ALG 10

Dynamické programování

zkratka: DP

Zdroje, přehledy, ukázky viz

https://cw.fel.cvut.cz/wiki/courses/a4b33alg/literatura_odkazy

Dynamické programování

Příklady aplikací:

- Optimální rozvrhování navazujících procesů
- Přibližné vyhledávání v textu daných vzorků (bioinformatika)
- Optimální plnění ruksaku (kontejneru, nádob...)
- Hledání optimálních cest/spojení v grafech, sítích...
- Nejdelší podposloupnosti s předepsanými vlastnostmi
- Nejdelší společná podposloupnost
- Optimální pořadí násobení matic
- Optimální vyhledávací strom
- Optimální vrcholové pokrytí hran stromu
- Množství dalších....

Dynamické programování

Charakteristika

Neřeší jeden konkrétní typ úlohy, je to všeobecná strategie (podobně jako Rozděl a panuj) pro řešení převážně optimalizačních úloh z různých oblastí tvorby algoritmů.

Významné vlastnosti

- 1. Hledané optimální řešení lze sestavit z vhodně volených optimalních řešení téže úlohy nad redukovanými daty.
- 2. V rekurzivně formulovaném postupu řešení se opakovaně objevují stejné menší podproblémy.

DP umožňuje obejít opakovaný výpočet většinou jednoduchou tabelací výsledků menších podproblémů, tedy volně řečeno, předpočítáním menších výsledků.

Dynamické programování

Seznam DP algoritmů na en.wikipedia.org/wiki/Dynamic_programming

- · Recurrent solutions to lattice models for protein-DNA binding
- · Backward induction as a solution method for finite-horizon discrete-time dynamic optimization problems
- Method of undetermined coefficients can be used to solve the Bellman equation in infinite-horizon, discrete-time, discounted, time-invariant dynamic optimization problems
- Many string algorithms including longest common subsequence, longest increasing subsequence, longest common substring, Levenshtein distance (edit distance)
- Many algorithmic problems on graphs can be solved efficiently for graphs of bounded treewidth or bounded clique-width by using dynamic programming on a tree decomposition of the graph.
- The Cocke-Younger-Kasami (CYK) algorithm which determines whether and how a given string can be generated by a given context-free grammar
- . Knuth's word wrapping algorithm that minimizes raggedness when word wrapping text
- The use of transposition tables and refutation tables in computer chess
- The Viterbi algorithm (used for hidden Markov models)
- . The Earley algorithm (a type of chart parser)
- The Needleman-Wunsch and other algorithms used in bioinformatics, including sequence alignment, structural alignment, RNA structure prediction
- · Floyd's all-pairs shortest path algorithm
- Optimizing the order for chain matrix multiplication
- Pseudo-polynomial time algorithms for the subset sum and knapsack and partition problems
- The dynamic time warping algorithm for computing the global distance between two time series
- The Selinger (a.k.a. System R) algorithm for relational database query optimization
- De Boor algorithm for evaluating B-spline curves
- · Duckworth-Lewis method for resolving the problem when games of cricket are interrupted
- · The value iteration method for solving Markov decision processes
- Some graphic image edge following selection methods such as the "magnet" selection tool in Photoshop
- Some methods for solving interval scheduling problems
- Some methods for solving word wrap problems
- . Some methods for solving the travelling salesman problem, either exactly (in exponential time) or approximately (e.g. via the bitonic tour)
- Recursive least squares method
- · Beat tracking in music information retrieval
- Adaptive-critic training strategy for artificial neural networks
- Stereo algorithms for solving the correspondence problem used in stereo vision
- Seam carving (content aware image resizing)
- . The Bellman-Ford algorithm for finding the shortest distance in a graph
- · Some approximate solution methods for the linear search problem
- Kadane's algorithm for the maximum subarray problem

Ilustrační otisk obrazovky

Definice funkce

$$f(x,y) = \begin{cases} 1 & (x = 0) || (y = 0) \\ 2 \cdot f(x, y-1) + f(x-1,y) & (x > 0) & & (y > 0) \end{cases}$$

Otázka

$$f(10,10) = ?$$

Program

```
int f( int x, int y ) {
  if ((x == 0) | | (y == 0))
    return 1;
  return (2* f(x, y-1) + f(x-1,y));
}
```

print(f(10,10));

