Wir betrachten die Ringe $(\mathbb{Z}_n, \oplus, \otimes)$

a) Für n=15 bestimmen Sie die Einheitengruppe $(\mathbb{Z}_{15}^*,\otimes)$ Geben Sie die Elemente dieser Gruppe an und bestimmen Sie die Gruppentafel. Ist diese Gruppe zyklisch? Geben Sie die Ordnungen aller Elemente an.

 $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\} \rightarrow Alle$ Elemente wo Rest gleich dem Neutralem Element ist (also 1), da Elemente invertierbar seien müssen

		2						
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
		14						
		1						
11	11	7	14	2	13	1	8	4
		11						
14	14	13	11	8	7	4	2	1

Zyklisch bedeutet, dass die Potenzen eines Elementes aus einer Menge, alle Elemente der Menge ergibt. Man muss also ein Erzeuger finden. Die Einheitengruppe \mathbb{Z}_{15}^* ist also nicht zyklisch, da kein Erzeuger existiert.

Die Ordnung eines Elements ist das Element, dass bei der Verknüpfung das neutrale Element ergibt.

- $\mathcal{O}(1) = 1$
- $\mathcal{O}(2) = 8$
- $\mathcal{O}(4) = 4$
- $\mathcal{O}(7) = 13$
- $\mathcal{O}(8) = 2$
- $\mathcal{O}(11) = 11$
- $\mathcal{O}(13) = 7$
- $\mathcal{O}(14) = 14$

b) Haben die folgenden Gleichungen in \mathbb{Z}_{15} eine Lösung? Falls eine Lösung existiert, bestimmen Sie diese! $4 \otimes x \oplus 6 = 8$

$$10\otimes x\oplus 3=4$$

(i)

$$4 \otimes x \oplus 6 = 8$$

$$(4 \otimes x) \oplus 6 = 8$$

$$(4 \otimes x) \oplus 6 \oplus (\ominus 6) = 8 \oplus (\ominus 6)$$

$$(4 \otimes x) \oplus 6 \oplus (\ominus 6) = 8 \oplus (\ominus 6)$$

$$(4 \otimes x) \oplus 0 = 8 \oplus 9$$

$$4 \otimes x = 2$$

$$4^{-1} \otimes 4 \otimes x = 4^{-1} \otimes 2$$

$$4^{-1} \otimes 4 \otimes x = 4^{-1} \otimes 2$$

$$x = 4 \otimes 2$$

$$x = 8$$

$$| \oplus (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6) \otimes (\ominus 6) \otimes (\ominus 6)$$

$$| 4 \otimes (\ominus 6$$

(ii)

 $10 \otimes x \oplus 3 = 4$ hat keine Lösung. $10 \otimes x$ müsste 1 sein damit $1 \oplus 3 = 4$ ergeben kann. Es existiert allerdings kein x damit dies der Fall ist.

c) Warum ist \mathbb{Z}_{11} ein Körper? Bestimmen Sie für jedes Element in $\mathbb{Z}_{11}\setminus\{0\}$ das multiplikative inverse Element.

$$\mathbb{Z}_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}.$$

- 1. $(\mathbb{Z}_{11}, +)$ ist eine abelsche Gruppe.
 - $Assoziativ \ a+b=b+a$
 - neutrales Element (0) existiert
 - Für alle Elemente existiert inverses Element
 - kommutativ (a + b) + c = a + (b + c)
- 2. $(\mathbb{Z}_{11}\setminus\{0\},\cdot)$
 - Assoziativ $a \cdot b = b \cdot a$
 - neutrales Element (1) existiert
 - Für alle Elemente existiert inverses Element
 - $kommutativ (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. Distributivgesetze gelten

 ${\it Multiplikative\ Inverse:}$

- $1^{-1} = 1$
- $2^{-1} = 6$
- $3^{-1} = 4$
- $4^{-1} = 3$
- $5^{-1} = 9$
- $6^{-1} = 2$
- $7^{-1} = 8$
- $8^{-1} = 7$
- $9^{-1} = 5$
- $10^{-1} = 10$

d) Lösen Sie in \mathbb{Z}_{11} die folgenden Gleichungen: $4\otimes x\oplus 6=8$ $10\otimes x\oplus 3=4$

