Matemáticas Discretas I

Juan Francisco Díaz Frias

Profesor Titular (1993-hoy) juanfco.diaz@correounivalle.edu.co Edif. 331 - 2111

Octubre 2018

- Motivación Definiciones
- 2 Relaciones binarias
 - Definiciones
 - Representaciones
 - Propiedades
 - Operaciones de relaciones
 - Clausuras
- Tipos de relaciones
 - Relaciones de equivalencia
 - Relaciones de orden

- Motivación Definiciones
- Relaciones binarias
 - Definiciones
 - Representaciones
 - Propiedades
 - Operaciones de relaciones
 - Clausuras
- Tipos de relaciones
 - Relaciones de equivalencia
 - Relaciones de orden

- Motivación Definiciones
- Relaciones binarias
 - Definiciones
 - Representaciones
 - Propiedades
 - Operaciones de relaciones
 - Clausuras
- 3 Tipos de relaciones
 - Relaciones de equivalencia
 - Relaciones de orden

Motivación - Definiciones

- Una relación es una afirmación sobre elementos de conjuntos que se expresa con un predicado y, por tanto, puede ser o no verdadera. Por ejemplo, "x es mayor que y", "x + y es menor que z", "José, Patricia y Gloria son familiares", "La estación x y la estación y se encuentran en una misma ruta de transmilenio", "Se puede ir de la estación x a la estación y haciendo máximo un transbordo", "m es un municipio del departamento d", . . .
- Formalmente, una relación se representa como un subconjunto del producto cartesiano de los conjuntos involucrados.
- Aplicaciones: Las relaciones se suelen almacenar en bases de datos relacionales, a partir de las cuales se pueden calcular otras relaciones o consultas.

Motivación - Definiciones

- Una relación es una afirmación sobre elementos de conjuntos que se expresa con un predicado y, por tanto, puede ser o no verdadera. Por ejemplo, "x es mayor que y", "x + y es menor que z", "José, Patricia y Gloria son familiares", "La estación x y la estación y se encuentran en una misma ruta de transmilenio", "Se puede ir de la estación x a la estación y haciendo máximo un transbordo", "m es un municipio del departamento d", . . .
- Formalmente, una relación se representa como un subconjunto del producto cartesiano de los conjuntos involucrados.
- Aplicaciones: Las relaciones se suelen almacenar en bases de datos relacionales, a partir de las cuales se pueden calcular otras relaciones o consultas.

Motivación - Definiciones

- Una relación es una afirmación sobre elementos de conjuntos que se expresa con un predicado y, por tanto, puede ser o no verdadera. Por ejemplo, "x es mayor que y", "x + y es menor que z", "José, Patricia y Gloria son familiares", "La estación x y la estación y se encuentran en una misma ruta de transmilenio", "Se puede ir de la estación x a la estación y haciendo máximo un transbordo", "m es un municipio del departamento d", . . .
- Formalmente, una relación se representa como un subconjunto del producto cartesiano de los conjuntos involucrados.
- Aplicaciones: Las relaciones se suelen almacenar en bases de datos relacionales, a partir de las cuales se pueden calcular otras relaciones o consultas.

- Motivación Definiciones
- Relaciones binarias
 - Definiciones
 - Representaciones
 - Propiedades
 - Operaciones de relaciones
 - Clausuras
- Tipos de relaciones
 - Relaciones de equivalencia
 - Relaciones de orden

Relaciones binarias

Recordemos el Producto cartesiano: El producto cartesiano de los conjuntos A y B, se denota A x B, y contiene todos las parejas de elementos de A con elementos de B

$$A \times B = \{(x, y) : U \times U | x \in A \land y \in B\}$$

```
Si A = \{1, 2, 4\}, B = \{4, 8\} entonces A \times B = \{(1, 4), (1, 8), (2, 4), (2, 8), (4, 4), (4, 8)\}. Como |A| = 3 y |B| = 2 entonces |A \times B| = 6.
```

 Una relación binaria entre un conjunto A y un conjunto B es un subconjunto de A × B.

Relaciones binarias

Recordemos el Producto cartesiano: El producto cartesiano de los conjuntos A y B, se denota A × B, y contiene todos las parejas de elementos de A con elementos de B

$$A \times B = \{(x, y) : U \times U | x \in A \land y \in B\}$$

Si
$$A = \{1, 2, 4\}, B = \{4, 8\}$$
 entonces $A \times B = \{(1, 4), (1, 8), (2, 4), (2, 8), (4, 4), (4, 8)\}$. Como $|A| = 3$ y $|B| = 2$ entonces $|A \times B| = 6$.

 Una relación binaria entre un conjunto A y un conjunto B es un subconjunto de A × B.

Siguiendo con el ejemplo: como $|A \times B| = 6$, hay 2^6 relaciones (subconjuntos)

Por ejemplo, $R_1 = \{(1,4), (2,4), (4,4)\}$ es una relación

 $O, R_2 = \{(1,8), (2,4)\}$ es otra relación

Relaciones binarias

Recordemos el Producto cartesiano: El producto cartesiano de los conjuntos A y B, se denota A × B, y contiene todos las parejas de elementos de A con elementos de B

$$A \times B = \{(x, y) : U \times U | x \in A \land y \in B\}$$

Si
$$A = \{1, 2, 4\}, B = \{4, 8\}$$
 entonces $A \times B = \{(1, 4), (1, 8), (2, 4), (2, 8), (4, 4), (4, 8)\}$. Como $|A| = 3$ y $|B| = 2$ entonces $|A \times B| = 6$.

 Una relación binaria entre un conjunto A y un conjunto B es un subconjunto de A × B.

Siguiendo con el ejemplo: como $|A \times B| = 6$, hay 2^6 relaciones (subconjuntos) posibles.

Por ejemplo, $R_1 = \{(1,4), (2,4), (4,4)\}$ es una relación $R_2 = \{(1,8), (2,4)\}$ es otra relación

Relaciones binarias

Recordemos el Producto cartesiano: El producto cartesiano de los conjuntos A y B, se denota A × B, y contiene todos las parejas de elementos de A con elementos de B

$$A \times B = \{(x, y) : U \times U | x \in A \land y \in B\}$$

Si
$$A = \{1, 2, 4\}, B = \{4, 8\}$$
 entonces $A \times B = \{(1, 4), (1, 8), (2, 4), (2, 8), (4, 4), (4, 8)\}$. Como $|A| = 3$ y $|B| = 2$ entonces $|A \times B| = 6$.

 Una relación binaria entre un conjunto A y un conjunto B es un subconjunto de A × B

Siguiendo con el ejemplo: como $|A \times B| = 6$, hay 2^6 relaciones (subconjuntos) posibles.

Por ejemplo, $R_1 = \{(1,4), (2,4), (4,4)\}$ es una relación. O, $R_2 = \{(1,8), (2,4)\}$ es otra relación.

Notaciones

Se escribe

 $R:A\leftrightarrow B$

para significar que R es una relación entre A y B.

- Dados $a \in A, b \in B$, se dice que a está relacionado con b por R si $(a, b) \in R$.
- A : el dominio de R
- B: el codominio de R
- $domR = \{a | a \in A \land (\exists b | b \in B : aRb)\}$: el dominio de definición de R

$$domR_1 = \{1, 2, 4\}, domR_2 = \{1, 2\}$$

 \bullet ran $R = \{b | b \in B \land (\exists a | a \in A : aRb)\}$: el rango de R

$$ranR_1 = \{4\}, ranR_2 = \{4, 8\}$$

 \bullet $R^T : B \leftrightarrow A$

 $R^{T} = \{(b, a)|aRb\}$: la transpuesta o inversa de R

$$R_1^T = \{(4,1), (4,2), (4,4)\}, R_2^T = \{(8,1), (4,2)\}$$

Notaciones

Se escribe

 $R:A\leftrightarrow B$

para significar que R es una relación entre A y B.

• Dados $a \in A, b \in B$, se dice que a está relacionado con b por R si $(a, b) \in R$.

También se escribe: aRb

R(a,b)

- A : el dominio de R
- B : el codominio de R
- $domR = \{a | a \in A \land (\exists b | b \in B : aRb)\}$: el dominio de definición de R

$$domR_1 = \{1, 2, 4\}, domR_2 = \{1, 2\}$$

• $ranR = \{b | b \in B \land (\exists a | a \in A : aRb)\}$: el rango de R

$$ranR_1 = \{4\}, ranR_2 = \{4, 8\}$$

- \bullet $R': B \leftrightarrow A$
 - $R^T = \{(b, a)|aRb\}$: la transpuesta o inversa de R

Notaciones

Se escribe

$$R:A\leftrightarrow B$$

para significar que R es una relación entre A y B.

- Dados $a \in A, b \in B$, se dice que a está relacionado con b por R si $(a,b) \in R$. También se escribe: aRb R(a,b)
- A : el dominio de R
- B : el codominio de R
- $domR = \{a | a \in A \land (\exists b | b \in B : aRb)\}$: el dominio de definición de R

$$domR_1 = \{1, 2, 4\}, domR_2 = \{1, 2\}$$

 $lacktriangleq ranR = \{b|b \in B \land (\exists a|a \in A: aRb)\}$: el rango de R

$$ranR_1 = \{4\}, ranR_2 = \{4, 8\}$$

 \bullet $R^T: B \leftrightarrow A$

 $R^T = \{(b,a)|aRb\}$: la transpuesta o inversa de R

$$R_1^T = \{(4,1), (4,2), (4,4)\}, R_2^T = \{(8,1), (4,2)\}$$

Notaciones

Se escribe

$$R:A\leftrightarrow B$$

para significar que R es una relación entre A y B.

- Dados $a \in A, b \in B$, se dice que a está relacionado con b por R si $(a,b) \in R$. También se escribe: aRb R(a,b)
- A: el dominio de R
- B : el codominio de R
- $domR = \{a | a \in A \land (\exists b | b \in B : aRb)\}$: el dominio de definición de R

$$domR_1 = \{1, 2, 4\}, domR_2 = \{1, 2\}$$

• $ranR = \{b | b \in B \land (\exists a | a \in A : aRb)\}$: el rango de R

$$ranR_1 = \{4\}, ranR_2 = \{4, 8\}$$

 \bullet $R': B \leftrightarrow A$

 $R^T = \{(b, a) | aRb\}$: la transpuesta o inversa de R

$$R_1^T = \{(4,1), (4,2), (4,4)\}, R_2^T = \{(8,1), (4,2)\}$$

Notaciones

Se escribe

$$R:A\leftrightarrow B$$

para significar que R es una relación entre A y B.

- Dados $a \in A, b \in B$, se dice que a está relacionado con b por R si $(a, b) \in R$. También se escribe: aRb R(a, b)
- A: el dominio de R
- B : el codominio de R
- $domR = \{a | a \in A \land (\exists b | b \in B : aRb)\}$: el dominio de definición de R

$$domR_1 = \{1, 2, 4\}, domR_2 = \{1, 2\}$$

• $ranR = \{b | b \in B \land (\exists a | a \in A : aRb)\}$: el rango de R

$$ranR_1 = \{4\}, ranR_2 = \{4, 8\}$$

• $R': B \leftrightarrow A$ $R^T = \{(b, a)|aRb\}$: la transpuesta o inversa de R

$$R_1^T = \{(4,1), (4,2), (4,4)\}, R_2^T = \{(8,1), (4,2)\}$$

Notaciones

Se escribe

$$R:A\leftrightarrow B$$

para significar que R es una relación entre A y B.

- Dados $a \in A, b \in B$, se dice que a está relacionado con b por R si $(a, b) \in R$. También se escribe: aRb R(a, b)
- A: el dominio de R
- B : el codominio de R
- $domR = \{a | a \in A \land (\exists b | b \in B : aRb)\}$: el dominio de definición de R

$$domR_1 = \{1, 2, 4\}, domR_2 = \{1, 2\}$$

• $ranR = \{b | b \in B \land (\exists a | a \in A : aRb)\}$: el rango de R

$$ranR_1 = \{4\}, ranR_2 = \{4, 8\}$$

• $R^T : B \leftrightarrow A$ $R^T = \{(b, a)|aRb\}$: la transpuesta o inversa de R

$$R_1^T = \{(4,1), (4,2), (4,4)\}, R_2^T = \{(8,1), (4,2)\}$$

Notaciones

Se escribe

$$R:A\leftrightarrow B$$

para significar que R es una relación entre A y B.

- Dados $a \in A, b \in B$, se dice que a está relacionado con b por R si $(a,b) \in R$. También se escribe: aRb R(a,b)
- A : el dominio de R
- B : el codominio de R
- $domR = \{a | a \in A \land (\exists b | b \in B : aRb)\}$: el dominio de definición de R

$$domR_1 = \{1, 2, 4\}, domR_2 = \{1, 2\}$$

• $ranR = \{b|b \in B \land (\exists a|a \in A : aRb)\} : el rango de R$

$$ranR_1 = \{4\}, ranR_2 = \{4, 8\}$$

• $R^T : B \leftrightarrow A$ $R^T = \{(b, a)|aRb\}$: la transpuesta o inversa de R

$$R_1^T = \{(4,1), (4,2), (4,4)\}, R_2^T = \{(8,1), (4,2)\}$$

Notaciones

Se escribe

$$R:A\leftrightarrow B$$

para significar que R es una relación entre A y B.

