YUAN CHEN

CONTACT INFORMATION

ADDRESS: MW 330, 231 West 18th Avenue, Columbus, OH

EMAIL: chen.11050@osu.edu
WEB-PAGE: www.iamyuanchen.xyz

EDUCATION

Present	The Ohio State University Ph.D. in Mathematics
June 2021	The George Washington University M.S. in Statistics and Mathematics
June 2019	Hohai University B.E. in Environmental Science

RESEARCH INTERESTS

- 1. Broad Areas of Scientific Computing and Numerical Analysis
- 2. Finite Element Method, Discontinuous Galerkin Method, Virtual Element Method
- 3. Machine Learning Methods for Partial Differential Equations
- 4. Interface problems and Coupling Mathematical Models Arising from Applications
- 5. Design, Analysis and Applications of Immersed Finite Element Method for interface problems

PUBLICATIONS

- 6. Y. Chen, and X. Zhang. A High-Order Immersed C^0 Interior Penalty Method for Biharmonic Interface Problems., (2021+), preprint.
- 5. Y. Chen, and X. Zhang. Solving Navier-Stokes Interface Problems with Fixed/Moving Interfaces on Unfitted Meshes, (2021+), submitted.
- 4. Y. Chen, S. Hou, and X. Zhang. Error Estimates for a Partially Penalized Immersed Finite Element Method for Elastodynamic Interface Problems, (2021+), preprint.
- 3. Y. Chen and X. Zhang. A \mathcal{P}_2 - \mathcal{P}_1 Partially Penalized Immersed Finite Element Method for Stokes Interface *Problems*, Int. J. Numer. Anal. Mod., 18(2021), no. 1, 120-141.
- 2. Y. Chen, S. Hou, and X. Zhang. A Bilinear Partially Penalized Immersed Finite Element Method for Elliptic Interface Problems with Multi-domains and Triple Junction Points, Results Appl. Math., 8(2020), 100100.
- 1. Y. Chen, S. Hou, and X. Zhang. *An Immersed Finite Element Method for Elliptic Interface Problems with Multi-domain and Triple Junction Points*, Adv. Appl. Math. Mech., 11(2019), no. 5, 1005-1021.

TALKS AND POSTERS

- 3. An Immersed \mathcal{P}_2 - \mathcal{P}_1 Finite Element Method for Stokes Interface Problems. The 6th Annual Meeting of SIAM Central States Section, University of Kansas, KS (October 2021, Online).
- 2. Immersed Finite Element Methods for Interface Problems with Multi-Domains and Triple-Junction Points. **GW Research Day**, The George Washington University, D.C. (April 2020, Online).
- 1. Immersed Finite Element Methods for Interface Problems with Multi-Domains and Triple-Junction Points. **AMS Southeastern Sectional Meeting**, University of Virginia, VA (March 2020, Cancelled).

TEACHING EXPERIENCES

George Washington University

Fall 2020 Recitation MATH 1051 (Finite Math for the Social and Management Sciences)

SCHOLARSHIPS & CERTIFICATES

OSU Distinguished University Fellowship	2021
GWU Department of Mathematics Award of Graduate Assistantship	2020
Hohai University Honored Student Scholarship	2016, 2018, 2019
Hohai University Science & Technology Innovation Scholarship	2019
• Certificate of Honored Achievement in Bayesian Statistics I & II, Coursera online course by UC	SC 2018
• Certificate of Achievement in Practical Time Series Analysis, Coursera online course by SUNY	2018
• 3 rd Prize of China Undergraduate Mathematical Contest in Modeling	2017
SKILLS	

C/C++, Python, R, MySQL, LTEX, VB, MATLAB **Programming**

Vectorization Python(NumPy), MATLAB

Python (pandas, matplotlib, geopy), R (ggplot, dplyr, tidyr), QGIS, ECHARTS, D_3 , sas Python (NumPy, SciPy, SymPy, multiprocessing), MATLAB, Mathematica Data Analysis

Sci. Computing

Deep Learning Python (Numpy, PyTorch, TensorFlow)