#### PTC Primary Trauma Care Foundation

# Primary Trauma Care

#### What is PTC?

#### **Primary Trauma Care**

is a

2 day course training health professionals in acute management of the severely injured patient.

#### PTC Mission Statement

- A system of training for front-line staff in trauma management
- Aimed at preventing death and disability in seriously injured patients
- Using available resources
- To train clinicians to teach PTC principles in their hospitals

### PTC 2 day course

#### At the end you will

- understand and apply a system for assessing and treating trauma patients
- have the knowledge, skills and attitudes of the PTC principles
- apply these PTC principles to where you work

# PTC emphasises basic trauma care with the available resources

When do trauma patients die?
What are the common disabilities?
What resources are available?

#### When do trauma patients die?

#### Seconds - minutes (50% deaths)

Brain and spinal cord, heart, great vessels

#### 1-2 hours (35% deaths)

 Head injury, chest, abdomen, fractures causing large blood loss

```
Days to weeks (15% deaths)
```

Sepsis, organ failure

- Prevention
- Triage
- Primary survey
- Secondary survey
- Stabilisation
- Transfer
- Definitive care

#### Triage

Sorting patients according to priority

Priority depends on

- experience
- resources
- severity of injury

#### Primary Survey (ABCDE)

- rapid examination
- life-threatening injuries
- treat as you find

#### Secondary Survey

- history
- detailed head to toe examination
- all injuries
- special Investigations if available

- Stabilisation includes
  - re-assessment
  - optimisation
  - documentation
  - communication

#### when stable

Transfer for definitive care



# PTC System Summary

#### **PTC** offers

- a systematic approach
- rapid assessment and treatment of the injured patient
- adaptability to all healthcare environments

#### At the end you will

- understand the elements of the Primary Survey
- know when to perform the Primary Survey

- Systematic examination to detect life threatening injuries
- Rapid 5 minutes
- Treat as you find
- Repeat if unstable
- Universal precautions

- Airway + Cervical spine control
- Breathing
- Circulation
- Disability
- Exposure

# A

#### Airway and Cervical spine

#### Airway Assessment

- Can the patient talk?
- Look, feel, listen
  - colour, conscious state
  - accessory muscle use
  - sounds

#### Airway Beware

Airway obstruction

Breathing difficulties with chest injuries

Cervical spine injury

# Airway Management

- Clear mouth
- Basic airway
- Advanced airway
- Cervical spine protection

B

Breathing

#### Breathing Assessment

- Is the breathing normal?
- Are there chest injuries?
- · Look, feel and listen

#### Breathing Assessment

- Air / Chest movement
- Respiratory rate
- Tracheal deviation
- Accessory muscle use
- Percussion / Auscultation

#### Breathing Beware

#### Life threatening injuries

- Airway injury
- Tension pneumothorax
- Open pneumothorax
- Massive haemothorax
- Flail chest
- Lung contusion

### Breathing Management

- Give oxygen
- Assist ventilation
- Decompress pneumothorax
- Drain haemothorax

# C

#### Circulation

#### Circulation Assessment

- Is the patient in shock?
- Is there bleeding?
- Look, feel and listen

#### Circulation Assessment

- External bleeding
- Signs of shock
  - fast pulse
  - poor capillary return
  - low blood pressure

# Circulation Beware

Life threatening haemorrhage may be hidden

- chest
- abdomen
- pelvis
- long bone
- external before arrival

# Circulation Management

- Stop bleeding
- 2 large bore intravenous cannulae
- Take blood for crossmatch and base line investigations
- Give i/v fluid
- Monitor urinary output.

Disability

#### Disability

- AVPU
  - Is the patient Awake?
  - Is the patient responding to:
    - Voice?
    - Pain?
  - Is the patient Unresponsive?
- Pupils?

Е

# Exposure (& Temperature Control)

### Exposure

- Are there any hidden injuries under clothing?
- Keep patient warm

- Monitoring
- Investigations
  - X rays
- Procedures
- Pain relief preferably i/v

# Reassessment of ABCDE

If patient is, or becomes, unstable



## Primary Survey Summary

- Systematic examination
- Rapid 5 minutes
- Treat as you find
- Repeat if unstable

# Airway and Breathing

#### At the end you will

- understand the structured approach to airway and breathing
- be able to recognise and manage airway and breathing problems

#### Scenario

A 25-year-old man falls off the back of a truck and hits his head. On arrival in your hospital, he is unconscious and his breathing is noisy.



#### Scenario Questions

- How would you assess his airway quickly?
- What are the signs of airway obstruction?
- How would you open his airway?
- How would you immobilise his C-spine?



### Airway Quick Assessment

**Immobilise Cervical Spine** 

Can patient talk?

Yes
Airway OK
Give oxygen
Then B

No
Airway not OK
Open airway
Give oxygen
then B

### Cervical Spine

 Assume C-spine injury for all severely injured patients

Excessive C-spine movement may cause paralysis

### Cervical Spine Basic Techniques

Manual immobilisation (with hands)



- C-spine collar
- Sandbags
- Tape



43 PTC

### Airway Assessment

Look

Listen

Feel

- Conscious state
- Colour
- Chest movement
- Respiratory distress
- Foreign bodies

Noisy breathing

- Tenderness
- Crepitus

## Airway Assessment Signs Of Obstruction

- Noisy breathing
  - snoring, gurgling, stridor
- Agitation (hypoxia)
- Use of accessory muscles
- Paradoxical chest movement
- Cyanosis

## Airway Management Basic Techniques

Chin lift



Jaw thrust



## Airway Management Adjuncts

- Suction
- Oropharyngeal airway
- Nasopharyngeal airway
- Bag valve mask (BVM)







## Airway Management Advanced Techniques

- Supraglottic airway eg LMA
- Tracheal intubation

Surgical airway

#### Tracheal Intubation

#### Intubate if:

 unable to maintain the airway and breathing using basic techniques

#### Consider intubation if:

- i risk of aspiration
- i control CO<sub>2</sub> (eg head injury)

Patients die from lack of oxygen, not lack of a tube

### Surgical Airway

#### Consider if:

- Unable to intubate
- Unable to ventilate



## Breathing (Ventilation)

#### Breathing Look

- Cyanosis
- Respiratory rate
- Accessory muscle use
- Penetrating injury
- Flail chest
- Sucking chest wound

#### Breathing Feel

- Tracheal shift
- Rib fractures: tenderness/crepitus
- Chest wall movement
- Subcutaneous emphysema
- Percussion

### Breathing Listen

- Breath sounds
- Heart sounds
- Bowel sounds

### Breathing Management

- Give high flow oxygen
- Assist ventilation if necessary
- Treat pneumothorax or haemothorax

### Breathing Beware

- Airway injury
- Tension pneumothorax
- Open pneumothorax
- Massive haemothorax
- Flail chest
- Lung contusion

#### **Tension Pneumothorax**



### Tension Pneumothorax Signs

#### Look

cyanosis, fast breathing rate

#### Feel

- tracheal deviation, overexpansion
- increased resonance on percussion
- ↓ BP

#### Listen

↓ breath sounds

## Tension Pneumothorax Management

- Immediate decompression
- Large bore needle
- Second intercostal space
- Mid clavicular line
- Formal chest drain must follow

#### Tension Pneumothorax

Should be a clinical diagnosis

Treat before X-ray

### Airway and Breathing



### Airway and Breathing

#### Summary

- Open the airway
- Give oxygen
- Assist ventilation as required
- Consider intubation
- Never forget cervical spine

### Circulation

#### At the end you will

- understand the structured approach to circulation problems
- be able to recognise and treat shock

#### Scenario

A 19-year-old woman is hit by a car. When she arrives at your hospital, she is complaining of lower abdominal and right thigh pain. She is pale and sweaty.

#### Scenario Questions

- What would you do first?
- How would you assess her circulation?
- What is shock?
- Where are the sites of "hidden" bleeding?
- How do you treat shock?

#### Circulation Assessment

- Peripheral colour
- Capillary refill
- Heart rate
- Peripheral temperature
- Blood pressure
- Urine output

### Types of Bleeding

- Compressible / external
  - usually peripheral

- Non-compressible
  - e.g. intra-abdominal
  - surgery required

#### Shock

Inadequate organ perfusion and tissue oxygenation

 Most often due to blood loss in trauma

## Circulation Types of shock

i Haemorrhagic shock

Non haemorrhagic shock

## Shock Clinical Signs

- Skin cold, pale, sweaty, cyanosed
- Respiratory rate
- Capillary refill time > 2 seconds
- Pulse rate and blood pressure
- Urine output < 0.5 ml/kg/hr</li>

## Shock Clinical Signs

- Altered mental state: anxiety to coma
- Pulse present?
  - radial systolic > 80 mmHg
  - femoral systolic > 70 mmHg
  - carotid systolic > 60 mmHg
- Tachycardia
- Pulse pressure narrowed

### Shock Hidden haemorrhage

- Pleural Cavity
- Abdominal Cavity
- Pelvic Fractures
- Femoral Shaft
- External

"blood on the floor and four more"

