Universidad Nacional Autónoma de México FACULTAD DE INGENIERÍA

PROGRAMA DE ESTUDIO
Aprobado por el Consejo Técnico de la Facultad de Ingeniería en su sesión ordinaria del 15 de octubre de 2008

HIDRÁULICA DE CANALES			1507	7 °	09
Asignatura			Clave	Semestre	Créditos
	vil y Geomática	Ingeniería Hidráulica		Ingeniería Civil Carrera(s) en que se imparte	
Div	isión	Departamento			
Asign	atura:	Horas:	T	otal (horas):	
Obliga	atoria X	Teóricas 4.5	S	emana	4.5
Optati	iva	Prácticas 0.0	1	6 Semanas 7	72.0
Iodalidad: Curso					
eriación obligato	oria antecedente: Hi	dráulica Básica			
eriación obligato	oria consecuente: Ni	nguna			
l alumno analiza dráulica. Compre	rá el flujo permanen	te a superficie libre, con base más importantes que se emple	-		
	rá el flujo permanen	-	-		
alumno analizar dráulica. Compre uces.	rá el flujo permanen	-	-	tudio del arrastre	
alumno analizar dráulica. Compre uces.	rá el flujo permanen enderá los conceptos	más importantes que se emple	-	tudio del arrastre	de sedimentos
alumno analizar dráulica. Compre uces. emario	rá el flujo permanen enderá los conceptos Nombre	más importantes que se emple	-	tudio del arrastre	de sedimentos
alumno analizar dráulica. Compre uces. mario Núм. 1.	rá el flujo permanen enderá los conceptos Nombre Conceptos y princi	más importantes que se emple	-	tudio del arrastre	de sedimentos foras 4.5
alumno analizar dráulica. Compre uces. mario Núm. 1. 2.	Nombre Conceptos y principality	más importantes que se emple	-	tudio del arrastre	de sedimentos ORAS 4.5 12.0
alumno analizar dráulica. Compre uces. Múm. 1. 2. 3.	Nombre Conceptos y princi Flujo uniforme Energía específica	más importantes que se emple	-	tudio del arrastre	de sedimentos ORAS 4.5 12.0 10.5
alumno analizar dráulica. Compre uces. Pemario Núm. 1. 2. 3. 4.	Nombre Conceptos y principle Flujo uniforme Energía específica Salto hidráulico	más importantes que se emple	-	tudio del arrastre	ORAS 4.5 12.0 10.5 9.0
alumno analizar dráulica. Compreuces. Pemario Núm. 1. 2. 3. 4. 5.	NOMBRE Conceptos y principal Energía específica Salto hidráulico Flujo gradualment Transiciones	más importantes que se emple	-	tudio del arrastre	ORAS 4.5 12.0 10.5 9.0 16.5
alumno analizar dráulica. Compresences. Pemario Núm. 1. 2. 3. 4. 5. 6.	NOMBRE Conceptos y principal Energía específica Salto hidráulico Flujo gradualment Transiciones	más importantes que se emple ipios básicos e variado	-	tudio del arrastre	GORAS 4.5 12.0 10.5 9.0 16.5 7.5
emario Núm. 1. 2. 3. 4. 5. 6.	NOMBRE Conceptos y principal Energía específica Salto hidráulico Flujo gradualment Transiciones	más importantes que se emple ipios básicos e variado s del transporte de sedimentos	-	tudio del arrastre	GORAS 4.5 12.0 10.5 9.0 16.5 7.5 12.0

1 Conceptos y principios básicos

Objetivo: El alumno comprenderá las características principales de los diferentes tipos de flujo a superficie libre y las ecuaciones básicas del flujo permanente en canales.

Contenido:

- **1.1** Características del flujo a superficie libre.
- 1.2 Elementos geométricos de la sección y pendiente longitudinal. Canal prismático.
- **1.3** Tipos de flujo a superficie libre.
- **1.4** Ecuaciones fundamentales del flujo unidimensional permanente.
- **1.5** Distribución de la velocidad en la sección.
- **1.6** Distribución de la presión en la sección. Flujo rectilíneo y curvilíneo.

2 Flujo uniforme

Objetivo: El alumno diseñará la sección de un canal prismático considerando gasto, pendiente y características del fondo y de las paredes.

Contenido:

- **2.1** Condiciones para que se establezca el flujo uniforme.
- 2.2 Fórmula de Chezy.
- **2.3** Leyes de fricción en canales lisos y rugosos.
- **2.4** Factor de fricción de Manning.
- 2.5 Cálculo del flujo uniforme.
- **2.6** Canales cubiertos parcialmente llenos.
- 2.7 Diseño de la sección de un canal. Sección hidráulica más eficiente.
- **2.8** Canales de sección compuesta.

3 Energía específica

Objetivo: El alumno aplicará los conceptos de energía específica para determinar el régimen en un canal y .las variaciones en el tirante.

