Controllo della Molteplicità nei trial clinici

Biostatistica avanzata per la ricerca clinica

Livio Finos

Outline

Introduzione

Alcune considerazioni preliminari

Microarray study

Top 5 genes out of 20000

Gene	p-value
OCIAD2	5.5e-6
NEK3	6.7e-6
TAF5	7.1e-6
FOXD4L6	7.5e-6
ADIG	8.8e-6
<u>:</u>	:

Small p-value?

- \circ un p-value di 5.5e-6 è improbabile (evidenza per H_1)
- o ma è improbabile anche se consideriamo di averlo cercato tra 20000 test?
- Possiamo veramente dire che OCIAD2 è differentially expressed?
- o e a proposito di NEK3?

Ulteriore Esempio: studi fMRI

Una mappa di attività celebrale per ogni soggetto

Ulteriore Esempio: studi fMRI

Una mappa di attività celebrale per ogni soggetto
Ogni voxel (punto) produce un p-value

Ulteriore Esempio: studi fMRI

Una mappa di attività celebrale per ogni soggetto
Ogni voxel (punto) produce un p-value
L'output è solitamente una lista dei voxel più attivi (sui migliaia testati)

Dubbio: necessario controllo della molteplicità?

Altri esempi, più frequenti

Modelli di Regressione (LM e GLM)

Un t-test per ogni Coefficiente di Regressione

Anova

Tutti i Confronti a Coppie (post-hoc)

Ogni volta in cui l'analisi produce più di un p-value

Dubbio: necessario controllo della molteplicità?

...e a proposito di trial clinici:

Multiple endpoints

es: più endpoints sono importanti per valutare la guarigione del paziente

Multiple doses

es: Placebo vs Dosi crescenti vogliamo i Confronti a Coppie (post-hoc)

Multiple sub-groups

es: la terapia funziona solo su sottogruppi della popolazione, ad esempio con un preciso corredo genetico le donne

Nessun Dubbio: necessario controllo della molteplicità!

Outline

Introduzione

Alcune considerazioni preliminari

Verifica di Ipotesi, Un solo test

Due Ipotesi a confronto

- o H_0 : due gruppi sono Uguali, nessuna relazione tra X e Y,
- o H_1 : due gruppi sono Diversi, c'è relazione tra X e Y,

Ogni test produce un p-value p,

se $p \leq .05$ ($\alpha = .05$) rifiuto H_0 (e propendo per H_1)

Errori

- o **Tipo I** (falso positivo): Rifiuto H_0 quando è Vera $P(Errore\ Tipo\ I) = P(p \le .05|H_0) = .05$
- o **Tipo II** (falso negativo): Non Rifiuto H_0 quando è Falsa $P(Errore\ Tipo\ II) = P(p > .05|H_1)$

Potenza:

$$P(p \le .05|H_1) = 1 - P(p > .05|H_1)$$
$$= 1 - P(Errore\ tipo\ II)$$

Importanza asimmetrica degli errori

Controlliamo la $P(Errore\ tipo\ I)\ (es \le .05)$ e cerchiamo il test con massima Potenza (minimo $Errore\ tipo\ II)$

È importante ricordare che

- un p-value significativo $(p \le \alpha)$ ci autorizza a pensare che sia vera H_1 , mentre
- un p-value non significativo $(p > \alpha)$ NON ci autorizza a pensare che sia vera H_0 , semplicemente non abbiamo abbastanza evidenza per rifiutarla.

Errori di Tipo I:

 $P(p \le .05|H_0=i\ 2\ {
m gruppi\ sono\ Uguali})=?$ Supponiamo $H_0: \mu_1-\mu_2=0\ {
m e}\ H_1: \mu_1-\mu_2<0$ statistica test $T=rac{ar{x}_1-ar{x}_2}{\hat{\sigma}}$ ($\hat{\sigma}$ stima della dev std di $ar{x}_1-ar{x}_2$) sotto $H_0:\ T\sim t_{n_1+n_2-2}$, allora

$$P(T \le t_{\alpha}|H_0) = \alpha \ \forall \alpha$$
$$P(F(T) \le F(t_{\alpha})|H_0) = \alpha \ \forall \alpha$$
$$P(P \le \alpha|H_0) = \alpha \ \forall \alpha$$

ne consegue che $P \sim U(0,1)$

Errori di Tipo I:

Sotto H_0 il p-value è una variabile aleatoria uniforme U(0,1)

Errori di Tipo I:

Errore di I tipo: $P(p \le .05|H_0) = .05$

Se vera H0

Potenza: $P(p \le .05|H_1 = 2 \ gruppi \ Diversi)$

Sotto H_1 il p-value è stocasticamente inferiore ad una variabile aleatoria uniforme U(0,1) (Non distorsione del test)

Se vera H1 (esempio)

Potenza: $P(p \le .05 | H_1 = 2 \ gruppi \ Diversi)$

Sotto $H_1 \ P(p \le .05 | H_1) > .05$, nel nostro caso = .74

Se vera H1 (esempio)

Errori di Tipo I, Due Test (indipendenti)

Propabilità di ALMENO un (falso) rifiuto?

$$P(p_1 \le .05 \cup p_2 \le .05 | H_0) = .05 + .05 - (.05 \cdot .05) = 1 - (1 - .05)^2 = .0975 = 1 - (1 - \alpha)^2$$

densità congiunta

p-values test 2

Probabilità di falsi rifiuti

m p-value indipendenti

Se rifiuto l'ipotesi quando $p \leq \alpha$

Probabilità ALMENO un falso rifiuto

$$P = 1 - (1 - \alpha)^m$$

Probabilità di falsi rifiuti

m p-value indipendenti

Se rifiuto l'ipotesi quando $p \leq \alpha$

Probabilità ALMENO un falso rifiuto

$$P = 1 - (1 - \alpha)^m$$

Questo diventa ben presto un problema, se m diventa grande ...

Errori di Tipo I in funzione del numero di test (m)

Type I errors

Come definire l'errore di tipo I quando ci sono molte ipotesi?

Quali procedure controllano questo errore?