Homework #1

John Karasev STAT 672 January 22, 2020

1 Orthogonal projection in a hilbert space

$$\pi_V(f) \in V;$$

$$\langle f - \pi_V(f), g \rangle = 0 \ \forall g \in V;$$

1.
$$||f||^{2} = \langle f, f \rangle$$

$$= \langle \pi_{v}(f) + (f - \pi_{v}(f)), \pi_{v}(f) + (f - \pi_{v}(f)) \rangle$$

$$= \langle \pi_{v}(f), \pi_{v}(f) \rangle + 2\langle \pi_{v}(f), f - \pi_{v}(f) \rangle + \langle f - \pi_{v}(f), f - \pi_{v}(f) \rangle$$

$$= ||\pi_{v}(f)||^{2} + ||f - \pi_{v}(f)||^{2} \text{ center term cancels since orthogonal}$$

2.
$$\langle f, \pi_{v}(g) \rangle = \langle (f - \pi_{v}(f)) + \pi_{v}(f), \pi_{v}(g) \rangle$$

$$= \langle f - \pi_{v}(f), \pi_{v}(g) \rangle + \langle \pi_{v}(f), \pi_{v}(g) \rangle$$

$$= \langle \pi_{v}(f), \pi_{v}(g) \rangle by orthogonality$$

$$\langle g, \pi_{v}(f) \rangle = \langle (g - \pi_{v}(g)) + \pi_{v}(g), \pi_{v}(f) \rangle$$

$$= \langle g - \pi_{v}(g), \pi_{v}(f) \rangle + \langle \pi_{v}(g), \pi_{v}(f) \rangle$$

$$= \langle \pi_{v}(g), \pi_{v}(f) \rangle by orthogonality$$

$$\langle g, \pi_v(f) \rangle = \langle f, \pi_v(g) \rangle$$

3.

2 A reproducing kernel is positive definite

1. $K(x,y) = \langle K_x(y), K_y(x) \rangle \text{ by reproducing property}$ $K(y,x) = \langle K_y(y), K_x(x) \rangle \text{ by reproducing property}$

$$K(x,y) = K(y,x)$$

2. $K(x,y) = \langle K_x(y), K_y(x) \rangle$ $= \langle K_y(x), K_y(x) \rangle > 0 \text{ by symmetry}$

3.
$$|f(x)| \leq ||f||\sqrt{K(x,x)}$$

$$|\langle f, K_x \rangle| \leq ||f||\sqrt{\langle K_x, K_x \rangle}$$

$$|\langle f, K_x \rangle| \leq ||f|||K_x|| \text{ true by } Cauchy - Schwartz \text{ inequality}$$

3 RKHS over a finite set

1.

