

AD-A039 224 IIT RESEARCH INST CHICAGO ILL
A MODEL TO PREDICT MUTUAL INTERFERENCE EFFECTS ON AN AIRFRAME. (U)
OCT 76 P A DWYER F19628-76-C-0017
UNCLASSIFIED F/G 9/3

ECAC-PR-76-067 NL

1 OF 2
AD A039224

FAA-RD-76-50

12
B.S.

ADA 039224

A MODEL TO PREDICT MUTUAL INTERFERENCE EFFECTS ON AN AIRFRAME

Priscilla A. Dwyer
of
IIT Research Institute
Under Contract to
DEPARTMENT OF DEFENSE
Electromagnetic Compatibility Analysis Center
Annapolis, Maryland 21402

October 1976

FINAL REPORT

PUBLISHED APRIL 1977

Document is available to the public through the
National Technical Information Service,
Springfield, Virginia 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, DC 20591

AD No. _____
DOC FILE COPY,

FAA RD-70-60

SAFETY ASPECTS OF INDOOR
COMMUNICATIONS AND OTHER COMMUNICATIONS

The contents of this report reflect the views of DoD Electromagnetic Compatibility Analysis Center which is responsible for the analysis presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

NOT ATTACHED TO THIS REPORT
ARE THE FOLLOWING DOCUMENTS:
1. APPENDIX A
2. APPENDIX B
3. APPENDIX C
4. APPENDIX D

THE COPY

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. FAA-RD-76-50	2. Government Accession No.	3. Recipient's Catalog No.			
6 Title and Subtitle A MODEL TO PREDICT MUTUAL INTERFERENCE EFFECTS ON AN AIRFRAME		5 Report Date Oct 1976			
7 Author(s) Priscilla A. Dwyer of IIT Research Institute		6 Performing Organization Code 121167P			
9. Performing Organization Name and Address DoD Electromagnetic Compatibility Analysis Center North Severn Annapolis, Maryland 21402		10. Work Unit No. 16049E 65704			
		11. Contract or Grant No. DOT-FA70WAI-175 TASK-26			
		12. Type of Report and Period Covered FINAL REPORT ARD-60			
13. Supplementary Notes Performed for the Frequency Management Division, Spectrum Plans and Programs Branch, FAA. (18) ECAC, FAA-RD) (19) PR-76-067, 76-50					
16. Abstract Sponsored by the FAA, the Electromagnetic Compatibility Analysis Center has developed an analysis model, called AVPAK, to determine the mutual interference effects of introducing new avionics equipment to an existing airframe containing operational equipment. The model has been updated, improved, and expanded in a series of scheduled efforts. In this report, those improvements have been summarized and the current version of the model (AVPAK 3) is completely documented.					
<p>17. Key Words INTERFERENCE ANALYSIS AIRFRAME SIMULATION SPATIAL POWER DENSITY FAR FIELD COUPLING</p> <p>18. Distribution Statement Document is available through the National Technical Information Service, Springfield, Virginia, 22161.</p>		19. Security Classif. (of this report) UNCLASSIFIED	20. Security Classif. (of this page) UNCLASSIFIED	21. No. of Pages 156	22. Price

bpg

METRIC CONVERSION FACTORS

Approximate Conversions to Metric Measures			Approximate Conversions from Metric Measures		
Symbol	When You Know	Multiply by	To Find	Multiply by	Symbol
			LENGTH		
in.	' 2.5	centimeters	millimeters	0.04	inches
in.	.30	centimeters	centimeters	0.4	inches
in.	1.6	meters	meters	3.3	feet
in.		kilometers	meters	1.1	yards
in.			kilometers	0.6	miles
			AREA		
in.	6.5	square centimeters	square centimeters	0.16	square inches
in.	.09	square meters	square meters	1.2	square yards
in.	.04	square meters	square kilometers	0.4	square miles
in.	2.6	square kilometers	hectares (10,000 m ²)	2.5	acres
in.	0.4	hectares			
			MASS (weight)		
ounces	28	grams	grams	0.036	ounces
ounces	0.46	kilograms	kilograms	2.2	pounds
ounces	0.9	tonnes	tonnes (1000 kg)	1.1	short tons
ounces					
			VOLUME		
teaspoons	5	milliliters	milliliters	0.03	fluid ounces
tablespoons	15	milliliters	milliliters	2.1	pints
fluid ounces	30	liters	liters	1.06	quarts
cups	0.24	liters	liters	0.28	gallons
pints	0.47	liters	liters	36	cubic feet
quarts	0.96	liters	liters	1.3	cubic yards
gallons	3.8	cubic meters	cubic meters		
cubic feet	0.03	cubic meters	cubic meters		
cubic yards	0.75	cubic meters	cubic meters		
			TEMPERATURE (exact)		
Fahrenheit	5/9 (after subtracting 32)	Celsius temperature	9/5 (then add 32)	- Fahrenheit temperature	°F
			TEMPERATURE (exact)		
Fahrenheit	5/9 (after subtracting 32)	Celsius temperature	9/5 (then add 32)	- Fahrenheit temperature	°F

*1 in = 2.54 (exactly). For other exact conversions and more detailed tables, see Note above. Pub. 260, Units of Weights and Measures, Price \$2.25, SD Catalog No. C1510-260.

FEDERAL AVIATION ADMINISTRATION
SYSTEMS RESEARCH AND DEVELOPMENT SERVICE
SPECTRUM MANAGEMENT STAFF

STATEMENT OF MISSION

The mission of the Spectrum Management Staff is to assist the Department of State, Office of Telecommunications Policy, and the Federal Communications Commission in assuring the FAA's and the nation's aviation interests with sufficient protected electromagnetic telecommunications resources throughout the world to provide for the safe conduct of aeronautical flight by fostering effective and efficient use of a natural resource--the electromagnetic radio-frequency spectrum.

This objective is achieved through the following services:

- Planning and defending the acquisition and retention of sufficient radio-frequency spectrum to support the aeronautical interests of the nation, at home and abroad, and spectrum standardization for the world's aviation community.
- Providing research, analysis, engineering, and evaluation in the development of spectrum related policy, planning, standards, criteria, measurement equipment, and measurement techniques.
- Conducting electromagnetic compatibility analyses to determine intra/inter-system viability and design parameters, to assure certification of adequate spectrum to support system operational use and projected growth patterns, to defend the aeronautical services spectrum from encroachment by others, and to provide for the efficient use of the aeronautical spectrum.
- Developing automated frequency-selection computer programs/routines to provide frequency planning, frequency assignment, and spectrum analysis capabilities in the spectrum supporting the National Airspace System.
- Providing spectrum management consultation, assistance, and guidance to all aviation interests, users, and providers of equipment and services, both national and international.

PREFACE

The Electromagnetic Compatibility Analysis Center (ECAC) is a Department of Defense facility, established to provide advice and assistance on electromagnetic compatibility matters to the Secretary of Defense, the Joint Chiefs of Staff, the military department and other DoD components. The Center, located at North Severn, Annapolis, Maryland 21402, is under executive control of the Office of the Secretary of Defense, Director of Telecommunications and Command and Control Systems and the Chairman, Joints Chiefs of Staff, or their designees, who jointly provide policy guidance, assign projects, and establish priorities. ECAC functions under the direction of the Secretary of the Air Force and the management and technical direction of the Center are provided by military and civil service personnel. The technical operations function is provided through an Air Force sponsored contract with the IIT Research Institute (IITRI).

This report was prepared for the Systems Research and Development Service of the Federal Aviation Administration in accordance with Interagency Agreement DOT-FA70WAI-175, as part of AF Project 649E under Contract F-19628-76-C-0017, by the staff of the IIT Research Institute at the Department of Defense Electromagnetic Compatibility Analysis Center.

To the extent possible, all abbreviations and symbols used in this report are taken from American Standard Y10.19 (1967) "Units Used in Electrical Science and Electrical Engineering" issued by the United States of America Standards Institute.

Reviewed by:

PRISCILLA A. DWYER
Project Engineer, IITRI

J. M. DETERDING
Director of Contractor Operations

Approved by:

R. E. BEERY
Colonel, USAF
Director

M. A. SKEATH
Special Projects
Deputy Director

EXECUTIVE SUMMARY

The Electromagnetic Compatibility Analysis Center (ECAC) has developed an analysis model (AVPAK) to determine the mutual effects of introducing new avionics equipment to an existing airframe containing operational equipment. This was accomplished in response to a request by the Federal Aviation Administration (FAA). The present model (AVPAK 3) is the result of the third phase of work in this area.

The analysis of the mutual effects of the operation of equipment on an airframe is accomplished by predicting the expected level of interference relative to the degradation threshold of each receiver. Antennas are assumed to be isotropic and may be collocated on the aircraft or on a neighboring aircraft. Equipment examined for possible interference include those with overlapping or immediately adjacent operating frequencies and also those with harmonically related operating frequencies for which inadequate transmitter harmonic attenuation exists. Nonlinear effects are not included in the analysis and must be dealt with manually. To insure that only far field coupling conditions are considered, only those equipments operating above 30 MHz are treated.

The model offers the option of either a purely deterministic calculation or a probabilistic calculation that estimates the probability of interference. The body of the airframe is modeled as a cylinder of finite length to which appropriate conical sections may be added. The calculation takes into account the factors of airframe curvature, airfoil obstructions, and bulkhead obstruction.

Two data bases are associated with the model. One contains nominal characteristics of commonly used avionics equipment which may be directly called upon to run the model. The model contains a mode which allows user-specified data to be used in running the program for new equipment types or equipment not described in the data base. The other data base contains median values and standard deviations of selected characteristics for equipments grouped according to function. One set of characteristics, based on median values, is then used to represent the group. This information is used in probabilistic processing.

As part of this task the existing AVPAK data bases were expanded with new avionics equipment obtained since the last updating in 1973.

In addition to interference analysis, the model calculates the power density at user-specified points, resulting from the operation of transmitters located on an aircraft. These points

EXECUTIVE SUMMARY (Continued)

may be located anywhere on the airframe, including wing pods, or they may be "raised" from the airframe (i.e., not lying on the fuselage skin), including locations on neighboring aircraft. The model also has the capability of calculating a cumulative power density due to the effects of more than one transmitter.

TABLE OF CONTENTS

<u>Subsection</u>	<u>Page</u>
LIST OF ACRONYMS	1
SECTION 1	
INTRODUCTION	
BACKGROUND	3
OBJECTIVES	3
APPROACH	4
SECTION 2	
MODEL EXTENSION	
GENERAL	5
DEVELOPMENT OF AN AIRFOIL OBSTRUCTION LOSS	5
McDonnell Douglas Model (ATACAP)	5
Geometric Theory of Diffraction	6
Knife Edge Diffraction	6
Empirical Airfoil Obstruction Model	6
RECLASSIFICATION TO REDUCE STANDARD DEVIATIONS	10
POWER DENSITY MODEL	11
SECTION 3	
MODEL DESCRIPTION	
GENERAL	13
BASIC INTERFERENCE EXPRESSION	13
Transmitted Power, P_T (dBm)	15
Antenna Gains, G_T , G_R (dBi)	16
Cosite Path Loss, L_p	17
Intersite Path Loss	22
Receiver Rejection, L_f	25
Transmitter Spectral Emission Synthesis	35
Rejection Calculation	39
Degradation Thresholds, $(S/I)_T$	43
POWER DENSITY CALCULATION	43
Coordinate Systems	47
OUTPUT TYPES	47
Deterministic Analysis	47
Functional Analysis	49

TABLE OF CONTENTS (Continued)

<u>Subsection</u>		<u>Page</u>
SECTION 3 (Continued)		
Probabilistic Analysis		49
DATA BASES		54
AVFILE		54
AVBASE		54
SECTION 4		
PROGRAM UTILIZATION		
GENERAL		57
BASIC AVPAK 3 DECK		57
DATA CARDS		57
SECTION 5		
SUMMARY		
GENERAL		69
MODEL CAPABILITIES		69
LIST OF ILLUSTRATIONS		
<u>Figure</u>		
1	For cases where airfoil obstructions exist, a combination of free space and curvature loss is used	8
2	The AVPAK 3 model will calculate an airfoil obstruction loss if antennas are lying on the fuselage skin in the darkened area above	9
3	Plot of the function F(y), describing the magnitude of the curvature loss contribution corresponding to the calculated value of parameter y	20
4	Aircraft-to-satellite analysis geometry. A segment of the earth's surface between A and E is represented by the curved line S. Point A is the aircraft in flight, which, relative to the satellite at point B, can be approximated to lie on line S	24
5	Receiver relative-response characteristic	27

TABLE OF CONTENTS (Continued)

FigurePage

LIST OF ILLUSTRATIONS (Continued)

6	Relative spectral emission envelope characteristic	35
7	Conversion chart from power density in dBm/meter ² to field strength in volts/meter	46
8	Coordinate systems that may be used to input data into AVPAK 3	48
9	Example of a plot of the convolved cumulative error distribution (ϵ_T), represented as the predicted probability of interference versus dB error	53
10	Aircraft coordinate system used for determining the main beam pointing angles (MBθ & MBφ) of directional antenna in intersite analyses	67

LIST OF TABLES

Table

1	RELATIVE TRANSISTOR MIXER CONVERSION LOSS IN dB	34
2	AVBASE EQUIPMENT IDENTIFICATION NUMBERS	55
3	GENERAL PARAMETER DATA CARD	58
4	INTERSITE DATA CARD	59
5	WING OBSTRUCTION DATA CARD	60
6	FUSELAGE OBSTRUCTION ONLY DATA CARD	60
7	WING-POD (OR WEAPON) OBSTRUCTION DATA CARD	61
8	ANTENNA OR POWER DENSITY POINT LOCATION DATA CARD	62
9	TRANSMITTER DATA CARDS	63
10	COMMENTS ON TRANSMITTER DATA CARDS	64
11	RECEIVER OR POWER DENSITY POINT DATA CARD	65
12	COMMENTS ON RECEIVER OR POWER DENSITY POINT DATA CARD	66

LIST OF APPENDIXES

Appendix

A	GEOMETRICAL THEORY OF DIFFRACTION	71
B	DESCRIPTION OF PARAMETERS USED TO CREATE THE FUNCTIONAL/PROBABILISTIC FILE	75
C	GENERAL FLOW CHART FOR AVPAK 3	83
D	LISTING OF THE CONTENTS OF AVBASE AND AVFILE	87
E	ACTUAL PROGRAM RUN DECKS AND OUTPUT	115
REFERENCES		155

LIST OF ACRONYMS

- ARINC EC** - ARINC Research Corporation Equipment Characteristic -- used to indicate to prospective manufacturers the characteristics of new equipment desired by the airline industry.
- ATACAP** - Antenna-to-Antenna Analysis Program, developed by the McDonnell-Douglas Corp. for the U.S. Air Force.
- ATCRBS** - The national Air Traffic Control Radar Beacon System, operated by the FAA.
- AVBASE** - The portion of the AVPAK data base containing equipment data to support deterministic analysis of EMC problems.
- AVFILE** - The portion of the AVPAK data base containing equipment functional characteristics to support probabilistic analysis of EMC problems.
- AVPAK** - The Avionics Interference Prediction Model, developed by ECAC under sponsorship of the FAA. The model, the latest version of which is AVPAK 3, is employed to analyze and predict interference among antennas on an airframe.
- DME** - Distance Measuring Equipment.
- ECAC** - The Department of Defense Electromagnetic Compatibility Analysis Center, Annapolis, MD.
- EMC** - Electromagnetic compatibility.
- FAA** - The Federal Aviation Administration of the Department of Transportation.
- FAS** - Frequency Analysis System -- an ECAC analysis program that includes the capability to synthesize transmitter spectral-emission and receiver response characteristics, and predict their interactions.
- GTD** - Geometric Theory of Diffraction.
- ROFR** - Receiver contribution to receiver off-frequency rejection.

LIST OF ACRONYMS (Continued)

- SCSE - ECAC's Smooth-Curve, Smooth-Earth propagation model.
- TACAN - TACTical Air Navigation system.
- TOFR - Transmitter contribution to receiver off-frequency rejection.
- TSO - Technical Standard Order, promulgated by the FAA -- contains minimum performance and quality-control standards for materials, parts and appliances used on civilian aircraft.
- VOR - VHF Omni-Range system.

SECTION 1

INTRODUCTION

BACKGROUND

In 1969, the Federal Aviation Administration tasked ECAC to develop an automated interference analysis capability for use with avionics equipment in aircraft. The capability was for general application, but particularly useful when a new equipment was to be introduced to an existing airframe containing operational equipment. That effort was completed in December 1970.¹

In 1972, FAA requested that the capability be extended, notably to allow probabilistic analyses. Certain other improvements were also added, and additional measured data was obtained for further validation of the antenna coupling portion of the model. The report of that effort was published in 1973.²

In 1974, FAA again requested that ECAC undertake a task for improving the model and incorporating features that had become available since publication of the second report. A comparison of this report with References 1 and 2 will reveal much repetitious material. It was necessary to include such material here in order to satisfy the FAA requirement for a single document describing the capability. Future reference to the previous reports for an understanding of the application and use of the prediction capability and data base will be unnecessary.

Throughout this report, where it is desired to distinguish between the early model, the intermediate model and this latest model, they will be characterized as AVPAK 1, AVPAK 2 and AVPAK 3, respectively. It should be understood that AVPAK 1 and AVPAK 2 no longer exist. AVPAK 3, of course, has all the capabilities of the first two versions as well as the improvements described herein.

OBJECTIVES

The objectives of this project were to:

1. Incorporate a power density model in AVPAK.
2. Incorporate an airfoil-shading model.

¹Morgan, G., *Avionics Interference Prediction Model*, ESD-TR-70-286, December 1970. (FAA Report No. FAA-RD-71-10.)

²Friske, L., *An Extended Avionics Interference Prediction Model*, ECAC-PR-73-002, June 1973. (FAA Report No. FAA-RD-73-9.)

3. Develop a model for predicting coupling between two antennas whose locations are raised from the airframe.
4. Expand the avionics-equipment data base.
5. Refine and regroup equipment data to arrive at smaller variances for use in probabilistic analyses.
6. Validate the above additions to the model.
7. Document the prediction model and data base to provide a single technical report describing the capability.

APPROACH

The following steps were taken to accomplish the specific objectives of the project.

1. Certain techniques for computing air-foil shading were known to exist. These were analyzed and a validation was undertaken. They were found to be unsatisfactory and an empirical model was developed.
2. A technique for computing power density was incorporated into AVPAK.
3. Additional manufacturers' technical manuals were obtained. Data were extracted from the manuals for inclusion in the AVPAK data bases. New classifications were established, leading to smaller variances in the probabilistic data base.
4. Additional coupling loss data were obtained and additional verification of the coupling model was performed.

SECTION 2

MODEL EXTENSION

GENERAL

The purpose of this section is to discuss changes made to the analysis and data base capabilities, to report the options that were open, and to justify the selections and decisions finally made. Section 3 of this report describes the entire capability as it now exists.

DEVELOPMENT OF AN AIRFOIL OBSTRUCTION LOSS

The initial plan for satisfying the airfoil obstruction-loss task was to investigate existing obstruction models and theories and determine if their use in the AVPAK model was feasible.

The first area investigated involved work done by the McDonnell Douglas Corporation and the Grumman Aerospace Corporation in two separate ventures where wing obstruction attenuation was determined through diffraction effects. Because of the necessity to limit the detail associated with input parameters, it was not feasible to incorporate either of these models in the AVPAK model.

An attempt was made to model an airfoil as a knife-edge obstruction. When this yielded inaccurate results, a decision was made to develop a model to account for obstructed paths -- one which could be easily assimilated into the AVPAK model. Each of these developments in the obstruction-loss task is discussed below.

McDonnell Douglas Model (ATACAP)

An antenna-to-antenna compatibility analysis program (ATACAP) was developed by the McDonnell Douglas Corporation under USAF contract as part of a larger intra-vehicle electromagnetic compatibility analysis program.³

ATACAP, like the Avionics Interference Prediction Model, contains not only antenna-coupling routines but receiver and transmitter synthesis models. Only the antenna coupling was of interest here since ATACAP includes provision for predicting the additional loss introduced by wings. This additional loss is based on the Geometrical

³Bogdanor, J. L., Siegal, M. D., Weinstock, G. L., *Intra-Vehicle Electromagnetic Compatibility Analysis, Part I*, McDonnell Aircraft Company, McDonnell Douglas Corporation, TR AFAL-TR-71 155 PTI, January 1972.

Theory of Diffraction (which is explained in some detail below and in APPENDIX A).

Documentation and a program listing for ATACAP were obtained and evaluated for applicability to the requirements of FAA. The evaluation revealed apparent irregularities that could not be accounted for either by analysis or consultation with McDonnell-Douglas. For that reason, the ATACAP effort was terminated and an attempt was made to use basic work on the Geometric Theory of Diffraction.

Geometric Theory of Diffraction

The Geometric Theory of Diffraction is an extension of geometrical optical theory which has been widely used to solve antenna problems; e.g., the determination of antenna patterns for multi-element arrays, high gain reflectors and dielectric lenses.

Geometric optics theory, however, fails to account for diffraction which occurs when the incident ray hits edges, corners, apexes of surfaces, or is tangent to a smooth surface. GTD was developed to account for these optical phenomena of diffraction.⁴

An exposition of the ECAC inquiry into GTD for modeling obstructions between aircraft antennas appears in APPENDIX A. It was determined that the geometric detail necessary to use such a model would be available only after precision measurements of aircraft geometry. Because of this limitation GTD was rejected as an acceptable obstruction-modeling technique.

Knife Edge Diffraction

The classic Bullington equation, used by the model to calculate transmission loss over a bulkhead obstruction, was considered initially for calculating the loss around an airfoil obstruction. However, it was found that this technique does not yield verifiable results. Therefore, it was abandoned for calculating airfoil obstruction losses.

Empirical Airfoil Obstruction Model

Since none of the investigated methods yielded the desired results in terms of accuracy in predicting obstructed-path coupling

⁴Sacks, L. H., *The Geometrical Theory of Diffraction Applied to Aircraft Antenna Isolation Determination, Parts I and II*, No. RF-67-10, Grumman Aerospace Corp., May 1967.

losses, an empirical method to compute airfoil obstruction loss was developed at ECAC. Through inspection of measured path losses where airfoil obstructions existed, it was determined that obstruction loss could be approximated by calculating the free-space loss around the airfoil and adding a curvature factor (see Figure 1). The free-space loss is obtained from the following equation:

$$L_{FS} = 20 \log D + 20 \log f - 38 \quad (1)$$

where

L_{FS} = free-space loss in dB

D = minimum distance around airfoil, in feet

f = transmitter frequency, in MHz.

The curvature loss is obtained from the curvature loss function $F(y)$, which is discussed in Section 3. For an airfoil obstruction, in calculating $F(y)$, the length of the ray path between the two antennas is the minimum-distance path between the antennas, (through the airfoil).

The chords of all airfoils are assumed to be parallel to the Z-axis. If the airfoil-fuselage chord does not lie parallel to the Z-axis, the chord will be set parallel to the Z-axis in the program, with reference to the front airfoil-fuselage intersection point. An airfoil obstruction loss will be calculated if antennas are located in the following areas (see Figure 2). Both antennas must be located within ± 20 degrees of the top or bottom fuselage centerline and lie on the fuselage. They also must be located so that there is full airfoil obstruction. This is determined by comparing the Z-axis coordinates of the two antennas with those of the forward and aft wing-fuselage intersection points. Let (x_1, y_1, z_1) and (x_2, y_2, z_2) be the coordinates of the two antennas and (x_3, y_3, z_3) and (x_4, y_4, z_4) the coordinates of the forward airfoil-fuselage intersection point and aft airfoil-fuselage intersection point, respectively. Airfoil shading is calculated if:

$$1) (z_3 - \epsilon) < z_1 < (z_4 + \epsilon) \text{ and } z_3 < z_2 < z_4 \quad (2a)$$

or

$$2) (z_3 - \epsilon) < z_2 < (z_4 + \epsilon) \text{ and } z_3 < z_1 < z_4 \quad (2b)$$

FREE SPACE LOSS CALCULATED USING $(D_1 + D_2)$
CURVATURE LOSS CALCULATED USING D_3

Figure 1. For cases where airfoil obstructions exist, a combination of free space and curvature loss is used.

Figure 2. The AVPAK 3 model will calculate an airfoil obstruction loss if antennas are lying on the fuselage skin in the darkened area above.

where

$$\epsilon = (.1) (z_4 - z_3).$$

This technique provides accurate wing-obstruction calculations using a minimum number of readily available user inputs.

RECLASSIFICATION TO REDUCE STANDARD DEVIATIONS

One of the objectives of the previous ECAC work on the Avionics Interference Prediction Model entailed the creation of a functional data base comprised of representative equipments. The parameters of these representative equipments were expressed in terms of mean values and their associated standard deviations. A functional representation is used in the probabilistic mode of analysis. Since large standard deviations were associated with some of the functional (representative) equipments, the task was undertaken to reclassify the data base elements such that probabilistic analyses could be performed with a higher degree of confidence in the predicted interference levels (i.e., smaller standard deviations).

It was suggested by the FAA that either the FAA Technical Standard Order (TSO) or ARINC Equipment Characteristics (ARINC EC) be considered as a means of classifying the equipment. TSO's contain minimum performance and quality-control standards for specified materials, parts or appliances used on civilian aircraft. They are issued by the Federal Aviation Administration (FAA), and the performance standards in each TSO are those that the FAA finds necessary to ensure that the equipment concerned will operate satisfactorily or will accomplish satisfactorily its intended purpose under specified conditions.⁵

An ARINC EC is used to indicate to prospective manufacturers of airline electronic equipment the considered opinion of the airline industry concerning requisites for new equipment. They also serve the purpose of standardizing, to the maximum possible extent, those physical and electrical characteristics which affect interchangeability of equipment.⁶ Both the TSO and ARINC EC were examined to see whether samples of equipments certified to meet

⁵Federal Aviation Regulations, Part 37, Technical Standard Order Authorization, May 1974, Department of Transportation, Federal Aviation Administration.

⁶ARINC Characteristic #579-1. Aeronautical Radio, Inc., 2551 Riva Rd, Annapolis, MD 21401, 5 February 1971.

the requirements of either (or both) of them were characterized by smaller (or larger) standard deviations. No such correlation could be found. In some cases, for example, sharper selectivity characteristics are associated with communications receivers that are not certified to meet either a TSO or ARINC EC than with equipment so certified.

Nominal characteristics provided by manufacturers do not always indicate the true characteristics of equipment. That is, nominal values are cited for selectivity, for example, that meet some specification requirement when in fact the selectivity may be far superior to that representation. This practice would, of course, make variances quite wide when some values are based upon these nominal characteristics and others are actual values.

Other approaches were taken to the reclassification problem. For example, equipments were ranked by standard deviation of pertinent characteristics, and then they were examined for other common or similar characteristics. It was decided that there was no nominally stated feature upon which to base classification.

Therefore, equipment types associated with large standard deviations (viz. VHF communications receivers and VOR/Localizer receivers) were subclassified according to the highest recorded spurious-response levels in each category. Three subclasses were used, as follows:

Subclass	Relative Spurious Response Level
1	40 - 89 dB down
2	90 - 109 dB down
3	110 - 140 dB down

POWER DENSITY MODEL

An earlier ECAC effort was involved with the evaluation of the electromagnetic environment at different points on an aircraft. This effort developed the capability of calculating power densities resulting from transmitters located on the aircraft as well as from transmitters located on neighboring aircraft. This model has been incorporated into AVPAK 3. Details on the power density model are contained in the model description section of this report (see pg. 43).

SECTION 3

MODEL DESCRIPTION

GENERAL

In determining possible interference cases, the AVPAK 3 model utilizes two major analyses. One calculates the path loss between isotropic radiators located on an airframe, raised from an airframe, or on neighboring aircraft. An antenna gain subroutine provides gain in the direction of coupling for certain types of aperture antennas while non-aperture antennas are assigned a nominal gain value. The other major analysis determines the rejection offered by a receiver to an undesired signal. This is accomplished by integrating over the areas of frequency overlap between the spectral emission of a chosen transmitter and the receiver response characteristic of a chosen receiver. For equipment such as ATC transceivers that operate over a range of frequencies, the entire operating range is examined; in this manner "worst case" values for rejection are determined.

Also included in the AVPAK model is the capability to calculate power density at receivers or user-specified points due to a number of transmitters (up to 50).

Nonlinear effects such as intermodulation, cross-modulation, receiver desensitization and specific spurious responses are not included in AVPAK 3 and must be treated manually.

