《算法设计与分析》

第五章 动态规划

马丙鹏 2024年11月11日

第五章 动态规划

- 5.1 一般方法
- 5.2 多段图问题
- 5.3 每对结点之间的最短路径
- 5.4 最优二分检索树
- 5.5 矩阵连乘问题
- 5.6 0/1背包问题
- 5.7 可靠性设计
- 5.8 货郎担问题
- 5.9 流水线调度问题

- ■问题描述
 - □乘数最优化问题

- □设r;是设备D;正常运转的概率,则整个系统的可靠性 就是 $\prod r_i$
- □若n=10, r_i =0.99, 1≤i≤10, 则: $\prod r_i = 0.904$

■问题描述

- 口第i级每个设备出故障的概率为 $1-r_i$,第i级有 m_i 个设备并联,则同时出故障的概率为 $(1-r_i)^{m_i}$,可靠性为 $1-(1-r_i)^{m_i}$
- 口第 i 级设备的可靠性由函数 $\phi_i(m_i)$ 给定, $1 \le i \le n$,那么整个系统的可靠性是 $\prod_{1 \le i \le n} \phi_i(m_i)$
- 口设计系统时需考虑成本,c_i表示第i级一台设备的成本, C表示要设计的系统允许的最大成本。
- □系统中每种设备至少有一台,设备i允许配置的台数 至多为:

$$\mathbf{u}_{i} = \left[\left(\mathbf{C} - \sum_{k=1, k \neq i}^{n} \mathbf{c}_{k} \right) \middle/ \mathbf{c}_{i} \right] = \left[\left(\mathbf{C} + \mathbf{c}_{i} - \sum_{k=1}^{n} \mathbf{c}_{k} \right) \middle/ \mathbf{c}_{i} \right]$$
中国科学院大学
University of Chinese Academy of Sciences 4

- ■问题描述
 - □可靠性设计最优化问题是在可容许的最大成本C的约束下,如何使系统的可靠性达到最优的问题。
- ■数学模型
 - □RELI(1, i, X):表示在可容许成本X约束下,对第1种到第i种设备的可靠性设计问题。

目标函数:
$$\max \prod_{j} \varphi_{j}(\mathbf{m}_{j})$$

1≤ j≤i

约束条件: ∇

$$\sum c_{j} m_{j} \leq X$$

其中
$$c_j > 0, 1 \le m_j \le u_j = \left| (X + c_j - \sum_{k=1}^{j} c_k) / c_j \right|$$

□RELI(1, n, c):表示整个系统的可靠性设计问题。

- ■最优性原理对可靠性设计问题成立
 - □假设m₁, m₂, ..., m_n为RELI(1, n, c)的最优解,
 - 口假设m₁为第1级的最优选择,
 - 口则 $m_2, ..., m_n$ 为RELI(2, n, c- m_1 c₁)的最优解,
 - □否则,设m'2,...,m'n为RELI(2,n,c-m1c1)的最优解,
 - □则m₁, m'₂, ..., m'_n为RELI(1, n, c)的最优解。与假设矛盾。
 - 口系统可靠性设计问题RELI(1, n, c)的最优解是对 m_1 , m_2 , ..., m_n 的一系列决策的结果。
 - □每次决策可以确定一个mi。

- ■可靠性设计的向后递推
 - 口设 $f_i(X)$ 是在成本不超过X的约束下,前i种设备组成的子系统RELI(1,i,X)的可靠性的最优值,即

$$f_{i}(X) = \max \prod_{1 \le j \le i} \phi_{j}(m_{j})$$

$$f_{i}(X) = \max_{1 \le m_{i} \le u_{i}} \{\phi_{i}(m_{i}) f_{i-1}(X - c_{i}m_{i})\}$$

□则RELI(1, n, c)可靠性设计的最优值为:

$$f_{n}(c) = \max_{1 \le j \le n} \phi_{j}(m_{j})$$

$$f_{n}(c) = \max_{1 \le m_{n} \le u_{n}} \{\phi_{n}(m_{n}) f_{n-1}(c - c_{n}m_{n})\}$$

- ■可靠性设计的求解
 - 口初始条件: $f_0(X)=1$, $0 \le X \le c$
 - $\square S^{i}$ 由(f, X)形式的序偶所组成,其中f= f_i(X)。
 - $\square S^i = \{ (f, X) \mid f = f_i(X) \}$ 为可靠性设计问题RELI(1, i, X)的最优解
 - □用类似于解0/1背包问题的方法可以求解递归关系

$$f_{i}(X) = \max_{1 \leq m_{i} \leq u_{i}} \{\phi_{i}(m_{i}) f_{i-1}(X - c_{i}m_{i})\}$$

