MTK466 Matematiksel Yazma Becerileri Final Ödevi

Ad Soyad*

Abstract

We derive total mean curvature integration formulas of a three codimensional foliation \mathcal{F}^n on a screen integrable half-lightlike submanifold, M^{n+1} in a semi-Riemannian manifold \overline{M}^{n+3} . We give generalized differential equations relating to mean curvatures of a totally umbilical halflightlike submanifold admitting a totally umbilical screen distribution, and show that they are generalizations of those given by [K. L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2010].

1 Introduction

The rapidly growing importance of lightlike submanifolds in semi-Riemannian geometry, particularly Lorentzian geometry, and their applications to mathematical physics—like in general relativity and electromagnetism motivated the study of lightlike geometry in semi-Riemannian manifolds. More precisely, lightlike submanifolds have been shown to represent different black hole horizons (see [4] and [5] for details). Among other motivations for investing in lightlike geometry by many physicists is the idea that the universe we are living in can be viewed as a 4-dimensional hypersurface embedded in (4 + m)-dimensional spacetime manifold, where m is any arbitrary integer. There are significant differences between lightlike geometry and Riemannian geometry as shown in [4] and [5], and many more references therein. Some of the pioneering work on this topic is due to Duggal-Bejancu [4], Duggal-Sahin [5] and Kupeli [7]. It is upon those books that many other researchers, including but not limited to [3], [6], [8], [9], [10], [11], have extended their theories.

2 Integration formulas for \mathcal{F}

This section is devoted to derivation of integral formulas of foliation \mathcal{F} of S(TM) with a unit normal vector \widehat{W} . By the fact that $\overline{\nabla}$ is a metric connection then

^{*}Deapertment of Mathematics, Hacettepe University, Beytepe, Ankara, TURKEY

 $\overline{g}(\overline{\nabla}_{\widehat{W}}\widehat{W},\widehat{W})=0$. This implies that the vector field $\overline{\nabla}_{\widehat{W}}\widehat{W}$ is always tangent to \mathcal{F} . Our main goal will be to compute the divergence of the vectors $T_r\overline{\nabla}_{\widehat{W}}\widehat{W}$ and $T_r\overline{\nabla}_{\widehat{W}}\widehat{W}+(-1)^rS_{r+1}\widehat{W}$. The following technical lemmas are fundamentally important to this paper. Let $\{E,Z_i,N,W\}$, for $i=1,\cdots,n$ be a quasi-orthonormal field of frame of $T\overline{M}$, such that $S(TM)=\operatorname{span}\{Z_i\}$ and $\epsilon_i=\overline{g}(Z_i,Z_i)$.

Lemma 2.1. Let M be a screen integrable half-lightlike submanifold of \overline{M}^{n+3} and let M' be a foliation of S(TM). Let $\mathcal{A}_{\widehat{W}}$ be its shape operator, where \widehat{W} is a unit normal vector to \mathcal{F} . Then

$$\overline{g}((\nabla'_X \mathcal{A}_{\widehat{W}})Y, Z) = \overline{g}(Y, (\nabla'_X \mathcal{A}_{\widehat{W}})Z),$$
$$\overline{g}((\nabla'_X T_r)Y, Z) = \overline{g}(Y, (\nabla'_X T_r)Z),$$

for all $X, Y, Z \in \Gamma(T\mathcal{F})$.

Proof. By simple calculations we have

$$\overline{g}((\nabla_X' \mathcal{A}_{\widehat{W}})Y, Z) = \overline{g}(\nabla_X' (\mathcal{A}_{\widehat{W}}Y), Z) - \overline{g}(\nabla_X' Y, \mathcal{A}_{\widehat{W}}Z). \tag{1}$$

Using the fact that ∇' is a metric connection and the symmetry of $\mathcal{A}_{\widehat{W}}$, (1) gives

$$\overline{g}((\nabla'_X \mathcal{A}_{\widehat{W}})Y, Z) = \overline{g}(Y, \nabla'_X (\mathcal{A}_{\widehat{W}}Z)) - \overline{g}(Y, \mathcal{A}_{\widehat{W}}(\nabla'_X Z)). \tag{2}$$

Then, from (2) we deduce the first relation of the lemma. A proof of the second relation follows in the same way, which completes the proof.

