國立臺灣大學電機資訊學院資訊工程研究所 碩士論文

Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

中文標題,請到ntuvars.tex輸入你的資料 MsWave

> 王瑞斌 Jui-Pin Wang

指導教授:林守德博士 Advisor: Shou-De Lin, Ph.D.

> 中華民國 103 年 7 月 July, 2014

中文標題,請到ntuvars.tex輸入你的資料

王瑞斌

撰

國立臺灣大學(碩)博士學位論文 口試委員會審定書

論文中文題目 論文英文題目

	本論文係	○○○君((○學號○))在國立臺	臺灣大學○	○學系、	、 所完
成之	碩(博)	士學位論文	、於民國(○○年○(月〇〇日	承下列者	学試委
員審	查通過及	口試及格,	特此證明				

口試委員:		(簽名)
	(指導教授)	(, , , , , , , , , , , , , , , , , , ,
系主任、所長		(簽名)_
	(是否須簽章依各院系所規)	定)

致謝

這裡將簡單介紹如何利用 LATEX 來編輯你的畢業論文,若不知道 LATEX 是什麼或是沒有概念的話,建議你可以簡單看過放在此資料夾裡的李果正-大家來學 LATEX前四章內容,在下載適合的 LATEX 整合發行套件之後(請看第 III.項),可以嘗試用剛安裝好的 LATEX 編輯器來編譯thesis.tex這份文件,編譯的方法可以看下面第 V.項的介紹,若編譯成功,所編譯出來的 thesis.pdf 文件的應該會跟此 demo.pdf 文件一模一樣,而且沒有任何問號符號,走到這一步的話,就差不多可以開始邊學習 LATEX 邊編輯你的畢業論文了!基本上會使用到的指令都包含在論文的的各章節裡,怎麼在論文裡寫公式或是放圖之類的就自行看 tex 檔學吧。如果有任何問題或建議可以來信與我討論,我的信箱是dran31545@gmail.com,或是到此範本Google Project裡面的Issues貼上你的問題與建議,我會盡我所能更新此範本,也歡迎大家自行重製、改良此範本並散布給他人,祝大家順利畢業!

要編輯致謝請打開acknowledgementsCH.tex

- I. 此範本參考並修改自下列網站的資料:
 - 如何用 LaTeX 排版臺灣大學碩士論文
 - —台灣大學論文 LATEX 樣版原創者黃子桓的教學網頁
 - LaTeX 常用語法及論文範本
 - —Hitripod所修改的範本,這裡參考了許多他所寫的格式和內容
 - 使用 LaTeX 做出精美的論文
 - XeTeX:解決 LaTeX 惱人的中文字型問題
 - 台灣大學碩士、博士論文的 Latex 模板
- II. 幾個有用的參考資料及網路資源:
 - ◆ 李果正 -大家來學 MFX—建議先看完前四章
 - WIKIBOOKS-IATEX—好用的線上工具書
 - Working with a .bib file using JabRef
 - Using BibDesk A short tutorial
 - LaTeX for Physicists

III. 下載 LATFX 整合發行套件,可參考TeX Collection:

- 1. MacTeX: For MacOSX, 下載MacTeX.pkg
- 2. ProTeXt: For Windows, 下载ISO file
- 3. TeX Live: For GNU/Linux and MacOSX, and Windows,下载ISO file
- 4. CTAN: The Comprehensive TeX Archive Network.

