Generation of Prime Numbers

Prof. Ashok K Bhateja, IIT Delhi

Generation of large primes & primality test

- **■** The sieve of Eratosthenes
- Trial Division test
- Fermat's primality test
- Solovay-Strassen test
- Miller-Rabin test

The sieve of Eratosthenes

- 1. Create a list of consecutive integers from 2 to n i.e., (2, 3, 4, ..., n).
- 2. Initially, let *p* equal 2, the first prime number.
- 3. Starting from p^2 , count up in increments of p and mark each of these numbers greater than or equal to p^2 itself in the list.
- 4. Find the first number greater than p in the list that is not marked.
 - If there was no such number, stop.
 - Otherwise, let *p* now equal this number (which is the next prime), and repeat from step 3.
- 5. the numbers remaining not marked in the list are all the primes below n.

The sieve of Eratosthenes for n = 20

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
	2	3	4	5	6	7	8	9	10
11	2 12	3 13	4 14	5 15	6 16	7 17	8 18	9 19	10 20
11									

The primes are: 2, 3, 5, 7, 11, 13, 17, 19

Trial Division Test

- If n is not prime, then at least one of the factors of n is at most as large as \sqrt{n} .
- Divide the candidate number by only the primes up to its square root.
- In the worst case, trial division is a laborious algorithm. For an n-bit number a, if it starts from two and works up only to the square root of a, the algorithm requires

$$\pi(2^{n/2}) \approx \frac{2^{n/2}}{(n/2)\ln 2}$$

Trial Division Test

```
To check Integer n \ge 2 is prime
i \leftarrow 2
while i.i \le n do
    if i divides n then
        return COMPOSITE
    end if
    i \leftarrow i + 1
end while
return PRIME
```

Probabilistic primality tests

- Probable prime
 - believed to be prime based on a probabilistic primality test.
 - an integer that satisfies a specific condition that is satisfied by all prime numbers, but which is not satisfied by most composite numbers.
- \blacksquare Witnesses to the compositeness of n
 - Let n be an odd composite integer. An integer a, coprime to n, is Fermat witness of n, if the probabilistic test outputs composite.
 - Let n = 1387. Since $2^{1386} \equiv 1 \mod 1387$, implies n may be prime. However, $3^{1386} \equiv 875 \neq 1 \mod 1387$, so 1387 is composite with 3 as a Fermat witness.

Algorithm: Fermat primality testing

```
for i = 1 to t

choose a random integer a, 2 \le a \le n - 1.

compute r \equiv a^{(n-1)} \mod n

if r \ne 1 then return ("composite")

return("prime")
```

If n is prime, then the Fermat primality test always outputs prime. If n is composite, then the algorithm outputs prime with probability at most 1/2.

Fermat's Test: When will it give error?

- If the number is prime the algorithm will always give the output as "PRIME".
- If the input number is composite, the algorithm might claim that the number is prime. [give an error]
- Why is this error generated? Due to the presence of F-Liars
- For an odd composite number n, an element a, $1 \le a \le n 1$, is F-liar if $a^{(n-1)} \mod n \equiv 1$ and n is called Fermat pseudoprime to base a.
- Example: n = 341 (= 11 × 31) is a pseudoprime to the base 2 since $2^{340} \equiv 1 \pmod{341}$.

Fermat's Test: Error Probability

- Theorem: If a composite integer n > 1 has a Fermat witness that is relatively prime to n then the proportion of integers from 2 to n 1 that are Fermat witnesses for n is over 50%.
- If over half the integers in $\{2, \ldots, n-1\}$ are Fermat witnesses for n, then the probability of not finding a Fermat witness among, say, k random choices is smaller than $(\frac{1}{2})^k$.
- So, we might say that n appears to be prime with "probability" at least $1 (\frac{1}{2})^k$. For k = 10, it is ≈ 0.99902 .

Carmichael function

- Let *n* be a positive integer. The Carmichael function $\lambda(n)$ is the least positive integer *m* such that $a^m \equiv 1 \pmod{n}$ for all integers *a* coprime to *n*.
 - i.e., $a^{\lambda(n)} \equiv 1 \pmod{n} \ \forall \ a \text{ coprime to } n$.
- $\phi(8) = 4$, because there are 4 numbers less than and coprime to 8 i.e., 1, 3, 5, and 7.
- Euler's theorem assures that $a^4 \equiv 1 \pmod{8}$ for all a coprime to 8, but 4 is not the smallest such exponent.

