

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC171174
Page: 1 of 162

FCC Radio Test Report FCC ID: 2AL8K-ONESCREEN-6

Original Grant

Report No. : TB-FCC171174

Applicant : NZS Inc. DBA Clary Icon

Equipment Under Test (EUT)

EUT Name: Interactive Touch Screen/ Interactive Flat Panel

Model No. : OneScreen 6

Serial Model No. : OneScreen * (* stands for 0-9, or A-Z, or a-z, or blank)

Brand Name : OneScreen

Receipt Date : 2019-12-21

Test Date : 2019-12- 21 to 2019-12-27

Issue Date : 2019-12-28

Standards : FCC Part 15, Subpart E (15.407)

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness

Engineer

Engineer : Supervisor :

the report.

Engineer Manager :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in

TB-RF-074-1.0

2 of 162

Contents

CON	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	8
	1.6 Description of Test Software Setting	
	1.7 Test Facility	
2.	TEST SUMMARY	
3.	TEST EQUIPMENT	12
4.	CONDUCTED EMISSION TEST	13
	4.1 Test Standard and Limit	13
	4.2 Test Setup	13
	4.3 Test Procedure	14
	4.4 EUT Operating Mode	14
	4.5 Test Data	14
5.	RADIATED EMISSION TEST	15
	5.1 Test Standard and Limit	15
	5.2 Test Setup	16
	5.3 Test Procedure	17
	5.4 EUT Operating Condition	18
	5.5 Test Data	18
6.	BAND EDGE EMISSIONS	19
	6.1 Test Standard and Limit	19
	6.2 Test Setup	19
	6.3 Test Procedure	20
	6.4 EUT Operating Condition	
	6.5 Test Data	20
7.	BANDWIDTH TEST	21
	7.1 Test Standard and Limit	21
	7.2 Test Setup	21
	7.3 Test Procedure	21
	7.4 EUT Operating Condition	
	7.5 Test Data	
8.	OUTPUT POWER TEST	23
	8.1 Test Standard and Limit	23
	8.2 Test Setup	23

Page: 3 of 162

	8.3 Test Procedure	23
	8.4 EUT Operating Condition	
	8.5 Test Date	
9.	POWER SPECTRAL DENSITY TEST	24
	9.1 Test Standard and Limit	24
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	25
	9.5 Test Data	
10.	FREQUENCY STABILITY MEASUREMENT	26
	10.1 Test Standard and Limit	26
	10.2 Test Setup	26
	10.3 Test Procedure	
	10.4 EUT Operating Condition	26
	10.5 Test Data	27
11.	ANTENNA REQUIREMENT	28
	11.1 Standard Requirement	28
	11.2 Antenna Connected Construction	28
	11.3 Result	28
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	29
ATT	ACHMENT B RADIATED EMISSION TEST DATA	31
ATT	ACHMENT C BAND EDGE EMISSIONS TEST DATA	35
ATT	ACHMENT D BANDWIDTH TEST DATA	85
ATT	ACHMENT E OUTPUT POWER TEST DATA	125
ATT	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	127
	ACHMENT G FREQUENCY STABILITY MEASUREMENT TEST DATA	

Page: 4 of 162

Revision History

Report No.	Version	Description	Issued Date
TB-FCC171174	Rev.01	Initial issue of report	2019-12-28
THE PERSON NAMED IN		4000	TO A THUR
6003			TO DE
			000
0.000	3		4000
	TO PARTIES		
TUD!			TO THE
			WINDS W
a mus		TOBY	The state of the s

Page: 5 of 162

1. General Information about EUT

1.1 Client Information

Applicant: NZS Inc. DBA Clary Icon

Address : 8168 Miramar Road, San Diego CA 92126, United States

Manufacturer : Shenzhen Konka E-display Co.,Ltd

Address : 22A,KONKA Building,South Technology Road No.12th,High-tech

Industrial Park, Nanshan, Shenzhen China

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Interactive Touch Screen/ Interactive Flat Panel				
Models No.		OneScreen 6, OneScreen * (* stands for 0-9,or A-Z,or a-z,or blank)				
Model Different	-5	All these models are the same PCB, layout and electrical circuit, the only different is model name.				
		Operation Frequency: U-NII-1: 5180MHz~524 U-NII-3: 5745MHz~582 SISO for 802.11a MIMO for 802.11n/ac	40MHz(For indoor use only) 25MHz			
	1	Antenna Gain:	See Note:3			
Product Description		Modulation Type:	802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM)			
		Bit Rate of Transmitter:	802.11a: 6/9/12/18/24/36/48/54 Mbps 802.11n: up to 150Mbps 802.11ac: at most 433.3 Mbps			
Power Rating		Input: AC 100-240V, 50/60Hz				
Connecting I/O Port(S)	Š	Please refer to the User's Manual				
Remark		The antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.				

Note: More detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Note:

(1) This Test Report is FCC Part 15, Subpart E(15.407) for 802.11a/n/ac, the test procedure follows the FCC KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

Page: 6 of 162

(2) Channel List:

5G Band 5150~5250 MHz (U-NII-1)					
Frequency Band	Channel No.	Frequency	Channel No.	Frequency	
	36	5180 MHz	44	5220 MHz	
5180~5240 MHz	38	5190 MHz	46	5230 MHz	
Band 1	40	5200 MHz	48	5240 MHz	
	42	5210 MHz			

Remark:

For 20 MHz Bandwidth, use channel 36, 40, 44, 48.

