

Linguagens de Consulta Relacionais

Ricardo da Silva Torres

rtorres@ic.unicamp.br

Tópicos do curso

- Introdução conceitos básicos e arquitetura de SGBD
- Modelagem de Dados (MER)
- Modelo Relacional
- Dependências Funcionais e normalização
- Linguagens de Manipulação de Dados
- Processamento e Otimização de Consultas
- Controle de Concorrência e Recuperação de Dados

Epitáfio de cmbm - Visão Geral

Interface

Processamento de Consultas

Processamento de Transações

Acesso a Arquivos

SGBD

Esquema Conceitual: DER

Tabelas

Cliente Particular (CP)

CliId	Nome	CPF
1532	Asdrúbal	448.754.253-65
1755	Doriana	567.387.387-44
1780	Quincas	546.373.762-02

Cliente Empresa (CE)

CliId	Nome	CGC
1532	Asdrúbal	754.856.965/0001-54
1644	Jepeto	478.652.635/0001-75
1780	Quincas	554.663.996/0001-87
1982	Zandor	736.952.369/0001-23

Tabelas

Táxi (TX)

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Corrida (R1)

<u>ClId</u>	<u>Placa</u>	DataPedido
1755	DAE6534	15/02/2003
1982	JDM8776	18/02/2003

Consultas

- Qual a marca de carro mais requisitada pelos clientes?
- Em que mês do ano mais corridas são feitas?
- Qual o nome dos clientes que trabalham na empresa que mais se utiliza do serviço de táxi?

Linguagens de Consulta Relacionais

- Servem para o usuário requisitar informações ao SGBD
- Linguagens:
 - Álgebra Relacional
 - Cálculo Relacional de Tuplas

Operacional x Declarativa

- Oeclarativa:
 - Quero um misto-quente
- Operacional:
 - Quero duas fatias de pão de forma, recheadas com uma fatia de queijo e uma fatia de presunto. Tudo isto bem tostado.

Álgebra Relacional

- Linguagem procedural
- Seis operadores básicos
 - seleção
 - projeção
 - união
 - diferença de conjuntos
 - produto cartesiano
 - renomeação
- Entradas: Relação
- Saídas: Relação

Operação de Projeção

- Copia a relação dada como argumento, deixando alguns atributos (colunas) de lado.
- Notação:

$$\pi_{A1, A2, ..., Ak}(R)$$

- A₁, ..., A_k: atributos da relação R
- Resultado: relação com as k colunas selecionadas
- Duplicatas são removidas

$$\pi_{\text{Marca,Modelo}}(TX)$$

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Marca, Modelo (TX)			
<u>Placa</u>	Marca	Modelo	AnoFab
AE6534	Ford	Fiesta	1999
KL4598	Wolksvagen	Gol	2001
KL7878	Ford	Fiesta	2001
DM8776	Wolksvagen	Santana	2002
JM3692	Chevrolet	Corsa	1999

$$\pi_{\text{Marca,Modelo}}(TX)$$

Marca	Modelo
Ford	Fiesta
Wolksvagen	Gol
Ford	Fiesta
Wolksvagen	Santana
Chevrolet	Corsa

$$\pi_{\text{Marca,Modelo}}(TX)$$

Marca	Modelo	
Ford	Fiesta	
Wolksvagen	Gol	
Ford	Fiesta	
Wolksvagen	Santana	
Chevrolet	Corsa	

$$\pi_{\text{Marca,Modelo}}(TX)$$

Marca	Modelo
Ford	Fiesta
Wolksvagen	Gol
Wolksvagen	Santana
Chevrolet	Corsa

Projeção Tabela Cliente Particular

$\pi_{\text{CliId},\text{Nome}}(\text{CP})$

CliId	Nome	CPF
1532	Asdrúbal	448.754.253-65
1755	Doriana	567.387.387-44
1780	Quincas	546.373.762-02

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

Projeção Tabela Cliente Particular

CliId	Nome	CGC
1532	Asdrúbal	754.856.965/0001-54
1644	Jepeto	478.652.635/0001-75
1780	Quincas	554.663.996/0001-87
1982	Zandor	736.952.369/0001-23

