

Wood-Pawcatuck Watershed Association

2004 FRESHWATER BENTHIC MACROINVERTEBRATE SAMPLING NEAR SMALL DAMS IN THE PAWCATUCK WATERSHED

D. Poyer, S. Saila, A. Guillot, and D. Aube

ABSTRACT:

Benthic macroinvertebrates were sampled in connection with a study done by the Wood-Pawcatuck Watershed Association (WPWA) concerning small dam effects on low order streams. The study was conducted on four streams with a total of 12 sites sampled using EPA Rapid Bioassessment Protocols. All organisms were collected in the field, preserved, and taken to WPWA offices to be identified. Coarse level identification was done, often down to family level, by WPWA staff. Two types of multi-metric analyses to determine water quality were used: Rhode Island Wadeable Streams Condition Index (RI WSCI) and the New York State Biological Assessment Profile (NYS BAP). Results showed that although there was a decrease of water quality at the site of the dams, the macroinvertebrate communities tended to recover at relatively short distances downstream. This may due in part to the to the high habitat quality and good stream buffers found at the sampling sites. WPWA preferred to utilize the NYS BAP instead of the RI WSCI for three reasons: a) it uses fewer, more robust metrics, b) it accounts for all macroinvertebrate families collected during sampling, and c) it employs an easier to use scoring system.

CONTACT INFORMATION:

Wood-Pawcatuck Watershed Association 203B Arcadia Road, Hope Valley, RI 02832 denise.poyer@wpwa.org; saul.saila@worldnet.att.net

PUBLISHED BY Wood-Pawcatuck Watershed Association December 12, 2005

Acknowledgements

Funding for this study was provided by the Forrest C. Lattner Foundation, the John Wald Science Endowment, and the Community Foundation of Southeastern Connecticut.

Acknowledgements

Funding for this study was provided by the Forrest C. Lattner Foundation, the John Wald Science Endowment, and the Community Foundation of Southeastern Connecticut.

INTRODUCTION

In the summer of 2004 Wood-Pawcatuck Watershed Association (WPWA) personnel performed several studies, including small dam physical measurements, flow evaluations, stream temperature, and fish assemblages on low order streams in the Pawcatuck Watershed (Saila, et. al, 2004) that can sustain native brook trout (*Salvelinus fontinalis*). Field observations revealed that at least one small dam has been built on nearly every low order stream in the Pawcatuck watershed. These dams are often left over from former agricultural practices, such as irrigation ponds or watering sites for livestock. Often the dams create a small pond, or reservoir, upstream of the dam which is between ½ to 3 acres (0.2 to 1.2 ha) in surface area.

WPWA was interested in examining the effects these dams have on stream habitat, especially as it applies to brook trout. Brook trout are believed to be the only native salmonid in Rhode Island. It is possible that before the 18th century Atlantic salmon could have been found in small numbers in the watershed. However, it does not appear that the watershed streams provide adequate habitat to sustain populations of this species.

WPWA conducted aquatic benthic macroinvertebrate sampling at and below selected small dams. There were two objectives for this project. First, in conjunction with the brook trout study, WPWA used a multi metric index to determine impacts dams may have had on the downstream macroinvertebrate populations. According to Karr and Chu (2000) "Biological

monitoring, especially multimetric approaches such as index of biological integrity, acknowledges the importance of rivers' biotic integrity and offers one of the strongest available tools for diagnosing, minimizing, and preventing river degradation." In line with this concept, WPWA has been conducting macroinvertebrate studies for water quality assessment over the past several years (Burgess, 2002). Second, the samples collected for this study where also used to evaluate the multi metric indexes currently in use in Rhode Island and other parts of New England. The two indexes evaluated were the RI Wadeable Stream Condition Index (RI WSCI) and the NYS Biological Assessment Profile (BAP).

Low (first and second) order streams have become a focus for monitoring by WPWA. Land use and human constructions near streams can have a significant impact on rivers and streams (Karr, 1999). Low order streams are the most susceptible to stressors due to their small watersheds, low volume of flow, and minimum protection. They often provide critical habitat to native plants and animals. Many of the low order streams are less than 10 feet in width, which means that wetland regulations only require 100 foot (30 m) buffer around them (RI DEM, 2000). Some are vulnerable to reduced flow from groundwater and surface water withdrawals.

Currently the Pawcatuck Watershed is subject to a great deal of developmental pressures from residential and commercial sources and an increasing demand for water supply. Residential areas near streams often have vegetation cut down to the stream banks by homeowners ignorant of wetland regulations. This type of activity is visible along the Beaver River in Richmond, as well as many other streams throughout the watershed. Other risks to small streams in residential areas come from new road crossings, lawn and road runoff, and domestic pet waste. This study was done in combination with chemical and physical monitoring in order to document current water quality in certain low order streams and track changes over time from human activities in

the watershed. It is believed that information from these and other monitoring programs will prevent or mitigate adverse impacts on small stream. This report presents the results of WPWA's aquatic benthic macroinvertebrate study for 2004.

METHODS

Using the EPA methodology for Rapid Bioassessment Protocol (US EPA, 1997 and 1999), WPWA sampled 12 sites on 4 streams. Three replicates were collected at each site and each replicate was sorted separately. Nine sites where at riffle areas, where a kick net method was used to collect the samples. The other three sites were above small dams. An Ekman dredge was used to collect samples from three separate locations in the reservoir formed by the dam. All organisms from the kick net and substrate were collected and identified. The organisms were identified to order and, when appropriate, down to family level. All organisms were preserved and saved in 70% ethanol.

Riffles were selected to sample upstream and downstream of small dam obstructions. This was to establish relative water quality upstream and to determine if there were any changes to the water quality downstream of the dam. Most multi metric indices used to determine water quality are based on macroinvertebrates found at riffle sites. An 18 in. x 8 in. (45.72 cm x 20.32 cm) rectangular collection net with a 0.59 mm mesh was used at these sites. Collections were done for three minutes at each area, for a total of 3 replicates at each riffle site. Rocks were picked up within a 1 square foot square (0.3 m) area in front of the net, rubbed into the net, and saved in a bucket to be examined for more organisms. Substrate was then kicked up into the net for 3 minutes. All organisms were collected from the rocks and net at the site, preserved in 95% alcohol, and taken to WPWA headquarters for identification.

Most aquatic benthic macroinvertebrate protocols call for a random subsampling of 100, 200, or 300 organisms. For the purpose of this study, it was decided to identify all the organisms collected from the sampling. Because this is a program still being developed by WPWA, it was important to obtain a reasonable idea of what organisms are found in these stream sites. Kicks were collected separately in most of the samples so that an evaluation could be made as to whether or not they were reflective of the organisms at that site. A chi-square test was done comparing the three replicate kicks with the mean of the kicks to determine if there were any significant statistical differences among individual samples.

Three areas at each dam were sampled from a kayak using an Ekman dredge. These were: a) at the inlet to the pond, b) mid-pond, and c) just above the dam. Substrate from the dredge was collected into a bucket. The substrate was sorted at the site, and all organisms were collected, preserved in 95% alcohol, and taken to WPWA headquarters for identification.

All identification was done by WPWA staff down to order and, when appropriate, families. Initial sorting and identification was performed by either URI Coastal Fellow, Andrea Guillmot or Program Assistant, Danielle Aube. They used identification keys, guide books, and a dissecting microscope to make an initial identification. Resources and key guides used included Living Waters (Dates and Byrne 1997), Freshwater Macroinvertebrates of Northeastern North America (Peckarsky et. al, 1990), A Guide to Common Freshwater Invertebrate of North America (Voshell 2002), Aquatic Insects of North America (Merritt and Cummings, 1996) and slides from the Aquatic Macroinvertebrate Identification Workshop sponsored by the Hudson Basin River Watch (Nolan, 2004). Every sample was then checked again by Program Director, Denise Poyer, with corrections made as necessary. Ms. Poyer attended the Benthic

quality control purposes, several of the samples were brought to this workshop and checked by both Ms. Poyer and Mr. Nolan. Worksheets for each of the sites listing all of the organisms identified are found in Appendix A.

MULTI METRIC ANALYSIS

As part of this study, a review was done of several state programs to examine the metrics used to evaluate and quantify water quality utilizing invertebrates. For the purposes of reporting water quality, WPWA utilized the metric formulas used by NYS DEC, known as the Biological Assessment Profile (NY BAP) based on a Family Level Benthic Macroinvertebrate Data Analysis Sheet. This method of assessing water quality seemed the most valuable for several reasons. First, NY BAP focuses on only four key indices: a) EPT (Ephemeroptera, Plecoptera, and Trichoptera) Richness, b) Family Richness, c) Family Biotic Index (FBI), and d) Percent Model Affinity (PMA). (See Appendix B for explanation of each). These indices seem to be the four most effective metrics in that they are sensitive to changes due to human influence (Schaefer, Gido, and Smith, 2005; Karr, 1999). Once these indices have been calculated, they can be converted to a scale of 1 to 10 for a more comprehensible comparison (TABLE 2). A relative water quality index of Non-, Slight, Moderate, or Severe Impact can be assigned, based on the scores (Appendix C). Although the Hudson Basin River Watch (HBRW) worksheets were used, some changes were made to reflect RI conditions. To calculate the Family Biotic Index the tolerance levels for families in Rhode Island, as developed by Dr. Mark Gould and revised by Sara DaSilva and Ben Jessup in 2003, were utilized (Jessup, 2003). Stream sample results from the Wood River for 2001, the same data used by the RIDEM as a reference site for the state (DaSilva, 2003), were used for the model reference.

WPWA data was also applied to a modified version of the RI Wadeable Stream Condition Index (WSCI) (TABLE 1a & b). This is a draft of a multimetric index developed by Tetra Tech, Inc. and RIDEM, Office of Water Resources (Carey, 2005, personal communication). Tetra Tech was contracted by RI DEM to devise a data base, named RI BioQual, to maintain the biological data of surface waters in RI (benthic macroinvertebrate sampling) and its associated chemical and physical data. WSCI was an initial draft attempt by RIDEM at developing a new index for evaluating macroinvertebrate data and to assist in development of a biological condition (as opposed to a reference site). RIDEM is aware of the limitations of this initial index draft (some of which are discussed further in this report) and therefore never published this work (beyond the report developed by Tetra Tech under contract to RIDEM) nor used them for assessments. Although RIDEM has never used the WSCI to evaluate any stream or river in RI, they hope that with the acquisition of new biologist for the Office of Water Resources, they will be able to take this initial work and build upon it. The WSCI is used in this report for information only, as is the NY BAP. It is interesting to note that despite the limitations, the WCSI results correlate very strongly with NY BAP results when applied to the WPWA data.

WCSI was developed using fine scale taxonomic data (genus and species). The version used by WPWA was modified by Sara DaSilva to use family level data. Until a new index is reference condition index is developed, the RI DEM has been using a Rapid Bioassessment Protocol (RBP) based on a set of 30 taxa devised in 1990 by Dr. Mark Gould, from the Roger Williams University, and Bob Richardson from RIDEM, Office of Water Resources. These metrics also use coarse resolution data (family level). In her 2003 thesis, Ms. DaSilva compared the use of coarse level data in the RBP to fine level data in the WSCI. She determined that there

was no significant differences between the two indexes. This is very useful for the purposes of WPWA programs, since the costs and skills needed to identify all organisms down to genus and species are prohibitive.

Ms. DaSilva stated some concerns about the WSCI and the Gould/Richardson index in her 2003 thesis. The 30 taxa selected by Dr. Gould have been used since 1990 to score streambed macroinvertebrates in RI, although it is unclear why these particular taxa were chosen. It has been suggested that the groupings should be reevaluated (DaSilva, 2003). Use of the taxa in the WSCI proved cumbersome for the purposes of this WPWA project because only one Trichoptera family and two Trichoptera genera are included. There is no option to include other Trichoptera families. Similar circumstances also exist in regard to Ephemeroptera and Plecoptera where there was little or no distinction made between families. This meant that the EPT index does not necessarily reflect all EPT families. It was also important to this project to account for all the macroinvertebrate families identified in order to have an adequate baseline record. The worksheet of the HBRW Family Level Benthic Macroinvertebrate Data Analysis Sheet was used because it can serve as a data record for organisms encountered in the streams as well as for calculating several indices.

Another concern of the WSCI is it may be using metrics that are not very robust.

Measurements of functional groups, for instance, do not necessarily correspond well to habitat disturbance (DaSilva, 2003). So inclusion of these metrics may modify the final score in unpredictable ways.

A chi-square test for heterogeneity between the WSCI and the NY BAP scores was performed. Expected values do not differ significantly from the observed values, so that both scores seem to be measuring the same thing. A Pearson correlations test and Spearman rank

correlation test were performed between the two scores. The Pearson test showed a 0.87 correlation between the two while the Spearman rank test showed a 0.75 correlation. Both WSCI and NY BAP use a Family Biotic Index (FBI) score as one of their metrics, so a comparison was made using just this metric. There was similarly strong correlations; 0.90 and 0.77 respectively. However, when a One-Way AOV was performed on the two FBI scores, there was statistically significant differences between them. Although the two FBI scores correlated well, the RI WSCI score consistently presented higher responses than the NY BAP.

DISCUSSION

Parris Brook

Originally it was thought that Parris Brook would serve as a control site for the entire study, including fish assemblage and temperature measurements, because it does not contain any impoundments or small dams. Parris Brook does originate from a pond in West Greenwich, which is typical of many of the streams in the Pawcatuck Watershed. The site selected, however, yielded very few organisms, a total of only 41 after 3 kicks. No Plecoptera were recovered, which greatly decreased the EPT Index (TABLE 3). Because so few organisms were obtained, the Family Richness Index was also low. The families that were identified had very low tolerance levels, so the Family Biotic Index was very high (APPENDIX A).

The reason for the scarcity of organisms is unknown at this point. The site did show signs of excessive periphyton on almost every rock in the stream, possibly due to excessive nutrients in the system. This could particularly affect the Plecoptera, which are primarily crawlers and cling to the surface of rocks in swift moving water. The periphyton may impede their ability to utilize the rocks. It is also possible that this site dries out from time to time, which

could have an adverse effect on Orders such as Odonata and Megaloptera, which can spend several years in the larval stage in a stream bed. The fact that almost all the organisms found at the site are low tolerance Families indicates that the sites, at the time of sampling, was well oxygenated and cool, usually an indication of good water quality. Further investigations would have to be done before any additional explanations could be offered. Because Parris Brook had such low indices scores, it was decided to instead compare each river to its own upstream and downstream sites, rather than using a common control site.

Beaver River:

2.

