Institut für Regelungstechnik

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG

Prof. Dr.-Ing. W. Schumacher

Prof. Dr.-Ing. M. Maurer

Prof. em. Dr.-Ing. W. Leonhard

Hans-Sommer-Str. 66 38106 Braunschweig Tel. (0531) 391-3836

Klausuraufgaben			Grundlagen der Elektrotechnik				09.09.2008
	ame: atrNr.:						
1:	2:	3:	4:	5:	6:	7:	8:
	Summe	e:			Note	:	

Alle Lösungen sollen nachvollziehbar bzw. begründet sein.

Für jede Aufgabe ein neues Blatt verwenden.

Keine Rückseiten beschreiben.

Keine roten Stifte verwenden.

1 Kondensatornetzwerk

In dem gegebenen Netzwerk (Bild 1) sind alle Kondensatoren entladen. Der Kondensator C_1 ist über die ideale Diode D und den Schalter S_1 an die Stromquelle I_0 angeschlossen. Nach der Zeit $t_1 = 0, 5s$ wird der Schalter S_1 geschlossen. Der Schalter S_2 bleibt weiterhin geöffnet. Über dem Kondensator C_1 wird eine Spannung U_1 =100V gemessen. Die Plattenkondensatoren C_1 , C_2 und C_3 werden mit einem Plattenabstand d = 0, 5mm und einer Fläche $A = 200mm^2$ realisiert.

Gegeben: $\varepsilon_0=8,854.10^{-12} As/Vm$, $\varepsilon_{r1}=2$ und $\varepsilon_{r2}=\varepsilon_{r3}=4.$

- a) Berechnen Sie den Ladestrom I_1 , wenn die Plattenkondensatoren nach Bild 2 betrachtet werden.
- b) Berechnen Sie die im Netzwerk gespeicherte Energie W zum Zeitpunkt t=0,5s.
- c) Welche maximal zulässige Spannung U_{Qmax} kann an den Kondensator angelegt werden, wenn die Durchschlagfeldstärke in Luft $E_D = 100KV/cm$ beträgt?

Der Schalter S_2 wird nun geschlossen. Der Schalter S_1 bleibt weiterhin geschlossen und das Abklingen des neuen Einschwingvorganges wird abgewartet.

- d) Berechnen Sie die Gesamtkapazität C_{ges} des Netzwerkes zwischen den Klemmen X und Y, wenn der Widerstand R vernachlässigt wird.
- e) Berechnen Sie die Spannungen $U_1,\,U_2$ und $U_3.$
- f) Berechnen Sie die nun im Netzwerk gespeicherte Energie $W^{\star}.$
- g) Erklären Sie die Differenz der Energie $\Delta W = W W^{\star}$ zwischen Aufgabenteil f) und b).

2 Induktivitätsnetzwerk

Im Netzwerk in Bild A ist der Schalter S offen. Die Induktivität L in Bild A berechnet sich durch das Netzwerk in Bild B.

Gegeben:

$$U_0=10V$$

$$R_1 = 2\Omega, R_2 = 3\Omega, R_3 = 6\Omega$$

$$L_1$$
=8H, L_2 =12H, L_3 =5H, L_4 =4H

- a) Berechnen Sie zahlenmäßig die Gesamtinduktivität L.
- b) Betrachten Sie das Netzwerk nach Abklingen der Einschwingvorgänge bei offenem Schalter S. (d.h. $t \longrightarrow \infty$):
 - b1) Skizzieren Sie das Netzwerk in Bild A in der einfachsten Form.
 - b2) Berechnen Sie zahlenmäßig den Ladestrom $I_{L1}(t) = I_L(t \to \infty)$.
 - b
3) Bestimmen Sie den Energiegehalt W_1 in der Induktivitä
t ${\cal L}.$
- c) Skizzieren Sie den Verlauf des Stroms $I_{L1}(t)$ vom Zeitpunkt t_0 des Einschaltens der Spannungsquelle bis zum Zeitpunkt des Abklingens der Einschwingvorgänge. Tragen Sie die ermittelten Größen $I_{L1}(t)$ aus Aufgabenteil b2) in die Skizze ein.

Nun wird der Schalter S geschlossen.

d) Berechnen Sie die Zeitkonstante τ des Ausgleichsvorgangs von $I_L(t)$ wenn der Schalter S geschlossen ist.

- e) Berechnen Sie den Zeitpunkt t^* , an dem der Strom $I_{L2}(t) = I_L(t^*)$ auf die Hälfte des Ladestroms aus Aufgabenteil b2) abgeklungen ist. (d.h. $I_L(t^*) = 0.5I_L(t \to \infty)$).
- f) Bestimmen Sie die Energiedifferenz $\triangle W = W_1 W_2$. Dabei ist W_2 der Energiegehalt der Induktivität L nach Ablauf der Zeit t^* aus Aufgabenteil e).
- g) Skizzieren Sie den Verlauf des Stroms $I_{L2}(t)$ nachdem der Schalter geschlossen wurde und tragen Sie die ermittelten Größen t^* und $I_L(t^*)$ aus Aufgabenteil e) in die Skizze ein.

