Seminars

proposed topics:

- 1. understanding deep neural networks
- 2. overview on other ML techniques
- 3. natural language processing
- 4. advanced computer vision

time limit: 20 minutes + 10-minute discussion

Seminars: understanding deep neural networks

1. Techniques that allow understand more on how and why deep architectures work

- https://distill.pub/2020/circuits/early-vision/
- https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
- https://distill.pub/2017/feature-visualization/
- D. Erhan, Y. Bengio, A. Courville, P. Vincent., Visualizing higher-layer features of a deep network (2009).
- http://arxiv.org/pdf/1506.02753.pdf
- https://arxiv.org/pdf/1312.6034v2.pdf
- https://github.com/tensorflow/lucid
- 2. Fooling deep neural networks: deep learning models are highly sensitive to carefully prepared adversarial attacks

How to generate adversarial examples? Can we use them to improve network stability?

- Szegedy, Christian, et al. "Intriguing properties of neural networks" arXiv:1312.6199 (2013).
- Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples" arXiv:1412.6572 (2014).
- Papernot, Nicolas, et al. "The limitations of deep learning in adversarial settings." 2016 IEEE European symposium on security and privacy (EuroS&P). IEEE (2016).
- Su, Jiawei, Danilo V. Vargas, and Kouichi Sakurai. "One pixel attack for fooling deep neural networks." IEEE Transactions on Evolutionary Computation 23.5 828 (2019).

3. Defense strategies against adversarial attacks

Overview on various techniques for defending against adversarial examples for attacking deep neural networks.

- Szegedy, Christian, et al. "Intriguing properties of neural networks" arXiv:1312.6199 (2013).
- Xie, Cihang, et al. "Mitigating adversarial effects through randomization." arXiv:1711.01991 (2017).
- Das, Nilaksh, et al. "Keeping the bad guys out: Protecting and vaccinating deep learning with jpeg compression." arXiv:1705.02900 (2017).
- Xie, Cihang, et al. "Feature denoising for improving adversarial robustness." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019).
- Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples" arXiv:1412.6572 (2014).

Feature visualization answers questions about what a network—or parts of a network—are looking for by generating examples.

 $oldsymbol{x}$ signanda"

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"
8.2% confidence

 $x + \epsilon \operatorname{sign}(\nabla_x J(\boldsymbol{\theta}, x, y))$ "gibbon"

Seminars: overview on other ML techniques

1. Reinforcement Learning

Basics and applications

- https://arxiv.org/pdf/cs/9605103.pdf
- https://mpatacchiola.github.io/blog/2016/12/09/dissecting-reinforcement-learning.html
- https://deepsense.ai/what-is-reinforcement-learning-the-complete-guide/

2. Hidden Markov model

Definition and example applications

- https://jonathan-hui.medium.com/machine-learning-hidden-markov-model-hmm-31660d217a61
- http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

3. Recommender systems

Idea, applications and the Netflix Price

- https://arxiv.org/pdf/1203.4487.pdf
- https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

4. Bayesian networks

- https://repo.bayesfusion.com/bayesbox.html
- http://www.eng.tau.ac.il/~bengal/BN.pdf
- http://www.niedermayer.ca/node/35

5. Evolutionary optimization methods

- differential evolution
- particle swarm optimization

Seminars: natural language processing, NLP

1. Optical character recognition (OCR)

- problem definition
- classical or neural network approach: an overview
- presenting one particular engine, e.g. state-of-the-art *Tesseract* (what deep learning model is used inside?)
- https://tesseract-ocr.github.io/tessdoc/

2. Automatic speech recognition (ASR)

- problem definition
- possible applications
- databases (e.g. Librispeech)
- an overview on single specific algorithm, e.g. ContextNet or Deep Speech
- https://arxiv.org/pdf/2005.03191.pdf
- https://arxiv.org/pdf/1512.02595.pdf

3. Machine Translation

- problem definition, example methods

4. Question Answering

- problem definition, example methods
- 5. BERT natural language model
- overview, importance

Seminars: computer vision

1. Point Feature Matching

- problem definition
- classical and deep learning approaches
- *SuperGlue* algorithm: https://arxiv.org/abs/1911.11763

2. Pose estimation

- problem definition and deep-learning solution, e.g.:
- https://arxiv.org/pdf/1803.08225.pdf

3. Super-Resolution

- idea, applications, algorithms
- https://arxiv.org/abs/1809.00219

4. Any other problem with machine learning solution