Analyse

Compléments de

première année

Question 1/8

Caractérisation ensembliste des valeurs d'adhérence

Réponse 1/8

$$VA(u) = \bigcap_{n \in \mathbb{N}} \left(\overline{\{u_k, k \ge n\}} \right)$$

Question 2/8

Condition nécessaire simple pour réaliser un \mathcal{C}^n -difféomorphisme

Réponse 2/8

Si f est C^n et de dérivée ne s'annulant pas sur un intervalle I, alors f est un C^n -difféomorphisme de I sur f(I)

Question 3/8

 \mathcal{C}^n -difféomorphisme

Réponse 3/8

Si $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, alors $f: A \to B$ est un \mathcal{C}^n -difféomorphisme si c'est une application \mathcal{C}^n , bijective et dont la réciproque est \mathcal{C}^n

Question 4/8

Suite de Cauchy

Réponse 4/8

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ |u_n - u_m| \leqslant \varepsilon$$

Une suite de Cauchy à valeurs dans \mathbb{R} ou \mathbb{C}
converge

Question 5/8

Lemme de l'escalier

Réponse 5/8

Si
$$u_{n+1} - u_n \to \ell \in \mathbb{R}$$
, alors, $u_n \sim n\ell$
Si $u_{n+1} - u_n \to 0$, alors, $u_n = o(n)$

Question 6/8

« Réciproque » du théorème de Bolzano-Weirstrass

Réponse 6/8

Si (u_n) est bornée et admet une unique valeur d'adhérence, alors elle converge

Question 7/8

 $\mathrm{Epi}(f)$

Réponse 7/8

$$\left\{(x,y)\in\mathbb{R}^2,y\geqslant f(x)\right\}$$

Question 8/8

Caractérisation topologique des valeurs d'adhérence

Réponse 8/8

$$x \in VA(u)$$
 $\forall \varepsilon > 0, \ \forall N \in \mathbb{N}, \ \exists n \geqslant N, \ |u_n - x| \leqslant \varepsilon$