## CS 4110

# Programming Languages & Logics

Lecture 16
Fixed-Point Combinators

#### Termination in the $\lambda$ -calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed  $\lambda$ -term eventually terminate under CBN evaluation?

 $\forall$  closed term e.  $\exists e'$ .  $e \rightarrow^* e' \land e' \not\rightarrow$ ?

#### Termination in the $\lambda$ -calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed  $\lambda$ -term eventually terminate under CBN evaluation?

$$\forall$$
 closed term  $e$ .  $\exists e'$ .  $e \rightarrow^* e' \land e' \not\rightarrow$ ?

No!

$$\Omega \triangleq (\lambda x. x x) (\lambda x. x x)$$

2

#### Termination in the $\lambda$ -calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed  $\lambda$ -term eventually terminate under CBN evaluation?

$$\forall$$
 closed term  $e$ .  $\exists e'$ .  $e \rightarrow^* e' \land e' \not\rightarrow$ ?

No!

$$\Omega \triangleq (\lambda x. xx) (\lambda x. xx) 
\rightarrow (xx) \{(\lambda x. xx)/x\} 
= (\lambda x. xx) (\lambda x. xx) 
= \Omega$$

### **Recursive Functions**

How would we write recursive functions, like factorial?

#### **Recursive Functions**

How would we write recursive functions, like factorial?

We'd like to write it like this...

 $FACT \triangleq \lambda n$ . IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))

#### **Recursive Functions**

How would we write recursive functions, like factorial?

We'd like to write it like this...

$$FACT \triangleq \lambda n$$
. IF (ISZERO  $n$ ) 1 (TIMES  $n$  (FACT (PRED  $n$ )))

In slightly more readable notation this is...

$$\mathsf{FACT} \triangleq \lambda n. \ \mathsf{if} \ n = 0 \ \mathsf{then} \ 1 \ \mathsf{else} \ n \times \mathsf{FACT} \ (n-1)$$

...but this is an equation, not a definition!

#### Recursion removal trick

We can perform a "trick" to define a function FACT that satisfies the recursive equation on the previous slide.

#### Recursion removal trick

We can perform a "trick" to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT' that takes a function f as an argument. Then, for "recursive" calls, it uses f f:

$$\mathsf{FACT}' \triangleq \lambda f. \ \lambda n. \ \mathsf{if} \ n = 0 \ \mathsf{then} \ 1 \ \mathsf{else} \ n \times ((ff) \ (n-1))$$

#### Recursion removal trick

We can perform a "trick" to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT' that takes a function f as an argument. Then, for "recursive" calls, it uses f f:

$$\mathsf{FACT}' \triangleq \lambda f. \ \lambda n. \ \mathsf{if} \ n = 0 \ \mathsf{then} \ 1 \ \mathsf{else} \ n \times ((ff) \ (n-1))$$

Then define FACT as FACT' applied to itself:

$$\mathsf{FACT} \triangleq \mathsf{FACT'} \, \mathsf{FACT'}$$

Let's try evaluating FACT on 3...

FACT 3

$$FACT 3 = (FACT' FACT') 3$$

FACT 3 = (FACT' FACT') 3  
= 
$$((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times ((ff)(n-1))) \text{ FACT'}) 3$$

FACT 3 = (FACT' FACT') 3  
= 
$$((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times ((ff)(n-1))) \text{ FACT'}) 3$$
  
 $\rightarrow (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times ((\text{FACT' FACT'})(n-1))) 3$ 

FACT 3 = (FACT' FACT') 3  
= 
$$((\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times ((ff)(n-1))) \text{ FACT'}) 3$$
  
 $\rightarrow (\lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times ((\text{FACT' FACT'})(n-1))) 3$   
 $\rightarrow \text{ if } 3 = 0 \text{ then } 1 \text{ else } 3 \times ((\text{FACT' FACT'})(3-1))$ 

FACT 3 = (FACT' FACT') 3  
= 
$$((\lambda f. \lambda n. \mathbf{if} \ n = 0 \mathbf{then} \ 1 \mathbf{else} \ n \times ((ff) \ (n-1))) \mathbf{FACT'}) \ 3$$
  
