Deep Learning

03 - Model Training. Loss function

Recap

Recapping

- We have described linear regression, shallow neural networks, and deep neural networks.
- Each represents a family of functions that map input to output, where the particular member of the family is determined by the model parameters φ.
- When we train these models, we seek the parameters that produce the best possible mapping from input to output for the task we are considering.
- What does "best possible" mapping mean?

Neural Networks

Universal Approximation Theorem

Figure 3.5 Approximation of a 1D function (dashed line) by a piecewise linear model. a–c) As the number of regions increases, the model becomes closer and closer to the continuous function. A neural network with a scalar input creates one extra linear region per hidden unit. The universal approximation theorem proves that, with enough hidden units, there exists a shallow neural network can describe any given continuous function defined on a compact subset of \mathbb{R}^D to arbitrary precision.

More Hidden Layers

Università di Roma

More Hidden Layers

Decision Boundary

- 2 hidden layer
 - Combinations of convex regions

Why Deep Learning

- Features that are engineered by hand are difficult to maintain, error prone, and not necessarily the best for the task
- Can we learn feature directly from data?

Why Now?

ANNs are not new (The Perceptron is almost 65 y.o.)

Stochastic Gradient
Descent

Perceptron
Learnable Weights

Backpropagation
Multi-Layer Perceptron

Deep Convolutional NN
Digit Recognition

Neural Networks date back decades, so why the resurgence?

I. Big Data

- Larger Datasets
- Easier Collection& Storage

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

Loss Functions

(Chapter 5)

Requirements

- That definition requires a training dataset {x_i, y_i} of input/output pairs.
- A loss function, or cost function, L[φ] returns a single number that describes the mismatch between the model predictions f[x_i, φ] and their corresponding ground-truth outputs y_i.
- During training, we seek parameter values $\tilde{\phi}$ that minimize the loss and hence map the training inputs to the outputs as closely as possible.

$$\tilde{\phi} = \arg\min_{\phi} L\left[\phi\right]$$

Maximum Likelihood

Models as Conditional Probability Distributions

Figure 5.1 Predicting distributions over outputs. a) Regression task, where the goal is to predict a real-valued output y from the input x based on training data $\{x_i, y_i\}$ (orange points). For each input value x, the machine learning model predicts a distribution Pr(y|x) over the output $y \in \mathbb{R}$ (cyan curves show distributions for x=2.0 and x=7.0). The loss function aims to maximize the probability of the observed training outputs y_i under the distribution predicted from the corresponding inputs x_i . b) To predict discrete classes $y \in \{1, 2, 3, 4\}$ in a classification task, we use a discrete probability distribution, so the model predicts a different histogram over the four possible values of y_i for each value of x_i . c) To predict counts $y \in \{0, 1, 2, \ldots\}$ and d) direction $y \in (-\pi, \pi]$, we use distributions defined over positive integers and circular domains, respectively.

Computing a Distribution over Outputs

- How do we do that?
- Simple
 - $\circ \quad \mathsf{y=f}[\mathsf{x},\, \mathsf{\varphi}] \ \Rightarrow \ \mathsf{Pr}\{\mathsf{y}|\mathsf{x};\, \mathsf{\varphi}\}$

Image courtesy of: https://www.polygon.com/22947332/spider-man-no-way-home-pointing-meme

Example

- Suppose the prediction domain is the set of real numbers, i.e., $y \in \mathbb{R}$.
- Here, we might choose the univariate normal distribution, which is defined on ℝ.
 - This distribution is defined by the mean μ and variance σ^2 , so **θ** = { μ , σ^2 }.
- The machine learning model might predict the mean μ , and the variance σ^2 could be treated as an unknown constant.

