x^* must be orthogonal to $\mathcal{N}(A)$ or, equivalently, $x^* \in \mathcal{R}(A^\top)$, which means that $x^* = A^\top \xi$, for some suitable ξ .
- Since x^* must solve the system of equations, it must be $Ax^* = y$, i.e., $AA^{\top}\xi = y$.
- If A is full row rank, AA^{\top} is invertible and the unique ξ that solves the previous equation is $\xi = (AA^{\top})^{-1}y$. This finally gives us the unique minimum-norm solution of the system:

$$x^* = A^{\top} (AA^{\top})^{-1} y.$$

LS solutions and the pseudoinverse

Corollary 1 (Set of solutions of LS problem)

The set of optimal solutions of the LS problem

$$p^* = \min_{x} \|Ax - y\|_2$$

can be expressed as

$$\mathcal{X}_{\mathrm{opt}} = A^{\dagger} y + \mathcal{N}(A),$$

where $A^{\dagger}y$ is the minimum-norm point in the optimal set. The optimal value p^* is the norm of the projection of y onto orthogonal complement of $\mathcal{R}(A)$: for $x^* \in \mathcal{X}_{\mathrm{opt}}$,

$$p^* = ||y - Ax^*||_2 = ||(I_m - AA^{\dagger})y||_2 = ||P_{\mathcal{R}(A)^{\perp}}y||_2,$$

where matrix $P_{\mathcal{R}(A)^{\perp}}$ is the projector onto $\mathcal{R}(A)^{\perp}$. If A is full column rank, then the solution is unique, and equal to

$$x^* = A^{\dagger} y = (A^{\top} A)^{-1} A^{\top} y.$$

Solving systems of linear equations and LS problems

Direct methods

 We discuss techniques for solving a square and nonsingular system of equations of the form

$$Ax = y$$
, $A \in \mathbb{R}^{n,n}$, A nonsingular.

- If $A \in \mathbb{R}^{n,n}$ has a special structure, such as upper (resp., lower) triangular matrix, then the algorithms of *backward substitution* (resp., *forward substitution*) can be directly applied.
- If A is not triangular, then the method of Gaussian elimination applies a sequence of elementary operations that reduce the system in upper triangular form. Then, backward substitution can be applied to this transformed system in triangular form.
- A possible drawback of these methods is that they work simultaneously on the coefficient matrix A and on the right-hand side term y, hence the whole process has to be redone if one needs to solve the system for several different right-hand sides.

Solving systems of linear equations and LS problems

Factorization-based methods

- Another common approach for solving Ax = y is the so-called *factor-solve* method.
- The coefficient matrix A is first factored into the product of matrices having particular structure (such as orthogonal, diagonal, or triangular), and then the solution is found by solving a sequence of simpler systems of equations, where the special structure of the factor matrices can be exploited.
- An advantage of factorization methods is that, once the factorization is computed, it can be used to solve systems for many different values of the right-hand side y.

Factor-solve via SVD

- SVD of $A \in \mathbb{R}^{n,n}$: $A = U\Sigma V^{\top}$, where $U, V \in \mathbb{R}^{n,n}$ are orthogonal, and Σ is diagonal and nonsingular.
- We write the system Ax = y as a sequence of systems:

• These are readily solved sequentially as

$$w = U^{\top} y$$
, $z = \Sigma^{-1} w$, $x = Vz$.

Fa18 11 / 23

Factor-solve via QR

- Any nonsingular matrix $A \in \mathbb{R}^{n,n}$ can be factored as A = QR, where $Q \in \mathbb{R}^{n,n}$ is orthogonal, and R is upper triangular with positive diagonal entries.
- Then, the linear equations Ax = y can be solved by first multiplying both sides on the left by Q^{\top} , obtaining

$$Q^{\top}Ax = Rx = \tilde{y}, \quad \tilde{y} = Q^{\top}y,$$

and then solving the triangular system $Rx = \tilde{y}$ by backward substitution.

