Национальный исследовательский Университет ИТМО Мегафакультет информационных и трансляционных технологий Факультет инфокоммуникационных технологий

ЛИНЕЙНАЯ АЛГЕБРА

Билеты к экзамену. СЕМЕСТР 2

Работу

выполнили:

Бархатова Н.А.

Зенкин Д.Н.

Влазнев Д.В.

Агаев Хамза

Алексеев Т.Ю

Ульянова Е.А.

Комелин Г.А.

Оншин Д.Н.

Телунц Э.Р.

Золотых Л.К.

Преподаватель:

Попков Р.А.

Насчет опечаток и ошибок tg: @barkhatnat 2023

СОДЕРЖАНИЕ

		Стр.
1	Модуль «Полинейная алгебра»	4
	1.1 Билинейные функции и их матрицы. Преобразование мат-	
	рицы билинейной функции при замене базиса. Ранг и ядра би-	
	линейной функции	4
	1.2 Симметрические и кососимметрические билинейные функ-	
	ции, их матрицы. Ортогональное дополнение к подпростран-	
	ству относительно билинейной функции, его свойства	7
	1.3 Квадратичные функции, поляризация. Канонический и	
	нормальный виды симметрической билинейной и квадратичной	
	функций	9
	1.4 Методы Лагранжа и Якоби приведения квадратичной	
	функции к каноническому виду. Закон инерции	11
	1.5 Положительно определённые билинейные и квадратичные	
	функции. Критерий Сильвестра	13
	1.6 Тензоры как полилинейные функции. Примеры тензоров	
	малых валентностей. Арифметические операции над тензора-	
	ми, тензорное умножение	14
	па (p, q). Компоненты тензора, их преобразование при замене	
	базиса. Матричная запись тензоров. Свёртка тензоров	17
	ризация и альтернирование	18 19
2	Модуль «Линейные операторы»	21
	2.1 Понятие линейного оператора. Ядро и образ оператора.	
	Связь между размерностями ядра и образа оператора и раз-	
	мерностью пространства	21
	оператора в разных базисах. Геометрический смысл ранга мат-	
	рицы оператора. Пространство линейных операторов и его изо-	
	морфизм пространству квадратных матриц	22

2.3 Инвариантное подпространство. Ограничение оператора	
на него. Связь между матрицей оператора и матрицей ограни-	
чения на инвариантное подпространство. Блочно-диагональная	
матрица и разложение пространства в прямую сумму инвари-	
антных подпространств. Диагонализируемый оператор 2.4 Собственные значения и собственные векторы. Собствен-	23
ные подпространства. Их размерность. Собственный базис. Ли-	
нейная независимость собственных подпространств, соответ-	
ствующих разным собственным значениям	24
ное разложение оператора. Алгебраическая и геометрическая	
кратности собственного значения, неравенство для них. Смысл	
этих кратностей	26
вначения вещественной симметрической матрицы	28
корневого вектора. Свойства корневых подпространств. Ниль-	
потентный оператор	28
ветствующих разным собственным значениям. Разложение про-	
странства на сумму корневых подпространств	30
почка. Свойства циклических подпространств. Теорема о	
структуре нильпотентного оператора. Жорданов базис. Ниль-	
потентная жорданова клетка	30
и диаграммами Юнга. Теорема о структуре оператора 2.11 Аннулирующий многочлен. Минимальный многочлен.	32
Георема Гамильтона-Кэли. Свойства минимального многочле-	
на. Связь между минимальным многочленом и жордановой	
нормальной формой.	33

	2.12 Вычисление многочленов и аналитических функций от	
	операторов и матриц с использованием а) ЖНФ, б) совпа-	
	дения многочлена и его остатка от деления на минималь-	
	ный/характеристический на спектре оператора	34
3	Модуль «Евклидовы пространства»	36
	3.1 Евклидовы векторные пространства: определение и при-	
	меры. Неравенство Коши-Буняковского, неравенство треуголь-	
	ника, теорема Пифагора. Длина и угол между векторами 3.2 Ортогональность векторов. Ортогональное дополнение к	36
	подпространству, его свойства. Ортогональная проекция и ор-	
	тогональная составляющая. Ортонормированные базисы и ор-	
	тогональные матрицы	37
	3.3 Матрица и определитель Грама системы векторов ев-	
	клидова пространства, их свойства. Процесс ортогонализации	
	Грама-Шмидта. QR-разложение	39
		41
	3.5 Сопряжённый оператор и его свойства	42
	3.6 Ортогональные операторы, их свойства. Канонический	
	вид матрицы ортогонального оператора	43
	3.7 Симметрические (самосопряжённые) операторы, канони-	
	ческий вид их матриц. Приведение симметрической билинейной	
	или квадратичной функции к главным осям	44
	3.8 Неотрицательные и положительные симметрические опе-	
	1 1 /	47
	3.9 Полярное разложение невырожденного линейного опера-	
		49
	3.10 Представление об эрмитовом (унитарном) пространстве:	
	полуторалинейные функции, эрмитовы и косоэрмитовы функ-	
	ции и их нормальный вид	50

- 1 Модуль «Полинейная алгебра»
- 1.1 Билинейные функции и их матрицы. Преобразование матрицы билинейной функции при замене базиса. Ранг и ядра билинейной функции.

Билинейные функции

Билинейной формой $\beta: V \times V \to \mathbb{F}$ назовём функцию двух аргументов $x,y \in V$, такую, что выполняются следующие свойства:

- 1. Функция линейна по первому аргументу $\beta(x_1 + x_2, y) = \beta(x_1, y) + \beta(x_2, y)$
- 2. Функция линейна по второму аргументу $\beta(x, y_1 + y_2) = \beta(x, y_1) + \beta(x, y_2)$
- 3. $\beta(\lambda x, y) = \lambda \beta(x, y)$
- 4. $\beta(x, \lambda y) = \lambda \beta(x, y)$

Иными словами функция называется билинейной, если при одном фиксированном аргументе она является линейной функцией относительно второго аргумента.

Примеры билинейных функций:

- 1. Скалярное произведение в привычном виде. $(x, y) = |x||y|\cos\phi$ в \mathbb{E}^3
- 2. f(x), g(x)- линейные функции, тогда $\beta(x,y) = f(x) \cdot g(y)$ билинейная функция (только если f и g с разными аргументами)
- 3. $\beta(f,g) = \int_a^b f(x)g(x)dx$
- 4. $\beta(A,B) = tr(AB), A, B \in M_n(\mathbb{F})$

Матрица билинейной функции

Пусть $\{e_i\}_{i=1}^n=e_1,e_2,\ldots,e_n$ - базис V (V - конечномерное линейное пространство). Билинейная форма может быть однозначно представлена в виде:

$$\beta(x,y) = \sum_{i,j=1}^{n} \beta_{ij} \xi_i \eta_j$$

где $x=(\xi_1,\ldots,\xi_n),y=(\eta_1,\ldots,\eta_n)$ - координатные представления вектором в выбранном базисе, а $\beta_{ij}=\beta(e_i,e_j)$ - коэффициенты линейной формы Пример:

$$x = \xi_{1}e_{1} + \xi_{2}e_{2}; y = \eta_{1}e_{1} + \eta_{2}e_{2}$$

$$\beta(x,y) = \beta(\xi_{1}e_{1} + \xi_{2}e_{2}, \eta_{1}e_{1} + \eta_{2}e_{2}) = \xi_{1}\eta_{1}\beta(e_{1}, e_{1}) + \xi_{2}\eta_{1}\beta(e_{1}, e_{2}) + \xi_{1}\eta_{2}\beta(e_{2}, e_{1}) + \xi_{2}\eta_{2}\beta(e_{2}, e_{2}) = \xi_{1}(\eta_{1}\beta_{11} + \eta_{2}\beta_{12}) + \xi_{2}(\eta_{1}\beta_{21} + \eta_{2}\beta_{22}) = \left(\xi_{1} \quad \xi_{2}\right) \left(\begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix}\begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix}\right) = \left(\xi_{1} \quad \xi_{2}\right) \begin{pmatrix} \eta_{1}\beta_{11} & \eta_{2}\beta_{12} \\ \eta_{1}\beta_{21} & \eta_{2}\beta_{22} \end{pmatrix}$$

Таким образом получаем следующее:

$$\beta(x,y) = \sum_{i=1}^{n} \xi_i (\sum_{j=1}^{n} \eta_i \beta_{ij}) = \left(\xi_1 \dots \xi_n \right) \cdot B \cdot \begin{pmatrix} \eta_1 \\ \dots \\ \eta_n \end{pmatrix} = X^T B Y$$

где B - матрица билинейной формы.

$$B = (\beta_{ij})_{i,j=1}^n = \begin{pmatrix} \beta_{11} & \beta_{12} & \dots & \beta_{1n} \\ \beta_{21} & \beta_{22} & \dots & \beta_{2n} \\ \dots & \dots & \dots \\ \beta_{n1} & \beta_{n2} & \dots & \beta_{nn} \end{pmatrix}$$

ПРЕОБРАЗОВАНИЯ МАТРИЦЫ ПРИ ЗАМЕНЕ БАЗИСА

Матрицы B и B' билинейной формы $\beta(x,y)$, заданные в базисах $\{e_i\}_{i=1}^n$ и $\{e_j'\}_{j=1}^n$ связаны соотношением:

$$B' = C^T B C$$

где $C = (e \leadsto e')$ (матрица перехода от старого базиса к новому)

Ранг и ядра билинейной функции

ПРАВОЕ ЯДРО билинейной формы - это такие векторы из пространства, что:

$$R_{\beta} = R \ker \beta = \{ y \in V | \beta(x, y) = 0, \forall x \in V \}$$

ЛЕВОЕ ЯДРО билинейной формы - это такие векторы из пространства, что:

$$L_{\beta} = L \ker \beta = \{ x \in V | \beta(x, y) = 0, \forall y \in V \}$$

Правое и левое ядра являются подпространствами пространства V. ($\ker \beta \subseteq V$).

$$\ker \beta = \{y \in V | \beta(e_i, y) = 0, i = 1, \dots, n\}; x = x_1 e_1 + \dots + x_n e_n$$

$$\beta(x_1 e_1 + \dots + x_n e_n, y) = x_1 \beta(e_1, y) + \dots + x_n \beta(e_n, y) = 0$$

$$\text{при } i = 1 : e_1 = (1, 0, 0, 0, \dots, 0) \Rightarrow X^T B Y = (1, 0, 0, 0, \dots, 0) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} =$$

$$\beta_{11} y_1 + \beta_{12} y_2 + \dots + \beta_{1n} y_n = 0$$

$$\text{при } i = 2 : e_2 = (0, 1, 0, 0, \dots, 0) \Rightarrow X^T B Y = (0, 1, 0, 0, \dots, 0) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} =$$

$$\beta_{21} y_1 + \beta_{22} y_2 + \dots + \beta_{2n} y_n = 0$$

$$\text{при } i = n : e_n = (0, 0, 0, 0, \dots, 1) \Rightarrow X^T B Y = (0, 0, 0, 0, \dots, 1) B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} =$$

$$\beta_{n1} y_1 + \beta_{n2} y_2 + \dots + \beta_{nn} y_n = 0$$

В итоге получаем

$$\begin{cases} \beta_{11}y_1 + \beta_{12}y_2 + \dots + \beta_{1n}y_n = 0 \\ \vdots \\ \beta_{n1}y_1 + \beta_{n2}y_2 + \dots + \beta_{nn}y_n = 0 \end{cases}$$

Размерность пространства решений этой СЛАУ это и есть размерность ядра билинейной формы.

$$\dim \ker \beta = n - rk\beta, n = \dim V$$
$$rkB = rk\beta$$

Ранг матрицы билинейной функции равен рангу самой билинейной функции.

Замечание: Размерности правого и левого ядер равны!

1.2 Симметрические и кососимметрические билинейные функции, их матрицы. Ортогональное дополнение к подпространству относительно билинейной функции, его свойства.

Симметрические и кососимметрические билинейные ФУНКЦИИ, ИХ МАТРИЦЫ

Билинейная форма $\beta(x,y)$ называется СИММЕТРИЧЕСКОЙ, если для любых векторов x,y она не изменяется при их перестановке и КОСОСИММЕТРИЧЕСКОЙ, если при перестановке меняется знак.

$$\beta(x,y) = \beta(y,x); \beta(x,y) = -\beta(y,x)$$

Матрицы таких билинейных форм так же симметричны или кососимметричны.

Пространство всех билинейных функций на V раскладывается в прямую сумму симметрических и кососимметрических форм \Rightarrow Любую функцию можно представить в виде суммы симметрических и кососимметрических функций.

Ортогональное дополнение к подпространству относительно вилинейной функции, его свойства

Пусть V - конечномерное пространство, $\beta(x,y)$ - симметрическая/кососимметрическая билинейная функция. $U\subseteq V$. Тогда U^\perp - все векторы из V, такие, что

$$U^{\perp} = \{ y \in V | \beta(x, y) = 0, \forall x \in U \}$$

 U^{\perp} - ОРТОГОНАЛЬНОЕ ДОПОЛНЕНИЕ подпространства U относительно билинейной функции $\beta.$

Элементы x и y называются ортогональными относительно β , если $\beta(x,y)=0 \to x \perp y$ Замечание: Если $\beta(x,y)$ - кососимметрическая функция, то каждый элемент ортогонален сам себе.

Билинейная форма называется НЕВЫРОЖДЕННОЙ, если её ядро нулевое.

TEOPEMA

Если β - невырожденная симметрическая билинейная форма, то размерность ортогонального дополнения это разность размерностей изначального пространства и U.

$$\dim U^{\perp} = \dim V - \dim U$$

Доказательство

Пусть $\{e_i\}_{i=1}^n$ - базис в $U, n = \dim V, k = \dim U$. Тогда по определению имеем

$$U^{\perp} = \{ y \in V | \beta(e_i, y) = 0, i = 1, \dots, k \}$$

Записывая эти условия в координатах мы в итоге получаем

$$x = x_1 e_1 + \dots + x_n e_n$$

$$\beta(x_1 e_1 + \dots + x_n e_n, y) = x_1 \beta(e_1, y) + \dots + x_n \beta(e_n, y) = 0$$

$$\begin{cases} \beta_{11} y_1 + \beta_{12} y_2 + \dots + \beta_{1n} y_n = 0 \\ \vdots \\ \beta_{n1} y_1 + \beta_{n2} y_2 + \dots + \beta_{nn} y_n = 0 \end{cases}$$

В силы невырожденности функции β получаем:

$$\dim U^{\perp} = n - k = \dim V - \dim U$$

Две билинейные формы называются ЭКВИВАЛЕНТНЫМИ, если существуют базисы, в которых матрицы этих билинейных форм одинаковые. Подпространство $U\subseteq V$ называется НЕВЫРОЖДЕННЫМ относительно β , если ограничение β на это подпространство U не вырождено. То есть если

$$R \ker \beta|_U = \{ y \in U | \beta(x, y) = 0, \forall x \in U \}$$

ЛЕММА

Если U невырожденно относительно β , то изначальное пространство V раскладывается в прямую сумму этого подпространства и его ортогонального

дополнения.

$$V = U \oplus U^{\perp}$$

Доказательство

В одну сторону: Пусть известно, что $U \cap U^{\perp} = \ker \beta|_{U}$. По условию U невырожденно относительно β , а это значит, что $\ker \beta|_{U} = 0 \Rightarrow U \cap U^{\perp} = 0$. Тогда по формуле Грассмана

$$\dim(U+U^\perp) = \dim U + \dim U^\perp - \underbrace{\dim(U\cap U^\perp)}_{=0} = \dim U + \dim U^\perp = \dim V \Rightarrow$$

$$\Rightarrow U + U^{\perp} \subseteq V \Rightarrow U \oplus U^{\perp} = V$$

В другую сторону: Пусть известно, что $U \oplus U^{\perp} = V$.

$$\dim U + \dim U^{\perp} = \dim V \Rightarrow \dim(U \cap U^{\perp}) = 0 \Rightarrow U$$
 невырожденно

1.3 Квадратичные функции, поляризация. Канонический и нормальный виды симметрической билинейной и квадратичной функций.

Квадратичные функции

Пусть $\beta(x,y)$ - симметрическая билинейная функция над полем F характеристики $\neq 2$, функция q: $V \to F$, определяется по формуле

$$q(x) = \beta(x, x)$$

называется квадратичной формой, ассоциированной с функцией β В координатах:

$$q(x) = \sum_{i=1}^{n} q_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n}^{n} q_{ij} x_i x_j$$

Замечание: Матрица квадратичной функции всегда симметрична.

Поляризация

Симметричная билинейная функция β может быть восстановлена по квадратичной форме q. Тогда билинейная функция называется ПОЛЯРИЗАЦИЕЙ этой квадратичной функции:

$$\beta(x,y) = \frac{1}{2} [q(x+y) - q(x) - q(y)]$$

Канонический вид

Базис $\{e_i\}_{i=1}^n=e_1,e_2,\ldots,e_n$ пространства V называется ортогональным относительно $\beta,$ если $\beta(e_i,e_j)=0,$ при $i\neq j$

Матрица B билинейной функции в ортогональном базисе имеет диагональный вид:

$$B = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

В ортогональном базисе квадратичная форма имеет канонический вид:

$$q(x) = \lambda_1 x_1^2 + \ldots + \lambda_n x_n^2$$

$$V = < e_1 > \oplus \ldots \oplus < e_n >$$

TEOPEMA

Для любой симметрической билинейной функции существует ортогональный базис

Доказательство

Пусть β - невырожденная форма (для вырожденной очевидно)

при n=1 существует $e_1; q(e_1)=\beta(e_1,e_1)\neq 0$, тогда подпространство $< e_1>$ невырождено $\Rightarrow V=< e_1>\oplus < e_1>^\perp, \dim < e_1>^\perp=n-1$

По предположению индукции существует ортогональный базис $e_2 \dots e_n$ пространства e_1^{\perp} . Добавляя к нему вектор e_1 , мы получаем ортогональный базис пространства V

Нормальный вид

$$q(x) = x_1^2 + \ldots + x_{r_+}^2 - x_{r_++1}^2 - \ldots - x_{r_++r_-}^2$$
$$r_+ + r_- = rk(q)$$

1.4 Методы Лагранжа и Якоби приведения квадратичной функции к каноническому виду. Закон инерции.

МЕТОД ЛАГРАНЖА

$$q(x) = \sum_{i=1}^{n} q_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} q_{ij} x_i x_j$$

1) Какой-то $q_{ii} \neq 0$. Пусть $q_{11} \neq 0$, тогда

$$q_{11}\left(x_{1} + \frac{q_{12}}{q_{11}}x_{2} + \frac{q_{13}}{q_{11}}x_{3} + \dots + \frac{q_{1n}}{q_{11}}x_{n}\right)^{2} - \left(\frac{q_{12}}{q_{11}}\right)^{2}x_{2}^{2} - \dots - \left(\frac{q_{1n}}{q_{11}}\right)^{2}x_{n}^{2} + 2\sum_{2 \le i \le j \le n} q_{ij}x_{i}x_{j}$$

Можно повторять, пока не придем к форме:

$$\lambda_1 \tilde{x}_1^2 + \lambda_2 \tilde{x}_2^2 + \ldots + \lambda_n \tilde{x}_n^2$$

2) Если все $q_{ii}=0$, пусть $q_{12}\neq 0$, тогда

$$q(x) = 2q_{12}x_1x_2 + \dots; x_1 = \tilde{x}_1 + \tilde{x}_2; x_2 = \tilde{x}_1 - \tilde{x}_2$$

$$q(x) = 2q_{12}(\tilde{x}_1 + \tilde{x}_2)(\tilde{x}_1 - \tilde{x}_2) + \dots = 2q_{12}\tilde{x}_1^2 - 2\tilde{x}_2^2 + \dots$$

Вернемся к первому пункту

Метод Якоби

Пусть $\{e_i\}_{i=1}^n$ - базис V.

$$B = \begin{pmatrix} \beta_{11} & \beta_{12} & \dots & \beta_{1n} \\ \beta_{21} & \beta_{22} & \dots & \beta_{2n} \\ \dots & \dots & \dots \\ \beta_{n1} & \beta_{n2} & \dots & \beta_{nn} \end{pmatrix}$$

Рассмотрим подпространства. $V_1 = < e_1 > ($ построено на $e_1), V_2 = < e_1, e_2 >, \ldots, V_n = < e_1, e_2, \ldots, e_i > ($ построено на i векторах)

$$\beta|_{V_1} = \left(\beta_{11}\right) = B_1$$

$$\beta|_{V_2} = \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix} = B_2$$

$$\vdots$$

$$\beta|_{V_i} = \begin{pmatrix} \beta_{11} & \beta_{12} & \dots & \beta_{1i} \\ \beta_{21} & \beta_{22} & \dots & \beta_{2i} \\ \vdots & \vdots & \vdots & \vdots \\ \beta_{i1} & \beta_{i2} & \dots & \beta_{ii} \end{pmatrix} = B_i$$

Пусть $\Delta_1=\det B_1, \Delta_2=\det B_2,\dots,\Delta_i=\det B_i$, где Δ_i - угловые миноры. $\Delta_0=1$

Если все угловые миноры матрицы B отличны от 0, то существует единственный ортогональный базис $\{f_i\}_{i=1}^n$ пространства V, удовлетворяющий условиям: $f_i=e_i+V_{i-1}(V_0=0)$ (V_{i-1} - какой-то вектор из базиса f) и элементы $\lambda_i=\frac{\Delta_i}{\Delta_{i-1}}$ (элементы на линии диагонали)

$$diag(\lambda_1,\lambda_2,\dots,\lambda_n)=diag(rac{\Delta_1}{\Delta_0},rac{\Delta_2}{\Delta_1},\dots,rac{\Delta_n}{\Delta_{n-1}})$$
 Закон инерции

Вещественная квадратичная форма q(x) называется ПОЛОЖИТЕЛЬНО ОПРЕДЕЛЕННОЙ, если для любого ненулевого вектора значение этой квадратичной формы больше 0.

$$\forall x \in V : x \neq 0 \\ q(x) > 0$$

Вещественная квадратичная форма q(x) называется ОТРИЦАТЕЛЬНО ОПРЕДЕЛЕННОЙ, если для любого ненулевого вектора значение этой квадратичной формы меньше 0.

$$\forall x \in V : x \neq 0 \\ q(x) < 0$$

q(x) отрицательно определена $\Leftrightarrow -q(x)$ положительно определена

Число положительных канонических коэффициентов квадратичной формы называется ПОЛОЖИТЕЛЬНЫМ ИНДЕКСОМ ИНЕРЦИИ КВАДРАТИЧНОЙ ФОРМЫ r_+ .