 $\rightarrow (\lambda n. \mathbf{if} \ n = 0 \mathbf{then} \ 1 \mathbf{else} \ n \times ((\mathbf{FACT'} \mathbf{FACT'}) \ (n-1))) \ 3$   
 $\rightarrow \mathbf{if} \ 3 = 0 \mathbf{then} \ 1 \mathbf{else} \ 3 \times ((\mathbf{FACT'} \mathbf{FACT'}) \ (3-1))$   
 $\rightarrow 3 \times ((\mathbf{FACT'} \mathbf{FACT'}) \ (3-1))$ 

Let's try evaluating FACT on 3...

```
\begin{split} \mathsf{FACT} \, 3 &= \big(\mathsf{FACT'}\,\mathsf{FACT'}\big) \, 3 \\ &= \big(\big(\lambda f.\,\lambda n.\,\mathsf{if}\,\, n = 0\,\mathsf{then}\,\, 1\,\mathsf{else}\,\, n \times \big(\big(ff\big)\,(n-1)\big)\big)\,\,\mathsf{FACT'}\big) \, 3 \\ &\to \big(\lambda n.\,\mathsf{if}\,\, n = 0\,\mathsf{then}\,\, 1\,\mathsf{else}\,\, n \times \big(\big(\mathsf{FACT'}\,\,\mathsf{FACT'}\big)\,(n-1)\big)\big) \, 3 \\ &\to \mathsf{if}\,\, 3 = 0\,\mathsf{then}\,\, 1\,\mathsf{else}\,\, 3 \times \big(\big(\mathsf{FACT'}\,\,\mathsf{FACT'}\big)\,(3-1)\big) \\ &\to 3 \times \big(\big(\mathsf{FACT'}\,\,\mathsf{FACT'}\big)\,(3-1)\big) \\ &= 3 \times \big(\mathsf{FACT}\,(3-1)\big) \end{split}
```

5

$$\begin{split} \mathsf{FACT} \, 3 &= \big( \mathsf{FACT'} \, \mathsf{FACT'} \big) \, 3 \\ &= \big( \big( \lambda f. \, \lambda n. \, \mathsf{if} \, n = 0 \, \mathsf{then} \, 1 \, \mathsf{else} \, n \times \big( (ff) \, (n-1) \big) \big) \, \mathsf{FACT'} \big) \, 3 \\ &\to \big( \lambda n. \, \mathsf{if} \, n = 0 \, \mathsf{then} \, 1 \, \mathsf{else} \, n \times \big( (\mathsf{FACT'} \, \mathsf{FACT'}) \, (n-1) \big) \big) \, 3 \\ &\to \mathsf{if} \, 3 = 0 \, \mathsf{then} \, 1 \, \mathsf{else} \, 3 \times \big( (\mathsf{FACT'} \, \mathsf{FACT'}) \, (3-1) \big) \\ &\to 3 \times \big( (\mathsf{FACT'} \, \mathsf{FACT'}) \, (3-1) \big) \\ &= 3 \times \big( \mathsf{FACT} \, (3-1) \big) \\ &\to \dots \\ &\to 3 \times 2 \times 1 \times 1 \end{split}$$

$$\begin{split} \mathsf{FACT} \, 3 &= \big( \mathsf{FACT'} \, \mathsf{FACT'} \big) \, 3 \\ &= \big( \big( \lambda f. \, \lambda n. \, \mathsf{if} \, n = 0 \, \mathsf{then} \, 1 \, \mathsf{else} \, n \times \big( (ff) \, (n-1)) \big) \, \mathsf{FACT'} \big) \, 3 \\ &\to \big( \lambda n. \, \mathsf{if} \, n = 0 \, \mathsf{then} \, 1 \, \mathsf{else} \, n \times \big( (\mathsf{FACT'} \, \mathsf{FACT'}) \, (n-1)) \big) \, 3 \\ &\to \mathsf{if} \, 3 = 0 \, \mathsf{then} \, 1 \, \mathsf{else} \, 3 \times \big( (\mathsf{FACT'} \, \mathsf{FACT'}) \, (3-1) \big) \\ &\to 3 \times \big( (\mathsf{FACT'} \, \mathsf{FACT'}) \, (3-1) \big) \\ &= 3 \times \big( \mathsf{FACT} \, (3-1) \big) \\ &\to \dots \\ &\to 3 \times 2 \times 1 \times 1 \\ &\to ^* \, 6 \end{split}$$

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as f f.

