

Figure 1: Simple mass-spring-system.

Figure 2: Complex mass-spring-system (Problem 2)

Problem 1

Consider a simple mass-spring system (Figure 1) with one object of mass m=1, attached to a spring with stiffness k=5 and affected by friction with a friction constant b=4. The system has a resonant frequency of $\omega_{\rm res}=6.0$. Determine k_v and k_p such that the system is critically damped.

Problem 2

Derive a PD controlling scheme for the system shown in Figure 2 that allows following of trajectories for both objects and critically damps the error. The steps you should perform are the following:

- Determine forces that apply to both objects, derive equations of motion.
- Apply the control law partitioning principle. Explicitly show model-based portion and servo portion of the control law.
- Formulate the error equation.

$$\int_{1} = M_{2} \dot{x}_{2} + b_{2} (\dot{x}_{2} - \dot{x}_{1}) + k_{2} (\dot{x}_{2} - \dot{x}_{1})
f_{1} = M_{1} \dot{x}_{1} - b_{2} (\dot{x}_{2} - \dot{x}_{1}) + b_{1} \dot{x}_{1} - k_{2} (\dot{x}_{2} - \dot{x}_{1})
2$$

$$\begin{pmatrix} f_{1} \\ f_{2} \end{pmatrix} = \begin{pmatrix} M_{1} & 0 \\ 0 & M_{2} \end{pmatrix} \begin{pmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{pmatrix} + \begin{pmatrix} b_{1} + b_{2} & -b_{2} \\ -b_{2} & b_{2} \end{pmatrix} \begin{pmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{pmatrix} + \begin{pmatrix} k_{2} - k_{2} \\ -k_{2} & k_{2} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$3 + \begin{pmatrix} f_{1} \\ f_{2} \end{pmatrix} = \begin{pmatrix} M_{1} & 0 \\ 0 & M_{2} \end{pmatrix} \begin{pmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{pmatrix} + \begin{pmatrix} b_{1} + b_{2} & -b_{2} \\ -b_{2} & b_{2} \end{pmatrix} \begin{pmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{pmatrix} + \begin{pmatrix} k_{2} - k_{2} \\ -k_{2} & k_{2} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

$$3 + \begin{pmatrix} f_{1} \\ f_{2} \end{pmatrix} = \ddot{x}_{0} + k_{1}\dot{e} + k_{2}\dot{e} + k_{2}\dot{e}$$

mix + bix + kx =
$$f = -kpx - kvx$$

mix + $b + kv$ is + $(k + kp) = 0$
ix + $b + kv$ is + $k + kp$ = 0
Critically damped: $b' = 2 \sqrt{mk'}$
 $(b + kv)^2 = 4 m (k + kp)$
 $b = -kv + \sqrt{4mk + kp}$
 $kv = -kv + \sqrt{4mk + kp}$
 $kv = -kv + \sqrt{4mk + kp}$
 $kv = -kv + \sqrt{4mk + kp}$

$$5^{2} + 2^{5} w_{n} + 5^{2} + 2^{5} w_{n} = 0$$

$$Wn = \sqrt{\frac{|c+kp|}{w}} \leq \frac{1}{2} W_{res} = 3$$