Homework 4

Zachary Moring

October 10, 2024

 ${\bf Code\ for\ this\ assignment\ is\ at:\ https://github.com/zpm-bu/cs511-formal-methods/blob/assignments/lean/Homework/hw5.lean}$

Exercise 1a. Prove the validity of the following sequent:

$$(y \approx 0) \land (y \approx x) \vdash 0 \approx x$$

1	$(y \approx 0) \land (y \approx x)$	premise
2	$y \approx 0$	$\wedge e_1 \ 1$
3	$y \approx x$	$\wedge e_2 1$
4	$0 \approx x$	\approx e 2,3 ($\varphi := y \approx x; t_1 := y; t_2 := 0$)

Exercise 1b. Prove the validity of the following sequent:

$$t_1 = t_2 \vdash (t + t_2) = (t + t_1)$$

I'm definitely not sure about this one. Can we introduce an arbitrary symbol like this?

Exercise 2a. Prove the validity of the following sequent:

$$(\exists x (S \to Q(x)) \vdash S \to \exists x Q(x)$$

	1	$\exists x(S \to Q(x))$	premise
	2	S	assume
x_0	3	let	
	4	$S \to Q(x_0)$	assume
	5	$Q(x_0)$	\rightarrow e 2,4
	6	$\exists x(Q(x))$	∃i 5
	7	$\exists x (Q(x))$	$\exists e \ 1, 3:6$
	8	$S \to \exists x (Q(x))$	\rightarrow i 2 : 7

Exercise 2d. Prove the validity of the following sequent:

$$\forall x(P(x)) \to S \vdash \exists x(P(x) \to S)$$

1	$\forall x(P(x)) \to S$	premise
2	$\neg \exists x (P(x) \to S)$	assume
x_0 3	let	
4	$\neg P(x_0)$	assume
5	$P(x_0)$	assume
6	\perp	⊥i 4,5
7	S	⊥e
8	$P(x_0) \to S$	→i 5 : 7
9	$\exists x (P(x) \to S)$	∃i 8
10	1	⊥i 2,8
11	$\neg \neg P(x_0)$	¬i 4 : 10
12	$P(x_0)$	¬¬е
13	$\forall x (P(x))$	$\forall \mathbf{i} \ 3: 12 \ (\varphi := P(x_0))$
14	$P(x_0)$	∀e 13
15	S	→e 1,13
16	$P(x_0) \to S$	\rightarrow i 14 : 15
17	$\exists x (P(x) \to S)$	∃i 16
18	1	\perp i $2:17$
19	$\neg\neg\exists x(P(x)\to S)$	¬i 2 : 18
20	$\exists x (P(x) \to S)$	¬¬е 19