A Bayesian-motivated test for linear model in high-dimensional setting

Rui Wang 1 and Xingzhong $Xu^{*1,2}$

Wednesday 9th January, 2019

Abstract

Using the idea of Bayesian factor, a new test for linear model in high-dimensional setting is proposed.

Our theory is also useful in.

1 Introduction

Consider linear regression model of the form

$$\mathbf{y} = \mathbf{X}_a \boldsymbol{\beta}_a + \mathbf{X}_b \boldsymbol{\beta}_b + \boldsymbol{\varepsilon},\tag{1}$$

where $\mathbf{y} \in \mathbb{R}^n$ is the response, \mathbf{X}_a , \mathbf{X}_b are $n \times q$ and $n \times p$ design matrices, respectively, $\boldsymbol{\beta}_a \in \mathbb{R}^q$, $\boldsymbol{\beta}_b \in \mathbb{R}^p$ are unknown regression coefficients, and $\boldsymbol{\varepsilon} = (\epsilon_1, \dots, \epsilon_n)^{\top}$ are the iid errors with mean 0 and covariance $\sigma^2 = \phi^{-1}$. Here we break the predictors into two parts \mathbf{X}_a and \mathbf{X}_b such that \mathbf{X}_a contains the predictors that are known to have effect on the response, and we would like to test if \mathbf{X}_b contains any useful predictors. That is, we are interested in testing the hypotheses

$$\mathcal{H}_0: \boldsymbol{\beta}_b = 0, \quad \text{v.s.} \quad \mathcal{H}_1: \boldsymbol{\beta}_b \neq 0.$$
 (2)

The conventional test for hypotheses (2) is the F-test which is also the likelihood ratio test under normal errors. However, the F-test is not well defined in high dimensional setting. In fact, if ε is

 $Email\ address:\ xuxz@bit.edu.cn$

 $^{^{1}}$ School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081,China

² Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China

^{*}Corresponding author

normal distributed and Rank $[\mathbf{X}_a; \mathbf{X}_b] = n$, then the likelihood is unbounded under the alternative hypothesis. This calls for new test methodologies in high-dimensional setting.

Two different high-dimensional settings have been extensively considered in the literature. One is the small p, large q setting. An important example of this setting is testing individual coefficients of a high-dimensional regression. See Buhlmann (2013), Zhang and Zhang (2014) and Lan et al. (2016b) for testing procedures in this setting. In this paper, however, we focus on the other setting, namely the large p, small q setting. In this case, there are just a few covariates, namely \mathbf{X}_a , are known to have effect on the response, while there remain a large number of covariates, namely \mathbf{X}_b , to be tested. In practice, which covariates belong to the part \mathbf{X}_a is determined apriori. If no prior knowledge is available, \mathbf{X}_a can be $\mathbf{1}_n$.

Many test procedures have been proposed in the large p, small q setting. Based on an empirical Bayes model, Goeman et al. (2006) and Goeman et al. (2011) proposed a score test statistic as well as a method to determine the critical value of their test statistic. This score test was further investigated by Lan et al. (2014) and Lan et al. (2016a). Based on U-statistics, Zhong and Chen (2011) proposed a test for the case where $\mathbf{X}_a = \mathbf{1}_n$. Later, a generalization of this test to the general design matrix \mathbf{X}_a is proposed by Wang and Cui (2015). To accommodate outlying observations and heavy-tailed distributions, Feng et al. (2013) proposed a rank-based test for the entire coefficients. Xu (2016) modified Feng et al. (2013)'s test and proposed a scalar invariant rank-based test. Apart from the afore mentioned tests, there is another line of research utilizing desparsified Lasso estimator; see Xianyang Zhang (2017) and the references therein.

Except for the test in Goeman et al. (2006), most existing high dimensional tests adopted the random design assumption, that is, the rows of \mathbf{X}_b are considered as being generated from a super population. As noted by Lei et al. (2018), assuming a fixed design or a random design could lead to qualitatively different inferential results and the former is preferable from a theoretical point of view. Hence in this paper, we focus on the fixed design setting. Of course, our results are still valid for random design from a conditional inference perspective.

In Bayesian literature, many Bayesian tests have been proposed for hypothesis (2) in low-dimensional setting; see Javier Girón et al. (2006); Goddard and Johnson (2016); Zhou and Guan (2018) and the references therein. Although most existing Bayesian tests are not applicable in large p, small q setting, Bayes factor based tests are in principle suitable for high-dimensional testing problems for at least two reasons. First, the Bayes factors corresponding to proper priors are always well defined, even if the likelihood is unbounded. Second, under mild conditions, tests based on Bayes factors are admissible (See, e.g., E. L. Lehmann (2005), Theorem (6.7.2)). In fact, the test procedure in Goeman et al. (2006) is motivated by Bayesian methods but is treated as a frequentist significance test.

In this paper, we propose a new test statistic in large p, small q setting which is the limit of Bayes factors under normal linear model. We prove that, under mild conditions, the distribution of the proposed test statistic can be accurately approximated using Lindeberg's replacement trick. And

the critical value is determined by this approximated distribution. Under normal error assumption, we also derive the asymptotic power function of the proposed test and the test in Goeman et al. (2006). A simulation is conducted to examine the performance of the proposed test.

The rest of the paper is organized as follows.

2 Methodology

Testing hypotheses (2) in large p, small q setting is a challenging problem. As Goeman et al. (2006) noticed, if $\beta_b \neq 0$ but $\mathbf{X}_b \beta_b = 0$, no test has any power. They also pointed out that their test has negligible power for many alternatives and consequently is not unbiased. For low-dimensional testing problems, a biased test is often regarded as problematic. However, the following proposition shows that under normal assumption, there is no nontrivial unbiased test in large p, small q setting.

Proposition 1. Suppose (1) holds with $\varepsilon \sim \mathcal{N}_n(0, \phi^{-1}\mathbf{I}_n)$. Suppose \mathbf{X}_a is an $n \times q$ matrix with full column rank, q < n and $\mathrm{Rank}([\mathbf{X}_a; \mathbf{X}_b]) = n$. Let $\varphi(\mathbf{y})$ be a test function of level α , that is, a Borel measurable function satisfying $0 \le \phi(\mathbf{y}) \le 1$ and $\mathrm{E}[\phi(\mathbf{y})] \le \alpha$ under the null hypothesis. If $\phi(\mathbf{y})$ is unbiased, that is $\mathrm{E}[\phi(\mathbf{y})] \ge \alpha$ under the alternative hypothesis, then $\varphi(\mathbf{y}) \equiv \alpha$, a.s. λ , where $\lambda(\cdot)$ is the Lebesgue measure on \mathbb{R}^n .

The above proposition implies that it is impossible to find a test with reasonable power for all alternatives. This motivates us to adopt Bayesian methods to find a test with good average power behavior. Within the Bayesian framework, Bayes factor is commonly used for comparing two models. In our problem, suppose $\varepsilon \sim \mathcal{N}_n(0, \phi^{-1}\mathbf{I}_n)$, the Bayes factor for hypotheses (2) is

$$B_{10} = \frac{\int d\mathcal{N}_n(\mathbf{X}_a\boldsymbol{\beta}_a + \mathbf{X}_b\boldsymbol{\beta}_b, \phi^{-1}\mathbf{I}_n)(\mathbf{y})\pi_1(\boldsymbol{\beta}_b, \boldsymbol{\beta}_a, \phi) \,\mathrm{d}\boldsymbol{\beta}_b \mathrm{d}\boldsymbol{\beta}_a \mathrm{d}\phi}{\int d\mathcal{N}_n(\mathbf{X}_a\boldsymbol{\beta}_a, \phi^{-1}\mathbf{I}_n)(\mathbf{y})\pi_0(\boldsymbol{\beta}_a, \phi) \,\mathrm{d}\boldsymbol{\beta}_a \mathrm{d}\phi},$$

where $d\mathcal{N}_n(\mu, \mathbf{\Sigma})(\mathbf{y})$ is the density function of a $\mathcal{N}_n(\mu, \mathbf{\Sigma})$ random vector with respect to the Lebesgue measure on \mathbb{R}^n , $\pi_0(\boldsymbol{\beta}_a, \phi)$ and $\pi_1(\boldsymbol{\beta}_b, \boldsymbol{\beta}_a, \phi)$ are the prior densities under the null and alternative hypotheses, respectively. If B_{10} is large, the alternative hypothesis is preferred. The behavior of a Bayes factor largely depends on the choice of priors. In Bayesian literature, many priors have been considered for testing the coefficients of linear model. Popular priors include g-priors (Liang et al., 2008) and intrinsic priors (Casella and Moreno, 2006). Unfortunately, these priors are not well defined in large p, small q setting.

Note that under the null hypothesis \mathcal{H}_0 , the model is low-dimensional. This allows us to impose the reference prior $\pi_0(\boldsymbol{\beta}_a, \phi) = c/\phi$, where c is a constant. Under \mathcal{H}_1 , write $\pi_1(\boldsymbol{\beta}_b, \boldsymbol{\beta}_a, \phi) = \pi_1(\boldsymbol{\beta}_b|\boldsymbol{\beta}_a, \phi)\pi_1(\boldsymbol{\beta}_a, \phi)$. For parameters $\boldsymbol{\beta}_a$ and ϕ , we consider the same prior as in \mathcal{H}_0 , that is $\pi_1(\boldsymbol{\beta}_a, \phi) = \pi_0(\boldsymbol{\beta}_a, \phi)$. For parameter $\boldsymbol{\beta}_b$, however, imposing the improper reference prior would not produce valid marginal density of \mathbf{y} . To make the marginal density of \mathbf{y} well defined, we consider the simple normal prior $p_1(\boldsymbol{\beta}_b|\boldsymbol{\beta}_a, \phi) = d\mathcal{N}_p(0, \kappa^{-1}\phi^{-1}\mathbf{I}_p)(\boldsymbol{\beta}_b)$, where $\kappa > 0$ is a hyperparameter.

