Теория вероятностей и математическая статистика

MIPT DIHT

24 января 2015 г.

1 Билет №1

1.1 Вероятностное пространство, аксиомы Колмогорова, свойства вероятностной меры

В основе теории вероятностей лежит понятие вероятностного пространства (Ω, \mathcal{F}, P) (т.н "тройки Колмогорова")

- $\begin{array}{ll} \boxed{1} \ \Omega-\text{пространство элементарных событий.} \\ \omega\in\Omega-\text{называется элементарным событием.} \\ \text{В результате случайного эксперимента получаем один и ровно один элемент }\Omega. \end{array}$
- (2) $\mathcal{F}-\sigma$ -алгебра подмножеств на Ω . Элементы \mathcal{F} называются событиями. $\forall A\in\mathcal{F} \implies A\subset\Omega$.

Definition 1. Система подмножеств \mathcal{F} множества Ω называется алгеброй, если:

- 1. $\Omega \in \mathcal{F}$
- $2. \ \forall A, B \in \mathcal{F} \implies A \cap B \in \mathcal{F}$
- 3. $\forall A, B \in \mathcal{F} \implies A \triangle B \in \mathcal{F}$

Definition 2. $\overline{A} = \Omega \setminus A$, называется дополнительным событием к событию A.

Example 1.

- 1. $\mathcal{F}_* = \{\varnothing, \Omega\}$ тривиальная алгебра
- 2. $\mathcal{F}^*=2^{\Omega}$ (все подмножества $\Omega)$ дискретная алгебра
- 3. $\mathcal{F} = \{\varnothing, A, \overline{A}, \Omega\}$ алгебра "порожденная" A
- 4. Конечные объединения подмножеств вида $[a,b), (-\infty;c), [d,+\infty)$ образуют алгебру.

Definition 3. Система подмножеств $\mathcal F$ множества Ω называется σ -алгеброй, если:

- 1. \mathcal{F} алгебра
- 2. $\forall \{A_n, n \in \mathbb{N}\}, A_n \in \mathcal{F} \ \forall n \implies \bigcup_{n=1}^{+\infty} A_n \in \mathcal{F}$

Example 2.

1. \mathcal{F}_* — тривиальная σ -алгебра

- 2. \mathcal{F}^* дискретная σ -алгебра
- 3. \forall конечная алгебра является σ -алгеброй.
- 4. $[a, b), (-\infty; c), [d, +\infty)$ не σ -алгебра.
- (3) P вероятностная мера на (Ω,\mathcal{F})

Definition 4. Пара (Ω, \mathcal{F}) множества Ω с заданной на нем σ -алгеброй \mathcal{F} называется измеримым пространством.

Definition 5. Отображение $P \colon \mathcal{F} \to [0;1]$ называется вероятностной мерой(или вероятностью) на (Ω, \mathcal{F}) , если:

- 1. $P(\Omega) = 1$
- 2. Для \forall последовательности $\{A_n, n \in \mathbb{N}\}$, $A_n \in \mathcal{F} \ \forall n$ такой, что $\forall i \neq j: A_i \cap A_j = \emptyset$ выполнено свойство счетной аддитивности:

$$P\left(\bigsqcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

Statement 1.

1.
$$P(\emptyset) = 0$$

2. Если
$$A\cap B=\varnothing$$
, то $P(A\cup B)=P(A)+P(B)$ (свойство конечной аддитивности)

3.
$$P(\overline{A}) = 1 - P(A)$$

4.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

5.
$$\forall A_1, \dots, A_m \in \mathcal{F}$$

$$P\left(\bigcup_{n=1}^m A_n\right) \leqslant \sum_{n=1}^m P(A_n)$$

6. Ecau $A \subset B$, mo $P(A) \leqslant P(B)$

Proof

1.
$$\forall n \ A_n = \varnothing \implies P\left(\bigsqcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n) = \sum_{n=1}^{\infty} P(\varnothing) < +\infty \implies P(\varnothing) = 0$$

2.
$$A_1 = A, A_2 = B, A_3 = A_4 = \dots = A_n = \dots = \emptyset$$

$$P\left(\bigsqcup_{n=1}^{\infty} A_n\right) = P(A \cup B) = \sum_{n=1}^{\infty} P(A_n) = P(A) + P(B)$$

3.
$$\Omega = A \sqcup \overline{A} \implies |no 2| \implies 1 = P(A) + P(\overline{A})$$

4.
$$A \cup B = A \sqcup (B \setminus (A \cap B))$$

 $\implies P(A \cup B) = P(A) + P(B \setminus (A \cap B))$

$$B = (A \cap B) \sqcup (B \setminus (A \cap B))$$

$$\implies P(B) = P(A \cap B) + P(B \setminus (A \cap B))$$

Осталось вычесть одно равенство из другого.

5. Если m = 2 - mo это пункт 4).

По индукции

$$P\left(\bigcup_{n=1}^{m}A_{n}\right)\leqslant P(A_{m})+P\left(\bigcup_{n=1}^{m-1}A_{n}\right)\leqslant \left|\mathit{индукция}\right|\leqslant P(A_{m})+\sum_{n=1}^{m-1}P(A_{n})=\sum_{n=1}^{m}P(A_{n})$$

6. Следует из 4).

Definition 6. Будем обозначать $A_n \downarrow A$ при $n \to +\infty$, если для последовательности событий $\{A_n, n \in \mathbb{N}\}$ выполнены свойства:

1.
$$A_n \supset A_{n+1} \supset \dots$$

2.
$$A = \bigcap_{n=1}^{\infty} A_n$$

Theorem 1 (О непрерывности в нуле вероятностной меры).

 $\Pi y cmb \ (\Omega, \mathcal{F})$ - измеримое пространство, а $P \colon \mathcal{F} \to [0, 1]$ удовлетворяет двум свойствам:

1.
$$P(\Omega) = 1$$

2. Р - конечно-аддитивна.

