מתמטיקה דיסקרטית - תרגיל בית 1 עם פתרון

הגשה ליום חמישי, 1/8 בשעה 1/3.57, לפי ההנחיות במודל סמסטר קיץ תשפ"ד

עבור עבור בסעיפים הבאים. לאחת הפריכו כל הוכיחו או פסוקים, פסוקים, יהיו p,q,r יהיו הוכחה אלה הוכחה, עשו זאת בשתי דרכים: הן באמצעות טבלת אמת, והן הוכחה באמצעות זהויות.

$$p \rightarrow (q \rightarrow r) \equiv (p \wedge q) \rightarrow r \text{ .8}$$

$$(p \wedge q) \rightarrow r \equiv (p \rightarrow r) \vee (q \rightarrow r) \text{ .2}$$

$$((\neg p) \rightarrow q) \rightarrow p \equiv p \vee \neg p \text{ .3}$$

$$q \rightarrow (r \wedge \neg p) \equiv r \rightarrow (p \rightarrow q) \text{ .7}$$

$$\neg (p \rightarrow q) \vee r \equiv \neg p \wedge (r \vee q) \text{ .7}$$

פתרון 1. א. הוכחה באמצעות טבלת אמת:

p	q	r	$q \rightarrow r$	$p \wedge q$	p o (q o r)	$(p \wedge q) o r$
F	F	F	Т	F	T	T
F	F	Т	Т	F	T	T
F	Т	F	F	F	T	T
F	Т	Т	Т	F	T	T
Т	F	F	Т	F	T	T
Т	F	Т	Т	F	T	T
Т	Т	F	F	Т	F	F
Т	Т	Т	Т	Т	Т	Т

הוכחה באמצעות זהויות:

$$\begin{split} p \to (q \to r) &\equiv \neg p \lor (q \to r) \\ (\alpha \to \beta &\equiv \neg \alpha \lor \beta) &\equiv \neg p \lor (\neg q \lor r) \\ (\alpha \to \beta &\equiv \neg \alpha \lor \beta) &\equiv (\neg p \lor \neg q) \lor r \\ (\alpha \to \beta &\equiv \neg \alpha \lor \beta) &\equiv \neg (p \land q) \lor r \\ (\alpha \to \beta &\equiv \neg \alpha \lor \beta) &\equiv (p \land q) \to r. \end{split}$$

ב. הוכחה באמצעות טבלת אמת:

p	q	r	$p \wedge q$	$(p \wedge q) o r$	$p \rightarrow r$	$q \rightarrow r$	(p o r)ee (q o r)
F	F	F	F	T	Т	T	T
F	F	Т	F	Т	Т	Т	T
F	Т	F	F	T	Т	F	T
F	Т	Т	F	Т	Т	Т	Т
Т	F	F	F	T	F	Т	T
Т	F	Т	F	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	F
Т	Т	Т	Т	T	Т	Т	Т

הוכחה באמצעות זהויות:

$$(p \wedge q) \rightarrow r \equiv \neg \left(p \wedge q \right) \vee r$$

$$(\alpha \rightarrow \beta \equiv \neg \alpha \vee \beta) \equiv (\neg p \vee \neg q) \vee r$$

$$(\alpha \vee \alpha \equiv \alpha : \text{אידמפוטנטיות:}) \equiv (\neg p \vee \neg q) \vee r \vee r$$

$$(\neg p \vee r) \vee (\neg q \vee r)$$

$$(\alpha \rightarrow \beta \equiv \neg \alpha \vee \beta) \equiv (p \rightarrow r) \vee (q \rightarrow r) \; .$$

ג. הפרכה - טבלאות האמת שונות ולכן הטענות לא שקולות.

p	q	$\neg p$	$(\neg p) \to q$	$((\lnot p) ightarrow q) ightarrow p$	$p \vee \neg p$
F	F	Т	F	T	T
F	Т	Т	Т	F	Т
Т	F	F	Т	Т	Т
Т	Т	F	Т	T	T

ד. הפרכה - טבלאות האמת שונות ולכן הטענות לא שקולות.

p	q	r	$\neg p$	$r \wedge \neg p$	$q o (r \wedge \lnot p)$	$p \rightarrow q$	r o (p o q)
F	F	F	Т	F	T	Т	T
F	F	Т	Т	Т	T	Т	Т
F	Т	F	Т	F	F	Т	T
F	Т	Т	Т	Т	T	Т	T
Т	F	F	F	F	T	F	T
Т	F	Т	F	F	T	F	F
Т	Т	F	F	F	F	Т	T
Т	Т	Т	F	F	F	Т	T

ה. הפרכה - טבלאות האמת שונות ולכן הטענות לא שקולות.

