Введение в анализ данных

Лекция 7.5

Измерение ошибки в регрессии и классификации

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2021

Функции потерь в задачах регрессии

Среднеквадратичная ошибка

• Частый выбор — квадратичная функция потерь

$$L(y,a) = (a - y)^2$$

• Функционал ошибки — среднеквадратичная ошибка (mean squared error, MSE)

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

Обучение на среднеквадратичную ошибку

a(x)	y	$(a(x)-y)^2$
2	1	1
1	2	1
2	3	1
5	4	1
6	5	1
7	100	8649
6	7	1

 $MSE \approx 1236$

a(x)	y	$(a(x)-y)^2$
4	1	9
5	2	9
6	3	9
7	4	9
8	5	9
10	100	8100
10	7	9

 $MSE \approx 1164$

Средняя абсолютная ошибка

$$L(y, a) = |a - y|$$

• Функционал ошибки — средняя абсолютная ошибка (mean absolute error, MAE)

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

a(x)	y	a(x)-y
2	1	1
1	2	1
2	3	1
5	4	1
6	5	1
7	100	93
6	7	1

 $MAE \approx 14.14$

a(x)	y	a(x)-y
4	1	3
5	2	3
6	3	3
7	4	3
8	5	3
10	100	90
10	7	3

 $MAE \approx 15.43$

Функция потерь Хубера

$$L_H(y,a) = \begin{cases} \frac{1}{2}(y-a)^2, & |y-a| < \delta \\ \delta(|y-a| - \frac{1}{2}\delta), & |y-a| \ge \delta \end{cases}$$

• Функционал ошибки:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} L_H(y_i, a(x_i))$$

Функция потерь Хубера

$$L_H(y,a) = \begin{cases} \frac{1}{2}(y-a)^2, & |y-a| < \delta \\ \delta(|y-a| - \frac{1}{2}\delta), & |y-a| \ge \delta \end{cases}$$

MAPE

• Mean Absolute Percentage Error (средний модуль относительной ошибки)

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

$$Q(a,X) = \frac{100\%}{\ell} \sum_{i=1}^{\ell} \left| \frac{a(x_i) - y_i}{y_i} \right|$$

MAPE

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

- Особенности (при $a \ge 0$):
- Недопрогноз штрафуется максимум на единицу
- Перепрогноз может быть оштрафован любым числом
- Несимметричная функция потерь (отдаёт предпочтение недопрогнозу)

MAPE

$$L(y,a) = \left| \frac{y-a}{y} \right|$$

SMAPE

• Symmetric Mean Absolute Percentage Error (симметричный средний модуль относительной ошибки)

$$L(y,a) = \frac{|y-a|}{(|y|+|a|)/2}$$

$$Q(a,X) = \frac{100\%}{\ell} \sum_{i=1}^{\ell} \frac{|y_i-a(x_i)|}{(|y_i|+|a(x_i)|)/2}$$

SMAPE

$$L(y,a) = \frac{|y-a|}{(|y|+|a|)/2}$$

Метрики качества классификации

Качество классификации

• Доля неправильных ответов:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

Качество классификации

• Доля правильных ответов (accuracy):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

- Несбалансированная выборка объектов одного класса существенного больше
- Пример: предсказание кликов по рекламе
- Пример: медицинская диагностика
- Пример: предсказание оттока клиентов
- Пример: специализированный поиск

- Пример:
 - Класс -1: 950 объектов
 - Класс +1: 50 объектов
- a(x) = -1
- Доля правильных ответов: 0.95
- Почему результат нас не устраивает?

- Пример:
 - Класс -1: 950 объектов
 - Класс +1: 50 объектов
- a(x) = -1
- Доля правильных ответов: 0.95
- Почему результат нас не устраивает?
- Модель не несёт экономической ценности
- Цены ошибок неравнозначны

- q_0 доля объектов самого крупного класса
- Для разумных алгоритмов:

accuracy ∈
$$[q_0, 1]$$

• Если получили большой ассuracy — посмотрите на баланс классов

Улучшение метрики

- Два алгоритма
- Доли правильных ответов: r_1 и r_2
- Абсолютное улучшение: $r_2 r_1$
- Относительное улучшение: $\frac{r_2 r_1}{r_1}$

Улучшение метрики

•
$$r_1 = 0.8$$

•
$$r_2 = 0.9$$

$$\cdot \frac{r_2 - r_1}{r_1} = 12.5\%$$

•
$$r_1 = 0.5$$

•
$$r_2 = 0.75$$

$$\bullet \, \frac{r_2 - r_1}{r_1} = 50\%$$

•
$$r_1 = 0.001$$

•
$$r_2 = 0.01$$

$$\cdot \frac{r_2 - r_1}{r_1} = 900\%$$

Цены ошибок

- Пример: кредитный скоринг
- Модель 1:
 - 80 кредитов вернули
 - 20 кредитов не вернули
- Модель 2:
 - 48 кредитов вернули
 - 2 кредита не вернули
- Кто лучше?