Тогда P - вероятностная мера $\iff P$ - непрерывна в нуле (т.е если $A_n \downarrow \varnothing$, то $P(A_n) \to 0$).

Proof

 (\Longrightarrow) Пусть P - вероятностная мера, а $A_n \downarrow \varnothing$.

Рассмотрим $B_m = A_m \setminus A_{m+1}$. Тогда в силу $\bigcap_{n=1}^\infty A_n = \varnothing \implies \bigcup_{n=1}^\infty B_m = A_n$

Тогда в силу счетной аддитивности $P(A_n) = \sum\limits_{m=0}^{\infty} P(B_m)$

Ho ряд $P(A_1) = \sum\limits_{m=1}^{\infty} P(B_m)$ сходится $\Longrightarrow \sum\limits_{m=n}^{\infty} P(B_m)$ есть остаток сходящего ряда \Longrightarrow $P(A_n) \rightarrow 0$

(\longleftarrow) Пусть P непрерывна в нуле. Покажем её счетную аддитивность:

Пусть $A_n, n \in \mathbb{N}$ т.ч $A_n \in F \ \forall n$ и $A_i \cap A_j = \emptyset$ при $i \neq j$

Рассмотрим $B_m=\bigsqcup_{n=m}^{+\infty}A_n$. Тогда $B_m\supset B_{m+1}\supset\dots$ Покажем, что $\bigcap B_m=\varnothing$.

Пусть $\omega \in \bigcap B_m \stackrel{m}{\Longrightarrow} \omega \in B_1 \implies \exists k : \omega \in A_k \implies \omega \notin B_{k+1}$. Противоречие.

Следовательно, $\bigcap B_m = \emptyset$ и в силу непрерывности в нуле $P(B_m) \to 0$.

Далее
$$P\left(\bigsqcup_{n=1}^{\infty}A_{n}\right)=P\left(\bigsqcup_{n=1}^{m}A_{m}\sqcup B_{m+1}\right)=|$$
конечная аддитивность $|=\sum_{m=1}^{m}B_{m}(1,1)$

$$= \sum_{n=1}^{m} P(A_n) + P(B_{m+1}) \to \sum_{n=1}^{\infty} P(A_n), \ m \to \infty$$

$$\implies P\left(\bigsqcup_n A_n\right) = \sum_n P(A_n) \bullet$$

Corollary 1 (непрерывность вероятностной меры).

- 1. Ecau $A_n \downarrow A$, mo $P(A_n) \rightarrow P(A)$
- 2. Если $A_n \uparrow A$ (m.e $A_n \subset A_{n+1} \subset \ldots, u A = \bigcup_n A_n, mo P(A_n) \to P(A)$

Proof

- 1. Надо рассмотреть $B_n = A_n \setminus A$
- 2. Надо рассмотреть $B_n = \overline{A_n}$

Условные вероятности. Формула полной вероятности. Формула Бай-1.2 eca

Пусть (Ω, \mathcal{F}, P) – вероятностное пространство.

Definition 7. Для $\forall A \in \mathcal{F}$, т.ч. P(A) > 0 условной вероятностью события $B \in \mathcal{F}$ при условии Aназывают

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

если же P(A) = 0, то $P(B \mid A) = 0$, $\forall B \in \mathcal{F}$

Definition 8. Систему событий $\{B_n\}_{n=1}^{\infty}$ называют разбиением множества Ω , если:

- 1. $\forall i \neq j : B_i \cap B_j = \emptyset$
- $2. \bigsqcup_{n=1}^{\infty} B_n = \Omega$

В этом случае также говорят, что $\{B_n\}_{n=1}^{\infty}$ образует полную группу несовместных событий.

Lemma 1 (формула полной вероятности).

Пусть $\{B_n\}_{n=1}^{\infty}$ - разбиение Ω . Тогда для $\forall A \in \mathcal{F}$:

$$P(A) = \sum_{n=1}^{\infty} P(A \mid B_n) P(B_n)$$

Proof Рассмотрим событие А

$$\begin{split} P(A) &= P(A \cap \Omega) = P\left(A \cap \bigsqcup_{n=1}^{\infty} B_n\right) = P\left(\bigsqcup_{n=1}^{\infty} A \cap B_n\right) = \\ &= |\mathit{счетная} \ \mathit{addumuehocmb}| = \sum_{n=1}^{\infty} P(A \cap B_n) = \sum_{n=1}^{\infty} P(A \mid B_n) P(B_n) \end{split}$$

Lemma 2 (формула Байеса).

Пусть $\{B_n\}_{n=1}^{\infty}$ – разбиение Ω , а $A \in \mathcal{F} : P(A) > 0$. Тогда $\forall n$

$$P(B_n \mid A) = \frac{P(A \mid B_n)P(B_n)}{\sum_{k=1}^{\infty} P(A \mid B_k)P(B_k)}$$

Definition 9. $P(B_n)$ называется априорной вероятностью.

 $P(B_n \mid A)$ называется *апостериорной вероятностью* (относительная вероятность при условии известного результата эксперимента)

2 Билет №2

2.1 Случайные величины и векторы. Их характеристики: распределение вероятностей, функция распределения, ее свойства, σ =алгера, порожденная с. в.

Definition 10. Пусть (Ω, \mathcal{F}) и (E, \mathcal{E}) – два измеримых пространства. Отображение $X \colon \Omega \to E$ называется случайным элементом, если оно является \mathcal{F} - измеримым. (или $\mathcal{F} \setminus \mathcal{E}$ - измеримым) т.е $\forall B \in \mathcal{E}$

$$\{x \in B\} = X^{-1}(B) = \{\omega \mid X(\omega) \in B\} \in \mathcal{F}.$$

Definition 11.

Если $(E,\mathcal{E})=(\mathbb{R},B(\mathbb{R})),$ то случайный элемент X называется случайной величиной.