In creating the AVPAK 3 model, the desired new features and capabilities were added to the AVPAK 2 format. The specific capabilities of the earlier AVPAK models and the new features included in the AVPAK 3 model are discussed below.

BASIC INTERFERENCE EXPRESSION

The analysis of the mutual effects of the operation of equipment on an airframe is accomplished by predicting the expected level of interference relative to the degradation threshold of each receiver.

The undesired interfering power at the input terminals of a potential victim receiver can be calculated with the logarithmic form of the one-way system loss equation, which is:

$$P_I = P_T + G_T + G_R - L_P - L_s \quad (3)$$

where

P_I = the input interfering power in dBm

P_T = the transmitter output power in dBm

G_T = the effective gain of the transmitting antenna in the direction of the receiving antenna in dBi

G_R = the effective gain of the receiving antenna in the direction of the transmitting antenna in dBi

L_p = the basic transmission loss between isotropic radiators in dB

L_s = the combined system losses associated with the transmitter and receiver due to transmission links, coupling devices, and external RF filtering, in dB.

Except for coupling mismatches, the system losses can usually be neglected. It is assumed herein that such losses are negligible. Therefore, the L_s term is dropped from further consideration at this time, but the capability to include such a factor has been retained for future application.

The minimum level of an input desired signal required to produce a standard response is defined as the receiver sensitivity, R_s . The level of an interfering signal required to produce the same standard response in the receiver may be different. The two factors which can cause this difference are the different modulation characteristics of the interfering and desired signals, and the rejection to an off-tune interfering signal offered by the selectivity characteristic of the receiver. These factors can be considered together as the total receiver rejection factor (L_f).

There is an equivalent on-tune input signal power that would produce the same response at the output as the interfering signal. It is related to the interfering signal by:

$$P_{ie} = P_I - L_f \quad (4)$$

where

P_{ie} = the equivalent on-tune input signal power that produces the same output response as the interfering signal. (If $P_{ie} = R_s$, the output would be a standard response.)

By substitution in Equation 3:

$$P_{ie} = P_T + G_T + G_R - L_p - L_f \quad (5)$$

The level of degradation caused by an interfering signal can be evaluated by comparing the resulting signal-to-interference ratio to the required threshold S/I ratio. If it is assumed that the input desired signal is at the receiver sensitivity level, the relative degradation level is:

$$P_{ld} = P_{ie} - R_s + (S/I)_T \quad (6)$$

where

P_{ld} = the degradation level relative to the threshold of the degradation in dB

R_s = the sensitivity of the receiver in dBm

$(S/I)_T$ = the threshold input signal-to-interference ratio, in dB, required to prevent degradation.

If the desired signal is at a level other than R_s , the actual level may be substituted for R_s . If Equations 5 and 6 are combined:

$$P_{ld} = P_T + G_T + G_R - L_p - L_f + (S/I)_T - R_s \quad (7)$$

where all of the terms have been defined.

If P_{ld} is greater than zero, degradation is expected to occur; conversely, if P_{ld} is less than zero, degradation is not expected and no further consideration need be given to interactions between the particular transmitter and receiver involved. Each of the terms in Equation 7 is discussed below.

Transmitted Power, P_T (dBm)

This parameter is a required input to the program and represents the average output power for communications transmitters and the peak output power for pulsed transmitters. This information can be obtained from either of the AVPAK 3 data bases (AVBASE, or AVFILE) or it may be provided by the user.

Antenna Gains, G_T , G_R (dBi)

AVPAK 3 has the capability of utilizing either user-supplied antenna gains or calculated gains determined by automated antenna gain subroutines which, for different arrays, determine the expected gain to be realized along the propagation path between the antennas on the airframe. For aperture antennas, gain routines were developed for three basic types: horn, circular aperture and rectangular array. These routines calculate far-field gain using aperture dimensions, transmitter frequency, and coupling angles referenced to the main beam axis. By calculating receiver antenna gain at the transmitter frequency (either fundamental or harmonic), out-of-band antenna responses are treated for aperture antennas. For non-aperture antennas, a nominal (2 dBi) gain is assigned.

The following material briefly describes some of the considerations in deriving antenna gain values, and the equations used.

The main beam gain of a circular aperture antenna is calculated in the program as:

$$G_{MB} = 20 \log D + 20 \log F - 52.6 \quad (8)$$

where

G_{MB} = main beam gain in dBi

D = diameter of aperture in feet

F = frequency in MHz.

Sidelobe gain is determined by using a Bessel envelope calculation.

The main beam gain for a rectangular aperture antenna is calculated from:

$$G_{MB} = 10 \log (LX \times LY) + 20 \log F - 51.6 \quad (9)$$

where

LX and LY = aperture dimensions in feet

F = frequency in MHz.

Sidelobe gain is determined from a $\sin X/X$ envelope calculation.⁷

⁷Kraus, J. D., *Antennas*, McGraw-Hill, New York, 1950.

The main beam gain for an optimum horn is calculated from:

$$G_{MB} = 8.08 + 10 \log (LA \times LB) / \lambda^2 \quad (10)$$

where

LA and LB = aperture dimensions in inches

λ = wavelength in inches.

Sidelobe levels for an optimum horn are determined from look-up tables in the program. The method for computing these levels was obtained from Jasik.⁸

For all antenna types, backlobe gain is constant and equal to the value of the gain envelope at the 90° pattern point. All gains are idealized far-field values. Pattern perturbations which may be caused by the airframe are not considered.

Polarization mismatches are applied only to cross-polarized non-aperture antennas (i.e., for vertical-to-horizontal polarization or vice versa). Polarization mismatches are not applied to aperture antennas in the program, since this correction is appropriate for main beam coupling only, a condition which rarely occurs. When appropriate, up to 20 dB of loss can be manually applied to the results for cross-polarized main beam-coupled antennas. Mismatches for circularly or linearly (45°) polarized antennas to vertically or horizontally polarized antennas, (or vice versa) are not treated in the program. When necessary a 3-dB loss may be manually applied to the results of such a configuration.

Cosite Path Loss, L_p

The path loss between isotropic radiators on an airframe is calculated using the technique reported by Hasserjian and Ishimaru⁹ and extended by Khan, et al.¹⁰ These efforts have shown that the path loss along a conducting curved surface can be calculated by:

⁸Jasik, H., ed., *Antenna Engineering Handbook*, McGraw-Hill, New York, 1961.

⁹Hasserjian, G., and Ishimaru, A., *Excitation of a Conducting Cylindrical Surface of Large Radius of Curvature*, IRE Transactions on Antennas and Propagation, Vol AP-10, May 1962.

¹⁰Khan, P. J., et al, *Derivation of Aerospace Antenna Coupling Factor Interference Prediction Techniques*, Colley Electronics Laboratory, University of Michigan, 1964.

$$L_{PC} = L_{PF} F(y) \quad (11)$$

where

L_{PC} = the path loss along the curved surface of the air-frame

L_{PF} = the path loss if the same surface were flattened into a plane

$F(y)$ = the loss factor due to the curvature of the surface i.e., the curvature factor.

The curvature factor $F(y)$ was expressed by Hasserjian, (Reference 9) in the form of two different infinite series as an approximate solution to Maxwell's equation with boundary conditions. One series expression was derived for "large values" of the parameter y and the other series was derived for "small values" of y . The numerical evaluation of these series for the magnitude of $F(y)$ versus y in decibels was done at the University of Michigan (Reference 10), and is presented as a tabulation of points of the graph of $F(y)$ versus y in Figure 3. This tabulation is used with an interpolation subroutine and the formula for y .

The independent variable, y , of this function is in itself a function of the "ray path" of length R_1 and of curvature ρ_1 . The function y is:

$$y = (R_1)^{3/2} / \rho_1 \quad (12)$$

where

R_1 = the length of the curved ray path as normalized to the wave number, k (where $k = 2\pi/\lambda$, and λ is the wavelength). That is, $R_1 = k D_1$, where D_1 is the length of the curved ray path

ρ_1 = the curvature of the ray path as normalized by the wave number.

The value of y for a cylinder is determined from the following formula:

$$y = \frac{k^{1/2} a \phi^2}{[(\Delta Z)^2 + (a \phi)^2]^{1/4}} \quad (13)$$

where

a = the radius of the cylinder

ΔZ = the distance between the antennas along the axis of the cylinder

ϕ = the angle in radians between the antennas on a plane, defined by the two antennas and the center of the airframe.

The path loss between the antennas if the surface is assumed to be planar is calculated using the free-space formula:

$$L_{PF} = 20 \log f + 20 \log D_1 - 38 \quad (14)$$

where

L_{PF} = the free-space loss between isotropic radiators in dB

f = the transmitted frequency in MHz

D_1 = the ray path distance along the surface between the antennas in feet.

The distance, D_1 , for a cylinder is:

$$D_1 = [(\Delta Z)^2 + (a\phi)^2]^{1/2} \quad (14a)$$

where all terms have been previously defined.

One of the restrictions in the technical development of the curvature factor is a requirement that the curvature along the ray path between the antennas remain constant. If the antennas lie on a conical surface, the requirement is not completely satisfied. In practical airframes, however, it can be shown that the ray path length can be calculated with a high degree of accuracy by treating the cone as a modified cylinder with a radius equal to the geometric mean of the radii of the cone at the locations of the antennas. The limitation of this approximation is that the apex angle of the cone can not exceed 20 degrees.

It can be shown that the curvature factor between two antennas on a cone lies between the two $F(y)$'s which would be calculated if the cone was replaced by two different cylinders having radii equal to the cone radii at each of the two antenna locations.

Figure 3. Plot of the function $F(y)$, describing the magnitude of the curvature loss contribution corresponding to the calculated value of parameter y .

The remaining restrictions which affect the application of this technique include geometrical limitations which insure that the respective antennas do not lie within each other's Fresnel (near-field) region. These geometrical restrictions place a lower limit on the frequencies at which the coupling loss can be calculated. For example, if an HF wire antenna, the resulting radiating high frequency wavelengths, and an airframe length are all of comparable magnitudes, then the entire airframe can be expected to be a part of the HF antenna system. Any consideration of the coupling loss to be expected along the airframe, consequently, becomes an intra-antenna (near-field) consideration. Thus, this technique cannot be applied to HF systems.

In addition to the parameters discussed above, other factors must be considered for certain paths between antennas on an airframe. When one antenna is located in front of the metal nose bulkhead and the other is behind the bulkhead, a knife-edge diffraction loss can be expected due to the obstruction created by the bulkhead. Bullington presents a nomograph which can be used to calculate these losses (Reference 8, Chapter 33). This nomograph has been automated in equation form and this additional loss factor is automatically included when the transmission path crosses the nose bulkhead. The equation used is:

$$L_k = 10 \log (h^2 f / 20d) \quad (15)$$

where

L_k = the knife-edge diffraction loss, in dB

h = the height of the obstruction above the straight-line path, in feet

f = the transmitted frequency, in megahertz

d = the distance between the bulkhead and the antenna nearest the bulkhead, in feet.

Another situation which must be considered occurs when the path between antennas is obstructed by an airfoil. A quasi-empirical equation has been developed at ECAC which calculates the coupling loss of an airfoil-obstructed path by determining the minimum free-space loss around the obstruction and adding a curvature loss over the minimum-distance path between antennas (through the airfoil).

$$L_W = 20 \log f + 20 \log D - 38 + F(y) \quad (16)$$

where

L_W = wing obstruction loss in dB

f = transmitted frequency in MHz

D = minimum distance around wing in feet

$F(y)$ = previously discussed curvature factor whose ray path distance neglects the presence of a wing (see Section 2 for additional development of wing-obstructed coupling loss).

AVPAK 3 can also handle transmitters or receivers (or points, if a power density calculation is desired) that are raised from the fuselage; raised is defined as not lying on the fuselage skin. AVPAK 3 will calculate coupling loss for the following configurations:

1. Both antennas lie on the fuselage.
2. Both antennas are raised from the fuselage.
3. Antenna 1 is raised from the fuselage, antenna 2 lies on the fuselage.
4. The path between antenna 1 and antenna 2 is obstructed by an airfoil.
5. Antenna 1 lies on the fuselage, antenna 2 lies on a wing pod.
6. Antenna 1 is raised from the fuselage, antenna 2 lies on a wing pod.

Intersite Path Loss

For intersite analysis the path loss is calculated using the smooth curve-smooth earth (SCSE) model which is part of ECAC's master propagation calculation system. The entire airframe is assumed to be a radiator; hence, the individual bulkhead, curvature, and wing-shading losses associated with the cosite path are assumed to be negligible. The SCSE model¹¹ assumes a smooth spherical earth with a 4/3 radius of earth curvature. The model is valid for frequencies in the 50 MHz-to-12 GHz range and is applicable for antenna heights of great altitudes.

SCSE computes the basic median far-field path loss between isotropic radiators, using effective antenna heights at the two site locations. The model automatically selects the appropriate propagation region to be analyzed: reflection, intermediate, or diffraction. If antenna heights are greater than 3,000 feet, which is usually the case for an aircraft in flight, a preprocessor of

¹¹Leggett, Robert and Madison, James, *Propagation User's Manual*, ECAC-UM-74-001, ECAC, Annapolis, MD, July 1974.

the model calculates a ray-trace correction along with the effective earth modeling. Additional information about the SCSE model may be found in Reference 11.

In an intersite analysis it is possible to have an aircraft-to-satellite situation, where the aircraft has a flight altitude of less than 100,000 feet (approximately 19 statute miles) and the satellite an altitude greater than 1,550,000 feet (approximately 294 statute miles). In a case such as this, an alternative approach to SCSE is used.

The geometry of the aircraft-to-satellite analysis situation is shown in Figure 4. The initial points and distances used are:

- A. location of aircraft in flight (< 100,000 feet) approximated to be on the earth's surface relative to the altitude of the satellite.
- B. location of the satellite.
- C. center of the earth.
- E. point on the earth's surface on the line BC.
- S. ground distance (Great Circle) from A to E along the surface of the earth.
- CE. approximate radius of the earth, (3963.0 statute miles).
- BE. altitude of the satellite (>> 1,550,000 feet).

For the aircraft-to-satellite case, BE is usually much greater than 1,550,000 feet. Because of this, the altitude of the aircraft in flight (while in fact some height less than 100,000 feet) may be approximated as 0 feet. If the altitude of the aircraft is assumed to be 0 feet, then the aircraft lies on the curve S along the surface of the earth.

Let BE represent the altitude of the satellite. If the segment S is less than or equal to 500 statute miles then the path loss is calculated by:

$$L_p = 20 \log (f) + 20 \log (BE) + 37.0 \quad (17)$$

where

L_p = path loss between points A and B, in dB

f = transmitter frequency, in MHz

BE = altitude of the satellite, in statute miles,
and $BE \approx BA$

Figure 4. Aircraft-to-satellite analysis geometry. A segment of the earth's surface between A and E is represented by the curved line S. Point A is the aircraft in flight, which, relative to the satellite at point B, can be approximated to lie on line S.

This is the free-space loss equation for a line-of-sight case, which is valid when S is less than or equal to 500 statute miles.

If the segment S is greater than 500 statute miles, it must be determined whether the two sites are within line-of-sight of each other. This particular analysis will treat only line-of-sight cases. A detailed analysis may be found in Reference 12. If point E is found to be beyond line of sight from point A, the run is aborted. If not, L_p is calculated by the free-space loss equation with a more accurate representation of the distance between the sites AE, than is used in Equation 17 (Reference 11).

Receiver Rejection, L_f

The rejection offered to an undesired emission by a potential victim receiver is calculated by a programmed package known as the Frequency Analysis System (FAS). The following explanation of FAS will enable the reader to understand the operation of FAS and will prepare him for the more detailed description, including the mathematical approach, contained in the documentation of the model.¹³

For a given transmitter-receiver pair, FAS synthesizes the receiver response characteristic and the transmitter spectral emission characteristic by a series of line segments which are linear on a logarithmic scale. Each of these synthesized models is normalized to unity at the tuned frequency of the equipment such that the characteristics described are relative to the performance at the tuned frequency. The FAS synthesis does not include nonlinear effects. When this synthesis is complete, FAS determines the rejection by integrating over the areas of frequency overlap between the transmitted emission and the receiver response. Two cases are considered. The first case examined involves a calculation of the relative energy transfer to be expected due to the emission sidebands which lie within the passband of the receiver. The second case examined is the expected energy transfer resulting from inadequate receiver selectivity at the frequencies within the fundamental emission bandwidth of the transmitter. These

¹²Haseltine, R., *Avionics Interference Prediction Model (AVPAK)*, ECAC-TN-75-020, ECAC, Annapolis, MD, September 1975.

¹³Cleaver, R. and Bode, T., *An Algorithm for Calculating Transmitter-Receiver Frequency Rejection Loss*, ESD-TR-70-128, ECAC, Annapolis, MD, 1970.

two cases are compared and the worst situation, i.e. the least amount of rejection, is chosen as the appropriate rejection for the given equipment pair.

Receiver Response Synthesis. In the FAS model, the receiver relative response characteristic is synthesized by four line segments, which are linear on a logarithmic scale, and appear as shown in Figure 5. The variables are defined below.

f_R = the tuned frequency of the receiver

B_r = the intermediate frequency (IF) bandwidth of the receiver

n_1 = a factor used to describe the IF selectivity curve

N_1 = the slope of the IF selectivity skirt in dB per decade ($N_1 = 10 n_1$)

f_1, f_2 = the lower and upper frequencies, respectively, where spurious responses must be considered. These frequencies should be selected to coincide with the intersection of the K_s level with the IF selectivity curve

K_s = the spurious response rejection of the receiver

f_a, f_b = the lower and upper frequencies, respectively, at which spurious responses need no longer be considered. These frequencies should be selected to coincide with the intersection of the K_s level with the RF circuitry selectivity curve

n_2 = a factor describing the slope of the RF selectivity curve

N_2 = the slope of the RF selectivity skirt in dB per decade ($N_2 = 10 n_2$).

The normalized response characteristic may be expressed mathematically as:

$$r(f) = 1, \text{ when } \left(f_R - \frac{B_r}{2} \right) < f < \left(f_R + \frac{B_r}{2} \right) \quad (18a)$$

Figure 5. Receiver relative-response characteristic.

$$r(f) = \left(\frac{\frac{B_r}{2}}{f - f_R} \right)^{n_1}, \text{ when } f_1 < f < f_R + \frac{B_r}{2} \quad (18b)$$

or $f_2 > f > f_R + \frac{B_r}{2}$

$$r(f) = k_s, \text{ when } f_a < f < f_1 \quad (18c)$$

or $f_b > f > f_2$

$$r(f) = k_s \left(\frac{|f - f_b|}{|f - f_R|} \right)^{n_2}, \text{ when } f_b < f \quad (18d)$$

$$r(f) = k_s \left(\frac{|f - f_a|}{|f - f_R|} \right)^{n_2}, \text{ when } f < f_a \quad (18e)$$

where

$r(f)$ = the relative response of the receiver at frequency f .

Then

$R(f)$ = the relative response in dB where $R(f) = 10 \log r(f)$, and

$$K_s = 10 \log k_s.$$

$$N_1, N_2 = 10n_1, 10n_2 \text{ respectively.}$$

Except for f_1 and f_2 , the parameters shown are required inputs for the FAS subroutine. Methods of determining these parameters are explained below.

Receiver Tuned Frequency, f_R . The tuned frequency of the receiver is obtained from the frequency assignment appropriate to the receiver being considered, and is a required input to the FAS program.

IF Bandwidth, B_r . The intermediate frequency bandwidth is obtained from the nominal characteristics of the receiver, usually set forth in the manufacturer's data in technical manuals describing the equipment, or it is obtained from measured data. It is a required input and must have a value greater than zero.

IF Skirt Slope, N_1 . This parameter is extracted from the given IF selectivity characteristics. It is the slope of the skirt in dB per decade. For example, the nominal characteristics of a receiver may specify that the IF selectivity of a receiver has a 20-dB bandwidth of BW_1 and a 60-dB bandwidth of BW_2 .

Then n_1 is obtained from:

$$(60-20)\text{dB} = 40 \text{ dB} = 10n_1 \log \frac{BW_2}{BW_1} \quad (19a)$$

and

$$N_1 = \frac{40}{\left(\log \frac{BW_2}{BW_1} \right)} \quad (19b)$$

This is a required input and must be greater than zero.

RF Skirt Slope, N_2 . Characteristics of the RF circuitry, which must usually be theoretically synthesized, can be found in AVBASE, the AVPAK file of selected avionics equipment. The determination of these characteristics is the result of special analysis intended to study such characteristics. There are two methods for synthesizing RF selectivity.

The first method requires information concerning the receiver design, i.e., the number of tuned circuits preceding the first mixer in a receiver. This information can be obtained by examination of the circuit diagrams included in the technical manual describing the equipment. When the number of tuned circuits is known, the relative response of the circuitry can be calculated from the following equation:

$$R_{RF} = 20 \log \left[1 + \left(\frac{2 |f - f_R|}{f_R} Q_s \right)^2 \right]^{-n/2} \quad (20a)$$

or

$$R_{RF} = -10n \log \left[1 + \left(\frac{2 |f - f_R|}{f_R} Q_s \right)^2 \right] \quad (20b)$$

where

R_{RF} = the RF response in dB relative to the response at the tuned frequency of the receiver

n = the number of tuned circuits preceding the first mixer

f = the frequency at which the relative response is required

f_R = the tuned frequency of the receiver

Q_s = the selectivity factor of each tuned stage, defined by

$$Q_s = \frac{f_R}{2 |f - f_R| \text{ 3 dB}} \quad (21)$$

where

$2 |f - f_R| \text{ 3 dB}$ = the 3 dB bandwidth of the stage.

The parameter Q_s is not generally available and must be estimated. An estimated Q_s of 50 yields sufficiently conservative results for most analyses.

The solution of Equation 20 as a function of frequency will yield the relative selectivity of the RF circuitry of the receiver.

In certain cases, the number of tuned circuits preceding the mixer is unknown but the RF 3-dB bandwidth is specified along with the image rejection. When these parameters are given, an alternate method for estimating the RF characteristics can be used.

The parameter N_2 is equivalent to $10n_2$, which equals 20n, where n is the number of RF tuned circuits, or $N_2 = 10n_2 = 20 n$.

The image frequency of a receiver is separated from the tuned frequency by twice the intermediate frequency. If an "image bandwidth" is defined as equal to four times the intermediate frequency, i.e., twice the image frequency separation from the tuned frequency, then the parameter N_2 can be approximated by:

$$K_1 - 3 \text{ dB} \approx 10 n_2 \log \left(\frac{BW_I}{BW_{3 \text{ dB}}} \right) \text{ or,} \quad (22a)$$

$$N_{2a} \approx \frac{K_1 - 3 \text{ dB}}{\log \left(\frac{BW_I}{BW_{3 \text{ dB}}} \right)} \quad (22b)$$

where

N_{2a} = the approximate value of N_2

K_1 = the image rejection in dB

BW_I = the "image bandwidth" defined above (note that this bandwidth is a mathematical device and not a physical reality)

$BW_{3 \text{ dB}}$ = the specified 3-dB RF bandwidth of the receiver.

The model does not accommodate receivers with variable-tuned intermediate frequencies.

It should be noted that the universal resonance curve, when plotted on a logarithmic scale, is rounded rather than linear in the vicinity of the 3-dB bandwidth. Therefore, the value of N_{2a} obtained from Equation 22b will be slightly larger than is appropriate. Therefore, this value should be rounded off to the nearest multiple of 20 which is less than that value. Thus, $N_2 = N_{2a}$ rounded down to the nearest multiple of 20. When this value of N_2 is determined, then n , the number of stages, is obtained by dividing by 20. A corresponding value of Q_s for the RF circuitry can then be calculated by:

$$Q_s = Q_o \left(2^{1/n} - 1 \right)^{1/2} \quad (23)$$

where

Q_s = the effective selectivity factor for each tuned circuit preceding the mixer

Q_o = the overall selectivity factor for the n tuned circuits

n = the number of tuned circuits as determined above.

The computation of the two parameters, Q_s and n, results in values which can be used in Equation 20 to estimate the RF selectivity characteristics of the receiver.

If neither of these alternatives is feasible due to a lack of information, the preprocessor will assign a worst-case (i.e. interference susceptible) recovery value of 20 dB/decade.

Spurious Response Rejection, K_s . The minimum spurious response rejection is usually specified in the nominal characteristics of the receiver. If not, a worst-case rejection level can be estimated in the following manner. Spurious responses arise in a superheterodyne receiver when a high level interfering signal combines in the mixer circuitry and a product at or near the intermediate frequency of the receiver is generated. In general, the most sensitive of these responses arises due to the mixing of the incoming signal and the first local oscillator frequency in the first mixer stage. The frequencies at which the interfering signal can excite these responses is given by:

$$f_{sp} = \frac{pf_{lo} \pm f_{IF}}{q} \quad (24)$$

where

f_{sp} = the frequency of the incoming interfering signal

f_{lo} = the injection frequency of the local oscillator

f_{IF} = the intermediate frequency of the receiver

p = the harmonic of the local oscillator involved in the mix

q = the harmonic of the incoming signal involved in the mix.

The fact that the sign preceding f_{IF} in Equation 24 can take on either sense (\pm) indicates that for a given p, q combination, a pair of responses can be predicted, one for the negative sense and one for the positive sense. In a superheterodyne receiver, the local oscillator frequency, f_{lo} , is related to the tuned frequency, f_R , as follows:

$$f_{lo} = f_R \pm f_{IF} \quad (25)$$

where the positive sense is appropriate when the oscillator frequency is above the tuned frequency and the negative sense is appropriate when the reverse situation occurs.

The combination of Equations 24 and 25 yields two sets of relationships:

$$\left. \begin{aligned} f_{sp} &= \frac{pf_R}{q} + \frac{(p+1)f_{IF}}{q} \\ \text{and} \end{aligned} \right\} \quad \text{when } f_{lo} > f_R \quad (26a)$$

$$\frac{pf_R}{q} + \frac{(p-1)f_{IF}}{q}$$

and

$$\left. \begin{aligned} f_{sp} &= \frac{pf_R}{q} - \frac{(p+1)f_{IF}}{q} \\ \text{and} \end{aligned} \right\} \quad \text{when } f_R > f_{lo} \quad (26b)$$

$$\frac{pf_R}{q} - \frac{(p-1)f_{IF}}{q}$$

These expressions enable a determination of the frequencies at which an incoming signal can result in the most sensitive spurious responses. Note that when $p=q=1$, the two responses which result are the receiver response to its tuned frequency and the response to its image frequency. The relative rejection at the tuned frequency is zero and, from the previous discussion, it is known that the relative rejection at the image frequency is merely the RF rejection at that frequency.

The relative spurious rejection for any other p,q combination is the product of the RF rejection at the incoming frequency, f_{sp} , and the relative mixer conversion loss for the p,q combination being studied. This can be expressed logarithmically as:

$$K_s = R_{RF} + \mu_c \quad (27)$$

where

K_s = the relative spurious rejection in dB

R_{RF} = the relative rejection of the RF circuits at f_{sp} in dB

μ_c = the mixer conversion loss of the actual p,q combination relative to the mixer conversion loss of the p=q=1 combination.

In a previous ECAC measurement effort the relative mixer conversion losses for transistor mixers were established. These values, which are representative of most mixers, are shown in TABLE 1.

TABLE 1
RELATIVE TRANSISTOR MIXER CONVERSION LOSS IN dB

$P \backslash Q$	1	2	3	4	5
1	0	-65	-76	-84	-83
2	-13	-58	-77	-83	-83
3	-13	-65	-77	-81	-82
4	-20	-62	-81	-81	-82
5	-22	-62	-78	-84	-82

The relative spurious rejection level obtained with Equation 27 for the most susceptible response, excluding the image response, is the value which should be used as an input to the program. If an input is not given, a nominal value for K_s of 60 dB is assigned by the preprocessor. The image rejection will also be assigned a

nominal value of 60 dB if no value is given, but the image response is treated as a special case. When this situation does arise, the receiver is synthesized around the image frequency in an identical manner to the synthesis about the tuned frequency, except that the relative threshold is reduced by the input image rejection.

Spurious Response Limit Frequencies, f_a , f_b . As stated previously, these frequencies are determined from the point where the K_s level intersects the RF selectivity curve. It should be noted, however, that f_a and f_b are discrete frequencies, rather than frequency separations. Since the RF selectivity is usually specified in terms of response versus frequency separation, the intersection point is more readily obtained in terms of a frequency separation. It is necessary, therefore, to add this separation to (or subtract it from) the receiver tuned frequency to obtain the appropriate values of f_a and f_b . If discrete frequencies for f_a and f_b are not entered into the program, recovery values will be assigned by the preprocessor. For the fixed-tuned case, upper and lower recovery values are determined by $f_r \pm 2IF$. For the range-tuned case, the lower value is the lower limit of the range less 2IF and the upper limit is the upper limit plus 2IF.

Transmitter Spectral Emission Synthesis

The envelope of the spectral characteristics of a transmitter is synthesized by three line segments which are linear on a logarithmic scale as shown in Figure 6.

Figure 6. Relative spectral emission envelope characteristic.

The parameters shown in Figure 6 are identified as:

f_T = the tuned frequency of the transmitter

B_{1T} = the 3 dB emission bandwidth

M_1 = $10m_1$ = the slope of the emission envelope at frequencies adjacent to the 3 dB bandwidth in dB/decade

B_{2T} = the emission bandwidth at which the envelope shows a different fall-off characteristic

M_2 = $10m_2$ = the slope of the emission envelope at frequencies greatly separated from the tuned frequency in dB/decade.

The emission characteristic may be expressed mathematically as:

$$t(f) = \begin{cases} 1 & , \text{ when } \left(f_T - \frac{B_{1T}}{2} \right) < f < \left(f_T + \frac{B_{1T}}{2} \right) \end{cases} \quad (28a)$$

$$t(f) = \begin{cases} \left(\frac{B_{1T}}{2|f-f_T|} \right)^{m_1} & , \text{ when } \left(f_T - \frac{B_{2T}}{2} \right) \leq f < \left(f_T - \frac{B_{1T}}{2} \right) \\ & \text{or} \\ & \left(f_T + \frac{B_{1T}}{2} \right) < f \leq \left(f_T + \frac{B_{2T}}{2} \right) \end{cases} \quad (28b)$$

$$t(f) = \begin{cases} \left(\frac{B_{1T}}{B_{2T}} \right)^{m_1} \left(\frac{B_{2T}}{2|f-f_T|} \right)^{m_2} & , \\ & \text{when } \left(f_T + \frac{B_{2T}}{2} \right) < f \text{ or } f < \left(f_T - \frac{B_{2T}}{2} \right) \end{cases} \quad (28c)$$

where

$t(f)$ = the relative level of the spectral emission envelope at frequency f ; and,

$T(f) = 10 \log t(f)$, the relative level in decibels.

Each of the transmitter parameters is discussed below.

Communications Transmitters. The inputs to enable synthesis of the spectral envelope of communications transmitters are:

B_{1T} = The emission envelope bandwidth of the first break-points is the nominal 3-dB bandwidth. This item has a missing input recovery mode made up of the FCC emission designator and pulse characteristics derived from the pulse compression indicator, pulse-width, and pulse rise and fall times, which are all required inputs. The FCC Emission Designator is made up of the bandwidth containing 99% of the mean radiated power and the modulation type used.

M_1 = The first slope fall off of the emission envelope; it is the slope adjacent to the 3-dB bandwidth. The value given must be ≥ 20 dB/decade. This item has a missing input recovery mode similar to B_{1T} .

B_{2T} = This is the emission envelope bandwidth of the second breakpoints; it is the bandwidth at which the envelope shows a second fall-off characteristic. This item has a missing input recovery mode similar to B_{1T} .

M_2 = This is the second slope fall off of the emission envelope; it is the slope at frequencies greatly separated from the tuned frequency. The value used must be ≥ 40 dB/decade. This item has a missing input recovery mode similar to B_{1T} .

The specification of the minimum 20 dB/decade for M_2 represents the expected minimum fall-off characteristic of the noise sidebands of these transmitters. If an external RF filter is used in conjunction with the transmitter, the fall-off characteristic of the filter should be added to M_2 .

Pulsed Transmitters. Inputs for pulsed transmitters can be categorized into two cases, pulsed transmitters without frequency modulation during the pulse interval (P0 emission), and pulsed transmitters with frequency modulation during the pulse interval, i.e. "chirped" pulsed (P9 emission). If the pulsed transmitter concerned has a P0 emission, the pulse width (τ) entered should be the width at the half-amplitude points. If the emission is P9, the τ entered should be the "stretched" pulse width or total duration of the pulse.

For P0 emissions, the spectral envelope can be found using the methods described by Mason and Zimmerman.¹⁴ The results are:

$$B_{1T} = 1.28 / (2\tau + t_r + t_f) \quad (29a)$$

$$M_1 \geq 20 \text{ dB/decade}$$

$$B_{2T} = 0.32 \left(\frac{1}{t_r} + \frac{1}{t_f} \right) \quad (29b)$$

$$M_2 \geq 40 \text{ dB/decade}$$

where

τ = the pulse width between one-half amplitude points

t_r = the time required for the pulse to rise from its 10 percent amplitude point to its 90 percent amplitude point, i.e., the pulse rise time

t_f = the time required for the pulse to drop from its 90 percent level to its 10 percent level, i.e., the pulse fall time.

The parameter τ is a required input and can be obtained from the nominal characteristics of the equipment. The parameters B_{1T} , B_{2T} , M_1 , M_2 , t_r , and t_f all have missing-input recovery modes.

The determination of the envelope parameters of a chirped pulse can be quite complex¹⁵ and the resulting emission spectral

¹⁴Mason, S. and Zimmerman, H., *Electronic Circuits, Signals, and Systems*, John Wiley and Sons, New York, 1960.

¹⁵Klauder, J. R. et al., *The Theory and Design of Chirp Radars*, The Bell System Technical Journal, July 1960.

envelope for such a pulse is not always amenable to a three-line-segment synthesis technique. However, for most practical cases the inputs can be determined as:

$$B_{1T} = f_d \left[1 - \left(\frac{2}{D} \right)^{\frac{1}{2}} \right] \quad (30a)$$

where

f_d = the total frequency deviation during the pulse

D = the dispersion ratio = τf_d where τ is the total duration of the pulse.

$$B_{2T} = f_d \left[1 + \left(\frac{2}{D} \right)^{\frac{1}{2}} \right] \quad (30b)$$

and

M_1 = the slope of the line in dB/decade which joins the points $\frac{B_{1T}}{2}$ and $\frac{B_{2T}}{2}$ when those points are plotted on a logarithmic scale

M_2 = second slope fall-off of the emission envelope. The value used must be ≥ 20 dB/decade.

The inputs B_{1T} , B_{2T} , M_1 , and M_2 have missing-input recovery modes.

Harmonic Emissions. In addition to synthesizing the envelope of the spectral characteristics of the fundamental emission of the transmitter, the model automatically synthesizes the spectral envelopes of the transmitted harmonics up to a maximum of the ninth harmonic. In doing so, the subroutine assumes that the spectral characteristics of each harmonic are identical to that of the fundamental except that the reference point is reduced by a level in dB equal to the attenuation specified as appropriate to the harmonic. Attenuation levels for all harmonics to be considered (up to the ninth) are required input parameters.

Rejection Calculation

After the receiver-response and spectral-emission characteristics have been synthesized, and each has been normalized to the level appropriate at the tuned frequency of the equipment, the expected

rejection offered by the receiver to the undesired emission can be calculated using only frequency relationships. The development of this concept is given below.

The spectral power density of an emission can be approximated by:

$$P_D = \frac{P_T}{B_{1T}} \quad (31)$$

where

P_D = the spectral density in watts/Hz

P_T = the average transmitter power in watts

B_{1T} = the 3-dB emission bandwidth in Hz.

Thus P_D represents an approximation to the average energy content in the emission. However, the receiver can only intercept that energy for a period of time equal to its "response time". The "response time", τ_R , of a receiver can be considered to be the inverse of its 3-dB bandwidth. Accordingly, the maximum power transfer between a transmitter and receiver can be calculated by:

$$P_r = \frac{P_D}{\tau_R} = \frac{P_T}{B_{1T}(\tau_R)} = P_T \frac{B_R}{B_{1T}} \quad (32)$$

where

P_r = the average received power in watts

B_r = the 3-dB bandwidth of the receiver.

The receiver rejection, l_f , is the ratio of the received power to the transmitted power:

$$l_f = \frac{P_r}{P_T} = \frac{B_R}{B_{1T}} \text{ or in logarithmic terms,} \quad (33)$$

$$L_f = 10 \log l_f = 10 \log \frac{B_R}{B_{1T}}$$

The maximum power transfer occurs when the transmitter and receiver are tuned to the same frequency. Therefore, a cochannel rejection factor $(l_f)_{co}$ can be defined as:

$$(l_f)_{co} = \frac{B_R}{B_{1T}} \text{ when } B_{1T} > B_R \quad (34)$$

and

$$1, \text{ when } B_{1T} \leq B_R$$

The reason for the two cases is evident when it is remembered that a receiver cannot receive more power than is transmitted.

It should be noted, however, that the cochannel rejection factor in Equation 34 has been defined in terms of average power. When the undesired emission is from a pulsed transmitter, the peak received power is usually of more interest than the average received power. Thus for a pulsed transmitter:

$$(P_T)_{avg} = (P_T)_{pk} \tau (\text{PRF}) \quad (35)$$

where

$(P_T)_{avg}$ = the average power in watts

$(P_T)_{pk}$ = the peak power in watts

τ = the pulse duration in seconds

PRF = the pulse repetition frequency in hertz.

If Equation 35 is combined with Equation 32 then:

$$(P_R)_{avg} = (P_T)_{pk} \tau (\text{PRF}) \frac{B_R}{B_{1T}} \quad (36)$$

However, in a pulsed transmitter, $\tau \approx \frac{1}{B_{1T}}$, and the average received power $(P_R)_{avg}$ is related to the peak received power, $(P_R)_{pk}$, by:

$$(P_R)_{avg} = (P_R)_{pk} \tau_R \text{ PRF} \quad (37)$$

where

τ_R = the response time of the receiver, which is approximately $\frac{1}{B_R}$.

Thus, combining Equation 37 with Equation 36 and defining a cochannel rejection factor for pulsed emissions, it is seen that:

$$(L_f)_{co} = \begin{cases} \left(\frac{B_R}{B_{1T}}\right)^2, & \text{when } B_{1T} > B_R \\ \text{and} \\ 1, & \text{when } B_{1T} \leq B_R \end{cases} \quad (38)$$

Equation 38 applies for considerations involving the peak power transfer due to a pulsed transmitter.

Since the cochannel rejection has been determined, the total rejection, L_f , at any frequency can be calculated by:

$$L_f = (L_f)_{co} + R(f_T), \quad (39)$$

Equation 39 applies for considerations involving the power transfer resulting from the fundamental emission of the transmitter as affected by receiver selectivity.

Also,

$$L_f = (L_f)_{co} + T(f_R) \quad (40)$$

applies for considerations involving the power transfer resulting from emission sidebands which occur within the receiver passband.

In Equations 39 and 40,

$R(f_T)$ = the relative response of the receiver at frequency f_T

$T(f_R)$ = the relative emission level of the transmitter at frequency f_R .

The FAS subroutine essentially calculates the value of L_f for each of the situations given above, compares the two values, and selects the lowest of the values obtained for use in Equation 7. However, since both the relative response characteristic of the receiver and the relative emission level of the transmitter can vary over a range of frequencies, the computation is made using integration techniques.

Further details on the subroutine, including a rigorous mathematical description of the calculation techniques, may be found in Reference 13.

Degradation Thresholds, $(S/I)_T$

The input signal-to-interference ratio at which operational degradation begins to occur in a receiver is defined as the degradation threshold, and is identified by the symbol $(S/I)_T$. It is the minimum signal-to-interference ratio corresponding to non-interference and may be obtained from equipment characteristics. If no ratio is given, a value of 20 dB is assigned by the pre-processor.

POWER DENSITY CALCULATION

The capability to predict power densities resulting from transmitters located on an airframe as well as from transmitters located on neighboring aircraft is one of the features AVPAK 3 provides.

The power density at a given point resulting from the operation of a single transmitter is calculated by:

$$P_D = P_T + G_T - L_p + 20 \log f - 38.5 \quad (41)$$

where

P_D = power density level in dBm per square meter

P_T = transmitter output power in dBm

G_T = effective transmitter antenna gain in the direction of the point in dBm

L_p = coupling path loss between transmitting antenna and desired point in dB

f = the transmitting frequency in MHz.

This equation may vary for different transmitter modulation types. AVPAK 3 considers two different modulation types, pulsed and non-pulsed (continuous wave). For pulsed transmitters, (modulation type P9 or P0), both peak and average power densities are calculated. For non-pulsed transmitters an average power density is used. The revised power density expressions are:

$$P_{DPK} = P_{TPK} + G_T - L_p + 20 \log f - 38.5 \quad (42)$$

$$P_{DAVG} = P_{TAVG} + G_T - L_p + 20 \log f - 38.5 \quad (43)$$

where

P_{DPK} = the peak power density level in dBm per square meter

P_{DAVG} = the average power density level in dBm per square meter

P_{TPK} = peak transmitter output power in dBm

P_{TAVG} = average transmitter output power in dBm.

The transmitter output power for non-pulsed transmitters may be obtained from nominal characteristics or measured data. This value is assumed to be an average power level. For pulsed transmitters the output power, obtained in the same way, is assumed to be a peak power level. It is necessary to calculate the average power output level for pulsed transmitters. This is done using the following formula:

$$P_{tavg} = (P_{tpk}) (\tau) (PRF) \quad (44)$$

where

P_{tavg} = average transmitter output power in kilowatts

P_{tpk} = peak transmitter output power in kilowatts

τ = transmitter pulse width in seconds

PRF = transmitter pulse repetition frequency in pps.

AVPAK 3 also calculates the cumulative power density due to the effects of all transmitters at each point of interest, following the individual transmitter calculations. The cumulative power

density uses the average power densities so that both pulsed and non-pulsed transmitters are represented. It is calculated as:

$$P_{DSC} = 10 \log \sum_{i=1}^n 10 \left[\frac{(P_{DAVG})_i}{10} \right] \quad (45)$$

where

P_{DSC} = cumulative average power density due to all transmitters, at point of interest, dBm per square meter

n = number of individual transmitters in the environment

$P_{DAVG} i$ = average power density at point of interest due only to transmitter i in dBm/square meter.

The field may also be expressed in terms of the magnitude of the electric field vector in volts per meter. The conversion in the program is done thusly:

$$F_s = 10 \left(\frac{P_D - 4.237}{20} \right) \quad (46)$$

where

F_s = field strength in volts/meter

P_D = power density in dBm/square meter.

Both the power density and electric field strength are computed and printed. Note that field strength is computed for the case where P_D is equal to P_{DSC} (cumulative power). The value so computed is fictitious and could never be verified by direct measurement. It represents an equivalent field strength which, if produced by a single transmitter, would have the same effect as the sum of several discrete sources.

A conversion chart from dBm/m^2 to volts/meter is shown in Figure 7.

Figure 7. Conversion chart from power density in dBm/meter² to field strength in volts/meter.

Coordinate Systems

Coordinates for transmitters, receivers and points may be entered in the model by the user in rectangular (x, y, z) coordinates, cylindrical (ρ, θ, z) coordinates, or the buttline-waterline-fuselage station (B, W, F) coordinate system.

Regardless of what coordinate system is used, the location coordinates are converted in the model to the rectangular system.

Referring to Figure 8, in the rectangular coordinate system the origin is forward at the center of the fuselage with the positive X direction being to the right (starboard) side of the aircraft. The origin is in a similar location for the cylindrical coordinate system. In buttline-waterline-fuselage station coordinates the origin is forward, not at the center but at the bottom of the fuselage. The positive buttline is to the left (port) side of the aircraft, the waterline direction toward the top of the aircraft, and the fuselage station direction toward the tail of the aircraft.

OUTPUT TYPES

AVPAK 3 provides three ways of solving the basic interference expression to determine if degradation is to occur between a transmitter and a receiver. The three analysis types are deterministic, functional and probabilistic.

Deterministic Analysis

A deterministic analysis is performed in AVPAK 3 by considering specific transmitter/receiver pairs and evaluating the following equation:

$$P_{1d} = P_T + G_R + G_T - L_p + (S/I)_T - R_S \quad (47)$$

where all terms have been previously defined.

If P_{1d} is greater than zero, then AVPAK 3 makes the prediction that interference to the receiver due to the transmitter will occur, and the particular equipment pair is entered in the list of potential interference cases. If P_{1d} is less than zero, the equipment pair is entered in the non-interference list.

The values of the terms in Equation 47 are based on nominal (generally median) equipment parameters. The user may either enter these equipment parameters or, by using a unique identification code,

Figure 8. Coordinate systems that may be used to input data into AVPAK 3.

automatically retrieve the desired parameters from the AVPAK file AVBASE.

Functional Analysis

A functional analysis can be performed instead of a purely deterministic one. This type of analysis is identical to the deterministic type except a different data base, AVFILE is called upon for equipment parameter values. In AVFILE, equipments are grouped according to functional classes. A functional class is a group of equipments whose characteristics are similar enough so that all individual equipments in the group can be represented by a single representative equipment type. The parameter values which represent a single representative equipment type are the median values of the equipments making up the functional class.

Probabilistic Analysis

The third type of analysis, probabilistic, allows the transmitter/receiver pairs to be analyzed using statistical descriptions or cumulative distributions for the terms in Equation 47 whose expected errors from median values can be confidently described. In other words, median values for P_T (transmitter power) L_F (off-frequency rejection) L_p (path loss) and R_S (receiver sensitivity) may not be realistic enough to yield an accurate prediction of interference using a deterministic approach. The distributions for these parameters are stored along with the functional class data in AVFILE.

The median values for the terms in Equation 47 are denoted as \bar{P}_T , \bar{L}_F , \bar{L}_p , and \bar{R}_S . The expected variation of these median values are ϵ_{PT} , ϵ_{TOFR} and ϵ_{ROFR} , ϵ_{LP} , and ϵ_{RS} . ϵ_{TOFR} and ϵ_{ROFR} represent the variation in transmitter and receiver off-frequency rejection, respectively.

The probabilistic analysis begins with a procedure similar to the deterministic analysis. The following inequality is checked:

$$\bar{P}_{IN} + DU_T > \bar{R}_S \quad (48a)$$

where

$$\bar{P}_{IN} = \bar{P}_T + \bar{G}_T + \bar{G}_R - \bar{L}_p - \bar{L}_F + (S/I)_T \quad (48b)$$

\bar{P}_{IN} = the effective median interference power for the functional classes being analyzed (dBm).

and

\bar{R}_S = median receiver sensitivity

$$\begin{aligned} DU_T &= \left[(DU_{PT})^2 + (DU_{LP})^2 + (DU_{TOFR})^2 + (DU_{ROFR})^2 \right. \\ &\quad \left. + (DU_{RS})^2 \right]^{\frac{1}{2}} \end{aligned} \quad (48c)$$

where

DU_T = upper decile (90% probability) correction factor in dB made up of upper decile values determined from cumulative error distributions of P_T , L_p , L_F and R_S . The L_F factor is comprised of the contribution of the transmitter to the receiver off-frequency rejection (TOFR) cumulative error and the contribution of the receiver to the receiver rejection cumulative error (ROFR).

These upper decile values are determined from the cumulative error distribution plots of the respective equipment parameters at the 90% probability level.

If Expression 48a is not satisfied by an equipment pair, the pair is simply entered in the list of predicted non-interference cases.

If Expression 48a is found to be true for a given pair, the probabilistic analysis continues by statistically convolving the cumulative distribution of expected error for each of the five factors. The convolved distribution for any particular equipment pair is determined as:

$$\epsilon_T = \epsilon_{PT} * \epsilon_{TOFR} * \epsilon_{ROFR} * \epsilon_{LP} * \epsilon_{RS} \quad (49)$$

where

ϵ_T = convolved cumulative error distribution function for the transmitter/receiver pair, expressed as dB error

ϵ_{PT} = convolved cumulative distribution of expected errors from the median value of transmitter power in dB

ϵ_{TOFR} = convolved cumulative distribution of expected errors from the median value of the transmitter contribution to the receiver off-frequency rejection, in dB

ϵ_{ROFR} = convolved cumulative distribution of expected errors from the median value of the receiver contribution to the receiver off-frequency rejection, in dB

ϵ_{LP} = convolved cumulative distribution of expected errors from the median value of path loss, in dB

ϵ_{RS} = convolved cumulative distribution of expected errors from the median value of receiver selectivity in dB.

The terms TOFR (transmitter contribution to receiver off-frequency rejection) and ROFR (receiver contribution to receiver off-frequency rejection) require additional development. Their values and associated deviations are obtained in the following manner. The distributions of TOFR and ROFR are assumed to be normal, and the median values for both terms are set equal to zero. The standard deviation of ROFR, σ_{ROFR} , is associated with the discrete spurious-response level, K_S , discussed previously under Receiver Rejection, page 31. When groupings of individual equipments were taken to form the functional classes, the median value and standard deviation of K_S was determined for each functional class. The value of σ_{ROFR} was set equal to the associated K_S value. A cumulative distribution of expected errors from the median value was then formed and convolved, yielding ϵ_{ROFR} . The standard deviation for TOFR, σ_{TOFR} , was determined through transmitter emission-envelope synthesis. For each transmitter functional class, the spectral emission envelope was modeled using median values. The standard deviations of the parameters used were known. The value of the appropriate σ was then added to the median value of the emission bandwidth (B_{2T} , defined on page 39) at which the envelope fall-off slope changes (i.e., $B_{2T} + \sigma_{B_{2T}}$). The vertical difference

between the envelope modeled using the median value of B_{2T} and the envelope modeled using $(B_{2T} + \sigma_{B_{2T}})$, at the beginning of the second slope, is one-half the value of σ_{TOFR} . It is one-half the value because the total variation about B_{2T} would also contain the area one sigma below B_{2T} (i.e., $B_{2T} - \sigma_{B_{2T}}$); because of symmetry it is only necessary to calculate one case. After values of the TOFR parameter have been obtained, a cumulative distribution is formed and convolved to arrive at ϵ_{TOFR} .

The convolved cumulative error distribution, ϵ_T , is then plotted in the computer output as the predicted probability of interference $P(I)$ versus dB error (ϵ). Since the input distributions are represented by worst-case interference conditions at the high end of the probability scale for the most positive cumulative error values, the convolved distribution then represents the worst-case value in a similar manner. The distribution type may be normal, or any other type, which may be determined by inspecting the plot. The probability of interference for a given pair may then be determined by:

$$\epsilon = \bar{P}_{IN} - \bar{R}_S \quad (50)$$

where

ϵ = abscissa coordinate value of the plot ϵ_T , from which the desired ordinate $P(I)$, (predicted probability of interference) can be determined.

As an example, see Figure 9. Using Equation 50, if \bar{P}_{IN} is determined to be -95 dBm and \bar{R}_S has a value of -100 dB, ϵ is equal to 5 dB. From inspection of the plot in Figure 9 one can determine the probability of interference for this transmitter/receiver pair; there is a 70% probability of interference. It can also be seen from the graph that, to decrease the probability of interference to, for example, 50%, the value of \bar{P}_{IN} must be decreased 5 dB to -100 dB.

Figure 9. Example of a plot of the convolved cumulative error distribution (ϵ_T), represented as the predicted probability of interference versus dB error.

DATA BASES

There are two data base files associated with AVPAK 3:

1. AVBASE, which carries equipment data in a format necessary to execute AVPAK in the deterministic mode, and
2. AVFILE, which carries functional characteristics necessary to execute AVPAK in the probabilistic mode.

In addition, all equipment data collected in the course of these projects has been placed in the ECAC Nominal Characteristics File (NCF).

A description of AVBASE and AVFILE is presented below. Both files have been augmented with new avionics equipment records which have been obtained since AVPAK 2 was completed. The contents of AVBASE and AVFILE appear in APPENDIX D.

AVFILE

The functional class probabilistic file, AVFILE, stores equipment characteristics for distinct functional classes of equipment, as defined earlier in this section. There are four functional transmitter classes; VHF communications, ATCRBS transponder, Weather Radar, and DME/TACAN. Altimeters have been removed as a functional class because of limited data available. They are retained in AVBASE. There are six functional receiver classes: VHF communications (of which there are three subclasses), VOR (VHF omni-range)/Localizer (of which there are also three subclasses), Glideslope, ATCRBS transponder, Weather Radar, and DME/TACAN. For both the VHF communications and the VOR/Localizer classes, subclass 1 contains those equipments with maximum spurious responses that are as much as 89 dB down from the on-tune response, subclass 2 from 90-109 dB down, and subclass 3 from 110-140 dB down. These two functional classes have subclasses because of their large standard deviations; by subclassifying them the standard deviations have been significantly reduced.

Each class, represented by a unique one-digit or two-digit functional code, contains basic parameter data and a description of the sampled data used to derive the parameters. Numeric codes 1 through 49 inclusive are reserved for transmitters and codes 50 through 99 inclusive are reserved for receivers. There are no functional antenna classes.

AVBASE

Execution of AVPAK in the deterministic mode requires parameters not readily available from technical manuals. Specific

analyses of technical manuals was accomplished at ECAC in order to develop such characteristics as IF- and RF-slope fall offs, etc. AVBASE may be considered as a storage vehicle for these characteristics. It should be noted that these values have been specifically developed to drive the AVPAK model and are not for general use. Those values found in the ECAC Nominal Characteristics File are for general usage.

Each AVBASE record is represented by a unique identifier code (see TABLE 2). Numeric codes 5100 through 8999 inclusive are reserved for transmitters, codes 100 through 3999 inclusive are reserved for receivers.

TABLE 2
AVBASE EQUIPMENT IDENTIFICATION NUMBERS

Manufacturer	Receivers	Transmitters
ARC-CESSNA	100	5100
BENDIX	500	5500
COLLINS	900	5900
DYNAIR - RADAIR	1300	6300
EDO - AIRE	1700	6700
GENAVE	2100	7100
KING	2500	7500
NARCO	2900	7900
RCA	3300	8300
WILCOX	3700	8700
Function	Receiver Sub-I.D.	Transmitter Sub-I.D.
VHF Omni-range/localizer	00 - 49	
VHF Communications	50 - 99	50 - 99
Glide Slope	100 - 139	100 - 139
ATCRBS Transponder	140 - 179	140 - 179
Weather Radar	180 - 219	180 - 219
Distance Measuring Equipment	220 - 239	220 - 239
Altimeter	260 - 299	260 - 299

Note: An equipment I.D. is created by adding the manufacturer's I.D. to the functional Sub-I.D. For example, a Bendix communications receiver number would fall between 550 and 599 inclusive.

SECTION 4

PROGRAM UTILIZATION

GENERAL

This section discusses the control and data cards that are necessary to run AVPAK 3. APPENDIX E contains several sample runs for the various calculations and configurations that are handled by the program.

BASIC AVPAK 3 DECK

The standard card deck used in executing the AVPAK 3 model on ECAC's UNIVAC 1110 Computer is as follows:

```
@RUN  
@QUAL HASELTINE  
@MAP, IS, AVPAK3  
IN ECAC*LIFIL/U.AVPAK3  
LIB ECAC*LIFIL/U.  
NOT ECAC*LIFIL/U.RANTEN  
LIB ECAC*MODLIB/U.  
LIB ECAC*LIB/U.  
@SEC, U  
@XQT AVPAK3  
(Data Sets)  
@EOF  
@PMD,E  
@FIN
```

DATA CARDS

The card formats for the data cards are listed in TABLES 3 through 12 and the coordinate system for determining main beam pointing angles in intersite analyses is illustrated in Figure 10. Details on these cards and also on program utilization can be found in Reference 12.

TABLE 3
GENERAL PARAMETER DATA CARD

Required	Column(s)	Format	Description	Units
Yes	1 - 3	INT ^a	Total number of transmitters (50 Maximum)	
Yes	4 - 6	INT ^a	Total number of receivers or power density points (50 maximum)	
Yes	7 - 10	INT ^a	Total number of antennas (100 maximum)	
Yes	12	INT ^a	Calculation desired: (0 or β = interference to noise ratio, 1 = power density)	
Yes	14	INT ^a	Analysis desired: (0 or β = cosite, 1 = intersite)	
Yes	16	INT ^a	INR answer type: (0 or β = not applicable, 1 = deterministic, 2 = functional, 3 = probabilistic)	
Yes	18	INT ^a	Coordinate system to be used for inputs: [1 = rectangular (X, Y, Z), 2 = buttline, waterline fuselage station (B, W, F), 3 = cylindrical (ρ , θ , Z)]	
Yes	19 - 24	FP ^b	Maximum fuselage radius	in.
No	25 - 30	FP ^b	Bulkhead distance aft from nose	in.
No	31 - 36	FP ^b	Bulkhead height above fuselage centroid	in.
No	40 - 78	FLD ^c	Title of run	

^aINT: integer value, must be right justified.

