Analog IC Design Design Challenge Digitally Controlled Variable Gain Amplifier (VGA)

OTA selection and design strategy.

Two stage miller OTA.

NMOS input pair.

Non-inverting OP amp.

Here are all the devices sizing.

I used ADT tool to help me do the design and meet the specs.

Here I needed an open loop gain of 2000 and UGF of 150 M and phase margin above 50.

I put these specs and ADT and then started simulation.

The block schematic:

The OTA schematic and operating point:

The open loop specs:

Test	Output	Nominal	Spec	Weight	Pass/Fail
Design_challenge:open_loop_simulation:1	AoI	2.814k			
Design_challenge:open_loop_simulation:1	Aol_dB	68.99			
Design_challenge:open_loop_simulation:1	BW	110.2k			
Design_challenge:open_loop_simulation:1	GBW	310.7M			
Design_challenge:open_loop_simulation:1	UGF	152.9M			
Design_challenge:open_loop_simulation:1	PM	57.15			

Gain above 2000 satisfied.

UGF satisfied.

Phase margin satisfied.

Here is the open loop simulation with the corners and variations of the caps and the resistors:

	D	N						C0.0	CO 1
	Parameter	Nominal						C0_0	C0_1
	CC	240f						216f	264f
				-					
Test	Output	Nominal	Spec	Weight	Pass/Fail	Min	Max	C0_0	C0_1
Design_challenge:open_loop_simulation:1	AoI	2.814k				2.814k	2.814k	2.814k	2.814k
Design_challenge:open_loop_simulation:1	Aol_dB	68.99				68.99	68.99	68.99	68.99
Design_challenge:open_loop_simulation:1	BW	110.2k				101.9k	119.5k	119.5k	101.9k
Design_challenge:open_loop_simulation:1	GBW	310.7M				287.4M	336.9M	336.9M	287.4M
Design_challenge:open_loop_simulation:1	UGF	152.9M				145.2M	161.8M	161.8M	145.2M

The closed loop simulations:

Closed loop gain at D0 signal = 0 the closed loop gain is equal to 2 as designed as beta here is equal to 0.5

The closed loop gain at D0 = 1

the closed loop gain is equal to 4 as designed as beta here is equal to 0.25

So, the closed loop gain spec is satisfied.

The loop gain:

Here the loop gain of the closed loop at D0 = 0 and D0 = 1

When the digital signal is zero, beta = 0.5 so the loop gain which is equal to B*Aol = 0.5*2K = 1kWhen the digital signal is 1, beta = 0.25 so the loop gain which is equal to B*Aol = 0.25*2K = 0.5k

The other curves are those of the corners.

Here are the closed loop specs with the corners:

Loop gain phase margin with the corners:

	1
СС	216.0E-15
/phaseMargin Corner C0_1 R 80000 s 0 (Deg)	10.65
/phaseMargin Corner C0_1 R 80000 s 1 (Deg)	27.79
/phaseMargin Corner C0_0 R 120000 s 0 (Deg)	4.503
/phaseMargin Corner C0_0 R 120000 s 1 (Deg)	19.84
cc	240.0E-15
/phaseMargin Corner C1 R 100000 s 0 (Deg)	9.048
/phaseMargin Corner C1 R 100000 s 1 (Deg)	25.71
/phaseMargin Corner nom R 100000 s 0 (Deg)	9.048
/phaseMargin Corner nom R 100000 s 1 (Deg)	25.71
cc	264.0E-15
/phaseMargin Corner C0_3 R 80000 s 0 (Deg)	14.25
/phaseMargin Corner C0_3 R 80000 s 1 (Deg)	32.20
/phaseMargin Corner C0_2 R 120000 s 0 (Deg)	8.115
/phaseMargin Corner C0_2 R 120000 s 1 (Deg)	24.35

Compare to open loop specs and comment.

	Open loop	Closed loop
UGF @D0=0,D=1	152.9M	136.4M,142.3M
PM @ D0=0,D0=1	57.15	47.9,51.8

The closed loop parameters decreased a bit from the open loop.

Closed loop transient analysis:

