

## Nitrous oxide $(N_20)$ emission

Zhenqi Luo 2020.10



### a long-lived greenhouse gas

- an extremely potent greenhouse gas:
  - Lifetime in Atmosphere: 114 years
  - Global Warming Potential (100-year): 298 (IPCC, 2007)

#### • sources:

- Agriculture (US: 78%, Global: ~22%):
  - Soil management: fertilizer and crop
  - Manure management
  - Agricultural burning
- Fuel Combustion
- Industry: byproduct (e.g. production of nitric acid)
- Waste: during nitrification and denitrification of the nitrogen present
- Natural: bacteria breaking down nitrogen in soils and the oceans

#### Overview of Greenhouse Gas Emissions in 2018



#### 2018 U.S. Nitrous Oxide Emissions, By Source



(EPA)

### global nitrous oxide sources

Simple introduction

- A reconciling framework: constructed 43 flux estimates:
  - 30 bottom-up (BU)
    - emission inventories
    - spatial extrapolation of field
    - flux measurements
    - nutrient budget modelling
    - process-based modelling
  - 5 top-down (TD)
    - measurements
    - inversions
  - 8 observation and modelling



Sources (BU)

Land Surface sink

Ocean

Four inversions: 1. INVICAT, 2. PyVAR-1,

MIROC4-ACTM,GEOSChem

PyVAR-2.

#### global nitrous oxide sources

- The global N2O budget (2007–2016)
  - Natural sources (57%)
    - Natural soils (33%)
    - Lightning and atmospheric production (2%)
    - Waters (2%)
    - Oceans (20%)
  - perturbed fluxes from ecosystems (3%)
    - Climate change
    - CO2 effect
    - land cover change
  - agricultural sector (22%)
  - other direct anthropogenic sources (12%)
    - fossil fuel and industry (6%)
    - waste and waste water (2%)
    - biomass burning (4%)
  - indirect emissions from ecosystems (6%)
    - transport (5%)
    - deposition (1%)



(Tian et al., 2020)

# N<sub>2</sub>O emissions from bomas in drylands of Sub-Saharan Africa (SSA)

- Change in the source strength of abandoned bomas from 1961 to 2018
  - Step 1: total livestock numbers (TLN)
    - $TLN = \sum c + \frac{(s \times 0.1 + g \times 0.1)}{0.7}$
    - c, s, g: total number of cattle, sheep, goat
  - Step 2: boma use intensity (BUI):
    - $BUI = \frac{BAL \times NB \times FMB}{YB}$
    - BAL: boma area per livestock
    - NB: number of bomas in use at the same time
    - FMB: Fraction of bomas without use of manure
    - YB: years of boma use
  - Step 3: N<sub>2</sub>O emission intensity (N<sub>2</sub>O\_int)
    - $N20_{int} = N_{2}O \times N_{2}O_{-years} \times \frac{4}{28}$
    - N<sub>2</sub>O: mean average annual N<sub>2</sub>O flux from bomas
    - N<sub>2</sub>O\_years
    - $\frac{4}{28}$ : conversion of N<sub>2</sub>O-N to N<sub>2</sub>O
  - Step 4: total N<sub>2</sub>O emissions from bomas  $(N_2O\_FB)$ 
    - $\sum N_2 O_F B = TLN \times BUI \times N2O_int$



#### N<sub>2</sub>O emissions from bomas in drylands of Sub-Saharan

Africa (SSA)

- Sources of agricultural N<sub>2</sub>O fluxes
  - EDGAR5
    - a: soil
    - b: manure management
    - c: indirect emission
  - in-situ measurements
    - d: total emissions from bomas (this study)
  - total agricultural N2O emissions
    - e=a+b+c+d
- livestock units: livestock density
  - $N = \sum cattle + \frac{(sheep \times 0.1 + goat \times 0.1)}{0.7}$



### Questions?