

In the claims:

1. (previously presented) A polymerization process comprising contacting a catalyst system, a diluent comprising one or more hydrofluorocarbon(s) (HFC's), and one or more monomer(s) to form a polymerization medium, wherein the polymerization medium is evaporated during the polymerization and the polymerization process is a cationic polymerization process.
2. (original) The polymerization process of claim 1, wherein the contacting occurs in a boiling pool reactor system.
3. (original) The polymerization process of claim 2, wherein the boiling pool reactor system comprises a plug flow extruder reactor or a stirred tank reactor.
4. (original) The polymerization process of claim 3, wherein the plug flow extruder reactor comprises a plurality injection zones for the one or more monomer(s).
5. (original) The polymerization process of claim 3 or 4, wherein the plug flow extruder reactor and the stirred tank reactor comprise a plurality of injection zones for the catalyst system.
6. (original) The polymerization process of claim 5, wherein the catalyst system comprises one or more Lewis acid(s) and one or more initiator(s), each being fed separately or together through the plurality of injection zones.
7. (currently amended) The polymerization process of ~~any of claims 3-6~~ claim 3, wherein the plug flow extruder reactor comprises a twin screw extruder.
8. (original) The polymerization process of claim 3, wherein the stirred tank reactor comprises a discharge screw.

9. (original) The polymerization process of claim 8, wherein the polymerization medium produces polymer particles and the stirred tank reactor comprises a stirrer that skims the polymer particles and directs the polymer particles to a reactor outlet.
10. (original) The polymerization process of claim 3, wherein the stirred tank reactor comprises a funnel.
11. (original) The polymerization process of claim 10, wherein the funnel is positioned near or below the surface of the liquid phase of the polymerization medium.
12. (original) The polymerization process of claim 10 or 11, wherein the stirred tank reactor comprises one or more axial flow impeller(s), one or more radial flow impeller(s), or combinations thereof.
13. (original) The polymerization process of claim 3, wherein the stirred tank reactor is absent a mechanical stirrer.
14. (currently amended) The polymerization process of ~~any of the preceding claims~~ claim 1, wherein the evaporated polymerization medium is collected, compressed, condensed, and returned to the polymerization medium.
15. (currently amended) The polymerization process of ~~any of the preceding claims~~ claim 1, wherein the polymerization process further comprises the steps of (a) cooling the polymerization medium; (b) supplying the cooled polymerization medium to a reactor; (c) removing polymer at the reactor outlet.
16. (currently amended) The polymerization process of ~~any of the preceding claims~~ claim 1, wherein the one or more monomer(s) comprise an isoolefin, preferably isobutylene, and a multiolefin, preferably a conjugated diene, more preferably isoprene.
17. (currently amended) The polymerization process of ~~any of the preceding claims~~ claim 1, where the one or more monomer(s) comprise an isoolefin, preferably isobutylene, and an alkylstyrene, preferably methylstyrene, more preferably *para*-methylstyrene.

