Ke	meg. jansmuse Cerogns.
	min f(x) xelled xex X="" xex xex xex xex xex xex xex
V	min he X
	Verobre communications
	- f - ram quep. a bongera re
	o X - lamprol
	X* E X - not ummign f(x) ha X
	< > f(x*); x-x*> >0 \q x \in x
	Jugaremin crosses:
	yrer campen
	Don-bi:
	• grammon with \Leftarrow $\langle yf(x^{\dagger}); x-x^{\dagger} \rangle \geqslant 0$ $\forall x \in X$

Comprisons J: f(x) = f(x*) + < \p\(x*); x-x*>>> f(x*) \quad \tau \x \in X X - ned. munnyn ra X · Hoosignmone => X- not um. ta X on ypombore: $\exists \tilde{x} \in \tilde{X} : \langle \tilde{x} f(\tilde{x}), \tilde{x} - \tilde{x} \rangle < 0$ EX (b cmy bom. un. le X) $\phi(\lambda) = f(x_{\lambda}) = f(\lambda x + (1-\lambda) x^{*})$ $\frac{d\phi}{d\lambda} = \frac{d}{d\lambda} \left(f(\lambda(x-x^*) + x^*) \right) = \langle \varphi f(\lambda(x-x^*) + x^*), x-x^* \rangle$ $\frac{d\Phi}{d\lambda}\Big|_{\lambda=0} = \langle \nabla f(x^*); \overline{X} - x^* \rangle < 0 \text{ prepresentations}$ O youlan born O, a znam JX70: $f(x^* + \chi(x - x^*)) = \varphi(\chi) < \varphi(o) = f(x^*)$ Mommborous C X - 2008. mmnyer

Memoz muz. compera c moenqueri $x' = x' - x p f(x^k)$ fe germ € X

$$X^{k+1} = \prod (x^k - x^k)$$

$$\prod (g) = avgmin ||x - g||_2^2 = ebanyola aprolonged$$

$$x \in X$$

Trywaerun cubur.

de be yveryn:

1) X - benjuse, XE X, Ge Rd, mayer

 $< X - \Pi(g); g - |7(g) > \leq 0$

Dox.le: $\Pi(g) = \operatorname{arg min} d(z)$ $z \in X$

d(z)= ||z-g||} Compried

Ynobel ommunenoum gro d, X

<pd(2*); 2-2*> >0

HZEX

$$Z = |T(y)| \quad Z = X \\ < \forall d(T(y); X - T(y) > 20$$

$$\forall d(T(y)) = 2(T(y) - y)$$

$$2 < |T(y) - y; X - T(y) > 30$$
2) Represent organise organise organise
$$X - bongroe, \quad X_1, X_2 \in \mathbb{R}^d, \text{ norga}$$

$$||T(X_1) - T(X_2)|| \leq ||X_1 - X_2|| \times ||X_1$$

d-le 2) $\leq \|\chi^{(1)} - \chi \wedge f(\chi^{(1)}) - \chi^* + \chi \wedge f(\chi^*)\|^2$ $= \|x^{(1)} - x^{(2)}\|^{2} - 2x < \sqrt{2}(x^{(1)}) - \sqrt{2}(x^{(2)}); x^{(1)} - x^{(2)}$ + X = 11 > f(x) - > f(x) || = _ ho μ- anner bommun < [11x⁶-x⁴[1² +2x < \sigma f(x); x⁶-x⁴> -2 $\left(\frac{1}{2}\left[\left(x^{k}-x^{*}\right)^{2}+f(x^{k})-f(x^{*})\right)\right)$ +2/z (f(x)-f(x)-<\\\f(x)), x/-x>) + 2x (xL-1) (f(xh)-5(xh)- <17f(xh); xh-xh) 20 no Congresione F < (1-1/m) |1/x (- /2 |1 5 The sel, The u y yell conjence. Typergu 1) $L_2 - map$ $\bar{X} = \{ x \in \mathbb{R}^d \mid \|x\|_2^2 \le 1 \}$ 17(x) = min {1; 1/11,} x

2) ryomx
$$X = \{x \in \mathbb{R}^d \mid a_i \in x \leq b_i\}$$

$$[\Pi(x)]_i = \begin{cases} G_i & x_i \leq q_i \\ b_i & x_i \geq b_i \\ x & where \end{cases}$$

3) mucines cyamorum
$$X = \{x \in \mathbb{R}^d | Ax = b\}$$

$$\prod (x) = X - A^T (AA^T)^{-1} (Ax - b)$$

Muline jagore (amegnanube ble zegow)

Min < S; 9> grunnpolon

S E (X)

Oyumreno

2) commerce
$$X = \{ x \in \mathbb{R}^d | \sum_{i=1}^d x_i = 1, x_i \ge 0 \}$$

 $S = Q_i$ $i = argmin g_j$

3)
$$l \approx -map$$
 $\overline{X} = 2 \times e \mathbb{R}^d [|X||_{\mathcal{D}} \leq 1]$

$$S^* = -\sum_{i=1}^d sign(g_i) \ell_i$$

Memory Frank - Byung (gurbane spequeme)

$$\begin{array}{l}
S^{k} = \operatorname{argmin} \langle S, S(X^{k}) \rangle \\
S^{k} = (-Y_{k})X^{k} + Y_{k}S^{k} & J_{k} = \frac{2}{L_{12}}
\end{array}$$

$$\begin{array}{l}
\text{Further of the special of the$$

Umru ne mjærgue u PB:

D mm crog. g mjærgue gro promote 21. op. (van g GD)

D cyclum skog. g mjær. u g PB gro brm. zegar

(kan g GD)

D cemb cyngure (rampuner, pagpora pemeine)

D manene" um-la