CÁLCULO DIFERENCIAL E INTEGRAL

Derivadas: parte II

Thiago de Paula Oliveira 24 de Outubro de 2018

 $\ensuremath{\mathfrak{O}}$ You may copy, distribute and modify this list as long as you cite the author.

1. (Stewart, 2010) Associe o gráfico de cada função em (a)-(d) com o gráfico de sua derivada em I-IV. Dê razões para suas escolhas.

(a) y 1 0 x

(b) y \(\)

Π

ΙV

(c) y \(\)

2. (Stewart, 2010) O gráfico mostrado corresponde ao da função população P(t) de cultura em laboratório de células de levedo. Obtenha o gráfico da derivada P'(t) a partir do gráfico da função P(t). O que o gráfico de P' nos diz sobre a população de levedo?

- 3. (Stewart, 2010) A equação de movimento de uma partícula é $s=2t^3-5t^2+3t+4$, onde s é medida em centímetros e t, em segundos. Encontre a aceleração como uma função do tempo. Qual é a aceleração depois de 2 segundos?
- 4. (Stewart, 2010) Se $f(x) = e^x x$, determine f' e f''. Compare os gráficos de f' e f''.
- 5. (Stewart, 2010) Em que ponto da curva $y = e^x$ sua reta tangente é paralela à reta y = 2x?
- 6. (Stewart, 2010) Derive a função $f(t) = \sqrt{t} (a + bt)$.
- 7. (Stewart, 2010) Se $f(x) = \sqrt{x}g(x)$, sendo g(4) = 2 e g'(4) = 3, determine f'(4).
- 8. (Stewart, 2010) Determine uma equação da reta tangente à curva $y = \frac{e^x}{1+x^2}$ no ponto $P(1, \frac{1}{2}e)$.
- 9. (Stewart, 2010) Se g(x) = xf(x), em que f(3) = 4 e f'(3) = -2, determine uma equação da reta tangente ao gráfico de t no ponto onde x = 3.
- **②** You may copy, distribute and modify this list as long as you cite the author.

10. (Stewart, 2010) Determine as derivadas de primeira e segunda ordem das funções a seguir:

$$(a) \ f(x) = x^4 e^x$$

(b)
$$f(x) = x^{5/2}e^x$$

(a)
$$f(x) = x^4 e^x$$
 (b) $f(x) = x^{5/2} e^x$ (c) $f(x) = \frac{x^2}{1 + 2x}$
(d) $f(x) = \frac{x}{x^2 - 1}$ (e) $f(x) = \frac{ax + b}{cx + d}$ (f) $f(x) = \frac{A}{B + Ce^x}$

(d)
$$f(x) = \frac{x}{x^2 - 1}$$

$$(e) f(x) = \frac{ax+b}{cx+d}$$

$$(f) \ f(x) = \frac{A}{B + Ce^x}$$

- 11. (Stewart, 2010) Calcule a derivada da função $f(x) = \frac{\sec x}{1 + \tan x}$
- 12. (Stewart, 2010) Um objeto na extremidade de uma mola vertical é esticado 4 cm além de sua posição no repouso e solto no tempo t=0. (Veja a Figura 1 e observe que o sentido positivo é para baixo.) Sua posição no tempo $t \in s = f(t) = \cos t$. Determine a velocidade e a aceleração no tempo t e use-as para analisar o movimento do objeto.

Figura 1: Mola vertical

- 13. (Stewart, 2010) Demonstre, pela definição de derivadas, que se $f(x) = \cos x$, então $f'(x) = -\sin x$.
- 14. (Stewart, 2010) Se $H(\theta) = \theta \operatorname{sen} \theta$, determine $H'(\theta) \in H''(\theta)$.
- 15. (Stewart, 2010) Se $f(t) = \operatorname{cossec} t$, determine $f''(\pi/6)$.
- 16. (Stewart, 2010) Um objeto de massa m é arrastado ao longo de um plano horizontal por uma força agindo ao longo de uma corda atada ao objeto. Se a corda faz um ângulo u com o plano, então a intensidade da força é

$$F = \frac{\mu mg}{\mu \sin \theta + \cos \theta}$$

em que μ é uma constante chamada coeficiente de atrito.

