Obliczenia naukowe Lista2

Stanisław Woźniak

1 Zadanie 1

1.1 Problem

Problem polegał na zmodyfikowaniu lekko danych z zadanie 5 z poprzedniej listy i porównać wyniki iloczynów skalarnych.

Dane wektory (cyfry w () są cyframi usuniętymi na potrzeby zadania):

$$x = [2.718281828, -3.141592654, 1.414213562, 0.577215664(9), 0.301029995(7)]$$

$$y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]$$

1.2 Algorytmy i ich wyniki

- 1. Algorytm liczący sumę kolejnych iloczynów wartości wektora
- 2. Algorytm liczący sumę kolejnych iloczynów wartości wektora zaczynając od ostatniego
- 3. Algorytm po wyliczeniu iloczynów dodaje wyniki dodatnie od największego do najmniejszego, następnie dodaje osobno wyniki ujemne od najmniejszego do największego. Ostatecznie obie składowe sumują się w końcowy wynik.
- 4. Algorytm po wyliczeniu iloczynów dodaje wyniki dodatnie od najmniejszego do największego, następnie dodaje osobno wyniki ujemne od największego do najmniejszego. Ostatecznie obie składowe sumują się w końcowy wynik.

Wyniki:

algorytm	wynik po usunięciu cyfr	wynik przed usunięciem cyfr
pierwszy	-0.004296342739891585	$1.0251881368296672 * 10^{-10}$
drugi	-0.004296342998713953	$-1.5643308870494366 * 10^{-10}$
trzeci	-0.004296342842280865	0.0
czwarty	-0.004296342842280865	0.0

Float 64

algorytm	wynik po usunięciu cyfr	wynik przed usunięciem cyfr
pierwszy	-0.4999443	-0.4999443
drugi	-0.4543457	-0.4543457
${\operatorname{trzeci}}$	-0.5	-0.5
czwarty	-0.5	-0.5

Float 32

1.3 Wnioski

Gdy przyjrzymy się wynikom, możemy zauważyć, że w przypadku arytmetyki Float32 ostateczne wyliczenia nie różnią się. Dzieje się to dlatego, że zmiana na poziomie 10^{-9} są zbyt małe by miały znaczenie w przypadku arytmetyki pojedynczej precyzji. Natomiast w przypadku arytmetyki Float64 precyzja podwójna jest na tyle dokłądna, że lekkie zmiany bardzo wpływają na wynik. Oznacza to, że zadanie jest źle uwarunkowane. Aby najskuteczniej zniwelować złe uwarukowanie problemu należałoby używac największej dostepnej precyzji.

2 Zadanie 2

2.1 Problem

Należało przeanalizować funkcję $f(x) = e^x * \ln(1 + e^{-x})$.

2.2 Wyniki

Granice:

$$\lim_{x \to 0} f(x) = \ln 2$$
$$\lim_{x \to -\infty} f(x) = 0$$
$$\lim_{x \to \infty} f(x) = 1$$

Wykres:

Rysunek 1: Float64

2.0 y1
1.5
1.0
0.5

Rysunek 2: Float32

2.3 Wnioski

Analizując wykresy możemy zwrócić uwagę na szum pojawiający się w okolicach 30 (w przypadku arytmetyki Float64) oraz w okolicach 15 (w przypadku arytmetyki Float32). Po zaburzeniu wartości funkcji możemy zobaczyć na wykresie, że funkcja zbiega do zera. Porównując do wyliczonej wcześniej granicy zauważamy, że funkcja zamiast do zera powinna zbiegać do 1. Dzieje się to z tego powodu, że przy odpowiednich wartościach x wartość e^{-x} jest na tyle mała, że pochłania ją 1 stojąca obok w równaniu. Następnie $\ln 1 = 0$ dlatego na wykresach widzimy nieścisłość z obliczonym wynikiem. Natomiast szum pojawia się z powodu niedokładnej wartości e^{-x} , przez co obliczony $\ln (1 + e^{-x})$ pomnożony przez bardzo dużą wartość e^x daje nieprawidłowy wynik.