(i)

$$4 \otimes x \oplus 6 = 8$$

$$(4 \otimes x) \oplus 6 = 8$$

$$(4 \otimes x) \oplus 6 \oplus (\ominus 6) = 8 \oplus (\ominus 6)$$

$$(4 \otimes x) \oplus 6 \oplus (\ominus 6) = 8 \oplus (\ominus 6)$$

$$(4 \otimes x) \oplus 0 = 8 \oplus 5$$

$$4 \otimes x = 2$$

$$4^{-1} \otimes 4 \otimes x = 4^{-1} \otimes 2$$

$$4^{-1} \otimes 4 \otimes x = 4^{-1} \otimes 2$$

$$x = 3 \otimes 2$$

$$x = 6$$

(ii)

$$10 \otimes x \oplus 3 = 4$$

$$(10 \otimes x) \oplus 3 = 4$$

$$(10 \otimes x) \oplus 3 \oplus (\ominus 3) = 4 \oplus (\ominus 3)$$

$$(10 \otimes x) \oplus 3 \oplus (\ominus 3) = 4 \oplus (\ominus 3)$$

$$(10 \otimes x) \oplus 0 = 4 \oplus 8$$

$$10 \otimes x = 1$$

$$10^{-1} \otimes 10 \otimes x = 10^{-1} \otimes 1$$

$$10^{-1} \otimes 10 \otimes x = 10^{-1} \otimes 1$$

$$x = 10 \otimes 1$$

$$x = 10$$

Gegeben sei eine Menge $K=\{0,1,a,b\}$ mit vier Elementen. Auf K seien zwei Verknüpfungen + und * gegeben durch folgende (unvollständige) Verknüpfungstafeln:

+	0	1	a	b
0	0	1	a	b
1		0		
a		b		1
b				

*	0	1	a	b
0				
1		1	a	
a			b	1
b		b		

a) Kümmern Sie sich nicht um die Assoziativ- und Distributiv-Gesetze. Ergänzen Sie die Tabellen so, dass K mit diesen Verknüpfungen ein Körper wird.

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

*	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	\overline{a}

b) Lösen Sie in diesem Körper die Gleichungssysteme:

$$b*x+1=a$$
$$x-a=1$$

(i)

$$(b*x) + 1 = a \qquad |+(-1)|$$

$$(b*x) + 1 + (-1) = a + \underbrace{(-1)}_{1}$$

$$(b*x) = a + 1$$

$$b*x = b \qquad |b^{-1}*$$

$$b^{-1}*b*x = b*\underbrace{b^{-1}}_{a}$$

$$x = b*a$$

$$x = 1$$

(ii)

$$x - a = 1$$

$$x + (-a) = 1$$

$$x + a = 1$$

$$x + \underbrace{a + (-a)}_{a} = 1 + \underbrace{(-a)}_{a}$$

$$x = 1 + a$$

$$x = b$$

c) Lösen Sie in diesem Körper das Gleichungssystem mit zwei Unbekannten x und y:

$$b * x + y = 1$$
$$x + b * y = 0$$

(i)

$$b*x + y = 1$$

$$(b*x) + y = 1$$

$$(b*x)^{-1} + (b*x) + y = (b*x)^{-1} + 1$$

$$(b*x)^{-1} + (b*x) + y = (b*x)^{-1} + 1$$

$$y = (b*x)^{-1} + 1$$

Die Gleichung geht auf für:

- y = 1, x = 0
- y = b, x = 1
- y = 0, x = a
- y = a, x = b

(ii)

Gegeben sei ein kommutativer Ring mit Einselement (A, \oplus, \otimes) .

Auf $B = A \times A$ definieren wir zwei Verknüpfungen, die wir wieder mit \oplus und \otimes bezeichnen:

$$(a_1, a_2) \oplus (b_1, b_2) := (a_1 + b_1, a_2 + b_2)$$

$$(a_1, a_2) \otimes (b_1, b_2) := (a_1 * b_1, a_2 * b_2)$$

a) Zeigen Sie, dass B mit diesen Verknüpfungen wieder ein kommutativer Ring mit Einselement ist.

Um zu zeigen, dass B mit den gegebenen Verknüpfungen ein kommutativer Ring mit Einselement ist, muss man zeigen, dass B die folgenden Eigenschaften erfüllt:

- 1. Assoziativität der Addition: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ für alle a, b, c in B.
- 2. Kommutativität der Addition: $a \oplus b = b \oplus a$ für alle a, b in B.
- 3. Existenz eines neutralen Elements bei der Addition: Es gibt ein Element 0 in B, so dass $a \oplus 0 = a$ für alle a in B.
- 4. Existenz eines inversen Elements bei der Addition: Für jedes a in B gibt es ein Element a^{-1} in B, so dass $a \oplus (a^{-1}) = 0$.
- 5. Assoziativität der Multiplikation: $(a \otimes b) \otimes c = a \otimes (b \otimes c)$ für alle a, b, c in B.
- 6. Kommutativität der Multiplikation: $a \otimes b = b \otimes a$ für alle a, b in B.
- 7. Existenz eines neutralen Elements bei der Multiplikation: Es gibt ein Element 1 in B, so dass $a \otimes 1 = a$ für alle a in B.
- 8. Distributivität: $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ und $(b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a)$ für alle a, b, c in B.

