RELATÓRIO EP5 (30/06)

Modelo de contágio SIR simples

Alexandre Kenji Okamoto	11208371
Daniel Feitosa dos Santos	11270591
Fernanda Cavalcante Nascimento	11390827
Giovani Verginelli Haka	11295696
Larissa Yurie Maruyama	11295928
Luísa Dipierri Landert	8010698
Matheus Antonio Cardoso Reyes	11270910
Otávio Nunes Rosa	11319037

REPOSITÓRIO NO GITHUB

https://github.com/matheus-reyes/AEDII-Grafos/tree/master/EP5

GRÁFICO DO TEMPO X NÚMERO DE INFECTADOS, SUSCETÍVEIS E REMOVIDOS

~ Tempo de execução (S): 68.37821364402771

GRÁFICO DO TEMPO X NÚMERO DE INFECTADOS, SUSCETÍVEIS E REMOVIDOS

Tempo de execução (S): 63.843820095062256

GRÁFICO DO TEMPO X NÚMERO DE INFECTADOS, SUSCETÍVEIS E REMOVIDOS

~ Tempo de execução (S): 75.88137006759644

COM OS PARÂMETROS c E r FIXOS, O QUE DEVE OCORRER NOS DIFERENTES CENÁRIOS QUE INVESTIGAMOS?

Independente dos valores de c e r fixos, levando em conta que o objeto de estudo se trata de uma componente conexa, a tendência é que, ao final, sobrem apenas pessoas ou suscetíveis (S) ou removidas (R). É esperado que, quanto maior a componente, mais passos serão necessários até essa finalidade ser alcançada, situação que também se repete ao indicarmos uma probabilidade de recuperação (r) muito baixa.