Кафедра вычислительной техники

Вычислительная математика

Лабораторная работа №2 "Интегрирование"

Вариант: Метод трапеций

Выполнил

Студент группы Р3210

Глушков Дмитрий Сергеевич

1. Описание метода, расчетные формулы.

Метод трапеций

Метод трапеций - метод численного интегрирования функции. При интегрировании методом трапеций функция на промежутке [a, b] разбивается на бесконечно малые участки. Площадь под графиком функции на бесконечно малых промежутках аппроксимируется прямоугольными трапециями. Тогда сумма площадей всех трапеций – искомая интегральная сумма.

Рисунок 1. Иллюстрация разбиения функции.

Формула вычисления:

$$\int_a^b f(x) \, dx pprox \sum_{i=0}^{n-1} rac{f(x_i) + f(x_{i+1})}{2} (x_{i+1} - x_i)$$

Где x_i и x_{i+1} — элементы разбиения отрезка [a, b] бесконечно большим количеством x_i , то есть x_{i+1} - x_i -> 0.

Оценка Рунге для вычисленного интеграла.

Интеграл вычисляется дважды, для количества шагов n, затем для количества шагов 2n. Тогда погрешность вычисления определяется по формуле Рунге: $\Delta_{2n} \approx \Theta |I_{2n} - I_n|$, где $\Theta = 1/3$ для метода трапеций.

2. Листинг функции.

```
double Calc()
  {
    if (a==b)
      I=0;
      return 0;
    double tempI=0; //tempI = I(n), I=I(2n)
    do
    {
      tempI=I;
      I=0;
      for (double x=a, dx=(b-a)/num; x<b; x+=dx)
        double y2, y1;
        y1=Func(x);
        y2=Func(x+dx);
        I + = dx/2*(y1+y2);
      if (tempI==I)
        diff=0;
      else
      {
        diff=(double)fabs(I-tempI)/3L;
        num*=2;
      }
    }
   while(diff>eps);
     if (isRight)
      return I;
    else
      return -I;
 }
```

3. Блок схема функции.

4. Примеры и результаты работы

1) Исходные данные:

Результат работы программы:

Находждение интеграла методом трапеций Выберите интересующую функцию:

1. y=x*x

2. $y=(1+\sin(x))^3 \cos(x)$

3. $y=x^{(1/2)}$

4. y=4

5. y=x

Введите точность: 0.001

Введите нижнюю границу интегрирования: -3.41 Введите вверхнюю границу интегрирования: 52

Интеграл: 46882.6 Погрешность: 3.57457e-005

Количество разбиений: 56320

2) Исходные данные:

$$y=\sqrt{x}$$
, a=5, b=1.11, eps=0.1

Результат работы программы:

Находждение интеграла методом трапеций

Выберите интересующую функцию:

1. y=x*x

2. $y=(1+\sin(x))^3 \cos(x)$

3. $y=x^{(1/2)}$

4. y=4

5. y=x

3 .

Введите точность: 0.1

Введите нижнюю границу интегрирования: 5 Введите вверхнюю границу интегрирования: 1.11

Интеграл: 6.6652 Погрешность: 0.00850991 Количество разбиений: 12

3) Исходные данные:

 $y=(1+\sin(x))^3\cos(x)$, a=-4, b=2.4, eps=0.0001

Результат работы программы:

Находждение интеграла методом трапеций

Выберите интересующую функцию:

1. y=x*x

2. $y=(1+\sin(x))^3 \cos(x)$

3. $y=x^{(1/2)}$

4. y=4

5. y=x

2.

Введите точность: 0.0001

Введите нижнюю границу интегрирования: -4 Введите вверхнюю границу интегрирования: 2.4

Интеграл: -0.411562 Погрешность: 7.52612e-005 Количество разбиений: 196608

5. Выводы

В результате проделанной работы был реализован в виде отдельной подпрограммы алгоритм интегрирования трапециями с заданной точностью и проверка погрешности с помощью правила Рунге. Также во время ознакомления с теоретической частью лабораторной работы были изучены методы интегрирования прямоугольниками и метод Симпсона.