Ministère des Enseignements Secondaires Direction des Examens, des concours et de la certification Examen: BEPC 2012

Série: TOUTES

Epreuve de : MATHEMATIQUES Durée : 2h Coefficient : 4

L'épreuve comporte trois parties A,B et C sur deux pages numérotées de 1 à 2. Le candidat devra traiter chacune des parties. La qualité de la rédaction et le soin apporté au tracé des figures seront pris en compte dans lévaluation de la copie du candidat.

Partie A: ACTIVITES NUMERIQUES (6,5pts)

Exercice 1 (1,5 point). On donne $X = \frac{2^7 \times 3^6 \times 5^3}{81 \times 2^8 \times 125}$.

- 1. Ecrire *X* sous forme de fraction irréductible. [0,5pt]
- 2. Trouver deux entiers consécutifs α et β tels que $\alpha < X < \beta$. [1pt]

Exercice 2 (2 points).

1. Le système $\begin{cases} 7u + 3v = 4850 \\ 4u + 6v = 4700 \end{cases}$ admet une solution unique. Un seul des quatre ensembles ci-dessous représente son ensemble solution; reproduisez-le sur votre feuille de composition. [0,5pt]

$$S_1 = \{500; 450\}$$
 $S_2 = \{(450; 500)\},$ $S_3 = \{(500; 450)\},$ $S_4 = (450; 500)$

2. MATO achète 7 cahiers et 3 bloc-notes à 4850 FCFA. MOKO achète 2 cahiers et trois bloc-notes identiques à ceux de MATO à 2350 FCFA. Calculer le prix d'un cachier et d'un bloc-note. [1,5pt]

Exercice 3 (3 points). On considère les nombres réels $a = 3 + \sqrt{7}$ et $b = -3 + \sqrt{7}$.

1. Calculer
$$a^2$$
, b^2 et ab . [1,5pt]

- 2. Montrer que $\frac{a}{b} + \frac{b}{a}$ est un entier relatif négatif. [0,5pt]
- 3. Soit $Y = \frac{a}{b} \frac{b}{a}$. Sachant que 2,6457 < $\sqrt{7}$ < 2,6458, donner un encadrement de Y. [0,5pt]
- 4. Une seule des quatre réponses ci-après désigne la valeur exacte de $|-3+\sqrt{7}|$. Dire laquelle. [0,5pt]

(a)
$$-3+\sqrt{7}$$
, (b) $3+\sqrt{7}$, (c) $3-\sqrt{7}$, (d) $-3-\sqrt{7}$.

Partie B: ACTIVITES GEOMETRIQUES (6,5pts)

Exercice 1 (1 point). Répondre par vrai ou faux aux propositions suivantes.

- 1. Si \hat{A} et \hat{C} sont deux angles complémentaires, alors $\cos \hat{A} = \sin \hat{C}$. [0,5pt]
- 2. Dans le plan rapporté à un repère orthonormé (O, I, J); les vecteurs $\vec{u}(1/2; 1/3)$ et $\vec{v}(3; 2)$ sont colinéaires. [0,5pt]

Exercice 2.

L'unité de longueur est le cm. On donne AB = 30 et BC = 50.

2. Calculer $\cos B$ et $\sin B$. [1pt]

3. Déterminer à 1° près par excès de l'angle B. [0,5pt]

Exercice 3.

 \overrightarrow{SMNPQ} est une pyramide régulière de sommet S. Sa base est le carré MNPQ de côté 8cm et sa heuteur OS telle que OS = 7cm.

- 1. (a) Montrer que la mesure d'une arête latérale de cette pyramide est égale à 9*cm*. [1pt]
 - (b) Représenter un patron de cette pyramide à l'échelle $\frac{1}{2}$. [1pt]
- 2. Calculer la mesure de la hauteur issue de *S* de la face latérale *SNP*. [1pt]

Problème(7 points).

L'unité de longueur est le centimètre.

Dans un repère orthonormé (O, I, J), on donne les points R(1; 5), T(-1; -1).

- 1. (a) Placer les points R et T dans le repère (O, I, J). [0,5pt]
 - (b) Déterminer une équation cartésienne de la droite (RT). [1pt]
- 2. Tracer dans un même repère les droites (*D*) et (*D'*) d'équations respectives $y = -\frac{1}{3}x + 2$ et y = 3x + 2. [1pt]
- 3. (a) Déterminer les coordonnées du point d'intersection de (RT) avec l'axe des abscisses et celle du point d'intersection de (D) avec le même axe. [1pt]
 - (b) Montrer que K(0;2) est le point d'intersection des droites (RT) et (D). [0,5pt]
 - (c) On considère les points $M(-\frac{2}{3};0)$ et N(6;0). Démontrer que le triangle KMN est rectangle en K.
- 4. Le symétrique de M par rapport à K est noté M' et celui de N est noté N'.
 - (a) Montrer que le quadrilatère MNM'N' est un losange. [1pt]
 - (b) Calculer l'aire du losange MNM'N'. [1pt]