МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н. Э. БАУМАНА

Кафедра «Системы обработки информации и управления»

Домашнее задание

По курсу «Методы Машинного Обучения»

Исполнитель:

Студент группы ИУ5-24М Зубаиров В. А.

Преподаватель:

к.т.н., доцент Гапанюк Θ .Е.

Проект по анализу данных

Задача

В ходе выполнения проекта необходимо решить задачу регрессии, обучив алгоритм предсказывать данные на существующем датасете.

Описание данных

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
```

В качестве набора данных будем использовать датасет с платформы Kaggle (Auto MPG) Будем использовать регрессию для прогноза эффективного расхода топлива Описание данных:

- 1) MPG расхож топлива 2) cylinders количество цилиндров в двигателе
- 3) horsepower количество лошадиных сил
- 4) weight вес автомобиля 5) acceleration ускорение
- 6) model year год появляения
- 7) car name модель автомобиля 8) origin страна происхождения 9) displacement литраж

Будем решать задачу регрессии, предсказывая стоимость страховки в зависимости от других факторов

Посмотрим, что представлено в данных

```
In [2]: data=pd.read_csv("auto-mpg.csv")
In [3]: data.shape
Out[3]: (398, 9)
```

```
In [4]: data.isna().sum()
Out[4]: mpg
        cylinders
                         0
        displacement
                         0
        horsepower
                         0
        weight
                         0
        acceleration
                         0
        model year
                         0
        origin
                         0
        car name
                         0
        dtype: int64
```

Отсутствующих данных нет

Разведочный анализ

```
In [5]: data.head()
```

Out[5]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	ca nam
0	18.0	8	307.0	130	3504	12.0	70	1	chevrole chevell malib
1	15.0	8	350.0	165	3693	11.5	70	1	buic skylar 32
2	18.0	8	318.0	150	3436	11.0	70	1	plymout satellit
3	16.0	8	304.0	150	3433	12.0	70	1	am rebel s:
4	17.0	8	302.0	140	3449	10.5	70	1	for torin

```
In [6]: data.describe()
```

Out[6]:

	mpg	cylinders	displacement	weight	acceleration	model year	(
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.00
mean	23.514573	5.454774	193.425879	2970.424623	15.568090	76.010050	1.57
std	7.815984	1.701004	104.269838	846.841774	2.757689	3.697627	0.80
min	9.000000	3.000000	68.000000	1613.000000	8.000000	70.000000	1.00
25%	17.500000	4.000000	104.250000	2223.750000	13.825000	73.000000	1.00
50%	23.000000	4.000000	148.500000	2803.500000	15.500000	76.000000	1.00
75%	29.000000	8.000000	262.000000	3608.000000	17.175000	79.000000	2.00
max	46.600000	8.000000	455.000000	5140.000000	24.800000	82.000000	3.00

In [7]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 398 entries, 0 to 397 Data columns (total 9 columns):

		· · · · ,				
#	Column	Non-Null Count	Dtype			
0	mpg	398 non-null	float64			
1	cylinders	398 non-null	int64			
2	displacement	398 non-null	float64			
3	horsepower	398 non-null	object			
4	weight	398 non-null	int64			
5	acceleration	398 non-null	float64			
6	model year	398 non-null	int64			
7	origin	398 non-null	int64			
8	car name	398 non-null	object			
<pre>dtypes: float64(3), int64(4), object(2)</pre>						

memory usage: 28.1+ KB

Столбец horsepower должен быть типа int, а не типа object, преобразуем его

```
In [8]: data['horsepower'] = pd.to_numeric(data['horsepower'],errors='coerc
```

