第4回 Integral

問題 **4.1.** 区間 $[0,2\pi]$ 上の関数

$$f(x) = \begin{cases} (\sin x)^{400} & (x \in \mathbb{Q}) \\ (\sin x)^4 & (x \notin \mathbb{Q}) \end{cases}$$

の積分 $\int_0^{2\pi} f(x)dx$ の値を求めよ.

問題 **4.2.** $f,g:X\to \mathbb{R}$ は可積分とする.

$$(1) \ f=g \ {\rm a.e.} \$$
ならば $\int_X f d\mu = \int_X g d\mu \$ を示せ.

(2)
$$f < g$$
 a.e. $, \mu(A) > 0$ ならば $\int_A f d\mu < \int_A g d\mu$ を示せ.

! (3) 任意の $A \in \mathcal{M}$ に対して $\int_A f d\mu = \int_A g d\mu$ が成立しても, f=g a.e. とは限らないことを示せ.

問題 **4.3.** $f: X \to [0, \infty]$ を可測関数とする.

$$(1)$$
 $\int_X f d\mu = 0 \iff f = 0$ $\mu-\text{a.e.}$ を示せ.

$$(2)$$
 $\int_X f d\mu < \infty \implies f < \infty$ μ -a.e. を示せ. またこの逆が成立しない例を挙げよ.

問題 **4.4.**
$$f: \mathbb{R} \to [0, \infty]$$
 を可測関数とし、 $\int_{\mathbb{R}} f dx = 0$ とする.

(1) f が恒等的に 0 とは限らないことを示せ

(2) f が連続ならば, f は恒等的に 0 であることを示せ.

問題 4.5. $f:X\to\mathbb{R}$ は可測で、任意の可測集合 A に対し $\int_A f d\mu\geqslant 0 \implies f\geqslant 0$ μ —a.e. を示せ.

問題 4.6. Fatou の補題の一般形を示せ、つまり、 $\{f_n\}$ を $\mathbb R$ 値可測関数列、g を非負値可積分関数、 $|f_n| \leq g \ \mu-\text{a.e.}$ ならば、

$$\int \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int f_n d\mu \le \limsup_{n \to \infty} \int f_n d\mu \le \int \limsup_{n \to \infty} f_n d\mu$$

問題 4.7. 単調収束定理の非負の仮定を落としたときの反例を 1 つ挙げよ. 非負でなくと も下から可積分関数で抑えられれば良かったが, そちらの仮定を落としたときの反例も挙 げよ.

問題 **4.8.** $\{f_n\}, f: X$ 上の \mathbb{R} 値可測関数, $0 \le f_n \le f$ $(\forall n \in \mathbb{N})$ とする. このとき,

 $\lim_{n \to \infty} f_n = f$ μ -a.e. ならば、 $\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu$ であることを示せ.

問題 **4.9.** $\frac{1}{x}$ が (0,1) で可積分でないことを示せ.

問題 **4.10.** $\int_0^1 |f(x)| dx < \infty$ のとき, $\lim_{n \to \infty} \int_0^1 x^n f(x) dx = 0$ を示せ.

問題 **4.11.** $(0,\infty)$ 上の非負関数 f が可積分でリプシッツ連続のとき, $\liminf_{n\to\infty} \sqrt{n} f(n) = 0$ を示せ,

問題 **4.12.** (f_j) を X 上の可積分列とし、 $\sum_{j=1}^{\infty}\int_X|f_j|dx<\infty$ とする. このとき $\sum_{j=1}^{\infty}f_j$ は収束し、

$$\int_{X} \sum_{j=1}^{\infty} f_j(x) dx = \sum_{j=1}^{\infty} \int_{X} f_j(x) dx$$

が成立することを示せ.

問題 **4.13.** $f_n(x) = ae^{-nax} - be^{-nbx}$ (0 < a < b) に対し、以下を示せ、

$$(1) \sum_{n=1}^{\infty} \int_0^{\infty} |f_n(x)| dx = \infty$$

(2)
$$\sum_{n=1}^{\infty} \int_{0}^{\infty} f_n(x) dx = 0$$

(3)
$$\sum_{n=1}^{\infty} f_n$$
 は可積分で, $\sum_{n=1}^{\infty} \int_0^{\infty} f_n(x) dx = \log \frac{b}{a}$

問題 **4.14.** f は [a.b] 上の可積分関数とする. 任意の $c \in [a,b]$ に対し, $\int_a^c f(x)dx = 0$ であるとき, f = 0 a.e. on [a,b] であることを示せ.

問題 **4.15.** f は \mathbb{R} 上で可積分, $f \geqslant 0$ とする. $\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x)^n dx$ が存在し, 有限値となるための必要十分条件を求めよ.

問題 **4.16.** (1)
$$\int_0^\infty \left(e^{-(2m-1)x} - e^{-2mx}\right) dx \quad (m \in \mathbb{N}) \ \text{を求めよ}.$$
 (2)
$$\sum_{n=0}^\infty \frac{(-1)^{n-1}}{n} \ \text{を求めよ}.$$

問題 **4.17.** $(f_n), (g_n)$ を \mathbb{R} 上の可積分関数列 , f, g を \mathbb{R} 上可積分関数とし、 $\lim_{n \to \infty} f_n = f$, $\lim_{n \to \infty} g_n = g$ を満たすとする.このとき、

$$|f_n(x)| \le g_n(x), \lim_{n \to \infty} \int_{-\infty}^{\infty} g_n(x) dx = \int_{-\infty}^{\infty} g(x) dx$$

ならば,

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) dx = \int_{-\infty}^{\infty} f(x) dx$$

を示せ.

問題 4.18. $X=\{(x,y,z)\in\mathbb{R}^3\mid 0\leqslant x,y\leqslant z\leqslant \frac{1}{\sqrt{x^2+y^2}}-1\}$ と定める. このとき,

$$\int_X z \max\{x, y\} dx dy dz$$

を求めよ.

問題 **4.19.** f を X 上の可測関数で $0 < \int_X f(x)^2 d\mu(x) < \infty$ とする. $\alpha > 0$ のとき

$$\lim_{n \to \infty} \int_X n^{\alpha} \left(1 - \cos \left(\frac{f(x)}{n} \right) \right) d\mu(x)$$

を求めよ.

問題 **4.20.** (1) x > 0 のとき $\lim_{n \to \infty} ne^{-nx} = 0$ を示せ.

(2)
$$\int_0^\infty ne^{-nx}dx = 1 \ \text{を示せ}.$$

(3)(2)では優収東定理が使えない理由を示せ.

(4) f(x) が x=0 で連続かつ $x\geq 0$ で有界または可積分であるとき,

$$\lim_{n\to\infty}\int_0^\infty ne^{-nx}f(x)dx$$

を求めよ.

問題 **4.21.** $\lim_{n\to\infty} \int_0^1 \frac{n\sqrt{x}}{1+n^2x^2} dx$ を求めよ.

問題 **4.22.** 自然数 n に対して

$$A_n = \int_0^\pi \frac{nx^2}{1+nx} \cos x dx, \quad B_n = \int_0^\pi \frac{nx}{1+nx} \cos x dx$$

とする. このとき数列 $\{A_n\}$, $\{B_n\}$ の収束・発散を調べよ.

問題 **4.23.** (X, \mathcal{M}, μ) を測度空間, $\rho: X \to [0, \infty]$ を可測関数とする. $\rho\mu: \mathcal{M} \to [0, \infty]$ を

$$\rho\mu(E) := \int_E \rho d\mu$$

と定める.

- (1) $\rho\mu$ は測度であることを示せ.
- (2) 任意の非負可測関数 $f: X \to [0, \infty]$ に対し、

$$\int_X f d(\rho \mu) = \int_X f \rho d\mu$$

が成立することを示せ.

問題 4.24. 可測関数 $f: \mathbb{R} \to [0, \infty]$ に対し,

$$\int_{\mathbb{D}} f(t)dt = \int_{0}^{\infty} |\{f > t\}| dt$$

を示せ.

