EE24BTECH11053 - S A Aravind Eswar

Question: Verify if the points A(4, 3), B(6, 4), C(5, -6) and D(-3, 5) are the vertices of a parallelogram.

Solution:

Symbol	Value	Description
A	$\begin{pmatrix} 4 \\ 3 \end{pmatrix}$	Point A
В	$\binom{6}{4}$	В
С	$\begin{pmatrix} 5 \\ -6 \end{pmatrix}$	С
D	$\begin{pmatrix} -3 \\ 5 \end{pmatrix}$	D

TABLE 0: Given Values

For points A,B,C and D to form a parallelogram, we'll need 2 vectors formed by different points to be equivalent.

$$\mathbf{AB} = \mathbf{B} - \mathbf{A} \qquad = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\mathbf{BC} = \mathbf{C} - \mathbf{B} \qquad = \begin{pmatrix} -1 \\ -10 \end{pmatrix}$$

$$\mathbf{CD} = \mathbf{D} - \mathbf{C} \qquad = \begin{pmatrix} -8 \\ 11 \end{pmatrix}$$

$$\mathbf{DA} = \mathbf{A} - \mathbf{D} \qquad = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$$

$$\mathbf{BD} = \mathbf{D} - \mathbf{B} \qquad = \begin{pmatrix} -9 \\ 1 \end{pmatrix}$$

$$\mathbf{AC} = \mathbf{C} - \mathbf{A} \qquad = \begin{pmatrix} 1 \\ -9 \end{pmatrix}$$

But here, we see no such possibility arising with the vectors. And thus, the points \mathbf{A} , \mathbf{B} , \mathbf{C} and \mathbf{D} are not forming a parallelogram.

1

Fig. 0.1: Points A,B,C and D