Число отрицательных канонических коэффициентов квадратичной формы называется ОТРИЦАТЕЛЬНЫМ ИНДЕКСОМ ИНЕРЦИИ КВАДРАТИЧНОЙ ФОРМЫ r_- .

Число ненулевых канонических коэффициентов называется РАНГОМ КВАДРАТИЧНОЙ ФОРМЫ.

Закон инерции

Числа r_+ и r_- вещественной квадратичной функции не зависят от выбора базиса, в котором эта функция имеет нормальный вид

 (r_+,r_-) - сигнатура квадратичной формы

1.5 Положительно определённые билинейные и квадратичные функции. Критерий Сильвестра.

Определения положительно и отрицательно определённых билинейных и квадратичных функций даны в билете 1.5

ТЕОРЕМА

Число r_+ в нормальном виде вещественной квадратичной формы - это наибольшая размерность пространства, на котором эта функция положительно определена. Доказательство:

Пусть $U \subseteq V$, $U = \langle e_1 \dots e_{r_+} \rangle$, на это промежутке $q(u) > 0u \in U$. $W \subseteq V$, $W = \langle e_{r_++1} \dots e_n \rangle$, здесь q(w) < 0, $w \in W \Rightarrow U \cap W = 0 \Rightarrow \dim U \leq r_+$

Отсюда же следует, что r_- - наибольшая размерность пространства, на котором квадратичная форма отрицательно определена

Критерий Сильвестра

- Вещественная квадратичная функция является положительно определенной тогда и только тогда, когда все угловые миноры ее матрицы положительны
- Вещественная квадратичная функция является отрицательно определенной тогда и только тогда, когда угловые миноры ее матрицы чередуют знак, начиная с отрицательного
- 1.6 Тензоры как полилинейные функции. Примеры тензоров малых валентностей. Арифметические операции над тензорами, тензорное умножение.

Определение

Пусть V - конечномерное линейное пространство над полем \mathbb{F} . Тензором (полилинейной формой) типа (p,q) на V назовём полилинейное отображение вида:

$$T: \underbrace{V \times \ldots \times V}_{p} \times \underbrace{V^{*} \times \ldots \times V^{*}}_{q} \to \mathbb{F}$$

Иными словами тензор это функция T, определенная на p векторах пространства V и q ковекторах (линейных формах) пространства V^* , которая линейна по каждому из аргументов.

$$T(\ldots, \alpha x + \beta y, \ldots) = \alpha T(\ldots, x, \ldots) + \beta T(\ldots, y, \ldots)$$

р - ковариантная валентность q - контравариантная валентность р+q - полная валентность

Валентность тензора называют пару чисел (p, q), определяющих количество векторов и ковекторов, являющихся аргументами полилинейного отображения.

Тензоры типа (p, q) образуют линейное пространство на V, которое обозначается как $\mathbb{T}_q^p(V)$

ПРИМЕРЫ ТЕНЗОРОВ МАЛЫХ ВАЛЕНТНОСТЕЙ

- 1. Скаляры тензоры типа (0,0)
- 2. Линейные формы над V отображения вида:

$$\phi: V \to \mathbb{F}$$

ковекторы. тензор типа (1, 0)

3. Линейные формы над V^* - отображения вида:

$$\phi: V^* \to \mathbb{F}$$

векторы. тензор типа (0, 1)

4. Билинейные формы над V - отображения вида:

$$\beta: V \times V \to \mathbb{F}$$

тензор типа (2, 0)

5. Билинейные формы над V^* - отображения вида:

$$\beta: V^* \times V^* \to \mathbb{F}$$

тензор типа (0, 2)

6. Трилинейные формы над V - отображения вида:

$$\psi: V \times V \times V \to \mathbb{F}$$

тензор типа (3, 0). Пример такой формы - смешанное произведение 3-х векторов.

7. Линейный оператор - отображения вида:

$$\mathcal{A}:V\to V$$

тензор типа (1, 1)

Арифметические операции над тензорами, тензорное умножение

1. Равенство.

Тензоры T_1 и T_2 одинаковой валентности (p, q) равны, если

$$T_1(x_1, x_2, \dots, x_p; \phi^1, \phi^2, \dots, \phi^q) = T_2(x_1, x_2, \dots, x_p; \phi^1, \phi^2, \dots, \phi^q)$$

для любых наборов $x_1, x_2, \dots, x_p \in V$ и $\phi^1, \phi^2, \dots, \phi^q \in V^*$

2. Нуль-форма.

Нуль-формой Θ валентности (p,q) называется такой тензор, что:

$$T_1(x_1, x_2, \dots, x_p; \phi^1, \phi^2, \dots, \phi^q) = 0$$

для любых наборов $x_1, x_2, \ldots, x_p \in V$ и $\phi^1, \phi^2, \ldots, \phi^q \in V^*$

3. Сумма.

Отображение $W=T_1+T_2$ будем называть суммой тензоров T_1 и T_2 одинаковой валентности (p,q), если

$$W(x_1, x_2, \dots, x_p; \phi^1, \phi^2, \dots, \phi^q) = T_1(x_1, x_2, \dots, x_p; \phi^1, \phi^2, \dots, \phi^q) +$$

$$+ T_2(x_1, x_2, \dots, x_p; \phi^1, \phi^2, \dots, \phi^q)$$

для любых наборов $x_1, x_2, \dots, x_p \in V$ и $\phi^1, \phi^2, \dots, \phi^q \in V^*$

4. Умножение на скаляр

Отображение λT будем называть произведение тензора T на скаляр $\lambda,$ если

$$(\lambda T)(x_1, x_2, \dots, x_p; \phi^1, \phi^2, \dots, \phi^q) = \lambda T(x_1, x_2, \dots, x_p; \phi^1, \phi^2, \dots, \phi^q)$$

для любых наборов $x_1, x_2, \dots, x_p \in V$ и $\phi^1, \phi^2, \dots, \phi^q \in V^*$

5. Тензорное умножение.

Произведением тензоров $T_1\in \mathbb{T}_{q_1}^{p_1}$ и $T_2\in \mathbb{T}_{q_2}^{p_2}$ называют отображение $W=T_1\otimes T_2$ вида

$$W(x_1,x_2,\ldots,x_{p_1},x_{p_1+1},\ldots,x_{p_1+p_2};\phi^1,\phi^2,\ldots,\phi^{q_1},\phi^{q_1+1},\ldots,\phi^{q_1+q_2})=$$

$$=T_1(x_1,x_2,\ldots,x_p;\phi^1,\phi^2,\ldots,\phi^q)+$$

$$+T_2(x_{p_1+1},x_{p_1+2},\ldots,x_{p_1+p_2};\phi^{q_1+1},\phi^{q_1+2},\ldots,\phi^{q_1+q_2})$$
при этом $W=T_1\otimes T_2\in\mathbb{T}_{q_1+q_2}^{p_1+p_2}$

Свойства тензорного умножения

- Некоммутативность

$$T_1 \otimes T_2 \neq T_2 \otimes T_1$$

- Ассоциативность

$$(T_1 \otimes T_2) \otimes T_3 = T_1 \otimes (T_2 \otimes T_3)$$

- Нуль форма

$$T_1 \otimes \Theta_{(p_2,q_2)} = \Theta_{(p_1,q_1)} \otimes T_2 = \Theta_{(p_1+p_2,q_1+q_2)}$$

- Дистрибутивность
- 1.7 Тензорный базис и размерность пространства тензоров типа (p, q). Компоненты тензора, их преобразование при замене базиса. Матричная запись тензоров. Свёртка тензоров.

ТЕНЗОРНЫЙ БАЗИС И РАЗМЕРНОСТЬ ПРОСТРАНСТВА ТЕНЗОРОВ

Зафиксируем в пространстве V базис $\{e_i\}_{i=1}^n$ и построим к нему сопряженный базис $\{f_j\}_{j=1}^n$ в пространстве V^* . Вспомним, что эти базисы связаны соотношением

$$f^{j}(e_{i}) = \delta_{i}^{j} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Тензором полилинейной формы T валентности (p, q) называется набор из n^{p+1} скаляров, определяемых как

$$T_{i_1 i_2 \dots i_p}^{j_1 j_2 \dots j_q} = T(e_{i_1}, e_{i_2}, \dots, e_{i_p}; f^{j_1}, f^{j_2}, \dots, f^{j_q})$$

где индексы i_1,i_2,\ldots,i_p и j^1,j^2,\ldots,j^q принимают значения $1,\ldots,n$, где $n=\dim V$

Компоненты тензора, их преобразование при замене базиса

Матричная запись тензоров

Свёртка

1.8 Симметрические и кососимметрические тензоры. Симметризация и альтернирование.

Тензоры типа (p,0) называются КОВАРИАНТНЫМИ, типа (0,q) - КОНТРА-ВАРИАНТНЫМИ.

Симметрические и кососимметрические тензоры

Ковариантный тензор F типа $(p,0): V \times V \times \cdots \times V \to F$ называется СИММЕТРИЧЕСКИМ, если при перестановке местами любых двух векторов значение тензора не поменяется, и КОСОСИММЕТРИЧЕСКИМ, если при такой же замене аргументов значение тензора изменит знак.

ПРИМЕРЫ:

- 1. Скалярное умножение геометрических векторов симметрический тензор;
- 2. det на F^n кососимметрический тензор.

