

INA180, INA2180, INA4180

APRIL 2017 - REVISED JULY 2022

INAx180 低侧和高侧电压输出电流检测放大器

1 特性

共模范围 (V_{CM}): -0.2V 至 +26V

高带宽:350kHz(A1器件)

• 失调电压:

V_{CM} = 0V 时为 ±150µV(最大值)

- V_{CM} = 12V 时为 ±500μV (最大值)

输出压摆率:2V/us

精度:

- ±1% 增益误差(最大值)

- 1µV/°C 温漂(最大值)

增益选项:

- 20V/V (A1 器件)

- 50V/V (A2 器件)

- 100V/V (A3 器件)

- 200V/V (A4 器件)

• 静态电流: 260µA(最大值)(INA180)

2 应用

- 电机控制
- 电池监控
- 电源管理
- 照明控制
- 过流检测
- 光伏逆变器

典型应用电路

3 说明

INA180、INA2180 和 INA4180 (INAx180) 电流检测放 大器专为成本优化型应用而设计。此类器件是一系列电 流检测放大器(也称为电流分流监控器)的一部分,可 在独立于电源电压的 - 0.2V 至 +26V 范围内的共模电 压中检测电流检测电阻器上的压降。INAx180 集成了 匹配的电阻增益网络,支持四个固定增益器件选项: 20V/V、50V/V、100V/V 或 200V/V。该匹配的增益电 阻网络可更大程度地减少增益误差,并降低了温度漂 移。

所有此类器件由 2.7V 至 5.5V 单电源供电。单通道 INA180 消耗的最大电源电流为 260µA;而双通道 INA2180 消耗的最大电源电流为 500µA,四通道消耗 的最大电源电流为 900µA。

INA180 采用具有两种不同引脚配置的 5 引脚 SOT-23 封装。INA2180 采用 8 引脚 VSSOP 和 WSON 封装。 INA4180 采用 14 引脚 TSSOP 封装。所有器件选项都 具有 -40°C 至 +125°C 的扩展额定工作温度范围。

封装信息(1)

	器件型号	封装	封装尺寸(标称值)				
	INA180	SOT-23 (5)	2.90mm × 1.60mm				
	INA2180	VSSOP (8)	3.00mm × 3.00mm				
		WSON (8)	2.00mm × 2.00mm				
	INA4180	TSSOP (14)	5.00mm × 4.40mm				

如需了解所有可用封装,请参阅数据表末尾的封装选项附录。

h	숬
ハ	2 2

1	特性	8.2 功能方框图	16
	···	8.3 特性说明	
	说明1	8.4 器件功能模式	19
4	修订历史记录2	9 应用和实现	21
5	器件比较4	9.1 应用信息	21
6	引脚配置和功能4	9.2 典型应用	<mark>25</mark>
7	规格7	9.3 电源相关建议	
	7.1 绝对最大额定值7	9.4 布局	
	7.2 ESD 等级7	10 器件和文档支持	
	7.3 建议运行条件7	10.1 文档支持	
	7.4 热性能信息7	10.2 接收文档更新通知	
	7.5 电气特性8	10.3 支持资源	
_	7.6 典型特性	10.4 商标	
8	详细说明	10.5 Electrostatic Discharge Caution 10.6 术语表	
_	· 修订历史记录		
	Changes from Revision G (April 2020) to Revision H	(July 2022)	Page
•	更新了整个文档中的表格、图和交叉参考的编号格式		1
•	将电源相关建议和布局部分移到了应用和实施部分		
•	将图 9-9 中的引脚 3 从 IN+2 更改为 IN+1		
_			
C	Changes from Revision F (March 2019) to Revision G	6 (April 2020)	Page
•	向数据表添加了 INA2180 8 引脚 WSON 封装		1
C	Changes from Revision E (July 2018) to Revision F (I	•	
_	在输入差分过载部分的末尾添加了有关相位反转的新具	改洛	19 ————
_	Changes from Revision D (March 2018) to Revision E		
•	向 <i>器件比较</i> 表中添加了 B 版本器件		4
C	Changes from Revision C (December 2017) to Revisi	on D (March 2018)	Page
•	将 INA4180 器件从"预发布"更改为"量产数据"(,	
•	为 INA4180 添加了新的图 25		
•	为 INA4180 添加了新的图 28		9
C	Changes from Revision B (November 2017) to Revisi	on C (December 2017)	Page
•	将 INA2180 器件从"预发布"更改为"量产数据"(
•	在图 21 标题中添加了"两个输入"		9
•	为 INA2180 添加了新的图 24		
•	为 INA4180 添加了新的图 25 占位符		9
•	为 INA2180 添加了新的图 27		9
•	为 INA4180 添加了新的图 28 占位符		
•	更改了图 29		
•	在图 29 标题末尾添加了"(A3 器件)"		
•	为 INA2180 添加了新的图 38		
•	在 <i>精密低侧电流检测</i> 部分将失调电压由"小于 ±150µ\		
•			

www.ti.com.cn

 从公式 2 中删除了 V_S	23 26
Changes from Revision A (August 2017) to Revision B (November 2017)	Page
• 向数据表添加了 INA4180 预发布器件和相关内容	
• 为了清晰起见,将表3中的设计参数名称从"精度"更改为"电流检测误差"	
• 将公式 7 中的 "RMS" 更改为 "RSS"	25
Changes from Revision * (April 2017) to Revision A (August 2017)	Page
• 向数据表添加了 INA2180 预发布器件和相关内容	1

