Technologie sieciowe

Sprawozdanie nr 2

1. Cel

Zadania polegają na przetestowaniu wcześniej napisanego programu symulującego działanie sieci komputerowych. Program został napisany w języku Java z wykorzystaniem biblioteki JGraphT.

2. Realizacja

2.1 Szacowanie niezawodności

Do tego celu posłuży mi metoda Monte Carlo, która dla każdej krawędzi E grafu przeprowadza następujące operacje:

- losuje liczbę X z zakresu [0; 1),
- jeżeli wartość X jest większa od niezawodności krawędzi E, to usuwa krawędź z grafu,
- jeśli graf pozostał spójny, zwiększa licznik pozytywnych iteracji.
- powtarza powyższy algorytm dziesięć tysięcy razy.

```
for (int i = 0; i < repetitions; i++) {
   for (MyEdge e: myWeightedEdges)
      if (e.getWeight() < generator.nextDouble())
          toRemove.add(e);

if (!toRemove.isEmpty())
   for (MyEdge e: toRemove)
          tempGraph.removeEdge(e.getEdge());

ConnectivityInspector con = new
      ConnectivityInspector<>(tempGraph);

if (con.isGraphConnected())
   good++;
```

Niezawodność modelu definiujemy jako iloraz pozytywnych iteracji i wszystkich przebiegów algorytmu.

Modele sieci

Szacowanie niezawodności rozpoczynam zbadaniem grafu o dwudziestu wierzchołkach i dziewiętnastu krawędziach. Każdej krawędzi zostaje przyporządkowany parametr niezawodności, który wynosi 0,95.

Graf 1

Kolejnym badanym modelem jest modyfikacja grafu 1. w której została dodana krawędź pomiędzy wierzchołkiem dziewiętnastym, a zerowym. Nowej krawędzi w grafie zostaje przyporządkowany parametr niezawodności 0.95.

Graf 2

Kolejną badaną modyfikacją jest graf 2. z dodanymi nowymi krawędziami:

- (1, 10) ze współczynnikiem niezawodności 0.8,
- (5, 15) ze współczynnikiem niezawodności 0.7.

Graf 3

Ostatnim badanym modelem jest zmodyfikowany graf 3. w którym dodane zostały cztery nowe krawędzie, tym razem wybrane losowo. Współczynnik niezawodności każdej nowo dodanej wynosi 0.4.

Graf 4

Rezultaty

MODEL	NIEZAWODNOŚĆ
GRAF 1	0.3714
GRAF 2	0.7419
GRAF 3	0.8693
GRAF 4	0.9153
$T_{\rm wh}$, $I_{\rm w}$ 1	

Tabela 1.

Wnioski

Na podstawie Tabeli 1. wnioskuję, że niezawodność sieci zwiększa się w miarę dodawania nowych połączeń. Istotną rolę w modelu sieci odgrywają cykle, które znacząco zwiększają parametr niezawodności. Wart odnotowania jest również fakt, że dodawanie nowych połączeń jest opłacalne, nawet jeśli cechuje je niska niezawodność.

2.2 Badanie opóźnień

Do badania opóźnień przepływu została zaimplementowałem klasę MyEdge wraz z atrybutami:

- przepustowości (C),
- przepływu (A),
- referencji do krawędzi w badanym grafie.

Dane potrzebne do stworzenia grafu odczytywane są z pliku tekstowego, który przechowuje:

- liczbę wierzchołków grafu,
- średnią wielkość pakietu,
- macież natężeń,
- macierz przepustowości,
- informacje o topologii grafu.

Pojedynczy test sieci rozpoczyna się iteracją po wszystkich krawędziach grafu i wyeliminowaniem tych, których niezawodność okazuje się być mniejsza od losowo wybranej liczby z przedziału [0; 1). Następnie dla każdej krawędzi obliczany jest przepływ:

Definiuję niepowodzenie pojedynczego testu jako jedną z trzech możliwości:

- rozspójnienie grafu,
- przeciążenie połączenia (krawędzi grafu),
- utratę spójności grafu.

W każdej pętli program sprawdza, czy zaszło niepowodzenie. Jeśli tak, to zwiększamy licznik nieudanych iteracji.

Zaproponowane modele sieci

Rys. 5. Topologia grafu regularnego o stopniu 3

Rys. 6. Topologia grafu nieregularnego

Dla powyższych topologii zostały zaproponowane identyczne pozostałe parametry sieci w sposób następujący:

- średnia wielkość pakietu: 50,
- macierz natężeń:

```
61 24 24 53 17 54 74 43 63 66 62 31 60 81 90 50 90 16 53 84 99 29 88 34 11 28 87 25 30 12 27 71 72 59 95 85 15 66 43 73 56 20 43 52 14 92 96 21 52 31 11 15 14 74 33 82 54 57 62 62 82 64 46 39 21 87 92 13 53 31 28 84 57 19 50 33 95 82 95 51 21 95 64 66 46 62 38 27 16 52 53 77 88 20 54 32 34 93 87 51
```

• przepustowość każdej krawędzi: 100 000.

Rezultaty

Wykres 1.

Wykres 1. pokazuje jak zmienia się niezawodność całego modelu sieci w zależności od zmiany prawdopodobieństwa nieuszkodzenia każdej z krawędzi grafu.

Wykres 2.

Wykres 2. Pokazuje maksymalne opóźnienie sieci w zależności od nieuszkodzenia każdej z krawędzi grafu.

Wnioski

Na podstawie Wykresu 1. i Wykresu 2. stwierdzam, że regularne modele sieci zachowują lepszą niezawodność i mniejsze opóźnienia w stosunku do modeli nieregularnych.

3. Podsumowanie

Konstruując sieć komputerową powinniśmy zadbać zarówno o wysoką niezawodność połączeń, ich regularność jak i również ich dużą liczbę. Wpłynie to znacząco na szybkość transferu danych. Istotną rolę odgrywa również wysoka przepustować i stosunkowo niewielkie do niej natężenie stumienia pakietów danych. Przy zachowaniu takich parametrów sieć komputerowa będzie cechować się dużą niezawodnością.