

Sequential Model

Semester 1, 2021 Ling Luo

Outline

- Introduction
- Hidden Markov Models
- Applications

Structured Classification

- To date, we have always considered each instance independently, but in many tasks, there is "structure" between instances
 - Sequential structure: time series analysis, speech recognition, genomic data

Average Hourly Air Temperature and Relative Humidity

Source: https://chart-studio.plotly.com/~chloecrossman/152/

Source: https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores

3

Structured Classification

Hierarchical structure Social network graph

- Hierarchical structure: classifying web pages within a website
- Graph structure: deriving an influence matrix for a social network
- This calls for structured classification models which are able to capture the interaction between instances

Figure source (right): https://commons.wikimedia.org/w/index.php?curid=6057981

Markov Chains

- A Markov chain describes the system that transits from one state to another according to certain probabilistic rules
 - States: a set $S = \{s_i\}$
 - Initial state distribution: $\Pi = \{\pi_i\}, \sum_i \pi_i = 1$
 - Transition probability matrix: $A = \{a_{ij}\}, \sum_j a_{ij} = 1 \text{ for } \forall i$

Markov Chains

Markov chains assumption

• For a sequence of states $q_1, q_2, \dots, q_{T-1}, q_T$ at steps $t = 1, 2, \dots, T$

• State q_t only depends on the immediately preceding state q_{t-1}

$$P(q_t|q_1,...,q_{t-1}) = P(q_t|q_{t-1})$$

Markov Chains

What is the probability of observing hot, hot, cold?

$$P(q_1 = hot, q_2 = hot, q_3 = cold)$$

= $P(q_3 = cold | q_2 = hot, q_1 = hot)P(q_2 = hot, q_1 = hot)$
= $P(q_3 = cold | q_2 = hot)P(q_2 = hot | q_1 = hot)P(q_1 = hot)$
= $0.3 \times 0.7 \times 0.5 = 0.105$

- Modelling
- Evaluation
- Decoding
- Learning

 We can see a sequence of observations, but the sequence of states is hidden

- Hidden Markov Models (HMM): $\mu = (A, B, \Pi)$
 - States: a set $S = \{s_i\}$
 - Observations: a set $O = \{o_k\}$
 - Initial state distribution: $\Pi = \{\pi_i\}, \sum_i \pi_i = 1$
 - Transition probability matrix: $A = \{a_{ij}\}, \sum_{j} a_{ij} = 1 \text{ for } \forall i$
 - Output probability matrix: $B = \{b_i(o_k)\}, \sum_k b_i(o_k) = 1 \text{ for } \forall i \in \mathcal{C}$

$$S = \{\text{hot, cold}\} \quad A = \begin{bmatrix} 0.7 & 0.3 \\ 0.1 & 0.9 \end{bmatrix} \quad B = \begin{bmatrix} 0.05 & 0.15 & 0.8 \\ 0.75 & 0.15 & 0.1 \end{bmatrix}$$

$$\pi = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

$$\mathbf{a}_{1,1} = 0.7 \quad \mathbf{a}_{2,2} = 0.9$$

$$\mathbf{a}_{1,2} = 0.3 \quad \mathbf{a}_{2,2} = 0.9$$

$$\mathbf{a}_{1,2} = 0.3 \quad \mathbf{a}_{2,1} = 0.1$$

$$\mathbf{a}_{2,1} = 0.1 \quad \mathbf{a}_{2,2} = 0.5$$

HMMs make two independence assumptions

$$P(q_t|q_1, ..., q_{t-1}, o_1, ..., o_{t-1}) = P(q_t|q_{t-1})$$

$$P(o_t|q_1,...,q_{t-1},o_1,...,o_{t-1}) = P(o_t|q_t)$$

Three Tasks

Evaluation: estimate the likelihood of an observation sequence

Given an HMM μ and observation sequence Ω , determine the likelihood $P(\Omega|\mu)$

Decoding: find the most probable state sequence

Given an HMM μ and observation sequence Ω , determine the most probable hidden state sequence Q

Learning: estimate parameters of HMM

Given observation sequence Ω , the set of possible states S and observations O in an HMM, learn parameters $\mu = (A, B, \Pi)$

- Aim: estimate the likelihood of an observation sequence
- What is the probability of observing 3-Solos, 3-Solos, 1-Solo?

