- 1. Banque CCINP 2024 : 5 (cours séries : critère de Bertrand)
- 2. Banque CCINP 2024 : 6 (cours séries : critère de D'Alembert)
- 3. Banque CCINP 2024 : 7 (cours séries : équivalents)
- 4. Banque CCINP 2024 : 8 (cours séries : séries alternées)
- 5. Banque CCINP 2024 : 46 (faire un développement limité)
- **6. Banque CCINP 2024 :** 55 (suites récurrentes linéaires d'ordre 2)
- 7. Officiel de la Taupe 2019 : 195 I (Centrale)

On donne $u_0 \in]-1,0[$ et $u_{n+1}=u_n+u_n^2$ pour $n \in \mathbb{N}$.

Étudier les variations de la fonction définie par $f(x) = x^2 + x$ et montrer que $\forall x \in \{-1, 0[, f(x) \in]-1, 0[, f(x) \in]-1,$

Montrer que $(u_n) \subset]-1,0[$ en déduire que (u_n) converge et donner sa limite..

Conclure à la convergence de $\sum u_n^2$ et donner sa somme en fonction de u_0 . Étudier $\sum (-1)^n u_n$. Montrer que la suite de terme général $a_n = \frac{1}{u_n} - \frac{1}{u_{n+1}}$ converge et donner sa limite l.

Justifier que $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} a_k = l$.

En déduire un équivalent de u_n et la nature de $\sum u_n$.

8. [Mines Telecom]

Pour tout entier $n \in \mathbb{N}$, on pose $u_n = \int_0^1 \ln(1+t^n)dt$.

- **a.** Calculer u_0 et u_1 .
- **b.** Montrer que $\forall x \ge 0, \ \frac{x}{1+x} \le \ln(1+x) \le x$.
- **c.** Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers 0.
- **d.** Donner la nature des séries $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}(-1)^nu_n$.

9. Officiel de la Taupe 2019 : 81 I (Mines)

Montrer que $P_n(X) = X^n - nX + 1$ admet une unique racine, que l'on note x_n , dans [0,1].

Déterminer la limite de (x_n) puis donner un équivalent de x_n et un développement asymptotique à deux termes.

10. [Mines-Ponts]

Soit $(x_n)_{n\geq 0}$ définie par : $x_0=1$ et $\forall n\in\mathbb{N}, x_{n+1}=x_n+\frac{1}{x_n}$

Donner un équivalent de x_n quand $n \to +\infty$.

(indication : déterminer la limite de la suite puis calculer $\lim_{n\to+\infty} \left(x_{n+1}^2-x_n^2\right)=2$)

11. [Mines Ponts]

Soit $(u_n)_{n\geq 0}$ définie par $u_0 \in]0,1[$ et $\forall n \in \mathbb{N},\ u_{n+1} = \frac{1}{2}(u_n + u_n^2).$

- (a) Déterminer un équivalent de u_n .
- (b) Nature de la série de terme général u_n ?

12. [Centrale MP]

On pourra introduire dans ce qui suit la fonction $f: t \mapsto \frac{\ln t}{t}$ (et utiliser des comparaisons série-intégrale).

- a. Donner un développement asymptotique à deux termes de $u_n = \sum_{n=0}^{\infty} \frac{\ln p}{p}$.
- **b.** À l'aide de la constante d' Euler, calculer $\sum_{n=0}^{+\infty} (-1)^n \frac{\ln n}{n}$.

13. [Écoles des Mines]

Pour $n \in \mathbb{N}^*$, on pose $s_n = \sum_{k=1}^n (-1)^k \sqrt{k}$ et $t_n = s_n + s_{n+1}$.

- (a) Nature de $\sum (t_{n+1} t_n)$?
- (b) En déduire que (t_n) converge vers une limite < 0, puis que $s_n \sim (-1)^n \frac{\sqrt{n}}{2}$ quand n tend vers l'infini.
- (c) Nature de $\sum \frac{1}{s}$?