

Circuit Modelling

Felix Dreßler

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

Example: Charging of a capacitor:

Figure: charging capacitor with series resistor and voltage source

2/39

Formulating a Mathematical Model

Network Topology

2025-05-05 3/39

For a circuit with l nodes and k edges, define the incidence matrix $\tilde{A} = (\tilde{a}_{ij}) \in \mathbb{R}^{k \times l}$:

$$\tilde{\alpha}_{ij} = \begin{cases} 1 & \text{edge } j \text{ starts at node } i, \\ -1 & \text{edge } j \text{ ends at node } i, \\ 0 & \text{else.} \end{cases}$$

By grounding node 0, i.e. $u_0 = 0$ we obtain the reduced incidence matrix $\rightarrow A$.

Formulating a Mathematical Model

Energy Conservation Laws

2025-05-05 5/39

• Kirchhoff's voltage law (KVL):

The sum of voltages along each loop of the network must equal to zero.

$$\to \mathsf{A}^\top \mathsf{u} = \mathsf{v}. \tag{1}$$

Kirchhoff's current law (KCL):

For any node, the sum of currents flowing into the node is equal to the sum of currents flowing out of the node.

$$\rightarrow Ai = 0.$$
 (2)

Name	Symbol	Component Law
Resistor	R	u = R i or i = G u
Capacitor	#	$Q=C u$ and by derivation in t $\ I=C rac{d}{dt} u=C u'$
Inductor	→	$\Phi = L \mathfrak{i} \text{and by derivation in } \mathfrak{t} \nu = L \mathfrak{i}'$
Voltage Source	— v	$v = v_{ m src}$
Current Source	——————————————————————————————————————	$\mathfrak{i}=\mathfrak{i}_{\mathtt{src}}$

Formulating a Mathematical Model

Modified Nodal Analysis - MNA

2025-05-05 8/39

Rearrange reduced incidence matrix into

$$A = (A_R A_C A_L A_V A_I)$$

 A_R , A_C , A_L , A_V and A_I ... columns related to components Represent voltages:

$$v = A^{\mathsf{T}} u$$

 \rightarrow rearrange ν into $\nu = (\nu_R, \nu_C, \nu_L, \nu_{src}, \nu_I)$ and i into $i = (i_R, i_C, i_L, i_V, i_{src})$. Rewrite component relations:

$$\begin{split} &i_R = G \ \nu_R = G \ A_R^\top u, \\ &i_C = C \ \nu_C' = C \ A_C^\top u'. \end{split}$$

Kirchhoffs current law:

$$A_C i_C + A_R i_R + A_L i_L + A_V i_V = -A_I i_{src}.$$

Together with component relations combine to

$$\begin{split} A_C C A_C^\top u' + A_R G A_R^\top u + A_L i_L + A_V i_V &= -A_I i_{src}, \\ L i_L' - A_L^\top u &= 0, \\ -A_V^\top u &= -\nu_{src}. \end{split}$$

In matrix form:

$$\begin{pmatrix}
A_{C}CA_{C}^{\top} & 0 & 0 \\
0 & L & 0 \\
0 & 0 & 0
\end{pmatrix} * \begin{pmatrix}
u' \\
i'_{L} \\
i'_{V}
\end{pmatrix} + \begin{pmatrix}
A_{R}GA_{R}^{\top} & A_{L} & A_{V} \\
-A_{L}^{\top} & 0 & 0 \\
-A_{V}^{\top} & 0 & 0
\end{pmatrix} * \begin{pmatrix}
u \\
i_{L} \\
i_{V}
\end{pmatrix} = \begin{pmatrix}
-A_{I}i_{src} \\
0 \\
-\nu_{src}
\end{pmatrix}.$$
(3)

 \rightarrow differential and algebraic variables

Differential Algebraic Equations

Types of DAEs

2025-05-05 11/39

In the most general form a DAE can be written as: Find $y: \mathbb{R} \to \mathbb{R}^n$ such that

$$F(t, y(t), y'(t)) = 0, \qquad \forall t \in I$$
 (4)

with $F: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ sufficiently smooth and I the time-interval.

Linear systems with constant coefficients

find u such that

$$Ay'(t) + By(t) = f(t),$$
(5)

with A, B $\in \mathbb{R}^{n \times n}$, A singular, B and f: $\mathbb{R} \to \mathbb{R}^n$ a function in time. \to differential and algebraic variables

Equivalence transformations lead to

$$u'(t) + Ru(t) = s(t),$$

 $Nv'(t) + v(t) = q(t),$
(6)

where N is a nilpotent matrix and the matrix R is regular.

