

Operativni sistemi

Uvod i pregled operativnih sistema

Prof. dr Dragan Stojanović

Katedra za računarstvo Univerzitet u Nišu, Elektronski fakultet

Operativni sistemi

Računarstvo i informatika

Literatura

- Operating Systems: Internals and Design Principles, edition, W. Stallings, Pearson Education Inc., 7th 2012, (5th -2005, 6th 2008, 8th 2014, 9th 2017)
 - http://williamstallings.com/OperatingSystems/
 - http://williamstallings.com/OperatingSystems/OS9e-Student/
- Poglavlje 2: Pregled operativnog sistema

Operativni sistem (OS)

- Operativni sistem predstavlja organizovanu kolekciju programa koji upravlja izvršavanjem aplikativnih programa i služi kao interfejs između programa i hardvera računara
- Ciljevi i funkcije operativnog sistema:
 - Pogodnost Da omogući lako i pogodno korišćenje računara
 - Efikasnost Da obezbedi efikasno korišćenje i upravljanje resursima računara
 - Mogućnost razvoja Da obezbedi osnovu za efikasan razvoj, testiranje i uvođenje novih funkcija sistema

OS kao interfejs između korisnika

i računara

- Korisnik nije zainteresovn za detalje računarsog hardvera, već vidi računarski sistem kao skup aplikacija
- Korisnik interaguje sa OS-om pomoću komandi komandnog jezika (shell-a), ili preko grafičkog korisničkog interfejsa (GUI)
- Programer (*software developer*) pristupa računarskom sistemu i razvija aplikacije pomoću sistemskog softvera
 - Sistemski softver čine sistemski programi neophodni za razvoj i izvršenje aplikacija na računaru (uslužni programi) i upravljanje resursima računarskog sistema
 - Najvažniji sistemski softver je operativni sistem
 - OS sakriva detalje hardvera od programera i obezbeđuje mu jednostavan i prikladan interfejs za korišćenje računarskog sistema

OS kao interfejs između korisnika i računara

Servisi operativnog sistema

- Operativni sistem obezbeđuje servise u sledećim domenima:
 - Razvoj programa
 - Izvršavanje programa
 - Pristup U/I uređajima
 - Kontrolisan pristup datotekama
 - Pristup sistemu i upravljanje pristupom sistemskim resursima
 - Otkrivanje grešaka i odgovor na greške
 - Obračun korišćenja resursa sistema i nadgledanje performansi

Nivoi i pogledi računarskog sistema

OS kao upravljač resursa

- Operativni sistem upravlja resursima računarskog sistema, a to su hardverski uređaji (procesor, memorija, štampač, disk, kamera,...) ili strukture podataka (datoteka, semafor, slog u bazi podataka, bafer poruka,...) koji su na raspolaganju korisnicima i programima.
- Operativni sistem je softver, skup programa koji se izvršavaju na procesoru
- OS se povremeno odriče izvršavanja na procesoru, i predaje procesor na izvršavanje korisničkog programa
- Kada se desi neki događaj u računarskom sistemu (prekid, trap), operativni sistem "preuzima procesor" i izvršava se na procesoru da bi obavio odgovarajuće upravljačke funkcije nad resursima.

OS kao upravljač resursa

- Deo OS se nalazi u glavnoj memoriji
 - Kernel (jezgro) sadrži najbitnije funkcije u okviru OS
 - Delovi OS koji se trenutno koriste
- Ostatak memorije sadrži korisničke programe i podatke
- OS upravlja dodelom procesora, memorije, U/I,... korisničkim programima

Lakoća evolucije OS

- Operativni sistemi moraju biti sposobni da evoluiraju tokom vremena iz sledećih razloga:
 - Nadogradnja hardvera i razvoj novih tipova hardvera
 - Novi servisi: kao odgovor na zahteve korisnika ili sistemskih administratora
 - Korekcija grešaka
- Operativni sistem mora biti modularne strukture sa jasno definisanim interfejsima između modula i dobro dokumentovan

