1

NCERT 9.1 Q.14

EE23BTECH11203 - Adarsh A*

Question: The Fibonacci sequence is de-

fined by $1 = a_1 = a_2$ and

$$a_n = a_{n-1} + a_{n-2}$$
, $n > 2$

Find
$$\frac{a_{n+1}}{a_n}$$
, for $n = 1, 2, 3, 4, 5$

Answer:

Parameter	Value	Description
n	≥ 0	Non negative Integer
x(n)	x(n) = x(n-1) + x(n-2) + u(-n)	$(n+1)^{th}$ term
y(n)	$\frac{x(n+1)}{x(n)}$	Required function
x(0)	1	1 st term
x(1)	1	2 nd term

Input Table

Here,
$$a_1 = 1$$
, $a_2 = 1$

$$a_n = a_{n-1} + a_{n-2} , n > 2 (1)$$

Applying z transform,

$$X(z) = z^{-1}X(z) + z^{-2}X(z) + z^{-0}$$
 (2)

$$=\frac{1}{1-z^{-1}-z^{-2}}\tag{3}$$

$$= \frac{1}{(1 - \alpha z^{-1})(1 - \beta z^{-1})} , |z| > |\alpha| (4)$$

Where,
$$\alpha = \frac{1 + \sqrt{5}}{2}$$
 and $\beta = \frac{1 - \sqrt{5}}{2}$

Using partial fractions,

$$X(z) = \frac{\alpha}{(\alpha - \beta)} \frac{1}{(1 - \alpha z^{-1})} - \frac{\beta}{(\alpha - \beta)} \frac{1}{(1 - \beta z^{-1})}$$
(5)

$$a^n u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1 - az^{-1}} |z| > |a|$$

Substituting this result,

$$x(n) = \frac{\alpha}{(\alpha - \beta)} (\alpha^n u(n)) - \frac{\beta}{(\alpha - \beta)} (\beta^n u(n))$$
(6)

$$x(n) = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta} u(n)$$
 (7)

$$x(n) = \frac{(1+\sqrt{5})^{n+1} - (1-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}} u(n)$$
 (8)

$$y(n) = \frac{x(n+1)}{x(n)} \tag{9}$$

(1)
$$y(n) = \frac{1}{2} \left[\frac{(1+\sqrt{5})^{n+2} - (1-\sqrt{5})^{n+2}}{(1+\sqrt{5})^{n+1} - (1-\sqrt{5})^{n+1}} \right] (10)$$

