

Schedule

CANADIAN BIOINFORMATICS WORKSHOPS Informatics and Statistics for Metabolomics

	Day 1	Day 2
	Monday June 15	Tuesday June 16
8:00	Registration & Breakfast	Breakfast
8:30	Welcome (Michelle Brazas)	
	Module 1: Introduction to Metabolomics	Module 4: Backgrounder in Statistics
	(David Wishart)	_
10:30	Coffee Break	Coffee Break
11:00	Module 2: Metabolite Identification	Module 5: MetaboAnalyst
12:30	Lunch - on your own	Lunch - on your own
1:30	Module 2 Lab: Compound ID & Quantification	Module 5 Lab: Metabolomic Data Analysis using MetaboAnalyst 3.0
3:00	Coffee Break	Coffee Break
3:30	Module 3 Lecture: Databases for	Module 5 Lab: Continued
	Chemical, Spectral and Biological Data	
5:00	Dinner - on your own	Survey & Closing Remarks
8:00	Compound ID until 8pm	

Learning Objectives

- Get Familiar with MetaboAnalyst on your own (answer some questions, explore)
- Analyze NMR-based metabolomic data (from Lab 2) using MetaboAnalyst
- Analyze GC-MS-based metabolomic data (from Lab 2) using MetaboAnalyst
- Analyze LC-MS/MS-based metabolomic data (from Lab 2) using MetaboAnalyst

MetaboAnalyst

http://www.metaboanalyst.ca

- Web server designed to handle large sets of LC-MS, GC-MS or NMR-based metabolomic data
- Supports both univariate and multivariate data processing, including ttests, ANOVA, PCA, PLS-DA
- Identifies significantly altered metabolites, produces colorful plots, provides detailed explanations & summaries
- Links sig. metabolites to pathways via KEGG & SMPDB

Metabolomics Data Workflow

Chemometric Methods

- Data Integrity Check
- Spectral alignment or binning
- Data normalization
- Data QC/outlier removal
- Data reduction & analysis
- Compound ID

Targeted Methods

- Data Integrity Check
- Compound ID and quantification
- Data normalization
- Data QC/outlier removal
- Data reduction & analysis

MetabooAnalyst Modules Press choose a functional module to proceed and the module of the module procedure module of the module proce

Suggested Analysis Ideas

- Look through the data for outliers, errors or mis-annotated compounds (QC analysis)
- Play around with different scaling and normalization parameters, see what they do and why (for each data set)
- Try performing PCA, look through all the different tabs to see what is revealed

Suggested Analysis Ideas

- Try performing PLS-DA, look through all the different tabs to see what is revealed
- What does the VIP data tell you at a biological level?
- Try the permutation test, how significant are the clusters?
- Try different clustering methods, look to see what clusters form and why

Suggested Analysis Ideas

- From your PLS-DA data try to develop some hypotheses regarding the causes or consequences of the metabolic changes
- Use the pathway analysis modules to identify key pathways
- Look through the databases (HMDB, SMPDB, PubMed, others) to learn more about the significant metabolites or significant pathways you've found

Suggested Analysis Ideas

- Try the MSEA analysis and see if that helps with understanding the biology
- Try to develop a set of robust biomarkers for these different conditions
- Look at different methods (SVM, PLS-DA, random forest), try things manually
- Are the biomarkers the same (or different) from the most significant metabolites from your PLS-DA analysis?

For Those Who Are Interested...

Some Challenging Questions
That Require Using
MetaboAnalyst

Questions on ANOVA (Bovine Feeding Data)

- Q: Which compounds show significant difference among all the neighboring groups (0-15, 15-30, and 30-45)?
- Q: For *Uracil*, are groups 15, 30, 45 significantly different from each other?

ANOVA Correlation (Bovine Feeding Data)

- Q: In untargeted metabolomics using NMR, researchers often look for region(s) in their spectra showing large changes in their correlation patterns under different conditions. Can you do that in MetaboAnalyst?
- Hint: check the available parameters in Correlation analysis

Pattern Matching (Bovine Feeding Data)

 Q: Can you identify compounds that decrease in the first three groups (0%, 15%, 30%) but increase in the last group (45%)?

PCA Analysis (Bovine Feeding Data)

Q: Identify compounds that contribute most to the separation between group 15% and 45%

PLS-DA Model Validation

- Q: What does p < 0.01 mean?
- Q: How many permutations need to be performed if you want to claim p value < 0.0001?

MSEA/QEA Matched Metabolite Set (Cachexia Group)

 Q: Are these metabolites increased or decreased in the cachexia group?

Pathway Visualization (Cachexia Group)

 Q: Which pathway do you think is likely to be affected the most? Why?

Biomarker Analysis

 Compare the biomarkers automatically selected via the multivariate ROC tool and those top ranked metabolites generated via the univariate ROC tool. How much do they overlap? Can you manually create a biomarker model that performs better?

- Hint: Try ROC-tester

Power Analysis

 Based on the power analysis curve, can you identify the "optimal" sample size for detecting an effect?