Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Группа_М3106	К работе допущен		
Студент <u>Шеин Максим Андреевич</u>	Работа выполнена		
Преподаватель Качин Валерий Александрови Отчет принят			

Рабочий протокол и отчет по лабораторной работе №

Опыт Милликена

1)Цель работы:

- 1)Исследование движения заряженных капель в электрическом и гравитационном полях.
- 2)Определение величины элементарного заряда.

2)Задачи, решаемые при выполнении работы:

- 1)Измерение скоростей движения капель масла при различных напряжениях и направлениях электрического поля.
- 2)Определение радиуса и заряда капель

3)Объект исследования:

Установки Милликена

4) Метод экспериментального исследования:

Изучение виртуальной лабораторной установки, наблюдение, проведение измерений с помощью неё.

5)Рабочие формулы и исходные данные:

1)
$$v_1 = \frac{1}{6\pi\eta r} \left(qE + \frac{4}{3}\pi r^3 \left(\rho_o - \rho\right)g\right), \text{M/c} \quad v_2 = \frac{1}{6\pi\eta r} \left(qE - \frac{4}{3}\pi r^3 \left(\rho_o - \rho\right)g\right), \text{M/c}$$

,где η – вязкость воздуха, r – радиус капли, qE – модуль электрической силы, ρ_0 - плотность масла, ρ – плотность воздуха, g – ускорение свободного падения.

2)
$$r = C_r \sqrt{v_1 - v_2}, \,$$
 м где Cr – параметры экспериментальной установки, v1 и v2 - скорости

3)
$$q = C_q \frac{(v_1 + v_2)\sqrt{v_1 - v_2}}{U}$$
, Кл где Сq – константа, U – напряжение в конденсаторе

6)Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Хронометр	-	0.005 c

7)Схема установки:

8)Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Nº	U, B	t1, c	t2, c				
1	197	6,63	7,07	13	254	121	5.02
2	244	5,07	7,68			4,34	5,93
3	213	10,75	16,87	14	294	5,98	9,65
4	238	5,57	8,82	15	275	5,07	7,68
		-		16	173	7,48	17,8
5	249	6,17	8,47				
6	247	5,05	6,55	17	268	5,63	10,51
7	223	5,4	7,22	18	167	6,72	15,79
8	165	5,71	8,07	19	286	5,36	13,26
9	211	7,23	11,47	20	201	5,96	18,76
10	291	4,81	6,53	21	281	4,27	9,05
11	232	3,93	5,05	22	270	4,38	9,78
12	251	4,32	5,78	23	272	4,48	12,54

9)Расчет результатов косвенных измерений (таблицы, примеры расчетов):

v1	v2	r,10^-17m	q,10^-19Kл	n	е, 10^-19Кл
0,00016	0,00015	2,18	3,53	2	1,76
0,00021	0,00014	5,83	8,53	5	1,71
0,00010	0,00006	4,13	3,22	2	1,61
0,00019	0,00012	5,79	7,77	4	1,94
0,00017	0,00013	4,72	5,79	3	1,93
0,00021	0,00016	4,79	7,42	4	1,85
0,00020	0,00015	4,86	7,70	4	1,92
0,00019	0,00013	5,09	10,06	5	2,01
0,00015	0,00009	5,09	5,93	3	1,98
0,00022	0,00016	5,27	7,12	4	1,78
0,00027	0,00021	5,35	11,37	6	1,89
0,00025	0,00018	5,44	9,56	5	1,91
0,00025	0,00018	5,59	9,58	5	1,92
0,00018	0,00011	5,67	5,70	3	1,90
0,00021	0,00014	5,83	7,56	4	1,89
0,00014	0,00006	6,26	7,50	4	1,87
0,00019	0,00010	6,46	7,17	4	1,79
0,00016	0,00007	6,58	9,11	5	1,82
0,00020	0,00008	7,50	7,49	4	1,87
0,00018	0,00006	7,61	9,13	5	1,83
0,00025	0,00012	7,91	10,59	6	1,76
0,00024	0,00011	7,99	10,67	6	1,78
0,00024	0,00009	8,52	10,35	6	1,73

h, m	0,001066	
Cr	6,89188E-05	
Cq	7,05048E-11	

Средн. Знач. Оценки элементарного заряда,	Среднеквадратичное отклонение, 10^-19Кл		
10^-19Кл			
1,698	0,149		

 v_1 , погрешность δa = 0,0002

 v_2 , погрешность δa = 0,0001

r, Погрешность $\delta a = 0.23$

q, погрешность $\delta a = 0.19$

e, Погрешность $\delta a = 0.14$

10)Графики

11)Выводы и анализ результатов работы:

В ходе лабораторной работы мы убедились, что электрический заряд электрона, действительно, составляет: $e=1,602*10^{-19} \mathrm{K}_{\mathrm{J}}$.

Вместе с этим, был найден интервал радиусов капель: от **2.18** до **8.52** ,а также интервал значений их зарядов: от **3.22** до **11.37**

Полученное мной оценочное значение элементарного заряда составляет $1,698*10^{-19}$ Кл.

Причиной погрешности может послужить человеческий фактор, а также погрешность секундомера.