

PROJECT PART 2

CHINMAY SUNIL KARANDIKAR

Table of Contents

1.	E	xplore the dataset and provide analysis by product-category and year:	2
	1.	Number of reviews	2
	2.	Number of distinct users	2
	3.	Average and Median review stars	3
	4.	Percentiles of length of the review. Use the following percentiles: [0.1, 0.25, 0.5, 0.75, 0.9, 0.95]	j] 4
	5. Use	Percentiles for number of reviews per product. For example, 10% of books got 5 or less reviews the following percentiles: [0.1, 0.25, 0.5, 0.75, 0.9, 0.95]	
	6. pos	Identify week number (each year has 52 weeks) for each year and product category## with mo itive reviews (4 and 5 star)	
2.	Pro	vide detailed analysis of "Digital eBook Purchase" versus Books	6
	1. L	Ising Spark Pivot functionality, produce DataFrame with following columns:	6
	1	.Year	6
	2	.Month	6
	3	. Total number of reviews for "Digital eBook Purchase" category	6
	4	. Total number of reviews for "Books" category	6
	5	. Average stars for reviews for "Digital eBook Purchase" category	6
	6	. Average stars for reviews for "Books" category	6
	2. P	roduce two graphs to demonstrate aggregations from #1:	7
	1	. Number of reviews	7
	2	. Average stars	7
		Identify similar products (books) in both categories. Use "product_title" to match products. To ount for potential differences in naming of products, compare titles after stripping spaces and verting to lower case	8
	1	Is there a difference in average rating for the similar books in digital and printed form?	8
		To answer #1, you may calculate number of items with high stars in digital form versus printer, and vice versa. Alternatively, you can make the conclusion by using appropriate pairwise tatistic	
	4.	Using provided LDA starter notebook, perform LDA topic modeling for the reviews in	
	Dig	ital_Ebook_Purchase and Books categories. Consider reviews for the January of 2015 only	9
	1	Perform LDA separately for reviews with 1/2 stars and reviews with 4/5 stars	9
	2 v	Add stop words to the standard list as needed. In the example notebook, you can see some words like 34, br, p appear in the topics	18
	3	. Identify 5 top topics for each case (1/2 versus 4/5)	20
	4	. Does topic modeling provides good approximation to number of stars given in the review?	21

- 1. Explore the dataset and provide analysis by product-category and year:
- 1. Number of reviews

Command

```
gauzed.groupby("year","product_category").agg(F.countDistinct("review_id")
.alias('NoOfReview')).show(5)
```

Output

++						
year	product_category	NoOfReview				
2014	Books	3540834				
2010 Dig	gital_Ebook_Pur	102514				
2015	Books	2860737				
2013	Wireless	1767127				
2014	Mobile_Apps	1728284				
+		+				
only showing top 5 rows						

2. Number of distinct users

Command

```
gauzed.groupby("year", "product_category").agg(F.countDistinct("customer_id
").alias('NoOfDistinctUsers')) \
.sort("year", ascending=True).show(10)
```

++		+
year	product_category	NoOfDistinctUsers
++		++
2005	Books	290585
2005	Wireless	10584
2005 Dig	ital_Ebook_Pur	17
2005 Dig	ital_Video_Dow	6
2005	Video_DVD	95196
2005	PC	15781
2006 Dig	ital_Video_Dow	154
2006	Video_DVD	105660
2006	PC	23176
2006	Wireless	17984
++		+
only show	ing top 10 rows	

3. Average and Median review stars

Command

<u>Output</u>

+ year	+ product_category	 ΛνσRating	H+ Madian
+		 	+
2005	Books	4.15	5
2005	Digital_Ebook_Pur	3.58	4
2005	Digital_Video_Dow	3.75	4
2005	PC	3.62	4
2005	Video_DVD	4.0	5
2005	Wireless	3.41	4
2006	Books	4.2	5
2006	Digital_Ebook_Pur	4.03	5
2006	Digital_Video_Dow	3.63	4
2006	PC	3.72	4
2006	Video_DVD	4.08	5
2006	Wireless	3.51	4
2007	Books	4.26	5
2007	Digital_Ebook_Pur	3.94	5
2007	Digital_Video_Dow	3.6	4
2007	PC	3.94	5
2007	Video_DVD	4.16	5
2007	Wireless	3.76	4
2008	Books	4.23	5
2008	Digital_Ebook_Pur	3.95	5
+	+	+	++

