Семинары 5-6. Векторное и смешанное произведение векторов

Упорядоченную тройку некомпланарных векторов \bar{a} , \bar{b} , \bar{c} называют npaвoй, если кратчайший поворот вектора \bar{a} в сторону вектора \bar{b} происходит против часовой стрелки со стороны вектора \bar{c} . В противном случае тройка векторов называется negoù.

Векторным произведением $\bar{a} \times \bar{b}$ векторов \bar{a} и \bar{b} называется вектор \bar{c} , который удовлетворяет трём условиям:

- 1. Вектор \bar{c} ортогонален векторам \bar{a} и \bar{b} ;
- 2. Длина вектора \bar{c} равна площади параллелограмма, построеннного на векторах \bar{a} и \bar{b} , то есть $|\bar{c}| = |\bar{a}||\bar{b}|\sin(\widehat{a},\bar{b})$;
 - 3. Упорядоченная тройка векторов $\bar{a}, \bar{b}, \bar{c}$ является правой.

Свойства векторного произедения:

- 1° $\bar{a} \times \bar{b} = -\bar{b} \times \bar{a}$ (антикоммутативность);
- 2° $(\lambda \bar{a}) \times \bar{b} = \lambda (\bar{a} \times \bar{b})$ (ассоциативность относительно умножения на число);
- 3° $\bar{a} \times (\bar{b}_1 + \bar{b}_2) = \bar{a} \times \bar{b}_1 + \bar{a} \times \bar{b}_2$ (дистрибутивность относительно сложения).

Два вектора коллинеарны \bar{a} и \bar{b} тогда и только тогда, когда $\bar{a} \times \bar{b} = \bar{0}$.

Если два вектора \bar{a} и \bar{b} заданы координатами в правом ортонормированном базисе, то их векторное произведение может быть вычислено по символической формуле

$$\bar{a} imes \bar{b} = \left| egin{array}{ccc} ar{\imath} & ar{\jmath} & ar{k} \\ x_a & y_a & z_a \\ x_b & y_b & z_b \end{array} \right|.$$

2.98.
$$|\bar{a}_1|=1, \, |\bar{a}_2|=2, \, (\widehat{\bar{a}_1,\bar{a}_2})=2\pi/3.$$
 Вычислить:

a)
$$|\bar{a}_1 \times \bar{a}_2|$$
; 6) $|(2\bar{a}_1 + \bar{a}_2) \times (\bar{a}_1 + 2\bar{a}_2)$.

$$|\bar{a}_1 \times \bar{a}_2| = |\bar{a}_1| |\bar{a}_2| \sin(\widehat{\bar{a}_1}, \overline{\bar{a}_2}) = 1 \cdot 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3};$$

$$(5) (2\bar{a}_1 + \bar{a}_2) \times (\bar{a}_1 + 2\bar{a}_2) = 2\bar{a}_1 \times \bar{a}_1 + 4\bar{a}_1^2 \times \bar{a}_2 + \bar{a}_2 \times \bar{a}_1 + 2\bar{a}_2 \times \bar{a}_2 = 3\bar{a}_1 \times \bar{a}_2;$$

$$|3\bar{a}_1 \times \bar{a}_2| = 3 \cdot 1 \cdot 2 \frac{\sqrt{3}}{2} = 3\sqrt{3}.$$

2.99. Какому условию должны удовлетворять векторы \bar{a}_1 и \bar{a}_2 , чтобы векторы $\bar{a}_1 + \bar{a}_2$ и $\bar{a}_1 - \bar{a}_2$ были коллинеарны?

$$(\bar{a}_1 + \bar{a}_2) \times (\bar{a}_1 - \bar{a}_2) = \bar{a}_1 \times \bar{a}_1 - \bar{a}_1 \times \bar{a}_2 + \bar{a}_2 \times \bar{a}_1 - \bar{a}_2 \times \bar{a}_2 = -2\bar{a}_1 \times \bar{a}_2;$$

Таким образом, $\bar{a}_1 + \bar{a}_2$ и $\bar{a}_1 - \bar{a}_2$ коллинеарны тогда и только тогда, когда коллинеарны \bar{a}_1 и \bar{a}_2 . \triangleright

2.100. Упростить выражения:

- а) $\bar{\imath} \times (\bar{\jmath} + \bar{k}) \bar{\jmath} \times (\bar{\imath} + \bar{k}) + \bar{k} \times (\bar{\imath} + \bar{\jmath} + \bar{k})$, где $(\bar{\imath}, \bar{\jmath}, \bar{k})$ правый ортонормированный базис;
- 6) $(\bar{a} + \bar{b} + \bar{c}) \times \bar{c} + (\bar{a} + \bar{b} + \bar{c}) \times \bar{b} + (\bar{b} \bar{c}) \times \bar{a}$.

