物理学会 第70回年次大会(2015年)@早稲田大学 講演番号: 22aCB-5

# 強い磁場中でのハドロン質量

arXiv: 1412.6877

田屋 英俊 (東大総文,東大理)

# 強い磁場

**導入** → 理論 → 結果 → まとめ

1 温度/密度以外の極限状態におけるハドロン物理

# 強い磁場

### **導入** → 理論 → 結果 → まとめ

- 1 温度/密度以外の極限状態におけるハドロン物理
- ② 現実世界に**存在**する可能性?

### 例1重イオン衝突



 $eB \sim 10^{18-20} \text{G}$  $\sim (1-10 \times \Lambda_{\text{QCD}})^2$ 

Kharzeev, McLerran, Warringa (2007) Skokov, Illarionov, Toneev (2009) Deng, Huang (2012)

### 例2 中性子星の内部



 $eB \lesssim 10^{20} \text{G}$  $\sim (10 \times \Lambda_{\text{QCD}})^2$ 

Ferrer, Incera, Keith, Portillo, Springsteen (2010)

### 例3 初期宇宙(電弱相転移)



$$eB \sim 10^{23} \text{G}$$
  
  $\sim (100 \times \Lambda_{\text{OCD}})^2$ 

Vachaspati (1991) Enqvist, Olesen (1993)

# 軽いメソン(π,ρ)の質量

→ 結果

(↓中性粒子のみ)

Hidaka, Yamamoto (2013)

Luschevskaya, Teryaev, Kochetkov (2014)



 $ho^0$ , $\pi^+$ :  $\sqrt{eB}$  で増える  $ho^+$ , $\pi^0$ : 弱い 依存性

- × ハドロン有効模型では再現できない Chernodub (2010)
- 🗙 物理的起源は不明

# これから議論すること

導入 → 理論 → 結果 → まとめ

- ① 格子の結果を物理的に説明する模型の構築
- 2 さまざまなハドロン質量の計算

# これから議論すること

**導入** → 理論 → 結果 → まとめ

- ① 格子の結果を物理的に説明する模型の構築
- 2 さまざまなハドロン質量の計算

# 「物理」として何が重要か?

導入 → 理論 → 結果 → まとめ

1 クォークの自由度

# 「物理」として何が重要か?

導入 → 理論 → 結果 → まとめ

- 🚺 クォークの自由度
- ② SU(6)=SU(3)flavor⊗SU(2) spin 対称性の破れ

### 弱い磁場

Gell-Mann (1964) Zweig (1964) DeRujula, Georgi, Glashow (1975)

SU(6)対称性

$$M_{u\uparrow} = M_{u\downarrow} = M_{d\uparrow} = M_{d\downarrow} = M_{s\uparrow} = M_{s\downarrow}$$

### 強い磁場

Landau準位の形成 → <u>SU(6)対称性</u>

$$M_{u\uparrow} = M_{u\downarrow} = M_{d\uparrow} = M_{d\downarrow} = M_{s\uparrow} = M_{s\downarrow}$$
  $M_{u\uparrow} = M_{u\downarrow} = M_{d\downarrow} = M_{d\downarrow} = M_{s\uparrow} = M_{s\downarrow}$ 

# 「物理」として何が重要か?

導入 → 理論 → 結果 → まとめ

- ① クォークの自由度
- ② SU(6)=SU(3)flavor⊗SU(2) spin 対称性の破れ



③ ハドロン体積の縮小(閉じ込めポテンシャル)



# 模型

導入 → 理論 → 結果 → まとめ

模型  $\begin{cases} H(\bm{r}) = \bm{\alpha} \cdot (-i \bm{\nabla} - q \bm{A}) + \beta \ V(\bm{r}) \\ V(\bm{r}) = \sqrt{m^2 + \sigma^2 \ r^2} \end{cases}$  に従う $\bm{\rho}$  に従う $\bm{\rho}$  に従う $\bm{\rho}$  に

Dirac方程式 $H\psi=E\psi$ を解いて求まる最低エネルギー固有値Mを用いて、**ハドロン の基底状態を正しく構成**し、ハドロンの質量 $M_{\mathrm{Hadron}}=\sum M_{\mathrm{quark}}$ を求める。

導入 → 理論 → 結果 → まとめ

模型

模型 
$$\begin{cases} H(\boldsymbol{r}) = \boldsymbol{\alpha} \cdot (-i \nabla - q \boldsymbol{A}) + \beta \ V(\boldsymbol{r}) \\ V(\boldsymbol{r}) = \sqrt{m^2 + \sigma^2 \ r^2} \end{cases}$$
 に従う $\boldsymbol{\rho}$  に従う $\boldsymbol{\rho}$  に従う $\boldsymbol{\rho}$  に

Dirac方程式 $H\psi = E\psi$ を解いて求まる最低エネルギー固有値Mを用いて、**ハドロン の基底状態を正しく構成**し、ハドロンの質量 $M_{
m Hadron} = \sum M_{
m quark}$ を求める。

