1. Low-Pass Filter Difference Equation

$$Vd_{LPF}[k] = \tfrac{T}{2\tau+T} \cdot (Vd[k] + Vd[k-1]) + \tfrac{2\tau-T}{2\tau+T} \cdot Vd_{LPF}[k-1]$$

Where:

- $T = \frac{1}{100000}$ (Sampling period = 10 μ s)
- $\tau = \frac{1}{10000}$ (Cutoff frequency = 1591.5491 Hz)

2. PID Control Difference Equation

$$e[k] = Vd_{LPF}[k] - Vm[k]$$

$$\begin{split} u_{PID}[k] &= \left(K_p + K_i \cdot \frac{T}{2} + \frac{K_d}{\frac{T}{2}}\right) \cdot e[k] \\ &\quad + \left(K_i \cdot \frac{T}{2} + \frac{K_d}{\frac{T}{2}} - K_p\right) \cdot e[k-1] \\ &\quad + \left(K_i \cdot T - 4 \cdot \frac{K_d}{T}\right) \cdot e[k-2] \\ &\quad + u[k-2] \end{split}$$

Where:

- $K_p = 8$
- $K_i = 20000$
- $K_d = 0$

3. Total Control Output

$$u_{total}[k] = u_{PID}[k] + u_{FF}[k] \label{eq:utotal}$$

$$u_{FF}[k] = V d_{LPF}[k] / F_{gain}$$

Feedforward Gains:

- Channel 0: $F_0 = 0.5716$
- Channel 1: $F_1 = 0.5832$
- Channel 2: $F_2 = 0.5945$
- Channel 3: $F_3 = 0.5389$
- Channel 4: $F_4 = 0.6081$
- Channel 5: $F_5=0.5622$

4. DAC Output

$$oldsymbol{V}_{out} = oldsymbol{M}_{DC} \cdot oldsymbol{u}_{total}$$

DC Matrix

Long Fei diagonal norm = 1

[0.4820	0.0398	0.0691	0.1061	0.0968	0.0638]
[0.0572	0.3142	0.1288	0.0722	0.0565	0.1342]
[0.0676	0.0916	0.4596	0.0468	0.0830	0.0714]
[0.1267	0.0607	0.0568	0.3803	0.0597	0.1233]
[0.1358	0.0568	0.1200	0.0711	0.3114	0.0559]
[0.0630	0.0955	0.0709	0.1025	0.0378	0.4648]

Commented

Long Fei

[0.7143	0.0590	0.1024	0.1572	0.1435	0.0945]
[0.0848	0.4656	0.1908	0.1069	0.0837	0.1989]
[0.1001	0.1357	0.6811	0.0694	0.1230	0.1057]
[0.1877	0.0900	0.0842	0.5635	0.0885	0.1827]
[0.2013	0.0842	0.1778	0.1054	0.4614	0.0828]
[0.0934	0.1416	0.1050	0.1519	0.0561	0.6888]

Long Fei diagonal norm = $\sqrt{6}$

[1.1808]	0.0975	0.1693	0.2599	0.2372	0.1563]
[0.1401	0.7697	0.3155	0.1768	0.1384	0.3288]
[0.1655	0.2243	1.1259	0.1147	0.2033	0.1748]
[0.3102	0.1488	0.1391	0.9315	0.1462	0.3020]
[0.3327	0.1392	0.2939	0.1743	0.7627	0.1369]
[0.1544	0.2340	0.1736	0.2510	0.0927	1.1386]

merge V

[6.1443	3.1508	2.1931	4.2687	3.9656	2.8689]
[1.6102	4.3544	2.0024	2.7619	3.0089	1.8570]
[1.6713	2.6581	3.9047	2.3873	2.8106	1.9231]
[2.2566	3.2604	1.7581	5.8801	3.9727	2.3370]
[1.6065	2.2319	1.2178	2.5866	4.1330	1.4273]
[1.3310	1.7212	1.2701	1.6959	1.6841	3.8716]

merge V normalized

[0.5219	0.26/6	0.1863	0.3626	0.3368	0.243/]
[0.1368	0.3699	0.1701	0.2346	0.2556	0.1577]
[0.1420	0.2258	0.3317	0.2028	0.2387	0.1633]
[0.1917	0.2769	0.1493	0.4995	0.3374	0.1985]
[0.1365	0.1896	0.1034	0.2197	0.3511	0.1212]
[0.1131	0.1462	0.1079	0.1441	0.1430	0.3289]

merge V normalized sqrt(6)

