

Basic Pulseq Tutorial

Qingping Chen

Division of Medical Physics, Dept. Of Radiology, University Medical Center Freiburg, Germany

Nov 15, 2023

Outline

- Basic MR spectroscopy
 - s01_FID: Free induction decay (FID)
 - s02_SE: Spin echo (SE) without gradients
 - s03_SE_crushers: SE with crushers
- Basic MR imaging
 - s11_GRE2D: Basic 2D gradient echo (GRE)
 - **s12_GRE2D_optimizedSpoiler**: 2D GRE with time-optimized gradient
 - **s13_GRE2D_acceleratedComputation**: 2D GRE with time-optimized gradient and accelerated computation
- Link to sequence source code, data, and recon scripts:
 - https://github.com/pulseq/ISMRM-Virtual-Meeting--November-15-17-2023/tree/main/basic_pulseq_tutorial

s01_FID

Folie 3 15.11.2023

s01_FID

- T2*: macroscopic and microscopic field inhomogeneity
- **T2**: microscopic field inhomogeneity

T2 > T2*

Folie 4 15.11.2023

s02_SE

Folie 5 15.11.2023

s02_SE

180° pulse is typically **not** perfect. Crushers to suppress unwanted FID

s03_SE_crushers

Folie 7 15.11.2023

s01 – s03: experiments

s11_GRE2D

Folie 9 15.11.2023

s11_GRE2D

Folie 10 15.11.2023

s12_GRE2D_optmizedSpoiler

Folie 11 15.11.2023

s13_GRE2D_acceleratedComputation

s13_GRE2D_acceleratedComputation

Caution! Possible source of errors!

- After the object is registered, the seq.addBlock(...) will never search the library for consistency.
- RF pulse with changing phase for RF spoiling
- [~, rf.shapeIDs] = seq.registerRfEvent(rf);
- rf.id = seq.registerRfEvent(rf); % NO GO EXAMPLE!!!

s11 – s13: experiments

More information...

A more detailed Pulseq tutorial:

https://github.com/pulseq/tutorials

Sequence library:

https://github.com/pulseq/pulseq/tree/master/matlab/demoSeq

If you have any further questions:

pulseq.mr@uniklinik-freiburg.de

Acknowledgements:

Berkin Bilgic Frank Zijlstra Jon-Fredrik Nielsen Moritz Zaiss Qiang Liu Sebastian Littin

Borjan Gagoski Imam Shaik Juergen Hennig Naveen Murthy Maxim Zaitsev Will Grissom

Douglas Noll Jeff Fessler Mojtaba Shafiekhani Niklas Wehkamp Scott Peltier Yogesh Rathi

Thank you for your attention!

National Institutes of Health

