

Precision 16-Channel/Dual 8-Channel CMOS Analog Multiplexers

DESCRIPTION

The DG506B and DG507B are high performance analog multiplexers. Their ultra-low switch charge injection, low channel capacitance, and low leakage level allows them to achieve superior switching performance. The DG506B is a 16-channel single-ended analog multiplexer designed to connect one of sixteen inputs to a common output as determined by a 4-bit binary address (A0, A1, A2, A3). The DG507B is a dual 8-channel differential analog multiplexer designed to connect one of eight differential inputs to a common dual output as determined by its 3-bit binary address (A0, A1, A2). Break-before-make switching action protects against momentary crosstalk between adjacent channels.

An on channel conducts current equally well in both directions. In the off state each channel blocks voltages up to the power supply rails. An enable (EN) function allows the user to reset the multiplexer/demultiplexer to all switches off for stacking several devices. All control inputs, addresses (Ax) and enable (EN) are TTL compatible over the full specified operating temperature range.

The DG506B and DG507B are fabricated on an enhanced SG-II CMOS process that achieves improved performance on: reduced charge injection, lower device leakage, and minimized parasitic capacitance.

As the DG506, DG507 has a long history in the industry with many suppliers offering copies, and in some cases improved variations, with the best in class improvements, the Vishay Siliconix new version of the DG506B, DG507B are the superior alternatives to what is currently available.

Applications for the DG506B, DG507B include high speed and high precision data acquisition, audio signal switching and routing, ATE systems, and avionics. High performance and low power dissipation make them ideal for battery operated and remote instrumentation applications.

The DG506B and DG507B have the absolute maximum voltage rating extended to 44 V. Additionally, single supply operation is also allowed. An epitaxial layer prevents

The DG506B and DG507B are both available in 28-lead SOIC and TSSOP package options with extended temperature range of -40 °C to +125 °C.

For more information, refer to Vishay Siliconix DG506B, DG507B evaluation board note.

FEATURES

- Operate with single or dual power supply
- V+ to V- analog signal swing range
- · 44 V power supply maximum rating
- Extended operate temperature range: -40 °C to +125 °C
- Low leakage typically < 3 pA
- Low charge injection Q_{INLI} = 1 pC
- Low power I_{SUPPLY}: 5 μA
- · TTL compatible logic
- > 250 mA latch up current per JESD78
- Available in SOIC28 and TSSOP28 packages
- Superior alternative to:
 - ADG506A, DG506A, HI-506
 - ADG507A, DG507A, HI-507
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- · Reduced switching errors
- Reduced glitching
- · Improved data throughput
- Reduced power consumption
- Increased ruggedness
- Wide supply ranges (\pm 5 V to \pm 20 V)

APPLICATIONS

- Data acquisition systems
- · Audio and video signal routing
- ATE systems
- Medical instrumentation

VISHAY

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUT	TRUTH TABLE DG506B								
A ₃	A ₂	A ₁	A ₀	EN	On Switch				
Х	Х	Х	Х	0	None				
0	0	0	0	1	1				
0	0	0	1	1	2				
0	0	1	0	1	3				
0	0	1	1	1	4				
0	1	0	0	1	5				
0	1	0	1	1	6				
0	1	1	0	1	7				
1	1	1	1	1	8				
1	0	0	0	1	9				
1	0	0	1	1	10				
1	0	1	0	1	11				
1	0	1	1	1	12				
1	1	0	0	1	13				
1	1	0	1	1	14				
1	1	1	0	1	15				
1	1	1	1	1	16				

TRUTH TABLE DG507B									
A ₂	A ₁	A_0	EN	On Switch					
Х	Х	Х	0	None					
0	0	0	1	1					
0	0	1	1	2					
0	1	0	1	3					
0	1	1	1	4					
1	0	0	1	5					
1	0	1	1	6					
1	1	0	1	7					
1	1	1	1	8					

Logic "0" = $V_{IL} \le 0.8 \text{ V}$ Logic "1" = $V_{IH} \ge 2.4 \text{ V}$ X = Do not care

ORDERING INFORMATION DG506B							
Temp. Range	Package	Part Number					
	28-Pin SOIC	DG506BEW-T1-GE3					
-40 °C to 125 °C	28-Pin TSSOP	DG506BEQ-T1-GE3					
	28-Pin PLCC	DG506BEN-T1-GE3					

ORDERING INFORMATION DG507B							
Temp. Range	Package	Part Number					
	28-Pin SOIC	DG507BEW-T1-GE3					
-40 °C to 125 °C	28-Pin TSSOP	DG507BEQ-T1-GE3					
	28-Pin PLCC	DG507BEN-T1-GE3					