Если $(E,\mathcal{E})=(\mathbb{R}^n,B(\mathbb{R}^n)),$ то X называется случайным вектором.

Corollary 2.

1. X — случайная величина на $(\Omega, \mathcal{F}) \iff \forall x \in \mathbb{R} : \{X \leqslant x\} = \{\omega \mid X(\omega) \leqslant x\} \in \mathcal{F}$

2. $X=(X_1,\ldots,X_n)$ – случайный вектор на $(\Omega,\mathcal{F})\iff \forall i:X_i$ – случайная величина.

Proof

(⇒) 1) и 2) очевидно из определения случайных величин и векторов

 (\Leftarrow)

1. Рассмотрим систему $\mathcal{M} = \{ (-\infty; x] \mid x \in \mathbb{R} \}$. Тогда $\sigma(\mathcal{M}) = B(\mathbb{R})$. По условию $X^{-1}(B) \in \mathcal{F}$ для $\forall B \in \mathcal{M}$. По лемме о достаточном условии измеримости получим, что X – случайная величина. 2. Рассмотрим систему $\mathcal{M} = \{ B_1 \times \dots B_n \mid B_i \in B(\mathbb{R}) \}$ Тогда $\sigma(\mathcal{M}) = B(\mathbb{R}^n)$

$$X^{-1}(B_1 \times ... \times B_n) = \{ \omega \mid X_1(\omega) \in B_1, ..., X_n(\omega) \in B_n \} = \bigcap_{i=1}^n X_i^{-1}(B_i) \in \mathcal{F}$$

 $\implies X^{-1}(B) \in \mathcal{F}$ для $\forall B \in \mathcal{M}$. По лемме получаем, что X – случайный вектор.

• Распределение случайной величины вектора.

Definition 12. Пусть (Ω, \mathcal{F}, P) – вероятностное пространство, ξ - случайная величина на нем. Тогда распределением ξ называется вероятностная мера P_{ξ} на $(\mathbb{R}, B(\mathbb{R}))$, заданная по правилу.

$$P_{\xi}(B) = P(\xi \in B), \ B \subset B(\mathbb{R}).$$

Definition 13. Пусть ξ - случайный вектор размерности n на (Ω, \mathcal{F}, P) . Тогда его распределением P_{ξ} называется вероятностая мера на $(\mathbb{R}^n, B(\mathbb{R}^n))$, заданная по правилу

$$P_{\xi}(B) = P(\xi \in B), \ B \in B(\mathbb{R}^n)$$

Функция распределения

Definition 14. Пусть (Ω, \mathcal{F}, P) – вероятностное пространство. ξ - случайная велличина на нем. Тогда функцией распределения случайной величины ξ называется

$$F_{\xi}(x) = P(\xi \leqslant x)$$

Definition 15. Случайная величина ξ называется

- дискретной, если её функция распределения дискретная.
- абсолютно непрерывной, если её функция распределения абсолютно непрерывна. В этом случае

$$P(\xi \leqslant x) = F_{\xi}(x) = \int_{-\infty}^{x} p_{\xi}(t) dt$$

и функция $p_{\varepsilon}(t)$ называется плотностью случайной величины ξ .

- сингулярной, если её функция распределения сингулярна
- непрерывной, если её функция рапределения непрерывна.

Definition 16. Пусть $\xi = (\xi_1, \dots, \xi_n)$ – случайный вектор на (Ω, \mathcal{F}, P) . Тогда его функцией распределения называется

$$F_{\xi}(x_1,\ldots,x_n) = P(\xi_1 \leqslant x_1,\ldots,\xi_n \leqslant x_n).$$

Порожденная σ -алгебра

Definition 17. Пусть ξ - случайная величина на (Ω, \mathcal{F}, P) . Тогда σ -алгеброй \mathcal{F}_{ξ} , порожденной ξ называется

$$\mathcal{F}_{\xi} = \{ \{ \xi \in B \} \mid B \in B(\mathbb{R}) \}$$

Definition 18. Если ξ – случайный вектор размерности n на (Ω, \mathcal{F}, P) , то σ -алгеброй, порожденной ξ называется

$$\mathcal{F}_{\xi} = \{ \{ \xi \in B \} \mid B \in B(\mathbb{R}^n) \}$$

2.2 Примеры конкретных распределений

3 Билет №3

3.1 Матожидание случайной величины: опр-ние для простых, неотрицательных, произвольних с.в.

Пусть (Ω, \mathcal{F}, P) – вероятностное пространство, ξ - случайная величина на нем. Что такое $E\xi$? Простые случайные величины.

Пусть ξ – простая случайная величина, т.е.

$$\xi = \sum_{k=1}^{n} x_k I_{A_k},$$

где $x_1 \dots x_n$ – различные числа, A_1, \dots, A_n – разбиение $\Omega,$ т.е. $A_k = \{\xi = x_k\}$

Definition 19. Для простой случайной величины ξ её математическим ожиданием называют

$$E\xi = \sum_{k=1}^{n} x_k P(A_k)$$

Definition 20. Пусть ξ – неотрицательная случайная величина, а $\{\xi_n, n \in \mathbb{N}\}$ – \forall последовательность неотрицательных простых случайных величин, т.ч. $\xi_n \uparrow \xi$.

Тогда $E\xi_n\leqslant E\xi_{n+1}\implies \exists$ предел $E\xi_n$ и

$$E\xi := \lim_{n \to \infty} E\xi_n$$

Definition 21. Пусть ξ – произвольная случайная величина, $\xi = \xi^+ - \xi^-$

- 1. Если $E\xi^+$ и $E\xi^-$ конечны, то $E\xi:=E\xi^+-E\xi^-$
- 2. Если $E\xi^+=+\infty$ и $E\xi^-$ конечно, то $E\xi:=+\infty$
- 3. Если $E\xi^+$ конечно и $E\xi^-=+\infty,$ то $E\xi:=-\infty$
- 4. Если $E\xi^+ = E\xi^- = +\infty$, то $E\xi$ не существует(не определено)

Remark.