only showing top 20 rows

4. Percentiles of length of the review. Use the following percentiles: [0.1, 0.25, 0.5, 0.75, 0.9, 0.95]

Command

```
from pyspark.sql.functions import stddev_pop,min,max,length,count,mean
Length1=gauzed.withColumn('length',length(df.review_body))
Length2=Length1.groupby("year","product_category").agg(round(F.avg("length
"),2).alias('AvgOfReviews'))
columnName = "AvgOfReviews"
quantiles = [0.1, 0.25, 0.5, 0.75, 0.9, 0.95]
Deflection = 0.01
Length2.stat.approxQuantile("AvgOfReviews",quantiles,Deflection)
```

Output

```
[188.95, 349.16, 586.57, 845.33, 961.96, 1170.03]
```

5. Percentiles for number of reviews per product. For example, 10% of books got 5 or less reviews. Use the following percentiles: [0.1, 0.25, 0.5, 0.75, 0.9, 0.95]

Command

```
from pyspark.sql.functions import stddev_pop, min, max,length,count, mean
dataframe=gauzed.groupby("year", "product_id", "product_category").agg(F.cou
ntDistinct("review_id").alias('NoOfReviews'))
quantiles = [0.1, 0.25, 0.5, 0.75, 0.9, 0.95]
Deflection = 0.01
dataframe.stat.approxQuantile("NoOfReviews", quantiles, Deflection)
```

```
[1.0, 1.0, 1.0, 3.0, 9.0, 18.0]
```

6. Identify week number (each year has 52 weeks) for each year and product category## with most positive reviews (4 and 5 star)

Command

```
from pyspark.sql.functions import *
star4rating = gauzed.star_rating.isin(4)
star5rating = gauzed.star_rating.isin(5)
dfQ6=gauzed.select("product_category", "year", "review_date") \
.withColumn("week_number", weekofyear("review_date")).where(star4rating | s
tar5rating)
df2Q6 = dfQ6.groupby("product_category", "year", "week_number").agg(F.countD
istinct("week_number").alias("TotCount"))
df2Q6.drop('TotCount').show()
```

product_category	 year	 week_number
Video_DVD	⊦ 2015	 12
Books		
Digital Ebook Pur		
Video DVD		
Digital_Ebook_Pur		
Books		
Books	2007	37
Digital Ebook Pur	2015	11
Mobile_Apps	2013	2
Digital_Ebook_Pur	2013	49
Digital_Ebook_Pur	2013	19
Books	2014	6
Books	2009	36
PC PC	2010	20
Books	2010	3
Video_DVD		
Books		
Books		
	2012	
Mobile_Apps	2011	32
only showing ton 20 re	+	·

- 2. Provide detailed analysis of "Digital eBook Purchase" versus Books.
- 1. Using Spark Pivot functionality, produce DataFrame with following columns:
- 1.Year
- 2.Month
- 3. Total number of reviews for "Digital eBook Purchase" category
- 4. Total number of reviews for "Books" category
- 5. Average stars for reviews for "Digital eBook Purchase" category
- 6. Average stars for reviews for "Books" category

Command

```
tobepivoted=['Digital_Ebook_Purchase','Books']
postpivoting=gauzed.groupBy("year",F.month(F.col("review_date"))).pivot("p
roduct_category",tobepivoted)\
   .agg((F.count("review_id")).alias("CountOfReviews"),
   F.round(F.mean("star_rating"),3).alias("AvgRating")).sort("year","month(r
eview_date)",ascending=True).show()
```

