PLSC 504 – Fall 2023 Panel/TSCS Data: Unit Effects (+ Dynamics)

October 4, 2023

Starting Points

- "Longitudinal" ≠ "Time Series"
- Terminology:
 - "Unit" / "Units" / "Units of observation" / "Panels" = Things we observe repeatedly
 - "Observations" = Each (one) measurement of a unit
 - "Time points" = When each observation on a unit is made
 - $i \in \{1....N\}$ indexes units
 - $t \in \{1...T\}$ or $\{1...T_i\}$ indexes observations / time points
 - If $T_i = T \ \forall i$ then we have "balanced" panels / units
 - *NT* = Total number of observations (if balanced)

Averages:

- Y_{it} indicates a variable that varies over both units and time,
- $\bar{Y}_i = \frac{1}{T} \sum_{t=1}^{T} Y_{it}$ = the over-time mean of Y for i,
- $\bar{Y}_t = \frac{1}{N} \sum_{i=1}^{N} Y_{it}$ = the across-unit mean of Y at t, and
- $\bar{Y} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} Y_{it}$ = the grand mean of Y.

More Terminology

- $N >> T \rightarrow$ "panel" data
 - NES panel studies (N = 2000, T = 3)
 - Panel Study of Income Dynamics ($N = \text{large}, T \approx 12$)
- T >> N or $T \approx N \rightarrow$ "time-series cross-sectional" ("TSCS") data
- $N = 1 \rightarrow$ "time series" data

Within- and Between-Unit Variation

Define:

$$\bar{Y}_i = \frac{1}{T_i} \sum_{t=1}^{T_i} Y_{it}$$

Then:

$$Y_{it} = \bar{Y}_i + (Y_{it} - \bar{Y}_i).$$

- The *total* variation in Y_{it} can be decomposed into
- The between-unit variation in the \bar{Y}_i s, and
- The within-unit variation around \bar{Y}_i (that is, $Y_{it} \bar{Y}_i$).

Regression!

Model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

assumes:

- All the usual OLS assumptions, plus
- $\beta_{0i} = \beta_0 \forall is$
- $\beta_{1i} = \beta_1 \forall is$

For:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + u_{it}$$

... it's the same.

Variable Intercepts

Relax that assumption:

$$Y_{it} = \beta_{0i} + \beta_1 X_{it} + u_{it}$$
 (unit-level)

$$Y_{it} = \beta_{0t} + \beta_1 X_{it} + u_{it}$$
 (time-level)

$$Y_{it} = \beta_{0it} + \beta_1 X_{it} + u_{it}$$
 (unit- and time-level)

Varying Intercepts

Varying Intercepts

Varying Slopes (+ Intercepts)

Further relax:

$$Y_{it} = \beta_0 + \beta_{1i} X_{it} + u_{it}$$
 (unit-level slopes)

$$Y_{it} = \beta_{0i} + \beta_{1i}X_{it} + u_{it}$$
 (unit-level slopes and intercepts)

$$Y_{it} = \beta_{0t} + \beta_{1t}X_{it} + u_{it}$$
 (time-level slopes and intercepts)

$$Y_{it} = \beta_{0it} + \beta_{1it}X_{it} + u_{it}$$
 (unit- and time-level slopes and intercepts)

${\sf Varying\ Slopes}\,+\,{\sf Intercepts}$

The Error

"The usual" assumptions require:

$$u_{it} \sim \text{i.i.d.} N(0, \sigma^2) \ \forall \ i, t$$

This means that:

$$Var(u_{it}) = Var(u_{jt}) \ \forall \ i \neq j \ (i.e., no cross-unit heteroscedasticity)$$
 $Var(u_{it}) = Var(u_{is}) \ \forall \ t \neq s \ (i.e., no temporal heteroscedasticity)$
 $Cov(u_{it}, u_{js}) = 0 \ \forall \ i \neq j, \ \forall \ t \neq s \ (i.e., no auto- or spatial correlation)$

Two-Way Variation

Two-way variation:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \gamma V_i + \delta W_t + u_{it}$$

where V_i don't vary over time (within a unit), and W_i don't vary across units (for a given time point).

Note that we can write:

$$\alpha_i = \sum (\gamma V_i)$$

and

$$\eta_t = \sum (\delta W_t).$$

So:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \gamma V_i + \delta W_t + u_{it}$$
$$= \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + \eta_t + u_{it}$$

One- and Two-Way "Unit Effects"

"Two-way" unit effects:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + \eta_t + u_{it}$$

"One-way" effects:

• Assuming $\alpha_i = 0$ (w.l.o.g):

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \eta_t + u_{it}$$
 (time)

• Assuming $\eta_t = 0$ (w.l.o.g):

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + u_{it}$$
 (units)

Intuition: One-Way Unit Effects

(One-Way) "Fixed" Effects

"Brute force" model fits:

$$Y_{it} = \mathbf{X}_{it}\beta_{FE} + \alpha_i + u_{it}$$

=
$$\mathbf{X}_{it}\beta_{FE} + \alpha_1 I(i=1)_i + \alpha_2 I(i=2)_i + ... + u_{it}$$

Alternatively, decompose:

$$\bar{\mathbf{X}}_i = \frac{\sum_{N_i} \mathbf{X}_{it}}{N_i}$$

and

$$\tilde{\mathbf{X}}_{it} = \mathbf{X}_{it} - \bar{\mathbf{X}}_{i}$$
.

Yields:

$$Y_{it} = \bar{\mathbf{X}}_i \beta_B + \tilde{\mathbf{X}}_{it} \beta_W + \alpha_i + u_{it}$$

But!

$$\operatorname{corr}(\bar{\mathbf{X}}_i \boldsymbol{\beta}_B, \alpha_i) = 1.0$$

Means that:

$$Y_{it}^* = Y_{it} - \bar{Y}_i$$

 $\mathbf{X}_{it}^* = \mathbf{X}_{it} - \bar{\mathbf{X}}_i$

gives:

$$Y_{it}^* = \mathbf{X}_{it}^* \boldsymbol{\beta}_{FE} + u_{it}.$$

ightarrow A "Fixed Effects" Model is actually a "Within-Effects" Model.

"Fixed" Effects: Test(s)

Standard F-test for

$$H_0: \alpha_i = \alpha_j \forall i \neq j$$

versus

$$H_A: \alpha_i \neq \alpha_j$$
 for some $i \neq j$

is
$$\sim F_{N-1,NT-(N-1)}$$
.

Running Example Data: WDI, 1960-2021

The World Development Indicators

- Cross-national country-level time series data
- N = 215 countries, T = 72 years (1960-2021) + missingness
- Variables:
 - · Geography: land area, arable land
 - · Population indicators
 - · Demographics: Birth rates, life expectancy, etc.
 - · Economics: GDP, inflation, trade, FDI, etc.
 - · Governments: expenditures, policies, etc.
- Full descriptions are listed in the Github repo here

