Федеральное государственное бюджетное образовательное учреждение высшего образования

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Н. Б. ИТКИНА, С. И. МАРКОВ

ПРАКТИЧЕСКИЕ ЗАДАНИЯ ПО КУРСУ ЧИСЛЕННЫЕ МЕТОДЫ ТЕОРИЯ ПРИБЛИЖЕНИЙ

Указания к выполнению практических работ

НОВОСИБИРСК

Содержание

Содержание	2
Пояснительная записка	3
Практическое задание №1	4
Практическое задание №2	11
Практическое задание №3 *	19
Практическое задание №4	23
Практическое задание №5	31
Практическое задание №6	34
Практическое задание №7	39
Практическое задание №8	46
Список литературы	50

Пояснительная записка

Практические задания выполняются индивидуально. Вариант задания — номер студента в списке группы.

Выполненные задания направляются через систему Dispace в электронном виде в формате pdf. Файл должен быть подписан по образцу «ПЗ_номер_Фамилия_группа.pdf».

Каждая из восьми работ оценивается от 0 до 5 баллов. Задания, помеченные символом *, являются необязательными. Максимальный балл за практические задания — 40. Остальные 20 баллов распределены за контрольные недели:

Номер недели	Оценка	Балл
5	0 - 1 - 2	0 - 3 - 6
9	0 - 1 - 2	0 - 3 - 6
13	0 - 1 - 2	0 - 4 - 8

Максимальный балл за семестр -60. Дополнительные баллы можно получить при посещении лекций и практических занятий.

Сроки выполнения задания № 1 – пятая неделя.

Сроки выполнения заданий № 2, 3 – девятая неделя.

Сроки выполнения заданий N = 4, 5 — тринадцатая неделя.

Сроки выполнения заданий № 6, 7, 8 – до конца семестра.

Работы, присланные позже установленных сроков, а также результаты, полученные с помощью открытых библиотек и AI-ассистентов (если этого не требуется в задании), оцениваются в 0 баллов.

Практическое задание №1

Цель. Сформировать практические навыки интерполяции табличных функций и численного дифференцирования.

Формулировка задания

1. Разработать подпрограмму генерации регулярных и адаптивных сеточных разбиений произвольного отрезка [a,b] в зависимости от числа сегментов разбиения и величины коэффициента разрядки r

 x_0 x_1 x_2 x_3

Регулярная равномерная сетка

Адаптивная сетка: каждый последующий шаг h_i отличается от предыдущего в r раз

- 2. Разработать класс, реализующий интерфейс кубического интерполяционного сплайна.
- 3. Проведите исследование сплайна на вложенных сетках. Определите на отрезке [a,b] любую непрерывную неполиномиальную функцию f(x). Задайте шаг h и постройте равномерное сеточное разбиение отрезка [a,b]. Постройте табличную функцию по значениям f(x) в узлах сетки. Получите таблицу значений сплайна и его двух первых производных в точках, которые НЕ совпадают с узловыми (не менее 10). Повторить данные исследования на сетках с шагом h/2 и h/4. Оцените точность сплайн-аппроксимации функции f(x) и её производных в зависимости от шага:

$$\Delta = \max_{x \in [a,b]} \left| f^{(m)}(x) - S^{(m)}(x) \right|, \ m = 0,1,2.$$

- 4. В центральной точке отрезка из вашего варианта задания вычислите значение её первой производной при использовании конечных разностей. Предложите оптимальный вариант с заданной точностью є.
- 5. С помощью AI-ассистента DeepSeek решите предыдущую задачу. Какие явные недостатки Вы можете обнаружить?

Промт. Оптимальный метод численного дифференцирования для табличной функции | x = 0, 0.1, 0.2 | f = 0, 0.01, 0.04 с двумя верными десятичными знаками?

Варианты практического задания

No॒	а	b	3
1	0.08	0.32	0.001
2	0.04	0.24	0.001
3	0.07	0.47	0.0001
4	0.03	0.21	0.001
5	0.06	0.34	0.01
6	0.06	0.27	0.0001
7	0.05	0.30	0.01
8	0.01	0.37	0.01
9	0.05	0.45	0.0001
10	0.02	0.32	0.01
11	0.04	0.26	0.0001
12	0.08	0.24	0.0001
13	0.10	0.44	0.01
14	0.01	0.32	0.0001
15	0.03	0.24	0.01
16	0.02	0.37	0.001
17	0.07	0.24	0.001
18	0.02	0.23	0.001
19	0.02	0.42	0.0001

20	0.05	0.24	0.001
21	0.02	0.37	0.0001
22	0.03	0.25	0.0001
23	0.01	0.31	0.001
24	0.07	0.37	0.0001
25	0.00	0.35	0.0001
26	0.01	0.24	0.0001
27	0.09	0.36	0.0001
28	0.02	0.45	0.001
29	0.08	0.40	0.001
30	0.02	0.25	0.001

Пример. На отрезке [0, 0.1] зададим непрерывную функцию $f(x) = e^x$ и по дискретному набору её значений определим табличные функции на вложенных сетках с начальным шагом h = 0.05.

1. Формируем три вложенные сетки для расчётов

Вложенные сетки для построения сплайна					
l	n = 0.05	h	= 0.025	h =	= 0.0125
0	1	0	1	0	1
0.05	1.051271096	0.025	1.025315121	0.0125	1.012578452
0.1	1.105170918	0.05	1.051271096	0.025	1.025315121
		0.075	1.077884151	0.0375	1.038211997
		0.1	1.105170918	0.05	1.051271096
				0.0625	1.064494459
				0.075	1.077884151
				0.0875	1.091442264
				0.1	1.105170918

2. Формируем точки, не попадающие на узлы построенных вложенных сеток

Точки для расчёта	Аналитика $f(x) = e^x$		
Х	f	f'	f''
0	1.000000000000	1.000000000000	1.000000000000
0.004	1.004008010677	1.004008010677	1.004008010677
0.014	1.014098458938	1.014098458938	1.014098458938
0.024	1.024290317891	1.024290317891	1.024290317891
0.034	1.034584606728	1.034584606728	1.034584606728
0.05	1.051271096376	1.051271096376	1.051271096376
0.053	1.054429645119	1.054429645119	1.054429645119
0.068	1.070365308479	1.070365308479	1.070365308479
0.083	1.086541808548	1.086541808548	1.086541808548
0.098	1.102962785109	1.102962785109	1.102962785109
0.1	1.105170918076	1.105170918076	1.105170918076

3. Применяем кубический интерполяционный сплайн для интерполяции табличных функций из пункта 1. Вычисляем его значения и значения его двух первых производных в точках из предыдущей таблицы. Используйте экспоненциальный формат вывода числовых данных

Аппроксимация на сетках с шагом h, h/2 и h/4			
х	g	g '	g''
0	1.00000E+00	1.01228E+00	0.00000E+00
0.004	1.00405E+00	1.01253E+00	1.26179E-01
0.014	1.01419E+00	1.01537E+00	4.41626E-01
0.024	1.02437E+00	1.02136E+00	7.57073E-01
0.034	1.03462E+00	1.03051E+00	1.07252E+00

0.05	1.05127E+00	1.05171E+00	1.57724E+00
0.053	1.05443E+00	1.05630E+00	1.48260E+00
0.068	1.07043E+00	1.07499E+00	1.00943E+00
0.083	1.08665E+00	1.08658E+00	5.36260E-01
0.098	1.10299E+00	1.09108E+00	6.30894E-02
0.1	1.10517E+00	1.09114E+00	0.00000E+00
0	1.00000E+00	1.00713E+00	0.00000E+00
0.004	1.00403E+00	1.00755E+00	2.10054E-01
0.014	1.01412E+00	1.01228E+00	7.35187E-01
0.024	1.02429E+00	1.02226E+00	1.26032E+00
0.034	1.03458E+00	1.03469E+00	1.16452E+00
0.05	1.05127E+00	1.05122E+00	9.00860E-01
0.053	1.05443E+00	1.05401E+00	9.59760E-01
0.068	1.07036E+00	1.07061E+00	1.25426E+00
0.083	1.08656E+00	1.08923E+00	9.46352E-01
0.098	1.10298E+00	1.09716E+00	1.11336E-01
0.1	1.10517E+00	1.09727E+00	0.00000E+00
0	1.00000E+00	1.00361E+00	0.00000E+00
0.004	1.00402E+00	1.00443E+00	4.09795E-01
0.014	1.01410E+00	1.01350E+00	1.24131E+00
0.024	1.02429E+00	1.02461E+00	9.79295E-01
0.034	1.03458E+00	1.03449E+00	1.02932E+00
0.05	1.05127E+00	1.05127E+00	1.04041E+00
0.053	1.05443E+00	1.05441E+00	1.05162E+00
0.068	1.07037E+00	1.07044E+00	1.04797E+00
0.083	1.08654E+00	1.08658E+00	1.24743E+00
0.098	1.10297E+00	1.10096E+00	2.22025E-01
0.1	1.10517E+00	1.10118E+00	0.00000E+00