Odpověď

Výsledek analýzy

count = 369 511

Kvíz 1

```
int f( int x, int y ) {
  if ((x == 0) | | (y == 0))
    return 1;
  return (2* f(x, y-1) + f(x-1,y));
}
print( f( ___, __ ) );
```

Výpočet proběhne za MINUTU nebo méně pro volání

```
a) f( 10, 10 )
Ano / Ne
b) f( 20, 20 )
Ano / Ne
c) f( 100, 100 )
Ano / Ne
d) f( 1000, 1000 )
Ano / Ne
e) f( 10000, 10000 )
Ano / Ne
```

Kvíz 1 - odpověď

Po	<u>očet rekurzivní</u>	<mark>ch volání f při vý</mark>	počtu f(x,y)	Upočítáme za minutu
a)	f(10, 10)	369511		Ano
b)	f(20, 20)	275693057	7639	Ano, na super HW
c)	f(100, 100)			Ne
_	1810970293122	065623308083541	5496832774900	9179350826673682639
d)	f(1000, 1000)		Ne
_	4096303253978	3979428670325005	9616500887928	349775962794067640765
	2753434963724	1041675116578659	8836522041240	29295326399960473848
	3096359600904	1958403609509953	852315712602	579326864129429702304
	790503302455	5371772230790925	122958147573	369283088890672352275
	4014771134762	2917926014261302	0911919028959	77749241273743702910
	3657102346332	2552507327546169	3658645107780)99487718962863510061
				397675296816870828616
				760606620363744659601
				588393330734980902261
•		2540685004586311	8222179534679	
e)	f(10000, 1000			Asi Ne
	Na dalším	slidu		

Kvíz 1 - odpověď, počet volání f při f(10000,100000)

Na doma: Ověřte správnost tohoto výsledku! (např. 5 řádků v Pythonu...)

Detailnější analýza – strom rekurzivního volání

Detailnější analýza pokračuje – efektivita rekurzivního volání

$$\frac{f(x,y)}{f(x,y)} = \begin{cases} 1 & (x = 0) & || & (y = 0) \\ 2 & f(x, y-1) + || & (x > 0) & & (x > 0) \end{cases}$$

Tabulka všeobecně

$$f(x,y) = \begin{cases} 1 & (x = 0) || & (y = 0) \\ 2 \cdot f(x, y-1) + f(x-1,y) & (x > 0) & & (y > 0) \end{cases}$$

Tabulka numericky

PV(x,y) --- počet rekurzivních volání f po příkazu f(x, y)

$$PV(x,y) = \begin{cases} 1 & (x = 0) || & (y = 0) \\ 1 + PV(x, y-1) + PV(x-1,y) & (x > 0) & & (y > 0) \end{cases}$$

y/x	0	1	2	3	4	5	6	7	8	9	10
0	1	1	1	1	1	1	1	1	1	1	1
1	1	3	5	7	9	11	13	15	17	19	21
2	1	5	11	19	29	41	55	71	89	109	131
3	1	7	19	39	69	111	167	239	329	439	571
4	1	9	29	69	139	251	419	659	989	1429	2001
5	1	11	41	111	251	503	923	1583	2573	4003	6005
6	1	13	55	167	419	923	1847	3431	6005	10009	16015
7	1	15	71	239	659	1583	3431	6863	12869	22879	38895
8	1	17	89	329	989	2573	6005	12869	25739	48619	87515
9	1	19	109	439	1429	4003	10009	22879	48619	97239	184755
10	1	21	131	571	2001	6005	16015	38895	87515	184755	369511

Všechny hodnoty se předpočítají

Volání funkce

```
int f( int x, int y ){
  return dynArr[y][x];
}
```

Hledání optimálních cest v grafu

Značení

Graf G = (V, E), množina uzlů resp. hran: V(G) resp. E(G), N = |V(G)|, M = |E(G)|, případně n = |V|, m = |E(G)| apod.

Cesta v grafu

= posloupnost na sebe navazujících hran, která prochází každým uzlem nejvýše jednou.

Délka cesty v neváženém grafu = počet hran na cestě.

Př. Délka (B D E F C) = 4.

Délka cesty ve váženém grafu = součet vah hran na cestě.

Př. Délka (A E F C G) = 14.

Hledání optimálních cest v grafu

Nejkratší cesty

Úloha nalezení nejkratší cesty mezi dvěma danými uzly, případně mezi některými dvojicemi uzlů nebo mezi všemi dvojicemi uzlů. (Například minimalizace nákladů na přesun z X do Y.)

