

Selbstorganisierende, adaptive Systeme Blatt 9 / Aufgabe 2

Gruppe 4 / Alexander Oks, Simon Stieber, Markus Görlich

		В	
		go	wait
٨	go	-100, -100	10, 0
Α	wait	0, 10	-10, -10

a) Bestimmen Sie zunächst ein Nash-Gleichgewicht in gemischten Strategien und geben Sie den erwarteten Nutzen für die Spieler im gemischten Equilibrium aus

		В	
		go	wait
٨	go	-100, -100	10, 0
А	wait	0, 10	-10, -10

Nash-Gleichgewicht in gemischten Strategien: Erwarteter Nutzen ist mit Wahrscheinlichkeit gewichteter Nutzen -> Bestimmen von Wahrscheinlichkeiten

		$P_{B_{go}}$	$P_{B_{wait}}$	$=1-P_{B_{go}}$
		go	wait	
٨	go	-100, -100	10, 0	
Α	wait	0, 10	-10, -10	

		Ŀ	3
$P_{A_{go}}$		go	wait
	go	-100, -100	10, 0
А	wait	0, 10	-10, -10

$$P_{A_{wait}} = 1 - P_{A_{go}}$$

- Spieler A / go: Nutzen = $-100 \cdot P_{B_{qo}} + 10 \cdot (1 P_{B_{qo}})$
- Spieler A / wait: Nutzen = $0 \cdot P_{B_{go}} + (-10) \cdot (1 P_{B_{go}})$
- Spieler B / go: Nutzen = $-100 \cdot P_{A_{go}} + 10 \cdot (1 P_{A_{go}})$
- Spieler B / wait: Nutzen = $0 \cdot P_{A_{go}} + (-10) \cdot (1 P_{A_{go}})$

- Gleichsetzen v. go/wait je Spieler:
- Spieler A:

$$-100 \cdot P_{B_{go}} + 10 \cdot (1 - P_{B_{go}}) = 0 \cdot P_{B_{go}} + (-10) \cdot (1 - P_{B_{go}})$$

Spieler B:

$$-100 \cdot P_{A_{go}} + 10 \cdot (1 - P_{A_{go}}) = 0 \cdot P_{A_{go}} + (-10) \cdot (1 - P_{A_{go}})$$

Auflösen:

$$P_{B_{go}} = \frac{2}{10}$$
 $P_{A_{go}} = \frac{2}{10}$

b) Definieren Sie nun eine Ampel, die mit gleicher Wahrscheinlichkeit je einem Spieler grün zeigt. Bestimmen Sie den erwarteten Nutzen im Falle, dass sich beide Spieler an das Signal halten. Ist dies ein korreliertes Equilibrium? Wie hoch ist der erwartete Nutzen beider Spieler in diesem Fall?

$$P_{Bgo} = P_{B_{wait}} = 0.5$$

		go	wait
٨	go	-100, -100	10, 0
A	wait	0, 10	-10, -10

		E	3
D. — D.		go	wait
$P_{A_{go}} = P_{A_{wait}}$ $= 0.5$	go	-100, -100	10, 0
A	wait	0, 10	-10, -10

- Spieler A / go: Nutzen = $-100 \cdot P_{B_{qo}} + 10 \cdot (1 P_{B_{qo}})$
- Spieler A / wait: Nutzen = $0 \cdot P_{B_{go}} + (-10) \cdot (1 P_{B_{go}})$
- Spieler B / go: Nutzen = $-100 \cdot P_{A_{go}} + 10 \cdot (1 P_{A_{go}})$
- Spieler B / wait: Nutzen = $0 \cdot P_{A_{go}} + (-10) \cdot (1 P_{A_{go}})$

Einsetzen der Wahrscheinlichkeiten:

- Spieler A / go: Nutzen = $-100 \cdot 0.5 + 10 \cdot 0.5 = -45$
- Spieler A / wait: Nutzen = $0 \cdot 0.5 + (-10) \cdot 0.5 = -50$
- Spieler B / go: Nutzen = $-100 \cdot 0.5 + 10 \cdot 0.5 = -45$
- Spieler B / wait: Nutzen = $0 \cdot 0.5 + (-10) \cdot 0.5 = -50$

c) Zwei gegnerische Mannschaften treten in den (sportlichen) Wettstreit um einen wertvollen Preis. Jedes Team kann entweder "attackieren" oder "nicht-attackieren". Team 1 kann "schwach" oder "stark" sein mit den Wahrscheinlichkeiten p und (1-p). Team 2 ist jedoch immer "schwach". Ein Team gewinnt den Preis entweder durch eine Attacke auf einen nicht-attackierenden Gegner oder wenn ein starkes Team einen schwachen Gegner attackiert. Falls zwei gleich starke Teams aufeinander treffen, erhält niemand den Preis.

