Nome:		Matricola:	
Matem	natica Discreta e del 11-07-2012		
Esercizio 1. Sia $F: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare, e la base se data dalla matrice $[F]_e^e = \begin{pmatrix} -5 & 3 & 5 \\ -3 & 3 & 1 \\ -1 & 0 & 2 \end{pmatrix}, \vec{v}_1 = \begin{pmatrix} -5 & 3 & 5 \\ -3 & 3 & 1 \\ -1 & 0 & 2 \end{pmatrix}$			(6 pt)
Trovare le matrici di cambiamento di base $[I]_e^b$ e [$[F]_b^e$ e calcolare $[F]_b^b$.		
Esercizio 2. Calcolare la distanza tra il punto $A = (5, 3, 2)$ e il $P = (1, 0, 1), Q = (2, 2, 2)$ e $R = (-1, 1, 5)$.	piano passante per i pun	ti $P, Q \in R$, dove	(2 pt)
Esercizio 3. Risolvere in \mathbb{Z} il sistema dato da $\begin{cases} x \equiv -548 \\ x \equiv 348 \\ 33x \equiv 118 \end{cases}$	3 (mod 79) 5 (mod 81) . 1 (mod 86)		(5 pt)
Esercizio 4. Consideriamo la ricorrenza $a_n = 5a_{n-1} + 6a_{n-2} - a$.) Dimostrare che $a_n = \frac{1}{2}n + \frac{1}{4}$, $n \ge 0$, è una solub.) Trovare tutte le soluzioni della ricorrenza. c.) Trovare la soluzione con $a_0 = 1$ e $a_1 = \frac{7}{4}$, e cal	uzione della ricorrenza.	ndo la ricorrenza e la risp	(5 pt)
Esercizio 5. Quanti bit string di lunghezza 50 ci sono tale che a.) il bit string ha almeno trentacinque 0 e almeno corrispondente alle prime ventisei posizione con alle ultimi diciassette posizioni contiene al ma b.) il bit string corrispondente alle prime otto pos corrispondente alle ultime ventisei posizioni co	ntiene esattamente quattro ssimo un 1. sizioni ha esattamente tre	odici 0 e il bit string corrisp 1 e il bit string	(4 pt)
Esercizio 6. Sia $T: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare data dal l'applicazione lineare data dalla riflessione rispetto con $T^{-1} \circ S \circ T = R$? In caso di si trovare l'equaz	o alla retta $x + 7y = 0$. I	Esiste un riflessione $R: \mathbb{F}$	(2 pt) $R^2 \to \mathbb{R}^2$ $R^2 \to \mathbb{R}^2$
Esercizio 7. a.) Quanti $x \in \mathbb{Z}$ con $101010101 \le x \le 747474747$ $x \ $ è divisibile per 25 e contiene lo string 25 com b.) Quante soluzioni ci sono dell'equazione $x_1 + x_2$ e $x_1, \ldots, x_8 \ge 0$, con $x_2 \ge 50$, $60 \le x_3 \le 121$, $x_4 \le 0$	ne sotto espressione. $2 + x_3 + x_4 + x_5 + x_6 + x$	$x_7 + x_8 = 800$, dove x_1, \dots	
Esercizio 8. 8.1 Il numero (5551110005553331110002220004443 (a) divisibile per 31 ma non per 43. (b) divisibile per 43 ma non per 31.	(c) divisibile pe	er 31 e per 43. e per 31 e nè per 43.	(2 pt)
8.2. Sia $\vec{n} \in \mathbb{R}^3$ un vettore non nullo e sia $T : \mathbb{R}^3$ Allora la dimensione di $Ker(T)$ è (a) 0 (b) 1	$ ightarrow \mathbb{R}^3$ l'applicazione line (c) 2	are $T: \vec{v} \mapsto \vec{v} - proj_{\vec{n}}(\vec{v})$. (d) 3	

Per gli esercizi 1, 2, 3, 4, 5 ,6 e 7 le risposte devono essere giustificate. Per l'esercizio 8, dove ogni parte vale 1 punto, basta solo rispondere. Ogni scorrettezza durante la prova comporterà l'immediato annullamento della prova e altre sanzioni in accordo con la presidenza del corso di Laurea.