# Compte-rendu du Projet Apprentissage non supervisé

Méthode de programmation dynamique de Fisher sous R

Achraf Benlemkaddem 12/11/2017

Implémentation de la méthode de programmation dynamique de Fisher sous R et son application pour classifier des données simulées et réelle en comparant avec d'autres méthodes de Clustering.

# Contenu

| Figu    | res                                                                                    | 1 |
|---------|----------------------------------------------------------------------------------------|---|
| Abs     | tract                                                                                  | 2 |
| 1)      | Implémentation de l'algorithme sous R                                                  | 2 |
| 2)      | Application au données simulées                                                        | 2 |
| a       | Méthode du coude                                                                       | 2 |
| b       | ) Résultat du pour 4 classes                                                           | 3 |
| c)      | Comparaison avec K-Means et CAH-Ward.                                                  | 3 |
| 3)      | Application au donnés réelles                                                          | 4 |
| a       | Résultat de clustering par Fisher                                                      | 4 |
| b       | ) Comparaison avec les classes d'origines, K-Means et CAH-Wards                        | 5 |
| Con     | clusion générale                                                                       | 6 |
|         |                                                                                        |   |
|         |                                                                                        |   |
|         |                                                                                        |   |
|         |                                                                                        |   |
|         |                                                                                        |   |
| Figures |                                                                                        |   |
| Figu    | re 1: Application de la méthode du coude par rapport au critère Ck                     | 2 |
| Figu    | Figure 2: Classification des données simulées par l'algorithme de Fisher               |   |
| Figu    | re 3: Comparaison entre les méthodes Fisher, K-Means et CAH-Ward appliquées au données |   |
| sim     | ılées                                                                                  | 4 |
| _       | re 4: Classification des données Aiguillage par l'algorithme de Fisher.                | 5 |
| Figu    | re 5: Comparaison entre les méthodes Fisher, K-Means et CAH-Ward appliquées au données |   |
| simi    | ulées et les classes d'origines                                                        | 5 |

### **Abstract**

L'objectif de ce projet est d'étudier une méthode de Clustering qui recherche des classes ordonnées dans le temps : la méthode de programmation dynamique de Fisher [1][2]. On procède dans une première partie à l'implémentation de l'algorithme sous R. Ensuite, on l'applique à deux exemples de jeux de données réels et simulées. Puis on compare les résultats à celui de d'autres algorithmes de Clustering.

### 1) Implémentation de l'algorithme sous R.

Vous trouverais l'implémentation de l'algorithme sous dans le fichier « FisherDynamicProramming.R ».

### 2) Application au données simulées

Dans cette partie on applique l'algorithme de Fisher pour segmenter des données simulées « sequencesimu ».

La détermination du nombre de classes à utiliser se fait à travers la méthode du coude.

En fin on compare le résultat du Clustering par Fisher à celui donnée par d'autres méthodes comme KMeans et CAH-Ward.

### a) Méthode du coude

On applique l'algorithme de Fisher au données pour plusieurs valeurs de k de 2 à 10 puis on plot le critère Ck pour chaque valeurs de k.

# Histogramme des valeurs de Ck 27 28 4 6 8 10 k

Figure 1: Application de la méthode du coude par rapport au critère Ck

On perçoit une chute forte de **Ck** juste avant l'indice 4. Donc on choisit **k=4**.

### b) Résultat du pour 4 classes

On affiche le résultat de la classification pour k=4

### Classification du SequenceSemu par Fisher



Figure 2: Classification des données simulées par l'algorithme de Fisher

### c) Comparaison avec K-Means et CAH-Ward.

En comparant avec K-Means et CAH-Ward (figure 3) on conclue que Fisher donne une meilleur classification sur les données « **sequencesimu** ».

### Classification du Sequence Semu par Fisher

### Classification du SequenceSemu par K-Means



### Classification du Sequence Semu par CAH-Wards



Figure 3: Comparaison entre les méthodes Fisher, K-Means et CAH-Ward appliquées au données simulées.

### 3) Application au donnés réelles

Dans cette partie on applique l'algorithme de Fisher à un jeu de données réelles nommé « **Aiguillage** » qui comprend 140 séries temporelles décrites par 553 variables: les 552 premières variables correspondent à l'énergie consommée au cours des mouvements mécaniques d'un système d'aiguillage ferroviaire et la 553e variable correspond à la classe (1 : sans défaut, 2 : défaut mineur, 3 : défaut critique, 4 : panne).

### a) Résultat de clustering par Fisher

On remarque que l'application de l'algorithme de Fisher aux données « **Aiguillage** » (figure 4) ne résulte pas en un bon clustering.

### Classification des Aiguillages par Fisher



Figure 4: Classification des données Aiguillage par l'algorithme de Fisher.

# b) Comparaison avec les classes d'origines, K-Means et CAH-Wards



Figure 5: Comparaison entre les méthodes Fisher, K-Means et CAH-Ward appliquées au données simulées et les classes d'origines

# **Conclusion générale**

La méthode de programmation dynamique de Fisher à données des résultats très performantes dans le cas des données simulées « sequencesimu » pendant qu'elle n'a pas bien performer pour les données « Aiguillage ».

L'échec de la *méthode de programmation dynamique de Fisher* dans le cas des données « **Aiguillage** » peut être expliquées partiellement par le volume explosif des variables présentes dans ce jeu de données.