• This factor-solve process is represented graphically in the figure below.

Fa18 12 / 23

SVD method for non-square systems

• Consider the linear equations

$$Ax = y$$
,

where $A \in \mathbb{R}^{m,n}$, and $y \in \mathbb{R}^m$, and let $A = U\tilde{\Sigma}V^{\top}$ be an SVD of A.

• We can completely describe the set of solutions via SVD, as follows. Pre-multiply the linear equation by the inverse of U, U^{\top} ; then

$$\tilde{\Sigma}\tilde{x} = \tilde{y}, \quad \tilde{x} = V^{\top}x,$$

where $\tilde{y} = U^{\top} y$.

• Due to the diagonal form of $\tilde{\Sigma}$, the above writes

$$\sigma_i \tilde{x}_i = \tilde{y}_i, \quad i = 1, \dots, r; \quad 0 = \tilde{y}_i, \quad i = r + 1, \dots, m.$$

Fa18 13 / 23

SVD method for non-square systems

Two cases can occur:

- ① If the last m-r components of \tilde{y} are not zero, then the second set of conditions in the last expression are not satisfied, hence the system is infeasible, and the solution set is empty. This occurs when y is not in the range of A.
- ② If y is in the range of A, then the second set of conditions in the last expression hold, and we can solve for \tilde{x} with the first set of conditions, obtaining

$$\tilde{x}_i = \frac{\tilde{y}_i}{\sigma_i}, \quad i = 1, \ldots, r.$$

The last n-r components of \tilde{x} are free. This corresponds to elements in the nullspace of A.

If A is full column rank (its nullspace is reduced to $\{0\}$), then there is a unique solution. Once vector \tilde{x} is obtained, the actual unknown x can then be recovered as $x = V\tilde{x}$.

Solving LS problems

• Given $A \in \mathbb{R}^{m,n}$ and $y \in \mathbb{R}^m$, we discuss solution of the LS problem

$$\min_{x} \|Ax - y\|_2.$$

All solutions of the LS problem are solutions of the system of normal equations

$$A^{\top}Ax = A^{\top}y.$$

 Therefore, LS solutions can be obtained by either using either direct or factor-solve methods to the normal equations.

Direct and inverse mapping of a unit ball

• We focus on the linear map

$$y = Ax$$
, $A \in \mathbb{R}^{m,n}$,

where $x \in \mathbb{R}^n$ is the input vector, and $y \in \mathbb{R}^m$ is the output.

 We consider two problems that we call the direct and the inverse (or estimation) problem.

Fa18 16 / 23

Direct and inverse mapping of a unit ball

Direct problem

- In the direct problem, we assume that the input x lies in a unit Euclidean ball centered at zero, and we ask where the output y is.
- That is, we let

$$x \in \mathcal{B}^n$$
, $\mathcal{B}^n = \{z \in \mathbb{R}^n : ||z||_2 \le 1\}$

and we want to find the output set

$$\mathcal{E}_y = \{ y : y = Ax, x \in \mathcal{B}^n \}.$$

• This set is a bounded but possibly degenerate ellipsoid (flat on $\mathcal{R}(A)^{\perp}$), with the axes directions given by the right singular vectors u_i and with the semi-axes lengths given by σ_i , $i=1,\ldots,n$.

Fa18 17 / 23

Direct and inverse mapping of a unit ball

Inverse problem

• Suppose $y \in \mathcal{B}^m$, we ask what is the set of input vectors x that would yield such a set as output. Formally, we seek

$$\mathcal{E}_x = \{x \in \mathbb{R}^n : Ax \in \mathcal{B}^m\}.$$

• Since $Ax \in \mathcal{B}^m$ if and only if $x^\top A^\top Ax \leq 1$, we obtain that \mathcal{E}_x is

$$\mathcal{E}_x = \{x \in \mathbb{R}^n : x^\top (A^\top A) x \le 1\}.$$

This ellipsoid is unbounded along directions x in the nullspace of A. The axes of \mathcal{E}_x are along the directions of the left singular vectors v_i , and the semi axes lengths are given by σ_i^{-1} , $i=1,\ldots,n$.

