

TECHNICAL REPORT

Aluno: José Eric Mesquita Coelho

1. Introdução

Este relatório aborda a análise de dois tipos de aprendizado supervisionado: classificação e regressão, utilizando dois conjuntos de dados distintos (*datasets*).

Dataset de Classificação - star_classification.csv

Este conjunto de dados contém informações sobre características de estrelas, galáxias e quasares, fornecendo atributos que ajudam a identificar a que classe cada corpo celeste pertence. O objetivo da análise é construir um modelo de classificação para categorizar os corpos celestes com base nos atributos presentes no dataset.

• Datasets de Regressão - tesla.csv e ferrari.csv

Estes datasets apresentam informações sobre preços de venda de ações no mercado das marcas Tesla e Ferrari. O objetivo é construir modelos de regressão para prever o valor em que uma ação fecha o dia.

As análises abordadas neste trabalho buscam explorar técnicas manuais e computacionais de aprendizado de máquina, avaliando a precisão e eficácia dos modelos gerados.

2. Observações

Observação 1 - no dataset Ferrari & Tesla: O dataset veio separado em quatro partes distintas, sendo necessário juntá-las para que a análise de regressão possa ser realizada.

Observação 2 - Na questão dois foi necessário aplicar o numpy para que o desempenho e velocidade dos cálculos manuais fossem melhorados.

Observação 3 - Na questão três foi necessário adicionar um argumento para indicar qual dataframe X de treino e teste devem ser utilizados, para o cálculo ideal da melhor normalização.

3. Resultados e discussão

Nesta seção deve-se descrever como foram as resoluções de cada questão. Crie sessões indicando a questão e discuta a implementação e resultados obtidos nesta. Explique o fluxograma do processo de cada questão, indicando quais processamentos são

realizados nos dados. Sempre que possível, faça gráficos, mostre imagens, diagramas de blocos para que sua solução seja a mais completa possível. Discuta sempre sobre os números obtidos em busca de motivos de erros e acerto.

a. Questão 1

O processamento dessa questão seguiu os seguintes passos:

Carregamento do Dataset: Foi carregado o arquivo star_classification.csv, que contém informações sobre 100.000 observações astronômicas.

Verificação de valores inválidos (Nan's): Utilizando a função isnull().sum(), para identificar valores ausentes (Nan's). O dataset não apresentou nenhum valor nulo, portanto nenhuma linha foi excluída.

Seleção de atributos relevantes: Foram selecionados atributos numéricos relevantes para que assim possa ser feito a classificação do astro como: GALAXY, STAR ou QUASAR. Os atributos <u>u, g, r, i, z</u> representam filtros de cor e luz, <u>redshift</u> apresenta uma forma de identificar a distância do objeto e por fim <u>class</u> identifica a classe do corpo celeste, logo ela é a coluna-alvo da análise.

Troca de valor das classes: As classes GALAXY, STAR e QSO tiveram seus valores substituídos por 0, 1 e 2 respectivamente, para facilitar a análise classificatória dos dados no treinamento dos modelos de Machine Learning (ML).

Salvar o dataset atualizado: O dataset foi salvo como star_classification_ajustado.csv, contendo apenas as colunas relevantes e as classes renomeadas.

Distribuição de classes do dataset:

Classes	Frequência	%
GALAXY	59445	59,44%
STAR	21594	21,60%
QSO	18961	18,96%

b. Questão 2

Nessa questão o KNN foi implementado de forma manual, sendo utilizados duas funções para isso, uma para calcular a acurácia, calcular_acuracia(), e outra para gerar o modelo KNN, knn(). Na função que calcula o KNN, pode se mandar como argumento o tipo de distância que deseja ser calculada, indicando o nome da função do cálculo.

```
def knn(X_train, y_train, nova_amostra, K, dist_func):
    # calculate distances for all training samples
    distances = dist_func(X_train, nova_amostra)

# get the indices of the K nearest neighbors
    k_indices = np.argsort(distances)[:K]

# get the labels of the K nearest neighbors
    k_vizinhos = y_train[k_indices]

# return the most common label
    return np.bincount(k_vizinhos).argmax()

4 usages new*

def calcular_acuracia(X_test, y_test, K, dist_func):
    acertos = 0
    for i in range(len(X_test)):
        classe_prevista = knn(X_train, y_train, X_test[i], K, dist_func)
        if classe_prevista == y_test[i]:
            acertos += 1
        return 100 * acertos / len(X_test)
```


Os resultados para essa questão ao utilizar o KNN com os quatro tipos de funções de distância foram:

Distância Euclidiana:
Porcentagem de acertos: 94.825
Distância de Manhattan:
Porcentagem de acertos: 94.995
Distância de Minkowski com p=3:
Porcentagem de acertos: 94.645
Distância de Chebyshev:
Porcentagem de acertos: 94.32

Conforme o que é visto nos resultados (Utilizando K-fold de valor 7) a distância Manhattan apresentou o melhor resultado para o contexto deste dataset, com **94.99**%.

