On a particular integral

Brian Chan

September 8, 2022

We record an interesting argument which proves the following result.

Proposition 0.0.1.

$$\int_0^1 \frac{\ln(x+1)}{x^2+1} \, \mathrm{d}x = \frac{\pi}{8} \ln 2. \tag{1}$$

Proof. We begin with an integration by parts. This decomposes the LHS of equation (1) as

$$\int_0^1 \frac{\ln(x+1)}{x^2+1} dx = [\ln(x+1)\arctan(x)]_0^1 - \int_0^1 \frac{\arctan(x)}{x+1} dx$$
$$= \frac{\pi}{4}\ln(2) - \int_0^1 \frac{\arctan(x)}{x+1} dx$$
$$= \frac{\pi}{4}\ln(2) - \int_1^2 \frac{\arctan(u-1)}{u} du.$$

On the final line, we made the substitution x = u - 1. The problem reduces to finding the integral

$$\int_{1}^{2} \frac{\arctan(u-1)}{u} \, \mathrm{d}u. \tag{2}$$

The leap here is to turn to the complex numbers for inspiration. Indeed, if $z_1, z_2 \in \mathbb{C}$, then $\arg(z_1) + \arg(z_2) = \arg(z_1 z_2)$, where arg denote the principal argument. Set $z_1 = x_1 + y_1 i$ and $z_2 = x_2 + y_2 i$. If $x_1, x_2, y_1, y_2 \in \mathbb{Z}_{>0}$ then $\arg(x_i + iy_i) = \arctan(y_i/x_i)$ for $i \in \{1, 2\}$ and

$$\arctan(\frac{y_1}{x_1}) + \arctan(\frac{y_2}{x_2}) = \arctan(\frac{x_1y_2 + y_1x_2}{x_1x_2 - y_1y_2}).$$

Now let $y_1 = u - 1$, $y_2 = x_2 = 1$ and $x_1 = u$ for some $u \in \mathbb{Z}_{>0}$. Then,

$$\arctan(\frac{u-1}{u}) + \frac{\pi}{4} = \arctan(2u-1).$$

Replacing u with u/2, we obtain the equation

$$\arctan(\frac{u-2}{u}) + \frac{\pi}{4} = \arctan(u-1). \tag{3}$$

which is valid for $u \in \mathbb{Z}_{>0}$. Conveniently, this contains our region of integration.

In equation (2), we now make the substitution u = 2/y. Then, $du = -2/y^2 dy$ and our integral now becomes

$$\int_{2}^{1} \frac{\arctan(\frac{2}{y} - 1)}{\frac{2}{y}} \times -\frac{2}{y^{2}} dy = \int_{1}^{2} \arctan(\frac{2}{y} - 1) \times \frac{y}{2} \times \frac{2}{y^{2}} dy$$
$$= \int_{1}^{2} \frac{\arctan(\frac{2-y}{y})}{y} dy$$
$$= -\int_{1}^{2} \frac{\arctan(\frac{y-2}{y})}{y} dy.$$

Hence, we have the following equation:

$$\int_{1}^{2} \frac{\arctan(u-1)}{u} du = -\int_{1}^{2} \frac{\arctan(\frac{u-2}{u})}{u} du.$$

Now, we set $I = \int_1^2 \frac{\arctan(u-1)}{u} du$. Then,

$$2I = \int_{1}^{2} \frac{\arctan(u-1)}{u} du + \int_{1}^{2} \frac{\arctan(u-1)}{u} du$$

$$= \int_{1}^{2} \frac{\arctan(u-1)}{u} du - \int_{1}^{2} \frac{\arctan(\frac{u-2}{u})}{u} du$$

$$= \int_{1}^{2} \frac{\arctan(u-1) - \arctan(\frac{u-2}{u})}{u} du$$

$$= \int_{1}^{2} \frac{\pi}{4u} du \quad (\text{From equation (3)})$$

$$= \frac{\pi}{4} [\ln(u)]_{1}^{2}$$

$$= \frac{\pi}{4} \ln(2).$$

Hence, $I = \frac{\pi}{8} \ln(2)$. Our original integral in equation (1) now evaluates to

$$\int_0^1 \frac{\ln(x+1)}{x^2+1} \, \mathrm{d}x = \frac{\pi}{4} \ln(2) - I = \frac{\pi}{8} \ln(2)$$

as required.