3° Teste de Geometria Analítica e Álgebra Linear - 2021/I

Profa. Lana Mara Rodrigues dos Santos

Matrícula: 102026

1. Seja o produto interno em $P_1(\mathbb{R})$ (espaço vetorial dos polinômios de grau menor ou igual a 1) definido por:

$$\langle p(x), q(x) \rangle = p(0)q(0) + p(1)q(1)$$

Se p(x) = -x + 2e q(x) = x - 1,então $\frac{\langle p(x), q(x) \rangle}{\|q(x)\|^2} =$

- (a) 2
- (b) 1
- (c) -2
- (d) 0
- (e) não sei
- 2. Seja r a reta definida pela interseção dos planos x+y-z=0 e x-y-1=0. Se $\pi:ax+by+cz-1=0$ é a equação do plano que passa por A=(1,0,-1) e contém a reta r, então b=
 - (a) 2
 - (b) 1
 - (c) -1
 - (d) 0
 - (e) não sei
- 3. Sejam as retas $r: X = (1,0,-1) + \alpha(0,2,-1), \ \alpha \in \mathbb{R}$ e $s: X = (0,0,-2) + \beta(1,-2,2), \ \beta \in \mathbb{R}$. Então r e s são retas:
 - (a) reversas (ortogonais)
 - (b) reversas (não ortogonais)
 - (c) concorrentes (perpendiculares)
 - (d) concorrentes (não perpendiculares)
 - (e) não sei

- 4. Sejam V um espaço vetorial munido de produto interno e u, v, w vetores **distintos e não nulos** de V. Considere as seguintes afirmações:
 - (I) Se $u \perp v$, então $\{u, u+v\}$ não pode ser ortogonal.
 - (II) Se $u \perp v$ e $v \perp w$, então $u \perp w$.
 - (III) Se $w \perp u$ e $w \perp v$, então $w \perp (u+v)$.

Está correto o que se afirma em:

- (a) I e II
- (b) I e III
- (c) II e III
- (d) Todas
- (e) não sei
- 5. Dado $B = \{v_1 = (1, 1, 0), v_2 = (1, 0, 1), v_3 = (0, 1, 1)\},$ base ordenada de \mathbb{R}^3 , seja $C = \{u_1, u_2, u_3\}$ a base de \mathbb{R}^3 obtida de B pelo processo de Gram-Schmidt. A segunda coordenada de u_2 é:
 - (a) 1
 - (b) 1/2
 - (c) 0
 - (d) -1/2
 - (e) não sei
- 6. Seja y = ax + b a equação da reta que melhor se ajusta aos pontos (0,0), (1,2), (-1,-1) no sentido de mínimos quadrados. Então a+b=
 - (a) 1/3
 - (b) 11/6
 - (c) 7/6
 - (d) 3/2
 - (e) não sei

- 7. Seja a matriz $A = (a_{ij})$ de ordem 2 com autovetores (1,0) e (-2,1) associados, respectivamente, aos autovalores $\lambda = -1$ e $\lambda = 1$. Então $a_{22} =$
 - (a) -4
 - (b) -1
 - (c) 0
 - (d) 1
 - (e) não sei
- 8. Seja a matriz A de ordem 2 com autovetores $\lambda_1 = -1$ e $\lambda_2 = 2$. Se $B = A^3 2A^2$, então B é diagonalizável e a soma dos autovalores de B é:
 - (a) -4
 - (b) -3
 - (c) 4
 - (d) 2
 - (e) não sei
- 9. Seja a reta r: ax+by+c=0, em que a,b,c são constantes reais não todas nulas. Considere T o operador

do \mathbb{R}^2 tal que $T(x,y) = proj_r(x,y)$ (isto é, T(x,y) é a projeção ortogonal de um vetor $(x,y) \in \mathbb{R}^2$ sobre a reta r). É correto afirmar que:

- (a) T tem dois autovalores distintos.
- (b) T não tem autovalores.
- (c) O número de autovalores de T depende de a, b, c.
- (d) T tem apenas um autovalor.
- (e) não sei
- 10. Seja C o conjunto de pontos que satisfazem a equação $ax^2+2bxy+cy^2=0$, em que $a,b,c\neq 0$. Se os autovalores de $A=\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ são $\lambda_1=-1$ e $\lambda_2=4$, então C é:
 - (a) uma elipse
 - (b) uma hipérbole
 - (c) uma parábola
 - (d) um par de retas concorrentes
 - (e) não sei