CIVE 603

Structural Dynamics

Hexiao Zhang

266784352.

Problem 1:

$$\begin{bmatrix} F \end{bmatrix} = \begin{bmatrix} \frac{5}{3} & -\frac{2}{3} & 0 \\ -\frac{2}{3} & 1 & -\frac{1}{3} \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} \cdot \frac{24F1}{h^3}$$

$$[M] = \begin{cases} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0.5 \end{cases}$$

$$\begin{bmatrix}
k - W_{n}^{2} & N
\end{bmatrix}^{2} = \begin{bmatrix}
\frac{5}{3} \frac{E1}{h^{3}} - W_{n}^{2} & M & -\frac{2}{3} \frac{E1}{h^{3}} & 0 \\
-\frac{2}{3} \frac{E1}{h^{3}} & \frac{E1}{h^{3}} - W_{n}^{2} & M & -\frac{1}{3} \frac{E1}{h^{3}} & \frac{24E1}{h^{3}} \\
0 & -\frac{1}{3} \frac{E1}{h^{3}} & \frac{E1}{3h^{3}} - \frac{W_{n}^{2} m}{2}
\end{bmatrix}$$

$$-\frac{2}{3}\frac{EI}{h^3}$$

$$-\frac{1}{3}\frac{E1}{h^3}$$

$$W_{mi} = 5.016 \frac{EL}{mh^3}$$

$$W_{nv} = 24 \frac{51}{mh^3} \Rightarrow$$

$$\mathcal{A}[\text{et}] = 0 \implies \begin{cases} W_{n}^{2} = 5.016 \frac{El}{mh^{3}} \\ W_{n}^{2} = 2.24 \frac{El}{mh^{3}} \end{cases} \qquad \begin{cases} W_{n} = 2.24 \frac{El}{mh^{3}} \\ W_{n}^{2} = 2.80 \frac{mh}{El} \end{cases}$$

$$W_{n}^{2} = 24 \frac{El}{mh^{3}} \implies \begin{cases} W_{n} = 2.24 \frac{El}{mh^{3}} \\ W_{n}^{2} = 3.80 \frac{mh}{El} \end{cases}$$

$$W_{n}^{2} = 50.9.76 \frac{El}{mh^{3}} \qquad W_{n}^{2} = 7.149 \frac{El}{mh^{3}} \qquad 7_{3} = 0.88 \frac{mh^{3}}{El} \end{cases}$$

$$\begin{cases} 1 = 2.80 | mh \\ \boxed{2} = 1.28 | mh \end{cases}$$

$$| 7_3 = 0.88 \sqrt{\frac{mh^3}{E1}}$$

$$\frac{24E1}{h^3} \begin{cases} 43/3 / 2000 & -\frac{2}{3} & 0 \\ -\frac{2}{3} & 791 / 2000 \end{cases} = \frac{1}{3} \qquad \begin{cases} \beta_{11} \\ \beta_{21} \\ 0 & -\frac{1}{3} & 3/3 / 2000 \end{cases} = 0$$

$$\frac{24E1}{h^{3}} \begin{pmatrix} \frac{2}{3} & -\frac{7}{3} & 0 \\ -\frac{2}{3} & 0 & -\frac{7}{3} \\ 0 & -\frac{2}{3} & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} \phi_{12} \\ \phi_{32} \end{pmatrix} = 0$$

Assume
$$\phi_{32} = 1 \implies \phi_{2} = \begin{bmatrix} -0.5 \\ -0.5 \end{bmatrix}$$

repent the same process une get

$$\frac{24 \sqrt{2}}{h^{3}} \begin{pmatrix} -0.4573 & -\frac{2}{3} & 0 \\ -\frac{2}{3} & -1.1240 & -\frac{1}{3} \\ 0 & -\frac{1}{3} & -0.7287 \end{pmatrix} \begin{pmatrix} b_{23} \\ b_{23} \\ \end{pmatrix} = 0$$
Assume that $3 = 0$ (3.186)

Assume
$$\beta_3 = 1 \implies \beta_3 = \begin{cases} 3.186 \\ -2.186 \end{cases}$$

the vasults one:

$$W_n = 2.2.4 \cdot \sqrt{\frac{52}{mh^3}}$$
 $W_n = \frac{4.90\sqrt{52}}{mh^3}$
 $W_n = \frac{7.14}{mh^3}$
 $V_n = \frac{7.14}{mh^3}$
 $V_n = \frac{7.14}{mh^3}$
 $V_n = \frac{7.14}{mh^3}$
 $V_n = \frac{7.14}{mh^3}$

mode z

mode 3

The detail of colculation is shown in mutbab.