```
In [9]:
       data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 398 entries, 0 to 397
       Data columns (total 9 columns):
            Column
                         Non-Null Count
                                         Dtype
            _____
                          _____
                                         ____
         0
                          398 non-null
                                         float64
            mpg
                        398 non-null
                                         int64
         1
          cylinders
         2
            displacement 398 non-null
                                         float64
         3 horsepower
                        392 non-null
                                         float64
         4 weight
                          398 non-null
                                         int64
         5
           acceleration 398 non-null
                                         float64
           model year
                         398 non-null
                                         int64
         7
            origin
                          398 non-null
                                         int64
            car name
                         398 non-null
                                         object
        dtypes: float64(4), int64(4), object(1)
       memory usage: 28.1+ KB
```

Проверим корреляцию между признаками

Корреляционный анализ, выбор подходящих признаков

```
In [10]: corr = data.corr(method="pearson")
In [11]: corr
Out[11]:
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	
mpg	1.000000	-0.775396	-0.804203	-0.778427	-0.831741	0.420289	0.
cylinders	-0.775396	1.000000	0.950721	0.842983	0.896017	-0.505419	-0.
displacement	-0.804203	0.950721	1.000000	0.897257	0.932824	-0.543684	-0.
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.
weight	-0.831741	0.896017	0.932824	0.864538	1.000000	-0.417457	-0.
acceleration	0.420289	-0.505419	-0.543684	-0.689196	-0.417457	1.000000	0.:
model year	0.579267	-0.348746	-0.370164	-0.416361	-0.306564	0.288137	1.0
origin	0.563450	-0.562543	-0.609409	-0.455171	-0.581024	0.205873	0.
						Di.	

Построим тепловую карту корреляции для более наглядного представления

```
In [12]: sns.heatmap(corr, square=True, vmin=-0.2, vmax=0.8,cmap="YlGnBu",an
not=True)
```

Out[12]: <matplotlib.axes. subplots.AxesSubplot at 0x10832ef50>

Видна практически линейная зависимость у признаков displacement, weight, cylinders, horsepower. Это может плохо повлиять на результат при решении задачи регрессии, поэтому удалим признаки cylinders, displacement, weight из датасета

```
In [13]:
          data.isna().sum()
Out[13]: mpg
                           0
                           0
          cylinders
          displacement
                           0
          horsepower
                           6
          weight
                           0
          acceleration
                           0
          model year
                           0
          origin
                           0
          car name
          dtype: int64
```

После приведения типов появились NaN-значения. Так как их немного, удалим эти строки

```
In [14]: data = data.drop(['weight', 'cylinders', 'displacement'], axis=1)
    data = data.dropna()
```

```
In [15]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 392 entries, 0 to 397
        Data columns (total 6 columns):
             Column
                          Non-Null Count
                                         Dtype
        ___
             -----
                          _____
                                         ____
                          392 non-null
         0
                                         float64
             mpg
         1
            horsepower
                         392 non-null
                                         float64
         2
            acceleration 392 non-null
                                         float64
         3 model year
                         392 non-null
                                        int64
         4
             origin
                          392 non-null
                                         int64
             car name
                         392 non-null
         5
                                         object
        dtypes: float64(3), int64(2), object(1)
        memory usage: 21.4+ KB
```

Построим графики, чтобы понять структуру данных

```
In [16]: sns.pairplot(data)
```

Out[16]: <seaborn.axisgrid.PairGrid at 0x134486d50>


```
In [17]: corr = data.corr(method="pearson")
sns.heatmap(corr, square=True, vmin=-0.2, vmax=0.8,cmap="YlGnBu",an
not=True)
```

Out[17]: <matplotlib.axes. subplots.AxesSubplot at 0x13746c0d0>

Мы можем решать задачу регрессии, пытаясь предсказать эффективное потребление топлива для автомобиля.

Выделим целевой признак и нормализуем данные

```
In [18]: target = data['mpg']
  data = data.drop(['mpg'], axis=1)

In [19]: from sklearn import preprocessing
  data = data.drop(['car name'], axis=1)
  data = preprocessing.scale(data)
```

Метрики качества

В качестве метрик качества мы будет использовать среднюю квадратичную ошибку, среднюю абсолютную ошибку и коэффициент детерминации

Средняя квадратичная ошибка:

$$MAE(y, \hat{y}) = \frac{1}{N} \cdot \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

где:

у - истинное значение целевого признака

 \hat{y} - предсказанное значение целевого признака

N - размер тестовой выборки

Чем ближе значение к нулю, тем лучше качество регрессии.