- What is the probability of observing 3-Solos, 3-Solos, 1-Solo?
 - if we know that the states were hot, hot, cold Easy to calculate: $\mathcal{O}(T)$
 - if we don't know the hidden state sequence Harder to calculate: $\mathcal{O}(TN^T)$

 $T = |\Omega|$ is the length of the sequence, and N = |S| is the number of states

If there are 3 states and 4 time steps

t=1

t=2

 \mathbf{t} =3

t=4

Probability of the state sequence

$$P(Q|\mu) = \pi_{q_1} a_{q_1 q_2} a_{q_2 q_3} \dots a_{q_{T-1} q_T}$$

• Probability of observation sequence Ω for state sequence Q:

$$P(\Omega|Q,\mu) = \prod_{t=1}^{T} P(o_t|q_t,\mu)$$

• Probability of a given observation sequence Ω considering all possible state sequences:

$$P(\Omega|\mu) = \sum_{Q} P(\Omega|Q,\mu) P(Q|\mu)$$

$$\mathcal{O}(TN^{T})$$

The Forward Algorithm

- Efficient computation of total probability $P(\Omega|\mu)$ through dynamic programming
- Probability of the first t observations is the same for all possible t+1 length sequences
- Define **forward probability**: the probability of the partial observation sequence, o_1, o_2, \ldots, o_t and state s_i at time t, given the model μ

$$\alpha_t(i) = P(o_1, o_2, ..., o_t, q_t = s_i | \mu)$$

• By caching forward probabilities, we can avoid redundant calculations. $\mathcal{O}(TN^2)$.

The Forward Algorithm

• Store forward probabilities $\alpha_t(j)$ and reuse them to compute $\alpha_{t+1}(i)$

The Forward Algorithm

• Initialisation: t = 1, state i = 1, ..., N

$$\alpha_1(i) = \pi_i b_i(o_1)$$

• Induction: t = 1, ..., T - 1, state i = 1, ..., N

$$\alpha_{t+1}(i) = \left(\sum_{j=1}^{N} \alpha_t(j)a_{ji}\right)b_i(o_{t+1})$$

Termination

$$P(\Omega|\mu) = \sum_{i=1}^{N} \alpha_T(i)$$

The Forward Algorithm: Example

• P(3–Solos, 3–Solos, 1–Solo $|\mu$)?

• Initialisation/induction: $\alpha_t(i) = P(o_1, o_2, ..., o_t, q_t = s_i | \mu)$

	t = 1	t = 2	t = 3
$\alpha_t(hot)$	0.5×0.8 $= 0.4$	$[0.4 \times 0.7 + 0.05 \times 0.1] \times 0.8 = 0.228$	$\begin{bmatrix} 0.228 \times 0.7 + 0.0165 \times 0.1 \\ \times 0.05 = 0.0080625 \end{bmatrix}$
$\alpha_t(cold)$	0.5×0.1 = 0.05	$[0.4 \times 0.3 + 0.05 \times 0.9] \times 0.1 = 0.0165$	$\begin{bmatrix} 0.228 \times 0.3 + 0.0165 \times 0.9 \\ \times 0.75 = 0.0624375 \end{bmatrix}$

Termination:

$$P(3-Solos, 3-Solos, 1-Solo|\mu) = 0.0080625 + 0.0624375 = 0.0705$$

Decoding

- Aim: find the most probable state sequence
- Given the observation 3-Solos, 3-Solos, 1-Solo, what is the most probable weather sequence?
 - Use the most probable state for each step?
 - \rightarrow No, cannot guarantee to find the most probable sequence, as the transition probability from the most likely state at t-1 to the most likely state at t can be small.

Decoding

- Aim: find the most probable state sequence
- Given the observation 3-Solos, 3-Solos, 1-Solo, what is the most probable weather sequence?
 - Brute-force: enumerate the probabilities of all hidden state sequences and sort, $\mathcal{O}(TN^T + N^T log N^T)$ \uparrow compute sort

probabilities

More efficient method: Viterbi algorithm

- Preliminaries: define some variables
 - The maximum probability for a partial sequence $(q_1, q_2, ..., q_{t-1}, q_t = s_i)$ along a single path:

$$\delta_t(i) = \max_{q_1,q_2,\dots,q_{t-1}} P(q_1,q_2,\dots,q_{t-1},o_1,o_2,\dots,o_t,q_t = s_i | \mu)$$

• Keep track of the path: for the most probable partial sequence $(q_1,q_2,\dots,q_{t-1},q_t=s_i)$, the hidden state at t-1 is $\psi_t(i)$

