Assignment 4 Answers

Farhan Ali

September 21, 2023

1. Test the convergence or divergence of the series:

(a)
$$\sum_{n=1}^{\infty} \frac{(3n)! + 4^{n+1}}{(3n+1)!}.$$

Ans: Let
$$S_k = \sum_{n=1}^k c_n$$
 and $c_n = \frac{(3n)! + 4^{n+1}}{(3n+1)!} = a_n + b_n$ where $a_n = \frac{(3n)!}{(3n+1)!}$ and $b_n = \frac{4^{n+1}}{(3n+1)!}$

Now
$$c_n = a_n + b_n \ge a_n \quad \forall n \ge \mathbb{N}$$

It is easy to see
$$a_n = \frac{(3n)!}{(3n+1)!} = \frac{1}{3n+1} > \frac{1}{3n+3} = \frac{1}{3} \frac{1}{n+1}$$

where we have used the fact
$$3n + 3 > 3n + 1 \quad \forall n \ge 1$$
.

Now
$$\sum_{n=1}^{\infty} \frac{1}{n+1}$$
 is a divergent series so by Comparison test $\sum_{n=1}^{\infty} a_n$ diverges and again by com-

parison test
$$\sum_{n=1}^{\infty} c_n$$
 diverges as $c_n \ge a_n \quad \forall n \ge \mathbb{N}$.

(b)
$$\sum_{n=1}^{\infty} \frac{n^2}{2n^2 + 1}$$
.

Ans: As
$$\lim_{n\to\infty} \frac{n^2}{2n^2+1} = \frac{1}{2} \neq 0$$
, $\sum_{n=1}^{\infty} \frac{n^2}{2n^2+1}$ will diverge

(Contrapositive of
$$\sum_{i=1}^{n} a_i$$
 is convergent $\implies \lim_{n \to \infty} a_n = 0$)

(c)
$$\sum_{n=1}^{\infty} \frac{5}{2^{\frac{1}{n}} + 1}.$$

Ans: As
$$\lim_{n \to \infty} \frac{5}{2^{\frac{1}{n}} + 1} = \frac{5}{2} \neq 0$$
, $\sum_{n=1}^{\infty} \frac{5}{2^{\frac{1}{n}} + 1}$ will diverge

(Contrapositive of
$$\sum_{i=1}^{n} a_i$$
 is convergent $\implies \lim_{n \to \infty} a_n = 0$)

(d)
$$\sum_{n=1}^{\infty} \frac{2}{n^2 + 2n}$$
.

Ans: We can decompose the fraction
$$\frac{2}{n^2+2n}$$
 as $\frac{2}{n^2+2n}=\frac{1}{n}-\frac{1}{n+2}$

1

The partial sum $S_n = \sum_{j=1}^n \frac{2}{j^2 + 2j} = \sum_{j=1}^n \left(\frac{1}{j} - \frac{1}{j+2}\right)$. We have a telescoping series and in each partial sum, most of the terms cancel and we obtain the formula $S_n = 1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}$. Taking limits allows us to determine the convergence of the series:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{3}{2}, \quad \text{ so } \sum_{n=1}^{\infty} \frac{1}{n^2 + 2n} = \frac{3}{2}.$$

(e)
$$\sum_{n=2}^{\infty} \frac{1}{2n^2 + 3n - 5}.$$

Ans: Since
$$2n^2 + 3n - 5 \ge 2n^2 \ \forall \ n \ge 2$$
, $\frac{1}{2n^2} \ge \frac{1}{2n^2 + 3n - 5} \ \forall \ n \ge 2$
$$\sum_{n=2}^k \frac{1}{2n^2} \ge \sum_{n=2}^k \frac{1}{2n^2 + 3n - 5} \ \forall \ k \ge 2$$
, hence $\sum_{n=2}^\infty \frac{1}{2n^2 + 3n - 5}$ converges by Comparison test

2. Suppose $\{a_n\}$ and $\{b_n\}$ are sequences of non negative real numbers, such that $\sum_{n=1}^{\infty} a_n^2$ and $\sum_{n=1}^{\infty} b_n$ both converge, then prove that $\sum_{n=1}^{\infty} a_n b_n$ converges.

Ans: Let
$$S_k = \sum_{n=1}^k b_n$$
 and $T_k = \sum_{n=1}^k a_n b_n$.

Given $\sum_{n=1}^{\infty} b_n$ converges i.e sequence of partial sums $\{S_k\}$ is convergent, hence bounded above (by S say i.e $S_k \leq S \quad \forall k \geq 1$).

As $\sum_{n=1}^{\infty} a_n^2$ converges, so $\lim_{n\to\infty} a_n^2 = 0$. As $a_n \ge 0 \quad \forall n \in \mathbb{N}$, $\lim_{n\to\infty} \sqrt{a_n^2} = |a_n| = a_n = 0$. So the sequence $\{a_n\}$ is bounded as it is convergent $\Rightarrow \exists M > 0$ such that $a_n = |a_n| \le M \quad \forall n \in \mathbb{N}$. Now

$$T_k = \sum_{n=1}^k a_n b_n \le M \sum_{n=1}^k b_n = M S_k \le M S$$

So $\{T_k\}$ is a bounded above sequence. And $T_{k+1} - T_k = \sum_{n=1}^{k+1} a_n b_n - \sum_{n=1}^k a_n b_n = a_k b_k \ge 0$. So $\{T_k\}$ are monotonically increasing sequence. Now $\{T_k\}$ is monotonically increasing and bounded sequence, therefore it is convergent which implies that $\sum_{n=1}^{\infty} a_n b_n$ converges.

