Vector space: V is v.s. over \mathbb{F} if $(\forall u, v \in V.u + v \in V) \land (\forall v \in V. \forall a \in \mathbb{F}.a \cdot v \in V)$.

Inner product: $\langle \cdot, \cdot \rangle : V^2 \to \mathbb{F}$ s.t. (multilinear by first argument) $\land (\forall u \in V \setminus \{0\} . \langle u, u \rangle > 0)$.

Norm: $\|\cdot\|: V \to \mathbb{F} \text{ s.t. } \|v\| = \sqrt{\langle v, v \rangle}$.

Orthogonal: $\langle v, u \rangle = 0$.

Orthogonal set: $(\forall v \neq u \in V. \langle v, u \rangle = 0) \land (\forall v \in V. ||v|| \neq 0).$

Orthonormal set: (orthogonal set) \land ($\forall v \in V$. ||v|| = 1).

Homomorphismic function: f s.t. f(xy) = f(x) f(y).

Expected value: $\mathbb{E}_{x \sim A}[f(x)] = \frac{1}{|A|} \sum_{x \in A} f(x)$.

Boolean function: function f such that $|\text{Im}(f)| \le 2$.

definition: $\mathcal{F}_n = \{\pm 1\}^n \to \{\pm 1\} \equiv \{0, 1\}^n \to \{0, 1\}.$

definition: for $f, g \in \mathcal{F}_n$ define $\langle f, g \rangle = \mathbb{E}_{x \sim \{0,1\}^n} [f(x) \cdot g(x)].$

claim: F_n is a vector space over $\{0, 1\}$.

Characteristic vector: let $S \subseteq [n]$, define $\chi_S : \{\pm 1\}^n \to \{\pm 1\}$ as $\chi_S(x) = \prod_{i \in S} x_i$.

claim: $\{\chi_S\}_{S\subseteq [n]}$ is orthonormal basis for F_n .

claim: every bool func $f\left(x\right)\in F_n$ can be represented as $f\left(x\right)=\sum_{S\subseteq\left[n\right]}\chi_S\left(x\right)\cdot\hat{f}\left(S\right)$ s.t. $\hat{f}\left(S\right)\in\left[-1,1\right]$.

Norm 2: let $f \in F_n$ then $||f||_2 = \sqrt{\mathbb{E}_{x \in \{0,1\}^n} [f(x)^2]}$.

 $\mathbf{claim}\colon\forall S,T\subseteq\left[n\right].\left\langle \chi_{S}\left(x\right),\chi_{T}\left(x\right)\right\rangle =\begin{cases}1 & S=T\\ 0 & else\end{cases}.$

statement: $f \cdot \chi_S = \hat{f}(S)$.

definition: $\overline{J} = [n] \setminus J$.

Restricted function: let
$$f \in F_n$$
, $J \subseteq [n]$, $z \in \{\pm 1\}^{|\overline{J}|}$ define $f_{\overline{J} \to z} : \{\pm 1\}^{|J|} \to \{\pm 1\}$ as $f_{\overline{J} \to z}(y) = f\left(\lambda m \in [n] \cdot \begin{cases} y_{|\{x \in J \mid x \leq m\}| & m \in J \\ z_{|\{x \in \overline{J} \mid x \leq m\}| & m \in \overline{J} \end{cases}} \\ z_{|\{x \in \overline{J} \mid x \leq m\}|} \quad m \in \overline{J} \end{cases}$.

claim: let $T \subseteq J \subseteq [n]$ then $\mathbb{E}_{z \in \{\pm 1\}^{|\overline{J}|}} \left[\widehat{f_{\overline{J} \to z}}(T)^2\right] = \sum_{S \in \{S \subseteq [n]|S \cap J = T\}} \widehat{f}(S)^2$.

Heavy coefficients: let $\gamma \in \mathbb{R}$, $f \in F_n$ then $\left|\left\{S \subseteq [n] \mid \left|\hat{f}(S)\right| \geq \gamma\right\}\right| \leq \frac{1}{\gamma^2}$.

t-sparse function: $\exists A \subseteq [n] . \left(f(x) = \sum_{i=1}^{n} \hat{f}(S) \chi_{S}(x) \right) \land (|A| = t).$

 (t,ε) -sparse function: $\exists g \in F_n$. $\left(\exists A \subseteq [n] \cdot \left(g\left(x\right) = \sum_{i=1}^n \hat{g}\left(S\right)\chi_S\left(x\right)\right) \wedge (|A| = t)\right) \wedge \left(\|f - g\|_2^2 \leq \varepsilon\right)$.

statement: let L be the output of the GL algorithm, we can conclude that $f(x) \approx \text{sign}\left(\sum_{T} \chi_{T}(x) \cdot \hat{f}(T)\right)$.

definition: let G be a finite group then $V_G = G \to \mathbb{C}$.

definition: for $f, g \in V_G$ define $\langle f, g \rangle = \mathbb{E}_{x \sim G} \left[f(x) \cdot \overline{g(x)} \right]$.

Cyclic group: a group G s.t. $\exists g \in G. \langle g \rangle = G$.

claim: $\langle \mathbb{Z}_n, + \rangle$ is a cyclic group.

Homomorphism: func $f: G \to H$ s.t. f(xy) = f(x) f(y).

Isomorphism: homomorphismic bijection.

symbol: $G \cong H$ is there exists an homomorphismic bijection between them.

Theorem: let G be a finite group then there exists $\mathbb{Z}_{q_1} \dots \mathbb{Z}_{q_n}$ cyclic groups s.t. $G \cong \mathbb{Z}_{q_1} \oplus \dots \oplus \mathbb{Z}_{q_n}$.

claim: let G be cyclic abelian group then $G \cong \mathbb{Z}_{|G|}$.

General basis: for every \mathbb{Z}_n define $\chi_y : \mathbb{Z}_n \to \mathbb{C}$ as $\chi_y(x) = e^{\frac{2\pi i xy}{n}}$.

 ${\bf claim}\colon \{\chi_g\}_{g\in G} \text{ is the only orthonormal homomorphismic basis of } G.$

definition: $x^{\otimes i} = \begin{cases} x_j & i \neq j \\ -x_i & i = j \end{cases}$.

Derivative: let f be a bool func and $i \in [n]$, $\partial_i f : \{\pm 1\}^n \to \{\pm 1\}$ as

 $\partial_i f(y) = \frac{1}{2} (f(y_1, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_{n-1}) - f(y_1, \dots, y_{i-1}, -1, y_{i+1}, \dots, y_{n-1})).$

Event probability: $\Pr_{x \sim A}[Q(x)] = \frac{1}{|A|} \sum_{x \in A} Q(x)$, where Q is 1 at the event and 0 else.

Influence: $I_i[f] = \Pr_{x \in \{\pm 1\}^n} [f(x) \neq f(x^{\otimes i})].$

Total influence: $I[f] = \sum_{i \in [n]} I_i[f]$.

claim: $I_i[f] = \langle \partial_i f, \partial_i f \rangle$.

Variance: $\text{var}(f) = \mathbb{E}_{x \in \{\pm 1\}^n} \left[\left(f(x) - \mathbb{E}_{y \in \{\pm 1\}^n} [f(y)] \right)^2 \right].$

Balanced boolean function: $\mathbb{E}_{x \in \{\pm 1\}^n} [f(x)] = 0$.