année scolaire 2022-2023 Professeur : Zakaria Haouzan

Établissement : Lycée SKHOR qualifiant

Devoir N°4 - Semestre 02 Filière Tronc Commun Scientifique Durée 3h00

.Chimie 7pts - 63min $_{-----}$

Les parties sont indépendantes

Partie 1 :Outils de description d'un système chimique.(4pts)

L'oxyde d'azote N_2O est utilisé comme gaz anesthésiant en chirurgie ou comme propulseur dans les bombes aérosol. Le volume molaire gazeux vaut $24,0L.mol^{-1}$.

1. Quelle est la masse molaire de l'oxyde d'azote ?
2. Quelle quantité de matière contient un volume $V=250,0mL$ de ce gaz. Déduire le nombre des molécules d'oxyde d'azote
3. Calculer la masse de 50,0 mL de ce gaz
La phénolphtaléine est un indicateur coloré acido-basique de formule $C_{20}H_{14}O_4$ Elle est utilisée en solution dans l'éthanol à la concentration $C=1,5.10^{-3}mol.L^{-1}$
4. Quel est le solvant et le soluté de cette solution ?

- 7. On dispose d'une solution aqueuse S_0 de diiode de concentration $C_0 = 2, 0.10^{-2} mol. L^{-1}$. On souhaite préparer un volume $V_1 = 250 mL$ de solution de diiode de concentration $C_1 = 4.10^{-3} mol. L^{-1}$.

On donne en $g.mol^{-1}$: $M(C) = 12g.mol^{-1}$, $M(H) = 1g.mol^{-1}$, $M(O) = 16g.mol^{-1}$ $M(N) = 14g.mol^{-1}$ et $N_A = 6,02.10^{23}mol^{-1}$

Partie 2: Transformation chimique d'un système.....(3pts)

On introduit un morceau d'aluminium $Al_{(S)}$ de masse m=16,2g dans une solution d'acide chlorhydrique $(H_{(aq)}^+ + Cl_{(aq)}^-)$ de concentration C=0,24mol/L et de volume V=1L. la réaction chimique mise en jeu entre le morceau d'aluminium $Al_{(S)}$ et les ions $H_{(aq)}^+$ produit les ions $Al_{(aq)}^{3+}$ et le dihydrogène gazeux $H_{2(g)}$.

- 1. Calculer n_1 et n_2 les quantités de matières initiales respectives de $H_{(aq)}^+$ et de $Al_{(S)}$(0,5pts)

- 4. En se basant sur le tableau d'avancement, donner le bilan de matière à l'état final (0,5pts)

5. déduire $V_{f(H_2)}$ le volume finale du dihydrogène produit à l'état final.....(1pt)

Données : La masses molaires M(Al) = 27g/mol et Volume molaire $V_m = 24L.mol^{-1}$.

Physique 13pts - 117min ____

Les parties sont indépendantes

Partie 1 :Tension électrique continue- représentation de la tension. (4 pts)

On considère le circuit électrique représenté ci-contre constitué de dipôles électriques de D1 à D6.

On donne:

- D_1 et D_2 sont identiques.
- I = 9mA; $I_1 = 6mA$; $I_4 = 2mA$;
- $U_{PN} = 9V$; $U_{DG} = -4V$; $U_{FE} = 1V$.
- 1. Indiquer quelle tension l'oscilloscope mesure-t-il puis dessiner l'oscillogramme obtenu dans le cadre cicontre sachant que $S_V = 1V/div$(1pt)
- 2. Déterminer le nombre de divisions indiqués par l'aiguille de l'ampèremètre sachant que le nombre de divisions total est 100 et le calibre choisi est 10mA......(1pt)
- 3. Calculer les intensités de courant I_2 et I_3 en justifiant votre réponse......(1pt)

Soit le circuit électrique suivant.

- 1. Reproduire le schéma et indiquer le sens du courant dans chaque branche du circuit.....(1pt)
- 2. Dans quel sens se déplacent les électrons dans la branche QM?.....(0,25pts)
- 3. On veut mesurer les intensités des courants dans ce circuit.
 - (a) Compléter le tableau suivant par ce qui convient......(0,75pts)

Ampèremètre	Calibre	Lecture (n) div	cadron n_0 div	Intensité
A_1	1A	50 div	100 div	$I_1 = A$
A_2		7 div	30 div	$I_2 = 0.07 \text{ A}$
A_3	100mA	70 div	100 div	$I_3 = A$

- (b) Déterminer la quantité d'électricité Q qui traverse l'électrolyseur E pendant 20min.....(1pt)
- (c) Déterminer les intensités manque I et I_4 mesurées respectivement par les ampèremètres A et A_4 . (1pt)

Un élève a effectué le montage du circuit schématisé sur la figure ci-contre.

Les quatre lampes sont identiques et f1 et f2 sont deux fils de court-circuit. L'ampèremètre A, indique la valeur 0,3 A.

- 1. Simplifier le schéma du montage.....(1pt)
- 2. Calculer l'intensité du courant traversant chaque lampe......(1pt)

On considère le circuit représenté sur la figure ci-contre, et qui est constitué de.

Page 3 / 4

- Un générateur maintenant entre ses borne une tension constante UPN;
- \bullet Deux résistors D_1 et D_2 de résistances respectives R_1 et R_2 ;
- Une lampe L;
- Un ampèremètre A et un voltmètre V
- Un interrupteur K.
- L'interrupteur K étant fermé, l'ampèremètre et le voltmètre indiquent respectivement les valeurs I=0,5A et U=0,5V
- Donnée : $R_2 = 3\Omega$, $R_1 = 15\Omega$.
- 1. L'interrupteur K étant fermé, Montrer que l'intensité I_1 du courant traversant le résistor D_1 peut s'écrire sous la forme :

$$I_1 = \frac{R_2.I + U}{R_1 + R_2}$$

- 2. Calculer la valeur de la tension U_{PN}(0,5pts)

- 5. représente l'écran de l'oscilloscope. Représenter dessus le trait lumineux......(0,5pts)