Алгоритмы и структуры данных

Лекция 8 Декартовы деревья

Декартово дерево

Это бинарное дерево, в узлах которого хранятся пары (x, y), где x - это ключ, а y- это приоритет.

Оно является:

- двоичным деревом поиска по х,
- пирамидой по у.

Терминология:

```
Treap = tree + heap

Дуча = дерево + куча

Дерамида = дерево + пирамида

Курево = куча + дерево
```

Дерамиды были предложены Сиделем (Siedel) и Арагон (Aragon) в 1989 г.

1996 г. – дучи с рандомизированными приоритетами

Пример декартова дерева

Операции в декартовом дереве

Split

Операция Split (разрезать) позволяет сделать следующее:

- разрезать декартово дерево T по ключу k
- и получить два других декартовых дерева: T_1 и T_2 ,
- причем в T_1 находятся все ключи дерева T_2 не большие k_2
- ав Т₂ большие k.

Split $(T, k) \rightarrow \{T_1, T_2\}$

Рассмотрим случай, в котором требуется разрезать дерево по ключу, большему ключа корня.

- Левое поддерево Т₁ совпадёт с левым поддеревом Т.
- Для нахождения правого поддерева T_1 , нужно разрезать правое поддерево T на T_1^R и T_2^R по ключу k и взять T_1^R .

T₂ совпадёт с T₂^R.

Случай, в котором требуется разрезать дерево по ключу, меньше либо равному ключа в корне, рассматривается симметрично.

Операции в декартовом дереве

Merge (слить)

С помощью этой операции можно слить два декартовых дерева в одно.

- Причем, все ключи в первом(*левом*) дереве должны быть меньше, чем ключи во втором(*правом*).
- В результате получается дерево, в котором есть все ключи из первого и второго деревьев.

Merge $(T_1, T_2) \rightarrow \{T\}$

Корнем станет вершина из T_1 или T_2 с наибольшим ключом у. Это либо корень T_1 , либо корень T_2 .

Пусть корень T_1 имеет больший у, чем корень T_2 .

- Kopehb T_1 станет корнем T.
- Тогда левое поддерево Т совпадёт с левым поддеревом Т₁.
- Справа же нужно подвесить объединение правого поддерева T_1 и дерева T_2 .

Операции в декартовом дереве

Insert

Операция Insert (T, k) добавляет в дерево Т элемент k, где k.x — ключ, а k.y — приоритет.

Представим что элемент k, это декартово дерево из одного элемента, и для того чтобы его добавить в наше декартово дерево T, очевидно, нам нужно их слить. Но T может содержать ключи как меньше, так и больше ключа k.x, поэтому сначала нужно разрезать T по ключу k.x.

Реализация №1

1. Разобьём наше дерево по ключу, который мы хотим добавить:

Split
$$(T, k.x) \rightarrow \{T_1, T_2\}.$$

- 2. Сливаем первое дерево с новым элементом: Merge $(T_1, k) \rightarrow \{T_1\}$.
- 3. Сливаем получившиеся дерево со вторым: Merge $(T_1, T_2) \rightarrow \{T\}$.

Insert

Реализация №2

- 1. Сначала спускаемся по дереву (как в обычном бинарном дереве поиска по k.x), но останавливаемся на первом элементе, в котором значение приоритета оказалось меньше k.y.
- 2. Теперь вызываем Split (T, k.x) $\rightarrow \{ T_1, T_2 \}$ от найденного элемента (от элемента вместе со всем его поддеревом)
- 3. Полученные T_1 и T_2 записываем в качестве левого и правого сына добавляемого элемента.
- 4. Полученное дерево ставим на место элемента, найденного в первом пункте.

Операции в декартовом дереве

Remove

Операция Remove (T, x) удаляет из дерева Т элемент с ключом x.

Реализация №1

- 1. Разобьём наше дерево по ключу, который мы хотим удалить: Split (T, k.x) $\rightarrow \{ T_1, T_2 \}$.
- 2. Теперь отделяем от первого дерева элемент x, опять таки разбивая по ключу x: Split $(T_1, k.x \varepsilon) \to \{T_1, T_3\}$.
- 3. Сливаем первое дерево со вторым: Merge $(T_1, T_2) \rightarrow \{T\}$.

Remove

Реализация №2

- 1. Спускаемся по дереву (как в обычном бинарном дереве поиска по х), ища удаляемый элемент.
- 2. Найдя элемент, вызываем Merge его левого и правого сыновей
- 3. Результат процедуры Merge ставим на место удаляемого элемента.

Построение декартова дерева

Пусть нам известно, из каких пар (x_i, y_i) требуется построить декартово дерево, причем также известно, что $x_1 < x_2 < x_3 < ... < x_n$.

Рекурсивный алгоритм

Рассмотрим приоритеты $y_1, y_2, y_3, ..., y_n$ и выберем максимум среди них, пусть это будет y_k , и сделаем (x_k, y_k) корнем дерева.

Проделав то же самое с y_1 , y_2 , y_3 , ..., y_{k-1} и y_{k+1} , y_{k+2} , ..., y_n , получим соответственно левого и правого сына (x_k, y_k) .

