Algebra liniowa

Prof. PK Dr Marek Malinowski

Udostępnione prezentacje z wykładu są wyłącznie do użytku osobistego z zakazem rozpowszechniania w jakikolwiek sposób przy użyciu jakiegokolwiek środku przekazu.

Wykład kończy się oceną. Na test należy przyjść z laptopem (nie tablet, nie telefon), ponieważ test zostanie przeprowadzony na platformie MOODLE. Pozytywna ocena z wykładu potwierdza uzyskanie przez studenta efektu uczenia się:

"EP-1 Zna i rozumie wybrane zagadnienia z zakresu algebry liniowej przydatne do formułowania i rozwiązywania zadań praktycznych związanych z informatyką. Zna podstawowe struktury algebraiczne, zna własności liczb zespolonych, zna własności przestrzeni liniowej, potrafi podać podstawowe własności macierzy."

Wykład - skala ocen:

- 51%-60% ocena 3.0,
- 61%-70% ocena 3.5,
- 71%-80% ocena 4.0,
- 81%-90% ocena 4.5,
- 91%-100% ocena 5.0
- Orugi efekt uczenia się EP-2 (zgodny z sylabusem) zostanie oceniony w ramach Ćwiczeń.

Struktury algebraiczne: grupy, pierścienie, ciała

Niech G oznacza niepusty zbiór, a \circ dobrze określone działanie dwuargumentowe na tym zbiorze.

Definicja.

Parę uporządkowaną (G,\circ) nazywamy **grupą**, jeśli

- **Wewnętrzność**: dla dowolnych elementów $a,b\in G$ ich wynik $a\circ b$ również należy do zbioru G, mówi się wtedy, że zbiór G jest zamknięty ze względu na \circ .
- **2** Łączność: dla wszystkich $a,b,c\in G$ musi zachodzić $(a\circ b)\circ c=a\circ (b\circ c).$
- **Solution Element neutralny**: istnieje element $e \in G$ spełniający dla dowolnego elementu $a \in G$ warunek $a \circ e = e \circ a = a$.
- **4 Odwracalność**: dla każdego $a \in G$ musi istnieć $x \in G$, dla których $a \circ x = x \circ a = e$.

Uwaga.

Jeśli oprócz warunków z powyższej definicji spełniony jest również warunek:

 Przemienność: dla dowolnych elementów $a,b\in G$ spełniona jest równość $a\circ b=b\circ a$,

to (G,\circ) nazywa się grupą przemienną (lub abelową).

Np. Rozważmy zbiór liczb całkowitych ${\bf Z}$ ze zwykłym działaniem dodawania +. Para $({\bf Z},+)$ jest grupą przemienną.

Np. Rozważmy zbiór liczb naturalnych z zerem N_0 ze zwykłym działaniem dodawania +. Para $(N_0,+)$ nie jest grupą. Nie jest spełniony warunek odwracalności.

Np. Rozważmy zbiór liczb rzeczywistych dodatnich \mathbf{R}_+ ze zwykłym działaniem mnożenia · Para (\mathbf{R}_+, \cdot) jest grupą przemienną.

Np. Rozważmy zbiór liczb całkowitych ${\bf Z}$ z działaniem \circ określonym jako $a\circ b=a+b+2$. Para $({\bf Z},\circ)$ jest grupą przemienną.

Np. Rozważmy zbiór $\mathbf{Z_n}=\{0,1,2,\ldots,n-1\}$, gdzie n jest liczbą naturalną, z działaniem $+_n$ dodawania modulo n. Para $(\mathbf{Z_n},+_n)$ jest grupą przemienną.

Arytmetykę modularną stosuje się tam, gdzie występuje cykliczność. Używa się jej w kryptografii, informatyce, przy tworzeniu sum kontrolnych. Zasada działania szyfru RSA oraz Test Millera-Rabina (czyli algorytm określający czy dana liczba jest pierwsza) opierają się na własnościach mnożenia w arytmetyce modularnej liczb całkowitych.

Ważnym przykładem grupy jest zbiór S_n bijekcji przekształcających $\{1,2,\ldots,n\}$ na $\{1,2,\ldots,n\}$ z działaniem o, które jest złożeniem. Takie bijekcje nazywamy też **permutacjami** zbioru $\{1,2,\ldots,n\}$, a S_n - grupą permutacji. Permutacje należące do S_n możemy definiować podając tabelkę funkcji. Zwykle tabelka ma postać

$$\left(\begin{array}{cccc} 1 & 2 & \dots & n \\ a_1 & a_2 & \dots & a_n \end{array}\right).$$

Taka tabelka oznacza funkcję $f:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$ zdefiniowaną wzorami $f(i)=a_i$ dla wszystkich $i=1,2,\ldots,n$. Grupa (S_n,\circ) nie jest przemienna.

Definicja.

Strukturę algebraiczną (G,\oplus,\odot) nazywamy **pierścieniem**, jeśli

- \bullet (G, \oplus) jest grupą przemienną.
- ② Działanie ⊙ jest wewnętrzne.
- Oziałanie ⊙ jest łączne.
- **1** Obustronna rozdzielność działania \odot względem \oplus , tzn. dla wszystkich $a,b,c\in G$ zachodzi $a\odot(b\oplus c)=a\odot b\oplus a\odot c$ oraz $(b\oplus c)\odot a=b\odot a\oplus c\odot a$.

