2019 Data Science Bowl Competition

b05602052 電機四 舒泓諭

r06522709 機械碩三 鄭呈毅

r07543069 應力碩二 潘俊霖

Introduction & Motivation

這一個比賽主要是依據手機遊戲PBS KIDS Measure Up! app 的資料,去預測0~3歲小朋友的學習狀況,對於data更詳細的資料 請見Data preprocessing&feature engineering

開始這個比賽前,就先去查了以往kaggle上資料科學的比賽獲得比較好結果的work。發現前幾名都有用gradient boosting的model,例如:xboosting、adaboosting.......所以我們最後的模型使用的是2種gradient boosting加上NN ensemble在一起的模型架構,讓public score到達0.546,final project的ranking是全班第三名。

Data preprocessing/Feature engineering

a.data visualization

```
Train Data Size (11341042, 11)
Specs Data size (386, 3)
Train Lables size (17690, 7)
Test size (1156414, 11)
Sample_submission size (1000, 2)
```

一開始把所有data讀進來的時候,真的讀超久的.....所有的 data加起來大約有4GB。

training data kids group 分佈

在一開始我們有參考一些notebook視覺化的方式進行data visualization(參考資料見reference)。我們可以發現在training data中,有超過50%的小孩第一次就通關成功,而有24%的小孩沒有通關成功。

b.接著觀察train.csv資料內部有幾個feature,可以發現在 train.csv/test.csv裡面有以下幾個feature。

event_id	game_sessio n	timestamp	event_data	installation_id	event_count
event_code	game_time	title	type	world	

- 1.其中event_id在specs.csv內部又有著更多資訊。
- 2.對於app提供的內容又有不同的type:Clip、Activity、Assessment、Game。

3.其中若feature若是文字不是數字的話,例如: event_id, 我們是使用one-hot encoding的方式,進行data的preprocessing。

c.train label

我們的train target主要是,**kids經過幾次嘗試,才成功完成 一個assessment**,而這一部分要依據資料將**kids**分成4個類型。

Train target	level
the assessment was solved on the first attempt	3
the assessment was solved on the second attempt	2
the assessment was solved after 3 or more attempts	1
the assessment was never solved	0

d.feature engineering

會針對train.csv/test.csv每一個installation_id,把 game_session一樣的挑出來,利用one-hot encoding將 train.csv/test.csv化簡成reduced_train.csv/reduced_test.csv,其中若有一樣的資料就將其累加起來,所以每一個train_data,會變成一筆m*(10+n)維的向量,reduced後的data如下表。

installation_id	#of Clip	#of Activity	#of Assessment	#of Game	Х
acc_Bird Measurer	acc_Mushroom	acc_Chest	acc_Cart	acc_Cauldron	Event ID
(Assessment)	Sorter	Sorter	Balancer	Filler	game
	(Assessment)	(Assessment)	(Assessment)	(Assessment)	sessiom

Model Description

1. Ensemble

由xgboost, LightGBM, Catboost,Neural network ensemble 出最後的model,將不同model預測出來的結果進行 weighted sum,最後的public score可以達到0.546。

model	xgboost	LightGBM	Neural network
weight	0.2	0.6	0.2

ensemble weight

2. Neural network

在本次的model中,也有用keras兜一個NN (模型因為有礙於排版,所以放置於appendix),使用adam作為optimizer,learning rate=1e-4,public score為0.483。

3. Xgboost

為某一種的 GBDT (Gradient Boosting Decision Tree),在 public score可以到達0.54

i. GB (Gradient Boosting)

機器學習中的學習算法的目標是為了優化或者說最小化loss Function, Gradient boosting的思想是疊代生多個(M個)弱的模型,然後將每個弱模型的預測結果相加,後面的模型Fm+1(x)基於前面學習模型的Fm(x)的效果生成的。

iii. GBDT (Gradient Boosting Decision Tree)

將Boosting 應用於分類樹 (Decision Tree)上面,也就是GBDT是GB和DT的結合,可改善原本模型不夠準確的問題。

iv. Xgboost

在GBDT的計算上,誤差函數中增加了正規化(L2 norm)項來簡化學習難度。另外,也利用特徵列排序後以塊的形式存儲在記憶體中,在疊代中可以重複使用;雖然boosting算法疊代必須串行,但是在處理每個特徵列時可以做到並行,藉以提高運算效率,但很耗費記憶體。