ОСНОВНОЕ СВОЙСТВО: Для любой перестановки номеров i_1, i_2, \ldots, i_p

- 1. $F(v_{i_1},v_{i_2},\ldots,v_{i_p})=F(v_1,v_2,\ldots,v_p),$ если F симметрический тензор;
- 2. $F(v_{i_1}, v_{i_2}, \dots, v_{i_p}) = sign(\frac{1}{i_1} \frac{2}{i_2} \dots \frac{p}{i_p}) \cdot F(v_1, v_2, \dots, v_p)$, если F кососимметрический тензор.

Симметрические и кососимметрические тензоры образуют подпр-ва в $T_p^0(v)$: симметрическое $S_p(v)$ и кососимметрическое $\Lambda_p(v)$.

Далее будем считать, что char F = 0.

Симметризация и альтернирование тензоров

Симметризация тензора типа (p,0) обозначается как $SymF \in T_p^0(v),$ определяется формулой

$$(SymF)(v_1, ..., v_p) = \frac{1}{p!} \sum F(v_{i_1}, ..., v_{i_p})$$

по всем перестановкам $1, 2, \dots p$.

Альтернирование тензора F типа (p,0) обозначается как $AltF \in T^0_p(v),$ определяется формулой

$$(AltF)(v_1,\ldots,v_p) = \frac{1}{p!} \sum sign\left(\begin{smallmatrix} 1 & 2 & \cdots & p \\ i_1 & i_2 & \cdots & i_p \end{smallmatrix}\right) \cdot F(v_{i_1},\ldots,v_{i_p}).$$

Свойства симметризации и альтернирования:

- 1. Sym, Alt линейные отображения (то есть, Sym(F+S) = SymF + SymSи т. д.);
- 2. $F \in T_p^0(v) \Rightarrow SymF \in S_p(v), AltF \in \Lambda_p(v);$
- 3. $F \in S_p(v) \Rightarrow SymF = F, AltF = 0;$
- 4. $F \in \Lambda_p(v) \Rightarrow SymF = 0, AltF = F.$

1.9 Внешнее произведение, его связь с определителями.

Внешнее умножение, его связь с определителями

Внешнее умножение: Пусть $\alpha \in \Lambda_p(v), \beta \in \Lambda_p(v)$ - кососимметрические тензоры. Тогда внешним умножением называется выражение

$$\alpha \wedge \beta = \frac{(p+r)!}{p! \cdot r!} \cdot Alt(\alpha \otimes \beta),$$

при этом $\frac{(p+r)!}{p!\cdot r!}=C^p_{p+r}, \alpha\otimes\beta\in T^0_{p+r}(v).$

Свойства внешнего умножения:

1. Явная формула:

$$(\alpha \wedge \beta)(v_{1}, \dots v_{p+r}) =$$

$$= \sum sign(\underbrace{1 \dots p}_{i_{1} \dots i_{p} \ j_{1} \dots j_{r}}^{1 \dots p+r}) \cdot \alpha(v_{1}, \dots, v_{p}) \cdot \beta(v_{p+1}, \dots, v_{p+r}),$$

$$\{1, 2, \dots, p+r\} = \{i_{1}, \dots, i_{p}, j_{1}, \dots, j_{p}\}, 1 \leq i_{1} < i_{2} < \dots < i_{p} \leq n, 1 \leq$$

$$j_{1} < j_{2} < \dots, j_{r} \leq n;$$

- 2. Антисимметричность: $\beta \wedge \alpha = (-1)^{p+r} \cdot \alpha \wedge \beta$;
- 3. Дистрибутивность:

$$\alpha \wedge (\beta + \beta') = \alpha \wedge \beta + \alpha \wedge \beta',$$

$$(\alpha + \alpha') \wedge \beta = \alpha \wedge \beta + \alpha' \wedge \beta;$$

- 4. Однородность: $(\lambda \cdot \beta) \wedge \alpha = \beta \wedge (\lambda \cdot \alpha) = \lambda \cdot (\beta \wedge \alpha);$
- $5. \ \ \pi.3 + \pi.4$ билинейность;
- 6. Ассоциативность: $\alpha \in \Lambda_p(v), \beta \in \Lambda_r(v), \gamma \in \Lambda_s(v),$

$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma) \in \Lambda_{p+r+s}(v);$$

7. Важный частный случай (связь с определителем): $\omega_1, \omega_2, \dots, \omega_m \in V^*, x_1, x_2, \dots, x_m \in V$

$$(\omega_{1} \wedge \omega_{2} \wedge \cdots \wedge \omega_{m})(x_{1}, x_{2}, \dots, x_{m})$$

$$= \sum sign\left(\frac{1}{i_{2}} \frac{2}{i_{2}} \dots \frac{m}{i_{m}}\right) \cdot \omega_{1}(x_{i_{1}}) \cdot \omega_{2}(x_{i_{2}}) \cdot \dots \cdot \omega_{m}(x_{i_{m}}) =$$

$$= \begin{vmatrix} w_{1}(x_{i_{1}}) & \dots & w_{m}(x_{i_{1}}) \\ w_{1}(x_{i_{2}}) & \dots & w_{m}(x_{i_{2}}) \\ \dots & \dots & \dots \\ w_{1}((x_{i_{m}}) & \dots & w_{m}(x_{i_{m}}) \end{vmatrix} = \begin{vmatrix} \langle w_{1}|x_{i_{1}}\rangle & \dots & \langle w_{m}|x_{i_{1}}\rangle \\ \langle w_{1}|x_{i_{2}}\rangle & \dots & \langle w_{m}|x_{i_{2}}\rangle \\ \dots & \dots & \dots \\ \langle w_{1}|x_{i_{m}}\rangle & \dots & \langle w_{m}|x_{i_{m}}\rangle \end{vmatrix}$$

Геометрический смысл внешнего умножения - тензорный объем. $e_i \wedge e_i = 0, e_i \wedge e_j = -e_j \wedge e_i.$

- 2 Модуль «Линейные операторы»
- 2.1 Понятие линейного оператора. Ядро и образ оператора. Связь между размерностями ядра и образа оператора и размерностью пространства

Понятие линейного оператора

Линейный оператор - это некоторое отображение пространство само на себя

$$\mathcal{A}:V\to V$$

Обладающее свойством линейности:

1.
$$\mathcal{A}(x+y) = \mathcal{A}(x) + \mathcal{A}(y) \quad \forall x, y \in V$$

2.
$$\mathcal{A}(\lambda x) = \lambda \mathcal{A}(x) \quad \forall \lambda \in \mathbb{F} \quad \forall x \in V$$

Ядро и образ оператора. Связь между размерностями ядра и образа оператора и размерностью пространства

ЯДРО ОПЕРАТОРА - это множество векторов из V, которые оператор ${\mathcal A}$ превращает в нулевой вектор:

$$Ker(\mathcal{A}) = \{x \in V | \mathcal{A}x = 0\}$$

$$dim(Ker(\mathcal{A})) = d_{\mathcal{A}}$$
 - ДЕФЕКТ оператора

ОБРАЗ ОПЕРАТОРА - это множество векторов из V, которые получаются в результате действия оператора \mathcal{A} :

$$Im(\mathcal{A}) = \{ y \in V | \mathcal{A}x = y \}$$

$$dim(Im(\mathcal{A})) = rk_{\mathcal{A}}$$
 - РАНГ оператора

Замечание: сумма дефекта и ранга оператора равняется размерности пространства, на котором действует оператор:

$$d_{\mathcal{A}} + rk_{\mathcal{A}} = dim(V)$$

2.2 Матрица линейного оператора. Связь между матрицами оператора в разных базисах. Геометрический смысл ранга матрицы оператора. Пространство линейных операторов и его изоморфизм пространству квадратных матриц.

Матрица линейного оператора

Пусть $e_1, e_2, \dots e_n$ - базис. Матрица линейного оператора это $A = (a_{ij})$ если:

$$\mathcal{A}(e_j) = \sum_i a_{ij} e_i$$

То есть, столбцы матрицы оператора - это образы векторов из базиса. У каждого базиса своя матрица оператора. Её столбцы - коэффициенты разложения. Элемент a_{ij} это і-тая координата образа ј-того базисного вектора. Образ линейного оператора - линейная оболочка столбцов матрицы A.

Пространство линейных операторов изморено пространству квадратных матриц, т.е. каждой матрице соответствует оператор и наоборот.

Переход к новому базису

Пусть $e_1, e_2, \dots e_n$ - старый базис $(\mathcal{A} \leftrightarrow A)$, а $e'_1, e'_2, \dots e'_n$ - новый базис $(\mathcal{A} \leftrightarrow A')$. Тогда матрица в новом базисе вычисляется по след. формуле:

$$A' = C^{-1}AC$$
, где $C = (e \to e')$, $C^{-1} = (e' \to e)$

напоминание, матрица перехода: $(e'_1 \dots e'_n) = (e_1 \dots e_n)C$

Геометрический смысл ранга матрицы оператора - ранг образа оператора.

Оператор \mathcal{A} называется НЕВЫРОЖДЕННЫМ, если его ядро нулевое (AX = 0). Если оператор вырожденный, то и его матрица вырожденная (detA = 0).

Замечание: При изменении базиса определитель и след оператора не изменяются.

2.3 Инвариантное подпространство. Ограничение оператора на него. Связь между матрицей оператора и матрицей ограничения на инвариантное подпространство. Блочно-диагональная матрица и разложение пространства в прямую сумму инвариантных подпространств. Диагонализируемый оператор.

Инвариантное подпространство

Подпространство $U \subset V$ инвариантно относительно оператора \mathcal{A} (или \mathcal{A} инвариантно), если для каждого вектора x подпространства его образ $\mathcal{A}(x)$ также находится в этом подпространстве:

$$\forall x \in U : \mathcal{A}(x) \in U \Leftrightarrow \mathcal{A}(U) \subset U$$

Ограничение оператора

Если $U \subset V$ инвариантно относительно оператора \mathcal{A} , то говорят, что:

$$\mathcal{A}|_U:U\to U$$

- ограничение \mathcal{A} на U, ограничение является линейным оператором.

Пусть в базисе $e_1, e_2, \dots e_n \in V, \langle e_1, e_2, \dots, e_k \rangle = U$, тогда матрица оператора А имеет вид:

$$A = \begin{pmatrix} B & D \\ \mathbb{O} & C \end{pmatrix}$$

где B - матрица оператора $\mathcal{A}|_U$ в базисе e_1, e_2, \ldots, e_k , размером $k \times k$, C - матрица размером $n-k \times n-k$, (D - матрица размером $k \times n-k)$. Обратное тоже верно: если матрица оператора имеет подобный вид, то $U = \langle e_1, e_2, \ldots, e_k \rangle$ - инвариантное подпространство относительно оператора \mathcal{A} .

