Implementazione di un Particle Filter per la Localizzazione di un Carrello Elevatore

Francesco Caligiuri

Matricola: 146666

Scienze Informatiche

Anno Accademico: 2024/2025

Indice

		Pagina
1	Introduzione	2
2	Implementazione del Particle Filter	3
	2.1 Inizializzazione delle Particelle	3
	2.1.1 Inizializzazione Casuale (init_random())	3
	2.1.2 Inizializzazione Basata su Stima Iniziale (init())	4
	2.2 Predizione dello Stato delle Particelle (prediction())	5
	2.3 Aggiornamento dei Pesi delle Particelle (updateWeights())	6
	2.4 Resampling delle Particelle (resample())	7
3	Esperimenti e Risultati	9
	3.1 Esperimento 1: Variazione del Numero di Particelle	9
	3.1.1 Risultati e Analisi	
	3.2 Esperimento 2: Variazione del Rumore di Movimento	9
	3.2.1 Risultati e Analisi	11
	3.3 Esperimento 3: Variazione del Rumore del Sensore	11
	3.3.1 Risultati e Analisi	11
4	Conclusioni	16

1 Introduzione

In questo progetto, è stato implementato un Particle Filter per la localizzazione di un carrello elevatore utilizzando dati LiDAR e landmark come riferimento. L'obiettivo è sviluppare un filtro in grado di stimare con precisione la posizione del veicolo durante l'intera simulazione, analizzando l'effetto di diversi parametri sul suo comportamento.

2 Implementazione del Particle Filter

Il Particle Filter è stato implementato seguendo i passaggi fondamentali:

- Inizializzazione delle particelle
- Predizione dello stato delle particelle
- Aggiornamento dei pesi delle particelle in base alle osservazioni
- Resampling delle particelle in base ai pesi aggiornati

Di seguito, vengono spiegate le funzioni implementate, evidenziando le parti di codice aggiunte e le scelte fatte.

2.1 Inizializzazione delle Particelle

Sono stati implementati due metodi di inizializzazione:

2.1.1 Inizializzazione Casuale (init_random())

La funzione init_random() inizializza le particelle in posizioni casuali entro i limiti della mappa. Questo è utile quando non si dispone di una stima iniziale precisa.

Listing 2.1: Funzione init_random() con commenti

```
void ParticleFilter::init_random(double std[], int nParticles) {
1
2
       num_particles = nParticles;
3
4
       // Definizione dei limiti della mappa (da adattare in base alla
           mappa utilizzata)
5
       double x_min = 0.0;
6
       double x_max = 10.0;
       double y_min = 0.0;
7
8
       double y_max = 10.0;
9
       // Distribuzioni uniformi per x, y e theta
10
       std::uniform_real_distribution < double > dist_x(x_min, x_max);
11
       std::uniform_real_distribution < double > dist_y(y_min, y_max);
12
       std::uniform_real_distribution < double > dist_theta(-M_PI, M_PI);
13
14
15
       // Inizializzazione delle particelle
       for (int i = 0; i < num_particles; ++i) {</pre>
16
17
            Particle p;
18
           p.x = dist_x(gen);
                                          // Posizione x casuale
           p.y = dist_y(gen);
                                          // Posizione y casuale
19
```

```
p.theta = dist_theta(gen); // Orientamento theta casuale
particles.push_back(p);
}

is_initialized = true; // Flag di inizializzazione impostato a true
}
```

Scelte Fatte:

- Sono state utilizzate distribuzioni uniformi per inizializzare le posizioni x, y e l'orientamento θ delle particelle all'interno dei limiti definiti della mappa.
- Questo approccio garantisce una copertura uniforme dell'area di interesse quando non si ha una stima iniziale.

2.1.2 Inizializzazione Basata su Stima Iniziale (init())

La funzione init() inizializza le particelle attorno a una stima iniziale (x, y, θ) , aggiungendo rumore gaussiano per rappresentare l'incertezza.

Listing 2.2: Funzione init() con commenti

```
void ParticleFilter::init(double x, double y, double theta, double std
      [], int nParticles) {
2
       num_particles = nParticles;
3
       // Distribuzioni normali centrate sulla stima iniziale
4
5
       std::normal_distribution < double > dist_x(x, std[0]);
                                                                    // Rumore
       std::normal_distribution < double > dist_y(y, std[1]);
6
                                                                    // Rumore
7
       std::normal_distribution<double> dist_theta(theta, std[2]); //
          Rumore su theta
8
9
       // Inizializzazione delle particelle
10
       for (int i = 0; i < num_particles; ++i) {</pre>
           Particle p;
11
           p.x = dist_x(gen);
                                        // Posizione x con rumore
12
                                         // Posizione y con rumore
13
           p.y = dist_y(gen);
           p.theta = dist_theta(gen); // Orientamento theta con rumore
14
           particles.push_back(p);
15
       }
16
17
       is_initialized = true; // Flag di inizializzazione impostato a true
18
19 }
```

Scelte Fatte:

- Sono state utilizzate distribuzioni normali centrate sulla stima iniziale, con deviazioni standard specificate da σ_{init} .
- Questo permette di inizializzare le particelle attorno alla posizione stimata, riflettendo l'incertezza iniziale.

