LOAN DOCUMENT

	PHOTOGRA	APH THIS SHEET
ä		
NUMB	LEVEL	INVENTORY
DTIC ACCESSION NUMBER	2-5pecific Tech. DOCUMENT IDENTIFICATION 10 Nov	St. for Bioslurper
	Approved	ION STATEMENT A for Public Release ution Unlimited A N D
	DIS	TRIBUTION STATEMENT L
ACCESSION FOR MITS GRAM DITIC TRAC UNANNOUNCED JUSTIFICATION BY DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL DISTRIBUTION STAMP		W I T H C A R R E
		DATE RETURNED
20001122	037	
DATE RECEI	VED IN DTIC	REGISTERED OR CERTIFIED NUMBER
РН	OTOGRAPH THIS SHEET AND RETURN TO	D DTIC-FDAC
DTIC FORM 70A	DOCUMENT PROCESSING SHEET	PREVIOUS EDITIONS MAY BE USED UNTIL STOCK 18 EXHAUSTED.

LOAN DOCUMENT

SITE-SPECIFIC TECHNICAL REPORT FOR BIOSLURPER TESTING AT SITE SS27/XYZ, DOVER AFB, DELAWARE

DRAFT

PREPARED FOR:

AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE
TECHNOLOGY TRANSFER DIVISION
(AFCEE/ERT)
8001 ARNOLD DRIVE
BROOKS AFB, TEXAS 78235-5357

AND

436 SPTG/CEVR DOVER AFB, DELAWARE

10 NOVEMBER 1995

REQUE	ST	FOR S	ECHNICAL SCIENTIFIC	AND	TECHNI	CAL,	REPOR	
	_					_		

Ti	la 4 d a			
	AFCEE COLLECTION	***************************************	***********************	The state of the s
	######################################		M1.6-16	
1.	Report Availability (Please check one box)	2a. Numb	er of	2b. Forwarding Date
123		Copies For		ED. I DI MAI GISISI POLE
	This report is not available. Complete section 3.	1 ea	-1.	0,00/2000
2c	. Distribution Statement (Please check ONE DOX)	1 ru	CV	Junitanon
Dal des	O Directive 5230.24, "Distribution Statements on Technical Documents cribed briefly below. Technical documents MUST be assigned a distri	." 18 Mar 87, c bution statemi	ontains sevel ent.	n distribution statements, as
M	DISTRIBUTION STATEMENT A: Approved for public rel	ease. Distri	ibution is u	inlimited.
	DISTRIBUTION STATEMENT B: Distribution authorized	to U.S. Gov	vernment /	Agencies only.
	DISTRIBUTION STATEMENT C: Distribution authorized contractors.	to U.S. Go	vernment /	Agencies and their
	DISTRIBUTION STATEMENT D: Distribution authorized DoD contractors only.	to U.S. Dep	oartment o	f Defense (DoD) and U.S
	DISTRIBUTION STATEMENT E: Distribution authorized components only.	to U.S. Dep	par tme nt o	f Defense (DoD)
	DISTRIBUTION STATEMENT F: Further dissemination indicated below or by higher authority.	only as dired	cted by the	controlling DoD office
	DISTRIBUTION STATEMENT X: Distribution authorized individuals or enterprises eligible to obtain export-control Directive 5230.25, Withholding of Unclassified Technical	led technica Data from F	ıl data in a Public Disc	ccordance with DoD losure, 6 Nov 84.
2d.	Reason For the Above Distribution Statement (in accor	dance with Do	D Directive 5	i230.24)
2e.	Controlling Office			ibution Statement
	HQ AFLEE	Determ	iination	<i>r</i>
₹ 3.	This report is NOT forwarded for the following reason	s. (Please ch	eck appropri	2000
	It was previously forwarded to DTIC on(d			ļ
	It will be published at a later date. Enter approximate dat		, 10, 11di 11d	
D	In accordance with the provisions of DoD Directive 3200, because:		ested doc	ument is not supplied
		· · · · · · · · · · · · · · · · · · ·	************************	************************************
	ADOMERALISM STATEMENT OF THE STATEMENT O	P() ***********************************	({14,656,1111311314*****************************	**************************************
Prir	nt or Type Name Signa	ture		
La	ura Pena	eus.	1	
	ephone 10-536-1431		DTIC Use Of Number N	
		1	ىر	101"ひ1~()ろう()

DRAFT

SITE-SPECIFIC TECHNICAL REPORT (A003)

for

SHORT-TERM PILOT TEST FOR THE BIOSLURPER INITIATIVE AT DOVER AFB, DELAWARE

by

A. Leeson, J.A. Kittel, G. Headington, and J. Eastep

for

Mr. Patrick Haas
U. S. Air Force Center for Environmental Excellence
Technology Transfer Division
(AFCEE/ERT)
Brooks AFB, Texas 78235

November 10, 1995

Battelle 505 King Avenue Columbus, Ohio 43201-2693

Contract No. F41624-94-C-8012

This report is a work prepared for the United States Government by Battelle. In no event shall either the United States Government or Battelle have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance upon the information contained herein, nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof.

TABLE OF CONTENTS

LIST OF TABLES	ii
LIST OF FIGURES	ii
EXECUTIVE SUMMARY	iv
1.0 INTRODUCTION	1 1 2
2.0 SITE DESCRIPTION	2
3.5.4 Second Skimmer Pump Test 3.5.5 Drawdown Pump Test 3.5.6 Off-Gas Sampling and Analysis 3.5.7 Groundwater Sampling and Analysis 3.6 Soil Gas Permeability Testing	3 6 8 9 12 14 14 14 16 16
4.1 Baildown Test Results 4.2 Soil Sample Analyses 4.3 LNAPL Pump Test Results 4.3.1 Initial Skimmer Pump Test Results 4.3.2 Bioslurper Pump Test Results 4.3.3 Second Skimmer Pump Test 4.4 Extracted Groundwater, LNAPL, and Off-Gas Analyses 4.5 Bioventing Analyses 4.5.1 Soil Gas Permeability and Radius of Influence	17 17 18 18 18 20 23 23 23 28
5.0 DISCUSSION	28
6.0 REFERENCES	29

APPENDIX	A: SITE-SPECIFIC TEST PLAN FOR BIOSLURPER FIELD ACTIVITIES AT DOVER AFB, DELAWARE	\- 1
APPENDIX	B: LABORATORY ANALYTICAL REPORTS	3-1
APPENDIX	C: OPERATIONAL DATA FOR THE ICE	C-1
APPENDIX	D: SYSTEM CHECKLIST)- 1
APPENDIX	E: DATA SHEETS FROM THE SHORT-TERM PILOT TEST	∃-1
APPENDIX	F: SOIL GAS PERMEABILITY TEST RESULTS I	F-1
APPENDIX	G: IN SITU RESPIRATION TEST RESULTS	3-1
	LIST OF TABLES	
Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12.	Results of Baildown Testing in Monitoring Well DM 344 BTEX and TPH Concentrations in Soil Samples from Site SS27/XYZ, Dover AFB, DE Physical Characterization of Soil from Site SS27/XYZ, Dover AFB, DE Depths to Groundwater and LNAPL Prior to Each Pump Test Pump Test Results at Site SS27/XYZ, Dover AFB, DE Oxygen Concentrations During the Bioslurper Pump Test at Site SS27/XYZ, Dover AFB, DE BTEX and TPH Concentrations in Extracted Groundwater During the Bioslurper Pump Test at Site SS27/XYZ, Dover AFB, DE BTEX and TPH Concentrations in Off-Gas During the Bioslurper Pump Test at Site SS27/XYZ, Dover AFB, DE BTEX Concentrations in LNAPL from Site SS27/XYZ, Dover AFB, DE C-Range Compounds in LNAPL from Site SS27/XYZ, Dover AFB, DE	8 17 18 19 19 20 24 25 25 25 28
	LIST OF FIGURES	
Figure 1.	Locations of Permanent Groundwater Monitoring Wells and Cone Penetrometer Test Points at Site SS27/XYZ, Dover AFB, DE	4
Figure 2.	Soil Hydrocarbon Contamination as Indicated by Cone Penetrometer/Laser-Induced Fluorescence Sensor Results and Laboratory Analytical Results at Site SS27/XYZ, Dover AFB, DE	5
Figure 3.	Schematic Diagram Illustrating Site Lithology and Construction Details of the Bioslurper Well and Soil Gas Monitoring Points at Site SS27/XYZ, Dover	
Figure 4. Figure 5.	* *	7 10 11

X

Figure 6.	Slurper Tube Placement and Valve Position for the Bioslurper Pump Test	13
Figure 7.	Slurper Tube Placement and Valve Position for the Drawdown Pump Test	15
Figure 8.	LNAPL Recovery Versus Time During Each Pump Test	21
Figure 9.	LNAPL Recovery Rate Versus Time During the Bioslurper Pump Test	22
Figure 10.	Distribution of C-Range Compounds in Extracted LNAPL at Site SS27/XYZ,	
	Dover AFB, DE	26
Figure 11.	Soil Gas Pressure Change as a Function of Distance During the Soil Gas	
	Permeability Test	27

EXECUTIVE SUMMARY

This report summarizes the field activities conducted at Dover AFB, for a short-term field pilot test to compare vacuum-enhanced free-product recovery (bioslurping) to traditional free-product recovery techniques to remove light, nonaqueous-phase liquid (LNAPL) from subsurface soils and aquifers. The field testing at Dover AFB is part of the Bioslurper Initiative, which is funded and managed by the U.S. Air Force Center for Environmental Excellence (AFCEE) Technology Transfer Division. The AFCEE Bioslurper Initiative is a multisite program designed to evaluate the efficacy of the bioslurping technology for (1) recovery of LNAPL from groundwater and the capillary fringe, and (2) enhancing natural in situ degradation of petroleum contaminants in the vadose zone via bioventing.

The main objective of the Bioslurper Initiative is to develop procedures for evaluating the potential for recovering free-phase LNAPL present at petroleum-contaminated sites. The overall study is designed to evaluate bioslurping and identify site parameters that are reliable predictors of bioslurping performance. To measure LNAPL recovery in a wide variety of in situ conditions, tests are being performed at many sites. The test at Dover AFB is one of at least 35 similar field tests to be conducted at various locations throughout the United States and its possessions.

The intent of field testing is to collect data to support determination of the predictability of LNAPL recovery and to evaluate the applicability, cost, and performance of the bioslurping technology for removal of free product and remediation of the contaminated area. The on-site testing is structured to allow direct comparison of the LNAPL recovery achieved by bioslurping with the performance of more conventional LNAPL recovery technologies. The test method included an initial site characterization followed by LNAPL recovery testing. The three LNAPL recovery technologies tested at Dover AFB were skimmer pumping, bioslurping, and drawdown pumping.

Site characterization activities were conducted to evaluate site variables that could affect LNAPL recovery efficiency and to determine the bioventing potential of the site. Testing included baildown testing, soil sampling, soil gas permeability testing, and in situ respiration testing.

After the site characterization activities, the pilot tests for the skimmer pumping, bioslurping, and drawdown pumping were conducted. The bioslurper system was installed in existing monitoring well DM 344. The pilot test sequence was as follows: 22 hours in the skimmer configuration, approximately 86 hours in the bioslurper configuration, and an additional 44 hours in the skimmer configuration. Drawdown pumping could not be performed because the well recharged too quickly. Measurements of extracted soil gas composition, LNAPL thickness, and groundwater level were taken

throughout the testing. The volumes of LNAPL recovered and groundwater extracted were quantified over time.

Skimmer pumping was not as effective as bioslurping at recovering LNAPL from this site. Free product recovery rates decreased steadily during skimmer pumping, beginning at a rate of approximately 40 gallons/day during the initial skimmer pump test and decreasing to approximately 7 gallons/day by the end of the second skimmer pump test. In contrast, free product recovery rates during the bioslurper pump test remained relatively stable at approximately 45 gallons/day.

Groundwater recovery rates during the bioslurper pump test were high in comparison to rates during the skimmer pump tests. On average, groundwater was extracted at rates of 2,800 gallons/day during bioslurping and 400 gallons/day during skimming.

Soil gas concentrations were measured at monitoring points during the bioslurper pump test to determine whether the vadose zone was being oxygenated. Oxygen concentrations increased significantly at all monitoring points (Table 7). Oxygen concentration at monitoring point D-MPB-9.0' did not change significantly during testing, which may be due to an area of low permeability. These results correlate with results from the soil gas permeability test.

Implementation of bioslurping at the Dover AFB test site probably would facilitate enhanced recovery of LNAPL from the water table and simultaneous in situ biodegradation of hydrocarbons in the vadose zone via bioventing. However, bioslurping will result in a vapor stream requiring treatment and the extraction of significant quantities of groundwater, which will increase cost. An economically viable method of treating the off-gas and the extracted water must be found before a long-term test is feasible. The ICE vapor treatment equipment appeared to be a cost effective alternative, article ICEs, as opposed to standard thermal or adaptive combosters, that ICEs can treat higher concentrations like those 6 pserved at Borer (23,000 ppmV). But they are supplemental fuel usage vates over the 4 day bioslur per operation and cates that influent vapor concentrations.

DRAFT SITE-SPECIFIC TECHNICAL REPORT (A003)

for

SHORT-TERM PILOT TEST FOR THE BIOSLURPER INITIATIVE DOVER AFB, DELAWARE

November 10, 1995

1.0 INTRODUCTION

This report describes activities performed and data collected during a field test at Dover Air Force Base (AFB), Delaware, to compare vacuum-enhanced free-product recovery (bioslurping) to traditional free-product recovery technologies for removal of light, nonaqueous-phase liquid (LNAPL) from subsurface soils and aquifers. The field testing at Dover AFB is part of the Bioslurper Initiative, which is funded and managed by the U.S. Air Force Center for Environmental Excellence (AFCEE) Technology Transfer Division. The AFCEE Bioslurper Initiative is a multisite program designed to evaluate the efficacy of the bioslurping technology for (1) recovery of LNAPL from groundwater and the capillary fringe and (2) enhancing natural in situ degradation of petroleum contaminants in the vadose zone via bioventing.

1.1 Objectives

The main objective of the Bioslurper Initiative is to develop procedures for evaluating the potential for recovering free-phase LNAPL present at petroleum-contaminated sites. The overall study is designed to evaluate bioslurping and identify site parameters that are reliable predictors of bioslurping performance. To measure LNAPL recovery in a wide variety of in situ conditions, tests are being performed at many sites. The test at Dover AFB is one of at least 35 similar field tests to be conducted at various locations throughout the United States and its possessions. Aspects of the testing program that apply to all sites are described in the Test Plan and Technical Protocol for AFCEE or Killel et al.

Bioslurping (Battelle, 1995). Test provisions specific to activities at Dover AFB were described in the Site-Specific Test Plan provided in Appendix A.

The intent of field testing is to collect data to support determination of the predictability of LNAPL recovery and to evaluate the applicability, cost, and performance of the bioslurping

technology for removal of free product and remediation of the contaminated area. The on-site testing is structured to allow direct comparison of the LNAPL recovery achieved by bioslurping with the performance of more conventional LNAPL recovery technologies. The test method included an initial site characterization followed by LNAPL recovery testing. The three LNAPL recovery technologies tested at Dover AFB were skimmer pumping, bioslurping, and drawdown pumping. The specific test objectives, methods, and results for the Dover AFB test program are discussed in the following sections.

1.2 Testing Approach

Site characterization activities were conducted to evaluate site variables that could affect LNAPL recovery efficiency and to determine the bioventing potential of the site. Testing included baildown testing to evaluate the mobility of LNAPL, soil sampling to determine physical/chemical site characteristics, soil gas permeability testing to determine the radius of influence, and in situ respiration testing to evaluate site microbial activity.

Following the site characterization activities, the pilot tests for skimmer pumping, bioslurping, and drawdown pumping were conducted. The LNAPL recovery testing was conducted in the following sequence: 22 hours in the skimmer configuration, approximately 86 hours in the bioslurper configuration, and an additional 44 hours in the skimmer configuration. Drawdown pumping could not be performed because the well recharged too quickly. Measurements of extracted soil gas composition, LNAPL thickness, and groundwater level were taken throughout the testing. The volume of LNAPL recovered and groundwater extracted were quantified over time.

2.0 SITE DESCRIPTION

Site SS27/XYZ is the Fuel Pump Station (Building 950) located near the northwest end of the northwest/southeast runway and the fueling pads, X, Y, and Z. Underground fuel lines connect the pump station to hydrants on the fueling pads. The pump station has primarily contained JP-4 jet fuel. Base personnel observed free product floating on water in manholes, which led to an initial site investigation.

Site SS27/XYZ contains a minimal amount of surface fill material over primarily fine to medium sand changing with depth to coarse/very coarse sand to a depth of 25 to 35 ft. Discontinuous lens of clay and of gravel also are present. Depths to groundwater range from approximately 10 to 12 ft below ground level (bgl).

Figure 1 illustrates the locations of permanent monitoring wells and cone penetrometer test (CPT) points. Free product was detected at a thickness of 6.88 ft in monitoring well DM 344 and was detected at CPT-15S and CPT-18S, although no measurement of thickness could be made.

What about Well 595?

A soil gas survey also was conducted at this site in 1989. Concentrations up to 100,000 μ g/L were found primarily around the fuel lines. Groundwater at this site has been found to be contaminated with petroleum hydrocarbons up to concentrations of 80,000 μ g/L. Soil samples collected via cone penetrometer testing in 1995 have contained concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) ranging from 0.002 mg/kg up to 110 mg/kg and total petroleum hydrocarbon (TPH) concentrations of 0.1 to 1,100 mg/kg (Figure 2).

3.0 BIOSLURPER SHORT-TERM PILOT TEST METHODS

This section documents the initial conditions at the test site and describes the test equipment and methods used for the short-term pilot test at Dover AFB.

3.1 Initial LNAPL/Groundwater Measurements and Baildown Testing

Monitoring well DM 344 was evaluated for use in the bioslurper pilot testing. Initial depths to LNAPL and to groundwater were measured using an oil/water interface probe (ORS Model #1068013). LNAPL was removed from the well with a Teflon™ bailer until the LNAPL thickness could no longer be reduced. The rate of increase in the thickness of the floating LNAPL layer was monitored for approximately 6 hours using the oil/water interface probe.

Figure 1. Locations of Permanent Groundwater Monitoring Wells and Cone Penetrometer Test Points at Site SS27/XYZ, Dover AFB, DE

Figure 2. Soil Hydrocarbon Contamination as Indicated by Cone Penetrometer/Laser-Induced Fluorescence Sensor Results and Laboratory Analytical Results at Site SS27/XYZ, Dover AFB, DE

An LNAPL sample was collected after completing the baildown test and was labeled FUEL #1 (JP4). The sample was sent to Alpha Analytical, Inc., Sparks, Nevada for analysis of BTEX, TPH, and boiling point fractionation.

3.2 Well Construction Details

Existing monitoring well DM 344 was selected for use in the bioslurper pilot testing. The well is constructed of 2-inch-diameter, schedule 40 polyvinyl chloride (PVC) with a total depth of 18 ft and 10 ft of screen. A schematic diagram illustrating well construction details is provided in Figure 3.

3.3 Soil Gas Monitoring Point and Thermocouple Installation

On August 22, 1995, three monitoring points were installed in the area of monitoring well DM 344 and were labeled D-MPA, D-MPB, and D-MPC. The locations and construction details of the monitoring points are illustrated in Figures 2 and 3, respectively.

The monitoring points consisted of sets of ¼-inch tubing, with 1-inch-diameter, 6-inch-long screened areas. The screened lengths were positioned at the appropriate depths, and the annular space corresponding to the screened length was filled with silica sand. The interval between the screened lengths was filled with bentonite clay chips, as was the space from the top of the shallowest screened length to the ground surface. After placement, the bentonite clay was hydrated with water to expand the chips and provide a seal.

All monitoring points were installed in a 6-inch-diameter borehole to a depth of 9.25 ft. Screened lengths were placed at three depths: 2.5 to 3.0 ft, 5.5 to 6.0 ft, and 8.5 to 9.0 ft. Three type K thermocouples were installed in monitoring point D-MPA at depths of 3.0, 6.0, and 9.0 ft.

After installation of the monitoring points, initial soil gas measurements were taken with a GasTechtor portable O_2/CO_2 meter and a GasTech Trace-Techtor portable hydrocarbon meter. In general, oxygen limitation was observed at the deeper depths, with oxygen concentrations ranging from 0% to 4.5% at a depth of 9.0 ft (Table 1).

Schematic Diagram Illustrating Site Lithology and Construction Details of the Bioslurper Well and Soil Gas Monitoring Points at Site SS27/XYZ, Dover AFB, DE Figure 3.

Table 1. Initial Soil Gas Compositions at Site SS27/XYZ, Dover AFB, DE

Monitoring Point	Depth (ft)	Oxygen (%)	Carbon Dioxide (%)	TPH (ppmv)
D-MPA	3.0	15	6.6	16,000
	6.0	1.8	16.0	>100,000
	9.0	3.5	15.0	>100,000
D-MPB	3.0	20.5	0.7	380
	6.0	18.0	3.0	6,800
	9.0	4.5	13.2	>100,000
D-MPC	3.0	3.0	11.0	63,000
	6.0	0.5	14.0	>100,000
	9.0	0.0	16.5	>100,000

3.4 Soil Sampling and Analysis

Six soil samples were collected during the installation of monitoring point D-MPA. The soil samples were collected in brass sleeves driven down the center of the hollow-stem auger used to drill the monitoring well. The samples were labeled as follows: Dover #1-7.5-8.0, Dover #2-8.0-8.5, Dover #3-8.5-9.0, Dover #4-9.0-9.5, Dover #5-9.5-10.0, and Dover #6-10.0-10.5. The samples were placed in insulated coolers, chain-of-custody records and shipping papers were completed, and the samples were sent to Alpha Analytical, Inc., in Sparks, Nevada by overnight express. Samples Dover #3-8.5-9.0 and Dover #6-10.0-10.5 were analyzed for BTEX and TPH. Samples Dover #1 through #3 and Dover #4 through #6 were composited and analyzed for bulk density, moisture content, and porosity. Laboratory analytical reports for all samples are provided in Appendix B.

3.5 LNAPL Recovery Testing

3.5.1 System Setup

The bioslurping pilot test system is a trailer-mounted mobile unit. The vacuum pump (Atlantic Fluidics Model A100, 7.5-hp liquid ring pump), oil/water separator, and required support equipment are carried to the test location on a trailer. The trailer was located near monitoring well DM 344, the well cap was removed, a coupling and tee were attached to the top of the well, and the slurper tube was lowered into the well. The slurper tube was attached to the vacuum pump. Different configurations of the tee and the placement depth of the slurper tube allow for simulation of skimmer pumping, operation in the bioslurping configuration, or simulation of drawdown pumping as described in Sections 3.5.2, 3.5.3, and 3.5.5, respectively. An internal combustion engine (ICE) was used to treat the bioslurper system off-gas. Data from the ICE operation is provided in Appendix C. In addition, extracted groundwater was treated by passing the effluent through a bag filter, an oil/water separator, hydrophobic clay drums, and activated carbon drums (Figure 4).

A brief system startup test was performed prior to LNAPL recovery testing to ensure that all system components were working properly. The system checklist is provided in Appendix D. All site data and field testing information were recorded in a field notebook and then transcribed onto pilot test data sheets provided in Appendix E.

3.5.2 Initial Skimmer Pump Test

Prior to test initiation, depths to LNAPL and groundwater were measured. The slurper tube was then set at the LNAPL/groundwater interface with the wellhead open to the atmosphere via a PVC connecting tee (Figure 5). The liquid ring pump and oil/water separator were primed with known amounts of groundwater to ensure that any LNAPL or groundwater entering the system could be quantified. The flow totalizers for the LNAPL and aqueous effluent were zeroed, and the liquid ring pump was started on August 24, 1995, to begin the skimmer pump test. The test was operated continuously for approximately 22 hours. The LNAPL and groundwater extraction rates were monitored throughout the test, as were all other relevant data for the skimmer pump test. Test data sheets are provided in Appendix E.

Figure 4. Bioslurper System Process Flow at Site SS27/XYZ, Dover AFB, DE

Figure 5. Slurper Tube Placement and Valve Position for the Skimmer Pump Test

3.5.3 Bioslurper Pump Test

Upon completion of the skimmer pump test, preparations were made to begin the bioslurper pump test. Prior to test initiation, depths to LNAPL and groundwater were measured. The slurper tube was then set at the LNAPL/groundwater interface, as in the skimmer pump test. However, in contrast to the skimmer pump test, the PVC connecting tee was removed, sealing the wellhead and allowing the pump to establish a vacuum in the well (Figure 6). A pressure gauge was installed at the wellhead to measure the vacuum inside the extraction well. The liquid ring pump and oil/water separator were primed with known amounts of groundwater to ensure that any LNAPL or groundwater entering the system could be quantified. The flow totalizers for the LNAPL and aqueous effluent were zeroed, and the liquid ring pump was started on August 25, 1995, to begin the bioslurper pump test. The test was initiated approximately 19 hours after the skimmer pump test and was operated continuously for approximately 86 hours. The LNAPL and groundwater extraction rates were monitored throughout the test, as were all other relevant data for the bioslurper pump test. Test data sheets are provided in Appendix E.

3.5.4 Second Skimmer Pump Test

Upon completion of the bioslurper pump test, preparations were made to begin the second skimmer pump test. Prior to test initiation, depths to LNAPL and groundwater were measured. The valve and slurper tube configuration were identical to that used for the initial skimmer pump test. The liquid ring pump and oil/water separator were primed with known amounts of groundwater to ensure that any LNAPL or groundwater entering the system could be quantified. The flow totalizers for the LNAPL and aqueous effluent were zeroed, and the liquid ring pump was started on August 29, 1995, to begin the second skimmer pump test. The test was initiated approximately 5 hours after the bioslurper pump test and was operated continuously for 44 hours. The LNAPL and groundwater extraction rates were monitored throughout the test, as were all other relevant data for the bioslurper pump test. Test data sheets are provided in Appendix E.

Figure 6. Slurper Tube Placement and Valve Position for the Bioslurper Pump Test

3.5.5 Drawdown Pump Test

Upon completion of the second skimmer pump test, preparations were made to begin the drawdown pump test. Prior to test initiation, depths to LNAPL and groundwater were measured. Typically, the slurper tube is then set so that the tip is approximately 15 inches below the oil/water interface with the PVC connecting tee open to the atmosphere (Figure 7). Attempts were made several times to drawdown monitoring well DM 344. However, the well recharged so quickly, that drawdown could not be accomplished.

3.5.6 Off-Gas Sampling and Analysis

Soil gas samples were collected from the bioslurper off-gas during the bioslurper pump test. Duplicate samples were collected in Summa™ canisters prior to and after treatment through the ICE. Samples were labeled SEAL GAS #1 and SEAL GAS #2 (prior to ICE treatment) and ICE #1 and ICE #2 (after ICE treatment). An additional sample was collected from the ICE when operating on atmospheric air as a blank. This sample was labeled ICE #3-BLK. The samples were sent under chain of custody to Air Toxics, Ltd., in Rancho Cordova, California, for analyses of BTEX and TPH.

3.5.7 Groundwater Sampling and Analysis

Five groundwater samples were collected during the bioslurper pump test. Two samples were collected after all groundwater treatment and were labeled Effluent #1 and Effluent #2. One sample was collected downstream of the oil/water separator and was labeled OWS-#1. Two samples were collected from the settling tank and were labeled Pretreatment #1 and Pretreatment #2. Samples were collected in 40-mL septa vials containing HCl preservative. Samples were checked to ensure no headspace was present and were then shipped on ice and sent under chain of custody to Alpha Analytical, Inc., in Sparks, Nevada for analyses of BTEX and TPH.

NKA/Kittel/10-01

Figure 7. Slurper Tube Placement and Valve Position for the Drawdown Pump Test

3.6 Soil Gas Permeability Testing

The soil gas permeability test data were collected during the bioslurper pump test. Before a vacuum was established in the extraction well, the initial soil gas pressures at the three installed monitoring points were recorded. The start of the bioslurper pump test created a steep pressure drop in the extraction well which was the starting point for the soil gas permeability testing. Soil gas pressures were measured at each of the three monitoring points at all depths to track the rate of outward propagation of the pressure drop in the extraction well. Soil gas pressure data were collected frequently during the first 20 minutes of the test. The soil gas pressures were recorded throughout the bioslurper pump test to determine the bioventing radius of influence. Test data are provided in Appendix F.

3.7 In Situ Respiration Testing

Air containing approximately 2% helium was injected into four monitoring points for approximately 24 hours beginning on August 24, 1995. The setup for the in situ respiration test is described in the *Test Plan and Technical Protocol a Field Treatability Test for Bioventing* (Hinchee et al., 1992). A ½-hp diaphragm pump was used for air and helium injection. Air and helium were injected through the following monitoring points at the depths indicated: D-MPA-6.0′, D-MPB-9.0′, D-MPC-6.0′, and D-MPC-9.0′. After the air/helium injection was terminated, soil gas concentrations of oxygen, carbon dioxide, TPH, and helium were monitored periodically. The respiration test was terminated on August 29, 1995. Oxygen utilization and biodegradation rates were calculated as described in Hinchee et al. (1992). Raw data for these tests are presented in Appendix G.

Helium concentrations were measured during the in situ respiration test to quantify helium leakage to or from the surface around the monitoring points. Helium loss over time is attributable to either diffusion through the soil or leakage. A rapid drop in helium concentration usually indicates leakage. A gradual loss of helium along with a first-order curve generally indicates diffusion. As a rough estimate, the diffusion of gas molecules is inversely proportional to the square root of the molecular weight of the gas. Based on molecular weights of 4 for helium and 32 for oxygen, helium diffuses approximately 2.8 times faster than oxygen, or the diffusion of oxygen is 0.35 times the rate of helium diffusion. As a general rule, we have found that if helium concentrations at test completion

are at least 50 to 60% of the initial levels, measured oxygen uptake rates are representative. Greater helium loss indicates a problem, and oxygen utilization rates are not considered representative.