^bFP: floating point value, must contain a decimal point.

^cFLD: field data (character data).

TABLE 4
INTERSITE DATA CARD

Required	Column(s)	Format	Description	Units
No, unless site 1 to site 2 ground distance and site 1 to site 2 bearing not given	1 - 2 4 - 5 7 - 8 9	INT INT INT FLD	Latitude of site 1 Latitude of site 1 Lat. direction of site 1, N=North, S=South Longitude of site 1	Degrees Minutes Seconds
	11 - 13 15 - 16 18 - 19 20	INT INT INT FLD	Longitude of site 1 Longitude of site 1 Longitude of site 1 Long. direction of site 1, E=East, W=West	Degrees Minutes Seconds
No, unless site 1 is an airplane	21 - 24	FP	Heading of site 1 with respect to airframe origin	Degrees
Yes	25 - 33	FP	Altitude of site 1	Feet
No, unless site 1 to site 2 ground distance and site 1 to site 2 bearing not given	35 - 36 38 - 39 41 - 42 43	INT INT INT FLD	Latitude of site 2 Latitude of site 2 Lat. direction of site 2, N=North, S=South Longitude of site 2	Degrees Minutes Seconds
	45 - 47 49 - 50 52 - 53 54	INT INT INT FLD	Longitude of site 2 Longitude of site 2 Longitude of site 2 Longitude direction of site 2, E=East, W=West	Degrees Minutes Seconds
No, unless site 2 is an airplane	55 - 58	FP	Heading of site 2 with respect to airframe origin	Degrees
Yes	59 - 67	FP	Altitude of site 2	Feet
No, unless both site latitudes, longitudes are not given	68 - 73 74 - 76	FP	Ground distance from site 1 to site 2 True bearing from site 1 to site 2	Statute miles Degrees
Yes	77	INT	Site 1 platform indicator: (0=fixed, 1=moving)	
Yes	79	INT	Site 2 platform indicator: (0=fixed, 1=moving)	

TABLE 5
WING OBSTRUCTION DATA CARD

Required	Column(s)	Format	Description	Units
Yes	1 - 4	FLD	The characters "WIN"	inches
Yes	8 - 12	FP	Bl-, X-, or ρ -dimension of forward starboard wing fuselage intersection point	inches
Yes	14 - 18	FP	Bl-, Y-, or ρ -dimension of forward starboard wing fuselage intersection point	inches/degree
Yes	20 - 24	FP	FS- or Z-dimension of forward starboard wing fuselage intersection point	inches
Yes	26 - 30	FP	Bl-, X-, or ρ -dimension of aft starboard wing fuselage intersection point	inches
Yes	32 - 36	FP	Bl-, Y-, or ρ -dimension of aft starboard wing fuselage intersection point	inches/degree
Yes	38 - 42	FP	FS- or Z-dimension of aft starboard wing-fuselage intersection point	inches

TABLE 6
FUSELAGE OBSTRUCTION ONLY DATA CARD

Required	Column(s)	Format	Description	Units
Yes	1 - 4	FLD	The characters "NONE", (no wing or wing-pod obstruction)	--

TABLE 7
WING-POD (OR WEAPON) OBSTRUCTION DATA CARD

Required	Column(s)	Format	Description	Units
Yes	1 - 6	FLD	The characters "WEAPON"	
Yes	8	INT	Weapon number (1, 2, 3, ..., 10)	
Yes	10 - 15	FP	BL-, X-, ρ -dimension of weapon nose-centroid	inches
Yes	17 - 22	FP	WL-, Y-, or θ -dimension of weapon nose-centroid	inches/degree
Yes	24 - 29	FP	FS- or Z-dimension of weapon nose-centroid	inches
No	31 - 42	FLD	Weapon nomenclature	
Yes	43 - 47	FP	Weapon radius	inches

TABLE 8

ANTENNA OR POWER DENSITY POINT LOCATION DATA CARD

Required	Column(s)	Format	Description	Units
Yes	1 - 3	INT	Antenna number	
Yes	5	INT	Site number	
No	7 - 18	FLD	Nomenclature	
No, except for INR runs	20	INT	Type indication: (1=dipole, 2=loop, 3=blade, 4=horn, 5=circular aperture, 6=rectangular aperture)	
No, except for INR runs	22	INT	Location indicator: (1=nose, 2=tail, 3=wing, 4=fuselage, 5=weapon)	
No	24 - 26	FP	Gain	dBi
No	27	FLD	Polarization: V=vertical, H=horizontal	
No, except for INR runs with antenna types 4, 5, or 6	30 - 32	FP	X-dimension or diameter of aperture	inches
No, except for INR runs with antenna types 4 or 6	34 - 36	FP	Y-dimension of aperture	inches
No, except for INR runs with antenna types 4, 5, or 6	38 - 41	FP	Relative bearing or roll angle of main beam (MBθ)	degree
No, except for intersite INR runs with antenna types 4, 5, or 6	43	FLD	Right/left indicator for MBθ	
No, except for intersite INR runs with antenna types 4, 5, or 6	45 - 48	FP	Elevation or pitch angle of main beam (MBθ)	degree
No, except for intersite INR runs with antenna types 4, 5, or 6	50	FLD	Forward/aft indicator for main beam (MBθ)	
No, except for a cosite analysis	52 - 56	FP	BL-, X-, or φ-coordinate of antenna or power density point	inches
No, except for a cosite analysis	58 - 62	FP	WL-, Y-, or θ-coordinate of antenna or power density point	inches/degree
No, except for a cosite analysis	64 - 68	FP	FS- or Z-coordinate of antenna or power density point	inches
No	71 - 74	INT	Key number for AVERAGE data file	
No, unless located on a weapon	76	INT	Weapon coordinate system to use: 0=N/A, i.e. not on a weapon 1, 2, ..., 10 = number corresponding to a particular weapon	

TABLE 9
TRANSMITTER DATA CARDS

Required				Column(s)	Format	Description	Units
D1 ^a	D2 ^b	F ^c	P ^d				
Yes	Yes	Yes	Yes	1 - 3	INT	Number of antennas used by transmitter	
No	No	No	No	4 - 15	FLD	Nomenclature	
Yes	No	No	No	17 - 22	FP	Lower operating frequency	MHz
Yes	No	No	No	24 - 29	FP	Upper operating frequency	MHz
No	Yes	Yes	Yes	30 - 53	INT	Functional file (AVFILE) or Data Base file (AVBASE) code number	
No	No	No	No	35 - 58	FP	First emission bandwidth	MHz
No	No	No	No	40 - 43	FP	Second emission bandwidth	MHz
No	No	No	No	45 - 48	FP	First emission slope falloff	dB/decade
No	No	No	No	50 - 53	FP	Second emission slope falloff	dB/decade
Yes	No	No	No	55 - 57	FP	Power	dBm
Yes	No	No	No	58 - 62	FP	Emission designator - bandwidth	MHz
Yes	No	No	No	64 - 65	FLD	Emission designator - modulation type	
No	No	No	No	67	FLD	Pulse compression indicator "B"=not pulsed, "C"= pulsed	
Yes	No	No	No	68 - 71	FP	Pulse width	μs
Yes	No	No	No	72 - 75	FP	Average pulse rise and fall time	μs
No ^e	No	No	No	76 - 79	FP	Pulse repetition frequency	kHz
No	Yes	Yes	Yes	80	INT	Presence of second transmitter data card indicator, B=no second card present, all data on first card, 1=read second card for additional transmitter data	
				second card			
No	No	No	No	1 - 6	FP	Lower transmitter filter limit	MHz
No	No	No	No	8 - 13	FP	Upper transmitter filter limit	MHz
Yes	No	No	No	15	INT	Number of transmitter harmonics to consider in EMC analysis (1, 2, 3, ..., 9)	
No	No	No	No	17 - 20	FP	Suppression level of second harmonic	dB
No	No	No	No	22 - 25	FP	Suppression level of third harmonic	dB
No	No	No	No	27 - 30	FP	Suppression level of fourth harmonic	dB
No	No	No	No	32 - 35	FP	Suppression level of fifth harmonic	dB
No	No	No	No	37 - 40	FP	Suppression level of sixth harmonic	dB
No	No	No	No	42 - 45	FP	Suppression level of seventh harmonic	dB
No	No	No	No	47 - 50	FP	Suppression level of eighth harmonic	dB
No	No	No	No	52 - 55	FP	Suppression level of ninth harmonic	dB

^aD1: deterministic type run, not using AVBASE.

^bD2: deterministic type run, using AVBASE.

^cF: functional type run.

^dP: probabilistic type run.

TABLE 10
COMMENTS ON TRANSMITTER DATA CARDS

Field or Parameter	Acceptable Range or Value	Recovery Value
Nomenclature	N/A	A 12 character random dummy name
Pulse compression indicator	Must be blank or "C"	Set to "C" if modulation type is P9
Pulse rise/fall time	Must be less than pulselength	1/10 of pulselength, PW
First emission bandwidth	Must be less than second emission bandwidth; product of first emission bandwidth and pulselength must be at 1.0 for a chirped equipment	For modulation type A- or F- set to emission designator bandwidth EDBW. For modulation type P9, set to: $(EDBW) \left(1 - \sqrt{\frac{2}{(EDBW) (PW)}} \right)$ For modulation type PO, set to: $\frac{1.28}{(2) (PW)}$
Second emission bandwidth	Must be greater than first emission bandwidth	For modulation type A- or F- set to EDBW times 10. For modulation type P9, set to: $(EDBW) \left(1 + \sqrt{\frac{2}{(EDBW) (PW)}} \right)$ For modulation type PO, set to: $\frac{.64}{(\text{pulse rise/fall time})}$
First emission slope falloff	>20 dB/decade	For modulation type A- or F- set to 80 dB/decade. For modulation type PO set to 20 dB/decade. For modulation type P9 an approximation is made using PW, pulse rise/fall time, and first and second emission bandwidth.
Second emission slope falloff	>20 dB/decade	For modulation types A- or F- set to 20 dB/decade. For modulation types PO or P9 set to 40 dB/decade.
Number of harmonics to be examined	>1 and <9	Set to 1 if blank
Harmonic suppression levels	N/A	Set to 60 dB if blank
Operating frequency	Upper frequency must be greater than or equal to lower frequency, average operating frequency must be at least 30 MHz	N/A
Filter frequency limit	Upper frequency must be greater than or equal to lower frequency	N/A
Pulselength	Must be greater than pulse rise/fall time; product of first emission bandwidth and pulselength must be at least 1 for a chirped equipment.	N/A

TABLE 11
RECEIVER OR POWER DENSITY POINT DATA CARD

Required						Description	Units
D1 ^a	D2 ^b	F ^c	P ^d	Column(s)	Format		
Yes	Yes	Yes	Yes	1 - 3	INT	Antenna or power density point number	
No	No	No	No	5 - 16	FLD	Nomenclature	
No	No	No	No	17	INT	Sub-class indicator	
No ^e	No	No	No	18 - 23	FP	Lower operating frequency	MHz
No ^e	No	No	No	24 - 29	FP	Upper operating frequency	MHz
No	Yes	Yes	Yes	30 - 33	INT	Functional file (AVFILE) or Data Base file	
No ^e	No	No	No	34 - 37	FP	IF bandwidth	MHz
No ^e	No	No	No	38 - 42	FP	Intermediate frequency	MHz
No ^e	No	No	No	44 - 47	FP	IF selectivity slope falloff	dB/decade
No	No	No	No	49 - 52	FP	RF selectivity slope falloff	dB/decade
No	No	No	No	53 - 56	FP	Image rejection	dB
No	No	No	No	57 - 60	FP	Spurious rejection	dB
No	No	No	No	61 - 65	FP	Lower spurious frequency limit	MHz
No	No	No	No	66 - 71	FP	Upper spurious frequency limit	MHz
No	No	No	No	72	FLD	Local oscillator position: "A" = above, "B" = below, "C" or blank = unknown	
No ^e	No	No	No	73 - 77	FP	Sensitivity	dBm
No	No	No	No	78 - 80	FP	S/I threshold level	dB

^aD1: deterministic type run, not using AVBASE.

^bD2: deterministic type run, using AVBASE.

^cF: functional type run.

^dP: probabilistic type run.

^eNo: No, except for INR run.

TABLE 12
COMMENTS ON RECEIVER OR POWER DENSITY POINT DATA CARD

Field or Parameter	Acceptable Range or Value	Recovery Value
RF selectivity slope falloff	≤ 200 dB/decade; > 20 dB/decade	Set to 20 dB/decade; Set to 200 dB/decade if input as a larger number
Nomenclature		A 12 character random dummy name
IF selectivity slope falloff	> 20 dB/decade	N/A
Image rejection	N/A	Set to 60 dB, if blank
Spurious rejection	N/A	Set to 60 dB, if blank
Lower spurious rejection frequency limit	Must be less than both lower operating frequency and upper spurious frequency limit	Set to [lower operating frequency (2) (IF)], if blank
Upper spurious rejection frequency limit	Must be greater than both upper operating frequency and lower spurious frequency limit	Set to [upper operating frequency (2) (IF)], if blank
Local oscillator position		Set to "C", if blank
Sensitivity	N/A	N/A
Signal-to-interference threshold level	N/A	Set to 20 dB, if blank
Lower operating frequency		N/A
Upper operating frequency	Must be less than or equal to upper operating frequency Must be greater than or equal to lower operating frequency	N/A

Figure 10. Aircraft coordinate system used for determining the main beam pointing angles ($MB\theta$ & $MB\phi$) of directional antenna in intersite analyses.

SECTION 5

SUMMARY

GENERAL

AVPAK is intended as a tool for identifying antenna-coupled interference problems on board aircraft. It will compute interference levels in avionics receivers from transmitters located on the same aircraft or at points remote from the aircraft. Further, it will compute power densities at any designated point from a transmitter or a number of transmitters.

AVPAK does not consider near-field antenna anomalies, nor does the model consider high-power nonlinear effects.

MODEL CAPABILITIES

The composite capabilities of the AVPAK 3 model are listed and discussed below, including responses to the most recent objectives set forth in Inter-Agency Agreement FA 70 WAI-175, Task Assignment No. 26.

1. *Calculation of the interference effects between both cosite and intersite transmitters and receivers operating on an aircraft.* This is done by determining the expected level of interference relative to the degradation threshold of each receiver. If this expected level equals or exceeds the threshold value, degradation is expected to occur. This calculation will take into account the following factors: antenna paths including those that encounter bulkheads, airfoils, and wing weapon pods, and also between antennas which are raised from the fuselage skin. As an additional user convenience, a preprocessor will insert certain nominal predetermined values if certain transmitter or receiver characteristic values are unknown.

2. *Two options in the type of interference calculation desired.* One is strictly a deterministic-type calculation between a given transmitter and receiver. The other is a probabilistic-type calculation using one of the two AVPAK data bases. This calculation yields a graph from which the user may determine the probability of interference between a transmitter-receiver pair and the alterations to the transmitted power which must be made in order to reduce the probability of interference.

3. *The development of two data bases associated with the AVPAK model, viz. AVBASE and AVFILE.*

a. AVBASE contains nominal characteristics of selected types of avionics transmitters and receivers. These

characteristics may be used in running the AVPAK model for a deterministic type run. This file has been updated to include newly manufactured equipment and currently contains 208 transmitters and 392 receivers. The equipment information in AVBASE is also contained in the ECAC Nominal Characteristics File (NCF). A listing of the ECAC NCF can be provided, if desired.

b. AVFILE is a functional file used for probabilistic processing. In AVFILE, avionic transmitters and receivers are grouped according to function. The group is represented by a single symbolic piece of equipment. Its characteristics are then determined from the median values of the equipment comprising the group. In order to have the functional file as statistically representative as possible of the equipment in each particular group, work has been done to redefine certain parameters which are used to represent the groups. This has resulted in two receiver groups being subclassified according to their spurious-response floor levels.

4. *A TSO/ARINC characteristic indicator for equipment located in AVBASE.* In investigating methods to make the AVFILE parameters more concise, avionic regulatory standards were investigated with the hope that grouping equipment by certain standards would yield more representative groupings. This did not prove advantageous. As a special option, the user may inspect a listing of AVBASE to determine what equipment has associated with it a TSO (Technical Standard Order) or an ARINC (Aeronautical Radio, Inc) characteristic.

5. *Calculation of power density on or near the airframe from antennas located on the airframe as well as from transmitters located on neighboring aircraft.* Output values are calculated in both dBm/m² and volts/m² and, if appropriate, the model will also calculate a cumulative value of the effects of more than one transmitter.

6. *The choice of three coordinate systems for user input; (X,Y,Z), (ρ,θ,Ζ), (B,W,F).* The model converts the latter two to cartesian coordinates.

7. *Validation of the coupling model.* A total of 996 coupling measurements were used to validate the model, 616 in the UHF portion of the spectrum and 380 in the SHF portion. For the UHF portion, a comparison of measured and AVPAK-calculated data yielded a mean error of -0.63 dB with a standard deviation of 5.25 dB. For the SHF portion, the mean error was +0.93 dB and the standard deviation was 5.7 dB. For the combined UHF and SHF data, the mean error was -0.019 dB with a standard deviation of 5.52 dB.

APPENDIX A

GEOMETRICAL THEORY OF DIFFRACTION

J. B. Keller in the early 1950's developed the "geometrical theory of diffraction" ("GTD") to account for the optical phenomenon of diffraction.¹⁶ In addition to the usual rays of geometrical optics, GTD introduces new rays which can travel along curved lines and which can account for reflection from edges, corners, etc. These new rays obey several laws of diffraction which are analogous to the laws of reflection and refraction. All the fundamental principles of ordinary geometrical optics can be extended to geometrical diffraction. The only difficulty occurs in obtaining the initial value of the field at the point of diffraction. For ordinary rays, the field of a ray emerging from a source is specified at the source but for a reflected or transmitted ray, the initial value is obtained by multiplying the field of the incident ray by a reflection or transmission coefficient. For diffracted waves the initial values of the field are obtained by multiplying the field of the incident rays by a diffraction coefficient. There are different diffraction coefficients for edges, vertices, curved surfaces, etc. These diffraction coefficients are determined by the direction of incidence and diffraction, the wavelength, and the geometrical and physical properties of the medium at the point of diffraction (see Reference 4).

In an ECAC analysis the wing was modeled as a wedge. Figure A-1 shows the dimensions, angles and coordinate systems for two antennas on opposite sides of a wedge of angle α . In Sach's development of the diffraction by a single wedge (see Reference 4), the shadowing attenuation is determined by the following equation.

$$A_s = \frac{\sin^2 \pi/n}{4\pi^2 n^2} \frac{\lambda \left[(\ell_1 + \ell_2)^2 + d^2 \right]^{\frac{1}{2}} D_\theta^2}{\ell_1 \ell_2} \quad (A-1)$$

where

A_s = shadowing attenuation of a single wedge in dB

n = variable determined from the wedge angle, α , such

$$\text{that } n = \frac{2\pi - \alpha}{\pi}$$

¹⁶Keller, J. B., *The Geometrical Theory of Diffraction*, Symposium on Microwave Optics, McGill University, Montreal, Canada, June, 1953.

Figure A-1. Coordinate system used in analysis of a wedge using the "GTD".

λ = transmitted wavelength

l_1 = minimum distance between antenna #1 and apex of wedge

l_2 = minimum distance between antenna #2 and apex of wedge

d = distance between antenna #1 and antenna #2 along z axis, i.e., $z_2 - z_1$

D_θ = diffraction coefficient

and

$$D_\theta = \left[\left\{ \cos \frac{\pi}{n} - \cos \left(\frac{\theta d - \theta}{n} \right) \right\}^{-1} + \left\{ \cos \frac{\pi}{n} - \cos \left(\frac{\theta d + \theta + \pi}{n} \right) \right\}^{-1} \right] \quad (A-1a)$$

θ = angle between y axis and incident ray

θd = angle between y axis and diffracted ray as shown in Figure A-1.

The negative sign is associated with soft screen boundary conditions, i.e., field component tangent with respect to the diffracting surface and the positive sign is associated with hard screen boundary conditions i.e., the field is normal with respect to diffracting surfaces.

For reasons explained in Section 2, DEVELOPMENT OF AN AIRFOIL OBSTRUCTION LOSS, this technique did not meet ECAC's objective and an alternative method was sought.

APPENDIX B

DESCRIPTION OF PARAMETERS USED TO CREATE
THE FUNCTIONAL/PROBABILISTIC FILEAVPAK COUPLING LOSS ERROR STATISTICS

Six sets of measurements have been examined to determine the error to be expected in the predicted coupling loss determined with the automated AVPAK coupling-loss routine. Five of the data sets include 616 measurements made at operating frequencies in the UHF portion of the spectrum.^{17,18,19,20,21}

Two of these UHF sets constitute a new validation of the model; the remaining UHF and SHF sets were previously used in the validation of the AVPAK 2 model.

The sixth set of data²² includes 380 measurements made at SHF operating frequencies between 2.0 and 9.6 GHz. These measurements were part of a classified program and are not contained in a published report.

UHF Measurements Results

An examination of this data indicates that the mean error (\bar{x}) is $-.63$ dB and the standard deviation of the error is 5.25 dB. As used herein, a negative error indicates that the measured coupling loss was lower than the AVPAK predicted coupling loss and a positive error indicates that the measured loss was higher than the predicted value.

¹⁷Electronic Communications, Inc., *Electromagnetic Compatibility Report for KC-135B Aircraft*, January 1965.

¹⁸The Boeing Corporation, *Category II Flight Test Report for KC-135B (PACCS) Electronic System*, Test No. T6-3181, 1965.

¹⁹Martin, H., *Measured Adjacent Signal Interference of Collocated AN/ARC-51 Transceivers (U)*, ESD-TR-67-003, January 1968, CONFIDENTIAL.

²⁰The Boeing Corporation, *EC-135C AFSAT EMC Baseline Measurements and Analysis*, Test No. T3-1702, July 1974.

²¹E-System Inc., Garland Division, Model No. E-4A, Report No. G8494.12.26, 1973.

²²Zimballatti, A., Grumman Aircraft Corporation, Personal Contact, June 1972.

The error distribution appears to be normal with a median error of 0 dB and a standard error of 6.0 dB, based on a χ^2 (chi-square) test with 6 degrees of freedom at a .05 significance level. The range of errors observed is shown in Figure B-1.

SHF Measurement Results

The SHF data fell into two categories. The first category included 292 measurements with antennas situated such that the measurements provided comparisons of observations versus predictions from the AVPAK knife-edge coupling subroutine. The remaining 88 measurements were made between antenna pairs with both antennas mounted aft of the nose bulkhead. The second category of data enabled an examination of the raised antenna versus surface-mounted antenna subroutine and the routine which calculates coupling loss along a curved surface.

The range of errors observed for the first set of SHF data is shown in Figure B-2.

The results of the first category of SHF measurements indicate that the mean error (\bar{x}) is +1.05 dB; the standard deviation of the error (σ) is 6.0 dB. The error distribution was tested using a χ^2 (chi-square) test at a .05 significance level using 6 degrees of freedom. The results indicate that these errors are normally distributed with a median error of 0 dB and a standard deviation of 6.0 dB.

The mean error (\bar{x}) of the second set of SHF measurements was found to be +.07 dB and the standard deviation, 4.9 dB.

When both SHF categories were considered as one group, it was found that the mean error, (\bar{x}) was +0.93 dB and the standard error (σ), 5.7 dB. The distribution of the combined SHF errors appears to be normal with a median error of 0 dB and a standard error of 6.0 dB, based on a χ^2 (chi-square) test at .05 significance level and 6 degrees of freedom. The range of errors for the combined 380 SHF measurements may be observed in Figure B-3.

SUMMARY OF COMBINED RESULTS

A total of 996 measurement points were evaluated to determine the error to be expected in the AVPAK coupling loss predictions. The range of observed errors of all the measurements is presented in Figure B-4. The distribution of the expected errors appears to

Figure B-1. Observed errors in UHF coupling loss prediction.

Figure B-2. Observed errors of predicted-versus-measured SHF-band coupling loss over knife-edge paths.

Figure B-3. Observed errors of predicted-versus-measured coupling loss in the SHF band - all paths.

Figure B-4. Observed errors in AVPAK coupling loss prediction, combined results.

be normal with a mean error, (\bar{x}), of -.019 dB and a standard deviation of 5.52 dB. The expected errors in the automated AVPAK coupling loss routine have been represented as a median error of 0 dB and a standard error of 6.0 dB based on a χ^2 (chi-square) test with 6 degrees of freedom at a .05 significance level.

APPENDIX C

GENERAL FLOW CHART FOR AVPAK 3
(Page 1 of 3)

(Page 2 of 3)

(Page 3 of 3)

APPENDIX D

LISTING OF THE CONTENTS OF AVBASE AND AVFILE

The information in the AVBASE and AVFILE files is intended to be used as input data to the AVPAK 3 model. It may not be directly comparable to published specifications. Many parameters were synthesized using equipment schematics, for reasons discussed on pages 10 and 11. Abbreviations used in the AVBASE file, listed first, are defined in TABLE D-1.

In the computer printout that follows TABLE D-1, entries of ".0," ".00" and ".000" should be read as blanks.

TABLE D-1
AVBASE ABBREVIATIONS
(Page 1 of 4)

BW1:	The emission envelope bandwidth of the first break-points. This is the nominal 3 dB bandwidth in MHz (pp. 35-36).
BW2:	The emission envelope bandwidth of the second breakpoints. This is the bandwidth at which the envelope shows a second fall-off characteristic and is in MHz.
EBW:	Emission designator bandwidth. It is the bandwidth containing 99% of the mean radiated power. Its units are MHz.
FLD:	Field format.
FP:	Floating point format.
HI FLT:	Upper filter frequency in MHz. The lower and upper filter limits are used to truncate the spectral energy of the transmitted emissions outside the two frequencies given. The primary application for these data is to describe waveguide cut-off phenomena.
HI FRQ:	Upper operating frequency of the equipment. Its units are MHz.
HI SPR FRQ:	Upper spurious response limit. Similar to LO SPR FRQ but related to upper side of the RF selectivity curve. Its units are in MHz.
IF:	Intermediate frequency. It is the first intermediate frequency if there is more than one. Its units are MHz.
IF BW:	Intermediate frequency bandwidth. This is the final IF 3 dB bandwidth. Its units are MHz.
IF SF:	Intermediate frequency (final IF) selectivity slope. Its units are dB/decade. (See IF Skirt Slope, p. 29.)
IM REJ:	Image rejection. Its units are dB (p. 33).
INT:	Integer format.

TABLE D-1

(Page 2 of 4)

KEY NO:	The key number of a unique equipment I.D. assigned in alpha-numeric order according to manufacturer and equipment function (pp. 54-55).
LO FLT:	Lower filter frequency in MHz (see HI FLT, on previous page).
LO FRQ:	Lower operating frequency of the equipment. Its units are MHz.
LO POS:	Local oscillator position. A = above, B = below, relative to the carrier frequency. If an input is not given it is assigned a "C" and treated as being both above and below the carrier.
LO SPR FRQ:	Lower spurious response limit. It is a discrete frequency defined by the intersection of the spurious floor with the lower frequency side of the RF selectivity curve. Its units are in MHz (P. 35).
MOD TYP:	FCC emission modulation type. Emissions are classified and symbolized according to the following characteristics:

<u>Types of modulation of main carrier:</u>	<u>Symbol</u>
---	---------------

- | | |
|-------------------------|---|
| a) Amplitude | A |
| b) Frequency (or Phase) | F |
| c) Pulse | P |

<u>Types of transmissions:</u>	
--------------------------------	--

- | | |
|--|---|
| a) Absence of any modulation intended to carry information. | 0 |
| b) Telegraphy without the use of a modulating audio frequency. | 1 |
| c) Telegraphy by the on-off keying of a modulating audio frequency or audio frequencies, or by the on-off keying of the modulated emission. (Special case: an unkeyed modulated emission.) | 2 |
| d) Telephony (including sound broadcasting). | 3 |
| e) Facsimile (with modulation of main carrier either directly or by a frequency modulated sub-carrier). | 4 |

TABLE D-1

(Page 3 of 4)

	<u>Symbol</u>
f) Television (vision only)	5
g) Four-frequency diplex telephony	6
h) Multichannel voice-frequency telephony	7
i) Cases not covered by the above	9

Supplementary characteristics:

a) Double sideband	(none)
b) Single sideband:	
reduced carrier	A
full carrier	H
suppressed carrier	J
c) Two independent sidebands	B
d) Vestigial sideband	C
e) Pulse:	
amplitude modulated	D
width (or duration) modulated	E
phase (or position) modulated	F
code modulated	G

NOMENCLATURE: 1) First part of column: Manufactures unique name of equipment, further identified by "KEY NO." to manufacturer (see p. 55).
 2) Second part of column: Type of equipment (i.e., C = VHF Comm.; VL = VOR, Localizers; G = Glideslope; ATC = Air Traffic Control Transponders; WR = Weather Radar; DME = Distance Measuring Equipment; ALT = Altimeter).

