5.2.70

AI25BTECH11003 - Bhavesh Gaikwad

September 12,2025

Question

For which values of p does the pair of equations given below have a unique solution.

$$4x + py + 8 = 0$$

 $2x + 2y + 2 = 0$

Given:

$$4x + py + 8 = 0 (1)$$

$$2x + 2y + 2 = 0 (2)$$

Standard Form: $\mathbf{A}\mathbf{x} = \mathbf{b}$ where:

Coefficient Matrix:
$$\mathbf{A} = \begin{pmatrix} 4 & p \\ 2 & 2 \end{pmatrix}$$

Constant Vector:
$$\mathbf{b} = \begin{pmatrix} -8 \\ -2 \end{pmatrix}$$

Augmented Matrix:
$$[\mathbf{A}|\mathbf{b}] = \begin{pmatrix} 4 & p & -8 \\ 2 & 2 & -2 \end{pmatrix}$$

For Unique Solution:

Unique Solution: $rank(\mathbf{A}) = rank([\mathbf{A}|\mathbf{b}]) = n$ (number of variables)

For our system: n = 2 variables

Finding rank(**A**) - Rank of Coefficient Matrix

Initial Matrix A:

$$\mathbf{A} = \begin{pmatrix} 4 & p \\ 2 & 2 \end{pmatrix} \tag{3}$$

Row Operations on A:

$$R_2 \to R_2 - \frac{1}{2}R_1 \tag{4}$$

Row Echelon Form of A:

$$\begin{pmatrix} 4 & p \\ 0 & 2 - \frac{p}{2} \end{pmatrix} \tag{5}$$

Rank Analysis:

Case 1: If
$$2 - \frac{p}{2} \neq 0$$
 (i.e., $p \neq 4$)

Both rows are non-zero and linearly independent

$$\Rightarrow \operatorname{rank}(\mathbf{A}) = 2$$

Case 2: If
$$2 - \frac{p}{2} = 0$$
 (i.e., $p = 4$)

Second row is zero, only first row is non-zero

$$\Rightarrow \mathsf{rank}(\mathbf{A}) = 1$$

Finding rank($[\mathbf{A}|\mathbf{b}]$) - Rank of Augmented Matrix Initial Augmented Matrix:

$$\begin{pmatrix} 4 & p & -8 \\ 2 & 2 & -2 \end{pmatrix} \tag{6}$$

Row Operation on [A|b]:

$$R_2 \to R_2 - \frac{1}{2}R_1$$
 (7)

Row Echelon Form of Augmented Matrix:

$$\begin{pmatrix} 4 & p & -8 \\ 0 & 2 - \frac{p}{2} & 2 \end{pmatrix} \tag{8}$$

Rank Analysis:

Case 1: If $p \neq 4$:

$$\Rightarrow \operatorname{rank}([\mathbf{A}|\mathbf{b}]) = 2$$

Case 2: If p = 4:

$$\Rightarrow \operatorname{rank}([\mathbf{A}|\mathbf{b}]) = 2$$

Comparing Ranks and Providing Solution Type

Value of p	$rank(\mathbf{A})$	$rank([\mathbf{A} \mathbf{b}])$	Solution Type
<i>p</i> ≠ 4	2	2	UNIQUE
p=4	1	2	NO SOLUTION

 \therefore For p $\in \mathbb{R} - \{4\}$, the pair of equations has an Unique Solution. (9)

Graph of Pair of Equations (When p=4)

Graph of Pair of Equations (When $p \neq 4$)