$$P(sw) = \frac{1}{2}$$

Α

NA

Α

NA

Α

NA

-w, -w M, 0 0, 0

Α

NA

M-s, $-w$	<i>M</i> , 0	
0. <i>M</i>	0.0	

Team 1

Team 2

A (sw), A (st) $A (sw), NA (st)$ $NA (sw), A (st)$ $NA (st)$	(sw), NA (st)

$$P(sw) = \frac{1}{2}$$

Α

NA

Α

NA

Α

 $\mathsf{N}\mathsf{A}$

M, 0-w, -w0, M0,0

Α

 $\mathsf{N}\mathsf{A}$

M-s, $-w$	M, 0
0, <i>M</i>	0,0

Team 1

Α

Team 2

	A (sw), A (st)	A (sw), NA (st)	NA (sw), A (st)	NA (sw), NA (st)
	$-w * \frac{1}{2} + (-w) * \frac{1}{2}$ $= -w$			
4				

$$P(sw) = \frac{1}{2}$$

Α

NA

Α

NA

Α

NA

-w, $-w$	M, 0
0, <i>M</i>	0,0

Α

NA

M-s, $-w$	<i>M</i> , 0	
0, <i>M</i>	0,0	

Team 1

A

Team 2

A (sw), A (st)	A (sw), NA (st)	NA (sw), A (st)	NA (sw), NA (st)
$-w /$ $(M-s)*\frac{1}{2}+(-w)*\frac{1}{2}$			

$$P(sw) = \frac{1}{2}$$

Α

NA

Α

NA

Α

NA

M, 0-w, -w0,0 0, *M*

Α

NA

M-s, $-w$	<i>M</i> , 0	
0, <i>M</i>	0,0	

Team 1

Α

Team 2

	A (sw), A (st)	A (sw), NA (st)	NA (sw), A (st)	NA (sw), NA (st)
	$-w /$ $(M-s)*\frac{1}{2}+(-w)*\frac{1}{2}$			
۱	$0 * \frac{1}{2} + M * \frac{1}{2} = M * \frac{1}{2}$			

$$P(sw) = \frac{1}{2}$$

Α

A (sw), A (st)

NA

A (sw), NA (st)

Α

NA (sw), A (st)

NA

NA (sw), NA (st)

Α

NA

M, 0-w, -w0, *M* 0,0

Α

NA

M-s, $-w$	<i>M</i> , 0	
0, <i>M</i>	0,0	

Team 1

Α

NA

	(),	(), ()	(),
$-w /$ $(M - s) * \frac{1}{2} + (-w) * \frac{1}{2}$			
$M * \frac{1}{2} / $ $0 * \frac{1}{2} + M * \frac{1}{2} = M * \frac{1}{2}$			

$$P(sw) = \frac{1}{2}$$

Α

NA

Α

NA

Α

NA

M, 0-w, -w0, M0,0

Α

NA

M-s, $-w$	<i>M</i> , 0	
0, <i>M</i>	0,0	

Team 1

A (sw), A (st)

A (sw), NA (st)

NA (sw), A (st)

NA (sw), NA (st)

Α

Team 2

$-w /$ $(M - s) * \frac{1}{2} + (-w) * \frac{1}{2}$	$\frac{1}{2}(-w) + \frac{1}{2}(-w) = -w$	
$M*\frac{1}{2}/M*\frac{1}{2}$		

$$P(sw) = \frac{1}{2}$$

Α

NA

Α

NA

Α

NA

-w, -w M, 0 0,0

Α

NA

M-s, $-w$	M, 0	
0, <i>M</i>	0,0	

Team 1

A (sw), A (st)

A (sw), NA (st)

NA (sw), A (st)

NA (sw), NA (st)

