Álgebra Lineal

Ejercicios Tema 2: Vectores, matrices y tensores

Francisco Javier Mercader Martínez

1) Determina la verdad o falsedad de la siguiente afirmación: si u_1 es combinación lineal de u_2 y u_3 , entonces u_3 es combinación lineal de u_1 y u_2 .

La afirmación es **falsa** en general. Vamos a analizarla cuidadosamente:

• Supongamos que u_2 y u_3 son linealmente independientes y u_1 se define como una combinación lineal de u_2 y u_3 . Por ejemplo, tomemos:

$$u_1 = u_2 + u_3.$$

• En este caso, aunque u_1 es una combinación lineal de u_2 y u_3 , no podemos escribir u_3 como una combinación lineal de u_1 y u_2 , ya que:

$$u_3 = u_1 - u_2$$

y esta relación no es válida en todos los espacios vectoriales. La implicación original depende de la independencia lineal de los vectores involucrados.

- Para que u_3 sea combinación lineal de u_1 y u_2 , deben cumplorse condiciones adicionales, como que u_1, u_2, u_3 estén en un subespacio con dimensión menor o igual a 2.
- 2) Consideremos los vectores u = (1, 1, 0) y v = (0, 1, 1). Encuentra un vector w ortogonal a u y v. Comprueba que w es ortogonal a cualquier combinación lineal de u y v. Encuentra ahora un vector que \underline{no} sea lineal de u, v y comprueba que no es ortogonal a w.
 - 1) Vector w ortogonal a u y v:

El vector w encontrado mediante el producto cruz es:

$$w = (1, -1, 1).$$

- 2) Verificación de la ortogonalidad:
 - $w \cdot u = 0$: w es ortogonal a u.
 - $w \cdot v = 0$: w es ortogonal a v.
- 3) Ortogonalidad respecto a una combinación lineal de u y v:

Para una combinación lineal genérica $c_1u + c_2v$, se cumple:

$$w \cdot (c_1 u + c_2 v) = 0.$$

1

Esto demuestra que w es ortogonal a cualquier combinación lineal de u y v.

4) Vector que no es combinación lineal de u v:

5) Comprobación de no ortogonalidad con w:

El producto escalar entre w y (1,0,0) es:

$$w \cdot (1,0,0) = 1.$$

Por lo tanto, no es ortogonal a w.

3) Haz un dibujo de los siguientes conjuntos de \mathbb{R}^2 :

$$\{(x,y) \in \mathbb{R}^2 \text{ tal que } \|(x,y)\|_1 = 1\}$$

$$\{(x,y) \in \mathbb{R}^2 \text{ tal que } \|(x,y)\|_2 = 1\}$$

$$\{(x,y) \in \mathbb{R}^2 \text{ tal que } \|(x,y)\|_{\infty} = 1\}$$

4) Prueba que $||u||_2 \le \sqrt{||u||_1 ||u||_{\infty}}$.

Dado un vector $u = (u_1, u_2, \dots, u_n) \in \mathbb{R}^n$, las normas son:

1) Norma $||u||_2$:

$$||u||_2 = \sqrt{\sum_{i=1}^n u_i^2}.$$

2) Norma $||u||_1$:

$$||u||_1 = \sum_{i=1}^n |u_i|.$$

3) Norma $||u||_{\infty}$:

$$||u||_{\infty} = \max(|u_1|, |u_2|, \dots, |u_n|).$$

Expandimos la definción de $||u||_2^2$:

$$||u||_2^2 = \sum_{i=1}^n u_i^2.$$

Usamos la desigualdad $u_i^2 \leq |u_i| \cdot ||u||_{\infty}$ (ua que $|u_1| \leq ||u||_{\infty}$ para todo i):

$$\sum_{i=1}^{n} u_i^2 \le \sum_{i=1}^{n} |u_i| \cdot ||u||_{\infty} \longrightarrow \sum_{i=1}^{n} u_i^2 \le ||u||_{\infty} \sum_{i=1}^{n} |u_i|.$$

Por definición, $\sum_{i=1}^n |u_i| = \|u\|_1,$ por lo que:

$$||u||_2^2 \le ||u||_\infty ||u|| 1.$$

Tomando raíces cuadradas en ambos lados de la desigualdad:

$$||u||_2 \le \sqrt{||u||_1 ||u||_\infty}.$$

- 5) Dos vectores son ortogonales cuando su producto escalar es cero, pero ¿qué pasa si su producto escalar es próximo a cero? Sean x = [1, -0.75] e y = [0.3, 0.3]. Calcula el producto escalar $x \cdot y$ y el ángulo que forman. ¿Qué conclusión puedes sacar?
 - Si dos vectores x, y son unitarios, entonces $-1 \le x \cdot y \le 1$ (¿por qué?). En este caso, ¿qué podemos decir si $x \cdot y$ es aproximadamente -1, 1 o cero?
- **6)** Sean u, v dos vectores unitarios de \mathbb{R}^n que forman un ángulo de 60° . Calcula ||2u+v||.
- 7) Sena u, v dos vectores de \mathbb{R}^n de norma 2 y 3 respectivamente que forman un ángulo de 60. ¿Qué ángulo forman los vectores u y 2u v?
- 8) Calcula $A + B, (A + B)^{\mathsf{T}}, AB, BA, (AB)^{\mathsf{T}}, A^{\mathsf{T}}B^{\mathsf{T}}$ y $B^{\mathsf{T}}A^{\mathsf{T}}$ para las matrices

