*Aerofit *

It is a leading brand in the field of fitness equipment. Aerofit provides a product range including machines such as treadmills, exercise bikes, gym equipment, and fitness accessories to cater to the needs of all categories of people.

Problem Statement

• The market research team at AeroFit wants to identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to new customers. The team decides to investigate whether there are differences across the product with respect to customer characteristics. • Perform descriptive analytics to create a customer profile for each AeroFit treadmill product by developing appropriate tables and charts. • Construct two-way contingency tables for each AeroFit treadmill product and compute all conditional and marginal probabilities and their insights/impact on the business.

Start coding or generate with AI.

Getting the dataset

```
!gdown 1sNXswQ9OoGmzJqpuDGHZt1zcLCRiZLO3
!1s
```

```
Downloading...
     From: https://drive.google.com/uc?id=1sNXswQ90oGmzJqpuDGHZt1zcLCRiZLO3
To: /content/aerofit_treadmill.csv
     100% 7.28k/7.28k [00:00<00:00, 16.2MB/s]
     aerofit_treadmill.csv sample_data
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read csv('aerofit treadmill.csv')
df.head()
```


Next steps:

Generate code with df

New interactive sheet

- · Columns with categorical data are Product, Gender, Maritial Status
- · Columns with numerical value Age, Education, Usage, Fitness, Income, Miles

```
# Lets check the size of df as well
df.shape
→ (180, 9)
# Let's Check the Columns null values and datatype
df.info()
    <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 180 entries, 0 to 179
     Data columns (total 9 columns):
                         Non-Null Count
         Column
                                         Dtype
          Product
                         180 non-null
                                          object
                         180 non-null
      1
                                          int64
          Age
          Gender
                         180 non-null
                                          object
                         180 non-null
```

Education

int64

```
4 MaritalStatus 180 non-null object
5 Usage 180 non-null int64
6 Fitness 180 non-null int64
7 Income 180 non-null int64
8 Miles 180 non-null int64
```

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

- 1. As check the Shape of df which is (180,9) and checking info of columns all columns have 180 non null values which means there is no null values in this df.
- 2. Also all the columns datatype are properr. However we can create some new columns as per the requirement

Let use df.describe for all the columns
df.describe()

df['Product'].value_counts()/df.shape[0]*100

df['Gender'].value_counts()/df.shape[0]*100

df['MaritalStatus'].value_counts()/df.shape[0]*100

- There are 3 unique products in the dataset(KP281,KP481,KP781)
- KP281 is the most purchased product
- Minimum & Maximum age of the person is 18 & 50, mean is 28.79 and 75% of persons have age less than or equal to 33.
- Most of the people are having 16 years of education i.e., 75% of persons are having education <= 16 years.
- Data shows 57.7% male has purchased the product and rest by female.
- · Due to high value of Standard Deviation for income and Miles columns. There is high probability of Outliers.

```
# Let's Check the Outliers in Income and Miles Column by plotting box plot
sns.boxplot(df['Income'])
plt.show()
```


sns.boxplot(df['Miles'])

Let's Remove/clip the data between the 5 percentile and 95 percentile by using # np.clip()

 ${\tt df['Income']=np.clip(df['Income'],df['Income'].quantile(0.05),df['Income'].quantile(0.95))}$

df['Miles']=np.clip(df['Miles'],df['Miles'].quantile(0.05),df['Miles'].quantile(0.95))

df.describe()

₹		Age	Education	Usage	Fitness	Income	Miles	
	count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000	th
	mean	28.788889	15.572222	3.455556	3.311111	53477.070000	101.088889	
	std	6.943498	1.617055	1.084797	0.958869	15463.662523	43.364286	
	min	18.000000	12.000000	2.000000	1.000000	34053.150000	47.000000	
	25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000	
	50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000	
	75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000	
	max	50.000000	21.000000	7.000000	5.000000	90948.250000	200.000000	

Univariate Analysis

Let's Plot the Histogram for Age ,Education,Usage,Fitness,Income,Miles

```
fig,ax=plt.subplots(3,2,figsize=(15,10))
sns.histplot(data=df,x='Age',ax=ax[0,0])
sns.histplot(data=df,x='Education',ax=ax[0,1])
sns.histplot(data=df,x='Usage',ax=ax[1,0])
sns.histplot(data=df,x='Fitness',ax=ax[1,1])
sns.histplot(data=df,x='Income',ax=ax[2,0])
sns.histplot(data=df,x='Miles',ax=ax[2,1])
plt.show()
```



```
fig,ax=plt.subplots(3,2,figsize=(15,5))
sns.boxplot(data=df,x='Age',ax=ax[0,0])
sns.boxplot(data=df,x='Education',ax=ax[0,1])
sns.boxplot(data=df,x='Usage',ax=ax[1,0])
sns.boxplot(data=df,x='Fitness',ax=ax[1,1])
sns.boxplot(data=df,x='Income',ax=ax[2,0])
sns.boxplot(data=df,x='Miles',ax=ax[2,1])
plt.show()
```



```
# Lets Plot for the cateogrical data as well Product,Gender,Maritial Status
fig,ax=plt.subplots(1,3,figsize=(15,3))
sns.countplot(data=df,x='Product',hue='Product',width=0.5,ax=ax[0])
sns.countplot(data=df,x='Gender',hue='Gender',width=0.5,ax=ax[1])
sns.countplot(data=df,x='MaritalStatus',hue='MaritalStatus',width=0.5,ax=ax[2])
plt.show()
```


Bivariate Analysis

Let's Perform Bivarite analysis to study relationship between diffrent type of variable

- Numerical vs Numerical We can use lineplot or scatter plot
- Categorical vs Numerical we can use boxplot or barplot
- Categorical vs Categorical we can use Dodged barplot or stacked barplot

```
fig,ax=plt.subplots(1,2,figsize=(15,5))
sns.countplot(data=df,x='Product',hue='Gender',width=0.5,ax=ax[0])
sns.countplot(data=df,x='Product',hue='MaritalStatus',width=0.5,ax=ax[1])
ax[0].set_title('Product Vs Gender')
ax[1].set_title('Product Vs Marital Status')
plt.suptitle('Categorical vs Categorical', fontsize=16)
plt.tight_layout()
plt.show()
```


Categorical vs Categorical


```
fig,ax=plt.subplots(2,3,figsize=(15,5))
sns.boxplot(data=df,x='Product',y='Age',ax=ax[0,0])
sns.boxplot(data=df,x='Product',y='Education',ax=ax[0,1])
sns.histplot(data=df,x='Usage',hue='Product',multiple='stack',ax=ax[0,2])
sns.countplot(data=df,hue='Product',x='Fitness',ax=ax[1,0])
sns.boxplot(data=df,x='Product',y='Income',ax=ax[1,1])
sns.boxplot(data=df,x='Product',y='Miles',ax=ax[1,2])
plt.suptitle('Categorical(Product) vs Numerical', fontsize=16)
plt.tight_layout()
plt.show()
```



```
fig,ax=plt.subplots(2,3,figsize=(15,5))
sns.boxplot(data=df,x='Gender',y='Age',ax=ax[0,0])
sns.boxplot(data=df,x='Gender',y='Education',ax=ax[0,1])
sns.boxplot(data=df,x='Gender',y='Usage',ax=ax[0,2])
sns.boxplot(data=df,x='Gender',y='Fitness',ax=ax[1,0])
sns.boxplot(data=df,x='Gender',y='Income',ax=ax[1,1])
sns.boxplot(data=df,x='Gender',y='Miles',ax=ax[1,2])
plt.suptitle('Categorical(Gender) vs Numerical', fontsize=16)
plt.tight_layout()
plt.show()
```



```
fig,ax=plt.subplots(2,3,figsize=(15,5))
sns.boxplot(data=df,x='MaritalStatus',y='Age',ax=ax[0,0])
sns.boxplot(data=df,x='MaritalStatus',y='Education',ax=ax[0,1])
sns.boxplot(data=df,x='MaritalStatus',y='Usage',ax=ax[0,2])
sns.boxplot(data=df,x='MaritalStatus',y='Fitness',ax=ax[1,0])
sns.boxplot(data=df,x='MaritalStatus',y='Income',ax=ax[1,1])
sns.boxplot(data=df,x='MaritalStatus',y='Miles',ax=ax[1,2])
plt.suptitle('Categorical(Marital Status) vs Numerical', fontsize=16)
plt.tight_layout()
plt.show()
```



```
plt.figure()
sns.pairplot(df,hue='Product')
plt.tight_layout()
plt.show()
```


Multivariate Analysis

```
fig,ax=plt.subplots(2,3,figsize=(15,5))
sns.boxplot(data=df,x='Product',y='Age',hue='Gender',ax=ax[0,0])
sns.boxplot(data=df,x='Product',y='Education',hue='Gender',ax=ax[0,1])
sns.boxplot(data=df,x='Product',y='Usage',hue='Gender',ax=ax[0,2])
sns.boxplot(data=df,x='Product',y='Fitness',hue='Gender',ax=ax[1,0])
sns.boxplot(data=df,x='Product',y='Income',hue='Gender',ax=ax[1,1])
```

sns.boxplot(data=df,x='Product',y='Miles',hue='Gender',ax=ax[1,2])
plt.suptitle('Categorical(Product) vs Categorical(Product) vs Numerical', fontsize=16)
plt.tight_layout()
plt.show()