- **2.108.** В треугольнике с вершинами A(1,-1,2), B(5,-6,2) и C(1,3,-1) найти высоту $|\overline{BD}|.$

- **2.109.** Определить, при каких значениях α и β вектор $\alpha \bar{\imath} + 3\bar{\jmath} + \beta \bar{k}$ будет коллинеарен вектору $\bar{a} \times \bar{b}$, если $\bar{a}(3, -1, 1)$, $\bar{b}(1, 2, 0)$.
- ⊲ В результате вычисления векторного произведения получим $\bar{a} \times \bar{b}(-2,1,7)$. Вектор $\alpha \bar{\imath} + 3\bar{\jmath} + \beta \bar{k}$ коллинеарен вектору $-2\bar{\imath} + \bar{\jmath} + 7\bar{k}$ при $\alpha = -6, \ \beta = 21.$ ⊳
- **2.114.** Три ненулевых вектора \bar{a} , \bar{b} и \bar{c} связаны соотношениями $\bar{a}=\bar{b}\times\bar{c},\ \bar{b}=\bar{c}\times\bar{a},$ $\bar{c}=\bar{a}\times\bar{b}.$ Найти длины этих векторов и углы между ними.

$$\begin{cases} |\bar{a}| = |\bar{b}||\bar{c}| \\ |\bar{b}| = |\bar{c}||\bar{a}| \\ |\bar{c}| = |\bar{a}||\bar{b}| \end{cases} \Rightarrow \begin{cases} |\bar{a}| = |\bar{a}||\bar{b}|^2 \\ |\bar{b}| = |\bar{a}|^2|\bar{b}| \end{cases} \Rightarrow |\bar{a}| = 1, |\bar{b}| = 1, |\bar{c}| = 1.$$

Кроме того, тройка $\bar{a}, \bar{b}, \bar{c}$ правая. Таким образом, векторы \bar{a}, \bar{b} и \bar{c} образуют правый ортонормированный базис. \triangleright

 Φ изический смысл векторного произведения: момент силы \overline{F} , приложенной к точке A, относительно точки O, равен $\overline{OA} \times \overline{F}$.

2.115. Сила $\overline{F} = 2\overline{\imath} - 4\overline{\jmath} + 5\overline{k}$ приложена к точке A(4,-2,3). Определить момент этой силы относительно точки O(3,2,-1).

$$\triangleleft \overline{M} = \overline{OA} \times \overline{F} = (\overline{\imath} - 4\overline{\jmath} + 4\overline{k}) \times (2\overline{\imath} - 4\overline{\jmath} + 5\overline{k}) = \begin{vmatrix} \overline{\imath} & \overline{\jmath} & \overline{k} \\ 1 & -4 & 4 \\ 2 & -4 & 5 \end{vmatrix} = -4\overline{\imath} + 3\overline{\jmath} + 4\overline{k}. \triangleright$$

2.118. Найти координаты вектора x, если известно, что он перпендикулярен векторам $\bar{a}_1 = \{4, -2, -3\}$ и $\bar{a}_2 = \{0, 1, 3\}$, образует с ортом $\bar{\jmath}$ тупой угол и $|\bar{x}| = 26$.