IV. 好用的程式:

- 文獻管理系統:
 - 1. JabRef 可参考Working with a .bib file using JabRef或是Google及YouTube
 - 2. BibDesk (For Mac) 可参考Using BibDesk - A short tutorial或是Google及YouTube
- 方程式編輯器: Daum Equation Editor (Chrome App,必須使用 Google 瀏覽器)

V. 編譯流程:

- 1. xelatex thesis 對 thesis.tex 進行第一次 XeLaTeX 編譯,產生 thesis.pdf 以其他檔案
- bibtex thesis
 對 thesis.tex 進行 BibTeX 編譯,產生 bbl 檔以及 blg 檔
- 3. xelatex thesis 對 thesis.tex 進行第二次 XeLaTeX 編譯,產生目錄、圖表連結及參考文獻
- 4. xelatex thesis 對 thesis.tex 進行第三次 XeLaTeX 編譯,產生參考文獻連結,完成 編譯
- 注意!此範本使用 cite 套件,可依據你利用文獻管理系統所整理好的thesisbib.bib檔在論文最後產生參考文獻頁面,若你的系所規定要在每個章節的後面產生參考文獻,則可以用 chapterbib 套件,來對每個有附參考文獻的章節 tex 檔進行一次 BibTeX 編譯產生 bbl 檔,如範例的introduction.tex、THM.tex和EXP.tex,如果有這需要請把thesis.tex檔裡使用 cite 套件的指令利用註解符號%來取消使用 cite 套件,並刪去出現在使用 chapterbib 套件指令前面的註解符號%來啟動使用 chapterbib 套件

\usepackage{cite} %\usepackage{chapterbib} 改成

```
%\usepackage{cite}
\usepackage{chapterbib}
再來利用註解符號%取消會把參考文獻放在論文最後的指令
\bibliographystyle{unsrt}
\addcontentsline{toc}{chapter}{\bibname}
\bibliography{thesisbib}
改成
%\bibliographystyle{unsrt}
%\addcontentsline{toc}{chapter}{\bibname}
%\bibliography{thesisbib}
再把用來輸入章節檔案的 \input 指令改成 \include 指令
\input{introduction} => \include{introduction}
\input{THM}
                    => \include{THM}
                    => \include{EXP}
\input{EXP}
最後記得在每個有附參考文獻的章節加上產生參考文獻的指令,即
在introduction.tex、THM.tex和EXP.tex三個檔案裡最後啟動下面兩行指
今
%\bibliographystyle{unsrt} => \bibliographystyle{unsrt}
%\bibliography{thesisbib} => \bibliography{thesisbib}
而編譯時則需要對有附參考文獻的introduction.tex、THM.tex和EXP.tex各
做一次 BibTeX 編譯,編譯流程如下
 1. xelatex thesis
   對 thesis.tex 進行第一次 XeLaTeX 編譯,產生 thesis.pdf 及其他檔案
2 bibtex introduction
   對 introduction.tex 進行 BibTeX 編譯,產生 bbl 檔以及 blg 檔
3. bibtex THM
   對 THM.tex 進行 BibTeX 編譯,產生 bbl 檔以及 blg 檔
4. bibtex EXP
   對 EXP.tex 進行 BibTeX 編譯,產生 bbl 檔以及 blg 檔
5. xelatex thesis
```

考文獻

對 thesis.tex 進行第二次 XeLaTeX 編譯,產生目錄、圖表連結及參

6. xelatex thesis

對 thesis.tex 進行第三次 XeLaTeX 編譯,產生參考文獻連結,完成編譯

VI. 補充說明與注意事項:

• 口試委員會審定書:

請到台大圖書館網頁的電子論文服務下載論文格式範本,並修改成正確的格式,也可到此範本所在資料夾的cert.doc修改。當然你也可以利用 LaTeX 來編輯,你只要填好ntuvars.tex檔的資料,並去除在 thesis.tex 裡下面這行的註解符號%

%\makecertification

編譯完後就可以產生審定書格式。口試通過後,請把已經簽名的審定書掃描成 pdf 檔,再取代原本的cert.pdf,即可放上已簽名的審定書。處理審定書出現的指令在 thesis.tex 裡

```
%----- generate the certification ... %\makecertification
```

%----- includepdf by using package ...
\addcontentsline{toc}{chapter}{口試委員會審定書}
\includepdf[pages={1}]{cert.pdf}

• 浮水印:

資料夾已經附上浮水印檔案了,若學校有更改,到請到台大圖書館網頁的電子論文服務下載pdf格式的浮水印到此範本所在資料夾。若要開啟關閉浮水印功能,即自行刪去或加上下面位於thesis.tex指令的註解符號%

```
%\CenterWallPaper{0.174} {watermark.pdf}
```

%\setlength{\wpXoffset}{6.1725cm}

%\setlength{\wpYoffset}{10.5225cm}

• 單面印刷與雙面印刷:

此範本為單面印刷,若論文頁數超過80頁,依規定需要用雙面印刷,此時只需把thesis.tex裡的

```
\documentclass[a4paper, 12pt, oneside]{book}
改成
```

\documentclass[a4paper, 12pt, twoside] {book}

• 如何加入附錄?

```
在thesis.tex裡,依需求選擇 input 或 include, 刪去%符號來輸入附
 錄章節
 %----- Input your appendix here
 %\input{AppendixA}
 %or %chapter cite == \include
 %\include{AppendixA}
 在章節檔 AppendixA.tex 裡,開頭打
 \chapter{First appendix title}
 即可,以此類推。

    系上規定論文圖表須全部放到最後獨立出來的章節,且章節不出

 現在目錄中:
 在thesis.tex裡,依需求選擇 input 或 include, 刪去%符號來輸入圖
 %----- Input your Figure chapter here ------
 %\input{EndFigTab}
 %chapter cite == \include
 %\include{EndFigTab}
 在章節檔EndFigTab.tex裡有範例和說明可供參考,要注意正文的圖
 表和附錄的圖表要分清楚,即在EndFigTab.tex內
 \renewcommand{\thefigure}{\arabic{chapter}.
 \arabic{figure}}
 \renewcommand{\thetable}{\arabic{chapter}.
 \arabic{table}}
 %--- Input your main figures and tables here ---
 這幾行之後章節計數器格式已切換為1...9,放正文的圖表,
 \renewcommand{\thefigure}{\Alph{chapter}.
 \arabic{figure}}
 \renewcommand{\thetable}{\Alph{chapter}.
 \arabic{table}}
 %--- Input your appendix figures and tables here ---
 這幾行之後章節計數器格式已切換為A...Z,放附錄的圖表。另外
```

要取消圖表的浮動功能,才能讓圖表按照指令出現順序排好,即 把平常使用的圖表指令

```
\begin{figure}[htb]
...
\begin{table}[htb]

改成
\begin{figure}[!]
...
\begin{table}[!]
```

剩下的只要注意章節圖表的計數器設定即可。\ref和 \label 指令可以在此圖表章節與正文章節使用。

如果我想要修改 margin(文字邊界)的話,可以從哪裡下手呢?
 請打開ntu.sty修改下面這行的上下左右參數即可:

\RequirePackage[top=3cm,left=3cm,bottom=2cm,right=3cm]
{geometry}

 我想引用 Twomey (1974): Pollution and planetary albedo 這篇論文, 如何用 \cite 引用它的時候在內文顯示 Twomey (1974) [編號]?
 建議使用 natbib 套件,參考資料如下:

LaTeX/Bibliography Management

Overview of Bibtex-Styles

Reference sheet for natbib usage

• X_TT_EX :

此範本中文字體使用X_HT_EX 轉換,細節請參考Hitripod寫的XeTeX:解決 LaTeX 惱人的中文字型問題。

•如何輸入英文 '單引號' 和 "雙引號" 以及不同長度的破折號? 可以參考率果正 -大家來學 IATEX第 17 頁針對標點符號的遊戲規 則,範例如下,輸入以下指令:

、單引號/\\ 、雙引號/'\\ -hyphen\\ --en-dash\\

則顯示:

'單引號'

"雙引號"

