Dropout Prediction EDA

```
In [1]: import pandas as pd
import numpy as np
from hashlib import sha1
import matplotlib.pyplot as plt
import seaborn as sns
import altair as alt
```

General Preprocessing

```
In [2]: alt.renderers.enable('mimetype')
    data_path = '../data/raw/data.csv'
    sep = ';'

In [3]: df = pd.read_csv(data_path, sep=sep)
    df = df.rename(columns={'Nacionality': 'Nationality', 'Daytime/evening attendance\t': 'Daytime_evening at
```

Out[4]:

	Marital status	Application mode	Application order	Course	Daytime_evening_attendance	Previous qualification	Previous qualification (grade)	Nationality
0	1	17	5	171	1	1	122.0	1
1	1	15	1	9254	1	1	160.0	1
2	1	1	5	9070	1	1	122.0	1
3	1	17	2	9773	1	1	122.0	1
4	2	39	1	8014	0	1	100.0	1

5 rows × 37 columns

```
In [5]: df.tail()
```

	Marital status	Application mode	Application order	Course	Daytime_evening_attendance	Previous qualification	Previous qualification (grade)	Nationa
4419	1	1	6	9773	1	1	125.0	
4420	1	1	2	9773	1	1	120.0	
4421	1	1	1	9500	1	1	154.0	
4422	1	1	1	9147	1	1	180.0	
4423	1	10	1	9773	1	1	152.0	

5 rows × 37 columns

In [6]: df = df.dropna()
 df.shape

Out[6]: (4424, 37)

The data-set consists of 4424 records with 35 attributes and contains no missing values. The distribution and statistics are above and below.

In [7]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 4424 entries, 0 to 4423
       Data columns (total 37 columns):
            Column
                                                          Non-Null Count Dtype
        --- -----
                                                          -----
        0 Marital status
                                                          4424 non-null int64
        1 Application mode
                                                          4424 non-null int64
        2 Application order
                                                          4424 non-null int64
        3 Course
                                                          4424 non-null int64
        4 Daytime_evening_attendance
                                                          4424 non-null int64
         5 Previous qualification
                                                          4424 non-null int64
        6 Previous qualification (grade)
                                                          4424 non-null float64
        7 Nationality
                                                          4424 non-null int64
        8 Mother's qualification
                                                          4424 non-null int64
           Father's qualification
                                                          4424 non-null int64
        9
        10 Mother's occupation
                                                          4424 non-null int64
        11 Father's occupation
                                                          4424 non-null int64
        12 Admission grade
                                                          4424 non-null float64
        13 Displaced
                                                          4424 non-null int64
        14 Educational special needs
                                                          4424 non-null int64
        15 Debtor
                                                          4424 non-null int64
        16 Tuition fees up to date
                                                          4424 non-null int64
        17 Gender
                                                          4424 non-null int64
        18 Scholarship holder
                                                          4424 non-null int64
        19 Age at enrollment
                                                          4424 non-null int64
        20 International
                                                          4424 non-null int64
         21 Curricular units 1st sem (credited)
                                                          4424 non-null int64
        22 Curricular units 1st sem (enrolled)
                                                          4424 non-null int64
        23 Curricular units 1st sem (evaluations)
                                                          4424 non-null int64
         24 Curricular units 1st sem (approved)
                                                          4424 non-null int64
        25 Curricular units 1st sem (grade)
                                                          4424 non-null float64
         26 Curricular units 1st sem (without evaluations) 4424 non-null int64
        27 Curricular units 2nd sem (credited)
                                                          4424 non-null int64
        28 Curricular units 2nd sem (enrolled)
                                                          4424 non-null
                                                                         int64
         29 Curricular units 2nd sem (evaluations)
                                                          4424 non-null int64
         30 Curricular units 2nd sem (approved)
                                                          4424 non-null int64
         31 Curricular units 2nd sem (grade)
                                                          4424 non-null float64
        32 Curricular units 2nd sem (without evaluations) 4424 non-null int64
                                                          4424 non-null float64
        33 Unemployment rate
         34 Inflation rate
                                                          4424 non-null float64
        35 GDP
                                                          4424 non-null float64
         36 Target
                                                          4424 non-null object
       dtypes: float64(7), int64(29), object(1)
       memory usage: 1.2+ MB
       sns.set(font_scale=1.4)
In [8]:
       ax = df['Target'].value_counts().plot(kind='bar', figsize=(7, 6), rot=0)
       ax.bar_label(ax.containers[0])
       plt.xlabel("Target", labelpad=14)
        plt.ylabel("Count of Student", labelpad=14)
        plt.title("Count of Student by Target", y=1.02);
```

Count of Student by Target

From above plot, we can see this problem was three-category classification task, and there exists strong imbalance between those three classes. The class, Graduate, has the majority count which is around 50% of the records and Dropout has 32% of total records. The Enrolled only has 18% of total records. Thus, during our training, we need to find a way to fix this imbalance issues.

Dropping Enrolled Student

