

# Red Hat Enterprise Linux 9

# 自动安装 RHEL

从预定义的配置在一个或多个系统中部署 RHEL

Last Updated: 2024-07-16

# Red Hat Enterprise Linux 9 自动安装 RHEL

从预定义的配置在一个或多个系统中部署 RHEL

### 法律通告

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java <sup>®</sup> is a registered trademark of Oracle and/or its affiliates.

XFS <sup>®</sup> is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL <sup>®</sup> is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack <sup>®</sup> Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

### 摘要

您可以使用 Kickstart 自动执行 RHEL 安装。使用此方法在多个系统中部署相同的 RHEL 配置。 Kickstart 根据您在配置文件中指定的参数安装 RHEL。安装源可以是安装介质、ISO 文件、红帽内容 交付网络(CDN)或本地网络中的服务器。

# 目录

| 对红 <b>帽文档提供反</b> 馈                                                                                                                                                                                                 | 5                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 第 1 章 系统要求和支持构架                                                                                                                                                                                                    | 6                                                     |
| 第 2 章 将 RHEL 系统注册到红帽的值                                                                                                                                                                                             | 7                                                     |
| 部分 I. 准备 RHEL 安装                                                                                                                                                                                                   | 8                                                     |
| 第 3 章 自定义安装介质                                                                                                                                                                                                      | 9                                                     |
| <ul> <li>第 4 章 为 RHEL 创建一个可引导的安装介质</li> <li>4.1. 安装引导介质选项</li> <li>4.2. 创建可引导 DVD 或者 CD</li> <li>4.3. 在 LINUX 中创建可引导 USB 设备</li> <li>4.4. 在 WINDOWS 中创建可引导 USB 设备</li> <li>4.5. 在 MACOS 上创建一个可引导 USB 设备</li> </ul> | 10<br>10<br>10<br>10<br>12<br>12                      |
| <b>第 5 章 准备基于网络的软件</b> 仓库<br>5.1. 基于网络安装的端口<br>5.2. 在 NFS 服务器中创建安装源<br>5.3. 使用 HTTP 或 HTTPS 创建安装源<br>5.4. 使用 FTP 创建安装源                                                                                             | 15<br>15<br>15<br>16<br>18                            |
| 第 6 章 准备 UEFI HTTP 安装源<br>6.1. 网络安装概述<br>6.2. 为网络引导配置 DHCPV4 服务器<br>6.3. 为网络引导配置 DHCPV6 服务器<br>6.4. 为 HTTP 引导配置 HTTP 服务器                                                                                           | 21<br>21<br>21<br>22<br>24                            |
| <b>第7章准备 PXE 安装源</b> 7.1. 网络安装概述 7.2. 为网络引导配置 DHCPV4 服务器 7.3. 为网络引导配置 DHCPV6 服务器 7.4. 为基于 BIOS 的客户端配置 TFTP 服务器 7.5. 为基于 UEFI 的客户端配置 TFTP 服务器 7.6. 为 IBM POWER 系统配置网络服务器                                            | 27<br>27<br>28<br>30<br>32<br>33                      |
| 第 8 章 准备启用了 UEFI 安全引导的系统来安装和引导 RHEL BETA 版本<br>8.1. UEFI 安全引导和 RHEL BETA 版本<br>8.2. 为 UEFI 安全引导添加 BETA 公钥<br>8.3. 删除 BETA 公钥                                                                                       | <ul><li>36</li><li>36</li><li>36</li><li>36</li></ul> |
| 部分 II. 安装 RHEL 完全和半自动化                                                                                                                                                                                             | 38                                                    |
| 第 9 章 自动 <b>化安装工作流</b>                                                                                                                                                                                             | 39                                                    |
| 10.1. 使用 KICKSTART 配置工具创建 KICKSTART 文件<br>10.2. 执行手动安装来创建 KICKSTART 文件<br>10.3. 从以前的 RHEL 安装转换为一个 KICKSTART 文件<br>10.4. 使用 IMAGE BUILDER 创建自定义镜像                                                                   | 40<br>40<br>41<br>41<br>42                            |
| 第 11章 将 KICKSTART 文件添加到 UEFI HTTP 或 PXE 安装源中       11.1. 基于网络安装的端口         11.2. 在 NFS 服务器中共享安装文件                                                                                                                  | <b>43</b> 43                                          |

| 11.3. 在 HTTP 或 HTTPS 服务器中共享安装文件<br>11.4. 在 FTP 服务器中共享安装文件                                                                                                                                                                              | 44<br>45                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 第 12 章 半自动化安装:使 KICKSTART 文件可供 RHEL 安装程序使用 12.1. 在本地卷中共享安装文件 12.2. 在本地卷中共享安装文件以便自动载入                                                                                                                                                   | <b>48</b><br>48<br>48                         |
| <b>第 13 章</b> 启动 <b>KICKSTART 安装</b> 13.1. 使用 PXE 自动启动 KICKSTART 安装 13.2. 使用本地卷自动启动 KICKSTART 安装 13.3. 安装过程中的控制台和日志记录                                                                                                                  | <b>50</b><br>50<br>51                         |
| 部分 Ⅲ. 安装后的任务                                                                                                                                                                                                                           | 53                                            |
| 第 14 章 使用 SUBSCRIPTION MANAGER 注册 RHEL  14.1. 使用安装程序 GUI 注册 RHEL 9  14.2. REGISTRATION ASSISTANT  14.3. 使用命令行注册您的系统  第 15 章 使用 SUBSCRIPTION-MANAGER 命令行工具配置系统目的                                                                        | 54<br>54<br>54                                |
|                                                                                                                                                                                                                                        |                                               |
| 第 16 章 保护 <b>您的系</b> 统                                                                                                                                                                                                                 |                                               |
| 部分 Ⅳ. 附录                                                                                                                                                                                                                               | 60                                            |
| 附录 A. KICKSTART 脚本文件格式参考 A.1. KICKSTART 文件格式 A.2. KICKSTART 中的软件包选择 A.3. KICKSTART 文件中的脚本 A.4. KICKSTART 错误处理部分 A.5. KICKSTART 附加组件部分                                                                                                  | . <b>61</b> 61 65 69 70                       |
| 附录 B. KICKSTART 命令和选项参考 B.1. KICKSTART 的修改 B.2. 用于安装程序配置和流量控制的 KICKSTART 命令 B.3. KICKSTART 命令进行系统配置 B.4. KICKSTART 命令用于网络配置 B.5. 用于处理存储的 KICKSTART 命令 B.6. RHEL 安装程序提供的附加组件的 KICKSTART 命令 B.7. ANACONDA 中使用的命令 B.8. KICKSTART 命令进行系统恢复 | . <b>71</b> 71 72 82 93 98 122 125            |
| 附录 C. 系统要求参考信息 C.1. 支持的安装目标 C.2. 磁盘和内存要求 C.3. 图形显示器分辨率要求 C.4. UEFI 安全引导和 BETA 版本要求                                                                                                                                                     | 128<br>128<br>128<br>129<br>129               |
| 附录 D. 分区参考  D.1. 支持的设备类型 D.2. 支持的文件系统 D.3. 支持的 RAID 类型 D.4. 推荐的分区方案 D.5. 分区建议 D.6. 支持的硬件存储                                                                                                                                             | 130<br>130<br>130<br>131<br>131<br>133<br>135 |
| 附录 E. 更改订阅服务                                                                                                                                                                                                                           | 137                                           |

|                                              | H.  |
|----------------------------------------------|-----|
|                                              |     |
| E.1. 从 SUBSCRIPTION MANAGEMENT SERVER 中取消注册。 | 137 |
| E.2. 在 SATELLITE 服务器中取消注册                    | 138 |
| 附录 F. 安装程序中的 ISCSI 磁盘                        | 120 |

# 对红帽文档提供反馈

我们感谢您对我们文档的反馈。让我们了解如何改进它。

### 通过 Jira 提交反馈 (需要帐户)

- 1. 登录到 Jira 网站。
- 2. 在顶部导航栏中点 Create
- 3. 在 Summary 字段中输入描述性标题。
- 4. 在 Description 字段中输入您对改进的建议。包括文档相关部分的链接。
- 5. 点对话框底部的 Create。

# 第1章系统要求和支持构架

Red Hat Enterprise Linux 9 在混合云部署环境中提供稳定、安全、持续的基础,并提供更迅速地提供工作负载所需的工具。您可以将 RHEL 部署为受支持的 hypervisor 和云提供商环境以及物理基础架构上的客户机,因此您的应用程序可以利用领先的硬件架构平台中的创新。

如果这是首次安装 Red Hat Enterprise Linux,请在安装前查看为系统、硬件、安全、内存和 RAID 提供的指南。如需更多信息,请参阅 系统需求参考。

如果要将您的系统用作虚拟化主机,请查看虚拟化所需的硬件要求。

Red Hat Enterprise Linux 支持以下构架:

- AMD 和 Intel 64 位构架
- 64 位 ARM 架构
- IBM Power Systems, Little Endian
- 64 位 IBM Z 架构



### 注意

有关 IBM Power 服务器的安装说明,请参阅 *IBM 安装文档*。要确定您的系统是否支持安装 RHEL ,请参阅 https://catalog.redhat.com 和 https://access.redhat.com/articles/rhellimits。

#### 其他资源

- 安全强化
- 创建自定义 RHEL 系统镜像

# 第2章将RHEL系统注册到红帽的值

注册在您的系统与红帽之间建立一个授权连接。红帽向注册的系统(无论是物理或虚拟机)发布一个标识和验证系统的证书,以便它能够接收来自红帽的保护的内容、软件更新、安全补丁、支持以及管理的服务。

通过有效的订阅,您可以使用以下方法注册 Red Hat Enterprise Linux (RHEL)系统:

- 在安装过程中,使用安装程序图形用户界面(GUI)或文本用户界面(TUI)
- 安装后,使用命令行界面(CLI)
- 在安装过程中或之后,使用 kickstart 脚本或激活码自动执行。

注册您的系统的具体步骤取决于您使用的 RHEL 版本,以及您选择的注册方法。

将您的系统注册到红帽可启用您用来管理系统和报告数据的特性和功能。例如,注册的系统被授权通过 Red Hat Content Delivery Network (CDN)或 Red Hat Satellite Server 访问订阅产品的受保护的内容存储库。这些内容存储库包括仅适用于具有有效订阅的客户的红帽软件包和更新。这些软件包和更新包括 RHEL 和其他红帽产品的安全补丁、错误修复和新功能。



### 重要

基于权利的订阅模式已弃用,并将在以后的版本中停用。简单内容访问现在是默认的订阅模式。它提供了一个改进的订阅体验,可以在能够访问该系统上的红帽订阅内容时,消除将订阅附加到系统的需要。如果您的红帽账户使用基于权利的订阅模式,请联络您的红帽客户团队,例如:技术客户经理(TAM)或解决方案架构师(SA),以准备迁移到简单内容访问。如需更多信息,请参阅将订阅服务转换到混合云。

# 部分 I. 准备 RHEL 安装

# 第3章自定义安装介质

详情请参阅 编写自定义的 RHEL 系统镜像。

# 第4章为RHEL创建一个可引导的安装介质

从客户门户网站下载 ISO 文件后,您必须创建一个可引导的物理安装介质,如 USB、DVD 或 CD 才能继续安装过程。

## 4.1. 安装引导介质选项

引导 Red Hat Enterprise Linux 安装程序有多个选项。

### 完整的安装 DVD 或者 USB 闪存驱动器

使用 **DVD ISO** 镜像创建完整的安装 DVD 或者 USB 闪存驱动器。 DVD 或者 USB 闪存驱动器可用作引导设备,并作为安装软件包的安装源。

### 最小安装 DVD、CD 或者 USB 闪存驱动器

使用 引导 ISO 镜像生成最小安装 CD、DVD 或者 USB 闪存驱动器,该镜像只包含引导系统并启动安装程序所需的最小文件。



### 重要

如果您不使用 Content Delivery Network(CDN)下载所需的软件包,则 **Boot ISO** 镜像需要一个包含所需软件包的安装源。

### 4.2. 创建可引导 DVD 或者 CD

您可以使用刻录软件和 CD/DVD 刻录程序创建可引导安装 DVD 或者 CD。使用 ISO 镜像文件生成 DVD 或者 CD 的实际步骤有很大不同,这取决于操作系统以及安装的刻录软件。有关使用 ISO 镜像文件刻录 CD 或者 DVD 的具体步骤,请参考系统刻录软件文档。



### 警告

您可以使用 DVD ISO 镜像(完整安装)或 Boot ISO 镜像(最小安装)来创建可引导的 DVD 或者 CD。但是,DVD ISO 镜像大于 4.7 GB,因此它可能不适合单个或双层 DVD。继续操作前,请检查 DVD ISO 镜像文件的大小。当使用 DVD ISO 镜像创建可引导安装介质时,建议使用 USB 闪存。

# 4.3. 在 LINUX 中创建可引导 USB 设备

您可以创建一个可引导 USB 设备,然后您可以用来在其他机器上安装 Red Hat Enterprise Linux。



### 重要

按照此流程会覆盖之前保存在 USB 驱动器中的任何数据,而没有任何警告。备份任何数据或使用一个空闪存。可引导的 USB 驱动器不能用于存储数据。

#### 先决条件

● 您已从产品下载页面下载完整的安装 DVD ISO 或最小安装引导 ISO 镜像。

● 您有一个有足够容量的 USB 闪存驱动器 ISO 镜像。所需的大小会有所不同,但推荐的 USB 大小为 8 GB。

### 流程

- 1. 将 USB 闪存驱动器连接到该系统。
- 2. 打开一个终端窗口,并显示最近事件的日志。

\$ dmesg|tail

附加的 USB 闪存驱动器的消息会在日志的底部显示。记录连接设备的名称。

3. 以 root 用户身份登录:

\$ su -

提示时请输入您的根密码。

4. 查找分配给该驱动器的设备节点。在这个示例中, 驱动器名称是 sdd。

### # dmesg|tail

[288954.686557] usb 2-1.8: New USB device strings: Mfr=0, Product=1, SerialNumber=2

[288954.686559] usb 2-1.8: Product: USB Storage

[288954.686562] usb 2-1.8: SerialNumber: 000000009225

[288954.712590] usb-storage 2-1.8:1.0: USB Mass Storage device detected

[288954.712687] scsi host6: usb-storage 2-1.8:1.0

[288954.712809] usbcore: registered new interface driver usb-storage

[288954.716682] usbcore: registered new interface driver uas

[288955.717140] scsi 6:0:0:0: Direct-Access Generic STORAGE DEVICE 9228 PQ: 0

ANSI: 0

[288955.717745] sd 6:0:0:0: Attached scsi generic sg4 type 0 [288961.876382] sd 6:0:0:0: sdd Attached SCSI removable disk

- 5. 如果插入的 USB 设备自动挂载,请在继续执行后续步骤前将其卸载。要卸载,请使用 umount 命令。如需更多信息,请参阅 使用 umount 卸载文件系统。
- 6. 将 ISO 镜像直接写到 USB 设备:

# dd if=/image directory/image.iso of=/dev/device

- 使用您下载的 ISO 镜像文件的完整路径替换 /image\_directory/image.iso,
- 使用您通过 dmesg 命令得到的设备名称替换 device。
   在本例中, ISO 镜像的完整路径为 /home/testuser/Downloads/rhel-9-x86\_64-boot.iso,
   设备名称为 sdd :

# dd if=/home/testuser/Downloads/rhel-9-x86 64-boot.iso of=/dev/sdd



#### 注意

确定您使用正确的设备名称,而不是该设备中的分区名称。分区名称通常是设备名称附带一个数字后缀。例如: **sdd** 是设备名称,,**sdd1** 是设备 **sdd** 中的分区名称。

7. 等待 **dd** 命令完成将镜像写入该设备。运行 **sync** 命令,来将缓存的写同步到设备。当 **#** 提示符出现时,代表数据传输已完成。当看到提示符时,从 root 帐户注销,并拔出 USB 驱动器。USB 驱动器现在准备用作引导设备。

## 4.4. 在 WINDOWS 中创建可引导 USB 设备

您可以使用各种工具在 Windows 系统上创建一个可引导的 USB 设备。红帽建议您使用 Fedora Media Writer,下载地址为 https://github.com/FedoraQt/MediaWriter/releases。请注意,Fedora Media Writer 是一个社区产品,它不被红帽支持。您可以在 https://github.com/FedoraQt/MediaWriter/issues中报告任何问题。