p	q	r	$p \to q$	$\neg (p \to q)$	eg (p o q) ee r	$\neg p$	$r \vee q$	$\neg p \wedge (r \vee q)$
F	F	F	Т	F	F	Т	F	F
F	F	Т	Т	F	T	Т	Т	T
F	Т	F	Т	F	F	Т	Т	Т
F	Т	Т	Т	F	T	Т	Т	Т
Т	F	F	F	Т	Т	F	F	F
Т	F	Т	F	Т	T	F	Т	F
Т	Т	F	Т	F	F	F	Т	F
Т	Т	Т	Т	F	T	F	Т	F

עטבלת טבלת ($p \oplus q$ - נסמן ב-eXclusive OR) XOR שאלה בינארי קשר בינארי קשר גדיר אלה באה:

p	q	$p \oplus q$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

- .¬-ו \lor , \land הביעו את ⊕ באמצעות א.
- ב. הפריכו או זהויות שתי טבלת אמת טבלת טבלת דרכים) כי לכל ב. הפריכו או הוכיחו אמת אמת מתקיים p,q,r

$$(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$$
.

ג. הוכיחו או הפריכו כי לכל p,q,r מתקיים

$$p \wedge (q \oplus r) \equiv (p \wedge r) \oplus (p \wedge q)$$
.

ד. הוכיחו או הפריכו כי לכל או הוכיחו או הוכיחו ד.

$$(p \oplus q) \oplus p \equiv q.$$

פתרון 2. א. נשים לב ש-q הוא q אמ"מ בדיוק אחד מ-q או q הוא q הוא q הוא q הוא q הוא q הוא q אחד מ-q הוא q הוא q און לא שניהם. לכן,

$$p \oplus q \equiv (p \vee q) \wedge (\neg (p \wedge q)) \equiv (p \wedge \neg q) \vee (\neg p \vee q).$$

ב. הוכחה באמצעות טבלת אמת:

p	q	r	$p \oplus q$	$(p\oplus q)\oplus r$	$q \oplus r$	$p \oplus (q \oplus r)$
F	F	F	F	F	F	F
F	F	Т	F	T	Т	Т
F	Т	F	Т	T	Т	Т
F	Т	Т	Т	F	F	F
Т	F	F	Т	T	F	Т
Т	F	Т	Т	F	Т	F
Т	Т	F	F	F	Т	F
Т	Т	Т	F	T	F	T

הוכחה באמצעות זהויות - נפתח כל אחד מהאגפים:

$$(p \oplus q) \oplus r \equiv ((p \wedge \neg q) \vee (\neg p \wedge q)) \oplus r$$

$$\equiv (((p \wedge \neg q) \vee (\neg p \wedge q)) \wedge \neg r) \vee (\neg ((p \wedge \neg q) \vee (\neg p \wedge q)) \wedge r)$$

$$\equiv ((p \wedge \neg q) \wedge \neg r) \vee ((\neg p \wedge q) \wedge \neg r) \vee ((\neg (p \wedge \neg q) \wedge \neg (\neg p \wedge q)) \wedge r)$$

$$\equiv ((p \wedge \neg q) \wedge \neg r) \vee ((\neg p \wedge q) \wedge \neg r) \vee (((\neg p \vee q) \wedge (p \vee \neg q)) \wedge r)$$

$$\equiv ((p \wedge \neg q) \wedge \neg r) \vee ((\neg p \wedge q) \wedge \neg r) \vee (((p \wedge q) \wedge (p \vee \neg q)) \wedge r)$$

$$\equiv ((p \wedge \neg q) \wedge \neg r) \vee ((\neg p \wedge q) \wedge \neg r) \vee (((p \wedge q) \vee (\neg p \wedge \neg q)) \wedge r)$$

$$\equiv (p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge q \wedge \neg r) \vee (p \wedge q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r) .$$

$$p \oplus (q \oplus r) \equiv p \oplus ((q \wedge \neg r) \vee (\neg q \wedge r))$$

$$\equiv (p \wedge \neg ((q \wedge \neg r) \vee (\neg q \wedge r))) \vee (\neg p \wedge ((q \wedge \neg r) \vee (\neg q \wedge r)))$$

$$\equiv (p \wedge (\neg (q \wedge \neg r) \wedge \neg (\neg q \wedge r))) \vee (\neg p \wedge q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r)$$

$$\equiv (p \wedge ((\neg q \vee r) \wedge (q \vee \neg r))) \vee (\neg p \wedge q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r)$$

$$\equiv (p \wedge ((\neg q \wedge \neg r) \vee (q \wedge r))) \vee (\neg p \wedge q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r)$$

$$\equiv (p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r) \vee (p \wedge q \wedge \neg r).$$

ולכן מתקיים שוויון.

