Colles de mathématiques en PCSI 5

12 janvier 2012

Programme

Suites numériques : généralités, suites convergentes, théorèmes de comparaison, prolongement des inégalités, suites monotones suites adjacentes, exemple de suites récurrente.

Exercice nº 1

Rappeler et démontrer les relations de comparaison entre les suites $(\log^{\alpha}(n))$, (n^{β}) , (a^n) et (n!), pour $\alpha, \beta > 0$, a > 0.

Exercice nº 2

Prouver qu'une suite à valeurs entières est convergente si et seulement si elle est constante à partir d'un certain rang.

Exercice nº 3

Soient (u_n) et (v_n) deux suites convergentes. Prouver que les suites définies par

$$\forall n \in \mathbb{N}, \begin{cases} x_n = \sup(u_n, v_n) \\ y_n = \inf(u_n, v_n) \end{cases}$$

sont convergentes.

Exercice nº 4

Soient $p \in \mathbb{N}$ et $a_1, \ldots a_p, \lambda_1, \ldots \lambda_p$ des réels strictement positifs. Prouver que

$$\lim_{n \to \infty} \left(\sum_{i=0}^{p} \lambda_i a_i^n \right)^{\frac{1}{n}} = \sup_{1 \leqslant i \leqslant p} a_i.$$

Donner une formule similaire qui fournit inf a_i .

Exercice nº 5

Soient a, b, c des réels tels que $b^2 - 4ac < 0$, et deux suites réelles $(u_n), (v_n)$ telles que

$$au_n^2 + bu_nv_n + cv_n^2 \xrightarrow[n \to \infty]{} 0.$$

Prouver que (u_n) et (v_n) tendent toutes deux vers 0.

Exercice nº 6

Soient (u_n) une suite à termes strictement positifs telle que $\frac{u_{n+1}}{u_n} \xrightarrow[n \to \infty]{} +\infty$. Prouver $\sqrt[n]{u_n} \xrightarrow[n \to \infty]{} +\infty$.

Exercice nº 7

Prouver que pour tout entier $n \ge 0$ et tout $z \in \mathbb{C}$,

$$\prod_{k=0}^{n} (1+z^{2^k}) = \sum_{l=0}^{2^{n+1}-1} z^l.$$

En déduire si |z| < 1,

$$\lim_{n\to\infty} \prod_{k=0}^{n} (1+z^{2^k}).$$

Exercice nº 8

Soit (a_n) une suite réelle qui est sous-additive, c'est-à-dire qui vérifie :

$$\forall n, m \in \mathbb{N}, \ a_{n+m} \leqslant a_n + a_m.$$

Prouver que $\frac{a_n}{n} \xrightarrow[n \to \infty]{} \inf\{\frac{a_n}{n}, n \in \mathbb{N}\}.$

Exercice nº 9

Prouver que les suites suivantes sont adjacentes :

$$u_n = \sum_{k=1}^n \frac{1}{k^{\alpha} k!}$$
, $v_n = u_n + \frac{1}{n^{\alpha+1} n!}$,

pour $\alpha > 0$.

Exercice nº 10

Déterminer le terme général de la suite (u_n) , sachant que $u_0 > 0$ et $u_1 > 0$ et :

$$\forall n \in \mathbb{N}, \ u_{n+2} = (u_n^2 u_{n+1})^{\frac{1}{3}}.$$

Exercice nº 11

Étude de la suite récurrente :

$$\begin{cases} u_0 \in \mathbb{R} \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + \int_0^1 |t - u_n| dt. \end{cases}$$
 (1)

Exercice nº 12

Soient 0 < a < b et $(u_n), (v_n)$ les suites définies par :

$$\begin{cases} u_0 = a, & v_0 = b \\ \forall n \in \mathbb{N}, \begin{cases} u_{n+1} = \frac{u_n + v_n}{2} \\ v_{n+1} = \sqrt{u_n v_n} \end{cases} \end{cases}$$
 (2)

Montrer que les suites (u_n) et (v_n) convergent vers une même limite, et exprimer cette limite en fonction de $\arccos\left(\frac{a}{h}\right)$.

Exercice nº 13

Soit (u_n) une suite complexe telle que $u_{n+1} - u_n \xrightarrow[n \to \infty]{} a \in \mathbb{C}$. Montrer que $\frac{u_n}{n} \xrightarrow[n \to \infty]{} a$.

Exercice nº 14

Soient $(u_n), (v_n) \in [0, 1]^{\mathbb{N}}$ telles que $u_n v_n \xrightarrow[n \to \infty]{} 1$. Que dire de $(u_n), (v_n)$? Soient $(u_n), (v_n)$ deux suites réelles telles que $u_n^2 + u_n v_n + v_n^2 \xrightarrow[n \to \infty]{} 0$. Que dire de

 $(u_n), (v_n)$? Exercice no 15

Étudier la suite récurrente définie par

$$\begin{cases} u_{n+1} = 1 - u_n^2 \\ 0 < u_0 < \frac{\sqrt{5} - 1}{2} \end{cases}$$

Exercice nº 16

Étudier la suite récurrente définie, pour $\alpha > 1$, par

$$\begin{cases} u_{n+1} = \alpha^{u_n} \\ u_0 \text{ quelconque.} \end{cases}$$

Exercice nº 17

Étudier la suite récurrente définie, pour a > 0, par

$$\begin{cases} u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right) \\ u_0 = a. \end{cases}$$

Exercice nº 18

1. Soit (u_n) une suite convergente. Prouver que la suite (M_n) définie par

$$\forall n \in \mathbb{N}, \ M_n = \frac{\sum_{k=0}^n u_k}{n+1}$$

est convergente et de même limite que (u_n) . On retient ceci sous la forme : « La suite des moyennes arithmétiques converge vers la même limite que la suite de départ. »

- 2. Que pensez-vous de la réciproque de cette proposition?
- **3.** Généralisation : Soit (λ_n) une suite de réels strictement positifs telle que $\sum_{i=0}^{n} \lambda_i \xrightarrow[n \to \infty]{} \infty$. Prouver que

3

$$\left((u_n) \xrightarrow[n \to \infty]{} \ell \right) \Longrightarrow \left(\frac{\sum_{k=0}^n \lambda_k u_k}{\sum_{k=0}^n \lambda_k} \xrightarrow[n \to \infty]{} \ell \right).$$

Pourquoi ceci constitue-t-il une généralisation de ce qui précède?