- 口支配规则对这个问题也适用,即当且仅当 $f_1 \ge f_2$ 而 $X_1 \le X_2$ 时, (f_1, X_1) 支配 (f_2, X_2)
- □Sⁱ_i: 第i级配备了j个设备时前i级子系统的可靠性。

■可靠性设计的求解

Si的生成:

 $S^0 = \{(1, 0)\}$

由Si-1求Si

- ① 分别求 S_j^i , $1 \le j \le u_i$ 。对于 m_i 的所有可能值,依次求出 $m_i = j$, $1 \le j \le u_i$ 时,有可能得到的所有序偶的集合 $S_i^i = \{ (f * \phi_i(j), x + j * c_i) \mid (f, x) \in S^{i-1} \}$
- ② 合并所有的Sⁱ_i为Sⁱ,使用支配规则。

■例

- 口设计一个由设备 D_1 , D_2 , D_3 组成的三级系统。
- □每台设备的成本分别为30元,15元和20元,可靠性分别 是0.9,0.8和0.5,建立该系统的投资不得超过105元。
- 口假定若i级有 m_i 台设备 D_i 并联,则该级的可靠性 $\varphi_i(m_i) = 1 (1 r_i)^{m_i}$ 。
- □应如何设计使可靠性达到最高。
- 口解:上述条件可以表示为: c=105; $c_1=30$, $c_2=15$, $c_3=20$; $r_1=0.9$, $r_2=0.8$, $r_3=0.5$.

设备	$\mathbf{D_l}$	D_1 D_2	
单价	30	15	20
可靠性	0.9	0.8	0.5

国科学院大学 sity of Chinese Academy of Sciences 0

设备	$\mathbf{D_l}$	\mathbf{D}_2	\mathbf{D}_3
单价	30	15	20
可靠性	0.9	0.8	0.5

$$u_1 = \lfloor (105-15-20)/30 \rfloor = 2;$$

 $u_2 = 3, u_3 = 3,$

$$S^0 = \{(1,0)\}$$

$$\phi_1(1) = 0.9, \ \phi_1(2) = 1 - (1 - 0.9)^2 = 0.99$$

$$S^1_1 = \{(0.9,30)\}$$

$$S^1_2 = \{(0.99,60)\}$$

$$S^1_2 = \{(0.99,60)\}$$

设备	$\mathbf{D}_{\mathbf{l}}$	$\mathbf{D_2}$	\mathbf{D}_3
单价	30	15	20
可靠性	0.9	0.8	0.5

- $u_2 = 3$, $c_2 = 15$, $r_2 = 0.8$,
- \bullet S¹= {(0.9, 30), (0.99, 60)}
- $\phi_2(1)=0.8$, $\phi_2(2)=1-(1-0.8)^2=0.96$, $\phi_2(3)=1-(1-0.8)^3=0.992$ $S^2_1=\{(0.9*0.8, 30+15), (0.99*0.8, 60+15)\}$

$$= \{(0.72, 45), (0.792, 75)\}$$

$$S_{2}^{2} = \{(0.9*0.96, 30+15*2), (0.99*0.96, 60+15*2)\}$$

=\{(0.864, 60)\}

$$S^{2}_{3}$$
={(0.9*0.992, 30+15*3), (0.99*0.992, 60+15*3)} ={(0.8928, 75)}

$$S^2 = \{(0.72, 45), (0.792, 75), (0.864, 60), (0.8928, 75)\}$$

如果第二级设备配

备2台,第三级设备

不能购买

设备	$\mathbf{D_l}$	\mathbf{D}_2	D_3
单价	30	15	20
可靠性	0.9	0.8	0.5

University of Chinese Academy of Sciences 3

- $u_3=3$, $c_3=20$, $r_3=0.5$,
- \bullet S²={(0.72, 45), (0.864, 60), (0.8928, 75)}

