AGH, WIET	Laboratorium – elementy	Kierunek : EiT
	elektroniczne	
Nr ćwiczenia:	Temat:	Ocena:
6	PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH	
Data wykonania:	lmię i nazwisko:	
26.06.2022	Hubert Mąka, Jakub Wojtycza	

Wykorzystany tranzystor: BC337

Współczynnik wzmocnienia prądowego $\rightarrow \beta$ = 216,6442 Wzór jaki wykorzystaliśmy : $\beta = \frac{I_C}{I_B}$

Na podstawie napięć zmierzonych w punktach pomiarowych P1, P2 i P3 obliczyliśmy małosygnałowy współczynnik wzmocnienia h21e

Wzór jaki wykorzystaliśmy:

h21
254,2373
254,2373
254,2373
254,2373
254,2373
250
250
247,8814
254,2373
252,1186
252,1186
250
245,7627
241,5254
203,3898
199,1525
194,9153
194,9153
190,678
186,4407
180,0847
175,8475
171,6102
165,2542
161,0169

	1
kHz	h21
1050	156,7797
1100	152,5424
1150	152,5424
1200	148,3051
1300	148,3051
1400	148,3051
1500	148,3051
1600	144,0678
1700	144,0678
1800	139,8305
1900	137,7119
2000	137,7119
2100	135,5932
2200	135,5932
2300	133,4746
2400	133,4746
2500	131,3559
2600	127,1186
2700	125
2800	122,8814
2900	118,6441
3000	114,4068

$$h_{21e} = \frac{i_c}{i_b} = \frac{\frac{u_{ce}}{R_C}}{\frac{u_{we} - u_{be}}{R_B}} = \frac{R_B}{R_C} \frac{u_{ce}}{u_{we} - u_{be}}$$

Uwaga:

Wykres przez duże niedokładności pomiarowe i utrudnione odczytywanie wartości napięcia z oscyloskopu jest mocno zniekształcony, szczególnie w zakresie od około 700 kHz.

Wyznaczone z wykresu wartości częstotliwości granicznej tranzystora f β i f $_{\text{T}}$:

Wzory jakie wykorzystaliśmy do obliczeń:

$$\beta_{0_{-}-3dB} = \frac{\beta_0}{\sqrt{2}}$$

$$\frac{1}{\beta_0} = \frac{f_\beta}{f_T} \quad \to \quad f_T = \beta_0 f_\beta$$

Przebieg obliczeń i analizy danych:

Wyznaczyliśmy β jako maksymalne h21e i dla spadku o 3dB znaleźliśmy punkt na osi OX który odpowiadał częstotliwości granicznej. Później z zależności między nimi wyznaczyliśmy częstotliwość przenoszenia.

	Dane wyliczone	Dane katalogowe
fβ	800 kHz	Brak
f_{T}	203,389 MHz	210 MHz

Uwaga:

Niestety po dogłębnych poszukiwaniach nie udało nam się znaleźć danej katalogowej dla fβ.

Na podstawie pomiarów napięć wykonanych wg punktu 4.1 instrukcji w punktach pomiarowych P1 i P2 dla częstotliwości 1 kHz, obliczyliśmy wartość małosygnałowej impedancji wejściowej h11e tranzystora bipolarnego wg. wzoru

$$h_{11e} = \frac{u_{be}}{i_{be}} = \frac{u_{be}}{\frac{u_{we} - u_{be}}{R_p}}$$

$$h_{11e} = 762,712$$

Korzystając z wyników poprzednich obliczeń oraz wyników pomiarów dla sygnału o częstotliwości 1 kHz obliczyliśmy wartość transkonduktancji, współczynnika emisji, rezystancji dynamicznej złącza baza-emiter oraz rezystancji rozproszonej bazy.

G _m [1/Ohm]	0,278
n _e	3,426
r _{b'e} [Ohm]	779,919
r _{bb'} [Ohm]	-17,210

Wzory jakie wykorzystaliśmy:

$$g_m = \frac{I_C}{n_E U_T}$$
 $r_{b'e} = \frac{n_E U_T}{I_B}$ $r_{bb'} = h_{11e} - r_{b'e}$ $g_m = \frac{i_c}{u_{be}} = \frac{\frac{u_{ce}}{R_C}}{u_{be}} = \frac{1}{R_C} \frac{u_{ce}}{u_{be}}$

Uwaga:

Współczynnik n_e wyznaczyliśmy przekształcając wzór na g_m.

Na podstawie wyników pomiarów wykonanych wg punktu 4.2 obliczyliśmy konduktancję wyjściową h22e tranzystora bipolarnego wg. wzoru:

$$h_{22e} = \frac{i_c}{u_{ce}} = \frac{\frac{u_{ve} - u_{ce}}{R_{C2}}}{u_{ce}}$$

$$h_{22e} = 0,0135$$

Uwaga:

Z powodu problemów z otrzymaniem odpowiedniego punktu pracy dla tranzystora BC337 oraz długotrwałych pomiarów zależności częstotliwościowo napięciowych nie zdążyliśmy zmierzyć parametrów potrzebnych do wyznaczenia pojemności oraz uzupełnienia nimi modelu pi-hybrydowego, więc uznaliśmy, że za pomocą zmierzonych wartości wyznaczymy parametry czwórnika hybrydowego.

Fizyczny model hybrydowy tranzystora bipolarnego

Obliczone parametry z konspektu			
	h11	23,18	
	h12	0,167	
	h21	280,875	
	h22	2,14	

Zmierzone parametry podczas ćwiczenia			
h11 75,88			
	h12	0,09	
	h21	216,64	
	h22	0,2569	

Uwaga:

W konspekcie obliczaliśmy parametry dla modelu hybrydowego tranzystora bipolarnego dla innego punktu pracy.