4. LightGBM

LightGBM使用的是histogram算法,佔用的記憶體更低,數據分隔的複雜度更低。其思想是將連續的浮點特徵離散成k個離散值,並構造寬度為k的Histogram。然後遍歷訓練數據,統計每個離散值在直方圖中的累計統計量。在進行特徵選擇時,只需要根據直方圖的離散值,遍歷尋找最優的分割點。

LightGBM也是一種改善的GBDT,而且在很多方面比Xgb更優秀,在本次的task public score到達0.54。

Experiment and Discussion:

1.資料視覺化

a.Media type of Game or video

Media Type of The Game or Video

可以發現在Train data和Testing data,Media type of Game or video的分布其實是差不多的分佈,這個圖是使用plotly這一個套件所畫出來b.Time Consumed in Assessment

kids解題時間與被分類的group

由以上圖表可以發現,其實觀察到kids嘗試解題的時間和其最後會被歸 類在哪一個group其實是很有關係的,若把這一個feature加入training, 可以發現在原本xboosting model的架構下,public score會從0.507提升至0.512。

class	best Accuracy	
adding new feature	0.512	
non-adding new feature	0.507	

2.比較feature engineering 對於public score的影響

class	best Accuracy	
feature engineering	0.546	
non-feature engineering	0.5	

在model都是使用ensemble的架構下,可以發現有做feature engineering的public score會比原本直接拿資料硬train,提高0.046,kaggle排名可以提升大約1000名左右。

3.比較ensemble 前後Accuracy的差距

Model	xgboost	LightGBM	NN(keras)	ensemble
Accurracy	0.512	0.540	0.483	0.546

Accurracy comparison

在本次所有嘗試的model中,可以發現在ensemble之前, LightGBM是public score最高的model,可以發現NN在層數不足的時候 表現會不如GBDT架構;而推測 LightGBM相較於xgboost ,會在適當的節點增長決策樹,而表現較佳。

在多次嘗試後,發現將xgboost、LightGBM以及NN最後所predict 出來的結果,用0.2、0.6、0.2,的比例進行weighted sum,得到public score 為0.546。

Conclusion

這是我們所有組員,第一次打資料科學的競賽。一開始我們花了很多時間在研究data,後來才發現有別人release出來的notebook,有把data preprocessing寫好,甚至還有很多data visualization的程式,看完真的可以加理解data。此外,也有別人release出來的model,後來我們是參考Convert to Regression,並修改gradient boosting ensemble的權重,才成功讓public score到達0.546,final project的rank是全班第三名。

做完這個project才發現,打這種kaggle的比賽,可以多花點時間研究別人的notebook。讀別人的notebook真的是一件cp值很高的事,可以藉此更加了解data,此外還可以更加知道有什麼樣的model比較適合比賽的data。

Peer evaluation

組員都超級棒,都做了超多事,討論都非常積極參與,希望有機會 能再次合作,分數大家都給對方100分。

分工表:

舒泓諭	coding、撰寫report
鄭呈毅	coding、撰寫report
潘俊霖	實驗設計、撰寫report

Reference

Data visualization

Data Science Bowl 2019Data Visualization

https://www.kaggle.com/fatihbilgin/data-science-bowl-2019-data-visualization

https://www.kaggle.com/c/data-science-bowl-2019/discussion/117019#latest-680222

Feature Engineering

890 features:

https://www.kaggle.com/braquino/890-features

2019 Data Science Bowl - An Introduction:

https://www.kaggle.com/robikscube/2019-data-science-bowl-an-introduction

Model Architecture

Convert to Regression:(final model)

https://www.kaggle.com/braquino/convert-to-regression

Model description

https://www.biaodianfu.com/lightgbm.html

Appendix

Neural network model

Layer (type)	Output		Param #
dense (Dense)	====== (None,	======================================	======= 74200
		, 	
layer_normalization (LayerNo	(None,	200)	400
dropout (Dropout)	(None,	200)	0
dense_1 (Dense)	(None,	100)	20100
layer_normalization_1 (Layer	(None,	100)	200
dropout_1 (Dropout)	(None,	100)	0
dense_2 (Dense)	(None,	50)	5050
layer_normalization_2 (Layer	(None,	50)	100
dropout_2 (Dropout)	(None,	50)	0
dense_3 (Dense)	(None,	25)	1275
layer_normalization_3 (Layer	(None,	25)	50
dropout_3 (Dropout)	(None,	25)	0
dense_4 (Dense)	(None,		26
======================================			
Trainable params: 101,401			