4.0 RESULTS

This section documents the results of the site characterization, the comparative LNAPL recovery pump test, and other supporting tests conducted at Dover AFB.

4.1 Baildown Test Results

Results from the baildown test in monitoring well DM 344 are presented in Table 2. A total volume of 25.5 L (6.74 gallons) was removed by hand bailing from monitoring well DM 344. The LNAPL thickness recovered rapidly to approximately initial levels by the end of the 6-hour test period. These results indicated that monitoring well DM 344 was suitable for bioslurper field testing.

Table 2. Results of Baildown Testing in Monitoring Well DM 344

Date-Time	Depth to LNAPL (ft)	Depth to Groundwater (ft)	LNAPL Thickness (ft)
Initial Reading 8/21/95-1130	9.22	12.95	3.73
Test Initiation 8/21/95-1155	9.7	11.68	1.98
8/21/95-1330	9.22	12.85	3.63
8/21/95-1800	9.19	12.96	3.77

4.2 Soil Sample Analyses

Table 3 shows the BTEX and TPH concentrations measured in soil samples collected from Site SS27/XYZ. BTEX and TPH concentrations were relatively high, with an average total BTEX

Table 3. BTEX and TPH Concentrations in Soil Samples from Site SS27/XYZ, Dover AFB, DE

	Concentration (mg/kg)				
Parameter	Dover #3 - 8.5-9.0	Dover #6 - 10.0-10.5			
TPH as jet fuel	580	1,300			
Benzene	1.2	20			
Toluene	5.8	2.4			
Ethylbenzene	23	45			
Xylenes	5.6	1.2			

concentration of 52 mg/kg and an average TPH concentration of 940 mg/kg. The results of the physical characterization of the soils are presented in Table 4.

4.3 LNAPL Pump Test Results

4.3.1 Initial Skimmer Pump Test Results

The LNAPL thickness prior to the initial skimmer pump test was 3.63 ft (Table 5). A total of 35.02 gallons of LNAPL was recovered during this test, with an average recovery rate of 38 gallons/day (Table 6). A total of 170 gallons of groundwater was extracted with an average extraction rate of 185 gallons/day (Table 6). Results of LNAPL recovery versus time are shown in Figure 8.

4.3.2 Bioslurper Pump Test Results

LNAPL recovery rates increased significantly during the bioslurper pump test (Figure 8). The increase in recovery rate indicates that LNAPL was mobilized to the extraction well under vacuum-enhanced conditions. A total of 173 gallons of LNAPL and 10,200 gallons of groundwater were extracted during the bioslurper pump test, with daily average recovery rates of 43 gallons/day

Table 4. Physical Characterization of Soil from Site SS27/XYZ, Dover AFB, DE

	Sa	mple
Parameter	Comp - Dover #1, #2, and #3	Comp - Dover #4, #5, and #6
Moisture Content (%)	10.4	11.0
Porosity (%)	61.9	61.5
Specific Gravity (g/cm ³)	1.01	1.02

Table 5. Depths to Groundwater and LNAPL Prior to Each Pump Test

Test	Test Start Date	Depth to LNAPL (ft)	Depth to Groundwater (ft) ¹	LNAPL Thickness (ft)
Initial Skimmer Pump Test	8/24/95	10.32	13.95	3.63
Bioslurper Pump Test	8/25/95	11.23	11.59	0.36
Second Skimmer Pump Test	8/29/95	NM	NM	_NM

NM = Not measured

Table 6. Pump Test Results at Site SS27/XYZ, Dover AFB, DE

	Initial Skim	mer Pump Test	Bioslurper Pump Test		Second Skimmer Pump Test	
Recovery Rate (gal/day)	LNAPL	Groundwater	LNAPL	Groundwater	LNAPL	Groundwater
Day 1	38.27	185	35.2	2,794	16.4	432
Day 2	NA	NA	39.87	2,851	11.87	402
Day 3	NA	NA	52.11	2,880	6.9	431
Day 4	NA	NA	45.8	2,851	NA	NA
Average	38.27	185	43.2	2,844	11.7	422
Total Recovered (gal)	35.03	170	172.81	10,238 ¹	20.86	782

NA = Not applicable.

Meter was malfunction

Meter was malfunctioning. Total volume of groundwater recovered was estimated based on an average rate.

for LNAPL and 2,800 gallons/day for groundwater (Table 6). The LNAPL recovery rate versus time is shown in Figure 9. The vacuum-exerted wellhead pressure on monitoring well DM 344 was kept relatively constant throughout the bioslurper pump test at approximately 6 inches of mercury.

Soil gas concentrations were measured at monitoring points during the bioslurper pump test to determine whether the vadose zone was being oxygenated. Oxygen concentrations increased significantly at all monitoring points (Table 7). Oxygen concentration at monitoring point D-MPB-9.0' did not change significantly during testing, which may be due to an area of low permeability. These results correlate with radius of influence results from the soil gas permeability test.

Table 7. Oxygen Concentrations During the Bioslurper Pump Test at Site SS27/XYZ, Dover AFB, DE

	Oxygen Concentrations (%) Versus Time (minutes)					
Monitoring Point	0	3.5	22	46	69	91 ¹
D-MPA-3.0'	15	17	20.4	20.5	20.9	20.9
D-MPA-6.0′	1.8	2.7	12.5	17.0	18.6	20.0
D-MPA-9.0′	3.5	1.2	7.0	10.0	13.0	20.3
D-MPB-3.0'	20.5	20.5	20	19.5	19.8	19.8
D-MPB-6.0′	18.0	20	18.9	18.5	18.3	18.5
D-MPB-9.0'	4.5	4.0	3.0	4.0	5.0	3.1
D-MPC-3.0'	3.0	8.7	11.5	19.0	19.8	17.3
D-MPC-6.0'	0.5	4.5	4.0	12.1	12.5	9.5
D-MPC-9.0'	0.0	0.0	2.0	4.8	8.0	6.6

¹ One hour after bioslurper pump shut off.

4.3.3 Second Skimmer Pump Test

Totals of 23.86 gallons of LNAPL and 782 gallons of groundwater were recovered during the second skimmer pump test, with daily average recovery rates of 12 gallons/day for LNAPL and 420

Figure 8. LNAPL Recovery Versus Time During Each Pump Test

Figure 9. LNAPL Recovery Rate Versus Time During the Bioslurper Pump Test

gallons/day for groundwater (Table 6). These results demonstrate that operation of the bioslurper system in the skimmer mode was not as effective a means of free-product recovery as the bioslurper system at this site.

4.4 Extracted Groundwater, LNAPL, and Off-Gas Analyses

During the bioslurper pump test, groundwater samples were collected at several stages through the groundwater treatment system. Results demonstrated the efficiency of the groundwater treatment system, with BTEX and TPH concentrations reduced by approximately 20% and 80%, respectively by the settling tanks and >99% after all treatment (Table 8).

Off-gas samples from the bioslurper system also were collected during the bioslurper pump test. The results from the off-gas analyses are presented in Table 9. These results demonstrated the treatment efficiency of the ICE unit, with >99% destruction of BTEX and TPH. Given a vapor discharge rate of 78 scfm and using an average concentration of 110 ppmv TPH, approximately 4.4 lb/day of TPH was emitted to the air during the bioslurper pump test. Benzene emissions were approximately 0.019 lb/day.

The composition of LNAPL is shown in Tables 10 and 11 in terms of BTEX concentrations and distribution of C-range compounds, respectively. The distribution of C-range compounds is shown graphically in Figure 10.

4.5 Bioventing Analyses

4.5.1 Soil Gas Permeability and Radius of Influence

The radius of influence is calculated by plotting the log of the pressure change at a specific monitoring point versus the distance from the extraction well. The radius of influence is then defined as the distance from the extraction well where 0.1 inch of H_2O can be measured. Based on this definition, the radius of influence at this site is approximately 37 ft (Figure 11).

BTEX and TPH Concentrations in Extracted Groundwater During the Bioslurper Pump Test at Site SS27/XXZ, Dover AFB, DE Table 8.

			Concentration (mg/L)	g/L)	
Parameter	Effluent #1	Effluent #2	OWS #1	Pretreatment #1	Pretreatment #2
ТРН	<1.0	<1.0	096	220	130
Benzene	< 0.0010	<0.0010	2.1	1.7	1.7
Toluene	0.0028	0.0028	2.2	1.8	1.9
Ethylbenzene	<0.0010	<0.0010	1.0	0.81	0.93
Total Xylenes	0.0028	0.0026	5.2	4.0	4.6

Need to illustrate changes in influent concentrations.

Need to illustrate changes in influent concentrations is

Over time. Supplemental fuel went from 7000 to

Over 15000 units from day 1 to day 4

Table 9. BTEX and TPH Concentrations in Off-Gas During the Bioslurper Pump Test at Site SS27/XYZ, Dover AFB, DE

	Concentration (ppmv) Identity at hour				
Parameter	ICE #1	ICE #2	SEAL GAS #1	SEAL GAS #2	ICE #3 - BLK
TPH as jet fuel	220	4.0	23,000	19,000	0.15
Benzene	1.9	0.0050	250	260	< 0.0020
Toluene	2.1	0.0070	310	300	< 0.0020
Ethylbenzene	0.45	0.0040	85	70	< 0.0020
Xylenes	1.3	0.011	270	210	< 0.0020
	27Aug95 1106	27Aug95	27Aug 95 1117	27Aug45 11 26	29 Aug 95 0712

Table 10. BTEX Concentrations in LNAPL from Site SS27/XYZ, Dover AFB, DE

	Check
Compound	Concentrations (mg/kg)
Benzene	1,300
Toluene	3,800
Ethylbenzene	4,000
Total Xylenes	19,000

Table 11. C-Range Compounds in LNAPL from Site SS27/XYZ, Dover AFB, DE

C-Range Compounds	Percentage of Total
<c9< td=""><td>45.5</td></c9<>	45.5
C10	11.3
C11	12.4
C12	13.2
C13	10.9
C14	4.9
C15	1.9

Figure 10. Distribution of C-Range Compounds in Extracted LNAPL at Site SS27/XYZ, Dover AFB, DE

Figure 11. Soil Gas Pressure Change as a Function of Distance During the Soil Gas Permeability Test

4.5.2 In Situ Respiration Test Results

Results from the in situ respiration test are presented in Table 12. Oxygen depletion was relatively rapid, with oxygen utilization rates ranging from 0.0013 to $0.48\%O_2/hr$. Biodegradation rates ranged from 0.021 to 7.8 mg/kg/day. The helium concentration was steady, indicating that leakage and diffusion were insignificant.

Table 12. In Situ Respiration Test Results at the Storage Tank 49 Site, Dover AFB

Monitoring Point	Oxygen Utilization Rate (%/hr)	Biodegradation Rate (mg/kg/day)
D-MPA-6.0′	0.0013	0.021
D-MPB-9.0′	0.23	3.8
D-MPC-6.0'	0.48	7.8
D-MPC-9.0'	0.28	4.6

5.0 DISCUSSION

Skimmer pumping was not as effective as bioslurping at recovering LNAPL from this site. Free product recovery rates decreased steadily during skimmer pumping, beginning at a rate of approximately 40 gallons/day during the initial skimmer pump test and decreasing to approximately 7 gallons/day by the end of the second skimmer pump test. In contrast, free product recovery rates during the bioslurper pump test remained relatively stable at approximately 45 gallons/day.

Groundwater recovery rates during the bioslurper pump test were high in comparison to rates during the skimmer pump tests. On average, groundwater was extracted at rates of 2,800 gallons/day during bioslurping and 400 gallons/day during skimming.

Soil gas concentrations were measured at monitoring points during the bioslurper pump test to determine whether the vadose zone was being oxygenated. Oxygen concentrations increased significantly at all monitoring points (Table 7). Oxygen concentration at monitoring point D-MPB-

9.0' did not change significantly during testing, which may be due to an area of low permeability. These results correlate with results from the soil gas permeability test.

Implementation of bioslurping at the Dover AFB test site probably would facilitate enhanced recovery of LNAPL from the water table and simultaneous in situ biodegradation of hydrocarbons in the vadose zone via bioventing. However, bioslurping will result in a vapor stream requiring treatment and the extraction of significant quantities of groundwater, which will increase cost. An economically viable method of treating the off-gas and the extracted water must be found before a long-term test is feasible.

6.0 REFERENCES

Battelle. 1995. Test Plan and Technical Protocol for Bioslurping, Report prepared by Battelle Columbus Operations for the U.S. Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas.

Hinchee, R.E., S.K. Ong, R.N. Miller, D.C. Downey, and R. Frandt. 1992. *Test Plan and Technical Protocol for a Field Treatability Test for Bioventing* (Rev. 2), Report prepared by Battelle Columbus Operations, U.S. Air Force Center for Environmental Excellence, and Engineering Sciences, Inc. for the U.S. Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas.

Kittel, J.A., R.E. Hinchee, and M. Raj. 1994. Full-Scale Startup of a Soil Venting-Based In Situ Bioremediation Field Pilot Study at Fallon NAS, Nevada, Report prepared by Battelle Columbus Operations, for the Naval Facilities Engineering Services, Environmental Protection Division, Port Hueneme, CA.

APPENDIX A

SITE-SPECIFIC TEST PLAN FOR BIOSLURPER FIELD ACTIVITIES AT DOVER AFB, DELAWARE

SITE-SPECIFIC TEST PLAN FOR BIOSLURPER TESTING AT SITE SS27/XYZ, DOVER AFB, DELAWARE

FINAL

PREPARED FOR:

AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE
TECHNOLOGY TRANSFER DIVISION
(AFCEE/ERT)
8001 ARNOLD DRIVE
BROOKS AFB, TEXAS 78235-5357

AND

436 SPTG/CEVR DOVER AFB, DELAWARE

2 AUGUST 1995

SITE-SPECIFIC TEST PLAN FOR BIOSLURPER TESTING AT DOVER AIR FORCE BASE, DELAWARE (A003) CONTRACT NO. F41624-94-C-8012

FINAL

to

Mr. Patrick Haas Air Force Center for Environmental Excellence Technology Transfer Division (AFCEE/ERT) 8001 Arnold Drive Building 642 Brooks AFB, Texas 78235

for

436 SPTG/CEVR Dover Air Force Base, Delaware

August 4, 1995

by

Battelle 505 King Avenue Columbus, Ohio 43201-2693 This report is a work prepared for the United States Government by Battelle. In no event shall either the United States Government or Battelle have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance upon the information contained herein, nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof.

TABLE OF CONTENTS

LIST OF TABLES	i
LIST OF FIGURES	i
1.0 INTRODUCTION	1
2.0 SITE DESCRIPTION	3
3.1 Mobilization to the Site 3.2 Site Characterization Tests 3.2.1 Baildown Tests 3.2.2 Soil-Gas Survey (Limited) 3.2.3 Monitoring Point Installation 3.2.4 Soil-Sampling 3.3 Bioslurper System Installation and Operation 3.3.1 System Setup 3.3.2 System Shakedown 3.3.3 System Startup and Test Operations 3.3.4 Soil Gas Profile/Oxygen Radius of Influence Test 3.3.5 Soil Gas Permeability Tests 3.3.6 LNAPL and Groundwater Level Monitoring 3.3.7 In Situ Respiration Test	11 11 16 16
3.4 Demobilization	
4.0 BIOSLURPER SYSTEM DISCHARGE 4.1 Vapor Discharge Disposition 4.2 Aqueous Influent/Effluent Disposition 4.3 Free-Product Recovery Disposition 1	8
5.0 SCHEDULE 2	!1
6.0 PROJECT SUPPORT ROLES 6.1 Battelle Activities 6.2 Dover AFB Support Activities 6.3 AFCEE Activities 2	21 21
7.0 REFERENCE	!4
APPENDIX A: COST AND PERFORMANCE DOCUMENT ON INTERNAL COMBUSTION ENGINES) 5

LIST OF TABLES

Table 1.	Free Product Thicknesses at Site SS27/XYZ, Dover AFB, DE	3
Table 2.	Schedule of Bioslurper Pilot Test Activities	7
Table 3.	Benzene and TPH Vapor Discharge Levels at Previous Bioslurper Test Sites	18
Table 4.	Air Release Summary Information	19
Table 5.	Effluent Groundwater Concentrations of Benzene and TPH After Treatment at	
	Previous Bioslurper Test Sites	21
Table 6.	Health and Safety Information Checklist	23
	LIST OF FIGURES	
Figure 1.	Locations of Bioslurper Initiative Sites	2
Figure 2.	Location of Temporary Monitoring Wells and Results of a Soil Gas Survey at	
	Site SS27/XYZ, Dover AFB, DE	4
Figure 3.	Locations of Permanent Groundwater Monitoring Wells and Cone	
	Penetrometer Test Points at Site SS27/XYZ, Dover AFB, DE	5
Figure 4.	Soil Hydrocarbon Contamination as Indicated by Cone Penetrometer/Laser-	
	Induced Fluorescence Sensor Results and Laboratory Analytical Results at Site	
	SS27/XYZ, Dover AFB, DE	6
Figure 5.	General Bioslurper Well and Monitoring Point Arrangement	9
Figure 6.	Schematic Diagram of a Typical Monitoring Point	10
Figure 7.	Bioslurper Process Flow at Site SS27/XYZ, Dover AFB, DE	12
Figure 8.	Schematic Diagram Illustrating Slurper Tube Placement and Valve Position for	
~ .	the Skimmer Pump Test	13
Figure 9.	Schematic Diagram Illustrating Slurper Tube Placement and Valve Position for	
T: 10	the Bioslurper Pump Test	14
Figure 10.	Schematic Diagram Illustrating Slurper Tube Placement and Valve Position for	1 5
Ti 11	the Drawdown Pump Test	15
Figure 11.	Schematic Diagram of Sealed Interface Probe for Measuring Fuel and Water	17
Figure 12.	Levels During the Bioslurper Pump Test	20
riguic 12.	Location of Compliance Monitoring Point 3, Dover AFB, DE	20

SITE-SPECIFIC TEST PLAN FOR BIOSLURPER TESTING AT DOVER AIR FORCE BASE, DELAWARE (A003)

DRAFT

to

Air Force Center for Environmental Excellence Technology Transfer Division (AFCEE/ERT) Brooks AFB, Texas 78235

August 3, 1995

1.0 INTRODUCTION

The U.S. Air Force Center for Environmental Excellence (AFCEE) Technology Transfer Division is conducting a nationwide application of an innovative technology for free-product recovery and soil bioremediation. The technology tested in the Bioslurper Initiative is vacuum-enhanced free-product recovery/bioremediation (bioslurping). The field test and evaluation are intended to demonstrate the feasibility of bioslurping by measuring system performance in the field. The Bioslurper Initiative has been designed to evaluate the effectiveness of bioslurping as a light, nonaqueous phase liquid (LNAPL) recovery technology relative to conventional gravity-driven LNAPL recovery technologies. System performance parameters, mainly free-product recovery, will be determined at numerous sites. Field testing will be performed at many sites to determine the effects of different organic contaminant types and concentrations and different geologic conditions on bioslurping effectiveness. Figure 1 illustrates the locations of Bioslurper Initiative sites.

Plans for the field test activities are presented in two documents. The first is the overall Test Plan and Technical Protocol for the entire program entitled *Test Plan and Technical Protocol for Bioslurping* (Battelle, 1995). The overall plan is supplemented by plans specific to each test site. The concise site-specific plans effectively communicate vapor and aqueous discharge rates to ensure compliance with regulatory requirements specific to the base.

The overall Test Plan and Technical Protocol was developed as a generic plan for the Bioslurper Initiative to improve the accuracy and efficiency of site-specific Test Plan preparation and ensure consistent data collection across all test sites. The field program involves installation and operation of the bioslurping system supported by a wide variety of site characterization, performance monitoring, and chemical analysis activities. The basic methods to be applied from site to site do not change. Preparation and review of the overall Test Plan and Technical Protocol allow efficient documentation and review of the basic approach to the test program. Peer and regulatory review were performed for the overall Test Plan and Technical Protocol to ensure the credibility of the overall program.

This report is the site-specific Test Plan for application of bioslurping at Dover Air Force Base (AFB), Delaware. It was prepared based on site-specific information received by Battelle from Dover AFB and other pertinent site-specific information to support the overall Test Plan and Technical

Figure 1. Locations of Bioslurper Initiative Sites

Protocol. The initial review of data for site selection for the bioslurper test site was completed on Site SS27/XYZ.

2.0 SITE DESCRIPTION

Site SS27/XYZ is the Fuel Pump Station (Building 950) located near the northwest end of the northwest/southeast runway and the fueling pads, X, Y, and Z. Underground fuel lines connect the pump station to hydrants on the fueling pads. The pump station has primarily contained JP-4 jet fuel. Base personnel observed free product floating on water in manholes, which led to an initial site investigation.

Site SS27/XYZ contains a minimal amount of surface fill material over primarily fine to medium sand changing with depth to coarse/very coarse sand to a depth of 25 to 35 ft. Discontinuous lens of clay and of gravel also are present. Depths to groundwater range from approximately 10 to 12 ft below ground level (bgl).

Figure 2 shows the location of temporary monitoring wells at Site SS27/XYZ. Free product was detected in four temporary monitoring wells (Table 1). Figure 3 illustrates the locations of permanent monitoring wells and cone penetrometer test (CPT) points. Free product was detected at a thickness of 6.88 ft in monitoring well DM344 and was detected at CPT-15S and CPT-18S, although no measurement of thickness could be made. Based on these results, monitoring wells DM344 presents the greatest likelihood of being suitable as the bioslurper test well; however, all monitoring wells in the vicinity will be investigated for possible use in the short-term test.

Table 1. Free Product Thicknesses at Site SS27/XYZ, Dover AFB, DE

Location	Free Product Thickness (inches)
GP3003	4
GP3007	59
GP3008	38
GP3009	trace
DM 344	6.88 ft

A soil gas survey also was conducted at this site in 1989, results of which are shown in Figure 1. Concentrations up to $100,000~\mu g/L$ were found primarily around the fuel lines. Groundwater at this site has been found to be contaminated with petroleum hydrocarbons up to concentrations of 80,000 $\mu g/L$. Soil samples collected via cone penetrometer testing in 1995 have contained concentrations of BTEX ranging from 0.002 mg/kg up to 110 mg/kg and TPH concentrations of 0.1 to 1,100 mg/kg (Figure 4).

Figure 2. Location of Temporary Monitoring Wells and Results of a Soil Gas Survey at Site SS27/XYZ, Dover AFB, DE

Figure 3. Locations of Permanent Groundwater Monitoring Wells and Cone Penetrometer Test Points at Site SS27/XYZ, Dover AFB, DE

Figure 4. Soil Hydrocarbon Contamination as Indicated by Cone Penetrometer/Laser-Induced Fluorescence Sensor Results and Laboratory Analytical Results at Site SS27/XYZ, Dover AFB, DE

3.0 PROJECT ACTIVITIES

The field activities discussed in the following sections are planned for the bioslurper pilot test at Dover AFB. Additional details about the activities are presented in the overall Test Plan and Technical Protocol. As appropriate, specific sections in the overall Test Plan and Technical Protocol are referenced. Table 2 presents the schedule of activities for the Bioslurper Initiative at Dover AFB.

Table 2. Schedule of Bioslurper Pilot Test Activities

Pilot Test Activity	Schedule	
Mobilization	Day 1-2	
Site Characterization	Day 2-3	
LNAPL/Groundwater Interface Monitoring and Baildown Tests		
Soil Gas Survey (Limited)		
Monitoring Point Installation (3 monitoring points)		
Soil Sampling (BTEX, TPH, physical characteristics)		
System Installation	Day 2-3	
Test Startup	- Day 3	
Skimmer Pump Test (2 days)	Day 3-4	
Bioslurper Pump Test (4 days)	Day 6-9	
Soil-Gas Permeability Testing	Day 6	
Skimmer Pump Test (continued)	Day 10	
In Situ Respiration Test - Air/Helium Injection	Day 10	
In Situ Respiration Test - Monitoring	Day 11-16	
Drawdown Pump Test (2 days)	Day 11-12	
Demobilization/Mobilization	Day 13-14	

3.1 Mobilization to the Site

After the site-specific Test Plan is approved, Battelle staff will mobilized equipment to the site. Some of the equipment will be shipped via air express to Dover AFB prior to staff arrival. The Base Point-of-Contact (POC) will have been asked in advance to find a suitable holding facility to receive the bioslurper pilot test equipment so that it will be easily accessible to the Battelle staff when they arrive with the remainder of the equipment. The exact mobilization date will be confirmed with the Base POC as far in advance of fieldwork as is possible. The Battelle POC will provide the Base POC with

information on each Battelle employee who will be on site. Battelle personnel will be mobilized to the site after confirmation that the shipped equipment has been received by Dover AFB.

3.2 Site Characterization Tests

3.2.1 Baildown Tests

The baildown test is the primary test for selection of the bioslurper test well. Baildown tests will be performed at wells that contain measurable thicknesses of LNAPL to estimate the LNAPL recovery potential at those particular wells. In most cases, the well exhibiting the highest rate of LNAPL recovery will be selected for the bioslurper extraction well. A sample of free LNAPL will be collected at this point for analyses of boiling point distribution and BTEX concentration. Detailed procedures for the baildown tests are provided in Section 5.6 of the overall Test Plan and Technical Protocol.

3.2.2 Soil-Gas Survey (Limited)

A small-scale soil gas survey will be conducted to identify the best location for installation of the bioslurping system. The soil gas survey will be conducted in areas where historical site data indicated the highest contamination levels. These areas will be surveyed to select the locations for installation of soil gas monitoring points. Monitoring points will be located in areas that exhibit the following soil gas characteristics.

- 1. Relatively high TPH concentrations (10,000 ppmv or greater).
- 2. Relatively low oxygen concentrations (between 0% and 2%).
- 3. Relatively high carbon dioxide concentrations (depending on soil type, between 2% and 10% or greater).

Additional information on the soil gas survey is provided in Section 5.2 of the overall Test Plan and Technical Protocol.

3.2.3 Monitoring Point Installation

Monitoring points must be installed to determine the radius of influence of the bioslurper system in the vadose zone. A general arrangement of the bioslurping well and monitoring points is shown in Figure 3.

Upon completion of the initial soil gas survey and baildown tests, at least three soil gas monitoring points will be installed (unless existing monitoring points are available for use) to measure soil gas changes that occur during bioslurper operation. These monitoring points should be located in highly contaminated soils within the free-phase plume and should be positioned to allow detailed monitoring of the in situ changes in soil gas composition caused by the bioslurper system. A schematic diagram of a typical monitoring point is shown in Figure 4. Information on monitoring point installation can be found in Section 4.2.1 of the overall Test Plan and Technical Protocol.

Figure 5. General Bioslurper Well and Monitoring Point Arrangement

Figure 6. Schematic Diagram of a Typical Monitoring Point

3.2.4 Soil Sampling

Soil samples will be collected from each boring to determine the physical and chemical composition of the soil near the bioslurper test site. Soil samples will be collected from the boreholes advanced for monitoring point installation at two or three locations at the site chosen for the bioslurper test. Generally, samples will be collected from the capillary fringe over the free product.

Soil samples from each boring will be analyzed for BTEX, bulk density, moisture content, particle size distribution, porosity, and TPH. Section 5.5.1 of the overall Test Plan and Technical Protocol contains additional information on field measurements and sample collection procedures for soil sampling.

3.3 Bioslurper System Installation and Operation

Once the well to be used for the bioslurper test installation at Dover AFB has been identified, the bioslurper pump and support equipment will be installed and pilot testing will be initiated.

3.3.1 System Setup

After the preliminary site characterization has been completed and the bioslurper candidate well has been selected, the shipped equipment will be mobilized from the holding facility to the test site, and the bioslurper system will be assembled. Figure 7 shows a flow diagram of the bioslurper process.

Before the LNAPL recovery tests are initiated, all relevant baseline field data will be collected and recorded. These data will include soil gas concentrations, initial soil gas pressures, the depth to groundwater, and the LNAPL thickness. Ambient soil and all atmospheric conditions (e.g., temperature, barometric pressure) also will be recorded. All emergency equipment (i.e., emergency shutoff switches and fire extinguishers) will be installed and checked for proper operation at this time.

A clear, level 20- by 10-ft area near the well selected for the bioslurper test installation will be identified to station the equipment required for bioslurper system operation. Additional information on bioslurper system installation is provided in Section 6.0 of the overall Test Plan and Technical Protocol.

3.3.2 System Shakedown

A brief startup test will be conducted to ensure that the system is constructed properly and operates safely. All system components will be checked for problems and/or malfunctions. A checklist will be provided to document the system shakedown.

3.3.3 System Startup and Test Operations

After installation is complete and the bioslurper system is confirmed to be operating properly, the LNAPL recovery tests will be started. The Bioslurper Initiative has been designed to evaluate the effectiveness of bioslurping as an LNAPL recovery test technology relative to conventional gravity-driven LNAPL recovery technologies. The Bioslurper Initiative includes three separate LNAPL recovery tests: (1) a skimmer pump test, (2) a bioslurper pump test, and (3) a drawdown pump test. Figures 8 through 10 illustrate typical well construction details and the slurper tube and valve position

Figure 7. Bioslurper Process Flow at Site SS27/XYZ, Dover AFB, DE

Figure 8. Schematic Diagram Illustrating Slurper Tube Placement and Valve Position for the Skimmer Pump Test

Figure 9. Schematic Diagram Illustrating Slurper Tube Placement and Valve Position for the Bioslurper Pump Test

NKA/Kittel/10-01d

Figure 10. Schematic Diagram Illustrating Slurper Tube Placement and Valve Position for the Drawdown Pump Test

for operation in either the skimmer, bioslurper, or drawdown configuration, respectively. The three recovery tests are described in detail in Section 7.3 of the overall Test Plan and Technical Protocol.

