Instructor: UVIC Math Student: Arfaz Hossain

Course: MATH 100 (A01, A02, A03) Fall Assignment: Assignment 7 Date: 11/07/21

Identify the coordinates of any local and absolute extreme points and inflection points. Graph the function.

$$y = 24x^3 - 3x^4 = x^3(24 - 3x)$$

To graph the function, first determine the domain of the function and any symmetries the curve may have.

The domain of the function $y = 24x^3 - 3x^4$ is (Type your answer in interval notation.)

The graph of the function has no symmetry.

Find the derivatives y' and y''. First find y'.

$$y = 24x^3 - 3x^4$$

 $y' = 72x^2 - 12x^3$

Find v''.

$$y' = 72x^2 - 12x^3$$

$$y'' = 144x - 36x^2$$

Next, find the critical point(s) of y = f(x) by solving y' = 0.

Solve y' = 0 for x.

$$y' = 0$$
 $72x^2 - 12x^3 = 0$
 $12x^2(6-x) = 0$
 $x = 0.6$

(Use a comma to separate answers as needed.)

Since y' exists over the domain of y, the critical points are only at x = 0 and x = 6.

To determine the behavior at the critical points, use the Second Derivative Test for Local Extrema to determine whether any local extrema occur at the critical points.

If f'(c) = 0 and f''(c) < 0, then f has a local maximum at x = c.

If f'(c) = 0 and f''(c) > 0, then f has a local minimum at x = c.

If f'(c) = 0 and f''(c) = 0 or f''(c) fails to exist, then the function f may have a local maximum, a local minimum, or neither at x = c.

Determine the behavior of the function at the critical points. Choose the correct answer below.

 \bigcirc **A.** y has a local maximum at x = 6, and a local minimum at x = 0.

B. y has a local maximum at x = 6, and may have a local maximum, a local minimum, or neither at x = 0.

 \bigcirc C. y has a local minimum at x = 6, and a local maximum at x = 0.

○ D. y has a local minimum at x = 6, and may have a local maximum, a local minimum, or neither at x = 0.

Find where the curve is increasing and where it is decreasing. The critical points subdivide the domain of $y = 24x^3 - 3x^4$ to create nonoverlapping open intervals on which y' is either positive or negative. Determine the sign of y' over these intervals.

Interval	x < 0	0 < x < 6	6 < x
Sign of y	+	+	1

If y' > 0 at any point in an open interval, then the curve is increasing on that interval. If y' < 0 at any point in an open interval, then the curve is decreasing on that interval. Determine the behavior of the curve.

Interval	x < 0	0 < x < 6	6 < x
Sign of y [']	+	+	_
Behavior of the curve	increasing	increasing	decreasing

At a point of inflection, either y'' is 0 or y'' fails to exist. Since the domain of y'' is $(-\infty,\infty)$, there are no values of x where y'' does not exist. Find any potential inflection points by setting the second derivative equal to 0, and solve for x.

$$y'' = 0$$

 $36x(4 - x) = 0$
 $x = 0.4$ Solve for x.

(Use a comma to separate answers as needed.)

The inflection points are at x = 0 and x = 4. Use these points to define the intervals where the curve is concave up or concave down. Determine the sign of y'' over these intervals.

Interval	x < 0	0 < x < 4	4 < x
Sign of y''	_	+	-

If y'' > 0 at any point in an open interval, then the curve is concave up on that interval. If y'' < 0 at any point in an open interval, then the curve is concave down on that interval. Determine the concavity of the curve.

Interval	x < 0	0 < x < 4	4 < x
Sign of y''	-	+	-
Concavity of the curve	down	up	down

Therefore, the inflection point(s) is/are (4,768),(0,0).

(Use a comma to separate answers as needed. Type an ordered pair. Do not use commas in the individual coordinates.)

Determine the asymptotes of the given function.

- \bigcirc **A.** There is an asymptote at y = 0.
- \bigcirc **B.** There are asymptotes at y = 0 and x = 6.
- \bigcirc **C.** There is an asymptote at x = 6.
- **D.** There are no asymptotes.

Choose the correct graph of $y = 24x^3 - 3x^4$.

Therefore, the graph of $y = 24x^3 - 3x^4$ is as shown to the right.

YOU ANSWERED: extrema

(0,0),(4,0)