

BIOS 522: Survival Analysis Methods

Lecture 9:

Parametric regression models

Semiparametric regression

• Cox proportional hazards regression

$$h_i(t) = h_0(t) \exp(\beta_1 X_{i1} + \dots + \beta_k X_{ik})$$

pependent permade is a function

• $h_0(t)$ can take any of an infinite number of shapes

2

Parametric regression

• Parametric proportional hazards regression

$$h_i(t) = h_0(t) \exp(\beta_1 X_{i1} + \dots + \beta_k X_{ik})$$

Basetine no tend

• $h_0(t)$ takes the shape of a pre-specified distribution

Shape

Parametric PH model structure

• Exponential PH model

$$h_i(t) = \lambda_0 \exp(\beta_1 X_{i1} + \dots + \beta_1 X_{ik})$$

· Weibull PH model

$$h_i(t) = \lambda_0 \gamma_0 (\lambda_0 t)^{\gamma_0 - 1} \exp(\beta_1 X_{i1} + \dots + \beta_1 X_{ik})$$

4

B's are log ratios

Coefficients for parametric PH

• Example: Weibull proportional hazards model

$$h_i(t) = \lambda_0 \gamma_0 (\lambda_0 t)^{\gamma_0 - 1} \exp(\beta_1 X_{i1} + \dots + \beta_k X_{ik})$$

•
$$\hat{\beta}_1, \dots, \hat{\beta}_k$$

• Estimate reference group parameters:

• Weibull rate
$$\hat{\lambda}_0$$
, Weibull shape $\hat{\gamma}_0$

Recall: liketimood from for right-consored data: lat now also include rate & shape $L(\lambda_0,\gamma_0,\beta_1,...,\beta_k) = parameters$

$$\prod\nolimits_{i=1}^{n}[h(T_{i}^{*}|\lambda_{0},\gamma_{0},\beta_{1},\ldots,\beta_{k})]^{\delta_{i}}S(T_{i}^{*}|\lambda_{0},\gamma_{0},\beta_{1},\ldots,\beta_{k})$$

Piecewise exponential model

$$h_i(t) = h_0(t) \exp(\beta_1 X_{i1} + \dots + \beta_k X_{ik})$$

Can model more complex shapes

• The baseline hazard function $h_0(t)$ is modeled as constant within intervals

Estimation for parametric PH

• Example: piecewise exponential model

$$h_i(t) = h_0(t) \exp(\beta_1 X_{i1} + \dots + \beta_k X_{ik})$$

- Estimate log hazard ratios:
 - $\hat{\beta}_1, \dots, \hat{\beta}_k$
- Estimate reference group parameters:
 - Hazard rates $\hat{\lambda}_1, \dots, \hat{\lambda}_6$

RESEARCH ARTICLE

Open Access

Piecewise exponential models to assess the influence of job-specific experience on the hazard of acute injury for hourly factory workers

Jessica Kubo^{1*}, Mark R Cullen², Linda Cantley³, Martin Slade³, Baylah Tessier-Sherman³, Oyebode Taiwo³ and Manisha Desai¹

<u>Goal</u>: To define an approach for studying the relationship between experience and risk of injury for different occupations.

<u>Population</u>: Data set of 81,301 hourly production workers of a global aluminum company at 207 facilities.

8

Outcome variable: Time in months from the start of a particular job to injury on that job.

Non-injured employees were censored at the earliest of the following: change of job within the corporation, death, termination from the company, or the end of the observation period.

Predictor variables:

Age at job initiation, overall company tenure at job initiation, gender, race, physical demand of the job, union status of the plant, plant type, and socio-demographic characteristics.

<u>Statistical analysis</u>: Sought to model the hazard of injury as a function of time on the job (i.e. experience). The main parameter of interest was the **baseline hazard itself**. They wanted to assess whether the hazard for injury changes with experience (is the hazard constant over time?). Thus, a Cox PH was not appropriate.

