DLogical Equivalences

False, True, Statements

Logical Operators

Operator	Symbol	Usage
Negation	一,~	not
Conjunction	٨	and
Disjunction	V	or
Exclusive or	\oplus	xor
Conditional	\rightarrow	if,then
Biconditional	\leftrightarrow	iff

Negation – truth table

Conjunction – truth table

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction – truth table

HEEF MINT	р	q	$p \vee q$
	Т	Т	Т
	Т	F	Т
	F	Т	Т
	F	F	F

Exclusive-Or – truth table

p	q	$ otag \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Conditional -- truth table

restrent constructs	T	
p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Bi-Conditional -- truth table

p	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Theories Desiral Equivalences

Tautology.

Logical equivalence is denoted by \Leftrightarrow or \equiv

The way to check for logical equivalences

- Truth tables
- Derivational Proof Techniques

EXAMPLE

Logical Equivalence of $p \rightarrow q$ and $\neg q \rightarrow \neg p$

р	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$	$(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
Т	Т	Т	Т	T
Т	F	F	F	Т
F	Т	Т	Т	Т
F	F	Т	T	T

Logical Non-Equivalence of $p \rightarrow q$ and $q \rightarrow p$

р	q	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \leftrightarrow (q \rightarrow p)$
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	Т

Truth tables

The easiest way to check for logical equivalence is to see if the truth tables of both variants have identical last columns.

Tables of Logical Equivalences

•	Identity laws
	Like adding 0
•	Domination laws
	Like multiplying by 0
•	Idempotent laws —
	Delete redundancies
•	Double negation —
	"I don't like you, not"

	Like " $x+y = y+x$ "
•	Associativity —
	Liko "(x+x)+z = x+(x+z)"

•	Distributivity —
	Like " $(x+y)z = xz+yz$ "

•	De	M	lorgan	
---	----	---	--------	--

Commutativity

Equivalence	Name		
$p \wedge T \Leftrightarrow p$ $p \vee F \Leftrightarrow p$	Identity laws		
$P \lor T \Leftrightarrow T$ $p \land F \Leftrightarrow F$	Domination laws		
$p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$	Idempotent laws		
$\neg (\neg p) \Leftrightarrow p$	Double negation law		
$p \lor q \Leftrightarrow q \lor p$	Commutative laws		
$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$	Associative laws		
$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	Distributive laws		
$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$ $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	De Morgan's laws		

Some Useful Logical Equivalences

Equivalence	Useful Logical Equivalences (ULE)
$p \lor \neg p \Leftrightarrow T$	ULE 1
<i>p</i> ∧ ¬ <i>p</i> ⇔ F	ULE 2
$p \to q \Leftrightarrow \neg p \lor q$	ULE 3

Derivational Proof Techniques

EXAMPLE

 $\Leftrightarrow p \vee T$

 \Leftrightarrow T

Tautology by proof

 $[\neg p \land (p \lor q)] \rightarrow q$ $\Leftrightarrow [(\neg p \land p) \lor (\neg p \land q)] \rightarrow q$ Distributive $\Leftrightarrow [F \lor (\neg p \land q)] \rightarrow q$ ULE $\Leftrightarrow [\neg p \land q] \rightarrow q$ Identity $\Leftrightarrow \neg [\neg p \land q] \lor q$ ULE $\Leftrightarrow [\neg(\neg p)\lor \neg q]\lor q$ DeMorgan $\Leftrightarrow [p \lor \neg q] \lor q$ **Double Negation** $\Leftrightarrow p \vee [\neg q \vee q]$ Associative $\Leftrightarrow p \vee [q \vee \neg q]$ Commutative

ULE

Domination

 $(p \lor q \lor r) \land (p \lor t \lor \neg q) \land (p \lor \neg t \lor r) \Leftrightarrow p \lor [r \land (t \lor \neg q)]$

2 ways for proving

Truth table

Truth table

 $(p \lor q \lor r) \land (p \lor t \lor \neg q) \land (p \lor \neg t \lor r)$

р	q	r	t	¬q	¬t	(p V q V r)	(p V t V ¬q)	(p ∨ ¬t ∨ r)	(p V q V r) ∧ (p V t V ¬q)	(p V q V r) \((p V t V \(¬q \) \((p V \(¬t V r) \)
T	T	T	T	F	F	T	T	T	Т	Т
Т	Т	Т	F	F	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	Т	Т	Т	Т	Т
Т	Т	F	F	F	Т	Т	Т	Т	Т	Т
Т	F	Т	Т	Т	F	Т	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т	Т	Т	Т
Т	F	F	Т	Т	F	Т	Т	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т	Т	Т	Т
F	Т	Т	Т	F	F	Т	Т	Т	Т	Т
F	Т	Т	F	F	Т	Т	F	Т	F	F
F	Т	F	Т	F	F	Т	Т	F	Т	F
F	Т	F	F	F	Т	Т	F	Т	F	F
F	F	Т	Т	Т	F	Т	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	F	F	Т	F	F	F
F	F	F	F	Т	Т	F	Т	Т	F	F