Α

Team 2

$-w /$ $(M - s) * \frac{1}{2} + (-w) * \frac{1}{2}$	$ \begin{array}{c c} -w / \\ M * \frac{1}{2} + \frac{0}{0} * \frac{1}{2} = M * \frac{1}{2} \end{array} $	
$M*\frac{1}{2}/M*\frac{1}{2}$		

$$P(sw) = \frac{1}{2}$$

Α

NA

NA

Α

NA

-w, $-w$	M, 0	
0. M	0.0	

NA

M-s, $-w$	<i>M</i> ,0	
0. <i>M</i>	0.0	

Team 1

A(sw), A(st)

A (sw), NA (st)

NA (sw), A (st)

NA (sw), NA (st)

Team 2

NA

1
$M*\frac{1}{2}$
$M*\frac{1}{-}$

$$0 * \frac{1}{2} + M * \frac{1}{2} = M * \frac{1}{2}$$

21

$$P(sw) = \frac{1}{2}$$

Α

0, M

NA

0,0

Δ

NA

Α

NA

-w,-w M,0

Α

NA

M-s, $-w$	<i>M</i> , 0	
0. <i>M</i>	0.0	

Team 1

A (sw), A (st)

A (sw), NA (st)

NA (sw), A (st)

NA (sw), NA (st)

A

NA

$M*\frac{1}{2}$

$$M*\frac{1}{2}$$

$$0 * \frac{1}{2} + \frac{0}{2} * \frac{1}{2} = 0$$

$$P(sw) = \frac{1}{2}$$

Α

NA

Α

NA

Α

NA

-w, -w M, 0 0, 0

Α

NA

M-s, $-w$	M, 0
0, <i>M</i>	0,0

Team 1

A (sw), A (st)

A (sw), NA (st)

NA (sw), A (st)

NA (sw), NA (st)

A

NA

$-w /$ $(M - s) * \frac{1}{2} + (-w) * \frac{1}{2}$	$-w / M * \frac{1}{2}$	$M * \frac{1}{2} + 0 * \frac{1}{2} / $ $(M - s) * \frac{1}{2} + (-w) * \frac{1}{2}$	
$M * \frac{1}{2} / M * \frac{1}{2}$	$M*\frac{1}{2}/$		

$$P(sw) = \frac{1}{2}$$

Α

NA

Α

NA

Α

NA

-w, -w M, 0 0, 0

Α

NA

M-s, $-w$	<i>M</i> ,0	
0. <i>M</i>	0.0	

Team 1

A (sw), A (st)

A (sw), NA (st)

NA (sw), A (st)

NA (sw), NA (st)

Α

NA

	$-w /$ $(M - s) * \frac{1}{2} + (-w) * \frac{1}{2}$	$-w / M * \frac{1}{2}$	$M * \frac{1}{2} / $ $(M - s) * \frac{1}{2} + (-w) * \frac{1}{2}$	
ı	$M*\frac{1}{2}/M*\frac{1}{2}$	$M*\frac{1}{2}/0$	$0 * \frac{1}{2} + 0 * \frac{1}{2} / \\ 0 * \frac{1}{2} + M * \frac{1}{2}$	

$$P(sw) = \frac{1}{2}$$

Α

NA

Α

NA

Α

NA

M, 0-w, -w0,0 0, M

Α

NA

M-s, $-w$	<i>M</i> ,0	
0. <i>M</i>	0.0	

Team 1

A (sw), A (st)

A (sw), NA (st)

NA (sw), A (st)

NA (sw), NA (st)

Team 2

$-w /$ $(M - s) * \frac{1}{2} + (-w) * \frac{1}{2}$	$-w / M * \frac{1}{2}$	$M * \frac{1}{2} / $ $(M - s) * \frac{1}{2} + (-w) * \frac{1}{2}$	$M * \frac{1}{2} + 0 * \frac{1}{2} / $ $M * \frac{1}{2} + 0 * \frac{1}{2}$
$M * \frac{1}{2} / M * \frac{1}{2}$	$M*\frac{1}{2}/$	$0 / M * \frac{1}{2}$	

$$P(sw) = \frac{1}{2}$$

Α

NA

Α

NA

Α

NA

-w, -w M, 0 0, 0

Α

NA

M-s,-w	
--------	--

M, 0

0, *M*

0,0

Team 1

A (sw), A (st)

A (sw), NA (st)

NA (sw), A (st)