### Shock Sites & approximate blood loss

Pelvic # 3 litres

Closed Femoral # 1.5-2 litres

Closed Tibial # 500 ml

Haemothorax 2 litres

Hand sized wound 500 ml

Fist sized clot 500 ml

Rib # (each) 150 ml

#### Clinical Signs in Shock

| Blood<br>Loss  | Heart<br>rate | Blood<br>Pressure  | Capillary<br>Return | Resp<br>Rate | Mental<br>State     |
|----------------|---------------|--------------------|---------------------|--------------|---------------------|
| <750           | <100          | Normal             | Normal              | Normal       | Normal              |
| 750-<br>1500   | >100          | Systolic<br>Normal | Prolonged           | 20-30        | Mildly<br>Anxious   |
| >1500-<br>2000 | >120          | Decreased          | Prolonged           | 30-40        | Anxious<br>Confused |

74 PTC

# Circulation Types of shock

- i Haemorrhagic
- i Non-haemorrhagic
  - i cardiogenic and obstructive
  - i neurogenic
  - i septic
  - i anaphylactic

# Cardiogenic and Obstructive Shock

- Myocardial contusion
- Pericardial tamponade
- Tension pneumothorax
- Penetrating wound of heart
- Myocardial infarction

#### Neurogenic shock

- May occur in spinal cord injury
- Vasodilatation, hypotension and may be slow heart rate
- Never assume hypotension only from cord injury
- Look for other injuries

# Circulation Management

- A + B, give oxygen
- Stop obvious bleeding
- Two large i/v cannula (14-16 gauge)
  - take blood for cross-match
  - fluid replacement

Consider urgent surgical referral

# Circulation Stop bleeding

- Chest
  - drain tube and re-expand lung
- Abdomen
  - laparotomy if hypotensive after fluids
- Pelvis: pelvic sling
- Limbs
  - reduce and splint long bone fracture
  - pressure dressing

### Circulation Fluid replacement - How much?

Fast 250ml bolus Saline or Ringer's

Reassess

Repeat boluses as necessary

Reassess

Look for haemorrhage source

Consider blood

Consider surgery

Aim for systolic BP>90 + HR <100

### Circulation Blood transfusion

#### Consider blood transfusion if:

- Blood pressure unstable in spite of fluids
- Continuing bleeding
- Haemoglobin <7g/dl and patient still bleeding

# Circulation Management

- Maintain temperature
- Warm fluids
- Pain relief
- Monitor urine output

### Circulation Tranexamic Acid

- Use early if available
- Reduces bleeding and risk of death
- Loading dose 1 g i/v over 10 min
- Then iv infusion 1 g over 8 h.

#### Circulation



#### Circulation

#### Summary

- Careful assessment
- Stop the bleeding
- Replace volume
- Is there hidden bleeding?

#### Chest Injuries

#### At the end you will

- recognise common life threatening chest injuries
- understand the principles of management of chest injuries

#### Scenario

A 45-year-old man is admitted after being shot.

He is short of breath and complaining of severe right-sided chest pain.



#### Scenario Questions

- What would you do first?
- What are the possible causes of his shortness of breath and chest pain?
- How would you treat these?



#### Chest Injuries

- 25% of trauma deaths
- Immediate deaths
  - major disruption of heart and great vessels
- Early deaths
  - airway obstruction, cardiac tamponade or aspiration

### Chest Injuries Initial assessment

#### **Primary Survey**

- Airway + Cervical spine control
- Breathing
- Circulation
- Disability
- Exposure

#### Chest Injuries

- Pneumothorax (tension, simple, open)
- Haemothorax
- Pulmonary contusion
- Flail chest
- Rib fractures
- Other
  - pericardial tamponade
  - myocardial contusion

### Chest Injuries Tension Pneumothorax

- Life threatening emergency
- Clinical diagnosis
- Does not need X-Ray
- Urgent decompression



### Chest Injuries Tension Pneumothorax

- Air enters the pleural space but cannot leave
- † Intrathoracic pressure
- Mediastinal shift
- ↓ venous return + ↓ cardiac output
- Respiratory distress and hypoxia

# Tension Pneumothorax Management

- Immediate decompression
- Large bore needle
  - 2nd intercostal space
  - mid clavicular line
- Formal chest drain to follow







# Chest Injuries Simple Pneumothorax

- X-Ray to confirm and size
- Risk of tension
- Consider chest drain
  - large pneumothorax
  - patient needing ventilation
  - patient being transferred

# Chest Injuries Open Pneumothorax

- "Sucking" chest wound
- Other signs of pneumothorax present
- Occlude wound (on 3 sides only)
- Air escapes on expiration
- Urgent chest drain





### Chest Injuries Haemothorax

- Breath sounds↓, percussion dull
- Hypovolaemic shock may occur
- Large bore chest drain
- Lung re-expansion may stop bleeding
- Involve surgeon if bleeding persists



# Chest Injuries Pulmonary Contusion

- Potentially life threatening
- Suspect if rib fractures
- Beware of progression over 24 hours
- Management
  - oxygen
  - pain relief
  - assisted ventilation if required