Razvoj operativnih sistema

- Serijska obrada (1945 1955)
 - Vakumske cevi, bušene kartice, mašinski jezik
 - Nema OS-a, programeri su pristupali direktno hardveru
- Jednostavni sistemi paketne obrade (batch systems) (1955 1965)
 - Tranzistori, mainframe računari, asemblerski jezik, FORTRAN, COBOL
 - Monitor jednostavan OS (IBSYS IBM OS za 7090/7094 računare)
- Multiprogramirani sistemi paketne obrade
- Sistemi sa deljenjem vremena (*time sharing*) (1965-1980)
 - Integrisana kola, mini računari i radne stanice, C, UNIX
 - Multiprogramiranje, timesharing
 - IBM System/360, Compatible Time-Sharing System (CTSS), UNIX,...
- Personalni računari (1980 danas)
 - LSI/VLSI, mikroprocesori, personalni računari (PC), mikroračunari
 - Windows, Apple Mac OS, UNIX, Linux, ...
- Distribuirani, paralelni, mobilni računari (1990 danas)
 - Multiprocesorski sistemi, distribuirani sistemi, sistemi za rad u realnom vremenu, mobilni računari (pametni telefoni, tableti)
- Cloud computing, Sveprisutno računarstvo, IoT (Internet of Things),...

Sistemi paketne obrade (batch sistemi)

Stari mainframe računari

Modern Operating Systems, Tanenbaum, 2014

- Bušene kartice se unose u IBM 1401
- Čitanje sa kartica i snimanje na magnetnu traku
- Postavljanje trake na IBM 7094 koji obavlja obradu i rezultat snima na magnentu traku (IBSYS operativni sistem)
- Postavljanje trake na IBM 1401 i štampanje

S CONTRACTOR OF THE PARTY OF TH

- Struktura tipičnog posla (job) zadatog bušenim karticama
- Operativni sistem Monitor
 - FMS (Fortran Monitor System)
 - IBSYS (IBM-ov OS za 7094 računar)
- Monitor je stalno smešten u glavnoj memoriji dostupan za izvršavanje (rezidentni monitor)
- Čita sa ulaznog uređaja jedan po jedan posao (job), smešta instrukcije i podatke u korisnički deo memorije i startuje izvršenje posla na procesoru.
- Po završetku, monitor učitava i izvršava sledeći posao (job).
- Instrukcije se monitoru zadaju preko Job Control Language (JCL)

Uvod i pregled operativnih sistema

Interrupt

Device drivers

Job

sequencing

Control language

interpreter

User program

area

Monitor

Boundary

Modern Operating Systems, Tanenbaum, 2014

Monitor – operativni sistem

- Monitor (OS sa paketnom obradom) je računarski program koji je smešten u deo glavne memorije i naizmenično se izvršava sa korisničkim programima
- Poželjna svojstva hardvera:
 - Zaštita memorije koju zauzima monitor
 - Tajmer
 - Privilegovane mašinske instrukcije može ih izvršiti samo monitor
 - Prekidi
- Dva režima rada
 - **Kernel režim** (mod)
 - Monitor (operativni sistem) se izvršava u kernel modu
 - Korisnički režim (mod)
 - Korisnički programi se izvršavaju u korisničkom modu, koriste samo podskup iz skupa instrukcija i samo neke mogućnosti HW (generalno, instrukcije za U/I i zaštitu memorije su zabranjene u korisničkom modu)
 - Za ostalo korisnički programi pozivaju funkcije (servise) OS-a

Multiprogramski sistem paketne

obrade

Multiprogramiranje (multitasking) – Operativni sistem istovremeno smešta u memoriju više poslova; u jednom trenutku samo jedan od poslova se izvršava na CPU, ukoliko se blokira izvršenjem U/I operacije (npr. čitanje podataka sa diska), aktivira se planiranje poslova

Planiranje poslova (Job scheduling) – OS mora da iz skupa svih poslova izabere one koji će biti smešteni u memoriju i odrediti jedan koji će se izvršavati - planiranje CPU (CPU

scheduling)

Dodatna svojstva hardvera

U/I prekidi i DMA

Upravljanje memorijom

Operativni sistemi:

- SOS/360
- MULTICS

UNIX (System V, BSD) Uvod i pregled operativnih sistema

Multiprogramiranje

Jednoprogramiranje - CPU mora da čeka dok se ne završi

U/I instrukcija

Read one record from file $15 \mu s$ Execute 100 instructions $1 \mu s$ Write one record to file $15 \mu s$ TOTAL $15 \mu s$ $31 \mu s$
Percent CPU Utilization $=\frac{1}{31} = 0.032 = 3.2\%$

