# Bornes supérieures et inférieures

### Exercice 1:

1. Montrer que pour tout  $n \in \mathbb{N}^*$ ,  $m \in \mathbb{N}^*$ 

$$0 < \frac{mn}{(m+n)^2} \le \frac{1}{4}$$

2. En déduire que

$$A = \left\{ \frac{mn}{(m+n)^2}, n \in \mathbb{N}^*, m \in \mathbb{N}^* \right\}$$

Admet une borne inférieure et une borne supérieure que l'on déterminera.

### Allez à : Correction exercice 1 :

#### Exercice 2:

Pour chacun des exercices suivants, déterminer s'il y a une borne inférieure, une borne supérieure, si oui, les déterminer.

$$A = \left\{ \frac{2^n}{2^n - 1}, n \in \mathbb{N}^* \right\}; \qquad B = \left\{ \frac{1}{1 - 2^{-n}}, n \in \mathbb{N}^* \right\}$$

$$C = \left\{ \frac{x^3}{|x^3 - 1|}, x \in ]0,1[ \cup ]1, +\infty[ \right\}; \qquad D = \left\{ \frac{x^n}{|x^n - 1|}, x \in ]0,1[ \cup ]1, +\infty[, n \in \mathbb{N}^* \right\}$$

Allez à : Correction exercice 2 :

## Exercice 3:

Soit

$$X = \left\{ \frac{1}{p} + \frac{1}{q}; p, q \in \mathbb{N}^* \right\}$$

- 1. Montrer que X est majoré et minoré.
- 2. En déduire que *X* possède une borne supérieure et une borne inférieure.

### Allez à : Correction exercice 3 :

#### Exercice 4:

Soit

$$X = \left\{ \frac{(-1)^n}{n} + \frac{2}{n}; n \in \mathbb{N}^* \right\}$$

- 1. Montrer que *X* est minoré et majoré.
- 2. Montrer que *X* admet un plus grand élément et le déterminer.
- 3. Montrer que X admet une borne supérieure et une borne inférieure et les déterminer.

### Allez à : Correction exercice 4 :

### Exercice 5:

Soit

$$X = \left\{ \frac{x+1}{x+2}; x \in \mathbb{R}, x \le -3 \right\}$$

Montrer que X admet une borne inférieure et une borne supérieure et les déterminer.

### Allez à : Correction exercice 5 :

### Exercice 6:

Soit

$$X = \left\{ \frac{2xy}{x^2 + y^2}, x \in \mathbb{R}^*, y \in \mathbb{R}^* \right\}$$

- 1. Montrer que X admet une borne inférieure et la déterminer, est-ce un minimum ?
- 2. Montrer que X admet une borne supérieure et la déterminer, est-ce un maximum ?

Allez à : Correction exercice 6 :

Exercice 7:

Soit

$$X = \left\{ \frac{2p}{2pq+3}; p, q \in \mathbb{N}^* \right\}$$

- 1. Montrer que X est minoré et majoré.
- 2. En déduire que *X* admet une borne supérieure et une borne inférieure et les déterminer.

Allez à : Correction exercice 7 :

Exercice 8:

On considère la partie  $X = \left\{ (-1)^n + \frac{1}{n}; n \in \mathbb{N}^* \right\}$ 

Démontrer que X possède une borne inférieure et une borne supérieure, déterminer chacune d'entre elle.

Allez à : Correction exercice 8 :

Exercice 9:

Soient

$$X = \left\{ \frac{(-1)^p}{p} + \frac{2}{p}; p \in \mathbb{N}^* \right\} \quad \text{ et } \quad Y = \left\{ \frac{(-1)^p}{p} + \frac{2}{q}; p \in \mathbb{N}^*; q \in \mathbb{N}^* \right\}$$

- 1. Montrer que X possède dans  $\mathbb{R}$  une borne supérieure, une borne inférieure et les déterminer.
- 2. Montrer que Y possède dans  $\mathbb{R}$  une borne supérieure, une borne inférieure et les déterminer.

