Equivalencia lógica y formas normales

Clase 02

IIC 1253

Prof. Cristian Riveros

Proposiciones

Una proposición es una afirmación que puede ser:

Conectivos lógicos

р	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

Estos conectivos los usamos para crear proposiciones compuestas

Variables y formulas

Una variable proposicional p es una variable que puede ser reemplazada por los valores 1 o 0.

Una formula proposicional α es una formula que puede ser:

- 1. una variable proposicional,
- 2. los valores 1 o 0, o
- la negación (¬), conjunción (∧), disyunción (∨), condicional (→), bicondicional (↔) de formulas proposicionales.

Sea $\alpha(p_1,\ldots,p_n)$ una formula con variables p_1,\ldots,p_n y v_1,\ldots,v_n una secuencia de valores 1 o 0.

Valuaciones (o asignación de verdad)

Una valuación (o asignación de verdad) $\alpha(v_1, \ldots, v_n)$ es el valor de verdad que resulta al considerar α como una proposición y p_1, \ldots, p_n como proposiciones atómicas con valores de verdad v_1, \ldots, v_n , respectivamente.

Ejemplos

Si $\alpha(p,q,r) := p \wedge (q \rightarrow r)$ y $\beta(p,q) := (p \wedge \neg q) \vee (\neg p \wedge 1)$, entonces:

- $\alpha(1,0,1) = 1$
- $\alpha(0,0,0) = 0$
- $\beta(0,1) = 1$

Ejemplo (Tabla de verdad)

Para la formula $\alpha(p,q,r) \coloneqq (\neg p \lor q) \land r$ tenemos

p	q	r	$(\neg p \lor q) \land r$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Esta tabla se conoce como la **tabla de verdad** de la formula $\alpha(p,q,r)$.

¿qué es una tautología? ¿qué es una contradicción?

Outline

Equivalencia lógica

Formas normales

Outline

Equivalencia lógica

Formas normales

Equivalencia lógica entre formulas

Definición

Sean $\alpha(p_1, \ldots, p_n)$ y $\beta(p_1, \ldots, p_n)$ dos formulas proposicionales con las mismas variables proposicionales.

Decimos que α y β son lógicamente equivalentes:

$$\alpha \equiv \beta$$

si para toda valuación v_1, \ldots, v_n se cumple que:

$$\alpha(\mathbf{v}_1,\ldots,\mathbf{v}_n)=\beta(\mathbf{v}_1,\ldots,\mathbf{v}_n)$$

¿qué propiedad tienen que cumplir las tablas de verdad de α y β para que α y β sean lógicamente equivalentes?

Equivalencia entre formulas

Ejemplo

Para las formulas $p \land (q \lor r)$ y $(p \land q) \lor (p \land r)$:

p	q	r	$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Como ambas formulas son equivalentes para toda valuación, entonces:

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

Podemos demostrar varias equivalencias útiles de esta manera.

Las siguientes formulas son lógicamente equivalentes :

1. Conmutatividad:

$$p \wedge q \equiv q \wedge p$$

 $p \vee q \equiv q \vee p$

2. Asociatividad:

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

 $p \vee (q \vee r) \equiv (p \vee q) \vee r$

Las siguientes formulas son lógicamente equivalentes:

3. Idempotente:

$$p \wedge p \equiv p$$
 $p \vee p \equiv p$

4. Doble negación:

$$\neg \neg p \equiv p$$

Las siguientes formulas son lógicamente equivalentes:

5. Distributividad:

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

 $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

6. De Morgan:

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Las siguientes formulas son lógicamente equivalentes:

7. Implicación:

$$\begin{array}{lcl} p \rightarrow q & \equiv & \neg p \lor q \\ \\ p \rightarrow q & \equiv & \neg q \rightarrow \neg p \\ \\ p \leftrightarrow q & \equiv & (p \rightarrow q) \land (q \rightarrow p) \end{array}$$

8. Absorción:

$$p \lor (p \land q) \equiv p$$

 $p \land (p \lor q) \equiv p$

Las siguientes formulas son lógicamente equivalentes:

9. Identidad:

$$p \lor 0 = p$$
$$p \land 1 = p$$

10. Dominación:

$$p \wedge 0 = 0$$

$$p \vee 1 = 1$$

11. Negación:

$$p \lor \neg p = 1$$

 $p \land \neg p = 0$

Definición

Sean $\alpha(p_1, \ldots, p_n)$ y β_1, \ldots, β_n formulas proposicionales.

La composición $\alpha(\beta_1,\ldots,\beta_n)$ es la formula resultante de reemplazar en α cada aparición de la variable p_i por la formula β_i para todo $i \leq n$.

Ejemplo

- $\beta_1(r,s) := (r \land \neg s)$
- $\beta_2(t,u) := (t \rightarrow u)$

$$\alpha(\beta_1(r,s),\beta_2(t,u)) := (r \land \neg s) \land ((t \to u) \lor \neg (r \land \neg s))$$

Definición

Sean $\alpha(p_1,\ldots,p_n)$ y β_1,\ldots,β_n formulas proposicionales.

La **composición** $\alpha(\beta_1,\ldots,\beta_n)$ es la formula resultante de reemplazar en α cada aparición de la variable p_i por la formula β_i para todo $i \leq n$.

Teorema

Sean $\alpha(p_1,\ldots,p_n)$, $\alpha'(p_1,\ldots,p_n)$ y β_1,\ldots,β_n formulas proposicionales.

Si
$$\alpha(p_1,\ldots,p_n)\equiv\alpha'(p_1,\ldots,p_n)$$
, entonces $\alpha(\beta_1,\ldots,\beta_n)\equiv\alpha'(\beta_1,\ldots,\beta_n)$.

¿qué implicación tiene este teorema para las equivalencias útiles?

Teorema

Sean $\alpha(p_1,\ldots,p_n)$, $\alpha'(p_1,\ldots,p_n)$ y β_1,\ldots,β_n formulas proposicionales.

 $\mathsf{Si} \ \alpha(\pmb{p}_1,\ldots,\pmb{p}_n) \equiv \alpha'(\pmb{p}_1,\ldots,\pmb{p}_n), \ \mathsf{entonces} \ \alpha(\beta_1,\ldots,\beta_n) \equiv \alpha'(\beta_1,\ldots,\beta_n).$

Demostración

Sean $\alpha(p,q)$, $\alpha'(p,q)$, $\beta_1(r,s)$ y $\beta_2(r,s)$ formulas tal que:

$$\alpha(p,q) \equiv \alpha'(p,q)$$

¿qué debemos demostrar?

Demostración

Sean $\alpha(p,q)$, $\alpha'(p,q)$, $\beta_1(r,s)$ y $\beta_2(r,s)$ formulas tal que:

$$\alpha(p,q) \equiv \alpha'(p,q)$$

Considere una valuación cualquiera (v_1, v_2) y defina los valores de verdad:

$$v_1' := \beta_1(v_1, v_2)$$

$$v_2' := \beta_2(v_1, v_2)$$

Entonces:

$$\begin{array}{lcl} \alpha(\beta_1(v_1,v_2),\beta_2(v_1,v_2)) & = & \alpha(v_1',v_2') \\ \\ & = & \alpha'(v_1',v_2') \\ \\ & = & \alpha'(\beta_1(v_1,v_2),\beta_2(v_1,v_2)) \end{array}$$

Por lo tanto,
$$\alpha(\beta_1(r,s),\beta_2(r,s)) \equiv \alpha'(\beta_1(r,s),\beta_2(r,s))$$

¿para qué nos sirven las equivalencias lógicas?

