Network Coding

Jie Gao

Existing network

- Independent data stream sharing the same network resources
 - Packets over the Internet
 - Signals in a phone network
 - An analog: cars sharing a highway.
- Information flows are separated.
- What about we mix them?

Why do we want to mix information flows?

- The core notion of network coding is to allow and encourage mixing of data at intermediate network nodes.
- R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", *IEEE Transactions on Information Theory*, IT-46, pp. 1204-1216, 2000.

Network coding increases throughput

Butterfly network

Multi-cast: throughput increases from 1 to
 2.

Network coding saves energy & delay in wireless networks

- A wants to send packet a to C.
- C wants to send packet b to A.

B performs coding

Linear coding is enough

- Linear code: basically take linear combinations of input packets.
 - Not concatenation!
 - 3a+5b: has the same length as a, b.
 - + is xor in a field of 2.
- Even better: random linear coding is enough.
 - Choose coding coefficients randomly.

Encode

- Original packets: M₁, M₂, ···, M_n.
- An incoming packet is a linear combination of the original packets
- $X=g_1M_1+g_2M_2+\cdots+g_nM_n$.
- $g=(g_1, g_2, \dots, g_n)$ is the encoding vector.
- Encoding can be done recursively.

An example

- At each node: do linear encoding of the incoming packets.
- $Y=h_1X_1+h_2X_2+h_3X_3$
- Encoding vector is attached with the packet.

Decode

- To recover the original packets M₁, M₂, ···,
 M_n.
- Receive m (scrambled) packets.
- How to recover the n unknowns?
 - First, $m \ge n$.
 - The good thing is, m=n is sufficient.
- Received packets: Y₁, Y₂, ···, Y_n.

Coding scheme

- To decode, we have the linear system:
- $Y_i = a_{i1}M_1 + a_{i2}M_2 + \cdots + a_{in}M_n$
- As long as the coefficients are independent → we can solve the linear system.
- Theorem: (1) There is a deterministic encoding algorithm; (2) Random linear coding is good, with high probability.

Practical considerations (1)

- Decoding: receiver keeps a decoding matrix recording the packets it received so far.
- When a new packet comes in, its coding vector is inserted at the bottom of the matrix, then perform Gaussian elimination.
- When the matrix is solvable, we are done.

Practical consideration (2)

- Control the decoding effort (size of the matrix).
- Group packets into generations. Packets in the same generation are encoded.
- Delay: in practice typically not much higher.

Implication of network coding

- Successful reception of information
 - does not depend on the receiving packet content.
 - But rather depend on receiving a sufficient number of independent packets.

What next?

Benefits of network coding

Applications of network coding

Throughput (capacity) with coding

- Multi-cast problem: one source, N receivers in a directed network. Each edge has a maximum capacity.
- Without coding, the maximum throughput routing is NP-hard.
- Proof: reduction from Steiner tree packing.
- Nodes share network resources.

Throughput (capacity) with coding

- With coding each destination can ignore the other destinations.
- Receiving data rate = min-cut.
- As if the user is using the entire network by itself.
- Offer throughput benefit for unicast as well.

Example: butterfly network

• 2 multi-cast flow. Data rate=2.

Traditional Method

Network Coding

Example: butterfly network

• $S_1 \rightarrow R_2$, $S_2 \rightarrow R_1$. Data rate=1.

Traditional Method

Network Coding

Summary on throughput gain

- In directed graph, the throughput gain by network coding can be arbitrarily large.
- In undirected graph, the throughput gain is at most 2.
- Without coding, the max throughput routing is NP-hard.
- With coding, the max throughput coding is achievable by linear programming.
 - Just decide on the rate of each edge.
 - Ignore the content.

Robustness and stability

- Each encoded packet is "equally important"
 - opportunistic routing.
- A, C may go sleep randomly without telling
 B. B sends a⊕b, so whoever wakes up can get new information.

Application in gossip algorithm

- Assume n nodes each holding a packet, all of them want all packets.
- Gossip algorithm: in each round each node picks randomly another node and exchange 1 message.
- Question: what is the number of rounds (in expectation)?
- Answer: O(nlogn).
- Why? --- coupon collection problem, once again

Gossip with coding

- Aka. algebraic gossip.
- Each node encodes with random linear combination of incoming (received) messages.
- O(n) is enough with high probability.
- This is optimal.

Another example: packet erasure networks

- Want 2 things: low delay and high rate.
- But, packets get dropped in the middle.
- Two main approaches in the literature:
 - Repeat: low delay, low rate.
 - Error correction: max rate, high delay.
- With coding, we can achieve OPT rate & delay.

An example

- Error rate e(AB), e(BC): probability that packet is dropped on the link.
- Send a stream of packets
- Approach 1:
 - Send data packets blindly with max sending rate.
 - End-to-end rate= $\{1-e(AB)\}\{1-e(BC)\}$.
- Approach 2:
 - Do error checking at B. Make sure B recovers the message (and then send to C). Higher delay.
 - End-to-end rate=min{1-e(AB), 1-e(BC)}. Optimal.

An example

- Error rate e(AB), e(BC): probability that packet is dropped on the link.
- Send a stream of packets
- With network coding:
 - Node B forms random linear combinations of encoded packets it received so far.
 - Achieves the optimal rate =min{1-e(AB), 1-e(BC)}.
 - With no delay --- node B does not have to wait.

Applications of network coding: P2P

- Avalanche (http://research.microsoft.com/~pablo/avalanche.aspx)
- BitTorrent-style P2P sharing with network coding.
 - Big file gets chopped into small pieces.
 - Randomly coded.
 - Participants share their coded pieces.
- Why use coding?
 - Topology of the P2P users is hard to know.
 - Optimal packet scheduling for large files is difficult.
 - Robustness to user join/leave.
 - Easy to incorporate incentive mechanisms (prevent free-riding).

Wireless networks

Wireless links are broadcast nature.

- Bidirectional traffic for a path:
 - First alternate for two directions.
 - Then use coding/wireless broadcast.
 - Double the capacity.

A perfect match: Wireless networks + network coding

- Wireless channels are lousy. Make use of overhearing for opportunistic routing.
 - Residential wireless mesh network
 - Many-to-many broadcast (or gossip algorithm with broadcast).
- Network coding is good with
 - Large network
 - No global topology information
 - Unreliable links/nodes.

Sensor networks + network coding

Radio

- Tuning them to the same channel is energy costly.
- Channel assignment to maximize throughput is highly non-trivial.
- Untuned (non-calibrated) radios
 - Two devices may not be able to communicate.
 - With a group of them, the change that there exists two with the same channel is high. (Birthday paradox)
 - But we don't know which pair can communicate.
 - Send coded packets blindly.
 - Even multi-hop works (without discovering the path).

Birthday paradox

 In a room of n people, Prob{No two people have the same birthday}.

$$\bar{p}(n) = 1 \cdot \left(1 - \frac{1}{365}\right) \cdot \left(1 - \frac{2}{365}\right) \cdots \left(1 - \frac{n-1}{365}\right) = \frac{365 \cdot 364 \cdots (365 - n + 1)}{365^n} = \frac{365!}{365^n (365 - n)!},$$

$$\bar{p}(n) \approx 1 \cdot e^{-1/365} \cdot e^{-2/365} \cdot \cdots e^{-(n-1)/365}$$

$$= 1 \cdot e^{-(1+2+\cdots+(n-1))/365}$$

$$= e^{-(n(n-1))/2 \cdot 365} \qquad e^x = 1 + x + \frac{x^2}{2!} + \cdots$$

$$p(n) = 1 - \bar{p}(n) \approx 1 - e^{-(n(n-1))/2 \cdot 365}$$

Birthday paradox

$$p(n) = 1 - \bar{p}(n) \approx 1 - e^{-(n(n-1))/2 \cdot 365}$$

Network Tomography

- Network diagnosis of loss rate of links.
- In a multi-cast tree, the receivers that miss the same packet can derive the failed link.
- With coding one can get more detailed information about the failure links from the pattern of the received codes.
 - Active diagnosis
 - Passive network monitoring.

