Nome .	
Cognome _	
- 10 1	
Matricola _	

Architettura degli Elaboratori Corso di Laurea in Informatica Prova Intermedia / Prima Parte Prova Finale - 25 Novembre 2013

x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	-
0	0	0	1	1
0	0	1	0	1
0	0	1	1	-
0	1	0	0	0
0	1	0	1	0
0	1	1	0	-
0	1	1	1	1
1	0	0	0	-
1	0	0	1	1
1	0	1	0	1
1	0	1	1	-
1	1	0	0	0
1	1	0	1	0
1	1	1	0	-
1	1	1	1	-
				-

 SOP

6.	(7 punti) Disegnare di seguito il diagramma di stato di una Rete Sequenziale a singolo ingresso (x)
	e singola uscita (z) tale che $z_j = 1$ se e solo se x_{j-3} x_{j-2} x_{j-1} x_j corrisponde alla codifica in modulo
	e segno a 4 bit dei numeri 4 oppure -4

7. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo SR. In particolare determinare tutte le funzioni booleane e disegnare la rete sequenziale corrispondente.

\boldsymbol{x}	y_1	y_2	Y_1	Y_2	s_1	r_1	s_2	r_2	z
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

s_1 :	r_1 :
<i>s</i> ₂ :	r_2 :

Disegno della rete: