

НАКОПИТЕЛИ ЭНЕРГИИ РЭНЕРА

Литий-ионные батареи и системы накопления энергии

«Литий-ионные аккумуляторы произвели революцию в нашей жизни с тех пор, они впервые появились на рынке в 1991 году, заложив основы новой энергетики»

> Нобелевский комитет Королевской шведской академии наук

Госкорпорация «Росатом»

Госкорпорация «Росатом» — это многопрофильный холдинг России, объединяющий более 300 предприятий и организаций в различных отраслях промышленности. Корпорация постоянно развивает новые направления бизнеса за рамками основной производственно-технологической цепочки по генерации электроэнергии на АЭС большой мощности: ветроэнергетика, накопители энергии и другие.

«Росатом» формирует отрасль электромобилестроения, обеспечивая производственный цикл «от литиевого рудника до утилизации»

350 предприятий и организаций 300 тыс. человек работает в Госкорпорации

~20 %

доля выработанной АЭС электроэнергии в России

2,25 р трлн портфель по новым продуктам

Топливная компания Росатома «ТВЭЛ»

Топливная компания Росатома «ТВЭЛ» — один из крупнейших в мире производителей ядерного топлива. Топливная компания является монопольным поставщиком ядерного топлива для всех российских АЭС, судовых и исследовательских реакторов России. На топливе ТВЭЛа работают АЭС в 14 странах мира — это каждый 6-й энергетический реактор.

В составе Топливной компании — предприятия, специализирующиеся на производстве газовых центрифуг, обогащении урана, фабрикации ядерного топлива, а также научно-исследовательские и конструкторские организации.

Топливная компания Росатома «ТВЭЛ» активно развивает новые направления бизнеса, такие как металлургия, вывод из эксплуатации различных объектов, цифровые и аддитивные технологии, накопители энергии, оборудование для ТЭК, химическая промышленность.

производственны площадок

24,5 тыс.

17 % мирового рынка фабрикации ядерного топлива

27,9 млрд выручка по новым продуктам

Одно из новых направлений бизнеса Госкорпорации «Росатом» — развитие полного цикла производственной цепочки накопителей энергии в России «от литиевого рудника до утилизации».

Росатом формирует лидирующие позиции в технологии производства литий-ионных батарей

Росатом активно развивает сеть собственных научно-производственных центров (R&D). Такой подход обеспечивает гарантию актуальных и энергоэффективных технологий, быстрое внедрение новых решений, вариативность сервисных опций, высокие научные компетенции и инновации на стыке современных технологий и актуальных тенденций рынка.

РЭНЕРА — лидер развития технологий накопления энергии

Направления развития

РЭНЕРА

- → Актуальные литий-ионные технологии разработка и развитие технологий производства существующих химических источников тока
- → Постлитиевые технологии развитие перспективных химических источников тока
- → Локализация комплектующих для производства литий-ионных батарей в РФ (разработка новых научно-технических решений для локализации)

Компания постоянно совершенствует текущие методы производства и занимается исследованием перспективных и альтернативных технологий накопления энергии.

4

РЭНЕРА — интегратор Госкорпорации «Росатом» по направлению «Системы накопления энергии»

РЭНЕРА (Росатом энергоаккумулирующие решения) — компания, где постоянно совершенствуются технологии и не прекращаются исследования перспективных и альтернативных технологий накопления энергии.

Компания РЭНЕРА разрабатывает и производит литий-ионные накопители энергии, а также решения на их основе: стационарные системы накопления энергии и тяговые батареи для различных видов электротранспорта.

Наши активы

Москва

- → Производственные мощности до 500 МВт·ч/год
- → Научно-технические центры
- → Испытательные лаборатории
- → Производство полного цикла мощностью 4 ГВт·ч/год в 2026 г.

Санкт-Петербург

→ Сервисный центр

Калининград

→ Производство полного цикла мощностью 4 ГВт·ч/год в 2025 г.

Новосибирск

→ Производство катодных материалов

Основные направления деятельности

→ Стационарные системы накопления энергии и источники бесперебойного питания

→ Тяговые батареи для различных видов электротранспорта

450 МВт·ч/год

текущая производственная мощность

8,5

совокупная мощность производственных площадок с 2026 г.

