Homework 3 科学多站 E24105038 算年114

Section 2.1

$$\Rightarrow A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

c) > det(AB) = a deh - adfg + bcfg - bceh (Using the answer from (b))

=> BA = [ae+cf be+df]
ag+ch bg+dh]

=> det(BA) = (ae+cf) (bg+dh) - (be+df) (ag+ch)
= abeg + adeh + bcfg + cdfh - abeg - adfg - bceh - cdfh
= adeh - adfg + bcfg - bceh

: def(AB) = def(BA) #

$$\frac{\text{Section 2.2}}{2|a|} = \begin{bmatrix} 2 & 1 & 2 & 2 \\ -3 & 3 & 1 & 3 \\ 2 & 1 & -1 & -4 \\ 1 & -3 & 2 & 0 \end{bmatrix} \xrightarrow{x_{1}^{2}} \begin{bmatrix} 2 & 1 & 2 & 2 \\ 0 & \frac{1}{2} & 4 & 6 \\ 0 & 0 & -\frac{3}{2} & 1 \\ 0 & 0 & -\frac{7}{2} & 1 & -1 \end{bmatrix} \xrightarrow{x_{1}^{2}} \begin{bmatrix} 2 & 1 & 2 & 2 \\ 0 & \frac{1}{2} & 4 & 6 \\ 0 & 0 & \frac{37}{4} & \frac{33}{4} \end{bmatrix}$$

$$= (-1)\cdot(-1)\begin{vmatrix} 2 & 1 & 2 & 2 \\ -3 & 3 & 1 & 3 \\ 2 & 1 & -1 & -1 \\ 1 & -3 & 2 & 0 \end{vmatrix} + (-3 & 3 & 1 & 3) \\ 2 & 1 & -1 & -1 \\ 1 & -3 & 2 & 0 \end{vmatrix}$$

(2 times of interchanging (2 times of row the row) operation IZI => will not affect the result of Jet.

18)
$$A: k \times k \text{ matrix}$$
, $B: (n-k) \times (n-k) \text{ matrix}$
 $E = \begin{bmatrix} I_k & O \\ O & B \end{bmatrix}$, $F = \begin{bmatrix} A & O \\ O & I_{n-k} \end{bmatrix}$, $C = \begin{bmatrix} A & O \\ O & B \end{bmatrix}$

- a) By the rule of when the matrix is triangular, its determinant is the product of the diagonal elements
- => det (E) = det(Ik) x det (B)

· : determinat of an identity matrix always = 1

- b) By the rule of when the matrix is triangular, its determinant is the product of the diagonal elements
- => det (12) = det (A) x det (In-12)

= det(A) × 1 (Leterminant of an identity matrix is always 1)

:) By the ryle of when the matrix is triangular, its determinant is

the product of the diagonal elements

2) a)
$$2\chi_1 + 3\chi_2 = 2$$

 $8\chi_1 - 6\chi_2 = 2$

$$A = \begin{bmatrix} 2 & 3 \\ 8 & -6 \end{bmatrix}$$

$$\Rightarrow \det(A_2) = \begin{vmatrix} 2 & 2 \\ 8 & 2 \end{vmatrix} = 4 - 16 = -12$$

$$\frac{1}{12} \frac{det(A_1)}{det(A)} = \frac{-18}{-36} = \frac{1}{2}$$

$$\frac{1}{12} \frac{det(A_2)}{det(A)} = \frac{-12}{-36} = \frac{1}{3}$$

$$|A| = |A| = |A|$$

$$\Rightarrow \det(A_1) = \begin{vmatrix} 5 & 3 \\ 12 & 7 \end{vmatrix} = 35 - 36 = -1$$

$$\Rightarrow \det(A_1) = \begin{vmatrix} 5 & 3 \\ 12 & 7 \end{vmatrix} = 35 - 36$$

$$\Rightarrow \det(A_2) = \begin{vmatrix} 6 & 5 \\ 5 & 12 \end{vmatrix} = 72 - 25 = 47$$