S³={(0.36, 65), (0.432, 80), (0.4464, 95), (0.54, 85), (0.648, 100), (0.63.105)}

- 由Sⁿ, Sⁿ⁻¹, ..., S¹回溯求m_n, m_{n-1},, m₁
- 判断由Sn中f最大的序偶来自哪个Sn_j,则n级设备上的设备数量为j.
- $S^3 = \{(0.36, 65), (0.432, 80), (0.54, 85), (0.648, 100)\}$
- $(0.648, 100) \in S^3_2$,所以 $m_3 = 2$

$$S_2^3 = \{(0.72*0.75, 45+20*2), (0.864*0.75, 60+20*2)\}$$

= $\{(0.54, 85), (0.648, 100)\}$
 $(0.864, 60) \in S_2^2$,所以 $m_2 = 2$

$$S_{2}^{2}=\{(0.9*0.96, 30+15*2)\}=\{(0.864, 60)\}$$

 $(0.9, 30) \in S_{1}^{1}, m_{1}=1$

第五章 动态规划

- 5.1 一般方法
- 5.2 多段图问题
- 5.3 每对结点之间的最短路径
- 5.4 最优二分检索树
- 5.5 矩阵连乘问题
- 5.6 0/1背包问题
- 5.7 可靠性设计
- 5.8 货郎担问题
- 5.9 流水线调度问题

■1. 问题描述

- □货郎担问题也叫推销商问题(Traveling Salesman Problem, TSP), 其一般提法为:
 - ▶有n个城市,城市之间的距离已知,有一个货郎从城市1出发到其他城市一次且仅一次,最后回到城市1,怎样选择行走路线使总路程最短?

University of Chinese Academy of Sciences 6

- ■1. 问题描述
 - □抽象化描述
 - ightarrow G = (V, E)是一个有向图,边的成本为 C_{ij} ,若<i, j>不属于E,则 $c_{ij} = \infty$ 。
 - ▶G的一条周游路线是包含V中每个节点的有向环。 周游路线的成本是此路线上所有边的成本和。
 - >货郎担问题就是求取最小成本的周游路线问题。

■1. 问题描述

- □邮路问题
 - ➤假定有一辆邮车要到n个不同的地点收集邮件,这 种情况可以用n+1个结点的图来表示。
 - >一个结点表示此邮车出发并要返回的那个邮局, 其余的n个结点表示要收集邮件的n个地点。
 - ▶由地点i到j的距离则由边<i,j>上所赋予的成本来表示。
 - 》邮车所经的路线是一条周游路线,希望求出具有最小长度的周游路线。

■1. 问题描述

- □机械手运动问题
 - ▶在一条装配线上用一个机械手去紧固待装配部件上的螺帽。
 - ▶机械手由初始位置(该位置在第一个要紧固的螺帽上方)开始,依次移动到其余的每一个螺帽,最后返回到初始位置。
 - ▶机械手移动的路线就是以螺帽为结点的一个图中的一条周游路线。
 - ▶一条最小成本路线将使这机械手完成其工作所用的时间取最小值。

■1. 问题描述

- □枚举法求解
 - ▶货郎担问题要从图G的所有周游路线中求取具有最小成本的周游路线,而由始点出发的周游路线一共有(n-1)!条,即等于除始结点外的n-1个结点的排列数,因此货郎担问题是一个排列问题。
 - ▶排列问题比子集合的选择问题(例如0/1背包问题) 通常要难于求解得多。
 - ▶通过枚举(n-1)!条周游路线,从中找出一条具有最小成本的周游路线的算法,其计算时间显然为 O(n!)。

- 2. 货郎担问题满足最优性原理
 - □假设周游路线是开始于结点1并终止于结点1的一条简单路径。
 - □每一条周游路线都由一条边<1,k>和一条由结点k到结点1的路径所组成,其中k∈V-{1};
 - □而这条由结点k到结点1的路径通过V-{1, k}的每个结点各一次。
 - □容易看出,如果这条周游路线是最优的,那么这条由 k到1的路径必定是通过V-{1, k}中所有结点的由k到1 的最短路径,
 - □因此最优性原理成立。

■ 2. 货郎担问题满足最优性原理

设g(i, S)是由结点i开始,通过S中的所有结点,在结点1终止的一条最短路径的长度,

 $g(1, V-\{1\})$ 是一条最优的周游路线长度 于是可以得到: $g(1, V-\{1\})=\min_{2 \le k \le n} \{c_{1k}+g(k, V-\{1, k\})\}$ 上式一般化可得: $g(i, S)=\min_{i \in S} \{c_{ij}+g(j, S-\{j\})\}$

■ 2. 货郎担问题的求解过程

口
$$g(i,\emptyset)=c_{i1},$$
口计算 $|S|=0$ 时, $g(i,S)=g(i,\emptyset)=c_{i1}$ $|S|=1$ 时, $g(i,S)$ $|S|=n-1$ 时, $g(1,V-\{1\})$

