Generalized Additive Models

Overview

- What is a GAM?
- What is smoothing?
- How do GAMs work?
- Fitting GAMs using

What is a GAM?

"gam"

1.

2.

(via Natalie Kelly, AAD. Seen in Moby Dick.)

Generalized Additive Models

- Generalized: many response distributions
- Additive: terms **add** together
- Models: well, it's a model...

What does a model look like?

- Count n_i distributed according to some count distribution
- Model as sum of terms

5000

Depth

Mathematically...

Taking the previous example...

$$n_j = A_j p_j \exp \left[\beta_0 + s(y_j) + s(Depth_j)\right] + \epsilon_j$$

where $\epsilon_j \sim N(0, \sigma^2)$, $n_j \sim \text{count distribution}$

- area of segment offset
- probability of detection in segment
- link function
- model terms

Response

$$\mathbf{n}_{j} = \mathbf{A}_{j} \hat{\mathbf{p}}_{j} \exp \left[\beta_{0} + \mathbf{s}(\mathbf{y}_{j}) + \mathbf{s}(\mathbf{Depth}_{j}) \right] + \epsilon_{j}$$

where $\epsilon_j \sim N(0, \sigma^2)$, $n_j \sim \text{count distribution}$

Count distributions

- Response is a count (not not always integer)
- Often, it's mostly zero (that's complicated)
- Want response distribution that deals with that
- Flexible mean-variance relationship

Tweedie distribution

- $Var(count) = \varphi(count)^q$
- Common distributions are sub-cases:

$$\circ q = 1 \Rightarrow Poisson$$

$$\circ q = 2 \Longrightarrow Gamma$$

$$\circ$$
 q = 3 \Rightarrow Normal

- We are interested in 1 < q < 2
- (here q = 1.2, 1.3, ..., 1.9)

Negative binomial distribution

- Var (count) = $(count) + \kappa (count)^2$
- Estimate χ
- Is quadratic relationship a "strong" assumption?
- Similar to Poisson: Var (count) = (count)

Smooth terms

$$n_j = A_j p_j^* \exp \left[\beta_0 + s(y_j) + s(Depth_j)\right] + \epsilon_j$$

where $\epsilon_j \sim N(0, \sigma^2)$, $n_j \sim$ count distribution

Okay, but what about these "s" things?

- Think s=smooth
- Want to model the covariates flexibly
- Covariates and response not necessarily linearly related!
- Want some wiggles

What is smoothing?

Straight lines vs. interpolation

- Want a line that is "close" to all the data
- Don't want interpolation -- we know there is "error"
- Balance between interpolation and "fit"

Splines

- Functions made of other, simpler functions
- Basis functions b_k , estimate β_k

•
$$s(x) = \sum_{k=1}^{K} \beta_k b_k(x)$$

• Makes the maths much easier

Measuring wigglyness

- Visually:
 - Lots of wiggles == NOT SMOOTH
 - Straight line == VERY SMOOTH
- How do we do this mathematically?
 - Derivatives!
 - (Calculus a useful class after all)

Wigglyness by derivatives

Making wigglyness matter

- Integration of derivative (squared) gives wigglyness
- Fit needs to be penalised
- **Penalty matrix** gives the wigglyness
- ullet Estimate the eta_k terms but penalise objective
 - "closeness to data" + penalty

Penalty matrix

- \bullet For each b_k calculate the penalty
- \bullet Penalty is a function of β
 - $\circ \lambda \beta^T S \beta$
- S () calculated once
 - , λ dictates influence

Smoothing parameter

How wiggly are things?

- We can set **basis complexity** or "size" k
 - Maximum wigglyness
- Smooths have **effective degrees of freedom** (EDF)
- EDF < k
- Set k "large enough"

Why GAMs are cool...

Okay, that was a lot of theory...

Example data

Example data

Example data

Sperm whales off the US east coast

Model formulation

- Pure spatial, pure environmental, mixed?
- May have some prior knowledge
 - Biology/ecology
- What are drivers of distribution?
- Inferential aim
 - Abundance
 - Ecology

Fitting GAMs using dsm

Translating maths into R

$$n_{j} = A_{j} \hat{p_{j}} \exp \left[\beta_{0} + s(y_{j})\right] + \epsilon_{j}$$

where $\epsilon_j \sim N(0, \sigma^2)$, $n_j \sim$ count distribution

- inside the link:
- response distribution:
- detectability:
- offset, data:

Your first DSM

is based on by Simon Wood

What did that do?

Plotting

- •
- Dashed lines indicate +/- 2 standard errors
- Rug plot
- On the link scale
- EDF on y axis

Adding a term

• Just use

Summary

Plotting

- : each plot on different scale
- : plot together

Bivariate terms

- Assumed an additive structure
- No interaction
- We can specify (and

Thin plate regression splines

- Default basis
- One basis function per data point
- Reduce # basis functions (eigendecomposition)
- Fitting on reduced problem
- Multidimensional

Thin plate splines (2-D)

Bivariate spatial term

Summary

Plotting... erm...

Let's try something different

- Still on link scale
- excludes points far from data

Comparing bivariate and additive models

Let's have a go...