МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

ФАКУЛЬТЕТ ИННОВАЦИЙ И ВЫСОКИХ ТЕХНОЛОГИЙ

Задача многомерного размещения и её приложения

Работу выполнил студент 599 группы Куприянов А.А.

Научный руководитель: К.ф.-м.н. Мусатов Д.В.

Введение

Данный отчет почти полностью основан на диссертации [1], являющейся моей основной литературой в этом семестре. Азы теории были изучены в статьях [2], [4] и курсом "Теория игр" на платформе openedu.

Постановка задачи в конечном случае.

Формулировка задачи многомерного размещения: Формулировка 1

Задан конечный набор точек (x_1,\ldots,x_n) координатного вещественного d - мерного пространства: $\forall i=1,\ldots,n$ имеем $x_i\in\mathbb{R}^n$. Объемлющее пространство \mathbb{R}^n снабжено нормой $||\cdot||$, не обязательно евклидовой. Требуется открыть несколько пунктов, или мощностей $m_1,\ldots,m_k\in\mathbb{R}^n$, и прикрепить к ним все точки с помощью отображения прикрепления $h:\{1,\ldots,n\}\to\{1,\ldots,k\}$ с тем, чтобы минимизировать функционал

$$kg + \sum_{i=1}^{n} ||x_i - m_{h(i)}||$$

Пространство, на котором ищется минимум, — это пространство, типовым элементом которого является пара, состоящая из конечного подмножества $\{m_1, \ldots, m_k\}$ произвольной мощности k, а также одного из всех возможных отображений h: $\{1, \ldots, n\} \to \{1, \ldots, k\}$

Любой элемент фазового пространства задачи (пространства, на котором осуществляется минимизация функционала) мы назовём, как обычно, допустимым планом, или решением.

Переформулировка задачи многомерного размещения.

Оказывается, что почти всегда можно восстановить по разбиению $\pi = \{S_1, \ldots, S_k\}$: $N = S_1 \sqcup \cdots \sqcup S_k$ оптимальное решение, состоящее из набора $\{m_1, \ldots, m_k\}$ и отображения прикрепления h^* . Для этого нужно, чтобы члены коалиции S, образованной разбиением π , решили задачу поиска медианы для данной коалиции $S \subset N$:

$$\min_{m \in \mathbb{R}^d} \left\{ \sum_{i \in S} ||x_i - m|| \right\}$$

Любое решение задачи поиска медианы для коалиции обозначим за m[S] и назовем медианой группы S. Значение целевого функционала коалиции на любом решении обозначим за D[S].

Для переформулировки введем величину средних общих издержек (монетарные + транспортные) для членов коалиции S, при условии выбора оптимальной локации для центра этой коалиции:

$$c[S] = \min_{m \in \mathbb{R}^d} \left\{ \frac{g + \sum_{i \in S} ||x_i - m||}{|S|} \right\} = \frac{g + D[S]}{|S|}$$

Тогда мы можем переформулировать ЗМР, описанную выше так:

Формулировка 2

$$\min_{k; \ \pi = \{S_1, \dots, S_n\} \ : \ N = S_1 \sqcup \dots \sqcup S_k} \left\{ \sum_{l=1}^k |S_l| c[S_l] \right\}$$

Минимум теперь берётся просто по всем возможным разбиениям пространства игроков N на непересекающиеся коалиции (или группы), с заранее не заданным количеством групп в разбиении.

Лемма об эквивалентности формулировок ЗМР.

Формулировки 1 и 2 эквивалентны в следующем формальном смысле: значения целевых функционалов в точках оптимума совпадают и

- \Rightarrow Для любого решения ЗМР по формулировке 1, т.е. для пары $[(m_1, \ldots, m_k); h(\cdot)]$ разбиением, полученным функцией прикрепления $h(\cdot)$, достигается оптимум в формулировке 2.
- \Leftarrow Для любого выбора медиан $m_i \in M[S_i]$ внутри каждой коалиции S_i разбиения π , парой $[(m_1, \ldots, m_k); h(\cdot)]$, где $h(\cdot)$ определяется разбиением π , достигается оптимум в формулировке 1.