For 40 MHz Bandwidth, use channel 38, 46.

5G Band 5745~5825 MHz(U-NII-3)							
Frequency Channel No. Frequency Channel No. Frequency							
Band							
	149	5745 MHz	157	5785 MHz			
5745~5825 MHz	151	5755 MHz	159	5795 MHz			
Band 4	153	5765 MHz	161	5805 MHz			
	155	5775 MHz	165	5825 MHz			

Remark:

For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165.

For 40 MHz Bandwidth, use channel 151, 159.

(3) Antenna information

Antenna	Brand	Model Name	Туре	Antenna Gain(dBi)
ANT0.	N/A	N/A	Reverse SMA	5
ANT1.	N/A	N/A	Reverse SMA	5

Any transmit signals are correlated with each other for MIMO mode for 802.11n/ac, Directional gain= GANT + 10 log(NANT) dBi=8.01dBi for U-NII-1/U-NII-3.

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

Page: 7 of 162

1.4 Description of Support Units

		4070 4 0 4 0 10				
Equipment Information						
Name Model FCC ID/VOC Manufacturer Used "√"						
113		(m):43	William .	TO WOO		
	Cable Information					
Number Shielded Type Ferrite Core Length			Note			
	1139	1002	100	13		

Page: 8 of 162

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

	F	or Conducted Test
ode	Descrip	otion
	TX 802	.11a Mode
	F	or Radiated Test
Final Test	Mode	Description
Mode	2	TX Mode 802.11a Mode Channel 36/40/48
Mode	3	TX Mode 802.11n(HT20) Mode Channel 36/40/48
Mode	4	TX Mode 802.11n(HT40) Mode Channel 38/46
Mode	5	TX Mode 802.11ac(VHT20) Mode Channel 36/40/48
Mode	6	TX Mode 802.11ac(VHT40) Mode Channel 38/46
Mode	20	TX Mode 802.11a Mode Channel 149/157/165
Mode	21	TX Mode 802.11n(HT20) Mode Channel 149/157/165
Mode	22	TX Mode 802.11n(HT40) Mode Channel 151/159
Mode	23	TX Mode 802.11ac(VHT20) Mode Channel 149/157/165
Mode	24	TX Mode 802.11ac(VHT40) Mode Channel 151/159
	Final Test Mode Mode	ode Descrip

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 8 802.11n (HT40) Mode: MCS 8

802.11ac(VHT20) Mode: MCS 1/Nss2 802.11ac(VHT40) Mode: MCS 1/Nss2

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 9 of 162

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version	Test Software Version Ampak RF Test Tool							
U-NII-1								
Mode:	5180MHz	5200MHz	5240MHz					
IEEE 802.11a	DEF	DEF	DEF					
IEEE 802.11n (HT20)	DEF	DEF	DEF					
IEEE 802.11ac (VHT20)	DEF	DEF	DEF					
Mode:	5190MHz	5230MHz						
IEEE 802.11n (HT40)	DEF	DEF						
IEEE 802.11ac (VHT40)	DEF	DEF						
	U-NI	II-3						
Mode:	5745MHz	5785MHz	5825MHz					
IEEE 802.11a	DEF	DEF	DEF					
IEEE 802.11n (HT20)	DEF	DEF	DEF					
IEEE 802.11ac (VHT20)	DEF	DEF	DEF					
Mode:	5755MHz	5795MHz						
IEEE 802.11n (HT40)	DEF	DEF						
IEEE 802.11ac (VHT40)	DEF	DEF						

Page: 10 of 162

1.7 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 11 of 162

2. Test Summary

FCC Part 15 Subpart E(15.407)/RSS-210: 2010							
Standa	rd Section		ludament	Damada			
FCC IC		Test Item	Judgment	Remark			
15.203	1	Antenna Requirement	PASS	N/A			
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A			
15.407(b)	RSS-GEN 7.2.2	Band Edge Emissions	PASS	N/A			
15.407(a)	RSS-24 A.9.2	26dB Bandwidth&99% Bandwidth	PASS	N/A			
15.407(e)	RSS-210 A.9.2	6dB Bandwidth(only for UNII-3)	PASS	N/A			
15.407(a)	RSS-210 A.9.2	Peak Output Power	PASS	N/A			
15.407(a)	RSS-210 A.9.2	Power Spectral Density	PASS	N/A			
15.407(b)	RSS-210 A.9.2	Transmitter Radiated Spurious Emission	PASS	N/A			
15.407(a)	RSS-210 A.9.2	Peak Excursion	PASS	N/A			
15.407(g)	RSS-210 A.9.2	Frequency Stability	PASS	N/A			

Note: (1)"/" for no requirement for this test item.

(2)N/A is an abbreviation for Not Applicable.

(3)All tests were conducted using the adapter and antenna gain provided by the applicant, The laboratory tests only according to the information provided by the applicant.

Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

Page: 12 of 162

3. Test Equipment

4. Conducted Emi	ssion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 13, 2019	Jul. 12, 2020
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 13, 2019	Jul. 12, 2020
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 13, 2019	Jul. 12, 2020
LISN	Rohde & Schwarz	ENV216	101131	Jul. 13, 2019	Jul. 12, 2020
Radiation Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	FSVR	1311.006K40-10094 5-DH	Feb. 10, 2019	Feb. 09, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.03, 2019	Mar. 02, 2020
_oop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 13, 2019	Jul. 12, 2020
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Jul. 27, 2019	Jul. 26, 2020
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Cond	ucted Emission	1			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 13, 2019	Jul. 12, 2020
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 16, 2019	Sep. 15, 2020
/ector Signal Generator	Agilent	N5182A	MY50141294	Sep. 16, 2019	Sep. 15, 2020
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 16, 2019	Sep. 15, 2020
Time.	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 16, 2019	Sep. 15, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 16, 2019	Sep. 15, 2020
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 16, 2019	Sep. 15, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 16, 2019	Sep. 15, 2020

Page: 13 of 162

5. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Eroguenov	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

Page: 14 of 162

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 15 of 162

6. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)	
(MHz)	Peak	Average
Above 1000	74	54

Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
The state of the s	-27(Note 2)	68.2
5705 5005	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
THU THE	27(Note 2)	122.2

Page: 16 of 162

NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below theband edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above orbelow the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

5.2 Test Setup

Below 30MHz Test Setup

Page: 17 of 162

Below 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by

Page: 18 of 162

3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical ANT0re set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 19 of 162

7. Band Edge Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.407(b)

6.1.2 Test Limit

Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
	-27(Note 2)	68.2
5705 5005	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
	27(Note 2)	122.2

NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below theband edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above orbelow the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

6.2 Test Setup

Page: 20 of 162

6.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical ANT0re set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

Page: 21 of 162

8. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.407

7.1.2 Test Limit

FCC Part 15 Subpart C(15.407)/RSS-210			
Test Item	Limit	Frequency Range (MHz)	
26 Bandwidth	N/A	5150~5250	
6 dB Bandwidth	>500kHz	5725~5850	

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The setting of the spectrum analyser as below:

26dB Bandwidth Test			
Spectrum Parameters	Setting		
Attenuation	Auto		
Span	>26 dB Bandwidth		
RBW	Approximately 1% of the emission bandwidth		
VBW	VBW>RBW		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

Page: 22 of 162

6dB Bandwidth Test				
Spectrum Parameters	Setting			
Attenuation	Auto			
Span	>6 dB Bandwidth			
RBW	100 kHz			
VBW	VBW>=3*RBW			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			
99% Occupied Bandwidth Test				
Spectrum Parameters	Setting			
Attenuation	Auto			
RBW	1% to 5% of the OBW			
VBW	≥ 3RBW			
Detector	Peak			
Trace	Max Hold			

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 23 of 162

9. Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.407 (a)

8.1.2 Test Limit

FCC Part 15 Subpart E(15.407)/RSS-210				
Test Item Limit Frequency Range(MH				
Conducted Output Power	Fixed: 1 Watt (30dBm) Mobile and Portable: 250mW (24dBm)	5150~5250		
	1 Watt (30dBm)	5725~5850		

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 3 of KDB 789033 D02 General UNII Test Procedures New Rules V02r01

The EUT was connected to RF power meter via a broadband power sensor as show the block above.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Date

Please refer to the Attachment E.

Page: 24 of 162

10. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.407 (a)

9.1.2 Test Limit

FCC Part 15 Subpart E(15.407)				
Test Item Limit Frequency Range(MHz)				
Power Spectral Density	Other than Mobile and Portable : 17dBm/MHz Mobile and Portable : 11dBm/MHz	5150~5250		
	30dBm/500kHz	5725~5850		

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
 - (2) Set analyser centre frequency to transmitting frequency.
 - (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.

(4) Set the RBW to: 1 MHz(5) Set the VBW to: 3 MHz

(6) Detector: RMS(7) Trace: Max Hold(7) Sweep time: auto

- (8) Trace average at least 100 traces in power averaging.
- (9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

Page: 25 of 162

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 26 of 162

11. Frequency Stability Measurement

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.407

10.1.2 Test Limit

FCC Part 15 Subpart C(15.407)				
Test Item	Limit	Frequency Range(MHz)		
Will Bridge	Specified in the user's manual, the transmitter	5150~5250		
Peak Excursion Measurement	tolerance shall be ±20 ppm maximum for the 5	5725~5850		
	GHz band (IEEE 802.11n specification)	DOLL BY		

10.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
 - (2) Set analyser centre frequency to transmitting frequency.
 - (3) Set the span to encompass the entire emissions bandwidth (EBW) of the signal.
 - (4) Set the RBW to: 10 kHz, VBW=10 kHz with peak detector and maxhold settings.
 - (5) The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
 - (6) Extreme temperature is 0°C~50°C

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in continuously un-modulation transmitting mode.

Page: 27 of 162

10.5 Test Data

Please refer to the Attachment G.

Page: 28 of 162

12. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 5 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.3 Result

The EUT antennas are Reverse SMA Antenna. It complies with the standard requirement.