Output

ting		rchase_CountOfReviews Digital_Ebook		
+				
2005	1	1	5.0	40426
.121	·	•	·	
2005	2	null	null	33726
.125				
2005	3	2	4.5	38882
.122		41	5.01	250071
2005	4	1	5.0	36887
.132 2005	5	1	1.0	36873
.132	21	11	1.0	200/2
2005	6	null	null	36608
.115	91	11022	11022	30000
2005	7	3	2.0	45945
.128				
2005	8	3	2.667	58926
.186				
2005	9	2	4.0	58127
.203				
2005	10	4	4.0	51214
.18				
2005	11	1	5.0	40885
.151				
2005	12	1	5.0	42522
.126	4.1	0.1	2 2751	54004
2006 .135	1	8	3.375	51994
2006	2	5	4.6	54413
.203	21	31	4.0	34413
2006	3	null	null	66895
.233	-1			
2006	4	null	null	27675
.132	•	·	•	
2006	5	1	5.0	45007
.18				
2006	6	5	4.2	48050
.184				
2006	7	1	4.0	55793
.2	-1	-1		
2006 .213	8	9	4.444	54418

only showing top 20 rows

2. Produce two graphs to demonstrate aggregations from #1:

1. Number of reviews

The number of reviews for ebooks has decreased considerably, this explains that people are moving away to paper books

2. Average stars

People clearly tend to prefer paper books as opposed to ebooks.

- 3. Identify similar products (books) in both categories. Use "product_title" to match products. To account for potential differences in naming of products, compare titles after stripping spaces and converting to lower case.
- 1. Is there a difference in average rating for the similar books in digital and printed form?

Command

```
product=['Digital Ebook Purchase']
DigEbook=gauzed.groupBy("product title","product category") \
 .agg((F.count("review id")).alias("CountOfReviews"),
F.round(F.mean("star rating"), 3).alias("AvgRating")).filter(F.col("produc
t category").isin(product))
trimDigEbook=DigEbook.select(F.lower(F.trim(F.col("product title")))).alias
("Title"), F.col("CountOfReviews") \
                      , F.col("AvgRating"))
book1=['Books']
book2=gauzed.groupBy("product title", "product category") \
 .agg((F.count("review id")).alias("CntReviewsBook"),
F.round(F.mean("star rating"), 3).alias("AvgRatingBook")).filter(F.col("pr
oduct category").isin(book1))
trimEbook=book2.select(F.lower(F.trim(F.col("product title"))).alias("Book
Title"),F.col("CntReviewsBook") \
                      , F.col("AvgRatingBook"))
joinExpression = trimEbook["BookTitle"] == trimDigEbook["Title"]
joinType = "inner"
final=trimEbook.join(trimDigEbook, joinExpression, joinType)
final.show()
```

Output

AvgRating	CountOfReviews	Title	AvgRatingBook	CntReviewsBook	BookTitle
5.0	1	"rays of light":	5.0	2	"rays of light":
3.327	156	"the siege of khe	4.316	19	"the siege of khe
5.0	2	'dem bon'z	5.0	4	'dem bon'z
3.667	6	0400 roswell time	5.0	1	0400 roswell time
4.833	6	10 smart things g	5.0	1	10 smart things g
4.833	6	10 smart things g	4.789	19	10 smart things g
5.0	7	100 prayers for y	5.0	11	100 prayers for y
3.933	15	13 cent killers:	2.811	37	13 cent killers:
5.0	1	25 essentials: te	4.439	41	25 essentials: te
4.97	33	30 before 30: tra	3.5	2	30 before 30: tra
1.0	7	300 hard word sea	4.5	2	300 hard word sea
5.0	2	42 rules to incre	5.0	1	42 rules to incre
4.0	3	50 american heroe	5.0	2	50 american heroe
4.667	3	50 successful har	4.347	49	50 successful har
4.5	2	52 prepper projec	3.9	30	52 prepper projec
5.0	1	73 north: the bat	5.0	6	73 north: the bat
4.5	2	<i>change</i> the	4.75	8	<i>change</i> the
4.222	36	a changed life	4.2	5	a changed life
5.0	1	a chip off the ol	5.0	1	a chip off the ol
1.0	1	a closer look at	5.0	1	a closer look at

only showing top 20 rows

2. To answer #1, you may calculate number of items with high stars in digital form versus printed form, and vice versa. Alternatively, you can make the conclusion by using appropriate pairwise statistic.

Command

```
ratingforprintedbook=F.col("AvgRatingBook")>4
final.where(ratingforprintedbook).count()
```

Output

276590

Command

```
ratingforebook=F.col("AvgRating")>4
final.where(ratingforebook).count()
```

Output

245526

We can see that printed book has got more number of higher rating i.e count of more than 4 star ratings is higher for printed books as compared to digital book star ratings.