Lemma 2.2. Let M be a screen integrable half-lightlike submanifold of \overline{M} and let \mathcal{F} be a co-dimension three foliation of S(TM). Let $\mathcal{A}_{\widehat{W}}$ be its shape operator, where \widehat{W} is a unit normal vector to \mathcal{F} . Denote by \overline{R} the curvature tensor of \overline{M} . Then

$$\operatorname{div}^{\nabla'}(T_0) = 0,$$

$$\operatorname{div}^{\nabla'}(T_r) = \mathcal{A}_{\widehat{W}}\operatorname{div}^{\nabla'}(T_{r-1}) + \sum_{i=1}^n \epsilon_i(\overline{R}(\widehat{W}, T_{r-1}Z_i)Z_i)',$$

where $(\overline{R}(\widehat{W},X)Z)'$ denotes the tangential component of $\overline{R}(\widehat{W},X)Z$ for $X,Z \in \Gamma(T\mathcal{F})$. Equivalently, for any $Y \in \Gamma(T\mathcal{F})$ then

$$\overline{g}(\operatorname{div}^{\nabla'}(T_r), Y) = \sum_{i=1}^r \sum_{i=1}^n \epsilon_i \overline{g}(\overline{R}(T_{r-1}Z_i, \widehat{W})(-\mathcal{A}_{\widehat{W}})^{j-1}Y, Z_i). \tag{3}$$

Proof. The first equation of the lemma is obvious since $T_0 = \mathbb{I}$. We turn to the second relation. By direct calculations using the recurrence relation we derive

$$\operatorname{div}^{\nabla'}(T_r) = (-1)^r \operatorname{div}^{\nabla'}(S_r \mathbb{I}) + \operatorname{div}^{\nabla'}(\mathcal{A}_{\widehat{W}} \circ T_{r-1})$$
$$= (-1)^r \nabla' S_r + \mathcal{A}_{\widehat{W}} \operatorname{div}^{\nabla'}(T_{r-1}) + \sum_{i=1}^n \epsilon_i (\nabla'_{Z_i} \mathcal{A}_{\widehat{W}}) T_{r-1} Z_i. \tag{4}$$

Using Codazzi equation

$$\overline{g}(\overline{R}(X,Y)Z,\widehat{W}) = \overline{g}((\nabla'_{Y}\mathcal{A}_{\widehat{W}})X,Z) - \overline{g}((\nabla'_{X}\mathcal{A}_{\widehat{W}})Y,Z),$$

for any $X, Y, Z \in \Gamma(T\mathcal{F})$ and Lemma 2.1, we have

$$\overline{g}((\nabla'_{Z_i}\mathcal{A}_{\widehat{W}})Y, T_{r-1}Z_i) = \overline{g}((\nabla'_{Y}\mathcal{A}_{\widehat{W}})Z_i, T_{r-1}Z_i) + \overline{g}(\overline{R}(Y, Z_i)T_{r-1}Z_i, \widehat{W})
= \overline{g}(T_{r-1}(\nabla'_{Y}\mathcal{A}_{\widehat{W}})Z_i, Z_i) + \overline{g}(\overline{R}(\widehat{W}, T_{r-1}Z_i)Z_i, Y),$$
(5)

for any $Y \in \Gamma(T\mathcal{F})$. Then applying (4) and (5) we get

$$\overline{g}(\operatorname{div}^{\nabla'}(T_r), Y) = (-1)^r \overline{g}(\nabla' S_r, Y) + \operatorname{tr}(T_{r-1}(\nabla'_Y \mathcal{A}_{\widehat{W}}))
+ \overline{g}(\operatorname{div}^{\nabla'}(T_{r-1}), Y) + \overline{g}(Y, \sum_{i=1}^n \epsilon_i \overline{R}(\widehat{W}, T_{r-1} Z_i) Z_i).$$
(6)

Then we get the second equation of the lemma. Finally, (3) follows immediately by an induction argument.

Notice that when the ambient manifold is a space form of constant sectional curvature, then $(\overline{R}(\widehat{W},X)Y)'=0$, for each $X,Y\in\Gamma(T\mathcal{F})$. Hence, from Lemma (2.2) we have $\operatorname{div}^{\nabla'}(T_r)=0$.

Lemma 2.3. Let M be a screen integrable half-lightlike submanifold of \overline{M} and let \mathcal{F} be a co-dimension three foliation of S(TM). Let $\mathcal{A}_{\widehat{W}}$ be its shape operator, where \widehat{W} is a unit normal vector to \mathcal{F} . Let $\{Z_i\}$ be a local field such $(\nabla'_X Z_i)p = 0$, for $i = 1, \dots, n$ and any vector field $X \in \Gamma(T\overline{M})$. Then at $p \in \mathcal{F}$ we have

$$\begin{split} g(\nabla'_{Z_i} \overline{\nabla}_{\widehat{W}} \widehat{W}, Z_j) &= g(\mathcal{A}_{\widehat{W}}^2 Z_i, Z_j) - \overline{g}(\overline{R}(Z_i, \widehat{W}) Z_j, \widehat{W}) \\ &- \overline{g}((\nabla'_{\widehat{W}} \mathcal{A}_{\widehat{W}}) Z_i, Z_j) + g(\overline{\nabla}_{\widehat{W}} \widehat{W}, Z_i) g(Z_j, \overline{\nabla}_{\widehat{W}} \widehat{W}). \end{split}$$

