MİKRODALGA TEORİSİ VİZE SORULARI

15 Kasım 2021 Süre: 80 dakika

1) Serbest ve boş uzayda bir çanak anten üzerine düşen düzlemsel elektromanyetik dalga hüzmesinin ilerleme yönüne dik düzlemdeki alanı 0,6m²'dir. Bu dalganın manyetik alan bileşeninin genlik değeri 125 μA/m ise çanak anten üzerine düşen gücün ortalama değeri nedir? (20 puan)

Yardımcı formüller: $\vec{P} = \vec{E} \times \vec{H}$ (anlık veya genlik) ya da $\vec{P}_{ort} = \frac{1}{2} \mathcal{R}e\{\vec{E} \times \vec{H}^*\}$ (ortalama)

Serbest uzayda: $\eta=\sqrt{\mu/\varepsilon}$ Boş uzayda: $\mu=\mu_0=4\pi\times 10^{-7}\,\mathrm{H/m}$, $\varepsilon=\varepsilon_0=8.85\times 10^{-12}\,\mathrm{F/m}$

 $+\hat{z}$ yönünde ilerleyen düzlem dalga için: $\eta = \frac{E_x}{H_y} = \frac{E_y}{-H_x}$

- 2) $\mu_{r1}=1.2$, $\varepsilon_{r1}=1.3$ olan bir ortamdan; $\mu_{r2}=1.4$, $\varepsilon_{r2}=3.8$ olan bir ortama, bir elektromanyetik dalga sınır yüzeyi normali ile $\theta_1=20^\circ$ açı ile gelip çarpıyor.
 - a) Yansıyan dalganın sınır yüzeyi normali ile yaptığı açı nedir? (3 puan)
 - b) Kırılan dalganın sınır yüzeyi normali ile yaptığı açı nedir? (7 puan)
- c) Bu iki ortam arasında "tam yansıma" denilen olay hangi taraftan (1. ya da 2. taraf?) dalga gelmesi halinde olur ve tam yansıma için sınır açısı nedir? (3+12 puan)

Yardımcı formül: $\sqrt{\mu_1 \varepsilon_1} \sin \theta_1 = \sqrt{\mu_2 \varepsilon_2} \sin \theta_2$

- 3.) Kayıpsız bir koaksiyel kablonun birim uzunluk için kapasitansı C = 82 pF/m, endüktansı L = 330 nH/m, ve iç ve dış iletkenleri arasındaki malzemenin bağıl manyetik geçirgenliği $\mu_r = 1,17$ olduğuna göre bu kablo için,
 - a) Karakteristik empedans Z_0 nedir? Birimiyle yazınız. (5 puan)
 - **b)** Faz hızı v_p nedir? Birimiyle yazınız. (5 puan)
 - c) Bağıl dielektrik katsayısı ε_r nedir? (5 puan)
 - d) Hangi frekansta dalga boyu $\lambda = 13$ cm olur? Birimiyle yazınız. (5 puan)
- 3. ve 4. soru için yardımcı formüller: Ortamın karakteristik empedansı:

Serbest uzayda: $\eta = \sqrt{\frac{\mu}{\varepsilon}} \approx \sqrt{\frac{\mu_r}{\varepsilon_r}} \times 377 \,\Omega$ Paralel iletim hatlarında: $Z_0 = \sqrt{L/C}$

Serbest uzayda ve paralel iletim hatlarında faz hızı $v_p = c/\sqrt{\varepsilon_r \mu_r} = 1/\sqrt{LC}$

 $\lambda = v_p/f$ $c = 1/\sqrt{\varepsilon_0 \mu_0} = 3 \times 10^8 \text{ m/s}$

 $\Gamma_{L} = \frac{\bar{Z}_{L}-1}{\bar{Z}_{L}+1}$ $\rho = |\Gamma_{L}|$ $S = \frac{1+\rho}{1-\rho}$ $\Gamma(l) = \frac{\bar{Z}_{in}(l)-1}{\bar{Z}_{in}(l)+1}$ $\bar{Z}_{in}(l) = \frac{1+\Gamma(l)}{1-\Gamma(l)}$

 $\bar{Z}_{in}(l) = \frac{\bar{Z}_L + j \tan \beta l}{1 + j \bar{Z}_L \tan \beta l} \ , \ \ \bar{Y}_{in}(l) = \frac{\bar{Y}_L + j \tan \beta l}{1 + j \bar{Y}_L \tan \beta l} \ , \ \beta = 2\pi/\lambda \ \ , \ \Gamma_L^I = -\Gamma_L = \frac{\bar{Y}_L - 1}{\bar{Y}_L + 1} \ , \quad \Gamma_I(l) = -\Gamma(l) = \frac{\bar{Y}_{in}(l) - 1}{\bar{Y}_{in}(l) + 1}$

