Desenvolvimento de um padrão de linguagem formal para criação automatizada de diagramas de atividade para utilização médico-hospitalar

Emanuel Fagan Bissacotti
Universidade Franciscana
Ciência da Computação
Santa Maria, RS
Email: e.bissacotti@ufn.edu.br

Abstract—Este artigo traz a criação de uma linguagem formal para a compreensão do chat GPT, para que o mesmo retorne um código com sintaxe PlantUML que cria diagrama de atividade para utilização médico-hospitalar, relatando seus testes realizados através do chat GPT, erros encontrados e como a aplicação funcionará.

1. Introdução

Este artigo fala sobre o desenvolvimento de uma linguagem formal para criação de diagramas de atividades. O sistema usará a API(Application Programming Interface) do GPT-4 e do PlantUML para a comunicação de forma integrada.

1.1. Objetivo

Facilitar os processos médico-hospitalar através de diagramas de atividades geradas automaticamente por um texto padronizado informado pelo usuário.

1.2. Estrutura

O artigo está estruturado da seguinte forma: iniciando com o resumo do mesmo, após, sua introdução trazendo seus objetivos, revisão bibliográfica mostrando dois trabalhos correlatos e citando ferramentas que serão utilizadas no seu desenvolvimento, a metodologia de desenvolvimento do artigo e a engenharia do projeto, resultados obtidos de como deve ser estabelecida a linguagem formal para evitar possiveis erros e a conclusão do artigo.

2. Revisão Bibliográfica

Esta seção trata exclusivamente de 2 trabalhos correlatos e da apresentação das ferramentas que serão utilizadas neste trabalho, dentre eles: diagrama de atividade, API, GPT-4 e PlantUML. Procurando dar uma breve explicada sobre cada uma delas.

Evandro Cunha dos Santos Junior Universidade Franciscana

Universidade Franciscana Ciência da Computação Santa Maria, RS

Email: evandro.santos@ufn.edu.br

2.1. Trabalhos Correlatos

O trabalho "Conceptual Modeling and Large Language Models: Impressions From First Experiments With Chat-GPT", desenvolvido por F. Hans-Georg, ET all. fala sobre a padronização dos retornos do chat GPT baseado no que o mesmo aprendeu à partir de informações dadas por usuários. Tal artigo define que são necessários milhares de dados para a geração de saída.

Figura 1 - Exemplo como sistema acima funciona[1].

O trabalho "On Codex Prompt Engineering for OCL Generation: An Empirical Study", desenvolvido por S. Abukhalaf, ET all. discute os avanços recentes em aprendizado profundo e processamento de linguagem natural e como eles levaram ao desenvolvimento de grandes modelos de linguagem destacando-o para a geração de código e explorando o uso desses modelos no contexto da Linguagem de Restrição de Objetos (OCL) para melhorar o desenvolvimento de software orientado a modelos.

2.2. Ferramentas

Descrição das ferramentas ou siglas que auxiliaram no projeto.

2.2.1. Diagrama de atividade. Um diagrama de atividade fornece uma visualização do comportamento de um fluxo

de atividade descrevendo a sequência de ações em um processo.[3]

2.2.2. API. Application Programming Interface que, traduzida para o português, pode ser compreendida como uma interface de programação de aplicação. Ou seja, API é um conjunto de normas que possibilita a comunicação entre plataformas por meio de uma série de padrões e protocolos.[4]

APIs são mecanismos que permitem que dois componentes de software se comuniquem usando um conjunto de definições e protocolos. Por exemplo, o sistema de software do instituto meteorológico contém dados meteorológicos diários. A aplicação para a previsão do tempo em seu telefone "fala" com esse sistema por meio de APIs e mostra atualizações meteorológicas diárias no telefone.[7]

2.2.3. GPT-4. É uma tecnologia avançada de inteligência artificial de conversação desenvolvida pela OpenAI, disponível para assinantes do ChatGPT Plus. É a próxima geração de modelos de linguagem GPT (Transformador pré-treinado generativo) e promete levar as conversas homem-máquina a um nível totalmente novo.[5]

2.2.4. PlantUML. PlantUML é uma linguagem e ferramenta de modelagem de código aberto que permite aos usuários criar diagramas a partir de uma linguagem de texto simples.[6]

3. Metodologia

Para a criação deste artigo foi utilizado o método SCRUM de desenvolvimento. Onde os processos seguem detalhados:

Backlog: Foram realizadas reuniões semanais para desenvolver novas ideias inserindo em uma lista de backlog com prazos para desenvolvimento.

Sprint backlog: Para uma maior assertividade no desenvolvimento completo da ideia de backlog, a mesma foi divida em pequenas tarefas, fazendo com que cada membro do grupo pudesse se responsabilizar por uma parte, cada uma possuindo um prazo pré-determinado.

Incremento: À partir da conclusão das pequenas tarefas, as mesmas foram incorporadas como parte de um todo, ou seja, a divisão em pequenas tarefas serviu como incremento da ideia maior de backlog.

Definição de pronto: Quando finalizada a ideia de backlog, foi analisado o desempenho de cada integrante em determinadas partes do projeto e se os objetivos foram concluídos da forma programada anteriormente pela equipe.

3.1. Engenharia do projeto

Apresentação dos dois diagramas criados para o melhor entendimento do projeto ao solicitante e ajudar o programador na codificação.

3.1.1. Diagrama de atividade. Este diagrama representa o comportamento ideal do início ao fim do software, sem que acontece qualquer imprevisto durante a sua execução, trazendo o que cada agente fará dentro do mesmo.

Figura 2 - Diagrama de atividade do projeto.