- -hyphen
- -en-dash
- -em-dash

中文摘要

請打開並編輯abstractCH.tex

關鍵字:壹、貳、參、肆、伍、陸、柒

Abstract

Open and edit abstractEN.tex

Key words:A, B, C, D, E, F, G

Contents

口	試委	員會審定	定書					i
致	謝							ii
中	文摘	要						ix
Ał	ostrac	t						X
Co	ontent	ts						xi
Li	st of I	Figures						xiii
Li	st of T	Fables						xiv
1	Get	started	with LaTeX					1
	1.1	EALEX V	Adavanced Features					1
		1.1.1	Figure					2
		1.1.2	Table					2
		1.1.3	Verb					4
		1.1.4	Enumeration					4
		1.1.5	Code Display					4
		1.1.6	Math					5
		1.1.7	Algorithms					6
2	Intr	oductio	n					7
	2.1	Thesis	Overview					7

3	Rela	ited Wo	orks	8			
4	Met	hodolog	gy	9			
	4.1	Proble	em Setup	9			
	4.2	Overal	ll Framework	9			
	4.3	Orthog	gonal Transformation	10			
		4.3.1	Definition of Ortohogonal Transformation	11			
		4.3.2	Property of Orthogonal Transformation	11			
	4.4	Enhan	ce the Bounds by the Orthogonal Transformation	11			
		4.4.1	The Goal of the First Phase	11			
		4.4.2	Relation Between the Norms and the Bounds	12			
		4.4.3	Reduce the Norm with Orthogonal Transformation	13			
		4.4.4	Optimize with Orthogonal Constraints	13			
	4.5	.5 Prune by the Bounds					
		4.5.1	Definition of the Bounds	13			
		4.5.2	Prune the Candidates with the Bounds	13			
		4.5.3	Derivation of the Bounds	14			
		4.5.4	Calculation of the Bounds	15			
		4.5.5	Find the Threshold in Distributed Machines	15			
	4.6	Coord	inate Descent to Decide the Pivots	16			
	4.7	Import	tance-Selecting Function and Overall Framework	16			
Bi	bliogi	raphy		17			

List of Figures

1.1 A picture of a tiger		2
--------------------------	--	---

List of Tables

1.1	Table Example 1											•				2
1.2	Table Example 2	•														2
1.3	Table Example 3	•														3
1.4	Table Example 4															3
1.5	Table Example 5															3

Get started with LATEX

Three common font styles in this text:

• Item1: Italic 中文 123

• Item2: Bold 中文 123

• Item3: slant 中文 123

About the advance latex grammer see the next section 1.1.

1.1 LATEX Adavanced Features

The following features would be introduced in the coming subsections:

- SubSection 1.1.1: Figure
- SubSection 1.1.3: Verb
- SubSection 1.1.3: Verb
- SubSection 1.1.4: Enumeration
- SubSection 1.1.2: Table
- SubSection 1.1.5: Code Display
- SubSection 1.1.6: Math

• SubSection 1.1.7: Algorithms

1.1.1 Figure

Figure 1.1: A picture of a tiger.

Figure 1.1 is a picture of a tiger.

1.1.2 Table

Table examples on WIKIBOOKS.

Table 1.1: Table Example 1									
Start	End	Character Block Name							
3400	4DB5	CJK Unified Ideographs Ex-							
		tension A							
4E00	9FFF	CJK Unified Ideographs							

Table 1.2: Table Example 2

It		
Animal	Description	Price (\$)
Gnat	per gram	13.65
	each	0.01
Gnu	stuffed	92.50
Emu	stuffed	33.33
Armadillo	frozen	8.99

Table 1.3: Table Example 3

Allocation	Allocation, Element, Type, Script
Data Types	Byte2, Byte3, and Byte4 Float2, Float3, Float4 Int2, Int3, Int4 Long2, Long3, Long4 Matrix2f, Matrix3f, Matrix4f Short2, Short3, Short4
Graphics	Mesh ProgramFragment, ProgramRaster ProgramStore, ProgramVertex RSSurfaceView