Truth table

 $\mathbf{p} \vee [\mathbf{r} \wedge (\mathbf{t} \vee \neg \mathbf{q})]$

р	q	r	t	рг	(t ∨ ¬q)	[r ∧ (t ∨ ¬q)]	p ∨ [r ∧ (t ∨ ¬q)]
Т	Т	Т	Т	F	Т	Т	Т
Т	Т	Т	F	F	F	F	Т
Т	Т	F	Т	F	Т	F	Т
Т	Т	F	F	F	F	F	Т
Т	F	Т	Т	Т	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	Т	Т	Т	F	Т
Т	F	F	F	Т	Т	F	Т
F	Т	Т	Т	F	Т	Т	Т
F	Т	Т	F	F	F	F	F
F	Т	F	Т	F	Т	F	F
F	Т	F	F	F	F	F	F
F	F	Т	Т	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т	Т
F	F	F	Т	Т	Т	F	F
F	F	F	F	Т	Т	F	F

- $(p \lor q \lor r) \land (p \lor t \lor \neg q) \land (p \lor \neg t \lor r)$ $\Leftrightarrow p \lor [r \land (t \lor \neg q)]$
- proof
- \Leftrightarrow p \vee [(q \vee r) \wedge (t \vee ¬q) \wedge (¬t \vee r)]
- \Leftrightarrow p \vee [(r \vee (q \wedge \neg t)) \wedge (t \vee \neg q)]
- $\Leftrightarrow p \lor [((r \land (t \lor \neg q)) \lor ((q \land \neg t) \land (t \lor \neg q))]$
- $\Leftrightarrow p \lor [((r \land (t \lor \neg q)) \lor (\neg (t \lor \neg q) \land (t \lor \neg q))]$
- $\Leftrightarrow \bar{p} \vee [(r \wedge (t \vee \neg q)) \vee F]$
- \Leftrightarrow p \vee [r \wedge (t $\vee \neg$ q)]

Proof

() Flowchart

Flowchart

O MATLAB

de2bi function

```
bi_0 = de2bi(0)
bi_1 = de2bi(1)
bi_3 = de2bi(3)
bi_4 = de2bi(4)
bi_3bit = de2bi(0:2^3-1)
```


Main Code

```
%Number of logical variable
n = 4;
%Name of logical variable
syms p q r t
%Loop all possible truth value for each equation
bi = de2bi(0:2^n-1);
for i = 1:2^n
   %Assign more variable here
   %Ex."(name of variable) = bi(i,(order of variable))"
   p = bi(i, 1);
   q = bi(i, 2);
   r = bi(i, 3);
   t = bi(i, 4);
   %Enter equation here
    table1(i) = (p | q | r) & (p | t | \sim q) & (p | \sim t | r);
    table2(i) = p \mid [r \& (t \mid \sim q)];
end
table1
table2
%Is Logically equivalent or not
if table1 == table2
    disp('Logically equivalent')
else
    disp('Not logically equivalent')
end
```

```
Command Window
                                                 X
  table1 =
   1×16 logical array
    0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1
  table2 =
   1×16 logical array
    0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1
 Logically equivalent
f_{\underline{x}} >>
```


Main Code

```
%Problem
% (p V q V r) ∧ (p V t V ¬q) ∧ (p V ¬t V r)
% ⇔ p V [r ∧ (t V ¬q)]
e1 = '(p V q V r) ∧ (p V t V ¬q) ∧ (p V ¬t V r)';
e2 = 'p V [r ∧ (t V ¬q)]';
```

```
%Show problem infomation
    disp('Problem')
    fprintf('Equation 1: ')
    disp(e1)
    fprintf('Equation 2: ')
    disp(e2)
    fprintf('\n')

    disp('Truth Table of equation 1')
    disp(table1)
    disp('Truth Table of equation 2')
    disp(table2)

    fprintf('Answer: ')
```

```
Command Window
                                                              Problem
  Equation 1: (p \lor q \lor r) \land (p \lor t \lor \neg q) \land (p \lor \neg t \lor r)
  Equation 2: p \lor [r \land (t \lor \neg q)]
  Truth Table of equation 1
     0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1
  Truth Table of equation 2
     0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1
 Answer: Logically equivalent
f_{\underline{x}} >>
```

