Retrieval Models: Vector Space

Intelligent Information Retrieval

The Notion of Relevance

The Basic Question

Given a query, how do we know if document
 A is more relevant than B?

One Possible Answer

- If document A uses more query words than document B
- (Word usage in document A is more similar to that in query)

Relevance = Similarity

- Assumptions
 - Query and document are represented similarly
 - A query can be regarded as a "document"
 - $-Relevance(d,q) \propto similarity(d,q)$
- $R(q) = \{d \in C | f(d,q) > \theta\}, f(q,d) = \Delta(Rep(q), Rep(d))$
- Key issues
 - How to represent query/document?
 - How to define the similarity measure \triangle ?

Vector Space Model

- Represent a doc/query by a term vector
 - Term: basic concept, e.g., word or phrase
 - Each term defines one dimension
 - N terms define a high-dimensional space
 - Element of vector corresponds to term weight
 - E.g., $d = (x_1, ..., x_N)$, x_i is "importance" of term i
- Measure relevance by the distance between the query vector and document vector in the vector space

What's a good "basic concept"?

- Orthogonal
 - Linearly independent basis vectors
 - "Non-overlapping" in meaning
- No ambiguity
- Many possibilities: Words, stemmed words, phrases, "latent concepts", ...
- Single words + short statistical phrases are generally "good enough"

VS Model: illustration

What the VS model doesn't say

What the VS model doesn't say

- How to define the dimensions (define "basic concepts" or terms)
 - Concepts are assumed to be orthogonal
- How to place queries and documents in the vector space (how to assign weights)
 - Weight in query indicates importance of term
 - Weight in doc indicates how well the term characterizes the doc
- How to define the similarity/distance measure Most research work in VS model tried to address these questions

Dimension Instantiation: Bag of Words (BOW)

Vector Placement: Bit Vector

Similarity Instantiation: Dot Product

$$Sim(q, d) = q. d = x_1y_1 + \cdots + x_Ny_N = \sum_{i=1}^N x_iy_i$$

Simplest VSM = Bit-Vector + Dot-Product + BOW

$$q = (x_1, ..., x_N)$$

$$d = (y_1, ..., y_N)$$

$$x_i, y_i \in \{0, 1\}$$
1: word w_i is present
0: word w_i is absent

$$Sim(q, d) = q. d = x_1y_1 + \cdots + x_Ny_N = \sum_{i=1}^N x_iy_i$$

What does this ranking function intuitively capture? Is this a good ranking function?

An Example: How Would You Rank These Documents?

Query = "news about presidential campaign"

Ideal Ranking?

```
d_1 .... news about ...
d_2 .... news about organic food campaign ...
d_3 .... news of presidential campaign ...
d_4 .... news of presidential campaign ...
.... presidential candidate...
d_5 .... news of organic food campaign ...
.... campaign .... campaign .... campaign ...
```

$$d_3 + d_1 - d_2 - d_5 -$$

 d_4 +

Ranking Using the Simplest VSM

```
d_1 ... news about ... d_3 ... news of presidential campaign ...
```

```
 V = \{news, about, presidential, campaign, food, ...\} \\ q = (1, 1, 1, 1, 0, ...) \\ d_1 = (1, 1, 0, 0, 0, 0, ...) \\ f(q, d_1) = 1 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 + 0 \times 0 + ... = 2 \\ d_3 = (1, 0, 1, 1, 0, ...) \\ f(q, d_3) = 1 \times 1 + 1 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + ... = 3
```

Is the Simplest VSM Effective?

- d_1 ... news about ...
- $d_2 \mid \dots$ news about organic food campaign ...
- $d_3 \mid \dots$ news of presidential campaign \dots
- d₄ ... news of presidential campaign presidential candidate...
- d_5 ... news of organic food campaign ... campaign ... campaign ... campaign ...

$$f(q,d_1)=2$$

$$f(q,d_2)=3$$

$$f(q,d_3)=3$$

$$f(q,d_4)=3$$

$$f(q,d_5)=2$$

Two Problems of the Simplest VSM

- $d_2 \mid \dots$ news about organic food campaign \dots
- $d_3 \mid \dots$ news of presidential campaign \dots
- d₄ ... news of presidential campaign presidential candidate...

- $f(q,d_2)=3$
- $f(q,d_3)=3$
- $f(q,d_4)=3$

- 1. Matching "presidential" more times deserves more credit.
- 2. Matching "presidential" is more important than matching "about"

Improved Vector Placement: Term Frequency Vector

Improved VSM with Term Frequency Weighting

$$q=(x_1,\ldots,x_N)$$

 $x_i = \text{count of word } w_i \text{ in query}$

$$d = (y_1, \dots, y_N)$$

 $y_i = \text{count of word } w_i \text{ in doc}$

$$Sim(q, d) = q. d = x_1y_1 + ... + x_Ny_N = \sum_{i=1}^N x_iy_i$$

What does this ranking function intuitively capture? Does it fix the problems of the simplest VSM?

Ranking using Term Frequency (TF) Weighting

V= {news, about, presidential, campaign, food, ...}

$d_2 \mid \dots$ news about organic food campaign ...

$$q = (1, | 1, | 1, | 1, | 0, ...)$$

 $d_2 = (1, | 1, | 0, | 1, | 1, ...)$

$$f(q,d_2)=3$$

d_3 ... news of presidential campaign ...

$$q = |(\bar{1}, | 1, | 1, | 1, | 1, | 0, ...)$$

 $d_3 = (1, | 0, | 1, | 1, | 0, ...)$

$$f(q,d_3)=3$$

$$d_4$$
 ... news of presidential campaign ...

