2020-2021 学年线性代数 I (H) 小测 2

任课老师: 谈之奕 考试时长: 90 分钟

- 一、(10 分)称实矩阵 $A = (a_{ij})$ 是整数矩阵,如果每个 a_{ij} 都是整数. 设 M 是整数矩阵,且可逆(作为实矩阵). 证明: M 的逆矩阵也是整数矩阵的充要条件是 M 的行列式等于 ± 1 .
- 二、 $(15 \, \text{分})$ 设 $B = \{v_1, v_2, v_3\}$ 是线性空间 V 的一组基,线性映射 $\sigma: V \to V$ 定义如下:

$$\sigma(v_1) = v_2 + v_3, \sigma(v_2) = v_3, \sigma(v_3) = v_1 - v_2.$$

- (1) 求 σ 在基 B 下的矩阵;
- (2) 证明: $B' = \{v_2, v_3 + v_1, v_1 v_2\}$ 是 V 的另一组基;
- (3) 求 σ 在基 B' 下的矩阵.
- 三、(15分)设

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ Q = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

定义 $\mathbf{R}^{3\times2}$ 上映射 σ :

$$\sigma(A) = PAQ.$$

- (1) 验证 σ 是线性映射;
- (2) 求 $\operatorname{im} \sigma$ 和 $\ker \sigma$;
- (3) 验证关于 σ 的维数公式.
- 四、 $(15 \, f)$ 求参数 a, b 的值,使得 $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ u & v & w \end{vmatrix} = 1$, $\begin{vmatrix} 1 & 2 & -5 \\ x & y & z \\ u & v & w \end{vmatrix} = 2$, $\begin{vmatrix} 2 & 3 & b \\ x & y & z \\ u & v & w \end{vmatrix} = a$ 都

成立,并求
$$\begin{vmatrix} x & y & z \\ 1 & -1 & 5 \\ u & v & w \end{vmatrix}.$$

五、(15 分) 设在 $\mathbf{F}[x]_3$ 中有两组基:

$$(A)\alpha_1 = 1 - x, \alpha_2 = -x + x^2, \alpha_3 = 3x - 2x^2;$$

 $(B)\beta_1 = 4x + 5x^2, \beta_2 = -1, \beta_3 = 3x + 4x^2.$

(1) 求基 (A) 到基 (B) 的过渡矩阵;

- (2) 设 α 在基 (A) 下的坐标为 $(1,1,-1)^T$,求 α 在基 (B) 下的坐标.
- 六、 (10 分) 设 $A \in M_{m \times n}(\mathbf{F})$, r(A) = r, k 是满足条件 $r \le k \le n$ 的任意整数,证明存在 n 阶方阵 B, 使得 AB = 0, 且 r(A) + r(B) = k.
- 七、(20分)判断下列命题的真伪,若它是真命题,请给出简单的证明;若它是伪命题,给 出理由或举反例将它否定.
 - (1) 域 \mathbf{F} 上的全体 n 阶可逆矩阵构成 $M_n(\mathbf{F})$ 的一个子空间;
 - (2) 设 A 和 B 都是可逆矩阵,则矩阵 $\begin{pmatrix} O & B \\ A & C \end{pmatrix}$ 也是可逆矩阵;
 - (3) 可逆矩阵 A 的伴随矩阵 A^* 的行列式等于 1;
 - (4) 若对于任何正整数 n, 方阵 A (阶数大于 1) 的 n 次乘积 A^n 都是非零方阵,则 A 可逆.