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

Propriedades da operação de projeção

- O número de tuplas na relação resultado $\pi_{< lista>}(R)$ é sempre menor ou igual ao número de tuplas em R.
- Se lista inclui chave, o número de tuplas é o mesmo

Operação de Seleção

- Seleciona tuplas (linhas) que satisfazem um dado predicado (uma condição lógica) nos valores dos atributos
- Notação: $\sigma_p(R)$
- P: predicado de seleção
 - Constituído por termos ligados por: ∧ (e), ∨
 (ou), ¬ (não)
 - Termo:
 - < <atributo> op <atributo>
 - < <atributo> op <constante>
 - \circ *op* pode ser: =, \neq , >, \geq , < ou \leq
 - Seletividade da condição: fração de tuplas selecionadas

Seleção

$\sigma_{AnoFab>2000}(TX)$

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Seleção

$$\sigma_{AnoFab>2000}(TX)$$

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Seleção

$$\sigma_{AnoFab>2000}(TX)$$

<u>Placa</u>	Marca	Modelo	AnoFab
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002

Propriedades da operação de seleção

- A operação σ_{<condição de seleção>}(R) produz relação com mesmo esquema
- É comutativa:

$$\sigma_{\text{condição }1>}(\sigma_{\text{condição }2>}(R)) = \sigma_{\text{condição }2}(\sigma_{\text{condição }1>}(R))$$

Cascatas de seleções em qualquer ordem:

$$\sigma_{<\text{condição 1>}}(\sigma_{<\text{condição 2>}}(\sigma_{<\text{condição 3>}}(R)))$$

$$= \sigma_{<\text{condição 2>}}(\sigma_{<\text{condição 3>}}(\sigma_{<\text{condição 1>}}(R)))$$

 Cascatas de seleções = uma seleção com conjunção de condições:

```
\sigma_{\text{<condição 1>}}(\sigma_{\text{< condição 2>}}(\sigma_{\text{<condição 3>}}(R)))
= \sigma_{\text{<condição 1> AND < condição 2> AND < condição 3>}}(R)))
```

Operações de Conjuntos

- União, Interseção e Diferença
- Relações precisam ser compatíveis quanto à união
 - R(A₁, A₂, ..., A_n) e S(B₁, B₂, ..., B_n)
 - Relações com mesmo grau (mesmo número de atributos)
 - $dom(A_i) = dom(B_i), 1 \le i \le n$
- A relação resultante tem os nomes dos atributos da primeira relação

Operações de Conjuntos

- R ∪ S:
 - relação que contém as tuplas que estão em R, em S ou em ambas
- R ∩ S:
 - Relação que contém as tuplas que estão em ambas R e S
- R S:
 - Relação que contém as tuplas que estão em R e que não estão em S

União

$C1 \cup C2$

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

União

$C1 \cup C2$

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

<u>CliId</u>	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

União

$C1 \cup C2$

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1755	Doriana
1780	Quincas
1982	Zandor

Interseção

$C1 \cap C2$

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

<u>CliId</u>	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

Interseção

$C1 \cap C2$

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

<u>CliId</u>	Nome
1532	Asdrúbal

Interseção

$C1 \cap C2$

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

<u>CliId</u>	Nome
1532	Asdrúbal
1780	Quincas

<u>CliId</u>	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

<u>CliId</u>	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

<u>CliId</u>	Nome
1755	Doriana

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

<u>CliId</u>	Nome
1755	Doriana

Diferença de Conjuntos

C1 - C2

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

<u>CliId</u>	Nome
1755	Doriana

Operações de Conjuntos: propriedades

- O União e interseção são comutativas:
 - $R \cup S = S \cup R$, $e R \cap S = S \cap R$
- E associativas:
 - $R \cup (S \cup T) = (R \cup S) \cup T$, $e(R \cap S) \cap T = R \cap (S \cap T)$
- O Diferença não é comutativa

$$R - S \neq S - R$$

 Permite combinar informações de duas relações

$$C1 \times R1$$

<u>CliId</u>	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

ClId	<u>Placa</u>	DataPedido
1755	DAE6534	15/02/2003
1982	JDM8776	18/02/2003

$C1 \times R1$

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

Clld	<u>Placa</u>	DataPedido
1755	DAE6534	15/02/2003
1982	JDM8776	18/02/2003

(CliId)	Nome	(ClId)	Placa	DataPedido
1532	Asdrúbal	1755	DAE6534	15/02/2003
1532	Asdrúbal	1982	JDM8776	18/02/2003

