

Prof. Anton Ovchinnikov

Prof. Spyros Zoumpoulis

DSB Classes 03-04, January 26, 2018

Time Series Models

Plan for the day Learning objectives

- Session 03-04 learning objectives:
 - Conceptual introduction to Time Series modeling: noise, trend and seasonality
 - Methods for Time Series modeling, and their R implementations

Timeseries

- Definition: a time series is a series of data points indexed (or listed or graphed) in time order
- Example: monthly electricity prices in the state of California

- What do you "see" from/on the graph?
- BTW, why do we need any special methods for time series?
 Why will regression not be quite sufficient?

Date: 0304 electric rates.csv on portal

Understanding timeseries: noise, level, trend, seasonality

Conceptual understnaing of noise, level, and trend

Conceptual understnaing of seasonality

Methods for Time Series modeling MSEAD

The Business School for the World®

- Moving average
- Exponential smoothing
 - New Forecast ("level") = α * Actual + (1α) * Old Forecast ("level")
 - Holt's model: Smoothing with [additive] trend: New Forecast = New Level + New Trend
 - New Level = α * Actual + (1α) * Old Forecast
 - New Trend = β * (New Level Old Level) + (1β) * Old Trend
 - Winter's model: Smoothing with [additive] trend and seasonality
- Multiplicative smoothing methods
- Decompositions: TBATS (trigonometric Fourier transforms)
- Auto-regressive methods
 - ARMA, ARIMA, etc. (ARCH, GARCH, etc. for variance)
- Any of the above with regressors (covariates/features) "dynamic regressions"

Timeseries modeling in R: your first example

Context: a small retailer decides whether to install solar panels on the roof of the store and needs to obtain a 30year forecast of electricity prices:

- Datafile "0304 electric rates data.csv" contains the data for monthly averages of prices over the last 10 years
- R script "0304 time series I decompositions, ets and tbats.R" contains the code

Goal: predict monthly prices for the next 30 years (360 values). Analytical complications: which model(s) to use?

- We will first look at the exponential smoothing ("ets") and trigonometric decompositions ("tbats")
- Coding complications:
 - Neither ets nor thats are part of the standard R installation; will need to install a package and call a library

Load the data, define a timeseries **INSEAD**

The Business School for the World®

- #install.packages("forecast") #-- do this only once
- #Check the book: https://www.otexts.org/fpp and the blog: http://robjhyndman.com/hyndsight/forecasting/
- library("forecast")
- ElectricPriceData<-read.csv(file.choose(), header=TRUE, sep=",")
- ElectricPrice_ts <- ts(ElectricPriceData\$ElectricRate,start=2004, frequency=12) # ts function defines the dataset as timeseries starting Jan 2004 and having seasonality of frequency 12 (monthly)

Decomposition(s)

#plot various decompositions into error/noise, trend and seasonality

fit <- decompose(ElectricPrice_ts, type="multiplicative") #decompose using "classical" method, multiplicativ form

plot(fit)

fit <- decompose(ElectricPrice_ts, type="additive") #decompose using "classical" method, additive form

plot(fit)

fit <- stl(ElectricPrice_ts, t.window=12 s.window="periodic", robust=TRUE) #decompose using STL (Season and trend using Loess)

plot(fit)

Exponential smoothing: ets models

 $\underline{\mathbf{e}}$ rror ={A,M}

 $\underline{\mathbf{t}}$ rend ={N,A,Ad,M,Md}

seasonality ={N,A,M}

		Seasonal Component	
Trend	N	A	M
Component	(None)	(Additive)	(Multiplicative)
N (None)	(N,N)	(N,A)	(N,M)
A (Additive)	(A,N)	(A,A)	(A,M)
A _d (Additive damped)	(A_d,N)	(A _d ,A)	(A _d ,M)
M (Multiplicative)	(M,N)	(M,A)	(M,M)
M _d (Multiplicative damped)	(M_d,N)	(M _d ,A)	(M_d,M)

