Inteligencia Artificial Evaluación Alternativa 1 - Teoría 23 de Noviembre, 2017 - Grupo 1

Apellidos:	 	 	 	
Nombre :	 	 	 • • • • • • • • • • • •	

Sólo se corregirán los ejercicios escritos a bolígrafo azul o bolígrafo negro

Ejercicio 1. [1.5 ptos.] Construye el árbol de decisión aplicando el algoritmo *ID3 con valores continuos* a partir del siguiente conjunto de entrenamiento

Ej	Dolor	Temp	Clasif
Ej_1	SI	16	SI
Ej_2	SI	12	NO
Ej_3	SI	13	NO
Ej_4	SI	19	NO
Ej_5	SI	14	SI
Ej_6	NO	15	SI
Ej_7	NO	20	NO
Ej_8	NO	21	NO
Ej_9	NO	17	SI
Ej_{10}	NO	18	NO

Tabla de Entropías Ent(X, Y)

		Y									
		0	1	2	3	4	5	6	7	8	9
\overline{X}	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	1	0.000	1.000	0.918	0.811	0.722	0.650	0.592	0.544	0.503	0.469
	2	0.000	0.918	1.000	0.971	0.918	0.863	0.811	0.764	0.722	0.684
	3	0.000	0.811	0.971	1.000	0.985	0.954	0.918	0.881	0.845	0.811
	4	0.000	0.722	0.918	0.985	1.000	0.991	0.971	0.946	0.918	0.890
	5	0.000	0.650	0.863	0.954	0.991	1.000	0.994	0.980	0.961	0.940
	6	0.000	0.592	0.811	0.918	0.971	0.994	1.000	0.996	0.985	0.971
	7	0.000	0.544	0.764	0.881	0.946	0.980	0.996	1.000	0.997	0.989
	8	0.000	0.503	0.722	0.845	0.918	0.961	0.985	0.997	1.000	0.998
	9	0.000	0.469	0.684	0.811	0.890	0.940	0.971	0.989	0.998	1.000

Ejercicio 2. [1 pto.] Queremos resolver un problema mediante algoritmos genéticos y hemos elegido un sistema de representación donde los genes son los números enteros del 1 al 8 y los cromosomas son permutaciones del conjunto de genes. En este contexto, considera los siguientes cromosomas

$$P_1 \equiv \langle 2\ 5\ 1\ 6\ 4\ 8\ 7\ 3 \rangle$$
 $P_2 \equiv \langle 8\ 2\ 7\ 1\ 6\ 3\ 4\ 5 \rangle$

Calcula TODOS los hijos obtenidos a partir de estos cromosomas mediante la técnica de CRUCE BASADO EN CICLOS y explica el procedimiento utilizado.

Ejercicio 3. [1 pto.] Considera el siguiente conjunto de entrenamiento

Ej	$Atrib_1$	$Atrib_2$	Clasif
Ej_1	3	4	SI
Ej_2	9	40	NO
Ej_3	5	12	NO
Ej_4	7	24	NO
Ej_5	8	15	SI
Ej_6	11	60	SI
Ej_7	12	35	NO
Ej_8	13	84	NO

Aplica el algoritmo k-NN **con rechazo** con k=7, umbral $\mu=5$ y distancia euclídea para clasificar P=(0,0) explicando los pasos realizados e indicando **explícitamente** la salida del algoritmo.

Ejercicio 4. Considera ahora un perceptrón con pesos $w_0 = 0.4$, $w_1 = 0.6$, $w_2 = 0.7$, la función sigmoide como función de activación, el factor de aprendizaje $\eta = 0.1$ y un conjunto de entrenamiento $D = \{\langle (1,1), 0.6 \rangle, \langle (1,0), 0.7 \rangle, \langle (0,1), 0.5 \rangle\}$. Usar cuatro cifras decimales.

- (a) [0.5 ptos.] Calcula el error cuadrático cometido sobre ese conjunto de entrenamiento por el conjunto de pesos dado.
- (b) [1.5 ptos.] Realiza los cálculos necesarios para obtener la primera actualización del peso w_1 según el algoritmo de descenso por el gradiente.

Cuestión 1. [0.5 ptos.] Explica en qué consiste el cruce uniforme de dos individuos en la resolución de problemas mediante algoritmos genéticos.

Cuestión 2. [0.5 ptos.] Explica cómo se calcula el error Δ_j asociado a la neurona j en el algoritmo de retropropagación aplicado a una red neuronal multicapa. Debes dar la(s) fórmula(s) y explicar el significado de los símbolos que aparecen en ella(s).