### Chest Injuries Rib Fractures

- May lead to underlying lung injury
- May be from simple trauma in elderly
- Remember pain relief

### Chest Injuries Flail Chest

- Unstable segment
- Paradoxical movement with ventilation
- Severe respiratory distress may result
- Adequate analgesia is vital
- Give oxygen
- Consider assisted ventilation



# Chest Injuries Myocardial Contusion

- Common in blunt trauma
- May mimic myocardial infarction
- Can cause sudden death
- ECG monitoring

# Chest Injuries Other Injuries

- Pericardial tamponade
- Thoracic great vessel injury
- Rupture of trachea or major bronchus
- Oesophageal trauma
- Diaphragmatic injury

#### Chest Injuries



103 PTC

#### Chest Injuries

#### Summary

- Management starts with Primary Survey (ABCDE)
- Recognise and treat life threatening injuries
- Most chest injuries do not need surgery

# Abdominal and Pelvic Trauma

#### At the end you will

- be able to recognise life threatening abdominal and pelvic injuries
- understand the principles of management of abdominal injuries

#### **Abdominal Scenario**

A 20-year-old man gets into a fight while drinking at a local bar. He is brought to your hospital after being stabbed in the abdomen with a knife.

On arrival, he is pale and sweaty.



#### Scenario Questions

- What would you do first?
- What are the possible sites of injuries?
- How would you assess and manage the patient?



#### Abdominal Trauma Initial Assessment

#### **Primary Survey**

- Airway + Cervical spine control
- Breathing
- Circulation
- Disability
- Exposure

#### **Abdominal Trauma**

- Common cause of shock
- Site of hidden bleeding
- Assessment can be difficult
- Reassess frequently
- Involve surgeon early

### Abdominal Trauma Categories

- Penetrating
  - gunshot, stabbing
  - consider early laparotomy
- Non-penetrating (blunt)
  - car crash
  - may also need laparotomy

### Abdominal Trauma Site of injury

- Liver
- Spleen
- Gastrointestinal tract
- Pancreas
- Kidney and urinary tract

#### Abdominal Trauma Remember

Intra-peritoneal cavity extends into thorax up to 4th intercostal space

#### Abdominal Trauma Look

- Lacerations
- Penetrating injury
- Distension
- Bruising may indicate significant injury
- Perineum & external urethral meatus

#### Abdominal Trauma Feel

- Be gentle
- Tenderness
- Rigidity
- Rectal and vaginal examination

#### Abdominal Trauma Listen

Bowel sounds in the chest

Suspect diaphragmatic injury

### Abdominal Trauma Management

- Oxygen and fluid resuscitation
- Diagnose bleeding and/or organ injury
- Early surgical referral
- Pain relief

### Abdominal Trauma Management

- Gastric decompression and aspiration
  - especially in children
  - look for blood
- Urinary catheterisation
  - after exclusion of urethral trauma

### Abdominal Trauma What is surgeon's role?

- Early surgical advice
- Penetrating trauma
- Haemodynamic instability with
  - obvious intra-abdominal injury
  - · no other obvious cause

#### Pelvic Trauma

Potential massive bleeding

Immobilisation / Pelvic sling

Consider genito-urinary injury





#### Pelvic Trauma Assessment

- ABC
- Bruising, tenderness, abnormal movement, crepitus (grating)
- Bleeding from penis
- Rectal examination
  - bleeding
  - high prostate
- Pelvic X-ray

#### Pelvic Trauma Management

- ABC
- Pelvic binder, tie legs together
- Early blood transfusion if shocked
- Early surgical assessment
- Pain relief

# Abdominal and Pelvic Trauma Special Investigations

- Diagnostic peritoneal lavage
- Ultrasound scan (FAST)
- CT scan
- Contrast X-rays of urinary tract

## Abdominal and Pelvic Trauma



PTC

## Abdominal and Pelvic Trauma

#### Summary

- Common site of injury
- Assessment can be difficult
- Site of hidden bleeding
- Continual reassessment important
- Seek early surgical consultation

#### Limb Trauma

#### At the end you will

- understand the structured approach to the patient with limb injury
- be able to treat limb injuries and prevent further injury

#### Scenario

A 35 year old man is brought to your hospital after standing on a landmine



126 PTC

#### Scenario Questions

What would you do first?

 Outline your approach to limb examination.