### 重要

按照此流程会覆盖之前保存在 USB 驱动器中的任何数据,而没有任何警告。备份任何数据或使用一个空闪存。可引导的 USB 驱动器不能用于存储数据。

#### 先决条件

- 您已从产品下载页面下载完整的安装 DVD ISO 或最小安装引导 ISO 镜像。
- 您有一个有足够容量的 USB 闪存驱动器 ISO 镜像。所需的大小会有所不同,但推荐的 USB 大小为 8 GB。

### 流程

- 1. 从 https://github.com/FedoraQt/MediaWriter/releases 下载并安装 Fedora Media Writer。
- 2. 将 USB 闪存驱动器连接到该系统。
- 3. 打开 Fedora Media Writer。
- 4. 在主窗口中点击 Custom Image 并选择之前下载的 Red Hat Enterprise Linux ISO 镜像。
- 5. 在 Write Custom Image 窗口中,选择要使用的驱动器。
- 6. 点 Write to disk。引导介质创建过程开始。操作完成后不要拔出驱动器。这个操作可能需要几分钟,具体要看 ISO 镜像的大小以及 USB 驱动器的写入速度。
- 7. 当操作完成后,卸载 USB 驱动器。USB 驱动器现在可作为引导设备使用。

# 4.5. 在 MACOS 上创建一个可引导 USB 设备

您可以创建一个可引导 USB 设备,然后您可以用来在其他机器上安装 Red Hat Enterprise Linux。



### 重要

按照此流程会覆盖之前保存在 USB 驱动器中的任何数据,而没有任何警告。备份任何数据或使用一个空闪存。可引导的 USB 驱动器不能用于存储数据。

### 先决条件

● 您已从产品下载页面下载完整的安装 DVD ISO 或最小安装引导 ISO 镜像。

● 您有一个有足够容量的 USB 闪存驱动器 ISO 镜像。所需的大小会有所不同,但推荐的 USB 大小为 8 GB。

### 流程

- 1. 将 USB 闪存驱动器连接到该系统。
- 2. 使用 diskutil list 命令识别设备路径。设备路径的格式为 /dev/disknumber, 其中 number 是磁盘号。该磁盘从零(O)开始编号。通常,disk0 是 OS X 恢复磁盘, disk1 是主 OS X 安装。在以下示例中,USB 设备为 disk2:

```
$ diskutil list
/dev/disk0
              TYPE NAME
                                    SIZE
                                            IDENTIFIER
0:
    GUID partition scheme
                                       *500.3 GB disk0
1:
              EFI EFI
                                 209.7 MB disk0s1
2:
       Apple CoreStorage
                                      400.0 GB disk0s2
3:
          Apple Boot Recovery HD
                                        650.0 MB disk0s3
       Apple CoreStorage
4:
                                      98.8 GB disk0s4
5:
           Apple Boot Recovery HD
                                        650.0 MB disk0s5
/dev/disk1
              TYPE NAME
                                            IDENTIFIER
                                    SIZE
0:
           Apple HFS YosemiteHD
                                        *399.6 GB disk1
Logical Volume on disk0s1
8A142795-8036-48DF-9FC5-84506DFBB7B2
Unlocked Encrypted
/dev/disk2
#:
              TYPE NAME
                                    SIZE
                                            IDENTIFIER
0:
    FDisk partition scheme
                                       *8.1 GB
                                               disk2
         Windows NTFS SanDisk USB
                                           8.1 GB
1:
                                                    disk2s1
```

- 3. 通过将 NAME、TYPE 和 SIZE 列与您的闪存驱动器进行比较来识别您的 USB 闪存驱动器。例如,NAME 应为 Finder 工具中闪存驱动器图标的标题。您还可以将这些值与闪存驱动器信息面板中的值进行比较。
- 4. 卸载该闪存驱动器的文件系统卷:

\$ diskutil unmountDisk /dev/disknumber
Unmount of all volumes on disknumber was successful

该命令完成后,该闪存驱动器图标会从桌面消失。如果图标没有消失,您可能选择了错误的磁盘。尝试卸载系统磁盘会意外返回 failed to unmount错误。

5. 将 ISO 镜像写入闪存驱动器:

# sudo dd if=/path/to/image.iso of=/dev/rdisknumber



### 注意

macOS 为每个存储设备提供了块(/dev/disk\*)和字符设备(/dev/rdisk\*)文件。将镜像写入 /dev/rdisknumber 字符设备比写入 /dev/disknumber 块设备要快。

例如,要将 /Users/user\_name/Downloads/rhel-9-x86\_64-boot.iso 文件写入 /dev/rdisk2 设备,请输入以下命令:

# sudo dd if=/Users/user\_name/Downloads/rhel-9-x86\_64-boot.iso of=/dev/rdisk2

6. 等待 **dd** 命令完成将镜像写入该设备。当 # 提示符出现时,代表数据传输已完成。当出现提示符后,退出 root 帐户并拔出 USB 驱动器。USB 驱动器现在可作为引导设备使用。

# 第5章准备基于网络的软件仓库

您必须准备仓库以从网络系统中安装 RHEL。

### 5.1. 基于网络安装的端口

下表列出了必须在服务器上打开的端口,以便为每种基于网络的安装提供文件。

### 表 5.1. 基于网络安装的端口

| <b>使用的</b> 协议 | 打开端口             |
|---------------|------------------|
| НТТР          | 80               |
| HTTPS         | 443              |
| FTP           | 21               |
| NFS           | 2049, 111, 20048 |
| TFTP          | 69               |

### 其它资源

• 安全网络

# 5.2. 在 NFS 服务器中创建安装源

您可以使用这个安装方法从单一源安装多个系统,而无需连接到物理介质。

### 先决条件

- 您对 Red Hat Enterprise Linux 9 服务器有管理员级别的访问权限,且这个服务器与要安装的系统位于同一网络中。
- 您已从产品下载页面下载了完整的安装 DVD ISO。https://access.redhat.com/downloads/content/rhel
- 您已使用镜像文件创建了可引导 CD、DVD 或者 USB 设备。
- 您已确认防火墙允许您在安装的系统访问远程安装源。如需更多信息,请参阅 基于网络安装的端口。

### 流程

- 1. 安装 nfs-utils 软件包:
  - # dnf install nfs-utils
- 2. 将 DVD ISO 镜像复制到 NFS 服务器的目录中。

3. 使用文本编辑器打开 /etc/exports 文件, 并使用以下语法添加一行:

/exported\_directory/ clients

- 使用到包括 ISO 镜像的目录的完全路径替换 /exported\_directory/。
- 使用以下方法之一替换 clients:
  - o 目标系统的主机名或 IP 地址
  - o 所有目标系统可用于访问 ISO 镜像的子网
  - 要允许任何可通过网络访问 NFS 服务器的系统使用 ISO 镜像,请使用星号(\*)

有关此格式的详细信息,请参见 exports(5) 手册页。

例如,一个使 /rhel9-install/ 目录对所有客户端只读的基本配置是:

/rhel9-install \*

- 4. 保存 /etc/exports 文件并退出文本编辑器。
- 5. 启动 nfs 服务:

# systemctl start nfs-server.service

如果在更改 /etc/exports 文件前服务在运行中,请重新载入 NFS 服务器配置:

# systemctl reload nfs-server.service

现在可通过 NFS 访问该 ISO 镜像并可作为安装源使用。



### 注意

在配置安装源时,使用 nfs: 协议、服务器主机名或 IP 地址、冒号 (:) 以及该 ISO 镜像所在目录。例如,如果服务器主机名是 myserver.example.com,并且已将 ISO 镜像保存在/rhel9-install/中,请指定 nfs:myserver.example.com:/rhel9-install/作为安装源。

### 5.3. 使用 HTTP 或 HTTPS 创建安装源

您可以使用安装树为基于网络的安装创建一个安装源,该树是包含提取的 DVD ISO 镜像内容和一个有效的 .treeinfo 文件的目录。可通过 HTTP 或 HTTPS 访问该安装源。

### 先决条件

- 您对 Red Hat Enterprise Linux 9 服务器有管理员级别的访问权限,且这个服务器与要安装的系统位于同一网络中。
- 您已从产品下载页面下载了完整的安装 DVD ISO。https://access.redhat.com/downloads/content/rhel
- 您已使用镜像文件创建了可引导 CD、DVD 或者 USB 设备。

- 您已确认防火墙允许您在安装的系统访问远程安装源。如需更多信息,请参阅基于网络安装的端口。
- httpd 软件包已安装。
- 如果您使用 https 安装源,则mod\_ssl 软件包已安装。



### 警告

如果您的 Apache Web 服务器配置启用了 SSL 安全性,首选启用 TLSv1.3 协议。默认情况下启用 TLSv1.2 (LEGACY)。



### 重要

如果您使用带有自签名证书的 HTTPS 服务器,则必须使用 noverifyssl 选项引导安装程序。

### 流程

- 1. 将 DVD ISO 镜像复制到 HTTP(S)服务器。
- 2. 创建一个挂载 DVD ISO 镜像的合适的目录,例如:
  - # mkdir /mnt/rhel9-install/
- 3. 将 DVD ISO 镜像挂载到目录:
  - # mount -o loop,ro -t iso9660 /image\_directory/image.iso /mnt/rhel9-install/

使用 DVD ISO 镜像的路径替换 / image\_directory/image.iso。

4. 将挂载镜像中的文件复制到 HTTP(S)服务器 root 中。

# cp -r /mnt/rhel9-install/ /var/www/html/

这个命令创建包含镜像内容的 /var/www/html/rhel9-install/ 目录。请注意,有些其他复制方法可能会跳过有效安装源所需的 .treeinfo 文件。对整个目录输入 cp 命令,如此流程中所示,正确地复制 .treeinfo。

5. 启动 httpd 服务:

# systemctl start httpd.service

安装树现在可以访问并可作为安装源使用。



### 注意

在配置安装源时,使用 http:// 或 https:// 作为协议、服务器主机名或 IP 地址,以及 ISO 镜像中包含文件的目录(相对于 HTTP 服务器 root)。例如,如果您使用 HTTP,服务器主机名为 myserver.example.com,并且已将镜像中的文件复制到 /var/www/html/rhel9-install/,请指定 http://myserver.example.com/rhel9-install/ 作为安装源。

### 其他资源

● 部署不同类型的服务器

### 5.4. 使用 FTP 创建安装源

您可以使用安装树为基于网络的安装创建一个安装源,该树是包含提取的 DVD ISO 镜像内容和一个有效的 .treeinfo 文件的目录。通过 FTP 访问该安装源。

### 先决条件

- 您对 Red Hat Enterprise Linux 9 服务器有管理员级别的访问权限,且这个服务器与要安装的系统位于同一网络中。
- 您已从产品下载页面下载了完整的安装 DVD ISO。https://access.redhat.com/downloads/content/rhel
- 您已使用镜像文件创建了可引导 CD、DVD 或者 USB 设备。
- 您已确认防火墙允许您在安装的系统访问远程安装源。如需更多信息,请参阅 基于网络安装的端口。
- vsftpd 软件包已安装。

### 流程

- 1. 在文本编辑器中打开并编辑 /etc/vsftpd/vsftpd.conf 配置文件。
  - a. 将 anonymous\_enable=NO 行改为 anonymous\_enable=YES
  - b. 将 write\_enable=YES 行改为 write\_enable=NO。
  - c. 添加行 pasv\_min\_port=<min\_port> 和 pasv\_max\_port=<max\_port>。用被动模式下 FTP 服务器使用的端口范围替换 <min\_port> 和 <max\_port>,例如 10021 和 10031。 在具有各种防火墙/NAT 设置的网络环境中,这个步骤可能是必要的。
  - d. 可选:向您的配置中添加自定义更改。可用选项请查看 vsftpd.conf(5) 手册页。这个步骤假设使用了默认选项。



### 警告

如果在 **vsftpd.conf** 文件中配置了 SSL/TLS 安全性,请确保只启用 TLSv1 协议,并禁用 SSLv2 和 SSLv3。这是因为 POODLE SSL 漏洞 (CVE-2014-3566)。详情请参考 https://access.redhat.com/solutions/1234773。

- 2. 配置服务器防火墙。
  - a. 启用防火墙:

# systemctl enable firewalld

- b. 启动防火墙:
  - # systemctl start firewalld
- c. 配置防火墙以允许上一步中的 FTP 端口和端口范围:

# firewall-cmd --add-port min\_port-max\_port/tcp --permanent # firewall-cmd --add-service ftp --permanent

将 <min\_port> 和 <max\_port> 替换为您输入到 /etc/vsftpd/vsftpd.conf 配置文件中的端口号。

d. 重新载入防火墙以应用新规则:

# firewall-cmd --reload

- 3. 将 DVD ISO 镜像复制到 FTP 服务器。
- 4. 创建一个挂载 DVD ISO 镜像的合适的目录,例如:

# mkdir /mnt/rhel9-install

5. 将 DVD ISO 镜像挂载到目录:

# mount -o loop,ro -t iso9660 /image-directory/image.iso /mnt/rhel9-install

使用 DVD ISO 镜像的路径替换 /image-directory/image.iso。

6. 将挂载镜像中的文件复制到 FTP 服务器 root 目录中:

# mkdir /var/ftp/rhel9-install
# cp -r /mnt/rhel9-install/ /var/ftp/

这个命令创建包含镜像内容的 /var/ftp/rhel9-install/ 目录。请注意,有些复制方法可以跳过有效安装源所需的 .treeinfo 文件。对整个目录输入 cp 命令,如此流程中所示,将正确复制 .treeinfo。

7. 请确定在复制的内容中设置了正确的 SELinux 上下文和访问模式:

# restorecon -r /var/ftp/rhel9-install # find /var/ftp/rhel9-install -type f -exec chmod 444  $\{\}\$  \; # find /var/ftp/rhel9-install -type d -exec chmod 755  $\{\}\$  \;

8. 启动 vsftpd 服务:

# systemctl start vsftpd.service

如果在更改 /etc/vsftpd/vsftpd.conf 文件前运行该服务,重启该服务以载入经过编辑的文件:

# systemctl restart vsftpd.service

在引导过程中启用 vsftpd 服务:

# systemctl enable vsftpd

安装树现在可以访问并可作为安装源使用。



### 注意

在配置安装源时,使用 ftp:// 作为协议、服务器主机名或 IP 地址,以及保存 ISO 镜像中文件的目录(相对于 FTP 服务器 root)。例如:如果服务器主机名是 myserver.example.com,并且已将镜像中的文件复制到 /var/ftp/rhel9-install/ 请指定 ftp://myserver.example.com/rhel9-install/ 作为安装源。

# 第6章准备UEFIHTTP安装源

作为本地网络上服务器的管理员,您可以配置 HTTP 服务器,以便为网络中的其他系统启用 HTTP 引导和网络安装。

### 6.1. 网络安装概述

网络安装允许您将 Red Hat Enterprise Linux 安装到可访问安装服务器的系统。网络安装至少需要两个系统:

#### 服务器

运行 DHCP 服务器、HTTP、HTTPS、FTP 或 NFS 的服务器以及 PXE 引导情况下的TFTP 服务器。 虽然每个服务器可以运行在不同的物理系统上,但本节中的流程假设单个系统正在运行所有服务器。

#### 客户端

要安装 Red Hat Enterprise Linux 的系统。安装开始后,客户端会查询 DHCP 服务器,从 HTTP 或 TFTP 服务器接收引导文件,并从 HTTP、HTTPS、FTP 或者 NFS 服务器下载安装镜像。与其它安装方法不同,客户端不需要任何物理引导介质来启动安装。



### 注意

要从网络引导客户端,请在固件中或客户端上的快速引导菜单中启用网络引导。在某些硬件上,从网络引导的选项可能被禁用了,或者不可用。

准备使用 HTTP 或 PXE 从网络安装 Red Hat Enterprise Linux 的工作流步骤如下:

### 步骤

- 1. 将安装 ISO 镜像或者安装树导出到 NFS、HTTPS、HTTP 或者 FTP 服务器中。
- 2. 配置 HTTP 或 TFTP 服务器以及 DHCP 服务器,并在服务器上启动 HTTP 或 TFTP 服务。
- 3. 引导客户端并开始安装。

您可以在以下网络引导协议之间进行选择:

#### **HTTP**

如果您的客户端 UEFI 支持, 红帽建议使用 HTTP 引导。HTTP 引导通常更加可靠。

#### PXE (TFTP)

客户端系统更广泛地支持 PXE 引导,但通过此协议发送引导文件可能会很慢,并导致超时失败。

### 其他资源

- 准备基于网络的软件仓库
- Red Hat Satellite 产品文档

## 6.2. 为网络引导配置 DHCPV4 服务器

在您的服务器上启用 DHCP 版本 4 (DHCPv4)服务,以便它可以提供网络引导功能。

### 先决条件

- 您通过 IPv4 协议准备网络安装。 对于 IPv6,请参阅为网络引导配置 DHCPv6 服务器。
- 查找服务器的网络地址。在以下示例中,服务器有一个具有此配置的网卡:

