Module – 6: Fuels and Combustion

- Calorific value Definition of LCV, HCV. Measurement of calorific value using bomb calorimeter and Boy's calorimeter including numerical problems.
- Controlled combustion of fuels Air fuel ratio minimum quantity of air by volume and by weight - Numerical problems
- Three way catalytic converter selective catalytic reduction of NO_X
- Knocking in IC engines Octane and Cetane number Antiknocking agents.

Fuel

Fuel: Anything which burn to give heat in presence of oxygen

Fuel +
$$O_2 \rightarrow Product + Heat$$

 Combustion: The process of burning fuel. In other words, combustion involves oxidation of fuels to CO₂ and H₂O.

$$H_2 + O_2 \rightarrow H_2O + Heat$$

 $C + O_2 \rightarrow CO_2 + Heat$
 $CH_4 + O_2 \rightarrow CO_2 + H_2O + Heat$

 During this fuel combustion process large amount of heat energy is liberated which can be utilized.

Classification of Fuel

Characteristic of good fuel

- 1. It should ignite easily
- 2. It should give out a lot of heat (High calorific value)
- 3. It should have **low smoke** and **low combustible matter** such as ash
- 4. It should be inexpensive and readily available
- 5. It should be easy to store and transport
- It should have low ash content

Calorific value of fuels

 Calorific value: The total quantity of heat liberated when a unit mass or volume of the fuel is burnt completely (capacity to supply heat).

Units: cal/g (or) kJ/kg.

 Calorie: The amount of heat required to raise the temperature of one gram of water through one degree centigrade.

Fuel	Calorific Value (kJ/kg)
Cow dung cake	6000-8000
Wood	17000-22000
Coal	25000-33000
Petrol	45000
Kerosene	45000
Diesel	45000
Methane	50000
CNG	50000
LPG	55000
Biogas	35000-40000
Hydrogen	150000

Calorific Value = Heat produced on burning of 1 kg of fuel

Types of calorific value

Calorific value

Higher or Gross Calorific Value

HCV or GCV

Lower or Net Calorific Value

LCV or NCV

Determination of Calorific Value

Bomb Calorimeter

HCV (or) GCV

Boy's Calorimeter

 Gaseous (or) Liquid fuels

Module – 6 Fuels and Combustion

Higher or Gross Calorific Value (HCV or GCV)

It is defined as

The total amount of heat liberated, when a unit mass of fuel is burnt completely and the products of the combustion are cooled down to room temperature

- Usually, all fuels contain some hydrogen
- When the calorific value of hydrogen containing fuel is determined experimentally, the hydrogen is converted to steam.
- If the products of combustion are condensed to room temperature (25°C), the steam gets condensed into water and latent heat is evolved.
- The latent heat of condensation of steam also gets included in the measured heat.
- A good fuel posses HCV

Lower or Net Calorific Value

It is defined as

The net heat produced when unit mass / volume of the fuel is burnt completely and the products are permitted to escape

- In actual use of fuel, the water vapour and moisture etc. are not condensed and escapes as such along with hot combustion gases. Hence a lesser amount of heat is available.
- Net or lower calorific value can be found from GCV value

NCV = GCV - Latent heat of water vapour formed

- = GCV Mass of hydrogen x 9 x latent heat of steam
- 1 part by mass of hydrogen produces 9 parts by mass of water. The latent heat of steam is 587 kcal/kg formed at room temperature. (i.e. 25°C).

Latent heat of water vapour formed

Latent heat of water vapours is 587 kcal/kg

Hydrogen in the fuel reacts with oxygen to give water

$$H_2 + 1/2 O_2 \rightarrow H_2 O$$

 $2H = 1/2 O_2 = H_2 O$
 $2parts = 16parts = 18parts$
 $1parts = 8parts = 9parts$

Thus,

Note:

If H is the percentage of hydrogen in fuel, the mass of water produced from 1 g of fuel = (9/100)×H = 0.09 H

Determination of Calorific Value

Bomb calorimeter

Calculation for HCV

$$HCV = \frac{(W+w)(t_2-t_1) \times Specific heat of water}{m}$$

```
mass of fuel pellet (g)
m
```

mass of water in the calorimeter (g) W

water equivalent of calorimeter (g) W

initial temperature of calorimeter t_1

final temperature of calorimeter t_2

HCV Higher/gross calorific value of fuel

Specific heat of water = 1 cal/g °C

$$HCV = \frac{(W+w)(t_2-t_1)}{m} cal$$

Numerical

0.72 g of a fuel containing 80% carbon, when burnt in a bomb calorimeter, increased the temperature of water from 27.3 °C to 29.1 °C. If the calorimeter contains 250 g of water and its water equivalents is 150 g, calculate the HCV of the fuel. Give your answer in kJ/kg.

Solution:

Here, m = 0.72 g; W = 250 g; w = 150 g; $t_1 = 27.3 °C$ and $t_2 = 29.1 °C$.

HCV of fuel (L) =
$$\frac{(W+w)(t_2-t_1)}{m} cal/g$$

1 cal/g = 4.2 kJ/kg

$$=\frac{(250+150)(29.1-27.3)}{0.72} = 1000 \, cal/g$$

$$= 1000 \times 4.2 = 4,200 \text{ kJ/kg}$$

Calculation for LCV

Water Equivalent of the calorimeter

 It is determined by burning a fuel of known calorific value Benzoic acid (HCV = 6,325 kcal/kg) and naphthalene (HCV = 9,688 kcal/kg)

```
If H is the percentage of hydrogen in fuel,
the mass of water produced from 1 g of fuel = (9/100)×H
= 0.09 H
```

Heat taken by water in forming steam = 0.09 H× 587 cal (latent heat of steam = 587 cal/kg)

LCV = HCV – Latent heat of water formed LCV = $[HCV - (0.09 H \times 587)]$ kcal/kg

Numerical - Problem

On burning 0.83 g of a solid fuel in a bomb calorimeter, the temperature of 3,500 g of water increased from 26.5 °C to 29.2 °C. Water equivalent of calorimeter and latent heat of steam are 385.0 g of and 587.0 cal/g, respectively. If the fuel contains 0.7% hydrogen, calculate its gross and net calorific value.

```
Weight of fuel
                                                    0.83\,\mathrm{g}
Weight of water
                                                    3,500 g
Water equivalent of calorimeter
                                             = ?
                                                    385 g
Final temperature
                                               ? 29.2 °C
                                               ? 26.5 °C
Initial temperature
Percentage of hydrogen
                                             = ? 0.7%
Latent heat of steam
                                                    587 cal/g
```

Numerical

HCV of fuel (L) =
$$\frac{(W+w)(t_2-t_1)}{m}$$
 cal/g
= $\frac{(3500+385)(29.2-26.5)}{0.83}$
= 12,638 cal/g
NCV = [GCV - 0.09 H × 587]
= (12,638 - 0.09 × 0.7 × 587) cal/g
= (12,638 - 37) cal/g
= 12,601 cal/g