Dijkstra's Algorithm

Subhabrata Samajder

IIIT, Delhi Winter Semester, 2nd June, 2023 Shortest Paths Problem

Motivation

Problem: Suppose a motorist wants to find the shortest possible route from Delhi to Kolkata. Given a road map of the India on which the distance between each pair of adjacent intersections is marked, how can the motorist determine the shortest route?

Motivation

Problem: Suppose a motorist wants to find the shortest possible route from Delhi to Kolkata. Given a road map of the India on which the distance between each pair of adjacent intersections is marked, how can the motorist determine the shortest route?

Possible Solutions:

- Enumerate all the routes from Delhi to Kolkata.
- Add up the distances on each route.
- Select the shortest route.
- Issues:
 - Even if we disallow routes that contain cycles, there are millions of possibilities.
 - Among them most of them are simply not worth considering.

Example: A route from Delhi to Mumbai to Kolkata.

Motivation

Problem: Suppose a motorist wants to find the shortest possible route from Delhi to Kolkata. Given a road map of the India on which the distance between each pair of adjacent intersections is marked, how can the motorist determine the shortest route?

Possible Solutions:

- Modelling as a Graph Problem:
 - Vertices: Represents the intersections of road.
 - Edges: Represents the road segments between intersections.
 - Edge Weights: Represents the road distances from one intersection to another.
 - Goal: Find a *shortest path* from a given intersection in Delhi to a given intersection in Kolkata.

Shortest-paths Problem

Given: A weighted, directed graph G = (V, E, w).

The weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$: $w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$.

Shortest-path weight from *u* **to** *v*:

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\}; & \text{if } \exists u \stackrel{p}{\leadsto} v \\ \infty; & \text{otherwise.} \end{cases}$$

Shortest path from u **to** v: Any path p with $w(p) = \delta(u, v)$.

Note: BFS gives shortest-paths, but for unweighted graphs.

Single-source Shortest-paths Problem

Problem Statement: Given a weighted, directed graph G = (V, E), with weight function $w : E \to \mathbb{R}$, find a shortest path from a given source vertex $s \in V$ to each vertex $v \in V$.

Other Related Problems

- Single-destination shortest-paths problem: Find a shortest path to a given destination vertex t from each vertex v.
 - Reverse the direction of each edge to reduce it to a single-source problem.
- Single-pair shortest-path problem: Given vertices u and v, find a shortest path from u to v.
 - Solve the single-source problem with source vertex *u*.
 - Stop the algorithm as soon as *v* is reached.
 - **Note:** No asymptotically faster algorithms are known in the worst case other than the best single-source algorithms.
- All-pairs shortest-paths problem: Find a shortest path from u to v for every pair of vertices u and v.
 - Run the single-source algorithm once from each vertex.
 - Note: Can usually be solved faster.

•
$$\delta(s, a) = w(s, a) = 3$$
.

- $\delta(s, a) = w(s, a) = 3$.
- Similarly, $\delta(s, b) = w(s, a) + w(a, b) = 3 + (-4) = -1$.

• There are infinitely many paths from s to c: $\langle s, c \rangle$

• There are infinitely many paths from s to c: $\langle s, c \rangle$, $\langle s, c, d, c \rangle$

• There are infinitely many paths from s to c: $\langle s, c \rangle$, $\langle s, c, d, c \rangle$, $\langle s, c, d, c \rangle$, and so on.

• There are infinitely many paths from s to c: $\langle s, c \rangle$, $\langle s, c, d, c \rangle$, $\langle s, c, d, c \rangle$, and so on.

$$\delta(s,c) = 5 \quad [\because w(\langle c,d,c\rangle) = 6 + (-3) = 3 > 0]$$

• There are infinitely many paths from s to c: $\langle s, c \rangle$, $\langle s, c, d, c \rangle$, $\langle s, c, d, c \rangle$, and so on.

$$\therefore \delta(s,c) = 5 \quad [\because w(\langle c,d,c\rangle) = 6 + (-3) = 3 > 0]$$

Similarly, $\delta(s,d) = w(s,c) + w(c,d) = 11$.

• There are infinitely many paths from s to e: $\langle s, e \rangle$, $\langle s, e, f, e \rangle$, $\langle s, e, f, e \rangle$, and so on.

$$\therefore \delta(s,e) = -\infty \quad [\because w(\langle e,f,f\rangle) = 3 + (-6) = -3 < 0]$$

Similarly, $\delta(s, f) = -\infty$.

• $\delta(s,g) = -\infty$: Because g is reachable from f

• Note: $w(\langle h, i, j \rangle) = 2 + 3 + (-8) = -3 < 0$.

