When the Oracle Misleads: Modeling the Consequences of Using Observable Rather than Potential Outcomes in Risk Assessment Instruments

Alan Mishler, Niccolò Dalmasso Department of Statistics & Data Science

"Do the right thing": machine learning and causal inference for improved decision making · workshop at NeurIPS 2019

Risk Assessment Instruments (RAIs)

- Used in medicine, criminal justice, child welfare, etc. [1, 2, 3]
- Predict risk of negative outcome (death, recidivism, neglect)
- Typically predict observable outcome (what will happen)
- Should predict potential outcomes (what would happen under available decisions) [5, 4]

Research Question:

What's the consequence of using RAIs that predict observable outcomes?

Findings:

RAIs based on observable outcomes can make things worse.

True even with the oracle predictor and no unmeasured confounding.

1. Setup

Example: Which patients need to be hospitalized to reduce mortality risk?

- X Observed covariates (features)
- U Unobserved confounders
- A Binary treatment (1 = hospitalization)
- Y Binary outcome (1 = death)
- Y^0, Y^1 Potential outcomes under A = 0, 1

Time 1: the predictor in action

New distribution: $(X, A, Y) \sim \mathbb{P}_1$.

New average outcome: $\mathbb{E}_1[Y]$

 $\begin{array}{c}
X \longrightarrow A \\
\hline
Y
\end{array}$

When is $\mathbb{E}_1[Y] < \mathbb{E}_0[Y]$, as desired? (the predictor reduced mortality) How far is $\mathbb{E}_1[Y]$ from $\mathbb{E}_1[Y^{d^{\text{opt}}}]$, the mortality rate under the optimal treatment rule?

2. RAIs can make things worse

Difference in mortality rates: $\Delta:=\mathbb{E}_1[Y]-\mathbb{E}_0[Y]=\mathbb{E}\left\{\Gamma(X,U)(\mu^1(X,U)-\mu^0(X,U))\right\}$

with

 $\Gamma(X,U) = \mathbb{P}_1(A=1|X,U) - \mathbb{P}_0(A=1|X,U)$ (difference in treatment propensities) $\mu^a(X,U) = \mathbb{E}[Y|X,U,A=a]$ (outcome regression functions)

Clearly, Δ can be positive! (more patients die at time 1) Even if $\Delta > 0$, could have greater mortality in some strata (x, u).

2.1. Simulated example

 $X \sim \mathrm{Unif}(0,1)$ Marker of disease severity $U = \emptyset$ No unobserved confounders $\mathbb{P}_0(A=1|X) = X$ Treatment propensity at time 0 $\mathbb{E}_0[Y|X] = X$ Risk of non-treatment $\mathbb{E}_1[Y|X] = (0.7-X)^2$ Risk under hospitalization

Optimal treatment rule:

 $d^{\text{opt}}(X) = \mathbb{I}\{X \ge 0.22\}$ (treat if disease severity above a certain level)

Treatment rule implemented at time 1:

 $d(X)=\mathbb{I}\{s(X)\geq\theta\}$ for some $\theta\in[0,1]$ (treat if predicted risk above a certain level) Let $s(X)=\mathbb{E}_0[Y|X]$, the oracle predictor.

Simulated Example Results:

- (a) Optimal treatment rule: treat if X above 0.22.
- (b) $\Delta \approx 0.30$: More patients die at time 1 under d(X), regardless of threshold θ .
- (c)-(d) Groups treated (green) or not (purple) under d(X). Red: patients harmed by d(X).

2.2. Other undesirable properties of $s(X) = \mathbb{E}_0[Y|X]$

1. Expertise can make things worse.

Assume two medical systems, \mathbb{P}_0^* , \mathbb{P}_0 .

Doctors in \mathbb{P}_0^* are better at identifying who needs to be hospitalized:

$$\mathbb{P}_0^*(A=1|d^{\text{opt}}(X)=1) > \mathbb{P}_0(A=1|d^{\text{opt}}(X)=1)$$

Then, under a threshold rule:

Time 0: $\mathbb{E}_0^*[Y] < \mathbb{E}_0[Y]$

Time 1: $\mathbb{E}_1^*[Y] > \mathbb{E}_1[Y]$

 \mathbb{P}^* is **better** than \mathbb{P} at time 0 and **worse** at time 1.

2. Procedure is unstable under iteration.

Suppose:

For time t = 1, 2, ... we have $d(X) = \mathbb{I}\{\mathbb{E}_{t-1}[Y|X] > \theta\}$.

Suppose for some X we have $\mathbb{E}_0[Y^1|X] < \theta$, $\mathbb{E}_0[Y^0|X] > \theta$ and $\mathbb{E}_0[Y|X] > \theta$.

Then, treatment rule alternates between optimal and non-optimal:

Time	e t Treatment decision	$\mathbb{E}[Y_t X]$	$\mathbb{E}_t[Y X]$ relative to θ
0	Treat with probability $\pi_0(X)$	$\mathbb{E}_0[Y X]$	$> \theta$
1	Treat all	$\mathbb{E}[Y^1 X]$	
2	Treat none	$\mathbb{E}[Y^0 X]$	$> \theta$
3	Treat all	$\mathbb{E}[Y^1 X]$	$< \theta$
4	Treat none	$\mathbb{E}[Y^0 X]$	$> \theta$
		- ' -	

3. s(X) doesn't map to a quantity of interest like $\mathbb{E}[Y^0|X], \mathbb{E}[Y^1|X]$, or $d^{\text{opt}}(X)$.

It's not clear how s(X) could help decision makers get closer to optimal.

3. Conclusion

Risk Assessment Instruments based on observable outcomes can make things worse.

Solutions:

Estimate potential outcomes instead: $\mathbb{E}[Y^d|X]$. Estimate optimal treatment regime $d^{\mathrm{opt}}(X)$.

References

[1] Tim Brennan, William Dieterich, and Beate Ehret. Evaluating the Predictive Validity of the Compas Risk and Needs Assessment System. *Criminal Justice and Behavior*, 36(1):21–40, January 2009.

[2] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In *Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '15, pages 1721–1730, New York, NY, USA, 2015. ACM.

[3] Alexandra Chouldechova, Emily Putnam-Hornstein, Suzanne Dworak-Peck, Diana Benavides-Prado, Oleksandr Fialko, Rhema Vaithianathan, Sorelle A Friedler, and Christo Wilson. A case study of algorithm-assisted decision making in child maltreatment hotline screening decisions. *Proceedings of Machine Learning Research*, 81:1–15, 2018.

[4] Amanda Coston, Alan Mishler, Edward H. Kennedy, and Alexandra Chouldechova. Counterfactual risk assessments, evaluation, and fairness, 2019.

[5] Peter Schulam and Suchi Saria. Reliable Decision Support using Counterfactual Models. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 30, pages 1697–1708. Curran Associates, Inc., 2017.