

The PST Project

RESEARCH CONTEXT
PURPOSE
SCOPE
OBJECTIVE

Projet PST: Performances des Systèmes de Transport **Research context**

Lancement : juillet 2016

Durée: 3 ans

Site: Saclay

Private / public project

Carried out in the Institute Research in Technology SystemX (IRT SystemX)

Industrial parteners

Academic partners

Research Institute

Scope

- How can models support and enhance the design process?
 - Seamless tool-assisted process.
 - Architecture analysis for tradeoffs
 - Optimization of HW & SW resources.

Objectives

- Design of a seamless model-based process harnessing :
 - Model Based Systems Engineering (MBSE) practices for the system level;
 - Model Driven Architecture (MDA) practices for the software and platform levels;
 - Tradeoff practices woven with the System and Software development processes;
- Establishment of a traceability model for impact analysis;
- Build of an open source demonstration :
 - Mock-up that can be implemented in industrial tools like DOORS, PTC/integrity, DS/Enovia....

Objectives

Implementation of analysis

- by leveraging the Architecture and Analysis Design Language (AADL) and the Open Source AADL Tool Environment (OSATE) environment
 - System level : end-to-end latency analysis
 - Platform level : scheduling analysis
 - Build of assurance plans to verify requirement compliance.

Objectives

Build of an open source tooling solution

 Mock-up of principles for possible implementation in industrial contexts using tools of the ALP/PLM market (DOORS, PTC/integrity, DS/Enovia....)

Demonstration of an architecture based on a 2003 processor

 Compliant with ERA baseline 3 response time and safety requirements, selected in the scope of the PST Use Case.

The PST seamless process

SYSTEM LEVEL SW/HW LEVEL

The PST seamless process - System level

System definition processes of the norm ISO/IEEE 15288

The PST seamless process - System level Qualitative requirements

Implementation of traditional "ALM" MBSE practices

The PST seamless process - System level Quantitative requirements

Woven MBSE and tradeoff practices according to the "MIMEe" process

The PST seamless process - System level Quantitative requirements

Adoption of the MBSE and tradeoff practices of the "MIMEe" process

The PST seamless process - System level Quantitative requirements

And customization to the PST needs

The PST seamless process - Software and platform level

The PST seamless process - Software and platform level

Transition between levels

Traceability

TRACEABILITY MODEL IMPLEMENTATION

Traceability

- Adoption of the MIMe metamodel
- Customization with AADL and ALISA objets

Summary

System level: ETCS Bord

« ALM » like environnent Reqlf Format OSATE/ Alisa environnement

Software and platform: EVC Sub-system requirements « deriveReq» **Plateform** « satisfy » EVC -ReqSpec EVC -**Plateform Req** Appli SW Req **Analysis** Analysis run: UNIFIED plan MODELINB **Scheduling** LANGUAGE. SCADE Others 2003 model **SW** models **Analysis** results implications benefitings, then characterisms are more investigations when the control benefiting to the characterisms from a set of the characterisms from the characterisms from the characterisms from the form from the characterisms (a. 2) and (b. 2) a Appli cod Middleware code **Code static ASTERIOS Formal** verification methods Actual tests on prototype Switch

« ALM » like environnent ReqIf Format

OSATE/ Alisa environnement

Projet PST : Performances des Systèmes de Transport

To go farther in this approach

- Continue further reflexion on RAMS requirements
 - Leveraging the PST process
 - Taking into account mutual dependencies between :
 - RAMS rrequirements :
 - Non RAMS and non RAMS requirements;
 - ISABELLE capabilities for
 - analysis
 - certification
- Implement realistic examples of safety studies