Allez à : Correction exercice 9 :

Exercice 10:

Soient  $A \subset \mathbb{R}$  et  $B = \{y = -x; x \in A\}$ 

- 1. Montrer que *B* est minoré si et seulement si *A* est majoré.
- 2. En supposant que A est majoré, démontrer que B admet une borne inférieure et que

$$\inf(B) = -\sup(A)$$

Allez à : Correction exercice 10 :

Exercice 11:

On rappelle que si I est un intervalle ouvert, quel que soit  $x \in I$ , il existe  $\epsilon > 0$  tel que :

$$]x - \epsilon, x + \epsilon[ \subset I$$

Plus généralement, un sous-ensemble A de  $\mathbb R$  vérifiant la propriété :

$$\forall x \in A, \exists \epsilon > 0, ]x - \epsilon, x + \epsilon[ \subset A$$

est dit « ouvert ».

Soit I un intervalle ouvert. On veut démontrer qu'il n'existe pas de sous-ensemble ouverts non vides A et B de  $\mathbb{R}$  tels que  $I = A \cup B$  et  $A \cap B = \emptyset$  (autrement dit tels que  $\{A, B\}$  soit une partition de I). Pour cela on va supposer que de tels ensemble A et B existent pour aboutir à une contradiction. On considère pour cela  $a \in A$  et  $b \in B$  et l'ensemble

$$E = \{t \in [0,1]; a + t(b-a) \in A\}$$

- 1. Montrer que *E* admet une borne supérieure, que l'on appellera *T*. (On ne demande pas de trouver *T*).
- 2. Montrer (en utilisant le fait que A est ouvert) que  $a + T(b a) \notin A$ .

- 3. En déduire (en utilisant le fait que *I* est un intervalle) que  $a + T(b a) \in B$ .
- 4. Montrer (en utilisant le fait que *B* est ouvert) que ceci contredit le fait que *T* soit la borne supérieure de *E*.

Allez à : Correction exercice 11 :

## **CORRECTIONS**

Correction exercice 1:

1.  $m \text{ et } n \text{ étant strictement positifs on a } 0 < \frac{mn}{(m+n)^2}$ 

$$\frac{1}{4} - \frac{mn}{(m+n)^2} = \frac{(m+n)^2 - 4mn}{(m+n)^2} = \frac{m^2 + 2mn + n^2 - 4mn}{(m+n)^2} = \frac{m^2 - 2mn + n^2}{(m+n)^2} = \frac{(m-n)^2}{(m+n)^2} \ge 0$$

Donc

$$\frac{mn}{(m+n)^2} \le \frac{1}{4}$$

2.  $\frac{mn}{(m+n)^2}$  est borné donc A admet une borne inférieure a telle que  $0 \le a$  (car a est le plus grand des minorants) et une borne supérieure b telle que  $b \le \frac{1}{4}$  (car b le le plus petit des majorants).

Comme pour tout m > 0 et n > 0,  $a \le \frac{mn}{(m+n)^2}$ , en prenant m = 1 on a :

$$a \le \frac{n}{(1+n)^2} \to 0$$

Ce qui implique que  $a \le 0$ , on a donc a = 0.

Comme pour tout m > 0 et n > 0,  $\frac{mn}{(m+n)^2} \le b$ , en prenant m = n on a :

$$\frac{n^2}{(n+n)^2} \le b$$

Puis

$$\frac{n^2}{(n+n)^2} = \frac{n^2}{4n^2} = \frac{1}{4}$$

Montre que  $\frac{1}{4} \le b$  et finalement  $b = \frac{1}{4}$ .

Allez à : Exercice 1 :

Correction exercice 2:

On pose  $u_n = \frac{2^n}{2^{n}-1}$ , la suite  $(u_n)_{n \in \mathbb{N}^*}$  est à valeur strictement positive

$$\frac{u_{n+1}}{u_n} = \frac{\frac{2^{n+1}}{2^{n+1} - 1}}{\frac{2^n}{2^n - 1}} = 2 \times \frac{2^n - 1}{2^{n+1} - 1} = \frac{2^{n+1} - 2}{2^{n+1} - 1} < 1$$

Donc cette suite est strictement décroissante, on en déduit que

$$\sup(A) = u_1 = \frac{2}{2-1} = 2$$
 et  $\inf(A) = \lim_{n \to +\infty} \frac{2^n}{2^n - 1} = 1$ 

Remarque: A admet un maximum 2 mais pas de minimum.