The bioslurper system operating parameters that will be measured during operation are vapor discharge, aqueous effluent, LNAPL recovery volume rates, vapor discharge volume rates, and groundwater discharge volume rates. Vapor monitoring will consist of periodic monitoring of TPH using hand-held instruments supplemented by two samples collected for detailed laboratory analysis. Two samples of aqueous effluent will be collected for analysis of BTEX and TPH. Recovered LNAPL volume will be recorded using an in-line flow-totalizing meter. The off-gas discharge volume will be measured using a calibrated pitot tube, and the groundwater discharge volume will be recorded using an in-line flow-totalizing meter. Section 8.0 of the overall Test Plan and Technical Protocol describes process monitoring of the bioslurper system.

3.3.4 Soil Gas Profile/Oxygen Radius of Influence Test

Changes in soil gas profiles will be measured before and during the bioslurper pump test. Soil gas will be monitored for concentrations of oxygen, carbon dioxide, and TPH using field instruments. These measurements will be used to determine the oxygen radius of influence of the bioslurper.

3.3.5 Soil Gas Permeability Tests

A soil gas permeability test will be conducted concurrently with startup of the bioslurper pump test. Soil gas permeability data will support the process of estimating the vadose zone radius of influence of the bioslurper system. Soil gas permeability results also will aid in determining the number of wells required if it is decided to treat the site with a full-scale bioslurper system. The soil gas permeability test method is described in Section 5.7 of the overall Test Plan and Technical Protocol.

3.3.6 LNAPL and Groundwater Level Monitoring

During the bioslurper pump test, the LNAPL and groundwater levels will be monitored in a well adjacent to the extraction well if such a well exists. The top of the monitoring well will be sealed from the atmosphere so the subsurface vacuum will be contained (Figure 11). Additional information for the monitoring of fluid levels is provided in Section 4.3.4 of the overall Test Plan and Technical Protocol.

3.3.7 In Situ Respiration Test

An in situ respiration test will be conducted after completion of the bioslurper pilot tests. The in situ respiration test will involve injection of air and helium into selected soil gas monitoring points followed by monitoring changes in concentrations of oxygen, carbon dioxide, TPH, and helium in soil gas at the injection point. Measurement of the soil gas composition typically will be conducted at 2, 4, 6, and 8 hours and then every 4 to 12 hours for about 2 days. Timing of the tests will be adjusted based on the oxygen-use rate. If oxygen depletion occurs rapidly, more frequent monitoring will be required. If oxygen depletion is slow, less frequent readings will be acceptable. The oxygen utilization rate will be used to estimate the biodegradation rate at the site. Further information on the procedures and data collection of the in situ respiration test is provided in Section 5.8 of the overall Test Plan and Technical Protocol.

Figure 11. Schematic Diagram of Sealed Interface Probe for Measuring Fuel and Water Levels During the Bioslurper Pump Test

3.4 Demobilization

Once all necessary tests have been completed at the Dover AFB site, the equipment will be disassembled by Battelle staff. The equipment then will be moved back to the holding facility, where it will remain until its next destination is determined. Battelle staff will receive this information and will be responsible for shipment of the equipment to the next site before they leave Dover AFB.

4.0 BIOSLURPER SYSTEM DISCHARGE

4.1 Vapor Discharge Disposition

Battelle expects that the operation of the bioslurper test system at Dover AFB will require a waiver or a point source air release registration and may require some additional permits. However, because of the short duration of the bioslurper pilot test, it can be assumed that the concentrations of TPH released to the atmosphere will be approximately 65 lb/day and benzene will be <1.0 lb/day without treatment. This value is based on the average discharge rates at two bioslurper test sites (Travis AFB and Wright-Patterson AFB) that are contaminated with a similar type of fuel as that found at Site SS27/XYZ. The discharge value may vary depending on concentrations in soil gas and the permeability of the soil. The data for benzene and TPH discharge levels for five previous bioslurper sites are presented in Table 3.

Vapor discharge will be treated through an internal combustion engine (ICE). The ICE is subject to a categorical permitting exclusion and is the best available technology for treatment of hydrocarbon vapors. The ICE is capable of >99% destruction of hydrocarbon vapors; therefore, given this treatment efficiency, vapor emissions at this site after treatment with the ICE would be <1.0 lb/day TPH and <0.01 lb/day benzene. A cost and performance document on the ICE is provided in Appendix A.

Table 3. Benzene and TPH Vapor Discharge Levels at Previous Bioslurper Test Sites

Site Location	Fuel Type	Extraction Rate (scfm)	Benzene (ppmv)	TPH (ppmv)	Benzene Discharge (lb/day)	TPH Discharge (lb/day)
Andrews AFB	No. 2 Fuel Oil	8.0	16	2,000	0.0010	0.20
Site 1, Bolling AFB	No. 2 Fuel Oil	4.0	0.20	153	0.00030	0.0090
Site 2, Bolling AFB	Gasoline	21	370	70,000	2.3	470
Johnston Atoll	Jet Fuel	10	0.60	975	0.0017	5.7
Travis AFB	Jet Fuel	20	100	10,800	0.58	130
Wright-Patterson AFB	Jet Fuel	3.0	ND	595	0	1.0

ND = Not detected.

To ensure the safety and regulatory compliance of the bioslurper system, field soil gas screening instruments will be used to monitor vapor discharge concentration. The volume of vapor discharge will be monitored daily using air flow instruments. If state regulatory requirements will not permit the expected amount of organic vapor discharge to the atmosphere, the Base POC should inform AFCEE and Battelle so that alternative plans can be made prior to mobilization to the site. Table 4 presents information typically required to complete an air release registration form.

Table 4. Air Release Summary Information

Data Item	Air Release Information
Contractor Point-of-Contact	Jeff Kittel, (614) 424-6122
Contractor address	Battelle, 505 King Avenue, Columbus, OH 43201
Estimated total quantity of petroleum product to be recovered	To be determined
Description of petroleum product to be recovered	IP-4 jet fuel
Planned date of test start	To be determined
Test duration	9-10 days (active pumping)
Maximum expected volatile organic compound level in air	~65 lb/day TPH, <1.0 lb/day benzene
Stack height above ground level	10 ft

4.2 Aqueous Influent/Effluent Disposition

The flowrate of groundwater pumped by the bioslurper will be less than 5 gpm. However, it may be necessary in Delaware to obtain a groundwater pumping waiver or registration permit. If one is required, the Base POC will inform Battelle of the necessary steps in obtaining the waiver or permit.

Operation of the bioslurper system will generate an aqueous waste discharge that will be passed through a bag filter, an oil/water separator, hydrophobic clay drums, and activated carbon drums (Figure 7). Table 5 provides effluent data for sites where groundwater has been treated in this manner. Sites not listed did not receive any treatment other than an oil/water separator. The intention of Battelle staff will be to dispose of the treated wastewater by discharge directly to the on-site surface drainage ditch connected to the Pipe Elm Branch drainage system. Compliance monitoring will be conducted at Compliance Monitoring Point 3 (Figure 12) to ensure compliance with existing regulations.

4.3 Free-Product Recovery Disposition

The bioslurper system will recover free-phase product from the pilot tests performed at Dover AFB. Recovered free product will be turned over to the Base for disposal and/or recycling. The volume of free product recovered from the Base will not be known until the tests have been performed. The maximum recovery rate for this system is 5 gpm, but the actual rate of LNAPL recovery likely will be much lower.

Figure 12. Location of Compliance Monitoring Point 3, Dover AFB, DE

Table 5. Effluent Groundwater Concentrations of Benzene and TPH After Treatment at Previous Bioslurper Test Sites¹

Site Location	Fuel Type	Benzene (mg/L)	TPH (mg/L)
Andrews AFB	No. 2 Fuel Oil	0.096	270
Travis AFB	Jet Fuel	1.0	17

Groundwater effluent at Bolling AFB, Johnston Atoll, and Wright-Patterson AFB were discharged with less treatment, and are therefore not presented in this table.

5.0 SCHEDULE

The schedule for the bioslurper fieldwork at Dover AFB will depend on approval of the project Test Plan. Battelle will determine a definitive schedule as soon as possible after approval is received. Battelle will have two to three staff members on site for approximately 2 weeks to conduct all necessary pilot testing. At the conclusion of the field testing at Dover AFB, all staff will return their Base passes. Battelle staff will remove all bioslurper field testing equipment from the Base before they leave the site.

6.0 PROJECT SUPPORT ROLES

This section outlines some of the major functions of personnel from Battelle, Dover AFB, and AFCEE during the bioslurper field test.

6.1 Battelle Activities

The obligations of Battelle in the Bioslurper Initiative at Dover AFB will be to supply the staff and equipment necessary to perform all the tests on the bioslurper system. Battelle also will provide technical support in the areas of water and vapor discharge permitting, digging permits, staff support during the extended testing period, and any other technical areas that need to be addressed.

6.2 Dover AFB Support Activities

To support the necessary field tests at Dover AFB, the Base must be able to provide the following:

a. Any digging permits and utility clearances that need to be obtained prior to the initiation of the fieldwork. Any underground utilities should be clearly marked to reduce the chance of utility damage and/or personal injury during soil gas probe and possible well installation. Battelle will not begin field operations without these clearances and permits.

- b. The Air Force will be responsible for obtaining Base and site clearance for the Battelle staff that will be working at the Base. The Base POC will be furnished with all necessary information on each staff member at least one week prior to field startup. We have been informed that this site is a controlled area subject to more stringent security requirements; therefore, the Base will be responsible for ensuring that these security requirements are met.
- c. Access to the on-site surface drainage ditch connected to the Pipe Elm Branch drainage system must be furnished so that Battelle staff can discharge the bioslurper aqueous effluent directly to the drainage ditch.
- d. Regulatory approval, if required, must be obtained by the Base POC prior to startup of the bioslurper pilot test. As stated previously, it is likely that a waiver or permit to allow air releases or a point source air release registration will be required for emissions of approximately 65 lb/day of TPH and <1.0 lb/day benzene without treatment. A waiver for pumping and discharging groundwater at a rate of 5 gpm may be required. The Base POC will obtain all necessary Base permits prior to mobilization to the site. Battelle will provide technical assistance in preparing regulatory approval documents.
- e. The Base also will be responsible for the disposition of all waste generated from the pilot testing. Such waste includes any soil cuttings generated from drilling, and all aqueous wastestreams produced from the bioslurper tests. All free product recovered from the bioslurper operation will be disposed of or recycled by the Base. Battelle will provide technical assistance in disposing of the waste generated from the bioslurper pilot test.
- f. Before field activities begin, the Health and Safety Plan will be finalized with information provided by the Base POC. Table 6 is a checklist for the information required to complete the Health and Safety Plan. All emergency information will be obtained by the Site Health and Safety office before operations begin.

6.3 AFCEE Activities

The AFCEE POC will act as a liaison between Battelle and Dover AFB staff. The AFCEE POC will ensure that all necessary permits are obtained and the space required to house the bioslurper field equipment is found.

The following is a listing of Battelle, AFCEE, and Dover AFB staff who can be contacted in case of emergency and/or for required technical support during the Bioslurper Initiative tests at Dover AFB.

Table 6. Health and Safety Information Checklist

Emergency Contacts		Name	Telephone Number	
Hospital:	Dover AFB		(302) 677-2600	
	Kent General Hospital		(302) 734-4700	
Fire Departm	nent	Emergency Switchboard	(302) 677-2117	
Ambulance :	and Paramedics	Emergency Switchboard	(302) 677-2118	
Police Depar	rtment	Emergency Switchboard	(302) 677-6664	
Explosives (Unit			
EPA Emerg	ency Response Team	Switchboard	(908) 321-6660	
Other				
	Program Contacts			
Air Force		Patrick Haas	(210) 536-4314	
Battelle		Jeff Kittel	(614)424-6122	
		Eric Drescher	(614) 424-3088	
Dover AFB		Mick Mikula	(302) 677-6845	
Other				
	Emergency Routes			
Hospital (ma	aps attached)			
Other			•	

Battelle POCs	Jeff Kittel	(614) 424-6122
_	Eric Drescher	(614) 424-3088
AFCEE POC	Patrick Haas	(210) 536-4314
Dover AFB POC	Mick Mikula	(302) 677-6845
Regulatory POCs		
Delaware UST Branch	Frank Gavas	(302) 323-4588
U.S. EPA Region 3	Nicholos DiNardo	(215) 597-7858

7.0 REFERENCE

Battelle. 1995. Test Plan and Technical Protocol for Bioslurping. Prepared by Battelle Columbus Operations for the U.S. Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas.

COST AND PERFORMANCE DOCUMENT ON INTERNAL COMBUSTION ENGINES

A PERFORMANCE AND COST
EVALUATION OF INTERNAL
COMBUSTION ENGINES FOR
THE DESTRUCTION OF HYDROCARBON
VAPORS FROM FUEL-CONTAMINATED SOILS

AUGUST 1994

Distribution is unlimited; approved for public release

ENVIRONMENTAL SERVICES OFFICE AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE (AFCEE)

SECTION 1

INTRODUCTION

This document describes the performance and costs associated with a modified internal combustion engine (ICE) used for the destruction of hydrocarbon vapors extracted from fuel contaminated soils. During the period of 18 October 1993 to 14 January 1994, an ICE treatment system manufactured by VR Systems Inc. in Anaheim, California was tested at the Patrick Air Force Base (AFB), Florida, active Base Exchange (BX) service station. The ICE test was conducted in conjunction with an ongoing soil vapor extraction/bioventing pilot test directed and funded by the Air Force Center for Environmental Excellence (AFCEE), Technology Transfer Division (ERT). The purpose of this test was to independently measure both the performance and the cost of ICE operation, and to determine how this technology can be most effectively used to complement the bioventing technology.

Bioventing is an *in situ* remediation technology which is best suited for less volatile hydrocarbons commonly found in jet fuels, diesel fuels, and heating oils. Bioventing can be accomplished through air injection or extraction; however, injection of air into sites contaminated with more volatile hydrocarbon products (e.g., gasoline) can result in uncontrolled migration of high concentrations of volatile organic compounds (VOCs). One solution to this problem is the use of soil vapor extraction techniques during the initial months of remediation to remove and treat high levels of soil gas VOCs. Additionally, while the VOCs are being extracted from the soil, they are displaced by atmospheric air which contains the oxygen (i.e., electron acceptor) required to subsequently promote *in situ* biodegradation. This short period of vapor extraction is then followed by long-term air injection to provide oxygen for the biodegradation of less volatile or adsorbed hydrocarbons in the soil.

In many states, VOCs must be treated before discharge into the atmosphere. In the State of Florida, soil vapor extraction must include a vapor treatment technology capable of removing 99 percent of the VOCs prior to discharge. Activated carbon cannisters and thermal destruction units, such as ICEs, are used for treatment of hydrocarbon vapors. Significant information on the performance and cost of activated carbon is already available. Less information is available on ICE performance, particularly data that have been independently measured and verified.

This document is organized into five sections including this introduction. Section 2 provides a more complete description of the technology and the vendor's information on performance and cost. Section 3 reports the results of the 3-month field test with an emphasis on VOC destruction efficiency, operating costs, and reliability and

maintainability issues. Section 4 provides a summary of this technology evaluation and discusses how this technology can best be integrated into an *in situ* bioventing project. Section 5 includes the references cited in this report.

SECTION 3

FIELD DEMONSTRATION RESULTS

3.1 SITE DESCRIPTION

An extended pilot study evaluation of the Model V3 vapor extraction ICE unit was conducted between October 18, 1993 and January 14, 1994. The field demonstration was performed at Patrick AFB, Florida at the BX Service Station.

The BX Service Station site is part of an ongoing bioventing pilot test study. Soil and groundwater contamination exists from previous unleaded gasoline leaks from underground storage tanks (USTs). A soil gas survey was initially conducted to verify site conditions, and to ensure that sufficient soil contamination existed to conduct the bioventing pilot test. The initial soil gas sample laboratory results ranged from 38,000 parts per million, volume per volume (ppmv) to 100,000 ppmv for total volatile hydrocarbons (TVH) within the study area (ES, 1993).

The average water table depth is approximately 5 feet below ground surface (bgs). A horizontal vent well (HVW) was installed at 4 feet bgs as part of the bioventing pilot test. The HVW was placed in the center of the highest TVH readings obtained during the initial soil gas survey at this site. The HVW was constructed of 4-inch, Schedule 40 polyvinyl chloride (PVC) pipe with 30 feet of 0.03-inch slotted well screen. The entire length of screened interval was placed within the contaminated soil area. The entire study area at this site is paved, which significantly reduces or eliminates the potential for short-circuiting and increases the area of influence for air injection or soil vapor extraction through the HVW.

Because initial soil vapor concentrations at this site were very high, bioventing through the use of air injection was ruled out due to the potential for vapor migration. Soil vapor extraction was required to significantly reduce soil vapor concentrations before the system could be converted to a more standard air injection bioventing system. Several emission control technologies were evaluated based on efficiency, maximum TVH influent concentration capacities, maintenance requirements, and cost over the period necessary for vapor extraction. Based on the technology review, a decision was made to use the ICE vapor extraction system manufactured by VR Systems, Inc. and to evaluate its performance and cost of operation.

3.2. REGULATORY APPROVAL/REQUIREMENTS

Florida Department of Environmental Protection (FDEP) policy states that all vacuum extraction units must use a catalytic or thermal oxidation device, or its

equivalent (carbon absorption), to reduce VOC emissions by at least 99 percent during the first two months of operation. After 2 months of operation, the reduced untreated effluent concentrations are evaluated with the SCREEN air modeling program. If the results show that the emissions are below acceptable ambient air standards at the area of greatest impact, the air emissions controls may be discontinued after concurrence from the FDEP.

3.3 TEST CONDITIONS

Table 2.2 provides the performance specifications for the V3 model. The range of extraction flow rates for this model is 0 to 250 scfm, with a vacuum capacity of up to 245 inches of water. During the initial 2-day demonstration, a maximum flow rate of 150 scfm was established. This flow rate was used because it was the maximum achievable through the HVW and required the least amount of supplemental fuel. During the extended test, an average flow rate of 80 scfm was used. The reduction in flow from 150 scfm to 80 scfm was due primarily to a higher water table condition which restricted air flow through the HVW. When a higher vapor extraction flow rate was attempted, the greater vacuum produced a mounding of the water table into the HVW.

A 55-gallon condensate knockout drum was installed between the HVW and the VR Systems unit. The drum was installed to reduce the potential for high-humidity soil gas (>95% relative humidity) condensing and accumulating within the intake hose and filter assembly that would result in a high-water shut down of the system. Following the installation of the drum, no significant accumulation of condensate occurred in the lines.

Propane was used as the supplemental fuel during the test. For the extended test period, a 500-gallon propane tank was setup approximately 30 feet from the VR System unit. During the test period, a local propane distributor would top off the propane tank approximately twice per week. This servicing was performed with the system operating and no supervision was needed during this activity.

3.4 OBSERVED PERFORMANCE

3.4.1 Initial 2-Days at 150 SCFM

Table 3.1 reflects the changes in influent concentrations over time for TVH and BTEX during the initial 2 days of the test. The average flow rate during this period was 150 scfm at an average engine speed of 1,790 rpm. Due to the age and natural weathering of the gasoline spill, initial BTEX concentrations at this site comprised a relatively small fraction of the TVH.

TABLE 3.1

CHANGE IN INFLUENT CONCENTRATIONS FOR TVH AND BTEX OVER TIME @ 150 SCFM VAPOR EXTRACTION/INTERNAL COMBUSTION ENGINE EVALUATION PATRICK AFB, FLORIDA

•	Conce	ntrations
Influent Constituent	Initial (ppmv)	After 2-Days (ppmv)
TVH Benzene Toluene Ethylbenzene Xylenes	47,000 15 14 200	7,800 4.7 12 110

Below Detection Limit.

During the 2-day initial test period, a variety of rpm ranges were used to find the optimum engine speed which yielded the highest vapor flow from the well, while using the least amount of supplemental propane. Also, during the initial 13 hours of operation, the VR System engine was treating a severely oxygen-depleted soil gas. Bioactivity in the area had completely depleted soil gas oxygen supplies. Adjustments by the onboard computer of the influent flow rates were made to maintain the proper oxygen/fuel ratio and a VOC destruction efficiency of >99 percent. As the influent soil gas was oxygen depleted (<2%), the computer had to compensate by adding dilution air through the carburetor and supplemental propane until the soil gas oxygen supply increased to greater than 17 to 18 percent. The majority of the supplemental fuel used over the course of the 2-day test was consumed during this initial 13-hour adjustment period.

Propane consumption during the initial 2 days (44 hours) was 1,925 cubic feet (cf) at an average rate of 43.75 cf/hour. Propane costs during this test were \$0.80 per gallon. Using a conversion factor of 36 cf/gallon of propane, an average cost for the supplemental fuel propane was approximately \$1.00/hr. Based on laboratory influent and effluent sampling results, the cost per kilogram (kg) of TVH and BTEX destroyed was calculated. Based on the laboratory results and an initial flow rate of 150 scfm, a graphical representation of the cost per kg of TVH and BTEX destroyed was generated for the initial 800,000 scfm of soil gas treated during the first 5 days of operation (Figure 3.1). During this period, the average operating cost was \$325.00 per day. A breakdown of the daily operating cost is as follows:

Figure 3.1
Cost Per Kilogram of BTEX and TVH Destroyed at 150 SCFM Initial Flow Rate

Equipment rental

\$230.00/day,

Supplemental fuel (propane)

\$24.00 to \$57.00/day, and

· Labor (1 hour per day)

\$50,00/hour to check on and sample system.

As the actual daily costs ranged from \$305.00 to \$337.00, an average daily cost of

During the initial startup of vapor extraction, the soil gas being removed will typically be oxygen depleted and contain elevated concentrations of inert gases, such as methane, which are produced by the in situ biological activity. During the initial 800,000 scfm of soil gas removal at Patrick AFB, a wide range of operating costs were observed. After the initial soil gas has been displaced by oxygenated soil gas, the need for dilution air subsided and contaminant destruction rates became more uniform.

The ratio of BTEX to TVH at this site is not representative of a recent spill or leak, where BTEX comprises up to 20 percent of the TVH. It appears that the majority of the BTEX constituents normally expected within unweathered gasoline were no longer present. During the inItial startup period at this site, the BTEX percentage of TVH averaged 5 percent, indicating an older, weathered fraction of gasoline. The cost for each kg of BTEX destroyed will vary based on the site-specific BTEX concentrations.

3.4.2 Long-Term (Weeks 2-13) Performance

During the extended test period, the average flow rate was reduced from 150 scfm (initially) to 80 scfm due to a higher water table which reduced the HVW efficiency. Along with a reduction in influent flow rates, the onboard computer was programmed to operate the engine to create between 7 and 11 inches of water vacuum to prevent high-water shut down of the equipment. Limitations placed on the vacuum reduced the Despite these inefficiencies, the primary goals of determining the destruction efficiency, operating cost range, reliability, and maintainability were successfully achieved during the evaluation.

3.4.3 Destruction Efficiency

The VR System provided greater than 99-percent destruction efficiency for BTEX and greater than 96-percent destruction efficiency for TVH throughout the test period. Figure 3.2 illustrates the range of soil gas influent BTEX and TVH concentrations encountered during the test and the significant reduction that occurred as a result of 80 days of soil vapor extraction and ICE treatment. Figure 3.3 illustrates the destruction efficiencies that were achieved. A 4-percent reduction in TVH destruction efficiency occurred when the engine rings and valves began to wear, allowing a fraction of the supplemental propane to pass unburned through the engine exhaust. When a new replacement unit was installed at the site, destruction efficiencies returned to greater than 99 percent for all hydrocarbons. It is important to note that laboratory analysis confirmed that the unburned fuel was propane and not BTEX compounds from the soil vapor extraction system. Weekly monitoring of influent and effluent TVH is

Figure 3.2

APPENDIX B

LABORATORY ANALYTICAL REPORTS

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183 Boise, Idaho (208) 336-4145

Las Vegas, Nevada (702) 386-6747

ANALYTICAL REPORT

Battelle 505 King Ave Columbus Ohio 43201 Job#: G462201-30A0101 Phone: (614) 424-6199

Attn: Al Pollack

Sampled: 08/27/95 Received: 08/29/95 Analyzed: 08/30-09/12/95

Matrix: [] Soil [X] Water [] Waste

Analysis Requested: TPH (Gasoline) - Total Petroleum Hydrocarbons-

Purgeable Quantitated as Gasoline

TPH (Diesel) - Total Petroleum Hydrocarbons-

Extractable Quantitated as Diesel

BTXE - Benzene, Toluene, Xylenes, Ethylbenzene

_Methodology: TPH - Modified 8015/DHS LUFT Manual/BLS-191

BTXE - Method 624/8240

Results:

Client ID/ Lab ID	Parameter	Concentration	Detection Limit
Effluent #1 /BMI082995-01	TPH (Gasoline) TPH (Diesel) Benzene Toluene Total Xylenes Ethylbenzene	ND ND ND 2.8 2.8 ND	0.50 mg/L 1.0 mg/L* 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L
Effluent #2 /BMI082995-02	TPH (Gasoline) TPH (Diesel) Benzene Toluene Total Xylenes Ethylbenzene	ND ND ND 2.8 2.6 ND	0.50 mg/L 1.0 mg/L* 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L
OWS #1 /BMI082995-03	TPH (Gasoline) TPH (Diesel) Benzene Toluene Total Xylenes Ethylbenzene	33 960 2,100 2,200 5,200 1,000	25 mg/L 1.0 mg/L* 50 ug/L 50 ug/L 50 ug/L 50 ug/L

Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044 FAX: 702-355-0406

1-800-283-1183

Boise, Idaho (208) 336-4145

Las Vegas, Nevada (702) 386-6747

Continued:

Client ID/ Lab ID	Parameter	Concentration		ction mit
Pretreatment #1 /BMI082995-04	TPH (Gasoline) TPH (Diesel) Benzene Toluene Total Xylenes Ethylbenzene	51 220 1,700 1,800 4,000 810	25 1.0 50 50 50 50	mg/L mg/L* ug/L ug/L ug/L
Pretreatment #2 /BMI082995-05	TPH (Gasoline) TPH (Diesel) Benzene Toluene Total Xylenes Ethylbenzene	100 130 1,700 1,900 4,600 930	25 1.0 50 50 50 50	mg/L mg/L* ug/L ug/L ug/L

* - Detection limit was increased due to the small sample volume provided by the client.

ND - Not Detected

Approved by:/

Roger L. Scholl, Ph.D.

Laboratory Director

Page 2 of 2

Date:

9/18/95

CHAIN OF CUSTODY RECORD

Form No. _

 ℓ_f

Columbus Laboratories	ries				1.1						
Proj. No.	Proj	Project Title Bioslur PFR			7	SAN	SAMPLE TYPE (\bigvee)	· S			
C462201-30A0101	-,	Douer AFR	ı	QH	181					:	
SAMPLERS: (Signature)	ature)	Jon Easter		HUL 1	(19 _k 0)				-14 rouie	old naming the state of the sta	
DATE	TIME	SAMPLE 1.D.	.D.	BTEX, F						N	Remarks
27 AUG 95	5460	Efflornt	1 #	X	.,					7	C/HY/Carbon facilies
27 AUG 95 +	200	Effrent	42	×	~					3	c/ny/ear bon fruted
	010	0W5-#1		7	₽ ¹		,			M	Down & treem of-septet
	2 201	The treubunt	1#	>					-	W	Settle tank
/	5201	PPE treatment	#2	<u>ک</u>		•				2	Se Hling tonk
s.					*	•					j
							2				
					2						
		· .	yên,		The state of the s						
					; -42		-				
			32.				, je				
:				í	1						
										,	
					:						
Relinquished by: (Sighature)	Sighature)	Date/Time Re	Received by: (Signatur	re)	Relir	Relinquished by: (Signature)	Signature)	Da	Date/Time	Received by:	by:
() un bendy	Lts.	201 /July 1035			1-12 m.				· !	(Signature)	(9)
Refinquished by:/(Signature)	Signature)	Date/Time Re	Received by:		Relin	Relinquished by: (Signature)	Signature)	Da	Date/Time	Received by:	l by:
			(Signature)		. \					(Signature)	(e)
Relinquished by: (Signature)	Signature)	Date/Time Re	Received for Laborator	ory by:		Date/Time	Remarks	SEAD	RESULTS	10	A BOLEY
•		<u>(8)</u>	(Signature)	13	72	198 1920	ANA LA	ار ادار ادار	入りた	der	10284 HO, cold 43201
										_	

Billing Information:			-Alpha-Analytical, Inc. 255 Glendale Avenire Suite 21	al, Inc.					
Address			Sparks, Nevada 89431			. 4-		•	
City State Zin			Phone (702) 355-10	44		•••	`	_	-:
Phone Number			Fax (702) 355-0406		Indust.	Page #	of		
Client Name)		D.A.	PO.#/6/201- 3	30,40/011	0	Analyses Required	uired		
Address		Pho	one #				111	T-	
City, State, Zip	* 1 1	Report Attention	* Jollah		1 X		<i></i>		
Time Date Type*	Sampled by	Olikne		Number		<i></i>	<u></u>	_	
Below 7	Lab ID Number	Sample Description		Containers	7174	/ / /		Remarks	ırks
I TULY TH EBB	1084 XXV.	74317/353	17	(L)	XXX				
	·	= 7WZ171 353	#X		×				
7	13	5		ς ×	メ			1	
7	-60·	Me Clentinen	£ #/	W X	X			l' / -	
7	05	MI THESE	6#3	ω	メ				
						<u> </u>			
						· · · · · · · · · · · · · · · · · · ·			
						7			
									a a
				,			,		
	1	= = = = = = = = = = = = = = = = = = = =				1			
		-				\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,		
						1	3		. [.
		1				1			
					440.	, :	, , , , , , , , , , , , , , , , , , ,		
, Signature		Print Name			Company	ny,	-	Date	Τ̈́
Relinquished by	,	/ / / /			عملي ه	1	**	/ / /	
Received by King	Time I want	7 Epu17/	ELMER	4	1-66	; · · /		3465/8	09
Relinquished by					• .•	\	7	. / /	
Received by									
Relinquished by	1				-				
Received by									

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

*Key: AQ - Aqueous SO - Soil WA - Waste OT - OTher

ALPHA ANALYTICAL

SPARKS NV 89431

255 GLENDALE AVENUE, SUITE 21

Sierra Environmental Monitoring, Inc.