Лемма о медиане. По статье [1]

Если бы медиана любой коалиции была единственна, то разбиение на группы однозначно определяло бы решение исходной задачи ЗМР, которая, в свою очередь, всегда однозначно приводила бы к разбиению. Однако, увы, медиана единственна далеко не всегда.

Оказывается, что в евклидовом случае верен такой результат:

Лемма о медиане (Евклидов случай)

Рассмотрим пространство с обычной евклидовой нормой. Тогда для любой коалиции S, такой что все локации ее членов не лежат на одной прямой, решение m[S] = M[S] единственное.

Замечание.

Действительно, если локации всех членов коалиции (точки $\{x_i\}_{i\in S}$) лежат на одной прямой, множеством медиан будет служить отрезок этой прямой, заключенный между двумя медианными локациями (после упорядочивания точек на прямой).

Доказательство (от противного)

Предположим, что для некоторой локации S, удовлетворяющей условиям теоремы есть 2 решения задачи поиска медианы коалиции. Обозначим их за m и m'. Положим $\bar{m}:=\frac{m+m'}{2}$ - середина отрезка mm'. По условию леммы можно считать, что существует член коалиции S, локация которого не принадлежит отрезку mm'.

Для $\forall i \in S: x_i \notin mm'$: отразим x_i относительно отрезка mm'. Получим точку $\tilde{x_i}$. Значит верно $||x_i-m'||=||\tilde{x_i}-m||$ и $||x_i-\bar{m}||=\frac{1}{2}||\tilde{x_i}-x_i||$. Запишем неравенство треугольника для $\triangle x_i m \tilde{x_i}$

$$||x_i - m|| + ||\tilde{x}_i - m|| > ||\tilde{x}_i - x_i||,$$

Откуда

$$\frac{||x_i - m|| + ||x_i - m'||}{2} > ||x_i - \bar{m}||.$$

Суммируя полученное неравенство по всем резидентам (для резидентов, локации которых расположены на прямой, проходящей через m и m', неравенство треугольника выполняется в нестрогой форме) получаем, что

$$\sum_{i \in S} ||x_i - \bar{m}|| < \frac{1}{2} \left(\sum_{i \in S} ||x_i - m|| + \sum_{i \in S} ||x_i - m'|| \right).$$

Так как m и m' – медианы коалиции, то

$$D[S] = \sum_{i \in S} ||x_i - m|| = \sum_{i \in S} ||x_i - m'||,$$

Откуда

$$D[S] = \frac{1}{2} \left(\sum_{i \in S} ||x_i - m|| + \sum_{i \in S} ||x_i - m'|| \right).$$

Но получили, что значение расстояний локаций резидентов до \bar{m} меньше D[S] – противоречит выбору m и m', как медиан S.

Что и требовалось доказать.

Чуточку обо всем.

Еще хотелось бы рассказать об изученных мною уточнениях ЗМР, устойчивости решений ЗМР (статья [1]), топологических фактах из брошюры [6] и связанных с ЗМР задачах, предложенных Д.В. Мусатовым. Но боюсь, что это перевалило бы за разумные рамки объема отчета, который мне нужно было сделать.

ЗМР на букве Т.

Напоследок, дальнейшей моей задачей является решение задачи ЗМР и равномерного распределения на букве T.

План действий:

Сформулировать аналогичные определения и проверить корректность некоторых теорем статьи [1] на букве Т.

Далее написать программу, осуществляющую некоторый перебор локаций игроков для поиска контрпримеров на различные уточнения задачи ЗМР. Первая, вдохновляясь статьей [5], изучить равномерное распределение на букве Т. F

Список литературы.

- [1] Савватеев А.В. Задача многомерного размещения и её приложения: теоретикоигровой подход. – Диссертация на соискание ученой степени доктора физикоматематических наук РЭШ, 2013 – 358 с.
- [2] Ауманн Р., Шепли Л. Значения для неатомических игр. М.: Мир, 1977. 358~c.
- [3] Захаров А.В. Теория игр в общественных науках. М.: препринт НИУ ВШЭ, 2014
- [4] Данилов В.И., Лекции по теории игр. РЭШ, 2002
- [5] Мусатов Д. Размер и число жителей регионов при однопиковой плотности населения. Магистерская работа РЭШ, 2008.
- [6] Данилов В.И., Лекции о неподвижных точках, РЭШ, 2006.