 $\frac{1}{1-2^{-n}} = \frac{2^n}{2^n-1}$ , par conséquent A = B ces deux ensembles ont les mêmes bornes supérieures et inférieures.

$$\lim_{\substack{x \to 1 \\ x \neq 1}} \frac{x^3}{|x^3 - 1|} = +\infty$$

Donc C n'admet pas de borne supérieure.

Il est évident que pour tout  $x \in ]0,1[ \cup ]1,+\infty[,\frac{x^3}{|x^3-1|} \ge 0 \text{ donc } 0 \text{ est un minorant de } C \text{ par conséquent } 0 \le \inf(C)$ 

Puis remarquons que

$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{x^3}{|x^3 - 1|} = 0$$

Donc

$$\inf(C) \leq 0$$

En conclusion

$$\inf(C) = 0$$

Remarque: 0 n'est pas un minimum.

Remarque : on aurait pu étudier la fonction

$$]0,1[\cup]1,+\infty[\to\mathbb{R}$$
$$x\mapsto\frac{x^3}{|x^3-1|}$$

En faisant attention à distinguer les cas  $x \in ]0,1[$  (où  $x^3 - 1 < 0$ ) et  $x \in ]1,+\infty[$  (où  $x^3 - 1 > 0$ ). Pour l'ensemble D on fait strictement le même raisonnement que pour l'ensemble C. D n'a pas de borne supérieure et sa borne inférieure est 0.

Allez à : Exercice 2 :

Correction exercice 3:

1. Comme  $p \ge 1$  et  $q \ge 1$ ,  $0 < \frac{1}{p} \le 1$  et  $0 < \frac{1}{q} \le 1$ , on a donc  $0 < \frac{1}{p} + \frac{1}{q} \le 1 + 1 = 2$ 

Ce qui montre bien que X est majoré et minoré.

2. Pour p = q = 1, on a

$$\frac{1}{p} + \frac{1}{q} = 2$$

Donc 2 est le maximum, par conséquent sa borne supérieure.

0 est un minorant de X donc  $0 \le \inf(X)$ 

Et

$$\lim_{\substack{p\to +\infty\\ q\to +\infty}} \left(\frac{1}{p} + \frac{1}{q}\right) = 0$$

Donc  $\inf(X) \le 0$  et finalement  $\inf(X) = 0$ 

Allez à : Exercice 3 :

Correction exercice 4:

1. La première idée serait de montrer que la suite  $(u_n)_{n\in\mathbb{N}^*}$  de terme général  $u_n=\frac{(-1)^n+2}{n}$  est croissante ou décroissante mais cela ne marche pas, vérifions le tout de même

$$u_{n+1} - u_n = \frac{(-1)^{n+1} + 2}{n+1} - \frac{(-1)^n + 2}{n} = \frac{((-1)^{n+1} + 2)n - ((-1)^n + 2)(n+1)}{n(n+1)}$$

$$= \frac{n((-1)^{n+1} + 2 - (-1)^n - 2) - ((-1)^n + 2)}{n(n+1)} = \frac{2(-1)^{n+1}n - (-1)^n - 2}{n(n+1)}$$

$$= \frac{(-1)^{n+1}(2n+1) - 2}{n(n+1)}$$

Selon la parité de n cette expression est positive ou négative, la suite  $(u_n)_{n\in\mathbb{N}^*}$  n'est pas monotone, il faut faire autrement.