[1.2784	0.6556	0.4563	0.8881	0.8251	0.5969]
[0.3350	0.9060	0.4166	0.5746	0.6260	0.3864]
[0.3477	0.5530	0.8124	0.4967	0.5848	0.4001]
[0.4695	0.6784	0.3658	1.2234	0.8266	0.4862]
[0.3342	0.4644	0.2534	0.5382	0.8599	0.2970]
[0.2769	0.3581	0.2643	0.3529	0.3504	0.8055]

pulse V positive 333 normalized

```
[0.3655 0.1003 0.0868 0.1846 0.1858 0.1562]
[0.0671 0.2665 0.0719 0.1040 0.1321 0.0985]
[0.3534 0.5417 0.5800 0.4935 0.5597 0.4037]
[0.1077 0.1514 0.1094 0.3045 0.1289 0.0963]
[0.1529 0.2152 0.1349 0.2299 0.3910 0.0721]
```

[0.2462 0.3461 0.2433 0.3566 0.3538 0.4620]

pulse V positive 333 normalized sqrt(6)

[0.8952	0.2456	0.2125	0.4522	0.4551	0.3827]
[0.1644	0.6527	0.1760	0.2547	0.3236	0.2414]
[0.8656	1.3268	1.4206	1.2088	1.3709	0.9888]
[0.2637	0.3708	0.2679	0.7459	0.3158	0.2360]
[0.3745	0.5272	0.3305	0.5631	0.9577	0.1767]
[0.6031	0.8478	0.5959	0.8734	0.8666	1.1317]

pulse V positive 333 negative 111 normalized

[0.3618	-0.015	0.0099	0.0396	0.0542	0.0567]
[0.0315	0.3464	0.0426	0.0998	0.1226	0.0534]
[0.1115	0.1454	0.4318	0.0866	0.1250	0.1290]
[0.1175	0.1872	0.0826	0.4525	0.1882	0.0834]
[0.1147	0.1697	0.0842	0.1859	0.4133	0.0347]
[0.1101	0.1234	0.0960	0.1302	0.1018	0.4326]

pulse V positive 333 negative 111 normalized sqrt(6)

[0.8862	-0.037	0.0243	0.0969	0.1329	0.1388]
[0.0771	0.8485	0.1042	0.2444	0.3002	0.1309]
[0.2732	0.3561	1.0577	0.2120	0.3063	0.3160]
[0.2877	0.4586	0.2024	1.1084	0.4609	0.2044]
[0.2809	0.4156	0.2062	0.4554	1.0124	0.0851]
[0.2698	0.3022	0.2350	0.3188	0.2494	1.05961

pulse V positive 111 negative 333 normalized

[0.3669	-0.044	-0.025	0.0717	0.0539	0.0662]
[0.0423	0.4385	0.0422	0.1443	0.1714	0.0926]
[0.0006	-0.006	0.3162	-0.125	-0.046	0.0282]
[0.0991	0.1659	0.0501	0.4623	0.1461	0.0854]
[0.0542	0.1006	0.0177	0.1124	0.3488	-0.067]
[0.1161	0.1371	0.1107	0.1450	0.1106	0.4875]

pulse V positive 111 negative 333 normalized sqrt(6)

	•	_			
[0.8987	-0.108	-0.062	0.1756	0.1320	0.1621]
[0.1037	1.0741	0.1033	0.3533	0.4199	0.2268]
[0.0015	-0.015	0.7746	-0.306	-0.113	0.0692]
[0.2428	0.4064	0.1227	1.1324	0.3578	0.2091]
[0.1328	0.2464	0.0433	0.2753	0.8545	-0.163]
[0.2845	0.3359	0.2712	0.3551	0.2709	1.1941]