Fa18 18 / 23

Linear equality-constrained LS

 A generalization of the basic LS problem allows for the addition of linear equality constraints on the x variable, resulting in the constrained problem

$$\min_{x} \|Ax - y\|_{2}^{2}$$
, s.t. $Cx = d$,

where $C \in \mathbb{R}^{p,n}$ and $d \in \mathbb{R}^p$.

- This problem can be converted into a standard LS one, by "eliminating" the equality constraints, via a standard procedure. Suppose the problem is feasible, and let \bar{x} be such that $C\bar{x}=d$.
- All feasible points are expressed as $x = \bar{x} + Nz$, where N contains by columns a basis for $\mathcal{N}(C)$, and z is a new variable.
- Problem becomes unconstrained in variable z:

$$\min_{z} \, \|\bar{A}z - \bar{y}\|_2^2,$$

where $\bar{A} \doteq AN$, $\bar{y} \doteq y - A\bar{x}$.

Fa18 19 / 23

Weighted LS

• The standard LS objective is a sum of squared equation residuals

$$||Ax - y||_2^2 = \sum_{i=1}^m r_i^2, \quad r_i = \mathbf{a}_i^\top x - y_i.$$

• In some cases, the equation residuals may not be given the same importance, and this relative importance can be modeled by introducing weights into the LS objective, that is $f_0(x) = \sum_{i=1}^m w_i^2 r_i^2$, where $w_i \geq 0$ are the given weights. This objective is rewritten as

$$f_0(x) = ||W(Ax - y)||_2^2 = ||A_w x - y_w||_2^2,$$

where

$$W = \operatorname{diag}(w_1, \dots, w_m), \quad A_w \doteq WA, \ y_w = Wy.$$

ullet The weighted LS problem still has the structure of a standard LS problem, with row-weighted matrix A_w and vector y_w .

Fa18 20 / 23

ℓ₂-regularized LS

• Regularized LS refer to a class of problems of the form

$$\min_{x} \|Ax - y\|_2^2 + \phi(x),$$

where a "regularization," or *penalty*, term $\phi(x)$ is added to the usual LS objective.

• In the most usual cases, ϕ is proportional either to the ℓ_1 or to the ℓ_2 norm of x. The ℓ_1 -regularized case gives rise to the LASSO problem, which is discussed in more detail later. The ℓ_2 -regularized case is instead discussed next:

$$\min_{x} \|Ax - y\|_{2}^{2} + \gamma \|x\|_{2}^{2}, \quad \gamma \ge 0$$

ℓ₂-regularized LS

$$\min_{x} \ \|Ax - y\|_{2}^{2} + \gamma \|x\|_{2}^{2}, \quad \gamma \ge 0$$

 Recalling that the squared Euclidean norm of a block-partitioned vector is equal to the sum of the squared norms of the blocks, i.e.,

$$\left\| \left[\begin{array}{c} a \\ b \end{array} \right] \right\|_{2}^{2} = \left\| a \right\|_{2}^{2} + \left\| b \right\|_{2}^{2}$$

we see that the regularized LS problem can be rewritten in the format of a standard LS problem as follows

$$||Ax - y||_2^2 + \gamma ||x||_2^2 = ||\tilde{A}x - \tilde{y}||_2^2,$$

where

$$\tilde{A} \doteq \left[\begin{array}{c} A \\ \sqrt{\gamma} I_n \end{array} \right], \quad \tilde{y} \doteq \left[\begin{array}{c} y \\ 0_n \end{array} \right].$$

 γ ≥ 0 is a tradeoff parameter. Interpretation in terms of tradeoff between output tracking accuracy and input effort.

Examples

- Linear regression via least-squares.
- Auto-regressive (AR) models for time-series prediction.