(11) EP 0 836 305 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

15.04.1998 Bulletin 1998/16

(21) Application number: 98200056.4

(22) Date of filing: 27.03.1992

(51) Int. Cl.⁶: **H04L 27/34**

(84) Designated Contracting States: DE DK FR GB-IT SE

(30) Priority: 28.03.1991 GB 9106658 26.04.1991 GB 9109006 07.06.1991 GB 9112316

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 92907333.6 / 0 577 672

(71) Applicant:
BRITISH TELECOMMUNICATIONS public limited company
London EC1A 7AJ (GB)

(72) Inventors:

 Brownlie, John David Woodbridge, Sufflok IP12 1HU (GB)

 Williams, Richard Guy Carrington San Diego, California, CA 92128 (US)

(74) Representative:
Lloyd, Barry George William et al
BT Group Legal Services,
Intellectual Property Department,
8th Floor, Holborn Centre,
120 Holborn
London EC1N 2TE (GB)

Remarks:

This application was filed on 12 - 01 - 1998 as a divisional application to the application mentioned under INID code 62.

(54) TCM scheme with fractional bit rates, framing signals and constellation shaping

(57) Data are transmitted using quadrature amplitude modulation to select for transmission symbols from two (or more) different signal point constellations. In one aspect of the invention, constellation-switching is employed within frames of A symbols, where A is not a power of two. In another aspect, constellation switching is used to facilitate frame synchronisation. Trellis shaping (where redundancy is introduced and selection of constellation "regions" performed (206) over a number

of symbols so as to minimise transmitted power) is employed; switching (205, 209) is provided so that power information (from stores (207, 208)) is available appropriate to the constellation in use for each respective symbol. Synchronisation may alternatively be provided by substitution outside the power control loop, of a symbol from an outer region for one selected from an inner region of a constellation.

FP 0 836 305 A

Printed by Xerox (UK) Business Services

Description

5

10

15

20

The present invention relates to data transmission in which a sequence of symbols, viz. signals of selectable phase and amplitude are selected from a range of discrete phase/amplitude combinations.

The invention in its various aspects is defined in the claims.

Some embodiments of the present invention will now be described, by way of example, with reference to the accompanying drawings, in which: -

Figure 1 is a block diagram of one form of coding apparatus according to the invention;

Figure 2 is a timing diagram for the apparatus of Figure 1;

Figures 3 and 4 are phase diagrams showing respectively a 16-point and 32-point signal constellation;

Figure 5 is a phase diagram showing division of a 64-point constellation into regions;

Figure 6 is a block diagram illustrating the principles of shaping;

Figures 7 and 8 are trellis diagrams illustrating the principles of shaping;

Figure 9 is a block diagram of a shaping unit for use with the apparatus of Figure 1;

Figure 10 is a phase diagram showing division of a 128-point constellation into regions;

Figure 11 is phase diagram illustrating division of constellation into four subsets; and

Figure 12 illustrates modifications of Figure 9 with provision for synchronisation;

Figures 13 and 14 are phase diagrams illustrating nested constellations and their labeling.

1. Switched Constellations

Figure 1 shows a modulator for digital signals, using quadrature amplitude modulation (QAM). It is switchable between a number of different data rates each of which is a multiple of some base rate; a base rate of 2400 bit/s is assumed, though the actual choice does not affect the principles involved. Thus, at any time, data is received at an input 1 at a rate of i.2400 bits/second. Typically the values of i at which the modulator is capable of operating are in the range 1 ≤i≤10 though in principle there is no limit to i. The modulator generates an output signal consisting of QAM symbols at a symbol rate of some rational multiple of the base rate i.e. 2400 a/b (= 1/T) where a and b are integers. The average number of data bits per symbol is ib/a. Conversely, the symbol rate is a/bi times the data rate.

A common method of improving the error performance of such digital signals is to make available a larger choice of QAM symbols than is necessary to carry the data. For example if a 2^{m+1}-point QAM constellation is available for transmitting m data bits per symbol then the latter can be coded using an error-correcting code (e.g. by means of a convolutional coder) and a decoder can make use of the fact that not all symbol sequences are allowable by recognising non-allowable sequences as indicative of transmission errors and hence correcting at least some of the errors by finding the nearest allowable sequence. A coding overhead (i.e. redundancy) is needed for modulation coding. It is quite common to use one coding (redundant) bit per QAM symbol, so that a 2^{m+1}-point constellation is needed for transmitting m data bits per symbol. To achieve a smaller expansion than this (i.e. with a coding overhead of less than one bit per symbol) the symbols can be assembled into groups of c symbols which together carry one coding bit (or, more generally, j coding bits), so that the number of possible symbol sequences in a period cT is 2^{cm+j}. These groups are commonly referred to as multidimensional symbols but, for clarity, in this description the term "symbol" is used to refer to a single QAM symbol. Thus, if the same constellation used for all symbols then the number of points per constellation xis x = 2 m+/c. Although each QAM symbol carries 2 signal dimensions, it is possible to use modulation coding which requires one coding bit over an odd number of signal dimensions; e.g. if one coding bit is needed for 3 signal dimensions, then we set c = 3 and j = 2. Also, PAM (baseband) systems can be included if we reinterpret each 'QAM symbol' as a pair of PAM symbols at amplitudes equal to the two 'QAM symbol' co-ordinates.

In general, however, it is not easy to devise sets of satisfactory QAM constellations each having an arbitrary number of points and we prefer therefore to use constellations having a number of points equal to a power of 2; the desired number of symbol sequence combinations is then achieved by switching between two constellations.

Thus, at a data rate ix2400 and a symbol rate 1 /T = (a/b)x2400 the number of data bits per symbol group is cib/a and hence the total number of bits per symbol group is cib/a+j. In general, this is not an integer so we consider intervals AT containing A symbols, where A is the lowest common multiple of a and c. The total number of bits per A symbols is then B = ibA/a + jA/c where the first term is the number of data bits and the second the number of coding bits. The code rate (ratio of the number of data bits to total bits is ibA/a(ibA/a + jA/c).

If k is the largest integer for which kA < B, and d the remainder (i.e. B = kA + d) then the total of B bits can be mapped onto A-d QAM symbols chosen from a 2^k-point constellation and d QAM symbols chosen from a 2^{k+1}-point constellation. Obviously a value for d can likewise be derived for other pairs of constellations. Note that the minimum separation between points should for optimum performance be the same for the two constellations used.

The use of two constellations in this way, rather than a single constellation results in a small reduction in the noise

immunity for a given transmitted power (although this may be rectified by measures to be discussed later) but provides the flexibility not provided by a single constellation to enable operation over the range of data rates discussed. It also provides flexibility on selection of the symbol rate which may be chosen so as to maximise utilisation of the available channel bandwidth whilst enabling standard data rates. The method may of course be employed without the use of convolutional or other coding. In that instance we set j=0 and c=1.

Suppose that it is desired to transmit at data rates of ix2400, employing a symbol rate of 2800 symbol/s, and that c and j are selected to be 4 and 1 respectively. Then a = 7; b = 6; c = 4; A = 28; B = 24i +7.

Then for i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

We have \$\mathbb{G} = \mathbb{3}1, 55, 79, 103, 127, 151, 175, 199, 223, 247 \mathbb{K} = 1, 1, 2, 3, 4, 5, 6, 7, 7, 8 \mathrm{d} = 3, 27, 23, 19, 15, 11, 7, 3, 27, 23

E.g. for a data rate of 8x2400 = 19200 bit/s one needs to select 25 QAM symbols on a 128-point constellation and 3 QAM symbols on a larger 256-point constellation.

The number of bits per A (= 28) symbols is ibA/a = 24i data bits plus jA/c = 7 coding bits. The task of the coder is to:

(a) generate the 7 coding bits;

(b) use the 24i + 7 bits to control a QAM modulator to generate the required symbols.