Data Summary

> describe(wdi,fast=TRU	E,ran	ges=FAl	LSE, check=TRUE)		
	vars	n	mean	sd	se
ISO3	1	13330	NaN	NA	NA
Year	2	13330	1990.50	17.90	0.16
Region	3	13330	NaN	NA	NA
country	4	13330	NaN	NA	NA
LandArea	5	12906	613525.38	1766486.19	15549.43
ArablePercent	6	10935	13.51	13.49	0.13
Population	7	13073	24638671.91	103129756.53	901978.87
PopGrowth	8	12856	1.79	1.68	0.01
RuralPopulation	9	13045	48.61	25.74	0.23
UrbanPopulation	10	13045	51.39	25.74	0.23
BirthRatePer1K	11	12112	28.32	13.10	0.12
FertilityRate	12	11847	3.97	2.01	0.02
PrimarySchoolAge	13	10696	6.14	0.62	0.01
LifeExpectancy	14	11829	64.37	11.46	0.11
AgeDepRatioOld	15	11731	10.34	6.36	0.06
CO2Emissions	16	5535	4.28	5.41	0.07
GDP	17	9585	242308268086.15	1101606170189.79	11252014966.83
GDP GDPPerCapita	17 18	9585 9582	242308268086.15 11685.74		11252014966.83 190.78
				18675.05	
GDPPerCapita	18	9582	11685.74	18675.05 6.21	190.78
GDPPerCapita GDPPerCapGrowth	18 19	9582 9598	11685.74 1.89	18675.05 6.21 332.39	190.78 0.06
GDPPerCapita GDPPerCapGrowth Inflation	18 19 20	9582 9598 8275	11685.74 1.89 23.88	18675.05 6.21 332.39 54.14	190.78 0.06 3.65
GDPPerCapita GDPPerCapGrowth Inflation TotalTrade	18 19 20 21	9582 9598 8275 8363 8363	11685.74 1.89 23.88 78.18	18675.05 6.21 332.39 54.14 28.85	190.78 0.06 3.65 0.59
GDPPerCapita GDPPerCapGrowth Inflation TotalTrade Exports	18 19 20 21 22	9582 9598 8275 8363 8363 8372	11685.74 1.89 23.88 78.18 36.41	18675.05 6.21 332.39 54.14 28.85 27.87	190.78 0.06 3.65 0.59 0.32
GDPPerCapita GDPPerCapGrowth Inflation TotalTrade Exports Imports	18 19 20 21 22 23	9582 9598 8275 8363 8363 8372	11685.74 1.89 23.88 78.18 36.41 41.78	18675.05 6.21 332.39 54.14 28.85 27.87 45.42	190.78 0.06 3.65 0.59 0.32 0.30
GDPPerCapita GDPPerCapGrowth Inflation TotalTrade Exports Imports FDIIn	18 19 20 21 22 23 24	9582 9598 8275 8363 8363 8372 8195	11685.74 1.89 23.88 78.18 36.41 41.78 5.57	18675.05 6.21 332.39 54.14 28.85 27.87 45.42 24.35	190.78 0.06 3.65 0.59 0.32 0.30
GDPPerCapita GDPPerCapGrowth Inflation TotalTrade Exports Imports FDIIn AgriEmployment	18 19 20 21 22 23 24 25	9582 9598 8275 8363 8363 8372 8195 5394	11685.74 1.89 23.88 78.18 36.41 41.78 5.57 29.67	18675.05 6.21 332.39 54.14 28.85 27.87 45.42 24.35 867754118.55	190.78 0.06 3.65 0.59 0.32 0.30 0.50
GDPPerCapita GDPPerCapGrowth Inflation TotalTrade Exports Imports FDIIn AgriEmployment NetAidReceived	18 19 20 21 22 23 24 25 26	9582 9598 8275 8363 8363 8372 8195 5394 8633	11685.74 1.89 23.88 78.18 36.41 41.78 5.57 29.67 453209476.19	18675.05 6.21 332.39 54.14 28.85 27.87 45.42 24.35 867754118.55 50.29	190.78 0.06 3.65 0.59 0.32 0.30 0.50 0.33
GDPPerCapita GDPPerCapGrowth Inflation TotalTrade Exports Imports FDIIn AgriEmployment NetAidReceived MobileGeliSubscriptions	18 19 20 21 22 23 24 25 26 27	9582 9598 8275 8363 8363 8372 8195 5394 8633 9849	11685.74 1.89 23.88 78.18 36.41 41.78 5.57 29.67 453209476.19	18675.05 6.21 332.39 54.14 28.85 27.87 45.42 24.35 867754118.55 50.29 10.87	190.78 0.06 3.65 0.59 0.32 0.30 0.50 0.33 9339331.98
GDPPerCapita GDPPerCapGrowth Inflation TotalTrade Exports Imports FDIIn AgriEmployment NetAidReceived MobileCellSubscriptions NaturalResourceRents	18 19 20 21 22 23 24 25 26 27 28	9582 9598 8275 8363 8363 8372 8195 5394 8633 9849 8745	11685.74 1.89 23.88 78.18 36.41 41.78 5.57 29.67 453209476.19 33.70 6.61	18675.05 6.21 332.39 54.14 28.85 27.87 45.42 24.35 867754118.55 50.29 10.87	190.78 0.06 3.65 0.59 0.32 0.30 0.50 0.33 9339331.98 0.51
GDPPerCapita GDPPerCapGrowth Inflation TotalTrade Exports Imports FDIIn AgriEmployment NetAidReceived MobileCellSubscriptions NaturalResourceRents WilitaryExpenditures	18 19 20 21 22 23 24 25 26 27 28 29	9582 9598 8275 8363 8363 8372 8195 5394 8633 9849 8745 7333	11685.74 1.89 23.88 78.18 36.41 41.78 5.57 29.67 453209476.19 33.70 6.61 2.74	18675.05 6.21 332.39 54.14 28.85 27.87 45.42 45.42 50.29 10.87 3.23 8.19	190.78 0.06 3.65 0.59 0.32 0.30 0.50 0.33 9339331.98 0.51 0.12
GDPPerCapita GDPPerCapGrowth Inflation TotalTrade Exports Imports FDIIn AgriEmployment NetAidReceived MobileCelIsubscriptions NaturalResourceRents MilitaryExpenditures GovtExpenditures	18 19 20 21 22 23 24 25 26 27 28 29	9582 9598 8275 8363 8363 8372 8195 5394 8633 9849 8745 7333 8012 4041 9776	11685.74 1.89 23.88 78.18 36.41 41.78 5.57 29.67 453209476.19 33.70 6.61 2.74	18675.05 6.21 332.39 54.14 428.85 27.87 45.42 24.35 867754118.55 50.29 10.87 3.23 8.13 19857.71	190.78 0.06 3.65 0.59 0.32 0.30 0.50 0.33 9339331.98 0.51 0.12 0.04
ODPPerCapita GDPPerCapGrowth Inflation TotalTrade Exports Imports FDIIn AgriEmployment NetAidReceived MobileCellSubscriptions NaturalResourceRents MilitaryExpenditures GovtExpenditures HIVDeaths	18 19 20 21 22 23 24 25 26 27 28 29 30	9582 9598 8275 8363 8363 8372 8195 5394 8633 9849 8745 7333 8012 4041	11685.74 1.89 23.88 78.18 36.41 41.78 5.57 29.67 453209476.19 33.70 6.61 2.74 16.20 7221.50	18675.05 6.21 332.39 54.14 28.85 27.87 45.42 24.35 867754118.55 50.29 10.87 3.23 8.19 19857.11	190.78 0.06 3.65 0.59 0.32 0.30 0.50 0.33 9339331.98 0.51 0.12 0.04 0.09 312.38

Visualization (using panelView)

Categorical Variable Visualization

WDI's Women, Business and the Law Index (WBLI)

The basis for a 2021 World Bank report...

- Examines "the laws and regulations that affect women's economic opportunity in 190 economies."
- An index comprising eight indicators "structured around women's interactions with the law as they move through their careers: Mobility, Workplace, Pay, Marriage, Parenthood, Entrepreneurship, Assets, and Pension."
- The WBL Index:
 - · Theoretically ranges from 0 100
 - \cdot In practice: Lowest values ≈ 20
 - · Higher values correspond to higher levels of women's empowerment and greater opportunities and support for women, particularly in business
- "Better performance in the areas measured by the Women, Business and the Law index is associated with a more narrow gender gap in development outcomes, higher female labor force participation, lower vulnerable employment, and greater representation of women in national parliaments."

WBLI: Total Variation

```
> WDI<-pdata.frame(wdi)
> WBLI<-WDI$WomenBusLawIndex
> class(WBLI)
[1] "pseries" "numeric"
> describe(WBLI,na.rm=TRUE) # all variation

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 9776 59.2 18.5 58.8 59.2 18.5 17.5 100 82.5 0.04 -0.55 0.19
```


WBLI: "Between" Variation

> describe(plm::between(WBLI,effect="individual",na.rm=TRUE)) # "between" variation

vars n mean sd median trimmed mad min max range skew kurtosis se X1 1 188 59.2 14.4 60.5 60.1 13.3 23.4 90 66.6 -0.47 -0.13 1.05

WBLI: "Within" Variation

> describe(Within(WBLI,na.rm=TRUE)) # "within" variation

vars n mean sd median trimmed mad min max range skew kurtosis se X1 1 9776 0 11.5 -0.93 -0.33 10.4 -45.3 58 103 0.26 0.45 0.12

A Regression Model

Regression model:

```
\begin{aligned} \mathsf{WBLI}_{it} &= \beta_0 + \beta_1 \mathsf{Population} \; \mathsf{Growth}_{it} + \beta_2 \mathsf{Urban} \; \mathsf{Population}_{it} + \beta_3 \mathsf{Fertility} \; \mathsf{Rate}_{it} + \\ \beta_4 \mathsf{In} \big(\mathsf{GDP} \; \mathsf{Per} \; \mathsf{Capita}\big)_{it} + \beta_5 \mathsf{Natural} \; \mathsf{Resource} \; \mathsf{Rents}_{it} + \beta_6 \mathsf{Cold} \; \mathsf{War}_t + u_{it} \end{aligned}
```

Descriptive Statistics:

	vars	n	mean	sd	min	max	range	se
WomenBusLawIndex	1	7566	59.99	18.79	17.50	100.00	82.50	0.22
PopGrowth	2	7566	1.70	1.46	-6.77	17.51	24.28	0.02
UrbanPopulation	3	7566	51.19	23.90	2.85	100.00	97.16	0.27
FertilityRate	4	7566	3.67	1.91	0.90	8.61	7.70	0.02
${\tt NaturalResourceRents}$	5	7566	6.82	10.45	0.00	87.51	87.51	0.12
ColdWar	6	7566	0.32	0.47	0.00	1.00	1.00	0.01
lnGDPPerCap	7	7566	8.28	1.44	5.32	11.63	6.31	0.02

