Fast Secure Multiparty ECDSA with Practical Distributed Key Generation and Applications to Cryptocurrency Custody

• Full Version: https://eprint.iacr.org/2018/987

Motivation

- Threshold cryptography
 - used in applications where muiltiple signers are needed to generate a signature
 - used to provide a high level of key protection
- ECDSA signing is used in Bitcoin and other cryptocurrencies
 - the theft of a signing key can be translated into concrete financial loss
- Bitcoin uses a multisignature solution
 - the flexibility of Bitcoin multisig is limited
 - not supporting arbitary and complex access structures
 - o plain multisig solutions introduce anonymity and scalability problems
 - do not support revoking a party's share

Contribution

- present the *first truly practical* full threshold ECDSA signing protocol that has pratical distributed key generation and fast signing
- securely computing ECDSA in a distributed manner

Technical Contribution

- replacing the Paillier additively homomorphic encryption with ElGamal in-the-exponent
 - distributed key generation is very easy
 - Elliptic curve operations are more efficient than Paillier operations
 - o zero-knowledge proofs are more efficient in the Elliptic curve group
 - zero-knowledge is easier in known-order groups