3

научно-технических центра

производственных

площадок

63

патента

5C

ноу-хау

Мощности в России

2021

Опытно-промышленное производство в Москве

15-30 ^{MBT-4}

2022

Сборочное производство на базе Московского завода полиметаллов

150 MBT·4

2023

Открытие производства в Технополисе «Москва»

320 MBT·4

2025

Открытие первой гигафабрики в Калиниграде

4 000 MBT-4

2026

Открытие второй гигафабрики в Москве

4000 MBT-4

2030

План

>14 000 MBT·

6

7

Ключевые преимущества компании

Компания РЭНЕРА способствует активному развитию новой для России отрасли промышленности — производству высокотехнологичных и современных литий-ионных аккумуляторов для источников питания, тяговых батарей и систем накопления энергии различного назначения.

Локализация

→ Глубокий уровень локализации производства накопителей энергии

Сопровождение

→ Технико-экономическое обоснование, гарантийное обслуживание, сервис

Авторство технологий

→ Собственные патенты и ноу-хау

Энергоконсалтинг

→ Разработка вариантов энергоэффективного применения

R&D

→ Собственные научнотехнические центры

Гибкость

→ Индивидуальный и гибкий подход к сотрудничеству

Свои мощности

 → Собственные производственные площадки

Экологическая безопасность

 → Экологичная утилизация литий-ионных батарей (в периметре Росатома)

Собственные гигафабрики в России

В 2025 году РЭНЕРА открывает первую в России гигафабрику по производству литий-ионных аккумуляторных батарей мощностью 4 000 МВт·ч (4 ГВт·ч). Этой мощности достаточно для обеспечения батареями 50 000 электромобилей.

8 ГВТ-Ч в год

Планируемая мощность двух гигафабрик по производству литий-ионных ячеек и систем накопления электроэнергии (общая емкость выпускаемых батарей).

Ввод гигафабрик в эксплуатацию

Первая гигафабрика откроется в г. Неман Калининградской области уже в 2025 году. Вторая гигафабрика — в 2026 году в г. Москва. На фабриках будет обеспечен полный цикл производства от нанесения активных материалов до выпуска готовых решений.

Гигафабрики будут выпускать тяговые аккумуляторные батареи для электротранспорта и батареи для стационарных систем хранения электроэнергии.

Полный цикл производства

2 Нанесение материалов на электродную ленту

3 Нарезка электродов

Формирование ячейки

Формирование модуля из ячеек

батареи

8

Преимущества литий-ионных батарей РЭНЕРА

Литий-ионные аккумуляторные батареи обладают высокой плотностью энергии, компактностью, возможностью быстрой зарядки, высокими разрядными характеристиками.

Наличие у компании РЭНЕРА компетенций на всех этапах производства и модульная архитектура накопителей энергии позволяет создавать как типовые, так и индивидуальные решения под любые требования проекта.

Преимущества

- → Высокая плотность энергии
- → Собственная система контроля и управления батареей собственной разработки (BMS1)
- → Продолжительный срок службы и циклический pecypc
- → Низкая скорость деградации емкости

→ Возможность быстрого заряда и разряда

Литий-ионные батареи и системы накопления энергии

- → Модульная архитектура
- → Высокомощные и высокоемкие варианты исполнения
- → Широкий температурный диапазон работы от -60 до +50 °C²

Четыре ступени системы безопасности накопителей РЭНЕРА

На уровне ячейки

Использование современных материалов и разносторонних методов тестирования

Проектирование

В соответствии с требованиями ГОСТ и международных стандартов безопасности ЕЭК ООН 100.2, UN DOT 38

Управление и контроль Использование BMS

собственной разработки

Пожаробезопасность

Модуль пожаротушения с технологией микрокапсулирования огнетушащих веществ

Опционально

Система контроля доступа, удаленный и управление

Литий-ионные ячейки РЭНЕРА

Наличие технологий разработки наряду с производственным мощностями позволяют ООО «РЭНЕРА» создавать широкий спектр решений на базе литийионных ячеек собственного производства.

Благодаря обновленному форм-фактору VDA¹ литий-ионных ячеек, возможно их применение в батареях низкопольных электромобилей любого типа, системах накопления электроэнергии (СНЭЭ) и источниках бесперебойного питания (ИБП). Единый форм-фактор литий-ионных ячеек способствует унификации архитектурных решений и повышению универсальности продукции.

Вт∙ч/кг энергии

Модель	123100302E1	123100302_Р50А (в разработке)			
Тип катодного материала	NMC (никель-марганец-кобальт)				
Номинальная емкость	60 А•ч	50 А•ч			
Удельная энергоемкость	260 Вт•ч/кг / 598 Вт•ч/л	490 Вт•ч/л / 218 Вт•ч/кг			
Номинальное напряжение	3,70 B				
Диапазон рабочего напряжения	2,7 ~ 4,2 B				
Диапазон рабочих температур ²	Заряд 0 °C³ ~ 55 °C ∣ Разряд -20 °C ~ 55 °C				
Размеры (длина х высота х толщина)	303 x 100 x 12,3 мм				

Топливная компания Росатома «ТВЭЛ» Литий-ионные батареи и системы накопления энергии РЭНЕРА renera.ru

Универсальный модуль

Универсальный модуль для различных решений

Универсальная конструкция собственной разработки позволяет применять модули РЭНЕРА как на электротранспорте в составе тяговых батарей, так и в стационарных системах различного назначения.