Firstly it should be noted that it is not necessary (indeed it is not usual in convolutionally coded QAM systems) that all 24i data bits participate in the convolutional coding. In the coder of Figure 1 (for which the numbers of signal lines shown correspond to i = 5) three data bits per symbol group (i.e. 21 over the period AT) are convolutionally coded by a 3/4 rate convolutional coder 2 (of conventional construction). The four output bits from this coder specify one of 16 subsets over c (= 4) symbols (i.e. one of the 16 4T-subsets). Each cT subset comprises a set of permutations of single-symbol subsets (i.e. T-subsets). For example good distance properties within and between cT-subsets can be obtained by constructing them from four T-subsets, which may be labeled 0 1 2 and 3. Then, for example with c = 4, the zeroth 4T-subset may comprise the 16 T-subset permutations:

0202 0220 0022 0000 1133 1313 1331 1111 2200 2002 2222 2020 3311 3131 3113 3333

As all the input bits are of equal status it does not matter which 21 bits are chosen - hence the description of the manner in which the input bits are distributed is merely a convenient example. However, these 21 bits must be used correctly in the QAM process to ensure that a coding gain is achieved. The description also assumes that, during the period AT, the (A-d) symbols chosen from the smaller constellation are transmitted first, followed by the d symbols chosen from the larger constellation, but actually the sequence is (in this embodiment) immaterial, except that it clearly maximises the peak power duration and if this exceeds the limit of the channel that is to be used it may be necessary to distribute the "larger" symbols throughout the period.

Suppose that the data rate is $5 \times 2400 = 12000$ bit/s. k = 4, so that constellations with $2^4 = 16$ and $2^5 = 32$ points are used. The 120 bits of data during the period AT are used to generate 13 "small" symbols and 15 large ones, as follows:

50

20

35

ſ	3 bits	convolutional coding	4 bits	1st, 2nd & 3rd groups of 4 symbols (small)
	4 bits	to choose signal sets	4 bits	
	8 bits	uncoded	8 bits	i i
			3x16 bits	
	3 bits	convolutional coding	4 bits	4th group 1 small symbol @ 4 bits 3 large symbols @ 5 bits
'	4 bits 🍇	to choose signal sets	4 bits	
V 250 W	11 bits	uncoded	<u>11 bits</u>	
	3 bits	convolutional coding	4 bits	5th-7th groups 4 large symbols @ 5 bits
	4 bits	to choose signal sets	4 bits	
	12 bits	uncoded	12 bits	
			3x20 bits	

In Figure 1, data bits received at an input 1 are distributed to selected ones of five serial-in/parallel-out registers 4-8, so as to assemble data bits for constructing a single symbol group. Each has a length of 7 bits. For this purpose the registers are clocked by i.2400Hz clock pulses $\phi_1 \dots \phi_5$ from a pulse generator 9 whose operation depends on the currently selected data rate. This generator operates in regular cycles of duration AT, within which it runs through seven sub-cycles of different lengths.

For the 12000 bit/s case, the first to third sub-cycles each consist (as shown in Figure 2) of, in succession, 7 pulses ϕ_1 and 2 pulses each ϕ_2 ... ϕ_5 . The fourth sub-cycle has 7 pulses ϕ_1 , 2 pulses ϕ_2 , and 3 pulses each ϕ_2 - ϕ_5 . The fifth to seventh sub-cycles have 7 pulses ϕ_1 and groups of 3 pulses ϕ_2 - ϕ_5 in each case. The total number of pulses is, of course, 120. It will be appreciated that each sub-cycle corresponds to a group of four QAM symbols and contains three ϕ_1 pulses to select 3 data bits for the convolutional coder, (giving 4 bits) plus four ϕ_1 pulses to give a total of 8 bits selecting the signal sets. The pulses ϕ_3 - ϕ_5 are k-2 or k-1 in number, or a mixture of k-2 and k-1 according to whether the symbols in that group are to be chosen from the 2^k or 2^{k+1} constellations or a combination thereof. The pulse generator 9 has an input 10 to indicate the data rate, and thereby select the required pulse sequences. The total number of pulses in a complete cycle is 24 x i. The 7 bits output from the register 4 feeds a convolutional coder 2 which produces an output of eight coded bits. These bits are derived from the seven input bits and one other. This other bit is determined by the state of the convolutional coder and three of the input bits. All eight bits are here referred to as "coded bits", irrespective of the operation of the convolutional coder 2, to distinguish them from the uncoded bits in registers 5 to 8.

The eight coded bits from the convolutional coder are appended in pairs to the k-2 bit or k-1 bit word stored in a respective one of the registers 5 to 8; the composite word is transferred to respective holding registers 11 to 14 by pulses $\phi'_2 \dots \phi'_5$ occurring after pulses ϕ_2 , ϕ_3 etc.. Those pulses also reset the registers 5 to 8 to ensure that whenever fewer than 7 bits are clocked into a register, the remaining (rightmost) bits are always zero.

The contents of the holding registers are selected in turn by a multiplexer 15 controlled by a symbol clock 16 producing regular pulses ϕ_6 . These are not in general synchronous with the data clock; a cycle AT contains 24i clock pulses and 28 symbol pulses.

The 9 bit words serve to control a QAM modulator 17. Suitable 16 and 32 point constellations for use at 12000 bit/s are shown in Figures 3 and 4. The relative mapping of the 4 and 5 bit words from the multiplexer 15 is determined by a pair of read-only memories 18, 19 each of which receives the word as the memory address and produces an output I, Q indicating to the modulator 17 the phase and quadrature components of the required point. Consider the 4-bit case first; the pair of coded bits must select one of the four subsets of the 16-point constellation distinguished by different shading in Figure 3. The assignment of the four combinations of the remaining two bits is arbitrary. If, as here, the sixteen point constellation is contained in the 32-point constellation, then if the fifth bit is employed to select between the outer 16 or inner 16 points, then the same read-only memories can be used for both constellations; i.e. the modulator does not need to know whether, if the first bit is zero, this is because it is to transmit a point from the smaller constellation or because it is to transmit an inner point of the larger.

If such nested mapping is not employed for all data rates of interest, then the memories will need to be supplied with an additional three bits to indicate the constellation and mapping in use and enable switching to a different 'table' within the memory. Thus the pulse generator 9 is shown as supplying four such words (simultaneously) during each sub-cycle which are loaded into registers 11' etc. alongside the registers 11-14 and passing via a multiplexer 15'.

The embodiment described with reference to Figure 1 is arranged to accommodate a range of symbol rates by

5

10

15

20

switching between a larger and a smaller signal point constellation each having a number of points equal to a power of two. As an alternative, however, it is possible to employ constellations having other numbers of points, with a resulting improvement in power.

As before, each group of A symbols consists of A-d symbols chosen from the smaller constellation and d chosen from the larger one. Suppose that the constellations have respectively 2^m points and 2^{m+1/h} points, where h is an integer power of two and m is either an integer or an integer divided by h. Then for B bits per A symbols, m and d are given by

B=Am + d/h where 0<d<A.

In practice, inter alia because 2^m and $2^{m+1/h}$ are not both integers, it is necessary to use a somewhat larger constellation. In the case h = 2 one would use, for m integer, 2^m and $1.5X2^m$ points, and for m non integer $0.75x2^{m+1/2}$ and $2^{m+1/2}$ points.

In the former case (m integer h = 2) one proceeds as follows. Ad symbols are selected from the smaller constellation. The remaining d symbols are considered in pairs (or, in general, groups of h symbols). Note that as m is an integer,
d is even. Each symbol is selected from the larger constellation but one (at most) of the pair is allowed to be chosen
from the "outer" 2^{m-1} points not common to both constellations, and one or both symbols are chosen from the "inner"
2^m points. One information bit determines whether an outer symbol is to be used; if it is not then each symbol is
selected from the inner 2^m points and therefore carries m information bits. A total of 2m + 1 bits is carried by the pair. If
an outer symbol is to be used then a second information bit selects which symbol of the pair it is to be. The two symbols
are chosen from the outer 2^{m-1} and inner 2^m points and carry m-1 and m bits respectively; again the total rate per pair
is 2m + 1 bits.