1. Математическое ожидание случайной величины это интеграл Лебега по вероятностной мере P

$$E\xi := \int_{\Omega} \xi dP = \int_{\Omega} \xi(\omega) P(d\omega)$$

- 2. $E\xi$ конечно $\iff E|\xi|$ конечно.
- 3. Множество случ. величин ξ на (Ω, \mathcal{F}, P) с условием: $E\xi$ конечно, образует пространство $L^1(\Omega, \mathcal{F}, P)$. Далее мы убедимся, что это линейное пространство.

3.2 Основные свойства матожидания (док-ва только для простых с.в.)

7

- 1. $\xi = c = const \implies E\xi = c$
- 2. Линейность

$$E(a\xi + b\eta) = aE\xi + bE\eta, \quad a, b \in \mathbb{R}$$

Proof Обозначим $\zeta=a\xi+b\eta$, пусть ξ принимает значения $x_1\dots x_n,\ \eta$ — значения $y_1\dots y_m,\ \zeta$ — значения $z_1\dots z_l$

Обозначим $C_{k,j} = \{\xi = x_k, \eta = y_j\}.$ Тогда

$$E\zeta = \sum_{i=1}^{l} z_i P(\zeta = z_i) = \sum_{i=1}^{l} z_i \sum_{\substack{k,j:\\ ax_k + by_i = z_i}} P(\xi = x_k, \eta = y_j) =$$

$$\sum_{i=1}^{l} \sum_{\substack{k,j:\\ ax_k + by_j = z_i}} (ax_k + by_j) P(\xi = x_k, \eta = y_j) =$$

$$\sum_{k=1}^{n} \sum_{j=1}^{m} (ax_k + by_j) P(\xi = x_k, \eta = y_j) =$$

$$\sum_{k=1}^{n} ax_k P(\xi = x_k) + \sum_{j=1}^{m} by_j P(\eta = y_j) = aE\xi + bE\eta$$

3. Если $\xi\geqslant 0$, то $E\xi\geqslant 0$ **Proof** Если $\xi\geqslant 0$, то все $x_k\geqslant 0\implies E\xi\geqslant 0$ •

4. Если $\xi \leqslant \eta$, то $E\xi \leqslant E\eta$ **Proof** Рассмотрим $\zeta = \eta - \xi \geqslant 0$. По свойству 3

$$0 \leqslant E\zeta = E(\eta - \xi) = E\eta - E\xi$$

3.3 Дисперсия, ковариация, их св-ва

Definition 22. Дисперсией с.в. ξ называют

$$D\xi = E(\xi - E\xi)^2$$
, если $E\xi$ существует

Definition 23. Ковариацией случайных величин ξ и η называют

$$cov(\xi, \eta) = E(\xi - E\xi)(\eta - E\eta)$$

Если $cov(\xi, \eta) = 0$, то ξ и η называются некоррелированными.

Если $D\xi$ и $D\eta$ – конечны и положительны, то можно определить расстояние

$$\rho(\xi, \eta) = \frac{\text{cov}(\xi, \eta)}{\sqrt{D\xi D\eta}}$$

которое называется коэффициентом корреляции ξ и η

Lemma 3 (свойства дисперсии и ковариации).

Если все математические ожидания конечны, то

- 1. Ковариация билинейна.
- 2. $cov(\xi, \eta) = E\xi\eta E\xi E\eta$

$$D\xi = cov(\xi, \xi) = E\xi^2 - (E\xi)^2$$

3.
$$D(c\xi) = c^2 D\xi, D(\xi + c) = D\xi$$

4. Неравенство Коши-Буняковского.

$$|E\xi\eta|^2 \leqslant E\xi^2 E\eta^2$$

5. $|\rho(\xi,\eta)| \le 1$, причем $\rho(\xi,\eta) = 1 \iff \xi \ u \ \eta - n$.н. линейно зависимы.

Proof

Свойства 1) - 3) легко вытекают из свойств математического ожидания.

4. Рассмотрим для $\lambda \in \mathbb{R}$:

$$f(\lambda) = E(\xi + \lambda \eta)^2 \geqslant 0$$

Ho
$$f(\lambda) = E\xi^2 + 2E\xi\eta\lambda + \lambda^2E\eta^2 \geqslant 0 \iff$$
 дискриминант $\leqslant 0$, т.е. $4[(E\xi\eta)^2 - E\xi^2E\eta^2] \leqslant 0$

5. Рассмотрим $\xi_1 = \xi - E\xi$, $\eta_1 = \eta - E\eta$

Тогда
$$\operatorname{cov}(\xi,\eta) = E\xi_1\eta_1, \quad D\xi = E\xi_1^2, \quad D\eta = E\eta_1^2$$

$$\implies |\rho(\xi,\eta)| = \left| \frac{E\xi_1\eta_1}{\sqrt{E\xi_1^2E\eta_1^2}} \right| \leqslant 1$$
, по нер-ву Коши-Буняковского.

При этом $|\rho(\xi,\eta)|=1\iff$ дискриминант $=0\iff\exists!\lambda_0\in\mathbb{R}$ т.ч. $f(\lambda_0)=0.$ т.е. $E(\xi_1+\lambda_0\eta_1)^2=0$

$$\implies \xi_1 + \lambda_0 \eta_1 = 0$$
 п.н. т.е.

$$\xi = E\xi - \lambda_0(\eta - E\eta)$$
 п.н.

Corollary 3. Если ξ_1, \ldots, ξ_n – попарно некоррелируют, $D\xi_i < +\infty$, тогда

$$D(\xi_1 + \dots \xi_n) = \sum_{k=1}^n D\xi_k$$

Definition 24. Пусть $\xi = (\xi_1, ..., \xi_n)$ – случ. вектор.