Table 1.4: Table Example 4

Team sheet								
Goalkeeper	GK	Paul Robinson						
	LB	Lucus Radebe						
Defenders	DC	Michael Duberry						
Detellucts	DC	Dominic Matteo						
	RB	Didier Domi						
	MC	David Batty						
Midfielders	MC	Eirik Bakke						
	MC	Jody Morris						
Forward	FW	Jamie McMaster						
Strikers	ST	Alan Smith						
SHIKEIS	ST	Mark Viduka						

Table 1.5: Table Example 5

Team	P	W	D	Ĺ	F	A	Pts
Manchester United	6	4	0	2	10	5	12
Celtic	6	3	0	3	8	9	9
Benfica	6	2	1	3	7	8	7
FC Copenhagen	6	2	1	2	5	8	7

1.1.3 Verb

Let's take a overview on how to type special characters:

```
<FRAMEWORKS BASE>/graphics/java/android/renderscript
```

1.1.4 Enumeration

- 1. Enumerated Item1
- 2. Enumerated Item2
- 3. Enumerated Item3

1.1.5 Code Display

Here is a "Hello, DanDing." example:

```
void main(int argc, char **argv)
{
    printf(" ' _> ` ");
}
```

Another example with line numbers:

Matlab example:

```
function y = demo(x) % This is a comment.

str = 'hello there';

y = x + 1;

end
```

¹ You could also go back to the beginning of the chapter by the **hyperref**.

 $^{^{1}}Path \quad of \quad <APP_intermediates>: \quad <ANDROID_ROOT>/ \ out/ \ target/ \ common/ \ obj/ \ APPS/ \ APP-NAME_intermediates/$

1.1.6 Math

• Inline mode:

The solution to $\sqrt{x} = 5$ is x = 25.

• Display mode:

The solution to

$$\sqrt{x} = 5$$

is

$$x = 25.$$

• Numbered mode:

$$2 + 2 = 4 \tag{1.1}$$

• Non-numbered:

$$2 + 2 = 4$$

• Aligning:

$$2x^{2} + 3(x - 1)(x - 2) = 2x^{2} + 3(x^{2} - 3x + 2)$$
$$= 2x^{2} + 3x^{2} - 9x + 6$$
$$= 5x^{2} - 9x + 6$$

• Fractions:

$$\frac{n!}{k!(n-k)!} = \binom{n}{k}$$

• Matrix:

$$A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

More examples on WIKIBOOKS.

1.1.7 Algorithms

```
Algorithm 1 Calculate y = x^n
Require: n \ge 0 \lor x \ne 0
Ensure: y = x^n
   y \Leftarrow 1
   \quad \text{if } n < 0 \text{ then} \\
        X \Leftarrow 1/x
        N \Leftarrow -n
   else
        X \Leftarrow x
        N \Leftarrow n
   end if
   while N \neq 0 do
        if N is even then
             X \Leftarrow X \times X
             N \Leftarrow N/2
        else[N \text{ is odd}]
             y \Leftarrow y \times X
             N \Leftarrow N-1
        end if
   end while
```

More examples on WIKIBOOKS.

Introduction

HiHi Iam r44. The organization of this thesis is as follows. In chapte ??, the theoretical background and definition of surface plasmon will be included [1]. Chapte ?? contains description of experiment methods such as atomic force microscopy and scanning electron microscopy.

2.1 Thesis Overview

In this section, we describe the overview of this thesis.

Related Works

HiHi Iam r44. The organization of this thesis is as follows. In chapte ??, the theoretical background and definition of surface plasmon will be included [1]. Chapte ?? contains description of experiment methods such as atomic force microscopy and scanning electron microscopy.

Methodology

HiHi Iam r44. The organization of this thesis is as follows. In chapte ??, the theoretical background and definition of surface plasmon will be included [1]. Chapte ?? contains description of experiment methods such as atomic force microscopy and scanning electron microscopy.

