Q1)

a)

$$\mu = \begin{bmatrix} 0.1 & 0.2 & 0.15 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 0.005 & -0.010 & 0.004 \\ -0.010 & 0.040 & -0.002 \\ 0.004 & -0.002 & 0.023 \end{bmatrix}.$$

Markowitz efficient frontier:

Efficient Frontier and Minimum Variance Portfolio

Weights of the portfolio are obtained by the following formula:

where, μ_v = return,

u = [1, 1, 1, ..., 1] (with same dimension as that of number of assets)

The value of σ_v^2 is calculated as per the following formula:

$$\sigma_v^2 = wCw^T$$

Now, the weights of the minimum variance portfolio is :

$$w = \frac{uC^{-1}}{uC^{-1}u^T}$$

b) For 10 different values on efficient frontier:

+ Weights	 Return	+ Risk
[[0.40217697] [0.404263] [0.19356003]]	0.150104 0.150104 	0.0725647
[0.25044341] [0.46456736] [0.28498923]]	0.160706 	0.0923526
[[-0.26264014] [0.66848518] [0.59415495]]	0.196556 	0.164358
[[-1.10554001] [1.00348385] [1.10205616]]	0.255451 	0.286953
[[-1.57748551] [1.19105193] [1.38643357]]	0.28842 7 	0.356192
[[-2.00659474] [1.36159534] [1.64499939]]	0.31841 	0.419292
[[-3.28913988] [1.87132482] [2.41781505]]	0.408023 	0.6082 7 9
[[-3.6868442] [2.0293868] [2.65745741]]	0.435812 	0.666945
[[-4.2246442] [2.24312782] [2.98151638]]	0.473389 	0.746304
[[-4.59508449] [2.39035409] [3.2047304]]	0.499272 	0.800981

c)

```
For Part C:

For 15% Risk:

Maximum Return is: 18.96%

And the corresponding weights are: [-0.16243566 0.62866033 0.53377534]

Minimum Return is: 5.24%

And the corresponding weights are: [1.79984338 -0.1512198 -0.64862357]
```

```
For Part D:

For 18% return:

Minimum Risk is: 0.1306

And the corresponding weights are : [-0.02568807 0.57431193 0.45137615]
```

e)

```
For Part E:

Market Portfolio Weights = [0.59375 0.328125 0.078125]

Return = 13.67%

Risk = 5.08%
```


Equation: 0.732x + 0.100

f)

```
For Part F:

Risk = 10.00%
Risk-free weights = -0.9680665771282883
Risky Weights = [1.16853953 0.64577185 0.1537552 ]
Returns = 17.23%

Risk = 25.00%
Risk-free weights = -3.9201664428207224
Risky Weights = [2.92134883 1.61442961 0.384388 ]
Returns = 28.07%
```


Plots for the weights of corresponding minimum variance curve:

```
Eqn of line w1 vs w2 is:

w2 = -0.40 w1 + 0.56

Eqn of line w2 vs w3 is:

w3 = 1.52 w2 + -0.42

Eqn of line w1 vs w3 is:

w3 = -0.60 w1 + 0.44
```


Q3)

60 data points have been collected for stock prices. The companies chosen are *Apple, Alphabet, Wipro, Amazon, Tesla, Nike, Netflix, Google, Cipla, and TCS.* These prices are from *2019-01-01* to *2023-12-31*, monthly.

b)

c)

```
Equation of CML is:

y = 5.53 \times + 0.05
```


d)

Eqn of Security Market Line is: mu = 0.58 beta + 0.05

