

ADDENDUM TO IMPINJ INC. TEST REPORT FC06-010C

FOR THE

RFID READER ANTENNA (BRICKYARD), IPJ-A0400-USA; RFID READER ANTENNA (GUARDWALL), IPJ-A0401-USA AND RFID READER ANTENNA (MINI-GUARDRAIL), IPJ-A0301-USA

FCC PART 15 SUBPART C SECTIONS 15.209 & 15.247

COMPLIANCE

DATE OF ISSUE: FEBRUARY 22, 2007

PREPARED FOR: PREPARED BY:

Impinj Inc.

701 N. 34th Street

Seattle, WA 98103

Mary Ellen Clayton

CKC Laboratories, Inc.

5046 Sierra Pines Drive

Mariposa, CA 95338

W.O. No.: 83127 Date of test: February 13-15, 2007

Report No.: FC06-010D

This report contains a total of 29 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

Page 1 of 29 Report No: FC06-010D

TABLE OF CONTENTS

Administrative Information	3
Approvals	4
Conditions for Compliance	4
Equipment Under Test (EUT) Description	5
FCC 15.33(a) Frequency Ranges Tested	5
EUT Operating Frequency	5
Equipment Under Test	5
Peripheral Devices	6
Report of Emissions Measurements	7
Testing Parameters	
FCC 15.247 – OATS Radiated Spurious Emissions(b)(3)	9
FCC 15.247/15.209/15.205 – Bandedge	12

Page 2 of 29 Report No: FC06-010D

ADMINISTRATIVE INFORMATION

DATE OF TEST: February 13-15, 2007

DATE OF RECEIPT: February 13, 2007

MANUFACTURER: Impinj Inc.

701 N. 34th Street Seattle, WA 98103

REPRESENTATIVE: Vince Moretti

TEST LOCATION: CKC Laboratories, Inc.

22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

TEST METHOD: ANSI C63.4 (2003)

PURPOSE OF TEST: Original Report: To demonstrate the compliance of the Speedway

Reader, IPJ-R1000, with the requirements for FCC part 15 Subpart B sections 15.107 & 15.109 Class B, Subpart C Sections 15.207, 15.209

&15.247 and RSS-210 devices.

Addendum A: To clarify the plot on page 21.

Addendum B: To demonstrate the compliance of the RFID Reader, IPJ-R1000, with partial re-testing for FCC Part 15 Subpart C Sections

15.209 and 15.247 after component changes in the EUT.

Addendum C is to add limit lines to the band edge plots and revise

the frequency range on page 5.

Addendum D: To demonstrate the compliance of the RFID Reader Antenna (Brickyard), IPJ-A0400-USA; RFID Reader Antenna (Guardwall), IPJ-A0401-USA and RFID Reader Antenna (Mini-Guardrail), IPJ-A0301-USA with the requirements for FCC Part 15 Subpart C Sections 15.209 & 15.247 devices with testing of new

antennas.

Page 3 of 29 Report No: FC06-010D

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

TEST PERSONNEL:

Joyce Walker, Quality Assurance Administrative Manager

Ryan Rutledge, Test Technologist

Katie Molina, Senior EMC Engineer/Lab

Manager

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply. Conducted emissions not required for this device.

Page 4 of 29 Report No: FC06-010D

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

FCC 15.33(a) Frequency Ranges Tested

15.209/15.247 Radiated Emissions: 1-10 GHz.

EUT Operating Frequency

The EUT was operating at 902-928 MHz.

The following model was tested by CKC Laboratories: **IPJ-A0400-USA**

An additional model with a second manufacturer (OEM) is the same as the model tested. Any differences between the names does not affect their EMC characteristics and therefore complies to the level of testing equivalent to the tested model name shown on the data sheets: **Manufacturer CSL**, **Model CS-777-2**

EQUIPMENT UNDER TEST

RFID Reader Antenna (Brickyard) RFID Reader Antenna (Guardwall)

Manuf: Impinj Manuf: Impinj

Model: IPJ-A0400-USA Model: IPJ-A0401-USA

Serial: Serial: FCC ID: FCC ID:

RFID Reader Antenna (Mini-Guardrail)

Manuf: Impini

Model: IPJ-A0301-USA

Serial: FCC ID:

RFID Reader Antenna (Brickyard), IPJ-A0400-USA; RFID Reader Antenna (Guardwall), IPJ-A0401-USA and RFID Reader Antenna (Mini-Guardrail), IPJ-A0301-USA

Page 5 of 29 Report No: FC06-010D

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

<u>Laptop PC</u> <u>Crossover Ethernet Cable (UTP)</u>

Manuf:DellManuf:NAModel:Latitude D505Model:NASerial:CN-0H2049-48643-49E-0525Serial:NA

<u>Laptop AC Adapter</u> <u>AC Adapter</u>

Manuf: Dell Manuf: CUI Inc

Model: HP-OQ065B83 Model: DSA-60W-20 1 24060 Serial: CN-0N2765-47890-45D-5387 Serial: DTS240250UC-P11P-DB

RFID Reader Core

Manuf: Impinj

Model: IPJ-R1000-USA-0-01-01

Serial: 40306280020

Page 6 of 29 Report No: FC06-010D

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits to determine compliance. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit to determine compliance.

	SAMPLE CALCULATIONS					
	Meter reading	$(dB\mu V)$				
+	Antenna Factor	(dB)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	$(dB\mu V/m)$				

Page 7 of 29 Report No: FC06-010D

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE					
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING		
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz		
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz		

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

<u>Peak</u>

In this mode, the spectrum analyzer/receiver readings were recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

A thorough scan of all frequencies was made manually using a small frequency span, rotating the turntable and raising and lowering the antenna from one to four meters as needed. The test engineer maximized the readings with respect to the table rotation, antenna height and configuration of EUT. Maximizing of the EUT was achieved by monitoring the spectrum analyzer on a closed circuit television monitor.