MLE Criterion

- The model now computes different distribution parameters $\theta_i = f[x_i, \phi]$ for each training input x_i .
 - Each observed training output y_i should have high probability under its corresponding distribution Pr{y_i|θ_i}.
- Hence, we choose the model parameters φ so that they maximize the combined probability across all *i* training examples

MLE Criterion: Assumptions

- Observations (x_i, y_i) are:
 - Independent
 - Identically distributed
- Observations i.i.d.

$$Pr(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_I | \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_I) = \prod_{i=1}^I Pr(\mathbf{y}_i | \mathbf{x}_i)$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{x}_{i}) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \boldsymbol{\theta}_{i}) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right]$$

Log Likelihood

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\underset{i=1}{\operatorname{log}} \left[\prod_{i=1}^{I} Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmax}} \left[\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right]$$

Minimizing Negative Log Likelihood (NLL)

- We note that, by convention, model fitting problems are framed in terms of minimizing a loss.
- To convert the maximum log-likelihood criterion to a minimization problem, we multiply by minus one, which gives us the negative log-likelihood criterion:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\boldsymbol{\Box} \sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_{i} | \mathbf{f}[\mathbf{x}_{i}, \boldsymbol{\phi}]) \right] \right] \\
= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\mathbf{L}[\boldsymbol{\phi}] \right],$$

Inference

- The network no longer directly predicts the outputs y but instead determines a probability distribution over y.
- When we perform inference, we often want a point estimate rather than a distribution,
 so we return the maximum of the distribution:

$$\hat{\mathbf{y}} = \underset{\mathbf{y}}{\operatorname{argmax}} \left[Pr(\mathbf{y} | \mathbf{f}[\mathbf{x}, \hat{\boldsymbol{\phi}}]) \right]$$

- It is usually possible to find an expression for this in terms of the distribution parameters θ predicted by the model.
- For example, in the univariate normal distribution, the maximum occurs at the mean μ

Recipe for a Loss

- 1. Choose a suitable probability distribution $Pr(y|\theta)$ defined over the domain of the predictions y with distribution parameters θ .
- 2. Set the machine learning model $f[x, \phi]$ to predict one or more of these parameters, so $\theta = f[x, \phi]$ and $Pr(y|\theta) = Pr(y|f[x, \phi])$.
- 3. To train the model, find the network parameters $\hat{\phi}$ that minimize the negative log-likelihood loss function over the training dataset pairs $\{x_i, y_i\}$:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right] = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] \right]$$

4. To perform inference for a new test example x, return either the full distribution $Pr(y|f[x,\hat{\phi}])$ or the maximum of this distribution.

Figure 5.3 The univariate normal distribution (also known as the Gaussian distribution) is defined on the real line $z \in$ \mathbb{R} and has parameters μ and σ^2 . The mean μ determines the position of the peak. The positive root of the variance σ^2 (the standard deviation) determines the width of the distribution. Since the total probability density sums to one, the peak becomes higher as the variance decreases and the distribution becomes narrower.

- Goal: predict a single scalar output $y \in \mathbb{R}$ from input x using a model $f[x, \phi]$ with parameters ϕ .
- Following the recipe, we choose a probability distribution over the output domain y

$$Pr(y|\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-rac{(y-\mu)^2}{2\sigma^2}
ight] \qquad \qquad ext{pdf}$$
 Probability Density Function

• Second, we set the machine learning model $f[x,\phi]$ to compute one or more of the parameters of this distribution. Here, we just compute the mean so $\mu = f[x, \phi]$:

$$Pr(y|f[\mathbf{x}, \boldsymbol{\phi}], \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y - f[\mathbf{x}, \boldsymbol{\phi}])^2}{2\sigma^2}\right]$$

- We aim to find the parameters ϕ that make the training data $\{x_i, y_i\}$ most probable under this distribution.
- To accomplish this, we choose a loss function L[φ] based on the negative log-likelihood:

$$L[\phi] = -\sum_{i=1}^{I} \log \left[Pr(y_i | \mathbf{f}[\mathbf{x}_i, \phi], \sigma^2) \right]$$

$$= -\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - \mathbf{f}[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right]$$

• When we train the model, we seek parameters $\hat{\phi}$ that minimize this loss

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]$$

$$\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]$$

$$= \underset{\phi}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} -\frac{(y_i - f[\mathbf{x}_i, \phi])^2}{2\sigma^2} \right]$$

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} -\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right]$$

$$= \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[\sum_{i=1}^{I} (y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2 \right] \qquad \text{MSELoss}$$

Colab time: Least Squares Loss

https://colab.research.google.com/drive/1gy3KiCiKl4ZoI2eKgH9XlzZif-S0hUPB

What about the Variance?

