

Modul TA.PR+SY **Zahnradgetriebe**

Teil 3 Entwurfsberechnung und Tragfähigkeitsnachweis

FH Zentralschweiz

Hochschule Luzern Technik & Architektur

Inhalt

• Entwurfsberechnung und Tragfähigkeitsnachweis (Teil 3)

- Entwurfsberechnung
- Schadensmöglichkeiten an Zahnrädern
- Kraftverhältnisse
- Belastungseinflussfaktoren
- · Nachweis der Zahnfusstragfähigkeit
- · Nachweis der Grübchentragfähigkeit

© HSLU TA.PR+SY_H16

Entwurfsberechnung verzahnter Stirnräder

· Vorwahl der Hauptabmessungen

- Wellendurchmesser d_{sh} zur Aufnahme des Ritzels
- Übersetzung i, Zähnezahlverhältnis u
- Ritzelzähnezahl z₁
- Modul m_n
- Zahnbreite b
- Schrägungswinkel β , Steigungsrichtung der Zahnflanken

© HSLU TA.PR+SY_H16

Hochschule Luzern Technik & Architektu

Wellendurchmesser d_{sh} zur Aufnahme des Ritzels

Übersetzung i, Zähnezahlverhältnis u

$$i = i_1 \cdot i_2 \cdot \ldots \cdot i_n$$
 bzw. $u = u_1 \cdot u_2 \cdot \ldots \cdot u_n$

Regeln:

$$i = u \le 6(8)$$

2 Stufen: *i* ≈ 8 ... 45 3 Stufen: $i \approx 35 ... 200$

Ganzzahlige Einzelübersetzungen sind möglichst zu vermeiden, damit immer wieder andere Zähne zum Eingriff kommen und eine gleichmässige Abnutzung erreicht wird.

TB 21-11 Empfehlung zur Aufteilung von i

> ruhiger Lauf, kostengünstig > hohe Fussfestigkeit, teuer

© HSLU TA.PR+SY_H16

Hochschule Luzern

Ritzelzähnezahl z₁

Kriterien:

- grosse Zähnezahl, kleiner Modul
- kleine Zähnezahl, grosser Modul
- Bei kleinen i(u) grössere z₁
- · kein Unterschnitt, keine Spitzenbildung
- möglichst genaue Einhaltung der vorgesehenen Übersetzung
- z_1 und z_2 ohne gemeinsamen Teiler (Schwingungen, Abnutzung)

Anhaltswerte gemäss TB 21-13

Anforderungen an das Getriebe	Anwendungsbeispiele	Günstige Ritzelzähnezahl z ₁	
Zahnfußtragfähigkeit und Grübchentrag- fähigkeit ausgeglichen	Getriebe für den allgemeinen Maschinen- bau (kleine bis mittlere Drehzahl)	$z_1 \approx 20 \dots 30$	
Zahnfußtragfähigkeit wichtiger als die Grübchentragfähigkeit	Hubwerkgetriebe, teilweise Fahrzeug- getriebe	$z_1 \approx 14 \dots 20$	
Grübchentragfähigkeit wichtiger als die Zahnfußtragfähigkeit	hochbelastete schnelllaufende Getriebe im Dauerbetrieb	z ₁ > 35	
Hohe Laufruhe	schnelllaufende Getriebe	01 2 00	

© HSLU TA.PR+SY H16 6

Zahnbreite b

Kriterien:

- grosse Zahnbreite anstreben
- Ritzelzahnbreite etwas grösser als beim Rad
- durch Kantenrücknahme Kantenbruchgefahr verhindern
 - bei b ≥ 10 * m = Kantenrücknahme ca. m, 10° bis 30°
 - bei b < 10 * m = Kantenrücknahme ca. 1 + 0.1 * m, 10° bis 30°

Anhaltswerte für maximal zulässige Zahnbreiten gemäss TB 21-14

a) Durchmesser-Breitenverhältnis $\psi_d = b_1/d_1$

Art der Lagerung	Wärmebehandlung			
	normal geglüht HB < 180	vergütet HB > 200	einsatz-, flamm- oder induktions- gehärtet	nitriert
	Ψ _d			
symmetrisch Am.	≤1,6	≤1,4	≤1,1	≤0,8
unymmetrisch	≤1,3	≤1,1	≤0,9	≤0,6
fliegend	≤0,8	≤0,7	≤0,6	≤0,4

