Variants and Combinations of Basic Models

Stefano Ermon, Yang Song

Stanford University

Lecture 16

Summary

Model family

Story so far

- Representation: Latent variable vs. fully observed
- Objective function and optimization algorithm: Many divergences and distances optimized via likelihood-free (two sample test) or likelihood based methods (KL divergence)
- Each have Pros and Cons

Plan for today: Combining models

Variational Autoencoder

A mixture of an infinite number of Gaussians:

- $\mathbf{0}$ $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- ② $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks
- **3** $p(\mathbf{x} \mid \mathbf{z})$ and $p(\mathbf{z})$ usually simple, e.g., Gaussians or conditionally independent Bernoulli vars (i.e., pixel values chosen independently given \mathbf{z})
- Idea: increase complexity using an autoregressive model

PixelVAE (Gulrajani et al.,2017)

Gulrajani et. al, 2017

- z is a feature map with the same resolution as the image x
- Autoregressive structure: $p(\mathbf{x} \mid \mathbf{z}) = \prod_i p(x_i \mid x_1, \dots, x_{i-1}, \mathbf{z})$
 - $p(\mathbf{x} \mid \mathbf{z})$ is a PixelCNN
 - Prior p(z) can also be autoregressive
- Learns features (unlike PixelCNN); computationally cheaper than PixelCNN (shallower)

Autoregressive flow

• Flow model, the marginal likelihood $p(\mathbf{x})$ is given by

$$p_X(\mathbf{x}; \theta) = p_Z\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right) \left| \det\left(\frac{\partial \mathbf{f}_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right) \right|$$

where $p_Z(\mathbf{z})$ is typically simple (e.g., a Gaussian). More complex prior?

- Prior $p_Z(\mathbf{z})$ can be autoregressive $p_Z(\mathbf{z}) = \prod_i p(z_i \mid z_1, \dots, z_{i-1})$.
- Autoregressive models are flows. Just another MAF layer.
- See also neural autoregressive flows (Huang et al., ICML-18)

VAE + Flow Model

$$\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z}|\mathbf{x}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z}|\mathbf{x}; \phi)) = \underbrace{\mathcal{L}(\mathbf{x}; \theta, \phi)}_{\text{ELBO}}$$

$$\log p(\mathbf{x}; \theta) = \mathcal{L}(\mathbf{x}; \theta, \phi) + \underbrace{\mathcal{D}_{KL}(q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{z}|\mathbf{x}; \theta))}_{\text{Gap between true log-likelihood and ELBO}$$

- $q(\mathbf{z}|\mathbf{x};\phi)$ is often too simple (Gaussian) compared to the true posterior $p(\mathbf{z}|\mathbf{x};\theta)$, hence ELBO bound is loose
- Idea: Make posterior more flexible: $\mathbf{z}' \sim q(\mathbf{z}'|\mathbf{x};\phi)$, $\mathbf{z} = f_{\phi'}(\mathbf{z}')$ for an invertible $f_{\phi'}$ (Rezende and Mohamed, 2015; Kingma et al., 2016)
- Still easy to sample from, and can evaluate density.

VAE + Flow Model

Posterior approximation is more flexible, hence we can get tighter ELBO (closer to true log-likelihood).

Multimodal variants

Wu and Goodman, 2018

• **Goal:** Learn a joint distribution over the two domains $p(x_1, x_2)$, e.g., color and gray-scale images. Can use a VAE style model:

• Learn $p_{\theta}(x_1, x_2)$, use inference nets $q_{\phi}(z \mid x_1)$, $q_{\phi}(z \mid x_2)$, $q_{\phi}(z \mid x_1, x_2)$. Conceptually similar to semi-supervised VAE in HW2.

Variational RNN

- **Goal:** Learn a joint distribution over a sequence $p(x_1, \dots, x_T)$
- VAE for sequential data, using latent variables z_1, \dots, z_T . Instead of training separate VAEs $z_i \rightarrow x_i$, train a joint model:

• Use RNNs to model the conditionals (similar to PixelRNN)

Chung et al, 2016

- Use RNNs for inference $q(z_{\leq T}|x_{\leq T}) = \prod_{t=1}^{T} q(z_t \mid z_{< t}, x_{\leq t})$
- Train like VAE to maximize ELBO. Conceptually similar to PixelVAE.

