RECEIVED CENTRALFAX CENTER JUL 2 5 2007

In the Claims:

(Currently amended) A method of fabricating a semiconductor 1. device by implantation to provide a employing ion 2 SiC semiconductor substrate at a surface thereof with a region having dopant introduced therein, comprising the steps of: providing said semiconductor substrate at least at a first region of a surface thereof with a mask layer including a polyimide resin film; and implanting dopant ions to an implantation depth into said semiconductor 8 substrate at a second region of said surface of said semiconductor substrate free of said polyimide resin film; 10 wherein said polyimide resin film has a thickness of at 11 least twice said implantation depth. 12

Claims 2 to 5 (Canceled).

- 6. (Previously presented) The method of claim 1, wherein said semiconductor substrate is heated to at least 300°C and said dopant ions are implanted.
- 7. (Previously presented) The method of claim 1, wherein said semiconductor substrate is heated to at least 500°C and said dopant ions are implanted.
- 1 8. (Previously presented) The method of claim 1, wherein said
 2 polyimide resin film is formed of photosensitive polyimide
 3 resin.

4858/WFF:he

Claim 9 (Canceled).

- 1 10. (Previously presented) The method of claim 1, wherein a
 2 thin metal film is further interposed between said
 3 polyimide resin film and said semiconductor substrate.
- 1 11. (Previously presented) The method of claim 1, wherein a
 thin film formed of SiO₂ is further interposed between said
 polyimide resin film and said semiconductor substrate.

Claims 12 to 24 (Canceled).

- 25. (Previously presented) The method of claim 1, wherein said
 mask layer is deposited on said semiconductor substrate at
 said first region to be undoped with said dopant ions.
- 1 26. (Currently amended) The method of claim 1, wherein said
 2 dopant ions are implanted into [[a]] said second region
 3 unmasked which is not masked by said mask layer.
- 27. (Currently amended) A method of preparing a doped semiconductor substrate, comprising the steps:
 - a) providing a semiconductor substrate comprising SiC;
- b) providing a mask layer including a polyimide resin

 film that consists of a photosensitive polyimide resin

 on a first region of a surface of said substrate, by

 applying said polyimide resin film on said first

4858/WFF:he

8		region and a second region of said surface, then
9		exposing said polyimide resin film to light at said
· 10		first region, and then removing said polyimide resin
11		film at said second region, wherein said step b) does
12		not involve photolithography employing a photoresist;
13	c)	heating said substrate to at least 300°C; and
14	ď)	while said substrate is at least 300°C, implanting, by
15	ĺ	ion implantation, dopant ions into said substrate
16		through [[a]] said second region of said surface to
17		form in said substrate a doped region that is doped
18		with said dopant ions;

Claim 28 (Canceled).

19

20

1 29. (Previously presented) The method according to claim 27,
2 further comprising, after said step d), a step of removing
3 said polyimide resin film by wet etching using hydrofluoric
4 acid.

deposition and does not involve dry etching.

wherein said method does not involve chemical vapor

- 1 30. (Currently amended) The method according to claim 27,

 A method of preparing a doped semiconductor substrate,

 comprising the steps:
- a) providing a semiconductor substrate comprising SiC;
- b) providing a mask layer including a polyimide resin

 film on a first region of a surface of said substrate:
- 7 <u>c) heating said substrate to at least 300°C; and</u>

4858/WFF:he

8	<u>d)</u>	while said substrate is at least 300°C, implanting, by
9		ion implantation, dopant ions into said substrate
10		through a second region of said surface to form in
11		said substrate a doped region that is doped with said
12		dopant ions;

wherein said polyimide resin film has a thickness of at least twice a depth of said doped region.

- 1 31. (Currently amended) The method according to claim 27,
 2 A method of preparing a doped semiconductor substrate,
 3 comprising the steps:
- 4 a) providing a semiconductor substrate comprising SiC;
- b) providing a mask layer including a polyimide resin

 film on a first region of a surface of said substrate;
- 7 c) heating said substrate to at least 300°C; and
- 8 d) while said substrate is at least 300°C, implanting, by
 9 ion implantation, dopant ions into said substrate
 10 through a second region of said surface to form in
 11 said substrate a doped region that is doped with said
 12 dopant ions;
- wherein said step b) further comprises forming said mask
 layer to include a metal film interposed between said
 polyimide resin film and said substrate.
- 1 32. (Currently amended) The method according to claim 27,
 2 A method of preparing a doped semiconductor substrate,
 3 comprising the steps:
- 4 a) providing a semiconductor substrate comprising SiC;

5	<u>p)</u>	providing a mask layer including a polyimide resin
6		film on a first region of a surface of said substrate;
7	<u>c)</u>	heating said substrate to at least 300°C; and
8	<u>d)</u>	while said substrate is at least 300°C, implanting, by
9		ion implantation, dopant ions into said substrate
0		through a second region of said surface to form in
1		said substrate a doped region that is doped with said
2		dopant ions:
3	where	ein said step b) further comprises forming said mask
4	laye	r to include a $ exttt{SiO}_2$ film interposed between said
15	poly.	imide resin film and said substrate.

[RESPONSE CONTINUES ON NEXT PAGE]