2.2 Predizione dello Stato delle Particelle (prediction())

La funzione prediction() aggiorna lo stato delle particelle in base al modello di movimento e aggiunge rumore gaussiano.

Listing 2.3: Funzione prediction() con commenti

```
void ParticleFilter::prediction(double delta_t, double std_pos[], double
       velocity, double yaw_rate) {
2
       // Creazione delle distribuzioni per il rumore qaussiano
       std::normal_distribution<double> dist_x(0, std_pos[0]);
                                                                       //
3
          Rumore su x
       std::normal_distribution<double> dist_y(0, std_pos[1]);
4
          Rumore su y
       std::normal_distribution<double> dist_theta(0, std_pos[2]);
5
          Rumore su theta
6
       for (auto& particle : particles) {
7
8
           if (fabs(yaw_rate) < 1e-5) {</pre>
               // Movimento rettilineo (yaw_rate prossimo a zero)
9
10
               particle.x += velocity * delta_t * cos(particle.theta);
11
               particle.y += velocity * delta_t * sin(particle.theta);
               // Orientamento theta rimane invariato
12
           } else {
13
               // Movimento rotazionale
14
               particle.x += (velocity / yaw_rate) * (sin(particle.theta +
15
                   yaw_rate * delta_t) - sin(particle.theta));
               particle.y += (velocity / yaw_rate) * (-cos(particle.theta +
16
                    yaw_rate * delta_t) + cos(particle.theta));
           }
17
18
19
           particle.theta += yaw_rate * delta_t; // Aggiornamento di theta
20
           // Normalizzazione dell'angolo theta nell'intervallo [-pi, pi]
21
22
           while (particle.theta > M_PI) particle.theta -= 2.0 * M_PI;
           while (particle.theta < -M_PI) particle.theta += 2.0 * M_PI;
23
24
25
           // Aggiunta del rumore gaussiano
           particle.x += dist_x(gen);
26
27
           particle.y += dist_y(gen);
           particle.theta += dist_theta(gen);
28
29
       }
30 }
```

Scelte Fatte:

- È stata gestita separatamente la situazione in cui il tasso di rotazione $(\dot{\psi})$ è molto piccolo (movimento rettilineo) e il caso generale (movimento curvilineo).
- L'aggiunta del rumore gaussiano dopo l'aggiornamento dello stato garantisce che tutte le particelle siano soggette all'incertezza del movimento.

• È stata effettuata la normalizzazione dell'angolo θ per mantenerlo nell'intervallo $[-\pi,\pi]$.

2.3 Aggiornamento dei Pesi delle Particelle (updateWeights())

La funzione updateWeights() aggiorna i pesi delle particelle in base alla probabilità delle osservazioni date le posizioni dei landmark.

Listing 2.4: Funzione updateWeights() con commenti

```
void ParticleFilter::updateWeights(double std_landmark[], std::vector<</pre>
      LandmarkObs > observations, Map map_landmarks) {
       for (auto& particle : particles) {
2
3
            // Passo 1: Trasformazione delle osservazioni nel sistema di
               riferimento della mappa
           std::vector<LandmarkObs> transformed_observations;
4
5
           for (const auto& obs : observations) {
                transformed_observations.push_back(transformation(obs,
6
                   particle));
           }
7
8
9
           // Passo 2: Associazione delle osservazioni ai landmark della
           std::vector<LandmarkObs> mapLandmarks;
10
           for (const auto& lm : map_landmarks.landmark_list) {
11
                mapLandmarks.push_back(LandmarkObs{lm.id_i, lm.x_f, lm.y_f})
12
13
           dataAssociation(mapLandmarks, transformed_observations);
14
15
           // Passo 3: Aggiornamento dei pesi delle particelle
16
           particle.weight = 1.0;
17
           double sigma_x = std_landmark[0];
18
           double sigma_y = std_landmark[1];
19
20
           double gauss_norm = 1 / (2 * M_PI * sigma_x * sigma_y);
21
           for (const auto& obs : transformed_observations) {
22
                // Ricerca del landmark associato
23
24
                LandmarkObs landmark;
25
                for (const auto& lm : mapLandmarks) {
26
                    if (lm.id == obs.id) {
27
                        landmark = lm;
28
                        break;
29
                    }
                }
30
31
32
                // Calcolo della differenza tra osservazione e landmark
33
                double dx = obs.x - landmark.x;
                double dy = obs.y - landmark.y;
34
35
```

```
// Calcolo dell'esponente della distribuzione gaussiana
36
                double exponent = (dx * dx) / (2 * sigma_x * sigma_x) + (dy
37
                   * dy) / (2 * sigma_y * sigma_y);
38
                // Calcolo del peso usando la distribuzione gaussiana
39
                   multivariata
                double weight = gauss_norm * exp(-exponent);
40
41
                // Aggiornamento del peso della particella
42
                particle.weight *= weight;
43
           }
44
45
       }
46
   }
```