3амечание: если D = \mathbb{O} , то $V = U \oplus W$, где $\langle e_1, e_2, \dots, e_k \rangle = U, \langle e_{k+1}, \dots, e_n \rangle = W, B$ =матрица оператора $\mathcal{A}|_U C$ = матрица оператора $\mathcal{A}|_W$

$$A = \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$$

Более общо, если $V=V_1\oplus V_2\oplus\ldots,\oplus V_k$ то матрица оператора в базисе V, составленных из базисов этих подпр-в, имеет блочно-диагональный вид:

$$A = \begin{pmatrix} A_1 & & & 0 \\ & A_2 & & \\ & & \ddots & \\ 0 & & & A_k \end{pmatrix}$$

где A_i - матрица оператора $\mathcal{A}|_{V_i}$

Диагонализируемый оператор

Оператор \mathcal{A} , матрица которого в некотором базисе является диагональной, диагонализируем. Не для любого оператора существует такой базис, т.е. не любой оператор диагонализируем.

2.4 Собственные значения и собственные векторы. Собственные подпространства. Их размерность. Собственный базис. Линейная независимость собственных подпространств, соответствующих разным собственным значениям.

Собственные векторы

Удобно работать с диагональной матрицей оператора. В этом случае пр-во V раскладывается в прямую сумму одномерных инвариантных подпр-в. Их рассмотрение приводит к понятию собственного вектора.

Ненулевой вектор x называется СОБСТВЕННЫМ ВЕКТОРОМ оператора \mathcal{A} , если действие этого оператора на вектор сводится к умножению на скаляр λ :

$$\mathcal{A}(x) = \lambda x$$

где $\lambda \in F$ - СОБСТВЕННОЕ ЗНАЧЕНИЕ ОПЕРАТОРА, соответствующее вектору x.

Заметим, что ненулевой вектор x является собственным тогда и только тогда, когда одномерное пр-во < x > инвариантно оператору.

Если существует базис, состоящий их собственных векторов, то соотв. матрица оператора будет диагональной.

 $\Pi pumep 1:$ ненулевые векторы из ядра оператора являются собственными векторами с собств. значениями = 0.

Пример 2: Оператор - поворот на угол α на евклидовой пл-ти. При $\alpha=k\pi,$ собственные значения $=0,\,1.$

Собственные подпространства

Собственное подпр-во соответствует собственному значению λ - это ненулевое ядро оператора $\mathcal{A} - \lambda \mathcal{E}$:

$$V_{\lambda} = Ker(\mathcal{A} - \lambda \mathcal{E}), \quad V_{\lambda} \neq \{0\}$$

Размерность собственного подпространства равна:

$$dim(V_{\lambda}) = n - rk(\mathcal{A} - \lambda \mathcal{E}),$$
 где $n = dim(V)$

При найденных собственных значениях оператора можно найти их собственные векторы, решив СЛАУ $(A - \lambda E)x = 0$

Линейная независимость собственных подпространств, соответствующих разным собственным значениям

ТЕОРЕМА: Собственные подпр-ва, соответствующие своим собственным значениям $\lambda_1, \dots, \lambda_k$ оператора \mathcal{A} , линейно независимы.

Следствие (достаточное условие диагонализируемости): Если характ-й многочлен имеет п pазличных корней, \Rightarrow существует базис, сост. из собственных векторов, т.е. матрица оператора в таком базисе является диагональной.

Замечание: это условие не является необходимым (стрелочка указывает только вправо). Это значит, что если оператор диагонализируем, то из этого не следует, что характ-й многочлен имеет п различных корней.

2.5 Характеристический многочлен и его корни. Спектральное разложение оператора. Алгебраическая и геометрическая кратности собственного значения, неравенство для них. Смысл этих кратностей.

Характеристический многочлен и его корни

Размерность собственного подпространства равна:

$$dim(V_{\lambda}) = n - rk(\mathcal{A} - \lambda \mathcal{E}),$$
 где $n = dim(V)$

Откуда формула собственного подпространства равна:

$$Ax = \lambda x \Leftrightarrow \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \vdots \\ \lambda x_n \end{pmatrix} \Leftrightarrow \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n = \lambda x_1 \\ \vdots \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \Leftrightarrow (A - \lambda E)x = 0$$

$$(2.3)$$

Т.е ФСР этой СЛАУ и есть собственное подпространство. Для существования собственного вектора x со значением λ , необходимо и достаточно чтобы оператор $\mathcal{A} - \lambda \mathcal{E}$ был вырожден, т.е. $det(\mathcal{A} - \lambda \mathcal{E}) = 0$.

Если посчитать этот определитель, то получим ХАРАКТЕРИСТИЧЕСКИЙ МНОГОЧЛЕН (почти):

$$\chi_A(\lambda) = (-1)^n det(\mathcal{A} - \lambda \mathcal{E})$$

При этом коэффициент при $\lambda^n=1$, а коэффициент. при $\lambda^{n-1}=-tr(A)$. Свободный член равен $\chi_A(0)=(-1)^n det(A)$

Замечание: характеристический многочлен оператора не зависит от выбора базиса.

ТЕОРЕМА (О КОРНЯХ ХАРАКТЕРИСТИЧЕСКОГО МНОГОЧЛЕНА)

Корни характеристического многочлена являются собственными значениями линейного оператора.

Следствие: Любой линейный оператор в комплексном векторном пр-ве имеет собственный вектор.

Π EMMA

Характ-й многочлен ограничения оператора на инвариантное подпр-во делит характ-й многочлен самого оператора:

$$\chi_{\mathcal{A}} : \chi_{\mathcal{A}|_{U}}$$

Алгебраическая и геометрическая кратности собственного значения, неравенство для них

АЛГЕБРАИЧЕСКАЯ КРАТНОСТЬ СОБСТВЕННОГО ЗНАЧЕНИЯ λ - $m(\lambda)$ - это кратность корня λ в характ-ом многочлене.

Геометрическая кратность собственного значения λ - $g(\lambda)$ - это размерность соответствующего собственного подпр-ва:

$$g(\lambda) = dim(V_{\lambda}) = dim(\ker(\mathcal{A} - \lambda \mathcal{E}))$$

Следствие: Геометрическая кратность собственного значения оператора не превосходит его алгебраическую кратность:

$$g(\lambda) \le m(\lambda)$$

2.6 Критерий диагонализируемости оператора. Собственные значения вещественной симметрической матрицы.

Критерий диагонализируемости оператора

Для существования в пространстве V собственного базиса (т.е. базиса из собственных векторов) линейного оператора \mathcal{A} (т.е. для диагонализируемости) необходимо и достаточно выполнения двух условий:

- 1. Все корни $\chi_{\mathcal{A}}$ лежат в рассматриваемом поле \mathbb{F} (Для поля комплексных чисел это условие всегда выполняется);
- 2. $g(\lambda)=m(\lambda)$ для каждого собственного значения оператора λ

ЛЕММА О СОБСТВЕННЫХ ЗНАЧЕНИЯХ СИММЕТРИЧЕСКОЙ МАТРИЦЫ

Собственные значения вещественной симметрической матрицы все вещественные.

2.7 Корневые векторы и корневое подпространство. Высота корневого вектора. Свойства корневых подпространств. Нильпотентный оператор.

Мы поняли, что привести матрицу к диагональному виду нам мешает 2 условия. Если это не удается, мы можем попробовать привести матрицу к жордановой форме, которая похожа на диагональную.

Получается, если нам не хватает собственных векторов, нужно рассмотреть более общий вид векторов:

Корневой вектор и его высота

 $v \in V$ - корневой для $\mathcal A$ соответствующий собственному значению $\lambda \in \mathbb F,$ если:

$$(\mathcal{A} - \lambda \mathcal{E})^m v = 0$$
 для некоторого $m \in \mathbb{Z}_{\geq 0}$

Наименьшее из таких m называется ВЫСОТОЙ корневого вектора v. В частности, собственные векторы - это корневые векторы высоты 1. Нулевой вектор - корневой вектор высоты 0.

Корневое подпространство

Корневые векторы, отвечающие корню λ образуют корневое подпространство $V^{\lambda}(\mathcal{A})$, причем собственное подпр-во V_{λ} лежит в нем:

$$V_{\lambda}(\mathcal{A}) \subset V^{\lambda}(\mathcal{A})$$

Свойства корневых подпространств

1. Корневое подпр-во инвариантно относительно ${\cal A}$.

$$V^{\lambda}(\mathcal{A}) = Ker(\mathcal{A} - \lambda \mathcal{E})^m$$
 для некоторого m

2. Размерность корневого пр-ва собств. значения λ равняется его алгебраической кратности:

$$dim(V^{\lambda}) = m(\lambda)$$

3. Корневые подпр-ва, отвечающие разным корням $\lambda_1, \lambda_2, \dots \lambda_k$ линейно независимы.

Нильпотентный опретор

Линейный оператор \mathcal{N} называют нильпотентным, если существует такое $m \in \mathbb{Z}_{\geq 0}$, что $\mathcal{N}^m = 0$. Наименьшее из таких m называют ВЫСОТОЙ нильпотентного оператора

Так как $V^{\lambda}(\mathcal{A})=Ker(\mathcal{A}-\lambda\mathcal{E})^m$ для некоторого m, то оператор ограничения:

$$\mathcal{N} = (\mathcal{A} - \lambda \mathcal{E})|_{V^{\lambda}(\mathcal{A})}$$

нильпотентен. В самом деле, если все вектора из корневого подпр-ва обнуляют значение оператора (в степени m), то его ограничение на это подпространство в какой-то степени будет давать только нули, т.е. он нильпотентен.

2.8 Линейная независимость корневых подпространств, соответствующих разным собственным значениям. Разложение пространства на сумму корневых подпространств.

Теорема(Линейная независимость корневых подпространств)

Корневые подпространства, соответствующие разным собственным значениям, линейно независимы. Доказательство:

Теорема (о разложении пространства на прямую сумму корневых подпр-в)

Если характ-й многочлен разлагается на линейные множители (т.е. имеет n корней с учетом кратности), то пр-во V раскладывается в прямую сумму корневых подпр-в:

$$V = \bigoplus_{i=1}^{s} V^{\lambda_i}(\mathcal{A})$$

где λ_i - различные собственные значения Доказательство:

2.9 Понятие циклического подпространства. Жорданова цепочка. Свойства циклических подпространств. Теорема о структуре нильпотентного оператора. Жорданов базис. Нильпотентная жорданова клетка.

Циклическое подпространство

Подпространство:

$$U = \langle v, Bv, B^2v, \dots, B^{m-1}v \rangle,$$

называют циклическим подпространством нильпотентного оператора B, порождённом вектором v

Жорданова цепочка

Циклическое подпр-во инвариантно относительно B. Его размерность равняется высоте вектора v. А если мы рассмотрим ограничение оператора B на циклическое подпр-во в базисе $(B^{m-1}v, B^{m-2}v, \ldots, Bv, v)$ то получим следующую матрицу:

$$[B|_{U}] = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix} = J(0)$$

Она называется НИЛЬПОТЕНТНОЙ ЖОРДАНОВОЙ КЛЕТКОЙ ПОРЯДКА m.