- (a) Determine a taxa de variação de F em relação a θ .
- (b) Quando essa taxa de variação é igual a 0?
- (c) Se m=20 kg, g=9,8 m/s^2 e $\mu=0,6$, faça o gráfico de F como uma função de u e use-o para encontrar o valor de u para o qual $\frac{dF}{d\theta}=0$. Esse valor é consistente com a resposta dada na parte (b)?
- 17. (Stewart, 2010) Derive as funções $f(x) = \operatorname{sen}(x^2)$ e $g(x) = \operatorname{sen}^2 x$.
- **9** You may copy, distribute and modify this list as long as you cite the author.

- 18. Derive $f(x) = (x^3 15)^{100}$, $f(x) = \ln(x^2 3x + 1)$ e $f(x) = e^{x^4 x^3}$.
- 19. (Stewart, 2010) Um fabricante produz peças de tecido com tamanho fixo. A quantidade q de cada peça de tecido (medida em metros) vendida é uma função do preço p (em dólares por metro); logo, podemos escrever q = f(p). Então, a receita total conseguida com o preço de venda p é R(p) = pf(p).
 - (a) O que significa dizer que f(20) = 10.000 e f'(20) = -350?
 - (b) Tomando os valores da parte (a), encontre R'(20) e interprete sua resposta.
- 20. (Stewart, 2010) Escreva a função composta na forma f(g(x)). [Identifique a função de dentro u(x)e a de fora y = f(u).] Então, encontre a derivada $\frac{dy}{dx}$.

$$(a) \ f(x) = \sin(4x)$$

(a)
$$f(x) = \text{sen}(4x)$$
 (b) $f(x) = (1 - x^2)^{10}$ (c) $f(x) = e^{\sqrt{x}}$

(c)
$$f(x) = e^{\sqrt{x}}$$

(d)
$$f(x) = \sqrt{4+3x}$$
 (e) $f(x) = \lg(\sin x)$ (f) $f(x) = \sqrt{2-e^x}$

$$(e) f(x) = \operatorname{tg}(\operatorname{sen} x)$$

$$(f) \ f(x) = \sqrt{2 - e^x}$$

21. (Stewart, 2010) Determine a derivada de cada função a seguir:

(1)
$$f(x) = (x^4 + 3x^2 - 2)^5$$

(2)
$$f(x) = (4x - x^2)^{100}$$

(3)
$$f(x) = \sqrt[4]{1 + 2x + x^3}$$

(4)
$$f(x) = (1+x^4)^{\frac{2}{3}}$$

(5)
$$f(x) = \frac{1}{(t^4 + 1)^3}$$

(6)
$$g(t) = \sqrt[3]{1 + \lg t}$$

$$(7) f(x) = \cos\left(a^3 + x^3\right)$$

$$(8) f(x) = a^3 + \cos^3 x$$

$$(9) \ f(x) = xe^{-kx}$$

$$(10) f(t) = e^{-2t} \cos(4t)$$

(11)
$$f(x) = (2x - 3)^4 (x^2 + x + 1)^5$$

(12)
$$g(x) = (x^2 + 1)^3 (x^2 + 2)^6$$

(13)
$$h(t) = (t+1)^{\frac{2}{3}} (2t^2 - 1)^3$$
 (14) $h(x) = \left(\frac{x^2 + 1}{x^2 - 1}\right)^3$