Scelte Fatte:

- Le osservazioni sono state trasformate dal sistema di riferimento del veicolo a quello globale utilizzando la funzione transformation().
- L'associazione dei dati viene effettuata nella funzione dataAssociation(), associando ogni osservazione al landmark più vicino.
- I pesi delle particelle vengono aggiornati calcolando la probabilità delle osservazioni utilizzando la distribuzione gaussiana multivariata.

2.4 Resampling delle Particelle (resample())

La funzione resample() esegue il resampling delle particelle in base ai loro pesi.

Listing 2.5: Funzione resample() con commenti

```
void ParticleFilter::resample() {
1
2
       std::vector<Particle> new_particles;
3
       std::vector<double> weights;
4
       // Estrazione dei pesi delle particelle
5
6
       for (const auto& particle : particles) {
7
            weights.push_back(particle.weight);
       }
8
9
10
       // Distribuzioni per la selezione casuale
       std::uniform_real_distribution < double > dist_double (0.0, *max_element
11
           (weights.begin(), weights.end()));
       std::uniform_int_distribution<int> dist_int(0, num_particles - 1);
12
13
       int index = dist_int(gen); // Indice iniziale casuale
14
       double beta = 0.0;
15
16
17
       // Resampling stocastico universale (ruota)
       for (int i = 0; i < num_particles; ++i) {</pre>
18
```

```
beta += dist_double(gen) * 2.0;
19
20
           while (beta > weights[index]) {
                beta -= weights[index];
21
                index = (index + 1) % num_particles;
22
23
           new_particles.push_back(particles[index]);
24
25
       }
26
       particles = new_particles; // Aggiornamento delle particelle
27
28 }
```

Scelte Fatte:

- È stato implementato il metodo di resampling basato sulla ruota (*Resampling Stocastico Universale*).
- Questo metodo seleziona le particelle proporzionalmente al loro peso, mantenendo quelle con peso maggiore.

3 Esperimenti e Risultati

Sono stati eseguiti tre esperimenti variando il numero di particelle e il rumore, per osservare l'effetto su precisione e stabilità del filtro. Per ciascun caso, sono state prodotte immagini che mostrano il comportamento del filtro in diverse configurazioni.

3.1 Esperimento 1: Variazione del Numero di Particelle

Configurazione:

• Numero di particelle: N = 50, N = 200, N = 500

• Rumore di movimento: $\sigma_{pos} = [0.15, 0.15, 0.15]$

• Rumore del sensore: $\sigma_{landmark} = [0.3, 0.3]$

3.1.1 Risultati e Analisi

Con N = 50 particelle, si osserva un notevole tremolio e incertezza nella localizzazione (Figura 3.1). La traiettoria stimata è instabile e presenta deviazioni significative dalla traiettoria reale.

Aumentando il numero di particelle a N=200, il tremolio è notevolmente ridotto (Figura 3.2). Tuttavia, permane una certa incertezza nei movimenti più imprevedibili, specialmente durante le curve strette.

Con N=500 particelle, l'incertezza è ulteriormente diminuita (Figura 3.3), e la traiettoria stimata aderisce meglio a quella reale. Tuttavia, l'aumento del numero di particelle comporta un incremento significativo della computazione e del tempo di elaborazione.

Conclusione:

Un numero maggiore di particelle migliora la precisione della localizzazione, ma aumenta il costo computazionale. Un compromesso ragionevole è utilizzare N=200 particelle per bilanciare precisione ed efficienza.