ABSOLUTE MAXIMUM RATINGS								
Parameter		Limit	Unit					
Valtages Deferenced to V	V+	44						
Voltages Referenced to V-	GND	25	V					
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 or 20 mA, whichever occurs first	ľ					
Current (Any terminal)		30	mΛ					
Peak Current, S or D (Pulsed at 1 ms, 10 % duty cycle max.)		100	mA					
Storage Temperature	(EW, EQ, EN suffix)	-65 to 150	°C					
	28-Pin Wide Body SOIC ^c	840						
Power Dissipation (Packages) ^b	28-Pin TSSOP ^d	817	mW					
	28-Pin PLCC ^e	1693	1					
	28-Pin Wide Body SOIC ^c	95.3						
Thermal Resistance $(\theta_{J-A})^b$	28-Pin TSSOP ^d	97.9	°C/W					
	28-Pin PLCC ^e	47.3	1					

Notes:

- a. Signals on S_X, D_X or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads soldered or welded to PC board.
- c. Derate 10.5 mW/°C above 70 °C.
- d. Derate 10.2 mW/°C above 70 °C.
- e. Derate 21.2 mW/°C above 70 °C.

DG506B, DG507B

Vishay Siliconix

		Test Condition Unless Otherwise	Specified				uffix o 125 °C	_	uffix to 85 °C	
Parameter	Symbol	$V_{+} = 15 \text{ V}, V_{-} = -15 \text{ V}$ $V_{AX}, V_{EN} = 2.4 \text{ V},$		Temp.b	Typ. ^c	Min.d	Max. ^d	Min.d	Max. ^d	Unit
Analog Switch	Syllibol	v _{AX} , v _{EN} = 2.4 v,	0.0 V	remp.	Typ.	IVIIII.	IVIAX.	IVIIII.	IVIAX.	Oilit
Analog Switch Analog Signal Range ^e	V			Full		-15	15	-15	15	V
Drain-Source	V _{ANALOG}			Room	170	-13	300	-13	300	v
On-Resistance	R _{DS(on)}	$V_D = \pm 10 \text{ V}, I_S =$	- 1 mA	Full	170		400		400	Ω
R _{DS(on)} Matching	$\Delta R_{DS(on)}$	V _D = ± 10 \	/	Room	10		100		100	
` '				Room	0.005	-1	1	-1	1	
Source Off Leakage Current	I _{S(off)}			Full		-50	50	-50	50	
		$V_D = \pm 10 \text{ V}$		Room	0.005	-1	1	-1	1	
		$V_S = \mp 10 \text{ V}$ $V_{EN} = 0 \text{ V}$	DG506B	Full		-100	100	-100	100	_
Drain Off Leakage Current	I _{D(off)}	v _{EN} = 0 v		Room	0.005	-1	1	-1	1	1
			DG507B	Full		-50	50	-50	50	nA
			DOSCOD	Room	0.005	-1	1	-1	1	
Drain On Leakage Current		$V_S = V_D = \mp 10 \text{ V}$	DG506B	Full		-100	100	-100	100	
	I _{D(on)}	sequence each switch on	DOEGZD	Room	0.005	-1	1	-1	1	1
		SWITCH ON	DG507B	Full		-50	50	-50	50	1
Digital Control										
Logic High Input Voltage	V_{INH}			Full		2.4		2.4		V
Logic Low Input Voltage	V _{INL}			Full			0.8		0.8	\ \
Logic High Input Current	I _{IH}	$V_{AX}, V_{EN} = 2.4 \text{ V}$		Full		-1	1	-1	1	μΑ
Logic Low Input Current	I _{IL}	$V_{AX}, V_{EN} = 0.8 \text{ V}$		Full		-1	1	-1	1	μΑ
Logic Input Capacitance ^e	C_{in}	f = 1 MHz		Room	5					pF
Dynamic Characteristics										
Transition Time	t _{TRANS}	$VS_1 = +10 \text{ V}/-10 \text{ V}, VS_{16} = -10 \text{ V}/+10 \text{ V}, V$		Room	190		300		300	_
		see figure 2	2	Full			360		360	
Break-Before-Make Interval	t _{OPEN}		/S ₁ = VS ₁₆ = 5.0 V, C _L = 35 pF,		84	30		30		ns
2.04.1 20.0104.104.1	OPEN	R_L = 1 kΩ, see fi	gure 4	Full		10		10		113
Enable Turn-On Time	t _{ON(EN)}	$VS_1 = 5 V, VS_2 \text{ to } V$	S – 0 V	Room	151		250		250	
	*OIN(EIN)	$R_L = 1 \text{ k}\Omega, C_L =$		Full			310		310	
Enable Turn-Off Time	t _{OFF(EN)}	see figure 3		Room	53		200		200	
21	. ,			Full			220		220	
Charge Injection ^e	Q _{INJ}	$C_L = 1 \text{ nF, } R_{GEN} = 0 \Omega,$		Full	1					рC
Off Isolation ^e	OIRR	$C_L = 5 \text{ pF}, R_L = 50 \Omega,$	DG506B	Room	- 85					dB
		f = 1 MHz	DG507B		- 84					
Crosstalk ^e	XTALK	$C_L = 5 \text{ pF}, R_L = 50 \Omega,$ f = 1 MHz	DG506B	Room	- 85					
		I = I IVIDZ	DG507B		- 84					
- 3 dB Bandwidth ^e	BW	$R_L = 50 \Omega$	DG506B DG507B	Room	114 217					MHz
Total Harmonic Distortion ^e	THD	$R_L = 10 \text{ k}\Omega, 5$		Room	0.04					%
Source Off Capacitance ^e		11 <u>1</u> - 10 ks2, 5	* rms	Room	3					/0
·	C _{S(off)}		DG506B	Room	31					
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz	DG507B	Room	17					pF
Drain On Capacitance ^e	C _{D(on)}	DG506B DG507B		Room Room	38 24					
Power Supply			DG307B	1100111	-4					
				Room	0.005		0.1		0.1	
Positive Supply Current	l+	V_{AX} , $V_{EN} = 0 V$	or 5 V	Full			0.1		0.1	mA
Negative Supply Current	-			Full		-1		-1		μΑ

