# Atividade 8

# Principio de Incerteza de Heisenberg

Experimentalmente, não podemos determinar simultaneamente o valor exato de uma componente do momento de uma partícula (por exemplo,  $p_{\gamma}$ ) e também o valor exato da coordenada correspondente (y). A precisão da medida está inerentemente limitada pelo processo da medida, de tal forma que:

$$\Delta y \cdot \Delta p_y \ge h/4\pi$$

Onde  $p_\gamma$  é conhecido com uma incerteza  $\Delta p_\gamma$  e a posição y, no mesmo instante, com uma incerteza  $\Delta y$ 

Existe também uma incerteza relacionada com a medida da energia e o tempo necessário à medida. Por exemplo o intervalo de tempo  $\Delta t$  durante o qual um fóton com incerteza na energia  $\Delta E$  é emitido de um átomo:

$$\Delta E \cdot \Delta t \ge h/4\pi$$

## <u>Difração de luz por uma fenda e o Principio de Incerteza de Heisenberg</u>

Condição de Fraunhofer para a difração



A intensidade do feixe difratado muda de acordo com o angulo α:

$$I(\alpha) = I(0) \cdot \left(\frac{\sin \beta}{\beta}\right)^2$$

$$\beta = \frac{\pi d}{\lambda} \cdot \sin \alpha$$

Feixe de fótons que viajam na direção (x) que atravessa uma fenda de largura  $\mathbf{d}$ , posicionada no eixo (y), a incerteza na posição é dada por  $\Delta y = d$ .



$$\Delta y = d \quad \cdots \qquad (1)$$

$$\Delta p_y = p \sin \alpha_1 \dots (2)$$

$$\Delta y \Delta p_y = ??$$
 .....(3)

$$\frac{I(\alpha_1)}{I(0)} = \left(\frac{\sin \beta}{\beta}\right)^2 = 0 \quad \stackrel{\sin \beta = 0}{\longrightarrow} \quad \beta = \frac{\pi d}{\lambda} \cdot \sin \alpha_1 = \pi \longrightarrow \sin \alpha_1 = \frac{\lambda}{d} \quad \dots \dots \quad (5)$$

β em radianos

(5) em (4), então: 
$$\Delta p_y = \frac{h}{d}$$
 .....(6)

(1) e (6) em (3) 
$$\Delta y \Delta p_y = d \frac{h}{d} \longrightarrow \Delta y \Delta p_y = h$$





Meça a distância entre os dois primeiros mínimos ao lado do máximo central.

Essa distância será igual a 2a



## $\alpha_1$ em radianos

$$\alpha_1 = \arctan\left(\frac{a}{b}\right)$$

$$\Delta p_{\rm y} = \frac{h}{\lambda} \sin \left( \arctan \left( \frac{a}{b} \right) \right)$$

$$\Delta y \ \Delta p_{y} = \frac{d \ h}{\lambda} \sin \left( \arctan \left( \frac{a}{b} \right) \right)$$

### TABELA 1:

| largura da<br>fenda<br>d (mm) | Primeiro<br>minimo<br>a (mm) | b (mm) | $\frac{\Delta y  \Delta p_{y}}{h} = \frac{d}{\lambda}  \sin \left( \arctan \left( \frac{a}{b} \right) \right)$ |
|-------------------------------|------------------------------|--------|----------------------------------------------------------------------------------------------------------------|
| <del>2</del> 5                |                              |        |                                                                                                                |

$$\Delta y = d$$

$$\Delta p_{y} \frac{\lambda}{h} = \sin \alpha_{1}$$

$$\Delta y \Delta p_{y} = h \ge \frac{h}{4\pi}$$



### Questões

1- Usando o experimento com fenda simples e um laser demonstrar a equação da relação de incerteza para a posição e o momento cinético dos fótons. Considerar conhecidos o comprimento de onda do laser ( $\lambda$ ), a largura da fenda (d), constante de Planck (h), distância entre a fenda e o anteparo (b) onde é observado o padrão de difração.

| 2- Apresentar os res | fenda | Primeiro<br>minimo<br>a (mm) | b (mm) | $\Delta p_{ m y}$ (kg*m/s) | $\frac{\Delta y  \Delta p_{y}}{h} = \frac{d}{\lambda}  \sin\left(\arctan\left(\frac{a}{b}\right)\right)$ |
|----------------------|-------|------------------------------|--------|----------------------------|----------------------------------------------------------------------------------------------------------|
|                      |       |                              |        |                            |                                                                                                          |
|                      |       |                              |        |                            |                                                                                                          |
|                      |       |                              |        |                            |                                                                                                          |

- 3 Se a incerteza na medida da posição de uma partícula é de 0,01 mm, determine a menor incerteza da medida do momento cinético.
- 4- Um elétron tem uma velocidade constante de 40 m/s. A incerteza do momento cinético é de 10<sup>-6</sup> do valor do momento. Calcule a incerteza da posição do elétron.
- 5- A determinação da posição de um átomo de cloro é de 2\*10<sup>-6</sup> m. Se a massa do átomo de cloro é de 5,86\*10<sup>-26</sup> kg. Calcule a incerteza na determinação experimental da velocidade.