 \lhd Так как \bar{x} перпендикулярен \bar{a}_1 и $\bar{a}_2,$ то он коллинеарен их векторному произведению

$$\bar{a}_1 \times \bar{a}_2 = \begin{vmatrix} \bar{\imath} & \bar{\jmath} & \bar{k} \\ 4 & -2 & -3 \\ 0 & 1 & 3 \end{vmatrix} = -3\bar{\imath} - 12\bar{\jmath} + 4\bar{k}; \qquad |\bar{a}_1 \times \bar{a}_2| = \sqrt{9 + 144 + 16} = \sqrt{169} = 13.$$

Поскольку \bar{x} образует с ортом $\bar{\jmath}$ тупой угол, его направляющие косинусы равны -3/13, -12/13 и 4/13. Тогда его координаты получим умножением направляющих косинусов на длину: $\bar{x} = \{-6, -24, 8\}$. \triangleright

2.120. При каких условиях уравнение $\bar{a}_2 = \bar{a}_1 \times \bar{x}$ имеет решение относительно \bar{x} ? Сколько существует решений?

 \triangleleft Пусть \bar{a}_1 и \bar{a}_2 заданы координатами в ортонормированном базисе. Тогда

$$\bar{a}_{2} = \begin{vmatrix} \bar{\imath} & \bar{\jmath} & \bar{k} \\ x_{a1} & y_{a1} & z_{a1} \\ x_{x} & y_{x} & z_{x} \end{vmatrix} \Rightarrow \begin{cases} y_{a1}z_{x} - z_{a1}y_{x} = x_{a2} \\ z_{a1}x_{x} - x_{a1}z_{x} = y_{a2} \\ x_{a1}y_{x} - y_{a1}x_{x} = z_{a2} \end{cases}, \quad \Delta = \begin{vmatrix} 0 & -z_{a1} & y_{a1} \\ z_{a1} & 0 & -x_{a1} \\ -y_{a1} & x_{a1} & 0 \end{vmatrix} = 0.$$

Таким образом, уравнение может либо не иметь решений, либо иметь их бесконечно много.

Если векторы \bar{a}_1 и \bar{a}_2 не ортогональны, то по пункту 1 определения векторного произведения \bar{a}_2 не может быть векторным произведением \bar{a}_1 на некоторый вектор. Покажем, что если $\bar{a}_1 \perp \bar{a}_2$, то имеется хотя бы одно решение уравнения. Рассмотрим вектор $\bar{b} = (\bar{a}_2 \times \bar{a}_1)/|\bar{a}_1|^2$. Имеем:

- 1) $\bar{a}_2 \perp \bar{a}_1 \bowtie \bar{a}_2 \perp \bar{b}$;
- 2) $|\bar{a}_2| = |\bar{a}_1||\bar{b}|\sin(\pi/2);$
- 3) тройка \bar{a}_1 , \bar{b} , \bar{a}_2 правая (см. рис.).

Следовательно $\bar{a}_2 = \bar{a}_1 \times \bar{b}$, то есть \bar{b} является корнем уравнения $\bar{a}_2 = \bar{a}_1 \times \bar{x}$. Но тогда это уравнение имеет бесконечное множество решений. \triangleright

Смешанное произведение векторов

Смешанным произведением трёх векторов \bar{a} , \bar{b} , \bar{c} называют число $\bar{a}\bar{b}\bar{c}=(\bar{a}\times\bar{b})\cdot\bar{c}$.

Геометрические свойства смешанного произедения:

- 1° Три вектора компланарны тогда и только тогда, когда $\bar{a}\bar{b}\bar{c}=0.$
- 2° Смешанное произведение трёх векторов \bar{a} , \bar{b} , \bar{c} равно объёму параллеленипеда, построенного на этих векторах, взятому со знаком +, если тройка \bar{a} , \bar{b} , \bar{c} правая, и -, если она левая.

Алгебраические свойства смешанного произедения:

- 1° $\bar{a}\bar{b}\bar{c}=\bar{b}\bar{c}\bar{a}=\bar{c}\bar{a}\bar{b}=-\bar{a}\bar{c}\bar{b}=-\bar{c}\bar{b}\bar{a}=-\bar{b}\bar{a}\bar{c}$ (свойство циклической перестановки);
- 2° $(\lambda \bar{a})\bar{b}\bar{c} = \bar{a}(\lambda \bar{b})\bar{c} = \bar{a}\bar{b}(\lambda \bar{c}) = \lambda(\bar{a}\bar{b}\bar{c})$ (ассоциативность относительно умножения на число);
- 3° $\bar{a}\bar{b}(\bar{c}_1+\bar{c}_2)=\bar{a}\bar{b}\bar{c}_1+\bar{a}\bar{b}\bar{c}_2$ (дистрибутивность относительно сложения). В силу свойства 1 имеет место также для второго и третьего множителей.

