Phonetic Normalization using Recurrent Neural Networks

Jasper Ginn

Overview

- Neural Network Refresher
- Problem context
- Data collection
- Evaluation
- Modeling

Neural Network Refresher

Vanilla Neural Network

From: Cholet, F. "Deep Learning with Python" (Manning), p.11

Recurrent Neural Network

Looooooong-term dependencies

• RNN bad at capturing long-term dependencies

```
"Boaz, who was, . . . . . , went to work"
```

- Who does the verb refer to?
- 'Vanishing gradients'
- Introduce memory cell

Long Short-Term Memory (LSTM)

$$\begin{split} &\Gamma_{f}^{\langle t \rangle} = \sigma(W_{f}[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_{f}) \\ &\Gamma_{u}^{\langle t \rangle} = \sigma(W_{u}[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_{u}) \\ &\tilde{c}^{\langle t \rangle} = \tanh(W_{C}[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_{C}) \\ &c^{\langle t \rangle} = \Gamma_{f}^{\langle t \rangle} \circ c^{\langle t-1 \rangle} + \Gamma_{u}^{\langle t \rangle} \circ \tilde{c}^{\langle t \rangle} \\ &\Gamma_{o}^{\langle t \rangle} = \sigma(W_{o}[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_{o}) \\ &a^{\langle t \rangle} = \Gamma_{o}^{\langle t \rangle} \circ \tanh(c^{\langle t \rangle}) \end{split}$$

Encoder / Decoder Architecture

Teacher Forcing

Problem Context

Goal

- Normalize written text on the ChitChat chatbot
- A lot of this text is 'ritten' like it is 'spooken'
- Solution: find a way to map text to 'spoken' words (phonetics)

Spoken versus written words

- $\{\text{'owpen'} = \text{'open'}\} \rightarrow [\text{OW P AH N}]$
- $\{\text{'bard'} = \text{'barred'}\} \rightarrow [B AA R D]$
- $\{\text{`aksiom'} = \text{`axiom'}\} \rightarrow [\text{AE K S IY AH M}]$
- $\{\text{`effekt'} = \text{`effect'}\} \rightarrow [\text{IH F EH K T}]$
- $\{\text{'prophet'} = \text{'profit'}\} \rightarrow [P R AA F AH T]$
- $\{\text{`raise'} = \text{`raze'}\} \rightarrow [R EY Z]$
- ...

Model Requirements

- Normalize written text on the ChitChat chatbot
- A lot of this text is 'ritten' like it is 'spooken'
- Solution: find a way to map text to 'spoken' words (phonetics)

Goal

- Similar-sounding words should map to the same output
- Non similar-sounding words should not map to the same output

Data Collection, Models & Evaluation

Data Sources

Wikipedia

- Extracted using the wikt2pron module
- Unreliable (many pronunciations, we don't know which belong to which dialect)

• Carnegie Mellon CMUDict

• ARPAbet phonemes (see slide 14)

Measuring Performance

- BLEU / model accuracy
- Do models map homophones and non-homophones?
- Misspelled words from wikipedia

my problem?

Figure 1.1 The lifecycle of a data science project: loops within loops

Zumel, N. and Mount, J. "Practical Data Science with R", p.6

Three models, two datasets

- Models
 - o cmudict (single)
 - Disregard phonemes
 - cmudict (multiple)
 - Phonemes as characters
 - $[OW P AH N] \Rightarrow \{OW, P, AH, N\}$
 - Wiktionary
 - Use XSAMPA-style phonetics

Model performance

	All equal	Largest subgroup	Equal to reference
cmudict (single)	77.33%	91.15%	86.94%
cmudict (multiple)	63.56%	86.58%	76.87%
wiktionary	42.11%	80.2%	51.02%

	cmudict (single)	cmudict (multiple)	wiktionary
Accuracy	0.94	0.83	0.76
Sensitivity	0.87	0.77	0.69
Specificity	0.92	0.89	0.87
F1	0.90	0.83	0.77

Model Performance (2)

- On all metrics, cmudict (single) performs best
 - o Bleu, homophones, misspelled words

Takeaways

Which framework to use?

• Keras:

- Abundance of documentation
- Can be used in R/Python

• PyTorch:

• Flexible + Pythonic

The fall of RNN / LSTM

Eugenio Culurciello Follow

Apr 13 · 9 min read

We fell for Recurrent neural networks (RNN), Long-short term memory (LSTM), and all their variants. **Now it is time to drop them!**