- 4) Karakteristik empedansı $Z_0 = 50\Omega$ olan kayıpsız bir iletim bir hattı, $Z_L = 10\Omega j20\Omega$ empedansında bir yükle sonlandırılmıştır.
 - a) Gerilim yansıma katsayısı Γ 'nın genliği (ρ) nedir? (5 puan)
 - b) Duran dalga oranı s nedir? (3 puan)
- c) Yükten kaynağa doğru 0,111 dalga boyu mesafede hattın giriş empedansı nedir? Hem normalize (\bar{Z}_{in}) hem ohm cinsinden (Z_{in}) bulunuz. (10+2 puan)
- d) (c) şıkkındaki konumda giriş admitansı nedir? Hem normalize (\bar{Y}_{in}) hem siemens cinsinden (Y_{in}) bulunuz. (3+2 puan)
- 5) Karakteristik empedansı $Z_0 = 50\Omega$ olan kayıpsız bir iletim bir hattı ile $-j20\Omega$ 'luk bir empedans nasıl elde edilir? (Boyunu dalga boyu λ cinsinden, ve sonunu açık devre mi kısa devre mi aldığınızı söyleyiniz.) (10 puan)

MİKRODALGA TEORİSİ VİZE CEVAP ANAHTARI

15 Kasım 2021

1) \vec{E} genliği \vec{H} genliğinin $\eta=\sqrt{\mu/\varepsilon}$ katıdır. Boşluk için $\eta=\sqrt{\mu_0/\varepsilon_0}=377~\Omega$, yani \vec{E} genliği:

$$377 \Omega \times 125 \mu A/m = 47,125 \text{ mV/m}$$

 \vec{E} ile \vec{H} birbirine dik ve $\vec{E} \times \vec{H}^*$ vektörü dalganın ilerleme yönünde olup, bu yöne $+\hat{z}$ dersek, $e^{-jk_zz}e^{j\omega t}$ çarpanları eşlenikle çarpım sırasında sadeleşir ve çarpım vektörün büyüklüğü kalır. Bu da reel olduğundan ortalama Poynting vektörü:

$$\vec{P}_{ort} = \frac{1}{2} \times 47,125 \times 10^{-3} \times 125 \times 10^{-6} \,\hat{z} \, \text{W/m}^2 = 2,945 \,\hat{z} \, \mu\text{W/m}^2$$

Çanak anten üzerine düşen ortalama güç = $\vec{P}_{ort} \cdot \vec{S} = 2,945 \, \mu \text{W/m}^2 \, \times 0,6 \, \text{m}^2 = \boxed{1,77 \, \mu \text{W}}$

2) a) Geliş açısı ile yansıma açısı eşittir $\theta_1 = \theta_3 = 20^\circ$

$$\mathbf{b})\sqrt{\mu_{1}\varepsilon_{1}}\sin\theta_{1} = \sqrt{\mu_{2}\varepsilon_{2}}\sin\theta_{2} \quad \rightarrow \quad \sqrt{\mu_{r1}\varepsilon_{r1}}\sin\theta_{1} = \sqrt{\mu_{r2}\varepsilon_{r2}}\sin\theta_{2} \quad \rightarrow \quad \sin\theta_{2} = \frac{\sqrt{\mu_{r1}\varepsilon_{r1}}}{\sqrt{\mu_{r2}\varepsilon_{r2}}}\sin\theta_{1}$$

$$\sin\theta_{2} = \sqrt{\frac{1,2\times1,3}{1,4\times3,8}}\sin20^{\circ} = 0,1852 \quad \rightarrow \quad \boxed{\theta_{2} = 10,7^{\circ}} \text{ kırılma açısıdır.}$$

c) $\mu_{r1}\varepsilon_{r1} < \mu_{r2}\varepsilon_{r2}$ olduğundan 2. taraf daha yoğun ortamdır (ışık veya dalga hızı 2. ortamda daha yavaş, yani $\frac{1}{\sqrt{\mu_1\varepsilon_1}} > \frac{1}{\sqrt{\mu_2\varepsilon_2}}$ olduğu için). Bu yüzden tam yansıma olayı dalga 2. taraftan gelerek sınır yüzeye çarpıyorsa olur. Sınır durumunda az yoğun ortamdaki açının sinüsü 1'dir. Çok yoğun ortamdaki açının sinüsü ise:

$$\sin \theta_{\text{tam}}^{\text{sinir}} = \frac{\sqrt{\mu_{r1}\varepsilon_{r1}}}{\sqrt{\mu_{r2}\varepsilon_{r2}}} \times 1 = \sqrt{\frac{1,2 \times 1,3}{1,4 \times 3,8}} = 0,5415$$

2. ortamdan 1. ortama tam yansıma sınır açısı $\theta_{\mathsf{tam}}^{\mathsf{sınır}} = 32,8^\circ$

