

Grundlagen der Mathematik und Informatik

Aufbaukurs: Fit für Psychologie WiSe 2022/23

Belinda Fleischmann

Inhalte basieren auf Einführung in Mathematik und Informatik von Dirk Ostwald, lizenziert unter CC BY-NC-SA 4.0

(5) Differentialrechnung

Selbstkontrollfragen + Lösungen

Selbstkontrollfragen

- 1. Definieren Sie den Begriff der Ableitung $f^{\prime}(a)$ einer Funktion f an einer Stelle a.
- 2. Definieren den Begriff der Ableitung f' einer Funktion f.
- 3. Erläutern Sie die Symbole $f'(x),\dot{f}(x),\,\frac{df(x)}{dx}$, und $\frac{d}{dx}f(x)$.
- 4. Definieren Sie den Begriff der zweiten Ableitung $f^{\prime\prime}$ einer Funktion f.
- 5. Geben Sie die Summenregel für Ableitungen wieder.
- 6. Geben Sie die Produktregel für Ableitungen wieder.
- 7. Geben Sie die Quotientenregel für Ableitungen wieder.
- 8. Geben Sie die Kettenregel für Ableitungen wieder.
- 9. Bestimmen Sie die Ableitung der Funktion $f(x) := 3x^2 + \exp\left(-x^2\right) x\ln(x)$.
- 10. Bestimmen Sie die Ableitung der Funktion $f(x):=\frac{1}{2}\sum_{i=1}^n(x_i-\mu)^2$ für $\mu\in\mathbb{R}$.
- 11. Definieren Sie die Begriffe des globalen und lokalen Maximums/Minimums einer Funktion.
- 12. Geben Sie die notwendige Bedingung für ein Extremum einer Funktion wieder.
- 13. Geben Sie die hinreichende Bedingung für ein lokales Extremum einer Funktion wieder.
- 14. Geben Sie das Standardverfahren der analytischen Optimierung wieder.
- 15. Bestimmen Sie einen Extremwert von $f(x):=\exp\left(-\frac{1}{2}(x-\mu)^2\right)$ für $\mu\in\mathbb{R}.$

SKF 1. Ableitung

Definieren Sie den Begriff der Ableitung $f^{\prime}(a)$ einer Funktion f an einer Stelle a.

Es sei $I\subseteq\mathbb{R}$ ein Intervall und $f:I\to\mathbb{R},x\mapsto f(x)$ eine univariate reellwertige Funktion.

f'(a) bezeichnet den Grenzwert

$$f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \tag{1}$$

Wenn f'(a) existiert, f heißt in $a \in I$ differenzierbar.

SKF 2. Ableitung

Definieren den Begriff der Ableitung f' einer Funktion f.

Es sei $I\subseteq\mathbb{R}$ ein Intervall und $f:I\to\mathbb{R},x\mapsto f(x)$ eine univariate reellwertige Funktion.

Wenn f differenzierbar für alle $x \in I$ ist, bezeichnet f' die Ableitung von f und ist definiert als

$$f': I \to \mathbb{R}, x \mapsto f'(x)$$
 (2)

SKF 3. Notationen

Erläutern Sie die Symbole $f'(x), \dot{f}(x), \frac{df(x)}{dx}$, und $\frac{d}{dx}f(x)$.

 $f'(x), \dot{f}(x), \frac{df(x)}{dx}$, und $\frac{d}{dx}f(x)$ sind äquivalente Schreibweisen bzw. Notationen für Ableitungen univariater reelwertigen Funktion f.

- (1) die Lagrange-Notation f' und f'(x),
- (2) die Newton-Notation \dot{f} und $\dot{f}(x)$,
- (3) die Leibniz-Notation $\frac{df}{dx}$ und $\frac{df(x)}{dx}$ und
- (4) die Euler-Notation Df und Df(x).

SKF 4. Zweite Ableitung

Definieren Sie den Begriff der zweiten Ableitung f'' einer Funktion f.

Es sei f eine univariate reellwertige Funktion und

$$f^{(1)} := f' \tag{3}$$

sei die Ableitung von f. Die 2-te Ableitung von f ist definiert durch

$$f^{(2)} := \left(f^{(1)}\right)' \text{ für } k \ge 0, \tag{4}$$

unter der Annahme, dass $f^{(1)}$ differenzierbar ist. Die zweite Ableitung von f ist definiert durch die Ableitung von f', also

$$f^{\prime\prime} := (f^{\prime})^{\prime}. \tag{5}$$

SKF 5. Ableitung - Summenregel

Geben Sie die Summenregel für Ableitungen wieder.

Für
$$f(x) := \sum_{i=1}^n g_i(x)$$
 gilt $f'(x) = \sum_{i=1}^n g_i'(x)$

SKF 6. Ableitung - Produktregel

Geben Sie die Produktregel für Ableitungen wieder.