#### Limb Trauma Initial Assessment

#### **Primary Survey**

- Airway + Cervical spine control
- Breathing
- Circulation
- Disability
- Exposure

#### Limb Trauma

- Peripheral haemorrhage is a preventable cause of early death
- Infection of limb wounds is a cause of morbidity and mortality
- Early treatment reduces late disability

### Limb Trauma Assessment

- · ABC
- Look:
  - colour, deformity, wounds, swelling
- Feel:
  - tenderness, crepitus, temperature, movement, distal pulses, sensation
- Move:
  - active and passive

### Limb Trauma Management

- · ABC
- Control haemorrhage
- Maintain peripheral perfusion
- Prevent skin necrosis and infection
- Prevent damage to peripheral nerves

### Limb Trauma Control of haemorrhage

- Direct pressure preferable
- Traction and immobilisation will reduce bleeding
- Tourniquet
  - only if all else fails
  - release as soon as possible

### Limb Trauma Management

- Analgesia
- Sterile wound dressing
- Align fractures
- Splint and immobilise
- Traction if appropriate

### Limb Trauma Compartment syndrome

- Due to ↑ pressure in fascial compartments
- Causes compression of vessels and nerves
- May result in peripheral nerve damage and muscle necrosis

### Limb Trauma Compartment syndrome

- Pain especially on passive movement
- Oedema / swelling
- Decreased sensation
- Muscle weakness
- ↓ pulses and ↓ sensation <u>late</u> signs

### Limb Trauma Compartment syndrome

#### Management

- Early diagnosis
- Early fasciotomy





### Limb Trauma Open Fractures

- Consider wound near a fracture to be communicating
- Stop external bleeding
- Splint and immobilise
- Sterile dressing
- Relieve pain
- Tetanus prophylaxis and antibiotics

### Limb Trauma Crush injuries

- Lower extremities more frequently
- Pre-hospital scenario:
  - building or cave collapse
  - earthquake
  - explosions
- Traumatic amputation is the most severe immediate complication

#### Limb Trauma Crush Syndrome

- From large skeletal muscle destruction
- Limb swollen, tense and pulseless
- Tea-coloured urine
- Shock and renal failure
- Early aggressive IV fluids
- Urine alkalinization

#### Limb Trauma



140 PTC

#### Limb Trauma

#### Summary

- Early treatment will prevent disability
- Avoid tourniquets if possible
- Beware compartment syndrome
- Analgesia

#### Head Trauma

#### At the end you will

- understand the structured approach to the patient with head trauma
- be able to identify serious and life-threatening head injuries

#### Scenario

A 25-year-old man has been hit by a car. On arrival at your hospital, he is unconscious and his breathing is noisy.



143 PTC

#### Scenario Questions

- What will you do first?
- What are the priorities in managing him?
- What are you trying to prevent?



# Head Trauma Approach

#### **Primary Survey**

- Airway + Cervical spine control
- Breathing
- Circulation
- Disability (AVPU, Pupils)
- Exposure

#### **Head Trauma**

- Common cause of trauma death
- Initial management does not depend on CT and neurosurgeon
- High risk of C-spine injury
- Hypoxia and hypotension double mortality
- Avoid any further injury to the brain

# Head Trauma Types of Brain Injury

- Primary brain injury
  - occurs at time of accident
  - Diffuse axonal injury
    - acceleration and deceleration
  - Cerebral contusion
  - Penetrating injury

# Head Trauma Types of Brain Injury

- Primary brain injury
  - occurs at time of accident

- Secondary brain injury
  - occurs after accident
  - may be preventable

## Head Trauma What causes secondary injury?

- Reduced brain blood flow
- Reduced brain oxygen supply
- Increased brain oxygen use
  - fever, seizures
- Other causes
  - low blood sugar

## Head Trauma What controls brain blood flow?

Skull is a closed space

#### CPP = MAP - ICP

CPP = cerebral perfusion pressure MAP = mean arterial pressure ICP = intracranial pressure

 If ICP rises or MAP falls, brain blood flow falls

# Head Trauma What causes secondary injury?

- What increases ICP?
  - low blood O<sub>2</sub>
  - high blood CO<sub>2</sub>
  - haematoma or brain swelling
  - head down position
- What reduces MAP?
  - haemorrhage

## Head Trauma Prevention of secondary injury

| Cause                      | Management  |
|----------------------------|-------------|
| Low blood O <sub>2</sub>   | Airway      |
| High blood CO <sub>2</sub> | Breathing   |
| Low BP                     | Circulation |

## Head Trauma Examination

#### Glasgow Coma Score (GCS)

- Grades severity of head injury
- Score out of 15
- Trend of GCS over time most useful
- Also important to describe responses

#### Glasgow Coma Scale (GCS)

| Eye Opening (4)         | Spontaneously                   | 4 |
|-------------------------|---------------------------------|---|
|                         | To voice                        | 3 |
|                         | To pain                         | 2 |
|                         | None                            | 1 |
| Verbal (5)              | Normal                          | 5 |
|                         | Confused talk                   | 4 |
|                         | Inappropriate words             | 3 |
|                         | Inappropriate sounds            | 2 |
|                         | None                            | 1 |
| Best Motor Response (6) | Obeys commands                  | 6 |
|                         | Localises pain                  | 5 |
|                         | Flexes limbs normally to pain   | 4 |
|                         | Flexes limbs abnormally to pain | 3 |
|                         | Extends limbs to pain           | 2 |
|                         | None                            | 1 |