Основная проблема метрики состоит в том, что она не нормирована.

Средняя абсолютная ошибка:

$$MSE(y, \hat{y}) = \frac{1}{N} \cdot \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

где:

у - истинное значение целевого признака

 \hat{y} - предсказанное значение целевого признака

N - размер тестовой выборки

Коэффициент детерминации:

$$R^{2}(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \overline{y}_{i})^{2}}$$

где:

у - истинное значение целевого признака

 \hat{y} - предсказанное значение целевого признака

N - размер тестовой выборки

$$\overline{y_i} = \frac{1}{N} \cdot \sum_{i=1}^{N} y_i$$

In [20]: from sklearn.metrics import mean_absolute_error, mean_squared_error
, r2_score

Выбор моделей

В качестве моделей регрессии выберем модель BaggingRegressor, KneighborsRegressor и ансамблевую модель RandomForestRegressor

```
In [21]: from sklearn.ensemble import BaggingRegressor
    from sklearn.neighbors import KNeighborsRegressor
    from sklearn.ensemble import RandomForestRegressor
```

Формирование обучающей и тестовой выборки

разделим выборку в пропорции 1:4

Базовое решение для всех моделей

```
In [26]: models = [BaggingRegressor(), KNeighborsRegressor(), RandomForestRe
         gressor()1
         models
Out[26]: [BaggingRegressor(base estimator=None, bootstrap=True, bootstrap f
         eatures=False,
                          max features=1.0, max samples=1.0, n estimators=
         10,
                           n jobs=None, oob score=False, random state=None,
         verbose=0,
                           warm start=False),
          KNeighborsRegressor(algorithm='auto', leaf size=30, metric='minko
         wski',
                             metric_params=None, n_jobs=None, n_neighbors=
         5, p=2,
                             weights='uniform'),
          RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='m
         se',
                               max depth=None, max features='auto', max le
         af nodes=None,
                               max samples=None, min impurity decrease=0.0
                               min impurity split=None, min samples leaf=1
                               min samples split=2, min weight fraction le
         af=0.0,
                               n estimators=100, n jobs=None, oob score=Fa
         lse,
                               random state=None, verbose=0, warm start=Fa
         lse)]
In [37]:
         for model in models:
             print("======="")
             print("Обучение модели "+type(model). name )
             model.fit(X train, y train)
             predicted = model.predict(X test)
             plt.figure(figsize=(4, 4))
             plt.scatter(y_test,predicted)
             plt.title(type(model). name )
             plt.xlabel('Actual value of mpg')
             plt.ylabel('Predicted values of mpg')
             plt.tight layout()
```

quality(y_test, predicted)

Обучение модели BaggingRegressor

Метрики качества:

Средняя квадратичная ошибка: 10.062533383966242 Средняя абсолютная ошибка: 2.262270042194093 Коэффициент детерминации: 0.8548441558814182

Обучение модели KNeighborsRegressor Метрики качества:

Средняя квадратичная ошибка: 12.007333131075422 Средняя абсолютная ошибка: 2.449103069902347 Коэффициент детерминации: 0.826789685087507

Oбучение модели RandomForestRegressor Метрики качества:

Средняя квадратичная ошибка: 10.047384794764497 Средняя абсолютная ошибка: 2.356067074521336 Коэффициент детерминации: 0.8550626800014265

Подбор гиперпараметров моделей

```
In [28]: from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score, cross_validate
```