Homoscedastic Regression

• Treating σ^2 as a parameter of the model and minimizing the loss with respect to both the model parameters ϕ and the distribution variance σ^2 :

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}, \sigma^2}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y_i - f[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\sigma^2} \right] \right] \right]$$

- At inference time, the model predicts the mean $\mu = f[x, \hat{\phi}]$ from the input, and we learned the variance σ^2 during the training process.
- The former is the best prediction. The latter tells us about the *uncertainty of the prediction*.

Heteroscedastic Regression

- When the uncertainty of the model varies as a function of the input data, we refer to this as heteroscedastic.
- Train $\mathbf{f}[\mathbf{x}, \mathbf{\phi}] = [\mathbf{f}_1[\mathbf{x}, \mathbf{\phi}], \mathbf{f}_2[\mathbf{x}, \mathbf{\phi}]]$
 - o $f_2[\mathbf{x}, \mathbf{\phi}]$ can be negative \rightarrow square it

$$\begin{array}{ccc} \mu & = & f_1[\mathbf{x}, \boldsymbol{\phi}] \\ \sigma^2 & = & f_2[\mathbf{x}, \boldsymbol{\phi}]^2 \end{array}$$

which results in the loss function:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[\frac{1}{\sqrt{2\pi \mathbf{f}_2[\mathbf{x}_i, \boldsymbol{\phi}]^2}} - \frac{(y_i - \mathbf{f}_1[\mathbf{x}_i, \boldsymbol{\phi}])^2}{2\mathbf{f}_2[\mathbf{x}_i, \boldsymbol{\phi}]^2} \right] \right]$$

Heteroscedastic vs. Homoscedastic Regression

Example 2: Binary Classification

- In binary classification, the goal is to assign the data x to one of two discrete classes
 y∈{0,1}. In this context, we refer to y as a label.
- Examples of binary classification include:
 - predicting whether a restaurant review is positive (y = 1) or negative (y = 0) from text data x
 - o predicting whether a tumor is present (y = 1) or absent (y = 0) from an MRI scan x

Reminder: Recipe for a Loss

- 1. Choose a suitable probability distribution $Pr(y|\theta)$ defined over the domain of the predictions y with distribution parameters θ .
- 2. Set the machine learning model $f[x, \phi]$ to predict one or more of these parameters, so $\theta = f[x, \phi]$ and $Pr(y|\theta) = Pr(y|f[x, \phi])$.
- 3. To train the model, find the network parameters $\hat{\phi}$ that minimize the negative log-likelihood loss function over the training dataset pairs $\{x_i, y_i\}$:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right] = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] \right]$$

4. To perform inference for a new test example x, return either the full distribution $Pr(y|f[x,\hat{\phi}])$ or the maximum of this distribution.

Example 2: Binary Classification

- Let's build the loss function, then...
- First, we choose a probability distribution over the output space $y \in \{0, 1\}$. A suitable choice is the Bernoulli distribution, which is defined on the domain $\{0, 1\}$. This has a single parameter $\lambda \in [0, 1]$ that represents the probability that y takes the value one

$$Pr(y|\lambda) = \begin{cases} 1 - \lambda & y = 0\\ \lambda & y = 1 \end{cases}$$

which can equivalently be written as:

$$Pr(y|\lambda) = (1-\lambda)^{1-y} \cdot \lambda^y$$

Example 2: Binary Classification

- Second, we set the machine learning model f[x,φ] to predict the single distribution parameter λ.
- However, λ can only take values in the range [0, 1], and we cannot guarantee that the network output will lie in this range.
- Consequently, we pass the network output through a function that maps the real numbers R to [0, 1]. A suitable function is the logistic sigmoid

$$\operatorname{sig}[z] = rac{1}{1 + \exp[-z]}$$

Hence, we predict the distribution parameter as λ = sig[f[x,φ]]

Example 2: Binary Classification

• The likelihood is, therefore:

$$Pr(y|\mathbf{x}) = (1 - \text{sig}[f[\mathbf{x}, \boldsymbol{\phi}]])^{1-y} \cdot \text{sig}[f[\mathbf{x}, \boldsymbol{\phi}]]^y$$

