### Identifier:

Identifier pattern =  $-\Sigma^+$ 

$$\Sigma = \{\text{A-Z}\} \cup \{\text{a-z}\} \cup \{0\text{-9}\}$$

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(A,-)) = {2}
- $\lambda$ -closure(move(A,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(B,-)) = {}
- $\lambda$ -closure(move(B,  $\Sigma$ )) = {3,4}
- $\lambda$ -closure(move(C,-)) = {}
- $\lambda$ -closure(move( $C, \Sigma$ )) = {}
- $\lambda$ -closure(move(D,-)) = {5}
- $\frac{1}{2} = \frac{1}{2} \left( \frac{1}{2} + \frac{1$
- $\lambda$ -closure(move(D,  $\Sigma$ )) = {3,4}
- $\lambda$ -closure(move(E,-)) = {}
- $\lambda$ -closure(move(E,  $\Sigma$ )) = {}







NFA  $\frac{\lambda}{1}$   $\frac{\Sigma}{\lambda}$   $\frac{\lambda}{\lambda}$   $\frac{\lambda}{4}$   $\frac{\Sigma}{5}$ 

|       | Name | - | Σ |
|-------|------|---|---|
| {1}   | A    | В | С |
| {2}   | В    | С | D |
| {}    | С    | С | С |
| {3,4} | D    | Е | D |
| {5}   | Е    | С | С |



DFA

#### Conditional statement:

## if pattern = CON

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(X, C)) = {2}
- $\lambda$ -closure(move(X, O)) = {}
- $\lambda$ -closure(move(X, N)) = {}
- $\lambda$ -closure(move( $X, \Sigma$ )) = {}
- $\lambda$ -closure(move(Y, C)) = {}
- $\lambda$ -closure(move(Y, O)) = {3}
- $\lambda$ -closure(move(Y, N)) = {}
- $\lambda$ -closure(move( $Y, \Sigma$ )) = {}
- λ-closure(move(Z, C)) = {}
- λ-closure(move(Z, O)) = {}
- $\lambda$ -closure(move(Z, N)) = {}
- $\lambda$ -closure(move( $\mathbb{Z}, \Sigma$ )) = {}
- $\lambda$ -closure(move(W, N)) = {}
- λ-closure(move(W, O)) = {}
- $\lambda$ -closure(move(W, N)) = {4}
- $\lambda$ -closure(move(W,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(V, C)) = {}
- $\lambda$ -closure(move(V, O)) = {}
- $\lambda$ -closure(move(V, N)) = {}
- $\lambda$ -closure(move(V,  $\Sigma$ )) = {}











|     | Name | С | О | N | Σ |
|-----|------|---|---|---|---|
| {1} | X    | Y | Z | Z | Z |
| {2} | Y    | Z | W | Z | Z |
| {}  | Z    | Z | Z | Z | Z |
| {3} | W    | Z | Z | V | Z |
| {4} | V    | Z | Z | Z | Z |



### Conditional statement:

### else pattern = NOTOK

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(X, N)) = {2}
- $\lambda$ -closure(move(X, O)) = {}
- $\lambda$ -closure(move(X, T)) = {}
- $\lambda$ -closure(move(X, O)) = {}
- $\lambda$ -closure(move(X, K)) = {}
- $\lambda$ -closure(move( $X, \Sigma$ )) = {}
- $\lambda$ -closure(move(Y, N)) = {}
- $\lambda$ -closure(move(Y, O)) = {3}
- $\lambda$ -closure(move(Y, T)) = {}
- $\lambda$ -closure(move(Y, O)) = {3}
- $\lambda$ -closure(move(Y, K)) = {}
- $\lambda$ -closure(move(Y,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(Z, N)) = {}
- $\lambda$ -closure(move(Z, O)) = {}
- $\lambda$ -closure(move(Z, T)) = {}
- $\lambda$ -closure(move(Z, O)) = {}
- $\lambda$ -closure(move(Z, K)) = {}
- $\lambda$ -closure(move( $Z, \Sigma$ )) = {}
- $\lambda$ -closure(move(W, N)) = {}
- $\lambda$ -closure(move(W, O)) = {}











