Ejemplos Estadísticos

Prueba de Chi-cuadrada de una tabla unidireccional

Datos observados y esperados

- Colores: Rojo, Azul, Verde, Negro, Blanco.
- Frecuencias Observadas: Rojo: 30, Azul: 25, Verde: 15, Negro: 20, Blanco: 10
- Frecuencias Esperadas: Cada color debería tener 20 ventas (100 ventas / 5 colores).

Hipótesis

- \bullet H_0 : La distribución de las ventas por color de camiseta sigue la distribución esperada.
- \bullet H_a : La distribución de las ventas por color de camiseta no sigue la distribución esperada.

Estadístico Chi-cuadrada

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

donde O_i son las observaciones y E_i son las expectativas para cada categoría.

Prueba de Chi-cuadrada para una tabla de contingencia de dos factores

Tabla de contingencia

Género / Producto	Producto A	Producto B	Total
Masculino	50	30	80
Femenino	45	75	120
Total	95	105	200

Hipótesis

- H_0 : No hay relación entre género y preferencia de producto (las variables son independientes).
- H_a : Existe una relación entre género y preferencia de producto (las variables no son independientes).

Estadístico Chi-cuadrada

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

donde O_i son las observaciones y E_i son las expectativas basadas en la independencia de las variables.

Prueba t de Student para una muestra

Contexto

Se desea comparar la media observada de una muestra con una media poblacional esperada.

Datos y Estadístico de prueba

- Media observada de la muestra: $\bar{x} = 48$
- Media poblacional esperada: $\mu_0 = 50$
- \bullet Desviación estándar de la muestra: s=5
- Tamaño de la muestra: n = 30

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

Prueba t de Student para dos muestras independientes

Contexto

Se desea comparar las medias de dos grupos diferentes para determinar si existe una diferencia significativa entre ellos.

Datos y Estadístico de prueba

- Grupo A: $n_1 = 100, \, \bar{x}_1 = 50, \, s_1 = 10$
- Grupo B: $n_2 = 100, \, \bar{x}_2 = 52, \, s_2 = 10$

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Prueba t de Student para muestras pareadas

Contexto

Se desea comparar las medias de un grupo antes y después de un tratamiento para determinar si el tratamiento tuvo un efecto significativo.

Datos y Estadístico de prueba

- Medias de diferencias: $\bar{d} = 1.5$
- Desviación estándar de las diferencias: $s_d=1.2$
- Tamaño de la muestra de diferencias: n=30

$$t = \frac{\bar{d}}{s_d/\sqrt{n}}$$

Ejemplo de ANOVA

Contexto

Se desea determinar si existen diferencias significativas en el crecimiento de plantas tratadas con tres diferentes tipos de fertilizantes.

Datos

- Fertilizante A: 25, 30, 28, 32, 31
- Fertilizante B: 24, 25, 23, 20, 21
- Fertilizante C: 30, 31, 29, 32, 33

Estadístico ANOVA

$$F = \frac{\text{varianza entre grupos}}{\text{varianza dentro de grupos}}$$

donde las varianzas se calculan basadas en las medias y variaciones de cada grupo comparado con la media general.