

$$I(J^P) = 0(\frac{1}{2}^+)$$
 Status: \*\*\*

We have omitted some results that have been superseded by later experiments. See our earlier editions.

### **1 MASS**

The fit uses  $\Lambda$ ,  $\Sigma^+$ ,  $\Sigma^0$ ,  $\Sigma^-$  mass and mass-difference measurements.

| VALUE (MeV)                             | EVTS      | DOCUMENT ID          |         | TECN CO      | DMMENT               |
|-----------------------------------------|-----------|----------------------|---------|--------------|----------------------|
| 1115.683±0.006 OUR FI                   | Т         |                      |         |              |                      |
| 1115.683±0.006 OUR A                    | /ERAGE    |                      |         |              |                      |
| $1115.678 \pm 0.006 \pm 0.006$          | 20k       | HARTOUNI             | 94      | SPEC p       | ວ 27.5 GeV/ <i>c</i> |
| $1115.690 \pm 0.008 \pm 0.006$          | 18k       | $^{ m 1}$ HARTOUNI   | 94      | SPEC p       | ກ 27.5 GeV/ <i>c</i> |
| ullet $ullet$ $ullet$ We do not use the | following | data for averages    | , fits, | limits, etc. | • • •                |
| $1115.59 \pm 0.08$                      | 935       | HYMAN                | 72      | HEBC         |                      |
| 1115.39 $\pm 0.12$                      | 195       | MAYEUR               | 67      | EMUL         |                      |
| 1115.6 $\pm 0.4$                        |           | LONDON               | 66      | HBC          |                      |
| $1115.65 \pm 0.07$                      | 488       | <sup>2</sup> SCHMIDT | 65      | HBC          |                      |
| 1115.44 $\pm 0.12$                      |           | <sup>3</sup> BHOWMIK | 63      | RVUE         |                      |

<sup>&</sup>lt;sup>1</sup> We assume *CPT* invariance: this is the  $\overline{\Lambda}$  mass as measured by HARTOUNI 94. See below for the fractional mass difference, testing *CPT*.

$$(m_{\Lambda}-m_{\overline{\Lambda}})/m_{\Lambda}$$

A test of CPT invariance.

| $VALUE$ (units $10^{-5}$ )                                                    | EVTS   | DOCUMENT ID        |         | TECN      | COMMENT                                   |  |
|-------------------------------------------------------------------------------|--------|--------------------|---------|-----------|-------------------------------------------|--|
| $-$ 0.1 $\pm$ 1.1 OUR A                                                       | WERAGE | Error includes sca | ale fac | tor of 1. | 6.                                        |  |
| $+$ 1.3 $\pm$ 1.2                                                             | 31k    | $^{ m 1}$ RYBICKI  | 96      | NA32      | $\pi^-$ Cu, 230 GeV                       |  |
| $-\ 1.08 \pm\ 0.90$                                                           |        | HARTOUNI           | 94      | SPEC      | pp 27.5 GeV/c                             |  |
| $4.5~\pm~5.4$                                                                 |        | CHIEN              | 66      | HBC       | 6.9 GeV/ <i>c</i> <del>p</del> p          |  |
| • • • We do not use the following data for averages, fits, limits, etc. • • • |        |                    |         |           |                                           |  |
| $-26$ $\pm 13$                                                                |        | BADIER             | 67      | HBC       | 2.4 GeV/ <i>c</i> $\overline{p}$ <i>p</i> |  |
| $^{ m 1}$ RYBICKI 96 is an analysis of old ACCMOR (NA32) data.                |        |                    |         |           |                                           |  |

<sup>&</sup>lt;sup>2</sup> The SCHMIDT 65 masses have been reevaluated using our April 1973 proton and  $K^{\pm}$  and  $\pi^{\pm}$  masses. P. Schmidt, private communication (1974).

<sup>&</sup>lt;sup>3</sup> The mass has been raised 35 keV to take into account a 46 keV increase in the proton mass and an 11 keV decrease in the  $\pi^{\pm}$  mass (note added Reviews of Modern Physics **39** 1 (1967)).

## **1 MEAN LIFE**

Measurements with an error  $\geq 0.1\times 10^{-10}$  s have been omitted altogether, and only the latest high-statistics measurements are used for the average.

| <i>VALUE</i> $(10^{-10} \text{ s})$ | EVTS        | DOCUMENT ID           |             | TECN      | COMMENT                                 |
|-------------------------------------|-------------|-----------------------|-------------|-----------|-----------------------------------------|
| 2.632 ± 0.020 OUR A                 | WERAGE      | Error includes scale  | facto       | r of 1.6. | See the ideogram below.                 |
| $2.69\ \pm0.03$                     | 53k         | ZECH                  | 77          | SPEC      | Neutral hyperon beam                    |
| $2.611 \pm 0.020$                   | 34k         | CLAYTON               | 75          | HBC       | $0.96 – 1.4 \text{ GeV}/c \text{ K}^-p$ |
| $2.626 \pm 0.020$                   | 36k         | POULARD               | 73          | HBC       | $0.4-2.3 \text{ GeV}/c  K^-p$           |
| ● ● We do not use                   | the followi | ing data for averages | , fits,     | limits, e | etc. • • •                              |
| $2.69 \pm 0.05$                     | 6582        | ALTHOFF               | <b>73</b> B | OSPK      | $\pi^+ n \rightarrow \Lambda K^+$       |
| $2.54 \pm 0.04$                     | 4572        | BALTAY                | <b>71</b> B | HBC       | $K^-p$ at rest                          |
| $2.535 \!\pm\! 0.035$               | 8342        | GRIMM                 | 68          | HBC       |                                         |
| $2.47 \pm 0.08$                     | 2600        | HEPP                  | 68          | HBC       |                                         |
| $2.35 \pm 0.09$                     | 916         | BURAN                 | 66          | HLBC      |                                         |
| $2.452 {+0.056 \atop -0.054}$       | 2213        | ENGELMANN             | 66          | НВС       |                                         |
| $2.59 \pm 0.09$                     | 794         | HUBBARD               | 64          | HBC       |                                         |
| $2.59 \pm 0.07$                     | 1378        | SCHWARTZ              | 64          | HBC       |                                         |
| $2.36 \pm 0.06$                     | 2239        | BLOCK                 | 63          | HEBC      |                                         |





$$(\tau_{\Lambda} - \tau_{\overline{\Lambda}}) / \tau_{\Lambda}$$

A test of CPT invariance.

