Answers to Cracking the Coding Interview in LATEX by Ross Spencer Big O Additional Problems:

```
1.1 O(b)
```

1.2 O(b)

1.3 O(1)

 $1.4 O(\frac{a}{b})$

 $1.5 \text{ O}(\log_2(n))$

1.6 O($\sqrt[2]{n}$)

- 1.7 O(n) in the case that each node has 1 child in the same direction (degenerate tree).
 - 1.8 O(n), as you have no heuristics on where the node is located
 - 1.9 $O(n^2)$ as each copy is $1 + 2 + 3 + ... + n 1 \le n(n) \in O(n^2)$
- $1.10 \text{ O}(\log_1 0(n))$, which is equalizent to $\text{O}(\log_2(n))$ (up to a constant factor for change of base)
- 1.11 Checking if is in order takes O(s) in size of string s, otherwise makes successive calls to every possible string with c^s possibilities, so $O(s*c^s)$
- 1.12 Total is $O(b\log b)$ for mergesort $+ a\log b$ for binary searching b for each int in a. So, $O((a+b)\log b)$.