# 《大学物理 AI》作业 No.11 电磁感应

|             | 班级                     | 学号           |               | _姓名_                  |            | 成绩         |          |
|-------------|------------------------|--------------|---------------|-----------------------|------------|------------|----------|
| *           | *****                  | ******       | 本章教学          | <br>学 <del>要</del> 求* | *****      | ****       | ****     |
| 1、掌握        | .与理解法拉第电码              | 滋感应定律,特别是    | 公式中           | 负号的意                  | 义,会用       | 它正确判定感应    | 电动势的方向;  |
| 2、熟练        | 应用法拉第电磁                | 感应定律计算回路的    | <b>为感应电</b> 元 | 动势;                   |            |            |          |
| 3、理解        | 动生电动势和感                | 生电动势的概念,掌    | 2动生电          | 动势和感                  | 生电动势       | 的计算方法。     |          |
| <br>一、选排    | <br><b></b><br>季题      |              |               |                       |            |            |          |
| 1. 下列i      | 说法正确的是[ E              | ]            |               |                       |            |            |          |
| (A) 磁       | 场为零的地方,                | 不会有感生电场;     | (B)           | 感应电                   | 流产生的磁      | 兹场总是与原磁场   | 5反向;     |
| (C) 只       | 要闭合导体回路的               | 的磁通量不为零,就    | t会产生!         | 感应电流                  |            |            |          |
| (D) 沿       | 着感生电场的电场               | 5线,电势总是降低;   | (E)           | 以上说》                  | 去均不正确      | <b>道</b> 。 |          |
| 2. 下面几      | 种情况下,闭合[               | 回路里不可能产生愿    | <b>於</b> 应电流的 | 的是[                   | Вј         |            |          |
| (A)         | 闭合回路所处的                | 磁场发生变化       |               | (B) 闭                 | ]合回路在      | 匀强磁场中平动    | J        |
| (C)         | 在磁场中闭合回                | 路所包围的面积发     | 生变化           | (D) 闭                 | 合回路在?      | 匀强磁场中转动    |          |
| 3. 将形状      | 完全相同的铜环和               | 和木环静止放置,并    | 使通过两          | 两环面的 <sup>。</sup>     | 磁通量随田      | 村间的变化率相    | 等,则不计    |
| 自感时         | [ <b>D</b> ]           |              |               |                       |            |            |          |
| (A)         | 铜环中有感应电                | 且动势,木环中无愿    | <sup>  </sup> | 势                     |            |            |          |
| (B)         | 铜环中感应电动势               | 势大,木环中感应电    | 动势小           |                       |            |            |          |
| (C)         | 铜环中感应电动势               | 势小,木环中感应电    | 动势大           |                       |            |            |          |
| (D)         | 两环中感应电动                | 势相等          |               |                       |            |            |          |
| 4 两根无       | 限长平行直导线:               | 载有大小相等方向材    | 泪反的由          | 流1. 1 🛭               | <b>淮时间</b> | -          | <u> </u> |
| , , ,, ,, _ |                        | 位于导线平面内( )   |               |                       |            |            |          |
| ろり相         | wH, NC/IV <b>S</b> (四) | 匹1.43%上面4.7% | M (최 / )      | χij; L                | ا م        |            |          |
| (A          | ) 线圈中无感应               | 立电流          | (B)           | 线圈中原                  | 感应电流为      | 顺时针方向      |          |
| (C          | ) 线圈中感应印               | <b></b>      | (D)           | 线圈中                   | 感应电流力      | 方向不确定      |          |

5. 半径为a 的圆线圈置于磁感强度为 $\vec{B}$  的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R;

当把线圈转动使其法向与 $ec{B}$  的夹角lpha= $60^\circ$  时,<mark>线圈中通过的电荷与线圈面积及转动所用的时间</mark>

## 的关系是[ **A** ]

- (A) 与线圈面积成正比,与时间无关 (B) 与线圈面积成正比,与时间成正比
- (C) 与线圈面积成反比,与时间成正比 (D) 与线圈面积成反比,与时间无关