That is, we put the following priors,

$$\pi_0(\boldsymbol{\beta}_a, \phi) = \frac{c}{\phi}, \quad \pi_1(\boldsymbol{\beta}_b, \boldsymbol{\beta}_a, \phi) = \frac{c}{\phi} d\mathcal{N}_p \left(0, \frac{1}{\kappa \phi} \mathbf{I}_p \right) (\boldsymbol{\beta}_b). \tag{3}$$

In what follows, we assume Rank(\mathbf{X}_a) = q and Rank([\mathbf{X}_a ; \mathbf{X}_b]) = n. Let $\mathbf{P}_a = \mathbf{X}_a(\mathbf{X}_a^{\top}\mathbf{X}_a)^{-1}\mathbf{X}^{\top}$ be the projection matrix onto the column space of \mathbf{X}_a . Let $B_{10,\kappa}$ be the Bayes factor corresponding to the priors (3). It is straightforward to show that

$$2\log(B_{10,\kappa}) = p\log\kappa - \log|\mathbf{X}_b^{\top}(\mathbf{I}_n - \mathbf{P}_a)\mathbf{X}_b + \kappa\mathbf{I}_p|$$
$$-(n-q)\log\left(1 - \frac{\mathbf{y}^{\top}(\mathbf{I}_n - \mathbf{P}_a)\mathbf{X}_b\left(\mathbf{X}_b^{\top}(\mathbf{I} - \mathbf{P}_a)\mathbf{X}_b + \kappa\mathbf{I}_p\right)^{-1}\mathbf{X}_b^{\top}(\mathbf{I}_n - \mathbf{P}_a)\mathbf{y}}{\mathbf{y}^{\top}(\mathbf{I}_n - \mathbf{P}_a)\mathbf{y}}\right).$$

Denote by $\mathbf{I}_n - \mathbf{P}_a = \tilde{\mathbf{U}}_a \tilde{\mathbf{U}}_a^{\top}$ the rank decomposition of $\mathbf{I}_n - \mathbf{P}_a$, where $\tilde{\mathbf{U}}_a$ is a $n \times (n-q)$ column orthogonal matrix. Let $\mathbf{X}_b^* = \tilde{\mathbf{U}}_a^{\top} \mathbf{X}_b$, $\mathbf{y}^* = \tilde{\mathbf{U}}_a^{\top} \mathbf{y}$. Let γ_i be the *i*th largest eigenvalue of $\mathbf{X}_b^* \mathbf{X}_b^{*\top}$, $i = 1, \ldots, n-q$. Denote by $\mathbf{X}_b^* = \mathbf{U}_b^* \mathbf{D}_b^* \mathbf{V}_b^{*\top}$ the singular value decomposition of \mathbf{X}_b^* , where \mathbf{U}_b^* , \mathbf{V}_b^* are $(n-q) \times (n-q)$ and $p \times (n-q)$ column orthogonal matrices, respectively, and $\mathbf{D}_b^* = \mathrm{diag}(\sqrt{\gamma_1}, \ldots, \sqrt{\gamma_{n-q}})$. Then we have

$$2\log(B_{10,\kappa}) = (n-q)\log\kappa - \sum_{i=1}^{n-q}\log(\gamma_i + \kappa) - (n-q)\log\left(1 - \frac{\mathbf{y}^{*\top}\mathbf{U}_b^*\mathbf{D}_b^*\left(\mathbf{D}_b^{*2} + \kappa\mathbf{I}_{n-q}\right)^{-1}\mathbf{D}_b^*\mathbf{U}_b^{*\top}\mathbf{y}^*}{\mathbf{y}^{*\top}\mathbf{y}^*}\right).$$

The main part of the above expression is

$$T_{\kappa} = \frac{\mathbf{y}^{*\top} \mathbf{U}_b^* \mathbf{D}_b^* \left(\mathbf{D}_b^{*2} + \kappa \mathbf{I}_{n-q} \right)^{-1} \mathbf{D}_b^* \mathbf{U}_b^{*\top} \mathbf{y}^*}{\mathbf{y}^{*\top} \mathbf{y}^*}.$$

A large value of T_{κ} supports the alternative hypothesis. Hence T_{κ} can be regarded as a frequentist test statistic. The remaining problem is to choose an appropriate hyperparameter κ . As κ increases, the prior magnitude of β_b decreases. As Goeman et al. (2006) noted, the priors should place most probability on the alternatives which are perceived as more interesting to detect. Their stretagy is to let the prior magnitude tend to zero to obtain a test with good power behavior under local alternatives, that is, $\|\beta_b\|$ is small. In fact, if we let κ tends to infinity, the limit

$$\lim_{\kappa \to \infty} \kappa T_{\kappa} = \frac{\mathbf{y}^{*\top} \mathbf{X}_b^* \mathbf{X}_b^{*\top} \mathbf{y}^*}{\mathbf{y}^{*\top} \mathbf{y}^*}$$

is exactly the test statistic of Goeman et al. (2006).

As implied by Proposition 1, however, testing hypotheses (2) in large p, small q setting is a difficult problem and there is no nontrivial unbiased test. Hence it may be too ambitious to consider local power behavior provided the test is biased. Thus, contrary to the strategy of Goeman et al. (2006), we let κ tend to 0 to obtain a test with good power behavior for large $\|\beta_b\|$. While the statistic T_{κ} itself degenerates to 1 as $\kappa \to 0$, the right derivative of T_{κ} at $\kappa = 0$ is well defined. Thus, we proposed the following test statistic

$$T = \left. \frac{\mathrm{d}T_{n,\kappa}}{\mathrm{d}\kappa} \right|_{\kappa=0} = -\frac{\mathbf{y}^{*\top} (\mathbf{X}_b^* \mathbf{X}_b^{*\top})^{-1} \mathbf{y}^*}{\mathbf{y}^{*\top} \mathbf{y}^*}.$$

The null hypothesis will be rejected if T is large.

To formulate a valid frequentist test, we need to determine the critical value of T. If ε were indeed normally distributed, then under the null hypothesis, $T \sim -(\sum_{i=1}^{n-q} \gamma_i^{-1} z_i^2)/(\sum_{i=1}^{n-q} z_i^2)$, where z_1, \ldots, z_{n-q} are iid $\mathcal{N}(0,1)$ random variables. In this case, the exact critical value can be easily obtained. However, normal distribution rarely appears in practice. We would like to derive an asymptotic valid critical value for T_n for general distributions of ε .

Under the null hypothesis,

$$T = -\frac{(\sqrt{\phi}\varepsilon)^{\top} \tilde{\mathbf{U}}_a(\mathbf{X}_b^* \mathbf{X}_b^{*\top})^{-1} \tilde{\mathbf{U}}_a^{\top}(\sqrt{\phi}\varepsilon)}{(\sqrt{\phi}\varepsilon)^{\top} \tilde{\mathbf{U}}_a^{\top} \tilde{\mathbf{U}}_a^{\top}(\sqrt{\phi}\varepsilon)}.$$

The numerator and the denominator of the above expression are both quadratic forms of iid random variables with mean 0 and variance 1. Hence the key step towards the goal is to approximate the distribution of the quadratic form of iid standardized random variables. The asymptotics of quadratic form have been extensively studied; see, e.g., Jiang (1996); Bentkus and Gotze (1996); Götze and Tikhomirov (2002); Dicker and Erdogdu (2017); Bai et al. (2018). Most existing work use normal distribution to approximate the distribution of the quadratic form. However, normal distribution is just one of the possible limit distributions of quadratic form. See Sevast'yanov (1961) for a full characterization of the limit distributions of quadratic form of normal random variables. Our approximation stretegy is to replace the random variables in quadratic form by suitable normal random variables. The error bound of this approximation will be derived by Lindeberg's replacement trick (see, e.g., Pollard (1984), Section III.4).

Let $\mathscr{C}^4(\mathbb{R})$ denote the class of all bounded real functions on \mathbb{R} having bounded, continuous kth derivatives, $1 \leq k \leq 4$. It is known that if $\mathrm{E} f(Z_n) \to \mathrm{E} f(Z)$ for every $f \in \mathscr{C}^4(\mathbb{R})$ then $Z_n \leadsto Z$; see, e.g., Pollard (1984), Theorem 12 of Chapter III.

We have the following approximation theorem.

Theorem 1. Let $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)^{\top}$, where ξ_i 's are iid random variable with $E \xi_1 = 0$, $Var(\xi_1) = 1$. Furthermore, suppose the distribution of ξ_1 is symmetric about 0 and has finite eighth moments. Let \mathbf{A} be an $n \times n$ symmetric matrix with elements $a_{i,j}$. Define

$$S = \frac{\boldsymbol{\xi}^{\top} \mathbf{A} \boldsymbol{\xi} - \operatorname{tr}(\mathbf{A})}{\sqrt{2 \operatorname{tr}(\mathbf{A}^2) + (\operatorname{E}(\xi_1^4) - 3) \sum_{i=1}^n a_{i,i}^2}}.$$

Let z_1, \ldots, z_n be iid random variables with distribution $\mathcal{N}(0,1)$ and $\check{z}_1, \ldots, \check{z}_n$ be iid random variables with distribution $\mathcal{N}(0,1)$ which are independent of ξ_1, \ldots, ξ_n . Let τ be a real number. Define

$$S_{\tau}^* = \frac{\tau \sum_{i=1}^n a_{i,i} \check{z}_i + 2 \sum_{1 \le i < j \le n} a_{i,j} z_i z_j}{\sqrt{2 \operatorname{tr}(\mathbf{A}^2) + (\mathbf{E}(\xi_1^4) - 3) \sum_{i=1}^n a_{i,i}^2}}.$$

Then for every $f \in \mathscr{C}^4(\mathbb{R})$,

$$\begin{aligned}
&|\mathbf{E}f(S) - \mathbf{E}f(S_{\tau}^{*})| \\
&\leq \frac{|\mathbf{E}(\xi_{1}^{4}) - 1 - \tau^{2}|}{2} ||f^{(2)}||_{\infty} \frac{\sum_{i=1}^{n} a_{i,i}^{2}}{2 \operatorname{tr}(\mathbf{A}^{2}) + (\mathbf{E}(\xi_{1}^{4}) - 3) \sum_{i=1}^{n} a_{i,i}^{2}} \\
&+ \frac{\max\left(\left|\mathbf{E}(\xi_{1}^{2} - 1)^{3}\right|, 12(\mathbf{E}(\xi_{1}^{4}) - 1)\right)}{6} ||f^{(3)}||_{\infty} \frac{\sum_{l=1}^{n} \left(\left|a_{l,l}\right| \sum_{i=1}^{n} a_{i,l}^{2}\right)}{\left(2 \operatorname{tr}(\mathbf{A}^{2}) + (\mathbf{E}(\xi_{1}^{4}) - 3) \sum_{i=1}^{n} a_{i,i}^{2}\right)^{3/2}} \\
&+ \frac{16 \operatorname{E}(\xi_{1}^{8}) + 80 \operatorname{E}(\xi_{1}^{4}) + 3\tau^{4} + 96}{24} ||f^{(4)}||_{\infty} \frac{\sum_{l=1}^{n} \left(\sum_{i=1}^{n} a_{i,l}^{2}\right)^{2}}{\left(2 \operatorname{tr}(\mathbf{A}^{2}) + (\mathbf{E}(\xi_{1}^{4}) - 3) \sum_{i=1}^{n} a_{i,i}^{2}\right)^{2}}.
\end{aligned} \tag{4}$$

Remark 1. If $\tau^2 = E(\xi_1^4) - 1$, the first term of the right hand side of (4) disappear. In practice, however, the quantity $E(\xi_1^4)$ is often unknown and τ^2 should be chosen as an estimator of $E(\xi_1^4) - 1$.

Remark 2. As noted in Chatterjee (2008), Section 3.1, an almost necessary condition for the asymptotic normality of S is

$$\frac{\operatorname{tr}(\mathbf{A}^4)}{\left(2\operatorname{tr}(\mathbf{A}^2) + (\operatorname{E}(\xi_1^4) - 3)\sum_{i=1}^n a_{i,i}^2\right)^2} \to 0.$$
 (5)

On the other hand, it can be seen that the right hand side of (4) converges to 0 provided $\tau^2 = E(\xi_1^4) - 1$ and

$$\frac{\sum_{l=1}^{n} \left(\sum_{i=1}^{n} a_{i,l}^{2}\right)^{2}}{\left(2\operatorname{tr}(\mathbf{A}^{2}) + (\operatorname{E}(\xi_{1}^{4}) - 3)\sum_{i=1}^{n} a_{i,i}^{2}\right)^{2}} \to 0.$$
(6)

It can be seen that (6) is much weaker than (5). For example, if $a_{i,j} = 1$, i = 1, ..., n, j = 1, ..., n and $E(\xi_1^4) = 3$, then the condition (6) holds but the condition (5) does not hold.

We now apply Theorem 1 to approximate the null distribution of the proposed statistic T.

For $n \times n$ matrix **A** and real number τ , let $F(x; \mathbf{A}, \tau)$ be the cumulative distribution function of $\tau \sum_{i=1}^{n} a_{i,i} \check{z}_i + 2 \sum_{1 \leq i < j \leq n} a_{i,j} z_i z_j$, where $z_1, \ldots, z_n, \check{z}_1, \ldots, \check{z}_n$ are iid $\mathcal{N}(0, 1)$ random variables.