Тогда его мат. ожиданием называется вектор из мат. ожиданий его компонент:

$$E\xi = (E\xi_1, \dots, E\xi_n)$$

Definition 25. Дисперсией вектора ξ называется его матрица ковариаций:

$$D\xi = \left\| \operatorname{cov}(\xi_i, \xi_j) \right\|_{i,j=1}^n$$
 — матрица $n \times n$

4 Билет №4

4.1 Сходимость случайных величин: по вероятности, по распределению, почти наверное, в среднем

Definition 26.

1. Последовательность случайных величин $\{\xi_n, n \in \mathbb{N}\}$ сходится по вероятности к случайной величине ξ (обозначение $\xi_n \xrightarrow{p} \xi$), если для $\forall \varepsilon > 0$:

$$P(|\xi_n - \xi| \geqslant \varepsilon) \xrightarrow[n \to \infty]{} 0$$

2. Последовательность случайных величин $\{\xi_n, n \in \mathbb{N}\}$ сходится с вероятностью 1 к случайной величине ξ (или сходится noumu наверное), если

9

$$P(\omega : \lim_{n \to \infty} \xi_n(\omega) = \xi(\omega)) = 1$$

Обозначения: $\xi_n \xrightarrow{\text{п.н.}} \xi, \; \xi_n \to \xi$ п.н. или $\xi_n \to \xi$ Р-п.н.

3. Последовательность случайных величин $\{\xi_n, n \in \mathbb{N}\}$ сходится в среднем порядка p > 0 к случайной величине ξ (или сходится в пространстве L^p), если

$$E|\xi_n - \xi|^p \xrightarrow[n \to \infty]{} 0$$

Обозначение: $\xi_n \xrightarrow{L^p} \xi$

4. Последовательность случайных величин $\{\xi_n, n \in \mathbb{N}\}$ сходится по распределению к случайной величине ξ , если для \forall ограниченой непрерывной φ -ции f(x) выполнено

$$Ef(\xi_n) \xrightarrow[n \to \infty]{} Ef(\xi)$$

Обозначение: $\xi_n \xrightarrow{d} \xi$

4.2 Связь между сходимостями (б/д). Теорема о наследовании сходимости

Theorem 2 (взаимоотношение различных видов сходимости).

Выполнены соотношение

1.
$$\xi_n \xrightarrow{n. \mu} \xi \implies \xi_n \xrightarrow{P} \xi$$

$$2. \ \xi_n \xrightarrow{L^P} \xi \implies \xi_n \xrightarrow{P} \xi$$

$$3. \ \xi_n \xrightarrow{P} \xi \implies \xi_n \xrightarrow{d} \xi$$

5 Билет №5

5.1 Неравенства Маркова и Чебышева. ЗБЧ в форме Чебышева

(1) Неравенство Маркова

Пусть $\xi\geqslant 0$ — неотрицательная случайная величина.

Тогда для
$$\forall \varepsilon > 0$$
 :
$$\boxed{P(\xi \geqslant \varepsilon) \leqslant \frac{E\xi}{\varepsilon}}$$

$$\mathbf{Proof}\ P(\xi\geqslant\varepsilon)=E\ I\{\xi\geqslant\varepsilon\}\leqslant E\left(\frac{\xi}{\varepsilon}\ I\{\xi\geqslant\varepsilon\}\right)\leqslant E\left(\frac{\xi}{\varepsilon}\right)=\frac{E\xi}{\varepsilon}\ \bullet$$

(2) Неравенство Чебышева

Если
$$D\xi<+\infty,$$
 то для $\forall \varepsilon>0$: $P(|\xi-E\xi|\geqslant \varepsilon)\leqslant \frac{D\xi}{\varepsilon^2}$

Proof

$$P(|\xi - E\xi| \geqslant \varepsilon) = P(|\xi - E\xi|^2 \geqslant \varepsilon^2) \leqslant |\text{нер-во Mapkoba}| \leqslant \frac{E \left|\xi - E\xi\right|^2}{\varepsilon^2} = \frac{D\xi}{\varepsilon^2}$$

Theorem 3 (Закон больших чисел в форме Чебышева).

Пусть $\{\xi_n, n \in \mathbb{N}\}$ – последовательность попарно некоррелированных случайных величин, т.ч. $\forall n : D\xi_n \leqslant C$.

Обозначим
$$S_n = \xi_1 + \ldots + \xi_n$$
. Тогда

$$\frac{S_n - ES_n}{n} \xrightarrow{P} 0, \quad n \to \infty$$

Proof

$$P\left(\left|\frac{S_n - ES_n}{n}\right| \geqslant \varepsilon\right) \leqslant |\text{нер-во Чебышева}| \leqslant \frac{D\left(\frac{S_n - ES_n}{n}\right)}{\varepsilon^2} = \frac{D(S_n - ES_n)}{n^2 \varepsilon^2} = \frac{DS_n}{n^2 \varepsilon^2} = |\xi_i \text{ и } \xi_j - \text{некорр.}| = \frac{\sum_{j=1}^n D\xi_j}{n^2 \varepsilon^2} \leqslant \frac{Cn}{n^2 \varepsilon^2} \xrightarrow[n \to \infty]{} 0$$

Смысл ЗБЧ:

 $\xi_1 \dots \xi_n \dots$ – результаты независимых проведений одного и того же эксперимента.

Тогда их среднее арифметическое сходится к среднему значению результата одного эксперимента $E\xi_i$

Если ξ_i – индикаторы наступления некоторого события A:

$$\xi_i = I\{A \text{ наступило в } i\text{-м эксперименте}\}$$

то

$$\frac{\xi_1 + \ldots + \xi_n}{n} \xrightarrow{P} E\xi_i = P(A)$$

Таким образом ЗБЧ — это принцип устойчивости частот.

5.2 УЗБЧ(все) (б/д)

Theorem 4 (Усиленный закон больших чисел в форме Колмогорова-Хинчина).

