Molekylær modellering av oppsprekking i gasshydrater

Henrik Andersen Sveinsson

Fysisk institutt
Det matematisk-naturvitenskapelige fakultet
Universitetet i Oslo

8. mai 2015

Oversikt

- 1 Introduksjon og Bakgrunn
- 2 Modellering og simulering
- 3 Resultater
- 4 Oppsummering og diskusjon

Oversikt

- 1 Introduksjon og Bakgrunn
- 2 Modellering og simulering
- 4 Oppsummering og diskusjon

Hva skjer i masteren min?

Jeg kombinerer 3 ting som ikke er så vanlig å kombinere:

Hva er gasshydrater?

- Et isliknende stoff som inneholder molekyler av stoffer som opptrer som gasser under vanlige forhold.
- Vanligvis mener man metanhydrater når man sier gasshydrater.

Bruksområder

- Energi (brenne metan)
- CO₂-lagring

Det ligger masse gasshydrater i havet, men sannsynligvis ikke så mye som man ofte blir fortalt..

Figur: The World Ocean Review, Marine Resources - Opportunities and Risks, 2014

Det ligger masse gasshydrater i havet, men sannsynligvis ikke så mye som man ofte blir fortalt..

Kartet viser ca 500 gigatonn med karbon lagret i gasshydrater. Det er mye. Vanlige estimater ligger mellom 500 og 2500 gigatonn. Høye estimater er $\sim 10~000$ gigatonn. Det 120 gigatonn karbon i kjente naturgassreservoarer.

Det ligger masse gasshydrater i havet, men sannsynligvis ikke så mye som man ofte blir fortalt..

Risiko

Operasjonell

■ Tette rør

Geologisk

- Sedimentskred
- the clathrate gun hypothesis

Äpne spørsmål

Materialegenskaper

- Bruddstyrke
- Spøtt eller duktilt?
- Hvordan ser sprekkoverflaten ut?
- Hvor mye metan frigjøres ved oppsprekking?
- Hvor forutsigbar er bruddstyrken?
- Hvorfor viser eksperimenter deformasjonsherding til 20 % deformasjon?

Simuleringsteknisk

- Hvilke interaksjonspotensialer er hest?
- Hvordan bør man utløse sprekker?

Oversikt

- 1 Introduksjon og Bakgrunn
- 2 Modellering og simulering
- 3 Resultater
- 4 Oppsummering og diskusjon

Lennard-Jonespotensialet

$$U = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Coulomb-potensialet

$$U = k \frac{q_a q_b}{r}$$

Kraftberegning

$$\mathbf{F} = -\nabla U$$

TIP4P/ICE + UAM (vann og metan)

- Lennard-Jones-sentrum
- Negativ ladning
- Positiv ladning

TIP4P/ICE + UAM (vann og metan)

Simulert system for mekaniske egenskaper

Simulert system for mekaniske egenskaper

Simulert system for mekaniske egenskaper

Beregner Youngs modul og Poissonforholdet basert på de forrige figurene:

Youngs modul

$$E = \frac{\sigma_x l_0}{\Delta x} = \frac{\sigma_x}{\epsilon_x}$$

Poissonforholdet

$$\nu = -\frac{\Delta y}{\Delta x}$$

Hva skal til for at det sprekker opp?

Griffith og Irwins energibalanse

$$\mathcal{G} > \mathcal{G}_c \stackrel{\mathsf{sprøtt}}{=} 2\gamma_s$$

Dersom den *mekaniske* energien som frigjøres ved å åpne ny sprekkflate er større enn energien som kreves for å åpne sprekken, vil sprekken vokse.

Hva var det jeg lurte på?

- Bruddstyrke
- Frigjort metan
- Bruddmekanisme

Oversikt

- 1 Introduksjon og Bakgrunn
- 2 Modellering og simulering
- 3 Resultater
- 4 Oppsummering og diskusjon

Resultater •00

Måling av arealet til sprekkoverflaten

Jeg bruker en Monte-Carlo-metode for å finne tilgjengelig overflate:

$$A_{ss} = 2V \frac{n_s}{L}$$

 $egin{array}{ll} A_{ss} & ext{overflatearealet} \ V & ext{volum av prøven} \ n_s & ext{antall krysninger vegg-tomrom} \ L & ext{total lengde av trukne linjestykker} \ \end{array}$

Resultater

- Hver fargede strek er en sprekksimulering.
- Oppsprekking skjer først sakte, ved smelting, deretter fort, ved brudd.

Oversikt

- 1 Introduksjon og Bakgrunn
- 2 Modellering og simulering
- 3 Resultater
- 4 Oppsummering og diskusjon