Vincent Edwards

 M
t. San Antonio College, Physics 4B, CRN 42240 May 8, 2023

 $R_2 = 40 \ \Omega$

1. Purpose

The goal of the exercise was to use Kirchhoff's rules to analyze 7 different circuits and calculate current, voltage, and power for each circuit element. For the first 4 circuits, the voltage and current calculations were compared to results obtained using an online circuit simulator. In each case, the voltage across a resistor was calculated with V = IR, and the power dissipated by a circuit element with P = VI.

2. Results

The following tables contain the theoretical voltage, current, and power for each circuit element for each of the 7 circuits. In addition, there is an annotated circuit diagram for each circuit.

2.1. Circuit 1

Figure 1. Circuit 1

Table 1. Circuit 1 V, I, and P

	V (V)	<i>I</i> (A)	P (W)
$\overline{\mathcal{E}_1}$	12.0	0.0440	0.527
R_1	4.84	0.0440	0.213
R_2	1.76	0.0440	0.0773
R_3	1.98	0.0440	0.0869
R_4	3.43	0.0440	0.151

$$\begin{split} \mathbf{L}_1: \mathcal{E}_1 - I_1R_1 - I_1R_2 - I_1R_3 - I_1R_4 &= 0 \\ I_1 &= \frac{\mathcal{E}_1}{R_1 + R_2 + R_3 + R_4} \\ I_1 &= 0.0440 \ \mathrm{A} \end{split}$$

2.2. Circuit 2

Figure 2. Circuit 2

Table 2. Circuit 2 V, I, and P

	V(V)	I(A)	P(W)
$\overline{\mathcal{E}_1}$	9.00	0.403	3.63
R_1	9.00	0.106	0.953
R_2	9.00	0.225	2.02
R_3	9.00	0.0720	0.648

2.3. Circuit 3

Circuit 3

Figure 3. Circuit 3

Table 3. Circuit 3 V, I, and P

	V(V)	I(A)	P(W)
$\overline{\mathcal{E}_1}$	11.0	0.212	2.34
R_1	11.0	0.0815	0.896
R_2	5.24	0.131	0.686
R_3	5.76	0.0703	0.405
R_4	5.76	0.0607	0.350

Circuit 4

Figure 4. Circuit 4

Table 4. Circuit 4 V, I, and P

	V(V)	I(A)	P(W)
$\overline{\mathcal{E}_1}$	10.0	0.0613	0.613
R_1	2.80	0.0280	0.0783
R_2	1.33	0.0333	0.0443
R_3	2.73	0.0333	0.0907
R_4	1.26	0.0280	0.0353
R_5	5.94	0.0613	0.364

Circuit 5

Figure 5. Circuit 5

Table 5. Circuit 5 V, I, and P

	V (V)	<i>I</i> (A)	P(W)
$\overline{\mathcal{E}_1}$	14.0	0.0750	1.05
\mathcal{E}_2	5.00	0.0750	0.375
R_1	2.62	0.0750	0.197
R_2	3.00	0.0750	0.225
R_3	3.38	0.0750	0.253

Figure 6. Circuit 6

Table 6. Circuit 6 V, I, and P

	V(V)	I(A)	P(W)
$\overline{\mathcal{E}_1}$	40.0	2.11	84.6
\mathcal{E}_2	10.0	0.343	3.43
R_1	24.3	0.971	23.6
R_2	13.7	0.343	4.70
R_3	40.0	1.14	45.7
R_4	15.7	0.629	9.88
R_5	12.0	0.343	4.11

Circuit 7 (It is recommended to solve this circuit using a matrix.)

Figure 7. Circuit 7

Table 7. Circuit 7 V, I, and P

	V(V)	I(A)	P(W)
$\overline{\mathcal{E}_1}$	12.0	0.200	2.40
R_1	2.00	0.200	0.399
R_2	2.58	0.0646	0.167
R_3	4.05	0.135	0.547
R_4	2.58	0.0646	0.167
R_5	5.95	0.119	0.709
R_6	4.83	0.0806	0.390
R_7	1.12	0.0160	0.0179

- 2.4. Circuit 4
- 2.5. Circuit 5
- 2.6. Circuit 6
- 2.7. Circuit 7

3. Conclusion

4. Citations

- [1] Karen Schnurbusch, Physics 4B Lab Book, Mt. San Antonio College, 2023, pp. 71-74.
- [2] Karen Schnurbusch, Physics 4B Equations, Mt. San Antonio College, 2023, pp. 4, 5.