Page 8 of 29 Report No: FC06-010D

FCC 15.247(b)(3) – OATS RADIATED SPURIOUS EMISSIONS

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Impinj Inc Specification: 15.247(b)(3)

Work Order #: 83127 Date: 2/13/2007
Test Type: Radiated Scan Time: 13:51:41
Equipment: RFID Reader Antenna (Brickyard) Sequence#: 3

Manufacturer: Impinj Tested By: Ryan Rutledge

Model: IPJ-A0400-USA

S/N:

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
HP 8596E	3346A00209	11/08/2006	11/08/2008	AN00784	
Bothell 5m Cable Set	S/N: P05444	11/28/2005	11/28/2007	ANP05444	
HP 8447D PreAmp	S/N: 2944A08601	07/10/2006	07/10/2008	AN01517	
Chase BILOG	S/N: 2458	01/31/2007	01/31/2009	AN01993	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
RFID Reader Antenna	Impinj	IPJ-A0400-USA		
(Brickyard)*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D505	CN-0H2049-48643-49E-0525
Laptop AC Adapter	Dell	HP-OQ065B83	CN-0N2765-47890-45D-5387
Crossover Ethernet Cable (UTP)			
RFID Reader Core	Impinj	IPJ-R1000-USA-0-01-01	40305280513
AC Adapter	CUI Inc	DSA-60W-20 1 24060	DTS240250UC-P11P-DB

Test Conditions / Notes:

Transmitting modulated carrier at full output power. Low Channel: 902.75 MHz, High Channel: 927.25 MHz. Measuring radiated band edge compliance. RBW = 120 kHz; VBW = 300 kHz.

Transducer Legend:

T1=ANT AN01993 25-1000MHz	T2=CAB-P05444-112805

Measu	rement Data:	Re	eading list	ted by ma	ırgin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	927.250M	102.2	+23.7	+4.8			+0.0	130.7	137.0	-6.3	Vert
							25				105
2	927.250M	101.8	+23.7	+4.8			+0.0	130.3	137.0	-6.7	Horiz
							360				200
3	902.755M	101.4	+23.4	+4.6			+0.0	129.4	137.0	-7.6	Vert
							41				105
4	902.755M	99.8	+23.4	+4.6			+0.0	127.8	137.0	-9.2	Horiz
							360				188

Page 9 of 29 Report No: FC06-010D

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Impinj Inc Specification: 15.247(b)(3)

 Work Order #:
 83127
 Date: 2/13/2007

 Test Type:
 Radiated Scan
 Time: 11:39:50

Equipment: **RFID Reader Antenna (Guardwall)** Sequence#: 1

Manufacturer: Impinj Tested By: Ryan Rutledge

Model: IPJ-A0401-USA

S/N:

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8596E	3346A00209	11/08/2006	11/08/2008	AN00784
Bothell 5m Cable Set	S/N: P05444	11/28/2005	11/28/2007	ANP05444
HP 8447D PreAmp	S/N: 2944A08601	07/10/2006	07/10/2008	AN01517
Chase BILOG	S/N: 2458	01/31/2007	01/31/2009	AN01993

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
RFID Reader Antenna	Impinj	IPJ-A0401-USA		
(Guardwall)*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D505	CN-0H2049-48643-49E-0525
Laptop AC Adapter	Dell	HP-OQ065B83	CN-0N2765-47890-45D-5387
Crossover Ethernet Cable (UTP)			
RFID Reader Core	Impinj	IPJ-R1000-USA-0-01-01	40305280513
AC Adapter	CUI Inc	DSA-60W-20 1 24060	DTS240250UC-P11P-DB

Test Conditions / Notes:

Transmitting modulated carrier at full output power. Low Channel: 902.75 MHz, High Channel: 927.25 MHz. Measuring radiated band edge compliance. RBW = 120 kHz; VBW = 300 kHz.

Transducer Legend:

T1=ANT AN01993 25-1000MHz	T2=CAB-P05444-112805

Measur	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	902.755M	108.0	+23.4	+4.6			+0.0	136.0	137.0	-1.0	Horiz
							360				205
2	902.755M	107.2	+23.4	+4.6			+0.0	135.2	137.0	-1.8	Horiz
							360				205
3	927.250M	106.0	+23.7	+4.8			+0.0	134.4	137.0	-2.6	Horiz
							2				192
4	927.250M	94.4	+23.7	+4.8			+0.0	122.9	137.0	-14.1	Vert
							337				185
5	902.755M	91.4	+23.4	+4.6			+0.0	119.4	137.0	-17.6	Vert
							35				230

Page 10 of 29 Report No: FC06-010D

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Impinj Inc Specification: 15.247(b)(3)

Work Order #: 83127 Date: 2/13/2007
Test Type: Radiated Scan Time: 12:19:31
Equipment: RFID Reader Antenna (Mini-Sequence#: 2

Guardrail)

Manufacturer: Impinj Tested By: Ryan Rutledge

Model: IPJ-A0301-USA

S/N:

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8596E	3346A00209	11/08/2006	11/08/2008	AN00784
Bothell 5m Cable Set	S/N: P05444	11/28/2005	11/28/2007	ANP05444
HP 8447D PreAmp	S/N: 2944A08601	07/10/2006	07/10/2008	AN01517
Chase BILOG	S/N: 2458	01/31/2007	01/31/2009	AN01993

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
RFID Reader Antenna	Impinj	IPJ-A0301-USA		
(Mini-Guardrail)*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D505	CN-0H2049-48643-49E-0525
Laptop AC Adapter	Dell	HP-OQ065B83	CN-0N2765-47890-45D-5387
Crossover Ethernet Cable (UTP))		
RFID Reader Core	Impinj	IPJ-R1000-USA-0-01-01	40305280513
AC Adapter	CUI Inc	DSA-60W-20 1 24060	DTS240250UC-P11P-DB

Test Conditions / Notes:

Transmitting modulated carrier at full output power. Low Channel: 902.75 MHz, High Channel: 927.25 MHz. Measuring radiated band edge compliance. RBW = 120 kHz; VBW = 300 kHz.

