Numerical Computing (CS-2008)

Date: Dec 17, 2024

Course Instructors

Dr.-Ing. Mukhtar Ullah, Dr. Ir. Imran Ashraf,

Dr. Mir Suleman Sarwar, M. Almas

Final Exam

Total Time (Hrs): 3

Total Marks: 100

Total Questions: 6

Roll No

Section

Student Signature

Attempt all the questions

Use answer sheet to answer all questions

Answer MCQs on the bubble sheet

Clearly present all formulas and calculation steps

Bonus 2 marks by solving questions and their parts in sequential order

Attach the bubble sheet to your answer sheet before submission

DO NOT WRITE BELOW THIS LINE

CLO # 1 & 6

Question # 1

[6+6+6=18 Marks]

a. The implementation of the function $f(x) = \frac{1-\cos(x)}{x^2}$ for $x = 1 \times 10^{-5}, 1 \times 10^{-6}, 1 \times 10^{-7}, 1 \times 10^{-8}, 1 \times 10^{-9}, 1 \times 10^{-10}, 1 \times 10^{-11}$, results in catastrophic cancellation. Express the function into a form that is stable and has an implementation that does not lead to catastrophic cancellation. *(Algorithmic stability)*

(a) Solution

The given function is:

$$f(x) = \frac{1 - \cos(x)}{x^2}$$

When x is small, direct computation can lead to catastrophic cancellation due to the subtraction of nearly equal terms. To stabilize the function, we multiply both the numerator and the denominator by $1 + \cos(x)$:

$$f(x) = \frac{(1 - \cos(x))(1 + \cos(x))}{x^2(1 + \cos(x))}$$

Using the trigonometric identity $(1 - \cos(x))(1 + \cos(x)) = \sin^2(x)$, we get:

$$f(x) = \frac{\sin^2(x)}{x^2(1+\cos(x))}$$

Simplifying further:

$$f(x) = \left(\frac{\sin(x)}{x}\right)^2 \frac{1}{1 + \cos(x)}$$

This form avoids catastrophic cancellation and ensures numerical stability, especially for small values of x.

National University of Computer and Emerging Sciences

Islamabad Campus

b. Approximate the root of the function $f(x) = \ln(x) + x$, using Secant's Method, for tol = 1×10^{-4} , between $x_1 = 1.0$ and $x_2 = 2.0$.

(b) Solution

Given initial guesses $x_1 = 1.0$ and $x_2 = 2.0$.

The Secant Method formula is given by:

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$
(1)

We start with initial guesses: $x_1 = 1.0$ and $x_2 = 2.0$.

The function is defined as $f(x) = \ln(x) + x$.

Calculate $f(x_1)$ and $f(x_2)$:

$$f(x_1) = \ln(1.0) + 1.0 = 1.0$$

 $f(x_2) = \ln(2.0) + 2.0 = 2.6931$

The remaining iterations are calculated as follows:

Iteration (n)	x_n	$f(x_n)$	Error $(x_{n+1} - x_n)$
0	1.0000	1.0000	-
1	2.0000	2.6931	-
2	0.4094	-0.4837	1.5906
3	0.6516	0.2232	0.2422
4	0.5751	0.0219	0.0765
5	0.5668	-0.0010	0.0083
6	0.5671	0.000004	0.00036
7	0.5671	0	0.000002

Thus, the approximate root of the function is $x \approx 0.5671$, with the error being sufficiently small to meet the required tolerance.

c. Write down code to find the root of the function $f(x) = \ln(x) + x$, using Secant's Method, for tol = 1×10^{-4} , $x_1 = 1.0$, $x_2 = 2.0$.

