- (a') $(T(t))_{t\geq 0}$ is stable and bounded.
- (b') $(T(t))_{t\geq 0}$ is uniformly stable.
- (c') $(T(t))_{t\geq 0}$ is bounded and there is a dense subspace D such that $\int_0^\infty T(t) f \ dt$ exists for every $f \in D$.

Proof. If $(T(t))_{t\geq 0}$ is stable, then, by Thm.1.12, ker A = $\{0\}$ and $\int_0^t T(s) Af \, ds = T(t) f - f + -f \, as \, t + \infty$. Therefore (a) implies (b). On the other hand, if $\int_0^t T(s) Af \, ds$ converges as $t + \infty$, then, by the equation above, $g := \lim_{t \to \infty} T(t) f$ exists. But ker A = $\{0\}$ and therefore g = 0. This proves "(b) + (a)". The implication "(a') + (b')" is obvious. If T(t) f + 0 for every $f \in E$, then $\|T(t)\| \leq M$ and $0 \notin R\sigma(A)$ (Thm.1.12). Therefore D := im A is dense and $\int_0^\infty T(t) f \, dt$ exists for every $f \in D$. This proves "(b') + (c')". We have to show that (c') implies (a'). Define $G := \{h \in E : h = \int_0^\infty T(t) g \, dt$ for some $g \in D\}$. We will show

that G is dense in E . First we notice that $g - T(s)g \in D$ whenever $g \in D$ and $s \in \mathbb{R}_+$.

Define $h_s = \frac{1}{s} \cdot \int_0^\infty T(t) \left(g - T(s)g\right) dt = \frac{1}{s} \cdot \int_0^s T(t)g dt$. Then $h_s \in G$ and $h_s + g$ as s + 0. Therefore $D \subset \overline{G}$ or $\overline{G} = E$. Now let $h \in G$. Then $T(t)h = T(t)\int_0^\infty T(s)g ds = \int_t^\infty T(s)g ds + 0$ as $t + \infty$. But $\|T(t)\| \le M$ and therefore T(t)f + 0 for every $f \in E$.

<u>Remarks</u> 1.17. (a) If A is the generator of a stable semigroup $(T(t))_{t\geq 0}$ on a Banach space E, then, by the previous theorem,

 $\text{im } A \subset \{f \in E : \int_O^\infty T(t) f \ dt \ \text{exists}\} =: H \ .$ If $g \in H$, then $\int_O^\infty T(t) g \ dt \in D(A)$ and $A \int_O^\infty T(t) g \ dt = -g$. Therefore $g \in \text{im } A$ and we obtain that the dense subspace im A is given by

(1.14) im A = {f \in E : $\int_0^\infty T(t) f dt$ exists}

in case that A is the generator of a stable semigroup $(T(t))_{t\geq 0}$.

- (b) If $\omega(f) < 0$ for every $f \in D(A)$, then (T(t)) is stable (but might not be exponentially stable if $0 = \omega_1(A) = \sup\{\omega(f) : f \in D(A)\}$. In this case it can be seen by a proof similar to the one of Thm.1.4, that $\sigma(A)$ has to be contained in the open left half-plane; i.e. Re $\lambda < 0$ for $\lambda \in \sigma(A)$.
- (c) If one defines a semigroup $(T(t))_{t\geq 0}$ to be <u>weakly stable</u> if $< T(t)f, \phi> \to 0$ as $t\to \infty$ for every $f\in D(A)$ and $\phi\in E'$ or as <u>weakly uniformly stable</u> if $< T(t)f, \phi> \to 0$ as $t\to \infty$ for every $f\in E$ and $\phi\in E'$, then Theorem 1.13 and 1.16 can be reformulated in a