$$\int_{A} (1) \int_{A} (1) = \frac{1}{24} = -\frac{1}{24}$$

:.
$$\chi'_2 = \frac{\det(A_2)}{\det(A)} = \frac{47}{17} = \frac{47}{27}$$

$$\frac{1}{3}x_{1} - \frac{1}{2}x_{2} + \frac{1}{2}x_{3} = -3$$

$$\frac{3}{4} = \begin{bmatrix} 4 & 0 & -2 \\ 7 & 7 & 2 \\ 3 & -2 & 1 \end{bmatrix}$$

$$\int_{-\infty}^{\infty} \chi_1 = \frac{\det(A_1)}{\det(A)} = \frac{228}{114} = 2$$

:,
$$1(2 = \frac{\det(A_2)}{\det(A)} = \frac{0}{114} = 0$$

$$\therefore 1(3 = \frac{\det(A3)}{\det(A)} = \frac{-1026}{114} = -9$$

$$|A| = \begin{vmatrix} 7 & 7 & 2 \\ 3 & -2 & 1 \end{vmatrix}$$

$$|A| = \begin{vmatrix} 7 & 7 & 2 \\ 4 & 0 & -2 \end{vmatrix} |(1 \text{hoose row})|$$

$$|A| = \begin{vmatrix} 7 & 7 & 2 \\ 4 & 7 & 2 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & 0 & -2 \\ -4 & 7 & 2 \\ -3 & -2 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & 0 & -2 \\ -4 & 7 & 2 \\ -3 & -2 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 & 1 \end{vmatrix} |(1 \text{hoose first row})|$$

$$|A| = \begin{vmatrix} 7 & 6 & -2 \\ 3 & -3 &$$

$$= 26(11) - 2(8+21) = 286 - 58 = 228$$

$$\Rightarrow \det(A_3) = \begin{vmatrix} 4 & 0 & 26 \\ 7 & 7 & -4 \\ 3 & 2 & -3 \end{vmatrix} = 4(-2|-8) + 26(-14-21) = -116-910 = -1026$$

