International Rectifier

SMPS IGBT

IRGP50B60PD1

WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE

Applications

- Telecom and Server SMPS
- PFC and ZVS SMPS Circuits
- Uninterruptable Power Supplies
- Consumer Electronics Power Supplies

Features

- NPT Technology, Positive Temperature Coefficient
- Lower V_{CE}(SAT)
- Lower Parasitic Capacitances
- Minimal Tail Current
- HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode
- Tighter Distribution of Parameters
- Higher Reliability

Benefits

- Parallel Operation for Higher Current Applications
- Lower Conduction Losses and Switching Losses
- Higher Switching Frequency up to 150kHz

 $V_{CES} = 600V$ $V_{CE(on)}$ typ. = 2.00V
@ $V_{GE} = 15V$ I_C = 33A

Equivalent MOSFET Parameters ①

 $R_{CE(on)}$ typ. = $61m\Omega$ I_D (FET equivalent) = 50A

Absolute Maximum Ratings

·	Parameter	Max.	Units		
V _{CES}	Collector-to-Emitter Voltage	600	V		
I _C @ T _C = 25°C	Continuous Collector Current	75			
_C @ T _C = 100°C	Continuous Collector Current	45			
СМ	Pulse Collector Current (Ref. Fig. C.T.4)	150			
LM	Clamped Inductive Load Current @	150	Α		
_F @ T _C = 25°C	Diode Continous Forward Current	40			
_F @ T _C = 100°C	Diode Continous Forward Current	15]		
FRM	Maximum Repetitive Forward Current ③	60	7		
V _{GE}	Gate-to-Emitter Voltage	±20	V		
P _D @ T _C = 25°C	Maximum Power Dissipation	390	W		
P _D @ T _C = 100°C	Maximum Power Dissipation	156	1		
Γ _J	Operating Junction and	-55 to +150			
T _{STG}	Storage Temperature Range		°C		
	Soldering Temperature for 10 sec.	300 (0.063 in. (1.6mm) from case)	<u> </u>		
	Mounting Torque, 6-32 or M3 Screw	10 lbf-in (1.1 N-m)			