Date

: 9/06/95

Client : ALP-855

Taken by: CLIENT

Report : 14112

PO#

						Page: 1
V	Colle	cted	MOISTURE CONTENT	DENSITY	POROSITY	
Sample	ùate	Time	*	G/CM3	, %	
BMI082395-01/03 COMP - DOVER BMI082395-04/06 COMP - DOVER	8/21/95 8/21/95	:	10.4% 11.0%	1.01 1.02	61.9% 61.5%	

Rec. 95/

Approved By:

This report is applicable only to the sample received by the laboratory. The liability of the laboratory is limited to the amount paid the received by the client to whom it is addressed and upon the condition that the client assumes all liability for the further distribution of the report or its contents.

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183

Boise, Idaho (208) 336-4145 Las Vegas, Nevada (702) 386-6747

ANALYTICAL REPORT

Battelle 505 King Ave

Columbus Ohio 43201

Job#: 6462201-30A0101 Phone: (614) 424-5412

Attn: Al Pollock

Sampled: 08/21/95 Received: 08/23/95 Analyzed: 08/25/95

Matrix: [X] Soil [

] Water

] Waste

Analysis Requested: TPH - Total Petroleum Hydrocarbons-Purgeable

Quantitated As Gasoline

BTXE - Benzene, Toluene, Xylenes, Ethylbenzene

Methodology:

TPH - Modified 8015/DHS LUFT Manual/BLS-191

BTXE - Method 624/8240

Results:

Client ID/ Lab ID	Parameter	Concentration		ction mit
Dover #3 - 8.5-9.0 /BMI082395-03	TPH (Purgeable) Benzene Toluene Total Xylenes Ethylbenzene	580 1,200 5,800 23,000 5,600	20 40 40 40 40	mg/Kg ug/Kg ug/Kg ug/Kg ug/Kg
Dover #6 - 10.0-10.5 /BMI082395-06	TPH (Purgeable) Benzene Toluene Total Xylenes Ethylbenzene	1,300 20,000 2,400 45,000 1,200	20 40 40 40 40	mg/Kg ug/Kg ug/Kg ug/Kg ug/Kg

Approved by:

Roger E. Scholl, Ph.D. Laboratory Director

Scholl Date: 8

Time 01-03 5 23 Date 8 Analyses Required Company 255 Glendale Avenue, Suite 21 Alpha Analytical, Inc. Containers Number , 162201-30. Sparks, Nevada 89431 Phone (702) 355-1044 Fax (702) 355-0406 B V 8.0 Sample Description Print Name Report Attention I the 1th 03 08238-01 04 \widetilde{O} Sampled by Lab ID Number Signature Billing Information: Time Date Type*
Sampled Sampled See Key
Below 0 7 Relinquished by Phone Number City, State, Zip Relinquished by Relinquished by City, State, Zip Received by Client Name Received by Received by Address Address Name

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. Ther

neon

L / A // A MCHAIN OF CUSTODY RECORD Battelle DATA to 1

100

Form No.

1	£.	. \$	to fo forsiner	C Remarks	J.	94	BTEX/TPH) &	2.9	2	BTEX/TON							Received by:	(Signature)	Received by:	(Signature)	R BTEX/TPH	-3 AS ONE SAMPLE.	the	
ANALYTICAL	. (" // //	olner No	tnoO)	/									. 4.	:	Date/Time	i i i i i i i i i i i i i i i i i i i	Date/Time		ANAMUZE FOR	. — . . L.	0 70	L' . O CANDINE
TO HIMMA AN	SAMPLE TYPE (V)	1 / /20/ 50		245,0M	- -	\ \	X	-	× .	*	-		5 A				Relinquished by: (Signature)		Relinquished by: (Signature)		Date/Time Remarks	123/2 1015 then		,
TI JOLLANK (BATELLE)		Ho	をかり入しいからからから	SAMPLE 1.D. BANDLE 1.D.	-7.5-8.0	XX 5.8-0.8- XX	18.5-9.0	x x 2 -0.6 - 4x	#5-9,5-10,0	XXX X 501-0,01-10,8							Received by: (Signature)	ممن	Received by:	(Signature)	T	(Signature)		
Columbus Laboratories 17 L / 2012,		CYLIZOI-SOAOIOI DOVER AFB	SAMPLERS: (Signature)	DATE TIME	2/ AUG 95 [DUER #1	Dough	DOVER #3	Daver	DOVER	₩ TONER							Relinquished by: (Signature) Date/Time	Buy Lewigh strog 1000	Relinquished by: (signature) Date/Time		Relinquished by: (Signature) Date/Time			

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431 (702) 355-1044

FAX: 702-355-0406 1-800-283-1183

Boise, Idaho (208) 336-4145

Las Vegas, Nevada (702) 386-6747

ANALYTICAL REPORT

Battelle

505 King Ave

Columbus Ohio 43201

ЈоБ#: G462201-30A0101

Phone: (614) 424-6122

Attn: Al Pollack

Alpha Analytical Number: BMI082995-06

Client I.D. Number: Fuel #1 (JP-4)

Compound	Method	Concentration ug/Kg	Detection Limit ug/Kg	Date Analyzed
Benzene	8240	1,300,000.00	500,000.00	08/30/95
Toluene	8240	3,800,000.00	500,000.00	08/30/95
Total Xylenes	8240	19,000,000.00	500,000.00	08/30/95
Ethylbenene	8240	4,000,000.00	500,000.00	08/30/95
C-range Compounds	Method	Percentage of Total	Detection Limit (Not Applicable)	Date Analyzed
C9<	GC/FID	45.5	NA	09/06/95
C10	GC/FID	11.3	NA	09/06/95
C11	GC/FID	12.4	NA	09/06/95
C12	GC/FID	13.2	NA	09/06/95
C13	GC/FID	10.9	NA	09/06/95
C14	GC/FID	4.9	NA	09/06/95
C15>	GC/FID	1 9	NA NA	09/06/95

Approved by: _/

Roger L. Scholl, Ph.D. Laboratory Director

00 S Form No.

CHAIN OF CUSTODY RECORD

Remarks iolts to: AL POLLACK. SOS KINGAUE, COLUMBUS, OA Received by: Received by: (Signature) (Signature) Containers ło Number Container No. Date/Time Date/Time SAMPLE TYPE (V) B4(4.11. Remarks Relinquished by: (Signature) Relinquished by: (Signature) Date/Time HGT \ X3T8 101 e. ¥., Received for Laboratory by: Received by: (Signature) Received by: ・イグアム (Signature) (Signature) Project Title Bioslur And SAMPLE 1.D. DOVER AFF Osa | Ħ Date/Time Date/Time Date/Time Fue/ 12 nAvo Grey Handington TIME Relinquished by: (Signature) Relinquished by: (Signature) Relinquished, by: (Signature) SAMPLERS: (Signature) 6 462201-30A0101 Columbus Laboratories 25 AUG 95 DATE Proj. No. ξ

Battelle

Billing Information:	on:	Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21	e e e e e e e e e e e e e e e e e e e		
Address City, State, Zip		Sparks, Nevada 89431 Phone (702) 355-1044 Fax (702) 355-0406		_	
Phone Number Client Name	1100	I PAWATE	Hage#o		
Address	ether	Phone # 2701 - 374010	Analyses Required		
City, State, Zip		Report Attention	1 Sec. 3/2/2		
Tract	Sampled by	Wimber Mimber		_	
Time Date Iype Sampled Sampled Sampled		Cample Description		Remarks	
S/or Delow	Rin	The Camping of the things			
	-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
					1
					ļ
					- 1
					-
			:	4.	1
					- 1
	- Signature	Print Name	Company	Date Time	1 . 1
Relinquished by					
Received by	THE YOUR	(Indis (ELINER!	MAZ	8/29/15 09	14
Relinquished by	X			, ,	- 1
Received by					
Relinquished by					
Received hy	/				

. .

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

O

- Wa

y: A(neou so.

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 9508255

Work Order Summary

CLIENT:

Mr. Eric Dreschler

BILL TO: Same

Battelle Memorial Institute

505 King Avenue Columbus, OH 43201

PHONE:

614-424-3753

INVOICE # 7897

FAX:

614-424-3667

P.O. # 91221

DATE RECEIVED:

8/30/95

PROJECT # G462201-30A0101 Bioslurper/Dover AFB

DATE COMPLETED: 9/6/95

AMOUNT\$: \$701.38

			RECEIPT	
FRACTION#	<u>NAME</u>	TEST	VAC./PRES.	PRICE
01A	9529/1143 ICE #1	TO-3	2.0 "Hg	\$120.00
02A	9398/0836 ICE #2	TO-3	2.0 "Hg	\$120.00
03A	9443/0747 SEAL GAS #1	TO-3	1.5 "Hg	\$120.00
04A	9505/0952 SEAL GAS #2	⁻ TO-3	1.0 "Hg	\$120.00
05A	9432/0936 ICE #3-BLK	TO-3	0.2 psi	\$120.00
06A	Lab Blank	TO-3	NÃ	NC

Misc. Charges

1 Liter Summa Canister Preparation (5) @ \$10.00 each.

\$50.00

Shipping (8/18/95)

\$51.38

Laboratory Director

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630 (916) 985-1000 · (800) 985-5955 · FAX (916) 985-1020

SAMPLE NAME: 9529/1143 ICE #1

ID#: 9508255-01A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

GC/PID

File Name: 6083119 Dil. Factor: 110		18.70	Date of Collection: Date of Analysis: 8	
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.11	0.36	1.9	6.2
Toluene	0.11	0.42	2.1	8.0
Ethyl Benzene	0.11	0.49	0.45	2.0
Total Xylenes	0.11	0.49	1.3	5.7

TOTAL PETROLEUM HYDROCARBONS

GC/FID

(Quantitated as Jet Fuel)

File Name: 608: Dil. Factor:	3119 110		Date of Collection: Date of Analysis: 8	
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH* (C5+ Hydrocarbons)	1.1	7.1	220	1400
C2 - C4** Hydrocarbons	1.1	2.0	18	33

^{*}TPH referenced to Jet Fuel (MW=156)

^{**}C2 - C4 Hydrocarbons referenced to Propane (MW=44)

SAMPLE NAME: 9398/0836 ICE #2

ID#: 9508255-02A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

GC/PID

File Name: 6083121 Dil. Factor: 2.2			Date of Collection: Date of Analysis: 8	
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.007	0.005	0.016
Toluene	0.002	0.008	0.007	0.027
Ethyl Benzene	0.002	0.010	0.004	0.018
Total Xylenes	0.002	0.010	0.011	0.048

TOTAL PETROLEUM HYDROCARBONS

GC/FID

(Quantitated as Jet Fuel)

File Name; 6 Dil. Factor:	083121 2.2		Date of Collection: 8/3	
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH* (C5+ Hydrocarbons)	0.022	0.14	4.0	26
C2 - C4** Hydrocarbons	0.022	0.04	0.17	0.31

^{*}TPH referenced to Jet Fuel (MW=156)

^{**}C2 - C4 Hydrocarbons referenced to Propane (MW=44)

SAMPLE NAME: 9443/0747 SEAL GAS #1

ID#: 9508255-03A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

GC/PID

File Name: 6083122 Dil. Factor: 18000	en engel		Date of Collection: Date of Analysis: 8	
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	18	58	250	810
Toluene	18	69	310	1200
Ethyl Benzene	18	79	85	380
Total Xylenes	18	79	270	1200

TOTAL PETROLEUM HYDROCARBONS

GC/FID

(Quantitated as Jet Fuel)

File Name: 608312: Dil. Factor: 1800			Date of Collection: 8/3	
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH* (C5+ Hydrocarbons)	180	1200	23000	150000
C2 - C4** Hydrocarbons	180	330	1600	2900

^{*}TPH referenced to Jet Fuel (MW=156)

^{**}C2 - C4 Hydrocarbons referenced to Propane (MW=44)

SAMPLE NAME: 9505/0952 SEAL GAS #2

ID#: 9508255-04A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

GC/PID

File Name:	6083120			Date of Collection:	8/27/95
Dil. Factor:	26000			Date of Analysis: 8	/31/95
		Det. Limit	Det. Limit	Amount	Amount
Compound		(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene		26	84	260	840
Toluene		26	100	300	1100
Ethyl Benzene		26	110	70	310
Total Xylenes	Marketine	26	110	210	930

TOTAL PETROLEUM HYDROCARBONS

GC/FID

(Quantitated as Jet Fuel)

	3120 5000	Paragraphy (Date of Collection: Date of Analysis: 8	
Compound	Det. Limit (ppmv)	Det. Limit (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH* (C5+ Hydrocarbons)	260	1700	19000	120000
C2 - C4** Hydrocarbons	260	480	1600	2900

^{*}TPH referenced to Jet Fuel (MW=156)

^{**}C2 - C4 Hydrocarbons referenced to Propane (MW=44)

SAMPLE NAME: 9432/0936 ICE #3-BLK

ID#: 9508255-05A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

GC/PID

File Name: 6083124 Dil. Factor: 2.0	en e		Date of Collection: Date of Analysis: 8	
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.006	Not Detected	Not Detected
Toluene	0.002	0.008	Not Detected	Not Detected
Ethyl Benzene	0.002	0.009	Not Detected	Not Detected
Total Xylenes	0.002	0.009	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 6083124 Dil. Factor: 2.0			Date of Collection: 8/3	
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH* (C5+ Hydrocarbons)	0.020	0.13	0.15	0.97
C2 - C4** Hydrocarbons	0.020	0.037	0.64	1.2

^{*}TPH referenced to Jet Fuel (MW=156)

^{**}C2 - C4 Hydrocarbons referenced to Propane (MW=44)

SAMPLE NAME: Lab Blank ID#: 9508255-06A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

GC/PID

File Name: 6083105 Dil. Factor: 1.0	100		Date of Collection: Date of Analysis: 8	
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.001	0.003	Not Detected	Not Detected
Toluene	0.001	0.004	Not Detected	Not Detected
Ethyl Benzene	0.001	0.004	Not Detected	Not Detected
Total Xylenes	0.001	0.004	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 608310 Dil. Factor: 1.			Date of Collection: 1 Date of Analysis: 8/3	
	Det. Limit	Det. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH* (C5+ Hydrocarbons)	0.010	0.065	Not Detected	Not Detected
C2 - C4** Hydrocarbons	0.010	0.018	Not Detected	Not Detected

^{*}TPH referenced to Jet Fuel (MW=156)

Container Type: NA

^{**}C2 - C4 Hydrocarbons referenced to Propane (MW=44)

AN ENVIRONMENTAL ANALYTICAL LABORATORY

(916) 985-1000 FAX: (916) 985-1020 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 004638 Ž

Page.

CHAIN-OF-CUSTODY RECORD

Receipt #\V : | ₹.O. Y Canister Pressure / Vacuum アスマ Notes: ICE SAMPLES allecked at 8790F Specify Turn Around Time: 1; 0:0 1:0 O O Normal □ Rush Initial 500 Project Name BioSlurpay Project # 6462201 - 30A010 Project info: 69/22CACOO S Analyses Requested P.O. # 02 工子 City (dumbes State at Zip 43201 Brea Heading for GIH)424-5417 Contact PersonAL POLLACK / BIOSLUAPER PRIECT CAC FAX (LI4) 424 - 3667 Received By: (Signature) Date/Time 121 611 27 AUG / 110 6 1,0712 Date & Time USA 9432/0936 ICE \$3-BLK 29 AUG, 27 AUG, 27 AUG 9505/0952 SEA! GAS#2 27 AVE 845 FED 1035 0 SAIB A443/0747 SEAIGAS #1 9398/9836 ICE #2 Field Sample I.D. # BACODE #0659 Tes Relinquished By: (Signature) Date/Time Address SOS KING AVE BATTELLE ICE Relinquished By: (Signature) Date/Time 9529/1143 Collected By: Signature Company _ Lab I.D.

Custody Seals Intact? 950 Work Order#

Yes No (None N/A

Condition Sova

Paper 255

Date/Time

Opened By:

3

138

7786 Air Bill#

435,

Lab Use Only

Shipper Name

83855 9:05

Acceived Bx: (Signature) Date/Time

Relinquished By: (Signature) Date/Time

SEAL GAS adjuted At 29.9°C

APPENDIX C
OPERATIONAL DATA FOR THE ICE

08/24/95 12:00:00 UNIT 182 100 1518. 162.F 166.F 701.F 53. 15.4 -2.4 -Ø. 13.2 57.8 0.584 1.73 Start Skirming Tes at 1200 HR 593 23.

			رلان	MODEL V3 PERMIT N									عكل		
	V.R.SYSTEMS INC.	٠, ١٠	<i>y</i> o "	MODEL V3 PERMIT N	S/N 18	2	4	رتام				Charles Andrews	ke		
	مهماار	A1 Le		I CHAILI M	٠.		70					2.			
	ENGINE TEM RPM COOLANT	PERATU OIL	re Exhaust	UIL	POSI	TIONS BYPASS		FLOW AC.H2O	BATTERY VOLTS	DUTY	PERCENT OXYGEN	AUXI CFM TH	LIARY FU OUSANDS-	EL UNITS	ENGINE HOURS
98	/24/95 12:16:20 UNI	T 182~													
10		168.F	759.F	53.	17.3	-2.4	0.	-0.	13.3	59.9	0.580	1.99	5	534	23.
10		175.F	959.F	53.	24.1	-2.4	42.	-1.	13.4	54.4	0.591	0.00	5	538	23.
10		188.F	1011.F	53.	24.1	-2.4	42.	-i.	13.2	52.6	0.595	1.14	5	542	23.
10		192.F	1001.F	52.	22.0	-2.4	43.	-i.	12.9	57.2	9. 586	0.93	5	546	23.
10		194.F	1000.F	52.	22.0	-2.4	43.	-1.	13.0	58.9	0.582	1.01	5	548	23.
10	0 2434. 178.F	196.F	1000.F	52.	22.0	-2.4	44.	-i.	12.9	59.0	0.582	1.10	5	551	23.
10		198.F	1010.F	52.	22.0	-2.4	44.	-0.	13.0	63.1	0.574	0.00	5	556	23.
10		196.F	1035.F	52.	24.4	1.8	- 53.	-1.	13.1	62.0	0.576	1.16	5	559	23.
	/24/95 12:48:48 UNI 0 1712. 174.F		017 5			4 =	,,,	n	17 1	57.0	A FD4	0.00	_	-	
08	/24/95 12:49:01 LIMI /24/95 12:49:01 LIMI					1.5 BATT. VOI		-2. UNIT		57.9	0.584	2.09	5	573	24.
	/24/95 12:49:01 UNI /24/95 12:49:01 UNI		בוזו טונה	4873.	5,701	NE FAILE	ALAKM	UNIT	182						
10		188.F	908.F	61.	-25.0	-25.0 (08/2	0.	-380.	0.0 i6:04)	0.2	0.700	2.01	5	573	24.
	/24/95 13:15:22 UNI		†/ 7J	10:10	1117	(00) 2	14/70	1210	01047	S524	ta V.	2.23	u		
10		114.F	196.F	2.	25.0	-25.0	0.	-390.	0.0	0.1	0.700	0. 0 0	5	573	24.
10	0 2038. 160.F	163.F	484.F	53.	20.3	-1.0	0.	-i.	13.7	45.1	0.610	0.00	5	574	24.
10		171.F	900.F	53.	25.2	-1.1	37.	-2.	13.4	77.7	0.545	0.00	5	576	24.
10		187 . F	1013.F	52.	25.4	-1.3	43.	0.	13.3	59.4	0.581	0.00	5	576	24.
10	1/24/95 13:29:25 UNI 10 2566. 178.F	197.F	1036.F	52.	25.4	-1.5	42.	-i.	13.1	55.9	0.588	0.60	5	579	24.
10	7/24/95 13:30:00 UNI 0 2571. 178.F	198.F	1037.F	52.	25.4	-1.5	42.	-1.	13.1	59.1	0.582	0.92	5	580	24.
	//24/95 13:31:48 UNI 0 2566. 177.F		1040.F	52.	25.4	-1.6	42.	-2.	13.1	58.0	0.584	1.09	5	582	24.
	/24/95 13:35:45 UNI 0 2586. 182.F		1029.F	52.	25.4	-1.8	41.	-i.	13.1	60.1	0.580	1.65	5	587	24.
	//24/95 13:38:43 UNI 0 2356. 182.F	T 182		52.	20.8	-0.1	51.	-1.	12.9	64.1	0.572	9.78	5	590	24.
0 8	//24/95 13:40:03 UNI 0 2416. 182.F	T 182		52.	21.5		49.	-2.	12.9	61.0	0.578	0.00	5	591	24.
9 8	/24/95 13:45:41 UNI 0 2548. 184.F	T 182		52.	24.2	-0.2	45.		12.9	62.1	0.576				24.
98	/24/95 13:47:44 UNI	T 182						-0. -				2.20	5	599	
	0 2571. 185.F /24/95 13:49:39 UNI	T 182	1068.F	52.	21.1	12.3	93.	-3 .	12.9	64.3	0.571	0.96	5	602	24.
	0 2612. 186.F 1/24/95 13:59:07 UNI		1080.F	52.	11.6	22.9	139.	-4.	13.0	61.6	0.577	1.20	5	604	24.
10		206.F	1075.F	52.	7.8	22.7	145.	-5.	12.9	64.0	0.572	1.63	5	620	24.
10		206.F	1073.F	52.	1.9	22.7	152.	-5.	12.9	65.3	0.569	1.59	5	621	24.
			1024.F	52.	-0.2	18.3	136.	-3.	12.9	67.4	0.565	0.97	5	625	24.

ENGINE RPM	TEMPERATU COOLANT OIL	re Exhaust	OIL PSI	POSIT			FLOW AC.H2O	BATTERY VOLTS	DUTY CYCLE	PERCENT OXYGEN	AUXILI CFM THOU	ary fue Isands—L		ENGINE HOURS	
	:12:17 UNIT 182														
100 2266. 08/24/95 14:	185.F 200.F 17:03 UNIT 182	1017.F	52.	0.5	17.6	132.	-4.	13.0	66.2	0.568	1.01	5	634	25.	
100 2164.	186.F 198.F	996.F	52.	-0.2	16.2	127.	-4.	12.9	67.3	0.565	0.85	5	639	25.	
08/24/95 14 100 2141.	30:00 UNIT 182 186.F 198.F	986.F	52.	-9.2	15.7	125.	-5.	12.9	67.3	0.565	0.75	5	650	25.	
	:40:34 UNIT 182	60/ F	rn.			404		10.0	,, 7			-			
100 2127. 08/24/95 14:	186.F 198.F 56:17 UNIT 182:	986.F	52.	-0.2	15.6	124.	-5.	12.9	66.7	0.567	0. 77	5	658	25.	
100 2181.	186.F 198.F	952.F	52.	-0.2	15.1	123.	-4.	12.9	67.9	9.564	0.00	5	675	25.	
100 2314.	57:10 UNIT 182 185.F 198.F	961.F	52.	-0.2	14.2	120.	-4.	12.9	49.9	0.600	0.90	5	676	25.	
	:58:00 LIMIT 302		27.		IL PSI S		UNIT								
	:58:02 LIMIT 414 :00:00 UNIT 182	ENG IMK	6154.	FNGIN	Æ FAILED	ALARM	UNIT	182							
	AT: 08/24	7/95, 1	5:02	18	(08/2	4/95	15:0	0:02)	S524	5 V2	2.23 .				
100 3.	:02:21 UNIT 182 210.F 187.F	515.F	0.	19.3	-0.4	0.	-1.	12.9	99.9	0.500	0.00	5	678	25.	
08/24/95 15 100 2366.	:05:38 UNIT 182 173.F 188.F	879.F	47.	20.4	-2.0	47.	-1.	13.4	64.3	0.571	0.00	5	683	25.	
	:07:54 UNIT 182	0/7.1	7/1	2017	7.0	т/ •		14:1	U-1-U	4.011	0.00	J	UUJ	20.	
100 2404. 08/24/95 15	174.F 189.F :09:45 UNIT 182	953.F	47.	20.4	-0.B	50.	-1.	13.5	69.6	0.579	0.90	5	685	25.	
100 2409.	174.F 188.F	987.F	47.	12.8	12.0	105.	-3.	13.5	60.4	0.579	0.83	5	686	25.	
08/24/95 15 100 2360.	174.F 188.F	1018.F	47.	11.0	12.1	107.	-4.	13.5	62.3	0.575	0.73	5	699	26.	
08/24/95 15	:30:00 UNIT 182											_			
100 2465. 08/24/95 15	174.F 190.F :32:30 UNIT 182	1047.F	47.	-0.3	21.7	152.	-6.	13.5	61.7	0.577	1.13	5	706	26.	
100 2439.	175.F 190.F	1047.F	47.	-0.3	21.7	151.	-6.	13.5	60.1	0.580	1.14	5	799	26.	
100 2217.	:38:12 UNIT 182 174.F 186.F	1007.F	47.	-0.3	17.3	132.	-5.	13.5	61.6	0.577	9,79	5	714	26.	
08/24/95 16 100 2324.	:00:00 UNIT 182 173.F 187.F	1030.F	47.	-0.3	19.6	142.	-6.	13.5	61.9	0.576	6m (1.02)	5	738	26	_
08/24/95 16	:30:00 UNIT 182		711	.4.0	17.0	ITL:	u,			•			•	32	ş
100 2327. 08/24/95 17	175.F 188.F :00:00 UNIT 182	1027.F	47.	-0.3	19.3	141.	-6.	13.5	62.2	0.576	1.07	5	770	24.	
100 2316.	175.F 188.F	1029.F	47.	-0.3	19.3	141.	-3.	13.5	61.0	0.578	1.17	5	805	27.	
08/24/95 17 100 2305.	:30:00 UNIT 182 174.F 187.F	1023.F	47.	-0.3	19.2	141.	-5.	13.5	61.5	0.577	1.20	5	842	28.	
08/24/95 17 100 2313.	:41:28 UNIT 182 173.F 186.F	1025 F	47.	-0.3	19.2	140.	-5.	13.6	61.6	0.577	1.23	5	857	28.	
08/24/95 18	:00:00 UNIT 182														
100 2211. 08/24/95 18	174.F 185.F :30:00 UNIT 182	1035.F	47.	-0.3	19.0	141.	-5.	13.5	64.0	0.572	0.97	5	877	28.	
100 2194.	174.F 185.F	1041.F	47.	-0.3	19.3	141.	-ó.	13.5	61.1	0.578	1.19	5	914	29.	
08/24/95 18 100 2215.	:31:21 UNIT 182 174.F 184.F	1042.F -	47.	-0.3	19.3	141.	-6.	13.5	62.5	0.575	1,22	5	915	29.	
08/24/95 19	:00:00 UNIT 182											-		•	
100 2212. 08/24/95 19	173.F 184.F 18:13 UNIT 182:	1045.F	47.	-0.3	19.7	142.	-6.	13.5	63.8	0.572	1.27	5	953	29.	
100 2189.	172.F 183.F	1046.F	47.	-0.3	19.7	142.	-6.	13.5	60.2	0.580	1.31	5	9 77	30.	
08/24/95 19 100 2023.	30:00 UNIT 182: 172.F 179.F	1010.F	47.	-0.3	16.3	127.	-6.	13.5	61.6	0.577	1.01	5	990	30.	

V.R.SYSTEMS INC.

