disp(table_nrOfexamples)

uWovels	nrOfexamples
{'a'} {'e'} {'i'} {'o'} {'u'} {'y'}	12 12 12 12 12 12

Każdych głosek jest po 12

Podział na trening i test

disp(table_nrOfexamples3)

uWovels	nrOfexamplesTraining	nrOfexamplesTest
{'a'}	8	4
{'e'}	8	4
{'i'}	8	4
{'o'}	8	4
{'u'}	8	4
{'y'}	8	4

Sekcja cvpartition

disp(table_nrOfexamples4_a)

uWovels	nrOfexamplesTraining2	nrOfexamplesTest2
{'a'}	8	4
{'e'}	8	4
{'i'}	8	4
{'o'}	9	3
{'u'}	9	3
{'y'}	9	3

disp(table_nrOfexamples4_b)

uWovels	nrOfexamplesTraining2	nrOfexamplesTest2
{'a'}	9	3
{'e'}	9	3
{'i'}	8	4
{'o'}	8	4
{'u'}	9	3
{'y'}	8	4

disp(table_nrOfexamples4_c)

nrOfexamplesTest2	nrOfexamplesTraining2	uWovels
3	9	{'a'}
3	9	{'e'}

```
{'i'} 9
{'o'} 8
4
{'u'} 8
4
{'y'} 8
```

Classification Learner

Cross Validation - dane są dzielone na k częsci, jedna część jest wykorzystywana jako dane treningowe, a reszta do walidacji. Proces powtarzamy k razy, aby każdy fragment miał szansę być treningowym i metryki uśredniamy

Najlepszy model:

Val Accuracy: 70.8%

```
I = imread('model1_1.png');
figure, imshow(I);
```



```
I = imread('model1_2.png');
figure, imshow(I);
```



```
I = imread('model1_3.png');
```

figure, imshow(I);

Drugi najlepszy model: 58,3%

```
I = imread('model2_1.png');
figure, imshow(I);
```



```
I = imread('model2_2.png');
figure, imshow(I);
```


Najlepszy model najczęściej myli (o, u)

True positive rate: stosunek true positive do (true positive + false negative)

False negative rate: stosunek false negative do (false negative + true positive)

PCA

Najlepszy model val_acc: 81,2%

Wartości validationAccuracy oraz accuracyTrain różnią się ponieważ jedna z metryk jest generowana za pomocą walidacji krzyżowej podczas uczenia, a druga otrzymana na całym zbiorze danych przez przygotowany model

Dokładność oraz confusion matrix na zbiorze testowym

```
% macierz pomylek
```

CTst = confusionmat(formantsTableTest.vowel,testResults)

```
CTst = 6 \times 6
     4
           0
                  0
                         0
                                0
                                      0
     0
           4
                  0
                         0
                                0
                                      0
     0
           0
                  3
                         0
                                1
                                      0
     0
           0
                  0
                         2
                                2
                                      0
                  0
           0
                         0
                                3
                                      1
                                      3
```

```
% dokładność klasyfikatora
accuracy1 = mean(cellfun(@eq,testResults, formantsTableTest.vowel))
```

```
accuracy1 = 0.7917
```

Dlaczego stosujemy 3 zbiory

- testowy wykorzystujemy do nauczenia modelu
- walidacyjny daje nam informacje czy model dobrze uogólnia już podczas nauki
- testowy jest nam potrzebny jako ostateczne wyznaczenie jakości modelu po procesie nauczania

Experiment Manager:

Najlepszy model

val_acc: 77,08%

numNeighbors: 1, distance: minkowski, standarize: false

```
I = imread('experiment_conf.png');
figure, imshow(I);
```


Wykorzystanie cech MFCC

- 1. MFCC mel-frequency cepstrum coefficients rodzaje cech dźwiękowych otrzymywanych sygnałów mowy, każdy reprezentuje pewien filter
- 2. więcej obserwacji dla jednego pliku audio jest spowodowane przetwarzaniem sygnału za pomocą okna przesuwnego

normalizacja jest konieczna, ponieważ cechy MFCC i pitch mają różną skalę i zakres

Podsumowanie

Rezultaty - wyżej

Analiza i wnioski

- Liczebność dla każdej klasy powinna być podobna, żeby model mógł w równym stopniu nauczyć się każdej. W przeciwnym wypadku będzie lepiej się sprawował dla niektórych danych, albo faworyzował odpowiedzi.
- 2. Liczebności grup nie są takie same, ponieważ klasyfikator po częsci losowo wybiera rozmiar zbioru uczącego i testowego
- 3. hold-out podział danych na treningowe i walidacyjne w proporcji np 80/20, cross-validation podział zbioru na k grup, każda po kolei jest traktowana jako zbiór walidacyjny, a reszta elementów jako zbiór treningowy, dla małych zbiorów lepsza bedzię cross-validation.
- 4. odpowiedź w rezultatach
- 5. odpowiedź w rezultatach
- 6. PCA redukuje rozmiar przestrzeni danych, dzięki czemu model ma lepiej podane informacje, jest mniej szumu. Ułatwia też wizualizację danych. Wszystko to ułatwia/poprawia trenowanie modelu
- 7. w rezultatach
- 8. w rezultatach
- 9. w rezultatach

Pytania

- rozpoznawanie mowy (speech to text), rozpoznawanie osoby na podsawie mowy, rozpoznawanie emocji
- Wykorzystanie preprocesingu PCA może znacznie poprawić wyniki, narzędzie takie jak Experiment z ćwiczenia czy GridSearch ułatwiają i przyśpieszają znalezienie odpowiednich parametrów dla modelu
- Na czym polega zasada działania algorytmu wykorzystującego MFCC i pitch