Цены ошибок

- Что хуже?
 - Выдать кредит «плохому» клиенту
 - Не выдать кредит «хорошему» клиенту
- Доля верных ответов не учитывает цены ошибок

Матрица ошибок

	y = 1	y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

Матрица ошибок

• Модель $a_1(x)$:

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• Модель $a_2(x)$:

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

Точность (precision)

• Можно ли доверять классификатору при a(x) = 1?

$$precision(a, X) = \frac{TP}{TP + FP}$$

Точность (precision)

• Модель $a_1(x)$:

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• precision $(a_1, X) = 0.8$

• Модель $a_2(x)$:

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

• precision(a_2, X) = 0.96

Полнота (recall)

• Как много положительных объектов находит классификатор?

$$\operatorname{recall}(a, X) = \frac{TP}{TP + FN}$$

Полнота (recall)

• Модель $a_1(x)$:

	y = 1	y = -1
a(x) = 1	80	20
a(x) = -1	20	80

• recall(a_1, X) = 0.8

• Модель $a_2(x)$:

	y = 1	y = -1
a(x) = 1	48	2
a(x) = -1	52	98

• recall(a_2, X) = 0.48

Антифрод

- Классификация транзакций на нормальные и мошеннические
- Высокая точность, низкая полнота:
 - Редко блокируем нормальные транзакции
 - Пропускаем много мошеннических
- Низкая точность, высокая полнота:
 - Часто блокируем нормальные транзакции
 - Редко пропускаем мошеннические

Кредитный скоринг

- Неудачных кредитов должно быть не больше 5%
- Ограничение: precision $(a, X) \ge 0.95$
- Максимизируем полноту

Медицинская диагностика

- Надо найти не менее 80% больных
- Ограничение: $\operatorname{recall}(a, X) \ge 0.8$
- Максимизируем точность

Несбалансированные выборки

- accuracy(a, X) = 0.99
- precision(a, X) = 0.33
- $\operatorname{recall}(a, X) = 0.1$

	y = 1	y = -1
a(x) = 1	10	20
a(x) = -1	90	10000

Совмещение точности и полноты

Точность и полнота

- Точность можно ли доверять классификатору при a(x) = 1?
- Полнота как много положительных объектов находит a(x)?

- Оптимизировать две метрики одновременно очень неудобно
- Как объединить?

Арифметическое среднее

$$A = \frac{1}{2}(\text{precision} + \text{recall})$$

Арифметическое среднее

$$A = \frac{1}{2}(\text{precision} + \text{recall})$$

- precision = 0.1
- recall = 1
- A = 0.55

• Плохой алгоритм

Арифметическое среднее

$$A = \frac{1}{2} (precision + recall)$$

- precision = 0.55
- recall = 0.55
- A = 0.55
- Нормальный алгоритм
- Но качество такое же, как у плохого

 $M = \min(\text{precision, recall})$

 $M = \min(\text{precision, recall})$

- precision = 0.05
- recall = 1
- M = 0.05

 $M = \min(\text{precision, recall})$

- precision = 0.55
- recall = 0.55
- M = 0.55

 $M = \min(\text{precision, recall})$

- precision = 0.4, recall = 0.5
- M = 0.4

- precision = 0.4, recall = 0.9
- M = 0.4

• Но второй лучше!

$$F = \frac{2 * precision * recall}{precision + recall}$$

$$F = \frac{2 * precision * recall}{precision + recall}$$

- precision = 0.4, recall = 0.5
- F = 0.44

- precision = 0.4, recall = 0.9
- M = 0.55

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

- $\beta = 0.5$
- Важнее точность

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

- $\beta = 2$
- Важнее полнота

Геометрическое среднее

$$G = \sqrt{precision * recall}$$

$$F = \frac{2 * precision * recall}{precision + recall}$$

Геометрическое среднее

$$G = \sqrt{precision * recall}$$

$$F = \frac{2 * precision * recall}{precision + recall}$$

- precision = 0.9
- recall = 0.1
- G = 0.3

- precision = 0.9
- recall = 0.1
- F = 0.18