4. Вычисляем погрешности аппроксимаций. Используйте экспоненциальный формат вывода числовых данных

Погрешность аппроксимации (h = 0.05, 0.025, 0.0125)					
h =	0.05	h =	0.025	h = 0	.0125
f - g	f' - g'	f - g	f' - g'	f - g	f' - g'
0.00000E+00	1.2273E-02	0.00000E+00	7.13470E-03	0.00000E+00	3.6082E-03
4.14390E-05	8.5226E-03	2.10882E-05	3.54679E-03	7.51500E-06	4.1980E-04
8.78636E-05	1.2712E-03	2.54429E-05	1.81745E-03	1.16294E-06	5.9499E-04
7.70401E-05	2.9271E-03	1.90565E-06	2.03177E-03	2.88658E-07	3.1617E-04
3.94940E-05	4.0735E-03	6.41197E-06	1.08634E-04	2.97758E-07	9.1062E-05
3.76024E-10	4.3808E-04	3.76024E-10	5.47864E-05	3.76024E-10	1.9435E-06
3.53403E-06	1.8693E-03	7.57969E-07	4.22405E-04	4.29844E-08	2.2437E-05
6.14035E-05	4.6239E-03	7.29597E-06	2.47083E-04	5.10063E-07	7.2414E-05
1.05558E-04	4.0051E-05	2.11122E-05	2.68361E-03	2.26466E-06	3.9656E-05
2.58948E-05	1.1886E-02	1.36683E-05	5.80472E-03	5.91437E-06	2.0015E-03
7.56477E-11	1.4031E-02	7.56477E-11	7.90151E-03	7.56477E-11	3.9877E-03
MAX	MAX	MAX	MAX	MAX	MAX
1.05558E-04	1.4031E-02	2.5443E-05	7.90151E-03	7.51501E-06	3.9877E-03

Пример. При использовании конечных разностей вычислить f'(0.05) с точностью $\varepsilon = 0.01$, если $f(x) = e^x$.

Погрешность численного дифференцирования в методе конечных разностей определяется формой остаточного члена применяемого шаблона. Рассмотрим левостороннюю аппроксимацию первой производной:

$$\frac{\partial f(x_i)}{\partial x} = \frac{f(x_{i+1}) - f(x_i)}{h_{i+1}} - \frac{h_{i+1}^2}{2} \frac{\partial^2 f(\xi)}{\partial x^2},$$

где
$$\frac{h_{i+1}^2}{2} \frac{\partial^2 f(\xi)}{\partial x^2}$$
 – погрешность.

Двухточечный шаблон первого порядка точности для приближённого вычисления первой производной принимает вид:

$$\frac{\partial f\left(x_{i}\right)}{\partial x} \approx \frac{f\left(x_{i+1}\right) - f\left(x_{i}\right)}{h_{i+1}}.$$

По условию задания $f(x) = e^x$, значит, $\frac{\partial^2 f(\xi)}{\partial x^2} = e^\xi$, где $\xi \in [0.05, 0.05 + h_{i+1}]$. Получаем оценку погрешности:

$$\max_{\xi \in [0.05, 0.05 + h_{i+1}]} \frac{h_{i+1}^2}{2} e^{\xi} < \varepsilon = 0.01.$$

При $h_{i+1} = 0.01$ данное неравенство выполняется. Применим двухточечный шаблон:

$$\frac{\partial f\left(0.05\right)}{\partial x} \approx \frac{f\left(0.06\right) - f\left(0.05\right)}{0.01} \approx 1.057.$$

Оценим абсолютную погрешность результата:

$$\Delta = \left| \frac{\partial f^*(0.05)}{\partial x} - \frac{\partial f(0.05)}{\partial x} \right| \approx 0.006 < \varepsilon = 0.01,$$

здесь $\frac{\partial f^*(0.05)}{\partial x}$ — точное значение первой производной.

Замечание. Если шаг h_{i+1} фиксирован условием задачи, то выбирают шаблон более высокого порядка точности.

Практическое задание №2

Цель. Сформировать практические навыки аппроксимации табличных функций по методу наименьших квадратов и оценки полученного результата.

Формулировка задания.

1. На отрезке $[x_0, x_2]$ задайте непрерывную неполиномиальную функцию f(x). По заданным точкам x_0, x_1, x_2 задайте табличную функцию $f(x_i)$. Для табличной функции найдите наилучшую аппроксимацию g(x) на подпространстве при использовании сплайнов первого порядка. Оцените абсолютную погрешность по формуле

$$||f(x)-g(x)||_{L_2[a,b]} = \left(\int_a^b (f(x)-g(x))^2 dx\right)^{1/2}.$$

2. С помощью AI-ассистента DeepSeek решите предыдущую задачу. Какой вид интерполянта он предложил? Изобразите на одном графике функцию f(x), ваш результат и результат AI-ассистента. Какие явные недостатки можно обнаружить в каждом варианте решения?

Промт. Найти наилучшую аппроксимацию табличной функции $x = 1, 2, 3 \mid f = 1, 2, 1$

Варианты практического задания

No	x_0	x_1	x_2
1	-0.1	0.3	0.6
2	0.0	0.5	0.8
3	-0.1	0.4	0.6
2 3 4 5	0.1	0.3	0.6
5	0.0	0.4	0.7
6	-0.1	0.4	0.7
7	0.0	0.2	0.7
8	0.0	0.4	0.6
9	-0.1	0.2	0.6
10	0.0	0.3	0.8
11	-0.1	0.5	0.6
12	0.0	0.3	0.7
13	0.1	0.3	0.8
14	0.0	0.3	0.7
15	0.0	0.2	0.7
16	-0.1	0.4	0.6
17	0.0	0.2	0.7
18	0.0	0.4	0.6
19	-0.1	0.3	0.7
20	0.0	0.3	0.8
21	0.0	0.2	0.7
22	0.0	0.2	0.7
23	0.0	0.3	0.6
23 24	0.0	0.2	0.6
25	0.1	0.2	0.7
26	0.0	0.4	0.7
27	0.1	0.3	0.8
28	-0.1	0.4	0.7
29	-0.1	0.4	0.7
30	-0.1	0.2	0.7

Пример. Решить задачу об аппроксимации функции на подпространстве, если f(1) = 1, f(2) = 2, f(3) = 1.

Формальная постановка задачи: найти такую $g(x) \in \Omega$, что

$$||f(x)-g(x)||^2 \to \min_{g(x)\in\Omega}$$
.

Определим множество Ω : $\Omega = [1,2] \cup [2,3]$.

Множество Ω состоит из трёх точек, значит,

$$g(x) = \sum_{i=1}^{3} \alpha_i \psi_i(x), \{\psi_i(x)\}$$
 – базис в Ω .

Определим каждую функцию $\psi_i(x)$ в виде

$$\psi_i(x) = \begin{cases} 1, & \text{при } x = x_i \\ 0, & \text{при } x \neq x_i \end{cases}$$

Ограничимся полиномами первой степени, тогда

Определим функции $\psi_i(x)$ через локальные В-сплайны

$$arphi_1^{\Omega_k} = rac{1-\xi}{2}\,,\;\; arphi_2^{\Omega_k} = rac{1+\xi}{2}\,,\;$$
где $\;\xi = rac{2ig(x-x_kig)}{h_k} - 1\,,\;\; h_k \;-$ длина сегмента, $\;x_k \;-$ начальная точка сегмента.