3 Gleichstromnetzwerk

In dem gegebenen Netzwerk ist der Schalter S offen.

Gegegeben:

$$I_0 = 4A, I = 3A, U_1 = 20V, U_2 = 5V$$

 $R_1 = 3\Omega, R_2 = 5\Omega, R_3 = 1\Omega$
 $R_4 = 2\Omega, R_5 = 2\Omega, R_6 = 1\Omega$

- a) Berechnen Sie mit Hilfe des Überlagerungssatzes und des Maschenstromverfahrens den Strom i.
- b) Berechnen Sie mit Hilfe des Überlagerungssatzes den neuen Wert des Stroms i, wenn die Stromquelle I_0 einen Strom von 8A liefert.
- c) Berechnen Sie zahlenmäßig mit dem Ergebnis aus Aufgabenteil a) die im Widerstand R_4 umgesetzte Leistung P_{R4} .

Nun wird der Schalter S geschlossen.

d) Berechnen Sie den hierfür erforderlichen Wert des Widerstands R_x , dass die Spannung U_{AB} gleich 18V wird. Gegeben ist der Wert des Stroms $I_{AB} = 5A$.

(Hinweis: Nutzen Sie das Quellentransformation-Verfahren)

e) Berechnen Sie die im Widerstand R_4 umgesetzte neue Leistung P_{R4}^{\star} .

4 Gleichstromnetzwerk

Das Netzwerk ist bezüglich der Klemmen A und B durch eine Ersatzspannungsquelle darzustellen.

Gegeben:

$$U_1 = U_2 = U_3 = 12V$$

 $R_1 = 2\Omega, R_2 = 2\Omega, R_3 = 6\Omega$
 $R_4 = 6\Omega, R_5 = 2\Omega$

- a) Berechnen Sie den Innenwiderstand R_i der Ersatzquelle.
- b) Berechnen Sie zahlenmäßig die Leerlaufspannung U_0 .

Das Netzwerk ist an den Klemmen A-B durch einen Widerstand R_L belastet.

- c) Berechnen Sie die im Lastwiderstand R_L umgesetzte Leistung $P_{RL} = f(R_L)$.
- d) Welchen Wert muss der Widerstand R_L haben, so dass die umgesetzte Leistung P_{RL} maximal wird?
- e) Die maximal umgesetzte Leistung P_{RL} ist zahlenmäßig zu berechnen.
- f) Skizzieren Sie den Verlauf der Leistung $P_{RL}=f(R_L)$. Tragen Sie die Werte für: $R_L=0.25R_i,\ 0.5R_i,\ 0.75R_i$ und R_i ein.

5 Induktion Punkte: 22

Die dargestellte Leiterschleife aus dünnem Kupferdraht wird durch ein homogenes Magnetfeld mit der Flussdichte $B(t) = B_0 \sin(\omega t)$ durchsetzt. Die Leiterschleife bewegt sich senkrecht zum Magnetfeld B(t) in Richtung x mit der Geschwindigkeit v. Der Drahtabschnitt hat die Länge h und ist durch zwei Widerstände R_1 und R_2 belastet.

- a) Berechnen Sie den erzeugten Fluss $\phi = f(h, v, t)$.
- b) Berechnen Sie die Spannung U = f(h, v, t).
- c) Berechnen Sie den Strom I = f(h, v, t).
- d) Berechnen Sie die Spannung $U_1 = f(h, v, t)$.
- e) Berechnen Sie die Spannung $U_2 = f(h, v, t)$.

6 Magnetischer Kreis

Der gegebene Elektromagnet hat einen Kern aus Dynamoblech mit konstanter Permeabilität M_r . Auf dem mittleren Schenkel (AD) ist eine Spule mit N Windungen angebracht. Die Querschnittsfläche ist überall quadratisch mit einer Fläche A und weist die Kantenlänge l und die Luftspalte d_1 und d_2 auf. Die Streuung ist zunächst zu vernachlässigen. Durch die Spule auf dem mittleren Schenkel (AD) fließt ein sinusförmiger Strom mit der Amplitude \hat{I} .

Gegeben:

$$A = 4 cm^2$$
, $l = 10cm$, $d_1 = 1cm$, $d_2 = 0.5cm$
 $\hat{I} = 2A$, $\mu_0 = 4\pi \cdot 10^{-7} H/m$, $\mu_r = 1000$, $N = 500$

- a) Skizzieren Sie das vollständige Ersatzschaltbild des magnetischen Kreises und tragen Sie alle magnetischen Größen mit ihren Bezugsrichtungen ein.
- b) Berechnen Sie die magnetischen Widerstände R_1 , R_2 und R_3 bezüglich der mittleren Linien l_i in allen drei Teilen (ABCD, AD und AEFD) des magnetischen Kreises.
- c) Berechnen Sie den magnetischen Gesamt-Ersatzwiderstand R_{ges} .
- d) Berechnen Sie den magnetischen Fluss $|\Phi_{l2}|$ durch den mittleren Schenkel AD.