In the case where m is non-integer m + 1/2 is an integer. The d symbols from the larger constellation carry m + 1/2 bits each. A-d symbols are chosen from the smaller constellation. Note that as B = Am + d/2 then if S is odd then d is also odd and A-d is even: the A-d symbols are again considered in pairs and are coded onto the smaller, $0.75 \times 2^{m+1/2}$ point, constellation in the same manner as described above for selection of the d symbols from the larger constellation in the m integer case. In this instance the <u>smaller</u> constellation is regarded as containing $2^{m-1/2}$ inner points and $2^{m-1/2}$ outer points.

Where unshaped constellation switching is used with $2^{k+1/2}$ - point constellations (k integer), the constellations may be chosen from Figure 14. The solid lines denote the boundaries of 2^k point constellations whilst the shaded/unshaded boundaries show the boundaries of $2^{k+1/2}$ - point constellations.

II. Shaping

35

45

10

The embodiment of Figure 1, though perfectly usable, does suffer from the disadvantage that the average transmitted power is increased (and hence the signal-to-noise performance inferior) compared with the (less convenient) approach of finding a suitable single signal constellation.

If the average power of a 2^k -point constellation is P, then that of the 2^{k+1} -point constellation is approximately 2P, therefore the average power of the signal produced by the coder of Figure 1 is [(A-d)P+2dP]/A = (1+d/A)P. Had a single constellation been used then this would have had 2^m points where m is a non-integer between k and k+1. Theoretically m=k+d/A (i.e. the number of bits per symbol) but will be larger $(m=k+d/A+\delta)$ to ensure a convenient whole number of points. The power is approximately

$$\frac{2^{m}P}{2^{k}} = 2^{(d/A+\delta)}. P$$

The power increase is thus in the ratio $(1 + d/A)/2^{(d/a+\delta)}$. As in practice δ is small this is usually greater than unity and has a maximum (i.e. worst-case value for $\delta = 0$ and d/A = 0.565) of 1.057 (i.e. 0.24dB). In order to alleviate this situation a second embodiment of the invention employs Trellis shaping.

The basis of shaping is as follows. Consider for the purposes of illustration a situation where each group of 4 bits of data to be transmitted is sent by means of a signal point chosen from a 16 point constellation such as that shown in Figure 3. It is immaterial for the purposes of this discussion whether the bits are raw data or whether they have been generated by a coding process of the type discussed earlier. Assuming that all combinations of data bits are equally probable, then the mean transmitter power is 10. Suppose now that the size of the constellation in increased to the 32-point constellation shown in Figure 4. As long as single symbols are being considered there is no reason to use any of the extra points in preference to the original ones; this will merely increase the transmitted power. If however a block of four symbols (to carry 16 bits) is considered, then we see that the sequence [(3,3), (3,3), (3,3), (3,3)] has an average

power of 18. If, every time this sequence would have occurred, the sequence [(5,1), (1,1) (1,1)] - the mean power of which is 8 is sent instead then the overall mean power is slightly reduced. By making a number of such substitutions, it is possible to transmit 16 bits with four signals from Figure 4 with an average power of 9.18. Thus the constellation could be expanded to have a minimum distance between points of 2.09 and still have an average transmitted power of 10. The resulting increase in noise immunity (the shaping gain) is 0.37dB.

What has just been described is a shaping method that operates on a block-by-block basis. Of more interest in the present context is the use of a convolutional code to shape over an effectively infinite sequence of symbols.

For the next example it is supposed that five bits per symbol are to be transmitted. To do this without shaping requires a 32 point constellation: to allow for shaping, a 64 point constellation is chosen as shown in Figure 5. It can be seen that the constellation is partitioned into four subgroups or "regions" (each point in Figure 5 being represented by a digit from 0 to 3 indicating to which region the point belongs). This particular constellation and partitioning have been chosen for illustration because it is possible to view the regions as containing points of (roughly) progressively higher power as one moves from one region to the next. It should be stressed, though, that partitioning the regions in this manner is not necessary to the method.

If one were transmitting the five bits without shaping, one would use only the points in the inner regions 0 and 1. With shaping - as with the block coding example - some symbols will be chosen from the outer regions 2 and 3. The benefit of this method however arises from the transmission of more points from region 0 than from region 1. It follows from this that it is no longer possible to have a one-to-one correspondence between the 32 possible 5-bit combinations and the 32 points in regions 0 and 1. One way in which this problem may be overcome is by taking four data bits and making a fixed assignment (or "mapping") between the 16 possible combinations of these bits and the sixteen points in region 0: the same is done for each of the other three regions. Consequently, these four bits serve to identify one point in each region which is a candidate for transmission. The coding problem then reduces to one of deciding which of the four to transmit. The criteria for making this selection are that (a) the fifth bit must be recoverable by a receiver and (b) the selection should minimise the mean transmitted power.

At this point a sixth bit is introduced. The value of these sixth bits are as yet undetermined; the sequence of these bits is to be chosen so as to minimise the mean transmitted power. Suppose (Figure 6) that these bits are supplied to the input of a convolutional coder 100. The code for example receive one input bit and produces two output bits CP1, CP_0 . Its generator is, in delay operator form, $G = [1 + D + D^2, 1 + D^2]$. Its circuit is as shown in the figure.

There is another circuit related to G called its syndrome H. In this case $H^T = [1 + D^2, 1 + D + D^2]$; it has two outputs E1, E0 and one output DR5 and is shown in the figure as a decoder circuit 101. The important property of G and H is that if the output of G is fed into the input of H then the output from H is zero.

A third related circuit, which is another convolutional coder, is the left inverse of H, whose generator is $H^{-1} = [D^2, 1 + D + D^2]$, and this is shown as circuit 102. It has an input D5 for the first data bit, and outputs CD_1 , CD_0 . Because H⁻¹ is the left inverse of H, then if the output of H⁻¹ is fed into H, the output of H is whatever was input to H⁻¹.

The above labels BP6, CP1 etc... refer to the connections; the actual binary signals to these connections will be designated by lower case letters. Bit pairs are indicated by omitting subscripts e.g. if $cp_1 = 0$ and $cp_0 = 1$ then cp = 01. The state of the coder 100 (i.e. the contents of its delay stages at any time) is indicated as $s = s_1 s_0$. s_1 refers to the contents of the leftmost stage in the figure.

The outputs of the two convolutional coders are combined componentwise by exclusive OR circuits 103, 104 and fed to the input of the decoder circuit 101. Thus $e_1 = cp_1 \oplus cd_1$ and $e_0 = cp_0 \oplus cd_0$. Because of the linearity of these circuits the output dr5 of the decoder circuit 101 is always equal to the input d5 of the coder 102, irrespective of the value of bp. This property is exploited if the signal e is used to select one of the four regions at a transmitter and the decoder circuit 101 is located at a receiver where it can extract from the signals e, recovered from the received symbols, the first (received) data bit dr5 which (in the absence of transmission errors) will be the same as the fifth (transmitted) data bit d5 supplied to the convolutional coder 102.

Having provided for unimpeded transmission of the further data bit, the remaining task is to determine the sequence of bits b6 to be supplied to the convolutional coder 100.

A brute force method of achieving this would be, for the whole duration of a message to be transmitted, to compute the mean power for every possible sequence of bits bp, and choose the sequence bp giving the lowest result. Clearly this is impractical in terms of the delay involved - since transmission cannot commence until the bits bp have been determined - and the amount of computation involved. Instead the choice is made by performing a Viterbi decoding operation with a finite window.