And the Negative Log Likelihood is:

$$L[\boldsymbol{\phi}] = \sum_{i=1}^{I} -(1 - y_i) \log \left[1 - \operatorname{sig}[f[\mathbf{x}_i, \boldsymbol{\phi}]]\right] - y_i \log \left[\operatorname{sig}[f[\mathbf{x}_i, \boldsymbol{\phi}]]\right]$$

A.k.a. Binary Cross Entropy Loss

Example 2: Binary Classification

- Goal is to assign an input data example x to one of K > 2 classes, so y ∈ {1, 2, . . . ,
 K}.
- Real-world examples include: (i) predicting which of K = 10 digits y is present in an image x of a handwritten number and (ii) predicting which of K possible words y follows an incomplete sentence x.

Reminder: Recipe for a Loss

- 1. Choose a suitable probability distribution $Pr(y|\theta)$ defined over the domain of the predictions y with distribution parameters θ .
- 2. Set the machine learning model $f[x, \phi]$ to predict one or more of these parameters, so $\theta = f[x, \phi]$ and $Pr(y|\theta) = Pr(y|f[x, \phi])$.
- 3. To train the model, find the network parameters $\hat{\phi}$ that minimize the negative log-likelihood loss function over the training dataset pairs $\{x_i, y_i\}$:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right] = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] \right]$$

4. To perform inference for a new test example x, return either the full distribution $Pr(y|f[x,\hat{\phi}])$ or the maximum of this distribution.

- We first choose a distribution over the prediction space y.
- In this case, we have $y \in \{1, 2, ..., K\}$, so we choose the categorical distribution, which is defined on this domain. This has K parameters $\lambda_1, \lambda_2, ..., \lambda_K$, which determine the probability of each category: $Pr(y=k) = \lambda_k$
- The parameters are constrained to take values between zero and one, and they must collectively sum to one to ensure a valid probability distribution.

- Then we use a network f[x,φ] with K outputs to compute these K parameters from the input x.
- Unfortunately, the network outputs will not necessarily obey the sum-to-1 constraints.
 - Consequently, we pass the K outputs of the network through a function that ensures these constraints are respected.
- A suitable choice is the softmax function. This takes an arbitrary vector of length K and returns a vector of the same length but where the elements are now in the range [0, 1] and sum to one. The kth output of the softmax function is:

$$\operatorname{softmax}_{k}[\mathbf{z}] = \frac{\exp[z_{k}]}{\sum_{k'=1}^{K} \exp[z_{k'}]}$$

• Therefore the likelihood is given by:

$$Pr(y = k | \mathbf{x}) = \operatorname{softmax}_k | \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}] |$$

And the NLL is given by:

$$L[\boldsymbol{\phi}] = -\sum_{i=1}^{I} \log \left[\operatorname{softmax}_{y_i} \left[\mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}] \right] \right]$$

$$= -\sum_{i=1}^{I} \left(f_{y_i}[\mathbf{x}_i, \boldsymbol{\phi}] - \log \left[\sum_{k'=1}^{K} \exp \left[f_{k'}[\mathbf{x}_i, \boldsymbol{\phi}] \right] \right] \right)$$

Colab time: Multiclass cross-entropy loss

https://colab.research.google.com/drive/1eP81zYuaSWQitBYrNUjnvXc9Yqf6NAjb

Multiple Output

- Often, we wish to make more than one prediction with the same model, so the target output y is a vector.
 - For example, we might want to predict a molecule's melting and boiling point (a multivariate regression problem, or the object class at every point in an image (a multivariate classification problem.
- While it is possible to define multivariate probability distributions and use a neural network to model their parameters as a function of the input, it is more usual to treat each prediction as independent.

$$Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) = \prod_d Pr(y_d|\mathbf{f}_d[\mathbf{x}_i, \boldsymbol{\phi}])$$

Multiple Output

 The minimization is then done in the usual way by minimizing the Negative Log Likelihood

$$L[\boldsymbol{\phi}] = -\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] = -\sum_{i=1}^{I} \sum_{d} \log \left[Pr(y_{id}|\mathbf{f}_d[\mathbf{x}_i, \boldsymbol{\phi}]) \right]$$

where y_{id} is the dth output from the ith training example.