Пусть $\{\xi_n, n \in \mathbb{N}\}$ – независимые с.в. т.ч. $D\xi_n < +\infty \forall n$.

Пусть последовательность $\{b_n,\ n\in\mathbb{N}\}$ т.ч. $b_n>0, b_n\uparrow+\infty$ и

$$\sum_{n=1}^{\infty} \frac{D\xi_n}{b_n^2} < +\infty$$

Обозначим $S_n = \xi_1 + \dots \xi_n$. Тогда

$$\boxed{\frac{S_n - ES_n}{b_n} \xrightarrow{n.n.} 0} \quad (npu \ n \to \infty)$$

Theorem 5 (Усиленный закон больших чисел в форме Колмогорова).

Пусть $\{\xi_n, n \in \mathbb{N}\}$ – независимые одинаково распределенные случ. величины (н.о.р.с.в), т.ч: $E|\xi_i| < +\infty$.

Tог ∂a

$$\frac{\xi_1 + \ldots + \xi_n}{n} \xrightarrow{n.n.} m = E\xi_1$$

6 Билет №6

6.1 Характеристические функции с.в и векторов. Их св-ва

Definition 27. Характеристической функцией с.в. ξ называется

$$\varphi_{\varepsilon}(t) = Ee^{it\xi}, \quad t \in \mathbb{R}$$

Remark. Характеристическая функция, вообще говоря, явл. комплекснозначной. Мы понимаем $Ee^{it\xi}$ как

$$Ee^{it\xi} = E\cos(t\xi) + iE\sin(t\xi)$$

Definition 28. Пусть F(x), $x \in \mathbb{R}$ – функция распределения на \mathbb{R} Её характеристической функцией наз.

$$\varphi(t) = \int_{\mathbb{R}} e^{it\xi} dF(x)$$

Если P – вероятностная мера на $(\mathbb{R}, B(\mathbb{R}))$, то её характеристической ф-ей наз.

$$\varphi(t) = \int_{\mathbb{R}} e^{it\xi} P(dx)$$

Corollary 4. $\varphi_{\xi}(t)$ – $x.\phi$. $c.s.\ \xi \iff \varphi_{\xi}(t)$ – $x.\phi$. $F_{\xi}(x) \iff \varphi_{\xi}(t)$ – $x.\phi$. P_{ξ} (pacnp. ξ)

$$\varphi_{\xi}(t) = Ee^{it\xi} = \int\limits_{\mathbb{R}} e^{itx} P_{\xi}(dx) = \int\limits_{\mathbb{R}} e^{itx} dF_{\xi}(x)$$

Definition 29. Пусть $\xi = (\xi_1, \dots, \xi_n)$ – случайный вектор. Его характеристической функцией наз.

$$\varphi_{\xi}(t)=Ee^{i\langle t,\xi\rangle},$$
 где $t=(t_1,\ldots,t_n)\in\mathbb{R}^n,$ а $\langle t,\xi\rangle=\sum_{i=1}^n t_i\xi_i$

Definition 30. Пусть $F(x), x \in \mathbb{R}$ – функция распр. в \mathbb{R}^n . Её х.ф. наз.

$$\varphi(t) = \int_{\mathbb{R}^n} e^{i\langle t, x \rangle} dF(x), \quad t \in \mathbb{R}^n$$

Если P – вероятностная мера в \mathbb{R}^n , то её х.ф. наз

$$\varphi(t) = \int_{\mathbb{R}^n} e^{i\langle t, x \rangle} P(dx), \quad t \in \mathbb{R}^n$$

Corollary 5. Echu $\xi = (\xi_1, \dots, \xi_n)$ – ch. bekmop, mo $\varphi_{\xi}(t)$ – x. ϕ . $\xi \iff \varphi_{\xi}(t)$ – x. ϕ . $F_{\xi}(x)$, $x \in \mathbb{R}^n \iff \varphi_{\xi}(t)$ – x. ϕ . $P_{\xi}(t)$

Основные свойства характеристических функций

- (1) Пусть $\varphi(t)$ х.ф. с.в. ξ . Тогда $|\varphi(t)| \leqslant \varphi(0) = 1$, $\forall t \in \mathbb{R}$ **Proof** $|\varphi(t)| = |Ee^{it\xi}| \leqslant E|e^{it\xi}| = 1 = \varphi(0)$
- (2) Пусть $\varphi(t)$ хар. ф. с.в. ξ , а $\eta=a\xi+b,\ a,b\in\mathbb{R}$. Тогда $\varphi_\eta(t)=e^{itb}\varphi_\xi(ta)$

Proof

$$\varphi_n(t) = Ee^{it\eta} = Ee^{it(a\xi+b)} = e^{itb}Ee^{i(at)\xi} = e^{itb}\varphi_{\xi}(at)$$

12

(3) Пусть $\varphi(t)$ – х.ф.с.в. ξ . Тогда $\varphi(t)$ равномерно непрерывна на \mathbb{R} .

Proof

$$|\varphi(t+h)-\varphi(t)| = \left| Ee^{i(t+h)\xi} - Ee^{it\xi} \right| = \left| E(e^{i(t+h)\xi} - e^{it\xi}) \right| = \left| E(e^{it\xi}(e^{ih\xi}-1)) \right| = E|e^{ih\xi}-1|$$

При $h \to 0$, $e^{ih\xi} - 1 \to 0$ п.н.

