Name	3 :	Sign:
P52	25/1	
CHEN	MISTRY	
(The	ory)	
Pap	er 1	
July 2	2024	
	Uganda Advanced Certificate	of Education
	S.5 END OF TERM II CHEMISTRY	EXAMINATION
	Paper 1	
	2hours 45minutes	3
Instr	uctions to Candidates:	
	er ALL Questions in Section A and any Six G tions Must Be Answered in the spaces provid	
	SECTION A (46 Ma	rks)
1 . a.	$^{27}_{13}Al + ^{4}_{2}He \rightarrow \dots + ^{1}_{0}n$	[01 mark]
b.	$^{113}_{48}Cd$ + $^{1}_{0}n$ \longrightarrow + γ	[01 mark]
c.	$^{214}_{83}Bi \rightarrow 3\beta + \dots + 2\alpha$	[01 mark]
d.	When a radioactive isotope was stored for $(\frac{1}{8})$ of its original activity. Calculate the half	
	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••

2.	a.	State what would be observed and write equation for the reaction that would take place if a solution of potassium iodide was added to aqueous copper(II) sulphate. [$02\frac{1}{2}$ marks]
		Observations:
		Equation:
	b.	A few drops sodium thiosulphate solution was added to the mixture in(a) above. State what would be observed and write equation of reaction that took place. [$02\frac{1}{2}$ marks]
		observations:
		equation:
3.	dis	hen a compound W was steam distilled at 86°C and 760mmHg pressure, the stillate was found to contain 85% of water by mass. Calculate the relative lecular mass of W . (the vapour pressure of water at 86°C is 740mmHg) [04 marks]

4.	a.	Write equation for the complete combustion of ethanal, CH ₃ CF		marks]
	b.	The enthalpies of combustion of carbon, hydrogen and ethanal -286 and -1187 kMol ⁻¹ respectively. Calculate the enthalpy of fethanol	ormatic	
=	147			
5.		rite equation for the reaction between: - acidified potassium dichromate(VI) and sodium sulphite.	[01½	marks]
	b.	aqueous sodium hydroxide and beryllium	[01½	marks]

	c. potassium chromate(VI) solution and barium chloride solution.	[01½ marks]
6.	A hydrocarbon \mathbf{Q} , with molecular formula C_xH_y reacts with oxygen the following equation.	according to
	$C_xH_y + \frac{4x+y}{4}O_2 \longrightarrow xCO_2 + \frac{y}{2}H_2O$	
	When 10cm^3 of \mathbf{Q} was exploded in 90cm^3 of an excess amount of oxycompletely. The volume of the residual gas after cooling to room tem 70cm^3 . When the residual gases were passed through potassius solution, the volume reduced to 40cm^3 .	perature was
	a. Determine the molecular formula of ${f Q}$.	[03½ marks]
	b. Write equations to show how ${f Q}$ can be synthesis from an alcoho	. [02½ marks]

7 . a.	Define the term Osmotic pressure of a solution	[01 mark]
		••••••
b.	Polystyrene, CHCH2 is formed by polymerization of p	henylethene.
	The osmotic pressure of a solution containing 5.5.g of polystyre of benzene is 1.05×10^{-3} atmospheres at $20^{\circ}C$. (Given that R = 0.	
	i. Determine the molecular mass of polystyrene.	[03 marks]
		••••••
	ii. Determine the number of monomers that formed the poly	styrene. [01½ marks]

8.	W	rite equations to show how the following compounds can be synth	nesized.
	α.	CH₃C≡CH from 2-bromopropane.	[03½ marks]
	b.	—CH3 from benzene	[01marks]
9.	so ioc th	89g of a copper ore was leached with dilute sulphuric acid and lution diluted to 250cm ³ . To 30cm ³ of this solution was added 1 dide solution. The liberated iodine required 23.50cm ³ of 0 iosulphate solution for complete reaction. Calculate the percent the ore. The reactions taking place are: -	.0% potassiun . 05M sodiun
		$2Cu^{2+}(\alpha q) + 4I^{-} \rightarrow Cu_{2}I_{2}(s) + I_{2}(\alpha q)$	
		$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$	
	••••		
	•••		
	•••		
	••••		

SECTION B (54 Marks)

Attempt ANY SIX Questions from this Section. Additional Questions Shall not be marked.

	omplete the follow echanism for the 1			tions and i	n each case oi	utline	a
a)	CH ₃ CH ₂ Cl + HCΞC	∵Na⁺ -	Liq. NH ₃	→		. [02	marks]
	Mechanism:						
b)	CH₃CH=CH₂		ne /H₂O Warm			[04	marks]
	Mechanism:						
c)	Br CH3CH— CHCH3 Br Mechanism :	<u>C₂H</u>	H₅O [·] Na ⁺ /C₂H₅OF Heat	I		[03	marks]
		•••••••		•••••••		•••••	•••••••••••

