Project 1.3: Analyzing the Protein Coding Mutations in the Zimmerome

Ramya Prathuri, Megan Brady, and Nir Neumark

What is Variant Prioritization?

The process of identifying deleterious SNVs

- SNP = seen in > 1% population
- SNV = no limitation on frequency

GWAS

Principles of Variant Prioritization

Input protein sequence and amino acid substitution

- Sequence:
 - o synonymous or not?
 - missense or nonsense?
 - aa charge? size?
- Structure:
 - Phyre2, TMHMM
- Annotation:
 - dsSNP? GO term?

Goal: How to prioritize variants?

Consider a variety of parameters to assess SNVs

Mutation features

- Location
- Charge Change
- Size Difference
- Substitute
 - o Blosum
 - o PAM
 - o GERD

Charge Change

	Neutral	Hydrophilic	Hydrophobic
Neutral	0	1	1
Hydrophilic	1	0	2
Hydrophobic	1	2	0

Adapted from: http://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/IMGTclasses.html

Size Difference

				Occurrence		₹,	,	Accessible	Ranking of
Amino acid residue	pK _a of ionizing side chain ^a	Average residue mass ^b (daltons)	Monoisotopic mass (daltons) ^b	in proteins: (%)	Percent buried residuesd (%)	(Å3)	van der Waals volume ⁽ (ų)	surface areag (Å2)	amino acid polaritiesh
Alanine		71.0788	71.03711	7.5	38 (12)	92	67	67	9 (7)
Arginine	12.5 (>12)	156.1876	156.10111	5.2	0	225	148	196	15 (19)
Asparagine	1.50	114.1039	114.04293	4.6	10(2)	135	96	113	16 (16)
Aspartic acid	3.9 (4.4-4.6)	115.0886	115.02694	5.2	14.5 (3)	125	91	106	19 (18)
Cysteine	8.3 (8.5-8.8)	103.1448	103.00919	1.8	47 (3)	106	86	104	7(8)
Glutamine	-	128.1308	128.05858	4.1	6.3 (2.2)	161	114	144	17 (14)
Glutamic acid	4.3 (4.4-4.6)	129.1155	129.04259	6.3	20(2)	155	109	138	18 (17)
Glycine	-	57.0520	57.02146	7.1	37 (10)	66	48		11 (9)
Histidine	6.0 (6.5-7.0)	137.1412	137.05891	2.2	19 (1.2)	167	118	151	10 (13)
Isoleucine	-	113.1595	113.08406	5.5	65 (12)	169	124	140	1(2)
Leucine	-	113.1595	113.08406	9.1	41 (10)	168	124	137	3(1)
Lysine	10.8 (10.0-10.2)	128.1742	128.09496	5.8	4.2 (0.1)	171	135	167	20 (15)
Methionine	_	131.1986	131.04049	2.8	50 (2)	171	124	160	5 (5)
Phenylalanine	-	147.1766	147.06841	3.9	48 (5)	203	135	175	2(4)
Proline	-	97.1167	97.05276	5.1	24 (3)	129	90	105	13 (-)
Serine	-	87.0782	87.03203	7.4	24 (8)	99	73	80	14 (12)
Threonine	-	101.1051	101.04768	6.0	25 (5.5)	122	93	102	12 (11)
Tryptophan	-	186.2133	186.07931	1.3	23 (1.5)	240	163	217	6 (6)
Tyrosine	10.9 (9.6-10.0)	163.1760	163.06333	3.3	13 (2.2)	203	141	187	8 (10)
Valine	_	99,1326	99,06841	6.5	56 (15)	142	105	117	4(3)

Average volume (Vr) of buried residues, calculated from the surface area of the side chain (Richards 1977; Baumann et al. 1989).