18. (currently amended) The polymerization process of ~~any of the preceding claims claim 1~~, wherein one or more hydrofluorocarbon(s) is represented by the formula: C_xH_yF_z wherein x is an integer from 1 to 40 and y and z are integers of one or more.
19. (original) The polymerization process of claim 18, wherein x is from 1 to 10.
20. (original) The polymerization process of claim 18, wherein x is from 1 to 6.
21. (original) The polymerization process of claim 18, wherein x is from 1 to 3.
22. (currently amended) The polymerization process of ~~any of claims 1-17 claim 1~~, wherein the one or more hydrofluorocarbon(s) is independently selected from the group consisting of fluoromethane; difluoromethane; trifluoromethane; fluoroethane; 1,1-difluoroethane; 1,2-difluoroethane; 1,1,1-trifluoroethane; 1,1,2-trifluoroethane; 1,1,1,2-tetrafluoroethane; 1,1,2,2-tetrafluoroethane; 1,1,1,2,2-pentafluoroethane; 1-fluoropropane; 2-fluoropropane; 1,1-difluoropropane; 1,2-difluoropropane; 1,3-difluoropropane; 2,2-difluoropropane; 1,1,1-trifluoropropane; 1,1,2-trifluoropropane; 1,1,3-trifluoropropane; 1,2,2-trifluoropropane; 1,2,3-trifluoropropane; 1,1,1,2-tetrafluoropropane; 1,1,1,3-tetrafluoropropane; 1,1,2,2-tetrafluoropropane; 1,1,2,3-tetrafluoropropane; 1,1,3,3-tetrafluoropropane; 1,2,2,3-tetrafluoropropane; 1,1,1,2,2-pentafluoropropane; 1,1,1,2,3-pentafluoropropane; 1,1,1,3,3-pentafluoropropane; 1,1,2,2,3-pentafluoropropane; 1,1,2,3,3-pentafluoropropane; 1,1,1,2,2,3-hexafluoropropane; 1,1,1,2,3,3-hexafluoropropane; 1,1,1,2,2,3,3-heptafluoropropane; 1,1,1,2,3,3,3-heptafluoropropane; 1-fluorobutane; 2-fluorobutane; 1,1-difluorobutane; 1,2-difluorobutane; 1,3-difluorobutane; 1,4-difluorobutane; 2,2-difluorobutane; 2,3-difluorobutane; 1,1,1-trifluorobutane; 1,1,2-trifluorobutane; 1,1,3-trifluorobutane; 1,1,4-trifluorobutane; 1,2,2-trifluorobutane; 1,2,3-trifluorobutane; 1,3,3-trifluorobutane; 2,2,3-trifluorobutane; 1,1,1,2-tetrafluorobutane; 1,1,1,3-tetrafluorobutane; 1,1,1,4-tetrafluorobutane; 1,1,2,2-tetrafluorobutane; 1,1,2,3-tetrafluorobutane; 1,1,2,4-tetrafluorobutane; 1,1,3,3-tetrafluorobutane; 1,1,3,4-tetrafluorobutane; 1,1,4,4-tetrafluorobutane; 1,2,2,3-tetrafluorobutane; 1,2,2,4-tetrafluorobutane; 1,2,3,3-tetrafluorobutane; 1,2,3,4-tetrafluorobutane;

tetrafluorobutane; 2,2,3,3-tetrafluorobutane; 1,1,1,2,2-pentafluorobutane; 1,1,1,2,3-pentafluorobutane; 1,1,1,2,4-pentafluorobutane; 1,1,1,3,3-pentafluorobutane; 1,1,1,3,4-pentafluorobutane; 1,1,1,4,4-pentafluorobutane; 1,1,2,2,3-pentafluorobutane; 1,1,2,2,4-pentafluorobutane; 1,1,2,3,3-pentafluorobutane; 1,1,2,4,4-pentafluorobutane; 1,1,3,3,4-pentafluorobutane; 1,2,2,3,3-pentafluorobutane; 1,2,2,3,4-pentafluorobutane; 1,1,1,2,2,3-hexafluorobutane; 1,1,1,2,2,4-hexafluorobutane; 1,1,1,2,3,3-hexafluorobutane; 1,1,1,2,3,4-hexafluorobutane; 1,1,1,2,4,4-hexafluorobutane; 1,1,1,3,3,4-hexafluorobutane; 1,1,1,3,4,4-hexafluorobutane; 1,1,1,4,4,4-hexafluorobutane; 1,1,2,2,3,3-hexafluorobutane; 1,1,2,2,4,4-hexafluorobutane; 1,1,2,3,3,4-hexafluorobutane; 1,1,2,2,3,3-heptafluorobutane; 1,1,1,2,2,4,4-heptafluorobutane; 1,1,1,2,2,3,4-heptafluorobutane; 1,1,1,2,3,3,4-heptafluorobutane; 1,1,1,2,4,4,4-heptafluorobutane; 1,1,1,3,3,4,4-heptafluorobutane; 1,1,1,2,2,3,3-octafluorobutane; 1,1,1,2,2,3,4,4-octafluorobutane; 1,1,1,2,3,3,4,4-octafluorobutane; 1,1,1,2,2,4,4,4-octafluorobutane; 1,1,1,2,3,4,4,4-octafluorobutane; 1,1,1,2,2,3,3,4,4-nonafluorobutane; 1,1,1,2,2,3,4,4,4-nonafluorobutane; 1-fluoro-2-methylpropane; 1,1-difluoro-2-methylpropane; 1,3-difluoro-2-methylpropane; 1,1,1-trifluoro-2-methylpropane; 1,1,3-trifluoro-2-methylpropane; 1,3-difluoro-2-(fluoromethyl)propane; 1,1,1,3-tetrafluoro-2-methylpropane; 1,1,3,3-tetrafluoro-2-methylpropane; 1,1,3-trifluoro-2-(fluoromethyl)propane; 1,1,1,3,3-pentafluoro-2-methylpropane; 1,1,3,3-tetrafluoro-2-(fluoromethyl)propane; fluorocyclobutane; 1,1-difluorocyclobutane; 1,2-difluorocyclobutane; 1,3-difluorocyclobutane; 1,1,2-trifluorocyclobutane; 1,1,3-trifluorocyclobutane; 1,2,3-trifluorocyclobutane; 1,1,2,2-tetrafluorocyclobutane; 1,1,3,3-tetrafluorocyclobutane; 1,1,2,2,3-pentafluorocyclobutane; 1,1,2,2,3,3-pentafluorocyclobutane; 1,1,2,2,3,4-hexafluorocyclobutane; 1,1,2,3,3,4-hexafluorocyclobutane; 1,1,2,2,3,3-heptafluorocyclobutane and mixtures thereof.

23. (currently amended) The polymerization process of ~~any of claims 1-17~~ claim 1, wherein the one or more hydrofluorocarbon(s) is independently selected from monofluoromethane, difluoromethane, trifluoromethane, monofluoroethane, 1,1-

difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,2, pentafluoroethane, and mixtures thereof.

24. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the diluent comprises from 15 to 100 volume % HFC based upon the total volume of the diluent.
25. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the diluent comprises from 20 to 100 volume % HFC based upon the total volume of the diluent.
26. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the diluent comprises from 25 to 100 volume % HFC based upon the total volume of the diluent.
27. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the diluent further comprises a hydrocarbon, a non-reactive olefin, and/or an inert gas.
28. (original) The polymerization process of claim 27, wherein the hydrocarbon is a halogenated hydrocarbon other than an HFC.
29. (original) The polymerization process of claim 28, wherein the halogenated hydrocarbon is methyl chloride.
30. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula MX_4 ;
wherein M is a Group 4, 5, or 14 metal; and
each X is a halogen.

31. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula MR_nX_{4-n} ;
wherein M is Group 4, 5, or 14 metal;
each R is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;
 n is an integer from 0 to 4; and
each X is a halogen.
32. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula $M(RO)_nR'_mX_{4-(m+n)}$;
wherein M is Group 4, 5, or 14 metal;
each RO is a monovalent C₁ to C₃₀ hydrocarboxy radical independently selected from the group consisting of an alkoxy, aryloxy, arylalkoxy, alkylaryloxy radicals;
each R' is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;
 n is an integer from 0 to 4;
 m is an integer from 0 to 4, wherein the sum of n and m is not more than 4; and
each X is a halogen.
33. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula $M(RC=OO)_nR'_mX_{4-(m+n)}$;
wherein M is Group 4, 5, or 14 metal;
each RC=OO is a monovalent C₂ to C₃₀ hydrocarbacyl radical independently selected from the group consisting of an alkacyloxy, arylacyloxy, arylalkylacyloxy, alkylarylacyloxy radicals;
each R' is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;
 n is an integer from 0 to 4;
 m is an integer from 0 to 4, wherein the sum of n and m is not more than 4; and
each X is a halogen.

34. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula MOX_3 ;
wherein M is a Group 5 metal; and
each X is a halogen.
35. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula MX_3 ;
wherein M is a Group 13 metal; and
each X is a halogen.
36. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula $\text{MR}_n\text{X}_{3-n}$;
wherein M is a Group 13 metal;
each R is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;
n is an integer from 1 to 3; and
each X is a halogen.
37. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula $\text{M}(\text{RO})_n\text{R}'_m\text{X}_{3-(m+n)}$;
wherein M is a Group 13 metal;
each RO is a monovalent C₁ to C₃₀ hydrocarboxy radical independently selected from the group consisting of an alkoxy, aryloxy, arylalkoxy, alkylaryloxy radicals;
each R' is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;
n is an integer from 0 to 3;
m is an integer from 0 to 3, wherein the sum of *n* and *m* is from 1 to 3; and
each X is a halogen.

38. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula $M(RC=OO)_nR'_mX_{3-(m+n)}$;
wherein M is a Group 13 metal;
each $RC=OO$ is a monovalent hydrocarbacyl radical independently selected from the group independently selected from the C_2 to C_{30} group consisting of an alkacyloxy, arylacyloxy, arylalkylacyloxy, alkylarylcloxy radicals;
each R' is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;
 n is an integer from 0 to 3;
 m is an integer from 0 to 3, wherein the sum of n and m is from 1 to 3; and
each X is a halogen.
39. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula MX_y ;
wherein M is a Group 15 metal;
each X is a halogen; and
 y is 3, 4 or 5.
40. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula MR_nX_{y-n} ;
wherein M is a Group 15 metal;
each R is a monovalent C_1 to C_{12} hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;
 n is an integer from 0 to 4;
 y is 3, 4 or 5, wherein n is less than y; and
each X is a halogen.

41. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula $M(RO)_nR'mX_{y-(m+n)}$;
wherein M is a Group 15 metal,
each RO is a monovalent C₁ to C₃₀ hydrocarboxy radical independently selected from the group consisting of an alkoxy, aryloxy, arylalkoxy, alkylaryloxy radicals;
each R' is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;
 n is an integer from 0 to 4;
 m is an integer from 0 to 4;
 y is 3, 4 or 5, wherein the sum of n and m is less than y; and
each X is a halogen.
42. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) represented by the formula $M(RC=OO)_nR'mX_{y-(m+n)}$;
wherein M is a Group 15 metal;
each RC=OO is a monovalent C₂ to C₃₀ hydrocarbacyloxy radical independently selected from the group consisting of an alkacyloxy, arylacyloxy, arylalkylacyloxy, alkylarylcloxy radicals;
each R' is a monovalent C₁ to C₁₂ hydrocarbon radical independently selected from the group consisting of an alkyl, aryl, arylalkyl, alkylaryl and cycloalkyl radicals;
 n is an integer from 0 to 4;
 m is an integer from 0 to 4;
 y is 3, 4 or 5, wherein the sum of n and m is less than y; and
each X is a halogen.
43. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) independently selected from the group consisting of titanium tetrachloride, titanium tetrabromide, vanadium tetrachloride, tin tetrachloride, zirconium tetrachloride, titanium bromide trichloride, titanium dibromide dichloride, vanadium bromide trichloride, tin chloride trifluoride, benzyltitanium trichloride, dibenzyltitanium dichloride, benzylzirconium

trichloride, dibenzylzirconium dibromide, methyltitanium trichloride, dimethyltitanium difluoride, dimethyltin dichloride, phenylvanadium trichloride, methoxytitanium trichloride, n-butoxytitanium trichloride, di(isopropoxy)titanium dichloride, phenoxytitanium tribromide, phenylmethoxyzirconium trifluoride, methyl methoxytitanium dichloride, methyl methoxytin dichloride, benzyl isopropoxyvanadium dichloride, acetoxytitanium trichloride, benzoylzirconium tribromide, benzyloxytitanium trifluoride, isopropoxytin trichloride, methyl acetoxytitanium dichloride, benzyl benzyloxyvanadium chloride, vanadium oxytrichloride, aluminum trichloride, boron trifluoride, gallium trichloride, indium trifluoride, ethylaluminum dichloride, methylaluminum dichloride, benzylaluminum dichloride, isobutylgallium dichloride, diethylaluminum chloride, dimethylaluminum chloride, ethylaluminum sesquichloride, methylaluminum sesquichloride, trimethylaluminum, triethylaluminum, methoxyaluminum dichloride, ethoxyaluminum dichloride, 2,6-di-tert-butylphenoxyaluminum dichloride, methoxy methylaluminum chloride, 2,6-di-tert-butylphenoxy methylaluminum chloride, isopropoxygallium dichloride, phenoxy methylindium fluoride, acetoxyaluminum dichloride, benzyloxyaluminum dibromide, benzyloxygallium difluoride, methyl acetoxyaluminum chloride, isopropoxyindium trichloride, antimony hexachloride, antimony hexafluoride, arsenic pentafluoride, antimony chloride pentafluoride, arsenic trifluoride, bismuth trichloride arsenic fluoride tetrachloride, tetraphenylantimony chloride, triphenylantimony dichloride, tetrachloromethoxyantimony, dimethoxytrichloroantimony, dichloromethoxyarsine, chlorodimethoxyarsine, difluoromethoxyarsine, acetatotetrachloroantimony, (benzoato) tetrachloroantimony, and bismuth acetate chloride.

44. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises one or more Lewis acid(s) independently selected from the group consisting of aluminum trichloride, aluminum tribromide, ethylaluminum dichloride, ethylaluminum sesquichloride, diethylaluminum chloride, methylaluminum dichloride, methylaluminum sesquichloride, dimethylaluminum chloride, boron trifluoride, and titanium tetrachloride.

45. (currently amended) The polymerization process of ~~any of claims 1-29~~ claim 1, wherein the catalyst system comprises a Lewis acid that is not a compound represented by formula MX₃, where M is a group 13 metal, X is a halogen.
46. (currently amended) The polymerization process of ~~any of the preceding claims~~ claim 1, wherein the catalyst system comprises a hydrogen halide, a carboxylic acid, a carboxylic acid halide, a sulfonic acid, an alcohol, a phenol, a polymeric halide, a tertiary alkyl halide, a tertiary aralkyl halide, a tertiary alkyl ester, a tertiary aralkyl ester, a tertiary alkyl ether, a tertiary aralkyl ether, an alkyl halide, an aryl halide, an alkylaryl halide or an arylalkylacid halide.
47. (currently amended) The polymerization process of ~~any of claims 1-45~~ claim 1, wherein the catalyst system comprises one or more initiator(s) independently selected from the group consisting of HCl, H₂O, methanol, (CH₃)₃CCl, C₆H₅C(CH₃)₂Cl, (2-Chloro-2,4,4-trimethylpentane) and 2-chloro-2-methylpropane.
48. (currently amended) The polymerization process of ~~any of claims 1-45~~ claim 1, wherein the catalyst system comprises one or more initiator(s) independently selected from the group consisting of hydrogen chloride, hydrogen bromide, hydrogen iodide, acetic acid, propanoic acid, butanoic acid; cinnamic acid, benzoic acid, 1-chloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, p-chlorobenzoic acid, p-fluorobenzoic acid, acetyl chloride, acetyl bromide, cinnamyl chloride, benzoyl chloride, benzoyl bromide, trichloroacetylchloride, trifluoroacetylchloride, p-fluorobenzoylchloride, methanesulfonic acid, trifluoromethanesulfonic acid, trichloromethanesulfonic acid, p-toluenesulfonic acid, methanesulfonyl chloride, methanesulfonyl bromide, trichloromethanesulfonyl chloride, trifluoromethanesulfonyl chloride, p-toluenesulfonyl chloride, methanol, ethanol, propanol, 2-propanol, 2-methylpropan-2-ol, cyclohexanol, benzyl alcohol, phenol, 2-methylphenol, 2,6-dimethylphenol, p-chlorophenol, p-fluorophenol, 2,3,4,5,6-pentafluorophenol, and 2-hydroxynaphthalene.
49. (currently amended) The polymerization process of ~~any of claims 1-45~~ claim 1, wherein the catalyst system comprises one or more initiator(s) independently selected