© HSLU TA.PR+SY_H16

Hochschule Luzern Technik & Architektur

Schrägungswinkel β , Steigungsrichtung der Zahnflanken

Kriterien:

- Sprungüberdeckung $\varepsilon_{\beta} \approx 1 \dots 1.2$
 - günstig für Laufruhe
 - Begrenzung der Axialkräfte
- Flankenrichtung so wählen, dass zusätzliche Axialkraft vom Lager mit kleinerer Radiallast aufgenommen wird
- Flankenrichtung von Ritzel und Rad ungleich (rechts / links)

Einfach-, Doppelschrägverzahnung $\beta \approx 8^{\circ} \dots 20^{\circ}$

Pfeilverzahnung β≈ 30° ... 45°

Ende

Hochschule Luzern Technik & Architektu

Modul m

© HSLU TA PR+SY_H16

• Durchmesser d_{sh} ist vorgegeben:

Ausführung Ritzel auf Welle
$$m_{\rm n}' \approx \frac{1.8 \cdot d_{\rm sh} \cdot \cos \beta}{(z_1 - 2.5)}$$
Ausführung als Ritzelwelle $m_{\rm n}' \approx \frac{1.1 \cdot d_{\rm sh} \cdot \cos \beta}{(z_1 - 2.5)}$ (21.63)

· Achsabstand a ist vorgegeben:

$$m_{\rm n}'' \approx \frac{2 \cdot a \cdot \cos \beta}{(1+i) \cdot z_1}$$
 (21.64)

• Leistungsdaten und Zahnradwerkstoffe sind bekannt:

Zahnflanken gehärtet:
$$m_{\rm n}^{\prime\prime\prime} \approx 1.85 \cdot \sqrt[3]{\frac{T_{\rm 1eq} \cdot \cos^2 \beta}{z_1^2 \cdot \psi_{\rm d} \cdot \sigma_{\rm Flim1}}}$$
 $T_1 = K_{\rm A} \cdot T_{\rm 1\,nenn}$ ungehärtet bzw. vergütet: $m_{\rm n}^{\prime\prime\prime} \approx \frac{95 \cdot \cos \beta}{z_1} \cdot \sqrt[3]{\frac{T_{\rm 1eq} \cdot \cos^2 \beta}{\psi_{\rm d} \cdot \sigma_{\rm Flim1}^2}} \cdot \frac{u+1}{u}$ (21.65)

 $\begin{array}{c} \forall_{d} \\ \sigma_{F\, lim1} \\ \text{@ HSLU TA.PR+SY_H16} \end{array} \\ \begin{array}{c} \sigma_{H\, lim} \\ u = z_2/z_1 \geq 1 \end{array}$

Durchmesser-Breitenverhältnis nach **TB 21-14a**Zahnfußfestigkeit für den *Ritzel-Werkstoff* nach **TB 20-1** und **TB 20-2**Flankenfestigkeit des *weicheren* Werkstoffes nach **TB 20-1** und **TB 20-2**Zähnezahlverhältnis

Vorgehensweise zur Ermittlung der Verzahnungsgeometrie

Bild 21-23, S. 741 RM

© HSLU TA.PR+SY_H16 11

Hochschule Luzern

Schadensmöglichkeiten an Zahnrädern

- Zahnbruch
 - · Zahnfuss-Tragfähigkeit

- Ermüdung der Zahnflanken
 - Grübchen-Tragfähigkeit
- Fressen

(Gemeinsame Wirkung von Pressung und Gleitgeschwindigkeit)

- Warmfressen (Pressung und hohe Gleitgeschwindigkeit)
- Kaltfressen (Abreissen des Schmierfilms)