Blosum 90 Histogram

GERP Score Histogram

Mutation Frequency

FI	LW	MR	CS	DV	EV	HL	HP	IF	LI	PQ	RI	SY	DY	GC	HN	LR	RM
1	1	1	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3
VD	Y *	CF	NY	QP	RL	SI	YF	LH	LQ	AG	EA	HD	MK	SF	YN	AD	FC
3	3	4	4	4	4	4	4	5	5	6	6	6	6	6	6	7	7
FY	PH	QK	SC	TK	DA	FV	NH	TR	IN	IS	LM	NK	RT	TN	VG	YH	AE
7	7	7	7	7	8	8	8	8	9	9	9	9	9	9	9	9	10
DH	WR	KT	ML	NT	QH	VF	YD	CW	IL	QL	EQ	GV	KQ	MI	PR	YC	AP
10	10	11	11	11	11	11	11	12	12	14	15	15	15	15	15	15	16
EG	LS	IM	AS	RP	CY	GD	KN	QE	HQ	DG	SL	SR	CG	CR	FS	RW	ST
16	16	17	18	18	19	19	19	20	21	22	22	22	23	25	26	27	27
EK	PA	GE	HY	LV	TP	GS	PT	RG	SA	GA	DN	FL	GR	LF	KE	RS	SP
29	29	30	30	31	32	33	35	35	35	36	38	38	38	38	40	42	42
DE	RK	ED	IT	KR	TS	PS	VL	LP	RC	SN	ND	NS	TI	MV	TM	VM	SG
44	44	45	47	47	49	52	52	53	54	55	57	57	57	58	59	60	64
HR	MT	AV	TA	QR	RQ	PL	RH	VA	VI	AT	IV						
65	66	70	75	81	85	88	89	97	108	111	129						

Mutation Frequency (matrix presentation)

	*	Α	C	D	E	F	G	Н	I	K	L	M	N	P	Q	R	S	T	V	W	Y
A	0	0	0	7	10	0	6	0	0	0	0	0	0	16	0	0	18	111	70	0	0
C	0	0	0	0	0	4	23	0	0	0	0	0	0	0	0	25	2	O	0	12	19
D	0	8	0	0	44	0	22	10	0	0	0	0	38	0	0	0	0	0	2	0	3
E	0	6	0	45	0	0	16	0	0	29	0	0	0	0	15	0	0	O	2	0	0
F	0	0	7	0	0	0	0	0	1	0	38	0	0	0	0	0	26	0	8	0	7
G	0	36	3	19	30	0	0	0	0	0	0	0	0	0	0	38	33	O	15	0	0
H	0	0	0	6	0	0	0	0	0	0	2	0	3	2	21	65	0	0	0	0	30
I	0	0	0	0	0	2	0	0	0	0	12	17	9	0	0	0	9	47	129	0	0
K	0	0	0	0	40	0	0	0	0	0	0	0	19	0	15	47	O	11	0	0	0
L	0	0	0	0	0	38	0	5	2	0	0	9	0	53	5	3	16	0	31	1	0
M	0	0	0	0	0	0	0	0	15	6	11	0	0	0	0	1	0	66	58	0	0
N	0	0	0	57	0	0	0	8	0	9	0	0	0	0	0	0	57	11	0	0	4
P	0	29	O	0	0	0	0	7	0	0	88	0	0	0	2	15	52	35	0	0	0
Q	0	0	0	0	20	0	0	11	0	7	14	0	0	4	0	81	0	0	0	0	0
R	0	0	54	0	0	0	35	89	2	44	4	3	0	18	85	0	42	9	0	27	0
S	0	35	7	0	0	6	64	0	4	0	22	0	55	42	0	22	0	27	0	0	2
T	0	75	0	0	0	0	0	0	57	7	0	59	9	32	0	8	49	0	0	0	0
V	0	97	0	3	0	11	9	0	108	0	52	60	0	0	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	O	0	0	0	0
Y	3	0	15	11	0	4	0	9	0	0	0	0	6	0	0	0	0	0	0	0	0

Mutation Frequency (heatmap)