The Beaver River is a scenic stream located almost entirely in Richmond, RI. It is approximately 10 miles (16 km) long, and is mainly a second order stream for at least 9 miles. It arises from James Pond in Exeter and empties into the Pawcatuck River near Shannock. WPWA study sites on this river were all within the protected area of the DeCoppett Estate, a 2,000 acre (809 ha) parcel that is held in trust as a conservation area. There is a small dam, approximately 3 feet (0.9 meter) high that backs up a ½ acre (0.2 ha) pond on the property, just to the east of Hillsdale Road. Otherwise the sites were in relatively pristine wooded areas. A total of 5 sitestwo upstream of the dam, one at the pond of the dam, and two downstream of the dam- where sampled. This entire river, except for the impoundment, had a high habitat score. Brook trout (Salvelinus fontinalis) were the dominant species at three of the sampling sites (Saila et. al, 2005). Although its headwaters consists of two impounded ponds about 1 mile (1.6 km) apart, the rest of the river flows entirely through forested areas with very little human disturbance, until it reaches Rt. 138. The river does cross under Hillsdale Road through a culvert between Site 1 and

Beaver River had 6 families of Plecoptera (stoneflies) from 4 of the sites, not including the dam (APPENDIX A). One of the sites had 4 families, including a large number of Leuctridae, which are listed as $\underline{0}$ on the tolerance scale, or no tolerance for disturbance. The other three sites also had Leuctridae organisms in their samples. Eight families of Trichoptera (caddisflies) were identified along with five families of Ephemeroptera (mayflies). The high number of families especially among the EPT orders indicate a good quality natural system (Dates and Byrne, 1997) (TABLE 4). All four sites were rated as No Water Quality Impact based on the metrics used. The first site did show some Slight Impact based on the Percent Model Affinity (PMA). However, when averaged out with the other metrics, all the scores were 9.5 or higher. There was no statistically significant difference between the upstream and downstream sites.

The site at the dam near Hillsdale Road showed Moderate to Severe Impact. While this may not be a completely valid comparison due to different collection methods and habitat considerations, it does suggest that the dam has a substantial impact on the macroinvertebrates at that site. What is interesting and statistically significant is that just 0.3 miles downstream (Beaver River Site 4) the composition of the benthic macroinvertebrate community recovered completely according to this metric comparison, with average scores nearly identical to the upstream sites. However, there was a marked decrease in the number of organisms recovered at this site, only 114 in 3 kicks, as compared to over 900 at Site 1 or over 300 at Site 2. At 1 mile below the dam, organisms are again more abundant, with over 300 organism recovered at Site 5.

Queen River

The Queen River is another important river in the Pawcatuck Watershed. An Odonata Atlas conducted by Ginger Brown for the Rhode Island Natural History Survey (RINHS) demonstrated a very high diversity of dragonflies and damselflies on this river (personal communication, 2004). The Nature Conservancy (TNC) has included the Queen River Watershed on its priority list for acquisition and protection. The Queen is approximately 13 miles (20.8 km) long, arising from Dead Swamp in West Greenwich. Fisherville, Sherman, Locke, and Glen Rock Brooks drain into it above the Usquepaugh Dam near Rt. 138. Downstream of the dam it is known as the Usquepaugh River, continuing for 4 more miles (6.4 km) until it empties into the Pawcatuck River on the southwest side of the Great Swamp Management Area.

There is a small dam on the Queen River, just north of Williams Reynolds Road, that is on private property. The 4 foot (1.2 m) dam and its ½ acre (0.2 ha) reservoir was installed to ensure adequate domestic water supply for the house on the property. It was created after the Exeter Country Club installed their golf course. According to the property owner, Peter Brownelle, maintenance of the golf course caused a noticeable change in hydrology, just under a mile downstream. Flow was unusually decreased, apparently during times of irrigation of the golf course. Both the land owner and Dave Armstrong, a hydrologist with USGS, have observed a sudden decrease or increase of flow not associated with any natural phenomena (personal communication, 2003).

For comparative purposes, samples were taken at a site on a TNC property, (north of Rt. 102 and the Exeter Country Club), above the dam (south of the golf course), at the pond formed by the dam, and just below the dam. As expected, scores from the site at the dam were in the Moderate to Sever Impact range (TABLE 5). Scores from the TNC site were in the Non-Impact

Range, as were scores from the sites above and below the dam. However, below the dam the sample contained a high percentage of Trichoptera, especially Hydropsychidae, and the PMA was in the Slight Impact range (APPENDIX C). Interestingly, there were a very large number of organisms recovered from this site – over 1000. This also seems to indicate fairly rapid recovery of the macroinvertebrate community after the disturbance of the dam. Again, there was no significant differences between the upstream and downstream scores.

Shunnock River

This river in Stonington, CT is of interest because of a proposed fishway restoration project on an old mill pond known as Parke Pond. There is an historic, 6-foot slate dam that backs up a small pond of approximately 2 acres (0.8 ha). Samples were taken from the pond and 0.3 miles (0.4 km) downstream of the dam. It was not possible to obtain samples upstream at this time. Samples from the pond indicated Moderate to Severe Impact while samples downstream showed Non to Slight Impact (mean 7.6) (TABLE 6). There seemed to be somewhat less recovery here, with Trichoptera accounting for over 75% of the sample. However, EPT Index was 8, including 2 Ephemeroptera families and 2 Plecoptera families with low tolerance levels. Immediately upstream of Parke Pond, for about 0.5 miles (0.8 km), the Shunnock flows through a suburban area that includes cleared stream banks as well as a small section of channelized stream bed. The impacted area upstream of the pond may limit the species capable of migrating to the downstream site.

General Discussion

Ephemeroptera appeared to be under represented at all the sites sampled. At the reference model site for NYS for example, 40% of the organisms in the sample were Ephemeroptera. In the sampling done in the Pawcatuck Watershed, the Wood River reference site contained 16% Ephemeroptera. One site on the Beaver River contained 7%, and one site on the Queen River contained 5%. All the other sites had less 5% or none. However, the Plecoptera appeared to be relatively abundant, especially in the Beaver River. Four out of the five sites showed at least 10% Plecoptera. The only site that did not was at the dam, a highly impacted site. One site on the Beaver River had 23% Plecoptera. The Wood River reference model contained 10% Plecoptera, but the NYS reference site contained only 5%. Regional as well as seasonal differences may explain some of the variations. Early spring samples may yield more mayflies, which tend to emerge as adults during the spring and early summer. However, it was unknown when the reference sample for NYS was taken. All of the WPWA samples were taken in July or August.

This study used all of the organisms recovered from each sampling "kick". Sample sizes therefore varied greatly, from as little as 9 to as many as 500 organisms from each sampling effort. Composite samples from each site ranged from 41 to 1091. Metrics were based on percentage of families from each sample, rather than number of organisms out of 100. Because of this, comparisons with other studies may not be precise. Recent studies on sample size differences suggest that a subsample of 100 organisms, as is commonly used by many programs, may also have limitations (Chaffee, 2004). Increasing sample size to 200 or even 300 for would provide better accuracy. Otherwise, families can be missed or an imprecise distribution of families is presented.

RESULTS

There were no statistically significant differences among each replicate collection done at a site and a mean of the three kicks (TABLE 7). This fact enabled use of the composite sample to compare upstream and downstream scores (TABLES 3,4,5, and 6). These scores showed that small dams do have a negative impact on water quality based on benthic macroinvertebrate indices. All samples taken from dam sites showed Moderate to Severe Impact rating. However, there appears to be a rapid recovery of the macroinvertebrate community within in relatively short distances downstream of the dam. Samples taken within 0.1 to 0.3 miles of three dams showed an improvement of water quality to Non or Slight Impact. On two of these streams there was no significant difference between the upstream and downstream scores. The third stream had no upstream score for comparison. The rapid recovery may be due in part to the high dissolved oxygen content of the streams found below dams. Often the water is shallow but flows rapidly over exposed rocks. Because the reservoirs behind the dams were small, at least some organisms from upstream sites may have been able to successfully migrate downstream. Once past the dams they were assumed to find appropriate habitat in the highly oxygenated riffles.

On one stream, macroinvertebrate populations did not recover as well until at least a mile downstream of the dam. Another stream had a rapid increase in the number of organisms found downstream, over 1000. However, 75% of these were Trichoptera, with 42% Hydropsychidae, and another 9% were Oligochaeta. The water quality indices were still good for this site because of the high Family and EPT Richness scores.

CONCLUSIONS:

In the summer of 2004 WPWA conducted macroinvertebrate sampling on four low order stream in the Pawcatuck Watershed in conjunction with a study of small dams effect on stream habitat. Macroinvertebrates were identified to the level of family when appropriate. By sampling macroinvertebrates above, at, and below the dams, water quality impacts from the dams could be assessed using multi metric indexes. The data also provides for future comparative studies using macroinvertebrates for water quality assessments.

Two multi metric indexes were used, RI WCSI and NYS BAP, both of which indicate that dams on three low order streams in this study do have an immediate impact on the habitat quality. In particular, indices showed a marked decrease in family and EPT richness. Based on these same indexes it appears that this impact is moderated fairly quickly downstream. In two cases the macroinvertebrates sampled within 0.1 to 0.3 miles downstream had nearly identical scores to sites sampled above the dams. One explanation for the rapid improvement is that samples were taken from streams in relatively pristine settings with heavily vegetated stream banks. The natural buffer may contribute greatly to the streams ability to recover from effects the dam may have on the habitat. It is possible that samples taken from streams in disturbed areas may yield different results, or required a longer distance to recover from impacts. However, this study does not examine those differences.

At one of the downstream study sites, the number of organisms was greatly reduced when compared to upstream sites. The dam may have interfered with recruitment for colonizing sites immediately downstream. At another site the dominate taxa, Hydropsychidae, had a population that was disproportionate to the rest of the community. This Trichoptera family, also called common netspinners, is a filter feeder. They are commonly found below dams in large numbers due to the abundant algae produced in the reservoir being released downstream (Voshell, 2002).

A second part of the study compared two multi metric indexes. The examination found that of the two indexes, the RI Wadeable Stream Condition Index currently used to assess RI streams may not be an adequate tool. It uses a discrete set of taxa that does not account for all the families found in RI streams. It also uses at least two metrics (ratio of scrapers to filterers and percent shredders) that do not correlate well with RBP scores. These metrics may undermine the strength of the RI WSCI to identify negative impacts to streams. Also, the RI WSCI yields a score that compares to a reference or reference sites. This score does not actually indicate what the water quality is, only how it compares to a site considered representative of good water quality for this region.

In contrast, the NY BAP uses all the families found in the sample or subsample. It uses four robust indices that correlate well with impacts of human disturbance, including comparison with a reference site. This index also produces a score that quantifies relative water quality based on all four metrics. Although a score for water quality contains inherent uncertainties (Karr 1999), it provides a more comprehensible picture to the general public and governing authorities.

This study has also provided valuable baseline data on the macroinvertebrate communities to be found on four of the Pawcatuck Watershed's small streams – Beaver River, Queen River, Parris Brook, and Shunock River. WPWA intends to use these data to document current water quality on these streams and assess possible impacts due to any land use changes.

BIBLIOGRAPHY

- Burgess, D. J. 2002. 2002 Aquatic Benthic Macroinvertebrate Sampling Project. Wood-Pawcatuck Watershed Association Project Report, http://www.wpwa.org.
- Chaffee, C. M. 2005. The effects of temporal variability and subsample size on macroinvertebrate water quality index scores in four Rhode Island streams. Masters

- Thesis, University of Rhode Island, Kingston, RI.
- DaSilva, S. N. 2003. A Multiple Scale Approach to Assessing the Biological Integrity of Rhode Island Streams. Master Thesis, University of Rhode Island, Kingston, RI.
- Dates, G. and J. Byrne. 1997. Living Waters Using Benthic Macroinvertebrates and Habitat to Assess Your River's Health. River Watch Network, Montpelier, VT.
- Karr, J. R. 1999. Defining and measuring river health. Freshwater Biology 41,221-234.
- Karr, J. R. and E. W. Chu. 2000. Sustaining living rivers. *Hydrobiologia* 422/423: 1-14.
- Kimberling, D. N., J. R. Karr, and L. S. Fore. 2001. Measuring human disturbance using terrestrial invertebrates in the shrub-steppe of eastern Washington (USA). *Ecological Indicators* 1/In Press: 1-19.
- Jessup, B. K. 2003. *The Rhode Island Wadeable Stream Condition Index: Development Process*. Prepared by Tetra Tech, Inc. for Rhode Island Department of Environmental Management.
- Merritt, R. W., and K. W. Cummins. 1996. *An Introduction to the Aquatic Insects of North America*, 3rd Edition. Kendall/Hunt Publishing Company, Dubuque, IO. 862 pages.
- Nolan, J. K. 2003. *A Rapid Bioassessment of the White Creek, Washington County, NY*. Hudson Basin River Watch Rapid Bioassessment Report, http://hudsonbasin.org.
- Peckarsky, B. L., P. R. Fraissinet, M. A. Penton, and D. J. Conklin, Jr. 1990. *Freshwater Macroinvertebrates of Northeastern North America*. Cornell University Press, Ithaca, NY. 442 pages.
- Rhode Island Department of Environmental Management (RIDEM) 2000. *Water Quality Regulations*. Office of Water Resources, Providence, RI.
- Saila, S. B., D. J. Poyer, A. Guillot, and D. Aube. 2005. *Small Dams and Habitat Quality in Low Order Streams*. Wood-Pawcatuck Watershed Association Project Report, http://www.wpwa.org.
- Schaefer, J. K. Gido, and M. Smith. 2005. A test for community change using a null model approach. *Ecological Applications* 14(5): 1761-1771.
- US Environmental Protection Agency. 1997. *Volunteer Stream Monitoring*: A Methods Manual. EPA 841-B-97-003, November. Office of Water, Washington, DC.
- US Environmental Protection Agency. 1999. Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition. 841-B-99-002 July. Office of Water, Washington, DC.

Voshell, Jr., J. R. 2002. A Guide to Common Freshwater Invertebrates of North America. The McDonald and Woodward Publishing Company, Blacksburg, VA. 442 pages.

