LASER.

Light Amplification by Stimulated Emission of radiation.	
-> Popperties:	
highly coherent	
· Perfectly monochromatic	
· Perfectly Parallel	
· Extremely intense.	
There I ASER is a latin that translate Skenger	
Henry LASER is a device that produce Strong, monochromatic, collimated and highly coherent beam	
of On I f	
of light.	
-> Applications:	
Technical & Industrial field	
# Cutting, drilling, weldingefc. # Laser beam is used to vaposise unwanted	
material during manufacture of electric	
Coronits on semiconductive Chips.	
• Medical applications	
# delicate surging.	
# Surgical operation is completed in a much	
Shorter time.	
# trentment of kidney Stone, Cancer, tumer.	
# Cutting & Stenling of Small blood Versels in brain operation	
Defence applications.	
the delegation of destroys the spanished	
# to defect and destroy the enemy missiles.	
# to cantral rockets & Satellites.	
# used in laser-siflers, laser pistols etc.	
• Science & Research.	
# to defermine the temperature of plasma	
and density of electrins.	
# grow their films of different materials.	
# used in Speetroscopic instartechniques	
(Karnen, IR efc)	
# used in 3-D photography (holography).	
and so on	

Absorphim:		
# A Smitable amount of energy is absorbed by the atoms of the ground state to get excited to the higher energy states.		
by the atoms of the around state to get excited to		
15 higher space and to		
the religion of the state of th		
gound T,		
Let the atombresiding on lower State En jumps		
Let the atombresiding in lower State Ei jumps to the excited state (higher energy state) by Ei by		
assiphen of a quention of reachen (Photon) of the and		
ΔE = Ez-E, =hr. This process of transition is known as		
induced or Stimulated absorption.		
E_2 \uparrow E_2		
DE=EziE		
OA E		
(a) Before absorption (b) after absorption		
A -> whom at ground state		
A + hr - A* - 1 A* - atom at excited state		
9f N, 28 the population of atoms in the lower energy state		
Vien the rate of absorption is defined as the no. of		
atoms per unit volume per second which are raised from		
the lower energy level to the excited energy level.		
$R_{ij} = -dN_{ij}$		
i've Rab = - ANI -2		
The safe of a freeh is a properties of the potentation of		
The vali of absorption es proportional to the population of		
atoms in the lower energy state and the energy density		
of incidenting light P(v).		
Amu Rab = B12 P(V) N1 -3		
where B12 28 Known as Einstein coefficient for		
zighted absorption transition for level 1 -> 2.		

Spontaneous Emissim:		
Suppose an atom is in a higher (excited) State		
Eg. As Eg > E, and the lifetime in this excited state is		
honethy Very small (or 108 Sec), the atom jumps (decays)		
(of its own accord), without any external impetus)		
(of its own accord), without any ext	mal impetus)	
emitting a photon of frequency of called Spontaneon emission.	2. This procen is	
0 A* F		
	E ₂	
	$\rightarrow \rightarrow AE = h^2 = E_2 - E_1$	
(a) Before	E ₁	
(a) Before	(b) After.	
$A^* \longrightarrow A + h\gamma \qquad (4)$		
The rate of Spontaneous emission is given as		
$R_{\text{sp}} = -\frac{dN_2}{dt} - 6$		
dt		
>> No. of photons emitted during the process of		
Spontanens emission is proportional to the no. of excited		
atons only.		
$R_{Sp} = A_{21} N_2 - G$		
Where		
Ag is known as Einstein coefficient for spontaneons		
emission. It gives the probability of spontaneurs emission		
form level 2 → 1.		
-> Features		
i) difficult to contral the process of Spontaneons emission		
li) emitted photons during the porocess have different		
direction of 120 ing allen, unital phane, and plane		
of potarization.		
iii) the emitted light during the process		
ie incoherent.	12 And & Dans	
14) The intensity of emit	reply.	

Population Invovoion: Venally, under thermal equilibrium, the no. ofatoms (or particles) in the higher excited state (ice population of E2) is considerably smaller than the no. of atoms in the lower ground State E1. Pont for Stimulated emission and for larur action, of is essential that the no. of atoms in the higher state (Eg) rount be greater than the no of atoms in the lower state (E) The Situation in which the population of the higher energy State exceeds the population lower level, is known as population inver N3 KN, KHI N3 > N2 > N1 (a) Equilibrium state (b) Population inversion Process of achieving populars inversion is known as pumping. In other words, the process by which atoms are raised from the lower energy level to the higher energy level is called pumping. These are various pumping josoconos (1) Optical pumping: A light Source is energy, that is und used to supply luminous midely in solid state lasurs (They is neodynaium) (11) Electrical pumping: An efectoric discharge 18 used in gas or sent conductor lasers. (111) Thermal pumping: Chemical real han.

The Ruby laser -> 1960, 1St laser. - Solid state laser as it uses a Cystalline substance of active material Ruby rad consists of a Synthetic outry Crystal CA1203 doped with chromium ions with concentration of about 0.05% by weight with this concentration, there are about 1.6 × 1825 Cost was per cubic meter. There ians have a Set of three level energy levels Snitable for the law action. * Structure Partially reflective Fully reflected Glavos cooling Coolin inlet ontal Power (1) Active material -> A Cylordrical ruby rod of length 1 cm and width 0.5 cm > The end faces of ruby rod are polished in such way that one face is partially not keting and the other is fully nothering. -> Both faces are profeelly parallel Perpendicular to the exis of the rod (11) A resonant carety The optically plane and parallel plates (one fully reflection & other partially reflecting) to both ends of the ruby rod to acting as the resonant carety

(III) Primaina Sosten:
(11) Pumping Systen: - A helical xeron flash tube with power
Sypply, which produces white light whenever activated by the power Sypply. (IV) cooling Systen: An arrangement is made for the
activated by the power sypoly.
(IV) cooling Systen:
- An arrangement is made for elm
Cerentation of coolant around the ruby ros to
corenlation of coolant around the ruby rod to contral the heat is during the process.
of Working
1 - 2 - 2
Non-year auve 18 aves 11 41
15500A° (103/see).
3 6943 for 6943 for
Optical moreithm. 3 6943 to Lasur transition
E. 11/1////etround state 1/1/1///
Existing a level diagram & transitions in ruby
Fig. > Energy level diagram. & transitions in ruby larer.
-> Most of the Cr3+ ions are in the ground State
Most of the Cr3t ions are in the ground State EI. When a flash flight falls upon the ruby rod,
the 5500 to radiations photons are absorbed by
the Cr3+ ions and pumped to exceted State E3.
The transition 1) is the cophical pumping transition
-> The excited zons give up part of their energy
to the Crystal lattice ofne to collision and decay
to the metastable state Eg. The transition (2) is
thus a radiation less transition.
-> The energy level Eg (NetaStable State) has a
longer life-time, the no. of atoms in this state
goes en increasing. The population inversion 2's
established between the metastable (excited) state to
and the ground state E.

-> When an excited atom panes spontaneously from the metastable state to the ground state (transition3) It emits a photon of wavelength 6943 to.

This photon touvels chrough the ruby rod

farallel to the axis of the conjetal is reflected back and forth by Silvered ends until it Stimulates an excited atom and causes of to emit a fresh Photon in phase with the stimulating photon. > This stemmlasted transition (4) is the Laser transition. -> The photons emitted spontaneously which do not move axially escape through the sides of The process is repeated again and again because the photons repeatedly move along the Crystal being reflected from it ends. The photons this multiply, when the photons beam becomes sufficiently interse, part of it emerges Chrongh the partially refleted end of the Crystal to give thi laser light.

- 6