# IPv4 地址 192.168.124.2/24 IPv4 网关 192.168.124.1

### 流程

1. 安装 DHCP 服务器:

dnf install dhcp-server

2. 设置 DHCPv4 服务器。在 /etc/dhcp/dhcpd.conf 文件中输入以下配置。替换地址以匹配您的网卡。

```
option architecture-type code 93 = unsigned integer 16;
subnet 192.168.124.0 netmask 255.255.255.0 {
 option routers 192.168.124.1;
 option domain-name-servers 192.168.124.1;
 range 192.168.124.100 192.168.124.200;
 class "pxeclients" {
  match if substring (option vendor-class-identifier, 0, 9) = "PXEClient";
  next-server 192.168.124.2;
      if option architecture-type = 00:07 {
       filename "redhat/EFI/BOOT/BOOTX64.EFI";
      else {
       filename "pxelinux/pxelinux.0";
 class "httpclients" {
  match if substring (option vendor-class-identifier, 0, 10) = "HTTPClient";
  option vendor-class-identifier "HTTPClient";
  filename "http://192.168.124.2/redhat/EFI/BOOT/BOOTX64.EFI";
```

3. 启动 DHCPv4 服务:

# systemctl enable --now dhcpd

# 6.3. 为网络引导配置 DHCPV6 服务器

在您的服务器上启用 DHCP 版本 6 (DHCPv4)服务,以便它可以提供网络引导功能。

### 先决条件

- 您通过 IPv6 协议准备网络安装。
   对于 IPv4,请参阅为网络引导配置 DHCPv4 服务器。
- 查找服务器的网络地址。 在以下示例中,服务器有一个具有此配置的网卡:

### IPv6 地址

fd33:eb1b:9b36::2/64

### IPv6 网关

fd33:eb1b:9b36::1

### 流程

1. 安装 DHCP 服务器:

dnf install dhcp-server

2. 设置 DHCPv6 服务器。在 /etc/dhcp/dhcpd6.conf 文件中输入以下配置。替换地址以匹配您的网卡。

```
option dhcp6.bootfile-url code 59 = string;
option dhcp6.vendor-class code 16 = {integer 32, integer 16, string};
subnet6 fd33:eb1b:9b36::/64 {
    range6 fd33:eb1b:9b36::64 fd33:eb1b:9b36::c8;
    class "PXEClient" {
         match substring (option dhcp6.vendor-class, 6, 9);
    subclass "PXEClient" "PXEClient" {
         option dhcp6.bootfile-url
"tftp://[fd33:eb1b:9b36::2]/redhat/EFI/BOOT/BOOTX64.EFI";
    }
    class "HTTPClient" {
         match substring (option dhcp6.vendor-class, 6, 10);
    subclass "HTTPClient" "HTTPClient" {
         option dhcp6.bootfile-url
"http://[fd33:eb1b:9b36::2]/redhat/EFI/BOOT/BOOTX64.EFI";
         option dhcp6.vendor-class 0 10 "HTTPClient";
    }
```

3. 启动 DHCPv6 服务:

# systemctl enable --now dhcpd6

4. 如果 DHCPv6 数据包被防火墙中的 RP 过滤器丢弃了,请检查其日志。如果日志包含 rpfilter DROP 条目,请使用 /etc/firewalld/firewalld.conf 文件中的以下配置禁用过滤器:

IPv6\_rpfilter=no

## 6.4. 为 HTTP 引导配置 HTTP 服务器

您必须在服务器上安装并启用 httpd 服务,以便服务器可以在网络上提供 HTTP 引导资源。

### 先决条件

● 查找服务器的网络地址。 在以下示例中,服务器有一个 IPv4 地址为 **192.168.124.2** 的网卡。

### 流程

- 1. 安装 HTTP 服务器:
  - # dnf install httpd
- 2. 创建 /var/www/html/redhat/ 目录:
  - # mkdir -p /var/www/html/redhat/
- 3. 下载 RHEL DVD ISO 文件。请参阅 所有 Red Hat Enterprise Linux 下载。
- 4. 为 ISO 文件创建一个挂载点:
  - # mkdir -p /var/www/html/redhat/iso/
- 5. 挂载 ISO 文件:
  - # mount -o loop,ro -t iso9660 path-to-RHEL-DVD.iso /var/www/html/redhat/iso
- 6. 将引导装载程序、内核和 initramfs 从挂载的 ISO 文件复制到 HTML 目录中:
  - # cp -r /var/www/html/redhat/iso/images /var/www/html/redhat/ # cp -r /var/www/html/redhat/iso/EFI /var/www/html/redhat/
- 7. 使引导装载程序配置可编辑:
  - # chmod 644 /var/www/html/redhat/EFI/BOOT/grub.cfg
- 8. 编辑 /var/www/html/redhat/EFI/BOOT/grub.cfg 文件,并将其内容替换为以下内容:

```
set default="1"

function load_video {
  insmod efi_gop
  insmod efi_uga
  insmod video_bochs
  insmod video_cirrus
  insmod all_video
}
```

```
load_video
       set gfxpayload=keep
       insmod gzio
       insmod part_gpt
       insmod ext2
       set timeout=60
       # END /etc/grub.d/00 header #
       search --no-floppy --set=root -l 'RHEL-9-3-0-BaseOS-x86 64'
       # BEGIN /etc/grub.d/10 linux #
       menuentry 'Install Red Hat Enterprise Linux 9.3' -- class fedora -- class gnu-linux -- class gnu --
         linuxefi ../../images/pxeboot/vmlinuz inst.repo=http://192.168.124.2/redhat/iso quiet
         initrdefi ../../images/pxeboot/initrd.img
      }
       menuentry 'Test this media & install Red Hat Enterprise Linux 9.3' -- class fedora -- class gnu-
       linux --class gnu --class os {
         linuxefi ../../images/pxeboot/vmlinuz inst.repo=http://192.168.124.2/redhat/iso quiet
         initrdefi ../../images/pxeboot/initrd.img
      }
       submenu 'Troubleshooting -->' {
         menuentry 'Install Red Hat Enterprise Linux 9.3 in text mode' -- class fedora -- class gnu-
       linux --class gnu --class os {
          linuxefi ../../images/pxeboot/vmlinuz inst.repo=http://192.168.124.2/redhat/iso inst.text
       quiet
          initrdefi ../../images/pxeboot/initrd.img
         menuentry 'Rescue a Red Hat Enterprise Linux system' --class fedora --class gnu-linux --
       class gnu --class os {
          linuxefi ../../images/pxeboot/vmlinuz inst.repo=http://192.168.124.2/redhat/iso inst.rescue
       auiet
          initrdefi ../../images/pxeboot/initrd.img
    在这个文件中,替换以下字符串:
    rhel-9-3-0-BaseOS-x86_64和 Red Hat Enterprise Linux 9.3
       编辑版本号,以使其与您下载的 RHEL 版本匹配。
    192.168.124.2
       使用服务器的 IP 地址替换。
9. 使 EFI 引导文件可执行:
       # chmod 755 /var/www/html/redhat/EFI/BOOT/BOOTX64.EFI
10. 在防火墙中打开端口,以允许 HTTP (80)、DHCP (67, 68)和 DHCPv6 (546, 547)流量:
       # firewall-cmd --zone public \
                --add-port={80/tcp,67/udp,68/udp,546/udp,547/udp}
```



### 注意

这个命令启用了临时访问,直到下次服务器重启为止。若要启用永久访问权限,可在命令中添加--permanent选项。

11. 重新载入防火墙规则:

# firewall-cmd --reload

12. 启动 HTTP 服务器:

# systemctl enable --now httpd

13. 创建 html 目录,并使其内容可读和可执行:

# chmod -cR u=rwX,g=rX,o=rX /var/www/html

14. 恢复 html 目录的 SELinux 上下文:

# restorecon -FvvR /var/www/html

# 第7章准备 PXE 安装源

您必须在 PXE 服务器中配置 TFTP 和 DHCP 来启用 PXE 引导和网络安装。

### 7.1. 网络安装概述

网络安装允许您将 Red Hat Enterprise Linux 安装到可访问安装服务器的系统。网络安装至少需要两个系统:

### 服务器

运行 DHCP 服务器、HTTP、HTTPS、FTP 或 NFS 的服务器以及 PXE 引导情况下的TFTP 服务器。虽然每个服务器可以运行在不同的物理系统上,但本节中的流程假设单个系统正在运行所有服务器。

#### 客户端

要安装 Red Hat Enterprise Linux 的系统。安装开始后,客户端会查询 DHCP 服务器,从 HTTP 或 TFTP 服务器接收引导文件,并从 HTTP、HTTPS、FTP 或者 NFS 服务器下载安装镜像。与其它安装方法不同,客户端不需要任何物理引导介质来启动安装。



### 注意

要从网络引导客户端,请在固件中或客户端上的快速引导菜单中启用网络引导。在某些硬件上,从网络引导的选项可能被禁用了,或者不可用。

准备使用 HTTP 或 PXE 从网络安装 Red Hat Enterprise Linux 的工作流步骤如下:

### 步骤

- 1. 将安装 ISO 镜像或者安装树导出到 NFS、HTTPS、HTTP 或者 FTP 服务器中。
- 2. 配置 HTTP 或 TFTP 服务器以及 DHCP 服务器,并在服务器上启动 HTTP 或 TFTP 服务。
- 3. 引导客户端并开始安装。

您可以在以下网络引导协议之间进行选择:

#### **HTTP**

如果您的客户端 UEFI 支持, 红帽建议使用 HTTP 引导。HTTP 引导通常更加可靠。

#### PXE (TFTP)

客户端系统更广泛地支持 PXE 引导,但通过此协议发送引导文件可能会很慢,并导致超时失败。

### 其他资源

- 准备基于网络的软件仓库
- Red Hat Satellite 产品文档

## 7.2. 为网络引导配置 DHCPV4 服务器

在您的服务器上启用 DHCP 版本 4 (DHCPv4)服务,以便它可以提供网络引导功能。

### 先决条件

- 您通过 IPv4 协议准备网络安装。 对于 IPv6,请参阅为网络引导配置 DHCPv6 服务器。
- 查找服务器的网络地址。在以下示例中,服务器有一个具有此配置的网卡:

```
IPv4 地址
192.168.124.2/24
IPv4 网关
192.168.124.1
```

### 流程

1. 安装 DHCP 服务器:

dnf install dhcp-server

2. 设置 DHCPv4 服务器。在 /etc/dhcp/dhcpd.conf 文件中输入以下配置。替换地址以匹配您的网卡。

```
option architecture-type code 93 = unsigned integer 16;
subnet 192.168.124.0 netmask 255.255.255.0 {
 option routers 192.168.124.1;
 option domain-name-servers 192.168.124.1;
 range 192.168.124.100 192.168.124.200;
 class "pxeclients" {
  match if substring (option vendor-class-identifier, 0, 9) = "PXEClient";
  next-server 192.168.124.2;
      if option architecture-type = 00:07 {
       filename "redhat/EFI/BOOT/BOOTX64.EFI";
      else {
       filename "pxelinux/pxelinux.0";
 class "httpclients" {
  match if substring (option vendor-class-identifier, 0, 10) = "HTTPClient";
  option vendor-class-identifier "HTTPClient";
  filename "http://192.168.124.2/redhat/EFI/BOOT/BOOTX64.EFI";
```

3. 启动 DHCPv4 服务:

# systemctl enable --now dhcpd

# 7.3. 为网络引导配置 DHCPV6 服务器

在您的服务器上启用 DHCP 版本 6 (DHCPv4)服务,以便它可以提供网络引导功能。

### 先决条件

- 您通过 IPv6 协议准备网络安装。
   对于 IPv4,请参阅为网络引导配置 DHCPv4 服务器。
- 查找服务器的网络地址。在以下示例中,服务器有一个具有此配置的网卡:

### IPv6 地址

fd33:eb1b:9b36::2/64

### IPv6 网关

fd33:eb1b:9b36::1

### 流程

1. 安装 DHCP 服务器:

dnf install dhcp-server

2. 设置 DHCPv6 服务器。在 /etc/dhcp/dhcpd6.conf 文件中输入以下配置。替换地址以匹配您的网卡。

```
option dhcp6.bootfile-url code 59 = string;
option dhcp6.vendor-class code 16 = {integer 32, integer 16, string};
subnet6 fd33:eb1b:9b36::/64 {
    range6 fd33:eb1b:9b36::64 fd33:eb1b:9b36::c8;
    class "PXEClient" {
         match substring (option dhcp6.vendor-class, 6, 9);
    subclass "PXEClient" "PXEClient" {
         option dhcp6.bootfile-url
"tftp://[fd33:eb1b:9b36::2]/redhat/EFI/BOOT/BOOTX64.EFI";
    }
    class "HTTPClient" {
         match substring (option dhcp6.vendor-class, 6, 10);
    subclass "HTTPClient" "HTTPClient" {
         option dhcp6.bootfile-url
"http://[fd33:eb1b:9b36::2]/redhat/EFI/BOOT/BOOTX64.EFI";
         option dhcp6.vendor-class 0 10 "HTTPClient";
    }
```

3. 启动 DHCPv6 服务:

# systemctl enable --now dhcpd6

4. 如果 DHCPv6 数据包被防火墙中的 RP 过滤器丢弃了,请检查其日志。如果日志包含 rpfilter\_DROP 条目,请使用 /etc/firewalld/firewalld.conf 文件中的以下配置禁用过滤器:

IPv6\_rpfilter=no

## 7.4. 为基于 BIOS 的客户端配置 TFTP 服务器

您必须配置 TFTP 服务器和 DHCP 服务器,并在 PXE 服务器中为基于 BIOS 的 AMD 和 Intel 64 位系统启动 TFTP 服务。



### 重要

本节中的所有配置文件都是示例。配置详情会根据架构和具体要求的不同而有所不同。

### 流程

- 1. 以 root 用户身份, 安装以下软件包:
  - # dnf install tftp-server
- 2. 允许到防火墙中的 tftp 服务的传入连接:
  - # firewall-cmd --add-service=tftp



### 注意

- 这个命令启用了临时访问,直到下次服务器重启为止。若要启用永久访问权限,可在命令中添加 --permanent 选项。
- 根据安装 ISO 文件的位置,您可能需要允许 HTTP 或者其他服务的进入连接。
- 3. 从 DVD ISO 镜像文件中的 **SYSLINUX** 软件包访问 **pxelinux.0** 文件,其中 *my\_local\_directory* 是 您创建的目录的名称:
  - # mount -t iso9660 /path\_to\_image/name\_of\_image.iso /mount\_point -o loop,ro
  - # cp -pr /mount\_point/AppStream/Packages/syslinux-tftpboot-version-architecture.rpm /my\_local\_directory
  - # umount /mount\_point
- 4. 解压软件包:
  - # rpm2cpio syslinux-tftpboot-version-architecture.rpm | cpio -dimv
- 5. 在 tftpboot/ 中创建 pxelinux/ 目录,并将该目录中的所有文件复制到 pxelinux/ 目录中:
  - # mkdir /var/lib/tftpboot/pxelinux
  - # cp /my\_local\_directory/tftpboot/\* /var/lib/tftpboot/pxelinux
- 6. 在 pxelinux/ 目录中创建 pxelinux.cfg/ 目录:

# mkdir /var/lib/tftpboot/pxelinux/pxelinux.cfg

7. 创建名为 default 的配置文件,并将其添加到 pxelinux.cfg/ 目录中,如下例所示:

default vesamenu.c32 prompt 1 timeout 600

display boot.msg

label linux

menu label ^Install system

menu default

kernel images/RHEL-9/vmlinuz

append initrd=images/RHEL-9/initrd.img ip=dhcp inst.repo=http://192.168.124.2/RHEL-

9/x86 64/iso-contents-root/

label vesa

menu label Install system with ^basic video driver

kernel images/RHEL-9/vmlinuz

append initrd=images/RHEL-9/initrd.img ip=dhcp inst.xdriver=vesa nomodeset

inst.repo=http://192.168.124.2/RHEL-9/x86 64/iso-contents-root/

label rescue

menu label ^Rescue installed system

kernel images/RHEL-9/vmlinuz

append initrd=images/RHEL-9/initrd.img inst.rescue

inst.repo=http:///192.168.124.2/RHEL-8/x86\_64/iso-contents-root/

label local

menu label Boot from ^local drive

localboot 0xffff



#### 注意

- 安装程序在没有运行时镜像的情况下无法引导。使用 inst.stage2 引导选项指定镜像的位置。另外,您可以使用 inst.repo= 选项指定镜像和安装源。
- 与 inst.repo 一起使用的安装源位置必须包含有效的 .treeinfo 文件。
- 当您选择 RHEL9 安装 DVD 作为安装源时,.treeinfo 文件会指向 BaseOS 和 AppStream 存储库。您可以使用单个 inst.repo 选项来加载这两个软件仓库。
- 8. 创建一个子目录,以将引导镜像文件存储在 /var/lib/tftpboot/ 目录中,并将引导镜像文件复制到目录。在这个示例中,目录为 /var/lib/tftpboot/pxelinux/images/RHEL-9/:

# mkdir -p /var/lib/tftpboot/pxelinux/images/RHEL-9/
# cp /path\_to\_x86\_64\_images/pxeboot/{vmlinuz,initrd.img}
/var/lib/tftpboot/pxelinux/images/RHEL-9/

9. 启动并启用 tftp.socket 服务:

# systemctl enable --now tftp.socket

PXE 引导服务器现在可以提供 PXE 客户端。您可以启动客户端,即您要安装 Red Hat Enterprise Linux 的系统,在提示指定引导源时选择 PXE 引导,并启动网络安装。

## 7.5. 为基于 UEFI 的客户端配置 TFTP 服务器

您必须配置 TFTP 服务器和 DHCP 服务器,并为基于 UEFI 的 AMD64、Intel 64 和 64 位 ARM 系统的 PXE 服务器启动 TFTP 服务。



### 重要

- 本节中的所有配置文件都是示例。配置详情会根据架构和具体要求的不同而有所不同。
- Red Hat Enterprise Linux 9 UEFI PXE 引导支持基于 MAC 的 grub 菜单文件的小写文件格式。例如,grub2 的 MAC 地址文件格式为 grub.cfg-01-aa-bb-cc-dd-ee-ff

### 流程

- 1. 以 root 用户身份, 安装以下软件包:
  - # dnf install tftp-server
- 2. 允许到防火墙中的 tftp 服务的传入连接:

# firewall-cmd --add-service=tftp



### 注意

- 这个命令启用了临时访问,直到下次服务器重启为止。若要启用永久访问权限,可在命令中添加 --permanent 选项。
- 根据安装 ISO 文件的位置,您可能需要允许 HTTP 或者其他服务的进入连接。
- 3. 访问 DVD ISO 镜像中的 EFI 引导镜像文件:
  - # mount -t iso9660 /path\_to\_image/name\_of\_image.iso /mount\_point -o loop,ro
- 4. 复制 DVD ISO 镜像中的 EFI 引导镜像:
  - # mkdir /var/lib/tftpboot/redhat
    # cp -r /mount\_point/EFI /var/lib/tftpboot/redhat/
    # umount /mount\_point
- 5. 修复复制的文件的权限:
  - # chmod -R 755 /var/lib/tftpboot/redhat/
- 6. 使用以下示例替换 /var/lib/tftpboot/redhat/EFI/BOOT/grub.cfg 的内容:

set timeout=60
menuentry 'RHEL 9' {
linuxefi images/RHEL-9/vmlinuz ip=dhcp inst.repo=http://192.168.124.2/RHEL-9/x86\_64/iso-

contents-root/ initrdefi images/RHEL-9/initrd.img }



#### 注意

- 安装程序在没有运行时镜像的情况下无法引导。使用 inst.stage2 引导选项指定镜像的位置。另外,您可以使用 inst.repo= 选项指定镜像和安装源。
- 与 inst.repo 一起使用的安装源位置必须包含有效的 .treeinfo 文件。
- 当您选择 RHEL9 安装 DVD 作为安装源时,.treeinfo 文件会指向 BaseOS 和 AppStream 存储库。您可以使用单个 inst.repo 选项来加载这两个软件仓库。
- 7. 创建一个子目录,以将引导镜像文件存储在 /var/lib/tftpboot/ 目录中,并将引导镜像文件复制到目录。在这个示例中,目录为 /var/lib/tftpboot/images/RHEL-9/:

# mkdir -p /var/lib/tftpboot/images/RHEL-9/ # cp /path\_to\_x86\_64\_images/pxeboot/{vmlinuz,initrd.img} /var/lib/tftpboot/images/RHEL-9/

8. 启动并启用 tftp.socket 服务:

# systemctl enable --now tftp.socket

PXE 引导服务器现在可以提供 PXE 客户端。您可以启动客户端,即您要安装 Red Hat Enterprise Linux 的系统,在提示指定引导源时选择 PXE 引导,并启动网络安装。

#### 其它资源

● 使用 Shim 程序

## 7.6. 为 IBM POWER 系统配置网络服务器

您可以使用 GRUB2 为 IBM Power 系统配置网络引导服务器。



#### 重要

本节中的所有配置文件都是示例。配置详情会根据架构和具体要求的不同而有所不同。

#### 流程

1. 以 root 用户身份, 安装以下软件包:

# dnf install tftp-server dhcp-server

2. 在防火墙中, 允许到 tftp 服务的进入连接:

# firewall-cmd --add-service=tftp



#### 注意

- 这个命令启用了临时访问,直到下次服务器重启为止。若要启用永久访问权限,可在命令中添加 --permanent 选项。
- 根据安装 ISO 文件的位置,您可能需要允许 HTTP 或者其他服务的进入连接。
- 3. 在 TFTP root 中创建一个 GRUB2 网络引导目录:

# grub2-mknetdir --net-directory=/var/lib/tftpboot Netboot directory for powerpc-ieee1275 created. Configure your DHCP server to point to /boot/grub2/powerpc-ieee1275/core.elf



#### 注意

命令输出会告诉您 DHCP 配置中需要配置的文件名,如下所述。

a. 如果 PXE 服务器运行在 x86 机器上,则必须在 tftp root 中创建 **GRUB2** 网络引导目录前安装 **grub2-ppc64-modules**:

# dnf install grub2-ppc64-modules

4. 创建一个 GRUB2 配置文件:/var/lib/tftpboot/boot/grub2/grub.cfg,如下例中所示:

```
set default=0
set timeout=5

echo -e "\nWelcome to the Red Hat Enterprise Linux 9 installer!\n\n"

menuentry 'Red Hat Enterprise Linux 9' {
    linux grub2-ppc64/vmlinuz ro ip=dhcp inst.repo=http://192.168.124.2/RHEL-9/x86_64/iso-contents-root/
    initrd grub2-ppc64/initrd.img
}
```



#### 注意

- 安装程序在没有运行时镜像的情况下无法引导。使用 inst.stage2 引导选项指定镜像的位置。另外,您可以使用 inst.repo= 选项指定镜像和安装源。
- 与 inst.repo 一起使用的安装源位置必须包含有效的 .treeinfo 文件。
- 当您选择 RHEL8 安装 DVD 作为安装源时, .treeinfo 文件会指向 BaseOS 和 AppStream 软件仓库。您可以使用单个 inst.repo 选项来加载这两个软件仓库。
- 5. 使用以下命令挂载 DVD ISO 镜像:

# mount -t iso9660 /path\_to\_image/name\_of\_iso/ /mount\_point -o loop,ro

6. 创建一个目录,并将 initrd.img 和 vmlinuz 文件从 DVD ISO 镜像复制到其中,例如:

# cp /mount\_point/ppc/ppc64/{initrd.img,vmlinuz} /var/lib/tftpboot/grub2-ppc64/

7. 将您的 DHCP 服务器配置为使用与 **GRUB2** 打包的引导镜像,如下例所示。请注意,如果您已经配置了 DHCP 服务器,在 DHCP 服务器中执行这个步骤。

```
subnet 192.168.0.1 netmask 255.255.255.0 {
    allow bootp;
    option routers 192.168.0.5;
    group { #BOOTP POWER clients
        filename "boot/grub2/powerpc-ieee1275/core.elf";
        host client1 {
            hardware ethernet 01:23:45:67:89:ab;
            fixed-address 192.168.0.112;
        }
    }
}
```

- 8. 调整示例参数 subnet、netmask、routers、fixed-address 和 hardware ethernet 以适合您的 网络配置。记录 file name 参数; 这是 grub2-mknetdir 命令在此流程前面输出的文件名。
- 9. 在 DHCP 服务器上,启动并启用 **dhcpd** 服务。如果您已在 localhost 上配置了 DHCP 服务器,请在 localhost 上启动并启用 **dhcpd** 服务。

# systemctl enable --now dhcpd

10. 启动并启用 tftp.socket 服务:

# systemctl enable --now tftp.socket

PXE 引导服务器现在可以提供 PXE 客户端。您可以启动客户端,即您要安装 Red Hat Enterprise Linux 的系统,在提示指定引导源时选择 PXE 引导,并启动网络安装。

# 第8章准备启用了UEFI安全引导的系统来安装和引导 RHEL BETA版本

要增强操作系统的安全性,在启用了 UEFI 安全引导的系统上引导 Red Hat Enterprise Linux Beta 版本时,对签名验证使用 UEFI 安全引导特性。

## 8.1. UEFI 安全引导和 RHEL BETA 版本

UEFI 安全引导要求操作系统内核使用可识别的私钥进行签名。UEFI 安全引导然后使用对应的公钥验证签名。

对于 Red Hat Enterprise Linux Beta 版,内核使用特定于红帽 Beta 的私钥进行签名。UEFI 安全引导尝试使用对应的公钥验证签名,但由于硬件无法识别 Beta 私钥,因此 Red Hat Enterprise Linux Beta 版本系统无法引导。因此,要在 Beta 版本中使用 UEFI 安全引导,请使用 Machine Owner Key (MOK) 功能将红帽 Beta 公钥添加到您的系统中。

## 8.2. 为 UEFI 安全引导添加 BETA 公钥

本节介绍如何为 UEFI 安全引导添加 Red Hat Enterprise Linux Beta 公钥。

#### 先决条件

- UEFI 安全引导已在系统中禁用。
- 已安装 Red Hat Enterprise Linux Beta 版本,即使系统重启,安全引导也会被禁用。
- 您已登录到系统, Initial Setup 窗口中的任务已完成。

#### 流程

1. 开始将红帽 Beta 公钥注册到系统机器所有者密钥 (MOK) 列表中:

# mokutil --import /usr/share/doc/kernel-keys/\$(uname -r)/kernel-signing-ca.cer

**\$(uname -r)** 替换为内核版本 - 例如: 4.18.0-80.el8.x86\_64。

- 2. 出现提示时输入密码。
- 3. 重新启动系统并按任意键继续启动。Shim UEFI 密钥管理实用程序在系统启动期间启动。
- 4. 选择 Enroll MOK。
- 5. 选择 Continue。
- 6. 选 Yes 并输入密码。密钥导入到系统的固件中。
- 7. 选择 Reboot。
- 8. 在系统上启用安全引导。

### 8.3. 删除 BETA 公钥

如果您计划删除 Red Hat Enterprise Linux Beta 版本,并安装 Red Hat Enterprise Linux 正式发行版本 (GA) 或一个不同的操作系统,请删除 Beta 公钥。

这个步骤描述了如何删除 Beta 公钥。

#### 流程

- 1. 开始从系统的 Machine Owner Key (MOK) 列表中删除 Red Hat Beta 公钥:
  - # mokutil --reset
- 2. 出现提示时输入密码。
- 3. 重新启动系统并按任意键继续启动。Shim UEFI 密钥管理实用程序在系统启动期间启动。
- 4. 选择 Reset MOK。
- 5. 选择 Continue。
- 6. 选择 Yes, 并输入在第2步中指定的密码。密钥已从系统的固件中删除。
- 7. 选择 Reboot。

## 部分 II. 安装 RHEL 完全和半自动化

## 第9章自动化安装工作流

Kickstart 安装可以使用本地 DVD、本地磁盘或 NFS、FTP、HTTP 或者 HTTPS 服务器来执行。这部分提供了 Kickstart 使用的高级概述。

- 1. 创建一个 Kickstart 文件。您可以手动写入该文件,复制手动安装后保存的 Kickstart 文件,或者使用在线生成器工具创建该文件,之后再编辑该文件。请参阅 创建 Kickstart 文件。
- 2. 使 Kickstart 文件对可移动介质、磁盘上的安装程序或者使用 HTTP (S)、FTP 或者 NFS 服务器的 网络位置可用。请参阅 将 Kickstart 文件添加到 UEFI HTTP 或 PXE 安装源 中,或使 Kickstart 文件可供 RHEL 安装程序使用。
- 3. 创建用来开始安装的引导介质。
- 4. 使安装源可供安装程序使用。请参阅为 Kickstart 安装创建安装源。
- 5. 使用引导介质和 Kickstart 文件开始安装。请参阅 启动 Kickstart 安装。

如果 Kickstart 文件包含所有强制命令和部分,则会自动完成安装。如果缺少一个或多个这些强制部分,或者出现错误,则安装需要手动干预才能完成。

## 第 10 章 创建 KICKSTART 文件

您可以使用以下方法创建 Kickstart 文件:

- 使用在线 Kickstart 配置工具。
- 复制手动安装后创建的 Kickstart 文件。
- 手动编写整个 Kickstart 文件。
- 为 Red Hat Enterprise Linux 9 安装转换 Red Hat Enterprise Linux 8 Kickstart 文件。 有关转换工具的更多信息,请参阅 Kickstart 生成器实验室。
- 如果是虚拟和云环境,请使用 Image Builder 创建自定义系统镜像。

请注意,某些高度特定的安装选项只能通过手动编辑 Kickstart 文件来配置。

## 10.1. 使用 KICKSTART 配置工具创建 KICKSTART 文件

有红帽客户门户网站帐户的用户可以使用客户门户网站 Labs 中的 Kickstart Generator 工具在线生成 Kickstart 文件。这个工具可帮助您完成基本配置,并下载得到的 Kickstart 文件。

#### 先决条件

您有一个红帽客户门户网站帐户,以及一个有效的红帽订阅。

#### 流程

- 1. 在 https://access.redhat.com/labsinfo/kickstartconfig 打开 Kickstart 生成器实验室信息页面。
- 2. 点击标题左侧的 Go to Application 按钮并等待下一个页面加载。
- 3. 在下拉菜单中选择 Red Hat Enterprise Linux 9并等待页面更新。
- 4. 使用表单中的字段描述要安装的系统。 您可以使用表单左侧的链接来快速导航表表单的部分内容。
- 5. 要下载生成的 Kickstart 文件,请点击本页顶部的红色 下载 按钮。 浏览器会保存该文件。
- 6. 安装 pykickstart 软件包。
  - # dnf install pykickstart
- 7. 在您的 Kickstart 文件上运行 ksvalidator。
  - \$ ksvalidator -v RHEL9 /path/to/kickstart.ks

使用要验证的 Kickstart 文件的路径替换 /path/to/kickstart.ks。



#### 重要

验证工具并不能保证安装过程可以成功。它只检查语法是否正确,且该文件不包含已弃用的选项。它不会验证 Kickstart 文件的 %pre、%post 和 %packages 部分。

## 10.2. 执行手动安装来创建 KICKSTART 文件

推荐的生成 Kickstart 文件的方法是使用手动安装 Red Hat Enterprise Linux 生成的文件。安装完成后,安装过程中进行的所有选择都会保存到名为 **anaconda-ks.cfg** 的 Kickstart 文件中,该文件位于安装的系统上的 /**root**/ 目录中。您可以使用这个文件来重现安装。另外,复制此文件,根据需要进行修改,并使用得到的配置文件进行进一步安装。

#### 流程

- 1. 安装 RHEL。详情请参阅 从安装介质主动安装 RHEL。 在安装过程中,创建一个具有管理员权限的用户。
- 2. 完成安装并重启系统。
- 3. 使用管理员帐户登录该系统。
- 4. 将文件 /root/anaconda-ks.cfg 复制到您选择的位置。



#### 重要

该文件包含用户和密码的信息。

● 在终端显示文件内容:

# cat /root/anaconda-ks.cfg

您可以复制输出并保存到您选择的其他文件中。

- 要将文件复制到另一个位置,请使用文件管理器。请记住需要修改副本的权限,以便非 root 用户可读取该文件。
- 5. 安装 pykickstart 软件包。

# dnf install pykickstart

6. 在您的 Kickstart 文件上运行 ksvalidator。

\$ ksvalidator -v RHEL9 /path/to/kickstart.ks

使用要验证的 Kickstart 文件的路径替换 /path/to/kickstart.ks。



#### 重要

验证工具并不能保证安装过程可以成功。它只检查语法是否正确,且该文件不包含已弃用的选项。它不会验证 Kickstart 文件的 %pre、%post 和 %packages 部分。