	1	2	3	4
1	0	10	15	20
2	5	0	9	10
3	6	13	0	12
4	8	8	9	0

g(i, S)表示由结点i经过S中所有结点到结点1的最短路线长度

|S|=0

$$\mathbf{g}(2,\emptyset)=\mathbf{c}_{21}=\mathbf{5}$$

$$\mathbf{g}(3,\varnothing)=\mathbf{c}_{31}=\mathbf{6}$$

$$\mathbf{g}(4,\varnothing)=\mathbf{c}_{41}=8$$

$$|S|=1$$

$$\mathbf{g}(2, \{3\}) = \mathbf{c}_{23} + \mathbf{g}(3, \emptyset) = 9 + 6 = 15$$

$$\mathbf{g}(2, \{4\}) = c_{24} + \mathbf{g}(4, \emptyset) = 10 + 8 = 18$$

$$\mathbf{g}(3, \{2\}) = c_{32} + \mathbf{g}(2, \emptyset) = 13 + 5 = 18$$

$$\mathbf{g}(3, \{4\}) = \mathbf{c}_{34} + \mathbf{g}(4, \emptyset) = 12 + 8 = 20$$

$$\mathbf{g}(4, \{2\}) = \mathbf{c}_{42} + \mathbf{g}(2, \emptyset) = 8 + 5 = 13$$

$$\mathbf{g}(4, \{3\}) = \mathbf{c}_{43} + \mathbf{g}(3, \emptyset) = 9 + 6 = 15$$

$$g(i,S) = \min_{j \in S} \{c_{ij} + g(j,S - \{j\})\}$$
 国科学院大学 versity of Chinese Academy of Science

```
|S|=2
\mathbf{g}(2, \{3, 4\})
=\min\{c_{23}+g(3,\{4\}),c_{24}+g(4,\{3\})\}
=\min\{9+20, 10+15\} = 25
                                                                   20
\mathbf{g}(3, \{2, 4\})
=\min\{c_{32}+g(2,\{4\}),c_{34}+g(4,\{2\})\}
=\min\{13+18, 12+13\}=25
\mathbf{g}(4, \{2, 3\}) = \min\{\mathbf{c}_{42} + \mathbf{g}(2, \{3\}), \mathbf{c}_{43} + \mathbf{g}(3, \{2\})\}
                  =\min\{8+15, 9+18\} = 23
\mathbf{g}(\mathbf{1}, \{2, 3, 4\})
```

 $= \min\{10+25, 15+25, 20+23\} = 35$

= $\min\{c_{12}+g(2, \{3, 4\}), c_{13}+g(3, \{2, 4\}), c_{14}+g(4, \{2, 3\})\}$

▶可得这条最优周游路线是:1→2→4→3→1

 $g(i,S) = \min_{j \in S} \{c_{ij} + g(j,S - \{j\})\}$ E 科学院大学 versity of Chinese Academy of Science 25

- 3. 算法性能分析
 - 口计算时间为 $\Theta(n^22^n)$
 - □货郎担问题当城市数目增加时,用动态规划方法求解, 无论是计算量还是存储量都会大大增加,所以本方法 只适用于n较小的情况。

```
只适用于n较小的情况。 |S|=0时,g(i,S)=g(i,\varnothing) (n-1)*C(n-2,0) i 的个数为 |S|=1时,g(i,S) (n-1)*C(n-2,1) n-1
```

• • • • •

|S|=n-3时,g(i, S) (n-1) * C(n-2, n-3)

|S|=n-2时,g(i, S) (n-1) * C(n-2, n-2)

|S|=n-1时, $g(1, V-\{1\})$

因此,g(i, S)的个数为 $\Sigma (n-1) * C(n-2, k) = (n-1)2^{n-2}$

|S|=k时,求g(i, S)要进行k次比较

第五章 动态规划

- 5.1 一般方法
- 5.2 多段图问题
- 5.3 每对结点之间的最短路径
- 5.4 最优二分检索树
- 5.5 矩阵连乘问题
- 5.6 0/1背包问题
- 5.7 可靠性设计
- 5.8 货郎担问题
- 5.9 流水线调度问题

- 问题描述:
 - □大型作业往往由一系列任务组成
 - \square n个作业要在m台设备组成的流水线上完成加工,每个作业加工的顺序都是先在 P_1 上加工,然后在 P_2 上加工,,最后在 P_m 上加工
 - □每个任务T_{i,i},1≤j≤m,1≤i≤n
 - ▶T_{j,i}只能在P_j上执行
 - ▶任何时刻在同一台设备上不能同时处理一个以上的任务
 - $ightharpoonup T_{j,l,i}$ 完成后, $T_{j,i}$ 才能开始执行,每个任务的执行时间 $t_{i,i}$
 - □如何将n×m个任务分配给m台设备,使得n个作业完成? 成?