08/24/95 20:00:00 UNIT 182 101.F	ENGINE RPM	TE COOLANT	MPERATU OIL	RE - EXHAUST	OIL		TIONS BYPASS	WELL CFM-VA		BATTERY VOLTS	DUTY	PERCENT OXYGEN	AUXILI CFM THOU	iary fue Isands-L		ENGINE HOURS
08/24/95 29:25:46 UNIT 182 100 2660 169 F 177.F 1903.F 47 -9.3 17.5 131 -6. 13.5 69.5 9.579 1.00 6 57 31. 08/24/95 20:30:00 UNIT 182 100 2047 171.F 179.F 1903.F 47 -9.3 17.2 130 -5. 13.5 69.3 9.579 1.01 6 61 31. 08/24/95 21:30:00 UNIT 182 100 2045 179.F 187.F 1815.F 46 -9.3 17.3 132 -1. 13.3 62.7 9.575 1.12 6 94 31. 08/24/95 22:30:00 UNIT 182 100 2045 179.F 187.F 1815.F 46 -9.3 17.3 131 -1. 13.2 63.1 9.574 1.13 6 130 32. 08/24/95 22:30:00 UNIT 182 100 2045 181.F 189.F 1916.F 46 -9.4 17.2 131 -1. 13.2 63.1 9.574 1.13 6 166 32. 08/24/95 22:30:00 UNIT 182 100 2018 183.F 192.F 1816.F 46 -9.4 17.1 131 -1. 13.2 66.2 0.568 1.14 6 201 33. 08/24/95 23:30:00 UNIT 182 100 2018 183.F 192.F 1815.F 46 -9.4 17.1 131 -1. 13.2 64.8 0.570 1.17 6 238 33. 08/24/95 23:30:00 UNIT 182 100 2018 183.F 192.F 1917.F 46 -9.4 17.1 131 -1. 13.2 63.8 0.570 1.17 6 238 33. 08/25/95 00:00:00 UNIT 182 100 2018 183.F 192.F 1017.F 46 -9.4 17.1 131 -2. 13.3 62.6 0.575 1.22 6 313 34. 08/25/95 00:00:00 UNIT 182 100 2018 183.F 192.F 1011.F 46 -9.4 17.1 131 -2. 13.3 62.6 0.575 1.22 6 313 34. 08/25/95 00:00:00 UNIT 182 100 2018 163.F 173.F 1011.F 46 -9.3 17.2 131 -2. 13.5 56.2 0.588 1.26 6 351 35. 08/25/95 01:00:00 UNIT 182 100 2018 163.F 173.F 100.F 47 -9.3 17.2 130 -2. 13.5 56.3 0.587 1.29 6 431 36. 08/25/95 01:00:00 UNIT 182 100 2012 164.F 173.F 100.F 47 -0.3 16.3 127 -2. 13.5 56.6 0.587 1.29 6 511 37. 08/25/95 03:30:00 UNIT 182 100 2014 165.F 174.F 98.F 47 -0.3 16.3 127 -2. 13.5 56.6 0.587 1.26 6 511 37. 08/25/95 03:30:00 U				1011.F	46.	-0.2	16.4	126.	-5.	13.3	61.7	0.577	1.05	6	23	30.
69/24/95 22130:00 UNIT 182 190 3.F	08/24/95 20					• • • • • • • • • • • • • • • • • • • •								-		
190 2047. 171.F 179.F 1903.F 470.3 17.2 1305. 13.5 60.3 0.579 1.01 6 61 31. 89/24/95 21:80:00 UNIT 192 100 2053. 176.F 185.F 1018.F 460.3 17.3 1321. 13.3 62.7 0.575 1.12 6 74 31. 89/24/95 21:30:00 UNIT 182 100 2045. 179.F 187.F 1015.F 460.3 17.3 1311. 13.3 63.7 0.573 1.14 6 130 32. 88/24/95 22:30:00 UNIT 182 100 2026. 181.F 189.F 1016.F 460.4 17.2 1311. 13.2 63.1 0.574 1.13 6 166 32. 89/24/95 22:30:00 UNIT 182 100 2010. 183.F 192.F 1016.F 460.4 17.1 1311. 13.2 66.2 0.568 1.14 6 201 33. 89/24/95 23:30:00 UNIT 182 100 2010. 185.F 195.F 1015.F 460.4 17.0 1290. 13.2 66.2 0.568 1.14 6 201 33. 89/24/95 23:30:00 UNIT 182 100 2016. 183.F 192.F 1017.F 460.4 17.0 1290. 13.2 64.8 0.570 1.17 6 238 33. 89/25/95 00:00:00 UNIT 182 100 2016. 183.F 192.F 1017.F 460.4 17.1 1311. 13.2 63.8 0.572 1.19 6 275 34. 89/25/95 00:00:00 UNIT 182 100 2030. 174.F 186.F 1015.F 460.4 17.1 1312. 13.3 63.8 0.572 1.19 6 275 34. 89/25/95 00:00:00 UNIT 182 100 2030. 168.F 178.F 1011.F 460.4 17.1 1312. 13.5 50.8 0.575 1.22 6 313 34. 89/25/95 00:00:00 UNIT 182 100 2030. 168.F 178.F 1011.F 460.3 17.2 1312. 13.5 50.6 0.575 1.22 6 313 34. 89/25/95 00:30:00 UNIT 182 100 2040. 168.F 178.F 1006.F 470.3 17.2 1302. 13.4 50.2 0.588 1.26 6 391 35. 89/25/95 01:30:00 UNIT 182 100 2040. 168.F 175.F 1006.F 470.3 17.2 1302. 13.6 55.3 0.587 1.29 6 431 36. 89/25/95 02:00:00 UNIT 182 100 2040. 164.F 175.F 1006.F 470.3 17.0 1292. 13.6 55.3 0.587 1.29 6 431 36. 89/25/95 02:00:00 UNIT 182 100 2040. 164.F 175.F 198.F 470.3 16.3 1272. 13.6 55.6 0.587 1.26 6 511 37. 89/25/95 02:00:00 UNIT 182 100 2040. 164.F 175.F 198.F 470.3 16.3 1272. 13.5 56.6 0.587 1.26 6 511 37. 89/25/95 03:00:00 UNIT 182 100 2045. 165.F 174.F 988.F 470.3 16.3 1272. 13.5 56.6 0.587 1.26 6 511 37. 89/25/95 03:00:00 UNIT 182 100 2045. 165.F 174.F 988.F 470.3 16.3 1272. 13.5 55.6 0.593 1.29 6 551 37. 89/25/95 03:30:00 UNIT 182 100 2045. 165.F 174.F 988.F 470.3 16.3 1272.				1000.F	47.	-0.3	17.5	131.	-6.	13.5	60.5	0.579	1.00	6	57	31.
190 2953. 176.F 185.F 1918.F 469.3 17.3 1321. 13.3 62.7 9.575 1.12 6 94 31. 88/24/95 21:33:10 UNIT 182 109 2945. 179.F 187.F 1015.F 469.3 17.3 1311. 13.3 63.7 9.573 1.14 6 130 32. 88/24/95 21:93:10 UNIT 182 109 2926. 181.F 189.F 1016.F 469.4 17.2 1311. 13.2 63.1 9.574 1.13 6 166 32. 88/24/95 22:33:10 UNIT 182 109 2910. 183.F 192.F 1016.F 469.4 17.1 1311. 13.2 66.2 9.568 1.14 6 201 33. 88/24/95 23:30:10 UNIT 182 109 2010. 183.F 192.F 1016.F 469.4 17.0 1299. 13.2 64.8 9.570 1.17 6 238 33. 88/24/95 23:30:10 UNIT 182 100 2016. 183.F 192.F 1017.F 469.4 17.1 1311. 13.2 63.8 9.572 1.17 6 238 33. 88/24/95 23:30:10 UNIT 182 100 2016. 183.F 192.F 1017.F 469.4 17.1 1311. 13.2 63.8 9.572 1.19 6 275 34. 88/25/95 90:30:10 UNIT 182 100 2030. 174.F 186.F 1015.F 469.4 17.1 1312. 13.3 62.6 9.575 1.22 6 313 34. 88/25/95 90:30:10 UNIT 182 100 2030. 168.F 178.F 1011.F 469.3 17.2 1312. 13.4 59.4 9.581 1.24 6 351 35. 88/25/95 90:30:00 UNIT 182 100 2048. 163.F 176.F 1006.F 479.3 17.2 1302. 13.4 59.4 9.581 1.24 6 351 35. 88/25/95 90:30:00 UNIT 182 100 2046. 164.F 175.F 1006.F 470.3 17.0 1292. 13.5 56.3 9.587 1.29 6 431 36. 88/25/95 90:30:00 UNIT 182 100 2072. 164.F 175.F 1006.F 470.3 17.0 1292. 13.6 55.3 9.587 1.29 6 431 36. 88/25/95 90:30:00 UNIT 182 100 2046. 164.F 175.F 993.F 470.3 16.3 1272. 13.6 55.3 9.587 1.29 6 431 36. 88/25/95 90:30:00 UNIT 182 100 2046. 164.F 175.F 993.F 470.3 16.3 1272. 13.6 55.3 9.587 1.29 6 471 36. 88/25/95 90:30:00 UNIT 182 100 2049. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 55.6 0.587 1.26 6 511 37. 88/25/95 90:30:00 UNIT 182 100 2039. 165.F 175.F 983.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 88/25/95 90:30:00 UNIT 182 100 2039. 165.F 175.F 983.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 88/25/95 90:30:00 UNIT 182 100 2039. 165.F 175.F 983.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 88/25/95 90:30:00 UNIT 182 100 2039. 165.F 175.F 983.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6	100 2047.	171.F	179.F	1003.F	47.	-0.3	17.2	130.	-5.	13.5	60.3	0.579	1.01	6	61	31.
100 2045. 179.F 187.F 1015.F 460.3 17.3 1311. 13.3 63.7 0.573 1.14 6 130 32. 68/24/95 22:00:00 UNIT 182 1016.F 460.4 17.2 1311. 13.2 63.1 0.574 1.13 6 166 32. 68/24/95 22:30:00 UNIT 182 1016.F 460.4 17.1 1311. 13.2 63.1 0.574 1.13 6 166 32. 68/24/95 22:30:00 UNIT 182 1015.F 460.4 17.1 1311. 13.2 64.8 0.570 1.17 6 238 33. 68/24/95 23:00:00 UNIT 182 100 2018. 183.F 193.F 1015.F 460.4 17.0 1290. 13.2 64.8 0.570 1.17 6 238 33. 68/24/95 23:30:00 UNIT 182 100 2016. 183.F 192.F 1017.F 460.4 17.1 1311. 13.2 63.8 0.572 1.19 6 275 34. 68/25/95 00:00:00 UNIT 182 100 2030. 174.F 186.F 1015.F 460.4 17.1 1312. 13.3 62.6 0.575 1.22 6 313 34. 68/25/95 00:30:00 UNIT 182 100 2030. 174.F 186.F 1015.F 460.3 17.2 1312. 13.4 59.4 0.581 1.24 6 351 35. 68/25/95 01:30:00 UNIT 182 100 2048. 165.F 176.F 1006.F 470.3 17.2 1302. 13.4 59.4 0.581 1.24 6 351 35. 68/25/95 01:30:00 UNIT 182 100 2072. 164.F 175.F 1006.F 470.3 17.0 1292. 13.5 56.3 0.587 1.29 6 431 36. 68/25/95 02:30:00 UNIT 182 100 2072. 164.F 175.F 1006.F 470.3 16.7 1282. 13.6 55.3 0.587 1.29 6 431 36. 68/25/95 02:30:00 UNIT 182 100 2048. 164.F 175.F 988.F 470.3 16.7 1282. 13.6 55.3 0.587 1.26 6 511 37. 68/25/95 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 55.3 0.589 1.27 6 471 36. 68/25/95 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 55.6 0.593 1.29 6 551 37. 68/25/95 03:30:00 UNIT 182 100 2049. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 68/25/95 03:30:00 UNIT 182 100 2049. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 68/25/95 03:30:00 UNIT 182 100 2049. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 68/25/95 03:30:00 UNIT 182 100 2049. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 68/25/95 03:30:00 UNIT 182 100 2049. 165.F 174.F 988.F 470.3 16.3 1272. 13.5 55.9 0.588 1.26 6 591 38. 68/25/95 03:30:00 UNIT 182 100 2049. 1				1018.F	46.	-0.3	17.3	132.	-1.	13.3	62.7	0.575	1.12	6	94	31.
08/24/95 22:90:00 UNIT 182 190 2026. 181.F 197.F 1016.F 460.4 17.2 1311. 13.2 63.1 0.574 1.13 6 166 32. 08/24/95 22:30:00 UNIT 182 190 2010. 183.F 192.F 1016.F 460.4 17.1 1311. 13.2 66.2 0.568 1.14 6 201 33. 08/24/95 23:90:00 UNIT 182 190 2018. 185.F 193.F 1015.F 460.4 17.0 1290. 13.2 64.8 0.570 1.17 6 238 33. 08/24/95 23:30:00 UNIT 182 190 2016. 183.F 192.F 1017.F 460.4 17.1 1311. 13.2 65.8 0.572 1.19 6 275 34. 08/25/95 00:00:00 UNIT 182 190 2030. 174.F 186.F 1015.F 460.4 17.1 1312. 13.3 62.6 0.575 1.22 6 313 34. 08/25/95 00:30:00 UNIT 182 190 2030. 163.F 178.F 1011.F 460.4 17.1 1312. 13.4 59.4 0.581 1.24 6 351 35. 08/25/95 01:30:00 UNIT 182 190 2049. 165.F 176.F 1006.F 470.3 17.2 1302. 13.4 56.2 0.588 1.26 6 391 35. 08/25/95 01:30:00 UNIT 182 190 2072. 164.F 175.F 1006.F 470.3 17.0 1292. 13.5 56.3 0.587 1.29 6 431 36. 08/25/95 02:30:00 UNIT 182 190 2046. 164.F 175.F 993.F 470.3 16.7 1282. 13.6 55.3 0.587 1.26 6 511 37. 08/25/95 02:30:00 UNIT 182 190 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 55.6 0.587 1.26 6 511 37. 08/25/95 03:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 55.6 0.587 1.26 6 511 37. 08/25/95 03:30:00 UNIT 182 100 2043. 163.F 173.F 988.F 470.3 16.3 1272. 13.6 55.6 0.587 1.26 6 511 37. 08/25/95 03:30:00 UNIT 182 100 2045. 163.F 173.F 988.F 470.3 16.3 1272. 13.6 55.6 0.587 1.26 6 511 37. 08/25/95 03:30:00 UNIT 182 100 2045. 163.F 173.F 988.F 470.3 16.3 1272. 13.6 55.6 0.587 1.26 6 511 37. 08/25/95 03:30:00 UNIT 182	08/24/95 21	:30:00 UN	IT 182													
100 2026. 181.F 189.F 1016.F 460.4 17.2 1311. 13.2 63.1 0.574 1.13 6 166 32. 08/24/95 22:30:00 UNIT 182 100 2010. 183.F 192.F 1016.F 460.4 17.1 1311. 13.2 66.2 0.568 1.14 6 201 33. 08/24/95 23:30:00 UNIT 182 100 2018. 185.F 193.F 1015.F 460.4 17.0 1290. 13.2 64.8 0.570 1.17 6 238 33. 08/24/95 23:30:00 UNIT 182 100 2016. 183.F 192.F 1017.F 460.4 17.1 1311. 13.2 63.8 0.572 1.19 6 275 34. 08/25/95 00:00:00 UNIT 182 100 2030. 174.F 186.F 1015.F 460.4 17.1 1312. 13.3 62.6 0.575 1.22 6 313 34. 08/25/95 00:30:00 UNIT 182 100 2030. 168.F 178.F 1011.F 460.3 17.2 1312. 13.4 59.4 0.581 1.24 6 351 35. 08/25/95 01:30:00 UNIT 182 100 2048. 165.F 176.F 1006.F 470.3 17.2 1302. 13.4 59.4 0.581 1.24 6 351 35. 08/25/95 02:30:00 UNIT 182 100 2072. 164.F 175.F 1000.F 470.3 17.0 1292. 13.5 56.3 0.587 1.29 6 431 36. 08/25/95 02:30:00 UNIT 182 100 2042. 164.F 175.F 1000.F 470.3 16.3 1272. 13.6 55.3 0.589 1.27 6 471 36. 08/25/95 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2049. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2045. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182				1015.F	46.	-0.3	17.3	131.	-i.	13.3	63.7	0.573	1.14	6	130	32.
100 2010. 183.F 192.F 1016.F 460.4 17.1 1311. 13.2 66.2 0.568 1.14 6 201 33. 08/24/95 23:00:00 UNIT 182 100 2018. 185.F 193.F 1015.F 460.4 17.0 1290. 13.2 64.8 0.570 1.17 6 238 33. 08/24/95 23:30:00 UNIT 182 100 2016. 183.F 192.F 1017.F 460.4 17.1 1311. 13.2 63.8 0.572 1.19 6 275 34. 08/25/95 00:00:00 UNIT 182 100 2030. 174.F 186.F 1015.F 460.4 17.1 1312. 13.3 62.6 0.575 1.22 6 313 34. 08/25/95 00:30:00 UNIT 182 100 2030. 168.F 178.F 1011.F 460.3 17.2 1312. 13.4 59.4 0.581 1.24 6 351 35. 08/25/95 01:00:00 UNIT 182 100 2048. 165.F 176.F 1006.F 470.3 17.2 1302. 13.4 56.2 0.588 1.26 6 391 35. 08/25/95 02:00:00 UNIT 182 100 2072. 164.F 175.F 1009.F 470.3 17.0 1292. 13.5 56.3 0.587 1.29 6 431 36. 08/25/95 02:00:00 UNIT 182 100 2046. 164.F 175.F 1009.F 470.3 16.7 1282. 13.6 55.3 0.589 1.27 6 471 36. 08/25/95 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 55.6 0.593 1.29 6 511 37. 08/25/95 03:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2039. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2039. 165.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182	100 2026.	181.F	189.F	1916.F	46.	-0.4	17.2	131.	-1.	13.2	63.1	0.574	1.13	6	166	32.
100 2018. 185.F 193.F 1915.F 460.4 17.0 1290. 13.2 64.8 0.570 1.17 6 238 33. 08/24/95 23:30:00 UNIT 182 100 2016. 183.F 192.F 1017.F 460.4 17.1 1311. 13.2 63.8 0.572 1.19 6 275 34. 08/25/95 00:00:00 UNIT 182 100 2030. 174.F 186.F 1015.F 460.4 17.1 1312. 13.3 62.6 0.575 1.22 6 313 34. 08/25/95 00:30:00 UNIT 182 100 2030. 168.F 178.F 1011.F 460.3 17.2 1312. 13.4 59.4 0.581 1.24 6 351 35. 08/25/95 01:00:00 UNIT 182 100 2048. 165.F 176.F 1006.F 470.3 17.2 1302. 13.4 59.4 0.581 1.26 6 391 35. 08/25/95 01:30:00 UNIT 182 100 2072. 164.F 175.F 1000.F 470.3 17.0 1292. 13.5 56.3 0.587 1.29 6 431 36. 08/25/95 02:00:00 UNIT 182 100 2046. 164.F 173.F 993.F 470.3 16.7 1282. 13.6 55.3 0.589 1.27 6 471 36. 08/25/95 03:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.5 56.6 0.587 1.26 6 511 37. 08/25/95 03:30:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.597 1.26 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.597 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.597 1.26 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2053. 163.F 173.F 981.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2053. 163.F 173.F 981.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182				1016.F	46.	-0.4	17.1	131.	-1.	13.2	66.2	0.568	1.14	6 -	201	33.
08/24/95 23:30:00 UNIT 182 100 2016. 183.F 192.F 1017.F 460.4 17.1 1311. 13.2 63.8 0.572 1.19 6 275 34. 08/25/95 00:00:00 UNIT 182 100 2030. 174.F 186.F 1015.F 460.4 17.1 1312. 13.3 62.6 0.575 1.22 6 313 34. 08/25/95 00:30:00 UNIT 182 100 2030. 168.F 178.F 1011.F 460.3 17.2 1312. 13.4 59.4 0.581 1.24 6 351 35. 08/25/95 01:00:00 UNIT 182 100 2048. 165.F 176.F 1006.F 470.3 17.2 1302. 13.4 56.2 0.588 1.26 6 391 35. 08/25/95 01:30:00 UNIT 182 100 2072. 164.F 175.F 1000.F 470.3 17.0 1292. 13.5 56.3 0.587 1.29 6 431 36. 08/25/95 02:00:00 UNIT 182 100 2046. 164.F 175.F 993.F 470.3 16.7 1282. 13.6 55.3 0.589 1.27 6 471 36. 08/25/95 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 55.3 0.587 1.29 6 511 37. 08/25/95 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 55.6 0.593 1.26 6 511 37. 08/25/95 02:30:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182																
100 2016. 183.F 172.F 1017.F 46, -0.4 17.1 1311. 13.2 63.8 0.572 1.19 6 275 34. 08/25/75 00:00:00:00 UNIT 182 100 2030. 174.F 186.F 1015.F 460.4 17.1 1312. 13.3 62.6 0.575 1.22 6 313 34. 08/25/75 00:30:00 UNIT 182 100 2030. 168.F 178.F 1011.F 460.3 17.2 1312. 13.4 59.4 0.581 1.24 6 351 35. 08/25/75 01:00:00 UNIT 182 100 2048. 165.F 176.F 1006.F 470.3 17.2 1302. 13.4 56.2 0.588 1.26 6 391 35. 08/25/75 01:30:00 UNIT 182 100 2072. 164.F 175.F 1000.F 470.3 17.0 1292. 13.5 56.3 0.587 1.29 6 431 36. 08/25/75 02:00:00 UNIT 182 100 2046. 164.F 173.F 993.F 470.3 16.7 1282. 13.6 55.3 0.589 1.27 6 471 36. 08/25/75 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.6 55.3 0.587 1.26 6 511 37. 08/25/75 03:00:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182				1915.F	46.	-0.4	17.0	129.	-0.	13.2	64.8	0.570	1.17	6	238	33.
100 2030. 174.F 186.F 1015.F 460.4 17.1 1312. 13.3 62.6 0.575 1.22 6 313 34. 08/25/95 00:30:00 UNIT 182 100 2030. 168.F 178.F 1011.F 460.3 17.2 1312. 13.4 59.4 0.581 1.24 6 351 35. 08/25/95 01:00:00 UNIT 182 100 2048. 165.F 176.F 1006.F 470.3 17.2 1302. 13.4 56.2 0.588 1.26 6 391 35. 08/25/95 01:30:00 UNIT 182 100 2072. 164.F 175.F 1000.F 470.3 17.0 1292. 13.5 56.3 0.587 1.29 6 431 36. 08/25/95 02:00:00 UNIT 182 100 2046. 164.F 173.F 993.F 470.3 16.7 1282. 13.6 55.3 0.589 1.27 6 471 36. 08/25/95 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.5 56.6 0.587 1.26 6 511 37. 08/25/95 03:00:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2053. 163.F 173.F 981.F 470.3 15.8 1253. 13.5 55.9 0.588 1.26 6 591 38.	100 2016.	183.F	192.F	1017.F	46.	-0.4	17.1	131.	-1.	13.2	63.8	0.572	1.19	6	275	34.
100 2030. 168.F 178.F 1011.F 460.3 17.2 1312. 13.4 59.4 0.581 1.24 6 351 35. 08/25/95 01:00:00 UNIT 182 100 2048. 165.F 176.F 1006.F 470.3 17.2 1302. 13.4 56.2 0.588 1.26 6 391 35. 08/25/95 01:30:00 UNIT 182 100 2072. 164.F 175.F 1000.F 470.3 17.0 1292. 13.5 56.3 0.587 1.29 6 431 36. 08/25/95 02:00:00 UNIT 182 100 2046. 164.F 173.F 993.F 470.3 16.7 1282. 13.6 55.3 0.589 1.27 6 471 36. 08/25/95 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.5 56.6 0.587 1.26 6 511 37. 08/25/95 03:00:00 UNIT 182 100 2037. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2037. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2053. 163.F 173.F 981.F 470.3 15.8 1253. 13.5 55.9 0.588 1.26 6 591 38.				1015.F	46.	-0.4	17.1	131.	-2.	13.3	62.6	0.575	1.22	6	313	34.
08/25/95 01:00:00 UNIT 182 100 2048. 165.F 176.F 1006.F 470.3 17.2 1302. 13.4 56.2 0.588 1.26 6 391 35. 08/25/95 01:30:00 UNIT 182 100 2072. 164.F 175.F 1000.F 470.3 17.0 1292. 13.5 56.3 0.587 1.29 6 431 36. 08/25/95 02:00:00 UNIT 182 100 2046. 164.F 173.F 993.F 470.3 16.7 1282. 13.6 55.3 0.589 1.27 6 471 36. 08/25/95 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.5 56.6 0.587 1.26 6 511 37. 08/25/95 03:00:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2053. 163.F 173.F 981.F 470.3 15.8 1253. 13.5 55.9 0.588 1.26 6 591 38.	08/25/95 00	:30:00 UN	IT 182													
100 2048. 165.F 176.F 1006.F 470.3 17.2 1302. 13.4 56.2 0.588 1.26 6 391 35. 08/25/95 01:30:00 UNIT 182 100 2072. 164.F 175.F 1000.F 470.3 17.0 1292. 13.5 56.3 0.587 1.29 6 431 36. 08/25/95 02:00:00 UNIT 182 100 2046. 164.F 173.F 993.F 470.3 16.7 1282. 13.6 55.3 0.589 1.27 6 471 36. 08/25/95 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.5 56.6 0.587 1.26 6 511 37. 08/25/95 03:00:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2053. 163.F 173.F 981.F 470.3 15.8 1253. 13.5 55.9 0.588 1.26 6 591 38.				1011.F	46.	-0.3	17.2	131.	-2.	13.4	59.4	0.581	1.24	6	351	35.
100 2072. 164.F 175.F 1000.F 470.3 17.0 1292. 13.5 56.3 0.587 1.29 6 431 36. 08/25/95 02:00:00 UNIT 182 100 2046. 164.F 173.F 993.F 470.3 16.7 1282. 13.6 55.3 0.589 1.27 6 471 36. 08/25/95 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.5 56.6 0.587 1.26 6 511 37. 08/25/95 03:00:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2053. 163.F 173.F 981.F 470.3 15.8 1253. 13.5 55.9 0.588 1.26 6 591 38.	100 2048.	165.F	176.F	1006.F	47.	-0.3	17.2	130.	-2.	13.4	56.2	0.588	1.26	6	391.	35.
08/25/95 02:00:00 UNIT 182 100 2046. 164.F 173.F 993.F 470.3 16.7 1282. 13.6 55.3 0.589 1.27 6 471 36. 08/25/95 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.5 56.6 0.587 1.26 6 511 37. 08/25/95 03:00:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2053. 163.F 173.F 981.F 470.3 15.8 1253. 13.5 55.9 0.588 1.26 6 591 38.				1000 F	47	ā ₹	17 0	120	-2	17.5	54 T	Q 597	1 20	L	431	34.
100 2046. 164.F 173.F 993.F 470.3 16.7 1282. 13.6 55.3 0.589 1.27 6 471 36. 08/25/95 02:30:00 UNIT 182 100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.5 56.6 0.587 1.26 6 511 37. 08/25/95 03:00:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2053. 163.F 173.F 981.F 470.3 15.8 1253. 13.5 55.9 0.588 1.26 6 591 38.				1000*1	71.	6.0	17.14	141:	4.	10.0	0010	V.30/	1.4.1	u	101	
100 2042. 165.F 174.F 988.F 470.3 16.3 1272. 13.5 56.6 0.587 1.26 6 511 37. 08/25/95 03:00:00 UNIT 182 100 2039. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2053. 163.F 173.F 981.F 470.3 15.8 1253. 13.5 55.9 0.588 1.26 6 591 38.	100 2046.	164.F	173.F	993.F	47.	-0.3	16.7	128.	-2.	13.6	55.3	0.589	1.27	6	471	36.
100 2037. 163.F 173.F 986.F 470.3 16.3 1272. 13.6 53.6 0.593 1.29 6 551 37. 08/25/95 03:30:00 UNIT 182 100 2053. 163.F 173.F 981.F 470.3 15.8 1253. 13.5 55.9 0.588 1.26 6 591 38.				988.F	47.	-0.3	16.3	127.	-2.	13.5	56.6	0.587	1.26	6	511	37.
08/25/95 03:30:00 UNIT 182 100 2053. 163.F 173.F 981.F 470.3 15.8 1253. 13.5 55.9 0.588 1.26 6 591 38.				00/ 5	47	A 7	47.7	107		17 /	E7 (A 507	1 20	L	551	37
100 2053. 163.F 173.F 981.F 470.3 15.8 1253. 13.5 55.9 0.588 1.26 6 591 38.				780.1	4/.	-4.7	10.3	127.	-7.	17.9	37.9	A.947	1.27	0	991	4/ €
VOLCAL 7.3 VP: VVII VVII VVII VII VII VII VII VII VII	100 2053.	163.F	173.F	981.F	47.	-0.3	15.8	125.	-3.	13.5	55.9	0.588	1.26	6	591	38.
100 2046. 164.F 173.F 982.F 470.3 15.8 1242. 13.5 55.7 0.589 1.26 6 630 38.				982.F	47.	-0.3	15.8	124.	-2.	13.5	55.7	0.589	1.26	6	630	38.

	Ton Tooks	100.1	का जीवी	Haif	7/.	214	17.0	147.	-4	Fig. 6	-a.a	V. 560	لكولا	o	997	٠, ۲۲
	08/25/95 05:0	90:00 U	NIT 182													
	100 2049.	163.F	171.F	951.F	47.	-9.3	14.9	119.	-1.	13.6	53.4	0.593	1.21	6	708	39.
	08/25/95 05:	30:00 U	NIT 182													
	100 2037.	162.F	171.F	944.F	47.	-0.3	13.7	118.	-1.	13.7	53.9	0.592	1.16	6	745	49.
	08/25/95 06:	00:00 U	NIT 182													
	100 2052.	163.F	170.F	937.F	47.	-0.3	13.3	117.	-1.	13.7	51.7	0.597	1.16	6	781	40.
	08/25/95 06:	30:00 U	NIT 182													
	100 2029.	162.F	170.F	935.F	47.	-0.3	13.3	117.	-1.	13.7	52.4	0.595	1.17	6	818	41.
	08/25/95 07:	00:00 U	NIT 192													
	100 2020.	163.F	170.F	934.F	47.	-0.3	13.3	116.	-i.	13.7	52.1	0.596	1.18	6	855	41.
	08/25/95 97:															
	100 2054.	162.F	170.F	861.F	47.	-0.3	8.8	100.	1.	13.7	50.2	0.600	2.30	6	900	42.
3	08/25/95 07:	39:04 L	INIT 182													
	100 2070.	161.F	170.F	850.F	47.	-0.3	8.7	100.	1.	13.8	50.9	0.598	2.32	6	921	42.
	08/25/95 08:	00:00 L	JNIT 182													
	100 2056.	163.F	169.F	949.F	52.	-0.2	13.7	118.	-i.	13.8	51.9	0.596	0.87	6	950	42.
	08/25/95 08:	30:00 L	NIT 182													
	100 2021.	163.F	170.F	947.F	52.	-0.3	13.3	117.	-i.	13.7	52.9	0.594	1.15	6	984	43.

V.R.SYSTEMS INC.