Super-powerful ets models in R INSEAD

are VERY easy

The Business School for the World®

ets models: taxonomy

The Business School for the World®

Trend		Seasonal	
	N	\mathbf{A}	M
N	$\hat{y}_{t+h t} = \ell_t$ $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	$\hat{y}_{t+h t} = \ell_t + s_{t-m+h_m^+}$ $\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1}$ $s_t = \gamma(y_t - \ell_{t-1}) + (1 - \gamma)s_{t-m}$	$\hat{y}_{t+h t} = \ell_t s_{t-m+h_m^+}$ $\ell_t = \alpha(y_t/s_{t-m}) + (1-\alpha)\ell_{t-1}$ $s_t = \gamma(y_t/\ell_{t-1}) + (1-\gamma)s_{t-m}$
A	$\hat{y}_{t+h t} = \ell_t + hb_t$ $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$ $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$	$\hat{y}_{t+h t} = \ell_t + hb_t + s_{t-m+h_m^+}$ $\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1})$ $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$ $s_t = \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}$	$\hat{y}_{t+h t} = (\ell_t + hb_t)s_{t-m+h_m^+}$ $\ell_t = \alpha(y_t/s_{t-m}) + (1-\alpha)(\ell_{t-1} + b_{t-1})$ $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1}$ $s_t = \gamma(y_t/(\ell_{t-1} + b_{t-1})) + (1-\gamma)s_{t-m}$
${f A_d}$	$\hat{y}_{t+h t} = \ell_t + \phi_h b_t$ $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$ $b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1}$	$\hat{y}_{t+h t} = \ell_t + \phi_h b_t + s_{t-m+h_m^+}$ $\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$ $b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1}$ $s_t = \gamma(y_t - \ell_{t-1} - \phi b_{t-1}) + (1 - \gamma) s_{t-m}$	$\hat{y}_{t+h t} = (\ell_t + \phi_h b_t) s_{t-m+h_m^+}$ $\ell_t = \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$ $b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1}$ $s_t = \gamma(y_t/(\ell_{t-1} + \phi b_{t-1})) + (1 - \gamma) s_{t-m}$
M	$\hat{y}_{t+h t} = \ell_t b_t^h$ $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}b_{t-1}$ $b_t = \beta^* (\ell_t/\ell_{t-1}) + (1 - \beta^*)b_{t-1}$	$\hat{y}_{t+h t} = \ell_t b_t^h + s_{t-m+h_m^+}$ $\ell_t = \alpha (y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1}b_{t-1}$ $b_t = \beta^* (\ell_t/\ell_{t-1}) + (1 - \beta^*)b_{t-1}$ $s_t = \gamma (y_t - \ell_{t-1}b_{t-1}) + (1 - \gamma)s_{t-m}$	$\hat{y}_{t+h t} = \ell_t b_t^h s_{t-m+h_m^+}$ $\ell_t = \alpha(y_t/s_{t-m}) + (1-\alpha)\ell_{t-1}b_{t-1}$ $b_t = \beta^*(\ell_t/\ell_{t-1}) + (1-\beta^*)b_{t-1}$ $s_t = \gamma(y_t/(\ell_{t-1}b_{t-1})) + (1-\gamma)s_{t-m}$
${f M_d}$	$ \hat{y}_{t+h t} = \ell_t b_t^{\phi_h} \ell_t = \alpha y_t + (1-\alpha)\ell_{t-1}b_{t-1}^{\phi} b_t = \beta^*(\ell_t/\ell_{t-1}) + (1-\beta^*)b_{t-1}^{\phi} $	$\hat{y}_{t+h t} = \ell_t b_t^{\phi_h} + s_{t-m+h_m^+}$ $\ell_t = \alpha (y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1}b_{t-1}^{\phi}$ $b_t = \beta^* (\ell_t/\ell_{t-1}) + (1 - \beta^*)b_{t-1}^{\phi}$ $s_t = \gamma (y_t - \ell_{t-1}b_{t-1}^{\phi}) + (1 - \gamma)s_{t-m}$	$\hat{y}_{t+h t} = \ell_t b_t^{\phi_h} s_{t-m+h_m^+}$ $\ell_t = \alpha(y_t/s_{t-m}) + (1-\alpha)\ell_{t-1}b_{t-1}^{\phi}$ $b_t = \beta^*(\ell_t/\ell_{t-1}) + (1-\beta^*)b_{t-1}^{\phi}$ $s_t = \gamma(y_t/(\ell_{t-1}b_{t-1}^{\phi})) + (1-\gamma)s_{t-m}$

ets models: reading output

The Business School

for the World®

> ElectricPrice AAZ

ETS(A,A,A)What does AAA mean?

Additive noise, Additive trend, Additive seasonality

Call: ets(y = ElectricPrice_ts, model = "AAZ", damped = FALSE)

Smoothing parameters:

alpha = 0.0583 What does a small alpha mean?

Stable series, not much reaction to the noise

beta = 5e-04

If beta~0, does this mean no trend? No, beta=0 means a stable trend (little change)

gamma = 0.0311 What does small gamma mean?