So we can verify 5 \$n.k\$r=0 ダnT·Mダレ=O (V≠n)

$$M_1 = \beta_1^7 \cdot m \beta_1 = (6.314, 0.6861) \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot m \cdot \begin{bmatrix} 0.314 \\ 0.686 \end{bmatrix}$$

$$= 1.069 \cdot m$$

for mode 2:

$$M_2 = \int_{V}^{T} \cdot m \cdot Q_2 = (-0.5, -0.5, 1) \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} m \cdot \begin{bmatrix} -0.5 \\ -0.5 \end{bmatrix} = m$$

To make M2=1 devide \$6, by Im

$$\int_{2} = \begin{cases}
-0.5 \\
-0.5
\end{cases}$$

$$\frac{1}{\sqrt{m}} = \frac{1}{2\sqrt{m}}$$

For mode 3:

$$M_3 = \beta_3^{7} \cdot m \beta_3 = (-3.186, -2.186, 1) \begin{cases} 1.0.0 \\ 0.00 \end{cases} m \begin{cases} -3.186 \\ -2.186 \end{cases} = 15.42 / 2 m$$

$$\beta_{3} = \begin{cases} 0.8111 \\ -0.5565 \end{cases} \cdot \frac{1}{\sqrt{m}}$$

Compane. The propo vation of u, u, u, u, consplucement at mass point) is same in the modes and homalized modes, but the values muy be changed to by the mormalization, but the made is multiples of the mode in the first questron

problem 2:

(andition a:
$$U_{i} = \begin{cases} \frac{1}{2} \\ \frac{1}{3} \end{cases}$$
:

$$q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \cdot \phi_{i}} = \begin{cases} 0.314 & 0.68 \\ 0.314 & 0.68 \\ 0.1 & 0.0.05 \end{cases} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0.0.05 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 & 0.0.05 \\ 1 \end{pmatrix} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi_{i}^{T} m u_{i}}{\phi_{i}^{T} m \phi_{i}} = 0$$

$$Q_{i} = \frac{\phi$$

Condition b:
$$U_{1} = \begin{pmatrix} -1 \\ 0.75 \end{pmatrix}$$

$$q_{1} = \frac{1}{100} \begin{pmatrix} \frac{1}{100} & \frac{1}{100} & \frac{1}{100} \end{pmatrix} = 0.8342$$

$$q_{2} = \frac{1}{100} \begin{pmatrix} \frac{1}{100} & \frac{1}{100} & \frac{1}{100} & \frac{1}{100} \end{pmatrix} = 0.875$$

$$q_{3} = \frac{1}{100} \begin{pmatrix} \frac{1}{100} & \frac$$

Condition C:
$$U_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

$$\begin{aligned}
Q_1 &= \frac{\beta_1^7 m U_3}{\beta_1^7 m \beta_1} = 0.1186 & 7_2 &= \frac{\beta_2^7 m U_3}{\beta_1^7 m \beta_1} = 0.3806 \\
Q_1(0) &= 0 & 9 \cdot (0) = 0 & 9_3 \cdot (0) = 0 \\
U(t) &= \sum_{n=1}^{3} \beta_n \left[\prod_{n} \omega_n \cdot \cos u_n t + \frac{q_{n(0)}}{w_n} \sin w_n t \right] \\
&= \begin{pmatrix} 0.219 \\ 0.687 \end{pmatrix} \left(0.1186 \cos w_n t \right) + \begin{pmatrix} -0.5 \\ -0.5 \end{pmatrix} \cdot \left(0.5 \cos w_n t \right) + \begin{pmatrix} 2.186 \\ -2.186 \end{pmatrix} \cdot \left(0.3806 \cos w_n t \right) \\
&= \begin{pmatrix} 0.03 \end{pmatrix} \cdot \cos \left(2.24 \sqrt{\frac{E_1}{mh^2}} t \right) - 0.25 \cdot \cos \left(4.9 \circ \sqrt{\frac{E_2}{mh^2}} t \right) + 1.2 \cdot 2 \cdot \cos \left(2.14 \circ \sqrt{\frac{E_2}{mh^2}} t \right) \\
&= 0.119 \cdot \cos \left(2.24 \sqrt{\frac{E_1}{mh^2}} t \right) + 0.5 \cdot \cos \left(4.9 \circ \sqrt{\frac{E_2}{mh^2}} t \right) + 0.38 \cdot \cos \left(2.140 \sqrt{\frac{E_2}{mh^2}} t \right) \\
&= 0.119 \cdot \cos \left(2.24 \sqrt{\frac{E_1}{mh^2}} t \right) + 0.5 \cdot \cos \left(4.9 \circ \sqrt{\frac{E_1}{mh^2}} t \right) + 0.38 \cdot \cos \left(2.140 \sqrt{\frac{E_2}{mh^2}} t \right)
\end{aligned}$$

Problem 3:

The model and information are

as shown.