Under the null hypothesis, Theorem 1 implies that

$$\begin{aligned} & = \Pr\left((\sqrt{\phi} \boldsymbol{\varepsilon})^{\top} \left(-\tilde{\mathbf{U}}_{a} (\mathbf{X}_{b}^{*} \mathbf{X}_{b}^{*\top})^{-1} \tilde{\mathbf{U}}_{a}^{\top} - x \tilde{\mathbf{U}}_{a} \tilde{\mathbf{U}}_{a}^{\top} \right) (\sqrt{\phi} \boldsymbol{\varepsilon}) > 0 \right) \\ & = \Pr\left(\frac{(\sqrt{\phi} \boldsymbol{\varepsilon})^{\top} \left(-\tilde{\mathbf{U}}_{a} (\mathbf{X}_{b}^{*} \mathbf{X}_{b}^{*\top})^{-1} \tilde{\mathbf{U}}_{a}^{\top} - x \tilde{\mathbf{U}}_{a} \tilde{\mathbf{U}}_{a}^{\top} \right) (\sqrt{\phi} \boldsymbol{\varepsilon}) + \left(\operatorname{tr} \left((\mathbf{X}_{b}^{*} \mathbf{X}_{b}^{*\top})^{-1} \right) + (n - q) x \right)}{\sqrt{2 \operatorname{tr} \left(\tilde{\mathbf{U}}_{a} (\mathbf{X}_{b}^{*} \mathbf{X}_{b}^{*\top})^{-1} \tilde{\mathbf{U}}_{a}^{\top} + x \tilde{\mathbf{U}}_{a} \tilde{\mathbf{U}}_{a}^{\top} \right)^{2} + \left(\operatorname{E}(\xi_{a}^{4}) - 3 \right) \operatorname{tr} \left(\tilde{\mathbf{U}}_{a} (\mathbf{X}_{b}^{*} \mathbf{X}_{b}^{*\top})^{-1} \tilde{\mathbf{U}}_{a}^{\top} + x \tilde{\mathbf{U}}_{a} \tilde{\mathbf{U}}_{a}^{\top} \right)^{2}} \right)} \\ & > \frac{\operatorname{tr} \left((\mathbf{X}_{b}^{*} \mathbf{X}_{b}^{*\top})^{-1} \right) + (n - q) x}{\sqrt{2 \operatorname{tr} \left(\tilde{\mathbf{U}}_{a} (\mathbf{X}_{b}^{*} \mathbf{X}_{b}^{*\top})^{-1} \tilde{\mathbf{U}}_{a}^{\top} + x \tilde{\mathbf{U}}_{a} \tilde{\mathbf{U}}_{a}^{\top} \right)^{2} + \left(\operatorname{E}(\xi_{a}^{4}) - 3 \right) \operatorname{tr} \left(\tilde{\mathbf{U}}_{a} (\mathbf{X}_{b}^{*} \mathbf{X}_{b}^{*\top})^{-1} \tilde{\mathbf{U}}_{a}^{\top} + x \tilde{\mathbf{U}}_{a} \tilde{\mathbf{U}}_{a}^{\top} \right)^{2}}} \right)} \\ \approx 1 - F \left(\operatorname{tr} \left((\mathbf{X}_{b}^{*} \mathbf{X}_{b}^{*\top})^{-1} \right) + (n - q) x; -\tilde{\mathbf{U}}_{a} (\mathbf{X}_{b}^{*} \mathbf{X}_{b}^{*\top})^{-1} \tilde{\mathbf{U}}_{a}^{\top} - x \tilde{\mathbf{U}}_{a} \tilde{\mathbf{U}}_{a}^{\top}, \sqrt{\phi^{2} \operatorname{E}(\epsilon_{1}^{4}) - 1}} \right). \end{aligned}$$

Ideally, we should find a consistent estimator $\hat{\tau}$ of $\sqrt{\phi^2 \operatorname{E}(\epsilon_1^4) - 1}$ and solve x from the equation

$$F\left(\operatorname{tr}(\mathbf{X}_b^*\mathbf{X}_b^{*\top})^{-1} + (n-q)x; -\tilde{\mathbf{U}}_a(\mathbf{X}_b^*\mathbf{X}_b^{*\top})^{-1}\tilde{\mathbf{U}}_a^{\top} - x\tilde{\mathbf{U}}_a\tilde{\mathbf{U}}_a^{\top}, \hat{\tau}\right) = 1 - \alpha.$$

However, solving this equation is not an easy task. For ease of implementation, we propose a two step iteration algorithm. We set the start point as

$$x^{(0)} = -\frac{\operatorname{tr}(\mathbf{X}_b^* \mathbf{X}_b^{*\top})^{-1}}{n - q},$$

which is chosen such that $\operatorname{tr}(-\tilde{\mathbf{U}}_a(\mathbf{X}_b^*\mathbf{X}_b^{*\top})^{-1}\tilde{\mathbf{U}}_a^\top - x^{(0)}\tilde{\mathbf{U}}_a\tilde{\mathbf{U}}_a^\top) = 0$. For i = 1, 2, let

$$x^{(i)} = \frac{F^{-1}\left(1 - \alpha; -\tilde{\mathbf{U}}_a(\mathbf{X}_b^*\mathbf{X}_b^{*\top})^{-1}\tilde{\mathbf{U}}_a^\top - x^{(i-1)}\tilde{\mathbf{U}}_a\tilde{\mathbf{U}}_a^\top, \hat{\tau}\right) - \operatorname{tr}(\mathbf{X}_b^*\mathbf{X}_b^{*\top})^{-1}}{n - q}.$$

As noted in Remark 1, τ^2 should be a consistent estimator of $\phi^2 E(\epsilon_1^4) - 1$ under the null hypothesis.

Theorem 2. Suppose the model (1) holds. Suppose the distribution of ϵ_1 is symmetric about 0 and has finite eighth moments. Suppose $E \epsilon_1^4 > \phi^{-2}$. Let

$$\mathbf{A} = -\tilde{\mathbf{U}}_a (\mathbf{X}_b^* \mathbf{X}_b^{*\top})^{-1} \tilde{\mathbf{U}}_a^{\top} - x^{(0)} \tilde{\mathbf{U}}_a \tilde{\mathbf{U}}_a^{\top} = -\tilde{\mathbf{U}}_a (\mathbf{X}_b^* \mathbf{X}_b^{*\top})^{-1} \tilde{\mathbf{U}}_a^{\top} + \frac{\operatorname{tr} \left((\mathbf{X}_b^* \mathbf{X}_b^{*\top})^{-1} \right)}{n - q} \tilde{\mathbf{U}}_a \tilde{\mathbf{U}}_a^{\top}.$$

Suppose as $n \to \infty$,

$$\frac{\max_{i,j} a_{i,j}^2}{\operatorname{tr}(\mathbf{A})^2} \to 0. \tag{7}$$

Let $\hat{\tau}^2$ be an consistent estimator of $\phi^2 E(\epsilon_1^4) - 1$ based on \mathbf{X} , \mathbf{y} . Then for i = 1, 2,

$$\Pr\left(T > x^{(i)}\right) \to \alpha.$$

A consistent estimator of $\sigma^{-4} \operatorname{E}(\epsilon_1^4) - 1$ has already appeared in Bai et al. (2018) based on the standardized residuals. Here we use a slightly different estimator which is based on the ordinary least squares residuals $\tilde{\epsilon} = (\tilde{\epsilon}_1, \dots, \tilde{\epsilon}_n)^{\top} = (\mathbf{I}_n - \mathbf{P}_a)\mathbf{y}$. From Bai et al. (2018), Theorem 2.1,

$$E\left(\tilde{\boldsymbol{\varepsilon}}^{\top} \left(\mathbf{I}_{n} - \mathbf{P}_{a}\right) \tilde{\boldsymbol{\varepsilon}}\right) = (n - q)\sigma^{2},$$

$$E\left(\sum_{i=1}^{n} \tilde{\epsilon}_{i}^{4}\right) = 3\sigma^{4} \operatorname{tr}(\mathbf{I}_{n} - \mathbf{P}_{a})^{\circ 2} + \left(E(\epsilon_{1}^{4}) - 3\sigma^{4}\right) \operatorname{tr}\left((\mathbf{I}_{n} - \mathbf{P}_{a})^{\circ 2}\right)^{2}.$$

Then a moment estimator of $\sigma^{-4} E(\epsilon_1^4) - 1$ is

$$\hat{\tau}^2 = \frac{\frac{(n-q)^2 \sum_{i=1}^n \tilde{\epsilon}_i^4}{\left(\tilde{\boldsymbol{\varepsilon}}^\top (\mathbf{I}_n - \mathbf{P}_a) \tilde{\boldsymbol{\varepsilon}}\right)^2} - 3 \operatorname{tr}(\mathbf{I}_n - \mathbf{P}_a)^{\circ 2}}{\operatorname{tr}\left((\mathbf{I}_n - \mathbf{P}_a)^{\circ 2}\right)^2} + 2.$$

Proposition 2. Suppose the conditions of Theorem 1 holds for $\boldsymbol{\xi} = \sqrt{\phi}\boldsymbol{\varepsilon}$. Suppose $q/n \to 0$. Then under the null hypothesis, $\hat{\tau}^2 \xrightarrow{P} \sigma^{-4} \mathrm{E}(\epsilon_1^4) - 1$.

We reject the null hypothesis if

$$T > \frac{F_{\hat{\tau}}^{-1}(1-\alpha) - \operatorname{tr}\left((\mathbf{X}_b^* \mathbf{X}_b^{*\top})^{-1}\right)}{n-q}.$$

This test procedure is asymptotically exact of size α under the conditions of Theorem 2 and Proposition 2.

3 Power analysis

In this section, we investigate the asymptotic power of the proposed test procedure as well as the test in Goeman et al. (2006). To make the expression of the asymptotic power functions tractable, we shall assume further conditions so that the test statistics are asymptotically normally distributed. Also, ε is assumed to be normally distributed so that we can can obtain the full power function rather than only local power function.

To derive the asymptotic power of the proposed test and the test in Goeman et al. (2006) simultaneously, we consider the general statistic $\mathbf{y}^{*\top}(\mathbf{X}_b^*\mathbf{X}_b^{*\top})^k\mathbf{y}^*/\mathbf{y}^{*\top}\mathbf{y}^*$. In fact, the proposed test statistic corresponds to k = -1 while the test statistic in Goeman et al. (2006) corresponds to k = 1. Note that for any $x \in \mathbb{R}$,

$$\Pr\left(\frac{\mathbf{y}^{*\top}(\mathbf{X}_b^*\mathbf{X}_b^{*\top})^k\mathbf{y}^*}{\mathbf{v}^{*\top}\mathbf{v}^*} \le x\right) = \Pr\left(\mathbf{y}^{*\top}\left((\mathbf{X}_b^*\mathbf{X}_b^{*\top})^k - x\mathbf{I}_{n-q}\right)\mathbf{y}^* \le 0\right).$$

Hence the asymptotic behavior of noncentral quadratic form will play a key role in our investigation. We have the following proposition. **Proposition 3.** Let $Z = (z_1, \ldots, z_n)^{\top}$, where z_i 's are iid $\mathcal{N}(0,1)$ random variables. Let \mathbf{A} be an $n \times n$ symmetric matrix with elements $a_{i,j}$. Let $\mathbf{b} = (b_1, \ldots, b_n)^{\top}$ be an n dimensional vector. If $\operatorname{tr}(\mathbf{A}^4)/\operatorname{tr}^2(\mathbf{A}^2) \to 0$, then

$$\frac{Z^{\top} \mathbf{A} Z + b^{\top} Z - \operatorname{tr}(\mathbf{A})}{\sqrt{2 \operatorname{tr}(\mathbf{A}^2) + \|\mathbf{b}\|^2}} \rightsquigarrow \mathcal{N}(0, 1).$$

Remark 3. Proposition 3 does not impose any condition on **b**. This allows us to give the full asymptotic power function of tests. As the cost of this flexibility, we have to make the normal assumption.