Multiprogramiranje sa tri aktivirana programa

Primer multiprogramiranja

Primeri atributa za izvršavanje programa

	JOB1	JOB2	JOB3
Type of job	Heavy compute	Heavy I/O	Heavy I/O
Duration	5 min	15 min	10 min
Memory required	50 M	100 M	75 M
Need disk?	No	No	Yes
Need terminal?	No	Yes	No
Need printer?	No	No	Yes

Efekti multiprogramiranja na iskorišćenje resursa

<u></u>	Uniprogramming	Multiprogramming
Processor use	20%	40%
Memory use	33%	67%
Disk use	33%	67%
Printer use	33%	67%
Elapsed time	30 min	15 min
Throughput	6 jobs/hr	12 jobs/hr
Mean response time	18 min	10 min

Histogram iskorišćenosti resursa

(a) Uniprogramming

(b) Multiprogramming

Sistemi sa deljenjem vremena

- Time-sharing procesorsko vreme je podeljeno između više korisnika.
- Koristi multiprogramiranje za višekorisnički rad pri čemu svaki korisnik pristupa sistemu interaktivno putem terminala
- Svakom korisničkom programu se dodeljuje po jedan mali vremenski period (deo procesorskog vremena) za izvršavanje, pre nego što se pređe na drugi program.
- Jedan od prvih time-sharing OS je CTSS (Compatible Time-Sharing System) razvijen 1961. na MIT za IBM 709, a kasnije prenet na IBM 7094
 - Računar sa glavnom memorijom od 32000 36-bitnih reči, pri čemu monitor koristi 5000 reči

Primer rada CTSS

JOB1: 15000

JOB2: 20000

JOB3: 5000

JOB4: 10000

Uvod i pregled operativnih sistema

Operativni sistemi

Glavna dostignuća u razvoju OS

- Procesi
- Upravljanje memorijom
- Zaštita i sigurnost informacija
- Planiranje i upravljanje resursima
- Struktura sistema

C CO AND ILLE

Procesi

- Proces je program u izvršenju
- Proces se sastoji od tri komponente
 - Izvršni program
 - Podaci koji se obrađuju u programu
 - Kontekst izvršenja procesa
- Tipična implementacija procesa prikazana na slici

Upravljanje memorijom

- Osnovne odgovornosti OS
 - Izolacija procesa
 - Automatsko dodeljivanje i upravljanje
 - Podrška za modularno programiranje
 - Zaštita i kontrola pristupa
 - Korišćenje dugotrajne memorije
- Koncept virtuelne memorije (straničenje paging) i file sistema
 - Virtuelna adresa
 - Realna (fizička) adresa u glavnoj memoriji

Main Memory

\triangleleft				
	0		0	
	1		1	
	2		2	
	3		3	
	4		4	
	5		5	
	6		6	
	7		User	
	8	p:	rograr B	n
	9		ь	
	10			
User				
program A				
	11			
				ل

Adresiranje virtuelne memorije

Zaštita informacija i bezbednost

- Raspoloživost
 - Zaštita sistema od prekida funkcionisanja
- Poverljivost (tajnost)
 - Zaštita podataka od neovlašćenog pristupa
- Integritet podataka
 - Zaštita podataka od neautorizovane modifikacije
- Autentičnost
 - Pogodna verifikacija identiteta korisnika i validnosti poruka i podataka

Raspoređivanje resursa i upravljanje

- Strategija raspoređivanja i dodele resursa mora da uključi 3 faktora:
 - Nepristrasnost (pravičnost)
 - Različitost odgovora Treba napraviti razliku između različitih klasa procesa
 - Efikasnost
 - Maksimizovanje propusne moći (*throughput*),
 - Minimizovanje vremena odziva (*response time*) i
 - Opsluživanje što više korisnika (*time-sharing*)

Ključni elementi OS za multiprogramiranje

Struktura sistema

- Operativni sistem treba da bude modularne strukture sa jasno definisanim intrerfejsima između modula
- Struktura operativnog sistema kao skup hijerarhijskih slojeva (nivoa)
 - Svaki sloj izvršava odgovarajući podskup funkcija
 - Svaki sloj izvršenje svojih funkcija zasniva na sledećem nižem sloju u strukturi i njegovom izvršenju primitivnijih funkcija
 - Ovim se problem rastavlja na određeni broj lakših pod-problema

