Analyse en Séries Temporelles des Exportations et Importations au Portugal

Préparé par Maria SANNIKOV Master 1 *Expertise Économique* Pour ECUE Séries Temporelles et Prévisions Prof. Thomas JOBERT Avril 2021

Table des Matières

Introduction	3
Partie 1 : Caractérisation univariée des séries	4
1.1 Choix du nombre optimal de retards	
1.1.1 Estimation des équations Dickey-Fuller pour les exportations	
Partie 2 : Modélisation multivariée des séries (modèle VAR et causalité au .	sens de Granger) 10
2.1 Causalité au sens de Granger	10
Partie 3 : Test de cointegration et prévisions	12
3.1 Stationnarité du résidu	12
3.2 Prévision	13
Conclusion	14
Annexe	15

Introduction

Nos données sur les exportations et les importations du Portugal sont issues de la base de données Eurostat. En générale, les exportations sont inférieures aux importations ce qui signifie que le pays possède un déficit commercial important vu la différence entre les deux flux (figure 1 et 2). Malgré quelques moments où la balance était excédentaire, après 2015 nous voyons un retour à une balance déficitaire mais à un niveau moins important comparé au début des années 2000.

Selon la publication officielle du gouvernement portugais sur les statistiques du commerce international, en 2019, l'Espagne était son principal partenaire commercial et la croissance globale des deux flux était principalement due au commerce intra-UE. Généralement, depuis 1995, on observe une croissance régulière avec quelques chocs dû aux crises. Nous observons également une chute quasi-simultané des deux flux lors de la crise financière après le troisième semestre de 2008.

Pour étudier les données de plus près, nous allons d'abord décomposer la série temporelle des exportations et importations pour étudier leurs tendances. Ensuite, nous verrons les fonctions de corrélations pour enfin faire des tests de stationnarité et conclure sur la nature de nos données. Nous procéderons par une caractérisation multivariée des séries pour ensuite faire un test de Co intégration et enfin faire des prévisions.

Partie 1 : Caractérisation univariée des séries

Graphique des Importations et Exportations du Portugal (1995 – 2019)

Figure 1 : Représentation graphique des exportations et importations du Portugal entre 1995 et 2019

Graphique des Importations et Exportations du Portugal (1995 – 2019) en différence

Figure 2 : Représentation graphique des exportations et importations du Portugal en différence 1995 et 2019

Pour pouvoir caractériser les deux séries, nous représentons leurs corrélogrames (annexe 1) dans le but de voir dans quelle mesure les valeurs actuelles des séries sont liées aux valeurs passées. Nos données montrent que la tendance des exportations est une fonction croissante plus ou moins régulière dans le temps, dont la pente moyenne semble également augmenter avec le temps. Nous remarquons aussi une forte décroissance des exportations entre 2005 et 2010, probablement dû à la crise financière.

1.1 Choix du nombre optimal de retards

La statistique de test Dickey-Fuller pour une racine unitaire autorégressive dans un AR (1) avec dérive fournit une preuve supplémentaire que la série pourrait être non-stationnaire. Pour déterminer laquelle des trois équations DF sera utilisée, nous devons spécifier les aspects déterministes à inclure, qui peuvent être aucun (pour aucun élément déterministe), la dérive (*drift*) (pour une constante dans l'équation de test) ou la tendance (à la fois pour une constante et une tendance temporelle). Nous suivons la pratique de la méthode de Perron (annexe 2) consistant à passer des équations de test générales aux équations de test spécifiques :

Nous observons que le résultat n'est pas significatif pour aucun des retards, de ce fait nous allons utiliser le minimum nombre de retards pour les exportations, soit un lag = 1. En faisant pareil pour les importations, Nous voyons que le lag de 2 est le lag optimal.

Nous obtenons les mêmes résultats avec le critère AIC qui nous donne le nombre optimal minimisant le critère d'information (annexe 3). Finalement, le retard optimal pour les exportations est 1 et le retard optimal pour les importations est 2.

1.1.1 Estimation des équations Dickey-Fuller pour les exportations

1. Équation 1 : Test Générale, modèle AR (1) avec tendance et constante

 $H0: \rho=0$; présence de racine unitaire

 $Ha: \rho < 0$

Table 1: Équation de Dickey-Fuller Modèle AR (1) avec tendance et constante

				A CONTRACTOR OF THE PROPERTY O	Dickey-Fulle	
	Test	1% Crit				0% Critical
	Statistic	Val	ue	Va	lue	Value
(t)	-1.173	-4	.044	-	3.452	-3.151
	roximate p-val	5000000 - 0000000 - 0000000000000000000	3-98131 037 900 130000 40		[95% Conf	. Interval]
	1	5000000 - 0000000 - 0000000000000000000	3-98131 037 900 130000 40		[95% Conf	. Interval]
x	Coef.	Std. Err.	t	P> t	#100/00/2000 100/00/2000 100/00/2000 100/00/2000 100/00/2000 100/00/2000 100/00/2000 100/00/2000 100/00/2000 1	
X X L1.	Coef.	Std. Err.	t -1.17	P> t 0.244	1251348	.0321843
X L1. LD.	Coef0464753	Std. Err. .0396165 .1062814	-1.17 0.02	P> t 0.244 0.987	1251348 2092326	.0321843
X X L1.	Coef.	Std. Err0396165 .1062814 5.491099	-1.17 0.02	P> t 0.244 0.987	1251348 2092326 -3.154546	.0321843 .212816 18.65086

Nous observons que la test statistique -1.173 est supérieur aux trois valeurs critiques et la p-value Mackinnon (0.91) est supérieur à 0.05 donc on accepte l'hypothèse H0 de présence de racine unitaire.

Maintenant que nous avons constaté l'existence d'une racine unitaire, dans le modèle 1' on fait le test sans racine unitaire mais avec constante et un trend. Ici nous voulons savoir s'il y a ou pas une présence d'un trend.

 $H0:\beta=0$

Ha : β≠0 ; présence du trend

delta_x	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
deltaX_L1	0250184	.1040006	-0.24	0.810	2314857	.1814489
Trend	1.46235	1.203337	1.22	0.227	9265753	3.851275
_cons	81.64938	70.83088	1.15	0.252	-58.96771	222.2665

La p-value du Trend est égale à 0.227 ce qui est supérieur à la valeur critique de 5% ainsi, on ne rejette pas l'hypothèse H0 ce qui signifie l'absence d'un trend.

Estimons maintenant le modèle 2 afin de tester la présence d'une racine unitaire dans un modèle sans trend :

Table 2: Équation de Dicky-Fuller Modèle AR(1) avec constante

		_	Inte	rpolated	Dickey-Fulle	r
	Test	1% Crit	ical	5% Cri	tical 1	0% Critical
	Statistic	Val	ue	Va	lue	Value
Z(t)	0.927	-3	.513	_	2.892	-2.581
•	proximate p-va	490-4000 - 600-6000 - 71, 500-600-67		***	Inch Conf	Tatania 11
D.X	Coef.	Std. Err.	= 0.993	P> t	[95% Conf	. Interval]
• /	1	490-4000 - 600-6000 - 71, 500-600-67		***	[95% Conf	. Interval]
D.X	1	Std. Err.		***		. Interval]
D.X	Coef.	Std. Err.	t	P> t 0.356		

Ici aussi on accepte l'hypothèse de présence d'une racine unitaire (H0) ce qui nous amène au modèle 2' où on va tester la présence d'une constante :

H0 : α=0 Ha : α≠0

delta_x	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
deltaX_L1	0118388	.1036902	-0.11	0.909	2176621	.1939845
cons	155.0654	37.06931	4.18	0.000	81.48345	228.6474

La constante est statistiquement différente de 0 ainsi on garde la constante : Exportations ~ I(1) types DS avec dérive.

1.1.2 Estimation des équations Dickey-Fuller pour les importations

Nous allons procéder de la même manière pour les importations, sachant que le lag optimal est 2.

1. Équation 1 : Test Générale, modèle AR (1) avec tendance

Table 3 : Équation de Dicky-Fuller Modèle AR(1) avec tendance et constante

Augmented Dic	key-Fuller te	st for unit	root	Numb	er of ob	s =	97
		-	Inte	rpolated	Dickey-F	uller	-
	Test	1% Crit:	ical	5% Cri	tical	10	% Critical
	Statistic	Valu	ue	Va	lue		Value
Z(t)	-1.993	-4	. 047	_	3.453		-3.152
MacKinnon app	roximate p-va	lue for Z(t)	= 0.605	2			
	roximate p-va	Std. Err.	= 0.605	2 P> t	[95%	Conf.	Interval]
			152 55-552-55		[95%	Conf.	Interval
D.M			152 55-552-55		[95%		Interval)
D.M	Coef.	Std. Err.	t	P> t	0.00000	849	
D.M M L1.	Coef.	Std. Err.	t -1.99	P> t 0.049	1263	849 961	0002245
D.M M L1. LD.	Coef0633047	Std. Err0317611 .0995415	-1.99 0.44	P> t 0.049 0.661	1263 153 .0997	849 961 015	0002245 .2414352

Testons donc la présence de racine unitaire dans le modèle 1 : le t test (-1.993) est supérieur aux 3 valeurs critiques ainsi on accepte la présence de racine unitaire (H0).

Nous passons à la régression à la main (sans racine unitaire mais avec trend et constante) afin de tester la présence du trend :

delta_m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
deltaM_L1	.0070212	.0993733	0.07	0.944	1903145	.2043569
deltaM_L2	.2619317	.0992522	2.64	0.010	.0648364	.4590269
Trend	.1427559	1.42893	0.10	0.921	-2.694816	2.980328
_cons	100.7004	86.01436	1.17	0.245	-70.10704	271.5079

La p-value du trend est égal à 0.921 ce qui est supérieur à la valeur critique de 0.05, ainsi on ne peut pas rejeter H0 ce qui signifie qu'on rejette la présence d'un trend.

Nous allons tester le modèle suivant afin de tester la présence d'une racine unitaire dans un modèle sans trend.

Table 4 : Équation de Dickey-Fuller Modèle AR (1) avec constante

ugmented Dio	key-Fuller te	st for unit	root	Numb	er of obs	= 97
			Inte	rpolated	Dickey-Fulle	r
	Test	1% Crit	ical	5% Cri	tical 1	.0% Critical
	Statistic	Val	ue	Va	lue	Value
Z(t)	-0.659	-3	.514	_	2.892	-2.581
lacKinnon app	proximate p-va	lue for Z(t)	= 0.857	l		
lacKinnon app		lue for Z(t)			[95% Conf	. Interval]
•					[95% Conf	. Interval]
D.M	Coef.				5	
D.M M	Coef.	Std. Err.	t	P> t	0325247	.0163208
D.M M L1.	Coef.	Std. Err.	t -0.66	P> t 0.512	0325247	.0163208

Nous acceptons l'hypothèse de présence d'une racine unitaire (H0) ce qui nous amène au modèle 2' ou nous allons tester la présence d'une constante :

delta_m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
deltaM_L1	.0073618	.0987904	0.07	0.941	1887888	.2035125
deltaM_L2	.2621392	.0987065	2.66	0.009	.066155	.4581234
_cons	108.0463	44.39617	2.43	0.017	19.89661	196.1959

 $H0: \alpha = 0$

 $H1:\alpha\neq 0$

Vu que nous obtenons un résultat significatif pour la constante (0.017), nous rejetons H0 et acceptions la présence d'une constante.

