
Dryden Flight Research Center Critical Chain Project Management Implementation

February, 2012

**Dennis Hines
Director for Programs**

Outline

- The Need for Change at Dryden
- Choosing a solution and first year Results
- How did we do it, what did we change?
- Implementation Challenges
- Next steps and Conclusions

Dryden Work Environment

- Almost equal support of ARMD, SMD, and HEO with growth in Space Technology
- Majority of work occurs at sub-project or task level
- Work content and schedule driven from outside Dryden
- Program demand exceeds FTE center ceiling
- Highly matrixed Center organization
- Limited number of certain skills in key areas such as structures engineering and backshop support
- Multi-project environment causes resource conflict

The Need For Change at Dryden

- Recent NASA audits have indicated that our workforce is stressed to keep up with project demand.
 - Many individuals will work on 10 different projects in 1 pay period
- In a Dryden-wide survey, workforce identified improved project planning as the number one area to improve work/life balance
- Need to become more efficient due to a combination of program demand growth and declining budgets

Goals

For Our People

- Reduce stress for people
- Reduce multi-tasking
- Improve prioritization of work
- Improve sense of accomplishment

Significant productivity gains (>20%) are required to meet these goals

For Our Business

- Improve on-time performance
- Improve Time for:
 - Training
 - R&D
 - Near Term Opportunities
 - Infrastructure Improvement

Position us for Available Opportunity

Determining a Solution

Dryden senior management realized that we needed
to change the way we work

In July 2010, Dryden Management chose to implement CCPM methodology at the start of FY11

First year results

- 25% increase in work completed for the first 6 months!
- Results declined for a few months as we attacked bottlenecks and thought through mechanical changes
- First QTR FY 2012 we are back on track

Results – 1st QTR 2012

Variance to original Planned Date (BCD)

- New measure developed to drive the correct behavior
- Goals set to cut the variance in half over the next year

Other Benefits of CCPM

- Increase time employees can spend on research, training, job skill improvement
- Provide a better work environment for DFRC workforce
- Improved visibility into current & projected status of Center project portfolio for management chain
- Ability to project future resource pinch points and monitor corrective actions
- Concerto software that implements CCPM provides the prioritized task list and buffer consumption charts to assist in conflict resolution

How did we do it?

Followed some simple rules based on CCPM concepts...

PIPELINING

- We staggered project starts to reduce WIP for management and support and staggered the due-dates to enable stable priorities for direct resources

BUFFERING

- Removed measurements based on local efficiency and schedules
- Created aggressive/feasible plans with 1/3rd buffers

BUFFER MANAGEMENT

- Set priorities based on buffer consumption
- Used buffer consumption for control

Buffers

Before

- Traditional networks have safety embedded in the tasks

After

- Safety is removed from tasks and moved to the end to be shared by all when needed

How buffer signals drive priorities

Project 1

Project Completion = 50%

Buffer Consumption = 40%

Priority Index = $0.4/0.5 = 80\%$

Project 2

Project Completion = 33%

Buffer Consumption = 50%

Priority Index = $0.5/0.33 = 150\%$

Priorities for resources

*Synchronized priorities and sense of urgency
(what to do and how urgently)*

Task Manager D-Karen Wilson

Projects All Projects

Start Date 9/7/2009 + Days 30

Task Mgr Filter Show Mgrs Only

Task Role Manager Participant All

Task Status Not Started In Progress Completed

Get Data Print Preview Batch Printing Export to Excel Advanced Sort Advanced Filters Search in Results

Related Links Task Level Priorities By Task Mgr Flow Trend Milestone Report

Project Name	Task Unique ID	Task Desc	Task Participants	Sugg./Likely Start	Task Status	Remaining Duration	Help Needed	Documents	Drawings	% PB Cnsm	Last Update
R201	570	Resolve Overall Design Review Action Items		7/15/2009	IP	5d	<input type="checkbox"/> Need Management Review/Approval	<input type="checkbox"/> Spec docs ...	<input type="checkbox"/> Ready	96	7/15/2009
SA1074	443	Finalize RE Rotor Dynamics Mechanical analysis		7/15/2009	IP	9d	<input type="checkbox"/> Need Management Review/Approval	<input type="checkbox"/> OK	<input type="checkbox"/> Ready	64	7/15/2009
R253	738	Finalize Isophase Assembly Pro E Models		7/15/2009	IP	5d	<input type="checkbox"/> Need Extra Resource (Prof 2)	<input type="checkbox"/> Ready	<input type="checkbox"/> Final Layo...	37	7/15/2009
R257	736	Finalize Main and Neutral Lead Field Assembly Design and Layout	D-Amy John...	7/15/2009	NS	3d	<input type="checkbox"/>	<input type="checkbox"/> NA	<input type="checkbox"/> Ready	4	7/15/2009
R257	748	Finalize Main and Neutral Lead Field Assembly Design and Layout		7/20/2009	NS	5d	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	4	7/15/2009
CR220	75	Define Instrumentation and Terminal Board		7/20/2009	NS	2d	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	0	7/15/2009

