6 Dimensionality Reduction

The complexity of any classifier or regressor depends on the number of inputs. This determines both the time and space complexity and the necessary number of training examples to train such a classifier or regressor. In this chapter, we discuss feature selection methods that choose a subset of important features pruning the rest and feature extraction methods that form fewer, new features from the original inputs.

6.1 Introduction

IN AN APPLICATION, whether it is classification or regression, observation data that we believe contain information are taken as inputs and fed to the system for decision making. Ideally, we should not need feature selection or extraction as a separate process; the classifier (or regressor) should be able to use whichever features are necessary, discarding the irrelevant. However, there are several reasons why we are interested in reducing dimensionality as a separate preprocessing step:

- In most learning algorithms, the complexity depends on the number of input dimensions, d, as well as on the size of the data sample, N, and for reduced memory and computation, we are interested in reducing the dimensionality of the problem. Decreasing d also decreases the complexity of the inference algorithm during testing.
- When an input is decided to be unnecessary, we save the cost of extracting it.
- Simpler models are more robust on small datasets. Simpler models

have less variance, that is, they vary less depending on the particulars of a sample, including noise, outliers, and so forth.

- When data can be explained with fewer features, we get a better idea about the process that underlies the data and this allows knowledge extraction. These fewer features may be interpreted as *hidden* or *latent factors* that in combination generate the observed features.
- When data can be represented in a few dimensions without loss of information, it can be plotted and analyzed visually for structure and outliers.

FEATURE SELECTION

There are two main methods for reducing dimensionality: feature selection and feature extraction. In *feature selection*, we are interested in finding k of the d dimensions that give us the most information, and we discard the other (d - k) dimensions. We discuss *subset selection* as a feature selection method.

FEATURE EXTRACTION

In *feature extraction*, we are interested in finding a new set of *k* dimensions that are combinations of the original *d* dimensions. These methods may be supervised or unsupervised depending on whether or not they use the output information. The best known and most widely used feature extraction methods are *principal component analysis* and *linear discriminant analysis*, which are both linear projection methods, unsupervised and supervised respectively. Principal component analysis bears much similarity to two other unsupervised linear methods, which we also discuss—namely, *factor analysis* and *multidimensional scaling*. When we have not one but two sets of observed variables, *canonical correlation analysis* can be used to find the joint features that explain the dependency between the two. Examples of *nonlinear* dimensionality reduction we cover are *isometric feature mapping*, *locally linear embedding*, and *Laplacian eigenmaps*.

6.2 Subset Selection

SUBSET SELECTION

In *subset selection*, we are interested in finding the best subset of the set of features. The best subset contains the least number of dimensions that most contribute to accuracy. We discard the remaining, unimportant dimensions. Using a suitable error function, this can be used in both regression and classification problems. There are 2^d possible subsets of d variables, but we cannot test for all of them unless d is small and

we employ heuristics to get a reasonable (but not optimal) solution in reasonable (polynomial) time.

FORWARD SELECTION

BACKWARD SELECTION

There are two approaches: In *forward selection*, we start with no variables and add them one by one, at each step adding the one that decreases the error the most, until any further addition does not decrease the error (or decreases it only slightly). In *backward selection*, we start with all variables and remove them one by one, at each step removing the one that decreases the error the most (or increases it only slightly), until any further removal increases the error significantly. In either case, checking the error should be done on a validation set distinct from the training set because we want to test the generalization accuracy. With more features, generally we have lower training error, but not necessarily lower validation error.

Let us denote by F, a feature set of input dimensions, x_i , i = 1, ..., d. E(F) denotes the error incurred on the validation sample when only the inputs in F are used. Depending on the application, the error is either the mean square error or misclassification error.

In *sequential forward selection*, we start with no features: $F = \emptyset$. At each step, for all possible x_i , we train our model on the training set and calculate $E(F \cup x_i)$ on the validation set. Then, we choose that input x_j that causes the least error

 $(6.1) j = \arg\min_{i} E(F \cup x_i)$

and we

(6.2) add x_j to F if $E(F \cup x_j) < E(F)$

We stop if adding any feature does not decrease *E*. We may even decide to stop earlier if the decrease in error is too small, where there is a user-defined threshold that depends on the application constraints, trading off the importance of error and complexity. Adding another feature introduces the cost of observing the feature, as well as making the classifier/regressor more complex.

WRAPPER

This algorithm is also known as the *wrapper* approach, where the process of feature extraction is thought to "wrap" around the learner it uses as a subroutine (Kohavi and John 2007).

Let us see an example on the Iris data from the UCI repository; it has four inputs and three classes. There are fifty instances per class, and we use twenty for training and the remaining thirty for validation. We use the nearest mean as the classifier (see equation 5.26) in section 5.5. We start with a single feature; the plots of training data using single features separately are shown in figure 6.1. Using nearest mean in these one-dimensional spaces of features one to four lead to validation accuracies of 0.76, 0.57, 0.92, and 0.94, respectively. Hence, we select the fourth feature (F4) as our first feature. We then check whether adding another feature leads to improvement. The bivariate plots are shown in figure 6.2; the corresponding validation accuracies using the nearest mean classifier in these two-dimensional spaces are 0.87, 0.92, and 0.96 for (F1,F4), (F2,F4), and (F3,F4), respectively. Thus the third feature is added to as the second feature. Then we check whether adding the first feature or the second feature leads to further improvement; the validation accuracies of the nearest mean classifier in these three-dimensional spaces are both 0.94, and hence we stop with the third and fourth features as our selected features. Incidentally, using all four features, we get validation accuracy of 0.94—getting rid of the first two leads to an increase in accuracy.

Note that the features we select at the end depend heavily on the classifier we use. Another important point is that on small datasets, the selected features may also depend on the way data is split between training and validation data; hence on small datasets, it may be a better idea to do multiple, random training/validation splits and decide by looking at average validation performance—we will talk about such resampling methods in chapter 19.

This process of testing features one by one may be costly because to decrease the dimensions from d to k, we need to train and test the system $d + (d-1) + (d-2) + \cdots + (d-k)$ times, which is $\mathcal{O}(d^2)$. This is a local search procedure and does not guarantee finding the optimal subset, namely, the minimal subset causing the smallest error. For example, x_i and x_j by themselves may not be good but together may decrease the error a lot, but because this algorithm is greedy and adds attributes one by one, it may not be able to detect this. It is possible to add multiple features at a time, instead of a single one, at the expense of more computation. We can also backtrack and check which, if any, previously added feature can be removed after a current addition, thereby increasing the search space, but this increases complexity. In *floating search* methods (Pudil, Novovičová, and Kittler 1994), the number of added features and removed features can also change at each step.

In *sequential backward selection*, we start with *F* containing all features

FLOATING SEARCH

Figure 6.1 Plot of the training data for single features on Iris dataset; the three classes are shown with different symbols. It can be seen that F4 by itself allows quite good discrimination.

Figure 6.2 Plot of the training data with F4 as one feature, together with one of F1, F2, and F3. Using (F3, F4) leads to best separation.

and do a similar process except that we remove one attribute from F as opposed to adding to it, and we remove the one that causes the least error

 $(6.3) j = \arg\min_{i} E(F - x_i)$

and we

(6.4) remove x_i from F if $E(F - x_i) < E(F)$

We stop if removing a feature does not decrease the error. To decrease complexity, we may decide to remove a feature if its removal causes only a slight increase in error.

All the variants possible for forward search are also possible for backward search. The complexity of backward search has the same order of complexity as forward search, except that training a system with more features is more costly than training a system with fewer features, and forward search may be preferable especially if we expect many useless features.

Subset selection is supervised in that outputs are used by the regressor or classifier to calculate the error, but it can be used with any regression or classification method. In the particular case of multivariate normals for classification, remember that if the original d-dimensional class densities are multivariate normal, then any subset is also multivariate normal and parametric classification can still be used with the advantage of $k \times k$ covariance matrices instead of $d \times d$.

In an application like face recognition, feature selection is not a good method for dimensionality reduction because individual pixels by themselves do not carry much discriminative information; it is the combination of values of several pixels together that carry information about the face identity. This is done by feature extraction methods that we discuss next.

6.3 Principal Component Analysis

In projection methods, we are interested in finding a mapping from the inputs in the original d-dimensional space to a new (k < d)-dimensional space, with minimum loss of information. The projection of x on the direction of w is

$$(6.5) z = \mathbf{w}^T \mathbf{x}$$

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is an unsupervised method in that it does not use the output information; the criterion to be maximized is the variance. The principal component is w_1 such that the sample, after projection on to w_1 , is most spread out so that the difference between the sample points becomes most apparent. For a unique solution and to make the direction the important factor, we require $||w_1|| = 1$. We know from equation 5.14 that if $z_1 = w_1^T x$ with $Cov(x) = \Sigma$, then

$$Var(z_1) = \boldsymbol{w}_1^T \boldsymbol{\Sigma} \boldsymbol{w}_1$$

We seek w_1 such that $Var(z_1)$ is maximized subject to the constraint that $w_1^T w_1 = 1$. Writing this as a Lagrange problem, we have

(6.6)
$$\max_{\boldsymbol{w}_1} \boldsymbol{w}_1^T \boldsymbol{\Sigma} \boldsymbol{w}_1 - \alpha (\boldsymbol{w}_1^T \boldsymbol{w}_1 - 1)$$

Taking the derivative with respect to w_1 and setting it equal to 0, we have

$$2\Sigma w_1 - 2\alpha w_1 = 0$$
, and therefore $\Sigma w_1 = \alpha w_1$

which holds if w_1 is an eigenvector of Σ and α the corresponding eigenvalue. Because we want to maximize

$$\mathbf{w}_1^T \mathbf{\Sigma} \mathbf{w}_1 = \alpha \mathbf{w}_1^T \mathbf{w}_1 = \alpha$$

we choose the eigenvector with the largest eigenvalue for the variance to be maximum. Therefore the principal component is the eigenvector of the covariance matrix of the input sample with the largest eigenvalue, $\lambda_1 = \alpha$.

The second principal component, w_2 , should also maximize variance, be of unit length, and be orthogonal to w_1 . This latter requirement is so that after projection $z_2 = w_2^T x$ is uncorrelated with z_1 . For the second principal component, we have

(6.7)
$$\max_{\mathbf{w}_2} \mathbf{w}_2^T \mathbf{\Sigma} \mathbf{w}_2 - \alpha (\mathbf{w}_2^T \mathbf{w}_2 - 1) - \beta (\mathbf{w}_2^T \mathbf{w}_1 - 0)$$

Taking the derivative with respect to w_2 and setting it equal to 0, we have

(6.8)
$$2\Sigma w_2 - 2\alpha w_2 - \beta w_1 = 0$$

Premultiply by \mathbf{w}_1^T and we get

$$2\boldsymbol{w}_1^T\boldsymbol{\Sigma}\boldsymbol{w}_2 - 2\alpha\boldsymbol{w}_1^T\boldsymbol{w}_2 - \beta\boldsymbol{w}_1^T\boldsymbol{w}_1 = 0$$

Note that $\mathbf{w}_1^T \mathbf{w}_2 = 0$. $\mathbf{w}_1^T \mathbf{\Sigma} \mathbf{w}_2$ is a scalar, equal to its transpose $\mathbf{w}_2^T \mathbf{\Sigma} \mathbf{w}_1$ where, because \mathbf{w}_1 is the leading eigenvector of $\mathbf{\Sigma}$, $\mathbf{\Sigma} \mathbf{w}_1 = \lambda_1 \mathbf{w}_1$. Therefore

$$\boldsymbol{w}_1^T \boldsymbol{\Sigma} \boldsymbol{w}_2 = \boldsymbol{w}_2^T \boldsymbol{\Sigma} \boldsymbol{w}_1 = \lambda_1 \boldsymbol{w}_2^T \boldsymbol{w}_1 = 0$$

Then $\beta = 0$ and equation 6.8 reduces to

$$\Sigma w_2 = \alpha w_2$$

which implies that w_2 should be the eigenvector of Σ with the second largest eigenvalue, $\lambda_2 = \alpha$. Similarly, we can show that the other dimensions are given by the eigenvectors with decreasing eigenvalues.

