

Towards Robust Music Source Separation on Loud Commercial Music

Chang-Bin Jeon and Kyogu Lee Seoul National University, Music and Audio Research Group musdb-XL: github.com/jeonchangbin49/musdb-XL
LimitAug: github.com/jeonchangbin49/LimitAug
paper: arxiv.org/abs/2208.14355
contact: vinyne@snu.ac.kr

Music Source Separation

· A task of isolating individual instrumental sources (stems) from music.

Motivation

- Commercial music has extreme loudness and heavily compressed dynamic range
 - => Not considered in music source separation yet.
 - => Huge domain shift occurs between train domain and real world.
 - => Will the domain shift result in actual performance decrease?
 - => If it does, let's decrease the domain shift!

Contributions

1) New musdb-XL evaluation data

- We introduce *musdb-L* and *musdb-XL* evaluation datasets, which have comparable overall loudness to commercial music, for the evaluation of music source separation.

2) The domain shift => Actual performance degradation

- Using *musdb-L* and *XL*, we quantitatively confirm that the domain shift causes performance degradation of the state-of-the-art networks that were trained without considering loud and compressed music characteristics.

3) LimitAug data augmentation

- We propose *LimitAug* data augmentation method and experimentally confirm that it is beneficial to alleviate the domain shift between train data and the *musdb-L* or *XL*.

Musdb-XL

- We manually made loud and compressed version of musdb-hq => musb-L and musdb-XL

datasat		Loud	ness [LUI	FS]	musdb-hq	musdb-XL		
dataset	min	max	median	mean (std)	the state of the s			
musdb-hq	-18.84	-13.52	-16.02	-15.92 (1.27)	and the last the first transfer of the first transfer to the			
musdb- L	-14.39	-8.61	-10.61	-10.89 (1.19)				
musdb-XL	-11.93	-6.99	-8.41	-8.61 (1.17)	رام اطال منظرين منتقط طالك بقرام فيما يستاه يهدل	Additional and the second and the second		
commercial	-10.75	-6.10	-7.96	-8.05 (1.06)	Al James – Schoolboy Facination -15.9 LUFS	Al James – Schoolboy Facination -7.4 LUFS		

How to get ground truth stems of a limiter applied mixture? => element-wise ratio calculation

=> Same technique applied on both musdb-XL and LimitAug

Methods

- real-world mastering finished music vs. standard train examples
 - => key differences
 - 1) overall amplitude scales
 - 2) signal distortion caused by a limiter
- How to avoid the domain mismatch?
- => Input loudness normalization (for 1))
 - i) both in train and eval stage
 - ii) only at eval stage => if models are trained w/o loud-norm
- => LimitAug (for 2)) and LimitAug + loud-norm (for both 1) and 2))
 - Let's use a limiter when making train examples

Experiments

- Significant performance degradation of sota networks on musdb-XL datasets.

