SIS AMOUNT OF STANS AMOUNT OF

厦门大学《线性代数》课程期中试题A

考试日期: 2013.11 信息学院自律督导部整理

一. 计算题(共50分)

1. (6分) 设
$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 1 \\ 3 & -1 & 3 \end{bmatrix}$$
,计算(1) AA^{T} ,(2) $A^{T}A$.

2. (6分) 计算行列式
$$\begin{vmatrix} x & 1 & 0 & 0 \\ 0 & x & 1 & 0 \\ 0 & 0 & x & 0 \\ 5 & 4 & 3 & x+2 \end{vmatrix}$$
.

3.
$$(6分)$$
 设 $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & -1 & k & 2 \\ 0 & 1 & 1 & 3 \\ 1 & -1 & 0 & 4 \\ 2 & 0 & 2 & 5 \end{bmatrix}$, $R(A) = 3$, 求 k .

4. (6分)设 α , β , γ_1 , γ_2 , γ_3 都是4维列向量,矩阵 $|A|=|\alpha$, γ_1 , γ_2 , $\gamma_3|=5$,矩阵 $|B|=|\beta$, γ_1 , γ_2 , $\gamma_3|=-2$,求|A+2B|.

5. (10 分)设 A,B,C,D 均为 n 阶矩阵,E 为 n 阶单位矩阵,A 是可逆矩阵。 如果分块矩阵

$$P = \begin{bmatrix} E & 0 \\ -CA^{-1} & E \end{bmatrix}, Q = \begin{bmatrix} A & B \\ C & D \end{bmatrix}, R = \begin{bmatrix} E & -A^{-1}B \\ 0 & E \end{bmatrix},$$

(1) 计算 PQR, (2) 证明矩阵 Q 可逆的充分必要条件是 $D-CA^{-1}B$ 是可逆的.

7(10 分)已知矩阵
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 2 & 3 & a \\ 3 & 5 & 1 \end{bmatrix}$$
与矩阵 $B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & a & 3 \\ a-1 & 5 & 1 \end{bmatrix}$ 等价,确定常数 a 的取值

范围.

二.
$$(10 分)$$
 证明 $D_n = \begin{vmatrix} \cos \alpha & 1 \\ 1 & 2\cos \alpha & 1 \\ & O & O & O \\ & & 1 & 2\cos \alpha & 1 \\ & & & 1 & 2\cos \alpha \end{vmatrix} = \cos n\alpha$.

三. (15 分)设 A,B,C 为 4 阶矩阵,满足 $3A^{-1}+2BC^{T}A^{-1}=B$,其中

$$B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix},$$

求A.

四. $(20 \, \mathcal{G})$ 设 $\alpha = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, $\beta = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$, $\gamma = \begin{bmatrix} 1 \\ 2 \\ a \end{bmatrix}$, $\ddot{a} A = \alpha \beta^T$, $B = \beta \alpha^T$, 求解方程 $A^2 x = 2Bx + \gamma$.

五.(5 分) 设 $A = [\alpha_1, \alpha_2, L, \alpha_n]$ 是 n 阶矩阵,满足 $A^T A = E \perp |A| = 1$,又 $\beta = [c_1, c_2, L, c_n]^T$ 满足 $\beta^T \alpha_n = 1$,证明 $B = [\alpha_1, \alpha_2, L, \alpha_{n-1}, \beta]$ 可逆,并求 |B|.