1	- 連続全射な開写像 -

連続な全射 f が、開写像もしくは閉写像であるなら f は商写像であることを示せ。

.....

 $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ を位相空間とし連続な全射を $f: X \to Y$ とする。

f が開写像であれば $O \in \mathcal{O}_X \Rightarrow f(O) \in \mathcal{O}_Y$ である。

任意の集合 $S\subset Y$ に対して、 $f^{-1}(S)\in \mathcal{O}_X$ とする。f は開写像であるので、 $f(f^{-1}(S))\in \mathcal{O}_Y$ であるが f は全射であるので $f(f^{-1}(S))=S$ となる。

つまり、 $f^{-1}(S) \in \mathcal{O}_X \Rightarrow S \in \mathcal{O}_Y$ であるので、f は商写像である。

f が閉写像であれば C が閉集合なら f(C) も閉集合となる。

任意の集合 $S \subset Y$ に対して、 $f^{-1}(S)$ を閉集合とする。f は閉写像であるので、 $f(f^{-1}(S))$ は閉集合となるが f は全射であるので $f(f^{-1}(S)) = S$ となる。 つまり、 $f^{-1}(S)$ が閉集合であれば S も閉集合となる為、f は商写像である。

2. - 商空間 -

 (X,\mathcal{O}) を位相空間とし、 $f:X\to Y$ を全射とする。このとき、 (Y,\mathcal{O}_Y) を f における商空間、つまり $\mathcal{O}_Y=\{U\subset Y\mid f^{-1}(U)\in\mathcal{O}\}$ とすると、 (Y,\mathcal{O}_Y) は f を連続にする最強の位相であることを示せ。

.....

f を連続とするような Y の任意の位相を T とする。 $G \in \mathcal{T}$ であれば $f^{-1}(G) \in \mathcal{O}$ であるため、 $G \in \mathcal{O}_Y$ となる。

よって、 $\mathcal{T} \subset \mathcal{O}_Y$ となり、 \mathcal{O}_Y が最も強い位相であることがわかる。

3. - 商写像 -

商写像は連続であることを示せ。

.....

写像 $f: X \to Y$ が商写像であるとは f は全射であり、Y の位相 \mathcal{O}_Y が商位相となるときをいう。

 $\mathcal{O}_Y = \{ U \subset Y \mid f^{-1}(U) \in \mathcal{O} \}$ rbsor.

$$S \subset Y$$
が開集合 $\Leftrightarrow f^{-1}(S) \subset X$ が開集合 (1)

である。

よって、f は連続写像である。