Final Engagement

Attack, Defense & Analysis of a Vulnerable Network

Presented by:

Travis Sherwood, Clement Yang, Olivia Stine, Joseph Arzeno, Omar Anbari, and Edward Cruz

Table of Contents

This document contains the following resources:

Network Topology & Critical Vulnerabilities

Network Topology

Red-Team vs. Blue-Team Network Topology

Network

Address Range:192.168.1.1/24 Netmask: 255.255.255.0 Gateway: 192.168.1.1

Machines

IPv4: 192.168.1.90 OS: Linux Kali 5.4.0 Hostname: Kali

IPv4: 192.168.1.100 OS: Linux Ubuntu 18.04

Hostname: ELK

IPv4: 192.168.1.105 OS: Linux Ubuntu 18.04 Hostname: Capstone

IPv4: 192.168.1.110 OS: Debian GNU/ Linux 8

Hostname: Target 1

Critical Vulnerabilities: Target 1

Our assessment uncovered the following critical vulnerabilities in Target 1.

Vulnerability	Description	Impact
Port Scanning Vulnerability	Used by attackers to identify open ports and network services running on a host.	Attacker identified ports (HTTP)80 and (SSH)22 as open.
Weak Password Policy Vulnerability	A weak password policy leaves a network vulnerable to password cracking attacks where attackers are able gain access to privileged resources.	Attackers were able to use the Hydra password cracker and John the Ripper to gain access to user accounts.
MySQL Access Control Vulnerability	Allows attacker to run a sql command (mysql -u root -p) to access the database.	Attacker gained access to sql database and extracted hashed passwords.
Privilege Escalation Vulnerability	Network attack used to obtain unauthorized access to systems within the security perimeter.	Attacker was able to exploit python root escalation privileges to obtain root access.

Alerts Implemented

Excessive HTTP Errors

Summarize the following:

- Which metric does this alert monitor? "http.response.status_code"
- What is the threshold it fires at? "IS ABOVE 400 FOR THE LAST 5 minutes"
- Provide a screenshot of the alert in action.

HTTP Request Size Monitor

Summarize the following:

- Which metric does this alert monitor? "http.request.bytes"
- What is the threshold it fires at? "ABOVE 3500 FOR THE LAST 1 minute"
- Provide a screenshot of the alert in action.

CPU Usage Monitor

Summarize the following:

- Which metric does this alert monitor? "system.process.cpu.total.pct"
- What is the threshold it fires at? "ABOVE 0.5 FOR THE LAST 5 minutes"
- Provide a screenshot of the alert in action.

Hardening Against Port Scanning on Target 1

Install a Firewall

- A properly configured firewall can detect and block a port scan. You can also blacklist an IP after detecting and analyzing the traffic.
- Using firewalld, the IP of the attacking machine can be blacklisted.
- Commands:
 - \$ sudo systemctl enable firewalld
 - \$ sudo systemctl start firewalld
 - \$ sudo firewall-cmd --permanent --add-rich-rule="rule family='ipv4' source address='192.168.1.90' reject"

Implementing an IPS can also help to actively detect and block malicious traffic.

Hardening Against Weak Passwords on Target 1

Implement a Strong Password Policy

- A strong password policy can strengthen authentication to the network.
- Password Policy:
 - Set a minimum password length.
 - Require the use of upper and lower case letters, numbers, and special characters
 - Enforce a password history policy
 - Require multi-factor authentication (MFA)
 - Limit bad login attempts
 - Use of a CAPTCHA
 - Require the use of SSH keys to remotely access a server

Commands to set a minimum password length:

sudo nano /etc/pam.d/common-password

Edit the common-password file with: minlen=(length of password)

Hardening Against MySQL Access Control on Target 1

Secure Access to MySQL Server

- Properly configuring the access controls to a MySQL Database is an important step in protecting against this vulnerability.
- Command
 - sudo mysql_secure_installation
 - Options are made available to update password plugin, select level of password validation, change the root password, remove anonymous user, disallow remote root login, and remove the test database.

```
Remove anonymous users? [Y/n] y
  .. Success!
Normally, root should only be allowed to connect from 'localhost'. This
ensures that someone cannot guess at the root password from the network.
Disallow root login remotely? [Y/n] y
  .. Success!
 y default, MariaDB comes with a database named 'test' that anyone can
 ccess. This is also intended only for testing, and should be removed
before moving into a production environment.
Remove test database and access to it? [Y/n] y
  Dropping test database...
  . Success!
  Removing privileges on test database ...
  .. Success!
Reloading the privilege tables will ensure that all changes made so far
will take effect immediately.
Reload privilege tables now? [Y/n] y
  .. Success!
Cleaning up...
All done! If you've completed all of the above steps, your MariaDB
installation should now be secure.
Thanks for using MariaDB!
```

https://yallalabs.com/linux/securing-mysql-server-mariadb-with-mysql_secure_installation/

Hardening Against Privelege Escalation on Target 1

Disable Remote Root Access

- This patch works because it will keep remote users from accessing the root (which is the ultimate goal in a privilege escalation attack).
- Commands:
 - sudo nano /etc/ssh/sshd_config
 - Edit the sshd_config file to read "PermitRootLogin no"