Deleterious Score (DScore)

$$DScore = \alpha Charge + \beta Size + \gamma GERP + \delta Blosum$$

$$\alpha = \beta = \gamma = \delta = 1$$

Deleterious Score Histogram

PolyPhen

PROVEAN

SIFT

PolyPhen2

400.100		rea is introduced factor	***	200	225	venagn	V1VV1
0.158	0.936	# chr19:44156472 TC uc002oxf.1- PLAUR NP_002650	2-01/07/2	9.00		111111111111111111111111111111111111111	
Q9Y2Y4		174 R S rs2227278 Q9Y2Y4	174	R	5	benign	8
1	1	# chr19:36206050 AC uc002oay.2+ ZBTB32 NP_055198				100	
Q9Y2Y4		174 R S rs2227278 Q9Y2Y4	174	R	S	benign	9
1	1	# chr19:36206050 AC uc0020ay.2+ ZBTB32 NP_055198				100000000	
Q9Y2Y4		174 R S rs222727B Q9Y2Y4	174	R	S	benign	9
1	1	# chr19:36206050 AC uc0020ay.2+ ZBTB32 NP_055198					
P38398		1613 5 G rs1799966 P38398	1613	5	G	benign	0.255
0.118	0.911	# chr17:41223094 TC uc002ict.2- BRCA1 NP_009231					
P38398		1613 5 6 rs1799966 P38398	1613	S	G	benign	0.255
0.118	0.911	# chr17:41223094 TC uc002ict.2- BRCA1 NP_009231					
P38398		1613 S G rs1799966 P38398	1613	5	G	benign	0.255
0.118	0.911	# chr17:41223894 TC uc002ict.2- BRCA1 NP 009231					
P38398		1613 S G rs1799966 P38398	1613	S	G	benign	0.255
0.118	0.911	# chr17:41223894 TC uc002ict.2- BRCA1 NP 009231					
P38398		1183 K R rs16942 P38398	1183	K	8	benign	9
1	1	# chr17:41244000 TC uc002ict.2- BRCA1 NP_009231					
P38398	1.75	1038 E G rs16941 P38398	1038	E	G	possibly damaging	0.936
0.0568	0.802	# chr17:41244435 TC uc002ict.2- BRCA1 NP_009231	2000			,	
P38398	75 TO THE	871 P L rs799917 P38398	871	P	L	benign	e
1	1	# chr17:41244936 GA uc002ict.2- BRC41 NP 009231		200	-		
P38398	_	693 D N rs4986850 P38398	693	D	84	benign	9
1	1	# chr17:41245471 CT uc002ict.2- BRCA1 NP_009231		-		-	
P38398	-	356 O R rs1799950 P38398	356	0	8	probably damaging	0.998
0.0112	0.273	# chr17:41246481 TC uc002ict.2- BRCA1 NP_009231	330	×		processy damaging	0.220
014181	0.273	583 G R rs487989 014181	583	G	8	possibly damaging	0.474
0.0987	0.887	# chr11:65064690 GA uc001odj.2+ POLA2 NP 002680	505	•	.19	possibly damaging	V. 17.1
06PML9	0.007	58 M V rs1847626 06PML9	50	14	V	benign	8
COLLIER	1	# chr4:42003671 AG uc003gwl.2+ SLC30A9 NP 006336	30	177		benign	
Q6PML9	4	97 T A rs2581423 O6PML9	97	т	A	benign	9
1	1	# chr4:42020142 AG uc003gwl.2+ SLC30A9 NP 006336	9/		~	benign	6
OSIVD9	1		235	R	c	benign	9.941
	0.943		235	ĸ	-	benign	0.041
0.172	0.943	# chr7:44444122 GA uc003tkz.2- NUDCD3 NP_056147		-	0		
Q8IVD9		3 T P rs307007 Q8IVD9	3	T	4	benign	9
1 OCCUPEA	1	# chr7:44530193 TG uc003tkz.2- NUOCD3 NP_056147	500	22	0	hanian	0.079
COLINEA		EDG E D 3 OCIMEN	500		-	hant me	0.020

- Probability calculated through Bayes classifier
- Benign (0-.45), possibly damaging (.45-.95), probably damaging (.95-1)

