Politechnika Wrocławska Wydział Informatyki i Telekomunikacji Katedra Automatyki, Mechatroniki i Systemów Sterowania

Podstawy automatyzacji procesów technologicznych - wprowadzenie

Dr inż. Andrzej Jabłoński

Wrocław 2023

Plan wykładu

- Wprowadzenie podstawowych pojęć
- Sterowanie w kilku aspektach
- Sprzężenie zwrotne
- Struktury systemów automatyki

AUTOMATYZACJA

KOMERCYJNA

BUDYNKÓW

Automatyka Sterowanie Informatyka Cybernetyka

"(...) nauka o systemach sterowania oraz przekazywaniu i przekształcaniu informacji w tych systemach (...)"

Norbert Wiener -1948

Obiekt – Proces technologiczny

Pojęcie "BLACK BOX"

Pojęcie "BLACK BOX"

Pojęcie "BLACK BOX"

Poszukiwana funkcja: WY = f (WE)

IDENTYFIKACJA obiektu/procesu

Identyfikacja – to metodologia rozpoznawania właściwości statycznych i dynamicznych nieznanego obiektu/procesu technologicznego.

Identyfikacja – to poszukiwanie zależności między wejściem a wyjściem obiektu/procesu technologicznego na podstawie danych doświadczalnych i przeprowadzanych eksperymentów.

MODELOWANIE MATEMATYCZNE obiektu/układu/procesu

Modelowanie matematyczne – użycie formuł matematycznych do opisania zachowania i właściwości obiektu/układu /procesu

Model matematyczny - to grupa funkcji wiążących ze sobą różne zmienne i w ten sposób opisujących powiązania między wielkościami występującymi w obiekcie/układzie/procesie.

SYMULACJA obiektu/procesu

Symulacja – przybliżone odtwarzanie zjawisk czy reakcji jakiegoś obiektu za pomocą jego modelu.

Symulacja komputerowa – symulacja z wykorzystaniem modelu matematycznego, zapisanego w postaci programu komputerowego.

STEROWANIE

Sterowanie - to takie oddziaływanie na dany obiekt aby osiągnąć określony cel.

OPTYMALIZACJA

Optymalizacja - metoda wyznaczania najlepszego (optymalnego) rozwiązania z punktu widzenia określonego kryterium jakości (znalezienie ekstremum zadanej funkcji celu).

Optymalizacja – jednokryterialna

Optymalizacja – wielokryterialna – optymalne decyzje (sterowania) muszą być podejmowane przy istnieniu kompromisów między dwoma lub więcej sprzecznymi celami.

Sterowanie optymalne - poszukiwanie takiego sterowania dla danego procesu/układu, przy którym spełnione zostaną zdefiniowane kryteria optymalności (jakości).

Zadania dla automatyka (dziedziny nauki i praktyki)

STEROWANIE - kategorie

- X_p

WY

WE

Sterownik/regulator

UKŁAD ZAMKNIĘTY – SPRZĘŻENIE ZWROTNE UKŁAD OTWARTY $+X_0$ RĘCZNE **PROCES PROCES** WY **WE WE** WY **UKŁAD AUTOMATYCZNEJ REGULACJI** $+X_0$ - X_p **AUTOMATYCZNE** Î Î $e = X_o - Y$ **PROCES PROCES** WE=f(e) WE=f(t)

WY

Sterownik

Sprzężenie zwrotne -ujemne

Remgoverneiez darzierpitanowane zdarzenia Raport prod

Systemy zbierania danych, wizualizacji, sterowania i raportowania

SYSTEMY ZARZĄDZANIA

SYSTEMY FINANSOWO-KSIĘGOWE

SYSTEMY CAD

HISTORIA

RECEPTURY

TRENDY

RAPORTOWANIE

STEROWANIE

WIZUALIZACJA

ZBIERANIE DANYCH

CIM

Computer Integrated Manufacturing

SCADA

Supervisory Control and Data Acquisition

HMI

Human Machine Interface

PROCES TECHNOLOGICZNY

Wizualizacja procesów

Automatyzowane procesy technologiczne

Sterowanie odwiertami

Automatyczne linie produkcyjne

Automatyzacja procesów zagrożonych wybuchem

Radar pomiarowy ciśnienia zainstalowany na zbiorniku z gazem

Automatyzacja przemysłu spożywczego np. browary

Wort mass, Plato and total extract

Zbiornik zacierny w warzelni

Komputerowe sieci sterowania w motoryzacji

ASPEKTY TECHNICZNE STEROWANIA

Ogólna struktura systemu automatyki i przesyłania sygnałów

Bloki funkcjonalne w systemach automatyki

Czujniki pomiarowe

- Temperatura
- Różnica temperatur
- Ciśnienie
- Przepływ
- Siła
- Prędkość
- Położenie kątowe
- Poziom
- Stężenie
- Inne.....

- Siła elektromotoryczna
- Natężenie prądu elektr.
- Rezystancja
- Przesunięcie
- Impulsy
- Różnica ciśnień
- Natężenie pola magnet.
- Ciśnienie
- Inne....