4.1 Problem Setup

There are a query set $Q = \{q_1, q_2, ..., q_T\} \subset \mathbb{R}^D$ at the server P and a dataset $X_i \subset \mathbb{R}^D$ on each local machine M_i . For each coming query q_t , we want to find its k_{th} nearest neighborhood among these distributed datasets while reducing the transmission cost between P and each M_i .

4.2 Overall Framework

In this section, we describe the overall framework of our work. Then, we will give the details about the framework in the following sections.

There are two main phases in our framework. For each X_i , the first phase only needs to be done for once. On the other hand, we need to run the second phase for each new query q_t .

The first phase is an preprocessing procedure for the second phase. Its goal is to im-

prove the performance of pruning in the second phase. We will prove in the Sec 4.5.3 that this pruning power is highly correlated to the distribution of the norm of the feature vectors. As a result, each M_i would learn an othorogal matrix W_i for its X_i to fit our desired distribution and then send each W_i back to P. We can notice that this phase is only dependent on X_i and independent of q_t . Therefore, we only need to do the first phase for once. we give the details about how to learn W_i , how to send it back to P in the Sec 4.3.

The second phase is the main procedure of our framework. Note that P have already got W_i for each X_i in the beginning of the second phase. For each coming query q_t , we iteratively prune some candidates which are impossible to be the kNN of q_t to reduce the search space until there are only k candidates left.

To prune candidates iteratively, we divide the second phase into several rounds. For each round j, we use a Select function $S_i(q_t, j; \theta_t)$ to generate the values for trasmitting from P to M_i , where S_i is the importance-selecting function of M_i and θ_t is its parameters for q_t . (We put the details of S_i at the Sec $\ref{Sec:Selecting}$) By these values, each M_i could calculate the bounds between each candidate x_l and q_t . With these bounds, P would be able to determine which candidates are definitely not our answer and then disregards them in the following rounds. By these pruning, we could achieve the goal of saving transmission cost from avoiding to consider the unnecessary candidates.

Note that we could use the square of the Euclidean distance instead of the origin Euclidean distance to find kNN as it is non-negative. So we will use the former one in our framework.

4.3 Orthogonal Transformation

Since the In this section, we describe the overview of this thesis.

4.3.1 Definition of Ortohogonal Transformation

Definition 1. A matrix $W \in \mathbb{R}^{D \times D}$ is orthogonal if whose columns and rows are orthogonal vectors, i.e.

$$W^T W = W W^T = I$$

where I is the identity matrix.

4.3.2 Property of Orthogonal Transformation

Property 1. Let $x, y \in \mathbb{R}^D$, and $W \in \mathbb{R}^{D \times D}$ be an orthogonal matrix. Then,

$$Dist(x,y)^{2} = \sum_{d=1}^{D} (x[d] - y[d])^{2} = \sum_{d=1}^{D} (W_{d}x - W_{d}y)^{2} = Dist(Wx, Wy)^{2}$$

where W_d is the d_{th} row of W.

4.4 Enhance the Bounds by the Orthogonal Transformation

In the Sec 4.2, we mentioned that the first phase is an auxiliary step for the second phase. After the introduction of the orthogonal transformation, we introduce this powerful tool into the first phase in our framework.

4.4.1 The Goal of the First Phase

Our goal in the first phase is to reduce the ranges of the bounds used in the second phase. Since we will use a threshold to prune the impossible candidates according to their bounds in the The pruning procedure, the ranges of the bounds would be one of the most influential factor of the pruning power.

Suppose that we want to prune all candidates whose lower bounds are upper than a threshold thr. In these figures, we could see that when the ranges of their bounds is short, more candidates would be pruned than those with long ranges of the bounds. In

other words, the shorter the range of the bound, the higher chance this candidate would be pruned if it is not our final answer of kNN.

4.4.2 Relation Between the Norms and the Bounds

To acheive the goal of reducing the length of the ranges of the bounds, we could look into the derivation of the bounds. Suppose there are two vectors $x, y \in \mathbb{R}^D$, but we could only observe the first s dimensions of x and $\sum_{d=s+1}^D x[d]^2$, which is the square of two norm of the unobserved part x[s+1:D]. In the Sec 4.5.3, we give the bounds as

$$LB(x,y) = \sum_{d=1}^{s} (x[d] - y[d])^{2}.$$

$$UB(x,y) = \sum_{d=1}^{s} (x[d] - y[d])^{2}$$

$$+ \sum_{d=s+1}^{D} x[d]^{2} + \sum_{d=s+1}^{D} y[d]^{2}$$

$$+ 2 \times \sqrt{\sum_{d=s+1}^{D} x[d]^{2} \times \sum_{d=s+1}^{D} y[d]^{2}}.$$

Therefore, we could get the length of the range by the substraction.

$$Len = UB(x,y) - LB(x,y) = \sum_{d=s+1}^{D} x[d]^2 + \sum_{d=s+1}^{D} y[d]^2 + 2 \times \sqrt{\sum_{d=s+1}^{D} x[d]^2 \times \sum_{d=s+1}^{D} y[d]^2}.$$

Since the term $\sum_{d=s+1}^D x[d]^2$ is given, all we could do is to reduce the length with the help of the $\sum_{d=s+1}^D y[d]^2$ term. If we could reduce $\sum_{d=s+1}^D y[d]^2$, the term $\sum_{d=s+1}^D x[d]^2 \times \sum_{d=s+1}^D y[d]^2$ would also decrease and then make Len smaller. Therefore, our goal now becomes to make the term $\sum_{d=s+1}^D y[d]^2$ as small as possible, which is the square norm of the vector y[s+1:D].

However, since the feature vector y is given from datasets, the value of $\sum_{d=s+1}^{D} y[d]^2$ is already determined when s is given. As a result, we introduce the orthogonal transformation to achieve this goal.

4.4.3 Reduce the Norm with Orthogonal Transformation

4.4.4 Optimize with Orthogonal Constraints

4.5 Prune by the Bounds

In this section, we describe the method to prune the candidates by bounds.

4.5.1 Definition of the Bounds

First, we need to define the bounds for the pruning. Recall that given a query q_t , our goal is to find its kNN in these distributed datasets X_i . Intuitively, we need to calculate the square of the Euclidean distance $Dist(q_t, x), \forall x \in \cup_i X_i$. However, to cacluate $Dist(q_t, x)$, we need to send the whole q_t to the local machines or send the whole x to P, which causes a huge transmission cost. Therefore, instead of the exact value of Euclidean distances, our propsed framework uses bounds to find the kNN.

Definition 1. $\forall x, y \in \mathbb{R}^D$, a lower bound LB(x, y) and a upper bound UB(x, y) must satisfy the following inequation:

4.5.2 Prune the Candidates with the Bounds

For the query q_t , if we already know $LB(q_t, x)$ and $UB(q_t, x)$ $\forall x \in \bigcup_i X_i$, we could use the k_{th} smallest upper bounds and directly prune those x whose lower bounds are higher than this value thr. I.e., we want to prune

$$\{x|LB(q_t,x) > thr, \forall x \in \cup_i X_i\}$$

where thr is the k_{th} largest $UB(q_t, x) \ \forall x \in \bigcup_i X_i$.

Here is an example of the pruning procedure.

TODO: Draw the figure about pruning.

We will talk about the details to generate these bounds and find the threshold in the Sec haha.

