W04 - Homework

Stepwise problems - Thu. 11:59pm

Arc length

01

\square Arc length - reversed x and y roles

Find the arc length of the curve that satisfies the equation $x = \frac{1}{12}y^3 + y^{-1}$ over $y \in [1, 2]$.

Surface areas of revolutions - thin bands

 $\mathbf{02}$

☑ Surface area: revolved cubic

The curve $y = x^3$ over $x \in [0, 2]$ is revolved around the x-axis.

Find the area of the resulting surface.

Regular problems - Sat. 11:59pm

Arc length

03

Arc length - tricky algebra

Find the arc length of the curve $y = \frac{x^4}{8} + \frac{1}{4x^2}$ for $x \in [1,2]$.

(Hint: expand under the root, then simplify, then factor; now it's a square and the root disappears.)

04

Arc length - tricky integration

Find the arc length of the curve $y = e^x$ for $x \in [0, 1/2]$.

(Hint: the integral can be done using either: (i) u-sub then trig sub, or (ii) 'rationalization' then partial fractions.)

Surface areas of revolutions - thin bands

05

Surface area: cone

A *cone* may be described as the surface of revolution of a ray emanating from the origin, revolved around the x-axis.

Let f(x) = mx for some m > 0. Find the surface area of the cone given by revolving the graph of f over $x \in [0, h]$.

Can you also calculate this area using geometry? And verify the two methods give the same formula? (Hint: 'unroll' the cone into a sector.)

06

$\ensuremath{\mathbb{Z}}$ Surface area: parabolic reflector

A parabolic reflector is given by rotating the curve $y = x^2$ around the *y-axis* for $x \in [0, 2]$.

What is the surface area of this reflector?

07

Surface area: torus

A torus is created by revolving about the *x-axis* the circle with this equation:

$$x^2 + (y - b)^2 = a^2$$

Find the surface area of this torus.

(Hint: compute for the top and bottom of the circle separately and add the results.)