- Dados $a \in A, b \in B$, se dice que a está relacionado con b por R si $(a, b) \in R$. También se escribe: aRb R(a, b)
- A : el dominio de R
- B : el codominio de R
- $domR = \{a | a \in A \land (\exists b | b \in B : aRb)\}$: el dominio de definición de R

$$domR_1 = \{1, 2, 4\}, domR_2 = \{1, 2\}$$

• $ranR = \{b|b \in B \land (\exists a|a \in A : aRb)\}$: el rango de R

$$ranR_1 = \{4\}, ranR_2 = \{4, 8\}$$

• $R^T : B \leftrightarrow A$ $R^T = \{(b, a)|aRb\}\}$: la transpuesta o inversa de R

$$R_1^T = \{(4,1), (4,2), (4,4)\}, R_2^T = \{(8,1), (4,2)\}$$

- Motivación Definiciones
- 2 Relaciones binarias
 - Definiciones
 - Representaciones
 - Propiedades
 - Operaciones de relaciones
 - Clausuras
- Tipos de relaciones
 - Relaciones de equivalencia
 - Relaciones de orden

• Matrices booleanas: Si $A = \{a_1, a_2, \dots, a_m\}$ y $B = \{b_1, b_2, \dots, b_n\}$ y $R : A \leftrightarrow B$, entonces $M_R \in \mathcal{M}_{m \times n}$ representa a a R si

$$M_R[i,j] \equiv a_i R b_j$$

$$M_{R_1} = \begin{bmatrix} & | & 4 & 8 \\ \hline 1 & V & F \\ 2 & V & F \\ 4 & V & F \end{bmatrix}$$

$$M_{R_2} = \begin{bmatrix} 4 & 8 \\ 1 & F & V \\ 2 & V & F \\ 4 & F & F \end{bmatrix}$$

Gráficos: Se dibujan el dominio y el condominio y por cada aRb una flecha entre
a y b

$$R_2$$

• Matrices booleanas: Si $A = \{a_1, a_2, \dots, a_m\}$ y $B = \{b_1, b_2, \dots, b_n\}$ y $R: A \leftrightarrow B$, entonces $M_R \in \mathcal{M}_{m \times n}$ representa a R si

$$M_R[i,j] \equiv a_i R b_j$$

$$M_{R_1} = \begin{bmatrix} & | & 4 & 8 \\ \hline 1 & | & V & F \\ 2 & | & V & F \\ 4 & | & V & F \end{bmatrix}$$

$$M_{R_1} = \begin{bmatrix} & 4 & 8 \\ \hline 1 & V & F \\ 2 & V & F \\ 4 & V & F \end{bmatrix} \qquad M_{R_2} = \begin{bmatrix} & 4 & 8 \\ \hline 1 & F & V \\ 2 & V & F \\ 4 & F & F \end{bmatrix}$$

• Matrices booleanas: Si $A = \{a_1, a_2, \dots, a_m\}$ y $B = \{b_1, b_2, \dots, b_n\}$ y $R: A \leftrightarrow B$, entonces $M_R \in \mathcal{M}_{m \times n}$ representa a R si

$$M_R[i,j] \equiv a_i R b_j$$

$$M_{R_1} = \begin{bmatrix} & | & 4 & 8 \\ \hline 1 & | & V & F \\ 2 & | & V & F \\ 4 & | & V & F \end{bmatrix}$$

$$M_{R_1} = \begin{bmatrix} & 4 & 8 \\ \hline 1 & V & F \\ 2 & V & F \\ 4 & V & F \end{bmatrix} \qquad M_{R_2} = \begin{bmatrix} & 4 & 8 \\ \hline 1 & F & V \\ 2 & V & F \\ 4 & F & F \end{bmatrix}$$

 Gráficos: Se dibujan el dominio y el condominio y por cada aRb una flecha entre $a \lor b$ R_1 : R2:

• Grafos: Cuando A = B sólo se dibujan los puntos una vez.

• Matrices booleanas: Si $A = \{a_1, a_2, \dots, a_m\}$ y $B = \{b_1, b_2, \dots, b_n\}$ y $R: A \leftrightarrow B$, entonces $M_R \in \mathcal{M}_{m \times n}$ representa a R si

$$M_R[i,j] \equiv a_i R b_j$$

$$M_{R_1} = \begin{bmatrix} & | & 4 & 8 \\ \hline 1 & | & V & F \\ 2 & | & V & F \\ 4 & | & V & F \end{bmatrix}$$

$$M_{R_1} = \begin{bmatrix} 4 & 8 \\ 1 & V & F \\ 2 & V & F \\ 4 & V & F \end{bmatrix} \qquad M_{R_2} = \begin{bmatrix} 4 & 8 \\ 1 & F & V \\ 2 & V & F \\ 4 & F & F \end{bmatrix}$$

 Gráficos: Se dibujan el dominio y el condominio y por cada aRb una flecha entre $a \lor b$ R_1 : R2:

• Grafos: Cuando A=B sólo se dibujan los puntos una vez.

- Motivación Definiciones
- Relaciones binarias
 - Definiciones
 - Representaciones
 - Propiedades
 - Operaciones de relaciones
 - Clausuras
- Tipos de relaciones
 - Relaciones de equivalencia
 - Relaciones de orden

- Las relaciones binarias sobre un mismo conjunto son muy utilizadas y estudiadas (por ejemplo $=: \mathbb{N} \leftrightarrow \mathbb{N}, \leq: \mathbb{Z} \leftrightarrow \mathbb{Z}, \geq: \mathbb{R} \leftrightarrow \mathbb{R}, \ldots$). Dada una relación $R: A \leftrightarrow A$ se dice que:
- R es reflexiva si $\forall a | a \in A : aRa$. Por ejemplo: $\geq : \mathbb{N} \leftrightarrow \mathbb{N}$
- R es irreflexiva si $\forall a | a \in A : \neg aRa$. Por ejemplo: $\langle : \mathbb{N} \leftrightarrow \mathbb{N} \rangle$
- R es simétrica si $\forall a, b | a, b \in A$: $aRb \implies bRa$. Por ejemplo: $hermano : Persona \leftrightarrow Persona$ tal que $hermano(a,b) \equiv "a$ es hermano de b"
- lacktriangledown R es asimétrica si $\forall a,b | a,b \in A$: $aKb \implies \neg bKa$. Por ejemplo: <: $\mathbb{N} \leftrightarrow \mathbb{N}$
- R es antisimétrica si $\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b$. Por ejemplo: $C: \mathcal{P}(A) \leftrightarrow \mathcal{P}(A)$
- R es transitiva si ∀a, b, c | a, b, c | a, b, c ∈ A : (aRb ∧ bRc) ⇒ aRc. Por ejemplo:
 | : N ↔ N tal que a|b ≡ "a divide a b"

- Las relaciones binarias sobre un mismo conjunto son muy utilizadas y estudiadas (por ejemplo $=: \mathbb{N} \leftrightarrow \mathbb{N}, \leq: \mathbb{Z} \leftrightarrow \mathbb{Z}, \geq: \mathbb{R} \leftrightarrow \mathbb{R}, \ldots$). Dada una relación $R: A \leftrightarrow A$ se dice que:
- R es reflexiva si $\forall a | a \in A$: aRa. Por ejemplo: \geq : $\mathbb{N} \leftrightarrow \mathbb{N}$
- R es irreflexiva si $\forall a | a \in A : \neg aRa$. Por ejemplo: $\langle : \mathbb{N} \leftrightarrow \mathbb{N} \rangle$
- R es simétrica si ∀a, b|a, b ∈ A : aRb ⇒ bRa. Por ejemplo: hermano : Persona ↔ Persona tal que hermano(a, b) ≡ "a es hermano de b"
- lacktriangleq R es asimétrica si $\forall a,b | a,b \in A$: $aRb \implies \neg bRa$. Por ejemplo: $<: \mathbb{N} \leftrightarrow \mathbb{N}$
- R es antisimétrica si $\forall a, b | a, b \in A$: $(aRb \land bRa) \implies a = b$. Por ejemplo: $\subseteq : \mathcal{P}(A) \leftrightarrow \mathcal{P}(A)$
- R es transitiva si ∀a, b, c | a, b, c ∈ A: (aRb ∧ bRc) ⇒ aRc. Por ejemplo:
 |: N ↔ N tal que a|b ≡ "a divide a b"

- Las relaciones binarias sobre un mismo conjunto son muy utilizadas y estudiadas (por ejemplo $=: \mathbb{N} \leftrightarrow \mathbb{N}, \leq: \mathbb{Z} \leftrightarrow \mathbb{Z}, \geq: \mathbb{R} \leftrightarrow \mathbb{R}, \ldots$). Dada una relación $R: A \leftrightarrow A$ se dice que:
- R es reflexiva si $\forall a | a \in A$: aRa. Por ejemplo: \geq : $\mathbb{N} \leftrightarrow \mathbb{N}$
- R es irreflexiva si $\forall a | a \in A : \neg aRa$. Por ejemplo: $\langle : \mathbb{N} \leftrightarrow \mathbb{N} \rangle$
- R es simétrica si ∀a, b|a, b ∈ A : aRb ⇒ bRa. Por ejemplo: hermano : Persona ↔ Persona tal que hermano(a, b) ≡ "a es hermano de b"
- R es asimétrica si $\forall a,b|a,b\in A$: $aRb \implies \neg bRa$. Por ejemplo: $<:\mathbb{N}\leftrightarrow\mathbb{N}$
- R es antisimétrica si $\forall a, b | a, b \in A$: $(aRb \land bRa) \implies a = b$. Por ejemplo: $\subseteq : \mathcal{P}(A) \leftrightarrow \mathcal{P}(A)$
- R es transitiva si ∀a, b, c | a, b, c ∈ A: (aRb ∧ bRc) ⇒ aRc. Por ejemplo:
 |: N ↔ N tal que a|b ≡ "a divide a b"

- Las relaciones binarias sobre un mismo conjunto son muy utilizadas y estudiadas (por ejemplo $=: \mathbb{N} \leftrightarrow \mathbb{N}, \leq: \mathbb{Z} \leftrightarrow \mathbb{Z}, \geq: \mathbb{R} \leftrightarrow \mathbb{R}, \ldots$). Dada una relación $R: A \leftrightarrow A$ se dice que:
- R es reflexiva si $\forall a | a \in A$: aRa. Por ejemplo: \geq : $\mathbb{N} \leftrightarrow \mathbb{N}$
- R es irreflexiva si $\forall a | a \in A : \neg aRa$. Por ejemplo: $\langle : \mathbb{N} \leftrightarrow \mathbb{N} \rangle$
- R es simétrica si ∀a, b|a, b ∈ A : aRb ⇒ bRa. Por ejemplo: hermano : Persona ↔ Persona tal que hermano(a, b) ≡ "a es hermano de b"
- R es asimétrica si $\forall a, b | a, b \in A : aRb \implies \neg bRa$. Por ejemplo: $\langle : \mathbb{N} \leftrightarrow \mathbb{N} \rangle$
- R es antisimétrica si $\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b$. Por ejemplo: $\subseteq : \mathcal{P}(A) \leftrightarrow \mathcal{P}(A)$
- R es transitiva si $\forall a, b, c | a, b, c \in A$: $(aRb \land bRc) \implies aRc$. Por ejemplo: $|: \mathbb{N} \leftrightarrow \mathbb{N}$ tal que $a|b \equiv "a$ divide a b"

- Las relaciones binarias sobre un mismo conjunto son muy utilizadas y estudiadas (por ejemplo $=: \mathbb{N} \leftrightarrow \mathbb{N}, \leq: \mathbb{Z} \leftrightarrow \mathbb{Z}, \geq: \mathbb{R} \leftrightarrow \mathbb{R}, \ldots$). Dada una relación $R: A \leftrightarrow A$ se dice que:
- R es reflexiva si $\forall a | a \in A$: aRa. Por ejemplo: \geq : $\mathbb{N} \leftrightarrow \mathbb{N}$
- R es irreflexiva si $\forall a | a \in A : \neg aRa$. Por ejemplo: $\langle : \mathbb{N} \leftrightarrow \mathbb{N} \rangle$
- R es simétrica si ∀a, b|a, b ∈ A : aRb ⇒ bRa. Por ejemplo: hermano : Persona ↔ Persona tal que hermano(a, b) ≡ "a es hermano de b"
- R es asimétrica si $\forall a,b|a,b\in A$: $aRb \implies \neg bRa$. Por ejemplo: $<: \mathbb{N} \leftrightarrow \mathbb{N}$
- R es antisimétrica si $\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b$. Por ejemplo: $\subseteq : \mathcal{P}(A) \leftrightarrow \mathcal{P}(A)$
- R es transitiva si $\forall a, b, c | a, b, c \in A : (aRb \land bRc) \implies aRc$. Por ejemplo: $|: \mathbb{N} \leftrightarrow \mathbb{N}$ tal que $a|b \equiv "a$ divide a b"

- Las relaciones binarias sobre un mismo conjunto son muy utilizadas y estudiadas (por ejemplo $=: \mathbb{N} \leftrightarrow \mathbb{N}, \leq: \mathbb{Z} \leftrightarrow \mathbb{Z}, \geq: \mathbb{R} \leftrightarrow \mathbb{R}, \ldots$). Dada una relación $R: A \leftrightarrow A$ se dice que:
- R es reflexiva si $\forall a | a \in A$: aRa. Por ejemplo: \geq : $\mathbb{N} \leftrightarrow \mathbb{N}$
- R es irreflexiva si $\forall a | a \in A : \neg aRa$. Por ejemplo: $\langle : \mathbb{N} \leftrightarrow \mathbb{N} \rangle$
- R es simétrica si $\forall a, b | a, b \in A$: $aRb \implies bRa$. Por ejemplo: hermano: $Persona \leftrightarrow Persona$ tal que $hermano(a, b) \equiv "a$ es hermano de b"
- R es asimétrica si $\forall a,b|a,b\in A$: $aRb \implies \neg bRa$. Por ejemplo: $<: \mathbb{N} \leftrightarrow \mathbb{N}$
- R es antisimétrica si $\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b$. Por ejemplo: $\subseteq : \mathcal{P}(A) \leftrightarrow \mathcal{P}(A)$
- R es transitiva si $\forall a, b, c | a, b, c \in A : (aRb \land bRc) \implies aRc$. Por ejemplo: $|: \mathbb{N} \leftrightarrow \mathbb{N}$ tal que $a|b \equiv "a$ divide a b"

