1 Complexity Zoo

1.1 P

Informally: all problems that can be solved in polynomial time.

Definition 1.1.

$$\mathbf{P} = \bigcup_{k \geq 0} \mathtt{TIME}[n^k]$$

Descriptive Complexity definitions:

Definition 1.2.

$$\mathbf{P} = FO(LFP)$$

(First Order logic extended with the Least Fixed Point operator, with successor)

Definition 1.3.

$$\mathbf{P} = SO(Horn)$$

(Second Order logic restricted with Horn)

Circuit Complexity definition:

Definition 1.4.

 $\mathbf{P} = \mathrm{Set}$ of problems that can be solved by a polynomial-time uniform family of boolean circuits

Notable Problems in **P**:

- 2-SAT
- 2-Colourability
- Reachability

1.2 NP

Informally: all problems that can be solved in nondeterministic polynomial time.

Definition 1.5.

$$\mathbf{NP} = igcup_{k \geq 0} \mathtt{NTIME}[n^k]$$

In terms of a verifier:

Informally: The set of decision problems where a solution can be verified in polynomial time.

Descriptive Complexity Definition:

Definition 1.6.

 $\mathbf{NP} = \mathrm{SO}\exists$

(Existential Second Order)

Notable Problems in ${\bf P}:$

- \bullet SAT
- 3-Colourability
- \bullet TSP
- \bullet Subset sum

- 1.3 FPT
- 1.4 W[1]
- 1.5 FPTAS
- 1.6 PTAS
- 1.7 L
- 1.8 NL
- 1.9 PSPACE
- 1.10 coNP
- **1.11** Σ_2^p
- 1.12 Σ_i^p
- 1.13 Π_2^p
- 1.14 Π_i^p
- 1.15 PH
- **1.16** *P*^{SAT}
- 1.17 NP^{SAT}
- 1.18 P/poly
- 1.19 P-Uniform
- 1.20 EXP
- 1.21 NC
- 1.22 NC_0
- 1.23 NC_1
- 1.24 NC_2
- 1.25 NC_i
- **1.26** AC_i
- 1.27 AC_0
- 1.28 AC_1
- 1.29 BPP
- 1.30 RP
- 1.31 co-RP
- 1.32 ZPP
- 1.33 APX
- 1.34 PO
- 1.35 PCP

4