Pour voir ce qu'il se passe on va calculer les premiers termes de cette suite

$$u_1 = 1; \ u_2 = \frac{3}{2}; \ u_3 = \frac{1}{3}; \ u_4 = \frac{3}{4}; u_5 = \frac{1}{5}; u_6 = \frac{1}{2}$$

Cela donne l'idée d'étudier les deux sous-suites  $(v_n)_{n\in\mathbb{N}^*}$  et  $(w_n)_{n\in\mathbb{N}}$  de terme général :

$$v_n = u_{2n} = \frac{3}{2n}$$
 et  $w_n = u_{2n+1} = \frac{1}{2n+1}$ 

Ces deux suites sont manifestement positive, décroissante et tende vers 0, on en conclut que

$$0 < u_n < \max(v_1, w_0) = \frac{3}{2}$$

- 2. D'après l'étude précédente  $\frac{3}{2} = u_2$  est le plus grand élément (le maximum)
- 3.  $\frac{3}{2}$  est un maximum et donc la borne supérieure.

$$\lim_{n\to+\infty}u_n=0$$

Donc  $\inf(X) \leq 0$ ,

Et comme pour tout  $n \in \mathbb{N}$ ,  $u_n \ge 0$ , 0 est un minorant donc on a  $\inf(X) \ge 0$  et finalement

$$\inf(X) = 0$$

Allez à : Exercice 4 :

### Correction exercice 5:

Nous allons étudier la fonction

$$f: ]-\infty, -3] \to \mathbb{R}$$

$$x \mapsto \frac{x+1}{x+2}$$

f est définie, continue et dérivable sur  $]-\infty$ , -3] (le seul problème de f est x=-2 qui est en dehors de l'intervalle d'étude)

$$f'(x) = \frac{1 \times (x+2) - (x+1) \times 1}{(x+2)^2} = \frac{1}{(x+2)^2} > 0$$

f est strictement croissante sur  $]-\infty, -3]$ , sa borne inférieure est

$$m = \lim_{x \to -\infty} \frac{x+1}{x+2} = 1$$

Et sa borne supérieure (qui est aussi un maximum) est

$$m = f(-3) = 2$$

Allez à : Exercice 5 :

Correction exercice 6:

1. Pour tout  $x \in \mathbb{R}^*$  et pour tout  $y \in \mathbb{R}^*$ ,

$$(x+y)^2 \ge 0 \Leftrightarrow x^2 + y^2 + 2xy \ge 0 \Leftrightarrow -(x^2 + y^2) \le 2xy \Leftrightarrow -1 \le \frac{2xy}{x^2 + y^2}$$
 (1)

On peut diviser car x (et y est non nul).

Ce qui signifie que X est une partie de  $\mathbb R$  minorée et évidemment non vide, donc X admet une borne inférieure.

(1) montre que -1 est un minorant de X, la borne inférieure étant le plus petit des majorants donc

$$\inf(X) \ge -1$$

Si on pose y = -x

$$\frac{2xy}{x^2 + y^2} = \frac{-2x^2}{2x^2} = -1$$

Cela montre que

$$\inf(X) \leq 1$$

Par conséquent

$$\inf(X) = -1$$

Il s'agit d'un minimum car cette borne inférieure est dans X.

2. Pour tout  $x \in \mathbb{R}^*$  et pour tout  $y \in \mathbb{R}^*$ 

$$(x-y)^2 \ge 0 \Leftrightarrow x^2 + y^2 - 2xy \ge 0 \Leftrightarrow x^2 + y^2 \ge 2xy \Leftrightarrow 1 \ge \frac{2xy}{x^2 + y^2} \quad (2)$$

Ce qui signifie que X est une partie de  $\mathbb{R}$  majorée et évidemment non vide, donc X admet une borne supérieure.

(2) montre que 1 est un majorant de X, la borne supérieure étant le plus petit des majorants donc

$$\sup(X) \le 1$$

Si on pose y = x

$$\frac{2xy}{x^2 + y^2} = \frac{2x^2}{2x^2} = 1$$

Cela montre que

$$\sup(X) \ge 1$$

Par conséquent

$$\sup(X) = 1$$

Il s'agit d'un maximum car cette borne supérieure est dans X.