Proof. Applying $\overline{\nabla}_{Z_i}$ to $g(\overline{\nabla}_{\widehat{W}}\widehat{W}, Z_j)$ and $\overline{g}(\widehat{W}, \overline{\nabla}_{\widehat{W}}Z_j)$ in turn and then using the two resulting equations, we have

$$-\overline{g}(\overline{\nabla}_{\widehat{W}}\widehat{W}, \overline{\nabla}_{Z_{i}}Z_{j}) = g(\overline{\nabla}_{Z_{i}}\overline{\nabla}_{\widehat{W}}\widehat{W}, Z_{j}) + \overline{g}(\overline{\nabla}_{Z_{i}}\widehat{W}, \overline{\nabla}_{\widehat{W}}Z_{j}) + \overline{g}(\widehat{W}, \overline{\nabla}_{Z_{i}}\overline{\nabla}_{\widehat{W}}Z_{j}).$$

$$(7)$$

Furthermore, by direct calculations using $(\nabla'_X Z_i)p = 0$ we have

$$\overline{g}((\nabla'_{\widehat{W}}\mathcal{A}_{\widehat{W}})Z_i,Z_j) = \overline{g}(\overline{\nabla}_{\widehat{W}}\widehat{W},\overline{Z_i}Z_j) + \overline{g}(\widehat{W},\overline{\nabla}_{\widehat{W}}\overline{Z_i}Z_j),$$

and hence

$$g(\mathcal{A}_{\widehat{W}}^{2}Z_{i}, Z_{j}) - \overline{g}(\overline{R}(Z_{i}, \widehat{W})Z_{j}, \widehat{W}) - \overline{g}((\nabla'_{\widehat{W}}\mathcal{A}_{\widehat{W}})Z_{i}, Z_{j})$$

$$= g(\mathcal{A}_{\widehat{W}}^{2}Z_{i}, Z_{j}) - \overline{g}(\overline{R}(Z_{i}, \widehat{W})Z_{j}, \widehat{W})$$

$$- \overline{g}(\overline{\nabla}_{\widehat{W}}\widehat{W}, \overline{Z_{i}}Z_{j}) - \overline{g}(\widehat{W}, \overline{\nabla}_{\widehat{W}}\overline{Z_{i}}Z_{j})$$

$$= g(\mathcal{A}_{\widehat{W}}^{2}Z_{i}, Z_{j}) - \overline{g}(\overline{\nabla}_{Z_{i}}Z_{j}, \overline{\nabla}_{\widehat{W}}\widehat{W})$$

$$- \overline{g}(\overline{\nabla}_{Z_{i}}\overline{\nabla}_{\widehat{W}}Z_{j}, \widehat{W}) + \overline{g}(\overline{\nabla}_{[Z_{i}, \widehat{W}]}Z_{j}, \widehat{W}). \tag{8}$$

Now, applying (7), the condition at p and the following relations

$$\overline{\nabla}_{Z_i}\widehat{W} = \sum_{k=1}^n \epsilon_k \overline{g}(\overline{\nabla}_{Z_i}\widehat{W}, Z_k) Z_k, \quad \overline{\nabla}_{\widehat{W}} Z_j = \overline{g}(\overline{\nabla}_{\widehat{W}} Z_j, \widehat{W}) \widehat{W},$$

and $g(\mathcal{A}_{\widehat{W}}^2 Z_i, Z_j) = -\sum_{k=1}^n \epsilon_k \overline{g}(\overline{\nabla}_{Z_i} \widehat{W}, Z_k) \overline{g}(\overline{\nabla}_{Z_k} Z_j, \widehat{W})$ to the last line of (8) and the fact that S(TM) is integrable we get

$$g(\mathcal{A}_{\widehat{W}}^2 Z_i, Z_j) - \overline{g}(\overline{R}(Z_i, \widehat{W}) Z_j, \widehat{W}) - \overline{g}((\nabla'_{\widehat{W}} \mathcal{A}_{\widehat{W}}) Z_i, Z_j)$$

$$= g(\nabla'_{Z_i} \overline{\nabla}_{\widehat{W}} \widehat{W}, Z_j) - g(\overline{\nabla}_{\widehat{W}} \widehat{W}, Z_i) g(Z_i, \overline{\nabla}_{\widehat{W}} \widehat{W}),$$

from which the lemma follows by rearrangement.

Notice that, using parallel transport, we can always construct a frame field from the above lemma.