12 © HSLU TA.PR+SY_H16

Kräfte am Gerad-Stirnradpaar

Nenn-Umfangskraft

$$F_{\rm t1,2} = \frac{2 \cdot T_{1,2}}{d_{\rm w1,2}}$$

Zahnnormalkraft

$$F_{\text{bn1,2}} = \frac{F_{\text{t1,2}}}{\cos \alpha_{\text{w}}}$$

Radialkraft

$$F_{\rm r1,2} = F_{\rm t1,2} \cdot \tan \alpha_{\rm w}$$

© HSLU TA.PR+SY_H16

Hochschule Luzern Technik & Architektur

Kräfte am Schräg-Stirnradpaar

Nenn-Umfangskraft

$$F_{\rm t1,2} = \frac{2 \cdot T_{1,2}}{d_{\rm w1,2}}$$

Axialkraft

$$F_{\text{al},2} = F_{\text{tl},2} \cdot \tan \beta$$

Radialkraft

$$F_{\rm r1,2} = \frac{F_{\rm t1,2} \cdot \tan \alpha_{\rm n}}{\cos \beta}$$

Kräfte am Kegelradpaar

· Nenn-Umfangskraft

$$F_{mt1} = \frac{T_{1nenn}}{d_{m1}/2}$$

Axialkraft

$$F_{a1} = F_{mt1} \cdot \tan \alpha \cdot \sin \delta_1$$

Radialkraft

$$F_{r1} = F_{mt1} \cdot \tan \alpha \cdot \cos \delta_1$$

• Bei Σ =90° gilt:

$$F_{r1}=F_{a1}\cdot i$$
 $F_{mt1}=F_{mt2}$ bei η =1 $F_{a2}=F_{r1}$ $F_{r2}=F_{a1}$

Normalschnitt O_1 F_{r1} F_{r2} F_{a1} F_{r2} F_{a2} F_{a2} F_{a2} F_{a3} F_{a4} F_{a4} F_{a4} F_{a5} F_{a4} F_{a5} F_{a5}

© HSLU TA.PR+SY_H16

15

Hochschule Luzern

Kräfte am Schneckengetriebe

Schnecke treibt

$$F_{t1} = \frac{T_{1eq}}{d_{m1}/2} = \frac{T_{2eq}}{d_{m1}/2 \cdot \eta_{ges} \cdot \mu} = -F_{a2}$$

$$F_{t2} = \frac{T_{2eq}}{d_{m2}/2} = \frac{T_1 \cdot \eta_{ges} \cdot \mu}{d_{m2}/2} = -F_{a1}$$

$$F_{r1} = F_{t1} \cdot \frac{\tan \alpha_n}{\sin(\gamma_m + \rho')} = -F_{r2}$$

Berechnungsgrundlagen

- Um die auf die Verzahnung einwirkenden Kräfte möglichst wirklichkeitsgetreu rechnerisch erfassen zu können, werden den Nennwerten der auftretenden Beanspruchungen Einflussfaktoren beigegeben, die auf Forschungsergebnissen und Betriebserfahrungen beruhen.
- Für die Ermittlung der Einflussfaktoren werden nach DIN 3990 T1 verschiedene Methoden angewendet.

Hochschule Luzern Technik & Architektu

Belastungseinflussfaktoren

- Faktoren, die durch die Verzahnungsgeometrie und die Eingriffsverhältnisse festgelegt sind.
- Faktoren, die viele Einflüsse berücksichtigen und/oder als unabhängig voneinander behandelt werden, sich aber in nicht genau bekanntem Ausmass gegenseitig beeinflussen.
- Gesamtbelastungseinfluss

für die Zahnfußtragfähigkeit: $K_{\rm Fges} = K_{\rm A} \cdot K_{\rm v} \cdot K_{\rm F\alpha} \cdot K_{\rm F\beta}$ für die Grübchentragfähigkeit: $K_{\rm Hges} = \sqrt{K_{\rm A} \cdot K_{\rm v} \cdot K_{\rm H\alpha} \cdot K_{\rm H\beta}}$