Такой алгоритм работает за $O(n^2)$.

=> Единственность представления декартова дерева

Построение декартова дерева

Алгоритм за O(n)

- Будем строить дерево слева направо, то есть начиная с (x_1, y_1) , по (x_n, y_n) , при этом помнить последний добавленный элемент (x_k, y_k) . Он будет самым правым, так как у него будет максимальный ключ, а по ключам декартово дерево представляет собой двоичное дерево поиска.
- При добавлении (x_{k+1}, y_{k+1}) , пытаемся сделать его правым сыном (x_k, y_k) , это следует сделать, если $y_k > y_{k+1}$, иначе делаем шаг к предку последнего элемента и смотрим его значение у.
- Поднимаемся до тех пор, пока приоритет в рассматриваемом элементе меньше приоритета в добавляемом, после чего делаем (x_{k+1} , y_{k+1}), его правым сыном, а предыдущего правого сына делаем левым сыном (x_{k+1} , y_{k+1}).
- Каждую вершину мы посетим максимум дважды: при непосредственном добавлении и, поднимаясь вверх.
- Из этого следует, что построение происходит за O(n).

Алгоритм за O(n)

Пример (y = 4)

Пример (y = 16)

Пример (y = 11)

Рандомизация приоритетов

Теорема

В декартовом дереве из n узлов, приоритеты у которого являются случайными величинами с равномерным распределением, средняя глубина вершины O(log₂ n).

Доказательство:

http://neerc.ifmo.ru/wiki/index.php?title=Декартово_дерево

Свойства декартова дерева:

- обладает почти гарантированно логарифмической высотой относительно количества своих вершин;
- позволяет за логарифмическое время искать любой ключ в дереве, добавлять его и удалять;
- исходный код всех её методов не превышает 20 строк, они легко понимаются и в них крайне сложно ошибиться;
- содержит некоторый overhead по памяти, сравнительно с истинно самобалансирующимися деревьями, на хранение приоритетов.

К-я порядковая статистика, или индекс в дереве

К-я порядковая статистика или индекс в дереве

В каждой вершине будем хранить размер поддерева (количество вершин)

Алгоритм : смотрим в корень дерева и на размер его левого поддерева $\mathbf{S}_{\mathbf{L}}$.

Если $S_L = K$, то искомый элемент мы нашли, и это — корень.

Если $S_L > K$, то искомый элемент находится где-то в левом поддереве, спускаемся туда и повторяем процесс.

Если $S_L < K$, то искомый элемент находится где-то в правом поддереве. Уменьшим K на число $S_L + 1$, чтобы корректно реагировать на размеры поддеревьев справа, и повторим процесс для правого поддерева.

Пересчет размеров поддеревьев: Merge

Индукционное предположение: пускай после выполнения Merge на поддеревьях в них все уже подсчитано верно.

Тогда имеем :

- в левом поддереве размеры подсчитаны верно, т.к. его никто не трогал;
- в правом тоже подсчитаны верно, т.к. это результат работы Merge.

Осталось посчитать только в самом корне нового дерева! size = L.left.size + Merge(L.right, R).size + 1.

Пересчет размеров поддеревьев: Split

Индукционное предположение — пускай рекурсивные вызовы Split все подсчитали верно.

Тогда размеры в T.Left корректны — их никто не трогал; размеры в L' корректны — это левый результат Split; размеры в R' корректны — это правый результат Split.

Перед завершением нужно посчитать значение в корне (x; y) будущего дерева L. L.size = T.Left.size + L'.size + 1.

Нахождение максимума на отрезке Пусть на вход постоянно поступают (а порою удаляются) ключи х, и с каждым из них связана соответствующая цена — Cost.

Необходимо поддерживать быстрые запросы на максимум цены на множестве таких элементов, где **A** ≤ x < **B**.

MaxCostOn(T, A, B) $Split(T, A - 1) \rightarrow \{l, r\};$ Split(r, B) \rightarrow {m, r}; return CostOf(m);

Поддержка множественных операций

Добавление константы на отрезке

Пусть у нас есть декартово дерево Т, в каждой его вершине хранится пользовательская информация Cost.

И мы хотим к каждому значению Cost в дереве (или поддереве) прибавить какое-то одно и то же число А.

Заведем в каждой вершине дополнительный параметр Add. Он будет сигнализировать о том, что всему поддереву, растущему из данной вершины, полагается добавить константу, лежащую в Add.

Cost (T) = T.Cost + T.Add - реальная цена корня

Сумма цен в дереве Т:

SumTreeCost (T) = T.SumTreeCost + T.Add * T.Size

Split

Merge

Множественные операции:

- прибавление константы на отрезке;
- на отрезке «красить» устанавливать всем элементам булев параметр,
- изменять устанавливать все значения Cost на отрезке в одно значение,
- ит.д.

Главные условия на операцию:

- ее можно за O(1) протолкнуть вниз от корня к потомкам, передав отложенное обещание чуть ниже по дереву;
- информация должна легко восстанавливаться из обещания во время запроса.