$$(14) \ h(x) = \left(\frac{x^2 + 1}{x^2 - 1}\right)^3$$

(15)
$$f(s) = \sqrt{\frac{s^2 + 1}{s^2 + 4}}$$

$$(16) \ g(x) = \sqrt{1 + 2e^{3x}}$$

$$(17) \ f(x) = 10^{1-x^2}$$

$$(18) \ r(x) = 5^{-\frac{1}{x}}$$

(19)
$$f(x) = \frac{(x-1)^4}{(x^2+2x)^5}$$

$$(20) f(x) = \operatorname{sen}(\operatorname{tg}(2x))$$

(21)
$$w(x) = \cos\left(\frac{1 - e^{2x}}{1 + e^{2x}}\right)$$

(22)
$$f(x) = \sqrt{1 + xe^{-2x}}$$

(23)
$$f(\theta) = \sec^2(m\theta)$$

$$(24) f(x) = e^{k \operatorname{tg}\left(\sqrt{x}\right)}$$

(25)
$$f(t) = \operatorname{tg}(e^t) + e^{\operatorname{tg} r}$$

$$(26) f(x) = \operatorname{sen} (\operatorname{sen} (\operatorname{sen} x))$$

$$(27) \ f(x) = \sqrt{x + \sqrt{x + \sqrt{x}}}$$

(28)
$$f(x) = \left[x + \left(x + \sin^2 x\right)^3\right]^4$$

(29)
$$f(x) = \cos\sqrt{\sin(\operatorname{tg}(\pi x))}$$

(30)
$$f(x) = (2ra^{rx} + n)^p$$

- 22. (Stewart, 2010) Determine uma equação da reta tangente à curva $y = \frac{2}{1+e^{-x}}$ no ponto (0,1). Ilustre fazendo o gráfico da curva e da tangente na mesma tela
- 23. (Stewart, 2010) Seja r(x) = f(g(h(x))), em que h(1) = 2, g(2) = 3, h'(1) = 4, g'(2) = 5 e f'(3) = 6. Determine r'(1).
- **9** You may copy, distribute and modify this list as long as you cite the author.

- 24. (Stewart, 2010) O deslocamento de uma partícula em uma corda vibrante é dado pela equação $s(t) = 10 + \frac{1}{4} \operatorname{sen}(10\pi t)$, em que s é medido em centímetros e t, em segundos. Determine a velocidade da partícula após t segundos.
- 25. (Stewart, 2010) Se a equação de movimento de uma partícula for dada por $s = A\cos(wt + \delta)$, dizemos que a partícula está em movimento harmônico simples.
 - (a) Determine a velocidade da partícula no tempo t.
 - (b) Quando a velocidade é zero?
- 26. (Stewart, 2010) Uma partícula se move ao longo de uma reta com deslocamento s(t), velocidade v(t) e aceleração a(t). Mostre que

$$a(t) = v(t)\frac{dv}{ds}.$$

Além disso, explique o significado das derivadas $\frac{dv}{dt}$ e $\frac{dv}{ds}$.

27. (Stewart, 2010) Determine as derivadas primeira (f'(x)) e segunda (f''(x)) das seguintes funções:

(a)
$$f(x) = (x^2 - 3)^3$$
 (b) $f(x) = \cos(x^2)$ (c) $f(x) = \cos^2 x$

$$(b) \ f(x) = \cos\left(x^2\right)$$

$$(c) \ f(x) = \cos^2 x$$

(d)
$$f(x) = \frac{x-1}{x+1}$$
 (e) $f(x) = e^{e^x}$ (f) $f(x) = e^{ax} \sin(\beta x)$

$$(e) \ f(x) = e^{e^x}$$

$$(f) f(x) = e^{ax} \operatorname{sen}(\beta x)$$

(g)
$$f(x) = \frac{1}{e^{2x+1}}$$

$$(h) \ f(x) = \frac{x^2 - 1}{x^2 + 1}$$

(g)
$$f(x) = \frac{1}{e^{2x+1}}$$
 (h) $f(x) = \frac{x^2 - 1}{x^2 + 1}$ (i) $f(x) = \ln(x^2 - 2x + 1)$

28. (Stewart, 2010) Um caminho de aproximação para uma aeronave pousando é mostrado na Figura 2 e satisfaz as seguintes condições:

Figura 2: Caminho de aproximação da aeronave pousando

- i) A altitude do voo é h, quando a descida começa a uma distância horizontal ℓ do ponto de contato na origem.
- ii) O piloto deve manter uma velocidade horizontal constante v em toda a descida.
- **9** You may copy, distribute and modify this list as long as you cite the author.

iii) O valor absoluto da aceleração vertical não deve exceder uma constante k (que é muito menor que a aceleração da gravidade).

Dadas essas condições, pede-se:

- (a) Determine um polinômio cúbico $P(x) = ax^3 + bx^2 + cx + d$ que satisfaça a condição (i), impondo condições adequadas a P(x) e P'(x) no início da descida e no ponto de contato.
- (b) Use as condições (ii) e (iii) para mostrar que

$$\frac{6hv^2}{\ell^2} \le k$$

- . Suponha que uma companhia aérea decida não permitir que a aceleração vertical do avião exceda $k = 1385 \text{ km/h}^2$.
- (c) Se a altitude de cruzeiro do avião for 11.000 m e a velocidade for 480 km/h, a que distância do aeroporto o piloto deveria começar a descer?
- (d) Trace o caminho de aproximação se as condições dadas nos items (b) e (c) forem satisfeitas.
- 29. (Stewart, 2010) Determine a derivada das seguintes funções:

$$(a) f(x) = x \ln x - x$$

$$(b) \ w(x) = \operatorname{sen}(\ln x)$$

$$(c) \ f(x) = \sqrt[5]{\ln x}$$

$$(d) \ h(x) = \ln \sqrt[5]{x}$$

$$(e) f(x) = \operatorname{sen} x \ln (5x)$$

(e)
$$f(x) = \sin x \ln (5x)$$
 $(f) f(u) = \frac{u}{1 + \ln u}$

$$(g) g(x) = \ln\left(x\sqrt{x^2 - 1}\right)$$

$$(h) f(x) = \ln\left(x + \sqrt{x^2 - 1}\right)$$

$$(g) \ g(x) = \ln\left(x\sqrt{x^2 - 1}\right) \qquad (h) \ f(x) = \ln\left(x + \sqrt{x^2 - 1}\right) \qquad (i) \ f(x) = \ln\left(\frac{(2x + 1)^5}{\sqrt{x^2 + 1}}\right)$$

(i)
$$w(x) = a \ln(bx + c)$$

$$(k)$$
 $f(r) = r^2 \ln (2r + 1)$

$$(j) \ w(x) = a \ln(bx + c)$$
 $(k) \ f(r) = r^2 \ln(2r + 1)$ $(l) \ f(t) = \ln|1 + t + t^3|$

$$(m) f(x) = \ln (e^{-x} + xe^{-x})$$
 $(n) r(x) = 2x \log_{10} \sqrt{x}$ $(o) f(x) = \log_2 (e^{-x} \cos(\pi x))$

$$(n) \ r(x) = 2x \log_{10} \sqrt{x}$$

(o)
$$f(x) = \log_2 (e^{-x} \cos(\pi x))$$

$$(p) f(x) = \frac{\ln x}{x^2}$$

$$(q) h(x) = \ln (1 + e^{2x})$$

$$(p) f(x) = \frac{\ln x}{r^2} \qquad (q) h(x) = \ln (1 + e^{2x}) \qquad (r) f(x) = \ln (x^3 + x^2 - 4x - 10)$$

30. (Stewart, 2010) Determine as derivadas de primeira e segunda ordem das funções a seguir:

(a)
$$f(x) = \frac{x}{1 - \ln(x - 1)}$$
 (b) $f(x) = \ln(x^2 - 2x)$ (c) $f(x) = \sqrt{2 + \ln x}$

(b)
$$f(x) = \ln(x^2 - 2x)$$

$$(c) \ f(x) = \sqrt{2 + \ln x}$$

(d)
$$f(x) = \ln(\ln x)$$
 (e) $f(x) = \sqrt{x} + \ln x$

(e)
$$f(x) = \sqrt{x} + \ln x$$

$$(f) \ f(x) = x \ln x$$

- 31. Se $y = 2x^2$?2 calcule Δy e dy para x = 1 e $\Delta x = 0,01$.
- 32. Calcule $\sqrt{19}$ usando o conceito de diferencial.
- 33. (Gomes e Nogueira, pág.98) Suponha que $y = 1200 + 6, 2x 0,015x^2$ seja a equação que dá a produção de milho, em kg/ha, obtida em função da quantidade x de fertilizante fosfatado adicionado
- **9** You may copy, distribute and modify this list as long as you cite the author.

ao solo (por exemplo x pode ser expresso em kg de P_2O_5 por hectare). De acordo com esta função para x = 50 kg/ha tem-se y = 1.472, 5 kg/ha. A partir dessa quantidade, se for adicionado mais um quilograma por hectare de nutriente, qual é o aumento de produção que se pode prever?

34. A produção y, em toneladas por hectare, de uma cultura é dada como uma função de um nutriente x adicionado ao solo, sendo a função que relaciona a produção com o nutriente dada por:

$$y = -\frac{1}{20000}x^2 + \frac{10}{450}x + 6$$
, tal que $0 \le x \le 100$.

Determine:

- (a) a taxa de variação média entre x = 20 e x = 80;
- (b) a taxa de variação instantânea em x = 20.
- 35. Determine a derivada da função implícita $f(x) = (x-a)^2 + (y-b)^2 = r^2$.
- 36. Determine a derivada da função implícita $xy \cos y = 0$.
- 37. Obtenha a derivada de ordem n das funções a seguir:

(a)
$$f(x) = 2x^4 + 4x^2 - 3x + 1$$
, para $n = 3$ (b) $f(x) = 2x^2 + \ln x$, para $n = 2$

(b)
$$f(x) = 2x^2 + \ln x$$
, para $n = 2$

(c)
$$f(x) = \cos x$$
, para $n = 500$

(d)
$$f(x) = e^{3x^2}$$
, para $n = 2$

(e)
$$f(x) = e^x$$
, para $n = 100$

$$(f) f(x) = e^x + \sin x$$
, para $n = 1000$

- 38. Usando o conceito de diferencial determine $\sqrt{31}$.
- 39. Determine a derivada das funções a seguir:

(a)
$$f(x) = (2x - 1)$$

(b)
$$f(x) = x^2 - \frac{1}{x} + e^{2x^2 + 2}$$

(a)
$$f(x) = (2x - 1)^3$$
 (b) $f(x) = x^2 - \frac{1}{x} + e^{2x^2 + 2}$ (c) $f(x) = \left(\frac{1}{x^2 - 3x - 2}\right)^5$

(d)
$$f(x) = \ln(x^2 - 3x + 6)$$
 (e) $f(x) = 2^x$

(e)
$$f(x) = 2^x$$

$$(f) f(x) = e^x + 3^x$$

$$(g) f(x) = e^x - e^{-x}$$

(h)
$$f(x) = \sqrt{2x+1}$$

(i)
$$f(x) = \sqrt{x} + \sqrt{x+1}$$

$$(j) f(x) = (2x-1)^4$$

$$(k) \ f(x) = 5^x$$

(l)
$$f(x) = e^{x^2 - 2x + 1}$$

(m)
$$f(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$
 (n) $f(x) = \sqrt{\frac{\ln x}{e^x}}$ (o) $f(x) = \frac{ae^x}{b - e^x}$

$$(n) \ f(x) = \sqrt{\frac{\ln x}{e^x}}$$

(o)
$$f(x) = \frac{ae^x}{b - e^x}$$

$$(p) f(x) = \sqrt{ax^2 + bx + c}$$

(q)
$$f(x) = v^2 - 5^x$$

$$(r) f(x) = c^x - d^{-x}$$

40. (Modificado de Stewart, 2010) Uma reação química resulta na formação de uma ou mais substâncias (conhecidas como produtos) a partir de um ou mais materiais iniciais (ditos reagentes). Por exemplo, a "equação"

$$2H_2 + O_2 \longrightarrow 2H_2O$$

9 You may copy, distribute and modify this list as long as you cite the author.

indica que duas moléculas de hidrogênio e uma molécula de oxigênio formam duas molécu- las de água. Consideremos a reação

$$A + B \longrightarrow C$$

em que A e B são reagentes e C é o produto. A concentração de um reagente A é o número de mols (1 mol = $6,022 \times 10^{23}$ moléculas) por litro e é denotada por [A]. A concentração varia durante a reação, logo [A], [B] e [C] são funções do tempo (t). A taxa média da reação do produto C sobre um intervalo de tempo $t_1 \le t \le t_2$ é

$$\frac{\Delta[C]}{\Delta t} = \frac{[C](t_2) - [C](t_1)}{t_2 - t_1}.$$

Mas os químicos estão mais interessados na taxa de reação instantânea. Assim, obtenha essa taxa fazendo o limite da taxa de reação média quando o intervalo de tempo Δt tende a 0 e considere que $|C| = \ln(t+1)$.

41. (Stewart, 2010) Em uma fazenda de piscicultura, uma população de peixes é colocada dentro de um pequeno lago e removida regularmente. Um modelo para a taxa de variação da população é dado pela equação

$$\frac{dP}{dt} = r_0 \left(1 - \frac{P(t)}{P_c} \right) P(t) - \beta P(t)$$

em que r_0 é a taxa de nascimento dos peixes, P_c é a população máxima que o pequeno lago pode manter (ou seja, sua capacidade de suporte) e β é a porcentagem da população que é recolhida.

