What is claimed is:

A compound of formula (I): OR1 Ř2 ["] Formula (I) 5 wherein tji W is H, a C₁-C₄ branched alkyl, or a straight chained alkyl; [() X is CH₂, NH, or NCH₃; n is 1 or 2;

Y is O or CH2; m is 0 or 1, provided that if X is CH2, n is 1 and m is 0, then R1 is not CH₂CH₃;

Z is O; p is 0 or 1;

15

20

25

R1 is H, a C1-C7 straight chain alkyl, a C3-C7 branched chain alkyl, a C1-C4 haloalkyl, a C₃-C₇ cycloalkyl, an aryl, a heteroaryl, an aralkyl, or a heteroaralkyl; R² is phenyl, 2-halophenyl or 2-pyridyl R³ is H, Cl, Br, F, I, CF₃ or NO₂;

(1) R⁴ is H, a C₁-C₄ alkyl, or a dialkylaminoalkyl and R⁵ and R⁶ together represent a single oxygen or S atom which is linked to the diazepine ring by a double bond and p is zero or 1; or (2) R⁴ and R⁵ together is a double bond in the diazepine ring and R⁶ represents the group NHR⁷ wherein R⁷ is H, C_1 alkyl, C_{1-4} hydroxyalkyl, benzyl or benzyl mono or disubstituted independently with halogen substituents, C1.

4alkylpyridyl or C₁₋₄ alkylmidazolyl and p is zero; or (3) R⁴, R⁵ and R⁶ form the group -CR⁸=U-V= wherein R⁸ is hydrogen, C₁₋₄ alkyl or C₁₋₃ hydroxyalkyl, U is N or CR⁹ wherein R⁹ is H, C₁₋₄alkyl, C₁₋₃hydroxyalkyl or C₁₋₃ 4alkoxy, C₁₋₄alkyl, V is N or CH and p is zero; or pharmaceutically acceptable salts and or solvates thereof.

```
A compound according to claim 1 wherein
                  W is\H:
                  X is C_{\mathbb{H}_2} or NH; n is 1;
                  Y is CH; m is 0 or 1, provided that if X is CH<sub>2</sub>, n is 1 and m is 0, then R<sup>1</sup> is not
                  CH<sub>2</sub>CH<sub>3</sub>;
                  Z is O; p is \emptyset or 1;
                  R<sup>1</sup> is H, CH<sub>3</sub>, CH<sub>2</sub>CH<sub>3</sub> (CH<sub>2</sub>)<sub>2</sub>CH<sub>3</sub> (CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub> CH<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>, CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>, C(CH<sub>3</sub>)<sub>3</sub>,
                  benzyl, 4-pyridylmethyl or 3-pyridylmethyl;
                  R<sup>2</sup> is phenyl, 2-fluorophenyl, 2-chlorophenyl, or 2-pyridyl;
                  R<sup>3</sup> is Cl, Br or NO<sub>2</sub>;
 R<sup>4</sup> is H, CH<sub>3</sub> or CH<sub>2</sub>CH<sub>2</sub>N(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>;
                  R<sup>5</sup> and R<sup>6</sup> together are either O or S; or
                  pharmaceutically acceptable salts and solvates thereof.
                  3.
                               A compound according to claim 1 wherein
                  W is H;
                  X is CH2 or NH; n is 1;
                  Y is CH<sub>2</sub>; m is 1;
                  p is 0;
                  R<sup>1</sup> is H, CH<sub>3</sub>, CH<sub>2</sub>CH<sub>3</sub> (CH<sub>2</sub>)<sub>2</sub>CH<sub>3</sub> (CH<sub>2</sub>)<sub>3</sub>CH<sub>3</sub> CH<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>, CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub>, C(CH<sub>3</sub>)<sub>3</sub>,
20
                  benzyl, 4-pyridylmethyl or 3-pyridylmethyl; provided that if R<sup>1</sup> is 3-pyridylmethyl or
                  4-pyridylmethyl, then X is CH<sub>2</sub>, n is 1, Y is CH<sub>2</sub>, m is 0 or 1, R<sup>2</sup> is 2-fluorophenyl, R<sup>3</sup>
                  is Cl, R<sup>4</sup> is H and R<sup>5</sup> and R<sup>6</sup> together are O;
                  R<sup>2</sup> is phenyl, 2-fluorophenyl, 2-chlorophenyl or 2-pyridyl,
 ٠.
                  R<sup>3</sup> is Cl. Br or NO<sub>2</sub>:
25
                  R<sup>4</sup> is H, CH<sub>3</sub> or CH<sub>2</sub>CH<sub>2</sub>N(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>; provided that when R<sup>4</sup> is CH<sub>2</sub>CH<sub>2</sub>N(CH<sub>2</sub>CH<sub>3</sub>)<sub>2</sub>,
                  then X is CH2, n is 1, Y is CH2, m is 1, R1 is CH3 or benzyl, R2 is 2-fluorophenyl, R3 is
                   Cl and R<sup>5</sup> and R<sup>6</sup> together is O:
                  R<sup>5</sup> and R<sup>6</sup> together are O or S; or
                   pharmaceutically acceptable salts and solvates thereof.
30
```