• Initialisation:
$$t=1$$
, state $i=1,...,N$
$$\delta_1(i)=\pi_i b_i(o_1)$$

$$\psi_1(i)=0$$

• Induction:
$$t = 1, ..., T - 1$$
, state $i = 1, ..., N$
$$\delta_{t+1}(i) = \max_{1 \le j \le N} (\delta_t(j) a_{ji}) \, b_i(o_{t+1})$$

$$\psi_{t+1}(i) = \arg\max_{1 \le j \le N} (\delta_t(j) a_{ji})$$

Induction

Termination

$$P_{best} = \max_{1 \le i \le N} \delta_T(i)$$
$$q_T^* = \arg\max_{1 \le i \le N} \delta_T(i)$$

Backtrack to establish the best path

$$q_t^* = \psi_{t+1}(q_{t+1}^*)$$
 for $t = T - 1, T - 2, ..., 1$

Backtrack

t=1

t=2

 $\mathbf{t} = 3$

t=4

The Viterbi Algorithm: Example

 Most probable state sequence, given the observation sequence:

Initialisation/induction:

	t = 1	t = 2	t = 3
$\delta_t(hot)$	0.5×0.8	$\max(0.4 \times 0.7, 0.05)$	$\max(0.224 \times 0.7, 0.012)$
	= 0.4	\times 0.1) \times 0.8 = 0.224	$\times 0.1) \times 0.05 = 0.00784$
$\psi_t(hot)$	0	$\leftarrow hot$	← hot
$\delta_t(cold)$	0.5×0.1	$\max(0.4 \times 0.3, 0.05)$	$\max(0.224 \times 0.3, 0.012)$
	= 0.05	$\times 0.9) \times 0.1 = 0.012$	$\times 0.9) \times 0.75 = 0.0504$
$\psi_t(cold)$	0	\land hot	

The Viterbi Algorithm: Example

Termination/backtracking

$$P_{best} = 0.0504$$

 $q_T^* = cold$
 $q_{T-1}^* = hot$
 $q_{T-2}^* = hot$

 The most probable sequence of hidden states for the observation sequence (3-Solos, 3-Solos, 1-Solo) is hot, hot, cold

Learning HMMs

• **Supervised** case: assume we have labelled data, it is possible to use simple MLE to learn the parameters of our model.

$$a_{ij} = P(s_j|s_i) = \frac{freq(s_i, s_j)}{freq(s_i)}$$

$$b_i(o_k) = P(o_k|s_i) = \frac{freq(o_k, s_i)}{freq(s_i)}$$

$$\pi_i = P(q_1 = s_i) = \frac{freq(q_1 = s_i)}{\sum_j freq(q_1 = s_j)}$$

 No state labels? Unsupervised case - uses forward-backward algorithm (Baum-Welch algorithm, out of scope).

Reflections

- HMM is a highly efficient approach to structured classification, but with limited representation of context (only observation and state sequences)
- HMM tends to suffer from floating point underflow
 - use scaling coefficients for Forward Algorithm
 - use logs for Viterbi Algorithm

Applications

Applications of Sequence Labelling

Parts-of-speech Tagging

• **INPUT**: Profits soared at Boeing Co., easily topping forecasts on Wall Street, as their CEO Alan Mulally announced first quarter results.

OUTPUT:

Profits/N soared/V at/P Boeing/N Co./N,/, easily/ADV topping/V forecasts/N on/P Wall/N Street/N,/, as/P their/POSS CEO/N Alan/N Mulally/N announced/V first/ADJ quarter/N results/N./.

Labels: N = noun; V = verb; P = preposition; ADV = adverb...

Source: Collin 2013

Applications of Sequence Labelling

Optical Character Recognition

Source: Hofmann 2013

Summary

- What is structured classification?
- How do we evaluate HMMs?
- How do we decode HMMs?
- How do we learn HMMs given labelled training data?
- What are the limitations of HMMs?

References

- Philip Blunsom, *Structured Classification for Multilingual Natural Language Processing*, PhD thesis, University of Melbourne, 2007.
- Michael Collin, Tagging Problems, and Hidden Markov Models. 2013. http://www.cs.columbia.edu/~mcollins/hmms-spring2013.pdf.
- Thomas Hofmann, Structured Prediction (with application in information retrieval), 2009.
 http://mlg.eng.cam.ac.uk/mlss09/mlss-slides/Hoffman-1-2.pdf.
- Lawrence R. Rabiner, A tutorial on Hidden Markov Models and selected applications in speech recognition, Proceedings of the IEEE, 77(2), 1989.