Week 02: Sorting

FanFly

March 15, 2020

1/16

Time Complexity of a Problem

The time complexity T(n) of a problem P is the time complexity of the "best" algorithm that solves P.

Time Complexity of a Problem

The time complexity T(n) of a problem P is the time complexity of the "best" algorithm that solves P.

• We have T(n) = O(f(n)) if there is an algorithm that solves P in O(f(n)) time.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

 FanFly
 Week 02: Sorting
 March 15, 2020
 2 / 16

Time Complexity of a Problem

The time complexity T(n) of a problem P is the time complexity of the "best" algorithm that solves P.

- We have T(n) = O(f(n)) if there is an algorithm that solves P in O(f(n)) time.
- We have $T(n) = \Omega(f(n))$ if any algorithm that solves P needs $\Omega(f(n))$ time.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

The Primality Test Problem

- Input: An *n*-bit positive integer $m \ge 2$.
- Output: True if *m* is prime, false if *m* is composite.

The Primality Test Problem

- Input: An *n*-bit positive integer $m \ge 2$.
- Output: True if *m* is prime, false if *m* is composite.
- Last week, we found an $O(2^{n/2})$ -time algorithm that solves the primality test problem.

The Primality Test Problem

- Input: An *n*-bit positive integer $m \ge 2$.
- Output: True if m is prime, false if m is composite.
- Last week, we found an $O(2^{n/2})$ -time algorithm that solves the primality test problem.
- An $O(n^{12}(\log_2 n)^{\epsilon})$ -time algorithm, called the AKS primality test, was proposed in 2002. (ϵ is a positive number.)

The Primality Test Problem

- Input: An *n*-bit positive integer $m \ge 2$.
- Output: True if m is prime, false if m is composite.
- Last week, we found an $O(2^{n/2})$ -time algorithm that solves the primality test problem.
- An $O(n^{12}(\log_2 n)^{\epsilon})$ -time algorithm, called the AKS primality test, was proposed in 2002. (ϵ is a positive number.)
- In 2005, it is improved to run in $O(n^6(\log_2 n)^{\epsilon})$ time.

The Primality Test Problem

- Input: An *n*-bit positive integer $m \ge 2$.
- Output: True if m is prime, false if m is composite.
- Last week, we found an $O(2^{n/2})$ -time algorithm that solves the primality test problem.
- An $O(n^{12}(\log_2 n)^{\epsilon})$ -time algorithm, called the AKS primality test, was proposed in 2002. (ϵ is a positive number.)
- In 2005, it is improved to run in $O(n^6(\log_2 n)^{\epsilon})$ time.
- Thus, now we know that the primality test problem can be solved in $O(n^6(\log_2 n)^{\epsilon})$ time, but no one knows if there is a faster algorithm than the ones above.

4□ > 4□ > 4□ > 4 = > 4 = > = 90

3 / 16

The Champion Problem

- Input: An array A of n numbers (indexed from 0 to n-1).
- Output: An index i such that $A[i] \ge A[j]$ for any index j.

The Champion Problem

- Input: An array A of n numbers (indexed from 0 to n-1).
- Output: An index i such that $A[i] \ge A[j]$ for any index j.

There is a O(n)-time algorithm that solves the problem as follows.

The Champion Problem

- Input: An array A of n numbers (indexed from 0 to n-1).
- Output: An index i such that $A[i] \ge A[j]$ for any index j.

There is a O(n)-time algorithm that solves the problem as follows.

```
def index_max(A):
    i = 0
    for j in range(1, len(A)):
        if A[j] > A[i]:
        i = j
    return i
```

The Champion Problem

- Input: An array A of n numbers (indexed from 0 to n-1).
- Output: An index i such that $A[i] \ge A[j]$ for any index j.

There is a O(n)-time algorithm that solves the problem as follows.

Also, note that we need at least n-1 comparisons to solve the problem, implying that the time complexity of the problem is $\Omega(n)$.

