Série Prova P3 EAI-21-2020 – ELE/COMP

1Q: Obter a tabela primitiva de fluxo de estados (TPFE) de uma máquina sequencial assíncrona modelo Moore. Esta máquina opera no modo fundamental normal e tem as variáveis **CLK** e **G** de entrada e a variável **Y** de saída. A saída *Y* se comporta segundo o diagrama de temporização da figura 1. Descreva esta tabela TPFE na forma de grafo de fluxo de estados.

Figura 1. Diagrama de Temporização

2Q: A figura 2a mostra respectivamente a tabela de operações e o símbolo do flip-flop D com entrada clear. Todas as entradas operam no modo fundamental normal. A figura 2b mostra a tabela primitiva de fluxo de estados modelo Moore deste flip-flop. Pede-se: a) Obtenha a tabela de fluxo de estados minimizada; b) Verifique na tabela de fluxo minimizada se há hazard essencial.

C/ _k ar Estados	Clk=0 Clk=1									
Estados	00		11	10	00	01	- i 11	10	Q	
a	(a)	b		С	d				0	
b	а	(b)	е			f			0	
С	а		е	0				g	0	
d	а				a	f		g	0	
е		b	e	С			h		0	
f		b	Ŧ		d	T	i		0	
g				С	d		i	9	0	
h			j			f	(k	1	
i			е			f	Θ	g	0	
j		b	(1)	I			h	-	1	
k				ı	d		h	(k)	1	
I	а		j	Θ				g	1	
,										
(b)										

Figura 2 Descrição do FF D:

- 3Q: A figura 3a mostra uma tabela de fluxo de estados minimizada e codificada livre de corrida critica. Ela descreve o Flip-Flop D mestre escravo, onde no nível alto do relógio a variável D é armazenada no estágio denominado mestre e na borda de descida do relógio a variável D é armazenada no segundo estágio denominado escravo (saída). A figura 3b descreve a tabela de operações deste FF. Pede-se:
- a) Projete este FF na arquitetura de Huffman (soma de produtos livre de risco lógico) (desenhe o circuito).
- **b**) Usando somente inversoras, NANDs e *latches RS*, projete este FF livre de risco lógico e com o menor número de portas na arquitetura Standard RS (O_{N+1}=S' + RO_N) (desenhe o circuito).
- c) Compare as duas arquiteturas no número de transistores, sabendo que as inversoras são dois transitores CMOS e a porta NAND o número de transitores CMOS é 2x Fan-in.

Figura 3. Questão 3: a) Tabela de fluxo de estados; b) Tabela de operações.

4Q: A partir de um flip-flop **D** e lógica adicional, sintetize o flip-flop **H**, que trabalha segundo a tabela de operações abaixo.

Figura 4. Questão 4: a) Símbolo; b) Tabela de operações

5Q: O FF JK abaixo, foi projetado a partir do flip-flop XY. Pede-se: **a**) A equação característica do FF XY; b) A tabela de excitação do FF XY; c) O sub-circuito que está na caixa preta para que este circuito funcione como tal.

Figura 5. Questão 5: a) Tabela de operações do FF XY; b) circuito parcial do FF JK.

6Q: Encontre a tabela de fluxo de estados reduzida da tabela primitiva de fluxo de estados especificada incompletamente modelo Mealy descrita na figura 6.

~+1				
EST	00	01	11	10
1	(1)/1	2 /-		3 /-
2	4 /-	2)/1	5 /-	
3	6 /-		7 /-	3/0
4	4)/1	2 /-		3 /-
5		8 /-	5)/1	9 /-
6	6)/0	2 /-		3 /-
7		10 /-	7/0	3 /-
8	4 /-	8)/0	5 /-	
9	4 /-		5 /-	9)/1
10	6 /-	10)/1	7 /-	-

Figura 6. Tabela de fluxo de estados primitiva modelo Mealy.

7Q: A MEFA abaixo é implementada usando elemento C. Ela tem duas entradas (Ain, Rin) e duas saídas (Aout, Rout), onde as saídas também fazem o papel de variáveis de estado. Pede-se:

a) Tabela de fluxo de estados; b) Implemente a tabela do item (a) na arquitetura Standard RS. **Obs:** A equação característica do RS é Q_{N+1} = S' + R Q_N

Dado: Tabela de operações do elemento C

8Q: A figura 8 mostra uma MEF síncrona, pede-se:

- a) Grafo de transição de estados (GTE).
- b) Verifique o modelo da máquina do GTE do item (a) e refaça o GTE no modelo contrário.
- c) Sintetize o GTE obtido no item (b), mas usando o flip-flop T e uma lógica de excitação e de saída como soma de produtos minimizada.

Obs: a equação característica do FF T é $Q_{N+1}=T\oplus Q_N$.

Figura 8. MEF síncrona.

9Q: Para a MEF Síncrona Modelo Mealy na figura 9, Pede-se:

- a) O grafo de transição de estados modelo Moore.
- **b**) Sintetize a máquina do item (a), mas use FF´s D e portas dados: $Q_{N+1}=JQ_N^{'}+K^{'}Q_N-e-Q_{N+1}=D$

Figura 9. MEFS modelo Mealy

10Q: Sintetize a MEFS descrita no grafo de transição de estados abaixo, usando somente 3 MUX 4x1 e 3 FFs. Como curiosidade, note que esta descrição conta com um estado conhecido como "deadlock", no caso o estado C. Obs: escolha o FF de sua preferência.