Подбор гиперпараметров для модели BaggingRegressor

```
In [29]: param grid = {
              'n_estimators' : [1, 3, 6, 9, 12, 15, 20, 25],
             'max samples': [0.05, 0.1, 0.2, 0.5],
              'max_features' : [1, 2, 3, 4]
         }
         bagging = BaggingRegressor()
         grid = GridSearchCV(estimator=bagging, param grid=param grid)
         grid.fit(X_train, y_train)
         print(grid)
         print(grid.best score )
         print(grid.best estimator )
         GridSearchCV(cv=None, error score=nan,
                      estimator=BaggingRegressor(base estimator=None, boots
         trap=True,
                                                  bootstrap features=False,
                                                  max features=1.0, max samp
         les=1.0,
                                                  n estimators=10, n jobs=No
         ne,
                                                  oob score=False, random st
         ate=None,
                                                  verbose=0, warm start=Fals
         e),
                      iid='deprecated', n jobs=None,
                      param grid={'max features': [1, 2, 3, 4],
                                   'max_samples': [0.05, 0.1, 0.2, 0.5],
                                   'n estimators': [1, 3, 6, 9, 12, 15, 20,
         25]},
                      pre dispatch='2*n jobs', refit=True, return_train_sco
         re=False,
                      scoring=None, verbose=0)
         0.8345630861168856
         BaggingRegressor(base estimator=None, bootstrap=True, bootstrap fe
         atures=False,
                          max features=4, max samples=0.5, n estimators=25,
         n jobs=None,
                           oob score=False, random state=None, verbose=0,
```

warm start=False)

Подбор параметров для KNeighborsRegressor

```
In [30]: grid params = {
             'n neighbors': [3, 5, 11, 19],
             'weights': ['uniform', 'distance'],
             'metric': ['euclidean', 'manhattan']
         }
         grid = GridSearchCV(KNeighborsRegressor(), grid params, verbose=1,
         cv=3, n jobs=-1)
         grid.fit(X_train, y_train)
         print(grid)
         print(grid.best score )
         print(grid.best estimator )
         Fitting 3 folds for each of 16 candidates, totalling 48 fits
         [Parallel(n jobs=-1)]: Using backend LokyBackend with 16 concurren
         t workers.
         GridSearchCV(cv=3, error_score=nan,
                      estimator=KNeighborsRegressor(algorithm='auto', leaf
         size=30,
                                                     metric='minkowski',
                                                     metric params=None, n j
         obs=None,
                                                     n neighbors=5, p=2,
                                                     weights='uniform'),
                      iid='deprecated', n jobs=-1,
                      param_grid={'metric': ['euclidean', 'manhattan'],
                                   'n neighbors': [3, 5, 11, 19],
                                   'weights': ['uniform', 'distance']},
                      pre_dispatch='2*n_jobs', refit=True, return_train_sco
         re=False,
                      scoring=None, verbose=1)
         0.7865199939916377
         KNeighborsRegressor(algorithm='auto', leaf size=30, metric='manhat
         tan',
                             metric params=None, n jobs=None, n neighbors=1
         1, p=2,
                             weights='distance')
         [Parallel(n_jobs=-1)]: Done 48 out of 48 | elapsed: 1.4s fini
```