5 器件比较

表 5-1. 器件比较

产品	通道数量	增益 (V/V)
INA180A1 ⁽¹⁾	1	20
INA180A2 ⁽¹⁾	1	50
INA180A3 ⁽¹⁾	1	100
INA180A4 ⁽¹⁾	1	200
INA180B1 ⁽¹⁾	1	20
INA180B2 ⁽¹⁾	1	50
INA180B3 ⁽¹⁾	1	100
INA180B4 ⁽¹⁾	1	200
INA2180A1	2	20
INA2180A2	2	50
INA2180A3	2	100
INA2180A4	2	200
INA4180A1	4	20
INA4180A2	4	50
INA4180A3	4	100
INA4180A4	4	200

⁽¹⁾ INA180A 器件使用引脚排列 A。INA180B 器件使用引脚排列 B。更多信息,请参阅*引脚配置和功能* 部分。

6 引脚配置和功能

图 6-1. INA180: DBV 封装 5 引脚 SOT-23 (引脚排列 图 6-2. INA180: DBV 封装 5 引脚 SOT-23 (引脚排列 A) 顶视图 B) 顶视图

表 6-1. 引脚功能: INA180 (单通道)

	引脚					
名称	SOT-23 引脚 排列 A	SOT-23 引脚 排列 B	类型	说明		
GND	2	2	模拟	接地		
IN -	4	3	模拟输入	电流感测放大器负输入。对于高侧应用,连接至感测电阻的负载侧。对于低侧应用,连接至感测电阻的接地侧。		
IN+	3 1 模技		模拟输入	电流感测放大器正输入。对于高侧应用,连接至感测电阻的总线电压侧。对于低侧应用,连接至感测电阻的负载侧。		
OUT	1	4	模拟输出	输出电压		
VS 5 5		模拟	电源,2.7V 至 5.5V			

图 6-3. INA2180: DGK 封装 8 引脚 VSSOP 顶视图

A. 散热焊盘可悬空或连接到 GND。

图 6-4. INA2180: DSG 封装 8 引脚 WSON 顶视图

图 6-5. INA4180: PW 封装 14 引脚 TSSOP 顶视图

表 6-2. 引脚功能: INA2180(双通道)和 INA4180(四通道)

	引脚		ांक्ट और	MA PHT			
名称	INA2180	INA4180	· 类型	说明			
GND	4	11	模拟	接地			
IN - 1	2	2	模拟输入	通道 1 的电流检测放大器负输入。对于高侧应用,连接至通道 1 检测电阻的负载侧。对于低侧应用,连接至通道 1 检测电阻的接地侧。			
IN+1	3	3	模拟输入	通道 1 的电流检测放大器正输入。对于高侧应用,连接至通道 1 检测电阻的总线电压侧。对于低侧应用,连接至通道 1 检测电阻的负载侧。			
IN - 2	6	6	模拟输入	通道 2 的电流检测放大器负输入。对于高侧应用,连接至通道 2 检测电阻的负载侧。对于低侧应用,连接至通道 2 检测电阻的接地侧。			
IN+2	5	5	模拟输入	通道 2 的电流检测放大器正输入。对于高侧应用,连接至通道 2 检测电阻的总线电压侧。对于低侧应用,连接至通道 2 检测电阻的负载侧。			
IN - 3	_	9	模拟输入	通道3的电流检测放大器负输入。对于高侧应用,连接至通道3检测电阻的负载侧。对于低侧应用,连接至通道3检测电阻的接地侧。			
IN+3	_	10	模拟输入	通道3的电流检测放大器正输入。对于高侧应用,连接至通道3检测电阻的总线电压侧。对于低侧应用,连接至通道3检测电阻的负载侧。			
IN - 4	_	13	模拟输入	通道 4 的电流检测放大器负输入。对于高侧应用,连接至通道 4 检测电阻的负载侧。对于低侧应用,连接至通道 4 检测电阻的接地侧。			
IN+4	_	12	模拟输入	通道 4 的电流检测放大器正输入。对于高侧应用,连接至通道 4 检测电阻的总线电压侧。对于低侧应用,连接至通道 4 检测电阻的负载侧。			
OUT1	1	1	模拟输出	通道 1 输出电压			
OUT2	7	7	模拟输出	通道 2 输出电压			
OUT3	_	8	模拟输出	通道3输出电压			

表 6-2. 引脚功能: INA2180 (双通道)和 INA4180 (四通道) (continued)

	引脚		类型	说明			
名称	INA2180	INA4180	火 垒	₩. 93			
OUT4	_	14	模拟输出	通道 4 输出电压			
VS	8	4	模拟	电源,2.7V 至 5.5V			

7 规格

7.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

		最小值	最大值	单位
电源电压, V _S			6	V
模拟输入,IN+,IN- ⁽²⁾	差分 (V _{IN+})-(V _{IN-})	- 26	26	V
快1y.珊八,IN+,IN-(-)	共模(3)	GND - 0.3	26	V
输出电压		GND - 0.3	V _S + 0.3	V
最大输出电流,I _{OUT}			8	mA
自然通风工作温度范围,T _A		-55	150	°C
结温,TJ			150	°C
贮存温度,T _{stg}		-65	150	°C

- (1) 超出*绝对最大额定值*下所列的值的应力可能会对器件造成损坏。这些列出的值仅仅是应力额定值,这并不表示器件在这些条件下以及在 *建议运行条件* 以外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。
- (2) V_{IN+} 和 V_{IN-} 分别为 IN+ 和 IN 引脚上的电压。
- (3) 如果将任何端子上的电流限制在 5mA,该引脚的输入电压可能超出所示电压。

