CSCI-570: Homework # 2

Due on Friday, September 12 , 2014

Saket Choudhary skchoudh@usc.edu 2170058637

Contents

m HW2	•
(2: Ch#2 Ex#3)	•
(3: Ch#2 Ex#4)	٠
(4: Ch#2 Ex#5)	4
(5: Ch#2 Ex#6)	4
(6: Ch#3, Ex#2)	4
(7: Ch#3, Ex#6)	!

HW2

(2: Ch#2 Ex#3)

Part (a) n^2

Doubling the input size make it slower by $\frac{(2n)^2}{n^2} = 4$ Consider increasing input size by 1: $\frac{(n+1)^2}{n^2} = \frac{n^2+2n+1}{n^2} = 1 + \frac{1}{n} + \frac{1}{n^2}$ For $\lim_{n\to\infty}$, $1 + \frac{1}{n} + \frac{1}{n^2} = 1$, Thus the algorithm with n+1 input is as slow as with input size n for

Part (b): n^3

Doubling the input size: $\frac{(2n)^3}{n^3} = 8$, thus it is 8 times slower. Increasing the input size by 1: $\frac{(n+1)^3}{n^3} = \frac{n^3 + 3n^2 + 3n + 1}{n^3} = 1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3}$.

For $\lim_{n\to\infty}$, $1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3} = 1$.

Part (c): This is similar to Part(a), since the factor of 100 is common. The solution is exactly similar to Part(a)

Part (d): nlogn

Doubling the input size: $\frac{2nlog2n}{nlogn} = \frac{2log2n}{logn}$. For $\lim_{n\to\infty}$, this would blow up. Increasing the input size by 1: $\frac{n+1log(n+1)}{nlogn}$.

For $\lim_{n\to\infty}$, $\frac{n+1log(n+1)}{nlogn}=1$.

Hence input with n+1 is as slow as $n \lim_{n\to\infty}$

Part (e): 2^n

Doubling the input size: $\frac{2^{2n}}{2^n} = 2^n$, which blows up as $\lim_{n \to \infty}$.

Increasing the input size by 1: $\frac{2^{(n+1)}}{2^n} = 2$.

Thus increasing the input size by 1 causes it to be 2 times slower.

(3: Ch#2 Ex#4)

Given: Operating speed = 10^{10} operations per second.

To Find: Maximum possible n, for 3600s operation

Part (a): n^2

 $n^2 = 36*10^12 \implies n = 6*10^6$

Part (b): n^3

 $n^3 = 36 * 10^12 \implies n = (36)^0.333 * 10^4$

Part (c): $100n^2$

 $100n^2 = 36 * 10^12 \implies n = 6 * 10^5$

Part (d): nlogn

 $log(n^n) = 36 * 10^12$

Part (e): 2^{2^n}

 $2^{2^n} = 36 * 10^12 \implies n = log_2(log_2(36 * 10^12))$

(4: Ch#2 Ex#5)

$$f1 = n^2.5, f2 = \sqrt{2n}, f3 = n + 10, f4 = 10^n, f5 = 100^n, f6 = n^2 log n$$

Consider the square of f_i :

$$f1' = n^5; f2 = 2n; f3 = (n+10)^2; f4 = 10^{2n}; f5 = 100^{2n}; f6 = n^4(\log n)^2$$

Since exponentials always grow faster than polynomials, in the order of running time complexity higher to lower:

$$100^2 n > 10^2 n > n^5 > n^4 (\log n)^2 > (n+2)^2 > n2n$$

Thus:

f5 > f4 > f1 > f6 > f3 > f2

(5: Ch#2 Ex#6)

 $g1 = 2^{sqrtlogn}; g2 = 2^n; g3 = n(logn)^3; g4 = n^{\frac{4}{3}}; g5 = n^{logn}; g6 = 2^{2^n}; g7 = 2^{n^2}$

Since exponentials grow faster than polynomials: g1, g2, g6, g7 are definitely asymptotically larger than the rest.

$$2^{2^n} > 2^{n^2} > 2^n > 2^{\sqrt{\log n}}$$

Considering g3, g4, g5:

$$n^{\log n} > n^{\frac{4}{3}} > n(\log n)^3$$

Thus:

g6 > g7 > g2 > g1 > g5 > g4 > g3

(6: Ch#3, Ex#2)

Given: $f(n) = O(g(n)) \implies f(n) \le cg(n)$ for $c > 0, \forall n \ne n_0$

Part (a): $log_2(f(n))$ is $O(log_2(g(n)))$

 $f(n) \le cg(n) for \ c > 0, \forall n \ne n_0$

As g(n) is positive definite, a lesser strict bound on f(n) is given by:

Taking logarithm on both sides: $log_2(f(n)) \le log_2(g(n)) + log_2(c)$ for $c > 0, \forall n > n_0$

if |g(n)| > 2 the RHS would be positive definite, and $log_2(f(n)) = O(log_2(g(n)))$ would be true. But this is not true in general (|g(n)| < 2)

 $log_2(f(n)) \le log_2(g(n)^d) \implies log_2(f(n)) \le dlog_2(g(n)), \text{ for some } d > 1, \forall n > n_0$

Which clearly proves Part (a).

Part (b) $2^{f(n)}$ is $O(2^{g(n)})$

Consider $f(n) = 2n^2$, and $g(n) = n^2$, then $2^{f(n)} = 2^{2n^2}$ while $2^{g(n)} = 2^{n^2}$, which clearly does not satisfy the given relation.

Hence FALSE.

Part (c)

Since, $f(n) \le cg(n)$ for c > 0, $\forall n \ne n_0$, squaring both sides:

 $f(n)^2 \le c^2 g(n)^2$ for $c > 0, \forall n \ne n_0 \implies f(n)^2 \le c' g(n)^2$ for $c' > 0, \forall n \ne n_0$

Thus Part(C) is TRUE.

(7: Ch#3, Ex#6)