Ejemplo

Operadores generalizados

Gracias a la asociatividad de \lor y \land , nos ahorraremos los paréntesis:

$$(p_1 \lor p_2) \lor p_3 \equiv p_1 \lor (p_2 \lor p_3) \equiv p_1 \lor p_2 \lor p_3$$

 $(p_1 \land p_2) \land p_3 \equiv p_1 \land (p_2 \land p_3) \equiv p_1 \land p_2 \land p_3$

También usaremos una generalización de ∧ y ∨:

$$\bigwedge_{i=1}^{n} p_{i} \equiv p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}$$

$$\bigvee_{i=1}^{n} p_{i} \equiv p_{1} \vee p_{2} \vee \cdots \vee p_{n}$$

Operadores generalizados

Ejemplo equivalencias generalizadas

Distributividad:

$$p \vee \bigwedge_{i=1}^{n} q_{i} \equiv \bigwedge_{i=1}^{n} (p \vee q_{i})$$

$$p \wedge \bigvee_{i=1}^{n} q_{i} \equiv \bigvee_{i=1}^{n} (p \wedge q_{i})$$

De Morgan:

$$\neg \bigwedge_{i=1}^{n} p_{i} \equiv \bigvee_{i=1}^{n} \neg p_{i}$$

$$\neg \bigvee_{i=1}^{n} p_{i} \equiv \bigwedge_{i=1}^{n} \neg p_{i}$$

Outline

Equivalencia lógica

Formas normales

Conectivos ternarios

Queremos definir el conectivo lógico: if p then q else r

p	q	r	if p then q else r					
0	0	0	0					
0	0	1	1					
0	1	0	0					
0	1	1	1					
1	0	0	0					
1	0	1	0					
1	1	0	1					
1	1	1	1					

¿cómo se puede representar este conectivo usando ¬, ∧ y →?

Conectivos ternarios

Solución: $(p \rightarrow q) \land ((\neg p) \rightarrow r)$

p	q	r	if p then q else r	$(p \to q) \land ((\neg p) \to r)$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

Conectivos *n*-arios

Usando tablas de verdad podemos definir conectivos *n*-arios: $C(p_1, \ldots, p_n)$.

p_1	p ₂	 p_{n-1}	p_n	$C(p_1, p_2, \ldots, p_{n-1}, p_n)$
0	0	 0	0	b_1
0	0	 0	1	b_2
:	:	 ÷	÷	:
1	1	 1	1	b_{2^n}

¿és posible representar $C(p_1,\ldots,p_n)$ usando \neg , \lor , \land , \rightarrow y \leftrightarrow ?

Conectivos *n*-arios

Ejemplo

p	q	r	C(p,q,r)	p	q	r	$\alpha_4(p,q,r)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	1
0	1	0	1	0	1	0	1
0	1	1	0	0	1	1	0
1	0	0	0	1	0	0	0
1	0	1	1	1	0	1	1
1	1	0	0	1	1	0	0
1	1	1	1	1	1	1	1

$$\alpha_4(p,q,r) \ \coloneqq \ (\neg p \wedge \neg q \wedge r) \, \vee \, (\neg p \wedge q \wedge \neg r) \, \vee \, (p \wedge \neg q \wedge r) \, \vee \, (p \wedge q \wedge r)$$

¿és posible representar C(p,q,r) usando \neg , \lor , \land , \rightarrow y \leftrightarrow ?

Conectivos *n*-arios

p_1	p_2	•••		p_{n-1}	p_n	$C(p_1,p_2,\ldots,p_{n-1},p_n)$
0	0			0	0	b_1
0	0			0	1	b_2
÷	÷			÷	÷	:
v_1^i	v_2^i	 v_j^i	•••	v_{n-1}^i	v_n^i	b_i
÷	:			÷	÷	:
1	1	•••		1	1	b_{2^n}

Suponiendo que $v_1^i, \ldots, v_j^i, \ldots, v_n^i$ es la valuación correspondiente a la fila i con valor b_i de la tabla de verdad de $C(p_1, \ldots, p_n)$, entonces:

$$C(p_1, p_2, \ldots, p_{n-1}, p_n) \equiv \bigvee_{i: b_i=1} \left(\left(\bigwedge_{j: v_i^j=1} p_j \right) \wedge \left(\bigwedge_{j: v_j^i=0} \neg p_j \right) \right)$$

Toda tabla de verdad se puede representar con \land , \lor y \neg !!!