Figure 7 shows the basic trellis diagram for the coder circuit 100. This shows the ways in which the circuit may proceed from a state s(t) at time t, shown on the left, to a state s(t + T) shown on the right. The upper path from any starting state corresponds to bp = 0 and the lower to bp = 1. The output cp is shown in each case. Selection of the sequence of bp amounts to a selection of a particular path of successive stages of the trellis, namely the one resulting in the lowest power: a longer trellis diagram is shown in Figure 8. In order to achieve this we associate with each possible transition the power of the symbol which results from choosing that transmission; we can write against each state at any time a

10

cumulative power. Thus if $p_{00}(t)$ is the total power of the symbols transmitted, since some reference time, following a particular trellis path up to state s = 00 at time t, then the power $p_{10}(t + T)$ associated with state s = 10 at time (t + T) is poo(t) plus the power of the new transmitted symbol which corresponds to selection of the 00 to 10 transition.

We call this $\Delta p_{cp} = \Delta p_{11}$ since cp = 11 for this path; though of course Δp_{cp} also depends on cd (which together with cp determines e and hence the region selected, and on the other four data bits (since the points in any given region of the constellation do not all have the same power).

Since any state always has two paths terminating at it, then according to the Viterbi algorithm, one discards the path having the higher cumulative power, leaving only the other "survivor" path. This is illustrated in Figure 8 in that the second candidate for $p_{10}(t+T)$, namely $p_{01}(t) + \Delta p_{00}$ is struck out on the assumption that it is larger than $p_{00}(t) + \Delta p_{11}$.

As has already been mentioned, this decoding takes place over a finite window. Suppose that the window extends from time to time t to time t + 3T (although in practice the window would be larger than this), and the state of the coder at time t has already been determined. By computing the cumulative powers from left to right, for all paths starting at that state, the state at time t + 3T having smallest $p_{cd}(t + 3T)$ can be identified; the path at time t corresponding to this path is then known, and hence the corresponding cp. This, with cd, determines the required region and a symbol can be transmitted. The state at time t + T is also now fixed and the window can now be shifted one place (i.e. T) to the right and the process repeated. This procedure, as described, is not optimum in terms of computational complexity (as will be seen below) but serves to illustrate the principle.

Some other points should be noted at this point.

10

20

25

30

35

- (i) it is not necessary that the number of regions be four. There must be at least three, but there is no upper limit.
- (ii) it is not necessary that the mean power of the points in one region differs from that in another region: the constellation of Figure 5 could in principle be divided into four quadrants. It is however necessary that when the data have been used to select one point in each region, the four points that remain for selection offer a choice of powers at least some of the time and preferably all the time.
- (iii) the above example assumes that a region contains sufficient points to transmit all but one of the data bits to be coded onto a symbol; however there is no reason why smaller regions could not be used, with more than one data bit participating in the shaping process.
- (iv) Figure 6 is merely illustrative: for example, a real coder does not need to contain the convolutional code circuit 100; as the coded bits cp are determined rather than bp, they can be used directly and the coder 100 does not physically exist. Its significance is in defining the relationship between cp0 and cp1 and that between cp and H and H⁻¹.
- (v) shaping would not be used on constellations containing four points or fewer. For example, when transmitting 2 and 3 bits (total) per symbol one would transmit the three bits on a 16-point constellation but transmit the two bits on a four-point constellation, shaping not being employed.

Figure 9 shows a practical embodiment employing trellis shaping, which receives the signals output from the selector 15 of Figure 1. For the purposes of this example it is assumed that Figure 1 is set to a data rate of 14400, so that k = 5; i.e. without trellis shaping transmission takes place using symbols selected from 2^5 = 32 and 2^6 = 64 point constellations. Groups of 6 bits d5.....d0 are received once every symbol period T, from the selector 15, do being a coded bit from the convolutional coder 11 and the remainder being uncoded bits. One bit ts from the selector 15' (a constellation switching bit) indicates if 1 that there are six data bits and if 0 that there are five (in which case d_5 is to be ignored).

Assume, as in the illustration above, that four regions are to be used. Then for transmission of five data bits a 64 point constellation is needed and for 6, a 128 bit constellation. The former is partitioned into regions as already shown in Figure 5, and the latter as shown in Figure 10. Each of the 6 possible combinations of the four bits d_3 d_0 is allocated a respective point from each of the four regions of Figure 5; similarly each of the 32 possible combinations of the five bits d₄....d₀ is allocated a respective point from each of the four regions shown in Figure 10. Details of this allocation (often referred to as point labeling) will be discussed below. The allocation information is embodied in stored look-up tables shortly to be described. The most significant valid data bit d_5 or d_4 is selected by a selector 205 controlled by the bit to and is supplied to a convolutional coder 202 identical to the coder 102 of Figure 6 to produce two coded bits cdo, cd1 which are combined in exclusive OR circuits 203, 204 with trial bits cpt0, cpt1 from a Viterbi decoder 206 to produce a trial region number eto, et1.

A store 207 contains a look-up table with 64 entries each representing the power of one of the points of the constellation of Figure 5. It is accessible by means of a 6 bit address, namely et1, et0 from the exclusive OR gates 204, 203 representing the region and databits d_3 ... d_0 identifying the point allocated to it within that region. Similarly, a store 208 has 128 entries representing the powers of the points of Figure 10. There the 7 address inputs are et,. eto and data bits d₄....d₀. The output of one or other store is chosen by a selector 209 controlled by ts. The use of a look-up table is preferred in terms of speed and implementation. If however the labeling of the points is systematic, then the powers could be calculated, in which case the store 207 (and 208) would be replaced by a calculation unit in which was stored a

sequence of program instructions defining the point mapping.

Each symbol period, the Viterbi decoder 206 supplies to the exclusive OR gates four successive values cp, and thus receives from the selector 209 four power values which indicate the powers of the four points (one in each region of the relevant constellation) which correspond to those values of cp, taking into account the values of d₀ ...d₅, cd₁, cd₀ and ts. The operation of the Viterbi decoder is the same as for a Viterbi decoder decoding data coded using a convolutional code, except that it receives the path metrics (i.e. the powers) instead of having to compute them by forming the distances between input data and the data associated with the paths. The trellis diagram of Figure 7 is inherent in the operation of the Viterbi decoder which now has sufficient information to decide on regions. The mode of operation described earlier for illustrative purposes (where metrics were added over the trellis afresh for each window position) is not the usual one: though it works, it is less computationally onerous to simply update the result from the previous window position. The problem with this is that it is possible thereby to choose a path within the current window which is inconsistent with earlier decisions (now outside the window) about the path. This can have serious consequences and is therefore necessary to ensure that the survivor path chosen at the end of the window is in fact a path which started at the (now fixed) state at the beginning of the window. This can be done by eliminating, before the next update, any paths that do not converge with the chosen survivor path within the decoding window.

A typical window length would be in the range 16 to 30. Assuming a window length of 20, this means that there is a delay of 21T between receipt of the data and the Viterbi decoder 206 producing as an output the bits cp_0 , cp_1 for that symbol. Bits d_0 - d_4 and cd_1 , cd_0 are thus delayed by 21T in a delay unit 210. The delayed convolutionally coded bits cd_1 , cd_0 are combined with the bits cp_1 , cp_0 from the Viterbi decoder in exclusive OR gates 203', 204' to produce region bits e_1 , e_0 . These, together with the delayed data bits d_0 d_4 and the switch bit is uniquely identify the signal point to be transmitted and are fed to look-up tables 218, 219 and a QAM modulator 217 analogous to units 18, 19 and 17 of Figure 1.