問題 **4.25.** 可測関数 $f: \mathbb{R} \to \mathbb{R}$ に対し,

$$\int_{\mathbb{R}} |\{f = t\}| dt = 0$$

を示せ.

問題 4.26. f を X 上の可積分関数とする. 任意の $\varepsilon > 0$ に対し, ある $\delta > 0$ が存在し,

$$\mu(E) < \delta \implies \left| \int_E f d\mu \right| < \varepsilon$$

が成立することを示せ.

問題 **4.27.** f が X 上可積分ならば,

$$\lim_{\lambda \to \infty} \int_{\{|f| > \lambda\}} |f| d\mu = 0$$

が成立することを示せ、またこの逆は成立しないが、 $\mu(X)<\infty$ なら成立することを示せ、問題 **4.28.** $A\subset\mathbb{R}$ を可測集合とし、 f_n は A 上可積分で、関数 f に A 上一様収束するとする.

(1) $\mathcal{L}(A) < \infty$ ならば, f も A 上可積分で,

$$\lim_{n \to \infty} \int_A f_n dx = \int_A f dx$$

を示せ.

(2) $\mathcal{L}(A) = \infty$ のときの反例を挙げよ.

問題 4.29. ƒ は ℝ 上可積分とする. 以下の等式を示せ.

$$\lim_{|y|\to\infty} \int_{\mathbb{R}} |f(x+y) - f(x)| dx = 2 \int_{\mathbb{R}} |f(x)| dx$$

問題 4.30. $[0,\infty)$ 上の $[0,\infty)$ に値をもつ連続関数 f(x) を考える. リーマン積分として $\lim_{C\to\infty}\int_0^C f(x)dx$ が存在するとき, f はルベーグ積分の意味で $[0,\infty)$ 上可積分であることを示せ.

問題 **4.31.** f は (a,b) 上微分可能, f' は (a,b) 上有界とする. 以下を示せ.

$$\int_{c}^{d} f'(x)dx = f(d) - f(c) \quad (a < \forall c < \forall d < b)$$

問題 **4.32.** $f(x) = \frac{\sin x}{x}$ は \mathbb{R} 上ルベーグ可積分でないことを示せ.

問題 **4.33.** f は \mathbb{R}^n 上の可積分関数とし, $g(x,r)=\int_{B(x,r)}f(y)dy$ と定める.

(1) $x \in \mathbb{R}^n$ を固定すると, g は r に関して連続であることを示せ.

(2) r>0 を固定すると, g は x に関して一様連続で, $\lim_{|x|\to\infty}g(x,r)=0$ を示せ.

問題 4.34. (X,\mathcal{M},μ) を測度空間とする. f は X 上の可積分関数とし, $g:[0,\infty)\to\mathbb{R}$ を $g(r)=\int_{B_r}fd\mu$ と定める. g が連続であることと, $\mu(\partial B_r)=0$ なることは同値であることを示せ.

問題 4.35. (X, \mathcal{M}, μ) を測度空間とし、 $X = \mathbb{R}^n$, f は X 上の可積分関数とする.

$$\lim_{n\to\infty}\int_{B(0,1/n)}fd\mu=0\ \text{h.}$$

問題 **4.36.** (1) $n \ge 0$ に対して, $\int_0^\infty x^{2n} e^{-x^2} dx$ をガンマ関数を用いて表せ.

(2)
$$\alpha \in \mathbb{R}$$
 のとき, $\int_0^\infty e^{-x^2} \cos(\alpha x) dx$ を求めよ.

問題 **4.37.** $F(x) = \int_{-\infty}^{\infty} e^{-y^2} \cos(2xy) dy$ とおく. このとき,

(1) F'(x) + 2xF(x) = 0 を示せ.

(2) F(x) を求めよ.

問題 **4.38.** 実数 α に対して, $J(\alpha) = \int_0^\infty e^{-x^2} \cos(\alpha x) dx$ とおく.

