

Cálculo I Trabalho de Grupo

Eng. Informática 21/11/2007 [2h 00m]

Nome (Número
Nome (Número

Exercício 1. Represente os conjuntos seguintes na forma de intervalos ou união de intervalos:

a)
$$\{x \in \mathbb{R} : |1 - x| < |x - 3|\};$$

b)
$$\left\{ x \in \mathbb{R} : \frac{x^2 - 3x - 1}{2 - x} \le 1 \right\}$$
.

Exercício 2. Em cada alínea apresente um exemplo ou justifique porque não existe:

- a) um subconjunto de \mathbb{R} , finito, com tantos racionais quantos irracionais;
- b) um subconjunto de \mathbb{R} , numerável, com tantos racionais quantos irracionais.

Exercício 3	3. Considere o conjunto $A=\left\{\frac{(-1)^n}{n}:n\in\mathbb{N}\right\}$. Indique, justificando, se as proposições seguintes verdadeiras ou falsas:
	o conjunto A é finito;
ь)	o conjunto A é aberto;
c)	o conjunto A é fechado;
d)	o conjunto A é limitado;
e)	o conjunto A tem máximo.

a) um prolongamento contínuo mas não derivável de f ao intervalo]0,4[;

b) um prolongamento de f ao intervalo]0,4[que seja derivável;

c) um prolongamento f ao intervalo]0,4[que seja derivável mas cuja derivada nunca se anula;

d) um prolongamento de f ao intervalo]0,4[cujo contradomínio seja $\mathbb{R}^+;$

e) um prolongamento de f ao intervalo]0,4[que seja injectivo.

Exercício 5. Calcule os limites seguintes:

a)
$$\lim_{x\to 1} \frac{\sqrt{x+1}}{\sqrt{x+3}-2};$$

$$b) \quad \lim_{x \to 0} \frac{\cos x - \sin x - e^x}{x^3}.$$

Exercício 6. Calcule o polinómio de Taylor de ordem 3, em torno de 0, da função $f(x) = x \operatorname{sen} x$.

Exercício 7. Considere os polinómios $P(x)=1-x+x^2$ e $Q(x)=2\,x-2\,x^2+x^3$. Indique, justificando, se P(x) e Q(x) poderão ser respectivamente os polinómios de Taylor de ordem 2 e 3, em torno de 1, de alguma função.