Amanda Friedenberg ECON 501B

ECON 501B: Problem Set 1

Due: Thursday, August 30, 2018

Instructions: For True/False questions, either provide a proof that the statement is true or provide a counterexample showing that it is false.

Question 1: True or False. Fix an environment $(T, B; (\succsim)_{t \in T}, (\succsim)_{b \in B})$ so that the following holds: there exists $t_* \in T$ and $b_* \in B$, with

- 1. $b_* \succ_{t_*} b$, for each $b \in B \setminus \{b_*\}$, and
- 2. $t_* \succ_{h_*} t$, for each $t \in T \setminus \{t_*\}$.

Then, in any stable match $\mu: (T \cup B) \to (T \cup B), \ \mu(t_*) = b_*$.

Question 2: True or False. Fix an environment $(T, B; (\succsim)_{t \in T}, (\succsim)_{b \in B})$, so that

$$|\{t \in T : A(t) = B\}| = |\{b \in B : A(b) = T\}|.$$

If all agents have strict preferences and A(t) = B, then there is some stable match in which t is matched.

Question 3: In class we said that a pair (t,b) blocks a matching $\mu: (T \cup B) \to (T \cup B)$ if (i) $b \succ_t \mu(t)$, and (ii) $t \succ_b \mu(b)$. Consider instead the following definition: A pair (t,b) blocks* a matching $\mu: (T \cup B) \to (T \cup B)$ if either (i) $b \succsim_t \mu(t)$ and $t \succ_b \mu(b)$, or (ii) $b \succ_t \mu(t)$ and $t \succsim_b \mu(b)$. Say a matching $\mu: (T \cup B) \to (T \cup B)$ is stable* if it is individually rational and there is no block* pair (t,b).

- 1. If a matching $\mu: (T \cup B) \to (T \cup B)$ is stable* is it stable? Either provide a proof that it is or a counter example.
- 2. If a matching $\mu: (T \cup B) \to (T \cup B)$ is stable is it stable*? Either provide a proof that it is or a counter example.
- 3. Is the notion of blocks* stronger or weaker than the notion of blocks? Is the notion of stable* stronger or weaker than the notion of stable?

Question 4: There are three agents on each side of the market: $T = \{t_1, t_2, t_3\}$ and $B = \{b_1, b_2, b_3\}$. Matched agents can share a pie; unmatched agents get no pie. The following describes the fraction of the pie that a t_i agent would get when matched with (b_1, b_2, b_3) :

- t_1 's Fraction: $(\frac{1}{4}, \frac{2}{4}, \frac{3}{4})$;
- t_2 's Fraction: $(\frac{3}{4}, \frac{1}{4}, \frac{2}{4})$;
- t_3 's Fraction: $(\frac{2}{4}, \frac{3}{4}, \frac{1}{4})$.

(So, if (t_1, b_1) are matched, t_1 gets $\frac{1}{4}$ of the pie and b_1 gets $\frac{3}{4}$ of the pie.) All agents strictly prefer larger fractions of pie to smaller fractions of pie.

Which matches are (resp. are not) stable? (That is, provide a compelte argument for why each matching is or is not stable.)

Question 2 T/F let & = (T, B; (Z); ene)

| EteT A(t) = B? | = (E & B) A(b) = TE |

// all agents have strict preferences and A(t) = B

there is some stable match where t is matched A(E)=B > all b & B are acceptable to t Let 2 = | Et e7 'A(4) = B | = | Eb & B · A(b) = 7] and so $T = \{t_1, t_2, t_3\}$ t, b,75,74, ,

t, b,75,74, ,

t, b,75,74, ,

t, b,75,75, 14(E) = b) b, t, > t, > t, > t, > b, | h(+1) = b2 b2 t2 > t) > t2 > 52 M(+3) = t3 t3 & T not matched. All other conditions met. There has