E	NGINE RPM			RE EXHAUST			TIONS BYPASS		FLOW AC.H2O	BATTERY VOLTS	DUTY CYCLE	PERCENT OXYGEN		LIARY FUI DUSANDS-I		ENGINE HOURS
100	2049.	:00:00 UN 163.F :30:00 UN	179.F	937.F	52.	-0.3	13.2	117.	-1.	13.7	50.9	0.598	1.18	7	20	43.
190	2018.		171.F	951.F	52.	-0.3	-13.2	117.	-1.	13.6	55.9	0.588	1.17	7	57	44.
100	2030.	167 . F	175.F	959.F	52.	-0.3	13.4	118.	-Ø.	13.5	58.1	0.584	1.17	7,	94	44.
		:10:57 LIN :14:32 UN		ENG TMR	OVRNG	ENGI	NE FAICED	ALARM	UNIT	182		5+0	P°≤Ki M+ 1	m 7E	51	
100	0.		153.F	573.F	2.	-25.0	-25.0	0.	-382.	0.0	0.1	0.700	0.00	7	108	44.
		AT: :32:13 U		5/95	10:32	2:10	(08/2	5/95	10:1	4:40)	S524	45 V2	2.23	•		
987.25. 100	/75-10: 0.		101.F	227 . F	77.	-25.0	-25.0	0.	-393.	9.9	0.1	0.700	0,00	7	109	44.
		:39:48 U		717 -	F0	A 7		.,		47.0	4C 0	0.700	4 15	7	447	40
		161.F :39:49 LII			52. ′ 0.0		1.2 BATT. VOL	66. T ALARM	i. UNIT		45.9	0.608	1.68	7	116	45.
08/25	/95 10:	:39:49 LI	1IT 414	ENG TMR	420.	ENGI	NE FAILED	ALARM	UNIT	182						
_		AT: :53:33 UN		5/95	12:53	:30	(08/2	5/95	10:4	1:12)	S524	15 V2	2.23	•		
987.237 199	773 12: 0.	94.F	79.F	104.F	2.	-25.0	-25.0	0.	-392.	0.0	0.1	0.700	0.00	7	116	45.
		:54:11 UN			_		_	_				A 4-7-7		_		
100 08/25	4. 795 12:	94.F :55:25 UN		104.F		14.1 AR+	₹,,	RPIA	160.	レ12.2 レ1300		%. 637	0.00	7	116	45.
100	4.	94. <u>F</u>		105.F	— 31/ 0.	22.1	-0.0	0.			99.9		0.00	7	116	45.
		:08:07 LI					NE FAILED									
		AT: :14:46 UN		5/95	13:14	43	(08/2	5/95	13:1	2:04)	S524	15 V2	2.23	π		
100	, 10 10; 9.		130.F	425.F	0.	-25.0	-25.0	0.	-395.	-0.0	0.1	0.700	0.00	7	137	45.
¿ES	TART									7:37)						
		5 13:							0.0			rt. Vo				JNIT 182
		75 <u>13:</u> :23:09 UN			IT 4	-14 E	NG TM	R	165.	EN	SINE	FAILE	ED AL	ARM	Ĺ	JNIT 182
100	0.		136.F		61.	-25.0	-25.0	0.	-395.	0.0	0.1	0.700	1.71	7	142	45.
		:30:00 U														
199 98/25		164.F :32:16 U	175.F	1912.F	52.	-0.3	18.5	140.	-3.	13.7	53.0	0.594	1.14	7	150	45.
	773 IS 2358.			1028.F	52.	-0.3	18.5	139.	-3.	13.7	52.9	0.594	1.19	7	153	45.
						-	-		-	•						

190 2240. 165.F 176.F	1905.F	52.	-9.3	15.7	126.	-ij.	13.7	54.7	Ø.591	1.13	7	163	45.
08/25/95 13:49:58 UNIT 182													,
100 2134. 163.F 175.F	983.F	52.	-0.3	13.9	119.	ø.	13.7	56.8	9.586	0.99	7	172	45.
08/25/95 13:59:24 UNIT 182													
100 2133. 163.F 177.F	981.F	52.	-0.3	13.8	117.	-i.	13.6	59.1	0.582	1.07	7	182	45.
08/25/95 14:00:00 UNIT 182													
100 2115. 161.F 176.F	979.F	52.	-0.3	13.8	119.	-1.	13.6	57.5	0.585	1.07	7	183	45.
08/25/95 14:00:29 UNIT 182													
100 2331. 161.F 176.F	980.F	52.	-0.3	17.7	136.	-2.	13.6	56.3	0.587	1.08	7	184	45.
08/25/95 14:01:49 UNIT 182													
100 2351. 162.F 176.F	1008.F	52.	-0.3	17.8	136.	-1.	13.7	55.3	0.589	1.38	7	186	45.
08/25/95 14:30:00 UNIT 182													
100 2158. 161.F 176.F	976.F	52.	-0.3	14.0	120.	-1.	13.7	59.0	0.582	1.18	7	219	46.
08/25/95 15:00:00 UNIT 182					٠,۲.					Gw.			
100 2130. 170.F 179.F	993.F	52.	-0.4	14.0	120 est	-2.	13.5	61.2	0.578	1.10	7	254	46. CI
08/25/95 <u>15:30:</u> 00 UNIT 182												€ 4(oute.
100 2148. 168.F 179.F	995.F	52.	-0.4	14.4	121.	-2.	13.5	62.6	0.575	1.35	7	294	47.
08/25/95 15:45:04 UNIT 182													20 euft
100 2143. 163.F 177.F	988.F	52.	-0.4	14.4	121.	-i.	13.5	61.2	0.578	1.22	7	314	47.
					•					Λ		_	
					مله					1		Λ	
					1	,]		Α,	
					u meau	corent	•		01			DRA	PANE
·	* •	_	.	1-100	ע וועייי				<u></u>	711		آ نو آ	

going into ICE unit

V.R.SYSTEMS INC.

ENGINE RPM					POSI CARB.	TIONS BYPASS		FLOW AC.H2O	BATTERY VOLTS	DUTY CYCLE	PERCENT OXYGEN		.IARY FU JUSANDS-		ENGINE HOURS
08/25/95 16: 100 2199. 08/25/95 16:	172.F	IT 182 180.F IT 182	990.F	52.	-0.4	14.3	121.	-2.	13.4	61.8	0.576	1.44	7	336	47.

08/25/95 17:00:00 UNIT 182 100 2132. 168.F 179.F	973.F	52.	-0.4	13.2	117.	0.	13.4	60.2	0.580	1.29	7	421	48.
08/25/95 17:30:00 UNIT 182 100 2140. 163.F 174.F	951.F	52.	-9.3	12.9	116.	1.	13.7	57.7	0.585	1.32	7	463	
08/25/95 17:53:22 UNIT 182													49.
100 2126. 165.F 177.F 08/25/95 18:00:00 UNIT 182	966.F	52.	-0.4	12.9	116.	0.	13.6	59.7	0.581	1.33	7	495	49.
100 2128. 165.F 176.F 08/25/95 18:30:00 UNIT 182	964.F	52.	-Ø.4	12.7	115.	1.	13.5	60.2	0.580	1.33	7	504	49.
100 2137. 169.F 180.F	972.F	52.	-0.4	13.0	117.	-0.	13.4	63.6	0.573	1.38	7	547	50.
08/25/95 19:00:00 UNIT 182 100 2142. 163.F 171.F	954.F	52.	-0.3	13.1	117.	-1.	13.9	54.1	0.592	1.41	7	591	50.
08/25/95 19:30:00 UNIT 182 100 2163. 163.F 171.F	958.F	52.	-0.3	13.1	117.	-1.	13.8	53.2	0.594	1.46	7	635	51.
08/25/95 20:00:00 UNIT 182 100 2163. 163.F 171.F	960.F	52.	-0.3	13.1									
08/25/95 20:30:00 UNIT 182					117.	-1.	13.8	52.8	0.594	1.47	7	689	51.
100 2154. 163.F 171.F 08/25/95 21:00:00 UNIT 182	959.F	52.	-0.3	13.0	116.	-1.	13.8	53.5	0.593	1.46	7	726	52.
100 2145. 161.F 169.F 08/25/95 21:30:00 UNIT 182	954.F	52.	-0.3	12.9	116.	-1.	13.8	51.9	9.596	1.45	7	771	52.
100 2145. 162.F 171.F	956.F	52.	-0.3	12.8	115.	-1.	13.7	52.4	0.595	1.44	7	817	53.
08/25/95 22:00:00 UNIT 182 100 2149. 163.F 172.F	955.F	52.	-0.3	12.7	115.	1.	13.7	52.7	0.595	1.45	7	862	53.
08/25/95 22:30:00 UNIT 182 100 2118. 165.F 175.F	957.F	52.	-0.3	12.5	114.	2.	13.6	53.7	0.593	1.45	7	907	54.
08/25/95 23:00:00 UNIT 182 100 2117. 165.F 175.F	956.F	52.	-0.3	12.4	114.	2.	13.7	55.3	0.589	1.46	7	952	54.
08/25/95 23:30:00 UNIT 182 100 2137. 164.F 175.F	956.F	52.		12,4	114.	2.	13.7		A ED1		7	000	
08/26/95 00:00:00 UNIT 182			-0.3					54.7	0.591	1.46		998	55.
100 2118. 164.F 174.F 08/26/95 00:30:00 UNIT 182	956.F	52.	-0.3	12.4	114.	2.	13.7	53.6	0.593 -	1.47	8	44 -	55.
100 2122. 165.F 175.F 08/26/95 01:00:00 UNIT 182	956.F	52.	-0.3	12.4	114.	2.	13.7	53.9	0.592	1.47	8	89	56.
100 2110. 165.F 174.F 08/26/95 01:30:00 UNIT 182	955.F	52.	-0.3	12.4	114.	2.	13.7	52.7	0.595	1.49	8	136	56.
100 2130. 165.F 174.F	955.F	52.	-0.3	12.4	114.	2.	13.7	55.1	0.590	1.51	8	182	57.
08/26/95 02:00:00 UNIT 182 100 2116. 164.F 174.F	956.F	52.	-0.3	12.4	114.	2.	13.7	52.6	Ø.595	1.45	8	228	57.
08/26/95 02:30:00 UNIT 182 100 2136. 164.F 173.F	957.F	52.	-0.3	12.4	114.	2.	13.7	54.2	0.592	1.49	8	274	58.
08/26/95 03:00:00 UNIT 182 100 2132. 164.F 174.F	957.F	52.	-0.3	12.4	114.	2.	13.7	54.3	0.591	1.50	8	321	58.
08/26/95 03:30:00 UNIT 182 100 2139. 164.F 174.F	957 . F	52.	-0.3	12.4	114.	2.	13.7	53.9	0,592	1.50	8	367	59.
98/26/95 94:00:00 UNIT 182													
100 2119. 164.F 173.F 08/26/95 04:30:00 UNIT 182	958.F	52.	-0.3	12.4	114.	2.	13.7	54.2	0.592	1.51	8	414	59.
100 2112. 164.F 172.F 08/26/95 05:00:00 UNIT 182	957.F	52.	-0.3	12.4	114.	2.	13.8	51.1	0.598	1.50	8	461	60.
100 2132. 163.F 170.F	954.F	52.	-0.3	12.5	114.	1.	13.8	49.5	0.601	1.50	8	508	60.

V.R.SYSTEMS INC.

ENGINE TEMPERATURE RPM COOLANT OIL EXHAUST				OIL	POSITIONS CARB. BYPASS		WELL FLOW CFM-VAC.H2O		BATTERY VOLTS	DUTY	PERCENT	AUXII CFM THO	IARY FL		ENGINE HOURS
תרויו	COULHNI	OIC	EXHHUD!	PSI	CARB.	817955	CrM-VA	L.HZU	VULIS	CYCLE	OXYGEN	CHM IM	רכטאואכטי	-MAT 19	CNOON
08/26/95 05:	30:60 UN	T 182													
100 2118.	163.F	170.F	953.F	52.	-0.3	12.5	114.	1.	13.8	49.1	0.502	1.49	8	554	61.
08/26/95 06:	00:00 UN	IT 182													
							_					1.10	-		

					*	*							
100 2133. 162.F 170.F	952.F	52.	-0.3	12.4	114.	1.	13.8	51.2	0.598	1.48	8	1.87	/2
08/26/95 07:00:00 UNIT 182	752.5	J£.	V.U	14:7	117:	1.	10.0	21.4	v.J/a	1.70	Q	647	62.
100 2114. 163.F 171.F	954.F	52.	-0.3	12.4	114.	1.	13.8	51.5	0.597	1.50	8	693	62.
08/26/95 07:30:00 UNIT 182													
100 2144. 163.F 171.F	957.F	52.	-0.3	12.5	115.	1.	13.7	52.2	0.596	1.49	8	740	63.
08/26/95 08:00:00 UNIT 182													
100 2130. 163.F 174.F	960.F	52.	-0.3	12.7	116.	2.	13.7	52.6	0.595	1.52	8	787	63.
08/26/95 08:11:40 LIMIT 414	ENG TMF	OVRNG	ENGI	NE FAILED	ALARM	UNIT	182						
08/26/95 08:13:31 UNIT 182			45.4			-	40.7	04.7	0 457		_		
100 12. 178.F 154.F	664.F	9.	12.1	16.3	0.	3.	12.3		9.657	0.00	8	798	64.
¿ESTART AT: 08/26 08/26/95 08:27:09 UNIT 182	3/73	98:Z/	:05	(08/20	5/90	08:17	(102)	S524	45 V.	2.23	•		
100 0. 165.F 137.F	327.F	2	-25.0	-25.0	ø.	-392.	0.0	0.1	0.700	0.00	8	798	64.
¿ESTART AT: 08/26									45 V:		-	170	97.
08/26/95 08:29:56 UNIT 182	J/ /J	00.27		(00/20	J/ /J	VW 4 22 /	* # #/		TO V.	لسندهن	*		
100 3. 162.F 134.F	294.F	100.	23.3	-0.3	0.	-0.	12.8	99.4	0.501	0.00	8	799	64.
08/26/95 08:39:44 UNIT 182											_		0.1
100 2204. 163.F 175.F	992.F	52.	10.7	6.5	83.	-0.	13.9	50.8	0.598	1.51	8	815	64.
08/26/95 08:44:17 UNIT 182													
100 2161. 162.F 172.F	980.F	52.	-0.3	13.1	116.	-i.	13.9	52.1	0.596	1.46	8	822	64.
08/26/95 09:00:00 UNIT 182													
100 2139. 162.F 171.F	974.F	52.	-0.3	13.1	116.	-1.	13.8	51.7	0.597	1.47	8	846	64.
08/26/95 99:30:00 UNIT 182			* -										
100 2138. 162.F 171.F	961.F	52.	-0.3	13.0	116.	-1.	13.8	49.5	0.601	1.45	8	891	65.
08/26/95 10:00:00 UNIT 182		*					.~ .		0.104		-		
100 2124. 163.F 171.F 08/26/95 10:12:49 UNIT 182	960.F	52.	-0.3	13.0	115.	-1.	13.8	49.4	0.601	1.41	8	935	65.
100 2232. 163.F 172.F	964.F	52.	-0.3	14.9	122.	-1.	13.9	48.1	0.604	1.45	8	953	65.
98/26/95 10:14:00 UNIT 182	10711	UL.	7.0	4717	144	••	1017	1911	91001	11.10		700	401
100 2096. 163.F 172.F	960.F	52.	-0.3	12.1	113.	-0.	13.8	50.4	0.599	1.46	8	955	65.
08/26/95 10:30:00 UNIT 182													
100-2085. 163.F 171.F	953.F	52.	-0.3	12.1 _	113.	-i.	13.8	51.0	0.598	1.33	8	977	66.
08/26/95 11:00:00 UNIT 182													
100 2049. 163.F 170.F	933.F	52.	-0.3	11.7	111.	-0.	14.0	51.2	0.598	1.29	9	18	66.
08/26/95 11:30:00 UNIT 182													
100 2050. 143.F 170.F	934.F	52.	-0.3	11.7	111.	-0.	14.0	49.5	0.601	1.29	9	58	67.
08/26/95 12:00:00 UNIT 182								15.5		4 70		00	
100 2042. 163.F 171.F 08/26/95 12:30:00 UNIT 182	935.F	53.	-0.3	11.7	111.	-0.	13.9	49.5	0.601	1.30	9	99	67.
100 2036. 163.F 171.F	932.F	52.	-0.3	11.7	111.	-1.	13.9	50.3	0.599	1.29	9	139	68.
08/26/95 13:00:00 UNIT 182	7441	J.L.,	-9.0	11:7	111.	1.	14:1	75.7	9:0//	1.27	,	107	00.
100 2033. 163.F 171.F	934.F	52.	-0.3	11.7	112.	-i.	13.9	50.1	0.600	1.26	9	179	48.
08/26/95 13:30:00 UNIT 182		-2.	****										
100 2027. 163.F 171.F	931.F	52.	-0.3	11.7	112.	-1.	13.9.	50.1	0.600	1.28	9	219	69.
08/26/95 14:00:00 UNIT 182													
100 2032. 163.F 171.F	931.F	52.	-0.3	11.7	iii.	-i.	14.0	50.2	0.600	1.30	9	259	69.
08/26/95 14:30:00 UNIT 182											_		
100 2031. 163.F 171.F	929.F	52.	-0.3	11.7	111.	-1.	14.0	48.6	0.603	1.30	9	300	70.
08/26/95 15:00:00 UNIT 182									0.455	. ~.	-	7.1	70
100 2031. 163.F 171.F	932.F	52.	-0.3	11.7	111.	-1.	14.0	49.2	0.602	1.30	9	341	70.

ENGINE RPM C		PERATU OIL	RE EXHAUST	OIL PSI		TIONS BYPASS		. FLO₩ /AC.H2O	BATTERY VOLTS	DUTY CYCLE	PERCENT Oxygen		LIARY FUI OUSANDS-		ENGINE HOURS
	163.F	171.F	928.F	52.	-0.3	11.7	112.	-1.	14.0	48.8	0.502	1.30	9	381	71.
	162.F	170.F	927 F	52.	-0.3	11.7	111.	-i.	14.0	49.2	0.602	1.27	9	422	71.
	162.F	170.F	926.F	52.	-0.3	11.7	111.	-i.	14.0	49.4	0.601	1.30	9	462	72.
	162.F	170.F	929.F	52.	-0.3	11.7	111.	-2.	14.0	50.3	0.599	1.32	9	504	72.
	162.F	179.F	928.F	52.	-0.3	11.7	111.	-i.	14.1	50.6	0.599	1.30	9	545	73.
08/26/95 18:00 100 2042.		T 182 169.F	924.F	52.	-0.3	11.7	112.	-2.	14.1	49.8	0.600	1.32	9	586	73.
08/26/95 18:30 100 2033.		T 182 169.F	930.F	52.	-0.3	11.7	112.	-2.	14.0	48.7	0.603	1.32	9	627	74.
08/26/95 18:55 100 2050.		T 182 169.F	932.F	52.	-0.3	11.7	111.	-2.	14.0	48.9	0.602	1.29	9	662	74.
08/26/95 19:00 100 2134.		T 182 172.F	964.F	52.	-0.3	13.6	118.	-2.	13.9	49.1	0.402	1.49	9	669	74.
08/26/95 19:27 100 2078.		T 182 173.F	950.F	52.	8.8	5.2	77.	· 1.	13.9	48.3	0.603	1.44	9 -	 711	75.
08/26/95 19:28 100 2089.		T 182 173.F	948.F	52.	13.1	-0.2	58.	2.	13.9	47.8	0.604	1.44	9	713	75.
08/26/95 19:29 100 2464.		T 182 173.F	962.F	52.	21.1	-0.3	48.	2.	14.0	46.0	0.408	1.65	9	715	75.
08/26/95 19:30 100 2564.		T 182 173.F	980.F	52.	23.3	-0.3	46.	2.	13.9	47.8	0.604	1.93	9	716	75.
08/25/95 19:30 100 2049.		T 182 175.F	993.F	52.	13.0	-0.3	57.	2.	14.0	49.2	0.602	1.95	9	718	75.
08/26/95 19:31 100 1871.		T 182 174.F	960.F	52.	10.0	-0.3	59.	2.	14.0	50.8	0.598	1.58	9	718	75.
08/26/95 19:51 100 2173.		T 182 170.F	947.F	52.	14.9	1.7	63.	1.	14.0	49.8	0.600	1.52	9	759	75.
08/26/95 19:54 100 2151.		T 182 171.F	969.F	52.	-0.3	14.1	119.	-1.	14.0	50.7	0.599	1.24	9	763	75.
08/26/95 20:00 100 2153.		T 182 172.F	976.F	52.	-0.3	14.1	120.	-0.	13.9	49.4	0.601	1.30	9	770	75.
08/26/95 21:00 100 2139.	:00 UNI 166.F		974.F	52.	-0.4	13.6	118.	1.	13.6	52.0	0.596	1.60	9	867	76.
08/26/95 22:00 100 2114.	0:00 UNI 165.F		971.F	52.	-0.4	13.5	117.	1.	13.7	50.2	0.400	1.59	9	968	77.
08/26/95 23:00 100 2121.	:00 UNI 165.F		973.F	52.	-0.4	13.5	117.	1.	13.7	51.7	0.597	1.63	10	68	78.
08/27/95 00:00		T 182	975.F	52.	-0.4	13.4	117.	1.	13.6	53.2		1.66	10	169	79.
08/27/95 01:00	:00 UNI	T 182								-					

08/27/95 02:00:00 UNIT 182														
100 2124. 165.F 177.F	974.F	52.	-9.4	13.4	117.	1.	13.7	53.0	0.594	1.67	10	376	81.	
08/27/95 03:00:00 UNIT 182														
100 2135. 166.F 177.F	973.F	52.	-0.4	13.4	117.	1.	13.7	51.2	0.598	1.68	10	481	82.	
08/27/95 04:00:00 UNIT 182														
100 2110. 166.F 177.F	973.F	52.	-0.4	13.4	117.	1.	13.6	50.4	0.599	1.70	10	586	83.	
08/27/95 05:00:00 UNIT 182														
100 2117. 166.F 177.F	975.F	52.	-0.4	13.4	118.	0.	13.7	52.2	0.596	1.71	10	692	84.	
08/27/95 06:00:00 UNIT 182														
100 2123. 166.F 178.F	979.F	52.	-0.4	13.7	117.	1.	13.6	51.3	0.597	1.75	10	799	85.	

ENGINE RPM	TE) COOLANT	1PERATU OIL	re Exhaust	OIL PSI		TIONS BYPASS		FLOW AC.H2O	BATTERY VOLTS	DUTY CYCLE	PERCENT OXYGEN	AUXIL CFM THO	.IARY FU JUSANDS-		ENGINE HOURS
08/27/95 07			017.5	5 0		45.7			4	F2					
100 2156.	165.F		947.F	52.	-0.4	12.6	114.	0.	13.7	50.2	0.600	2.69	10	943	86.
98/27/95 97 100 2101.	:40:03 UN. 164.F		936.E	52	12.4	-0.3	57.	2.	13.8	49.7	0.601	2.59	11	52	87.
08/27/95 08			100 etc	-44.8	1217	4.0	3/1	4.	10.0	7/1/	91091	2.07	11	JZ	07.
100 2137.	163.F		852.F	52.	22.1	-0.5	0.	i.	13.8	51.0	0.598	2.19	11	95	87.
08/27/95 08															
100 2090.	164.F		926.F	52.	22.6	10.9	0.	2.	13.9	45.6	0.609	2.62	11	99	87.
08/27/95 08 100 2182.	:02:1/ UN. 164.F		חלים ר	En	22.0	10.7	ø.	,	17.0	EO 4	A EDE	0.71	4.6	101	07
08/27/95 08			932.F	52.	22.8	18.7	w.	1.	13.9	52.4	0.595	2.61	11	101	87.
100 2672.	166.F		972.F	52.	17.0	23.5	116.	-2,	13.9	47.2	0.606	2.06	11	103	87.
08/27/95 08										.,					
100 2639.			1050.F	52.	5.4	23.6	152.	-3.	13.9	48.7	0.503	1.83	11	105	87.
08/27/95 08															
100 2443.	168.F	180.F	1058.F	52.	-0.3	19.8	144.	-2.	13.9	51.8	0.596	1.99	11	197	87.
98/27/95 98 100 2129.	165.F	178.F	1002.F	52.	-0.3	13.2	116,	-0.	13.8	52.6	0.595	1.34	11	109	87.
08/27/95 09			1007.1	J£.	-0.0	10.2	110.	~♥.	13.0	72.0	W.J7J	1.07	11		97 +
100 2126.	164.F		973.F	52.	-0.3	13.2	116.	÷3.	13.7	52.5	0.595	1.63	11	196	88.
08/27/95 10	:00:00 UN	IT 182													
100 2111.	165.F		983.F	52.	-0,3	13.4	117.	-3.	13.6	54.9	0.590	1.67	11	299	89.
08/27/95 11								_							
100 2115.	166.F		990.F	52.	-0.3	13.6	118.	-3.	13.6	55.5	0.589	1.69		493	- 90.
08/27/95 12 100 2121.	168.F	179.F	991.F	52.	-0.3	14.0	117.	-4.	13.5	55.9	0.588	1.75	11	510	91.
08/27/95 13			//11	02.	V.0	1710	1111	7.	10.0	0017	91000		11	010	71.
100 2116.		176.F	973.F	52.	-0.3	14.1	120.	-2.	13.7	51.2	0.578	1.71	11	617	92.
08/27/95 13		IT 182													
100 2137.	165.F		974.F	52.	-0.3	14.1	120.	-2.	13.9	51.5	0.597	1.72	11	549	92.
08/27/95 14															
100 2129.	165.F	175.F	971.F	52.	-0.3	14.1	120.	-3.	13.9	51.0	0.598	1.72	11	723	93.
08/27/95 15 100 2140.	165.F		970.F	52.	-0.3	14.1	120.	-2.	13.9	52.7	0.595	1.72	11	830	94.
08/27/95 16			7/0.5	JZ.	-0.0	14.1	120.	-4.	13.7	JZ.1	9.070	1.72	11	098	77:
100 2150.	164.F	174.F	969.F	52.	-0.3	14.1	119.	- 3 .	13.9	51.0	0.598	1.71	11	937	95.
08/27/95 17	:00:00 UN	IT 182													
199 2145.	165.F		968.F	52.	-0.3	14.1	117.	-3.	13.9	50.8	0.598	1.73	12	44	96.
08/27/95 18															
100 2165.	164.F		968.F	52.	-0.3	14.0	117.	-3.	13.9	50.3	0.599	1.72	12	152	97.
98/27/95 18 100 2150.	:16:4/ UN 164.F		968.F	52.	-0.3	14.0	119.	-3.	13.9	49.4	0.601	1.74	12	182	97.
08/27/95 19			/UO.F	JÆ.	-6.7	14.5	117.	.g.	1917	7/17	01001	11/7	14	101	// *
100 2147.	164.F		969.F	52.	-0.3	14.0	119.	-1.	13.9	49.0	0.602	1.76	12	259	98.
08/27/95 20															

98/2//95 21:00:00 UNI[182													
100 2134. 164.F 174.F	973.F	52.	-0.3	13.9	119.	-1.	13.8	59.1	0.699	1.76	12	476	190.
08/27/95 21:25:41 UNIT 182													
100 2130. 163.F 172.F	970.F	53.	-0.3	13.9	118.	-i.	13.9	49.8	0.500	1.74	12	522	101.
98/27/95 22:90:90 UNIT 182													
100 2131. 165.F 175.F	964.F	52.	-0.3	13.8	118.	-0.	13.7	50.5	0.599	1.75	12	584	101.
08/27/95 23:00:00 UNIT 182								_					
100 2117. 166.F 177.F	965.F	52.	-0.3	13.7	118.	0.	13.6	51.1	0.598	1.75	12	691	102.
08/28/95 00:00:00 UNIT 182													
100 2116. 165.F 176.F	971.F	52.	-0.3	13.9	119.	0.	13.7	52.2	0.596	1.76	12	800	103.
													- 701

ENGINE RPM	TEN COOLANT	1PERATU OIL	ire Exhaust	OIL PSI		TIONS BYPASS		FLOW AC.H2O	BATTERY VOLTS	DUTY CYCLE	PERCENT OXYGEN		LIARY FU DUSANDS-		ENGINE Hours
08/28/95 01	:00:00 IN	T 182													
100 2106.	166.F		973.F	52.	-0.3	13.9	117.	-0.	13.5	52.7	0.595	1.77	12	909	104.
08/28/95 02	:00:00 UN	T 182													••••
100 2133.	165.F	177.F.	974.F	52.	-0.3	14.0	119.	0.	13.6	53.4	0.593	1.76	13	19	105.
08/28/95 03				_	•										
100 2131.	164.F	LOS.	972.F	52.	-0.3	14.9	119.	-0.	13.9	48.0	0.604	1.76	13	128	106.
08/28/95 04			0/0.5				445		47.0	40.5					
100 2143. 08/28/95 05	164.F		969.F	52.	-0.3	14.0	119.	-1.	13.9	48.2	0.604	1.74	13	237	107.
100 2155.	164.F		967.F	52.	-0.3	14.0	119.	-0.	13.9	48.5	0.603	1.72	13	345	108.
08/28/95 06			797 11	JEE	0.0	17.0	11/1	٧.	1011	TU: 5	0.003	1:/4	10	utu	140.
100 2139.		173.F	970.F	52.	-0.3	14.0	117.	-Ø.	13.9	47.9	0.604	1.77	13	453	109.
08/28/95 07	:00:00 UN	IT 182													
100 2145.	164.F		968.F	52.	-0.3	14.0	119.	-0.	13.9	47.1	0.606	1.72	13	561	110.
08/28/95 07															
100 2003.		179.F	918.F	52.	10.9	1.8	64.	2.	13.8	48.1	0.604	1.49	13	617	111.
08/28/95 07 100 2020.		169.F	918.F	52.	12.4	-0.4	57.	2.	14.0	50.1	0.600	1.51	13	617	111
08/28/95 07			11016	J.C.	12.4	-0.4	J/.	Z.	14.0	30.I	A. 05A	1.J1	10	017	111.
100 1841.		169.F	916.F	52.	10.3	-9.4	59.	2.	14.0	50.1	0.500	1.47	13	619	111.
08/28/95 07		IT 182													
100 2194.	164.F	170.F	948.F	52.	12.3	5.8	78.	0.	14.0	47.8	0.604	1.31	13	658	111.
98/28/95 97															
100 2208.		171.F	961.F	53.	0.8	14.7	121.	-2.	13.9	49.5	0.401	1.50	13	660	111.
08/28/95 08			075 5			40.0	4.47		44.0		0.705		47	.70	444
100 2048.	162.F	170.F	935.F	52.	-0.2	12.2	113.	-0.	14.0	47.7	0.605	1.60	13	670	111.
08/28/95 08 100 2046.	163.F	169.F	926.F	52.	-0.3	11.8	112.	-1.	14.0	47.0	0.606	1.53	13	741	112.
08/28/95 09			12011	UZ:	Viu	11.0	112.	1.	1440	7/17	9.000	1100	10	, 11	1141
100 2052.		170.F	926.F	52.	-0.3	11.8	112.	-1.	14.0	49.8	0.600	1.51	13	766	112.
08/28/95 10	:00:00 UN	IT 182													
100 2039.	163.F	169.F	929.F	52.	-0.3	11.8	112.	-i.	14.0	50.1	0.600	1.52	13	861	113.
08/28/95 11										40.3				55/	118
100 2028.	163.F	170.F	924.F	52.	-0.3	11.8	112.	-1.	14.0	48.0	0.604	1.53	13	956	114.
08/28/95 12 100 2032.		171.F	929.F	52.	_0.7	11 0	113.	_1	- 13.9	48.7	0.403	1 50	1.4	51	115.
08/28/95 13			747.1	U.S. 1	-0.3	11.8	113.	-1.	·- 10:7	4G./	0.003	1.52	14	31	110.
100 2013.	164.F		930.F	52.	-0.3	11.8	112.	-0.	13.9	47.9	0.604	1.54	14	145	116.
08/28/95 13															
100 2028.	165.F		926.F	52.	-0.3	11.8	112.	-1.	13.9	51.0	0.598	1.54	14	237	117.
08/28/95 14															
100 2019.	164.F		926.F	52.	-0.3	11.8	113.	-1.	13.9	51.6	0.597	1.49	14	240	117.
08/28/95 15			005 C	gn	Λ	14.5	107		17.0	40 E	a Lat	2 45	14	354	118.
100 2066. 08/28/95 15	163.F 163.F		895.F	52.	-0.3	10.2	197.	-1.	13.9	49.5	0.601	2.45	14	<u> 1</u> 114	110.
WO1 ZO1 10 10					- •			•							

98/28/73 13:19:16 UNIT 16 100 1910. 163.F 171.		52.	9.2	-9.3	59.	1.	14.9	47.8	0.604	2.36	14	379	118.
08/28/95 15:13:55 UNIT 18 100 2127. 163.F 169.	_	52.	21.5	-0.5	0.	2.	14.9	48.6	0.403	2.33	14	387	118.
08/28/95 15:16:34 UNIT 18 100 2203. 165.F 173.		52.	12.9	5.7	77.	-0.	13.9	59.7	0.599	0.89	14	390	118.
98/28/95 15:22:11 UNIT 19 100 2069. 164.F 173.	-	52.	-0.2	12.6	115.	-1.	14.0	51.7	0.597	1.46	14	397	118.
08/28/95 16:00:00 UNIT 10 100 2061. 163.F 172		52.	-0.2	12.3	114.	-i.	13.9	49.4	0.601	1.56	14	458	119.

