Recall: Endamental Theorem of Calculus (FTC)

Part 1: F' continuous on [a,b], [F'(x) =

Part 2: F(x) =

where $\frac{d}{dx}(F(x)) = F'(x)$

Theorem FTC for Line Integrals Part 1:

C a smooth Curve given by $\vec{r}(b)$, $a \le t \le b$, \vec{f} differentiable with ∇f Continuous on C then $\int_C \nabla f \cdot d\vec{r} =$

Proof:

A Note:

. Conservative Vector Field:

A Recall:

· Independence of Path:

MUC

Goal: OWant part 2 of FTC for line Integrals - i.e. writing the potential function as a line Integral.

@But how do we know we can? Need F path independent

3 Definition of Path Independence hard to check -> Find easier way

· Closed curves:

A curve C is closed if

JcF. dr independent of path in D, C closed in D then

 $\int_{c} \vec{F} \cdot d\vec{r} =$

Theorem] [F.dr' is independent of path in Diff

Open Not Connected

· Open Connected Regions:

Dis open if

Connected Not Open

D is Connected if

Open And Connected

Theorem Fundamental Theorem for Line Integrals Part 2:

F'Continuous on open connected region D.

Proof: FTC for line Integrals part 2

Assume ScF.dr is independent of path in D

Show: There is f with $\nabla f = \vec{F}$ (means \vec{F} is conservative)

D

Example Let $f(x,y) = \sin(x-2y)$. Compute $\int_C \nabla f \cdot d\vec{r}$ where C is any curve that starts at (0,0) and ends at $(\sqrt[4]{3}, \sqrt[4]{2})$. Then find a curve not closed C_1 , so that $\int_C \nabla f \cdot d\vec{r} = 0$.