Table 1a

Table 1a RI Wadeable Stream Condition Index - WPWA 2004 Data												
									Data			
1)	nodifi			amily	/ Biotic I	ndex for Hi	Isenhoff Bi	otic Index)		1		
Toyo	Inc	Non -I		т.	Mood	Ponyor 1	Poorer 2	Beaver 3	Poover 4	Dogwor F		
Taxa Hirudinea	Ins		30		vvood	1	beaver 2	_	Beaver 4	Beaver 5		
Tubificidae		1		10 10		ı		6				
		1		9	1		2	93				
Oligochaeta		1		8	1							
Isopoda		1		7			4	64				
Amphipoda		1			4		1	7				
Decapoda		1	_	8	1							
Gastropoda		1	1	6								
Pelecypoda	—	1	_	8	2	400	445		40	4.47		
Coleoptera	1		1	4	16	132	115		18	117		
Lepidoptera	1			5								
Tipulidae	1			4	1	19	27		25	10		
Simulidae	1			6	3	7	17			16		
(D)Tabanidae	1			5								
(D)Culicidae	1	ļ		9								
Chironomidae	1			6	6		15	21		1		
Plecoptera	1			1	10	219	41		13	36		
(E)Siphlonuridae	1			7	2							
(E)(H)Stenonema	1		1	3			1					
Limnephilidae	1			4	8				1	1		
(T)(Hyd)Hydropsyche	1			5	15	331	93		5	110		
(T)(Phil)Chimarra	1			4	12		10	2				
Hemiptera	1		1	10								
Diptera	1			5		16	7			5		
Porifera		1		2								
Megaloptera	1			8	3	24	21	1	6	8		
Sialidae	1			4								
Odonata	1			2	6	7	14		3	11		
Ephemeroptera	1		1	5	14	13	17			26		
Nematoda		1		0								
Total Number	16.11.11.1		11/11/		100	769	381	194	71	341		
Taxa Richness					15	10	14	7	7	11		
Insect Taxa					12	9	12	3	7	10		
Non-insect Taxa	+				3	1	2	4	0	10		
pEPT (w/o	+				٥	ı		4	U	1		
регт (w/o Hydropsychidae)					46.0	30.17	18.11	1.03	23.94	14.08		
pPlecoptera	1				10.0	28.48	10.76	0.00	18.31	10.56		
FBI (subs.for HBI)	1				4.40	3.75	4.33	8.25	3.90	4.09		
	+				30.0	18.86	34.91	0.00	29.58	37.54		
pScrapers	+				30.0	10.00	34.91	0.00	29.30	31.54		
Metric Scores	1					_	_			_		
Taxa Richness	1	<u> </u>	-			3	6	3	3	3		
Insect Taxa	1	ļ				3	6	0	3	6		
Non-insect Taxa	1					6	3	0	6	6		
pEPT(w/oHydrops)						3	0	0	3	0		
pPlecoptera						6	6	0	6	6		
FBI		ļ				6	6	0	6	6		
pScrapers						6	6	0	6	6		
Total (Assessment Score)					Ref	78.57	78.57	7.14	78.57	78.57		

RIV	Nad	leable	Sti	rea		ble 1b	lex - WF	WA 200	4 Data		
IXI								Biotic Index			
Таха		Non-I								Shunnock	Parke Pond
Hirudinea		1		10							
Tubificidae		1		10							
Oligochaeta		1		9	25	45	93	100			
Isopoda		1		8			4				24
Amphipoda		1		7	24			2	1	2	23
Gastropoda		1	1	6							9
Pelecypoda		1		8			2				
Coleoptera	1		1	4	40	41		30	1	13	1
Lepidoptera	1			5							
Tipulidae	1			4	34	6		7	3		
Simulidae	1			6				11			
(D)Tabanidae	1			5							
(D)Culicidae	1			9							
Chironomidae	1			6	9	İ	2	2	1		7
Plecoptera	1			1	177	4		45		7	
(E)Siphlonuridae	1			7							
(E)(H)Stenonema	1		1	3					1	1	
Limnephilidae	1			4	3	7	1	6	1	45	1
(T)(Hyd)Hydropsyche	1			5	188	57		466		91	
(T)(Phil)Chimarra	1			4	100	07	2	100		11	
Hemiptera	1		1	10							
Diptera	1		†	5	25	19		23		18	
Porifera	† ·	1		2							
Megaloptera	1			8	15	6		9	5		
Sialidae	1			4			5				5
Odonata	1			2	6	9	3	14	4	1	
Ephemeroptera	1		1	5		12		35	2	8	
Nematoda	† ·	1	†	0				- 55	_		
			0.11 11	ľ							
Total Number					546	206	112	750	19	197	70
Taxa Richness					11	10	8	13	9	10	7
Insect Taxa					9	9	5	11	8	9	4
Non-insect Taxa					2	1	3	2	1	1	3
pEPT (w/o Hydropsychidae)					32.97	11.17	2.68	11.47	21.05	36.55	1.43
pPlecoptera	-		-		32.42	1.94	0.00	6.00	0.00	3.55	0.00
FBI (subs.for HBI)					3.90	5.49	8.35	5.24	4.95	4.50	6.81
pScrapers			-		7.33	25.73	0.00	8.67	21.05	11.17	14.29
Metric Scores			-		2	2	2	6	2	2	3
Taxa Richness			\vdash		3	3	3	6	3	3	
Insect Taxa	-		-		3	3	3	6	3	3	0
Non-insect Taxa	1		-		3	6	0	3	6	6	0
pEPT(w/oHydrops)	1		-		3	0	0	0	3	3	0
pPlecoptera			-		6	0	0	6	0	3	0
FBI pScrapers			-		6 0	3 6	0	3	3 6	3	3
Total (Assessment Score)					57.14	50.00	14.29	64.29	57.14	57.14	14.29

TABLE 2

Example of CONVERSION WORKSHEET FOR BIOLOGICAL ASSESSMENT PROFILE

FAMILY RICHNESS

FAMILY RICHNESS		
	>15	10.0
	>13	-0.6
	>9	0.5
	>6	-1.3
	<7	0.0
	0	0.0
FAMILY EPT RICHNESS		
	>10	10.0
	>7	1.7
	>2	4.0
	>0	1.3
	0	0.0
HILSENHOFF FAMILY BIOTIC II		
	<2	10.0
	<4.51	12.0
	<5.51	12.5
	<7.01	14.2
	>7	8.3
PERCENTMODELAFFINITY		
	>90	10.0
	>64	1.3
	>49	-2.9
	>34	-3.0
	<35	-3.4
	<20	0.0

River Mile					Mean	Site	Median
	Family	EPT	FBI	PMA	BAP		BAP
9							
8							
7							
6							
5							
4							
3							
2							
1							
0							

River Mile					Mean	Site	Median
	Family	EPT	FBI	PMA	BAP		BAP
5							
4.5							
4							
3.5							
3							
2.5							
2							
1.5							
1							
0.5							

APPENDIX A

Beaver River Site 1

Family Level Benthic Macroinvertebrate Data Analysis Sheet

Site		Beaver 1					ream/Town: <u>Beaver River, Richmond</u> Isdale Rd, just N of bridge, below breached dam						
Date Sampled:		8/12/04				Name(s		age, r	pelow bre	eacned	aam		
							•			1	Mean	,	
Date of Lab Work		8/20/04					# Squares Picked Total # Squares in T	ray G	rid	1	1	1	
Replicate #		1					Replicate #	iay O	1]		1	
	_	ı				1							
I	II	III	IV	V	VI		I	Ш	III	IV	V	VI	
Families in			_	_			Families in			_			
Major Groups	T (1)	D (2)	D	T x D	% (3)	-	Major Groups	Т	D	D	T x D	%	
EPHEMEROPTERA				1	1		TRICHOPTERA (T)					1	
Baetidae	4	1	1	4	0.0011	-	Brachycentridae	1	0	0	0	0	
Baetiscidae	4	0	0	0	0	-	Glossosomatidae	0	4	4	0	0.0042	
Caenidae	7	0	0	0	0		Helicopsychidae	3	0	0	0	0	
Ephemerellidae	1	0	0	0	0		Hydropsychidae	4	331	331	1324	0.3514	
Ephemeridae	4	4	4	16	0.0042		Hydroptilidae	6	0	0	0	0	
Heptageniidae	4	6	6	24	0.0064		Lepidostomatidae	1	0	0	0	0	
Leptophlebliidae	2	0	0	0	0		Leptoceridae	4	0	0	0	0	
Metretopodidae	2	0	0	0	0		Limnephilidae	4	0	0	0	0	
Isonychiidae	2	2	2	4	0.0021		Molannidae	6	0	0	0	0	
Polymitarcyidae	2	0	0	0	0		Odontoceridae	0	1	1	0	0.0011	
Potomanthidae	4	0	0	0	0		Philopotamidae	3	198	198	594	0.2102	
Siphlonuridae	7	0	0	0	0		Phryganeidae	4	0	0	0	0	
Tricorythldae	4	0	0	0	0		Polycentropodidae	6	0	0	0	0	
Other		0	0	0	0		Psychomyiidae	2	0	0	0	0	
		0	0	0	0		Rhyacophilidae	1	6	6	6	0.0064	
Subtotal E			13	48	0.0138		Sericostomatidae	3	0	0	0	0	
PLECOPTERA (P)	-								0	0	0	0	
Capniidae	3	0	0	0	0		Other		0	0	0	0	
Chloroperlidae	1	0	0	0	0		Subtotal T			540	1924	0.5732	
Leuctridae	0	135	135	0	0.1433		DIPTERA (D)						
Nemouridae	2	1	1	2	0.0011		Athericidae	2	16	16	32	0.017	
Peltoperlidae	2	48	48	96	0.051		Blephariceridae	0	0	0	0	0	
Perlidae	1	24	24	24	0.0255		Ceratopogonidae	6	0	0	0	0	
Perlodidae	2	8	8	16	0.0085		Chironomidae	6	0	0	0	0	
Pteronarcyidae	0	0	0	0	0		Tipulidae	4	19	19	76	0.0202	
Taeniopterygidae	2	0	0	0	0		Empididae	6	0	0	0	0	
		0	0	0	0		Simuliidae	6	7	7	42	0.0074	
Other		3	3	0	0.0032		Tabanidae	5	0	0	0	0	
Subtotal P			219	138	0.2325				0	0	0	0	
MEGALOPTERA (M)								0	0	0	0	
Corydalidae	0	18	18	0	0.0191				0	0	0	0	
Sialidae	4	0	0	0	0		Other		0	0	0	0	
		0	0	0	0		Subtotal D			42	150	0.0446	
Other		0	0	0	0		ISOPODA (I)						
Subtotal M			18	0	0.0191		Asellidae	8	0	0	0	0	
LEPIDOPTERA (L)	1								0	0	0	0	
Pyralidae	5	0	0	0	0		Other		0	0	0	0	
	_	0	0	0	0		Subtotal I			0	0	0	
Other		0	0	0	0								
Subtotal L			0	0	0	j							

Beaver 1 cont.

COLEOPTERA (C)					•
Dryopidae	5	0	0	0	0
Elmidae	4	102	102	408	0.1083
Gyrinidae	4	0	0	0	0
Haliplidae	5	0	0	0	0
Psephenidae	4	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal C			102	408	0.1083
ODONATA (O)					
Aeshnidae	3	0	0	0	0
Calopterygidae	5	0	0	0	0
Coenagrionidae	9	0	0	0	0
Cordulegastridae	3	0	0	0	0
Corduliidae	2	0	0	0	0
Gomphidae	1	7	7	7	0.0074
Lestidae	9	0	0	0	0
Libellulidae	2	0	0	0	0
Macromiidae	2	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal O			7	7	0.0074
AMPHIPODA (A)					
Crangonyctidae	6	0	0	0	0
Gammaridae	6	0	0	0	0
Talitridae	8	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal A			0	0	0

EPT RICHNESS = RE+RP+RT

# Ephemeroptera Families	4
# Plecoptera Families	6
# Trichoptera Families	5
EPT Richness (Total)	15

Codes:

- (1) T = Hilsenhoff pollution tolerance- RI DEM adjusted values
- (2) D = Density
- (3) % = percent composition

DECAPODA (I)									
Cambaridae	6	0	0	0	0				
Astacidae	6	0	0	0	0				
Other		0	0	0	0				
Subtotal I	0	0	0						
OTHER									
Oligochaeta	9	0	0	0	0				
Hirudinea	10	1	1	10	0.0011				
Gastropoda	6	0	0	0	0				
Pelecypoda	8	0	0	0	0				
Turbellaria	4	0	0	0	0				
Nemertea	8	0	0	0	0				
Other		0	0	0	0				
Subtotal Other	1	10	0.0011						

Organism Dansity/Comple Unit	942
Organism Density/Sample Unit	942
EPT Richness	15
Total Family Richness	22
EPT/EPT+Chironomidae Ratio	1.00
Biotic Index	2.85
% Contribution of Dominant Family	35%
% Model Affinity	64%

942

2685

% COMPOSITION O	F	
MAJOR GROUPS		
EPHEMEROPTERA		1%
PLECOPTERA		23%
TRICHOPTERA		57%
CHIRONOMIDAE		0%
OTHER DIPTERA		4%
COLEOPTERA		11%
ODONATA		1%
MEGALOPTERA		2%
LEPIDOPTERA		0%
AMPHIPODA		0%
ISOPODA		0%
OLIGOCHAETA		0%
GASTROPODA		0%
PELECYPODA		0%
OTHER		0%

TOTALS

Beaver River Site 2

Family Level Benthic Macroinvertebrate Data Analysis Sheet

Site		Beaver River 2						ver, Ricr		KI	
Date Sampled:		8/25/04				Decoppet Estate, E of Hillsdale Name(s)	Ra, s	S of bridg	ge		
Date of Lab Work		9/3/04				# Squares Picked			1	Mean 1	1
Sate of Lab Work		3/3/04				Total # Squares in Tra	ay Gr	rid		1	1
Replicate #		1				Replicate #		1]		•
1	II	III	IV	V	VI	1	II	III	IV	V	VI
Families in	† <u>"</u>				•	Families in				<u> </u>	· · · ·
Major Groups	T (1)	D (2)	_ D	T x D	% (3)	Major Groups	Т	D	_ D	T x D	%
EPHEMEROPTERA ((E)	· , ,		•	· · · ·	TRICHOPTERA (T)					-
Baetidae	4	8	8	32	0.0205	Brachycentridae	1	0	0	0	0
Baetiscidae	4	0	0	0	0	Glossosomatidae	0	1	1	0	0.0026
Caenidae	7	0	0	0	0	Helicopsychidae	3	0	0	0	0
Ephemerellidae	1	0	0	0	0	Hydropsychidae	4	93	93	372	0.2379
Ephemeridae	4	0	0	0	0	Hydroptilidae	6	0	0	0	0
Heptageniidae	4	9	9	36	0.023	Lepidostomatidae	1	0	0	0	0
_eptophlebliidae	2	0	0	0	0	Leptoceridae	4	0	0	0	0
Metretopodidae	2	0	0	0	0	Limnephilidae	4	0	0	0	0
sonychiidae	2	0	0	0	0	Molannidae	6	0	0	0	0
Polymitarcyidae	2	0	0	0	0	Odontoceridae	0	1	1	0	0.0026
Potomanthidae	4	0	0	0	0	Philopotamidae	3	17	17	51	0.0435
Siphlonuridae	7	0	0	0	0	Phryganeidae	4	0	0	0	0
Tricorythldae	4	0	0	0	0	Polycentropodidae	6	0	0	0	0
Other		0	0	0	0	Psychomyiidae	2	0	0	0	0
		0	0	0	0	Rhyacophilidae	1	4	4	4	0.0102
Subtotal E			17	68	0.0435	Sericostomatidae	3	0	0	0	0
PLECOPTERA (P)								0	0	0	0
Capniidae	3	0	0	0	0	Other		0	0	0	0
Chloroperlidae	1	6	6	6	0.0153	Subtotal T			116	427	0.2967
_euctridae	0	26	26	0	0.0665	DIPTERA (D)					
Nemouridae	2	0	0	0	0	Athericidae	2	5	5	10	0.0128
Peltoperlidae	2	0	0	0	0	Blephariceridae	0	0	0	0	0
Perlidae	1	6	6	6	0.0153	Ceratopogonidae	6	0	0	0	0
Perlodidae	2	3	3	6	0.0077	Chironomidae	6	15	15	90	0.0384
Pteronarcyidae	0	0	0	0	0	Tipulidae	4	27	27	108	0.0691
Taeniopterygidae	2	0	0	0	0	Empididae	6	0	0	0	0
	-	0	0	0	0	Simuliidae	6	17	17	102	0.0435
Other		0	0	0	0	Tabanidae	5	0	0	0	0
Subtotal P			41	18	0.1049			0	0	0	0
MEGALOPTERA (M)	1	0.4	0.4		0.0507			0	0	0	0
Corydalidae	0	21	21	0	0.0537	Other		0	0	0	0
Sialidae	4	0	0	0	0	Other Subtotal D		2	2	210	0.0051
245		0	0	0	0				66	310	0.1688
Other Subtotal M	1	0	21	0	0 0537	ISOPODA (I) Asellidae	8	0	0	Λ	0
			21	U	0.0537	Asemade	0			0	
LEPIDOPTERA (L)		0	0		0	Othor		0	0	0	0
Pyralidae	5	0	0	0	0	Other Subtotal I		0	0	0	0
Other	1	0	0	0	0	Jubiolai I			U	U	U
Subtotal L	1	U	0	0	0	1 1					
JUNIOLUI L			J	U	U	ı I					

Beaver 2 cont.

					•
COLEOPTERA (C)					
Dryopidae	5	0	0	0	0
Elmidae	4	113	113	452	0.289
Gyrinidae	4	0	0	0	0
Haliplidae	5	0	0	0	0
Psephenidae	4	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal C			113	452	0.289
ODONATA (O)					
Aeshnidae	3	2	2	6	0.0051
Calopterygidae	5	1	1	5	0.0026
Coenagrionidae	9	0	0	0	0
Cordulegastridae	3	0	0	0	0
Corduliidae	2	0	0	0	0
Gomphidae	1	11	11	11	0.0281
Lestidae	9	0	0	0	0
Libellulidae	2	0	0	0	0
Macromiidae	2	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal O			14	22	0.0358
AMPHIPODA (A)					
Crangonyctidae	6	1	1	6	0.0026
Gammaridae	6	0	0	0	0
Talitridae	8	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal A			1	6	0.0026

EPT RICHNESS = RE+RP+RT

# Ephemeroptera Families # Plecoptera Families	1
# Trichoptera Families	5
EPT Richness (Total)	11

Codes:

(1) T = Hilsenhoff pollution tolerance- RI DEM adjusted values

(2) D = Density

(3) % = percent composition

DECAPODA (I)					
Cambaridae	6	0	0	0	0
Astacidae	6	0	0	0	0
Other		0	0	0	0
Subtotal I			0	0	0
OTHER					
Oligochaeta	9	2	2	18	0.0051
Hirudinea	10	0	0	0	0
Gastropoda	6	0	0	0	0
Pelecypoda	8	0	0	0	0
Turbellaria	4	0	0	0	0
Nemertea	8	0	0	0	0
Other		0	0	0	0
Subtotal Other			2	18	0.0051

TOTALS	391	1321	1

Organism Density/Sample Unit	391
EPT Richness	11
Total Family Richness	23
EPT/EPT+Chironomidae Ratio	0.92
Biotic Index	3.38
% Contribution of Dominant Family	29%
% Model Affinity	80%

% COMPOSITION OF						
MAJOR GROUPS						
EPHEMEROPTERA	4%					
PLECOPTERA	10%					
TRICHOPTERA	30%					
CHIRONOMIDAE	4%					
OTHER DIPTERA	13%					
COLEOPTERA	29%					
ODONATA	4%					
MEGALOPTERA	5%					
LEPIDOPTERA	0%					
AMPHIPODA	0%					
ISOPODA	0%					
OLIGOCHAETA	1%					
GASTROPODA	0%					
PELECYPODA	0%					
OTHER	0%					

Ephem eroptera	16	4
Plecoptera	10	10
Tricoptera	35	30
Coleoptera	16	29
Chironomidae	6	4
Oligochaeta	1	1
Other	16	22

Beaver River Site 3

Family Level Benthic Macroinvertebrate Data Analysis Sheet

Site		Beaver 3							iver, Rich			<u> </u>
Date Sampled:		7/20/04				Decoppe Name(s)	t Estate pond, E of Hi	IIsdale	e, near da	Se	rver sam	
Date of Lab Work		7/24/04					# Squares Picked			1	Mean 1	1
		.,,	_				Total # Squares in T	ray G	rid		1	1
Replicate #		1]				Replicate #		1			_
I	II	III	IV	٧	VI		1	П	III	IV	V	VI
Families in			_	l _			Families in			_	_	
Major Groups	T (1)	D (2)	D	T x D	% (3)	4	Major Groups	Т	D	D	T x D	%
EPHEMEROPTERA	(E)						TRICHOPTERA (T)					
Baetidae	4	0	0	0	0		Brachycentridae	1	0	0	0	0
Baetiscidae	4	0	0	0	0		Glossosomatidae	0	0	0	0	0
Caenidae	7	0	0	0	0		Helicopsychidae	3	0	0	0	0
Ephemerellidae	1	0	0	0	0		Hydropsychidae	4	0	0	0	0
Ephemeridae	4	0	0	0	0		Hydroptilidae	6	0	0	0	0
Heptageniidae	4	0	0	0	0		Lepidostomatidae	1	0	0	0	0
Leptophlebliidae	2	0	0	0	0		Leptoceridae	4	0	0	0	0
Metretopodidae	2	0	0	0	0		Limnephilidae	4	0	0	0	0
Isonychiidae	2	0	0	0	0		Molannidae	6	0	0	0	0
Polymitarcyidae	2	0	0	0	0		Odontoceridae	0	0	0	0	0
Potomanthidae	4	0	0	0	0		Philopotamidae	3	2	2	6	0.01
Siphlonuridae	7	0	0	0	0		Phryganeidae	4	0	0	0	0
Tricorythldae	4	0	0	0	0		Polycentropodidae	6	0	0	0	0
Other		0	0	0	0		Psychomyiidae	2	0	0	0	0
		0	0	0	0		Rhyacophilidae	1	0	0	0	0
Subtotal E			0	0	0		Sericostomatidae	3	0	0	0	0
PLECOPTERA (P)									0	0	0	0
Capniidae	3	0	0	0	0		Other		1	1	0	0.00
Chloroperlidae	1	0	0	0	0		Subtotal T			3	6	0.018
Leuctridae	0	0	0	0	0		DIPTERA (D)					
Nemouridae	2	0	0	0	0		Athericidae	2	0	0	0	0
Peltoperlidae	2	0	0	0	0		Blephariceridae	0	0	0	0	0
Perlidae	1	0	0	0	0		Ceratopogonidae	6	0	0	0	0
Perlodidae	2	0	0	0	0		Chironomidae	6	21	21	126	0.126
Pteronarcyidae	0	0	0	0	0		Tipulidae	4	0	0	0	0
Taeniopterygidae	2	0	0	0	0		Empididae	6	0	0	0	0
		0	0	0	0		Simuliidae	6	0	0	0	0
Other		0	0	0	0		Tabanidae	5	0	0	0	0
Subtotal P			0	0	0				0	0	0	0
MEGALOPTERA (M)								0	0	0	0
Corydalidae	0	0	0	0	0				0	0	0	0
Sialidae	4	1	1	4	0.006		Other		0	0	0	0
		0	0	0	0		Subtotal D			21	126	0.126
Other		0	0	0	0		ISOPODA (I)					
Subtotal M			1	4	0.006		Asellidae	8	38	38	304	0.228
LEPIDOPTERA (L)]			0	0	0	0
Pyralidae	5	0	0	0	0	1	Other		0	0	0	0
		0	0	0	0		Subtotal I			38	304	0.228
Other		0	0	0	0							
Subtotal L	-		0	0	0	1						

Beaver 3 cont.

COLEOPTERA (C)					
Dryopidae	5	0	0	0	0
Elmidae	4	0	0	0	0
Gyrinidae	4	0	0	0	0
Haliplidae	5	0	0	0	0
Psephenidae	4	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal C			0	0	0
ODONATA (O)					
Aeshnidae	3	0	0	0	0
Calopterygidae	5	0	0	0	0
Coenagrionidae	9	0	0	0	0
Cordulegastridae	3	0	0	0	0
Corduliidae	2	0	0	0	0
Gomphidae	1	0	0	0	0
Lestidae	9	0	0	0	0
Libellulidae	2	0	0	0	0
Macromiidae	2	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal O			0	0	0
AMPHIPODA (A)					
Crangonyctidae	6	7	7	42	0.0422
Gammaridae	6	0	0	0	0
Talitridae	8	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal A			7	42	0.0422

EPT RICHNESS = RE+RP+RT

# Ephemeroptera Families	0
# Plecoptera Families	0
# Trichoptera Families	2
EPT Richness (Total)	2

Codes:

- (1) T = Hilsenhoff pollution tolerance- RI DEM adjusted values
- (2) D = Density
- (3) % = percent composition

DECAPODA (I)		•		•			
Cambaridae	6	0	0	0	0		
Astacidae	6	0	0	0	0		
Other		0	0	0	0		
Subtotal I			0	0	0		
OTHER							
Oligochaeta	9	93	93	837	0.5602		
Hirudinea	10	3	3	30	0.0181		
Gastropoda	6	0	0	0	0		
Pelecypoda	8	0	0	0	0		
Turbellaria	4	0	0	0	0		
Nemertea	8	0	0	0	0		
Other		0	0	0	0		
Subtotal Other 96 867 0.5783							

Organism Density/Sample Unit	166
EPT Richness	2
Total Family Richness	8
EPT/EPT+Chironomidae Ratio	0.13
Biotic Index	8.13
% Contribution of Dominant Family	56%
% Model Affinity	25%

166

1349

% COMPOSITION OF							
MAJOR GROUPS							
EPHEMEROPTERA		0%					
PLECOPTERA		0%					
TRICHOPTERA		2%					
CHIRONOMIDAE		13%					
OTHER DIPTERA		0%					
COLEOPTERA		0%					
ODONATA		0%					
MEGALOPTERA		1%					
LEPIDOPTERA		0%					
AMPHIPODA		4%					
ISOPODA		23%					
OLIGOCHAETA		56%					
GASTROPODA		0%					
PELECYPODA		0%					
OTHER		2%					

TOTALS

Ephemeroptera	16	0
Plecoptera	10	0
Tricoptera	35	2
Coleoptera	16	0
Chironomidae	6	13
Oligochaeta	1	56
Other	16	30

Beaver River Site 4

Family Level Benthic Macroinvertebrate Data Analysis Sheet

Site		Beaver	River 4			River/Stream/Town:	Beav	er R	iver, Rich	mond,	RI	
Date Sampled:		8/19/04				Decoppet Estate, do Name(s)	ownstream o	of dai	m, E of H			
Date of Lab Work		8/30/04				# Squares	Picked			1	Mean 1	
- ·			Ī			Total # Squares in Tray Grid 1						
Replicate #		1				Replicate	#		1			
I	Ш	III	IV	V	VI		I	II	III	IV	V	VI
Families in			_			Families	in			_		
Major Groups	T (1)	D (2)	D	T x D	% (3)	Major Gro	oups	Τ	D	D	T x D	%
EPHEMEROPTERA (I	E)					TRICHOP	TERA (T)					
Baetidae	4	1	1	4	0.0088	Brachycer	ntridae	1	1	1	1	0.0088
Baetiscidae	4	0	0	0	0	Glossosor	matidae	0	1	1	0	0.0088
Caenidae	7	0	0	0	0	Helicopsy	chidae	3	0	0	0	0
Ephemerellidae	1	0	0	0	0	Hydropsyd	chidae	4	5	5	20	0.0439
Ephemeridae	4	0	0	0	0	Hydroptilio	dae	6	0	0	0	0
Heptageniidae	4	1	1	4	0.0088	Lepidosto	matidae	1	0	0	0	0
Leptophlebliidae	2	0	0	0	0	Leptocerio	dae	4	0	0	0	0
Metretopodidae	2	0	0	0	0	Limnephil	idae	4	0	0	0	0
Isonychiidae	2	0	0	0	0	Molannida	ae	6	0	0	0	0
Polymitarcyidae	2	0	0	0	0	Odontoce	ridae	0	27	27	0	0.2368
Potomanthidae	4	0	0	0	0	Philopotar	midae	3	2	2	6	0.0175
Siphlonuridae	7	0	0	0	0	Phryganei	dae	4	0	0	0	0
Tricorythldae	4	0	0	0	0	Polycentro	opodidae	6	0	0	0	0
Other		0	0	0	0	Psychomy	/iidae	2	0	0	0	0
		0	0	0	0	Rhyacoph	ilidae	1	4	4	4	0.0351
Subtotal E			2	8	0.0175	Sericostor	matidae	3	0	0	0	0
PLECOPTERA (P)									0	0	0	0
Capniidae	3	0	0	0	0	Other			0	0	0	0
Chloroperlidae	1	0	0	0	0	Subtotal 7	<u> </u>			40	31	0.3509
Leuctridae	0	8	8	0	0.0702	DIPTERA	(D)					
Nemouridae	2	0	0	0	0	Athericida	e	2	0	0	0	0
Peltoperlidae	2	0	0	0	0	Blepharice	eridae	0	0	0	0	0
Perlidae	1	5	5	5	0.0439	Ceratopog	gonidae	6	0	0	0	0
Perlodidae	2	0	0	0	0	Chironom	idae	6	0	0	0	0
Pteronarcyidae	0	0	0	0	0	Tipulidae		4	25	25	100	0.2193
Taeniopterygidae	2	0	0	0	0	Empididae	е	6	0	0	0	0
		0	0	0	0	Simuliidae	Э	6	0	0	0	0
Other		0	0	0	0	Tabanidae	Э	5	0	0	0	0
Subtotal P			13	5	0.114				0	0	0	0
MEGALOPTERA (M)									0	0	0	0
Corydalidae	0	6	6	0	0.0526				0	0	0	0
Sialidae	4	0	0	0	0	Other			0	0	0	0
		0	0	0	0	Subtotal E)			25	100	0.2193
Other		0	0	0	0	ISOPODA	\ (I)					
Subtotal M			6	0	0.0526	Asellidae		8	0	0	0	0
LEPIDOPTERA (L)						<u> </u>			0	0	0	0
Pyralidae	5	0	0	0	0	Other			0	0	0	0
		0	0	0	0	Subtotal I				0	0	0
Other		0	0	0	0							
Subtotal L			0	0	0	1 1						

Beaver 4 cont.