Этап сборки СЛАУ (ассемблирование)

Функция $g\left(x\right)$ — наилучшая аппроксимация функции $f\left(x\right)$ в Ω тогда и только тогда, когда

$$(f-g, \psi_i)=0.$$

На отрезке [1, 2]:

 $h_{\!\scriptscriptstyle 1}=1$ — длина сегмента, $x_{\!\scriptscriptstyle 1}=1$ — начальная точка $\xi=2x-3$,

$$\varphi_1^{\Omega_1} = \begin{cases} 2 - x, & x \in [1, 2] \\ 0, & x \notin [1, 2] \end{cases}, \quad \varphi_2^{\Omega_1} = \begin{cases} x - 1, & x \in [1, 2] \\ 0, & x \notin [1, 2] \end{cases}$$

 $g\left(x\right)$ = $lpha_1 arphi_1^{\Omega_1} + lpha_2 arphi_2^{\Omega_1}$, получаем два соотношения

$$\begin{split} & \left(\alpha_{\mathbf{l}}\varphi_{\mathbf{l}}^{\Omega_{\mathbf{l}}} + \alpha_{2}\varphi_{2}^{\Omega_{\mathbf{l}}}, \ \varphi_{\mathbf{l}}^{\Omega_{\mathbf{l}}}\right) = & \left(f, \ \varphi_{\mathbf{l}}^{\Omega_{\mathbf{l}}}\right), \\ & \left(\alpha_{\mathbf{l}}\varphi_{\mathbf{l}}^{\Omega_{\mathbf{l}}} + \alpha_{2}\varphi_{2}^{\Omega_{\mathbf{l}}}, \ \varphi_{2}^{\Omega_{\mathbf{l}}}\right) = & \left(f, \ \varphi_{2}^{\Omega_{\mathbf{l}}}\right). \end{split}$$

После раскрытия скобок

$$\begin{split} &\alpha_{\scriptscriptstyle 1}\!\left(\varphi_{\scriptscriptstyle 1}^{\Omega_{\scriptscriptstyle 1}},\ \varphi_{\scriptscriptstyle 1}^{\Omega_{\scriptscriptstyle 1}}\right)\!+\!\alpha_{\scriptscriptstyle 2}\!\left(\varphi_{\scriptscriptstyle 2}^{\Omega_{\scriptscriptstyle 1}},\ \varphi_{\scriptscriptstyle 1}^{\Omega_{\scriptscriptstyle 1}}\right)\!=\!\left(f,\ \varphi_{\scriptscriptstyle 1}^{\Omega_{\scriptscriptstyle 1}}\right),\\ &\alpha_{\scriptscriptstyle 1}\!\left(\varphi_{\scriptscriptstyle 1}^{\Omega_{\scriptscriptstyle 1}},\ \varphi_{\scriptscriptstyle 2}^{\Omega_{\scriptscriptstyle 1}}\right)\!+\!\alpha_{\scriptscriptstyle 2}\!\left(\varphi_{\scriptscriptstyle 2}^{\Omega_{\scriptscriptstyle 1}},\ \varphi_{\scriptscriptstyle 2}^{\Omega_{\scriptscriptstyle 1}}\right)\!=\!\left(f,\ \varphi_{\scriptscriptstyle 2}^{\Omega_{\scriptscriptstyle 1}}\right). \end{split}$$

Т.к. f(x) — табличная, то выберем дискретное скалярное произведение

$$(f-g, \psi_i) = \langle f-g, \psi_i \rangle = \sum_{i=1}^N (f(x_i) - g(x_i)) \psi_i(x_i),$$

тогда

$$\begin{split} &\alpha_{1}\sum_{i=1}^{2}\varphi_{1}^{\Omega_{1}}\left(x_{i}\right)\varphi_{1}^{\Omega_{1}}\left(x_{i}\right)+\alpha_{2}\sum_{i=1}^{2}\varphi_{2}^{\Omega_{1}}\left(x_{i}\right)\varphi_{1}^{\Omega_{1}}\left(x_{i}\right)&=\sum_{i=1}^{2}f\left(x_{i}\right)\varphi_{1}^{\Omega_{1}}\left(x_{i}\right),\\ &\alpha_{1}\sum_{i=1}^{2}\varphi_{1}^{\Omega_{1}}\left(x_{i}\right)\varphi_{2}^{\Omega_{1}}\left(x_{i}\right)+\alpha_{2}\sum_{i=1}^{2}\varphi_{2}^{\Omega_{1}}\left(x_{i}\right)\varphi_{2}^{\Omega_{1}}\left(x_{i}\right)&=\sum_{i=1}^{2}f\left(x_{i}\right)\varphi_{2}^{\Omega_{1}}\left(x_{i}\right). \end{split}$$

В матрично-векторной форме имеем

$$\begin{pmatrix} \sum_{i=1}^{2} \varphi_{1}^{\Omega_{1}}\left(x_{i}\right) \varphi_{1}^{\Omega_{1}}\left(x_{i}\right) & \sum_{i=1}^{2} \varphi_{2}^{\Omega_{1}}\left(x_{i}\right) \varphi_{1}^{\Omega_{1}}\left(x_{i}\right) & 0 \\ \sum_{i=1}^{2} \varphi_{1}^{\Omega_{1}}\left(x_{i}\right) \varphi_{2}^{\Omega_{1}}\left(x_{i}\right) & \sum_{i=1}^{2} \varphi_{2}^{\Omega_{1}}\left(x_{i}\right) \varphi_{2}^{\Omega_{1}}\left(x_{i}\right) & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{2} f\left(x_{i}\right) \varphi_{1}^{\Omega_{1}}\left(x_{i}\right) \\ \sum_{i=1}^{2} f\left(x_{i}\right) \varphi_{2}^{\Omega_{1}}\left(x_{i}\right) \\ 0 & 0 \end{pmatrix}$$

$$\sum_{i=1}^{2} \varphi_{i}^{\Omega_{i}}(x_{i}) \varphi_{i}^{\Omega_{i}}(x_{i}) = \varphi_{i}^{\Omega_{i}}(1) \varphi_{i}^{\Omega_{i}}(1) + \varphi_{i}^{\Omega_{i}}(2) \varphi_{i}^{\Omega_{i}}(2) = 1,$$

$$\sum_{i=1}^{2} \varphi_{2}^{\Omega_{1}}(x_{i}) \varphi_{1}^{\Omega_{1}}(x_{i}) = \varphi_{2}^{\Omega_{1}}(1) \varphi_{1}^{\Omega_{1}}(1) + \varphi_{2}^{\Omega_{1}}(2) \varphi_{1}^{\Omega_{1}}(2) = 0,$$

$$\sum_{i=1}^{2} \varphi_{1}^{\Omega_{1}}(x_{i}) \varphi_{2}^{\Omega_{1}}(x_{i}) = \varphi_{1}^{\Omega_{1}}(1) \varphi_{2}^{\Omega_{1}}(1) + \varphi_{1}^{\Omega_{1}}(2) \varphi_{2}^{\Omega_{1}}(2) = 0,$$

$$\sum_{i=1}^{2} \varphi_{2}^{\Omega_{1}}(x_{i}) \varphi_{2}^{\Omega_{1}}(x_{i}) = \varphi_{2}^{\Omega_{1}}(1) \varphi_{2}^{\Omega_{1}}(1) + \varphi_{2}^{\Omega_{1}}(2) \varphi_{2}^{\Omega_{1}}(2) = 1,$$

$$\sum_{i=1}^{2} f(x_{i}) \varphi_{1}^{\Omega_{1}}(x_{i}) = f(x_{1}) \varphi_{1}^{\Omega_{1}}(x_{1}) + f(x_{2}) \varphi_{1}^{\Omega_{1}}(x_{2}) = 1,$$

$$\sum_{i=1}^{2} f(x_{i}) \varphi_{2}^{\Omega_{1}}(x_{i}) = f(x_{1}) \varphi_{2}^{\Omega_{1}}(x_{1}) + f(x_{2}) \varphi_{2}^{\Omega_{1}}(x_{2}) = 2.$$

Получаем СЛАУ на первом сегменте:

$$\begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{0} \end{pmatrix}.$$

На отрезке [2, 3]:

 $h_2 = 1$ — длина сегмента, $x_2 = 2$ — начальная точка $\xi = 2x - 5$,

$$\varphi_1^{\Omega_2} = \begin{cases} 3 - x, & x \in [2, 3] \\ 0, & x \notin [2, 3] \end{cases}, \ \varphi_2^{\Omega_2} = \begin{cases} x - 2, & x \in [2, 3] \\ 0, & x \notin [2, 3] \end{cases}.$$