## 10.3. 从以前的 RHEL 安装转换为一个 KICKSTART 文件

您可以使用 Kickstart 转换器工具转换成一个 RHEL 7 Kickstart 文件,用于 RHEL 8 或 9 安装,或者转换成一个 RHEL 8 Kickstart 文件,用于 RHEL 9。有关工具以及如何使用它来转换 RHEL Kickstart 文件的详情,请参考 https://access.redhat.com/labs/kickstartconvert/。

#### 流程

● 准备 kickstart 文件后,安装 pykickstart 软件包。

# dnf install pykickstart

● 在您的 Kickstart 文件上运行 ksvalidator。

\$ ksvalidator -v RHEL9 /path/to/kickstart.ks

使用要验证的 Kickstart 文件的路径替换 /path/to/kickstart.ks。



#### 重要

验证工具并不能保证安装过程可以成功。它只检查语法是否正确,且该文件不包含已弃用的选项。它不会验证 Kickstart 文件的 %pre、%post 和 %packages 部分。

## 10.4. 使用 IMAGE BUILDER 创建自定义镜像

您可以使用 Red Hat Image Builder 为虚拟和云部署创建自定义系统镜像。

有关使用镜像构建器创建自定义镜像的更多信息,请参阅制作自定义的RHEL系统镜像文档。

## 第11章将 KICKSTART 文件添加到 UEFI HTTP 或 PXE 安装源中

在 Kickstart 文件就绪后,您可以使其可用于在目标系统上安装。

## 11.1. 基于网络安装的端口

下表列出了必须在服务器上打开的端口,以便为每种基于网络的安装提供文件。

#### 表 11.1. 基于网络安装的端口

| <b>使用的</b> 协议 | 打开端口             |
|---------------|------------------|
| НТТР          | 80               |
| HTTPS         | 443              |
| FTP           | 21               |
| NFS           | 2049, 111, 20048 |
| TFTP          | 69               |

#### 其它资源

• 安全网络

## 11.2. 在 NFS 服务器中共享安装文件

您可以在 NFS 服务器中存储 Kickstart 脚本文件。将其存储在 NFS 服务器中可让您从单一源安装多个系统,而无需对 Kickstart 文件使用物理介质。

#### 先决条件

- 您对本地网络上的 Red Hat Enterprise Linux 9 服务器具有管理员级别的访问权限。
- 要安装的系统可以连接到服务器。
- 服务器上的防火墙允许来自您要安装的系统的连接。如需更多信息 , 请参阅 基于网络安装的端口。

#### 流程

- 1. 作为 root 运行以下命令安装 **nfs-utils** 软件包:
  - # dnf install nfs-utils
- 2. 将 Kickstart 文件复制到 NFS 服务器的目录中。
- 3. 使用文本编辑器打开 /etc/exports 文件,并使用以下语法添加一行:

/exported\_directory/ clients

使用到包含 Kickstart 文件的目录的完整路径替换 /exported\_directory/。要从这个 NFS 服务器安装计算机的主机名或 IP 地址替换 clients,如果您想允许任何可访问该 NFS 服务器的计算机都能使用该 ISO 镜像,则使用该系统所在的子网络访问该 ISO 镜像,或者使用星号(\*)。有关此格式的详细信息,请参见 exports(5) 手册页。使 /rhel9-install/ 目录对所有客户端只读的一个基本配置是:

/rhel9-install \*

- 4. 保存 /etc/exports 文件并退出文本编辑器。
- 5. 启动 nfs 服务:

# systemctl start nfs-server.service

如果在更改 /etc/exports 文件前运行该服务,请输入以下命令以便运行的 NFS 服务器重新载入其配置:

# systemctl reload nfs-server.service

Kickstart 文件现在可以通过 NFS 访问并可用于安装。



#### 注意

在指定 Kickstart 源时,使用 nfs: 协议、服务器的主机名或 IP 地址、冒号 (:) 以及包含该文件的目录内的路径。例如:如果服务器的主机名是 myserver.example.com,并且已在/rhel9-install/my-ks.cfg 中将保存了文件,请指定inst.ks=nfs:myserver.example.com:/rhel9-install/my-ks.cfg 作为安装源引导选项。

#### 其他资源

● 使用 VNC 准备远程安装

## 11.3. 在 HTTP 或 HTTPS 服务器中共享安装文件

您可以在 HTTP 或 HTTPS 服务器中存储 Kickstart 脚本文件。在 HTTP 或 HTTPS 服务器中存储 Kickstart 文件可让您从一个源安装多个系统,而无需对 Kickstart 文件使用物理介质。

#### 先决条件

- 您对本地网络上的 Red Hat Enterprise Linux 9 服务器具有管理员级别的访问权限。
- 要安装的系统可以连接到服务器。
- 服务器上的防火墙允许来自您要安装的系统的连接。如需更多信息 , 请参阅 基于网络安装的端口。

#### 流程

1. 要在 HTTP 上存储 Kickstart 文件,请安装 httpd 软件包:

# dnf install httpd

要在 HTTPS 上存储 Kickstart 文件, 请安装 httpd 和 mod\_ssl 软件包:

#### # dnf install httpd mod ssl



#### 警告

如果您的 Apache 网页服务器配置启用了 SSL 安全性,请确定您只启用 TLSv1 协议,并禁用 SSLv2 和 SSLv3。这是因为 POODLE SSL 漏洞(CVE-2014-3566)。详情请查看 https://access.redhat.com/solutions/1232413。



#### 重要

如果您使用带有自签名证书的 HTTPS 服务器,则必须使用 **inst.noverifyssl** 选项 引导安装程序。

- 2. 将 Kickstart 文件复制到 HTTP(S) 服务器的 /var/www/html/ 目录的子目录中。
- 3. 启动 httpd 服务:

# systemctl start httpd.service

Kickstart 文件现在可以访问并可用于安装。



#### 注意

当指定 Kickstart 文件的位置时,请使用 http:// 或 https:// 作为协议、服务器的主机名或 IP 地址,以及 Kickstart 文件的路径(相对于 HTTP 服务器 root)。例如:如果您使用 HTTP,服务器的主机名为 myserver.example.com,并且您已将 Kickstart 文件复制为 /var/www/html/rhel9-install/my-ks.cfg,请将 http://myserver.example.com/rhel9-install/my-ks.cfg 指定为文件位置。

#### 其他资源

- 部署 Web 服务器和代理
- 配置和使用数据库服务器

## 11.4. 在 FTP 服务器中共享安装文件

您可以在 FTP 服务器中存储 Kickstart 脚本文件。将脚本存储在 FTP 服务器中可让您从单一源安装多个系统,而无需将物理介质用于 Kickstart 文件。

#### 先决条件

- 您对本地网络上的 Red Hat Enterprise Linux 9 服务器具有管理员级别的访问权限。
- 要安装的系统可以连接到服务器。
- 服务器上的防火墙允许来自您要安装的系统的连接。对于 moer 信息, 基于网络安装的端口。

#### 流程

1. 安装 vsftpd 软件包。请作为 root 运行以下命令完成此步骤:

# dnf install vsftpd

- 2. 在文本编辑器中打开并编辑 /etc/vsftpd/vsftpd.conf 配置文件。
  - a. 将 anonymous\_enable=NO 行改为 anonymous\_enable=YES
  - b. 将 write\_enable=YES 行改为 write\_enable=NO。
  - c. 添加行 **pasv\_min\_port**=*min\_port* 和 **pasv\_max\_port**。使用被动模式下 FTP 服务器使用的端口范围替换 *min\_port* 和 *max\_port*,例如 **10021** 和 **10031**。 在带有各种防火墙/NAT 设置的网络环境中,这个步骤可能是必要的。
  - d. 可选:在您的配置中添加自定义更改。可用选项请查看 vsftpd.conf(5) 手册页。这个步骤假设使用了默认选项。



#### 警告

如果在 **vsftpd.conf** 文件中配置了 SSL/TLS 安全性,请确保只启用 TLSv1 协议,并禁用 SSLv2 和 SSLv3。这是因为 POODLE SSL 漏洞 (CVE-2014-3566)。详情请参考 https://access.redhat.com/solutions/1234773。

- 3. 配置服务器防火墙。
  - a. 启用防火墙:

# systemctl enable firewalld # systemctl start firewalld

b. 在您的防火墙中启用前一步中的 FTP 端口和端口范围:

# firewall-cmd --add-port min\_port-max\_port/tcp --permanent # firewall-cmd --add-service ftp --permanent # firewall-cmd --reload

将 min\_port-max\_port 替换为您输入到 /etc/vsftpd/vsftpd.conf 配置文件的端口号。

- 4. 将 Kickstart 文件复制到 FTP 服务器的 /var/ftp/ 目录或其子目录中。
- 5. 请确定在文件中正确设置了正确的 SELinux 上下文和访问模式:

# restorecon -r /var/ftp/your-kickstart-file.ks # chmod 444 /var/ftp/your-kickstart-file.ks

6. 启动 **vsftpd** 服务:

# systemctl start vsftpd.service

如果在更改 /etc/vsftpd/vsftpd.conf 文件前运行该服务,重启该服务以载入经过编辑的文件:

# systemctl restart vsftpd.service

在引导过程中启用 vsftpd 服务:

# systemctl enable vsftpd

Kickstart 文件现在可以访问,并可用于同一网络中的系统安装。



## 注意

在配置安装源时,使用 ftp:// 作为协议、服务器的主机名或 IP 地址以及 Kickstart 文件的路径(相对于 FTP 服务器 root)。例如:如果服务器的主机名是 myserver.example.com,且您已将文件复制到 /var/ftp/my-ks.cfg 中,请指定 ftp://myserver.example.com/my-ks.cfg 作为安装源。

# 第 12 章 半自动化安装:使 KICKSTART 文件可供 RHEL 安装程序使用

一旦 Kickstart 文件就绪,就可以在目标系统上安装它。

## 12.1. 在本地卷中共享安装文件

这个步骤描述了如何在要安装的系统中的卷中保存 Kickstart 脚本文件。这个方法可让您绕过其他系统的要求。

#### 先决条件

- 您有一个可移动到要安装的机器上的驱动器,如 USB 盘。
- 驱动器包含可由安装程序读取的分区。支持的类型有 ext2、ext3、ext4、xfs 和 fat。
- 该驱动器连接到系统, 其卷已挂载。

#### 流程

- 1. 列出卷信息并记录您想要复制 Kickstart 文件的卷 UUID。
  - # lsblk -l -p -o name,rm,ro,hotplug,size,type,mountpoint,uuid
- 2. 导航到卷中的文件系统。
- 3. 将 Kickstart 文件复制到这个文件系统中。
- 4. 记录以后要与 inst.ks= 选项一起使用的字符串。这个字符串采用 hd:UUID=volume-UUID: path/to/kickstart-file.cfg 的形式。请注意,该路径相对于文件系统根目录,而不是文件系统层次结构的 / root。使用之前记录的 UUID 替换 volume-UUID。
- 5. 卸载所有驱动器卷:

# umount /dev/xyz ...

在命令中添加所有卷, 用空格分开。

## 12.2. 在本地卷中共享安装文件以便自动载入

在要安装的系统中特殊命名的卷的根目录中会出现一个名为 Kickstart 文件。这可让您避开另一个系统的需要,让安装程序自动载入该文件。

#### 先决条件

- 您有一个可移动到要安装的机器上的驱动器,如 USB 盘。
- 驱动器包含可由安装程序读取的分区。支持的类型有 ext2、ext3、ext4、xfs 和 fat。
- 该驱动器连接到系统, 其卷已挂载。

#### 流程

1. 列出您要将 Kickstart 文件复制到的卷信息。

# Isblk -I -p

- 2. 导航到卷中的文件系统。
- 3. 将 Kickstart 文件复制到文件系统的根目录下。
- 4. 将 Kickstart 文件重命名为 ks.cfg。
- 5. 将卷重命名为 OEMDRV:
  - 对于 ext2、ext3 和 ext4 文件系统:

# e2label /dev/xyz OEMDRV

● 对于 XFS 文件系统:

# xfs\_admin -L OEMDRV /dev/xyz

使用卷块设备的路径替换/dev/xyz。

6. 卸载所有驱动器卷:

# umount /dev/xyz ...

在命令中添加所有卷, 用空格分开。

## 第13章 启动 KICKSTART 安装

您可以以多种方式启动 Kickstart 安装:

- 通过在 PXE 引导中自动编辑引导选项。
- 通过使用特定名称在卷中自动提供文件。

您可以使用 Red Hat Content Delivery Network (CDN)注册 RHEL。CDN 是地理上分散的 Web 服务器系列。例如,这些服务器通过有效的订阅为 RHEL 主机提供软件包和更新。

在安装过程中,从 CDN 注册并安装 RHEL 有以下优点:

- 在安装后立即为最新系统使用最新的软件包,
- 集成了对连接 Red Hat Insights 和启用系统目的的支持。

## 13.1. 使用 PXE 自动启动 KICKSTART 安装

AMD64、Intel 64 和 64 位 ARM 系统以及 IBM Power Systems 服务器能够使用 PXE 服务器引导。当您配置 PXE 服务器时,可以在引导装载程序配置文件中添加引导选项,以便您可以自动启动安装。使用这个方法,可以完全自动化安装,包括引导过程。

这个过程旨在作为一般参考。具体步骤因您的系统架构有所不同,且不是所有架构上都提供所有的选项(例如,在 64 位 IBM Z 上无法使用 PXE 引导)。

#### 先决条件

- 您有一个准备好的 Kickstart 文件,位于要安装的系统可访问的位置。
- 您有一个可用于引导系统并开始安装的 PXE 服务器。

#### 流程

- 1. 打开 PXE 服务器中的引导装载程序配置文件,并在适当的行中添加 **inst.ks=** 引导选项。该文件的名称及其句法取决于您系统的架构和硬件:
  - 在使用 BIOS 的 AMD64 和 Intel 64 系统中,该文件名称可以是 default,或取决于您的系统 IP 地址。在这种情况下,在安装条目的附加行中添加 **inst.ks=** 选项。在配置文件中添加的行示例类似如下:

append initrd=initrd.img inst.ks=http://10.32.5.1/mnt/archive/RHEL-9/9.x/x86\_64/kickstarts/ks.cfg

● 在使用 GRUB2 引导装载程序(带有 UEFI 固件和 IBM Power Systems 服务器的 AMD64、Intel 64 和 64 位 ARM 系统系统)中,该文件的名称将是 **grub.cfg**。在这个文件中,在安装条目的 kernel 行中添加 **inst.ks=** 选项。该配置文件 kernel 行示例类似如下:

kernel vmlinuz inst.ks=http://10.32.5.1/mnt/archive/RHEL-9/9.x/x86 64/kickstarts/ks.cfg

2. 从网络服务器引导安装。

现在开始使用在 Kickstart 文件中指定的安装选项安装。如果 Kickstart 文件有效并包含全部所需命令,则安装将是全自动的。



#### 注意

如果您已在启用了 UEFI 安全引导的系统中安装了 Red Hat Enterprise Linux Beta 版本,然后将 Beta 公钥添加到系统的 Machine Owner Key (MOK) 列表中。

#### 其他资源

● 有关设置 PXE 服务器的详情, 请参考 准备 PXE 安装源

## 13.2. 使用本地卷自动启动 KICKSTART 安装

您可以通过在指定标记的存储卷上加上特定名称的 Kickstart 文件启动 Kickstart 安装。

#### 先决条件

- 您有一个带有标签 **OEMDRV** 的卷,以及 root 中以 **ks.cfg** 形式存在的一个 Kickstart 文件。
- 安装程序启动时,包含此卷的驱动器在系统上可用。

#### 流程

- 1. 使用本地介质(CD、DVD或者USB闪存驱动器)引导系统。
- 2. 在 boot 提示符后指定所需的引导选项。
  - a. 如果所需的存储库位于网络位置,您可能需要使用 **ip=**选项配置网络。在没有这个选项时,安装程序会默认尝试使用 DHCP 协议配置所有网络设备。
  - b. 要访问安装所需软件包的软件源,您可能需要添加 inst.repo= 选项。如果您没有指定这个选项,则必须在 Kickstart 文件中指定安装源。 有关安装源的更多信息,请参阅 用于安装程序配置和流控制的 Kickstart 命令。
- 3. 通过确认**您添加的引**导选项启动**安装。** 现在开始安装,Kickstart 文件会被自动探测,并用来自动启动 Kickstart 安装。



#### 注意

如果您已在启用了 UEFI 安全引导的系统中安装了 Red Hat Enterprise Linux Beta 版本,然后将 Beta 公钥添加到系统的 Machine Owner Key (MOK) 列表中。有关 UEFI 安全引导和 Red Hat Enterprise Linux Beta 版本的更多信息,请参阅 UEFI 安全引导和 Beta 版本要求。

