《数值计算方法》实验

实验报告

题目	Matlab 下实现一些算法
姓名	廖蕾
学号	16340135
班级	16 级软件工程教务 2 班

一. 实验环境:

在 win10 操作系统下,使用 Matlab R2017a 完成的。

二. 实验内容与完成情况:

- 1. 请实现下述算法,求解线性方程组 Ax=b,其中 A 为 $n \times n$ 维的已知矩阵, b 为 n 维的已 知向量, x 为 n 维的未知向量。
 - (1) 高斯消去法。
 - (2) 列主元消去法。

A 与 b 中的元素服从独立同分布的正态分布。令 n=10、50、100、200,测试计算时间并绘制曲线。

1) 高斯消去法:

输入的量:

系数矩阵 A 和常系数向量 b:

输出的量:

系数矩阵 A 和增广矩阵 B 的秩 RA,RB, 方程组中未知量的个数 n 和有关方程组解 X 及其解的信息.

算法描述:

首先在矩阵 A 和向量 b 中做个判断,判断 A 与 b 的秩是否相等,若不等算法结束;若相等且等于 n,那么开始高斯消去法。首先从上往下消主元,得到主元均为 1 的上三角阵,具体实现代码如下:

```
for p = 1: n-1
for k = p+1: n
m = B(k, p)/B(p, p);
B(k, p:n+1) = B(k, p:n+1) - m * B(p, p:n+1);
end
end
之后从下往上回代,得到结果 x 向量,具体实现代码如下:
for q = n-1: -1: 1
X(q) = (b(q)-sum(A(q, q+1:n)*X(q+1:n)))/A(q, q);
end
```

数值实验:

编写好函数之后在命令行中输入:

A = normrnd(0, 1, 10, 10);

b = normrnd(0, 1, 10, 1);

按下运行并计时,得到结果如下所示:

此时:

Α	=

-0.6140	-0.3732	-0.0286	-1.0337	-1.3140	-0.1823	-2.4516	-1.0161
-0.4836	1.0738						
0.6866	0.1014	0.2747	0.1976	1.3250	-0.1638	0.6810	-0.6970
-1.3094	-0.4895						
-0.3688	-0.0439	-1.3990	-1.555	-0.5760	0.6288	-0.590	0.3858
0.4426	0.7767						
1.3578	1.6871	0.0372	-0.7146	-1.6735	-0.4092	-0.0570	-1.6772
0.2012	-0.4616						
0.5436	0.0770	-1.6064	-1.0215	-0.2319	-0.4135	1.2533	-0.3875
-0.1241	-0.8345						
-0.4735	-0.7025	1.0537	-0.7075	-0.5512	0.1986	1.2233	1.6326
-0.2364	-0.7857						
1.0287	0.1440	1.5999	-2.1740	0.5248	-0.2509	0.5960	-0.7616
-0.6389	-0.5827						
-0.6030	0.7080	-0.8727	-0.4974	-1.0328	0.6545	-1.5837	1.5258
-0.3587	0.5648						
1.5494	-0.0697	-1.1898	0.6584	0.2365	0.0156	0.5443	0.2669
-0.7873	-1.1178						
-1.9684	-0.8540	0.6153	1.3906	-1.0728	1.4699	0.1297	0.2265
0.5617	-0.3587						

b =

0.4771

0.0486

-0.2100

-1.0124

0.0441

-2.3974

-2.3001

1.6941

-0.0035

0.2600

计算结果为:

结果分析:

之后分别调整 A 与 b 的大小,验证 10,50,100,200 的矩阵运算时间,得到高斯算法的时间表格如下:

n 的值	10	50	100	200
用时(s)	0.006	0.012	0.025	0.095

2) 列主元消去法:

输入的量:

系数矩阵 A 和常系数向量 b;

输出的量:

系数矩阵 A 和增广矩阵 B 的秩 RA,RB, 方程组中未知量的个数 n 和有关方程组解 X 及其解的信息.

算法描述:

首先在矩阵 A 和向量 b 中做个判断,判断 A 与 b 的秩是否相等,若不等算法结束;若相等且等于 n,那么开始列主元消去法。先自顶向下,找出主元最大的一行,与当前行进行交换,然后最后面的每一行进行消元,得到一个主元全为 1 的上三角阵,具体实现如下:

之后和高斯消去法一样,从下往上回代,计算得到 x 的值。

数值实验:

利用和高斯实验中相同的 10×10 矩阵,用列主元法进行计算得到结果为:

对比得到: 列主元消去法与高斯消去法对于这个 10×10 的矩阵来说结果相同。

结果分析:

之后分别调整 A 与 b 的大小,验证 10,50,100,200 的矩阵运算时间,得到高斯算法的时间表格如下:

n 的信	10	ΕO	100	200
11 H 1 IET	10	50	100	200
用时(s)	0.008	0.015	0.033	0.114

3) 总结:

在高斯消去法和列主元消去法中,我将时间放在了一张图中,得到时间曲线如下:

- 2. 请实现下述算法,求解线性方程组 Ax=b,其中 A 为 n x n 维的已知矩阵, b 为 n 维的已知向量, x 为 n 维的未知向量。
 - (1) Jacobi 迭代法。
 - (2) Gauss-Seidel 迭代法。
 - (3)逐次超松弛迭代法。
 - (4) 共轭梯度法。

A 为对称正定矩阵, 其特征值服从独立同分布的[0,1]间的均匀分布; b 中的元素服从独立同分布的正态分布。令 n=10、50、100、200, 分别绘制出算法的收敛曲线, 横坐标为迭代步数, 纵坐标为相对误差。比较 Jacobi 迭代法、Gauss-Seidel 迭代法、逐次超松弛迭代法、共轭梯度法与高斯消去法、列主元消去法的计算时间。改变逐次超松弛迭代法的松弛因子, 分析其对收敛速度的影响。

1) Jacobi 迭代法:

输入的量:

系数矩阵 A 和常系数向量 b;

输出的量:

方程组的解 x, 以及迭代次数 k;

算法描述:

首先在矩阵 A 和向量 b 中做个判断,判断 A 与 b 的秩是否相等,若不等算法结束;若相等且等于 n,那么开始 Jacobi 迭代。计算出 A 矩阵对应的对角阵 D,上三角阵 U,下三角阵 L。计算出 $G = D^{-1}(L+U)$ 和 $d = D^{-1}b$ 。判断 G

的谱半径是否小于 1, 若不是, 说明该矩阵对 Jacobi 算法不收敛, 跳出程序; 若是, 则开始迭代。迭代的具体实现如下:

x = zeros(n, 1); %x初始设为0向量 x1 = x; x2 = G * x + d; while norm(x2 - x1, inf) > 10^(-4)

> x1 = x2;x2 = G * x2 + d;

N = N + 1;

end

数值实验:

对以下矩阵进行计算:

$$\begin{cases} 5x_1 + 2x_2 + x_3 = -12 \\ -x_1 + 4x_2 + 2x_3 = 20 \\ 2x_1 - 3x_2 + 10x_3 = 3 \end{cases}$$

得到结果:

结果分析:

通过生成严格的对角占优矩阵,令 n = 10, 50, 100, 200 绘制 Jacobi 的收敛曲 线如下:

其中测试数据来自随机生成的矩阵 A 和向量 b。

2) Gauss-Seidel 迭代法:

输入的量:

系数矩阵 A 和常系数向量 b:

输出的量:

方程组的解 x, 以及迭代次数 k;

算法描述:

首先在矩阵 A 和向量 b 中做个判断,判断 A 与 b 的秩是否相等,若不等算法结束;若相等且等于 n,程序继续。计算出 A 矩阵对应的对角阵 D,上三角阵 U,下三角阵 L。计算出 $B = (D-L)^{-1}U$ 和 $g = (D-L)^{-1}$ b。判断 B 的谱半径是否小于 1,若不是,说明该矩阵对 Gauss-Seidel 算法不收敛,跳出程序;若是,则开始迭代。迭代的具体实现如下:

```
k = 1;

x = B * x0 + g;

while norm(x - x0, inf) > 10^(-4)

x0 = x;

x = B * x + g;

k = k + 1;

if(k >= M)

disp('Warning: 迭代太多次,可能不收敛');

return

end

end
```

数值实验:

使用 Jacobi 算法中的方程组进行实验: 向量的处置为 n 维空间中的零向量。

$$\begin{cases} 5x_1 + 2x_2 + x_3 = -12 \\ -x_1 + 4x_2 + 2x_3 = 20 \\ 2x_1 - 3x_2 + 10x_3 = 3 \end{cases}$$

得到结果如下:

可以看出,这里的计算结果和 Jacobi 迭代中计算结果一样。

结果分析:

通过生成严格的对角占优矩阵,令 n = 10, 50, 100, 200 绘制 Gauss-Seidel 的 收敛曲线如下:

其中测试数据来自随机生成的严格对角占优矩阵 A 和向量 b。

在实验中,我发现,高斯赛德尔迭代的收敛速度比 Jacobi 迭代要快很多,在 200x200 的矩阵的迭代中,也能在 10 次迭代内解出结果。

3) 逐次超松驰迭代法:

输入的量:

系数矩阵 A, 常系数向量 b 以及松弛因子 w;

输出的量:

方程组的解 x, 以及迭代次数 k;

算法描述:

首先在矩阵 A 和向量 b 中做个判断,判断 A 与 b 的秩是否相等,若不等算法结束;若相等且等于 n,程序继续。再判断输入的松弛因子 w 的值是否在[0,2]之间,若不是跳出函数,程序结束;若是,程序继续。计算出 A 矩阵 对 应 的 对 角 阵 D , 上 三 角 阵 U , 下 三 角 阵 L 。 计 算 出 $B = (D - \omega L)^{-1}((1 - \omega)D + \omega U)$ 和 $f = \omega(D - \omega L)^{-1}b$,开始迭代,具体的接待

```
如下: x0 = zeros(n, 1); x = B * x0 + f; k = 1; while norm(x - x0, inf) > 10^{-4} x0 = x; x = B * x0 + f; k = k + 1; if (k > M) disp('Warning: \mu \ddot{u} \dot{u} \dot{u} \cdot \P \dot{a} \dot{f} \cdot E - \dot{c} \cdot E \ddot{A} \ddot{U}^2 \cdot B \tilde{O} \dot{A}^2'); return end end
```

数值实验:

继续使用上面的方程组:

$$\begin{cases} 5x_1 + 2x_2 + x_3 = -12 \\ -x_1 + 4x_2 + 2x_3 = 20 \\ 2x_1 - 3x_2 + 10x_3 = 3 \end{cases}$$

得到结果如下:

结果分析:

利用上面随机生成的严格对角占优矩阵,筛选出谱半径小于 1 的矩阵,来分析超松驰迭代的收敛情况。

得到结果如下:

其中,矩阵大小分别为 10,50,100,200,且在每次 SOR 算法中,松弛因子都取 w=1.3。

松弛因子的分析:

对于一个 200x200 的矩阵 A,计算 $B = (D - \omega L)^{-1}((1 - \omega)D + \omega U)$ 矩阵的谱半径,w 取值为从 0 到 2,步长为 0.1 的值。 得到曲线如下(横坐标为 w,纵坐标为 B 的谱半径):

不同的 w 对应的迭代步数如下:

4) 共轭梯度法:

输入的量:

系数矩阵 A 和常系数向量 b;

输出的量:

方程组的解 x, 以及迭代次数 k;

算法描述:

首先在矩阵 A 和向量 b 中做个判断,判断 A 与 b 的秩是否相等,若不等算法结束;若相等且等于 n,程序继续。令 x 矩阵的初始值为 n 维空间中的零向量,计算出第一步迭代中的 $\mathbf{r}_0 = \mathbf{b} - \mathbf{A} \times \mathbf{x}_0$ 和 $\mathbf{p}_0 = \mathbf{r}_0$,然后开始迭代,具体的代码如下:

```
while abs(p0) > 10^(-4)
if(abs(r0) < 10^(-4))
break;
```

```
end
a0 = r0'* r0 / (p0'* A*p0);
x1 = x0 + a0 * p0;
r1 = r0 - a0 * A * p0;
b0 = r1'*r1 / (r0'*r0);
p1 = r1 + b0 * p0;
x0 = x1;
r0 = r1;
p0 = p1;
k = k + 1;
```

end

数值实验:

仍然使用上面的方程组:

$$\begin{cases} 5x_1 + 2x_2 + x_3 = -12 \\ -x_1 + 4x_2 + 2x_3 = 20 \\ 2x_1 - 3x_2 + 10x_3 = 3 \end{cases}$$

在运行过程中, 我发现程序死循环了, 通过计算 A 的所有特征值, 我发现,

这不是一个正定矩阵, 所以在共轭梯度迭代中, 不能收敛。

```
>> eig(A)

ans =

9.7927 + 0.0000i
4.6037 + 2.1545i
4.6037 - 2.1545i
```

改用下面这个正定矩阵:

结果分析:

利用上面随机生成的严格对角占优矩阵,筛选出谱半径小于 1 的矩阵,来分析共轭梯度迭代法的收敛情况。

得到结果如下:

其中,矩阵大小分别为 10,50,100,200,

5) 总体分析:

对于同一个 200x200 的正定矩阵,分别用上面六个算法进行计算,得到下面的时间比较:

算法	高斯消	列主元	Jacobi	Gauss-Seidel	逐次超	共轭梯
	去法	消去法	迭代法	迭代法	松驰迭	度法
					代法	
时间(s)	0.226	0.163	0.052	0.035	0.046	0.007

结论: 共轭梯度法在时间上最优, 高斯消去法在时间上最差。

3. 在 Epinions 社交数据集 (https://snap.stanford.edu/data/soc-Epinions1.html) 中,每个网络节点可以选择信任其它节点。借鉴 Pagerank 的思想编写程序,对网络节点的受信任程度进行评分。在实验报告中,请给出伪代码。

算法描述:

先将数据导入到一个矩阵中,获得两列的节点编号,生成 n×n 的邻接矩阵。通过邻接矩阵,计算 pagerank 的矩阵,接下来开始迭代,迭代初向量为:

 $x = 1/n \times ones(n,1)$,系数设为 deta = 0.05,迭代公式为: newv = (1 - beta) * D * x + beta * 1/n * ones(n, 1);

```
伪代码如下:
```

结果分析:

