Exercises set 6 for the lectures on: Causality, Boosting and Continuous Latent Variable Models

Due date: 20 July 2019, 17:00

1 Causality (10 points)

Assume that a population of patients contains a fraction r of individuals who suffer from a certain fatal syndrome Z, which simultaneously makes it uncomfortable for them to take a life-prolonging drug X (Figure 1). Let $Z=z_1$ and $Z=z_0$ represent, respectively, the presence and absence of the syndrome, $Y=y_1$ and $Y=y_0$ represent death and survival, respectively, and $X=x_1$ and $X=x_0$ represent taking and not taking the drug. Assume that patients not carrying the syndrome, $Z=z_0$, die with probability p_2 if they take the drug and with probability p_1 if they don't. Patients carrying the syndrome, $Z=z_1$, on the other hand, die with probability p_3 if they do not take the drug and with probability p_4 if they do take the drug. Further, patients having the syndrome are more likely to avoid the drug, with probabilities $q_1=P(x_1|z_0)$ and $q_2=P(x_1|z_1)$.

Figure 1: Graphical model for the causality exercises.

E1. (3p) Based on this model, compute the joint distributions P(x, y, z), P(x, y), P(x, z) and P(y, z), for all values of x, y and z, in terms of the parameters r, p_1 , p_2 , p_3 , p_4 , q_1 and q_2 .

E2. (3p) Calculate the difference $P(y_1|x_1) - P(y_1|x_0)$ for three populations: (1) those carrying the syndrome, (2) those not carrying the syndrome, and (3) the population as a whole.

E3. (2p) Using your results from the previous exercise, find a combination of parameters that exhibits Simpson's reversal.

E4. (1p) Compute p(y|do(x)) for all possible values of x and y using the adjustment formula.

E5. (1p) Compute the Average Causal Effect $ACE = p(y_1|do(x_1)) - p(y_1|do(x_0))$ and compare it to the Risk Difference $RD = p(y_1|x_1) - p(y_1|x_0)$. What is the difference between the two?

2 Boosting (8 points)

The exponential error function of AdaBoost is defined by:

$$E = \sum_{n=1}^{N} \exp(-t_n f_m(x_n))$$

with $f_m(x_n)$ a classifier defined in terms of a linear combination of base classifiers $y_l(x)$ of the form:

$$f_m(x) = \sum_{l=1}^{m} \alpha_l y_l(x)$$

E6. (3p) Show that the exponential error function of AdaBoost does not correspond to the log likelihood of any well-behaved probabilistic model. This can be done by showing that the corresponding conditional distribution p(t|x) cannot be correctly normalized.

By a stage wise decomposition the error function E for AdaBoost can be written as:

$$E(\alpha_m) = \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(y_m(x_n) \neq t_m) + e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

E7. (2p) Show by differentiation of the error function wrt α_m that the optimal value of α_m leads to:

$$\alpha_m = \log \frac{1 - \epsilon_m}{\epsilon_m}$$

with ϵ_m defined by:

$$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(y_m(x_n) \neq t_m)}{\sum_{m=1}^{N} w_n^{(m)}}$$

Consider a data set comprising 400 data points from class C_1 and 400 data points from class C_2 . Suppose that a tree model A splits these into (300, 100) assigned to the first leaf node (predicting C_1) and (100, 300) assigned to the second leaf node (predicting C_2), where (n, m) denotes that n points come from class C_1 and m points come from class C_2 . Similarly, suppose that a second tree model B splits them into (200, 400) and (200, 0), respectively.

E8. (1p) Calculate the misclassification rates of the two trees and show that they are equal.

E9. (2p) Calculate the cross-entropy and the Gini Index of the two trees and show that tree model B, performs better with both of these scores.

3 Principal Components Analysis and Factor Analysis (4 points)

Write a computer program to generate 200 observations from the following model, where $\mathbf{z} = \mathcal{N}(\mathbf{0}, \mathbf{I}_3)$:

$$x_{n1} = z_{n1}$$

 $x_{n2} = z_{n2} + 0.001z_{n1}$
 $x_{n3} = 10z_{n3}$

with $n \in (1, ..., 200)$.

E10. (**4p**) Fit a PCA and an FA model with 1 latent factor. Show that the corresponding weight vector **w** aligns with the maximal variance direction (dimension 3) in the PCA case, but with the maximal correlation direction (dimensions 1+2) in the case of FA.