

HAUSARBEIT APE - SoSe 2025 Dynamische Auslegung von Werkzeugmaschinen, Roboter und Bewegungsachsen

Semester:	1 – SoSe 2025 Prf.Nr.: 3177 – Prof. DrIng. G. Ketterer
Studiengang:	APE
Prüfungsfach:	20004 – Dynamische Auslegung von Werkzeugmaschinen, Roboter und Bewegungsachsen
Max. Punktezahl:	700 Punkte Mindestounkteanzahl zum Bestehen: 350 Punkte

Die Weitergabe und Vervielfältigung dieser Unterlagen ohne meine schriftliche Zustimmung ist NICHT erlaubt!

Hinweis:

- Geben Sie die Aufgabe in einer Spiralheftung zusammen mit einer CD oder USB-Stick (vollständige Ausarbeitung in Word, Matlab-Files, Simulationsergebnisse, Solidworks, etc.) bis spätestens 09.07.2025 ab und
- schicken Sie ebenfalls bis zum 09.07.2025 alle Unterlagen mit Anhängen separat per e-mail an gunter.ketterer@hs-furtwangen.de.
- Die Ausarbeitung muss sauber, leserlich und so ausgeführt sein, dass man die Rechenschritte nachvollziehen kann. Keine handschriftlichen Blätter! Schriftart Arial Narrow 12.
- Zu spät eintreffende Unterlagen werden für die Notengebung nicht berücksichtigt.
- Endergebnisse, die nicht den Lösungsweg aufzeigen, erhalten
 <u>KEINE</u> bzw. <u>NICHT</u> die volle Punktezahl! Daher müssen Sie zwingend die Herleitung und
 Darstellung so gestalten, dass man die Schritte vollumfänglich nachvollziehen kann.
- MATLAB und MATLAB Simulink dürfen jederzeit verwendet und erstellt werden. Die verständliche Kommentierung programmierter Zeilen ist sehr wichtig und zwingend notwendig.
- Die Hausarbeit kann in 2-er Gruppen durchgeführt werden. Werden Ergebnisse von anderen Gruppen verwendet und spricht man sich zwischen den Gruppen ab, führt dies zum NICHT Bestehen.

Viel Spass und Durchhaltevermögen !!!

Gegeben ist ein vierachsiger Scara-Roboter (s. <u>Bild 1</u>), dargestellt in Grundstellung φ_1 =0; φ_2 =0; φ_4 =0 und H_3 in einer Zwischenstellung. Er besitzt 3 rotatorische und eine translatorische Achse. Die geometrischen Verhältnisse sind in Bild 1 angegeben.

Legende:

Positive Verfahrrichtung:

Roboter dargestellt in Grundstellung

<u>Bild 1</u>: Scara Roboter in Grundstellung – schematische Darstellung (nicht maßstabsgetreu)

Achsglieder 0, 1 und 2:

Vereinfachend kann das <u>Achsglieder 0</u> als Hohlzylinder der Länge L_0 mit Innendurchmesser $D_{1,0}$ und Außendurchmesser $D_{A,0}$ betrachtet werden.

Das Drehgelenk 0 befindet sich im Sockel und wird mit ϕ_0 beschrieben

Vereinfachend kann das <u>Achsglieder 1</u> als Vierkantrohr mit der Länge L_1 und Innenbreite/-höhe $D_{I,1}$ und Außenbreite-/höhe $D_{A,1}$ und einem um 90° dazustehenden angeschweißten Drehbund mit dem Außendurchmesser $D_{A,1}$ und der Höhe D_1 betrachtet werden.

Das Drehgelenk 1 befindet sich am Ende des Achsgliedes 0 und wird mit ϕ_1 beschrieben. Das Drehgelenk 1 wird vereinfacht kugelförmig mit dem Durchmesser $D_{G,1}$ betrachtet.

Das <u>Achsglied 2</u> kann vereinfachend als Hohlzylinder der Länge L_2 mit Innendurchmesser $D_{1,2}$ und Außendurchmesser $D_{A,2}$ in Kombination mit einem Vollzylinder und Außendurchmesser $D_{A,3}$ und einer Gesamtlänge L_3 betrachtet werden kann.

Das Drehgelenk 2 wird als Hohl-Zylinder, Höhe: Außendurchmesser des verbundenen Achsglied + 50mm betrachtet, der Drehwinkel wird mit φ₂ beschrieben.

