

IIC1253 — Matemáticas Discretas — 1' 2017

PAUTA INTERROGACION 2

Pregunta 1

La solución consistía en demostrar que mediante contradicción que esto no podía ocurrir. Para esto, se supone que (A, \preccurlyeq) es un orden parcial y el grafo (A, \preccurlyeq) tiene un ciclo de largo mayor o igual a 2.

Sea v_0, v_1, \ldots, v_n con $n \ge 2$ el ciclo simple en (A, \preceq) tal que:

- $v_i \leq v_{i+1}$ para todo i < n.
- $v_i \neq v_j$ para todo i < j < n.
- $v_0 = v_n$.

Primero demostraremos que $v_0 \leq v_i$ para todo i < n. Esto se podía demostrar por inducción. Brevemente:

- 1. Caso Base (i = 1): $v_0 \leq v_1$ por construcción de ciclo.
- 2. Si $v_0 \leq v_i$ (por hipótesis de inducción) y $v_i \leq v_{i+1}$ (por construcción de ciclo), entonces $v_0 \leq v_{i+1}$ (por transitividad)

Así queda demostrado entonces que $v_0 \preccurlyeq v_i$ para todo i < n.

Por último, basta notar que:

$$v_{n-1} \leq v_n$$
 por construcción de ciclo. (1)

$$v_0 = v_n$$
 por construcción de ciclo. (2)

$$v_{n-1} \leq v_0 \text{ por } (1) \text{ y } (2).$$
 (3)

$$v_0 \leq v_{n-1}$$
 por lo demostrado en la inducción. (4)

$$v_0 = v_{n-1}$$
 por (3), (4) y antisimetría en orden parcial. (5)

$$v_0 \neq v_{n-1}$$
 por construcción de ciclo. (6)

Llegando así a una contradicción por (5) y (6), demostrando así que no es posible la existencia de un ciclo simple de largo mayor o igual a 2 en un orden parcial.

Dado lo anterior, el puntaje asignado es el siguiente:

- (1 punto) Por dominar propiedades de ciclo.
- (3 puntos) Por inducción.
- (2 puntos) Por demostrar que no cumple antisimetría.

Pregunta 2

Pregunta 2.1

Sea A un conjunto finito de tamaño n+1. Sea una relación $R \subseteq A \times A$ con $R \neq \emptyset$, transitiva y punto medio. Demostraremos que existe $x \in A$ tal que $(x,x) \in R$. Dado que $R \neq \emptyset$, sea $(a,b) \in R$ con $a \neq b$ (demostración trivial si son iguales). Por propiedad de punto medio, uno puede razonar recursivamente como:

$$\exists c_1 \in A.(a,c_1) \in R \land (c_1,b) \in R$$
 dado que $(a,c_1) \in R$ entonces
$$\exists c_2 \in A.(a,c_2) \in R \land (c_2,c_1) \in R$$

$$\vdots$$
 dado que $(a,c_{n-1}) \in R$ entonces
$$\exists c_n \in A.(a,c_n) \in R \land (c_n,c_{n-1}) \in R$$

Por palomar y debido a que el tamaño de A es n+1, debe existir al menos un c_i tal que $c_i=c_j$ o $c_i=a$ o $c_i=b$ con $i \neq j$ y $i,j \in \{1,...,n\}$. Se puede formar entonces, un camino de c_i a c_j por transitividad de la relación. Sin perdida de generalidad: i < j con una diferencia k < n entre ellos.

$$\begin{array}{c} \text{como }(c_{j},c_{j-1}),(c_{j-1},c_{j-2})\in R,\,\text{entonces }(c_{j},c_{j-2})\in R\\ \\ \text{como }(c_{j},c_{j-2}),(c_{j-2},c_{j-3})\in R,\,\text{entonces }(c_{j},c_{j-3})\in R\\ \\ \vdots\\ \\ \text{como }(c_{j},c_{j-(k-1)}),(c_{j-(k-1)},c_{j-k})\in R,\,\text{entonces }(c_{j},c_{j-k})\in R\\ \\ \text{como }(c_{j},c_{j-k}),(c_{j-k},c_{i})\in R,\,\text{entonces }(c_{j},c_{i})\in R\\ \\ \text{entonces }(c_{i},c_{i})\in R\\ \end{array}$$

Dado lo anterior, el puntaje asignado es el siguiente:

- (0.5 puntos) por $(a, b) \in R$.
- (1.5 puntos) por uso correcto de punto medio.
- (1 punto) por uso de palomar o justificar que al menos un c_i será tal que $c_i = c_j$.
- (1 punto) por uso correcto de transitividad.