First equation is an ODE \rightarrow unique solution u(t) for any initial values. Construct explicit solution for second equation: $q(t) \in C^{k-1}([t_0, t_1])$:

$$\begin{split} \nu(t) &= q(t) - N\nu'(t) = q(t) - N(\underbrace{q(t) - N\nu'(t)})' = q - Nq' + N^2\nu'' \\ &= q - Nq' + N^2(q - N\nu')'' = q - Nq' + N^2q'' - N^3\nu''' \\ &\vdots \\ &= q - Nq' + ... + (-1)^{k-1}N^{k-1}\underbrace{\frac{d^{k-1}}{dt^{k-1}}q}_{:=q^{(k-1)}} + (-1)^{k-1}\underbrace{N^k\nu^{(k)}}_{=0} \\ &= \sum_{i=0}^{k-1} (-1)^i N^i q^{(i)}(t) \end{split}$$

 \rightarrow differentiation index $\nu = k$.

Differential Algebraic Equations

Index of a Differential Algebraic Equation

2025-05-05 15/39

Definition

Consider the differential algebraic equation (4) to be uniquely solvable and F sufficiently smooth. For a given $m\in\mathbb{N}$ consider the equations

$$F(t, y, y') = 0,$$

$$\frac{dF(t, y, y')}{dt} = 0,$$

$$\vdots$$

$$\frac{d^{m}F(t, y, y')}{dt^{m}} = 0.$$

The smallest natural number $\mathfrak m$ for which the above system results in an explicit system of ordinary differential equations (ODEs), i.e. it has the form

$$y' = \phi(t, y),$$

2025-05-05

Index Analysis of the Modified Nodal Analysis

Topological Conditions

2025-05-05 17/39

- The resulting equations have index $v \le 2$, if the circuit neither contains loops of only voltage sources nor cutsets of only current sources.
- They have index $v \le 1$, if the circuit contains neither loops of only capacitors and/or voltage sources nor cutsets of only inductors and/or current sources.
- They have index v = 0, if every node in the circuit is connected to the reference node (ground) through a path containing only capacitors.

Figure: Illustration of a cutset and a loop.

Theorem (Index conditions)

Let the matrices of the capacitances, inductances and resistances be positive definite.

 $\ker([A_R, A_C, A_V]^\top) = \{0\} \text{ and } \ker([A_C, A_V]) = \{0\}$

If

$$ker([A_R, A_C, A_V, A_L]^\top) = \{0\}$$
 and $ker(A_V) = \{0\}$ (7)

holds, then the MNA (3) leads to a system with index $v \le 2$.

If additionally

holds, then the system is of index $\nu \leq 1$

If further

$$ker(A_C^{\top}) = \{0\} \quad and \quad dim(v_{src}) = 0$$
 (9)

holds, then the system has index v = 0.

(8)

Numerical Solutions

Multistep Methods

Definition (Multistep method)

For given $\alpha_0, ..., \alpha_k$ and $\beta_0, ..., \beta_k$ the iteration rule

$$\sum_{l=0}^{k} \alpha_{l} y_{m+l} = h \sum_{l=0}^{k} \beta_{l} f(t_{m+l}, y_{m+l}), \quad m = 0, 1, ..., N - k$$
 (10)

is called a *linear multistep method* (linear k-step method). It is always assumed that $\alpha_k \neq 0$ and $|\alpha_0| + |\beta_k| > 0$. If $\beta_k = 0$ holds, then the method is called explicit, otherwise implicit.

Definition (generating polynomials)

$$\rho(x) := \sum_{l=0}^{k} \alpha_{l} x^{l} \quad \text{and} \quad \sigma(x) := \sum_{l=0}^{k} \beta_{l} x^{l}$$

Definition (Convergence order)

We say that a linear multi-step method is convergent of order $p \in \mathbb{N}$, if for a solution y of the problem and a vector $(y_j)_{j=0}^k$ created by an LMSM, we have that

$$\max_{0 \le j \le k} \|y(t_j) - y_j\| \le Ch^p.$$

Where *C* is a constant not dependent on the step size h.

Consistency on tells us whether the method approximates the equation correctly as the step size approaches 0.

