Statistical methods for machine learning

Mauro Tellaroli

Indice

1 Introduzione			2	
	1.1	Defini	zioni fondamentali	2
		1.1.1	Label set \mathcal{Y}	2
		1.1.2	Loss function ℓ	2
		1.1.3	Data domain \mathcal{X}	:
		1.1.4	Predittori f	4
		1.1.5	Esempi	4
		1.1.6	Test set e test error	4
		1.1.7	Learning algorithm A	4
		1.1.8	Training error ℓ_S	4
	1.2	Empir	ical Risk Minimization (ERM)	ţ
		1.2.1	Definizione	ţ
		1.2.2	Predittori con test error elevato	Ę
		1.2.3	Overfitting e underfitting	6
		1.2.4	Etichette rumorose	6
2	L'algoritmo Nearest Neighbor (NN)			

1 Introduzione

1.1 Definizioni fondamentali

La data inference è lo studio dei metodi che utilizzano i dati per predirre il futuro. Il Machine Learning è uno strumento potente che può essere usato per risolvere una grossa parte dei problemi di data inference, inclusi i seguenti:

- Clustering: raggruppare i data points in base alle loro similarità;
- Prediction: assegnare delle etichette (label) ai data points;
- Generation: generare nuovi data points;
- Control: eseguire una sequenza di azioni in un ambiente con l'obiettivo di massimizzare una nozione di utilità.

Con data point si intende una serie di informazioni legate ad un unico elemento; un'analogia può essere un record in un database.

Gli algoritmi che risolvono una *learning task* in base a dei dati già semanticamente etichettati lavorano in modalità *supervised learning*. A etichettare i dati saranno delle persone o la natura. Un esempio dell'ultimo caso sono le previsioni del meteo. D'altra parte, gli algoritmi che utilizzano i dati senza la presenza di etichette lavorano in modalità *unsupervised learning*.

In questo corso ci si focalizzerà sul *supervised learning* e la progettazione di sistemi di *machine learning* il cui obiettivo è apprendere dei **predittori**, ovvero funzioni che mappano i *data points* alla loro etichetta.

1.1.1 Label set \mathcal{Y}

Verrà usata \mathcal{Y} per indicare il *label set*, ovvero l'insieme di tutte le possibili etichette di un *data point*. Le etichette potranno essere di due tipi differenti:

- 1. Categoriche ($\mathcal{Y} = \{\text{sport}, \text{politica}, \text{economia}\}$): si parlerà di problemi di classificazione;
- 2. Numeriche $(\mathcal{Y} \subseteq \mathbb{R})$: si parlerà di problemi di regressione.

È importante sottolineare come la reale differenza tra le due tipologie di etichetta sia il significato e non la sua rappresentazione in quanto, si potrà sempre codificare un'etichetta categorica in un numero.

A sottolineare ciò è il fatto che nella regressione l'errore è tipicamente una funzione della differenza $|y-\hat{y}|$, dove \hat{y} è la predizione di y. Nella classificazione, invece, l'errore è tipicamente binario: predizione corretta $(\hat{y}=y)$ o errata $(\hat{y}\neq y)$.

Quando ci sono solo due possibili etichette ($|\mathcal{Y}| = 2$), si ha un **problema di classificazione** binario e, convenzionalmente, verrà usata una codifica numerica $\mathcal{Y} = \{-1, 1\}$.

1.1.2 Loss function ℓ

Come già visto precedentemente, si vuole misurare l'errore che un predittore commette su una determinata predizione. Per farlo si userà una **funzione di loss** ℓ non negativa che misurerà la discrepanza $\ell(y,\hat{y})$ tra l'etichetta predetta \hat{y} e quella corretta y. Si assumerà sempre $\ell(y,\hat{y}) = 0$ quando $\hat{y} = y$.