Compared several models:

- Exponential PH model (constant baseline hazard)
- Weibull PH model
- · A piecewise exponential model with one cut point at 12 months
- A piecewise exponential model with one data-driven* cut point

* Yielded the largest likelihood value

10

Results: Figure 2 compares model-predicted survival functions and KM estimate for a test set \$1,301 employees

Results: Table 5 reports results for the 2-piece exponential model with 19 month cut point

Table 5 Results from CC and MI frailty models for 2-piece exponential model with 19 month cut point (data-driven model)

	Complete case analysis (N=33 427 jobs for 13 427 employees)		Multiple imputation (N=191 692 jobs for 81 301 employees)	
	HR (95% CI)	P-value	HR (95% CI)	P-value
0-19 Months (inexperienced period)	1.41 (1.35, 1.47)	<.001	1,33 (1.29, 1.36)	<.001
Male gender	0.62 (0.57, 0.68)	<.001	0.71 (0.68, 0.73)	<.001
Non-White	1.08 (0.99, 1.17)	0.070	0.97 (0.93, 1.00)	0.067
First job at company	0.88 (0.79, 0.98)	0.017	0.90 (0.88, 0.93)	<.001
Age at start of job	0.98 (0.98, 0.99)	<.001	0.99 (0.98, 0.99)	<.001
Physical demand	1.25 (1.21, 1.29)	<.001	1.26 (1.24, 1.29)	<.001
Smelter plant	1.24 (1.17, 1.32)	<.001	1.30 (1.24, 1.36)	<.001
Union plant	1.16 (1.04, 1.28)	0.006	1.30 (1.23, 1.38)	<.001
Original plant	1.01 (0.83, 1.22)	0.942	1.57 (1.50, 1.65)	<.001

12

Accelerated failure time models

• AFT model:

as long twile

 $T_i = e^{\alpha_1 X_{i1} + \dots + \alpha_k X_{ik}} T_0$

Covariates operate to lengthen or shorten survival time

Survival time random variable in the reference group

Accelerated failure time models

 $S_i(t) = S_0 \left(e^{-(\alpha_1 X_{i1} + \dots + \alpha_k X_{ik})} t \right)$

• AFT model (written another way):

Requires that you set a distribution.

Refine if here k(t) We this

Survival function in the reference group

Covariates operate to "speed up" or "slow down" time

We could assume Weibull, exponential etc.

14

Accelerated failure time models

• Consider two groups, defined by $X_i = 1$ vs. $X_i = 0$

• If the **acceleration factor** $\exp(\alpha) = 2$, then:

15

Inference for the AFT model

Interence for the AFT model

- Null hypothesis H_0
 - · Covariate has no effect on survival
 - The acceleration factor $\exp(\alpha_i) = 1$
 - Equivalently, the coefficient $\alpha_j=0$

Don't have hazard ratios:
We have
acceleration factors
instead

16

Acceleration factors ≠ hazard ratios

<u>~</u>	Coefficient	Acceleration factor	Survival in group 1 versus group 0
(4)	$\alpha > 0$	$\exp(\alpha) > 1$	Increased survival; age slower
D	$\alpha = 0$	$\exp(\alpha)=1$	No difference in survival
9	$\alpha < 0$	$\exp(\alpha) < 1$	Decreased survival; age faster

Acceleration factors ≠ hazard ratios

- In general, AFT and PH models are different
 - Log-logistic AFT model ≠ log-logistic PH model
- For some *particular* parametric distributions, the models are related
 - Exponential AFT model is also a PH model
 - · Weibull AFT model is also a PH model
- Acceleration factors are not just inverted hazard ratios*

* exception = exponential AFT model

1

Prediction with the AFT model

- Given our acceleration factor(s) $\hat{\alpha}_1, \dots, \hat{\alpha}_k$ and our fitted reference group parameters $\hat{\lambda}_0$ and $\hat{\gamma}_0$, making **predictions** with the AFT model is easy
- For any set of covariates, we can quickly generate predictions for $S_i(t)$, $h_i(t)$, $H_i(t)$, median survival time, mean survival time, etc.
- More in today's activity...

