1

Assignment I

Simplifying Boolean expression using Kmap

Manideep Parusha - FWC22004

2

CONTENTS

Ι **Problem** 1 II **Solution** 1 II-A Truth Table 1 II-B 1 K-map Rules to simplify K-maps . . II-C 1 II-D 2 Simplification

I. PROBLEM

Verification & Conclusion

Reduce the following Boolean expression in the simplest form using Kmap. The Expression with Sum of Products (SOP) is as follows:

$$F(P, Q, R, S) = \sum (0, 1, 2, 3, 5, 6, 7, 10, 14, 15)$$

II. SOLUTION

A. Truth Table

Ш

Truth table for the SOP given:

	P	Q	R	S	F(P,Q,R,S)	
0	0	0	0	0	1	
1	0	0	0	1	1	
2	0	0	1	0	1	
3	0	0	1	1	1	
4	0	1	0	0	0	
5	0	1	0	1	1	
6	0	1	1	0	1	
1 2 3 4 5 6 7	0	1	1	1	1	
	1	0	0	0	0	
8 9	1	0	0	1	0	
10	1	0	1	0	1	
11	1	0	1	1	0	
12	1	1	0	0	0	
13	1	1	0	1	0	
14	1	1	1	0	1	
15	1	1	1	1	1	

TABLE I
TRUTH TABLE FOR GIVEN BOOLEAN EXPRESSION

B. K-map

K-map for the above truth table:

PQ RS	00	01	11	10
K5				
00	1	1	1	1
01	0	1	1	1
11	0	0	1	1
10	0	0	0	1

TABLE II K-map for the Truth Table

C. Rules to simplify K-maps

The Karnaugh map uses the following rules for the simplification of expressions by grouping together adjacent cells containing ones

- 1) Groups may not include any cell containing a zero
- 2) Groups may be horizontal or vertical, but not diagonal
- 3) Groups must contain 1, 2, 4, 8, or in general 2^n cells
- 4) Each group should be as large as possible.
- 5) Each cell containing a one must be in at least one group
- 6) Groups may overlap
- 7) Groups may wrap around the table. The leftmost cell in a row may be grouped with the rightmost cell and the top cell in a column may be grouped with the bottom cell
- 8) There should be as few groups as possible, as long as this does not contradict any of the previous rules

D. Simplification

RS PQ	00	01	11	10	
00	1	1	1	1	
01	0	1	1	1	
11	0	0	1	1	
10	0	0	0	1	

TABLE III GROUPED K-MAP

Simplified Boolean expression will be:

$$F(P,Q,R,S) = P'Q' + P'S + RS' + QR$$

III. VERIFICATION & CONCLUSION

The simplified Boolean expression can be implemented using

wget https://raw.githubusercontent.com/parusamanideep /FWC/main/assignment1/src/main.cpp

P, Q, R, S are given as inputs to 2, 3, 4, 5 pins respectively from the 5V and GND lines.

The given Boolean expression is simplified and verified for functionality.