## In the Claims

## **CLAIMS**

Claims 1-30 (Canceled).

31. (Currently amended) An engagement probe comprising:

a substrate;

a projection supported over the substrate and comprising material of the substrate;

and

a grouping of a plurality of projecting apexes extending from the projection and

positioned in sufficient proximity to one another to collectively engage a single conductive

pad on a semiconductor substrate; and

wherein the projection comprises a lateral dimension less than a lateral dimension of

the substrate.

32. (Previously presented) The engagement probe of claim 31 comprising a

plurality of such groupings for engaging multiple conductive pads on the semiconductor

substrate.

33. (Previously presented) The engagement probe of claim 31 wherein the

apexes are in the shape of multiple knife-edge lines.

MI22-2379

Application Serial No. 10/632,273 Response to February 15, 2005 Final OA

34. (Previously presented) The engagement probe of claim 31 wherein the

apexes are in the shape of multiple knife-edge lines, the multiple knife-edge lines being

positioned to form at least one polygon.

35. (Previously presented) The engagement probe of claim 31 wherein the

apexes are in the shape of multiple knife-edge lines, the multiple knife-edge lines being

positioned to form at least two polygons one of which is received entirely within the other.

36. (Previously presented) The engagement probe of claim 31 wherein the

grouping of apexes is formed on the projection which is supported by another projection,

the another projection extending directly from the substrate.

37. (Previously presented) The engagement probe of claim 31 wherein the

apexes have a selected projecting distance, the projecting distance being about one-half

the thickness of the conductive pad which the apparatus is adapted to engage.

38. (Previously presented) The engagement probe of claim 31 wherein the

apexes project from a common plane of the projection, the apexes having respective tips

and bases, the bases of adjacent projecting apexes being spaced from one another to

define a penetration stop plane therebetween.

MI22-2379

Application Serial No. 10/632,273 Response to February 15, 2005 Final OA

- 39. (Previously presented) The engagement probe of claim 31 wherein the apexes project from a common plane of the projection, the apexes having respective tips and bases, the bases of adjacent projecting apexes being spaced from one another to define a penetration stop plane therebetween, the tips being a distance from the penetration stop plane of about one-half the thickness of the conductive pad which the apparatus is adapted to engage.
- 40. (Previously presented) The engagement probe of claim 31 wherein the apexes are in the shape of multiple knife-edge lines, the multiple knife-edge lines interconnecting to form at least one fully enclosed polygon.
- 41. (Previously presented) The engagement probe of claim 31 wherein outermost portions of the electrically conductive apexes constitute a first electrically conductive material, and wherein the conductive pads for which the probe is adapted have outermost portions constituting a second electrically conductive material; the first and second electrically conductive materials being different.

42. (Previously presented) An engagement probe formed from a semiconductor material and having a grouping of a plurality of projecting apexes positioned in sufficient proximity to one another to collectively engage a single conductive pad on a semiconductor substrate; and

wherein the apexes are in the shape of multiple knife-edge lines, the multiple knife-edge lines being positioned to form at least one polygon.

43. (Previously presented) An engagement probe formed from a semiconductor material and having a grouping of a plurality of projecting apexes positioned in sufficient proximity to one another to collectively engage a single conductive pad on a semiconductor substrate; and

wherein the apexes are in the shape of multiple knife-edge lines, the multiple knife-edge lines being positioned to form at least two polygons one of which is received entirely within the other.

44. (Previously presented) An engagement probe formed from a semiconductor material and having a grouping of a plurality of projecting apexes positioned in sufficient proximity to one another to collectively engage a single conductive pad on a semiconductor substrate; and

wherein the apexes are in the shape of multiple knife-edge lines, the multiple knife-edge lines interconnecting to form at least one fully enclosed polygon.

- 45. (Previously presented) The engagement probe of claim 31 wherein the plurality of the projecting apexes extend from a substantially planar uppermost surface of the projection.
- 46. (Previously presented) The engagement probe of claim 31 wherein an entirety of the projection is spaced from the substrate.
- 47. (Previously presented) The engagement probe of claim 31 wherein the substrate comprises bulk silicon.

Claim 48 (Canceled).

49. (New) An engagement probe comprising:

a substrate;

a projection supported over the substrate and comprising material of the substrate;

a grouping of a plurality of projecting apexes extending from the projection and

positioned in sufficient proximity to one another to collectively engage a single conductive

pad on a semiconductor substrate; and

wherein the apexes are in the shape of multiple knife-edge lines, the multiple knife-edge lines being positioned to form at least two polygons one of which is received entirely within the other.

50. (New) An engagement probe comprising:

a substrate;

a projection supported over the substrate and comprising material of the substrate;

a grouping of a plurality of projecting apexes extending from the projection and positioned in sufficient proximity to one another to collectively engage a single conductive pad on a semiconductor substrate; and

wherein the grouping of apexes is formed on the projection which is supported by another projection, the another projection extending directly from the substrate.

51. (New) An engagement probe comprising:

a substrate;

a projection supported over the substrate and comprising material of the substrate;

a grouping of a plurality of projecting apexes extending from the projection and positioned in sufficient proximity to one another to collectively engage a single conductive pad on a semiconductor substrate; and

wherein the apexes project from a common plane of the projection, the apexes having respective tips and bases, the bases of adjacent projecting apexes being spaced from one another to define a penetration stop plane therebetween.

52. (New) An engagement probe comprising:

a substrate;

a projection supported over the substrate and comprising material of the substrate;

a grouping of a plurality of projecting apexes extending from the projection and

positioned in sufficient proximity to one another to collectively engage a single conductive

pad on a semiconductor substrate; and

wherein the apexes project from a common plane of the projection, the apexes

having respective tips and bases, the bases of adjacent projecting apexes being spaced

from one another to define a penetration stop plane therebetween, the tips being a

distance from the penetration stop plane of about one-half the thickness of the conductive

pad which the apparatus is adapted to engage.

53. (New) An engagement probe comprising:

a substrate;

a projection supported over the substrate and comprising material of the substrate;

a grouping of a plurality of projecting apexes extending from the projection and

positioned in sufficient proximity to one another to collectively engage a single conductive

pad on a semiconductor substrate; and

wherein an entirety of the projection is spaced from the substrate.

- 54. (New) An engagement probe comprising:
- a substrate;
- a projection supported over the substrate and comprising material of the substrate;
- a grouping of a plurality of projecting apexes extending from the projection and positioned in sufficient proximity to one another to collectively engage a single conductive pad on a semiconductor substrate; and

wherein the substrate comprises bulk silicon.