- Las relaciones binarias sobre un mismo conjunto son muy utilizadas y estudiadas (por ejemplo $=: \mathbb{N} \leftrightarrow \mathbb{N}, \leq: \mathbb{Z} \leftrightarrow \mathbb{Z}, \geq: \mathbb{R} \leftrightarrow \mathbb{R}, \ldots$). Dada una relación $R: A \leftrightarrow A$ se dice que:
- R es reflexiva si $\forall a | a \in A$: aRa. Por ejemplo: \geq : $\mathbb{N} \leftrightarrow \mathbb{N}$
- R es irreflexiva si $\forall a | a \in A : \neg aRa$. Por ejemplo: $\langle : \mathbb{N} \leftrightarrow \mathbb{N} \rangle$
- R es simétrica si ∀a, b|a, b ∈ A : aRb ⇒ bRa. Por ejemplo: hermano : Persona ↔ Persona tal que hermano(a, b) ≡ "a es hermano de b"
- R es asimétrica si $\forall a,b|a,b\in A$: $aRb \implies \neg bRa$. Por ejemplo: $<: \mathbb{N} \leftrightarrow \mathbb{N}$
- R es antisimétrica si $\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b$. Por ejemplo: $\subseteq : \mathcal{P}(A) \leftrightarrow \mathcal{P}(A)$
- R es transitiva si $\forall a,b,c | a,b,c \in A$: $(aRb \land bRc) \implies aRc$. Por ejemplo: $|: \mathbb{N} \leftrightarrow \mathbb{N}$ tal que $a|b \equiv "a$ divide a b"

Propiedades de las relaciones en $A \leftrightarrow A$ (2)

• Sea $I: A \leftrightarrow A$ tal que

$$(a,a) \in I$$

У

$$(a,b) \not\in I$$
, si $a \neq b$

Sea $R:A\leftrightarrow A$; las propiedades mencionadas se pueden expresar en términos de conjuntos así:

- R es reflexiva $(\forall a | a \in A : aRa)$ si $I \subseteq R$
- lacktriangle R es irreflexiva $(\forall a | a \in A : \neg aRa)$ si
- R es simétrica($\forall a, b | a, b \in A : aRb \implies bRa$) s
- lacktriangleq R es asimétrica($\forall a, b \mid a, b \in A : aRb \implies \neg bRa$) si
- lacktriangleq R es antisimétrica $(orall a,b|a,b\in A:(aRb\wedge bRa)\implies a=b)$ si

Propiedades de las relaciones en $A \leftrightarrow A$ (2)

• Sea $I: A \leftrightarrow A$ tal que

$$(a,a) \in I$$

У

$$(a,b) \not\in I$$
, si $a \neq b$

Sea $R:A\leftrightarrow A$; las propiedades mencionadas se pueden expresar en términos de conjuntos así:

- R es reflexiva ($\forall a | a \in A : aRa$) si $I \subseteq R$
- R es irreflexiva $(\forall a | a \in A : \neg aRa)$ si $A \cap R = \emptyset$
- R es simétrica($\forall a, b | a, b \in A : aRb \implies bRa$) si
- R es asimétrica($\forall a, b | a, b \in A : aRb \implies \neg bRa$) si
- lacktriangleq R es antisimétrica $(orall a,b|a,b\in A:(aRb\wedge bRa)\implies a=b)$ si

Propiedades de las relaciones en $A \leftrightarrow A$ (2)

• Sea $I: A \leftrightarrow A$ tal que

$$(a,a) \in I$$

У

$$(a,b) \not\in I$$
, si $a \neq b$

Sea $R:A\leftrightarrow A$; las propiedades mencionadas se pueden expresar en términos de conjuntos así:

- R es reflexiva $(\forall a | a \in A : aRa)$ si $I \subseteq R$
- R es irreflexiva $(\forall a | a \in A : \neg aRa)$ si $I \cap R = \emptyset$
- R es simétrica($\forall a, b | a, b \in A : aRb \implies bRa$) s
- R es asimétrica($\forall a, b | a, b \in A : aRb \implies \neg bRa$) si
- lacktriangleq R es antisimétrica $(orall a,b|a,b\in A:(aRb\wedge bRa)\implies a=b)$ si

• Sea $I: A \leftrightarrow A$ tal que

$$(a,a) \in I$$

У

$$(a,b) \not\in I$$
, si $a \neq b$

- R es reflexiva $(\forall a | a \in A : aRa)$ si $I \subseteq R$
- R es irreflexiva $(\forall a | a \in A : \neg aRa)$ si $I \cap R = \emptyset$
- R es simétrica($\forall a, b | a, b \in A : aRb \implies bRa$) si
- R es asimétrica($\forall a, b | a, b \in A : aRb \implies \neg bRa$) si
- R es antisimétrica $(\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b)$ si

• Sea $I: A \leftrightarrow A$ tal que

$$(a,a) \in I$$

У

$$(a,b) \not\in I$$
, si $a \neq b$

- R es reflexiva $(\forall a | a \in A : aRa)$ si $I \subseteq R$
- lacktriangle R es irreflexiva $(orall a|a\in A:
 eg aRa)$ si $I\cap R=\emptyset$
- R es simétrica($\forall a, b | a, b \in A : aRb \implies bRa$) si $R = R^T$
- R es asimétrica($\forall a, b | a, b \in A : aRb \implies \neg bRa$) s
- lacktriangledown R es antisimétrica $(\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b)$ si

• Sea $I: A \leftrightarrow A$ tal que

$$(a,a) \in I$$

У

$$(a,b) \not\in I$$
, si $a \neq b$

- R es reflexiva $(\forall a | a \in A : aRa)$ si $I \subseteq R$
- R es irreflexiva $(\forall a | a \in A : \neg aRa)$ si $I \cap R = \emptyset$
- R es simétrica($\forall a, b | a, b \in A$: $aRb \implies bRa$) si $R = R^T$
- R es asimétrica($\forall a, b | a, b \in A : aRb \implies \neg bRa$) si
- R es antisimétrica $(\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b)$ si

• Sea $I: A \leftrightarrow A$ tal que

$$(a,a) \in I$$

У

$$(a,b) \notin I$$
, si $a \neq b$

- R es reflexiva $(\forall a | a \in A : aRa)$ si $I \subseteq R$
- R es irreflexiva $(\forall a | a \in A : \neg aRa)$ si $I \cap R = \emptyset$
- $R \text{ es simétrica}(\forall a, b | a, b \in A : aRb \implies bRa) \text{ si } R = R^T$
- R es asimétrica($\forall a, b | a, b \in A : aRb \implies \neg bRa$) si $R \cap R^T = \emptyset$
- R es antisimétrica $(\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b)$ si

• Sea $I: A \leftrightarrow A$ tal que

$$(a,a) \in I$$

У

$$(a,b) \not\in I$$
, si $a \neq b$

- R es reflexiva $(\forall a | a \in A : aRa)$ si $I \subseteq R$
- R es irreflexiva $(\forall a | a \in A : \neg aRa)$ si $I \cap R = \emptyset$
- $R \text{ es simétrica}(\forall a, b | a, b \in A : aRb \implies bRa) \text{ si } R = R^T$
- R es asimétrica($\forall a, b | a, b \in A : aRb \implies \neg bRa$) si $R \cap R^T = \emptyset$
- R es antisimétrica $(\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b)$ si

• Sea $I: A \leftrightarrow A$ tal que

$$(a,a) \in I$$

У

$$(a,b) \not\in I$$
, si $a \neq b$

- R es reflexiva $(\forall a | a \in A : aRa)$ si $I \subseteq R$
- R es irreflexiva $(\forall a | a \in A : \neg aRa)$ si $I \cap R = \emptyset$
- $R \text{ es simétrica}(\forall a, b | a, b \in A : aRb \implies bRa) \text{ si } R = R^T$
- R es asimétrica $(\forall a, b | a, b \in A : aRb \implies \neg bRa)$ si $R \cap R^T = \emptyset$
- R es antisimétrica $(\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b)$ si $R \cap R^T \subseteq I$

• Sea $I: A \leftrightarrow A$ tal que

$$(a,a) \in I$$

У

$$(a,b) \not\in I$$
, si $a \neq b$

- R es reflexiva $(\forall a | a \in A : aRa)$ si $I \subseteq R$
- R es irreflexiva $(\forall a | a \in A : \neg aRa)$ si $I \cap R = \emptyset$
- $R \text{ es simétrica}(\forall a, b | a, b \in A : aRb \implies bRa) \text{ si } R = R^T$
- R es asimétrica $(\forall a, b | a, b \in A : aRb \implies \neg bRa)$ si $R \cap R^T = \emptyset$
- R es antisimétrica $(\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b)$ si $R \cap R^{\top} \subseteq I$

• Sea $I: A \leftrightarrow A$ tal que

$$(a,a) \in I$$

У

$$(a,b) \not\in I$$
, si $a \neq b$

- R es reflexiva $(\forall a | a \in A : aRa)$ si $I \subseteq R$
- R es irreflexiva $(\forall a | a \in A : \neg aRa)$ si $I \cap R = \emptyset$
- $R \text{ es simétrica}(\forall a, b | a, b \in A : aRb \implies bRa) \text{ si } R = R^T$
- R es asimétrica $(\forall a, b | a, b \in A : aRb \implies \neg bRa)$ si $R \cap R^T = \emptyset$
- R es antisimétrica $(\forall a, b | a, b \in A : (aRb \land bRa) \implies a = b)$ si $R \cap R^T \subseteq I$

Definiciones Representaciones Propiedades Operaciones de relaciones Clausuras

Plan

- Motivación Definiciones
- Relaciones binarias
 - Definiciones
 - Representaciones
 - Propiedades
 - Operaciones de relaciones
 - Clausuras
- Tipos de relaciones
 - Relaciones de equivalencia
 - Relaciones de orden

Definiciones Representaciones Propiedades Operaciones de relaciones

Operaciones: unión, intersección, diferencia, complemento

- Como una relación es un conjunto, se pueden usar las operaciones sobre conjuntos: unión, intersección, diferencia, complemento de relaciones $A \leftrightarrow B$.
- Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\},$ $R_1 = \{(1, 1), (2, 2), (3, 3)\},$ $R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$

• Sea A el conjunto de estudiantes de UA y B las asignaturas de la UA. Sea $R_1 = \{(a,b) : a \text{ está inscrito en } b\}$ y $R_2 = \{(a,b) : a \text{ requiere } b \text{ para graduarse}\}$ i Cómo interpretar $R_1 \cup R_2 \setminus R_1 \cup R_2 \setminus R_2 \setminus R_3 \setminus R_4 \cup R_4 \cap R_5 \cup R_5 \cap R_6 \cup R_6 \cap R_6$

- Como una relación es un conjunto, se pueden usar las operaciones sobre conjuntos: unión, intersección, diferencia, complemento de relaciones A ↔ B.
- Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\},$ $R_1 = \{(1, 1), (2, 2), (3, 3)\},$ $R_1 \cup R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\}$ $R_1 \cap R_2 = \{(1, 1)\},$ $R_1 \setminus R_2 = \{(2, 2), (3, 3)\}$
- $R_1 = \{(a, b) : a \text{ está inscrib en } b\}$ $V_1 = \{(a, b) : a \text{ requiere } b \text{ para graduarse}\}$

Definiciones
Representaciones
Propiedades
Operaciones de relaciones

- Como una relación es un conjunto, se pueden usar las operaciones sobre conjuntos: unión, intersección, diferencia, complemento de relaciones $A \leftrightarrow B$.
- Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\},$ $R_1 = \{(1, 1), (2, 2), (3, 3)\},$ $R_1 \cup R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\}$ $R_1 \cap R_2 = \{(1, 1)\}$ $R_1 \setminus R_2 = \{(2, 2), (3, 3)\}$
 - $R_2 \setminus R_1 = \{(1,2), (1,3), (1,4)\}$
- lacktriangle Sea A el conjunto de estudiantes de UA y B las asignaturas de la UA. Sea
 - $R_1 = \{(a,b) : a \text{ está inscrito en } b\}$ y $R_2 = \{(a,b) : a \text{ requiere } b \text{ para graduarse}\}$ $J \text{ Cómo interpretar } R_1 \cup R_2, R_1 \cap R_2, R_1 \setminus R_2, R_2 \setminus R_1?$

- Como una relación es un conjunto, se pueden usar las operaciones sobre conjuntos: unión, intersección, diferencia, complemento de relaciones A ↔ B.
- Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\},$ $R_1 = \{(1, 1), (2, 2), (3, 3)\},$ $R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$ $R_1 \cup R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\}$ $R_1 \cap R_2 = \{(1, 1)\}$ $R_1 \setminus R_2 = \{(2, 2), (3, 3)\}$
- Sea A el conjunto de estudiantes de UA y B las asignaturas de la UA. Sea R₁ = {(a, b) : a está inscrito en b} y R₂ = {(a, b) : a requiere b para graduarse} ¿Cómo interpretar R₁ ∪ R₂, R₁ ∩ R₂, R₁ \ R₂, R₂ \ R₁?

- Como una relación es un conjunto, se pueden usar las operaciones sobre conjuntos: unión, intersección, diferencia, complemento de relaciones $A \leftrightarrow B$.
- Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\},\$ $R_1 = \{(1, 1), (2, 2), (3, 3)\},$ $R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\},$ $R_1 \cup R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\},$ $R_1 \cap R_2 = \{(1, 1)\},$ $R_1 \setminus R_2 = \{(2, 2), (3, 3)\},$
- Sea A el conjunto de estudiantes de UA y B las asignaturas de la UA. Sea $R_1 = \{(a,b): a \text{ está inscrito en } b\}$ y $R_2 = \{(a,b): a \text{ requiere } b \text{ para graduarse}\}$ ¿Cómo interpretar $R_1 \cup R_2, R_1 \cap R_2, R_1 \setminus R_2, R_2 \setminus R_1$?

- Como una relación es un conjunto, se pueden usar las operaciones sobre conjuntos: unión, intersección, diferencia, complemento de relaciones A ↔ B.
- Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\},$ $R_1 = \{(1, 1), (2, 2), (3, 3)\},$ $R_1 \cup R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\}$ $R_1 \cap R_2 = \{(1, 1)\}$ $R_1 \setminus R_2 = \{(2, 2), (3, 3)\}$ $R_2 \setminus R_1 = \{(1, 2), (1, 3), (1, 4)\}$
- Sea A el conjunto de estudiantes de UA y B las asignaturas de la UA. Sea $R_1 = \{(a,b): a \text{ está inscrito en } b\}$ y $R_2 = \{(a,b): a \text{ requiere } b \text{ para graduarse}\}$ ¿Cómo interpretar $R_1 \cup R_2, R_1 \cap R_2, R_1 \setminus R_2, R_2 \setminus R_1$?

