Calculus & Lineære Algebra

Noter fra Student: Vivek Misra vimis22@student.sdu.dk

University of Southern Denmark (SDU)

Introduktion til Set-Teori

- Set-Teorien går ud på, at vi har en liste af data som vi ønsker at sammenligne med hinanden gennem adskillige operationer.
- Vi plejer, at brug tuborgklammerne til at definere {set} værdierne.
- Alle værdier inde i Set-Teorien kan både være bogstaver, tal, operationstegn, emoji's etc.
- Vi skal på næste slide vise eksempler på udregning af Sets.

Intersektionen mellem Sets A

- Intersektionen mellem Sets går ud på, at sammenligne to lister med hinanden og derved udskrive om der er værdier til fællesskab i resultatet. Intersektionen benævnes med tegnet: ∩.
- EKSEMPEL:

$$A = \{1,2,3,4,5\}$$

 $B = \{4,5,6,7,8\}$

 Nu skal værdierne sammenlignes, og her ses at 4 og 5 er tilfælles ved begge set-teorier. Derfor skriver vi følgende Resultat.

$$A \cap B = \{1,2,3,4,5\} \cap \{4,5,6,7,8\}$$

$$A \cap B = \{4, 5\}$$

Unionen mellem Sets U

- Intersektionen mellem Sets går ud på, at sammenligne to lister med hinanden og derved udskrive alle tal sammen som et resultat uden nogen duplikationer af intersektionsværdierne. Unionen benævnes med tegnet: U.
- EKSEMPEL:

$$A = \{1,2,3,4,5\}$$

 $B = \{4,5,6,7,8\}$

• Nu skal værdierne sammenlignes, og så skrives alle værdierne samlet uden duplikationer af 4 og 5, da de er intersekteret. Derfor skriver vi følgende Resultat.

$$A \cup B = \{1,2,3,4,5\} \cup \{4,5,6,7,8\}$$

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

Subtraktionen mellem Sets \ -

- Subtraktionen mellem Sets går ud på, at lave subtraktion mellem to lister og derved udskrive de tal som står på den "første set-liste", der ikke intersekterer med den "anden set-liste". Subtraktion benævnes med tegnet: \.
- EKSEMPEL:

$$A = \{1,2,3,4,5\}$$

 $B = \{4,5,6,7,8\}$

• Set-B bliver ignoreret, samt de værdier som er fælles mellem de to ses. Det resterende af Set-B skrives. Derfor bliver det følgende Resultat.

$$A \setminus B = \{1,2,3,4,5\} - \{4,5,6,7,8\}$$

 $A \setminus B = \{1,2,3,4,5\} - \{4,5,6,7,8\}$
 $A \setminus B = A - B = \{1,2,3\}$

Længden eller Magnituden af Sets |S|

- Længden af Sets, kan findes ved at tælle de enkelte elementer i talsættet. Længden er også kaldt for Magnituden, og kan benævnes med tegnet: | |.
- EKSEMPEL:

$$A = \{1,2,3,4,5\}$$

 $B = \{4,5,6,7,8\}$

• Længden af Enkelte Sets, skrives på følgende måde:

$$A = |5| = fordi der er 5 tal inde i.$$

 $B = |5| = fordi der er 5 tal inde i.$

Længden af Subtraktions-Set fra Sidste Opgave.

$$A \setminus B = \{1,2,3,4,5\} - \{4,5,6,7,8\}$$

 $A \setminus B = \{1,2,3,4,5\} - \{4,5,6,7,8\}$
 $A \setminus B = A - B = \{1,2,3\}$
 $|A \setminus B| = 3$

Cardinality i Sets **S 1**

- Cardinality er der, hvor fjerner den værdi fra selve en Set og derved udskriver de resterende set.
- EKSEMPEL:

$$A = \{1,2,3,4,5\}$$

- Vi ønsker eller får udleveret en opgave, hvor vi fjerner 3-tallet fra.
- Vi kan dermed skrive navnet på Set og derefter en linje med tallet som skal ekskluderes fra listen.

$$A|3 = \{1,2,4,5\}$$

Subset og Parentset

- Parentset er karakteriseret for den set, der rummer alle tallene for subset. Hvorimod Subset som inkluderer en portion af de tal som findes i Parentset.
- EKSEMPEL:

$$A = \{1,2,3,4,5\}$$

 $B = \{4,5\}$

- Hvad tror du er Parentset og Subset? Svar:
 - Parentset er A, fordi den indeholder ikke kun 4 og 5 men også andre tal.
 - Subset er B, fordi den kun indeholder 4 og 5, som er et portion af Set-A.

Regler for Uligheder

- Addition af et tal: $hvis\ a < b$, så $a \pm c < b \pm c$
- Positiv Multiplikation: hvis~a < b, og~c > 0, så $a \cdot c < b \cdot c$
- Negativ Multiplikation: hvis~a < b, og~c < 0, så $a \cdot c < b \cdot c$
- Inverse: $hvis \ a > 0$, $s \stackrel{1}{a} = 0$
- Ordre af Inverse: $hvis \ 0 < a < b$, $s \ \frac{1}{b} < \frac{1}{a}$

Intervaller

- Intervallerer en subset af Reelle Tal som er defineret af uligheder.
- Der er forskellige typer:
 - Åben: $(a, b) = \{x \in R \mid a < x < b \text{ (alle tal mellem a og b)}\}$
 - Lukket: $[a, b] = \{x \in R \mid a \le x \le b \text{ (alle tal mellem a og b, er inkluderet)}\}$
 - Halv-Åben:
 - $(a, b] = \{x \in R \mid a < x \le b \text{ (alle tal mellem a og b, hvor b er inkluderet)}$
 - $[a,b) = \{x \in R \mid a \le x \le b \text{ (alle tal mellem a og b, hvor a er inkluderet)}$
 - $[a, k) = \{x \in R \mid a \le x \text{ (alle tal er større end a)}\}$

Eksempel på Intervaller

• Her kommer vi til at vise eksempler på Opgaver af Intervaller.

1.
$$x-4 \ge 0$$

•
$$x - 4 + 4 \ge 0 + 4$$

•
$$x \ge 4$$

2.
$$-3x < 9$$

•
$$-3 + 3x < 9 + 3$$

3.
$$x^2 < 4$$

•
$$\sqrt[2]{x^2} < \sqrt[2]{4}$$

4.
$$x^2 \ge 9$$

•
$$\sqrt[2]{x^2} < \sqrt[2]{9}$$

SLUT 1

Noter fra Student: Vivek Misra vimis22@student.sdu.dk

University of Southern Denmark (SDU)