PCI: Pulse compression indicator. This requires a "C" for chirp modulation only, otherwise this field is blank.

PRF: Pulse repetition frequency. Its units are Hz.

PW: Pulse width. It is the value between half amplitude points. For chirped modulation it is the stretched width. Its units are us. (See p. 38 for explanation of stretched width.)

TABLE D-1

(Page 4 of 4)

PWR: The transmitter power. It is the average power output for communication transmitters and the peak power output for pulsed transmitters. Its units are dBm.

R/F: The average pulse rise and fall time (δ). It is determined from:

$$\delta = \frac{2}{1/\delta_r + 1/\delta_f} \text{ where } \delta_r = \text{the time for the}$$

pulse to rise from its 10% amplitude to its 90% value and δ_f = the time to fall from 90% to 10%. Its units are μ s.

RF SF: RF selectivity slope. Its units are dB/decade (p. 29).

SENS: Receiver sensitivity. It must be preceded by a negative sign. Its units are dBm.

SF1: The first slope fall-off of the emission envelope. It is the slope adjacent to the 3 dB bandwidth. Its units are dB/decade (see M_1 , p. 37).

SF2: The second slope fall-off of the emission envelope. It is the slope at frequencies greatly separated from the tuned frequency. Its units are dB/decade (see M_2 , p. 37).

S/I: Degradation threshold. It is the minimum signal-to-interference ratio required for non-interference. Its units are dB (p. 43).

SP REJ: Spurious response rejection. Its units are dB (p. 34).

TSO IND: Technical Standard Order indicator. T = equipment is TSO'd., A = equipment is TSO'd and also falls under an ARINC characteristic (see pp. 10 and 11).

AD-A039 224 IIT RESEARCH INST CHICAGO ILL F/G 9/3
A MODEL TO PREDICT MUTUAL INTERFERENCE EFFECTS ON AN AIRFRAME. (U)
OCT 76 P A DWYER F19628-76-C-0017

UNCLASSIFIED

ECAC-PR-76-067

NL

2 OF 2
AD
A039224

END

DATE
FILMED
5-77

CONTENTS OF AVBASE

(Page 1 of 14)

(Page 2 of 14)

(Page 3 of 14)

(Page 4 of 14)

(Page 5 of 14)

(Page 6 of 14)

Sens 5/1		Sens 6/1	
LO	POS	LO	POS
16	-161	16	-161
17	-167	17	-167
18	-173	18	-173
19	-179	19	-179
20	-185	20	-185
21	-191	21	-191
22	-197	22	-197
23	-203	23	-203
24	-209	24	-209
25	-215	25	-215
26	-221	26	-221
27	-227	27	-227
28	-233	28	-233
29	-239	29	-239
30	-245	30	-245
31	-251	31	-251
32	-257	32	-257
33	-263	33	-263
34	-269	34	-269
35	-275	35	-275
36	-281	36	-281
37	-287	37	-287
38	-293	38	-293
39	-299	39	-299
40	-305	40	-305
41	-311	41	-311
42	-317	42	-317
43	-323	43	-323
44	-329	44	-329
45	-335	45	-335
46	-341	46	-341
47	-347	47	-347
48	-353	48	-353
49	-359	49	-359
50	-365	50	-365
51	-371	51	-371
52	-377	52	-377
53	-383	53	-383
54	-389	54	-389
55	-395	55	-395
56	-401	56	-401
57	-407	57	-407
58	-413	58	-413
59	-419	59	-419
60	-425	60	-425
61	-431	61	-431
62	-437	62	-437
63	-443	63	-443
64	-449	64	-449
65	-455	65	-455
66	-461	66	-461
67	-467	67	-467
68	-473	68	-473
69	-479	69	-479
70	-485	70	-485
71	-491	71	-491
72	-497	72	-497
73	-503	73	-503
74	-509	74	-509
75	-515	75	-515
76	-521	76	-521
77	-527	77	-527
78	-533	78	-533
79	-539	79	-539
80	-545	80	-545
81	-551	81	-551
82	-557	82	-557
83	-563	83	-563
84	-569	84	-569
85	-575	85	-575
86	-581	86	-581
87	-587	87	-587
88	-593	88	-593
89	-599	89	-599
90	-605	90	-605
91	-611	91	-611
92	-617	92	-617
93	-623	93	-623
94	-629	94	-629
95	-635	95	-635
96	-641	96	-641
97	-647	97	-647
98	-653	98	-653
99	-659	99	-659
100	-665	100	-665
101	-671	101	-671
102	-677	102	-677
103	-683	103	-683
104	-689	104	-689
105	-695	105	-695
106	-701	106	-701
107	-707	107	-707
108	-713	108	-713
109	-719	109	-719
110	-725	110	-725
111	-731	111	-731
112	-737	112	-737
113	-743	113	-743
114	-749	114	-749
115	-755	115	-755
116	-761	116	-761
117	-767	117	-767
118	-773	118	-773
119	-779	119	-779
120	-785	120	-785
121	-791	121	-791
122	-797	122	-797
123	-803	123	-803
124	-809	124	-809
125	-815	125	-815
126	-821	126	-821
127	-827	127	-827
128	-833	128	-833
129	-839	129	-839
130	-845	130	-845
131	-851	131	-851
132	-857	132	-857
133	-863	133	-863
134	-869	134	-869
135	-875	135	-875
136	-881	136	-881
137	-887	137	-887
138	-893	138	-893
139	-899	139	-899
140	-905	140	-905
141	-911	141	-911
142	-917	142	-917
143	-923	143	-923
144	-929	144	-929
145	-935	145	-935
146	-941	146	-941
147	-947	147	-947
148	-953	148	-953
149	-959	149	-959
150	-965	150	-965
151	-971	151	-971
152	-977	152	-977
153	-983	153	-983
154	-989	154	-989
155	-995	155	-995
156	-1001	156	-1001
157	-1007	157	-1007
158	-1013	158	-1013
159	-1019	159	-1019
160	-1025	160	-1025
161	-1031	161	-1031
162	-1037	162	-1037
163	-1043	163	-1043
164	-1049	164	-1049
165	-1055	165	-1055
166	-1061	166	-1061
167	-1067	167	-1067
168	-1073	168	-1073
169	-1079	169	-1079
170	-1085	170	-1085
171	-1091	171	-1091
172	-1097	172	-1097
173	-1103	173	-1103
174	-1109	174	-1109
175	-1115	175	-1115
176	-1121	176	-1121
177	-1127	177	-1127
178	-1133	178	-1133
179	-1139	179	-1139
180	-1145	180	-1145
181	-1151	181	-1151
182	-1157	182	-1157
183	-1163	183	-1163
184	-1169	184	-1169
185	-1175	185	-1175
186	-1181	186	-1181
187	-1187	187	-1187
188	-1193	188	-1193
189	-1199	189	-1199
190	-1205	190	-1205
191	-1211	191	-1211
192	-1217	192	-1217
193	-1223	193	-1223
194	-1229	194	-1229
195	-1235	195	-1235
196	-1241	196	-1241
197	-1247	197	-1247
198	-1253	198	-1253
199	-1259	199	-1259
200	-1265	200	-1265
201	-1271	201	-1271
202	-1277	202	-1277
203	-1283	203	-1283
204	-1289	204	-1289
205	-1295	205	-1295
206	-1301	206	-1301
207	-1307	207	-1307
208	-1313	208	-1313
209	-1319	209	-1319
210	-1325	210	-1325
211	-1331	211	-1331
212	-1337	212	-1337
213	-1343	213	-1343
214	-1349	214	-1349
215	-1355	215	-1355
216	-1361	216	-1361
217	-1367	217	-1367
218	-1373	218	-1373
219	-1379	219	-1379
220	-1385	220	-1385
221	-1391	221	-1391
222	-1397	222	-1397
223	-1403	223	-1403
224	-1409	224	-1409
225	-1415	225	-1415
226	-1421	226	-1421
227	-1427	227	-1427
228	-1433	228	-1433
229	-1439	229	-1439
230	-1445	230	-1445
231	-1451	231	-1451
232	-1457	232	-1457
233	-1463	233	-1463
234	-1469	234	-1469
235	-1475	235	-1475
236	-1481	236	-1481
237	-1487	237	-1487
238	-1493	238	-1493
239	-1499	239	-1499
240	-1505	240	-1505
241	-1511	241	-1511
242	-1517	242	-1517
243	-1523	243	-1523
244	-1529	244	-1529
245	-1535	245	-1535
246	-1541	246	-1541
247	-1547	247	-1547
248	-1553	248	-1553
249	-1559	249	-1559
250	-1565	250	-1565
251	-1571	251	-1571
252	-1577	252	-1577
253	-1583	253	-1583
254	-1589	254	-1589
255	-1595	255	-1595
256	-1601	256	-1601
257	-1607	257	-1607
258	-1613	258	-1613
259	-1619	259	-1619
260	-1625	260	-1625
261	-1631	261	-1631
262	-1637	262	-1637
263	-1643	263	-1643
264	-1649	264	-1649
265	-1655	265	-1655
266	-1661	266	-1661
267	-1667	267	-1667
268	-1673	268	-1673
269	-1679	269	-1679
270	-1685	270	-1685
271	-1691	271	-1691
272	-1697	272	-1697
273	-1703	273	-1703
274	-1709	274	-1709
275	-1715	275	-1715
276	-1721	276	-1721
277	-1727	277	-1727
278	-1733	278	-1733
279	-1739	279	-1739
280	-1745	280	-1745
281	-1751	281	-1751
282	-1757	282	-1757
283	-1763	283	-1763
284	-1769	284	-1769
285	-1775	285	-1775
286	-1781	286	-1781
287	-1787	287	-1787
288	-1793	288	-1793
289	-1799	289	-1799
290	-1805	290	-1805
291	-1811	291	-1811
292	-1817	292	-1817
293	-1823	293	-1823
294	-1829	294	-1829
295	-1835	295	-1835
296	-1841	296	-1841
297	-1847	297	-1847
298	-1853	298	-1853
299	-1859	299	-1859
300	-1865	300	-1865
301	-1871	301	-1871
302	-1877	302	-1877
303	-1883	303	-1883
304	-1889	304	-1889
305	-1895	305	-1895
306	-1901	306	-1901
307	-1907	307	-1907
308	-1913	308	-1913
309	-1919	309	-1919
310	-1925	310	-1925
311	-1931	311	-1931
312	-1937	312	-1937
313	-1943	313	-1943
314	-1949	314	-1949
315	-1955	315	-1955
316	-1961	316	-1961
317	-1967	317	-1967
318	-1973	318	-1973
319	-1979	319	-1979
320	-1985	320	-1985
321	-1991	321	-1991
322	-1997	322	-1997
323	-2003	323	-2003
324	-2009	324	-2009
325	-2015	325	-2015
326	-2021	326	-2021
327	-2027	327	-2027
328	-2033	328	-2033
329	-2039	329	-2039
330	-2045	330	-2045
331	-2051	331	-2051
332	-2057	332	-2057
333	-2063	333	-2063
334	-2069	334	-2069
335	-2075	335	-2075
336	-2081	336	-2081
337	-2087	337	-2087
338	-2093	338	-2093
339	-2099	339	-2099
340	-2105	340	-2105
341	-2111	341	-2111
342	-2117	342	-2117
343	-2123	343	-2123

(Page 7 of 14)

(Page 8 of 14)

(Page 9 of 14)

AVERAGE RECEIVERS											
REG	REGISTRATION	CLASS	MANUFACTURER	MAN	MAN2	MAN3	MAN4	IR	SP	IR	SP
AC								DEC	DEC	DEC	DEC
2100	4100	VL									
2101	A2000	VL									
2102	A2000A	VL									
2103	A2000	VL									
2104	A2000	VL									
2105	A2000A	VL									
2106	A2000	VL									
2107	A2000	VL									
2108	A2000	VL									
2109	A2000	VL									
2110	A2000	VL									
2111	A2000	VL									
2112	A2000	VL									
2113	A2000	VL									
2114	A2000	VL									
2115	A2000	VL									
2116	A2000	VL									
2117	A2000	VL									
2118	A2000	VL									
2119	A2000	VL									
2120	A2000	VL									
2121	A2000	VL									
2122	A2000	VL									
2123	A2000	VL									
2124	A2000	VL									
2125	A2000	VL									
2126	A2000	VL									
2127	A2000	VL									
2128	A2000	VL									
2129	A2000	VL									
2130	A2000	VL									
2131	A2000	VL									
2132	A2000	VL									
2133	A2000	VL									
2134	A2000	VL									
2135	A2000	VL									
2136	A2000	VL									
2137	A2000	VL									
2138	A2000	VL									
2139	A2000	VL									
2140	A2000	VL									
2141	A2000	VL									
2142	A2000	VL									
2143	A2000	VL									
2144	A2000	VL									
2145	A2000	VL									
2146	A2000	VL									
2147	A2000	VL									
2148	A2000	VL									
2149	A2000	VL									
2150	A2000	VL									
2151	A2000	VL									
2152	A2000	VL									
2153	A2000	VL									
2154	A2000	VL									
2155	A2000	VL									
2156	A2000	VL									
2157	A2000	VL									
2158	A2000	VL									
2159	A2000	VL									
2160	A2000	VL									
2161	A2000	VL									
2162	A2000	VL									
2163	A2000	VL									
2164	A2000	VL									
2165	A2000	VL									
2166	A2000	VL									
2167	A2000	VL									
2168	A2000	VL									
2169	A2000	VL									
2170	A2000	VL									
2171	A2000	VL									
2172	A2000	VL									
2173	A2000	VL									
2174	A2000	VL									
2175	A2000	VL									
2176	A2000	VL									
2177	A2000	VL									
2178	A2000	VL									
2179	A2000	VL									
2180	A2000	VL									
2181	A2000	VL									
2182	A2000	VL									
2183	A2000	VL									
2184	A2000	VL									
2185	A2000	VL									
2186	A2000	VL									
2187	A2000	VL									
2188	A2000	VL									
2189	A2000	VL									
2190	A2000	VL									
2191	A2000	VL									
2192	A2000	VL									
2193	A2000	VL									
2194	A2000	VL									
2195	A2000	VL									
2196	A2000	VL									
2197	A2000	VL									
2198	A2000	VL									
2199	A2000	VL									
2200	A2000	VL									
2201	A2000	VL									
2202	A2000	VL									
2203	A2000	VL									
2204	A2000	VL									
2205	A2000	VL									
2206	A2000	VL									
2207	A2000	VL									
2208	A2000	VL									
2209	A2000	VL									
2210	A2000	VL									
2211	A2000	VL									
2212	A2000	VL									
2213	A2000	VL									
2214	A2000	VL									
2215	A2000	VL									
2216	A2000	VL									
2217	A2000	VL									
2218	A2000	VL									
2219	A2000	VL									
2220	A2000	VL									
2221	A2000	VL									
2222	A2000	VL									
2223	A2000	VL									
2224	A2000	VL									
2225	A2000	VL									
2226	A2000	VL									
2227	A2000	VL									
2228	A2000	VL									
2229	A2000	VL									
2230	A2000	VL									
2231	A2000	VL									
2232	A2000	VL									
2233	A2000	VL									
2234	A2000	VL									
2235	A2000	VL									
2236	A2000	VL									
2237	A2000	VL									
2238	A2000	VL									
2239	A2000	VL									
2240	A2000	VL									
2241	A2000	VL									
2242	A2000	VL									
2243	A2000	VL									
2244	A2000	VL									
2245	A2000	VL									
2246	A2000	VL									
2247	A2000	VL									
2248	A2000	VL									
2249	A2000	VL									
2250	A2000	VL									
2251	A2000	VL									
2252	A2000	VL									
2253	A2000	VL									
2254	A2000	VL									
2255	A2000	VL									
2256	A2000	VL									
2257	A2000	VL									
2258	A2000	VL									
2259	A2000	VL									
2260	A2000	VL									
2261	A2000	VL									
2262	A2000	VL									
2263	A2000	VL									
2264	A2000	VL									
2265	A2000	VL									

(Page 10 of 14)

Appendix D

(Page 11 of 14)

(Page 12 of 14)

(Page 13 of 14)

(Page 14 of 14)

		Average Receipts 1960													
		1960			1961			1962			1963			1964	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb
1124	Un13	1217.00	676.00	623.00	600.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00	733.00	100.00
3235	Un14	970.00	1213.00	626.00	423.00	400.00	400.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00
3850	Avg70	970.00	1213.00	626.00	423.00	400.00	400.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00
3851	Avg71	970.00	1213.00	626.00	423.00	400.00	400.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00
3852	Avg72	970.00	1213.00	626.00	423.00	400.00	400.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00
700	Avg73	970.00	1213.00	626.00	423.00	400.00	400.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00
1161	Avg74	970.00	1213.00	626.00	423.00	400.00	400.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00	700.00

BEST AVAILABLE COPY

CONTENTS OF AVFILE

(Page 1 of 9)

卷之三

MC: MCVES II

כטבון פאלטן 1993 כהנור

הוּא אָמֵן

HEALTH CARE

STANDARD ERR

www.sagepub.com

卷之三

USE-A-3-PARTICLE

2

• 6

LEVEL 5 TEST

Appendix D

(Page 2 of 9)

Wingate performance in functional classes

ARREST/RELEASE, ONE COIN	TOUCH OPER. FREQUENCY	118.60 MHz.	UPPER CPOB, FREQUENCY	115.90 MHz.
ONE COIN PLASTIC BOTTLE CAPSULE	#1 PIND.	ON QF	SECOND BREAKPOINT	#6 MHz.
RIGHT EMISSION STAGE RELEASE	00.00 ON/OUT	SECOND	EMISSION STAGE RELEASE	SECOND CPOB
LUTPUT POWER	00.00 OUT	RELEASE	RELEASE	RELEASE
RIGHT EMISSION INDICATION	RELEASE	PUSH/RELEASE	PUSH/RELEASE	PUSH/RELEASE
LEVEL SELECT RELEASE	00.00	UPPER SILENT FREQUENCY	00.00 MHz.	UPPER SILENT FREQUENCY
TYPE OF HANDLES TO BE USED/RELEASE	J	SUPPRESSIVE LEVELS	00.01	SUPPRESSIVE LEVELS
AVAIL. NUMBERIC CODE RELEASE	I	PULSE REPETITION FREQUENCY	00.1 kHz.	PULSE REPETITION FREQUENCY

1. INTRODUCTION;

STANDARD CONGREGATIONAL CHURCH
DISTINCTIONAL TYPE I USE FOR PT
OPEN DECILE VALUES 4.00 DEC.

INTEGRAL CURVES AT 1000 MHZ		UPPER SPLAT, FILTERED 1000.00 MHZ	
ON OR FIRST BREAKPOINT	1.01 dBz.	ON OF	SECOND BREAKPOINT
SECOND EMISSION SLOPE RALLIES	2C.00 dB/sec	0.00 dBz.	0.00 dBz.
OUTPUT POWER 50.00 dBm	NO. TYPE B	TYPE C	TYPE C
PULSE COMPRESSION INDICATION	PULSE TYPE	4.02 USEC.	4.08 USEC.
UPPER SPLAT FREQUENCY	UPPER SPLAT FREQUENCY	.00 MHZ.	.00 MHZ.
REPETITION FREQUENCY	SUPPRESSION LEVELS 73.1	.00.1	.00
PULSE REPETITION FREQUENCY	PULSE REPETITION FREQUENCY	.00 kHz.	.00 kHz.
DISTRIBUTIONS		MEDIAN ENERGY	
STANDARD ENGR.		MEDIAN ENERGY	
USLA-SPECIFIC DISTRIBUTION POINTS		MEDIAN ENERGY	
STANDARD ENGR.	2.00 dB.	UPPER SPLAT VALUE	3.00 dB.
USLA-SPECIFIC DISTRIBUTION POINTS			
.00	.00	.00	.00
.00	.00	.00	.00
.00	.00	.00	.00
.00	.00	.00	.00
STANDARD ENGR.		MEDIAN ENERGY	
USLA-SPECIFIC DISTRIBUTION POINTS		MEDIAN ENERGY	
STANDARD ENGR.	0.00 dB.	UPPER SPLAT VALUE	1.00 dB.
USLA-SPECIFIC DISTRIBUTION POINTS			
.00	.00	.00	.00
.00	.00	.00	.00
.00	.00	.00	.00
.00	.00	.00	.00

BEST AVAILABLE COPY

BEST AVAILABLE COPY

(Page 3 of 9)

FAA-RD-76-50

Appendix D

וְכֹא כֵּן וְכֹא כֵּן כִּי תַּחֲנֹן בְּבָנֶיךָ

Laser Oper. Freq.	915.00 MHz	Laser Open. Rate	9915.00 Hz
in Hz.	in Hz.	No. of Second Gate Delays	32000 pps
No. of First Gate Delays	16	Second Emission Slope	9.45°C/CPS
First Gate FallOff	20.00 ns/sec	No. TPIE00	1000
Output Power	24.00 dBm	Pulse Duration	3.13 us/c
PLC Compensation Indication	0.00	Upper Filter Freq.	16230.00 MHz
PLC Filter Freq.	405.00 MHz	Suppression Level	-61.0
PLC Bandwidth to 0.01	405.00 MHz	Pulse Repetition Frequency	0.00 cps
PLC Bandwidth to 0.001	405.00 MHz	Pulse Repetition Frequency	0.00 cps

DISTRIBUTION TYPE I USED FOR PI DISTINCTION MILLIAN ENTHUSIASTIC

וּרְאוֹתָנוּ וְשַׁרְאֵגָנוּ כִּי זָהָב וְזֶהָב אֲכָלָה וְזֶהָב תְּלִינוּ

(Page 4 of 9)

STANDARD CODES USER-SPECIFIED DISTRIBUTION TYPE	USER-SPECIFIED DISTRIBUTION PARAMETERS	OPEN SOURCE VALUE		3.20 0B		LEVEL 0B PROBABILITY LEVELS 0.35 TO 1.00
		0.00	.00	0.00	.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00 0B PROBABILITY LEVELS 0.35 TO 1.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00 0B PROBABILITY LEVELS 0.35 TO 1.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00 0B PROBABILITY LEVELS 0.35 TO 1.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00 0B PROBABILITY LEVELS 0.35 TO 1.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00 0B PROBABILITY LEVELS 0.35 TO 1.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00 0B PROBABILITY LEVELS 0.35 TO 1.00

LEVEL VALUES OF ZERO IMPLY NON-USER-SPECIFIED DISTRIBUTIONS

(Page 5 of 9)

AFFECTIVE FUNCTIONAL CLASSES

IDENTIFICATION: V₁, One
IF ONE - 103 MHZ.
IF SELECTIVITY FALLOFF - 79.00 DB/DEC
Lchen Spurious Rate Limit - 33.30 MHZ.
Sensitivity - 10.00 DB.
STANDARD RANGE: 100.00 MHZ.

Upper open, range, 100.10 MHZ.
IF SELECTIVITY FALLOFF, 26.00 MHZ.
IF SPURIOUS REJECTION, 80.30 DB.
Upper Spurious Rate, Limit, 213.33 MHZ.
Global to Interference Threshold, 20.00 DB.
AFILE ALPHIC CODE IDENTIFILHE

DISTRIBUTIONS:

STANDARD RANGE	DISTRIBUTION TYPE	USED FOR AS UPPER DECILE VALUE	DISTRIBUTION	MEDIAN RANGE
100.00	User-Specific Distribution Points	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
100.00	User-Specific Distribution Points	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
100.00	User-Specific Distribution Points	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB

LEVEL VALUES OF 2000 IMPLY NONUSER SPECIFIED DISTRIBUTION

IDENTIFICATION: V₁, One
IF ONE - 103 MHZ.
IF SELECTIVITY FALLOFF - 79.00 DB/DEC
Lchen Spurious Rate Limit - 33.30 MHZ.
Sensitivity - 10.00 DB.
STANDARD RANGE: 100.00 MHZ.

Upper open, range, 100.10 MHZ.
IF SELECTIVITY FALLOFF, 26.00 DB/DEC
IF SPURIOUS REJECTION, 80.30 DB.
Upper Spurious Rate, Limit, 213.33 MHZ.
Global to Interference Threshold, 20.00 DB.
AFILE ALPHIC CODE IDENTIFILHE

DISTRIBUTIONS:

STANDARD RANGE	DISTRIBUTION TYPE	USED FOR AS UPPER DECILE VALUE	DISTRIBUTION	MEDIAN RANGE
100.00	User-Specific Distribution Points	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
100.00	User-Specific Distribution Points	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
100.00	User-Specific Distribution Points	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB
.00	.00	.00	.00	.00 DB

LEVEL VALUES OF 2000 IMPLY NONUSER SPECIFIED DISTRIBUTION

(Page 6 of 9)

REGULATIONS VI THRE
IF ONE "00 MHZ.
IF SELECTIVITY FALLOFF .07.0 DB/DEC
LOCAL SPURIOUS FREQUENCY 15.55 MHZ.
SIGNAL -09740 CPS.

REGULATIONS CCP QRT
IF ONE "00 MHZ.
IF SELECTIVITY FALLOFF .07.0 DB/DEC
LOCAL SPURIOUS FREQUENCY 16.76 MHZ.
SIGNAL -01610 CPS.

LISBUTICAS:

STANDARD ENRICH	LISBUTICAS TYPE	USED FOR RS	UPPER DECILE VALUE	DISTRIBUTION	RELAX ENRICH	RELAX RS
<u>USL-SPECIFIED DISTRIBUTION POINTS</u>						
"00	"00	"00	"00	"00	"00	"00
"00	"00	"00	"00	"00	"00	"00
"00	"00	"00	"00	"00	"00	"00
"00	"00	"00	"00	"00	"00	"00

STANDARD ENRICH	LISBUTICAS TYPE	USED FOR RS	UPPER DECILE VALUE	DISTRIBUTION	RELAX ENRICH	RELAX RS
<u>USL-SPECIFIED DISTRIBUTION POINTS</u>						
"00	"00	"00	"00	"00	"00	"00
"00	"00	"00	"00	"00	"00	"00
"00	"00	"00	"00	"00	"00	"00
"00	"00	"00	"00	"00	"00	"00

LEVEL VALUES OF DATA IMPLY NON-USED SPECIFIED DISTRIBUTION

REGULATIONS CCP QRT
IF ONE "00 MHZ.
IF SELECTIVITY FALLOFF .07.0 DB/DEC
LOCAL SPURIOUS FREQUENCY 16.76 MHZ.
SIGNAL -01610 CPS.

REGULATIONS VI THRE
IF ONE "00 MHZ.
IF SELECTIVITY FALLOFF .07.0 DB/DEC
LOCAL SPURIOUS FREQUENCY 17.00 MHZ.
SIGNAL -00000 CPS.

LISBUTICAS:

STANDARD ENRICH	LISBUTICAS TYPE	USED FOR RS	UPPER DECILE VALUE	DISTRIBUTION	RELAX ENRICH	RELAX RS
<u>USL-SPECIFIED DISTRIBUTION POINTS</u>						
"00	"00	"00	"00	"00	"00	"00
"00	"00	"00	"00	"00	"00	"00
"00	"00	"00	"00	"00	"00	"00
"00	"00	"00	"00	"00	"00	"00

STANDARD ENRICH	LISBUTICAS TYPE	USED FOR RS	UPPER DECILE VALUE	DISTRIBUTION	RELAX ENRICH	RELAX RS
<u>USL-SPECIFIED DISTRIBUTION POINTS</u>						
"00	"00	"00	"00	"00	"00	"00
"00	"00	"00	"00	"00	"00	"00
"00	"00	"00	"00	"00	"00	"00
"00	"00	"00	"00	"00	"00	"00

LEVEL VALUES OF ZERO IMPLY NON-USED SPECIFIED DISTRIBUTION!

BEST COPY

(Page 7 of 9)

NOMENCLATURE: COMM TWO
 IF BW .02 HZ. RF BW .02 HZ.
 RF SELECTIVITY FALL OFFP. 0.10 DB/DEC.
 LOCAL SPURIOUS FREQ. 20000 HZ.
 SENSITIVITY -96.50 DB.