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as f f.

There is another way: fixed points!

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as f f.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \ \lambda n. \ \text{if} \ n = 0 \ \text{then} \ 1 \ \text{else} \ n \times (f(n-1))$$

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as f f.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \ \lambda n. \ \text{if} \ n = 0 \ \text{then} \ 1 \ \text{else} \ n \times (f(n-1))$$

Recall that if g if a fixed point of G, then G g = g. To see that any fixed point g is a real factorial function, try evaluating it:

$$g5 = (Gg)5$$

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as f f.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \ \lambda n. \ \text{if} \ n = 0 \ \text{then} \ 1 \ \text{else} \ n \times (f(n-1))$$

Recall that if g if a fixed point of G, then G g = g. To see that any fixed point g is a real factorial function, try evaluating it:

$$g 5 = (G g) 5$$

$$\rightarrow^* 5 \times (g 4)$$

Our "trick" requires following human-readable instructions. Write a different function f that takes itself as an argument and uses self-application for recursive calls, and then define f as f f.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \ \lambda n. \ \text{if} \ n = 0 \ \text{then} \ 1 \ \text{else} \ n \times (f(n-1))$$

Recall that if g if a fixed point of G, then G g = g. To see that any fixed point g is a real factorial function, try evaluating it:

$$g 5 = (G g) 5$$
  
 $\rightarrow^* 5 \times (g 4)$   
 $= 5 \times ((G g) 4)$ 

How can we generate the fixed point of *G*?

In denotational semantics, finding fixed points took a lot of math. In the  $\lambda$ -calculus, we just need a suitable combinator...

#### Y Combinator

The (infamous) Y combinator is defined as

$$Y \triangleq \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$$

We say that Y is a *fixed point combinator* because Y f is a fixed point of f (for any lambda term f).

#### Y Combinator

The (infamous) Y combinator is defined as

$$Y \triangleq \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$$

We say that Y is a *fixed point combinator* because Y f is a fixed point of f (for any lambda term f).

What happens when we evaluate Y G under CBV?

#### **Z** Combinator

To avoid this issue, we'll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.

#### Z Combinator

To avoid this issue, we'll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.

$$Z \triangleq \lambda f. (\lambda x. f(\lambda y. x x y)) (\lambda x. f(\lambda y. x x y))$$

Let's see Z in action, on our function G.

**FACT** 

Let's see Z in action, on our function G.

