Homework 4

A portion of the following problems will be graded according to the provided rubric.

- 1. Rudin pg 44 problem 12
- 2. Rudin pg 44 problem 14
- 3. Rudin pg 44 problem 15
- 4. Let $K \subset \mathbb{R}$ be nonempty and compact. Show that $\inf(K) \in K$.
- 5. Let $K \subset \mathbb{R}^k$ be compact and $F \subset \mathbb{R}^k$ be closed. Determine if the following sets are always compact. If yes, prove it. If no, provide a counterexample.
 - a. $\overline{F^C \cup K^C}$
 - b. $K \setminus F$
 - c. $\overline{K \cap F^C}$
- 6. Let $P \subset \mathbb{R}^k$ be perfect and $K \subset \mathbb{R}^k$ be compact.
 - a. Is $P \cap K$ always compact? If yes, prove it. If no, provide a counterexample.
 - b. Is $P \cap K$ always prefect? If yes, prove it. If no, provide a counterexample.
- 7. Does there exist a perfect set consisting of only rational numbers? Why or why not?
- 8. Rudin pg 44 problem 19
- 9. Give an example to show that if *A* is open and *B* is closed and *A* and *B* are disjoint sets, then they are not always separated.
- 10. Find an example of a disconnected set whose closure is connected.