Regression: Pooled OLS

```
> OLS<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+
                 log(GDPPerCapita) + Natural Resource Rents + Cold War,
         data=WDI, model="pooling")
> summary(OLS)
Pooling Model
Call.
plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + log(GDPPerCapita) + NaturalResourceRents +
   ColdWar, data = WDI, model = "pooling")
Unbalanced Panel: n = 186, T = 1-50, N = 7566
Residuals:
  Min. 1st Qu. Median 3rd Qu.
                               Max
 -46.94 -8.02 1.05
                         9.30
                               49.73
Coefficients:
                   Estimate Std. Error t-value
                                                 Pr(>|t|)
                                1 7261 31 77
(Intercept)
                   54.8395
                                                  < 2e-16 ***
PopGrowth
                   -3.1926 0.1437 -22.21 < 2e-16 ***
UrbanPopulation
                   -0.0584 0.0109 -5.37 0.000000083 ***
                  -1.7928 0.1652 -10.85 < 2e-16 ***
FertilityRate
                   3.1544 0.1993 15.83 < 2e-16 ***
log(GDPPerCapita)
NaturalResourceRents -0.3486 0.0162 -21.54 < 2e-16 ***
ColdWar
                   -11 3437 0 3716 -30 53 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                       2670000
Residual Sum of Squares: 1280000
R-Squared:
               0.519
Adj. R-Squared: 0.519
F-statistic: 1361.01 on 6 and 7559 DF, p-value: <2e-16
```

"Fixed" (Within) Effects

```
> FE<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+
         log(GDPPerCapita)+NaturalResourceRents+ColdWar,data=WDI,
         effect="individual".model="within")
> summary(FE)
Oneway (individual) effect Within Model
Call.
plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + log(GDPPerCapita) + NaturalResourceRents +
   ColdWar, data = WDI, effect = "individual", model = "within")
Unbalanced Panel: n = 186, T = 1-50, N = 7566
Residuals:
   Min. 1st Qu. Median 3rd Qu.
                                  May
-33.144 -4.832 -0.406 4.802 41.184
Coefficients:
                    Estimate Std. Error t-value Pr(>|t|)
PopGrowth
                      0.0735
                                 0.1194
                                          0.62
                                                  0.538
UrbanPopulation
                                 0.0205 12.09 <2e-16 ***
                      0.2482
FertilityRate
                                0.1657 -12.47 <2e-16 ***
                     -2.0657
                      9.1607
                                0.3104 29.51 <2e-16 ***
log(GDPPerCapita)
                                 0.0182 1.94 0.052 .
NaturalResourceRents 0.0353
ColdWar
                     -7.1920
                                 0.2951 -24.37 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                        934000
Residual Sum of Squares: 434000
R-Squared:
               0.535
Adj. R-Squared: 0.523
F-statistic: 1414.37 on 6 and 7374 DF, p-value: <2e-16
```

A Nicer Table

Table: Models of WBLI

	OLS	FE
Population Growth	-3.190***	0.073
	(0.144)	(0.119)
Urban Population	-0.058***	0.248***
•	(0.011)	(0.021)
Fertility Rate	-1.790***	-2.070***
•	(0.165)	(0.166)
In(GDP Per Capita)	3.150***	9.160***
((0.199)	(0.310)
Natural Resource Rents	-0.349***	0.035*
	(0.016)	(0.018)
Cold War	-11.300***	-7.190***
	(0.372)	(0.295)
Constant	54.800***	
	(1.730)	
Observations	7,566	7,566
R ²	0.519	0.535
Adjusted R ²	0.519	0.523
F Statistic	1,361.000*** (df = 6; 7559)	1,414.000*** (df = 6; 7374)
	·	* <0.1. ** <0.05. *** <0.01

 $^{^*}p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

Time-Period Fixed Effects

The model is:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \eta_t + u_{it}$$

which is estimated via:

$$Y_{it}^{**} = Y_{it} - \bar{Y}_t$$

 $\mathbf{X}_{it}^{**} = \mathbf{X}_{it} - \bar{\mathbf{X}}_t$

$$Y_{it}^{**} = \beta_{FE} \mathbf{X}_{it}^{**} + u_{it}.$$

Comparison: Unit vs. Time Fixed Effects

Table: FE Models of WBLI (Units vs. Time)

	FE.Units	FE.Time
Population Growth	0.073	-3.630***
·	(0.119)	(0.135)
Urban Population	0.248***	-0.054***
	(0.021)	(0.010)
Fertility Rate	-2.070***	-0.657***
,	(0.166)	(0.159)
In(GDP Per Capita)	9.160***	3.550***
. ,	(0.310)	(0.187)
Natural Resource Rents	0.035*	-0.400***
	(0.018)	(0.015)
Cold War	-7.190***	
	(0.295)	
Observations	7,566	7,566
R^2	0.535	0.439
Adjusted R ²	0.523	0.435
F Statistic	1,414.000*** (df = 6; 7374)	1,175.000*** (df = 5; 7511)
·	·	*p<0.1: **p<0.05: ***p<0.01

*p<0.1; **p<0.05; ***p<0.01

Fixed Effects: Testing

The specification:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + u_{it}$$

...suggests that we can use an F-test to examine the hypothesis:

$$H_0: \alpha_i = 0 \ \forall i$$

(and a similar test for $\eta_t = 0$ in the time-centered case).

Arguably better are Lagrange multiplier-based tests:

- Breusch-Pagan (1980)
- King and Wu (1997)
- See (e.g.) Croissant and Millo (2018, §4.1) for details

FE (Country) Model Tests

```
> pFtest(FE.OLS)
F test for individual effects
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
F = 78, df1 = 185, df2 = 7374, p-value <2e-16
alternative hypothesis: significant effects
> plmtest(FE.effect=c("individual").tvpe=c("bp"))
Lagrange Multiplier Test - (Breusch-Pagan) for unbalanced panels
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
chisq = 44635, df = 1, p-value <2e-16
alternative hypothesis: significant effects
> plmtest(FE,effect=c("individual"),type=c("kw"))
Lagrange Multiplier Test - (King and Wu) for unbalanced panels
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
normal = 211, p-value <2e-16
alternative hypothesis: significant effects
```

Same For Time Effects

```
> pFtest(FE.Time.OLS)
F test for time effects
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
F = 25, df1 = 48, df2 = 7511, p-value <2e-16
alternative hypothesis: significant effects
> plmtest(FE.Time.effect=c("time").tvpe=c("bp"))
Lagrange Multiplier Test - time effects (Breusch-Pagan) for unbalanced panels
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
chisq = 9920, df = 1, p-value <2e-16
alternative hypothesis: significant effects
> plmtest(FE.Time,effect=c("time"),type=c("kw"))
Lagrange Multiplier Test - time effects (King and Wu) for unbalanced panels
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
normal = 100, p-value <2e-16
alternative hypothesis: significant effects
```

Fixed Effects: Interpretation

FE models are *subject-specific* models, that rely entirely on *within-unit* variability to estimate variable effects.

• This means that:

$$\hat{\beta}_k = \frac{\partial E(Y|\hat{\alpha})}{\partial X_k}$$

- That is, $\hat{\beta}_k$ is the expected change in E(Y) associated with a one-unit increase in <u>observation i's</u> value of X_k
- Key: within-unit changes in X are associated with within-unit expected changes in Y.
- In a linear model, the value of $\hat{\alpha}$ doesn't affect the value of that partial derivative...

Fixed Effects: Interpretation

Mummolo and Peterson (2018) note that:

"...because the within-unit variation is always smaller (or at least, no larger) than the overall variation in the independent variable, researchers should use within-unit variation to motivate counterfactuals when discussing the substantive impact of a treatment" (2018, 829).

Significance:

- Predictors X in FE models typically have both cross-sectional and temporal variation
- FE models only consider within-unit variation in **X** and Y
- As a result, the degree of actual/observed (within-unit) variation in predictors is almost always less – and sometimes significantly less – than if cross-sectional variation were also considered

Interpretation Example: Urban Population

UrbanPopulation - All Variation:

```
> with(WDI, sd(UrbanPopulation,na.rm=TRUE)) # all variation
[1] 25.7
```

UrbanPopulation - "Within" Variation:

```
> WDI<-ddply(WDI, .(ISO3), mutate,
+ UPMean = mean(UrbanPopulation,na.rm=TRUE))
> WDI$UPWithin<-with(WDI, UrbanPopulation-UPMean)
> with(WDI, sd(UPWithin,na.rm=TRUE)) # "within" variation
[1] 8.86
```

"While the overall variation in the independent variable may be large, the within-unit variation used to estimate β may be much smaller" (M & P 2018, 830).

Pros and Cons of "Fixed" Effects

Pros:

- Mitigates (Some) Specification Bias
- Simple + Intuitive
- Widely Used/Understood

Cons (see e.g. Collischon and Eberl 2020):

- Can't Estimate β_B
- Slowly-Changing Xs
- (In)Efficiency / Inconsistency (Incidental Parameters)
- Cannot Control for (e.g.) Time-Varying Heterogeneity
- Sensitivity to Measurement Error

From the equation above:

$$Y_{it} = \bar{\mathbf{X}}_i \boldsymbol{\beta}_B + \tilde{\mathbf{X}}_{it} \boldsymbol{\beta}_W + \alpha_i + u_{it}$$

...we can derive a "Between Effects" model:

$$\bar{Y}_i = \bar{\mathbf{X}}_i \boldsymbol{\beta}_B + u_{it}$$

This model:

- is essentially cross-sectional,
- is based on *N* observations.
- considers only between-unit (average) differences
- Interpretation:

 $\hat{\beta}_B$ is the expected difference in Y between two units whose values on \bar{X} differ by a value of 1.0.