Pour conclure, les séries des exportations et importations suivent un processus DS avec dérive c'est-à-dire qu'elles sont non-stationnaire. Cependant le processus peut être stationnarisé en utilisant les différences premières.

Partie 2 : Modélisation multivariée des séries (modèle VAR et causalité au sens de Granger)

Avant de passer au modèle VAR, nous testons le nombre de retards nécessaire grâce au test AIC (annexe 4) qui nous indique qu'il faut choisir aucun retard. Cependant nous allons fixer un minimum à 2 retards. Comme nous avons fait dans la partie 1, nous pouvons voir le nombre de retard optimal pour chaque série individuellement. Pour les exportations c'était 1 et pour les exportations c'est 2.

Les résultats du modèle VAR (annexe 5) nous permettent de capturer les interdépendances entre les exportations et les importations. Nous pourrions nous intéresser maintenant à l'existence d'une causalité entre les deux séries.

2.1 Causalité au sens de Granger

Nous cherchons à voir s'il existe une causalité au sens de Granger des importations sur les exportations. Avec un retard de deux périodes, on obtient le résultat suivant :

Granger causality Wald tests Equation Excluded chi2 df Prob > chi2 delta m delta x .79152 2 0.673 79152 0.673 delta_m ALL delta_x delta_m 1.5971 2 0.450 delta x ALL 1.5971 0.450

Table 5 : Test de Causalité au sens de Granger avec un retard de 2 périodes

H0: pas de causalité entre les séries

H1: causalité entre les séries

Nous observons une p-valeur > 5% ce qui signifie qu'on ne rejette pas l'hypothèse nulle, donc les importations avec un lag = 2 ne causent pas les exportations, au sens de Granger.

En essayant la même chose avec des retards plus grand pour voir si cela affecte le résultat, nous observons que pour tous les retards, les importations ne causent pas les exportations au sens de Granger (annexe 6). Cependant, si maintenant nous nous intéressons sur le fait si les exportations causent les importations au sens de granger, avec un retard de 13 périodes, nous avons un résultat significatif :

Table 6 : Test de Causalité au sens de Granger avec un retard de 13 périodes

ranger causality Wald t	ests			
Equation	Excluded	chi2	df F	Prob > chi2
delta_m	delta_x	25.92	13	0.017
delta_m	ALL	25.92	13	0.017
delta_x	delta_m	11.225	13	0.592
delta_x	ALL	11.225	13	0.592

En faisant le test de Granger, nous voyons que les exportations retardées de 13 périodes influencent, au sens de granger, les importations.

Concernant les importations, nous pouvons conclure qu'au sens de Granger les importations ne causent pas les exportations.

Partie 3 : Test de cointegration et prévisions

Pour voir si on utilise le modèle VECM ou le modèle VAR, nous allons tester la stationnarité du résidu après ayant trouvé notre vecteur candidat (1 ; -0,8) (annexe 7).

3.1 Stationnarité du résidu

Figure 3 : Graphique de la stationnarité de résidu

Graphiquement et grâce aux corrélogrammes (annexe 9 et 10), il est clair que le résidu n'est pas stationnaire au cours du temps (figure 3). Ensuite, nous testons la stationnarité du résidu en effectuant le test de racine unitaire en le régressant par MCO (annexe 8). Nous observons que le t test (-1.76) est supérieur à la valeur critique tabulée par Engle et Yoo (-3.37) ce qui signifie qu'on accepte l'hypothèse H0, c'est-à-dire qu'on accepte la présence d'une racine unitaire, ce qui montre que notre résidu n'est pas stationnaire.

Ainsi on retient le model VAR de la partie 2 pour procéder avec la prévision.

3.2 Prévision

En fonction des résultats obtenus dans les parties 1 et 2, nous pouvons faire une prévision à un horizon de 10 périodes des deux séries étudiées (sachant qu'une période correspond à un semestre, notre prévision correspond à un horizon de deux ans et demi) :

Figure 4: Prévision des séries différenciées en log

Figure 5 : Prévision des séries différenciées

Figure 6 : Prévision des deux séries différenciées avec un intervalle de confiance de 95%

Les prévisions ci-dessus nous montrent que pour les deux séries, les fluctuations ont tendance à s'estomper voire devenir constant pour la série des exportations.

Conclusion

Pour conclure, nous avons vu que nos données sur les exportations et importations sont tout d'abord non-stationnaires puisque selon la définition de ce dernier, la série ne possède pas de moyenne constante et une variance constante à travers les années. Comme une majorité des séries macroéconomiques, les exportations et importations ont tendance à croitre avec le temps et donc ne satisfont pas la condition d'avoir une moyenne constante. Après avoir constaté la non-stationnarité des deux séries, pour extraire la tendance déterministe de la série, nous avons procédé par la différence première de la série.

Le test de causalité de Granger nous a permis de voir que, au sens de Granger, les importations ne causent pas les exportations au Portugal.

Enfin, nous avons procédé par la prévision des deux séries. Cependant, la crise sanitaire actuelle nous montre qu'il existe toutefois des chocs imprévisibles qui pourront avoir un impact important sur les données macroéconomiques et donc rendre les prévisions d'aujourd'hui insignifiantes demain. Même si après ces crises les économistes commencent à imaginer des scenarios plus ou moins optimistes pour leurs futures prévisions, il vaudrait mieux probabiliser et imaginer des scenarios plus extrêmes ce que ce pourrait montrer les intervalles de confiance. Pour ce faire, les économistes pourraient davantage adopter les « Words of Estimative Probability » qui sont des termes utilisés par les analystes d'intelligence pour transmettre la probabilité qu'un événement futur se produise comme par exemple visible dans la table 7 cidessous.

Table 7 : Kent's Words of Estimative Probability

Certain	100%	Give or take 0%
The General Area of Possibility		
Almost Certain	93%	Give or take about 6%
Probable	75%	Give or take about 12%
Chances About Even	50%	Give or take about 10%
Probably Not	30%	Give or take about 10%
Almost Certainly Not	7%	Give or take about 5%
Impossible	0	Give or take 0%

Source: cia.gov

Annexe

1. Corrélogrammes en Niveau/ différence des Exportations/Importations

ACF PACF

PACF

ACF

10

15

20

ACF

ACF

PACF

PACF

2. Méthode de Perron (résultats)

		lags(6)				
Augmented Dic	key-Fuller tes	st for unit r	oot	Numb	er of obs =	93
	Test Statistic	1% Criti Valu	cal	5% Cri	Dickey-Fuller tical 10 lue	% Critical Value
Z(t)	-1.006	-4.	055	-	3.457	-3.154
lacKinnon app	roximate p-val	lue for Z(t)	= 0.9433	ı		
).X	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Х						
L1.	0506725	.0503618	-1.01	0.317	1508225	.0494774
LD.	.014513	.1147058	0.13	0.900	2135921	.2426181
L2D.	.0739307	.1175397	0.63	0.531	15981	.3076714
L3D.	0748193	.1207967	-0.62	0.537	3150367	.1653982
L4D.	.010737	.117887	0.09	0.928	2236942	.2451682
L5D.	.0317646	.1184502	0.27	0.789	2037865	.2673158
L6D.	0132617	.1228542	-0.11	0.914	2575707	.2310473
_trend _cons	8.637481 379.3861	6.766531 316.0611	1.28 1.20	0.205 0.233	-4.818508 -249.136	22.09347 1007.908
ugmented Dic	key-Fuller tes	st for unit r			er of obs :	
	Test Statistic	1% Criti	cal	5% Cri		% Critical Value
Z(t)	-1.093	-4.	053	-	3.456	-3.154
X 2	-1.093				3.456	-3.154
acKinnon app						-3.154 . Interval]
acKinnon app	roximate p-val	Std. Err.	= 0.930	P> t	[95% Conf.	. Interval]
acKinnon app .X X L1.	Coef.	Std. Err0471442	t -1.09	P> t 0.277	[95% Conf.	. Interval]
.X X L1. LD.	Coef051552	Std. Err. .0471442 .113334	t -1.09	P> t 0.277 0.896	[95% Conf.	. Interval] .0421675 .2401131
.X X L1. LD. L20.	Coef051552 .0148125 .0726795	Std. Err0471442 .113334 .1148337	t -1.09 0.13 0.63	P> t 0.277 0.896 0.528	[95% Conf14527152104881556023	. Interval] .0421675 .2401131 .3009614
.X X L1. LD.	Coef051552	Std. Err. .0471442 .113334	t -1.09	P> t 0.277 0.896	[95% Conf.	. Interval] .0421675 .2401131
X L1. LD. L20. L30.	Coef. 051552 .0148125 .0726795068692	.0471442 .113334 .1148337 .1148471 .1163131 .1162532	t -1.09 0.13 0.63 -0.60	P> t 0.277 0.896 0.528 0.551	[95% Conf14527152104881556023297000621917722020949	. Interval] .0421675 .2401131 .3009614 .1596165
.X X L1. LD. L2D. L3D. L4D. L5D. L5Dtrend	Coef. 051552 .0148125 .0726795068692 .0120456 .0290089 8.653679	Std. Err. .0471442 .113334 .1148337 .1163131 .1162532 6.397354	-1.09 0.13 0.63 -0.60 0.10 0.25 1.35	P> t 0.277 0.896 0.528 0.551 0.918 0.804 0.180	[95% Conf14527152104881556023297000621917722020949 -4.06384	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 21.3712
X X X L1. LD. L2D. L3D. L4D. L5D. L5D.	Coef. 051552 .0148125 .0726795068692 .0120456 .0290889	.0471442 .113334 .1148337 .1148471 .1163131 .1162532	-1.09 0.13 0.63 -0.60 0.10 0.25	P> t 0.277 0.896 0.528 0.551 0.918 0.804	[95% Conf14527152104881556023297000621917722020949	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684
X X L1. LD. L2D. L3D. L4D. L5Dtrend _cons	Coef. 051552 .0148125 .0726795068692 .0120456 .0290089 8.653679	Std. Err. .0471442 .113334 .114837 .1163131 .1162532 6.397354 299.279	-1.09 0.13 0.63 -0.60 0.10 0.25 1.35	P> t 0.277 0.896 0.528 0.551 0.918 0.804 0.180	[95% Conf. 1452715 210488 1556023 2970006 2191772 2020949 -4.06384	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 21.3712
X X L1. LD. L2D. L3D. L4Dtrend _cons	Coef. 051552 .0148125 .0726795068692 .0120456 .0290089 8.653679 389.0752	Std. Err. .0471442 .113334 .1148337 .1148471 .1163131 .1162532 6.397354 299.279	-1.09 0.13 0.63 -0.60 0.10 0.25 1.35	P> t 0.277 0.896 0.528 0.551 0.918 0.804 0.180 0.197	[95% Conf. 1452715 210488 1556023 2970006 2191772 2020949 -4.06384	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 21.3712 984.0221
X X L1. LD. L2D. L3D. L4D. L5Dtrend _cons dfuller X,	Coef. 051552 .0148125 .0726795068692 .0120456 .0290089 8.653679 389.0752 trend regress	Std. Err. .0471442 .113334 .1148337 .1162532 6.397354 299.279 lags(4) sst for unit	-1.09 0.13 0.63 -0.60 0.10 0.25 1.35 1.30	P> t 0.277 0.896 0.528 0.551 0.918 0.804 0.180 0.197	[95% Conf14527152104881556023297000621917722020949 -4.06384 -205.8717	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 21.3712 984.0221