network	extra	test	test SDR median (mean) [dB]									
network	train data	data	vocals	bass	drums	other	avg					
		hq	6.16 (2.54)	5.03 (2.67)	6.00 (5.46)	4.22 (3.46)	5.35 (3.53					
Open-unmix [6]	-	L	6.33 (1.63)	4.81 (2.71)	5.82 (5.38)	4.11 (3.42)	5.27 (3.28					
		XL	5.98 (0.89)	4.76 (2.59)	4.97 (4.89)	4.04 (3.29)	4.94 (2.92					
TEC TOE		hq	7.18 (4.26)	5.59 (3.35)	5.76 (5.30)	4.04 (3.18)	5.64 (4.02					
TFC-TDF	-	L	7.03 (3.65)	5.41 (3.08)	5.52 (5.09)	3.67 (3.00)	5.41 (3.71					
- <i>U-net</i> [20]		XL	6.95 (3.14)	5.48 (2.90)	5.11 (4.68)	3.55 (2.82)	5.27 (3.39					
	-	hq	8.11 (5.22)	9.34 (6.21)	8.57 (8.01)	5.51 (5.03)	7.88 (6.12					
Demucs v3-A [19]		L	7.54 (5.15)	9.32 (6.22)	8.26 (7.65)	5.51 (5.01)	7.66 (6.01					
		XL	7.30 (4.86)	9.19 (6.14)	7.62 (6.78)	5.37 (4.97)	7.37 (5.69					
	√	hq	7.02 (4.93)	5.91 (4.06)	7.18 (6.91)	4.94 (4.76)	6.26 (5.17					
Open-unmix [6]		L	6.83 (5.12)	6.23 (4.09)	7.07 (6.92)	4.94 (4.78)	6.27 (5.23					
		XL	6.70 (4.77)	6.16 (3.87)	6.80 (6.48)	4.89 (4.61)	6.14 (4.93					
		hq	6.51 (4.42)	4.77 (3.57)	6.00 (6.09)	4.22 (4.12)	5.38 (4.55					
Spleeter [21]	25000+	L	6.18 (3.90)	4.73 (3.34)	5.67 (5.94)	4.37 (4.03)	5.24 (4.30					
_		XL	6.03 (3.38)	4.80 (3.13)	5.55 (5.52)	4.24 (3.91)	5.15 (3.98					
	200 Linchadina	hq	9.24 (7.05)	11.65 (9.58)	11.73 (11.34)	7.83 (8.03)	10.11 (9.00					
Demucs v3-B [19]	200+ including	L^{-}	9.05 (6.91)	11.61 (9.55)	11.05 (10.27)	7.83 (7.91)	9.88 (8.66					
	musdb-hq test set	XL	8.76 (6.41)	11.56 (9.29)	9.22 (8.78)	7.52 (7.51)	9.26 (8.00					

- Simple loud-norm only at eval stage can greatly reduce performance decrease

motoroule	extra	test	SDR median (mean) [dB]				network	extra	SDR median [dB]		
network	train data	data	vocals bass drums		other	net work	train data	hq	L	XL	
		hq	8.11 (5.22)	9.34 (6.21)	8.57 (8.01)	5.51 (5.03)	Open-unmix [6]	-	5.35	5.32	5.25
Demucs v3-A [19]	-	L	8.05 (5.23)	9.25 (6.20)	8.47 (7.92)	5.53 (5.02)	TFC-TDF-U-Net [20]	-	5.64	5.62	5.51
		XL	7.93 (5.03)	9.27 (5.92)	7.74 (7.44)	5.55 (4.91)	Demucs v3-A [19]	-	7.88	7.82	7.62
	200+ including	hq	9.24 (7.05)	11.65 (9.58)	11.73 (11.34)	7.83 (8.03)	Open-unmix [6]	√	6.26	6.25	6.18
Demucs v3-B [19]	musdb-hq test set	L	9.19 (7.04)	11.64 (9.55)	11.68 (11.21)	7.82 (8.02)	Spleeter [21]	\checkmark	5.38	5.33	5.21
	musab-nq test set	XL	9.13 (6.90)	11.56 (9.33)	11.32 (10.75)	7.74 (7.95)	Demucs v3-B [19]	\checkmark	10.11	10.08	9.94

- Loud-norm in both train and eval stages is helpful not only for musdb-XL but for standard musdb-hq

- LimitAug + loud-norm is also helpful

network	methods	linear	LimitAug	input	target LUFS	SDR median (mean) [dB]			
network		gain increase	LimiiAug	loud-norm	target LUFS	hq	L	XL	avg
	baseline	-	-	-	-	5.64 (4.02)	5.41 (3.71)	5.27 (3.39)	5.44 (3.71)
	(1)	✓	-	-	$\mathcal{N}(\mu_L, \sigma_L^2)$	5.90 (4.31)	5.86 (4.33)	5.73 (4.15)	5.83 (4.26)
					$\mathcal{N}(\mu_{XL},\sigma_{XL}^2)$	5.32 (3.43)	5.36 (3.62)	5.28 (3.49)	5.32 (3.51)
TFC-TDF	(2)				$\mathcal{N}(\mu_L, \sigma_L^2)$	5.79 (4.30)	5.90 (4.41)	5.74 (4.25)	5.81 (4.32)
-U-Net [20]	(2)	-	•	-	$\mathcal{N}(\mu_{XL},\sigma_{XL}^2)$	5.69 (3.93)	5.72 (4.22)	5.57 (4.15)	5.66 (4.10)
	(3)	-	-	✓	-14	5.89 (4.38)	5.87 (4.35)	5.82 (4.25)	5.86 (4.33)
-	(4)				$\mathcal{N}(\mu_L, \sigma_L^2)$, -14	5.87 (4.25)	5.85 (4.21)	5.76 (4.16)	5.83 (4.21
		-	v	V	$\mathcal{N}(\mu_{XL}, \sigma_{XL}^{\overline{2}})$, -14	5.78 (4.27)	5.78 (4.26)	5.73 (4.20)	5.76 (4.24