Combining losses

• Flow model, the marginal likelihood $p(\mathbf{x})$ is given by

$$ho_{X}(\mathbf{x}; heta) =
ho_{Z}\left(\mathbf{f}_{ heta}^{-1}(\mathbf{x})\right) \left| \det \left(\frac{\partial \mathbf{f}_{ heta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}
ight) \right|$$

- Can also be thought of as the generator of a GAN
- Should we train by $\min_{\theta} D_{KL}(p_{data}, p_{\theta})$ or $\min_{\theta} JSD(p_{data}, p_{\theta})$?

FlowGAN

Although $D_{KL}(p_{data},p_{\theta})=0$ if and only if $JSD(p_{data},p_{\theta})=0$, optimizing one does not necessarily optimize the other. If \mathbf{z},\mathbf{x} have same dimensions, can optimize $\min_{\theta} KL(p_{data},p_{\theta}) + \lambda JSD(p_{data},p_{\theta})$

Objective	Inception Score	Test NLL (in bits/dim)
MLE	2.92	3.54
ADV	5.76	8.53
Hybrid ($\lambda = 1$)	3.90	4.21

Interpolates between a GAN and a flow model

Adversarial Autoencoder (VAE + GAN)

$$\log p(\mathbf{x}; \theta) = \underbrace{\underbrace{\mathcal{L}(\mathbf{x}; \theta, \phi)}_{\text{ELBO}} + D_{KL}(q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{z} \mid \mathbf{x}; \theta))}_{\text{ELBO}}$$

$$= \underbrace{\underbrace{\mathcal{L}(\mathbf{x}; \theta, \phi)}_{\text{ELBO}} + D_{KL}(q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{z} \mid \mathbf{x}; \theta))]}_{\text{Etaining obj.}}$$

$$= \underbrace{E_{\mathbf{x} \sim p_{data}}[D_{KL}(\mathbf{y}; \theta) - D_{KL}(q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{z} \mid \mathbf{x}; \theta))]}_{\text{Etaining obj.}}$$

$$\stackrel{\text{up to const.}}{=} - \underbrace{D_{\mathsf{KL}}(p_{\mathsf{data}}(\mathbf{x}) \| p(\mathbf{x}; \theta))}_{\text{equiv. to MLE}} - E_{\mathsf{x} \sim p_{\mathsf{data}}} \left[D_{\mathsf{KL}}(q(\mathbf{z} \mid \mathbf{x}; \phi) \| p(\mathbf{z} | \mathbf{x}; \theta)) \right]$$

- Note: regularized maximum likelihood estimation (Shu et al, Amortized inference regularization)
- Can add in a GAN objective $-JSD(p_{data}, p(\mathbf{x}; \theta))$ to get sharper samples, i.e., discriminator attempting to distinguish VAE samples from real ones.

An alternative interpretation

$$\underbrace{E_{\mathsf{x} \sim p_{data}}[\mathcal{L}(\mathsf{x}; \theta, \phi)]}_{\approx \text{training obj.}} = E_{\mathsf{x} \sim p_{data}}[\log p(\mathsf{x}; \theta) - D_{KL}(q(\mathsf{z} \mid \mathsf{x}; \phi) || p(\mathsf{z} | \mathsf{x}; \theta))]$$

$$\stackrel{\text{up to const.}}{=} -D_{KL}(p_{data}(\mathbf{x}) || p(\mathbf{x}; \theta)) - E_{\mathbf{x} \sim p_{data}} [D_{KL}(q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{z} \mid \mathbf{x}; \theta))]$$

$$= -\sum_{\mathbf{x}} p_{data}(\mathbf{x}) \left(\log \frac{p_{data}(\mathbf{x})}{p(\mathbf{x}; \theta)} + \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}; \phi) \log \frac{q(\mathbf{z} \mid \mathbf{x}; \phi)}{p(\mathbf{z} \mid \mathbf{x}; \theta)} \right)$$

$$= -\sum_{\mathbf{x}} p_{data}(\mathbf{x}) \left(\sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}; \phi) \log \frac{q(\mathbf{z} \mid \mathbf{x}; \phi) p_{data}(\mathbf{x})}{p(\mathbf{z} \mid \mathbf{x}; \theta) p(\mathbf{x}; \theta)} \right)$$