WO 00/69836 PCT/US00/13134

, U/ A7

Ţ.]

1()

the true the

15 (1)

ļ.i.f

20

4. \ A compound according to claim 1 wherein

W is ₩;

X is CH_2 or NH; n is 1;

Y is CH_{2} m is 0 or 1, provided that if X is CH_{2} and m is 0, then R¹ is not $CH_{2}CH_{3}$;

p is 0;

R¹ is CH₃, CH₂CH₃, (CH₂)₂CH₃, (CH₂)₃CH₃, CH₂(CH₃)₂, CH₂CH(CH₃)₂, C(CH₃)₃,

benzyl or 4-pyridylmethyl;

R² is 2-fluorophenyl, 2-chlorophenyl or 2-pyridyl,

R³ is Cl, Br, or NO₂;

R⁴ is H, CH₃ or CH₂CH₂N(CH₂CH₃)₂;

R⁵ and R⁶ together is O or S; or

pharmaceutically acceptable salts and solvates thereof.

5. A compound according to claim 1 wherein

W is H;

X is CH₂ or NH; n is 1;

Y is CH₂; m is 0 or 1, provided that if X is CH₂ and m is 0, then R¹ is not CH₂CH₃;

p is 0;

R¹ is CH₃, CH₂CH₃, (CH₂)₂CH₃, (CH₂)₃CH₃, CH₂(CH₃)₂, CH₂CH(CH₃)₂, C(CH₃)₃,

benzyl or 4-pyridylmethyl; provided that when R¹ is 4-pyridylmethyl, then X is CH₂, n is 1, Y is CH₂, m is 1, R² is 2-fluorophenyl, R³ is Cl, R⁴ is H and R⁵ and R⁶ together is O;

R² is 2-fluorophenyl, 2-chlorophenyl or 2-pyridyl,

R³ is Cl, Br or NO₂;

25 R⁴ is H, CH₃ or CH₂CH₂N(CH₂CH₃)₂; provided that when R⁴ is CH₂CH₂N(CH₂CH₃)₂,

then X is CH2, n is 1, Y is CH2, m is 1, R1 is CH3 or benzyl, R2 is 2-fluorophenyl, R3 is

Cl and R⁵ and R⁶ together is O;

R⁵ and R⁶ together are O or S; or

pharmaceutically acceptable salts and solvates thereof.

30

gens, gens, pers, pers,

A compound according to claim 1 wherein in each compound W is H and wherein X, n, Y, Z, p and R^{1-6} for each compound are as follows:

\										
$X \setminus$	n	Y	m	Z	р	R ¹	R ²	R ³	R ⁴	R ⁵ R ⁶
CH ₂	1	CH ₂	1		0	СНз	2-fluorophenyl	Cl	Н	0
CH ₂	1		0		0	CH3	2-fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH ₃	2-fluorophenyl	Br	Н	0
CH ₂	1	ĊH2	1		0	benzyl	2-fluorophenyl	Cl	Н	Ô
CH ₂	1	-	0		0	benzyl	2-fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	СН3	2-chlorophenyl	Cl	H	0
CH ₂	1	CH ₂	2		0	CH3	2-fluorophenyl	Cl	H	0
CH ₂	1	CH2	1		0	benzyl	2-pyridyl	Cl	Н	0
CH ₂	1	CH2	1	\	0	СНз	2-pyridyl	Br	H	0
CH ₂	1	CH ₂	1	<i>F</i> -	0	СНз	2-pyridyl	Cl	Н	0
CH ₂	1	CH2	2	-	0	C(CH ₃) ₃	2-fluorophenyl	Cl	Н	0
CH ₂	1	CH2	1		0	СНз	2-fluorophenyl	NO ₂	Н	0
CH ₂	1	CH ₂	1		Ó	(CH ₂) ₂ CH ₃	2-pyridyl	Cl	Н	0
CH2	1	CH ₂	1		0/	CH2CH3	2-pyridyl	Cl	Н	0 *
CH2	1	CH2	1		0	4-pyridyl- methyl	2-fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	(CH ₂) ₃ CH ₃	2-fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	(CH ₂) ₃ CH ₃	2-pyridyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH ₂ CH ₂	2-pyridyl	Cl	Н	0
						(CH3)2				
CH ₂	1		0		0	CH ₂ CH ₃	2-fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH(CH ₃) ₂	2-fluorophenyl	Cl	Н	0
CH2	1	CH2	1		0	СНз	2-fluorophenyl	Cl	CH2CH2N-	0
									(CH2CH3)2	
CH ₂	1	CH2	1		0	СНз	2-fluorophenyl	Cl	СНз	0
CH ₂	1		0		0	benzyl	2-fluorophenyl	Cl	CH ₃	0
CH ₂	1	CH ₂	1		0	benzyl	2-fluoropheny	Cl	CH2CH2N-	0
									(CH ₂ CH ₃) ₂	

JAA TIME

errin errin errin errin errin errin errin errin syrin og errin """, et er Et 21 ib., 31 ib., 32 ib., 52 ib., 50 ib

5

X	n	Y	m	Z	р	R ¹	R ²	R ³	R ⁴	R ⁵ R ⁶
NH	1	CH ₂	1		0	CH3	2-chlorophenyl	Cl	Н	0
NH	1	CH ₂	2		0	CH3	2-chlorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH3	2-fluorophenyl	Cl	H	S
CH ₂	1	CN ₂	1		0	СНз	2-chlorophenyl	Cl	Н	S
CH ₂	1	CH ₂	1		0	СН3	2-pyridyl	Cl	Н	S
CH ₂	1	CH2	Y	0	1	СНз	2-fluorophenyl	Cl	Н	0
CH ₂	1	CH2	1		0	benzyl	phenyl	NO2	Н	0
CH ₂	1	CH2	1	7	0	СНз	2-fluorophenyl	н	H	0
CH ₂	l	CH2	1	/	0	СНз	2-pyridyl	NO ₂	Н	0
CH ₂	1	CH ₂	1		0	benzyl	2-pyridyl	NO₂	Н	0
CH ₂	1	CH ₂	1		0/	benzyl	2-fluorophenyl	Н	Н	0
CH ₂	1	CH ₂	1		0	CH ₃	phenyl	NO ₂	Н	0
NH	1	CH ₂	2		0	(CH2)3CH3	2-fluorophenyl	Cl	Н	0
CH ₂	1		0		0	3-pyridyl- methyl	2-fluorophenyl	Cl	Н	0
CH2	1		0		0	4-pyridyl- methyl	2-fluorophenyl	Cl	Н	0

7. A compound according to claim 1 wherein in each compound W is H and wherein X, n, Y, m, Z, p and R^{1-6} for each compound are as follows:

							\			
Х	n	Y	m	Z	p	R ¹	R ³	R ³	R ⁴	R⁵R ⁶
CH ₂	1	CH2	1		0	СН3	2-fluorophenyl	Cl	Н	0
CH ₂	1		0		0	СНз	2-fluorophenyl	Cl	Н	0
CH ₂	1	CH2	1		0	СН3	2-fluorophenyl	Br	Н	0
CH ₂	1	CH ₂	1		0	benzyl	2-fluorophenyl	CI	Н	0
CH ₂	1		0		0	benzyl	2-fluorophenyl	Çı	Н	0
CH ₂	1	CH ₂	1		0	СНз	2-chlorophenyl	CI	Н	Ō
CH ₂	1	CH ₂	2		0	СН₃	2-fluorophenyl	Cl	Н	0

