Low power Radio Circuits

EE 142 Guest Lecture Alyosha Molnar

Overview: Smart Dust Radio

Goal: A radio for sensor nodes which contain: sensors, ADC, μP and ~1kB RAM

- Cost: <\$1, so few offchip components:
 - Battery (3V Li coin cell)
 - Crystal (for network sync)
 - Antenna
 - High-Q inductor
 - $-0.25 \mu m$

Performance:

- range ≤10m
- data rate: ~100kb/s
- <1% duty cycle
- Battery life ~5yrs
- Low power:1mW
 - Stack circuits to reuse current
 - Drive RF gates from high-Q LC oscillator

Top level

Oscillator

- Cross-coupled inverters form a negative resistance.
- Tuning:
 - 902MHz-928MHz
 - $-\pm 5\%$ for process
 - $-\pm 2.5\%$ for inductor
- L = 17nH, Q = 30
- Swing = 1Vpeak
- Ibias = $200-300\mu A$

Simulations (unloaded)

Capacitor array

Made up of:

- Three 4-bit binary arrays of inversion capacitors
- An extra MSB
- A 4-bit DAC driving a near-minimum PFET varactor

array	min step (MHz)	range (MHz)
varactor	0.01	0.1
min cap	0.07	0.99
mid cap	0.89	12.29
max cap	11.69	142.14

(Q*Con/Coff) is about 6x better than a normal switch plus capacitor

Oscillator results

- Tuning from 820MHz to 960MHz
- LSB precision of 2.6 kHz
- Phase noise @ 1MHz = -107dBc
- PN rolls off @ 40dB/dec below 1MHz, 20dB/dec above.
- Noise is bias dominated.
- Oscillator starts to squegg for Ibias below 200μA (220μW)

Top level

Frequency control loop (FLL)

- Have Crystal oscillator for network synchrony.
- RF Oscillator control is digital.
 - Crystal samples continuously running counter.
 - Subtracting successive samples gives F_{RF}/F_{ref}.
- Early counter stages set power, so
 - Use some custom logic.
 - divide-by-8 before counter

Divider design VDD Vmid D Q D Q

Ring Divider Simulation

- Four stages with
 ~1ns delay set by
 input.
- Extra inverter incorporating reset capability.
- Fails by dividing by 9 (extra inverter causes cyclic slip).

Divider/FLL results

FLL works

- Accurately sets frequency
- Stabilizes Frequency under bias perturbations
- Divider fails at low currents by under counting.
- Requires ~ 55µW

Top level

Transmitter

- Transmitter is just a buffering of the oscillator.
- Want to transmit 100-300uW
- Simple antennas have impedance of ~100 ohms.
- For low cost, impedance matching is limited to a series inductor (can be part of the antenna).
- This implies the driver must source a 1mA, 200mV rms signal from a 3V supply: this will be inefficient!
- So stack two amplifiers and reuse bias.

Transmitter design

Transmitter design

Transmitter design

Bias Levels For Driver

Need to set up bias levels for four transistors of antenna driver

Varying supply is taken up by current source at the middle:

Voltage delivered through $60k\Omega$ minimum width resistors

Transmitter Results

- Peak efficiency of 20% when radiating $300\mu W$ into 50Ω . (implies PA efficiency of >40%)
- Can radiate 1mW if reconfigured (efficiency~15%)

Top level

Receiver Overview

Architecture:

- Low power dictates
 Direct conversion or low
 IF.
- Direct conversion suffers from DC offset, IP2, flicker noise

Low IF receiver

- Generate IF from LO.
- No image rejection

- Sensitivity: ~-90dBm
 - Want high gain up front
 - NF set by LNA, so spend most bias current in LNA

Interference

- Mostly out-of-band (cell phones etc)
- No SAW filter up front
- So use linear, passive mixer, followed by filtering

LNA Mixer IF chain Baseband

Resistively biased inverter as LNA.