Implementing Patches with Ansible

Playbook Overview

Vulnerabilities: Port Scanning and Privilege Escalation

```
- hosts: all
tasks:
  - name: Disable root login over SSH
   hosts: all:!tiny:!proxmox
   gather facts: false
   user: root

    name: Add hardened SSH config

   copy:
    dest: /etc/ssh/sshd_config
    src: etc/ssh/sshd_config
    owner: root
    group: root
    mode: 0600
    permitrootlogin: no
   notify: Reload SSH
  - name: Drop ssh from the public zone
   firewalld:
    zone: public
    service: ssh
    state: disabled
    immediate: yes
    permanent: yes
  - name: Remove undesirable packages
   package:
    name: "{{ unnecessary software }}"
    state: absent
```

```
- name: Stop and disable unnecessary services
   service:
    name: "{{ item }}"
    state: stopped
    enabled: no
   with items: "{{ unnecessary services }}"
   ignore errors: yes
- name: Block specific IP
 ansible.builtin.iptables:
  chain: INPUT
  source: 192.168.1.90
 jump: DROP
 become: yes
vars:
 allowed ssh_networks:S
  - 192.168.1.0/24
 unnecessary_services:
  - postfix
  - telnet
 unnecessary software:
  - tcpdump
  - nmap

    wpa_supplicant
```

Implementing Patches with Ansible

Playbook Overview

Vulnerabilities: Weak Passwords

```
- name: Set Enforce password history to 24 or more passwords
 cis enforce-password-history 1.1.1
 win_command: net accounts /uniquepw:24
 register: passHistory
 args:
 creates: C:\passHistory.lock

    name: Create passHistory.lock if password history is enforced

 win_copy:
  dest: C:\passHistory.lock
  content: ""
 force: no
 when: passHistory
- name: Set Maximum password age to 60 or more days | cis
maximum-password-age 1.1.2
win_command: net accounts /maxpwage:60
 register: maxPassAge
 args:
 creates: C:\maxPassAge.lock
- name: Create maxPassAge.lock if password history is
enforced
 win_copy:
  dest: C:\maxPassAge.lock
  content: ""
 force: no
 when: maxPassAge
```

```
- name: Set Minimum password age to 1 or more days | cis
minimum-password-age 1.1.3
win_command: net accounts /minpwage:1
 register: minPassAge
 args:
 creates: C:\minPassAge.lock
- name: Create minPassAge.lock if password history is
enforced
win_copy:
  dest: C:\minPassAge.lock
  content: ""
 force: no
when: minPassAge

    name: Set Minimum password length to 14 or more

characters | cis minimum-password-length 1.1.4
win_command: net accounts /minpwlen:14
 register: minPassLength
 args:
 creates: C:\minPassLength.lock
- name: Create minPassLength.lock if password history is
enforced
win_copy:
  dest: C:\minPassLength.lock
 content: ""
 force: no
 when: minPassLength
```

Implementing Patches with Ansible

Playbook Overview

Vulnerabilities: MySQL Access

```
---
```

 name: Set logging community.general.ufw: rule: limit port: ssh proto: tcp

name: Deny all access to port 3306(mysql)
 community.general.ufw:

rule: deny port: '3306'

- name: Deny all access to tcp port 80 community.general.ufw:

rule: deny port: '80' proto: tcp

Utilized Resources

5 ways to harden a new system with Ansible: https://www.redhat.com/sysadmin/harden-new-system-ansible

Ansible Windows Hardening: https://github.com/dev-sec/ansible-windows-hardening/blob/master/tasks/password_policy.yml

Best Practices for Preventig HTTP Flood Attacks: https://www.alibabacloud.com/help/en/doc-detail/100694.htm

Blocking Malware and Prohibit Files: https://www.cisco.com/c/en/us/td/docs/security/firesight/541/firepower-module-user-guide/asa-firepower-module-user-guide-v541/AMP-Config.pdf

Configure MySQL Database Reference: https://stackoverflow.com/questions/51251225/install-and-configure-mysql-using-ansible

Disable Remote Root Access Reference: https://stackoverflow.com/questions/68404640/use-ansible-playbook-to-enable-and-disable-root-login

Fifty Shades of Malware Hashing: <a href="https://medium.com/malware-buddy/fifty-shades-of-malware-hashing-3783d98df59c#:~:text=Hashing%20is%20a%20commonly%20used%20method%20to%20uniquely%20identify%20malware.&text=The%20malware%20is%20run%20through,be%20used%20to%20classify%20malware

<u>e</u>

Hardening SSH with Ansible: https://www.nathancurry.com/blog/23-hardening-ssh-with-ansible/

Manage Detection Alerts: https://www.elastic.co/guide/en/security/current/alerts-ui-manage.html

Manage firewall with UFW: https://docs.ansible.com/ansible/latest/collections/community/general/ufw_module.html

MetaFlows Network Antivirus: Content MD5 Hash: https://research.metaflows.com/stats/content_md5_hash