Russ Johnson Reading Assignment 16 March 20, 2013

In Activity 26.1 we investigated the operation table of the direct product of the two groups \mathbb{Z}_2 and \mathbb{Z}_3 . From this operation table we see things that we might expect to be true. The identity of $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ contains the identity of \mathbb{Z}_2 and the identity of \mathbb{Z}_3 . The operation of $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ is the operation of \mathbb{Z}_2 applied to the first element in the pair and the operation of \mathbb{Z}_3 applied to the second element in the pair. In this activity we also constructed a subgroup of $\mathbb{Z}_2 \oplus \mathbb{Z}_3$ that contained every element of \mathbb{Z}_3 .