(1) $J(\alpha)$ は α について微分可能であることを示し、導関数を求めよ.

(2) $J(\alpha)$ を求めよ.

問題 **4.39.** f を \mathbb{R} 上の可積分関数とする. $F(x) = \int_0^\infty \frac{f(y)}{x+y} dx$ は次の性質をもつことを示せ.

- (1) F(x) は $0 < x < \infty$ で連続.
- (2) $\lim_{x \to \infty} F(x) = \infty$
- (3) F(x) は $0 < x < \infty$ で C^{∞} 級.

問題 **4.40.** f を \mathbb{R} 上の可積分関数とし、 \mathbb{R} 上の関数 g(t) を

$$g(t) = \int_{-\infty}^{\infty} f(x)e^{-t^2x^2}dx$$

と定める.

- (1) g は \mathbb{R} 上連続であることを示せ.
- (2) q は t > 0 で微分可能であることを示せ.

$$(3) \ \lambda > 0 \ に対し, \ h(\lambda) = \sqrt{\lambda} \int_0^\infty g(t) e^{-\lambda t^2} dt \ とおく. \ \lim_{\lambda \to \infty} h(\lambda) \ を求めよ.$$

問題 4.41. $x \ge 0$ 上で定義された非負値連続関数 f が $\int_0^\infty x f(x) dx < \infty$ を満たすとする. $\phi(t) = \int_0^\infty f(x) (\sin tx)^2 dx$ とおく.

 $(1) \phi$ は $\mathbb{R} \perp C^1$ 級であることを示せ.

$$(2) \int_0^\infty \frac{\phi(t)}{t^2} dt < \infty \ を示せ.$$

問題 **4.42.** 次を満たす関数 f の例を 1 つ挙げよ.

- (i) $f: \mathbb{R} \to \mathbb{R}$ は連続で可積分.
- (ii) $\lim_{|x| \to \infty} f(x) \neq 0$.

問題 4.43. $f: \mathbb{R} \to \mathbb{R}$ が一様連続で可積分の場合, $\lim_{|x| \to \infty} f(x) = 0$ が成立することを示せ.

問題 4.44. 次を満たす可測関数列 $\{f_k\}$ の例を 1 つ挙げよ.

- (i) すべての k に対して $0 \leqslant f_k(x) < \infty$.
- (ii) すべての $x \in \mathbb{R}$ に対して $\lim_{k \to \infty} f_k(x)$ は存在しない.

(iii)
$$\int_{\mathbb{R}} \liminf_{k \to \infty} f_k(x) dx < \liminf_{k \to \infty} \int_{\mathbb{R}} f_k(x) dx$$

問題 **4.45.** X=[0,1] , 関数 $f:X\to\mathbb{R}$ で, $0\leqslant f(x)<\infty$ a.e. かつ $\int_X fdx=\infty$ なる ものが任意に与えられたとする.このとき次の条件を満たす X 上の可測関数列 $\{f_n\}$ が存在することを示せ.

- (i) 任意の n に対し, $0 \leq f_n(x) \leq f(x)$ a.e.
- (ii) $\lim_{n\to\infty} f_n(x) = 0$ a.e.
- (iii) $\lim_{n \to \infty} \int_X f_n(x) dx = \infty$.
- (iv) 任意の n に対し, $\int_X f_n(x)dx < \infty$.

問題 **4.46.** 問題 4.45. で $X = \mathbb{R}$ としても成立することを示せ.

問題 **4.47.** 次を満たす関数 f(t,x) の例をそれぞれ 1 つずつ挙げよ.

- (1) $\partial_t \int f(t,x)dx$ と $\int \partial_t f(t,x)dx$ は有限値だが, 値が等しくない.
- (2) $\partial_t \int f(t,x)dx$ は有限値だが, $\int \partial_t f(t,x)dx$ は有限値でない.
- (3) $\partial_t \int f(t,x) dx$ は有限値でないが、 $\int \partial_t f(t,x) dx$ は有限値.