Question Number	Answer		Mark
17(a)	There is a (resultant) force/acceleration that is:		
	Proportional to the displacement from the equilibrium position	(1)	
	and (always) acting towards the equilibrium position	(1)	2
17(b)(i)	Use of $k = -\frac{\Delta F}{\Delta x}$	(1)	
	$k = 4100 \text{ (N m}^{-1})$	(1)	2
	Example of calculation		
	$k = -\frac{mg}{\Delta x} = \frac{75 \text{ kg} \times 9.81 \text{ N kg}^{-1}}{0.18 \text{ m}} = 4088 \text{ N m}^{-1}$		
17(b)(ii)	Use of $T = 2\pi \sqrt{\frac{m}{k}}$	(1)	
	Use of $f = \frac{1}{T}$	(1)	
	f = 1.2 Hz (allow ecf from (b)(i))	(1)	3
	Example of calculation		
	$T = 2\pi \sqrt{\frac{75 \text{ kg}}{4090 \text{ N m}^{-1}}} = 0.85 \text{ s}$ $f = \frac{1}{0.85 \text{ s}} = 1.18 \text{ Hz}$		
	$f = \frac{1}{0.85 \text{ s}} = 1.18 \text{ Hz}$		