Now we investigate the asymptotic behavior of $\mathbf{y}^{*\top}(\mathbf{X}_b^*\mathbf{X}_b^{*\top})^k\mathbf{y}^*/\mathbf{y}^{*\top}\mathbf{y}^*$. Let $w_i = (\mathbf{V}_b^{*\top}\boldsymbol{\beta}_b)_i$ be the coordinate of β_b along the *i*th principal component direction of $\mathbf{X}_b^{*\top}\mathbf{X}_b^*$, $i=1,\ldots,n-q$. It turns out that many quantities involved can be conveniently represented as the expectations with respect to I, a random variable uniformly distributed on $\{1,\ldots,n-q\}$. For example, $\operatorname{tr}(\mathbf{X}_b^*\mathbf{X}_b^{*\top})^k/(n-q) = \mathrm{E}(\gamma_I^k)$.

Theorem 3. Suppose model (1) holds with $\varepsilon \sim \mathcal{N}_n(0, \phi^{-1}\mathbf{I}_n)$. Let $k \neq 0$ be a fixed number. Suppose as $n \to \infty$, $n - q \to \infty$ and

$$\frac{\max_{1 \le i \le n-q} \left(\gamma_i^k - \mathcal{E}(\gamma_I^k)\right)^2}{(n-q)\operatorname{Var}(\gamma_I^k)} \to 0.$$
(8)

Then for any $x \in \mathbb{R}$,

$$\Pr\left(\frac{\mathbf{y}^{*\top} \left(\mathbf{X}_{b}^{*} \mathbf{X}_{b}^{*\top}\right)^{k} \mathbf{y}^{*}}{\mathbf{y}^{*\top} \mathbf{y}^{*}} \leq \mathrm{E}(\gamma_{I}^{k}) + \sqrt{\frac{2 \operatorname{Var}\left(\gamma_{I}^{k}\right)}{n - q}} x\right)$$

$$= \Phi\left(\frac{\left(\mathrm{E}(\gamma_{I} w_{I}^{2}) + \phi^{-1}\right) \sqrt{2 \operatorname{Var}\left(\gamma_{I}^{k}\right)} x - \sqrt{n - q} \operatorname{Cov}\left(\gamma_{I}^{k}, \gamma_{I} w_{I}^{2}\right)}{\sqrt{2 \phi^{-2} \operatorname{Var}(\gamma_{I}^{k}) + 4\phi^{-1} \operatorname{E}\left[\left(\gamma_{I}^{k} - \mathrm{E}(\gamma_{I}^{k}) - \sqrt{\frac{2 \operatorname{Var}(\gamma_{I}^{k})}{n - q}} x\right)^{2} \gamma_{I} w_{I}^{2}\right]}\right) + o(1).$$

Under the conditions of Theorem 3, the proposed test should reject the null hypothesis when

$$\frac{\mathbf{y}^{*\top} \left(\mathbf{X}_b^* \mathbf{X}_b^{*\top}\right)^{-1} \mathbf{y}^*}{\mathbf{y}^{*\top} \mathbf{y}^*} \leq \mathrm{E}(\gamma_I^{-1}) + \sqrt{\frac{2 \operatorname{Var} \left(\gamma_I^{-1}\right)}{n-q}} \Phi^{-1}(\alpha),$$

and the asymptotic power function of the proposed test is

$$\Phi \left(\frac{\left(\mathrm{E}(\gamma_{I} w_{I}^{2}) + \phi^{-1} \right) \sqrt{2 \operatorname{Var} \left(\gamma_{I}^{-1} \right)} \Phi^{-1}(\alpha) + \sqrt{n - q} \operatorname{Cov} \left(-\gamma_{I}^{-1}, \gamma_{I} w_{I}^{2} \right)}{\sqrt{2 \phi^{-2} \operatorname{Var}(\gamma_{I}^{-1}) + 4 \phi^{-1} \operatorname{E} \left[\left(\gamma_{I}^{-1} - \mathrm{E}(\gamma_{I}^{-1}) - \sqrt{\frac{2 \operatorname{Var}(\gamma_{I}^{-1})}{n - q}} \Phi^{-1}(\alpha) \right)^{2} \gamma_{I} w_{I}^{2} \right]} \right). \tag{9}$$

On the other hand, the test in Goeman et al. (2006) should reject the null hypothesis when

$$\frac{\mathbf{y}^{*\top}\mathbf{X}_{b}^{*}\mathbf{X}_{b}^{*\top}\mathbf{y}^{*}}{\mathbf{y}^{*\top}\mathbf{y}^{*}} > \mathrm{E}(\gamma_{I}) + \sqrt{\frac{2 \operatorname{Var}(\gamma_{I})}{n-q}} \Phi^{-1}(1-\alpha),$$

and the asymptotic power function of their test is

$$\Phi\left(\frac{\left(\mathrm{E}(\gamma_{I}w_{I}^{2})+\phi^{-1}\right)\sqrt{2\,\mathrm{Var}\left(\gamma_{I}\right)}\Phi^{-1}(\alpha)+\sqrt{n-q}\,\mathrm{Cov}\left(\gamma_{I},\gamma_{I}w_{I}^{2}\right)}{\sqrt{2\phi^{-2}\,\mathrm{Var}(\gamma_{I})+4\phi^{-1}\,\mathrm{E}\left[\left(\gamma_{I}-\mathrm{E}(\gamma_{I})+\sqrt{\frac{2\,\mathrm{Var}(\gamma_{I})}{n-q}}\Phi^{-1}(\alpha)\right)^{2}\gamma_{I}w_{I}^{2}\right]}}\right).$$
(10)

It can be seen from (9) and (10) that the power of the proposed test mainly depends on $Cov(-\gamma_I^{-1}, \gamma_I w_I^2)$ while the power of the test in Goeman et al. (2006) mainly depends on $Cov(\gamma_I, \gamma_I w_I^2)$. Unfortunately, neither of these two quantities is positive definite no matter how strong the signal $E(w_I^2)$ is. This fact is not surprising in view of Proposition 1.

On the other hand, $\operatorname{Cov}(-\gamma_I^{-1}, \gamma_I w_I^2)$ and $\operatorname{Cov}(\gamma_I, \gamma_I w_I^2)$ are positive definite if the parameter $\boldsymbol{\beta}_b$ is restricted in certain subspaces of \mathbb{R}^p . Let d_1 be the maximum i such that $\gamma_i^{-1} < \operatorname{E}(\gamma_I^{-1})$. Let d_2 be the maximum i such that $\gamma_i > \operatorname{E}(\gamma_I)$. Then it can be seen that

$$Cov(-\gamma_I^{-1}, \gamma_I w_I^2) = \frac{1}{n-q} \sum_{i=1}^{n-q} (E(\gamma_I^{-1}) - \gamma_i^{-1}) \gamma_i w_i^2$$

is positive if $w_{d_1+1} = \cdots = w_{n-q} = 0$, while

$$Cov(\gamma_I, \gamma_I w_I^2) = \frac{1}{n-q} \sum_{i=1}^{n-q} (\gamma_I - E \gamma_i) \gamma_i w_i^2$$

is positive if $w_{d_2+1} = \cdots = w_{n-q} = 0$. In other words, $Cov(-\gamma_I^{-1}, \gamma_I w_I^2)$ is positive definite if β_b belongs to the rank d_1 principal component subspace of $\mathbf{X}_b^{*\top} \mathbf{X}_b^*$, and $Cov(\gamma_I, \gamma_I w_I^2)$ is positive definite if β_b belongs to the rank d_2 principal component subspace of $\mathbf{X}_b^{*\top} \mathbf{X}_b^*$. Note that if $\gamma_i > E(\gamma_I)$, then $\gamma_i^{-1} < (E(\gamma_I))^{-1} \le E(\gamma_I^{-1})$, where the last inequality follows from Jensen's inequality. Consequently, $d_1 \ge d_2$. This implies that compared with the test in Goeman et al. (2006), the proposed test can detect the signals from more directions.

4 Numerical results

In this section, we conduct simulations to examine the performance of the proposed test.

5 Conclusions

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 11471035.

Appendices

Appendix A Proofs of the results in Section 2

Proof of Proposition 1. Since Rank($[\mathbf{X}_a, \mathbf{X}_b]$) = n, $\phi(\mathbf{y})$ is unbiased if and only if

$$\int_{\mathbb{R}^n} \varphi(\mathbf{y}) d\mathcal{N}_n(\mu, \phi^{-1} \mathbf{I}_n)(\mathbf{y}) \, \mathrm{d}\mathbf{y} \ge \alpha \quad \text{for all } \mu \in \mathbb{R}^n.$$

From E. L. Lehmann (2005), Theorem 2.7.1, $E[\phi(\mathbf{y})] = \alpha$ under the null hypothesis. In particular, we have

$$\int_{\mathbb{R}^n} [\varphi(\mathbf{y}) - \alpha] d\mathcal{N}_n(0, \phi^{-1} \mathbf{I}_n)(\mathbf{y}) \, d\mathbf{y} = 0.$$
(11)

If $\alpha=0$ or 1, the conclusion is trivially true. In what follows, we assume $0<\alpha<1$. We claim that if $\varphi(\mathbf{y})\geq \alpha$, a.s. λ , then the conclusion holds. In fact, if $\varphi(\mathbf{y})\geq \alpha$, a.s. λ , then the integrand of (11) is nonnegative, and hence must be 0 a.s. λ , which implies the conclusion. Next we prove $\varphi(\mathbf{y})\geq \alpha$, a.s. λ by contradiction. Suppose $\lambda(\{\mathbf{y}:\varphi(\mathbf{y})<\alpha\})>0$. Then there exists a sufficiently small $\eta>0$, such that $\lambda(\{\mathbf{y}:\varphi(\mathbf{y})<\alpha-\eta\})>0$. We denote $E:=\{\mathbf{y}\in\mathbb{R}^n:\varphi(\mathbf{y})<\alpha-\eta\}$. From Lebesgue density theorem (Cohn, 2013, Corollary 6.2.6), there exists a point $z\in E$, such that, for any $\epsilon>0$ there is a $\delta_{\epsilon}>0$ such that

$$\left| \frac{\lambda(E^{\complement} \cap C_{\epsilon})}{\lambda(C_{\epsilon})} \right| < \epsilon,$$

where $C_{\epsilon} = \prod_{i=1}^{n} [z_i - \delta_{\epsilon}, z_i + \delta_{\epsilon}]$. We put

$$\epsilon = \left(\frac{\sqrt{\pi}}{\sqrt{2}\Phi^{-1}\left(1 - \frac{\eta}{6n}\right)}\right)^n \frac{\eta}{3},$$

where $\Phi(\cdot)$ is the cumulative distribution function of a standard normal random variable. Then for any $\phi > 0$,

$$\alpha \leq \int_{\mathbb{R}^{n}} \varphi(\mathbf{y}) d\mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n})(\mathbf{y}) \, d\mathbf{y}$$

$$= \int_{E \cap C_{\epsilon}} \varphi(\mathbf{y}) d\mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n})(\mathbf{y}) \, d\mathbf{y} + \int_{E^{\complement} \cap C_{\epsilon}} \varphi(\mathbf{y}) d\mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n})(\mathbf{y}) \, d\mathbf{y} + \int_{C_{\epsilon}^{\complement}} \varphi(\mathbf{y}) d\mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n})(\mathbf{y}) \, d\mathbf{y}$$

$$\leq \alpha - \eta + \int_{E^{\complement} \cap C_{\epsilon}} d\mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n})(\mathbf{y}) \, d\mathbf{y} + \int_{C_{\epsilon}^{\complement}} d\mathcal{N}_{n}(z, \phi^{-1} \mathbf{I}_{n})(\mathbf{y}) \, d\mathbf{y}$$

$$\leq \alpha - \eta + \left(\frac{\phi}{2\pi}\right)^{n/2} \lambda(E^{\complement} \cap C_{\epsilon}) + 2n \left(1 - \Phi(\sqrt{\phi}\delta_{\epsilon})\right)$$

$$\leq \alpha - \eta + \left(\frac{\phi}{2\pi}\right)^{n/2} \epsilon(2\delta_{\epsilon})^{n} + 2n \left(1 - \Phi(\sqrt{\phi}\delta_{\epsilon})\right)$$

$$= \alpha - \eta + \left(\frac{\sqrt{\phi}\delta_{\epsilon}}{\Phi^{-1}\left(1 - \frac{\eta}{6n}\right)}\right)^{n} \frac{\eta}{3} + 2n \left(1 - \Phi(\sqrt{\phi}\delta_{\epsilon})\right).$$

Putting

$$\phi = \left(\frac{\Phi^{-1}\left(1 - \frac{\eta}{6n}\right)}{\delta_{\epsilon}}\right)^{2}$$

yields the contradiction $\alpha \leq \alpha - (2/3)\eta$. This completes the proof.

