Technical Questions and Answers in Machine Learning

ONI Olalekan Joseph

June 24, 2019

Problem 2 1

Determine the first and second derivative with respect to x of: $f(x) = \frac{1}{1 + e^{-x}}$

1.1 Solution 2

First Derivative:

$$f(x) = (1 + e^{-}x)^{-1}$$

Using Chain Rule

chain rule
$$f'(x) = -1(1 + e^{-x})^{-2} \times -1e^{-x}$$

$$f'(x) = \frac{e^{-x}}{(1 + e^{-x})^2}$$

$$f'(x) = \frac{e^{-x}}{(1+e^{-x})^2}$$

$$f'(x) = \frac{e^{-x}}{(1+e^{-x})^2}$$

$$q(x) = e^{-x}$$
 $h(x) = (1 + e^{-x})^2$

$$a'(x) = ax$$
 $b'(x) = 2a^{-x}(1 + a^{-x})$

$$f''(x) = \frac{h \times g' - g \times h'}{2}$$

Second Derivative:
$$f'(x) = \frac{e^{-x}}{(1+e^{-x})^2}$$
 Using Quotient Rule of Differentiation
$$g(x) = e^{-x} \qquad h(x) = (1+e^{-x})^2$$

$$g'(x) = -e^x \qquad h'(x) = -2e^{-x}(1+e^{-x})$$

$$f''(x) = \frac{h \times g' - g \times h'}{g^2}$$

$$f''(x) = \frac{-e^{-x} \times (1+e^{-x})^2 + 2e^{-2x} \times (1+e^{-x})}{e^{-2x}}$$

$$f''(x) = \frac{e^{-2x} - 1}{e^{-x}}$$

$$f''(x) = \frac{e^{-2x} - 1}{e^{-x}}$$