- (a) Qual o valor de $\frac{dP}{dt}$ que corresponde à população estável?
- (b) Se o pequeno lago pode manter 10.000 peixes, a taxa de nascimento é 5% e a taxa de colheita, 4%, encontre o nível estável da população.
- (c) O que acontece se β for aumentada para 5%?
- 42. (Stewart, 2010) No estudo de ecossistemas, o modelo predador-presa é muitas vezes usado para estudar a interação entre as espécies. Considere uma população de lobos da tundra, dada por W(t), e caribus, dada por C(t), no norte do Canadá. A interação foi modelada pelas equações:

$$\frac{dC}{dt} = aC - bCW \qquad \frac{dW}{dt} = -cW + dCW$$

- (a) Que valores de $\frac{dC}{dt}$ e $\frac{dW}{dt}$ correspondem às populações estáveis?
- (b) Como representar matematicamente a afirmação: "O caribu está extinto."?
- (c) Suponha que a=0,05, b=0,001, c=0,05, e d=0,0001. Determine todos os pares (C,W) que levam a populações estáveis. Segundo esse modelo, é possível para as espécies viverem em equilíbrio, ou uma ou as duas espécies acabarão por se extinguir?
- 43. (Stewart, 2010) A lei dos gases para um gás ideal à temperatura absoluta T (em kelvins), pressão P (em atmosferas) e volume V (em litros) é PV = nRT, em que n é o número de mols de gás e R=0,0821 é a constante do gás. Suponha que, em um certo instante, P=8,0 atm, sendo que P está crescendo a uma taxa de 0,10 atm/min, e V=10 L, sendo que V está decrescendo a uma taxa de 0,15 L/min. Determine a taxa de variação de T em relação ao tempo naquele instante, se n=10 mols.
- 44. Suponha que uma bebida gelada é tirada da geladeira e que sua temperatura inicial é de 5° C. Depois de 25 minutos em uma sala a 20° C, sua temperatura terá aumentado para 10° C.
- **9** You may copy, distribute and modify this list as long as you cite the author.

- (a) Determine uma função que descreva o aquecimento da bebiba em função do tempo.
- (b) Qual é a temperatura da bebida depois de 50 minutos?
- (c) Qual é a velocidade de aquecimento da bebida após 15 min? E após 50 minutos?
- (d) Quando a temperatura da bebida será de 15° C?

Respostas de alguns exercícios

3.
$$a(2) = 14 \text{ cm/s}^2$$

4.
$$f'(x) = e^x - 1 e f''(x) = e^x$$
.

5.
$$a = \ln 2$$

6.
$$\frac{a+3bt}{2\sqrt{t}}$$

7.
$$f'(4) = 6, 5$$

8.
$$y = \frac{1}{2}e$$

9.
$$y = -2x + 18$$

10 (a)
$$f'(x) = x^3 e^x (x+4)$$
 $f'' = x^2 e^x (x^2 + 8x + 12)$

(b)
$$f'(x) = \frac{1}{2}x^{3/2}e^x(2x+5)$$
 $f'' = \frac{1}{4}\sqrt{x}e^x(4x^2+20x+15)$

(c)
$$f'(x) = \frac{2x(x+1)}{(1+2x)^2}$$
 $f'' = \frac{2}{(1+2x)^3}$

(d)
$$f'(x) = -\frac{x^2 + 1}{(x^2 - 1)^2}$$
 $f'' = \frac{2x(x^2 + 3)}{(x^2 - 1)^3}$

(e)
$$f'(x) = \frac{ad - bc}{(cx + d)^2}$$
 $f'' = \frac{2c(bc - ad)}{(cx + d)^3}$

$$(f) \ f'(x) = -\frac{ACe^x}{(B+Ce^x)^2} \qquad f'' = \frac{ACe^x (Ce^x - B)}{(B+Ce^x)^3}$$

11.
$$f'(x) = \frac{\sec x (\operatorname{tg} x - 1)}{(1 + \operatorname{tg} x)^2}$$

12. $v(t) = -4 \sec t$ e $a(t) = -4 \cos t$. O objeto oscila desde o ponto mais baixo $(s = 4 \ \text{cm})$ até o mais alto $(s = -4 \ \text{cm})$. O período de oscilação é 2π .

14.
$$H'(\theta) = \sin \theta + \theta \cos \theta \in H''(\theta) = 2 \cos \theta - x \sin \theta$$

15.
$$f''(\pi/6) = 14$$

9 You may copy, distribute and modify this list as long as you cite the author.

- 16. (a) $F'(\theta) = -\frac{gmu(u\cos(x) \sin(x))}{(u\sin(x) + \cos(x))^2}$; (b) quando g = 0, ou m = 0, ou u = 0, ou $u = \frac{\sin x}{\cos x}$; (c) O valor de u é consistente com a resposta dada na parte (b).
- 17. $f'(x) = 2x\cos(x^2) e^{-x} g'(x) = 2 \sin x \cos x$

18.
$$f'(x) = 300x^2 (x^3 - 15)^{99}$$
; $f'(x) = \frac{2x - 3}{x^2 - 3x + 1}$; $f'(x) = e^{x^3(x - 1)}x^2 (4x - 3)$

20. (a)
$$f'(x) = 4\cos(4x)$$
; (b) $f'(x) = -20x(1-x^2)^9$; (c) $f'(x) = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$.