- 4. Using provided LDA starter notebook, perform LDA topic modeling for the reviews in Digital_Ebook_Purchase and Books categories. Consider reviews for the January of 2015 only
- 1. Perform LDA separately for reviews with 1/2 stars and reviews with 4/5 stars.

Command for topic modelling for 4/5 stars

```
from pyspark.mllib.clustering import LDA, LDAModel
from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import CountVectorizer, IDF,RegexTokenizer, Tokenizer
from pyspark.sql.types import ArrayType
from pyspark.sql.types import StringType
from pyspark.sql.types import *
from pyspark.sql.functions import udf
from pyspark.sql.functions import struct
import re
from pyspark.ml.feature import StopWordsRemover
from pyspark.ml.clustering import LDA
from pyspark.ml.feature import CountVectorizer
```

```
df ml = gauzed.filter((F.col("product category") == "Digital Ebook Purchase") |
(F.col("product category") == "Books") \
                  & (F.col("year") == 2015) \
                  & (F.col("review date")<'2015-02-01')
                  & (F.col("star rating")>3))
                                                                   In [40]:
df1 = df ml.withColumn('review_text',
                      F.concat(F.col('review headline'), F.lit(' '),
F.col('review body')))
corpus =df1.select('review text')
# This will return a new DF with all the columns + id
corpus df = corpus.withColumn("id", F.monotonically increasing id())
# Remove records with no review text
corpus df = corpus df.dropna()
corpus df.persist()
print('Corpus size:', corpus df.count())
corpus df.show(5)
corpus df.printSchema()
Output
Corpus size: 18287530
+----+
    review_text| id|
+----+
 |Nice Story but ve...| 0|
 |Beautiful and hea...| 1|
 |Worth The Wait. T...| 2|
 |written before. I...| 3|
 |Entertaining Rev.... 4|
+----+
only showing top 5 rows
root
 |-- review_text: string (nullable = true)
 |-- id: long (nullable = false)
```

Code for tokenizing

Output

```
review text| words|tokens|
Nice Story but ve... [nice, story, but...]
|Beautiful and hea...|[beautiful, and, ...|
                                             76
|Worth The Wait. T...|[worth, the, wait...|
                                             77
written before. I...|[written, before,...|
                                            327
|Entertaining Rev....|[entertaining, re...|
                                             51
|Fastest 600 page ...|[fastest, 600, pa...|
                                             45 l
|Amazing It is a c...|[amazing, it, is,...|
                                             27
|Huge impact Profo...|[huge, impact, pr...|
                                             27
LOVED LOVED LOVED...|[loved, loved, lo...|
                                             25 l
|Five Stars very h...|[five, stars, ver...|
                                             4
|This is an awesom...|[this, is, an, aw...|
                                             26
|Kept me intereste...|[kept, me, intere...|
                                             291
|So many of these ...|[so, many, of, th...|
                                             50 l
she is an incredi... [she, is, an, inc...
                                             43
|Thoroughly enjoye...|[thoroughly, enjo...|
                                             42
This book has mad...|[this, book, has,...|
                                             39 l
|Not as good as th...|[not, as, good, a...|
                                             33 l
|Writer's Block Wo...|[writer, s, block...|
                                             74
One of my favorit...|[one, of, my, fav...|
                                             43
|Wow This book was...|[wow, this, book,...|
+-----
```

only showing top 20 rows

Code for LDA for 4/5 stars

```
#k=10 means 10 words per topic
lda = LDA(k=10, maxIter=10)
model = lda.fit(countVectors)
                                                                     In [47]:
topics = model.describeTopics(5)
topics_rdd = topics.rdd
topics words = topics rdd\
       .map(lambda row: row['termIndices']) \
       .map(lambda idx_list: [vocab[idx] for idx in idx_list]) \
       .collect()
for idx, topic in enumerate(topics_words):
   print ("topic: ", idx)
   print ("----")
    for word in topic:
      print (word)
   print ("----")
```

topic: 0	topic: 3	topic: 6	
story	story	read	
characters	life	characters	
love	read	reading	
read	love	story	
good	world	great	
topic: 1	topic: 4	topic: 7	
good	read	great	topic: 9
read	story	read	
story	good	life	
great	mystery	good	
really	great	information	
topic: 2	topic: 5	topic: 8	
read	read	love	read
series	like	story	author
books	great	like	good
great	time	really	books
love	interesting	read	enjoyed