7.2 ESD 等级

			最小值	最大值	单位
V	热点效点	人体放电模型 (HBM),符合 ANSI/ESDA/JEDEC JS-001 标准 ⁽¹⁾		±3000	V
V _(ESD)	静电放电	充电器件模型 (CDM),符合 JEDEC 规范 JESD22-C101 ⁽²⁾		±1000	V

(1) JEDEC 文档 JEP155 指出: 500V HBM 能够在标准 ESD 控制流程下安全生产。

(2) JEDEC 文件 JEP157 指出: 250V CDM 可实现在标准 ESD 控制流程下安全生产。

7.3 建议运行条件

在自然通风条件下的工作温度范围内测得(除非另有说明)

P13.11.07 (3.11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
		最小值	标称值	最大值	单位	
V _{CM}	共模输入电压 (IN+和IN-)	- 0.2	12	26	V	
Vs	运行电源电压	2.7	5	5.5	V	
T _A	自然通风工作温度	-40		125	°C	

7.4 热性能信息

			INA2180		INA4180	
	热指标 ⁽¹⁾	DBV (SOT23)	DSG (WSON)	DGK (VSSOP)	PW (TSSOP)	单位
		5 引脚	8 引脚	8 个引脚	14 引脚	
R ₀ JA	结至环境热阻	197.1	74.9	177.9	115.9	°C/W
R _{θ JC(top)}	结至外壳(顶部)热阻	95.8	90.8	65.6	44.3	°C/W
R ₀ JB	结至电路板热阻	53.1	40.8	99.3	59.2	°C/W
ψ JT	结至顶部特征参数	23.4	3.7	10.5	4.7	°C/W
^ψ ЈВ	结至电路板特征参数	52.7	40.8	97.9	58.6	°C/W
R ₀ JC(bot)	结至外壳(底部)热阻	不适用	16.8	不适用	不适用	°C/W

(1) 有关新旧热指标的更多信息,请参阅*半导体和 IC 封装热指标* 应用报告。

7.5 电气特性

 T_{A} = 25°C, V_{S} = 5V, V_{IN+} = 12V, V_{SENSE} = V_{IN+} - V_{IN-} (除非另有说明)

	参数	t	条件	最小值 典型	值 最大值	单位
输入						
CMRR	共模抑制比,R	TI ⁽¹⁾	V _{IN+} = 0V 至 26V,V _{SENSE} = 10mV, T _A = ~40°C 至 +125°C	84 1	00	dB
V	失调电压 ⁽²⁾ ,RTI		V _{IN+} = 0V	±	25 ±150	μ V
Vos	大炯电压, K	11		±10	00 ±500	μ V
dV _{OS} /dT	温漂,RTI		T _A = -40°C 至 +125°C	C	.2 1	μ V/°C
PSRR	电源抑制比,R	TI	V_S =2.7 V \cong 5.5 V , V_{SENSE} =10 mV	:	±8 ±40	μ V/V
L	於) / / / / / / / / / / / / / / / / / /		V _{SENSE} = 0mV , V _{IN+} = 0V	C	.1	μ А
I _{IB}	输入偏置电流		V _{SENSE} = 0mV	-	30	μА
I _{IO}	输入失调电流		V _{SENSE} = 0mV	±0.)5	μА
输出						
			A1 器件	:	20	
G	IX 34		A2 器件	:	50	
G	増益		A3 器件	11	00] "/"
			A4 器件	2	00	
E _G	增益误差		V _{OUT} = 0.5V 至 V _S - 0.5V , T _A = -40°C 至 +125°C	±0.1	% ±1%	
	增益误差与温度	 走之间的关系	T _A = -40°C 至 +125°C	1	.5 20	ppm/°C
	非线性误差		V _{OUT} = 0.5V 至 V _S - 0.5V	±0.01	%	
	最大容性负载		无持续振荡		1	nF
电压输出	(3)					
V _{SP}	相对于 V _S 电源	轨的摆幅(4)	R_L = 10k Ω 至 GND, T_A = -40 °C 至 +125°C	(V _S) - 0.	02 (V _S) - 0.03	V
V _{SN}	相对于 GND 的	摆幅 ⁽⁴⁾	R _L = 10kΩ 至 GND,T _A = -40°C 至 +125°C	(V _{GND})0.00	05 (V _{GND})+0.005	V
频率响应						
			A1 器件,C _{LOAD} = 10pF	3	50	kHz
			A2 器件,C _{LOAD} = 10pF	2	10	kHz
BW	带宽		A3 器件,C _{LOAD} = 10pF	1:	50	kHz
			A4 器件,C _{LOAD} = 10pF	10	D5	kHz
SR	压摆率				2	V/μs
噪声,R [·]	TI					
	电压噪声密度				40	nV/ √ Hz
电源						
			V _{SENSE} = 10 mV	1!	97 260	μ А
		INA180	V _{SENSE} = 10mV , T _A = -40°C 至 +125°C		300	μА
			V _{SENSE} = 10 mV	3:	55 500	μА
IQ	静态电流	INA2180	V _{SENSE} = 10mV , T _A = -40°C 至 +125°C		520	μА
			V _{SENSE} = 10 mV	6	900	μА
		INA4180				