The Champion Problem

- Input: An array A of n numbers (indexed from 0 to n-1).
- Output: An index i such that $A[i] \ge A[j]$ for any index j.

There is a O(n)-time algorithm that solves the problem as follows.

Also, note that we need at least n-1 comparisons to solve the problem, implying that the time complexity of the problem is $\Omega(n)$.

Thus, we have found an **optimal** algorithm for the champion problem.

March 15, 2020 4 / 16

The Sorting Problem

The Sorting Problem

- Input: An array A of n numbers (indexed from 0 to n-1).
- Output: A non-decreasing array that is reordered from A.

The Sorting Problem

The Sorting Problem

- Input: An array A of n numbers (indexed from 0 to n-1).
- Output: A non-decreasing array that is reordered from A.

We have known that there is an algorithm, called merge sort, that can solve the sorting problem.

Merging Sorted Arrays

First, we propose an algorithm merging two sorted arrays P and Q into a sorted array A.

Merging Sorted Arrays

First, we propose an algorithm merging two sorted arrays P and Q into a sorted array A.

```
def merge(P, Q, i, j):
    if j == len(Q):
        return P
    elif i == len(P):
        return Q
    else:
        if P[i] <= Q[j]:
            return [P[i]] + merge(P, Q, i + 1, j)
        else:
            return [Q[j]] + merge(P, Q, i, j + 1)</pre>
```

P 2 3 5 7 11 13 Q 4 6 8 10 12 14 15

6/16

Merging Sorted Arrays

First, we propose an algorithm merging two sorted arrays P and Q into a sorted array A.

```
def merge(P, Q, i, j):
    if j == len(Q):
        return P
    elif i == len(P):
        return Q
    else:
        if P[i] <= Q[j]:
            return [P[i]] + merge(P, Q, i + 1, j)
        else:
            return [Q[j]] + merge(P, Q, i, j + 1)</pre>
```

```
P 2 3 5 7 11 13 Q 4 6 8 10 12 14 15
```

It can be shown that the algorithm runs in $\Theta(n)$ time.

Merge Sort

Then we can sort the array by repeating merging its subarrays.

```
def merge_sort(A, 1, r):
    if r - 1 <= 1:
        return a[1:r]
    else:
        m = (1 + r) // 2
        P = merge_sort(A, 1, m)
        Q = merge_sort(A, m, r)
        return merge(P, Q, 0, 0)</pre>
```

7/16

Merge Sort

Then we can sort the array by repeating merging its subarrays.

```
def merge_sort(A, 1, r):
    if r - 1 <= 1:
        return a[1:r]
    else:
        m = (1 + r) // 2
        P = merge_sort(A, 1, m)
        Q = merge_sort(A, m, r)
        return merge(P, Q, 0, 0)</pre>
```

The time complexity of merge sort is

$$T(n) = \begin{cases} O(1), & \text{if } n \leq 1\\ 2T(n/2) + \Theta(n), & \text{otherwise.} \end{cases}$$

Merge Sort

Then we can sort the array by repeating merging its subarrays.

```
def merge_sort(A, 1, r):
    if r - 1 <= 1:
        return a[1:r]
    else:
        m = (1 + r) // 2
        P = merge_sort(A, 1, m)
        Q = merge_sort(A, m, r)
        return merge(P, Q, 0, 0)</pre>
```

The time complexity of merge sort is

$$T(n) = egin{cases} O(1), & ext{if } n \leq 1 \ 2T(n/2) + \Theta(n), & ext{otherwise}. \end{cases}$$

What is the exact time complexity of merge sort?

→□▶→□▶→□▶→□▶
□◆□▶→□▶→□▶
□◆□▶

Theorem (Master Theorem)

Let T(n) be a positive function satisfying the following recurrence relation.

$$T(n) = \begin{cases} O(1), & \text{if } n \leq 1 \\ aT(n/b) + M(n), & \text{otherwise.} \end{cases}$$

Let $c = \log_b a$.