```
In [9]: df = df.drop(df[df.Target == 'Enrolled'].index)
df.shape

Out[9]: (3630, 37)
```

Variables Correlation

```
'Application mode', 'Application order', 'Course',
       'Daytime_evening_attendance', 'Previous qualification',
       #'Previous qualification (grade)',
      # 'Admission grade',
       'Curricular units 1st sem (credited)',
       'Curricular units 1st sem (enrolled)',
       'Curricular units 1st sem (evaluations)',
       'Curricular units 1st sem (approved)',
       'Curricular units 1st sem (grade)',
       'Curricular units 1st sem (without evaluations)',
       'Curricular units 2nd sem (credited)',
       'Curricular units 2nd sem (enrolled)',
       'Curricular units 2nd sem (evaluations)',
       'Curricular units 2nd sem (approved)',
       'Curricular units 2nd sem (grade)',
       'Curricular units 2nd sem (without evaluations)']
df[numeric_cols].corr('spearman').style.background_gradient()
```

	Marital status	Nationality	Displaced	Gender	Age at enrollment	International	Mother's qualification
Marital status	1.000000	-0.029151	-0.280670	0.034059	0.487771	-0.029312	0.185557
Nationality	-0.029151	1.000000	-0.000933	-0.032763	0.014973	0.999910	-0.016578
Displaced	-0.280670	-0.000933	1.000000	-0.127896	-0.358344	-0.000790	-0.056694
Gender	0.034059	-0.032763	-0.127896	1.000000	0.217921	-0.032755	-0.046191
Age at enrollment	0.487771	0.014973	-0.358344	0.217921	1.000000	0.014839	0.171158
International	-0.029312	0.999910	-0.000790	-0.032755	0.014839	1.000000	-0.016059
Mother's qualification	0.185557	-0.016578	-0.056694	-0.046191	0.171158	-0.016059	1.000000
Father's qualification	0.117648	-0.071854	-0.049759	-0.061476	0.091516	-0.071386	0.445642
Mother's occupation	0.107951	0.016602	-0.030864	-0.023081	0.088996	0.016114	0.348163
Father's occupation	0.046720	0.025482	-0.025477	-0.024909	0.033188	0.025357	0.170351
Educational special needs	-0.030775	0.000875	-0.005099	-0.009794	-0.026482	0.000908	-0.008903
Debtor	0.038310	0.069663	-0.093718	0.052770	0.130889	0.069682	0.005673
Tuition fees up to date	-0.104008	-0.055761	0.105403	-0.122231	-0.218685	-0.055777	-0.014049
Scholarship holder	-0.111171	-0.019974	0.086337	-0.187994	-0.236935	-0.020298	0.025692
Unemployment rate	-0.039405	-0.007001	-0.116721	0.021554	0.011000	-0.007136	-0.093304
Inflation rate	0.003924	-0.001856	-0.005004	-0.007236	0.021894	-0.001865	0.040142
GDP	-0.073733	0.031021	0.064342	-0.024112	-0.062735	0.030689	-0.080006
Application mode	0.283749	-0.001916	-0.275745	0.172056	0.560823	-0.001597	0.069950
Application order	-0.181021	-0.018081	0.391173	-0.125412	-0.374271	-0.018055	-0.047869
Course	0.010963	0.006666	0.012632	-0.091264	-0.094831	0.006865	0.035886
Daytime_evening_attendance	-0.349339	0.032564	0.243653	-0.030507	-0.419255	0.032494	-0.145697
Previous qualification	0.198423	-0.040163	-0.205442	0.099248	0.408268	-0.039960	0.015110
Curricular units 1st sem (credited)	0.101918	0.023905	-0.129085	0.027893	0.303084	0.023964	-0.001530
Curricular units 1st sem (enrolled)	-0.003613	-0.003167	0.016764	-0.192456	-0.022160	-0.002866	0.021331
Curricular units 1st sem (evaluations)	0.060678	-0.008466	-0.051751	-0.033322	0.160976	-0.008153	0.043886
Curricular units 1st sem (approved)	-0.074359	-0.002099	0.096292	-0.249881	-0.204002	-0.001856	-0.023753
Curricular units 1st sem (grade)	-0.098640	0.000291	0.096843	-0.186811	-0.243264	0.000368	-0.053202
Curricular units 1st sem (without evaluations)	0.049069	-0.010229	-0.030897	0.004499	0.079966	-0.010031	0.000099
Curricular units 2nd sem (credited)	0.098985	0.022434	-0.132305	0.029235	0.302135	0.022549	-0.000300

	0.0						4
Curricular units 2nd sem (enrolled)	-0.025889	-0.011215	0.033914	-0.198612	-0.057878	-0.011010	0.005997
Curricular units 2nd sem (evaluations)	0.012913	-0.027296	-0.019175	-0.058061	0.061485	-0.026901	0.021302
Curricular units 2nd sem (approved)	-0.080764	-0.016196	0.094870	-0.262117	-0.222433	-0.015868	-0.017841
Curricular units 2nd sem (grade)	-0.096833	-0.002299	0.087677	-0.205081	-0.246500	-0.002015	-0.045127
Curricular units 2nd sem (without evaluations)	0.059087	-0.023510	-0.046051	0.070138	0.116112	-0.023427	0.030562

Gender

enrollment

Nationality Displaced

Mother's

qualification

International

Marital

status

Box Plot of Inflation rate 3 Inflation rate 2 0 -1 Dropout Graduate Target Box Plot of GDP 3 2 1 -2 -3 -4

In [13]: sns.scatterplot(x='Unemployment rate', y='Inflation rate', hue="Target", data=df)
 plt.title("Relationship between Unemployment Rate, Inflation Rate and target")
 plt.show()

Target

Graduate

Dropout

Relationship between Unemployment Rate, Inflation Rate and target

Out[15]: <seaborn.axisgrid.PairGrid at 0x183ce406500>


