In	[35]:	Q2.2 Dual PCA of Yale Face Database Importing Libraries
	[33].	<pre>import numpy as np import matplotlib.pyplot as plt import scipy.io plt.rcParams['figure.figsize'] = [10,5] Importing Yale Face Dababase</pre>
In	[36]:	data = scipy.io.loadmat('./YaleFaceDataBase/Yale_64x64.mat') In Dual PCA if A has dimensions n by t then n >> t
In	[37]:	Taking only t-number of samples for Analysis t = 100 x = np.array(data['fea'])[:t,:].T
In	[38]:	print(X.shape) (4096, 100) Visualizing one of the sample image
In	[39]:	<pre>img = plt.imshow(X[:,1].reshape(64,64).transpose()) img.set_cmap('gray') plt.axis('off') plt.show()</pre>
In	[40]:	Calculating At*A xtx = np.matmul(x.T,x)
In	[41]:	print(XtX.shape) (100, 100) Calculating Eigen values of At*A
	[42]: [43]:	<pre>eigValues, eigVectors = np.linalg.eigh(XtX) print(eigValues.shape) (100,)</pre>
In	[44]:	print(eigValues) [-1.44213332e+03 -1.32446410e+03 -1.30623412e+03 -1.24429096e+03 -1.21678564e+03 -1.19797082e+03 -1.11729236e+03 -1.06525344e+03 -1.05588651e+03 -1.04058313e+03 -9.76025720e+02 -9.18680023e+02
		-8.97465034e+02 -8.84722094e+02 -8.75651691e+02 -8.37038678e+02 -8.14724711e+02 -7.79495263e+02 -7.38948305e+02 -7.15844200e+02 -6.91368810e+02 -6.71493309e+02 -6.58297084e+02 -6.00216821e+02 -5.79281157e+02 -5.36942209e+02 -5.10119884e+02 -5.03721547e+02 -4.50460504e+02 -4.40144652e+02 -4.31936255e+02 -4.05144336e+02 -3.76509059e+02 -3.47656317e+02 -3.10738072e+02 -2.98757430e+02 -2.82611833e+02 -2.22261329e+02 -2.11557931e+02 -1.90942705e+02 -1.68230865e+02 -1.63777417e+02 -1.15412219e+02 -8.18540193e+01 -6.54047420e+01 -4.83431968e+01 -3.63863311e+01 -2.96248105e+01
		4.63655445e-14 1.78288084e-13 1.11059645e+01 4.91114620e+01 6.64342907e+01 9.25994971e+01 1.01413404e+02 1.48782785e+02 1.87128456e+02 2.21946170e+02 2.34283584e+02 2.62349975e+02 2.80922163e+02 2.92709212e+02 2.99399922e+02 3.39613235e+02 3.58319602e+02 4.04102718e+02 4.23277169e+02 4.38690758e+02 4.72931541e+02 5.07492373e+02 5.11577217e+02 5.40440401e+02 5.62420730e+02 5.90376424e+02 6.19289307e+02 6.23520739e+02 6.62120820e+02 6.80666083e+02 6.87894811e+02 7.19088198e+02
		7.34998271e+02 7.85210254e+02 7.99554795e+02 8.40891654e+02 8.59706496e+02 9.04948515e+02 9.23296090e+02 9.70877545e+02 9.86367520e+02 1.01280301e+03 1.07439711e+03 1.10354195e+03 1.13845770e+03 1.21809367e+03 1.27040551e+03 1.30376543e+03 1.39149840e+03 1.40632623e+03 1.49057913e+03 1.28139567e+04] Sorting eigen values in descending values and changing
In	[45]:	order of eigen vectors correspondingly idx = eigValues.argsort()[::-1]
In	[46]:	<pre>eigValues = eigValues[idx] eigVectors = eigVectors[:,idx] print(eigValues) [1.28139567e+04 1.49057913e+03 1.40632623e+03 1.39149840e+03</pre>
		1.30376543e+03
		3.39613235e+02 2.99399922e+02 2.92709212e+02 2.80922163e+02 2.62349975e+02 2.34283584e+02 2.21946170e+02 1.87128456e+02 1.48782785e+02 1.01413404e+02 9.25994971e+01 6.64342907e+01 4.91114620e+01 1.11059645e+01 1.78288084e-13 4.63655445e-14 -2.96248105e+01 -3.63863311e+01 -4.83431968e+01 -6.54047420e+01 -8.18540193e+01 -1.15412219e+02 -1.63777417e+02 -1.68230865e+02 -1.90942705e+02 -2.11557931e+02 -2.22261329e+02 -2.82611833e+02 -2.98757430e+02 -3.10738072e+02 -3.47656317e+02 -3.76509059e+02
		-4.05144336e+02 -4.31936255e+02 -4.40144652e+02 -4.50460504e+02 -5.03721547e+02 -5.10119884e+02 -5.36942209e+02 -5.79281157e+02 -6.00216821e+02 -6.58297084e+02 -6.71493309e+02 -6.91368810e+02 -7.15844200e+02 -7.38948305e+02 -7.79495263e+02 -8.14724711e+02 -8.37038678e+02 -8.75651691e+02 -8.84722094e+02 -8.97465034e+02 -9.18680023e+02 -9.76025720e+02 -1.04058313e+03 -1.05588651e+03 -1.06525344e+03 -1.11729236e+03 -1.19797082e+03 -1.21678564e+03 -1.24429096e+03 -1.30623412e+03 -1.32446410e+03 -1.44213332e+03]
	[47]:	eigvals = eigvalues.copy() Finding out number of least significant eigen Values
