# Data Analysis 2: Foundations of Statistics

Instructor: Arieda Muço, Fall 2017

### Types of Random Variables

- Continuous, takes values in any interval
  - i.e prices, temperature, grades...
- Discrete, countable number of values
  - i.e hotel stars, gender, number of rooms...

Each have their own distributions



#### **Distributions in Practice**

- The distribution of a variable tells the number of times each possible value of the variable occurs in the data
  - Can be expressed as frequency, percentage
- It does so in isolation from other variables.
  - It does not tell if certain values are more likely to occur when some other variable, or variables, take certain values

- The simplest way to visualize a distribution is through an histogram
- The histogram may takes on as many bars as the number of possible values
- From visual inspection of histograms we find out many interesting properties
  - the peaks, the immediate neighbourhood, if they have tails etc



# Let's go back to our hotel price example. What do we see?

# Histograms in practice



# If I tell you that football players have a favorite foot?



# Titanic passengers data



- Some of the properties of the distributions change if we change their bin size
  - Very wide bins may lump together multiple modes.
  - The statistical softwares you use, will compute the histogram with the default bin size
    - Try to figure out on your own the bin size that Stata or R use for their histograms.
    - Play with the simulations of distributions I provided you with by changing mean, variance, number of observarions, and binsize
    - Is this also the case for discrete variables?





#### Average Area Income



Average Area House age



Number of rooms



Number of bedrooms



**Area Population** 



Price

- Kernel densities are an alternative way to histograms
  - for variables with many potential values
- A way to think about them is like curves that wrap around the corresponding hisogram
- The most important parameter to set is the bandwidth, which is similar to setting the binsize in the histogram





kernel = epanechnikov, bandwidth = 2.4e+03





#### **Joint Distributions**

- In real life, we are often interested how variables that are related to each other. For example, number of rooms or bedrooms and average price of the house
  - The joint distribution shows the probabilities of each value combination of these variables we are interested in

#### **Conditional Distributions**

 Conditional distributions are distributions of one variable for one (or more) values of the other variable

#### Covariance

 It provides an indication of the dependence between two variables

$$Cov(x,y) = rac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{n}$$



#### Covariance

ullet In case:  $y_i=a+bx_i$ 

$$Cov(x,y) = rac{b(\sum_i (x_i - \overline{x})(y_i - \overline{y}))}{n}$$

#### Correlation

 Is computed by dividing the covariance by the standard deviation of each variable

$$ho = Corr(x,y) = rac{Cov(x,y)}{Std(x) \cdot Std(y)}$$

$$ho \in [-1,1]$$



# Scatterplot

- Allows us to tell if there is a relationship among pairs of variables under consideration
  - We investigate if there is a linear relationship, nonlinear, or no relationship

### Simulated data



Data Analysis 2: Foundations of Statistics





Data Analysis 2: Foundations of Statistics

#### FIFA data



Data Analysis 2: Foundations of Statistics





Data Analysis 2: Foundations of Statistics





Data Analysis 2: Foundations of Statistics









Data Analysis 2: Foundations of Statistics







#### **Conditional Distributions in Practice**







pclas=passanger class



Embarked=port of embarkation

# Vienna Hotel Prices (again)



#### Sources of data used in these slides

- Hotel data, already available (only to be shared in Moodle)
- Simulated variables will be posted (Moodle and GitHub),
   try it on yourself, now you have the codes
- Fifa database and Titanic passengers database are going to also be posted (Moodle and GitHub).
  - Downloaded from Kaggle

