

Undergraduate Final Year Project Bachelor of Data Science

Predictive Modeling for Heart Disease Assessment

Presented by: Aya EL HAJJ

Johnny CHREIM

Academic Supervisors Dr Malak KHREISS, PhD

Dr Boulous KHOUEIRY,

Company Supervisors Dr Eng. Riad ASSAF

Mr. Francis EL HELOU

Outline

INTRODUCTION

PROBLEM STATEMENT

PROJECT DESIGN

TOOLS USED IN THE PROJECT

METHODOLOGY

RESULTS

Introduction

- The problem of Heart Disease
- Project Scope and Statement
- Project Objectives

Problem Statement

Using machine learning algorithm

Develop a predictive modeling system

Choose the right machine learning algorithm

Integrate the model into a web app

Deploy the app for patients and doctors

Project Design

Tools used in the project

- Python:
- > Pandas for data cleaning
- Numpy for data cleaning
- ➤ Matplotlib for visualization
- > Seaborn for visualization
- Sklearn for machine learning
- > Streamlit for app development
- Microsoft office word for the report
- Microsoft office power point for the presentation

Correlation matrix:

No correlation between target variable and education → remove education feature

Exploratory Data Analysis (EDA)

Dataset shape

Boxplots and histograms for numerical features

Bar plots for categorical features

Data Cleaning: Dealing with missing data

Data Cleaning: Dealing with outliers

 $\begin{array}{c} 1 \\ \hline 1 \\ \hline \end{array}$

Keep the outliers

Remove by Standard Deviation Remove by IQR all

Remove using DBscan

Data Cleaning: Dealing with outliers

Tested each function

Remove by IQRAII → loss of all target variable 1 value

We will not be using the function

Data Cleaning: Features Selection

Select K best features

Select percentile of the features

Select based on variance threshold

Dimensionality reduction

Keep all the features

Data Cleaning: Balancing

Over Sampling

Under Sampling

Generate all possible data frames for modeling

Modeling:

The below model will be tested on all the generated data frames

KNN (K nearest neighbor)

Logistic Regression

Decision Tree

Naïve Bayes

Random Forest

SVM (Support Vector Machine)

Modeling: Choosing the best model

Modeling: Choosing the best model and data frame

Deployment

Simple website

Using streamlit

Takes medical records from user

Generate percentage

Percentage is based on number of output 1 in the random forest model

Try it out!

Results

Predictive modeling system

Can be used by patients or doctors

Uses Random Forest algorithm

Help doctors prioritize patient treatment

Thank you for your attention!