

FIG. 48

FIG. 46

RECEIVED
LIBRARY OF THE
UNIVERSITY OF TORONTO LIBRARIES
1975

FIG. 47

FIG. 44

FIG. 45

FIG. 43

FIG. 42

(a)

(b)

FIG. 41

FIG. 40

FIG. 39

FIG. 38

FIG. 37

SLIP TORQUE

(a)

S - N CURVE (ROTATIONAL BENDING FATIGUE TEST)

(13)

S - N CURVE (SOLID BENDING FATIGUE TEST)

(c)

FIG. 36

(a)

(b)

(c)

FIG. 35

FIG. 34

(INVENTIVE COLD-FORGING METHOD)

(CONVENTIONAL COLD-FORGING METHOD)

(b)

FIG. 33

(a)

(b)

FIG. 32

(a)

(b)

FIG. 31

(a)

(b)

FIG. 30

(a)

(b)

(c)

FIG. 29

(a)

(b)

FIG. 27

FIG. 28

FIG. 26

FIG. 25

FIG. 24

AFTER SPHERODIZING ANNEALING PATTERN 2
1/2 R PART X 400

FIG. 22

AFTER SPHERODIZING ANNEALING PATTERN 2
SURFACE LAYER $\times 100$

FIG. 23

AFTER SPHERODIZING ANNEALING PATTERN 2
SURFACE LAYER $\times 400$

FIG. 21

MARTENSITIC MATERIAL
AFTER SPHERODIZING ANNEALING PATTERN 2
 $\times 2.1$

(a)

(b)

FIG. 20

AFTER SPHERODIZING ANNEALING PATTERN 1
1/2 R PART \times 400

FIG. 18

RECEIVED
NOV 2 1964
U.S. GOVERNMENT PRINTING OFFICE
1964 10 10 1000

AFTER SPHERODIZING ANNEALING PATTERN 1
SURFACE LAYER \times 100

FIG. 19

AFTER SPHERODIZING ANNEALING PATTERN 1
SURFACE LAYER \times 400

FIG. 17

MARTENSITIC MATERIAL
AFTER SPHERODIZING ANNEALING PATTERN 1
 $\times 2.1$

(a)

(b)

FIG. 15

PRIOR TO SPHERODIZING ANNEALING
1/2 R PART \times 400

FIG. 16

PRIOR TO SPHERODIZING ANNEALING
CENTRAL PART \times 400

FIG. 13

PRIOR TO SPHERODIZING ANNEALING
SURFACE LAYER $\times 100$

FIG. 14

FIG. 12

MARTENSITIC MATERIAL
(a) PRIOR TO SPHERODIZING ANNEALING
 $\times 2.1$

(b)

FIG. 11

1985.6.3.83
FEB 1985
U.S. GOVERNMENT PRINTING OFFICE
1985 6 3 83

(a)

(b)

FIG. 10

FIG. 9

FIG. 8

FIG. 7

FIG. 6

(A) MATERIAL 1

ASPECT RATIO = 506 %

(B) MATERIAL 2

ASPECT RATIO = 347 %

(C) MATERIAL 3

ASPECT RATIO = 300 %

FIG. 5

(a)

(b)

FIG. 4

(a)

(b)

FIG. 3

(a)

(b)

FIG. 2

FIG. 1

1101104-57

