ESO 208A: Computational Methods in Engineering

Richa Ojha

Department of Civil Engineering IIT Kanpur

Copyright:

The instructor of this course owns the copyright of all the course materials. This lecture material was distributed only to the students attending the course *ESO208A*: Computational methods in Engineering of IIT Kanpur and should not be distributed in print or through electronic media without the consent of the instructor. Students can make their own copies of the course materials for their use.

Recap

- What is a system of linear equations?
- Different kind of matrices
- Direct method-Gauss Elimination Method

Today's lecture

- Situations under which Gauss Elimination method will not work
- Gauss Jordan Method
- How to find algorithm complexity?
- LU decomposition method

Gauss Elimination Algorithm

Forward Elimination:

For
$$k = 1, 2, (n - 1)$$

Define multiplication factors: $l_{ik} = \frac{a_{ik}}{a_{kk}}$

Compute: $a_{ij} = a_{ij}$ - l_{ik} a_{kj} ; $b_i = b_i - l_{ik}$ b_k for i = k+1, k+2,n and j = k+1, k+2,n

Resulting System of equation is upper triangular. Solve it using the *Back-Substitution algorithm*:

$$x_n = \frac{b_n}{a_{nn}}; x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij} x_j}{a_{ii}}; i = (n-1), (n-2), \dots 3, 2, 1$$

Difficult Cases

a) Division by zero

$$E_1$$
: $\sqrt{3n_2 - n_3} = 5$
 E_2 : $4n_1 + 4n_2 - 3n_3 = 3$
 E_3 : $-2n_1 + 3n_2 - n_3 - 1$

- l_{21} can not be calculated, exchange the rows, which one to pick
- Does it matter? Yes, in terms of round off error.
- When we switch the rows, it is called as pivoting or row pivoting
- When we switch columns, it is column pivoting. In this case, we need to reorder the unknowns.
- When we switch both, it is total pivoting

Partial Pivoting

Difficult Cases

b) Ill-conditioned

$$x_1 + 2x_2 = 10$$

1.1 $x_1 + 2x_2 = 10.4$

Solution: $x_1=4$, $x_2=3$

Now if I slightly change the coefficients $x_1+2x_2=10$ 1.05 $x_1+2x_2=10.4$

Solution: $x_1 = 8$, $x_2 = 1$

- By just changing the coefficient slightly, the solution changes significantly
- This is very costly
- Can we without solving find if the system is ill conditioned

Difficult Cases

c) Round-off Error

$$0.0004 \, n_1 + 1.402 \, n_2 = 1.406$$
 $0.4003 \, n_1 - 1.502 \, n_1 = 2.501$

True Solution: $x_1 = 10$, $x_2 = 1$

What if you are using a computer that has four significant digits

Difficult Cases

c) Round-off Error

$$R_{2} = R_{2} - l_{21}R_{1}$$

$$= \frac{q_{21}}{q_{1}}$$

$$= \frac{0.0003}{0.0009} = 0.1001 \times 10^{10}$$

$$71 = \frac{1405 \times 1 = 1404}{1.406 - 1.402 \times 0.9913}$$

$$= \frac{12.5}{0.0004}$$

- The solution is very different from the actual solution
- Before solving the problem, can we know our system will have roundoff problem

Difficult Cases: Options for handling

a) Ill-Conditioned

- If determinant is close to zero- ill conditioned
- If determinant is zero- singular

Difficult Cases: Options for handling

a) Ill-Conditioned

Can we use determinant as a measure of ill-conditioning?

$$\begin{bmatrix} 1 & 2 \\ 1 \cdot 1 & 2 \end{bmatrix} \Rightarrow \sum = 2 - 2 \cdot 2 = -02$$

Suppose in the example we multiply the equations by 10

$$\begin{bmatrix} 10 & 20 \\ 11 & 20 \end{bmatrix} \Rightarrow D = -\frac{20}{20}$$

Now the determinant is significantly different from 0. On its own D is not a good measure of ill-conditioning

Difficult Cases: Options for handling

The three issues mentioned earlier can be avoided by:

- Use of more significant digits
- Pivoting: Row or partial pivoting-exchange row of the augmented matrix
 - Exchange rows which will result in largest magnitude of pivot element

Difficult Cases: Options for handling

Example:

$$0.0004 \, n_1 + 1.402 \, n_2 = 1.406$$
 $0.4003 \, n_1 - 1.502 \, n_2 = 2.50$

Exact $- n_1 = 10$
 $n_2 = 1$

If we solved the problem by a 4 -digit
 $- n_1 = 0.9993$
 $- n_2 = 12.5$

Difficult Cases: Options for handling

Example:
$$\begin{vmatrix}
0.0004 & 1.402 & 1.406 \\
0.4003 & -1.502 & 2.501
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0.4003 & -1.502 & 2.501
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0.4003 & -1.502 & 2.501
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

$$\begin{vmatrix}
0.4003 & -1.502 & 2.501 \\
0 & 1.404 & 1.404
\end{vmatrix}$$

We did row pivoting

Difficult Cases: Options for handling

We did total

$$x_1 = 10$$
, and $x_2 = 1$

Difficult Cases: Options for handling

Why pivoting has worked?

$$10 \times 0.0004 \, n_1 + 10 \times 1.402 \, n_2 = 1.406$$
 $0.4003 \, n_1 - 1.502 \, n_2 = 2.50$
 $121 = \frac{0.4003}{0.0004 \times 10^{m}} = 1001 \times 10^{m}$
 $122 = -1.502 - (1.402 \times 10^{m} \times 1001 \times 10^{m})$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 1405$
 $121 = 14$

Difficult Cases: Options for handling

Why pivoting has worked?

- Even by making the pivot large still we get round-off error.
- It is not the magnitude of the pivot element but relative magnitude of elements that leads to round-off error
- Scaling of elements of 'A' governs the round-off errors

Difficult Cases: Options for handling

Scaling

Difficult Cases: Options for handling

Scaling
$$\begin{bmatrix} 2 \times 10^{5} & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 2 \times 10^{5} & 1 & 1 & 1 \end{bmatrix}$$
Parhal putty
$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 \times 10^{5} & 1 & 1 & 1 \end{bmatrix}$$

Perform pivoting by using scaled coefficients but perform computations (GE) using original coefficients

Difficult Cases: Options for handling

Scaling

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 10^{5} & 10^{5} \\ 31 & = 31.0 \end{bmatrix}$$

Perform pivoung by using scaled coefficients but perform computations (GE) using original coefficients

Difficult Cases: Options for handling

Most common implementations of GE:

- Use scaled values of the coefficients as a criterion to decide pivoting
- Retain the original coefficients for actual elimination and substitution
- "No general pivoting strategy that will work for all linear systems"
 - Example: If coefficient matrix is a positive definite matrix, the BEST strategy is no interchange
- If you know, any special characteristics of the system use it to decide the pivoting strategy

Direct Methods: Gauss Jordon

In this method, the coefficient matrix is reduced to an Identity matrix

- Requires a minor modification in GE algorithm
 - At each step, first the pivot element is made unity by dividing
 pivot equation by the pivot element
 - In addition to sub-diagonal elements, the above diagonal elements are also made 0.

Direct Methods: Gauss Jordon

Example

Summary

• Under what situations Gauss Elimination will not work

• Gauss Jordan Method