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$ (IGBT)	Thermal Resistance Junction-to-Case-(each IGBT)			0.32	°C/W
$R_{\theta JC}$ (Diode)	iode) Thermal Resistance Junction-to-Case-(each Diode)			1.7	
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink (flat, greased surface)		0.24		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (typical socket mount)			40	
	Weight		6.0 (0.21)		g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	Ref.Fig
$V_{(BR)CES}$	Collector-to-Emitter Breakdown Voltage	600	_	_	V	$V_{GE} = 0V, I_{C} = 500\mu A$	
$\Delta V_{(BR)CES}/\Delta T_{J}$	Temperature Coeff. of Breakdown Voltage		0.31	_	V/°C	V _{GE} = 0V, I _C = 1mA (25°C-125°C)	
R _G	Internal Gate Resistance	I —	1.7	_	Ω	1MHz, Open Collector	
		_	2.00	2.35		I _C = 33A, V _{GE} = 15V	4, 5,6,8,9
$V_{CE(on)}$	Collector-to-Emitter Saturation Voltage	_	2.45	2.85	٧	I _C = 50A, V _{GE} = 15V	7
		_	2.60	2.95	1	I _C = 33A, V _{GE} = 15V, T _J = 125°C	
		_	3.20	3.60	1	$I_C = 50A$, $V_{GE} = 15V$, $T_J = 125$ °C	
V _{GE(th)}	Gate Threshold Voltage	3.0	4.0	5.0	V	I _C = 250μA	7,8,9
$\Delta V_{GE(th)}/\Delta TJ$	Threshold Voltage temp. coefficient	_	-10	_	mV/°C	$V_{CE} = V_{GE}$, $I_C = 1.0 \text{mA}$	
gfe	Forward Transconductance		41	_	S	$V_{CE} = 50V, I_{C} = 33A, PW = 80\mu s$	
I _{CES}	Collector-to-Emitter Leakage Current	_	5.0	500	μΑ	$V_{GE} = 0V, V_{CE} = 600V$	
		_	1.0	_	mΑ	V _{GE} = 0V, V _{CE} = 600V, T _J = 125°C	
V_{FM}	Diode Forward Voltage Drop	_	1.30	1.70	V	I _F = 15A, V _{GE} = 0V	10
		_	1.20	1.60	1	$I_F = 15A, V_{GE} = 0V, T_J = 125^{\circ}C$	
I _{GES}	Gate-to-Emitter Leakage Current	T —	_	±100	nA	$V_{GE} = \pm 20V, V_{CE} = 0V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	Ref.Fig
Qg	Total Gate Charge (turn-on)	_	205	308		$I_C = 33A$	17
Q _{gc}	Gate-to-Collector Charge (turn-on)	_	70	105	nC	$V_{CC} = 400V$	CT1
Q_{ge}	Gate-to-Emitter Charge (turn-on)	_	30	45		V _{GE} = 15V	
E _{on}	Turn-On Switching Loss	_	255	305		$I_C = 33A, V_{CC} = 390V$	CT3
E _{off}	Turn-Off Switching Loss	_	375	445	μJ	$V_{GE} = +15V, R_G = 3.3\Omega, L = 200\mu H$	
E _{total}	Total Switching Loss	_	630	750		TJ = 25°C ^④	
t _{d(on)}	Turn-On delay time	_	30	40		$I_C = 33A, V_{CC} = 390V$	СТЗ
t _r	Rise time	_	10	15	ns	V_{GE} = +15V, R_{G} = 3.3 Ω , L = 200 μ H	
t _{d(off)}	Turn-Off delay time	_	130	150	1	T _J = 25°C ⊕	
t _f	Fall time	_	11	15			
Eon	Turn-On Switching Loss	_	580	700		$I_C = 33A, V_{CC} = 390V$	СТЗ
E _{off}	Turn-Off Switching Loss	_	480	550	μJ	V_{GE} = +15V, R_{G} = 3.3 Ω , L = 200 μ H	11,13
E _{total}	Total Switching Loss	_	1060	1250	1	T _J = 125°C ④	WF1,WF2
t _{d(on)}	Turn-On delay time	_	26	35		$I_C = 33A, V_{CC} = 390V$	CT3
t _r	Rise time	_	13	20	ns	$V_{GE} = +15V, R_G = 3.3\Omega, L = 200\mu H$	12,14
t _{d(off)}	Turn-Off delay time	_	146	165		T _J = 125°C ④	WF1,WF2
t _f	Fall time	_	15	20			
C _{ies}	Input Capacitance	-	3648	_		$V_{GE} = 0V$	16
C _{oes}	Output Capacitance	_	322	_		$V_{CC} = 30V$	
C _{res}	Reverse Transfer Capacitance	_	56	_	pF	f = 1Mhz	
C _{oes} eff.	Effective Output Capacitance (Time Related) ^⑤	_	215	_		$V_{GE} = 0V, V_{CE} = 0V \text{ to } 480V$	15
C _{oes} eff. (ER)	Effective Output Capacitance (Energy Related) ^⑤	_	163	_			
			•			$T_J = 150^{\circ}C, I_C = 150A$	3
RBSOA	Reverse Bias Safe Operating Area	FUL	L SQUA	RE		$V_{CC} = 480V, Vp = 600V$	CT2
						Rg = 22Ω , V_{GE} = +15V to 0V	
t _{rr}	Diode Reverse Recovery Time	_	42	60	ns	$T_J = 25$ °C $I_F = 15A$, $V_R = 200V$,	19
		_	74	120		$T_J = 125^{\circ}C$ di/dt = 200A/ μ s	
Q _{rr}	Diode Reverse Recovery Charge	_	80	180	nC	$T_J = 25^{\circ}C$ $I_F = 15A$, $V_R = 200V$,	21
		_	220	600		$T_J = 125^{\circ}C$ di/dt = 200A/µs	
I _{rr}	Peak Reverse Recovery Current	_	4.0	6.0	Α	$T_J = 25^{\circ}C$ $I_F = 15A$, $V_R = 200V$,	19,20,21,22
		_	6.5	10	1	$T_J = 125^{\circ}C$ di/dt = 200A/µs	CT5

Notes:

- ① $R_{CE(on)}$ typ. = equivalent on-resistance = $V_{CE(on)}$ typ./ I_C , where $V_{CE(on)}$ typ.= 2.00V and I_C =33A. I_D (FET Equivalent) is the equivalent MOSFET I_D rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.
- @ V_{CC} = 80% ($V_{CES}),\,V_{GE}$ = 15V, L = 28 $\mu H,\,R_{G}$ = 22 $\Omega.$
- 3 Pulse width limited by max. junction temperature.
- @ Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06.
- © C_{oes} eff. is a fixed capacitance that gives the same charging time as C_{oes} while V_{CE} is rising from 0 to 80% V_{CES} . C_{oes} eff.(ER) is a fixed capacitance that stores the same energy as C_{oes} while V_{CE} is rising from 0 to 80% V_{CES} .