"Between" Effects

```
> BE<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+
                 log(GDPPerCapita)+NaturalResourceRents+ColdWar,data=WDI,
         effect="individual", model="between")
> summarv(BE)
Oneway (individual) effect Between Model
Call.
plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + log(GDPPerCapita) + NaturalResourceRents +
   ColdWar, data = WDI, effect = "individual", model = "between")
Unbalanced Panel: n = 186, T = 1-50, N = 7566
Observations used in estimation: 186
Residuals:
  Min. 1st Qu. Median 3rd Qu.
-30 423 -6 319 0 332 8 067 22 183
Coefficients:
                    Estimate Std. Error t-value
                                                   Pr(>|t|)
(Intercept)
                     50 3106
                               10 1621
                                          4 95 0 0000016996 ***
PopGrowth
                     -5.8648 0.9173 -6.39 0.000000014 ***
UrbanPopulation
                     -0.0497
                               0.0549 -0.91
                                                     0.366
FertilityRate
                     0.0633 1.0766 0.06
                                                     0.953
log(GDPPerCapita)
                     3.4052 1.1308 3.01
                                                     0.003 **
NaturalResourceRents -0.3579
                                0.0888 -4.03 0.0000823194 ***
ColdWar
                    -12.5095
                                4.8879 -2.56
                                                     0.011 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                        44700
Residual Sum of Squares: 17600
R-Squared:
               0.605
Adj. R-Squared: 0.592
F-statistic: 45.7424 on 6 and 179 DF, p-value: <2e-16
```

A Nicer Table (Again)

Table: Models of WBLI

	OLS	FE	BE
Population Growth	-3.190***	0.073	-5.870***
	(0.144)	(0.119)	(0.917)
Urban Population	-0.058***	0.248***	-0.050
	(0.011)	(0.021)	(0.055)
Fertility Rate	-1.790***	-2.070***	0.063
	(0.165)	(0.166)	(1.080)
In(GDP Per Capita)	3.150***	9.160***	3.400***
	(0.199)	(0.310)	(1.130)
Natural Resource Rents	-0.349***	0.035*	-0.358***
	(0.016)	(0.018)	(0.089)
Cold War	-11.300***	-7.190***	-12.500**
	(0.372)	(0.295)	(4.890)
Constant	54.800*** (1.730)		50.300*** (10.200)
Observations R ²	7,566	7,566	186
	0.519	0.535	0.605
Adjusted R ² F Statistic	0.519	0.523	0.592
	1,361.000*** (df = 6; 7559)	1,414.000*** (df = 6; 7374)	45.700*** (df = 6; 179)

 $^*p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

Model:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + u_{it}$$

with:

$$u_{it} = \alpha_i + \lambda_t + \eta_{it}$$

and

$$\begin{split} E(\alpha_i) &= E(\lambda_t) = E(\eta_{it}) &= 0, \\ E(\alpha_i \lambda_t) &= E(\alpha_i \eta_{it}) = E(\lambda_t \eta_{it}) &= 0, \\ E(\alpha_i \alpha_j) &= \sigma_\alpha^2 \text{ if } i = j, \ 0 \text{ otherwise}, \\ E(\lambda_t \lambda_s) &= \sigma_\lambda^2 \text{ if } t = s, \ 0 \text{ otherwise}, \\ E(\eta_{it} \eta_{js}) &= \sigma_\eta^2 \text{ if } i = j, \ t = s, \ 0 \text{ otherwise}, \\ E(\alpha_i \mathbf{X}_{it}) &= E(\lambda_t \mathbf{X}_{it}) = E(\eta_{it} \mathbf{X}_{it}) &= 0. \end{split}$$

"Random" Effects

If those assumptions are met, we can consider the "two-way variance components" model where:

$$Var(u_{it}) = Var(Y_{it}|\mathbf{X}_{it})$$
$$= \sigma_{\alpha}^{2} + \sigma_{\lambda}^{2} + \sigma_{\eta}^{2}$$

If we assume $\lambda_t = 0$, then we get a model like:

$$Y_{it} = \mathbf{X}_{it}\beta + \alpha_i + \eta_{it}$$

with total error variance:

$$\sigma_u^2 = \sigma_\alpha^2 + \sigma_\eta^2.$$

"Random" Effects: Estimation

The model above will violate the standard OLS assumptions of uncorrelated errors, because the (compound) "errors" u_{it} within each unit share a common component α_i .

Consider the within-i variance-covariance matrix of the errors **u**:

$$E(\mathbf{u}_{i}\mathbf{u}_{i}') \equiv \mathbf{\Sigma}_{i} = \sigma_{\eta}^{2}\mathbf{I}_{T} + \sigma_{\alpha}^{2}\mathbf{i}\mathbf{i}'$$

$$= \begin{pmatrix} \sigma_{\eta}^{2} + \sigma_{\alpha}^{2} & \sigma_{\alpha}^{2} & \cdots & \sigma_{\alpha}^{2} \\ \sigma_{\alpha}^{2} & \sigma_{\eta}^{2} + \sigma_{\alpha}^{2} & \cdots & \sigma_{\alpha}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{\alpha}^{2} & \sigma_{\alpha}^{2} & \cdots & \sigma_{\eta}^{2} + \sigma_{\alpha}^{2} \end{pmatrix}$$

Assuming conditional independence across units, we then have:

$$\mathsf{Var}(\mathbf{u}) \equiv \mathbf{\Omega} = \begin{pmatrix} \mathbf{\Sigma}_1 & 0 & \cdots & 0 \\ 0 & \mathbf{\Sigma}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{\Sigma}_N \end{pmatrix}$$

"Random" Effects: Estimation

We can then show that:

$$\mathbf{\Sigma}^{-1/2} = rac{1}{\sigma_{\eta}} \left[\mathbf{I}_{T} - \left(rac{ heta}{T} \mathbf{i} \mathbf{i}'
ight)
ight]$$

where

$$heta=1-\sqrt{rac{\sigma_{\eta}^2}{T\sigma_{lpha}^2+\sigma_{\eta}^2}}$$

is an unknown quantity to be estimated.

Starting with an estimate of $\hat{\theta}$, calculate:

$$Y_{it}^* = Y_{it} - \hat{\theta} \bar{Y}_i$$

$$X_{it}^* = X_{it} - \hat{\theta} \bar{X}_i,$$

then estimate:

$$Y_{it}^* = (1 - \hat{ heta})\alpha + X_{it}^* eta_{RE} + [(1 - \hat{ heta})lpha_i + (\eta_{it} - \hat{ heta}ar{\eta}_i)]$$

and iterate between the two processes until convergence.

"Random" Effects: An Alternative View

Random Effects

```
> RE<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+
                 log(GDPPerCapita)+NaturalResourceRents+ColdWar,data=WDI,
          effect="individual".model="random")
> summary(RE)
Oneway (individual) effect Random Effect Model
   (Swamy-Arora's transformation)
Call:
plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
    FertilityRate + log(GDPPerCapita) + NaturalResourceRents +
    ColdWar, data = WDI, effect = "individual", model = "random")
Unbalanced Panel: n = 186, T = 1-50, N = 7566
Effects:
               var std.dev share
idiosyncratic 58.91
                     7.68 0.4
individual
             88.75
                      9.42 0.6
theta.
  Min. 1st Qu. Median
                         Mean 3rd Qu.
                                         Max.
 0.368 0.872 0.886 0.876 0.886
                                        0.886
Reciduale:
  Min. 1st Qu. Median
                          Mean 3rd Qu.
                                         Mar
  -33.3 -5.2
                  -0.4
                           0.0
                                   5.5
                                         40 9
Coefficients:
                    Fetimate Std Frror z-value
                                                     Pr(>|z|)
(Intercept)
                     2.56506 2.58528
                                        0 99
                                                         0.32
PopGrowth
                    -0.07305 0.12134 -0.60
                                                         0.55
UrbanPopulation
                     0.12838 0.01920
                                         6.69 0.000000000023 ***
FertilityRate
                    -2.37359 0.16536 -14.35
                                                      < 20-16 ***
log(GDPPerCapita)
                    7.51273
                               0.29275
                                        25.66
                                                      < 2e-16 ***
NaturalResourceRents 0.00581
                               0.01820
                                         0.32
                                                         0.75
ColdWar
                    -8 48014
                               0.28934 -29.31
                                                      < 20-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
Residual Sum of Squares: 471000
R-Squared:
               0.52
Adj. R-Squared: 0.52
```

A Nicer Table (Yet Again)

Table: Models of WBLI

	OLS	FE	BE	RE
Population Growth	-3.190***	0.073	-5.870***	-0.073
	(0.144)	(0.119)	(0.917)	(0.121)
Urban Population	-0.058***	0.248***	-0.050	0.128***
	(0.011)	(0.021)	(0.055)	(0.019)
Fertility Rate	-1.790***	-2.070***	0.063	-2.370***
	(0.165)	(0.166)	(1.080)	(0.165)
In(GDP Per Capita)	3.150***	9.160***	3.400***	7.510***
	(0.199)	(0.310)	(1.130)	(0.293)
Natural Resource Rents	-0.349***	0.035*	-0.358***	0.006
	(0.016)	(0.018)	(0.089)	(0.018)
Cold War	-11.300***	-7.190***	-12.500**	-8.480***
	(0.372)	(0.295)	(4.890)	(0.289)
Constant	54.800*** (1.730)		50.300*** (10.200)	2.560 (2.580)
Observations	7,566	7,566	186	7,566
R ²	0.519	0.535	0.605	0.520
Adjusted R ²	0.519	0.523	0.592	0.520
F Statistic	1,361.000*** (df = 6; 7559)	1,414.000*** (df = 6; 7374)	45.700*** (df = 6; 179)	7,910.000***

p < 0.1; p < 0.05; p < 0.01; p < 0.01

"Random" Effects: Testing

Intuition:

- RE models require that $Cov(X_{it}, \alpha_i) = 0$.
- FE models do not.

