Jacob Jashinsky Math 461-01 December 10, 2018

Exercise 6.4.2a

Decide whether the proposition is true or false, provide a short justification or counter example as appropriate.

If $\sum_{n=1}^{\infty} g_n$ converges uniformly, then (g_n) converges uniformly to zero.

Solution:

True. The sum of a sequence that does not converge to zero would diverge.

Exercise 6.4.3

a) Show that

$$g(x) = \sum_{n=0}^{\infty} \frac{\cos(2^n x)}{2^n}$$

is continuous on all \mathbb{R} .

Solution:

Consider the sequence $1/2^n$. Since cos(x) is bounded by 1 it can be said that $\left|\frac{\cos(2^n x)}{2^n}\right| \leq \frac{1}{2^n}$ for all $x \in \mathbb{R}$.

Also note that series $\sum_{n=0}^{\infty} 1/2^n$ is geometric and conveges. Weierstrass M-Test now applies, therefore, $\sum_{n=0}^{\infty} \frac{\cos(2^n x)}{2^n}$ converges uniformly on \mathbb{R} .

Now theorem 6.4.2 states that since g_n is continuous and the series converges uniformly, then g(x) is continuous on its domain.

b) The function *g* was cited in section 5.4 as an example of a continuous nowhere differentiable function. What happens if we try to use Theorem 6.4.3 to explore whether *g* is differentiable?

Solution:

The assumptions are not met. The sum of the sequence $f'_n(x) = -\sin(2^n x)$ does not converge, therefore the theorem cannot apply.

Exercise 6.4.5

a) Prove that

$$h(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2} = x + \frac{x^2}{4} + \frac{x^3}{9} + \dots$$

is continuous on [-1, 1]

Solution:

Consider the sequence $1/n^2$. Since the domain of h_n is bounded above by 1, it can be said that $\left|\frac{x^n}{n^2}\right| \leq \frac{1}{2^n}$ for all $x \in [-1,1]$.

Also note that series $\sum_{n=0}^{\infty} 1/n^2$ is P-series and conveges. Weierstrass M-Test now applies, therefore, $\sum_{n=0}^{\infty} \frac{x^n}{n^2}$ converges uniformly on [-1,1].

Now theorem 6.4.2 states that since h_n is continuous and the series converges uniformly, then h(x) is continuous on its domain.

b) The series

$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n} = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots$$

converges for every x in the half-open interval [-1,1) but does not converge when x = 1. For a fixed $x_0 \in (-1,1)$, explain how we can still use the Weierstrass M-test to prove that f is continuous at x_0 .

Solution:

Since we know that the series conveges for the half-open interval this can be our M_n . For every $x_0 \in (-1,1)$, choose a point $c \in [-1,1)$ such that that $\left|\frac{x_0^n}{n}\right| \leq \frac{c^n}{n}$. The sum of the sequence M_n will converge, implying that $\sum f_n(x_0)$ converges uniformly.

Theorem 6.4.2 can then be leveraged to show that since it converges uniformly it is also continuous on the appropriate domain.

Exercise 6.5.1

Consider the function *g* defined by the power series

$$g(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

a) Is g defined on (-1,1)? Is it continuous on this set? Is g defined on (-1,1]? Is it continuous on this set? What happens on [-1,1]? Can the power series for g(x) possibly converge for an other points |x| > 1? Explain.

Solution:

The power series is defined on the set (-1,1). Choose an $|x_0| < 1$. The power series now becomes an alternating series. The sequence is strictly decreasing and converges to 0, therefore the power series converges when $x = x_0$.

Theorem 6.5.1 states that since the power series converges at a some point x_0 , then it converges absolutely for every $|x| < |x_0|$. Theorem 6.5.2 can now be applied which implies that the power series at point x_0 converges uniformly on the closed interval $[-|x_0|, |x_0|]$. Because the power series is uniformly convergent it is also coninuous on the interval (-1,1).

The power series is also defined on all real numbers. The same arguments can be applied to all intervals greater than (-1,1).

b) For what values of x is g'(x) defined? Find a formula for g'.

Solution:

x<1

Exercise 6.5.3

Use the Weierstrass M-Test to prove Theorem 6.5.2

Solution:

Theorem 6.5.2: If a power series $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely at a point x_0 , then it converges uniformly on the closed interval [-c, c], where $c = |x_0|$.

Let $M_n = a_n |x_0|^n$ be a converging series. Choose a point x_0 and a point $|c| \le |x_0|$, and note that

$$|c| \le |x_0|$$

$$|c|^n \le |x_0|^n$$

$$|a_n c^n| \le a_n |x_0|^n$$

$$|f_n(x)| \le |M_n|$$

The M-Test now applies, therefore, $\sum_{n=0}^{\infty} a_n x^n$ converges at all points $|c| \le |x_0|$, or in other words, the power series converges on the interval [-c,c].

Exercise 6.5.8

a) Show that the power series representations are unique. If we have

$$\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n$$

for all x in an interval $(-\mathbb{R}, \mathbb{R})$, prove that $a_n = b_n$ for all n = 0, 1, 2, ...

Solution:

x<1

b) Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ converge on $(-\mathbb{R}, \mathbb{R})$, and assume f'(x) = f(x) for all $x \in (-\mathbb{R}, \mathbb{R})$ and f(0) = 1. Deduce the values of a_n .

Solution:

x<1