MOBILE NO: 01009279775

Sequential Logic Design

Design the following circuits using Verilog **and create a testbench** for each design to check its functionality

1) Implement Data Latch with active low Clear

Input	Output
CLR, D, G	Q

Truth Table

CLR	G	D	Q
0	X	X	0
1	0	X	Q
1	1	D	D

2) Implement the following latch as specified below

Parameters

LAT_WIDTH: Determine the width of input data and output q

Ports

Name	Type	Description			
aset		Asynchronous set input. Sets q[] output to 1.			
data[]	Input Data Input to the D-type latch with width LAT_WIDTH Latch enable input Asynchronous clear input. Sets q[] output to 0.				
gate					
aclr					
q[]	Output	Data output from the latch with with LAT_WIDTH			

If both aset and aclr are both asserted, aclr is dominant.

3) Implement D-Type Flip-Flop with active high Enable and active low Preset.

Input	Output		
D, E, PRE, CLK	Q		

Truth Table

PRE	E	CLK	D	Q _{n+1}
0	X	X	X	1
1	0	Х	X	Q _n
1	1	not Rising	X	Q _n
1	1	1	D	D

- 4) Implement 4-bit ALU display on 7 Segment LED Display
 - The design has 4 inputs: A, B, opcode, enable
 - The design has 7 outputs (a-g)
 - Instantiate the N-bit ALU designed in the previous assignment with parameter N = 4
 - ALU should execute the operation on A and B depending on the input opcode
 - ALU output should be considered as the digit to be displayed on the 7 segment LED display
 - Below the truth table of the 7-segment decoder

	Input		Output					
Digit	enable	a	b	С	d	e	f	g
0	1	1	1	1	1	1	1	0
1	1	0	1	1	0	0	0	0
2	1	1	1	0	1	1	0	1
3	1	1	1	1	1	0	0	1
4	1	0	1	1	0	0	1	1
5	1	1	0	1	1	0	1	1
6	1	1	0	1	1	1	1	1

FACEBOOK GRP: DIGITAL ELECTRONICS COURSES (VERILOG) MOBILE NO: 01009279775

7	1	1	1	1	0	0	0	0
8	1	1	1	1	1	1	1	1
9	1	1	1	1	1	0	1	1
Α	1	1	1	1	0	1	1	1
b	1	0	0	1	1	1	1	1
С	1	1	0	0	1	1	1	0
d	1	0	1	1	1	1	0	1
E	1	1	0	0	1	1	1	1
F	1	1	0	0	0	1 (1	1
X	0	0	0	0	0	0	0	0

7-segment decoder