1 Random Samples from Normal Distributions

1.1 Estimators and confidence intervals

Motivation

Assume for example that we are given a set of data, which we regard as plausibly normal, and we might wish to find a point estimate of the mean μ . The previous lectures suggest that \overline{X} is an obvious candidate. We also need to know what is the likely error range. What If we had a different set of data? How reliable is our estimate, can we trust it? To within what error bounds? We need some theory, making use of the previous lectures.

Definition An estimator of a parameter θ is a statistic, say a function $A(X_1, X_2, \ldots, X_n)$ of the random sample, which does not depend on any unknown parameters in the model and which we use to give a point estimate of the parameter from the data.

An example of this is the way we use \overline{X} to estimate the mean of a distribution. If the estimator is to have any use at all, it should have some nice properties. For example, we know that $\overline{X} \stackrel{P}{\to} \mu$ by the weak law of large numbers, ensuring that \overline{X} is a sensible estimator for μ .

A starting point for considering the likely error using the normal distribution is given by

$$\frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N\left(0, 1\right).$$

Definition A Z-statistic is a statistic with a standard normal distribution (as above).

The main use of Z-statistics stems from the facts that, for a general distribution, the Central Limit Theorem implies asymptotically that

$$\frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N(0, 1),$$

and that the standard normal distribution involves no unknown parameters: it can be (and is) tabulated.

We can use the Z-statistic to calculate a range of plausible values for μ , under the assumption that σ^2 is known.

Definition Confidence interval

Let **X** represent a vector of random variables with entries X_i . If $(a(\mathbf{X}), b(\mathbf{X}))$ is a random interval such that

$$P\left(a(\mathbf{X}) < \mu < b(\mathbf{X})\right) = 1 - \alpha,$$

then a realisation of that interval, $(a(\mathbf{x}), b(\mathbf{x}))$ is said to be a $100(1-\alpha)\%$ confidence interval for μ .

It is not easy to get to grips with what is meant by a confidence interval. Clearly one cannot say that the parameter μ has probability $(1 - \alpha)$ of lying within the calculated interval $(a(\mathbf{x}), b(\mathbf{x}))$ because the ends of the interval are fixed numbers, as is μ , and without random variables being present, probability statements cannot be made: either μ lies between the two numbers or it doesn't, and we have no way of knowing which. The only viable interpretation is to say that we have used a procedure which, if repeated over and over again, would give an interval containing the parameter $100 (1 - \alpha)\%$ of the time: the rest of the time we will be unlucky.

Central $100(1-\alpha)\%$ confidence intervals using Z-statistics are found as follows. Remembering that $Z \sim N(0,1)$, choose $z_{\alpha/2}$ such that

$$P\left(Z \le z_{\alpha/2}\right) = 1 - \frac{\alpha}{2}$$

$$\implies P\left(-z_{\alpha/2} \le Z \le z_{\alpha/2}\right) = 1 - \alpha.$$

If $Z = \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma}$ as above, then

$$P\left(-z_{\alpha/2} \le \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \le z_{\alpha/2}\right) = 1 - \alpha$$

$$\implies P\left(\overline{X} - \frac{\sigma}{\sqrt{n}}z_{\alpha/2} \le \mu \le \overline{X} + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right) = 1 - \alpha.$$

Hence the appropriate random interval is

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} , \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$

and the 100 $(1-\alpha)$ % confidence interval is

$$\left(\overline{x} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} , \overline{x} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right).$$

The most common value of α in use is 0.05, in which case $z_{\alpha/2} = z_{0.025} = 1.960$.

Figure 3.3 95% interval for N(0,1)

Example 1 Radioactive-carbon dating

Assume the sampple mean is $\overline{x} = 2505.86$. In order to estimate the age of the site, we need to take the following steps.

