Meta-Reinforcement Learning and Causality for Multi-tasking in Robots with Redundant Kinematics 1st Year Update

Joel Baptista

11/04/2024

Table of Contents

- 1 Introduction
 - Focus
 - Motivation
- 2 Why Reinforcement Learning?
 - Reinforcement Learning
 - Reinforcement Learning
- 3 Why Causality?
 - Intuitio

Focus

Meta-Reinforcement Learning and Causality for Multi-tasking in Robots with Redundant Kinematics

Focus

Meta-Reinforcement Learning and Causality for Multi-tasking in Robots with Redundant Kinematics

Translation: Explore different learning methodologies to create intelligent agents that can control robots in difficult tasks

Focus

Meta-Reinforcement Learning and Causality for Multi-tasking in Robots with Redundant Kinematics

Translation: Explore different learning methodologies to create intelligent agents that can control robots in difficult tasks

Figure: Collaborative and traditional industrial robots' growth¹

¹Source: World Robotics Report 2023 - Press Conference → (□) →

Figure: Job vacancy and service robots' growth¹

Job vacancy is rising and the field of service robots is growing in response

¹Source: World Robotics Report 2023 - Press Conference → ← 🗗 → ← 📱 → ← 📱 →

Cobots and Service Robots interact in more complex and uncontrolled environments, ...

Cobots and Service Robots interact in more complex and uncontrolled environments, ...

 \dots therefore, they need to be more **flexible and adaptable** to different tasks.

Table of Contents

- 1 Introduction
 - Focus
 - Motivation
- 2 Why Reinforcement Learning?
 - Reinforcement Learning
 - Reinforcement Learning
- 3 Why Causality?
 - Intuitio

Reinforcement Learning

Learns to accomplish a goal by <u>interacting</u> with an environment, receiving rewards and penalties.

RL vs Traditional Control

Figure: Reinforcement Learning Cycle

Figure: Model Predictive Control Cycle

Just to mention that there are other methods to control robots, such as MDP, but they are not as flexible as RL.

RL vs Traditional Control

²Source: Robotics Systems Lab: Legged Robotics at ETH Zurigh $\leftarrow 3$ $\rightarrow 4$ $\rightarrow 4$

RL vs Traditional Control

RL vs Optimal Control

- Traditional Control: Robust and predictable, but not scalable.
- Reinforcement Learning: Scalable and flexible, but not robust.

RL vs Optimal Control

- Traditional Control: Robust and predictable, but not scalable.
- Reinforcement Learning: Scalable and flexible, but not robust.

Table of Contents

- 1 Introduction
 - Focus
 - Motivation
- Why Reinforcement Learning?
 - Reinforcement Learning
 - Reinforcement Learning
- 3 Why Causality?
 - Intuition

Intuition

- Fast Thinking: Correlation, pattern recognition, subconscious, ...
- Slow Thinking: Logical (causal), calculating, conscious, ...

Many researchers believe that AI can only utilize "fast thinking" (System I). They propose causality to reach "slow thinking" (System II).

Intuition