Teoria da Computação

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

10 de Abril de 2024

Complexidade de Tempo

- Algoritmos de ordenação;
- Analisar a quantidade de operações;
- Bubblesort;

Complexidade de Tempo

- Bubblesort:
 - Primitivo;
 - Percorre um vetor de n posições n vezes;
 - Compara dois elementos;
 - Troca caso o primeiro seja maior que o segundo.

Ordenação Bolha (Bubble Sort)

Algorithm 1 Ordenação Bolha

```
1: procedure BUBBLESORT(a[], n)
        for i \leftarrow 1 to n-1 do
 2:
             for j \leftarrow 2 to n do
 3:
                 if a[j - 1] > a[j] then
 4:
                     x \leftarrow a[i-1]
 5:
                     a[j-1] \leftarrow a[j]
6:
                     a[i] \leftarrow x
 7:
                 end if
8:
9:
             end for
        end for
10:
11: end procedure
```

Pior Caso do Bubble Sort

	5	4	3	2	1	TROCAS
i=1, j=2	4	5	3	2	1	4
i=1, j=3	4	3	5	2	1	
i=1, j=4	4	3	2	5	1	
i=1, j=5	4	3	2	1	5	
i=2, j=2	3	4	2	1	5	3
i=2, j=3	3	2	4	1	5	
i=2, j=4	3	2	1	4	5	
i=3, j=2	2	3	1	4	5	2
i=3, j=3	2	1	3	4	5	
i=4, j=2	1	2	3	4	5	1

Complexidade de Tempo

- Análise:
 - Execução interna (a[j-1] > a[j]) vai ser executada (n-1).(n-1) vezes;
 - No pior caso a quantidade de trocas será: ((n-1)+(n-2)+...+2+1);
 - n(n-1)/2 (Soma de uma série aritmética).

Interpretação

- Número de comparações;
- Número de trocas;
- Contabilizar todas as operações;
- Descrevendo a sua eficiência:
 - Temporal;
 - Espacial;
 - Tamanho do conjunto de dados de entrada.

Notação

- n variável que descreve o tamanho de entrada de dados;
- T(n) descreve a eficiência do algoritmo em relação ao tamanho dos dados de entrada.

Comparação de algoritmos

- Como comparar dois algoritmos (a e b)?
- Se a complexidade for:
 - $T_a(n) = n^3$
 - $T_b(n) = 100 * n$
- Qual será o algoritmo mais eficiente?

Crescimento de Funções

Figure: Gráfico representando o crescimento de funções $f(n) = n^2$ e f(n) = n.

Tipos de análise de eficiência

- Pior caso: tempo máximo de execução;
- Caso médio: tempo médio de execução (distribuição estatística dos dados de entrada);
- Melhor caso: resultado do menor tempo possível.

Tipos de análise de eficiência

- Pesquisa sequencial;
- Encontrar um valor específico dentro de uma sequência de valores;
- Melhor caso: ?
- Pior caso: ?
- Caso médio: ?

Tipos de análise de eficiência

- Pesquisa sequencial;
- Encontrar um valor específico dentro de uma sequência de valores;
- Melhor caso: T(n) = 1;
- Pior caso: T(n) = n;
- Caso médio: T(n) = n+1/2;

Caso Médio da Pesquisa Sequencial

- A probabilidade de encontrar o elemento em qualquer posição é $\frac{1}{n}$.
- Se o elemento estiver na posição i (onde $1 \le i \le n$), então serão necessárias i comparações para encontrá-lo.

$$E[X] = \sum_{i=1}^{n} P(X = i) \cdot i$$

Caso Médio da Pesquisa Sequencial

$$E[X] = \sum_{i=1}^{n} \frac{1}{n} \cdot i = \frac{1}{n} \sum_{i=1}^{n} i$$

A soma $\sum_{i=1}^{n} i$ é uma série aritmética, e sua fórmula de soma é $\frac{n \cdot (n+1)}{2}$.

$$E[X] = \frac{1}{n} \cdot \frac{n \cdot (n+1)}{2} = \frac{n+1}{2}$$

Indução Matemática

- Princípio da indução finita;
- Princípio da indução;
- Prova matemática;
- Provar a correção:
 - Algoritmos recursivos;
 - Algoritmos iterativos;
 - Invariante de laços (Loop Invariant).