Antenna Type					
Permanent attached antenna					
⊠Unique connector antenna	U.S.				
☐Professional installation antenna	Of The Party				

Page: 29 of 162

Attachment A-- Conducted Emission Test Data

Page: 30 of 162

Remark: All modes and channels have been tested and only listed WiFi link mode that is worst data

 ${\tt Report\ No.:\ TB-FCC171174}$

Page: 31 of 162

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	25 ℃	Re	elative Humic	dity: 55°	%	
Test Voltage:	AC 120V/60H	Z	CORD		CHIT.	distr.
Ant. Pol.	Horizontal			CIETA		677
Test Mode:	TX 802.11a Mode 5180MHz (U-NII-1)					
Remark:	Only worse ca	se is reported	TRAS	- 6	111.	
80.0 dBuV/m						
30		2		(RF)FCC 15C	3M Radiation Margin -6 d	B
30.000 40 50	60 70 80	(MHz)	300	400 500	600 700	1000.000
No. Mk.	Readir Freq. Level	-	Measure- ment	Limit	Over	
	MHz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1 83	.5222 46.81	-22.36	24.45	40.00	-15.55	QP
2 160).3456 57.93	3 -20.84	37.09	43.50	-6.41	QP
3 * 216	5.7828 59.41	-18.94	40.47	46.00	-5.53	QP
4 303	3.5437 48.28	3 -15.87	32.41	46.00	-13.59	QP
	7.5145 48.64		36.59	46.00	-9.41	QP
	.4486 41.98		35.97	46.00	-10.03	QP

Page: 32 of 162

Temperature:	ure: 25 ℃			lative Humi	dity: 55	55%		
est Voltage:	AC 12	AC 120V/60Hz						
Ant. Pol.	Vertica	Vertical						
Test Mode:	TX 80	TX 802.11a Mode 5180MHz (U-NII-1)						
Remark:	Only w	vorse case	is reported	and the		a WW		
80.0 dBuV/m								
					(RF)FCC 1	5C 3M Radiation		
						Margin -6 dE		
1				3 }\\ 4	5 * 6			
30 🕺		~ 2	h /\ .	of Many 1		Mula	nur	
manner	mymmul	7 . A A.	Mynny Mi	Mr /	Mahalan	. 44 Mr. 41		
20 30.000 40 50	60 70	80	(MHz)	300	400 50	00 600 700	1000.00	
30.000 40 30					400 30	000 700	1000.00	
Nia Balla I		Reading	Correct	Measure-	Limit	O∨er		
	Freq.	Level	Factor	ment				
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB I	Detect	
	.7313	45.90	-14.32	31.58	40.00	-8.42	QF	
1 31								
1 31 2 112	.7313	45.90	-14.32	31.58	40.00	-8.42	QF	
1 31 2 112 3 * 212	.7313 2.1305 2.2695	45.90 52.49 58.34	-14.32 -22.44 -19.20	31.58 30.05	40.00 43.50	-8.42 -13.45	QF QF	
1 31 2 112 3 * 212 4 303	.7313 2.1305 2.2695 3.5437	45.90 52.49 58.34 48.82	-14.32 -22.44 -19.20 -15.87	31.58 30.05 39.14 32.95	40.00 43.50 43.50 46.00	-8.42 -13.45 -4.36 -13.05	QF QF QF	
1 31 2 112 3 * 212 4 303 5 407	.7313 2.1305 2.2695	45.90 52.49 58.34	-14.32 -22.44 -19.20	31.58 30.05 39.14	40.00 43.50 43.50	-8.42 -13.45 -4.36	QF QF	

Page: 33 of 162

Above 1GHz

Test Mode: U-NII 1 & 802.11ac(VHT20) Mode

		Toot Woo	5180MHz	1146(111120)1	vious	11.74.3
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	Correction Factor (dB/m)	Emission Level Peak (dBµV/m)	Peak limit (dBμV/m)	Peak Margin (dB)
10360	Н	38.39	20.50	58.89	68.2	-9.31
15540	H	34.12	23.49	57.61	68.2	-10.59
44	Н	- CON-	(Labor)	43		
10360	V	37.69	20.50	58.19	68.2	-10.01
15540	V	34.01	23.49	57.5	68.2	-10.7
	V		C4:00			133
			5200MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	Correction Factor (dB/m)	Emission Level Peak (dBµV/m)	Peak limit (dBµV/m)	Peak Margin (dB)
10400	H	36.69	20.53	57.22	68.2	-10.98
15600	Н	33.06	23.53	56.59	68.2	-11.61
MITTO	Н	1132	- 190			
10400	V	37.19	20.53	57.72	68.2	-10.48
15600	V	32.78	23.53	56.31	68.2	-11.89
11,100	V	AHAD:		<u> </u>	$Q(\Omega_{\overline{m}}) =$	3
			5240MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	Correction Factor (dB/m)	Emission Level Peak (dBµV/m)	Peak limit (dBµV/m)	Peak Margin (dB)
10480	Н	36.90	20.68	57.58	68.2	-10.62
15720	Н	33.01	23.70	56.71	68.2	-11.49
	H			1	- (C-1)	
10480	V	36.70	20.5	57.2	68.2	-11.00
15720	V	33.32	23.70	57.02	68.2	-11.18
W	V	3 0		130		

Note:

- 1. Emission Level= Read Level+ Correct Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5. All modes are tested, showing only the worst patterns in the report.