**FACT** 

= ZG

```
FACT
= ZG
= (\lambda f. (\lambda x. f(\lambda y. x x y)) (\lambda x. f(\lambda y. x x y))) G
```

```
FACT

= ZG

= (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G

\rightarrow (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy))
```

```
FACT
= ZG
= (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G
\rightarrow (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy))
\rightarrow G(\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y)
```

```
FACT
= ZG
= (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G
\rightarrow (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy))
\rightarrow G(\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y)
= (\lambda f. \lambda n. \mathbf{if} n = 0 \mathbf{then} 1 \mathbf{else} n \times (f(n-1)))
(\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y)
```

```
FACT
= ZG
= (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G
\rightarrow (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy))
\rightarrow G(\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y)
= (\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1)))
(\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y)
\rightarrow \lambda n. \text{ if } n = 0 \text{ then } 1
\text{else } n \times ((\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y) (n-1))
```

```
FACT
       7 G
= (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G
\rightarrow (\lambda x. G(\lambda y. xxy))(\lambda x. G(\lambda y. xxy))
\rightarrow G(\lambda y.(\lambda x.G(\lambda y.xxy))(\lambda x.G(\lambda y.xxy))y)
= (\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1)))
                (\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) v)
\rightarrow \lambda n, if n=0 then 1
              else n \times ((\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y) (n-1))
=_{\beta} \lambda n. if n=0 then 1 else n \times (\lambda y. (ZG) y) (n-1)
```

```
FACT
       7 G
 = (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G
\rightarrow (\lambda x. G(\lambda y. xxy))(\lambda x. G(\lambda y. xxy))
\rightarrow G(\lambda y.(\lambda x.G(\lambda y.xxy))(\lambda x.G(\lambda y.xxy))y)
 = (\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1)))
                (\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) v)
\rightarrow \lambda n, if n=0 then 1
              else n \times ((\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y) (n-1))
=_{\beta} \lambda n. if n=0 then 1 else n \times (\lambda y. (ZG) y) (n-1)
=_{\beta} \lambda n. if n=0 then 1 else n\times ((ZG)(n-1))
```

```
FACT
       7 G
= (\lambda f. (\lambda x. f(\lambda y. xxy)) (\lambda x. f(\lambda y. xxy))) G
\rightarrow (\lambda x. G(\lambda y. xxy))(\lambda x. G(\lambda y. xxy))
\rightarrow G(\lambda y.(\lambda x.G(\lambda y.xxy))(\lambda x.G(\lambda y.xxy))y)
= (\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1)))
               (\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) v)
\rightarrow \lambda n, if n=0 then 1
             else n \times ((\lambda y. (\lambda x. G(\lambda y. xxy)) (\lambda x. G(\lambda y. xxy)) y) (n-1))
=_{\beta} \lambda n. if n=0 then 1 else n \times (\lambda y. (ZG)y)(n-1)
=_{\beta} \lambda n. if n=0 then 1 else n\times ((ZG)(n-1))
=\lambda n. if n=0 then 1 else n\times (FACT(n-1))
```

# Other fixed point combinators

There are many (indeed infinitely many) fixed-point combinators. Here's a cute one:

where

```
L \triangleq \lambda abcdefghijklmnopqstuvwxyzr.  (r(thisisafixedpointcombinator))
```

To gain some more intuition for fixed point combinators, let's derive a combinator  $\Theta$  originally discovered by Turing.

To gain some more intuition for fixed point combinators, let's derive a combinator  $\Theta$  originally discovered by Turing.

We know that  $\Theta$  *f* is a fixed point of *f*, so we have

$$\Theta f = f(\Theta f).$$

To gain some more intuition for fixed point combinators, let's derive a combinator  $\Theta$  originally discovered by Turing.

We know that  $\Theta$  *f* is a fixed point of *f*, so we have

$$\Theta f = f(\Theta f).$$

We can write the following recursive equation:

$$\Theta = \lambda f. f(\Theta f)$$

To gain some more intuition for fixed point combinators, let's derive a combinator  $\Theta$  originally discovered by Turing.

We know that  $\Theta$  *f* is a fixed point of *f*, so we have

$$\Theta f = f(\Theta f).$$

We can write the following recursive equation:

$$\Theta = \lambda f. f(\Theta f)$$

Now use the recursion removal trick:

$$\Theta' \triangleq \lambda t. \lambda f. f(t t f) 
\Theta \triangleq \Theta' \Theta'$$

$$\mathsf{FACT} = \Theta \, \mathit{G}$$

$$FACT = \Theta G$$
=  $((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f))) G$ 

$$FACT = \Theta G$$

$$= ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f))) G$$

$$\rightarrow (\lambda f. f((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) f)) G$$

```
FACT = \Theta G
= ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f))) G
\rightarrow (\lambda f. f((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) f)) G
\rightarrow G ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) G)
```

```
FACT = \Theta G
= ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f))) G
\rightarrow (\lambda f. f((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) f)) G
\rightarrow G ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) G)
= G (\Theta G)
```

```
FACT = \Theta G
          = ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f))) G
          \rightarrow (\lambda f. f((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) f)) G
          \rightarrow G ((\lambda t. \lambda f. f(ttf)) (\lambda t. \lambda f. f(ttf)) G)
          = G(\Theta G)
          = (\lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1))) (\Theta G)
          \rightarrow \lambda n. if n=0 then 1 else n \times ((\Theta G)(n-1))
          =\lambda n. if n=0 then 1 else n\times (\text{FACT}(n-1))
```