Understanding and Monitoring Different Types of Flight Events Through Machine Learning Classification

Yutian Pang

- Introduction
- Methodology
- Results
- Conclusions and Future work

Problem

- Large amount of ATM data stay unexplored in the database.
- Recent technology advances in sensors, networking, data mining and other analytic techniques enable proactive risk management for National Airspace System(NextGen)
- Machine learning tends to be a tool that can help understanding the huge data.

Challenge

14096 USA 2020 USA

SysName StartDate StartTime tMidnight tStartSecs tStopSecs tStart 29479 AAL2652 A321 80436 EV_TOF APT 14096 USA_2020 usa 104754 29479 AAL 2652 A321 40.62412 -73.7843 206 14096 USA_2020 usa 80436 104754 29479 AAL2652 A321 40.62412 -73.7843 14096 USA_2020 usa 80436 104754 29479 AAL 2652 A321 INARTCC 14096 USA 2020 usa 80436 104754 24318 29479 AAL 2652 A321 205 14096 USA_2020 usa 104754 24318 29479 AAL 2652 A321 80455 EV INIT CTR OUTSIDE OUTSIDE 40.61167 -73.7922 205 14096 USA 2020 usa 1/6/2020 22:20:36 158E+09 158E+09 158E+09 80436 104754 24318 29479 AAL 2652 A321 80455 EV INIT SCT NNN@ZN NNN@ZN 40.61167 -73.7922 206 208.5 14096 USA_2020 usa 80436 104754 29479 AAL2652 A321 80455 EV_TRNS REQALT UNK 40.61167 -73.7922 205 208.5 1/6/2020 22:20:36 158E+09 1.58E+09 1.58E+09 24318 14096 USA_2020 usa 81066 EV_MOF VER 283 80436 104754 29479 AAL2652 A321 14096 USA_2020 usa 29479 AAL 2652 A321 81475 EV_XING CTR 283 14096 USA_2020 usa 81475 EV_XING SCT 283 327.7 14096 USA_2020 usa 29479 AAL2652 A321 81475 EV_USER EVT 170 283 327.7 14096 USA_2020 usa 80436 104754 24318 29479 AAL 2652 A321 81475 EV_USER SEG InARTCC outARTCC 41.11625 -74.5767 170 283 327.7 0 2123.293 2145.775 22.482 20399.98 81493 EV_MOF VER

Flight Event Data from NASA Sherlock Data Warehouse

170 283 37.45 37.461

Table 1 Prediction Labels

29479 AAL 2652 A321

80436 104754

Event Type	Counts	Meaning		
EV_MOF	279645	Mode of flight. A flight record in vertical domain such as descending level, climbing level. Also known as vertical trajectory.		
EV_XING	250173	Crossing event from one sector to another sector. Indicate which space volume are you in and which one are you crossing to other colu-		
EV_USER	134956	User event. The definition is flexible includes times you go into a center, different volume definitions. It's a user based concept.		
EV_TRNS	75086	Transition from above or below altitude. Not often used.		
EV_PXCP	52892	Unknown.		
EV_INIT	50934	Detail on the begin of flight tracks. Smaller set on facility recorded by the surveillance system.		
EV_STOP	50934	The last track point of the aircraft.		
EV_LOOP	41118	Indication of holding pattern. The flight circle around in the trajectory.		
EV_TOC	25467	Top of climb. Reach cruise altitude. Overlap with MOF.		
EV_TOD	25467	Top of descend. Start to descent from cruise altitude		
EV_RRT	20692	Reroute. New flight plan change compared to old flight plan.		
EV_LND	19526	Landing event. Recorded when arrival aircraft pass the arrival runway threshold.		
EV_TOF	14697	Take off event. It's defined geometrically when the aircraft cross the departure runway threshold (wheels come off the pavement).		
EV_STOL	5174	Stop holding. Finish EV_LOOP Event.		
EV GOA	1814	Go around. About to land but pull up and circle back, turn around again. A possible safety concern.		

How to classify

recorded

features?

.427t event types (explode 2 class)

the aircraft event given different

Challenge

Table 1 Prediction Labels

Event Type	Counts	Meaning		
EV_MOF	279645	Mode of flight. A flight record in vertical domain such as descending level, climbing level. Also known as vertical trajectory.		
EV_XING	250173	Crossing event from one sector to another sector. Indicate which space volume are you in and which one are you crossing to other column		
EV_USER	134956	User event. The definition is flexible includes times you go into a center, different volume definitions. It's a user based concept.		
EV_TRNS	75086	Transition from above or below altitude. Not often used.		
EV_PXCP	52892	Unknown.		
EV_INIT	50934	Detail on the begin of flight tracks. Smaller set on facility recorded by the surveillance system.		
EV_STOP	50934	The last track point of the aircraft.		
EV_LOOP	41118	Indication of holding pattern. The flight circle around in the trajectory.		
EV_TOC	25467	Top of climb. Reach cruise altitude. Overlap with MOF.		
EV_TOD	25467	Top of descend. Start to descent from cruise altitude		
EV_RRT	20692	Reroute. New flight plan change compared to old flight plan.		
EV_LND	19526	Landing event. Recorded when arrival aircraft pass the arrival runway threshold.		
EV_TOF	14697	Take off event. It's defined geometrically when the aircraft cross the departure runway threshold (wheels come off the pavement).		
EV_STOL	5174	Stop holding. Finish EV_LOOP Event.		
EV_GOA	1814	Go around. About to land but pull up and circle back, turn around again. A possible safety concern.		