Вариативность исполнения за счет различных вариантов соединения ячеек в составе модуля позволяет подобрать параметры батареи в точном соответствии с требованиями конкретного применения.

Тяговые батареи РЭНЕРА применяются в легковых электромобилях, электробусах, карьерной и складской технике, грузовых электромобилях, водном электротранспорте.

Модульные аккумуляторные батареи применяются в стационарных системах накопления энергии, используемых в энергетической системе — распределительных и магистральных сетях, нефте-газовом секторе, на промышленных предприятиях, а также в ИБП¹ промышленного класса, в ЦОД² и других объектах.

Батарейный модуль формата VDA с литий-ионными ячейками 60 А·ч

Модель	ME600-044	ME180-014	ME120-022
Конфигурация	12S1P	4S3P	6S2P
Номинальная емкость	60 А•ч	180 A•ч	120 А•ч
Номинальная энергия	2,66 кВт•ч	2,66 кВт•ч	2,66 кВт•ч
Номинальное напряжение	44,4 B	14,8 B	22,2 B
Диапазон рабочего напряжения	32,4 ~ 50,4 B	10,8 ~ 15,5 B	16,2 ~ 25,2 B
Массовая плотность энергии	216 Вт•ч/кг	216 Вт•ч/кг	216 Вт•ч/кг
Максимальные токи заряда	1C (60 A)	1C (180 A)	1C (120 A)
Максимальные токи разряда	2C (120 A)	2C (360 A)	2C (240 A)
Macca	12,3 кг	12,3 кг	12,3 кг

Батарейный модуль формата VDA с литий-ионными ячейками 50 А·ч (в разработке)

Модель	МЕ500-044 (в разработке)	МЕ150-014 (в разработке)	МЕ100-022 (в разработке)
Конфигурация	12S1P	4S3P	6S2P
Номинальная емкость	50 A•ч	150 А•ч	100 A•ч
Номинальная энергия	2,22 кВт•ч	2,22 кВт•ч	2,22 кВт•ч
Номинальное напряжение	44,4 B	14,8 B	22,2 B
Диапазон рабочего напряжения	32,4 ~ 50,4 B	10,8 ~ 15,5 B	16,2 ~ 25,2 B
Массовая плотность энергии	198 Вт•ч/кг	198 Вт•ч/кг	198 Вт•ч/кг
Максимальные токи заряда	2C (100 A)	2C (300 A)	2C (200 A)
Максимальные токи разряда	4C (200 A)	4C (600 A)	4C (400 A)
Macca	11,2 кг	11,2 кг	11,2 кг

13

12 1ИБП — источник бесперебойного питания. 2ЦОД — центр обработки данных.

Решения для электротранспорта

Преимущества тяговых батарей РЭНЕРА:

- → высокая плотность энергии литий-ионных ячеек NMC 811 собственной разработки;
- → быстрая зарядка;
- → соответствие стандартам: ЕЭК ООН, ТР/ТС, GB/Т. Модули на базе международного батарейного стандарта VDA;
- → управление по CAN (J1939);
- → применение алюминиевых и композитных материалов для уменьшения массы батарей;
- → многоуровневая система безопасности.

Широкий спектр решений для легкового электротранспорта.

Решения для легковых электромобилей различного типа: HEV1, PHEV2, BEV3, FCEV4.

Пассажирский электротранспорт: электробусы (ONC¹, UFC², IMC³)

Универсальные решения для различных видов транспорта:

- → водный транспорт (речной и морской);
- → железнодорожный транспорт;
- → коммерческий электротранспорт (LCV⁴ и грузовой электротранспорт);
- → средства индивидуальной мобильности.

Компетенции и опыт реализованных проектов позволяют РЭНЕРА оказывать полный спектр услуг по оснащению любых электротранспортных средств тяговыми батареями собственного производства.

- → Интеграция батареи в платформу транспортного средства на этапе проектирования.
- → Масштабирование и подбор параметров батареи под нужды заказчика.

