Course Overview

Experimental Design

Machine Learning Pipeline

01 Concept Development: Recruit Restaurant Visitor Forecasting

- What is the business question I want to answer?
 - ☐ Can I predict the amount of visitors at a given date?
 - Benefits: Plan personal and material required more efficiently
 - **□** Special interest on predicting most busy times and dates
- What do I want to predict?
 - ☐ The number of visitors (continuous variable)
- Which data do I have available?
 - Weather data
 - Holidays
 - ☐ Historical number of visitors for the last 2 years
- Which type of problem do I have?
 - ☐ I have a regression problem
 - ☐ It requires a time series analysis

02 Background Research: Recruit Restaurant Visitor Forecasting

- ☐ Google: Time series analysis python
- ☐ Google: Visitor forecasting
- ☐ Google: How to evaluate time series analysis

03 Define Requirements: **Data Exploration**

Is my	y data clean?						
	Remove outliers						
	Identify temporal gaps						
	Find nulls						
Do I	have enough data?						
☐ Ensure that we have a period representative enough (covers different seasons)							
	Maybe we need external data (i.e. weather, special holidays of the city, events, etc)						
Is my	y training data representing well all the situations? Is it balanced?						
	☐ Ensure that we have similar amount of data points for those more busy days than for those that are not						
	Overrepresent or remove data points						
How	much training data do I have?						
	If big data:						
	□ Prototype will just require a small part of my dataset						
	☐ I will need more storage, time for calculations and computational power						
	☐ Take care that the big data is not just noise						
	If small data:						
	☐ Use the minimum amount of features as possible to avoid overfitting (use a dimensions reduction approach						
	Communicate to the business responsable on time the limitations on accuracy that it will have						

04 Develop Solutions: Data Mining & Feature Engineering

- □ Remove outliers https://www.kdnuggets.com/2017/02/removing-outliers-standard-deviation-python.html
- Reduce dimensions if needed http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA
- Balance data http://contrib.scikit-learn.org/imbalanced-learn/stable/auto examples/index.html
- ☐ Time series analysis / decomposition (remove seasonality and extract residuals)

 https://www.analyticsvidhya.com/blog/2016/02/time-series-forecasting-codes-python/
- ☐ Assign new external features to each event
- Extract new features out of input data
- ☐ Use unsupervised learning to find patterns and understand better your dataset

05 Prototype Development: **Design and Build Model Training Pipeline**

Cla	ssification Problem	Regression Problem			Recommendation System			Time Series Forecast				
00000	Decision Tree Random Forest Logistic regression (binary) Xgboost Support Vector Machines Neural networks	٥	☐ Linear Regression		0000	Collaborative Filtering Word embedding Boltzmann Machines Clustering		000	ARIMA Method EWMA Method Recurrent Neural Network			
Hyperparameters												
00000	Tree max depth Number of estimators Minimum samples leaf C (regularization strength) Number of iterations Weights				0 0000	calcul Numb Maxin	per of means mum frequency (tf-idf) per of grams	0	Smoothing parameter Weights			
				rics								
0000	Accuracy (binary) ROC curve (area under the curve) Precision Recall F1-score	٥	RMSE		0000	Euclic Manh	arity ne distance dean distance nattan distance ogeneity		RMSE			

A/B Test

06/07/08 Prototype Testing, Iterate & Evaluate: Optimize Model

- Optimize Model
 - ☐ Grid Search for different hyperparameters
 - Evaluate performance on the selected metrics

- ☐ Choose Model that Performs Better
 - Repeat the model optimization for different models
 - Benchmark models with the same metrics

09 Communicate Results: A visualization Challenge

- **■** Be as much simple as possible
- Do not talk about the model details, don't try to show off!
- Define business KPIs out of your selected metrics that answer the business question and are understandable
- ☐ Define an A/B Test to evaluate your model once it is deployed
- Be clear about the limitations and the strengths
- Use always simple plots to support your results

Now you will design your own experiment / project

