

Universidad de Guadalajara

Centro Universitario de Ciencias Exactas e Ingenierías

Seminario de Algoritmia

REPORTE DE PRÁCTICA

IDENTIFICACIÓN DE LA PRÁCTICA

Práctica	7	Nombre de la práctica		Algoritmo de la mochila, valor máximo por unidad de peso	
Fecha	21/10/2021	Nombre del profesor		Alma Nayeli Rodríguez Vázquez	
Nombre de los integrantes del equipo			1Cardenas Perez Calvin Cristopher		
			2Farfan de Leon Jose Osvaldo		
			3Garcia Martinez Noe Aaron		

OBJETIVO

El objetivo de esta práctica consiste en implementar el algoritmo de la mochila utilizando el enfoque de máximo valor por unidad de peso.

PROCEDIMIENTO

Realiza la implementación siguiendo estas instrucciones.

Implementa el algoritmo de la mochila con el enfoque de máximo valor por unidad de peso utilizando Matlab y C++ / Python. Para la implementación, utiliza los datos de ejemplo del libro disponible en los recursos. Apóyate en el siguiente algoritmo:

```
función mochila(w[1..n], v[1..n], W): matriz [1..n] {| Inicialización| para i = 1 hasta n hacer x[i] \leftarrow 0 | peso \leftarrow 0 {| bucle voraz| mientras peso < N hacer i \leftarrow el mejor objeto restante {| ver más abajo| | si peso + w[i] \le W entonces | x[i] \leftarrow 1 | peso \leftarrow peso + w[i] | sino | x[i] \leftarrow (W - peso) / w[i] | peso \leftarrow W | devolver x
```

IMPLEMENTACIÓN

```
Agrega el código de tu implementación aquí.

w=[10 20 30 40 50];
v=[20 30 66 40 60];
v_entre_w=v./w;
v_entre_w=copia=v_entre_w;
W=100;
n=numel(w);
```


Universidad de Guadalajara

Centro Universitario de Ciencias Exactas e Ingenierías

Seminario de Algoritmia

Código de Matlab

```
x=zeros(1,n);
peso=0;
while peso<W
[maximo_v_entre_w,i]=max(v_entre_w_copia);
v_entre_w_copia(i)=-1;
if peso+w(i)<=W
peso=peso+w(i);
x(i)=1;
else
x(i)=(W-peso)/w(i);
peso=W;
endif
endwhile
x
valor_mochila=sum(x.*v)
peso_mochila=sum(x.*w)</pre>
```

Código en C++/Python

Universidad de Guadalajara

Centro Universitario de Ciencias Exactas e Ingenierías

Seminario de Algoritmia

```
Agrega la imagen de la consola con el despliegue de los resultados obtenidos.

>> Practica7

x =

1.0000 1.0000 1.0000 0 0.8000

valor_mochila = 164
peso_mochila = 100
>> |
```

Resultados Matlab

--VALOR ENTRE PESO--

Objetos seleccionados: 1-1-1-0-0.8-

Valor de la mochila: 164

Peso de la mochila: 100

Resultados C++/Python

CONCLUSIONES

Escribe tus observaciones y conclusiones.

La práctica fue en esta ocasión realmente fácil porque al tener la noción de las dos prácticas anteriores pues ya teníamos muy fácilmente la idea de como hacerla y no tardamos mucho tiempo en hacerlo.