Scale robust community prediction with node embedding based negative sampling

신동혁, 최현준, 이현지

Interpretation of datasets

Problem Scenario

- Base dataset(=paper author.txt) has community information, not only link information.
- Test dataset(=query public, query private) also has community information.
- O Base dataset only provides "positive communities" which we have confidence that they exist.

Assumptions

- Base dataset graph is already formed.
- Community will be formed based on similar nodes.
- Community is complete graph
- O Base and test dataset graphs are unweighted graphs

Classification vs. Clustering in Community Prediction

- Classification accuracy >> Clustering accuracy
- → COMMUNITY PREDICTION task using Classification

Total Flow

Step 1. Construct Network graph

Step 2. Sampling Negative Community

Step 3.
Data encoding & Training Classifier

Negative Communities

2362 30008 39072 54714

29068 9855 32756 55586 36631

. . .

Positive Communities

4512 6350 32031 12354 25979 28348 33994 4034 47410

. . .

. . .

Step 1. Construct Network graph

Input

Split the communities

Output

paper_author.txt

4512 6350 32031 12354 25979 28348 33994 40349 47410

•••

paper_author_links

.

 Base dataset which contain (positive) communities • If community consists of more than 3 nodes(=authors), Split into links which are combination of nodes

Network Graph

Total Flow

Step 1.
Construct Network graph

Step 2.
Sampling Negative Community

Step 3.
Data encoding & Training Classifier

Negative Communities

2362 30008 39072 54714

29068 9855 32756 55586 36631

•••

Positive Communities

4512 6350 32031 12354 25979 28348 33994 4034 47410

. . .

. . .

Step 2. Sampling Negative Community

Network Graph

 Find each node's embedding vector by using node2vec method For link(=community of 2),

1. Just pick one from directed graph

For community of more than 3,

- 1. Make a directed graph with lowest similarity of each node connected
- 2. Pick the bidirectional pairs from the graph
- 3. Draw a community based on the pairs

Negative Community Samples

Total Flow

Step 1.
Construct Network graph

Step 2. Sampling Negative Community

Step 3. Data encoding & Training Classifier

4512 6350 32031 12354 25979 28348 33994 40349 47410

•••

...

Step 3. Data encoding & Training Classifier

- Network graph
- Training communities:
- 1. Positive communities (paper author)
- Negative communities (output from prev)
- Extract enclosing subgraph for a target communities
- Impose a vertex ordering based embedding vector
- Construct adjacency matrix using the calculated vertex ordering
- Train the classifier

If $GM(d(A,1), d(A,2), d(A,3)) \ge GM(d(B,1), d(B,2), d(B,3))$, Assign order $A \ge order B$

Results

TP	10939
FP	9605
TN	7370
FN	6086
Precision	0.53247
Recall	0.59747
F1 score	0.56310
Accuracy	0.5385

Contribution

Our team propose new method that ...

- Do negative sampling based on node embedding to perform classification task
- 2. Is robust to diverse scales of community
- 3. Use graph labeling which preserve features of community structure by node embedding
- 4. Is extensible to other classification models (GNN, MLP etc)

Thanks ©

신동혁: tlsehdgur0@kaist.ac.kr

최현준: juneir@kaist.ac.kr

이현지: alee6868@kaist.ac.kr

