MIE237

Neil Montgomery 2016-01-19

Inference with two independent numerical samples (9.8 and 10.5) continued...

Alternative "design" for inference on mean differences

- By "design" I mean the specific plan to gather a sample.
- So far the design was motivated by the problem: two populations, two means (and variances), interest in the difference between the mean. Plan: gather two independent samples.
- That's not the only way to learn about a mean difference.
- The sampling plan might instead involve collecting pairs $((Y_{11}, Y_{21}), (Y_{12}, Y_{22}), \dots, (Y_{1n}, Y_{2n}))$ (that are likely to be positively correlated.)
- · In which case the correct analysis is to consider what is effectively a single sample $Y_{d_1}, Y_{d_2}, \dots, Y_{d_n}$ with $Y_{d_i} = Y_{1i} Y_{2i}$

"Paired observations" (9.9 and part of 10.5)

- The model reduces to $Y_{d_i} = \mu_d + \varepsilon_i$ with $\varepsilon_i \sim N(\mu_d, \sigma_d^2)$.
- The analysis is then just a good ol' one sample $\it t$ test/interval.
- The book possibly doesn't make this clear enough: The analysis must follow the model/sampling plan

Example: 9.92

"...Calcium is a required element for plants and animals. The amount taken upand stored in plants is closely correlated to the amount present in the soil. Itwas hypothesized that a fire may change the calcium levels present in the soil and thus affect the amount available to deer.

A large tract of land in the Fishburn Forest was selected for a prescribed burn. Soil samples were taken from 12 plots of equal area just prior to the burn and analyzed for calcium. Postburn calcium levels were analyzed from the same plots."

Example: 9.92 (with a small dose of reality)

```
library(rio)
burn <- import("Ex09.92.txt")

## Error in fread(input = file, sep = sep, sep2 = "auto", header = header, : Expecting 2 cols, but line

Hmm.</pre>
```

Example: 9.92

```
burn <- import("Ex09.92.txt", fread=FALSE) # Seems OK</pre>
##
      n
            mean
                       sd
## 1 12 40.58333 15.79101
t.test(burn_diff$calcium_diff)
##
    One Sample t-test
##
##
## data: burn_diff$calcium_diff
## t = 8.9028, df = 11, p-value = 2.331e-06
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 30.55020 50.61646
## sample estimates:
## mean of x
## 40.58333
```

Model assumptions

Just the normality assumption (on the differences) - all OK.

The Wrong Analysis

```
##
## Welch Two Sample t-test
##
## data: burn$Preburn and burn$Postburn
## t = 6.4623, df = 18.112, p-value = 4.303e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 27.39532 53.77135
## sample estimates:
## mean of x mean of y
## 57.50000 16.91667
```

Cause of the difference

Extreme example

Extreme example - correct

```
t.test(eye_drops$drop1 - eye_drops$drop2)

##

## One Sample t-test

##

## data: eye_drops$drop1 - eye_drops$drop2

## t = -10.231, df = 19, p-value = 3.636e-09

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## -7.204020 -4.757151

## sample estimates:

## mean of x

## -5.980585
```

Extreme example - wrong

```
t.test(eye_drops$drop1, eye_drops$drop2)

##

## Welch Two Sample t-test

##

## data: eye_drops$drop1 and eye_drops$drop2

## t = -2.0299, df = 37.942, p-value = 0.04942

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -11.9451916 -0.0159793

## sample estimates:

## mean of x mean of y

## 61.90524 67.88582
```