Because Σ is symmetric, for two different eigenvalues, the eigenvectors are orthogonal. If Σ is positive definite ($x^T\Sigma x>0$, for all nonnull x), then all its eigenvalues are positive. If Σ is singular, then its rank, the effective dimensionality, is k with k < d and $\lambda_i, i = k+1, \ldots, d$ are 0 (λ_i are sorted in descending order). The k eigenvectors with nonzero eigenvalues are the dimensions of the reduced space. The first eigenvector (the one with the largest eigenvalue), w_1 , namely, the principal component, explains the largest part of the variance; the second explains the second largest; and so on.

We define

$$(6.9) \mathbf{z} = \mathbf{W}^T (\mathbf{x} - \mathbf{m})$$

where the k columns of W are the k leading eigenvectors of S, the estimator to Σ . We subtract the sample mean m from x before projection to center the data on the origin. After this linear transformation, we get to a k-dimensional space whose dimensions are the eigenvectors, and the variances over these new dimensions are equal to the eigenvalues (see figure 6.3). To normalize variances, we can divide by the square roots of the eigenvalues.

Let us see another derivation: We want to find a matrix **W** such that when we have $\mathbf{z} = \mathbf{W}^T \mathbf{x}$ (assume without loss of generality that \mathbf{x} are already centered), we will get $\text{Cov}(\mathbf{z}) = \mathbf{D}$ where **D** is any diagonal matrix; that is, we would like to get uncorrelated z_i .

If we form a $(d \times d)$ matrix **C** whose *i*th column is the normalized eigenvector c_i of **S**, then $C^TC = I$ and

$$S = SCC^{T}$$
$$= S(c_1, c_2, ..., c_d)C^{T}$$

Figure 6.3 Principal component analysis centers the sample and then rotates the axes to line up with the directions of highest variance. If the variance on z_2 is too small, it can be ignored and we have dimensionality reduction from two to one.

$$= (\mathbf{S}\boldsymbol{c}_{1}, \mathbf{S}\boldsymbol{c}_{2}, \dots, \mathbf{S}\boldsymbol{c}_{d})C^{T}$$

$$= (\lambda_{1}\boldsymbol{c}_{1}, \lambda_{2}\boldsymbol{c}_{2}, \dots, \lambda_{d}\boldsymbol{c}_{d})\mathbf{C}^{T}$$

$$= \lambda_{1}\boldsymbol{c}_{1}\boldsymbol{c}_{1}^{T} + \dots + \lambda_{d}\boldsymbol{c}_{d}\boldsymbol{c}_{d}^{T}$$

$$= \mathbf{C}\mathbf{D}\mathbf{C}^{T}$$
(6.10)

SPECTRAL DECOMPOSITION

where **D** is a diagonal matrix whose diagonal elements are the eigenvalues, $\lambda_1, \ldots, \lambda_d$. This is called the *spectral decomposition* of **S**. Since **C** is orthogonal and $\mathbf{CC}^T = \mathbf{C}^T\mathbf{C} = \mathbf{I}$, we can multiply on the left by \mathbf{C}^T and on the right by **C** to obtain

$$(6.11) \quad \mathbf{C}^T \mathbf{S} \mathbf{C} = \mathbf{D}$$

We know that if $z = W^T x$, then $Cov(z) = W^T SW$, which we would like to be equal to a diagonal matrix. Then from equation 6.11, we see that we can set W = C.

Let us see an example to get some intuition (Rencher 1995): Assume we are given a class of students with grades on five courses and we want to order these students. That is, we want to project the data onto one dimension, such that the difference between the data points become most apparent. We can use PCA. The eigenvector with the highest eigenvalue is the direction that has the highest variance, that is, the direction on which the students are most spread out. This works better than taking

the average because we take into account correlations and differences in variances.

In practice even if all eigenvalues are greater than 0, if $|\mathbf{S}|$ is small, remembering that $|\mathbf{S}| = \prod_{i=1}^d \lambda_i$, we understand that some eigenvalues have little contribution to variance and may be discarded. Then, we take into account the leading k components that explain more than, for example, 90 percent, of the variance. When λ_i are sorted in descending order, the *proportion of variance* explained by the k principal components is

PROPORTION OF VARIANCE

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_k + \dots + \lambda_d}$$

If the dimensions are highly correlated, there will be a small number of eigenvectors with large eigenvalues and k will be much smaller than d and a large reduction in dimensionality may be attained. This is typically the case in many image and speech processing tasks where nearby inputs (in space or time) are highly correlated. If the dimensions are not correlated, k will be as large as d and there is no gain through PCA.

SCREE GRAPH

Scree graph is the plot of variance explained as a function of the number of eigenvectors kept (see figure 6.4). By visually analyzing it, one can also decide on k. At the "elbow," adding another eigenvector does not significantly increase the variance explained.

Another possibility is to ignore the eigenvectors whose eigenvalues are less than the average input variance. Given that $\sum_i \lambda_i = \sum_i s_i^2$ (equal to the *trace* of **S**, denoted as tr(S)), the average eigenvalue is equal to the average input variance. When we keep only the eigenvectors with eigenvalues greater than the average eigenvalue, we keep only those that have variance higher than the average input variance.

If the variances of the original x_i dimensions vary considerably, they affect the direction of the principal components more than the correlations, so a common procedure is to preprocess the data so that each dimension has mean 0 and unit variance, before using PCA. Or, one may use the eigenvectors of the correlation matrix, \mathbf{R} , instead of the covariance matrix, \mathbf{S} , for the correlations to be effective and not the individual variances.

PCA explains variance and is sensitive to outliers: A few points distant from the center would have a large effect on the variances and thus the eigenvectors. *Robust estimation* methods allow calculating parameters in the presence of outliers. A simple method is to calculate the Mahalanobis distance of the data points, discarding the isolated data points that are

Figure 6.4 (a) Scree graph. (b) Proportion of variance explained is given for the Optdigits dataset from the UCI Repository. This is a handwritten digit dataset with ten classes and sixty-four dimensional inputs. The first twenty eigenvectors explain 90 percent of the variance.

far away.

If the first two principal components explain a large percentage of the variance, we can do *visual analysis*: We can plot the data in this two-dimensional space (figure 6.5) and search visually for structure, groups, outliers, normality, and so forth. This plot gives a better pictorial description of the sample than a plot of any two of the original variables. By looking at the dimensions of the principal components, we can also try to recover meaningful underlying variables that describe the data. For example, in image applications where the inputs are images, the eigenvectors can also be displayed as images and can be seen as templates for important features; they are typically named "*eigenfaces*," "*eigendigits*,"

Figure 6.5 Optdigits data plotted in the space of two principal components. Only the labels of a hundred data points are shown to minimize the ink-to-noise ratio.

and so forth (Turk and Pentland 1991).

We know from equation 5.15 that if $\mathbf{x} \sim \mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then after projection $\mathbf{W}^T\mathbf{x} \sim \mathcal{N}_k(\mathbf{W}^T\boldsymbol{\mu}, \mathbf{W}^T\boldsymbol{\Sigma}\mathbf{W})$. If the sample contains d-variate normals, then it projects to k-variate normals allowing us to do parametric discrimination in this lower-dimensional space. Because z_j are uncorrelated, the new covariance matrices will be diagonal, and if they are normalized to have unit variance, Euclidean distance can be used in this new space, leading to a simple classifier.

Instance x^t is projected to the z-space as

$$\mathbf{z}^t = \mathbf{W}^T (\mathbf{x}^t - \boldsymbol{\mu})$$

When W is an orthogonal matrix such that $WW^T = I$, it can be backprojected to the original space as

$$\hat{\mathbf{x}}^t = \mathbf{W}\mathbf{z}^t + \boldsymbol{\mu}$$

 \hat{x}^t is the reconstruction of x^t from its representation in the *z*-space. It is known that among all orthogonal linear projections, PCA minimizes the *reconstruction error*, which is the distance between the instance and its reconstruction from the lower-dimensional space:

RECONSTRUCTION ERROR

$$(6.12) \qquad \sum_{t} \|\boldsymbol{x}^{t} - \hat{\boldsymbol{x}}^{t}\|^{2}$$

As we discussed earlier, the contribution of each eigenvector is given by its eigenvalue, and hence it makes sense to keep the eigenvectors with the highest eigenvalues; if for dimensionality reduction we discard some eigenvectors with nonzero eigenvalues, there will be a reconstruction error and its magnitude will depend on the discarded eigenvalues. In a visual recognition application—for example, face recognition—displaying $\hat{\mathbf{x}}^t$ allows a visual check for information loss during PCA.

KARHUNEN-LOÈVE EXPANSION PCA is unsupervised and does not use output information. It is a one-group procedure. However, in the case of classification, there are multiple groups. *Karhunen-Loève expansion* allows using class information; for example, instead of using the covariance matrix of the whole sample, we can estimate separate class covariance matrices, take their average (weighted by the priors) as the covariance matrix, and use its eigenvectors.

COMMON PRINCIPAL COMPONENTS

In *common principal components* (Flury 1988), we assume that the principal components are the same for each class whereas the variances of these components differ for different classes:

$$\mathbf{S}_i = \mathbf{C}\mathbf{D}_i\mathbf{C}^T$$

This allows pooling data and is a regularization method whose complexity is less than that of a common covariance matrix for all classes, while still allowing differentiation of S_i . A related approach is *flexible discriminant analysis* (Hastie, Tibshirani, and Buja 1994), which does a linear projection to a lower-dimensional space where all features are un-

correlated and then uses a minimum distance classifier.

FLEXIBLE DISCRIMINANT ANALYSIS

6.4 Feature Embedding

Remember that **X** is the $N \times d$ data matrix where N is the number of instances and d is the input dimensionality. The covariance matrix of x

is $d \times d$ and is equal to $\mathbf{X}^T \mathbf{X}$ if \mathbf{X} is centered to have zero mean (without loss of generality). Principal component analysis uses the eigenvectors of $\mathbf{X}^T \mathbf{X}$. Remember that the spectral decomposition is

$$(6.13) X^T X = WDW^T$$

where **W** is $d \times d$ and contains the eigenvectors of $\mathbf{X}^T\mathbf{X}$ in its columns and **D** is a $d \times d$ diagonal matrix with the corresponding eigenvalues. We assume that the eigenvectors are sorted according to their eigenvalues so that the first column of **W** is the eigenvector with the largest eigenvalue in D_{11} , and so on. If $\mathbf{X}^T\mathbf{X}$ has rank k < d, then $D_{ii} = 0$ for i > k.

Let us say we want to reduce dimensionality to k < d. In PCA, as we saw before, we take the first k columns of W (with the highest eigenvalues). Let us denote them by w_i and their eigenvalues by λ_i , $i = 1, \ldots, k$. We map to the new k-dimensional space by taking a dot product of the original inputs with the eigenvectors:

(6.14)
$$z_i^t = \mathbf{w}_i^T \mathbf{x}^t, i = 1, ..., k, t = 1, ..., N$$

Given that λ_i and w_i are the eigenvalues and eigenvectors of $\mathbf{X}^T\mathbf{X}$, for any $i \leq k$, we have

$$(\mathbf{X}^T\mathbf{X})\mathbf{w}_i = \lambda_i \mathbf{w}_i$$

Premultiplying by X, we find

$$(\mathbf{X}\mathbf{X}^T)\mathbf{X}\mathbf{w}_i = \lambda_i \mathbf{X}\mathbf{w}_i$$

Hence, $\mathbf{X}\mathbf{w}_i$ must be the eigenvectors of $\mathbf{X}\mathbf{X}^T$ with the same eigenvalues (Chatfield and Collins 1980). Note that $\mathbf{X}^T\mathbf{X}$ is $d\times d$, whereas $\mathbf{X}\mathbf{X}^T$ is $N\times N$. Let us write *its* spectral decomposition:

$$(6.15) \quad \mathbf{X}\mathbf{X}^T = \mathbf{V}\mathbf{E}\mathbf{V}^T$$

V is the $N \times N$ matrix containing the eigenvectors of $\mathbf{X}\mathbf{X}^T$ in its columns, and **E** is the $N \times N$ diagonal matrix with the corresponding eigenvalues. The N-dimensional eigenvectors of $\mathbf{X}\mathbf{X}^T$ are the coordinates in the new space. We call this *feature embedding*.

One caution here: Eigenvectors are usually normalized to have unit length, so if the eigenvectors of $\mathbf{X}\mathbf{X}^T$ are \mathbf{v}_i (with the same eigenvalues), we have

$$\mathbf{v}_i = \mathbf{X}\mathbf{w}_i/\lambda_i, i = 1, \dots, k$$

FEATURE EMBEDDING

because the sum of squares of Xw_i is λ_i . So if we have v_i (column i of V) calculated and we want to get Xw_i , that is, do what PCA does, we should multiply with the square root of the eigenvalue:

(6.16)
$$z_i^t = \mathbf{V}_{ti} \sqrt{\mathbf{E}_{tt}}, \ t = 1, ..., N, i = 1, ..., k$$

When d < N, as is generally the case, it is simpler to work with X^TX , that is, use PCA. Sometimes d > N and it is easier to work with XX^T , which is $N \times N$. For example, in the eigenfaces approach (Turk and Pentland 1991), face images are $256 \times 256 = 65,536$ -dimensional and there are only forty face images (four images each from ten people). Note that the rank can never exceed min(d,N); that is, in this face recognition example, even though the covariance matrix is $65,536 \times 65,536$, we know that the rank (the number of eigenvectors with eigenvalues greater than 0) can never exceed forty. Hence we can work with the 40×40 matrix instead and use the new coordinates in this forty-dimensional space; for example, do recognition using the nearest mean classifier (Turk and Pentland 1991). The same is also true in most bioinformatics applications where we may have long gene sequences but a small sample. In text clustering, the number of possible words may be much more than the number of documents, and in a movie recommendation system, the number of movies may be much more than the customers.

There is a caveat, though: In the case of PCA, we learn projection vectors, and we can map any new test x to the new space by taking dot products with the eigenvectors—we have a model for projection. We cannot do this with feature embedding, because we do not have projection vectors—we do not learn a projection model but get the coordinates directly. If we have new test data, we should add them to X and redo the calculation.

The element (i, j) of \mathbf{XX}^T is equal to the dot product of instances i and j; that is, $(\mathbf{x}^i)^T(\mathbf{x}^j)$, where $i, j = 1, \dots, N$. If we consider dot product as measuring the similarity between vectors, we can consider \mathbf{XX}^T as an $N \times N$ matrix of pairwise similarities. From this perspective, we can consider feature embedding as a method of placing instances in a k-dimensional space such that pairwise similarities in the new space respect the original pairwise similarities. We will revisit this idea later: In section 6.7, we discuss multidimensional scaling where we use the Euclidean distance between vectors instead of the dot product, and in sections 6.10 and 6.12, we discuss Isomap and Laplacian eigenmaps respectively where we consider non-Euclidean measures of (dis)similarity.

6.5 Factor Analysis

In PCA, from the original dimensions x_i , i = 1, ..., d, we form a new set of variables z that are linear combinations of x_i :

$$z = \mathbf{W}^T (\mathbf{x} - \boldsymbol{\mu})$$

FACTOR ANALYSIS

LATENT FACTORS

In *factor analysis* (FA), we assume that there is a set of unobservable, *latent factors* z_j , j = 1, ..., k, which when acting in combination *generate* x. Thus the direction is opposite that of PCA (see figure 6.6). The goal is to characterize the dependency among the observed variables by means of a smaller number of factors.

Suppose there is a group of variables that have high correlation among themselves and low correlation with all the other variables. Then there may be a single underlying factor that gave rise to these variables. If the other variables can be similarly grouped into subsets, then a few factors can represent these groups of variables. Though factor analysis always partitions the variables into factor clusters, whether the factors mean anything, or really exist, is open to question.

FA, like PCA, is a one-group procedure and is unsupervised. The aim is to model the data in a smaller dimensional space without loss of information. In FA, this is measured as the correlation between variables.

As in PCA, we have a sample $\mathcal{X} = \{x^t\}_t$ drawn from some unknown probability density with $E[x] = \mu$ and $Cov(x) = \Sigma$. We assume that the factors are unit normals, $E[z_j] = 0$, $Var(z_j) = 1$, and are uncorrelated, $Cov(z_i, z_j) = 0$, $i \neq j$. To explain what is not explained by the factors, there is an added source for each input which we denote by ϵ_i . It is assumed to be zero-mean, $E[\epsilon_i] = 0$, and have some unknown variance, $Var(\epsilon_i) = \psi_i$. These specific sources are uncorrelated among themselves, $Cov(\epsilon_i, \epsilon_j) = 0$, $i \neq j$, and are also uncorrelated with the factors, $Cov(\epsilon_i, \epsilon_j) = 0$, $\forall i, j$.

FA assumes that each input dimension, x_i , i = 1, ..., d, can be written as a weighted sum of the k < d factors, z_j , j = 1, ..., k, plus the residual term (see figure 6.7):

$$x_{i} - \mu_{i} = v_{i1}z_{1} + v_{i2}z_{2} + \dots + v_{ik}z_{k} + \epsilon_{i}, \forall i = 1, \dots, d$$

$$(6.17) \quad x_{i} - \mu_{i} = \sum_{j=1}^{k} v_{ij}z_{j} + \epsilon_{i}$$

This can be written in vector-matrix form as

$$(6.18) x - \mu = Vz + \epsilon$$

Figure 6.6 Principal component analysis generates new variables that are linear combinations of the original input variables. In factor analysis, however, we posit that there are factors that when linearly combined generate the input variables.

where **V** is the $d \times k$ matrix of weights, called *factor loadings*. From now on, we are going to assume that $\mu = 0$ without loss of generality; we can always add μ after projection. Given that $Var(z_i) = 1$ and $Var(\epsilon_i) = \psi_i$

(6.19)
$$\operatorname{Var}(x_i) = v_{i1}^2 + v_{i2}^2 + \dots + v_{ik}^2 + \psi_i$$

 $\sum_{j=1}^{k} v_{ij}^2$ is the part of the variance explained by the common factors and ψ_i is the variance specific to x_i .

In vector-matrix form, we have

(6.20)
$$\Sigma = \text{Cov}(\mathbf{x}) = \text{Cov}(\mathbf{V}\mathbf{z} + \boldsymbol{\epsilon})$$
$$= \text{Cov}(\mathbf{V}\mathbf{z}) + \text{Cov}(\boldsymbol{\epsilon})$$
$$= \mathbf{V}\text{Cov}(\mathbf{z})\mathbf{V}^T + \mathbf{\Psi}$$
$$= \mathbf{V}\mathbf{V}^T + \mathbf{\Psi}$$

where Ψ is a diagonal matrix with ψ_i on the diagonals. Because the factors are uncorrelated unit normals, we have Cov(z) = I. With two factors, for example,

$$Cov(x_1, x_2) = v_{11}v_{21} + v_{12}v_{22}$$

If x_1 and x_2 have high covariance, then they are related through a factor. If it is the first factor, then v_{11} and v_{21} will both be high; if it is the second factor, then v_{12} and v_{22} will both be high. In either case, the sum

Figure 6.7 Factors are independent unit normals that are stretched, rotated, and translated to make up the inputs.

 $v_{11}v_{21} + v_{12}v_{22}$ will be high. If the covariance is low, then x_1 and x_2 depend on different factors and in the products in the sum, one term will be high and the other will be low and the sum will be low.

We see that

$$Cov(x_1, z_2) = Cov(v_{12}z_2, z_2) = v_{12}Var(z_2) = v_{12}$$

Thus Cov(x, z) = V, and we see that the loadings represent the correlations of variables with the factors.

Given S, the estimator of Σ , we would like to find V and Ψ such that

$$\mathbf{S} = \mathbf{V}\mathbf{V}^T + \mathbf{\Psi}$$

If there are only a few factors, that is, if **V** has few columns, then we have a simplified structure for **S**, as **V** is $d \times k$ and Ψ has d values, thus reducing the number of parameters from d^2 to $d \cdot k + d$.

Since Ψ is diagonal, covariances are represented by V. Note that PCA does not allow a separate Ψ and it tries to account for both the covariances *and* the variances. When all ψ_i are equal, namely, $\Psi = \psi I$, we get *probabilistic PCA* (Tipping and Bishop 1999) and the conventional PCA is when ψ_i are 0.

Let us now see how we can find the factor loadings and the specific variances: Let us first ignore Ψ . Then, from its spectral decomposition, we know that we have

$$S = CDC^T = CD^{1/2}D^{1/2}C^T = (CD^{1/2})(CD^{1/2})^T$$

where we take only k of the eigenvectors by looking at the proportion of variance explained so that C is the $d \times k$ matrix of eigenvectors and $D^{1/2}$

PROBABILISTIC PCA

is the $k \times k$ diagonal matrix with the square roots of the eigenvalues on its diagonals. Thus we have

(6.22) $\mathbf{V} = \mathbf{C}\mathbf{D}^{1/2}$

We can find ψ_j from equation 6.19 as

(6.23)
$$\psi_i = s_i^2 - \sum_{j=1}^k v_{ij}^2$$

Note that when V is multiplied with any orthogonal matrix—namely, having the property $TT^T = I$ —that is another valid solution and thus the solution is not unique.

$$S = (VT)(VT)^T = VTT^TV^T = VIV^T = VV^T$$

If T is an orthogonal matrix, the distance to the origin does not change. If z = Tx, then

$$\mathbf{z}^T \mathbf{z} = (\mathbf{T} \mathbf{x})^T (\mathbf{T} \mathbf{x}) = \mathbf{x}^T \mathbf{T}^T \mathbf{T} \mathbf{x} = \mathbf{x}^T \mathbf{x}$$

Multiplying with an orthogonal matrix has the effect of rotating the axes and allows us to choose the set of axes most interpretable (Rencher 1995). In two dimensions,

$$T = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$

rotates the axes by ϕ . There are two types of rotation: In orthogonal rotation the factors are still orthogonal after the rotation, and in oblique rotation the factors are allowed to become correlated. The factors are rotated to give the maximum loading on as few factors as possible for each variable, to make the factors interpretable. However, interpretability is subjective and should not be used to force one's prejudices on the data.

