國立臺灣科技大學 資訊工程研究所

圖學導論上課筆記 week 1

修課學生:王澤浩

授課教師:賴祐吉 博士

日期:2016年02月29日

什麼是 Computer Graphics?

名詞的定義是「凡舉經電腦生成並顯示出的影像」皆可被稱作為 Computer Graphics。

OpenGL

OpenGL 提供開發者進行簡單至複雜的二維、三維空間景象繪製,經常被應用於遊戲開發、資料視覺化、CAD等。而近年火熱的遊戲引擎 Unity3D 便是調教 OpenGL 及包裝成 scripts 以利其他開發者進行的開發工作。

Entertainment

Computer Graphics 最常見於娛樂產業中,不論是電影場景生成、動畫製作、遊戲開發等。而前述兩者多為了要減少製作成本,以及增加未來的重複可用性,甚至能品質能夠超越實景進行拍攝。

巫師3遊戲畫面

User Interface

從螢幕上的使用 Graphical User Interface 延伸涉足到行動裝置、穿戴式設備的 Human Computer Interaction, 皆可見 Computer Graphics 都佔有一席之地。

Iron Man 2 劇照, J.A.R.V.I.S. 的操作介面運用了圖學技術

Virtual Reality 與 Augmented Reality

提到 VR 就會想到 Oculus VR 所開發的 Oculus Rift 頭戴式顯示器,近年來在各大遊戲展中展露頭角,期待能為未來的遊戲市場注入一股活力。然而 VR 不僅限於遊戲產業,許多醫學團隊也著手將該技術導入醫療服務市場,如醫療人員的培訓等。

醫學團隊使用 VR 技術進行人員培訓

而 Augmented Reality 與 Computer Vision 的關係較為密切,這部分個人認為在未來幾年會突發性地成長,越來越講求數據化的情況下,AI Learning 相關的技術蓬勃發展,便可更加精準的辨識圖像中的人、事、物。

Raster image 與 Vector image

Raster image 以點陣式的方式記錄圖像所有的像素點,若將圖片不斷地放大變會發現圖像產生鋸齒失真的情形。而 Vector image 利用向量的方式記錄圖像,舉例來說,一個三角形圖案若在 raster image 則必須要記錄當前解析度的全部座標點的 RGB,vector image 僅需記錄三點的座標比例,依照當前解析度再行運算出結果後上色。也因為大量運算的關係,在早期硬體設備還不夠支援的情形下並不廣為使用。

CUDA

利用 NVIDIA CUDA 技術將繪圖的計算以平行化處理進行加速,而近年來 GPU Programming 的技術也不僅侷限於 Computer Graphics 領域,以現今的數據導向的資訊社會中,CUDA 的技術亦被應用於 Machine Learning、Deep Learning 之中。

人臉影像辨識應用於類神經網路

結語

課堂上老師提到了一個很有趣的現象,人眼接受到的並非我們常聽到的 RGB 三原色,Blue 的部分被某一種近似於藍色的能量給取代,課後上 網查但找不到相關的資料,實屬可惜。

我雖然使用 macbook retina,但我的眼睛實在分辨不出 retina 跟一般螢幕的解析程度差異,如果說 retina 設計上是增加螢幕像素密度到平均人類的極限值,照這樣子看來我應該是平均之下呀。

本次上課為第一週上課,實驗室的大夥們給了我滿滿醍醐灌頂。希望藉由這門課能夠學習到更豐富的圖學知識,並且磨練程式技巧。

本課程 homeworks、projects 整理

於: https://github.com/grass0916/NTUST-1042-CG