Section Name Beam		2	Frame Pr	roperty/Stiff	Iness Modification Fac	tors		
Section Notes	Modify/Sho	ow Notes	Property/Stiffness Modifiers for Analysis					
Outside height (13) Top flange width (12) Top flange thickness (11) Web thickness (1w) Bottom flange width (12b) Bottom flange thickness (11)		Cross-section (axial) Area Shear Area in 2 direction Shear Area in 3 direction Torsional Constant Moment of Inertia about 2 axis Moment of Inertia about 3 axis Mass Weight		ection ection ebout 2 axis ebout 3 axis	1 10000 10000 1 10000 10000 0 01			
Material A992Fy50 Section Name Boryl					OK Cancel			
Section Name story! Section Notes	Modify/Show Hotes							
Observations Outside height (13) Top flange width (12) Top tange thickness (1f) Web thickness (1w) Bottom flange width (12b) Bottom flange thickness (1fb)	[6] [0.38] [0.38] [0.38]	Sector Properties Cross-section (axis Moment of inertia Moment of inertia Product of inertia i Shear area in 2 de Shear area in 3 de	about 3 axis about 2 axis about 2-3 rection	6.99 170 0375 10 813 0 3 3 4833 0 2502	Section modulus about 3 av Section modulus about 2 av Plastic modulus about 3 axi Plastic modulus about 2 axi Radius of Gyration about 3 Radius of Gyration about 2 Shear Center Eccentricity (ds 3.6043 s 32.0375 s 5.9706 axis 4.9321 axis 1.2438		
Material + A992Fy50 -	Property Modifiers Set Modifiers .	TOTAM IS CONSCION			OK OK			

	OutputCase	StepType Text	StepNum Unitless	Period Sec	Frequency Cyc/sec	CircFreq rad/sec	Eigenvalue rad2/sec2
•	MODAL	Mode	1	0.522942	1.9122568	12.015063	144.36176
	MODAL	Mode	2	0.24631	4.0599163	25.509206	650.71964
	MODAL	Mode	3	0.163235	6.1261526	38.491752	1481.6149

Almost Sume as
example in problem

9

The modes time almost us same as the vesets in the problem.

10

$$m = \begin{bmatrix} 100 \\ 019 \\ 002 \end{bmatrix} \cdot \frac{100}{386}$$

$$k = \frac{k}{9} \begin{bmatrix} 16 - 7 & 0 \\ -7 & 10 & -3 \\ 0 & -3 & 3 \end{bmatrix} = \frac{168}{9} \begin{bmatrix} 16 - 7 & 0 \\ -7 & 10 - 3 \\ 0 & -3 & 3 \end{bmatrix}$$

$$= \frac{1}{2} \left\{ \frac{1}{12.01}, \frac{1}{12.01} \right\} \left\{ \frac{a_0}{a_1} \right\} = \left\{ \frac{0.917}{0.001964} \right\} = \left\{ \frac{1}{38.90}, \frac{38.90}{38.90} \right\} \left\{ \frac{a_0}{a_1} \right\} = \left\{ \frac{0.917}{0.001964} \right\}$$

$$C = a_0 \, m + a_1 \, k = \begin{cases} 0.824 & -0.25 \\ -0.25 \, 7; & 0.604 & -0.100 \end{cases}$$

$$\begin{aligned}
S_{2} &= \frac{\alpha_{0}}{2} \cdot \frac{1}{w_{n}} + \frac{\alpha_{1}}{2} w_{n} \\
&= (0.9,7) \cdot \frac{1}{v_{3}.47} + 0.000 \times 24 \times 10) \times 2 \\
&= 43\%
\end{aligned}$$

$$\vec{Q} = \begin{bmatrix}
0.6375 & 0.9849 & 1.5778 \\
1.2750 & 0.9849 & -1.1270 \\
1.9145 & -1.8642 & 0.4508
\end{bmatrix}$$

$$M = \mathcal{Q}^{T} \cdot m \cdot \mathcal{\overline{Q}} = \begin{cases} 1 & 0 & 0 \\ 0 & 1 & 0 \end{cases}$$
 kips.s^r·in⁻¹

$$k = \sqrt{7} \cdot k \cdot \sqrt{2} = \sqrt{1449.14} \quad 0 \quad 0$$

$$0 \quad 648.62 \quad 0$$

$$0 \quad 0 \quad 1513.59$$

$$C = \sqrt{7} \cdot \sqrt{2} = \begin{cases} 1.20 & 0 & 0 \\ 0 & 2.1 \end{cases}$$