Struktura operativnog sistema

GUI & interpretacija komandnog jezika			
Upravljanje datotekama			
Upravljanje mrežnom komunikacijom			
Upravljanje U/I uređajima			
Upravljanje memorijom			
Upravljanje procesima i nitima			
Hardver računara			

Hijerarhija dizajna OS

Level	Name	Objects	Example Operations
13	Shell	User programming environment	Statements in shell language
12	User processes	User processes	Quit, kill, suspend, resume
11	Directories	Directories	Create, destroy, attach, detach, search, list
10	Devices	External devices, such as printers, displays, and keyboards	Open, close, read, write
9	File system	Files	Create, destroy, open, close, read, write
8	Communications	Pipes	Create, destroy, open, close, read, write
7	Virtual memory	Segments, pages	Read, write, fetch
6	Local secondary store	Blocks of data, device channels	Read, write, allocate, free
5	Primitive processes	Primitive processes, semaphores, ready list	Suspend, resume, wait, signal
4	Interrupts	Interrupt-handling programs	Invoke, mask, unmask, retry
3	Procedures	Procedures, call stack, display	Mark stack, call, return
2	Instruction set	Evaluation stack, microprogram interpreter, scalar and array data	Load, store, add, subtract, branch
1	Electronic circuits	Registers, gates, buses, etc.	Clear, transfer, activate, complement

Uvod i pregled operativnih sistema

HW

Hardverski slojevi

- Sloj 1
 - Elektronska kola
 - Objekti su registri, memorijske ćelije i logička kola
 - Operacije su brisanje sadržaja registra ili čitanje iz memorijske lokacije
- Sloj 2
 - Instrukcioni set procesora
 - Operacije poput: add, subtract, load, store,...
- Sloj 3
 - Dodaje koncept procedure ili potprograma, kao i call/return operacije
- Sloj 4
 - Prekidi (*Interrupts*)

Koncepti vezani za multiprogramiranje

- Sloj 5
 - Proces kao program u izvršavanju
 - Suspendovanje i nastavljanje procesa
- Sloj 6
 - Sekundarni memorijski uređaji
 - Transfer blokova podataka
- Sloj 7
 - Kreiranje logičkog adresnog prostora za procese
 - Organizovanje virtuelnog adresnog prostora u blokove

Upravljanje eksternim objektima

- Sloj 8
 - Komunikacija informacijama i porukama između procesa
- Sloj 9
 - Podrška za trajno memorisanje imenovanih datoteka
- Sloj 10
 - Obezbeđuje pristup eksternim uređajima korišćenjem standardizovanih interfejsa
- Sloj 11
 - Održava asocijaciju između eksternih i internih identifikatora u okviru direktorijuma
- Sloj 12
 - Obezbeđuje potpunu funkcionalnost za podršku procesima
- Sloj 13
 - Obezbeđuje interfejs korisnika prema operativnom sistemu

Pravci razvoja savremenih OS

- Mikrokernel arhitektura
- Višenitna obrada (Multithreading)
- Simetrično multiprocesiranje (symmetric multiprocessing- SMP) na multicore arhitekturama
- Distribuirani operativni sistemi
- Objektno-orijentisani dizajn i implementacija OS

Monolitna arhitektura OS

- Operativni sistem je kolekcija procedura. Pri čemu svaka može pozivati svaku poznajući njen interfejs (skup parametara i rezultat) i svaka procedura može pristupati deljivim podacima i strukturama podataka OS
- Prednosti:
 - Performanse i visok nivo zaštite od pristupa korisničkih procesa
- Nedostaci:
 - Loša proširljivost, održavanje
 - Loša zaštita između komponenti kernela
- UNIX OS sadrži dva dela
 - Sistemski programi i kernel

Mikrokernel arhitektura OS

- Samo kritični OS procesi se izvršavaju u režimu kernela, npr. pristup U/I uređajima i U/I drajveri
- Ostale funkcije OS implementirane su kao servisi koji se izvršavaju u korisničkom režimu
- Prednosti
 - Jednostavno proširenje OS jer dodavanje novih servera ne zahteva modifikaciju kernela
 - Jednostavno portovanje OS sa jedne na drugu hardversku platformu
 - Pošto se svi serverski procesi izvršavaju u korisničkom modu, greška u nekom od njih ne uzrokuje pad OS
- Primeri:
 - Mach (Carnegie Mellon University, sredina 1980-ih)
 - Tru64UNIX (ranije Digital UNIX)
 - Apple MacOS X (Mach kernel + deo BSD kernela)
 - QNX, MINIX