3.1.2. Diagrama de casos de uso. Este diagrama apresenta as funcionalidades do sistema e seu usuário.

Figura 3 - Diagrama de casos de uso do projeto.

4. Resultados

À partir de testes realizados obteve-se como retorno do sistema, Resultados e problemas identificados para o desenvolvimento.

Foram testadas duas formas de comunicação com o chat GPT a primeira através de uma linguagem formal em forma continua ou seja um texto corrido e a segunda uma linguagem formal em forma de frases ou seja através de frases.

4.1. Linguagem formal de forma continua

O texto inserido pelo usuário deve estar bem escrito e entendivel, descrito passo a passo sobre como deve ser desenvolvido o diagrama. Exemplo de linguagem formal de forma continua que o usuário deve informar: "Gere um codigo PlantUML do diagrama de atividade que começa com a chegada de um paciente, que espera a chegada de um enfermeiro para que realize a triagem, após encaminha o paciente para a emergência se estiver em condição crítica ou para a sala de espera caso contrário. Em seguida, chama o paciente para a consulta com o médico, que realiza exames se necessário, dá o diagnóstico, agenda cirurgia se necessário ou prescreve medicamentos, e finalmente o paciente recebe tratamento e a consulta é finalizada. Sendo o médico, paciente e o enfermeiro partições individuais."

É de extrema importancia palavras como "se necessario" ou "caso contrario" para que o GPT entenda que é uma condição a ser executada.

Com esta maneira de linguagem formal, o chat GPT não consegue identificar possiveis agentes para as partições, uma solução seria ao final do texto descrever quem são os agentes.

4.2. Linguagem formal em forma de frases

O texto em forma de frases que foi desenvolvido segue o seguinte padrão: Primeira palavra é o agente e restante é sua ação que pode apresentar condicionais. Ex: "Paciente chega ao hospital." Paciente é o agente e o restante é a ação do paciente.

Exemplo de texto em forma de frases criada: "O texto em forma de frases a seguir segue o seguinte padrão: A primeira palavra é o agente do diagrama. Lembrando que o agente é uma partição do diagrama. Sabendo disso gere o código PlantUML do diagrama de atividade a seguir:

Paciente chega ao hospital

Paciente espera a chegada de um enfermeiro

Enfermeiro realiza a triagem.

Enfermeiro encaminha o paciente para a emergência se estiver em condição crítica se não para a sala de espera.

Médico chama o paciente para a consulta.

Médico realiza exames se necessário.

Médico dá o diagnóstico, agenda cirurgia se necessário ou prescreve medicamentos.

Paciente recebe tratamento e a consulta é finalizada."

Texto começa dando o padrão em que o texto segue para que o chat GPT consiga entender o padrão e possa compreender melhor. E diz a ele que esse agente no diagrama deve ser uma partição individual.

Já com esta maneira de linguagem formal o chat GPT não conseguiu identificar possiveis condicionais no texto mesmo sendo explicado no texto de introdução do padrão que a linguagem segue.

5. Conclusão

À partir de estudos realizados com o chat GPT para desenvolver uma linguagem padrão foram identificados problemas ao gerar o código do diagrama, o mesmo não conseguiu identificar as partições informadas através do texto sem que fosse preciso especificar essa informação também apresentou problemas com sintaxe errada em alguns testes.

5.1. Diagramas de atividade criados

O Diagrama de atividade à seguir foi criado para que seja feita uma comparação entre os diagramas desenvolvidos pelo chat GPT.

Figura 4 - Formato esperado do diagrama de atividade.

O diagrama de atividade com a linguagem de forma continua, apresenta uma grande similaridade entre o diagrama esperado e a saída do chat GPT. É possivel ver os nós de decisões de uma forma muito próximas e as ações dos agentes quase iguais.

Figura 5 - Formato com linguagem formal de forma continua.

Já o diagrama com a linguagem em forma de frases, possui uma dessemelhança muito grande, já que ele não conseguiu entender quando devia colocar nós de decisões e as ações ficaram com o nome do agente apresentando uma redundância.

Figura 6 - Formato com linguagem formal em forma de frases, gerada pelo chat GPT.

References

- [1] F. Hans-Georg, F. Peter and K. Julius. Conceptual Modeling and Large Language Models: Impressions From First Experiments With ChatGPT. Acessado dia 19 de junho de 2023. Disponível em: https://folia.unifr.ch/global/documents/324646
- [2] S. Abukhalaf, M. Hamdaqa and F. Khomh. On Codex Prompt Engineering for OCL Generation: An Empirical Study. Acessado dia 19 de junho de 2023. Disponível em: https://arxiv.org/abs/2303.16244
- [3] IBM. Diagramas de Atividades. Acessado dia 19 de junho de 2023. Disponível em: https://www.ibm.com/docs/pt-br/rational-softarch/9.7.0?topic=diagrams-activity
- [4] C. Fabro. O que é API e para que serve? Cinco perguntas e respostas. Acessado dia 19 de junho de 2023. Disponível em: https://www.techtudo.com.br/listas/2020/06/o-que-e-api-e-para-que-serve-cinco-perguntas-e-respostas.ghtml
- [5] F. Leite. O que é Chat GPT-4: nova versão da OpenAI. Acessado dia 19 de junho de 2023. Disponível em: https://www.agenciaimma.com.br/oque-e-chat-gpt-4/
- [6] Open Risk Manual. PlantUML. Acessado dia 22 de junho de 2023. Disponível em: https://www.openriskmanual.org/wiki/PlantUML
- [7] AWS. O que é uma API?. Acessado dia 26 de junho de 2023. Disponível em: https://aws.amazon.com/pt/what-is/api/