

Electrical and Computer Engineering Department
Tarbiat Modares University

Deep Feedforward Networks

Foad Ghaderi, PhD

The Perceptron

The Perceptron

(2) suppress the bias term
$$x_N=1$$
 (less clutter) $w_N=b$

A feedforward network (neural networks, or multilayer perceptrons (MLPs)) defines a mapping $y = f(x; \theta)$ and learns the value of the parameters θ that result in the best function approximation.

... a collection of connected perceptrons

There are no *feedback* connections in which outputs of the model are fed back into itself.

The model is associated with a directed acyclic graph describing how the functions are composed together.

Example, we might have three functions $f^{(1)}$, $f^{(2)}$, and $f^{(3)}$ connected in a chain, to form $f(\mathbf{x}) = f^{(3)} (f^{(2)} (f^{(1)}(\mathbf{x})))$.

Example:

Optical Character Recognition (OCR)

Simplest feedforward networks are linear models e.g. logistic regression and linear regression.

- ✓ May fit efficiently and reliably, either in closed form or with convex optimization.
- * The model capacity is limited to linear functions.

To extend linear models to represent nonlinear functions of x, we can apply the linear model not to x itself but to a transformed input $\phi(x)$, where ϕ is a nonlinear transformation.

The question is then how to choose the mapping ϕ .

- 1. One option is to use a very generic ϕ , such as the infinite-dimensional ϕ that is implicitly used by kernel machines based on the RBF kernel.
 - Generalization to the test set often remains poor
 - Do not encode enough prior information to solve advanced problems
- 2. To manually engineer ϕ
 - **×** Domain specific
 - With little transfer between domains.
- 3. To learn ϕ (the strategy of deep learning)

$$y = f(\boldsymbol{x}; \boldsymbol{\theta}, \boldsymbol{w}) = \phi(\boldsymbol{x}; \boldsymbol{\theta})^{\mathsf{T}} \boldsymbol{w}$$

Parameters:

- ➤ Gives up on the convexity of the training problem
- ✓ The human designer only needs to find the right general function family
- \Box θ is used to learn ϕ from a broad class of functions,
- \square w maps from $\phi(x)$ to the desired output.

Example: Learning XOR

The XOR function provides the target function $y = f^*(x)$ that we want to learn.

Our model provides a function $y = f(x;\theta)$ and our learning algorithm will adapt the parameters θ to make f as similar as possible to f^* .

- ☐ No concerns about statistical generalization.
- \square Perform correctly on $X = \{[0,0]^T, [0,1]^T, [1,0]^T, \text{ and } [1,1]^T\}.$
- ☐ The only challenge is to fit the training set.

Example: Learning XOR

Solution 1: Regression (mean squared error loss function)

$$J(\boldsymbol{\theta}) = \frac{1}{4} \sum_{\boldsymbol{x} \in \mathbb{X}} (f^*(\boldsymbol{x}) - f(\boldsymbol{x}; \boldsymbol{\theta}))^2$$

The proposed linear model for f is:

$$f(\boldsymbol{x}; \boldsymbol{w}, b) = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{w} + b$$

Using normal equations we obtain w = 0 and b = 0.5.

Example: Learning XOR

Solution 2: A feedforward network with one hidden layer

The network contains two functions chained together:

$$h = f^{(1)}(x; W, c)$$
 and $y = f^{(2)}(h; w, b)$, with the complete model being $f(x; W, c, w, b) = f^{(2)}(f^{(1)}(x))$.

For example: an affine transformation controlled by learned parameters, followed by a fixed, nonlinear function (activation function)

 x_1

$$h = g(\boldsymbol{W}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{c})$$

 h_2

 x_2

Example: Learning XOR

Solution 2: A feedforward network with one hidden layer

 $h = g(\mathbf{W}^{\mathrm{T}}\mathbf{x} + \mathbf{c})$ g is the activation function (the default recommendation is to use the *rectified linear unit* or $\mathrm{ReLU}: g(z) = \max\{0, z\}$)

$$\rightarrow f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{c}\} + b$$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} b = 0$$

Example: Learning XOR

Solution 2: A feedforward network with one hidden layer

$$f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{c}\} + b$$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} b = 0$$

Assume *X* is the vector of all possible inputs

Assume
$$X$$
 is the vector of all possible inputs
$$X = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \longrightarrow XW = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix} \stackrel{+c}{\longrightarrow} \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$\xrightarrow{\text{all samples along a lie along a lie along with lime with lime with slope 1.}}$$

Example: Learning XOR

Solution 2: A feedforward network with one hidden layer

$$f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\mathsf{T}} \max\{0, \boldsymbol{W}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{c}\} + b$$

$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad b = 0$$

Assume X is the vector of all possible inputs

Example: Learning XOR

Summary:

- ☐ Selecting alternative solution resulted in zero error
- ☐ In real world application there are many parameters. It is not easy to guess.
- ☐ Gradient descent optimization methods can estimate parameters with little errors