- $\lambda$ -closure(move(W, T)) = {4}
- $\lambda$ -closure(move(W, O)) = {}
- $\lambda$ -closure(move(W, K)) = {}
- $\lambda$ -closure(move(W,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(V, N)) = {}
- $\lambda$ -closure(move(V, O)) = {5}
- $\lambda$ -closure(move(V, T)) = {}
- $\lambda$ -closure(move(V, O)) = {5}
- $\lambda$ -closure(move(V, K)) = {}
- $\lambda$ -closure(move(V,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(Q, N)) = {}
- $\lambda$ -closure(move(Q, O)) = {}
- $\lambda$ -closure(move(Q, T)) = {}
- $\lambda$ -closure(move(Q, O)) = {}
- $\lambda$ -closure(move(Q, K)) = {6}
- $\lambda$ -closure(move(Q,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(B, N)) = {}
- $\lambda$ -closure(move(B, O)) = {}
- λ-closure(move(B, T)) = { }
- λ-closure(move(B, O)) = {}
- λ-closure(move(B, K)) = {}
- $\lambda$ -closure(move(B,  $\Sigma$ )) = {}



|     | Name | N | O | Т | О | K | Σ |
|-----|------|---|---|---|---|---|---|
| {1} | X    | Y | Z | Z | Z | Z | Z |
| {2} | Y    | Z | W | Z | Z | Z | Z |
| {}  | Z    | Z | Z | Z | Z | Z | Z |
| {3} | W    | Z | Z | V | Z | Z | Z |
| {4} | V    | Z | Z | Z | Q | Z | Z |
| {5} | Q    | Z | Z | Z | Z | В | Z |
| {6} | В    | Z | Z | Z | Z | Z | Z |



## Loop statement:

## while pattern = GO

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(X, G)) = {2}
- $\lambda$ -closure(move(X, O)) = {}
- $\lambda$ -closure(move( $X, \Sigma$ )) = {}
- $\lambda$ -closure(move(Y, G)) = {}
- $\lambda$ -closure(move(Y, O)) = {3}
- $\lambda$ -closure(move(Y,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(Z, G)) = {}
- $\lambda$ -closure(move(Z, O)) = {}
- $\lambda$ -closure(move( $Z, \Sigma$ )) = {}







| NFA | 1 | G 2 | O 3 |
|-----|---|-----|-----|
|-----|---|-----|-----|

|     | Name | G | О | Σ |
|-----|------|---|---|---|
| {1} | X    | Y | Z | Z |
| {2} | Y    | Z | W | Z |
| {}  | Z    | Z | Z | Z |
| {3} | W    | Z | Z | Z |



# Loop statement:

### for pattern = GOCON

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(X, G)) = {2}
- $\lambda$ -closure(move(X, O)) = {}
- $\lambda$ -closure(move(X, C)) = {}
- $\lambda$ -closure(move(X, O)) = {}
- $\lambda$ -closure(move(X, N)) = {}
- $\lambda$ -closure(move( $X, \Sigma$ )) = {}
- λ-closure(move(Y, G)) = {}
- $\lambda$ -closure(move(Y, O)) = {3}
- $\lambda$ -closure(move(Y, C)) = {}
- $\lambda$ -closure(move(Y, O)) = {3}
- $\lambda$ -closure(move(Y, N)) = {}
- $\lambda$ -closure(move( $Y, \Sigma$ )) = {}
- $\lambda$ -closure(move(Z, G)) = {}
- $\lambda$ -closure(move(Z, O)) = {}
- $\lambda$ -closure(move(Z, C)) = {}
- $\lambda$ -closure(move(Z, O)) = {}
- $\lambda$ -closure(move(Z, N)) = {}
- $\lambda$ -closure(move( $Z, \Sigma$ )) = {}
- $\lambda$ -closure(move(W, G)) = {}
- $\lambda$ -closure(move(W, O)) = {}
- $\lambda$ -closure(move(W, C)) = {4}
- λ-closure(move(W, O)) = {}
- λ-closure(move(W, N)) = {}
- $\lambda$ -closure(move(W,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(V, G)) = {}
- $\lambda$ -closure(move(V, O)) = {5}
- $\lambda$ -closure(move(V, C)) = {}
- $\lambda$ -closure(move(V, O)) = {5}
- $\lambda$ -closure(move(V, N)) = {}











