Applications linéaires

1 Définition

Exercice 1 Déterminer si les applications f_i suivantes (de E_i dans F_i) sont linéaires :

$$f_{1}:(x,y) \in \mathbb{R}^{2} \mapsto (2x+y,x-y) \in \mathbb{R}^{2}, f_{2}:(x,y,z) \in \mathbb{R}^{3} \mapsto (xy,x,y) \in \mathbb{R}^{3}$$

$$f_{3}:(x,y,z) \in \mathbb{R}^{3} \mapsto (2x+y+z,y-z,x+y) \in \mathbb{R}^{3}$$

$$f_{4}:P \in \mathbb{R}[X] \mapsto P' \in \mathbb{R}[X], f_{5}:P \in \mathbb{R}_{3}[X] \mapsto P' \in \mathbb{R}_{3}[X]$$

$$f_{6}:P \in \mathbb{R}_{3}[X] \mapsto (P(-1),P(0),P(1)) \in \mathbb{R}^{3}, f_{7}:P \in \mathbb{R}[X] \mapsto P-(X-2)P' \in \mathbb{R}[X].$$

Exercice 2 Soit E un espace vectoriel de dimension n et φ une application linéaire de E dans lui-même telle que $\varphi^n = 0$ et $\varphi^{n-1} \neq 0$. Soit $x \in E$ tel que $\varphi^{n-1}(x) \neq 0$. Montrer que la famille $\{x, \ldots, \varphi^{n-1}(x)\}$ est une base de E.

2 Image et noyau

Exercice 3 E_1 et E_2 étant deux sous-espaces vectoriels de dimensions finies d'un espace vectoriel E, on définit l'application $f: E_1 \times E_2 \to E$ par $f(x_1, x_2) = x_1 + x_2$.

- 1. Montrer que f est linéaire.
- 2. Déterminer le noyau et l'image de f.
- 3. Appliquer le théorème du rang.

Exercice 4 Soient E un espace vectoriel et φ une application linéaire de E dans E. On suppose que Ker $(\varphi) \cap \text{Im } (\varphi) = \{0\}$. Montrer que, si $x \notin \text{Ker } (\varphi)$ alors, pour tout $n \in \mathbb{N} : \varphi^n(x) \neq 0$.

Exercice 5 Soient E un espace vectoriel de dimension n et f une application linéaire de E dans lui-même. Montrer que les deux assertions qui suivent sont équivalentes :

- 1. $\operatorname{Ker}(f) = \operatorname{im}(f)$.
- 2. $f^2 = 0$ et $n = 2 \operatorname{rg}(f)$.

Exercice 6 Soient f et g deux endomorphismes de E tels que $f \circ g = g \circ f$. Montrer que $\ker(f)$ et $\operatorname{Im}(f)$ sont stables par g.

Exercice 7 Soit $f \in \mathcal{L}(E)$. Montrer que $\ker(f) \cap \operatorname{Im}(f) = f(\ker(f \circ f))$.

Exercice 8 Donner des exemples d'applications linéaires de \mathbb{R}^2 dans \mathbb{R}^2 vérifiant :

- 1. Ker(f) = Im(f).
- 2. Ker(f) inclus strictement dans Im(f).
- 3. Im(f) inclus strictement dans Ker(f).

3 Injectivité, surjectivité, isomorphie

Exercice 9 Soit E un espace vectoriel de dimension 3, $\{e_1, e_2, e_3\}$ une base de E, et λ un paramètre réel.

Démontrer que la donnée de $\begin{cases} \varphi(e_1) &= e_1 + e_2 \\ \varphi(e_2) &= e_1 - e_2 \\ \varphi(e_3) &= e_1 + \lambda e_3 \end{cases}$ définit une application linéaire φ de E

dans E. Écrire le transformé du vecteur $x = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$. Comment choisir λ pour que φ soit injective? surjective?

Exercice 10

1. Dire si les applications $f_i, 1 \leq i \leq 6$, sont linéaires

$$f_{1}: (x,y) \in \mathbb{R}^{2} \mapsto (2x+y,ax-y) \in \mathbb{R}^{2},$$

$$f_{2}: (x,y,z) \in \mathbb{R}^{3} \mapsto (xy,ax,y) \in \mathbb{R}^{3},$$

$$f_{3}: P \in \mathbb{R}[X] \mapsto aP' + P \in \mathbb{R}[X],$$

$$f_{4}: P \in \mathbb{R}_{3}[X] \mapsto P' \in \mathbb{R}_{2}[X],$$

$$f_{5}: P \in \mathbb{R}_{3}[X] \mapsto (P(-1),P(0),P(1)) \in \mathbb{R}^{3},$$

$$f_{6}: P \in \mathbb{R}[X] \mapsto P - (X-2)P' \in \mathbb{R}[X].$$

2. Pour les applications linéaires trouvées ci-dessus, déterminer $\ker(f_i)$ et $\operatorname{Im}(f_i)$, en déduire si f_i est injective, surjective, bijective.

Exercice 11 Soient $E = \mathbb{C}_n[X]$ et A et B deux polynômes à coefficients complexes de degré (n+1). On considère l'application f qui à tout polynôme P de E, associe le reste de la division euclidienne de AP par B.

- 1. Montrer que f est un endomorphisme de E.
- 2. Montrer l'équivalence

f est bijective \iff A et B sont premiers entre eux.

Exercice 12 Soient E et F deux espaces vectoriels de dimension finie et φ une application linéaire de E dans F. Montrer que φ est un isomorphisme si et seulement si l'image par φ de toute base de E est une base de F.

4 Morphismes particuliers

Exercice 13 Soit E l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} , P le sous-espace des fonctions paires et I le sous-espace des fonctions impaires. Monter que $E = P \bigoplus I$. Donner l'expression du projecteur sur P de direction I.

Exercice 14 Soit $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes de degré $\leq n$, et $f: E \to E$ définie par :

$$f(P) = P + (1 - X)P'.$$

Montrer que $f \in L(E)$, donner une base de Im f et de Ker(f).