.X X L1. LD. L2D. L3D. L4D. L5Dtrend _cons dfuller X,	Coef. 051552 .0148125 .0726795068692 .0120456 .0290089 8.653679 389.0752	Std. Err. .0471442 .113334 .1148337 .1148471 .1163131 .1162532 6.397354 299.279	-1.09 0.13 0.63 -0.60 0.10 0.25 1.35 1.30	P> t 0.277 0.896 0.528 0.551 0.918 0.808 0.180 0.197	[95% Conf14527152104881556023297000621917722020949 -4.06384 -205.8717	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 21.3712 984.0221
X X L1. LD. L2D. L3D. L4D. L5Dtrend _cons dfuller X,	Coef. 051552 .0148125 .0726795068692 .0120456 .0290089 8.653679 389.0752 trend regress	Std. Err. .0471442 .113334 .114837 .1163131 .1162532 6.397354 299.279 lags(4) st for unit Val	-1.09 0.13 0.63 -0.60 0.10 0.25 1.35 1.30	P> t 0.277 0.896 0.528 0.551 0.918 0.808 0.180 0.197	[95% Conf14527152104881556023297000621917722020949 -4.06384 -205.8717	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 21.3712 984.0221
X X L1. LD. L2D. L3D. L4D. L5Dtrend _cons dfuller X, Augmented Did	Coef. 051552 .0148125 .0726795068692 .01200456 .0290089 8.653679 389.0752 trend regress ckey-Fuller te		-1.09 0.13 0.63 -0.60 0.15 1.35 1.36	P> t 0.277 0.896 0.528 0.551 0.918 0.804 0.180 0.197 Num	[95% Conf14527152104881556023297000621917722020949 -4.06384 -205.8717	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 .21.3712 .984.0221 = 990000000000000000000000000000000000
X X L1. LD. L2D. L3D. L4D. L5Dtrend _cons dfuller X, sugmented Did	Coef. 051552 .0148125 .0726795068692 .0120456 .0290089 8.653679 389.0752 trend regress key-Fuller te Test Statistic -1.069		-1.09 0.13 0.63 -0.60 0.15 1.35 1.36	P> t 0.277 0.896 0.528 0.551 0.918 0.804 0.180 0.197 Num	[95% Conf14527152104881556023297000621917722020949 -4.06384 -205.8717	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 .21.3712 .984.0221 = er 10% Critica Value
X X L1. LD. L2D. L3D. L4D. L5Dtrend _cons dfuller X, ugmented Did	Coef. 051552 .0148125 .0726795068692 .0120456 .0290089 8.653679 389.0752 trend regress key-Fuller te Test Statistic -1.069 proximate p-va		-1.09 0.13 0.63 -0.60 0.25 1.35 1.30 root	P> t 0.277 0.896 0.528 0.551 0.918 0.804 0.180 0.197 Numerpolatec 5% C([95% Conf. 14527152104881556023297000621917722020949 -4.06384 -205.8717	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 .21.3712 .984.0221 =
.X X L1. LD. L2D. L3D. L4D. L5Dtrend _cons dfuller X, .ugmented Did	Coef. 051552 .0148125 .0726795068692 .01290889 8.653679 389.0752 trend regress ckey-Fuller te Test Statistic -1.069 Droximate p-va		-1.09 0.13 0.63 -0.60 0.10 0.25 1.35 1.30 root Intrical ue .051 = 0.93	P> t 0.277 0.896 0.528 0.551 0.918 0.804 0.180 0.197 Num P> t 0.288	[95% Conf14527152104881556023297000621917722020949 -4.06384 -205.8717	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 21.3712 984.0221 = 990 er -3.190 f. Interval
.X X L1. LD. L2D. L3D. L4D. L5Dtrend _cons dfuller X, ugmented Did	Coef. 051552 .0148125 .0726795068692 .0120456 .0290089 8.653679 389.0752 trend regress ckey-Fuller te Test Statistic -1.069 croximate p-va	Lue for Z(t) Std. Err. .0471442 .113334 .1148471 .1163131 .1162532 6.397354 299.279 lags(4) st for unit -4 lue for Z(t) Std. Err. .0450646 .1114244	root -1.09 0.13 0.63 -0.60 0.10 0.25 1.35 1.30 root root -1.07 0.10	P> t 0.277 0.896 0.528 0.551 0.918 0.804 0.180 0.197 Num erpolatec 5% (/	[95% Conf14527152104881556023297000621917722020949 -4.06384 -205.8717	. Interval .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 .21.3712 .984.0221 =
.X X L1. LD. L2D. L3D. L4D. L5Dtrend _cons dfuller X, ugmented Did	Coef. 051552 .0148125 .0726795068692 .0120456 .0290089 8.653679 389.0752 trend regress key-Fuller te Test Statistic -1.069 proximate p-va Coef. 0481818 .0112613 .0682985	Lue for Z(t) Std. Err. .0471442 .113334 .1148337 .1148471 .1162532 6.397354 299.279 lags(4) st for unit -4 lue for Z(t) Std. Err. .0450646 .1114244 .1108768	-1.09 0.13 0.63 -0.60 0.10 0.25 1.35 1.30 root Intrical ue .051 = 0.93	P> t 0.277 0.896 0.528 0.551 0.918 0.804 0.180 0.197 Num erpolatec 5% Cr	[95% Conf14527152104881556023297000621917722020949 -4.06384 -205.8717 Dickey-Full ittical /alue -3.455	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 21.3712 984.0221 = er 10% Critica Value -3.1!
.X X L1. LD. L2D. L3D. L4D. L5Dtrend _cons dfuller X, ugmented Did Z(t) lacKinnon app	Coef. 051552 .0148125 .0726795068692 .0120456 .0290089 8.653679 389.0752 trend regress ckey-Fuller te Test Statistic -1.069 proximate p-va		-1.09 0.13 0.63 -0.60 0.10 0.25 1.35 1.30 root Intrical ue -1.07 0.10 0.62 -0.60	P> t 0.277 0.896 0.528 0.551 0.918 0.804 0.180 0.197 Num P> t 0.288 0.920 0.539 0.551	[95% Conf14527152104881556023297000621917722020949 -4.06384 -205.8717 Dickey-Full ritical ralue	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 21.3712 984.0221 = 990 er -3.190 f. Interva .041376 .232666 .288644 .15758
X X L1. LD. L2D. L3D. L4D. L5Dtrend _cons . dfuller X, Augmented Dick Z(t) Hackinnon app	Coef. 051552 .0148125 .0726795068692 .0120456 .0290089 8.653679 389.0752 trend regress key-Fuller te Test Statistic -1.069 proximate p-va Coef. 0481818 .0112613 .0682985	Lue for Z(t) Std. Err. .0471442 .113334 .1148337 .1148471 .1162532 6.397354 299.279 lags(4) st for unit -4 lue for Z(t) Std. Err. .0450646 .1114244 .1108768	-1.09 0.13 0.63 -0.60 0.10 0.25 1.35 1.30 root Intrical ue .051 = 0.93	P> t 0.277 0.896 0.528 0.551 0.918 0.804 0.180 0.197 Num erpolatec 5% Cr	[95% Conf14527152104881556023297000621917722020949 -4.06384 -205.8717 Dickey-Full ittical /alue -3.455	. Interval] .0421675 .2401131 .3009614 .1596165 .2432684 .2601127 .21.3712 .984.0221 =