- $\lambda$ -closure(move(V,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(Q, G)) = {}
- $\lambda$ -closure(move(Q, O)) = {}
- $\lambda$ -closure(move(Q, C)) = {}
- $\lambda$ -closure(move(Q, O)) = {}
- $\lambda$ -closure(move(Q, N)) = {6}
- $\lambda$ -closure(move( $Q, \Sigma$ )) = {}
- $\lambda$ -closure(move(B, G)) = {}
- $\lambda$ -closure(move(B, O)) = {}
- $\lambda$ -closure(move(B, C)) = {}
- $\lambda$ -closure(move(B, O)) = {}
- $\lambda$ -closure(move(B, N)) = {}
- $\lambda$ -closure(move(B,  $\Sigma$ )) = {}

| NFA | 1 | G 2 | O 3 C | 4 | 5 N | 6 |
|-----|---|-----|-------|---|-----|---|
|-----|---|-----|-------|---|-----|---|

|     | Name | G | O | С | О | N | Σ |
|-----|------|---|---|---|---|---|---|
| {1} | Χ    | Y | Z | Z | Z | Z | Z |
| {2} | Y    | Z | W | Z | Z | Z | Z |
| {}  | Z    | Z | Z | Z | Z | Z | Z |
| {3} | W    | Z | Z | V | Z | Z | Z |
| {4} | V    | Z | Z | Z | Q | Z | Z |
| {5} | Q    | Z | Z | Z | Z | В | Z |
| {6} | В    | Z | Z | Z | Z | Z | Z |



### Function:

#### Create Function pattern = SUB

 $\Sigma = \{\text{A-Z}\} \cup \{\text{a-z}\} \cup \{\text{0-9}\} \cup \{\text{-}\}$ 

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(X, S)) = {2}
- $\lambda$ -closure(move(X, U)) = {}
- $\lambda$ -closure(move(X, B)) = {}
- $\lambda$ -closure(move( $X, \Sigma$ )) = {}
- $\lambda$ -closure(move(Y, S)) = {}
- $\lambda$ -closure(move(Y, U)) = {3}
- $\lambda$ -closure(move(Y, B)) = {}
- $\lambda$ -closure(move( $Y, \Sigma$ )) = {}
- λ-closure(move(Z, S)) = { }
- $\lambda$ -closure(move(Z, U)) = {}
- $\lambda$ -closure(move(Z, B)) = {}
- $\lambda$ -closure(move( $Z, \Sigma$ )) = {}
- $\lambda$ -closure(move(W, S)) = {}
- $\lambda$ -closure(move(W, U)) = {}
- $\lambda$ -closure(move(W, B)) = {4}
- $\lambda$ -closure(move(W,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(V, S)) = {}
- $\lambda$ -closure(move(V, U)) = {}
- $\lambda$ -closure(move(V, B)) = {}
- $\lambda$ -closure(move(V,  $\Sigma$ )) = {}









|     | Name | S | U | В | Σ |
|-----|------|---|---|---|---|
| {1} | X    | Y | Z | Z | Z |
| {2} | Y    | Z | W | Z | Z |
| {}  | Z    | Z | Z | Z | Z |
| {3} | W    | Z | Z | V | Z |
| {4} | V    | Z | Z | Z | Z |