Свойства циклических подпространств

- Наименьшее инвариантное подпространство содержащее v
- $\dim U = m$
- Базис $(B^{m-1}v, \dots, Bv, v)$

Введем обозначение $oldsymbol{B} = oldsymbol{A} - \lambda oldsymbol{I}$ и запишем предыдущие соотношения в виде

$$egin{array}{lll} Be_1 = 0 & \Longrightarrow & Be_1 = 0, \ Be_2 = e_1 & \Longrightarrow & B^2e_2 = 0, \ Be_3 = e_2 & \Longrightarrow & B^3e_3 = 0, \ & \ldots & \ldots & \ldots & \ldots \ Be_m = e_{m-1} & \Longrightarrow & B^me_m = 0. \end{array}$$

Цепочка таких преобразований - жорданова цепочка, а векторы e_1,\dots,e_m - линейно независимы и образуют ЖОРДАНОВ БАЗИС

Теорема о структуре нильпотентного оператора

У нильпотентного оператора на конечномерном пространстве существует жорданов базис

2.10 Жорданова клетка. Связь между жордановыми клетками и диаграммами Юнга. Теорема о структуре оператора.

Жорданова клетка

$$J_K(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \ddots & 1 \\ 0 & 0 & 0 & \lambda \end{pmatrix}$$

Пример:

$$J_3(5) = \begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{pmatrix}$$

Связь между жордановыми клетками и диаграммами Юнга

Пусть V - конечномерное векторное пространство над алгебраически замкнутым полем. Тогда для любого линейного оператора $\mathcal A$ существует базис, в котором его матрица имеет следующий вид:

$$J(\mathcal{A}) = egin{pmatrix} J_{k1}(\lambda_1) & & & & & \\ & J_{k2}(\lambda_2) & & & & \\ & & \ddots & & & \\ & & & J_{kq}(\lambda_q) \end{pmatrix}$$

Жорданова нормальная форма для оператора A единственна с точностью до перестановки клеток(но не базис).

2.11 Аннулирующий многочлен. Минимальный многочлен. Теорема Гамильтона-Кэли. Свойства минимального многочлена. Связь между минимальным многочленом и жордановой нормальной формой.

Аннулирующий многочлен

$$f \in \mathbb{F}[t]$$
 $f = a_n t^n + a_{n-1} t^{n-1} + ... + a_1 t^1 + a_0$ $\mathcal{A}: V \to V$ (линейный оператор) $f(\mathcal{A}) = a_n \mathcal{A}^n + a_{n-1} \mathcal{A}^{n-1} + ... + a_1 \mathcal{A} + a_0$

Говорят, что многочлен f аннулирует оператор \mathcal{A} , если его значение на этом операторе равно 0. $f(\mathcal{A})=0$ - нулевой оператор. Аналогично для матрицы.

Минимальный многочлен

Минимальный многочлен от \mathcal{A} - ненулевой многочлен наименьшей степени, аннулирующий \mathcal{A} со старшим коэффициентом 1.

Свойства:

1. Для любого линейного оператора в пространстве V существует и единственный минимальный многочлен μ_A

- 2. f аннулирует A тогда и только тогда, когда он делится на минимальный многочлен $\mu_{\mathcal{A}}$
- 3. $f(\mathcal{A}) = r(\mathcal{A})$, где r остаток от деления f на $\mu_{\mathcal{A}}$

Теорема Гамильтона-Кэли

Характеристический многочлен является аннулирующим $\mu_{\mathcal{A}}(\mathcal{A}) = 0$ Доказательство:

2.12 Вычисление многочленов и аналитических функций от операторов и матриц с использованием а) ЖНФ, б) совпадения многочлена и его остатка от деления на минимальный/характеристический на спектре оператора.

ПРАКТИЧЕСКОЕ ВЫЧИСЛЕНИЕ

$$f = \mu_{\mathcal{A}} \cdot q + r$$
$$(f - r) = \mu_{\mathcal{A}} \prod_{i=1}^{S} (t - \lambda_i)^{k_i}$$

 λ - различные собственные значения \Rightarrow все корни минимального многочлена являются корнями (f-r)

$$f(\lambda_i) = r(\lambda_i), \forall i = 1, \dots, s$$

$$f^{(k)}(\lambda_i) = r^{(k)}(\lambda_i), \forall i = 1, \dots, s$$

r - многочлен с неопределённым коэффициентом m.

$$\deg \mu_{\mathcal{A}} = k_1 + \dots k_s = m \Rightarrow \deg r = m - 1$$

Уравнений т штук. Т.к. остаток единственный, то и решение единственное.

$$A = \begin{pmatrix} 5 & 3 & -8 \\ 6 & 2 & -8 \\ 6 & 3 & -9 \end{pmatrix}$$
, Вычислить $A^{50} - A^{49} + \ldots + A^2 - A^1 + A^0$ Находим соб-

ственные значения $\lambda_1=\lambda_2=-1, \lambda_3=0$

$$\mu_{\mathcal{A}} = t^{1}(t+1)^{1} = t(t+1) r(t) = ax + b$$

$$J(A) = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 0 \end{pmatrix}$$

$$f = t^{50} - t^{49} + \ldots + t^2 - t^1 + t^0$$

$$\lambda_1 = 0 : f(0) = r(0) = a \cdot 0 + b = 1 \rightarrow b = 1$$

$$\lambda_2 = -1: f(-1) = r(-1) = a \cdot (-1) + b = 51 \rightarrow a = -50$$

$$\Rightarrow r(t) = -50t^1 + 1t^0$$

$$f(A) = r(A) = -50A + E = \begin{pmatrix} -249 & -150 & 400 \\ -300 & -99 & 400 \\ -300 & -150 & 451 \end{pmatrix}$$

- 3 Модуль «Евклидовы пространства»
- 3.1 Евклидовы векторные пространства: определение и примеры. Неравенство Коши-Буняковского, неравенство треугольника, теорема Пифагора. Длина и угол между векторами.

Евклидовы пространства

Пара (V, α) , где V - вещественное векторное пространство, а α - билинейная симметрическая положительно определённая функция. Эта функция - скалярное произведение $\alpha(*,*)=(*,*)$.

Примеры:

- 1. Геометрические векторы с обычным скалярным произведением
- 2. \mathbb{R}^n столбцы высоты n.

$$x, y \in R(x, y) = x^T * y = x_1 * y_1 + x_2 * y_2 + \dots + x_n * y_n;$$

3. C[0,1] - непрерывные функции на [0,1].

$$(f,g) = \int_0^1 f(x) * g(x) dx$$

Замечание: В евклидовом пространстве можно определить длину.

$$|x| = \sqrt{(x,x)}$$

Пример:

$$|f| = \sqrt{\int_0^1 f(x)^2 dx}$$

Неравенство Коши-Буняковского и неравенство треугольника

TEOPEMA

Для любых векторов u,v евклидово пространство: $|u*v| \leq |u|*|v|$. Причём равенство выполняется тогда и только тогда, когда эти векторы линейно зависимы.

(здесь нужно доказательство)

СЛЕДСТВИЕ (неравенство треугольника)

$$|u+v| \le |u| + |v|$$

ДОКАЗАТЕЛЬСТВО

$$(u+v,u+v) = |u+v|^2 = |u|^2 + 2(u,v) + |v|^2 \ll |u|^2 + 2|u||v| + |v|^2 = (|u|+|v|)^2 \rightarrow |u+v| \ll |u|+|v|$$

СЛЕДСТВИЕ (Теорема Пифагора)

Для любых ортогональных векторов u,v евклидова пространства с нормой $||u||=\sqrt{(u,u)}$ справедливо равенство

$$||u||^2 + ||v||^2 = ||u + v||^2$$

ДОКАЗАТЕЛЬСТВО

Т.к. по условию (u,v)=0, то $||x+y||^2=(x+y,x+y)=(x,x)+2(x,y)+(y,y)=(x,x)+(y,y)=||x||^2+||y||^2$

Длина и угол между векторами

Длина вектора обозначается как |x| и определяется формулой:

$$|x| = \sqrt{(x,x)}$$

Угол ϕ между двумя ненулевыми векторами формулой:

$$\cos \phi = \frac{(x,y)}{|x| * |y|}; 0 \ll \phi \ll \pi$$

3.2 Ортогональность векторов. Ортогональное дополнение к подпространству, его свойства. Ортогональная проекция и ортогональная составляющая. Ортонормированные базисы и ортогональные матрицы.

ОРТОГОНАЛЬНОСТЬ ВЕКТОРОВ

Пусть $x, y \in E$. Говорят, что x ортогонален y (пишут, что $x \perp y$), если $\langle x, y \rangle = 0$.

Ортогональное дополнение к подпространству, его свойства

Пусть L - подпространство евклидова пространства X. Говорят, что $x \perp L$, если $\forall y \in L : x \perp y$. Множество $M \subset X, M = \{x \in X : x \perp L\}$ называется ортогональным дополнением подпространства L евклидова подпространства X (обозначается $M = L^{\perp}$).

Ортогональное дополнение тоже является подпространством X.

Свойства:

- 1. Ортогональное дополнение M^{\perp} непустого подмножества $M \subset E$ является линейным подпространством, т.е. $M^{\perp} \triangleleft E$, и справедливо включение $M \subset (M^{\perp})^{\perp}$.
- 2. Пересечение любого непустого подмножества $M \subset E$ со своим ортогональным дополнением есть нулевой вектор: $M \cap M^{\perp} = \{0\}$.
- 3. Если L подпространство $E(L \triangleleft E)$, то $E = L \oplus L^{\perp}$.
- 4. Если $L \triangleleft E$, то $dimL^{\perp} = dimE dimL$.
- 5. Если L подпространство E, то $L=(L^{\perp})^{\perp}$.
- 6. Если $L_1 \triangleleft E$ и $L_2 \triangleleft E$, то $(L_1 + L_2)^{\perp} = L_1^{\perp} \cap L_2^{\perp}$ и $(L_1 \cap L_2)^{\perp} = L_1^{\perp} + L_2^{\perp}$.

Ортогональная проекция и ортогональная составляющая

TEOPEMA

$$E = L \oplus L^{\perp}$$

Любой вектор $x\in E$ можно единственным образом представить в виде x=y+z , где $y\in L$, $z\in L^\perp.$

Вектор y называется ортогональной проекцией вектора x на подпространство L.

Вектор z называется ортогональной составляющей вектора x относительно подпространства L.