Contenido:

- **3.1** Energía específica del flujo rectilíneo.
- **3.2** Régimen crítico. Condición de gasto o de energía específica constantes.
- **3.3** Flujo en una transición.
- **3.4** Condiciones críticas cuando se conocen las dimensiones de la sección.
- **3.5** Cálculo de la dimensión mínima de la sección o de los tirantes alternos, cuando se conocen el gasto y la energía específica.
- **3.6** Velocidad de onda.
- 3.7 Pendiente crítica.

4 Salto hidráulico

Objetivo: El alumno calculará las características del salto hidráulico en canales con secciones usuales.

Contenido:

- **4.1** Aplicación de la ecuación de cantidad de movimiento al salto hidráulico.
- **4.2** Características básicas: tipos, perfil, longitud y pérdida de energía.
- **4.3** Tirantes conjugados en canales horizontales. Solución general. Soluciones directas para distintas geometrías de la sección. Salto hidráulico normal, después de un vertedor o de una compuerta.
- **4.4** Salto hidráulico sumergido.
- **4.5** Control del salto hidráulico mediante estructuras en el fondo.

5 Flujo gradualmente variado

Objetivo: El alumno determinará los perfiles de la superficie libre del agua en canales prismáticos y no prismáticos, cuando el flujo varía gradualmente.

Contenido:

- **5.1** Ecuación dinámica.
- **5.2** Características y clasificación de los perfiles de flujo.
- **5.3** Secciones de control.
- **5.4** Perfiles compuestos.
- **5.5** Cálculo de perfiles en canales prismáticos y no prismáticos. Método de diferencias finitas.
- **5.6** Capacidad de conducción de un canal.
- 5.7 Localización del salto hidráulico.

6 Transiciones

Objetivo: El alumno diseñará dispositivos de aforo en canales así como transiciones en régimen subcrítico y alcantarillas.

Contenido:

- **6.1** Dispositivos de aforo en canales.
- **6.2** Transiciones en flujo subcrítico.
- **6.3** Alcantarillas.

7 Aspectos generales del transporte de sedimentos

Objetivo: El alumno analizará las principales propiedades de las partículas sedimentarias y el inicio de su movimiento. Diseñará la sección de un canal no revestido, sin arrastre. Conocerá la mecánica del transporte de sólidos y los tipos de socavación que tienen lugar en un río.

Contenido:

7.1 Características de las partículas sedimentarias.

HIDRÁULICA DE CANALES (4/6)

7.2 Inicio de arrastre: esfuerzo cortante crítico y velocidad crítica. Método de la fuerza trac no revestidos sin arrastre.

- **7.3** Resistencia al flujo: formas del fondo, regímenes del flujo y criterios para definirlos y para calcular la velocidad media de una corriente fluvial.
- **7.4** Transporte de sedimentos: tipos de transporte y criterios para cuantificarlo.
- **7.5** Socavación.

Bibliografía básica:

Temas para los que se recomienda:

CHOW, Ven Te. 1 al 6

Open-Channel Hydraulics

New York

Mc. Graw Hill, 1959

GARDEA VILLEGAS, H. 1 al 6

Hidráulica de Canales

México

Facultad de Ingeniería, UNAM, 1995

GARCÍA F. Manuel, MAZA A., J. A.

Manual de Ingeniería

México

UNAM, 1997.

Series del Instituto de Ingeniería, UNAM:

Origen y propiedades de los sedimentos (601)

Inicio de movimiento y acorazamiento (592)

Transporte de sedimentos (584)

SOTELO ÁVILA, Gilberto. Todos

Hidráulica de Canales

México

Facultad de Ingeniería, UNAM, 2002

Bibliografía complementaria:

FRENCH, Richard. 1 al 6

Hidráulica de Canales Abiertos

México

Mc. Graw Hill, 1988

HIDRÁULICA DE CANALES	(5/6)
CHANSON, H. The Hydraulics of Open Channel Flow Oxford Butterworth, Heinemann, 1999	1 al 5 y 7
SOTELO A., Gilberto Hidráulica II México Facultad de Ingeniería, UNAM, 2001	1 al 6
STURM, Terry W., Open Channel Hydraulics 1a. edición 2001. McGraw-Hill.	Todos
Sugerencias didácticas: Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios	X Lecturas obligatorias X Trabajos de investigación X Prácticas de taller o laboratorio X Prácticas de campo Otras: Uso de programas de computo. Prácticas de laboratorio son requisito sin crédito.
Forma de evaluar: Exámenes parciales Exámenes finales Trabajos y tareas fuera del aula Perfil profesiográfico de quienes profesores e Investigadores de las	
Formación académica:	Ingeniero Civil
Experiencia profesional:	En docencia e investigación vinculadas a la Ingeniería Hidráulica o haber participado en proyectos de Ingeniería Hidráulica relacionados con los temas de la asignatura.
Especialidad:	Ingeniería Hidráulica.
Conocimientos específicos:	Flujo a superficie libre
Aptitudes y actitudes:	Transmitir los conocimientos relacionados con la asignatura y capacitar a los alumnos para

HIDRÁULICA DE CANALES		(6/6)		
	resolver problemas Hidráulica de Canales.	relacionados	con	