There are two uses of factor analysis: It can be used for knowledge extraction when we find the loadings and try to express the variables using fewer factors. It can also be used for dimensionality reduction when k < d. We already saw how the first one is done. Now, let us see how factor analysis can be used for dimensionality reduction.

When we are interested in dimensionality reduction, we need to be able to find the factor scores, z_j , from x_i . We want to find the loadings w_{ji} such that

(6.24)
$$z_j = \sum_{i=1}^d w_{ji} x_i + \epsilon_j, j = 1, \dots, k$$

where x_i are centered to have mean 0. In vector form, for observation t, this can be written as

$$z^t = \mathbf{W}^T x^t + \epsilon, \forall t = 1, \dots, N$$

This is a linear model with *d* inputs and *k* outputs. Its transpose can be written as

$$(\mathbf{z}^t)^T = (\mathbf{x}^t)^T \mathbf{W} + \boldsymbol{\epsilon}^T, \forall t = 1, \dots, N$$

Given that we have a sample of N observations, we write

(6.25)
$$Z = XW + \Xi$$

where **Z** is $N \times k$ of factors, **X** is $N \times d$ of (centered) observations, and Ξ is $N \times k$ of zero-mean noise. This is multivariate linear regression with multiple outputs, and we know from section 5.8 that **W** can be found as

$$\mathbf{W} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Z}$$

but we do not know **Z**; it is what we would like to calculate. We multiply and divide both sides by N-1 and obtain

$$\mathbf{W} = (N-1)(\mathbf{X}^T \mathbf{X})^{-1} \frac{\mathbf{X}^T \mathbf{Z}}{N-1}$$
$$= \left(\frac{\mathbf{X}^T \mathbf{X}}{N-1}\right)^{-1} \frac{\mathbf{X}^T \mathbf{Z}}{N-1}$$
$$= \mathbf{S}^{-1} \mathbf{V}$$

and placing equation 6.26 in equation 6.25, we write

(6.27)
$$Z = XW = XS^{-1}V$$

assuming that **S** is nonsingular. One can use **R** instead of **S** when x_i are normalized to have unit variance.

For dimensionality reduction, FA offers no advantage over PCA except the interpretability of factors allowing the identification of common causes, a simple explanation, and knowledge extraction. For example, in the context of speech recognition, \boldsymbol{x} corresponds to the acoustic signal, but we know that it is the result of the (nonlinear) interaction of a small number of *articulators*, namely, jaw, tongue, velum, lips, and mouth, which are positioned appropriately to shape the air as it comes out of the lungs and generate the speech sound. If a speech signal could be

transformed to this articulatory space, then recognition would be much easier. Using such generative models is one of the current research directions for speech recognition; in chapter 14, we discuss how such models can be represented as a graphical model.

6.6 Singular Value Decomposition and Matrix Factorization

Given the $N \times d$ data matrix **X**, we work with $\mathbf{X}^T\mathbf{X}$ if d < N or work with $\mathbf{X}\mathbf{X}^T$ if N < d. Both are square matrices and in either case, the spectral decomposition gives us $\mathbf{Q}\Lambda\mathbf{Q}^T$ where the eigenvector matrix **Q** is orthogonal ($\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$) and Λ contains the eigenvalues on its diagonal.

SINGULAR VALUE DECOMPOSITION

The *singular value decomposition* allows us to decompose any $N \times d$ *rectangular* matrix (Strang 2006):

$$(6.28) X = VAW^T$$

where the $N \times N$ matrix **V** contains the eigenvectors of $\mathbf{X}\mathbf{X}^T$ in its columns, the $d \times d$ matrix **W** contains the eigenvectors of $\mathbf{X}^T\mathbf{X}$ in its columns, and the $N \times d$ matrix **A** contains the $k = \min(N, d)$ *singular values*, $a_i, i = 1, \ldots, k$ on its diagonal that are the square roots of the nonzero eigenvalues of both $\mathbf{X}\mathbf{X}^T$ and $\mathbf{X}^T\mathbf{X}$; the rest of **A** is zero. **V** and \mathbf{W}^T are orthogonal matrices (but not necessarily transposes of each other).

$$\mathbf{X}\mathbf{X}^T = (\mathbf{V}\mathbf{A}\mathbf{W}^T)(\mathbf{V}\mathbf{A}\mathbf{W}^T)^T = \mathbf{V}\mathbf{A}\mathbf{W}^T\mathbf{W}\mathbf{A}^T\mathbf{V}^T = \mathbf{V}\mathbf{E}\mathbf{V}^T$$

 $\mathbf{X}^T\mathbf{X} = (\mathbf{V}\mathbf{A}\mathbf{W}^T)^T(\mathbf{V}\mathbf{A}\mathbf{W}^T) = \mathbf{W}\mathbf{A}^T\mathbf{V}^T\mathbf{V}\mathbf{A}\mathbf{W}^T = \mathbf{W}\mathbf{D}\mathbf{W}^T$

where $\mathbf{E} = \mathbf{A}\mathbf{A}^T$ and $\mathbf{D} = \mathbf{A}^T\mathbf{A}$. They are of different sizes but are both square and contain a_i^2 , i = 1, ..., k on their diagonal and zero elsewhere. Just as in equation 6.10, we can write

(6.29)
$$\mathbf{X} = \mathbf{u}_1 a_1 \mathbf{v}_1^T + \mathbf{u}_2 a_2 \mathbf{v}_2^T + \cdots + \mathbf{u}_k a_k \mathbf{v}_k^T$$

We can ignore the corresponding u_i , v_i of very small, though nonzero, a_i and can still reconstruct **X** without too much error.

MATRIX FACTORIZATION In *matrix factorization*, we write a large matrix as a product of (generally) two matrices:

$$(6.30)$$
 X = **FG**

where **X** is $N \times d$, **F** is $N \times k$, and **G** is $k \times d$. k is the dimensionality of the factor space and is hopefully much smaller than d and N. The idea

is that although the data may be too large, either it is sparse, or there is high correlation and it can be represented in a space of fewer dimensions.

G defines factors in terms of the original attributes and F defines data instances in terms of these factors. For example, if X is a sample of N documents each using a bag of words representation with d words, each factor may be one topic or concept written using a certain subset of words and each document is a certain combination of such factors. This is called *latent semantic indexing* (Landauer, Laham, and Derr 2004). In *nonnegative* matrix factorization, the matrices are nonnegative and this allows representing a complex object in terms of its parts (Lee and Seung 1999).

LATENT SEMANTIC INDEXING

Let us take another example from retail where X is the consumer data. We have N customers and we sell d different products. X_{ti} corresponds to the amount of product i customer N has purchased. We know that customers do not buy things at random, their purchases depend on a number of factors, for example, their their household size and composition, income level, taste, and so on—these factors are generally hidden from us. In matrix factorization of consumer data, we assume that there are k such factors. G relates factors to products: G_j is a d-dimensional vector explaining the relationship between factor j and the products; namely, G_{ji} is proportional to the amount of product i bought due to factor j. Similarly, F relates customers to factors: F_t is the k-dimensional vector defining customer t in terms of the hidden factors; namely, F_{tj} is the belief that behavior of customer t is due to factor t. We can hence rewrite equation 6.30 as

(6.31)
$$\mathbf{X}_{ti} = \mathbf{F}_t^T \mathbf{G}_i = \sum_{j=1}^k \mathbf{F}_{tj} \mathbf{G}_{ji}$$

That is, to calculate the total amount, we take a sum over all such factors where for each, we multiply our belief that the customer is affected by that factor and the amount of product due to that factor—see figure 6.8.

6.7 Multidimensional Scaling

Let us say for N points, we are given the distances between pairs of points, d_{ij} , for all i, j = 1, ..., N. We do not know the exact coordinates of the points, their dimensionality, or how the distances are calculated.

Figure 6.8 Matrix factorization. **X** is the $N \times d$ data matrix. **F** is $N \times k$ and its row t defines instance t in terms of the k hidden factors. **G** is $k \times d$ and explains factors in terms of the d observed variables. To get \mathbf{X}_{ti} , we consider all k factors by taking a weighted sum over them.

MULTIDIMENSIONAL SCALING

Multidimensional scaling (MDS) is the method for placing these points in a low—for example, two-dimensional—space such that the Euclidean distance between them there is as close as possible to d_{ij} , the given distances in the original space. Thus it requires a projection from some unknown dimensional space to, for example, two dimensions.

In the archetypical example of multidimensional scaling, we take the road travel distances between cities, and after applying MDS, we get an approximation to the map. The map is distorted such that in parts of the country with geographical obstacles like mountains and lakes where the road travel distance deviates much from the direct bird-flight path (Euclidean distance), the map is stretched out to accommodate longer distances (see figure 6.9). The map is centered on the origin, but the solution is still not unique. We can get any rotated or mirror image version.

MDS can be used for dimensionality reduction by calculating pairwise Euclidean distances in the d-dimensional x space and giving this as input to MDS, which then projects it to a lower-dimensional space so as to preserve these distances.

