[Question 1] [20 Points]

For the code sequence shown below:

a. Show loop unrolling so that there are four copies of the loop body. Assume \$f5, \$f9 (Correction: R1, R4) (that is, the size of the array) are initially a multiple of 32, which means that the number of loop iterations is a multiple of 4. Eliminate any obviously redundant computations and do not reuse any of the registers.

```
loop: 1.d
             F2,0(R4)
     mul.d F11,F11,F2
             F3, -8(R4)
      1.d
     mul.d F12,F12,F3
      1.d
            F4,-16(R4)
     mul.d F13,F13,F4
      1.d
            F5,-24(R4)
     mul.d F14,F14,F5
      daddui R4,R4,-32
             R4,R1,loop
      bne
     mul.d F8,F11,F12
     mul.d F9,F13,F14
     mul.d F10, F8, F9
```

b. Compute the number cycles needed for 4 iterations:

Instruction Producing Result	Instruction Using Result	Latency in Cycles
FP ALU OP	Store double	4
FP ALU OP	FP ALU OP	3
ALU OP	BNE	2
Load double	FP ALU OP	1
Load double	Store double	0

```
loop: 1.d
            F2,0(R4)
     stall
     mul.d F11,F11,F2
      1.d
             F3,-8(R4)
     stall
     mul.d F12,F12,F3
            F4,-16(R4)
      1.d
     stall
     mul.d F13,F13,F4
      1.d
            F5,-24(R4)
     stall
     mul.d F14,F14,F5
     daddui R4,R4,-32
     stall
      stall
      bne
             R4,R1,loop
     mul.d F8,F11,F12
     mul.d F9,F13,F14
     stall
     stall
     stall
     mul.d F10,F8,F9
```

22 cycles

[Question 2] [10 Points]

In the following instruction sequence, find all hazards. Rename the registers to eliminate the anti-dependencies and output dependences:

```
div.s F6, F2, F4
sub.s F14, F12, F6
add.s F12, F2, F8
mult.s F6, F8, F12
Red=WAW Hazard
Blue/Green=WAR Hazard
Orange=RAW Hazard
```

div.s <u>F16</u>,F2,F4 sub.s F14,F12,<u>F16</u> add.s <u>F10</u>,F2,F8 mult.s F6,F8,<u>F10</u>

[Question 3] [20 Points]

Consider the following instruction sequence (floating point) on a processor (shown below) which uses Tomasulo's algorithm to dynamically schedule instructions (dual issue per cycle - no speculation):

```
x: ADD R1,R2,R4
y: MUL R0,R1,R2
z: ADD R2,R4,R0
```

Initial values of the registers:

Register	Initial Value
R0	4
R1	3
R2	2
R4	6

The processor has the following non-pipelined execution units:

- A 1 cycle, FP add unit
- A 2 cycle, FP multiply unit

Assume instructions can begin to execute in the same cycle as soon as its dispatched and resides in Reservation Stations. Trace the execution by showing Reservation Stations and FP Registers at the end of cycles 1, 2, 3, and 4:

Cycle 1:

	Reservation Station						
	Tag1 S1 Tag2 S2						
x 1	0	2	0	6			
2							
3							
	Adder						

	Reservation Station						
	Tag1 S1 Tag2 S2						
y 4	1	1	0	2			
5							
	Multiply/Divide						

	FP Registers				
	Busy	Tag	Data		
R0	Yes	4	4		
R1	Yes	1	3		
R2			2		
R4			6		

Cycle 2:

	Reservation Station						
	Tag1 S1 Tag2 S2						
1							
z 2	0	6	4	-			
3							
	Adder						

	Reservation Station						
	Tag1 S1 Tag2 S2						
y 4	0	8	0	2			
5							
	Multiply/Divide						

	FP Registers				
	Busy	Tag	Data		
R0	Yes	4	4		
R1			8		
R2	Yes	2	2		
R4			6		

Cycle 3:

Reservation Station					
Tag1 S1 Tag2 S2					
0	6	4	-		
Adder					
		Tag1 S1 0 6	Tag1 S1 Tag2 0 6 4		

	Reservation Station						
	Tag1 S1 Tag2 S2						
y 4	0	8	0	2			
5							
	Multiply/Divide						

	FP Registers				
	Busy	Tag	Data		
R0	Yes	4	4		
R1			8		
R2	Yes	2	2		
R4			6		

Cycle 4:

	Reservation Station						
	Tag1 S1 Tag2 S2						
1							
z 2	0	6	0	16			
3							
	Adder						

	Reservation Station				
	Tag1	S 1	Tag2	S2	
4					
5					
	Multiply/Divide				

	FP Registers				
	Busy	Tag	Data		
R0			16		
R1			3		
R2	Yes	2	2		
R4			6		