. dfuller X, trend regress lags(3)

Augmented Dickey-Fuller test for unit root

			Inte	rpolated	Dickey-Fulle	r
	Test Statistic	1% Crit Val			itical 1	0% Critica Value
	Statistic	vac	ue		- Cuc	vacue
Z(t)	-1.130	-4	.049		-3.454	-3.15
MacKinnon app	roximate p-va	lue for Z(t)	= 0.923	8		
D.X	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval
Х					12.1.5 0.0014.0034179040	4400457245075000
L1.	0488732	.0432358	-1.13	0.261	1347687	.037022
LD.	.0061088	.1080971	0.06	0.955	208645	.220862
L2D.	.0665813	.1096801	0.61	0.545	1513173	.2844
L3D.	0636667	.1116881	-0.57	0.570	2855546	.158221
_trend	8.420723	5.91717	1.42	0.158	-3.334768	20.1762
_cons	371.3533	280.4224	1.32	0.189	-185.7547	928.461
. dfuller X,	trend regress	anne en		8779 70	aRF 500	v 2004
. dfuller X,	trend regress	anne en	oot	Numbe	er of obs =	97
. dfuller X,	key-Fuller tes	st for unit r	Inter	polated [Dickey-Fuller	
. dfuller X,	key-Fuller tes Test	st for unit r	Inter	polated I	Dickey-Fuller tical 10%	
. dfuller X,	key-Fuller tes	st for unit r	Inter	polated [Dickey-Fuller tical 10%	
. dfuller X,	key-Fuller tes Test	st for unit r 	Inter	polated [5% Cri Va	Dickey-Fuller tical 10%	
. dfuller X, and Augmented Dick	key-Fuller tes Test Statistic	1% Criti Valu	Intercal	polated [5% Cri Va -:	Dickey-Fuller tical 10% lue	Critical Value
Augmented Dick	Test Statistic -1.303	1% Criti Valu	Intercal	polated [5% Cri Va -:	Dickey-Fuller tical 10% lue	s Critical Value -3.152
Augmented Dick	Test Statistic -1.303 roximate p-val	1% Criti Valu -4.	Intercal e	polated I 5% Cri Va -:	Dickey-Fuller rical 10 ⁹ lue 3. 453	s Critical Value -3.152
Augmented Dick	Test Statistic -1.303 roximate p-val	1% Criti Valu -4.	Intercal e	polated I 5% Cri Va -:	Dickey-Fuller rical 10 ⁹ lue 3. 453	s Critical Value -3.152
Z(t) MacKinnon app	Test Statistic -1.303 roximate p-val Coef0536142 .0109181	1% Criti Valu -4. Std. Err. .0411427 .1075368	Tinter cal e e e e e e e e e e e e e e e e e e e	P> t 0.196 0.919	0ickey-Fuller tical 10% tue 3.453 [95% Conf. 1353271 2026593	-3.152 Interval -0280987
Z(t) MacKinnon app	Test Statistic -1.303 roximate p-val Coef0536142 .0109181 .0640101	1% Criti Valu -4. Lue for Z(t) Std. Err. .0411427 .1075368 .1083594	Tinter cal e e e e e e e e e e e e e e e e e e e	polated [5% Cri Va -: -: -: -: -: 0.196 0.919 0.556	Dickey-Fuller tical 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%	-3.152 Interval .0280987 .2244956 .2792213
Z(t) MacKinnon app	Test Statistic -1.303 roximate p-val Coef0536142 .0109181	1% Criti Valu -4. Std. Err. .0411427 .1075368	Tinter cal e e e e e e e e e e e e e e e e e e e	P> t 0.196 0.919	0ickey-Fuller tical 10% tue 3.453 [95% Conf. 1353271 2026593	-3.152 Interval -0280987