3 Zadanie 3

3.1 Problem

Problem polegał na przeanalizowaniu układu równań z macierzą kwadratową pod względem wskaźnika uwarunkowania zadania.

Należało wygenerować podanymi funkcjami macierz Hilberta oraz losową macierz stopnia n z zadanym współczynnikiem uwarunkowania. Następnie należało danym układem równań oraz znając x, obliczyć błąd względny.

Równanie: Ax = b gdzie A jest daną macierzą oraz $\mathbf{x} = (1, ..., 1)^T$. Macierz A miała zostać wygenerowana dwoma sposobami: $\mathbf{A} = H_n$ gdzie H_n jest macierzą Hilberta n-tego stopnia, a także $\mathbf{A} = R_n$ gdzie R_n jest losową macierza stopnia n z zadanym wskaźnikiem uwarunkowania c. Dane równanie należało rozwiązać dwoma sposobami: algorytm eliminacji Gaussa oraz odwrotnością ($\mathbf{x} = A^{-1}b$).

3.2 Wyniki

n	rząd	wskaźnik uwarunkowania	błąd względny - eliminacja Gaussa	błąd względny - inwersja
1	1	1.0	0.0	0.0
2	2	19.28147006790397	4.227603326225575e-16	1.4043333874306803e-15
3	3	524.0567775860644	6.312995352117186e-16	0.0
4	4	15513.73873892924	2.1819484005185015e-15	4.547473508864641e-13
5	5	476607.25024259434	8.99737540851766e-12	1.4911297558868156e-11
6	6	1.4951058642254665e7	1.8866554820446764e-10	3.5689314550268525e-10
7	7	4.75367356583129e8	1.8614175017153493e-8	1.231617281152939e-8
8	8	1.5257575538060041e10	1.9217530132542664e-7	1.3503856270597747e-7
9	9	4.931537564468762e11	5.09208671414057e-6	9.542631496737485e-6
10	10	1.6024416992541715e13	5.508778842434553e-5	0.0002289249459044258
11	10	5.222677939280335e14	0.005207147400142043	0.008849600746399502
12	11	1.7514731907091464e16	0.1407902677571603	0.4039460424541017
13	11	3.344143497338461e18	355.6363996139929	212.78257870436312
14	11	6.200786263161444e17	3.5720053119125916	1.7744875020766255
15	12	3.674392953467974e17	9.583022643862336	5.293638550842115
16	12	7.865467778431645e17	11.968066192267113	10.846229140698135
17	12	1.263684342666052e18	5.455797564762254	8.982730231514317
18	12	2.2446309929189128e18	26.309523680963647	20.038300611698062
19	13	6.471953976541591e18	22.59171398621913	15.359549749376397
20	13	1.3553657908688225e18	5.658540758579833	7.992554067235351

Macierz Hilberta

n	rząd	wskaźnik uwarunkowania	błąd względny - eliminacja Gaussa	błąd względny - inwersja
5	5	1.00000000000000007	1.719950113979703e-16	7.021666937153402e-17
5	5	10.0000000000000002	4.0029660424867205e-16	4.124295487574583e-16
5	5	999.999999999674	1.6451392519176417e-14	1.6587787186393758e-14
5	5	9.99999993245421e6	1.3099694661816385e-10	1.1998713733297805e-10
5	5	1.0000771646871694e12	1.6010983905701105e-5	1.7933134877842953e-5
5	4	5.446553640257849e15	0.18766764365058394	0.24125323832023476
10	10	1.000000000000000009	$2.016820280180126 \mathrm{e}\text{-}16$	2.696722356863272e-16
10	10	9.999999999999	1.719950113979703e-16	2.6506211417561425e-16
10	10	999.999999999661	1.6461728708899027e-14	2.8024808959884797e-14
10	10	9.99999997774877e6	1.330926308898944e-10	2.8143005263155073e-10
10	10	9.999949580097267e11	3.19034565452155e-5	3.4313726712719984e-5
10	9	5.281574117718314e15	0.772644442828404	0.6165109523719196
20	20	1.00000000000000013	3.188872858294072e-16	5.827349035319211e-16
20	20	10.0000000000000007	4.4200263976433584e-16	6.483170143248366e-16
20	20	999.999999999692	2.445914805970674e-14	2.4931960849310002e-14
20	20	9.999999999999393e6	9.054375192105989e-12	4.255035751619564e-11
20	20	1.0000533837398918e12	1.4512647537820678e-6	4.264961199760036e-6
20	19	$6.986616543918112\mathrm{e}15$	0.12212396809790553	0.0905774221822397

