Time Series

Cross Sectional Data: Multiple objects observed at a particular point of time

- Cross Sectional Data: Multiple objects observed at a particular point of time
- ➤ Examples: customers' behavioral data at today's update,companies' account balances at the end of the last year,patients' medical records at the end of the current month.

➤ Time Series Data: One single object (product, country, sensor, ...) observed over multiple equally-spaced time periods

- ➤ Time Series Data: One single object (product, country, sensor, ..) observed over multiple equally-spaced time periods
- ➤ Examples: quarterly Italian GDP of the last 10 years, weekly supermarket sales of the previous year, yesterday's hourly temperature measurements.

Numbers of Doctorates Awarded in US, annual data – Engineering Vs. Education

LinkedIn daily stock market closing price

Number of photos uploaded on the Instagram every minute (regional sub-sample)

Acceleration detected by a smartphone sensors during a workout session (10 seconds)

What to do with time series?

- Understanding of specific series features or pattern
- Forecasting

Smoothing

Smoothing

Smoothing is usually done to reveal the series patterns and trends.

Simple Moving Average Smoothing

- Moving Average (MA) creates a new series by averaging the most recent observations from the original series.
- \blacktriangleright MA(k) creates s_t as follows.

$$s_t = \frac{y_t + y_{t-1} + \dots + y_{t-k+1}}{k}$$

lacktriangle Larger k will smooth the series more strongly

Medical Component of the CPI

Original Series

Forecasting

- ▶ We can use smoothing for forecasting
- ▶ We have

$$\begin{split} \hat{s}_t &= \frac{y_t + y_{t-1} + \ldots + y_{t-k+1}}{k} \\ &= \frac{y_t + y_{t-1} + \ldots + y_{t-k+1} + y_{t-k} - y_{t-k}}{k} \\ &= \frac{y_t + \left(y_{t-1} + \ldots + y_{t-k+1} + y_{t-k}\right) - y_{t-k}}{k} \\ &= \frac{y_t + k\hat{s}_{t-1} - y_{t-k}}{k} \\ &= \hat{s}_{t-1} + \frac{y_t - y_{t-k}}{k} \end{split}$$

Forecasting

- \blacktriangleright If there is no trend in y_t the second term $(y_t-y_{t-k})/k$ can be ignored
- ightharpoonup Forecasting l lead time into future by

$$\hat{y}_{T+l} = \hat{s}_T$$

If there is a linear trend in a series, we can use the double moving average to estimate the trend (slope)

Double MA

7. Double MA

Linear trend time series:

$$y_t = \beta_0 + \beta_1 t + \epsilon_t$$

► Step 1: Smooth the series

$$\hat{s}_t^{(1)} = \frac{y_t + y_{t-1} + \ldots + y_{t-k+1}}{k}$$

▶ Step 2: Smooth the smoothed series

$$\hat{s}_{t}^{(2)} = \frac{\hat{s}_{t}^{(1)} + \hat{s}_{t-1}^{(1)} + \ldots + \hat{s}_{t-k+1}^{(1)}}{k}$$

► Step 3: Calculate the trend

$$b_1 = \hat{\beta_1} = \frac{2}{k-1} \bigg(\hat{s}_T^{(1)} - \hat{s}_T^{(2)} \bigg)$$

Forecasting

 \triangleright Forecasting l lead time into future by

$$\hat{y}_{T+l} = \hat{s}_T + b_1 \cdot l$$

You are given the following time series

\overline{t}	1	2	3	4	5
y_t	1	3	5	8	13

- Forecasting y_7 using simple moving average with k=2
- lackbox Forecasting y_7 using double moving average with k=2

lacktriangle We simulate 100 data points (T=100) of

$$y_t = 1 + 3t + \epsilon,$$

where, $\epsilon \sim N(0, 5^2)$.

Time

 \blacktriangleright Using the above steps, the estimated trend is $b_1=2.92$

 \blacktriangleright The forecast for the next points from y_{100} is

$$\hat{y}_{100+l} = \hat{s}_{100} + b_1 \cdot l = \hat{s}_{100} + 2.92 \cdot l$$

Exponential Smoothing

Exponential Smoothing

- ▶ MA distributes the weight equally to the recent observations
- \blacktriangleright Exponential Smoothing controls the weights of the recent observations by w

$$\hat{s}_t = \frac{y_t + wy_{t-1} + w^2y_{t-2} + \ldots + w^ty_0}{1/(1-w)}$$

- Smaller w ($w \rightarrow 0$) gives higher weights to the more recent observations
- ightharpoonup Smaller w smooths the series more lightly.

Exponential Smoothing

▶ We have

$$\begin{split} \hat{s}_t &= \hat{s}_{t-1} + (1-w)(y_t - \hat{s}_{t-1}) \\ &= (1-w)y_t + w\hat{s}_{t-1} \end{split}$$

▶ When $w \to 0$, $\hat{s}_t \to y_t$, or little smoothing has taken

Exponential Smoothing with w = 0.1

Exponential Smoothing with w = 0.5

Exponential Smoothing with w = 0.9

Double Exponential Smoothing

Double Exponential Smoothing

We can use double smoothing to identify the trend and forecast linear trend time series as follows.

- \blacktriangleright Step 1: Create a smoothed series: $\hat{s}_t^{(1)} = (1-w)y_t + w\hat{s}_{t-1}^{(1)}$
- Step 2: Create a double smoothed series: $\hat{s}_t^{(2)} = (1-w)\hat{s}_t^{(1)} + w\hat{s}_{t-1}^{(2)}$
- Step 3: Estimate the trend:

$$b_1 = \frac{1-w}{w}(\hat{s}_T^{(1)} - \hat{s}_T^{(2)})$$

Step 4: Forecast

$$\hat{y}_{T+l} = 2\hat{s}_{T}^{(1)} - \hat{s}_{T}^{(2)} + b_{1} \cdot l$$

You are given the following time series

\overline{t}	1	2	3	4	5
y_t	1	3	5	8	13

- Forecasting y_7 using exponential smoothing with w=.8
- Forecasting y_7 using double exponential smoothing with w=.8

Citation

▶ Photos are taken from KNIME Hub