$$\begin{array}{l} d) \ 2X_{1} - 2X_{2} + 3X_{3} = 0 \\ X_{1} + 2X_{2} + 3X_{3} = 8 \\ -2X_{1} + 4X_{2} + X_{3} = 6 \\ \\ \Rightarrow A = \begin{bmatrix} 2 & -2 & 3 \\ -2 & 4 & 1 \end{bmatrix} \Rightarrow det(A) = \begin{bmatrix} \frac{1}{2} - \frac{2}{3} & 3 \\ \frac{1}{2} - \frac{2}{3} & \frac{3}{3} \\ -2 & 4 & 1 \end{bmatrix} \\ & \Rightarrow det(A_{1}) = \begin{bmatrix} 0 - 2 & 3 \\ 8 & 2 & 3 \\ 6 & 4 & 2 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 8 & 2 & 3 \\ -2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 8 & 2 & 3 \\ -2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 8 & 2 & 3 \\ -2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 8 & 2 & 3 \\ -2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 2 & 2 & 18 \end{bmatrix} + 3(32 - 12) = -20 + 60 = 40 \\ \Rightarrow det(A_{3}) = \begin{bmatrix} \frac{1}{2} - 2 & 0 \\ \frac{1}{2} - 2 & 0 \\ \frac{1}{2} - 2 & 0 \\ -2 & 2 & 18 \end{bmatrix} + 3(6 + 16) = -20 + 66 = 46 \\ \Rightarrow det(A_{3}) = \begin{bmatrix} \frac{1}{2} - 2 & 0 \\ \frac{1}{2} - 2 & 0 \\ \frac{1}{2} - 2 & 0 \\ -2 & 18 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ -2 & 18 \end{bmatrix} + 2(6 + 16) = -40 + 44 = 4 \\ \Rightarrow det(A_{3}) = \frac{1}{2} - \frac{2}{2} & 0 \\ det(A_{3}) = \frac{1}{2} - \frac{2}{2} & 0 \\ det(A_{3}) = \frac{40}{18} = \frac{20}{9} \\ det(A_{3}) = \frac{1}{18} = \frac{23}{9} \\ \end{pmatrix} X_{2} = \frac{det(A_{3})}{det(A)} = \frac{40}{18} = \frac{20}{9} \\ \end{pmatrix} X_{2} = \frac{det(A_{3})}{det(A)} = \frac{40}{18} = \frac{20}{9} \\ \end{pmatrix} X_{3} = \frac{det(A_{3})}{det(A)} = \frac{40}{18} = \frac{20}{9} \\ \end{pmatrix} X_{4} = \frac{det(A_{3})}{det(A_{3})} = \frac{40}{18} = \frac{20}{9} \\ \end{pmatrix} X_{4} = \frac{det(A_{3})}{det(A_{3})} = \frac{40}{18} = \frac{20}{9} \\ \end{pmatrix} X_{4} = \frac{det(A_{3})}{det(A_{3})} = \frac{40}{18} = \frac{20}{9} \\ \end{pmatrix} X_{4} = \frac{det(A_{3})}{det(A_{3})} = \frac{40}{18} = \frac{20}{9} \\ \end{pmatrix} X_{4} = \frac{det(A_{3})}{det(A_{3})} = \frac{40}{18} = \frac{20}{9} \\ \end{pmatrix} X_{5} = \frac{det(A_{3})}{det(A_{3})} = \frac{40}{18} = \frac{20}{9} \\ \end{pmatrix} X_{5} = \frac{det(A_{3})}{det(A_{3})} = \frac{40}{18} = \frac{20}{9} \\ \end{bmatrix} X_{5} = \frac{det(A_{3})}{det(A_{3})} = \frac{40}{18} = \frac{20}{9} \\ \end{bmatrix} X_{5} = \frac{det(A_{3})}{det(A_{3})} = \frac{det(A_{3})}{$$

e)
$$-\chi_{1}+2\chi_{2}+\chi_{3}+\chi_{4}=9$$
 $2\chi_{1}+\chi_{2}-2\chi_{3}+\chi_{4}=3$
 $3\chi_{1}+3\chi_{2}+\chi_{5}=6$
 $2\chi_{2}+\chi_{3}-\chi_{4}=2$

$$\Rightarrow A = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{4} & 0 \\ 0 & 2 & 1 & -1 \end{bmatrix} \xrightarrow{\text{first}} \begin{vmatrix} 1-2 & 1 \\ \frac{1}{2} & 1 & 1 \\ \frac{1}{3} & \frac{1}{4} & 0 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & 0 \\ \frac{1}{3} & \frac{1}{4} & 0 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & 0 \\ \frac{1}{3} & \frac{1}{4} & 0 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & 0 \\ \frac{1}{3} & \frac{1}{4} & 0 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & 0 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & 0 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & 0 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 & 1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 & 1 & 1 & -1 \\ \frac{1}{3} & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1-2 &$$

$$\Rightarrow \det(A_3) = \begin{vmatrix} -1 & 2 & 9 & 1 \\ 2 & 1 & 3 & 1 \\ 3 & 3 & 6 & 0 \\ 0 & 2 & 2 & -1 \end{vmatrix}$$

$$\Rightarrow \det(A_3) = \begin{vmatrix} -1 & 2 & 9 & 1 \\ 2 & 1 & 3 & 1 \\ 3 & 3 & 6 & 0 \\ 0 & 2 & 2 & -1 \end{vmatrix}$$

$$\Rightarrow \det(A_4) = \begin{vmatrix} -1 & 2 & 1 & 9 \\ 2 & 1 & -2 & 3 \\ 3 & 3 & 1 & 6 \\ 0 & 2 & 1 & 2 \end{vmatrix}$$