Computing $\lambda(n)$

Any n > 1 can be written as $n = p_1^{\alpha_1} . p_2^{\alpha_2} ... p_k^{\alpha_k}$ be the prime factorization of n. Then

$$\lambda(n) = lcm \left\{ \lambda(p_1^{\alpha_1}), \lambda(p_2^{\alpha_2}), \dots, \lambda(p_k^{\alpha_k}) \right\} \text{ where } n = \prod_{i=1}^k p_i^{\alpha_i}$$

$$\lambda(p^{\alpha}) = \begin{cases} \varphi(p^{\alpha}) & \text{if } \alpha \leq 2 \text{ or } p \geq 3\\ \frac{1}{2}\varphi(p^{\alpha}) & \text{if } p = 2 \text{ and } \alpha \geq 3 \end{cases}$$

$$\lambda(mn) = lcm (\lambda(m), \lambda(n))$$

Example:
$$\lambda(360) = \text{lcm}(\lambda(2^3), \lambda(3^2), \lambda(5)) = \text{lcm}(2, 6, 4) = 12.$$

$$\lambda(561) = \text{lcm}(\lambda(3), \lambda(11), \lambda(17)) = \text{lcm}(2, 10, 16) = 80$$

Carmichael function

Theorem: If $\lambda(n) \mid (n-1)$, then $a^{n-1} \equiv 1 \pmod{n}$ for all a coprime to n.

Proof:
$$\lambda(n) \mid (n-1) \Rightarrow \lambda(n) \mid k = (n-1)$$

Therefore,
$$a^{n-1} = (a^{\lambda(n)})^k \Rightarrow a^{n-1} \equiv 1 \mod n$$

i.e., If $\lambda(n) \mid (n-1)$ then Fermat's condition for prime is true whether n is prime or not.

Consider n = 561, $\lambda(561) = 80$, which divides 560.

 $a^{560} \equiv 1 \pmod{561}$ for all a coprime to 561.

But $561 = 3 \times 11 \times 17$ (not a prime)

Carmichael number

- Definition: A composite number n, which satisfies the relation $a^{(n-1)} \equiv 1 \mod n$ for all integers a satisfying gcd(a, n) = 1 with 1 < a < n.
- The converse of Fermat's little theorem is not generally true, as it fails for Carmichael numbers.
- The first few Carmichael numbers are 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341,
- \blacksquare Number of Carmichael numbers C(n) for sufficiently large n, is

$$C(n) > n^{2/7}$$
 (Alford et al. 1994)

$$C(n) < n \exp\left(-\frac{\ln n \ln \ln \ln n}{\ln \ln n}\right)$$
 (R.G.E Pinch)

Legendre symbol

■ Let *p* be an odd prime and *a* is an integer. The Legendre symbol is defined as

$$\left(\frac{a}{p}\right) = \begin{cases}
0 & \text{if } p | a \\
1 & \text{if } a \in Q_p \\
-1 & \text{if } a \in \overline{Q}_p
\end{cases}$$

Legendre symbol

Fact: Let p be an odd prime and $a, b \in \mathbb{Z}$. Then

(i)
$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \mod p$$
; $\left(\frac{1}{p}\right) = 1$, $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$

(ii)
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$$
; if $a \in \mathbb{Z}_n^*$, then $\left(\frac{a^2}{p}\right) = 1$.

(iii) If
$$a \equiv b \pmod{p}$$
, then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$

(iv)
$$\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$$

(v) Law of quadratic reciprocity: If q is an odd prime distinct from p, then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}$$

Jacobi Symbol

- Jacobi symbol is generalization of Legendre symbol.
- Definition Let $n \ge 2$ be odd integer and $n = p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k}$ then Jacobi symbol of a & n is

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{e_1} \left(\frac{a}{p_2}\right)^{e_2} \cdots \left(\frac{a}{p_k}\right)^{e_k}$$

If *n* is prime, then the Jacobi symbol is just the Legendre symbol.

- If m is composite and the Jacobi symbol (a/m) = -1, then a is quadratic non-residue modulo m.
- If a is quadratic residue modulo $m \& \gcd(a, m) = 1$, then (a/m) = 1, but if (a/m) = 1 then a may be quadratic residue or non-residue modulo m.
- Example: (2/15) = 1 and (4/15) = 1, but 2 N 15 and 4 R 15.