		Test Condition Unless Otherwise Sp	ecified			_	uffix o 125 °C	_	uffix to 85 °C	
Parameter	Symbol	$V_{+} = 12 \text{ V}, V_{-} = 0 \text{ V} \text{ (} \pm \text$		Temp.b	Typ. ^c	Min.d	Max. ^d	Min.d	Max. ^d	Unit
Analog Switch	,	AA? LIN ?		•						
Analog Signal Range ^e	V _{ANALOG}					0	12	0	12	٧
				Room	270		450		450	1
On-Resistance	R _{DS(on)}	V _D = 10 V/0 V, I _S = 1 mA		Full			650		650	Ω
R _{DS(on)} Matching	$\Delta R_{DS(on)}$			Room	10					-
				Room	0.005	-1	1	-1	1	
	I _{S(off)}			Full		-50	-50	-50	50	
0 " 1 0" 1 0 0		V+ = 12 V, V- = 0 V	DOFOOD	Room	0.005	-1	1	-1	1	
Switch Off Leakage Current	I _{D(off)}	$V_D = 0 \text{ V}/10 \text{ V},$ $V_S = 10 \text{ V}/0 \text{ V}$	DG506B	Full		-100	100	-100	100	1
		15 - 10 1/0 1		Room	0.005	-1	1	-1	1	1.
	I _{D(off)}		DG507B			-50	50	-50	50	nA
				Room	0.005	-1	1	-1	1	-
	I _{D(on)}	V+ = 12 V, V- = 0 V V _S = V _D = 0 V/10 V	DG506B	Full		-100	100	-100	100	
Channel On Leakage Current				Room	0.005	-1	1	-1	1	-
			DG507B	Full		-50	50	-50	50	-
Digital Control										
Logic High Input Voltage	V _{INH}			Full		2.4		2.4		T
Logic Low Input Voltage	V _{INL}			Full			0.8		0.8	V
Logic High Input Current	I _{IH}	V _{AX} , V _{EN} = 2.4	V	Full		-1	1	-1	1	
Logic Low Input Current	I _{IL}	$V_{AX}, V_{EN} = 0.8$		Full		-1	1	-1	1	μΑ
Logic Input Capacitance ^e	C _{in}	f = 1 MHz		Room	5					pF
Dynamic Characteristics							L			
		VS ₁ = 10 V/0 V, VS ₁₆ =	0 V/10 V.	Room	228		380		380	
Transition Time	t _{TRANS}	$R_L = 1 \text{ M}\Omega, C_L = 35 \text{ pF, s}$		Full			450		450	-
		VS ₁ = VS ₁₆ = 5 V, C _L	= 35 pF.	Room	115	40		40		1
Break-Before-Make Interval	t _{OPEN}	$R_L = 1 \text{ k}\Omega$, see figure		Full		10		10		1
F 11 T 2 T				Room	197		300		300	ns
Enable Turn-On Time	t _{ON(EN)}	$VS_1 = 5 \text{ V}, VS_2 \text{ to } VS_1$	₆ = 0 V,	Full			420		420	1
		$R_L = 1 \text{ k}\Omega, C_L = 35$ see figure 3	ō pF	Room	46		200		200	1
Enable Turn-Off Time	t _{OFF(EN)}	3cc figure 3		Full			220		220	1
Charge Injection ^e	Q _{INJ}	C _L = 1 nF, R _{GEN} = 0 Ω, V	_{GEN} = 0 V	Full	4					рС
		$C_L = 5 \text{ pF}, R_L = 50 \Omega$	DG506B	_	-86					Ė
Off Isolation ^e	OIRR	f = 1 MHz	DG507B	Room	-84					1
		$C_L = 5 \text{ pF}, R_L = 50 \Omega$	DG506B		-85					dB
Crosstalk ^e	X _{TALK}	f = 1 MHz	DG507B	Room	-84					1
			DG506B		104					
- 3 dB Bandwidth ^e	BW	$R_L = 50 \Omega$	DG507B	Room	191					MHz
Total Harmonic Distortion ^e	THD	$R_L = 10 \text{ k}\Omega, 5 \text{ V}_R$ f = 20 Hz to 20 k	MS,	Room	0.23					%

