Register Map for the PCIM-DDA06-16

Register Description

The PCIM-DDA06-16 has 12 analog output registers. There are two registers for each analog output channel, one for the lower eight bits and one for the upper eight bits. An additional four addresses are used for 82C55 data (3) and control (1) registers. The board uses 16 I/O addresses in all. The registers and their function are listed in Table 2 below.

Register level programming should be attempted only by experienced programmers. Register manipulation is best left to experienced programmers, as most of the PCIM-DDA06-16 possible functions are implemented in the Universal Library.

The register descriptions have the following format:

	7	6	5	4	3	2	1	0
ĺ	A7	A6	A5	A4	A3	A2	A1	A0

The numbers on the top row are the bit positions within the byte and the numbers and symbols in the bottom row name the function associated with each bit.

To write to or read from a register in decimal or hex, the following weights apply:

Table 1. Bit weights

Bit Position	Decimal Value	Hex Value
0	1	1
1	2	2
2	4	4
3	8	8
4	16	10
5	32	20
6	64	40
7	128	80

To write a control word or data to a register, the individual bits must be set to 0 or 1 then combined to form a byte. The method of programming required to set/read bits from bytes is beyond the scope of this manual. The registers and their function are listed on Table 2 below. Each register has eight bits.

Table 2. Board registers

Address	Write Function	Read Function
BADR3 + 0	D/A 0 Least Significant Byte	Initiate simultaneous transfer
BADR3 + 1	D/A 0 Most Significant Byte	Initiate simultaneous transfer
BADR3 + 2	D/A 1 Least Significant Byte	Initiate simultaneous transfer
BADR3 + 3	D/A 1 Most Significant Byte	Initiate simultaneous transfer
BADR3 + 4	D/A 2 Least Significant Byte	Initiate simultaneous transfer
BADR3 + 5	D/A 2 Most Significant Byte	Initiate simultaneous transfer
BADR3 + 6	D/A 3 Least Significant Byte	Initiate simultaneous transfer
BADR3 + 7	D/A 3 Most Significant Byte	Initiate simultaneous transfer
BADR3 + 8	D/A 4 Least Significant Byte	Initiate simultaneous transfer
BADR3 + 9	D/A 4 Most Significant Byte	Initiate simultaneous transfer
BADR3 + 10	D/A 5 Least Significant Byte	Initiate simultaneous transfer
BADR3 + 11	D/A 5 Most Significant Byte	Initiate simultaneous transfer
BADR3 + 12	Port A Outputs	Port A Inputs
BADR3 + 13	Port B Outputs	Port B Inputs
BADR3 + 14	Port C Outputs	Port C Inputs
BADR3 + 15	Configure 8255	None

Analog output registers

D/A 0 least significant 8 bits

BADR3 + 0

7	6	5	4	3	2	1	0
D9	D10	D11	D12	D13	D14	D15	D16 (LSB)

D/A 0 most significant 8 bits

BADR3 + 1

-,	7.2.14											
7	6	5	4	3	2	1	0					
D1 (MSB)	D2	D3	D4	D5	D6	D7	D8					

Writing data to the LSB loads that data into the D/A load register but does not update the D/A output. Writing data to the MSB both loads the upper eight bits of the 16-bit word and updates the output of the D/A (unless the simultaneous transfer jumper is set to **XFER**).

The function and bit layout of the remaining ten registers BADR3 + 2 to BADR3 + 11 (D/A 1 to D/A 5) is identical to that shown above.

Digital I/O registers

Port A data

BADR3 + 12

7	6	5	4	3	2	1	0				
A7	A6	A5	A4	A3	A2	A1	A0				

Port B data

BADR3 + 13

	7.01.0											
7	6	5	4	3	2	1	0					
В7	В6	B5	B4	В3	B2	B1	В0					

Ports A and B can be programmed as input or output. Each is written to and read from in bytes, although for control and monitoring purposes, individual bits are used.

Bit set/reset and bit read functions require that unwanted bits be masked out of reads and ORed into writes.