La funzione di loss più semplice per la classificazione è la **zero-one loss**:

$$\ell(y, \hat{y}) = \begin{cases} 0 & y = \hat{y} \\ 1 & \text{altrimenti} \end{cases}$$

Nella regressione, le tipiche funzioni di loss sono:

• la **absolute loss**: $\ell(y, \hat{y}) = |y - \hat{y}|$

• la quadratic loss: $\ell(y, \hat{y}) = (y - \hat{y})^2$

In alcuni casi può essere conveniente scegliere l'etichetta predetta da un insieme \mathcal{Z} diverso da \mathcal{Y} . Per esempio, si consideri il problema di assegnare una probabilità $\hat{y} \in (0,1)$ all'evento y = "pioverà domani". In questo caso, $\mathcal{Y} = \{$ "piove", "non piove" $\}$ e $\mathcal{Z} = (0,1)$. Indicando questi due eventi con 1 (piove) e 0 (non piove), si può usare una funzione di loss per la regressione, come la absolute loss:

$$\ell(y, \hat{y}) = |y - \hat{y}| = \begin{cases} 1 - \hat{y} & y = 1 \\ \hat{y} & y = 0 \end{cases}$$
 (piove) (non piove)

Per penalizzare maggiormente le predizioni che distano troppo dalla realtà, si può usare una *logarithmic loss*:

$$\ell(y, \hat{y}) = \begin{cases} \ln \frac{1}{\hat{y}} & y = 1 & \text{(piove)} \\ \ln \frac{1}{1 - \hat{y}} & y = 0 & \text{(non piove)} \end{cases}$$

Figura 1: Confronto tra absolute loss e logarithmic loss; a sinistra il caso y = 0, a destra y = 1.

Si noti in figura 1 come la *logarithmic loss* tenda ad infinito quando la predizione è opposta all'etichetta reale:

$$\lim_{\hat{y} \to 1^{-}} \ell(0, \hat{y}) = \lim_{\hat{y} \to 0^{+}} \ell(1, \hat{y}) = +\infty$$

In pratica questo previene l'utilizzo di predizioni \hat{y} troppo sicure, quindi troppo vicine a zero o uno.

1.1.3 Data domain X

Verrà usata \mathcal{X} per indicare l'insieme dei data points; ogni suo punto $x \in \mathcal{X}$ è tipicamente un record di un database formato da feature:

$$x = (x_1, \ldots, x_d)$$

Spesso un data point può essere codificato come un vettore i cui elementi sono le sue feature. Questa codifica risulta naturale in presenza di quantità omogenee, come i pixel di un'immagine o una lista di occorrenze di parole in un testo. Quando invece i dati presenti utilizzano unità di misura differenti, come "età" e "altezza", la codifica non risulta più immediata. Ci sarà bisogno di una procedura che codifichi i dati in modo da ottenere uno spazio vettoriale omogeneo e coerente con i dati iniziali.

In questo corso si assumerà che i dati possano essere rappresentati da vettori di numeri:

$$\mathcal{X} \equiv \mathbb{R}^d$$

1.1.4 Predittori f

Un **predittore** è una funzione $f: \mathcal{X} \to \mathcal{Y}$ che mappa i *data points* alle etichette (o $f: \mathcal{X} \to \mathcal{Z}$). Sì può quindi dire che in un problema di predizione l'obiettivo è ottenere una funzione f che genera delle predizioni $\hat{y} = f(x)$ tali che $\ell(y, \hat{y})$ sia basso per il maggior numero di punti $x \in \mathcal{X}$ osservati. In pratica, **la funzione** f è definita da un certo numero di parametri in un dato modello. Un esempio sono i parametri di una rete neurale.

1.1.5 Esempi

Nel supervised learning un **esempio** è una coppia (x, y) dove x è un data point e y la sua reale etichetta.

In alcuni casi x ha un'unica y, come nel caso in cui y rappresenta una proprietà oggettiva di x; in altri casi, invece, x può avere diverse y associate, come quando le y sono soggettivamente assegnate da persone.