- 21. Verificar pelo Wolfram Alpha.
- 22. A reta tangente é dada por $y = \frac{1}{2}x + 1$.
- 23. r'(1) = 120
- 24. $v(t) = \frac{5}{2}\pi\cos(10\pi t)$
- 25. (a) $v(t) = -Aw \operatorname{sen}(wx + \delta)$; (b) quando A = 0, ou quando w = 0, ou quando $w = -\frac{\delta}{t}$

27. (a)
$$f'(x) = 6x(x^2 - 3)^2$$
 $f''(x) = 6(5x^4 - 18x^2 + 9)$

(b)
$$f'(x) = -2 \operatorname{sen}(x^2)$$
 $f''(x) = -2 \left(\operatorname{sen}(x^2) + 2x^2 \cos(x^2) \right)$

(c)
$$f'(x) = -2 \operatorname{sen} x \cos x$$
 $f''(x) = 2 \operatorname{sen}^2 x - 2 \cos^2 x$

(d)
$$f'(x) = \frac{2}{(x+1)^2}$$
 $f''(x) = -\frac{4}{(1+x)^3}$

(e)
$$f'(x) = e^{x+e^x}$$
 $f''(x) = e^{e^x+x} (e^x + 1)$

$$(f) \ f'(x) = e^{ax} \left(a \operatorname{sen}(\beta x) + \beta \cos(\beta x) \right) \quad f''(x) = e^{ax} \left[\left(a^2 - \beta^2 \right) \operatorname{sen}(\beta x) + 2a\beta \cos(\beta x) \right]$$

(g)
$$f'(x) = -2e^{-2x-1}$$
 $f''(x) = 4e^{-2x-1}$

(h)
$$f'(x) = \frac{4x}{(x^2+1)^2}$$
 $f''(x) = \frac{4-12x^2}{(1+x^2)^3}$

(i)
$$f'(x) = \frac{2}{x-1}$$
 $f''(x) = -\frac{2}{(x-1)^2}$

$$29. (a)f'(x) = \ln x$$

$$(b)w'(x) = \frac{\cos(\ln x)}{x}$$

$$(c)f'(x) = \frac{1}{5x \ln^{4/5} x}$$

$$(d)h'(x) = \frac{1}{5x}$$

$$(e)f'(x) = \frac{\sin x}{x} + \ln(5x)\cos x$$

$$(f)f'(u) = \frac{\ln u}{(1 + \ln u)^2}$$

$$(g)g'(x) = \frac{1 - 2x^2}{x - x^3}$$

$$(h)f'(x) = \frac{1}{\sqrt{x^2 - 1}}$$

$$(i)f'(x) = \frac{8x^2 - x + 10}{2x^3 + x^2 + 2x + 1}$$

$$(j)w'(x) = \frac{ab}{bx + c}$$

$$(j)w'(x) = \frac{ab}{bx + c}$$

$$(k)f'(r) = 2r\left(\frac{r}{2r+1} + \ln(2r+1)\right)$$

$$(k)f'(r) = 2r\left(\frac{r}{2r+1} + \ln(2r+1)\right) \qquad (l)f'(t) = \begin{cases} \frac{3t^2+1}{t^3+t+1}, \text{ para } t^3+t+1 \ge 0\\ -\frac{3t^2+1}{-t^3-t-1}, \text{ para } t^3+t+1 < 0 \end{cases}$$

$$(m)f'(x) = -\frac{x}{x+1}$$

$$(n)r'(x) = \frac{\ln x + 1}{\ln 10}$$

$$(o)f'(x) = \frac{\pi \operatorname{tg}(\pi x) + 1}{\ln 2}$$

$$(p)f'(x) = \frac{1 - 2\ln x}{x^3}$$

$$(q)h'(x) = \frac{2e^{2x}}{1 + e^{2x}}$$

$$(r)f'(x) = \frac{3x^2 + 2x - 4}{x^3 + x^2 - 4x - 10}$$