ASSIGNMENT 1

Full Name	Student i.d. number
YANG Miaojie	20728804
ZHAO Encong	20744949
WU Yan	20731162
LIU Enjie	20745838
ZHONG Mingheng	20744767

Which package do you use to do this assignment?

R Python √

Q1: We want to study daily closing prices of

[Python]

IBM@yahoo stock index from Jan 1 2013 to Dec 31 2016.

(by pandas_datareader)

OR

[R]

AAPL stock index from Jan 1 2013 to Dec 31 2016.

(by quantmod)

a. Construct 35-day and 100-day moving averaging lines in a plot with the original closing prices, and count the number of golden cross (buy signal) and dead cross (sell signal)

Attach your picture here

The number of			
Golden Cross	Dead Cross		
5	5		

b. Find a sample mean, variance, adjusted skewness and adjusted excess kurtosis of the closing prices.

(Correct your answer to 4 decimal places)

Sample mean	Sample variance	Sample Adjusted skewness	Sample Adjusted excess kurtosis
170.5799	21.5420	-0.0350	-0.8609

c. Please check if the **log returns** follow a normal distribution **by using a normal plot**.

Conclusion: We could see from the graph below that the log returns do not follow a normal distribution as the dots do not lie around the straight line.

d. Assume that the **log returns** are from the normal distribution. Do a two-sided hypothesis testing with the null hypothesis that the population mean of the log return is equal to 0 a significance level of 0.05.

Let μ be the unknown population **means** of the log returns of the daily closing prices. Write down H0 and H1 for the test.

Write down your H0 and H1:

H0: μ=0

H1: µ≠0

Find

p-value: <u>0.7120198</u>

95% C.I. for μ is : (-0.000897, 0.000613)

Probability Plot of question c

Then, draw your conclusion with evidence:

As the p value which is 0.712 shows above is greater than 0.05, than

we can conclude that we would not reject HO at the significance level

Page 4 of 4

e. Check a normality assumption of the log return of daily closing again by using *normality tests* at a significance level of 0.01.

Fill in the following table and write down your conclusion according to the results of the normal tests for the log return.

Tests for Normality		
Test	p-value	
Shapiro-Wilk test	8.305715279986766e-22	
Kolmogorov-Smirnov	0.00015509873885676112	
Anderson-Darling	Statistics:8.914450598436815(at	1%
	cignificance lovel	

significance level

Conclusion: Through the test of Shapiro-Wilk test and Kolmogorov-Smirnov, we can obviously observe the p value of both test is smaller than 0.01; and the statistic value of Anderson-Darling is greater than 1.088 which is at the significance level of 0.01. In conclude, we would reject H0 at the significance level of 0.01

Q2: Now, we turn to make a comparison between the log returns of daily closing prices of

[Python] IBM@yahoo and MSFT@yahoo [R] AAPL and MSFT stock indices for the period from Jan 1 2012 to Dec 31 2016.

Assume that the log returns of these two indices are independent.

Use QQ-plot to justify if they are from normal distributions first.

Then, use an appropriate test to see if they are equal at a significance level of 0.05. Please write down your p-value and draw a conclusion.

Which test do you use? [Circle your answer]

Independent t-test/ Two-sample Wilcoxon test.

p-value: 0.4819324413453949

Then, draw your conclusion with evidence: Since p value is greater
than 0.05, thus we would conclude that we would not reject H0 at the
significance level of 0.05

Graph2:QQ-Plot of log return of MSFT

Conclusion: <u>Obviously</u>, the log returns of these two indices do not follow normal distribution, thus we use two-sample Wilcoxon test.