Кроме того, $E|e^{ih\xi}-1|\leqslant 2\implies$ по теореме Лебега о мажорируемой сходимости:

 $E|e^{ih\xi}-1| \xrightarrow[h\to 0]{} 0 \implies \varphi(t)$ равномерно непрерывна на \mathbb{R} . •

(4) Пусть $\varphi(t)$ – х.ф. с. в. ξ . Тогда $\varphi(t) = \overline{\varphi(-t)}$

Proof

$$\varphi(t) = Ee^{it\xi} = Ee^{\overline{-it\xi}} = \overline{Ee^{-it\xi}} = \overline{\varphi(-t)}$$

(5) Пусть $\varphi(t)$ – х.ф. с.в. ξ . Тогда $\varphi(t)$ – действительнозначная \iff распределение ξ симметрично, т.е. $\forall B \in B(\mathbb{R})$

$$P(\xi \in B) = P(\xi \in -B)$$

Proof

 (\Longleftrightarrow) Пусть распр. ξ – симметрично. Тогда $\xi\stackrel{d}{=}-\xi \implies$

$$Esin(t\xi) = Esin(-t\xi) = -Esin(t\xi)$$

$$\implies Esin(t\xi) = 0 \implies \varphi(t) = Ee^{it\xi} = Ecos(t\xi) \in \mathbb{R}$$

– действительнозначная.

 (\implies) Пусть $\varphi(t)\in\mathbb{R},\,\forall t\in\mathbb{R}.$ Тогда по свойствам $\fbox{2}$ и $\fbox{4}.$

$$\varphi(t) = \varphi_{\xi}(t) = \overline{\varphi_{\xi}(-t)} = \varphi_{\xi}(-t) = \varphi_{-\xi}(t)$$

т.е. у ξ и у $-\xi$ одинаковая х.ф. \implies по теореме о единственности функции распр. ξ и $-\xi$ совпадают.

 $\implies \xi \stackrel{d}{=} -\xi$ и, значит, для $\forall B \in B(\mathbb{R})$:

$$P(\xi \in B) = P(-\xi \in B) = P(\xi \in -B)$$

6 Пусть ξ_1,\ldots,ξ_n – независимые с.в., $S_n=\xi_1+\ldots+\xi_n$ Тогда

$$\varphi_{S_n}(t) = \prod_{k=1} \varphi_{\xi_k}(t)$$

Proof

$$arphi_{S_n}(t)=Ee^{iS_nt}=Ee^{i\xi_1t}\dots e^{i\xi_nt}=|\text{c.в}$$
 независимы $\implies e^{\text{c.в}}$ независимы $|=(Ee^{i\xi t})\dots \left(Ee^{i\xi_nt}\right)=\prod_{k=1}^n arphi_{\xi_k}(t)$

6.2 Теорема непрерывности (б/д)

Theorem 6 (непрерывности).

Пусть $\{F_n(x), n \in \mathbb{N}\}$ – последовательность ф.р. на \mathbb{R} , а $\{\varphi_n(t), n \in \mathbb{N}\}$ – последовательность $ux \ x.\phi$.

Тогда

- 1. Если $F_n \xrightarrow{w} F$, где F(x) ф.р. на \mathbb{R} , то для $\forall t \in \mathbb{R} : \varphi_n(t) \to \varphi(t)$ при $n \to \infty$, где $\varphi(t)$ x.ф. F(x)
- 2. Пусть для $\forall t \in \mathbb{R}$ \exists предел $\lim_{n \to \infty} \varphi_n(t)$, причем $\varphi(t) = \lim_{n \to \infty} \varphi_n(t)$ непрерывна в нуле. Тогда \exists $\mathfrak{g}.p.\ F(x)\ m.ч.\ F_n \xrightarrow{w} F\ u\ \varphi(t)$ $x.\mathfrak{g}.\ F(x)$

7 Билет №7

7.1 ЦПТ для незав. одинаково распр-х с.в.

Theorem 7 (Центральная предельная теорема).

Пусть $\{\xi_n, n \in \mathbb{N}\}$ — последовательность независимых одинаково распределенных с.в. т.ч. $0 < D\xi_n < +\infty$.

Обозначим $S_n = \xi_1 + \ldots + \xi_n$ Тогда

$$\frac{S_n - ES_n}{\sqrt{DS_n}} \xrightarrow{d} N(0,1)$$

Proof

Обозначим $a=E\xi_i, \sigma^2=D\xi_i$. Рассмотрим $\eta_i=\frac{\xi_i-a}{\sigma} \implies E\eta_i=0, D\eta_i=E\eta_i^2=1$ Тогда

$$T_n = \frac{S_n - ES_n}{\sqrt{DS_n}} = |\textit{nesaeucumocmb}| = \frac{S_n - na}{\sqrt{n}\sigma} = \frac{\eta_1 + \dots \eta_n}{\sqrt{n}}$$

 $Paccмотрим x.\phi. \eta_i$:

$$\varphi_{\eta_i}(t) = \varphi(t) = 1 + E\eta_i(it) + \frac{1}{2}E\eta_i^2(it)^2 + o(t^2);$$

Отсюда получаем, что

$$\varphi_{T_n}(t) = \varphi_{\eta_1 + \ldots + \eta_n}(\frac{t}{\sqrt{n}}) = |\textit{nesaeucumocmb}| = \left(\varphi\left(\frac{t}{\sqrt{n}}\right)\right)^n = \left(1 - \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right)\right)^n \xrightarrow[n \to \infty]{} e^{-\frac{t^2}{2}}$$

 $Ho\ e^{-rac{t^2}{2}}$ – $x.\phi.\ N(0,1)\ \Longrightarrow\ no\ meoрema\ непрерывности мы\ получаем, что$

$$T_n = \frac{S_n - ES_n}{\sqrt{DS_n}} \xrightarrow{d} N(0, 1)$$

Corollary 6. В условиях ЦПТ для $\forall x \in \mathbb{R}$ выполнено

$$P\left(\frac{S_n - ES_n}{\sqrt{DS_n}} \leqslant x\right) \xrightarrow[n \to \infty]{} \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$

Proof По ЦПТ $T_n = \frac{S_n - ES_n}{\sqrt{DS_n}} \xrightarrow{d} \xi \sim N(0,1) \iff F_{T_n} \implies F_{\xi}$, где $F_{\xi}(x) - \text{ф.р. } N(0,1)$, т.е. $\forall x \in \mathbb{R}$:

$$F_{T_n} \xrightarrow[n \to \infty]{} F_{\xi}(x) = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$