Number of obs =

96

. dfuller X, trend regress lags(1)

		_	Inte	rpolated	Dickey-F	uller	_
	Test	1% Crit	ical	5% Cri	tical	109	& Critical
	Statistic	Val	ue	Va	lue		Value
Z(t)	-1.173	-4	.044	e -	3.452		-3.151
M W				•			
mackinnon app	roximate p-va	tue for Z(t)	= 0.915	9			
D.X	Coef.	Std. Err.	t 0.915	P> t	[95%	Conf.	Interval]
20000000	**************************************		**************************************		[95%	Conf.	Interval]
D.X	**************************************		**************************************		[95% 1251		Interval]
D.X	Coef.	Std. Err.	t	P> t		.348	
D.X X L1.	Coef.	Std. Err.	t -1.17	P> t 0.244	1251	.348	.0321843

end of do-file

IMPORTATIONS

. dfuller M, trend regress lags(6)

Augmented	Dickey-Fuller test	for unit root	Number of obs	= 93
		Inte	rpolated Dickey-Fu	ller
	Test	1% Critical	5% Critical	10% Critical
	Statistic	Value	Value	Value
Z(t)	-2.011	-4.055	-3.457	-3.154

MacKinnon approximate p-value for Z(t) = 0.5952

D.M	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
м						
L1.	0768184	.0381905	-2.01	0.047	1527645	0008723
LD.	.0441281	.1075315	0.41	0.683	1697101	.2579662
L2D.	.317909	.1076604	2.95	0.004	.1038145	.5320034
L3D.	.0350845	.1154735	0.30	0.762	1945471	.2647162
L4D.	0613154	.1158831	-0.53	0.598	2917616	.1691309
L5D.	.042439	.1123675	0.38	0.707	1810161	.2658941
L6D.	.1257489	.1137127	1.11	0.272	1003813	.3518791
_trend	8.242304	4.201117	1.96	0.053	1120773	16.59669
_cons	845.999	389.7987	2.17	0.033	70.84141	1621.157

3. Critere AIC

. varsoc delta_x

Samp	le: 1996q2	- 2019q	4			Number of	obs =	9
lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-687.422				115292*	14.4931*	14.504*	14.52*
1	-687.421	.00362	1	0.952	117741	14.5141	14.5358	14.5679
2	-687.281	.2783	1	0.598	119896	14.5322	14.5648	14.6129
3	-686.95	.66262	1	0.416	121600	14.5463	14.5898	14.6538
4	-686.95	.00032	1	0.986	124192	14.5674	14.6217	14.7018

Endogenous: delta_x Exogenous: _cons

. varsoc delta_m

Samp	le: 1996q2	- 2019q4	1			Number of	obs =	9 !
lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-704.746				166030	14.8578	14.8687	14.8847*
1	-704.735	.02193	1	0.882	169525	14.8786	14.9004	14.9324
2	-701.42	6.6297*	1	0.010	161464*	14.8299*	14.8625*	14.9105
3	-701.402	.03644	1	0.849	164840	14.8506	14.894	14.9581
4	-701.124	.55459	1	0.456	167376	14.8658	14.9201	15.0002

Endogenous: delta_m Exogenous: _cons

4. Test AIC pour le VAR

varsoc delta_x delta_m, maxlag(6)

Selection-order criteria

Sample: 1996q4 - 2019q4 Number of obs = 93

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-1351.17				1.5e+10*	29.1005*	29.1225*	29.1549*
1	-1348.79	4.7648	4	0.312	1.5e+10	29.1353	29.2012	29.2987
2	-1345.18	7.2104	4	0.125	1.6e+10	29.1438	29.2537	29.4161
3	-1343.75	2.8661	4	0.580	1.6e+10	29.199	29.3529	29.5802
4	-1341.83	3.8386	4	0.428	1.7e+10	29.2437	29.4416	29.7339
5	-1340.63	2.4084	4	0.661	1.8e+10	29.3038	29.5457	29.9029
6	-1338.19	4.8726	4	0.301	1.9e+10	29.3375	29.6233	30.0455

95

Endogenous: delta_x delta_m

Exogenous: _cons

. varsoc delta_x

Selection-order criteria Sample: 1996q2 - 2019q4 Number of obs 95 FPE AIC HQIC SBIC -687.422 115292* 14.4931* 14.504* 14.52* -687.421 .00362 1 0.952 14.5679 14.5141 14.5358 117741 -687.281 .2783 1 0.598 14.5322 14.5648 14.6129 119896 14.5898 14.6538 -686.95 .00032 1 0.986 124192 14.5674 14.6217 14.7018

Endogenous: delta_x Exogenous: _cons

. varsoc delta_m

Selection-order criteria
Sample: 1996q2 - 2019q4 Number of obs

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-704.746				166030	14.8578	14.8687	14.8847*
1	-704.735	.02193	1	0.882	169525	14.8786	14.9004	14.9324
2	-701.42	6.6297*	1	0.010	161464*	14.8299*	14.8625*	14.9105
3	-701.402	.03644	1	0.849	164840	14.8506	14.894	14.9581
4	-701.124	.55459	1	0.456	167376	14.8658	14.9201	15.0002