П

Proposition 2.4. Let M be a screen integrable half-lightlike submanifold of an indefinite almost contact manifold \overline{M} and let \mathcal{F} be a foliation of S(TM). Then

$$\operatorname{div}^{\nabla'}(T_r \overline{\nabla}_{\widehat{W}} \widehat{W}) = \overline{g}(\operatorname{div}^{\nabla'}(T_r), \overline{\nabla}_{\widehat{W}} \widehat{W}) + (-1)^{r+1} \widehat{W}(S_{r+1})$$

$$+ (-1)^{r+1} (-S_1 S_{r+1} + (r+2) S_{r+2}) - \sum_{i=1}^n \epsilon_i \overline{g}(\overline{R}(Z_i, \widehat{W}) T_r Z_i, \widehat{W})$$

$$+ \overline{g}(\overline{\nabla}_{\widehat{W}} \widehat{W}, T_r \overline{\nabla}_{\widehat{W}} \widehat{W}),$$

where $\{Z_i\}$ is a field of frame tangent to the leaves of \mathcal{F} .

Proof. We deduce that

$$\operatorname{div}^{\nabla'}(T_r Z) = \overline{g}(\operatorname{div}^{\nabla'}(T_r), Z) + \sum_{i=1}^n \epsilon_i \overline{g}(\nabla'_{Z_i} Z, T_r Z_i), \tag{9}$$

for all $Z \in \Gamma(T\mathcal{F})$. Then using (9), Lemmas 2.2 and 2.3, we obtain the desired result. Hence the proof.

From Proposition 2.4 we have

Theorem 2.5. Let M be a screen integrable half-lightlike submanifold of an indefinite almost contact manifold \overline{M} and let \mathcal{F} be a co-dimension three foliation of S(TM). Then

$$\operatorname{div}^{\overline{\nabla}}(T_r \overline{\nabla}_{\widehat{W}} \widehat{W}) = \overline{g}(\operatorname{div}^{\nabla'}(T_r), \overline{\nabla}_{\widehat{W}} \widehat{W}) + (-1)^{r+1} \widehat{W}(S_{r+1}) + (-1)^{r+1} (-S_1 S_{r+1} + (r+2) S_{r+2}) - \sum_{i=1}^n \epsilon_i \overline{g}(\overline{R}(Z_i, \widehat{W}) T_r Z_i, \widehat{W}).$$

Proof. A proof follows easily from Proposition 2.4 by recognizing the fact that

$$\operatorname{div}^{\overline{\nabla}}(T_r \overline{\nabla}_{\widehat{W}} \widehat{W}) = \operatorname{div}^{\nabla'}(T_r \overline{\nabla}_{\widehat{W}} \widehat{W}) - \overline{g}(\overline{\nabla}_{\widehat{W}} \widehat{W}, T_r \overline{\nabla}_{\widehat{W}} \widehat{W}),$$

which completes the proof.

References

- [1] K. Andrzejewski, W. Kozlowski and K. Niedzialomski, Generalized Newton transformation and its applications to extrinsic geometry, Asian J. Math. 20, no. 2, 293-322, 2016.
- [2] K. Andrzejewski and Pawel G. Walczak, The Newton transformation and new integral formulae for foliated manifolds, Ann. Glob. Anal. Geom. 37, no. 2, 103-111, 2010.
- [3] C. Calin, Contributions to geometry of CR-submanifold, Ph.D. thesis, University of Iasi (Romania), 1998.
- [4] K. L. Duggal and A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Mathematics and Its Applications, Kluwer Academic Publishers, 1996.
- [5] K. L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds. Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2010.
- [6] K. L. Duggal and B. Sahin, Screen conformal half-lightlike submanifolds, Int. J. Math. Math. Sci. 2004, no. 68, 3737-3753, 2004.
- [7] D.N. Kupeli, Singuler semi-Riemannian geometry, Mathematics and Its Applications, Vol. **366**, Kluwer Academic Publishers, 1996.
- [8] F. Massamba, Totally contact umbilical lightlike hypersurfaces of indefinite Sasakian manifolds, Kodai Math. J. 31, 338-358, 2008.
- [9] F. Massamba, On semi-parallel lightlike hypersurfaces of indefinite Kenmotsu manifolds, J. Geom. 95, 73-89, 2009.
- [10] F. Massamba and S. Ssekajja, Some remarks on quasi generalized CR-null geometry in indefinite nearly cosymplectic manifolds, Int. J. Math. Math. Sci., Art. ID 9613182, 10 pp, 2016.
- [11] E. Yasar, A. C. Coken, and A. Yucesan, Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection, Math. Scand. 102, no. 2, 253-264, 2008.