$$\Rightarrow \det(A_4) = \begin{vmatrix} -1 & 2 & 1 & 9 \\ 2 & 1 & -2 & 3 \\ 3 & 3 & 1 & 6 \\ 0 & 2 & 1 & 2 \end{vmatrix}$$

$$\Rightarrow \det(A_4) = \begin{vmatrix} -1 & 2 & 1 & 9 \\ 2 & 1 & -2 & 3 \\ 3 & 3 & 1 & 6 \\ 0 & 2 & 1 & 2 \end{vmatrix}$$

$$\Rightarrow \det(A_4) = \begin{vmatrix} -1 & 2 & 1 & 9 \\ 2 & 1 & -2 & 3 \\ 3 & 3 & 1 & 6 \\ 0 & 2 & 1 & 2 \end{vmatrix}$$

$$\Rightarrow \det(A_4) = \begin{vmatrix} -1 & 2 & 1 & 9 \\ 2 & 1 & -2 & 3 \\ 3 & 3 & 1 & 6 \\ 0 & 2 & 1 & 2 \end{vmatrix}$$

$$\Rightarrow \det(A_1) = \frac{-16}{32} = -\frac{1}{2}$$

$$\Rightarrow \det(A_1) = \frac{-16}{32} = -\frac{1}{2}$$

$$\Rightarrow \det(A_1) = \frac{-16}{32} = \frac{9}{4}$$

$$\Rightarrow \det(A_1) = \frac{-16}{32} = \frac{3}{4}$$

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 3 & 4 \\ 1 & 1 & 2 \end{bmatrix}$$

$$\Rightarrow A_1 = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 4 \\ 1 & 0 & 2 \end{bmatrix}, A_3 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\therefore X_{i} = \frac{\det(A_{i})}{\det(A)} = \frac{0}{2} = 0$$

$$\chi_{2}^{2} = \frac{\det(A_{2})}{\det(A)} = \frac{2}{2} = 1$$

<u>1.3</u>

4)

Comma	nd Window							l l
	333300	360160	334025	333340	241240	34/435	310002	390750
	342174	336308	327860	342852	316568	336816	306333	394316
	312616	318245	302929	323151	332997	332129	285017	383623
	332115	355567	341213	359214	356752	367174	312526	378412
	328439	325904	333552	350180	346909	331739	305742	392570
	321679	313949	293621	309284	309100	311853	291821	364686
	301816	316333	289504	306084	318147	314172	296906	368612
	282345	318644	288212	309434	287166	301640	281727	335955
	296296	314133	288325	306447	315614	311302	276065	352969
	314067	311007	301372	306195	305677	309365	276015	342174
	334644	345435	315882	339338	321332	336389	296563	389600
	286659	309634	301067	307014	304144	301903	286666	351942
	303574	307758	300473	314487	301652	298225	270514	331507
	292680	305430	312566	302063	306946	301091	285399	346352
	339952	356546	355424	362497	337356	335383	318380	389888
	336583	341763	342383	337592	343530	344808	309696	374668
	299031	325511	306113	316986	296229	321224	292476	372814
	291182	297439	285843	300668	300183	302743	254316	332708
	321349	334502	300270	333557	324088	329308	282860	357117
	346152	349439	370072	344684	351580	360612	315542	410390
	319545	321990	311394	322651	336481	322641	306808	377202
	358949	351424	354259	343217	345820	350958	328562	404335
	320385	335223	308999	313773	334401	331819	297249	374828
	322259	320484	318398	324480	311804	321419	308652	378644
	322239	320404	210230	324400	311004	321419	300632	3/0044
	8192							
	0192							
	0							
	0							
	0							
	0							
6.	1							
fx >>	1							

• As you can see the result of errors of both C's are zero, so they(C_naive & C_tiled) are accurate.

5)

This plot has shown an the decrease in memory reads as tile size
increases, illustrating the efficiency gained by reading blocks of data.
However, if the tile size becomes too large (approaching the size of the
matrix), you might see diminishing returns or even increased reads due
to inefficiencies in handling very large tiles.