Problem H. Palindrome Pairs

Time limit 2000 ms **Mem limit** 262144 kB

After learning a lot about space exploration, a little girl named Ana wants to change the subject.

Ana is a girl who loves palindromes (string that can be read the same backwards as forward). She has learned how to check for a given string whether it's a palindrome or not, but soon she grew tired of this problem, so she came up with a more interesting one and she needs your help to solve it:

You are given an array of strings which consist of only small letters of the alphabet. Your task is to find how many palindrome pairs are there in the array. A palindrome pair is a pair of strings such that the following condition holds: at least one permutation of the concatenation of the two strings is a palindrome. In other words, if you have two strings, let's say "aab" and "abcac", and you concatenate them into "aababcac", we have to check if there exists a permutation of this new string such that it is a palindrome (in this case there exists the permutation "aabccbaa").

Two pairs are considered different if the strings are located on **different indices**. The pair of strings with indices (i, j) is considered **the same** as the pair (j, i).

Input

The first line contains a positive integer N ($1 \le N \le 100\,000$), representing the length of the input array.

Eacg of the next N lines contains a string (consisting of lowercase English letters from 'a' to 'z') — an element of the input array.

The total number of characters in the input array will be less than $1\,000\,000$.

Output

Output one number, representing **how many palindrome pairs** there are in the array.

Sample 1

Input	Output
3 aa bb cd	1

Sample 2

Input	Output
6 aab abcac dffe ed aa aade	6

Note

The first example:

1. $aa + bb \rightarrow abba$.

The second example:

1. $aab + abcac = aababcac \rightarrow aabccbaa$

2. aab + aa = aabaa

3. $abcac + aa = abcacaa \rightarrow aacbcaa$

4. $dffe + ed = dffeed \rightarrow fdeedf$

5. $dffe + aade = dffeaade \rightarrow adfaafde$

 $6. \text{ ed} + \text{aade} = \text{edaade} \rightarrow \text{aeddea}$