Let us say we have a sample $\mathcal{X} = \{x^t\}_{t=1}^N$ as usual, where $x^t \in \mathbb{R}^d$. For two points r and s, the squared Euclidean distance between them is

$$d_{rs}^{2} = \|\mathbf{x}^{r} - \mathbf{x}^{s}\|^{2} = \sum_{j=1}^{d} (x_{j}^{r} - x_{j}^{s})^{2} = \sum_{j=1}^{d} (x_{j}^{r})^{2} - 2\sum_{j=1}^{d} x_{j}^{r} x_{j}^{s} + \sum_{j=1}^{d} (x_{j}^{s})^{2}$$

$$= b_{rr} + b_{ss} - 2b_{rs}$$
(6.32)

Figure 6.9 Map of Europe drawn by MDS. Pairwise road travel distances between these cities are given as input, and MDS places them in two dimensions such that these distances are preserved as well as possible.

where b_{rs} is defined as

(6.33)
$$b_{rs} = \sum_{j=1}^{d} x_j^r x_j^s$$

To constrain the solution, we center the data at the origin and assume

$$\sum_{t=1}^{N} x_j^t = 0, \forall j = 1, \dots, d$$

Then, summing up equation 6.32 on r, s, and both r and s, and defining

$$T = \sum_{t=1}^{N} b_{tt} = \sum_{t} \sum_{j} (x_{j}^{t})^{2}$$

we get

$$\sum_{r} d_{rs}^2 = T + Nb_{ss}$$

$$\sum_{s} d_{rs}^{2} = Nb_{rr} + T$$

$$\sum_{r} \sum_{s} d_{rs}^{2} = 2NT$$

When we define

$$d_{\bullet s}^2 = \frac{1}{N} \sum_{r} d_{rs}^2$$
, $d_{r \bullet}^2 = \frac{1}{N} \sum_{s} d_{rs}^2$, $d_{\bullet \bullet}^2 = \frac{1}{N^2} \sum_{r} \sum_{s} d_{rs}^2$

and using equation 6.32, we get

(6.34)
$$b_{rs} = \frac{1}{2}(d_{r\bullet}^2 + d_{\bullet s}^2 - d_{\bullet \bullet}^2 - d_{rs}^2)$$

Having now calculated b_{rs} and knowing that $\mathbf{B} = \mathbf{X}\mathbf{X}^T$ as defined in equation 6.33, we can use feature embedding (section 6.4). We know from the spectral decomposition that $\mathbf{X} = \mathbf{C}\mathbf{D}^{1/2}$ can be used as an approximation for \mathbf{X} , where \mathbf{C} is the matrix whose columns are the eigenvectors of \mathbf{B} and $\mathbf{D}^{1/2}$ is a diagonal matrix with square roots of the eigenvalues on the diagonals. Looking at the eigenvalues of \mathbf{B} , we decide on a dimensionality k lower than d (and N), as we did in PCA and FA. Let us say c_j are the eigenvectors with λ_j as the corresponding eigenvalues. Note that c_j is N-dimensional. Then we get the new dimensions as

(6.35)
$$z_i^t = \sqrt{\lambda_i} c_i^t, j = 1, \dots, k, t = 1, \dots, N$$

That is, the new coordinates of instance t are given by the tth elements of the eigenvectors, c_i , j = 1, ..., k, after normalization.

We know that principal component analysis and feature embedding do the same job. This shows that PCA does the same work with MDS and does it more cheaply if d < N. PCA done on the correlation matrix rather than the covariance matrix equals doing MDS with standardized Euclidean distances where each variable has unit variance.

In the general case, we want to find a mapping $z = g(x|\theta)$, where $z \in \Re^k$, $x \in \Re^d$, and $g(x|\theta)$ is the mapping function from d to k dimensions defined up to a set of parameters θ . Classical MDS, which we discussed previously, corresponds to a linear transformation

$$(6.36) \mathbf{z} = \mathbf{g}(\mathbf{x}|\mathbf{W}) = \mathbf{W}^T \mathbf{x}$$

but in a general case, a nonlinear mapping can also be used; this is called *Sammon mapping*. The normalized error in mapping is called the *Sam*-

SAMMON MAPPING

mon stress and is defined as

(6.37)
$$E(\theta|X) = \sum_{r,s} \frac{(\|\mathbf{z}^r - \mathbf{z}^s\| - \|\mathbf{x}^r - \mathbf{x}^s\|)^2}{\|\mathbf{x}^r - \mathbf{x}^s\|^2}$$
$$= \sum_{r,s} \frac{(\|\mathbf{g}(\mathbf{x}^r|\theta) - \mathbf{g}(\mathbf{x}^s|\theta)\| - \|\mathbf{x}^r - \mathbf{x}^s\|)^2}{\|\mathbf{x}^r - \mathbf{x}^s\|^2}$$

One can use any regression method for $g(\cdot|\theta)$ and estimate θ to minimize the stress on the training data X. If $g(\cdot)$ is nonlinear in x, this will then correspond to a nonlinear dimensionality reduction.

In the case of classification, one can include class information in the distance (see Webb 1999) as

$$d'_{rs} = (1 - \alpha)d_{rs} + \alpha c_{rs}$$

where c_{rs} is the "distance" between the classes x^r and x^s belong to. This interclass distance should be supplied subjectively and α is optimized using cross-validation.

6.8 Linear Discriminant Analysis

LINEAR DISCRIMINANT ANALYSIS *Linear discriminant analysis* (LDA) is a supervised method for dimensionality reduction for classification problems. We start with the case where there are two classes, then generalize to K > 2 classes.

Given samples from two classes C_1 and C_2 , we want to find the direction, as defined by a vector w, such that when the data are projected onto w, the examples from the two classes are as well separated as possible. As we saw before,

$$(6.38) z = \boldsymbol{w}^T \boldsymbol{x}$$

is the projection of x onto w and thus is a dimensionality reduction from d to 1.

 m_1 and m_1 are the means of samples from C_1 before and after projection, respectively. Note that $m_1 \in \mathbb{R}^d$ and $m_1 \in \mathbb{R}$. We are given a sample $\mathcal{X} = \{x^t, r^t\}$ such that $r^t = 1$ if $x^t \in C_1$ and $r^t = 0$ if $x^t \in C_2$.

$$m_{1} = \frac{\sum_{t} \mathbf{w}^{T} \mathbf{x}^{t} r^{t}}{\sum_{t} r^{t}} = \mathbf{w}^{T} \mathbf{m}_{1}$$

$$(6.39) \quad m_{2} = \frac{\sum_{t} \mathbf{w}^{T} \mathbf{x}^{t} (1 - r^{t})}{\sum_{t} (1 - r^{t})} = \mathbf{w}^{T} \mathbf{m}_{2}$$

Figure 6.10 Two-dimensional, two-class data projected on w.

The *scatter* of samples from C_1 and C_2 after projection are SCATTER

$$s_1^2 = \sum_t (\mathbf{w}^T \mathbf{x}^t - m_1)^2 r^t$$

$$(6.40) \quad s_2^2 = \sum_t (\mathbf{w}^T \mathbf{x}^t - m_2)^2 (1 - r^t)$$

After projection, for the two classes to be well separated, we would like the means to be as far apart as possible and the examples of classes be scattered in as small a region as possible. So we want $|m_1 - m_2|$ to be large and $s_1^2 + s_2^2$ to be small (see figure 6.10). Fisher's linear discriminant is w that maximizes

FISHER'S LINEAR DISCRIMINANT

(6.41)
$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

Rewriting the numerator, we get

$$(m_1 - m_2)^2 = (\mathbf{w}^T \mathbf{m}_1 - \mathbf{w}^T \mathbf{m}_2)^2$$

$$= \mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2) (\mathbf{m}_1 - \mathbf{m}_2)^T \mathbf{w}$$

$$= \mathbf{w}^T \mathbf{S}_B \mathbf{w}$$
(6.42)

where $\mathbf{S}_B = (\mathbf{m}_1 - \mathbf{m}_2)(\mathbf{m}_1 - \mathbf{m}_2)^T$ is the between-class scatter matrix. The BETWEEN-CLASS

SCATTER MATRIX

denominator is the sum of scatter of examples of classes around their means after projection and can be rewritten as

$$s_1^2 = \sum_t (\boldsymbol{w}^T \boldsymbol{x}^t - \boldsymbol{m}_1)^2 r^t$$

$$= \sum_t \boldsymbol{w}^T (\boldsymbol{x}^t - \boldsymbol{m}_1) (\boldsymbol{x}^t - \boldsymbol{m}_1)^T \boldsymbol{w} r^t$$

$$= \boldsymbol{w}^T \mathbf{S}_1 \boldsymbol{w}$$

$$(6.43)$$

where

$$(6.44) \quad \mathbf{S}_1 = \sum_t r^t (\mathbf{x}^t - \mathbf{m}_1) (\mathbf{x}^t - \mathbf{m}_1)^T$$

WITHIN-CLASS SCATTER MATRIX is the *within-class scatter matrix* for C_1 . $\mathbf{S}_1/\sum_t r^t$ is the estimator of Σ_1 . Similarly, $s_2^2 = \mathbf{w}^T \mathbf{S}_2 \mathbf{w}$ with $\mathbf{S}_2 = \sum_t (1 - r^t)(\mathbf{x}^t - \mathbf{m}_2)(\mathbf{x}^t - \mathbf{m}_2)^T$, and we get

$$s_1^2 + s_2^2 = \boldsymbol{w}^T \mathbf{S}_W \boldsymbol{w}$$

where $\mathbf{S}_W = \mathbf{S}_1 + \mathbf{S}_2$ is the total within-class scatter. Note that $s_1^2 + s_2^2$ divided by the total number of samples is the variance of the pooled data. Equation 6.41 can be rewritten as

(6.45)
$$J(w) = \frac{w^T S_B w}{w^T S_W w} = \frac{|w^T (m_1 - m_2)|^2}{w^T S_W w}$$

Taking the derivative of J with respect to w and setting it equal to 0, we get

$$\frac{\mathbf{w}^T(\mathbf{m}_1 - \mathbf{m}_2)}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} 2 \left((\mathbf{m}_1 - \mathbf{m}_2) - \frac{\mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2)}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} \mathbf{S}_W \mathbf{w} \right) = 0$$

Given that $\mathbf{w}^T(\mathbf{m}_1 - \mathbf{m}_2)/\mathbf{w}^T\mathbf{S}_W\mathbf{w}$ is a constant, we have

(6.46)
$$\mathbf{w} = c\mathbf{S}_W^{-1}(\mathbf{m}_1 - \mathbf{m}_2)$$

where c is some constant. Because it is the direction that is important for us and not the magnitude, we can just take c = 1 and find w.

Remember that when $p(\mathbf{x}|C_i) \sim \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma})$, we have a linear discriminant where $\boldsymbol{w} = \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$, and we see that Fisher's linear discriminant is optimal if the classes are normally distributed. Under the same assumption, a threshold, w_0 , can also be calculated to separate the two classes. But Fisher's linear discriminant can be used even when the classes are not normal. We have projected the samples from d dimensions to 1,

Figure 6.11 Two-dimensional synthetic data, directions found by PCA and LDA and projections along these directions are shown. LDA uses class information and as expected, does a much better job in terms of class separation.

and any classification method can be used afterward. In figure 6.11, we see two-dimensional synthetic data with two classes. As we see, and as expected, because it uses the class information, LDA direction is superior to the PCA direction in terms of the ease of discrimination afterwards.