COLEOPTERA (C)					
Dryopidae	5	0	0	0	0
Elmidae	4	18	18	72	0.1579
Gyrinidae	4	0	0	0	0
Haliplidae	5	0	0	0	0
Psephenidae	4	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal C			18	72	0.1579
ODONATA (O)					
Aeshnidae	3	2	2	6	0.0175
Calopterygidae	5	0	0	0	0
Coenagrionidae	9	0	0	0	0
Cordulegastridae	3	0	0	0	0
Corduliidae	2	0	0	0	0
Gomphidae	1	8	8	8	0.0702
Lestidae	9	0	0	0	0
Libellulidae	2	0	0	0	0
Macromiidae	2	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal O			10	14	0.0877
AMPHIPODA (A)					
Crangonyctidae	6	0	0	0	0
Gammaridae	6	0	0	0	0
Talitridae	8	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal A			0	0	0

EPT RICHNESS = RE+RP+RT

# Ephemeroptera Families	2
# Plecoptera Families	2
# Trichoptera Families	6
EPT Richness (Total)	10

Codes:

- (1) T = Hilsenhoff pollution tolerance- RI DEM adjusted values
- (2) D = Density
- (3) % = percent composition

DECAPODA (I)									
Cambaridae	6	0	0	0	0				
Astacidae	6	0	0	0	0				
Other		0	0	0	0				
Subtotal I			0	0	0				
OTHER									
Oligochaeta	9	0	0	0	0				
Hirudinea	10	0	0	0	0				
Gastropoda	6	0	0	0	0				
Pelecypoda	8	0	0	0	0				
Turbellaria	4	0	0	0	0				
Nemertea	8	0	0	0	0				
Other		0	0	0	0				
Subtotal Other	0	0	0						

TOTALS	114	230	1

Organism Density/Sample Unit	114
EPT Richness	10
Total Family Richness	15
EPT/EPT+Chironomidae Ratio	1.00
Biotic Index	2.02
% Contribution of Dominant Family	24%
% Model Affinity	79%

% COMPOSITION OF							
MAJOR GROUPS							
EPHEMEROPTERA		2%					
PLECOPTERA		11%					
TRICHOPTERA		35%					
CHIRONOMIDAE		0%					
OTHER DIPTERA		22%					
COLEOPTERA		16%					
ODONATA		9%					
MEGALOPTERA		5%					
LEPIDOPTERA		0%					
AMPHIPODA		0%					
ISOPODA		0%					
OLIGOCHAETA		0%					
GASTROPODA		0%					
PELECYPODA		0%					
OTHER		0%					

Ephemeroptera	16	2
Plecoptera	10	11
Tricoptera	35	35
Coleoptera	16	16
Chironomidae	6	0
Oligochaeta	1	0
Other	16	36

Beaver River Site 5

Family Level Benthic Macroinvertebrate Data Analysis Sheet

Site	В	eaver River	5				eam/County:		aver Rive			
Date Sampled:		9/23/04		Р	unch Bowl Tr	ail Name(s)	1 mi downstream from		m at Dec , Aube, C			
						rame(s)		Oyon	, ridbo, c	1	Mean	
Date of Lab Work _	1	0/28 -11/1/0)4				# Squares Picked		a: al	1	1	
Replicate #		1	I				Total # Squares in Tr Replicate #	ay G	1	1	1	
		·								1		
I	Ш	III	IV	V	VI		I	П	III	IV	V	VI
Families in			_	_			Families in			_		
Major Groups	T (1)	D (2)	D	T x D	% (3)		Major Groups	Т	D	D	T x D	%
EPHEMEROPTERA (E)						TRICHOPTERA (T)					
Baetidae	4	10	10	40	0.0287356		Brachycentridae	1	0	0	0	0
Baetiscidae	4	0	0	0	0		Glossosomatidae	0	0	0	0	0
Caenidae	7	0	0	0	0		Helicopsychidae	3	0	0	0	0
Ephemerellidae	1	7	7	7	0.0201149		Hydropsychidae	4	110	110	440	0.3161
Ephemeridae	4	0	0	0	0		Hydroptilidae	6	0	0	0	0
Heptageniidae	4	9	9	36	0.0258621		Lepidostomatidae	1	0	0	0	0
Leptophlebliidae	2	0	0	0	0		Leptoceridae	4	0	0	0	0
Metretopodidae	2	0	0	0	0		Limnephilidae	4	1	1	4	0.0029
Isonychiidae	2	0	0	0	0		Molannidae	6	0	0	0	0
Polymitarcyidae	2	0	0	0	0		Odontoceridae	0	1	1	0	0.0029
Potomanthidae	4	0	0	0	0		Philopotamidae	3	0	0	0	0
Siphlonuridae	7	0	0	0	0		Phryganeidae	4	1	1	4	0.0029
Tricorythldae	4	0	0	0	0		Polycentropodidae	6	0	0	0	0
Other		0	0	0	0		Psychomyiidae	2	0	0	0	0
		0	0	0	0		Rhyacophilidae	1	5	5	5	0.0144
Subtotal E			26	83	0.0747126		Sericostomatidae	3	0	0	0	0
PLECOPTERA (P)									0	0	0	0
Capniidae	3	3	3	9	0.0086207		Other		0	0	0	0
Chloroperlidae	1	0	0	0	0		Subtotal T			118	453	0.3391
Leuctridae	0	2	2	0	0.0057471		DIPTERA (D)					
Nemouridae	2	0	0	0	0		Athericidae	2	5	5	10	0.0144
Peltoperlidae	2	11	11	22	0.0316092		Blephariceridae	0	0	0	0	0
Perlidae	1	20	20	20	0.0574713		Ceratopogonidae	6	0	0	0	0
Perlodidae	2	0	0	0	0		Chironomidae	6	1	1	6	0.0029
Pteronarcyidae	0	0	0	0	0		Tipulidae	4	10	10	40	0.0287
Taeniopterygidae	2	0	0	0	0		Empididae	6	0	0	0	0
		0	0	0	0		Simuliidae	6	16	16	96	0.046
Other		0	0	0	0		Tabanidae	5	0	0	0	0
Subtotal P			36	51	0.1034483				0	0	0	0
MEGALOPTERA (M)									0	0	0	0
Corydalidae	0	8	8	0	0.0229885				0	0	0	0
Sialidae	4	0	0	0	0		Other		0	0	0	0
		0	0	0	0		Subtotal D			32	152	0.092
Other		0	0	0	0		ISOPODA (I)					
Subtotal M			8	0	0.0229885		Asellidae	8	0	0	0	0
LEPIDOPTERA (L)									0	0	0	0
Pyralidae	5	0	0	0	0		Other		0	0	0	0
		0	0	0	0		Subtotal I			0	0	0
Other		0	0	0	0							
Subtotal L			0	0	0							
						=	-					

Beaver 5 cont.

COLEOPTERA (C)					•
Dryopidae	5	0	0	0	0
Elmidae	4	117	117	468	0.3362069
Gyrinidae	4	0	0	0	0
Haliplidae	5	0	0	0	0
Psephenidae	4	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal C			117	468	0.3362069
ODONATA (O)					
Aeshnidae	3	3	3	9	0.0086207
Calopterygidae	5	0	0	0	0
Coenagrionidae	9	0	0	0	0
Cordulegastridae	3	0	0	0	0
Corduliidae	2	0	0	0	0
Gomphidae	1	8	8	8	0.0229885
Lestidae	9	0	0	0	0
Libellulidae	2	0	0	0	0
Macromiidae	2	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal O			11	17	0.0316092
AMPHIPODA (A)					
Crangonyctidae	6	0	0	0	0
Gammaridae	6	0	0	0	0
Talitridae	8	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal A			0	0	0

EPT RICHNESS = RE+RP+RT

# Trichoptera Families EPT Richness (Total)	5
# Plecoptera Families	4
# Ephemeroptera Families	3

Codes:

- (1) T = Hilsenhoff pollution tolerance- RI DEM adjusted values
- (2) D = Density
- (3) % = percent composition

DECAPODA (I)					
Cambaridae	6	0	0	0	0
Astacidae	6	0	0	0	0
Other		0	0	0	0
Subtotal I		0	0	0	
OTHER					
Oligochaeta	9	0	0	0	0
Hirudinea	10	0	0	0	0
Gastropoda	6	0	0	0	0
Pelecypoda	8	0	0	0	0
Turbellaria	4	0	0	0	0
Nemertea	8	0	0	0	0
Other		0	0	0	0
Subtotal Other			0	0	0

TOTALS	348	1224	1

Organism Density/Sample Unit	348
EPT Richness	12
Total Family Richness	20
EPT/EPT+Chironomidae Ratio	0.99
Biotic Index	3.52
% Contribution of Dominant Family	34%
% Model Affinity	82%

% COMPOSITION OF					
MAJOR GROUPS					
EPHEMEROPTERA		7%			
PLECOPTERA		10%			
TRICHOPTERA		34%			
CHIRONOMIDAE		0%			
OTHER DIPTERA		9%			
COLEOPTERA		34%			
ODONATA		3%			
MEGALOPTERA		2%			
LEPIDOPTERA		0%			
AMPHIPODA		0%			
ISOPODA		0%			
OLIGOCHAETA		0%			
GASTROPODA		0%			
PELECYPODA		0%			
OTHER		0%			

Ephemeroptera	16	7
Plecoptera	10	10
Tricoptera	35	34
Coleoptera	16	34
Chironomidae	6	0
Oligochaeta	1	0
Other	16	14

Queen River Site 1

Family Level Benthic Macroinvertebrate Data Analysis Sheet

Site		Queen 1					ueen	River, Ex	keter, R		
Date Sampled:			7/27/04			TNC Property @ Stony Road Name(s)	Aube,	Poyer, C	Cerrulo		
Date of Lab Work			8/4/04		<u> </u>	# Squares Picked			1	Mean 1	1
r=			Ī			Total # Squares in Tr	ay G	rid	,	1]
Replicate #		1				Replicate #		1	j		
I	II	III	IV	٧	VI	1	II	III	IV	٧	VI
Families in			_			Families in					
Major Groups	T (1)	D (2)	D	T x D	% (3)	Major Groups	Т	D	D	T x D	%
EPHEMEROPTER A	(E)			•		TRICHOPTERA (T)					•
Baetidae	4	0	0	0	0	Brachycentridae	1	0	0	0	0
Baetiscidae	4	0	0	0	0	Glossosomatidae	0	0	0	0	0
Caenidae	7	0	0	0	0	Helicopsychidae	3	0	0	0	0
Ephemerellidae	1	0	0	0	0	Hydropsychidae	4	188	188	752	0.3363
Ephemeridae	4	0	0	0	0	Hydroptilidae	6	0	0	0	0
Heptageniidae	4	0	0	0	0	Lepidostomatidae	1	2	2	2	0.0036
Leptophlebliidae	2	0	0	0	0	Leptoceridae	4	0	0	0	0
Metretopodidae	2	0	0	0	0	Limnephilidae	4	3	3	12	0.0054
Isonychiidae	2	0	0	0	0	Molannidae	6	0	0	0	0
Polymitarcyidae	2	0	0	0	0	Odontoceridae	0	4	4	0	0.0072
Potomanthidae	4	0	0	0	0	Philopotamidae	3	0	0	0	0
Siphlonuridae	7	0	0	0	0	Phryganeidae	4	0	0	0	0
Tricorythldae	4	0	0	0	0	Polycentropodidae	6	0	0	0	0
Other		0	0	0	0	Psychomyiidae	2	0	0	0	0
		0	0	0	0	Rhyacophilidae	1	0	0	0	0
Subtotal E			0	0	0	Sericostomatidae	3	0	0	0	0
PLECOPTERA (P)				•				0	0	0	0
Capniidae	3	0	0	0	0	Other		0	0	0	0
Chloroperlidae	1	0	0	0	0	Subtotal T			197	766	0.3524
Leuctridae	0	162	162	0	0.2898	DIPTERA (D)					•
Nemouridae	2	0	0	0	0	Athericidae	2	25	25	50	0.0447
Peltoperlidae	2	11	11	22	0.0197	Blephariceridae	0	0	0	0	0
Perlidae	1	4	4	4	0.0072	Ceratopogonidae	6	0	0	0	0
Perlodidae	2	0	0	0	0	Chironomidae	6	9	9	54	0.0161
Pteronarcyidae	0	0	0	0	0	Tipulidae	4	34	34	136	0.0608
Taeniopterygidae	2	0	0	0	0	Empididae	6	0	0	0	0
		0	0	0	0	Simuliidae	6	5	5	30	0.0089
Other		0	0	0	0	Tabanidae	5	0	0	0	0
Subtotal P			177	26	0.3166			0	0	0	0
MEGALOPTERA (N	/ I)							0	0	0	0
Corydalidae	0	15	15	0	0.0268			0	0	0	0
Sialidae	4	0	0	0	0	Other		0	0	0	0
		0	0	0	0	Subtotal D			73	270	0.1306
Other		0	0	0	0	ISOPODA (I)					
Subtotal M			15	0	0.0268	Asellidae	8	0	0	0	0
LEPIDOPTERA (L)								0	0	0	0
Pyralidae	5	0	0	0	0	Other		0	0	0	0
		0	0	0	0	Subtotal I			0	0	0
Other	<u> </u>	0	0	0	0						
Subtotal L			0	0	0	l I					

Queen 1 cont.

COLEOPTERA (C)					
Dryopidae	5	0	0	0	0
Elmidae	4	36	36	144	0.0644
Gyrinidae	4	0	0	0	0
Haliplidae	5	0	0	0	0
Psephenidae	4	3	3	12	0.0054
		0	0	0	0
Other		0	0	0	0
Subtotal C			39	156	0.0698
ODONATA (O)					
Aeshnidae	3	0	0	0	0
Calopterygidae	5	0	0	0	0
Coenagrionidae	9	2	2	18	0.0036
Cordulegastridae	3	0	0	0	0
Corduliidae	2	0	0	0	0
Gomphidae	1	4	4	4	0.0072
Lestidae	9	0	0	0	0
Libellulidae	2	0	0	0	0
Macromiidae	2	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal O			6	22	0.0107
AMPHIPODA (A)					
Crangonyctidae	6	27	27	162	0.0483
Gammaridae	6	0	0	0	0
Talitridae	8	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal A			27	162	0.0483

EPT RICHNESS = RE+RP+RT

# Ephemeroptera Families	0
# Plecoptera Families	3
# Trichoptera Families	4
EPT Richness (Total)	7

Codes:

- (1) T = Hilsenhoff pollution tolerance- RI DEM adjusted values
- (2) D = Density
- (3) % = percent composition

DECAPODA (I)					
Cambaridae	6	0	0	0	0
Astacidae	6	0	0	0	0
Other		0	0	0	0
Subtotal I	0	0	0		
OTHER					
Oligochaeta	9	25	25	225	0.0447
Hirudinea	10	0	0	0	0
Gastropoda	6	0	0	0	0
Pelecypoda	8	0	0	0	0
Turbellaria	4	0	0	0	0
Nemertea	8	0	0	0	0
Other		0	0	0	0
Subtotal Other			25	225	0.0447

IIOIAL			555	1021	

Organism Density/Sample Unit	559
EPT Richness	7
Total Family Richness	18
EPT/EPT+Chironomidae Ratio	0.98
Biotic Index	2.91
% Contribution of Dominant Family	34%
% Model Affinity	71%

% COMPOSITION OF		
MAJOR GROUPS		
EPHEMEROPTERA		0%
PLECOPTERA		32%
TRICHOPTERA		35%
CHIRONOMIDAE		2%
OTHER DIPTERA		11%
COLEOPTERA		7%
ODONATA		1%
MEGALOPTERA		3%
LEPIDOPTERA		0%
AMPHIPODA		5%
ISOPODA		0%
OLIGOCHAETA		4%
GASTROPODA		0%
PELECYPODA		0%
OTHER		0%

Ephemeroptera	16	0
Plecoptera	10	32
Tricoptera	35	35
Coleoptera	16	7
Chironomidae	6	2
Oligochaeta	1	4
Other	16	20

Queen River Site 2

Site		Que	en 2			River/Str			River, Ex		L	
Date Sampled:		7/16/04				Name(s)	upstream of dam on Guillot, Grant, Au					
Date of Lab Work		7/20/04					# Squares Picked			1	Mean 1	
Date of Lab Work		1/20/04					Total # Squares in Tr	ay Gı	rid		1	
Replicate #		1					Replicate #		1	'		
I	II	III	IV	V	VI	1	ı	II	III	IV	٧	VI
Families in						1	Families in					
Major Groups	T (1)	D (2)	_ D	T x D	% (3)		Major Groups	Т	D	D	T x D	%
EPHEMEROPTERA	(E)					1	TRICHOPTERA (T)					
Baetidae	4	3	3	12	0.0127		Brachycentridae	1	0	0	0	0
Baetiscidae	4	0	0	0	0		Glossosomatidae	0	8	8	0	0.0339
Caenidae	7	0	0	0	0		Helicopsychidae	3	0	0	0	0
Ephemerellidae	1	0	0	0	0		Hydropsychidae	4	57	57	228	0.2415
Ephemeridae	4	9	9	36	0.0381		Hydroptilidae	6	0	0	0	0
Heptageniidae	4	0	0	0	0		Lepidostomatidae	1	0	0	0	0
Leptophlebliidae	2	0	0	0	0		Leptoceridae	4	0	0	0	0
Metretopodidae	2	0	0	0	0		Limnephilidae	4	7	7	28	0.0297
Isonychiidae	2	0	0	0	0		Molannidae	6	0	0	0	0
Polymitarcyidae	2	0	0	0	0		Odontoceridae	0	0	0	0	0
Potomanthidae	4	0	0	0	0		Philopotamidae	3	9	9	27	0.0381
Siphlonuridae	7	0	0	0	0		Phryganeidae	4	0	0	0	0
TricorythIdae	4	0	0	0	0		Polycentropodidae	6	0	0	0	0
Other		0	0	0	0		Psychomyiidae	2	0	0	0	0
		0	0	0	0		Rhyacophilidae	1	13	13	13	0.0551
Subtotal E			12	48	0.0508		Sericostomatidae	3	0	0	0	0
PLECOPTERA (P)									0	0	0	0
Capniidae	3	0	0	0	0		Other		0	0	0	0
Chloroperlidae	1	0	0	0	0		Subtotal T			94	296	0.3983
Leuctridae	0	3	3	0	0.0127		DIPTERA (D)					
Nemouridae	2	0	0	0	0		Athericidae	2	19	19	38	0.0805
Peltoperlidae	2	0	0	0	0		Blephariceridae	0	0	0	0	0
Perlidae	1	1	1	1	0.0042		Ceratopogonidae	6	0	0	0	0
Perlodidae	2	0	0	0	0		Chironomidae	6	0	0	0	0
Pteronarcyidae	0	0	0	0	0		Tipulidae	4	6	6	24	0.0254
Taeniopterygidae	2	0	0	0	0		Empididae	6	0	0	0	0
		0	0	0	0	1	Simuliidae	6	0	0	0	0
Other		0	0	0	0		Tabanidae	5	0	0	0	0
Subtotal P			4	1	0.0169				0	0	0	0
MEGALOPTERA (N	1)			ı	ı				0	0	0	0
Corydalidae	0	6	6	0	0.0254	4			0	0	0	0
Sialidae	4	0	0	0	0	4	Other		0	0	0	0
	1	0	0	0	0	1	Subtotal D			25	62	0.1059
Other		0	0	0	0	1	ISOPODA (I)	T .				
Subtotal M			6	0	0.0254	4	Asellidae	8	0	0	0	0
LEPIDOPTERA (L)	1					-			0	0	0	0
Pyralidae	5	0	0	0	0	-	Other		0	0	0	0
	1	0	0	0	0	-	Subtotal I			0	0	0
Other	<u> </u>	0	0	0	0	1						
Subtotal L			0	0	0	J						

Queen 2 cont.

COLEOPTERA (C)					
Dryopidae	5	0	0	0	0
Elmidae	4	29	29	116	0.1229
Gyrinidae	4	0	0	0	0
Haliplidae	5	0	0	0	0
Psephenidae	4	12	12	48	0.0508
		0	0	0	0
Other		0	0	0	0
Subtotal C		41	164	0.1737	
ODONATA (O)					
Aeshnidae	3	5	5	15	0.0212
Calopterygidae	5	0	0	0	0
Coenagrionidae	9	0	0	0	0
Cordulegastridae	3	0	0	0	0
Corduliidae	2	0	0	0	0
Gomphidae	1	4	4	4	0.0169
Lestidae	9	0	0	0	0
Libellulidae	2	0	0	0	0
Macromiidae	2	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal O			9	19	0.0381
AMPHIPODA (A)					
Crangonyctidae	6	0	0	0	0
Gammaridae	6	0	0	0	0
Talitridae	8	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal A			0	0	0

EPT RICHNESS = RE+RP+RT

# Ephemeroptera Families	2
# Plecoptera Families	2
# Trichoptera Families	5
EPT Richness (Total)	9

Codes:

- (1) T = Hilsenhoff pollution tolerance- RI DEM adjusted values
- (2) D = Density
- (3) % = percent composition

DECAPODA (I)									
Cambaridae	6	0	0	0	0				
Astacidae	6	0	0	0	0				
Other		0	0	0	0				
Subtotal I	0	0	0						
OTHER									
Oligochaeta	9	45	45	405	0.1907				
Hirudinea	10	0	0	0	0				
Gastropoda	6	0	0	0	0				
Pelecypoda	8	0	0	0	0				
Turbellaria	4	0	0	0	0				
Nemertea	8	0	0	0	0				
Other		0	0	0	0				
Subtotal Other	45	405	0.1907						

TOTALS 236 995

Organism Density/Sample Unit	236
EPT Richness	9
Total Family Richness	17
EPT/EPT+Chironomidae Ratio	1.00
Biotic Index	4.22
% Contribution of Dominant Family	24%
% Model Affinity	75%

% COMPOSITION OF								
MAJOR GROUPS	MAJOR GROUPS							
EPHEMEROPTERA		5%						
PLECOPTERA		2%						
TRICHOPTERA		40%						
CHIRONOMIDAE		0%						
OTHER DIPTERA		11%						
COLEOPTERA		17%						
ODONATA		4%						
MEGALOPTERA		3%						
LEPIDOPTERA		0%						
AMPHIPODA		0%						
ISOPODA		0%						
OLIGOCHAETA		19%						
GASTROPODA		0%						
PELECYPODA		0%						
OTHER		0%						

Ephemeroptera	16	5
Plecoptera	10	2
Tricoptera	35	40
Coleoptera	16	17
Chironomidae	6	0
Oligochaeta	1	19
Other	16	17

Queen River Site 3

Site		Que	en 3			River/Str		ueen	River, Ex	keter, R	.I	
Date Sampled:		7/16/04				Name(s)	Brownelle Pond Guillot, Grant, A	ube, F	Poyer, Sa	aila		
Data at Lab Wards		7/00/04				` /-			-	1	Mean	
Date of Lab Work	_	7/20/04					# Squares Picked Total # Squares in Ti	rav G	rid	1	1	ł
Replicate #		1					Replicate #	uy C	1		<u> </u>	ı
	_			1	1	1	- I			1	1	
I	II	III	IV	V	VI		I	II	III	IV	V	VI
Families in			_	l_			Families in			_ D	l_ <i>=</i>	
Major Groups	T (1)	D (2)	D	T x D	% (3)	1	Major Groups	Т	D	D	T x D	%
EPHEMEROPTERA							TRICHOPTERA (T)					
Baetidae	4	0	0	0	0		Brachycentridae	1	0	0	0	0
Baetiscidae	4	0	0	0	0		Glossosomatidae	0	0	0	0	0
Caenidae	7	0	0	0	0	1	Helicopsychidae	3	0	0	0	0
Ephemerellidae 	1	0	0	0	0		Hydropsychidae	4	0	0	0	0
Ephemeridae	4	0	0	0	0		Hydroptilidae	6	0	0	0	0
Heptageniidae	4	0	0	0	0	1	<u>Lepidostomatidae</u>	1	0	0	0	0
Leptophlebliidae	2	0	0	0	0	1	Leptoceridae	4	0	0	0	0
Metretopodidae	2	0	0	0	0		Limnephilidae	4	1	1	4	0.0088
Isonychiidae	2	0	0	0	0	-	Molannidae	6	0	0	0	0
Polymitarcyidae	2	0	0	0	0		Odontoceridae	0	0	0	0	0
Potomanthidae	4	0	0	0	0		Philopotamidae	3	3	3	9	0.0263
Siphlonuridae	7	0	0	0	0		Phryganeidae	4	0	0	0	0
Tricorythldae	4	0	0	0	0	ł	Polycentropodidae	6	0	0	0	0
Other	+	0	0	0	0	1	Psychomyiidae	2	0	0	0	0
2 /		0	0	0	0	1	Rhyacophilidae	1	0	0	0	0
Subtotal E			0	0	0		Sericostomatidae	3	0	0	0	0
PLECOPTERA (P)									0	0	0	0
Capniidae	3	0	0	0	0	-	Other		0	0	0	0
Chloroperlidae	1	0	0	0	0		Subtotal T			4	13	0.0351
Leuctridae	0	0	0	0	0		DIPTERA (D)		_	_	_	<u> </u>
Nemouridae	2	0	0	0	0		Athericidae	2	0	0	0	0
Peltoperlidae	2	0	0	0	0		Blephariceridae	0	0	0	0	0
Perlidae	1	0	0	0	0		Ceratopogonidae	6	0	0	0	0
Perlodidae	2	0	0	0	0	1	Chironomidae	6	2	2	12	0.0175
Pteronarcyidae	0	0	0	0	0	1	Tipulidae	4	0	0	0	0
Taeniopterygidae	2	0	0	0	0	1	Empididae	6	0	0	0	0
Other		0	0	0	0	1	Simuliidae	6	0	0	0	0
Other Subtotal P		0	0	0	0	1	Tabanidae	5	0	0	0	0
	\#\		U	U	U	1						
MEGALOPTERA (I		0	0		0	1			0	0	0	0
Corydalidae	0	0	0	0	0 0430	1	Othor		0	0	0	0
Sialidae	4	5 0	5 0	20 0	0.0439	1	Other Subtotal D		0	0 2	0 12	0 0175
Other	+					1				2	12	0.0175
Other Subtotal M	<u> </u>	0	<u>0</u> 5	20	0.0439	1	ISOPODA (I) Asellidae	8	4	4	32	0.0351
			Ü	20	0.0439	1	ASCIIIUAE	O				
LEPIDOPTERA (L)		0	0		0	1	Othor		0	0	0	0
Pyralidae	5	0	0	0	0	1	Other Subtotal I		0	0 4	32	0.0351
Othor						1	Gubiolai I			4	JZ	0.0331
Other Subtotal L	<u> </u>	0	0	0	0	1						
CUDICIAI L			U	U	U	J	ı					

Queen 3 cont.

					_
COLEOPTERA (C)					-
Dryopidae	5	0	0	0	0
Elmidae	4	0	0	0	0
Gyrinidae	4	0	0	0	0
Haliplidae	5	0	0	0	0
Psephenidae	4	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal C			0	0	0
ODONATA (O)					
Aeshnidae	3	0	0	0	0
Calopterygidae	5	0	0	0	0
Coenagrionidae	9	0	0	0	0
Cordulegastridae	3	0	0	0	0
Corduliidae	2	0	0	0	0
Gomphidae	1	3	3	3	0.0263
Lestidae	9	0	0	0	0
Libellulidae	2	0	0	0	0
Macromiidae	2	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal O			3	3	0.0263
AMPHIPODA (A)					
Crangonyctidae	6	1	1	6	0.0088
Gammaridae	6	0	0	0	0
Talitridae	8	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal A			1	6	0.0088

EPT RICHNESS = RE+RP+RT

EPT Richness (Total)	2
# Trichoptera Families	2
# Plecoptera Families	0
# Ephemeroptera Families	0

Codes:

- (1) T = Hilsenhoff pollution tolerance- RI DEM adjusted values
- (2) D = Density
- (3) % = percent composition

DECAPODA (I)								
Cambaridae	6	0	0	0	0			
Astacidae	6	0	0	0	0			
Other		0	0	0	0			
Subtotal I	0	0	0					
OTHER								
Oligochaeta	9	93	93	837	0.8158			
Hirudinea	10	0	0	0	0			
Gastropoda	6	2	2	12	0.0175			
Pelecypoda	8	0	0	0	0			
Turbellaria	4	0	0	0	0			
Nemertea	8	0	0	0	0			
Other		0	0	0	0			
Subtotal Other	Subtotal Other							

TOTALS 114 935 1

Organism Density/Sample Unit	114
EPT Richness	2
Total Family Richness	9
EPT/EPT+Chironomidae Ratio	0.67
Biotic Index	8.20
% Contribution of Dominant Family	82%
% Model Affinity	19%

% COMPOSITION O	F	
MAJOR GROUPS		
EPHEMEROPTERA		0%
PLECOPTERA		0%
TRICHOPTERA		4%
CHIRONOMIDAE		2%
OTHER DIPTERA		0%
COLEOPTERA		0%
ODONATA		3%
MEGALOPTERA		4%
LEPIDOPTERA		0%
AMPHIPODA		1%
ISOPODA		4%
OLIGOCHAETA		82%
GASTROPODA		2%
PELECYPODA		0%
OTHER		0%

Ephemeroptera	16	0
Plecoptera	10	0
Tricoptera	35	4
Coleoptera	16	0
Chironomidae	6	2
Oligochaeta	1	82
Other	16	13

Queen River Site 4

Site	Queen 4					River/Stream/County: Queen River, Exeter, RI downstream of dam on Brownelle Property						
Date Sampled:		8/1/04				Name(s)_					/	
· -										1	Mean	
Date of Lab Work		8/4/04					# Squares Picked Total # Squares in Tra	av Gi	rid	1	1	
Replicate #		1	Ì			ĺ	Replicate #	ay C.	1	<u>'</u>	<u> </u>	i
				, , , , , , , , , , , , , , , , , , , 	1	1				· 		
I	II	III	IV	V	VI	!	I	II	III	IV	٧	VI
Families in	_ (1)	5 (0)	_		24 (0)		Families in	_		_		2/
Major Groups	T (1)	D (2)	D	T x D	% (3)	!	Major Groups	T	D	D	T x D	%
EPHEMEROPTERA						.	TRICHOPTERA (T)					
Baetidae	4	0	0	0	0	l I	Brachycentridae	1	0	0	0	0
Baetiscidae	4	0	0	0	0		Glossosomatidae	0	2	2	0	0.0018
Caenidae 	7	0	0	0	0		Helicopsychidae	3	0	0	0	0
Ephemerellidae	1	0	0	0	0		Hydropsychidae	4	462	462	1848	0.4235
Ephemeridae	4	0	0	0	0		Hydroptilidae	6	0	0	0	0
Heptageniidae	4	23	23	92	0.0211		Lepidostomatidae	1	0	0	0	0
Leptophlebliidae	2	0	0	0	0		Leptoceridae	4	0	0	0	0
Metretopodidae	2	0	0	0	0		Limnephilidae	4	6	6	24	0.0055
Isonychiidae	2	1	1	2	0.0009		Molannidae	6	0	0	0	0
Polymitarcyidae	2	0	0	0	0		Odontoceridae	0	4	4	0	0.0037
Potomanthidae	4	0	0	0	0	.	Philopotamidae	3	332	332	996	0.3043
Siphlonuridae	7	0	0	0	0	.	Phryganeidae	4	0	0	0	0
Tricorythldae	4	0	0	0	0	.	Polycentropodidae	6	0	0	0	0
Other	igwdap	0	0	0	0	.	Psychomyiidae	2	0	0	0	0
		0	0	0	0		Rhyacophilidae	1	8	8	8	0.0073
Subtotal E			24	94	0.022		Sericostomatidae	3	0	0	0	0
PLECOPTERA (P)									0	0	0	0
Capniidae	3	0	0	0	0		Other		0	0	0	0
Chloroperlidae	1	0	0	0	0	.	Subtotal T			814	2876	0.7461
Leuctridae	0	42	42	0	0.0385	.	DIPTERA (D)	1				
Nemouridae	2	0	0	0	0	!	Athericidae	2	23	23	46	0.0211
Peltoperlidae	2	0	0	0	0		Blephariceridae	0	0	0	0	0
Perlidae	1	3	3	3	0.0027		Ceratopogonidae	6	0	0	0	0
Perlodidae	2	0	0	0	0		Chironomidae	6	2	2	12	0.0018
Pteronarcyidae	0	0	0	0	0	.	Tipulidae	4	7	7	28	0.0064
Taeniopterygidae	2	0	0	0	0		Empididae	6	0	0	0	0
		0	0	0	0	!	Simuliidae	6	11	11	66	0.0101
Other		0	0	0	0	!	Tabanidae	5	0	0	0	0
Subtotal P			45	3	0.0412	!		Щ	0	0	0	0
MEGALOPTERA (M)				1			Ш	0	0	0	0
Corydalidae	0	9	9	0	0.0082	.		Щ	0	0	0	0
Sialidae	4	0	0	0	0	!	Other		0	0	0	0
		0	0	0	0	!	Subtotal D			43	152	0.0394
Other		0	0	0	0	.	ISOPODA (I)	•				
Subtotal M			9	0	0.0082	!	Asellidae	8	0	0	0	0
LEPIDOPTERA (L)						!		Щ	0	0	0	0
Pyralidae	5	0	0	0	0	!	Other		0	0	0	0
		0	0	0	0	j	Subtotal I			0	0	0
Other		0	0	0	0	!						
Subtotal L			0	0	0							

Queen 4 cont.

					•
COLEOPTERA (C)					
Dryopidae	5	0	0	0	0
Elmidae	4	30	30	120	0.0275
Gyrinidae	4	0	0	0	0
Haliplidae	5	0	0	0	0
Psephenidae	4	10	10	40	0.0092
		0	0	0	0
Other		0	0	0	0
Subtotal C			40	160	0.0367
ODONATA (O)					
Aeshnidae	3	0	0	0	0
Calopterygidae	5	0	0	0	0
Coenagrionidae	9	0	0	0	0
Cordulegastridae	3	0	0	0	0
Corduliidae	2	0	0 0		0
Gomphidae	1	14	14	14	0.0128
Lestidae	9	0	0	0	0
Libellulidae	2	0	0	0	0
Macromiidae	2	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal O			14	14	0.0128
AMPHIPODA (A)					
Crangonyctidae	6	2	2	12	0.0018
Gammaridae	6	0	0	0	0
Talitridae	8	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal A			2	12	0.0018

EPT RICHNESS = RE+RP+RT

# Ephemeroptera Families	2
# Plecoptera Families	2
# Trichoptera Families	6
EPT Richness (Total)	10

Codes:

- (1) T = Hilsenhoff pollution tolerance- RI DEM adjusted values
- (2) D = Density
- (3) % = percent composition

DECAPODA (I)									
Cambaridae	6	0	0	0	0				
Astacidae	6	0	0	0	0				
Other		0	0	0	0				
Subtotal I		0	0	0					
OTHER									
Oligochaeta	9	100	100	900	0.0917				
Hirudinea	10	0	0	0	0				
Gastropoda	6	0	0	0	0				
Pelecypoda	8	0	0	0	0				
Turbellaria	4	0	0	0	0				
Nemertea	8	0	0	0	0				
Other		0	0	0	0				
Subtotal Other		, i	100	900	0.0917				

Organism Density/Sample Unit					
EPT Richness	10				
Total Family Richness	20				
EPT/EPT+Chironomidae Ratio	1.00				
Biotic Index	3.86				
% Contribution of Dominant Family	42%				
% Model Affinity	52%				

1091 4211

% COMPOSITION O	F	
MAJOR GROUPS		
EPHEMEROPTERA		2%
PLECOPTERA		4%
TRICHOPTERA		75%
CHIRONOMIDAE		0%
OTHER DIPTERA		4%
COLEOPTERA		4%
ODONATA		1%
MEGALOPTERA		1%
LEPIDOPTERA		0%
AMPHIPODA		0%
ISOPODA		0%
OLIGOCHAETA		9%
GASTROPODA		0%
PELECYPODA		0%
OTHER		0%

TOTALS

Ephemeroptera	16	2
Plecoptera	10	4
Tricoptera	35	75
Coleoptera	16	4
Chironomidae	6	0
Oligochaeta	1	9
Other	16	6

Parris Brook

Site		Parris Brook				River/Stream/County:		Brook, E	xeter R	l	
Date Sampled:		8/24/04				at Old Volunto Name(s) Aube, Ceru	own Rd <mark>ullo, Urso, G</mark>	uillot			
Date of Lab Work		9/3/04				# Squares Pic	kod		1	Mean 1	1
Date of Lab Work		3/3/04				Total # Square		rid		1	
Replicate #		1				Replicate #	•	1			•
I	II	III	IV	٧	VI	I	II	III	IV	٧	VI
Families in			_	_		Families in			l _		
Major Groups	T (1)	D (2)	D	T x D	% (3)	Major Groups	s T	D	D	T x D	%
EPHEMEROPTERA	(E)					TRICHOPTER	RA (T)	1		I	ı
Baetidae	4	0	0	0	0	Brachycentrida	ae 1	0	0	0	0
Baetiscidae	4	0	0	0	0	Glossosomati	dae 0	0	0	0	0
Caenidae	7	0	0	0	0	Helicopsychid	ae 3	0	0	0	0
Ephemerellidae	1	0	0	0	0	Hydropsychida	ae 4	0	0	0	0
Ephemeridae	4	0	0	0	0	Hydroptilidae	6	0	0	0	0
Heptageniidae	4	2	2	8	0.0488	Lepidostomati	dae 1	0	0	0	0
Leptophlebliidae	2	0	0	0	0	Leptoceridae	4	0	0	0	0
Metretopodidae	2	0	0	0	0	Limnephilidae	4	1	1	4	0.0244
Isonychiidae	2	0	0	0	0	Molannidae	6	0	0	0	0
Polymitarcyidae	2	0	0	0	0	Odontoceridae	e 0	23	23	0	0.561
Potomanthidae	4	0	0	0	0	Philopotamida	ie 3	0	0	0	0
Siphlonuridae	7	0	0	0	0	Phryganeidae	4	0	0	0	0
Tricorythldae	4	0	0	0	0	Polycentropod	lidae 6	0	0	0	0
Other		0	0	0	0	Psychomyiida	e 2	0	0	0	0
		0	0	0	0	Rhyacophilida	e 1	0	0	0	0
Subtotal E			2	8	0.0488	Sericostomatic	dae 3	0	0	0	0
PLECOPTERA (P)								0	0	0	0
Capniidae	3	0	0	0	0	Other		0	0	0	0
Chloroperlidae	1	0	0	0	0	Subtotal T			24	4	0.5854
Leuctridae	0	0	0	0	0	DIPTERA (D)					
Nemouridae	2	0	0	0	0	Athericidae	2	0	0	0	0
Peltoperlidae	2	0	0	0	0	Blepharicerida	ne 0	0	0	0	0
Perlidae	1	0	0	0	0	Ceratopogonio	dae 6	0	0	0	0
Perlodidae	2	0	0	0	0	Chironomidae	6	1	1	6	0.0244
Pteronarcyidae	0	0	0	0	0	Tipulidae	4	3	3	12	0.0732
Taeniopterygidae	2	0	0	0	0	Empididae	6	0	0	0	0
		0	0	0	0	Simuliidae	6	0	0	0	0
Other		0	0	0	0	Tabanidae	5	0	0	0	0
Subtotal P			0	0	0			0	0	0	0
MEGALOPTERA (M)							0	0	0	0
Corydalidae	0	5	5	0	0.122			0	0	0	0
Sialidae	4	0	0	0	0	Other		0	0	0	0
		0	0	0	0	Subtotal D			4	18	0.0976
Other		0	0	0	0	ISOPODA (I)					
Subtotal M			5	0	0.122	Asellidae	8	0	0	0	0
LEPIDOPTERA (L)								0	0	0	0
Pyralidae	5	0	0	0	0	Other		0	0	0	0
		0	0	0	0	Subtotal I			0	0	0
Other		0	0	0	0						
Subtotal L			0	0	0						

Parris Brook cont. Shunnock River

COLEOPTERA (C)					•
Dryopidae	5	0	0	0	0
Elmidae	4	1	1	4	0.0244
Gyrinidae	4	0	0	0	0
Haliplidae	5	0	0	0	0
Psephenidae	4	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal C			1	4	0.0244
ODONATA (O)					
Aeshnidae	3	0	0	0	0
Calopterygidae	5	1	1	5	0.0244
Coenagrionidae	9	0	0	0	0
Cordulegastridae	3	0	0	0	0
Corduliidae	2	0	0	0	0
Gomphidae	1	3	3	3	0.0732
Lestidae	9	0	0	0	0
Libellulidae	2	0	0	0	0
Macromiidae	2	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal O			4	8	0.0976
AMPHIPODA (A)					
Crangonyctidae	6	1	1	6	0.0244
Gammaridae	6	0	0	0	0
Talitridae	8	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal A			1	6	0.0244

EPT RICHNESS = RE+RP+RT

# Ephemeroptera Families	1
# Plecoptera Families	0
# Trichoptera Families	2
EPT Richness (Total)	3

Codes:

(1) T = Hilsenhoff pollution tolerance- RI DEM adjusted values

(2) D = Density

(3) % = percent composition

DECAPODA (I)							
Cambaridae	6	0	0	0	0		
Astacidae	6	0	0	0	0		
Other		0	0	0	0		
Subtotal I	0	0	0				
OTHER							
Oligochaeta	9	0	0	0	0		
Hirudinea	10	0	0	0	0		
Gastropoda	6	0	0	0	0		
Pelecypoda	8	0	0	0	0		
Turbellaria	4	0	0	0	0		
Nemertea	8	0	0	0	0		
Other		0	0	0	0		
Subtotal Other	0	0	0				

TOTALS	41	48	1

Organism Density/Sample Unit	41
EPT Richness	3
Total Family Richness	10
EPT/EPT+Chironomidae Ratio	0.96
Biotic Index	1.17
% Contribution of Dominant Family	56%
% Model Affinity	61%

% COMPOSITION OF					
MAJOR GROUPS					
EPHEMEROPTERA		5%			
PLECOPTERA		0%			
TRICHOPTERA		59%			
CHIRONOMIDAE		2%			
OTHER DIPTERA		7%			
COLEOPTERA		2%			
ODONATA		10%			
MEGALOPTERA		12%			
LEPIDOPTERA		0%			
AMPHIPODA		2%			
ISOPODA		0%			
OLIGOCHAETA		0%			
GASTROPODA		0%			
PELECYPODA		0%			
OTHER		0%			

Ephemeroptera	16	5
Plecoptera	10	0
Tricoptera	35	59
Coleoptera	16	2
Chironomidae	6	2
Oligochaeta	1	0
Other	16	32

Site	S	hunnock Rive	er			River/Str	eam/County:			River, N	Stoningt	on, CT
Date Sampled:		8/26/04				Name(s)	Downstream of Parke		d dam ot, Aube,			
Date of Lab Work		9/2/04					# Squares Picked			1	Mean 1	
Danillanta II	1		i				Total # Squares in Tr	ay G		1	1	
Replicate #		1				_	Replicate #		1	J		
I	П	III	IV	٧	VI		I	II	III	IV	٧	VI
Families in			_	_			Families in			_	_	
Major Groups	T (1)	D (2)	D	T x D	% (3)	4	Major Groups	Τ	D	D	T x D	%
EPHEMEROPTERA	(E)				ı		TRICHOPTERA (T)	1				
Baetidae	4	0	0	0	0	4	Brachycentridae	1	0	0	0	0
Baetiscidae	4	0	0	0	0	4	Glossosomatidae	0	0	0	0	0
Caenidae	7	0	0	0	0	4	Helicopsychidae	3	0	0	0	0
Ephemerellidae	1	0	0	0	0	4	Hydropsychidae	4	101	101	404	0.4879
Ephemeridae	4	0	0	0	0	1	Hydroptilidae	6	0	0	0	0
Heptageniidae	4	2	2	8	0.0097	1	Lepidostomatidae	1	0	0	0	0
Leptophlebliidae	2	0	0	0	0		Leptoceridae	4	0	0	0	0
Metretopodidae	2	0	0	0	0		Limnephilidae	4	45	45	180	0.2174
Isonychiidae	2	5	5	10	0.0242	1	Molannidae	6	0	0	0	0
Polymitarcyidae	2	0	0	0	0	1	Odontoceridae	0	0	0	0	0
Potomanthidae	4	0	0	0	0	1	Philopotamidae	3	12	12	36	0.058
Siphlonuridae	7	0	0	0	0		Phryganeidae	4	0	0	0	0
Tricorythldae	4	0	0	0	0	1	Polycentropodidae	6	0	0	0	0
Other		0	0	0	0		Psychomyiidae	2	0	0	0	0
0.115		0	0	0	0	1	Rhyacophilidae	1	0	0	0	0
Subtotal E			7	18	0.0338		Sericostomatidae	3	0	0	0	0
PLECOPTERA (P)	T . 1	_	_		<u> </u>				0	0	0	0
Capniidae	3	0	0	0	0	1	Other (Beraeidae)		1	1	0	0.0048
Chloroperlidae	1	0	0	0	0	1	Subtotal T			159	620	0.7681
Leuctridae	0	1	1	0	0.0048		DIPTERA (D)		0	_	0	0
Nemouridae	2	0	0	0	0		Athericidae	2	0	0	0	0
Peltoperlidae	2	0	0	0	0		Blephariceridae	0	0	0	0	0
Perlidae	1	6	6	6	0.029		Ceratopogonidae	6	0	0	0	0
Perlodidae	2	0	0	0	0		Chironomidae	6	0	0	0	0
Pteronarcyidae	0	0	0	0	0	1	Tipulidae	4	0	0	0	0
Taeniopterygidae	2	0	0	0	0	1	Empididae Simuliidae	6	0	0	0	0
Other		0	0	0	0	1		6 5	0	0	0	0
Other Subtotal P		0	7	6	0.0338	1	<u>Tabanidae</u> Psychodide	5	0 18	0 18	0	0.087
MEGALOPTERA (M	1		•	Ŭ	0.0000	1	1 Sychodiae		0	0	0	0.007
Corydalidae	0	0	0	0	0				0	0	0	0
Sialidae	4	0	0	0	0	1	Other		0	0	0	0
Ciandae	<u> </u>	0	0	0	0	1	Subtotal D		U	18	0	0.087
Other		0	0	0	0	1	ISOPODA (I)			.0	Ű	0.001
Subtotal M		<u> </u>	0	0	0	1	Asellidae	8	0	0	0	0
LEPIDOPTERA (L)						1		Ť	0	0	0	0
Pyralidae	5	0	0	0	0	1	Other		0	0	0	0
. ,	Ĭ	0	0	0	0	1	Subtotal I			0	0	0
Other		0	0	0	0	1						
Subtotal L			0	0	0	1						
							•					

Shunnock River cont.

