Prvá domáca úloha Skupina 9

Dominik Eliaš Jaromír Hradil Martin Chládek Jakub Konetzny Peter Krutý 1. (1 **bod**) Pro která reálná čísla x mají intervaly $\langle 1, |x+2| \rangle$ a (1-|x+1|, 9) více než jeden společný prvek?

A
$$\langle 1, |x+2| \rangle$$

B $(1-|x+1|, 9)$

1. Podmienka ->
$$1 < |x+2|$$

Absolutná hodnota sa vždy počíta pre

 $x \ge -2$
 $1 < x+2$
 $1 < x < -2$
 $1 < x < -3$

1. Podmienta = $X \in (-\infty, -3) \cup (-1, \infty)$

3. Podmienka
$$\Rightarrow |x+2| > 1-|x+1|$$
 $|x+2| + |x+1| > 1$
 $|x+2| + |x+$

Výsledok je prienik troch podmienok

2. (1 bod) Na množině $\{0,1,2,\ldots,9\}$ je dána relace ~ následovně:

$$a \sim b \iff 11|(10a+b).$$

Zjistěte, zda \sim je ekvivalence na množině $\{0,1,2,\ldots,9\},$ v případě kladné odpovědi najděte její rozklad.

$$\{0, \dots, 9\} = M$$
 $a \sim b <=> 11/10a+6$

$$R = \{ (0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), (8,8), (9,9) \}$$

$$R \neq \{ (0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6),$$

3. (1.5 bodu) Nechť A je množina obsahující 20 různých přirozených čísel vybraných z aritmetické posloupnosti $1,4,7,\ldots,100$. Je možné vždy vybrat dvě z nich tak, aby jejich součet byl 104? Svou odpověď zdůvodněte.

$$|A| = 20$$
; $x \in A$; $x = 3n - 2$; $n \in <1,34 >$
 $x_1 + x_2 = 104$
Nech $n_1 = 1 \land n_2 = 34 = 7 \times 1 = 1 \land x_2 = 100 = 7 \times 1 + 104$
 $x_1 + x_2 = 100 = 7 \times 1 + 100 = 7$

4. (1.5 bodu) Zjistěte, zdali jsou následující grafy izomorfní.

- Kazdý graf: 10 vrcholov - Kazdý vrchol: rovnaky počet stupňov

-tzn. že každy graf má $\frac{10.3}{2} = 15$ strán

B~D

Loba obsahujú 4 frojuholniky ako podgvaty a hodnoty vycholov si navzajom odpovedajú

B & A; B & A => 0 & A

L>graf A neobsahuje ani jeden tvojuholnik, ten., že niesu izomoviné lebo nemajú spoločne

B & C, B & C => D & C

Lagraf C neobsahuje ani jeden tvojuholník, tzn., že niesú izomovlné lebo nemajú spoločne

ANC

Loba obsahujú 5 kražnic dĺžby 4 a hodnoty vycholov si navzájom odpovedaní

5

4