an a	[48]:	<pre>r = 0 index_of_small_eig_values = [] while(r<len(eigvalues)): +="1</pre" eigvalues[r]<1:="" if="" index_of_small_eig_values.append(eigvalues[r])="" r=""></len(eigvalues)):></pre>
In	[49]:	Here that number turns out to be 50 small_eig_vals = len(index_of_small_eig_values) print(small_eig_vals) 50
In	[50]:	eigvals = np.array(eigvals) Creating Singular value matrix
	[51]: [52]:	<pre>D = eigVals[:-small_eig_vals]**(1/2)</pre> Visualizing Singular values matrix pattern plt.figure(1)
		<pre>plt.semilogy(D) plt.title('Singular Values') plt.show() plt.figure(2) plt.plot(np.cumsum(D)/np.sum(D)) plt.title('Singular Values: Cumulative Sum')</pre>
		Singular Values 102
		Singular Values: Cumulative Sum
		0.6 -
		0.4 -
In	[53]:	0 10 20 30 40 50 Formint V.transpose() Matrix Vt = eigVectors.copy().T
		Reconstruction of Training data xcap = X V Vt
	[54]: [55]:	<pre>Xcap = (X.dot(Vt.T)).dot(Vt) print(Xcap.shape) (4096, 100)</pre>
In	[56]:	<pre>Visualizing Reconstructed Data plt.figure(figsize=(16,20)) for i in range(1,81): plt.subplot(10,8,i,xticks=[],yticks=[]) img = plt.imshow(Xcap[:,i-1].reshape(64,64).T.astype('uint8'),cmap='gray')</pre>
		plt.plot()
In	[57]:	Reconstruction of Test Data $ycap = XV(\Sigma^{-2})VtXtx$ $D_{temp} = np.zeros((len(D), len(D)))$
In	[58]:	<pre>for i in range(len(D)): D_temp[i][i] = D[i] D = D_temp for i in range(len(D)):</pre>
		print(D[i][i]) 113.19874858014401 38.608019036836296 37.50101635278476 37.302793485663805 36.10769217838276 35.64274829061269
		34.90119875071728 33.741038839022025 33.21960183939981 32.777997404141246 31.824566061490245 31.40648850212336 31.158907953977785 30.385787625614764
		30.0823621968586 29.320751967869843 28.998131908246993 28.276399959960777 28.021603345223525 27.11085153717597 26.81581991334121 26.227748880385747
		26.089578056453934 25.731708462098233 24.970397256256746 24.885524047988394 24.297662938058185 23.715411233093413 23.24737407555087 22.618072787836233
		22.527591375113797 21.746989243648752 20.944945890945384 20.573700896829767 20.102306292414788 18.929331786546687 18.428598304297516 17.303176645659565
		17.108746638795072 16.76073275974999 16.19722121171101 15.306324969058053 14.897857891115656 13.679490338037773 12.197654899409132 10.07042222643836
In	[59]:	9.622863246118387 8.150723322988473 7.007957045914438 3.3325612515534706 invD_sq = np.linalg.inv(np.matmul(D,D))
In	[60]:	<pre>print(invD_sq) [[7.80399080e-05 0.00000000e+00 0.00000000e+00 0.00000000e+00</pre>
		0.00000000e+00 0.00000000e+00] [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.50524675e-02 0.00000000e+00 0.00000000e+00] [0.0000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.03618455e-02 0.00000000e+00] [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.000000000e+00 0.00000000e+00 9.00417069e-02]]
In	[61]:	<pre>print(X.shape) print(Vt.T.shape) print(invD_sq.shape) print(Vt.shape) print(X.T.shape) print(X.T.shape)</pre>
		(4096, 100) (100, 100) (50, 50) (100, 100) (100, 4096) (4096, 100)
	[62]: [63]:	<pre>X_approx = X[:,:t-small_eig_vals] Vt_approx = Vt[:t-small_eig_vals,:t-small_eig_vals] print(X_approx.shape) print(Vt_approx.T.shape) print(invD_sq.shape)</pre>
		<pre>print(invD_sq.shape) print(Vt_approx.shape) print(X_approx.T.shape) print(X_approx.shape) (4096, 50) (50, 50) (50, 50)</pre>
	[64]: [65]:	(50, 50) (50, 4096) (4096, 50) UUt = np.matmul(X_approx[:,:],np.matmul(Vt_approx.T,np.matmul(invD_sq,np.matmul(Vt_approx.T))
In	[65]: [66]:	<pre>y = np.matmul(UUt,X[:,0]) print(y.shape) (4096,)</pre>
In	[67]:	<pre>img = plt.imshow(y.reshape(64,64).astype('uint8').T) img.set_cmap('gray')</pre>
		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
		30
		0 10 20 30 40 50 60
		In Dual PCA, in most cases reconstruction of test data i.e. out of sample reconstruction is not possible