Подбор параметров для RandomForestRegressor

shed

```
In [34]: grid_params= {
    'max_features': ['auto', 'sqrt', 'log2'],
    'max_depth': [3, 5, 9, 12, 15],
    'min_samples_split': [2, 4, 6, 8, 10],
    'min_samples_leaf': [1, 2, 4, 6]
}
grid = GridSearchCV(RandomForestRegressor(), grid_params, cv = 2, n
    _jobs=-1)
grid.fit(X_train, y_train)
print(grid.best_score_)
print(grid.best_score_)
print(grid.best_estimator_)
```

```
GridSearchCV(cv=2, error score=nan,
             estimator=RandomForestRegressor(bootstrap=True, ccp a
lpha=0.0,
                                              criterion='mse', max
depth=None,
                                              max features='auto',
                                              max leaf nodes=None,
                                              max samples=None,
                                              min impurity_decrease
=0.0,
                                              min impurity split=No
ne,
                                              min samples leaf=1,
                                              min samples split=2,
                                              min weight fraction 1
eaf=0.0,
                                              n estimators=100, n j
obs=None,
                                              oob score=False, rand
om state=None,
                                              verbose=0, warm start
=False),
             iid='deprecated', n jobs=-1,
             param_grid={'max_depth': [3, 5, 9, 12, 15],
                          'max_features': ['auto', 'sqrt', 'log2'],
                          'min samples leaf': [1, 2, 4, 6],
                          'min samples split': [2, 4, 6, 8, 10]},
             pre dispatch='2*n jobs', refit=True, return train sco
re=False,
             scoring=None, verbose=0)
0.8480632203248082
RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='ms
e',
                      max depth=9, max features='auto', max leaf n
odes=None,
                      max samples=None, min impurity decrease=0.0,
                      min impurity split=None, min samples leaf=1,
                      min_samples_split=4, min_weight fraction lea
f=0.0,
                      n estimators=100, n jobs=None, oob score=Fal
se,
                      random state=None, verbose=0, warm start=Fal
se)
```

Обучение с оптимальными значениями гиперпараметров

```
In [36]: models = [BaggingRegressor(base estimator=None, bootstrap=True, boo
         tstrap features=False,
                         max features=4, max samples=0.5, n estimators=25,
         n jobs=None,
                          oob score=False, random state=None, verbose=0,
                          warm start=False),
                   KNeighborsRegressor(algorithm='auto', leaf size=30, metri
         c='manhattan',
                            metric_params=None, n_jobs=None, n_neighbors=11
         p=2
                            weights='distance'),
                   RandomForestRegressor(bootstrap=True, ccp alpha=0.0, crit
         erion='mse',
                              max depth=9, max features='auto', max leaf no
         des=None,
                              max_samples=None, min_impurity_decrease=0.0,
                              min impurity split=None, min samples leaf=1,
                              min samples split=4, min weight fraction leaf
         =0.0,
                              n estimators=100, n jobs=None, oob score=Fals
         e,
                              random state=None, verbose=0, warm start=Fals
         e)
                  ]
         for model in models:
             print("======="")
             print("Обучение модели "+type(model). name )
             model.fit(X_train, y_train)
             predicted = model.predict(X test)
             plt.figure(figsize=(4, 4))
             plt.scatter(y test,predicted)
             plt.title(type(model). name )
             plt.xlabel('Actual value of mpg')
             plt.ylabel('Predicted values of mpg')
             plt.tight layout()
             quality(y_test, predicted)
```

Обучение модели BaggingRegressor

Метрики качества:

Средняя квадратичная ошибка: 11.780957412095644 Средняя абсолютная ошибка: 2.4015021097046416 Коэффициент детерминации: 0.8300552403232113

Обучение модели KNeighborsRegressor Метрики качества:

Средняя квадратичная ошибка: 12.007333131075422 Средняя абсолютная ошибка: 2.449103069902347 Коэффициент детерминации: 0.826789685087507

Обучение модели RandomForestRegressor Метрики качества:

Средняя квадратичная ошибка: 9.920815526420402 Средняя абсолютная ошибка: 2.2866747582931226 Коэффициент детерминации: 0.8568884894954087

Лучшей оказалась модель случайного леса. Оптимизация гиперпараметров не дала большого эффекта.

Метрики качества показывают, что все модели, построенные в результате выполнения проекта, являются достаточно хорошими для их использования. При этом ансамблевые методы показали себя лучше классического алгоритма

Выводы

В ходе выполнения проекта по анализу данных был выбран датасет для решения задачи регрессии.

Были выбраны 3 модели, входящие в пакет sci-kit learn, и метрики качества, подходящие для регрессионного анализа.

В ходе разведочного анализа были удалены отсутствующие значения, сильно коррелирующие между собой признаки.

После проведенной оптимизации параметров моделей был сделан вывод о лучшей модели для данной задачи. Ею оказалась модель случайного леса.