Transducer Legend:

	Tunsuucer Legena.	
T_{\cdot}	=ANT AN01993 25-1000MHz	T2=CAB-P05444-112805

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

			8								
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	902.755M	87.0	+23.4	+4.6			+0.0	115.0	137.0	-22.0	Horiz
							5				100
2	927.255M	84.5	+23.7	+4.8			+0.0	113.0	137.0	-24.0	Horiz
											100
3	902.760M	74.0	+23.4	+4.6			+0.0	102.0	137.0	-35.0	Vert
							113				173
4	927.255M	71.4	+23.7	+4.8			+0.0	99.9	137.0	-37.1	Vert
							116				169

Page 11 of 29 Report No: FC06-010D

FCC 15.247(d)/15.209/15.205 - BANDEDGE

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Impinj Inc

Specification: FCC 15.247 (d) / 15.209 / 15.205

 Work Order #:
 83127
 Date:
 2/15/2007

 Test Type:
 Radiated Scan
 Time:
 17:30:43

Equipment: **RFID Reader Antenna (Brickyard)** Sequence#: 7

Manufacturer: Impinj Tested By: Ryan Rutledge

Model: IPJ-A0400-USA

S/N:

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A	S/N: US44300437	06/13/2005	06/13/2007	AN02673
120" Pasternack 40 GHz Coax	S/N: N/A	05/10/2006	05/10/2008	AN05425
30' Andrews Heliax 18 GHz	S/N: N/A	06/19/2006	06/19/2008	AN05545
60" Pasternack 40 GHz Coax	S/N: N/A	05/11/2006	05/11/2008	AN05423
HP 83017A .5 - 26.5 GHz Pre-amp	S/N: 3123A00464	10/03/2005	10/03/2007	AN01271
EMCO 3115 Horn Ant	S/N: 9606-4854	12/13/2005	12/13/2007	AN01412
1 GHz HP Filter	S/N: 2	03/07/2006	03/07/2008	AN02750

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID Reader Antenna (Brickyard)*	Impinj	IPJ-A0400-USA	

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D505	CN-0H2049-48643-49E-0525
Laptop AC Adapter	Dell	HP-OQ065B83	CN-0N2765-47890-45D-5387
Crossover Ethernet Cable (UTP)			
RFID Reader Core	Impinj	IPJ-R1000-USA-0-01-01	40306280020
AC Adapter	CUI Inc	DSA-60W-20 1 24060	DTS240250UC-P11P-DB

Test Conditions / Notes:

EUT transmitting at maximum power in constant TX mode on each channel. Low Channel: 902.75 MHz, Mid Channel: 915.25 MHz, High Channel: 927.25 MHz. Measuring radiated spurious emissions 1 - 10 GHz RBW = 1 MHz.

Transducer Legend:

T1=ANT-AN01412-121305	T2=AMP-AN01271-1003055-26.5 GHz
T3=CAB-ANP05545-061906	T4=CAB-ANP05425-051006
T5=CAB-ANP05423-051006	T6=Filter 3GHz HP AN02745

Meas	urement Data:	Reading listed by margin.				Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	1 2708.126M	40.8	+29.4	-33.7	+2.5	+4.2	+0.0	58.1	54.0	+4.1	Vert
			+2.3	+12.6			182		Low Chan	nel	114
2	2 5416.605M	41.9	+34.3	-33.1	+3.9	+5.8	+0.0	56.4	54.0	+2.4	Vert
			+3.4	+0.2			187		Low Chan	nel	105

Page 12 of 29 Report No: FC06-010D

3 2708.461M	38.0	+29.4	-33.7	+2.5	+4.2	+0.0	55.3	54.0 +1.3	Horiz
		+2.3	+12.6			216		Low Channel	106
4 2745.922M	41.0	+29.5	-33.6	+2.5	+4.2	+0.0	55.0	54.0 +1.0	Vert
		+2.3	+9.1			167		Mid Channel	111
5 5563.509M	38.8	+34.4	-33.2	+4.1	+5.9	+0.0	53.5	54.0 -0.5	Vert
Ave		+3.4	+0.1			178		High Channel	103
^ 5563.450M	42.0	+34.4	-33.2	+4.1	+5.9	+0.0	56.7	54.0 +2.7	Vert
		+3.4	+0.1			178		High Channel	103
7 5416.503M	38.0	+34.3	-33.1	+3.9	+5.8	+0.0	52.5	54.0 -1.5	Vert
Ave		+3.4	+0.2			187		Low Channel	105
8 5491.501M	37.3	+34.4	-33.1	+3.9	+5.8	+0.0	51.9	54.0 -2.1	Vert
Ave		+3.4	+0.2			178		Mid Channel	117
^ 5491.570M	41.3	+34.4	-33.1	+3.9	+5.8	+0.0	55.9	54.0 +1.9	Vert
		+3.4	+0.2			178		Mid Channel	117
10 2745.592M	37.8	+29.5	-33.6	+2.5	+4.2	+0.0	51.8	54.0 -2.2	Horiz
		+2.3	+9.1			234		Mid Channel	173
11 2781.511M	40.4	+29.5	-33.6	+2.6	+4.2	+0.0	51.4	54.0 -2.6	Vert
		+2.4	+5.9			152		High Channel	108
12 4576.255M	39.1	+32.7	-33.2	+3.6	+5.4	+0.0	51.0	54.0 -3.0	Vert
Ave		+3.1	+0.3			191		Mid Channel	115
^ 4576.317M	42.5	+32.7	-33.2	+3.6	+5.4	+0.0	54.4	54.0 +0.4	Vert
		+3.1	+0.3			191		Mid Channel	115
14 3660.772M	41.1	+31.5	-33.2	+3.0	+4.8	+0.0	50.2	54.0 -3.8	Vert
		+2.7	+0.3			36		Mid Channel	110
15 5416.307M	35.3	+34.3	-33.1	+3.9	+5.8	+0.0	49.8	54.0 -4.2	Horiz
		+3.4	+0.2			146		Low Channel	139
16 2708.263M	32.2	+29.4	-33.7	+2.5	+4.2	+0.0	49.5	54.0 -4.5	Vert
Ave		+2.3	+12.6			182		Low Channel	114
17 3610.914M	40.2	+31.3	-33.2	+3.0	+4.8	+0.0	49.2	54.0 -4.8	Horiz
		+2.7	+0.4			227		Low Channel	136
18 4636.138M	36.9	+32.8	-33.1	+3.6	+5.4	+0.0	49.0	54.0 -5.0	Vert
		+3.1	+0.3			181		High Channel	133
19 2781.605M	37.9	+29.5	-33.6	+2.6	+4.2	+0.0	48.9	54.0 -5.1	Horiz
		+2.4	+5.9			235		High Channel	100
20 3709.011M	39.4	+31.7	-33.2	+3.0	+4.8	+0.0	48.7	54.0 -5.3	Vert
Ave		+2.7	+0.3			170		High Channel	149
^ 3708.963M	43.9	+31.7	-33.2	+3.0	+4.8	+0.0	53.2	54.0 -0.8	Vert
2.55.555.1		+2.7	+0.3			170		High Channel	149
22 5491.371M	33.7	+34.4	-33.1	+3.9	+5.8	+0.0	48.3	54.0 -5.7	Horiz
	22.,	+3.4	+0.2			156	.0.0	Mid Channel	123
23 3611.011M	39.2	+31.3	-33.2	+3.0	+4.8	+0.0	48.2	54.0 -5.8	Vert
Ave	27.2	+2.7	+0.4	. 5.0	. 1.0	177	.0.2	Low Channel	104
^ 3610.949M	43.2	+31.3	-33.2	+3.0	+4.8	+0.0	52.2	54.0 -1.8	Vert
2010.5 15171	.3.2	+2.7	+0.4	. 5.0	. 1.0	177	22.2	Low Channel	104
25 2745.759M	34.0	+29.5	-33.6	+2.5	+4.2	+0.0	48.0	54.0 -6.0	Vert
Ave	5 1.0	+2.3	+9.1	. 2.3	. 1.2	167	.0.0	Mid Channel	111
26 3660.854M	38.5	+31.5	-33.2	+3.0	+4.8	+0.0	47.6	54.0 -6.4	Horiz
20 3000.034141	50.5	+2.7	+0.3	13.0	1 7.0	133	17.0	Mid Channel	100
27 4513.651M	35.3	+32.5	-33.2	+3.6	+5.3	+0.0	46.8	54.0 -7.2	Horiz
27 7313.031WI	33.3	+32.3	+0.3	13.0	10.0	221	+0.0	Low Channel	184
<u> </u>		13.0	10.5			221		Low Chamici	104