• If
$$M(n) = O(n^k)$$
 with $k < c$, then $T(n) = \Theta(n^c)$.

Theorem (Master Theorem)

Let T(n) be a positive function satisfying the following recurrence relation.

$$T(n) = egin{cases} O(1), & ext{if } n \leq 1 \ aT(n/b) + M(n), & ext{otherwise}. \end{cases}$$

Let $c = \log_b a$.

- If $M(n) = O(n^k)$ with k < c, then $T(n) = \Theta(n^c)$.
- If $M(n) = \Theta(n^k)$ with k = c, then $T(n) = \Theta(n^c \log_2 n)$.

Theorem (Master Theorem)

Let T(n) be a positive function satisfying the following recurrence relation.

$$T(n) = egin{cases} O(1), & ext{if } n \leq 1 \ aT(n/b) + M(n), & ext{otherwise}. \end{cases}$$

Let $c = \log_b a$.

- If $M(n) = O(n^k)$ with k < c, then $T(n) = \Theta(n^c)$.
- If $M(n) = \Theta(n^k)$ with k = c, then $T(n) = \Theta(n^c \log_2 n)$.
- If $M(n) = \Omega(n^k)$ with k > c, then $T(n) = \Theta(M(n))$.

Theorem (Master Theorem)

Let T(n) be a positive function satisfying the following recurrence relation.

$$T(n) = egin{cases} O(1), & ext{if } n \leq 1 \ aT(n/b) + M(n), & ext{otherwise}. \end{cases}$$

Let $c = \log_b a$.

- If $M(n) = O(n^k)$ with k < c, then $T(n) = \Theta(n^c)$.
- If $M(n) = \Theta(n^k)$ with k = c, then $T(n) = \Theta(n^c \log_2 n)$.
- If $M(n) = \Omega(n^k)$ with k > c, then $T(n) = \Theta(M(n))$.

Thus, the time complexity of merge sort is $T(n) = \Theta(n \log_2 n)$ since

$$T(n) = egin{cases} O(1), & ext{if } n \leq 1 \ 2T(n/2) + \Theta(n), & ext{otherwise}. \end{cases}$$

Lower Bound of Comparison-Based Sorting

Any comparison-based algorithm can be seen as a binary tree.

Lower Bound of Comparison-Based Sorting

Any comparison-based algorithm can be seen as a binary tree.

9/16

FanFly Week 02: Sorting March 15, 2020

Lower Bound of Comparison-Based Sorting

Any comparison-based algorithm can be seen as a binary tree.

Since there are n! leaves, we know that the height of the binary tree is at least

$$h = \log_2(n!),$$

implying that any comparison-based algorithm runs in $\Omega(\log_2(n!))$ time.

Lower Bound of Comparison-Based Sorting (cont.)

Note that

$$\log_{2}(n!) = \log_{2}(n \times (n-1) \times \cdots \times 2 \times 1)$$

$$\geq \log_{2}\left(n \times (n-1) \times \cdots \times \left\lceil \frac{n+1}{2} \right\rceil\right)$$

$$\geq \frac{n}{2}\log_{2}\left(\frac{n}{2}\right)$$

$$= \frac{n}{2}(\log_{2}n - 1)$$

$$= \Omega(n\log_{2}n).$$

→ロト→□ト→主ト→主 りへ○

Lower Bound of Comparison-Based Sorting (cont.)

Note that

$$\begin{aligned} \log_2(n!) &= \log_2(n \times (n-1) \times \dots \times 2 \times 1) \\ &\geq \log_2\left(n \times (n-1) \times \dots \times \left\lceil \frac{n+1}{2} \right\rceil \right) \\ &\geq \frac{n}{2}\log_2\left(\frac{n}{2}\right) \\ &= \frac{n}{2}(\log_2 n - 1) \\ &= \Omega(n\log_2 n). \end{aligned}$$

Week 02: Sorting

Thus, any comparison-based algorithm runs in $\Omega(n \log_2 n)$ time.