Distributions:

Distribution Type	Used for as	Upper Decile Value*	Distribution	Median Erroneous	*CC DR*
STANDARD RANGE .000 DB.	USER-SPECIFIC DISTRIBUTION PANTS.	.00	.00	.00	0.00 DB ERROR (AT PROBABILITY LEVELS 0.1 TO 0.9).
		.00	.00	.00	.00 DB ERROR (AT PROBABILITY LEVELS 0.35 TO 0.65).
		.00	.00	.00	.00 DB ERROR (AT PROBABILITY LEVELS 0.7 TO 1.0).
STANDARD ERANGE .000 DB.	USED FOR NOFB.	.00	DISTRIBUTION	MEDIAN ERANGE	*CC DR*
	USER-SPECIFIC DISTRIBUTION PANTS.	.00	.00	.00	0.00 DB ERROR (AT PROBABILITY LEVELS 0.1 TO 0.9).
		.00	.00	.00	.00 DB ERROR (AT PROBABILITY LEVELS 0.35 TO 0.65).
		.00	.00	.00	.00 DB ERROR (AT PROBABILITY LEVELS 0.7 TO 1.0).

LEVEL VALUES OF ZERO IMPLY NON-USED SPECIFIED DISTRIBUTION!

NOMENCLATURE: COMM THREE
 IF BW .02 HZ. RF BW .02 HZ.
 RF SELECTIVITY FALL OFFP. 0.10 DB/DEC.
 LOCAL SPURIOUS FREQ. 20000 HZ.
 SENSITIVITY -96.50 DB.

Distributions:

Distribution Type	Used for as	Upper Decile Value*	Distribution	Median Erroneous	*CC DR*
STANDARD RANGE .000 DB.	USER-SPECIFIC DISTRIBUTION PANTS.	.00	.00	.00	0.00 DB ERROR (AT PROBABILITY LEVELS 0.1 TO 0.9).
		.00	.00	.00	.00 DB ERROR (AT PROBABILITY LEVELS 0.35 TO 0.65).
		.00	.00	.00	.00 DB ERROR (AT PROBABILITY LEVELS 0.7 TO 1.0).
STANDARD ERANGE .000 DB.	USED FOR NOFB.	.00	DISTRIBUTION	MEDIAN ERANGE	*CC DR*
	USER-SPECIFIC DISTRIBUTION PANTS.	.00	.00	.00	0.00 DB ERROR (AT PROBABILITY LEVELS 0.1 TO 0.9).
		.00	.00	.00	.00 DB ERROR (AT PROBABILITY LEVELS 0.35 TO 0.65).
		.00	.00	.00	.00 DB ERROR (AT PROBABILITY LEVELS 0.7 TO 1.0).

LEVEL VALUES OF ZERO IMPLY NON-USED SPECIFIED DISTRIBUTION!

BEST AVAILABLE COPY

(Page 8 of 9)

וְכָל־בָּרוּךְ אָמֵן וְאָמֵן וְאָמֵן וְאָמֵן וְאָמֵן וְאָמֵן וְאָמֵן וְאָמֵן

AMBIENT TEMPERATURE AT 10000 FT. 60.00 °C. FREQUENCY 1000.00 MHZ.
 ALTITUDE 10000 FT. 0.00 °C. SELECTIVITY 50.00 dB. LOCAL OSCILLATOR 61.00 °C.
 LOCAL SPURIOUS FREQUENCY 0.00 dB. IMAGE REJECTION 60.70 dB. SPURS 0.00 °C.
 LOCAL SPURIOUS FREQUENCY 0.00 dB. UPPER SPURIOUS FREQUENCY 1250.00 MHZ. LIMITER 1250.00 MHZ.
 LOCAL SPURIOUS FREQUENCY 0.00 dB. SIGNAL TO INTERFERENCE THRESHOLD -72.00 dB. LOCAL SPURIOUS FREQUENCY 0.00 dB.

סימני ימיים

אלה ולחן שלם יפה נולדה מושגיה

BEST AVAILABLE COPY

(Page 9 of 9)

ACRONYMS AND DEFINITIONS
 IF B&W 1.00 MHz. RF. FREQ. 9315.00 MHz. UPPER COLOR. FREQUENCY 9415.00 MHz.
 HF SELECTIVITY FALL OFF. 69.3.00 DB/DEC. IF SELECTIVITY FALL OFF. 61.4C DB.
 LOCAL SPURIOUS FREQUENCIES. 54.7C MHz. IMAGE REJECTION. 3.33 dB.
 SENSITIVITY. -104.00 DBP. SIGNAL TO INTERFERENCE THRESHOLD. 10.00 dB. LOCAL OSCILLATION POSITION. 54.
 SIGNAL TO INTERFERENCE THRESHOLD. 10.00 dB. LOCAL OSCILLATION POSITION. 54.

DISTRIBUTIONS:

DISTRIBUTION TYPE	1	USED FOR AS STANDARD ENRICH. 2.00 DB.	UPPER DECILE VALUE	9.30 dB.	DISTRIBUTION	PECIAR ENRICH. .000 DB.
USER-SPECIFIED DISTRIBUTION POINTS						
	.00	.00	.00	.00	.00	.000 DB. ENRICH (AT PROBABILITY LEVELS 0. TO 1.00)
	.00	.00	.00	.00	.00	.000 DB. ENRICH (AT PROBABILITY LEVELS 0.05 TO 1.00)
	.00	.00	.00	.00	.00	.000 DB. ENRICH (AT PROBABILITY LEVELS 0.10 TO 1.00)
DISTRIBUTION TYPE						
1						
	USED FOR AS STANDARD ENRICH. 4.00 DB.	UPPER DECILE VALUE	7.30 dB.	DISTRIBUTION	PECIAR ENRICH. .000 DB.	
USER-SPECIFIED DISTRIBUTION POINTS						
	.00	.00	.00	.00	.00	.000 DB. ENRICH (AT PROBABILITY LEVELS 0. TO 1.00)
	.00	.00	.00	.00	.00	.000 DB. ENRICH (AT PROBABILITY LEVELS 0.05 TO 1.00)
	.00	.00	.00	.00	.00	.000 DB. ENRICH (AT PROBABILITY LEVELS 0.10 TO 1.00)

LEVEL VALUES OF ZERO IMPLY NON-USER-SPECIFIED DISTRIBUTION

ACRONYMS AND DEFINITIONS
 IF B&W 1.39 MHz. RF. FREQ. 9315.00 MHz. UPPER COLOR. FREQUENCY 9413.00 MHz.
 HF SELECTIVITY FALL OFF. 61.4C DB/DEC. IF SELECTIVITY FALL OFF. 61.4C DB.
 LOCAL SPURIOUS FREQUENCIES. 54.7C MHz. IMAGE REJECTION. 54.7C DB.
 SENSITIVITY. -80.00 DBP. SIGNAL TO INTERFERENCE THRESHOLD. 10.00 dB. LOCAL OSCILLATION POSITION. 54.

DISTRIBUTIONS:

DISTRIBUTION TYPE	1	USED FOR AS STANDARD ENRICH. 8.00 DB.	UPPER DECILE VALUE	9.40 dB.	DISTRIBUTION	PECIAR ENRICH. .000 DB.
USER-SPECIFIED DISTRIBUTION POINTS						
	.00	.00	.00	.00	.00	.000 DB. ENRICH (AT PROBABILITY LEVELS 0. TO 1.00)
	.00	.00	.00	.00	.00	.000 DB. ENRICH (AT PROBABILITY LEVELS 0.05 TO 1.00)
	.00	.00	.00	.00	.00	.000 DB. ENRICH (AT PROBABILITY LEVELS 0.10 TO 1.00)
DISTRIBUTION TYPE						
1						
	USED FOR AS STANDARD ENRICH. 8.00 DB.	UPPER DECILE VALUE	16.00 dB.	DISTRIBUTION	PECIAR ENRICH. .000 DB.	
USER-SPECIFIED DISTRIBUTION POINTS						
	.00	.00	.00	.00	.00	.000 DB. ENRICH (AT PROBABILITY LEVELS 0. TO 1.00)
	.00	.00	.00	.00	.00	.000 DB. ENRICH (AT PROBABILITY LEVELS 0.05 TO 1.00)
	.00	.00	.00	.00	.00	.000 DB. ENRICH (AT PROBABILITY LEVELS 0.10 TO 1.00)

LEVEL VALUES OF ZERO IMPLY NON-USER-SPECIFIED DISTRIBUTION

BEST AVAILABLE COPY

APPENDIX E
ACTUAL PROGRAM RUN DECKS AND OUTPUT

INTRODUCTION

There are twenty-four *possible* types of AVPAK program executions, as shown in TABLE E-1. Each type of run is different with respect to the type of calculation desired (power density or INR), the type of analysis desired (cosite or intersite), the type of INR answer desired (deterministic, functional or probabilistic), or the coordinate system used for the inputs, (aircraft industry, cylindrical, or rectangular). Similarly, there are twelve *impossible* run type combinations, as shown in TABLE E-2.

SAMPLE RUN DECKS AND OUTPUT

Seven different AVPAK sample runs are discussed below. Each run corresponds to one or more of the twenty-four possible types. Together they exhibit extensive execution of the capabilities of the AVPAK model, and they provide the user with an illustration of actual sets of data cards. The output corresponding to each run is also shown.

SAMPLE RUN #1 (TYPE #17 ANALYSIS)^a

This sample analysis involves one transmitter with a directional antenna on an aircraft and one receiver with an omnidirectional antenna on the ground. The input data cards are shown in Figure E-1, and describe the situation that follows.

General Parameter Data

This run is to perform an intersite, deterministic, interference-to-noise ratio analysis. Inputs are in the rectangular, (X,Y,Z), coordinate system. The radius of the fuselage, although not used in an intersite analysis, is given as 100 inches.

Intersite Data

Site 1 heading = 30°
Site 1 altitude = 11,560 feet
Site 2 heading = 0°
Site 2 altitude = 1.0 feet

^aRefer to TABLE E-1 for description of types of runs.

TABLE E-1
ALLOWABLE RUN TYPES

Type	Calculation	Analysis	Answer	Coordinate System
1	Power Density	Cosite	N/A ^a	(B,W,F)
2	" "	"	"	(X,Y,Z)
3	" "	"	"	(ρ,θ,Z)
4	" "	Intersite	"	(B,W,F)
5	" "	"	"	(X,Y,Z)
6	" "	"	"	(ρ,θ,Z)
7	INR	Cosite	Deterministic	(B,W,F)
8	"	"	"	(X,Y,Z)
9	"	"	"	(ρ,θ,Z)
10	"	"	Functional	(B,W,F)
11	"	"	"	(X,Y,Z)
12	"	"	"	(ρ,θ,Z)
13	"	"	Probabilistic	(B,W,F)
14	"	"	"	(X,Y,Z)
15	"	"	"	(ρ,θ,Z)
16	"	Intersite	Deterministic	(B,W,F)
17	"	"	"	(X,Y,Z)
18	"	"	"	(ρ,θ,Z)
19	"	"	Functional	(B,W,F)
20	"	"	"	(X,Y,Z)
21	"	"	"	(ρ,θ,Z)
22	"	"	Probabilistic	(B,W,F)
23	"	"	"	(X,Y,Z)
24	"	"	"	(ρ,θ,Z)

^aThe answer-type terminology applies only to INR runs. With Power Density runs the terminology is not applicable.

TABLE E-2
IMPOSSIBLE RUN TYPES

Calculation	Analysis	Answer	Coordinate System
Power Density	Cosite	Functional	(B,W,F)
" "	"	"	(X,Y,Z)
" "	"	"	(ρ,θ,Z)
" "	"	Probabilistic	(B,W,F)
" "	"	"	(X,Y,Z)
" "	"	"	(ρ,θ,Z)
" "	Intersite	Functional	(B,W,F)
" "	"	"	(X,Y,Z)
" "	"	"	(ρ,θ,Z)
" "	"	Probabilistic	(B,W,F)
" "	"	"	(X,Y,Z)
" "	"	"	(ρ,θ,Z)

Intersite Data (Cont'd.)

Ground distance from site 1 to site 2 = 10.0 statute miles
True bearing from site 1 to site 2 = 050°
Platform indicators: site 1 = moving (airplane);
site 2 = fixed (ground)

Figure E-1. Data card deck for Sample Run #1. (The top data card corresponds to the first card in the deck, etc.)

Obstruction Data

No obstructions are to be considered. Airfoil and pod obstructions are not treated in an intersite analysis; hence the card labeled 'NONE' is inserted in the deck. Fuselage obstructions are also not considered in an intersite analysis.

Antenna Data

The antenna at site number 1 is a horizontally polarized, circular aperture antenna mounted on the fuselage, and is 18 inches in diameter. The main beam roll angle is directed to the left 135° and the main beam pitch angle is directed forward at an angle of 130° .

The antenna for site number 2 is a vertically polarized dipole and is considered to be omnidirectional.

Transmitter Data

The single set of two transmitter data cards describe the characteristics of the equipment named WEATHER RADAR. The second data card of this set is required to enter the transmitter filter frequency limits.

Receiver Data

The single receiver data card describes the characteristics of the equipment named DOPPLER RADAR.

The data of Figure E-1 have been applied to the diagram in Figure E-2, to demonstrate a portion of the logic path taken for the determination of the off-axis angles, required to calculate the transmitter antenna gain. Figure E-3 is an illustration of the intersite geometry involved in the processing, and Figure E-4 contains the actual printout results of the executed program. As can be seen from the output, the following calculated or input values were used in the EMC analysis:

PT = transmitter power (input) = 73.0 dBm
GT = transmitter antenna gain (calculated) = 15.6 dBi
GR = receiver antenna gain (assigned) = 2.0 dBi
LP = site-to-site path loss (calculated) = 130.3 dB
LF = transmitter-receiver off-frequency rejection (calculated) = 80.0 dB
S/I = signal-to-interference ratio threshold (input) = 10.0 dB
RS = receiver sensitivity level (input) = -120.0 dBm
PI = interfering power level at the receiver input terminals (calculated)
= -140.8 dB.

It can be seen that two receiver characteristic values were reset or recovered by the program: an RF slope fall-off of 200 dB/decade and an image rejection of 60 dB.

Figure E-2. Determination of the difference angles θ and ϕ , between the transmitter antenna main beam and the transmitter-site to receiver-site path.

Figure E-3. An illustration of the intersite geometry of Sample Run #1.

AVPAC3 PROGRAM OUTPUT
PERFORMED AT THE ELECTROMAGNETIC COMPATIBILITY ANALYSIS CENTER
ANNAPOLIS, MARYLAND

***** GENERAL PARAMETERS INPUT *****

JOB TITLE: SAMPLE RUN #1 (TYPE 1)
NO. OF TNS = 1 NO. OF RIS (OR POINTS) = 1 NO. OF ANTS = 2
TYPE OF CALCULATION DESIRED IS INT. TO NOISE RAT.
TYPE OF ANALYSIS DESIRED IS INTERSITE
TYPE OF ANSWER DESIRED IS DETERMINISTIC
INPUTS ARE IN THE (X,Y,Z) COORDINATE SYSTEM
MAXIMUM FUELANE RADIUS = 100.00 IN. BULKHEAD 2-DIST = .00 IN.
BULKHEAD HEIGHT = .00 IN.

***** INTERSITE ANALYSIS PARAMETERS *****

SITE 1 IS MOVING
SITE 2 IS FIXED
HEADING OF SITE 1= 30.00 DEG.
HEADING OF SITE 2= -90 DEG.
ALTITUDE OF SITE 1 = 41500.00 FT.
ALTITUDE OF SITE 2 = 1.00 FT.
GROUND DISTANCE BETWEEN SITES = 10.00 ST. MI.
BEARING FROM SITE 1 TO SITE 2= 90.00 DEG.
BEARING FROM SITE 2 TO SITE 1= 230.00 DEG.
VERTICAL ANGLE BETWEEN SITE 1 TO SITE 2 PATH -12.35 DEG.
VERTICAL ANGLE BETWEEN SITE 2 TO SITE 1 PATH 12.35 DEG.

***** THERE ARE NO OTHER OBSTRUCTIONS TO BE CONSIDERED IN THIS ANALYSIS OTHER THAN THE AIRCRAFT FUSELAGE *****

Figure E-4. Printout of Sample Run #1.
(Page 1 of 3)

TRANSMITTERS WITH GOOD DATA

ANT. TRANSMITTER	FREQ. (MHz.)	BW.	SF1	SF2	PWR. MOD. PC1	PN	BYP. BDN. FILTER (MHz.)		HARMONIC SUPPRESSION LEVELS (dB.)				
							UPPER	LOWER	USEC NO.	USEC NO.	UPPER	LOWER	HARMONIC NUMBER
1 WEATHERRADAR	9335.	.9015.	.100	.600	20.0	00.0	75.	90	2.3	1.0	.001	.050	-15000. 1

RX RF SLOPE FALLOFF OF 600.00 DB/DEC. WAS RESET TO 200. DB/SEC.
 RX IMAGE REJECTION NOT GIVEN. VALUE OF 60. DB RECOVERED

RECEIVERS OR POINTS WITH GOOD DATA

R.S. ANT. NO.	R.S. OR POINT NO.	FREQ. (MHz.)	IF BW.	IF	IF SLOPE	RF SLOPE	IN REJ		SPUR FREQS (MHz.)		LO SENS.		S/I	
							UPPER	LOWER	(DB/DEC)	(DB/DEC)	LOWER	UPPER	(DBV)	
2	DOPPLERDGN	8000.	.0000.	.000	5.	100.	200.	60.	80.	6560.	10000.	A	-120.	10.

ANTENNAS WITH GOOD DATA

ANT. SITE	ANTENNA	TYPE	LOC.	ROLL ANG.	PITCH ANG.	ANTENNA LOCATION (IN/DEG.)	PHI	THETA C	C			
									IND. NO.	HOMECLATURE		
1 1	PARAB	X-01H	Y-01H	0	135.	L	130.	0	0	0	102.5	26.9
2 2	DIPPLE	Z-01	Z-01	90	0	0	0	0	0	0	0	0

ANT. TYPE INDICATORS: GEMT APPLICABLE, 1MPOLE, 2MLOOP, 3ELBLADE, 6HORN, SECIRULAR APER., 6RECTANGULAR APER.
 ANT. LOCATION INDICATORS: L=LINEAR, Z=Z-AXIS, Y=Y-AXIS, X=X-AXIS, R=RADIATION, F=F-AXIS, O=ORBITAL, C=CIRCULAR
 COORDINATE ORIGIN LOCATION (C01): CAPTURED, 1=SECONDARY SYSTEM OF WEAPON NO. INDICATED

Figure E-4. (Page 2 of 3)

RECEIVER	TRANSMITTER	PI	=	PT	*	GT	*	GR	*	LP	*	LF	*	S/I	*	S/I	*	RS	CORES
CULLED EQUIPMENTS (POWER IS LESS THAN RECEIVER SENSITIVITY)																			
RECEIVER	TRANSMITTER	PI	=	PT	*	GT	*	GR	*	LP	*	LF	*	S/I	*	S/I	*	RS	CORES
DOPPLER RADAR WEATHERRADAR		P1 =	73.0	*	-15.6	*	2.0	-	130.0	-	60.0	*	10.0	=	-160.6	<	-120.0	M=1	

TABLE OF INTERFERING EQUIPMENTS (X=INTERFERING)

RECEIVERS
TRANSMITTERS

BEACON RADAR
DOPPLER RADAR
DOPPLER RADAR

.....
.....
.....

END OF JOB NO. 1
END OF RUN

Figure E-4. (Page 3 of 3)

SAMPLE RUN #2 (TYPE #1 RUN)

This sample analysis involves six transmitters and a single power density point, all on the same aircraft. The input data cards are shown in Figure E-5, and serve to describe an analysis that follows.

General Parameter Data

This run is to calculate the power density at a point on an aircraft, resulting from six collocated transmitters. The inputs are with respect to the aircraft industry's butt-line, water line, fuselage station, (B,W,F), coordinate system. The maximum fuselage radius is 140.32 inches. No bulkhead obstruction on the fuselage is assumed to exist.

SAMPLE RUN #2 (TYPE 1)

WEAPOM 1 195. 133.16 382.2 ZORRU PORT 1 4.8

END

1	1	TX. ANT. 1	4	6.0	0.	208.6	32.2	
2	1	TX. ANT. 2	4	6.0	0.	208.6	80.5	
3	1	TX. ANT. 3	4	6.0	0.	203.6	333.0	
4	1	TX. ANT. 4	2	6.0	0.	280.6	545.0	
5	1	TX. ANT. 5	4	6.0	0.	120.7	557.5	
6	1	TX. ANT. 6	4	-5.	0.	120.7	163.0	
7	1	WEAPON PT.	5		4.8	4.8	6.0	
1	APX-25 A	1090.0	1090.0		60.	P0	1.0	14.
2	APX-25 B	1090.0	1090.0		60.	P0	1.0	14.
3	ARD-34 A	300.0	300.0		60.	A1		0.
4	ARD-34 B	400.0	400.0		60.	A1		
5	ARD-34 C	255.0	255.0		60.	A1		
6	ARM-21	1025.0	1025.0		60.	P0	3.5	.15
7	WEAPON PT.							

*SEC 1
EE
C-
FORTRAN STATEMENT

STATEMENT NUMBER IDENTIFICATION

Figure E-5. Data card deck for Sample Run #2.

Pod Obstruction Data

One pod is to be considered in the analysis, ZORRO PORT 1. The nose-centroid of this pod is located at coordinates (195 inches, 133.16 inches, 382.2 inches) in the (B,W,F) coordinate system of the fuselage. The pod is assumed to be a cylinder of radius 4.8 inches.

Antenna and Power Density Point Data

Each transmitter is coupled to its own antenna. The antenna types are all undefined. One is mounted on the vertical stabilizer, and the others are mounted on the fuselage. One antenna has an input gain of -5 dBi, the others have an input gain of 6 dBi. The location of each antenna is given in the (B,W,F) coordinate system of the fuselage. The location of the power density point is specified with respect to the pod in the pod's (B,W,F) coordinate system.

Transmitter Data

The nomenclatures and characteristics of the six transmitters are given on six cards. Each transmitter is associated with a different antenna by use of a unique antenna identification number. Each transmitter frequency, power, and modulation type is specified. The peak transmitter power is 60 dBm for all equipments. The pulselwidth, pulse rise/fall times, and pulse repetition frequency for each of the pulsed (modulation type PO) transmitters are given.

The power density point data card specifies the nomenclature and point identification number. Note that the power density point is treated the same as an antenna to simplify the correspondences of point nomenclature and point location coordinates. Obviously the antenna and equipment characteristic data are not applicable for the power density point, so that most data fields on both cards are blank.

Figures E-6 and E-7 illustrate the geometry of the power density analysis to be performed. Figure E-8 shows the results of the power density analysis. The expected peak and average power densities at the pod due to each transmitter individually, and then the cumulative power due to all transmitters are shown. Note that the peak power density computation is not appropriate for non-pulsed equipments. The field strengths in volts/meter corresponding to each power density level in dBm/meter² are also listed. Note that messages produced by the model indicate that buttline coordinates were not given for the six antenna locations.

Figure E-6. Transmitter antenna and power density point configuration of Sample Run #2.

Figure E-7. Location of the power density point on the Pod "ZORRO PORT 1" in Sample Run #2.

**APAKS PROGRAM OUTPUT
PERFORMANCE AT THE ELECTROMAGNETIC COMPATIBILITY ANALYSIS CENTER
ANNAPOLIS, MARYLAND**

******* GENERAL PARAMETERS INPUT *******

100 TITLES SAMPLE RUN OF TYPE 1

NO. OF TPS = 0 NO. OF HPS (64 POINTS) = 1 NO. OF ANTS = 7

TYPE OF CALCULATION DESIRED IS POWER DENSITY

TYPE OF ANALYSIS DESIRED IS COSTATE

TYPE OF ANSWER DESIRED IS PD, N/A

INPUTS ARE IN THE 10.4, N, P, COMBINE SYSTEM

MAXIMUM FUSELAGE RADIUS = 100.32 IN. BULLETHEAD 2.0151 = .00 IN.
BULLETHEAD HEIGHT = .00 IN.

******* WEAPON GEOMETRY INPUT *******

WEAPON NOMENCLATURE ZONE PART 1

WEAPON NOSE-CENTROID COORDINATES WITH RESPECT TO FUSELAGE ORIGIN IN THE 10.4, N, P, SYSTEM

198.00 IN. 132.16 IN. ON DEG. 302.20 IN.

WEAPON RADIUS = 4.00 In.

ANT. NO., NOMENCLATURE	TRANSMITTER TYPE	TRANSMITTERS WITH GOOD DATA			PN USEC	PN PHZ
		PHZ	PHZ	PHZ		
1 APRA25 A	1000	1000	1000	1000	1000	1000
2 APRA25 B	1000	1000	1000	1000	1000	1000
3 ARCA24 A	300	300	300	300	300	300
4 ARCA24 B	300	300	300	300	300	300
5 ARCA24 C	300	300	300	300	300	300
6 Antennal	1000	1000	1000	1000	1000	1000

Figure E-8. Printout of Sample Run #2.
(Page 1 of 2)

ANTENNAS WITH GOOD DATA

ARM, TYPE INDICATOR Q-MR APPLICABLE IMPULSE, Z-LOOP, JEWEL, QENON, SEMICIRCULAR APER. CIRCULAR APER. ERECTANGULAR APER.
ARM, LOCATOR INDICATIONS, TOTAL, Z-LOOP, JEWEL, QENON, SEMICIRCULAR APER. CIRCULAR APER. ERECTANGULAR APER.
ARM, COORDINATE INDICATIONS, TOTAL, Z-LOOP, JEWEL, QENON, SEMICIRCULAR APER. CIRCULAR APER. ERECTANGULAR APER.
ARM, COORDINATE WITH LOCATION INDICATIONS, TOTAL, Z-LOOP, JEWEL, QENON, SEMICIRCULAR APER. CIRCULAR APER. ERECTANGULAR APER.
ARM, COORDINATE WITH LOCATION INDICATIONS, TOTAL, Z-LOOP, JEWEL, QENON, SEMICIRCULAR APER. CIRCULAR APER. ERECTANGULAR APER.
ARM, COORDINATE WITH LOCATION INDICATIONS, TOTAL, Z-LOOP, JEWEL, QENON, SEMICIRCULAR APER. CIRCULAR APER. ERECTANGULAR APER.

PONTI DEDICATIONS

CUMULATIVE AVERAGE POWER DENSITY DUE TO ALL THIS, e

Figure E-8. (Page 2 of 2)

These particular messages are diagnostics for the user's benefit, but should not be of any concern in this analysis, as the butt-line dimensions of all antennas were intended to be zero.

SAMPLE RUN #3 (TYPE #9 RUN)

The data cards for this sample run, shown in Figure E-9, describe an analysis to be performed that follows.

SAMPLE RUN #3 (TYPE 9)						
<u>NAME</u>						
1 1 TAC	1 4	V			152.4	180. 415.
2 1 TX2	1 4	V			152.4	0. 430.
3 1 TX3	1 4	V			152.4	0. 420.
4 1 IFF	1 4	V			152.4	180. 530.
5 1 TX4	1 4	V			152.4	0. 590.
7 1 UHF RX	1 4	V			152.4	180. 570.
8 1 VHF COM1	1 4	V			152.4	180. 630.
1KMM2000	1025.	1025.	.006	.06	30.	.006 A3
9						
2UHF TX2	225.	225.	.006	.06	30.	.006 A3
9						
3UHF TX3	225.	225.	.006	.06	30.	.006 A3
9						
4IFF	1090.	1090.	.006	.06	40.	30. .006 P0 10. 5. 15.1
9						
5UHF TX4	225.	225.	.006	.06	30.	.006 A3
9						
7	118.	118. 174				
9	120.	120. 1752				

Figure E-9. Data card deck for Sample Run #3.

General Parameters

This run is to perform a cosite, deterministic, INR analysis of five transmitters and two receivers. Input units are to be in the cylindrical (ρ , θ , Z) coordinate system. The maximum fuselage radius is 152.4 inches. A bulkhead obstruction with a height of 45.6 inches exists 150.0 inches aft of the fuselage nose. There are no wing or pod obstructions to be considered in the analysis.

Antenna Data

Each equipment uses a different antenna. All antennas are vertically polarized, fuselage-mounted dipoles. The locations of the seven antennas are specified in the ρ , θ , Z coordinate system. The seven antennas are numbered: 1, 2, 3, 4, 5, 7, and 8.

