

	-	_		
	=			

Discrete Mathematics Tutorial

- Discrete Mathematics Home
- Discrete Mathematics Introduction

Sets, Relations, & Functions

- Discrete Mathematics - Sets

- Discrete Mathematics Relations
- Discrete Mathematics Functions

Mathematical Logic

- Propositional Logic
- Predicate Logic
- Rules of Inference

Group Theory

- Operators & Postulates
- Group Theory

Counting & Probability

- Counting Theory
- Discrete Mathematics Probability

Mathematical & Recurrence

- Mathematical Induction
- Recurrence Relation

Discrete Structures

- Graph & Graph Models
- More on Graphs
- Introduction to Trees
- Spanning Trees

Boolean Algebra

- $\ensuremath{\text{\fontfamily Boolean}}$ Boolean Expressions & Functions
- Simplification of Boolean Functions

Discrete Mathematics Resources

- Discrete Mathematics Quick Guide
- Discrete Mathematics Resources
- Discrete Mathematics Discussion

Mathematics - Recurrence Relation

Next Page **⊙**

In this chapter, we will discuss how recursive techniques can derive sequences and be used for solving counting problems. The procedure for finding the terms of a sequence in a recursive manner is called **recurrence relation**. We study the theory of linear recurrence relations and their solutions. Finally, we introduce generating functions for solving recurrence relations.

Libefinition

A recurrence relation is an equation that recursively defines a sequence where the next term is a function of the previous terms (Expressing F_n as some combination of F_i with i<n).

Example – Fibonacci series: $F_n = F_{n-1} + F_{n-2}$, Tower of Hanoi: $F_n = 2F_{n-1} + 1$

near Recurrence Relations

A linear recurrence equation of degree k is a recurrence equation which is in the format $x_n = A_1 x_{n-1} + A_2 x_{n-1} + A_3 x_{n-1} + ... A_k x_{n-k} (A_n \text{ is a constant and } A_k \neq 0)$ on a sequence of numbers as a first-degree polynomial.

These are some examples of linear recurrence equations -

Recurrence relations	Initial values	Solutions
$F_n = F_{n-1} + F_{n-2}$	$a_1 = a_2 = 1$	Fibonacci number ☑
$F_n = F_{n-1} + F_{n-2}$	a ₁ = 1, a ₂ = 3	Lucas number ⊡"
$F_n = F_{n-2} + F_{n-3}$	a ₁ = a ₂ = a ₃ = 1	Padovan sequence ⊡"
$F_n = 2F_{n-1} + F_{n-2}$	a ₁ = 0, a ₂ = 1	Pell number ⊡*

How to solve linear recurrence relation

Suppose, a two ordered linear recurrence relation is: $F_n = AF_{n-1} + BF_{n-2}$ where A and B are real numbers.

The characteristic equation for the above recurrence relation is -

$$x^2 - Ax - B = 0$$

Three cases may occur while finding the roots -

Case 1 – If this equation factors as $(x - x_1)(x - x_1) = 0$ and it produces two distinct real roots x_1 and x_2 , then $F_n = ax_1^n + bx_2^n$ is the solution. [Here, a and b are constants]

Case 2 – If this equation factors as $(x - x_1)^2 = 0$ and it produces single real root x_1 , then Fn = a x_1^n + bn x_1^n is the solution.

Case 3 – If the equation produces two distinct real roots x_1 and x_2 in polar form $x_1 = r \square \theta$ and $x_2 = r \square (-\theta)$, then $F_n = r^n$ (a $cos(n\theta) + b sin(n\theta)$) is the solution.

Problem 1

Solve the recurrence relation $F_n = 5F_{n-1} - 6F_{n-2}$ where $F_0 = 1$ and $F_1 = 4$

Solution

The characteristic equation of the recurrence relation is -

$$x^2 - 5x + 6 = 0$$
,

So,
$$(x-3)(x-2)=0$$

Hence, the roots are -

$$x_1 = 3$$
 and $x_2 = 2$

The roots are real and distinct. So, this is in the form of case 1

Hence, the solution is -

$$F_n = ax_1^n + bx_2^n$$

Here, $F_n = a3^n + b2^n$ (As $x_1 = 3$ and $x_2 = 2$)

Therefore.

$$1 = F_0 = a3^0 + b2^0 = a+b$$

$$4 = F_1 = a3^1 + b2^1 = 3a+2b$$

Solving these two equations, we get a = 2 and b = -1

Hence, the final solution is -

$$F_n = 2.3^n + (-1) \cdot 2^n = 2.3^n - 2^n$$

Problem 2

Solve the recurrence relation $F_n = 10F_{n-1} - 25F_{n-2}$ where $F_0 = 3$ and $F_1 = 17$

Solution

The characteristic equation of the recurrence relation is -

$$x^2 - 10x - 25 = 0$$
,

So, $(x-5)^2 = 0$

Hence, there is single real root $x_1 = 5$

As there is single real valued root, this is in the form of case 2

Hence, the solution is -

$$F_n = ax_1^n + bnx_1^n$$

$$3 = F_0 = a.5^0 + b.0.5^0 = a$$

$$17 = F_1 = a.5^1 + b.1.5^1 = 5a+5b$$

Solving these two equations, we get a = 3 and b = 2/5

Hence, the final solution is -

$$F_n = 3.5^n + (2/5) .n.2^n$$

Problem 3

Solve the recurrence relation $F_n = 2F_{n-1} - 2F_{n-2}$ where $F_0 = 1$ and $F_1 = 3$

Solution

The characteristic equation of the recurrence relation is -

$$x^2 - 2x - 2 = 0$$

Hence, the roots are -

 $x_1 = 1 + i$

and

In polar form,

 $x_1 = r \square \theta$

and

$$x_2 = r \Box (-\theta)$$
, where $r = \sqrt{2}$ and $\theta = \pi / 4$

The roots are imaginary. So, this is in the form of case 3.