Properties of Jacobi symbol

- 1. (a/n) = (b/n) if $a = b \mod n$.
- 2. (1/n) = 1 and (0/n) = 0.
- 3. (2m/n) = (m/n) if $n = \pm 1 \mod 8$. (2m/n) = -(m/n) otherwise
- 4. (Quadratic reciprocity) If m and n are both odd, then (m/n) = -(n/m) if both m and n are congruent to 3 mod 4 (m/n) = (n/m) otherwise.

Example: Compute Jacobi symbol (158/235)

$$\left(\frac{158}{235}\right) = -\left(\frac{79}{235}\right) \because n \neq \pm 1 \mod 8$$

$$= \left(\frac{235}{79}\right) \because \text{ both } m \& n \text{ are congruent to } 3 \mod 4$$

$$= \left(\frac{10}{79}\right) \because 235 \equiv 10 \mod 7 9$$

$$= -\left(\frac{5}{79}\right) = -\left(\frac{79}{5}\right)$$

$$= -\left(\frac{4}{5}\right) = -\left(\frac{1}{5}\right) = -1$$

Solovay-Strassen test

► Fact (Euler's criterion) Let *n* be an odd prime.

Then
$$a^{(n-1)/2} \equiv \left(\frac{a}{n}\right) \pmod{n}$$

for all integers, a which satisfy gcd(a, n) = 1.

If gcd(a, n) = 1 and $a^{(n-1)/2} \equiv \left(\frac{a}{n}\right) \pmod{n}$ then n is said to be a Euler pseudoprime to the base a.

Algorithm Solovay-Strassen probabilistic primality test

```
INPUT: an odd integer n > 3 and security parameter t \ge 1.
for i from 1 to t
    choose a random integer a, 2 \le a \le n - 2
    find gcd(a, n)
    if gcd(a, n) > 1 then return ("composite")
    compute r = a^{(n-1)/2} \mod n
    if r \neq 1 and r \neq n - 1 then return ("composite")
    compute the Jacobi symbol s = (a/n)
    if r \neq s \pmod{n} then return ("composite")
return("prime")
```

Ashok K Bhateja IIT Delhi

Solovay-Strassen error-probability bound

- Fact: Let n be an odd composite integer. Then at most $\varphi(n)/2$ of all the numbers a, $1 \le a \le n 1$, are Euler liars for n.
- Fact: Let n be an odd composite integer. The probability that Solovay-Strassen algorithm declares n to be "prime", with t bases, is less than $(1/2)^t$.
- Example: (Euler pseudoprime) The composite integer 91 (= 7×13) is a Euler pseudoprime to the base 9

since
$$9^{45} = 1 \pmod{91}$$
 and $\left(\frac{9}{91}\right) = 1$.

Complexity of the Solovay-Strassen test

- GCD of two numbers can be calculated using the Euclidean algorithm having a complexity of $O(\log^2 n)$.
- Computing Jacobi symbol has the same complexity as the Euclidean algorithm.
- Multiplication of two numbers is always done modulo n and it takes $O(\log^2 n)$ time.
- For any a, we can compute $a^n \mod n$ in $O(\log n)$ multiplications, by repeated squaring.
- Thus, this method of modular exponentiation can be done in $O(\log n \times \log^2 n) = \log^3 n$ for each value of a.
- The overall time-complexity of the Miller-Rabin algorithm is $O(t \cdot \log^3 n)$, t being the number of bases.

Miller-Rabin test

- It is a strong pseudoprime probabilistic test
- Fact: Let n be an odd prime and let $n 1 = 2^s r$ where r is odd. Let a be any integer s.t. gcd(a, n) = 1. Then either

 $a^r \equiv 1 \pmod{n}$ or $a^{2^j \cdot r} \equiv -1 \mod n$ for some $j, 0 \le j \le s$ -1.

Def: Let n be an odd composite integer and let $n - 1 = 2^s r$ where r is odd. Let a be any integer in [1, n - 1]

- i. If $a^r \not\equiv 1 \pmod{n}$ & $a^{2^j \cdot r} \not\equiv -1 \mod n \ \forall j, \ 0 \le j \le s$ -1. then a is said a strong witness (to compositeness) for n.
- ii. If $a^r \equiv 1 \pmod{n}$ or $a^{2^j \cdot r} \equiv -1 \mod n$ for some $j, 0 \le j \le s$ -1. then n is said to be a strong pseudoprime to the base a (i.e., n acts like a prime). The integer a is called a strong liar for n.

