Нечёткие оценки

Оптимальный выбор группы объектов на основе анализа экспертных оценок

Работу выполняет студент 535 группы Борисов Кирилл

Научный руководитель Зубюк Андрей Владимирович

Кафедра компьютерных методов физики физического факультета МГУ имени Ломоносова

Выбор объектов

Объекты и их параметры

$$i \in \{0..n\}$$
$$j \in \{0..m\}$$

 \tilde{x}_{ij} — параметры объектов (нечёткие элементы) $x_{ij} \in X$ — фактические значения этих параметров (неизвестны)

монотонна и задана заказчиком экспертизы
$$x_i = f(x_{i1},...,x_{im})$$
 — «качество» объектов

Объект п

Параметр 1

Параметр 2

Экспертные оценки

$$\mathrm{p}_{ij}(\cdot):X o [0,1]$$
 — заданы экспертом ...а если честно, $\{0.1,0.2,...,0.9,1.0\}$ вместо $[0,1]$.

Пример:

Задача выбора объектов

$$\{p_{ij}\} \Rightarrow (\Omega, \mathcal{P}(\Omega), P), \quad \Omega = X^{nm} = \{t : t = (x_{11}, ..., x_{nm})\}$$
$$P(A) = \sup_{t \in A} \inf_{i,j} p_{ij}(x_{ij})$$

– возможность события $A\subset\Omega$ на основе экспертной оценки

Пусть
$$t$$
 таково, что $x_{i_1} > ... > x_{i_k} > x_{i_{k+1}} > ... > x_{i_n};$
$$d = (x_1, x_6, ..., x_{15}); \ \delta(t) = (x_{i_1}, x_{i_2}, ..., x_{i_k}); \ |d| = |\delta| = k$$

$$P_{l} \stackrel{\text{def}}{=} P(\{l \notin \delta(t)\}) = \sup_{t \in \{l \notin \delta(t)\}} \inf_{i,j} p_{ij}(x_{ij}), \ t = (x_{11}, ..., x_{nm});$$

$$P(\lbrace d \neq \delta(t)\rbrace) = \sup_{l \in d} P_l \sim \min_d.$$

Алгоритм выбора объектов

Пусть
$$P_{l_1} \leq ... \leq P_{l_k} \leq P_{l_{k+1}} \leq ... \leq P_{l_n}$$
, тогда $d_* = \{l_1, ..., l_k\} = \arg\min_d \mathrm{P}(\{d \neq \delta\}).$

- Задача свелась к нахождению P(l) для всех l=1...n
- Построен алгоритм, находящий точное значение P(l) за время O(1) вмесо O(e^{nm}) в случае простого перебора элементарных событий. Он использует:
 - Свойства операций со значениями возможности
 - Конечный набор значений возможности
 - Монотонность f

Выбор объектов - 2

Коллективная экспертиза - 1

$${
m p}_1$$
 — одно из ${
m p}_{i_0j_0}$ Васи, ${
m p}_2$ — одно из ${
m p}_{i_0j_0}$ Пети, ...и так далее до p_Q .

$$p_q \Rightarrow P_q \Rightarrow P_q = \{P'_q : P'_q = \gamma(P_q)\}$$
$$p_q(\cdot) : X \to [0, 1], \ q \in \{1, ..., Q\}, \ \gamma \in \Gamma$$

$$s_q(\cdot) = (s_q^1(\cdot), s_q^2(\cdot), ..., s_q^{|X|}(\cdot))$$
 – макс. инв. группы Γ $s_q^i(\mathbf{p}_q) = \sum_{x \in X} \chi_{A_i}(x), \ A_i = \{x \in X : \mathbf{p}_q(x) \leq \mathbf{p}_q(x_i)\}$

Пусть $w_1, w_2, ..., x_Q \in [0, 1]$ – веса экспертов.

$$s_* = \arg\min_{s} \sum_{q=1}^{Q} w_q ||s - s_q||_2^2 \Rightarrow p_* = \frac{s_*}{|X|}$$

 s_* близко к $\overline{s} = \sum_{q=1}^Q w_q s_q$ (как с матрицами парных сравнений).

Выбор объектов - 3

Частичный псевдопорядок возможностей

 $Onp. \ p_1 \prec p_2, \ если:$

- 1. supp $p_2 \supset \text{supp } p_1$
- 2. $\exists \gamma : p_2(\omega) = \gamma(p_1(\omega)),$ $\omega \in \text{supp } p_1$
- 3. $p_2(\omega) \leq p_2(\omega')$, $\omega \notin \text{supp } p_1, \omega' \in \text{supp } p_1$

Путевой лист

- Алг. выбора
- Алг. коллективной экспертизы 1
- Алг. нахождения частичного порядка
- Алг. коллективной экспертизы 2
- Алг. уточнения оценки

• Написание текста

Всем бобра.

Прототип интерфейса эксперта