Appendix B haha3

Proof of Theorem 1. Let

$$\tilde{a}_{i,j} := \frac{a_{i,j}}{\sqrt{2\operatorname{tr}(\mathbf{A}^2) + (\operatorname{E}(\xi_1^4) - 3)\operatorname{tr}(\mathbf{A} \circ \mathbf{A})}}.$$

Then

$$S = \sum_{i=1}^{n} \tilde{a}_{i,i}(\xi_i^2 - 1) + 2\sum_{1 \le i < j \le n} \tilde{a}_{i,j}\xi_i\xi_j, \quad S_{\tau}^* = \tau \sum_{i=1}^{n} \tilde{a}_{i,i}\check{z}_i + 2\sum_{1 \le i < j \le n} \tilde{a}_{i,j}z_iz_j.$$

For $l = 1, \ldots, n$, define

$$\begin{split} S_{l} &= \sum_{i=1}^{l-1} \tilde{a}_{i,i}(\xi_{i}^{2} - 1) + \tau \sum_{i=l+1}^{n} \tilde{a}_{i,i} \check{z}_{i} + 2 \sum_{1 \leq i < j \leq l-1} \tilde{a}_{i,j} \xi_{i} \xi_{j} + 2 \sum_{i=1}^{l-1} \sum_{j=l+1}^{n} \tilde{a}_{i,j} \xi_{i} z_{j} + 2 \sum_{l+1 \leq i < j \leq n} \tilde{a}_{i,j} z_{i} z_{j}, \\ h_{l} &= \tilde{a}_{l,l}(\xi_{l}^{2} - 1) + 2 \sum_{i=1}^{l-1} \tilde{a}_{i,l} \xi_{i} \xi_{l} + 2 \sum_{i=l+1}^{n} \tilde{a}_{i,l} z_{i} \xi_{l}, \\ g_{l} &= \tau \tilde{a}_{l,l} \check{z}_{l} + 2 \sum_{i=1}^{l-1} \tilde{a}_{i,l} \xi_{i} z_{l} + 2 \sum_{i=l+1}^{n} \tilde{a}_{i,l} z_{i} z_{l}. \end{split}$$

It can be seen that for l = 2, ..., n, $S_{l-1} + h_{l-1} = S_l + g_l$, and $S = S_n + h_n$, $S_1 + g_1 = S_{\tau}^*$.

Thus, for any $f \in \mathscr{C}^4(\mathbb{R})$,

$$|E f(S) - E f(S_{\tau}^{*})| = |E f(S_{n} + h_{n}) - E f(S_{1} + g_{1})|$$

$$= \left| \sum_{l=2}^{n} (E f(S_{l} + h_{l}) - E f(S_{l-1} + h_{l-1})) + E f(S_{1} + h_{1}) - E f(S_{1} + g_{1}) \right|$$

$$= \left| \sum_{l=1}^{n} E f(S_{l} + h_{l}) - E f(S_{l} + g_{l}) \right|.$$

Apply Taylor's theorem, for l = 1, ..., n,

$$f(S_l + h_l) = f(S_l) + \sum_{k=1}^{3} \frac{1}{k!} h_l^k f^{(k)}(S_l) + \frac{1}{24} h_l^4 f^{(4)}(S_l + \theta_1 h_l),$$

$$f(S_l + g_l) = f(S_l) + \sum_{k=1}^{3} \frac{1}{k!} g_l^k f^{(k)}(S_l) + \frac{1}{24} g_l^4 f^{(4)}(S_l + \theta_2 g_l),$$

where $\theta_1, \theta_2 \in [0, 1]$. Thus,

$$|\operatorname{E} f(S_l + h_l) - \operatorname{E} f(S_l + g_l)| \le \left| \sum_{k=1}^{3} \frac{1}{k!} \operatorname{E} f^{(k)}(S_l) \operatorname{E}_l(h_l^k - g_l^k) \right| + \frac{1}{24} ||f''''||_{\infty} \left(\operatorname{E}(h_l^4) + \operatorname{E}(g_l^4) \right),$$

where E_l denotes taking expectation with respect to ξ_l, z_l, \check{z}_l . It is straightforward to show that

$$\begin{split} & \mathbf{E}_{l}(h_{l}-g_{l})=0, \\ & \mathbf{E}_{l}(h_{l}^{2}-g_{l}^{2})=\left(\mathbf{E}(\xi_{1}^{4})-1-\tau^{2}\right)\tilde{a}_{l,l}^{2}, \\ & \mathbf{E}_{l}(h_{l}^{3}-g_{l}^{3})=\mathbf{E}(\xi_{1}^{2}-1)^{3}\tilde{a}_{l,l}^{3}+12(\mathbf{E}(\xi_{1}^{4})-1)\tilde{a}_{l,l}\left(\sum_{i=1}^{l-1}\tilde{a}_{i,l}\xi_{i}+\sum_{i=l+1}^{n}\tilde{a}_{i,l}z_{i}\right)^{2}. \end{split}$$

Thus,

$$|\operatorname{E} f(S_{l} + h_{l}) - \operatorname{E} f(S_{l} + g_{l})|$$

$$\leq \frac{1}{2} \|f^{(2)}\|_{\infty} |\operatorname{E}(\xi_{1}^{4}) - 1 - \tau^{2}| \tilde{a}_{l,l}^{2}$$

$$+ \frac{1}{6} \|f^{(3)}\|_{\infty} \left(|\operatorname{E}(\xi_{1}^{2} - 1)^{3}| |\tilde{a}_{l,l}^{3}| + 12(\operatorname{E}(\xi_{1}^{4}) - 1)|\tilde{a}_{l,l}| \operatorname{E} \left(\sum_{i=1}^{l-1} \tilde{a}_{i,l} \xi_{i} + \sum_{i=l+1}^{n} \tilde{a}_{i,l} z_{i} \right)^{2} \right)$$

$$+ \frac{1}{24} \|f^{(4)}\|_{\infty} \left(\operatorname{E}(h_{l}^{4}) + \operatorname{E}(g_{l}^{4}) \right)$$

$$\leq \frac{|\operatorname{E}(\xi_{1}^{4}) - 1 - \tau^{2}|}{2} \|f^{(2)}\|_{\infty} \tilde{a}_{l,l}^{2} + \frac{\max\left(|\operatorname{E}(\xi_{1}^{2} - 1)^{3}|, 12(\operatorname{E}(\xi_{1}^{4}) - 1)\right)}{6} \|f^{(3)}\|_{\infty} |\tilde{a}_{l,l}| \sum_{i=1}^{n} \tilde{a}_{i,l}^{2}$$

$$+ \frac{1}{24} \|f^{(4)}\|_{\infty} \left(\operatorname{E}(h_{l}^{4}) + \operatorname{E}(g_{l}^{4}) \right).$$

$$(12)$$

Now we bound $E(h_l^4)$ and $E(g_l^4)$. By direct calculation,

$$\begin{split} \mathbf{E}(h_l^4) &= \mathbf{E}(\xi_1^2 - 1)^4 \tilde{a}_{l,l}^4 + 24 \, \mathbf{E}[\xi_1^2(\xi_1^2 - 1)^2] \tilde{a}_{l,l}^2 \, \mathbf{E}\left(\sum_{i=1}^{l-1} \tilde{a}_{i,l} \xi_i + \sum_{i=l+1}^n \tilde{a}_{i,l} z_i\right)^2 \\ &+ 16 \, \mathbf{E}(\xi_1^4) \, \mathbf{E}\left(\sum_{i=1}^{l-1} \tilde{a}_{i,l} \xi_i + \sum_{i=l+1}^n \tilde{a}_{i,l} z_i\right)^4 \\ &= \mathbf{E}(\xi_1^2 - 1)^4 \tilde{a}_{l,l}^4 + 24 \, \mathbf{E}[\xi_1^2(\xi_1^2 - 1)^2] \tilde{a}_{l,l}^2 \left(\left(\sum_{i=1}^n \tilde{a}_{i,l}^2\right) - \tilde{a}_{l,l}^2\right) \\ &+ 16 \, \mathbf{E}(\xi_1^4) \left(\left(\mathbf{E}(\xi_1^4) - 3\right) \sum_{i=1}^{l-1} \tilde{a}_{i,l}^4 + 3 \left(\left(\sum_{i=1}^n \tilde{a}_{i,l}^2\right) - \tilde{a}_{l,l}^2\right)^2\right). \end{split}$$

To upper bound the above quantity, we use the facts $24 \operatorname{E}[\xi_1^2(\xi_1^2-1)^2] \leq 2(16 \operatorname{E}(\xi_1^2-1)^4 + (9/4) \operatorname{E}(\xi_1^4))$, $\operatorname{E}(\xi_1^2-1)^4 \leq \operatorname{E}(\xi_1^8)$ and

$$\left(\mathbf{E}(\xi_1^4) - 3 \right) \sum_{i=1}^{l-1} \tilde{a}_{i,l}^4 \le \left(\mathbf{E}(\xi_1^4) - 1 \right) \sum_{i=1}^{l-1} \tilde{a}_{i,l}^4 \le \left(\mathbf{E}(\xi_1^4) - 1 \right) \left(\left(\sum_{i=1}^n \tilde{a}_{i,l}^2 \right) - \tilde{a}_{l,l}^2 \right)^2.$$

Then we obtain the bound

$$E(h_l^4) \le \left(16 E(\xi_1^8) + 32 E(\xi_1^4)\right) \left(\sum_{i=1}^n \tilde{a}_{i,l}^2\right)^2.$$
(13)

Similarly, we have

$$E(g_l^4) \le \left(48 E(\xi_1^4) + 3\tau^4 + 96\right) \left(\sum_{i=1}^n \tilde{a}_{i,l}^2\right)^2.$$
(14)

Combining (12), (13) and (14) yields

$$\sum_{l=1}^{n} |\operatorname{E} f(S_{l} + h_{l}) - \operatorname{E} f(S_{l} + g_{l})| \\
\leq \frac{|\operatorname{E}(\xi_{1}^{4}) - 1 - \tau^{2}|}{2} ||f^{(2)}||_{\infty} \sum_{l=1}^{n} \tilde{a}_{l,l}^{2} + \frac{\max(|\operatorname{E}(\xi_{1}^{2} - 1)^{3}|, 12(\operatorname{E}(\xi_{1}^{4}) - 1))}{6} ||f^{(3)}||_{\infty} \sum_{l=1}^{n} (|\tilde{a}_{l,l}| \sum_{i=1}^{n} \tilde{a}_{i,l}^{2}) \\
+ \frac{16 \operatorname{E}(\xi_{1}^{8}) + 80 \operatorname{E}(\xi_{1}^{4}) + 3\tau^{4} + 96}{24} ||f^{(4)}||_{\infty} \sum_{l=1}^{n} (\sum_{i=1}^{n} \tilde{a}_{i,l}^{2})^{2}.$$

This completes the proof.