Question 3 (t, b) blocks a match 4: (TUB) -> (TUB) (1) b > 4 (t) (11) t 75 M(3) Let blocks * mean the tollowing: a pair (t,5) blocks & a H: (TUB) -> (TUB) (i) bzth (+) and to 4(5) OR (11) brem (4) and t 7 4(4) A matching 4: (TUB) -> (TUB) 1= Stable* 14 14 15 /R
and there is no black + pair 1) If a matching y: (TUB) -> (TUB) is stable + 15 it ie. Stable * > stable TRUE: Contrapositive Not stable 7 not stable # Not stable > 3 (t, b): b 7, m (+) and t 7, M(b) 17 then: 67 th (+) and t 75 MB) V (2) /F a matching, is stuble is it stuble +? False $t_1 = b_1 z b_2 7 t_1$ $\mu(t_1) = b_2$ $t_2 = b_1 7 b_2 7 t_1$ $\mu(t_1) = b_1$ bi titte 75 Not Stable + , but stable bi ti7t2752

		Q	(1)	ahi		4		ナ	ho		-		2	0	20	1		-0	0	0.	. h	.0	id	,	Ĺ	4	ho			
F		Y	m	ar	ke-	+									90)	772		90	C	CC	21)	00	/ OU		7		14			
										1 2	15																			
	M	a-le Fra	ch	101	9	jen ti	15	S	ha ts	e	q ,1r	1	pit pa	181	17	Ini L	m 0	rto	Lei	d .	2	do	2)	ct						
															{															
				t ₃	(74 2/4	13	14)	4)				b,	(2/4	1	1/4	1	3/4	()									
				t,	b b l	3 7	, <u> </u>	3	5-5-	7 t	tz				3	1 -	1 -	t	3	7	Ł,	7	52							
				ts	:	2	2 5	1 7	Ь;	7	t ₃				by	it	3	> t	V	7	t ₂	7	7)							
1			(i)	H(M(H(t,) :	:	3		6	ta s	le																	
					4(t3) =	52			7																			
		(70		1(t.	-	5																						
				10	1(:	7)	5 5	P1																						
							1,14	ĺ		7	lev	k													Ŀ					
					75,																									
				b.,	74	И	Ltr		52																					
					d																									
		- 4	//	ole		S	tri	cŧ	P	re	Ar Al	(H)	=	3,	9n	1	A	(b)	7 /	/ : 7)		b	ati	an	4	th				
							i,	q		5 +8	4/	ℓ	m	ate	h	a	//	90	7.60	27	2	al	(po	at	h	eA	1		

4													_										
														Н									
														П									T
T																							
Ť																							
+																							
+	-																						
+	-																						
+	-																						
+	_																						
_																I							
	_																						
4	4					Ц			H														
			Ш																				
4									T														
							C								Y								
																	E						
1																							
7										Ħ			T						H				
T	T																						
1																							
																	-						
-)																
+		+	H					-														- 4	
+									-														
-		-																H			H		
+		-																					
-		-				-																	
+		-							_	_					H								
+		4																					
+							17																
	4	_				Ц												Ш					
4						Ц																	
4																							
-																							
1																			H				
-																							

Homework 1 Solutions

ECON 501A

Prof. Freidenberg

August 2018

1. False.

$$T = \{t^*\} \text{ and } B = \{b^*\}$$

Where $t^* \succ_t b^*$ and $b^* \succ_b t^*$

Then the only stable match is $\mu(t^*) = t^*$ and $\mu(b^*) = b^*$

2. False.

 $|\{t \in T : A(t) = B\}| = |\{b \in B : A(b) = T\}|$ and preferences are strict.

 \Rightarrow For any t agent s.t. $A(t) = B : \exists$ a stable matching μ where $\mu(t) \in B$.