Transmitter Data

The five transmitters are tuned to 225, 1025, or 1090 MHz. All transmitters are assumed to have the same first and second emission bandwidth, power, and number of harmonics to be considered in the analysis. All transmitters except the IFF are assumed to have the same falloff characteristics and modulation types.

Receiver Data

One receiver is tuned to 118 MHz and the other to 120 MHz. The local oscillator tracks above the tuned frequency for both receivers. All other receiver characteristics are to be retrieved from the AVBASE file from those records with identification numbers 174 and 1752.

The results of the INR analysis are shown in Figure E-10. Note that no transmitter-receiver combinations are potential interference problems, as all ten combinations are assumed to be interference-free. All values for the terms in the interference expression are calculated as being equal except for the path losses and off-frequency rejections. The first harmonic (fundamental) was determined to be the most critical transmitting frequency to be considered in calculating the off-frequency rejections.

The locations of the antennas on the fuselage are shown in the diagram of Figure E-11, along with the calculated path losses. As in Sample Run #2, several diagnostic messages pertaining to antenna location data are printed. Also listed are the transmitter

AVPAK3 PROGRAM OUTPUT
PERFORMED AT THE ELECTROMAGNETIC COMPATIBILITY ANALYSIS CENTER
ANNAPOLIS, MARYLAND

**** GENERAL PARAMETERS INPUT ****

JOB TITLE: SAMPLE RUN #3 (TYPE 9)

NO. OF TIRS = 5 NO. OF RIS (OR POINTS) = 2 NO. OF ANTS = 7

TYPE OF CALCULATION DESIRED IS INT. TO NOISE RAT.

TYPE OF ANALYSIS DESIRED IS CO-SITE

TYPE OF ANSWER DESIRED IS DETERMINISTIC

INPUTS ARE IN THE (R,T,Z) COORDINATE SYSTEM

MAXIMUM FUSELAGE RADIUS = 150.00 IN. BULKHEAD 2-DIST = 150.00 IN. BULKHEAD HEIGHT = 45.00 IN.

**** THERE ARE NO OTHER OBSTRUCTIONS TO BE CONSIDERED IN THIS ANALYSIS OTHER THAN THE AIRCRAFT FUSELAGE ****

TRANSMITTER POWER NOT GIVEN
TRANSMITTER KOM7000 WILL NOT BE CONSIDERED IN THIS ANALYSIS

FIRST TX SLOPE FALLOFF LESS THAN 20. DB/DEC. FOR TX. UHFTX2
VALUE OF 00.00 DB/DEC. WAS RECOVERED

SECOND TX SLOPE FALLOFF LESS THAN 20. DB/DEC. FOR TX. UHFTX2
VALUE OF 20.00 DB/DEC. WAS RECOVERED

FIRST TX SLOPE FALLOFF LESS THAN 20. DB/DEC. FOR TX. UHFTX3
VALUE OF 00.00 DB/DEC. WAS RECOVERED

SECOND TX SLOPE FALLOFF LESS THAN 20. DB/DEC. FOR TX. UHFTX3
VALUE OF 20.00 DB/DEC. WAS RECOVERED

SECOND TX SLOPE FALLOFF LESS THAN 20. DB/DEC. FOR TX. UHFTX4
VALUE OF 00.00 DB/DEC. WAS RECOVERED

FIRST TX SLOPE FALLOFF LESS THAN 20. DB/DEC. FOR TX. UHFTX4
VALUE OF 20.00 DB/DEC. WAS RECOVERED

SECOND TX SLOPE FALLOFF LESS THAN 20. DB/DEC. FOR TX. UHFTX4
VALUE OF 00.00 DB/DEC. WAS RECOVERED

Figure E-10. Printout of Sample Run #3.
(Page 1 of 3)

TRANSMITTERS WITH GOOD DATA									
ANT. TRANSMITTER NO.	NOMENCLATURE	FREQ. LOWER	SF1. HNF2. UPPER	SF2. HNF2. LOWER	MOD PC1 DB1. DB2. DB3.	PWR. TYP.	R/F TDSN FILTER HNF2. LOWER	R/F TDSN FILTER HNF2. UPPER	HARMONIC SUPPRESSION LEVELS (DB.)
2	UHF/T2	225.	.005	.005	20.0	30.	A2	0	0.000
3	UHF/T3	225.	.005	.005	20.0	30.	A2	0	0.000
4	EFF	1000.	.005	.005	40.0	30.	P2	10.0	5.0
5	UHF/T6	225.	.005	.005	20.0	30.	A2	0	0.000

THE INTERPRETATION OF MEANINGLESS INPUT WAS ATTEMPTED.
THE FOLLOWING RECORD IS ERRORED OR DOES NOT CORRESPOND TO FORMAT SPECIFICATIONS:
I/O CALLED AT SEQUENCE NUMBER 000000 OF MAIN PROGRAM

THE INTERPRETATION OF MEANINGLESS INPUT WAS ATTEMPTED.
THE FOLLOWING RECORD IS ERRORED OR DOES NOT CORRESPOND TO FORMAT SPECIFICATIONS:
I/O CALLED AT SEQUENCE NUMBER 000000 OF MAIN PROGRAM

RECEIVERS OR POINTS WITH GOOD DATA									
RS. ANT. NO. OR POINT NO.	NOMENCLATURE	FREQ. LOWER	IF BN UPPER	IF SLOPE (MHz.)	RF SLOPE (DB/DEC)	IM REJ (DB)	SP REJ (DB)	SOUR. FREQS. (MHz.) LINEP UPPER	LO SENS. POS.
7	RT833AIN	C	118.	.021	23.	300.	160.	60.	-101.
8	RT771	C	120.	.028	20.	230.	100.	22.	-101.

ANTENNAS WITH GOOD DATA									
ANT. SITE NO.	ANTENNA NOMENCLATURE IND.	TYPE	LOC.	GAIN POLAR. (IN.)	X-DIM. (IN.)	Y-DIM. (IN.)	ROLL ANG. (DEG.)	PITCH ANG. (DEG.)	ANTENNA LOCATION (IN/DEG.) (X,Y,Z) (B,N,F) OR (ROT,Z)
1	TAC	1	0	0	0	0	0	152.4	180.0
2	T22	1	2.0	0	0	0	0	152.4	0.0
3	TX3	1	2.0	0	0	0	0	152.4	490.0
4	EFF	1	2.0	0	0	0	0	152.4	530.0
5	TAB	1	2.0	0	0	0	0	152.4	590.0
7	UHF RX	1	2.0	0	0	0	0	152.4	570.0
8	VHF CONS	1	2.0	0	0	0	0	152.4	630.0

ANT. TYPE INDICATORS: 0=NOT APPLICABLE, 1=DIPOLE, 2=LOOP, 3=PILE, 4=HORN, 5=CIRCULAR APER., 6=RECTANGULAR APER.
ANT. LOCATION INDICATORS: 1=NOSE, 2=TAIL, 3=MING, 4=FUSELAGE, 5=SEARDON
CON. = COORDINATE SYSTEM OF WEAPON NO. INDICATED
C0 = WEAPON LOCATION (CO)
C1 = WEAPON ORIGIN LOCATION (CO)

Figure E-10. (Page 2 of 3)

EQUIPMENTS CAUSING POSSIBLE INTERFERENCE (EFFECTIVE POWER IS GREATER THAN RECEIVER SENSITIVITY)

RECEIVER	TRANSMITTER	P1	S	PT	+	ST	♦	OR	-	LP	-	LF	♦	S/I	=	>	NS	CORES
CULLED EQUIPMENTS (POWER IS LESS THAN RECEIVER SENSITIVITY)																		
RT031A(N)	C UHF/T12	P1	=	30.0	♦	2.0	♦	2.0	-	LP	-	LF	♦	S/I	=	<	NS	CORES
RT031A(N)	C UHF/T13	P1	=	30.0	♦	2.0	♦	2.0	-	LP	-	LF	♦	S/I	=	<	NS	CORES
RT031A(N)	C IFF	P1	=	30.0	♦	2.0	♦	2.0	-	LP	-	LF	♦	S/I	=	<	NS	CORES
RT031A(N)	C UHF/T14	P1	=	30.0	♦	2.0	♦	2.0	-	LP	-	LF	♦	S/I	=	<	NS	CORES
RT771	C UHF/T12	P1	=	30.0	♦	2.0	♦	2.0	-	LP	-	LF	♦	S/I	=	<	NS	CORES
RT771	C UHF/T13	P1	=	30.0	♦	2.0	♦	2.0	-	LP	-	LF	♦	S/I	=	<	NS	CORES
RT771	C IFF	P1	=	30.0	♦	2.0	♦	2.0	-	LP	-	LF	♦	S/I	=	<	NS	CORES
RT771	C UHF/T14	P1	=	30.0	♦	2.0	♦	2.0	-	LP	-	LF	♦	S/I	=	<	NS	CORES

TABLE OF INTERFERING EQUIPMENTS (X=INTERFERING)
TRANSMITTERS

RECEIVERS

WATU
WAWH
PPPF
TT T
XX X
23 4RT031A(N) C
RT771 CEND OF JOB NO. 0 1
END OF RUN

Figure E-11. Antenna locations and corresponding path losses for the cosite analysis of Sample Run #3.

spectral slope fall-off values recovered in the program. The receiver characteristics as retrieved from AVBASE are listed under the "Receivers with Good Data."

SAMPLE RUN #4 (TYPE #15 RUN)

The data cards for this sample run, shown in Figure E-12, describe an analysis to be performed that follows.

Figure E-12. Data card deck for Sample Run #4.

General Parameters

This sample is for a cosite, probabilistic, INR analysis. In this run one transmitter and one receiver are involved. The input units are in the cylindrical coordinate system. A fuselage of 36 inches radius with a 16.56-inch bulkhead located at 36 inches aft of the fuselage nose is to be considered. No other obstructions are to be considered in the analysis.

Antenna Data

The transmitter antenna is a horizontally polarized parabolic antenna 18 inches in diameter located near the nose of the aircraft, forward of the bulkhead obstruction. The receiver antenna

is a horizontally polarized horn antenna, with an aperture of 4.3 inches by 3.1 inches, and it is mounted on the fuselage aft of the bulkhead obstruction.

Transmitter Data

The transmitter uses antenna number 1. The equipment characteristics are to be retrieved from the AVFILE record whose identification number is 5.

Receiver Data

The receiver uses antenna number 2. The equipment characteristics are to be retrieved from the AVFILE record whose identification number is 57.

The locations of the two antennas on the fuselage with respect to the bulkhead are shown in Figure E-13. The output from Sample Run #4 is shown in Figure E-14. The transmitter and receiver characteristics retrieved from AVFILE are listed.

Because the receiver input power level of -213.0 dBm does not exceed the receiver sensitivity of -72.9 dBm, the predicted probability of interference vs. dB error is not plotted. The table of interfering equipments shows no potential interference between the two equipments.

SAMPLE RUN #5 (TYPE #14 RUN)

The data cards for this sample run, shown in Figure E-15, describe the following analysis.

General Parameters

Similar to Sample Run #4, this run is a cosite, probabilistic, INR analysis. In this analysis, however, the inputs are in the rectangular, (X,Y,Z), coordinate system, and no bulkhead obstruction is to be considered. The fuselage radius is 240 inches. No wings or pods are to be considered.

Antenna Data

The transmitter antenna is a vertically polarized, parabolic antenna with a 12-inch aperture, mounted on the fuselage. The receiving antenna is an unspecified type, mounted on the fuselage with a gain value of 3 dBi. The type is unspecified since a gain value is entered.

Figure E-13. Location of the two antennas of Sample Run #4.

**APRPA'S PROGRAM OUTPUT
PERFORMED AT THE ELECTROMAGNETIC COMPATIBILITY ANALYSIS CENTER
ANNAPOLIS, MARYLAND**

******* GENERAL PARAMETERS INPUT *******

JOB TITLE: SAMPLE RUN NO (TYPE 15)

NO. OF TDS = 1 NO. OF RDS (OR POINTS) = 1 NO. OF ANTS = 2

TYPE OF CALCULATION DESIRED IS INT. TO NOISE RAT.

TYPE OF ANALYSIS DESIRED IS COSITE

TYPE OF ANSWER DESIRED IS PROBABILISTIC

INPUTS ARE IN THE (R1,T2) COORDINATE SYSTEM

MAXIMUM FUSELAGE RADIUS = 36.00 IN.

BULKHEAD 2-DIST = 36.00 IN. BULKHEAD HEIGHT = 16.56 IN.

***** THERE ARE NO OTHER OBSTRUCTIONS TO BE CONSIDERED IN THIS ANALYSIS OTHER THAN THE AIRCRAFT FUSELAGE *****

TRANSMITTERS WITH GOOD DATA

ANT. TRANSMITTER	PIRS (INCH.)	RH1	RH2	SP1	SP2	PW	RFET	PC1	PP	RFT	EDRN	FILTER (INCH.)	H	HARMONIC SUPPRESSOR LEVELS (DB.)	HARMONIC NUMBER
NO. NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.
NO. NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.
NO. NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.

1 WEATHERRADAR 9335. 9415. .264 3.0 20.0 42.0 73. P0 3.1 1.94 3.4 6456. 19238. 2 61. 0. 0. 0. 0. 0. 0.

RECEIVERS OR POINTS WITH GOOD DATA

RE. ANT. NO.	NO.	RA.	DEC.	IF SH	IF SLOPE	IN REJ	SP REJ	SPUR FREQS (INCH.)	LO	SENS.	S/I
ON POINT NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.
NO. NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.
NO. NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.

2 ATC SPHERE 1039. 1039. 6.2 66. 73. 66. 67. 81. 828. 1828. C -73. 10.

ANTENNAS WITH GOOD DATA

ANT SITE	ANTENNA	TYPE LOC.	GAIN POLAR.	X-DIM.	Y-DIM.	ROLL ANG.	PITCH ANG.	ANTENNA LOCATION (IN/DEG.)	PHI (DEG.)	THETA (DEG.)
NO. NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.
NO. NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.
NO. NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.	NO.

1 1 DISH-18IN 5 1 .0 H 18.0 .0 0. 0. 0. 1.2 180.0 24.0 90.0 90.0 0

2 4 HORN 5 4 .0 H 0.3 3.1 0. 0. 0. 36.0 180.0 360.0 90.0 90.0 0

ANT. TYPE INDICATORS: GENOT APPLICABLE, 1=DISP, 2=LOOP, 3=SLIDE, 4=HORN, 5=CIRCULAR APER., 6=RECTANGULAR APER.

ANT. LOCATION INDICATORS: 1=NOSE, 2=TAIL, 3=PORT, 4=STUBBLE, 5=FUSELAGE, 6=FUSELAGE, 7=WEAPON, 8=WEAPON NO. INDICATED
COORDINATE ORIGIN LOCATION (CO): 0=FUSELAGE, 1=COORDINATE SYSTEM OF WEAPON NO. INDICATED

Figure E-14. Printout of Sample Run #4.
(Page 1 of 2)

EFFECTIVE CHANGES POSSIBLE IN INTERFERENCE BASED UPON UPPER DECILE PI PARAMETERS) (INTERFERENCE POWER FOR THE FUNCTIONAL CLASSES ANALYZED)

TABLE OF INTERFERING EQUIPMENTS (X=INTERFERING)

RECEIVERS

END OF JOB NO. 1
END OF RUN

Figure E-14. (Page 2 of 2)

1 1 2 0 0 3 1 240.	SAMPLE RUN #5 (TYPE 14)
NONE	
1 1 DISH-12INCH 5 4 V 12.	0. 240. 300.
2 1 FIX. DIPOLE 4 3.	10. 220. 150.
1	2
2	51

Figure E-15. Data cards for Sample Run #5.

The transmitter uses antenna number 1 and has the characteristics of the AVFILE record with identification number 2. The receiver uses antenna number 2 and has the characteristics of the AVFILE record with identification number 51.

The output for Sample Run #5 is shown in Figure E-16. Since the effective median interference power of -104.2 dBm and the upper decile cull correction factor both exceed the receiver sensitivity, the predicted probability of interference vs. dB error is plotted. The actual coordinates of 21 points on the graph are also printed. The table of interfering equipments notes that these two equipments are a potential source of interference.

SAMPLE RUN #6 (TYPE #3 RUN)

The data card deck for this sample run is shown in Figure E-17. This run performs a cosite, power density analysis among five transmitters and four power density points. Inputs are to be in the cylindrical, (ρ , θ , Z), coordinate system. The maximum fuselage radius is 100 inches.

*** GENERAL PARAMETERS INPUT ***
 JOB TITLE: SAMPLE RUN #9 (TYPE 10)
 NO. OF TNS = 1 NO. OF RIS (OR POINTS) = 1 NO. OF ANTS = 2
 TYPE OF CALCULATION DESIRED IS INT. TO NOISE RAT.
 TYPE OF ANALYSIS DESIRED IS COSTITE
 TYPE OF ANSWER DESIRED IS PROBABILISTIC
 INPUTS ARE IN THE (X,Y,Z) COORDINATE SYSTEM
 MAXIMUM FUSELAGE RADIUS = 204.00 IN.

BULKHEAD 2-DIST = .00 IN. BULKHEAD HEIGHT = .00 IN.

*** THERE ARE NO OTHER OBSTRUCTIONS TO BE CONSIDERED IN THIS ANALYSIS OTHER THAN THE AIRCRAFT FUSELAGE ***

TRANSMITTERS WITH GOOD DATA

ANT. TRANSMITTER	FREQ. (MHz.)	RIS. NO.	SP1. SEQ.	SP2. SEQ.	PIN. MOD. PCT.	PIN. RFET. EDEN FILTER (MHz.)	HARMONIC SUPPRESSION LEVELS (dB.)												
NO.	HARMONIC NUMBER	UPPER	LOWER	UPPER	LOWER	TYP.	USEC USEC	LOWER HARMONIC NUMBER	UPPER HARMONIC NUMBER										
1	ATC. X-POINTER	1000.	1.5	7.0	20.0	40.0	55.	P0	.4	.082	11.9	0.	0.	3	73. 90.	0.	0.	0.	0.

RECEIVERS OR POINTS WITH GOOD DATA

RX. ANT. NO.	RX. OR. POINT NO.	POINT	FREQ. (MHz.)	IF SW.	IF SLOPE	RF SLOPE	IN REJ	SP REJ	SPUR FREQS (MHz.)								
			(MHz.)	(MHz.)	(dB./DEC)	(dB./DEC)	(dB.)	(dB.)	UPPER	LOWER							
2	VL. TWO	100.	118.	.032	26.	100.	64.	72.	97.	22.	22.	C	-49.	50.			

ANTENNAS WITH GOOD DATA

ANT. SITE	ANTENNA	TYPE	LOC.	GAIN	POLAR.	X-DIM.	Y-DIM.	ROLL ANG.	PITCH ANG.	ANTENNA LOCATION (IN/DEG.)	PHI	THETA	
NO. NO.	NO.	IND.	IND.	(DB.)	(IN.)	(IN.)	(IN.)	(DEG.)	(DEG.)	(X,Y,Z), (B,R,F) OR (R,T,Z)	(DEG.)	(DEG.)	
1	1	DISH-12INCH	5	4	3.0	V	12.0	0	0	0	240.0	300.0	90.0
2	1	TR. DIPOLE	6	4	3.0	X	0	0	0	10.0	220.0	150.0	0.0

ANT. TYPE INDICATORS: 0-NOT APPLICABLE, 1-DIPOLE, 2=LOOP, 3=JELADE, 4=HORN, 5=RECTANGULAR APER., 6=RECTANGULAR APER.
 ANT. LOCATION INDICATORS: 1-HORN, 2=TAIL, 3=HELM, 4=FUSELAGE, 5=WEAPON
 COORDINATE ORIGIN LOCATION (CO): 1=COORDINATE SYSTEM OF WEAPON NO. INDICATED

Figure E-16. Printout of Sample Run #5.
 (page 1 of 3)

EQUATIONS CAUSING POSSIBLE INTERFERENCE (BASED UPON UPPER DECILE PI PARAMETERS)
PI BELOW IS THE EFFECTIVE MEDIAN INTERFERENCE POWER FOR THE FUNCTIONAL CLASSES ANALYZED 0000

RECEIVER	TRANSMITTER	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20	P21	P22	P23	P24	P25	P26	P27	P28	P29	P30	P31	P32	P33	P34	P35	P36	P37	P38	P39	P40	P41	P42	P43	P44	P45	P46	P47	P48	P49	P50	P51	P52	P53	P54	P55	P56	P57	P58	P59	P60	P61	P62	P63	P64	P65	P66	P67	P68	P69	P70	P71	P72	P73	P74	P75	P76	P77	P78	P79	P80	P81	P82	P83	P84	P85	P86	P87	P88	P89	P90	P91	P92	P93	P94	P95	P96	P97	P98	P99	P100																																																																																																				
V.L. TWO	ATC. APPROX	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.017	0.018	0.019	0.020	0.021	0.022	0.023	0.024	0.025	0.026	0.027	0.028	0.029	0.030	0.031	0.032	0.033	0.034	0.035	0.036	0.037	0.038	0.039	0.040	0.041	0.042	0.043	0.044	0.045	0.046	0.047	0.048	0.049	0.050	0.051	0.052	0.053	0.054	0.055	0.056	0.057	0.058	0.059	0.060	0.061	0.062	0.063	0.064	0.065	0.066	0.067	0.068	0.069	0.070	0.071	0.072	0.073	0.074	0.075	0.076	0.077	0.078	0.079	0.080	0.081	0.082	0.083	0.084	0.085	0.086	0.087	0.088	0.089	0.090	0.091	0.092	0.093	0.094	0.095	0.096	0.097	0.098	0.099	0.100	0.101	0.102	0.103	0.104	0.105	0.106	0.107	0.108	0.109	0.110	0.111	0.112	0.113	0.114	0.115	0.116	0.117	0.118	0.119	0.120	0.121	0.122	0.123	0.124	0.125	0.126	0.127	0.128	0.129	0.130	0.131	0.132	0.133	0.134	0.135	0.136	0.137	0.138	0.139	0.140	0.141	0.142	0.143	0.144	0.145	0.146	0.147	0.148	0.149	0.150	0.151	0.152	0.153	0.154	0.155	0.156	0.157	0.158	0.159	0.160	0.161	0.162	0.163	0.164	0.165	0.166	0.167	0.168	0.169	0.170	0.171	0.172	0.173	0.174	0.175	0.176	0.177	0.178	0.179	0.180	0.181	0.182	0.183	0.184	0.185	0.186	0.187	0.188	0.189	0.190	0.191	0.192	0.193	0.194	0.195	0.196	0.197	0.198	0.199	0.199

THE JOURNAL OF CLIMATE VOL. 15, NO. 10, OCTOBER 2002

Figure E-16. (Page 2 of 3)

ACTUAL COORDINATES OF POINTS ON THE CONVOLVED CUMULATIVE ERROR PLOT:

PROBABILITY	% ERROR
.0000	-35.8895
.0179	-32.8837
.0358	-37.3829
.0537	-33.9825
.0716	-39.7816
.0895	-35.6169
.1074	-31.7849
.1253	-27.7923
.1432	-33.6239
.1611	-31.1394
.1789	-3.8946
.1968	7.4844
.2147	11.6813
.2326	15.7210
.2505	19.7064
.2684	23.5913
.2863	27.0881
.3042	31.9123
.3221	32.0827
.3399	37.4537
1.0000	

CULLED EQUIPMENTS (POWER IS LESS THAN RECEIVER SENSITIVITY)

RECEIVER TRANSMITTER PI = PT ♦ ET ♦ ER - LP - LF + S/I = < RS cores

TABLE OF INTERFERING EQUIPMENTS (X'S INTERFERING)
TRANSMITTERS

RECEIVERS
 44-4-4-X 44-4-2000R
 VL TWO X
 END OF JOB NO. 1
 END OF RUN

Figure E-16. (Page 3 of 3)

Figure E-17. Data card deck for Sample Run #6.

A bulkhead of height 40 inches, located 50 inches aft of the fuselage nose, is to be considered. An airfoil is to be considered as a potential obstruction to the transmission path. The front wing edges are located 280 inches aft of the fuselage nose. The aft wing edges are located 400 inches aft of the nose. The port wing-fuselage intersection points are located at 100° with respect to the vertical stabilizer. The five transmitter antennas are all different types and mounted at various locations about the aircraft. They also represent a mixture of polarizations and sizes. The four power density points are also located at different points about the aircraft.

All five transmitters are pulsed, but use a mixture of frequencies and emission characteristics. The power density points illustrated in Figure E-18 as points 1, 2, 3, and 4 correspond power density point locations 6, 7, 8, and 9 in the program cards.

The locations of the transmitter antennas and power density points are shown in Figure E-18. The output from Sample Run #6 is shown in Figure E-19.

SAMPLE RUN #7 (TYPE #22 RUN)

This sample run performs an intersite, probabilistic, INR analysis. Inputs are in the aircraft industry coordinate system. Site 1 is a fixed ground station with an altitude of 100 feet and site 2 is a satellite with an altitude of 99,999,999 feet above the earth. The heading of site 2 is 30°. A ground distance of 50 statute miles is specified. The bearing from site 1 to site 2 is 20°.

The ground station transmits with a horizontally polarized antenna, 999 inches in diameter, with a specified gain of 99 dBi. The satellite receives with a horizontally polarized antenna of 20 dBi. The receiving antenna is located at a point 10° to the right of the satellite axis and the main beam points directly down at the earth.

The transmitter uses antenna number 1 and retrieves the characteristics of the AVFILE transmitter with identification number 3. The receiver uses antenna number 2 and retrieves the characteristics of the AVFILE receiver with identification number 52.

The data card deck for Sample Run #7 is shown in Figure E-20. The output for Sample Run #7 is shown in Figure E-21. As can be seen, no interference is expected to occur.

Figure E-18. Location of transmitter antennas and power density points for Sample Run #6.

AVPAC3 PROGRAM OUTPUT
PERFORMED AT THE ELECTROMAGNETIC COMPATIBILITY ANALYSIS CENTER
ANNAPOLIS, MARYLAND

INPUT GENERAL PARAMETERS INPUT see

JOB TITLE: SAMPLE RUN NO (TYPE 3)

NO. OF TTS = 3 NO. OF RWS (OR POINTS) = 4 NO. OF ANTS = 9

TYPE OF CALCULATION DESIRED IS POWER DENSITY

TYPE OF ANALYSIS DESIRED IS COSITE

TYPE OF ANTER DESIRED IS PDP N/A

INPUTS ARE IN THE (R,T,Z) COORDINATE SYSTEM

MAXIMUM FUSELAGE RADIUS = 100.00 IN.

BULKHEAD Z-DIST = 40.00 IN. BULKHEAD HEIGHT = 50.00 IN.

see WING OBSTRUCTION DATA see

R1= X=, OR RHO-DIMENSION OF FORWARD WING-FUSELAGE INTERSECTION POINT= 100.0 IN.

R2= Y=, OR THETA-DIMENSION OF FORWARD WING-FUSELAGE INTERSECTION POINT= 100.0 IN. OR DEG.

R3= OR Z-DIMENSION OF FORWARD WING-FUSELAGE INTERSECTION POINT= 200.0 IN.

R4= X=, OR RHO-DIMENSION OF AFT WING-FUSELAGE INTERSECTION POINT= 100.0 IN.

R5= Y=, OR THETA-DIMENSION OF AFT WING-FUSELAGE INTERSECTION POINT= 100.0 IN. OR DEG.

R6= OR Z-DIMENSION OF AFT WING-FUSELAGE INTERSECTION POINT= 400.0 IN.