## 13.3. 安装过程中的控制台和日志记录

在主界面外,Red Hat Enterprise Linux 安装程序使用 tmux 终端显示和控制几个窗口。每个窗口都有不同的目的,它们会显示几个不同的日志,可用于在安装过程中排除问题。其中一个窗口提供带有 root 权限的互动 shell 提示符,除非使用一个引导选项或一个 Kickstart 命令特别禁用了这个提示符。



#### 注意

一般来说,除非需要诊断安装问题,不需要离开默认的图形安装环境。

终端多路器在虚拟控制台1中运行。要从实际安装环境切换到 tmux,按Ctrl+Alt+F1。要回到在虚拟控制台6中运行的主安装界面,按Ctrl+Alt+F6。



## 注意

如果选择文本模式安装,会在虚拟控制台1(tmux)中启动,切换到控制台6将打开 shell 提示符而不是图形界面。

运行 tmux 的控制台有五个可用的窗口; 下表中描述了它们的内容以及键盘快捷键。请注意,键盘快捷键有两个部分:首先按 Ctrl+b 键,然后释放这两个键,再按您想要使用的窗口的数字键。

您还可以使用 Ctrl+b n、Alt+ Tab 和 Ctrl+b p 切换到下一个或前一个 tmux 窗口。

#### 表 13.1. 可用的 tmux 窗口

| 快捷键      | 内容                                                         |
|----------|------------------------------------------------------------|
| Ctrl+b 1 | 安装程序主窗口。包含基于文本的提示(在文本模式<br>安装或者使用 VNC 直接模式时),以及一些调试信<br>息。 |
| Ctrl+b 2 | 有 <b>root</b> 权限的互动 shell 提示符。                             |
| Ctrl+b 3 | 安装日志; 显示信息保存在 /tmp/anaconda.log 中。                         |
| Ctrl+b 4 | 存储日志; 显示与存储设备和配置相关的消息,保存在/tmp/storage.log 中。               |
| Ctrl+b 5 | 程序日志; 显示安装过程中执行的实用程序的信息,保存在 /tmp/program.log 中。            |

## 部分Ⅲ. 安装后的任务

## 第 14 章 使用 SUBSCRIPTION MANAGER 注册 RHEL

安装后, 您必须注册系统才能获得持续更新。

## 14.1. 使用安装程序 GUI 注册 RHEL 9

您可以使用 RHEL 安装程序 GUI 注册 Red Hat Enterprise Linux 9。

#### 先决条件

- 您在红帽客户门户网站中有一个有效的用户帐户。请参阅 创建红帽登录页面。
- 您有一个有效的激活码和机构 ID。

#### 流程

- 1. 从 Installation Summary 屏幕,在 Software 下,点击 Connect to Red Hat。
- 2. 使用 Account 或 Activation Key 选项激活您的红帽帐户。
- 3. 可选:在 Set System Purpose 字段中,选择您要从下拉菜单中设置的 Role、SLA 和 Usage 属性。 此时您的 Red Hat Enterprise Linux 9 系统已被成功注册。

#### 14.2. REGISTRATION ASSISTANT

Registration Assistant 可帮助为您的 Red Hat Enterprise Linux 环境选择最合适的注册选项。

#### 其他资源

- 有关使用用户名和密码注册 RHEL 订阅管理器客户端的帮助,请参阅客户门户网站中的 RHEL 注册助手。
- 有关将 RHEL 系统注册到 Red Hat Insights 的帮助,请参阅混合云控制台上的 Insights 注册助手。

## 14.3. 使用命令行注册您的系统

您可以使用命令行注册 Red Hat Enterprise Linux 9 订阅。



#### 注意

有关将主机注册到红帽的改进和简化的体验,请使用远程主机配置(RHC)。RHC 客户端将您的系统注册到 Red Hat 使您的系统准备好进行 Insights 数据收集,并从 Insights 启用对Red Hat Enterprise Linux 的直接问题修复。如需更多信息,请参阅 RHC 注册。

#### 先决条件

- 您有一个有效的、非试用的 Red Hat Enterprise Linux 订阅。
- 验证您的红帽订阅状态。
- 您之前还没有收到 Red Hat Enterprise Linux 9 订阅。

● 您已成功安装 Red Hat Enterprise Linux 9 并以 root 身份登录系统。

#### 流程

- 1. 以 root 用户身份打开终端窗口。
- 2. 使用激活码注册 Red Hat Enterprise Linux 系统:

# subscription-manager register --activationkey=<activation\_key\_name> -- org=<organization\_ID>

当成功注册系统时,会显示类似如下的输出:

The system has been registered with id: 62edc0f8-855b-4184-b1b8-72a9dc793b96

#### 其他资源

- 使用激活码使用红帽订阅管理器注册系统
- RHEL 系统注册入门

# 第 15 章 使用 SUBSCRIPTION-MANAGER 命令行工具配置系统目的

系统目的是 Red Hat Enterprise Linux 安装的一个功能,它可以帮助 RHEL 客户获得红帽混合云控制台中提供的订阅体验和服务的好处,该控制台是一个基于仪表盘的软件即服务(SaaS)应用程序,可让您在您的红帽帐户中查看订阅的使用情况。

您可以在激活码上或使用订阅管理器工具配置系统目的属性。虽然建议在激活码上配置系统目的,但您也可以在安装后使用 subscription-manager syspurpose 命令行工具来设置所需的属性来配置它。

#### 先决条件

- 已安装并注册了 Red Hat Enterprise Linux 9 系统,但没有配置系统目的。
- 以 root 用户身份登录。



#### 注意

在授权模式下,如果您的系统已注册,但有没有满足所需目的的订阅,您可以运行 subscription-manager remove --all 命令来删除附加的订阅。然后,您可以使用 命令行 subscription-manager syspurpose {role, use, service-level} 工具来设置所需的目的属性,最后运行 subscription-manager attach --auto 在考虑更新的属性的情况下重新赋予系统权限。在启用了 SCA 的帐户中,您可以在注册后直接更新系统目的详情,而无需对系统中的订阅进行更新。

#### 流程

1. 在终端窗口中运行以下命令设定系统预期的角色:

# subscription-manager syspurpose role --set "VALUE"

用您要分配的角色替换 VALUE:

- Red Hat Enterprise Linux Server
- Red Hat Enterprise Linux Workstation
- Red Hat Enterprise Linux Compute 节点

#### 例如:

# subscription-manager syspurpose role --set "Red Hat Enterprise Linux Server"

a. 可选:在设置值前,请查看您机构的订阅所支持的可用角色:

# subscription-manager syspurpose role --list

b. 可选: 运行以下命令以取消设置角色:

# subscription-manager syspurpose role --unset

2. 运行以下命令来设定系统的预期服务水平协议(SLA):

# subscription-manager syspurpose service-level --set "VALUE"

使用您要分配的 SLA 替换 VALUE:

- Premium (高级)
- Standard (标准)
- Self-Support (自助)

#### 例如:

# subscription-manager syspurpose service-level --set "Standard"

a. 可选:在设置值前,请查看您机构的订阅所支持的可用的服务级别:

# subscription-manager syspurpose service-level --list

b. 可选: 运行以下命令以取消设置 SLA:

# subscription-manager syspurpose service-level --unset

3. 运行以下命令设定系统预定用法:

# subscription-manager syspurpose usage --set "VALUE"

使用您要分配的用途来替换 VALUE:

- 生产环境
- 灾难恢复
- 开发/测试

#### 例如:

# subscription-manager syspurpose usage --set "Production"

a. 可选:在设置值前,请查看您机构的订阅所支持的可用用法:

# subscription-manager syspurpose usage --list

b. 可选: 运行以下命令以取消设置用法:

# subscription-manager syspurpose usage --unset

4. 运行以下命令来显示当前系统目的属性:

# subscription-manager syspurpose --show

a. 可选:要获得更详细的语法信息,请运行以下命令访问 **subscription-manager** 手册页,并浏览 SYSPURPOSE OPTIONS:

# man subscription-manager

#### 验证步骤

要在使用启用了授权模式的帐户注册的系统中验证系统的订阅状态:

System Purpose Status: Matched

- o 整体状态 Current 表示附加的订阅和授权涵盖所有安装的产品,以访问其内容集的存储库。
- o 系统用途状态**匹配**意味着附加的订阅满足系统上设置的所有系统用途属性(角色、使用量、 服务水平)。
- 当状态信息不理想时,会显示附加信息来帮助系统管理员决定对附加订阅进行何种更正,以 覆盖安装的产品和预期系统目的。
- 要在使用启用了 SCA 模式的帐户注册的系统中验证系统的订阅状态:

# subscription-manager status
+-----+
System Status Details
+-----+
Overall Status: Disabled

Content Access Mode is set to Simple Content Access. This host has access to content, regardless of subscription status.

System Purpose Status: Disabled

 在SCA模式下,订阅不再需要附加到各个系统。因此,总体状态和系统目的状态都显示为 Disabled。但是,系统目的属性提供的技术、业务和操作用例对于订阅服务非常重要。如果 没有这些属性,订阅服务数据就不太准确。

#### 其他资源

● 要了解有关订阅服务的更多信息,请参阅订阅服务入门指南。

## 第16章保护您的系统

在完成安装后,您必须保护您的 Red Hat Enterprise Linux 系统。

#### 先决条件

● 您已完成图形安装。

#### 流程

1. 要更新您的系统, 请作为 root 运行以下命令:

# dnf update

2. 即使在安装 Red Hat Enterprise Linux 时默认自动启用了防火墙服务( **firewalld** ),但在一些情况下可能会明确禁用它,例如在 Kickstart 配置中。在那种情况下,建议您重新启用防火墙。要启动 **firewalld**,请作为 root 运行以下命令:

# systemctl start firewalld # systemctl enable firewalld

3. 要提高安全性,禁用您不需要的服务。例如,如果您的系统没有安装打印机,使用以下命令禁用 cups 服务:

# systemctl mask cups

要查看活跃的服务,运行以下命令:

\$ systemctl list-units | grep service

## 部分Ⅳ. 附录

## 附录 A. KICKSTART 脚本文件格式参考

这个参考详细描述了 kickstart 文件格式。

### A.1. KICKSTART 文件格式

Kickstart 脚本是包含安装程序识别的关键字的纯文本文件,它们是安装指令。任何可将文件保存为 ASCII 文本的文本编辑,,比如 **Gedit** 或 **vim**(Linux 系统),或 **Notepad**(Windows 系统),都可以用来创建和编辑 Kickstart 文件。Kickstart 配置的文件名无关紧要,但建议使用简单名称,因为您需要在其他配置文件或对话框中指定这个名称。

#### 命令

命令是作为安装指令的关键字。每个命令都必须位于一行。命令可以选择。指定命令和选项和在 shell 中使用 Linux 命令类似。

#### 部分

某些以 % 字符开头的特殊命令可启动某个部分。部分中的命令解释与其它部分的命令不同。每个部分都必须使用 %end 命令结束。

#### 部分类型

可用的部分有:

- Add-on **部分**。这些部分使用 **%addon** *addon\_name* 命令。
- **软件包选择部分**。以 **%packages** 开始。使用它列出安装的软件包,包括间接方法,比如软件包组或者模块。
- Script **部分**。它们以 **%pre、%pre-install、%post** 和 **%onerror** 开头。这些部分不是必需的。

#### command 部分

command 部分是那些不属于任何 script 部分或 **%packages** 部分的 Kickstart 文件中的命令的术语。

#### 脚本部分计数和排序

除 command 部分外的所有部分都是可选的,并可以多次出现。当要评估特定类型的脚本部分时,Kickstart 中存在的所有部分都会按照外观顺序进行评估:两个 %post 部分会按照出现的顺序进行评估。但是,您不必按任何顺序指定各种脚本部分类型: %pre 部分前是否有 %post 部分无关紧要。

#### 注释

Kickstart 注释是以 hash #字符开头的行。安装程序会忽略这些行。

不必需的项目可以被省略。省略安装程序中所有需要的项目,这样用户就可以象常规互动安装一样,提供对相关项目的回答。也可以将 kickstart 脚本声明为非交互式,通过 cmdline 命令。在非互动模式中,任何缺少的回答都会中止安装过程。



#### 注意

如果在文本或图形模式下进行 kickstart 安装过程中需要用户交互,则仅进入要强制更新的窗口以完成安装。输入 spoke 可能会导致重置 kickstart 配置。在进入 Installation Destination 窗口后,重置配置专门应用于与存储相关的 kickstart 命令。

## A.2. KICKSTART 中的软件包选择

Kickstart 使用 %packages 命令启动的部分来选择要安装的软件包。您可以以这种方式安装软件包、组、环境、模块流和模块配置集。

#### A.2.1. 软件包选择部分

使用 %packages 命令启动一个 Kickstart 部分,该部分描述了要安装的软件包。 %packages 部分必须以 %end 命令结尾。

您可以根据环境、组、模块流、模块配置集或者它们的软件包名称指定软件包。定义了包含相关软件包的几个环境和组。如需环境和组群列表,请参阅 Red Hat Enterprise Linux 9 安装 DVD 中的软件仓库 repository/repodata/\*-comps-repository.architecture.xml 文件。

\*-comps-repository.architecture.xml 文件包含描述可用环境(使用 <environment> 标签标记)和组( <group> 标签)的结构。每个条目都有一个 ID、用户可见值、名称、描述和软件包列表。如果为安装选择了组,则在软件包列表中标记了 mandatory 的软件包总会被安装;如果其它位置没有特别排除,标记了 default 的软件包也会被安装,标记为 optional 的软件包需要在其他地方被指定包括时才会安装,即使已经选择该组也是如此。

您可以使用其ID(标签)或名称(<id>标签)指定软件包组或环境 <name>。

如果您不确定应该安装什么软件包,红帽建议您选择 Minimal Install 环境。Minimal Install 只提供运行 Red Hat Enterprise Linux 9 所需的软件包。这将显著降低系统受某个漏洞影响的机会。如果需要,可以在安装后再添加附加软件包。有关 Minimal Install 的详情,请参阅 安全强化 文档中的安装最小软件包挂载部分。请注意: Initial Setup 无法在使用 Kickstart 文件安装系统后运行,除非安装中包含桌面环境和 X Window 系统,并启用了图形登录。



#### 重要

要在64位系统中安装32位软件包:

- 为 %packages 部分指定 --multilib 选项
- 使用构建该软件包的 32 位架构附加软件包名称;例如:glibc.i686

#### A.2.2. 软件包选择命令

这些命令可以在 Kickstart 文件的 %packages 部分中使用。

#### 指定一个环境

以 @^ 符号开头的行形式指定要安装的整个环境:

%packages @^Infrastructure Server %end

这将安装属于 Infrastructure Server 环境一部分的所有软件包。Red Hat Enterprise Linux 9 安装 DVD 中的 repository/repodata/\*-comps-repository.architecture.xml 文件包括了所有可用的环境。

在 Kickstart 文件中只能指定一个环境。如果指定了多个环境,则只使用最后指定的环境。

#### 指定组

指定组,每个条目一行,以 @ 符号开头,然后是 \*-comps-repository.architecture.xml 文件中给出的完整组群名称或者组群 ID。例如:

```
%packages
@X Window System
@Desktop
@Sound and Video
%end
```

Core 组总是被选择 - 不需要在 %packages 部分指定它。

#### 指定单独的软件包

根据名称指定单个软件包,每个条目对应一行。您可以在软件包名称中使用星号字符(\*)作为通配符。例如:

```
%packages
sqlite
curl
aspell
docbook*
%end
```

docbook\* 条目包含软件包 docbook-dtds 和 docbook-style,它们与通配符表示的模式匹配。

#### 指定模块流的配置集

使用配置集语法为模块流指定配置集(一个条目为一行):

```
%packages
@module:stream/profile
%end
```

这会安装模块流指定配置集中列出的所有软件包。

- 当模块指定了默认流时,您可以将其退出。如果没有指定默认流,您必须指定它。
- 当模块流指定默认配置集时,您可以将其退出。如果没有指定默认配置集,您必须指定它。
- 无法多次使用不同流安装模块。
- 有可能安装同一模块和流的多个配置集。

模块和组使用以 @ 符号开头的相同语法。当某个模块和软件包组具有相同名称时,该模块会优先使用。

在 Red Hat Enterprise Linux 9 中,模块仅存在于 AppStream 软件仓库中。要列出可用的模块,请在安装的 Red Hat Enterprise Linux 9 系统上使用 **dnf module list** 命令。

也可以使用模块 Kickstart 命令启用模块流,然后通过直接命名模块流中包含的软件包来安装它们。

#### 排除环境、组群或者软件包

使用前导短划线 (-) 指定安装中排除的软件包或组。例如:

- %packages
- -@Graphical Administration Tools
- -autofs
- -ipa\*compat
- %end



#### 重要

不支持在 Kickstart 文件中只使用\*安装所有可用软件包。

您可以使用多个选项更改 %packages 部分的默认行为。有些选项可以用于整个软件包选择,其它选项只与特定的组一起使用。

#### 其他资源

● 使用 DNF 工具管理软件

#### A.2.3. 通用软件包选择选项

以下选项可用于 %packages 部分。要使用某个选项,请将其附加到软件包选择部分的开头。例如:

%packages --multilib --ignoremissing

#### --default

**安装默**认软件包组。这与在互动安装过程中的软件包选择页面中没有其他选择时要安装的软件包组对应。

#### --excludedocs

不要安装软件包中的任何文档。在大多数情况下,这不包括通常安装在 /usr/share/doc 目录中的任何文件,但要排除的特定文件取决于各个软件包。

#### --ignoremissing

忽略安装源中缺少的软件包、组、模块流、模块配置集和环境,而不是停止安装来询问安装是中止还是继续。

#### --inst-langs

指定要安装的语言列表。请注意,这与软件包组级别选择不同。这个选项没有描述应该安装哪些软件包组,而是设定 RPM 宏控制应该安装单个软件包的转换文件。

#### --multilib

为多 lib 软件包配置安装的系统,允许在 64 位系统中安装 32 位软件包,并安装在这部分中指定的软件包。

通常在 AMD64 和 Intel 64 系统中,您只能安装 x86\_64 和 noarch 软件包。但是,使用 --multilib 选项,您可以自动安装 32 位 AMD 和 i686 Intel 系统软件包(若有)可用。

这只适用于 **%packages** 部分明确指定的软件包。那些只作为相依性安装而没有在 Kickstart 文件中指定的软件包只能安装到需要它们的架构版本中,即使它们可用于更多构架。

用户可将 Anaconda 配置为在安装系统期间以 multilib 模式安装软件包。使用以下选项之一启用 multilib 模式:

1. 使用以下行配置 Kickstart 文件:

%packages --multilib --default %end

2. 在引导安装镜像时添加 inst.multilib 引导选项。

#### --nocore

禁用 @Core 软件包组的安装,否则该安装默认为始终安装。使用 --nocore 禁用 @Core 软件包组应当仅用于创建轻量级容器;使用 --nocore 安装桌面或服务器系统将导致系统不可用。



#### 备注

- 使用 -@Core 来排除 @Core 软件包组中的软件包不起作用。排除 @Core 软件包组的唯一方式是使用 --nocore 选项。
- **@Core** 软件包组定义为安装工作系统所需的一组最小软件包。它与软件包清单和覆盖范围中定义的核心软件包无关。

#### --exclude-weakdeps

禁用从弱依赖项安装软件包。这些软件包都链接到由 Recommends 和 supplements 标记组成的所选软件包。默认情况下会安装弱依赖项。

#### --retries=

设置 DNF 尝试下载软件包的次数(尝试)。默认值为 10。这个选项只适用于安装过程中,不会影响安装的系统上的 DNF 配置。

#### --timeout=

以秒为单位设置 DNF 超时。默认值为 30。这个选项只适用于安装过程中,不会影响安装的系统上的 DNF 配置。

#### A.2.4. 特定软件包组的选项

这个列表中的选项仅适用于单个软件包组。不要在 Kickstart 文件中的 %packages 命令中使用它们,而是将它们附加到组名称中。例如:

%packages

@Graphical Administration Tools --optional

%end

#### --nodefaults

只安装组的强制软件包, 而不是默认选择。

#### --optional

除了安装默认选择外,还要安装在 \*-comps-repository.architecture.xml 文件中的组定义中标记为可选的软件包。

请注意,某些软件包组(如 Scientific Support)没有任何强制或默认软件包 - 仅包括可选软件包。在这种情况下,必须始终使用 --optional 选项,否则不会安装该组中的软件包。



#### 重要

--nodefaults 和 --optional 选项不能一起使用。在安装过程中,您可以使用 --nodefaults 只安装必需的软件包,并在安装后在安装的系统上安装可选软件包。

## A.3. KICKSTART 文件中的脚本

kickstart 文件可以包括以下脚本:

- %pre
- %pre-install

#### %post

本节提供有关脚本的以下详情:

- 执行时间
- 可以包含在脚本中的命令类型
- 脚本的目的
- 脚本选项

#### A.3.1. %pre 脚本

%pre 脚本在加载 Kickstart 文件后立即在系统中运行,但在完全解析并开始安装之前。每个部分必须以 %pre 开头并以 %end 结尾。

%pre 脚本可用于激活和配置联网和存储设备。还可以使用安装环境中可用的脚本来运行脚本。如果您在继续安装之前有需要特殊配置的联网和存储,或者具有设置其他日志参数或环境变量的脚本,则添加%pre 脚本非常有用。

使用 %pre 脚本调试问题可能比较困难,因此建议仅在需要时使用 %pre 脚本。



#### 重要

Kickstart 的 %pre 部分会在安装阶段执行,该阶段发生在安装程序镜像(inst.stage2)被提取后:这意味着在 root 切换到安装程序环境(安装程序镜像)后,以及 Anaconda 安装程序本身启动 后。然后,应用 %pre 中的配置被应用,可用于从配置的安装存储库中获取软件包,例如,通过Kickstart 中的 URL。但是,它 不能 用于配置网络,以从网络获取镜像 (inst.stage2)。

除了安装环境 /sbin 和 /bin 目录中的大多数实用程序外,还可在 %pre 脚本中使用与网络、存储和文件系统相关的命令。

您可以在 %pre 部分中访问网络。然而,命名服务还没有被配置,所以只能使用 IP 地址,而不能使用 URL。



#### 注意

pre 脚本不会在 chroot 环境中运行。

#### A.3.1.1. %pre 脚本部分选项

以下选项可以用来改变预安装脚本的行为。要使用某个选项,请将其附加到脚本开头的 %pre 行中。例如:

%pre --interpreter=/usr/libexec/platform-python -- Python script omitted -- %end

#### --interpreter=

允许指定不同的脚本语言,如 Python。可以使用系统中可用的脚本语言;在大多数情况下,它们是 /usr/bin/sh、/usr/bin/bash 和 /usr/libexec/platform-python。

请注意,platform-python 解释器使用 Python 版本 3.6。对于新路径和版本,您必须将您的针对以前

的 RHEL 版本的 Python 脚本进行更改,以适用于新的路径和版本。另外,**platform-python** 用于系统工具:使用安装环境之外的 **python36** 软件包。有关 Red Hat Enterprise Linux 中的 Python 的详情,请查看\ *安装和使用动态编程语言* 中的 Python 简介 部分。

#### --erroronfail

如果脚本失败,显示错误并停止安装。错误消息会指示您记录故障原因的位置。安装的系统可能会处于不稳定且无法引导的状态。您可以使用 inst.nokill 选项调试脚本。

#### --log=

将脚本的输出记录到指定的日志文件中。例如:

%pre --log=/tmp/ks-pre.log

### A.3.2. %pre-install 脚本

pre-install 脚本中的命令会在以下任务完成后运行:

- 系统已被分区
- 文件系统创建并挂载在 /mnt/sysroot 下
- 网络已根据任何引导选项和 kickstart 命令进行配置

每个 %pre-install 部分必须以 %pre-install 开头并以 %end 结尾。

%pre-install 脚本可用于修改安装,并在软件包安装之前添加带有保证 ID 的用户和组。

建议您在安装所需的任何修改中使用 %post 脚本。只有在 %post 脚本对所需修改不够时才使用 %pre-install 脚本。

注意: **pre-install** 脚本不会在 chroot 环境中运行。

#### A.3.2.1. %pre-install script 部分选项

以下选项可用于更改 pre-install 脚本的行为。要使用某个选项,请将其附加到脚本开头的 %pre-install 行中。例如:

%pre-install --interpreter=/usr/libexec/platform-python -- Python script omitted -- %end

请注意,您可以有多个 **%pre-install** 部分,它们具有相同或不同的解释器。它们按照它们在 Kickstart 文件中的顺序进行评估。

#### --interpreter=

允许指定不同的脚本语言,如 Python。可以使用系统中可用的脚本语言;在大多数情况下,它们是 /usr/bin/sh、/usr/bin/bash 和 /usr/libexec/platform-python。

请注意,platform-python 解释器使用 Python 版本 3.6。对于新路径和版本,您必须将您的针对以前的 RHEL 版本的 Python 脚本进行更改,以适用于新的路径和版本。另外,platform-python 用于系统工具:使用安装环境之外的 python36 软件包。有关 Red Hat Enterprise Linux 中的 Python 的详情,请查看 安装和使用动态编程语言中的 Python 简介部分。

#### --erroronfail

如果脚本失败,显示错误并停止安装。错误消息会指示您记录故障原因的位置。安装的系统可能会处于不稳定且无法引导的状态。您可以使用 inst.nokill 选项调试脚本。

#### --log=

将脚本的输出记录到指定的日志文件中。例如:

%pre-install --log=/mnt/sysroot/root/ks-pre.log

### A.3.3. %post 脚本

%post 脚本是安装后脚本,可在安装完成后运行,但在第一次重启系统前运行。您可以使用这部分来运行任务,比如系统订阅。

您可以添加系统在安装结束后但在第一次重启该系统之前要运行的命令,。此部分必须以 %post 开头并以 %end 结尾。

%post 部分可用于安装其他软件或配置其他名称服务器等功能。post-install 脚本是一个 chroot 环境中运行的,因此,从安装介质中复制脚本或 RPM 软件包等任务在默认情况下不起作用。您可以使用 --nochroot 选项更改此行为,如下所述。然后 %post 脚本将在安装环境中运行,而不是在安装的目标系统中的 chroot 中运行。

由于安装后脚本在 chroot 环境中运行,因此大多数 systemctl 命令将拒绝执行任何操作。

请注意,在执行 %post 部分的过程中,仍然必须插入安装介质。

#### A.3.3.1. %post 脚本部分选项

以下选项可以用来改变安装后脚本的行为。要使用某个选项,请将其附加到脚本开头的 %post 行中。例如:

%post --interpreter=/usr/libexec/platform-python -- Python script omitted -- %end

#### --interpreter=

允许指定不同的脚本语言,如 Python。例如:

%post --interpreter=/usr/libexec/platform-python

可以使用系统中可用的脚本语言;在大多数情况下,它们是 /usr/bin/sh、/usr/bin/bash 和 /usr/libexec/platform-python。

请注意,**platform-python** 解释器使用 Python 版本 3.6。对于新路径和版本,您必须将您的针对以前的 RHEL 版本的 Python 脚本进行更改,以适用于新的路径和版本。另外,**platform-python** 用于系统工具:使用安装环境之外的 **python36** 软件包。有关 Red Hat Enterprise Linux 中的 Python 的详情,请查看 安装和使用动态编程语言中的 *Python 简介*部分。

#### --nochroot

允许您指定在 chroot 环境之外运行的命令。 以下示例将 /etc/resolv.conf 文件复制到刚安装的文件系统中。 %post --nochroot cp /etc/resolv.conf /mnt/sysroot/etc/resolv.conf %end

## --erroronfail

如果脚本失败,显示错误并停止安装。错误消息会指示您记录故障原因的位置。安装的系统可能会处于不稳定且无法引导的状态。您可以使用 inst.nokill 选项调试脚本。

#### --log=

将脚本的输出记录到指定的日志文件中。请注意,无论您是否使用 --nochroot 选项,日志文件的路径都必须考虑。例如,没有 --nochroot:

%post --log=/root/ks-post.log

#### 使用 --nochroot:

%post --nochroot --log=/mnt/sysroot/root/ks-post.log

## A.3.3.2. 示例: 在安装后脚本中挂载 NFS

这个 %post 部分的示例挂载 NFS 共享并执行位于 /usr/new-machines/ 上的名为 runme 的脚本。请注意,在 Kickstart 模式中不支持 NFS 文件锁定,因此需要使用 -o nolock 选项。

# Start of the %post section with logging into /root/ks-post.log %post --log=/root/ks-post.log

# Mount an NFS share
mkdir /mnt/temp
mount -o nolock 10.10.0.2:/usr/new-machines /mnt/temp
openvt -s -w -- /mnt/temp/runme
umount /mnt/temp

# End of the %post section %end

# A.4. KICKSTART 错误处理部分

从 Red Hat Enterprise Linux 7 开始,Kickstart 安装可以包含安装程序遇到致命错误时运行的自定义脚本。例如:已经为安装请求的软件包中有一个错误,指定时无法启动 VNC,或者在扫描存储设备时出错。发生此类错误后安装无法继续。安装程序会按照在 Kickstart 文件中提供的顺序运行所有 **%onerror** 脚本。此外,如果出现回溯,将运行 **%onerror** 脚本。

每个 %onerror 脚本都需要以 %end 结尾。

错误处理部分接受以下选项:

#### --erroronfail

如果脚本失败,显示错误并停止安装。错误消息会指示您记录故障原因的位置。安装的系统可能会处于不稳定且无法引导的状态。您可以使用 inst.nokill 选项调试脚本。

#### --interpreter=

允许指定不同的脚本语言,如 Python。例如:

%onerror --interpreter=/usr/libexec/platform-python

可以使用系统中可用的脚本语言;在大多数情况下,它们是 /usr/bin/sh、/usr/bin/bash 和 /usr/libexec/platform-python。

请注意,platform-python 解释器使用 Python 版本 3.6。对于新路径和版本,您必须将您的针对以前的 RHEL 版本的 Python 脚本进行更改,以适用于新的路径和版本。另外,platform-python 用于系统工具:使用安装环境之外的 python36 软件包。有关 Red Hat Enterprise Linux 中的 Python 的详情,请查看 安装和使用动态编程语言中的 Python 简介部分。

#### --log=

将脚本的输出记录到指定的日志文件中。

## A.5. KICKSTART 附加组件部分

从 Red Hat Enterprise Linux 7 开始,Kickstart 安装支持附加组件。这些附加组件可以在很多方面扩展基本 Kickstart(Anaconda)功能。

要在 Kickstart 文件中使用附加组件,请使用 **%addon** *addon\_name options* 命令,并使用 **%end** 语句 结束命令,这和预安装和安装后脚本部分类似。例如:如果要使用默认由 Anaconda 分配的 Kdump 附加组件,请使用以下命令:

%addon com\_redhat\_kdump --enable --reserve-mb=auto %end

%addon 命令不包含任何自己的选项 - 所有选项都依赖于实际附加组件。

# 附录 B. KICKSTART 命令和选项参考

这个参考是 Red Hat Enterprise Linux 安装程序支持的所有 Kickstart 命令的完整列表。这些命令按字母顺序排序为几个广泛类别。如果某个命令可位于多个类别下,它将列在所有这些类别中。

# B.1. KICKSTART 的修改

以下小节描述了 Red Hat Enterprise Linux 9 中的 Kickstart 命令和选项的更改。

## B.1.1. 在 RHEL 8 中弃用了 auth 或 authconfig

因为已经删除了 authconfig 工具和软件包,Red Hat Enterprise Linux 8 中弃用了 auth 或 authconfig Kickstart 命令。

与命令行中的 authconfig 命令类似,Kickstart 脚本中的 authconfig 命令现在使用 authselect-compat 工具运行新的 authselect 工具。有关此兼容性层及其已知问题的描述,请参阅 authselect-migration(7) 手册页。安装程序将自动检测弃用命令的使用并在系统上安装 authselect-compat 软件包来提供兼容性层。

## B.1.2. 使用之前 RHEL 发行本中的 Kickstart 文件

如果您正在使用之前的 RHEL 版本中的 Kickstart 文件,请参阅 *RHEL* 8 文档中 的 *Repositories* 部分,以了解有关 Red Hat Enterprise Linux 8 BaseOS 和 AppStream 软件仓库的详情。

## B.1.3. 弃用的 Kickstart 命令和选项

以下 Kickstart 命令和选项已在 9 中弃用。

- timezone --ntpservers 使用 timesource 命令
- timezone --nontp
- logging --level
- %packages --excludeWeakdeps 使用 --exclude-weakdeps
- %packages --instLangs 使用 --inst-langs 替代
- %anaconda
- pwpolicy 改为使用 Anaconda 配置文件
- syspurpose 改为使用 subscription-manager syspurpose

如果只列出具体选项,则基础命令及其它选项仍可用且没有弃用。在 Kickstart 文件中使用已弃用的命令会在日志中显示警告信息。您可以使用 inst.ksstrict 引导选项将已弃用的命令警告转换为错误。

## B.1.4. 删除的 Kickstart 命令和选项

以下 Kickstart 命令和选项已在 9 中完全删除。在 Kickstart 文件中使用它们将导致错误。

- device
- deviceprobe

- dmraid
- install 使用子命令或者方法作为命令
- multipath
- bootloader --upgrade
- ignoredisk --interactive
- partition --active
- harddrive --biospart
- autostep