Hence, the solution is -

$$\textbf{F}_{\textbf{n}} = (\sqrt{2} \)^{\textbf{n}} \ (\textbf{a} \ \textbf{cos}(\textbf{n}. \ \pi \ / \ \textbf{4}) + \textbf{b} \ \textbf{sin}(\textbf{n}. \ \pi \ / \ \textbf{4}))$$

$$1 = F_0 = (\sqrt{2})^0 (a \cos(0. \pi/4) + b \sin(0. \pi/4)) = a$$

$$3$$
 = F_1 = $(\sqrt{2}~)^1$ (a cos(1. π / 4) + b sin(1. π / 4)) = $\sqrt{2}$ (a/ $\sqrt{2}$ + b/ $\sqrt{2}$)

Solving these two equations we get a = 1 and b = 2

Hence, the final solution is -

$$F_n = (\sqrt{2}) n (\cos(n. \pi / 4) + 2 \sin(n. \pi / 4))$$

Particular Solutions

A recurrence relation is called non-homogeneous if it is in the form

$$F_n = AF_{n-1} + BF_{n-2} + F(n)$$
 where $F(n) \neq 0$

The solution (a_n) of a non-homogeneous recurrence relation has two parts. First part is the solution (a_h) of the associated homogeneous recurrence relation and the second part is the particular solution (at). So, $a_n = a_h + a_t$.

Let $F(n) = cx^n$ and x_1 and x_2 are the roots of the characteristic equation –

 x^2 = Ax + B which is the characteristic equation of the associated homogeneous recurrence relation –

If
$$x \neq x_1$$
 and $x \neq x_2$, then $a_t = Ax^n$

If
$$x = x_1$$
, $x \neq x_2$, then $a_t = Anx^n$

$$||$$
 If $x = x_1 = x_2$, then $a_t = An^2x^n$

Problem

Solve the recurrence relation $F_n = 3F_{n-1} + 10F_{n-2} + 7.5^n$ where $F_0 = 4$ and $F_1 = 3$

Solution

The characteristic equation is -

$$x^2 - 3x - 10 = 0$$

Or, (x-5)(x+2)=0

Or, $x_1 = 5$ and $x_2 = -2$

Since, $x = x_1$ and $x \neq x_2$, the solution is -

$$a_t = Anx^n = An5^n$$

After putting the solution into the non-homogeneous relation, we get -

$$An5^n = 3A(n-1)5^{n-1} + 10A(n-2)5^{n-2} + 7.5^n$$

Dividing both sides by 5^{n-2} , we get -

$$An5^2 = 3A(n-1)5 + 10A(n-2)5^0 + 7.5^2$$

35A = 175 Or,

A = 5Or,

So, $F_n = n5^{n+1}$

Hence, the solution is -

$$F_n = n5^{n+1} + 6.(-2)^n - 2.5^n$$

enerating Functions

Generating Functions represents sequences where each term of a sequence is expressed as a coefficient of a variable x in a formal power series.

 $\label{eq:alpha} \textit{Mathematically, for an infinite sequence, say a_0, a_1, a_2,...., a_k,...., the generating function will be $\neg a_1$, a_2,..., a_k,..., a_k,..$

$$G_x = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k + \dots = \sum_{k=0}^{\infty} a_k x^k$$

Some Areas of Application

Generating functions can be used for the following purposes -

- For solving a variety of counting problems. For example, the number of ways to make change for a Rs. 100 note with the notes of denominations Rs.1, Rs.2, Rs.5, Rs.10, Rs.20 and Rs.50
- For solving recurrence relations
- For proving some of the combinatorial identities
- For finding asymptotic formulae for terms of sequences

Problem 1

What are the generating functions for the sequences $\{a_k\}$ with $a_k = 2$ and = 3k?

Solution

When $a_k = 2$, generating function,

$$G(x) = \sum_{k=0}^{\infty} 2x^k = 2 + 2x + 2x^2 + 2x^3 + \dots$$

When
$$a_k = 3k$$
, $G(x) = \sum_{k=0}^{\infty} 3kx^k = 0 + 3x + 6x^2 + 9x^3 + \dots$

Problem 2

What is the generating function of the infinite series; 1, 1, 1, 1,?

Solution

Here, $a_k = 1$, for $0 \le k \le \infty$.

Hence.
$$G(x) = 1 + x + x^2 + x^3 + \dots = \frac{1}{(1-x)}$$

Some Useful Generating Functions

For
$$a_k = a^k$$
, $G(x) = \sum_{k=0}^{\infty} a^k x^k = 1 + ax + a^2 x^2 + \dots = \frac{1}{(1-ax)}$

For
$$a_k = (k+1)$$
, $G(x) = \sum_{k=0}^{\infty} (k+1)x^k = 1 + 2x + 3x^2 \dots \frac{1}{(1-x)^2}$
For $a_k = c_k^n$, $G(x) = \sum_{k=0}^{\infty} c_k^n x^k = 1 + c_1^n x + c_2^n x^2 + \dots + x^2 = (1+x)^n$

For
$$a_k = c_{k+1}^n G(x) = \sum_{k=0}^{\infty} c_k^n x^k = 1 + c_k^n x + c_0^n x^2 + \dots + x^2 = (1+x)^n$$

For
$$a_k = \frac{1}{k!}$$
, $G(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} = e^x$

