

MATRIZES

Matemática Aplicada à Computação

Priscila Louise Leyser Santin priscila.santin@prof.unidombosco.edu.br

DEFINIÇÃO

- Uma matriz é uma tabela retangular de elementos dispostos em linhas e colunas
- Uma matriz com m linhas e n colunas é indicada por:

$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

- Os elementos são indicados por a_{ij} , onde $1 \le i \le m$ e $1 \le j \le n$
- É possível indicar as matrizes apenas por letras maiúsculas (A, B, C, D, ...), omitindo os índices m e n

DEFINIÇÃO

Exemplos:

Indique todos os elementos das matrizes abaixo:

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 2 & 1 & -2 \\ 5 & 0 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & -9 & 2 & 5 \\ 0 & 7 & \sqrt{2} & \pi \end{bmatrix}$$

MATRIZ QUADRADA

Número de linhas é igual ao número de colunas

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 5 & -1 & 7 \\ 2 & 0 & 3 \end{bmatrix}$$

$$B = [8]$$

$$C = \begin{bmatrix} 9 & -4 \\ 3 & \sqrt{7} \end{bmatrix}$$

MATRIZ NULA

Todos os seus elementos são iguais a zero

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

MATRIZ LINHA

$$A = [9 \ 0 \ -3 \ 2]$$

$$B = \begin{bmatrix} 1 & 3 \end{bmatrix}$$

MATRIZ COLUNA

$$A = \begin{bmatrix} 7 \\ -9 \\ 2 \\ 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

MATRIZ DIAGONAL

• Somente os elementos da diagonal principal possuem valores

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} 9 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

MATRIZ TRIANGULAR SUPERIOR

$$A = \begin{bmatrix} 1 & 9 & 0 \\ 0 & 7 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & -9 \\ 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \sqrt{3} & 0 & 3 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

MATRIZ TRIANGULAR INFERIOR

$$A = \begin{bmatrix} 4 & 0 & 0 \\ 9 & 2 & 0 \\ \pi & 7 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 6 & 5 & 0 & 0 \\ 4 & -3 & 9 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix}$$

MATRIZ IDENTIDADE

• É uma matriz diagonal onde:

$$\checkmark a_{ij} = 0$$
, para $i \neq j$

$$\checkmark a_{ij} = 1$$
, para $i = j$

• Muitas vezes a matriz identidade de ordem n é indicada por $I_{n imes n}$ ou apenas I_n

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ADIÇÃO

- Dadas duas matrizes $A_{m \times n}$ e $B_{m \times n}$, A+B é a soma dos elementos nas mesmas posições
 - \checkmark A e B devem ser de mesma ordem

Exemplos:

Determine A + B

$$A = \begin{bmatrix} 4 & 0 & 1 \\ 9 & 2 & 2 \\ -1 & 7 & 1 \end{bmatrix}$$
 e
$$B = \begin{bmatrix} 2 & 1 & -8 \\ 1 & 3 & 0 \\ 6 & 2 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 2 \\ 0 & -1 \\ 3 & 4 \end{bmatrix} e B = \begin{bmatrix} -2 & 5 \\ 3 & 2 \\ 1 & 7 \end{bmatrix}$$

MULTIPLICAÇÃO POR UMA CONSTANTE

• Dada a matriz $A_{m \times n}$ e uma constante α , $\alpha \cdot A$ é a multiplicação de cada elemento de A pela constante α

Exemplos:

Calcule a multiplicação da matriz pela constante.

Se
$$A = \begin{bmatrix} 3 & 0 & -1 \\ 9 & 6 & 2 \\ 1 & -7 & 4 \end{bmatrix}$$
 e $\alpha = 2$

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 4 & 2 \end{bmatrix} \quad e \quad \alpha = -3$$

MULTIPLICAÇÃO DE MATRIZES

- O número de colunas da primeira matriz deve ser igual ao número de linhas da segunda matriz
- Dadas duas matrizes $A_{m \times n}$ e $B_{n \times p}$, $A \times B$ é uma terceira matriz $C_{m \times p}$ tal que:

$$c_{ik} = a_{i1} \cdot b_{1k} + a_{12} \cdot b_{2k} + \dots + a_{in} \cdot b_{nk} = \sum_{j=1}^{n} a_{ij} b_{jk}$$

MULTIPLICAÇÃO DE MATRIZES

Exemplo:

$$A = \begin{bmatrix} 1 & 3 & -1 \\ -2 & -1 & 1 \end{bmatrix} e B = \begin{bmatrix} -4 & 0 & 3 & -1 \\ 5 & -2 & -1 & 1 \\ -1 & 2 & 0 & 6 \end{bmatrix}$$

MULTIPLICAÇÃO DE MATRIZES

Exemplo:

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} B = \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}$$

EXERCÍCIOS

A) Dadas as matrizes abaixo, calcule o que se pede:

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix} e E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

- 1) 5*A*
- 2) *BA*
- 3) 3(D + 2E)

EXERCÍCIOS

A) Dadas as matrizes abaixo, calcule o que se pede:

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix} e E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

1) 5*A*

2) *BA*

3) - 3(D + 2E)

5A 15. 0.

-5. 10.

5. 5.

BA

Não é possível calcular

-3(D + 2E)

-39. -21. -24.

9. -6. -15.

-33. -12. -30.

EXERCÍCIOS DE FIXAÇÃO

A) Escreva a matriz
$$A = (a_{ij})_{2\times 3}$$
, onde $a_{ij} = 2i + 3j$

B) Dadas as matrizes
$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 4 \\ 3 & 2 \end{bmatrix}$ e $C = \begin{bmatrix} 14 & 15 \\ 0 & 18 \end{bmatrix}$, calcule $C = 3 \cdot (A - B) + 3 \cdot (B - C) + 3 \cdot (C - A)$

C) Dadas as matrizes
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 4 \\ 1 & 8 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ e $C = A \times B$

EXERCÍCIOS DE FIXAÇÃO

A) Escreva a matriz $A = (a_{ij})_{2\times 3}$, onde $a_{ij} = 2i + 3j$

$$A = \begin{bmatrix} 5 & 8 & 11 \\ 7 & 10 & 13 \end{bmatrix}$$

B) Dadas as matrizes $A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 4 \\ 3 & 2 \end{bmatrix}$ e $C = \begin{bmatrix} 14 & 15 \\ 0 & 18 \end{bmatrix}$, calcule $C = 3 \cdot (A - B) + 3 \cdot (B - C) + 3 \cdot (C - A)$ $C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

C) Dadas as matrizes
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 4 \\ 1 & 8 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ e $C = A \times B$

$$C = \begin{bmatrix} 8 & 9 \\ 12 & 16 \\ 26 & 33 \end{bmatrix}$$

Análise e Desenvolvimento de Sistemas Gestão de Tecnologia da Informação

Matemática Aplicada à Computação

Priscila Louise Leyser Santin priscila.santin@prof.unidombosco.edu.br