Achsglied 4:

Zuletzt befindet sich eine lineare Hub-/Dreheinheit. Dies bedeutet, dass sowohl Hubbewegungen als auch Drehbewegungen kombiniert stattfinden können. Diese Achsglied kann ebenfalls vereinfacht als Hohlzylinder mit dem Innendurchmesser $D_{I,4}$ und Außendurchmesser $D_{A,4}$ und einer Gesamtlänge von L_4 betrachtet werden.

Das Gelenk 4 des Achsgliedes 4 ist eine kombinierte Hub-/Dreheinheit. Der Hub dieser Einheit liegt bei ΔH_4 , die Drehbewegungen wird mit φ_4 beschrieben.

Die Schwerpunkte der Achsen werden vereinfacht in der Gliedmitte angenommen. Das Material ist eine Stahllegierung 25CrMo5 (E=210.000N/mm²; Dichte δ_{St} = 7,75 kg/dm³; Ausdehnungskoeffizient α_{St} =12,5 * 10-6 K-1).

Das Gewicht des Greifers mit Werkstück liegt bei 15kg und kann als Massepunkt im TCP angesehen werden.

Als geometrische Maße gelten:

 L_0 = 800mm; H_0 =100mm; L_1 = 400mm; L_2 = 500mm; L_3 = 630mm; L_4 = 600mm; L_5 = 50mm, D_1 =110mm, H_S =200mm, D_S =300mm

Dreh-, Schwenk- und Hubbereiche:

Achse 0: $-150^{\circ} < \phi 0 < 150^{\circ}$; $D_{A,0} = 200 \text{mm}$, $D_{I,0} = 150 \text{mm}$;

Achse 1: $0^{\circ} < \phi 1 < 90^{\circ}$; $D_{A,1} = 100$ mm, $D_{I,1} = 80$ mm

Gelenk: 1: Voll-Kugel mit dem Durchmesser D_{G,1} = 200mm

Achse 2: -170° < φ_2 < 170°; $D_{A,2}$ = 100mm, $D_{I,2}$ = 80mm, $D_{A,3}$ = 80mm

Gelenk 2: D_{I,G2}=100mm D_{A,G2}=140mm

Achse 4:

Gelenk: Drehachse -180° < φ_4 < 180°;

Hubachse: ΔH_3 =400mm mit: H_{3min} =700mm $\leq H_3 \leq H_{3,max}$ =1100mm; $D_{A,4}$ = 140mm, $D_{1,4}$ =80mm

Die Endeffektor-Stellung liegt zu Arbeitsbeginn bei:

- den auf das 0. Koordinatensystem bezogenen Positionskoordinaten: p = (400mm, 100mm, 50mm)

und

- den im 0. Koordinatensystem beschriebenen Greiferorientierung mit den 3 Orientierungsvektoren **n**, **u** und **a** mit:

```
n = (\cos(30^\circ); \sin(30^\circ); 0)^T,

u = (\cos(60^\circ); -\sin(60^\circ); 0)^T und

a = (0; 0; -1)^T:
```


Aufgabe 1: (150 Punkte)

a) (10 Punkte)

Bestimmen Sie zunächst zeichnerisch den Arbeitsraum in der x_0 - z_0 und y_0 - z_0 und x_0 - y_0 Ebene und prüfen Sie mögliche Kollisionsräume, die Sie entsprechend grafisch kennzeichnen. Wie müßte man die Schwenk- und Hubbereiche (φ_0 , φ_1 , φ_2 , φ_4 und φ_1) softwaretechnisch einschränken, damit es nie zu einer Kollission kommen aber der Arbeitsraum dennoch möglichst maximal ausgenutzt werden kann.

- b) (10 Punkte)
 - Zeichnen Sie das schematische Ersatzbild des Roboters in Symboldarstellung mit den entsprechenden Koordinatensystemen nach Denavit Hartenberg in den mit "•" gekennzeichneten Gelenkpunkten. (<u>Hinweis</u>: Gehen Sie dabei gemäß der Vorgehensweise nach Denavit Hartenberg wie im Skript von APE-"Dynamische Auslegung von Werkzeugmaschinen und Roboterachsen" beschrieben vor.
- c) (30 Punkte)
 Bestimmen Sie die DH-Paramter beginnend vom Grundkoordinatensystem (Weltkoordinatensystem x₀, y₀, z₀) über alle Achsgelenkpunkte bis zum TCP und leiten Sie daraus die Einzeltransformationsmatrizen ⁰**A**₁, ¹**A**₂, ²**A**₃ ³**A**₄ und ⁴**A**_{5=TCP} in Abhängigkeit der Achsvariablen φ₀; φ₁; φ₂; φ₄ und H₃ ab.
 Falls notwendig sind ebenfalls die angegebenen Robotergrößen (z.B. H_S, L₀, L₁, L₂, D₁, L₃ etc.) als Parameter (ohne Werte) mit zu verwenden.
- d) (10 Punkte)
 Bestimmen Sie die Gesamttransformation **T** = ⁰**A**₄ in allgemeiner Darstellung in Abhängigkeit der Achsvariablen und geometrischen Robotergrößen (ohne Werte).
- e) (50 Punkte)
 - Bestimmen Sie die Achsvariablen φ_0 , φ_1 , φ_2 , φ_4 und H_3 mit Hilfe der Rückwärtstransformation in Abhängigkeit der notwendigen geometrischen Robotergrößen (z.B. H_S , L_0 , L_1 , L_2 , D_1 , L_3 etc.) und einer allgemein angenommenen TCP-Stellung und TCP-Orientierung (TCP-Orientierungsvektoren \mathbf{n} , \mathbf{u} , \mathbf{a} sowie dem TCP-Stellungsvektor \mathbf{p} bezogen auf das Basiskoordinatensystem).