- (1) RTI = 以输入为参考。
- (2) 通过线性外插至 VSENSE = 0V 获得失调电压, VSENSE = 满量程范围的 10% 至 90%。
- (3) 请参阅图 7-19。
- (4) 摆幅规格是在过驱输入条件下测试得出的。

7.6 典型特性

 T_A = 25°C , V_{IN} = 5V , 且 V_{IN+} = 12V (除非另有说明)

图 7-23. 静态电流与温度之间的关系 (INA180)

图 7-24. 静态电流与温度之间的关系 (INA2180)

8 详细说明

8.1 概述

INA180、INA2180 和 INA4180 (INAx180) 是 26V 共模电流检测放大器,可用于低侧和高侧配置。这些专门设计的电流检测放大器可在远超为器件供电的电源电压的共模电压下,精确测量电流检测电阻上产生的电压。可在高达 26V 的输入电压轨上测量电流,并且器件可由低至 2.7V 的电源电压供电。

8.2 功能方框图

图 8-1. INA180 功能方框图

图 8-2. INA2180 功能方框图

图 8-3. INA4180 功能方框图

8.3 特性说明

8.3.1 高带宽和转换率

INAx180 支持高达 350kHz 的小信号带宽和 2V/μs 的大信号压摆率。INAx180 能够检测到感应电流的快速变化,并且能够快速转换输出,因此是需要快速响应输入电流变化的应用的理想之选。一个需要高带宽和转换率的应用是低侧电机控制、在该应用中、能够跟踪电机中快速变化的电流、从而在更宽的工作范围内实现更精确的控制。需要更高带宽和压摆率的另一种应用是系统故障检测,INAx180 与外部比较器和基准配合使用,可以快速检测感应电流何时超出范围。

8.3.2 宽输入共模电压范围

INAx180 支持 -0.2V 至 +26V 的输入共模电压。由于内部拓扑结构,共模范围不受电源电压 (V_S) 的限制 (只要 V_S 保持在 2.7V 至 5.5V 的工作范围内)。由于能够在大于或小于 V_S 的共模电压下工作,INAx180 可用于高侧和低侧电流检测应用,如图 8-4 所示。

图 8-4. 高侧和低侧检测连接

8.3.3 精确的低侧电流感应

在低侧电流检测应用中使用时,INAx180 的失调电压在 ±150μV 以内。INAx180 的低失调性能有若干优势。首先、低偏移允许器件用于必须在宽动态范围内测量电流的应用。在这种情况下,当检测电流处于测量范围中的较低区域时,低失调电压可提高精度。低失调电压的另一个优势是,能够准确检测检测电阻上的较低压降,从而支持较低值的分流电阻器。低值分流电阻器可降低电流检测电路中的功率损耗,有助于提高最终应用的功率效率。

INAx180 的增益误差指定为实际值的 1% 以内。当检测到的电压比失调电压大得多时,此电压成为电流检测测量中的主要误差源。

8.3.4 轨到轨输出摆幅

INAx180 支持在输出靠近电源轨和 GND 的情况下进行线性电流检测操作。到正电源轨的最大规定输出摆幅为 30mV,到 GND 的最大规定输出摆幅仅为 5mV。为了将 INAx180 的输出摆幅与等效运算放大器 (op amp) 进行比较,输入被过驱,近似计算运算放大器数据表中指定的开环状态。电流检测放大器是闭环系统;因此,输出到 GND 的摆幅可能受到失调电压和放大器增益的乘积的限制。

对于具有正失调电压的器件,到 GND 的摆幅受*电气特性* 表中指定的失调电压乘以增益或到 GND 的摆幅二者中较大者的限制。

www.ti.com.cn

例如,在一个应用中,INA180A4(增益 = 200V/V)用于低侧电流检测,器件的失调电压为 40μ V,器件失调电压 和增益的乘积值为 8mV,大于指定的负摆幅值。因此,本例中到 GND 的摆幅为 8mV。如果同一器件的失调电压 为 -40μ V,则计算得出的零差分信号为 -8mV。在这种情况下,失调电压有助于在负向过驱摆幅,摆幅性能与 电气特性 表中指定的值一致。

失调电压是由 CMRR 规格确定的共模电压的函数;因此,当存在较高的共模电压时,失调电压会增加。失调电压的增加限制了在较高共模电压下运行时,在零电流条件下输出电压可以达到多低。图 8-5 显示了每个增益选项的零电流输出电压与共模电压的典型限制。

图 8-5. 零电流输出电压与共模电压

8.4 器件功能模式

8.4.1 正常模式

INAx180 在满足以下条件时处于正常运行状态:

- 电源电压 (V_S) 介于 2.7V 和 5.5V 之间。
- 共模电压 (V_{CM}) 在 0.2V 至 +26V 的指定范围内。
- 最大差分输入信号乘以增益小于 V_S 减去输出电压至 V_S 的摆幅。
- 最小差分输入信号乘以增益大于到 GND 的摆幅(请参阅 *轨到轨输出摆幅* 部分)。

在正常运行期间,此器件生成的输出电压是从 IN+ 至 IN - 的差分电压的增益表示。

8.4.2 输入差分过载

如果差分输入电压 (V_{IN+} - V_{IN-}) 乘以增益超过电压摆幅规格,INAx180 可将输出驱动至尽可能与正电源接近,并且不提供差分输入电压的精确测量。如果在正常电路运行期间发生此输入过载,请降低分流电阻器的值或使用带有所选检测电阻的较低增益版本,以避免这种运行模式。如果在故障事件中发生差分过载,INAx180 的输出会在故障情况消除后大约 20µs 恢复到预期值。