Stable seasonal indicies

Initial states:

I = 0.0678

b = 3e-04

s=-0.0013 0.0015 -0.0011 0.0012 0.0025 9e-04 0.0022 -0.0019 -0.0016 -0.0016 3e-04 -0.001

(N,N)	= simple exponential smoothing
(A NT)	- Halta lineau mathad
(A,N)	= Holts linear method
(M,N)	= Exponential trend method
•	•
(A_d,N)	 additive damped trend method
(M _d ,N)	= multiplicative damped trend method
()	maraparous o dampou d'ona mourou
(A,A)	= additive Holt-Winters method
(A,M)	= multiplicative Holt-Winters method
(T)1/1)	- manapheative non-winters method
(A_d, M)	= Holt-Winters damped method
	-

0.0022 -0.0019 -0.0016 -0.0016 36-04 -0.001				
Method	Initial values			
(N,N)	$\ell_0=y_1$			
(A,N) (A_d,N)	$\ell_0 = y_1, b_0 = y_2 - y_1$			
(M,N) (M_d,N)	$\ell_0 = y_1, b_0 = y_2/y_1$			
(A,A) (A _d ,A)	$\ell_0 = rac{1}{m}(y_1 + \cdots + y_m)$			
	$b_0=rac{1}{m}\Big[rac{y_{m+1}-y_1}{m}+\cdots+rac{y_{m+m}-y_m}{m}\Big]$			
	$s_0 = y_m - \ell_0, \; s_{-1} = y_{m-1} - \ell_0, \; \ldots, \; s_{-m+1} = y_1 - \ell_0$			
(A,M) (A_d,M)	$\ell_0 = rac{1}{m}(y_1 + \cdots + y_m)$			
	$b_0=rac{1}{m}\Big[rac{y_{m+1}-y_1}{m}+\cdots+rac{y_{m+m}-y_m}{m}\Big]$			
	$s_0 = y_m/\ell_0, \ s_{-1} = y_{m-1}/\ell_0, \ \dots, \ s_{-m+1} = y_1/\ell_0$			

portal O File "0304 Time Series Examples.

Trigonometric seasonality: sin() and cos() "waves"

• By adding more "waves" of different periodicities (monthly, quarterly, semi-annually, et.c), changing their weights, and adding "shifted waves" (month_{t-1} wave, etc.) you can create <u>very elaborate</u> seasonal patterns – "TBATS" model

TBATS model

for the World®

(trigonometric box-cox autoregressive trend seasonality)

```
> ElectricPrice_tbats
                                 Understanding TBATS output
TBATS(1, \{0,0\}, 1, \{<12,5>\})
                                                                                                        Forecasts from TBATS(1, {0,0}, 1, {<12,5>})
call: tbats(y = ElectricPrice_ts)
                                                                                 20
Parameters
 Alpha: 0.3119223
                                          Box-cox transformation
 Beta: 0.001059521
 Damping Parameter: 1
                                               (removing outliners)
 Gamma-1 Values: -2.603098e-05
 Gamma-2 Values: 6.753875e-05
                                                1=nothing removed
Seed States:
             [,1]
                                                                                 <u>5</u>
 [1,] 6.745943e-02
                                                                   "{0,0}":
     1.987776e-04
 [3.] -1.073112e-03
                                          Autoregressive moving average:
     1.006799e-03
     -3.903458e-04
 [6.] -7.505053e-04
     2.052910e-04
                                  {p,q} = numbers of values in
                                                                                 0.12
     -7.061269e-04
     4.476049e-05
     1.308425e-04
     4.571218e-05
      9.594969e-04
                                                                                 0.
Sigma: 0.001754992
AIC: -916.3708
                                Dampening parameter (1=not dampened)
                                                                                 0.08
                                                                 "(12,5)":
                                                                                                 2010
                                                                                                                    2020
                                                                                                                                       2030
                                                                                                                                                          2040
                                 Number of seasonal periods,
                                                                                                                            Year
                                      Number of trigonometric ("Fourier") terms for each seasonality
```

Multiple seasonalities: beyond this course 🗵

Decomposition by TBATS model

ARIMA: "differencing", moving average and auto-regression

- "differencing" creating new variables by taking differences between consecutive observations (y_t-y_{t-1})
- Auto-regression:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + e_t,$$

•
$$y_t$$
-=a+b* y_{t-1} +error

$$y_t = c + e_t + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \dots + \theta_q e_{t-q},$$

ARIMA: "auto-regressive integrated moving average"

$$y_t' = c + \phi_1 y_{t-1}' + \dots + \phi_p y_{t-p}' + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} + e_t,$$

p = num of auto-regressive terms

d = "order" of first difference

q = num of moving average terms

White noise ARIMA(0,0,0)Random walk ARIMA(0,1,0) with no constant Random walk with drift ARIMA(0,1,0) with a constant Autoregression ARIMA(p,0,0)Moving average ARIMA(0,0,q)

