Undergraduate Course

ELEMENTS OF COMPUTATION THEORY

Chapter 1

College of Computer Science ZHEJIANG UNIVERSITY

Fall-Winter, 2006

P 46

1.7.4 Show each of the following.

- (c) If a and b are distinct symbols, then $\{a,b\}^* = \{a\}^*(\{b\}\{a\}^*)^*$.
- (d) If Σ is an alphabet, $e \in L_1 \subseteq \Sigma^*$ and $e \in L_2 \subseteq \Sigma^*$, then $(L_1 \Sigma^* L_2) = \Sigma^*$.

Solution:

(c) It is obvious that $\{a\}^*(\{b\}\{a\}^*)^* \subseteq \{a,b\}^*$.

On the other hand, suppose that $w \in \{a, b\}^*$, then $w = a^*$ or $w = a^*ba^*ba^* \cdots ba^*$ $\in \{a\}^*(\{b\}\{a\}^*)^*.$

(d) Suppose $w \in (L_1 \Sigma^* L_2)$. Then w = xyz, where $x \in L_1 \subseteq \Sigma^*, y \in \Sigma^*, z \in L_2 \subseteq \Sigma^*$. Thus $xyz \in (\Sigma^*)^* = \Sigma^*$.

On the other hand, suppose $w \in \Sigma^*$. Then because $e \in L_1$ and $e \in L_2$, $w = ewe \in (L_1\Sigma^*L_2).$

1.7.6 Under what circumstances is $L^+ = L^* - \{e\}$?

Solution: $L^+ = L^* - \{e\}$ exactly when $e \notin L$

P 51

1.8.3 Let $\Sigma = \{a, b\}$. Write regular expressions for the following sets:

(c) All strings in Σ^* with exactly one occurrence of the substring aaa.

Solution: $((a \cup aa \cup b^*)b)^*aaa(bb^*(a \cup aa \cup b^*))^*$

1.8.5 Which of the following are true? Explain.

- (a) $baa \in a^*b^*a^*b^*$
- (b) $b^*a^* \cap a^*b^* = a^* \cup b^*$

(c) $a^*b^* \cap b^*a^* = \emptyset$

 $(d) \ abcd \in (a(cd)^*b)^*$

Solution:

- (a) **true.** baaa consists of zero repetitions of a, followed by one repetition of b, then two repetitions of a, and finally aero repetitions of b.
- (b) **true.** Any string described by a^*b^* consists of s string of as followed by a string bs. If b^*a^* also describes this string, then there cannot be any as followed by a b in the string, so either there are zero as or zero bs, making it into a string of any num -ber of as or a string of any number of bs, by taking zero repetitions of b or a, res -pectively.
- (c) false. Any string consisting only of bs is described both by a^*b^* and by b^*c^* , so that their intersection is not the empty set, but rather b^* .
- (d) **false.** If d appears in a string described by $(a(cd)^*b)^*$, it must be immediately followed by a c or a b.

But this is not the case in abcd.