Distributions for Loss Functions for Different Prediction Types

Data Type	Domain	Distribution	Use
univariate, continuous, unbounded	$y\in\mathbb{R}$	univariate normal	regression
univariate, continuous, unbounded	$y \in \mathbb{R}$	Laplace or t-distribution	robust regression
univariate, continuous, unbounded	$y \in \mathbb{R}$	mixture of Gaussians	multimodal regression
univariate, continuous, bounded below	$y \in \mathbb{R}^+$	exponential or gamma	predicting magnitude
univariate, continuous, bounded	$y \in [0, 1]$	beta	predicting proportions
$\label{eq:multivariate} \begin{split} & \text{multivariate, continuous,} \\ & \text{unbounded} \end{split}$	$\mathbf{y} \in \mathbb{R}^K$	multivariate normal	multivariate regression
univariate, continuous, circular	$y \in (-\pi, \pi]$	von Mises	predicting direction
univariate, discrete, binary	$y \in \{0, 1\}$	Bernoulli	binary classification
univariate, discrete, bounded	$y \in \{1, 2, \dots, K\}$	categorical	multiclass classification
univariate, discrete, bounded below	$y \in [0, 1, 2, 3, \ldots]$	Poisson	predicting event counts
multivariate, discrete, permutation	$\mathbf{y} \in \text{Perm}[1, 2, \dots, K]$	Plackett-Luce	ranking

- We have often use the term Cross Entropy to describe the loss commonly used in classification problems, but... Why is it a form of "Entropy"?
- Consider the Kullback-Leibler divergence between two distributions p, and q. It measures the "distance" between the two distributions:

$$D_{KL}[q||p] = \int_{-\infty}^{\infty} q(z) \log[q(z)] dz - \int_{-\infty}^{\infty} q(z) \log[p(z)] dz$$

- Now consider that we observe an empirical data distribution at points {y_i}.
 - We can describe this as a weighted sum of point masses:

$$\delta(x-lpha) = rac{1}{2\pi} \int_{-\infty}^{\infty} dp \, \cos(px-plpha)$$

Dirac's Delta.
$$q(y)=rac{1}{I}\sum_{i=1}^{I}\delta[y-y_i]$$
 $\delta(x-lpha)=rac{1}{2\pi}\int_{-\infty}^{\infty}dp\,\cos(px-plpha)$

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i]$$

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log[q(y)] dy - \int_{-\infty}^{\infty} q(y) \log[Pr(y|\boldsymbol{\theta})] dy \right] \\
= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} q(y) \log[Pr(y|\boldsymbol{\theta})] dy \right]$$

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i]$$

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log[q(y)] dy - \int_{-\infty}^{\infty} q(y) \log[Pr(y|\boldsymbol{\theta})] dy \right]
= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} q(y) \log[Pr(y|\boldsymbol{\theta})] dy \right]
= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} \left(\frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i] \right) \log[Pr(y|\boldsymbol{\theta})] dy \right]$$

$$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i]$$

$$\begin{split} \hat{\boldsymbol{\theta}} &= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log[q(y)] dy - \int_{-\infty}^{\infty} q(y) \log[Pr(y|\boldsymbol{\theta})] dy \right] \\ &= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} q(y) \log[Pr(y|\boldsymbol{\theta})] dy \right] \\ &= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} \left(\frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i] \right) \log[Pr(y|\boldsymbol{\theta})] dy \right] \\ &= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\frac{1}{I} \sum_{i=1}^{I} \log[Pr(y_i|\boldsymbol{\theta})] \right] \end{split}$$

$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i]$

Why Cross Entropy?

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log[q(y)] dy - \int_{-\infty}^{\infty} q(y) \log[Pr(y|\boldsymbol{\theta})] dy \right]$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} q(y) \log[Pr(y|\boldsymbol{\theta})] dy \right]$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\int_{-\infty}^{\infty} \left(\frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i] \right) \log[Pr(y|\boldsymbol{\theta})] dy \right]$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\frac{1}{I} \sum_{i=1}^{I} \log[Pr(y_i|\boldsymbol{\theta})] \right]$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log[Pr(y_i|\boldsymbol{\theta})] \right]$$

$q(y) = \frac{1}{I} \sum_{i=1}^{I} \delta[y - y_i]$

Why Cross Entropy?