Definition

1. The set

$$S := \{ z \in \mathbb{C} : \rho(\xi) - z\sigma(\xi) = 0 \implies \xi \in \mathbb{C} \text{ and } |\xi| \le 1.$$
If ξ has multiplicity greater than 1, then $|\xi| < 1 \}$ (11)

is called the region of stability of the method.

- 2. A linear multistep method is called
 - \circ *0-stable*, if $0 \in S$.
 - $A(\alpha)$ -stable, if it is stable in all z that lie within the set $\{z \in \mathbb{C}^- : |\arg(z) \pi| \le \alpha\}$ for $\alpha \in (0, \frac{\pi}{2})$.

Theorem

Let f(t,y) be sufficiently smooth and the linear multi-step method be 0-stable and consistent of order p, then it is also convergent of order p.

Numerical Solutions

Consistent Initial Values

2025-05-05 26/39

Index v = 0: no additional restrictions (ODE case).

Index v = 1:

Rewrite system into the form

$$y'(t) = f(t, y(t), z(t)),$$

 $0 = g(t, y(t), z(t)).$

Conditions for consistent initial values $\rightarrow g(t_0, y_0, z_0) = 0$.

Index $\gamma = 2$:

Rewrite system into the form

$$y' = f(t, y(t), z(t)),$$

$$0 = g(t, y(t)).$$

Conditions for consistent initial values

$$g(t_0, y_0) = 0,$$

$$g_t(t_0, y_0) + g_y(t_0, y_0) f(t_0, y_0, z_0) = 0.$$

(hidden constraint)

Numerical Solutions

Implicit Linear Multistep Formulas BDF-k Methods

2025-05-05 29/39

The backward differentiation formula (BDF) is a family of implicit linear multistep methods.

$$\sum_{k=0}^{s} \alpha_k y_{n+k} = h\beta f(t_{n+s}, y_{n+s})$$

The BDF or BDF-k formulas for k = 1, ..., 3 have the following form

$$k = 1 : hf_{m+1} = y_{m+1} - y_m$$

(implicit euler)

$$k = 2 : hf_{m+2} = \frac{1}{2}(3y_{m+2} - 4y_{m+1} + y_m)$$

$$k = 3 : hf_{m+3} = \frac{1}{6}(11y_{m+3} - 18y_{m+2} + 9y_{m+1} - 2y_m)$$

Figure: stability regions of BDF-schemes

Theorem

The BDF-k methods have consistency order p = k.

Corollary (Convergence rate)

The BDF-k methods with k < 6 are convergent with order k

Numerical Solutions

Implicit Linear Multistep Formulas Trapezoidal rule

2025-05-05 32/39

Figure: illustration of the trapezoidal rule

This procedure is repeated for small subsections of the interval [a, b]. Thus we obtain the iteration formula

$$y_{n+1} = y_n + \frac{h}{2}[f(t_n, y_n) + f(t_{n+1}, y_{n+1})].$$

The trapezoidal rule has convergence order p = 2.

Numerical Solutions

Numerical Examples Example1

2025-05-05 34/39

Figure: charging capacitor with series resistor and voltage source

Figure: Exact solution for example 1.

h	k = 1		k = 2		k = 3		trapezoidal	
	err(u ₂)	$err(i_V)$	$err(u_2)$	$err(i_V)$	err(u ₂)	$err(i_V)$	$err(\mathfrak{u}_2)$	$err(i_V)$
0.1	4.620×10 ⁻²	4.620×10^{-2}	9.567×10^{-3}	9.567×10^{-3}	2.852×10^{-3}	2.852×10^{-3}	3.344×10^{-3}	3.344×10^{-3}
0.05	2.339×10^{-2}	2.339×10^{-2}	2.454×10^{-3}	2.454×10^{-3}	3.645×10^{-4}	3.645×10^{-4}	8.367×10^{-4}	8.367×10^{-4}
0.025	1.178×10^{-2}	1.178×10^{-2}	6.264×10^{-4}	6.264×10^{-4}	4.928×10^{-5}	4.928×10^{-5}	2.092×10^{-4}	2.092×10^{-4}

Table: Resulting errors for the BDF-k methods and the trapezoidal rule.