Postupy

Je vyřešena úspěšně pro všechny praktické případy. V neváženém obecném grafu známe BFS, pro jiné případy, zejména vážených grafů, existují specializované algoritmy -- Dijkstra, Floyd-Warshall, Johnson, Bellman-Ford, atd.

Složitost

Asymptotická složitost je vždy polynomiální v počtu uzlů a hran, typicky nalezení jedné cesty má složitost nanejvýš O(N²), kde N je počet uzlů grafu.

Hledání optimálních cest v grafu

Nejdelší cesty

Úloha nalezení nejdelší cesty v grafu mezi dvěma danými uzly, nebo v celém grafu vůbec.

(Například maximalizace zisků při provádění navzájem závislých činností.)

Není dosud uspokojivě vyřešena v plné obecnosti.

Exponenciální složitost

NP - těžký problém

Možné strategie

- 1. Brute force -- exponenciální složitost, pro N > cca 30 bezcenná.
- 2. Algoritmy přibližného řešení s polynomiální složitostí
 - -- buď najdou optimum jen s určitou pravděpodobností
 - -- nebo zaručí jen nalezení suboptimálního řešení
 - -- typicky jsou netriviální a náročné na správnou implementaci.

Hledání nejdelších cest v grafu

Možné strategie

3. Specifické typy grafů dovolují použít efektivní specifický algoritmus.

Nejjednodušší případ

3A.

Graf je strom (vážený ano i ne, orientovaný ano i ne). Nejdelší cestu lze najít, např. s pomocí průchodu postorder, vždy v čase $\Theta(N)$.

Příležitost pro DP

3B.

Graf je orientovaný, acyklický, vážený ano i ne. Standardní označení: DAG (Directed Acyclic Graph)

Topologické uspořádání DAG

Topologické uspořádání uzlů DAG je takové pořadí jeho uzlů, ve kterém každá hrana vede z uzlu s nižším pořadím do uzlu s vyšším pořadím.

Každý DAG lze topologicky uspořádat, většinou více způsoby.

Orientovaný graf s alespoň jedním cyklem nelze topologicky uspořádat.

Mnoho úloh DP obsahuje DAG na vstupu již topologicky uspořádaný.

Topologické uspořádání DAG (alespoň jedno) lze sestavit v čase ⊕(M), tj. v čase úměrném počtu hran DAG.

DAG a jeho topologické uspořádání

Příklad 1

DAG a jeho různá topologická uspořádání

Příklad 2a

V uzlu je zapsáno jeho pořadí v topologickém uspořádání

DAG a jeho různá topologická uspořádání

Příklad 2b

DAG a jeho různá topologická uspořádání

Příklad 2c

Kvíz 2

Graf G

- a) Nelze topolgicky uspořádat,
- b) lze topologicky uspořádat jen jedním způsobem,
- c) lze topologicky uspořádat dvěma způsoby,
- d) lze topologicky uspořádat třemi způsoby,
- e) lze topologicky uspořádat 6! způsoby.

Kvíz 2, odpověď

Graf G

- - -

c) lze topologicky uspořádat dvěma způsoby,

Pořadí A B E F nelze měnit (orientovaná cesta), C a D musí být v topologickém uspořádání mezi B a E, buď v pořadí C D nebo v pořadí D C.

Topologické uspořádání DAG - příklad

Queue: 1, 2, 3.

Queue: 2, 3, 4.

Queue: 3, 4.

Queue: 4.

Topologické uspořádání DAG - příklad

Queue: 5, 6.

Queue: 6, 7, 8.

Queue: 7, 8.

Queue: 8, 9.

Topologické uspořádání DAG - příklad

Topologické uspořádání DAG

Algoritmus

```
0. new queue Q of Node
  counter = 0
1. for each x in V(G)
     <u>if</u> (x.indegree == 0) // x is a root
       Q.insert(x)
       x.toporder = counter++
2. <u>while</u> (!Q.empty()) {
  Node v = Q.pop()
  for each edge (v, w) \in E(G) {
     G.removeEdge((v, w))
     if (w.indegree == 0) // w is a root
       Q.insert(w)
       w.toporder = counter++
```

Složitost

Předpokládáme, že operace G.removeEdge((v, w)) má konstantní složitost *).

- 0. Složitost O(N)
- 1. Složitost ⊕(N)
- 2. Složitost ⊕(M), každá hrana je navštívena právě jednou a zpracována v konstantním čase.

