3.14. Show that a function $h(\omega)$ is \mathcal{F}_t -measurable if and only if h is a pointwise limit (for a.a. ω) of sums of functions of the form

$$g_1(B_{t_1}) \cdot g_2(B_{t_2}) \cdots g_k(B_{t_k})$$

where g_1, \ldots, g_k are bounded continuous functions and $t_j \leq t$ for $j \leq k$, $k = 1, 2, \ldots$

Hint: Complete the following steps:

- a) We may assume that h is bounded.
- b) For $n=1,2,\ldots$ and $j=1,2,\ldots$ put $t_j=t_j^{(n)}=j\cdot 2^{-n}$. For fixed n let \mathcal{H}_n be the σ -algebra generated by $\{B_{t_j}(\cdot)\}_{t_j\leq t}$. Then by Corollary C.9

$$h = E[h|\mathcal{F}_t] = \lim_{n \to \infty} E[h|\mathcal{H}_n]$$
 (pointwise a.e. limit)

c) Define $h_n := E[h|\mathcal{H}_n]$. Then by the Doob-Dynkin lemma (Lemma 2.1.2) we have

$$h_n(\omega) = G_n(B_{t_1}(\omega), \dots, B_{t_k}(\omega))$$

for some Borel function $G_n: \mathbf{R}^k \to \mathbf{R}$, where $k = \max\{j; j \cdot 2^{-n} \le t\}$. Now use that any Borel function $G: \mathbf{R}^k \to \mathbf{R}$ can be approximated pointwise a.e. by a continuous function $F: \mathbf{R}^k \to \mathbf{R}$ and complete the proof by applying the Stone-Weierstrass theorem.

Assume that h is bounded and put $t_i = t_i^{(n)} = j \cdot 2^{-n}$, $n = 1, 2, \dots$, $j = 1, 2, \dots$

For a fixed n, let Iln be the U-algebra generated by Btilty. Then

h= E[hlf+]= lim E[hlfln] pointwise a.e.

Let hn = E[h | fln]. By the Doob-Dynkin lemma,

hy(ω) = Gn } B+, (ω), ..., B+κ(ω) {

for some Borel function Gn, and where $K=\max\{j:j:2^{-n}\le t\}$.

Since every Borel function $G:\mathbb{R}^k\to\mathbb{R}$ can be approximated pointwise a.e. by a continuous function $F:\mathbb{R}^k\to\mathbb{R}$, by the Stone-Weierstrass theorem applied on \mathbb{L}_{t_1} the \mathbb{L}_{t_2} , \mathbb{L}_{t_3} can be approximated by a polynomial function \mathbb{L}_{t_3} completing the proof.

Corollary C.9. Let $X \in L^1(P)$, let $\{\mathcal{N}_k\}_{k=1}^{\infty}$ be an increasing family of σ - algebras, $\mathcal{N}_k \subset \mathcal{F}$ and define \mathcal{N}_{∞} to be the σ -algebra generated by $\{\mathcal{N}_k\}_{k=1}^{\infty}$. Then
$E[X \mathcal{N}_k] \to E[X \mathcal{N}_\infty] as k \to \infty ,$
a.e. P and in $L^1(P)$.
Lemma 2.1.2. If $X, Y: \Omega \to \mathbf{R}^n$ are two given functions, then Y is \mathcal{H}_X - measurable if and only if there exists a Borel measurable function $g: \mathbf{R}^n \to \mathbf{R}^n$
such that
Y = g(X).