Formale Sprachen

Marco Haupt, KA-TINF21B1, Musterlösung zu Übungsblatt #2

Aufgabe 2.1

Geben Sie eine Grammatik an, welche <u>alle</u> Zeichenketten des Alphabets {0,1} erzeugen kann.

Aufgabe 2.2

Geben Sie eine Grammatik an, welche alle Zeichenketten des Alphabets {0,1} erzeugen kann, in denen mindestens eine 0 vorkommt.

Aufgabe 2.3

Geben Sie eine Grammatik an, welche alle Zeichenketten des Alphabets {0,1} erzeugen kann, in denen mindestens eine 0 und mindestens eine 1 vorkommt.

Aufgabe 2.4

Geben Sie eine Grammatik an, welche alle Zeichenketten des Alphabets {0,1} erzeugen kann, in denen die Zeichenfolge 001 <u>nicht</u> vorkommt.

Aufgabe 2.5

Sei $D=(Q,q_0,\Sigma,\delta,F)$ ein deterministischer endlicher Akzeptor mit dem Eingabealphabet $\Sigma=\{a,b\}$, der Zustandsmenge $Q=\{q_0,q_1,q_2,q_3\}$, dem akzeptierenden Zustand $F=\{q_1\}$ und der Übergangsfunktion δ , welche durch die nachstehende Tabelle beschrieben wird.

		Zustände				
		\mathbf{q}_0	q ₁	q ₂	q ₃	
Eingabe	а	q ₁	q ₁	q ₁	q ₃	
	b	q ₃	q ₂	q ₂	q ₃	

- 1. Konstruieren Sie anhand der Abbildungsvorschrift aus der Vorlesung eine strikt rechtslineare Grammatik $G = (V_N, V_T, S, P)$, sodass gilt L(D) = L(G).
- 2. Geben Sie die Ableitungsfolge für das Wort "abba" an.
- 3. Geben Sie die Ableitungsfolge für das Wort "baba" an.
- 4. Geben Sie eine Grammatik $G' = (V_N', V_T', S', P')$ mit weniger Produktionen |P'| < |P| an, sodass sie dennoch die gleiche Sprache L(D) = L(G) = L(G') erzeugt.

Aufgabe 2.6

Sei $G = (\{n_0, n_1, n_2\}, \{0,1\}, n_0, P)$ eine strikt rechtslineare Grammatik mit folgenden Produktionen:

$$P = \begin{cases} n_0 \to \varepsilon \\ n_0 \to 0n_1 \\ n_0 \to 1n_0 \\ n_1 \to \varepsilon \\ n_1 \to 0n_2 \\ n_1 \to 1n_0 \\ n_2 \to \varepsilon \\ n_2 \to 0n_2 \end{cases}$$

- 1. Konstruieren Sie anhand der Abbildungsvorschrift aus der Vorlesung einen nichtdeterministischen, endlichen Akzeptor $N=(Q,q_0,\Sigma,\delta,F)$, sodass gilt L(N)=L(G).
- 2. Nutzen Sie die Potenzmengenkonstruktion, um einen äquivalenten deterministischen endlichen Akzeptor zu erstellen.
- 3. Welche Produktionen müssten Sie ergänzen oder ersetzen, um direkt einen deterministischen Akzeptor zu erhalten?

Aufgabe 2.7

Sei $G = (\{X, Y, Z\}, \{1, 2, 3\}, X, P)$ eine strikt rechtslineare Grammatik mit folgenden Produktionen:

$$P = \begin{cases} X \to 1X \\ X \to Y \\ Y \to 2Y \\ Y \to Z \\ Z \to 3Z \\ Z \to \varepsilon \end{cases}$$

- 1. Konstruieren Sie anhand der Abbildungsvorschrift aus der Vorlesung einen nichtdeterministischen, endlichen Akzeptor $N = (Q, q_0, \Sigma, \delta, F)$, sodass gilt L(N) = L(G).
- 2. Nutzen Sie die Potenzmengenkonstruktion, um einen äquivalenten deterministischen endlichen Akzeptor zu erstellen.

Aufgabe 2.8

Konstruieren Sie nach dem Potenzmengenverfahren aus der Vorlesung zu dem folgenden NEA N einen DEA M, der die gleiche formale Sprache erkennt. $N=(\{A,B,C,D\},A,\{0,1\},f,\{C\})$, wobei f durch die folgende Tabelle gegeben ist:

f	A	B	С	D
0	{ <i>A</i> }	{B}	{D}	Ø
1	{ <i>A</i> }	$\{B\}$	Ø	$\{B\}$
010	{ <i>B</i> }	Ø	Ø	Ø
ε	Ø	{ <i>C</i> }	Ø	Ø

Aufgabe 2.9

Konstruieren Sie nach dem Potenzmengenverfahren aus der Vorlesung zu dem folgenden NEA N einen DEA M, der die gleiche formale Sprache erkennt. $N=(\{A,B,C\},A,\{0,1\},f,\{B\})$, wobei f durch die folgende Tabelle gegeben ist:

f	A	B	С
0	{ <i>B</i> , <i>C</i> }	{ <i>C</i> }	Ø
1	Ø	Ø	{ <i>B</i> }

Hat der entstandene DEA die minimal mögliche Zustandszahl?