Ортонормированные базисы и ортогональные матрицы

Ортонормированный базис: $e_1, e_2, ..., e_n$

$$(e_i, e_j) = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

TEOPEMA

В любом евклидовом пространстве существует ортонормированный базис. Квадратную матрицу A называют ортогональной, если она удовлетворяет условию

$$A^T * A = E$$

Простейшей ортогональной матрицей является единичная матрица , так как $\mathbf{E}^T * \mathbf{E} = \mathbf{E} \mathbf{E} = \mathbf{E}$.

Свойства:

- 1. Определитель ортогональной матрицы A может иметь одно из двух возможных значений: $det A = \pm 1$.
- 2. Матрица, обратная к ортогональной матрице A, совпадает с ее транспонированной матрицей.
- 3. Матрица, транспонированная к ортогональной матрице, тоже является ортогональной.
- 4. Произведение двух ортогональных матриц A и B одного порядка является ортогональной матрицей.
- 5. Матрица, обратная к ортогональной матрице, тоже является ортогональной.
- 3.3 Матрица и определитель Грама системы векторов евклидова пространства, их свойства. Процесс ортогонализации Грама-Шмидта. QR-разложение.

Матрица Грама

Матрица Грама $G(v_1,\ldots,v_k)$ системы векторов (v_1,\ldots,v_k) в евклидовом пространстве V: матрица $G=(g_{ij}),$ где $g_{ij}=(v_i,v_j)$

ТЕОРЕМА Для любой системы векторов (e_1,\ldots,e_k) справедливо следующее свойство: $\det G(v_1,\ldots,v_k)\geq 0$, причем $\det G(v_1,\ldots,v_k)=0$ только если система векторов линейно зависима

Доказательство:

Если система векторов линейно независима, тогда они являются базисом: $< v_1, \ldots, v_k >$. Так как скалярное умножение положительно определено на

V, то оно сохраняет свои свойства и на подпространствах V, в частности и этой линейной оболочке. По критерию Сильвестра: $\det(v_1,\ldots,v_k)>0$

Если система линейно зависима, тогда существует нетривиальная линейная комбинация: $\sum \lambda_i v_i = 0$. Умножим скалярно на $v_j, j = 1 \dots k$:

$$(v_j, \sum \lambda_i v_i) = \sum \lambda_i (v_j, v_i) = 0$$
$$g_{ji} = (v_j, v_i) = 0$$

Алгоритм Грама-Шмидта

ТЕОРЕМАПусть e_1, \ldots, e_n - произвольный базис пространства V, тогда существует единственный ортонормированный базис $f_1, \ldots, f_n \in V$, матрица перехода к которому верхне-треугольная с единицами на главной диагонали

ДОКАЗАТЕЛЬСТВО

Пусть
$$e_1,\ldots,e_n$$
 - базис пространства $V,\ f_1=1e_1,\ e_1=\begin{pmatrix}1\\0\\\vdots\\0\end{pmatrix}$ Допустим,

что для e_{k-1} все построено:

$$V_{k-1} = \langle e_1, \dots, e_{k-1} \rangle = \langle f_1, \dots, f_{k-1} \rangle,$$

$$f_k = e_k + \mu_1 e_1 + \dots + \mu_{k-1} e_{k-1} = e_k + \lambda_1 f_1 + \dots + \lambda_{k-1} f_{k-1}$$

$$f_k \perp f_1, \dots; f_{k-1}, f_k \in V_{k-1}^{\perp} \Rightarrow$$

$$(f_k, f_i) = 0, i = 1 \dots k - 1, (e_k + \lambda_1 f_1 + \dots + \lambda_i f_i + \dots + \lambda_{k-1} f_{k-1}, f_i) = 0$$

$$(e_k, f_i) + \lambda_1(f_1, f_i) + \lambda_2(f_2, f_i) + \lambda_i(f_i, f_i) + \lambda_{k-1}(f_{k-1}, f_i) = 0 | : (f_i, f_i)$$

$$\lambda_i = -\frac{(e_k, f_i)}{|f_i|^2}$$

QR-РАЗЛОЖЕНИЕ

Матрица A называется ортогональной, если $AA^T = A^TA = E$ или, что эквивалентно, $A^T = A^{-1}$

ТЕОРЕМА Для любой невырожденной вещественной матрицы A существует единственная ортогональная матрица Q и верхнеугольная матрица R с положительными элементами на главной диагонали

$$A = QR$$

ДОКАЗАТЕЛЬСТВО

Рассмотрим столбцы (a_1, \ldots, a_n) матрицы A как элементы евклидового пространства R^n со стандартным скалярным произведением. Столбцы в строку:

$$(a_1,\ldots,a_n)=(e_1,\ldots,e_n)A$$

A в роли матрицы перехода. Применим к столбцам A ортогонализацию и пропорционируем (поделим на длины), тогда q_i — новые столбцы. Тогда матрица перехода $a\mapsto q$ верхнеугольная с положительными элементами на главной диагонали. $(a\mapsto q)^{-1}=(q\mapsto a)$ аналогичная матрица. Тогда

$$(a_1, \dots, a_n) = (q_1, \dots, q_n)(q \mapsto a) = QR$$

 (q_1,\ldots,q_n) — ортогональный базис

Покажем единственность:

$$A = QR = Q'R'$$

$$(Q')^{-1}Q = R'R^{-1} = E \Rightarrow Q = Q'; R = R'$$

3.4 Расстояние и угол между вектором и подпространством.

Расстояние

ТЕОРЕМА Расстояние от элемента пространства до подпространства равняется модулю ортогональной составляющей этого элемента: $\rho(v,U) = |ort_U v|$.

ДОКАЗАТЕЛЬСТВО $(\rho(v,U))^2 = |v-u|^2 = |pr_uv + ort_uv - u|^2 = |ort_uv + (pr_uv - u)|^2 = (ort_uv + (pr_uv - u), ort_uv + (pr_uv - u)) = (ort_uv, ort_uv) + 2(ort_uv, pr_uv - u) + (pr_uv - u, pr_uv - u) = |ort_uv|^2 + |pr_uv - u|^2$, так как $ort_uv \perp (pr_uv - u)$

$$|ort_u v|^2 + |pr_u v - u|^2 \ge |ort_u v|^2$$

Равенство достигается при $pr_uv = u$.

Угол

Угол между вектором x и подпространством $U \leq V$ (евклидово пространство):

$$\widehat{x,U} = \inf_{u \in U} \widehat{x,u}$$

ТЕОРЕМА

Угол, записанный между x и U, достигается на ортогональной проекции:

$$\cos \varphi = \frac{\mid pr_u x \mid}{\mid x \mid}$$

ДОКАЗАТЕЛЬСТВО Рассмотрим произвольный $u \in U$: $u = \lambda pr_u x + (pr_u x)^{\perp}$.

$$\cos \widehat{x, u} = \frac{(x, u)}{|x||u|} = \frac{(x, \lambda p r_u x + (p r_u x)^{\perp})}{|x| \sqrt{\lambda^2 |p r_u x|^2 + ((p r_u x)^{\perp})^2}}$$

$$x = pr_u x + ort_u x$$

При $(pr_ux)^{\perp}=0$ получим

$$\cos \widehat{x, u} = \frac{\lambda(pr_u x, pr_u x)}{|x||\lambda||pr_u x|} = \frac{|pr_u x|}{|x|}$$

 $(ecли \lambda > 0)$

3.5 Сопряжённый оператор и его свойства.

Сопряжённая билинейная функция $\alpha^*(x,y) = \alpha(y,x)$ $\alpha^*(x,y) = (x,\mathcal{A}^*y)$ и $\alpha(y,x) = (y,\mathcal{A}x) = (\mathcal{A}x,y)$ Значит, $(x,\mathcal{A}^*y) = (\mathcal{A}x,y)$. $\mathcal{A}: V \to V$ - оператор на евклидовом пространстве. \mathcal{A}^* - сопряжённый оператор: $(x, \mathcal{A}y) = (\mathcal{A}^*x, y)$.

Свойства сопряжённого оператора:

1.
$$(\mathcal{A} + \mathcal{B})^* = \mathcal{A}^* + \mathcal{B}^*$$

$$2. (\lambda \mathcal{A})^* = \lambda \mathcal{A}^*$$

3.
$$(\mathcal{AB})^* = \mathcal{B}^* \mathcal{A}^*$$
 $(x, (\mathcal{AB})y) = ((\mathcal{AB})^* x, y)$. При этом $(x, (\mathcal{AB})y) = (x, \mathcal{A}(\mathcal{B}y)) = (\mathcal{A}^* x, \mathcal{B}y) = (\mathcal{B}^* \mathcal{A}^* x, y)$. Значит, $((\mathcal{AB})^* x, y) = (\mathcal{B}^* \mathcal{A}^* x, y)$.

4.
$$(\mathcal{A}^*)^* = \mathcal{A}$$

ЛЕММА

U - \mathcal{A} -инвариантное подпространство евклидового пространства V, тогда U^{\perp} инвариантно относительно $\mathcal{A}^*.~x\in U^{\perp}\Rightarrow \mathcal{A}^*x\in U^{\perp}$

ДОКАЗАТЕЛЬСТВО Рассмотрим $u \in U$. $(\mathcal{A}^*x, u) = (x, (\mathcal{A}^*)^*u) = (x, \mathcal{A}u) = 0$ (так как $x \in U^\perp$, а $\mathcal{A}u \in U$). Значит, $\mathcal{A}^*x \in U^\perp$

3.6 Ортогональные операторы, их свойства. Канонический вид матрицы ортогонального оператора.

Опр.
$$\forall x, y \in V : (x, y) = (\mathcal{A}x, \mathcal{A}y)$$

 Λ ЕММА Λ ля линейного оператора A след. условия эквивалентны:

- 1. \mathcal{A} ортогонален
- 2. A сохраняет длины векторов
- 3. \mathcal{A} изоморфизм V на себя (афтоморфизм)
- 4. Сопряженный и \mathcal{A} -обратный: $\mathcal{A}^* = \mathcal{A}^{-1}$
- 5. В ортонормированном базисе матрица A ортогональна

ТЕОРЕМА $\mathcal{A} \in O(v)$, тогда существует ортонормированный базис $e_1,...,e_n$, в котором матрица оператора имеет следующий канонический вид:

$$\begin{pmatrix}
\cos \alpha - \sin \alpha \\
\sin \alpha_1 \cos \alpha_1
\end{pmatrix}$$
...
$$\cos \alpha_r - \sin \alpha_r$$

$$\sin \alpha_r \cos \alpha_r$$
1
...
$$p - pas$$

$$-1$$
...
$$q - pas$$

$$-1$$

$$p,q,v \geq 0$$
 $0 < \alpha_1, ..., \alpha_r < \pi$
ДОКАЗАТЕЛЬСТВО Рассмотрим \mathcal{R}^3

$$\begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & \pm 1 \end{pmatrix} \begin{pmatrix} \pm 1 \\ \pm 1 \\ \chi(t) = t^2 - tr(At) + detA$$

$$det A = \pm 1$$

$$tr A = 2\cos \alpha \pm 1 \rightarrow \alpha = ...$$

3.7 Симметрические (самосопряжённые) операторы, канонический вид их матриц. Приведение симметрической билинейной или квадратичной функции к главным осям.

