MIPS Reference Data

1	
---	--

0	IXC.	ICI	chec Data	7	
CORE INSTRUCTI	ON SE				OPCOD
NAME ADJEMO	NIC	FOR-			/ FUNC
NAME, MNEMO		MAT R	- ((1)	(Hex) 0 / 20 _{he}
Add	add		R[rd] = R[rs] + R[rt]	()	110
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned			R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{he}
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{he}
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equa	lbne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	j	J	PC=JumpAddr	(5)	2_{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{he}
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{he}
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{he}
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{he}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0(2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b _{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{he}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{he}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{he}
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; $R[rt] = (atomic) ? 1 : 0$	(2,7)	38 _{hex}
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{hex}$
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{he}
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{he}
	(2) Sig (3) Zer (4) Bra (5) Jur (6) Op	nExtI roExtI anchA npAdo erands	se overflow exception mm = { 16{immediate[15]}, imm mm = { 16{lb'0}, immediate } ddr = { 14{immediate[15]}, imme dr = { PC+4[31:28], address, 2't s considered unsigned numbers (v.	ediate, 50 } s. 2's c	2'b0 }
	(7) Ato		est&set pair; R[rt] = 1 if pair atomi	ic, 0 if	not atom
BASIC INSTRICTI	ONEC		TC		

BASIC INSTRUCTION FORMATS

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1311100110	IN I OI WA	10			
R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5 0
I	opcode	rs	rt		immediate	2
	31 26	25 21	20 16	15		0
J	opcode			address		
	31 26	25				0

ARITHMETIC CORE IN	STRUC	TION SET (2) OPCODE
		_	/ FMT /FT
	FOR-		/ FUNCT
NAME, MNEMONIC	MAT	OPERATION	(Hex)
Branch On FP True bolt		f(FPcond)PC=PC+4+BranchAddr (. /
Branch On FP False bolf	FI if	f(!FPcond)PC=PC+4+BranchAddr((4) 11/8/0/
Divide div	R L	.o=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned divu	R L	o=R[rs]/R[rt]; Hi=R[rs]%R[rt] ((6) 0///1b
FP Add Single add.s	FR F	[fd] = F[fs] + F[ft]	11/10//0
FP Add add.d	FR {	$F[fd],F[fd+1]$ = { $F[fs],F[fs+1]$ } +	11/11//0
Double		$\{F[ft],F[ft+1]\}$	
FP Compare Single c.x.s*		Pcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	FR F	$Pcond = (\{F[fs], F[fs+1]\} op$	11/11//y
Double		{F[ft],F[ft+1]})?1:0	
FP Divide Single div.s		=, <, or <=) (y is 32, 3c, or 3e) [fd] = F[fs] / F[ft]	11/10//3
FP Divide		$F[fd],F[fd+1] = {F[fs],F[fs+1]} /$	
Double div.d	FR ({F[ft],F[ft+1]}	11/11//3
FP Multiply Single mul.s	FR F	[fd] = F[fs] * F[ft]	11/10//2
FP Multiply	6	$F[fd],F[fd+1] = \{F[fs],F[fs+1]\} *$	
Double mul.d	FR 1	{F[ft],F[ft+1]}	11/11//2
FP Subtract Single sub.s	FR F	[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	FR {	$F[fd],F[fd+1]$ = { $F[fs],F[fs+1]$ } -	11/11//1
Double sub.a	rk.	{F[ft],F[ft+1]}	11/11//1
Load FP Single lwc1	I F	[rt]=M[R[rs]+SignExtImm] (2) 31//
Load FP			(2) 35//
Double	F	[rt+1]=M[R[rs]+SignExtImm+4]	
Move From Hi mfhi		t[rd] = Hi	0 ///10
Move From Lo mflo		L[rd] = Lo	0 ///12
Move From Control mfc0		R[rd] = CR[rs]	10 /0//0
Multiply mult		Hi,Lo = $R[rs] * R[rt]$	0//-18
Multiply Unsigned multu		. ,	(6) 0//-19
Shift Right Arith. sra		R[rd] = R[rt] >> shamt	0//-3
Store FP Single swc1		r r	(2) 39//
Store FP sdc1			(2) 3d//
Double	- N	I[R[rs]+SignExtImm+4] = F[rt+1]	/

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	9
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	l bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

		, ,	
NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.