练习 1. 假设 f_1, f_2, \dots, f_N 是可测集 $E \subset \mathbb{R}^n$ 上的 N 个实值可测函数, $g : \mathbb{R}^N \to \mathbb{R}$ 是一个连续函数. 证明:

(i) $g(f_1, f_2, \cdots, f_N)$ 是 E 上可测函数,这里

$$g(f_1, f_2, \cdots, f_N)(x) := g(f_1(x), f_x(x), \cdots, f_N(x)).$$

(ii) 假设 $\{f_{1,j}\}_{j\geq 1}, \{f_{2,j}\}_{j\geq 1}, \cdots, \{f_{N,j}\}_{j\geq 1}$ 是 N 列可测函数列,对每一个 $i=1,\cdots,N$, $f_{i,j}$ 在 E 上依测度收敛到 f_i $(j\to\infty)$. 如果 $m(E)<\infty$,则 $g(f_{1,j},f_{2,j},\cdots,f_{N,j})$ 在 E 上依测度收敛到 $g(f_1,f_2,\cdots,f_N)$.

练习 2. 记 $D = \{x \in \mathbb{R}^n : |x| \le 1\}$. 假设 $\{f_k\}_{k \ge 1}$ 是 D 上的实值可测函数列,且是依测度 Cauchy 列. 此外,存在 M > 0 使得对任何 $k = 1, 2, \ldots$ 均有

$$|f_k(x) - f_k(y)| \le M|x - y|, \ \forall \ x, y \in D.$$

求证: f_k 在 D 上一致收敛.

练习 3. 假设 $f \in \mathbb{R}^n$ 上的实值可测函数. 请回答问题并说明理由: f(x+y) 是 否是 \mathbb{R}^{2n} 上的可测函数?