3. Can you give an example of a convergent series $\sum_{n=1}^{\infty} x_n$ and a divergent series $\sum_{n=1}^{\infty} y_n$. such that $\sum_{n=1}^{\infty} (x_n + y_n)$ is convergent? Explain.

Ans: Let
$$S_n = \sum_{i=1}^n x_i$$
 and $S'_n = \sum_{i=1}^n y_i$,

Since
$$\sum_{n=1}^{\infty} x_n$$
 is a convergent series, $\lim_{n\to\infty} S_n = L$ (for some $L \in \mathbb{R}$) and since $\sum_{n=1}^{\infty} y_n$ is a divergent series, S_n' diverges to $+\infty$ or $-\infty$,

$$S_n + S_n' = \sum_{i=1}^n x_i + y_i$$
 diverges and thus, $\sum_{n=1}^\infty (x_n + y_n)$ is always divergent

4. Prove that if $\sum_{n=1}^{\infty} a_n$ is a convergent series of non negative numbers and p > 1, then $\sum_{n=1}^{\infty} a_n^p$ converges.

Ans: Let
$$S_k = \sum_{n=1}^k a_n$$
 and $T_k = \sum_{n=1}^k a_n^p$. As $\sum_{n=1}^\infty a_n$ is a convergent series, so $\lim_{n\to\infty} a_n = 0$.

So for
$$\varepsilon = 1$$
, $\exists N_1 \in \mathbb{N}$ such that $a_n < 1 \quad \forall n \geq N_1 \implies a_n^p < a_n < 1 \quad \forall n \geq N_1$

As $\sum_{n=1}^{\infty} a_n$ is a convergent series, so $\{S_k\}$ is a Cauchy sequence. So for any arbitrary $\varepsilon > 0$, $\exists N_{\varepsilon} \in \mathbb{N}$ such that

$$S_k - S_m = |S_k - S_m| < \varepsilon \quad \forall k \ge m \ge N_{\varepsilon}$$

We choose $N = \max(N_1, N_{\varepsilon})$. So $\forall k \geq m \geq N$

$$|T_k - T_m| = T_k - T_m = \sum_{n=m+1}^k a_n^p < \sum_{n=m+1}^k a_n = S_k - S_m = |S_k - S_m| < \varepsilon$$

Hence $\{T_n\}$ is a Cauchy sequence, so it converges.

5. If $\sum_{n=1}^{\infty} a_n$ converges with $a_n > 0$ then is always $\sum_{n=1}^{\infty} \sqrt{a_n}$ convergent? Either prove it or give a counterexample.

Ans: Taking
$$a_n = \frac{1}{n^2}$$
 is enough as $a_n > 0 \ \forall \ n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent series

but
$$\sum_{n=1}^{\infty} \sqrt{a_n} = \sum_{n=1}^{\infty} \frac{1}{n}$$
 is a divergent series

6. If $\sum_{n=1}^{\infty} a_n$ converges with $a_n > 0$ then is always $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ convergent? Either prove it or give a counterexample.

Ans: Let
$$S_n = \sum_{i=1}^n a_i$$
 and $T_n = \sum_{i=1}^n \sqrt{a_i a_{i+1}}$,

By AM-GM inequality,
$$\frac{a_n + a_{n+1}}{2} \ge \sqrt{a_n a_{n+1}} \ \forall \ n \in \mathbb{N}$$

$$\implies \sum_{i=1}^{n} \frac{a_i + a_{i+1}}{2} \ge \sum_{i=1}^{n} \sqrt{a_i a_{i+1}} \ \forall \ n \in \mathbb{N}$$

$$\implies \sum_{i=1}^{n} \frac{a_i + a_i}{2} + \frac{a_{n+1} - a_1}{2} \ge T_n \ \forall \ n \in \mathbb{N}$$

$$\implies \sum_{i=1}^{n} \frac{a_i + a_i}{2} + \frac{a_{n+1} - a_1}{2} + \frac{a_{n+1} + a_1}{2} \ge \sum_{i=1}^{n} \frac{a_i + a_i}{2} + \frac{a_{n+1} - a_1}{2} \ge T_n \ \forall \ n \in \mathbb{N}$$

$$\implies S_{n+1} = \sum_{i=1}^{n+1} \frac{a_i + a_i}{2} \ge T_n \ \forall \ n \in \mathbb{N}$$

Since $\sum_{n=1}^{\infty} a_n$ converges, $\{S_n\}$ is convergent and $\{S_{n+1}\}$ is a subsequence of a convergent sequence, hence it is convergent itself.

Since $\{T_n\}$ is bounded above by a convergent sequence, $\{T_n\}$ is convergent itself and since the partial sum sequence $\{T_n\}$ converges, $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ is a convergent series always

7. If $\sum_{n=1}^{\infty} a_n$ converges with $a_n > 0$ then $\sum_{n=1}^{\infty} b_n$ where $b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$ always divergent?

Ans:

Example: Taking $a_n = (\frac{1}{2})^n$ is enough as $a_n > 0 \ \forall \ n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (\frac{1}{2})^n$ is a convergent series

But $b_n \ge \frac{1}{2n} \ \forall \ n \in \mathbb{N}$ so,

 $\sum_{n=1}^{\infty} \frac{1}{2n}$ is a divergent series and thus by Comparison test $\sum_{n=1}^{\infty} b_n$ diverges

General Proof: For any given a_n , $b_n \ge \frac{a_1}{n}$ $(a_1 > 0) \ \forall \ n \in \mathbb{N}$ so,

 $\sum_{n=1}^{\infty} \frac{a_1}{n}$ is a divergent series and thus by Comparison test $\sum_{n=1}^{\infty} b_n$ diverges always