$$= -\sum_{\mathbf{x}, \mathbf{z}} p_{data}(\mathbf{x}) q(\mathbf{z} \mid \mathbf{x}; \phi) \log \frac{p_{data}(\mathbf{x}) q(\mathbf{z} \mid \mathbf{x}; \phi)}{p(\mathbf{x}; \theta) p(\mathbf{z} \mid \mathbf{x}; \theta)}$$

$$= -D_{KL}(\underbrace{p_{data}(\mathbf{x}) q(\mathbf{z} \mid \mathbf{x}; \phi)}_{q(\mathbf{z}, \mathbf{x}; \phi)} || \underbrace{p(\mathbf{x}; \theta) p(\mathbf{z} \mid \mathbf{x}; \theta)}_{p(\mathbf{z}, \mathbf{x}; \theta)})$$

An alternative interpretation

$$E_{\mathbf{x} \sim p_{data}} \underbrace{[\mathcal{L}(\mathbf{x}; \theta, \phi)]}_{\text{ELBO}} \equiv -D_{KL} \underbrace{(p_{data}(\mathbf{x})q(\mathbf{z} \mid \mathbf{x}; \phi))}_{q(\mathbf{z}, \mathbf{x}; \phi)} || \underbrace{p(\mathbf{x}; \theta)p(\mathbf{z} | \mathbf{x}; \theta)}_{p(\mathbf{z}, \mathbf{x}; \theta)})$$

- Optimizing ELBO is the same as matching (via KL) the inference distribution $q(\mathbf{z}, \mathbf{x}; \phi)$ to the generative distribution $p(\mathbf{z}, \mathbf{x}; \theta) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}; \theta)$
- Intuition: $p(\mathbf{x}; \theta)p(\mathbf{z}|\mathbf{x}; \theta) = p_{data}(\mathbf{x})q(\mathbf{z} \mid \mathbf{x}; \phi)$ if

 - $q(\mathbf{z} \mid \mathbf{x}; \phi) = p(\mathbf{z} \mid \mathbf{x}; \theta)$ for all \mathbf{x}
 - Hence we get the VAE objective: $-D_{KL}(p_{data}(\mathbf{x}) || p(\mathbf{x}; \theta)) E_{\mathbf{x} \sim p_{data}}[D_{KL}(q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{z} | \mathbf{x}; \theta))]$
- Many other variants are possible! VAE + GAN:

$$-JSD(p_{data}(\mathbf{x}) \| p(\mathbf{x}; \theta)) - D_{KL}(p_{data}(\mathbf{x}) \| p(\mathbf{x}; \theta)) - E_{\mathbf{x} \sim p_{data}} [D_{KL}(q(\mathbf{z} \mid \mathbf{x}; \phi) \| p(\mathbf{z} | \mathbf{x}; \theta))]$$

Adversarial Autoencoder (VAE + GAN)

$$E_{\mathbf{x} \sim p_{data}} \underbrace{\left[\mathcal{L}(\mathbf{x}; \theta, \phi) \right]}_{\text{ELBO}} \equiv -D_{KL} \underbrace{\left(\underbrace{p_{data}(\mathbf{x}) q(\mathbf{z} \mid \mathbf{x}; \phi)}_{q(\mathbf{z}, \mathbf{x}; \phi)} \right) \underbrace{\left[\underbrace{p(\mathbf{x}; \theta) p(\mathbf{z} \mid \mathbf{x}; \theta)}_{p(\mathbf{z}, \mathbf{x}; \theta)} \right)}_{p(\mathbf{z}, \mathbf{x}; \theta)}$$

- Optimizing ELBO is the same as matching the inference distribution $q(\mathbf{z}, \mathbf{x}; \phi)$ to the generative distribution $p(\mathbf{z}, \mathbf{x}; \theta)$
- **Symmetry:** Using alternative factorization: $p(\mathbf{z})p(\mathbf{x}|\mathbf{z};\theta) = q(\mathbf{z};\phi)q(\mathbf{x}\mid\mathbf{z};\phi)$ if

