Compilers

Machine Code

Program

```
v = 5;
if (v>5)
  x = 12 + v
while (x !=3) {
 x = x - 3:
 v = 10;
```

Compiler

Add v,v,O cmp v,5 jmplt ELSE THEN: add x, 12, v ELSE: WHILE: cmp x,3

Compiler

A parser knows the grammar of the programming language

Parser

```
PROGRAM \rightarrow STMT_LIST
STMT_LIST \rightarrow STMT; STMT_LIST | STMT;
STMT \rightarrow EXPR | IF_STMT | WHILE_STMT
| \{ STMT_LIST \}
```

EXPR → EXPR + EXPR | EXPR - EXPR | ID

IF_STMT → if (EXPR) then STMT

| if (EXPR) then STMT else STMT

WHILE_STMT → while (EXPR) do STMT

The parser finds the derivation of a particular input

derivation tree

derivation

derivation tree

Parsing

Example:

Exhaustive Search

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS$$

Find derivation of aabb

$$S \Rightarrow aSb$$

$$S \Rightarrow bSa$$

$$S \Rightarrow \lambda$$

All possible derivations of length 1

$$S \Rightarrow SS$$

$$S \Rightarrow aSb$$

$$S \Rightarrow bSa$$

$$S \Rightarrow \lambda$$

aabb

Phase 2
$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

aabb

$$S \Rightarrow SS \Rightarrow bSaS$$

$$S \Rightarrow SS$$
 $S \Rightarrow SS \Rightarrow S$

$$S \Rightarrow aSb$$
 $S \Rightarrow aSb \Rightarrow aSSb$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

$$S \Rightarrow aSb \Rightarrow abSab$$

$$S \Rightarrow aSb \Rightarrow ab$$

Phase 2

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$
 aabb

$$S \Rightarrow SS \Rightarrow S$$

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

Phase 3

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

Final result of exhaustive search (top-down parsing)

Time complexity of exhaustive search

Suppose there are no productions of the form

$$A \rightarrow \lambda$$

$$A \rightarrow B$$

Number of phases for string w: 2|w|

Each step in the derivation increases the length of the sentential form or the number of nonterminal symbols.

Why 2|w| and not just |w|?

Because S=>AS=>ABS=>ABC=>abC=>abc

For grammar with k rules

Time for phase 1: k

k possible derivations

Time for phase 2: k^2

k² possible derivations

Time for phase
$$2|w|$$
: $k^{2|w|}$

 $k^{2|w|}$ possible derivations

Total time needed for string w:

Extremely bad!!!

There exist faster algorithms for specialized grammars

Pair (A,a) appears once

S-grammar example:

$$S \rightarrow aS$$

$$S \rightarrow bSS$$

$$S \rightarrow c$$

Each string has a unique derivation...

$$S \Rightarrow aS \Rightarrow abSS \Rightarrow abcS \Rightarrow abcc$$

For S-grammars:

In the exhaustive search parsing there is only one choice in each phase

Time for a phase: 1

Total time for parsing string w: |w|

For general context-free grammars:

There exists a parsing algorithm that parses a string |w| in time $|w|^3$

Linz 6th, Theorem 5.3, page 144.

Linz 6th, Section 6.3, page 178ff - the CYK algorithm.

Simplifications of Context-Free Grammars

A Substitution Rule

Equivalent grammar

$$A \rightarrow a$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc$$

$$B \rightarrow abbA$$

$$B \rightarrow b$$

Substitute B

 $A \rightarrow a$

 $A \rightarrow aaA$

 $A \rightarrow ababbAc$

 $A \rightarrow abbc$

In general:

$$A \rightarrow xBz$$

$$B \rightarrow y_1 \mid y_2 \mid \cdots \mid y_n$$

$$A \rightarrow xy_1z \mid xy_2z \mid \cdots \mid xy_nz$$

equivalent grammar

Useless Productions

$$S oup aSb$$
 $S oup \lambda$ $S oup A$ $A oup aA$ Useless Production

Some derivations never terminate...

$$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow ... \Rightarrow aa...aA \Rightarrow ...$$

Another grammar:

$$S o A$$
 $A o aA$
 $A o \lambda$
 $B o bA$ Useless Production

Not reachable from S

In general:

If
$$S \Rightarrow ... \Rightarrow xAy \Rightarrow ... \Rightarrow w$$

$$w \in L(G)$$

Then variable A is useful

Otherwise, variable A is useless

A production $A \rightarrow x$ is useful if all its variables are useful

Removing Useless Productions

Example Grammar:

$$S \rightarrow aS \mid A \mid C$$
 $A \rightarrow a$
 $B \rightarrow aa$
 $C \rightarrow aCb$

First: find all variables that produce strings with only terminals

$$S \rightarrow aS |A|C$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

Round 1: $\{A, B\}$

Round 2: $\{A, B, S\}$

Keep only the variables that produce terminal symbols

 $\{A,B,S\}$

$$S \rightarrow aS \mid A \mid \varnothing$$
 $A \rightarrow a$
 $S \rightarrow aS \mid A$
 $B \rightarrow aa$
 $A \rightarrow a$
 $A \rightarrow a$
 $B \rightarrow aa$
 $B \rightarrow aa$

Second: Find all variables reachable from S

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

Dependency Graph

not reachable

Keep only the variables reachable from S

Final Grammar

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

Nullable Variables

$$\lambda$$
 – production :

$$A \rightarrow \lambda$$

$$A \Rightarrow ... \Rightarrow \lambda$$

Removing Nullable Variables

Example Grammar:

$$S \to aMb$$

$$M \to aMb$$

$$M \to \lambda$$

Nullable variable

Final Grammar

$$S \to aMb$$

$$M \to aMb$$

$$M \to \lambda$$

$$S \rightarrow aMb$$
 $S \rightarrow ab$
 $M \rightarrow aMb$
 $M \rightarrow ab$

Unit-Productions

Unit Production:
$$A \rightarrow B$$

Removing Unit Productions

Observation:

$$A \rightarrow A$$

Is removed immediately

Example Grammar:

$$S \rightarrow aA$$
 $A \rightarrow a$
 $A \rightarrow B$
 $B \rightarrow A$
 $B \rightarrow bb$

$$S \rightarrow aA$$
 $A \rightarrow a$
 $A \rightarrow B$
 $B \rightarrow A$
 $B \rightarrow bb$

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$
 $B \rightarrow A \mid B$
 $B \rightarrow bb$

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$
 $B \rightarrow A \mid B$
 $B \rightarrow bb$

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$
 $B \rightarrow A$
 $B \rightarrow bb$

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$
 $B \rightarrow A$
 $B \rightarrow bb$
 $S \rightarrow aA \mid aB \mid aA$
 $Substitute$
 $S \rightarrow aA \mid aB \mid aA$
 $A \rightarrow a$
 $B \rightarrow bb$
 $S \rightarrow bb$

Remove repeated productions

$$S \rightarrow aA \mid aB \mid aA$$

$$A \rightarrow a$$

$$B \rightarrow bb$$

Final grammar

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \rightarrow bb$$

Removing All

Step 1: Remove Nullable Variables

Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables