

DAFTAR ISI

1. PE	NDAHULUAN	. 3
1.1.	Tujuan Pembuatan Dokumen	. 3
1.2.	Deskripsi Umum Sistem	. 3
1.3.	Source Code	. 3
2. ST	RUKTUR FILE	. 3
2.1.	Gambaran Umum	. 3
2.2.	/datasets	. 3
2.3.	/groundtruth	. 4
2.4.	/screenshots	. 4
2.5.	contour_tracing.py	. 4
2.6.	detector.py	. 4
2.7.	evaluator.py	. 4
2.8.	kalman_filter.py	. 4
2.9.	tracker.py	. 4
2.10.	main.py	. 5
3. PETUNJUK PENGGUNAAN		. 5
3.1.	Datasets	. 5
<i>3.2.</i>	Command Args main.py	. 5
3.3.	Contoh Penggunaan Command main.py	. 5
3.4.	Command Args evaluator.py	. 6
3.5.	Contoh Penggunaan Command evaluator.py	. 6

1. PENDAHULUAN

1.1. Tujuan Pembuatan Dokumen

Dokumen ini dibuat agar pengguna dapat mengoperasikan dan menjalankan sistem *fish movement tracking* dengan maksimal.

1.2. Deskripsi Umum Sistem

Sistem *fish movement tracking* adalah sistem berbasis *command-line* yang dibuat dengan bahasa pemograman python. Sistem ini bertujuan untuk menghitung rata-rata jumlah ikan dalam sebuah video. Untuk menjalankan sistem, pengguna perlu meng-install python versi 3 (tiga) terlebih dahulu, serta menyiapkan dataset berupa video yang ingin dilacak objeknya.

1.3. Source Code

Seluruh *source code* sistem *fish movement tracking* dapat dilihat melalui link https://github.com/cah-kangkung/object-tracking.

2. STRUKTUR FILE

2.1. Gambaran Umum

- /datasets
- /groundtruth
- /screenshots
- contour_tracing.py
- detector.py
- evaluator.py
- *generate_result.sh.example*
- kalman_filter.py
- main.py
- tracker.py

2.2. /datasets

Folder ini berfungsi untuk menyimpan datasets yang akan digunakan dan dibaca oleh sistem. Nama folder dapat berupa apapun.

2.3. /groundtruth

Folder ini berisikan *groundtruth image* yang digunakan untuk mengukur performa GMM dan Operasi Morfologi.

2.4. /screenshots

Folder /screenshots akan di-generate otomatis oleh sistem. Folder ini berisikan snapshot frame image yang merupakan keluaran dari masing-masing metode. Parameter -ss digunakan untuk mendefiniskan frame mana saja yang akan disimpan.

2.5. contour_tracing.py

File *contour_tracing.py* adalah file *class* yang berisikan fungsi-fungsi python untuk melakukan operasi *contour tracing / border following*. Fungsi *findContourCustom(self, img)* adalah fungsi utama yang akan dipanggil oleh fungsi lain yang membutuhkannya.

2.6. detector.py

File *detector.py* bertugas untuk melakukan operasi objek deteksi secara keseluruhan. Class ini menghasilkan koordinat titik tengah, *contours*, dan *foreground mask* dari objek yang berhasil dideteksi. Fungsi detect(self, frame) adalah fungsi utama *class* ini.

2.7. evaluator.py

Bertugas untuk mengevaluasi performa GMM dan Operasi morfologi menggunakan *metric accuracy, precision, recall,*dan *f1 score.*

2.8. kalman_filter.py

Berisikan fungsi fungsi untuk memprediksi *track* masing-masing object yang berhasil dideteksi.

2.9. tracker.py

File *tracker.py* adalah file yang bertugas untuk melakukan operasi *tracking* secara keseluruhan. Class Tracker menyimpan track masing-masing objek yang nantinya akan di-*update* setiap frame oleh Kalman Filter. Terdapat juga fungsi untuk menghitung *RMSE* track yang diprediksi oleh KF dan jugaa fungsi untuk menghitung rata-rata jumlah objek.

2.10. main.py

File yang menyatukan seluruh class dan fungsi yang dibutuhkan.

3. PETUNJUK PENGGUNAAN

3.1. Datasets

Letakan data pada folder /datasets. Sistem ini menggunakan video sebagai data masukkanya. Format yang sudah diuji dan berhasil berjalan antara lain adalah .mp4, .avi, dan .flv.

3.2. Command Args main.py

Command Args atau parameter yang digunakan oleh main.py antara lain adalah:

- -p = Lokasi sumber video
- $-n = Nama \ video$
- -s = Ukuran skala *downsampling*
- -kes = Ukuran *structuring element* operasi erosi
- -ked = Ukuran *structuring element* operasi dilasi
- -ss = *Comma-seperated value*, berisikan frame yang akan disimpan.

3.3. Contoh Penggunaan Command main.py

```
python main.py -p datasets/filtered_input_video/9866-compressed.mp4 -n 9866 -s 8 -kes 5 -kds 11 -ss 509,789,849
```

Selain menuliskan *command* langsung diterminal, kita dapat menggunakan file *generate_result.sh.example* untuk menjalankan *multiple command* secara bersamaan. Salin file *generate_result.sh.example* dan ubah namanya menjadi *generate_result.sh.* Kemudian masukkan *command* yang diinginkan dipisahkan dengan *line* baru, dan jalankan file bash tersebut dengan *command*

3.4. Command Args evaluator.py

Command Args atau parameter yang digunakan oleh main.py antara lain adalah:

- -name = Nama file
- -gtp = Lokasi *Groundtruth*
- -pp = Lokasi *Predicted*

Lokasi *Predicted* adalah lokasi file yang ingin dibandingkan dengan groundtruth untuk menghasilkan skor metric, accuracy, recall, precision, dan fl score.

3.5. Contoh Penggunaan Command evaluator.py

python evaluator.py -name 9908 -gtp groundtruth/9908.jpg -pp screentshots/9908.jpg