- Como una relación es un conjunto, se pueden usar las operaciones sobre conjuntos: unión, intersección, diferencia, complemento de relaciones A ↔ B.
- Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\},\$ $R_1 = \{(1, 1), (2, 2), (3, 3)\},$ $R_1 \cup R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\}$ $R_1 \cap R_2 = \{(1, 1)\}$ $R_1 \setminus R_2 = \{(2, 2), (3, 3)\}$ $R_2 \setminus R_1 = \{(1, 2), (1, 3), (1, 4)\}$
- Sea A el conjunto de estudiantes de UA y B las asignaturas de la UA. Sea $R_1 = \{(a,b): a \text{ está inscrito en } b\}$ y $R_2 = \{(a,b): a \text{ requiere } b \text{ para graduarse}\}$ ¿Cómo interpretar $R_1 \cup R_2, R_1 \cap R_2, R_1 \setminus R_2, R_2 \setminus R_1$?

• También se pueden componer relaciones. Dados $R: A \leftrightarrow B, S: B \leftrightarrow C$, se define la composición de R con S, como la relación $S \circ R: A \leftrightarrow C$ tal que:

$$S \circ R = \{(a,c)| a \in A \land c \in C \land \exists b|b \in B : aRb \land bSc\}$$

Nótese que es la composición de R con S pero se escribe $S \circ R$

• Se tiene entonces que dados $a \in A, c \in C$:

$$a \ S \circ R \ c \equiv \exists b | b \in B : aRb \land bSc$$

• Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\}, C = \{0, 1, 2\}, R : A \leftrightarrow B, s : B \leftrightarrow C \text{ tales que}$ $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}, S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$

$$S \circ R = \{$$

• También se pueden componer relaciones. Dados $R: A \leftrightarrow B, S: B \leftrightarrow C$, se define la composición de R con S, como la relación $S \circ R: A \leftrightarrow C$ tal que:

$$S \circ R = \{(a,c)|a \in A \land c \in C \land \exists b|b \in B : aRb \land bSc\}$$

Nótese que es la composición de R con S pero se escribe $S \circ R$

• Se tiene entonces que dados $a \in A, c \in C$:

$$a S \circ R c \equiv \exists b | b \in B : aRb \land bSc$$

• Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\}, C = \{0, 1, 2\}, R : A \leftrightarrow B, s : B \leftrightarrow C \text{ tales que}$ $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}, S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$

• También se pueden componer relaciones. Dados $R:A\leftrightarrow B,S:B\leftrightarrow C$, se define la composición de R con S, como la relación $S\circ R:A\leftrightarrow C$ tal que:

$$S \circ R = \{(a,c)|a \in A \land c \in C \land \exists b|b \in B : aRb \land bSc\}$$

Nótese que es la composición de R con S pero se escribe $S \circ R$

• Se tiene entonces que dados $a \in A, c \in C$:

$$a S \circ R c \equiv \exists b | b \in B : aRb \wedge bSc$$

• Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\}, C = \{0, 1, 2\}, R : A \leftrightarrow B, s : B \leftrightarrow C \text{ tales que}$ $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}, S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$ $S \circ R = \{$

• También se pueden componer relaciones. Dados $R:A\leftrightarrow B,S:B\leftrightarrow C$, se define la composición de R con S, como la relación $S\circ R:A\leftrightarrow C$ tal que:

$$S \circ R = \{(a,c)|a \in A \land c \in C \land \exists b|b \in B : aRb \land bSc\}$$

Nótese que es la composición de R con S pero se escribe $S \circ R$

• Se tiene entonces que dados $a \in A, c \in C$:

$$a \ S \circ R \ c \equiv \exists b | b \in B : aRb \wedge bSc$$

• Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\}, C = \{0, 1, 2\}, R : A \leftrightarrow B, s : B \leftrightarrow C$ tales que $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}, S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$

$$S \circ R = \{$$

• También se pueden componer relaciones. Dados $R:A\leftrightarrow B,S:B\leftrightarrow C$, se define la composición de R con S, como la relación $S\circ R:A\leftrightarrow C$ tal que:

$$S \circ R = \{(a,c)|a \in A \land c \in C \land \exists b|b \in B : aRb \land bSc\}$$

Nótese que es la composición de R con S pero se escribe $S \circ R$

• Se tiene entonces que dados $a \in A, c \in C$:

$$\textit{a } \textit{S} \circ \textit{R } \textit{c} \equiv \exists \textit{b} | \textit{b} \in \textit{B} : \textit{aRb} \land \textit{bSc}$$

• Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\}, C = \{0, 1, 2\}, R : A \leftrightarrow B, s : B \leftrightarrow C \text{ tales que } R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}, S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$

$$S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$$

• Sea Padre la relación sobre el conjunto de las Personas tal que:

$$Padre(a, b) \equiv a$$
 es padre de b

$$Abuelo(a, b) \equiv a$$
 es abuelo de b

- ¿Qué relación es Padre o Padre?
- ¿Qué relación es Abuelo ∘ Padre?
- Se denotará $R^1 = R$, $R^2 = R \circ R$, $R^3 = R^2 \circ R$, ..., $R^n = R^{n-1} \circ R$

• Sea Padre la relación sobre el conjunto de las Personas tal que:

$$Padre(a, b) \equiv a$$
 es padre de b

$$Abuelo(a, b) \equiv a$$
 es abuelo de b

- ¿Qué relación es Padre o Padre?
- ¿Qué relación es Abuelo o Padre?
- Se denotará $R^1 = R$, $R^2 = R \circ R$, $R^3 = R^2 \circ R$, ..., $R^n = R^{n-1} \circ R$

• Sea Padre la relación sobre el conjunto de las Personas tal que:

$$Padre(a, b) \equiv a$$
 es padre de b

$$Abuelo(a, b) \equiv a$$
 es abuelo de b

- ¿Qué relación es *Padre* o *Padre?* $(a,c) \in Padre \circ Padre \equiv \exists b | : Padre(a,b) \land Padre(b,c) \equiv Abuelo(a,c)$ $(a,c) \in Padre \circ Padre \equiv \exists b | : Padre(a,b) \land Padre(b,c) \equiv Abuelo(a,c)$
- Se denotará $R^1 = R$, $R^2 = R \circ R$, $R^3 = R^2 \circ R$, ..., $R^n = R^{n-1} \circ R$

• Sea Padre la relación sobre el conjunto de las Personas tal que:

$$Padre(a, b) \equiv a$$
 es padre de b

• Sea Abuelo la relación sobre el conjunto de las Personas tal que:

$$Abuelo(a, b) \equiv a$$
 es abuelo de b

- ¿Qué relación es Padre ∘ Padre?
 (a, c) ∈ Padre ∘ Padre ≡ ∃b|: Padre(a, b) ∧ Padre(b, c) ≡ Abuelo(a, c)
- ¿Qué relación es Abuelo o Padre!

• Se denotará $R^1 = R, R^2 = R \circ R, R^3 = R^2 \circ R, ..., R^n = R^{n-1} \circ R$

• Sea Padre la relación sobre el conjunto de las Personas tal que:

$$Padre(a, b) \equiv a$$
 es padre de b

• Sea Abuelo la relación sobre el conjunto de las Personas tal que:

$$Abuelo(a, b) \equiv a$$
 es abuelo de b

- ¿Qué relación es Padre \circ Padre? $(a, c) \in Padre \circ Padre \equiv \exists b | : Padre(a, b) \land Padre(b, c) \equiv Abuelo(a, c)$
- ¿Qué relación es Abuelo ∘ Padre!

ullet Se denotará $R^1=R, R^2=R\circ R, R^3=R^2\circ R,\ldots, R^n=R^{n-1}\circ R$

• Sea Padre la relación sobre el conjunto de las Personas tal que:

$$Padre(a, b) \equiv a$$
 es padre de b

• Sea Abuelo la relación sobre el conjunto de las Personas tal que:

$$Abuelo(a, b) \equiv a$$
 es abuelo de b

- ¿Qué relación es $Padre \circ Padre$? $(a, c) \in Padre \circ Padre \equiv \exists b | : Padre(a, b) \land Padre(b, c) \equiv Abuelo(a, c)$
- Qué relación es Abuelo o Padre?

• Se denotará $R^1 = R$, $R^2 = R \circ R$, $R^3 = R^2 \circ R$, ..., $R^n = R^{n-1} \circ R$

• Sea Padre la relación sobre el conjunto de las Personas tal que:

$$Padre(a, b) \equiv a$$
 es padre de b

Sea Abuelo la relación sobre el conjunto de las Personas tal que:

$$Abuelo(a, b) \equiv a$$
 es abuelo de b

- ¿Qué relación es $Padre \circ Padre$? $(a, c) \in Padre \circ Padre \equiv \exists b \mid : Padre(a, b) \land Padre(b, c) \equiv Abuelo(a, c)$
- ¿Qué relación es Abuelo ∘ Padre?

$$(a,c) \in Abuelo \circ Padre \equiv \exists b \mid : Padre(a,b) \land Abuelo(b,c) \equiv Bisabuelo(a,c)$$

• Se denotará $R^1 = R, R^2 = R \circ R, R^3 = R^2 \circ R, ..., R'' = R''^{-1} \circ R''$

• Sea Padre la relación sobre el conjunto de las Personas tal que:

$$Padre(a, b) \equiv a$$
 es padre de b

$$Abuelo(a, b) \equiv a$$
 es abuelo de b

- ¿Qué relación es $Padre \circ Padre$? $(a, c) \in Padre \circ Padre \equiv \exists b \mid : Padre(a, b) \land Padre(b, c) \equiv Abuelo(a, c)$
- ¿Qué relación es Abuelo \circ Padre? $(a,c) \in Abuelo \circ Padre \equiv \exists b \mid : Padre(a,b) \land Abuelo(b,c) \equiv Bisabuelo(a,c)$
- Se denotará $R^1 = R, R^2 = R \circ R, R^3 = R^2 \circ R, ..., R^n = R^{n-1} \circ R^n$

• Sea Padre la relación sobre el conjunto de las Personas tal que:

$$Padre(a, b) \equiv a$$
 es padre de b

$$Abuelo(a, b) \equiv a$$
 es abuelo de b

- ¿Qué relación es $Padre \circ Padre$? $(a, c) \in Padre \circ Padre \equiv \exists b | : Padre(a, b) \land Padre(b, c) \equiv Abuelo(a, c)$
- ¿Qué relación es Abuelo \circ Padre? $(a,c) \in Abuelo \circ Padre \equiv \exists b \mid : Padre(a,b) \land Abuelo(b,c) \equiv Bisabuelo(a,c)$
- Se denotará $R^1=R, R^2=R\circ R, R^3=R^2\circ R,\ldots, R^n=R^{n-1}\circ R$

• Sea Padre la relación sobre el conjunto de las Personas tal que:

$$Padre(a, b) \equiv a$$
 es padre de b

$$Abuelo(a, b) \equiv a$$
 es abuelo de b

- ¿Qué relación es $Padre \circ Padre$? $(a, c) \in Padre \circ Padre \equiv \exists b | : Padre(a, b) \land Padre(b, c) \equiv Abuelo(a, c)$
- ¿Qué relación es Abuelo \circ Padre? $(a,c) \in Abuelo \circ Padre \equiv \exists b \mid : Padre(a,b) \land Abuelo(b,c) \equiv Bisabuelo(a,c)$
- Se denotará $R^1 = R$, $R^2 = R \circ R$, $R^3 = R^2 \circ R$, ..., $R^n = R^{n-1} \circ R$

Sea Padre la relación sobre el conjunto de las Personas tal que:

$$Padre(a, b) \equiv a$$
 es padre de b

$$Abuelo(a, b) \equiv a$$
 es abuelo de b

- ¿Qué relación es $Padre \circ Padre$? $(a, c) \in Padre \circ Padre \equiv \exists b | : Padre(a, b) \land Padre(b, c) \equiv Abuelo(a, c)$
- ¿Qué relación es Abuelo \circ Padre? $(a,c) \in Abuelo \circ Padre \equiv \exists b| : Padre(a,b) \land Abuelo(b,c) \equiv Bisabuelo(a,c)$
- Se denotará $R^1 = R$, $R^2 = R \circ R$, $R^3 = R^2 \circ R$, ..., $R^n = R^{n-1} \circ R$ Padre² = Abuelo y Padre³ = Abuelo \circ Padre = Bisabuelo

Composición y operaciones de conjuntos

Los siguientes teoremas se pueden demostrar a partir de las definiciones:

Asociatividad-o:

$$(T \circ S) \circ R = T \circ (S \circ R)$$

■ Distributividad-○/U

$$(S \cup T) \circ R = (S \circ R) \cup (T \circ R)$$

$$R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$$

Semidistributividad-o/n:

$$(S \cap T) \circ R \subseteq (S \circ R) \cap (T \circ R)$$

$$R \circ (S \cap T) \subseteq (R \circ S) \cap (R \circ T)$$

Composición y operaciones de conjuntos

Los siguientes teoremas se pueden demostrar a partir de las definiciones:

Asociatividad-o:

$$(T \circ S) \circ R = T \circ (S \circ R)$$

● Distributividad-o/U:

$$(S \cup T) \circ R = (S \circ R) \cup (T \circ R)$$

$$R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$$

Semidistributividad-○/∩:

$$(S \cap T) \circ R \subseteq (S \circ R) \cap (T \circ R)$$

$$R \circ (S \cap T) \subseteq (R \circ S) \cap (R \circ T)$$

Composición y operaciones de conjuntos

Los siguientes teoremas se pueden demostrar a partir de las definiciones:

Asociatividad-o:

$$(T \circ S) \circ R = T \circ (S \circ R)$$

■ Distributividad-o/U:

$$(S \cup T) \circ R = (S \circ R) \cup (T \circ R)$$

$$R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$$

Semidistributividad-∘/∩:

$$(S \cap T) \circ R \subseteq (S \circ R) \cap (T \circ R)$$

$$R \circ (S \cap T) \subseteq (R \circ S) \cap (R \circ T)$$

Plan

- Motivación Definiciones
- 2 Relaciones binarias
 - Definiciones
 - Representaciones
 - Propiedades
 - Operaciones de relaciones
 - Clausuras
- Tipos de relaciones
 - Relaciones de equivalencia
 - Relaciones de orden

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$. R es reflexiva?, cuál es la

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$. R es reflexiva?, cuál es la clausura reflexiva de R, $\rho(R)$?

$$\rho(R) = \{$$

- En general. $\rho(R) = I \cup R$
- Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)\}$

Dada una relación $R:A\leftrightarrow A$ es útil en algunos problemas buscar la relación más pequeña posible que cumpla una propiedad (reflexiva, simétrica, transitiva) y que incluya a R.