当 INAx180 输出被驱动至电源轨或接地端时,只要不超出绝对最大额定值,增加差分输入电压就不会损坏器件。 遵守这些指导原则,INAx180 的输出就可保持极性,不会出现相位反转。

8.4.3 关断模式

虽然 INAx180 没有关断引脚,但该器件的低功耗支持通过逻辑门或晶体管开关的输出为 INAx180 供电。该门或开关可打开和关闭 INAx180 电源静态电流。

然而,在电流分流监控应用中,还需要考虑在关断条件下从分流电路中消耗多少电流。评估该电流消耗需考虑 INAx180 在关断模式下的简化原理图,如图 8-6 所示。

图 8-6. 关断 INxA180 的基本电路

从 INAx180 的每个输入到 OUT 引脚和 GND 引脚的阻抗通常高于 500kΩ (来自 500kΩ 反馈和输入增益设置电阻的组合)。流经这些引脚的电流量取决于连接电压。

对于到输出引脚的 500k Ω 路径,禁用的 INAx180 的输出级确实构成了一条良好的接地路径。因此,该电流与施加在 500k Ω 电阻器上的分流共模电压成正比。

最后要注意的是,只要器件上电时分流共模电压大于 V_S ,每个输入都会附加匹配良好的 $55\,\mu$ A 典型电流。如果小于 V_S ,共模输入电流可忽略不计, $500k\Omega$ 电阻是对电流造成影响的唯一因素。

9 应用和实现

备注

以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

9.1 应用信息

当电流经电阻流向负载或接地时,INAx180会将在电流检测电阻器两端产生的电压放大。

9.1.1 基本连接

图 9-1 显示了 INA180 的基本连接。尽可能靠近分流电阻器连接输入引脚(+IN 和 IN -),从而更大限度地减小与分流电阻串联的任何电阻。

注:为了获得最佳测量精度,请将模数转换器 (ADC) 基准或微控制器接地端尽可能靠近 INAx180 GND 引脚连接,并在 INAx180 的输出和 ADC 之间添加一个 RC 滤波器。请参阅*使用* Z_{OUT} 对负载感应放大器稳定性问题进行闭环分析,了解更多详细信息。

图 9-1. INA180 的基本连接

为确保正常运行,需要使用至少 0.1μF 的电源旁路电容器。带有嘈杂或者高阻抗电源的应用也许需要额外的去耦合电容器来抑制电源噪声。将旁路电容器连接到接近器件引脚的位置。

9.1.2 R_{SENSE} 和器件增益选择

选择尽可能大的电流检测电阻,可更大限度地提高 INAx180 的精度。较大的检测电阻可在给定电流量下使差分输入信号达到最大,并减小失调电压的误差贡献。然而,在给定应用中,电流检测电阻的大小存在实际限制。 INAx180 在 12V 共模电压输入下运行时,每个输入的典型输入偏置电流为 80 μ A。当使用较大的电流检测电阻时,这些偏置电流会导致失调误差增加,并降低共模抑制。因此,对于要求电流监控精度的应用,通常不建议使用大于几欧姆的电流检测电阻。电流检测电阻值的第二个常见限制是,纳入电阻器预算的最大允许功率损耗。方程式 1 给出了电流检测电阻在给定功率损耗预算下的最大阻值。

$$R_{SENSE} < \frac{PD_{MAX}}{I_{MAX}^2} \tag{1}$$

其中:

- PD_{MAX} 是 R_{SENSE} 中的最大允许功率损耗。
- I_{MAX} 是将流过 R_{SENSE} 的最大电流。

电流检测电阻的阻值和器件增益的其他限制取决于电源电压 V_S 和器件摆幅至轨限制。为确保电流检测信号适当地传递到输出,必须检查正和负输出摆幅限制。方程式 2 提供了 R_{SENSE} 和 GAIN 的最大值,以便防止器件达到正摆幅限制。

$$I_{MAX} \times R_{SENSE} \times GAIN < V_{SP}$$
 (2)

其中:

- I_{MAX} 是将流过 R_{SENSE} 的最大电流。
- · GAIN 是电流检测放大器的增益。
- V_{SP} 是数据表中指定的正输出摆幅。

为了避免在选择 R_{SENSE} 的值时出现正输出摆幅限制,在感测电阻的值与所考虑的器件增益之间总是存在权衡。如果为最大功率损耗选择的检测电阻太大,则可以选择较低的增益器件以避免正摆幅限制。

负摆幅限制对给定应用中使用的检测电阻值可以小到何种程度施加了限制。方程式 **3** 提供了对最小检测电阻的限制。

$$I_{MIN} \times R_{SENSE} \times GAIN > V_{SN}$$
(3)

其中:

- I_{MIN} 是将流过 R_{SENSE} 的最小电流。
- GAIN 是电流检测放大器的增益。
- V_{SN} 是器件的负输出摆幅(请参阅*轨到轨输出摆幅*)。

9.1.3 信号滤波

假如将 INAx180 输出连接到高阻抗输入,且使用从 GND 到 GND 的简单 RC 网络,则器件输出端是滤波的最佳位置。在输出端进行滤波可减弱共模电压、差分输入信号及 INAx180 电源电压中的高频干扰。如果无法在输出端进行滤波,或者需要仅对差分输入信号进行滤波,则可以在器件的输入引脚上应用滤波器。图 9-2 提供了一个示例,说明如何在器件的输入引脚上使用滤波器。