- Out of all the aircraft events, engineers are interested in EV_LOOP (loop) and EV_GOA (go around).
- The classes are extremely imbalanced.

- Introduction
- Methodology
- Results
- Conclusions and Future work

Machine learning based classification

- Preprocessing
 - Documented features
 - Generated features
- Handle Imbalanced data
 - Undersampling
 - Oversampling
 - Combination of undersampling and oversampling
- Classification
 - Logistic regression
 - SVC
 - Naive Bayes
 - K neighbor classifier
 - Decision tree
 - Random Forest
 - Gradient Boosting

```
Algorithm 1 Airspace Density Feature
   Data: raw flight event file
   Input: \zeta_{time}, \zeta_{lon}, \zeta_{lat}
                                                                                        Algorithm 2 Precious Event Sequence
                                                                                            Data: df_2
  Output: df<sub>2</sub>
 1: Load row flight event file in df
                                                                                            Output: df_2
 2: df_2 \leftarrow df['EvType'] = 'EV\_LOOP' \cup df['EvType'] = 'EV\_GOA'
                                                                                           1: Get dummie variables on EvType
 3: Create empty column 'Count' in df2
                                                                                           2: index old← 0
 4: for index, row in df_2 do
                                                                                           3: for index, row in df_2 do
                                                                                                Get dummie variable on df[index \ old : index - 1]['EvType']
       time_{idx} \leftarrow abs(df['tEv'] - row['tEv']) < \zeta_{time}
                                                                                                Sum along rows of df[index\_old:index-1]
       lat_{idx} \leftarrow abs(df['Lat'] - row['Lat']) < \zeta_{lat}
                                                                                                df_2[index] \leftarrow appendrow
      lon_{idx} \leftarrow abs(df['Lon'] - row['Lon']) < \zeta_{lon}
                                                                                               index \ old \leftarrow index
       tol_{idx} \leftarrow time_{idx} \cap lat_{idx} \cap lon_{idx}
       df_2[index,'Count'] \leftarrow df_2[total_idx]['AcId'].unique().size
                                                                                           8: end for
10 end for
```

- Introduction
- Methodology
- Results
- Conclusions and Future work

Results

Classifier	Data Balance	Precision	Recall	F1-score	Accuracy
	imbalanced	0.61	0.61	0.61	0.94
Logistic Regression	balanced	0.91	0.91	0.91	0.96
	imbalanced	0.61	0.61	0.61	0.94
Support Vectors	balanced	0.88	0.87	0.87	0.88
	imbalanced	0.61	0.61	0.61	0.94
Naive Bayes	balanced	0.81	0.72	0.71	0.74
	imbalanced	0.61	0.61	0.61	0.94
KNN	balanced	0.99	0.98	0.98	0.98
	imbalanced	0.54	0.67	0.52	0.79
Decision Tree	balanced	0.98	0.97	0.97	0.97
	imbalanced	0.61	0.61	0.61	0.94
Random Forest	balanced	0.99	0.99	0.99	0.99
	imbalanced	0.61	0.61	0.61	0.94
Boosting	balanced	0.96	0.96	0.96	0.96

Random Forest Both Trained with Balanced data

Tested with Imbalanced data

Feature Importance

 Table 3
 Feature Importance of RandomForestClassifier

Rank	Feature	Description
1	FID	flight distance since previous event of same category
2	EvType_EV_MOF	mode of flight eventin vertical domain
3	FIT	flight time since previous event of same category
4	DDT	deviation from direct-to since previous event of same category
5	EvNumInfo	event number - additional placeholder for any integer event information.

- Introduction
- Methodology
- Results
- Conclusions and Future work

Conclusions and future work

- Conclusions,
 - The RF model is able to perfectly classify two flight events with preprocessed imbalanced data.
 - The performance is bad when applying to unprocessed dataset.
- Future directions,
 - Better approach to handle imbalanced data
 - Multiclass classification
 - Non-deterministic classification models

References

- Lee, H., Li, G., Rai, A., and Chattopadhyay, A., "Anomaly detection of aircraft system using kernel-based learning algorithm," AIAA Scitech 2019 Forum, American Institute of Aeronautics and Astronautics Inc, AIAA, 2019. doi:10.2514/6.2019-1224.
- [2] Liu, Y., and Goebel, K., "Information Fusion for National Airspace System Prognostics," PHM Society Conference, Vol. 10, No. 1, 2018, pp. 1–13.