COLEOPTERA (C)					·
Dryopidae	5	0	0	0	0
Elmidae	4	7	7	28	0.0338
Gyrinidae	4	0	0	0	0
Haliplidae	5	0	0	0	0
Psephenidae	4	6	6	24	0.029
		0	0	0	0
Other		0	0	0	0
Subtotal C		•	13	52	0.0628
ODONATA (O)					
Aeshnidae	3	0	0	0	0
Calopterygidae	5	0	0	0	0
Coenagrionidae	9	0	0	0	0
Cordulegastridae	3	0	0	0	0
Corduliidae	2	0	0	0	0
Gomphidae	1	1	1	1	0.0048
Lestidae	9	0	0	0	0
Libellulidae	2	0	0	0	0
Macromiidae	2	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal O			1	1	0.0048
AMPHIPODA (A)					
Crangonyctidae	6	2	2	12	0.0097
Gammaridae	6	0	0	0	0
Talitridae	8	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal A			2	12	0.0097

EPT RICHNESS = RE+RP+RT

# Ephemeroptera Families	2
# Plecoptera Families	2
# Trichoptera Families	4
EPT Richness (Total)	8

Codes:

(1) T = Hilsenhoff pollution tolerance- RI DEM adjusted values

(2) D = Density

(3) % = percent composition

DECAPODA (I)					
Cambaridae	6	0	0	0	0
Astacidae	6	0	0	0	0
Other		0	0	0	0
Subtotal I	0	0	0		
OTHER					
Oligochaeta	9	0	0	0	0
Hirudinea	10	0	0	0	0
Gastropoda	6	0	0	0	0
Pelecypoda	8	0	0	0	0
Turbellaria	4	0	0	0	0
Nemertea	8	0	0	0	0
Other		0	0	0	0
Subtotal Other	0	0	0		

TOTALS	207	709	1
TOTALS	207	709	

Organism Density/Sample Unit	207
EPT Richness	8
Total Family Richness	13
EPT/EPT+Chironomidae Ratio	1.00
Biotic Index	3.43
% Contribution of Dominant Family	49%
% Model Affinity	58%

% COMPOSITION OF					
MAJOR GROUPS					
EPHEMEROPTERA	3%				
PLECOPTERA	3%				
TRICHOPTERA	77%				
CHIRONOMIDAE	0%				
OTHER DIPTERA	9%				
COLEOPTERA	6%				
ODONATA	0%				
MEGALOPTERA	0%				
LEPIDOPTERA	0%				
AMPHIPODA	1%				
ISOPODA	0%				
OLIGOCHAETA	0%				
GASTROPODA	0%				
PELECYPODA	0%				
OTHER	0%				

Ephemeroptera	16	3
Plecoptera	10	3
Tricoptera	35	77
Coleoptera	16	6
Chironomidae	6	0
Oligochaeta	1	0
Other	16	10

Shunnock River - Parke Pond

Site		Parke Pond						k River, N Stoni	ngton,	CT	
Date Sampled:		7/6/06				Parke Pond at the Name(s)		ot, Aube, Poyer,	Grant		
Date of Lab Work		7/10/04				# Squares Picked			1	Mean 1	7
Date of Lab Work		77 1070 1				Total # Squares in		rid		1	†
Replicate #		1				Replicate #		1]		•
I	Ш	III	IV	V	VI		П	III	ΙV	V	VI
Families in						Families in					
Major Groups	T (1)	D (2)	D	T x D	% (3)	Major Groups	Т	D	D	T x D	%
EPHEMEROPTER#	(E)					TRICHOPTERA (T)				
Baetidae	4	0	0	0	0	Brachycentridae	1	0	0	0	0
Baetiscidae	4	0	0	0	0	Glossosomatidae	0	0	0	0	0
Caenidae	7	0	0	0	0	Helicopsychidae	3	0	0	0	0
Ephemerellidae	1	0	0	0	0	Hydropsychidae	4	0	0	0	0
Ephemeridae	4	0	0	0	0	Hydroptilidae	6	0	0	0	0
Heptageniidae	4	0	0	0	0	Lepidostomatidae	1	0	0	0	0
Leptophlebliidae	2	0	0	0	0	Leptoceridae	4	0	0	0	0
Metretopodidae	2	0	0	0	0	Limnephilidae	4	1	1	4	0.0115
Isonychiidae	2	0	0	0	0	Molannidae	6	0	0	0	0
Polymitarcyidae	2	0	0	0	0	Odontoceridae	0	0	0	0	0
Potomanthidae	4	0	0	0	0	Philopotamidae	3	5	5	15	0.0575
Siphlonuridae	7	0	0	0	0	Phryganeidae	4	0	0	0	0
Tricorythldae	4	0	0	0	0	Polycentropodida	e 6	0	0	0	0
Other		0	0	0	0	Psychomyiidae	2	0	0	0	0
		0	0	0	0	Rhyacophilidae	1	0	0	0	0
Subtotal E			0	0	0	Sericostomatidae	3	0	0	0	0
PLECOPTERA (P)			_					0	0	0	0
Capniidae	3	0	0	0	0	Other		0	0	0	0
Chloroperlidae	1	0	0	0	0	Subtotal T	Subtotal T		6	19	0.069
Leuctridae	0	0	0	0	0	DIPTERA (D)					
Nemouridae	2	0	0	0	0	Athericidae	2	0	0	0	0
Peltoperlidae	2	0	0	0	0	Blephariceridae	0	0	0	0	0
Perlidae	1	0	0	0	0	Ceratopogonidae	6	0	0	0	0
Perlodidae	2	0	0	0	0	Chironomidae	6	7	7	42	0.0805
Pteronarcyidae	0	0	0	0	0	Tipulidae	4	0	0	0	0
Taeniopterygidae	2	0	0	0	0	Empididae	6	0	0	0	0
		0	0	0	0	Simuliidae	6	0	0	0	0
Other		0	0	0	0	Tabanidae	5	0	0	0	0
Subtotal P			0	0	0			0	0	0	0
MEGALOPTERA (N	/)							0	0	0	0
Corydalidae	0	0	0	0	0			0	0	0	0
Sialidae	4	7	7	28	0.0805	Other		0	0	0	0
		0	0	0	0	Subtotal D			7	42	0.0805
Other		0	0	0	0	ISOPODA (I)					
Subtotal M			7	28	0.0805	Asellidae	8	24	24	192	0.2759
LEPIDOPTERA (L)						 	_	0	0	0	0
Pyralidae	5	0	0	0	0	Other		0	0	0	0
		0	0	0	0	Subtotal I			24	192	0.2759
Other		0	0	0	0	4 1					
Subtotal L			0	0	0						

Shunnock River - Parke Pond cont.

COLEOPTERA (C)					· [
Dryopidae	5	0	0	0	0
Elmidae	4	1	1	4	0.0115
Gyrinidae	4	0	0	0	0
Haliplidae	5	0	0	0	0
Psephenidae	4	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal C			1	4	0.0115
ODONATA (O)					
Aeshnidae	3	0	0	0	0
Calopterygidae	5	0	0	0	0
Coenagrionidae	9	0	0	0	0
Cordulegastridae	3	0	0	0	0
Corduliidae	2	0	0	0	0
Gomphidae	1	0	0	0	0
Lestidae	9	0	0	0	0
Libellulidae	2	0	0	0	0
Macromiidae	2	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal O			0	0	0
AMPHIPODA (A)					
Crangonyctidae	6	33	33	198	0.3793
Gammaridae	6	0	0	0	0
Talitridae	8	0	0	0	0
		0	0	0	0
Other		0	0	0	0
Subtotal A 33 198 0.3793					

EPT RICHNESS = RE+RP+RT

# Ephemeroptera Families	0
# Plecoptera Families	0
# Trichoptera Families	2
EPT Richness (Total)	2

Codes:

- (1) T = Hilsenhoff pollution tolerance- RI DEM adjusted values
- (2) D = Density
- (3) % = percent composition

DECAPODA (I)					
Cambaridae	6	0	0	0	0
Astacidae	6	0	0	0	0
Other		0	0	0	0
Subtotal I			0	0	0
OTHER					
Oligochaeta	თ	0	0	0	0
Hirudinea	10	0	0	0	0
Gastropoda	6	9	9	54	0.1034
Pelecypoda	8	0	0	0	0
Turbellaria	4	0	0	0	0
Nemertea	8	0	0	0	0
Other		0	0	0	0
Subtotal Other			9	54	0.1034

IUIALS 8/	87 537	1
-----------	--------	---

Organism Density/Sample Unit	87
EPT Richness	2
Total Family Richness	8
EPT/EPT+Chironomidae Ratio	0.46
Biotic Index	6.17
% Contribution of Dominant Family	38%
% Model Affinity	30%

% COMPOSITION O	F
MAJOR GROUPS	
EPHEMEROPTERA	0%
PLECOPTERA	0%
TRICHOPTERA	7%
CHIRONOMIDAE	8%
OTHER DIPTERA	0%
COLEOPTERA	1%
ODONATA	0%
MEGALOPTERA	8%
LEPIDOPTERA	0%
AMPHIPODA	38%
ISOPODA	28%
OLIGOCHAETA	0%
GASTROPODA	10%
PELECYPODA	0%
OTHER	0%

Ephem eroptera	16	0
Plecoptera	10	0
Tricoptera	35	7
Coleoptera	16	1
Chironomidae	6	8
Oligochaeta	1	0
Other	16	84

APPENDIX B

NYS DEC FAMILY-LEVEL MACROINVERTEBRATE INDICES

- a) *Family richness (FAMILY):* This is the total number of macroinvertebrate families found in a riffle kick sample. Expected ranges for 100-organism sub samples of kick samples in most streams in New York State are: greater than 13, non-impacted; 10-13, slightly impacted; 7-9, moderately impacted; less than 7, severely impacted.
- b) *Family EPT richness (EPT)*: EPT denotes the orders of mayflies (Ephemeroptera), stoneflies (Plecoptera), and caddisflies (Trichoptera). These are considered to be mostly clean-water organisms, and their presence generally is correlated with good water quality (Lenat, 1987). The number of EPT families found in a 100- organism sub sample is used for this index. Expected ranges from most streams in New York State are: greater than 7, non-impacted; 3-7, slightly impacted; 1-3, moderately impacted; and 0, severely impacted.
- c) Family Biotic Index (FBI): The family-level Hilsenhoff Biotic Index is a measure of the tolerance of the organisms in the sample to organic pollution (sewage inputs, animal wastes) and low dissolved oxygen levels. It is calculated by multiplying the number of individuals of each family by its assigned tolerance value, summing these products, and dividing by the total number of individuals. On a 0-10 scale, tolerance values range from intolerant (0) to tolerant (10). Values are listed in Hilsenhoff (1988); additional values for non-arthropods are assigned by the NYS Stream Biomonitoring Unit. The most recent values are listed in the Quality Assurance document (Bode et al., 1996). Ranges for the levels of impact are: 0-4.50, nonimpacted; 4.51-5.50, slightly impacted; 5.51-7.00, moderately impacted; and 7.01-10.00, severely impacted.
- d) *Percent Model Affinity (PMA)*: This is a measure of similarity to a model non-impacted community based on percent abundance in 7 major groups (Novak and Bode, 1992). Percentage similarity is used to measure similarity to a community based on reference stream sample. Ranges for the levels of impact are: >64, non-impacted; 50-64, slightly impacted; 35-49, moderately impacted; and <35, severely impacted.

APPENDIX C

WATER QUALITY RATINGS

Non-impacted: Indices reflect very good water quality. The macroinvertebrate community is diverse, usually with at least 12 families in riffle habitats. Mayflies, stoneflies, and caddisflies are well represented; EPT family richness is greater than 7. The biotic index value is 4.50 or less. Percent model affinity is greater than 64. Water quality should not be limiting to fish survival or propagation. This level of water quality includes both pristine habitats and those receiving discharges which minimally alter the biota.

Slightly impacted: Indices reflect good water quality. The macroinvertebrate community is slightly but significantly altered from the pristine state. Family richness usually is 9-12. Mayflies and stoneflies may be restricted, with EPT values of 4-7. The biotic index value is 4.51-6.50. Percent model affinity is 50-64. Water quality is usually not limiting to fish survival, but may be limiting to fish propagation.

Moderately impacted: Indices reflect poor water quality. The macroinvertebrate community is altered to a large degree from the pristine state. Family richness usually is 6-8. Mayflies and stoneflies are rare or absent, and caddisflies are often restricted; EPT richness is 1-3. The biotic index value is 6.51-8.50. The percent model affinity value is 35-49. Water quality often is limiting to fish propagation, but usually not to fish survival.

Severely impacted: Indices reflect very poor water quality. The macroinvertebrate community is limited to a few tolerant Families. Family richness is less than 6. Mayflies, stoneflies, and caddisflies are rare or absent; EPT richness is 0. The biotic index value is greater than 8.51. Percent model affinity is less than 35. The dominant species are almost all tolerant, and are usually midges and worms. Often 1-2 species are very abundant. Water quality is often limiting to both fish propagation and fish survival.