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$. R es reflexiva?, cuál es la clausura reflexiva de R, $\rho(R)$?

$$\rho(R) = \{$$

En general, $\rho(R) = I \cup R$

• Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)\}$

Dada una relación $R:A\leftrightarrow A$ es útil en algunos problemas buscar la relación más pequeña posible que cumpla una propiedad (reflexiva, simétrica, transitiva) y que incluya a R.

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$. R es reflexiva?, cuál es la clausura reflexiva de R, $\rho(R)$?

$$\rho(R) = \{$$

En general, $\rho(R) = I \cup R$

• Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)\}$

Dada una relación $R: A \leftrightarrow A$ es útil en algunos problemas buscar la relación más pequeña posible que cumpla una propiedad (reflexiva, simétrica, transitiva) y que incluya a R.

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$. R es reflexiva?, cuál es la clausura reflexiva de R, $\rho(R)$?

$$\rho(R) = \{(1,1), (1,2), (2,1), (3,2), (2,2), (3,3)\}$$

En general, $\rho(R) = I \cup R$

• Sea
$$A = \{1, 2, 3\}$$
 y $R = \{(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)\}$

Dada una relación $R: A \leftrightarrow A$ es útil en algunos problemas buscar la relación más pequeña posible que cumpla una propiedad (reflexiva, simétrica, transitiva) y que incluya a R.

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$. R es reflexiva?, cuál es la clausura reflexiva de R, $\rho(R)$?

$$\rho(R) = \{(1,1), (1,2), (2,1), (3,2), (2,2), (3,3)\}$$

En general, $\rho(R) = I \cup R$

• Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)\}$. $R = \{(1, 2, 3), (2, 3), (2, 3), (3, 3), (3, 2)\}$

Dada una relación $R: A \leftrightarrow A$ es útil en algunos problemas buscar la relación más pequeña posible que cumpla una propiedad (reflexiva, simétrica, transitiva) y que incluya a R.

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$. R es reflexiva?, cuál es la clausura reflexiva de R, $\rho(R)$?

$$\rho(R) = \{(1,1), (1,2), (2,1), (3,2), (2,2), (3,3)\}$$

En general, $\rho(R) = I \cup R$

• Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)\}$. R es simétrica?, cuál es la clausura simétrica de R, $\sigma(R)$?

$$\sigma(R) = \{$$

Dada una relación $R: A \leftrightarrow A$ es útil en algunos problemas buscar la relación más pequeña posible que cumpla una propiedad (reflexiva, simétrica, transitiva) y que incluya a R.

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$. R es reflexiva?, cuál es la clausura reflexiva de R, $\rho(R)$?

$$\rho(R) = \{(1,1), (1,2), (2,1), (3,2), (2,2), (3,3)\}$$

En general, $\rho(R) = I \cup R$

• Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)\}$. R es simétrica?, cuál es la clausura simétrica de R, $\sigma(R)$?

$$\sigma(R) = \{$$

Dada una relación $R: A \leftrightarrow A$ es útil en algunos problemas buscar la relación más pequeña posible que cumpla una propiedad (reflexiva, simétrica, transitiva) y que incluya a R.

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$. R es reflexiva?, cuál es la clausura reflexiva de R, $\rho(R)$?

$$\rho(R) = \{(1,1), (1,2), (2,1), (3,2), (2,2), (3,3)\}$$

En general, $\rho(R) = I \cup R$

• Sea $A = \{1,2,3\}$ y $R = \{(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)\}$. R es simétrica?, cuál es la clausura simétrica de R, $\sigma(R)$?

$$\sigma(R) = \{$$

Dada una relación $R: A \leftrightarrow A$ es útil en algunos problemas buscar la relación más pequeña posible que cumpla una propiedad (reflexiva, simétrica, transitiva) y que incluya a R.

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$. R es reflexiva?, cuál es la clausura reflexiva de R, $\rho(R)$?

$$\rho(R) = \{(1,1), (1,2), (2,1), (3,2), (2,2), (3,3)\}$$

En general, $\rho(R) = I \cup R$

• Sea $A = \{1,2,3\}$ y $R = \{(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)\}$. R es simétrica?, cuál es la clausura simétrica de R, $\sigma(R)$?

$$\sigma(R) = \{(1,1), (1,2), (2,2), (2,3), (3,1), (3,2), (1,3), (2,1)\}$$

Dada una relación $R: A \leftrightarrow A$ es útil en algunos problemas buscar la relación más pequeña posible que cumpla una propiedad (reflexiva, simétrica, transitiva) y que incluya a R.

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3\}$ y $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$. R es reflexiva?, cuál es la clausura reflexiva de R, $\rho(R)$?

$$\rho(R) = \{(1,1), (1,2), (2,1), (3,2), (2,2), (3,3)\}$$

En general, $\rho(R) = I \cup R$

• Sea $A = \{1,2,3\}$ y $R = \{(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)\}$. R es simétrica?, cuál es la clausura simétrica de R, $\sigma(R)$?

$$\sigma(R) = \{(1,1), (1,2), (2,2), (2,3), (3,1), (3,2), (1,3), (2,1)\}$$

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3, 4\}$ y $R = \{(1, 3), (1, 4), (2, 1), (3, 2)\}$. R es transitiva?, Cuál es

Dada una relación $R:A\leftrightarrow A$ es útil en algunos problemas buscar la relación más pequeña posible que cumpla una propiedad (reflexiva, simétrica, transitiva) y que incluya a R.

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1,2,3,4\}$ y $R = \{(1,3),(1,4),(2,1),(3,2)\}$. R es transitiva?, Cuál es la clausura transitiva de R, $\tau(R)$?

$$au(R) = \{$$

En general, $\tau(R) = (\bigcup |i>0:R^i) = R^{\tau}$ Y. la clausura transitiva-reflexiva $\sigma - \tau(R) = (\bigcup |i>0:R^i) = R^{\tau}$

Dada una relación $R:A\leftrightarrow A$ es útil en algunos problemas buscar la relación más pequeña posible que cumpla una propiedad (reflexiva, simétrica, transitiva) y que incluya a R.

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3, 4\}$ y $R = \{(1, 3), (1, 4), (2, 1), (3, 2)\}$. R es transitiva?, Cuál es la clausura transitiva de R, $\tau(R)$?

$$au(R) = \{$$

En general, $\tau(R) = (\bigcup |i>0:R') = R^+$ Y. la clausura transitiva-reflexiva $\sigma - \tau(R) = (|\cdot||i>0:R^i) = R^*$

Dada una relación $R:A\leftrightarrow A$ es útil en algunos problemas buscar la relación más pequeña posible que cumpla una propiedad (reflexiva, simétrica, transitiva) y que incluya a R.

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3, 4\}$ y $R = \{(1, 3), (1, 4), (2, 1), (3, 2)\}$. R es transitiva?, Cuál es la clausura transitiva de R, $\tau(R)$?

$$\tau(R) = \{$$

En general, $\tau(R) = (\bigcup |i > 0: R^i) = R^+$ Y, la clausura transitiva-reflexiva $\sigma - \tau(R) = (\bigcup |i \ge 0: R^i) = R^*$

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3, 4\}$ y $R = \{(1, 3), (1, 4), (2, 1), (3, 2)\}$. R es transitiva?, Cuál es la clausura transitiva de R, $\tau(R)$?

$$\tau(R) = \{(1,3), (1,4), (2,1), (3,2), (1,2), (2,3), (2,4), (3,1)\}$$

En general,
$$\tau(R) = (\bigcup |i>0:R^i) = R^+$$

Y, la clausura transitiva-reflexiva $\sigma - \tau(R) = (\bigcup |i\geq 0:R^i) = R^*$

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3, 4\}$ y $R = \{(1, 3), (1, 4), (2, 1), (3, 2)\}$. R es transitiva?, Cuál es la clausura transitiva de R, $\tau(R)$?

$$\tau(R) = \{(1,3), (1,4), (2,1), (3,2), (1,2), (2,3), (2,4), (3,1)\}$$

En general,
$$\tau(R) = (\bigcup |i > 0: R^i) = R^+$$

Y, la clausura transitiva-reflexiva $\sigma - \tau(R) = (\bigcup |i \ge 0: R^i) = R^*$

- La Clausura- ϕ de R es la relación más pequeña posible que cumple ϕ y que contiene a R.
- Sea $A = \{1, 2, 3, 4\}$ y $R = \{(1, 3), (1, 4), (2, 1), (3, 2)\}$. R es transitiva?, Cuál es la clausura transitiva de R, $\tau(R)$?

$$\tau(R) = \{(1,3), (1,4), (2,1), (3,2), (1,2), (2,3), (2,4), (3,1)\}$$

En general,
$$\tau(R) = (\bigcup |i>0:R^i) = R^+$$

Y, la clausura transitiva-reflexiva $\sigma - \tau(R) = (\bigcup |i\geq 0:R^i) = R^*$

Ejemplo

Suponga un conjunto de personas P y una relación $\mathit{Hijo}: P \leftrightarrow P$ tal que

$$Hijo(a.b) \equiv a$$
 es hijo de b

• La relación $Padre : P \leftrightarrow P$ se puede definir como

$$Padre = Hijo^T$$

La relación Hermano: P ↔ P ¿cómo se podría definir?
 Hermano(a, b) = a ≠ b ∧ (ap) Hijo(a, b) ∧ Hijo(b, p)

• La relación Abuelo: $P \leftrightarrow P$; cómo se podría definir?

Ejemplo

Suponga un conjunto de personas P y una relación $Hijo: P \leftrightarrow P$ tal que

$$Hijo(a.b) \equiv a$$
 es hijo de b

• La relación $Padre : P \leftrightarrow P$ se puede definir como

$$Padre = Hijo^T$$

• La relación $Hermano: P \leftrightarrow P$ ¿cómo se podría definir? $Hermano(a,b) \equiv a \neq b \land (\exists p|: Hijo(a,p) \land Hijo(b,p))$ $\equiv Neq(a,b) \land (\exists p|: Hijo(a,p) \land Hijo^T(p,b))$ $\equiv Neq(a,b) \land (Hijo^T \circ Hijo)(a,b)$

$$Hermano \equiv Neq \cap (Hijo' \circ Hijo)$$

• La relación Abuelo : $P \leftrightarrow P$; cómo se podría definir?

Ejemplo

Suponga un conjunto de personas P y una relación $\mathit{Hijo}: P \leftrightarrow P$ tal que

$$Hijo(a.b) \equiv a$$
 es hijo de b

• La relación $Padre : P \leftrightarrow P$ se puede definir como

$$Padre = Hijo^T$$

• La relación $Hermano: P \leftrightarrow P$ ¿cómo se podría definir? $Hermano(a,b) \equiv a \neq b \land (\exists p|: Hijo(a,p) \land Hijo(b,p))$ $\equiv Neq(a,b) \land (\exists p|: Hijo(a,p) \land Hijo^T(p,b))$ $\equiv Neq(a,b) \land (Hijo^T \circ Hijo)(a,b)$ $\equiv (Neq \cap (Hijo^T \circ Hijo))(a,b)$

Ejemplo

Suponga un conjunto de personas P y una relación $Hijo: P \leftrightarrow P$ tal que

$$Hijo(a.b) \equiv a$$
 es hijo de b

• La relación $Padre : P \leftrightarrow P$ se puede definir como

$$Padre = Hijo^T$$

• La relación $Hermano: P \leftrightarrow P$; cómo se podría definir? $Hermano(a,b) \equiv a \neq b \land (\exists p|: Hijo(a,p) \land Hijo(b,p))$ $\equiv Neq(a,b) \land (\exists p|: Hijo(a,p) \land Hijo^T(p,b))$ $\equiv Neq(a,b) \land (Hijo^T \circ Hijo)(a,b)$ $\equiv (Neq \cap (Hijo^T \circ Hijo))(a,b)$

$$Hermano \equiv Neq \cap (Hijo' \circ Hijo)$$

La relación Abuelo : P ↔ P ; cómo se podría definir?

Ejemplo

Suponga un conjunto de personas P y una relación $Hijo: P \leftrightarrow P$ tal que

$$Hijo(a.b) \equiv a$$
 es hijo de b

• La relación $Padre : P \leftrightarrow P$ se puede definir como

$$Padre = Hijo^T$$

• La relación $Hermano: P \leftrightarrow P$; cómo se podría definir? $Hermano(a,b) \equiv a \neq b \land (\exists p|: Hijo(a,p) \land Hijo(b,p))$ $\equiv Neq(a,b) \land (\exists p|: Hijo(a,p) \land Hijo^T(p,b))$ $\equiv Neq(a,b) \land (Hijo^T \circ Hijo)(a,b)$ $\equiv (Neq \cap (Hijo^T \circ Hijo))(a,b)$ \circ sea.

$$Hermano \equiv Neq \cap (Hijo' \circ Hijo)$$

Ejemplo

Suponga un conjunto de personas P y una relación $Hijo: P \leftrightarrow P$ tal que

$$Hijo(a.b) \equiv a$$
 es hijo de b

• La relación $Padre : P \leftrightarrow P$ se puede definir como

$$Padre = Hijo^T$$

• La relación $Hermano: P \leftrightarrow P$ ¿cómo se podría definir? $Hermano(a,b) \equiv a \neq b \land (\exists p|: Hijo(a,p) \land Hijo(b,p))$ $\equiv Neq(a,b) \land (\exists p|: Hijo(a,p) \land Hijo^T(p,b))$ $\equiv Neq(a,b) \land (Hijo^T \circ Hijo)(a,b)$ $\equiv (Neq \cap (Hijo^T \circ Hijo))(a,b)$ \odot sea,

$$Hermano \equiv Neq \cap (Hijo' \circ Hijo)$$

■ La relación Abuelo : P ↔ P ¿cómo se podría definir?