11.a. Draw the structure and name the shape of the following oxyanions. In each case, state the oxidation state of the sulphur atom. [$04\frac{1}{2}$ marks]

Oxyanion	Structure;	Shape	Oxidation state of sulphur
SO ₃ ²⁻			
SO ₄ ²⁻			

٥.	Explain the structure of the SO_3^{2-} ion.	[01½ marks]
		•••••••••••••••••••••••••••••••••••••••

c.	Name the reagent(s) that can be used to distinguish between the oxy	
	in(a) above.	[01 mark]

c.	State what would be observed if each of the oxyanion is treate	
	reagent(s) you have named in(b) above	01 mark]
d.	Write the equation(s) for any reaction that would take place who of each of the oxyanions is treated separately with the reagent named in(c) above.	en a solution
12. A	hydrocarbon M contains 85.7% carbon and has a density of 2.5g	ıl ⁻¹ at s.t.p.
a)	Calculate the empirical formula of $oldsymbol{M}$.	[02 marks]
b)	Determine the molecular formula of M.	[02 marks]
c)	Write the structural formulae of all the possible open chain ison	

d)	d) Ozonolysis of M and subsequent work-up gave one compound. Identif		
d.		03 marks]	
13.	Beryllium and magnesium are elements in group (II) of the Period	ic Table.	
a)	Explain the following:		
	i. The first ionization energy of beryllium is higher than that magnesium.	of 02 marks]	
	ii. The polarizing power of magnesium ions is lower than that ions.	of beryllium O1 mark]	

b)		yllium reacts with aqueous sodium hydroxide solution. Write reaction.	equation for [01½ marks]
c)	with	te the conditions under which beryllium oxide and magnesium the following substances and where applicable, write equat	
	i.	Water.	[02 marks]
	ii.	Sodium hydroxide.	[02½ marks]
us	sed t	nium ferrous sulphate-hexahydrate, (NH4)2SO4FeSO4.6H2C o standardize a solution of potassium manganate(VII) soluti sing sulphuric acid.	•
a.		te equation for the reaction between potassium manganate(VII) and the [01½ marks]
b.		te why hydrochloric acid is not usually used to acidify solutions and the solution of the solu	on of [02½ marks]

C.	25.00cm^3 of an acidified solution of a 0.02M manganate(VII) ion required exactly 26.55cm^3 of a solution containing $5.10g$ per lite impure sodium nitrite, (NaNO₂) . Determine the percentage the salt. [Na=23, N=14, O=16]	iter of an	
15 .a	Write the formula and the name of one ore from which aluminiu extracted.	m can be [01 mark]	
Ь.	. Name two main impurities in the ore you have named in(a) above		
c.	In the extraction of aluminium, after the removal of the impurities is mixed with cryolite and then electrolyzed to extract aluminiu		
	i. State the purpose of adding cryolite.	[01 mark]	

	i. Name the electrode used in the electrolysis.	[U 2 mark]
i	i. Write equation for the reaction that took place when an el was passed through the molten electrolyte.	ectric current [01½ marks]
d.	Aluminium powder was added to dilute sodium hydroxide solutio	
	i. State what was observed.	[01 marks]
i	i. Write equation for the reaction that took place.	[01½ marks]
е.	Aluminium powder was mixed with trimanganese tetra oxide, Mixture heated. Write equation for the reaction that took place	
16 .a.	Define the term Isotopes .	[01 mark]

b. The table below shows the information from the mass spectrum of a lead sample.

Isotope	Detector current/mA
204	0.16
206	2.72
207	2.50
208	5.92

Calculate: -

i.	relative abundance of the different isotopes of lead in the s	cample [03 marks]
ii.	the relative atomic mass of lead.	[01½ marks]
	ne initial counts of a radioactive nucleus was 680 per second. A conds, the count rate was 125 per second. Calculate the: -	After 350
i.	Decay constant.	[02 marks]

11	•	Halt-life of the nucleus.	[UI ½ marks]
17 .	4	compared W contains 27.2% manages 10.1% witnesses the	
17 . a.	ox	compound W contains 37.3% manganese, 19.1% nitrogen, the ygen. Calculate the empirical formula of compound W . n=54.9, N=14, O=16]	[02½ marks]
b.	by	.0g of compound W in 1000g of water lowered the freezing 0.127°C. Determine the molecular formula of W . f for water =1.86°Cmol ⁻¹ kg ⁻¹]	point of water [02 marks]
c.	fo	hen a few drops of concentrated nitric acid were added to a llowed by a little lead(IV) oxide and the mixture boiled, a pu lution was formed. Write:	
	i.	formula and name of \mathbf{W} .	[01 mark]
		formula:	

	Name:	
ii.	equation for the reaction leading to the formation of the coloured solution.	ne purple [01½ marks]
	ew drops of aqueous sodium carbonate was added to a so State was observed.	lution of W . [01 mark]
ii.	Write an equation for the reaction that took place.	[01½ marks]

END

Dedicated to Excellence and Destined to Win