Macierz losowa

3.3 Wnioski

Analizując powyższe tabele wyników, możemy wywnioskować, że błąd względny jest związany z wskaźnikiem uwarunkowania. Dokładnie przyglądając sie wynikom widzimy, że duże wskaźniki uwarunkowania mają znaczny wpływ na wielkość błędu w ostatecznym wyniku. Możemy stwierdzić, że zadanie jest źle uwarunkowane, ponieważ patrząc i porównując wyniki możemy zauważyć, że błąd względny przy n = 20 biorąc pod uwagę macierz Hilberta dochodzi nawet do 700%. Natomiast błędy w losowej macierzy wahają się między małymi wartościami czyli 10^{-16} a większymi czyli około 0.77~(77~%), jednakże musimy brac pod uwage, to, że jest to macierz generowana losowo, dlatego błąd w pewnej mierze w tym przypadku zależy od wylosowanych wartości.

4 Zadanie 4

4.1 Problem

Zadanie polegało na prze
analizowaniu wielomianu wilkinsona. Za pomocą biblioteki Polynomials należało obliczyć 20 zer
 danego wielomianu. Obliczone pierwiastki sprawdzono obliczając
 $|P(z_k)|$, $|p(z_k)|$ oraz $|z_k-k|$ gdzie z_k jest pierwiastkiem oraz $k \in 1,...,20$. Następnie należało przeprowadzić ten sam eksperyment zamieniając pierwszy współczynnik z -210 na -210-2⁻²³.

4.2 Wyniki

k	$ P(z_k) $	$ P(z_k) $ po zmianie	$ \mathbf{p}(z_k) $	$ \mathbf{p}(z_k) $ po zmianie
1	36352.0	20992.0	38400.0	22016.0
2	181760.0	349184.0	198144.0	365568.0
3	209408.0	2.221568e6	301568.0	2.295296e6
:	:	:	:	:
9	4.465326592e9	3.065575424e9	4.457859584e9	1.37174317056e11
10	1.2707126784e10	7.143113638035824e9	1.2696907264e10	1.4912633816754019e12
÷	:	<u>:</u>	i :	i:
19	1.0278376162816e13	9.539424609817828e12	1.0278235656704e13	4.2525024879934694e17
20	2.7462952745472e13	1.114453504512e13	2.7462788907008e13	1.3743733197249713e18

k	$ z_k$ -k $ $	$ z_k$ -k $ $ po zmianie
1	3.0109248427834245e-13	1.6431300764452317e-13
2	2.8318236644508943e-11	5.503730804434781e-11
3	4.0790348876384996e-10	3.3965799062229962e-9
:	:	:
10	0.009586957518274986	0.6519586830380406
11	0.025022932909317674	1.1109180272716561
:	:	÷
19	0.0019098182994383706	2.004329444309949
20	0.00019070876336257925	0.8469102151947894

4.3 Wnioski

Patrząc na powyższe tabele możemy wywnioskować, że zadanie jest źle uwarunkowane. Możemy to stwierdzić na podstawie tego, że przy najmniejszych odchyleniach prawidłowego pierwiastka, które w tym przypadku wynoszą 10^{-13} możemy zaobserwować błąd w granicach 36 tysięcy. Każdy większy pierwiastek posiada większy błąd od poprzedniego. Skutkuje to tym, że wynik zamiast prawidłowego 0 odchyla się nawet o 10^{13} . Po wprowadzeniu niewielkich zmian (dokładnie 2^{-23}) do pierwszego współczynnika wielomiany możemy zaobserwować, że błąd prawidłowego wyniku z 36 tysięcy zmalał do 20 tysięcy, co nadal jest ogromną niedokładnością. Także możemy zauważyć, że po zmianach wielomian p(x) dla większych x jest obarczony większym błędem niż P(x) po zmianach, gdyż P(x) ma zbliżone odchylenie w obu przypadkach, czego nie można powiedzieć o p(x). Z tych powodów możemy stwierdzić, ze zadanie jest źle uwarunkowane, gdyż niewielkie zmiany w granicach 10^{-13} zmieniają ostateczny wynik o kilkadziesiąt tysięcy.