图 9-2. 在输入引脚上的滤波器

外部串联电阻的增加会为测量结果带来额外的误差,因此,必须将这些串联电阻的阻值保持在 10Ω 上下(尽可能保持 10Ω 以下)以降低对精度的影响。当一个差分电压被应用在输入引脚之间时,图 9-2 中出现在输入引脚上的内部偏置网络产生了一个不匹配的输入偏置电流。如果在电路中增加外部串联滤波电阻器,则偏置电流的失配会导致滤波电阻器两端的压降失配。这种失配会产生一个差分误差电压,该电压会从分流电阻器两端产生的电压中减去。该误差会导致器件输入引脚上的电压与分流电阻器两端产生的电压不同。如果没有额外的串联电阻,输入偏置电流的不匹配对器件操作的影响就比较小。此类外部滤波电阻器给测量带来的误差量可以使用方程式 5 计算得出,其中的增益误差因子用方程式 4 计算得出。

如图 9-2 所示,与分流电阻器上产生的电压相比,器件输入端的差分电压变化量既与外部串联电阻 (R_F) 的值相关,也与内部输入电阻器 R_{INT} 的值相关。当把相关输出电压与分流电阻器上的电压相比较时,分流电压达到器件输入引脚的衰减作为一个增益误差出现。可以计算一个因子,以便确定由外部串联电阻的添加而导入的增益误差。使用方程式 4 计算分流电压与器件输入引脚上所测得电压的预期偏差:

Gain Error Factor =
$$\frac{1250 \times R_{INT}}{(1250 \times R_F) + (1250 \times R_{INT}) + (R_F \times R_{INT})}$$
(4)

其中:

- R_{INT} 是内部输入电阻。
- R_F 是外部串联电阻。

方程式 4 的调整系数包括器件内部输入电阻,这个系数随每个增益版本而变化,如表 9-1 所示。表 9-2 中显示了每个单独器件的增益误差因子。

表 9-1. 输入电阻

产品	增益	$R_{INT}(k\Omega)$
INAx180A1	20	25
INAx180A2	50	10
INAx180A3	100	5
INAx180A4	200	2.5

表 9-2. 器件增益误差因子

产品	简化的增益误差因子					
INAx180A1	25000					
	$(21 \times R_F) + 25000$					
INAx180A2	$\frac{10000}{(9 \times R_{F}) + 10000}$					
INAx180A3	$\frac{1000}{R_F + 1000}$					
INAx180A4	$\frac{2500}{(3 \times R_{F}) + 2500}$					

可从外部串联电阻的添加预期的增益补差可以以方程式5为基础来计算:

Gain Error (%) =
$$100 - (100 \times Gain Error Factor)$$

(5)

例如,使用 INA180A2 和表 9-2 中相应的增益误差公式,串联电阻 $10\,\Omega$ 的增益误差因子为 0.991。然后使用方程式 5 计算相应的增益误差,仅外部的 $10\,\Omega$ 串联电阻便额外产生 0.89% 左右的增益误差。

9.2 典型应用

图 9-3. 低侧感测

9.2.1 设计要求

表 9-3 列出了图 9-3 所示电路的设计要求。

设计参数	示例值
电源电压, V _S	5V
低侧电流感应	V _{CM} = 0V
R _{SENSE} 功率损耗	< 900mW
最大检测电流,I _{MAX}	40A
电流检测误差	最大电流时小于 1.5%, T _J = 25°C
小信号带宽	> 80 kHz

表 9-3. 设计参数

9.2.2 详细设计过程

电流检测电阻的最大值根据最大功率损耗要求进行计算。通过方程式 1 计算出的电流检测电阻最大值为 $0.563m\Omega$ 。这是检测电阻 R_{SENSE} 的最大值;因此, R_{SENSE} 选择 $0.5m\Omega$,因为这是最接近的标准电阻器值,符合功率损耗要求。

下一步是选择适当的增益,并根据需要减小 R_{SENSE} ,使输出信号摆幅保持在 V_S 范围内。使用方程式 2,假设 I_{MAX} = 40A, R_{SENSE} = 0.5m Ω ,计算得出的最大电流检测增益为 248.5,可避免输出的正向摆幅至轨限制。为了 更大限度地扩大输出信号范围,为此应用选择了 INA180A4(增益 = 200)器件。

要计算峰值电流的精度,必须确定两个因素:增益误差和偏移误差。INAx180 的增益误差指定为最大 1%。偏移导致的误差是恒定的,在 V_{CM} = 0V 且 V_S = 5V 时指定为 125 μ V(最大值)。使用方程式 6 计算出的失调电压导致的误差为 0.75%,其中总偏移误差 = 150 μ V, R_{SENSE} = 0.5m Ω , R_{SENSE} = 40A。

Total Offset Error (%) =
$$\frac{\text{Total Offset Error (V)}}{I_{\text{SENSE}} \times R_{\text{SENSE}}} \times 100\%$$
(6)

计算总误差的一种方法是将增益误差与偏移误差的占比相加。但是,在这种情况下,增益误差和偏移误差之间没有影响或相关性。计算总误差的一种更准确的统计方法是使用误差的 RSS 和,如方程式 7 所示:

Total Error (%) =
$$\sqrt{\text{Total Gain Error (%)}^2 + \text{Total Offset Error (%)}^2}$$

(7)