Este resultado pelo fato que Distância Manhattan é menos sensível a grandes discrepâncias em dimensões específicas do espaço vetorial, o que pode ajudar na classificação de objetos com valores extremos em alguns atributos (como filtros de cor).

As distâncias Minkowski e Euclidiana tiveram desempenho próximo a Manhattan. A Chebyshev foi a menos precisa, possivelmente por focar mais em apenas uma dimensão, ignorando outras que são relevantes.

c. Questão 3

Na questão três foram testadas duas formas de normalização no conjunto de dados do dataset, sendo elas a logarítmica (X'=log(X+1)) e a de Média Zero e Variância Unitária (X'=(X $-\mu$)/ σ).

A normalização logarítmica faz com que os atributos com variações muito amplas sejam suavizados, o que pode melhorar a performance em datasets com valores discrepantes.

Já a normalização de Média Zero e Variância Unitária garante que todas as variáveis estejam na mesma escala, evitando com que atributos com valores majores dominem a métrica de distância.


```
# normalização Logarítmica
X_log = X.copy()
X_log[cols_to_normalize] = np.log(X[cols_to_normalize])
# normalização de Média Zero e Variância Unitária
X_zscore = X.copy()
X_zscore[cols_to_normalize] = (X[cols_to_normalize] - X[cols_to_normalize].mean()) / X[cols_to_normalize].std()
X_train_log, X_test_log, y_train, y_test = train_test_split( *arrays: X_log.values, y.values, test_size=0.2, random_state=42)
X_train_zscore, X_test_zscore, _, _ = train_test_split( *arrays: X_zscore.values, y.values, test_size=0.2, random_state=42)
```

A normalização **logarítmica** apresentou a maior acurácia (96.91%), ligeiramente superior à normalização z-score (96.34%). Este resultado sugere que a normalização logarítmica é mais eficaz para o dataset analisado, possivelmente porque suaviza a valores extremos em atributos como filtros de cor.

```
Comparação:
Acurácia Logarítmica: 96.91%
Acurácia Z-Score: 96.34%
```

Ambas as normalizações melhoraram a performance geral em relação ao dataset sem normalização (95.15% com Manhattan). A diferença entre os três resultados é pequena, mas isso mostra como o pré-processamento de dados é importante para melhores resultados.

d. Questão 4

Segundo os resultados obtidos nesta questão, o melhor valor de **K seria 6**, com uma acurácia de **96.91**% (Equiparáveis a de K=5 e K=7), apresentando melhor consistência dos resultados. Também é visto pelo gráfico, que a partir do valor 10 a acurácia começou a diminuir, isso ocorre porque incluir mais vizinhos pode introduzir ruído ou considerar amostras menos representativas para a classificação, demonstrando que geralmente um valor alto de K nem sempre é o ideal.

Acurácia com K = 1: 96.06% Acurácia com K = 2: 96.17% Acurácia com K = 3: 96.88% Acurácia com K = 4: 96.88% Acurácia com K = 5: 96.91% Acurácia com K = 6: 96.91% Acurácia com K = 7: 96.91% Acurácia com K = 8: 96.89% Acurácia com K = 9: 96.89% Acurácia com K = 10: 96.83% Acurácia com K = 11: 96.83% Acurácia com K = 12: 96.83% Acurácia com K = 13: 96.78% Acurácia com K = 14: 96.81% Acurácia com K = 15: 96.78% Acurácia com K = 16: 96.78% Acurácia com K = 17: 96.76% Acurácia com K = 18: 96.76% Acurácia com K = 19: 96.77% Acurácia com K = 20: 96.75% Melhor K: 6 Acurácia com Melhor K: 96.91%

e. Questão 5

A aplicação do Lasso Regression no dataset combinado identificou os seguintes coeficientes para as variáveis preditoras na tarefa de regressão com o alvo Close (variável que representa o preço de fechamento da ação):

Variável	Coeficiente	Importância Relativa
Open	0.114768	Moderada
High	0.345098	Alta
Low	0.172284	Moderada
Adj Close	0.364722	Alta
Volume	0 (Tende a zero)	Irrelevante

Assim é visto que os atributos mais relevantes são **High** e **Adj Close**. A coluna **Volume** sendo considerada irrelevante, dessa forma ela foi removida do dataset. O Lasso Regression ajudou a identificar as variáveis mais importantes, eliminando ou reduzindo significativamente o peso das menos relevantes. Com base nesses resultados o modelo de regressão pode ser simplificado.

f. Questão 6

Ao realizar a regressão linear foi utilizado o atributo **High**, já que **Adj Close** está estritamente associado ao **Close**. O **High** reflete o valor mais alto de uma ação durante o dia, não sendo dependente do atributo alvo.

RSS: 1656.72 MSE: 1.93 RMSE: 1.39 R²: 0.9989

A partir dos resultados mostrados, pode-se concluir que o modelo de regressão linear conseguiu capturar muito bem a relação entre essas variáveis.

Um valor baixo de **RSS** indica que os resíduos (erros) são pequenos, sugerindo que o modelo ajustou bem os dados.

