Exercício: intervalo de confiança para a diferença de médias

Disciplina: Inferência Estatística Instrutor: Luiz Max Carvalho

Outubro/2022

Notação: Como convenção adotamos $\mathbb{R}=(-\infty,\infty),\ \mathbb{R}_+=(0,\infty)$ e $\mathbb{N}=\{1,2,\ldots\}$.

Motivação: Neste pequeno exercício vamos raciocinar sobre a construção de intervalos de confiança para a diferença entre dois parâmetros. Em particular, vamos estudar a construção de intervalos de confiança exatos para a diferença entre médias de duas populações normais.

Que droga é essa?

Suponha que estamos interessados em avaliar o efeito de uma droga (remédio) sobre a pressão arterial sistólica de pacientes com hipertensão. Para tanto, tratamos n_t indivíduos com a droga A, que é nova no mercado, e designamos este grupo como **tratamento**. No mesmo ensejo, tratamos n_c indivíduos no grupo **controle** com a droga C, que já é estabelecida como tratamento padrão contra a hipertensão.

Suponha que $\boldsymbol{X}=(X_1,X_2,\ldots,X_{n_t})$ e $\boldsymbol{Y}=(Y_1,Y_2,\ldots,X_{n_c})$ são as medições das pressões arteriais dos pacientes. Assuma que $X_i \sim \operatorname{Normal}(\mu_t,\sigma_t^2)$, para $i=1,2,\ldots,n_t$ e que $Y_j \sim \operatorname{Normal}(\mu_c,\sigma_c^2)$ para $j=1,2,\ldots,n_c$, isto é, que os dois conjuntos de dados vêm de populações normais e são independentes entre si – e indenticamente distribuídos dentro de cada grupo. Suponha ainda que você não observa \boldsymbol{X} e \boldsymbol{Y} diretamente, mas sim

$$\begin{split} \bar{X} &:= \frac{1}{n_t} \sum_{i=1}^{n_t} X_i, \\ \bar{Y} &:= \frac{1}{n_c} \sum_{j=1}^{n_c} Y_j, \\ S_x^2 &:= \frac{1}{n_t - 1} \sum_{i=1}^{n_t} (X_i - \bar{X})^2, \\ S_y^2 &:= \frac{1}{n_c - 1} \sum_{j=1}^{n_c} (Y_j - \bar{Y})^2. \end{split}$$

- 1. Suponha que as populações são homocedásticas, isto é que $\sigma_t = \sigma_c = \sigma$. Encontre um estimador para σ e construa uma quantidade pivotal para σ^2 :
- 2. Usando a quantidade pivotal do item anterior, construa uma quantidade pivotal para $\Delta:=\mu_t-\mu_c;$
- 3. Agora, construa um intervalo de confiança exato de 89% para $\Delta.$