ENGINE RPM	TE COOLANT	MPERATU OIL	re Exhaust	OIL PSI		TIONS BYPASS		FLOW AC.H2O	BATTERY VOLTS	DUTY CYCLE	PERCENT OXYGEN		LIARY FU OUSANDS-		ENGINE HOURS
08/28/95 17															
100 2055.	164.F		930.F	52.	-0.2	12.3	114.	-0.	13.9	49.5	0.601	1.56	14	554	120.
08/28/95 18			077 5	50	۸.0	10.7	44.5	Δ	14.0	EA D	A 500	4 57	4.8	/ 50	101
100 2042. 08/28/95 19	163.F		. 933 <u>.</u> F	_52.	-0.2	12.3	114.	-0.	14.9	50.8	0.598	1.57	14	652	121.
100 2063.	162.F		929.F	52.	-0.2	12.0	113.	-1.	14.0	50.0	0.600	1.56	14	750	122.
08/28/95 20		_	-												1221
100 2059.		173.F	937.F	52.	-0.3	11.9	113.	1.	13.7	49.5	0.601	1.61	14	859	123.
0 8/28/95 21	:00:00 UN	IT 182													
100 2039.	163.F		935.F	52.	-0.2	11.9	112.	9.	13.8	47.4	0.605	1.60	14	949	124.
08/28/95 22							445		47.5	40.0	3 / 65		4.5	40	405
100 2036.		171.F	936.F	52.	-0.2	11.9	112.	Ø.	13.8	48.9	0.602	1.62	15	49	125.
98/28/95 23 100 2049.		172.F	935.F	52.	-0.2	11.8	112.	1.	13.7	49.9	0.600	1,51	15	150	126.
08/29/95 00			733.6	J£.	-4.7	11.0	114.	1.	10.7	7/1/	4.044	1101	10	100	120.
100 2036.			935.F	52.	-0.2	11.8	112.	1.	13.7	48.7	0.603	1.62	15	250	127.
08/29/95 01			/2011	221											
100 2023.	163.F	174.F	935.F	52.	-0.3	11.7	112.	1.	13.6	52.9	0.594	1.58	15	350	128.
08/29/95 02	:00:00 UN	IIT 182													
100 2038.		173.F	936.F	52.	-0.3	11.7	111.	1.	13.6	50.1	0.600	1.61	15	450	129.
08/29/95 03															
100 2048.		171.F	934.F	52.	-0.3	11.7	112.	9.	13.7	50.9	0.598	1.62	15	550	130.
08/29/95 04			074.5	50	A 7	11 7	112.	0.	13.6	52.2	0.596	1.61	15	650	131.
100 2035. 08/29/95 05		174.F	934.F	52.	-0.3	11.7	112.	٧.	10.0	J4.4	V.J70	1.01	10	076	1314
100 2039.	165.F		931.F	52.	-0.3	11.6	111.	1.	13.6	51.8	0.596	1.62	15	750	132.
08/29/95 08					***		••••	••				•			
100 2044.	164.F	172.F	937.F	52.	-0.3	11.7	112.	ą.	13.6	51.3	0.597	1.63	15	850	133.
6 08/29/95 0	7:00:00 U	NIT <u>182</u>		Stop	SI	.urpin	6+	Est	070	5					
100 2083.			912.F	52.	-0.3	10.3	106.	-0.	13.9	49.0	0.602	2.48	15	956	134.
08/29/95 0															
100 1972.	161.F		893.F	52.	4.2	5.4	81.	0.	13.9	46.2	0.608	2.33	15	972	134.
. 08/29/95 0°				50	, ,	n /	70		17.0	A7 7	A /AS	2 20	15	974	134.
08/29/95 0	161.F	100.F	889.F	52.	3.6	مد 2.6	st.0	1. つよか	13.9	47.7	0.605	2.29	10	7/4	154.
100 2146.	159.F	165.F	872.F	52.	ZZ.0	-0.5	هر کر ۱۹.	, , 3 C	14.0	49.6	0.601	2.47	16 -	71	135.
08/29/95 0				921	44.10	7.0	٧.	٧.	1110	1710	91001				
100 2148.	160.F		899.F	52.	22.0	5.5	0.	0.	14.0	50.5	0.599	2.64	16	74	135.
08/29/95 0	7:53:54 U	NIT 182													
100 2463.			936.F	52.	19.6	7.0	61.	-1.	13.8	49.1	0.502	2.48	16	77	135.
08/29/95 0				_								. ==	, .		175
100 2257.	162.F		973.F	52.	10.9	9.9	71.	-1.	14.0	52.4	0.595	1.90	16	ტ 78	135.
98/29/95 9				50	A 0	4.8.4	110	-	17.0	45 £	A LAI	1 70	14	o 84	135.
100 2140.	161.F		967.F	52.	-0.2	14.1	119.	-2.	13.9	49.6	0.601	1.20	16	0 04	1901
08/29/95_0	8:79:99 N					·· -		-		-· -			,	•-•	

100 1996. 161.F 170.F	971.F	52.	-0.2	13.3	116.	-2.	13.7	52.4	0.595	1.42	16	132	136.
08/29/95 09:00:00 UNIT 182			• • •								10	132	100.
190 2003. 163.F 172.F	991.F	52.	-0.3	14.3	120.	-3.	13.7	53.0	9.574	1.51	16	178	136.
08/29/95 09:30:00 UNIT 182													
100 2005. 164.F 173.F	1006.F	52.	-0.3	15.0	122.	-3.	13.6	55.7	0.589	1.59	16	226	137.
08/29/95 10:00:00 UNIT 182													
100 2019. 165.F 174.F	999.F	52.	-0.3	15.4	125.	-4.	13.4	54.4	0.591	1.59	16	275	137.
08/29/95 10:30:00 UNIT 182													
100 2043. 164.F 171.F	1000.F	52.	-0.3	15.5	124.	-3.	13.8	52.1	0.596	1.58	16	325	138.

ENGINE TEMPERATI RPM COOLANT OIL	JRE EXHAUST	OIL PSI		TIONS BYPASS	WELL CFM-V	FLO₩ AC.H2O	BATTERY VOLTS	DUTY CYCLE	PERCENT OXYGEN		LIARY FU CUSANDS-		ENGINE HOURS
08/29/95 11:00:00 UNIT 182 100 2012. 165.F 174.F	1014.F	52.	-0.3	15.7	125.	-3.	13.6	56.3	0. 587	1.58	_16	374	138.
08/29/95 11:30:00 UNIT 182 100 2006. 167.F 173.F	1010.F	52.	-0.3	15.7	125.	-3.	13.7	54.6	0.591	1.57	16	423	139.
08/29/95 12:00:00 UNIT 182 100 2005. 163.F 174.F 08/29/95 12:30:00 UNIT 182	1008.F	52.	-0.3	16.0	126.	-3.	13.5	54.7	0.591	1.59	16	472	139.
	1022.F	52.	-0.4	16.2	127.	-3.	13.5	59.0	0.582	1.58	16	521	140.
100 2030. 169.F 178.F 08/29/95 13:30:00 UNIT 182	1022.F	52.	-0,4	16.4	128.	-3.	13.5	56.3	0.587	1.59	16	571	140.
100 2016. 165.F 176.F 08/29/95 14:00:00 UNIT 182	1021.F	52.	-0.4	16.4	127.	-3.	13.6	57.4	0.585	1.58	16	620	141.
08/29/95 14:30:00 UNIT 182	1017.F	52.	-0.4	16.6	128.	-3.	13.6	59.9	0.582	1.60	16	670	141.
100 2043. 169.F 179.F 08/29/95 14:43:31 UNIT 182		52.	-0.4	16.6	128.	-3.	13.5	60.8	0.578	1.62	16	720	142.
100 2021. 173.F 179.F 08/29/95 15:00:00 UNIT 182 100 2022. 166.F 176.F	1025.F 1021.F	52. 52.	-0.4 -0.4	16.5 16.7	128. 129.	-3. -3.	13.5 13.6	57.6 58.0	0.585 0.584	1.58	16	742 768	142. 142.
08/29/95 15:30:00 UNIT 182 100 2025. 174.F 181.F		52.	-0.4	16.6	127.	-3.	13.4	59.4	9.581	1.57	16	817	143.
08/29/95 16:00:00 UNIT 182 100 2014. 168.F 177.F		52.	-0.4	16.7	129.	-3.	13.6	56.5	0.587	1.58	16	866	143.
08/29/95 16:30:00 UNIT 182 100 2033. 172.F 179.F		52.	-0.4	16.7	129.	-1.	13.5	58.7	0.583	1.61	16	915	144.
08/29/95 17:00:00 UNIT 182 100 2039. 173.F 181.F		52.	-0.4	16.7	129.	-3.	13.4	60.8	0.578	1.63	16	965	144.
08/29/95 17:30:00 UNIT 182 100 2004. 170.F 178.F 08/29/95 18:00:00 UNIT 182	1024.F	52.	-0.4	16.7	128.	-3.	13.5	57.6	0.585	1.60	17	15	145.
100 2028. 168.F 175.F 08/29/95 18:30:00 UNIT 182	1021.F	52.	-0.4	16.7	128.	-3.	13.6	56.7	0.587	1.63	17	66	145.
100 2036. 164.F 173.F 08/29/95 19:00:00 UNIT 182	1016.F	52.	-0.4	16.7	130.	-3.	13.8	53.8	0.592	1.64	17	117	146.
100 2041. 164.F - 172.F 08/29/95 19:30:00 UNIT 182		52.	-0.4	16.7	128.	-3.		51.0	0.598	1.63	17	167	146.
100 2033. 163.F 170.F 08/29/95 20:00:00 UNIT 182		52.	-1.4	16.5	128.	-4.	13.9	49.1	0.602	1.60	17	218	147.
100 2015. 163.F 170.F 08/29/95 20:30:00 UNIT 182 100 2056. 163.F 169.F		52. 52.	-2.0 -2.0	16.4 16.4	127. 127.	-4. -1	13.9 13.9	49.5	0.601	1.62	17 17	268 318	147. 148.
08/29/95 21:00:00 UNIT 182 100 2051. 163.F 170.F		52.	-2.0	16.4	127.	-4. -3.	13.8	49.2 49.8	0.602 0.600	1.61	17	368	148.
08/29/95 21:30:00 UNIT 182			-			٠.		.,	3.200				

781 11ML 00:00:77 C1/47/80													
100 2032. 164.F 171.F	1010.F	52.	-2.1	16.3	127.	-3.	13.8	50.5	0.599	1.59	17	467	149.
08/29/95 22:30:00 UNIT 182													* T 7 *
100 2023. 164.F 171.F	1998.F	52.	-2.1	16.3	127.	-3.	13.8	51.2	0.598	1.58	17	517	150.
08/29/95 23:00:00 UNIT 182												411	100,
100 2065. 163.F 170.F	1007.F	52.	-2.1	16.3	127.	-3.	13.8	51.8	0.596	1.58	17	566	150.
08/29/95 23:30:00 UNIT 182												000	100.
100 2040. 164.F 171.F	1005.F	52.	-2.1	16.1	125.	-3.	13.8	50.0	0.600	1.59	17	616	151.
08/30/95 00:00:00 UNIT 182													1011
100 2054. 164.F 172.F	1006.F	52.	-2.1	16.1	126.	-3.	13.8	51.9	0.596	1.60	17	665	151.

			•												
ENGINE RPM	TEM COOLANT	IPERATU OIL	re Exhaust	OIL PSI		TIONS BYPASS		FLOW AC.H2O	BATTERY VOLTS	DUTY CYCLE	PERCENT OXYGEN		LIARY FU OUSANDS-		ENGINE HOURS
08/30/95 00	:30:00 UNI	T 182													
100 2017.	164.F		1996.F	52.	-2.1	16.1	126.	-3.	13.8	51.3	0.597	1.57	17	714	152.
08/30/95 01															
100 2029.	164.F		1005.F	_52.	2.1	15.1	126.	-3.	13.8	52.5	0.595	1.56	17	763	152.
08/30/95 01 100 2039.	:30:00 UNI 164.F		100/ 5	E0	- 1 - 1	1/ 4	457	7	17.0	EO 0	0.504			010	
08/30/95 02			1000'L	52.	-2.1	16.0	126.	-3.	13.8	52.9	0.594	1.57	17	812	153.
100 2030.	164.F		1004.F	52.	-2.1	16.0	125.	-3.	13.8	51.5	0.597	1.58	17	861	153.
08/30/95 02															
100 2048.	164.F		1002.F	52.	-2.1	16.0	125.	-3.	13.8	51.8	0.596	1.57	17	909	154.
08/30/95 03															
100 2027.	165.F		1004.F	52.	-2.1	16.0	125.	-3.	13.8	52.5	0.595	1.57	17	958	154.
08/30/95 03 100 2058.	:30:00 UNI 162.F		1000 F	57	2.4	47 A	10/	7	 17 D	EA A	A /AA	4 =/	10	7	455
98/30/95 04			1000.F	52.	-2.1	16.0	126.	-3.	13.9	50.0	0.400	1.56	18	7	155.
100 2023.		168.F	999.F	52.	-2.2	15.9	126.	-3.	13.9	49.2	0.602	1.56	18	56	155.
08/30/95 04			77711	OL.	-1-	1017	1101	٠.	1017		01002	1100	10	00	1001
100 2025.	163.F		1002.F	52.	-2.2	15.9	126.	-3.	13.9	50.0	0.400	1.55	18	194	156.
08/30/95 05													-		
100 2048.	163.F		1003.F	52.	-2.2	15.9	126.	-3.	13.8	53.0	0.594	1.56	18	153	156.
08/30/95 05			4004 5		5.5	45.0	455	-	47.0	50 0	A 50/			5.5	
100 2043. 08/30/95 06		170.F	1904.F	52.	-2.2	15.9	125.	-3.	13.9	52.0	0.594	1.56	18	202	157.
100 2027.		168.F	995.F	52.	-2.3	15.9	125.	-3.	14.0	47.8	0.604	1.57	18	250	157.
08/30/95 06				· ·	1.0	2017	1101	٠.		.,,,	01001	1107	10	200	10/1
100 2050.	163.F			52.	-2.3		125.	-3.	13.8	52.9	0.594	1.56	18	299	158.
08/30/95 07			1- St	OP S	kimui	ng(2)	test	671	10 HR	5					
100 2006.	163.F		1008.F	52.	-2.3	J 15.8	125.	-2.	13.8	50.4	0.599	1.53	18	347	158.
08/30/95 07			051.5			7.5	σ,	٥	47.0	E T 4	0.504	0.77	40	771	150
100 1875. 08/30/95 07		170.F	954.F	52.	-2.3	7.8	96.	-0.	13.8	53.1	0.594	2.37	18	371	158.
100 1479.	162.F		874.F	52.	-1.8	7,7	65.	1.	13.7	55.2	0.590	1.43	18	373	158.
08/30/95 07			27 . •••	22.	*10	, , ,		•••	1317	0012	*****				
100 1454.	161.F	167.F	845.F	52.	-1.8	7.7	65.	1.	13.7	52.9	0.594	1.35	18	374	158.
08/30/95 07															
100 1689.	160.F		826.F	52.	3.5	7.7	64.	1.	13.7	55.5	0.589	1.60	- 18	375	158.
08/30/95 07			50E E		~ ~					a. a				~~~	
100 1803. 08/30/95 07	160.F		825.F	52.	7.7	4.0	57.	1.	13.7	51.9	0.596	1.93	18	377	158.
100 1801.	160.F		836.F	52.	9.4	0.1	48.	2.	13.7	52.3	0.595	2.06	18	378	158.
08/30/95 07			00011	941	/±T	Vel	τυ.	٠.	13.7	02.0	91070	7.40	10	414	1001
100 1412.	161.F		844.F	52.	13.9	-0.4	0.	2.	13.7	56.0	0.588	1.88	18	379	158.
08/30/95 07						- + -							-		
100 1848.	162.F		845.F	52.	18.7	-0.4	0.	1.	13.7	53.3	0.593	2.14	18	404	159.
08/30/95 08	:00:00 UN	IT 182													
							•	•							•

98/30/95 98:11:52 UNII 181													
100 2154. 162.F 168.F	855.F	52.	22.1	-0.5	0.	i.	13.7	52.9	0.594	2.28	18 -	496	159.
08/30/95 08:23:10 UNIT 182													
100 2169. 164.F 173.F	971.F	52.	-0.3	13.8	119.	-1.	13.8	54.9	0.590	1.64	18	515	159.
08/30/95 08:30:00 UNIT 182													
100 2139. 164.F 173.F	978.F	52.	-0.3	13.8	118.	-1.	13.7	53.4	0.593	1.69	18	527	160.
08/30/95 08:44:08 UNIT 182													
100 2034. 162.F 174.F	947.F	52.	0.2	9.0	101.	-0.	13.8	51.3	0.597	2.50	18	555	160.
08/30/95 08:44:48 UNIT 182													
100 1831. 163.F 173.F	920.F	52.	1.5	5.0	80.	1.	13.7	51.5	9.597	2.24	18	557	160.

ENGINE RPM	TEN COOLANT	1PERATU OIL	re Exhaust	OIL PSI		TIONS BYPASS	WELL CFM-V		BATTERY VOLTS	DUTY CYCLE	PERCENT OXYGEN	AUXIL CFM THO	IARY FU JUSANDS-		ENGINE HOURS
08/30/95 08 100 2010.	163.F	173.F	898.F	52.	7.2	3.3	71.	1.	13.7	50.2	0.600	2.20	18	558	160.
08/30/95 08 100 2018. 08/30/95 08	161.F	172.F	905.F	52.	10.9	-0.4	57.	1.	13.8	48.7	0.603	2.36	18	560	160.
100 1965.	162.F	172.F	904.F	57:	10.0	kimi	58.	1.	13.8	51.8	0.596	2.37	18	561	140.
08/30/95 09 100 1577.		164.F	755.F	747.N 52.	15.7	-0.5	ب رين	est 2.	5 foot 13.6	55.5	0.589	1.68	18	585	160.
08/30/95 09 100 2036. 08/30/95 09	162.F	163.F	815.F	52.	20.8	-0.5	0.	2.	13.8	49.2	9.402	2.35	18	616	160.
100 2179.	163.F	166.F	891.F	52.	16.2	-0.6	51.	1.	13.7	47.7	0.605	2.34	18	619	160.
08/30/95 09 100 1962. 08/30/95 09	163.F	172.F	933.F	- 53.	9.7	14.7	83.	-0.	13.8	91.8	0.516	0.00	18	625	160.
100 2265. 08/30/95 09	164.F	172.F	1007.F	52.	5.4	14.8	117.	-2.	13.8	50.9	0.598	0.76	18	625	160.
100 2153.	163.F	174.F	992.F	52.	-0.3	15.7	124.	-2.	13.7	49.4	0.601	1.46	18	6 33	161.
08/30/95 10 100 2130.	164.F	173.F	994.F	52.	-0.3	16.3	128.	-2.	13.9	48.2	9.604	1.69	18	684	161.
08/30/95 10 100 2114.	164.F	174.F	1011.F	52.	-0.3	16.9	130.	-2.	13.7	49.8	0.600	1.72	18	737	162.
08/30/95 10 100 2129.	166.F	175.F	1025.F	52.	-0.3	17.7	134.	-2.	13.8	52.0	0.596	1.83	18	770	162.
08/30/95 11 100 2107.			1024.F	52.	-0.3	17.8	133.	-2.	13.8	50.5	0.599	1.77	18	793	162.
08/30/95 11 100 2130.	:30:00 UN 166.F	IT 182 175.F	1026.F	52.	-0.3	18.1	135.	-2.	13.9	50.7	0.599	1.83	18	849	163.
08/30/95 12 100 2119.		IT 182 176.F	1025.F	52.	-0.3	18,2	135.	-2.	13.8	51.8	0.596	1.86	18	906	163.
08/30/95 12	:30:00 UN	IT 182													
100 2134. 08/30/95 13	166.F 160:00 UN		1027.F	52.	-0.3	18.2	136.	-1.	13.8	52.7	0.595	1.85	18	963	164.
100 2107. 08/30/95 13	165.F		1033.F	52.	-0.3	18.3	136.	-i.	13.8	51.2	0.598	1.86	19	21	164.
100 2128.	- 166.F	177.F	1034.F	52.	-0.3	18.6	138.	-i.	13.7	54.2	0.592	1.91	19	79	165.
08/30/95 14 100 2137.			1033.F	52.	-0.3	18.6	138.	-1.	13.8	52.4	0.595	1.91	19	138	165.
08/30/95 14 100 2167.			949.F	52.	-0.3	12.9	116.	9.	13.7	51.5	0.597	2.71	19	204	166.
08/30/95 15	:00:00 UN	IT 182													
100 2149. 08730/95 15		II 302	OIL PSI			UIL PSI S		UNIT	13.7 182	-3 1.2	84C.N	2.67	19	286	166.
08/30/95 15						NE FAILEI			「182 Na. OTN	050	A 5 110	י יי			
¿ESTAR										S52	45 V2	2.23			

¿ESTART	174.F 104.F AT: 08/30	0.010.7 v.	14.0 Z:2 0 ((-9.3 9. 08/30/95	2. 12.8 15:06:14)	77.7 9.500 9.00 S5245 V2.23	19	289	léó.
08/30/95 15:0	07:23 UNIT 192						•		
100 3.	194.F 160.F	544.F 0.	19.2	-0.5 0.	2. 12.8	99.9 0.500 0.00	19	289	166.
¿ESTART	AT: 08/30)/95 <mark>15:</mark> 08	3:37 (08/30/9 5	15:07:53)	85245 V2.23			
08/30/95 15:0	08:40 UNIT 182						-		
100 49.	193.F 157.F	503.F 0.	23.1	-0.5 0.	-27. 12.8	18.8 0.662 0.00	19	289	166.
¿ESTART	AT: 08/30	0/95 15:10	0:03 (c	08/30/95	15:08:55)	85245 V2.23			

TEMPERATURE

100 2149. 165.F 175.F 1025.F

08/30/95 19:00:00 UNIT 182 100 2155. 164.F 172.F 1020.F

08/30/95 20:00:00 UNIT 182 100 2149. 164.F 173.F 1023.F

08/30/95 21:00:00 UNIT 182 100 2150. 163.F 171.F 1017.F

08/30/95 22:00:00 UNIT 182

08/30/95 23:00:00 UNIT 182

100 2023. 163.F 168.F 1000.F

52. -0.3

-0.3

-0.3

-0.3

-0.7

52.

52.

18.6

18.3

18.0

18.0

15.5

136.

135.

134.

134.

124.

-2. 13.9

14.0

13.8

13.9

13.9

-2.

-2.

-3.

-3.

50.6 0.599

49.9 0.600

0.600

0.604

0.610

49.8

48.1

44.9

1.98

1.73

1.96

1.92

1.70

587

797

826

946

52

19

19

19

19

20

169.

170.

171.

172.

173.

ENGINE

MODEL V3 S/N 182 PERMIT NO.

POSITIONS

OIL

COOLANT OIL EXHAUST PSI CARB. BYPASS

100	30/95 15: 3.		156.F	492.F	0.	23.3	-0.5	0.	2.	12.9	99.9	0.500	0.00	19	289	166.
			,													
	START 10/95 15:			0/95	15:13	3:31	(08/3	0/95	15:1	0:20)	S52	45 <u>¥</u>	2.23	•		
100	3.	185.F	145.F	407.F	0.	23.3	-0.5	0.		12.8	99.9	0.500	0.00	19	289	166.
				0/95	15:15	5:36	(09/3	0/95	15:13	3:40)	S52	45 V	2.23	u		
08/3 100	0/95 15: 0.		INTT 182 139 F			-25.0	-25.0	0.	-401.	0.0	0.1	0. 700	0.00	10	289	4//
							-23.0 (08/3						9.00 2.23	19	289	166.
	0/95 15:										~~	, •		•		
100	3.		137.F	386.F	0.	23.3	-0.5	0.	1.	12.9	99.9	0.500	0.00	19	289	166
	0/95 15:			, ,, , ,,		66 0				47.5		2 /82				
	1819. 0/95 15:		169.F	636.F	52.	22.0	-0.7	0.	1.	13.8	9.8	0.680	0.00	19	289	166
	2036.	164.F	169.F	786.F	52.	21.1	-0.8	0.	- 1.	13.7	49.1	0.602	1,42	19	291	166
08/3	0/95 15:	50:43 l	JNIT 182													
	2103.	166.F		1029.F	52.	1.2	17.9	132.	-i.	13.8	53.2	0.594	1.84	19	337	167
	0/95 15: 2115.	ا 166.F 166.F		1023.F	E0.	4.7	15 7	101	۵	17.0	E7 /	0 507	4 60		775	4.7
	2113. 0/95 16:			1672.	52.	4.3	15.7	121.	-0.	13.8	53.6	0.593	1.80	19	338	167
	2146.	166.F		1072.F	52.		21.6	150.	-2.	13.7	54.3	0.591	1.74	19	352	167
)e/3	0/95 16:	30:00 L	INIT 182													
	2155.			1057.F	52.	-1.1	20.9	147.	-2.	13.7	54.3	0.591	1.97	19	406	157.
	0/95 17: 2157.			1044 =	E0		6 0 /			47.0	10.0	0.700	4 55	40	415	
	2137. 10/95 17:	166.F 1 186.87		1044.F	52.	-1.3	20.6	145.	-2.	13.9	49.8	0.600	1.95	19	465	168.
	2143.	166.F		1031.F	52.	-1.3	19.7	141.	-2.	13.9	48.4	0.603	1.98	19	526	168
08/3	0/95 17:															
	2082.	166.F		1026.F	52.	-1.2	17.9	133.	-2.	13.9	46.0	0.608	1.99	19	530	168.
	0/95 17: 2063.	32:23 ι 166.F		1013.F	52.	-1.2	17.5	132.	-2.	13.9	46.6	0.607	2.04	19	531	168.
	0/95 17:			TATOTE	J.C.	1.2	1/.3	104.	-4.	10.7	TU * 0	0.007	2.07	17	591	100
	1896.		175.F	1011.F	52.	-0.3	12.7	114.	-0.	13.9	53.4	0.593	2.05	19	532	168.
	0/95 17:															
	2173.	166.F	174.F	992.F	52.	10.7	11.4	103.	-0.	13.9	52.1	0.596	2.09	19	542	168.
8/3	0/95 18:	00:00 L	INIT 182													

WELL FLOW BATTERY DUTY PERCENT AUXILIARY FUEL

CFM-VAC.H2O VOLTS CYCLE OXYGEN CFM THOUSANDS-UNITS HOURS

ENGINE

175.
176.
170.
177
1111
179

	ENGINE		MPERATU		OIL		TIONS		L FLOW	BATTERY	DUTY	PERCENT		IARY FU		ENGINE
	RPM	COOLANT	OIL	EXHAUST	PSI	CARB.	BYPASS	CFM-	VAC.H2O	VOLTS	CYCLE	OXYGEN	CFM THO	IUSANDS-	UNITS	HOURS
	08/31/95 04	:00:00 UN	- IIT 182													
	100 2043.	163.F	168.F	995.F	52.	-0.7	15.5	123.	-3.	13.8	45.5	0.609	1.70	20	686	179.
	08/31/95 05	:00:00 UN	IT 182													
	100 2029.	162.F	168.F	994.F	52.	-0.7	15.5	123.	-3.	13.8	46.2	0.408	1.72	29	792	180.
	08/31/95 06	:00:00 UN	IIT 182													
•	∽ 100 2019.	163.F		997 F	52.	-0.7	15.5	, 123.		13.8		0.607	1.69	29	898	181.
1-	-086 31/95 06	:50:11 UN	IIT 182	Stop	Skii	mul	test	(Z)	0650) HRS	\$					
L	100 1836.	163.F		973.F	52.	-0.7	7.6	93.	-1.	13.8	46.8	0.606	2.26	20	9 87	182.
	08/31/95 06	:58:42 UN	IIT 182													
	100 1521.	159.F	160.F	743.F	52.	16.5	-0,4	0.	-Ø.	13.9	10.1	0.680	0.00	20	991	182.
	08/31/95 07	:00:00 UN	IIT 182													
	100 1534.	159.F	159.F	726.F	52.	16.5	-0.4	0.	-Ø.	13.8	10.1	0.680	0.90	20	991	182.
	08/31/95 07	:03:39 LIM	IIT 414	eng tar	56802.	ENG I	NE FAILED	ALARM	UNIT	182						
	98/31/95 97	:03:58 UN	IT 182											-		
	199 4.	159.F	156.F	682.F	ø.	13.3	-0.4	ø.	-1.	12.5	82.1	0.536	0.00	20	991	182.