## Allez à : Exercice 6 :

## Correction exercice 7:

1.

$$\frac{2p}{2pq+3}<\frac{2p}{2pq}=\frac{1}{q}\leq 1$$

Donc X est majoré.

$$\frac{2p}{2pq+3} > 0$$

Donc X est minoré.

2. Fixons q = 1 et faisons tendre p vers l'infini.

$$\lim_{n \to +\infty} \frac{2p}{2pq+3} = \lim_{n \to +\infty} \frac{2p}{2p+3} = 1$$

Donc

$$\sup(X) \ge 1$$

D'autre part

$$\frac{2p}{2pq+3} < 1$$

Donc  $\sup(X) \le 1$  et finalement  $\sup(X) = 1$ .

## Allez à : Exercice 7 :

## Correction exercice 8:

Manifestement la suite de terme général  $u_n = (-1)^n + \frac{1}{n}$  est ni croissante ni décroissante, elle est même de signe alterné. Nous allons considérer les deux sous-suites  $(v_n)_{n\geq 1}$  et  $(w_n)_{n\geq 0}$  de nombres réels définies par

$$v_n = u_{2n} = 1 + \frac{1}{2n} \quad et \quad w_n = u_{2n+1} = -1 + \frac{1}{2n+1}$$
 
$$\forall n \ge 1, v_{n+1} - v_n = 1 + \frac{1}{2(n+1)} - \left(1 + \frac{1}{2n}\right) = \frac{2n - 2(n+1)}{2n(n+1)} = \frac{-1}{n(n+1)} < 0$$

Donc la suite  $(v_n)_{n\geq 1}$  est décroissante

$$v_1 = \frac{3}{2}$$
 et  $\lim_{n \to +\infty} v_n = 1$ 

$$\forall n \geq 1, w_{n+1} - w_n = -1 + \frac{1}{2(n+1)+1} - \left(-1 + \frac{1}{2n+1}\right) = \frac{2n+1-(2n+3)}{(2n+3)(2n+1)}$$

$$= \frac{-2}{(2n+3)(2n+1)} < 0$$

$$w_0 = 0 \quad \text{et} \quad \lim_{n \to +\infty} w_n = -1$$

$$X = \left\{1 + \frac{1}{2n}; n \in \mathbb{N}^*\right\} \cup \left\{-1 + \frac{1}{2n+1}; n \in \mathbb{m}\right\}$$

$$\sup(X) = \max\left(\sup\left\{1 + \frac{1}{2n}; n \in \mathbb{N}^*\right\}\right), \sup\left\{-1 + \frac{1}{2n+1}; n \in \mathbb{m}\right\}\right) = \max\left(\frac{3}{2}, 0\right) = \frac{3}{2}$$

$$\operatorname{Remarque} : \sup(X) = \max(X)$$

$$\inf(X) = \min\left(\inf\left\{1 + \frac{1}{2n}; n \in \mathbb{N}^*\right\}\right), \inf\left\{-1 + \frac{1}{2n+1}; n \in \mathbb{m}\right\}\right) = \min(1, -1) = -1$$

Allez à : Exercice 8 :

Correction exercice 9:

1. On pose pour tout  $p \ge 1$ :

$$u_p = \frac{(-1)^p}{p} + \frac{2}{p}$$

Cette suite est ni croissante ni décroissante (à vérifier)

On pose

$$\forall p \geq 1, v_p = u_{2p} = \frac{1}{2p} + \frac{2}{2p} = \frac{3}{2p} \quad \text{et} \quad \forall p \geq 0, w_p = u_{2p+1} = -\frac{1}{2p+1} + \frac{2}{2p+1} = \frac{1}{2p+1}$$
 Les suites  $(v_p)_{p \geq 1}$  et  $(w_p)_{p \geq 0}$  sont décroissantes, c'est évident.

$$v_1 = \frac{3}{2}$$
 et  $\lim v_n = 0$ 

$$v_1 = \frac{3}{2}$$
 et  $\lim_{p \to +\infty} v_p = 0$   
 $w_0 = 1$  et  $\lim_{p \to +\infty} w_p = 0$ 

$$\sup(X) = \max(v_p; p \ge 1, w_p; p \ge 0) = \max(\frac{3}{2}, 1) = \frac{3}{2}$$

Remarque cette borne supérieure est un maximum.

$$\inf(X) = \min(v_p; p \ge 1, w_p; p \ge 0) = \min(0; 0) = 0$$

Remarque : cette borne inférieure n'est pas un minimum.