[]
VI)
14 P. 14 P
4.1
[[]
1.1
8
ļ, și
1,1
##±
£.,1

							_			
X	n	Y	m	Z	р	R ¹	R ²	R ³	R ⁴	R⁵R⁵
CH ₂	$\sqrt{1}$	CH2	1		0	benzyl	2-pyridyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH ₃	2-pyridyl	Br	Н	0
CH ₂	1	ĊH₂	1		0	СНз	2-pyridyl	Cl	Н	0
CH ₂	1	СНУ	2		0	C(CH ₃) ₃	2-fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	СН3	2-fluorophenyl	NO ₂	Н	0
CH ₂	1	CH ₂	1	\	0	(CH2)2CH3	2-pyridyl	Cl	Н	0
CH ₂	1	CH ₂	1	7	0	CH2CH3	2-pyridyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	4-pyridyl-	2-fluorophenyl	Cl	Н	0
					\setminus	methyl				
CH ₂	1	CH ₂	1	•	9/	(CH2)3CH3	2-fluorophenyl	Cl	Н	0
CH2	1	CH2	1		0	(CH2)3CH3	2-pyridyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH2CH-	2-pyridyl	Cl	Н	O '.
						(CH3)2				
CH ₂	1		0		0	CH2CH3	2-fluorophenyl	Cl	Н	О
CH2	1	CH ₂	1		0	CH(CH3)2	2-fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	СН3	2-fluorophenyl	Cl	CH2CH2N	0
								•	(CH ₂ CH ₃) ₂	
CH ₂	1	CH ₂	1		0	СНз	2-fluorophenyl	Cl	CH ₃	0
CH2	1		0		0	benzyl	2-fluorophenyl	Cl	СН3	0
CH ₂	1	CH ₂	1		0	benzyl	2-fluorophenyl	Cl	CH2CH2N	0
			i						(CH2CH3)2	į
NH	1	CH ₂	1		0	CH ₃	2-chlorophenyl	Cl	Н	0
NH	1	CH ₂	2		0	CH3	2-chlorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH3	2-fluorophenyl	Cl	Н	S
CH ₂	1	CH ₂	1		0	CH3	2-chlorophenyl	CI	H	S
CH ₂	1	CH ₂	1		0	СНз	2-pyridyl	CI	H	S
CH ₂	1	CH ₂	1	0	1	СНз	2-fluorophenyl	Çı	Н	0
		-						1		

8. A compound according to claim 1 wherein in each compound W is H and p is 0, and wherein X, n, Y, m, R¹⁻⁵ for each compound are as follows:

[]

11

ļu.

[1]

10

in in it

15

20

X	n	Y	m	R ¹	\mathbb{R}^2	R ³	R⁴	R ⁵ and R ⁶
CH ₂	1	CH ₂	1	СНз	2-fluorophenyl	Cl	Н	0
CH ₂	1	CH2	X	CH ₃	2-fluorophenyl	Br	Н	0
CH ₂	1	CH2	1	CH ₃	2-pyridyl	Cl	Н	0
CH ₂	1	CH2	1	CH ₃	2-fluorophenyl	Cl	СНз	0

9. A compound according to claim 1 wherein W is H, X is CH₂, n is 1, Y is CH₂, m is 1, p is 0, R¹ is CH₃, R² is 2-fluorophenyl, R³ is Br or Cl, R⁴ is H and R⁵ and R⁶ together is O.

