SA 4. (5 marks) Consider the following circuit and determine the value of R_L that would result in the maximum amount of power transferred to it from the rest of the circuit. You do not need to calculate the value of the power.

Prob 2. (25 marks) Consider the following circuit that is to be analyzed using three different approaches:

(a) (7 marks) Use the Superposition Principle to determine the voltage V_0 .

(1) 4 V source alone:

(2) 12V source alone:

$$12V \pm \frac{1}{3}k2$$
 $\frac{1}{3}k2$
 $\frac{1}{3}k2$

(3) ImA rource alone:

Superposition: $V_0 = V_{01} + V_{02} + V_{03} = 3V + 6V + 1.5V = 10.5V$.

(b) (8 marks) Again determine the voltage V_0 , but this time use Thévenin's Theorem, Norton's Theorem, or both (*i.e.*, together with one or more source transformations).

Page 14 of 18 pages

(c) (10 marks) Use a loop/mesh analysis to again determine the voltage V_0 , as well as the current that flows through the 12-V source.

$$KVLSupermesh$$
: $-4V + I_3(6kz) + (I_2 - I_1)(6kz) = 0$ ___(2)

(4)
$$\rightarrow$$
 (1): $-12V + \left[\frac{10V}{3k\Omega} - \frac{I_2(6k\Omega)}{3k\Omega}\right] (3k\Omega) + \left[\frac{10V}{3k\Omega} - \frac{I_2(6k\Omega)}{3k\Omega}\right] (6k\Omega) - I_2(6k\Omega) = 0$

$$T_2 = \frac{18V}{24k\Omega} = 0.75 \text{ mA} - (5)$$

$$(5) \rightarrow (3)$$
: $I_3 = 1mA + 0.75 mA = 1.75 mA$

$$(5) \rightarrow (4)$$
: $T_1 = 10V - (0.75mA)(6kz) = 1.833mA$

Page 16 of 18 pages