Indução Matemática

- Instrumento importante;
- Provar fatos referentes aos números naturais;
- Princípio da indução:
 - Seja P uma propriedade referente a números naturais. Se o elemento 1 atende a P e se, além disso, o fato de o número natural n atender a P implica que seu sucessor s(n) também atende, então todos os números naturais atendem a propriedade P;

Provar que $P(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$. **Caso base:** P(1) é verdadeiro, pois $P(1) = \frac{1(1+1)}{2} = 1$. **Hipótese da indução:** Assumimos que $P(k) = \frac{k(k+1)}{2}$ é uma propriedade verdadeira para $k \ge 1$, então devemos provar para P(k+1).

Indução Matemática

Passo da indução: Vamos provar para k + 1:

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{k^2 + k + 2k + 2}{2}$$

$$= \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

c.q.d.

Provar que $P(n)=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}<1$ Caso base: P(1) é verdadeiro, pois $P(1)=\frac{1}{2^1}=\frac{1}{2}<1$. Hipótese da indução: Assumimos que $P(k)=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^k}<1$ é uma propriedade verdadeira para $k\geq 1$, então devemos provar para P(k+1).

Passo da indução:
$$P(k+1) = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + ... + \frac{1}{2^{k+1}}$$

Passo da indução:
$$P(k+1) = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{k+1}}$$

Reescrevendo: $P(k+1) = \frac{1}{2} + \frac{1}{2}(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^k})$

Passo da indução:
$$P(k+1) = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{k+1}}$$

Reescrevendo: $P(k+1) = \frac{1}{2} + \frac{1}{2}(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^k})$

Substituindo: $\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\ldots+\frac{1}{2^k}$ por α

Passo da indução:
$$P(k+1) = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{k+1}}$$

Reescrevendo: $P(k+1) = \frac{1}{2} + \frac{1}{2}(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^k})$

Substituindo:
$$\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\ldots+\frac{1}{2^k}$$
 por α

$$P(k+1) = \frac{1}{2} + \frac{1}{2}\alpha$$

$$P(k+1) = \frac{1}{2} + \frac{1}{2}\alpha < 1$$
 c.q.d.

Provar por indução que $n! > 2^{n-1}$ para todo $n \ge 3$.

• Base da Indução: Para n = 3:

$$3! = 6 > 2^{3-1} = 2^2 = 4$$

• **Hipótese de Indução:** Afirmação verdadeira para algum $k \ge 3$, isto é, $k! > 2^{k-1}$.

• Passo da Indução: Vamos provar para n = k + 1:

$$(k+1)! = (k+1) \cdot k!$$

Se $k! > 2^{k-1}$, podemos realizar a substituição de k! por 2^{k-1} (pela Hipótese de Indução).

$$(k+1)! = (k+1) \cdot k! > (k+1)2^{k-1}$$

Dessa forma, temos $(k+1) \cdot 2^{k-1}$. Se substituirmos k+1 por 2, temos:

$$= 2 \cdot 2^{k-1} = 2^k = 2^{(k+1)-1}$$

Logo, concluímos que, por indução, $n! > 2^{n-1}$ para todo $n \ge 3$.

Exercício

• Provar que $n! > 2^{n-1}$ para todo $n \ge 3$

Caso base:

Hipótese:

Passo da indução:

Exercício

• Provar que $2^n > n$ para todo $n \ge 1$

Caso base:

Hipótese:

Passo da indução:

Exercício

• Provar que $n! > n^2$ para todo $n \ge 4$

Caso base:

Hipótese:

Passo da indução:

Notações Assintóticas

- Grande O (O): Descreve o limite superior do tempo de execução.
- Omega (Ω): Descreve o limite inferior do tempo de execução.
- Theta (Θ): Descreve tanto o limite superior quanto o limite inferior.
- Omicron (o): Descreve o limite superior assintótico restrito.
- **Little Omega** (ω): Descreve o limite inferior assintótico restrito.

Bibliografia Básica

- LEWIS, H. R.; PAPADIMITRIOU, C. H. Elementos de Teoria da Computação. 2 ed. Porto Alegre: Bookman, 2000.
- VIEIRA, N. J. Introdução aos Fundamentos da Computação. Editora Pioneira Thomson Learning, 2006.
- DIVERIO, T. A.; MENEZES, P. B. Teoria da Computação: Máquinas Universais e Computabilidade. Série Livros Didáticos Número 5, Instituto de Informática da UFRGS, Editora Sagra Luzzato, 1 ed. 1999.

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2024