 $g(x) = \alpha_2 \varphi_1^{\Omega_2} + \alpha_3 \varphi_2^{\Omega_2}$, получаем два соотношения

$$(\alpha_{2}\varphi_{1}^{\Omega_{2}} + \alpha_{3}\varphi_{2}^{\Omega_{2}}, \varphi_{1}^{\Omega_{2}}) = (f, \varphi_{1}^{\Omega_{2}}),$$

$$(\alpha_{2}\varphi_{1}^{\Omega_{2}} + \alpha_{3}\varphi_{2}^{\Omega_{2}}, \varphi_{2}^{\Omega_{2}}) = (f, \varphi_{2}^{\Omega_{2}}).$$

После раскрытия скобок

$$\begin{split} &\alpha_{2}\left(\varphi_{\mathbf{l}}^{\Omega_{2}},\ \varphi_{\mathbf{l}}^{\Omega_{2}}\right) + \alpha_{3}\left(\varphi_{2}^{\Omega_{2}},\ \varphi_{\mathbf{l}}^{\Omega_{2}}\right) = \left(f,\ \varphi_{\mathbf{l}}^{\Omega_{2}}\right),\\ &\alpha_{2}\left(\varphi_{\mathbf{l}}^{\Omega_{2}},\ \varphi_{2}^{\Omega_{2}}\right) + \alpha_{3}\left(\varphi_{2}^{\Omega_{2}},\ \varphi_{2}^{\Omega_{2}}\right) = \left(f,\ \varphi_{2}^{\Omega_{2}}\right). \end{split}$$

Т.к. f(x) – табличная, то выберем дискретное скалярное произведение

$$(f-g, \psi_i) = \langle f-g, \psi_i \rangle = \sum_{i=1}^N (f(x_i)-g(x_i))\psi_i(x_i),$$

тогла

$$\begin{split} &\alpha_{2} \sum_{i=2}^{3} \varphi_{1}^{\Omega_{2}}\left(x_{i}\right) \varphi_{1}^{\Omega_{2}}\left(x_{i}\right) + \alpha_{3} \sum_{i=2}^{3} \varphi_{2}^{\Omega_{2}}\left(x_{i}\right) \varphi_{1}^{\Omega_{2}}\left(x_{i}\right) = \sum_{i=2}^{3} f\left(x_{i}\right) \varphi_{1}^{\Omega_{2}}\left(x_{i}\right), \\ &\alpha_{2} \sum_{i=2}^{3} \varphi_{1}^{\Omega_{2}}\left(x_{i}\right) \varphi_{2}^{\Omega_{2}}\left(x_{i}\right) + \alpha_{3} \sum_{i=2}^{3} \varphi_{2}^{\Omega_{2}}\left(x_{i}\right) \varphi_{2}^{\Omega_{2}}\left(x_{i}\right) = \sum_{i=2}^{3} f\left(x_{i}\right) \varphi_{2}^{\Omega_{2}}\left(x_{i}\right). \end{split}$$

В матрично-векторной форме имеем

$$\begin{pmatrix} \sum_{i=1}^{2} \varphi_{1}^{\Omega_{i}}(x_{i}) \varphi_{1}^{\Omega_{i}}(x_{i}) & \sum_{i=1}^{2} \varphi_{2}^{\Omega_{i}}(x_{i}) \varphi_{1}^{\Omega_{i}}(x_{i}) & 0 \\ \sum_{i=1}^{2} \varphi_{1}^{\Omega_{i}}(x_{i}) \varphi_{2}^{\Omega_{i}}(x_{i}) & \sum_{i=1}^{3} \varphi_{2}^{\Omega_{i}}(x_{i}) \varphi_{1}^{\Omega_{i}}(x_{i}) + \\ \sum_{i=1}^{3} \varphi_{1}^{\Omega_{2}}(x_{i}) \varphi_{1}^{\Omega_{2}}(x_{i}) & \sum_{i=2}^{3} \varphi_{2}^{\Omega_{2}}(x_{i}) \varphi_{1}^{\Omega_{2}}(x_{i}) \\ 0 & \sum_{i=2}^{3} \varphi_{1}^{\Omega_{2}}(x_{i}) \varphi_{2}^{\Omega_{2}}(x_{i}) & \sum_{i=2}^{3} \varphi_{2}^{\Omega_{2}}(x_{i}) \varphi_{2}^{\Omega_{2}}(x_{i}) \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{2} f(x_{i}) \varphi_{1}^{\Omega_{i}}(x_{i}) \\ \sum_{i=1}^{2} f(x_{i}) \varphi_{2}^{\Omega_{i}}(x_{i}) + \\ \sum_{i=1}^{3} f(x_{i}) \varphi_{1}^{\Omega_{2}}(x_{i}) \\ \sum_{i=2}^{3} f(x_{i}) \varphi_{2}^{\Omega_{2}}(x_{i}) \end{pmatrix}$$

$$\sum_{i=2}^{3} \varphi_{i}^{\Omega_{2}}(x_{i}) \varphi_{i}^{\Omega_{2}}(x_{i}) = \varphi_{i}^{\Omega_{2}}(2) \varphi_{i}^{\Omega_{2}}(2) + \varphi_{i}^{\Omega_{2}}(3) \varphi_{i}^{\Omega_{2}}(3) = 1,$$

$$\sum_{i=2}^{3} \varphi_{2}^{\Omega_{2}}(x_{i}) \varphi_{1}^{\Omega_{2}}(x_{i}) = \varphi_{2}^{\Omega_{2}}(2) \varphi_{1}^{\Omega_{2}}(2) + \varphi_{2}^{\Omega_{2}}(3) \varphi_{1}^{\Omega_{2}}(3) = 0,$$

$$\sum_{i=2}^{3} \varphi_{i}^{\Omega_{2}}(x_{i}) \varphi_{2}^{\Omega_{2}}(x_{i}) = \varphi_{i}^{\Omega_{2}}(2) \varphi_{2}^{\Omega_{2}}(2) + \varphi_{i}^{\Omega_{2}}(3) \varphi_{2}^{\Omega_{2}}(3) = 0,$$

$$\sum_{i=2}^{3} \varphi_{2}^{\Omega_{2}}(x_{i}) \varphi_{2}^{\Omega_{2}}(x_{i}) = \varphi_{2}^{\Omega_{2}}(2) \varphi_{2}^{\Omega_{2}}(2) + \varphi_{2}^{\Omega_{2}}(3) \varphi_{2}^{\Omega_{2}}(3) = 1,$$

$$\sum_{i=2}^{3} f(x_i) \varphi_1^{\Omega_2}(x_i) = f(2) \varphi_1^{\Omega_2}(2) + f(3) \varphi_1^{\Omega_2}(3) = 2,$$

$$\sum_{i=2}^{3} f(x_i) \varphi_2^{\Omega_2}(x_i) = f(2) \varphi_2^{\Omega_2}(2) + f(3) \varphi_2^{\Omega_2}(3) = 1.$$

Получаем СЛАУ с учётом вклада от второго сегмента:

$$\begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} \mathbf{1} \\ 4 \\ 1 \end{pmatrix}, \text{ откуда} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}.$$

Otbet:
$$g(x) = \begin{cases} \alpha_1 \varphi_1^{\Omega_1} + \alpha_2 \varphi_2^{\Omega_1}, & x \in [1, 2] \\ \alpha_2 \varphi_1^{\Omega_2} + \alpha_3 \varphi_2^{\Omega_2}, & x \in [2, 3] \end{cases} = \begin{cases} x, & x \in [1, 2] \\ 4 - x, & x \in [2, 3] \end{cases}$$

Практическое задание №3 *

Цель. Сформировать практические навыки аппроксимации табличных функций с помощью сглаживающих сплайнов.

Формулировка задания

1. Разработать класс, реализующий интерфейс сглаживающего сплайна. На каждом сегменте разбиения использовать базисную систему финитных функций первого порядка. Сглаживающий сплайн g(x) строить как решение задачи о минимизации функционала в линейном подпространстве

$$\Phi = (1-p) \|f(x) - g(x)\|_{2}^{2} + p \|g'(x)\|_{2}^{2},$$

где p — параметр сглаживания.