$C1 \times R1$

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

<u>ClId</u>	<u>Placa</u>	DataPedido
1755	DAE6534	15/02/2003
1982	JDM8776	18/02/2003

(CliId)	Nome	(ClId)	Placa	DataPedido
1532	Asdrúbal	1755	DAE6534	15/02/2003
1532	Asdrúbal	1982	JDM8776	18/02/2003
1755	Doriana	1755	DAE6534	15/02/2003
1755	Doriana	1982	JDM8776	18/02/2003

$C1 \times R1$

<u>CliId</u>	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

<u>ClId</u>	<u>Placa</u>	DataPedido
1755	DAE6534	15/02/2003
1982	JDM8776	18/02/2003

(CliId)	Nome	(ClId)	Placa	DataPedido
1532	Asdrúbal	1755	DAE6534	15/02/2003
1532	Asdrúbal	1982	JDM8776	18/02/2003
1755	Doriana	1755	DAE6534	15/02/2003
1755	Doriana	1982	JDM8776	18/02/2003
1780	Quincas	1755	DAE6534	15/02/2003
1780	Quincas	1982	JDM8776	18/02/2003

(CliId)	Nome	(ClId)	Placa	DataPedido
1532	Asdrúbal	1755	DAE6534	15/02/2003
1532	Asdrúbal	1982	JDM8776	18/02/2003
1755	Doriana	1755	DAE6534	15/02/2003
1755	Doriana	1982	JDM8776	18/02/2003
1780	Quincas	1755	DAE6534	15/02/2003
1780	Quincas	1982	JDM8776	18/02/2003

$$C1$$
 $C1.CliId < R1.CliId$

(CliId)	Nome	(ClId)	Placa	DataPedido
1532	Asdrúbal	1755	DAE6534	15/02/2003
1532	Asdrúbal	1982	JDM8776	18/02/2003
1755	Doriana	1755	DAE6534	15/02/2003
1755	Doriana	1982	JDM8776	18/02/2003
1780	Quincas	1755	DAE6534	15/02/2003
1780	Quincas	1982	JDM8776	18/02/2003

$$C1$$
 $C1.CliId < R1.CliId$

(CliId)	Nome	(ClId)	Placa	DataPedido
1532	Asdrúbal	1755	DAE6534	15/02/2003
1532	Asdrúbal	1982	JDM8776	18/02/2003
1755	Doriana	1982	JDM8776	18/02/2003
1780	Quincas	1982	JDM8776	18/02/2003

Equi-Junção

(CliId)	Nome	(ClId)	Placa	DataPedido
1532	Asdrúbal	1755	DAE6534	15/02/2003
1532	Asdrúbal	1982	JDM8776	18/02/2003
1755	Doriana	1755	DAE6534	15/02/2003
1755	Doriana	1982	JDM8776	18/02/2003
1780	Quincas	1755	DAE6534	15/02/2003
1780	Quincas	1982	JDM8776	18/02/2003

Equi-Junção

(CliId)	Nome	(ClId)	Placa	DataPedido
1532	Asdrúbal	1755	DAE6534	15/02/2003
1532	Asdrúbal	1982	JDM8776	18/02/2003
1755	Doriana	1755	DAE6534	15/02/2003
1755	Doriana	1982	JDM8776	18/02/2003
1780	Quincas	1755	DAE6534	15/02/2003
1780	Quincas	1982	JDM8776	18/02/2003

Equi-Junção

(CliId)	Nome	(ClId)	Placa	DataPedido
1755	Doriana	1755	DAE6534	15/02/2003

Equi-Junção (Junção Natural)

$$C1$$
 $CliId$
 $R1$

CliId	Nome	Placa	DataPedido
1755	Doriana	DAE6534	15/02/2003

- Se nenhuma combinação de tuplas satisfaz a condição de junção, o resultado da junção é uma relação vazia (com zero tuplas)
- R tem n_R tuplas e S tem n_S tuplas
 - Operação de junção terá entre 0 e n_R x n_S tuplas
- Seletividade de junção: número de tuplas esperado no resultado da junção dividido pelo tamanho máximo (n_R x n_S)

Renomeação

$$\rho(FR, \sigma_{Marca='Ford}, TX)$$

TX

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Renomeação

$$\rho(FR, \sigma_{Marca='Ford}, TX)$$

FR

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL7878	Ford	Fiesta	2001

Renomeação

- Seja D(numfd, nomed, par) uma relação
 - ρ D₁(numfd,nomed1,par1) (D)
 - D₁(numfd,nomed1,par1)← D

Conjunto Completo de Operadores

- \circ { π , σ , \cup , -, \times }
 - Qualquer outro operador pode ser expresso através dos operadores deste conjunto
 - \circ R \cap S = (R \cup S)- ((R-S) \cup (S-R))
 - $\circ R |X|_{< condicão} S = \sigma_{< condicão} (R X S)$

 Encontre clientes que tenham andado em todos os táxis da Marca Ford

Tabela adicional Corrida (R2)

Clld	<u>Placa</u>	DataPedido
1532	DAE6534	15/02/2003
1532	DKL4586	17/02/2003
1644	DKL7878	10/01/2003
1644	JDM8776	18/02/2003
1780	JJM3692	08/01/2003
1982	DAE6534	15/01/2003
1982	DKL4598	26/01/2003
1982	DKL7878	01/02/2003

Táxi (FR)

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL7878	Ford	Fiesta	2001

ClId	Placa
1532	DAE6534
1532	DKL4586
1644	DKL7878
1644	JDM8776
1780	JJM3692
1982	DAE6534
1982	DKL4598
1982	DKL7878

$$\rho(\text{SR2},\pi_{\text{ClId},\text{Placa}}(\text{R2}))$$

DKL7878

SR2 / SFR

ClId	Placa
1532	DAE6534
1532	DKL4586
1644	DKL7878
1644	JDM8776
1780	JJM3692
1982	DAE6534
1982	DKL4598
1982	DKL7878

Placa	
DAE6534	
DKL7878	

SR2 / SFR

ClId	Placa
1532	DAE6534
1532	DKL4586
1644	DKL7878
1644	JDM8776
1780	JJM3692
1982	DAE6534
1982	DKL4598
1982	DKL7878

ClId

SR2 / SFR

ClId	Placa
1532	DAE6534
1532	DKL4586
1644	DKL7878
1644	JDM8776
1780	JJM3692
1982	DAE6534
1982	DKL4598
1982	DKL7878

ClId

SR2 / SFR

ClId	Placa
1532	DAE6534
1532	DKL4586
1644	DKL7878
1644	JDM8776
1780	JJM3692
1982	DAE6534
1982	DKL4598
1982	DKL7878

Placa	
DAE6534	
DKL7878	

ClId

SR2 / SFR

ClId	Placa
1532	DAE6534
1532	DKL4586
1644	DKL7878
1644	JDM8776
1780	JJM3692
1982	DAE6534
1982	DKL4598
1982	DKL7878

Placa	
DAE6534	
DKL7878	

Clld	
1982	

 Implemente o operador de divisão usando os operadores de projeção, produto cartesiano e de diferença

- F(<u>numfd</u>,nomef)
- D(<u>numfd,nomed</u>,par)

F	
numfd	nomef
01	F1
02	F2
03	F3
04	F4

	D	
numfd	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

- Quais os nomes e parentescos de todos os dependentes?
 - $\pi_{\text{nomed,par}}$ (D)
- Quais funcionários possuem dependentes filhas?
 - π_{numfd} ($\sigma_{\text{par='filha'}}$ (D))
- Quais funcionários não possuem dependentes?
 - π_{numfd} (F) π_{numfd} (D)

 Dê os nomes dos funcionários que possuem algum dependente.

```
    π<sub>nomef</sub> (F | X | D)
```

