Differentiation

Table of Contents

Using diff	1
Higher Derivatives	
A Different Variable	
Wait, that Second Parameter?	2
Plugging Stuff In - Using subs	2
Plotting Derivatives	

Differentiation is the most important thing in calculus so let's get to it!

Using diff

What about calculus? Don't worry -- Matlab will not let you down! Suppose you'd like to differentiate the function log(6*x+2). You could either do it yourself or... just ask Matlab to do it with the diff command:

```
syms x diff(log(6 * x + 2))

ans = \frac{6/(6*x + 2)}{4}
```

Higher Derivatives

What could be easier?

Would you like to find the *third* derivative of the function log(6*x+2)? That's easy too -- just pass 3 as a second parameter to the diff command:

```
diff(log(6 * x + 2), 3)

ans =

432/(6*x + 2)^3
```

A Different Variable

Suppose our expression has two variables and we want the derivative with respect to one of them. As usual x is the default

```
syms a x
diff(a^3*x^4)
```

```
ans = 4*a^3*x^3
```

but we can tell Matlab differently.

We can even do the second derivative with respect to a.

```
diff(a^3*x^4,a,2)

ans = 6*a*x^4
```

Wait, that Second Parameter?

Matlab is smart. If the second parameter is a variable it will take the derivative with respect to that variable. If it's a number it will take that numbered derivative. If it sees a variable and *then* a number it will take that numbered derivative with respect to that variable.

Plugging Stuff In - Using subs

It may seem a bit late but this is the perfect time to talk about plugging things into symbolic expressions. Here's how. Suppose we simply want to plug x=3 into x^2-x+2 . We do:

```
subs(x^2-x+2,x,3)
ans = 8
```

So now to take the derivative and then plug in, we simply nest the commands. Here's the second derivative of $x^3 + exp(x^2)$ with x=1 plugged in:

```
subs(diff(x^3+exp(x^2),2),x,1)

ans =

22.3097
```

Plotting Derivatives

Likewise we can nest diff inside ezplot. Here's an example, a plot of the derivative of $sin(x^2)$: ezplot(diff($sin(x^2)$))

Published with MATLAB® 8.0