Problem 54.14. Implement Program (SVM_{s4}) in Matlab. You may adapt the programs given in Section B.2 and Section B.3.

Problem 54.15. Prove that the kernel version of Program (SVM_{s4}) is given by:

Dual of the Soft margin kernel SVM (SVM $_{s4}$):

minimize
$$\frac{1}{2} \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} \begin{pmatrix} \mathbf{K} + \frac{p+q}{2} I_{p+q} \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$
 subject to
$$\sum_{i=1}^{p} \lambda_{i} - \sum_{j=1}^{q} \mu_{j} = 0$$

$$\sum_{i=1}^{p} \lambda_{i} + \sum_{j=1}^{q} \mu_{j} \geq \nu$$

$$\lambda_{i} \geq 0, \quad i = 1, \dots, p$$

$$\mu_{j} \geq 0, \quad j = 1, \dots, q,$$

where \mathbf{K} is the kernel matrix of Section 54.1.

Problem 54.16. Implement Program (SVM_{s5}) in Matlab. You may adapt the programs given in Section B.2 and Section B.3.

Problem 54.17. Prove that the kernel version of Program (SVM_{s5}) is given by:

Dual of the Soft margin kernel SVM (SVM $_{s5}$):

minimize
$$\frac{1}{2} \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} \begin{pmatrix} \mathbf{K} + \begin{pmatrix} \mathbf{1}_{p} \mathbf{1}_{p}^{\top} & -\mathbf{1}_{p} \mathbf{1}_{q}^{\top} \\ -\mathbf{1}_{q} \mathbf{1}_{p}^{\top} & \mathbf{1}_{q} \mathbf{1}_{q}^{\top} \end{pmatrix} + \frac{p+q}{2} I_{p+q} \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$
subject to
$$\sum_{i=1}^{p} \lambda_{i} + \sum_{j=1}^{q} \mu_{j} = \nu$$
$$\lambda_{i} \geq 0, \quad i = 1, \dots, p$$
$$\mu_{j} \geq 0, \quad j = 1, \dots, q,$$

where \mathbf{K} is the kernel matrix of Section 54.1.