Preparing Data for Machine Learning

Loading Library

import numpy as np import pandas as pd

In [37]:

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn import preprocessing from sklearn.preprocessing import MinMaxScaler, StandardScaler

from sklearn.model_selection import train test split

%matplotlib inline

enable inline plots in the notebook

Loading Data

loan df.head()

In []: # Datatypes of all columns print(loan df.dtypes)

Data Preparation

loan df c=loan df

In []: # structure of dataset

In []: # Summary of dataset

In []:

In []: """

In []: # All columns

columns

Understanding data structure

columns=loan df c.columns

print(loan df c.shape)

loan df c.describe()

Missing Value Treatment

#For numerical column

Feature Engineering

print(loan df.head()) print(loan_df.dtypes)

#print(loan df.head())

#print(loan df.head())

def feature scale(scale):

if scale == 'minmax':

scale = 'minmax' #standard

corr=loan df scaled.corr()

In []: # splitting dataframe by row index

y = loan df c['credit.policy']

In []: # Histogram of all numerical features

numeric cols=new loan df.columns

compute number of rows for plot

setting canvas for plotting

ax.set title(col)

plotting the numerical columns

In []: # Histogram of all categorical features

setting canvas for plotting

values = list(stats)

ax.bar(names, values) ax.set_title(col)

In []: # Scatter Matrix plot of all columns

In []: # Pie charts of categorical features

def label function(val):

tsize': 10}, ax=ax)

labels=loan df c['purpose'].unique()

#plt.pie(loan_df_c['purpose_encode'])

ax.set ylabel('Per Purpose', size=15)

#plt.pie(loan_df_c['purpose_encode'])

extprops={'fontsize': 10}, ax=ax)

plotting the numerical columns

categorical cols=cat loan df.columns # compute number of rows for plot

num_rows= int(len(numeric_cols)/num_cols)+1

train num=int(9578*0.7)

return df_scaled

loan df scaled

atnt features

'revol.util']]

Splitting Data

X = loan df c

 $\verb"num cols=4"$ n bins = 50

plt.show()

num cols = 3

plt.show()

plt.show()

print(labels)

show plot plt.show()

show plot plt.show()

show plot plt.show()

In []: def label function(val):

In []: def label function(val):

={'fontsize': 10}, ax=ax)

Data Visualization

loan df c=loan df

plt.show()

Feature Selection

scaler = MinMaxScaler()

scaler = StandardScaler()

In []: | # scaling the data using MinMax Scaling process

corr.style.background gradient(cmap='coolwarm')

loan df train = loan df c.iloc[:train num,:] loan df test = loan df c.iloc[(train num+1):,:]

In []: | # splitting dataframe using train test split() built in method

new loan df = loan df c.select dtypes(include=numerics)

hm = sns.heatmap(new df scaled.corr(), annot = True)

loan_df_scaled=feature_scale(scale)

Feature Scaling

else:

#For categorical column

In []: # Checking for null value in each column print(loan df c.isnull().sum())

In []: # Count of each label in categorical column loan df c.purpose.value counts()

loan df c['credit.policy'].value counts()

loan df c['not.fully.paid'].value counts()

We find that there is no missing value exist in this dataset, so we skip the missing value treatment

loan_df_c.fillna(loan_df_c.mean(), inplace=True) # you can use median()

loan df c['credit.policy']=loan df c['credit.policy'].astype('category')

In []: | # Using Label Encoder technique to convert categorical column into numerical type

In []: | # Defining method to perform data scaling operation based on the type of scaling

new loan df = loan df c.select dtypes(include=numerics)

numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']

loan df c['purpose encode'] = label_encoder.fit_transform(loan_df_c['purpose'])

loan df c['not.fully.paid encode'] = label encoder.fit transform(loan df c['not.fully.paid'])

df scaled = pd.DataFrame(scaler.fit transform(new_loan_df.to_numpy()),columns=new_loan_df.columns)

In []: # Finding correlation among numerical features, based on their strong relation we can choose the import

In []: new df scaled=loan df scaled[['int.rate','installment', 'dti','fico', 'days.with.cr.line', 'revol.bal',

print("Shape of new dataframes - {} , {}".format(loan_df_train.shape, loan_df_test.shape))

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=20)

print("Shape of new dataframes - {} , {}".format(X_train.shape, X_test.shape))

fig, axs = plt.subplots(num_rows, num_cols, tight_layout=True, figsize=(20,10))

fig, axs = plt.subplots(num_rows, num_cols, tight_layout=True, figsize=(20,5))

for col, ax in zip(categorical cols,axs.flatten()[:len(categorical cols)]):

names = list(map(lambda x : ''.join(('value ',str(x))),list(stats.index)))

pd.plotting.scatter matrix(loan df c[numeric cols].sample(4000),figsize=(20,20))

loan_df_c.groupby(loan_df_c['purpose']).size().plot(kind='pie', autopct=label_function, textprops={'fon

loan df c.groupby(loan df c['credit.policy']).size().plot(kind='pie', autopct=label function, textprops

loan df c.groupby(loan df c['not.fully.paid encode']).size().plot(kind='pie', autopct=label function, t

return f'{val / 100 * len(loan df c):.0f}\n{val:.0f}%'

return f'{val / 100 * len(loan_df_c):.0f}\n{val:.0f}%'

return f'{val / 100 * len(loan df c):.0f}\n{val:.0f}%'

fig, ax = plt.subplots(ncols=1, figsize=(10, 5))

fig, ax = plt.subplots(ncols=1, figsize=(10, 5))

fig, ax = plt.subplots(ncols=1, figsize=(10, 5))

ax.set_ylabel('Per fully encoded', size=22)

ax.set ylabel('Per credit policy', size=22)

for col, ax in zip(numeric cols,axs.flatten()[:len(numeric cols)]):

ax.hist(new loan df[col],bins=n bins,density=True)

cat loan df = loan df c.select dtypes('category')

num_rows= int(len(categorical_cols)/num_cols)

stats = cat_loan_df[col].value_counts()

numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']

 $hm.set(xlabel='\nLoan Details', ylabel='Loan Details', title = "Correlation matrix of Loan Data<math>\n"$)

loan df c['not.fully.paid encode']=loan df c['not.fully.paid encode'].astype('category')

income df c = income df c.apply(lambda x: x.fillna(x.value counts().index[0]))

Use this following procedure when you have any missing value

In []: | # Converting numeric labeled column into categorical column

label_encoder = preprocessing.LabelEncoder()

In []: #label_encoder object knows how to understand word labels.

label encoder = preprocessing.LabelEncoder()

loan df c['not.fully.paid encode'].unique()

Encode labels in column 'species'.

loan df c['purpose encode'].unique()

Encode labels in column 'species'.

loan df c['purpose']=loan df c['purpose'].astype('category')

#label_encoder object knows how to understand word labels.

In []: loan df = pd.read csv('/content/drive/MyDrive/ML/DS2 C5 S1 Loan Data Concept.csv')

Demo 1.1: Data Preparation

Concept Session