This means that:

	Reality	
Model	$Cov(X_{it}, \alpha_i) = 0$	$\overline{}$ Cov $(X_{it}, lpha_i) eq 0$
Fixed Effects	Consistent, Inefficient	Consistent, Efficient
Random Effects	Consistent, Efficient	Inconsistent

The Hausman Test

Hausman test (FE vs. RE):

$$\hat{\mathcal{W}} = (\hat{\boldsymbol{\beta}}_{\mathsf{FE}} - \hat{\boldsymbol{\beta}}_{\mathsf{RE}})'(\hat{\boldsymbol{V}}_{\mathsf{FE}} - \hat{\boldsymbol{V}}_{\mathsf{RE}})^{-1}(\hat{\boldsymbol{\beta}}_{\mathsf{FE}} - \hat{\boldsymbol{\beta}}_{\mathsf{RE}})$$

$$W \sim \chi_k^2$$

Null: The RE model is consistent ($Cov(X_{it}, \alpha_i) = 0$).

Issues:

- Asymptotic
- ullet No guarantee $(\hat{f V}_{\sf FE} \hat{f V}_{\sf RE})^{-1}$ is positive definite
- A general specification test...

Hausman Test Results

```
Hausman test (FE vs. RE):
> phtest(FE, RE)
Hausman Test
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
chisq = 946, df = 6, p-value <2e-16</pre>
```

alternative hypothesis: one model is inconsistent

Practical "Fixed" vs. "Random" Effects

Factors to consider:

- "Panel" vs. "TSCS" Data
- Nature of the Data-Generating Processes
- Importance of Non-Time-Varying Covariate Effects
- Dimension/Location of the Variance in the Data (N vs. T)

Connections: Hierarchical Linear Models

HLM Starting Points

Begin by considering a two-level "nested" data structure, with:

$$i \in \{1, 2, ...N\}$$
 indexing first-level units, and $j \in \{1, 2, ...J\}$ indexing second-level groups.

A general two-level HLM is an equation of the form:

$$Y_{ij} = \beta_{0j} + \mathbf{X}_{ij}\beta_j + u_{ij} \tag{1}$$

where β_{0j} is a "constant" term, \mathbf{X}_{ij} is a $NJ \times K$ matrix of K covariates, β_j is a $K \times 1$ vector of parameters, and $u_{ij} \sim \text{i.i.d.} \ N(0, \sigma_u^2)$ is the usual random-disturbance assumption.

Each of the K+1 "level-one" parameters is then allowed to vary across Q "level-two" variables \mathbf{Z}_j , so that:

$$\beta_{0j} = \gamma_{00} + \mathbf{Z}_j \gamma_0 + \varepsilon_{0j} \tag{2}$$

for the "intercept" and

$$\beta_{kj} = \gamma_{k0} + \mathbf{Z}_j \gamma_k + \varepsilon_{kj} \tag{3}$$

for the "slopes" of X. The ε s are typically assumed to be distributed multivariate Normal, with parameters for the variances and covariances selected by the analyst. Substitution of (2) and (3) into (1) yields:

$$Y_{ij} = \gamma_{00} + \mathbf{Z}_j \gamma_0 + \mathbf{X}_{ij} \gamma_{k0} + \mathbf{X}_{ij} \mathbf{Z}_j \gamma_k + \mathbf{X}_{ij} \varepsilon_{kj} + \varepsilon_{0j} + u_{ij}$$
 (4)

The form is essentially a model with "saturated" interaction effects across the various levels, as well as "errors" which are multivariate Normal.

HLM Details

Model Assumptions

- Linearity / Additivity
- Normality of us
- Homoscedasticity
- Residual Independence:
 - · $Cov(\varepsilon_{\cdot j}, u_{ij}) = 0$
 - · $Cov(u_{ij}, u_{i\ell}) = 0$

Model Fitting

- MLE
- "Restricted" MLE ("RMLE")
- Choosing:
 - · MLE is biased in small samples, especially for estimating variances
 - RMLE is not, but prevents use of LR tests when the models do not have identical fixed effects
 - In general: RMLE is better with small sample sizes, but MLE is fine in larger ones

HLMs: Attributes

Note that if we specify:

$$\beta_{0i} = \gamma_{00} + \varepsilon_{0i}$$

and

$$\beta_{kj} = \gamma_{k0}$$

we get:

$$Y_{ij} = \gamma_{00} + \mathbf{X}_{ij}\gamma_{k0} + \varepsilon_{0j} + u_{ij}$$

which is the RE model above (formally, a "one-level random-intercept" HLM).

In addition:

- HLMs can be expanded to 3- and 4- and higher-level models
- One can include cross-level interactions...

HLMs are widely used in education, psychology, ecology, etc. (less so in economics, political science). Also, there are many, many excellent books, websites, etc. that address HLMs

Random Effects Remix (using 1mer)

```
> library(lme4)
> AltRE<-lmer(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+
             log(GDPPerCapita) + Natural Resource Rents + Cold War + (1 | ISO3),
             data=WDT)
> summarv(AltRE)
Linear mixed model fit by REML ['lmerMod']
Formula: WomenBusLawIndex PopGrowth + UrbanPopulation + FertilityRate +
    log(GDPPerCapita) + NaturalResourceRents + ColdWar + (1 |
  Data: WDI
REML criterion at convergence: 53322
Scaled residuals:
  Min
           10 Median
-4.321 -0.632 -0.058 0.636 5.367
Random effects:
Groups Name
                     Variance Std.Dev.
TSO3
          (Intercept) 323
                              17.97
Residual
                               7.68
Number of obs: 7566, groups: ISO3, 186
Fixed effects:
                    Estimate Std. Error t value
(Intercept)
                    -11.5141
                                 2.9322
                                        -3.93
PopGrowth
                     0.0323
                                 0.1191
                                         0.27
UrbanPopulation
                    0.2056
                                 0.0199 10.31
FertilityRate
                     -2.1709
                                 0.1643 -13.21
log(GDPPerCapita)
                      8.5722
                                 0.3022
                                         28 37
NaturalResourceRents 0.0269
                                 0.0181
                                         1.49
ColdWar
                     -7 6610
                                 0.2906 -26.36
Correlation of Fixed Effects:
            (Intr) PpGrwt UrbnPp FrtltR 1(GDPP NtrlRR
PopGrowth
           0.051
UrbanPopltn -0.183 -0.014
FertilityRt -0.399 -0.288 0.436
lg(GDPPrCp) -0.764 -0.059 -0.305 0.093
NtrlRsrcRnt -0.010 -0.113 -0.012 -0.053 -0.015
ColdWar
        -0.109 0.013 0.219 -0.422 0.101 0.055
```

Q: Are They The Same? [A: More Or Less]

Table: RE and HLM Models of WBLI

	RE	AltRE
Population Growth	-0.073	0.032
	(0.121)	(0.119)
Urban Population	0.128***	0.206***
	(0.019)	(0.020)
Fertility Rate	-2.370***	-2.170***
	(0.165)	(0.164)
In(GDP Per Capita)	7.510***	8.570***
	(0.293)	(0.302)
Natural Resource Rents	0.006	0.027
	(0.018)	(0.018)
Cold War	-8.480***	-7.660***
	(0.289)	(0.291)
Constant	2.560	-11.500***
	(2.580)	(2.930)
Observations	7,566	7,566
R ²	0.520	
Adjusted R ²	0.520	
Log Likelihood		-26,661.000
Akaike Inf. Crit.		53,340.000
Bayesian Inf. Crit.	53,402.000	
F Statistic	7,910.000 ***	