应用方程式 7 后, 计算得出的最大电流时的总电流检测误差为 1.25%, 小于 1.5% 的设计示例要求。

INA180A4(增益 = 200)还具有 105kHz 的带宽,满足 80kHz 的小信号带宽要求。如果需要更高的带宽,可以使用增益较低的器件,但代价是输出电压范围缩小或 R_{SENSE} 值增大。

9.2.3 应用曲线

图 9-4 显示了单向配置的输出响应示例。器件输出摆幅受接地限制;因此,输出偏置到该零输出电平。对于正差分输入信号,输出可上升到高于接地值,但对于负差分输入信号,输出不能下降到低于接地值。

图 9-4. 输出响应

9.3 电源相关建议

INAx180 的输入电路能够准确地测量超过电源电压 V_S 的电压。例如, V_S 可以为 5V,而 IN+和 IN - 上的总线电源电压可高达 26V。但是,OUT 引脚的输出电压范围受 VS 引脚上的电压限制。INAx180 还能够在 IN+和 IN - 输入引脚上承受高达 26V 的全差分输入信号范围,无论器件是否在 VS 引脚上供电。

9.3.1 共模瞬态电压大于 26V

增加一小部分电路,便可在瞬态电压大于 26V 的电路中(例如汽车应用)使用 INAx180。只使用齐纳二极管或者齐纳类型瞬态吸收器(有时称为*瞬变电压抑制器 (Transzorb)*);任何其它类型的瞬态吸收器均有无法接受的延迟时间。首先添加一对用作齐纳二极管工作阻抗的电阻器,如图 9-5 所示。请使用尽可能小的电阻器,通常为 10Ω 左右。使用较大的电阻器会对增益产生影响,*信号滤波* 部分对此进行了讨论。该电路仅限制短期瞬态;因此,使用 10Ω 电阻器以及最低额定功率可接受的常规齐纳二极管可满足许多应用的需求。这个组合使用最少的电路板空间。这些二极管可使用小型的

SOT-523 或 SOD-523 封装。

图 9-5. 使用双齐纳二极管的瞬变保护

如果低功率齐纳二极管的瞬态吸收能力无法满足需求,必须使用功率更高的瞬态吸收器。更为高效的封装解决方案是在器件的输入端之间使用单个瞬态吸收器和背对背二极管,如图 9-6 所示。最节省空间的解决方案是在 SOT-523 封装或 SOD-523 封装中使用两个串联二极管。在图 9-5 和图 9-6 所示的示例中,带有所有保护元件的 INAx180 所需的总电路板面积小于 SO-8 封装的面积,且仅略大于 MSOP-8 封装的面积。

图 9-6. 使用单个瞬态吸收器和输入钳位进行瞬态保护

有关参考设计示例,请参阅具有瞬态稳定性的电流分流监控器参考设计。

9.4 布局

9.4.1 布局指南

- 使用开尔文连接或 4 线制连接将输入引脚连接到感测电阻器。这种连接技术可确保在输入引脚之间仅检测电流 感测电阻的阻抗。电流感测电阻布线不良通常会导致在输入引脚之间存在额外的电阻。 鉴于电流电阻的欧姆值 非常低,任何额外的高载流阻抗都会导致严重的测量误差。
- 电源旁路电容器的位置应尽可能靠近器件电源引脚和接地引脚。建议使用 0.1μF 的旁路电容器。可以添加额外的去耦电容以补偿噪声或高阻抗电源。
- 进行电流检测电阻到器件的连接布线时,应使布线长度尽可能接近,尽量减少任何阻抗不匹配。

9.4.2 布局示例

图 9-7. 单通道推荐布局(引脚排列 A)

图 9-8. 双通道推荐布局 (VSSOP)

图 9-9. 双通道推荐布局 (WSON)

图 9-10. 四通道推荐布局

10 器件和文档支持

10.1 文档支持

10.1.1 相关文档

请参阅以下相关文档:

- 德州仪器 (TI), INA180-181EVM 用户指南
- 德州仪器 (TI), INA2180-2181EVM 用户指南
- 德州仪器 (TI), INA4180-4181EVM 用户指南

10.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

10.3 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

10.4 商标

TI E2E™ is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

10.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

机械、封装和可订购信息

下述页面包含机械、封装和订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

20-Aug-2024 www.ti.com

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
INA180A1IDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	18ID	Samples
INA180A1IDBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	18ID	Samples
INA180A2IDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1A8D	Samples
INA180A2IDBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1A8D	Samples
INA180A3IDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	1A9D	Samples
INA180A3IDBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	1A9D	Samples
INA180A4IDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1AAD	Samples
INA180A4IDBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1AAD	Samples
INA180B1IDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	18RD	Samples
INA180B1IDBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	18RD	Samples
INA180B2IDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1ABD	Samples
INA180B2IDBVT	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125	1ABD	
INA180B3IDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1ACD	Samples
INA180B3IDBVT	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125	1ACD	
INA180B4IDBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	1ADD	Samples
INA180B4IDBVT	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI	-40 to 125	1ADD	
INA2180A1IDGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU SN NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	1CX6	Samples
INA2180A1IDGKT	OBSOLETE	VSSOP	DGK	8		TBD	Call TI	Call TI	-40 to 125	1CX6	
INA2180A1IDSGR	ACTIVE	WSON	DSG	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	25EY	Samples
INA2180A1IDSGT	OBSOLETE	WSON	DSG	8		TBD	Call TI	Call TI	-40 to 125	25EY	
INA2180A2IDGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU SN NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	1CZ6	Samples

