Progress Update

SALADS
Students Assembling a Location Access Detection System

Team Roles

Ethan Youmans - Project Manager, Lead Mobile App Developer

Luke Sutor - Lead Al Model Developer

Bhaskar Gnanasakthi - Data Developer

Yao Wen Liu - Frontend Developer

Aiden Parsons – Developer

User Interface Diagrams

Wireshark Monitoring Data Collection

Machine Learning Model

We are using a Multiple Instance Learning Temporal Convolutional Network.

- We will be predicting if the user's location was accessed based on a group of packets opposed to individual packets.
 - o Greater model efficiency for on-device inference
 - Different sized groups of packets to handle unpredictable traffic

Machine Learning Input and Output

Our model takes the following features from each packet as input:

length	l4_tcp	l4_udp	I4_icmp
direction_out	src_port	dst_port	tcp_syn
tcp_ack	tcp_fin	tcp_rst	flow_hash
iadelta			

And it outputs a probability from 0 to 1 for whether or not the group of packets contains a location access

Completed Milestones

- First functional ML model
- Baseline training script and data loader
- Minimum UI
- VPN Packet Sniffer (50%)
- App architecture

Next Steps

- Complete packet pipeline
 - Ensure privacy and accuracy
- Develop Front End to a more finalized state
- Fine tune our data collection methods
- Run machine learning experiments and hyperparameter optimization
- Get the machine learning model running on an iPhone