In the case of K > 2 classes, we want to find the matrix **W** such that

$$(6.47) z = \mathbf{W}^T \mathbf{x}$$

where **z** is *k*-dimensional and **W** is $d \times k$. The within-class scatter matrix for C_i is

(6.48)
$$\mathbf{S}_i = \sum_t r_i^t (\mathbf{x}^t - \mathbf{m}_i) (\mathbf{x}^t - \mathbf{m}_i)^T$$

where $r_i^t = 1$ if $\mathbf{x}^t \in C_i$ and 0 otherwise. The total within-class scatter is

$$\mathbf{S}_W = \sum_{i=1}^K \mathbf{S}_i$$

When there are K > 2 classes, the scatter of the means is calculated as how much they are scattered around the overall mean

(6.50)
$$\mathbf{m} = \frac{1}{K} \sum_{i=1}^{K} \mathbf{m}_i$$

and the between-class scatter matrix is

(6.51)
$$\mathbf{S}_B = \sum_{i=1}^K N_i (\mathbf{m}_i - \mathbf{m}) (\mathbf{m}_i - \mathbf{m})^T$$

Figure 6.12 Optdigits data plotted in the space of the first two dimensions found by LDA. Comparing this with figure 6.5, we see that LDA, as expected, leads to a better separation of classes than PCA. Even in this two-dimensional space (there are nine altogether), we can discern separate clouds for different classes.

with $N_i = \sum_t r_i^t$. The between-class scatter matrix after projection is $\mathbf{W}^T \mathbf{S}_B \mathbf{W}$ and the within-class scatter matrix after projection is $\mathbf{W}^T \mathbf{S}_W \mathbf{W}$. These are both $k \times k$ matrices. We want the first scatter to be large, that is, after the projection, in the new k-dimensional space we want class means to be as far apart from each other as possible. We want the second scatter to be small, that is, after the projection, we want samples from the same class to be as close to their mean as possible. For a scatter (or covariance) matrix, a measure of spread is the determinant, remembering that the determinant is the product of eigenvalues and that an eigenvalue gives the variance along its eigenvector (component). Thus we

are interested in the matrix W that maximizes

(6.52)
$$J(\mathbf{W}) = \frac{|\mathbf{W}^T \mathbf{S}_B \mathbf{W}|}{|\mathbf{W}^T \mathbf{S}_W \mathbf{W}|}$$

The largest eigenvectors of $\mathbf{S}_W^{-1}\mathbf{S}_B$ are the solution. \mathbf{S}_B is the sum of K matrices of rank 1, namely, $(\boldsymbol{m}_i - \boldsymbol{m})(\boldsymbol{m}_i - \boldsymbol{m})^T$, and only K-1 of them are independent. Therefore, \mathbf{S}_B has a maximum rank of K-1 and we take K-1. Thus we define a new lower, (K-1)-dimensional space where the discriminant is then to be constructed (see figure 6.12). Though LDA uses class separability as its goodness criterion, any classification method can be used in this new space for estimating the discriminants.

We see that to be able to apply LDA, S_W should be invertible. If this is not the case, we can first use PCA to get rid of singularity and then apply LDA to its result; however, we should make sure that PCA does not reduce dimensionality so much that LDA does not have anything left to work on.

6.9 Canonical Correlation Analysis

In all the methods discussed previously, we assume we have a single source of data returning us a single set of observations. Sometimes, for the same object or event, we have two types of variables. For example, in speech recognition, in addition to the acoustic information, we may also have the visual information of the lip movements while the word is uttered; in retrieval, we may have image data and text annotations. Frequently, these two sets of variables are correlated, and we want to take this correlation into account while reducing dimensionality to a joint space. This is the idea in *canonical correlation analysis* (CCA) (Rencher 1995).

CANONICAL CORRELATION ANALYSIS

Let us say we have a dataset with two sets of variables $\mathcal{X} = \{x^t, y^t\}_{t=1}^N$ where $x^t \in \Re^d$ and $y^t \in \Re^e$. Note that both of these are inputs and this is an unsupervised problem; if there is a required output for classification or regression, that is handled afterward as in PCA (section 6.3).

The *canonical correlation* is measured as the amount of correlation between the x dimensions and the y dimensions. Let us define a notation: $\mathbf{S}_{xx} = \mathrm{Cov}(x) = E[(x - \mu_x)^2]$ is the covariance matrix of the x dimensions and is $d \times d$ —this is the Σ matrix that we use frequently, in PCA for example. Now, we also have the $e \times e$ covariance matrix of the y, namely, $\mathbf{S}_{yy} = \mathrm{Cov}(y)$. We also have the two cross-covariance matrices, namely,

 $\mathbf{S}_{xy} = \operatorname{Cov}(\mathbf{x}, \mathbf{y}) = E[(\mathbf{x} - \boldsymbol{\mu}_x)(\mathbf{y} - \boldsymbol{\mu}_y)], \text{ which is } d \times e, \text{ and the other cross-covariance matrix } \mathbf{S}_{yx} = \operatorname{Cov}(\mathbf{y}, \mathbf{x}) = E[(\mathbf{y} - \boldsymbol{\mu}_y)(\mathbf{x} - \boldsymbol{\mu}_x)], \text{ which is } e \times d.$

We are interested in the two vectors w and v such that when x is projected along w and y is projected along v, we have maximum correlation. That is, we want to maximize

$$\rho = \operatorname{Corr}(\boldsymbol{w}^{T}\boldsymbol{x}, \boldsymbol{v}^{T}\boldsymbol{y}) = \frac{\operatorname{Cov}(\boldsymbol{w}^{T}\boldsymbol{x}, \boldsymbol{v}^{T}\boldsymbol{y})}{\sqrt{\operatorname{Var}(\boldsymbol{w}^{T}\boldsymbol{x})}\sqrt{\operatorname{Var}(\boldsymbol{v}^{T}\boldsymbol{y})}}$$

$$= \frac{\boldsymbol{w}^{T}\operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y})\boldsymbol{v}}{\sqrt{\boldsymbol{w}^{T}\operatorname{Var}(\boldsymbol{x})\boldsymbol{w}}\sqrt{\boldsymbol{v}^{T}\operatorname{Var}(\boldsymbol{y})\boldsymbol{v}}} = \frac{\boldsymbol{w}^{T}\mathbf{S}_{xy}\boldsymbol{v}}{\sqrt{\boldsymbol{w}^{T}\mathbf{S}_{xx}\boldsymbol{w}}\sqrt{\boldsymbol{v}^{T}\mathbf{S}_{yy}\boldsymbol{v}}}$$
(6.53)

Equally, we can say that what we want is to maximize $\mathbf{w}^T \mathbf{S}_{xy} \mathbf{v}$ subject to $\mathbf{w}^T \mathbf{S}_{xx} \mathbf{w} = 1$ and $\mathbf{v}^T \mathbf{S}_{yy} \mathbf{v} = 1$. Writing these as Lagrangian terms as we do in PCA and then taking derivatives with respect to \mathbf{w} and \mathbf{v} and setting them equal to 0, we see that \mathbf{w} should be an eigenvector of $\mathbf{S}_{xx}^{-1} \mathbf{S}_{xy} \mathbf{S}_{yy}^{-1} \mathbf{S}_{yx}$ and similarly \mathbf{v} should be an eigenvector of $\mathbf{S}_{yy}^{-1} \mathbf{S}_{yx} \mathbf{S}_{xx}^{-1} \mathbf{S}_{xy}$ (Hardoon, Szedmak, and Shawe-Taylor 2004).

Because we are interested in maximizing the correlation, we choose the two eigenvectors with the highest eigenvalues—let us call them w_1 and v_1 —and the amount of correlation is equal to their (shared) eigenvalue λ_1 . The eigenvalues of **AB** are the same as those of **BA** as long as **AB** and **BA** are square, but the eigenvectors are not the same: w_1 is d-dimensional whereas v_1 is e-dimensional.

Just as we do in PCA, we can decide how many pairs of eigenvectors (w_i, v_i) to use by looking at the relative value of the corresponding eigenvalue:

$$\frac{\lambda_i}{\sum_{j=1}^s \lambda_j}$$

where $s = \min(d, e)$ is the maximum possible rank. We need to keep enough of them to conserve the correlation in the data.

Let us say we choose *k* as the dimensionality, then we get the *canonical variates* by projecting the training instances along them:

(6.54)
$$a_i^t = \mathbf{w}_i^T \mathbf{x}^t, b_i^t = \mathbf{v}_i^T \mathbf{y}^t, i = 1, ..., k$$

which we can write in matrix form as

(6.55)
$$\boldsymbol{a}^t = \mathbf{W}^T \boldsymbol{x}^t, \boldsymbol{b}^t = \mathbf{V}^T \boldsymbol{y}^t$$

Figure 6.13 Canonical correlation analysis uses two sets of variables x and y and projects each so that the correlation after projections is maximized.

where **W** is the $d \times k$ matrix whose columns are w_i and **V** is the $e \times k$ matrix whose columns are v_i (figure 6.13). This vector of (a_i, b_i) pairs now constitutes our new, lower-dimensional representation that we can then use, for example, for classification. These new features are nonredundant: The values of a_i are uncorrelated, and each a_i is uncorrelated with all b_i , $j \neq i$.

For CCA to make sense, the two sets of variables need to be dependent. In the case of retrieval, for example, Hardoon, Szedmak, and Shawe-Taylor 2004, there is dependence: The word "sky" is associated with a lot of blue color in the image, so it makes sense to use CCA. But this is not always the case. For example, in user authentication, we may have the signature and iris images, but there is no reason to assume any dependence between them. In such a case, it would be better to do dimensionality reduction separately on signature and iris images, hence recovering dependence between features in the same set. It only makes sense to use CCA if we can also assume dependence between features of separate sets. Rencher (1995) discusses tests to check whether $\mathbf{S}_{xy} = \mathbf{0}$, that is, whether \mathbf{x} and \mathbf{y} are independent. One interesting note is that if \mathbf{x} are the observed variables and if class labels are given as \mathbf{y} using 1-of-K encoding, CCA finds the same solution as Fisher's LDA (section 6.8).

In factor analysis, we give a generative interpretation of dimensionality

reduction: We assume that there are hidden variables z that in combination cause the observed variables x. Here, we can similarly think of hidden variables that generate x and y; actually, we may consider a and b together constituting z, the representation in the latent space.

It is possible to generalize CCA for more than two sets of variables. Bach and Jordan (2005) give a probabilistic interpretation of CCA where more than two sets of variables are possible.

6.10 Isomap

Principal component analysis, which we discussed in section 6.3, works when the data lies in a linear subspace. However, this may not hold in many applications. Take, for example, face recognition where a face is represented as a two-dimensional, say 100×100 image. In this case, each face is a point in 10,000 dimensions. Now let us say that we take a series of pictures as a person slowly rotates his or her head from right to left. The sequence of face images we capture follows a trajectory in the 10,000-dimensional space, and this is not linear. Now consider the faces of many people. The trajectories of all their faces as they rotate their faces define a manifold in the 10,000-dimensional space, and this is what we want to model. The similarity between two faces cannot simply be written in terms of the sum of the pixel differences, and hence Euclidean distance is not a good metric. It may even be the case that images of two different people with the same pose have smaller Euclidean distance between them than the images of two different poses of the same person. This is not what we want. What should count is the distance along the manifold, which is called the *aeodesic distance*. *Isometric* feature mapping (Isomap) (Tenenbaum, de Silva, and Langford 2000) estimates this distance and applies multidimensional scaling (section 6.7), using it for dimensionality reduction.

GEODESIC DISTANCE ISOMETRIC FEATURE MAPPING

Isomap uses the geodesic distances between all pairs of data points. For neighboring points that are close in the input space, Euclidean distance can be used; for small changes in pose, the manifold is locally linear. For faraway points, geodesic distance is approximated by the sum of the distances between the points along the way over the manifold. This is done by defining a graph whose nodes correspond to the N data points and whose edges connect neighboring points (those with distance less than some ϵ or one of the n nearest) with weights corresponding

6.10 Isomap 149

Figure 6.14 Geodesic distance is calculated along the manifold as opposed to the Euclidean distance that does not use this information. After multidimensional scaling, these two instances from two classes will be mapped to faraway positions in the new space, though they are close in the original space.

to Euclidean distances. The geodesic distance between any two points is calculated as the length of the shortest path between the corresponding two nodes. For two points that are not close by, we need to hop over a number of intermediate points along the way, and therefore the distance will be the distance along the manifold, approximated as the sum of local Euclidean distances (see figure 6.14).

