Automorphic forms seminar

Tuesday, May 10, 2022 2:43 PM

A modular construction of unramified

p-extensions of Q(N)

piodd prime, Ip i primitive p-th root of 1

 $\chi_p: G_Q = Gal(\bar{Q}/Q) \longrightarrow Z_p^{\times} \quad p-adic cyc. char$

I. Ribet and Q(1/2)

25 k ≤ p-3 even

Q: When does 3F/Q(Sp) Gal., deg. p, unram. s.t. · FID is Gal-

'Gal(Q(\$)10) act on Gal(F/O(\$p)) by whi? Thim: (Ribet '76) Such an extin exists iff PIBk.

Kth Bernowli number

Sps. F/Q(JD) exists.

P: Ga -> Gal(F/Q) = Gal(F/Q(Sp)) × Gal(Q(Sp)/Q) -> GL/F)

$$\begin{array}{ccc}
\mathbb{Z} & & & & & & \\
\mathbb{Z} & & & &$$

Then F = 10 ker p Thim: (Ribet, v2) If plBk, then Fp: Ga > Gla(Fp)

tii) $\bar{\rho}$ is reducible nonsemisimple: $\bar{\rho} = \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix}$ * liii) plo is somisimple.

So Querp/Q(s) is unram, nontrivial, (p, -, p) rext'n with Gal(O(Jp)10) -action given by with

How to produce P?

Key Lemma: (Ribet) K/Qp fin., OCK ring of ints, we will unif. If $p:G_Q \to GL_Q(O)$ is irred. over k and $\bar{p}:\bar{p} \mod \bar{w}$ is reducible, say $\bar{p}^{sl} \cong \Psi_1 \oplus \Psi_2$, then $\exists x \in GL_Q(K)$ s.t. $r:=xp\bar{x}^l:G_Q \to GL_Q(O)$ and $\bar{r}=(\Psi_1 \times \bar{p}_2)$.

→ Cusp forms give irred. Gal. reps. in char o → Eisenstein series have correct Gal. rep.

 $F_{k}(z) = \frac{-B_{k}}{ak} + \sum_{n \ge 1} \left(\sum_{0 \le l \mid n} d^{k-1} \right) g^{n}$ has Gal. rep. $1/\theta \chi_{p}^{k-1}$. $(g = e^{2\pi i z})$

If k74, then Ex EM (SL2/Z).

: Want Eisenstein-cuspidal congruence:

fe Sk (Slg(Z)) s.t.

 $f = E_{k} \pmod{g}$

Rmh: If f exists, then $0 = a_o(f) \equiv a_o(E_h) = -\frac{B_h}{ah} \pmod{g}.$ So $p1B_h$.

Thim: ("Ribet") If pIBk, then $\exists f \in S_k(SL_a(Z))$ s.t. $f \equiv E_k \pmod{6}$ some &P.

Use $p_{s,p}$ in Key Lomma to get $\bar{p}: G_{Q} \rightarrow GL_{p}$ unram. outside p s.t. $\bar{p} = \begin{pmatrix} 1 & * \neq 0 \\ 0 & \omega^{1-k} \end{pmatrix}$.

Checking Plp is semisimple is nontrivial, but can be done.

II. L. - Wake and Q(N'P)

N prime, p75

Q: When $\exists F/Q(N^{\prime p})$ Gal., deg. p, unram.? :.e. When does $p [\# CL(Q(N^{\prime p}))]$?

Observation: If N=1 (p), then

B(In)

J K

J P

Q

Easy to check F:=K(N'P)/Q(N'P) is unram at N, so p|+Cl(Q(N'P)).

Thim: (I imura, Calegari, L.- Wake)
alg. no. thiy Gal. cohom. modular
forms

N = -1 (p) $\Longrightarrow P \mid \# CL(CQ(N'P))$

Sps. F/Q(N'P) exists. (Gal, degp, unram.)

F := Galois closure of F over Q.

 $\overline{\rho}: G_{\mathbb{Q}} \longrightarrow Gal(\overline{F}/\mathbb{Q}) \longrightarrow Gal(\Omega(\mathfrak{z}_{p}, N^{\prime p})/\mathbb{Q}) \cong Gal(\Omega(\mathfrak{z}_{p}, N^{\prime p})/\mathbb{Q}(N^{\prime p})) \rtimes Gal(\Omega(\mathfrak{z}_{p}, N^{\prime p})/\mathbb{Q}) \hookrightarrow G$ $\mathbb{Z}_{p}\mathbb{Z}$ $\overline{\mathbb{Z}_{p}}\mathbb{Z}$ $\overline{\mathbb{Z}_{p}}\mathbb{Z}$

 $\bar{p} = \begin{pmatrix} \omega & \star \\ o & i \end{pmatrix}$

Want k=2, but $E_2 \notin M_2(SL_2(Z))$.

 $E_{2,N}(z) := E_{2}(z) - N E_{2}(Nz) \in M_{2}(\Gamma_{0}(N))$ $= \frac{N-1}{24} + \sum_{n > 1} (\sum_{0 < d \mid n} d) q^{n}.$

Thim: (Mazur) Sps. p75.

If $ES_2(\Gamma_0(N))$ s.t. $f = E_{2,N} \pmod{\beta} \iff N \equiv I(\beta)$.

$$\underline{E(z)} := NE_{2,N}(z) - NE_{2,N}(Nz) \in M_2(\Gamma_0(N^2))$$

Thim: (L.-Wake) If
$$N \equiv -1$$
 (p), then $\exists f \in S_a(\Gamma_0(N^2))$ and $\beta \mid p$ S.t. $f \equiv E \pmod{\beta}$.