## Call Function pattern = SAYSUBTO

 $\Sigma = \{A-Z\} \cup \{a-z\} \cup \{0-9\} \cup \{-\}$ 

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(X, S)) = {2}
- $\lambda$ -closure(move(X, A)) = {}
- $\lambda$ -closure(move(X, Y)) = {}
- $\lambda$ -closure(move(X, S)) = {}
- $\lambda$ -closure(move(X, U)) = {}
- $\lambda$ -closure(move(X, B)) = {}
- $\lambda$ -closure(move(X, T)) = {}
- $\lambda$ -closure(move(X, O)) = {}
- $\lambda$ -closure(move( $X, \Sigma$ )) = {}
- $\lambda$ -closure(move(F, S)) = {}
- $\lambda$ -closure(move(F, A)) = {3}
- $\lambda$ -closure(move(F, Y)) = {}
- $\lambda$ -closure(move(F, S)) = {}
- $\lambda$ -closure(move(F, U)) = {}
- $\lambda$ -closure(move(F, B)) = {}
- $\lambda$ -closure(move(F, T)) = {}
- $\lambda$ -closure(move(F, O)) = {}
- $\lambda$ -closure(move(F,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(Z, S)) = {}
- $\lambda$ -closure(move(Z, A)) = {}
- $\lambda$ -closure(move(Z, Y)) = {}
- $\lambda$ -closure(move(Z, S)) = {}
- $\lambda$ -closure(move(Z, U)) = {}
- $\lambda$ -closure(move(Z, B)) = {}
- $\lambda$ -closure(move(Z, T)) = {}















- $\lambda$ -closure(move(Z, O)) = {}
- $\lambda$ -closure(move( $Z, \Sigma$ )) = {}
- $\lambda$ -closure(move(W, S)) = {}
- $\lambda$ -closure(move(W, A)) = {}
- $\lambda$ -closure(move(W, Y)) = {4}
- $\lambda$ -closure(move(W, S)) = {}
- $\lambda$ -closure(move(W, U)) = {}
- $\lambda$ -closure(move(W, B)) = {}
- λ-closure(move(W, T)) = {}
- $\lambda$ -closure(move(W, O)) = {}
- $\lambda$ -closure(move(W,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(V, S)) = {}
- $\lambda$ -closure(move(V, A)) = {}
- $\lambda$ -closure(move(V, Y)) = {}
- $\lambda$ -closure(move(V, S)) = {5}
- $\lambda$ -closure(move(V, U)) = {}
- $\lambda$ -closure(move(V, B)) = {}
- $\lambda$ -closure(move(V, T)) = {}
- $\lambda$ -closure(move(V, O)) = {}
- $\lambda$ -closure(move(V,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(Q, S)) = {}
- $\lambda$ -closure(move(Q, A)) = {}
- $\lambda$ -closure(move(Q, Y)) = {}
- $\lambda$ -closure(move(Q, S)) = {}
- $\lambda$ -closure(move(Q, U)) = {6}
- $\lambda$ -closure(move(Q, B)) = {}
- $\lambda$ -closure(move(Q, T)) = {}
- $\lambda$ -closure(move(Q, O)) = {}
- $\lambda$ -closure(move( $Q, \Sigma$ )) = {}
- $\lambda$ -closure(move(E, S)) = {}
- $\lambda$ -closure(move(E, A)) = {}
- $\lambda$ -closure(move(E, Y)) = {}
- $\lambda$ -closure(move(E, S)) = {}

- $\lambda$ -closure(move(E, U)) = {}
- $\lambda$ -closure(move(E, B)) = {7}
- $\lambda$ -closure(move(E, T)) = {}
- $\lambda$ -closure(move(E, O)) = {}
- $\lambda$ -closure(move(E,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(D, S)) = {}
- $\lambda$ -closure(move(D, A)) = {}
- $\lambda$ -closure(move(D, Y)) = {}
- $\lambda$ -closure(move(D, S)) = {}
- $\lambda$ -closure(move(D, U)) = {}
- $\lambda$ -closure(move(D, B)) = {}
- $\lambda$ -closure(move(D, T)) = {8}
- $\lambda$ -closure(move(D, O)) = {}
- $\lambda$ -closure(move(D,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(H, S)) = {}
- $\lambda$ -closure(move(H, A)) = {}
- $\lambda$ -closure(move(H, Y)) = {}
- $\lambda$ -closure(move(H, S)) = {}
- $\lambda$ -closure(move(H, U)) = {}
- $\lambda$ -closure(move(H, B)) = {}
- $\lambda$ -closure(move(H, T)) = {}
- $\lambda$ -closure(move(H, O)) = {9}
- $\lambda$ -closure(move(H,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(K, S)) = {}
- $\lambda$ -closure(move(K, A)) = {}
- $\lambda$ -closure(move(K, Y)) = {}
- $\lambda$ -closure(move(K, S)) = {}
- $\lambda$ -closure(move(K, U)) = {}
- $\lambda$ -closure(move(K, B)) = {}
- $\lambda$ -closure(move(K, T)) = {}
- $\lambda$ -closure(move(K, O)) = {}
- $\lambda$ -closure(move(K,  $\Sigma$ )) = {}