(c) Python code

```
from scipy.optimize import newton
import numpy as np

# Define the function
def f(x):
    return np.log(x) + x

# Initial guesses
9 x1 = 1.0
10 x2 = 2.0
11 tol = 1e-4

12
13 # Solve for the root using the secant method
14 root = newton(f, x0=x1, x1=x2, tol=tol)
```

15 # Print the result
17 print(f"The root of the function is approximately: {root:.6f}")

CLO # 2

Question # 2

$$[3+3+1+2=9 \text{ Marks}]$$

If we are given three points (x_0, y_0) , (x_1, y_1) , (x_2, y_2) , we can construct a quadratic polynomial and write the following equations:

$$\begin{cases} y_0 = a_0 + a_1 x_0 + a_2 x_0^2 \\ y_1 = a_0 + a_1 x_1 + a_2 x_1^2 \\ y_2 = a_0 + a_1 x_2 + a_2 x_2^2 \end{cases}$$

- a. Write this system of equations in the matrix form.
- b. Write the Vandermonde matrix for this system.
- c. What is an advantage of using Vandermonde matrix?
- d. What are the two disadvantages of using Vandermonde matrix?

Solution a)

$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix}$$

Solution b)

$$V = \begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix}$$

Solution c) Simple and straightforward to use.

Solution d)

- Makes a dense matrix, which is slow to solve.
- The matrix is ill-conditioned and the calculations are sensitive to floating-point errors.

CLO # 3

Question # 3

[8 Marks]

The magnitude of the force $f(x_i)$ measured in Newtons at the locations x_i , i = 0, 1, ..., 15 measured in meters is given below:

x_i	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4
$f(x_i)$	0.0	0.45	1.45	2.3	3.1	3.1	3.1	2.5	1.1	1.1	1.1	0.8	0.6	0.3	0.0

Write a Python program to estimate the work done (that is, an integral of this force over displacement). You are supposed to use the module scipy.integrate for this program.

Solution

Python code

CLO # 4

Question # 4

$$[3+3+3+3+4+4=20 \text{ Marks}]$$

Consider the system of equations Ax = b with matrix A and b given.

$$A = \begin{bmatrix} 11 & 2 \\ 2 & 5 \end{bmatrix}, \quad b = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$$

a. Solve above given system of equation via Cholesky factorization.

a) Solution:

$$A = \begin{bmatrix} 11 & 2 \\ 2 & 5 \end{bmatrix}, \quad b = \begin{bmatrix} 9 \\ 4 \end{bmatrix}.$$

Using Cholesky factorization, $A = HH^T$, we find:

$$H = \begin{bmatrix} h_{11} & 0 \\ h_{21} & h_{22} \end{bmatrix}, \quad H^T = \begin{bmatrix} h_{11} & h_{21} \\ 0 & h_{22} \end{bmatrix}.$$

After computation:

$$H = \begin{bmatrix} \sqrt{11} & 0 \\ \frac{2}{\sqrt{11}} & \sqrt{5 - \frac{4}{11}} \end{bmatrix}, \quad H^T = \begin{bmatrix} \sqrt{11} & \frac{2}{\sqrt{11}} \\ 0 & \sqrt{5 - \frac{4}{11}} \end{bmatrix}.$$

Forward substitution: Solve Hy = b:

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \quad y_1 = \frac{9}{\sqrt{11}}, \quad y_2 = \frac{4 - \frac{2}{\sqrt{11}} \cdot 9}{\sqrt{5 - \frac{4}{11}}}.$$

Backward substitution: Solve $H^T x = y$:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad x_2 = \frac{y_2}{\sqrt{5 - \frac{4}{11}}}, \quad x_1 = \frac{y_1 - \frac{2}{\sqrt{11}}x_2}{\sqrt{11}}.$$

b. Solve above given system of equation via LU factorization.

b) Solution

Using LU factorization, A = LU, we find:

$$L = \begin{bmatrix} 1 & 0 \\ l_{21} & 1 \end{bmatrix}, \quad U = \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix}.$$

After computation:

$$L = \begin{bmatrix} 1 & 0 \\ \frac{2}{11} & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 11 & 2 \\ 0 & 5 - \frac{4}{11} \end{bmatrix}.$$

Forward substitution: Solve Ly = b:

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \quad y_1 = 9, \quad y_2 = 4 - \frac{2}{11} \cdot 9.$$