5 Zadanie 5

5.1 Problem

Zadanie polegało na wykonaniu eksperymentu wykonując funkcję modelu wzrostu populacji dla pewnych danych.

Model populacji:

$$p_{n+1} = p_n + rp_n(1 - p_n) \land n >= 0$$

Dane: $p_0 = 0.01, r = 3, n = 40.$

5.2 Wyniki

wykonanie pełnych n iteracji		wykonanie pełnych n iteracji	wykonanie n iteracji z obcięciem cyfr po 3 miej-
			scu po przecinku w 10tej iteracji
	Float32	0.25860548	1.093568
	Float64	0.011611238029748606	0.7305550338104317

Wykresy:

Rysunek 3: Float64 - iteracja bez obcięcia

Rysunek 5: Float32 - iteracja bez obcięcia

Rysunek 4: Float64 - iteracja z obcięciem

Rysunek 6: Float32 - iteracja z obcięciem

5.3 Wnioski

Analizując powyższe wykresy możemy zauważyć, że uzyskane wartości są w miarę regularne. Po wprowadzeniu w 10tej iteracji ucięcia znaków po przecinku od 4 miejsca, możemy zauważyć różnicę w wynikach oraz delikatne zaburzenia w kolejnych krokach działania funkcji w przypadku Float64. Patrząc na Float32 dostaliśmy efekt zupełnie odwrotny, to znaczy po obcięciu otrzymaliśmy mniej zaburzeń na wykresie, lecz ostatecznie nadal mamy niedokłądne wyniki po n-tej iteracji. Dzieje się to dlatego, że w przypadku Float32 precyzja arytmetyki jest na tyle mała, że do momentu ucięcia cyfr po 4 miesju po przecinku wartosc posiadał już błąd spowodowany niewielką precyzją. Po ucięciu lekko zniwelowaliśmy ten błąd, lecz nadal szybko ujawniły się zaburzenia i błędy. W przypadku arytmetyki Float64 spotykamy się ze zjawiskiem gdy to precyzja arytmetyki jest na tyle wysoka, że przy iteracji, w której odcinami końcowe cyfry tracimy dokładność zamiast ją wzmocnić. Skutkiem tego jest szybsze zaburzenia w wynikach. W tabeli powyżej wykresami możemy zaobserwować wyniki po 40 iteracjach w obu eksperymentach. Widzimy, że wyniki różnią się od siebie w dużym stopni (porównując do 1), przez co możemy wywnioskować, że zaburzone iteracje są na tyle niewiarygodne, że otrzymane dane stają się bezuzyteczne w badaniu modelu populacji. Aby jak najlepiej zniwelować wy-

stepujący tu problem należałoby użyć arytmetyki z jak największa precyzją, aby nieuniknione zaburzenia wystapiły w jak najpóźniejszej iteracji.

6 Zadanie 6

6.1 Problem

Problem polegał na prze
analizowaniu 40 iteracji ciągu rekurencyjnego: $x_{n+1} = x_n^2 + c \wedge n >= 0$ dla różnych danych.

Dane:

1.
$$c = -2 i x_0 = 1$$

2.
$$c = -2 i x_0 = 2$$

4.
$$c = -1$$
 i $x_0 = 1$

5.
$$c = -1$$
 i $x_0 = -1$

6.
$$c = -1 i x_0 = 0.75$$

7.
$$c = -1$$
 i $x_0 = 0.25$

6.2 Wyniki

6.3 Wnioski