Ejemplo

Suponga un conjunto de personas P y una relación $Hijo: P \leftrightarrow P$ tal que

$$Hijo(a.b) \equiv a$$
 es hijo de b

• La relación $Padre : P \leftrightarrow P$ se puede definir como

$$Padre = Hijo^T$$

• La relación $Hermano: P \leftrightarrow P$; cómo se podría definir? $Hermano(a,b) \equiv a \neq b \land (\exists p|: Hijo(a,p) \land Hijo(b,p))$ $\equiv Neq(a,b) \land (\exists p|: Hijo(a,p) \land Hijo^T(p,b))$ $\equiv Neq(a,b) \land (Hijo^T \circ Hijo)(a,b)$ $\equiv (Neq \cap (Hijo^T \circ Hijo))(a,b)$ O sea,

$$Hermano \equiv Neq \cap (Hijo^T \circ Hijo)$$

■ La relación Abuelo : P ↔ P ¿cómo se podría definir?

Ejemplo

Suponga un conjunto de personas P y una relación $Hijo: P \leftrightarrow P$ tal que

$$Hijo(a.b) \equiv a$$
 es hijo de b

• La relación $Padre : P \leftrightarrow P$ se puede definir como

$$Padre = Hijo^T$$

• La relación $Hermano: P \leftrightarrow P$; cómo se podría definir? $Hermano(a,b) \equiv a \neq b \land (\exists p|: Hijo(a,p) \land Hijo(b,p))$ $\equiv Neq(a,b) \land (\exists p|: Hijo(a,p) \land Hijo^T(p,b))$ $\equiv Neq(a,b) \land (Hijo^T \circ Hijo)(a,b)$ $\equiv (Neq \cap (Hijo^T \circ Hijo))(a,b)$ O sea,

$$Hermano \equiv Neq \cap (Hijo^T \circ Hijo)$$

• La relación Abuelo : $P \leftrightarrow P$ ¿cómo se podría definir?

Abuelo \equiv Padre \circ Padre

Ejemplo

Suponga un conjunto de personas P y una relación $Hijo: P \leftrightarrow P$ tal que

$$Hijo(a.b) \equiv a$$
 es hijo de b

• La relación $Padre : P \leftrightarrow P$ se puede definir como

$$Padre = Hijo^T$$

• La relación $Hermano: P \leftrightarrow P$; cómo se podría definir? $Hermano(a,b) \equiv a \neq b \land (\exists p|: Hijo(a,p) \land Hijo(b,p))$ $\equiv Neq(a,b) \land (\exists p|: Hijo(a,p) \land Hijo^T(p,b))$ $\equiv Neq(a,b) \land (Hijo^T \circ Hijo)(a,b)$ $\equiv (Neq \cap (Hijo^T \circ Hijo))(a,b)$ O sea,

$$Hermano \equiv Neq \cap (Hijo^T \circ Hijo)$$

■ La relación Abuelo : P ↔ P ¿cómo se podría definir?

 $Abuelo \equiv Padre \circ Padre$

Plan

- Motivación Definiciones
- 2 Relaciones binarias
 - Definiciones
 - Representaciones
 - Propiedades
 - Operaciones de relaciones
 - Clausuras
- 3 Tipos de relaciones
 - Relaciones de equivalencia
 - Relaciones de orden

- Una relación $R:A\leftrightarrow A$ es una relación de equivalencia si R es reflexiva, simétrica y transitiva. Video 2.5
- Si aRb y R es de equivalencia, se dice que a es equivalente a b y se escribe $a \sim b$
- [Socrative]¿Cuáles de las siguientes relaciones son de equivalencia?

- [Socrative] Dado $a \in A$, se define la clase de equivalencia de a en R, $[a]_R$ como
 - $[a]_R = \{x : A|aRx\}$

- Una relación $R:A\leftrightarrow A$ es una relación de equivalencia si R es reflexiva, simétrica y transitiva. Video 2.5
- Si aRb y R es de equivalencia, se dice que a es equivalente a b y se escribe $a \sim b$
- [Socrative]¿Cuáles de las siguientes relaciones son de equivalencia?
 - $R_1: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_1(a,b) \equiv (a-b)$ es par
 - $a: R_0: \mathbb{N} \hookrightarrow \mathbb{N} \text{ tall que } R_0(a,b) = a|b$
- Secretive Dade $a \in A$ so define b = b = b
- Socrative Dado $a \in A$, se define la clase de equivalencia de a en K, $[a]_R$ como
 - $[a]_R = \{x : A|aRx\}$

- Una relación R: A

 A es una relación de equivalencia si R es reflexiva, simétrica y transitiva. Video 2.5
- Si aRb y R es de equivalencia, se dice que a es equivalente a b y se escribe $a \sim b$
- [Socrative] ¿Cuáles de las siguientes relaciones son de equivalencia?
 - $R_1: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_1(a,b) \equiv (a-b)$ es par
 - $R_2: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_2(a,b) \equiv a = b \lor a = -b$
 - $R_3: \mathbb{N} \leftrightarrow \mathbb{N}$ tal que $R_3(a,b) \equiv a|b$
 - ullet $R_4:\mathbb{R} \leftrightarrow \mathbb{R}$ tal que $R_4(a,b)\equiv |a-b| < 1$
- |Socrative|Dado $a \in A$, se define la clase de equivalencia de a en R, $[a]_R$ comoc

 $[a]_R = \{x : A|aRx\}$

- Una relación R: A

 A es una relación de equivalencia si R es reflexiva, simétrica y transitiva. Video 2.5
- Si aRb y R es de equivalencia, se dice que a es equivalente a b y se escribe $a \sim b$
- [Socrative]¿Cuáles de las siguientes relaciones son de equivalencia?
 - $R_1: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_1(a,b) \equiv (a-b)$ es par
 - $R_2: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_2(a, b) \equiv a = b \lor a = -b$
 - $R_3: \mathbb{N} \leftrightarrow \mathbb{N}$ tal que $R_3(a,b) \equiv a|b$
 - $R_4: \mathbb{R} \to \mathbb{R}$ tal que $R_4(a,b) \equiv |a-b| <$
- [Socrative]Dado $a \in A$, se define la clase de equivalencia de a en R, $[a]_R$ como

 $[a]_R = \{x : A|aRx\}$

- Una relación R: A

 A es una relación de equivalencia si R es reflexiva, simétrica y transitiva. Video 2.5
- Si aRb y R es de equivalencia, se dice que a es equivalente a b y se escribe $a \sim b$
- [Socrative]¿Cuáles de las siguientes relaciones son de equivalencia?
 - $R_1: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_1(a,b) \equiv (a-b)$ es par
 - $R_2: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_2(a, b) \equiv a = b \lor a = -b$
 - $R_3: \mathbb{N} \leftrightarrow \mathbb{N}$ tal que $R_3(a,b) \equiv a|b$
 - $R_4: \mathbb{R} \leftrightarrow \mathbb{R}$ tal que $R_4(a,b) \equiv |a-b| < 1$
- [Socrative] Dado $a \in A$, se define la clase de equivalencia de a en R, $[a]_R$ como

 $[a]_R = \{x : A | aRx\}$

- Una relación R: A

 A es una relación de equivalencia si R es reflexiva, simétrica y transitiva. Video 2.5
- Si aRb y R es de equivalencia, se dice que a es equivalente a b y se escribe $a \sim b$
- [Socrative]¿Cuáles de las siguientes relaciones son de equivalencia?
 - $R_1: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_1(a,b) \equiv (a-b)$ es par
 - $R_2: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_2(a, b) \equiv a = b \lor a = -b$
 - $R_3: \mathbb{N} \leftrightarrow \mathbb{N}$ tal que $R_3(a,b) \equiv a|b$
 - $R_4: \mathbb{R} \leftrightarrow \mathbb{R}$ tal que $R_4(a,b) \equiv |a-b| < 1$
- [Socrative] Dado $a \in A$, se define la clase de equivalencia de a en R, $[a]_R$ como

$$[a]_R = \{x : A|aRx\}$$

- Una relación $R:A\leftrightarrow A$ es una relación de equivalencia si R es reflexiva, simétrica y transitiva. Video 2.5
- Si aRb y R es de equivalencia, se dice que a es equivalente a b y se escribe $a \sim b$
- [Socrative] ¿Cuáles de las siguientes relaciones son de equivalencia?
 - $R_1: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_1(a,b) \equiv (a-b)$ es par
 - $R_2: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_2(a,b) \equiv a = b \lor a = -b$
 - $R_3: \mathbb{N} \leftrightarrow \mathbb{N}$ tal que $R_3(a,b) \equiv a|b$
 - $R_4: \mathbb{R} \leftrightarrow \mathbb{R}$ tal que $R_4(a,b) \equiv |a-b| < 1$
- [Socrative]Dado $a \in A$, se define la clase de equivalencia de a en R, $[a]_R$ como

$$[a]_R = \{x : A|aRx\}$$

- Una relación $R: A \leftrightarrow A$ es una relación de equivalencia si R es reflexiva, simétrica y transitiva. Video 2.5
- Si aRb y R es de equivalencia, se dice que a es equivalente a b y se escribe $a \sim b$
- [Socrative] ¿Cuáles de las siguientes relaciones son de equivalencia?
 - $R_1: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_1(a,b) \equiv (a-b)$ es par
 - $R_2: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_2(a,b) \equiv a = b \lor a = -b$
 - $R_3: \mathbb{N} \leftrightarrow \mathbb{N}$ tal que $R_3(a,b) \equiv a|b$
 - $R_4: \mathbb{R} \leftrightarrow \mathbb{R}$ tal que $R_4(a,b) \equiv |a-b| < 1$
- [Socrative] Dado $a \in A$, se define la clase de equivalencia de a en R, $[a]_R$ como

$$[a]_R = \{x : A|aRx\}$$

•
$$[2]_{R_1} = \{$$

• $[2]_{R_2} = \{$

$$\{ \}, [3]_{R_1} = \{ \}$$
 $\{ \}, [3]_{R_2} = \{ \}$

Relaciones de equivalencia

- Una relación $R:A \leftrightarrow A$ es una relación de equivalencia si R es reflexiva, simétrica y transitiva. Video 2.5
- Si aRb y R es de equivalencia, se dice que a es equivalente a b y se escribe $a \sim b$
- [Socrative] ¿Cuáles de las siguientes relaciones son de equivalencia?
 - $R_1: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_1(a,b) \equiv (a-b)$ es par
 - $R_2: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_2(a,b) \equiv a = b \lor a = -b$
 - $R_3: \mathbb{N} \leftrightarrow \mathbb{N}$ tal que $R_3(a,b) \equiv a|b|$
 - $R_4: \mathbb{R} \leftrightarrow \mathbb{R}$ tal que $R_4(a,b) \equiv |a-b| < 1$
- [Socrative] Dado $a \in A$, se define la clase de equivalencia de a en R, $[a]_R$ como

$$[a]_R = \{x : A|aRx\}$$

•
$$[2]_{R_1} = \{$$

• $[2]_{R_2} = \{$

},
$$[3]_{R_1} = \{$$

}, $[3]_{R_2} = \{$

Relaciones de equivalencia

- Una relación $R: A \leftrightarrow A$ es una relación de equivalencia si R es reflexiva, simétrica y transitiva. Video 2.5
- Si aRb y R es de equivalencia, se dice que a es equivalente a b y se escribe $a \sim b$
- [Socrative] ¿Cuáles de las siguientes relaciones son de equivalencia?
 - $R_1: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_1(a,b) \equiv (a-b)$ es par
 - $R_2: \mathbb{Z} \leftrightarrow \mathbb{Z}$ tal que $R_2(a, b) \equiv a = b \lor a = -b$
 - $R_3: \mathbb{N} \leftrightarrow \mathbb{N}$ tal que $R_3(a,b) \equiv a|b$
 - $R_4: \mathbb{R} \leftrightarrow \mathbb{R}$ tal que $R_4(a,b) \equiv |a-b| < 1$
- [Socrative] Dado $a \in A$, se define la clase de equivalencia de a en R, $[a]_R$ como

$$[a]_R = \{x : A|aRx\}$$

•
$$[2]_{R_1} = \{$$

•
$$[2]_{R_2} = \{$$

$$\{ \}, [3]_{R_1} = \{ \}$$

 $\{ \}, [3]_{R_2} = \{ \}$

•
$$A_i \neq \emptyset$$
 para $i = 1..m$

•
$$A_i \cap A_j = \emptyset$$
 para $i \neq j$

•
$$(\bigcup i | 1 \le i \le m : A_i) = A$$

- Sea R: A ↔ A una relación de equivalencia. Las clases de equivalencia de R forman una partición de A
- ¿Cuáles son la clases de equivalencia de R_1 ? ¿Forman una partición de \mathbb{Z} ?

•
$$A_i \neq \emptyset$$
 para $i = 1..m$

•
$$A_i \cap A_j = \emptyset$$
 para $i \neq j$

$$\bullet \ (\bigcup i|1 \le i \le m: A_i\} = A$$

- Sea R: A ↔ A una relación de equivalencia. Las clases de equivalencia de R forman una partición de A
- ¿Cuáles son la clases de equivalencia de R_1 ? ¿Forman una partición de \mathbb{Z} ?

- $A_i \neq \emptyset$ para i = 1..m
- $A_i \cap A_j = \emptyset$ para $i \neq j$
- $(\bigcup i | 1 \le i \le m : A_i) = A$

- ¿Cuáles son la clases de equivalencia de R_1 ? ¿Forman una partición de \mathbb{Z} ?