- 2. В качестве входных данных сгенерируйте по нормальному закону последовательность случайных чисел (число наблюдений и параметры распределения взять из таблицы).
- 3. На одной диаграмме изобразить интерполяционный и сглаживающий сплайны: ось абсцисс номер случайного числа, ось ординат сгенерированные случайные числа. Параметр сглаживания *p* варьировать от 0 до 1. Выяснить, на что влияет варьирование весовых коэффициентов в дискретном скалярном произведении при построении сглаживающего сплайна.
- 4. Проанализируйте поведение графика сглаживающего сплайна при p=0. Какими свойствами он обладает?
- 5. Решите предложенную задачу средствами языка Руthon. Какими недостатками обладает данный инструмент анализа данных? Как их обойти?

Варианты практического задания

N — число наблюдений, M — математическое ожидание, σ — среднее квадратическое отклонение.

No	N	M	σ
1	1304	0.94	4.28
2	1723	0.98	4.85
3	1443	0.98	3.7
4	1924	1.02	4.08
5	1731	0.94	4.95
6	1363	1.02	4.61
7	1670	1.04	3.74
8	1157	1.05	5.5
9	1953	1.01	3.88
10	1363	1.06	4.31
11	1071	0.9	4.7
12	1718	1.02	3.61
13	1784	1.01	3.85
14	1159	0.97	4.23
15	1545	0.97	4.98
16	1945	0.97	5.43
17	1380	0.96	4.31
18	1824	0.93	4.72
19	1160	1.02	4.9
20	1171	1.1	4.24
21	1141	0.97	4.12
22	1182	1.05	3.91
23	1043	1.09	5.13
24	1087	1.08	4.96
25	1733	0.96	3.54
26	1093	1.02	5.23
27	1963	0.97	5.24
28	1677	0.94	3.83
29	1476	1.03	3.18
30	1471	1.07	5.14

Пример оформления расчётов

Число	Мат. ожидание	Отклонение
наблюдений N	М	б
5	0.98	3.5

			Сглаживающий сплайн			
Nº	Случайная величина	Bec W	p = 0	p = 0.4	p = 0.8	p = 0.99
1	0.532396358	1	5.32396E-01	-4.94417E-01	-3.35888E-01	5.95282E-01
2	-3.508040518	1	-3.50804E+00	-2.03464E+00	-5.52959E-01	5.95918E-01
3	1.19580284	1	1.19580E+00	8.45355E-01	7.07511E-01	6.79461E-01
4	3.190684949	1	3.19068E+00	2.67400E+00	1.72383E+00	7.52573E-01
5	3.138327355	1	3.13833E+00	2.95260E+00	2.00673E+00	7.76431E-01

			Сглаживающий сплайн			
Nº	Случайная величина	Bec W	p = 0	p = 0.4	p = 0.8	p = 0.99
1	0.532396358	1	5.32396E-01	-1.88616E-01	3.01723E-01	1.20524E+00
2	-3.508040518	0.5	-3.50804E+00	-1.27013E+00	2.44055E-01	1.21203E+00
3	1.19580284	1	1.19580E+00	1.00521E+00	1.12441E+00	1.26651E+00
4	3.190684949	1	3.19068E+00	2.70875E+00	1.96907E+00	1.32241E+00
5	3.138327355	1	3.13833E+00	2.96650E+00	2.20292E+00	1.34057E+00

Практическое задание №4

Цель. Сформировать практические навыки применения схем численного интегрирования при использовании квадратурных формул интерполяционного типа, квадратур Гаусса и квадратур для вычисления интегралов специального вида.

Формулировка задания

- 1. Задайте на отрезке [a,b] непрерывную неполиномиальную функцию $\varphi(x)$.
- 2. Вычислить $\int_{a}^{b} \varphi(x) dx$ с точностью $\varepsilon = 0.01$. Обосновать выбор схемы интегрирования. Оценить абсолютную погрешность результата.
- 3. С помощью AI-ассистента DeepSeek решите предыдущую задачу. Какие явные недостатки можно обнаружить? *Промт*. Оптимальный метод численного интегрирования Int{exp(x)}dx x in [0,1] с точностью 0.01?
- 4. На множестве $\mathbb R$ задайте всюду непрерывную функцию $\psi(x)$.
- 5. Вычислить $\int_{-\infty}^{+\infty} \psi(x) e^{-x^2} dx$. Использовать квадратуру максимальной точности с N узлами интегрирования. Оценить абсолютную погрешность результата.

Варианты практического задания

No॒	а	b	N
1	-0.10	0.28	2
2	0.03	0.32	3
3	-0.05	0.25	2
4	0.06	0.73	3
5	0.08	0.26	2
6	-0.01	0.88	3
7	-0.09	0.77	3
8	-0.05	0.40	2
9	-0.09	0.36	3
10	0.03	0.89	2
11	-0.05 0.06 0.08 -0.01 -0.09 -0.05 -0.09 0.03 0.09 -0.10 0.04 -0.10 -0.03 -0.02 0.03 0.06 -0.01	0.56	3
12	-0.10	0.58	3
13	0.04	0.72	2
14	-0.10	0.62	2
15	-0.03	0.72	3
16	-0.02	0.47	2
17	0.03	0.32	3
18	0.06	0.46	2
19	-0.01	0.44	3
20	0.01	0.30	2
21	-0.10	0.51	2
22	0.06	0.58	3
23	-0.08	0.37	3
24	0.01	0.98	2
25	-0.03	0.68	2
26	0.06 -0.08 0.01 -0.03 -0.05 -0.05 -0.07	0.28 0.32 0.25 0.73 0.26 0.88 0.77 0.40 0.36 0.89 0.56 0.58 0.72 0.62 0.72 0.47 0.32 0.46 0.34 0.30 0.51 0.58 0.72 0.49 0.59	3
27	-0.05	0.90	2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	-0.07	0.59	3
29	-0.02	0.46	N 2 3 3 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 3 2 2 3 3 3 3 3 2 2 3
30	0.04	0.95	2

Пример. Вычислить $\int_{0}^{1} e^{x} dx$ с точностью $\varepsilon = 0.01$.

Обосновать выбор схемы интегрирования.

Погрешность аппроксимации определяется величиной остаточного члена квадратурной формулы (пусть N – число сегментов разбиения)

Схема	Схема Вид остаточного члена		Порядок метода
Метод прямоугольников	$\sum_{k=1}^N \frac{h_k^3}{24} f"(\sigma_k)$	1	2
Метод трапеций	$\sum_{k=1}^{N} \frac{h_k^3}{12} f''(\sigma_k)$	1	2
Метод парабол (Симпсона)	· · · · · · · · · · · · · · · · · · ·		4
Квадратуры Гаусса (по <i>n</i> точкам)	$\sum_{k=1}^{N} \frac{\left(h_{k}\right)^{2n+1} \left(n!\right)^{4}}{\left((2n)!\right)^{3} \left(2n+1\right)} f^{(2n)}\left(\sigma_{k}\right)$	2n – 1	2 <i>n</i>

 $\sigma_k \in [x_{k-1}, x_k]$ – внутренняя точка сегмента разбиения.

Функция $f(x) = e^x$ на отрезке [0,1] имеет ограниченные производные, т.к. $\max_{x \in [0,1]} f^{(m)}(x) = \max_{x \in [0,1]} e^x = e$ и

$$\min_{x \in [0,1]} f^{(m)}(x) = \min_{x \in [0,1]} e^x = e^0 = 1$$
 . Если $h_k > 0$, то $\sum_{k=1}^N h_k^M \le h^M$,

где h – длина отрезка интегрирования и $M \in \mathbb{N}$.

При h=1 схемы методов средних прямоугольников и трапеций не дадут требуемую точность, т.к. остаточный член в методе средних прямоугольников снизу ограничен величиной 1/24>0.01

$$\frac{1}{24} < \sum_{k=1}^{N} \frac{h_k^3}{24} f''(\sigma_k) < \frac{1}{24} e \approx 0.11,$$

а остаточный член в методе трапеций снизу ограничен величиной 1/12 > 0.01

$$\frac{1}{12} < \sum_{k=1}^{N} \frac{h_k^3}{12} f''(\sigma_k) < \frac{1}{12} e \approx 0.23.$$

Для этих схем требуется измельчение шага интегрирования, что является не самой лучшей стратегией, т.к. увеличивается число действий.

