Numerical Methods and Optimization

ENSIA — Spring 2024

Tutorial 4

 $3/3/2024 - 3^{rd}$ Year

- Iterative methods for solving systems of linear equations -

Exercise 1: Iterative methods

Use the given matrices to answer the following questions:

$$A = \begin{pmatrix} 2 & 1 & \frac{1}{2} & 1\\ 1 & 1 & 0 & \frac{1}{2}\\ \frac{1}{2} & 0 & 1 & 1\\ 1 & \frac{1}{2} & 1 & 2 \end{pmatrix} \qquad M = \begin{pmatrix} 2 & 1 & 0 & 0\\ 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\\ 0 & 0 & 1 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}$$

(1) Method 1: Splitting

- (a) Use the splitting A = M N to determine the matrix G and the vector c that allow for the calculation of the solution of Ax = b through the iterative process $x^{(k+1)} = Gx^{(k)} + c$.
- (b) Calculate: $\left\|G\right\|_1, \left\|G\right\|_2, \left\|G\right\|_{\infty}$ and $\rho(G).$ Does the method converge?
- (c) Given $x^{(0)} = (1, -1, 0, 1)^t$. Calculate $x^{(2)}$.

(2) Convergence Speed and Stopping Test:

If the Gauss-Seidel method is used to solve the system Ax = b, we obtain an iteration matrix G_{GS} with a spectral radius of $\frac{5}{8}$. The following table provides the iterations performed by the two considered iterative methods.

k	0	1	2	3	4	5	 10	 Exacte
	0	0.5000	0.8125	1.0078	1.1299	1.2062	1.3212	1.3333
	0	-0.5000	-0.8125	-1.0078	-1.1299	-1.2062	-1.3212	-1.3333
$\mathbf{x}^{(k)}$	0	-0.2500	-0.4063	-0.5039	-0.5649	-0.6031	-0.6606	-0.6667
	0	0.	0.	0.	0.	0.	0.	0.
	0	1.	1.	1.2500	1.2500	1.3125	1.3320	1.3333
	0	-1.	-1.	-1.2500	-1.2500	-1.3125	-1.3320	-1.3333
$\mathbf{x}^{(k)}$	0	0.	-0.5000	-0.5000	-0.6250	-0.6250	-0.6660	-0.6667
	0	0.	0.	0.	0.	0.	0.	0.

- (a) Associate each calculation with an iterative method.
- (b) Determine if convergence is achieved in each of the following cases:

- (i) $||b Ax^{(k)}|| \le \epsilon$, GS method, k = 5, Norm 2, $\epsilon = 10^{-5}$.
- (ii) $\frac{\left\|x^{(k)}-x^{(k-1)}\right\|}{\left\|x^{k}\right\|} \leq \epsilon, \text{ Method 1, } k=5, \text{ Norm } \infty, \, \epsilon=10^{-1}.$
- (iii) $||x^{(k)} x^*|| \le \epsilon$, GS method, k = 4, Norm 1, $\epsilon = 10^{-3}$.
- (3) Perform 2 iterations with Jacobi and Gauss-Seidel such that $x^0 = (0, 0, 0, 0)^t$. Estimate the error committed for each method using $\|.\|_1$.

Exercise 2: Sufficient conditions for the convergence of J and GS

We consider the matrix
$$A = \begin{pmatrix} 1 & 0 & \beta \\ \alpha & 1 & \beta \\ -\beta & \beta & 1 \end{pmatrix}$$

- (1) Determine the domain $D_1 = \{(\alpha, \beta) \in \mathbb{R}^2 \mid A \text{ is Strictly Diagonally Dominant SDD}\}$. What can you conclude concerning the convergence of the Jacobi and Gauss-Seidel methods associated with the system Ax = b?
- (2) Determine the domain D_2 (resp. D_3) which gives the set of pairs $(\alpha, \beta) \in \mathbb{R}^2$ for which the Jacobi method (resp. Gauss-Seidel) converges. Compare D_1 and D_2 (resp. D_3).