^{*}p<0.1; **p<0.05; ***p<0.01

HLM with Country-Level Random β s for ColdWar

```
> HLM1<-lmer(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+
             log(GDPPerCapita)+NaturalResourceRents+ColdWar+(ColdWar|ISO3),
             data=WDI,control=lmerControl(optimizer="bobyga"))
> summary(HLM1)
Linear mixed model fit by REML ['lmerMod']
Formula: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate +
   log(GDPPerCapita) + NaturalResourceRents + ColdWar + (ColdWar |
                                                                       TS03)
   Data: WDT
Control: lmerControl(optimizer = "bobyga")
REML criterion at convergence: 50165
Random effects:
                     Variance Std.Dev. Corr
 Groups
         Name
 IS03
         (Intercept) 560.7
                              23.68
         ColdWar
                     131.6
                              11.47
                                      -0.20
 Residual
                      35 4
                              5 95
Number of obs: 7566, groups: ISO3, 186
Fixed effects:
                      Estimate Std Error t value
(Intercept)
                    -29.248209 3.374962 -8.67
PopGrowth
                   -0.137795 0.099032 -1.39
UrbanPopulation
                    0.285673 0.023264 12.28
FertilityRate
                     -4.130147 0.177531 -23.26
log(GDPPerCapita)
                     10.946306 0.339078
                                          32 28
NaturalResourceRents -0.000932 0.015744 -0.06
ColdWar
                     -2.647474
                                0.995578 -2.66
Correlation of Fixed Effects:
           (Intr) PpGrwt UrbnPp FrtltR 1(GDPP NtrlRR
PopGrowth
            0.052
UrbanPopltn -0.132 -0.037
FertilityRt -0.479 -0.197 0.480
lg(GDPPrCp) -0.722 -0.056 -0.384 0.168
NtrlRsrcRnt 0.031 -0.079 0.058 -0.011 -0.095
ColdWar
           -0.089 -0.012 0.056 -0.118 -0.003 0.011
```

Testing

```
> anova(AltRE, HLM1)
refitting model(s) with ML (instead of REML)
Data: WDT
Models:
AltRE: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate +
      log(GDPPerCapita) + NaturalResourceRents + ColdWar + (1 | ISO3)
HLM1: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate +
      log(GDPPerCapita) + NaturalResourceRents + ColdWar + (ColdWar | ISO3)
     npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
A1 t.R.E.
        9 53323 53386 -26653
                               53305
HLM1 11 50174 50250 -25076 50152 3154 2 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
> VarCorr(HLM1)
Groups
         Name
                     Std. Dev. Corr
        (Intercept) 23.68
IS03
         ColdWar 11.47 -0.20
Residual
                     5.95
```

Random Coefficients

```
> Bs<-data.frame(coef(HLM1)[1])
> head(Bs)
    ISO3..Intercept. ISO3.PopGrowth ISO3.UrbanPopulation ISO3.FertilityRate
AFG
               -19.2
                             -0.138
                                                     0.286
                                                                        -4.13
AGO
               -13.5
                             -0.138
                                                    0.286
                                                                        -4.13
                             -0.138
ALB
               -11.3
                                                     0.286
                                                                        -4.13
ARE
              -105.3
                             -0.138
                                                     0.286
                                                                        -4.13
ARG
               -49.2
                             -0.138
                                                     0.286
                                                                        -4.13
ARM
               -24.6
                             -0.138
                                                     0.286
                                                                        -4.13
    ISO3.log.GDPPerCapita. ISO3.NaturalResourceRents ISO3.ColdWar
AFG
                      10.9
                                            -0.000932
                                                             -3.632
AGO
                      10.9
                                                            -14.877
                                            -0.000932
ALB
                      10.9
                                            -0.000932
                                                             -7.589
ARE
                      10.9
                                            -0.000932
                                                             -0.729
ARG
                      10.9
                                            -0.000932
                                                            -22.651
ARM
                      10.9
                                            -0.000932
                                                             -3.106
> mean(Bs$ISO3..Intercept.)
[1] -29.2
> mean(Bs$ISO3.ColdWar)
[1] -2.65
```

Random Intercepts (Plotted)

Random Slopes for ColdWar (Plotted)

Scatterplot: Random Intercepts and Slopes

Separating Within and Between Effects

Recall that we can decompose the variance of our regression model as:

$$Y_{it} = \bar{\mathbf{X}}_i \beta_B + (\mathbf{X}_{it} - \bar{\mathbf{X}}_i) \beta_W + u_{it}$$
 (5)

This raises the possibility of fitting the model in (5) directly...

- Simple to estimate (via OLS or other)
- Relatively easy interpretation
- ullet Easy to test $\hat{oldsymbol{eta}}_B=\hat{oldsymbol{eta}}_W$

Example data: Separate effects for within- and between-country *Natural Resource Rents...*

Combining Within- and Between-Effects

Table: BE + WE Model of WBLI

	WEBE.OLS	
Population Growth	-3.000***	
	(0.141)	
Urban Population	-0.046***	
	(0.011)	
Fertility Rate	-1.470***	
	(0.163)	
In(GDP Per Capita)	3.210***	
. ,	(0.195)	
Within-Country Nat. Resource Rents	0.090***	
•	(0.030)	
Between-Country Nat. Resource Rents	-0.515***	
•	(0.019)	
Cold War	-11.800***	
	(0.365)	
Constant	53.500***	
	(1.700)	
Observations	7,566	
R^2	0.538	
Adjusted R ²	0.537	
Residual Std. Error	12.800 (df = 7558)	
F Statistic	1,256.000*** (df = 7; 7558)	
	ate ate ate ate ate	

p<0.1; ""p<0.05; """p<0.01

Two-Way Unit Effects

Our original decomposition considered "two-way" effects:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + \eta_t + u_{it}$$

This implies that we can use (e.g.) an F-test to examine the hypothesis:

$$H_0: \alpha_i = \eta_t = 0 \ \forall i, t$$

...that is, whether adding the (two-way) effects improves the model's fit.

We can also consider the partial hypotheses:

$$H_0: \alpha_i = 0 \ \forall i$$

and

$$H_0: \eta_t = 0 \ \forall \ t$$

separately.

Two-Way Effects: Good & Bad

The Good:

- Addresses both time-invariant, unit-level heterogeneity and cross-sectionally-invariant, time-point-specific heterogeneity
- May be "fixed" or "random" ...
- Two-way FE is equivalent to differences-in-differences when $X \in \{0,1\}$ and T=2 (more on that later)

The (Potentially) Bad:

- Ability to control for unobserved heterogeneity depends on (probably invalid) functional form assumptions (Imai and Kim 2020)
- FE requires predictors that vary both within and between both units and time points
- RE requires the (additional) assumption that Cov(X_{it}, η_t) = Cov(α_i, η_t) = 0
- Two-way effects models ask a *lot* of your data (effectively fits N + T + k parameters using NT observations)

Example: Two-Way Fixed Effects

```
> TwoWavFE<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilitvRate+
               log(GDPPerCapita)+NaturalResourceRents+ColdWar.data=WDI.
               effect="twoway", model="within")
> summary(TwoWayFE)
Twowavs effects Within Model
Call:
plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + log(GDPPerCapita) + NaturalResourceRents +
   ColdWar, data = WDI, effect = "twoway", model = "within")
Unbalanced Panel: n = 186, T = 1-50, N = 7566
Residuals:
  Min. 1st Qu. Median 3rd Qu.
                                 Max.
-31.756 -3.866 0.251 4.100 29.715
Coefficients:
                    Estimate Std. Error t-value Pr(>|t|)
PopGrowth
                   -0.26475
                               0.10023 -2.64 0.0083 **
UrbanPopulation
                  -0.00333 0.01798 -0.19 0.8529
FertilityRate
                   1.03517
                               0.15072 6.87 7e-12 ***
log(GDPPerCapita)
                               0.28544 8.76 <2e-16 ***
                  2.50015
NaturalResourceRents -0.00420
                               0.01588 -0.26 0.7913
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Total Sum of Squares:
                        306000
Residual Sum of Squares: 300000
R-Squared:
               0.0179
Adj. R-Squared: -0.0141
F-statistic: 26.7123 on 5 and 7326 DF, p-value: <2e-16
```

Two-Way Effects: Testing

> # Two-way effects: > pFtest(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+ log(GDPPerCapita)+NaturalResourceRents+ColdWar,data=WDI, effect="twoway", model="within") F test for twoways effects data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ... F = 103, df1 = 233, df2 = 7326, p-value <2e-16 alternative hypothesis: significant effects > plmtest(TwoWayFE,c("twoways"),type=("kw")) Lagrange Multiplier Test - two-ways effects (King and Wu) for unbalanced panels data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ... normal = 187, p-value <2e-16 alternative hypothesis: significant effects > # One-way effects in the two-way model: > plmtest(TwoWavFE.c("individual").tvpe=("kw")) Lagrange Multiplier Test - (King and Wu) for unbalanced panels data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ... normal = 211, p-value <2e-16 alternative hypothesis: significant effects > plmtest(TwoWayFE,c("time"),type=("kw")) Lagrange Multiplier Test - time effects (King and Wu) for unbalanced panels data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ... normal = 100, p-value <2e-16 alternative hypothesis: significant effects