```
In [16]:
                                      numeric_cols = df.select_dtypes('number').columns.tolist()
                                      numeric_cols
                                      # performance of two semester vs Target
                                      df_new = df[['Curricular units 1st sem (credited)', 'Curricular units 1st sem (enrolled)', 'Curri
                                      first_sem = ['Curricular units 1st sem (credited)', 'Curricular units 1st sem (enrolled)', 'Curri
                                      second_sem = ['Curricular units 2nd sem (credited)', 'Curricular units 2nd sem (enrolled)', 'Curricular units 2nd sem (enrolled)',
                                      plot = alt.Chart(df_new).mark_point().encode(
                                                          alt.X(alt.repeat('column'), type='quantitative'),
                                                          alt.Y(alt.repeat('row'), type='quantitative'),
                                                          color = 'Target'
                                      ).properties(
                                                      width=200,
                                                      height=200
                                      ).repeat(
                                                      row = first_sem,
                                                      column = second_sem
```


Marital Status

0000000000000 000000

Age at enrollment

0 0

Gender

married

single widower

Out[19]: Gender as per Target Count


```
gender_dict = {1: 'male', 0: 'female'}
In [20]:
         df2=df2.replace({"Gender": gender_dict})
         gender_density = (alt.Chart(df2)
          .transform_density(
              'Age at enrollment',
              groupby=['Target','Gender'],
              as_=['Age at enrollment', 'density'],
              counts=True,
          )
          .mark_line().encode(
              x='Age at enrollment',
              y='density:Q',
              color='Target',
          tooltip='Age at enrollment')
          .facet('Gender',
                title="Age at Enrollment Density Plot by Gender & Dropout"
         gender_density
```


Attendance Mode

```
In [21]: day_evening_dict = {1: 'Daytime', 0: 'Evening'}
df2 = df2.replace({'Daytime_evening_attendance': day_evening_dict})
gender_bar = alt.Chart(df2).mark_bar().encode(
    x='count()',
    y='Target',
    color='Target',
    tooltip='count()'
).facet(
    row="Daytime_evening_attendance",
    spacing=30,
    title='Attendance Mode as per Target Count'
)
gender_bar
```

Out[21]: Attendance Mode as per Target Count


```
In [ ]:
In [ ]:
```