 $\operatorname{F\"{u}r} f(x) := g_1(x)g_2(x) \text{ gilt } f'(x) = g_1'(x)g_2(x) + g_1(x)g_2'(x).$

SKF 7. Ableitung - Quotientenregel

Geben Sie die Quotientenregel für Ableitungen wieder.

$$\mathrm{F\"{u}r}\; f(x) := \frac{g_1(x)}{g_2(x)} \; \mathrm{gilt} \; f'(x) = \frac{g_1'(x)g_2(x) - g_1(x)g_2'(x)}{g_2^2(x)}.$$

SKF 8. Ableitung - Kettenregel

Geben Sie die Kettenregel für Ableitungen wieder.

Für $f(x) := g_1(g_2(x))$ gilt $f'(x) = g_1'(g_2(x))g_2'(x)$.

Bestimmen Sie die Ableitung der Funktion $f(x) := 3x^2 + \exp(-x^2) - x \ln(x)$.

$$f'(x) = 2 \cdot 3x^{1} + \exp\left(-x^{2}\right) \cdot (-2x^{1}) - (1 \cdot \ln(x) + x \cdot \frac{1}{x})$$
$$= 6x - 2x \exp\left(-x^{2}\right) - \ln(x) - \frac{x}{x}$$
$$= 6x - 2x \exp\left(-x^{2}\right) - \ln(x)$$

SKF 10. Ableitung bestimmen

Bestimmen Sie die Ableitung der Funktion $f(x):=\frac{1}{2}\sum_{i=1}^n(x_i-\mu)^2$ für $\mu\in\mathbb{R}.$

$$f'(x) = \frac{1}{2} \sum_{i=1}^{n} 2(x_i - \mu) \cdot 1$$
$$= \frac{1}{2} \sum_{i=1}^{n} 2(x_i - \mu)$$

Definieren Sie die Begriffe des globalen und lokalen Maximums/Minimums einer Funktion.

Definition (Extremstellen und Extremwerte)

Es sei $U\subseteq\mathbb{R}$ und $f:U o\mathbb{R}$ eine univariate reellwertige Funktion. Dann hat f an der Stelle $x_0\in U$

• ein lokales Minimum, wenn es ein Intervall I :=]a, b[gibt mit $x_0 \in]a, b[$ und

$$f(x_0) \le f(x)$$
 für alle $x \in I \cap U$, (6)

· ein globales Minimum, wenn gilt, dass

$$f(x_0) \le f(x)$$
 für alle $x \in U$, (7)

• ein lokales Maximum, wenn es ein Intervall I :=]a, b[gibt mit $x_0 \in]a, b[$ und

$$f(x_0) \ge f(x)$$
 für alle $x \in I \cap U$, (8)

lokales Maximum, wenn gilt, dass

$$f(x_0) \ge f(x)$$
 für alle $x \in U$. (9)

Der Wert $x_0\in U$ der Definitionsmenge von f heißt entsprechend lokale oder globale Minimalstelle oder Maximalstelle, der Funktionswert $f(x_0)\in \mathbb{R}$ heißt entsprechend lokales oder globales Minimum oder Maximum. Generell heißt der Wert $x_0\in U$ Extremstelle und der Funktionswert $f(x_0)\in \mathbb{R}$ Extremsert.

Geben Sie die notwendige Bedingung für ein Extremum einer Funktion wieder.

Definition (Notwendige Bedingung für Extrema)

f sei eine univariate reellwertige Funktion. Dann gilt

$$x_0$$
 ist Extremstelle von $f \Rightarrow f'(x_0) = 0$. (10)

Bemerkungen

- Wenn x₀ eine Extremstelle von f ist, dann ist die erste Ableitung von f in x₀ null.
- Sei zum Beispiel x_0 eine lokale Maximalstelle von f. Dann gilt
 - Links von x_0 steigt f an, rechts von x_0 fällt f ab.
 - In x_0 steigt f weder an, noch fällt f ab, also ist $f'(x_0) = 0$.

SKF 13. hinreichende Bedingung lokales Extremum

Geben Sie die hinreichende Bedingung für ein lokales Extremum einer Funktion wieder.

Definition (Hinreichende Bedingungen für lokale Extrema)

f sei eine zweimal differenzierbare univariate reellwertige Funktion.

• Wenn für $x_0 \in U \subseteq \mathbb{R}$

$$f'(x_0) = 0 \text{ und } f''(x_0) > 0$$
 (11)

gilt, dann hat f an der Stelle x_0 ein Minimum.

• Wenn für $x_0 \in U \subseteq \mathbb{R}$

$$f'(x_0) = 0 \text{ und } f''(x_0) < 0$$
 (12)

gilt, dann hat f an der Stelle x_0 ein Maximum.

Geben Sie das Standardverfahren der analytischen Optimierung wieder.