• We want to minimize the KL divergence between q(y) and the real distribution $Pr(y|\theta)$:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(y_i | \boldsymbol{\theta}) \right] \right]$$

• By substituting θ with $f[\mathbf{x}_i, \boldsymbol{\phi}]$ computed by the ML model we get

= argmin
$$\left[-\sum_{i=1}^{I} \log \left[Pr(y_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] \right]$$

 The negative log-likelihood criterion (from maximizing the data likelihood) and the cross-entropy criterion (from minimizing the distance between the model and empirical data distributions) are equivalent.

Exercise

Problem 5.6 Consider building a model to predict the number of pedestrians $y \in \{0, 1, 2, ...\}$ that will pass a given point in the city in the next minute, based on data \mathbf{x} that contains information about the time of day, the longitude and latitude, and the type of neighborhood. A suitable distribution for modeling counts is the Poisson distribution (figure 5.15). This has a single parameter $\lambda > 0$ called the *rate* that represents the mean of the distribution. The distribution has probability density function:

$$Pr(y=k) = \frac{\lambda^k e^{-\lambda}}{k!}. (5.36)$$

Design a loss function for this model assuming we have access to I training pairs $\{\mathbf{x}_i, y_i\}$.

• Given the probability density function of the Poisson distribution: $P_r(y=k) = \frac{\lambda^k e^{-\lambda}}{k!}$

- Given the probability density function of the Poisson distribution: $P_r(y=k) = \frac{\lambda^k e^{-\lambda}}{k!}$
- The log-likelihood for a single data point (x, y) is: $\log P_r(y = k) = k \log \lambda \lambda \log(k!)$

- Given the probability density function of the Poisson distribution: $P_r(y=k) = \frac{\lambda^k e^{-\lambda}}{k!}$
- The log-likelihood for a single data point (x, y) is: $\log P_r(y = k) = k \log \lambda \lambda \log(k!)$
- For I training pairs $\{x_i, y_i\}$, the total log-likelihood is the sum of the log-likelihoods for each data point:

$$L(\lambda) = \sum_{i=1}^{I} (y_i \log \lambda - \lambda - \log(y_i!))$$

- Given the probability density function of the Poisson distribution: $P_r(y=k) = \frac{\lambda^k e^{-\lambda}}{k!}$
- The log-likelihood for a single data point (x, y) is: $\log P_r(y = k) = k \log \lambda \lambda \log(k!)$
- For I training pairs $\{x_i, y_i\}$, the total log-likelihood is the sum of the log-likelihoods for each data point:

$$L(\lambda) = \sum_{i=1}^{I} (y_i \log \lambda - \lambda - \log(y_i!))$$

- To turn this into a loss function, we take the negative of the log-likelihood:
 - $\circ \operatorname{Loss}(\lambda) = -L(\lambda)$
 - $\circ \operatorname{Loss}(\lambda) = -\sum_{i=1}^{I} (y_i \log \lambda_i \lambda_i \log(y_i!))$

- Given the probability density function of the Poisson distribution: $P_r(y=k) = \frac{\lambda^k e^{-\lambda}}{k!}$
- The log-likelihood for a single data point (x, y) is: $\log P_r(y = k) = k \log \lambda \lambda \log(k!)$
- For I training pairs $\{x_i, y_i\}$, the total log-likelihood is the sum of the log-likelihoods for each data point:

$$L(\lambda) = \sum_{i=1}^{I} (y_i \log \lambda - \lambda - \log(y_i!))$$

- To turn this into a loss function, we take the negative of the log-likelihood:
 - $\circ \operatorname{Loss}(\lambda) = -L(\lambda)$
- In practice, the model will predict a different rate λ_i for each data point x_i based on the input features (time of day, longitude, latitude, type of neighborhood). So, the loss function becomes:

$$Loss(\lambda) = -\sum_{i=1}^{I} (y_i \log \lambda - \lambda - \log(y_i!))$$

The term log(y_i!) can be ignored during optimization since it doesn't depend on the model's parameters. It's a constant with respect to λ

Deep Learning

End of Lecture
03 - Model Training. Loss function

