EDFanalyzer - user guide

1.Building and running

Prerequisites: Python 2.7, OpenJDK 1.8.0, Swig 3.0.12

Required Python libraries: Jpype 0.6.3, NumPy 1.16.3, Matplotlib 2.2.4, Pylab, Biosig, pyeeg,

xml; (might or might not work with other versions)

In the best case the application should be built by running src/buildit.sh.

If the build was successful, the application can be run in visual mode by:

python EDFanalyzer.py <edf-file>

or can be imported as a module in a python interpreter:

import EDFanalyzer

2. How to use in visual mode

After starting the application as described in 1. the graphical user interface should appear, something similar to the following :

Navigation controls:

- Moving forward/backward in time Left-click + Drag
- Increasing/decreasing the amplitude of the signals Mouse Scroll
- Zooming in time Up/Down arrow key
- Setting time interval selection Right-click + Drag

Creating plots/ calculating measures:

- Select the channels we are interested in from the left check-list
- Select a time interval
- Select the desired action from the upper menu
 (the plot should pop up in a matplotlib window, the calculated measures are printed to the terminal for each selected channel)

In the file menu we can find options to save/load the state of the project into/from an xml file with .proj extension, or another EDF file can be loaded.

3. How to use as python module

In this mode compiling the java files is not necessary, but the swig interfacing is required.

Loading data :

Class EEGData

• Plotting:

```
Class Plot
```

```
instance methods:
   __init__(self)
                                          - initializes new plot
  setData(self,data)
                                          - sets the data to be plotted
   Parameters : data - type: EEGData
  plotSignal(self,fr,to,activeChannels) - plots part of the signal
   Parameters: fr, to - type: int, from where to where in samples
    activeChannels - type: list of booleans - channels to plot
  plotHist(self,fr,to,activeChannels)
                                         - plots histogram
  plotPsd(self,fr,to,activeChannels) - plots power spectrum
  plotAutocorr(self,fr,to,activeChannels) - plots autocorrelation
• Calculation of measures :
  Class Calc
   instance methods:
   init (self)
                                         - initializes new calculation
   setData(self,data)
                                         - sets the data to be used
   Parameters : data - type: EEGData
   std(self,fr,to,activeChannels) - calculates standard deviation
```

Example using Ipython interpreter :

Parameters: fr, to - type: int, from where to where in samples

activeChannels - type: list of booleans - channels to use

entrop(self,fr,to,activeChannels) - plots histogram

In this demonstration we loaded an EDF file, then printed the names of the channels and the sampling frequency, then we created a new plot object, set the data which we wanted to plot and then called the plotSignal method, to plot a segment from sample nr. 10 to 10000, and selected the first and the last channels with the list, which produced the following plot:

Credits

Elekes Gyopár – GUI, xml management

Kelemen Szabolcs - Swig interfacing, Python classes

Schneider Bence – Interactive graph plotting, Jpype interfacing, connecting the parts