Findings 10/04

Understanding the effect of weather on simulation results

Intepolate between clear-sunset and rain-sunset

- cloudiness
- precipitation
- precipitation_deposits
- wetness
- fog_density
- wind_intensity

```
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# %matplotlib inline
import scipy.stats
from scipy.stats import norm, binom, poisson
from dtaidistance import dtw
import json
```

Layered folders, parse into 2d lists of dicts

```
In [2]:
        import os
        txt_lists = [[], [], [], [], []]
        for root, dirs, files in os.walk("./campaign results new/route highway epoch24 clear-s
            for file in files:
                if file.endswith(".txt"):
                      with open(os.path.join(root, file), encoding = 'utf-8') as f:
                         read string = f.read()
                         json_object = json.loads(read_string)
                        txt_lists[0].append(json_object)
        for root, dirs, files in os.walk("./campaign results new/route highway epoch24 rain-su
            for file in files:
                if file.endswith(".txt"):
                      with open(os.path.join(root, file), encoding = 'utf-8') as f:
                         read string = f.read()
                         json object = json.loads(read string)
                        txt_lists[1].append(json_object)
        for root, dirs, files in os.walk("./campaign_results_new/route_highway_epoch24_rain-su
            for file in files:
                 if file.endswith(".txt"):
                      with open(os.path.join(root, file), encoding = 'utf-8') as f:
                         read_string = f.read()
                         json object = json.loads(read string)
```

```
txt_lists[2].append(json_object)
for root, dirs, files in os.walk("./campaign_results_new/route_highway_epoch24_rain-su
   for file in files:
        if file.endswith(".txt"):
             with open(os.path.join(root, file), encoding = 'utf-8') as f:
                read string = f.read()
                json_object = json.loads(read_string)
                txt_lists[3].append(json_object)
for root, dirs, files in os.walk("./campaign_results_new/route_highway_epoch24_rain-su
   for file in files:
        if file.endswith(".txt"):
             with open(os.path.join(root, file), encoding = 'utf-8') as f:
                read string = f.read()
                json_object = json.loads(read_string)
                txt_lists[4].append(json_object)
for root, dirs, files in os.walk("./campaign results new/route highway epoch24 rain-su
   for file in files:
        if file.endswith(".txt"):
             with open(os.path.join(root, file), encoding = 'utf-8') as f:
                read string = f.read()
                json object = json.loads(read string)
                txt lists[5].append(json object)
```

Examining results: No crashes, all perfect score

```
In [3]:
        count_array = []
        for txt_list in txt_lists:
            count = 0
            for txt in txt list:
                 if txt['_checkpoint']['records'][0]['status'] == 'Completed':
                    count += 1
            count array.append(count/100)
        print(count_array)
        [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
In [4]:
        count_array = []
        for txt list in txt lists:
            count = 0
            for txt in txt_list:
                 count += txt['_checkpoint']['records'][0]['scores']['score_route']
            count_array.append(count/100)
        print(count_array)
        [100.0, 100.0, 100.0, 100.0, 100.0, 100.0]
```

Setting up into 2d lists of DataFrames

```
In [5]: dim = (6, 100)
    df_array = np.ndarray(dim, dtype=object)

In [6]: dir_path = './campaign_results_new'
```

```
# list to store files
res = []
count = 0
# Iterate directory
for path in os.listdir(dir_path):
    # check if current path is a file
     print(path)
    if not os.path.isfile(os.path.join(dir path, path)):
        folder list = []
        for folder in os.listdir(os.path.join(dir_path, path)):
            folder_list.append(folder)
        folder_list.sort()
          print(folder list)
        for i in range(len(folder_list)):
            folder = folder_list[i]
            temp = os.path.join(os.path.join(dir_path, path), folder)
            file array = []
            for file in os.listdir(temp):
                file_array.append(file)
            file_array.sort()
            df = pd.DataFrame()
            for file in file_array:
                if "_ctl.csv" in file:
                    df = pd.read_csv(temp + '/' + file)
                elif "_cvip.csv" in file:
                    df = pd.concat([df, pd.read_csv(temp + '/' + file)], axis=1)
                elif "_traj.csv" in file:
                    df = pd.concat([df, pd.read_csv(temp + '/' + file)], axis=1)
            df array[count][i%100]=df
    count += 1
```

In [7]: df_array[5][50]

Out[7]:

•	ts	agent_id	throttle	steer	brake	ts	agent_id	cvip	cvip_x	cvi
	567030	0	0.900000	0.015107	0.0	567030	0	500.491189	198.767441	-95.832
•	567031	0	0.900000	-0.004060	0.0	567031	0	5.595580	195.567444	-90.832
2	567032	0	0.900000	0.014287	0.0	567032	0	5.592365	195.567444	-90.832
3	567033	0	0.900000	0.002533	0.0	567033	0	5.589578	195.567444	-90.832
4	567034	0	0.900000	0.013922	0.0	567034	0	5.587154	195.567444	-90.832
••										
780	567810	0	0.900000	-0.000011	0.0	567810	0	64.163853	192.164413	107.317
78	567811	0	0.000000	0.000289	1.0	567811	0	64.301973	192.135345	107.649
782	567812	0	0.512673	-0.000414	0.0	567812	0	64.439160	192.105118	107.982
783	567813	0	0.900000	-0.001558	0.0	567813	0	64.575262	192.073746	108.315
784	567814	0	0.900000	0.000048	0.0	567814	0	64.710321	192.040955	108.648

785 rows × 17 columns

Since no accident, check cvip


```
In [10]: legend = ['clear', '80', '60', '20', '40', '100']
    df_avg_dict = {}
    for weather in range(6):
```

```
df_avg = df_array[weather][0]['steer']
  for i in range(1, len(df_array[weather])):
        df_avg += df_array[weather][i]['steer']
    df_avg = df_avg.interpolate().dropna()/100
    df_avg_dict.update({legend[weather]: df_avg.copy()})
    df_avg.plot()
plt.title(legend[weather])
plt.show()
```



```
In [11]: legend = ['clear', '80', '60', '20', '40', '100']
    df_avg_dict = {}
    for weather in range(6):
        df_avg = df_array[weather][0]['steer']
        for i in range(1, len(df_array[weather])):
            df_avg += df_array[weather][i]['steer']
        df_avg = df_avg.interpolate().dropna()/100
        df_avg_dict.update({legend[weather]: df_avg.copy()})
        df_avg.plot(y="Age")
        plt.title(legend[weather])
        plt.show()
```



```
In [12]: legend = ['clear', '80', '60', '20', '40', '100']
# for i in legend:
# print(df_avg_dict[i])

In [13]: fig = plt.figure(figsize=(15, 6))
```


Dynamic time warping (DTW): measuring similarity between two temporal sequences