AMAZON REKOGNITION PARA DETECÇÃO DE OBJETOS EM IMAGENS COM PYTHON

1. Comparação de valores e especificações:

Empresa	AWS	Microsoft Windows Azure
Serviço	Amazon Rekognition.	Azure Vision.
Pagamento	Até 1mi: \$0,001 p/	Até 1mi: \$1 p/1000 trn.
	imagem.	+1mi: \$0,65 p/ 1000 trn.
	+4mi: \$0,0008 p/ imagem,	+10mi: \$0,60 p/ 1000 trn.
	+35mi: \$0,0006 p/	+100mi: \$0,40 p/ 1000 trn.
	imagem.	
Suporte	Plano gratuito e business	Plano gratuito e pagos a
	U\$ 100, além de suporte à	partir de U\$ 29, além de
	documentação em	suporte à documentação
	qualquer plano.	em qualquer plano.
Serviço de hospedagem de	Amazon S3.	Arquivos do Azure.
arquivos		
Linguagem de	Java, Python, .NET,	Java, Python, .NET,
programação	Node.js.	JavaScript.
Banco de Dados	DynamoDB, Amazon RDS.	Azure Cosmos DB para
		PostgreSQL, Azure SQL
		Database, Azure Blob
		Storage.
Suporte ao serviço	O Amazon Rekognition faz	Suporte ao Azure abrange
	parte do conjunto de	o Azure Al Vision.
	serviços da AWS e,	
	portanto, está coberto	
	pelos planos de suporte	
	da AWS.	

Mais detalhes sobre preços do Amazon Rekognition:

https://aws.amazon.com/pt/rekognition/pricing/?pg=ln&sec=hs

2. Objetivo:

Mostrar como integrar uma aplicação Python com Amazon Rekognition para detecção de objetos em imagens locais utilizando python.

3. Pré-requisitos

- a. Conta AWS com credenciais configuradas
- b. Python 3 instalado
- c. Instalação de pacotes: boto3, Pillow
- d. Fonte "arial.ttf" disponível ou substituída

4. Passos para implementação

- a. Baixar e instalar o Cliente AWS (CLI aws), através do link: https://awscli.amazonaws.com/AWSCLIV2.msi
- b. No terminal (cmd) rodar: aws configure
- c. Preeencher:
 - i. AWS Access Key ID → SEU_TOKEN_DE_ACESSO
 - ii. AWS Secret Access Key → CHAVE_SECRETA
 - iii. Region → us-east-1
 - iv. Output format → json
- d. No vscode: pip install boto3, Pillow
- e. Implementar o código confome arquivo recAereo.py

5. Dificuldades Encontradas

a. Nem todos os objetos são identificados perfeitamente. Embora os resultados sejam próximos, os textos das imagens podem destoar.

6. Resultados

Reconhece os objetos e traz algumas possibilidades de palavras que podem estar associadas com bastante precisão, entretanto apresenta muita dificuldade ao tentar marcar o objeto na imagem.

Aeroporto

Imagem base:

Imagem resultado:

Valores probabilísiticos:

Airport - 99.98%

Airfield - 98.93%

Aircraft - 86.79%

Airplane - 86.79%

Transportation - 86.79%

Vehicle - 86.79%

Architecture - 63.82%

Turret - 63.82%

Warplane - 57.84%

Airliner - 57.79%

Road - 56.68%

Tarmac - 56.68%

Bomber - 56.267%

Takeoff - 56.01%

Landing - 55.82%

Terminal - 55.23%

Porto

Imagem base:

Imagem resultado:

Valores probabilísiticos:

Transportation - 99.99%

Vehicle - 99.99%

Yacht - 99.99%

Barge - 99.99%

Boat - 99.99%

Watercraft - 99.99%

Water - 99.99%

Waterfront - 99.99%

Cargo - 86.69%

Ship - 81.29%

Truck - 72.14%

Mortar Shell - 69.40%

Weapon - 69.40%

Harbor - 68.27%

Pier - 68.27%

Architecture - 62.61%

Building - 62.61%

Outdoors - 62.37%

Terminal - 56.76%

Military - 56.53%

Navy - 56.53%

Freighter - 56.18%

Mina

Imagem base:

Imagem resultado:

Valores probabilísiticos:

Plant - 99.98%

Vegetation - 99.98%

Land - 99.98%

Nature - 99.98%

Outdoors - 99.98%

Tree - 99.98%

Woodland - 99.98%

Mining - 98.09%

Scenery - 95.41%

Road - 86.89%

Landslide - 79.61%

Aerial View - 76.64%

Rainforest - 70.63%

Face - 70.17%

Head - 70.17%

Person - 70.17%

Adult - 70.07%

Male - 70.07%

Man - 70.07%

Animal - 62.66%

Dinosaur - 62.66%

Reptile - 62.66%

Water - 57.25%

Jungle - 56.23%

Tar - 55.44%

Piscina

Imagem base:

Imagem resultado:

Valores probabilísiticos:

Pool - 98.69%

Water - 98.69%

Outdoors - 97.71%

Swimming Pool - 96.29%

Aerial View - 78.41%

Architecture - 78.22%

Building - 78.22%

Hotel - 78.22%

Road - 71.45%

Airport - 67.65%

Resort - 66.83%

Computer Hardware - 62.15%

Electronics - 62.15%

Hardware - 62.15%

Monitor - 62.15%

Screen - 62.15%

City - 57.80%

Waterfront - 57.51%

House - 57.44%

Housing - 57.44%

Villa - 57.44%

Neighborhood - 56.98%

Airfield - 55.22%

Ilhas

Imagem base:

Imagem resultado:

Valores probabilísiticos:

Land - 100.0%

Nature - 100.0%

Outdoors - 100.0%

Sea - 100.0%

Water - 100.0%

Shoreline - 99.99%

Coast - 99.99%

Island - 97.85%

Peninsula - 97.65%

Animal - 66.25%

Fish - 66.25%

Sea Life - 66.25%

Shark - 66.25%

Atoll - 57.23%

Praia/costa

Imagem base:

Imagem resultado:

Valores probabilísiticos:

Nature - 99.99%

Outdoors - 99.99%

Sea - 99.99%

Water - 99.99%

Shoreline - 99.93%

Coast - 99.91%

Beach - 98.57%

Aerial View - 82.45%

Scenery - 82.06%

Waterfront - 64.53%

Land - 56.83%

Landscape - 55.87%

Estação de tratamento de água (ETA)

Imagem base:

Imagem resultado:

Valores probabilísiticos:

Outdoors - 99.98%

Nature - 97.90%

Aerial View - 95.38%

Water - 86.68%

Countryside - 83.80%

Rural - 74.81%

Farm - 69.60%

Land - 56.94%

Electrical Device - 56.47%

Airfield - 56.29%

Airport - 56.29%

Reservoir - 56.22%

Solar Panels - 56.22%

7. Conclusão

O Amazon Rekognition é capaz de reconhecer com boa precisão vários objetos e trazer também associações com outras palavras próximas que podem estar associadas a um mesmo objeto. Apesar de os resultados serem bons, tem dificuldade para trazer as coordenadas do objeto na imagem.