Definition (Standardverfahren der analytischen Optimierung)

f sei eine univariate reellwertige Funktion. Lokale Extremstellen von f können mit folgendem Standardverfahren der analytischen Optimierung identifiziert werden:

- (1) Berechnen der ersten und zweiten Ableitung von f.
- (2) Bestimmen von Nullstellen x^* von f' durch Auflösen von $f'(x^*) = 0$ nach x^* .
 - \Rightarrow Nullstellen von f' sind Kandidaten für Extremstellen von f.
- (3) Evaluation von $f''(x^*)$.
 - \Rightarrow Wenn $f''(x^*) > 0$, dann ist x^* lokale Minimumstelle von f.
 - \Rightarrow Wenn $f''(x^*) < 0$, dann ist x^* lokale Maximumstelle von f.
 - \Rightarrow Wenn $f''(x^*) = 0$, dann ist x^* keine Extremstelle von f.

Bestimmen Sie einen Extremwert von $f(x) := \exp\left(-\frac{1}{2}(x-\mu)^2\right)$ für $\mu \in \mathbb{R}$.

Wir betrachten die Funktion

$$f(x) := \exp\left(-\frac{1}{2}(x-\mu)^2\right) \text{ mit } \mu \in \mathbb{R}$$
 (13)

(1) Berechnen der ersten und zweiten Ableitung von f.

Die erste Ableitung von f ergibt sich mit der Kettenregel zu

$$f'(x) = \frac{d}{dx} \left(\exp\left(-\frac{1}{2}(x-\mu)^2\right) \right)$$
 (14)

$$= \exp\left(-\frac{1}{2}(x-\mu)^2\right) \cdot \left(-\frac{2}{2}(x-\mu) \cdot 1\right) \tag{15}$$

$$= -(x - \mu) \exp\left(-\frac{1}{2}(x - \mu)^2\right)$$
 (16)

(forgeführt).

Die zweite Ableitung von f ergibt sich mit der Produktregel zu

$$f''(x) = -1 \cdot \exp\left(-\frac{1}{2}(x-\mu)^2\right) + (-(x-\mu)) \cdot \exp\left(-\frac{1}{2}(x-\mu)^2\right) \cdot \left(-\frac{2}{2}(x-\mu) \cdot 1\right)$$
 (17)

$$= -\exp\left(-\frac{1}{2}(x-\mu)^2\right) + (x-\mu) \cdot \exp\left(-\frac{1}{2}(x-\mu)^2\right) \cdot (x-\mu)$$
 (18)

$$= -\exp\left(-\frac{1}{2}(x-\mu)^2\right) + (x-\mu)^2 \cdot \exp\left(-\frac{1}{2}(x-\mu)^2\right)$$
 (19)

$$= (x - \mu)^2 \cdot \exp\left(-\frac{1}{2}(x - \mu)^2\right) - \exp\left(-\frac{1}{2}(x - \mu)^2\right)$$
 (20)

$$= (x^2 - 2\mu x + \mu^2 - 1) \exp\left(-\frac{1}{2}(x - \mu)^2\right)$$
 (21)

SKF 15. Extremwert bestimmen

(forgeführt).

- (2) Bestimmen von Nullstellen x^* von f' durch Auflösen von $f'(x^*)=0$ nach x^* .
- \Rightarrow Nullstellen von f' sind Kandidaten für Extremstellen von f.

Bei $f'(x)=-(x-\mu)\exp\left(-\frac{1}{2}(x-\mu)^2\right)$ geht das einfacher: Die Funktion f' wird null, wenn entweder der erste oder der zweite Produktterm null werden. Der Exponentialterm $\exp\left(-\frac{1}{2}(x-\mu)^2\right)$ kann nicht null werden. Der erste Term $(x-\mu)$ wird null, wenn $x=\mu$. $\Rightarrow f'=0$, wenn $x=\mu$.

(forgeführt).

- (3) Evaluation von $f''(x^*)$.
- \Rightarrow Wenn $f''(x^*) > 0$, dann ist x^* lokale Minimumstelle von f.
- \Rightarrow Wenn $f''(x^*) < 0$, dann ist x^* lokale Maximumstelle von f.
- \Rightarrow Wenn $f''(x^*) = 0$, dann ist x^* keine Extremstelle von f.

$$f''(\mu) = (\mu^2 - 2\mu\mu + \mu^2 - 1) \exp\left(-\frac{1}{2}(\mu - \mu)^2\right)$$
$$= (\mu^2 - 2\mu^2 + \mu^2 - 1) \exp\left(-\frac{1}{2} \cdot 0^2\right)$$
$$= (-1) \exp\left(-\frac{1}{2} \cdot 0\right)$$
$$= -\exp(0)$$
$$= -1$$

 $\Rightarrow f''(\mu) < 0 \Rightarrow \mu$ ist eine lokale Maximumstelle von f.