Formas normales

Un literal es una variable proposicional o su negación.

Definición

Una formula α está en Forma Normal Disyuntiva (DNF) si es una disyunción de conjunciones de literales, o sea, si es de la forma:

$$\alpha = \beta_1 \vee \beta_2 \vee \ldots \vee \beta_k$$

con $\beta_i = (l_1^i \wedge \ldots \wedge l_{k_i}^i)$ y $l_1^i, \ldots, l_{k_i}^i$ son literales.

¿cuáles formulas están en DNF?

- $(p \land \neg q) \lor (\neg p \land p \land s) \lor (r \land \neg s)$
- $(s \wedge (p \vee r)) \vee (\neg q \wedge r \wedge s)$
- $(s \wedge r) \vee \neg q \vee r \vee s$

Formas normales

Un literal es una variable proposicional o la negación de una variable.

Definición

Una formula α está en Forma Normal Conjuntiva (CNF) si es una conjunción de disyunciones de literales, o sea, si es de la forma:

$$\alpha = \beta_1 \wedge \beta_2 \wedge \ldots \wedge \beta_k$$

con $\beta_i = (I_1^i \vee \ldots \vee I_{k_i}^i)$ y $I_1^i, \ldots, I_{k_i}^i$ son literales.

¿cuáles formulas estan en CNF?

- $(p \vee \neg q) \wedge (\neg p \vee p \vee s) \wedge (r \vee \neg s)$
- $(s \wedge r) \wedge (\neg q \vee r \vee s)$

Teorema

- 1. Toda formula α es lógicamente equivalente a una formula en DNF.
- 2. Toda formula α es lógicamente equivalente a una formula en CNF.

Demostración

Sea $\alpha(p_1,\ldots,p_n)$ y v_1^i,\ldots,v_n^i la valuación correspondiente a la *i*-ésima fila de la tabla de verdad de α con valor $\alpha(v_1^i,\ldots,v_n^i)$, entonces:

$$1. \ \alpha(p_1,\ldots,p_n) \ \equiv \ \bigvee_{i:\alpha(v_1^i,\ldots,v_n^i)=1} \left(\left(\bigwedge_{j:v_i^i=1} p_j \right) \land \left(\bigwedge_{j:v_i^i=0} \neg p_j \right) \right)$$

$$2. \ \alpha(p_1,\ldots,p_n) \ \equiv \ \bigwedge_{i:\alpha(v_1^i,\ldots,v_n^i)=0} \left(\left(\bigvee_{j:v_i^i=1} \neg p_j\right) \lor \left(\bigvee_{j:v_i^i=0} p_j\right) \right)$$

Demostración (DNF)

$$\beta(p_1,\ldots,p_n) = \bigvee_{i:\alpha(v_1^i,\ldots,v_n^i)=1} \left(\left(\bigwedge_{j:v_j^i=1} p_j \right) \wedge \left(\bigwedge_{j:v_j^i=0} \neg p_j \right) \right)$$

Por demostrar (PD): $\alpha \equiv \beta$.

¿qué debemos **demostrar** para demostrar que $\alpha \equiv \beta$?

Demostración (DNF)

$$\beta(p_1,\ldots,p_n) = \bigvee_{i:\alpha(v_1^i,\ldots,v_n^i)=1} \left(\left(\bigwedge_{j:v_i^i=1} p_j \right) \wedge \left(\bigwedge_{j:v_i^i=0} \neg p_j \right) \right)$$

Por demostrar (PD): $\alpha \equiv \beta$.

PD: Para toda valuación v_1, \ldots, v_n , se cumple $\alpha(v_1, \ldots, v_n) = \beta(v_1, \ldots, v_n)$.

