```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from google.colab import drive
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2 score
```

DATASET LOADED

drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mour

path='<u>/content/drive/MyDrive/Colab</u> Notebooks/IBM Project/abalone.csv'
+ Code + Text

df=pd.read csv(path)

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

df.tail()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age
df.describe()								

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	1
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.
4							•

df['age'] = df['Rings']+1.5
df = df.drop('Rings', axis = 1)

Univariate Analysis

df.hist(figsize=(20,10), grid=False, layout=(2, 4), bins = 30)

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age
Sex								
I	0.427746	0.326494	0.107996	0.431363	0.191035	0.092010	0.128182	9.390462
M	0.561391	0.439287	0.151381	0.991459	0.432946	0.215545	0.281969	12.205497
F	0.579093	0.454732	0.158011	1.046532	0.446188	0.230689	0.302010	12.629304

Bivariate and Multivariate Analysis

100 -

numerical_features = df.select_dtypes(include = [np.number]).columns
sns.pairplot(df[numerical_features])

Descriptive Statistics

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	1
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.
4							•

Check for missing values

df.isnull().sum()

Sex	0
Length	0
Diameter	0
Height	0
Whole weight	0
Shucked weight	0
Viscera weight	0
Shell weight	0
age	0
dtype: int64	

Outlier Handling

```
df = pd.get_dummies(df)
dummy_data = df.copy()
```

#outliers removal for viscera weight

```
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
df.drop(df[(df['Viscera weight']> 0.5) & (df['age'] < 20)].index, inplace=True)
df.drop(df[(df['Viscera weight']<0.5) & (df['age'] > 25)].index, inplace=True)
```


#outliers removal for shell weight

```
var = 'Shell weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
df.drop(df[(df['Shell weight']> 0.6) & (df['age'] < 25)].index, inplace=True)
df.drop(df[(df['Shell weight']<0.8) & (df['age'] > 25)].index, inplace=True)
```


#Outliers removal for shuked weight

```
var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
df.drop(df[(df['Shucked weight']>= 1) & (df['age'] < 20)].index, inplace=True)
df.drop(df[(df['Shucked weight']<1) & (df['age'] > 20)].index, inplace=True)
```


#outliers removal for whole weight

```
var = 'Whole weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Whole weight'] >= 2.5) &(df['age'] < 25)].index, inplace = True)
df.drop(df[(df['Whole weight']<2.5) & (df['age'] > 25)].index, inplace = True)
```


#outliers removal for diameters

```
var = 'Diameter'
plt.scatter(x = df[var], y = df['age'])
```

```
plt.grid(True)
df.drop(df[(df['Diameter'] <0.1) &(df['age'] < 5)].index, inplace = True)
df.drop(df[(df['Diameter'] < 0.6) & (df['age'] > 25)].index, inplace = True)
df.drop(df[(df['Diameter'] >= 0.6) & (df['age'] < 25)].index, inplace = True)</pre>
```


#outliers removal for height

```
var = 'Height'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Height'] > 0.4) &(df['age'] < 15)].index, inplace = True)
df.drop(df[(df['Height']<0.4) & (df['age'] > 25)].index, inplace = True)
```


#outliers removal for length

```
var = 'Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Length'] < 0.1) &(df['age'] < 5)].index, inplace = True)
df.drop(df[(df['Length'] < 0.8) & (df['age'] > 25)].index, inplace = True)
```

df.drop(df[(df['Length']>=0.8) & (df['age'] < 25)].index, inplace = True)</pre>

Categorical Columns

```
numerical_features = df.select_dtypes(include = [np.number]).columns
categorical_features = df.select_dtypes(include = [np.object]).columns
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `np Deprecated in NumPy 1.20; for more details and guidance: <a href="https://numpy.org/devdocs/releaded-numpy.org/devdocs/rel

numerical_features

categorical_features

Index([], dtype='object')

Split the dependent and independent variables

```
x=df.iloc[:,:5]
y=df.iloc[:,5:]
```

Χ

У

	Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M	1
0	0.1010	0.1500	16.5	0	0	1	
1	0.0485	0.0700	8.5	0	0	1	
2	0.1415	0.2100	10.5	1	0	0	
3	0.1140	0.1550	11.5	0	0	1	
4	0.0395	0.0550	8.5	0	1	0	
4172	0.2390	0.2490	12.5	1	0	0	
4173	0.2145	0.2605	11.5	0	0	1	
4174	0.2875	0.3080	10.5	0	0	1	
4175	0.2610	0.2960	11.5	1	0	0	
4176	0.3765	0.4950	13.5	0	0	1	

3995 rows × 6 columns

split the data (train and test)

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

Model Building

lr=LinearRegression()
lr.fit(x_train,y_train)

LinearRegression()

Train the model

x_train[0:4]

	Length	Diameter	Height	Whole weight	Shucked weight	
2423	0.410	0.315	0.110	0.3210	0.1255	
1216	0.310	0.225	0.070	0.1055	0.4350	
3002	0.645	0.505	0.185	1.4630	0.5920	
985	0.570	0.450	0.155	1.1935	0.5130	

y_train[0:5]

	Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M
2423	0.0655	0.0950	11.5	1	0	0
1216	0.0150	0.0400	6.5	0	1	0
3002	0.3905	0.4160	11.5	0	0	1
985	0.2100	0.3430	11.5	0	0	1
2838	0.2330	0.2595	10.5	0	0	1

x_test[0:4]

	Length	Diameter	Height	Whole weight	Shucked weight	1
300	6 0.700	0.545	0.185	1.6135	0.750	
381	7 0.475	0.385	0.120	0.5620	0.289	
409	4 0.630	0.530	0.175	1.4135	0.667	
402	0.435	0.325	0.110	0.4335	0.178	

y_test[0:5]

	Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M	1
3006	0.4035	0.3685	12.5	0	0	1	
3817	0.0905	0.1530	9.5	0	0	1	
4094	0.2945	0.3555	14.5	0	0	1	
402	0.0985	0.1550	8.5	1	0	0	

ss=StandardScaler()
x_train=ss.fit_transform(x_train)

lrpred=lr.predict(x_test[0:9])

1rpred

```
array([ 0.35064154, 0.42317517, 12.55339604, 0.50780283, -0.08545215,
        0.57764932],
      [ 0.11701718, 0.15625023, 9.84878154, 0.23508899, 0.45415266,
        0.31075835],
      [ 0.30007654, 0.37892926, 12.30238534, 0.50574715, -0.05317174,
        0.54742459],
      [ 0.09692013, 0.13181165, 9.95964476, 0.18232777, 0.5578356 ,
        0.25983664],
      [ 0.25590426, 0.32122087, 11.92694455, 0.41939293, 0.12392858,
        0.45667849],
      [ 0.15846252, 0.20923024, 11.29126176, 0.29014005, 0.36997235,
        0.339887611,
      [ 0.28730637, 0.35538064, 12.37098073, 0.43130339, 0.09697514,
        0.47172147],
      [ 0.15229535, 0.20263728, 10.84591436, 0.29722028, 0.34107547,
        0.36170425],
      [ 0.05210596, 0.07789379, 9.1755676 , 0.12539739, 0.65136117,
         0.22324144]])
```

Measure the performance using Metrics

r2_score(lr.predict(x_test),y_test)

-3.1758408437233587