解:线圈中通过的感应电荷为:

$$q = \int i dt = \int \frac{\varepsilon}{R} dt = \int (-\frac{d\Phi_m}{dt}) \frac{1}{R} dt = -\frac{1}{R} \int d\Phi_m$$
$$= -\frac{1}{R} \Delta \Phi_m = -\frac{1}{R} (BS \cos 60^\circ - BS \cos 0^\circ) = \frac{\pi a^2 B}{2R}$$

由上式可知线圈中通过的电荷仅与线圈面积 $\pi a^2$ 成正比,与时间无关。

## 二、填空题

1. 如图所示,直角三角形金属框架 abc 放在均匀磁场中,磁场  $\vec{B}$  平行于 ab 边, bc 的边长为 l 。当金属框架绕 ab 边以匀角速度  $\omega$ 转动时,abc 回路中的 感应



电动势
$$\varepsilon = 0$$
;  $a \cdot c$  两点的电势差 $U_a - U_c = -\frac{1}{2}B\omega l^2$ .

 $m{\textit{\textbf{\textit{R}}}}$ : 金属架绕 ab 轴旋转时,回路中  $\dfrac{\mathrm{d} m{\textit{\textbf{\textit{\Phi}}}}_{m}}{\mathrm{d} t} = \mathbf{0}$  ,所以 $m{\mathcal{E}} = \mathbf{0}$  。

$$\varepsilon_{bc} = \int_b^c (\vec{v} \times \vec{B}) \cdot d\vec{l} = \int_b^c \omega l B dl = \frac{1}{2} B \omega l^2, \quad b \to c \text{ , c端电势高。所以 } U_{ac} = U_{bc} = -\frac{1}{2} B \omega l^2$$



**解**:由电磁感应定律 $\varepsilon = -\frac{\mathrm{d}\Phi_m}{\mathrm{d}t}$ ,第二种情况通过线圈的磁通量变化率最大。

3. 如图所示,在一长直导线L 中通有电流I,ABCD 为一矩形线圈,它与L皆在纸面内,且AB 边与L 平行。当矩形线圈在纸面内向右移动时,线圈中感应电动势方向为<u>顺时针</u>;当矩形线圈绕AD 边旋转,当BC 边已离开纸面



正向外运动时,线圈中感应电动势方向为<u>顺时针</u>。(选填顺时针、逆时针)

解: 由楞次定律可以判断。

4. 在磁感强度为  $\vec{B}$  的均匀磁场中,以速率 $\nu$  垂直切割磁感应线运动的一长度为 L 的金属杆,相当于一个电源,它的电动势 $\epsilon=$   $\nu Bl$  ,产生此电动势的非静电力是 洛伦兹力 。

**解:** 由 
$$\varepsilon = \int (\vec{v} \times \vec{B}) \cdot d\vec{l}$$
 可得。

5. 如图所示,一半径为r 的很小的金属圆环,在初始时刻与一半径为a(a>>r) 的大金属圆环共面且同心。在大圆环中通以恒定的电流 I ,方向如图,如果小圆环以角速度  $\omega$  绕过 O 点的竖直轴转动,并设小圆环的电阻为 R,则任



一时刻 t 通过小圆环的磁通量 $\Phi_m = \frac{\mu_0 I \pi r^2}{2a} \cos \omega t$ ; 小圆环中的感应

电流
$$i = \frac{\mu_0 I \omega}{2Ra} \pi r^2 \sin \omega t$$
。

解: 半径 a >> r,小圆环区域可视为均匀磁场,则通过小圆环的磁通量

$$\Phi_m \approx B_0 S \cos \omega t = \frac{\mu_0 I}{2a} \cdot \pi r^2 \cdot \cos \omega t$$

感应电流 
$$i = \frac{\varepsilon}{R} = -\frac{1}{R} \frac{d\Phi_m}{dt} = \frac{\mu_0 I \omega}{2Ra} \pi r^2 \sin \omega t$$



#### 三、计算题

1. 如图所示,有一成 $\theta$ 角的金属架COD放在磁场中,磁感强度 $\bar{B}$ 的方向垂直于金属架COD所在平面,大

小为 $B = Kx \cos \omega t$ 。一导体杆MN垂直于OD边,并在金属架上以恒定速度 $\vec{v}$  向右滑动, $\vec{v}$  与MN垂直。设t = 0时,x = 0。求框架内的感应电动势。

解: 由题意知 t 时刻,滑动导线 MN 到 O 端的垂直距离为 x = vt 。

## 通过MON回路的磁通量(规定 $\vec{S}$ 正方向向外)

$$\Phi_m = \vec{B} \cdot \vec{S} = Kx \cos \omega t \cdot \frac{1}{2} x^2 \tan \theta \cdot \cos \theta = \frac{1}{2} Kv^3 t^3 \tan \theta \cos \omega t$$

则回路的感应电动势为:

$$\varepsilon = -\frac{\mathrm{d}\Phi_m}{\mathrm{d}t} = -\frac{1}{2}Kv^3 \tan\theta \left(\frac{\mathrm{d}t^3}{\mathrm{d}t}\cos\omega t + t^3\frac{\mathrm{d}\cos\omega t}{\mathrm{d}t}\right)$$
$$= -\frac{1}{2}Kv^3t^2 \tan\theta \left(3\cos\omega t - \omega t\sin\omega t\right)$$



## (若感应电动势 $\varepsilon>0$ 则感应电流与 $\vec{S}$ 与成右旋关系,反之则成左旋关系。)

2.半径为R半圆形刚性导线 $\hat{ab}$ ,在均匀磁场中以恒定速度 $\vec{v}$ 移动,已知均匀磁场垂直纸面向外,大小为B, $\vec{v}$ 与 $\bar{ab}$  夹角为45°,求导线上感应电动势  $\varepsilon$  和 a、b两点电势差 $U_{ab}$  各为多少?

### 解:连接 ab,构成回路aobca,由于移动过程中回路磁通量不变,所以整个

#### 回路感应电动势为零。即

$$\begin{split} \varepsilon &= \varepsilon_{aob} + \varepsilon_{bca} = \varepsilon_{aob} - \varepsilon_{acb} = 0 \\ &\therefore \quad \varepsilon_{acb} = \varepsilon_{aob} = \int_a^b (\vec{v} \times \vec{B}) \cdot d\vec{l} = \int_0^{2R} vBdl \cos \frac{\pi}{4} = \sqrt{2}vBR, \quad a \to b \end{split}$$
 电势差: 
$$U_{ab} = U_a - U_b = -\sqrt{2}vBR \end{split}$$



3.均匀磁场  $\vec{B}$  被限制在半径  $R=10~{\rm cm}$  的无限长圆柱空间内,方向垂直纸面向里,取一固定的等腰梯形回路 abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如图。设磁场以  $dB/dt=1~{\rm T/s}$  的匀速率增加,已知  $\theta=\pi/3$  ,  $Oa=Ob=6~{\rm cm}$  ,求等腰梯形回路中感生电动势的大小和方向。

# 解:由法拉第电磁感应定律(规定 $\vec{S}$ 正方向向内):

$$\varepsilon = -\frac{\mathrm{d}\Phi_m}{\mathrm{d}t} = -S\frac{\mathrm{d}B}{\mathrm{d}t}$$

$$= -\left(\frac{1}{2}R^2\theta - \frac{1}{2}\overline{ab}\cdot\overline{oa}\cdot\cos\frac{\theta}{2}\right)\cdot\frac{\mathrm{d}B}{\mathrm{d}t}$$

$$= -\left(\frac{1}{2}\times0.1\times0.1\times\frac{\pi}{3} - \frac{1}{2}\times0.06\times0.06\times\cos\frac{\pi}{6}\right)\times1$$

$$= -3.64\times10^{-3} \quad (\mathrm{V})$$



(感应电动势  $\varepsilon$  < 0 说明感应电流与  $\vec{S}$  与成左旋关系,沿逆时针方向。)