Exemplos de Sistemas Distribuídos

SDC

Sistemas Bancários

(caixas eletrônicos...)

Redes Sociais (FB,Whatsapp,etc.

WWW (prot. HTTPP) Peer-to-Peer (file sharing...) Sistemas RT (monitoramento...)

Redes de Sensores e IoT

(computação ubíqua, sensibilidade a contextos...)

Grid
Computing
(CERN: 15PB, SETI,...)

Cloud
Computing
(software, dados, infraestrutura,...)

Por que construir sistemas distribuídos?

SDC

Por que Sistemas Distribuídos?

- porque há sistemas inerentemente distribuídos
 - + (e.g., monitoramento remoto, etc.)
- porque há necessidade de se melhorar o desempenho
 - + (e.g., balanceamento de carga)
- porque é desejável compartilhar recursos
 - + ("re-uso")
- porque deseja-se manter o sistema "no ar" (disponibilidade)
 - + (tolerância a faltas e "degradação progressiva")

Como construir um sistema distribuído?

Como implementar um Sistema Distribuído?

- Interfaces de programação de redes API de sockets
 - baixo nível → complexidade!
 - suscetível a erros
- Middlewares e sistemas distribuídos
 - plataformas de software que auxiliam o desenvolvimento
 - organizados em camadas
 - + (esconde diferenças de SO, HW, ...)

z Lima Jr.

Como implementar um Sistema Distribuído?

- Middleware:
 - recursos para facilitar comunicação entre entidades computacionais
 - esconde detalhes de comunicação:
 - "transparências"
 - serviços adicionais:
 - segurança
 - + contabilidade
 - localização

- + etc...
- fornece funcionalidades necessárias para um SD:
 - → comunicação (Remote Procedure Call — RPC)
 - transações (propriedades ACID...)
 - composição de serviços
 (programar = montar "quebracabeça" → Web Services)
 - confiabilidade (e.g., garantias de entrega, tolerância a faltas)

Visão Geral

- 1. O que são sistemas distribuídos?
 - "entidades" ou nós conectados
 - comunicação por trocas de mensagens
- 2. Por que sistemas distribuídos?
 - desempenho
 - disponibilidade (tolerância a faltas)
- 3. Como implementar sistemas distribuídos?
 - comunicação de baixo nível (bytes)
 - middleware

A Disciplina

A Disciplina de SD

- 1. Fundamentos de Sistemas Distribuídos
 - arquiteturas
 - modelos de comunicação
 - aspectos de projeto de j
 - fundamentos de comuj
- 2. Concorrência e coordena. em SDs
- 3. *Middleware* para SDs
 - conceitos básicos

- classes (OD, serviços, messageoriented, tuple-space)
 - * diferentes linguagens de programação (C++, Java, Python,
- AULAS PRÁTICAS ução a Algoritmos idos
 - 6. In ução à Computação Distribuída na Presença de Falhas

Plano de Ensino