NA (sw), NA (st)

Α

-w / $(M - s) * \frac{1}{2} + (-w) * \frac{1}{2}$

 $-w/M*\frac{1}{2}$

 $M * \frac{1}{2} /$ $(M - s) * \frac{1}{2} + (-w) * \frac{1}{2}$

 $M*\frac{1}{2}/M*\frac{1}{2}$

NA

Team 2

 $M*\frac{1}{2}$

 $M * \frac{1}{2} / 0$

0/ $M*\frac{1}{2}$

 $0 * \frac{1}{2} + 0 * \frac{1}{2} / \\
0 * \frac{1}{2} + 0 * \frac{1}{2}$

$$P(sw) = \frac{1}{2}$$

Α

NA

Α

NA

Α

NA

-w, -w M, 0 0, 0

Α

NA

M-s, $-w$	M,0	
0. <i>M</i>	0.0	

Team 1

A (sw), A (st)

A (sw), NA (st)

NA (sw), A (st)

NA (sw), NA (st)

Α

NA

	$-w /$ $(M - s) * \frac{1}{2} + (-w) * \frac{1}{2}$	$-w / M * \frac{1}{2}$	$M * \frac{1}{2} / $ $(M - s) * \frac{1}{2} + (-w) * \frac{1}{2}$	$M * \frac{1}{2} / M * \frac{1}{2}$
١.	$M*\frac{1}{2}/M*\frac{1}{2}$	$M*\frac{1}{2}/$	$0 / M * \frac{1}{2}$	0 / 0

NA

Sei
$$s = 1$$
; $w = 2$; $M = 3$

Team 1

_	A (sw), A (st)	A (sw), NA (st)	NA (sw), A (st)	NA (sw), NA (st)
	-2 / 0	$-2 / 1\frac{1}{2}$	$1\frac{1}{2}/0$	$1\frac{1}{2}/1\frac{1}{2}$
\	$1\frac{1}{2} / 1\frac{1}{2}$	1 / 0	0 / 1 1/2	0 / 0

Team 2

a) -> kein Equilibrium

Team 1

	A (sw), A (st)	A (sw), NA (st)	NA (sw), A (st)	NA (sw), NA (st)
Α	-2 / 0	$-2/1\frac{1}{2}$	$1\frac{1}{2}/0$	$1\frac{1}{2}/1\frac{1}{2}$
NA	$1\frac{1}{2} / 1\frac{1}{2}$	1 / 0	$0 / 1\frac{1}{2}$	0 / 0

Team 2

b) -> kein Equilibrium

Team 1

	A (sw), A (st)	A (sw), NA (st)	NA (sw), A (st)	NA (sw), NA (st)
Α	-2 / 0	$-2/1\frac{1}{2}$	$1\frac{1}{2}/0$	$1\frac{1}{2}/1\frac{1}{2}$
NA	$1\frac{1}{2} / 1\frac{1}{2}$	1 / 0	0 / 1 1/2	0 / 0

Team 2

c) -> kein Equilibrium

Team 1

	A (sw), A (st)	A (sw), NA (st)	NA (sw), A (st)	NA (sw), NA (st)
Α	-2 / 0	$-2/1\frac{1}{2}$	$1\frac{1}{2}/0$	$1\frac{1}{2}/1\frac{1}{2}$
NA	$1\frac{1}{2} / 1\frac{1}{2}$	1/0	0 / 1 1/2	0 / 0

NA

Team 2

d) -> kein Equilibrium

Team 1

	A (sw), A (st)	A (sw), NA (st)	NA (sw), A (st)	NA (sw), NA (st)
	-2 / O	$-2/1\frac{1}{2}$	$1\frac{1}{2}/0$	$1\frac{1}{2}/1\frac{1}{2}$
\	$1\frac{1}{2} / 1\frac{1}{2}$	1 / 0	0 / 1 1/2	0 / 0

Team 2

Equilibrium:

Team 1

	A (sw), A (st)	A (sw), NA (st)	NA (sw), A (st)	NA (sw), NA (st)
Α	-2 / 0	$-2/1\frac{1}{2}$	$1\frac{1}{2}/0$	$1\frac{1}{2}/1\frac{1}{2}$
NA	$1\frac{1}{2} / 1\frac{1}{2}$	1 / 0	0 / 1 1/2	0 / 0