Симметрический (самосопряжённый) оператор.

 $\mathcal{A}^* = \mathcal{A} \Leftrightarrow$ симметричность билинейных форм.

Кососимметрический оператор.

 $\mathcal{A}^* = -\mathcal{A} \Leftrightarrow$ кососимметричность билинейных форм.

ТЕОРЕМА: \mathcal{A} - самосопряженный оператор в евклидовом пространстве V. Тогда \exists ортонормированный базис $e_1,...,e_n$, в котором матрица оператора имеет диагональный вид. Определен с точностью до перестановок λ .

$$[\mathcal{A}_e] = egin{pmatrix} \lambda_1 & \dots & \dots & \dots \\ \dots & \lambda_2 & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \lambda_n \end{pmatrix}$$

Доказательство:

Индукция по n = dimV

n=1 гомотетия => \exists собственный вектор $e_1 \Leftarrow$ пронормирован

$$\mathcal{A}e_1 = \lambda_1 e_1$$

Разложим пространство в прямую сумму:

 $U = \langle e_1 \rangle - \mathcal{A}$ - инвариантно

$$V=U\oplus U^\perp$$

 $dim U, U^{\perp} < n$

 $U^{\perp} - \mathcal{A}^*$ - инвариантно

Тогда $V=U\oplus U^\perp$ - прямая сумма \mathcal{A}^* -инвариантных подпространств => блочно-диагональная матрица.

Предположение индукции работает. *конец доказательства*

Приложение (следствие) (приведение билинейных (квадратичных) функций к каноническому виду): Всякая симметрическая билинейная функция в евклидовом пространстве V и всякая ассоциированная с ней квадратичная функция могут быть приведены к каноническому виду в ортонормированном базисе.

Тогда $< e_1 >, < e_2 >, ..., < e_n >$ называются главными осями.

ПРИМЕР: построить кривую в изначальной системе координат.

$$5x^2 + 4xy + 8y^2 - 36 = 0$$

 $5x^2 + 4xy + 8y^2$ - квадратичная функция

 e_1,e_2 - изначальный ортонормированный базис

Матрица:

$$A = \begin{pmatrix} 5 & 2 \\ 2 & 8 \end{pmatrix}$$

Посмотрим как на матрицу самосопряженного оператора.

$$\chi = \lambda^2 - 13\lambda + 36, \lambda_1 = 4, \lambda_1 = 9$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix} * \begin{pmatrix} \widetilde{x} \\ \widetilde{y} \end{pmatrix}$$

- раньше

 $\lambda_1 = 4$:

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$$

Тогда

$$e_1 = \begin{pmatrix} -2\\1 \end{pmatrix} \widetilde{e_1} = \frac{1}{\sqrt{5}} \begin{pmatrix} -2\\1 \end{pmatrix}$$

 $\lambda_1 = 9$:

$$\begin{pmatrix} -4 & 2 \\ 2 & -1 \end{pmatrix} * \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Тогда

$$e_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \widetilde{e_1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$(\widetilde{e_1},\widetilde{e_2}) = 0 \Longrightarrow \widetilde{e_1} \perp \widetilde{e_2}$$

Надо перейти к новым координатам.

матрица перехода

$$(e \Rightarrow \widetilde{e}) = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 & 1\\ 1 & 2 \end{pmatrix}$$

$$\widetilde{A} = \begin{pmatrix} 4 \\ 9 \end{pmatrix}$$

$$(\widetilde{x},\widetilde{y}) = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix} * \begin{pmatrix} \widetilde{x} \\ \widetilde{y} \end{pmatrix} = 4\widetilde{x}^2 + 9\widetilde{y}^2$$

$$4\tilde{x}^2 + 9\tilde{y}^2 = 36|: 36 = > \frac{\tilde{x}^2}{9} + \frac{\tilde{y}^2}{4} = 1$$

Получается эллипс, где a = 3, b = 2

3.8 Неотрицательные и положительные симметрические операторы, извлечение корней.

Неотрицательный и положительный симметрические (самосопряженные) операторы Самосопряженный оператор \mathcal{A} называется неотрицательным ($\mathcal{A} \geq 0$), если соответствующая квадратичная q(x) функция неотрицательно определена. Самосопряженный оператор \mathcal{A} называется положительным ($\mathcal{A} > 0$), если соответствующая квадратичная q(x) функция положительно определена.

ПРИМЕР: \mathcal{A} -произвольный линейный оператор на евклидовом пространстве $V,\,\mathcal{A}^*\mathcal{A}\geq 0$

Доказательство:

$$\mathcal{A}^*\mathcal{A} \Rightarrow q(x) = (x, \mathcal{A}^*\mathcal{A}x) = (\mathcal{A}x, \mathcal{A}x) = |\mathcal{A}x|^2 \ge 0$$

Если \mathcal{A} невырожден, то $\mathcal{A}^*\mathcal{A}>0$: возьмем $x\neq 0, x\in V: \mathcal{A}x\neq 0=>|\mathcal{A}x|\neq 0=>q(x)$ положительно определена. *конец доказательства*

ЛЕММА: Для самосопряженного линейного оператора ${\cal A}$ следующие условия эквиваленты:

- 1. $A \ge 0 \ (A > 0);$
- 2. Все собственные значения оператора неотрицательны (положительны). Доказательство:

Приведем к каноническому виду: $q(x) = \sum \lambda_i x_i^2$

Hеотр. опр. $\lambda_i \geq 0$

Полож. опр. $\lambda_i > 0$

 $\mathcal{A}>0\Rightarrow$ канонический вид

$$\begin{pmatrix} \lambda_1 & \dots & \dots \\ \dots & \lambda_2 & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \lambda_n \end{pmatrix}$$

В каноническом ортонормированном базисе $\lambda_i > 0$.

Рассмотрим следующую матрицу:

$$\begin{pmatrix} \sqrt{\lambda_1} & \dots & \dots & \dots \\ \dots & \sqrt{\lambda_2} & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \sqrt{\lambda_n} \end{pmatrix} = \widetilde{\mathcal{B}} \Rightarrow \mathcal{B}$$

При изменении базиса положительность не нарушится.

$$\mathcal{B} > 0, \mathcal{B}^2 = \mathcal{A}, \mathcal{B} = \sqrt{\mathcal{A}}.$$
 конец доказательства

3.9 Полярное разложение невырожденного линейного оператора в евклидовом пространстве.

Теорема (о полярном разложении)

Для \forall линейного оператора (невырожденного) \mathcal{A} на евклидовом пространстве V существует единственная пара операторов \mathcal{U} и \mathcal{R} , где \mathcal{U} - ортогональный, \mathcal{R} - положительный, такая, что: $\mathcal{A} = \mathcal{U}\mathcal{R}$.

Доказательство:

$$A = UR$$

$$\mathcal{A}^* = \mathcal{R}^* \mathcal{U}^* = \mathcal{R} \mathcal{U}^{-1}$$
 (т.к. \mathcal{U} - орт. смотри лемму про \mathcal{U}^* и \mathcal{U} орт).

$$\mathcal{A}^*\mathcal{A} = \mathcal{R}^*\mathcal{U}^{-1}\mathcal{U}\mathcal{R} = [\mathcal{U}^{-1}\mathcal{U} = \mathcal{E}] = \mathcal{R}^*\mathcal{R} = [\mathcal{R}^* = \mathcal{R}] = \mathcal{R}^2 => \mathcal{R} = \sqrt{\mathcal{A}^*\mathcal{A}}$$

После того, как нашли \mathcal{R} : $\mathcal{U} = \mathcal{A}\mathcal{R}^{-1}$

Проверим ортогональность \mathcal{U} (показать, что не меняется длина).

$$x \in V, |\mathcal{A}x| = \sqrt{(\mathcal{A}x, \mathcal{A}x)} = \sqrt{x, \mathcal{A}^*\mathcal{A}x} = \sqrt{x, \mathcal{R}^2x} = \sqrt{\mathcal{R}^*x, \mathcal{R}x} = [\mathcal{R}^* = \mathcal{R}] = |\mathcal{R}x|$$

Следовательно, \mathcal{R} меняет длину так же, как и \mathcal{A} .

Рассмотрим $y \in V|: \mathcal{R}x = y$ и $\mathcal{U}y$ (что происходит с длиной?).

$$|\mathcal{U}y|=|\mathcal{AR}^{-1}y|=[\mathcal{R}^{-1}y=x]=|\mathcal{A}x|=|\mathcal{R}x|=|y|$$
 (длины сохраняются). *конец доказательства*

СЛЕДСТВИЕ: Для \forall невырожденного оператора $\mathcal{A}\exists !\mathcal{U}$ и \mathcal{S} такие, что \mathcal{U} - ортогональный, \mathcal{S} - положительный и $\mathcal{A}=\mathcal{S}\mathcal{U}$.

Доказательство:

$$A = SU$$

 $\mathcal{A}^* = \mathcal{U}^*\mathcal{S}^* = \mathcal{U}^{-1}\mathcal{S}$ (действуем в обратном порядке). *конец доказательства*

3.10 Представление об эрмитовом (унитарном) пространстве: полуторалинейные функции, эрмитовы и косоэрмитовы функции и их нормальный вид.

V - комплексное векторное пространство.

Функция $\alpha: V \times V\mathbb{C}$ называется полуторалинейной, если она линейна по второму аргументу и полулинена (антилинейна) по первому.

- 1. $\alpha(x, y_1 + y_2) = \alpha(x, y_1) + \alpha(x, y_2)$
- 2. $\alpha(x, \lambda y) = \lambda \alpha(x, y)$
- 3. $\alpha(x_1 + x_2, y) = \alpha(x_1, y) + \alpha(x_2, y)$
- 4. $\alpha(y) = \overline{\lambda}\alpha(x,y)$

Замечание: Иногда определяется наоборот

Полуторалинейная форма называется эрмитовой, если при изменении местами агрументов она комплексно сопрягается

$$\alpha(x,y) = \overline{\alpha(y,x)}$$

Каждой эрмитовой функции будет соответствовать эрмитовая квадратичная функция.

Пусть α - невырожденная полуторалинейная эрмитова функция. Тогда вводятся понятия ортогональности и ортогонального дополнения $V=U\oplus U^\perp.$

Всякая эрмитова и соответствующая ей квадратичная функция приводятся к нормальному виду.