- $A_i \neq \emptyset$ para i = 1..m
- $A_i \cap A_j = \emptyset$ para $i \neq j$
- $\bullet \ (\bigcup i|1\leq i\leq m:A_i\}=A$

- ullet ¿Cuáles son la clases de equivalencia de R_1 ? ¿Forman una partición de $\mathbb Z$

- $A_i \neq \emptyset$ para i = 1..m
- $A_i \cap A_j = \emptyset$ para $i \neq j$
- $\bullet \ (\bigcup i|1\leq i\leq m:A_i\}=A$

- ullet ¿Cuáles son la clases de equivalencia de R_1 ? ¿Forman una partición de \mathbb{Z} ?

- $A_i \neq \emptyset$ para i = 1..m
- $A_i \cap A_i = \emptyset$ para $i \neq j$
- $\bullet \ (\bigcup i|1\leq i\leq m:A_i\}=A$

- Sea R: A ↔ A una relación de equivalencia. Las clases de equivalencia de R forman una partición de A.
- ¿Cuáles son la clases de equivalencia de R_1 ? ¿Forman una partición de \mathbb{Z} ?

- $A_i \neq \emptyset$ para i = 1..m
- $A_i \cap A_i = \emptyset$ para $i \neq j$
- $\bullet \ (\bigcup i|1\leq i\leq m:A_i\}=A$

- ullet ¿Cuáles son la clases de equivalencia de R_1 ? ¿Forman una partición de \mathbb{Z} ?

Sea $R: \mathbb{Z} \leftrightarrow \mathbb{Z}$ definida así:

$$nRm \equiv (n-m)$$
es múltiplo de $4 \equiv 4 | (n-m)$

- 1 Probar que R es una relación de equivalencia
 - ; R es reflexiva? nRn = 4l(n-n) = 4l0 = true
 - ¿ R es simétrica?
 - ¿R es transitiva?
- igorplus Determinar todas las clases de equivalencia de R. ¿Cuántas hay?

 \bigcirc ¿Las clases de equivalencia de R forman una partición de \mathbb{Z} ?

Sea $R: \mathbb{Z} \leftrightarrow \mathbb{Z}$ definida así:

$$nRm \equiv (n-m)$$
es múltiplo de $4 \equiv 4 | (n-m)$

- 1 Probar que R es una relación de equivalencia
 - - ¿ R es simétrica?
 - ¿R es transitiva?
- 📵 Determinar todas las clases de equivalencia de R. ¿Cuántas hay?

 \bigcirc ¿Las clases de equivalencia de R forman una partición de \mathbb{Z}

Sea $R: \mathbb{Z} \leftrightarrow \mathbb{Z}$ definida así:

$$nRm \equiv (n-m)$$
es múltiplo de $4 \equiv 4 | (n-m)$

- 1 Probar que R es una relación de equivalencia
 - $\[\] R$ es reflexiva? $nRn \equiv 4 | (n-n) \equiv 4 | 0 \equiv true \]$
 - R es simétrica? $Rm \equiv 4 | (n m) \equiv 4$
 - ¿R es transitiva?
- Determinar todas las clases de equivalencia de R. ¿Cuántas hay?

igcirc $igcup_{i}$ Las clases de equivalencia de R forman una partición de \mathbb{Z} ?

Sea $R: \mathbb{Z} \leftrightarrow \mathbb{Z}$ definida así:

$$nRm \equiv (n-m)$$
es múltiplo de $4 \equiv 4 | (n-m)$

- 1 Probar que R es una relación de equivalencia
 - $\[\] R$ es reflexiva? $nRn \equiv 4 | (n-n) \equiv 4 | 0 \equiv true \]$

 - ¿R es transitiva?
- @ Determinar todas las clases de equivalencia de R. ¿Cuántas hay?

 \bigcirc ¿Las clases de equivalencia de R forman una partición de \mathbb{Z} ?

Sea $R: \mathbb{Z} \leftrightarrow \mathbb{Z}$ definida así:

$$nRm \equiv (n-m)$$
es múltiplo de $4 \equiv 4 | (n-m)$

- 1 Probar que R es una relación de equivalencia
 - $\[\] R$ es reflexiva? $nRn \equiv 4 | (n-n) \equiv 4 | 0 \equiv true \]$
 - $\downarrow R$ es simétrica? hbornamm = 4|(n-m) = 4| (n-m) = 4|(m-n) = mRn
 - igcirc R es transitiva? $nRm \wedge mRp \equiv 4|(n-m) \wedge 4|(m-p)$
- Operation de la proposition de la company de la proposition de la company de la proposition de la company de la

 \bigcirc ¿Las clases de equivalencia de R forman una partición de \mathbb{Z} ?

Sea $R : \mathbb{Z} \leftrightarrow \mathbb{Z}$ definida así:

$$nRm \equiv (n-m)$$
es múltiplo de $4 \equiv 4 | (n-m)$

- 1 Probar que R es una relación de equivalencia
 - i R es reflexiva? $nRn \equiv 4|(n-n) \equiv 4|0 \equiv true$

$$4|((n-m)+(m-p))\equiv 4|(n-p)\equiv nRp$$

② Determinar todas las clases de equivalencia de R. ¿Cuántas hay?

 \bigcirc ¿Las clases de equivalencia de R forman una partición de \mathbb{Z} ?

Sea $R: \mathbb{Z} \leftrightarrow \mathbb{Z}$ definida así:

$$nRm \equiv (n-m)$$
es múltiplo de $4 \equiv 4 | (n-m)$

- 1 Probar que R es una relación de equivalencia
 - $\[R \]$ es reflexiva? $nRn \equiv 4 | (n-n) \equiv 4 | 0 \equiv true \]$
 - $\downarrow R$ es simétrica? $hline nRm \equiv 4|(n-m) \equiv 4|-(n-m) \equiv 4|(m-n) \equiv mRn$
 - ξR es transitiva? $nRm \wedge mRp \equiv 4|(n-m) \wedge 4|(m-p) \implies$ $4|((n-m)+(m-p)) \equiv 4|(n-p) \equiv nRp$
- Oeterminar todas las clases de equivalencia de R. ¿Cuántas hay?

 \bigcirc ¿Las clases de equivalencia de R forman una partición de \mathbb{Z} ?

$$nRm \equiv (n-m)$$
es múltiplo de $4 \equiv 4 | (n-m)$

- 1 Probar que R es una relación de equivalencia

 - ¿ R es simétrica? $nRm \equiv 4|(n-m) \equiv 4|-(n-m) \equiv 4|(m-n) \equiv mRn$
- ② Determinar todas las clases de equivalencia de R. ¿Cuántas hay?
 - $\begin{aligned} [0] &= \{n \in \mathbb{Z} : 0Rn\} = \{n \in \mathbb{Z} : 4 | -n\} = \{\dots, -8, -4, 0, 4, 8\dots\} \\ [1] &= \{n \in \mathbb{Z} : 1Rn\} = \{n \in \mathbb{Z} : 4 | 1-n\} = \{\dots, -7, -3, 1, 5, 9\dots\} \\ [2] &= \{n \in \mathbb{Z} : 2Rn\} = \{n \in \mathbb{Z} : 4 | 2-n\} = \{\dots, -6, -2, 2, 6, 10\dots\} \\ [3] &= \{n \in \mathbb{Z} : 3Rn\} = \{n \in \mathbb{Z} : 4 | 3-n\} = \{\dots, -5, -1, 3, 7, 11\dots\} \end{aligned}$
- ¿Las clases de equivalencia de R forman una partición de Z?

$$nRm \equiv (n-m)$$
es múltiplo de $4 \equiv 4 | (n-m)$

- 1 Probar que R es una relación de equivalencia

 - ¿ R es simétrica? $nRm \equiv 4|(n-m) \equiv 4|-(n-m) \equiv 4|(m-n) \equiv mRn$
 - ξR es transitiva? $nRm \wedge mRp \equiv 4|(n-m) \wedge 4|(m-p) \implies$ $4|((n-m) + (m-p)) \equiv 4|(n-p) \equiv nRp$
- Determinar todas las clases de equivalencia de R. ¿Cuántas hay? $[0] = \{n \in \mathbb{Z} : 0Rn\} = \{n \in \mathbb{Z} : 4|-n\} = \{\dots, -8, -4, 0, 4, 8\dots\}$
 - $\begin{aligned} & [1] = \{n \in \mathbb{Z} : 1Rn\} = \{n \in \mathbb{Z} : 4|1-n\} = \{\dots, -7, -3, 1, 5, 9\dots\} \\ & [2] = \{n \in \mathbb{Z} : 2Rn\} = \{n \in \mathbb{Z} : 4|2-n\} = \{\dots, -6, -2, 2, 6, 10\dots\} \\ & [3] = \{n \in \mathbb{Z} : 3Rn\} = \{n \in \mathbb{Z} : 4|3-n\} = \{\dots, -5, -1, 3, 7, 11\dots\} \end{aligned}$
- \bigcirc ¿Las clases de equivalencia de R forman una partición de \mathbb{Z} ?

$$nRm \equiv (n-m)$$
es múltiplo de $4 \equiv 4 | (n-m)$

- 1 Probar que R es una relación de equivalencia

 - ¿ R es simétrica? $nRm \equiv 4|(n-m) \equiv 4|-(n-m) \equiv 4|(m-n) \equiv mRn$

$$4|((n-m)+(m-p))\equiv 4|(n-p)\equiv nRp$$

- ② Determinar todas las clases de equivalencia de R. ¿Cuántas hay?
 - $[0] = \{n \in \mathbb{Z} : 0Rn\} = \{n \in \mathbb{Z} : 4|-n\} = \{\dots, -8, -4, 0, 4, 8\dots\}$
 - $[1] = \{ n \in \mathbb{Z} : 1Rn \} = \{ n \in \mathbb{Z} : 4|1-n\} = \{ \dots, -7, -3, 1, 5, 9 \dots \}$ $[2] = \{ n \in \mathbb{Z} : 2Rn \} = \{ n \in \mathbb{Z} : 4|2-n\} = \{ \dots, -6, -2, 2, 6, 10 \}$
 - $\{a\} = \{n \in \mathbb{Z} : 2Rn\} = \{n \in \mathbb{Z} : 4|2-n\} = \{\dots, -0, -2, 2, 0, 10\dots\}$ $\{a\} = \{n \in \mathbb{Z} : 3Rn\} = \{n \in \mathbb{Z} : 4|3-n\} = \{\dots, -5, -1, 3, 7, 11\dots\}$
- \bigcirc ¿Las clases de equivalencia de R forman una partición de \mathbb{Z} ?

$$nRm \equiv (n-m)$$
es múltiplo de $4 \equiv 4 | (n-m)$

- 1 Probar que R es una relación de equivalencia

 - ¿ R es simétrica? $nRm \equiv 4|(n-m) \equiv 4|-(n-m) \equiv 4|(m-n) \equiv mRn$

$$4|((n-m)+(m-p))\equiv 4|(n-p)\equiv nRp$$

- ② Determinar todas las clases de equivalencia de R. ¿Cuántas hay?
 - $[0] = \{n \in \mathbb{Z} : 0Rn\} = \{n \in \mathbb{Z} : 4|-n\} = \{\dots, -8, -4, 0, 4, 8\dots\}$
 - $[1] = \{n \in \mathbb{Z} : 1Rn\} = \{n \in \mathbb{Z} : 4|1-n\} = \{\dots, -7, -3, 1, 5, 9\dots\}$
 - [2] = $\{n \in \mathbb{Z} : 2Rn\} = \{n \in \mathbb{Z} : 4|2-n\} = \{\dots, -6, -2, 2, 6, 10\dots\}$
- 3 ¿Las clases de equivalencia de R forman una partición de \mathbb{Z} ?

$$nRm \equiv (n-m)$$
es múltiplo de $4 \equiv 4 | (n-m)$

- 1 Probar que R es una relación de equivalencia
 - $\downarrow R$ es reflexiva? $hline nRn \equiv 4|(n-n) \equiv 4|0 \equiv true$
 - ¿ R es simétrica? $nRm \equiv 4|(n-m) \equiv 4|-(n-m) \equiv 4|(m-n) \equiv mRn$

$$4|((n-m)+(m-p))\equiv 4|(n-p)\equiv nRp$$

- ② Determinar todas las clases de equivalencia de R. ¿Cuántas hay?
 - $[0] = \{n \in \mathbb{Z} : 0Rn\} = \{n \in \mathbb{Z} : 4|-n\} = \{\dots, -8, -4, 0, 4, 8\dots\}$
 - $[1] = \{n \in \mathbb{Z} : 1Rn\} = \{n \in \mathbb{Z} : 4|1-n\} = \{\dots, -7, -3, 1, 5, 9\dots\}$
 - [2] = $\{n \in \mathbb{Z} : 2Rn\} = \{n \in \mathbb{Z} : 4|2-n\} = \{\dots, -6, -2, 2, 6, 10\dots\}$
 - [3] = $\{n \in \mathbb{Z} : 3Rn\} = \{n \in \mathbb{Z} : 4|3-n\} = \{\ldots, -5, -1, 3, 7, 11\ldots\}$
- \bigcirc ¿Las clases de equivalencia de R forman una partición de \mathbb{Z} ?

$$nRm \equiv (n-m)$$
es múltiplo de $4 \equiv 4 | (n-m)$

- 1 Probar que R es una relación de equivalencia
 - $\downarrow R$ es reflexiva? $hline nRn \equiv 4|(n-n) \equiv 4|0 \equiv true$
 - ¿ R es simétrica? $nRm \equiv 4|(n-m) \equiv 4|-(n-m) \equiv 4|(m-n) \equiv mRn$

$$4|((n-m)+(m-p))\equiv 4|(n-p)\equiv nRp$$

- ② Determinar todas las clases de equivalencia de R. ¿Cuántas hay?
 - $[0] = \{n \in \mathbb{Z} : 0Rn\} = \{n \in \mathbb{Z} : 4|-n\} = \{\dots, -8, -4, 0, 4, 8\dots\}$
 - $[1] = \{n \in \mathbb{Z} : 1Rn\} = \{n \in \mathbb{Z} : 4|1-n\} = \{\dots, -7, -3, 1, 5, 9\dots\}$
 - [2] = $\{n \in \mathbb{Z} : 2Rn\} = \{n \in \mathbb{Z} : 4|2-n\} = \{\dots, -6, -2, 2, 6, 10\dots\}$
 - [3] = $\{n \in \mathbb{Z} : 3Rn\} = \{n \in \mathbb{Z} : 4|3-n\} = \{\ldots, -5, -1, 3, 7, 11\ldots\}$
- 3 ¿Las clases de equivalencia de R forman una partición de \mathbb{Z} ?