|             | Name | S | Α | Y | S | U | В | T | О | Σ |
|-------------|------|---|---|---|---|---|---|---|---|---|
| {1}         | Χ    | F | Z | Z | Z | Z | Z | Z | Z | Z |
| {2}         | F    | Z | W | Z | Z | Z | Z | Z | Z | Z |
| {}          | Z    | Z | Z | Z | Z | Z | Z | Z | Z | Z |
| {3}         | W    | Z | Z | V | Z | Z | Z | Z | Z | Z |
| <b>{4</b> } | V    | Z | Z | Z | Q | Z | Z | Z | Z | Z |
| {5}         | Q    | Z | Z | Z | Z | Е | Z | Z | Z | Z |
| {6}         | Е    | Z | Z | Z | Z | Z | D | Z | Z | Z |
| {7}         | D    | Z | Z | Z | Z | Z | Z | Н | Z | Z |
| {8}         | Н    | Z | Z | Z | Z | Z | Z | Z | K | Z |
| {9}         | K    | Z | Z | Z | Z | Z | Z | Z | Z | Z |



Equal = <=>

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(A, <)) = {2}
- $\lambda$ -closure(move(A, =)) = {}
- λ-closure(move(A, >)) = { }
- $\lambda$ -closure(move(A,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(B, <)) = {}
- $\lambda$ -closure(move(B, =)) = {3}
- $\lambda$ -closure(move(B, >)) = {}
- $\lambda$ -closure(move(B,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(Z,  $\leq$ )) = {}
- $\lambda$ -closure(move(Z, =)) = {}
- $\lambda$ -closure(move(Z, >)) = {}
- $\lambda$ -closure(move( $Z, \Sigma$ )) = {}







- λ-closure(move(C, <)) = { }
- $\lambda$ -closure(move(C, =)) = {}
- $\lambda$ -closure(move(C, >)) = {4}
- $\lambda$ -closure(move( $C, \Sigma$ )) = {}
- λ-closure(move(D, <)) = { }
- $\lambda$ -closure(move(D, =)) = {}
- λ-closure(move(D, >)) = { }
- $\lambda$ -closure(move(D,  $\Sigma$ )) = {}

•

| NIE | ٨       | Name  | \ \ \ \            | = /                      | >>(      | Σ    |
|-----|---------|-------|--------------------|--------------------------|----------|------|
| NF  | $\{1\}$ | → A — | → B <sup>2</sup> / | <b>→</b> (Z <sup>3</sup> | <u> </u> | )) z |
|     | {2}     | В     | Z                  |                          | Z        | Z    |
|     | {}      | Z     | Z                  | Z                        | Z        | Z    |
|     | {3}     | С     | Z                  | Z                        | D        | Z    |
|     | {4}     | D     | Z                  | Z                        | Z        | Z    |



# Multiply = $< \land >$

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(A, <)) = {2}
- $\lambda$ -closure(move(A,  $\Lambda$ )) = {}
- $\lambda$ -closure(move(A, >)) = {}
- $\lambda$ -closure(move(A,  $\Sigma$ )) = {}
- λ-closure(move(B, <)) = { }
- $\lambda$ -closure(move(B,  $\Lambda$ )) = {3}