Number of Strong liars

- Fact: If n is an odd composite integer, then at most 1/4 of all the numbers a, $1 \le a \le n 1$, are strong liars for n. In fact, the number of strong liars for n is at most $\varphi(n)/4$.
- Ex: Consider the composite integer n = 91 (= 7×13).

91-1 = 90 =
$$2 \times 45$$
, $s = 1$ and $r = 45$.

Let
$$a = 9, 9^r = 9^{45} \equiv 1 \pmod{91}$$

Implies 91 is a strong pseudoprime to the base 9.

The set of all strong liars for 91 is:

{1, 9, 10, 12, 16, 17, 22, 29, 38, 53, 62, 69, 74, 75, 79, 81, 82, 90}.

■ The number of strong liars for 91 is $18 = \varphi(91)/4$.

Algorithm: Miller-Rabin probabilistic primality test

```
INPUT: An odd integer n > 2 and security parameter t \ge 1
write n - 1 = 2^s r such that r is odd.
for i from 1 to t
   choose a random integer a, 2 \le a \le n-2
   compute y = a^r \mod n
   if y \ne 1 and y \ne n - 1
         j = 1.
    while j \le s - 1 and y \ne n - 1
         compute y = y^2 \mod n
         if y = 1 then return ("composite")
         j = j + 1
    if y \neq n - 1 then return ("composite")
return("prime")
```

Ashok K Bhateja IIT Delhi

Miller-Rabin error-probability bound

- For any odd composite integer n, the probability that Miller Rabin primality test algorithm declares n to be "prime" is less than $(1/4)^t$
- For most composite integers n, the number of strong liars for n is actually much smaller than the upper bound of $\varphi(n)/4$.
 - Consequently, the Miller-Rabin error-probability bound is much smaller than $(1/4)^t$ for most positive integers n.
- Example: (some composite integers have very few strong liars) The only strong liars for the composite integer n = 105 (= $3 \times 5 \times 7$) are 1 and 104. More generally, if $k \ge 2$ and n is the product of the first k odd primes, there are only 2 strong liars for n, namely 1 and n 1.

Time complexity

- Multiplication of two numbers is always done modulo n and it takes $O(\log^2 n)$ time.
- For any a, we can compute $a^n \pmod{n}$ in $O(\log n)$ multiplications (modular exponentiation).
- Thus, this method of modular exponentiation can be done in $O(\log n \times \log^2 n) = \log^3 n$ for each value of a.
- The overall time-complexity of the Miller-Rabin algorithm is $O(t \cdot \log^3 n)$, t being the number of bases.

Comparison: Fermat, Solovay-Strassen and Miller-Rabin

- Fact: Let *n* be an odd composite integer.
 - (i) If a is a Euler liar for n, then it is also a Fermat liar for n.
 - (ii) If a is a strong liar for n, then it is also a Euler liar for n.
- Ex: For composite integer n = 65 (= 5 × 13), the Fermat liars for 65 are {1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64}.

The Euler liars for 65 are {1, 8, 14, 18, 47, 51, 57, 64},

while the strong liars for 65 are

{1, 8, 18, 47, 57, 64}

Strong Prime

- Definition. A prime number p is said to be a strong prime if integers r, s, and t exist such that the following three conditions are satisfied:
 - p 1 has a large prime factor, denoted r
 - p + 1 has a large prime factor, denoted s and
 - r 1 has a large prime factor, denoted t
- ► A strong prime is a prime number that is greater than the arithmetic mean of nearest prime numbers i.e., next and previous prime numbers.
- The first few strong primes are

11, 17, 29, 37, 41, 59, 67, 71, 79, 97, 101

Generation of Strong primes

Gordon's algorithm for generating a strong prime p

- 1. Generate two large random primes s and t of roughly equal bitlength.
- 2. Select an integer i_0 .

Find the first prime in the sequence 2it + 1, for $i = i_0$, $i_0 + 1$, $i_0 + 2$, ... Denote this prime by r = 2it + 1.

- 3. Compute $p_0 = (2s^{r-2} \mod r) s 1$.
- 4. Select an integer j_0 Find the first prime in the sequence $p_0 + 2jrs$, for $j = j_0$, $j_0 + 1$, $j_0 + 2$, ... Denote this prime by $p = p_0 + 2jrs$.
- 5. Return(p).