Proof of Theorem 2. Throughout the proof, we use the similar notations as in Theorem 1 and define

$$S_{\mathbf{A}} = \frac{(\sqrt{\phi \varepsilon})^{\top} \mathbf{A} \sqrt{\phi \varepsilon - \text{tr}(\mathbf{A})}}{\sqrt{2 \operatorname{tr}(\mathbf{A}^2) + (\phi^2 \operatorname{E}(\epsilon_1^4) - 3) \sum_{i=1}^n a_{i,i}^2}}$$

and

$$S_{\mathbf{A},\hat{\tau}}^* = \frac{\hat{\tau} \sum_{i=1}^n a_{i,i} \check{z}_i + 2 \sum_{1 \le i < j \le n} a_{i,j} z_i z_j}{\sqrt{2 \operatorname{tr}(\mathbf{A}^2) + (\phi^2 \operatorname{E}(\epsilon_1^4) - 3) \sum_{i=1}^n a_{i,i}^2}},$$

where $z_1, \ldots, z_n, \check{z}_1, \ldots, \check{z}_n$ are iid $\mathcal{N}(0,1)$ random variables and are independent of $\hat{\tau}^2$.

By a standard subsequence argument, we only need to prove the theorem along a subsequence of $\{n\}$. Hence, without loss of generality, we assume $\hat{\tau}^2 \xrightarrow{a.s.} \phi^2 E(\epsilon_1^4) - 1$. Write

$$\begin{split} S_{\hat{\tau}}^* = & \frac{\sqrt{\phi^2 \operatorname{E}(\epsilon_1^4) - 1} \sum_{i=1}^n a_{i,i} \check{z}_i + 2 \sum_{1 \leq i < j \leq n} a_{i,j} z_i z_j}{\sqrt{2 \operatorname{tr}(\mathbf{A}^2) + (\phi^2 \operatorname{E}(\epsilon_1^4) - 3) \sum_{i=1}^n a_{i,i}^2}} + \frac{(\hat{\tau} - \sqrt{\phi^2 \operatorname{E}(\epsilon_1^4) - 1}) \sum_{i=1}^n a_{i,i} \check{z}_i}{\sqrt{2 \operatorname{tr}(\mathbf{A}^2) + (\phi^2 \operatorname{E}(\epsilon_1^4) - 3) \sum_{i=1}^n a_{i,i}^2}} \\ =: & S_{\hat{\tau},1}^* + S_{\hat{\tau},2}^*. \end{split}$$

Note that $S_{\hat{\tau},1}^*$ is independent of $\hat{\tau}$. Since $\mathrm{E}(S_{\hat{\tau},1}^{*2})=1$, the distributions $\mathcal{L}(S_{\hat{\tau},1}^*)$ are tight as $n\to\infty$. Hence, without loss of generality, we assume $\mathcal{L}(S_{\hat{\tau},1}^*)$ weakly converges to a limit distribution with distribution function $F^{\dagger}(x)$. Let S^{\dagger} be a random variable with distribution function $F^{\dagger}(x)$. By some algebra (See, e.g., Chen et al. (2010), Proposition A.1.(iii)), it can be shown that $\mathrm{E}(S_{\hat{\tau},1}^{*4})$ is uniformly bounded. Then $\mathcal{L}(S_{\hat{\tau},1}^{*2})$ is uniformly integrable. Hence $\mathrm{E}(S^{\dagger 2})=1$ and $F^{\dagger}(x)$ can not concentrate on a single point. Consequently, $F^{\dagger}(x)$ is continous and is strict increasing for $x \in \{x: 0 < F(x) < 1\}$; see Sevast'yanov (1961) as well as the remark made by A. N. Kolmogorov.

The condition (7) implies that $\mathrm{E}[S_{\hat{\tau},2}^{*2}|\hat{\tau}] \to 0$ almost surely. Then almost surely, $\mathcal{L}(S_{\hat{\tau}}^*|\hat{\tau}) \leadsto \mathcal{L}(S^{\dagger})$. Consequently, for every $f \in \mathscr{C}^4(\mathbb{R})$, we have $|\mathrm{E}[f(S_{\hat{\tau}}^*)|\hat{\tau}] - \mathrm{E}[f(S^{\dagger})]| \to 0$ almost surely. On the other hand, Theorem 1 and the condition (7) imply $|\mathrm{E}[f(S)]| \to 0$ almost surely. Thus, $|\mathrm{E}[f(S)]| \to 0$. That is, $\mathcal{L}(S) \leadsto \mathcal{L}(S^{\dagger})$.

Note that

$$x^{(1)} = \frac{F^{-1}(1 - \alpha; \mathbf{A}, \hat{\tau}) - \text{tr}(\mathbf{X}_b^* \mathbf{X}_b^{*\top})^{-1}}{n - q}.$$

We need to deal with $F^{-1}(1-\alpha; \mathbf{A}, \hat{\tau})$. Since $\mathcal{L}(S_{\hat{\tau}}^*|\hat{\tau}) \rightsquigarrow \mathcal{L}(S^{\dagger})$ almost surely, the fact

$$\Pr\left(S_{\hat{\tau}}^* > \frac{F^{-1}(1-\alpha; \mathbf{A}, \hat{\tau})}{\sqrt{2\operatorname{tr}(\mathbf{A}^2) + (\phi^2 \operatorname{E}(\epsilon_1^4) - 3) \sum_{i=1}^n a_{i,i}^2}} \middle| \hat{\tau} \right) = \alpha$$

implies that almost surely,

$$\frac{F^{-1}(1-\alpha; \mathbf{A}, \hat{\tau})}{\sqrt{2\operatorname{tr}(\mathbf{A}^2) + (\phi^2 \operatorname{E}(\epsilon_1^4) - 3) \sum_{i=1}^n a_{i,i}^2}} \to F^{\dagger - 1}(1-\alpha).$$
(15)

We also need the fact that

$$(\sqrt{\phi}\varepsilon)^{\top} \tilde{\mathbf{U}}_a \tilde{\mathbf{U}}_a^{\top} (\sqrt{\phi}\varepsilon) = (1 + o_p(1))(n - q), \tag{16}$$

which is a consequence of

$$\mathrm{E}\left((\sqrt{\phi}\boldsymbol{\varepsilon})^{\top}\tilde{\mathbf{U}}_{a}\tilde{\mathbf{U}}_{a}^{\top}(\sqrt{\phi}\boldsymbol{\varepsilon})\right) = n - q, \quad \mathrm{Var}\left((\sqrt{\phi}\boldsymbol{\varepsilon})^{\top}\tilde{\mathbf{U}}_{a}\tilde{\mathbf{U}}_{a}^{\top}(\sqrt{\phi}\boldsymbol{\varepsilon})\right) = O(n - q).$$

The fact $S \rightsquigarrow S^{\dagger}$, the equations (15), (16) and Slutsky's theorem lead to

$$\Pr\left(T > x^{(1)}\right)$$

$$= \Pr\left(T > \frac{F^{-1}(1 - \alpha; \mathbf{A}, \hat{\tau}) - \operatorname{tr}\left((\mathbf{X}_{b}^{*}\mathbf{X}_{b}^{*\top})^{-1}\right)}{n - q}\right)$$

$$= \Pr\left((\sqrt{\phi}\boldsymbol{\varepsilon})^{\top}\mathbf{A}(\sqrt{\phi}\boldsymbol{\varepsilon}) > \frac{(\sqrt{\phi}\boldsymbol{\varepsilon})^{\top}\tilde{\mathbf{U}}_{a}\tilde{\mathbf{U}}_{a}^{\top}(\sqrt{\phi}\boldsymbol{\varepsilon})}{n - q}F^{-1}(1 - \alpha; \mathbf{A}, \hat{\tau})\right)$$

$$= \Pr\left(S > \frac{(\sqrt{\phi}\boldsymbol{\varepsilon})^{\top}\tilde{\mathbf{U}}_{a}\tilde{\mathbf{U}}_{a}^{\top}(\sqrt{\phi}\boldsymbol{\varepsilon})}{n - q}\frac{F^{-1}(1 - \alpha; \mathbf{A}, \hat{\tau})}{\sqrt{2\operatorname{tr}(\mathbf{A}^{2}) + (\phi^{2}\operatorname{E}(\epsilon_{1}^{4}) - 3)\sum_{i=1}^{n}a_{i,i}^{2}}}\right)$$

$$= \Pr\left(S > (1 + o_{P}(1))F^{-1}(1 - \alpha)\right)$$

$$\to \alpha.$$

This proves the first part of the theorem.

Note that

$$x^{(2)} = \frac{F^{-1} \left(1 - \alpha; \mathbf{B}, \hat{\tau}\right) - \operatorname{tr}\left(\mathbf{X}_b^* \mathbf{X}_b^{*\top}\right)^{-1}}{n - a},$$

where

$$\mathbf{B} = \mathbf{A} - \frac{F^{-1}(1 - \alpha; \mathbf{A}, \hat{\tau})}{n - a} \tilde{\mathbf{U}}_a \tilde{\mathbf{U}}_a^{\top}.$$

Now we should deal with $F^{-1}(1-\alpha; \mathbf{B}, \hat{\tau})$. Note that

$$\Pr\left(S_{\mathbf{B},\hat{\tau}}^* > \frac{F^{-1}\left(1 - \alpha; \mathbf{B}, \hat{\tau}\right)}{\sqrt{2\operatorname{tr}(\mathbf{B}^2) + (\phi^2\operatorname{E}(\epsilon_1^4) - 3)\operatorname{tr}(\mathbf{B}^{\circ 2})}} \middle| \hat{\tau}\right) = \alpha.$$

Then

$$\Pr\left(T > x^{(2)}\right)$$

$$= \Pr\left(\left(\sqrt{\phi}\boldsymbol{\varepsilon}\right)^{\top} \left(\mathbf{A} - \frac{1}{n-q} F^{-1} \left(1 - \alpha; \mathbf{A} - \frac{F^{-1} \left(1 - \alpha; \mathbf{A}, \hat{\tau}\right)}{n-q} \tilde{\mathbf{U}}_{a} \tilde{\mathbf{U}}_{a}^{\top}, \hat{\tau}\right) \tilde{\mathbf{U}}_{a} \tilde{\mathbf{U}}_{a}^{\top}\right) \left(\sqrt{\phi}\boldsymbol{\varepsilon}\right) > 0\right)$$

$$= \Pr\left(\left(\sqrt{\phi}\boldsymbol{\varepsilon}\right)^{\top} \left(\mathbf{A} - \frac{F^{-1} \left(1 - \alpha; \mathbf{A}, \hat{\tau}\right)}{n-q} \tilde{\mathbf{U}}_{a} \tilde{\mathbf{U}}_{a}^{\top}\right) \left(\sqrt{\phi}\boldsymbol{\varepsilon}\right)\right)$$

$$> \left(\frac{1}{n-q} F^{-1} \left(1 - \alpha; \mathbf{A} - \frac{F^{-1} \left(1 - \alpha; \mathbf{A}, \hat{\tau}\right)}{n-q} \tilde{\mathbf{U}}_{a} \tilde{\mathbf{U}}_{a}^{\top}, \hat{\tau}\right) - \frac{F^{-1} \left(1 - \alpha; \mathbf{A}, \hat{\tau}\right)}{n-q} \left(\sqrt{\phi}\boldsymbol{\varepsilon}\right)^{\top} \tilde{\mathbf{U}}_{a} \tilde{\mathbf{U}}_{a}^{\top} \left(\sqrt{\phi}\boldsymbol{\varepsilon}\right)\right)$$