PACKAGE OPTION ADDENDUM

www.ti.com 20-Aug-2024

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
INA2180A2IDGKT	OBSOLETE	VSSOP	DGK	8		TBD	Call TI	Call TI	-40 to 125	1CZ6	
INA2180A2IDSGR	ACTIVE	WSON	DSG	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	25FY	Samples
INA2180A2IDSGT	ACTIVE	WSON	DSG	8	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	25FY	Samples
INA2180A3IDGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU SN NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	1D16	Samples
INA2180A3IDGKT	OBSOLETE	VSSOP	DGK	8		TBD	Call TI	Call TI	-40 to 125	1D16	
INA2180A3IDSGR	ACTIVE	WSON	DSG	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	25GY	Samples
INA2180A3IDSGT	OBSOLETE	WSON	DSG	8		TBD	Call TI	Call TI	-40 to 125	25GY	
INA2180A4IDGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU SN NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	1D26	Samples
INA2180A4IDGKT	OBSOLETE	VSSOP	DGK	8		TBD	Call TI	Call TI	-40 to 125	1D26	
INA2180A4IDSGR	ACTIVE	WSON	DSG	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	25HY	Samples
INA2180A4IDSGT	OBSOLETE	WSON	DSG	8		TBD	Call TI	Call TI	-40 to 125	25HY	
INA4180A1IPWR	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	4180A1	Samples
INA4180A2IPWR	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	4180A2	Samples
INA4180A3IPWR	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	4180A3	Samples
INA4180A4IPWR	ACTIVE	TSSOP	PW	14	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	4180A4	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

PACKAGE OPTION ADDENDUM

www.ti.com 20-Aug-2024

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF INA180, INA2180, INA4180:

Automotive: INA180-Q1, INA2180-Q1, INA4180-Q1

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

www.ti.com 30-May-2024

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
INA180A1IDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA180A1IDBVT	SOT-23	DBV	5	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA180A2IDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA180A2IDBVT	SOT-23	DBV	5	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA180A3IDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
INA180A3IDBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
INA180A4IDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA180A4IDBVT	SOT-23	DBV	5	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA180B1IDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA180B1IDBVT	SOT-23	DBV	5	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA180B2IDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA180B3IDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA180B4IDBVR	SOT-23	DBV	5	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA180B4IDBVT	SOT-23	DBV	5	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA2180A1IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA2180A1IDGKT	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 30-May-2024

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
INA2180A1IDSGR	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
INA2180A2IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA2180A2IDGKT	VSSOP	DGK	8	250	180.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA2180A2IDSGR	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
INA2180A2IDSGT	WSON	DSG	8	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
INA2180A3IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA2180A3IDSGR	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
INA2180A4IDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA2180A4IDGKT	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
INA2180A4IDSGR	WSON	DSG	8	3000	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
INA4180A1IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
INA4180A2IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
INA4180A3IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
INA4180A4IPWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 30-May-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
INA180A1IDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
INA180A1IDBVT	SOT-23	DBV	5	250	210.0	185.0	35.0
INA180A2IDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
INA180A2IDBVT	SOT-23	DBV	5	250	210.0	185.0	35.0
INA180A3IDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
INA180A3IDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
INA180A4IDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
INA180A4IDBVT	SOT-23	DBV	5	250	210.0	185.0	35.0
INA180B1IDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
INA180B1IDBVT	SOT-23	DBV	5	250	210.0	185.0	35.0
INA180B2IDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
INA180B3IDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
INA180B4IDBVR	SOT-23	DBV	5	3000	210.0	185.0	35.0
INA180B4IDBVT	SOT-23	DBV	5	250	210.0	185.0	35.0
INA2180A1IDGKR	VSSOP	DGK	8	2500	356.0	356.0	35.0
INA2180A1IDGKT	VSSOP	DGK	8	250	356.0	356.0	35.0
INA2180A1IDSGR	WSON	DSG	8	3000	210.0	185.0	35.0
INA2180A2IDGKR	VSSOP	DGK	8	2500	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 30-May-2024

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
INA2180A2IDGKT	VSSOP	DGK	8	250	210.0	185.0	35.0
INA2180A2IDSGR	WSON	DSG	8	3000	210.0	185.0	35.0
INA2180A2IDSGT	WSON	DSG	8	250	210.0	185.0	35.0
INA2180A3IDGKR	VSSOP	DGK	8	2500	356.0	356.0	35.0
INA2180A3IDSGR	WSON	DSG	8	3000	210.0	185.0	35.0
INA2180A4IDGKR	VSSOP	DGK	8	2500	356.0	356.0	35.0
INA2180A4IDGKT	VSSOP	DGK	8	250	356.0	356.0	35.0
INA2180A4IDSGR	WSON	DSG	8	3000	210.0	185.0	35.0
INA4180A1IPWR	TSSOP	PW	14	2000	356.0	356.0	35.0
INA4180A2IPWR	TSSOP	PW	14	2000	356.0	356.0	35.0
INA4180A3IPWR	TSSOP	PW	14	2000	367.0	367.0	35.0
INA4180A4IPWR	TSSOP	PW	14	2000	356.0	356.0	35.0

SMALL OUTLINE TRANSISTOR

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

2 x 2, 0.5 mm pitch

PLASTIC SMALL OUTLINE - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PLASTIC SMALL OUTLINE - NO LEAD

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC SMALL OUTLINE - NO LEAD

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

SMALL OUTLINE PACKAGE

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司