Backward substitution: Solve Ux = y:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad x_2 = \frac{y_2}{5 - \frac{4}{11}}, \quad x_1 = \frac{y_1 - 2x_2}{11}.$$

c. Approximate x_1, x_2 using the Jacobi method for two iterations using initial guess [1, 1].

c) Solution:

$$A = \begin{bmatrix} 11 & 2 \\ 2 & 5 \end{bmatrix}, \quad b = \begin{bmatrix} 9 \\ 4 \end{bmatrix}.$$

The Jacobi iteration formula is:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)} \right).$$

With the initial guess $x^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, the iterations proceed as follows:

Iteration 1:

$$x_1^{(1)} = \frac{1}{11} (9 - 2 \cdot 1) = \frac{7}{11}, \quad x_2^{(1)} = \frac{1}{5} (4 - 2 \cdot 1) = \frac{2}{5}.$$

Iteration 2:

$$x_1^{(2)} = \frac{1}{11} \left(9 - 2 \cdot \frac{2}{5} \right) = \frac{43}{55}, \quad x_2^{(2)} = \frac{1}{5} \left(4 - 2 \cdot \frac{7}{11} \right) = \frac{26}{55}.$$

d. Approximate x_1, x_2 using the Gauss-Seidel method for two iterations using initial guess [1, 1].

d) Solution:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j^{(k+1)} - \sum_{j > i} a_{ij} x_j^{(k)} \right).$$

With the initial guess $x^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, the iterations proceed as follows:

Iteration 1:

$$x_1^{(1)} = \frac{1}{11} (9 - 2 \cdot 1) = \frac{7}{11}, \quad x_2^{(1)} = \frac{1}{5} \left(4 - 2 \cdot \frac{7}{11} \right) = \frac{13}{55}.$$

Iteration 2:

$$x_1^{(2)} = \frac{1}{11} \left(9 - 2 \cdot \frac{13}{55} \right) = \frac{452}{605}, \quad x_2^{(2)} = \frac{1}{5} \left(4 - 2 \cdot \frac{452}{605} \right) = \frac{151}{605}.$$

Final Note: Both methods approximate the solution iteratively, with the Gauss-Seidel method often converging faster due to immediate updates of intermediate results.

e. For 10,000 moderate-sized linear systems Ax = b, having non-symmetric A (same A in all systems, varying b), from (a), (b), (c), (d) above suggest optimal method (Method name + one-line justification).

e) Answer

For solving 10,000 moderate-sized linear systems Ax = b, with the same non-symmetric A and varying b, the optimal method is:

Method: LU Factorization

Justification: LU factorization efficiently reuses the decomposition A = LU across all systems, requiring only forward and backward substitution for each new b, minimizing computational cost.

f. Review the following code. Identify the exact incorrect code and propose corrections.

Figure 1: Jacobi Method

```
def jacobi(A, b, x, tol = 1.e-5, maxit = 100):
    d = np.copy(np.diag(A))
    np.fill_diagonal(A, 0.0)
    err = 1.0
    iters = 0
    while (err < tol and iters > maxit):
        iters += 1
        xnew = (x + np.dot(A, b)) / d
        err = np.linalg.norm(xnew-x, np.inf)
        x = np.copy(xnew)
    print('iterations :', iters)
    return x
```

Correction in above code

```
while (err > tol and iters < maxit):
xnew = (b - np.dot(A, x)) / d
```

Figure 2: Gauss-Seidel Method

```
def gauss_seidel(A, b, x, tol = 1.e-5, maxit = 100):
      n = len(b)
      err = 1.0
      iters = 0
      # Initialize the solution with the initial guess
      # xnew = np.zeros_like(x)
      # Extract the lower triangular part of A
      M = np.tril(A)
      # Construct the upper triangular part of A
      U = A - M
      while (err < tol and iters > maxit):
11
          iters += 1
12
          # Compute the new approximation
13
          xnew = np.dot(np.linalg.inv(M), b + np.dot(U, x))
14
          # Estimate convergence
15
          err = np.linalg.norm(xnew-x, np.inf)
16
          x = np.copy(xnew)
17
      print('iterations required for convergence:', iters)
18
      return x
```

Correction in above code

```
while ( err > tol and iters < maxit ) :
xnew = np . dot ( np . linalg . inv ( M ) , b - np . dot (U , x ) )
```

CLO # 4 & 5

Question # 5

[Marks = 15]

Assume that the following functions have been provided to you.