Proof of Proposition 2. From Bai et al. (2018), Theorem 2.1, one can obtain the explicit forms of $\operatorname{Var}\left(\tilde{\boldsymbol{\varepsilon}}^{\top}\left(\mathbf{I}_{n}-\mathbf{P}_{a}\right)\tilde{\boldsymbol{\varepsilon}}\right)$ and $\operatorname{Var}\left(\sum_{i=1}^{n}\tilde{\epsilon}_{i}^{4}\right)$ which involves the traces of certain matrices. Using Horn and Johnson (1991), Theorem 5.5.1, one can see that the eigenvalues of these matrices are all

bounded. Hence it can be deduced that $\operatorname{Var}\left(\tilde{\boldsymbol{\varepsilon}}^{\top}\left(\mathbf{I}_{n}-\mathbf{P}_{a}\right)\tilde{\boldsymbol{\varepsilon}}\right)=O(n)$ and $\operatorname{Var}\left(\sum_{i=1}^{n}\tilde{\epsilon}_{i}^{4}\right)=O(n)$. Thus,

$$\tilde{\boldsymbol{\varepsilon}}^{\top} (\mathbf{I}_n - \mathbf{P}_a) \, \tilde{\boldsymbol{\varepsilon}} = (n - q)\sigma^2 + O_P(\sqrt{n}),$$

$$\sum_{i=1}^n \tilde{\epsilon}_i^4 = 3\sigma^4 \operatorname{tr}(\mathbf{I}_n - \mathbf{P}_a)^{\circ 2} + \left(\mathbf{E}(\epsilon_1^4) - 3\sigma^4 \right) \operatorname{tr} \left((\mathbf{I}_n - \mathbf{P}_a)^{\circ 2} \right)^2 + O_P(\sqrt{n}).$$

It follows that

$$\hat{\tau}^2 = \sigma^{-4} \operatorname{E}(\epsilon_1^4) - 1 + O_P \left(\frac{\sqrt{n}}{\operatorname{tr} \left((\mathbf{I}_n - \mathbf{P}_a)^{\circ 2} \right)^2} \right).$$

Let $\delta_{i,j} = 1$ if i = j and 0 if $i \neq j$. We have

$$n = \sum_{i=1}^{n} \sum_{j=1}^{n} \delta_{i,j}^{4}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (\delta_{i,j} - (\mathbf{P}_{a})_{i,j} + (\mathbf{P}_{a})_{i,j})^{4}$$

$$\leq 8 \sum_{i=1}^{n} \sum_{j=1}^{n} (\delta_{i,j} - (\mathbf{P}_{a})_{i,j})^{4} + 8 \sum_{i=1}^{n} \sum_{j=1}^{n} (\mathbf{P}_{a})_{i,j}^{4}$$

$$\leq 8 \sum_{i=1}^{n} \sum_{j=1}^{n} (\delta_{i,j} - (\mathbf{P}_{a})_{i,j})^{4} + 8 \sum_{i=1}^{n} \sum_{j=1}^{n} (\mathbf{P}_{a})_{i,j}^{2}$$

$$= 8 \operatorname{tr} \left((\mathbf{I}_{n} - \mathbf{P}_{a})^{\circ 2} \right)^{2} + 8q.$$

Then

$$\frac{\sqrt{n}}{\operatorname{tr}\left(\left(\mathbf{I}_{n}-\mathbf{P}_{a}\right)^{\circ 2}\right)^{2}}=O\left(\frac{1}{\sqrt{n}}\right).$$

This completes the proof.

Appendix C hahayy

Proof of Proposition 3. Without loss of generality, we assume **A** is a diagonal matrix and $|b_1| \geq \cdots \geq |b_n|$. By a standard subsequence argument, we only need to prove the result along a subsequence. Hence we can assume $\lim_{n\to\infty} ||b||^2 / \operatorname{tr}(\mathbf{A}^2) = c \in [0, +\infty]$. If c = 0, Lyapunov central limit theorem implies that

$$\frac{Z^{\top}\mathbf{A}Z + b^{\top}Z - \operatorname{tr}(\mathbf{A})}{\sqrt{2\operatorname{tr}(\mathbf{A}^2) + \|\mathbf{b}\|^2}} = (1 + o_P(1))\frac{Z^{\top}\mathbf{A}Z - \operatorname{tr}(\mathbf{A})}{\sqrt{2\operatorname{tr}(\mathbf{A}^2)}} + o_P(1) \rightsquigarrow \mathcal{N}(0, 1).$$

If $c = +\infty$,

$$\frac{Z^{\top} \mathbf{A} Z + b^{\top} Z - \operatorname{tr}(\mathbf{A})}{\sqrt{2 \operatorname{tr}(\mathbf{A}^2) + \|\mathbf{b}\|^2}} = (1 + o_P(1)) \frac{b^{\top} Z}{\|\mathbf{b}\|} + o_P(1) \rightsquigarrow \mathcal{N}(0, 1).$$

In what follows, we assume $c \in (0, +\infty)$. By Helly selection theorem, we can assume $\lim_{n\to\infty} |b_i|/\|\mathbf{b}\| = b_i^* \in [0, 1], i = 1, 2, \dots$ From Fatou's lemma, we have $\sum_{i=1}^{\infty} (b_i^*)^2 \leq 1$. Consequently, $\lim_{i\to\infty} b_i^* = 0$.

Note that the condition $\operatorname{tr}(\mathbf{A}^4)/\operatorname{tr}^2(\mathbf{A}^2) \to 0$ is equivalent to $\lambda_1(\mathbf{A}^2)/\operatorname{tr}(\mathbf{A}^2) \to 0$. Then for every fixed integer r > 0,

 $\frac{\sum_{i=1}^{r} a_{i,i}^2}{\sum_{i=1}^{n} a_{i,i}^2} \le \frac{r \max_{1 \le i \le n} a_{i,i}^2}{\sum_{i=1}^{n} a_{i,i}^2} \to 0.$

Then there exists a sequence of positive integers $r(n) \to \infty$ such that $\left(\sum_{i=1}^{r(n)} a_{i,i}^2\right) / \left(\sum_{i=1}^n a_{i,i}^2\right) \to 0$ and $r(n)/n \to 0$. Write

$$Z^{\top} \mathbf{A} Z + b^{\top} Z - \operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{r(n)} a_{i,i} (z_i^2 - 1) + \sum_{i=1}^{r(n)} b_i z_i + \sum_{i=r(n)+1}^{n} \left(a_{i,i} (z_i^2 - 1) + b_i z_i \right),$$

which is a sum of independent random variables. The first term is negligible since $\operatorname{Var}(\sum_{i=1}^{r(n)} a_{i,i}(z_i^2 - 1)) = o(\sum_{i=1}^{n} a_{i,i}^2)$. Now we deal with the third term. From Berry-Esseen inequality (See, e.g., DasGupta (2008), Theorem 11.2), there exists an absolute constant $C^* > 0$, such that

$$\sup_{x \in \mathbb{R}} \left| \Pr \left(\frac{\sum_{i=r(n)+1}^{n} \left(a_{i,i}(z_{i}^{2}-1) + b_{i}z_{i} \right)}{\sqrt{2 \sum_{i=r(n)+1}^{n} a_{i,i}^{2} + \sum_{i=r(n)+1}^{n} b_{i}^{2}}} \le x \right) - \Phi(x) \right| \le C^{*} \frac{\sum_{i=r(n)+1}^{n} \operatorname{E} \left| a_{i,i}(z_{i}^{2}-1) + b_{i}z_{i} \right|^{3}}{\left(2 \sum_{i=r(n)+1}^{n} a_{i,i}^{2} + \sum_{i=r(n)+1}^{n} b_{i}^{2} \right)^{3/2}}.$$

By some simple algebra, there exist absolute constants $C_1^*, C_2^* > 0$ such that for sufficiently large n,

$$\sup_{x \in \mathbb{R}} \left| \Pr \left(\frac{\sum_{i=r(n)+1}^{n} \left(a_{i,i}(z_{i}^{2}-1) + b_{i}z_{i} \right)}{\sqrt{2 \sum_{i=r(n)+1}^{n} a_{i,i}^{2} + \sum_{i=r(n)+1}^{n} b_{i}^{2}}} \le x \right) - \Phi(x) \right| \le C_{1}^{*} \frac{\max_{1 \le i \le n} |a_{i,i}|}{\sqrt{\sum_{i=1}^{n} a_{i,i}^{2}}} + C_{2}^{*} \frac{|b_{r(n)+1}|}{\|\mathbf{b}\|}.$$

Since the right hand side tends to 0, we have

$$\frac{\sum_{i=r(n)+1}^{n} \left(a_{i,i}(z_i^2 - 1) + b_i z_i \right)}{\sqrt{2 \sum_{i=r(n)+1}^{n} a_{i,i}^2 + \sum_{i=r(n)+1}^{n} b_i^2}} \rightsquigarrow \mathcal{N}(0,1).$$

Note that $\sum_{i=r(n)+1}^{n} (a_{i,i}(z_i^2 - 1) + b_i z_i)$ is independent of $\sum_{i=1}^{r(n)} b_i z_i$ and $\sum_{i=1}^{r(n)} b_i z_i \sim \mathcal{N}(0, \sum_{i=1}^{r(n)} b_i^2)$. Thus,

$$\frac{\sum_{i=1}^{r(n)} b_i z_i + \sum_{i=r(n)+1}^n \left(a_{i,i} (z_i^2 - 1) + b_i z_i \right)}{\sqrt{2 \sum_{i=1}^n a_{i,i}^2 + \sum_{i=1}^n b_i^2}} \rightsquigarrow \mathcal{N}(0, 1).$$

This completes the proof.

Note that under the normality, $T_n - \operatorname{tr}((\mathbf{X}_b^* \mathbf{X}_b^{*\top})^{-1})/(n-q)$ has zero mean.