Endogenous: delta_m Exogenous: _cons

5. Modèle VAR

Vector autoreg	ression						
Sample: 1995q	4 - 2019q4			Number o	f obs	=	9
Log likelihood	= -1399.852	!		AIC		=	29.0691
FPE	= 1.44e+10	•		HQIC		=	29.1764
Det(Sigma_ml)	= 1.18e+10	i		SBIC		=	29.3345
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
delta_m	5	394.284	0.0774	8.135482	0.0867		
delta_x	5	339.845	0.0183	1.80652	0.7713		
	Coef.	Std. Err.	z	P> z	[95% Co	nf.	Interval
delta_m							
delta_m							
L1.	0325459	.1140775	-0.29	0.775	256133	7	.19104
L2.	.2729171	.1136674	2.40	0.016	.05013	3	.495701
delta_x							
L1.	.1076283	.1398773	0.77	0.442	166526	1	.381782
L2.	0476419	.1399601	-0.34	0.734	321958	6	.226674
_cons	103.3525	46.45022	2.23	0.026	12.3117	4	194.393
delta_x							
delta_m							
L1.	.1202939	.0983266	1.22	0.221	072422	7	.313010
L2.	.0472868	.0979731	0.48	0.629	144737	1	.239310
delta_x							
L1.	0888334	.1205642	-0.74	0.461	325134	8	.147467
L2.	.0013054	.1206355	0.01	0.991	235135	8	.237746

À la main on obtient les mêmes résultats :

Source	SS	df	MS	Numb	er of ob	s =	97
				- F(3,	93)	=	2.56
Model	1182466.19	3	394155.396	Prot) > F	=	0.0597
Residual	14319425.3	93	153972.315	R-sc	quared	=	0.0763
-				- Adj	R-square	d =	0.0465
Total	15501891.5	96	161478.036	Root	MSE	=	392.39
delta_m	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval)
delta_m	Coef.	Std. Err.	t 0.80	P> t 0.423	[95% 1673	200 500 2000	
i interesses	557,5190	MENSORY MANAGEMENT			7000000	743	.3952869
deltaX_L1	.1139563	.141671	0.80	0.423	1673	743 616	.3952869 .1885343

Source	SS		df	MS	Numb	er of ob:	5 =	97
					- F(3,	93)	=	0.58
Model	197875.552		3	65958.5172	Prob	> F	=	0.6314
Residual	10625507.5		93	114252.768	R-sq	uared	=	0.0183
					- Adj	R-square	d =	-0.0134
Total	10823383		96	112743.573	Root	MSE	=	338.01
delta_x	Coef.	Std.	Err.	t	P> t	[95% (Conf.	Interval]
delta_x	Coef.	Std.	2000	t -0.73	P> t	[95% (Interval]
		122.5	0374	200	22 2002	1800000	349	
deltaX_L1	0890068	.122	0374 8591	-0.73	0.468	331	349 339	. 1533353

6. Résultats de la causalité de Granger pour des lags >2

Granger causality Wald tests

Equation	Excluded	chi2	df F	Prob > chi2
delta_m	delta_x	.72935	3	0.866
delta_m	ALL	.72935	3	0.866
delta_x	delta_m	3.5713	3	0.312
delta_x	ALL	3.5713	3	0.312

vargranger

Granger causality Wald tests

Equation	Excluded	chi2	df P	rob > chi2
delta_m delta_m	delta_x ALL	2.8756 2.8756	4	0.579 0.579
delta_x delta_x	delta_m ALL	3.3577 3.3577	4	0.500

. vargranger

Granger causality Wald tests

Equation	Excluded	chi2	df F	rob > chi2
delta_m	delta_x	3.9674	5	0.554
delta_m	ALL	3.9674	5	0.554
delta_x	delta_m	3.7021	5	0.593
delta_x	ALL	3.7021	5	0.593

. vargranger

Granger causality Wald tests

Equation	Excluded	F	df	df_r	Prob > F	
delta_m	delta_x	.78026	6	80	0.5878	
delta_m	ALL	.78026	6	80	0.5878	
delta_x	delta_m	.77418	6	80	0.5925	
delta_x	ALL	.77418	6	80	0.5925	

7. Vecteur candidat cointégration

X _cons	.8060973 4680.79	.0270855 377.2047	29.76 12.41	0.000	.752347 3932.24	.859847 5429.34
М	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
Total	1.1823e+09	99	11942570.4		***************	1096.
Residual	117783102	98	1201868.39	9 R-square - Adj R-se		0.900 0.899
Model	1.0645e+09	1	1.0645e+09			0.000
Source	SS	df	MS	Number (F(1, 98		100 885.7

8. Test de cointegration par MCO

. reg delta_res residu_L1

SS	df	MS	Number of obs	=	99
			F(1, 97)	=	3.09
500650.801	1	500650.801	Prob > F	=	0.0821
15737376	97	162240.99	R-squared	=	0.0308
			Adj R-squared	=	0.0208
16238026.8	98	165694.151	Root MSE	=	402.79
	15737376	15737376 97	15737376 97 162240.99	500650.801 1 500650.801 Prob > F 15737376 97 162240.99 R-squared Adj R-squared	500650.801 1 500650.801 Prob > F = 15737376 97 162240.99 R-squared = Adj R-squared =

delta_res	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
residu_L1	0554194	.0315482	-1.76		1180338	.0071951
_cons	-10.10168	40.48231	-0.25		-90.44786	70.2445

9. FAC du résidu :

10. FAP du résidu :