При h=1 схемы методов парабол и Гаусс-2 дадут требуемую точность, т.к. для схемы Гаусс-2 при n=2

$$\frac{1}{\left(\left(2n\right)!\right)^{3}\left(2n+1\right)} < \sum_{k=1}^{N} \frac{\left(h_{k}\right)^{2n+1} \left(n!\right)^{4}}{\left(\left(2n\right)!\right)^{3} \left(2n+1\right)} f^{(2n)}\left(\sigma_{k}\right) < \frac{1 \cdot 16}{69120} e \approx 6.29e - 4$$

и для метода Симпсона

$$\frac{1}{2880} < \sum_{k=1}^{N} \frac{h_k^5}{2880} f^{(4)}(\sigma_k) < \frac{1}{2880} e \approx 9.44e - 4.$$

Применим квадратурную формулу по схеме Гаусс-2

$$\int_{0}^{1} e^{x} dx \simeq \frac{1}{2} \sum_{k=1}^{N} h_{k} \sum_{i=1}^{n} \alpha_{i} \exp\left(x_{i,k} \left(\xi_{i}\right)\right) = \frac{1}{2} \sum_{i=1}^{2} \alpha_{i} \exp\left(x_{i,1} \left(\xi_{i}\right)\right),$$

где веса и узлы определяются как

Схема Интегрирования	$У$ злы ξ_i	Beca α_i
Гаусс-2	$\pm 1/\sqrt{3}$	1

и $x_{i,k}\left(\xi_i\right) = \frac{h_k\left(\xi_i+1\right)}{2} + x_{k-1}$, ξ_i — узлы квадратурной формулы.

Округлим результат так, чтобы абсолютная погрешность приближённо равнялась $\epsilon = 0.01$

$$\int_{0}^{1} e^{x} dx \simeq \frac{1}{2} \left(1 \cdot e^{x_{i,1} \left(-1/\sqrt{3} \right)} + 1 \cdot e^{x_{i,1} \left(1/\sqrt{3} \right)} \right) \approx 1.71.$$

Проверка: оценим абсолютную погрешность найденного значения. Т.к. $\int\limits_0^1 e^x dx = e - 1 \,, \qquad \text{то}$ $\Delta = e - 1 - 1.71 \approx 0.008 \,.$

Пример. Построить квадратуры максимальной точности с одним и двумя узлами для интеграла специального вида $\int\limits_{-\infty}^{+\infty}e^{-x^2}f(x)dx$.

Квадратурной формулой называют

$$\int_{a}^{b} \rho(x) f(x) dx \approx \sum_{i=1}^{n} \alpha_{i} f(x_{i}),$$

где $\rho(x)$ – весовая функция, α_i – коэффициенты, x_i – узлы квадратурной формулы.

Коэффициенты квадратурной формулы определяются как

$$\alpha_i = \int_a^b \rho(x) l_i(x) dx$$
, $\forall i = \overline{1, n}$,

где $l_i(x)$ – базисный полином Лагранжа.

Если n — число узлов квадратурной формулы, то квадратурная формула может быть точна для полинома максимальной степени 2n-1 и иметь порядок аппроксимации 2n. Доказательство этого факта приведено в пособии в разделе квадратуры Гаусса.

По условию задачи $\rho(x) = e^{-x^2}$. На всей оси $(-\infty, +\infty)$ ортогональную систему многочленов по весу $\rho(x) = e^{-x^2}$ образуют многочлены Чебышёва-Эрмита.

Значит, узлы квадратурной формулы x_i — это корни многочленов Чебышёва-Эрмита на оси $(-\infty, +\infty)$. Многочлены Чебышёва-Эрмита определяются рекуррентно

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2},$$

$$H_{n+1}(x) = 2xH_n(x) - H'_n(x).$$

Пусть n=1, тогда $H_1(x)=2x$. На всей оси $(-\infty,+\infty)$ многочлен Чебышёва-Эрмита $H_1(x)=2x$ имеет корень $x_1=0$. По одной точке можно задать интерполяционный многочлен Лагранжа степени 0, т.е. $l_1(x)=1$. Находим коэффициент α_1

$$\alpha_1 = \int_{-\infty}^{+\infty} \rho(x) l_1(x) dx = \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi} \approx 1.7725.$$

Получаем квадратуру с одним узлом

$$\int_{-\infty}^{+\infty} e^{-x^2} f(x) dx \approx \sqrt{\pi} \cdot f(0).$$

Пусть n = 2. На всей оси $(-\infty, +\infty)$ многочлен Чебышёва-Эрмита $H_2(x) = 4x^2 - 2$ имеет два $x_{1.2} = \pm \frac{\sqrt{2}}{2} \approx \pm 0.7071$. По двум точкам можно задать интерполяционный многочлен Лагранжа степени 1, т.е. $l_1(x) = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{2}}{2} - x \right)$ и $l_2(x) = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{2}}{2} + x \right)$. Находим коэффициенты α_1 и α_2

$$\alpha_{1} = \int_{-\infty}^{+\infty} \rho(x) l_{1}(x) dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2}} \left(\frac{\sqrt{2}}{2} - x \right) e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2} \approx 0.8862,$$

$$\alpha_{2} = \int_{-\infty}^{+\infty} \rho(x) l_{2}(x) dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2}} \left(\frac{\sqrt{2}}{2} + x \right) e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2} \approx 0.8862.$$

Получаем квадратуру с двумя узлами

$$\int_{-\infty}^{+\infty} e^{-x^2} f(x) dx \approx \frac{\sqrt{\pi}}{2} \cdot f\left(\frac{\sqrt{2}}{2}\right) + \frac{\sqrt{\pi}}{2} \cdot f\left(-\frac{\sqrt{2}}{2}\right).$$

 $\mathbf{\Pi}$ **р и м е р**. Вычислить $\int\limits_{-\infty}^{+\infty} xe^{-x^2}dx$. Использовать квадратуры на базе ортогональной системы многочленов Чебышёва-Эрмита с одним и двумя узлами. Оценить абсолютную погрешность результата.

Применим квадратурные формулы из предыдущей задачи

• по одному узлу:
$$\int_{-\infty}^{+\infty} x e^{-x^2} dx \approx \sqrt{\pi} \cdot 0 = 0,$$

• по двум узлам:
$$\int_{-\infty}^{+\infty} x e^{-x^2} dx \approx \frac{\sqrt{\pi}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{\sqrt{\pi}}{2} \cdot \frac{\sqrt{2}}{2} = 0$$
.

Погрешность:

$$\Delta = \left| \int_{-\infty}^{+\infty} x e^{-x^2} dx - 0 \right| = \left| \int_{-\infty}^{+\infty} x e^{-x^2} dx \right| = \left| \frac{1}{2} \int_{-\infty}^{+\infty} e^{-x^2} dx^2 \right| = \left| -\frac{1}{2} e^{-x^2} \right| \Big|_{-\infty}^{+\infty} = 0,$$
T.K. $\lim_{x \to \pm \infty} e^{-x^2} = 0$.

Практическое задание №5

Цель. Сформировать практические навыки применения правила Рунге для оценки ошибки численного интегрирования и уточнения по Ричардсону для повышения точности решения прикладных задач.

Формулировка задания.

- 1. Разработать класс, реализующий любые две схемы численного интегрирования семейства Ньютона-Котеса и Гаусса с числом узлом интегрирования не менее двух.
- 2. Задайте на отрезке [a,b] непрерывную неполиномиальную функцию $\varphi(x)$.
- 3. Вычислить аналитически $I^* = \int_a^b \varphi(x) dx$.
- 4. Для отрезка [a,b] постройте три вложенные сетки с равномерным шагом h, h/2 и h/4. Для каждой из реализованных схем численного интегрирования выполните оценку порядка аппроксимации относительно шага равномерного сеточного разбиения.
- 5. Для каждой квадратурной формулы заполнить следующую таблицу (все значения приводить в экспоненциальной форме)

h	I^*-I^h	$\frac{I^* - I^h}{I^* - I^{h/2}}$	$\frac{I^{h/2}-I^h}{2^k-1}$	$I^{\scriptscriptstyle R}$	$I^* - I^R$

где I^h — вычисленное значение интеграла на равномерной сетке с шагом h, k — порядок малости остаточного члена (аналитический порядок аппроксимации квадратурной формулы).

6. С помощью AI-ассистента DeepSeek решите предыдущую задачу о выборе схемы численного интегрирования максимальной точности. Какие явные недостатки можно обнаружить?

Промт. Оптимальный метод численного интегрирования $Int\{exp(x)\}dx$ х in [0,1] с максимальной точностью?

