Part I

CENTER FOR ANIMAL DISEASE MODELING AND SURVEILLANCE (CADMS),

SCHOOL OF VETERINARY MEDICINE, UC DAVIS

Jose Pablo Gomez, Jerome Baron, Jose Manuel Diaz Cao Beatriz Martinez Lopez

Center for Animal Disease Modeling and Surveillance (CADMS)

Department of Medicine & Epidemiology

School of Veterinary Medicine

University of California, Davis

- Emails: jpgo@ucdavis.edu
 - <u>jnbaron@ucdavis.edu</u>

https://jpablo91.github.io www.vetmed.ucdavis.edu/cadms

Contents

- What is a network?
- Elements of a network
- Data sources
- Sampling methods

What is a network?

Graph theory

What is a graph? (in the contect of network analysis)

"Mathematical repesentation of a network"

Nodes (vertices)

Agents or individuals forming a network

$$V = \{1, 2, 3, ..., i\}$$

Nodes (vertices)

Agents or individuals forming a network:

farms, animals, humans, markets

$$V = \{1, 2, 3, ..., i\}$$

Edges (links)

Connection between a pair of nodes (dyad)

$$E = \{(1, 2), (1, 3), ..., (i, j)\}$$

In a network, connected nodes are considered as **neighbours**

Each of the connected nodes belongs to a **neighborhood**

Edges (links)

Connection between a pair of nodes (dyad):

Animal shipments, human movements, social contacts

$$E = \{(1, 2), (1, 3), ..., (i, j)\}$$

In a network, connected nodes are considered as **neighbours**

Each of the connected nodes belongs to a **neighborhood**

Directionality

$$E = \{(1 \rightarrow 2), (1 \rightarrow 3), ..., (i \rightarrow j)\}$$

Atributes

Nodes: farm size, type...

Edges: movement size, cause...

$$V = \{0, 1, 0, ..., i\}$$

$$E = \{(1), (3), ..., (x_i)\}$$

Why represent events in a network?

To describe contact dynamics

Identify individuals that are very active

Identify individuals that are intermediate

Example

Kreuder Johnson et al, 2015

- Examin the transmission mechanisms and hosts involved in zoonotic transmission
- Identify viruses with "high plasticity"

Poisson regression predicting virus host plasticity (number of host groups) ^a						
	Incidence Rate Ratio	P value	(95% CI)			
Transmission from domestic animals to humans	1.97	< 0.001	(1.56-2.49)			
Transmission by direct contact with wildlife at markets	2.00	0.040	(1.03-3.88)			
Transmission by direct contact with wild animals kept as pet or in zoos or sanctuaries	1.55	0.039	(1.02-2.34)			
Transmission by vector	3.01	< 0.001	(2.32-3.91)			
Logistic regression predicting human-to-human transmissibility ^b						
	Odds Ratio	P value	(95% CI)			
Host plasticity (number of host groups)	1.20	0.039	(1.01-1.44)			
Transmission by direct contact with wild animals hunted or consumed	10.43	0.004	(2.10-51.80)			
Ordered logistic regression predicting geographic spread ^c						
	Odds Ratio	P value	(95% CI)			
Host plasticity (number of host groups)	1.22	0.001	(1.08-1.37)			
Transmission by direct contact with wild animals in trade or laboratories	6.14	0.014	(1.45-26.10)			

Why represent events in a network?

Model contact dynamics:

- Inference: Associations between attributes and activities in a network
- Prediction: Are there reproducible patterns that we can predict?

Applications in Preventative Veterinary Medicine

- Surveillance, Prevention and Control
 - Define strategic nodes for intervention
 - Surveillance: Diagnostic testing, road checks
 - Prevention: Education and information campaigns
 - Control: Vaccination or treatment campaigns
 - Define cost-effective risk-based targeted approaches
 - Modelling of disease introduction and spread
- Risk Factor Analysis
- Outbreak investigation
 - Traceability of the outbreak's origin
- Compartimentalization
 - Define high-risk groups?
- Other uses in the animal world
 - Behavioral studies in social animals: i.e. contact patterns in a herd of cattle

Define **nodes**:

• What is the unit of analysis (e.g. farm, animal, etc)

Define edges:

- Frequency of contacts
- Duration of contacts

Passive Surveillance

- Madatory movement registries
- Population census
- GPS data (entire population)
 - Complete network

Passive Surveillance

- Madatory movement registries
- Population census
- GPS data (entire population)
 - Complete network

Impact of underreporting

Active surveillance

- Surveys
- Observation of a sample of the population
 - > Subgraph sampling and incomplete network

Sampling method

Random Sampling Methods

- Sample a group of nodes
- Identify all contacst between these nodes

- Sample a group of edges
- Identify all nodes connected to these edges

Sampling method

Egocentric Sampling

- Sample a group 1 of nodes
- Identify all contacts linked members of group 1
- Identify all nodes (group 2) directly connected to group 1
- identify all contacts between members of group 2

Sampling method

Link-tracing

(respondent driven sampling)

We follow a node of specific interests and record its previous contacts

Similar to Snowball sampling

Medicion de los conctactos

Retrospective

- National movement records
- Farm registry and population census
- Surveys

Prospective

- Visual observation
- Tracking with GPS or PIT (Passive Intergrated Transporter) systems

Estructura de los datos

Nodes dataset						
ID	Farm	Farm size	Farm type			
1	Swine and company	800	fattening farm			
2	Les Cochonets	1200	sow farm			
3	The farmhouse	50	small-scale farm			
4	The Boar	20	reproductive males			
5	Ham & sausage	65	slaughterhouse			
6	The trading post	0	market			

Edge	es d	ata	set
------	------	-----	-----

ID_origin	ID_destination	Shipment size	Date	Reason
2	6	10	02-25-2018	Sale of adult sows
2	1	15	03-12-2018	Piglets for fattening
4	1	1	10-15-2017	Insemination
1	5	100	06-30-2018	Slaughter
6	3	2	07-10-2018	Sale of adult sows
2	1	100	02-15-2018	Piglets for fattening

Questions?

Contact: jpgo@ucdavis.edu, jnbaron@ucdavis.edu jpablo91.github.io