Numerical Solutions

Numerical Examples
Gauss

2025-05-05 37/39

Gauss-1 method or implicit midpoint rule:

$$y_{n+1} = y_n + hf(t_n + \frac{h}{2}, \frac{y_n + y_{n+1}}{2})$$

different convergence rates for algebraic and differential variables:

index	v=1	index $\nu = 2$			
differential	algebraic	differential	algebraic		
2	2	2	0		

Table: Convergence order for Gauss method.

h	example 1			exam	ple 2	example 3	
	$err(u_1)$ (alg)	$err(u_2)$ (diff)	$err(i_0)$ (alg)	$err(u_1)$ (diff)	$err(i_L)$ (diff)	err(u ₁) (diff)	$err(i_V)$ (alg)
0.1	1.247×10^{-2}	2.141×10^{-3}	1.299×10^{-2}	6.589×10^{-3}	7.885×10^{-3}	1.247×10^{-2}	1.318×10^{-1}
0.05	3.092×10^{-3}	5.343×10^{-4}	3.252×10^{-3}	1.649×10^{-3}	1.974×10^{-3}	3.092×10^{-3}	3.270×10^{-2}
0.025	7.716×10^{-4}	1.335×10^{-4}	8.115×10^{-4}	4.123×10^{-4}	4.936×10^{-4}	7.716×10^{-4}	8.153×10^{-3}

Table: Resulting errors for the Gauss method with one stage.

Definition

Let y(t) be the exact solution of (4) and $\tilde{y}(t)$ be the solution of the perturbed system $F(t, \tilde{y}, \tilde{y}') = \delta(t)$. The smallest number $k \in \mathbb{N}$ such that

$$\|y(t) - \tilde{y}(t)\| \leq C \left(\|y(t_0) - \tilde{y}(t_0)\| + \sum_{j=0}^k \max_{t_0 \leq \xi \leq T} \left\| \int_{t_0}^{\xi} \frac{\mathrm{d}^j \delta}{\mathrm{d} \tau^j}(\tau) d\tau \right\| \right)$$

for all $\tilde{y}(t)$, is called the **perturbation index** of this system.

Dahlquist test problem as a model problem, find y such that

$$y' = \lambda y, \quad t > 0 \tag{12}$$

$$y(0) = y_0$$
 (13)

with $\lambda \in \mathbb{C}$ and y_0 fixed.

Thus the resulting linear multistep method is of the form

$$\sum_{l=0}^{k} \alpha_l y_{n+l} = h \sum_{l=0}^{k} \beta_l \lambda y_{n+l}$$

$$\iff \sum_{l=0}^{k} [\alpha_l - h\beta_l \lambda] y_{n+l} = 0$$

Figure: LC-circuit

Figure: Exact solution for example 2.

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} * \begin{pmatrix} u_1' \\ i_L' \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} * \begin{pmatrix} u_1 \\ i_L \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

h	k = 1		k = 2		k = 3		trapezoidal	
	$err(u_1)$	$err(i_l)$	$err(u_1)$	$err(i_1)$	$err(u_1)$	$err(i_l)$	$err(u_1)$	$err(i_1)$
0.1	2.659×10^{-1}	2.106×10^{-1}	1.686×10^{-2}	1.917×10^{-2}	1.286×10^{-3}	1.042×10^{-3}	4.007×10^{-3}	5.140×10^{-3}
0.05	1.446×10 ⁻¹	1.125×10^{-1}	4.266×10^{-3}	5.067×10^{-3}	1.501×10^{-4}	1.131×10^{-4}	1.003×10^{-3}	1.301×10^{-3}
0.025	7.543×10^{-2}	5.817×10^{-2}	1.070×10^{-3}	1.294×10^{-3}	1.460×10^{-5}	9.674×10^{-6}	2.507×10^{-4}	3.268×10^{-4}

Table: Resulting errors for the BDF-k methods and the trapezoidal rule.

Figure: Exact solution for example 3.

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} u_1' \\ i_V' \end{pmatrix} + \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} * \begin{pmatrix} u_1 \\ i_V \end{pmatrix} = \begin{pmatrix} 0 \\ -sin(\pi t) \end{pmatrix}.$$

h	k = 1	k = 2	k = 3	trapezoidal
	$err(i_V)$	$err(i_V)$	$err(i_V)$	$err(i_V)$
0.1	4.894×10^{-1}	1.023×10^{-1}	2.403×10^{-2}	5.219×10^{-2}
0.05	2.462×10^{-1}	2.577×10^{-2}	3.034×10^{-3}	1.295×10^{-2}
0.025	1.233×10^{-1}	6.456×10^{-3}	4.029×10^{-4}	3.232×10^{-3}

Table: Resulting errors for the BDF-k methods and the trapezoidal rule.