Data is Notional

Priorities for management

Resource managers look to see where tasks are stuck and their urgency

Task Manager .All Task Managers Projects .All Projects Start Date 7/15/2009 + Days 30

Task Mgr Filter — Task Color —
 Show Mgrs Only Red Yellow
 Green Other

Task Role
 Manager
 Participant
 All

— Escalation Filters
 Escalated ≥ 1d
 IP, Rem Dur Decrease < 1d In Last 5d

Print Preview Advanced Sort Export to Excel Advanced Filters Create Report

Project Name	Task Unique ID	Task Desc	Task Mgr	Task Status	Remaining Duration	Help Needed	Last Update
R204	569	Conduct Overall Design Review	Paul Young	IP	0.5d		7/15/2009
R201	570	Resolve Overall Design Review Action Items	D-Karen Wilson	IP	5d	Need Management Review/Approval	7/15/2009
CG251	65	Want Test Requirements	Louis Kim	NS	2d	Need Requirements Clarification	
CG202	41	Top Col Installation	Louis Kim	IP	15d *	Need Requirements Clarification	7/15/2009
CG257	47	EE and TE Subassy Installation	D-Amy Johnson	IP	7d *	Need Extra Resource (Mech Eng 2)	7/15/2009
R251	4	Develop Stator Release Schedule	Louis Kim	IP	3d *	Need Management Review/Approval	7/15/2009
R202	570	Resolve Overall Design Review Action Items	Louis Kim	IP	5d *	Need Requirements Clarification	7/15/2009
SA1074	443	Finalize R5 Rotor Dynamics Mechanical analysis	D-Karen Wilson	IP	9d *	Need Management Review/Approval	7/15/2009

Data is Notional

What did we change?

BEFORE

WORKLOAD

- Projects accepted with no regard for capacity or overloads
- All projects are worked at the same time
- No mechanism to say no or yes to work

PRIORITIES

- Projects fight for resources and the Squeaky wheel gets priority

RESOURCE ALLOCATION

- Resources spread thin over many projects

SOLVING ISSUES

- Issues tackled as they move into crisis mode, managers overloaded with issues

AFTER

WORKLOAD

- Stagger project starts based on capacity
- Limit work in execution... so we can do more
- Test to see if we can accept the work

PRIORITIES

- Synchronize resource needs across all projects in work based on buffer signal

RESOURCE ALLOCATION

- Resources focused on fewer tasks at a time, allocated to real need

SOLVING ISSUES

- Issues raised and identified early and solved quickly to avoid delays

Project Lifecycle Process

Integration of the lifecycle process of preparing and conducting ARMD research

Implementation Challenges

- Development of project networks that are simple, execution oriented, and reflect how work should be accomplished
- Changing the way resources are assigned to projects
- Determining how much WIP can be undertaken
- Training personnel to update their tasks daily
- Breaking the habit of multi-tasking
- Concentrating resources on the high priority task
- Customer awareness & buy-in of CCPM

Next Steps

- Improve project network modeling techniques
- Improve early project planning
- Focus on how to continue good resource concentration and flexibility
- Develop interfaces for external reporting
- Integrated CCPM into budget planning process

Conclusions

- Changing the way we do our work is critical for our future
- Results indicate that we can increase our project throughput with same resources
- Implementing CCPM has increased the need for horizontal integration across organization
- Cultural change is a challenge
- CCPM concepts may have broader applicability to other Dryden areas

END

Buffer signal used to synchronize and control

Project 1

Project Completion = 50%

Buffer Consumption = 40%

Project 2

Project Completion = 33%

Buffer Consumption = 50%

Project 2 is eating buffer at a faster rate = Higher priority

