MAE 494 Project 2

Ansys DOE and Design Optimization

Nathaniel Gatesh

09 December 2022

Project Schematic

Original Geometry

Optimized Geometry

Static Structural Block – Stress Analysis

Transient Thermal Block – Temperature Analysis

$Modal\ Block-Vibration\ Analysis$

DOE Points

Table of Outline A7: Design Points of Design of Experiments									
	А	В	С	D	E	F	G	Н	
1	Name	P12 - rotor_OD 🔽 (mm)	P14 - rotor_th (mm)	P15 - rotor_ID • (mm)	P4 - Equivalent Stress Maximum (Pa)	P5 - Tempe Maximum (C)	P6 - Total Deformation Reported Frequency (Hz)	P7 - Geometry Volume (m^3)	
2	1 1	131.75	24.75	70.333	1.1726E+07	329.88	1540	0.001196	
3	() 2	134.25	25.75	79.667	1.2314E+07	330.25	1420	0.0012078	
4	() 3	125.25	20.75	81	1.1167E+07	343.82	1431.9	0.00086304	
5	() 4	132.75	27.75	86.333	1.3406E+07	326.18	1347.1	0.0011745	
6	() 5	126.25	18.75	75	1.1445E+07	356.77	1507	0.00085434	
7	1 7	132.25	28.75	77.667	1.2026E+07	324.83	1516.9	0.001291	
8	() 8	138.25	28.25	87.667	1.9145E+07	323.3	1274.4	0.0013073	
9	() 9	128.75	22.25	75.667	1.1753E+07	339.89	1516.2	0.0010076	
10	10	127.75	29.75	85	1.2365E+07	321.64	1452.7	0.001133	
11	() 11	129.75	21.75	83	1.236E+07	340.07	1366.9	0.00095506	
12	1 2	127.25	19.75	73	1.1427E+07	350.41	1525	0.00091399	
13	13	131.25	22.75	87	1.3265E+07	339.76	1279.7	0.00098076	
14	! 14	135.25	15.75	76.333	1.1347E+07	390.45	1301.2	0.00086824	
15	1 5	129.25	27.25	80.333	1.247E+07	325.93	1493.5	0.0011433	
16	() 16	137.25	21.25	79	1.2128E+07	343.21	1323.3	0.0011018	
17	1 7	136.75	26.75	73.667	1.1881E+07	326.06	1461	0.0013577	
18	1 8	133.75	20.25	72.333	1.1842E+07	347.45	1412.4	0.0010429	
19	() 19	126.75	18.25	78.333	1.2029E+07	362.21	1441.6	0.00082778	
20	() 20	125.75	17.75	85.667	1.1839E+07	360.49	1292.2	0.000758	
21	1 21	130.75	16.25	89	1.8806E+07	382.02	1181.9	0.00076662	
22	1 22	137.75	23.75	84.333	1.1723E+07	333.2	1263.2	0.0011655	
23	23	139.25	26.25	77	1.1371E+07	325.88	1378.8	0.0013639	
24	() 24	128.25	24.25	82.333	1.221E+07	332.17	1423.9	0.0010096	
25	() 25	135.75	16.75	88.333	1.9335E+07	379.87	1161.5	0.00085478	
26	() 26	133.25	19.25	71	1.1689E+07	354.53	1384.9	0.0010021	
27	() 27	136.25	25.25	81.667	1.2556E+07	328.92	1354.8	0.0012141	
28	() 28	134.75	23.25	74.333	1.1787E+07	333.07	1438.7	0.0011672	
	·								

Response Surface – Goodness of Fit

Sensitivity Analysis

Optimization Results

Table of	Table of Schematic F4: Optimization								
	A	В	С	D					
1	■ Optimization Study								
2	Minimize P4	Goal, Minimize P4 (Default importance)							
3	Minimize P5	Goal, Minimize P5 (Default importance)							
4	Maximize P6 Goal, Maximize P6 (Default importance)								
5	Minimize P7 Goal, Minimize P7 (Default importance)								
6	□ Optimization Method								
7	MOGA	The MOGA method (Multi-Objective Genetic Algorithm) is a variant of the popular NSGA -II (Non-dominated Sorted Genetic Algorithm-II) based on controlled elitism concepts. It supports multiple objectives and constraints and aims at finding the global optimum.							
8	Configuration	Generate 3000 samples initially, 600 samples per iteration and find 3 candidates in a maximum of 20 iterations.							
9	Status Converged after 6111 evaluations.								
10	■ Candidate Points								
11		Candidate Point 1	Candidate Point 2	Candidate Point 3					
12	P12 - rotor_OD (mm)	125.02	125.01	125.02					
13	P14 - rotor_thickness (mm)	18.609	18.726	18.878					
14	P15 - rotor_ID (mm)	81.866	81.469	81.06					
15	P4 - Equivalent Stress Maximum (Pa)	★ 1.1312E+07	★ 1.1293E+07	★ 1.1285E+07					
16	P5 - Temperature Maximum (C)	XX 354.95	XX 354.15	XX 353.13					
17	P6 - Total Deformation Reported Frequency (Hz)	1390.8	1400.5	1410.8					
18	P7 - Geometry Volume (m^3)	- 0.00079363	- 0.00079921	- 0.00080595					

Conclusion: The final version of the brake disk, selected as Candidate Point 1, is geometrically feasible (no conflicts/invalid geometry, and brake pads do not hang over the rim), and the calculated maximum stress is within the ultimate tensile limit of Gray Cast Iron $(2.4 \times 10^8 \text{ Pa})$.

On the response surface: Although the response surface was a very good fit with coefficients of determination very close to one, there was no significant difference in the RMS errors between the verification points and the learning points, so there was not excessive overfitting. The increase in RMS error between learning and verification was a factor of roughly 1-3; however, the sizes of these errors were a couple of orders of magnitude smaller than the overall objective values, so the error increase was not a great concern.