Pregunta 2.2

Lo anterior no es correcto con A infinito. La única forma de demostrarlo es encontrando un R que no cumpla la implicancia (dando un contraejemplo). Un posible contraejemplo es la relación < en los reales. Esta relación cumple ser transitivos y de punto medio (siempre existe un real entre dos reales) pero para ningún número real x se cumple que x < x.

Dado lo anterior, el puntaje asignado es el siguiente:

- (1.5 puntos) por entregar un contraejemplo.
- (0.5 puntos) por explicar el contraejemplo.

Pregunta 3

Pregunta 3.1

Para demostrar que R_S es relación de equivalencia, se debía demostrar que cumple con ser refleja, simétrica y transitiva.

Para refleja, bastaba notar que al componer cualquier función $f \in \mathcal{F}$ con su inversa resultaba la función identidad y por lo tanto $(f, f) \in R_S$.

Para simétrica, usando el hint del enunciado tenemos que si $f \in \mathcal{F}_S$ entonces $f^{-1} \in \mathcal{F}_S$. Luego, sean $f, g \in \mathcal{F}$ donde $(f,g) \in R_S$, sabemos que $f^{-1} \circ g \in \mathcal{F}_S$ y por enunciado sabemos que $(f^{-1} \circ g)^{-1} \in \mathcal{F}_S$, lo cual es simplemente $g^{-1} \circ f \in \mathcal{F}_S$ y por lo tanto $(g,f) \in R_S$.

Para transitividad, por enunciado tenemos que si $f, g \in \mathcal{F}_S$ entonces $f \circ g \in \mathcal{F}_S$. Luego, sean $f, g, h \in \mathcal{F}$ donde $(f, g) \in R_S$ y $(g, h) \in R_S$. Sabemos que $f^{-1} \circ g \in \mathcal{F}_S$ y $g^{-1} \circ h \in \mathcal{F}_S$, y por enunciado también sabemos que $(f^{-1} \circ g) \circ (g^{-1} \circ h) \in \mathcal{F}_S$. Por asociatividad de la composisión, tenemos que $f^{-1} \circ (g \circ g^{-1}) \circ h \in \mathcal{F}_S$, lo que es simplemente $f^{-1} \circ h \in \mathcal{F}_S$ y por lo tanto $(f, h) \in \mathcal{F}_S$.

Dado lo anterior, el puntaje asignado es el siguiente:

- (2 puntos) Por demostración de propiedad refleja.
- (2 puntos) Por demostración de propiedad simétrica.
- (2 puntos) Por demostración de propiedad transitiva.

Pregunta 3.2

Primero que todo, la pregunta estaba mal planteada, no se puede llegar a lo que se está pidiendo, por lo que se dejó puntaje de bonus en este item (queda muy a criterio del corrector el puntaje asignado). A continuación se explica lo que es correcto en esta pregunta, y finalmente el puntaje asignado por las ideas que usaron para tratar de abordar esta pregunta.

Dado que la relación de equivalencia se define por $(f,g) \in R_S$ si, y solo si, $f^{-1} \circ g \in \mathcal{F}_S$, lo correcto es decir que para todo $X \in \mathcal{F}/R_S$ existe un $g \in \mathcal{F}$ tal que

$$X = \{q \circ f | f \in \mathcal{F}_S\}.$$

Sea $X \in \mathcal{F}/R_S$ y sea g el representante de esta clase de equivalencia, es decir

$$X = [g]_{R_S} = \{h|(g,h) \in R_S\} = \{h|g^{-1} \circ h \in \mathcal{F}_S\}.$$

Para cada $h \in X$, definimos $f = g^{-1} \circ h$, y por lo tanto $g \circ f = h$ y entonces $X = \{g \circ f | f \in \mathcal{F}_S\}$.

Dado lo anterior, el puntaje de bonus asignado es el siguiente (sólo una de las alternativas):

- (0.5 puntos / 1 punto) Por tratar se usar al representante de la clase de equivalencia X como el g que se busca. El puntaje queda a criterio del corrector.
- (1.5 puntos / 2 puntos) Por llegar a que $X = \{g \circ f | f \in \mathcal{F}_S\}$, independiente de que no sea lo que salga en el enunciado. El puntaje queda a criterio del corrector.
- (2 puntos) Por decir que la pregunta estaba mala.