▶ ハドロンの基底状態

$$M(B) = \sqrt{m^2 + \sigma + 2\sqrt{\sigma^2 + (qB/2)^2} - sqB} \sim \begin{cases} \sqrt{m^2 + \sigma + 2|qB|} & sq < 0 \\ \sqrt{m^2 + \sigma} & sq > 0 \end{cases} \implies M_{sq < 0} > M_{sq > 0}$$

- $\bigcirc{1}$  ハドロンの基底状態はsq > 0のクォークの数が最大となるよう構成される
- 2 sq < 0のクォークがあると、 $\sqrt{2|qB|}$ でハドロン質量は増える

導入 → 理論 → 結果 → まとめ

模型

模型 
$$\begin{cases} H(\boldsymbol{r}) = \boldsymbol{\alpha} \cdot (-i \nabla - q \boldsymbol{A}) + \beta \ V(\boldsymbol{r}) \\ V(\boldsymbol{r}) = \sqrt{m^2 + \sigma^2 \ r^2} \end{cases}$$
 に従う $\boldsymbol{\rho}$  に従う $\boldsymbol{\rho}$  に従う $\boldsymbol{\rho}$  に従う $\boldsymbol{\rho}$  に

Dirac方程式 $H\psi = E\psi$ を解いて求まる最低エネルギー固有値Mを用いて、**ハドロン の基底状態を正しく構成**し、ハドロンの質量 $M_{
m Hadron} = \sum M_{
m quark}$ を求める。

▶ ハドロンの基底状態

$$M(B) = \sqrt{m^2 + \sigma + 2\sqrt{\sigma^2 + (qB/2)^2} - sqB} \sim \begin{cases} \sqrt{m^2 + \sigma + 2|qB|} & sq < 0 \\ \sqrt{m^2 + \sigma} & sq > 0 \end{cases} \implies M_{sq < 0} > M_{sq > 0}$$

- $\bigcirc{1}$  ハドロンの基底状態はsq > 0のクォークの数が最大となるよう構成される
- ② sq < 0のクォークがあると、 $\sqrt{2|qB|}$ でハドロン質量は増える

例) 
$$\rho^+$$
 中間子  $u \downarrow \bar{d} \downarrow \frac{u \downarrow \bar{d} \uparrow \pm u \uparrow \bar{d} \downarrow}{\sqrt{2}}$   $u \uparrow \bar{d} \uparrow$ 

# 軽いメソン: 格子との比較



 $\rho^0$ , $\pi^+$ はsq < 0となる $\bar{d}$  ↑を含むが、 $\rho^+$ , $\pi^0$ は、すべてsq > 0

# これから議論すること

導入 → 理論 → 結果 → まとめ

- 1 格子の結果を物理的に説明する模型の構築
- 2 さまざまなハドロン質量の予言

# 他のハドロン

導入 → 理論 → 結果 → まとめ

1 ストレンジネスがあるメソン



# 他のハドロン

導入 → 理論 → **結果** → まとめ

 $u \downarrow d \downarrow d \downarrow (\Delta^0)$ 

### 2 バリオン

軽いバリオン

Mass[GeV]

2.5



$$\Delta^0 > \Delta^+ > p$$
,  $n$ ,  $\Delta^-$ ,  $\Delta^{++}$ 

$$egin{aligned} \Xi^{*0} &\gtrsim \Sigma^{*0} \ &> \Xi^- &\gtrsim \Sigma^-, \Sigma^{*+} \ &> \Omega^- &\gtrsim \Xi^0, \Xi^{*+} \ &\gtrsim \Lambda^0, \Sigma^0, \Sigma^*, \Sigma^{*-} \end{aligned}$$

# まとめ

導入 → 理論 → 結果 → **まとめ** 

### 強い磁場中でのハドロン質量を議論した。

▶『クォークの自由度』『SU(6)=SU(3)flavor⊗SU(2) spin 対 称性の破れ』『ハドロン体積の縮小(閉じ込めポテンシャ ル)』を取り込んだ模型が格子の結果を自然に説明できる。



▶ 軽いメソン以外の、バリオンやストレンジネスを含むハドロンの質量を計算した。



### 詳細は[arXiv:1412.6877]

# 補足

# Squeezing of quarks



 $\boxtimes$  41: Plots of density  $\rho$  of  $u \uparrow$  quark at various magnetic field strength  $B = 0, 0.4, 0.8, 1.2 \text{GeV}^2$ . [A]contour plot in terms of r, z, [B]z-dependence at r = 0, [C]r-dependence at z = 0.