Topic modelling for 1/2 stars

Command

```
df ml1 = gauzed.filter((F.col("product category") == "Digital Ebook Purchase")
| (F.col("product category") == "Books") \
                   & (F.col("year") == 2015) \
                   & (F.col("review date")<'2015-02-01')
                   & (F.col("star rating")<3))
                                                                       In [50]:
df1 = df ml1.withColumn('review text',
                       F.concat(F.col('review_headline'), F.lit(' '), F.col('r
eview body')))
corpus =df1.select('review text')
# This will return a new DF with all the columns + id
corpus df = corpus.withColumn("id", F.monotonically increasing id())
# Remove records with no review text
corpus df = corpus df.dropna()
corpus df.persist()
print('Corpus size:', corpus df.count())
corpus df.show(5)
corpus df.printSchema()
```

Tokenizing for 1/2 stars

Command

```
-----+
   review text| words|tokens|
+----+
|Nice Story but ve...|[nice, story, but...|
|Beautiful and hea...|[beautiful, and, ...|
                                          76
|Worth The Wait. T...|[worth, the, wait...|
                                          77
|written before. I...|[written, before,...|
                                         327
|Entertaining Rev....|[entertaining, re...|
                                          51 l
|Fastest 600 page ...|[fastest, 600, pa...|
                                          45 l
|Amazing It is a c...|[amazing, it, is,...|
                                          27
|Huge impact Profo...|[huge, impact, pr...|
                                          27
LOVED LOVED LOVED...|[loved, loved, lo...|
                                          25
|Five Stars very h...|[five, stars, ver...|
                                          4
|This is an awesom...|[this, is, an, aw...|
                                          26
|Kept me intereste...|[kept, me, intere...|
                                          29
|So many of these ...|[so, many, of, th...|
                                          50 l
she is an incredi...|[she, is, an, inc...|
                                          43
Thoroughly enjoye...|[thoroughly, enjo...|
                                          42
|Not as good as th...|[not, as, good, a...|
                                          33 l
|Writer's Block Wo...|[writer, s, block...|
                                          74
One of my favorit...|[one, of, my, fav...|
                                          43 l
|Wow This book was...|[wow, this, book,...|
                                          74
|THE BEST OF THE B...|[the, best, of, t...|
                                          86
+-----+
only showing top 20 rows
```

Command for removing stop words

```
remover = StopWordsRemover(inputCol="words", outputCol="filtered")
tokenized_df1 = remover.transform(tokenized_df)
tokenized_df1.show(5)

stopwordList = stop_words

remover=StopWordsRemover(inputCol="filtered", outputCol="filtered_more" ,s
topWords=stopwordList)
tokenized_df2 = remover.transform(tokenized_df1)
tokenized_df2.show(5)
```

Output

```
+-----
| review_text| id| words| filtered|
+-----
|Nice Story but ve...| 0|[nice, story, but...|[nice, story, rus...|
|Beautiful and hea...| 1|[beautiful, and, ...|[beautiful, heart...|
|Worth The Wait. T...| 2| [worth, the, wait...| [worth, wait, sto...|
|written before. I...| 3|[written, before,...|[written, really,...|
|Entertaining Rev....| 4|[entertaining, re...|[entertaining, re...|
+-----
only showing top 5 rows
+-----+
review_text| id| words| filtered| filtered_more|
+-----
|Nice Story but ve...| 0|[nice, story, but...|[nice, story, rus...|[nice, story, rus...|
|Beautiful and hea...| 1|[beautiful, and, ...|[beautiful, heart...|[beautiful, heart...|
|Worth The Wait. T... | 2| worth, the, wait... | worth, wait, sto... | worth, wait, sto...
|written before. I...| 3|[written, before,...|[written, really,...|[written, really,...|
|Entertaining Rev....| 4|[entertaining, re...|[entertaining, re...|
+-----+
only showing top 5 rows
```

Command for counting total records in the DF

```
cv = CountVectorizer(inputCol="filtered_more", outputCol="features", vocab
Size = 10000)
cvmodel = cv.fit(tokenized_df2)
featurized_df = cvmodel.transform(tokenized_df2)
vocab = cvmodel.vocabulary
featurized_df.select('filtered_more','features','id').show(5)

countVectors = featurized_df.select('features','id')
countVectors.persist()
print('Records in the DF:', countVectors.count())
countVectors = featurized_df.select('features','id')
countVectors.persist()
print('Records in the DF:', countVectors.count())
```

Output

Records in the DF: 17950045

Performing LDA for 1/2 stars

Command

<u>Output</u>

topic: 0	topic: 3	topic: 6	
story good love read characters series author time world great	story read love characters written like great novel way author	read love loved series characters story reading great wait books	
topic: 1 good read story great stars really like love series characters	topic: 4 read good like great books reading easy new story author	topic: 7 great read reading story series stars recommend forward life good	
topic: 2	topic: 5	topic: 8	topic: 9
read series books like great love reading story loved wait	read great time like life history reading good people know	story love really life like read characters loved stars know	read good characters author story enjoyed books like great reading

2. Add stop words to the standard list as needed. In the example notebook, you can see some words like 34, br, p appear in the topics.

Command

```
stop words = ['a', 'about', 'above', 'across', 'after', 'afterwards', 'aga
in', 'against', 'all', 'almost', 'alone', 'along', 'already', 'also', 'alt
hough', 'always', 'am', 'among', 'amongst', 'amoungst', 'amount', 'an', 'a
nd', 'another', 'any', 'anyhow', 'anyone', 'anything', 'anyway', 'anywhere', 'are', 'around', 'as', 'at', 'back', 'be', 'became', 'because', 'become
', 'becomes', 'becoming', 'been', 'before', 'beforehand', 'behind', 'being', 'below', 'beside', 'besides', 'between', 'beyond', 'bill', 'both', 'bot
tom', 'but', 'by', 'call', 'can', 'cannot', 'cant', 'co', 'computer', 'con
', 'could', 'couldnt', 'cry', 'de', 'describe', 'detail', 'do', 'done', 'd
own', 'due', 'during', 'each', 'eg', 'eight', 'either', 'eleven', 'else',
'elsewhere', 'empty', 'enough', 'etc', 'even', 'every', 'every', 'everyone'
, 'everything', 'everywhere', 'except', 'few', 'fifteen', 'fify', 'fill',
'find', 'fire', 'first', 'five', 'for', 'former', 'formerly', 'forty', 'fo
und', 'four', 'from', 'front', 'full', 'further', 'get', 'give', 'go', 'ha d', 'has', 'hasnt', 'have', 'he', 'hence', 'her', 'here', 'hereafter', 'he
reby', 'herein', 'hereupon', 'hers', 'herself', 'him', 'himself', 'his', 'how', 'however', 'hundred', 'i', 'ie', 'if', 'in', 'inc', 'indeed', 'inter est', 'into', 'is', 'it', 'itself', 'keep', 'last', 'latter', 'latt
erly', 'least', 'less', 'ltd', 'made', 'many', 'may', 'me', 'meanwhile', 'might', 'mill', 'mine', 'more', 'moreover', 'most', 'mostly', 'move', 'much', 'must', 'my', 'myself', 'name', 'namely', 'neither', 'never', 'neverth
eless', 'next', 'nine', 'no', 'nobody', 'none', 'noone', 'nor', 'not', 'no
thing', 'now', 'nowhere', 'of', 'off', 'often', 'on', 'once', 'one', 'only
 ', 'onto', 'or', 'other', 'others', 'otherwise', 'our', 'ours', 'ourselves
', 'out', 'over', 'own', 'part', 'per', 'perhaps', 'please', 'put', 'rathe r', 're', 'same', 'seem', 'seemed', 'seeming', 'seems', 'serious',
'several', 'she', 'should', 'show', 'side', 'since', 'sincere', 'six', 'si
xty', 'so', 'some', 'somehow', 'someone', 'something', 'sometime', 'someti
mes', 'somewhere', 'still', 'such', 'system', 'take', 'ten', 'than', 'that', 'the', 'their', 'them', 'themselves', 'then', 'thence', 'there', 'there
after', 'thereby', 'therefore', 'therein', 'thereupon', 'these', 'they', '
thick', 'thin', 'third', 'this', 'those', 'though', 'three', 'through', 'throughout', 'thru', 'to', 'together', 'too', 'top', 'toward', 
ards', 'twelve', 'twenty', 'two', 'un', 'under', 'until', 'up', 'upon', 'u
s', 'very', 'via', 'was', 'we', 'well', 'were', 'what', 'whatever', 'when'
, 'whence', 'whenever', 'where', 'whereafter', 'whereas', 'whereby', 'where
ein', 'whereupon', 'wherever', 'whether', 'which', 'while', 'whither', 'wh o', 'whoever', 'whole', 'whom', 'whose', 'why', 'will', 'with', 'within',
'without', 'would', 'yet', 'you', 'your', 'yours', 'yourself', 'yourselves
', '']
stop words = stop words + ['br', 'book', '34', 'y', 'm', 'ich', 'zu']
```

```
remover = StopWordsRemover(inputCol="words", outputCol="filtered")
tokenized_df1 = remover.transform(tokenized_df)
tokenized_df1.show(5)
stopwordList = stop_words
```

```
remover=StopWordsRemover(inputCol="filtered", outputCol="filtered_more" ,s
topWords=stopwordList)
tokenized_df2 = remover.transform(tokenized_df1)
tokenized_df2.show(5)
```