Np. Liczby całkowite z działaniami arytmetycznymi zwykłego dodawania i zwykłego mnożenia $(\mathbf{Z},+,\cdot)$ tworzą pierścień.

Np. Zbiór rzeczywistych funkcji liniowych f(x)=ax+b, gdzie $a,b\in\mathbf{R}$ z dodawaniem i składaniem funkcji nie tworzy pierścienia. Należy zauważyć, że $f_1\circ (f_2+f_3)\neq f_1\circ f_2+f_1\circ f_3$.

Definicja.

Strukturę algebraiczną (K,\oplus,\odot) nazywamy **ciałem**, jeśli

- \bullet (K, \oplus) jest grupą przemienną.
- ② $(K\setminus\{0\},\odot)$ jest grupą przemienną, gdzie 0 oznacza element neutralny w grupie $(K,\oplus).$
- ① Działanie \odot jest jednostronnie rozdzielne względem \oplus , tzn. dla wszystkich $a,b,c\in K$ zachodzi $a\odot(b\oplus c)=a\odot b\oplus a\odot c$ (przemienność \odot zapewnia drugą rozdzielność).
- Np. Zbiór liczb wymiernych \mathbf{Q} ze zwykłymi działaniami $+, \cdot$ tworzy ciało.
- Np. Zbiór liczb rzeczywistych $\mathbf R$ ze zwykłymi działaniami $+, \cdot$ tworzy ciało.

Np. Zbiór $\mathbf{Z_6}=\{0,1,\ldots,5\}$ z dodawaniem i mnożeniem modulo 6 nie jest ciałem. Należy zauważyć, że np. $2\cdot_6 3=0$, a to oznacza, że mnożenie \cdot_6 nie jest działaniem wewnętrznym w $\mathbf{Z_6}\setminus\{0\}$.

Uwaga.

Zbiór $\mathbf{Z}_p = \{0, 1, \dots, p-1\}$ z dodawaniem i mnożeniem modulo p jest ciałem wtedy i tylko wtedy, gdy p jest liczbą pierwszą.

Liczby pierwsze: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 itd.

Uwaga.

Rozważmy zbiór ${f R}^2$ z działaniami \oplus, \odot określonymi jako

$$(x,y)\oplus(z,t)=(x+z,y+t),\quad (x,y)\odot(z,t)=(xz-yt,yz+xt),$$

gdzie $(x,y),(z,t)\in\mathbf{R}^2$. Struktura $(\mathbf{R}^2,\oplus,\odot)$ jest ciałem.

Jako ćwiczenie uzasadnić powyższą Uwagę.

Uwaga.

Każde ciało jest pierścieniem.

Zastosowania grup, pierścieni i ciał w informatyce

Struktury algebraiczne takie jak grupy, pierścienie i ciała mają wiele zastosowań w informatyce – często w miejscach, gdzie ich obecność może nie być od razu oczywista. Oto jak każda z nich się przydaje.

Grupy abelowe to struktury, które opisują symetrie i operacje odwracalne. Ich zastosowania obejmują:

- Kryptografia: Grupy cykliczne są podstawą algorytmów takich jak Diffie-Hellman czy ElGamal.
- Kompresja danych: Permutacje (np. grupa S_n) są używane w algorytmach kodowania.
- **Grafika komputerowa**: Grupy transformacji są używane do manipulacji obiektami w przestrzeni 2D/3D.
- Teoria automatów: Grupy mogą opisywać symetrie w automatach i językach formalnych.

Pierścienie łączą dodawanie i mnożenie w jednej strukturze. Ich zastosowania to:

- Arytmetyka modularna: Wykorzystywana w kryptografii (np. RSA).
- Kodowanie informacji: Pierścienie są używane w teorii kodów (np. kody cykliczne).
- Algebra komputerowa: Systemy CAS operują na pierścieniach wielomianów.
- Bazy danych: Algebra relacyjna korzysta z podobnych zasad.

Ciała to pierścienie, w których każdy niezerowy element ma odwrotność. Są szczególnie ważne w:

- Kryptografii: Ciała skończone (np. $\mathrm{GF}(p)$, $\mathrm{GF}(2^n)$) są podstawą szyfrów symetrycznych.
- Teorii kodów: Kody liniowe (np. Hamminga, Reed-Solomon) działają nad ciałami skończonymi.
- **Grafice komputerowej**: Operacje na kolorach i pikselach mogą być modelowane jako działania w ciałach.
- **Algorytmach numerycznych**: Ciała liczb rzeczywistych i zespolonych są podstawą obliczeń.

Zadanie

Rozważmy zbiór $G=\{1,-1\}$ z działaniem mnożenia. Jest to bardzo mała, ale nietrywialna grupa, zwana grupą znaków.

- ullet Zbuduj tabelę dla mnożenia w zbiorze $\{1,-1\}$.
- Sprawdź wszystkie warunki grupy.
- Uzasadnij, że jest to grupa abelowa.
- Po kolejnym wykładzie, zastanów się, czy $\{1,-1,i,-i\}$ z mnożeniem w liczbach zespolonych tworzy grupę.