PROVEAN & SIFT

196	2,3 (9634421, 1.0)	Sectionalist	8194219	-1	nex (MA for em	/163		10	Siege Als Change	-0.37	(Netecous.)	100	(1)	1.530	Interated
90	(.1796)44(3, (.0)	546430000043764	11429	-1	un; falctor, cou	2583			Sings AA Change	4.77	Defeterace.	90	10	1.116	triestei
31	2,17934421,10	5/6/20000345/54	33428	1	uce fa/cluc oru	2565			Singit AA Change	4.77	Distribute	60	93	9-518	trieveleri
92	2,179934423,70	#98701000845784	33428	1	500 (A/C)00 016	2588	. 1	P	Sings, AA Changs	4.07	Difference	85	35	1.116	Triordesi
33	2,179834411,70	816700000843784	33423	1	900 (A/C)00 CTG	2163	7	P	Sings AA Charge	4,17	Different	115	90	0.116	Trisrelasi
34	2,179844035,G,A	ENS700000343764	22422	1	CATT[C/T]A AGA	1256	8	12	Single AA Change	2.21	Nozow	65	30	5.525	Televelisi
35	2,179644538,G,A	816722000343764	33423	-1	CATT[C/T]A AGA	2205			Single AA Charge	2.21	Novine	65	30	9,325	Tolerates
36	2,179644035,G,A	\$16722000342754	32423	-4	GATT[C/T]A AGA	1295	9		Single AA Change	2,21	Neutra	65	32	3.320	Tylerelad
37	2,179644035,G,A	\$14\$F33500343764	33423	-4	GATTICITIA AGA	1200	s	1.0	Single AA Change	1.21	Neutre	65	30	0.326	Tolerated
30	2,179G44C35,G,A	CNGP200000343764	22423	- 4	CATTICITIA AGA	1295	s		Single AA Change	2.24	Neutra	6	30	0.325	Tolerated
39	2,179644635,6,4	CVSF00000043764	33423	-1	GATTICITIA AGA	1295	9	L	Single AA Change	2,21	Neutra	æ	35	3.326	Tolerated
-90	2,179644025,6,4	CNSP31000343764	33423	et.	GAT TJC/TJA AGA	1195	s	1.6	Single AV Change	2.31	Nextre	65	30	3,324	Tolerated
ett.	3,1746+9035,7,0	CNGR00000010764	33423	+1	DET (AVA)AN GET	1201	К	ε	Single AV. Change	+2.43	Neces	66	30	2,430	Triented
40	3,1746+9855,7,0	(NEWS)CONDICTOR	3503	-1	ner passparier	1201	×	- 1	Single As Charge	+3,43	New or red	65	30	1,410	Triented
40	3,1,746,13845,7,6;	F169F300000343764	334931	el.	THE ANGESTEE	1361	×		Single AS Change	+3.43	Nextra	164	10	3/00	Tilecated
44	2,179600044,020	-9640100000000	11478	ч	tics (which is t	1301			ninge as through	+2-42	Necta	No.	20	1410	trievated
65	2,1,796,000,93,1,07	-1697333310003794	51429	ot-	exista/odna (iii)	500			Single AA Change	-7.47	Media	PO.	90	1400	trientei
29	2,57964899-140	E90733000940764	17429	-1	DOLDA/DÍNA ULL	5209.			Single AA Change	7.42	Modes	No.	90	5430	hilesatesi

Analyzing the Zimmer Genome

Comparison of Various Programs

	PolyPhen2	PROVEAN	SIFT
Benign	2669	3104	2851
Possibly Damaging	293	0	0
Damaging	344	420	658
Undetermined	0	6	21
	PolyPhen2	PROVEAN	SIFT
Single Amino Acid Change	32	281 3	514 3514
Synonymous		15	10 10
Nonsense		10	6 6

Comparison of Various Programs

Brown = Neutral Yellow = Damaging Blue = Possibly damaging Gray = Undetermined

Comparison of Various Programs