3.2 Esperimento 2: Variazione del Rumore di Movimento

Configurazione:

- Numero di particelle: N = 200
- Rumore di movimento:
 - Caso A: $\sigma_{pos} = [0.15, 0.15, 0.15]$
 - Caso B: $\sigma_{pos} = [0.05, 0.05, 0.05]$
 - Caso C: $\sigma_{pos} = [0.01, 0.01, 0.01]$
- Rumore del sensore: $\sigma_{landmark} = [0.3, 0.3]$

Figura 3.1: Traiettoria stimata con N=50 particelle

Figura 3.2: Traiettoria stimata con N=200 particelle

3.2.1 Risultati e Analisi

Con $\sigma_{pos} = 0.15$ (Figura 3.4), si osserva poco tremolio, ma nelle curve il filtro perde leggermente precisione, mostrando una deviazione dalla traiettoria reale.

Riducendo il rumore a $\sigma_{pos} = 0.05$ (Figura 3.5), la stabilità aumenta e il tremolio è ulteriormente ridotto. Questa configurazione sembra offrire la soluzione ottimale, bilanciando stabilità e adattabilità.

Con $\sigma_{pos} = 0.01$ (Figura 3.6), il filtro è molto stabile, ma la ridotta variabilità impedisce alle particelle di adattarsi ai cambiamenti improvvisi. Questo porta a una perdita completa della navetta, con le particelle che si spostano su una traiettoria errata. La mancanza di flessibilità impedisce di trovare i landmark, compromettendo la localizzazione.

Conclusione:

Ridurre il rumore di movimento aumenta la stabilità delle predizioni, ma un rumore troppo basso limita la capacità del filtro di adattarsi ai cambiamenti. Un valore di $\sigma_{pos}=0.05$ offre un buon compromesso tra stabilità e flessibilità.

3.3 Esperimento 3: Variazione del Rumore del Sensore

Configurazione:

- Numero di particelle: N = 200
- Rumore di movimento: $\sigma_{pos} = [0.15, 0.15, 0.15]$
- Rumore del sensore:
 - Caso A: $\sigma_{landmark} = [0.5, 0.5]$
 - Caso B: $\sigma_{landmark} = [0.3, 0.3]$
 - Caso C: $\sigma_{landmark} = [0.1, 0.1]$

3.3.1 Risultati e Analisi

Con $\sigma_{landmark} = 0.5$ (Figura 3.7), si riscontra una minore stabilità nella localizzazione. Il filtro è meno preciso nell'associare le osservazioni ai landmark, a causa dell'elevato rumore del sensore.

Con $\sigma_{landmark} = 0.3$ (Figura 3.8), la stabilità aumenta rispetto al caso precedente. Il filtro riesce a localizzare il veicolo con maggiore precisione, mantenendo un tempo di computazione accettabile.

Riducendo ulteriormente il rumore a $\sigma_{landmark} = 0.1$ (Figura 3.9), si ottiene la massima stabilità e precisione nella localizzazione. Tuttavia, il costo computazionale aumenta significativamente rispetto alle soluzioni precedenti, a causa della maggiore sensibilità alle misurazioni del sensore.

Conclusione:

Una riduzione del rumore del sensore migliora la precisione della localizzazione, ma comporta un aumento del tempo di elaborazione. Un valore di $\sigma_{landmark} = 0.3$ rappresenta un buon compromesso tra stabilità e efficienza computazionale.

Figura 3.3: Traiettoria stimata con ${\cal N}=500$ particelle

Figura 3.4: Traiettoria stimata con $\sigma_{pos}=0.15$

Figura 3.5: Traiettoria stimata con $\sigma_{pos}=0.05$

Figura 3.6: Traiettoria stimata con $\sigma_{pos}=0.01$

Figura 3.7: Traiettoria stimata con $\sigma_{landmark} = 0.5$

Figura 3.8: Traiettoria stimata con $\sigma_{landmark}=0.3$

Figura 3.9: Traiettoria stimata con $\sigma_{landmark}=0.1$

4 Conclusioni

È stato implementato con successo un Particle Filter per la localizzazione di un carrello elevatore utilizzando dati LiDAR e landmark. Le scelte fatte nelle funzioni implementate e l'analisi dei parametri hanno permesso di ottenere una localizzazione abbastanza precisa e stabile. Dagli esperimenti condotti, è emerso che:

- Aumentare il numero di particelle migliora la precisione ma aumenta il tempo di elaborazione. Un valore di N=200 offre un buon equilibrio.
- Ridurre il rumore di movimento a $\sigma_{pos} = 0.05$ diminuisce il tremolio delle predizioni senza compromettere l'adattabilità.
- Un rumore del sensore di $\sigma_{landmark} = 0.3$ garantisce una buona stabilità con un costo computazionale accettabile.

In futuro, potrebbe essere considerata l'implementazione di metodi di resampling più avanzati e ulteriori ottimizzazioni del codice per migliorare le prestazioni.