But they are not reachable from s, therefore

$$\delta(s,h) = \delta(s,i) = \delta(s,j) = \infty.$$

How Negative Cycles are Handled by Algorithms?

• Dijkstra's Algorithm: Assumes that all edge weights in the input graph are non-negative.

- Bellman-Ford Algorithm: Allows negative-weight edges.
 - Produces a correct answer as long as no negative-weight cycles are reachable from the source.
 - However, if there is such a negative-weight cycle, then the algorithm can detect and report its existence.

Dijkstra's Algorithm

Introduction

- Was conceived by Edsger W. Dijkstra in 1956 but was published three years later.
- Many variants of the algorithm exists.
 - Original variant: Finds the shortest path between two nodes.
 - Common variant: Fixes a "source" node and finds shortest paths from the source to all other nodes (shortest-path tree).
- Original algorithm: Does not use a MIN-PRIORITY queue and runs in time $\mathcal{O}(|V|^2)$.
- Fredman and Tarjan (1984): Gave an efficient implementation based on a MIN-PRIORITY queue implemented by a Fibonacci heap and running in $\mathcal{O}(|E| + |V| \log |V|)$.
 - Asymptotically the fastest known single-source shortest-path algorithm for arbitrary directed graphs with unbounded non-negative weights.
- However, specialized cases (such as bounded/integer weights, directed acyclic graphs etc.) can be improved further.

Main Idea

- The algorithm maintains a set S of vertices whose final shortestpath weights from the source s have already been determined.
- The algorithm repeatedly selects the vertex $u \in V \setminus S$ with the minimum shortest-path estimate, adds u to S.
- Then relaxes (lines 11-13) all edges leaving u.
- It uses a greedy strategy.
- Bears some similarity with both BFS and Prim's algorithm.

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{\geq 0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{\geq 0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- **for** each $v \in V$
- 2. $d[v] \leftarrow \infty$ 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: MIN-PRIORITY queue

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow NIL$
- 4. $d[s] \leftarrow 0$ 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V$ // Q(d): Min-Priority queue

- 7. while $(Q \neq \emptyset)$
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- 1. **for** each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow NIL$
- 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- 7. while $(Q \neq \emptyset)$
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- 10. **for** each vertex $v \in Adj[u]$

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{\geq 0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- 1. **for** each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$
- 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- 7. while $(Q \neq \emptyset)$
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- 10. **for** each vertex $v \in Adj[u]$
- 11. if $(v \in Q)$ and (d[v] > d[u] + w(u, v))

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- 1. **for** each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$
- 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- 7. while $(Q \neq \emptyset)$
- 8. $u \leftarrow \text{EXTRACT-Min}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- 10. **for** each vertex $v \in Adj[u]$
- 11. **if** $(v \in Q)$ and (d[v] > d[u] + w(u, v))
- 12. $d[v] \leftarrow d[u] + w(u, v)$
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- 1. **for** each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$
- 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- 7. while $(Q \neq \emptyset)$
- 8. $u \leftarrow \text{EXTRACT-Min}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- 10. **for** each vertex $v \in Adj[u]$
- 11. **if** $(v \in Q)$ and (d[v] > d[u] + w(u, v))
- 12. $d[v] \leftarrow d[u] + w(u, v)$
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- 1. **for** each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$
- 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- 7. while $(Q \neq \emptyset)$
 - $u \leftarrow \text{Extract-Min}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- 10. **for** each vertex $v \in Adj[u]$
- 11. **if** $(v \in Q)$ and (d[v] > d[u] + w(u, v))
- 12. $d[v] \leftarrow d[u] + w(u, v)$
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- 1. **for** each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$
- 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- 7. while $(Q \neq \emptyset)$
- 8. $u \leftarrow \text{EXTRACT-Min}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- 10. **for** each vertex $v \in Adj[u]$
- 11. **if** $(v \in Q)$ and (d[v] > d[u] + w(u, v))
- 12. $d[v] \leftarrow d[u] + w(u, v)$
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V \ // \ Q(d)$: Min-Priority queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- 7. while $(Q \neq \emptyset)$
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- 7. while $(Q \neq \emptyset)$
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- 7. while $(Q \neq \emptyset)$
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- while $(Q \neq \emptyset)$ 7.
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- $S \leftarrow S \cup \{u\}$ 9.
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w: E \to \mathbb{R}_{>0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

Initialization Step:

- for each $v \in V$
- 2. $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow \text{NIL}$ 4. $d[s] \leftarrow 0$
- 5. $S \leftarrow \emptyset$
- 6. $Q \leftarrow V // Q(d)$: MIN-PRIORITY queue

- 7. while $(Q \neq \emptyset)$
- 8. $u \leftarrow \text{EXTRACT-MIN}(Q)$
- 9. $S \leftarrow S \cup \{u\}$
- **for** each vertex $v \in Adj[u]$ 10.
- if $(v \in Q)$ and (d[v] > d[u] + w(u, v))11.
- $d[v] \leftarrow d[u] + w(u, v)$ 12.
- 13. $\pi[v] \leftarrow u$

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{\geq 0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

. . .