# クォーク質量



$$M(B) = \sqrt{m^2 + \sigma + 2\sqrt{\sigma^2 + (qB/2)^2} - qBs}$$

$$m_u = m_d = 0 \text{MeV}$$
  $m_s = 350 \text{MeV}$   $\sigma = (200 \text{MeV})^2$ 

# ハドロンの基底状態

| Meson          | Quarks                                                                                            | Baryon        |   |
|----------------|---------------------------------------------------------------------------------------------------|---------------|---|
| $\pi^0$        | $u \uparrow \bar{u} \downarrow, \ d \downarrow \bar{d} \uparrow$                                  | p             | • |
| $\pi^+$        | $u \uparrow \bar{d} \downarrow$                                                                   | n             |   |
| $\pi^-$        | $d \uparrow \bar{u} \downarrow$                                                                   | $\Lambda$     |   |
| $\eta$         | $u \uparrow \bar{u} \downarrow, \ d \downarrow \bar{d} \uparrow, \ s \downarrow \bar{s} \uparrow$ | $\Sigma^+$    |   |
| $\eta'$        | $u \uparrow \bar{u} \downarrow, \ d \downarrow \bar{d} \uparrow, \ s \downarrow \bar{s} \uparrow$ | $\Sigma^0$    |   |
| $K^0$          | $d\downarrow ar{s}\uparrow$                                                                       | $\Sigma^-$    |   |
| $ar{K}^0$      | $s\downarrow ar{d}\uparrow$                                                                       | $\Xi^0$       |   |
| $K^+$          | $u \uparrow \bar{s} \downarrow$                                                                   | $\Xi^-$       |   |
| $K^-$          | $s \uparrow \bar{u} \downarrow$                                                                   | $\Delta^{++}$ | • |
| $ ho^0$        | $d\uparrow \bar{d}\uparrow,\ d\downarrow \bar{d}\downarrow$                                       | $\Delta^+$    |   |
| $ ho^+$        | $u \uparrow \bar{d} \uparrow$                                                                     | $\Delta^0$    |   |
| $ ho^-$        | $d\downarrow \bar{u}\downarrow$                                                                   | $\Delta^-$    |   |
| $\omega$       | $d \uparrow \bar{d} \uparrow, \ d \downarrow \bar{d} \downarrow$                                  | $\Sigma^{*+}$ |   |
| $\phi$         | $s \uparrow \bar{s} \uparrow, \ s \downarrow \bar{s} \downarrow$                                  | $\Sigma^{*0}$ |   |
| $K^{*0}$       | $d\downarrow ar{s}\downarrow$                                                                     | $\Sigma^{*-}$ |   |
| $\bar{K}^{*0}$ | $s \uparrow \bar{d} \uparrow$                                                                     | $\Xi^{*0}$    |   |
| $K^{*+}$       | $u\uparrow \bar{s}\uparrow$                                                                       | Ξ*-           |   |
| $K^{*-}$       | $s\downarrow \bar{u}\downarrow$                                                                   | $\Omega$      |   |

BaryonQuarks
$$p$$
 $u \uparrow u \uparrow d \downarrow$  $n$  $u \uparrow d \downarrow d \downarrow$  $\Lambda$  $u \uparrow d \downarrow s \downarrow$  $\Sigma^+$  $u \uparrow u \uparrow s \downarrow$  $\Sigma^0$  $u \uparrow d \downarrow s \downarrow$  $\Sigma^ d \downarrow d \downarrow s \uparrow$  $\Xi^0$  $u \uparrow s \downarrow s \downarrow$  $\Xi^ d \downarrow s \downarrow s \uparrow$  $\Delta^{++}$  $u \uparrow u \uparrow u \uparrow u \uparrow$  $\Delta^+$  $u \uparrow u \uparrow u \uparrow d \uparrow$  $\Delta^0$  $u \downarrow d \downarrow d \downarrow$  $\Delta^ d \downarrow d \downarrow d \downarrow$  $\Sigma^{*+}$  $u \uparrow u \uparrow u \uparrow s \uparrow$  $\Sigma^{*0}$  $u \downarrow d \downarrow s \downarrow$  $\Sigma^{*-}$  $d \downarrow d \downarrow s \downarrow$  $\Xi^{*0}$  $u \downarrow s \downarrow s \downarrow$  $\Xi^{*-}$  $d \downarrow s \downarrow s \downarrow$  $\Omega^ s \downarrow s \downarrow s \downarrow$ 

$$M(B) = \sqrt{m^2 + \sigma + 2\sqrt{\sigma^2 + (qB/2)^2} - sqB}$$

$$\sim \begin{cases} \sqrt{m^2 + \sigma + 2|qB|} & sq < 0\\ \sqrt{m^2 + \sigma} & sq > 0 \end{cases}$$

$$\Rightarrow M_{sq<0} > M_{sq>0}$$

- ① ハドロンの基底状態はsq > 0の0の0 ののの数が最大となるよう構成される
- ② sq < 0 のクォークがあると、  $\sqrt{2|qB|}$ でハドロン質量は増える

# **Short-range Interaction (SI)**



図 32 相互作用を入れたときの軽いメソン

# SI + Magnetic Catalysis

$$m \to \sqrt{m^2 + c \ qB} \ (c: const)$$



図 38: 相互作用と magnetic catalysis を入れたときの軽いメソン