| VALUE                           | DOCUMENT ID |    | TECN | COMMENT                                                    |
|---------------------------------|-------------|----|------|------------------------------------------------------------|
| $-0.001 \pm 0.009$ OUR AVERAGE  |             |    |      |                                                            |
| $-0.0018 \pm 0.0066 \pm 0.0056$ | BARNES      | 96 | CNTR | LEAR $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ |
| $0.044 \pm 0.085$               | BADIER      | 67 | HBC  | 2.4 GeV/c $\overline{p}$ p                                 |

# A REVIEW GOES HERE - Check our WWW List of Reviews

### **A MAGNETIC MOMENT**

See the "Note on Baryon Magnetic Moments" above. Measurements with an error  $\,\geq 0.15~\mu_{\mbox{\it N}}$  have been omitted.

| VALUE $(\mu_N)$      | EVTS        | DOCUMENT ID |     | TECN | COMMENT      |
|----------------------|-------------|-------------|-----|------|--------------|
| $-0.613 \pm 0.004$   | OUR AVERAGE |             |     | -    |              |
| $-0.606 \pm 0.015$   | 200k        | COX         | 81  | SPEC |              |
| $-0.6138 \pm 0.0047$ | 7 3M        | SCHACHIN    | 78  | SPEC |              |
| $-0.59 \pm 0.07$     | 350k        | HELLER      | 77  | SPEC |              |
| $-0.57$ $\pm 0.05$   | 1.2M        | BUNCE       | 76  | SPEC |              |
| $-0.66 \pm 0.07$     | 1300        | DAHL-JENSEI | N71 | EMUL | 200 kG field |
|                      |             |             |     |      |              |

## **A ELECTRIC DIPOLE MOMENT**

A nonzero value is forbidden by both  ${\it T}$  invariance and  ${\it P}$  invariance.

| <i>VALUE</i> (10 <sup>-16</sup> ecm)            | CL%                             | DOCUMENT ID                                               |              | <u>TECN</u>        |
|-------------------------------------------------|---------------------------------|-----------------------------------------------------------|--------------|--------------------|
| < 1.5                                           | 95                              | $^{ m 1}$ PONDROM                                         | 81           | SPEC               |
| • • • We do not use the                         | following                       | data for averages                                         | , fits,      | limits, etc. • • • |
| <100                                            | 95                              | <sup>2</sup> BARONI                                       | 71           | EMUL               |
| < 500                                           | 95                              | GIBSON                                                    | 66           | EMUL               |
| $^{1}$ PONDROM 81 meas $^{2}$ BARONI 71 measure | ures ( $-3$ .<br>s ( $-5.9~\pm$ | $0 \pm 7.4) 	imes 10^{-17}$<br>= 2.9) $	imes 10^{-15}$ e- | <i>e</i> -cn | n.                 |

## **1 DECAY MODES**

|                       | Mode                        | Fraction $(\Gamma_i/\Gamma)$ Confidence lev |
|-----------------------|-----------------------------|---------------------------------------------|
| $\overline{\Gamma_1}$ | $p\pi^-$                    | $(63.9 \pm 0.5)\%$                          |
| $\Gamma_2$            | $n\pi^0$                    | $(35.8 \pm 0.5)\%$                          |
| $\Gamma_3$            | $n\gamma$                   | $(1.75\pm0.15)\times10^{-3}$                |
| $\Gamma_4$            | $p\pi^-\gamma$              | [a] ( 8.4 $\pm 1.4$ ) $	imes 10^{-4}$       |
| $\Gamma_5$            | $pe^{-}\overline{\nu}_{e}$  | $(8.32\pm0.14)\times10^{-4}$                |
| $\Gamma_6$            | $ ho\mu^-\overline{ u}_\mu$ | $(1.57\pm0.35)\times10^{-4}$                |

# Lepton (L) and/or Baryon (B) number violating decay modes

| $\Gamma_7$     | $\pi^+ e^-$          | L,B | < 6 | $\times$ 10 <sup>-7</sup> | 90% |
|----------------|----------------------|-----|-----|---------------------------|-----|
| Γ <sub>8</sub> | $\pi^+\mu^-$         | L,B | < 6 | $\times$ 10 <sup>-7</sup> | 90% |
| $\Gamma_9$     | $\pi^-e^+$           | L,B | < 4 | $\times$ 10 <sup>-7</sup> | 90% |
| $\Gamma_{10}$  | $\pi^-\mu^+$         | L,B | < 6 | $\times$ 10 <sup>-7</sup> | 90% |
| $\Gamma_{11}$  | $K^+$ $e^-$          | L,B | < 2 | $\times$ 10 <sup>-6</sup> | 90% |
| $\Gamma_{12}$  | $\mathcal{K}^+\mu^-$ | L,B | < 3 | $\times$ 10 <sup>-6</sup> | 90% |
| $\Gamma_{13}$  | $K^ \mathrm{e^+}$    | L,B | < 2 | $\times$ 10 <sup>-6</sup> | 90% |
|                | $K^-\mu^+$           | L,B | < 3 | $\times$ 10 <sup>-6</sup> | 90% |
| $\Gamma_{15}$  | $K_S^0  u$           | L,B | < 2 | $\times$ 10 <sup>-5</sup> | 90% |
| $\Gamma_{16}$  | $\overline{p}\pi^+$  | В   | < 9 | $\times$ 10 <sup>-7</sup> | 90% |

[a] See the Listings below for the pion momentum range used in this measurement.