Corollary 7. B ycnosuxx ЦПТ, если $E\xi_i = a, D\xi_i = \sigma^2$, mo

$$\sqrt{n}\left(\frac{S_n}{n} - a\right) \xrightarrow{d} N(0, \sigma^2)$$

Proof

$$\sigma T_n = \sigma \frac{S_n - ES_n}{\sqrt{DS_n}} = \sigma \frac{S_n - na}{\sqrt{n}\sigma} = \sqrt{n} \left(\frac{S_n}{n} - a\right)$$

Ho
$$T_n \stackrel{d}{\to} N(0,1) \Longrightarrow \sigma T_n \stackrel{d}{\to} \sigma N(0,1) = N(0,\sigma^2)$$

 $\Longrightarrow \sqrt{n} \left(\frac{S_n}{n} - a \right) \stackrel{d}{\to} N(0,\sigma^2) \bullet$

8 Билет №8

8.1 Выборка, выборочное пр-во.

Definition 31. Пусть X - наблюдение (результат случайных экспериментов), тогда множество всех возможных значений X называется выборочным пространством

Definition 32. Вероятностно-статистическая модель - тройка

 (X,B_x,P) , где X - выборочное пространство, B_x - σ алгебра на X, P - класс распределения вероятностной меры на (X,B_x)

Definition 33. Если $X = (X_1, ..., X_n)$, где $X_1, ..., X_n$ - н. о. р. с. в. с распределение P, то X - выборка размера P из распределения P.

8.2 Точные оценки параметров и их св-ва: смещенность, состоятельность, асимптотическая нормальность

Definition 34. Если P - параметризовано, т.е. $P = \{P_{\theta}, \theta \in \Theta\}$, причем $P_{\theta_1} \neq P_{\theta_2}$ при $\theta_1 \neq \theta_2$, то модель - *параметрическая*

Definition 35. Пусть (X, B_x, P) - вер-стат. модель. X - наблдение, а (E, ε) - измеримое пространство. Пусть $S: X \to E$ - измеримое отображение (т.е. $\forall B \in \varepsilon \ S^{-1}(B) = \{x \in X : S(x) \in B\} \in B_x$). Тогда S(x) - cmamucmuka

Definition 36. Если $P = \{P_{\theta}, \theta \in \Theta\}$ - парематрическая модель, S принимает значения , в Θ , то S(X) можно назвать *оценкой* Θ

Свойства оценок: X - наблюдение с распределение $P \in \{P_{\theta}, \theta \in \Theta\}, \Theta \in \mathbb{R}^k$

- а) несмещенность: $\forall \theta \in \Theta \ M_{\theta}\theta^*(X) = \theta$
- б) состоятельность: $\forall \theta \in \Theta \ \theta_n^*(X_1,...,X_n) \xrightarrow[n \to \infty]{P_\theta} \theta$
- в) асимптотическая нормальность : $\forall \theta \in \Theta \ \sqrt{n}(\theta_n^* \theta) \xrightarrow{d_\theta} \mathcal{N}(0, \sigma^2(\theta))$

8.3 Выборочные среднее, медиана, дисперсия

8.4 Сравнение оценок, ф-ция потерь, ф-ция риска

Definition 37. Пусть $\rho(x,y) \geqslant 0$ - борелевская функция, тогда *функцией потерь* оценки $\theta^*(x)$ называется $\rho(\theta^*(x),\theta)$

Definition 38. Если задана функция потерь $\rho(x,y)$, то *функцией риска* оценки $\theta^*(x)$ называется $R(\theta^*(x),\theta) = M_\theta \rho(\theta^*(x),\theta)$

- 8.5 Подходы к сравнению оценок: равномерный, байесовский, минимаксный
 - (1) Равномерный подход Оценка $\theta^*(x)$ лучше оценивает θ , чем $\hat{\theta}(x)$, если $\forall \theta \in \Theta R(\theta^*(x), \theta) \leqslant R(\theta^*(x), \theta)$ и для некоторого $\theta \in \Theta$ неравенствое строгое. Оценка $\theta^*(x)$ называется наилучшей в классе K, если она лучше \forall другой оценки из K.
 - (2) Вайесовский подход Пусть Q распределение веротяностей на Θ . Тогда \forall оценки $\theta^*(x)$ введем $R_q(\theta^*(x)) = \int\limits_{\Theta} R(\theta^*(x),t)Q(dt)$

Оценка $\theta^*(x)$ называется наилучшей в байесовском подходе, если $R_q(\theta^*(x)) = \inf R_q(\hat{\theta}(x))$

3 <u>Минимаксный подход</u> Для оценки $\theta^*(x)$ введем $\rho(\theta^*(x)) = \sup_{\theta \in \Theta} R(\theta^*(x), \theta)$ Оценка $\theta^*(x)$ называется наилучшей в минмаксном подходе, если $\rho(\theta^*(x)) = \inf_{\hat{\rho}} \rho(\hat{\theta}(x))$

9 Билет №9

9.1 Методы построения оценок: метод моментов и метод максимального правдоподобия

Definition 39. Метод моментов: пусть $(x_1,...x_n)$ - выборка из распределения $P\in\{P_\theta,\theta\in\Theta\subset\mathbb{R}^k\}$

- 9.2 Состоятельность оценки метода моментов
- 9.3 Теорема о св-вах оценок максимального правдоподобия (б/д)
- 10 Билет №10
- 10.1 Доверительные интервалы. Метод центральной статистики
- 11 Билет №11
- 11.1 Статистические гипотезы, ошибки первого и второго рода
- 11.2 Общие принципы сравнения критериев, авномерно наиболее мощные критерии
- 11.3 Лемма Неймана-Пирсона. Построение с ее помощью наиболее мощных критериев