 Dê o nome de cada funcionário que possui uma dependente chamada Alice.

```
• \pi_{\text{nomef}} (F | X | (\sigma_{\text{nomed='Alice'}} (D)))
```

- Quais funcionários possuem mais de um dependente?
 - ρ D₁ (numfd,nomed1,par1) (D)
 - ρ D₂ (numfd,nomed2,par2) (D)
 - π_{numfd} (($\sigma_{\text{nomed1}\neq\text{nomed2}}$ (D_1 |X| D_2)))
- Quais funcionários possuem exatamente um dependente?
 - Exercicio7<- π_{numfd} (D) π_{numfd} ($\sigma_{\text{nomed1} \neq \text{nomed2}}$ (D₁ |X| D₂))
- Quais funcionários não têm Alice como dependente (isto é, nenhuma dependente chamada Alice)?
 - π_{numfd} (D) π_{numfd} ($\sigma_{\text{nomed='Alice'}}$ (D))
- Para cada funcionário que tem uma dependente chamada Alice, dê o número do funcionário e o nome dos outros dependentes, se houver.
 - $\pi_{\text{numfd,nomed2}}$ ($\sigma_{\text{nomed2} \neq \text{'Alice'}}$ ($\sigma_{\text{nomed1} = \text{'Alice'}}$ ($D_1 \mid X \mid D_2$)))
- Dê os nomes dos funcionários que possuem exatamente um dependente.
 - π_{nomef} (F |X| Exercicio7)

Cálculo Relacional

- Mesmo poder de expressão da Álgebra Relacional
- Linguagem de consulta nãoprocedural
 - Não se define conjunto de operações
- Expressão do cálculo relacional de tuplas:
 - {t | F(t)}, conjunto de tuplas t tal que F(t) é verdadeiro
 - F(t) é uma condição lógica

Cálculo Relacional - Exemplo

- O Dê o nome de funcionários cujo salário é maior que R\$50.000:
 - {t.NOME | FUNCIONÁRIO(t) AND t.SALÁRIO>50000}
 - {t.NOME | t ∈ FUNCIONÁRIO ∧ t.SALÁRIO>50000}

Cálculo Relacional - Exemplos

- \circ União: R \cup S
 - $\{t \mid t \in R \text{ or } t \in S\}$
- \circ Interseção: R \cap S
 - $\{t \mid t \in R \text{ and } t \in S\}$
- O Diferença: R S
 - $\{t \mid t \in R \text{ and not } t \in S\}$
- Produto Cartesiano: R x S
 - $\{t, s \mid t \in R \text{ and } s \in S\}$

Cálculo Relacional - Exemplos

- O Projeção de R nas colunas c e d: $\pi_{c,d}$ (R)
 - $\{t.c, t.d \mid t \in R\}$
- \circ Seleção: $\sigma_{F}(R)$
 - $\{t \mid t \in R \text{ and } F\}$
- O Junção: onde F = a op. b
 - $\{t, s \mid t \in \mathbb{R} \text{ and } S \in S \text{ and } t.a \text{ op. } s.b\}$

Quantificadores Existencial e Universal

- \circ \exists $s \in S(F(s))$
 - Existe pelo menos uma tupla s pertencente a S tal que a fórmula F(s) é verdadeira
 - \blacksquare \exists $s \in S$ (s.nome = 'Paulo')
- $\bigcirc \forall s \in S(F(s))$
 - Para toda tupla s pertencente a S a fórmula F(s) é verdadeira.
 - $\bullet \forall s \in S \text{ (s.salário>1000)}$
- Equivalências
 - $(\forall x) (P(x)) \equiv not (\exists x) (not (P(x)))$
 - $(\exists x) (P(x)) \equiv not (\forall x) (not (P(x)))$

Observações

- O Variável presa (bound)
 - $\exists s \in S (...)$
 - $\forall s \in S (...)$
- Variável livre
- Exemplo: quais funcionários não possuem dependentes?
 - $\{t.numfd \mid t \in F \text{ and not } \exists s \in D \text{ } (t.numf d = s.numfd)\}$

- F(<u>numfd</u>,nomef)
- D(<u>numfd,nomed</u>,par)