APPENDIX D
SYSTEM CHECKLIST

Checklist for System Shakedown

SILE: DOVER AFB, DE

Date: 21 AUG 95

Operator's Initials: JE

	Check	-
Equipment	Okay	Comments
Liquid Ring Pump	7	스 1/2 커딩
Aqueous Effluent Transfer Pump	>	
Oil/Water Separator	7	
Vapor Flowmeter	/	
Fuel Flowmeter	7	Electric
Water Flowmeter	7	Water totals calculated by Flowinates
Emergency Shut off Float Switch	7	
Effluent Transfer Tank	7	
Analytical Field Instrumentation		
GasTector" O ₂ /CO ₂ Analyzer	1	
TraceTector" Hydrocarbon Analyzer	7	
Oil/Water Interface Probe	7	
Magnehelic Boards	7	
Thermocouple Thermometer	7	

APPENDIX E

DATA SHEETS FROM THE SHORT-TERM PILOT TEST

DAILY INSTRUMENT CALIBRATIONS

Meters (Seria	ıl #s):	O2: L0283	CO2: Lo 283	TPH: <u>DT 019</u> He	lium: MV4126
Date	Instrument	Gas Standard	Actual Reading	Comments	Recorded by
25 AUG 95	DT 019	4800 ppm	4800		AL
1.1	DT 019	4800 (1:1)	2100		Fa
1/	L0283	20.8% 02	2018 %		AH6,
11	L0283	10.0% 02	10.0 %		271
ΙĆ	L0283	4.0% CO2	4.0 %		AA
26 AUG 95	DT 019	4800 pm	4800		MH
26AU695	DT019	4800 (1:1)	2100	•	M
26AUG 95	L0283 -	20.8%02	20.8 %		MH
26 AUG 95	L0283	10.0% 02	10.2%		MA
26 AUG95	L0283	4.0% (02	4.0%		NH
27 AU 695	L0283	20.8% 02	20.8 %	·	DH
28 AUG 95	L0283	20.8% 02	20.8%	·	1246
29 AU695	L0283	20.8% 02	20.8%		M
30 AU 695	DT 019	4800 ppm	4800ppm		JH.
30 AUG 95	DT019	4800 (1:1)	1600 ppm		1 2 N
30 AU695	LO 283	20.8 % 6	20.8 %		OH
30AU695	L0283	10.0% 02	10.3%		DH
30AU695	L0283	4.0% CO2	4.0%		BH
30AUG 95	mv4126	1.96% He	1.9%		GH
31 AUG 95	DT019	14800 bbw	4800 ppm		GH
31AU695	DT019	4800 (1:1)	2100 (x2.3)		64
31AU695	DT019	4800 (1:10)	500(5000)		GH
31 AVG 95	L0283	20.8%02	20.8%		GH
31AUG95	20283	10.0% 02	10.5		GH
31AU695	L0283	4.0% CO2	4.0%		GH

ATMOSPHERIC OBSERVATIONS

Site: DOUER AFB, DE Operators: EASTEP HEADING TON

Date/Time	Ambient Temperature	Relative Humidity	Barometric Pressure
34 AUG 95/1528	89° F	76 %	29.38"
25 AUG95/0650	65,2° F	53 %	29.80"
25 AUG 95/ 1635	86.3° F	< 30%	29.47"
26 AUG95/1000	79.1°F	< 30%	29.84"
27 AUG 95/1200	91,7° F	30%	29.57"
27 AU695/2130	74.1° F	86%	29.64"
28 AUG 95/0715	71.3° F	77 %	29.68"
28 AUG 95/1950	71.7° F	55%	29,70"
29 AUG 95/0640	61.7° F	89%	- 29.75"
29AU695/1500	91.1° F	< 30%	29.34"
29 AUG 95/2015	72.3° F	66%	29.57"
30 AUG 95/0640	68.0° F	78%	29.65"
30 AUG 95/ 2045	72.2° F	69%	29.70"
31AUG 95/0615	65.0° F	96%	29,71"

Baildown Test Record Sheet

Site: DOVER AFB, DE	
Well Identification: WELL ≠ 344	
Well Diameter (OD/ID): 2 inch ID, PVC	-
Date at Start of Test: 21 Au6 95	Sampler's Initials:
Time at Start of Test: 1155	

Initial Readings

Depth to	Depth to LNAPL	LNAPL	Total Volume
Groundwater (ft)	(ft)	Thickness (ft)	Bailed (L
12.95	9.22	3.73	25.5 L/6.74 GAL

Test Data

Volume = 0.63 GAL

		
Depth to Groundwater (ft)	Depth to LNAPL (ft)	LNAPL Thickness (ft)
11.68	9.7	1.98
12.85	9.22	3.63
12.96	9.19	3.77
	·	
	-	
	Groundwater (ft) //1.68 //2.85	Groundwater LNAPL (ft) (ft) (ft) (7)

FUEL AND WATER RECOVERY DATA

Site: DOVER AFB DE

Start Date: <u>Ø8 - 24 - 95</u>

Test Type: SKIMMING

Operators: JON EASTED
GREG HEADINGTON

Date/Time	Time	LNAPL Recovery	Groundwater Recovery
-0-	-0-		
08-24-95	45 min	2.2 GAL.	· ·
08-24-95	105	9.26	
08-24-95	175	1.38 GAL.	
08-24-95	_ 335	4.2 GAL.	75 GAL.
08-24-95	365	1.3 GAL.	
08-24-95	435	1.3 GAL.	
08-24-95	473	0.66 GAL.	5 GAL.
08-25-95	1119	11.6 GAL.	
08-25-95	1155	0.42 GAL.	70 GAL.
08-75-95	1202	0.8 GAL.	
08-25-95	1238	0.8 GAL.	
08-25-95	1318	1.11 GAL.	ZO GAL.
08-25-95	1321	STOP TEST	
-	- TOTAL -		
	1321	35.02 GALS.	170 GALS,
	22.0 HR	S. (1.5 GPH)	(7.52 GPH)
			,

Bioslurping Pilot Test (Data Sheet 2) Pilot Test Pumping Data

Page ___ of ___

Site: DOVER AFB, DE

Start Date: 25 AUG 95

Operators: Headingh / Enstep

Start Time: \300

Test Type: SLURPER

Well ID: 2 inch

Depth to Groundwater: 11.59 Depth to Fuel: 11.23

Depth of Tube: 11.5

		Va	por Extraction	l				
	minutes	Stack Dif		Bi PASS	Pump Stack	Pump Head	Extraction	Total
Date/Time	Run Time	Pressure (in. H ₂ O)	Drums (in H,O)	Flowrate (scfm)	Temp (°C)	Vacuum (in. Hg)	Well Vacuum (in-H A)	MAKE-UP
		0.035"					6"Hg	
1442	102	0.035"	21 cfm	32cfm	,			53 cfm
1635	215	0,055"	26 cfm	26 cfm	28.8°	2115"	6"Hg	52cfm
2000	465							
2045	465	0.045"	23 cfm	26cfm	26.5	31.5"	6" Hg	49.5 cfu
0840	1180	0,055"	26cfm	26 c f~	29.20	21,5"	6" Ha	52cfun
1315	1455	0.052"	25 chm	26 cfun	29.0°	21,5"	6"149	51cfm
1845	1785	0.045"	23 cfm	26 cfm	27.4°	21.5"	6" Hg	49 ctm
1153	2711	0.07"	28 cfm	26 cfm	29.9°	22"	6" Ha	54 cfm
2/30	3228	0.06"	27 cfn	27 cfm	27.4°	22"	b" Hay	sycfn
0715	3813	0.05"	25 Cfn	26 cfm	26.8°	21,5"	6" Hg	51ctm
1950	4508	0,645"	23 cfm	27 cfm	28.0°	22"	6" Hg	50 cfm
0640	5i78	0.045"	23 efm	26 cfm	26.0*	22"	6:"Hg	50 cfm 49 cfm
						,		

Bioslurping Pilot Test (Data Sheet 3) Fuel and Water Recovery Data

Page \underline{Z} of $\underline{3}$

Site: Dover, DE. AFB Start Date: 08-25-95

Test Type: <u>SLURPING</u> Operators: <u>JON FASTED</u>

WELL VACUUM = 6" Hg GREC HEAD INGTON

u	JELL P	ACUUM = 6"Hg	GREG HEADINGTON
Date/Time	Run Time	LNAPL Recovery (volume collected in time period)	Groundwater Recovery (volume collected in time period)
08/25/95	10m	N. 0.53 GAL.	
	40	1.59 GAL.	
	80	0.66 GAL.	
	102		RATE = 1.8/ GPM
	153	1.32 GAL.	
	183	0.79 GAL.	· · · · · · · · · · · · · · · · · · ·
1633 HRS.	2/3	1.0 GAL.	
1710 HRS.	250	1.0 GAL. - 1.8 GAL. (2) 0.93 GAL.	RATE = Z.il GPM
1722 NRS.	262	0.93 GAL. (Z)	
1738 HRS.	278	1.58 GAL.	
1800 HRS.	300		TOTAL HZD 500 GALLON
2112 HRS.	492		RATE = 1.89 GPM
08/26/95	1260	25 GAL.	_
	1350		RATE = 2.02 GPM
1240 HRS.	1420	2.51 GAL.	2.02 GPM
1845 HRS.	1785		RATE = 1.93 GAM
1900 HRS.	1800	16.7 GAL.	
08/27/95	2478	16.7 GAL.	
0900 HRS.	z538	3.96 GAL (3)	
1315 HRS.	2793	25:0 GAL. (3)	RATE = 1.9 GPM
1830 HRS.	3048	8.4 GAL.	
2130 HRS.	3278		RATE = 2.18 GPM

NOTE: (1) REMOVED SEPERATOR FILTER

- (2) CHANGED FILTER IN BAG FILTER HOUSING
- (3) SKIMMED FROM WATER TANK SLURPPT. DS3 (G462201-1001 DISK)

Bioslurping Pilot Test (Data Sheet 3) Fuel and Water Recovery Data

Page <u>3</u> of <u>3</u>

Site:	DOVER	DE.	<u>AFB</u>	Start Date:	
-------	-------	-----	------------	-------------	--

Test Type: SLURPING Operators: Joni EASTER GREG HEADINGTON

WELL	VACU	um = 6" 179	GREG HEADINGT
Date/Time	Run Time	LNAPL Recovery (volume collected in time period)	Groundwater Recovery
08/28/95			
		18.71 GAL.	RATE = 1.92 GPM
1400 HRS	4218	10.43 GAL.	RATE = 1.93 GPM
		TOTAL AS OF 1500 HRS	
		TOTAL AS OF 1500 HRS ON 08-28-95 137.61 GA	fllan/s
08/28/95			
1950 HQS	4508	RATE= 3 GPH	RATE = Z.O GPM
08/29/95			
0640 HPS	5178	RATE = 1.8 GPH	RATE= 2.0 GPM
			·
-			

Bioslurping Pilot Test (Data Sheet 3) Fuel and Water Recovery Data

Page _ of _

Site: DOUER AFB

Start Date: 29 AUG 95

Test Type: SkimmER (2)

Operators: EAStep /HEAD

Date/Time	Run Time	LNAPL Recovery (volume collected in time period)	Groundwater Recovery (volume collected in time period)
29 AUG/0750	0		
0850	60	0.68 GALLONS	Rate = 0.3 GPM
1050-1150	240	RATE = 0.686PH total = 2.726	~~~
1342	420	RATE = 0.72 GPH	
1500-1550	480	2Ate = 0.7967H	RATE = 0.36PM
2015	745	RATE - 0.47 GPH ~10,42	Rate = 0.26 GPM
3044695 0642-0710	1400	RATE = 0.526PH + otal = 14.6G	
10FF 0710	1400	total = ~14.6 GAIDA	total HzO ~392 GALLOWS
ON 0910	1400	·	·
3044695/0946	1436	Fuel ente = 0.75 GPH	Rate = 0.3 GPM
30 AUE / 1.709	1879	Fuel RATE = 0.46 6PH	Pate = 0.23 GPM
30AUG/2045	2095	Fuel Pate = 0.42 GPH	Rate = 0.3 GPM
31 AUG 265	2665	Fuel Rate = 0.39 GPH	Pate = 0.34 GPM
31AV6/0650	2700	OFF RAte = 19,3 & 6Aller	390 GAILON_S
		total fiel collected 26%	HotAL = 782 GAllons Its C
·		total PER RATES 23.86 GALLONS	·
		Average 0,53 GPH Frel	

Bioslurping Pilot Test (Data Sheet 1) Well Characteristics

Page L of L

Site: Dover AFB DE

Test Type (skimmer, bioslurper vacuum extraction, drawdown): skimme R

Depth to Groundwater: Could not be delined Depth to Fuel: 10.24

Date at Start of Test: 24 AVG 95

Time at Start of Test: (200 HRS

Operator's Initials: 6th

Depth of Slurper Tube: 11,5

Date/Time LNAPL Level Water (in II ₂ O) Lovel Level Pressure (in II ² O) Ornink 10,244' 10,246 (in II ² O) 1,000	Wel	II ID: P	Well ID: MWA-from 344=10'	tnace n	Well ID:			Well ID:		
		AAPL evel	Water Level	Pressure (in H_2O)	LNAPL Level	Water Level	Pressure (in II²O)	LNAPL Level	Water Level	Pressure (in II ₂ O)
		,571,								
	173 min 10	,265								
	335min 10	,824								
		,395'								
		,0H°								
	•									
				-						

SLURPPT.DS1 (G462201-1001 DISK)

..

SLURPPT.DS1 (G462201-1001 DISK)

Bioslurping Pilot Test (Data Sheet 1) Well Characteristics

Page 1 of 1

Site: DOVER AFB, DE

Test Type (skimmer, bioslurper vacuum extraction, drawdown): SLURPER

Depth to Groundwater: NA

Depth to Fuel: 10,36

Depth of Slurper Tube: 11.5

Operator's Initials:

Date at Start of Test: 25 AV695

Time at Start of Test: 1300

	Well ID: r	Well ID: MWA - 11' fem	Pem 344	Well ID:			Well ID:		
Date/Time	LNAPL	Water	Pressure	LNAPL	Water	Pressure	LNAPL	Water	Pressure
- Line	revei	revei	(111 112(1)	Trevel	revei	(O II III)	revei	revei	(III II ₂ O)
20 min	10.425								
Somin	10.445								
215 min	10.46								
1380 min	10,545								
1455 min	10,55						-		
1785	10,53								
2711	10,58								
3228	/6,63								
3813	,69.01								
5178	,oĽ,o)				-				

Bioslurping Pilot Test (Data Sheet 1) Well Characteristics

Site: DOVER AFB, DE

Test Type (skimmer, bioslurper vacuum extraction, drawdown): 2 ND Skimmer TES+

Depth to Groundwater:

Depth to Fuel:

Date at Start of Test: 29 AUG 95

Time at Start of Test: 0750

Operator's Initials:

Depth of Slurper Tube: 11,5

		T				_			
	Pressure (in H ₂ O)								
	Water Level								
Well ID:	LNAPL Level								
	Pressure (in H ² O)								
	Water Level								
Well ID:	LNAPL Level								
m well 344	Pressure (in H ₂ O)								
Well ID: MWA - 11 From Well 344	Water Level								
Well ID: س	LNAPL Level	10.53	10,50		,85'01	,89.01	E		
RUN TIME	Date/Time	345min	430min	145mil	1375 min	bim3806.	2666min)		

SLURPPT.DS1 (G462201-1001 DISK)

$\label{eq:appendix} \textbf{APPENDIX} \ \textbf{F}$ SOIL GAS PERMEABILITY TEST RESULTS

25 AU	G 95	Record	Sheet for A	ir Permeabili	ity Test	1313	RS
16	UER A	FB		Monitoring	g Point /	nPA-	,
1	pe 7/2 h		PER	Distance fr	om Vent W		
Depth of I	Point 1 - 3.0	2-6.0	3-9.01	Recorded l	y Henry,	h	
Time	MP1	MP2	МР3	Time	MP1	MP2	МР3
O	1,25 Gluff Jecrea	1.20	1,15				
1 min		er vac	UUM				
2 -10	5/UN1	٥				·	
3 min	Jecres	13					
4 min							
5 m/2	1,00	1.05	1,05				
6 min	1,00	1.05	1,05				
7 mid	1.03	1.05	1.05	·			
8 min	1,03	1.05	1105"				
-9 min	1.03	1.05	1,05				
10 min	1.03	. 1.05	1.05				
15	1.03	1.06	1.06	00 4		. !! 2 !	
20	1.05	1,07	1,07	well Ux	2 /	U"745	<u> </u>
25	1,05	1,07	1.1		·		
38	1,05	1,07	1.07				
35							
-						·	
	<u> </u>						

well VAC = 7" Hay pump head VAC = 18,5" Hg

		Record	Sheet for Ai	r Permeabil	lity Test /3	313 HRS	
Site Dove	ER AFB			Monitorin	g Point m	1PB	
Blower Ty	pe <i>HP</i>	SLURPER	•	Distance fi	rom Vent W	ell <i>20'</i>	
Depth of P	oint 3'-	-6'-9'			by J. E	ASTEP	
Time	MPI RUE	MP2	€ MP3	Time	MP1	MP2	МР3
4	0	٥	0				
/	.005	.20	. 23				
2	.005	.24	. 24				
.3	. 005	.24	. 24				
4	.005	. 24	. 24				
5	-01	. 24	. 24				
6	.0/	.24	- 24				
7	.01	. 24	. 24				
8	.01	. 24	- 24				
9	.0/	.24	,24				
10	.01	-24	. 24				
12	.01	. 24	· 24				
17	.01	. 25	. 25.				
22	.87	.25	. 25				
27	.01	. 245	.25				
67	0,01	0125	0.25				
							·

		Record	Sheet for Ai	r Permeabil	ity Test /	313 HR	5
	DUER ,	4FB		,	Point MA		
			ER	Distance fr	om Vent W	ell 30'	
Depth of F	pe <i>HP</i> 'oint 3'	-6'-9	,	Recorded b	ру <i>J. Е</i>	ASTEP	
Time	MP1	MP2	e mp3 red	Time	MP1	MP2	МР3
-0	0	0	Ø				
10	.17	.19	.225				
E15	.18	.187	. 2 3				
27	. 19	. 20	245				
34	185	.195	. 24				
64	185 0-1 97 0.17	0.205	0,25				
/33	0.17	0.17	0.205		7	·	
						·	
		· · · · · · · · · · · · · · · · · · ·					
							-

Radius of Influence

Date: 8/25/95

Site Name Dover AFB	Oover AFE	æ				Oper	ator(s)	Operator(s) J. Eastep, G. Headington	, G. Hea	dington	Date:	Date: 8/25/95
1					1	İ	1				,	
Time	Air Flow				Vacuum	Vacuum (inches of water)	of water)					
(min.)	(cfm) MPA-3 MPA-6 MPA-9 MPB-3 MPB-6 MPB-9 MPC-3 MPC-6 MPC-9	MPA-3	MPA-6	MPA-9	MPB-3	MPB-6	MPB-9	MPC-3	MPC-6	MPC-9		red
		1.05	1.07	1.07	0.01	0.25	0.25	0.25 0.19 0.20	0.20	0.25		
Distance (ft)		10	10	10	20	20	20	30	30	30		

ft 32.11 بة: ا

APPENDIX G
IN SITU RESPIRATION TEST RESULTS

In Situ Respiration Test

Date: 10/25/95

Site Name: Dover AFB, DE

Monitoring Point: C

6
(ft):
of M.P.
Depth o
Ω

		, ,	(%)	^z oo	pu	e ^z ()				
	Helium (%)	1.80		1.60	1.60						
	Carbon Dioxide (%)	0.40	0.50	08.0	1.00						
0	Oxygen (%)	20.20	20.00	16.00	14.00						
0	Time (hr)	0.0	2.0	13.3	23.5						
	Date/Time (mm/dd/yr hr:min)	8/30/95 7:30	8/30/95 9:30	8/30/95 20:50	8/31/95 7:00		-				

1.80 + 1.78	+ 1.76	+ 1.74	1.72 E	inile	1.66 H	+ 1.64	+ 1.62	1 2	Oxygen Conc.	———O2 Regression	X CO2 Conc.	-X-CO2 Regression	A Helium Conc.		
								20.0							00
							*	15.0	Time (hr)	()					
								10.0	i i						
								5.0	;						
25 🕭	20		00°2	pu pu		- -		00	-	-			_		\$
Helium (%)	1.80		1.60	1.60											
- (%)				(1				T	_	

0_2 0_2	-0.2778 0.0251	20.2473 0.4315	ef. 0.9832 0.9871	s. 4 4	
Regression Lines	Slope	Intercept	Determination Coef.	No. of Data Points.	

O2 Utilization Rate 0.005 %o/min 0.278 %o/hr 6.668 %o/day **K**0

165/15/5/RT8

In Situ Respiration Test

Date: 10/25/95

Site Name: Dover AFB, DE

9

Depth of M.P. (ft):

	25 ∓	20		15	10	2	2	 * 6))		
	<u> </u>		(%)	² 00	pu	s s)			 	
	Hellum (%)	0.91		08.0	90.0						
A	Carbon Dioxide (%)	0.00	01.0	0.10	0.40						
g Point:	Oxygen (%)	20.60	20.80	20.90	20.60						
Monitoring Point: A	Time (hr)	0.0	2.0	13.3	23.5						
_	Date/Time (mm/dd/yr hr:min)	8/30/95 7:30	8/30/95 9:30	8/30/95 20:50	8/31/95 7:00						

1.00 0.00 0.00 0.50 0.00 0.00 Heiium (%)

je Le
Rai
tion
iliza
Ut
~~

		-
₩₩	Έ.	æ
- % ₹ %	=	ੲ
400	.٥	\ 0
•	۰`	•
0	-	
9	9	\mathbf{c}
	Э.	ч,
	•	0
3333333	****	
.0		
Χo		

Slope -0.0013 Intercept 20.7373 Determination Coef 0.0086	Regression Lines O2	202
	-0.0013	0.0143
	20.7373	0.0111
	Coef. 0.0086	0.8121
No. of Data Points. 4	ints. 4	4

Oxygen Conc.

 Co2 Regression
 Co2 Conc.

 Co2 Conc.

 Helium Conc.

25.0

Time (hr)

5.0

resp. xls (excel)

In Situ Respiration Test

Site Name: Dover AFB, DE 6 Depth of M.P. (ft):

Monitoring Point: B

Date: 10/25/95

25 ₹	20		र + -	-	·	5	- 7	* 3))				
	1	(%)	^z oc	pu	Б <u>с</u> ()							
ि		=			=	Ī			ī				
	1.90		1.80	1.50									
Carbon Dioxide (%)	0.02	0.40	1.00	1.30									
Oxygen (%)	20.40	20.00	16.80	15.30									
Time (hr)	0.0	2.0	13.3	23.5									
Date/Time (mm/dd/yr hr:min)	8/30/95 7:30	06:6 \$6/06/8	8/30/95 20:50	00:2 56/18/8									
	Time Oxygen Carbon (%) Hellum (%)	Time Oxygen Carbon (%) Dioxide (%) Hellum (%) 0.0 20.40 0.02 1.90	Time Oxygen Carbon (hr) (%) Dioxide (%) Hellum (%) 0.0 20.40 0.02 1.90 2.0 20.00 0.40	Time (hr.) Carbon (%) Hellum (%) 0.0 20.40 0.02 1.90 2.0 20.00 0.40 8 13.3 16.80 1.00 1.80	Time Oxygen Carbon (hr) (%) Dioxide (%) Hellum (%) 1.90 · 20.40 0.02 1.90 · 20.0 0.40 1.30 1.50	Time Oxygen Carbon (hr) (%) Dioxide (%) Hellum (%) 0.0 20.40 0.02 1.90 2.0 20.00 0.40 1.80 23.5 15.30 1.30 1.50	Time Oxygen Carbon (hr) (%) Dioxide (%) Hellum (%) (%) 0.0 20.40 0.02 1.90 (%) 13.3 16.80 1.00 1.80 (%) 23.5 15.30 1.30 1.50	Time Oxygen Carbon (hr) (%) Dioxide (%) Helium (%) 20.40 0.02 1.90 2.0 20.00 0.40 1.80 23.5 15.30 1.30 1.50	Time Oxygen Carbon (hr) (%) Dioxide (%) Hellum (%) 25 (hr) 0.0 20.40 0.02 1.90 20 2.0 2.0 20.00 0.40 1.80	Time Oxygen Carbon (hr) (%) Dioxide (%) Helium (%) 20.40 0.02 1.90 2.0 20.00 0.40 1.80 23.5 15.30 1.30 1.50	Time Oxygen Carbon (hr) (%) Dioxide (%) Hellum (%) (%) Dioxide (%) Hellum (%) (%) 20.40 0.02 1.90 (%) 2.0 20.00 0.40 1.80 (%) 23.5 15.30 1.30 1.50 ed 1	Time Oxygen Carbon (hr) (%) Dioxide (%) Helium (%) 20.40 0.02 1.90 2.0 2.00 0.40 1.80 13.3 16.80 1.30 1.50 0.1 23.5 15.30 1.30 1.50 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Time Oxygen Carbon (hr) (%) Helium (%) (0.0 20.40 0.02 1.90 2.0 2.0 0.40 1.80 2.3.5 15.30 1.30 1.50

Slope -0.2249 0.0517 Intercept 20.3087 0.1836 Determination Coef. 0.9802 0.9345 No. of Data Points. 4 4	Regression Lines	0_2	CO_2
20.3087 0.9802 4	Slope	-0.2249	0.0512
0.9802	Intercept	20.3087	0.1830
No. of Data Points. 4 4	Determination Coef.	0.9802	0.9349
	No. of Data Points.	4	4

Daygen Conc.
 A Co2 Regression
 Co2 Conc.
 A CO2 Regression
 Helium Conc.

25.0

Time (hr)

5.0

0.0

(%) muiləH

O2 Utilization Rate

0.004 %/min 0.225 %/hr 5.398 %/day . Ко

1850.x15 RT6

In Situ Respiration Test

Site Name: Dover AFB, DE

Depth of M.P. (ft): 6

Monitoring Point: C

Date: 10/25/95

					 		 	 	 <u> </u>
Helium (%)	2.00		0.55	0.76		,			-
Carbon Dioxide (%)	0.05	0.50	2.50	3.20					
Oxygen (%)	20.30	18.10	12.20	8.80					
Time (hr)	0.0	2.0	13.3	23.5					
Date/Time (mm/dd/yr hr:min)	8/30/95 7:30	8/30/95 9:30	8/30/95 20:50	8/31/95 7:00					

Rate
ization
Util
0

Ē			8
Ξ	Ξ	_5	Ö
~	⋝	7	░
۵	•	٥	8
801	6	್ಲ	
Š	*	4	
0	\circ		
			▓
K_0			
×			

**************************************	20.0 25.0	Oxygen Conc. Act Co2 Regression X CO2 Conc. CO2 Regression	A Helium Conc.
♦ ♦ ×	10.0	Time (hr)	
O ₂ and CO ₂ (%)	0.0		***************************************

Regression Lines	O ^z	CO_2
Slope	-0.4790	0.1368
Intercept	19.5002	0.2340
Determination Coef.	0.9764	0.9583
No. of Data Points.	4	4