hw5

郑航 520021911347

一、存储器

1

顺序存储器:

64bit/100ns=6.4*10^8 bit/s

交叉存储器:

由于8τ=80ns<T=100ns,因此一个存储周期内可以完成8个bank的并发读写,故其带宽应该是顺序存储器的8倍,即:

64bit*8/100ns=5.12*10^9 bit/s

2

(1)

256/64=4, 8/1=8, 故总共需4*8=32块芯片

(2)

64K=2¹⁶=(2⁸)²,即该芯片有2⁸=256行,刷新信号间隔为2ms/256=7.8125*10⁻⁶=7.82*10⁻⁶s

二、高速缓存

1、直接映射

Address size(bits)	Cache size	Block Size	tag bits	Index bits	Offset bits	Bits per row
16	4KB	4B	4	10	2	32+4+1=37
32	32KB	16B	17	11	4	16*8+17+1=146
32	64KB	16B	16	12	4	16*8+16+1=145
64	2048KB	128B	43	14	7	128*8+43+1=1068

2、组相联映射

(1) 块大小为64B, 则地址末6位得作为块内偏移,主存有 $64MB/64B=2^{20}$ 块,cache有 $4KB/64B=2^{6}$ 块,则tag位数为14位,32-14-6=12位为组数,即主存地址编码如下:

Tag (31-16)	组 (15-6)	块内偏移量(5-0)	
-------------	----------	------------	--

(2) WB策略,需要1位的dirty bit; LRU替换,共四路,则每行需要log4=2个位记住组内顺序,此外还有Tag位 16位,valid bit 1位,即除了数据之外每行需要1+2+16+1=20位,共有2⁶行,即20*2⁶位故总容量为4K*8+20*2⁶=34048bits

3、代码分析与高速缓存的性能

前四个都会Miss,情况如下:

cache块编号	内容
0	table[0][0]~table[0][3]
1	table[1][0]~table[1][3]
2	table[2][0]~table[2][3]
3	table[3][0]~table[3][3]

然后后续12个都会hit, 再然后从table[0][4]开始又是4个miss, 之后情况如下:

cache块编号	内容
0	table[0][4]~table[0][7]
1	table[1][4]~table[1][7]
2	table[2][4]~table[2][7]
3	table[3][4]~table[3][7]

即后续12个都会hit

因此总共8个miss, 24个hit, 失效率8/32 *100%=25%

4、平均存储器访问时间

local miss rate:

L1\$=25% L2\$=40% L3\$=6%/(40%*25%)=60% 故AMAT=1+25%*(10+40%*(50+60%*(100)))=14.5 cycles

三、虚拟存储器 (Virtual Memory)

(1) 会将所有的TLB entry valid置为0,表示该缓存已经无效了

(2)

VPN	PPN	Valid	Dirty	LRU
0x01	0x11	1	1	6
0x13	0x17	1	1	4
0x10	0x13	1	1	7
0x20	0x12	1	1	1
0x23	0x18	1	1	2
0x11	0x14	1	0	5
0xac	0x15	1	1	7
0x34	0x19	1	1	0