Output

```
| review_text| id| words| filtered|
|Nice Story but ve...| 0|[nice, story, but...|[nice, story, rus...|
|Beautiful and hea...| 1|[beautiful, and, ...|[beautiful, heart...|
|Worth The Wait. T...| 2|[worth, the, wait...|[worth, wait, sto...|
written before. I... | 3 | [written, before,... | [written, really,... |
|Entertaining Rev.... | 4|[entertaining, re...|[entertaining, re...|
+-----
only showing top 5 rows
+-----
review_text| id| words| filtered| filtered more|
<del>+-----</del>
|Nice Story but ve...| 0|[nice, story, but...|[nice, story, rus...|[nice, story, rus...|
|Beautiful and hea...| 1|[beautiful, and, ...|[beautiful, heart...|[beautiful, heart...|
|Worth The Wait. T... | 2| [worth, the, wait... | [worth, wait, sto... | [worth, wait, sto... |
|written before. I... | 3|[written, before,... | [written, really,... | [written, really,... |
|Entertaining Rev.... | 4|[entertaining, re...|[entertaining, re...|[entertaining, re...|
+-----
only showing top 5 rows
```

```
cv = CountVectorizer(inputCol="filtered_more", outputCol="features", vocab
Size = 10000)
cvmodel = cv.fit(tokenized_df2)
featurized_df = cvmodel.transform(tokenized_df2)
vocab = cvmodel.vocabulary
featurized_df.select('filtered_more','features','id').show(5)

countVectors = featurized_df.select('features','id')
countVectors.persist()
print('Records in the DF:', countVectors.count())
```

Output

Records in the DF: 18287530

3. Identify 5 top topics for each case (1/2 versus 4/5)

Topics for case with 1/2 stars

topic: 0	topic: 3	topic: 6	
story good love read characters series author time world great	story read love characters written like great novel way author	read love loved series characters story reading great wait books	
topic: 1	topic: 4	topic: 7	
good read story great stars really like love series characters	read good like great books reading easy new story author	great read reading story series stars recommend forward life good	
topic: 2	topic: 5	topic: 8	topic: 9
read series books like great love reading story loved wait	read great time like life history reading good people know	story love really life like read characters loved stars know	read good characters author story enjoyed books like great reading

Topics for case with 4/5 stars

topic: 0	topic: 3	topic: 6	
story characters love read good	story life read love world	read characters reading story great	
topic: 1	topic: 4	topic: 7	
good read story great really	read story good mystery great	great read life good information	 topic: 9
topic: 2	topic: 5	topic: 8	
read series books great love	read like great time interesting	love story like really read	read author good books enjoyed

4. Does topic modeling provides good approximation to number of stars given in the review?

<u>Answer</u>

We can clearly make out after performing LDA that there are some positive words in reviews which have lower than 3 rating, as a result in this case topic modelling may not provide a good approximation to the number of stars given in a review.