Složitost: ⊕(N+M)

*) Hranu fyzicky neodstraňujeme, jen ji vhodně označíme a změníme charakteristiky obou krajních uzlů.

Pořadí, ve kterém se uzly vkládají do fronty, určuje topogické uspořádání DAG.

Předpokládáme topologické uspořádání a v jeho směru procházíme DAG. Označme d[x] délku té cesty v DAG, která končí v x a je nejdelší možná.

Charakteristický pohled "odzadu dopředu":

- -- d[x] určujeme až v okamžiku, kdy jsou známy hodnoty d pro všechny předchozí (= již zpracované) uzly v topologickém uspořádání.
- -- d[x] určíme jako maximum z hodnot

```
{ d[y1] + w1, d[y2] + w2, ..., d[yk] + wk },
kde (y1, x), (y2, x), ..., (yk, x) jsou všechny hrany končící v x
a w1, w2, ..., wk jsou jejich odpovídající váhy.
```


- -- d[x] určíme jako maximum z hodnot { d[y1] + w1, d[y2] + w2, ..., d[yk] + wk }, kde (y1, x), (y2, x), ..., (yk, x) jsou všechny hrany končící v x a w1, w2, ..., wk jsou jejich odpovídající váhy.
- -- Uzel yj, pro který je hodnota d[yj] + wj maximální a nezáporná, ustavíme předchůdcem x na hledané nejdelší cestě.
- -- Pokud jsou všechny hodnoty {d[y1] + w1, d[y2] + w2, ..., d[yk] + wk} záporné, nepřispívají do nejdelší cesty, pak položíme d[x] = 0, předchůdce x = null.

Příklad

Určete nejdelší cestu a její délku.

p = 3

d=0

d=6

d=8

d=9

d=7

d=12

p=nil

p=1

p=2

p=2

p=3

p=4

d = max {6+7, 7+-3, 12+2} = 14

p = 6

d=0 d=6 d=8 d=9 d=7 d=12 d=14
p=nil p=1 p=2 p=2 p=3 p=4 p=6

Délka nejdelší cesty: 14

Nejdelší cesta: 1 -- 2 -- 4 -- 6 -- 7

0. allocate memory for distance and predecessor of each node

- 0. Složitost ⊕(N)
- 1. Složitost ⊕(N)
- 2. Složitost Θ(M), každá hrana je navštívena právě jednou a zpracována v konstantním čase.

Složitost: ⊕(N+M)

Kvíz 3

Při průchodu grafem G z A do B

- a) lze vydělat nejvýše –2
- b) lze vydělat nejvýše -1
- c) lze vydělat nejvýše 0
- d) lze vydělat nejvýše 1
- e) lze vydělat alespoň 2

Kvíz 3, odpověď

Při průchodu grafem G z A do B

b) lze vydělat nejvýše –1

Výběr lepšího předchůdce uzlu

Optimální cesta

Varianta I

```
2. for each node x in V(G) {
  for each edge e = (y, x) in E(G)
  if (x. dist < y.dist + e.weight) {
    x. dist = y.dist + e.weight
    x.pred = y;
  }
}
```

Varianta II

```
2. for each node x in V(G) {
  for each edge e = (x, y) in E(G)
  if (y. dist < x.dist + e.weight) {
  y. dist = x.dist + e.weight
  y.pred = x;
}
```


Problém rekonstrukce *všech* optimálních cest -- může jich být příliš mnoho.

Ukázka

Každá cesta z kořene do listu je optimální, má cenu N·(a+b).

Počet všech těchto cest je $\binom{2N}{N}$,

přičemž $2^N < \binom{2N}{N} < 4^N$.

Počet optimálních řešení tedy roste exponenciálně vůči hodnotě N. Např.

Počet optimálních řešen	N
2	1
184756	10
137846528820	20
118264581564861424	30
107507208733336176461620	40

Kvíz 4

Kolik různých cest vede v G z A do B?

- a) Méně než 10
- b) od 10 do 20
- c) od 21 do 41
- d) 42 ??
- e) 43 nebo více

Kvíz 4, odpověď

Kolik různých cest vede v G z A do B?

- - -

d) 42

Na diagonále jou de císla,

Každé číslo v uzlu je součtem čísel na začátcích hran vedoucích do uzlu, kromě A, kde se začíná.

Komentáře k domácím úlohám

Za týden...