- 10. A compound according to claim 1 wherein R⁴ and R⁵ together form a double bond in the diazepine ring, R⁶ is the group NHR⁷ and p is zero.
- 11. A compound according to claim 10, wherein W is H, X is CH₂, n is 1, Y is CH₂, m is 1, R¹ is CH₃, R² is 2-fluorophenyl, 2-chlorophenyl or 2-pyridyl, R³ is Cl or Br and R⁷ is CH₃ CH₂CH₃, benzyl, 4-pyridylmethyl-, 4-pyridylethyl, CH(CH₃)₂, 4-imidazolylethyl or CH₂CH₂OH.
- 12. A compound according to claim 10, wherein in each compound W is H, X is CH₂, n is 1, Y is CH₂, m is 1, R¹ is CH₃, and wherein R², R³ and R⁷ for each compound are as follows:

R ²	R ³	R ⁷
2-fluorophenyl	Cl	СНз
2-pyridyl	Cl	CH ₃
2-fluorophenyl	Cl	CH2CH3
2-fluorophenyl	Cl	benzyl
2-fluorophenyl	Cl	4-pyridylmethyl

Suly A8

_		
R ²	R ³	R ⁷
2-fluorophenyl	Cl	4-pyridylethyl
2-fluorophenyl	Cl	CH2CH(CH3)2
2-fluorophenyl	Cl	2-(4-imidazolyl)ethyl
2-fluorophenyl	Cl	CH2CH2OH
2-fluorophenyl	Br	СНз
2-chlorophenyl	CI	СНз

- 13. A compound according to claim 10, wherein W is H, X is CH₂, n is 1, Y is CH₂, m is 1, R¹ is CH₃, R³ is 2-fluorophenyl, R³ is chlorine or bromine and R⁷ is methyl.
- 14. A compound according to claim 10, wherein W is H, X is CH₂, n is 1, Y is CH₂, m is 1, R¹ is CH₃, R² is 2-fluorophenyl, R³ is Br or Cl and R⁷ is CH₃.

1050b

10 51

The part of the state of the st

1.,

[]

- 15. A compound of according to claim 1 wherein p is zero and R⁴, R⁵ and R⁶ together form the group -C(R⁸)=U-V=.
- 16. A compound according to claim 15 wherein

W is H;

15 $X ext{ is } CH_2, n ext{ is } 1;$

Y is CH2, m is 1;

R¹ is CH₃ or CH₂CH(CH₃)₂; R² is 2-fluorophenyl, 2-chlorophenyl or 2-pyridyl;

R³ is Cl or Br;

R8 is H, CH3 or CH2OH;

- 20 R⁹ is H, CH₃, CH₂OH or CH₂O-t-butyl;
 - U is CR9 or N; and

V is N or CH.

- 17. A compound according to claim 15 wherein
- 25 W is H;

X is CH2, n is 1;

Y is CH2, m is 1;

R¹ is CH₃ or CH₂CH(CH₃)₂; R² is 2-fluorophenyl, 2-chlorophenyl or 2-pyridyl; R³ is Cl or Br;

5 R⁸ is H, CH₃ or CH₂OH;

R⁹ is H, CH₃, CH₂OH or CH₂O-t-butyl;

U is CR9 or N; and

V is N or CH; provided that when R¹ is CH₂CH(CH₃)₂, then X is CH₂, n is 1, R² is 2-fluorophenyl, R³ is Cl, R⁸ is CH₃, U is N and V is N.

18. A compound according to claim 15, wherein in each compound W is H, X is CH₂, n is 1, Y is CH₂, m is 1 and wherein R¹, R², R³, R⁸, U and V for each compound are as follows:

\					
R	R ²	R ³	R ⁸	Ü	V
CH ₃	2-fluorophenyl	Cl	Н	СН	N
СНз	2-fluorophenyl	Cl	СНз	СН	N
СНз	2-fluorophenyl	Cl	Н	C-CH ₃	N
СНз	2-fluorophenyl	Cl	H	C-CH ₂ OH	N
СНз	2-fluorophenyl	Cl	CH ₂ OH	СН	N
СНз	2-pyridyl	Cl	Н.	СН	N
СНз	2-pyridyl	Cl	СНз	СН	N
СНз	2-pyridyl	Br	CH ₃	CH	N
СН3	2-pyridyl	Br	Н	· C-CH3	N
СНз	2-pyridyl	ci	Н	C-CH3	N
СНз	2-pyridyl	Cl	Н	CH₂OH	N
СНз	2-pyridyl	Cl	СН₂ОН	СН	N
CH3	2-pyridyl	CI	CH3	С-СН3	N
CH3	2-chlorophenyl	Cl	CH ₃	N	N
СНз	2-fluorophenyl	Cl	СНз	N	N
L					