Two nodes r and s are connected if $\|x^r - x^s\| < \epsilon$ (while making sure that the graph is connected), or if x^s is one of the n neighbors of x^r (while making sure that the distance matrix is symmetric), and we set the edge length to $\|x^r - x^s\|$. For any two nodes r and s, d_{rs} is the length of the shortest path between them. We then apply MDS on d_{rs} to reduce dimensionality to k using feature embedding by observing the proportion of variance explained. This will have the effect of placing r and s that are far apart in the geodesic space also far apart in the new k-dimensional space even if they are close in terms of Euclidean distance in the original d-dimensional space.

It is clear that the graph distances provide a better approximation as the number of points increases, though there is the trade-off of longer execution time; if time is critical, one can subsample and use a subset of "landmark points" to make the algorithm faster. The parameter ϵ needs to be carefully tuned; if it is too small, there may be more than one connected component, and if it is too large, "shortcut" edges may be added that corrupt the low-dimensional embedding (Balasubramanian et al. 2002).

One problem with Isomap, as with MDS, because it uses feature embedding, is that it places the N points in a low-dimensional space, but it does not learn a general mapping function that will allow mapping a new test point; the new point should be added to the dataset and the whole algorithm needs to be run once more using N+1 instances.

6.11 Locally Linear Embedding

LOCALLY LINEAR EMBEDDING

Locally linear embedding (LLE) recovers global nonlinear structure from locally linear fits (Roweis and Saul 2000). The idea is that each local patch of the manifold can be approximated linearly and given enough data, each point can be written as a linear, weighted sum of its neighbors (again either defined using a given number of neighbors, n, or distance threshold, ϵ). Given x^r and its neighbors $x^s_{(r)}$ in the original space, one can find the reconstruction weights W_{rs} that minimize the error function

(6.56)
$$\mathcal{I}^{w}(\mathbf{W}|\mathcal{X}) = \sum_{r} \|\mathbf{x}^{r} - \sum_{s} \mathbf{W}_{rs} \mathbf{x}_{(r)}^{s}\|^{2}$$

using least squares subject to $W_{rr} = 0$, $\forall r$ and $\sum_{s} W_{rs} = 1$.

The idea in LLE is that the reconstruction weights W_{rs} reflect the intrinsic geometric properties of the data that we expect to be also valid for local patches of the manifold, that is, the new space we are mapping the instances to (see figure 6.15). The second step of LLE is hence to now keep the weights W_{rs} fixed and let the new coordinates \mathbf{z}^r take whatever values they need respecting the interpoint constraints given by the weights:

$$(6.57) \qquad \mathcal{E}^{z}(\mathcal{Z}|\mathbf{W}) = \sum_{r} \|\mathbf{z}^{r} - \sum_{s} \mathbf{W}_{rs}\mathbf{z}^{s}\|^{2}$$

Nearby points in the original d-dimensional space should remain close and similarly colocated with respect to one another in the new, k-dimensional space. Equation 6.57 can be rewritten as

(6.58)
$$\mathcal{E}^{z}(\mathcal{Z}|\mathbf{W}) = \sum_{r,s} \mathbf{M}_{rs}(\mathbf{z}^{r})^{T} \mathbf{z}^{s}$$

where

$$(6.59) \mathbf{M}_{rs} = \delta_{rs} - \mathbf{W}_{rs} - \mathbf{W}_{sr} + \sum_{i} \mathbf{W}_{ir} \mathbf{W}_{is}$$

M is sparse (only a small percentage of data points are neighbors of a data point: $n \ll N$), symmetric, and positive semidefinite. As in other

Figure 6.15 Local linear embedding first learns the constraints in the original space and next places the points in the new space respecting those constraints. The constraints are learned using the immediate neighbors (shown with continuous lines) but also propagate to second-order neighbors (shown dashed).

dimensionality reduction methods, we require that the data be centered at the origin, $E[\mathbf{z}] = 0$, and that the new coordinates be uncorrelated and unit length: $Cov(\mathbf{z}) = \mathbf{I}$. The solution to equation 6.58 subject to these two constraints is given by the k+1 eigenvectors with the smallest eigenvalues; we ignore the lowest one and the other k eigenvectors give us the new coordinates.

Because the n neighbors span a space of dimensionality n-1 (you need distances to three points to uniquely specify your location in two dimensions), LLE can reduce dimensionality up to $k \le n-1$. It is observed (Saul and Roweis 2003) that some margin between k and n is necessary to obtain a good embedding. Note that if n (or ϵ) is small, the graph (that is constructed by connecting each instance to its neighbors) may no longer be connected and it may be necessary to run LLE separately on separate components to find separate manifolds in different parts of the input space. On the other hand, if n (or ϵ) is taken large, some neighbors may be too far for the local linearity assumption to hold and this may corrupt the embedding. It is possible to use different n (or ϵ) in different parts of the input space based on some prior knowledge, but how this can be done is open to research (Saul and Roweis 2003).

As with Isomap, LLE solution is the set of new coordinates for the N points, but we do not learn a mapping and hence cannot find \mathbf{z}' for a new \mathbf{x}' . There are two solutions to this:

1. Using the same idea, one can find the n neighbors of x' in the original d-dimensional space and first learn the reconstruction weights w_j that minimizes

(6.60)
$$\mathcal{E}^{w}(\boldsymbol{w}|\boldsymbol{\mathcal{X}}) = \|\boldsymbol{x}' - \sum_{s} \boldsymbol{w}_{s} \boldsymbol{x}^{s}\|^{2}$$

and then use them to reconstruct z' in the new k-dimensional space:

$$(6.61) \mathbf{z}' = \sum_{s} \mathbf{w}_{s} \mathbf{z}^{s}$$

Note that this approach can also be used to interpolate from an Isomap (or MDS) solution. The drawback however is the need to store the whole set of $\{x^t, z^t\}_{t=1}^N$.

2. Using $X = \{x^t, z^t\}_{t=1}^N$ as a training set, one can train any regressor, $g(x^t|\theta)$ —for example, a multilayer perceptron (chapter 11)—as a generalizer to approximate z^t from x^t , whose parameters θ is learned to minimize the regression error:

(6.62)
$$\mathcal{E}(\theta|\mathcal{X}) = \sum_{t} \|\mathbf{z}^{t} - \mathbf{g}(\mathbf{x}^{t}|\theta)\|^{2}$$

Once training is done, we can calculate $\mathbf{z}' = \mathbf{g}(\mathbf{x}'|\theta)$. The model $\mathbf{g}(\cdot)$ should be carefully chosen to be able to learn the mapping. There may no longer be a unique optimum and hence there are all the usual problems related to minimization, that is, initialization, local optima, convergence, and so on.

In both Isomap and LLE, there is local information that is propagated over neighbors to get a global solution. In Isomap, the geodesic distance is the sum of local distances; in LLE, the final optimization in placing z^t takes into account all local W_{rs} values. Let us say a and b are neighbors and b and c are neighbors. Though a and c may not be neighbors, there is dependence between a and c either through the graph, $d_{ac} = d_{ab} + d_{bc}$, or the weights W_{ab} and W_{bc} . In both algorithms, the global nonlinear organization is found by integrating local linear constraints that overlap partially.

6.12 Laplacian Eigenmaps

Consider the data instance $\mathbf{x}^r \in \mathfrak{R}^d, r = 1, \dots, N$ and its projection $\mathbf{z}^r \in \mathfrak{R}^k$. Let us say that we are given a similarity value B_{rs} between pairs of instances possibly calculated in some high-dimensional space such that it takes its maximum value if r and s are the same and decreases as they become dissimilar. Assume that the minimum possible value is 0 and that it is symmetric: $B_{rs} = B_{sr}$ (Belkin and Nyogi 2003). The aim is to

(6.63)
$$\min \sum_{r,s} ||z^r - z^s||^2 B_{rs}$$

Two instances that should be similar, that is, r and s whose B_{rs} is high, should be placed nearby in the new space; hence \mathbf{z}^r and \mathbf{z}^s should be close. Whereas the more they are dissimilar, the less we care for their relative position in the new space. B_{rs} are calculated in the original space; for example, if we use the dot product, the method would work similar to the way multidimensional scaling does:

$$B_{rs} = (\mathbf{x}^r)^T \mathbf{x}_s$$

LAPLACIAN EIGENMAPS But what is done in *Laplacian eigenmaps*, similar to Isomap and LLE, is that we care for similarities only locally (Belkin and Nyogi 2003). We define a neighborhood either through some maximum ϵ distance between x^r and x^s , or a k-nearest neighborhood, and outside of that we set B_{rs} to 0. In the neighborhood, we use the Gaussian kernel to convert Euclidean distance to a similarity value:

$$B_{rs} = \exp\left[-\frac{\|\mathbf{x}^r - \mathbf{x}^s\|^2}{2\sigma^2}\right]$$

for some user-defined σ value. B can be seen as defining a weighted graph.

For the case of k = 1 (we reduce dimensionality to 1), we can rewrite equation 6.63 as

$$\min \frac{1}{2} \sum_{r,s} (z_r - z_s)^2 B_{rs}$$

$$= \frac{1}{2} \left(\sum_{r,s} B_{rs} z_r^2 - 2 \sum_{r,s} B_{rs} z_r z_s + \sum_{r,s} B_{rs} (z_s)^2 \right)$$

$$= \frac{1}{2} \left(\sum_r d_r z_r^2 - 2 \sum_{r,s} B_{rs} z_r z_s + \sum_s d_s z_s^2 \right)$$

$$= \sum_{r} d_{r} z_{r}^{2} - \sum_{r} \sum_{s} B_{rs} z_{r} z_{s}$$

$$= \mathbf{z}^{T} \mathbf{D} \mathbf{z} - \mathbf{z}^{T} \mathbf{B} \mathbf{z}$$
(6.64)

where $d_r = \sum_s B_{rs}$. **D** is the diagonal matrix of d_r , and **z** is the *N*-dimensional column vector whose dimension r, z_r is the new coordinate for \mathbf{x}^r . We define the *graph Laplacian*

$$(6.65)$$
 L = D – B

and the aim is to minimize $\mathbf{z}^T \mathbf{L} \mathbf{z}$. For a unique solution, we require $\|\mathbf{z}\| = 1$. Just as in feature embedding, we get the coordinates in the new space directly without any extra projection and it can be shown that \mathbf{z} should be an eigenvector of \mathbf{L} , and because we want to minimize, we choose the eigenvector with the smallest eigenvalue. Note, however, that there is at least one eigenvector with eigenvalue 0 and that should be ignored. That eigenvector has all its elements equal to each other: $\mathbf{c} = (1/\sqrt{N})\mathbf{1}^T$. The corresponding eigenvalue is 0 because

$$\mathbf{L}\boldsymbol{c} = \mathbf{D}\boldsymbol{c} - \mathbf{B}\boldsymbol{c} = 0$$

D has row sums in its diagonal, and the dot product of a row of **B** and **1** also takes a weighted sum; in this case, for equation 6.64 to be 0, with B_{ij} nonnegative, z_i and z_j should be equal for all pairs of i, j, and for the norm to be 1, all should be $1/\sqrt{N}$. So, we need to skip the eigenvector with eigenvalue 0 and if we want to reduce dimensionality to k > 1, we need to take the next k.