 $J = \begin{bmatrix} 2 & 0 \\ 3 & 3 \\ 5 & 2 \end{bmatrix}$

■问题描述:

□例:考虑在三台设备上调度两个作业,每个作业包含三项任务,完成这些任务要求的时间由矩阵J给出。 这两个作业的两种可能的调度如下:

- 问题描述:
 - □非抢先调度:
 - ▶在任何一台设备处理一个任务,一直到它完成才能处理另一个任务,不允许被中断。
 - □抢先调度:
 - ▶设备在处理某任务时被中断,而优先处理优先级 更高的任务。
 - □作业i的完成时间f_i(S):
 - ▶在S调度方案下作业i的所有任务得以完成的时间。

- 问题描述:
 - **□F**(**S**): 调度**S**的完成时间 $F(S) = \max_{1 \le i \le n} \{ f_i(S) \}$
 - □OFT: 一组给定作业的最优完成时间OFT调度是一种 非抢先调度S,它对所有非抢先调度而言F(S)的值最小。
 - □POFT: 抢先调度下最优完成时间。
 - □当m>2时,得到OFT和POFT的调度的一般问题是难于计算的问题。

- 最优的非抢先调度方案设计(m=2)
 - 口直观上,一个最优调度应使机器 P_1 没有空闲时间,且机器 P_2 的空闲时间最少。
 - $\square a_i$ 表示 t_{1i} , b_i 表示 t_{2i}
 - □在两台设备上按同样的顺序处理作业,不比分别采用 不同的处理次序处理作业花费更多的时间
 - 口如果有 $a_i=0$ 的作业,那么最优调度可通过下法构造:
 - ▶首先对于所有a;≠0的作业求出一种最优调度的排列
 - ▶然后把所有的a_i=0的作业以任意次序加到这一排 列的前面

- 最优的非抢先调度方案设计(m=2)
 - □下图的调度由作业的排列次序5,1,3,2,4确定。
 - □为讨论方便,假定 $a_i\neq 0$, $1\leq i\leq n$ 。
 - □最优调度的排列满足最优性原理:
 - >在给出了这个排列的第一个作业后,
 - ▶剩下的排列相对于这两台设备在完成第一个作业 时所处的状态而言是最优的。

$\mathbf{P_1}$	\mathbf{a}_5	\mathbf{a}_1	$\mathbf{a_3}$	\mathbf{a}_2	$\mathbf{a_4}$	
$\mathbf{P_2}$		\mathbf{b}_{5}	\mathbf{b}_1		$\mathbf{b_2}$	$\mathbf{b_4}$

- 最优的非抢先调度方案设计(m=2)
 - □建立递推关系
 - \triangleright 假设对作业1, 2, ..., k的一种调度排为 $\sigma_1, \sigma_2, \cdots, \sigma_k$ 。
 - \triangleright h₁和h₂分别是在设备P₁和P₂上完成作业1,2...,k的时间, $t=h_2-h_1$ °
 - ▶在对作业1, 2, ..., k作了一系列决策后,这两台设备所 处的状态可完全由t确定。
 - ▶t的含义:
 - ✓如果要在设备P₁和P₂上处理后面的作业,则必须在 这两台设备同时处理前k个作业的不同任务后,设 备P。还要用大小为t的时间段处理前k个作业中没处 理完的任务,
 - ✓即在t这段时间及其以前,设备Pa不能用来外 的作业的任务。

- 最优的非抢先调度方案设计(m=2)
 - □建立递推关系
 - ▶设g(S,t)是在状态t下调度方案S的最优调度长度。
 - 作业集合 $\{1, 2, ..., n\}$ 的最优长度是 $g(\{1, 2, ..., n\}, 0)$
 - > 递推关系

$$g(\{1,2,\dots,n\},0) = \min_{1 \le i \le n} \{a_i + g(\{1,2,\dots,n\} - \{i\},b_i)\}$$

>一般递推关系

$$g(S,t) = \min_{i \in S} \{a_i + g(S - \{i\}, b_i + \max\{t - a_i, 0\})\}$$

▶结束条件

$$g(\Phi, t) = \max\{t, 0\}$$

□时间分析

>时间O(2ⁿ)