 - We get an *equivalent* form of the VAE objective: $-D_{KL}(q(\mathbf{z};\phi)||p(\mathbf{z})) E_{\mathbf{z} \sim q(\mathbf{z};\phi)} [D_{KL}(q(\mathbf{x} \mid \mathbf{z};\phi)||p(\mathbf{x}|\mathbf{z};\theta))]$
- Other variants are possible. For example, can add $-JSD(q(\mathbf{z};\phi)||p(\mathbf{z}))$ to match features in latent space (Zhao et al., 2017; Makhzani et al, 2018)

Information Preference

$$E_{\mathsf{X} \sim p_{data}} \underbrace{[\mathcal{L}(\mathsf{x}; \theta, \phi)]}_{\mathrm{ELBO}} \equiv -D_{\mathsf{KL}} \underbrace{(p_{data}(\mathsf{x})q(\mathsf{z} \mid \mathsf{x}; \phi))}_{q(\mathsf{z}, \mathsf{x}; \phi)} \| \underbrace{p(\mathsf{x}; \theta)p(\mathsf{z} | \mathsf{x}; \theta)}_{p(\mathsf{z}, \mathsf{x}; \theta)})$$

- ELBO is optimized as long as $q(\mathbf{z}, \mathbf{x}; \phi) = p(\mathbf{z}, \mathbf{x}; \theta)$. Many solutions are possible! For example,

 - $q(\mathbf{z}, \mathbf{x}; \phi) = p_{data}(\mathbf{x})q(\mathbf{z}|\mathbf{x}; \phi) = p_{data}(\mathbf{x})p(\mathbf{z})$
 - 3 Note z and z are independent. z carries no information about x. This happens in practice when $p(x|z;\theta)$ is too flexible, like PixelCNN.
- Issue: System of equations with many more variables than constraints

Information Maximizing

Explicitly add a mutual information term to the objective

$$-D_{\mathit{KL}}(\underbrace{p_{\mathit{data}}(\mathbf{x})q(\mathbf{z}\mid\mathbf{x};\phi)}_{q(\mathbf{z},\mathbf{x};\phi)} \| \underbrace{p(\mathbf{x};\theta)p(\mathbf{z}|\mathbf{x};\theta)}_{p(\mathbf{z},\mathbf{x};\theta)}) + \alpha \mathit{MI}(\mathbf{x},\mathbf{z})$$

MI intuitively measures how far x and z are from being independent

$$MI(\mathbf{x}, \mathbf{z}) = D_{KL}(p(\mathbf{z}, \mathbf{x}; \theta) || p(\mathbf{z})p(\mathbf{x}; \theta))$$

InfoGAN (Chen et al, 2016) used to learn meaningful (disentangled?)
 representations of the data

$$MI(\mathbf{x}, \mathbf{z}) - E_{\mathbf{x} \sim p_{\theta}}[D_{KL}(p_{\theta}(\mathbf{z}|\mathbf{x}) || q_{\phi}(\mathbf{z}|\mathbf{x}))] - JSD(p_{data}(\mathbf{x}) || p_{\theta}(\mathbf{x}))$$

β-VAE

Model proposed to learn disentangled features / latent variables (Higgins, 2016)

$$-E_{q_{\phi}(\mathbf{x}, \mathbf{z})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] + \beta E_{\mathbf{x} \sim p_{data}}[D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}))]$$

It is a VAE with scaled up KL divergence term ($\beta > 1$). This is equivalent (up to constants) to the following objective:

$$(\beta - 1) \textit{MI}(\textbf{x}; \textbf{z}) + \beta \textit{D}_{\textit{KL}}(q_{\phi}(\textbf{z}) \| \textit{p}(\textbf{z}))) + \textit{E}_{q_{\phi}(\textbf{z})}[\textit{D}_{\textit{KL}}(q_{\phi}(\textbf{x}|\textbf{z}) \| \textit{p}_{\theta}(\textbf{x}|\textbf{z}))]$$

See The Information Autoencoding Family: A Lagrangian Perspective on Latent Variable Generative Models for more examples.

Conclusion

- We have covered several useful building blocks: autoregressive, latent variable models, flow models, GANs, EBMs, score-based models.
- Can be combined in many ways to achieve different tradeoffs: many of the models we have seen today were published in top ML conferences in the last couple of years
- Lots of room for exploring alternatives in your projects!
- Which one is best? Evaluation is tricky. Still largely empirical