Although for the purposes of clarity the shaping arrangements depicted in Figure 9 have been shown only for a single data rate, for use with Figure 1 for the range of data rates, the number of data bits will of course be switchable and the look-up table 207, 208, 218, 219 be switched in like manner to the tables 18, 19 of Figure 1.

The use of trellis shaping on the manner described provides (for a given power) an increase in noise immunity. However, in addition to the improvement inherent in the use of trellis shaping we also find that the loss due to the use of two constellations rather than one is additionally compensated.

It has already been mentioned that the minimum number of regions is three rather than four envisaged by Figure 9. If it were desired to operate the arrangement of Figure 9 with only three regions - e.g. avoiding transmission of points in region 3 of Figures 5 and 10 - then this can readily be accomplished by setting the power levels stored in the tables 207, 208 for the points of region 3 to a very large number, thereby ensuring that the Viterbi decoder 206 never chooses a trellis path resulting in transmission of a signal corresponding to a point in the fourth region. Should it be desired to employ shaping in the case discussed earlier where a constellation having a number of points which is not a power of two is in use, then this may be done in similar fashion. If, for example, we suppose that a symbol is to carry 5½ bits, then, without shaping, a 48-bit constellation is required. With shaping, we define a constellation having three (or more) regions of 24 bits each, each region having 16 "inner" points and 8 "outer" points. Coding of 4½ bits onto a region can be performed (without at this stage choosing which region is to be used) as before by taking a pair of symbols and processing them jointly in the manner described earlier. This can be done whether or not the two symbols are carrying the same number of bits, as long as they are both carrying an extra half-bit. Once this is done, then one point in each region has been identified and the remaining 1 bit per symbol is used in the shaping process, exactly as described with reference to Figure 9, to choose the regions.

III Synchronisation

Another cons

45

Another consideration to be discussed is that of frame synchronisation. It is essential for the decoding of the signal generated by Figure 1 or Figure 9 that a decoder is synchronised to the framing structure inherent in the transmission of d bits of a frame of A bits using symbols from different constellations. This is needed for correct decoding of the modulation code (if $c \neq 0$) and correct interpretation of "small" and "large" symbols. It also enables (optionally) multiplexing of the transmitted data into separate sub channels (e.g. of 2400 bit/s each). It is possible to gain such synchronisation without explicit transmission of framing information, since the receipt of a symbol in region 2 or 3 of Figure 10 necessarily indicates that the larger constellation is in use: however even when the larger constellation is used, symbols may be transmitted from region 0 to 1 - indeed the trellis shaping will have the effect of choosing the lower power regions preferentially to regions 2 or 3.

To improve the speed and reliability of synchronisation one symbol (chosen to be from a large constellation) per block, where a block is an integer number of frames, may be designated as a synchronisation symbol. If trellis shaping is restricted to regions 0, 1 and 2, then synchronisation can readily be provided for by allowing the synchronising symbol to use region 3, the region of highest average power. One possible method proceeds as follows. Trellis shaping oper-

ates without modification. When a point in region 1 or 2 is chosen for the synchronisation symbol, this is transmitted as before. If however a point in region 0 is chosen, then a symbol from region 3 is transmitted instead (in principle regions 1 or 2 could be selected for this substitution but region 0 is preferred since it is statistically likely to be chosen more often). Whenever the decoder encounters a symbol from region 3 it regards this (for the purpose of decoding the data) as equivalent to a symbol from region 0, but also recognises it as a synchronisation symbol for maintaining frame synchronisation. Although this does not guarantee transmission of synchronisation information for every block, it does provide for easy synchronisation; though at the expense of a slight power increase, since the substitution is not taken into account by the shaping process. Use of a synchronising symbol may be combined with the transmission of a low-speed side channel, the conversion from region 0 to region 3 then being made dependent on a side-channel data bit. This may necessitate a shorter block (a smaller multiple of AT) in order to ensure enough synchronisation (region 3) conditions and to give a required side channel data rate. The available side channel data rate will depend somewhat on the data rate in the main channel. Alternatively, another symbol (i.e. other than the one used for synchronisation) in the block may be designated for this purpose. Then, when a symbol from region 0 has been chosen a substitution of a region 3 symbol can take place, or not, depending on the value of a bit to be transmitted. If region 0 has not been chosen then transmission of the side channel bit is delayed to the next symbol in the block (or to the next designated symbol) for which region 0 has been selected. Confusion between synchronisation symbols and "side-channel" symbols may be avoided either by designating for the side channel a symbol chosen from the smaller constellation or by ensuring that a decoder distinguish between the two on the basis that a synchronisation symbol never occupies region 0 whilst a "sidechannel" symbol sometimes does.

A slightly different version of the synchronisation arrangements operates as follows. In the previous version of the transmission of points in region 3 of the larger constellation was inhibited by setting the stored power levels in the tables 207, 208 to a large number. This modified version also involves the "falsification" of the power figures to achieve a desired result, but now the nature of the falsification is time-variant, being, for the symbols designated for synchronisation, different from that for other symbols, In the latter case, the power signal is set to a large number for region 3 and inhibits transmission of points in that region; for the synchronisation symbol however, the correct figures are supplied for region 3 thereby permitting transmissions of a symbol from outer region for this symbol. Although this would work, only a minority of the synchronism symbols would in fact be chosen from region 3, and therefore to increase the probability of such a symbol being sent it is preferred also to falsify the power figures for regions 0, 1 and 2 by (a) setting the figures for regions 0 and 1 to high values, and (b) supplying in the case of a region 2 point, the true power figure scaled up by a factor such that the mean power of the region 2 points appears to be the same as that of the region 3 points. The effect of this is to inhibit the use of symbols from regions 0 and 1 and increase the probability of transmission of a region 3 symbol as opposed to a region 2 symbol.

This can be achieved using the logic circuitry shown in Figure 12, where parts of Figure 9 are redrawn to show their relationships with the additional circuitry. An active-high signal "sync" is low except during a synchronising symbol. A two to four line decoder 300 decodes the region number et and its "3" output passes, for non synchronising symbols via an and-gate 301 and or-gate 302 to a changeover switch 303 which intercepts the output of the switch 209 and forces it to some maximum value. When the synchronising signal is present then the and-gate 301 is inhibited via an inverter 304. If et = 2 has been decoded then an and-gate 305 is enabled and causes a changeover switch 306 to bring multiplier 306a into circuit to multiply the power signal by a factor equal to the ratio of the mean region 3 power to the mean region 2 power.

If on the other hand "0" or "1" is decoded (and combined in an or-gate 307) it enables an and-gate 308 and (via the or-gate 302) enables the switch 303 to force the power figure to the Viterbi decoder to maximum.

If a secondary channel is also to be carried on this symbol then this can be accommodated by using the secondary channel bit to invert (using an exclusive-or gate 309) the output of the and-gate 307 so that the symbol choice is forced to regions 0 and 1 instead of 2 and 3. An inverter 310 inverts the secondary data (assuming that the idle state of the latter is logic 1) so that synchronisation is unaffected when the second channel is idle.

One advantage of this proposal over the previous one is that when a region 3 symbol is transmitted, the true power figure for this symbol is provided to the Viterbi decoder which will tend to make lower power choices for the neighbouring symbols than was the case previously. If (as is common) a band limiting filter is used on the modulator output, the spreading effect of the filter, and the reduction in neighbouring symbol powers tends to mitigate the effect of the larger, synchronising, symbol on the peak-to-mean power ratio of the signal, often an important consideration in modulation systems.

If desired, this effect may be enhanced by artificially increasing the power signals (for all three regions) supplied in respect of the adjacent points. Typically this increase might be say x 1.5 for the immediately adjacent symbol and x 1.25 for the next nearest symbol, though in practice the factors would be chosen to suit the tap weights of the filter actually used. This could be achieved by the use of arrangements similar to the switch 306 and multiplier 306a.