PTC

# Head Trauma Severity of Head Injury

Severe GCS ≤8

Moderate GCS 9-12

Minor GCS 13-15

## Head Trauma Examination

- Glasgow Coma Score
- Pupils
  - size
  - reactivity
  - equality

# Head Trauma Bilateral Dilated Pupils

- Bilateral fixed, dilated, unresponsive
- Causes
  - severe hypoxia
  - hypothermia
  - seizures



# Head Trauma Unilateral Dilated Pupil

- Unilateral fixed, dilated, unresponsive
- Causes
  - expanding lesion on same side
  - tentorial herniation



## Head Trauma Examination

- Glasgow Coma Score
- Pupils
- Lateralising signs
- Breathing pattern
- Posture

# Head Trauma Intracranial Bleeding

- May be life-threatening
- Diagnose during Primary Survey
- May require surgical decompression

## Head Trauma Acute extradural haematoma

- LOC → lucid interval → deterioration
- Middle meningeal artery bleed
- Overlying skull fracture
- Contralateral hemiparesis
- Fixed pupil on side of injury



## Head Trauma Acute subdural haematoma

- Tearing of bridging vein between cortex and dura
- Usually no lucid interval
- Underlying brain injury
- Worse prognosis than extradural haematoma



# Head Trauma Other injuries

- Cerebral contusion (bruising)
- Depressed skull fracture
- Base of skull fracture
- Diffuse brain injury

May not require neurosurgery

### Head Trauma Management

Airway
Breathing (ventilation)
Circulation

+

Avoid ↑ ICP

Aim to prevent secondary injury

### Head Trauma Severe (GCS<8)

- Intubate
- Good oxygenation
- Normal CO<sub>2</sub>
- Treat hypotension with fluid
- Sedation +/- paralysis

### Head Trauma Severe (GCS<8)

- Nurse head up 20°
- Prevent hyperthermia
- Complete secondary survey
- Reassess frequently

### Head Trauma Secondary Survey

- Repeated examination and GCS
- Head and neck
  - lacerations, bruising, pupils, eardrums
  - scalp
- Limbs
  - movement, power, reflexes, sensation

## Head Trauma Beware

- Deteriorating conscious state
- Penetrating injury
- Focal neurological signs
  - unequal, dilated pupils
  - seizures
  - posturing

### Head Trauma



### Head Trauma

#### Summary

- ABCs
- Isolated head trauma doesn't cause hypotension
- Look for other injuries
- Prevent secondary injury
- Deterioration → reassess

### Spinal Trauma

#### At the end you will

- understand the structured approach to the patient with spinal trauma
- be able to identify serious and life-threatening spinal injuries

#### Scenario

An 18-year-old man is stabbed in a fight. He is breathing fast, and complaining of back pain and is unable to move or feel his legs.



#### Scenario Questions

- What would you do first?
- How would you examine this man's back?
- What are the signs of a spinal cord injury?



#### Spinal Trauma Initial Assessment

#### **Primary Survey**

- Airway + Cervical spine protection
- Breathing
- Circulation
- Disability
- Exposure

### Spinal Trauma

Clinical findings suggesting cervical cord injury

- Mechanism of injury
- Head injury
- Difficulty in breathing
  - paradoxical or diaphragmatic
- Flaccid limbs and no reflexes
  - check anal sphincter
- Hypotension with bradycardia (without hypovolaemia)

### Spinal Trauma Secondary survey

- Examine in neutral position
- Log-roll to examine back
- Immobilise
  - stiff neck collar
  - sandbags + tapes
  - in-line immobilisation

### Spinal Trauma Secondary survey

- Local tenderness
- Swelling
- Deformity and stepping

### Spinal Trauma Assessment of level

- Motor response
- Sensory response
  - especially sacral sparing
- Reflexes
- Autonomic function
  - bowel control
  - bladder control



## Spinal Trauma Beware

- Inadequate breathing
- Look for other injuries
  - do not assume low BP is due to spinal injury
  - high risk of chest and abdomen injuries
  - difficult assessment of abdomen
  - hidden compartment syndrome

# Spinal Trauma Transport

- Stabilise spine prior to movement
- Never transport in sitting or prone position
- Log roll for transfer
- 10% have a second spinal fracture

### Spinal Trauma



### Spinal Trauma

#### Summary

- Initial management is ABC
- Immobilise until injury is excluded
- Thorough neurological examination

### Trauma in Children

#### At the end you will

- understand the structured approach to the injured child
- recognise the physiological, anatomical and psychological differences between children and adults

### Scenario

A 6-year-old boy falls from a tree. He is drowsy and confused when he is brought to hospital. He has a swollen right forearm.



