# Study of Top Yukawa Coupling Deviations in High Energy Muon Colliders

Ishmam Mahbub University of Minnesota

In Collaboration with Zhen Liu and Kunfeng Lyu

APS April Meeting, April 15th, 2023

## **Outline**

- Motivation
- -Unitarity in the  $W_L^+W_L^- \to t \bar t$  process
- Muon Colliders
- Measurement
- Results
- Summary and Outlook

## Motivation

### **Objective**

Precise measurement of top Yukawa coupling

#### Method

The effective Lagrangian we consider:

$$\mathcal{L}_{eff} \subset (1 + \delta_{yt}) \ y_t \ \overline{t}th$$

- Such  $\mathscr{L}_{\it eff}$  is expected to appear in BSM models like vector like quark (VLQ) models, composite Higgs models , top quark condensation models.
- LHC measurement uncertainty high due to jet background

# Unitarity in the

## $W^+W^- \rightarrow t\bar{t}$ Process

At Large Energies, the contribution from the  $\gamma$ , Z and t-channel contribution grows as:

$$\mathcal{M}^{\gamma+Z+b}(W_L^+W_L^- \to t\bar{t}) = \frac{m_t}{v^2} \sqrt{s} \quad ; \sqrt{s} >> m_t$$

So, the Higgs diagram is needed to unitarize this contribution. But, if the top yukawa-coupling deviates from Standard Model value by  $\delta_{yt}$ :

$$y_t \rightarrow y_t (1 + \delta_{yt})$$

The scattering amplitude will scale as:

$$\mathcal{M}(W_L^+ W_L^- \to t\bar{t}) = \frac{m_t}{v^2} \sqrt{s} \delta_{yt} \; ; \; \sqrt{s} >> m_t$$

Then Perturbative unitarity will be broken at some scale:

$$\Lambda < \frac{10 TeV}{\delta_{yt}}$$







### **Muon Collider**

- Can provide high precision and high energy
  - Muon being fundamental particle, full energy available in collision
  - Cleaner background
  - High mass suppresses synchrotron radiation
- The price to pay is the unstability of muons leading to neutrino radiation, beam induced background
  - Progress to overcome spearheaded by US Muon Accelerator Program (MAP), the Muon Ionization Cooling Experiment (MICE)

## $t\bar{t}$ production at muon colliders



#### **Production Cross-section**

$$\sigma(\mu^{+}\mu^{-} \to F + X) = \int_{\tau_{\min}}^{\tau_{\max}} d\tau \sum_{ij} \frac{\mathcal{L}_{ij}}{d\tau} \hat{\sigma}(ij \to F)$$

#### **Luminosity Function is given by:**

$$\frac{d\mathcal{L}_{ij}}{d\tau} = \frac{1}{1+\delta_{ij}} \int_{\tau}^{1} \frac{d\xi}{\xi} [f_i(\xi,\mu_f)f_j(\frac{\tau}{\xi},\mu_f) + i \leftrightarrow j]$$

# Cross-section for $\mu^+\mu^- \to t\bar t + X$ 10 TeV 10 $ab^{-1}$ Muon Collider





- W-Channel dominates the cross-section where we have the  $\delta_{\mathit{vt}}$  signal
- $(Z\gamma)(\gamma\gamma)$  ,  $(ZZ)(\gamma\gamma)$  ,  $(Z\gamma)(Z\gamma)$  are subtle interference effects

- Signal referes to  $|\mathcal{M}_{SM}+\mathcal{M}_{\delta_{yt}}|^2$   $|\mathcal{M}_{SM}|^2$
- Signal dominated by interference between  $\mathcal{M}_\mathit{SM}$  and  $\mathcal{M}_{\delta_{\!yt}}$

# Cross-section for $\mu^+\mu^- \to t\bar t + X$ 3 TeV 1 $ab^{-1}$ Muon Collider



W-Channel dominates the cross-section

Reduced significance at 3 TeV

 $\Delta\chi^2$  test is performed by binning  $m_{tar{t}}$  with 50 GeV bins and angular distribution into 9 bins

# $\Delta \chi^2$ Analysis

#### **Event Selection:**

- Dilepton events are discarded after  $t\bar{t}$  decay
- Angle Cut:  $10^{\circ} < \theta < 170^{\circ}$

#### **Results:**

|                             | $\delta_{\mathrm yt}$ | $\delta_{yt}$ |
|-----------------------------|-----------------------|---------------|
| $\sqrt{s} = 3 \text{ TeV}$  | -6%                   | 8%            |
| $\sqrt{s} = 10 \text{ TeV}$ | -1.25%                | 1.4%          |

#### **Comparison:**

Direct measurement @MuC using  $t\bar{t}h$  channel for 3 TeV is 53% and for 10 TeV 34%

[M. Forslund, P. Meade, arXiv:2203.09425]

14 TeV HL-LHC @ 3  $ab^{-1}$  is 6.9%

[M. Cepeda et al., arXiv:1902.00134]





## **Summary and Outlook**

- Consideration of various UV complete models
  - Promising results for VLQ model with one heavy top partner
  - Study other models

Detailed consideration of detector effects and reconstruction





Results for VLQ model with one top partner