1.1.6 Test set e test error

Per poter stimare la qualità di un predittore si usa un insieme di esempi detto test set:

$$\{(x'_1, y'_1), \dots, (x'_n, y'_n)\}$$

Data una loss function ℓ , il test set viene usato per calcolare il test error di un predittore f:

$$\frac{1}{n} \sum_{t=1}^{n} \ell(\underbrace{y'_t}, \overbrace{f(x'_t)})$$

Il test error ha quindi lo scopo di calcolare la prestazione media del predittore su dei dati reali.

1.1.7 Learning algorithm A

Si definisce training set S un insieme di esempi:

$$S = \{(x_1, y_1), \dots, (x_m, y_m)\}$$

che viene usato dal $learning \ algorithm \ A$ per produrre un predittore A(S). Informalmente, il $learning \ algorithm$ "impara" dal $training \ set$.

$$\underbrace{\{(x_1,y_1),\ldots,(x_m,y_m)\}}_{S} \longrightarrow \boxed{A} \longrightarrow A(S) = f: \mathcal{X} \to \mathcal{Y}$$

Il test set e il training set vengono solitamente prodotti assieme attraverso un processo di collezione dati e etichettamento. Dato l'insieme di esempi preparati, questo verrà partizionato in test set e training set, tipicamente tramite una divisione casuale. Obiettivo del corso è lo sviluppo di una teoria che ci guidi nella progettazione di learning algorithm che generano predittori con un basso test error.

1.1.8 Training error ℓ_S

Sia $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$ il training set; viene definito, equivalentemente al test error, il training error:

$$\ell_S(f) = \frac{1}{m} \sum_{t=1}^{m} \ell(y_t, f(x_t))$$

Un approccio intuitivo alla progettazione di learning algorithm è quello di assumere che il training error $\ell_S(f)$ del predittore f sia correlato con il suo test error.

Empirical Risk Minimization (ERM)

1.2.1 Definizione

Sia \mathcal{F} un insieme di predittori e ℓ una loss function. L'empirical risk minimizer (ERM) è il learning algorithm A che restituisce un predittore in \mathcal{F} che minimizza il training error:

$$A(S) \in \operatorname*{argmin}_{f \in \mathcal{F}} \ell_S(f)$$

Si noti come A(S) appartenga e non uguagli il minimo; questo perchè ci potrebbero essere più $f \in \mathcal{F}$ che minimizzano $\ell_S(f)$.

1.2.2 Predittori con test error elevato

Quando in \mathcal{F} tutti i predittori hanno un test error alto, ERM produrrà un pessimo predittore. Per trovare un buon predittore, ovvero un predittore con un test error basso, ci sarà quindi bisogno che \mathcal{F} sia sufficientemente grande.

Tuttavia, se \mathcal{F} è troppo grande, anche in questo caso verrà prodotto un pessimo predittore. Un esempio è il seguente.

Si consideri il seguente problema "giocattolo":

$$\mathcal{Y} = \{-1, 1\}$$
 $\mathcal{X} = \{x_1, x_2, x_3, x_4, x_5\}$

Si prenda l'insieme ${\mathcal F}$ contenente un classificatore $f:{\mathcal X} o {\mathcal Y}$ per ognuna delle possibili combinazioni di etichettamento dei cinque data points. \mathcal{F} sarà quindi formata da $2^5 = 32$ classificatori:

 $\mathcal{F} = \{f_1, \dots, f_{32}\}$

-1 -1 -1 -1 1

Si supponga che il training set S contenga solo tre data points qualsiasi e il test set contenga gli altri due. Sia f^* il predittore usato per etichettare i dati che quindi avrà zero test e training error; ogni etichetta y_t sarà quindi ottenuta da f^* :

-1

$$y_t = f^*(x_t) \quad \forall t = 1, \dots, 5$$

Per rendere l'idea, si prenda come esempio:

$$f^* = f_3$$

$$S = \{(x_1, y_1), (x_2, y_2), (x_3, y_3)\}$$

$$= \{(x_1, 1), (x_2, 1), (x_3, 1)\}$$

Nonostante ad avere test error nullo sia solo f_3 , ad avere il training error nullo sono i quattro classificatori che hanno $y_1, y_2, y_3 = 1$ ovvero f_1, f_2, f_3, f_4 . Questo perchè il training set S contiene solo i primi 3 data points.