2.

$$\sup(Y) = \sup\left(\left\{\frac{(-1)^p}{p}; p \in \mathbb{N}^*\right\}\right) + \sup\left(\left\{\frac{2}{q}; q \in \mathbb{N}^*\right\}\right)$$

En distinguant p pair et p impair, on voit que

$$\sup\left(\left\{\frac{(-1)^p}{p}; p \in \mathbb{N}^*\right\}\right) = \frac{(-1)^2}{2} = \frac{1}{2}$$

Comme la suite de terme général de terme général  $\frac{2}{q}$  est décroissante donc

$$\sup\left(\left\{\frac{2}{q}; q \in \mathbb{N}^*\right\}\right) = 2$$

On en déduit que

$$\sup(Y) = \frac{1}{2} + 2 = \frac{5}{2}$$

Remarque: cette borne supérieure est un maximum

$$\inf(Y) = \inf\left(\left\{\frac{(-1)^p}{p}; p \in \mathbb{N}^*\right\}\right) + \inf\left(\left\{\frac{2}{q}; q \in \mathbb{N}^*\right\}\right)$$

En allant un peu vite et en distinguant p pair et p impair

$$\inf\left(\left\{\frac{(-1)^p}{p}; p \in \mathbb{N}^*\right\}\right) = \frac{(-1)^1}{1} = -1$$

Comme la suite de terme général de terme général  $\frac{2}{a}$  est décroissant et tend vers 0 donc

$$\inf\left(\left\{\frac{2}{q};q\in\mathbb{N}^*\right\}\right) = 0$$

$$\inf(Y) = \inf\left(\left\{\frac{(-1)^p}{p};p\in\mathbb{N}^*\right\}\right) + \inf\left(\left\{\frac{2}{q};q\in\mathbb{N}^*\right\}\right) = -1 + 0 = -1$$

Remarque : cette borne inférieure n'est pas un minimum.

Allez à : Exercice 9 :

### Correction exercice 10:

1. Si B est minoré alors il existe  $m \in \mathbb{R}$  tel que pour tout  $y \in B$ ,  $m \le y$  alors il existe  $m \in \mathbb{R}$  tel que pour tout  $y \in B$ ,  $-y \le -m$ , comme tous les éléments de A sont de la forme -y,  $y \in B$ , cela montre qu'il existe  $-m \in \mathbb{R}$  tel que pour tous  $x \in A$ ,  $x \le -m$ , autrement dit A est majoré.

## Réciproque:

Si A est majoré, il existe  $M \in \mathbb{R}$  tel que pour tous  $x \in A$ ,  $x \leq M$  alors il existe  $M \in \mathbb{R}$  tel que pour tous  $x \in A$ ,  $-M \leq -x$ , comme tous les éléments de B sont de la forme -x,  $x \in A$ , il existe  $M \in \mathbb{R}$  tel que pour tous  $y \in B$ ,  $-M \leq y$ , autrement dit B est minoré.

2. Si A est majoré, A admet une borne supérieure  $\sup(A)$  et d'après le 1. B est minoré et donc admet une borne inférieure  $\inf(B)$ .