PULSE COMPRESSION INDICATOR # IS ILLEGAL
TRANSMITTER TI. NO. 3 WILL NOT BE CONSIDERED IN THIS ANALYSIS

ANT. TRANSMITTER NO.	TRANSMITTERS WITH GOOD DATA				
	NAME MATERIAL LOWER	NAME MATERIAL UPPER	PN DISH	PN TYP	PN USEC
1 TR. NO. 1	225.	275.	30.	PP	2.0 .15
2 TR. NO. 2	9400.	9400.	20.	PP	1.0 16.00
3 TR. NO. 5	1700.	1725.	30.	PP	3.4 2.00
5 TR. NO. 5	9900.	9900.	60.	PP	3.5 3.20

Figure E-19. Printout of Sample Run #6.
(Page 1 of 3)

RECEIVERS ON POINTS WITH GOOD DATA									
ANT. NO.	PT. NO.	PT. NO.	PT. NO.	PT. NO.	IF SW. (MHz.)	IF SW. (MHz.)	IF SLOPE (deg./in/sec.)	IN NEW (deg.)	SP NEW (deg.)
1	PT. 1	PT. 2	PT. 3	PT. 4	00000	00000	00000	00000	00000
2	PT. 1	PT. 2	PT. 3	PT. 4	00000	00000	00000	00000	00000
3	PT. 1	PT. 2	PT. 3	PT. 4	00000	00000	00000	00000	00000
4	PT. 1	PT. 2	PT. 3	PT. 4	00000	00000	00000	00000	00000

ANTENNAS WITH GOOD DATA										ANT. SITE	ANTENNA	TYPE
ANT. NO.	IND.	IND.	IND.	IND.	X-ORI. (IN.)	Y-ORI. (IN.)	ROLL ANG. (DEG.)	PITCH ANG. (DEG.)	ANTENNA LOCATION (IN/DEG.) (X,Y,Z, (B,M,F), Q)	PHI (DEG.)	THETA (DEG.)	
1	TX	ANT. 1	1	1	12.0	0	0	0	10.0	30.0	0	0
2	TX	ANT. 2	1	1	12.0	0	0	0	10.0	180.0	0	0
3	TX	ANT. 3	1	1	12.0	0	0	0	10.0	180.0	0	0
4	TX	ANT. 4	1	1	12.0	0	0	0	10.0	180.0	0	0
5	TX	ANT. 5	1	1	12.0	0	0	0	10.0	180.0	0	0
6	PT.	LOC. 1	1	1	12.0	0	0	0	10.0	180.0	0	0
7	PT.	LOC. 2	1	1	12.0	0	0	0	10.0	180.0	0	0
8	PT.	LOC. 3	1	1	12.0	0	0	0	10.0	180.0	0	0
9	PT.	LOC. 4	1	1	12.0	0	0	0	10.0	180.0	0	0
10	PT.	LOC. 5	1	1	12.0	0	0	0	10.0	180.0	0	0
11	PT.	LOC. 6	1	1	12.0	0	0	0	10.0	180.0	0	0
12	PT.	LOC. 7	1	1	12.0	0	0	0	10.0	180.0	0	0
13	PT.	LOC. 8	1	1	12.0	0	0	0	10.0	180.0	0	0
14	PT.	LOC. 9	1	1	12.0	0	0	0	10.0	180.0	0	0
15	PT.	LOC. 10	1	1	12.0	0	0	0	10.0	180.0	0	0
16	PT.	LOC. 11	1	1	12.0	0	0	0	10.0	180.0	0	0
17	PT.	LOC. 12	1	1	12.0	0	0	0	10.0	180.0	0	0
18	PT.	LOC. 13	1	1	12.0	0	0	0	10.0	180.0	0	0
19	PT.	LOC. 14	1	1	12.0	0	0	0	10.0	180.0	0	0
20	PT.	LOC. 15	1	1	12.0	0	0	0	10.0	180.0	0	0
21	PT.	LOC. 16	1	1	12.0	0	0	0	10.0	180.0	0	0
22	PT.	LOC. 17	1	1	12.0	0	0	0	10.0	180.0	0	0
23	PT.	LOC. 18	1	1	12.0	0	0	0	10.0	180.0	0	0
24	PT.	LOC. 19	1	1	12.0	0	0	0	10.0	180.0	0	0
25	PT.	LOC. 20	1	1	12.0	0	0	0	10.0	180.0	0	0
26	PT.	LOC. 21	1	1	12.0	0	0	0	10.0	180.0	0	0
27	PT.	LOC. 22	1	1	12.0	0	0	0	10.0	180.0	0	0
28	PT.	LOC. 23	1	1	12.0	0	0	0	10.0	180.0	0	0
29	PT.	LOC. 24	1	1	12.0	0	0	0	10.0	180.0	0	0
30	PT.	LOC. 25	1	1	12.0	0	0	0	10.0	180.0	0	0
31	PT.	LOC. 26	1	1	12.0	0	0	0	10.0	180.0	0	0
32	PT.	LOC. 27	1	1	12.0	0	0	0	10.0	180.0	0	0
33	PT.	LOC. 28	1	1	12.0	0	0	0	10.0	180.0	0	0
34	PT.	LOC. 29	1	1	12.0	0	0	0	10.0	180.0	0	0
35	PT.	LOC. 30	1	1	12.0	0	0	0	10.0	180.0	0	0
36	PT.	LOC. 31	1	1	12.0	0	0	0	10.0	180.0	0	0
37	PT.	LOC. 32	1	1	12.0	0	0	0	10.0	180.0	0	0
38	PT.	LOC. 33	1	1	12.0	0	0	0	10.0	180.0	0	0
39	PT.	LOC. 34	1	1	12.0	0	0	0	10.0	180.0	0	0
40	PT.	LOC. 35	1	1	12.0	0	0	0	10.0	180.0	0	0
41	PT.	LOC. 36	1	1	12.0	0	0	0	10.0	180.0	0	0
42	PT.	LOC. 37	1	1	12.0	0	0	0	10.0	180.0	0	0
43	PT.	LOC. 38	1	1	12.0	0	0	0	10.0	180.0	0	0
44	PT.	LOC. 39	1	1	12.0	0	0	0	10.0	180.0	0	0
45	PT.	LOC. 40	1	1	12.0	0	0	0	10.0	180.0	0	0
46	PT.	LOC. 41	1	1	12.0	0	0	0	10.0	180.0	0	0
47	PT.	LOC. 42	1	1	12.0	0	0	0	10.0	180.0	0	0
48	PT.	LOC. 43	1	1	12.0	0	0	0	10.0	180.0	0	0
49	PT.	LOC. 44	1	1	12.0	0	0	0	10.0	180.0	0	0
50	PT.	LOC. 45	1	1	12.0	0	0	0	10.0	180.0	0	0
51	PT.	LOC. 46	1	1	12.0	0	0	0	10.0	180.0	0	0
52	PT.	LOC. 47	1	1	12.0	0	0	0	10.0	180.0	0	0
53	PT.	LOC. 48	1	1	12.0	0	0	0	10.0	180.0	0	0
54	PT.	LOC. 49	1	1	12.0	0	0	0	10.0	180.0	0	0
55	PT.	LOC. 50	1	1	12.0	0	0	0	10.0	180.0	0	0
56	PT.	LOC. 51	1	1	12.0	0	0	0	10.0	180.0	0	0
57	PT.	LOC. 52	1	1	12.0	0	0	0	10.0	180.0	0	0
58	PT.	LOC. 53	1	1	12.0	0	0	0	10.0	180.0	0	0
59	PT.	LOC. 54	1	1	12.0	0	0	0	10.0	180.0	0	0
60	PT.	LOC. 55	1	1	12.0	0	0	0	10.0	180.0	0	0
61	PT.	LOC. 56	1	1	12.0	0	0	0	10.0	180.0	0	0
62	PT.	LOC. 57	1	1	12.0	0	0	0	10.0	180.0	0	0
63	PT.	LOC. 58	1	1	12.0	0	0	0	10.0	180.0	0	0
64	PT.	LOC. 59	1	1	12.0	0	0	0	10.0	180.0	0	0
65	PT.	LOC. 60	1	1	12.0	0	0	0	10.0	180.0	0	0
66	PT.	LOC. 61	1	1	12.0	0	0	0	10.0	180.0	0	0
67	PT.	LOC. 62	1	1	12.0	0	0	0	10.0	180.0	0	0
68	PT.	LOC. 63	1	1	12.0	0	0	0	10.0	180.0	0	0
69	PT.	LOC. 64	1	1	12.0	0	0	0	10.0	180.0	0	0
70	PT.	LOC. 65	1	1	12.0	0	0	0	10.0	180.0	0	0
71	PT.	LOC. 66	1	1	12.0	0	0	0	10.0	180.0	0	0
72	PT.	LOC. 67	1	1	12.0	0	0	0	10.0	180.0	0	0
73	PT.	LOC. 68	1	1	12.0	0	0	0	10.0	180.0	0	0
74	PT.	LOC. 69	1	1	12.0	0	0	0	10.0	180.0	0	0
75	PT.	LOC. 70	1	1	12.0	0	0	0	10.0	180.0	0	0
76	PT.	LOC. 71	1	1	12.0	0	0	0	10.0	180.0	0	0
77	PT.	LOC. 72	1	1	12.0	0	0	0	10.0	180.0	0	0
78	PT.	LOC. 73	1	1	12.0	0	0	0	10.0	180.0	0	0
79	PT.	LOC. 74	1	1	12.0	0	0	0	10.0	180.0	0	0
80	PT.	LOC. 75	1	1	12.0	0	0	0	10.0	180.0	0	0
81	PT.	LOC. 76	1	1	12.0	0	0	0	10.0	180.0	0	0
82	PT.	LOC. 77	1	1	12.0	0	0	0	10.0	180.0	0	0
83	PT.	LOC. 78	1	1	12.0	0	0	0	10.0	180.0	0	0
84	PT.	LOC. 79	1	1	12.0	0	0	0	10.0	180.0	0	0
85	PT.	LOC. 80	1	1	12.0	0	0	0	10.0	180.0	0	0
86	PT.	LOC. 81	1	1	12.0	0	0	0	10.0	180.0	0	0
87	PT.	LOC. 82	1	1	12.0	0	0	0	10.0	180.0	0	0
88	PT.	LOC. 83	1	1	12.0	0	0	0	10.0	180.0	0	0
89	PT.	LOC. 84	1	1	12.0	0	0	0	10.0	180.0	0	0
90	PT.	LOC. 85	1	1	12.0	0	0	0	10.0	180.0	0	0
91	PT.	LOC. 86	1	1	12.0	0	0	0	10.0	180.0	0	0
92	PT.	LOC. 87	1	1	12.0	0	0	0	10.0	180.0	0	0
93	PT.	LOC. 88	1	1	12.0	0	0	0	10.0	180.0	0	0
94	PT.	LOC. 89	1	1	12.0	0	0	0	10.0	180.0	0	0
95	PT.	LOC. 90	1	1	12.0	0	0	0	10.0	180.0	0	0
96	PT.	LOC. 91	1	1	12.0	0	0	0	10.0	180.0	0	0
97	PT.	LOC. 92	1	1	12.0	0	0	0	10.0	180.0	0	0
98	PT.	LOC. 93	1	1	12.0	0	0	0	10.0	180.0	0	0
99	PT.	LOC. 94	1	1	12.0	0	0	0	10.0	180.0	0	0
100	PT.	LOC. 95	1	1	12.0	0	0	0	10.0	180.0	0	0
101	PT.	LOC. 96										

Figure E-19. (Page 3 of 3)

1.1 20132 100.
0. 100. SAMPLE RUN #7 (TYPE 22)
NONE 30.99999999. 50.20.0.1
1 1 GROUND TX. 99. H 999
2 2 SATELLITE RX 4 20. H 99. 10. R 180. A
2 3
2 4

Figure E-20. Data card deck for Sample Run #7.

**APNAC3 PROGRAM OUTPUT
PERFORMED AT THE ELECTROMAGNETIC COMPATIBILITY ANALYSIS CENTER
ANNAPOLIS, MARYLAND**

one GENERAL PARAMETERS INPUT case

JOB TITLE: SAMPLE RUN #7 (TYPE 22)

NO. OF TDS = 1 NO. OF RIS (OR POINTS) = 1 NO. OF ANTS = 2

TYPE OF CALCULATION DESIRED IS INT. TO NOISE RAT.

TYPE OF ANALYSIS DESIRED IS INTERSITE

TYPE OF ANSWER DESIRED IS PARALLELISTC

INPUTS ARE IN THE (DEGREES) COORDINATE SYSTEM

AIRFIELD PULSE/AGE RADIUS = 100.00 IN. BULKHEAD 2-DIST = .00 IN. BULKHEAD HEIGHT = .00 IN.

one INTERSITE ANALYSIS PARAMETERS case

SITE 1 IS FIXED

SITE 2 IS MOVING

HEADING OF SITE 1= .00 DEG.

HEADING OF SITE 2= 30.00 DEG.

ALTITUDE OF SITE 1 = 100.00 FT.

ALTITUDE OF SITE 2 = 9999999.00 FT.

GROUND DISTANCE BETWEEN SITES = 90.00 ST. MI.

BEARING FROM SITE 1 TO SITE 2= 20.00 DEG.

BEARING FROM SITE 2 TO SITE 1= 200.00 DEG.

VERTICAL ANGLE BETWEEN SITE 1 TO SITE 2 PATH= 00.00 DEG.

VERTICAL ANGLE BETWEEN SITE 2 TO SITE 1 PATH= -00.00 DEG.

case THERE ARE NO OTHER OBSTRUCTIONS TO BE CONSIDERED IN THIS ANALYSIS OTHER THAN THE AIRCRAFT PULSE/AGE case

Figure E-21. Printout of Sample Run #7.
(Page 1 of 3)

TRANSMITTERS WITH GOOD DATA							
TRANSMITTER LOC.				PILOT FREQ.		HARMONIC SUPPRESSION LEVELS (DB)	
ANT. NO.	NAME	LONG.	LAT.	IF BW	SPUR FREQ.	PILOT FREQ.	HARMONIC NUMBER
1	TRANSMITTER	90.0	30.0	20.0	75.0	90.0	2, 3, 4, 5, 6, 7, 8

RECEIVERS OR POINTS WITH GOOD DATA							
RECEIVER LOC.				IF SLOPE		SPUR FREQUENCIES (MHZ.)	
ANT. NO.	NAME	LONG.	LAT.	IF BW	(DB/DEC)	LOWER	UPPER
2	VL. THREE	100.	110.	.037	25.	170.	60.

ANTENNAS WITH GOOD DATA

ANTENNA LOCATION (IN/DEG.)							
ANT. NO.	NAME	TYPE	LOC.	GAIN	POLAR.	PITCH ANG.	PHI
1	GROUND TX	Y-DIM.	X-YIN.	100.	(IN.)	(DEG.)	THETA C (DEG.)
2	SATELLITE RX	Y-DIM.	X-YIN.	20.0	(IN.)	(DEG.)	(DEG.)

ANT. TYPE INDICATIONS: GND. APP. = GND. PLATE; 2L0LP = 2-LAYER, 0-LAYER; 3BLAD = 3-BLADE; 4SHORN = 4-SHORN; SECULAR APER. = RECTANGULAR APER.
CENT. LOCATION INDICATIONS: LANGLE = LATITUDE, SPANNE = SPANNING, KURVELAKE = KURVELAKE, SHEWAN = COORDINATE SHEWAN LOCATION; (C01) = C01-COORDINATE SYSTEM OF WEAPON NO. INDICATED

EQUIPMENTS CAUSING POSSIBLE INTERFERENCE (BASED UPON UPPER DECILE PI PARAMETERS)
see PI below IS THE EFFECTIVE MEDIAN INTERFERENCE POWER FOR THE FUNCTIONAL CLASSES ANALYZED

RECEIVER TRANSMITTER PI = PT + ET + ER + LP - LF + S/I = > NS P CODES

Figure E-21. (Page 2 of 3)

CALLED EQUIPMENTS (POWER IS LESS THAN RECEIVER SENSITIVITY)

RECEIVER	TRANSMITTER	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20	P21	P22	P23	P24	P25	P26	P27	P28	P29	P30	P31	P32	P33	P34	P35	P36	P37	P38	P39	P40	P41	P42	P43	P44	P45	P46	P47	P48	P49	P50	P51	P52	P53	P54	P55	P56	P57	P58	P59	P60	P61	P62	P63	P64	P65	P66	P67	P68	P69	P70	P71	P72	P73	P74	P75	P76	P77	P78	P79	P80	P81	P82	P83	P84	P85	P86	P87	P88	P89	P90	P91	P92	P93	P94	P95	P96	P97	P98	P99	P100	P101	P102	P103	P104	P105	P106	P107	P108	P109	P110	P111	P112	P113	P114	P115	P116	P117	P118	P119	P120	P121	P122	P123	P124	P125	P126	P127	P128	P129	P130	P131	P132	P133	P134	P135	P136	P137	P138	P139	P140	P141	P142	P143	P144	P145	P146	P147	P148	P149	P150	P151	P152	P153	P154	P155	P156	P157	P158	P159	P160	P161	P162	P163	P164	P165	P166	P167	P168	P169	P170	P171	P172	P173	P174	P175	P176	P177	P178	P179	P180	P181	P182	P183	P184	P185	P186	P187	P188	P189	P190	P191	P192	P193	P194	P195	P196	P197	P198	P199	P200	P201	P202	P203	P204	P205	P206	P207	P208	P209	P210	P211	P212	P213	P214	P215	P216	P217	P218	P219	P220	P221	P222	P223	P224	P225	P226	P227	P228	P229	P230	P231	P232	P233	P234	P235	P236	P237	P238	P239	P240	P241	P242	P243	P244	P245	P246	P247	P248	P249	P250	P251	P252	P253	P254	P255	P256	P257	P258	P259	P260	P261	P262	P263	P264	P265	P266	P267	P268	P269	P270	P271	P272	P273	P274	P275	P276	P277	P278	P279	P280	P281	P282	P283	P284	P285	P286	P287	P288	P289	P290	P291	P292	P293	P294	P295	P296	P297	P298	P299	P300	P301	P302	P303	P304	P305	P306	P307	P308	P309	P310	P311	P312	P313	P314	P315	P316	P317	P318	P319	P320	P321	P322	P323	P324	P325	P326	P327	P328	P329	P330	P331	P332	P333	P334	P335	P336	P337	P338	P339	P340	P341	P342	P343	P344	P345	P346	P347	P348	P349	P350	P351	P352	P353	P354	P355	P356	P357	P358	P359	P360	P361	P362	P363	P364	P365	P366	P367	P368	P369	P370	P371	P372	P373	P374	P375	P376	P377	P378	P379	P380	P381	P382	P383	P384	P385	P386	P387	P388	P389	P390	P391	P392	P393	P394	P395	P396	P397	P398	P399	P400	P401	P402	P403	P404	P405	P406	P407	P408	P409	P410	P411	P412	P413	P414	P415	P416	P417	P418	P419	P420	P421	P422	P423	P424	P425	P426	P427	P428	P429	P430	P431	P432	P433	P434	P435	P436	P437	P438	P439	P440	P441	P442	P443	P444	P445	P446	P447	P448	P449	P450	P451	P452	P453	P454	P455	P456	P457	P458	P459	P460	P461	P462	P463	P464	P465	P466	P467	P468	P469	P470	P471	P472	P473	P474	P475	P476	P477	P478	P479	P480	P481	P482	P483	P484	P485	P486	P487	P488	P489	P490	P491	P492	P493	P494	P495	P496	P497	P498	P499	P500	P501	P502	P503	P504	P505	P506	P507	P508	P509	P510	P511	P512	P513	P514	P515	P516	P517	P518	P519	P520	P521	P522	P523	P524	P525	P526	P527	P528	P529	P530	P531	P532	P533	P534	P535	P536	P537	P538	P539	P540	P541	P542	P543	P544	P545	P546	P547	P548	P549	P550	P551	P552	P553	P554	P555	P556	P557	P558	P559	P560	P561	P562	P563	P564	P565	P566	P567	P568	P569	P570	P571	P572	P573	P574	P575	P576	P577	P578	P579	P580	P581	P582	P583	P584	P585	P586	P587	P588	P589	P590	P591	P592	P593	P594	P595	P596	P597	P598	P599	P600	P601	P602	P603	P604	P605	P606	P607	P608	P609	P610	P611	P612	P613	P614	P615	P616	P617	P618	P619	P620	P621	P622	P623	P624	P625	P626	P627	P628	P629	P630	P631	P632	P633	P634	P635	P636	P637	P638	P639	P640	P641	P642	P643	P644	P645	P646	P647	P648	P649	P650	P651	P652	P653	P654	P655	P656	P657	P658	P659	P660	P661	P662	P663	P664	P665	P666	P667	P668	P669	P670	P671	P672	P673	P674	P675	P676	P677	P678	P679	P680	P681	P682	P683	P684	P685	P686	P687	P688	P689	P690	P691	P692	P693	P694	P695	P696	P697	P698	P699	P700	P701	P702	P703	P704	P705	P706	P707	P708	P709	P710	P711	P712	P713	P714	P715	P716	P717	P718	P719	P720	P721	P722	P723	P724	P725	P726	P727	P728	P729	P730	P731	P732	P733	P734	P735	P736	P737	P738	P739	P740	P741	P742	P743	P744	P745	P746	P747	P748	P749	P750	P751	P752	P753	P754	P755	P756	P757	P758	P759	P760	P761	P762	P763	P764	P765	P766	P767	P768	P769	P770	P771	P772	P773	P774	P775	P776	P777	P778	P779	P780	P781	P782	P783	P784	P785	P786	P787	P788	P789	P790	P791	P792	P793	P794	P795	P796	P797	P798	P799	P800	P801	P802	P803	P804	P805	P806	P807	P808	P809	P810	P811	P812	P813	P814	P815	P816	P817	P818	P819	P820	P821	P822	P823	P824	P825	P826	P827	P828	P829	P830	P831	P832	P833	P834	P835	P836	P837	P838	P839	P840	P841	P842	P843	P844	P845	P846	P847	P848	P849	P850	P851	P852	P853	P854	P855	P856	P857	P858	P859	P860	P861	P862	P863	P864	P865	P866	P867	P868	P869	P870	P871	P872	P873	P874	P875	P876	P877	P878	P879	P880	P881	P882	P883	P884	P885	P886	P887	P888	P889	P890	P891	P892	P893	P894	P895	P896	P897	P898	P899	P900	P901	P902	P903	P904	P905	P906	P907	P908	P909	P910	P911	P912	P913	P914	P915	P916	P917	P918	P919	P920	P921	P922	P923	P924	P925	P926	P927	P928	P929	P930	P931	P932	P933	P934	P935	P936	P937	P938	P939	P940	P941	P942	P943	P944	P945	P946	P947	P948	P949	P950	P951	P952	P953	P954	P955	P956	P957	P958	P959	P960	P961	P962	P963	P964	P965	P966	P967	P968	P969	P970	P971	P972	P973	P974	P975	P976	P977	P978	P979	P980	P981	P982	P983	P984	P985	P986	P987	P988	P989	P990	P991	P992	P993	P994	P995	P996	P997	P998	P999	P1000	P1001	P1002	P1003	P1004	P1005	P1006	P1007	P1008	P1009	P10010	P10011	P10012	P10013	P10014	P10015	P10016	P10017	P10018	P10019	P10020	P10021	P10022	P10023	P10024	P10025	P10026	P10027	P10028	P10029	P10030	P10031	P10032	P10033	P10034	P10035	P10036	P10037	P10038	P10039	P10040	P10041	P10042	P10043	P10044	P10045	P10046	P10047	P10048	P10049	P10050	P10051	P10052	P10053	P10054	P10055	P10056	P10057	P10058	P10059	P10060	P10061	P10062	P10063	P10064	P10065	P10066	P10067	P10068	P10069	P10070	P10071	P10072	P10073	P10074	P10075	P10076	P10077	P10078	P10079	P10080	P10081	P10082	P10083	P10084	P10085	P10086	P10087	P10088	P10089	P10090	P10091	P10092	P10093	P10094	P10095	P10096	P10097	P10098	P10099	P100100	P100101	P100102	P100103	P100104	P100105	P100106	P100107	P100108	P100109	P100110	P100111	P100112	P100113	P100114	P100115	P100116	P100117	P100118	P100119	P100120	P100121	P100122	P100123	P100124	P100125	P100126	P100127	P100128	P100129	P100130	P100131	P100132	P100133	P100134	P100135	P100136	P100137	P100138	P100139	P100140	P100141	P100142	P100143	P100144	P100145	P100146	P100147	P100148	P100149	P100150	P100151	P100152	P100153	P100154	P100155	P100156	P100157	P100158	P100159	P100160	P100161	P100162	P100163	P100164	P100165	P100166	P100167	P100168	P100169	P100170	P100171	P100172	P100173	P100174	P100175	P100176	P100177	P100178	P100179	P100180	P100181	P100182	P100183	P100184	P100185	P100186	P100187	P100188	P100189	P100190	P100191	P100192	P100193	P100194	P100195	P100196	P100197	P100198	P100199	P100200	P100201	P100202	P100203	P100204	P100205	P100206	P100207	P100208	P100209	P100210	P100211	P100212	P100213	P100214	P100215	P100216	P100217	P100218	P100219	P100220	P100221	P100222	P100223	P100224	P100225	P100226	P100227	P100228	P100229	P100230	P100231	P100232	P100233	P100234	P100235	P100236	P100237	P100238	P100239	P100240	P100241	P100242	P100243	P100244	P100245	P100246	P100247	P100248	P100249	P100250	P100251	P100252	P100253	P100254	P100255	P100256	P100257	P100258	P100259	P100260	P100261	P100262	P100263	P100264	P100265	P100266	P100267	P100268	P100269	P100270	P100271	P100272	P100273	P100274	P100275	P100276	P100277	P100278	P100279	P100280	P100281	P100282	P100283	P100284	P100285	P100286	P100287	P100288	P100289	P100290	P100291	P100292	P100293	P100294	P100295	P100296	P100297	P100298	P100299	P100300	P100301	P100302	P100303	P100304	P100305	P100306	P100307	P100308	P100309	P100310	P100311	P100312	P1
----------	-------------	----	----	----	----	----	----	----	----	----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	----

REFERENCES

1. Morgan, G., *Avionics Interference Prediction Model*, ESD-TR-70-286, December 1970. (FAA Report No. FAA-RD-71-10.)
2. Friske, L., *An Extended Avionics Interference Prediction Model*, ECAC-PR-73-002, June 1973. (FAA Report No. FAA-RD-73-0.)
3. Bogdanor, J. L., Siegal, M. D., Weinstock, G. L., *Intra-Vehicle Electromagnetic Compatibility Analysis, Part I*, McDonnell Aircraft Company, McDonnell Douglas Corporation, TR AFAL-TR-71 155 PTI, January 1972.
4. Sacks, L. H., *The Geometrical Theory of Diffraction Applied to Aircraft Antenna Isolation Determination, Parts, I and II*, No. RF-67-10, Grumman Aerospace Corp., May 1967.
5. Federal Aviation Regulations, Part 37, Technical Standard Order Authorization, May 1974, Department of Transportation, Federal Aviation Administration.
6. ARINC Characteristic #579-1. Aeronautical Radio, Inc., 2551 Riva Rd, Annapolis, MD 21401, 5 February 1971.
7. Kraus, J. D., *Antennas*, McGraw-Hill, New York, 1950.
8. Jasik, H., ed., *Antenna Engineering Handbook*, McGraw-Hill New York, 1961.
9. Hasserjian, G. and Ishimaru, A., *Excitation of a Conducting Cylindrical Surface of Large Radius of Curvature*, IRE Transactions on Antennas and Propagation, Vol AP-10, May 1962.
10. Khan, P. J., et al, *Derivation of Aerospace Antenna Coupling Factor Interference Prediction Techniques*, Colley Electronics Laboratory, University of Michigan, 1964.
11. Leggett, Robert and Madison, James, *Propagation User's Manual*, ECAC-UM-74-001, ECAC, Annapolis, MD, July 1974.
12. Haseltine, R., *Avionics Interference Prediction Model (AVPAK)*, ECAC-TN-75-020, ECAC, Annapolis, MD, September 1975.
13. Cleaver, R. and Bode, T., *An Algorithm for Calculating Transmitter-Receiver Frequency Rejection Loss*, ESD-TR-70-128, ECAC, Annapolis, MD, 1970.

REFERENCES (Continued)

14. Mason, S. and Zimmerman, H., *Electronic Circuits, Signals, and Systems*, John Wiley and Sons, New York, 1960.
15. Klauder, J. R. et al., *The Theory and Design of Chirp Radars*, The Bell System Technical Journal, July 1960.
16. Keller, J. B., *The Geometrical Theory of Diffraction*, Symposium on Microwave Optics, McGill University, Montreal, Canada, June 1953.
17. Electronic Communications, Inc., *Electromagnetic Compatibility Report for KC-135B Aircraft*, January 1965.
18. The Boeing Corporation, *Category II Flight Test Report for KC-135B (PACCS) Electronic System*, Test No. TY-3181, 1965.
19. Martin, H., *Measured Adjacent Signal Interference of Collocated AN/ARC-51 Transceivers (U)*, ESD-TR-67-003, January 1968, CONFIDENTIAL.
20. The Boeing Corporation, *EC-135C AFSAT EMC Baseline Measurements and Analysis*, Test No. T3-1702, July 1974.
21. E-System Inc., Garland Division, Model NO. E-4A, Report No. G8494.12.26, 1973.
22. Zimballatti, A., Grumman Aircraft Corporation, Personal Contact, June 1972.