Plan

- Motivación Definiciones
- 2 Relaciones binarias
 - Definiciones
 - Representaciones
 - Propiedades
 - Operaciones de relaciones
 - Clausuras
- 3 Tipos de relaciones
 - Relaciones de equivalencia
 - Relaciones de orden

- Una relación $R:A \leftrightarrow A$ es una relación de orden parcial si R es reflexiva, antisimétrica y transitiva.
- Un conjunto A con una relación de orden parcial R se llama un conjunto parcialmente ordenado y se denota (A, R)
- Usualmente, las relaciones de orden parcial se denotan con el símbolo ≤ o similar
- Si R es irreflexiva y transitiva se dice que es una relación de orden estricto
- [Socrative]¿Cuáles de las siguientes relaciones son de orden parcial o estricto?

- Un conjunto A con una relación de orden parcial R se llama un conjunto parcialmente ordenado y se denota (A, R)
- Usualmente, las relaciones de orden parcial se denotan con el símbolo ≤ o similar.
- Si R es irreflexiva y transitiva se dice que es una relación de orden estricto.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden parcial o estricto?

- Una relación $R:A \leftrightarrow A$ es una relación de orden parcial si R es reflexiva, antisimétrica y transitiva.
- Un conjunto A con una relación de orden parcial R se llama un conjunto parcialmente ordenado y se denota (A, R)
- Usualmente, las relaciones de orden parcial se denotan con el símbolo ≤ o similar
- Si R es irreflexiva y transitiva se dice que es una relación de orden estricto
- [Socrative]¿Cuáles de las siguientes relaciones son de orden parcial o estricto?

- Un conjunto A con una relación de orden parcial R se llama un conjunto parcialmente ordenado y se denota (A, R)
- Usualmente, las relaciones de orden parcial se denotan con el símbolo ≤ o similar
- Si R es irreflexiva y transitiva se dice que es una relación de orden estricto.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden parcial o estricto?

- Una relación $R:A \leftrightarrow A$ es una relación de orden parcial si R es reflexiva, antisimétrica y transitiva.
- Un conjunto A con una relación de orden parcial R se llama un conjunto parcialmente ordenado y se denota (A, R)
- Si R es irreflexiva y transitiva se dice que es una relación de orden estricto.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden parcial o estricto?
 - \bullet <: $\mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet >: $\mathbb{Z}_{+} \leftrightarrow \mathbb{Z}_{+}$
 - ullet $|: \mathbb{N} \leftrightarrow \mathbb{N}$
 - ⊆: P(U) ↔ P(U'
 - $\bullet \subset : \mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$
 - \bullet R : Personas \leftrightarrow Personas tal que $R(p,q) \equiv p$ es mayor que a

- Un conjunto A con una relación de orden parcial R se llama un conjunto parcialmente ordenado y se denota (A, R)
- Si R es irreflexiva y transitiva se dice que es una relación de orden estricto.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden parcial o estricto?
 - $\bullet \le : \mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet $>: \mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet | : $\mathbb{N} \leftrightarrow \mathbb{N}$
 - \subseteq : $\mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$
 - $\bullet \subset : \mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$
 - κ : Personas \leftrightarrow Personas tal que $\kappa(p,q) \equiv p$ es mayor que

- Una relación $R:A \leftrightarrow A$ es una relación de orden parcial si R es reflexiva, antisimétrica y transitiva.
- Un conjunto A con una relación de orden parcial R se llama un conjunto parcialmente ordenado y se denota (A, R)
- Si R es irreflexiva y transitiva se dice que es una relación de orden estricto.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden parcial o estricto?
 - $\bullet \le : \mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet >: $\mathbb{Z} \leftrightarrow \mathbb{Z}$
 - ullet | : $\mathbb{N} \leftrightarrow \mathbb{N}$
 - \subseteq : $\mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$
 - \subset : $\mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$
 - \bullet R : Personas \leftrightarrow Personas tall que $R(p,q) \equiv p$ es mayor que ℓ

- Una relación R: A

 A es una relación de orden parcial si R es reflexiva, antisimétrica y transitiva.
- Un conjunto A con una relación de orden parcial R se llama un conjunto parcialmente ordenado y se denota (A, R)
- Si R es irreflexiva y transitiva se dice que es una relación de orden estricto.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden parcial o estricto?
 - $\bullet \le : \mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet \geq : $\mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet | : $\mathbb{N} \leftrightarrow \mathbb{N}$
 - \subseteq : $\mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$
 - \subset : $\mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$
 - $R: Personas \leftrightarrow Personas$ tal que $R(p,q) \equiv p$ es mayor que q

- Una relación R: A

 A es una relación de orden parcial si R es reflexiva, antisimétrica y transitiva.
- Un conjunto A con una relación de orden parcial R se llama un conjunto parcialmente ordenado y se denota (A, R)
- Si R es irreflexiva y transitiva se dice que es una relación de orden estricto.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden parcial o estricto?
 - $\bullet \le : \mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet \geq : $\mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet | : $\mathbb{N} \leftrightarrow \mathbb{N}$
 - \subseteq : $\mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$
 - $\bullet \subset : \mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$
 - $R: Personas \leftrightarrow Personas$ tal que $R(p,q) \equiv p$ es mayor que q

- Una relación $R:A \leftrightarrow A$ es una relación de orden parcial si R es reflexiva, antisimétrica y transitiva.
- Un conjunto A con una relación de orden parcial R se llama un conjunto parcialmente ordenado y se denota (A, R)
- Usualmente, las relaciones de orden parcial se denotan con el símbolo ≤ o similar.
- Si R es irreflexiva y transitiva se dice que es una relación de orden estricto.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden parcial o estricto?
 - $\bullet \le : \mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet >: $\mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet | : $\mathbb{N} \leftrightarrow \mathbb{N}$
 - \subseteq : $\mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$
 - \subset : $\mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$
 - $R: Personas \leftrightarrow Personas$ tal que $R(p,q) \equiv p$ es mayor que q

- Una relación R: A

 A es una relación de orden parcial si R es reflexiva, antisimétrica y transitiva.
- Un conjunto A con una relación de orden parcial R se llama un conjunto parcialmente ordenado y se denota (A, R)
- Si R es irreflexiva y transitiva se dice que es una relación de orden estricto.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden parcial o estricto?
 - $\bullet \le : \mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet >: $\mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet | : $\mathbb{N} \leftrightarrow \mathbb{N}$
 - \subseteq : $\mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$
 - \subset : $\mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$
 - $R: Personas \leftrightarrow Personas$ tal que $R(p,q) \equiv p$ es mayor que q

- Sea (A, ≤) un conjunto parcialmente ordenado. Dados a, b ∈ A se dice que a y b son comparables si a ≤ b ∨ b ≤ a.
- Considere el conjunto parcialmente ordenado (\mathbb{Z}^+ , |).
 - ¿5 y 7 son comparables?
- Si (A, ≤) es un conjunto parcialmente ordenado tal que cada par de elementos es comparable, entonces (A, ≤) es un conjunto totalmente ordenado. Y se dice que ≤ es un orden total.
- Socrative ¿Cuáles de las siguientes relaciones son de orden total?

- Sea (A, ≤) un conjunto parcialmente ordenado. Dados a, b ∈ A se dice que a y b son comparables si a ≤ b ∨ b ≤ a.
- Considere el conjunto parcialmente ordenado (Z⁺, |).
 ¿3 y 9 son comparables?
 ∴ 7 son comparables?
- Si (A, ≤) es un conjunto parcialmente ordenado tal que cada par de elementos es comparable, entonces (A, ≤) es un conjunto totalmente ordenado. Y se dice que ≤ es un orden total.
- Socrative|¿Cuáles de las siguientes relaciones son de orden total?

- Sea (A, ≤) un conjunto parcialmente ordenado. Dados a, b ∈ A se dice que a y b son comparables si a ≤ b ∨ b ≤ a.
- Considere el conjunto parcialmente ordenado (Z+,|).
 ¿3 y 9 son comparables?
- Si (A, ≤) es un conjunto parcialmente ordenado tal que cada par de elementos es comparable, entonces (A, ≤) es un conjunto totalmente ordenado. Y se dice que ≤ es un orden total.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden total?

- Sea (A, ≤) un conjunto parcialmente ordenado. Dados a, b ∈ A se dice que a y b son comparables si a ≤ b ∨ b ≤ a.
- Considere el conjunto parcialmente ordenado (Z+,|).
 ¿3 y 9 son comparables?
 ¿5 y 7 son comparables?
- Si (A, ≤) es un conjunto parcialmente ordenado tal que cada par de elementos es comparable, entonces (A, ≤) es un conjunto totalmente ordenado. Y se dice que ≤ es un orden total.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden total?

- Sea (A, ≤) un conjunto parcialmente ordenado. Dados a, b ∈ A se dice que a y b son comparables si a ≤ b ∨ b ≤ a.
- Considere el conjunto parcialmente ordenado (Z+,|).
 ¿3 y 9 son comparables?
 ¿5 y 7 son comparables?
- Si (A, ≤) es un conjunto parcialmente ordenado tal que cada par de elementos es comparable, entonces (A, ≤) es un conjunto totalmente ordenado. Y se dice que ≤ es un orden total.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden total?

- Sea (A, ≤) un conjunto parcialmente ordenado. Dados a, b ∈ A se dice que a y b son comparables si a ≤ b ∨ b ≤ a.
- Considere el conjunto parcialmente ordenado (Z+, |).
 ¿3 y 9 son comparables?
 ¿5 y 7 son comparables?
- Si (A, ≤) es un conjunto parcialmente ordenado tal que cada par de elementos es comparable, entonces (A, ≤) es un conjunto totalmente ordenado. Y se dice que ≤ es un orden total.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden total?

```
 \begin{array}{l} \bullet & \leq : \mathbb{Z} \leftrightarrow \mathbb{Z} \\ \bullet & \geq : \mathbb{Z} \leftrightarrow \mathbb{Z} \\ \bullet & | : \mathbb{N} \leftrightarrow \mathbb{N} \\ \bullet & \subseteq : \mathcal{P}(U) \leftrightarrow \mathcal{P}(U) \end{array}
```

- Sea (A, ≤) un conjunto parcialmente ordenado. Dados a, b ∈ A se dice que a y b son comparables si a ≤ b ∨ b ≤ a.
- Considere el conjunto parcialmente ordenado (Z+, |).
 ¿3 y 9 son comparables?
 ¿5 y 7 son comparables?
- Si (A, ≤) es un conjunto parcialmente ordenado tal que cada par de elementos es comparable, entonces (A, ≤) es un conjunto totalmente ordenado. Y se dice que ≤ es un orden total.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden total?
 - $\leq : \mathbb{Z} \leftrightarrow \mathbb{Z}$
 - $\bullet \ \geq : \mathbb{Z} \leftrightarrow \mathbb{Z}$
 - ullet $|: \mathbb{N} \leftrightarrow \mathbb{N}$
 - $\bullet \subseteq : \mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$

- Sea (A, ≤) un conjunto parcialmente ordenado. Dados a, b ∈ A se dice que a y b son comparables si a ≤ b ∨ b ≤ a.
- Considere el conjunto parcialmente ordenado (Z+, |).
 ¿3 y 9 son comparables?
 ¿5 y 7 son comparables?
- Si (A, ≤) es un conjunto parcialmente ordenado tal que cada par de elementos es comparable, entonces (A, ≤) es un conjunto totalmente ordenado. Y se dice que ≤ es un orden total.
- [Socrative] ¿Cuáles de las siguientes relaciones son de orden total?
 - \bullet \leq : $\mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet \geq : $\mathbb{Z} \leftrightarrow \mathbb{Z}$
 - $\bullet \mid : \mathbb{N} \leftrightarrow \mathbb{N}$
 - \subseteq : $\mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$

- Sea (A, ≤) un conjunto parcialmente ordenado. Dados a, b ∈ A se dice que a y b son comparables si a ≤ b ∨ b ≤ a.
- Considere el conjunto parcialmente ordenado (Z+, |).
 ¿3 y 9 son comparables?
 ¿5 y 7 son comparables?
- Si (A, ≤) es un conjunto parcialmente ordenado tal que cada par de elementos es comparable, entonces (A, ≤) es un conjunto totalmente ordenado. Y se dice que ≤ es un orden total.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden total?
 - \bullet \leq : $\mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet \geq : $\mathbb{Z} \leftrightarrow \mathbb{Z}$
 - $\bullet \ |: \mathbb{N} \leftrightarrow \mathbb{N}$
 - $\bullet \ \subseteq : \mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$

- Sea (A, ≤) un conjunto parcialmente ordenado. Dados a, b ∈ A se dice que a y b son comparables si a ≤ b ∨ b ≤ a.
- Considere el conjunto parcialmente ordenado (Z+, |).
 ¿3 y 9 son comparables?
 ¿5 y 7 son comparables?
- Si (A, ≤) es un conjunto parcialmente ordenado tal que cada par de elementos es comparable, entonces (A, ≤) es un conjunto totalmente ordenado. Y se dice que ≤ es un orden total.
- [Socrative]¿Cuáles de las siguientes relaciones son de orden total?
 - $\bullet \ \le: \mathbb{Z} \leftrightarrow \mathbb{Z}$
 - \bullet \geq : $\mathbb{Z} \leftrightarrow \mathbb{Z}$
 - $\bullet \ |: \mathbb{N} \leftrightarrow \mathbb{N}$
 - \subseteq : $\mathcal{P}(U) \leftrightarrow \mathcal{P}(U)$