SPECIFICATIONS Single Supply 12 V										
		Test Condition Unless Otherwise Sp	ecified			A Suffix -40 °C to 125 °C		D Suffix -40 °C to 85 °C		
Parameter	Symbol	V+ = 12 V, V- = 0 V (± 10 %) V _{AX} , V _{EN} = 2.4 V, 0.8 V ^a		Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Dynamic Characteristics										
Source Off Capacitance ^e	C _{S(off)}				4					
Drain Off Capacitance ^e	_		DG506B		37					
Drain On Capacitance	C _{D(off)}	f = 1 MHz	DG507B	Room	20					pF
Channel On Canacitanae	_		DG506B		43					
Channel On Capacitance ^e	C _{D(on)}	D(on)			26					
Power Supply										
Power Supply Current	l+	V V = 0 V or 5 V		Room	0.005		0.1		0.1	mA
i ower Supply Current	i+	V_{AX} , $V_{EN} = 0$ V, or 5 V		Full		<u> </u>	0.1		0.1	IIIA

Notes:

- a. V_{AX} , V_{EN} = input voltage perform proper function.
- b. Room = 25 °C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- e. Guaranteed by design, not subject to production test.
- f. $\Delta R_{DS(on)} = R_{DS(on)} \text{ max. } R_{DS(on)} \text{ min.}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SCHEMATIC DIAGRAM Typical Channel

Figure 1.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

On-Resistance vs. V_D and Dual Supply Voltage

On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. $V_{\rm D}$ and Single Supply Voltage

On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. Analog Voltage and Temperature

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. Analog Voltage and Temperature

Supply Current vs. Input Switching Frequency

On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. Analog Voltage and Temperature

Leakage Current vs. Analog Voltage

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Leakage Current vs. Temperature

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

Switching Threshold vs. Single Supply V

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

TEST CIRCUITS

Figure 2. Transition Time

TEST CIRCUITS

Figure 3. Enable Switching Time

Figure 4. Break-Before-Make Interval

TEST CIRCUITS

Figure 5. Charge Injection

Figure 6. Off Isolation

Figure 7. Crosstalk

Figure 8. Insertion Loss

Figure 9. Source Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?65150.

TSSOP: 28-LEAD

△ 0.050

ECN: S-03946—Rev. C, 09-Jul-01 DWG: 5851

0.65 Typ.

0.28 Typ.

NOTES:

- 1. Package Surface: Shiny Finish (Ro 0.15 0.20).
- Package Warpage: 0.012 (max).
- Package Corner Radius: R0.1 mm (max).
- Top to BTM Cavity Mismatch: 0.037 (max).
- Tolerance: ± 0.050 unless otherwise specified.
- End Flash Max: 0.1016 mm.

PLCC: 28-LEAD

DIM.	MILLIN	METERS	INCHES			
DIW.	MIN. MAX.		MIN.	MAX.		
Α	4.20	4.57	0.165	0.180		
A ₁	2.29	3.04	0.090	0.120		
A ₂	0.51	-	0.020	-		
В	0.331	0.553	0.013	0.021		
B ₁	0.661	0.812	0.026	0.032		
D	12.32	12.57	0.485	0.495		
D ₁	11.430	11.582	0.450	0.456		
D_2	9.91	10.92	0.390	0.430		
e ₁	1.27	BSC	0.050 BSC			
ECNI, TOO	TEE Day D	00 000 00				

ECN: T09-0766-Rev. D, 28-Sep-09 DWG: 5491

SOIC (WIDE-BODY): 28-LEADS

All Dimensions In Inches

ECN: E11-2209-Rev. D, 01-Aug-11

DWG: 5850

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.