Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3216	К работе допущен
Студент	Сиразетдинов А.Н	Работа выполнена
Преподавател	ьСмирнов А.В	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.00

ИЗУЧЕНИЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ С ПОМОЩЬЮ ЛАБОРАТОРНОГО ОСЦИЛЛОГРАФА

1. Цель работы.

Ознакомление с устройством осциллографа, изучение с его помощью процессов в электрических цепях

- 2. Задачи, решаемые при выполнении работы.
 - 1) Исследовать сигналы различной формы
 - 2) Исследовать предельные характеристики прибора.
 - 3) Изучить сложения взаимно перпендикулярных колебаний кратных частот
 - 4) Изучить сложения однонаправленных колебаний, мало отличающихся по частоте
- 3. Объект исследования.
 - 1) Осциллограф цифровой запоминающий GDS-71102B 1 шт.
 - 2) Генераторы сигналов произвольной формы АКИП-3409 1 шт.
- 4. Метод экспериментального исследования. Фиксирование графика, отображаемого на осциллографе при разных значениях частоты
- 5. Рабочие формулы и исходные данные.

$$T' = \frac{1}{v'} = \frac{1}{v_1 - v_2},$$

Уравнение 1. Период при биениях

$$U = \sqrt{U_1^2 + U_2^2 + 2U_1U_2\cos(\alpha_2 - \alpha_1)},$$

Уравнение 2. Амплитуда результирующих колебаний при сложении

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Осциллограф цифровой запоминающий GDS-71102B	Измерительный	1 мВ10 В/дел; 5 нс/дел100 с/дел;	0.5мВ, 0.25нс

^{7.} Схема установки (перечень схем, которые составляют Приложение 1).

Схема соединения осциллографа и генератора с использованием стенда СЗ-ЭМ01.

Внешний вид стенда представлен на рис.5

Рис. 5. Стенд СЗ-ЭМ01 1-шина на 5 гнезд, 2 и 3-шина на 2 гнезда

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Канал 1	Автоматические	Измерения с	ГС АКИП-3409
	измерения	помощью курсора	
Частота сигнала,	999,5	1058	1000
Гц			
Амплитуда	0,976	1.01	1
сигнала, В			
Период, мс/с	1	0,945	1

9. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*).

Задание 2

При высокой частоте — 10 МГц сигнал сглаживается и выглядит как растянутая синусоида Сигнал начинает соответствовать меандру при частоте 1МГц

При низкой частоте – 1Гц сигнал принимает значение сплошной линии. Переходы между уровнями не различимы.

Задание 3

задание з					
φ	0	π/4	π/2	3 π/4	Ħ
1:1					
1:2					
1:3					
2:3					
3:4					

Некоторые полученные фигуры отличаются от ожидаемых вследствие того, что выходы генератора сигналов, независимы друг от друга и установка разницы сдвигов отдельных сигналов не равна их фактическому сдвигу между сигналами

Задание 4

	Исходная амплитуда	Исходная разность фаз	Частота сигнала №1	Частота сигнала №2	Амплитуда сигнала в период биения
Измерение №1	1	0	1	1.08	1.960

Несовпадение измеренной амплитуды и фактической объясняется тем, что на графике в осциллографе был отображен лишь один фрагмент суммы сигналов.

Задание 5

очдиние о					
	Амплитуда сигнала №1	Амплитуда сигнала №2	Разность фаз	Частота сигналов	Амплитуда полученного сигнала
Измерение №1	1	1.25	37	1	2.08
Измерение №2	2	2.6	45	1	4.16

Теоретические значения:

$$U_1 = \sqrt{1^2 + 1,25^2 + 2 * 1 * 1,25 * \cos(37)} = 2,13$$

 $U_2 = \sqrt{2^2 + 2.6^2 + 2 * 2 * 2.6 * \cos(45)} = 4,25$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Отклонение между показанием генератора и автоматическими измерениями

$$\Delta v = \frac{|1058 - 999,5|}{999,5} = 0.06\%$$

$$\Delta A = \frac{|0,976 - 1.01|}{0.976} = 0,03\%$$

$$\Delta T = \frac{|1 - 0,945|}{0.945} = 0,06\%$$

Отклонение между показанием ГС АКИП и автоматическими измерениями

$$\Delta v = \frac{|999,5 - 1000|}{999,5} = 0\%$$

$$\Delta A = \frac{|0,976 - 1|}{1} = 0,02\%$$

$$\Delta T = \frac{|1 - 1|}{1} = 0\%$$

13. Выводы и анализ результатов работы.

В процессе работы мы получили опыт при работе с осциллографом и генератором частот. Исследовали сигналы различной формы, получили фигуры Лиссажу и исследовали сложение сигналов при отличающейся частоте и амплитуде