Para dados financeiros, onde os valores das ações podem variar em escala limitada, um **MSE** baixo é um bom sinal, pois ele é usado para entender a magnitude média dos erros do modelo.

O **RMSE** significa que o erro médio do modelo é aproximadamente 1.39 unidades do preço de fechamento. Esse é um erro muito baixo,

considerando que preços de ações geralmente operam em escalas bem maiores.

O R² com valor de 0.9989 indica que a **variação no preço de fechamento** pode ser explicada pelos preços máximos do dia. Isso demonstra uma fortíssima relação linear entre essas variáveis.

No gráfico, a **reta de regressão** ajusta bem a nuvem de pontos, com pouca dispersão ao redor da linha.

Tudo isso mostra que **High** é uma variável relacionada fortemente com a Close.

A normalização com foi testada, porém, piorou os resultados.

RSS: 6389.22 MSE: 7.45 RMSE: 2.73 R²: 0.9956

Já a normalização com logaritmo melhorou bastante o resultado, mas é necessário analisar se o modelo não está com **overfitting**.

RSS: 0.25 MSE: 0.00 RMSE: 0.02 R²: 0.9978

g. Questão 7

Nessa questão o K Fold e cross-validation são implementados de modo manual.


```
class KFold:
    new*
    def __init__(self, n_splits);
    self.n_splits = n_splits

1    usage new*

def cross_val_score(self, model, X, y):
    n_samples = X.shape[0]
    indices = np.arange(n_samples)
    np.random.shurfte(indices)
    fold_size = n_samples // self.n_splits
    scores = []

for i in range(self.n_splits):
    # Crian os indices de teste e treino
    test_indices = indices[i * fold_size:(i + 1) * fold_size]
    train_indices = np.setdiffid(indices, test_indices)

# Dividir em conjuntos de treino e teste
    X_train, X_test = X(train_indices], X[test_indices]
    y_train, y_test = y[train_indices], y[test_indices]

model.fit(X_train, y_train)

# Fazer previsões no conjunto de teste
    y_pred = model.predict(X_test)

# Calcular as métricas para este fold
    RSS = compute_RSS(y_pred, y_test)
    RSS = compute_RSS(y_pred, y_test)
    RNSE = compute_RSS(y_pred, y_test)
    R.squared = compute_R_squared(y_pred, y_test)

# Armazenar as métricas
    scores.append((RSS, NSE, RMSE, R_squared))

return scores
```

O mesmo vale para as métricas RSS, MSE, RMSE e R2:

```
def compute_RSS(predictions, y):
    return np.sum(np.square(y - predictions))

2 usages new*
def compute_MSE(predictions, y):
    return np.mean(np.square(y - predictions))

1 usage new*
def compute_RMSE(predictions, y):
    return np.sqrt(compute_MSE(predictions, y))

1 usage new*
def compute_R_squared(predictions, y):
    total_variance = np.sum(np.square(y - np.mean(y)))
    explained_variance = np.sum(np.square(predictions - np.mean(y)))
    return explained_variance / total_variance
```


Com base nas funções acima, os resultados a seguir foram obtidos:

Pode-se notar que em cada Fold obteve bons resultados, porém em alguns R² o valor estava próximo ou acima de 1, o que pode indicar overfitting, algo que deve ser testado posteriormente. A consistência nos resultados também indica que o modelo está generalizando bem e que consegue fazer boas previsões.

4. Conclusões

Os resultados apresentados neste relatório demonstram que as técnicas de aprendizado supervisionado, tanto na classificação quanto na regressão, foram eficazes para os datasets (Stellar Classification e Ferrari&Tesla) analisados. No caso do dataset de classificação, o KNN com normalização logarítmica destacou-se, alcançando alta acurácia e evidenciando a importância de um bom pré-processamento. Na análise de

regressão, o uso do Lasso Regression ajudou a identificar variáveis preditoras relevantes, permitindo simplificar os modelos. A regressão linear com a variável High mostrou excelente ajuste, com métricas como R² e RMSE indicando forte relação linear e baixos erros. No entanto, alguns indícios de overfitting foram observados, especialmente em análises com normalizações específicas e em métricas elevadas como o R² acima de 1 em alguns folds, o que merece atenção em análises futuras. No mais, a maioria dos resultados foram o que se era esperado, pois os datasets já estavam com ótima usabilidade, não contendo Nan's em seus dados e com colunas que já continham informações sobre seu objetivo no Kaggle. Assim a conclusão é que a análise ocorreu de forma tranquila e com bons resultados.

5. Próximos passos

O que poderia ser melhorado nos modelos seria uma análise para mitigar possíveis casos de overfitting, especialmente ajustando os hiperparâmetros dos modelos e validando-os com conjuntos de dados separados. No contexto do dataset de classificação, vale experimentar outros métodos de normalização para refinar o modelo. Por fim, no caso dos datasets financeiros, é essencial incluir séries temporais e métricas preditivas baseadas em padrões históricos para validar a robustez do modelo frente a dados futuros, porém isso exigirá implementações técnicas mais complexas.