An Agent Based Model of Diel Vertical Migration in Mysis diluviana

Nick J. Strayer¹, Brian P. O'Malley² Sture Hansson^{3,} Jason D. Stockwell⁴
¹College of Engineering and Mathematical Sciences, ^{2,4}Rubenstein Ecosystem Science Laboratory, ³Stockholm University

Results

- Mysis survival rate is highly sensitive to perturbations in their feeding efficiency.
- Water temperature limits migration extent for the middle of the year whereas light levels do for the rest.

Introduction

- Mysis diluviana (Mysis) is a macro-invertebrate crustacean that lives in Lake Champlain and other deep glacial lakes.
- Mysis migrate up and down the water column daily in a process called "diel vertical migration."
- We used publicly available data and previous studies to construct a model that simulates the environmental pressures on a *Mysis* at an hourly time interval over the course of a year.

Agent Based Modeling

- Simulates an individual Mysis.
- Every hour draws are taken from probability distributions to decide if the Mysis migrates and how successful their feeding is.
- Good for complex scenarios with noisy input variables (e.g. cloud cover for light intensity).
- Many individuals are simulated to get a sense of population level trends.

Energy Conditions

- Each line represents an individual being simulated over the year.
- Lines that drop to or below zero are *Mysis* who have starved.
- Demonstrates model's stochasticity.

Interactive Application

- Utilizes R Shiny Servers to allow user to interact with model parameters without tinkering with code.
- Rapidly facilitates insights into effects of changing parameters.
- Hosted on the web for anyone to use. (<u>https://nstrayer.shinyapps.io/mysisApp</u>)
- Helps make research reproducible by others.

Mysis Migration Extent

 Light intensity and thermocline data combine to paint a picture of mysis migration extent.

Mortality Rates

- There is greater sensitivity to changes in reward units than migration cost.
- Follow expected trends based upon ecological theory.

Future Directions

- Probe the possibility of multiple stable migration patterns.
- Dig in to specific aspects of the model. E.g. predation risk, benthic food availability
- Utilize real data in model inputs such as thermocline depth and food availability.

Acknowledgements

- Office of Undergraduate Research.
- Peter Euclide for Mysis insights.
- Professors James Bagrow & Daniel Bentil for advising.
- James Marsh Professor-at-Large Program