- ■流水线作业调度的Johnson法则
 □设i和j是S的调度R中排在前面的两个作业
 g(S, t)
 - $=a_i+g(S-\{i\}, t')$
 - $= \mathbf{a_i} + \mathbf{a_j} + \mathbf{g(S-\{i,j\},b_j} + \max\{ \underbrace{t'} \mathbf{a_j,0} \})$
 - $= \mathbf{a_i} + \mathbf{a_j} + \mathbf{g}(\mathbf{S} \{\mathbf{i, j}\}, \mathbf{t_{ij}})$
- 口将作业i,j在R中易位 $g'(S,t)=a_i+a_i+g(S-\{i,j\},t_{ii})$

作业i和j, 若a_i, a_j, b_i, b_j中a_i 最小,则首先处理作业i更优; 若b_j最小,则最后处理作业j 更优。

 $\min\{b_i, a_j\} \ge \min\{b_i, a_i\} \longrightarrow t_{ij} \le t_{ji} \longrightarrow g(S, t) \le g'(S, t)$

- ■流水线作业调度的Johnson法则
 - □补充证明

$$t_{ij} = b_j + \max\{b_i + \max\{t - a_i, 0\} - a_j, 0\}$$

$$= b_j + b_i - a_j + \max\{\max\{t - a_i, 0\}, a_j - b_i\}$$

$$= b_j + b_i - a_j + \max\{t - a_i, a_j - b_i, 0\}$$

$$= b_j + b_i - a_j - a_i + \max\{t, a_i + a_j - b_i, a_i\}$$

$$t_{ji} = b_j + b_i - a_j - a_i + \max\{t, a_i + a_j - b_i, a_i\}$$

- ■流水线作业调度的Johnson法则
 - 口补充证明

若对t的所有取值: $\max\{t, a_i + a_j - b_i, a_i\} \le \max\{t, a_i + a_j - b_j, a_j\}$

 $\text{Mi:} \quad \max\{a_i + a_j - b_i, a_i\} \leq \max\{a_i + a_j - b_j, a_j\}$

或: $\min\{b_i, a_j\} \ge \min\{b_j, a_i\}$

- ■流水线作业调度的Johnson法则
 - □调度规则
 - ▶把全部a_i和b_i分类成非降序列。
 - >按照这一分类次序考察此序列:
 - ✓如果序列中下一个数是a_i且作业i还没调度,那 么在还没使用的最左位置调度作业i;
 - ✓如果下个数是bj且作业j还没调度,那么在还没使用的最右位置调度作业j。
 - ✓如果已经调度了作业,则转到该序列的下一个 数。

■ 例5.19 设n=4, $(a_1, a_2, a_3, a_4) = (3, 4, 8, 10)$, $(b_1, b_2, b_3, b_4) = (6, 2, 9, 15)$

■ 求解:

□非降次序排列,获得序列

 \Box (b₂, a₁, a₂, b₁, a₃, b₃, a₄, b₄) =(2, 3, 4, 6, 8, 9, 10, 15)

调度序列

σ_1	σ_2	σ_3	σ_4
1	3	4	2

()	3	9 11		20 21		25	36	38
P_1	$\mathbf{a_1}$	a ₃		$\mathbf{a_4}$		$\mathbf{a_2}$			
P_2		$\mathbf{b_1}$		$\mathbf{b_3}$			\mathbf{b}_4	$\mathbf{b_2}$	

作业-课后练习21

■问题描述

- □某工业生产部门根据国家计划的安排,拟将某种高效率的5台机器,分别分配给A,B,C三个工厂,各工厂在获得不同数量的这种机器后,可以为国家盈利如下表所示。请找出一种5台机器的分配方式,使得这5台机器盈利最大。(15分)
- □2018年本课程的考试试题

台数工厂	0	1	2	3	4	5
A	0万	3万	7万	9万	12万	13万
В	0万	5万	8万	10万	11万	12万
C	0万	4万	6万	11万	12万	12万

作业-课后练习21

- ■要求
 - □作业提交到课程网站上
 - ■Word文档即可

作业-算法实现4

■问题

- 口输入:整数序列 $a_1, a_2, ..., a_n$
- 口输出: 序列的一个子段, 其和 $\sum a_k$ 最大
- □注意: 当所有整数都为负数时, 定义最大子段和为0

■要求

- □作业提交到课程网站上
- □用C(C++)或者matlab实现
- □要有算法的求解说明

End