Page 13 of 29 Report No: FC06-010D

28 3709.001M	36.8	+31.7	-33.2	+3.0	+4.8	+0.0	46.1	54.0 -7.9	Horiz
Ave		+2.7	+0.3			137		High Channel	197
^ 3708.917M	41.1	+31.7	-33.2	+3.0	+4.8	+0.0	50.4	54.0 -3.6	Horiz
		+2.7	+0.3			137		High Channel	197
30 2708.282M	28.2	+29.4	-33.7	+2.5	+4.2	+0.0	45.5	54.0 -8.5	Horiz
Ave		+2.3	+12.6			216		Low Channel	106
31 4513.758M	33.2	+32.5	-33.2	+3.6	+5.3	+0.0	44.7	54.0 -9.3	Vert
Ave		+3.0	+0.3			182		Low Channel	110
^ 4513.780M	39.7	+32.5	-33.2	+3.6	+5.3	+0.0	51.2	54.0 -2.8	Vert
		+3.0	+0.3			182		Low Channel	110
33 2781.747M	33.5	+29.5	-33.6	+2.6	+4.2	+0.0	44.5	54.0 -9.5	Vert
Ave		+2.4	+5.9			152		High Channel	108
34 3661.007M	34.7	+31.5	-33.2	+3.0	+4.8	+0.0	43.8	54.0 -10.2	Vert
Ave		+2.7	+0.3			36		Mid Channel	110
35 4576.262M	31.8	+32.7	-33.2	+3.6	+5.4	+0.0	43.7	54.0 -10.3	Horiz
Ave		+3.1	+0.3			165		Mid Channel	124
^ 4576.263M	38.0	+32.7	-33.2	+3.6	+5.4	+0.0	49.9	54.0 -4.1	Horiz
		+3.1	+0.3			165		Mid Channel	124
37 3611.015M	34.4	+31.3	-33.2	+3.0	+4.8	+0.0	43.4	54.0 -10.6	Horiz
Ave		+2.7	+0.4			227		Low Channel	136
38 2745.765M	27.6	+29.5	-33.6	+2.5	+4.2	+0.0	41.6	54.0 -12.4	Horiz
Ave		+2.3	+9.1			234		Mid Channel	173
39 5416.496M	27.1	+34.3	-33.1	+3.9	+5.8	+0.0	41.6	54.0 -12.4	Horiz
Ave		+3.4	+0.2			146		Low Channel	139
40 5563.508M	26.3	+34.4	-33.2	+4.1	+5.9	+0.0	41.0	54.0 -13.0	Horiz
Ave		+3.4	+0.1			220		High Channel	189
^ 5563.577M	35.4	+34.4	-33.2	+4.1	+5.9	+0.0	50.1	54.0 -3.9	Horiz
		+3.4	+0.1			220		High Channel	189
42 2781.743M	29.6	+29.5	-33.6	+2.6	+4.2	+0.0	40.6	54.0 -13.4	Horiz
Ave		+2.4	+5.9			235		High Channel	100
43 4636.250M	27.3	+32.8	-33.1	+3.6	+5.4	+0.0	39.4	54.0 -14.6	Vert
Ave		+3.1	+0.3			181		High Channel	133
44 3661.009M	30.0	+31.5	-33.2	+3.0	+4.8	+0.0	39.1	54.0 -14.9	Horiz
Ave		+2.7	+0.3			133		Mid Channel	100
45 5491.490M	23.0	+34.4	-33.1	+3.9	+5.8	+0.0	37.6	54.0 -16.4	Horiz
Ave		+3.4	+0.2			156		Mid Channel	123
46 4513.767M	25.6	+32.5	-33.2	+3.6	+5.3	+0.0	37.1	54.0 -16.9	Horiz
Ave		+3.0	+0.3			221		Low Channel	184