IV Nested Constellations for Trellis Shaped Systems

Returning now to the constellations used, the embodiment described in Figure 9 employed the two constellations shown in Figures 5 and 10. These are 'nested' in the sense that the signal points in Figure 5 are all present in the constellation of Figure 10. It is not essential that the two constellations be related in this way but it is convenient; a small economy of storage in the look-up tables in Figures 1 and 9 is possible if the addressing is arranged so that a single location is used to store the co-ordinates (or power) of a point common to both constellations but the greater advantage is that the front end of a receiver for receiving the transmitted signals has to deal with effectively only one constellation rather than two.

Where switching between multiple data rates is provided, then this approach can be extended by providing that all constellations used (from 16 points upwards) are subsets of a single large constellation - as illustrated in Figure 13 where the dotted boxed enclose successively larger constellations. It is also convenient to provide that the division into regions maps in the same way - viz. that two of the shaping regions of a large constellation are formed by adding respective pairs of regions of the half-size constellation which it contains.

We turn now to details of the mapping between bits to be transmitted and signal points. These bits fall into three categories:

- (i) two bits generated by the shaping process: the mapping of these onto a constellation has already been described: they determine selection of one of four regions into which the constellation to be used is divided.
- (ii) a variable number of uncoded bits.
- (iii) two bits generated by the convolutional coder of Figure 1. In order that the coding gain obtainable with convolutional coding be achieved it is necessary that these bits serve to select (in conventional manner) among four subsets of the signal points within a region. Assuming as before that the minimum distance between points of the constellation is 2 then the subsets are chosen such that the minimum distance is 4. (In general if the number of bits is n_c then the number of subsets is

2"0

and the minimum distance

10

15

20

25

30

35

50

 $2 \times 2^{n_c \cdot / 2}$

). Figure 11 shows a 16 point region divided into subsets a, b, c, d.

The remaining problem is thus the mapping of the uncoded bits to the subset of a region. As these bits are uncorrelated with the "shaping" bits (i) and coded bits (iii), the mapping of these bits to the signal points within a given region is arbitrary: however, the relationship between the mapping in one region to that in another region is of crucial significance to the effectiveness of the shaping process. For given values of the input bits for a particular symbol, the Viterbi decoder has a choice of four values of cpt and thus a choice among four signal points, one in each of the four regions. It is obvious that, if the mapping is such that, for all values of the input, these four candidate points all have the same power, then no improvement in average power will be obtained by making any particular choice. More generally, it is apparent that some mapping will provide more scope than others for such improvements. The objective may be thought of, qualitatively, as offering the Viterbi decoder a wide choice of different powers over the four candidate points.

Suppose, for a moment, that the

 $2^{n_{ii}}$

combinations of the n_U uncoded bits are assigned to the points of a subset within region 0 of the constellation in ascending order of power - i.e. if the binary value (conventionally referred to as the "point label") of the no bits is V, then, if $V_i > V_i$, power of the point labelled V_i is greater that or equal to the power of the point labelled V_i .

Looking at the trellis diagram of Figure 7 for the shaping code, from a given trellis state, the Viterbi decoder 206 has a choice between two paths and thus a choice between cp = 00 or 11 or a choice cp = 01 or 10. The region number is obtained by an exclusive-OR (203', 204') with cd determined by the data but this still results in a 00/11 choice or a 01/10 choice i.e. the convolutional code G implies a pairing of the regions (the actual pairing depending on the code chosen). This property probably holds true for all linear convolutional codes, but not always in the case of a non-linear code.

It is preferable that the labelling in region 3 (the "other choice" from region 0) follows the reverse sequence from region 0° viz. descending order of power; thus one has a choice between a point in region 0 having a low power (for that region) and a point in region 3 having a high power (for that region); or vice versa. The same applies to regions 1 and 2, relative to one another.

Less obviously, but also true, when dealing with substantially concentric regions is the desirability of a similar relationship between regions 0 and 3 on the one hand and regions 1 and 2 on the other: thus we have:

Region 0 ascending

- " 1 descending
- " 2 ascending

5

10

· ... • P • ...

30

45

50

55

" 3 descending.

This in itself is not new.

Recalling that the labelling in any <u>one</u> given region is arbitrary, we can drop the constraint that the points in region 0 are labelled in ascending order of power, and generalise the above statement by saying that if the powers of the points in regions 1, 2 and 3 are ordered according to an ascending order of the powers of the correspondingly labelled points in region 0, then they form, respectively, descending, ascending and descending series.

The objective of this aspect of the invention is to apply a single labeling system to a set of nested constellations. Suppose, starting with the constellation just discussed, we require a constellation of twice the size. Then Region 0 of the new constellation (R0') is obtained by combining regions 0 and 1 of the first; and new region (R1') from old regions 2 and 3. Up to this point it has been assumed that the same labels are used in the four original regions: we now need to append an additional (most significant) bits to the labels to accommodate an additional uncoded data bit. Thus for the new region R0' the points from R0 have a leading 0 added to the label, and those from R1 a leading 1. For R1', however, the leading bits for the points of R2 and R3 are 1 and 0 respectively, in order to preserve the "ascending/descending" property discussed above for the new regions.

Another way of viewing this situation is as follows. A constellation has 16M points. If each region is represented by M points (in one subset) the 4M points are ordered as follows:

- the points 0 to M-1 are the points of R0;
- the points M to 2M-1 are the points of R1 in reverse order of power from those of R0;
- the points 2M to 3M-1 are the points of R3 in reverse order of power from those of R0; and
- the points 3M to 4M-1 are the points of R2 in the same order of power as those of R0.

Where two points in a region have the same power they can be ordered by their x-coordinate. Other tie-breaking methods could also be used.

Given a point ordering as above the ordering for the next set of regions is easy to derive. Suppose the constellation to be shaped is doubled. Each region is now represented by 2M points. R0 and R1 combine to form a region as do R2 and R3. The ordering of the points in the first two regions can be exactly the same as above. That is points 0 to 2M-1 come from R0 and R1 and points 2M to 4M-1 of R1' come from R2 and R3. These are the two lowest power regions in the new constellation. Let R2' and R3' be the other two regions with the power of R2' less than the power of R3'.

The points in R3' are labelled 4M to 6M-1 and are in an order that follows the reverse order of the points 0 to 2M-1. As the power of the points 0 to 2M-1 ascends so the power of the points 4M to 6M-1 descends. The points of regions R3' are labelled 6M to 8M-1 and their power ascends as the power of the points 0 to 2M-1 ascends.

This is further illustrated by the following example:

Start with a 16 point constellation M = 1 and so each region has one point per subset in it. These have co-ordinates (-1,-1), (3,-1), (3,3) and (-1,3). The power of these points (regions) is 2, 10, 18 and 10 respectively. Therefore, using the x coordinates rule we have

```
RO = (-1,-1); R1 = (-1,3); R2 = (3,-1); R3 = (3,3).
```

Thus the point labels are:

```
0 (-1,-1) 1 (-1,3) 2 (3,3) 3 (3,-1).
```

Now extend the constellation to 32 points. This adds the points (-1,5) (3,-5) (-5,-1) and (-5,3). Using the recursive algorithm this gives a point order of

```
0 (-1,-1) 2 (3,3) 4 (-5,3) 6 (-5,-1)
1 (-1,3) 3 (3,-1) 5 (3,-5) 7 (-1,-5)
```

This process can be continued indefinitely. The point ordering that results from this start for a 512 point constellation is shown in Figure 13. The labels are shown (as decimal numbers) for the points of subset a only.

Thus where the apparatus of Figure 9 (with or without the convolutional coding of Figure 1) is used, with the facility of switching data rate, then the constellation (or two constellations) used at each rate may be selected from Figure 13.

Thus has the advantage that a single point labeling can be used for all desired data rates. The point labeling used enables a good shaping gain at all rates. This is a direct improvement over designing and labeling a new constellation for each data rate.