3) a)
$$Z_0 = \sqrt{\frac{L}{c}} = \sqrt{\frac{330 \times 10^{-9}}{82 \times 10^{-12}}} \ \Omega = 63.4 \ \Omega$$

b)
$$v_p = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{330 \times 10^{-9} \times 82 \times 10^{-12}}} \,\text{m/s} = 1.92 \times 10^8 \,\text{m/s}$$

c)
$$v_p = c/\sqrt{\varepsilon_r \mu_r} \rightarrow \varepsilon_r = \frac{c^2}{v_p^2 \mu_r} = \frac{(3 \times 10^8)^2}{(1.92 \times 10^8)^2 \times 1.17} = 2.08$$

d)
$$\lambda = v_p/f \rightarrow f = \lambda = v_p/\lambda = \frac{1,92 \times 10^8 \text{ m/s}}{0,13 \text{ m}} = 1,48 \text{ GHz}$$

4)
$$\bar{Z}_L = \frac{10-j20}{50} = 0.2 - j0.4$$

a)
$$\Gamma_L = \frac{\bar{Z}_L - 1}{\bar{Z}_L + 1} = \frac{0.2 - j0.4 - 1}{0.2 - j0.4 + 1} = \frac{-0.8 - j0.4}{1.2 - j0.4} = \frac{0.894 \angle -153.4^{\circ}}{1.265 \angle -18.4^{\circ}} = \underbrace{0.707}_{\rho} \angle -135.0^{\circ} = -0.50 - j0.50 \rightarrow \boxed{\rho = 0.707}$$

b)
$$s = \frac{1+\rho}{1-\rho} = \frac{1+0,707}{1-0,707} = \boxed{s = 5,83}$$

c)
$$l = 0.111\lambda \rightarrow \Gamma(l) = 0.707 \angle ((-135.0^{\circ}) - 720^{\circ} \times 0.111) = 0.707 \angle - 214.9^{\circ} = 0.707 \angle 145.1^{\circ}$$

$$\begin{split} \bar{Z}_{in}(l) = \frac{1 + \Gamma(l)}{1 - \Gamma(l)} = \frac{1 + (0.707 \angle 145.1^\circ)}{1 - (0.707 \angle 145.1^\circ)} = \frac{1 + (-0.580 + j0.405)}{1 - (-0.580 + j0.405)} = \frac{0.420 + j0.405}{1.580 - j0.405} = \frac{0.583 \angle 43.9^\circ}{1.631 \angle - 14.4^\circ} \\ = 0.357 \angle 58.3^\circ = \boxed{\bar{Z}_{in}(l) = 0.188 + j0.304} \end{split}$$

$$Z_{in}(l) = Z_0 \bar{Z}_{in}(l) = 50\Omega \times (0.188 + j0.304) = \boxed{Z_{in}(l) = 9.40\Omega + j15.22\Omega}$$

d)
$$\bar{Y}_{in}(l) = \frac{1}{\bar{Z}_{in}(l)} = \frac{1}{0.357 \angle 58.3^{\circ}} = 2.795 \angle -58.3^{\circ} = \overline{\bar{Y}_{in}(l)} = 1.469 - j2.378$$

$$Y_{in}(l) = Y_0 \overline{Y}_{in} = \frac{1,469 - j2,378}{50\Omega} = \overline{Y_{in}(l) = (0.0294 - j0.0476) \text{ S}}$$

5) Sonu a.d. ise $\bar{Z}_L = \infty$

$$\bar{Z}_{in}(l) = \lim_{\bar{Z}_L \to \infty} \frac{\bar{Z}_L + j \tan \beta l}{1 + j\bar{Z}_L \tan \beta l} = -j \cot \beta l = -j \left(\frac{20\Omega}{50\Omega}\right)$$

$$\beta = \frac{(2\pi \text{ rad})}{\lambda} = \frac{360^{\circ}}{\lambda}$$

$$\tan \beta l = 2.50 \rightarrow \beta l = 360^{\circ} \times \frac{l}{\lambda} = 68.2^{\circ} \rightarrow \boxed{l = 0.1894\lambda}$$

uzunluğunda iletim hattı parçası sonu a.d. edilerek istenilen sanal empedans elde edilir.

Sonu k.d. ise $\bar{Z}_L = 0$

$$\bar{Z}_{in}(l) = \frac{\bar{Z}_L + j \tan \beta l}{1 + j\bar{Z}_L \tan \beta l} = j \tan \beta l = -j \left(\frac{20\Omega}{50\Omega}\right)$$

$$\beta = \frac{(2\pi \text{ rad})}{\lambda} = \frac{360^{\circ}}{\lambda}$$

$$\tan \beta l = -0.40 \rightarrow \beta l = 360^{\circ} \times \frac{l}{\lambda} = -21.8^{\circ} \rightarrow l = -0.0606\lambda$$

Uzunluk eksi olamayacağı için buna 0.5λ eklenir:

 $l = 0.4394\lambda$ uzunluğunda iletim hattı parçası sonu k.d. edilerek istenilen sanal empedans elde edilir.

4. ve 5. soruların çözümü yukarıda hesap ile gösterilmiştir.

Smith abağı ile çözüm ise sonraki sayfalarda gösterilmiştir.

VİZE 2021 SORU 5 ÇÖZÜMÜ