- Anwendungsfaktor K_A
 - Äussere Zusatzkräfte durch An- und Abtriebsmaschine
- Dynamikfaktor K_V
 - Innere dynamische Zusätzkräfte durch Verformung der Zähne
- Breitenfaktoren $K_{F\beta}$, $K_{H\beta}$
 - Auswirkungen ungleichmässiger Kraftverteilung über die Zahnbreite
- Stirnfaktoren $K_{F\alpha}$, $K_{H\alpha}$
 - Auswirkungen ungleichmässiger Kraftverteilung über mehrere Zahnpaare

© HSLU TA.PR+SY_H16

Nachweis der Zahnfusstragfähigkeit

Sicherheit auf Zahnfusstragfähigkeit

$$S_{\text{F1,2}} = \frac{\sigma_{\text{FG1,2}}}{\sigma_{\text{F1,2}}} \ge S_{\text{Fmin}}$$
 S_{Fmin} =1...1.5 (3)

Zahnfussspannung

$$\sigma_{\text{F1,2}} = \frac{F_t}{b \cdot m_n} \cdot Y_{\text{Fa}} \cdot Y_{\text{Sa}} \cdot Y_{\varepsilon} \cdot Y_{\beta} \cdot K_{\text{Fges}}$$

 $\begin{array}{ll} \textbf{Y}_{\text{Fa}} & : \text{Formfaktor (Zahnform)} \\ \textbf{Y}_{\text{Sa}} & : \text{Spannungsfaktor (Kerbe am Zahnfuss)} \\ \textbf{Y}_{\epsilon} & : \text{Überdeckungsfaktor} \\ \textbf{Y}_{\beta} & : \text{Schrägenfaktor} \\ \textbf{K}_{\text{Fges}} & : \text{Belastungseinflussfaktor} \end{array}$

· Zahnfuss-Grenzfestigkeit

$$\sigma_{\text{FG1,2}} = \sigma_{\text{Flim}} \cdot Y_{\text{St}} \cdot Y_{\text{NT}} \cdot Y_{\text{\sigma relT}} \cdot Y_{\text{RrelT}} \cdot Y_{\text{X}}$$

 σ_{Flim} : Zahnfuss-Biegenennfestigkeit

Y_{st} : Spannungskorrekturfaktor (Grund- zu Gestaltfestigkeit) Y_{NT} : Lebensdauerfaktor (Zeitfestigkeit)

 Y_{orelT} : Relative Stützziffer (Kerbempfindlichkeit)

Y_{RrelT}: Relativer Oberflächenfaktor Y_X: Grössenfaktor (Modulgrösse)

19

Hochschule Luzern

Nachweis der Grübchentragfähigkeit

· Sicherheit der Flankentragfähigkeit

$$S_{\mathrm{H1,2}} = \frac{\sigma_{\mathrm{HG1,2}}}{\sigma_{\mathrm{H}}} \ge S_{\mathrm{Hmin}}$$
 S_{Hmin} =1...1.6

· Flankenpressung im Wälzpunkt

$$\sigma_{\rm H} = Z_{\rm H} \cdot Z_{\rm E} \cdot Z_{\rm E} \cdot Z_{\rm B} \cdot \sqrt{\frac{F_{\rm t}}{b \cdot d_1} \cdot \frac{u+1}{u}} \cdot K_{\rm Hges}$$

 $Z_{\rm E}$: Elastizitätsfaktor $Z_{\rm E}$: Überdeckungsfaktor $Z_{\rm B}$: Schrägenfaktor $K_{\rm Hges}$: Belastungseinflussfaktor Flankengrenzfestigkeit

Z_H: Zonenfaktor

 $\sigma_{\mathrm{HG1,2}} = \sigma_{\mathrm{Hlim}} \cdot Z_{\mathrm{NT}} \cdot Z_{\mathrm{L}} \cdot Z_{\mathrm{V}} \cdot Z_{\mathrm{R}} \cdot Z_{\mathrm{W}} \cdot Z_{\mathrm{X}}$

 $\sigma_{
m Hlim}$: Dauerfestigkeitswert $Z_{\rm NT}$: Lebensdauerfaktor : Schmierstofffaktor : Geschwindigkeitsfaktor : Rauheitsfaktor

: Werkstoffpaarungsfaktor

: Grössenfaktor