Two-Way Fixed Effects via 1m

> TwoWayFE.BF<-lm(WomenBusLawIndex~PopGrowth+UrbanPopulation+ FertilityRate+log(GDPPerCapita)+NaturalResourceRents+ factor(ISO3)+factor(Year),data=WDI) > summary(TwoWayFE.BF) Call: lm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + log(GDPPerCapita) + NaturalResourceRents + factor(ISO3) + factor(Year), data = WDI) Residuals: Min 1Q Median Max -31.76 -3.87 0.25 4.10 29.72 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -17.26971 2.50039 -6.91 5.4e-12 *** PopGrowth -0.26475 0.10023 -2.64 0.0083 ** UrbanPopulation -0.00333 0.01798 -0.19 0.8529 FertilityRate 1.03517 0.15072 6.87 7.0e-12 *** log(GDPPerCapita) 2.50015 0.28544 8.76 < 2e-16 *** Natural ResourceRents -0.00420 0.01588 -0.26 0.7913 factor(ISO3)AGO 29.30071 2.01487 14 54 < 2e-16 *** factor(ISO3)ALB 51.72646 2.02286 25 57 < 2e-16 *** factor(ISO3)ARE -5.95970 2.54027 -2.35 0.0190 * factor(Year)1978 4.82791 0.88259 5 47 4 6e-08 *** factor(Year)1979 5.23708 0.88928 5.89 4.1e-09 *** [reached getOption("max.print") -- omitted 40 rows] ---Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1 Residual standard error: 6.4 on 7326 degrees of freedom (5764 observations deleted due to missingness) Multiple R-squared: 0.888.Adjusted R-squared: 0.884 F-statistic: 242 on 239 and 7326 DF, p-value: <2e-16

Example: Two-Way Random Effects

```
> TwoWavRE<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+
               log(GDPPerCapita)+NaturalResourceRents+ColdWar,data=WDI,
               effect="twoway".model="random")
> summary(TwoWayRE)
Twoways effects Random Effect Model
   (Swamy-Arora's transformation)
Call:
plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + log(GDPPerCapita) + NaturalResourceRents +
   ColdWar, data = WDI, effect = "twoway", model = "random")
Unbalanced Panel: n = 186, T = 1-50, N = 7566
Effects:
                var std.dev share
idiosyncratic 40.993
                    6.403 0.31
                    9.444 0.68
individual
             89.185
time
              0.612 0.782 0.00
theta:
      Min. 1st Qu. Median Mean 3rd Qu. Max.
     0.439
             0.893 0.905 0.896 0.905 0.905
time 0.372
             0.423 0.469 0.449 0.477 0.479
             0.422 0.468 0.448 0.476 0.478
total 0.330
Residuals:
  Min. 1st Qu. Median
                          Mean 3rd Qu.
                                          Max.
  -61.3 -6.4
                   2.4
                           0.4
                                 10.6
                                         32.2
Coefficients:
                     Estimate Std. Error z-value Pr(>|z|)
(Intercept)
                     21.29333
                                0.35391 60.17
                                                  < 2e-16 ***
PopGrowth
                     -0.23814
                                0.01549 -15.37
                                                  < 2e-16 ***
UrbanPopulation
                     0.06588
                               0.00254 25.97
                                                  < 2e-16 ***
FertilityRate
                     -0.58746
                                0.02216 -26.51
                                                  < 2e-16 ***
log(GDPPerCapita)
                      5.02484
                                0.03939 127.55
                                                  < 2e-16 ***
NaturalResourceRents -0.01087
                                0.00239
                                         -4.54 0.0000056 ***
ColdWar
                    -12.66453
                                0.05391 -234.91
                                                 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                        2670000
Residual Sum of Squares: 1740000
R-Squared:
               0.351
Adj. R-Squared: 0.351
Chisq: 161011 on 6 DF, p-value: <2e-16
```

A Prettier Table

Table: Models of WBLI

	OLS	FE	BE	RE	TwoWayFE	TwoWayRE
Population Growth	-3.190***	0.073	-5.870***	-0.073	-0.265***	-0.238***
•	(0.144)	(0.119)	(0.917)	(0.121)	(0.100)	(0.015)
Urban Population	-0.058***	0.248***	-0.050	0.128***	-0.003	0.066***
	(0.011)	(0.021)	(0.055)	(0.019)	(0.018)	(0.003)
Fertility Rate	-1.790***	-2.070***	0.063	-2.370***	1.030***	-0.587***
	(0.165)	(0.166)	(1.080)	(0.165)	(0.151)	(0.022)
In(GDP Per Capita)	3.150***	9.160***	3.400***	7.510***	2.500***	5.030***
()	(0.199)	(0.310)	(1.130)	(0.293)	(0.285)	(0.039)
Natural Resource Rents	-0.349***	0.035*	-0.358***	0.006	-0.004	-0.011***
	(0.016)	(0.018)	(0.089)	(0.018)	(0.016)	(0.002)
Cold War	-11.300***	-7.190***	-12.500**	-8.480***		-12.700***
	(0.372)	(0.295)	(4.890)	(0.289)		(0.054)
Constant	54.800***		50.300***	2.560		21.300***
	(1.730)		(10.200)	(2.580)		(0.354)
Observations	7,566	7,566	186	7,566	7,566	7,566
R ²	0.519	0.535	0.605	0.520	0.018	0.351
Adjusted R ²	0.519	0.523	0.592	0.520	-0.014	0.351

^{*}p<0.1; **p<0.05; ***p<0.01

Other Variations: FEIS

"Fixed Effects Individual Slope" models

- Cite: Bruederl, Josef, and Volker Ludwig. 2015. "Fixed-Effects
 Panel Regression." In *The Sage Handbook of Regression Analysis*and Causal Inference, Eds. Henning Best and Christof Wolf. Los
 Angeles: Sage, pp. 327-357.
- FE + unit-level slopes for (some / all) predictor variables
- Equivalent to including N-1 interactions between a predictor ${\bf X}$ and each of the $\alpha_i{\bf s}$
- Also can test for homogeneity of estimated slopes (Hausman-like test)
- See the feisr R package, and its accompanying vignette, or xtfeis in Stata

Unit Effects Models: Software

R :

- the plm package; plm command
 - · Fits one- and two-way FE, BE, RE models
 - · Also fits first difference (FD) and instrumental variable (IV) models
- the fixest package; fast/scalable FE estimation for OLS and GLMs
- the lme4 package; command is lmer
- the nlme package; command lme
- the Paneldata package

Stata: xtreg

- option re (the default) = random effects
- option fe = fixed (within) effects
- option be = between-effects
- Stata package fect = two-way models

Dynamics

Issues with Unit Roots in Panel Data

In general, in panel / TSCS data:

- Short series + Asymptotic tests → "borrow strength"
- Requires uniform unit roots across cross-sectional units
- Many tests require balanced panels...
- Various alternatives:
 - Maddala and Wu (1999)
 - Hadri (2000)
 - Levin, Lin and Chu (2002)
 - Im, Pesaran, and Shin (2003)
- What to do?
 - Difference the data...
 - Error-correction models

Panel Unit Root Tests: R

```
[data wrangling...]
> purtest(WBLI.W,exo="trend",test="levinlin",pmax=2)
Levin-Lin-Chu Unit-Root Test (ex. var.: Individual Intercepts and
Trend)
data: WBLT.W
z = -2.7, p-value = 0.003
alternative hypothesis: stationarity
> purtest(WBLI.W,exo="trend",test="hadri",pmax=2)
Hadri Test (ex. var.: Individual Intercepts and Trend)
(Heterosked, Consistent)
data: WBLT.W
z = 189, p-value <2e-16
alternative hypothesis: at least one series has a unit root
> purtest(WBLI.W,exo="trend",test="madwu",pmax=2)
Maddala-Wu Unit-Root Test (ex. var.: Individual Intercepts and
Trend)
data: WBLI.W
chisq = 332, df = 376, p-value = 0.9
alternative hypothesis: stationarity
> purtest(WBLI.W,exo="trend",test="ips",pmax=2)
Im-Pesaran-Shin Unit-Root Test (ex. var.: Individual Intercepts
and Trend)
data: WRLT W
Wtbar = 3.6, p-value = 1
alternative hypothesis: stationarity
```

A Better Table

Table: Panel Unit Root Tests: WBRI

Test	Alternative	Statistic	Estimate	P-Value
Levin-Lin-Chu Test	stationarity	z	-2.286	0.0111
Hadri Test (Heterosked. Consistent)	≥ one series has a unit root	z	192.036	< 0.001
Maddala-Wu Test	stationarity	χ^2	782.604	< 0.001
Im-Pesaran-Shin Test	stationarity	$\frac{\chi}{W_t}$	3.342	0.9996

Note: All assume individual intercepts and trends.

Lagged: *Y*?

Consider a model like this:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta}_{LDV} + \epsilon_{it}$$

If ϵ_{it} is perfect...

- $\hat{\beta}_{LDV}$ is biased (but consistent),
- O(bias) = $\frac{-1+3\beta_{LDV}}{T}$

If ϵ_{it} is autocorrelated...

- $\hat{\beta}_{LDV}$ is biased and inconsistent
- IV is one (bad) option...

