Тема: <u>Перпендикуляр і похила, їх властивості. Розв'язування</u> задач

<u>Повторення</u>

§ 18 ст. 119-122

Теорема Піфагора:

$$a^2 + b^2 = c^2.$$

Застосування теореми Піфагора разноманітне:

- для вимірювальних робіт (це знали ще в ІІІ тис. до н.е.);
- для геометричного знаходження квадратних коренів з цілих чисел;
- для знаходження степенів цілих чисел тощо.

Те, що Піфагор пов'язав реальний світ з числовими закономірностями, дало змогу більш пізнім поколінням учених зрозуміти краще світ і глибше.

Опорний конспект

Перпендикуляр і похила, їх властивості

Перпендикуляром, проведеним з деякої точки до заданої прямої, називається відрізок, що лежить на прямій, перпендикулярній до заданої прямої і з кінцями в заданій точці, і точки, що лежить на заданій прямій. Кінець перпендикуляра, що лежить на прямій, до якої він проведений, називається основою перпендикуляра.

Похила — будь-який відрізок, проведений із точки на пряму, відмінний від перпендикуляра. Кінець похилої, що лежить на прямій, до якої він проведений, називається *основою похилої*.

Відрізок, що сполучає кінець перпендикуляра і похилої до прямої, проведених з однієї точки, називається *проекцією похилої на пряму*.

Якщо до прямої з однієї точки проведені перпендикуляр і похилі, то будь-яка похила більша від перпендикуляра.

Рівні похилі мають рівні проекції.

Якщо проекції похилих рівні, то рівні і похилі.

Із двох похилих більшою є та, у якої більша проекція на пряму. Більшій похилій відповідає більша проекція і навпаки.

Зверніть увагу!

Іноді при розв'язанні задач, де з однієї точки проведено дві похилі до однієї прямої, використовують такий метод: із зазначеної точки проводять до прямої перпендикуляр і із кожного з утворених прямокутних трикутників за допомогою наслідків з теореми Піфагора виражають довжину перпендикуляра (або квадрат довжини перпендикуляра). Після цього прирівнюють одержані вирази і з утвореної рівності визначають невідомий відрізок.

Важливу роль в геометрії відіграє нерівність трикутника.

Для будь-яких трьох точок відстань між двома з них не більша за суму відстаней від них до третьої точки.

У будь-якому трикутнику кожна сторона менша від суми двох інших сторін.

У будь-якому трикутнику кожна сторона більша за різницю двох інших сторін.

AH — перпендикуляр, проведений з точки A до прямої a.

Точку Н називають основою перпендикуляра АН.

K — довільна точка прямої a, відмінна від H.

Відрізок **АК** називають похилою, проведеною з точки A до прямої a,

а точку K – основою похилої.

Відрізок НК називають проекцією похилої АК на пряму а.

Властивості перпендикуляра й

похилої

Якщо з точки, взятої поза площиною, проведено до площини перпендикуляр і похилі, то:

- перпендикуляр коротший за будь-яку похилу;
- проекції рівних похилих є рівними й, навпаки, похилі, що мають рівні проекції, є рівними;
- з двох похилих більша та, проекція якої більша.

Розв'язування задач

Задача 1. Дано: пряма а, AB \perp а, BC — похила, AB = 5 см, BC = 13 см.

Знайти: АС.

Розв'язання. Розглянемо $\triangle ABC$, $\angle A = 90^\circ$ (AB \bot а за умовою), AB = 5 см, BC = 13 см. Із теореми Піфагора $^{AC = \sqrt{BC^2 - AB^2}}$; $^{AC = \sqrt{13^2 - 5^2} = \sqrt{144} = 12}$ см.

Відповідь: 12 см.

Задача 2. Дано: пряма а, AB ⊥ а, AC — похила, AB = 10 см, ∠C = 30°.

Знайти: АС, ВС.

Розв'язання. У \triangle ABC \angle B = 90° (AB \perp а за умовою), \angle C = 30°, AB = 10 см. За властивістю катет, що лежить напроти кута 30°, дорівнює половині гіпотенузи. Отже, AC = 2AB, AC = 10 · 2 = 20 см. Із теореми Піфагора ${}^{BC} = \sqrt{AC^2 - AB^2}$; ${}^{BC} = \sqrt{20^2 - 10^2} = \sqrt{300} = 10\sqrt{3}$ см.

Відповідь: 20 см, 10√3 см.

Задача 3. Дано: пряма a, AB \bot a, AC та AD — похилі, AD = 13 см, DB = 5 CM, ∠C = 45°.

Знайти: ВС.

Розв'язання. За умовою задано пряму та проекції АС та AD, проведені до неї. AB \bot а, отже, \angle ABC = \angle ABD = 90°. У \triangle ABC \angle C = 45°, тоді \angle BAC = 45° і AB = BC. У \triangle ABD AB = 13 CM, DB = 5 см, з теореми Піфагора \triangle AB = \triangle AD = \triangle AB = \triangle A

Відповідь: 12 см.

Задача 4. Дано: пряма а, AC \bot а, AD та AB — похилі, AD = 13 см, AB = 20 см, DC = 5 см.

Знайти: СВ.

Розв'язання. За умовою AC \perp а, отже, у Δ ACD та Δ ACB \angle ACD = \angle ACB = 90°. У Δ ACB AB = 20 см, з теореми Піфагора $CB = \sqrt{AB^2 - AC^2}$. У Δ ACD AD = 13 см, DC = 5 см, із теореми Піфагора $AC = \sqrt{AD^2 - DC^2}$; $AC = \sqrt{13^2 - 5^2} = 12$ см. $CB = \sqrt{20^2 - 12^2} = \sqrt{(20 - 12)(20 + 12)} = \sqrt{2 \cdot 32} = 8$ см.

Відповідь: 8 см.

Задача 5. Дано: пряма а, AC \perp а, AB та AD — похилі, AB = 25 см, AD = 26 см, AC = 24 см.

Знайти: BD.

Розв'язання. За умовою задано пряму а та похилі AB та AB, AC ⊥ а. Тоді: 1) BD = DC + CB; 2) BD = CD - CB.

У \triangle ABC \angle ACB = 90°, AB = 25 см, AC = 24 см, із теореми Піфагора $CB = \sqrt{AB^2 - AC^2}$; $CB = \sqrt{25^2 - 24^2} = \sqrt{(25 - 24)(25 + 24)} = \sqrt{49} = 7$ см.

У \triangle ACB \angle ACB = 90°, AD = 26 см, AC = 24 см, із теореми Піфагора $DC = \sqrt{AD^2 - AC^2}$; $DC = \sqrt{26^{2^2} - 24^2} = \sqrt{(26 - 24)(26 + 24)} = \sqrt{2 \cdot 50} = 10$ см.

Отже: 1) DB = 10 + 7 = 17 см; 2) DB = 10 - 7 = 3 см.

Відповідь: 17 см, 3 см.

Робота з підручником

§ 19 ст. 128-130 (опрацювати)

Робота з інтернет ресурсами

https://youtu.be/SSksx7pQ64A

<u>Домашнє завдання</u>

§ 19 ст. 128-130 (опрацювати)

ПРОЙТИ ТЕСТ ЗА ПОСИЛАННЯМ З 14.00 20.01 ДО 14.00 21.01 ЛИШЕ ОДНА СПРОБА (ЧАС НА ВИКОНАННЯ САМОСТІЙНОЇ 30 ХВ. НА 6 ПИТАНЬ)

https://vseosvita.ua/test/start/gzf533