Arhitektura kernela (poglavlje 4.3)

Slojevita i mikrokernel arhitektura

Višenitna obrada (*Multithreading*)

- Proces je podeljen u niti koje mogu da se izvršavaju konkurentno (paralelno)
 - Nit (thread)
 - Jedinica izvršenja koja se može planirati i rasporediti za izvršenje
 - Izvršava se sekvencijalno i može biti prekinuta i ponovo nastavljena
 - Proces je skup jedne ili više niti i pridruženih sistemskih resursa, poput memorije koja sadrži kod i podatke, otvorenih datoteka, i U/I uređaja
- Višenitnost je korisna u aplikacijama koje obavljaju više suštinski nezavisnih zadataka koji ne moraju serijski da se izvršavaju
 - Primer: Web server koji prihvata i opslužuje zahteve klijenata

Simetrično multiprocesiranje (SMP)

- Postoji više procesora u sistemu
- Ovi procesori dele istu glavnu memoriju i U/I resurse
- Svi procesori mogu izvršavati iste funkcije
- Prednosti:
 - Performanse
 - Raspoloživost u slučaju otkaza jednog procesora
 - Inkrementalno povećanje performansi dodavanjem dodatnih procesora
 - Skaliranje može postojati više računarskih konfiguracija sa različitim brojem procesora sa različitom cenom i performansama

Simetrično multiprocesiranje (SMP)

Multiprogramiranje (jedan procesor)

(a) Interleaving (multiprogramming, one processor)

Multiprocesiranje (dva procesora)

(b) Interleaving and overlapping (multiprocessing; two processors)

Process 3

Uvod i pregled operativnih sistema

Operativni sistemi

Sistemski pozivi

- Sistemski pozivi (system calls) obezbeđuju interfejs između aplikativnih/sistemskih programa i operativnog sistema
- Omogućuju pristup funkcijama operativnog sistema od strane korisničkih programa
 - Unix/Linux POSIX 1003.1 standard
 - Windows Windows API (Application Programming Iterface)
- Sistemski poziv se obavlja u okviru korisničkog programa pozivom funkcije iz standardne biblioteke za odgovarajući programski jezik (API).
- U okviru ove funkcije se argumenti smeštaju na stek, i poziva trap instrukcija čiji je argument kôd sistemskog poziva.
- Trap instrukcija izaziva softverski prekid, OS čuva stanje prekinutog procesa, prelazi u mod kernela i poziva funkciju kernela (rutinu, system call handler) koja implementira sistemski poziv
- Postoje sistemski pozivi za upravljanje procesima, memorijom, datotekama, U/I uređajima, mrežnom komunikacijom, za dobijanje informacija o radu sistema, upravljanje GUI (Windows), itd.

Izvršenje sistemskog poziva

Praktikum - Poglavlje 1. Operativni sistem UNIX/Linux

Microsoft Windows

Colored area indicates Executive

Lsass = local security authentication server

POSIX = portable operating system interface

GDI = graphics device interface

DLL = dynamic link libraries

UNIX

- Savremeni Unix
 - System V R4 (SVR4)
 - Solaris 10
 - 4.4 BSD & FreeBSD
- Tradicionalni UNIX kernel

Savremeni UNIX kernel

Linux

Komponente Linux kernela

Domaći zadatak

- Praktikum iz Sistemskog softvera
 - I. UNIX/Linux Poglavlje 1. Operativni sistem UNIX/Linux
 - II. Windows Poglavlje 1. Operativni sistem Windows 2000
- Pročitati poglavlja:
 - 2.7 Pregled Microsoft-ovog Windowsa
 - 2.8 Tradicionalni sistemi Unix
 - 2.9 Savremeni sistemi Unix
 - 2.10 Linux
- Student resources
 - http://williamstallings.com/OperatingSystems/OS9e-Student/
- Animations

http://williamstallings.com/OS/Animation/Animations.html https://apps.uttyler.edu/Rainwater/COSC3355/Animations/index.htm