Page 14 of 29 Report No: FC06-010D

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: Impinj Inc

Specification: FCC 15.247 (d) / 15.209 / 15.205

 Work Order #:
 83127
 Date: 2/15/2007

 Test Type:
 Radiated Scan
 Time: 12:50:44

Equipment: **RFID Reader Antenna (Guardwall)** Sequence#: 5
Manufacturer: Impinj Tested By: Ryan Rutledge

Model: IPJ-A0401-USA

S/N:

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A	S/N: US44300437	06/13/2005	06/13/2007	AN02673
120" Pasternack 40 GHz Coax	S/N: N/A	05/10/2006	05/10/2008	AN05425
30' Andrews Heliax 18 GHz	S/N: N/A	06/19/2006	06/19/2008	AN05545
60" Pasternack 40 GHz Coax	S/N: N/A	05/11/2006	05/11/2008	AN05423
HP 83017A .5 - 26.5 GHz Pre-amp	S/N: 3123A00464	10/03/2005	10/03/2007	AN01271
EMCO 3115 Horn Ant	S/N: 9606-4854	12/13/2005	12/13/2007	AN01412
1 GHz HP Filter	S/N: 2	03/07/2006	03/07/2008	AN02750

Equipment Under Test (* = EUT):

1 1	= /-			
Function	Manufacturer	Model #	S/N	
RFID Reader Antenna	Impinj	IPJ-A0401-USA		
(Guardwall)*				

Support Devices:

Support Series.			
Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D505	CN-0H2049-48643-49E-0525
Laptop AC Adapter	Dell	HP-OQ065B83	CN-0N2765-47890-45D-5387
Crossover Ethernet Cable (UTP)			
RFID Reader Core	Impinj	IPJ-R1000-USA-0-01-01	40306280020
AC Adapter	CUI Inc	DSA-60W-20 1 24060	DTS240250UC-P11P-DB

Test Conditions / Notes:

EUT transmitting at maximum power in constant TX mode on each channel. Low Channel: 902.75 MHz, Mid Channel: 915.25 MHz, High Channel: 927.25 MHz. Measuring radiated spurious emissions 1 - 10 GHz RBW = 1 MHz.

Transducer Legend:

T1=ANT-AN01412-121305	T2=AMP-AN01271-1003055-26.5 GHz
T3=CAB-ANP05545-061906	T4=CAB-ANP05425-051006
T5=CAB-ANP05423-051006	T6=Filter 3GHz HP AN02745

Meas	surement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters	3	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1 5416.494M	39.1	+34.3	-33.1	+3.9	+5.8	+0.0	53.6	54.0	-0.4	Vert
	Ave		+3.4	+0.2			184		Low Chan	nel	131
	^ 5416.464M	42.7	+34.3	-33.1	+3.9	+5.8	+0.0	57.2	54.0	+3.2	Vert
			+3.4	+0.2			184		Low Chan	nel	131

Page 15 of 29 Report No: FC06-010D

3	3611.013M	43.2	+31.3	-33.2	+3.0	+4.8	+0.0	52.2	54.0 -1.8	Vert
	Ave		+2.7	+0.4			181		Low Channel	106
^	3611.002M	47.0	+31.3	-33.2	+3.0	+4.8	+0.0	56.0	54.0 +2.0	Vert
			+2.7	+0.4			181		Low Channel	106
5	3610.864M	42.7	+31.3	-33.2	+3.0	+4.8	+0.0	51.7	54.0 -2.3	Horiz
			+2.7	+0.4			148		Low Channel	131
6	4576.268M	39.2	+32.7	-33.2	+3.6	+5.4	+0.0	51.1	54.0 -2.9	Vert
	Ave		+3.1	+0.3			188		Mid Channel	100
^	4576.253M	43.2	+32.7	-33.2	+3.6	+5.4	+0.0	55.1	54.0 +1.1	Vert
			+3.1	+0.3			188		Mid Channel	100
8	2781.644M	40.0	+29.5	-33.6	+2.6	+4.2	+0.0	51.0	54.0 -3.0	Horiz
			+2.4	+5.9			234		High Channel	154
9	5491.506M	36.4	+34.4	-33.1	+3.9	+5.8	+0.0	51.0	54.0 -3.0	Vert
	Ave		+3.4	+0.2			177		Mid Channel	105
٨	5491.503M	40.9	+34.4	-33.1	+3.9	+5.8	+0.0	55.5	54.0 +1.5	Vert
			+3.4	+0.2			177		Mid Channel	105
11	4576.390M	38.7	+32.7	-33.2	+3.6	+5.4	+0.0	50.6	54.0 -3.4	Horiz
			+3.1	+0.3			213		Mid Channel	104
12	2708.249M	33.0	+29.4	-33.7	+2.5	+4.2	+0.0	50.3	54.0 -3.7	Vert
	Ave		+2.3	+12.6			198		Low Channel	104
	2708.249M	38.8	+29.4	-33.7	+2.5	+4.2	+0.0	56.1	54.0 +2.1	Vert
	2,00.2.91.1	20.0	+2.3	+12.6			198	00.1	Low Channel	104
14	5563.525M	35.1	+34.4	-33.2	+4.1	+5.9	+0.0	49.8	54.0 -4.2	Vert
	Ave	55.1	+3.4	+0.1			177	.,.0	High Channel	104
	5563.542M	40.2	+34.4	-33.2	+4.1	+5.9	+0.0	54.9	54.0 +0.9	Vert
	3303.3 12111	10.2	+3.4	+0.1		13.7	177	5 1.7	High Channel	104
16	2745.764M	35.3	+29.5	-33.6	+2.5	+4.2	+0.0	49.3	54.0 -4.7	Vert
	Ave	33.3	+2.3	+9.1	12.3	1 1.2	292	17.5	Mid Channel	118
	2745.739M	40.7	+29.5	-33.6	+2.5	+4.2	+0.0	54.7	54.0 +0.7	Vert
	27 13.737111	10.7	+2.3	+9.1	12.3	1 1.2	292	31.7	Mid Channel	118
18	3709.006M	38.0	+31.7	-33.2	+3.0	+4.8	+0.0	47.3	54.0 -6.7	Vert
	Ave	30.0	+2.7	+0.3	13.0	1 1.0	161	17.5	High Channel	177
	3709.036M	42.4	+31.7	-33.2	+3.0	+4.8	+0.0	51.7	54.0 -2.3	Vert
	3707.03011	12.1	+2.7	+0.3	13.0	1 1.0	161	31.7	High Channel	177
20	2708.244M	29.4	+29.4	-33.7	+2.5	+4.2	+0.0	46.7	54.0 -7.3	Horiz
	Ave	27.4	+2.3	+12.6	12.3	17.2	142	40.7	Low Channel	125
	2708.279M	40.3	+29.4	-33.7	+2.5	+4.2	+0.0	57.6	54.0 +3.6	Horiz
	2100.219W	+0.5	+23.4	+12.6	14.3	17.4	+0.0 142	37.0	Low Channel	125
22	2781.749M	35.6	+2.5	-33.6	+2.6	+4.2	+0.0	46.6	54.0 -7.4	Vert
	Ave	33.0	+29.3	+5.9	1 4.0	17.4	185	+0.0	High Channel	107
	2781.804M	41.2	+29.5	-33.6	+2.6	+4.2	+0.0	52.2	54.0 -1.8	Vert
	4/01.0U4IVI	41.2	+29.5	-33.0 +5.9	+2.0	+4.2	+0.0 185	32.2	High Channel	107
24	2745.757M	22.4			12.5	14.2		16 1	54.0 -7.6	
		32.4	+29.5	-33.6	+2.5	+4.2	+0.0	46.4		Horiz
	Ave 27.45.95.6M	40.0	+2.3	+9.1	10.5	. 4.2	143	540	Mid Channel	126
^	2745.856M	40.9	+29.5	-33.6	+2.5	+4.2	+0.0	54.9	54.0 +0.9	Horiz
2.5	2611.0023.5	27.2	+2.3	+9.1	. 2. 0	. 4.0	143	460	Mid Channel	126
	3611.003M	37.3	+31.3	-33.2	+3.0	+4.8	+0.0	46.3	54.0 -7.7	Horiz
	Ave		+2.7	+0.4			148		Low Channel	131