As an alternative to the "square" constellation nesting shown in Figure 13, the mapping shown in Figure 14 may be used. This shows the point labelling (in hexadecimal) for the lower right quadrant of the phase diagram, and is closer to the (ideal) nesting of concentric circles where the points of each successive region all have higher powers than the points of all previous regions. The labelling shown is obtained by the algorithm below (written in 'C') (for points of equal power, the tie-break used was to take the points having the smallest modulus of the y-coordinate first).

```
label [0] = power [0] = 0;

label [1] = power [1] = 1;

for i=2; i<2^m; i*=2

for (j=i; j<1*2; j++){

power[j] = power [j-i] ^ (2*i-1);

label [j] = label [j-i] ^ (i*3/2);

}
```

The indices of label [] are the numbers of the points when ordered in ascending order of power, so that the label for the lowest power point is label [0] and that for the second lowest power point is label [1] and so on. Where trellis shaping is used, this labeling gives comparable shaping gains to the labeling of Figure 13.

30 Claims

25

35

45

50

55

1. A method of transmitting data using quadrature amplitude modulation, wherein

the number of transmitted bits per symbol is a rational non-integer greater than unity which when expressed as a ratio B/A of two integers having no common factor the denominator A is not a power of two, and wherein each group of B bits is transmitted by means of A - d symbols, where d is an integer less than A and greater than or equal to 1, each chosen from a first signal point constellation and d symbols each chosen from a second, larger, signal point constellation.

2. A method according to Claim 1 wherein

one signal constellation has a number of signal points equal to a power of two and the other signal constellation consists of a first plurality of points a power of two in number and a second plurality of points, in number half as many as the first plurality and having a higher average power than the first plurality, and wherein the signal points chosen from the said other constellation are coded in pairs such that each pair contains at most one symbol from the second plurality of points.

3. A method of transmitting data using quadrature amplitude modulation, comprising

assembling groups of q bits,

coding one or more of the bits of each group by means of a convolutional or block code to produce an augmented group having at least q + 1 bits, and

selecting for each group a symbol for transmission from a signal point constellation having more than 2^q points using a variable mapping, the mappings being controlled by

generating for each augmented group power signals representing the signal power corresponding to each of a plurality of alternative mappings of the group, and decoding the power signals by means of a Viterbi decoder to determine a mapping for that group so as to substantially minimise the time averaged power of the transmitted symbols,

in which the constellation comprises a plurality of subgroups of points, in which the transmission has a framing structure, and in which

a first variable mapping is employed for a symbol at a predetermined position within each frame of the framing structure

and a second variable mapping is employed for the remaining symbols,

the first variable mapping permitting selection of a symbol from a subgroup having a larger mean power than the remaining subgroups

in the second mapping not permitting selection of a symbol from that subgroup.

- 4. A method according to Claim 3 in which the constellation has four, namely first, second, third and fourth such subgroups having progressively larger mean powers, and in which the first variable mapping does not permit selection of a symbol from the first and second subgroups.
 - A method according to Claim 4 in which switching between the two variable mappings is achieved by supplying, in respect of candidate points belonging to the fourth subgroup, to the Viterbi decoder,
 - (a) for the symbol at the predetermined position, power signals representing the power of those points and (b)for other symbols, power signals having a high value such as to suppress selection of those candidate points.
 - 6. A method according to Claim 5 including supplying to the Viterbi decoder in respect of candidate points belonging to the first and second subgroups, (a) for the symbol at the predetermined position, power signals having a high value such as to suppress selection of those candidate points and
 - (b) for the other symbols, power signals representing the power of those points.
 - A method according to Claim 6 including supplying to the Viterbi decoder in respect of a candidate point belonging to the third subgroup,
 - (a) for the symbol at the predetermined position, power signals representing in each case a power larger than the actual power such that the mean power thereby represented for all the points in the subgroup is substantially equal to the mean power of the points in the fourth subgroup; and
 - (b) for the other symbols, power signals representing the power of those points.
 - 8. A method of transmitting data using quadrature amplitude modulation, comprising

assembling groups of a bits.

- coding one or more of the bits of each group by means of a convolutional or block code to produce an augmented group having at least q + 1 bits, and
- selecting for each group a symbol for transmission from a signal point constellation having more than 2^q points using a variable mapping, the mappings being controlled by
- generating for each augmented group power signals representing the signal power corresponding to each of plurality of alternative mappings of the group, and
- decoding the power signals by means of a Viterbi decoder to determine a mapping for that group so as to substantially minimise the time averaged power of the transmitted symbols,
- in which the constellation comprises a plurality of subgroups of points,
- in which the transmission has a framing structure,
- in which the constellation has additional signal points forming an additional subgroup thereof not included in the said mapping, and
- in which, at a predetermined position within each frame of the framing structure, whenever one predetermined subgroup is selected for that position a signal from the additional subgroup is transmitted in lieu thereof.
- 9. An apparatus for transmitting data using quadrature amplitude modulation, comprising:
 - (a) means (4-15) for assembling successive groups of q bits;
 - (b) means (202) for coding one or more bits of each group by means of a convolutional or block code to produce an augmented group having at least q + 1 bits;

5

10

15

20

25

30

35

40

45

50

- (c) means (203', 204', 218, 219, 217) for selecting for each group a symbol for transmission from a signal point constellation having more than 2^q points using a variable mapping;
- (d) means (207,208) to generate for each augmented group power signals representing the signal power corresponding to each of a plurality of alternative mappings of the group;
- (e) means for receiving power signals and in dependence on the power signals for a plurality of groups to determine mappings for that group so as to substantially minimise the time averaged power of the groups;
- (f) switching means (303) operable in response to timing signals determining a framing structure for the transmission

to select a first variable mapping to be employed for a symbol, chosen from a constellation comprising a plurality of subgroups of points, at a predetermined position within each frame of the framing structure and a second variable mapping to be employed for other symbols chosen from the said constellation, the first variable mapping permitting selection of a symbol from a subgroup having a larger mean power than the remaining subgroups and the second mapping not permitting selection of a symbol from that subgroup, and

so to contrôl the power signal generating means as to produce power signals corresponding to the selected mappings.

14

5

10

15

20

25

30

35

40

45

50

Fig. 3.

16 POINT SIGNAL CONSTELLATION

Fig.4.

32 POINT SIGNAL CONSTELLATION

	×	•	5 ×	•	
 0	•	0	3∵ ●	0	•
•	×	•	1 🕱	•	×
 -5 0	-3 •	-1 0	1 -1 •	3	5 •
•	×	•	-3 ×	.	· 🕱
	•	0	-5●	0	

Fig. 5.

3	3	2	2	2	2	3	3
3	3	1	1	1	1	3	3
2	1	0	0	, 0 .	0	I	2
2	1	0	. 0	0	0	1	2
2	1	0	0	0	0	1	2
2	1	0	0	0	0	1	2
3	3	1	1	1	1	3	3
3	3	2	2	2	2	3	3

Fig.10.

1. 1 ...2 0 0 . 0 0. 3.