Siamo quindi nella situazione in cui ERM trova più predittori con ℓ_S minimo e non ha abbastanza informazioni per capire quale di questi sia migliore a livello di test error.

Il problema dell'esempio appena visto è che \mathcal{F} è troppo grande rispetto al *training* set. La domanda che sorge spontanea è quindi: Quanto deve essere grande \mathcal{F} per poter ottenere un buon predittore tramite ERM?

La teoria dell'informazione ci suggerisce che S debba avere cardinalità $\log_2 |\mathcal{F}|$ o, viceversa, \mathcal{F} debba avere cardinalità 2^m . Quindi, nell'esempio di prima, il training set avrebbe dovuto contenere almeno $\log_2 |\mathcal{F}| = 5$ data points.

1.2.3 Overfitting e underfitting

I due eventi visti nella sezione precedente, che portano alla generazione di un predittore con test set elevato, vengono chiamati:

- Underfitting: si verifica quando il training error è elevato;
- Overfitting: si verifica quando il training error è basso ma il test error è alto.

Quando A è ERM e S ha dimensione fissata |S| = m:

- Ci si aspetta overfitting quando $\log_2 |\mathcal{F}| \gg m$;
- Ci si aspetta underfitting quando $\log_2 |\mathcal{F}| \ll m$.

1.2.4 Etichette rumorose

Il fenomeno dell'overfitting spesso accade quando le etichette sono rumorose, ovvero quando le etichette y non sono deterministicamente associate con i data points x. Questo può accadere per i seguenti motivi (non mutuamente esclusivi tra loro):

- 1. **Incertezza umana**: se ad etichettare S sono delle persone, ci sarà dell' incertezza in quanto persone diverse potrebbero avere opinioni diverse;
- 2. **Incertezza epistemica**: ogni *data point* è rappresentato da un vettore delle *feature* che non contiene abbastanza informazioni per determinare univocamente l'etichetta;
- 3. **Incertezza aleatoria**: il vettore delle *feature* che rappresenta il *data point* è ottenuto attraverso delle misurazioni rumorose.

Le etichette rumorose portano all'*overfitting* perchè possono ingannare l'algoritmo su quale sia la "vera" etichetta di una certo *data point*.

2 L'algoritmo Nearest Neighbor (NN)

Verrà introdotto ora l'algoritmo di *Nearest Neighbor* (NN) per la classificazione binaria con *feature* numeriche:

$$\mathcal{X} = \mathbb{R}^d \qquad \qquad \mathcal{Y} = \{-1, 1\}$$

NN non è un'istanza di ERM in quanto non punta a minimizzare ℓ_S .

L'idea di NN è la sueguente:

- Predici ogni punto del training set con la propria etichetta;
- Predici gli altri punti con l'etichetta del punto del *training set* che è più vicino al punto interessato.

Più formalmente, dato un training set:

$$S = \{(x_1, y_1), \dots, (x_m, y_m)\}\$$

l'algoritmo A_{NN} genera un classificatore $h_{\mathrm{NN}}:\mathbb{R}\to\{-1,1\}$ definito come segue:

$$h_{\text{NN}}(x) = \text{etichetta } y_t \text{ del punto } x_t \in S \text{ più vicino a x}$$

Se a minimizzare la distanza con x sono più punti, si predirrà l'etichetta più presente tra i punti vicini. Se non c'è una maggioranza di etichette tra i punti più vicini si predirrà un valore di default $\in \{-1, 1\}$.

La distanza tra i vari punti verrà calcolata tramite la distanza euclidea