Page 16 of 29 Report No: FC06-010D

27 4513.7	58M 34	.6 +32.5	-33.2	+3.6	+5.3	+0.0	46.1	54.0 -7.9	Vert
Ave		+3.0	+0.3			191		Low Channel	116
^ 4513.7	60M 39	.4 +32.5	-33.2	+3.6	+5.3	+0.0	50.9	54.0 -3.1	Vert
		+3.0	+0.3			191		Low Channel	116
29 3661.0	21M 35	.8 +31.5	-33.2	+3.0	+4.8	+0.0	44.9	54.0 -9.1	Vert
Ave		+2.7	+0.3			176		Mid Channel	106
^ 3661.0	21M 40	.6 +31.5	-33.2	+3.0	+4.8	+0.0	49.7	54.0 -4.3	Vert
		+2.7	+0.3			176		Mid Channel	106
31 2781.7	50M 33	.7 + 29.5	-33.6	+2.6	+4.2	+0.0	44.7	54.0 -9.3	Horiz
Ave		+2.4	+5.9			234		High Channel	154
32 3708.9	99M 35	.2 +31.7	-33.2	+3.0	+4.8	+0.0	44.5	54.0 -9.5	Horiz
Ave		+2.7	+0.3			118		High Channel	179
^ 3709.0	83M 41		-33.2	+3.0	+4.8	+0.0	50.5	54.0 -3.5	Horiz
		+2.7	+0.3			118		High Channel	179
34 4576.2	50M 31		-33.2	+3.6	+5.4	+0.0	43.1	54.0 -10.9	Horiz
Ave		+3.1	+0.3			213		Mid Channel	104
35 5416.4	88M 28		-33.1	+3.9	+5.8	+0.0	42.8	54.0 -11.2	Horiz
Ave		+3.4	+0.2			163		Low Channel	153
^ 5416.5	08M 34		-33.1	+3.9	+5.8	+0.0	48.6	54.0 -5.4	Horiz
		+3.4	+0.2			163		Low Channel	153
37 4513.7	50M 27		-33.2	+3.6	+5.3	+0.0	38.7	54.0 -15.3	Horiz
Ave		+3.0	+0.3			173		Low Channel	116
^ 4513.7	51M 33		-33.2	+3.6	+5.3	+0.0	44.9	54.0 -9.1	Horiz
		+3.0	+0.3			173		Low Channel	116
39 3661.0	09M 28		-33.2	+3.0	+4.8	+0.0	37.8	54.0 -16.2	Horiz
Ave		+2.7	+0.3			217		Mid Channel	198
^ 3660.9	20M 39		-33.2	+3.0	+4.8	+0.0	48.1	54.0 -5.9	Horiz
		+2.7	+0.3			217		Mid Channel	198
41 4636.2	56M 24		-33.1	+3.6	+5.4	+0.0	36.7	54.0 -17.3	Vert
Ave		+3.1	+0.3			174		High Channel	137
^ 4636.2	85M 36		-33.1	+3.6	+5.4	+0.0	49.0	54.0 -5.0	Vert
		+3.1	+0.3			174		High Channel	137
43 4636.2	72M 24		-33.1	+3.6	+5.4	+0.0	36.6	54.0 -17.4	Horiz
Ave		+3.1	+0.3			312		High Channel	102
^ 4636.2	71M 35		-33.1	+3.6	+5.4	+0.0	47.4	54.0 -6.6	Horiz
		+3.1	+0.3			312		High Channel	102

Page 17 of 29 Report No: FC06-010D

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer: **Impinj Inc**

Specification: FCC 15.247 (d) / 15.209 / 15.205

Work Order #: 83127 Date: 2/15/2007
Test Type: Radiated Scan Time: 17:12:31
Equipment: RFID Reader Antenna (Mini-Sequence#: 6

Guardrail)

Manufacturer: Impinj Tested By: Ryan Rutledge

Model: IPJ-A0301-USA

S/N:

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Agilent E4446A	S/N: US44300437	06/13/2005	06/13/2007	AN02673
120" Pasternack 40 GHz Coax	S/N: N/A	05/10/2006	05/10/2008	AN05425
30' Andrews Heliax 18 GHz	S/N: N/A	06/19/2006	06/19/2008	AN05545
60" Pasternack 40 GHz Coax	S/N: N/A	05/11/2006	05/11/2008	AN05423
HP 83017A .5 - 26.5 GHz Pre-amp	S/N: 3123A00464	10/03/2005	10/03/2007	AN01271
EMCO 3115 Horn Ant	S/N: 9606-4854	12/13/2005	12/13/2007	AN01412
1 GHz HP Filter	S/N: 2	03/07/2006	03/07/2008	AN02750

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
RFID Reader Antenna (Mini-	Impinj	IPJ-A0301-USA		
Guardrail)*				

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D505	CN-0H2049-48643-49E-0525
Laptop AC Adapter	Dell	HP-OQ065B83	CN-0N2765-47890-45D-5387
Crossover Ethernet Cable			
(UTP)			
RFID Reader Core	Impinj	IPJ-R1000-USA-0-01-01	40306280020
AC Adapter	CUI Inc	DSA-60W-20 1 24060	DTS240250UC-P11P-DB

Test Conditions / Notes:

EUT transmitting at maximum power in constant TX mode on each channel. Low Channel: 902.75 MHz, Mid Channel: 915.25 MHz, High Channel: 927.25 MHz. Measuring radiated spurious emissions 1 - 10 GHz RBW = 1 MHz.

Transducer Legend:

T1=ANT-AN01412-121305	T2=AMP-AN01271-1003055-26.5 GHz
T3=CAB-ANP05545-061906	T4=CAB-ANP05425-051006
T5=CAB-ANP05423-051006	T6=Filter 3GHz HP AN02745

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

measurement Data.			11	Reading listed by margin. Test Distance. 5 Weters								
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
				T5	T6							
		MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
	1	2708.371M	41.1	+29.4	-33.7	+2.5	+4.2	+0.0	58.4	54.0	+4.4	Vert
				+2.3	+12.6			182		Low Chan	113	
	2	4576.116M	41.7	+32.7	-33.2	+3.6	+5.4	+0.0	53.6	54.0	-0.4	Vert
				+3.1	+0.3			188	Mid Channel		100	

Page 18 of 29 Report No: FC06-010D

(F-										
3	5416.498M	38.2	+34.3	-33.1	+3.9	+5.8	+0.0	52.7	54.0 -1.3	Vert
	Ave		+3.4	+0.2			181		Low Channel	131
٨	5416.537M	41.8	+34.3	-33.1	+3.9	+5.8	+0.0	56.3	54.0 +2.3	Vert
			+3.4	+0.2			181		Low Channel	131
5	5491.506M	37.7	+34.4	-33.1	+3.9	+5.8	+0.0	52.3	54.0 -1.7	Vert
	Ave		+3.4	+0.2			177		Mid Channel	105
٨	5491.506M	39.1	+34.4	-33.1	+3.9	+5.8	+0.0	53.7	54.0 -0.3	Vert
			+3.4	+0.2			177		Mid Channel	105
7	4636.078M	38.8	+32.8	-33.1	+3.6	+5.4	+0.0	50.9	54.0 -3.1	Vert
			+3.1	+0.3			191		High Channel	113
8	2708.249M	32.7	+29.4	-33.7	+2.5	+4.2	+0.0	50.0	54.0 -4.0	Vert
	Ave		+2.3	+12.6			182		Low Channel	113
9	4576.255M	37.6	+32.7	-33.2	+3.6	+5.4	+0.0	49.5	54.0 -4.5	Vert
	Ave		+3.1	+0.3			188		Mid Channel	100
10	4576.092M	37.4	+32.7	-33.2	+3.6	+5.4	+0.0	49.3	54.0 -4.7	Horiz
			+3.1	+0.3			157		Mid Channel	100
11	3611.003M	40.0	+31.3	-33.2	+3.0	+4.8	+0.0	49.0	54.0 -5.0	Vert
	Ave		+2.7	+0.4			182		Low Channel	104
٨	3610.956M	44.1	+31.3	-33.2	+3.0	+4.8	+0.0	53.1	54.0 -0.9	Vert
			+2.7	+0.4			182		Low Channel	104
13	5563.506M	34.1	+34.4	-33.2	+4.1	+5.9	+0.0	48.8	54.0 -5.2	Vert
	Ave		+3.4	+0.1			177		High Channel	130
٨	5563.585M	39.8	+34.4	-33.2	+4.1	+5.9	+0.0	54.5	54.0 +0.5	Vert
			+3.4	+0.1			177		High Channel	130
15	3661.126M	39.7	+31.5	-33.2	+3.0	+4.8	+0.0	48.8	54.0 -5.2	Horiz
			+2.7	+0.3			156		Mid Channel	108
16	2745.758M	33.8	+29.5	-33.6	+2.5	+4.2	+0.0	47.8	54.0 -6.2	Vert
	Ave		+2.3	+9.1			179		Mid Channel	111
٨	2745.745M	41.4	+29.5	-33.6	+2.5	+4.2	+0.0	55.4	54.0 +1.4	Vert
			+2.3	+9.1			179		Mid Channel	111
18	3709.000M	38.3	+31.7	-33.2	+3.0	+4.8	+0.0	47.6	54.0 -6.4	Vert
	Ave		+2.7	+0.3			170		High Channel	174
	3708.952M	42.9	+31.7	-33.2	+3.0	+4.8	+0.0	52.2	54.0 -1.8	Vert
			+2.7	+0.3			170		High Channel	174
20	5563.257M	32.7	+34.4	-33.2	+4.1	+5.9	+0.0	47.4	54.0 -6.6	Horiz
	· · - · -		+3.4	+0.1			219		High Channel	209
21	4513.751M	35.3	+32.5	-33.2	+3.6	+5.3	+0.0	46.8	54.0 -7.2	Vert
	Ave		+3.0	+0.3			191		Low Channel	114
	4513.736M	40.3	+32.5	-33.2	+3.6	+5.3	+0.0	51.8	54.0 -2.2	Vert
			+3.0	+0.3			191		Low Channel	114
23	3611.006M	35.9	+31.3	-33.2	+3.0	+4.8	+0.0	44.9	54.0 -9.1	Horiz
	Ave		+2.7	+0.4	0		228		Low Channel	156
	3611.101M	41.5	+31.3	-33.2	+3.0	+4.8	+0.0	50.5	54.0 -3.5	Horiz
			+2.7	+0.4	0		228		Low Channel	156
2.5	4636.254M	31.6	+32.8	-33.1	+3.6	+5.4	+0.0	43.7	54.0 -10.3	Vert
	Ave	21.0	+3.1	+0.3	. 5.0		191	,	High Channel	113
	3709.011M	34.3	+31.7	-33.2	+3.0	+4.8	+0.0	43.6	54.0 -10.4	Horiz
	Ave	2 1.0	+2.7	+0.3	. 5.0	. 1.0	108	.5.0	High Channel	158
	3709.035M	40.9	+31.7	-33.2	+3.0	+4.8	+0.0	50.2	54.0 -3.8	Horiz
	5707.055141	10.7	+2.7	+0.3	13.0	1 7.0	108	50.2	High Channel	158
<u> </u>			14.1	10.5			100		111611 C1141111101	150