from the group consisting of 2-chloro-2,4,4-trimethylpentane; 2-bromo-2,4,4-trimethylpentane; 2-chloro-2-methylpropane; 2-bromo-2-methylpropane; 2-chloro-2,4,4,6,6-pentamethylheptane; 2-bromo-2,4,4,6,6-pentamethylheptane; 1-chloro-1-methylethylbenzene; 1-chloroadamantane; 1-chloroethylbenzene; 1, 4-bis(1-chloro-1-methylethyl) benzene; 5-tert-butyl-1,3-bis(1-chloro-1-methylethyl) benzene; 2-acetoxy-2,4,4-trimethylpentane; 2-benzoyloxy-2,4,4-trimethylpentane; 2-acetoxy-2-methylpropane; 2-benzoyloxy-2-methylpropane; 2-acetoxy-2,4,4,6,6-pentamethylheptane; 2-benzoyl-2,4,4,6,6-pentamethylheptane; 1-acetoxy-1-methylethylbenzene; 1-aceotxyadamantane; 1-benzoyloxyethylbenzene; 1,4-bis(1-acetoxy-1-methylethyl) benzene; 5-tert-butyl-1,3-bis(1-acetoxy-1-methylethyl) benzene; 2-methoxy-2,4,4-trimethylpentane; 2-isopropoxy-2,4,4-trimethylpentane; 2-methoxy-2-methylpropane; 2-benzylxy-2-methylpropane; 2-methoxy-2,4,4,6,6-pentamethylheptane; 2-isopropoxy-2,4,4,6,6-pentamethylheptane; 1-methoxy-1-methylethylbenzene; 1-methoxyadamantane; 1-methoxyethylbenzene; 1,4-bis(1-methoxy-1-methylethyl) benzene; 5-tert-butyl-1,3-bis(1-methoxy-1-methylethyl) benzene, and 1,3,5-tris(1-chloro-1-methylethyl) benzene.

50. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the catalyst system comprises a weakly-coordinating anion.
51. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the one or more initiator(s) comprise greater than 30 ppm water (based upon weight).
52. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the one or more monomer(s) is independently selected from the group consisting of olefins, alpha-olefins, disubstituted olefins, isoolefins, conjugated dienes, non-conjugated dienes, styrenics, substituted styrenics, and vinyl ethers.
53. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the one or more monomer(s) is independently selected from the group consisting of isobutylene, styrene, para-alkylstyrene, para-methylstyrene, alpha-methyl styrene, divinylbenzene, diisopropenylbenzene, isobutylene, 2-methyl-1-

butene, 3-methyl-1-butene, 2-methyl-2-pentene, isoprene, butadiene, 2,3-dimethyl-1,3-butadiene, β -pinene, myrcene, 6,6-dimethyl-fulvene, hexadiene, cyclopentadiene, methyl cyclopentadiene, piperylene, methyl vinyl ether, ethyl vinyl ether, and isobutyl vinyl ether.

54. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the one or more monomer(s) comprise at least 80 wt% isobutylene based upon the total weight of the one or more monomer(s).
55. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the polymerization temperature is from 15°C to -100°C.
56. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the polymerization temperature is from -30°C to -70°C.
57. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the polymerization temperature is from -40°C to -60°C.
58. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the polymerization medium is evaporated at pressures from 1 kPa to 400 kPa.
59. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the polymerization medium is evaporated at pressures from 10 kPa to 100 kPa.
60. (currently amended) The polymerization process of any of the preceding claims claim 1, wherein the polymerization medium is evaporated at pressures from 30 kPa to 100 kPa.
61. (cancelled)
62. (cancelled)