Oseltamivir treatment for influenza in adults: a meta-analysis of randomised controlled trials

Joanna Dobson, Richard J Whitley, Stuart Pocock, Arnold S Monto

<u>Goal</u>: Estimate efficacy of **oseltamivir** (Tamiflu) for alleviation of influenza symptoms

<u>Population</u>: Meta-analysis of nine randomized, placebo-controlled trials of 75 mg twice a day oseltamivir in adults. Total data set included **4328 patients**.

Eligible patients were within 36 hours of symptom onset, with fever and at least two influenza symptoms.

20

Outcome variable: The primary outcome was **time to alleviation of all symptoms** (all seven influenza symptoms scored as absent or mild) and remained so for at least 21.5 hours

The **time origin** was time of first study drug intake.

Predictor variables: Trial arm.

- Clinical trial.
- Age (<65 yrs, ≥65 yrs).
- Risk status (based on age, presence of chronic illness).
- Time from influenza onset to randomization (<24 hrs, ≥24 hrs).
- Symptom score at randomization.
- Virus type (influenza A or B).

Statistical analysis: Two sets of analyses were conducted:

- 1. Using the **intention-to-treat population**, including all trial participants who received at least one dose of study drug.
- 2. Using the **intention-to-treat infected population**, including all trial participants as above + confirmed to be influenza-infected.

"For time to alleviation of all symptoms, we initially assessed Kaplan-Meier plots by treatment group and we obtained a treatment effect estimate (time ratio) from a log-logistic accelerated failure time model, adjusted for trial. We did not use proportional hazards models because non-proportionality of hazards was evident.

We estimated treatment differences in median time to alleviation of symptoms adjusted for trial along with **bootstrap confidence intervals** (2000 repetitions, stratified by trial and treatment group)."

22

<u>Results</u>: **Figure 1** reports the acceleration factor (time ratio) for each trial and overall in the **intention-to-treat infected population**.

Figure 1: Fixed effect meta-analysis for time to alleviation of all symptoms

The overall time ratio is calculated from an accelerated failure time model adjusted for trial.

Abstract: "In the intention-to-treat infected population, we noted a **21% shorter time to alleviation of all symptoms** for oseltamivir versus placebo recipients (**time ratio 0.79**, 95% CI 0.74-0.85; p<0.0001).

The median times were **97.5 h** for oseltamivir and **122.7 h** for placebo groups (difference - 25.2 h, 95% CI -36.2 to -16.0)."

Figure 2 assessed the overall fit of the model by comparing Kaplan-Meier curves and AFT predictions.

Figure 2: Overall Kaplan-Meier curves and estimated survival curves from AFT model (adjusted for trial) by treatment group for time to alleviation of all symptoms in all trials combined AFT=accelerated failure time.

Results: "The accelerated failure time model provided a good fit to the data (figure 2)."

Conclusion: Oseltamivir in adults with influenza accelerates time to clinical symptom alleviation, supporting the beneficial effect of this widely used drug

24

Cox PH model	Parametric regression models
(+) Widely used in the literature	(-) Less commonly used in the literature
(+) Flexible baseline hazard function; no prespecification required!	(-) Necessary to pre-specify shape of baseline hazard function
(+) Model fits even if baseline hazard function dies not have a parametric shape	(-) Baseline hazard function may fit poorly and negatively impact the model; need to justify your assumptions !
(-) Slightly less efficient (larger standard errors) when a parametric model fits well	(+) Slightly more efficient (smaller standard errors) when parametric model fits well
(-) Unstable when data are sparse	(+) When data are sparse , these gains in efficiency are more noticeable
(-) We use this model to study hazard ratios only, not the	(+) This model is better suited to study the shape of the
actual hazard functions	hazard functions, not just the hazard ratios
(-) Need specialized estimators (e.g. Breslow estimator) to use model to predict survival	(+) Straightforward to use model to predict survival
(-) May not be well-suited to complex settings	(+) Can be generalized to model complex settings , like jointly modeling several correlated survival outcomes