4.5.3 Derivation of the Bounds

Suppose there are two vectors $x,y\in\mathbb{R}^D$, we know the square of their Euclidean distance is

$$Dist(x,y) = \sum_{d=1}^{D} (x[d] - y[d])^{2}$$
(4.1)

However, if we could only observe the first s dimensions of x, we could decompose their distance as

$$Dist(x,y) = \sum_{d=1}^{D} (x[d] - y[d])^2 = \sum_{d=1}^{s} (x[d] - y[d])^2 + \sum_{d=s+1}^{D} (x[d] - y[d])^2.$$
 (4.2)

Since the first component of (4.2) is already known, all we need to do is to deal with the second term. Therefore, we further expand the second term as following:

$$\sum_{d=s+1}^{D} (x[d] - y[d])^2 = \sum_{d=s+1}^{D} x[d]^2 + \sum_{d=s+1}^{D} y[d]^2 - \sum_{d=s+1}^{D} 2 \times x[d] \times y[d].$$

By this analysis, we find the final term is the inner product between two partial vector x[s+1:D] and y[s+1:D], which could be approximated by Cauchy–Schwarz inequality

$$\sum_{d=s+1}^{D} x[d] \times y[d] \le \sqrt{\sum_{d=s+1}^{D} x[d]^2 \times \sum_{d=s+1}^{D} y[d]^2}.$$
 (4.3)

After combing with (4.2) and (4.3), we derive the bounds as

$$LB(x,y) = \sum_{d=1}^{s} (x[d] - y[d])^{2}.$$

$$UB(x,y) = \sum_{d=1}^{s} (x[d] - y[d])^{2}$$

$$+ \sum_{d=s+1}^{D} x[d]^{2} + \sum_{d=s+1}^{D} y[d]^{2}$$

$$+ 2 \times \sqrt{\sum_{d=s+1}^{D} x[d]^{2} \times \sum_{d=s+1}^{D} y[d]^{2}}.$$

$$(4.4)$$

We could notice that the calculation of the bounds only needs the first s dimensions of x and $\sum_{d=s+1}^{D} x[d]^2$. Therefore, we only need one more number to get the bounds for the unobserved part x[s+1:D].

4.5.4 Calculation of the Bounds

After derivation of the bounds, we describe the procedure of cacluating them in our framework.

For the query q_t , at the first round (i.e. j=1), P sends the first s_1 dimensions of q_t and $\sum_{d=s_1+1}^D q_t[d]^2$ to each M_i . With these values, each M_i would able to calculate the lower bounds $LB(q_t,x)$ and upper bounds $UB(q_t,x)$ for each $x\in X_i$. Then, after P getting the k_{th} smallest upper bounds as thr, we could run the pruning procedure.

In each following round (i.e. j > 1), P sends the next s_j dimensions of q_t to each M_i whose instances were not pruned completely. These M_i will update their bounds as following

$$LB_{j}(x,y) = LB_{j-1}(x,y) + \sum_{d=p_{j-1}+1}^{p_{j}} (x[d] - y[d])^{2}.$$

$$UB_{j}(x,y) = UB_{j-1}(x,y) + \sum_{d=1}^{s} (x[d] - y[d])^{2}$$

$$+ \sum_{d=s+1}^{D} x[d]^{2} + \sum_{d=s+1}^{D} y[d]^{2}$$

$$+ 2 \times \sqrt{\sum_{d=s+1}^{D} x[d]^{2} \times \sum_{d=s+1}^{D} y[d]^{2}}.$$

$$(4.7)$$

where $p_j = \sum_{i=1}^{j} s_i$, LB_j and UB_j indicate the lower bounds and upper bounds at the iteration j repectively.

4.5.5 Find the Threshold in Distributed Machines

The question now is to find the threshold thr for pruning. Since TODO: Put this section here or after derived the bounds.

4.6 Coordinate Descent to Decide the Pivots

4.7 Importance-Selecting Function and Overall Framework

At each round j for q_t , we need to decide what to send from P to each M_i and then calculate the bounds at M_i .

In this section, we describe the overview of our framework.

Bibliography

[1] S.A. Maier. Plasmonics: fundamentals and applications. Springer Verlag, 2007.