- (i) Check that the data are plausibly normal. We can use a normal probability plot.
- (ii) Estimate the mean of the distribution by the sample mean and write $\hat{\mu} = \overline{x} = 2505.86$.
- (iii) Use a Z-statistic to find a 95% confidence interval which gives a range of plausible values for the mean age. This is

$$\left(\overline{x} - \frac{1.96\sigma}{\sqrt{n}}, \overline{x} + \frac{1.96\sigma}{\sqrt{n}}\right),$$

and, putting in n=7 and $\overline{x}=2505.86$, we find a central 95% confidence interval

$$\left(2505.86 - \frac{1.96\sigma}{\sqrt{7}}, 2505.86 + \frac{1.96\sigma}{\sqrt{n}}\right),$$

Unfortunately we are no better off. We cannot obtain the confidence interval because we do not know σ , so what should we do? We would like to replace σ by s, the sample standard deviation, but can we? $\left[\text{Recall that } S^2 = \frac{1}{n-1} \sum (x_i - \overline{x})^2\right]$

We know that, if X_1, X_2, \ldots, X_n is a random sample from a normal distribution $N(\mu, \sigma^2)$, then

$$T = \frac{\sqrt{n} \left(\overline{X} - \mu\right)}{S} \sim t (n - 1)$$

We can now look for a confidence interval by replacing the Z-statistic with the t-statistic. Writing $t_{\alpha/2}$ (n-1) for the $1-\frac{\alpha}{2}$ quantile from the distribution t(n-1),

$$P\left(-t_{\alpha/2}\left(n-1\right) < \frac{\sqrt{n}\left(\overline{X} - \mu\right)}{S} < t_{\alpha/2}\left(n-1\right)\right) = 1 - \alpha.$$

Re-arranging gives the random interval

$$\left(\overline{X} - \frac{t_{\alpha/2}}{\sqrt{n}}S, \ \overline{X} + \frac{t_{\alpha/2}}{\sqrt{n}}S\right),$$

and the $100 (1 - \alpha) \%$ confidence interval is the realisation of this interval.

Example 2 Radioactive-carbon dating

For the carbon-dating example, n = 7 and $t_{0.025}(6) = 2.447$, from a t-distribution with 6 degrees of freedom, s = 56.44. Plugging these values into the formula results in a 95% confidence interval of (2453.5, 2558.3), thereby giving a range of plausible values for μ .

1.2 Application of Central Limit Theorem

The Central Limit Theorem states that, for any random sample X_1, X_2, \ldots, X_n such that the sample size n is sufficiently large, we have

$$\frac{\sqrt{n}\left(\overline{X}-\mu\right)}{\sigma} \stackrel{\cdot}{\sim} N\left(0,1\right).$$

Notation: \sim means 'approximately distributed as'. Provided we are dealing with moderate to large sample sizes we can therefore use the approximate normality to find confidence intervals, using approximate Z-statistics.

Example 3 Binomial Proportion

In an opinion poll prior to a Staffordshire South East by-election, of 688 constituents chosen at random 368 said they would vote Labour (53.5%). The newspapers are perfectly happy to use these data to estimate p, the probability that a constituent selected

at random would vote Labour, but they rarely, if ever, give any idea of the quality of the estimate. Let us see how to obtain a 95% confidence interval for p.

First identify the random sample. Constituents questioned are labelled 1,..., 688. Let

$$X_i = \begin{cases} 1, & \text{if } i^{\text{th}} \text{ constituent says "I will vote Labour"}, \\ 0, & \text{otherwise.} \end{cases}$$

Then X_i has a Bernoulli distribution B(1,p), the sample size n is 688, and $E(X_i) = p$, $V(X_i) = p(1-p)$. We know that p can be estimated by the sample mean $\overline{x} = \frac{368}{688} = 0.535$. We can also apply the Central Limit Theorem to find an approximate confidence interval using the asymptotic normality with $\mu = p$, $\sigma^2 = p(1-p)$. Thus

$$\frac{\sqrt{n}\left(\overline{X}-p\right)}{\sqrt{p\left(1-p\right)}} \sim N\left(0,1\right).$$

The 95% random interval is of the form

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{0.025}, \ \overline{X} + \frac{\sigma}{\sqrt{n}} z_{0.025}\right)$$

but unfortunately σ is a function of p. We could solve a quadratic inequality for p, but, since n = 688 is large, we will replace σ by its estimator $\sqrt{\overline{x}(1-\overline{x})}$. This gives (0.498, 0.572) as a 95% confidence interval for p, with point estimate 0.535.

If we required a 99% confidence interval we would use $z_{0.005} = 2.576$ to replace 1.960, and get a wider interval (0.486, 0.584) about which we are slightly more confident.