### Scenario Questions

What would you do first?

 What differences are there in trauma in children?



### Trauma in Children Initial Assessment

#### **Primary Survey**

- Airway + Cervical spine protection
- Breathing
- Circulation
- Disability
- Exposure

The same for children as for adults

## Trauma in Children Children vs Adults

- Anatomical differences (especially airway)
- Physiological differences
- Psychological differences

Trauma management principles are the same

# Trauma in Children Psychological Differences

- Distress may not be due to pain
- Unhappy child is difficult to assess
- Consider parental presence at all times

## Trauma in Children Anatomical differences

Large surface area to volume ratio

 Minimise exposure to prevent hypothermia

• Weight =  $(age + 4) \times 2$ 

## Trauma in Children Airway differences

- Head + tongue larger
- Nose breathing in small babies
- Larynx higher + epiglottis bigger
- Cricoid is narrowest part of airway
- Particularly in children < 4 years</li>

## Trauma in Children Airway differences

- Uncuffed endotracheal tubes preferred in small children
- ETT size = Age/4 + 4
- Child's little finger or nostril

## Trauma in Children Breathing differences

- Air swallowing common in distressed children
- Gastric distension compromises lung function
- Gastric decompression useful

## Trauma in Children Circulation Differences

- Normal values vary with age
- Wide range of normal BP + heart rate
- Capillary refill very useful sign

## Trauma in Children Circulation differences - Shock

- Tachycardia
- Weak pulse
- Capillary refill > 2 seconds
- Tachypnoea
- Agitation
- Drowsiness
- Urine output

## Trauma in Children Haemodynamic Changes



**Percent Blood Loss** 

### Trauma in Children Circulation Differences

Hypotension is a late sign in children

Great reserve to compensate

### Trauma in Children Circulation differences

Pulse palpation

- Femoral artery
- Brachial artery

IV Cannulation

- Avoid CVCs
- Intraosseous
- Long saphenous vein (ankle)
- Femoral vein

## Trauma in Children Intraosseous Access

- Relatively safe + effective
- Anteromedial aspect of tibia below tibial tuberosity
- Other long bones
- Avoid epiphyseal growth plate
- Intraosseous needle or large spinal needle





## Trauma in Children Fluid Resuscitation

- Initial bolus 20ml/kg
- Second bolus 20ml/kg
- If no response give blood 10ml/Kg
- Aim for urine output 1-2 ml/kg/hour in infant
- Warm fluids if possible

### Trauma in Children



PTC

### Trauma in Children

#### Summary

- Same management principles as adults
- Remember anatomical, physiological and psychological differences

### Trauma in Pregnancy

#### At the end you will

- understand the structured approach to the injured pregnant woman
- be able to recognise the physiological and anatomical changes in pregnancy that influence management

### Scenario

A 25 year old women is the driver in a car accident. She was not wearing a seatbelt. She is 34 weeks pregnant. On arrival in hospital she is complaining of severe abdominal pain.

### Scenario Questions

- What would you do first?
- What differences are there in trauma in a pregnant woman??

# Trauma in Pregnancy Primary survey

- Airway + Cervical spine control
- Breathing
- Circulation + uterine displacement
- Disability Diagnose pregnancy
- Exposure

Same in pregnant as in non-pregnant

# Trauma in Pregnancy Anatomy - Fundal height

12 weeks symphysis pubis

20 weeks umbilicus

36 weeks xiphoid



# Trauma in Pregnancy Physiological changes

- Tidal volume ↑
- Cardiac output ↑ 30%
- Blood volume ↑ 40%
- BP ↓ 15mmHg in second trimester
- HR ↑ 10-15

## Trauma in Pregnancy Aortocaval compression

- From 20 weeks
- Uterus presses on vena cava when lying flat on back



- Relieved by left lateral tilt or pulling uterus to left side
- Avoid twisting spine



# Trauma in Pregnancy Primary Survey Issues

- Airway
  - aspiration risk
- Breathing
  - difficult ventilation
  - reduced FRC
- Circulation
  - aortocaval compression
  - tolerate blood loss

## Trauma in Pregnancy Other Issues

- Uterine irritability and premature labour
- Rupture of uterus (partial or complete)
- Placental separation
- Pelvic fractures may result in severe blood loss

# Trauma in Pregnancy Management

- ABCDE of mother
- Left lateral tilt
- Secondary survey

### Trauma in Pregnancy Secondary Survey

- Abdomen
  - fundal height
  - uterus tenderness, contractions, fetal movement and heart rate
- Involve obstetrician early
  - gentle speculum examination?
  - caesarean section may be needed
- Monitor fetal heart rate
- Reassess mother frequently

### Trauma in Pregnancy



### Trauma in Pregnancy

#### Summary

- Important anatomical and physiological considerations
- Resuscitation of the mother is also resuscitation of the baby
- Trauma management principles are the same

### Burns

### At the end you will

- understand the structured approach to the burned patient
- recognise and treat the consequences of severe burns

### Scenario

A 22-year-old woman is cooking dinner when her kerosene stove explodes. She is brought to your hospital with severe burns to her face, neck, upper chest and left arm.