- e) Berechnen Sie die Flussdichte $|B_{l2}|$ im mittleren Schenkel AD.
- f) Berechnen Sie die Induktivität L.
- g) Entscheiden und erklären Sie für den Fall, dass der Luftspalt d_1 geschlossen ist, also $d_1=0$ ist, ob der magnetische Fluss in dem mittleren Schenkel AD erhöht oder reduziert wird?

7 Komplexe Wechselstromrechnung

Das dargestellte Netzwerk wird an einer Wechselspannung mit der Kreisfrequenz ω betrieben. Der Schalter S ist geöffnet. Die Spannungsquelle \underline{U}_0 wird durch das Netzwerk kapazitiv belastet.

 $\text{Gegeben: } |\underline{U}_0| = 12 \text{V}, |\underline{I}_R| = 40 \text{mA}, \\ \text{L} = 100 \text{mH}, \ R = 250 \Omega, \ \omega = 2.10^3 rad/sec.$

- a) Berechnen Sie die Beträge der Spannung $|\underline{U}_R|$ und des Stromes $|\underline{I}_L|$.
- b) Das vollständige Zeigerdiagramm mit allen Strömen und Spannungen ist zu entwickeln (Maßstab: $1V \cong 1cm$, $10mA \cong 1cm$). Die Größen $|\underline{I}_0|$, $|\underline{U}_C|$ und der Phasenwinkel ϕ_0 der Spannung \underline{U}_0 sind betragsmäßig anzugeben (abzulesen).

 $(\mathit{Hinweis} \colon \mathsf{Verwenden} \ \mathsf{Sie} \ \underline{U}_R$ als Bezugszeiger)

- c) Bestimmen Sie die Größe der Kapazität C mit den Ergebnissen aus Aufgabenteil b).
- d) Berechnen Sie die in dem Netzwerk umgesetzte Wirk-, Blind- und Scheinleistung.

Der Blindwiderstand \underline{X}_P wird durch Schließen des Schalters S dem Netzwerk parallel geschaltet.

- e) Der Blindwiderstand \underline{X}_P soll so bestimmt werden, dass an den speisenden Klemmen $\cos \phi_0 = 1$ wird.
- f) Die von der Spannungsquelle gelieferte Wirk-, Blind- und Scheinleistung ist für die neue Einstellung zu berechnen.

8 Ortskurven

Die Wechselspannungsquelle \underline{U}_0 mit dem Innenwiderstand R_i wird an einem R,L,C Netzwerk betrieben. Die Schalter S_1 und S_2 stehen in Position 1.

Gegeben: $L_1 = 100mH, C_1 = 10\mu F, R = 500\Omega.$

- a) Berechnen Sie allgemein die Lastimpedanz \underline{Z} der Spannungsquelle in der Form A+jB. (*Hinweis*: Der Innenwiderstand R_i soll nicht betrachtet werden)
- b) Die Schaltung ist im Folgenden so dimensioniert, dass im Resonanzfall Leistungsanpassung vorliegt.
 - b1) Geben Sie die Bedingung für Resonanz an.
 - b2) Bestimmen Sie die Resonanzfrequenz ω_0 .
 - b3) Bestimmen Sie den Kreisgütefaktor Q des Schwingkreises.
 - b4) Welcher Resonanzfall ist hier zu finden?
 - b5) Bestimmen Sie den Betrag $|\frac{U_R}{U_0}|$ des komplexen Spannungsteilers bei den Frequenzen $\omega = 0s^{-1}, \ \omega = \omega_0 \ \text{und} \ \omega \to \infty$. (*Hinweis*: Der Innenwiderstand R_i soll betrachtet werden).
- c) Skizzieren Sie den Verlauf von $|\frac{U_R}{U_0}| = f(\omega)$.
- d) Bestimmen Sie die Grenzwerte der Impedanz \underline{Z} aus Aufgabenteil a) für $\omega = 0s^{-1}$, $\omega = \omega_0$ und $\omega \to \infty$.

e) Zeichnen Sie die Ortskurve von \underline{Z} . Die Punkte für die Frequenzen nach d), sowie der kapazitive und induktive Bereich sind zu kennzeichnen.

Die Schalter S_1 und S_2 stehen nun in Position 2.

f) Berechnen Sie zahlenmäßig die Werte von L_2 und C_2 , so dass die Resonanzfrequenz ω_0^{\star} weiterhin dem Wert aus Aufgabenteil b2) entspricht, der Kreisgütefaktor Q^{\star} des Schwingkreises jedoch um den Faktor 10 größer ist. (d.h. $\omega_0^{\star} = \omega_0$ und $Q^{\star} = 10$ Q). Der Betrag des Widerstandes $R = 500\Omega$ ist unverändert.