18

Proof of Theorem 3. We note that

$$\Pr\left(\frac{\mathbf{y}^{*\top} \left(\mathbf{X}_{b}^{*} \mathbf{X}_{b}^{*\top}\right)^{k} \mathbf{y}^{*}}{\mathbf{y}^{*\top} \mathbf{y}^{*}} \leq \mathrm{E}(\gamma_{I}^{k}) + \sqrt{\frac{2 \operatorname{Var}\left(\gamma_{I}^{k}\right)}{n - q}} x\right)$$

$$= \Pr\left(\mathbf{y}^{*\top} \left(\mathbf{X}_{b}^{*} \mathbf{X}_{b}^{*\top}\right)^{k} \mathbf{y}^{*} \leq \left(\mathrm{E}(\gamma_{I}^{k}) + \sqrt{\frac{2 \operatorname{Var}\left(\gamma_{I}^{k}\right)}{n - q}} x\right) \mathbf{y}^{*\top} \mathbf{y}^{*}\right)$$

$$= \Pr\left(\mathbf{y}^{*\top} \mathbf{B} \mathbf{y}^{*} \leq 0\right),$$
(17)

where

$$\mathbf{B} = \left(\mathbf{X}_b^* \mathbf{X}_b^{*\top}\right)^k - \left(\mathrm{E}(\gamma_I^k) + \sqrt{\frac{2 \operatorname{Var}\left(\gamma_I^k\right)}{n - q}} x\right) \mathbf{I}_{n - q}.$$

Since $\mathbf{y}^{*\top}\mathbf{B}\mathbf{y}^{*} = \boldsymbol{\varepsilon}^{\top}\tilde{\mathbf{U}}_{a}\mathbf{B}\tilde{\mathbf{U}}_{a}^{\top}\boldsymbol{\varepsilon} + 2\boldsymbol{\varepsilon}^{\top}\tilde{\mathbf{U}}_{a}\mathbf{B}\mathbf{X}_{b}^{*}\boldsymbol{\beta}_{b} + \boldsymbol{\beta}_{b}^{\top}\mathbf{X}_{b}^{*\top}\mathbf{B}\mathbf{X}_{b}^{*}\boldsymbol{\beta}_{b}$, we have

$$\Pr\left(\mathbf{y}^{*\top}\mathbf{B}\mathbf{y}^{*} \leq 0\right)$$

$$=\Pr\left(\frac{\boldsymbol{\varepsilon}^{\top}\tilde{\mathbf{U}}_{a}\mathbf{B}\tilde{\mathbf{U}}_{a}^{\top}\boldsymbol{\varepsilon} + 2\boldsymbol{\varepsilon}^{\top}\tilde{\mathbf{U}}_{a}\mathbf{B}\mathbf{X}_{b}^{*}\boldsymbol{\beta}_{b} - \phi^{-1}\operatorname{tr}(\mathbf{B})}{\sqrt{2\phi^{-2}\operatorname{tr}(\mathbf{B}^{2}) + 4\phi^{-1}\boldsymbol{\beta}_{b}^{\top}\mathbf{X}_{b}^{*\top}\mathbf{B}^{2}\mathbf{X}_{b}^{*}\boldsymbol{\beta}_{b}}} \leq \frac{-\boldsymbol{\beta}_{b}^{\top}\mathbf{X}_{b}^{*\top}\mathbf{B}\mathbf{X}_{b}^{*}\boldsymbol{\beta}_{b} - \phi^{-1}\operatorname{tr}(\mathbf{B})}{\sqrt{2\phi^{-2}\operatorname{tr}(\mathbf{B}^{2}) + 4\phi^{-1}\boldsymbol{\beta}_{b}^{\top}\mathbf{X}_{b}^{*\top}\mathbf{B}^{2}\mathbf{X}_{b}^{*}\boldsymbol{\beta}_{b}}}\right).$$

To apply proposition 3, we need to verify the condition $\lambda_1(\mathbf{B}^2)/\operatorname{tr}(\mathbf{B}^2) \to 0$. It is straightforward to show that $\operatorname{tr}(\mathbf{B}^2) = (n - q + 2x^2)\operatorname{Var}(\gamma_I^k)$. On the other hand,

$$\lambda_1\left(\mathbf{B}^2\right) = \max_{1 \le i \le n-q} \left(\gamma_i^k - \mathrm{E}(\gamma_I^k) - \sqrt{\frac{2 \operatorname{Var}\left(\gamma_I^k\right)}{n-q}} x\right)^2 \le 2 \max_{1 \le i \le n-q} \left(\gamma_i^k - \mathrm{E}(\gamma_I^k)\right)^2 + 4 \frac{\operatorname{Var}\left(\gamma_I^k\right)}{n-q} x^2.$$

Thus,

$$\frac{\lambda_{1}(\mathbf{B}^{2})}{\operatorname{tr}(\mathbf{B}^{2})} \leq 2 \frac{\max_{1 \leq i \leq n-q} (\gamma_{i}^{k} - \operatorname{E}(\gamma_{I}^{k}))^{2}}{(n-q+2x^{2}) \operatorname{Var}(\gamma_{I}^{k})} + 4 \frac{x^{2}}{(n-q)(n-q+x^{2})}$$
$$\leq 2 \frac{\max_{1 \leq i \leq n-q} (\gamma_{i}^{k} - \operatorname{E}(\gamma_{I}^{k}))^{2}}{(n-q) \operatorname{Var}(\gamma_{I}^{k})} + \frac{4}{(n-q)},$$

which tends to 0 by the condition (8). Hence Proposition 3 implies that

$$\Pr\left(\mathbf{y}^{*\top}\mathbf{B}\mathbf{y}^{*} \leq 0\right) = \Phi\left(\frac{-\boldsymbol{\beta}_{b}^{\top}\mathbf{X}_{b}^{*\top}\mathbf{B}\mathbf{X}_{b}^{*}\boldsymbol{\beta}_{b} - \phi^{-1}\operatorname{tr}(\mathbf{B})}{\sqrt{2\phi^{-2}\operatorname{tr}(\mathbf{B}^{2}) + 4\phi^{-1}\boldsymbol{\beta}_{b}^{\top}\mathbf{X}_{b}^{*\top}\mathbf{B}^{2}\mathbf{X}_{b}^{*}\boldsymbol{\beta}_{b}}}\right) + o(1).$$
(18)

Then the conclusion follows from (17), (18) and the following facts

$$\operatorname{tr}(\mathbf{B}) = -(n-q)\sqrt{\frac{2\operatorname{Var}\left(\gamma_{I}^{k}\right)}{n-q}}x,$$

$$\operatorname{tr}(\mathbf{B}^{2}) = (1+o(1))(n-q)\operatorname{Var}(\gamma_{I}^{k}),$$

$$\boldsymbol{\beta}_{b}^{\top}\mathbf{X}_{b}^{*\top}\mathbf{B}\mathbf{X}_{b}^{*}\boldsymbol{\beta}_{b} = (n-q)\left(\operatorname{Cov}\left(\gamma_{I}^{k},\gamma_{I}w_{I}^{2}\right) - \operatorname{E}(\gamma_{I}w_{I}^{2})\sqrt{\frac{2\operatorname{Var}\left(\gamma_{I}^{k}\right)}{n-q}}x\right),$$

$$\boldsymbol{\beta}_{b}^{\top}\mathbf{X}_{b}^{*\top}\mathbf{B}^{2}\mathbf{X}_{b}^{*}\boldsymbol{\beta}_{b} = (n-q)\operatorname{E}\left[\left(\gamma_{I}^{k} - \operatorname{E}(\gamma_{I}^{k}) - \sqrt{\frac{2\operatorname{Var}(\gamma_{I}^{k})}{n-q}}x\right)^{2}\gamma_{I}w_{I}^{2}\right].$$

References

Bai, Z., Pan, G., and Yin, Y. (2018). A central limit theorem for sums of functions of residuals in a high-dimensional regression model with an application to variance homoscedasticity test. *TEST*, 27(4):896–920.

Bentkus, V. and Gotze, F. (1996). Optimal rates of convergence in the clt for quadratic forms. Annals of Probability, 24(1):466–490.

Buhlmann, P. (2013). Statistical significance in high-dimensional linear models. *Bernoulli*, 19(4):1212–1242.

Casella, G. and Moreno, E. (2006). Objective bayesian variable selection. *Journal of the American Statistical Association*, 101(473):157–167.

Chatterjee, S. (2008). A new method of normal approximation. *The Annals of Probability*, 36(4):1584–1610.

Chen, S. X., Zhang, L., and Zhong, P. (2010). Tests for high-dimensional covariance matrices. Journal of the American Statistical Association, 105(490):810–819.

Cohn, D. L. (2013). *Measure Theory*. Birkhauser Advanced Texts Basler Lehrbucher. Birkhuser Basel, 2 edition.

DasGupta, A. (2008). Asymptotic Theory of Statistics and Probability. Springer Texts in Statistics. Springer-Verlag New York, 1 edition.

Dicker, L. H. and Erdogdu, M. A. (2017). Flexible results for quadratic forms with applications to variance components estimation. *The Annals of Statistics*, 45(1):386–414.

E. L. Lehmann, J. P. R. (2005). Testing Statistical Hypotheses. Springer New York.

- Feng, L., Zou, C., Wang, Z., and Chen, B. (2013). Rank-based score tests for high-dimensional regression coefficients. *Electronic Journal of Statistics*, 7(0):2131–2149.
- Goddard, S. D. and Johnson, V. E. (2016). Restricted most powerful bayesian tests for linear models. *Scandinavian Journal of Statistics*, 43(4):1162–1177.
- Goeman, J. J., van de Geer, S. A., and van Houwelingen, H. C. (2006). Testing against a high dimensional alternative. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 68(3):477–493.
- Goeman, J. J., van Houwelingen, H. C., and Finos, L. (2011). Testing against a high-dimensional alternative in the generalized linear model: asymptotic type i error control. *Biometrika*, 98(2):381–390.
- Götze, F. and Tikhomirov, A. (2002). Asymptotic distribution of quadratic forms and applications. Journal of Theoretical Probability, 15(2):423–475.
- Horn, R. A. and Johnson, C. R. (1991). Topics in Matrix Analysis. Cambridge University Press.
- Javier Girón, F., Lina Martínez, M., Moreno, E., and Torres, F. (2006). Objective testing procedures in linear models: Calibration of the p-values. Scandinavian Journal of Statistics, 33(4):765–784.
- Jiang, J. (1996). Reml estimation: asymptotic behavior and related topics. *Annals of Statistics*, 24(1):255–286.
- Lan, W., Ding, Y., Fang, Z., and Fang, K. (2016a). Testing covariates in high dimension linear regression with latent factors. *Journal of Multivariate Analysis*, 144:25–37.
- Lan, W., Wang, H., and Tsai, C. L. (2014). Testing covariates in high-dimensional regression.

 Annals of the Institute of Statistical Mathematics, 66(2):279–301.
- Lan, W., Zhong, P.-S., Li, R., Wang, H., and Tsai, C.-L. (2016b). Testing a single regression coefficient in high dimensional linear models. *Journal of Econometrics*, 195(1):154–168.
- Lei, L., Bickel, P. J., and Karoui, N. E. (2018). Asymptotics for high dimensional regression m-estimates: fixed design results. *Probability Theory and Related Fields*, 172(3-4):983–1079.
- Liang, F., Paulo, R., Molina, G., Clyde, M. A., and Berger, J. O. (2008). Mixtures of g priors for bayesian variable selection. *Journal of the American Statistical Association*, 103(481):410–423.
- Pollard, D. (1984). Convergence of stochastic processes. *Economica*.
- Sevast'yanov, B. A. (1961). A class of limit distributions for quadratic forms of stochastic random variables. Theory of Probability & Its Applications, 6(3):337–340.

- Wang, S. and Cui, H. (2015). A new test for part of high dimensional regression coefficients. *Journal of Multivariate Analysis*, 137:187–203.
- Xianyang Zhang, G. C. (2017). Simultaneous inference for high-dimensional linear models. *Journal* of the American Statistical Association, 112(518):757–768.
- Xu, K. (2016). A new nonparametric test for high-dimensional regression coefficients. *Journal of Statistical Computation and Simulation*, 87(5):855–869.
- Zhang, C.-H. and Zhang, S. S. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 76(1):217–242.
- Zhong, P. S. and Chen, S. X. (2011). Tests for high-dimensional regression coefficients with factorial designs. *Journal of the American Statistical Association*, 106(493):260–274.
- Zhou, Q. and Guan, Y. (2018). On the null distribution of bayes factors in linear regression. *Journal* of the American Statistical Association, 0(0):1–10.