ÁLGEBRA LINEAR ALGORÍTMICA – UFRJ – 2021.1

ESTUDO DIRIGIDO 5

SEVERINO COLLIER COUTINHO E JOÃO VITOR DE OLIVEIRA SILVA

Leia com atenção:

- 1. A partir deste estudo dirigido você não precisa indicar o passo-a-passo, nem na eliminação gaussiana, nem na execução do algoritmo de Gram-Schmidt.
- 2. Não serão aceitas respostas sem justificativa, exceto pelos cálculos referentes à eliminação mencionados no item 1.

Questão 1. Determine as matrizes de cada uma das seguintes transformações lineares dadas abaixo:

- (a) $T: \mathbb{R}^4 \to \mathbb{R}^3$ definida por $T(x_1, x_2, x_3, x_4) = (x_1 x_2 + x_3 x_4, x_1 + x_2 x_3, 3x_3 4x_4)$;
- (b) a projeção do \mathbb{R}^3 no hiperplano definido por $x_1 x_2 x_3 = 0$;
- (c) a reflexão do \mathbb{R}^4 cujo espelho é o plano de equação $x_1 3x_2 2x_3 = 0$.

Questão 2. Determine uma base e a dimensão da imagem e do núcleo de cada uma das transformações lineares dadas abaixo:

- (a) $T: \mathbb{R}^4 \to \mathbb{R}^3$ definida por T(x, y, z, w) = (x y + z w, x + y, 3z 3w);
- (b) $T: \mathbb{R}^3 \to \mathbb{R}^4$ definida por T(x, y, z) = (x + y z, x y 3z, x 2z, y + z);

Questão 3. Considere uma transformação linear $T: \mathbb{R}^m \to \mathbb{R}^n$ definida por

$$T(s) = As, \quad s \in \mathbb{R}^m.$$

em que A representa uma tabela da relação Turma × Aluno em um determinado semestre de uma instituição de ensino. No caso, cada elemento de A pode ser definido como

Date: 14 de setembro de 2021.

$$A_{ij} = \begin{cases} 1, & \text{se aluno } j \text{ está matriculado na turma } i \\ 0, & \text{caso contrário.} \end{cases}$$

Pede-se que responda:

- (a) Do ponto de vista da situação descrita, qual o significado do vetor $g \in \mathbb{R}^n$ definido como $g = T(e_3)$?
- (b) Do ponto de vista da situação descrita, qual o significado do vetor $r \in \mathbb{R}^m$ que tem sua i-ésima coordenada definida como $r_i = \langle e_2 | T(e_i) \rangle$?
- (c) Indique um vetor $x \in \mathbb{R}^m$ tal que y = T(x) seja um vetor tem sua coordenada y_i como sendo o total de alunos inscritos em uma turma i.
- (d) Seja $B = AA^t$ Diga em palavras o que representa B_{ij} .
- (e) Seja $C = A^t A$. Diga em palavras o que representa C_{ij} .

Questão 4. Use mudança de base para determinar a matriz na base canônica de um operador linear injetivo T do \mathbb{R}^4 que leva o hiperplano $x_1 - x_2 - x_4 = 0$ no hiperplano $x_1 - 2x_2 - 3x_3 = 0$.

Questão 5. Use mudança de base para determinar a matriz na base canônica de um operador linear T do \mathbb{R}^3 cujo núcleo seja gerado por (1,-1,1) e cuja imagem seja gerada por (1,0,1) e (1,2,2).

Questão 6. Seja ρ a rotação de eixo $\ell=(1,-1,-1)$ que leva o vetor

$$v_1 = (1, 0, 0)$$
 em $v_2 = \frac{1}{3}(2, 1, -2)$

- (a) Determine uma base ortonormal do plano U normal ao eixo de ρ .
- (b) Determine as projeções de v_1 e v_2 sobre U. Por que este item é necessário?
- (c) Calcule o ângulo de rotação de ρ .
- (d) Use mudança de base para determinar a matriz de ρ relativamente à base canônica.

Questão 7. Seja $\beta = \{v_1, \dots, v_n\}$ uma base do \mathbb{R}^n e considere o conjunto

$$\beta' = \{v_1 - v_2, v_1 - v_3, \dots, v_1 - v_n, v_1 + v_2 + \dots + v_n\}.$$

Vimos no Estudo Dirigido 04 que β' também é uma base do \mathbb{R}^n . Calcule as matrizes de mudança de base de β para β' e de β' para β .