Pregunta 4

Pregunta 4.1

La solución consistía en demostrar la transitiv
dad de R^t . Para esto se debía tomar elementos a, b, c tales que si $(a,b) \in R^t$ y $(b,c) \in R^t$, entonces $(a,c) \in R^t$.

Para esto, se debía notar que si $(a,b) \in R^t$, entonces para algún $i \in \mathbb{N}$, $(a,b) \in R^i$. De forma analoga, para algún j se tiene que $(b,c) \in R^j$. Luego, por composición, $(a,c) \in R^{i+j}$ y luego, por definición de R^t , $(a,c) \in R^t$.

Dado lo anterior, el puntaje asignado es el siguiente:

- (1.5 puntos) Por reconocer que $(a,b) \in R^i$ y $(b,c) \in R^j$
- (1.5 puntos) Por mencionar que $(a,c) \in R^{i+j}$ y concluir que $(a,c) \in R^t$, lo que demuestra la transitividad de R^t .

Pregunta 4.2

La solución consistía en dos partes: la primera era demostrar que R^{\sim} es una relación de equivalencia y, la segunda, era demostrar que es la menor relación de equivalencia que contiene a R.

Para lo primero, debía demostrarse que $R^{\sim} = (R \cup R^{-1} \cup I)^t$ es refleja, simétrica y transitiva.

- Refleja: Bastaba notar que para todo $a, (a, a) \in I$ y como $I \subseteq R^{\sim}$, entonces $(a, a) \in R^{\sim}$. Por tanto, es refleja.
- Simétrica: Para la simetría debía demostrar que para todo i, $(R \cup R^{-1} \cup I)^i$ es una relación simétrica, inductivamente sobre i. Para el caso base, vemos que como R y R^{-1} estan contenidas en R^{\sim} , entonces si $(a,b) \in R^{\sim}$ se cumple $(b,a) \in R^{\sim}$. Luego, tomamos la hipótesis inductiva para algún i cualquiera y demostramos para (i+1). Notamos que si $(a,b) \in (R \cup R^{-1} \cup I)^{i+1}$, entonces $(a,c) \in (R \cup R^{-1} \cup I)^i$ y $(c,b) \in (R \cup R^{-1} \cup I)^1$ para algún c. Usamos la simetría y tenemos que $(c,a) \in (R \cup R^{-1} \cup I)^i$ y $(b,c) \in (R \cup R^{-1} \cup I)^1$. Entonces concluimos $(b,a) \in (R \cup R^{-1} \cup I)^{i+1}$.
- Transitiva: La transitividad se desprendía del resultado del inciso anterior.

Para lo segundo, se debía demostrar que para una relación de equivalencia E tal que $R \subseteq E$, se cumple que $R^{\sim} \subseteq E$. Esto es equivalente a demostrar que $(R \cup R^{-1} \cup I)^i \subseteq E$ para todo $i \ge 1$. Demostramos esto por inducción. Para el caso base $(R \cup R^{-1} \cup I)^i \subseteq E$ resulta trivial ya que $I \subseteq E$ porque E es refleja, $R \subseteq E$ por supuesto inicial y $R^{-1} \subseteq E$ por la simetría de E. Luego, tomamos la hipótesis inductiva para algún i = k y demostramos para i = k + 1. Para un elemento $(a, b) \in (R \cup R^{-1} \cup I)^{k+1}$ tenemos que $\exists c.(a, c) \in (R \cup R^{-1} \cup I)^k \land (c, b) \in (R \cup R^{-1} \cup I)^1$. Por hipótesis de inducción tenemos que $(a, c) \in E \land (c, b) \in E$ y por transitividad de E entonces $(a, b) \in E$. Luego se concluye que $(R \cup R^{-1} \cup I)^i \subseteq E$ para todo i.

Dado lo anterior, el puntaje asignado es el siguiente:

- (1.5 puntos) Por demostrar que R[~] es relación de equivalencia: (0.5 puntos) por refleja, (0.5 puntos) por simétrica y (0.5 puntos) por transitiva.
- (1.5 puntos) Por demostrar que R^{\sim} es la mínima relación de equivalencia que contiene a R: (1 punto) por los argumentos para el caso base (que se desprenden del hecho que E es clase de equivalencia) y (0.5 puntos) puntos por la generalización.