- LimitAug + loud-norm is especially better than vocals and other stems

methods		test	SDR median (mean) [dB]				
	LUFS	data	vocals	bass	drums	other	avg
	=	hq	7.18 (4.26)	5.59 (3.35)	5.76 (5.30)	4.04 (3.18)	5.64 (4.02)
baseline		\boldsymbol{L}	7.03 (3.65)	5.41 (3.08)	5.52 (5.09)	3.67 (3.00)	5.41 (3.71
		XL	6.95 (3.14)	5.48 (2.90)	5.11 (4.68)	3.55 (2.82)	5.27 (3.39
(3) loud-norm	-14	hq	7.35 (4.76)	5.93 (3.61)	5.91 (5.37)	4.39 (3.79)	5.89 (4.38
		\boldsymbol{L}	7.32 (4.72)	5.91 (3.61)	5.85 (5.29)	4.39 (3.78)	5.87 (4.35
		XL	7.26 (4.64)	5.91 (3.62)	5.68 (4.99)	4.42 (3.78)	5.82 (4.25
(4) LimitAug,	$\mathcal{N}(\mu_L, \sigma_L^2)$, -14	hq	7.59 (4.64)	5.75 (3.25)	5.63 (5.28)	4.50 (3.82)	5.87 (4.25
		\boldsymbol{L}	7.58 (4.61)	5.69 (3.21)	5.62 (5.22)	4.50 (3.82)	5.85 (4.21
ioua-norm		XL	7.48 (4.55)	5.67 (3.29)	5.36 (4.99)	4.51 (3.82)	5.76 (4.16
	(3) loud-norm	baseline - (3) loud-norm -14 (4) LimitAug, $\mathcal{N}(\mu_L, \sigma_L^2)$,	baseline - L XL (3) loud-norm -14 L XL (4) LimitAug, $\mathcal{N}(\mu_L, \sigma_L^2)$, hq L loud-norm -14	baseline - $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	baseline - $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	baseline - L 7.18 (4.26) 5.59 (3.35) 5.76 (5.30) L 7.03 (3.65) 5.41 (3.08) 5.52 (5.09) XL 6.95 (3.14) 5.48 (2.90) 5.11 (4.68) hq 7.35 (4.76) 5.93 (3.61) 5.91 (5.37) (3) loud-norm -14 L 7.32 (4.72) 5.91 (3.61) 5.85 (5.29) XL 7.26 (4.64) 5.91 (3.62) 5.68 (4.99) (4) LimitAug, $\mathcal{N}(\mu_L, \sigma_L^2)$, hq L 7.59 (4.64) 5.75 (3.25) 5.63 (5.28) L 7.58 (4.61) 5.69 (3.21) 5.62 (5.22)	baseline - L 7.18 (4.26) 5.59 (3.35) 5.76 (5.30) 4.04 (3.18) L 7.03 (3.65) 5.41 (3.08) 5.52 (5.09) 3.67 (3.00) XL 6.95 (3.14) 5.48 (2.90) 5.11 (4.68) 3.55 (2.82) hq 7.35 (4.76) 5.93 (3.61) 5.91 (5.37) 4.39 (3.79) L 7.32 (4.72) 5.91 (3.61) 5.85 (5.29) 4.39 (3.78) XL 7.26 (4.64) 5.91 (3.62) 5.68 (4.99) 4.42 (3.78) $(4) LimitAug$, $N(\mu_L, \sigma_L^2)$, hq 7.59 (4.64) 5.75 (3.25) 5.63 (5.28) 4.50 (3.82) I_L 7.58 (4.61) 5.69 (3.21) 5.62 (5.22) 4.50 (3.82)

Conclusions

- Musdb-XL => Loud and compressed evaluation data, perhaps useful for industry?!
- LimitAug => Also useful for other researches such as automatic music mixing.