Варианты практического задания

No	а	b
1	0.04	0.60
2 3 4	-0.08	0.51
3	-0.03	0.70
4	-0.01	0.58
5	0.05	0.66
6	0.04	0.84
7	0.00	0.74
8	0.10	0.56
9	0.07	0.69
10	0.04	0.61
11	-0.07	0.74
12	0.00	0.36
13	0.03	0.45
14	0.02	0.36
15	0.01	0.44
16	0.10	0.73
17	-0.07	0.73
18	0.05	0.56
19	0.05	0.31
20	0.03	0.30
21	-0.06	0.46
22	0.09	0.96
23	-0.06	0.55
24	0.03	0.30
25	-0.07	0.54
26	0.07	0.30
27	-0.08	0.39
28	-0.09	0.48
29	-0.01	0.41
30	-0.02	0.87

Практическое задание №6

Цель. Сформировать практические навыки применения алгоритмов прямого и обратного дискретного преобразования Фурье (DFT и IDFT) и их быстрых реализаций (FFT и IFFT) для анализа одномерных сигналов.

Формулировка задания

- 1. На языке программирования С++ реализовать алгоритмы прямого и обратного преобразований Фурье (DFT и IDFT), быстрые алгоритмы прямого и обратного преобразований Фурье для вектора чётной длины (FFT и IFFT). Арифметические операции выполнять при использовании шаблонного класса std::complex<double>.
- 2. Задать $N = 2^n$, $n \in \mathbb{N}$ отсчётов зашумлённого сигнала вида:

$$z(j) = A\cos(2\pi\omega_1 j / N + \varphi) + B\cos(2\pi\omega_2 j / N).$$

3. Выполнить для полученного набора данных дискретное преобразование Фурье. Замерить время выполнения кода при использовании DFT и FFT. Заполнить таблицу (отразить только те частоты *m*, на которых отличны от нуля амплитудный или фазовый спектры)

m	Re z	$\operatorname{Re} \overset{}{z}$	Îm z	Амплитуда, $ \hat{z} $	Фаза, φ

- 4. Найти высокочастотные шумовые компоненты сигнала и обнулите их коэффициенты \hat{z} в DFT.
- 5. Вычислить IDFT от модифицированного результата DFT (с обнулёнными шумовыми компонентами). Изобразить на одном графике исходный набор

значений и результат фильтрации после IDFT. Графики должны быть непрерывными, используйте сплайны.

6. Задать $N = 2^n$, $n \in \mathbb{N}$ отсчётов зашумлённого сигнала вида:

$$z(j) = \begin{cases} 0, & 0 \le j < N/4, \\ A + B\cos(2\pi\omega_2 j/N), & N/4 \le j \le N/2, \\ 0, & N/2 < j \le 3N/4, \\ A + B\cos(2\pi\omega_2 j/N), & 3N/4 < j \le N. \end{cases}$$

Получится ли эффективно решить задачу о фильтрации данного сигнала с помощью DFT? Ответ обоснуйте.

Варианты практического задания

№	n	A	В	ω_1	ω_2	φ
1	9	2.44	0.10	1	184	$\pi/4$
2	10	3.00	0.12	2	195	$\pi/3$
3	10	2.05	0.18	2	188	$\pi/6$
4	10	2.51	0.25	2	183	$\pi/2$
5	9	2.29	0.22	1	192	$\pi/4$
6	10	2.98	0.28	1	190	$\pi/3$
7	9	2.87	0.26	2	194	$\pi/6$
8	11	2.70	0.25	2	180	$\pi/2$
9	10	2.56	0.13	3	195	$\pi/3$
10	10	2.46	0.21	3	198	$\pi/6$
11	9	2.35	0.10	2	190	$\pi/2$
12	9	2.43	0.23	2	195	$\pi/4$
13	9	2.16	0.25	2	184	$\pi/3$
14	11	2.18	0.21	2	182	$\pi/6$
15	11	2.51	0.22	2	183	$\pi/4$
16	10	2.50	0.13	3	185	$\pi/3$
17	10	2.26	0.24	2	199	$\pi/6$
18	9	2.94	0.27	2	197	$\pi/2$
19	10	2.15	0.18	2	185	$\pi/4$
20	11	2.83	0.24	3	189	$\pi/3$
21	9	2.01	0.13	2	185	$\pi/6$
22	9	3.00	0.26	1	193	$\pi/2$
23	9	2.58	0.19	3	191	$\pi/4$
24	10	2.12	0.12	2	183	$\pi/2$
25	11	2.49	0.16	3	199	$\pi/4$
26	10	2.75	0.24	2	191	$\pi/4$
27	11	2.16	0.17	2	181	$\pi/3$
28	9	2.01	0.17	2	189	$\pi/6$
29	9	2.74	0.13	2	195	$\pi/2$
30	10	2.74	0.13	3	185	$\pi/4$

Пример. Рассмотрим 512 отсчётов сигнала

$$z(n) = 2.5\cos(2\pi 3n/512 + \pi/2) + 0.2\cos(2\pi 125n/512),$$

его графическое представление имеет вид:

Выполним DFT этого сигнала. Результаты приведены в следующей таблице:

m	Re z	Re z	Im \hat{z}	Амплитуда, $\hat{ z }$	Фаза, ф
3	-0.2976	2.04E-13	640	640	1.5708
125	2.28599	51.2	-1.96E-12	51.2	-3.82E-14
387	-2.68355	51.2	2.07E-12	51.2	4.03E-14
509	0.253511	4.23E-13	-640	640	-1.5708

Отличная от нуля амплитуда DFT указывает на наличие в спектре частоты m. Поскольку обе компоненты сигнала вещественные, то для частот m=3 и 125 в спектре присутствуют сопряжённые: 509 и 387, соответственно. Первая компонента сигнала — низкочастотная, т.к. ей соответствует частота m=3. Значение фазы,

отличное от нуля, указывает на сдвиг этой компоненты на величину 1.5708, т.е. $\pi/2$ из условия задачи. Вторая компонента сигнала — высокочастотная, т.к. ей соответствует частота m=125 (она ближе к половине спектра).

Для того, чтобы избавиться от зашумления, требуется обнулить компоненты DFT при m=125 и 387:

т	Re z	Im \hat{z}	
3	2.04E-13	640	
125	0	0	
387	0	0	
509	4.23E-13	-640	

Получаем отфильтрованный сигнал после IDFT:

Практическое задание №7

Цель. Сформировать практические навыки применения методов дискретного вэйвлет-преобразования для анализа одномерных сигналов на основе разных базисных вэйвлет-систем.

Формулировка задания

- 1. На языке программирования C++ реализовать алгоритмы кратномасштабного анализа на базе вэйвлетов Хаара, Шеннона и Добеши (D6).
- 2. Задать $N = 2^n$, $n \in \mathbb{N}$ отсчётов зашумлённого кусочно-постоянного сигнала вида:

$$z(j) = \begin{cases} 0, & 0 \le j < N/4, \\ A + B\cos(2\pi\omega_2 j/N), & N/4 \le j \le N/2, \\ 0, & N/2 < j \le 3N/4, \\ A + B\cos(2\pi\omega_2 j/N), & 3N/4 < j \le N. \end{cases}$$

- 3. Выполните 4-этапный кратномасштабный анализ этого сигнала: приведите графические изображения скалярных произведений $\langle \mathbf{z}, \psi_{-1,k} \rangle$, $\langle \mathbf{z}, \psi_{-2,k} \rangle$, $\langle \mathbf{z}, \psi_{-2,k} \rangle$, $\langle \mathbf{z}, \psi_{-3,k} \rangle$, $\langle \mathbf{z}, \psi_{-4,k} \rangle$ и $\langle \mathbf{z}, \varphi_{-4,k} \rangle$. Проанализируйте эти графики при использовании вэйвлетов Хаара, Шеннона и Добеши (D6).
- 4. Выполните частичное восстановление сигнала на каждом из этапов $P_{-1}(\mathbf{z})$, $P_{-2}(\mathbf{z})$, $P_{-3}(\mathbf{z})$. Проанализируйте их графики при использовании вэйвлетов Хаара, Шеннона и Добеши (D6). Как ведёт себя зашумление при переходе от этапа к этапу?
- 5. Попробуйте решить задачу о фильтрации зашумлённого сигнала на втором этапе: обнулите

высокочастотные коэффициенты вэйвлет-разложения $\langle \mathbf{z}, \psi_{-2,k} \rangle$ и постройте $P_{-1}(\mathbf{z})$. В каком базисе задача о фильтрации кусочно-постоянного сигнала может быть решена точнее?