Bloki funkcjonalne w systemach automatyki

Przetworniki pomiarowe

- Siła elektromotoryczna
- Natężenie prądu elektr.
- Rezystancja
- Przesunięcie
- Impulsy
- Różnica ciśnień
- Natężenie pola magnet.
- Ciśnienie
- Inne....

- Elektryczny (U, I)
- Pneumatyczny (p)
- Hydrauliczny (p)
- Optyczny
- Elektromagnetyczny

Bloki funkcjonalne w systemach automatyki

Urządzenie pomiarowe

- Temperatura
- Różnica temperatur
- Ciśnienie
- Przepływ
- Siła
- Prędkość
- Położenie kątowe
- Poziom
- Stężenie
- Inne.....

- Wielkość przetworzona pośrednicząca
- Siła elektromotoryczna
- Natężenie prądu elektr.
- Rezystancja
- Przesunięcie
- Impulsy
- Różnica ciśnień
- Natężenie pola magnet.
- Ciśnienie
- Inne....

- Elektryczny (U, I)
- Pneumatyczny (p)
- Hydrauliczny (p)
- Optyczny
- Elektromagnetyczny

Popularne elektryczne sygnały standardowe w analogowej transmisji informacji

Sygnał standardowy: zakres zmienności 0% - 100% przyjętego nośnika informacji np.:

Standardowy sygnał napięciowy DC (U): 0-10V; 0-5V

Standardowy sygnał prądowy DC (I):

- z prawdziwym zerem (true/dead zero):0–20mA; 0–50mA; 0-10mA
- z żywym zerem (live zero): 4–20 mA; 10–50mA; 2-10mA

Zalety sygnału prądowego jako standardowego sygnału informacyjnego (przesyłowego)

np. 0 - 20 mA, 4 - 20 mA, 0 - 50 mA, 10 - 50 mA (historycznie 0 - 5mA)

- Brak przekłamania informacji między nadajnikiem, a odbiornikiem (natężenie prądu nadajnika i odbiorniku jest takie same).
- Znaczna odporność na zakłócenia radioelektryczne (ze względu na niską oporność wejściową odbiornika).
- Predyspozycja do zastosowań w strefach zagrożonych wybuchem (Ex)
 - o naturalne ograniczenie energii sygnału przesyłowego,
 - o autodiagnostyka linii przesyłowych (żywe zero, np. 4-20mA),
 - możliwość zasilania przetworników w strefie wybuchowej (przetworniki dwuprzewodowe).

Sygnał prądowy z "prawdziwym" zerem

Sygnał prądowy z "żywym" zerem

Aparaty lub algorytmy przetwarzające: bloki matematyczne, wybierak ekstremum, ogranicznik sygnału, rozdzielacz sygnału, przetworniki sygnałowe, separator galwaniczny

Przetworniki sygnałowe

Sygnał sterujący z urządzenia sterującego

REGULATORY:

- ciągłe
- dyskretne
- dwupołożeniowe
- trójpołożeniowe
- krokowe
- Impulsowe
- analogowe
- cyfrowe

STEROWNIKI:

- dedykowane
- czasowe
- PLC swobodnie programowane

A – sygnał analogowy (ciągły)

D - sygnał dyskretny (cyfrowy)

Sterowniki PLC

- Złącze modułu komunikacyjnego
- Złącze programujące

Dwa potencjometry

- MITSUBISHI
- Zaciski zasilania
- Zaciski wejściowe

Panel FX1N-5DM

- Zaciski wyjściowe
- Wyjście 24 V DC

Przełącznik RUN/STOP

Sterownik kompaktowy MITSUBISHI FX1S

Sterowniki PLC

Sterownik kompaktowy Siemens LOGO!

Sterowniki PLC

Sterownik modułowy Siemens Simatic S7-300

Kontroler PAC - komunikacja

PACSystems HA - ograniczanie strat spowodowanych nieprzewidzianymi przestojami

Kontroler PAC - komunikacja

Proficy Process System – system sterowania procesem ciągłym

Bezpieczne systemy sterowania dla zastosowań specjalnych

Popularne skróty stosowane w automatyzacji procesów

- PLC Programowany sterownik logiczny (*Programmable Logic Controller*); (PLC *Power Line Communication*)
- PAC Programowalne sterowniki automatyki (Programmable Automation Controllers)
- SCADA Nadrzędny system sterowania i akwizycji danych (Supervisory Control And Data Acquisition)
- DCS Zdecentralizowany (rozproszony) system sterowania (Distributed Control System)
- HMI Interfejs człowiek maszyna (Human-Machine Interface)
- DDC Bezpośrednie sterowanie cyfrowe (Direct Digital Control)
- IT technologie informatyczne/informatyka (Information Technology)
- ICT technologie/techniki informacyjne i komunikacyjne (Information Communication Technologies)

Podsumowanie

Automatyzacja, informatyka techniczna i robotyzacja to niezbędne dziedziny w każdej branży i technologii, a innowacyjność i kreatywność w nowych technologiach uczynią wszelkie procesy produkcyjne wydajniejsze i bezpieczniejsze.

Dziękuję za uwagę