Corrected on next page

Counter example:

$$T = \{t_1, t_2\}$$
 and $B = \{b_1, b_2, b_3\}$

$$t_1:b_1\succ b_2\succ b_3\succ t-1$$

$$t_2:b_3\succ b_1\succ b_2\succ t-2$$

$$b_1:t_1\succ t_2\succ b_1$$

$$b_2:t_1\succ t_2\succ b_2$$

$$b_3: t_2 \succ b_3 \succ t_1$$

Then there is a unique stable matching:

$$\mu(t_1) = b_1, \ \mu(t_2) = b_3, \ \mu(b_2) = b_2$$

This is a contradiction since b_2 should have A(b) = T.

3. Stable* \Rightarrow Stable:

Contrapositive:

\$table $\Rightarrow \$$ table*

If a match μ is not stable:

$$\exists (t,b) \text{ s.t. } b \succ_t \mu(t)$$

 $t \succ_b \mu(b)$ then b $\succsim_t \mu(t), t \succ_b \mu(b) \Rightarrow \mu$ is not stable*.

Stable \Rightarrow Stable* is not true:

For
$$T = \{t^*\}$$
 and $B = \{b^*\}$

$$t_1:b_1 \succsim b_2 \succ t_1$$

$$t_1:b_1 \succsim b_2 \succ t_2$$

$$b_i: t_1 \succ t_2 \succ b_i$$

 t_2 is the only T agent who can be in a blocking pair.

$$\mu(t_1) = b_2$$

$$\mu(t_2) = b_1$$

This is stable but not stable* as (b_1, t_1) block*.

Stable* is stronger. Block is stronger.

4. Because of strict preferences, all agents find all other agents acceptable. Also, |T| = |B|, then in any stable matching, all agents are matched. Check the cases:

(a)
$$\mu(t_1) = b_1$$
:
 $t_1 \text{ gets } \frac{1}{4} \Rightarrow \text{ for } (t_1, b_2)$. To not be a block $\Rightarrow \mu(b_2) \succ_{b_2} \frac{2}{4}$
 $\Rightarrow \mu(b_2) = t_2$

$$\Rightarrow \mu(t_3) = b_3$$

This is a stable match. All b agents get their best options.

(b) $\mu(t_1) = b_3$ $b_3 \text{ gets } \frac{1}{4} \Rightarrow \text{ for } (t_2, b_3).$ To not be a block $\Rightarrow \mu(t_2) \succ_{t_2} \frac{2}{4}$ $\Rightarrow \mu(t_2) = b_1$ $\Rightarrow \mu(t_3) = b_2$

This is a stable match. All t agents get their best options.

- (c) $\mu(t_1) = b_2$:
 - i. $\mu(t_1) = b_2, \mu(t_2) = b_1, \mu(t_3) = b_3$ t_3 and b_1 get $\frac{1}{4}$ and will block. \Rightarrow Not a stable match
 - ii. $\mu(t_1) = b_2, \mu(t_2) = b_3, \mu(t_3) = b_1$ All agents get $\frac{1}{2}$ and will not block. \Rightarrow A stable match.

 $T = \{t_1, t_2, t_3\}$ and $B = \{b_1, b_2\}$:

- $t_1: b_1 \succ b_2 \succ t_1$,
- $t_2: b_1 \succ b_2 \succ t_2$,
- $t_3: b_2 \succ t_3 \succ b_1$,
- $b_1: t_1 \succ t_2 \succ t_3 \succ b_1$,
- $b_2: t_3 \succ t_1 \succ t_2 \succ b_2$.

The unique stable matching is that $\mu(t_1) = b_1$, $\mu(t_2) = t_2$, $\mu(t_3) = b_2$. The stable matching is unique because the pairs (t_1, b_1) and (t_3, b_2) find their mates as their first options.

 t_1 and t_2 have the acceptable set as B, b_1 and b_2 have the acceptable set as T, so the condition of the question is satisfied. While t_2 , whose acceptable set is B, remains unmatched in the unique stable matching.

	8	(1) Tar
51		