Auto-Correlation Function (ACF), ACF plot

ARIMA example in R: US consumption data (from FPP)

for the World®

```
> fit <- auto.arima(usconsumption[,1],seasonal=FALSE) #automatically •
fits the ARIMA model (auto-regressive integrated moving average)
                                                                                    Forecasts from ARIMA(0,0,3) with non-zero mean
Series: usconsumption[, 1]
ARIMA(0,0,3) with non-zero mean
coefficients:
         ma1
                ma2
                        ma3
                               mean
      0.2542 0.2260 0.2695
                             0.7562
                             0.0844
             0.0779
sigma^2 estimated as 0.3953: log likelihood=-154.73
AIC=319.46 AICC=319.84
                          BIC=334.96
                                                                                1970
                                                                                           1980
                                                                                                     1990
                                                                                                                2000
                                                                                                                           2010
                                                                                                                                     2020
```

ARIMA and seasonality example: a10 dataset (from FPP)


```
• ARIMA(p,d,q) (P,D,Q)<sub>m</sub> — number of periods in a per season
```

```
> fit <- auto.arima(a10,seasonal=FALSE)
Series: a10
ARIMA(1.1.1) with drift
Coefficients:
           -0.9164
                     0.0965
sigma^2 estimated as 3.626: log likelihood=-417.92
AIC=843.84 AICC=844.04 BIC=857.09
> fit <- auto.arima(a10,seasonal=TRUE)
> fit
Series: a10
ARIMA(1,1,1)(0,1,1)[12]
coefficients:
                   ma1
              -0.6674
                        -0.4725
                0.0870
                        0.0641
sigma^2 estimated as 0.8756: log likelihood=-258.82
AIC=525.63 AICC=525.85 BIC=538.64
> plot(forecast(fit,60)) #60 stands for 60 months = 5 years
```


Dynamic Regression: timeseries with regressors/covariates

- In classes 0102 (Sarah's case) we considered predicting Y variable (price) by knowing some other variables (weight, color, etc.).
 - Those variables are sometimes called covariates, or features
- Today (so far) we considered predicting Y variable (eclectic price, consumption, etc.) by knowing how Y itself evolved in the past time series analyses
- Can the two approaches be combined?
 - Of course! This has two names:
 - "dynamic regression" or
 - "time series with regressors/covariates/features"

Dynamic Regression example: insurance quotes and advertising

INSEAD

The Business School for the World®

- **Context**: we have data on the number of new insurance quotes and advertising in the previous period. Naturally expect two kinds of dependencies:
 - "direct effect": more advertising today = more new quotes today
 - "carryover effects":
 - more advertising yesterday = more new quotes today
 - more new quotes yesterday = more new quotes today

```
Advert <- cbind(insurance[,2],
                                                 custom (written "by you") R function
                 c(NA, insurance[1:39,2]),
                 c(NA, NA, insurance[1:38,2]),
                                                 to create variables with lags 2,3,4
                 c(NA,NA,NA,insurance[1:37,2]))
> fit <- auto.arima(insurance[,1], xreg=Advert[,1:2], d=0)</p>
Series: insurance[, 1]
Regression with ARIMA(3,0,0) errors
Coefficients:
                         ar3 intercept AdLag0 AdLag1
                                 2.0393 1.2564 0.1625
                                 0.9931 0.0667 0.0591
sigma^2 estimated as 0.2165: log likelihood=-23.89
AIC=61.78 AICC=65.28 BIC=73.6
 fc8 <- forecast(fit, xreg=cbind(rep(8,20),c(Advert[40,1],rep(8,19))), h=20)
 plot(fc8, main="Forecast quotes with advertising set to 8", ylab="Quotes")
 fc2 <- forecast(fit, xreg=cbind(rep(2,20),c(Advert[40,1],rep(2,19))), h=20)</pre>
 plot(fc2, main="Forecast quotes with advertising set to 2", ylab="Quotes")
```


Summary of Sessions 3-4

- On many occasions data are indexed by time timeseries data
- Such data requires special analytical tools, which explicitly account for the fact that prediction errors increase over time
- We discussed concepts and implementations of four families of models:
 - Exponential smoothing (ets)
 - Trigonometric decompositions (tbats)
 - Auto-regressive moving averages (ARIMA)
 - Dynamic regressions (we saw an example based on ARIMA, but the concept applies to any method)
- As with regression: through coding and R, very powerful time series analytics can be implemented in minutes
- Many resources online: e.g., FPP book https://robjhyndman.com/hyndsight/forecasting/

Next...

- Group Assignment 1: Yahoo's acquisition of Tumblr
 - Due 8:25am of AB Sessions 5-6 morning (next Tue, Jan 30), upload to INSEAD portal
- Module II of the course: predicting events / "classification"
 - Sessions 5-6: metrics for classification and two main methods: logistic regression and CART
 - Tutorial 2 (mid-term R help, specifically on classifiation)
 - Assignment 2 (predicting credit defaults)
 - Session 7: credit defaults case discussion + other methods: random forest, xgboost, regularizations (LASSO/Ridge)