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 2 & 3 \\ 3 & 0 & 3 \end{bmatrix} \quad \mathbf{y} \quad B = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

- 9) Prueba que no existe ninguna matriz A tal que $A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.
- 10) ¿Existen matrices reales no nula 2×2 tales que $A \cdot A^{\mathsf{T}} = 0$? ¿y si son matrices complejas?
- **11)** Sean A, B matrices tales que I + AB es invertible y sea S la inversa de I + AB. Prueba que I + BA también es invertible y su inversa es I BSA.
- 12) Sea A una matriz $n \times m$ y sea B una matriz $m \times n$. Suponiendo que las matrices I + AB y I + BA sea invertibles, prueba que se cumple la igualdad

$$(I + AB)^{-1}A = A(1 - BA)^{-1}$$

Si m es mucho más pequeño que n, ¿cuál de las dos expresiones es más fácil de calcular desde el punto de vista computacional?

13) Sea A una matriz $n \times p$ y B una matriz $p \times m$. Si llamamos flop a una operación, ya sea una suma, resta, multiplicación o división, prueba que para calcular AB son necesarios mn(2p-1) flops (haciendo la multiplicación de forma estándar). Si A es una matriz 10×2 , B una matriz 2×10 y C una matriz 10×10 y queremos calcular ABC, ¿qué es mejor desde el punto de vista computacional, calcular (AB)C o A(BC)?

3

14) Dadas dos matrices cuadradas A, B, se define el conmutador de A, B como

$$[A, B] = AB - BA$$

Por una parte, el spin de un electrón se suele representar a través de las siguiente tres matrices, llamadas matrices de Pauli:

$$S_x = \frac{1}{2}\overline{h} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad S_y = \frac{1}{2}\overline{h} \begin{bmatrix} 0 & -j \\ j & 0 \end{bmatrix} \quad S_z = \frac{1}{2}\overline{h} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

donde $\overline{h} = \frac{h}{2\pi}$, con h constante de Plank. Comprueba que

$$[S_x, S_y] = j\overline{h}S_z, \quad [S_y, S_z] = j\overline{h}S_x, \quad [S_z, S_x] = j\overline{h}S_y$$

y que

$$S_x^2 + S_y^2 + S_z^2 = \frac{3}{4}\overline{h}^2 I_3$$

con I_3 la matriz identidad 3×3 .

- **15)** Si A es una matriz simétrica, ¿son las matrices $B^{\mathsf{T}}AB, A + A^{\mathsf{T}}$ y $A A^{\mathsf{T}}$ simétricas?
- 16) Prueba que si A es una matriz invertible simétrica, entonces A^{-1} es también simétrica.
- 17) Sean u_1, \ldots, u_m vectores de \mathbb{K}^n y supongamos que para ciertos escalares x_1, \ldots, x_m se tiene $x_1u_1 + \cdots + x_mu_m = 0$. Expresa esta última igualdad en forma matricial.
- 18) Sean u, v dos vectores no nulos vistos como matrices columna $n \times 1$. Observa que $1 + v^{\mathsf{T}}u$ es un escalar, que suponemos no nulo. Prueba que la matriz $I + uv^{\mathsf{T}}$ es no singular y su inversa es

$$(I + uv^{\mathsf{T}})^{-1} = I - \frac{uv^{\mathsf{T}}}{1 + v^{\mathsf{T}}u}$$

- 19) Sea u un vector de \mathbb{R}^n con ||u|| = 1 y consideremos la matriz $A = I 2uu^{\mathsf{T}}$. Prueba que A es simétrica y $A^2 = I$.
- **20)** Sea A la matriz dada por bloques

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

con A_{11} invertible. Prueba que existen matrices X,Y tales que

$$A = \begin{bmatrix} 1 & 0 \\ X & 1 \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} I & Y \\ 0 & I \end{bmatrix}$$

donde $S = A_{22} - A_{21}A_{11}^{-1}A_{12}$ e I es la matriz identidad del tamaño adecuado (la matriz S se denomina el **complemento** dde Schur de A_{11}).

21) Expresa la matriz AB como suma de matrices de rango 1, donde

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 1 & 0 & 5 \end{bmatrix}$$

4

- **22)** Sea $u^{\mathsf{T}} = \begin{bmatrix} \frac{1}{3}, \frac{2}{3}, -\frac{2}{3} \end{bmatrix}, v^{\mathsf{T}} = \begin{bmatrix} \frac{2}{3}, \frac{1}{3}, \frac{2}{3} \end{bmatrix}$ y $w^{\mathsf{T}} = [a, b, c]$. Halla a, b, c para que la matriz Q = [u, v, w] sea ortogonal de determinante 1.
- 23) (Traza de una matriz) Dada una matriz cuadrada A, se define la traza de A como $tr(A) = \sum_{i=1}^{n} [A]_{ii}$, es decir, como la suma de los elementos de la diagonal principal. Prueba las siguientes propiedades:
 - **a)** tr(A + B) = tr(A) + tr(B).
 - **b)** $\operatorname{tr}(A) = \operatorname{tr}(A^{\mathsf{T}}).$
 - c) $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
 - d) $tr(P^{-1}AP) = tr(A) con P$ invertible.