F	
numfd	nomef
01	F1
02	F2
03	F3
04	F4

	D	
numfd	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

- Quais os nomes e parentescos de todos os dependentes?
 - $\pi_{\text{nomed,par}}$ (D)
- Quais funcionários possuem dependentes filhas?
 - $\pi_{\text{numfd}} (\sigma_{\text{par='filha'}} (D))$
- Quais funcionários não possuem dependentes?
 - π_{numfd} (F) π_{numfd} (D)

- Quais os nomes e parentescos de todos os dependentes?
 - $\pi_{\text{nomed,par}}$ (D)
 - {t.nomed, t.par | t ∈ D}
- Quais funcionários possuem dependentes filhas?
 - π_{numfd} ($\sigma_{\text{par='filha'}}$ (D))
 - {t.numfd | t ∈ D and t.par = 'filha'}
- Quais funcionários não possuem dependentes?
 - π_{numfd} (F) π_{numfd} (D)
 - {t.numfd | t ∈ F and not ∃ ← s ∈ D (t.numfd = s.numfd)}

- Dê os nomes dos funcionários que possuem algum dependente.
 - π_{nomef} (F | X | D)
- Dê o nome de cada funcionário que possui uma dependente chamada Alice.
 - π_{nomef} (F | X | ($\sigma_{\text{nomed='Alice'}}$ (D)))

- Dê os nomes dos funcionários que possuem algum dependente.
 - π_{nomef} (F | X | D)
 - {t.nomef | t ∈ F and ∃s ∈ D (t.numfd = s.numfd)}
- Dê o nome de cada funcionário que possui uma dependente chamada Alice.
 - π_{nomef} (F | X | ($\sigma_{\text{nomed='Alice'}}$ (D)))
 - {t.nomef | t ∈ F and ∃ s ∈ D (t.numfd = s.numfd and s.nomed = 'Alice')}

- Quais funcionários possuem mais de um dependente?
 - ρ D₁ (numfd,nomed1,par1) (D)
 - ρ D₂ (numfd,nomed2,par2) (D)
 - π_{numfd} (($\sigma_{\text{nomed1}\neq\text{nomed2}}$ (D_1 |X| D_2)))
- Quais funcionários possuem exatamente um dependente?
 - Exercicio7<- π_{numfd} (D) π_{numfd} ($\sigma_{\text{nomed1} \neq \text{nomed2}}$ (D₁ |X| D₂))
- Quais funcionários não têm Alice como dependente (isto é, nenhuma dependente chamada Alice)?
 - π_{numfd} (D) π_{numfd} ($\sigma_{\text{nomed='Alice'}}$ (D))
- Para cada funcionário que tem uma dependente chamada Alice, dê o número do funcionário e o nome dos outros dependentes, se houver.
 - $\pi_{\text{numfd,nomed2}}$ ($\sigma_{\text{nomed2} \neq \text{'Alice'}}$ ($\sigma_{\text{nomed1} = \text{'Alice'}}$ ($D_1 \mid X \mid D_2$)))
- Dê os nomes dos funcionários que possuem exatamente um dependente.
 - π_{numfd} (F |X| Exercicio7)

Cenas do próximo capítulo...

- Exercícios, exercícios, exercícios...
- Linguagem SQL (Structured Query Language)

```
SELECT < lista de atributos > FROM < lista de relações > WHERE < condições >
```

- Quais funcionários possuem dependentes filhas?
 - π_{numfd} ($\sigma_{\text{par='filha'}}$ (D))
 - {t.numfd | t ∈ D and t.par = 'filha'}
 - SELECT numfdFROM DWHERE D.par = 'filha'

Resumo da aula...

Álgebra Relacional

- Operações Básicas:
 - Seleção (o): Seleciona um subconjunto de linhas da relação.
 - $^{\circ}$ Projeção (π): Elimina colunas não desejadas da relação.
 - Operações de conjuntos (∪, , X)
- Operações Adicionais:
 - O Interseção, junção, divisão, renomeação

Cálculo Relacional de Tuplas

- {t | F(t)}, conjunto de tuplas t tal que F(t) é verdadeiro
- F(t) é uma condição lógica