Security

- Information gets smashed.
- Protection from eavesdroppers.
 - It is difficult to interpret and short-term overhear does not work.
- Packet modification is harder too.
 - Need to fake data that makes sense
 - Challenge: no idea about the original data packets.
- Jamming
 - Less of a problem. Jamming a few packets does not affect a large set of data packets much.

Summary

- Network coding is good for
 - Scalability
 - Limited topological information
 - Highly dynamic network
- Key insights
 - Treat the packets equally
 - No need to read the content, just do counting
 - Anything helps.
 - Don't need to know what is where.

Discussions

- More application scenarios?
 - Vehicle network (taxi network)
 - Moving vehicle with access points in proximity.
- New ideas?
- When network coding is NOT appropriate?

References

- A 6-page network coding introduction.
 C. Fragouli, J. Le Boudec, Jorg Widmer,
 Network coding: an instant primer.
- Network coding webpage:
 http://tesla.csl.uiuc.edu/~koetter/NWC/
- A book: "Network coding theory".

Presentations 11/28 (Tuesday next week)

- [Katti06] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, J. Crowcroft, XORs in The Air:
 Practical Wireless Network Coding,
 Sigcomm'06.
- [Zhang06] Shengli Zhang, Soung Chang Liew, Patrick Lam, <u>Hot Topic: Physical-Layer</u> <u>Network Coding</u>, Mobicom'06.

Network coding

 The core notion of network coding is to allow and encourage mixing of data at intermediate network nodes.

 Each internal node performs random linear coding.

• $Y_i = h_1 X_1 + h_2 X_2 + h_3 X_3$

Packet erasure networks

- Model packet loss
 - Congestion, buffer overflow, fading in wireless channels.
- End-to-end acknowledgement & Retransmission (TCP style)
 - Retransmissions use up resources.
 - Multicast: possibly only a subset of nodes need retransmission.
- 2. Erasure error correction codes
 - First code the original k data items into n pieces.
 - Recover the original data from any k pieces.

3-node example

Erasure channel: with probability e(AB),
 e(BC) packet disappears on the link.

- A retransmit, B simply forward.
 - Throughput: # (re)-transmissions for a packet to reach C = 1/[(1-e(AB))(1-e(BC))].
 - Why?

3-node example

- Erasure coding on each link separately.
 - Node A encode k data into k/(1-e(AB)) pieces.
 - Roughly B gets k data pieces, reconstruct.
 - Do the same at link BC.
 - Extra delay for reconstruction at B.
 - -# transmissions for one packet to reach C is max(1/(1-e(AB)), (1-e(BC)))

3-node example: why coding helps

- Node B does not bother decode or reconstruct, instead, send random linear combination of what is received
 - No delay for decoding in the middle.
 - Node A encode k data into k/(1-e(AB)) pieces.
 - Roughly B gets k data pieces, recover the original.
 - B again boost up to k/(1-e(BC)) pieces.
 - C is able to reconstruct.

Network Tomography

- Network diagnosis of loss rate of links.
- In a multi-cast tree, the receivers that miss the same packet can derive the failed link.
- With coding one can get more detailed information about the failure links from the pattern of the received codes.
 - Active diagnosis
 - Passive network monitoring.

Security

- Information gets smashed.
- Protection from eavesdroppers.
 - It is difficult to interpret and short-term overhear does not work.
- Packet modification is harder too.
 - Need to fake data that makes sense
 - Challenge: no idea about the original data packets.
- Jamming
 - Less of a problem. Jamming a few packets does not affect a large set of data packets much.

Summary

- Network coding is good for
 - Scalability
 - Limited topological information
 - Highly dynamic network
- Key insights
 - Treat the packets equally
 - No need to read the content, just do counting
 - Anything helps.
 - Don't need to know what is where.

Discussions

- More application scenarios?
 - Vehicle network (taxi network)
 - Moving vehicle with access points in proximity.
- New ideas?
- When network coding is NOT appropriate?