### Scenario Questions

- What would you do first?
- What are the complications of burn injuries?
- How are these treated?



# Burns Primary survey

- Airway + Cervical spine control
- Breathing
- Circulation
- Disability
- Exposure

#### Burns Approach

- Stop the burning
- ABCDE
- Good IV access
- Determine area of burn
- Early fluid replacement
- Pain relief
- Prevent hypothermia

### Burns Mortality

Early death

- airway obstruction
- respiratory failure
- shock
- other injuries

Late death

- renal failure
- sepsis
- multiple organ failure

 $\operatorname{PTC}$ 

### Burns Airway

#### Consider early intubation

- † Hoarseness
- Difficulty swallowing secretions
- ↑ Respiratory distress
- Transfer required





### Swelling after burn





#### Burns Breathing

#### Suspect inhalational injury

- Fire in enclosed space
- Burns around mouth, face, nasal hair
- Respiratory distress
- Hoarseness, cough, stridor
- Black carbon in sputum





#### Burns Circulation

- Treat shock
- Calculate fluids from size of burn
- Oral rehydration possible in smaller burns when no iv access
- Maintain urinary output 0.5-1.0 ml/kg/hr (more if electrical burn)

# Burns Assessment of depth

Superficial: pain, erythema, no blisters





# Burns Assessment of depth

 Partial thickness: painful, weeping, blisters, mottled





# Burns Assessment of depth

 Full thickness: painless, white/dark and leathery





#### Burn Area Assessment

Head and neck 9%
Upper limb 9%
Front of trunk 18%
Back of trunk 18%
Lower limb 18%
Perineum 1%

Partial + full thickness

Depth less important than size in early resuscitation



## Burns Circulation - Fluid Resuscitation

- 2-4 ml crystalloid/kg/% burn in first
   24 hours
  - 1/2 of fluid in first 8 hours
  - 1/2 of fluid over next 16 hours
- Remember maintenance fluids
- Calculations are only a guide
- Maintain urine output

#### Burns Exposure

- Cover patient to prevent hypothermia
- Cover burns with cling film

## Burns Other issues

- Beware of other injuries
- Inhalational injury
- Analgesia
- Nasogastric drainage
- Prevent stress ulcers
- Tetanus prophylaxis



## Burns Other issues

#### Beware electrical burns

- Electricity travels through muscle and deep tissues
- Muscle necrosis
- Consider fasciotomy
- Renal damage
- Keep urine output high





## Burns Other issues

Constricting burns

Consider escharotomy





PIC

### Burns



#### Burns

#### Summary

- ABCDE
- Beware other injuries
- Consider early intubation
- Fluids
- Beware hypothermia
- Prevent infection

#### At the end you will

know how and when to perform the secondary survey

- Head to toe examination, looking for all injuries
- After primary survey, when ABC stable
- Return to primary survey if any deterioration

### Secondary Survey Relevant history

- Allergies
- Medication
- Past history / Pregnancy
- Last meal
- Events / Environments of injury

## Secondary Survey Head and face examination

- Scalp (bruising, lacerations)
- Skull (tenderness, depression)
- Eyes (pupils, conjunctiva)
- Ears, nose mouth (blood, CSF)
- Facial bones

#### Secondary Survey Neck

- Penetrating wounds
- Subcutaneous emphysema
- Tracheal deviation
- Expanding haematomas

## Secondary Survey Neck

- Assume neck is injured
- Immobilise in neutral position

#### Secondary Survey Neurological examination

- Repeated Glasgow Coma Score
- Motor Function
- Sensation
- Reflexes

#### Secondary Survey Chest, Abdomen, Pelvis

- Look
- Feel
- Listen

Beware hidden bleeding

## Secondary Survey Limbs

- Look: deformity, bruising, laceration, colour
- Feel: tenderness, distal pulses, movement
- Power & sensation
- Remember compartment syndrome

# Secondary Survey Log Roll

- Don't forget the back!
- Needs 4 people
- Airway/neck controller in charge
- Clear timing and instructions





- Investigations
- Procedures
- Monitoring
- Documentation



#### Summary

- Head to toe examination
- Return to primary survey if any deterioration
- Don't forget the back
- Documentation

# We recommend Lifebox

www.lifebox.org