#### CONSTRAINED FIT INFORMATION

An overall fit to 5 branching ratios uses 20 measurements and one constraint to determine 5 parameters. The overall fit has a  $\chi^2=10.5$  for 16 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients  $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$ , in percent, from the fit to the branching fractions,  $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$ . The fit constrains the  $x_i$  whose labels appear in this array to sum to one.

### **1** BRANCHING RATIOS

| $\Gamma( ho\pi^-)/\Gamma(N\pi)$ |             |             |             |      | $\Gamma_1/(\Gamma_1+\Gamma_2)$    |
|---------------------------------|-------------|-------------|-------------|------|-----------------------------------|
| VALUE                           | <u>EVTS</u> | DOCUMENT ID |             | TECN | COMMENT                           |
| 0.641 ± 0.005 OUR FIT           |             |             |             |      |                                   |
| 0.640 ± 0.005 OUR AV            | ERAGE       |             |             |      |                                   |
| $0.646 \pm 0.008$               | 4572        | BALTAY      |             |      | $K^-p$ at rest                    |
| $0.635 \pm 0.007$               | 6736        | DOYLE       | 69          | HBC  | $\pi^- p \rightarrow \Lambda K^0$ |
| $0.643 \pm 0.016$               | 903         | HUMPHREY    | 62          | HBC  |                                   |
| $0.624 \pm 0.030$               |             | CRAWFORD    | <b>59</b> B | HBC  | $\pi^- p \rightarrow \Lambda K^0$ |

| $\Gamma(n\pi^0)/\Gamma(N\pi)$                           | EV/EC                                  | DOCUMENT ID             |             | TECN        | $\Gamma_2/(\Gamma_1+\Gamma_2)$           |
|---------------------------------------------------------|----------------------------------------|-------------------------|-------------|-------------|------------------------------------------|
| <u>VALUE</u><br><b>0.359±0.005 OUR FIT</b>              | <u>EVTS</u>                            | DOCUMENT ID             |             | <u>TECN</u> |                                          |
| 0.310±0.028 OUR AVE                                     | RAGE                                   |                         |             |             |                                          |
| $0.35 \pm 0.05$                                         |                                        | BROWN                   | 63          | HLBC        |                                          |
| $0.291 \pm 0.034$                                       | 75                                     | CHRETIEN                | 63          | HLBC        |                                          |
|                                                         |                                        |                         |             |             |                                          |
| $\Gamma(n\gamma)/\Gamma_{\text{total}}$                 |                                        |                         |             |             | $\Gamma_3/\Gamma$                        |
| $VALUE$ (units $10^{-3}$ )                              | EVTS                                   | DOCUMENT ID             |             | TECN        | COMMENT                                  |
| 1.75±0.15 OUR FIT                                       |                                        |                         |             |             |                                          |
| $1.75 \pm 0.15$                                         | 1816                                   | LARSON                  | 93          | SPEC        | $K^-p$ at rest                           |
| • • • We do not use th                                  | e following                            | data for averages       | , fits,     | limits, e   | tc. • • •                                |
| $1.78 \pm 0.24 ^{+0.14}_{-0.16}$                        | 287                                    | NOBLE                   | 92          | SPEC        | See LARSON 93                            |
| r() /r(0)                                               |                                        |                         |             |             | F /F                                     |
| $\Gamma(n\gamma)/\Gamma(n\pi^0)$                        |                                        |                         |             |             | $\Gamma_3/\Gamma_2$                      |
| VALUE (units $10^{-3}$ )                                | EVTS                                   | DOCUMENT ID             |             | TECN        | COMMENT                                  |
| • • • We do not use th                                  | e following                            | data for averages       | , fits,     | limits, e   | tc. • • •                                |
| $2.86 \pm 0.74 \pm 0.57$                                | 24                                     | BIAGI                   | 86          | SPEC        | SPS hyperon beam                         |
| $\Gamma(\rho\pi^-\gamma)/\Gamma(\rho\pi^-)$             |                                        |                         |             |             | $\Gamma_4/\Gamma_1$                      |
| VALUE (units $10^{-3}$ )                                | EVTS                                   | DOCUMENT ID             |             | TECN        | COMMENT                                  |
| $1.32 \pm 0.22$                                         | 72                                     | BAGGETT                 | <b>72</b> C | HBC         | $\pi^-~<$ 95 MeV $/c$                    |
| $\Gamma(\rho e^- \overline{ u}_e) / \Gamma(\rho \pi^-)$ |                                        |                         |             |             | $\Gamma_5/\Gamma_1$                      |
| $VALUE$ (units $10^{-3}$ )                              | EVTS                                   | DOCUMENT ID             |             | TECN        | COMMENT                                  |
| 1.301±0.019 OUR FIT                                     |                                        |                         |             |             |                                          |
| $1.301\pm0.019$ OUR AVE                                 | RAGE                                   |                         |             |             |                                          |
| $1.335 \pm 0.056$                                       | 7111                                   | BOURQUIN                | 83          | SPEC        | SPS hyperon beam                         |
| $1.313 \pm 0.024$                                       | 10k                                    | WISE                    | 80          | SPEC        | 0                                        |
| $1.23 \pm 0.11$                                         | 544                                    | LINDQUIST               | 77          |             | $\pi^- p \rightarrow \kappa^0 \Lambda$   |
| $1.27 \pm 0.07$                                         | 1089                                   | KATZ                    | 73          | HBC         |                                          |
| $1.31 \pm 0.06$                                         | 1078                                   | ALTHOFF                 | 71          | OSPK        |                                          |
| $1.17 \pm 0.13$                                         |                                        | 1 CANTER                |             |             | $K^-p$ at rest                           |
| $1.20 \pm 0.12$                                         |                                        | <sup>2</sup> MALONEY    | 69          | HBC         |                                          |
| $1.17 \pm 0.18$                                         |                                        | <sup>2</sup> BAGLIN     | 64          |             | $K^-$ freon 1.45 GeV/ $c$                |
| $1.23 \pm 0.20$                                         |                                        | <sup>2</sup> ELY        | 63          | FBC         |                                          |
| • • • We do not use th                                  |                                        |                         | , fits,     | limits, e   | tc. • • •                                |
| 1.32 ±0.15                                              |                                        | <sup>1</sup> LINDQUIST  | 71          |             | See LINDQUIST 77                         |
| 2/3.                                                    |                                        |                         |             |             | s used $\Gamma(p\pi^-)/\Gamma_{total} =$ |
| <sup>2</sup> Changed by us from sured quantity.         | $\Gamma(\rho e^{-}\overline{\nu}_{e})$ | $/\Gamma(N\pi)$ because | Г(ре        | _ν)/Γ(μ     | $(2\pi^-)$ is the directly mea-          |

| $\Gamma( ho\mu^-\overline{ u}_\mu)/\Gamma(N\pi)$ |                 |                        |             |              | Γ <sub>6</sub> /(I                   | -<br>1+Γ <sub>2</sub> ) |
|--------------------------------------------------|-----------------|------------------------|-------------|--------------|--------------------------------------|-------------------------|
| VALUE (units $10^{-4}$ )                         | EVTS            | DOCUMENT ID            |             | TECN         | COMMENT                              |                         |
| 1.57±0.35 OUR FIT                                |                 |                        |             |              |                                      |                         |
| 1.57±0.35 OUR AVERA                              | <b>GE</b>       |                        |             |              |                                      |                         |
| $1.4 \pm 0.5$                                    | 14              | BAGGETT                | <b>72</b> B | HBC          | $K^-p$ at rest                       |                         |
| $2.4 \pm 0.8$                                    | 9               | CANTER                 | <b>71</b> B | HBC          | $K^-p$ at rest                       |                         |
| $1.3 \pm 0.7$                                    | 3               | LIND                   | 64          | RVUE         |                                      |                         |
| $1.5 \pm 1.2$                                    | 2               | RONNE                  | 64          | FBC          |                                      |                         |
| Lepton ( <i>L</i> ) a                            | nd/or Bai       | yon ( <i>B</i> ) numb  | er vi       | olating      | decay modes                          |                         |
| ,                                                | ,               | , ,                    |             |              | •                                    | г /г                    |
| $\Gamma(\pi^+e^-)/\Gamma_{\text{total}}$         | G: 0/           |                        |             |              |                                      | $\Gamma_7/\Gamma$       |
| VALUE                                            | <u>CL%</u>      | DOCUMENT ID            |             | <u> IECN</u> | COMMENT                              |                         |
|                                                  |                 |                        |             |              |                                      |                         |
| <sup>1</sup> Uses B( $\Lambda \to p\pi^-$ )      | $=$ (63.9 $\pm$ | 0.5)% for norma        | lizatio     | on mode.     |                                      |                         |
| $\Gamma(\pi^+\mu^-)/\Gamma_{total}$              |                 |                        |             |              |                                      | $\Gamma_8/\Gamma$       |
| VALUE                                            | CL%             | DOCUMENT ID            |             | TECN         | COMMENT                              |                         |
| $<6 \times 10^{-7}$                              | 90              | DOCUMENT ID  MCCRACKEN | 15          | CLAS         | $\gamma p \rightarrow K^{+} \Lambda$ |                         |
| $^1$ Uses B( $\Lambda  ightarrow p \pi^-$ )      |                 |                        |             |              |                                      |                         |
| <b>□</b> /+\ /□                                  |                 |                        |             |              |                                      | F /F                    |
| $\Gamma(\pi^-e^+)/\Gamma_{	ext{total}}$          |                 |                        |             |              |                                      | $\Gamma_9/\Gamma$       |
| <b>VALUE &lt;4 × 10<sup>-7</sup></b>             | <u>CL%</u>      | DOCUMENT ID            |             | <u>TECN</u>  | COMMENT                              |                         |
| <4 × 10 <sup>-7</sup>                            | 90              | <sup>1</sup> MCCRACKEN | 15          | CLAS         | $\gamma p \rightarrow K^+ \Lambda$   |                         |
| <sup>1</sup> Uses B( $\Lambda \to p\pi^-$ )      | $=$ (63.9 $\pm$ | 0.5)% for norma        | lizatio     | on mode.     |                                      |                         |
| $\Gamma(\pi^-\mu^+)/\Gamma_{ m total}$           |                 |                        |             |              |                                      | $\Gamma_{10}/\Gamma$    |
| VALUE                                            | CL%             | DOCUMENT ID            |             | TECN         | COMMENT                              | =0/                     |
| <6 × 10 <sup>-7</sup>                            | 90              | <sup>1</sup> MCCRACKEN | 15          | CLAS         | $\gamma p \rightarrow K^+ \Lambda$   |                         |
| $^1$ Uses B( $\Lambda  ightarrow p \pi^-$ )      |                 |                        |             |              |                                      |                         |
|                                                  | `               | ,                      |             |              |                                      | Г., /Г                  |
| $\Gamma(K^+e^-)/\Gamma_{\text{total}}$           | CL O/           | DOCUMENT ID            |             | TECN         | COMMENT                              | $\Gamma_{11}/\Gamma$    |
| $\frac{\text{VALUE}}{\text{<2} \times 10^{-6}}$  |                 | DOCUMENT ID            |             |              |                                      |                         |
| ~ 10                                             | 90              | <sup>1</sup> MCCRACKEN |             |              | • •                                  |                         |
| <sup>1</sup> Uses B( $\Lambda \to p\pi^-$ )      | $=$ (63.9 $\pm$ | 0.5)% for norma        | lizatio     | on mode.     |                                      |                         |
| $\Gamma(K^+\mu^-)/\Gamma_{	ext{total}}$          |                 |                        |             |              |                                      | $\Gamma_{12}/\Gamma$    |
| VALUE                                            | CL%             | DOCUMENT ID            |             | TECN         | COMMENT                              |                         |
| VALUE                                            | 90              | $^{ m 1}$ MCCRACKEN    | 15          | CLAS         | $\gamma p \rightarrow K^+ \Lambda$   |                         |
| $^1$ Uses B( $\Lambda  ightarrow p \pi^-$ )      |                 |                        |             |              |                                      |                         |
| $\Gamma(K^-e^+)/\Gamma_{ m total}$               |                 |                        |             |              |                                      | Γ <sub>13</sub> /Γ      |
| VALUE                                            | CL%             | DOCUMENT ID            |             | TECN         | COMMENT                              | 13/                     |
| <i>VALUE</i> <2 × 10 <sup>−6</sup>               | 90              | 1 MCCRACKEN            | 15          | CLAS         | $\gamma p \rightarrow K^{+} \Lambda$ |                         |
| 1 Uses B( $\Lambda \to p\pi^-$ )                 |                 |                        |             |              |                                      |                         |
| $OSCSD(N \rightarrow pN)$                        | — (03.9 ⊥       | 0.5)/0 IOI HOITIA      |             | m mode.      | •                                    |                         |

| $\Gamma(K^-\mu^+)/\Gamma_{\text{total}}$           |                 |                           |         |                                    | $\Gamma_{14}/\Gamma$ |
|----------------------------------------------------|-----------------|---------------------------|---------|------------------------------------|----------------------|
| VALUE                                              | CL%             | DOCUMENT ID               | TECN    | COMMENT                            |                      |
| $<3\times10^{-6}$                                  | 90              | <sup>1</sup> MCCRACKEN 15 | CLAS    | $\gamma p \rightarrow K^+ \Lambda$ |                      |
| $^1$ Uses B( $\Lambda  ightarrow \ p\pi^-$ )       | = (63.9 ±       | = 0.5)% for normalization | on mode |                                    |                      |
| $\Gamma(K_S^0  u) / \Gamma_{\text{total}}$         |                 |                           |         |                                    | Γ <sub>15</sub> /Γ   |
| VALUE                                              | CL%             | DOCUMENT ID               | TECN    | COMMENT                            |                      |
| $<2 \times 10^{-5}$                                | 90              | <sup>1</sup> MCCRACKEN 15 | CLAS    | $\gamma p \rightarrow K^+ \Lambda$ |                      |
| $^1$ Uses B( $\Lambda  ightarrow ~p\pi^-$ )        | $=$ (63.9 $\pm$ | 0.5)% for normalization   | on mode |                                    |                      |
| $\Gamma(\overline{ ho}\pi^+)/\Gamma_{	ext{total}}$ |                 |                           |         |                                    | Γ <sub>16</sub> /Γ   |
| VALUE                                              | CL%             | DOCUMENT ID               | TECN    | COMMENT                            |                      |
| $< 9 \times 10^{-7}$                               | 90              | <sup>1</sup> MCCRACKEN 15 | CLAS    | $\gamma p \rightarrow K^+ \Lambda$ |                      |
| $^1$ Uses B( $\Lambda  ightarrow ~p\pi^-$ )        | = (63.9 ±       | = 0.5)% for normalization | on mode |                                    |                      |

# **1 DECAY PARAMETERS**

See the "Note on Baryon Decay Parameters" in the neutron Listings. Some early results have been omitted.

| $\alpha$ FOR $\Lambda \to \mu$                                        | $ ho\pi^-$                                                       |                         |    |       |                                                |  |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------|-------------------------|----|-------|------------------------------------------------|--|--|
| VALUE                                                                 | <u>EVTS</u>                                                      | DOCUMENT ID             |    | TECN  | COMMENT                                        |  |  |
| 0.642±0.013 OUR                                                       | <b>AVERAGE</b>                                                   |                         |    |       |                                                |  |  |
| $0.584 \pm 0.046$                                                     | 8500                                                             | ASTBURY                 | 75 | SPEC  |                                                |  |  |
| $0.649 \pm 0.023$                                                     | 10325                                                            | CLELAND                 | 72 | OSPK  |                                                |  |  |
| $0.67\ \pm0.06$                                                       | 3520                                                             | DAUBER                  | 69 | HBC   | From $\Xi$ decay                               |  |  |
| $0.645 \pm 0.017$                                                     | 10130                                                            | OVERSETH                | 67 | OSPK  | $\Lambda$ from $\pi^- p$                       |  |  |
| $0.62\ \pm0.07$                                                       | 1156                                                             | CRONIN                  | 63 | CNTR  | $\Lambda$ from $\pi^- p$                       |  |  |
| $\alpha_+ \text{ FOR } \overline{\Lambda} \to \overline{\mu}$         | $\alpha_+ \text{ FOR } \overline{\Lambda} \to \overline{p}\pi^+$ |                         |    |       |                                                |  |  |
| VALUE                                                                 | <u>EVTS</u>                                                      | DOCUMENT                | ID | TEC   | <u>COMMENT</u>                                 |  |  |
| $-0.71 \pm 0.08$ OU                                                   | R AVERAGE                                                        |                         |    |       |                                                |  |  |
| $-0.755\pm0.083\pm0.$                                                 | $063 \approx 8.7 k$                                              | ABLIKIM                 | 1  | 0 BES | $J/\psi  ightarrow \Lambda \overline{\Lambda}$ |  |  |
| $-0.63 \pm 0.13$                                                      | 770                                                              | TIXIER                  | 8  | 8 DM2 | $2 J/\psi \to \Lambda \overline{\Lambda}$      |  |  |
| $\phi$ ANGLE FOR $\Lambda \to p \pi^-$ (tan $\phi = \beta / \gamma$ ) |                                                                  |                         |    |       |                                                |  |  |
| VALUE (°)                                                             | EVTS                                                             | DOCUMENT ID             |    | TECN  | COMMENT                                        |  |  |
| <ul><li>− 6.5± 3.5 OUR AVERAGE</li></ul>                              |                                                                  |                         |    |       |                                                |  |  |
| $-$ 7.0 $\pm$ 4.5                                                     | 10325                                                            | CLELAND                 | 72 | OSPK  | $\Lambda$ from $\pi^- p$                       |  |  |
| $-$ 8.0 $\pm$ 6.0                                                     | 10130                                                            | OVERSETH                | 67 | OSPK  | $\Lambda$ from $\pi^- p$                       |  |  |
| $13.0 \pm 17.0$                                                       | 1156                                                             | CRONIN                  | 63 | OSPK  | $\Lambda$ from $\pi^ p$                        |  |  |
| $\alpha_0 / \alpha = \alpha (\Lambda$                                 | $\rightarrow n\pi^0)/\alpha$                                     | $a(\Lambda \to p\pi^-)$ |    |       | COMMENT                                        |  |  |

| VALUE              | <b>EVTS</b> | DOCUMENT ID     |    | TECN | COMMENT                           |
|--------------------|-------------|-----------------|----|------|-----------------------------------|
| 1.01 ±0.07 OUR AVE | RAGE        |                 |    |      |                                   |
| $1.000 \pm 0.068$  | 4760        | $^{ m 1}$ OLSEN | 70 | OSPK | $\pi^+ n \rightarrow \Lambda K^+$ |
| $1.10 \pm 0.27$    |             | CORK            | 60 | CNTR |                                   |

 $<sup>^1</sup>$  OLSEN 70 compares proton and neutron distributions from  $\varLambda$  decay.

# $(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$ in $\Lambda \to p\pi^-$ , $\overline{\Lambda} \to \overline{p}\pi^+$

Zero if CP is conserved;  $\alpha_-$  and  $\alpha_+$  are the asymmetry parameters for  $\Lambda \to p\pi^-$  and  $\overline{\Lambda} \to \overline{p}\pi^+$  decay. See also the  $\Xi^-$  for a similar test involving the decay chain  $\Xi^- \to \Lambda\pi^-$ ,  $\Lambda \to p\pi^-$  and the corresponding antiparticle chain.

|                                  |                      |                                                | 0         |           |                                                            |
|----------------------------------|----------------------|------------------------------------------------|-----------|-----------|------------------------------------------------------------|
| VALUE                            | <u>EVTS</u>          | DOCUMENT ID                                    |           | TECN      | COMMENT                                                    |
| 0.006±0.021 OUR AV               | 'ERAGE               |                                                |           |           |                                                            |
| $-0.081\!\pm\!0.055\!\pm\!0.059$ | pprox 8.7k           | ABLIKIM                                        |           |           | $J/\psi  ightarrow \Lambda \overline{\Lambda}$             |
| $+0.013\pm0.022$                 | 96k                  | BARNES                                         | 96        | CNTR      | LEAR $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ |
| $+0.01\ \pm0.10$                 | 770                  | TIXIER                                         | 88        | DM2       | $J/\psi 	o \Lambda \overline{\Lambda}$                     |
| $-0.02 \pm 0.14$                 | 10k                  | $^{ m 1}$ CHAUVAT                              | 85        | CNTR      | pp, <del>p</del> p ISR                                     |
| • • • We do not use the          | e following d        | ata for averages,                              | fits, lir | mits, etc | . • • •                                                    |
| $-0.07\ \pm0.09$                 | 4063                 | BARNES                                         | 87        | CNTR      | See BARNES 96                                              |
| <sup>1</sup> CHAUVAT 85 actua    | Ily gives $\alpha_+$ | $(\overline{\Lambda})/\alpha_{-}(\Lambda) = -$ | 1.04 ±    | 0.29. A   | Assumes polarization is                                    |

<sup>&</sup>lt;sup>1</sup> CHAUVAT 85 actually gives  $\alpha_+(\overline{\Lambda})/\alpha_-(\Lambda) = -1.04 \pm 0.29$ . Assumes polarization is same in  $\overline{p}p \to \overline{\Lambda}X$  and  $pp \to \Lambda X$ . Tests of this assumption, based on *C*-invariance and fragmentation, are satisfied by the data.

# $g_A / g_V \text{ FOR } \Lambda \rightarrow pe^- \overline{\nu}_e$

HTTP://PDG.LBL.GOV

Measurements with fewer than 500 events have been omitted. Where necessary, signs have been changed to agree with our conventions, which are given in the "Note on Baryon Decay Parameters" in the neutron Listings. The measurements all assume that the form factor  $g_2=0$ . See also the footnote on DWORKIN 90.

| VALUE                            | <b>EVTS</b> | DOCUMENT ID        |          | TECN      | COMMENT                 |
|----------------------------------|-------------|--------------------|----------|-----------|-------------------------|
| -0.718±0.015 OUR A               | /ERAGE      |                    |          |           |                         |
| $-0.719\!\pm\!0.016\!\pm\!0.012$ | 37k         | $^{ m 1}$ DWORKIN  | 90       | SPEC      | e  u angular corr.      |
| $-0.70 \pm 0.03$                 | 7111        | BOURQUIN           | 83       | SPEC      | $\Xi \to \Lambda \pi^-$ |
| $-0.734 \pm 0.031$               | 10k         | <sup>2</sup> WISE  | 81       | SPEC      | e u angular correl.     |
| • • • We do not use th           | e followin  | g data for average | s, fits, | limits, e | etc. • • •              |
| $-0.63 \pm 0.06$                 | 817         | ALTHOFF            | 73       | OSPK      | Polarized A             |

 $<sup>^1</sup>$  The tabulated result assumes the weak-magnetism coupling  $w\equiv g_W(0)/g_V(0)$  to be 0.97, as given by the CVC hypothesis and as assumed by the other listed measurements. However, DWORKIN 90 measures w to be 0.15  $\pm$  0.30, and then  $g_A/g_V=-0.731$   $\pm$  0.016.

#### **1** REFERENCES

We have omitted some papers that have been superseded by later experiments. See our earlier editions.

| MCCRACKEN | 15 | PR D92 072002         | M.E. McCracken et al.       | (JLab CLAS Collab.)           |
|-----------|----|-----------------------|-----------------------------|-------------------------------|
| ABLIKIM   | 10 | PR D81 012003         | M. Ablikim et al.           | ` (BES Collab.)               |
| BARNES    | 96 | PR C54 1877           | P.D. Barnes et al.          | (CERN PS-185 Collab.)         |
| RYBICKI   | 96 | APP B27 2155          | K. Rybicki                  | ( = = = = = = ,               |
| HARTOUNI  | 94 | PRL 72 1322           | E.P. Hartouni <i>et al.</i> | (BNL E766 Collab.)            |
| Also      |    | PRL 72 2821 (erratum) | E.P. Hartouni et al.        | (BNL E766 Collab.)            |
| LARSON    | 93 | PR D47 799 `          | K.D. Larson et al.          | `(BNL-811 Collab.)            |
| NOBLE     | 92 | PRL 69 414            | A.J. Noble et al.           | (BIRM, BOST, BRCO+)           |
| DWORKIN   | 90 | PR D41 780            | J. Dworkin et al.           | (MICH, WISC, RUTG+)           |
| TIXIER    | 88 | PL B212 523           | M.H. Tixier et al.          | (DM2 Collab.)                 |
| BARNES    | 87 | PL B199 147           | P.D. Barnes et al.          | (CMU, SACL, LANL+)            |
| BIAGI     | 86 | ZPHY C30 201          | S.F. Biagi et al.           | (BRIS, CERN, GEVA+)           |
| CHAUVAT   | 85 | PL 163B 273           | P. Chauvat et al.           | (CERN, CLER, UCLA+)           |
| BOURQUIN  | 83 | ZPHY C21 1            | M.H. Bourquin et al.        | (BRIS, GEVA, HEIDP+)          |
| COX       | 81 | PRL 46 877            | P.T. Cox et al.             | (MICH, WISC, RUTG, MINN $+$ ) |
| PONDROM   | 81 | PR D23 814            | L. Pondrom et al.           | ` (WISC, MICH, RUTG+)         |
| WISE      | 81 | PL 98B 123            | J.E. Wise et al.            | (MASA, BNL)                   |
|           |    |                       |                             | ` ,                           |

Page 8

<sup>&</sup>lt;sup>2</sup>This experiment measures only the absolute value of  $g_A/g_V$ .

| WISE              | 80        | PL 91B 165                 | J.E. Wise et al.                                         | (MASA, BNL)                   |
|-------------------|-----------|----------------------------|----------------------------------------------------------|-------------------------------|
| SCHACHIN          | 78        | PRL 41 1348                | L. Schachinger <i>et al.</i>                             | (MICH, RUTG, WISC)            |
| HELLER            | 77        | PL 68B 480                 | K. Heller <i>et al.</i>                                  | (MICH, WISC, HEIDH)           |
| LINDQUIST         | 77        | PR D16 2104                | J. Lindquist <i>et al.</i>                               | (EFI, OSU, ANL)               |
| Also              | "         | JP G2 L211                 | J. Lindquist et al.                                      | (EFI, WUSL, OSU+)             |
| ZECH              | 77        | NP B124 413                | •                                                        | (SIEG, CERN, DORT, HEIDH)     |
| BUNCE             | 76        | PRL 36 1113                | G.R.M. Bunce et al.                                      | (WISC, MICH, RUTG)            |
| ASTBURY           | 75        | NP B99 30                  | P. Astbury <i>et al.</i>                                 | (LOIC, CERN, ETH+)            |
| CLAYTON           | 75        | NP B95 130                 | E.F. Clayton <i>et al.</i>                               | (LOIC, CLINI, ETTI+)          |
| ALTHOFF           | 73        | PL 43B 237                 | K.H. Althoff <i>et al.</i>                               | (CERN, HEID)                  |
| ALTHOFF           | 73B       | NP B66 29                  | K.H. Althoff <i>et al.</i>                               | (CERN, HEID)                  |
| KATZ              | 73        | Thesis MDDP-TR-74-044      |                                                          | (CERRY, FIELD)<br>(UMD)       |
| POULARD           | 73        | PL 46B 135                 | G. Poulard, A. Givernaud, A.                             | ,                             |
| BAGGETT           | 72B       | ZPHY 252 362               | M.J. Baggett <i>et al.</i>                               | (HEID)                        |
| BAGGETT           | 72C       | PL 42B 379                 | M.J. Baggett <i>et al.</i>                               | (HEID)                        |
| CLELAND           | 72C       | NP B40 221                 | W.E. Cleland et al.                                      | (CERN, GEVA, LUND)            |
| HYMAN             | 72        | PR D5 1063                 | L.G. Hyman et al.                                        | (CERN, GEVA, LOND) (ANL, CMU) |
| ALTHOFF           | 71        | PL 37B 531                 | K.H. Althoff <i>et al.</i>                               | ,                             |
| BALTAY            | 71<br>71B | PR D4 670                  | C. Baltay <i>et al.</i>                                  | (CERN, HEID)                  |
| BARONI            | 71b<br>71 | LNC 2 1256                 | G. Baroni, S. Petrera, G. Ror                            | (COLU, BING)                  |
| CANTER            | 71        | PRL 26 868                 | J. Canter <i>et al.</i>                                  | mano (ROMA)<br>(STON, COLU)   |
| CANTER            | 71<br>71B | PRL 27 59                  | J. Canter et al.                                         | (STON, COLU)                  |
|                   |           | NC 3A 1                    | E. Dahl-Jensen <i>et al.</i>                             |                               |
| DAHL-JENSEN       | 71<br>71  |                            |                                                          | (CERN, ANKA, LAUS+)           |
| LINDQUIST         | 71<br>70  | PRL 27 612<br>PRL 24 843   | J. Lindquist <i>et al.</i><br>S.L. Olsen <i>et al.</i>   | (EFI, WUSL, OSU+)             |
| OLSEN             |           |                            |                                                          | (WISC, MICH)                  |
| DAUBER            | 69        | PR 179 1262                | P.M. Dauber <i>et al.</i>                                | (LRL)                         |
| DOYLE             | 69        | Thesis UCRL 18139          | J.C. Doyle                                               | (LRL)                         |
| MALONEY           | 69        | PRL 23 425                 | J.E. Maloney, B. Sechi-Zorn                              | (UMD)                         |
| GRIMM             | 68        | NC 54A 187                 | H.J. Grimm                                               | (HEID)                        |
| HEPP              | 68        | ZPHY 214 71                | V. Hepp, H. Schleich                                     | (HEID)                        |
| BADIER            | 67<br>67  | PL 25B 152                 | J. Badier <i>et al.</i>                                  | (EPOL)                        |
| MAYEUR            | 67<br>67  | U.Libr.Brux.Bul. 32        | C. Mayeur, E. Tompa, J.H. V                              | ,                             |
| OVERSETH          | 67<br>67  | PRL 19 391                 | O.E. Overseth, R.F. Roth<br>A.H. Rosenfeld <i>et al.</i> | (MICH, PRIN)                  |
| PDG               | 67        | RMP 39 1                   |                                                          | (LRL, CERN, YALE)             |
| BURAN             | 66        | PL 20 318                  | T. Buran et al.                                          | (OSLO)                        |
| CHIEN             | 66        | PR 152 1171                | C.Y. Chien et al.                                        | (YALE, BNL)                   |
| ENGELMANN         | 66        | NC 45A 1038                | R. Engelmann et al.                                      | (HEID, REHO)                  |
| GIBSON            | 66        | NC 45A 882                 | W.M. Gibson, K. Green<br>G.W. London <i>et al.</i>       | (BRIS)                        |
| LONDON<br>SCHMIDT | 66<br>65  | PR 143 1034                | P. Schmidt                                               | (BNL, SYRA)                   |
| BAGLIN            | 64        | PR 140 B1328               |                                                          | (COLU)                        |
| -                 |           | NC 35 977                  |                                                          | EPOL, CERN, LOUC, RHEL+)      |
| HUBBARD           | 64        | PR 135 B183                | J.R. Hubbard <i>et al.</i><br>V.G. Lind <i>et al.</i>    | (LRL)                         |
| LIND              | 64        | PR 135 B1483               |                                                          | (WISC)                        |
| RONNE             | 64        | PL 11 357                  | B.E. Ronne <i>et al.</i>                                 | (CERN, EPOL, LOUC+)           |
| SCHWARTZ          | 64        | Thesis UCRL 11360          | J.A. Schwartz                                            | (LRL)                         |
| BHOWMIK           | 63        | NC 28 1494                 | B. Bhowmik, D.P. Goyal                                   | (DELH)                        |
| BLOCK<br>BROWN    | 63<br>63  | PR 130 766                 | M.M. Block <i>et al.</i><br>J.L. Brown <i>et al.</i>     | (NWES, BGNA, SYRA+)           |
|                   | 63        | PR 130 769                 |                                                          | (LRL, MICH)                   |
| CHRETIEN          |           | PR 131 2208                | M. Chretien et al.                                       | (BRAN, BROW, HARV+)           |
| CRONIN<br>ELY     | 63<br>63  | PR 129 1795<br>PR 131 868  | J.W. Cronin, O.E. Overseth R.P. Ely <i>et al.</i>        | (PRIN)                        |
| HUMPHREY          | 62        |                            | W.E. Humphrey, R.R. Ross                                 | (LRL)                         |
|                   | 62<br>60  | PR 127 1305<br>PR 120 1000 | B. Cork <i>et al.</i>                                    | (LRL)                         |
| CORK<br>CRAWFORD  | 59B       | PR 120 1000<br>PRL 2 266   | F.S. Crawford <i>et al.</i>                              | (LRL, PRIN, BNL)              |
| CHANGORD          | Jap       | I INL 2 200                | i .J. Ciawioiu <i>et al.</i>                             | (LRL)                         |