⟨□⟩⟨₫⟩⟨ë⟩⟨ë⟩ € ♡Q♡

March 15, 2020

10 / 16

The Sorting Problem

- Input: An array A of n numbers (indexed from 0 to n-1).
- Output: A non-decreasing array that is reordered from A.

For any computational problem, the final goal is to find an optimal algorithm that solves the problem.

The Sorting Problem

- Input: An array A of n numbers (indexed from 0 to n-1).
- Output: A non-decreasing array that is reordered from A.

For any computational problem, the final goal is to find an optimal algorithm that solves the problem.

• The merge sort algorithm runs in $O(n \log_2 n)$ time.

The Sorting Problem

- Input: An array A of n numbers (indexed from 0 to n-1).
- Output: A non-decreasing array that is reordered from A.

For any computational problem, the final goal is to find an optimal algorithm that solves the problem.

- The merge sort algorithm runs in $O(n \log_2 n)$ time.
- Any comparison-based algorithm that solves the sorting problem must run in $\Omega(n \log_2 n)$ time.

The Sorting Problem

- Input: An array A of n numbers (indexed from 0 to n-1).
- Output: A non-decreasing array that is reordered from A.

For any computational problem, the final goal is to find an optimal algorithm that solves the problem.

- The merge sort algorithm runs in $O(n \log_2 n)$ time.
- Any comparison-based algorithm that solves the sorting problem must run in $\Omega(n \log_2 n)$ time.
- Thus, the merge sort algorithm is an optimal comparison-based algorithm that solves the sorting problem.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

We have learned the binary search algorithm, which can search a value in a sorted array.

We have learned the binary search algorithm, which can search a value in a sorted array.

```
def binary_search(A, val, l, r):
    if val <= A[1]:
        return l
    elif val > A[r - 1]:
        return r
    else:
        m = (1 + r) // 2
        if val <= A[m]:
            return binary_search(A, val, l, m)
        else:
            return binary_search(A, val, m + 1, r)</pre>
```

12 / 16

Exercise #1 (cont.)

It can be shown that the time complexity of binary search is

$$T(n) = \begin{cases} O(1), & \text{if } n \leq 1 \\ T(n/2) + O(1), & \text{otherwise.} \end{cases}$$

Exercise #1 (cont.)

It can be shown that the time complexity of binary search is

$$T(n) = \begin{cases} O(1), & \text{if } n \leq 1 \\ T(n/2) + O(1), & \text{otherwise.} \end{cases}$$

Please find the exact time complexity of binary search using the master theorem.

Theorem (Master Theorem)

Let T(n) be a positive function satisfying the following recurrence relation.

$$T(n) = \begin{cases} O(1), & \text{if } n \leq 1\\ aT(n/b) + M(n), & \text{otherwise.} \end{cases}$$

Let $c = \log_b a$.

- If $M(n) = O(n^k)$ with k < c, then $T(n) = \Theta(n^c)$.
- If $M(n) = \Theta(n^k)$ with k = c, then $T(n) = \Theta(n^c \log_2 n)$.
- If $M(n) = \Omega(n^k)$ with k > c, then $T(n) = \Theta(M(n))$.

Exercise #1 (cont.)

Solution

Let $c = \log_2 1 = 0$ and M(n) = O(1). Since $M(n) = \Theta(n^c)$, we have

$$T(n) = \Theta(n^c \log_2 n) = \Theta(\log_2 n),$$

which means that binary search runs in logarithmic time.

4□ > 4□ > 4 = > 4 = > = 90

Suppose that f and g are functions such that

$$f(n) = \Theta(\log_2 n)$$
 and $g(n) = \Theta(\log_e n)$,

and we know the fact that 2.718 < e < 2.719.

Suppose that f and g are functions such that

$$f(n) = \Theta(\log_2 n)$$
 and $g(n) = \Theta(\log_e n)$,

and we know the fact that 2.718 < e < 2.719.

Which of the following is true?