Pour tout M un majorant de A :  $\sup(A) \leq M$ 

D'après 1. -M est un minorant de  $B: -M \le \inf(B)$ 

On en déduit que pour tout M, majorant de  $A: -\inf(B) \leq M$ , cela entraine que

$$-\inf(B) \le \sup(A)$$

De même pour m un minorant de  $B: m \leq \inf(B)$ 

D'après 1. -m est un majorant de A :  $\sup(A) \le -m$ 

On en déduit que pour tout m, minorant de B :  $\sup(A) \le -m$ , cela entraine que

$$\sup(A) < -\inf(B)$$

Donc

$$\sup(A) = -\inf(B) \Leftrightarrow \inf(B) = -\sup(A)$$

### Allez à : Exercice 10 :

### Correction exercice 11:

- 1.  $E \subset [0,1]$ , ce qui signifie que E est une partie de  $\mathbb{R}$  bornée par 1 et non vide car  $a = 0 \times (b-a) \in E$  donc E admet une borne supérieure.
- 2. Si  $a + T(b a) \in A$  alors il existe  $\epsilon > 0$  tel que

$$]a + T(b - a) - \epsilon, a + T(b - a) + \epsilon[ \in A]$$

Car A est un ouvert.

Ce qui entraine que

$$a + T(b - a) + \frac{\epsilon}{2} \in A$$

Or

$$a + T(b - a) + \frac{\epsilon}{2} = a + T(b - a) + \frac{1}{2} \times \frac{\epsilon}{b - a}(b - a) = a + \left(T + \frac{1}{2} \times \frac{\epsilon}{b - a}\right)(b - a)$$

Donc

$$a + \left(T + \frac{1}{2} \times \frac{\epsilon}{b-a}\right)(b-a) \in A$$

Et par définition de E:

$$T + \frac{1}{2} \times \frac{\epsilon}{b - a} \in E$$

Ce qui n'est pas possible car

$$T < T + \frac{1}{2} \times \frac{\epsilon}{b - a}$$

Et T est supposer être la borne supérieure de E.

Par conséquent  $a + T(b - a) \notin A$ .

3.  $T \in [0,1]$  donc

$$0 \le T(b-a) \le b-a$$

Ce qui entraine que

$$a < a + T(b - a) < b$$

 $a + T(b - a) \in [a, b]$  comme I est un intervalle  $a + T(b - a) \in I$ , de plus D'après 2.

 $a + T(b - a) \notin A$  donc  $a + T(b - a) \in B$  puisque  $A \cup B = I$ .

4. Comme B est ouvert et que  $a + T(b - a) \in B$  il existe  $\epsilon$  tel que

$$]a + T(b - a) - \epsilon, a + T(b - a) + \epsilon[ \in B]$$

Ce qui entraine que

$$a + T(b - a) - \frac{\epsilon}{2} \in B$$

Or

$$a + T(b-a) - \frac{\epsilon}{2} = a + T(b-a) - \frac{1}{2} \times \frac{\epsilon}{b-a}(b-a) = a + \left(T - \frac{1}{2} \times \frac{\epsilon}{b-a}\right)(b-a)$$

Donc

$$a + \left(T - \frac{1}{2} \times \frac{\epsilon}{b - a}\right)(b - a) \in B$$

Ce qui entraine que

$$a + \left(T - \frac{1}{2} \times \frac{\epsilon}{b - a}\right)(b - a) \notin A$$

Comme  $T - \frac{1}{2} \times \frac{\epsilon}{b-a} < T \le 1$ ,  $T - \frac{1}{2} \times \frac{\epsilon}{b-a} \in [0,1]$  (quitte à diminuer  $\epsilon$  pour que  $T - \frac{1}{2} \times \frac{\epsilon}{b-a}$  reste positif) et par définition de E:

$$T - \frac{1}{2} \times \frac{\epsilon}{b - a} \notin E$$

Ce qui n'est pas possible car

$$T - \frac{1}{2} \times \frac{\epsilon}{b - a} < T$$

Comme pour tout  $\epsilon' > 0$ ,  $T - \epsilon' \in E$ , en prenant

$$\epsilon' = \frac{1}{2} \times \frac{\epsilon}{b - a}$$

Il y a une contradiction. Elle se situe dans l'implication

$$a + \left(T - \frac{1}{2} \times \frac{\epsilon}{b - a}\right)(b - a) \in B \Rightarrow a + \left(T - \frac{1}{2} \times \frac{\epsilon}{b - a}\right)(b - a) \notin A$$

C'est-à-dire dans le fait que  $A \cap B = \emptyset$ 

Allez à : Exercice 11 :