The function UTS() takes:

- an upper triangular matrix **A** as the first input
- a column matrix **b** as the second input

and returns:

• a solution using backward substitution to the linear system associated with matrices (\mathbf{A},\mathbf{b}) as the output

The function LLS() takes:

- a matrix **A** as the first input
- a column matrix b as the second input

and returns:

- a solution to the linear least squares problem associated with matrices (A,b) as the first output
- the minimized error in the linear least squares problem as the second output

The function GMST() takes:

• a matrix A as the input

and returns:

• a matrix with orthonormal columns generated from columns of A as the output

You are given a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ with:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

Questions:

- a. Write Python code using only (one or both of) the two functions listed above to compute $\mathbf{A}^{\dagger}\mathbf{b}$.
- b. Write Python code using only (one or both of) the functions listed above, together with the numpy.inner, to compute matrices **Q** and **R** of the QR factorization of **A**.
- c. Write Python code using the computed matrices \mathbf{Q} and \mathbf{R} to compute the solution to the least square problem associated with the given linear system.

Solution

Given the linear system and The provided functions are:

- UTS() Solves an upper triangular system using backward substitution.
- LLS() Solves the linear least squares problem.
- GMST() Computes the orthonormal matrix Q from A.

(a) Solution

To compute A^Tb , we will use the LLS() function, which returns the solution to the linear least squares problem for A and b.

The Python code for this is:

```
_{1} Apb = LLS(A,b)
```

(b) Solution

To compute the QR factorization, we use the GMST() function to calculate the orthonormal matrix Q. Then, R can be computed as $R = Q^T A$.

The Python code for this is:

```
Q = GMST(A)
R = np.inner(Q,A)
```

(c) Solution

Now, solve the system $Rx = Q^T b$ using the UTS() function, which solves upper triangular systems.

The Python code for this is:

```
Qtrp = np. transpose(Q)
y = np.dot(Qtrp,b)
x = UTS(R,y)
```

CLO # 1,3,4,5,6

[Marks = 30]Question # 6 1. my_name = 'James'; print(my_name[3:4]) will print: a. James b. Jame с. е d. es 2. c=np.array([2,4,3]); A=circulant(c); print(A) will print: a [3, 4, 2] b [[2, 4, 3] [3, 2, 4] [4, 3, 2]] c [234] d [[2, 3, 4] [4, 2, 3] [3, 4, 2]] 3. A = np.array([2,-1,0], [-1,2,-1], [0,-1,2]); print(det(A)) will print: a. 65 b. 4 c. 64 d. None of these 4. If x=3.141596, and t=5 then chopping gives: a. 3.1415 b. 3.1416 c. 3 d. 3.5 5. ______is the phenomenon where the subtraction of two almost equal numbers leads to a large error, due to finite precision arithmetic. a. Catastrophic cancellation b. Relative error c. Chopping d. Absolute error 6. In _____ the endpoints are not included in an interval such that a < x < b. a. Open interval (a, b)b. Closed interval [a, b]c. Open interval [a, b]d. Closed interval (a, b)

7. The first term in the Taylor expansion for the function $f(x) = \cos(x)$ at $x = \pi/2$ is:

- c. 0
- d. 4
- 8. In the interval [1, 2] for any function, using Bolzanos theorem, which of the following cannot be a root?
 - a. 1.5
 - b. 2.5
 - c. 1.75
 - d. 1.25
- 9. When you want to estimate the value of a function at a point between two known values, which of the following methods is most commonly used?
 - (a) Interpolation
 - (b) Matrix Multiplication
 - (c) Eigenvalue Decomposition
 - (d) Fourier Series Expansion
- 10. What is the main benefit of using cubic spline interpolation over linear interpolation?
 - (a) Cubic Spline capture smoothness better than Linear interpolation
 - (b) Both are best option for approximating the rate of change
 - (c) Both are approximating integral value
 - (d) Both are same

[From 11^{th} to 15^{th} MCQs only] Consider the data for the following questions. Choose the right option.

X	Y
5	4
7	6

- 11. What will be the coefficient a_0 using Newton divided and difference method?
 - (a) 4
 - (b) 1
 - (c) 0
 - (d) None of a, b, c
- 12. What will be the coefficient a_1 using Newton divided and difference method?
 - (a) 4
 - (b) 1
 - (c) 0
 - (d) None of a, b, c
- 13. Using Lagrange interpolation $P_1(6) = \sum_{i=0}^{N} y_i \ell_i(6)$ in the case of the above data, what will be the value of $\ell_0(x)$ if x = 6?
 - (a) 0.5
 - (b) 0.254

- (c) 0.75
- (d) None of a, b, c
- 14. On comparison of $\ell_1(6)$ for x=6 with the above a_1 you computed in question 12.
 - (a) a_1 equal to $\ell_1(x)$
 - (b) a_1 less than $\ell_1(x)$
 - (c) a_1 greater than $\ell_1(x)$
 - (d) None of a, b, c
- 15. What will be the p(6) by using $P_1(6) = \sum_{i=0}^{N} y_i \ell_i(6)$?
 - (a) 5.1
 - (b) 5
 - (c) 5.2
 - (d) None of A, B, C
- 16. What does the trapezoidal rule use to approximate the area under a curve?
 - (a) Trapezoids
 - (b) Squares
 - (c) Circles
 - (d) Triangles
- 17. Which method gives a more accurate result for smooth functions in numerical integration?
 - (a) Simpson's Rule
 - (b) Rectangle Rule
 - (c) Midpoint Rule
 - (d) Trapezoidal Rule
- 18. The trapezoidal rule is used for:
 - (a) Numerical integration
 - (b) Solving linear equations
 - (c) Solving differential equations
 - (d) Polynomial fitting
- 19. What does the forward difference method estimate?
 - (a) The first derivative of a function
 - (b) approximate root
 - (c) The integral of a function
 - (d) The value of a function at a new point
- 20. Why is the central difference method more accurate for derivatives?
 - (a) It uses both the forward and backward points
 - (b) It uses only the forward points
 - (c) It uses only the backward points
 - (d) It is not used for derivatives

National University of Computer and Emerging Sciences

Islamabad Campus

- 21. The linear least squares problem associated with the linear system is the problem of finding:
 - (a) a solution x^* that minimizes the error $||Ax b||_2^2$
 - (b) the minimum value of the error $||Ax b||_2^2$
 - (c) the exact solution x^* that satisfies $Ax^* = b$
 - (d) a solution x^* such that error $||b Ax||_2$ is a linear function.
- 22. The pseudoinverse A^+ is useful in solving:
 - a. the linear system Ax = b because A^+ approximates x within floating-point error.
 - b. the linear system Ax = b if A is invertible.
 - c. the linear system Ax = b if A^TA is invertible.
 - d. the linear system Ax = b if the augmented matrix [A|b] can be row-reduced.
- 23. When it exists, the solution x to the linear least square problem associated with the linear system Ax = b can be expressed as:

a.
$$x = (A^T A)^{-1} A^T b$$

b.
$$x = A^T (AA^T)^{-1}b$$

c.
$$x = A^T A (A^T)^{-1} b$$

d.
$$x = A^{-1}A^{T}b$$

24. To verify that the vectors q_1, q_2, \ldots, q_n have been correctly generated by Gram-Schmidt orthonormalization, we must ensure that:

a.
$$q_i \cdot q_j = 0$$
 for $i \neq j$

b.
$$||q_i|| = 1$$

c.
$$A = QR$$

$$d. A^T A = QQ^T$$

- 25. LU factorization can be applied to which type of matrix?
 - a. Only column matrices
 - b. Only row matrices
 - c. Only diagonal matrices
 - d. Non of above a,b,c
- 26. Cholesky decomposition can be applied to which type of matrix?
 - a. Any square matrix
 - b. Any skew symmetric matrix
 - c. Any symmetric positive-definite matrix
 - d. Any diagonal matrix
- 27. What is the main advantage of using Cholesky decomposition for solving a system of linear equations Ax = b?
 - a. It provides an approximation to the solution
 - b. It is faster and more numerically stable for symmetric positive-definite matrices compared to other methods
 - c. It guarantees a unique solution for any matrix