Page 19 of 29 Report No: FC06-010D

28 2781.765M	31.6	+29.5	-33.6	+2.6	+4.2	+0.0	42.6	54.0	-11.4	Vert
Ave		+2.4	+5.9			171		High Channel		110
^ 2781.773M	39.4	+29.5	-33.6	+2.6	+4.2	+0.0	50.4	54.0	-3.6	Vert
		+2.4	+5.9			171		High Chan	nel	110
30 2745.744M	28.1	+29.5	-33.6	+2.5	+4.2	+0.0	42.1	54.0	-11.9	Horiz
Ave		+2.3	+9.1			242		Mid Channel		172
^ 2745.770M	39.0	+29.5	-33.6	+2.5	+4.2	+0.0	53.0	54.0	-1.0	Horiz
		+2.3	+9.1			242		Mid Channel		172
32 3661.013M	32.8	+31.5	-33.2	+3.0	+4.8	+0.0	41.9	54.0	-12.1	Vert
Ave		+2.7	+0.3			33		Mid Channel		112
^ 3661.011M	40.5	+31.5	-33.2	+3.0	+4.8	+0.0	49.6	54.0	-4.4	Vert
		+2.7	+0.3			33		Mid Channel		112
34 2781.744M	30.4	+29.5	-33.6	+2.6	+4.2	+0.0	41.4	54.0	-12.6	Horiz
Ave		+2.4	+5.9			241		High Channel		176
^ 2781.658M	39.5	+29.5	-33.6	+2.6	+4.2	+0.0	50.5	54.0	-3.5	Horiz
		+2.4	+5.9			241		High Channel		176
36 3661.010M	30.9	+31.5	-33.2	+3.0	+4.8	+0.0	40.0	54.0	-14.0	Horiz
Ave		+2.7	+0.3			156		Mid Channel		108
37 4576.256M	27.6	+32.7	-33.2	+3.6	+5.4	+0.0	39.5	54.0	-14.5	Horiz
Ave		+3.1	+0.3			157		Mid Channel		100
38 5563.517M	23.8	+34.4	-33.2	+4.1	+5.9	+0.0	38.5	54.0	-15.5	Horiz
Ave		+3.4	+0.1			219		High Channel		209
39 5416.496M	23.8	+34.3	-33.1	+3.9	+5.8	+0.0	38.3	54.0	-15.7	Horiz
Ave		+3.4	+0.2			152		Low Channel		141
^ 5416.447M	35.5	+34.3	-33.1	+3.9	+5.8	+0.0	50.0	54.0	-4.0	Horiz
		+3.4	+0.2			152		Low Channel		141
41 4513.753M	26.2	+32.5	-33.2	+3.6	+5.3	+0.0	37.7	54.0	-16.3	Horiz
Ave		+3.0	+0.3			218		Low Channel		114
^ 4513.675M	36.9	+32.5	-33.2	+3.6	+5.3	+0.0	48.4	54.0	-5.6	Horiz
		+3.0	+0.3			218		Low Chann	nel	114

Page 20 of 29 Report No: FC06-010D

FCC 15.247 BANDEDGE BRICKYARD - HORIZONTAL LOWER

FCC 15.247 BANDEDGE BRICKYARD - HORIZONTAL UPPER

Page 21 of 29 Report No: FC06-010D

FCC 15.247 BANDEDGE BRICKYARD - VERTICAL LOWER

FCC 15.247 BANDEDGE BRICKYARD - VERTICAL UPPER

:

FCC 15.247 BANDEDGE GUARDWALL - HORIZONTAL LOWER

FCC 15.247 BANDEDGE GUARDWALL - HORIZONTAL UPPER

Page 23 of 29 Report No: FC06-010D

FCC 15.247 BANDEDGE GUARDWALL - VERTICAL LOWER

FCC 15.247 BANDEDGE GUARDWALL - VERTICAL UPPER

Page 24 of 29 Report No: FC06-010D

FCC 15.247 BANDEDGE MINI-GUARDRAIL - HORIZONTAL LOWER

FCC 15.247 BANDEDGE MINI-GUARDRAIL - HORIZONTAL UPPER

Page 25 of 29 Report No: FC06-010D

FCC 15.247 BANDEDGE MINI-GUARDRAIL - VERTICAL LOWER

FCC 15.247 BANDEDGE MINI-GUARDRAIL - VERTICAL UPPER

Page 26 of 29 Report No: FC06-010D

Test Setup Photos

Brickyard Setup Front

Brickyard Setup Back

Guardwell Setup Front

Guardwell Setup Back

Page 28 of 29 Report No: FC06-010D

Mini-Guardrail Setup Front

Mini-Guardrail Setup Back

Page 29 of 29 Report No: FC06-010D