- $Av = 2Gm_{LNA}/(\omega_{LO}C_{par})$ (20dB)
- NF ~9dB

- Resistively biased inverter as LNA.
 - $Av = 2Gm_{LNA}/(\omega_{LO}C_{par})$ (20dB)
 - NF ~9dB
 - Passive mixer dissipates little power
 - Vout: 1-pole LPF at 2F_{LO}C_p/C_L

- Resistively biased inverter as LNA.
 - $Av = 2Gm_{LNA}/(\omega_{LO}C_{par})$ (20dB)
 - NF ~9dB
 - Passive mixer dissipates little power
 - Vout: 1-pole LPF at 2F_{LO}C_p/C_L
 - LPF shunts RF signals through switches.
 - $-P_{OBC} = -22dBm$

Cool mixer/filter effect

$$V_0(k+1) = V_0(k) \left(\frac{C_L - C_P}{C_L + C_P} \right)$$

$$i = A\sin(\omega_{LO}t + \Delta\omega kT)$$

$$\frac{V_0}{A} = \frac{\frac{4A}{C_L \omega_{LO}}}{j\Delta\omega + \left(\frac{2C_P}{TC_L} - \frac{1}{2R_L C_L}\right)}$$

$$V_i \approx V_0 \sin(\omega_{LO} t)$$

- Resistively biased inverter as LNA.
 - $Av = 2Gm_{LNA}/(\omega_{LO}C_{par})$ (20dB)
 - NF ~9dB
 - Passive mixer dissipates little power
 - Vout: 1-pole LPF at 2F_{LO}C_p/C_L
 - LPF shunts RF signals through switches.
 - $-P_{OBC} = -22dBm$

IF Amplifier

- 26dB gain, loaded by IF mixer.
- 5-bit, differential current DAC cancels LO self-mixing.

- Get S-C pole
- Shunts DC at amplifier by 20dB.

- Get S-C pole
- Shunts DC at amplifier by 20dB.

IF from divided LO:

I/Q phase split

- Get S-C pole
- Shunts DC at amplifier by 20dB.

IF from divided LO:

I/Q phase split

Use harmonic suppression:

Cancel 3rd, 5th
 harmonics by
 recombining 45° split
 signals

- Switches sample to capacitors
 - Get S-C pole
 - Shunts DC at amplifier by 20dB.
- IF from divided LO:
 - I/Q phase split
- Use harmonic suppression:
 - Cancel 3rd, 5th
 harmonics by
 recombining 45° split
 signals
 - 8 samples

- Get S-C pole
- Shunts DC at amplifier by 20dB.

IF from divided LO:

I/Q phase split

Use harmonic suppression:

- Cancel 3rd, 5th
 harmonics by
 recombining 45° split
 signals
- 8 samples
- Weight, sum samples

IF mixer simulations

IF (input) of mixer

DC is rejected by 23dB

Baseband (output)

3rd harmonic mixing is suppressed by 20dB

Baseband

Wanted to demonstrate full bits-to-bits communication, so need an FSK demodulator.

- Additional gain and filtering is needed
- Simple Sallen-key filters provide 2 poles.
- Switched-cap amplifiers reject DC, add 12dBgain
- Flip-flop based demodulator clocks in ones/zeros

Receiver Results: sensitivity

- NF ~12dB
- Sensitivity ~ -93dBm
 - From $50\Omega + 14$ nH
 - BER ~10⁻³, no error correction
- BW = 300kHz
- IF = 1.8MHz

Receiver Results: Interference

- Wide band 4dB desense: -12dBm
- Close-in desense a mix of compression, phase noise
- 3rd, 5th harmonic interference reduced by 40dB.

Top Level

Power summary

	tx, nom	tx, low	rx nom	rx low
osc	480	319	336	161
Tx	630	464	0	0
bias	60	54	90	81
divider	90	80	90	80
counter	23	23	23	23
Ina	0	0	378	134
IF	0	0	90	52
bb	0	0	54	48
demod	0	0	75	75
total	1283	940	1136	654
Pout	250	100		
sense, dBm			-93	-84

All powers in μW

Link Testing

- Two chips communicating through the air:
 - 20 kbps
 - 16 meters through 2 concrete walls
 - Nominal power(1.2mW RX, 1.3mW TX)
 - 100 kbps at shorter range
 - Battery, antenna, crystal oscillator inductor, tuning inductor

Conclusions

- Ultra-low power, very low cost radios demonstrated:
 - < 1.3 mW for both Receive and transmit</p>
 - Only 4 off-chip components needed (< \$1)
 - Purely digital interface.
 - Showed communication of 20kbps @ 16meters indoors.