- $\lambda$ -closure(move(B, >)) = {}
- $\lambda$ -closure(move(B,  $\Sigma$ )) = {}
- r3 = >
- $\lambda$ -closure(move(Z, <)) = {}
- $\lambda$ -closure(move(Z,  $\Lambda$ )) = {}
- $\lambda$ -closure(move(Z, >)) = {}
- $\lambda$ -closure(move( $Z, \Sigma$ )) = {}
- λ-closure(move(C, <)) = { }
- $\lambda$ -closure(move(C,  $\Lambda$ )) = {}
- $\lambda$ -closure(move(C, >)) = {4}
- $\lambda$ -closure(move(C,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(D, <)) = {}
- $\lambda$ -closure(move(D,  $\Lambda$ )) = {}
- $\lambda$ -closure(move(D, >)) = {}
- $\lambda$ -closure(move(D,  $\Sigma$ )) = {}

•



|     | Name | < | ٨ | > | Σ |
|-----|------|---|---|---|---|
| {1} | A    | В | Z | Z | Z |
| {2} | В    | Z | С | Z | Z |
| {}  | Z    | Z | Z | Z | Z |
| {3} | С    | Z | Z | D | Z |
| {4} | D    | Z | Z | Z | Z |



$$Plus = < \lor >$$

$$\Sigma = \{\text{A-Z}\} \cup \{\text{a-z}\} \cup \{\text{0-9}\} \cup \{\text{-}\}$$

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(A, <)) = {2}
- $\lambda$ -closure(move(A, V)) = {}
- λ-closure(move(A, >)) = { }
- $\lambda$ -closure(move(A,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(B, <)) = {}
- $\lambda$ -closure(move(B, V)) = {3}
- $\lambda$ -closure(move(B, >)) = {}
- $\lambda$ -closure(move(B,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(Z,  $\leq$ )) = {}
- λ-closure(move(Z, V)) = {}
- $\bullet$   $\Lambda$ -closure(intove( $\Sigma$ ,  $\vee$ )) =  $\{\}$
- $\lambda$ -closure(move(Z, >)) = {}
- $\lambda$ -closure(move( $Z, \Sigma$ )) = {}
- $\lambda$ -closure(move(C, <)) = {}
- $\lambda$ -closure(move(C, V)) = {}
- $\lambda$ -closure(move(C, >)) = {4}
- $\lambda$ -closure(move(C,  $\Sigma$ )) = {}
- λ-closure(move(D, <)) = { }
- $\lambda$ -closure(move(D, V)) = {}
- $\lambda$ -closure(move(D, >)) = {}
- $\lambda$ -closure(move(D,  $\Sigma$ )) = {}



|     | Name | < | V | > | Σ |
|-----|------|---|---|---|---|
| {1} | A    | В | Z | Z | Z |
| {2} | В    | Z | С | Z | Z |
| {}  | Z    | Z | Z | Z | Z |
| {3} | С    | Z | Z | D | Z |
| {4} | D    | Z | Z | Z | Z |









#### Minus = < ->

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(A, <)) = {2}
- $\lambda$ -closure(move(A, -)) = {}
- $\lambda$ -closure(move(A, >)) = {}
- $\lambda$ -closure(move(A,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(B, <)) = {}
- $\lambda$ -closure(move(B, -)) = {3}
- $\lambda$ -closure(move(B, >)) = {}
- $\lambda$ -closure(move(B,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(Z, <)) = {}
- $\lambda$ -closure(move(Z, -)) = {}
- $\lambda$ -closure(move(Z, >)) = {}
- $\lambda$ -closure(move( $Z, \Sigma$ )) = {}
- λ-closure(move(C, <)) = { }
- $\lambda$ -closure(move(C, -)) = {}
- $\lambda$ -closure(move(C, >)) = {4}
- $\lambda$ -closure(move( $C, \Sigma$ )) = {}
- λ-closure(move(D, <)) = { }
- $\lambda$ -closure(move(D, -)) = {}