- 28. The Jacobi method for solving a system of linear equations converges if which of the following conditions is met?
 - a. The matrix is sparse
 - b. The matrix is symmetric
 - c. The matrix is diagonally dominant or symmetric positive-definite
 - d. All of above
- 29. QR factorization is characterized by the following observations:
 - a. The Q matrix is lower triangular

d. It can be applied to non-square matrices

- b. The Q matrix is upper triangular
- c. The R matrix is lower triangular with nonzero diagonal entries.
- d. The R matrix is upper triangular with nonzero diagonal entries.
- 30. Given a QR factorization of a matrix A, the pseudoinverse A^+ can be efficiently computed as:
 - a. $A^+ = R^{-1}Q^T$
 - b. $A^+ = QR^T$
 - c. $A^+ = Q^T R$
 - d. $A^+ = QR^{-1}$

Q No	Correct
CS2008: Nume	rical Computing
1	С
2	В
3	В
4	Α
5	Α
6	Α
7	С
8	В
9	Α
10	Α
11	Α
12	В
13	Α
14	С
15	В
16	Α
17	Α
18	Α
19	Α
20	Α
21	Α
22	С
23	Α
24	A, B
25	D
26	С
27	В
28	D
29	D
30	Α

Figure 1: Key for 30 MCQs

Useful Formulae and Algorithms

$$x_i^{(k+1)} = \left(b_i - \sum_{\substack{j=1\\j \neq i}}^n a_{ij} x_j^{(k)}\right) / a_{ii}, \quad i = 1, \dots, n$$

Figure 2: Jacobi iterative method

Algorithm 32 Cholesky factorization of symmetric and positive definite matrix A

```
\begin{aligned} &\text{for } i=1:n \text{ do} \\ &\boldsymbol{H}(i,i) = \sqrt{\boldsymbol{A}(i,i) - \sum_{k=1}^{i-1} \boldsymbol{H}^2(i,k)} \\ &\text{for } j=i+1:n \text{ do} \\ &\boldsymbol{H}(j,i) = \left(\boldsymbol{A}(j,i) - \sum_{k=1}^{i-1} \boldsymbol{H}(j,k)\boldsymbol{H}(i,k)\right)/\boldsymbol{H}(i,i) \\ &\text{end for} \\ &\text{end for} \end{aligned}
```

Figure 3: Cholesky factorization algorithm

$$x^{(k+1)} = (D - L)^{-1}Ux^{(k)} + (D - L)^{-1}b$$

Figure 4: Gauss-Seidel iterative method

$$x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}\right) / a_{ii}. \quad i = 1, \dots, n$$

Figure 5: Gauss-Seidel iterative method

$$proj_{\mathbf{v}}\mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}\mathbf{v}$$

Figure 6: Projection of vector a on v

$$x_{k+1} = \frac{f(x_k)x_{k-1} - f(x_{k-1})x_k}{f(x_k) - f(x_{k-1})}$$

Figure 7: Secant method

Algorithm 31 LU factorization with partial pivoting

```
Given the array A

for k=1:n-1 do

Find p such that |A(p,k)| = \max_{k \leq p \leq n} |A(k:n,k)|

Swap rows A(k,:) \leftrightarrow A(p,:)

Swap rows perm(k) \leftrightarrow perm(p)

for i=k+1:n do

if A(i,k) \neq 0 then

m_{ik} = A(i,k)/A(k,k)

A(i,k+1:n) = A(i,k+1,n) - m_{ik} \cdot A(k,k+1:n)

A(i,k) = m_{ik}

end if

end for

end for
```

Figure 8: LU factorization algorithm