Homework G.12 - Solution

	Soln	0
	Guen 0 = fe = frage, 0 = free	
an	F = fr + fe $f = F - Fe$ we have	
10	IFI < fr + fe - Fe = 2 fore - (me+2mr)g Former = 2 fore - (me+2mr)g	
	2 - fe - fr a a	
Howaver	since each motor must apply Fe/2 Just to Stay in the cin the marinin force available to each motor for applied to gue so	
	Ale maximu possill to-que es	
	They - Imay - ((mc+2mr)g)	
	2	

	58/4	(2)
6,12	3) A block Sugram of the eltitude loop w/	
	hons hen so the state of the st	
	When a step of Ah is explicit to his, the	
	the dosed-loop char poly normal is	
	Del (S) = 52 + (me+2mr) hop S + (me+1mn) heph congresing to See (S) = 54 & Swn S + wint we have	
	and $ k_{0h} = 25 \omega_{nh} (m_c + 2m_r)$	
	3	

	5,10	(3)
G.12 e) The	e Black dragam of the lateral sine loop of	
	1 to - The 50 - 1 50	
Just	where $b_0 = \frac{1}{J_c + 2mrd^2}$ asker a slep of Ao on Od the torque of	Lo
	Let he Emma	
R.	closed book char polynomial in Del = 8 + 30 hop 5 + 30 hop	
Co-pari	gues $w_{n_0} = S^2 + 2S_{\theta} w_{n_0} S + w_{n_0}^2$	
	1 koo = 2 50 wo /60	
	4	

	Sola	¥
6,12	d) the OC goin of the same loop so one e) The block diagram of the outer loop w/ PD control so	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	where $a_i - \frac{a_i}{m_i + 2m_i}$ $b_i - \frac{t_0}{m_i + 2m_i}$	
	Toust offer a steps of Az on 3d, the cleaned	
	The closed - loop char polynomed so	
	$S_{el} = S^{2} + (a, + b, k_{0z}) + b, k_{pz}$ $Corparing b$ $S_{el} = S^{2} + 25 \omega_{nz} + 25 \omega_{nz}$	
	gives $\omega_{nz} = \int b, k_{\theta z}$ $\left[h_{\theta z} = 2 \underbrace{S_{z} \omega_{nz} - a}_{z} \right]$	
	5	