- $\lambda$ -closure(move(D, >)) = {}
- $\lambda$ -closure(move(D,  $\Sigma$ )) = {}

•

NFA



|     | Name | < | - | > | Σ |
|-----|------|---|---|---|---|
| {1} | A    | В | Z | Z | Z |
| {2} | В    | Z | С | Z | Z |
| {}  | Z    | Z | Z | Z | Z |
| {3} | С    | Z | Z | D | Z |
| {4} | D    | Z | Z | Z | Z |



Divide **=** <:->

 $\Sigma = \{A-Z\} \cup \{a-z\} \cup \{0-9\} \cup \{-\}$ 

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(A, <)) = {2}
- $\lambda$ -closure(move(A,  $\rightleftharpoons$ )) = {}
- $\lambda$ -closure(move(A, >)) = {}
- $\lambda$ -closure(move(A,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(B, <)) = {}
- $\lambda$ -closure(move(B,  $\rightleftharpoons$ )) = {3}
- $\lambda$ -closure(move(B, >)) = {}
- $\lambda$ -closure(move(B,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(Z, <)) = {}
- $\lambda$ -closure(move(Z, :=)) = {}







- $\lambda$ -closure(move(Z, >)) = {}
- $\lambda$ -closure(move( $Z, \Sigma$ )) = {}
- $\lambda$ -closure(move(C, <)) = {}
- $\lambda$ -closure(move(C, :=)) = {}
- $\lambda$ -closure(move(C, >)) = {4}
- $\lambda$ -closure(move(C,  $\Sigma$ )) = {}
- λ-closure(move(D, <)) = { }
- $\lambda$ -closure(move(D,  $\rightleftharpoons$ )) = {}
- $\lambda$ -closure(move(D, >)) = {}
- $\lambda$ -closure(move(D,  $\Sigma$ )) = {}



|     | Name | < | ∺ | > | Σ |
|-----|------|---|---|---|---|
| {1} | A    | В | Z | Z | Z |
| {2} | В    | Z | С | Z | Z |
| {}  | Z    | Z | Z | Z | Z |
| {3} | С    | Z | Z | D | Z |
| {4} | D    | Z | Z | Z | Z |



Not Equal =  $\neq >$ 

 $\Sigma = \{\text{A--Z}\} \cup \{\text{a--z}\} \cup \{\text{0--9}\} \cup \{\text{--}\}$ 

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(A, <)) = {2}
- $\lambda$ -closure(move(A,  $\neq$ )) = {}
- λ-closure(move(A, >)) = { }





>

- $\lambda$ -closure(move(A,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(B, <)) = {} r2 =  $\neq$
- $\lambda$ -closure(move(B,  $\neq$ )) = {3}
- $\lambda$ -closure(move(B, >)) = {}
- $\lambda$ -closure(move(B,  $\Sigma$ )) = { }
- $\lambda$ -closure(move( $\mathbb{Z}$ , <)) = {}
- $\lambda$ -closure(move( $\mathbb{Z}, \neq$ )) = {}
- $\lambda$ -closure(move(Z, >)) = {}
- $\lambda$ -closure(move( $\mathbb{Z}, \Sigma$ )) = {}
- λ-closure(move(C, <)) = { }
- $\lambda$ -closure(move(C,  $\neq$ )) = {}
- $\lambda$ -closure(move(C, >)) = {4}
- $\lambda$ -closure(move(C,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(D, <)) = {}
- $\lambda$ -closure(move(D,  $\neq$ )) = {}
- λ-closure(move(D, >)) = { }
- $\lambda$ -closure(move(D,  $\Sigma$ )) = {}



r3 = >

|     | Name | < | <b>≠</b> | > | Σ |
|-----|------|---|----------|---|---|
| {1} | A    | В | Z        | Z | Z |
| {2} | В    | Z | С        | Z | Z |
| {}  | Z    | Z | Z        | Z | Z |
| {3} | С    | Z | Z        | D | Z |
| {4} | D    | Z | Z        | Z | Z |



