Analyse

Séries Numériques

Question 1/19

$$\ell^1(I,X)$$

Réponse 1/19

Ensemble des familles sommables indexées sur I à valeurs dans $X\subset \mathbb{C}$

Question 2/19

Série de Bertrand

Réponse 2/19

$$\sum_{n=2}^{+\infty} \left(\frac{1}{n^{\alpha} \ln^{\beta}(n)} \right)$$

Une série de Bertrand converge si et seulement si $(\alpha, \beta) > (1, 1)$ pour l'ordre lexicographique

Question 3/19

Caractérisation par ε de la somme

Réponse 3/19

$$\forall \varepsilon > 0, \ \exists J_{\varepsilon} \in \mathcal{P}_f(I), \ \forall K \in \mathcal{P}_f(I)$$

$$J_{\varepsilon} \subset K \Rightarrow \left| S - \sum_{i \in K} (a_i) \right| \leqslant \varepsilon$$

Question 4/19

$$\sum_{i \in I} (a_i)$$

Réponse 4/19

$$\sup \left\{ \left\{ \sum_{i \in I} (a_i), \ J \in \mathcal{P}_f(I) \right\} \right\}$$

Question 5/19

Produit de Cauchy

Réponse 5/19

Si $\sum a_n \underset{n}{\text{et}} \sum b_n$ sont absolument convergentes

et
$$c_n = \sum_{k=0}^{\infty} (a_k b_{n-k})$$
, alors $\sum c_n$ est absolument

convergente
$$\left(\sum_{n=0}^{+\infty} (a_n)\right) \left(\sum_{n=0}^{+\infty} (b_n)\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} (a_k b_{n-k})\right)$$

Question 6/19

Semi-convergence

Réponse 6/19

Convergence sans convergence absolue

Question 7/19

Théorème spécial de convergence des séries alternées

Réponse 7/19

Une série alternée est convergente Les sommes partielles sont du signe du premier terme

Les restes sont du signe de leur premier terme et de valeur absolue plus petite que celle de ce dernier

Question 8/19

Convergence absolue

Réponse 8/19

$$\sum u_n$$
 converge absolument si $\sum |u_n|$ converge
Si $\sum |u_n|$ converge alors $\sum u_n$ converge

Question 9/19

Règle de d'Alembert

Réponse 9/19

Si
$$\left| \frac{u_{n+1}}{u_n} \right| \to \ell$$
 où $0 \le \ell < 1$, alors $\sum u_n$ converge absolument

Si $\left| \frac{u_{n+1}}{u_n} \right| \to \ell$ où $\ell > 1$, alors $\sum u_n$ diverge grossièrement

Question 10/19

Théorème de comparaison des séries à termes positifs

Réponse 10/19

$$\exists N \in \mathbb{N}, \ \forall n \geqslant N, \ 0 \leqslant u_n \leqslant v_n$$

Si $\sum v_n$ converge alors $\sum u_n$ converge
Si $\sum u_n$ diverge alors $\sum v_n$ diverge

Question 11/19

Comparaison par dominance

Réponse 11/19

$$u_n = O(v_n)$$

Si $\sum v_n$ converge alors $\sum u_n$ converge
Si $\sum u_n$ ou $\sum |u_n|$ diverge alors $\sum v_n$ diverge

Question 12/19

Sommabilité

Réponse 12/19

$$(a_i)$$
 est sommable si $\sum_{i \in I} (|a_i|) < +\infty$

Question 13/19

Formule du binôme négatif

Réponse 13/19

$$\sum_{n=0}^{+\infty} \left(\frac{n!}{(n-p)!} z^{n-p} \right) = \frac{p!}{(1-z)^{p+1}}$$
$$\frac{1}{(1-z)^{p+1}} = \sum_{n=0}^{+\infty} \left(\binom{n+p}{p} z^n \right)$$

Question 14/19

Critère d'Abel

Réponse 14/19

Si (a_n) est une suite réelle positive décroissante de limite nulle, et la somme partielle de $\sum b_n$ est bornée, alors $\sum a_n b_n$ converge Les suites $e^{in\alpha}$, $\cos(n\alpha)$ et $\sin(n\alpha)$ vérifient les conditions pour (b_n) lorsque $\alpha \not\equiv 0$ $[2\pi]$

Question 15/19

Encadrement des sommes par les intégrales f est continue et décroissante sur $[n_0, +\infty[$ avec $n_0 \in \mathbb{Z}$

Réponse 15/19

$$\int_{n_0+1}^{n+1} (f(t)) dt$$

$$\leq \sum_{k=n_0+1}^{n} (f(k)) \leq \sum_{k=n_0+1}^{n} (f(t)) dt$$

Question 16/19

$$\sum u_n$$
 diverge grossièrement

Réponse 16/19

 (u_n) ne tend pas vers 0

Question 17/19

Série de Riemann

Réponse 17/19

$$\sum_{n=1}^{+\infty} \left(\frac{1}{n^{\alpha}}\right)$$

Une série de Riemann converge si et seulement si $\alpha>1$

Question 18/19

Règle de Riemann

Réponse 18/19

S'il existe $\alpha > 1$ tel que $(n^{\alpha}u_n)$ est bornée, alors $\sum u_n$ converge Si (nu_n) est minorée par m > 0 à partir de

 $n \in \mathbb{N}$, alors $\sum u_n$ diverge

Question 19/19

Série alternée

Réponse 19/19

$$\sum u_n$$
 est alternée s'il existe une suite (a_n) positive décroissante de limite nulle telle que $u_n = (-1)^n a_n$