Page: 34 of 162

Test Mode: U-NII 3 & 802.11n(HT20) Mode

		TCSt WIOO	5745MHz	TTT20) WOUC		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	Correction Factor (dB/m)	Emission Level Peak (dBµV/m)	Peak limit (dBµV/m)	Peak Margin (dB)
11490	Н	36.84	21.81	58.65	68.2	-9.55
17235	Н	33.13	24.74	57.87	68.2	-10.33
60	H	(1))	A W		122	SOFT
11490	V	36.13	21.81	57.94	68.2	-10.26
17235	V	33.42	24.74	58.16	68.2	-10.04
	V		1100			5021
			5785MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	Correction Factor (dB/m)	Emission Level Peak (dBµV/m)	Peak limit (dBµV/m)	Peak Margin (dB)
11570	Н	36.03	21.60	57.63	68.2	-10.57
17355	H	33.29	24.47	57.76	68.2	-10.44
	Н	THE STATE OF THE S			المر المولا	I The
11570	V	36.18	21.60	57.78	68.2	-10.42
17355	V	33.07	24.47	57.54	68.2	-10.66
[1]	V	-		din a	3	Us Till
			5825MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	Correction Factor (dB/m)	Emission Level Peak (dBµV/m)	Peak limit (dBµV/m)	Peak Margin (dB)
11650	Н	36.44	21.88	58.32	68.2	-9.88
17475	Н	33.43	24.80	58.23	68.2	-9.97
CITIES .	ЭН	(A1)77				1500
11650	V	36.94	21.88	58.82	68.2	-9.38
17475	V	33.65	24.80	58.45	68.2	-9.75
	V	607-50	177	- W		W

Note:

- 6. Emission Level= Read Level+ Correct Factor
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 9. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 10. All modes are tested, showing only the worst patterns in the report.

Page: 35 of 162

Attachment C-- Band Edge Emissions Test Data

(1) Radiation Test

Page: 36 of 162

Page: 37 of 162

Relative Humidity: 55%	
AC 120V/60Hz	A Brown
Horizontal	
TX 802.11a Mode 5240 MHz (U-NII-1) ANT0	ARI.
(RF) FCC PART 15.407 (PEAK)
3 X (RF) FCC PART 15C (AV	(C)
X (RF) FCC PART 15C (AV	
2.00 5282.00 5302.00 5322.00 5342.00 5362.00 5382.00	5422.00 MH
Reading Correct Measure-	
. Level Factor ment Limit Over	
dBuV dB/m dBuV/m dBuV/m dB	Detecto
00 76.43 16.70 93.13 Fundamental Frequency	AVG
00 86.99 16.70 103.69 Fundamental Frequency	peak
00 39.56 16.83 56.39 68.30 -11.91	peak
00 27.89 16.83 44.72 54.00 -9.28	AVG
00 76.43 16.70 93.13 Fundamental Frequency 00 86.99 16.70 103.69 Fundamental Frequency	

Page: 38 of 162

Page: 39 of 162

Page: 40 of 162

Page: 41 of 162

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	THU	
Ant. Pol.	Horizontal	01 - 0	
Test Mode:	TX 802.11n(HT20) Mode	5240 MHz (U-NII-1) A	NT0+ANT1
Remark:			

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	5238.000	88.40	16.70	105.10	Fundamental Frequency		peak
2	*	5242.800	77.87	16.72	94.59	Fundamental	Frequency	AVG
3		5350.000	40.53	16.83	57.36	68.30	-10.94	peak
4		5350.000	27.79	16.83	44.62	54.00	-9.38	AVG

Page: 42 of 162

Page: 43 of 162

Page: 44 of 162

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		- N. W.
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT	20) Mode 5180 MHz (U-NII-1) ANT0+ANT1
Remark:			THE PARTY OF THE P
120.0 dBuV/m			4

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5150.000	41.19	16.61	57.80	68.30	-10.50	peak
2		5150.000	29.72	16.61	46.33	54.00	-7.67	AVG
3	*	5181.200	85.69	16.65	102.34	Fundamenta	l Frequency	AVG
4	X	5181.600	96.56	16.64	113.20	Fundamenta	l Frequency	peak

Page: 45 of 162

Гетр	eratur	e:	25 °	C		0 1	Relat	ive Hum	nidity:	55%		
est \	Voltage):	AC 1	120V/6	0Hz	33		(1/17)	1113		AR	
nt. F	Pol.		Horiz	zontal			and the	V	6	TOWN		
est l	Mode:		TX 8	02.11a	ac(VH	T20) Mo	de 524	0 MHz (U-NII-1)	ANT0+A	NT1	١
Rema	ark:			1	100		1	MILE		~ I		
120.0	dBuV/m											
												1
		2 X										
	1	^										
	χ̈́Λ	Λ										
	/ V	V \										
									(DE) FCC P	ADT 15 407 (D	- IV)	
70									(HF) FCC P	ART 15.407 (P	EANJ	1
								3 X	(RF)	FCC PART 150	(AVG)	
								4				1
<u></u>				~~		 		×				1
20.0												1
	.000 5240	.00	5260.00	5280.00	530	0.00 5320	0.00 5	340.00 53	360.00 5	5380.00	5420.00	MI
	N.Al.			Read		Correc		easure-	Limi	. 0		
No	. Mk.		eq.	Lev		Facto		ment			:1	
		M	Ηz	dBı	u∨	dB/m	C	lBuV/m	dBu∀	/m dB	Dete	cto

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	5235.200	76.41	16.70	93.11	Fundamenta	I Frequency	AVG
2	Χ	5245.200	87.84	16.71	104.55	Fundamenta	l Frequency	peak
3		5350.000	39.25	16.83	56.08	68.30	-12.22	peak
4		5350.000	28.01	16.83	44.84	54.00	-9.16	AVG

Page: 46 of 162

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	Million	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT20) Mo	de 5240 MHz (U-NII-1)	ANT0+ANT1
Remark:			