... presidential candidate...

$$q = (1, 1, 1, 1, 1, 1, 0, ...)$$

 $d_4 = (1, 1, 0, 1, 1, 0, ...)$

$$f(q,d_4)=4!$$

How to Fix Problem 2 ("presidential" vs. "about")?

```
d_2 ... news about organic food campaign ...
```

$$d_3$$
 ... news of presidential campaign ...

V={news, about, presidential, campaign, food, ...}

$$f(q, d_2) < 3$$

 $f(q, d_3) > 3$

Further Improvement of Vector Placement: Adding Inverse Document Frequency (IDF)

IDF Weighting: Penalizing Popular Terms

Solving Problem 2 ("presidential" vs. "about")?

```
d_2 \mid \dots news about organic food campaign ...
d_3 \mid \dots news of presidential campaign ...
V = \{news, about, presidential, campaign, food, ...\}
IDF(W) = 1.5 \quad 1.0 \quad 2.5
```

$$f(q, d_2) = 5.6 < f(q, d_3) = 7.1$$

How Effective is VSM with TF-IDF Weighting?

- d_1 ... news about ...
- $d_2 \mid \dots$ news about organic food campaign ...
- d_3 ... news of presidential campaign ...
- d₄ ... news of presidential campaign ...presidential candidate...
- d_5 ... news of organic food campaign ... campaign ... campaign ... campaign ...

$$f(q, d_1) = 2.5$$

$$f(q, d_2) = 5.6$$

$$f(q, d_3) = 7.1$$

$$f(q, d_4) = 9.6$$

$$f(q, d_5) = 13.9!$$

Ranking Function with TF-IDF Weighting

total # of docs in collection

$$f(q,d) = \sum_{i=1}^{N} x_i y_i = \sum_{w \in q \cap d} c(w,q) \underline{c(w,d)} \log \frac{M+1}{df(w)}$$
All matched query words in d
Doc Frequency

 d_5

... news of organic food campaign ...

... campaign campaign ... campaign ...

$$c("campaign", d_5) = 4$$

 $\Rightarrow f(q, d_5) = 13.9?$

TF Transformation: $c(w,d) \rightarrow TF(w,d)$

Term Frequency Weight

TF Transformation: BM25 Transformation

Term Frequency Weight

What about Document Length?

Query = "news about presidential campaign"

 d_4 ... news of presidential campaign ... presidential candidate... d_6

 $d_6 > d_4$?

... campaign ... news ... news ... news ... news ... news ... news ...

Document Length Normalization

- Penalize a long doc with a doc length normalizer
 - Long doc has a better chance to match any query
 - Need to avoid over-penalization
- A doc is long because
 - it uses more words → more penalization
 - it has more contents → less penalization
- Pivoted length normalizer: average doc length as "pivot"
 - Normalizer = 1 if |d| = average doc length (avdl)

Pivoted Length Normalization

State of the Art VSM Ranking Functions

 Pivoted Length Normalization VSM [Singhal et al 96]

$$f(q,d) = \sum_{w \in q \cap d} c(w,q) \frac{\ln[1 + \ln[1 + c(w,d)]]}{1 - b + b \frac{|d|}{avdl}} \log \frac{M+1}{df(w)}$$

• BM25/Okapi [Robertson & Walker 94] $b \in [0,1]$

$$b \in [0,1]$$

$$k_1,k_3\in[0,+\infty)$$

$$f(q,d) = \sum_{w \in q \cap d} c(w,q) \frac{(k+1)c(w,d)}{c(w,d) + k(1-b+b\frac{|d|}{avdl})} \log \frac{M+1}{df(w)}$$

Further Improvement of VSM?

- Improved instantiation of dimension?
 - Stemmed words, stop word removal, phrases, latent semantic indexing (word clusters), character n-grams, ...
 - Bag-of-words with phrases is often sufficient in practice
 - Language-specific and domain-specific tokenization is important to ensure "normalization of terms"
- Improved instantiation of similarity function?
 - Cosine of angle between two vectors?
 - Euclidean?
 - Dot product seems still the best (sufficiently general especially with appropriate term weighting)

Relevance Feedback in VS

- Basic setting: Learn from examples
 - Positive examples: docs known to be relevant
 - Negative examples: docs known to be non-relevant
 - How do you learn from this to improve performance?
- General method: Query modification
 - Adding new (weighted) terms
 - Adjusting weights of old terms
 - Doing both
- The most well-known and effective approach is Rocchio [Rocchio 1971]

Rocchio Feedback: Illustration

Rocchio Feedback: Formula

Rocchio in Practice

- Negative (non-relevant) examples are not very important (why?)
- Often project the vector onto a lower dimension (i.e., consider only a small number of words that have high weights in the centroid vector)
- Avoid "training bias" (keep relatively high weight on the original query weights)
- Can be used for relevance feedback and pseudo feedback
- Usually robust and effective

Advantages of VS Model

- Empirically effective! (Top TREC performance)
- Intuitive
- Easy to implement
- Well-studied/Most evaluated
- Warning: Many variants of TF-IDF!

Disadvantages of VS Model

- Assume term independence
- Assume query and document to be the same
- Lots of parameter tuning!

Questions?