Appendix A

Notation

- 3×1 vectors are represented in **bold**. Example: ω
- \bullet The scalar component of a vector is not in bold and has a subscript. Example: $\omega_{\rm x}$
- 3×3 matrices are shown in [brackets]. Example: [R]
- The absolute value of a scalar is shown using one vertical bar on either side of the |variable|. Example: $|B_x|$
- The magnitude of a vector is shown with two vertical bars on either side of the ||variable||.

 Example: ||B||
- The 3×3 identity matrix is represented by $[I_{3\times 3}]$.
- The transpose of a matrix is represented by a superscript T. Example: $[R]^T$
- The trace matrix operation is represented by tr(). Example: tr([R])
- ullet The reference frame of a vector is represented by superscript calligraphy letter before the vector. Example: ${}^{\mathcal{I}}\mathbf{r}$
- The skew-symmetric matrix operator is represented by brackets around the variable and a cross product within the brackets. Example: $[\omega \times]$
- The inertial time derivative $\frac{\tau_{\rm d}}{{
 m d}t}$ of a variable is represented by a dot above the variable. Example: $\frac{\tau_{\rm d}}{{
 m d}t}\omega=\dot{\omega}$

Appendix B

Explicit Runge-Kutta Integrator Definitions

The family of explicit Runge-Kutta numeric integrators is generalized as follows (repeated from Section 8.1.7.1):

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_i$$
where
$$k_1 = f(t_n, y_n)$$

$$k_2 = f(t_n + c_2 h, y_n + a_{21} k_1)$$

$$k_3 = f(t_n + c_3 h, y_n + a_{31} k_1 + a_{32} k_2)$$

$$\vdots$$

$$k_s = f(t_n + c_s h, y_n + a_{s1} k_1 + a_{s2} k_2 + \dots + a_{s,s-1} k_s).$$
(8.26)

A specific Runge-Kutta integrator are is given by its Butcher tableau, which is a standard form of presenting the coefficients used by Equation 8.26. The general form of a Butcher tableau for an explicit Runge-Kutta integrator is shown in Table B.1. The Butcher tableau of each Runge-Kutta integrator used within this dissertation is shown in Tables B.2 through B.7.

Table B.1: The general form of the Butcher tableau for explicit Runge-Kutta Methods [34].

Table B.2: The Butcher tableau for explicit fixed RK2 (midpoint method) [34].

$$\begin{array}{c|c}
0 & & \\
1/2 & 1/2 & \\
\hline
& 0 & 1
\end{array}$$

Table B.3: The Butcher tableau for explicit fixed RK3 (Kutta method) [21].

$$\begin{array}{c|cccc}
0 & & & \\
1/2 & 1/2 & & \\
\hline
1 & -1 & 2 & \\
\hline
& 1/6 & 2/3 & 1/6
\end{array}$$

Table B.4: The Butcher tableau for explicit fixed RK4 (Runge-Kutta method) [34].

Table B.5: The Butcher tableau for explicit fixed RK5 (fixed Dormand-Prince method) [34].

0						
1/5	1/5					
3/10	3/40	9/40				
4/5	44/45	-56/15	32/9			
8/9	19372/6561	-25360/2187	64448/6561	-212/729		
1	9017/3168	-355/33	46732/5247	49/176	-5103/18656	
	35/384	0	500/1113	125/192	-2187/6784	11/84

Table B.6: The Butcher tableau for explicit fixed RK6 (Hammund scheme) [3].

0							
4/7	4/7						
5/7	115/112	-5/16					
2/9	589/630	5/18	-16/45				
$(5-\sqrt{5})/10$	$229/1200-29\sqrt{5}/6000$	$119/240-187\sqrt{5}/1200$	$-14/75 + 34\sqrt{5}/375$ $-3\sqrt{5}/100$	$-3\sqrt{5}/100$			
$(5+\sqrt{5})/10$	$71/2400-587\sqrt{5}/12000$	$187/480-391\sqrt{5}/2400$ $-38/75+26\sqrt{5}/375$		$27/80-3\sqrt{5}/400$	$1+\sqrt{5}/4$		
1	$-49/480 + 43\sqrt{5}/160$	$-425/96+51\sqrt{5}/32$	$52/15 + 4\sqrt{5}/5$	$-27/16+3\sqrt{5}/16$ $5/4-3\sqrt{5}/4$ $5/2-\sqrt{5}/2$	$5/4 - 3\sqrt{5}/4$	$5/2 - \sqrt{5}/2$	
	1/12	0	0	0	5/12	5/12	1/12

Table B.7: The Butcher tableau for explicit fixed RK7 (fixed Fehlburg method) [34].

							-107/9	311/54 -19/60 17/6	-301/82 $2133/4100$ $45/82$ $45/164$	9/35 9/35 9/280
			25/16	1/4	125/108	0	-53/6	23/108	-341/164	0
		1/8	-25/16	0	0	0	0	0	0	О
	1/12	0	0	0	0	0	0	0	0	O
2/27	1/36	1/24	5/12	1/20	-25/108	31/300	2	-91/108	2383/4100	41/840
$\begin{vmatrix} 0 \\ 2/27 \end{vmatrix}$	1/9	1/6	5/12	1/2	9/2	1/6	2/3	1/3	П	