Lagged Ys and GLS-ARMA

Can rewrite:

$$Y_{it} = \mathbf{X}_{it} \boldsymbol{\beta}_{AR} + u_{it}$$

 $u_{it} = \phi u_{it-1} + \eta_{it}$

as

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta}_{AR} + \phi u_{it-1} + \eta_{it}$$

$$= \mathbf{X}_{it}\boldsymbol{\beta}_{AR} + \phi(\mathbf{Y}_{it-1} - \mathbf{X}_{it-1}\boldsymbol{\beta}_{AR}) + \eta_{it}$$

$$= \phi \mathbf{Y}_{it-1} + \mathbf{X}_{it}\boldsymbol{\beta}_{AR} + \mathbf{X}_{it-1}\psi + \eta_{it}$$

where $\psi = \phi \beta_{AR}$ and $\psi = 0$ (by assumption).

Lagged Ys and World Domination

In:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \beta_{LDV} + \epsilon_{it}$$

Achen: Bias "deflates" $\hat{\beta}_{LDV}$ relative to $\hat{\phi}$, "suppress" the effects of **X**...

Keele & Kelly (2006):

- Contingent on ϵ s having autocorrelation
- Key: In LDV, long-run impact of a unit change in X is:

$$\hat{eta}_{LR} = rac{\hat{eta}_{LDV}}{1 - \hat{\phi}}$$

Long-Run Impact for $\hat{eta}=1$

Lagged Ys and Unit Effects

Consider:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + \alpha_i + u_{it}.$$

If we omit the unit effects, we have:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + u_{it}^*$$

with

$$u_{it}^* = \alpha_i + u_{it}$$

Lagging yields:

$$Y_{it-1} = \phi Y_{it-2} + \mathbf{X}_{it-1} \boldsymbol{\beta} + \alpha_i + u_{it-1}$$

which means

$$Cov(Y_{it-1}, u_{it}^*) \neq 0. \rightarrow bias in \hat{\phi}, \hat{\beta}$$

"Nickell" Bias

Omitting fixed effects in a model with Y_{it-1} yields bias in $\hat{\phi}$ that is:

- toward zero when $\phi > 0$,
- increasing in ϕ .

Including unit effects still yields bias in $\hat{\phi}$ of $O(\frac{1}{T})$, and bias in $\hat{\beta}$.

Solutions:

- Difference/GMM estimation
- Bias correction approaches

First Difference Estimation

$$Y_{it} - Y_{it-1} = \phi(Y_{it-1} - Y_{it-2}) + (\mathbf{X}_{it} - \mathbf{X}_{it-1})\beta + (\alpha_i - \alpha_i) + (u_{it} - u_{it-1})$$

$$\Delta Y_{it} = \phi\Delta Y_{it-1} + \Delta \mathbf{X}_{it}\beta + \Delta u_{it}$$

Anderson/Hsiao: If \nexists autocorrelation, then use ΔY_{it-2} or Y_{it-2} as instruments for ΔY_{it-1} ...

- Consistent in theory,
- in practice, the former is preferred, and both have issues if ϕ is high;
- both are inefficient.

Arellano & Bond (also Wawro): Use *all* lags of Y_{it} and \mathbf{X}_{it} from t-2 and before.

- "Good" estimates, better as $T \to \infty$,
- Easy to handle higher-order lags of Y,
- Easy software (plm in R , xtabond in Stata).
- Model is fixed effects...
- \mathbf{Z}_i has T-p-1 rows, $\sum_{i=p}^{T-2} i$ columns \rightarrow difficulty of estimation declines in p, grows in T.

Bias-Correction Models

Kiviet (1995, 1999; Bun and Kiviet 2003; Bruno 2005a,b): Derive the bias in $\hat{\phi}$ and $\hat{\beta}$, then correct it...

- \bullet More accurate than the instrumental-variables/GMM estimators of A&H/A&B...
- ...especially when T is small; but not as T gets reasonably large ($T \approx 20$)

Some Dynamic Models

	Lagged Y	First Difference	FE	$Lagged\;Y+FE$
Intercept	2.260*	0.641*		
	(0.335)	(0.040)		
Lagged WBLI	0.986*	, ,		0.948*
	(0.002)			(0.004)
Population Growth	-0.051	0.035	0.073	0.011
	(0.027)	(0.077)	(0.119)	(0.037)
Urban Population	0.002	-0.040	0.248*	0.009
	(0.002)	(0.062)	(0.021)	(0.007)
Fertility Rate	-0.085*	-1.023*	-2.066*	-0.292*
	(0.030)	(0.373)	(0.166)	(0.052)
In(GDP Per Capita)	-0.036	0.780	9.161*	0.276*
	(0.037)	(0.476)	(0.310)	(0.102)
Natural Resource Rents	-0.010*	0.020*	0.035	-0.003
	(0.003)	(0.008)	(0.018)	(0.006)
Cold War	-0.298*	-0.021	-7.192*	-0.445^{*}
	(0.072)	(0.204)	(0.295)	(0.094)
R ²	0.984	0.003	0.535	0.956
Adj. R ²	0.984	0.002	0.523	0.954
Num. obs.	7463	7380	7566	7463

p < 0.05

Trends!

What if *Y* is *trending* over time?

- First Question: Why?
 - · Organic growth (e.g., populations)
 - · Temporary / short-term factors
 - · Covariates...
- Second question: Should we care? (A: Yes, usually... \rightarrow "spurious regressions")
- Third question: What to do?
 - · Ignore it...
 - Include a counter / trend term...

In general, adding a trend term will decrease the magnitudes of $\hat{\beta}$...

Trends Matter, Illustrated

Data generating processes:

$$Y_{1t} = 10 + (1 \times X_t) + u_t$$

$$Y_{2t} = 5 + (1 \times X_t) + (0.5 \times T) + u_t$$

	Y_1	Y ₂		
		No Trend	Trend	
X	0.921***	-0.382	0.874***	
	(0.245)	(0.786)	(0.255)	
т			0.482***	
			(0.026)	
Constant	10.300***	20.200***	5.860***	
	(0.917)	(2.950)	(1.200)	
Observations	40	40	40	
R ²	0.272	0.006	0.905	
Adjusted R ²	0.253	-0.020	0.900	
Residual Std. Error	1.800 (df = 38)	5.790 (df = 38)	1.810 (df = 37)	

Trends Matter, Part II

Table: FE Models of WBLI

	FE	FE.trend	FE.intx
Population Growth	0.073	-0.287***	-0.242**
.,	(0.119)	(0.100)	(0.100)
Urban Population	0.248***	-0.024	-0.003
•	(0.021)	(0.018)	(0.018)
Fertility Rate	-2.066***	1.080***	1.018***
	(0.166)	(0.150)	(0.149)
In(GDP Per Capita)	9.161***	2.867***	2.585***
` ' '	(0.310)	(0.283)	(0.283)
Natural Resource Rents	0.035*	0.009	0.008
	(0.018)	(0.015)	(0.015)
Cold War	-7.192***	1.660***	9.300***
	(0.295)	(0.293)	(0.944)
Trend (1950=0)		0.749***	0.783***
		(0.013)	(0.014)
Cold War x Trend			-0.220***
			(0.026)
Observations	7,566	7,566	7,566
R^2	0.535	0.674	0.678
Adjusted R ²	0.523	0.666	0.669
F Statistic	1,414.000*** (df = 6; 7374)	2,182.000*** (df = 7; 7373)	1,937.000*** (df = 8; 7372)

 $^{^*}p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

Another Approach: Orthogonalization

Note: We're rarely substantively interested in the fixed effects $\hat{\alpha}$...

- \rightarrow reparameterize the α s so that they are *information-orthogonal* to the other parameters in the model (including the β s and ϕ)
- Key idea: Transform the α s so that (for example):

$$\mathsf{E}\left(\frac{\partial^2 L_i}{\partial \alpha \partial \beta}\right) = 0$$

- Can do this via imposition of priors, in a Bayesian framework...
- In general, this approach is less assumption-laden and more efficient than the IV/GMM-based approaches discussed above.
- Provides consistent-in-N estimates for T as low as 2...

References:

- Lancaster, T. 2002. "Orthogonal Parameters and Panel Data." Review of Economic Studies 69:647-666.
- Pickup et al. (2017) [the "orthogonalized panel model" ("OPM")]

FE + Dynamics Using Orthogonalization

- > library(OrthoPanels)
- > set.seed(7222009)

OPM Results: Short- and Long-Run Effects

For $\hat{\phi} \approx 0.98$:

-		
Parameter	Short-Run	Long-Run
Population Growth	0.0122	0.9148
Urban Population	-0.0016	-0.1420
Fertility Rate	-0.2247	-19.0090
In(GDP Per Capita)	-0.1155	-9.9996
Natural Resource Rents	-0.0037	-0.3086
Cold War	-0.1691	-14.3630

Dynamic Models: Software

R:

- the plm package (purtest for unit roots; plm for first-difference models)
- the panelAR package (GLS-ARMA models)
- the gls package (GLS)
- the pgmm package (A&B)
- the dynpanel package (A&H, A&B)

Stata:

- xtgls (GLS)
- xtpcse (PCSEs)
- xtabond / xtdpd (A&H A&B dynamic models)

Final Thoughts: Dynamic Panel Models

- N vs. T...
- Are dynamics nuisance or substance?
- What problem(s) do you really care about?