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		X	5235.200	96.18	16.70	112.88	Fundamental	Frequency	peak
2		*	5235.200	86.42	16.70	103.12	Fundamental	Frequency	AVG
3			5350.000	40.26	16.83	57.09	68.30	-11.21	peak
4			5350.000	29.21	16.83	46.04	54.00	-7.96	AVG

2

3

4

Χ

Report No.: TB-FCC171174

Page: 47 of 162

Tem	perature:		25 °	C			× 1	Rela	tive	Hum	idity:	5	5%	A	
Test	Voltage:		AC	120V	/60Hz		9			21/1			-	100	
Ant.	Pol.		Hori	zonta	al				4			(W)	1130		
Test	Mode:		TX 8	302.1	1n(HT	40)	Mode	5190	MHz	z (U-N	III-1)	ANT	0+ANT1		dig.
Rem	nark:								611	M			a \	MA	
120.0) dBuV/m														
70										1 X 2			4 X 3 X 15.407 (PE		
20.0															
50	18.000 5038.00) 50	958.00	5078	.00 5	6098.O	0 5118	.00	5138.00) 515	58.00	5178.	00	5218.	00 MHz
N	o. Mk.	Fre		Le	ading evel	j (Correc Facto		leas mer	nt	Lin		Ove		
		MH	Z	d	BuV		dB/m		dBu\	//m	dBu	ıV/m	dB	De	etector
1	5′	150.0	000	40	0.80		16.61		57.4	41	68	.30	-10.8	39	oeak

Emission Level= Read Level+ Correct Factor

29.47

79.67

90.16

16.61

16.65

16.65

46.08

96.32

106.81

54.00

Fundamental Frequency

Fundamental Frequency

5150.000

5184.800

5186.800

AVG

AVG

peak

-7.92

Page: 48 of 162

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	Miles	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) Mode	5190 MHz (U-NII-1) A	NT0+ANT1
Remark:			THE PARTY OF THE P

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5150.000	43.00	16.61	59.61	68.30	-8.69	peak
2		5150.000	31.08	16.61	47.69	54.00	-6.31	AVG
3	Χ	5197.600	94.34	16.66	111.00	Fundamental	Frequency	peak
4	*	5198.000	84.09	16.66	100.75	Fundamental	Frequency	AVG

Page: 49 of 162

Page: 50 of 162

			ALM I						
Temperature:	25 ℃	Relative Humidity:	55%						
Test Voltage:	AC 120V/60Hz		- W						
Ant. Pol. Vertical									
Test Mode: TX 802.11n(HT40) Mode 5230 MHz (U-NII-1) ANT0+ANT1									
Remark:		MIDS	A VIII						
120.0 dBuV/m									
	2 X								
	1								

N	lo. N	Лk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		5222.800	83.63	16.69	100.32	Fundamental Frequency		AVG
2	X		5226.400	94.08	16.70	110.78	Fundamental Frequency		peak
3			5350.000	42.14	16.83	58.97	68.30	-9.33	peak
4			5350.000	28.84	16.83	45.67	54.00	-8.33	AVG

Page: 51 of 162

Temp	peratu	re:	25 °	С		Relative H	umidity:	55%		
Test '	Voltag	e:	AC 1	120V/60Hz	30		(I)		ABOVE	
Ant.	Pol.		Horizontal							
Test	Mode:		TX 8	02.11ac(VF	HT40) Mod	le 5190 MH	z (U-NII-1)) ANTO+AN	NT1	
Rema	ark:			TO I	3		10.50	-a 1	MAL	
120.0	dBuV/m									
70							(RF) FCC P.	4 X 3 X VART 15.407 (PE	AK)	
						1 ×	(RF)	FCC PART 15C	(AVG)	
~					***************************************	2 X				
20.0	2.000 504	2.00 50	062.00	5082.00 51	02.00 5122.	00 5142.00	5162.00 5	5182.00	5222.00 MH	
				Dardina	0	. M	-			
	o. Mk.	Fre	eq.	Reading Level	Correc Facto		e- Limi	t Ove	r	
No			•							
No		MH	łz	dBuV	dB/m	dBuV/n	n dBu\	//m dB	Detecto	
1				dBuV 40.65	dB/m 16.61	dBuV/n 57.26				
		MH	000				68.3	30 -11.0	04 peak	
1	*	MH 5150.	000	40.65	16.61	57.26	68.3 54.0	30 -11.0	5 AVG	

Page: 52 of 162

Temperature:	25 ℃	Relative Humidity:	55%							
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz								
Ant. Pol.	Vertical	Vertical								
Test Mode:	TX 802.11ac(VHT	40) Mode 5190 MHz (U-NII-1) ANT0+ANT1							
Remark:										
120.0 dBuV/m										

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5150.000	42.36	16.61	58.97	68.30	-9.33	peak
2		5150.000	30.37	16.61	46.98	54.00	-7.02	AVG
3	*	5185.600	81.57	16.65	98.22	Fundamental Frequency		AVG
4	Χ	5187.200	92.02	16.65	108.67	Fundamental Frequency		peak