6. Задать $N = 2^n$, $n \in \mathbb{N}$ отсчётов зашумлённого сигнала вида:

$$z(j) = A\cos(2\pi\omega_1 j / N + \varphi) + B\cos(2\pi\omega_2 j / N).$$

- 7. Какой вэйвлет-базис предпочтительнее и сколько этапов потребуется для решения задачи о фильтрации такого сигнала?
- 8. Сформулируйте общий вывод: когда следует применять дискретное преобразование Фурье, а когда дискретное вэйвлет-преобразование?

Варианты практического задания

№	n	A	В	ω_1	ω_2
1	9	2.44	0.10	1	184
2	10	3.00	0.12	2	195
3	10	2.05	0.18	2	188
4	10	2.51	0.25	2	183
5	9	2.29	0.22	1	192
6	10	2.98	0.28	1	190
7	9	2.87	0.26	2	194
8	11	2.70	0.25	2	180
9	10	2.56	0.13	3	195
10	10	2.46	0.21	3	198
11	9	2.35	0.10	2	190
12	9	2.43	0.23	2	195
13	9	2.16	0.25	2	184
14	11	2.18	0.21	2	182
15	11	2.51	0.22	2	183
16	10	2.50	0.13	3	185
17	10	2.26	0.24	2	199
18	9	2.94	0.27	2	197
19	10	2.15	0.18	2	185
20	11	2.83	0.24	3	189
21	9	2.01	0.13	2	185
22	9	3.00	0.26	1	193
23	9	2.58	0.19	3	191
24	10	2.12	0.12	2	183
25	11	2.49	0.16	3	199
26	10	2.75	0.24	2	191
27	11	2.16	0.17	2	181
28	9	2.01	0.17	2	189
29	9	2.74	0.13	2	195
30	10	2.74	0.13	3	185

Пример. Зададим N = 512 отсчётов сигнала вида:

$$z(j) = \begin{cases} 0, & 0 \le j < 128, \\ 2.5 + 0.2\cos(2\pi 125 j / 512), & 128 \le j \le 256, \\ 0, & 256 < j \le 384, \\ 2.5 + 0.2\cos(2\pi 125 j / 512), & 384 < j \le 512. \end{cases}$$

Графическое представление сигнала:

Выберем базисную систему Добеши (D6), выполним 4-этапное дискретное вэйвлет-преобразование и покажем, как модифицируется сигнал на каждом этапе.

Восстановление $P_{-1}(\mathbf{z})$ на втором этапе:

Восстановление $P_{-2}(\mathbf{z})$ на третьем этапе:

Восстановление $P_{-3}(\mathbf{z})$ на четвёртом этапе:

Как можно видеть, на третьем этапе вклад высокочастотной компоненты сигнала, отвечающей за помехи, существенно уменьшается. Покажем, как выглядят высокочастотные компоненты дискретного вэйвлет-преобразования в материнской линии вэйвлетов Добеши (D6) второго поколения $\langle \mathbf{z}, \psi_{-2,k} \rangle$:

Покажем, как выглядят низкочастотные компоненты дискретного вэйвлет-преобразования в отцовской линии вэйвлетов Добеши (D6) второго поколения $\langle \mathbf{z}, \varphi_{-2,k} \rangle$:

Если обнулить высокочастотные компоненты дискретного вэйвлет-преобразования в материнской линии вэйвлетов Добеши (D6) второго поколения $\langle \mathbf{z}, \psi_{-2,k} \rangle$, то восстановление второго этапа $P_{-1}(\mathbf{z})$ примет вид:

Решить задачу о фильтрации зашумлённого кусочно-постоянного сигнала методами дискретного преобразования Фурье не представляется возможным, т.к. амплитудный спектр такого сигнала содержит все частоты, поскольку постоянные функции не представимы точно в тригонометрическом базисе:

Дискретное вэйвлет-преобразование — это предпочтительный инструмент для обработки пространственно локализованных сигналов.

Практическое задание №8

Цель. Сформировать практические навыки применения дискретных методов решения задачи Коши на базе конечно-разностных аппроксимаций.

Формулировка задания

Отношения нейтрального равновесия (хищники и жертвы, паразиты и носители) развиваются циклически и описываются математической моделью Лотки-Вольтерра:

$$\dot{x} = (\alpha - \beta y) x,$$

$$\dot{y} = (-\gamma + \delta x) y,$$

где x — количество жертв, y — количество хищников α — коэффициент рождаемости жертв, β — коэффициент успешной охоты на жертв, γ — коэффициент естественной убыли хищников, δ — коэффициент воспроизводства хишников.

В положении популяционного равновесия (изменение численностей популяции равно нулю) имеем:

$$\dot{x} = (\alpha - \beta y) x = 0,$$

$$\dot{y} = (-\gamma + \delta x) y = 0,$$

откуда находим точку равновесия:

$$\widehat{x} = \gamma / \delta$$
,
 $\widehat{y} = \alpha / \beta$.

- 1. На языке С++ реализуйте любые две конечно-разностные схемы с разным порядком сходимости.
- 2. Придумайте две разномасштабные по времени жизни модели популяций: волки зайцы, дидинии инфузории туфельки и т.д. Подберите корректные параметры модели Лотки-Вольтерра для каждой

популяции, изучите как меняется динамика численности членов популяций при варьировании параметров модели как в условиях превышения кормовой базы $x_0 > y_0$, так и в условиях превышения хищников $x_0 < y_0$.

- 3. Как влияют малые отклонения численностей от их равновесных значений на устойчивость решения задачи? Что можно сказать о свойствах математической модели Лотки-Вольтерра с точки зрения жёсткости?
- 4. Какие методы дискретизации данной модели предпочтительнее?

Пример оформления расчётов

Выполним моделирование численности популяций жертв и хищников в течение года (365 дней) при начальном количестве хищников 2 и жертв 5.

Пусть положение равновесия достигается при количестве хищников 5 и жертв 20. Такая система характеризуется параметрами $\alpha = 0.3$, $\beta = 0.06$, $\gamma = 0.7$ и $\delta = 0.035$.

Для дискретизации модели Лотки-Вольтерра применим явный метод Рунге-Кутты-4 (RK4) с шагом по времени один день. Динамика численности жертв в течение года описывается графиком:

Динамика численности хищников в течение года описывается графиком:

В течение года фазовый портрет взаимодействия популяций имеет вид:

Как можно видеть, изменение численности жертв и хищников имеет периодичность, которая зависит от параметров модели. При варьировании параметров модели Лотки-Вольтерра и шага дискретизации можно получить разные фазовые портреты.

Отметим, что при нулевых начальных условиях имеет место тривиальное решение. При отсутствии хищников в экосистеме численность жертв будет расти экспоненциально, а при отсутствии жертв численность хищников будет экспоненциально уменьшаться.

Список литературы

- Иткина Н.Б., Марков С.И. Численные методы. В 2 ч. : учеб. пособие / Новосиб. гос. техн. ун-т. Новосибирск : Изд-во НГТУ, 2022. Ч. 1. 90 с.
- 2. Иткина Н.Б., Марков С.И. Численные методы. В 2 ч. : учеб. пособие / Н. Б. Иткина, С. И. Марков ; Новосиб. гос. техн. ун-т. Новосибирск : Изд-во НГТУ, 2022. Ч. 2. 88 с.
- 3. Василенко В.А. Сплайн-функции: теория, алгоритмы, программы. Монография. Новосибирск: Сибирское отделение изд-ва Наука, 1983. 215 с.
- 4. Завьялов Ю.С., Квасов Б.И., Мирошниченко В.Л. Методы сплайн-функций. Под ред. Н. Н. Яненко. М. : Наука, 1980. 352 с.
- 5. Де Бор К. Практическое руководство по сплайнам. Пер. с англ. М.: Радио и связь, 1985. 304 с.
- 6. Крылов В.И. Приближенное вычисление интегралов. М.: Наука, 1967. 500 с.
- 7. Фрейзер М. Введение в вэйвлеты в свете линейной алгебры. Бином, 2008. 490 с.
- 8. Годунов С.К., Рябенький В.С. Разностные схемы. М.: Наука, 1977. 439 с.
- 9. Ascher U.M. Numerical methods for evolutionary differential equations. Philadelphia: Society for Industrial and Applied Mathematics, 2008. 410 p.