R ¹	R²	R ³	R ⁸	υ	V
CH ₂ CH(CH ₂) ₂	2-fluorophenyl	Cl	CH3	N	N
СНз	2-fluorophenyl	Cl	H	N	СН
СНз	2-fluorophenyl	Cl	CH3	N	СН
СНз	2-fluorophenyl	CI	H	C-CH2O-t-	N
				butyl	
СНз	2-pyridyl	Cl	CH3	C-CH2OH	N

19. A compound according to claim 15, wherein W is H, X is CH₂, n is 1, Y is CH₂, m is 1 and wherein R¹, R², R³, R⁸, U and V for each compound are as follows:

Sup

t,

Their Ball M calls hard could called

5

15

R¹	R ²	R ³	R ⁸	Ü	V
СНз	2-pyridyl	Br	СНз	СН	N
СНз	2-pyridyl	Cl	СНз	CH	N
СНз	2-fluorophenyl	Cl	СНз	N	CH
СНз	2-pyridyl	Вг	Н	С-СН3	N

- 20. A compound according to claim 15, wherein in W is H, X is CH₂, n is 1, Y is CH₂, m is 1, R¹ is CH₃, R² is 2-pyridyl, R³ is Br or Cl, R⁸ is CH₃, U is CH and V is N.
- 10 21. A pharmaceutical formulation comprising a pharmaceutically acceptable carrier and an effective amount of a compound of claim 1.
 - 22. A pharmaceutical formulation comprising a pharmaceutically acceptable carrier and an effective amount of a compound of claim 10.
 - 23. A pharmaceutical formulation comprising a pharmaceutically acceptable carrier and an effective amount of a compound of claim 15.

Sub

15

20

- 24. A method of producing sedation or hypnosis, inducing anxiolysis, inducing muscle relaxation in a mammal or treating convulsions in a mammal which comprises administering to the mammal an effective amount of a compound of claim 1.
- 25. A method of producing sedation or hypnosis, inducing anxiolysis, inducing muscle relaxation in a mammal or treating convulsions in a mammal which comprises administering to the mammal an effective amount of a compound of claim 10.
- 26. A method of producing sedation or hypnosis, inducing anxiolysis, inducing muscle relaxation in a mammal or treating convulsions in a mammal which comprises administering to the mammal an effective amount of a compound of claim 15.
- 27. A process for preparing a compound of formula (1c)

 R^{8} N W $(Y)_{m}$ OR^{1} R^{2} Formula (Ic)

wherein W is H, X and Y are CH2 mand m are 1, U is N, and V is CH which process comprises reacting a compound of Formula (M)

wherein R², R³ and R⁸ are as defined in claim 15 with a strong base and wherein the resultant anion from treatment with said strong base is treated with a suitable Michael acceptor and wherein the resultant ester adduct from treatment with said Michael acceptor, a compound of Formula (N)

10

15

$$R^8$$
 N
 CO_2BU^1
 (N)

wherein R², R³ and R⁸ are as defined in claim 15, is reacted with a strong acid and the resultant carboxylic acid of formula (O)

$$R^3$$
 R^3
 R^2
 R^2
 R^2
 R^2
 R^3
 R^3

wherein R², R³ and R⁸ are as defined in claim 15, is esterified by base-mediated alkylation with an alkyl halide (R¹ halide) to provide the corresponding compound of formula (1c).

- 28. Methyl 3-[(3S)-7-chloro-5-(2-fluorophenyl)-2-oxo-2,3-dihydro-1*H*-1,4-benzodiazepin-3-yl]propanoate or a pharmaceutically acceptable salt or solvate thereof.
- 29. Methyl 3-[(3S)-7-chloro-5-(2-fluorophenyl)-2-(methylamino)-3H-1,4-benzodiazepin-3-yl]propanoate or a pharmaceutically acceptable salt or solvate thereof.

30. Methyl 3-[(4S)-8-bromo-1-methyl-6-(2-pyridinyl)-4H-imidazo[1,2-a][1,4]benzodiazepin-4-yl]propanoate or a pharmaceutically acceptable salt or solvate thereof.

add A12