

Department of Electronic and Telecommunication Engineering University of Moratuwa

Linear Power Supply

Group 29

THILAKARATHNE D.L.J. 200650U VIKKRAMANAYAKA A.G.P.S. 200683X VIRUTHSHAAN V. 200685F

This report is submitted as partial fulfillment of module ${
m EN2111}$ - Electronic Circuit Design

September 1, 2023

1 Objective

We have been tasked with the design of a linear power supply incorporating a maximum current limitation. The objective is to develop a power supply that can consistently deliver a stable output voltage, even when faced with fluctuating input line voltage conditions.

2 Design Parameters

• Mid input voltage: 20 V

 $\bullet\,$ Input voltage range : 18 - 22 V

• Mid output voltage: 12 V

• Output voltage range : 9 - 15 V - given

• Maximum output current : 100 mA

3 Component selection and Calculations

3.1 Calculations

$$V = \left(1 + \frac{R_1}{R_2}\right) \left(V_Z + V_{BE}\right) \tag{1}$$

 $V_Z = 4.5V$ and $V_{BE} = 0.6V$. Then,

$$V = \left(1 + \frac{R_1}{R_2}\right) (5.1)$$

$$15 < \left(1 + \frac{R_x + R_v}{R_y}\right) (5.1) \tag{2}$$

$$9 > \left(1 + \frac{R_x}{R_v + R_y}\right) (5.1) \tag{3}$$

From 2 and 3 respectively we get,

$$1.94 < \frac{R_x + R_v}{R_u}$$

$$0.76 > \frac{R_x}{R_v + R_y}$$

We have selected $R_v = 9.7 k\Omega$ variable resistor.

$$1.94 < \frac{R_z + 9700}{R_y} \tag{4}$$

$$0.76 > \frac{R_x}{9700 + R_y} \tag{5}$$

We have selected $R_x = 10 k\Omega$ variable resistor.

$$1.94 R_y < 19700 \Rightarrow R_y < 10154$$

$$7372 + 0.76 R_y > 10000 \Rightarrow R_y > 3458$$

We have selected $R_y = 10 k\Omega$

$$I_{R_{min}} = \frac{V_{i_{min}} - V_{x_{max}}}{R} A$$

$$I_{R_{min}} = \frac{18 - 15.6}{R} A$$

$$I_{R_{min}} = \frac{2.362}{R} A$$

$$I_{R_{min}} > \frac{I_{L_{max}}}{\beta} + I_{Z_{knee}}$$

$$10 \le \beta < 50$$

$$\frac{2362}{R} > \left(\frac{100}{50} + 2\right)$$

$$\frac{2362}{4} > R$$

$$R < 590 \Omega$$
(6)

We have selected $R = 300 \,\Omega$

3.2 Component selection

- Transistors
 - BC109B : General NPN
 - TIP31C : Power transistor
- Resistors
 - $-10 k\Omega$ Qty 2
 - $-300\,\Omega$
 - -5Ω
 - Variable resistor : $10 k\Omega$
 - Light load : 100Ω
 - Heavy load : $1 k\Omega$

4 Simulation Results

Working level with $1\,k\Omega$

Current limiting feature

5 Measurements

5.1 Line Variance

5.2 Current Limiting Value

$$I_L \cdot r = 0.6$$

$$(0.1) \cdot r = 0.6$$

$$r = 6 \Omega$$

We obtained a current of 130 mA during the current limiting process, which should be duly noted. The reason for this was the unavailability of a $1\,\Omega$ resistor, compelling us to utilize a 5-ohm resistor instead.

5.3 Load Regulation