Suppose that f and g are functions such that

$$f(n) = \Theta(\log_2 n)$$
 and $g(n) = \Theta(\log_e n)$,

and we know the fact that 2.718 < e < 2.719.

Which of the following is true?

•
$$f(n) = O(g(n))$$
 and $f(n) \neq \Omega(g(n))$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Suppose that f and g are functions such that

$$f(n) = \Theta(\log_2 n)$$
 and $g(n) = \Theta(\log_e n)$,

and we know the fact that 2.718 < e < 2.719.

Which of the following is true?

- f(n) = O(g(n)) and $f(n) \neq \Omega(g(n))$.
- $f(n) = \Theta(g(n))$.

Suppose that f and g are functions such that

$$f(n) = \Theta(\log_2 n)$$
 and $g(n) = \Theta(\log_e n)$,

and we know the fact that 2.718 < e < 2.719.

Which of the following is true?

- f(n) = O(g(n)) and $f(n) \neq \Omega(g(n))$.
- $f(n) = \Theta(g(n))$.
- $f(n) = \Omega(g(n))$ and $f(n) \neq O(g(n))$.

Suppose that f and g are functions such that

$$f(n) = \Theta(\log_2 n)$$
 and $g(n) = \Theta(\log_e n)$,

and we know the fact that 2.718 < e < 2.719.

Which of the following is true?

- f(n) = O(g(n)) and $f(n) \neq \Omega(g(n))$.
- $f(n) = \Theta(g(n))$.
- $f(n) = \Omega(g(n))$ and $f(n) \neq O(g(n))$.

Solution

We have $f(n) = \Theta(g(n))$ since

$$\frac{\log_e n}{\log_2 n} = \log_e 2.$$

(From now on we'll use $O(\log n)$ instead of $O(\log_k n)$ to represent logarithm.)

Please find the time complexity of the following algorithm using big-O notation.

Please find the time complexity of the following algorithm using big-O notation.

```
def magic_sort(A):
    P = list(A)
    Q = []
    while P:
        Q.append(P.pop(index_min(P)))
    return Q
```

16 / 16

Please find the time complexity of the following algorithm using big-O notation.

```
def magic_sort(A):
    P = list(A)
    Q = []
    while P:
        Q.append(P.pop(index_min(P)))
    return Q
```

We have the following assumption, where n is the length of 1s.

Please find the time complexity of the following algorithm using big-O notation.

```
def magic_sort(A):
    P = list(A)
    Q = []
    while P:
        Q.append(P.pop(index_min(P)))
    return Q
```

We have the following assumption, where n is the length of 1s.

• index_min(ls) returns the index of the smallest item in ls in O(n) time.

Please find the time complexity of the following algorithm using big-O notation.

```
def magic_sort(A):
    P = list(A)
    Q = []
    while P:
        Q.append(P.pop(index_min(P)))
    return Q
```

We have the following assumption, where n is the length of 1s.

- index_min(ls) returns the index of the smallest item in ls in O(n) time.
- ls.append(val) adds val to the end of ls in O(1) time.

16 / 16

Please find the time complexity of the following algorithm using big-O notation.

```
def magic_sort(A):
    P = list(A)
    Q = []
    while P:
        Q.append(P.pop(index_min(P)))
    return Q
```

We have the following assumption, where n is the length of 1s.

- index_min(ls) returns the index of the smallest item in ls in O(n) time.
- ls.append(val) adds val to the end of ls in O(1) time.
- ls.pop(i) removes the item with index i in ls in O(n) time.

Please find the time complexity of the following algorithm using big-O notation.

```
def magic_sort(A):
    P = list(A)
    Q = []
    while P:
        Q.append(P.pop(index_min(P)))
    return Q
```

We have the following assumption, where n is the length of 1s.

- index_min(ls) returns the index of the smallest item in ls in O(n) time.
- ls.append(val) adds val to the end of ls in O(1) time.
- ls.pop(i) removes the item with index i in ls in O(n) time.

Solution

The magic sort runs in $O(n^2)$ time.