Categorical(Product) vs Categorical(Product) vs Numerical


```
fig,ax=plt.subplots(2,3,figsize=(15,5))
sns.boxplot(data=df,x='Product',y='Age',hue='MaritalStatus',ax=ax[0,0])
sns.boxplot(data=df,x='Product',y='Education',hue='MaritalStatus',ax=ax[0,1])
sns.boxplot(data=df,x='Product',y='Usage',hue='MaritalStatus',ax=ax[0,2])
sns.boxplot(data=df,x='Product',y='Fitness',hue='MaritalStatus',ax=ax[1,0])
sns.boxplot(data=df,x='Product',y='Income',hue='MaritalStatus',ax=ax[1,1])
sns.boxplot(data=df,x='Product',y='Miles',hue='MaritalStatus',ax=ax[1,2])
plt.suptitle('Categorical(Product) vs Categorical(Marital Status) vs Numerical', fontsize=16)
plt.tight_layout()
plt.show()
```

Categorical(Product) vs Categorical(Marital Status) vs Numerical

Contigency Table

 $\label{lem:product_gender} $$\operatorname{product'}_{gender'}$, $\operatorname{df['Gender'], margins=True}$ $$\operatorname{product_gender}$$$


```
Next steps: Generate code with product_marital  

• View recommended plots
                                                                                New interactive sheet
# Marginal Probability
single=product_marital.loc['All','Single']/product_marital.loc['All','All']
partnered=product marital.loc['All','Partnered']/product marital.loc['All','All']
print(f"Marginal probablity of Single is {single}")
print(f"Marginal probablity of Married is {partnered}")
    Marginal probablity of Single is 0.4055555555555556
     # Conditional Probability
print("KP281")
kp281_single=product_marital.loc['KP281','Single']/product_marital.loc['KP281','All']
print(f"The probability that a person purchasing a treadmill is single given that purchased treadmill is kp281 is {kp281_single}")
kp281_partnered=product_marital.loc['KP281','Partnered']/product_marital.loc['KP281','All']
print(f"The probability that a person purchasing a treadmill is partnered given that purchased treadmill is kp281 is {kp281_partnered}"
kp481_single=product_marital.loc['KP481','Single']/product_marital.loc['KP481','All']
print(f"The probability that a person purchasing a treadmill is single given that purchased treadmill is kp481 is {kp481_single}")
kp481 partnered=product marital.loc['KP481','Partnered']/product marital.loc['KP481','All']
print(f"The probability that a person purchasing a treadmill is partnered given that purchased treadmill is kp481 is {kp481_partnered}"
print("KP781")
kp781_single=product_marital.loc['KP781','Single']/product_marital.loc['KP781','All']
print(f"The probability that a person purchasing a treadmill is single given that purchased treadmill is kp781 is {kp781_single}")
kp781_partnered=product_marital.loc['KP781','Partnered']/product_marital.loc['KP781','All']
print(f"The probability that a person purchasing a treadmill is partnered given that purchased treadmill is kp781 is {kp781_partnered}"
→ KP281
     The probability that a person purchasing a treadmill is single given that purchased treadmill is kp281 is 0.4
     The probability that a person purchasing a treadmill is partnered given that purchased treadmill is kp281 is 0.6
     The probability that a person purchasing a treadmill is single given that purchased treadmill is kp481 is 0.4
     The probability that a person purchasing a treadmill is partnered given that purchased treadmill is kp481 is 0.6
     The probability that a person purchasing a treadmill is single given that purchased treadmill is kp781 is 0.425
     The probability that a person purchasing a treadmill is partnered given that purchased treadmill is kp781 is 0.575
# Customer Profiling on the basis of Product
Customer Profiling
KP281
Age Distribution - for between 25-35
Income distribution - for between 40 to 50
Gender distribution - for both
Marital status distribution - partnered people purchase more as compare to single
Usage frequency - for people who will use 2 or 3 times a week
Fitness level - for 1 - 3
KP481
Age Distribution - for between 25-35
Income distribution -for between 45-50
Gender distribution - for male more likely to buy than female
Marital status distribution - partnered people purchase more as compare to single
Usage frequency - for people who will use 2 or 3 times a week Fitness level - for 1 to 3 \,
KP781
Age Distribution - for between 25 -30
Income distribution - more than 60 thousand
Gender distribution - for males is very high
Mmarital status distribution - partnered people purchase more as compare to single
Usage frequency - 4 or more
```