RELATIVITY AND QUANTUM MECHANICS: CONFLICT OR PENCEFUL COEXISTENCE

New YAR. January 1986.

0

STOCHASTIC HIDDEN-VARIABLE THEORIES

$$\frac{M \cos sun}{a = 5a \cdot \hat{a}} = \frac{100 sun}{8} \cdot \frac{1}{3}$$

$$\frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}$$

$$\frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot$$

Assume Probance of Eniple
joint Probance (Ea, Ez, Ez)

Jamett Completeness Prob (Ea / Ez & Ex) = Prob (Ea / Ex)

Prod (
$$a = E_a & b = E_b$$
)

$$= Prod (a = E_a | b = E_b | b = E_b)$$

$$= Prod (a = E_a | b = E_b | b = E_b)$$

$$\times Prod (b = E_b | b = E_b)$$

$$\times Prod (b = E_b | b = E_b)$$

$$= Prod (a = E_a | b = E_b | b = E_b)$$

$$= Prod (a = E_a | b = E_b | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

$$= Prod (a = E_a | b = E_b)$$

(3)

NECESSARY CONDITION.

FOR STOCHASTIC CAUSAUTY

and 2

2-someons off a from disturbance d

10.] D (\de D (\langle 0 = \x 1 \frac{1}{2} = \x

 $\exists D \forall \alpha \forall \beta (\forall 124') \in D$ $(Pno2^{124'})(\alpha = \epsilon_{\alpha} | \beta = \epsilon_{\alpha})$ $= Pno2^{12+}(\alpha = \epsilon_{\alpha} | \beta = \epsilon_{\alpha})))$

$$|\psi'\rangle = \frac{1}{\sqrt{a}} \left(\delta_{AZ} = +1 \right) U(\hat{n}, \phi) |\delta_{BZ} = -1 \rangle$$
 $- |\delta_{AZ} = -1 \rangle U(\hat{n}, \phi) |\delta_{BZ} = +1 \rangle$

where $U(\hat{n}, \phi) = e^{i(\delta_{B}, \hat{n})} \phi / a$

we have that

 $|a_{AB}|^{24} (a_{AB} = 1) = \frac{1}{2}$
 $|a_{AB}|^{24} (a_{AB} = 1) = \frac{1}{2}$
 $|a_{AB}|^{24} (a_{AB} = 1) = \frac{1}{2}$
 $|a_{AB}|^{24} (a_{AB} = 1) = \frac{1}{2}$

where $|a_{AB}|^{24} (a_{AB} = 1) = \frac{1}{2}$

where $|a_{AB}|^{24} (a_{AB} = 1) = \frac{1}{2}$

where $|a_{AB}|^{24} (a_{AB} = 1) = \frac{1}{2}$

TRANSFORMATION OF OPERATORS и(ñ,ф) бв и(ñ,-ф) = R(2,4) (B So under unitary transformation induced by u(n-4) $a = 6A \cdot \hat{a} \rightarrow \alpha' = \alpha$ 3= 58.2 -> 3= (u(n,-4)58 u(n,4)).2 = $(R(\hat{n}, -\phi))$ $(B) \cdot \hat{k}$ = $(B(\hat{n}, -\phi))$ $(B) \cdot \hat{k}$ = $(B) \cdot \hat{k}'$ where $\hat{k}' = B(\hat{n}, \phi)$ \hat{k}

Hence
$$Prob^{14/7}(q=1)=Prob^{14/7}(q'=1)$$
 $= 1/2$
 $Prob^{14/7}(z=1)=Prob^{14/7}(z'=1)$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/2$
 $= 1/$

NECESSAY CONDITION. FOR STOCHASTIC CAUSALITY FOR TWO SPIN-1/2 SYSTEMS

SIGNALLING AND ROBUSTNESS

$$PNOL(Q = Ea)$$

$$= \sum_{\varepsilon_{\nu}} |Nol(Q = Ea/2 = \varepsilon_{2})$$

$$= \sum_{\varepsilon_{\nu}} |Nol(Q = \varepsilon_{2})| = \sum_{\varepsilon_{2}} |Nol(Q = \varepsilon_{2})|$$

For do term mistic case

Write $|\hat{r}_0 v_0| (2 - \varepsilon v) = S(2, \varepsilon v)$ and $|\hat{r}_0 v_0| (a - \varepsilon v) = S(\varepsilon v) = S(\varepsilon v)$ Then $|\hat{r}_0 v_0| (a - \varepsilon v) = S(\varepsilon v) = S(\varepsilon v)$ or succemently $|a - v_0| = S(\varepsilon v)$

50, if fis 1:1

Robustness => Signalling

For dickotomie Vaniables

A Prod (a = Ea)

=
$$(Pnok(q = E_0 / Z = +1)$$

 $- Pnok(q = E_0 / Z = -1))$
 $\times \Delta Pnok(Z = +1)$