The Laplacian eigenmap is a feature embedding method; that is, we find the coordinates in the new space directly and have no explicit model for mapping that we can later use for new instances.

We can compare equation 6.63 with equation 6.37 (Sammon stress in MDS). Here, the similarity in the original space is represented implicitly in B_{rs} whereas in MDS, it is explicitly written as $\|\mathbf{x}^r - \mathbf{x}^s\|$. Another difference is that in MDS, we check for similarity between all pairs, whereas here the constraints are local (which are then propagated because those local neighborhoods partially overlap—as in Isomap and LLE).

For the four-dimensional Iris data, results after projection to two dimensions are given for MDS and Laplacian eigenmaps in figure 6.16. MDS here is equivalent to PCA, whereas we see that the Laplacian eigenmap projects similar instances nearby in the new space. This is why this method is a good way to preprocess the data before clustering; *spectral clustering*, which we discuss in section 7.7, uses this idea.

6.13 Notes 155

Figure 6.16 Iris data reduced to two dimensions using multidimensional scaling and Laplacian eigenmaps. The latter leads to a more dense placement of similar instances.

6.13 Notes

Subset selection in regression is discussed in Miller 1990. The forward and backward search procedures we discussed are local search procedures. Fukunaga and Narendra (1977) proposed a branch and bound procedure. At considerable more expense, you can use a stochastic procedure like simulated annealing or genetic algorithms to search more widely in the the search space.

There are also *filtering* algorithms for feature selection where heuristic measures are used to calculate the "relevance" of a feature in a preprocessing stage without actually using the learner. For example, in the case of classification, instead of training a classifier and testing it at each step, one can use a separability measure, like the one used in linear discriminant analysis, to measure the quality of the new space in separating classes from each other (McLachlan 1992). With the cost of computation going down, it is best to include the learner in the loop because there is no guarantee that the heuristic used by the filter will match the bias of the learner that uses the features; no heuristic can replace the actual validation accuracy. A survey of feature selection methods is given by Guyon and Elisseeff (2003).

Projection methods work with numeric inputs, and discrete variables

should be represented by 0/1 dummy variables, whereas subset selection can use discrete inputs directly. Finding the eigenvectors and eigenvalues is quite straightforward and is part of any linear algebra package. Factor analysis was introduced by the British psychologist Charles Spearman to find the single factor for intelligence which explains the correlation between scores on various intelligence tests. The existence of such a single factor, called g, is highly disputed. More information on multidimensional scaling can be found in Cox and Cox 1994.

The projection methods we discussed are batch procedures in that they require that the whole sample be given before the projection directions are found. Mao and Jain (1995) discuss online procedures for doing PCA and LDA, where instances are given one by one and updates are done as new instances arrive. Another possibility for doing a nonlinear projection is when the estimator in Sammon mapping is taken as a nonlinear function, for example, a multilayer perceptron (section 11.11) (Mao and Jain 1995). It is also possible but much harder to do nonlinear factor analysis. When the models are nonlinear, it is difficult to come up with the right nonlinear model. You also need to use complicated optimization and approximation methods to solve for the model parameters.

Laplacian eigenmaps use the idea of feature embedding such that given pairwise similarities are preserved; the same idea is also used in kernel machines where pairwise similarities are given by a kernel function, and in chapter 13, we talk about "kernel" PCA, LDA, and CCA. Just as we implement polynomial regression by using linear regression where we consider high-order terms as additional inputs (section 5.8), we can do nonlinear dimensionality reduction by mapping to a new space by using nonlinear basis functions. That is the idea in kernel methods that allow us to go further than dot product or Euclidean distance for similarity calculation.

Matrix decomposition methods are quite popular in various big data applications because they allow us to explain a large data matrix using smaller matrices. One example application is *recommendation systems* where we may have millions of movies and millions of customers and entries are customer ratings. Note that most entries will be missing and the aim is to fill in those missing values and then do a recommendation based on those predicted values (Koren, Bell, and Volinsky 2009).

There is a trade-off between feature extraction and decision making. If the feature extractor is good, the task of the classifier (or regressor) becomes trivial, for example, when the class code is extracted as a new

RECOMMENDATION SYSTEMS

6.14 Exercises 157

feature from the existing features. On the other hand, if the classifier is good enough, then there is no need for feature extraction; it does its automatic feature selection or combination internally. We live between these two ideal worlds.

There exist algorithms that do some feature selection internally, though in a limited way. Decision trees (chapter 9) do feature selection while generating the decision tree, and multilayer perceptrons (chapter 11) do nonlinear feature extraction in the hidden nodes. We expect to see more development along this line in embedding feature extraction in the actual step of classification/regression.

6.14 Exercises

- 1. Assuming that the classes are normally distributed, in subset selection, when one variable is added or removed, how can the new discriminant be calculated quickly? For example, how can the new S_{new}^{-1} be calculated from S_{old}^{-1} ?
- 2. Using Optdigits from the UCI repository, implement PCA. For various number of eigenvectors, reconstruct the digit images and calculate the reconstruction error (equation 6.12).
- 3. Plot the map of your state/country using MDS, given the road travel distances as input.
- 4. In Sammon mapping, if the mapping is linear, namely, $g(x|W) = W^T x$, how can W that minimizes the Sammon stress be calculated?
- 5. In figure 6.11, we see a synthetic two-dimensional data where LDA does a better job than PCA. Draw a similar dataset where PCA and LDA find the same good direction. Draw another where neither PCA nor LDA find a good direction.
- 6. Redo exercise 3, this time using Isomap where two cities are connected only if there is a direct road between them that does not pass through any other city.
- 7. In Isomap, instead of using Euclidean distance, we can also use Mahalanobis distance between neighboring points. What are the advantages and disadvantages of this approach, if any?
- 8. Multidimensional scaling can work as long as we have the pairwise distances between objects. We do not actually need to represent the objects as vectors at all as long as we have some measure of similarity. Can you give an example?
 - SOLUTION: Let us say we have a database of documents. Then if d_{rs} denotes the number of terms that documents r and s share, we can use MDS to map

- these documents to a lower-dimensional space, for example, to visualize them and check for structure. Note that here we can count the number of shared terms without needing to explicitly represent the documents as vectors using, for example, the bag of words representation.
- 9. How can we incorporate class information into Isomap or LLE such that instances of the same class are mapped to nearby locations in the new space? SOLUTION: We can include an additional penalty term in calculating distances for instances belonging to different classes; MDS will then map instances of the same class to nearby points.
- 10. In factor analysis, how can we find the remaining ones if we already know some of the factors?
 - SOLUTION: If we already know some of the factors, we can find their loadings by regression and then remove their effect from the data. We will then get the residual of what is not explained by those factors and look for additional factors that can explain this residual.
- 11. Discuss an application where there are hidden factors (not necessarily linear) and where factor analysis would be expected to work well.
 - SOLUTION: One example is the data of student grades at a university. The grade a student gets for a set of courses depends on a number of hidden factors—for example, the student's aptitude for the subject, the amount of time he/she can allocate to studying, the comfort of his/her lodging, and so on.

6.15 References

- Balasubramanian, M., E. L. Schwartz, J. B. Tenenbaum, V. de Silva, and J. C. Langford. 2002. "The Isomap Algorithm and Topological Stability." *Science* 295:7.
- Bach, F., and M. I. Jordan. 2005. *A Probabilistic Interpretation of Canonical Correlation Analysis*. Technical Report 688, Department of Statistics, University of California, Berkeley.
- Belkin, M., and P. Niyogi. 2003. "Laplacian Eigenmaps for Dimensionality Reduction and Data Representation." *Neural Computation* 15:1373–1396.
- Chatfield, C., and A. J. Collins. 1980. *Introduction to Multivariate Analysis*. London: Chapman and Hall.
- Cox, T. F., and M. A. A. Cox. 1994. *Multidimensional Scaling*. London: Chapman and Hall.
- Flury, B. 1988. *Common Principal Components and Related Multivariate Models.* New York: Wiley.

6.15 References 159

Fukunaga, K., and P. M. Narendra. 1977. "A Branch and Bound Algorithm for Feature Subset Selection." *IEEE Transactions on Computers* C-26:917–922.

- Guyon, I., and A. Elisseeff. 2003. "An Introduction to Variable and Feature Selection." *Journal of Machine Learning Research* 3:1157–1182.
- Hardoon, D. R., S. Szedmak, J. Shawe-Taylor. 2004. "Canonical Correlation Analysis: An Overview with Application to Learning Methods." *Neural Computation* 16:2639–2664.
- Hastie, T. J., R. J. Tibshirani, and A. Buja. 1994. "Flexible Discriminant Analysis by Optimal Scoring." *Journal of the American Statistical Association* 89:1255–1270.
- Kohavi, R., and G. John. 1997. "Wrappers for Feature Subset Selection." *Artificial Intelligence* 97:273–324.
- Koren, Y., R. Bell, and C. Volinsky. 2009. "Matrix Factorization Techniques for Recommender Systems." *IEEE Computer* 42 (8): 30–37.
- Landauer, T. K., D. Laham, and M. Derr. 2004. "From Paragraph to Graph: Latent Semantic Analysis for Information Visualization." *Proceedings of the National Academy of Sciences* 101 (suppl. 1): 5214–5219.
- Lee, D. D., and H. S. Seung. 1999. "Learning the Parts of Objects by Non-Negative Matrix Factorization," *Nature* 401 (6755): 788–791.
- Mao, J., and A. K. Jain. 1995. "Artificial Neural Networks for Feature Extraction and Multivariate Data Projection." *IEEE Transactions on Neural Networks* 6: 296–317.
- McLachlan, G. J. 1992. Discriminant Analysis and Statistical Pattern Recognition. New York: Wiley.
- Miller, A. J. 1990. Subset Selection in Regression. London: Chapman and Hall.
- Pudil, P., J. Novovičová, and J. Kittler. 1994. "Floating Search Methods in Feature Selection." *Pattern Recognition Letters* 15:1119–1125.
- Rencher, A. C. 1995. Methods of Multivariate Analysis. New York: Wiley.
- Roweis, S. T., and L. K. Saul. 2000. "Nonlinear Dimensionality Reduction by Locally Linear Embedding." *Science* 290:2323–2326.
- Saul, K. K., and S. T. Roweis. 2003. "Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds." *Journal of Machine Learning Research* 4:119–155.
- Strang, G. 2006. *Linear Algebra and Its Applications*, 4th ed. Boston: Cengage Learning.
- Tenenbaum, J. B., V. de Silva, and J. C. Langford. 2000. "A Global Geometric Framework for Nonlinear Dimensionality Reduction." *Science* 290:2319–2323.

Tipping, M. E., and C. M. Bishop. 1999. "Probabilistic Principal Component Analysis." *Journal of the Royal Statistical Society Series B* 61:611–622.

Turk, M., and A. Pentland. 1991. "Eigenfaces for Recognition." *Journal of Cognitive Neuroscience* 3:71–86.

Webb, A. 1999. Statistical Pattern Recognition. London: Arnold.