Fig. 11.

b a b ac d c dd c d

My group

Fig.13

				*	66	*	- 77	*	89	*	94	*	72	*	73	*	68	*	64			•	
				¥	•	*	*	*	*	*	*	*	*	*	*	*	* *	*	*				٠
				•	114	•	126	*	107	•	106	*	110	*	121	*	118	*	112	ŧ			
				*	•		*	•	*	*	*	*	*	*	*	*			.**		•	•	•
*	70	*	124	·	33	•	36	*	57	*	58	*	61	*	56	*	34	*	32	*	113	*	65
*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*	* !	*	*	*	*
*	75	*	104	! ! *	42	*	41	-	18.	 *	20	*	22	*	16	*	47	*	38	*	119	*	69
*	*	*	#	i *	*	*	* ;	*	*	*	*	*	*	*	* 1	*	*	*	* (*	*	*	*
*	86	*	100	*	52	*	28	*	09	*	12	*	14	*	08	*	17	*	59	*	123	*	79
*	*	*	*		*	*	* !	*	* }	*	*	*	*	*	*	*	* !	*	*	*	*	*	*
*	82	*	98	 * 	50	*	26	*	04	*	01	*	02	*	15	*	23	*	62	*	111	*	91
*	*	*	*	*	* !	*	*	*	* }	*	d	c	*	*	*	*	*	*	*	*	*	*	*
*	80	*	96	*	48	*	24	*	06	*	00	ь	03	*	13	*	21	*	60	*	108	*	95
×	*	*	*	 *	* 1	*	* į	*	*	*	*	*	*	*	<u>.</u> * !	*	*	*	* [*	*	•	*
*	92	*	102	*	54	*	30	*	10	•	07	*	05	*	11	*	19	*	63	*	120	*	90
*	*	*	*	*	* į	*	* !	*	*	*	*	*	*	*	*	*	* 1	*	*	*	*	*	*
*	84	*	105	! ! ≠ !	45	*	40	*	31	_*	25	*	27	*	29	*	43	*	37	*	127	*	78
*	*	*	*	i ! *	*	*	* [*	*	*	*	*	*	*	*	*	*	*	•	*	*	*	*
*	74	*	116	*	39	*	46	*	55	÷	49	*	51	*	53	*	44	*	35	*	115	*	67
*	*	*	*	! * !	*	*	*	*	*	*	*	*	*	*	*	*	.	*	* * *	*	*	*	*
				*	117	*	109	*	103	*	97	*	. 99	*	101	*	122	*	125				
				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*				
				*	76	*	85	*	93	*	81	*	83	*	87	*	88	*	71		-		
				*	*	*	*	*	*	*	*	*	*	*	*	-*	*	*	*				

e de la companya de l Fig.14.

								•	•					
•	1	3	5.	7	9	11	13	15	17	19	21	23	25_	
1	00 ^	01	06	0C	08	1D	10	3E	2D	67	7A	l 55 	45	-1 · · · ·
3	03	02	05	0E	19	— — — 14 	32	3B	27	64	,7C	5F.	46	
5	07	04	ΦD	0B	1E	12	37	28	21	6E	72	 5A 	43	
7	OF	OA	09	1 <i>A</i>	15	30	3D	2E	60	68	50	48		
9	18	1B	1F	17	11	34	29	22	6C	7E	 56 	4F		
11	1C	16	13	31	3C	38	2C	62	78	71	59	41		
13	33	36	35	3F	2B	24	61	6 B	77	54	4D			
15	3A	39	2A	2F	_ 23	66	69	74	53	4A				
17	25	26	20	63	6D	79	76	52	49	40				
19	65	6F	6A	7B	7F	70	5C	4E						
21	7D	75	73	51	57	58	ĄC.							
23	5D	5E	6B	4B	44			•						
25	47	42				J								
			-											

(11) EP 0 836 305 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 26.08.1998 Bulletin 1998/35

(43) Date of publication A2: 15.04.1998 Bulletin 1998/16

(21) Application number: 98200056.4

(22) Date of filing: 27.03.1992

(84) Designated Contracting States: DE DK FR GB IT SE

(30) Priority: 28.03.1991 GB 9106658 26.04.1991 GB 9109006 07.06.1991 GB 9112316

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 92907333.6 / 0 577 672

(71) Applicant:
BRITISH TELECOMMUNICATIONS public limited company
London EC1A 7AJ (GB)

. .

(51) Int. Cl.6: H04L 27/34

(72) Inventors:

Brownlie, John David
 Woodbridge, Sufflok IP12 1HU (GB)

 Williams, Richard Guy Carrington San Diego, California, CA 92128 (US)

(74) Representative:
Lloyd, Barry George William et al
BT Group Legal Services,
Intellectual Property Department,
8th Floor, Holborn Centre,
120 Holborn
London EC1N 2TE (GB)

(54) TCM scheme with fractional bit rates, framing signals and constellation shaping

(57) Fractional bit rates are provided by constellation switching, wherein the switching pattern has a period which is not a power of 2. This is combined with a trellis shaping scheme. For synchronisation signals,

an outer point may be substituted for an inner point, in violation of the shaping rule.

EP 0 836 305 A3

EUROPEAN SEARCH REPORT

Application Number EP 98 20 0056

ategory	DOCUMENTS CONSIDER Citation of document with indice		Rei	evant	CLASSIFICATION OF THE
шедогу	of relevant passage		toc	laim	APPLICATION (INLCI.5)
(EP 0 406 507 A (IBM) * page 1, line 27 - * page 3, line 9 - 1 * page 3, line 42 - * page 3, line 54 - * page 4, line 2 - 1 * page 6, line 48 - * page 6, line 57 -	ine 10 * line 44 * line 55 * ine 4 *	1,2		H04L27/34
A	CALDERBANK, OZAROW: signaling on the Gau IEEE TRANSACTIONS ON vol. 36, no. 4, July pages 726-740, XP000 * abstract *	ssian channel" INFORMATION THEOR\ 1990, NEW YORK, US		·	
A	FORNEY ET AL.: "Eff band-limited channel IEEE JOURNAL ON SELE COMMUNICATIONS., vol. 2, no. 5, Septe US, pages 632-647, XP002 * page 637, right-ha- page 638, left-har	s" CTED AREAS IN mber 1984, NEW YOR 058648 ind column, paragra	K,	. '	TECHNICAL FIELDS SEARCHED (INLCI.5)
A	US 4 941 154 A (WEI) * column 1, line 61 * column 1, line 47	- column 2, line 2	7 * 1		
A	EP 0 392 723 A (AT& * page 8, line 11 -		1		
E	US 5 103 227 A (BET * column 1, line 47 * column 2, line 65 * column 2, line 30	- line 50 * - column 3, line 8	1,	2	
	The present search report has			τ	Examiner
	Place of search THE HAGUE	Date of completion of the 12 March 19		s	CRIVEN P.
Y: g	CATEGORY OF CITED DOCUMENTS particularly relevant if taken alone particularly relevant if combined with anot locument of the same category lechnological background non-written disclosure intermediate document	E : earlier ; atter the her D : dooume L : dooume	r of the same	nt, but pu applicati er reaso	ablished on, or on

EUROPEAN SEARCH REPORT

Application Number

EP 98 20 0056

Catego	DOCUMENTS CONSIDE Citation of document with indi of relevant passag	ication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (INLCI.5)
. E		HNAN) - line 55 * - column 4, line 1 * - line 59 * - line 24 *	1,2	
		. •		
				TECHNICAL FIELDS SEARCHED (Int.Cl.5)
	The present search report has			Examiner
<u> </u>	Place of search THE HAGUE	Date of completion of the search 12 March 1998	i i	CRIVEN P.
FORM 1503	CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with and document of the same category A: technological background O: non-written disclosure P: intermediate document	E : earlier patent after the fling ther D : document cit L : document cit	ed in the applicati ed for other reaso	ublished on, or ion

Application Number

EP 98 20 0056

ſ	CLAIMS INCURRING FEES
	The present European patent application comprised at the time of filing more than ten claims.
Page 18 18	Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
	•
	No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
	LACK OF UNITY OF INVENTION
	The Search Division considers that the present European patent application does not comply with the
	requirements of unity of invention and relates to several inventions or groups of inventions, namely:
	see sheet B
	All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
	Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
	None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:
	1, 2

Mar.

LACK OF UNITY OF INVENTION SHEET B

Application Number EP 98 20 0056

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claim: 1,2

Fractional bit rate transmission

2. Claims: 3-9

Trellis shaping.