- 14. $S \leftarrow \emptyset$
- 15. **for** each $v \in V$
- 16. if $(v \neq s)$
- 17. $S \leftarrow S \cup \{(\pi[v], v)\}$

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{\geq 0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

. . .

- 14. $S \leftarrow \emptyset$
- 15. **for** each $v \in V$
- 16. if $(v \neq s)$
- 17. $S \leftarrow S \cup \{(\pi[v], v)\}$

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{\geq 0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

. . .

- 14. $S \leftarrow \emptyset$
- 15. **for** each $v \in V$
- 16. if $(v \neq s)$
- 17. $S \leftarrow S \cup \{(\pi[v], v)\}$

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{\geq 0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

. . .

- 14. $S \leftarrow \emptyset$
- 15. **for** each $v \in V$
- 16. if $(v \neq s)$
- 17. $S \leftarrow S \cup \{(\pi[v], v)\}$

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{\geq 0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

. . .

- 14. $S \leftarrow \emptyset$
- 15. **for** each $v \in V$
- 16. if $(v \neq s)$
- 17. $S \leftarrow S \cup \{(\pi[v], v)\}$

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{\geq 0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

. . .

- 14. $S \leftarrow \emptyset$
- 15. **for** each $v \in V$
- 16. if $(v \neq s)$
- 17. $S \leftarrow S \cup \{(\pi[v], v)\}$

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{\geq 0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

. . .

- 14. $S \leftarrow \emptyset$
- 15. **for** each $v \in V$
- 16. if $(v \neq s)$
- 17. $S \leftarrow S \cup \{(\pi[v], v)\}$

DIJKSTRA(G, w, s)

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{\geq 0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

. . .

Constructing the Shortest-path Tree *S*:

- 14. $S \leftarrow \emptyset$
- 15. **for** each $v \in V$
- 16. if $(v \neq s)$
- 17. $S \leftarrow S \cup \{(\pi[v], v)\}$

DIJKSTRA(G, w, s)

I/P: A directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}_{\geq 0}$ and a source vertex s.

O/P: Shortest-path tree S with root vertex s.

. .

Constructing the Shortest-path Tree *S*:

- 14. $S \leftarrow \emptyset$
- 15. **for** each $v \in V$
- 16. if $(v \neq s)$
- 17. $S \leftarrow S \cup \{(\pi[v], v)\}$
- 18. **return** *S*

Time Complexity

- MIN-PRIORITY queue operations:
 - INSERT: Implicit in line 6 invoked once for each vertex.
 - Total number of calls: |V|.
 - EXTRACT-MIN: In line 8 invoked once for each vertex.
 - Total number of calls: |V|.
 - DECREASE-KEY: Implicit in line 12.
 - Each vertex $v \in V$ is added to set S exactly once \Rightarrow each edge in the adjacency list Adj[v] is examined exactly once.
 - Recall that the total number of edges in all the adjacency lists is $|E| \Rightarrow$ there are a total of |E| iterations of the for loop (lines 10-13).
 - Total number of calls: At most |E|.
- Total Complexity: Depends heavily on the implementation of the MIN-PRIORITY queue Q.

Array Implementation

- Take advantage of the vertices being numbered 1 to |V|.
- Store d[v] in the v^{th} entry of an array.
- ullet Insert and Decrease-Key: Both takes $\mathcal{O}(1)$ time.
- EXTRACT-MIN: Takes $\mathcal{O}(|V|)$ time.

Total Complexity:

$$\mathcal{O}(\underbrace{|V| \cdot \mathcal{O}(1)}_{\text{lines } 1-3} + \underbrace{|V| \cdot \mathcal{O}(1)}_{\text{line } 6} + \underbrace{|V| \cdot \mathcal{O}(|V|)}_{\text{line } 8} + \underbrace{|E| \cdot \mathcal{O}(1)}_{\text{line } 10-13})$$

$$= \mathcal{O}(|V|^2 + |E|)$$

$$= \mathcal{O}(|V|^2).$$

Binary MIN-HEAP Implementation

- EXTRACT-MIN: $\mathcal{O}(\log |V|)$.
- Decrease-Key: $\mathcal{O}(\log |V|)$.
- Building a MIN-HEAP: $\mathcal{O}(|V|)$.
- Total Complexity:

$$\mathcal{O}(\underbrace{|V| \cdot \mathcal{O}(1)}_{\text{lines } 1-3} + \underbrace{\mathcal{O}(|V|)}_{\text{line } 6} + \underbrace{|V| \cdot \mathcal{O}(\log|V|)}_{\text{line } 8} + \underbrace{|E| \cdot \mathcal{O}(\log|V|)}_{\text{line } 10-13}$$

$$= \mathcal{O}((|V| + |E|) \log|V|),$$

which is equal to $\mathcal{O}(|E| \log |V|)$ if all vertices are reachable from the source s.

- This is an improvement over the array implementation if $|E| = o(|V|^2/\log|V|)$, i.e., if the graph is sufficiently sparse.
- **Note:** Can be further improved to $\mathcal{O}(|V| \log |V| + |E|)$ by using Fibonacci heap.

Correctness

Theorem

Dijkstra's algorithm, run on a weighted, directed graph G = (V, E) with non-negative weight function w and source s, terminates with $d[u] = \delta(s, u)$ for all vertices $u \in V$.

Loop Invariant: At the start of each iteration of the **while** loop of lines 7-13, $d[v] = \delta(s, v)$ for each vertex $v \in S$.

Note: It suffices to show that

- for each vertex $u \in V$, we have $d[u] = \delta(s, u)$ at the time when u is added to set S.
- We then rely on the upper-bound property $(d[u] \ge \delta(s, u))$ to show that the equality holds at all times thereafter.

Initialization: Initially, $S = \emptyset$, and so the invariant is trivially true.

- If possible, let u be the first vertex for which $d[u] \neq \delta(s, u)$ when it is added to set S.
- Note: $u \neq s$ because s is the first vertex added to set S and $d[s] = \delta(s,s) = 0$ at that time $\Rightarrow S \neq \emptyset$ just before u is added to S.
- Also $s \stackrel{p}{\leadsto} u$, otherwise $d[u] = \delta[s, u] = \infty$. $\Rightarrow \Leftarrow !$

Maintenance:

- Note: Prior to adding u to S, path p connects a vertex in S, namely s, to a vertex in $V \setminus S$, namely u.
- Let y be the first vertex along p such that $y \in V \setminus S$, and let $x \in S$ be y's predecessor. That is p can be decomposed as

$$s \stackrel{p_1}{\leadsto} x \to y \stackrel{p_2}{\leadsto} u \quad (p_1, p_2 \text{ can be empty}).$$

Maintenance:

- Claim: $d[y] = \delta(s, y)$ when u is added to S.
- **Observe:** $x \in S$ and by our assumption $d[x] = \delta(s, x)$ when x was added to S.
- Note: If $d[x] = \delta(s, x)$ at some point prior to considering the edge (x, y), then $d[x] = \delta(s, x)$ thereafter $(\cdot, d[x] \ge \delta(s, x))$.

Maintenance:

In particular, by convergence property we have

$$\delta(s,y) \leq d[y] \leq d[x] + w(x,y) = \delta(s,x) + w(x,y) = \delta(s,y).$$

which implies that $d[y] = \delta(s, y)$, thereby proving the claim.

• Convergence Property: If $s \rightsquigarrow u \rightarrow v$ is a shortest path in G, and if $d[u] = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $d[v] = \delta(s, v)$ at all times afterward.

Maintenance:

- Because y occurs before u on a shortest path from s to u and all edge weights are non-negative (especially on p_2), we have $\delta(s,y) \leq \delta(s,u)$.
- Therefore

$$d[y] = \delta(s, y) \le \delta(s, u) \le d[u]. \tag{1}$$

Maintenance:

- Note: Both vertices u and y were in $V \setminus S$ when u was chosen in line 8, which implies $d[u] \leq d[y]$.
- Then form (1), we have

$$d[y] = \delta(s, y) = \delta(s, u) = d[u],$$

which is a contradiction!!

Termination:

• The **while** terminates, when $Q = \emptyset$ which, along with our earlier invariant that $Q = V \setminus S$, implies that S = V.

• Thus, $d[u] = \delta(s, u)$ for all vertices $u \in V$.

A Corollary

Corollary

If we run Dijkstra's algorithm on a weighted, directed graph G = (V, E) with non-negative weight function w and source s, then at termination, the predecessor subgraph G_{π} is a shortest-paths tree rooted at s.

Proof: Follows immediately from the Theorem.

Books and Other Materials Consulted

Introduction to Algorithms by Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein. Thank You for your kind attention!

Questions!!