Port C data

BADR3 + 14

7	6	5	4	3	2	1	0
C7	C6	C5	C4	C3	C2	C1	C0
СН3	CH2	CH1	CH0	CL3	CL2	CL1	CL0

Port C can be used as one eight-bit port of either input or output, or it can be split into two four-bit ports which can be either input or output. The notation for the upper four-bit port is CH3 to CH0, and for the lower, CL3 to CL0. Although it can be split, every read or write to port C carries eight bits of data so unwanted data must be ANDed out of reads, and writes must be ORed with the current status of the other port.

Output ports

In 8255 mode 0 configuration, ports configured for output hold the output data written to them. This output byte can be read back by reading the specific port configured as an output.

Input ports

In 8255 mode 0 configuration, ports configured for input read the state of the input lines at the moment the read is executed. Transitions are not latched.

For information on Mode 1 (strobed I/O) and Mode 2 (bi-directional strobed I/O), refer to the manufacturer's 8255 data sheet.

8255 control register

BADR3 + 15

		Gro	up A		Group B	<u> </u>	
MS	M3	M2	A	СН	M1	В	CL
7	6	5	4	3	2	1	0

The 8255 can be programmed to operate in the following modes:

Mode 0: Input/ Output

Mode 1: Strobed Input/ Output
Mode 2: Bi-Directional Bus

When the PC is powered up or reset, the 8255 is reset. This places all 24 lines in input mode. No further programming is needed to use the 24 lines as TTL inputs.

To program the 8255 for other modes, the following control code byte must be assembled into one eight-bit byte.

MS = Mode Set. 1 = mode set active

Table 3. 82C55 mode control coding

MS	M3	M2	Group A Function			
1	0	0	Mode 0 Input / Output			
1	0	1	Mode 1 Strobed Input / Output			
1	1	X	Mode 2 Bi-Directional Bus			

If all ports are to be used for either all inputs or for all outputs, the A, B, CH, and CL set the bits set as in Table 5 on page 4.

Table 4. Coding for all inputs or all outputs

Α	В	CL	СН	I/O Function
1	1	1	1	All Inputs
0	0	0	0	All Outputs

M1 = 0 Mode 0 for group B — Input/Output

M1 = 1 Mode 1 for group B — Strobed Input/Output

The Ports A, B, C-High (CH) and C-Low (CL) can be independently programmed to be either inputs or outputs (Table 5 on page 4). The two groups of ports — Group A and Group B — can be independently programmed in one of several modes. Since the most commonly used mode is Mode 0, Input/Output, the codes for programming 8255 I/O ports in Mode 0 are listed in Table 5 on page 4.

Refer to Table 5 below for ports A, B, CH, and CL mode 0 configuration.

Table 5. Mode 0 - Port I/O configuration

Α	СН	В	CL	D4	D3	D1	D0	HEX	DEC
OUT	OUT	OUT	OUT	0	0	0	0	80	128
OUT	OUT	OUT	IN	0	0	0	1	81	129
OUT	OUT	IN	OUT	0	0	1	0	82	130
OUT	OUT	IN	IN	0	0	1	1	83	131
OUT	IN	OUT	OUT	0	1	0	0	88	136
OUT	IN	OUT	IN	0	1	0	1	89	137
OUT	IN	IN	OUT	0	1	1	0	8A	138
OUT	IN	IN	IN	0	1	1	1	8B	139
IN	OUT	OUT	OUT	1	0	0	0	90	144
IN	OUT	OUT	IN	1	0	0	1	91	145
IN	OUT	IN	OUT	1	0	1	0	92	146
IN	OUT	IN	IN	1	0	1	1	93	147
IN	IN	OUT	OUT	1	1	0	0	98	152
IN	IN	OUT	IN	1	1	0	1	99	153
IN	IN	IN	OUT	1	1	1	0	9A	154
IN	IN	IN	IN	1	1	1	1	9B	155

Note: D7 is always 1. D6, D5 and D2 are always 0.

Measurement Computing Corporation 10 Commerce Way Suite 1008

Norton, Massachusetts 02766

(508) 946-5100 Fax: (508) 946-9500

E-mail: info@mccdaq.com

www.mccdaq.com