Less Than **= <<>** 

 $\Sigma = \{\text{A-Z}\} \cup \{\text{a-z}\} \cup \{\text{0-9}\} \cup \{\text{-}\}$ 

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(A, <)) = {2}
- $\lambda$ -closure(move(A, <)) = {}
- $\lambda$ -closure(move(A, >)) = {}
- $\lambda$ -closure(move(A,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(B, <)) = {}
- $\lambda$ -closure(move(B, <)) = {3}
- $\lambda$ -closure(move(B, >)) = {}
- $\lambda$ -closure(move(B,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(Z, <)) = {}
- $\lambda$ -closure(move(Z, <)) = {}
- $\lambda$ -closure(move(Z, >)) = {}
- $\lambda$ -closure(move( $Z, \Sigma$ )) = {}
- $\lambda$ -closure(move(C, <)) = {}
- $\lambda$ -closure(move(C, <)) = {}
- $\lambda$ -closure(move(C, >)) = {4}
- $\lambda$ -closure(move(C,  $\Sigma$ )) = {}
- λ-closure(move(D, <)) = { }
- λ-closure(move(D, <)) = { }
- $\lambda$ -closure(move(D, >)) = {}
- $\lambda$ -closure(move(D,  $\Sigma$ )) = {}

1 2 3 > 4







|     | Name | < | < | > | Σ |
|-----|------|---|---|---|---|
| {1} | A    | В | Z | Z | Z |
| {2} | В    | Z | С | Z | Z |
| {}  | Z    | Z | Z | Z | Z |
| {3} | С    | Z | Z | D | Z |
| {4} | D    | Z | Z | Z | Z |



### Greater Than = <>>

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(A, <)) = {2}
- $\lambda$ -closure(move(A, >)) = {}
- $\lambda$ -closure(move(A, >)) = {}
- $\lambda$ -closure(move(A,  $\Sigma$ )) = {}
- λ-closure(move(B, <)) = { }
- $\lambda$ -closure(move(B, >)) = {3}
- $\lambda$ -closure(move(B, >)) = {}
- $\lambda$ -closure(move(B,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(Z,  $\leq$ )) = {}
- $\lambda$ -closure(move(Z, >)) = {}
- $\lambda$ -closure(move(Z, >)) = {}

$$\Sigma = \{\text{A-Z}\} \cup \{\text{a-z}\} \cup \{\text{0-9}\} \cup \{\text{-}\}$$







- $\lambda$ -closure(move( $Z, \Sigma$ )) = {}
- λ-closure(move(C, <)) = { }
- $\lambda$ -closure(move(C, >)) = {}
- $\lambda$ -closure(move(C, >)) = {4}
- $\lambda$ -closure(move(C,  $\Sigma$ )) = {}
- λ-closure(move(D, <)) = { }
- $\lambda$ -closure(move(D, >)) = {}
- λ-closure(move(D, >)) = { }
- $\lambda$ -closure(move(D,  $\Sigma$ )) = {}



|     | Name | < | > | > | Σ |
|-----|------|---|---|---|---|
| {1} | A    | В | Z | Z | Z |
| {2} | В    | Z | С | Z | Z |
| {}  | Z    | Z | Z | Z | Z |
| {3} | С    | Z | Z | D | Z |
| {4} | D    | Z | Z | Z | Z |



Assign =  $\in$ 

- $\lambda$ -closure(1) = {1}
- $\lambda$ -closure(move(A,  $\in$ )) = {2}
- $\lambda$ -closure(move(A,  $\Sigma$ )) = {}
- $\lambda$ -closure(move(B,  $\in$ )) = {}
- $\lambda$ -closure(move(B,  $\Sigma$ )) = {}



- $\lambda$ -closure(move( $Z, \in$ )) = {}
- $\lambda$ -closure(move( $Z, \Sigma$ )) = {}



|     | Name | € | Σ |
|-----|------|---|---|
| {1} | A    | В | Z |
| {2} | В    | Z | Z |
| {}  | Z    | Z | Z |



Numbers:

Integer = 562





