Алгебра I, листочек 9

1. Докажите, что $F \in \mathbb{k}[x]$, $F(\alpha) = 0$, $\alpha \in \mathbb{k}$ влечет $(x - \alpha)|F$ (теорема Безу). Докажите, что многочлен степени n над полем имеет не более n различных корней. Докажите, что группа

$$\mu_n(\mathbb{k}) = \{ \alpha \in \mathbb{k} | \alpha^n = 1 \}$$

содержит не больше, чем п элементов.

Многочлены над полем можно делить с остатком. Поделим F на $(x-\alpha)$, мы получим следующее равенство $F=Q\cdot(x-\alpha)+\beta$. Если подставить в это равенство α , то занулится все, кроме β , тогда $0=\beta$, что в точности означает, что F делится на $(x-\alpha)$.

С другой стороны как мы видели ранее $\mathbb{k}[x]$ целостное кольцо главных идеалов, а значит в нём единственно разложение на неприводимые, которыми в частности являются многочлены степени 1, так как они просты в кольце. Тогда в единственном разложении будет только конечное число множителей степени 1, и так как степень многочлена равна сумме степеней его фактора, то у нас не может быть больше факторов, чем степень многочлена, в частности это касается факторов степени 1, а корней не меньше, чем типов факторов степени 1, так как каждому корню потенциально соответствует 1 или несколько факторов, как мы показали в предыдущем параграфе.

В частности в группе $\mu_n(\mathbb{k})$ лежат все корни x^n-1 , а их не больше n.

2. Докажите, что конечная подгруппа мультипликативной группы поля циклична.

Пусть G – конечная подгруппа мультипликативной группы поля порядка n, она абелева. Обозначим за $\psi(d)=\#\{a\in G|a^d=1\}$. Так как $x^d=1$ имеет решений в \Bbbk не больше, чем n, то $\psi(d)\leq d$. Пусть для некого d есть элемент a этого порядка, обозначим за G_d множество элементов G порядка d, тогда очевидно, что $\langle a\rangle\subseteq\{a\in G|a^d=1\}$, но $\#\langle a\rangle=d$, а $\#\{a\in G|a^d=1\}\leq d$, тогда включение превратится в равенство. $\langle a\rangle$ циклическая группа порядка d, содержащая все корни x^d-1 . Тогда все элементы порядка d лежат в $\langle a\rangle$ и количество таких элементов $\phi(d)$. Тогда

$$n=\#G=\sum_{d\mid n}\#G_d\leq \sum_{d\mid n}\phi(d)=n$$

А значит # $G_d = \phi(d)$, в частности это верно для n, а значит мы находим элемент порядка n. Он порождает всю группу G, тогда эта группа циклическая.

3. Докажите, что если $[\mathbb{L} : \mathbb{K}] = 2$, то $\mathbb{L} = \mathbb{K}[\sqrt{\alpha}]$, где $\alpha \in \mathbb{K}$.

Это не верно в случае, когда char K=2, так как мы можем положить $K=\mathbb{F}_2$ и $L=\mathbb{F}_2[x]/(1+x+x^2)$. Для этого нужно проверить неприводимость $f(x)=1+x+x^2$, заметим, что никакой элемент K не является корнем f(x), так как f(0)=1 и f(1)=1 и если бы f(x) раскладывался в произведение многочленов меньшей степени, то они были бы степени 1 и были бы корни. Это означает, что (f(x)) максимальный идеал, так как кольцо K[x] кольцо главных идеалов, а значит нет большего идеала, так как тогда бы f(x) равнялся бы произведению двух многочленов меньшей степени и не был бы неприводимым. Тогда L поле, как фактор кольца по максимальному идеалу. При этом если бы $L=K[\sqrt{\alpha}]$, то $\sqrt{\alpha}\in L\setminus K$, а это только x и 1+x, но их квадраты $x^2=x+1$ и $(x+1)^2=x$ не лежат в K, а значит такая конструкция невозможна.

Тем не менее если характеристика K не равна 2, то для некоторого $a \in L \setminus K$ $\{1, a, a^2\}$ линейно зависимы, а значит найдутся $b_0, b_1, b_2 \in K$, что $b_0 + b_1 a + b_2 x^2 = 0$. b_2 не может равняться нулю, так как иначе бы $a \in K$, но это не так. Тогда поделив на b_2 мы получим $a^2 + pa + q = 0$, так как характеристика не равна нулю, то $a^2 + pa + q = (a + p/2)^2 + q - p^2/4 = 0$, тогда можно положить $a = p^2/4 - q \in K$, а $\sqrt{a} = a + p/2 \in L$. Так как расширение имеет степень 2, а \sqrt{a} и 1 линейно независимы, то они образуют базис, а тогда они порождают L и утверждение доказано.