Esto lo podemos **dividir** en demostrar que para toda valuación $\bar{v} = v_1, \dots v_n$:

- 1. si $\alpha(\bar{v}) = 1$ entonces $\beta(\bar{v}) = 1$.
- 2. si $\alpha(\bar{v}) = 0$ entonces $\beta(\bar{v}) = 0$.

Demostraremos 1. y 2. por separado.

Demostración (DNF: si $\alpha(\bar{v}) = 1$ entonces $\beta(\bar{v}) = 1$)

$$\beta(p_1,\ldots,p_n) = \bigvee_{i:\alpha(v_1^i,\ldots,v_n^i)=1} \left(\left(\bigwedge_{j:v_i^i=1} p_j \right) \wedge \left(\bigwedge_{j:v_i^i=0} \neg p_j \right) \right)$$

Sea $\bar{v} = v_1, \dots, v_n$ una valuación cualquiera y suponga que $\alpha(\bar{v}) = 1$. Sea v_1^i, \dots, v_n^i la valuación de la *i*-ésima fila de la tabla de verdad tal que:

$$v_1^i = v_1, \ v_2^i = v_2, \ \dots, \ v_n^i = v_n$$

Como $\alpha(\bar{\mathbf{v}}) = 1$, entonces $\alpha(\mathbf{v}_1^i, \dots, \mathbf{v}_n^i) = 1$. Sea $\beta_i = \bigwedge_{j: \mathbf{v}_j^i = 1} p_j \wedge \bigwedge_{j: \mathbf{v}_j^i = 0} \neg p_j$.

PD: $\beta_i(\bar{v}) = 1$.

Si demostramos lo anterior, habremos demostrado que $\beta(\bar{v}) = 1$.

(¿por qué?)

Demostración (DNF: si $\alpha(\bar{v}) = 1$ entonces $\beta(\bar{v}) = 1$)

$$\beta(p_1,\ldots,p_n) = \bigvee_{i:\alpha(v_1^i,\ldots,v_n^i)=1} \left(\left(\bigwedge_{j:v_1^i=1} p_j \right) \wedge \left(\bigwedge_{j:v_1^i=0} \neg p_j \right) \right)$$

Sea $\bar{v} = v_1, \dots, v_n$ una valuación cualquiera y suponga que $\alpha(\bar{v}) = 1$. Sea v_1^i, \dots, v_n^i la valuación de la *i*-ésima fila de la tabla de verdad tal que:

$$v_1^i = v_1, \ v_2^i = v_2, \ \ldots, \ v_n^i = v_n$$

Como
$$\alpha(\bar{v}) = 1$$
, entonces $\alpha(v_1^i, \dots, v_n^i) = 1$. Sea $\beta_i = \bigwedge_{j: v_i^i = 1} p_j \wedge \bigwedge_{j: v_i^i = 0} \neg p_j$.

PD: $\beta_i(\bar{v}) = 1$.

Por construcción, para cada j la aparición de p_j en β_i depende de v_j^i :

- Si $v_j^i = v_j = 1$, entonces p_j aparece en β_i y $p_j(\bar{v}) = 1$.
- Si $v_j^i = v_j = 0$, entonces $\neg p_j$ aparece en β_i y $(\neg p_j)(\bar{v}) = 1$.

Cada aparición de p_j en β_i es verdadera con \bar{v} , por lo tanto $\beta_i(\bar{v}) = 1$.

Demostración (DNF: si $\alpha(\bar{v}) = 0$ entonces $\beta(\bar{v}) = 0$)

$$\beta(p_1,\ldots,p_n) = \bigvee_{i:\alpha(v_1^i,\ldots,v_n^i)=1} \left(\left(\bigwedge_{j:v_j^i=1} p_j \right) \wedge \left(\bigwedge_{j:v_j^i=0} \neg p_j \right) \right)$$

Sea $\bar{v} = v_1, \dots, v_n$ una valuación cualquiera y suponga que $\alpha(\bar{v}) = 0$.