Ribet Key Lemma
$$\longrightarrow p = \beta f : G_{0} \longrightarrow GL_{2}(0)$$

$$\Rightarrow \bar{p} = \begin{pmatrix} \omega & \bar{b} \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \overline{p} = \left(\begin{array}{c} \omega & \overline{b} \\ 0 & 1 \end{array} \right) \qquad \overline{b} \in H^{1}(Q^{Np}, \overline{h}(1)) = \langle \mathcal{K}_{N}, \mathcal{K}_{p} \rangle$$

$$\mathcal{X}_{N}(\sigma) := \underbrace{\sigma(N^{!\phi})}_{N^{!\phi}}$$

$$p+N^2 = |evel off| \implies \overline{b} = \mathcal{K}_N$$

$$G_{\mathbb{Q}(N^{1/p})} = \begin{pmatrix} \chi_{p}(1+a\varpi) & b\varpi \\ \hline c\varpi & 1-a\varpi \end{pmatrix}$$

$$\chi := 1 + a \omega$$
 is a character.

$$\rightarrow \chi^p = 1$$

- 1) $f \not\equiv E \pmod{\omega^2} \implies \chi \not= 1$.
- 2) χ unram. at $N: N \not\equiv I$ (p) $\Rightarrow \not\equiv p$ -power order chars. of $I_N \not\subseteq G_{Q_N(N'_R)}$.
- 3) χ unram at p: follows from f ord. at p, so $f_{p} \mid_{D_{\mathcal{L}}} \sim \begin{pmatrix} \chi_{p} + \chi_{p} \\ 0 \end{pmatrix}$.

Advantages of a modular proof: N = -1(p) $f \neq E(\omega^2)$. Thim: (L.-Wake) Sps. # $\mathcal{U}(\mathcal{Q}(N^1 + 1)) = p$. Let λ be a prime of $\mathcal{Q}(N^1 + 1)$ lying over $l \neq Np$.

- 1) Sps. l = 1 (p). If f(x|l) = 1, then TFAE:
 - a) & is principal
 - b) A splits in the Hilbert classifield of O(N'P)
 - c) l is a norm from Q(N'A)
 - d) $a_{\ell}(f) \equiv \ell + \ell \pmod{\mathfrak{D}^2}$.
- 2) Sps. $l \equiv l(p)$. If $a_{\ell}(f) \not\equiv 2 \pmod{w^2}$, then l is inert in $\mathcal{O}(N^{r_{\ell}})$.

OneNote 5/20/22, 8:21 PM

$\beta := \frac{1+\sqrt{5}}{2}, a_{\ell} \not\equiv \ell + 1 \bmod 5, a_{\ell} \equiv \ell + 1 \bmod 5, \ell \equiv 1 \bmod 5$									
ℓ	a_ℓ	ℓ	a_ℓ	ℓ	a_ℓ				
2	β	53	$5-7\beta$	127	$9-2\beta$				
3	$2-\beta$	59	$-11 + 7\beta$	131	$7+5\beta$				
5	2β	61	$-7-2\beta$	137	$1+4\beta$				
7	3	67	-7	139	$-3+11\beta$				
11	$-\beta$	71	$-1-4\beta$	149	$-10 + 5\beta$				
13	-1	73	$7-6\beta$	151	$-13-5\beta$				
17	$4-2\beta$	79	$-6 + 12\beta$	157	$-13-3\beta$				
19	0	83	$2+4\beta$	163	$5-2\beta$				
23	$7-\beta$	89	$-11 + 2\beta$	167	$17 + 2\beta$				
29	$-2-\beta$	97	$9+3\beta$	173	$6-4\beta$				
31	$-4-3\beta$	101	$7-10\beta$	179	$9+2\beta$				
37	$4+3\beta$	103	$3+7\beta$	181	12				
41	-3	107	$-3 + 12\beta$	191	$11 + 2\beta$				
43	$5+3\beta$	109	$-1+6\beta$	193	$18-8\beta$				
47	3	113	$10-2\beta$	-197∋	< ≥ 3 ≥ × ≥				

(ℓ, a_ℓ) or $(\ell, a_\ell) \implies \exists$ principal prime of $\mathbb{Q}(19^{1/5})$ over ℓ									
ℓ	a_ℓ	ℓ	a_ℓ	ℓ	a_ℓ	_			
2	β	53	$5-7\beta$	127	$9-2\beta$	_			
3	$2-\beta$	59	$-11 + 7\beta$	131	$7 + 5\beta$				
5	2β	<u>61</u>	$-7-2\beta$	137	$1+4\beta$				
$\overline{7}$	3	67)	-7	139	$-3 + 11\beta$				
11	$-\beta$	71	$-1-4\beta$	(149)	$-10+5\beta$				
\bigcirc 13	-1	73	$7-6\beta$	151	$-13-5\beta$				
17	$4-2\beta$	79	$-6 + 12\beta$	157	$-13-3\beta$				
(19)	0	83	$2+4\beta$	163	$5-2\beta$				
23	$7-\beta$	89	$-11 + 2\beta$	167	$17 + 2\beta$				
29	$-2-\beta$	97	$9+3\beta$	173	$6-4\beta$				
31	$-4-3\beta$	101	$7-10\beta$	179	$9+2\beta$				
37	$4+3\beta$	103	$3+7\beta$	181	12				
41	-3	107	$-3 + 12\beta$	(191)	$11 + 2\beta$				
43	$5+3\beta$	109	$-1+6\beta$	193	$18-8\beta$				
<u>47</u>	3	113	$10-2\beta$	197	· • = • 3 = •	₹ • • • • • • • • • • • • • • • • • • •			