Page: 53 of 162

Tempera	ture:	25 ℃			Re	elative H	umidity:	55%	-6	100
Test Volta	age:	AC 1	20V/60H	z		- G			1 117	
Ant. Pol.		Horiz	ontal			10 0	6	dinn.	9	
Test Mod	le:	TX 80)2.11ac(VHT40) I	Mode	5230 MH	z (U-NII-1) ANT0+	ANT1	
Remark:			ani.	79 .		THE STATE OF THE S	11 2		HIRTO	
120.0 dBuV	/m									_
	2 X									
	1									+
	-X	_								
70							(RF) FCC I	PART 15.407	(PEAK)	
							3) FCC PART 1	ISC (AVG)	
20.0										
5200.000	5220.00	5240.00	5260.00	5280.00	5300.00	5320.00	5340.00	5360.00	5400.00	D MH:
			Doodin	.a. Ca	rroot	Magazin				
No. M	1k. Fr	eq.	Readir Level		rrect ictor	Measur ment		it O	ver	
	M	Hz	dBuV	dE	3/m	dBuV/r	n dBu	V/m (dB De	tecto
1 *	5218	3.000	76.09	16	.69	92.78	Funda	mental Frequ	uency A	VG

16.69

16.83

16.83

103.14

56.18

44.79

Emission Level= Read Level+ Correct Factor

86.45

39.35

27.96

5218.400

5350.000

5350.000

2

3

4

Χ

peak

peak

AVG

Fundamental Frequency

-12.12

-9.21

68.30

54.00

Page: 54 of 162

Temperature:	25 ℃	Relative Humidity:	55%						
Test Voltage:	AC 120V/60Hz								
Ant. Pol.	Vertical								
Test Mode:	TX 802.11ac(VHT40) Mo	de 5230 MHz (U-NII-1)	ANT0+ANT1						
Remark:									
100 0 ID VI									

1	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	5217.600	84.15	16.68	100.83	Fundamental Frequency		AVG
2		X	5224.400	94.39	16.69	111.08	Fundamental Frequency		peak
3			5350.000	40.65	16.83	57.48	68.30	-10.82	peak
4			5350.000	29.13	16.83	45.96	54.00	-8.04	AVG

Page: 55 of 162

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60Hz							
Ant. Pol.	Horizontal							
Test Mode:	TX 802.11a Mode 5745 N	X 802.11a Mode 5745 MHz (U-NII-3) ANT0						
Remark:								

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5725.000	56.07	17.82	73.89	122.30	-48.41	peak
2	*	5746.600	89.42	17.90	107.32	122.30	-14.98	peak

Page: 56 of 162

i	Temperature:	25 ℃	Relative Humidity:	55%				
ì	Test Voltage:	AC 120V/60Hz						
	Ant. Pol.	Vertical						
	Test Mode:	TX 802.11a Mode 5745 N						
ĺ	Remark:			THE PARTY OF THE P				

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
,	1		5725.000	56.85	17.82	74.67	122.30	-47.63	peak
2	2	*	5746.600	90.67	17.90	108.57	122.30	-13.73	peak

Page: 57 of 162

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	Million	
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11a Mode 5825 N	MHz (U-NII-3) ANT0	
Remark:			

No	o. I	Mk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		5819.000	87.78	18.16	105.94	122.30	-16.36	peak
2			5850.000	47.47	18.28	65.75	122.30	-56.55	peak

2

Report No.: TB-FCC171174

Page: 58 of 162

Temperature:	25°	C	R	elative Humic	lity: 55	%	
Test Voltage:	AC	120V/60Hz	3	e OHII		- N	
Ant. Pol.	Vert	cal	1	110	III	133	
est Mode:	TX 8	302.11a Mode	5825 MH	z (U-NII-3) AN	T0		1.00
Remark:				WILD B		2 MA	
130.0 dBuV/m							
80	V-name who w	and and a second	1 ×	Manager 2 Manage	(RF	FCC PART M Margin -6 d	В
30.0 5725.000 5745.00	5765.00	5785.00 5805.00	5825.00	5845.00 5865.0	00 5885.00	59	25.00 MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1 * 5	821.800	89.62	18.17	107.79	122.30	-14.51	peak

122.30

-60.23

peak

Emission Level= Read Level+ Correct Factor

43.79

18.28

62.07

5850.000

Page: 59 of 162

Te	emperature:	25 ℃	Relative Humidity:	55%			
Te	est Voltage:	AC 120V/60Hz					
Α	nt. Pol.	Horizontal					
Te	est Mode:	TX 802.11n(HT20) Mode 5745 MHz (U-NII-3) ANT0+ANT1					
R	emark:	- 601133		A VIII			

No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5725.000	54.13	17.82	71.95	122.30	-50.35	peak
2	*	5747.000	93.80	17.90	111.70	122.30	-10.60	peak

Page: 60 of 162

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11n(HT20) Mode 5745 MHz (U-NII-3) ANT0+ANT1					
Remark:		WILL DE	A HILL			

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5725.000	58.49	17.82	76.31	122.30	-45.99	peak
2	*	5737.800	96.31	17.87	114.18	122.30	-8.12	peak

Page: 61 of 162

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11n(HT20) Mode 5825 MHz (U-NII-3) ANT0+ANT1					
Remark:						

No	o. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	5823.000	89.22	18.17	107.39	122.30	-14.91	peak
2		5850.000	49.56	18.28	67.84	122.30	-54.46	peak

Page: 62 of 162

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	THU	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT20) Mode	5825 MHz (U-NII-3) A	NT0+ANT1
Remark:			