Fig. 1 - Maximum DC Collector Current vs. Case Temperature

Fig. 3 - Reverse Bias SOA $T_J = 150$ °C; $V_{GE} = 15$ V

Fig. 5 - Typ. IGBT Output Characteristics $T_J = 25$ °C; tp = 80 μ s

Fig. 2 - Power Dissipation vs. Case Temperature

Fig. 4 - Typ. IGBT Output Characteristics $T_J = -40$ °C; tp = 80 μ s

Fig. 6 - Typ. IGBT Output Characteristics $T_J = 125$ °C; $tp = 80\mu s$

Fig. 7 - Typ. Transfer Characteristics $V_{CE} = 50V$; tp = 10 μ s

Fig. 9 - Typical V_{CE} vs. V_{GE} $T_{J} = 125^{\circ}C$

Fig. 11 - Typ. Energy Loss vs. I_C $T_J=125^{\circ}\text{C}; \ L=200\mu\text{H}; \ V_{CE}=390\text{V}, \ R_G=3.3\Omega; \ V_{GE}=15\text{V}.$ Diode clamp used: 30ETH06 (See C.T.3)

Fig. 8 - Typical V_{CE} vs. V_{GE} $T_J = 25$ °C

Fig. 10 - Typ. Diode Forward Characteristics $tp = 80\mu s$

Fig. 12 - Typ. Switching Time vs. I $_{C}$ T $_{J}$ = 125°C; L = 200 μ H; V $_{CE}$ = 390V, R $_{G}$ = 3.3 Ω ; V $_{GE}$ = 15V. Diode clamp used: 30ETH06 (See C.T.3)

Fig. 13 - Typ. Energy Loss vs. R_G T_J = 125°C; L = 200 μ H; V_{CE} = 390V, I_{CE} = 33A; V_{GE} = 15V Diode clamp used: 30ETH06 (See C.T.3)

Fig. 15- Typ. Output Capacitance Stored Energy vs. V_{CE}

Fig. 17 - Typical Gate Charge vs. V_{GE} $I_{CE} = 33A$

Fig. 14 - Typ. Switching Time vs. R_G T_J = 125°C; L = 200 μ H; V_{CE} = 390V, I_{CE} = 33A; V_{GE} = 15V Diode clamp used: 30ETH06 (See C.T.3)

Fig. 16- Typ. Capacitance vs. V_{CE} $V_{GE} = 0V$; f = 1MHz

Fig. 18 - Normalized Typ. $V_{CE(on)}$ vs. Junction Temperature $I_C = 33A, V_{GF} = 15V$

Fig. 19 - Typical Reverse Recovery vs. dif/dt

Fig. 21 - Typical Stored Charge vs. dif/dt

Fig. 20 - Typical Recovery Current vs. di_f/dt

Fig. 22 - Typical $di_{(rec)M}/dt$ vs. di_f/dt ,

Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)

Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)

www.irf.com 7

Fig.C.T.1 - Gate Charge Circuit (turn-off)

Fig.C.T.2 - RBSOA Circuit

Fig.C.T.3 - Switching Loss Circuit

Fig.C.T.4 - Resistive Load Circuit

REVERSE RECOVERY CIRCUIT

Fig. C.T.5 - Reverse Recovery Parameter
Test Circuit

Fig. WF1 - Typ. Turn-off Loss Waveform @ $T_J = 25$ °C using Fig. CT.3

Fig. WF2 - Typ. Turn-on Loss Waveform @ $T_J = 25$ °C using Fig. CT.3

- di_f/dt Rate of change of current through zero crossing
- 2. IRRM Peak reverse recovery current
- 3. trr Reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current
- 4. Q_{rr} Area under curve defined by t_{rr} and l_{RRM}

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

5. $di_{(rec)M}/dt$ - Peak rate of change of current during t_b portion of t_{rr}

Fig. WF3 - Reverse Recovery Waveform and Definitions

IRGP50B60PD1

International

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)

Dimensions in Millimeters and (Inches)

TO-247AC Part Marking Information

Notes: This part marking information applies to devices produced before 02/26/2001 or for parts manufactured in GB.

EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY

LOT CODE 3A1Q

Notes: This part marking information applies to devices produced after 02/26/2001

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2000

IN THE ASSEMBLY LINE "H"

TO-247AC package is not recommended for Surface Mount Application.

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 12/03