Anhand der angegebenen Verknüpfungen sieht man, dass alle oben genannten Eigenschaften erfüllt sind.

- Die Assoziativität der Addition und Multiplikation erfüllt, da es sich um die gleiche Assoziativität wie in A handelt.
- Die Kommutativität der Addition und Multiplikation erfüllt, da es sich um die gleiche Kommutativität wie in A handelt.
- Der neutrale Element bei der Addition ist (0,0) und bei der Multiplikation ist (1,1)
- Für jedes (a_1, a_2) gibt es ein inverses Element (a_1^{-1}, a_2^{-1})
- Die Distributivität erfüllt, da es sich um die gleiche Distributivität wie in A handelt.

b) Bestimmen Sie alle Einheiten von B.

Gesucht sind alle Elemente für die gilt: $(a_1, a_2) \otimes (b_1, b_2) = (1, 1)$.

Einheiten von B:(1,1)

c) Bestimmen Sie alle Nullteiler von B.

Gesucht sind Elemente für die gilt $x, y \neq (0,0)$ mit $x \otimes y = (0,0)$.

Nullteiler von B:(1,0),(0,1)

d) Zeigen Sie, dass das Assoziativgesetz nicht gilt, wenn Sie statt dessen die Definition $(a_1, a_2) \oplus (b_1, b_2) := (a_1 + a_2, b_1 + b_2)$ verwendet hätten

Damit die Assioziativät der Addition gilt muss $\forall a, b, c \in B : (a \oplus b) \oplus c = a \oplus (b \oplus c)$ gelten. Man muss also drei $a, b, c \in B$ finden für die die Definition nicht gilt.

 $Sei~(1,2),(3,4),(5,6) \in B~dann~muss~((1,2) \oplus (3,4)) \oplus (5,6) = (1,2) \oplus ((3,4) \oplus (5,6)).$

(i)

$$((1,2) \oplus (3,4)) \oplus (5,6) =$$

$$((1+2,3+4)) \oplus (5,6) =$$

$$(3,7) \oplus (5,6) =$$

$$(3+7,5+6) =$$

$$(10,11)$$

(ii)

$$(1,2) \oplus ((3,4) \oplus (5,6)) =$$

 $(1,2) \oplus ((3+4,5+6)) =$
 $(1,2) \oplus (7,11) =$
 $(1+2,7+11) =$
 $(3,18)$

 $(10,11) \neq (3,18)$ somit gilt die Definition der Assioziativität nicht für alle Elemente $a,b,c \in B.$

Wir betrachten den Ring der Polynome $\mathbb{Q}[x]$ über dem Körper der rationalen Zahlen. Dieser Ring ist ein "euklidischer Ring" bezüglich der Grad-Funktion, d.h.:

Für je zwei Polynome $f, g \in \mathbb{Q}[x]$ mit $g \neq 0$ gibt es Polynome $p, r \in \mathbb{Q}[x]$ mit f = p * g + r, wobei gilt: grad(r) < grad(g) (Polynomdivision mit Rest)

Für die folgenden Polynome f, g berechne man jeweils die zugehörigen p, q:

a)
$$f = 3x^4 - 2x^2 + x + 1, q = x + 2$$

$$\left(\begin{array}{ccc}
3x^4 & -2x^2 & +x & +1
\end{array}\right) \div (x+2) = 3x^3 - 6x^2 + 10x - 19 + \frac{39}{x+2}$$

$$-6x^3 & -2x^2 \\
\underline{-6x^3 + 12x^2} \\
10x^2 & +x \\
\underline{-10x^2 - 20x} \\
-19x & +1 \\
\underline{19x + 38} \\
39$$

•
$$p = 3x^3 - 6x^2 + 10x - 19$$

•
$$r = 39$$

b)
$$f = x^5 - x^4 + x^3 - x^2 + x - 1, g = x^3 + x^2 + x + 1$$

•
$$p = x^2 - 2x - 3$$

•
$$r = -5x^2 + 3x - 4$$