Para la *i*-esima fila v_1^i, \ldots, v_n^i de la tabla de verdad, sea:

$$\beta_i = \bigwedge_{j: v_j^i = 1} p_j \wedge \bigwedge_{j: v_j^i = 0} \neg p_j$$

PD: Para todo *i* tal que $\alpha(v_1^i, \dots, v_n^i) = 1$, se cumple que $\beta_i(\bar{v}) = 0$.

Si demostramos lo anterior, habremos demostrado que $\beta(\bar{v}) = 0$.

(¿por qué?)

Demostración (DNF: si $\alpha(\bar{v}) = 0$ entonces $\beta(\bar{v}) = 0$)

$$\beta(p_1,\ldots,p_n) = \bigvee_{i:\alpha(v_1^i,\ldots,v_n^i)=1} \left(\left(\bigwedge_{j:v_i^i=1} p_j \right) \wedge \left(\bigwedge_{j:v_i^i=0} \neg p_j \right) \right)$$

Sea $\bar{v} = v_1, \dots, v_n$ una valuación cualquiera y suponga que $\alpha(\bar{v}) = 0$.

Para la i-esima fila v_1^i,\ldots,v_n^i de la tabla de verdad, sea:

$$\beta_i = \bigwedge_{j:\,v_i^i=1} p_j \wedge \bigwedge_{j:\,v_i^i=0} \neg p_j$$

PD: Para todo *i* tal que $\alpha(v_1^i, \dots, v_n^i) = 1$, se cumple que $\beta_i(\bar{v}) = 0$.

Sea un i cualquiera tal que $\alpha(v_1^i, \ldots, v_n^i) = 1$.

Como $\alpha(\bar{v}) = 0$ entonces existe un j tal que $v_i^j \neq v_j$.

- Si $v_i^i = 1$, entonces p_i aparece en β_i pero $p_i(\bar{v}) = 0$.
- Si $v_i^i = 0$, entonces $\neg p_i$ aparece en β_i pero $\neg p_i(\bar{v}) = 0$.

Como β_i es una conjunción, en ambos casos concluimos que $\beta_i(\bar{v}) = 0$.

Demostración (CNF)

Considere la formula $\neg \alpha(p_1, \dots, p_n)$. Por lo anterior, sabemos que:

$$\neg \alpha(p_1, \dots, p_n) \equiv \bigvee_{i: (\neg \alpha)(v_1^i, \dots, v_n^i) = 1} \left(\left(\bigwedge_{j: v_j^i = 1} p_j \right) \land \left(\bigwedge_{j: v_j^i = 0} \neg p_j \right) \right)$$

$$\equiv \bigvee_{i: \alpha(v_1^i, \dots, v_n^i) = 0} \left(\left(\bigwedge_{j: v_i^i = 1} p_j \right) \land \left(\bigwedge_{j: v_j^i = 0} \neg p_j \right) \right)$$

¿cómo usamos lo anterior para demostrar CNF?

Demostración (CNF)

Por el teorema de composición de formulas y De Morgan:

$$\alpha(p_1, \dots, p_n) \equiv \neg(\neg \alpha(p_1, \dots, p_n))$$

$$\equiv \neg\left(\bigvee_{i:\alpha(v_1^i, \dots, v_n^i) = 0} \left(\bigwedge_{j:v_j^i = 1} p_j\right) \land \left(\bigwedge_{j:v_j^i = 0} \neg p_j\right)\right)$$

$$\equiv \bigwedge_{i:\alpha(v_1^i, \dots, v_n^i) = 0} \neg\left(\left(\bigwedge_{j:v_j^i = 1} p_j\right) \land \left(\bigwedge_{j:v_j^i = 0} \neg p_j\right)\right)$$

$$\equiv \bigwedge_{i:\alpha(v_1^i, \dots, v_n^i) = 0} \left(\bigvee_{j:v_j^i = 1} \neg p_j\right) \lor \left(\bigvee_{j:v_j^i = 0} p_j\right)$$

□ (significa "queda esto demostrado")