AN =)(2)

MT2020029

(#) We have to apply FP growth on given datawe need to convert this in Horizontal

Transaction	1 itemset
TI	A4B,T
T2	A,C
1- T3	A,S
T ₄	A,B,C
Ts	Bos
T6 ,	Ass
T7	B,5
T8	A,B,S,T
Ta	AgBoS

For Frequency

A	7
B	6
C	2
5	6
T	2

AFAN Sorting

Now Frequent Pathern set, accounding to min support

ordered item set

Ti	A,13,T
Tr	AIC
T3 .	4,5
TU	A,B,C
Ts	BIS
To	A,5
Tz	BIS
T8	A, B, S,T
Ta	A,BIS
	1.09

Now insut itemset in Tree

(2,4) io a core Point.

Doing similar calculation for all the other points we get . //

Points	N1: 1 1	
(1,4)	Nieghbourhood Points	
(2,4)	(2.3)(2.4)(3.4)(2.6)(2.5,5)	0 (0)
(3,4)	(14) (2,3)(3A) (2,6) (3,6) (2.5,5)	
(2,3)	(14)(24)(2,3)(2,6)(3,6)(2.5,5)	
(45)	(14) (24) (3,4) (2.5,5)	N H
(2,6)	(3,6) (2.5,5) (1,4) (2,4) (3,4)	1
	(48) (26) (2°C) (3,4) (2,4)	7
(6.9)	(6/9) (3/6)	7 - 7
(2/8)	(7,8) (2,7) (7,25)	2011
7,7.5	Cal Day D	100
7,7	(6,9) (7,1)	
7,6	(20) (7,4.5) (7,6)	
AC -	(7) (7,7·5)	W CA
		7

 $(C_{1}+)(C_{1}+)(C_{3}+)(C_{3}+)(C_{2}+)(C_{3}+)(C_{3}+)(C_{3}+)(C_{4}+)(C_{$

All the points belongs in 1 cluster. There are no hoise of outlier points (4,8) is a border point.

D'All points other than (4,8) are core points.

and to protect at mills

(5. KI-1812 (Som 1 2.1%

CM12020029 oeus=36) Let us consider the derived output to be o When the inputs X, and Xz are equal=1 y3 = 8iq (x, w13 + x2 w23 - 03) 1+e-(1*·5+1×·4-1*·8) = .5256 JA= 8ig (x, w,4+x2w24-64) 1+ c- (1x.9+1x0.4-1x0.8) Now calculating the output of neuron 5, ys=8ig(y3w35+ y4w95-05) 1+e-(-052×102+08081×1-1×·3) = .5097 then evor obtained, is=ts-ys=0-0.5097 =-0.5097. Where to istanget value

To update the wieghts and from in all networks. ue propogate the error backwards./ Calculating error gradient for névron 5 = 8= 85(1-72) es =·5097(1-·5097)(-·5097) = -0.1274 Change in wieghts-9 4 635 = ×. 73.85 - 0.1 * .5250 ×(-.1275) = -,0067 AW45 = 4.74.84.85= [-0.0112] $\Delta \Theta_{5} = -0.00$ Gradient for newson - 9 [S3 = 0.0381] [S4= -0.0147 Determing the wienghts correction -A W13 = .1*1*0.381 = 0.0038 A W23 = 1/1/1 = 0.0038 A & = - 11 = -0.0038AWIA (-1/x (-0.14) = -0.0015 A w2, + (·1×-1)*(-.047) = 0.0015 181= ·1*(-1)*(-0.017) = 0.0015