N	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	5822.600	95.69	18.17	113.86	122.30	-8.44	peak
2		5850.000	51.27	18.28	69.55	122.30	-52.75	peak

 ${\tt Report\ No.:\ TB-FCC171174}$

Page: 63 of 162

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	300	COLUMN TO THE PARTY OF THE PART
Ant. Pol.	Horizontal	The state of the s	13 Pm
Test Mode:	TX 802.11ac(VHT20) Mo	de 5745 MHz (U-NII-3)	ANT0+ANT1
Remark:	Mary Mary		

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5725.000	51.77	17.82	69.59	122.30	-52.71	peak
2	*	5746.600	93.54	17.90	111.44	122.30	-10.86	peak

Page: 64 of 162

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11ac(VHT20) Mo	ANT0+ANT1					
Remark:		WIII DE	A VIII				

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5725.000	55.32	17.82	73.14	122.30	-49.16	peak
2	*	5738.200	96.94	17.87	114.81	122.30	-7.49	peak

Page: 65 of 162

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz						
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX 802.11ac(VHT20) Mode 5825 MHz (U-NII-3) ANT0+ANT1							
Remark:								

No	0.	Mk.	Freq.	_		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	1	*	5827.800	92.15	18.20	110.35	122.30	-11.95	peak
2			5850.000	50.16	18.28	68.44	122.30	-53.86	peak

Page: 66 of 162

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical						
Test Mode:	TX 802.11ac(VHT20) Mo	de 5825 MHz (U-NII-3)	ANT0+ANT1				
Remark:	(1810)						

ı	No.	Mk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	5821.000	97.42	18.17	115.59	122.30	-6.71	peak
2			5850.000	52.42	18.28	70.70	122.30	-51.60	peak

Page: 67 of 162

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz						
Ant. Pol.	Horizontal							
Test Mode:	TX 802.11n(HT40) Mo	TX 802.11n(HT40) Mode 5755 MHz (U-NII-3) ANT0+ANT1						
Remark:		411000	A WILLIAM					

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5725.000	49.13	17.82	66.95	122.30	-55.35	peak
2	*	5751.800	88.99	17.91	106.90	122.30	-15.40	peak

Page: 68 of 162

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	/oltage: AC 120V/60Hz					
Ant. Pol.	Vertical					
Test Mode:	TX 802.11n(HT40) Mode	NT0+ANT1				
Remark:						

N	lo. N	Иk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			5725.000	56.42	17.82	74.24	122.30	-48.06	peak
2	*		5741.800	94.83	17.89	112.72	122.30	-9.58	peak

Page: 69 of 162

	Temperature:	25 ℃	Relative Humidity:	55%				
	Test Voltage:	AC 120V/60Hz						
	Ant. Pol.	Horizontal						
	Test Mode:	TX 802.11n(HT40) Mode	5795 MHz (U-NII-3) Al	NT0+ANT1				
4	Remark:			A LIVE				

No.	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	5791.400	87.82	18.07	105.89	122.30	-16.41	peak
2		5850.000	46.48	18.28	64.76	122.30	-57.54	peak

Page: 70 of 162

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical	(1) L					
Test Mode:	TX 802.11n(HT40) Mode	5795 MHz (U-NII-3) A	NT0+ANT1				
Remark:							

No. Mk.		. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	5792.600	96.70	18.07	114.77	122.30	-7.53	peak
2		5850.000	48.00	18.28	66.28	122.30	-56.02	peak

Page: 71 of 162

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	THU	
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VHT40) Mo	de 5755 MHz (U-NII-3)) ANT0+ANT1
Remark:			

N	lo. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5725.000	47.45	17.82	65.27	122.30	-57.03	peak
2	*	5749.400	88.93	17.91	106.84	122.30	-15.46	peak

Page: 72 of 162

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical	01 - 0					
Test Mode:	TX 802.11ac(VHT40) Mo	de 5755 MHz (U-NII-3)	ANT0+ANT1				
Remark:	(1810)						

1	No.	Mk.	Freq.	_		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			5725.000	56.28	17.82	74.10	122.30	-48.20	peak
2		*	5764.600	93.72	17.97	111.69	122.30	-10.61	peak

Page: 73 of 162

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11ac(VHT40) Mo	de 5795 MHz (U-NII-3)	ANT0+ANT1				
Remark:	(1810)						

No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	5791.400	88.98	18.07	107.05	122.30	-15.25	peak
2		5850.000	45.83	18.28	64.11	122.30	-58.19	peak

Page: 74 of 162

em	perature:	25 ℃	Relative Humidit	:y: 55%					
est	Voltage:	AC 120V/60Hz							
nt.	Pol.	Vertical	Vertical						
Test Mode: TX 802.11ac(VHT40) Mode 5795 MHz (U-NII-3) ANT0+ANT1									
em	ark:			A HILL					
130.0	dBuV/m								
		, vin	mana II						
ŀ									
80									
			\	(RF) FCC PART 15C					
	mahamana	Mayar	manus 2	managin tide					
-									
30.0									
57:	25.000 5745.00	5765.00 5785.00	5805.00 5825.00 5845.00 5865.00	5885.00 5925.00 MH					

No	o. I	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	t	5792.200	93.68	18.07	111.75	122.30	-10.55	peak
2			5850.000	45.89	18.28	64.17	122.30	-58.13	peak

Page: 75 of 162

(2) Conducted Test

Page: 80 of 162

