- 2.11. Napisz wyrażenia: d) suma pięciu kolejnych liczb parzystych jest podzielna przez 10.
- a) kwadrat sumy liczb a, b,
- kwadrat różnicy liczb a, b,
- c) sume kwadratów liczb a, b,
- . Uzasadnij, że: d) różnicę kwadratów liczb a, b,
- a) różnica kwadratów dwóch kolejnych liczb naturalnych jest liczbą nieparzystą,
- b) różnica kwadratów dwóch kolejnych liczb parzystych jest liczbą podzielną przez 4,
- c) różnica kwadratów dwóch kolejnych liczb nieparzystych jest liczbą podzielną przez 8.
- 2.13. Podaj i uzasadnij wzory na kwadrat sumy i kwadrat różnicy dwoch wyrażeń a i b.
- 2.14. Podaj i uzasadnij wzory na sześcian sumy i sześcian różnicy dwóch wyrażeń a i b.
- **2.15.** Uzasadnij, że nie istnieją liczby naturalne dodatnie p, m takie, że $2m^2 = p^2$.
- 2.16. Uzupelnij poniższą tabelę zaznaczając wykonalność działań:

Działania Zbiór	Doda- wanie	Odejmo- wanie	Mnożenie	Dzielenie
N	tak	nie	ned som	N 118
C 111 1891	ULASTACE!	PAUSUS TO	owhere	II M
W	Sprans	American .		
R\W	INT CHANGE		H 346 77	
R	ubanaku'		00/0 S20	21110
R_{+}	D. C. C. C.		1 (I)	Mark.
liczby parzyste	1 2 2 2			3.6
liczby nieparzyste	éticolosita	g optimize	Jeson, apm	
liczby podzielne przez 5	w thospoids	PACONSTITUTE	IIII IIVoo	10
$M = \{x : x \in R \ i \ 0 < x < 1\}$				

- 2.17. Jaką liczbą (wymierną czy niewymierną) jest:
- a) suma liczby wymiernej i niewymiernej (patrz odpowiedż),
- b) iloczyn liczby wymiernej i niewymiernej,
- c) różnica liczby wymiernej i niewymiernej,
- d) suma liczb postaci $a+b\sqrt{2}$, gdy $a, b \in W$
- 2.18. Liczba $a+b+c\in W$, zaś $a+b\in R\setminus W$. Wykaż, że co najmniej e) iloczyn liczb postaci $a+b\sqrt{3}$ i $a-b\sqrt{3}$, gdy $a,b\in W$?
- **2.19.** Liczby a+b i a-b są wymierne. Wykaż, że liczby a i b są wydwie z liczb a, b, c są niewymierne.
- 2.20. Dlaczego dzielenie przez zero nie jest wykonalne?
- 2.21. Nie wykonując obliczeń, wstaw w miejsce kropek znak < lub > tak, aby otrzymać nierówność prawdziwą.

a)
$$2\frac{1}{3} + 3\frac{1}{4}$$
 ... $2\frac{1}{4} + 3\frac{1}{4}$, c) $4\frac{5}{8} \cdot 2$
b) $-5\frac{2}{3} - 2\frac{1}{7}$... $-4\frac{1}{2} - 2\frac{1}{7}$, d) $8\frac{2}{3} : \left(-\frac{1}{2}\right)$

$$\frac{3}{4} \dots \frac{2}{4} + \frac{3}{4}$$

d)
$$8\frac{2}{3}:(-\frac{1}{2})...$$

2.22. Oblicz:

$$\frac{8 \cdot 4\frac{1}{4} - 11\frac{1}{5} \cdot 9\frac{1}{3} - \left(-2\frac{1}{3}\right) \cdot \frac{5}{3}}{14 \cdot 2\frac{2}{9} + 8\frac{2}{5} \cdot 1\frac{2}{7}} =$$

2.23. Oblicz:

$$0.05 - \frac{\left(2\frac{4}{5} - 1.9\right) : 3\frac{3}{4}}{\left[3\frac{1}{6} - (-1.25)\right] \cdot 2.4 + (-5.8)} =$$

2.24. Oblicz:

$$\frac{30 \cdot 4\frac{1}{4} + 11\frac{1}{5} \cdot 5\frac{3}{5}}{14 \cdot 2\frac{2}{9} + 8\frac{2}{5} \cdot 14\frac{2}{3}} \cdot \frac{1 \cdot 6 + 12 \cdot 5}{2\frac{1}{2} \cdot 15 - 4\frac{13}{15} \cdot 7\frac{3}{5}} =$$

$$\begin{bmatrix} 2,1: \frac{\left(4,5\cdot 1\frac{2}{3}+3,75\right) \cdot \frac{7}{135}}{1-\frac{10}{27} \cdot \frac{5}{6}} : 2,5 \end{bmatrix}$$

20