

(پلی تکنیک تهران)

دانشكده مهندسي كامپيوتر تمرین اول درس بهینه سازی دكتر اميرمزلقاني

غلامرضا دار ۴۰۰۱۳۱۰۱۸

بهار ۱۴۰۱

فهرست مطالب

Error! Bookmark not defined	خش اول: پرسشهای تشریحی
Error! Bookmark not defined	سوال ۱)
Error! Bookmark not defined	سوال ۲)
Error! Bookmark not defined	خش دوم: پیاده سازی
Error! Bookmark not defined	سوال ۱)
Error! Bookmark not defined	سوال ۲)
Error! Bookmark not defined	سوال ۳)
Error! Bookmark not defined	سوال ۴)

ابتدا با كمك ابزار CVXPY مسائل داده شده را پياده ميكنيم.

```
b)

1     x1 = cp.Variable(1)
2     x2 = cp.Variable(1)
3     objective = cp.Minimize(-1*x1-x2)
4     constraints = [2*x1+x2>=1, x1+3*x2>=1]
5     prob = cp.Problem(objective, constraints)
6
7     print(f"optimal value: {prob.solve():.3f}")
8     print(prob.status)
9     print("x1:", x1.value)
10     print("x2:", x2.value)
11

29]     ✓ 0.1s

7/     optimal value: -inf
unbounded
x1: None
x2: None
```

در ادامه جواب مسائل را به صورت دستی نیز به دست می آوریم.

A) به راحتی دیده میشود که پایین ترین نقطه صفحه x1+x2 دقیقا روی کنج feasible set می افتد. که نقطه <0.4, 0.2 > است.

(B) این مورد جواب ندارد (منفی بی نهایت) همانطور که در شکل هم میبینید صفحه مد نظر در feasible set مقدار منفی بینهایت میگیرد.

x2>1 و x1=0 این بخش دارای بینهایت جواب دارد در (C

این بخش را نیز میتوانیم محاسبه کنیم که در نقطه < 0.333,0.333> به مینیمم خود میرسد (D

این بخش را نیز میتوانیم محاسبه کنیم که در نقطه < 0.5,0.16> به مینیمم خود میرسد (E