ג. הוכחה באמצעות טבלת אמת:

p	q	r	$q \oplus r$	$p \wedge (q \oplus r)$	$p \wedge r$	$p \wedge q$	$(p\wedge r)\oplus (p\wedge q)$
F	F	F	F	F	F	F	F
F	F	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	Т	Т	F	F	F	F	F
Т	F	F	F	F	F	F	F
Т	F	Т	Т	Т	Т	F	Т
Т	Т	F	Т	Т	F	Т	Т
Т	Т	Т	F	F	Т	Т	F

ד. הוכחה באמצעות טבלת אמת:

p	q	$p \oplus q$	$(p\oplus q)\oplus p$
F	F	F	F
F	Т	Т	Т
T	F	Т	F
Т	Т	F	T

שאלה 3. עבור כל אחת מהטענות הבאות:

- כתבו את הטענה בשפה מתמטית.
- כתבו את שלילת הטענה לאחר פישוט.
- א. אין סטודנט שמצליח במבחן בלי לעשות את תרגילי הבית.
 - ב. כל בן אדם שאוהב מתמטיקה דיסקרטית אוכל גלידה.
 - n את מחלק את ש-p מתקיים את וראשוני וראשוני p מתקיים את החלק את
- ד. יש בניין בן יותר מ-100 קומות שלא נמצא באוניברסיטה.
- $lpha^3>eta^3$ וגם $lpha^2<eta^2$,lpha>eta- כך ש-lpha כך ממשיים מספרים מספרים הימים
- פתרון המבחן" במבחן ל-"xל-" ל-"ג מצליח במבחן קבוצת קבוצת פתרון א. תהיS יש. א. תהי פתרון א. תהי הטודנטים, הטענה היא עושה את תרגילי הבית". הטענה היא

$$\forall x \in S : (T(x) \to H(x)),$$

ושלילת הטענה לאחר פישוט היא

$$\exists x \in S : (T(x) \land \neg H(x)).$$

ב. תהי ל קבוצת בני האדם, פרידקט ל-"x ל-"x אוהב היסקרטית" ופרידקט ב. תהי לידה". הטענה היא אוכל גלידה". הטענה היא

$$\forall x \in H : (D(x) \to I(x)),$$

ושלילת הטענה לאחר פישוט היא

$$\exists x \in H : (D(x) \land \neg I(x)).$$

ג. תהי P קבוצת הראשוניים, ונגדיר פרדיקט $D\left(x,y\right)$ ל-"ג מחלק את (כלומר ענה הראשוניים, ונגדיר פרדיקט היא

$$\forall n \in \mathbb{Z} \forall p \in P : \neg D(p, n),$$

ושלילת הטענה היא

$$\exists n \in \mathbb{Z} \exists p \in P : D(p, n)$$
.

 $U\left(b
ight)$ קומות" ופרדיקט הבניינים, פרדיקט ל-"ל ל-"ל בן יותר ה-100 קומות" ופרדיקט ד. תהי מענה היא ל-"ל נמצא באוניברסיטה". הטענה היא

$$\exists b \in B : (T(b) \land \neg U(b)),$$

ושלילת הטענה היא

$$\forall b \in B : (\neg T(b) \lor U(b)),$$

 $\forall b \in B: T(b) \rightarrow U(b)$ או לחילופין

ה. הטענה היא

$$\exists \alpha, \beta \in \mathbb{R} : (\alpha > \beta \wedge \alpha^2 < \beta^2 \wedge \alpha^3 > \beta^3),$$

ושלילת הטענה היא

$$\forall \alpha, \beta \in \mathbb{R} : (\alpha \le \beta \lor \alpha^2 \ge \beta^2 \lor \alpha^3 \le \beta^3).$$

. בצורת הקונטרפוזיטיב. $x,y\in\mathbb{N}$ יהיו שאלה $x,y\in\mathbb{N}$ יהיו בצורת מהטענות מהטענות מהטענות באורת הקונטרפוזיטיב.

- a>b הוא מספיק בשביל a=b .א
 - x>y ב. x>y ב.
 - x-ג. ע ראשוני אם הוא קטן מ-x.
- $a \leq b$ הוא תנאי הכרחי בשביל a = b .ד.

.4 פתרון

קונטרפוזיטיב	ניסוח "אם-אז"	טענה	
a eq b אז $a < b$ אם	$a \geq b$ אז $a = b$ אם	$a \geq b$ הוא תנאי מספיק בשביל $a = b$	
$x \leq y$ אז $x \leq 2$ אז אי-זוגי או אי	x>2אם $x>y$ אז $x>y$ אם	2רק אם x הוא זוגי וגדול מ- $x>y$	
$y \ge x$ אם y פריק אז	אם $y < x$ אז $y < x$ אם	x-ראשוני אם הוא קטן מ y	
a>b אז $a eq b$ אם	$a=b$ אז $a\leq b$ אם	$a \leq b$ הוא תנאי הכרחי בשביל $a = b$	