

## 什么是卷积

主讲: 龙良曲







### Why not Linear

• 4 Layers: [784, 256, 256, 256, 10]



### 335K or 1.3MB

| Layer (type)                                                              | Output Shape | Param #        |
|---------------------------------------------------------------------------|--------------|----------------|
| dense (Dense)                                                             | multiple     | 200960         |
| dense_1 (Dense)                                                           | multiple     | 65792          |
| dense_2 (Dense)                                                           | multiple     | 65792          |
| dense_3 (Dense)                                                           | multiple     | 2570<br>====== |
| Total params: 335,114  Trainable params: 335,114  Non-trainable params: 0 |              |                |

### em...

- 486 PC + AT&T DSP32C
  - **256KB**
  - 66Mhz

- Batch X
- Gradient Cache
- etc.



## How?

### **Receptive Field**





### **Fully connected**



### **Partial connected**



# **→Locally connected**

### **Rethink Linear layer**



### **Fully VS Locally**



### **Weight Sharing**



### **Weight Sharing**



### Weight sharing

- 6 Layers
  - ~60k parameters
- 4 layers, 335K



### Why call Convolution?

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x( au) h(t- au) d au$$



### **2D Convolution**

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x( au) h(t- au) d au$$



### **Convolution in Computer Vision**

### Sharpen:

| 0 | 0  | 0  | 0  | 0 |
|---|----|----|----|---|
| 0 | 0  | -1 | 0  | 0 |
| 0 | -1 | 5  | -1 | 0 |
| 0 | 0  | -1 | 0  | 0 |
| 0 | 0  | 0  | 0  | 0 |



### **Convolution in Computer Vision**

Blur:

| 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 |



### **Convolution in Computer Vision**

Edge Detect:





### **CNN** on feature maps



### 下一课时

卷积神经网络

## Thank You.