8. Пусть \mathbb{F} – конечное поле. Докажите, что любая функция $f:\mathbb{F} \to \mathbb{F}$ является многочленом. Приведите пример двух различных многочленов, задающих одинаковую функцию.

Это так, как можно для каждой функции записать интерполяционный многочлен Лагранжа. Пусть $\mathbb{F}=\{a_1,...,a_q\}$, тогда для любой $f:\mathbb{F}\to\mathbb{F}$ мы найдем $\phi:1..q\to1..q$, что $f(a_i)=a_{\phi(i)}$. Запишем многочлен, моделирующий эту функцию

$$F = \sum_{i \in 1..q} a_{\phi(i)} \prod_{j \neq i, j \in 1..q} \frac{x - a_j}{a_i - a_j}$$

Для поля \mathbb{F}_2 два многочлена 1, $1+x+x^2$, как мы уже видели, моделируют одинаковые функции.

9. Пусть \mathbb{F} – произвольное поле ненулевой характеристики p и $\phi: \mathbb{F} \to \mathbb{F} = x \mapsto x^p$ – отображение. Докажите, что это гомоморфизм (гомоморфизм Фробениуса). Приведите два примера бесконечных полей характеристики p таких, что в первом случае ϕ биективен, а во втором – нет.

То что ϕ переводит произведение в произведение и единицу в единицу достаточно очевидно и не требует проверки, убедимся, что ϕ переводит сумму в сумму. Известно, что $(a+b)^p=a^p+b^p+\sum_{i=1}^{p-1}C_p^ia^ib^{p-i}$, но так как p просто и $C_p^i=p\cdot...\cdot(p-i+1)/i!$, то для $i\neq 0$, p верно, что $p\mid C_p^i$, а тогда в биноме Ньютона все члены, кроме первого и последнего занулятся, а значит $\phi(a+b)=a^p+b^p$ и ϕ – гомоморфизм. Так как он гомоморфизм из поля, то он инъективен.

Приведем теперь два примера. $F = \mathbb{F}_2(x)$ является полем, пусть $f(x) \in \text{Im } \phi$, тогда $f(x) = (p(x)/q(x))^2$, где p(x)/q(x) несократима, тогда в несократимом виде у f(x) в числителе и знаменателе будут стоять многочлены четной степени, это означает, что мы не сможем получить например x возведением в квадрат, а значит ϕ не биекция.

Пусть теперь $F=\mathbb{F}_2(\mathbb{Q}^+)=\operatorname{Frac}\mathbb{F}_2[\mathbb{Q}^+]$ Поле частных группового кольца, проверим, что это кольцо целостно. По определению $K=\mathbb{F}_2[\mathbb{Q}^+]=\{f:\mathbb{Q}^+\to\mathbb{F}_2\,|\,f$ почти всюду $0\}$. Сложение устроено по точечно, а для $f,g\in K$ и $q\in \mathbb{Q}$ $(f\cdot g)(q)=\sum_{l\in \mathbb{Q}}f(l)g(q-l)$. Сумма корректна, так как ненулевые значения встречаются только конечное число раз, а произведение элементов равно нулю почти повсюду по тому же аргументу. Проверим, что произведение ненулевых элементов f,g не нуль. Пусть $a\in \mathbb{Q}$ — максимальное по условию $f(a)\neq 0$, аналогично $b\in \mathbb{Q}$ максимально по условию $g(b)\neq 0$, тогда очевидно, что $(g\cdot f)(a+b)=f(a)g(b)\neq 0$, а значит кольцо целостно и по нему можно брать поле частных. Теперь пусть $f=p/q\in F$, тогда положим f'=p'/q' таким, что p'(x)=p(2x), а q'(x)=q(2x). Заметим, что характеристические функции $\{\chi_q\}_{q\in \mathbb{Q}}$ образуют базис K на \mathbb{F}_2 , а значит например $p'=\chi_{q_1}+\ldots+\chi_{q_n}$, где q_i попарно различны, тогда $(p')^2=(\chi_{q_1}+\ldots+\chi_{q_n})^2=\chi_{q_1}^2+\ldots+\chi_{q_n}^2=\chi_{2q_1}+\ldots+\chi_{2q_n}^2=p$, а значит $(f')^2=f$ и возведение в квадрат сюръективно и в купе с инъективностью биективно.