f) (40 Punkte)

Während der Produktion verändert sich die Temperatur von morgens T_0 =18°C auf abends T_1 =30°C.

Die Endeffektor-Stellung liegt zu Arbeitsbeginn wie in der vorderen Aufgabebeschreibung vorgegeben:

Hierbei gilt für das temperaturabhängige Achsverhalten in der Länge: L= L_0 * e $(\alpha^* \Delta T)$ mit dem angegebenen Temperaturkoeffizienten $\alpha = \alpha_{St}$

Welche Auswirkung hat dies auf die Lage und Orientierung (d.h. die Positionier- und Winkelabweichungen) des End-Effektors gegenüber der Stellungssituation bei Produktionsbeginn.

Welche Achskorrekturen sind am Abend steuerungstechnisch in den Achsvariablen φ_0 ; φ_1 ; φ_2 ; φ_4 und H_3 vorzunehmen, damit die gleiche Stellung wie bei Arbeitsbegin erreicht werden kann.

Aufgabe 2: (150 Punkte)

Bestimmen Sie die JACOBI Matrix und berechnen Sie jeweils die 4 Achsmomente in [Nm] in den Antriebsachsen 0, 1, 2, und 4 sowie die benötigte Verschiebekraft in [N] in der Achse 3.

Hierbei wird als Einpresskraft eine im TCP-Koordinatensystem definierte Montagekraft am TCP mit $f_{TCP} = (^{TCP}f_x, ^{TCP}f_y, ^{TCP}f_z)^T = (-50N; 25N; 75N)^T$.und ein Montage-Drehmoment $M_{TCP} = (^{TCP}M_x, ^{TCP}M_y, ^{TCP}M_z) = (30Nm, 0 Nm, 100Nm)$ vorgesehen.

HINWEIS: Umrechnung auf das 0.-Koordinatensystem durch Verwendung der Gesamtrotationsmatrix von **T**.

Bestimmen Sie ebenfalls die Positionen, an denen Singularitäten auftreten.

<u>Aufgabe 3.1</u>: (300 Punkte)

Bestimmen Sie für den oben angegebenen SCARA Roboter die Bewegungs-gleichung nach Lagrange.

Die Erdbeschleunigung g weist entgegen der z₀-Richtung.

Aufgabe 3.2: (100 Punkte)

Simulieren und zeichnen Sie grafisch mit Hilfe von MATLAB die Gelenkmomente /-kräfte als Zeitfunktionen für folgende zeitgleich überlagerten Bewegungsgleichungen:

Folgende ruckbegrenzte, sich periodisch wiederholende Lagesollprofile für ϕ_0 ; ϕ_1 ; ϕ_2 ; ϕ_4 ; ϕ_3 sind vorgegeben:

July	φ ₀	φ1	φ2	φ4	H ₃
Ruck [rad/sec³], [m//sec³]	1200 rad/sec ³	1000 rad/sec ³	500 rad/sec ³	8000 rad/sec ³	500 m/sec ³
zulässige Beschleunigung [rad/sec ²], [m/sec ²]	2π rad/sec ²	π rad/sec ²	3π rad/sec²	5π rad/sec ²	0,8 m/sec ²
zulässige Geschwindigkeit [rad/sec], [m/sec]	0,5π rad/sec	0.5π rad/sec	π rad/sec	2 π rad/sec	100 m/min
Weg [Grad], [m]	+/- 150°	$0 \le \phi_1 \le 90^\circ$	+/- 130°	+/- 160°	$0.8m \leq H_3 \leq 1m$

Tabelle 3.1: ruckbegrenzte Lagesollprofile für die Achsen 1 – 4