Если три вектора \bar{a}, \bar{b} и \bar{c} заданы координатами в правом ортонормированном базисе, то их смешанное произведение может быть вычислено по формуле

$$\bar{a}\bar{b}\bar{c} = \left| \begin{array}{ccc} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{array} \right|.$$

2.125. Векторы $\bar{a}, \bar{b}, \bar{c}$ образуют левую тройку, $|\bar{a}|=1, |\bar{b}|=2, |\bar{c}|=3$ и $(\bar{a},\bar{b})=30^\circ; \bar{c}\perp \bar{a}, \bar{c}\perp \bar{b}$. Найти $\bar{a}\bar{b}\bar{c}$.

$$\triangleleft |\bar{a} \times \bar{b}| = |\bar{a}||\bar{b}|\sin(\widehat{\bar{a}}, \overline{b}) = 1 \cdot 2 \cdot (1/2) = 1;$$

 $ar{a} imesar{b}\parallelar{c}$, поскольку они ортогональны одной плоскости; их направления противоположны, так как тройка $ar{a},\,ar{b},\,ar{c}$ левая, а тройка $ar{a},\,ar{b},\,ar{a} imesar{b}$ — правая; поэтому $(ar{a} imesar{b},ar{c})=180^\circ$ и получаем

$$\bar{a}\bar{b}\bar{c} = (\bar{a}\times\bar{b})\cdot\bar{c} = |\bar{a}\times\bar{b}|\,|\bar{c}|\cos(\bar{a}\times\bar{b},\bar{c}) = 1\cdot3\cdot(-1) = -3. \quad \triangleright$$

2.127(а). Установить, образуют ли векторы \bar{a}_1 , \bar{a}_2 и \bar{a}_3 базис в множестве всех векторов, если $\bar{a}_1=\{2,3,-1\},\ \bar{a}_2=\{1,-1,3\},\ \bar{a}_3=\{1,9,-11\}?$

$$\bar{a}_1\bar{a}_2\bar{a}_3 = \begin{vmatrix} 2 & 3 & -1 \\ 1 & -1 & 3 \\ 1 & 9 & -1 \end{vmatrix} = 0,$$

поэтому эти три вектора компланарны; следовательно, они линейно зависимы, значит, не образуют базис. \triangleright

2.129. Доказать, что при любых \bar{a} , \bar{b} и \bar{c} векторы $\bar{a}-\bar{b}$, $\bar{b}-\bar{c}$ и $\bar{c}-\bar{a}$ компланарны. Каков геометрический смысл этого факта?

Как видно из рисунка, векторы $\bar{a} - \bar{b}$, $\bar{b} - \bar{c}$ и $\bar{c} - \bar{a}$ лежат в плоскости грани ABC тетраэдра OABC, построенного на векторах \bar{a} , \bar{b} , \bar{c} . \triangleright

- **2.130.** Доказать тождество $(\bar{a} + \bar{b} + \bar{c})(\bar{a} 2\bar{b} + 2\bar{c})(4\bar{a} + \bar{b} + 5\bar{c}) = 0.$ $\triangleleft (\bar{a} + \bar{b} + \bar{c})(\bar{a} 2\bar{b} + 2\bar{c})(4\bar{a} + \bar{b} + 5\bar{c}) =$ $= \bar{a}(\bar{a} 2\bar{b} + 2\bar{c})(4\bar{a} + \bar{b} + 5\bar{c}) + \bar{b}(\bar{a} 2\bar{b} + 2\bar{c})(4\bar{a} + \bar{b} + 5\bar{c}) + \bar{c}(\bar{a} 2\bar{b} + 2\bar{c})(4\bar{a} + \bar{b} + 5\bar{c}) =$ $= \bar{a}\bar{a}(4\bar{a} + \bar{b} + 5\bar{c}) 2\bar{a}\bar{b}(4\bar{a} + \bar{b} + 5\bar{c}) + 2\bar{a}\bar{c}(4\bar{a} + \bar{b} + 5\bar{c}) + \bar{b}\bar{a}(4\bar{a} + \bar{b} + 5\bar{c}) 2\bar{b}\bar{b}(4\bar{a} + \bar{b} + 5\bar{c}) + 5\bar{c}) + 2\bar{b}\bar{c}(4\bar{a} + \bar{b} + 5\bar{c}) + 2\bar{b}\bar$
- $+\bar{c}\bar{a}(4\bar{a}+\bar{b}+5\bar{c})-2\bar{c}\bar{b}(4\bar{a}+\bar{b}+5\bar{c})+2\bar{c}\bar{c}(4\bar{a}+\bar{b}+5\bar{c})=-10\bar{a}\bar{b}\bar{c}+2\bar{a}\bar{c}\bar{b}+5\bar{b}\bar{a}\bar{c}+8\bar{b}\bar{c}\bar{a}+\bar{c}\bar{a}\bar{b}-8\bar{c}\bar{b}\bar{a}=\\ =-\bar{a}\bar{b}\bar{c}-\bar{a}\bar{c}\bar{b}=0. \Rightarrow$
- **2.132.** Вычислить объём тетраэдра OABC, если $\overline{OA}=3\bar{\imath}+4\bar{\jmath};$ $\overline{OB}=-3\bar{\jmath}+\bar{k};$ $\overline{OC}=2\bar{\jmath}+5\bar{k}.$

2.136(а). При каком λ векторы $\bar{a}=\{\lambda,3,1\}, \ \bar{b}=\{5,-1,2\}, \ \bar{c}=\{-1,5,4\}$ будут компланарны?

2.137. Доказать, что четыре точки A(1,2,-1), B(0,1,5), C(-1,2,1) и D(2,1,3) лежат в одной плоскости.

 \triangleleft Эти четыре точки лежат в одной плоскости, если векторы $\overline{AB}, \overline{AC}$ и \overline{AD} компланарны. $\overline{AB} = \{-1, -1, 6\}, \overline{AC} = \{-2, 0, 2\}, \overline{AD} = \{1, -1, 4\};$

$$\overline{AB}\,\overline{AC}\,\overline{AD} = \left| egin{array}{ccccc} -1 & -1 & 6 \\ -2 & 0 & 2 \\ 1 & -1 & 4 \end{array} \right| = 0, \ \mbox{то есть эти векторы компланарны.}
ight.
i$$

2.138(а). Найти координаты четвёртой вершины тетраэдра ABCD, если известно, что она лежит на оси Oy, объём тетраэдра равен 29, A(-1,10,0), B(0,5,2), C(6,32,2). $\triangleleft D(0,y_D,0)$, $\overline{AB}=\{1,-5,2\}$, $\overline{AC}=\{7,22,2\}$, $\overline{AD}(1,y_D-10,0)$;

$$V_{ABCD} = \frac{1}{6} |\overline{AB} \, \overline{AC} \, \overline{AD}| = \frac{1}{6} \left| \begin{array}{ccc} 1 & -5 & 2 \\ 7 & 22 & 2 \\ 1 & y_D - 10 & 0 \end{array} \right| = \frac{1}{6} \left| \begin{array}{ccc} -5 & 2 \\ 22 & 2 \end{array} \right| - (y_D - 10) \left| \begin{array}{ccc} 1 & 2 \\ 7 & 2 \end{array} \right|$$

$$\frac{1}{6}\left|-54+12(y_D-10)\right|=29 \Rightarrow \quad y_D=0 \text{ или } \quad y_D=29; \quad D(0,0,0) \text{ или } D(0,29,0). \triangleright$$

2.140. Доказать тождества:

- a) $(\bar{a} + \bar{c})\bar{b}(\bar{a} + \bar{b}) = -\bar{a}\bar{b}\bar{c};$
- B) $(\bar{a} + \bar{b})(\bar{b} + \bar{c})(\bar{c} + \bar{a}) = 2\bar{a}\bar{b}\bar{c}$.
- $\triangleleft \text{ B) } (\bar{a} + \bar{b})(\bar{b} + \bar{c})(\bar{c} + \bar{a}) = \bar{a}(\bar{b} + \bar{c})(\bar{c} + \bar{a}) + \bar{b}(\bar{b} + \bar{c})(\bar{c} + \bar{a}) = \bar{a}\bar{b}(\bar{c} + \bar{a}) + \bar{a}\bar{c}(\bar{c} + \bar{a}) + \bar{b}\bar{b}(\bar{c} + \bar{a}) = \bar{a}\bar{b}(\bar{c} + \bar{a}) + \bar{a}\bar{c}(\bar{c} + \bar{a}) + \bar{b}\bar{b}(\bar{c} + \bar{a}) = \bar{a}\bar{b}(\bar{c} + \bar{a}) + \bar{b}\bar{b}(\bar{c} + \bar{a}) + \bar{b}\bar{b}(\bar{c} + \bar{a}) = \bar{a}\bar{b}(\bar{c} + \bar{a}) + \bar{b}\bar{b}(\bar{c} + \bar{a}) + \bar{b}\bar{b}(\bar{c} + \bar{a}) = \bar{a}\bar{b}(\bar{c} + \bar{a}) + \bar{b}\bar{b}(\bar{c} + \bar{a}) + \bar{b}\bar{b}(\bar{c} + \bar{a}) + \bar{b}\bar{b}(\bar{c} + \bar{a}) = \bar{a}\bar{b}(\bar{c} + \bar{a}) + \bar{b}\bar{b}(\bar{c} + \bar{a}) + \bar{b}\bar$
- $\bar{a}) + \bar{b}\bar{c}(\bar{c} + \bar{a}) = \bar{a}\bar{b}\bar{c} + \bar{a}\bar{b}\bar{a} + \bar{a}\bar{c}\bar{c} + \bar{a}\bar{c}\bar{a} + \bar{b}\bar{b}\bar{c} + \bar{b}\bar{b}\bar{a} + \bar{b}\bar{c}\bar{c} + \bar{b}\bar{c}\bar{a} = 2\bar{a}\bar{b}\bar{c}. \triangleright$

(1) 0860	ELEE	na	noea	necel	rune	da,	noe	Thoe.	uno.	10 K	ea
Beken	opoux	Œ,	B, C	po	elear	14.	Thec	eyou	06	B no	pe
nacel	ó yaa	1 /			poex	eno	10	Keige	beix	char	K
a, 8	, pa	BRUOI	7	Moe	Eme	6	or eve	TY	naepa	male	e-
neen	coa,	no			1000				copor		+2
30 +6	, ā+	8-4	ē, 1	oneje	eje rei	cega	ep i	ez K	oall	ca Th	e71
ero t	ea m	chec	no	Ne V	para	6, n	cer	roea	ency	0 1	le
nepbors	o d	yx.									-
Percer	200 !	ā B	ē = 1	4;	OX:	61 =	7				
1 (a+28)	× /3	ā+8	1	= 5	(ax	6/	= 35				-

2)	Bei	ri	ill	ea	ia	ull	ee		7.0	FA	01	201	a		e	u	/tt	ou	7	70	CA	ш	A	11;
B 13	141	,	1)	, (0 (1	-2	, 2) (1	Ø	(2	, -	1,8).	Ke	oe	er	πι		od	16.	ee	u
u a	60	ce	in	ug	9	28	po		en	a		on	ly	cy	eal	Le	or	0	e	3	6	BO	le	ee-
Neon	8)	N	che		ye	Seal	26	1	4 B	C.		V	AHII					-					
Pece	ior	ce	w	. ,	AB	1	2;	3:0	3		A	C	1	o i	- 3	:1	3:	1	10	1	t;	-2	¥	4
The				5	11/1	rei	air	Ве	ca	ie	w	:	6	-			-11			-	1	-/	,	
	S	5		FB	×	Ā	D		=	1	$3\bar{i}$	-2	Ī	+ 6	t		=	4						
08	800	e		u	cej	ia	nn	e i	ee,	ne	en	000	1:			_					¢			
- 12	,	-	-					1		1	1	2	3	0				1	_					
V	=	1	A	3	AC	H	D	_	-			0_	3	1	Ш		-	1-3	5/	Ξ,	35			
to								1	_	1	11	1	2	¥	1									
Be	ne	Q7	æ		1	1	+ 1	1	S	Ξ	3	51	7	=	5				(Special)		15			