Гибкое проектирование общей энергоемкости тяговой батареи

Топливная компания Росатома «ТВЭЛ» Литий-ионные батареи и системы накопления энергии РЭНЕРА renera.ru

Решения для энергетики

Стационарные системы накопления электроэнергии (СНЭЭ) применяются в энергетической системе — распределительных и магистральных сетях, электрических станциях и подстанциях, ЦОД¹, нефте-газовом секторе, на промышленных предприятиях и других объектах, для обеспечения баланса выработки и потребления электроэнергии и повышения энергоэффективности.

Назначение:

- → энергоменеджмент: компенсация резкопеременной нагрузки, сглаживание пиков потребления, оптимизация профиля нагрузки
- → обеспечение надежного электроснабжения и резервного питания
- → обеспечение резервного питания систем оперативного постоянного тока
- → интеграция с электрической зарядной станцией

- → интеграция объектов ВИЭ² в энергосистему
- → компенсация дефицита мощности
- → организация гибридных микрогридов
- → обеспечение качества электроэнергии
- → организация автономных гибридных энергокомплексов

Применение стационарных решений РЭНЕРА позволяет повысить технико-экономические показатели и эффективность работы генерирующего оборудования и обеспечить бесперебойное питание потребителей электроэнергии.

Применение систем накопления энергии в современных энергосистемах позволяет реализовать интеллектуальные алгоритмы передачи, распределения и потребления электроэнергии, и повышают управляемость, наблюдаемость элементов энергосистем.

Применение:

- → электрические сети
- → промышленные предприятия

- → возобновляемые источники энергии
- → замена генераторов электроэнергии на

16 ¹ЦОД — центр обработки данных.

²ВИЭ — возобновляемые источники энергии.

Решения для энергетики

Модульная архитектура накопителей энергии РЭНЕРА позволяет создавать системы практически любого масштаба — от компактных систем для локальных потребителей до крупных $ИБ\Pi^1$ для $ЦОД^2$ и масштабных промышленных $ИБ\Pi$ контейнерного исполнения.

Стационарные системы накопления энергии РЭНЕРА для объектов энергетики

Варианты исполнения

Промышленная система накопления энергии

Ключевые характеристики:

- → широкий функционал и гибкость настройки алгоритмов работы
- → до 1,5 МВт·ч в одном контейнере
- → проектирование в соответствии с ПУЭ¹ и государственными стандартами РФ
- → легкая масштабируемость мощности и энергоемкости благодаря модульной архитектуре
- → удаленный мониторинг и управление
- → встроенная система климатконтроля, пожарноохранной сигнализации и пожаротушения и контроля доступа

Компактная система накопления энергии для районных сетей и малых предприятий

Ключевые характеристики:

- → резервирование питания ответственных потребителей
- → обеспечение качества электроэнергии у конечных потребителей
- → мощность: до 100 кВА
- → емкость: до 144 кВт·ч
- → онлайн-ИБП мгновенное переключение на резервный источник питания
- → совместимость с любыми инверторами с напряжением до 900 В и поддержкой протокола MODBUS RTU/TCP

Модульный источник бесперебойного питания (ИБП) с литий-ионной батареей

Ключевые характеристики:

- → ИБП двойного преобразования (онлайн ИБП)
- → единичная мощность ИБП от 100 до 600 кВт
- → масштабирование ИБП до 10-ков МВт/МВт-ч
- → любое время резервирования нагрузки

18 ¹ИБП — источник бесперебойного питания. ²ЦОД — центр обработки данных. ¹ПУЭ — правила устройства электроустановок

Решения для специальной техники

РЭНЕРА помогает:

- → модернизировать существующую технику с заменой свинцово-кислотной тяговой батареи на литий-ионную
- → спроектировать батарею для новой техники
- → разработать технико-экономическое обоснование перехода на литий-ионную батарею

Широкий спектр решений для:

- → складской техники
- → коммунальной техники
- → горно-шахтной техники
- → аэропортовой техники
- → роботов
- → подводной техники
- → железнодорожного транспорта

Преимущества литий-ионных батарей для специальной техники:

- → высокая плотность энергии
- → минимальный объем обслуживания
- → стабильное напряжение на рабочем диапазоне разряда
- → возможность заряда от бытовой электросети
- → возможность быстрой зарядки

- → минимальный саморазряд
- → срок окупаемости 2—3 года в сравнении со свинцово-кислотными батареями¹
- → отсутствие эффекта памяти
- → удобный мониторинг состояния батареи

РЭНЕРА (РОСАТОМ – ЭНЕРГОАККУМУЛИРУЮЩИЕ РЕШЕНИЯ)

Адрес: Волгоградский проспект, д. 42, ОЭЗ «Технополис», Москва, 109316

Тел.: +7 (495) 949 44 00 E-mail: renera@rosatom.ru

www.renera.ru