如果只列出具体选项和值,则基础命令及其它选项仍可用且没有被删除。

# B.2. 用于安装程序配置和流量控制的 KICKSTART 命令

这个列表中的 Kickstart 命令可控制安装模式和安装过程,以及最后发生什么。

## B.2.1. cdrom

cdrom Kickstart 命令是可选的。它使用系统上的第一个光驱执行安装。

## 语法

cdrom

#### 备**注**

- 这个命令没有选项。
- 要实际运行安装,您必须指定 cdrom,harddrive,hmc,nfs,liveimg,ostreesetup,rhsm, 或 url 其中 之一,除非inst.repo 选项在内核命令行上指定了。

## B.2.2. cmdline

cmdline Kickstart 命令是可选的。它以完全非互动的命令行模式执行安装。任何互动提示都会终止安装。

### 语法

cmdline

### 备注

- 对于完全自动安装,您必须在 Kickstart 文件中指定可用模式之一(图形、文本 或 命令行),或者必须使用 console= 引导选项。如果没有指定模式,系统会尽可能使用图形模式,或者提示您从 VNC 和文本模式中选择。
- 这个命令没有选项。
- 这个模式在带有 x3270 终端的 64 位 IBM Z 系统上很有用。

#### B.2.3. driverdisk

**driverdisk** Kickstart 命令是可选的。使用它为安装程序提供额外的驱动程序。

可在 Kickstart 安装过程中使用驱动程序磁盘提供默认不包括的额外驱动程序。您必须将驱动程序磁盘内容复制到系统的磁盘上分区的根目录中。然后,您必须使用 driverdisk 命令指定安装程序是否应该查找驱动程序磁盘及其位置。

## 语法

driverdisk [partition|--source=url|--biospart=biospart]

#### 洗项

您必须以以下一种方式指定驱动程序磁盘的位置:

- partition 包含驱动程序磁盘的分区。请注意,该分区必须指定为完整路径(例如 /dev/sdb1),而不只是分区名称(如 sdb1)。
- --source= 驱动程序磁盘的 URL。示例包括:

```
driverdisk --source=ftp://path/to/dd.img
driverdisk --source=http://path/to/dd.img
driverdisk --source=nfs:host:/path/to/dd.img
```

• --biospart= - 包含驱动程序磁盘(如 **82p2**)的 BIOS 分区。

### 注

也可以从本地磁盘或类似的设备加载驱动程序磁盘,而不是通过网络或从 initrd 加载。按照以下步骤操作:

- 1. 在磁盘驱动器、USB或者任何类似的设备上载入驱动程序磁盘。
- 2. 将标签(如 DD)设置为这个设备。
- 3. 在您的 Kickstart 文件中添加以下行:

driverdisk LABEL=DD:/e1000.rpm

使用特定标签替换 DD,使用特定名称替换 e1000.rpm。使用 inst.repo 命令支持的任何内容,而不是 LABEL 来指定您的磁盘驱动器。

### **B.2.4. EULA**

**eula** Kickstart 命令是可选的。使用这个选项在没有用户互动的情况下接受最终用户许可证协议(End User License Agreement,EULA)。指定这个选项可防止 Initial Setup 在完成安装并第一次重启系统后提示您接受该许可证。

#### 语法

eula [--agreed]

选项

● --agreed (必需) - 接受 EULA。必须始终使用这个选项,否则 eula 命令就无意义。

#### B.2.5. firstboot

**firstboot** Kickstart 命令是可选的。它决定了系统首次启动时 **Initial Setup** 应用程序是否启动。如果启用,则必须安装 **initial-setup** 软件包。如果没有指定,这个选项默认是禁用的。

#### 语法

firstboot OPTIONS

#### 选项

- --enable 或 --enabled 系统第一次启动时启动 Initial Setup。
- --disable 或 --disabled 系统第一次引导时不会启动 Initial Setup。
- --reconfig 以重新配置模式在引导时启用 Initial Setup。这个模式除了默认选项外,还启用了 root 密码、时间和日期以及网络和主机名配置选项。

## B.2.6. 图形化

graphical Kickstart 命令是可选的。它在图形模式下执行安装。这是默认值。

## 语法

graphical [--non-interactive]

#### 选项

• --non-interactive - 以完全非互动模式执行安装。这个模式将在用户交互需要时终止安装。

#### 备注

● 对于完全自动安装,您必须在 Kickstart 文件中指定可用模式之一(图形、文本 或 命令行),或者必须使用 console= 引导选项。如果没有指定模式,系统会尽可能使用图形模式,或者提示您从 VNC 和文本模式中选择。

### **B.2.7.** halt

halt Kickstart 命令是可选的。

在成功完成安装后停止系统。这和手动安装相似,Anaconda 会显示一条信息并等待用户按任意键来重启系统。在 Kickstart 安装过程中,如果没有指定完成方法,将使用这个选项作为默认选项。

### 语法

halt

#### 备注

• halt 命令等同于 shutdown -H 命令。详情请查看 shutdown(8) man page。

- 有关其他完成方法,请查看 poweroff、reboot 和 shutdown 命令。
- 这个命令没有选项。

#### B.2.8. harddrive

**harddrive** Kickstart 命令是可选的。它使用红帽安装树或者本地驱动器中的完整安装 ISO 镜像执行安装。驱动器必须使用安装程序可挂载的文件系统格式化: **ext2、ext3、 ext4、vfat 或 xfs**。

### 语法

harddrive OPTIONS

## 选项

- --partition= 要从中安装的分区(如 sdb2)。
- --dir= 包含安装树 variant 目录或完整安装 DVD 的 ISO 镜像的目录。

#### 示例

harddrive --partition=hdb2 --dir=/tmp/install-tree

### 备注

- 在以前的版本中,harddrive 命令必须与 install 命令一同使用。install 命令已弃用,并且可以自行使用 harddrive,因为它表示 **安装**。
- 要实际运行安装,您必须指定 cdrom,harddrive,hmc,nfs,liveimg,ostreesetup,rhsm, 或 url,除 非内核命令行上指定了 inst.repo 选项。

## B.2.9. liveimg

liveimg Kickstart 命令是可选的。它从磁盘镜像而不是软件包执行安装。

#### 语法

liveimg --url=SOURCE [OPTIONS]

#### 必填选项

● --url= - 从其中安装的位置。支持的协议包括 HTTP、HTTPS、FTP 和 file。

## 可选选项

- --url= 从其中安装的位置。支持的协议包括 HTTP、HTTPS、FTP 和 file。
- --proxy= 指定在执行安装时要使用的 HTTP、HTTPS 或者 FTP 代理。
- --checksum= 包含镜像文件的 SHA256 校验和的可选参数,用于验证。
- --noverifyssl 连接到 HTTPS 服务器时禁用 SSL 验证。

### 示例

liveimg --url=file:///images/install/squashfs.img --checksum=03825f567f17705100de3308a20354b4d81ac9d8bed4bb4692b2381045e56197 --noverifyssl

#### 备注

- 镜像可以是来自实时 ISO 镜像的 squashfs.img 文件、压缩的 tar 文件 (.tar、.tbz、.tgz、.txz、.tar.bz2、.tar.gz 或 .tar.xz.),或者安装介质可以挂载的任何文件系统。支持的文件系统有 ext2、ext3、ext4、vfat 和 xfs。
- 将 liveimg 安装模式与驱动程序磁盘一起使用时,磁盘中的驱动程序不会自动包含在安装的系统中。如有必要,应手动安装这些驱动程序,或在 kickstart 脚本的 %post 部分中安装这些驱动程序。
- 要实际运行安装,您必须指定 cdrom,harddrive,hmc,nfs,liveimg,ostreesetup,rhsm, 或 url,除 非内核命令行上指定了 inst.repo 选项。

## B.2.10. logging

**logging** Kickstart 命令是可选的。它控制在安装过程中 Anaconda 的错误日志。它对安装的系统没有影响。



#### 注意

只支持使用 TCP 记录日志。对于远程日志记录,请确保在远程服务器上打开您在 --port= 选项中指定的端口号。默认端口为 514。

## 语法

logging OPTIONS

### 可选选项

- --host= 向给定的远程主机发送日志信息,该主机必须配置有一个 syslogd 进程,以接受远程记录。
- --port= 如果远程 syslogd 进程使用默认端口以外的端口,请使用这个选项进行设置。

#### B.2.11. mediacheck

**mediacheck** Kickstart 命令是可选的。该命令强制安装程序在开始安装前执行介质检查。因为这个命令需要在执行安装时有人工参与,因此它默认被禁用。

## 语法

mediacheck

## 备注

• 这个 Kickstart 命令等同于 rd.live.check 引导选项。

• 这个命令没有选项。

#### B.2.12, nfs

**nfs** Kickstart 命令是可选的。它从指定的 NFS 服务器执行安装。

#### 语法

nfs OPTIONS

#### 选项

- --server= 要从中安装的服务器(主机名或 IP)。
- --dir= 包含安装树 *variant* 目录的目录。
- --opts=-用于挂载 NFS 导出的挂载选项(可选)。

#### 示例

nfs --server=nfsserver.example.com --dir=/tmp/install-tree

## 注

● 要实际运行安装,您必须指定 cdrom,harddrive,hmc,nfs,liveimg,ostreesetup,rhsm, 或 url,除 非内核命令行上指定了 inst.repo 选项。

## B.2.13. ostreesetup

ostreesetup Kickstart 命令是可选的。它被用来设置基于 OStree 的安装。

#### 语法

ostreesetup --osname=OSNAME [--remote=REMOTE] --url=URL --ref=REF [--nogpg]

## 必须的选项

- --osname=OSNAME 用于操作系统安装的管理根.
- --url=URL 要从中安装的存储库的 URL。
- --ref=REF 用于安装的软件仓库中的分支名称。

#### 可选选项:

- --remote=*REMOTE* 远程存储库位置。
- --nogpg 禁用 GPG 密钥验证。

#### 注

● 有关 OStree 工具的更多信息,请参阅上游文档:https://ostreedev.github.io/ostree/

## B.2.14. poweroff

**poweroff** Kickstart 命令是可选的。它会在安装成功后关闭系统并关闭电源。通常,在手动安装过程中,Anaconda 会显示一条信息并等待用户按任意键来重新引导系统。

#### 语法

poweroff

#### 备注

- poweroff 选项等同于 shutdown -P 命令。详情请查看 shutdown(8) man page。
- 有关其他完成方法,请查看 halt、reboot 和 shutdown Kickstart 命令。如果没有在 Kickstart 文件中明确指定其他方法,则 halt 选项是默认的完成方法。
- poweroff 命令高度依赖于所使用的系统硬件。特别是,某些硬件部件如 BIOS、APM(高级电源管理)和 ACPI(高级配置和电源接口)必须能和系统内核交互。有关系统 APM/ACPI 功能的更多信息,请参阅硬件文档。
- 这个命令没有选项。

#### B.2.15. reboot

**reboot** Kickstart 命令是可选的。它指示安装程序在安装成功(没有参数)后重启。通常,Kickstart 会显示信息并等待用户按任意键来重新引导系统。

#### 语法

reboot OPTIONS

#### 选项

- --eject 在重新启动前尝试弹出可引导介质(DVD、USB或其他介质)。
- --kexec 使用 kexec 系统调用而不是执行完全重启,这样可立即将安装的系统加载到内存中, 绕过通常由 BIOS 或固件执行的硬件初始化。



## 重要

这个选项已弃用,仅作为技术预览使用。有关红帽对技术预览功能支持范围的详情,请查看 技术预览功能支持范围 文档。

使用 kexec 时,设备寄存器(通常会在系统完全重启后清除)可能会继续填写数据,这可能会给某些设备驱动程序造成问题。

#### 备注

- 使用 reboot 选项 可能会导致安装无限循环,具体取决于安装介质和方法。
- reboot 选项等同于 shutdown -r 命令。详情请查看 shutdown(8) man page。
- 在 64 位 IBM Z 中使用命令行模式安装时,指定 reboot 以完全自动安装。

● 有关其他完成方法,请查看 halt、poweroff 和 shutdown Kickstart 选项。如果没有在 Kickstart 文件中明确指定其他方法,则 halt 选项是默认的完成方法。

## B.2.16. rhsm

**rhsm** Kickstart 命令是可选的。它指示安装程序从 CDN 注册并安装 RHEL。



#### 注意

在注册系统时, rhsm Kickstart 命令不需要使用自定义 %post 脚本。

### 选项

- --orgrganization= 使用组织 ID 从 CDN 注册和安装 RHEL。
- --activation-key= 使用激活码从 CDN 注册和安装 RHEL。选项可以多次使用,每个激活密钥使用一次,只要使用的激活密钥已注册到订阅中。
- --connect-to-insights 将目标系统连接到 Red Hat Insights。
- --proxy= 设置 HTTP 代理。
- --server-hostname= 设置要注册的 Satellite 实例主机名。
- 要使用 **rhsm** Kickstart 命令将安装源存储库切换到 CDN, 您必须满足以下条件:
  - o 在内核命令行上,您已使用 inst.stage2=<URL> 来获取安装镜像,但没有使用 inst.repo=指定安装源。
  - 在 Kickstart 文件中,您尚未使用 url、cdrom、harddrive、liveimg、nfs 和 ostree 设置命令指定安装源。
- 使用引导选项指定或者包含在 Kickstart 文件中的安装源 URL 优先于 CDN,即使 Kickstart 文件 包含带有有效凭证的 **rhsm** 命令。已注册该系统,但会通过 URL 安装源进行安装。这样可保证早期安装进程正常运行。

#### B.2.17. shutdown

**shutdown** Kickstart 命令是可选的。它会在安装成功完成后关闭系统。

## 语法

shutdown

#### 备注

- **shutdown** Kickstart 选项等同于 **shutdown** 命令。详情请查看 *shutdown(8)* man page。
- 有关其他完成方法,请查看 halt、poweroff 和 reboot Kickstart 选项。如果没有在 Kickstart 文件中明确指定其他方法,则 halt 选项是默认的完成方法。
- 这个命令没有选项。

## **B.2.18.** sshpw

sshpw Kickstart 命令是可选的。

在安装过程中,您可以与安装程序交互并通过 **SSH** 连接监控其进度。使用 **sshpw** 命令创建登录的临时帐户。该命令的每个实例都会创建一个只存在于安装环境中的单独帐户。这些不会转移到系统里。

## 语法

sshpw --username=name[OPTIONS] password

#### 必填选项

- --username=name 提供用户名称。这个选项是必需的。
- password 用户要使用的密码。这个选项是必需的。

#### 可选选项

● --iscrypted - 如果给出这个选项,则假设 password 参数已被加密。这个选项与 --plaintext 相互 排斥。要生成加密的密码,可以使用 Python:

\$ python3 -c 'import crypt,getpass;pw=getpass.getpass();print(crypt.crypt(pw) if (pw==getpass.getpass("Confirm: ")) else exit())'

这会使用随机 salt 为密码生成 sha512 兼容哈希。

- --plaintext 如果给出这个选项,则假设 password 参数为纯文本。这个选项与 --iscrypted 相互 排斥
- --lock 如果给出这个选项,则默认锁定这个帐户。这意味着用户无法从控制台登录。
- --sshKey 如果给出这个选项,则 <password> 字符串被解释为 ssh 密钥值。

#### 备注

- 默认情况下, ssh 服务器不会在安装过程中启动。要使 ssh 在安装过程中可用,使用内核引导选项 inst.sshd 引导系统。
- 如果要禁用 root **ssh** 访问,同时允许其他用户 **ssh** 访问,请使用:

sshpw --username=*example\_username example\_password* --plaintext sshpw --username=root *example\_password* --lock

要简单地禁用 root **ssh** 访问,请使用:

sshpw --username=root example password --lock

## B.2.19. text

**text** Kickstart 命令是可选的。它在文本模式下执行 Kickstart 安装。Kickstart 安装默认是以图形模式执行的。

## 语法

## text [--non-interactive]

## 选项

• --non-interactive - 以完全非互动模式执行安装。这个模式将在用户交互需要时终止安装。

## 备注

对于完全自动安装,您必须在 Kickstart 文件中指定可用模式之一(图形、文本 或 命令行),或者必须使用 console= 引导选项。如果没有指定模式,系统会尽可能使用图形模式,或者提示您从 VNC 和文本模式中选择。

## B.2.20. url

**url** Kickstart 命令是可选的。它用来使用 FTP、HTTP 或者 HTTPS 协议从远程服务器上的安装树镜像进行安装。您只能指定一个 URL。

您必须指定 --url、--metalink 或 --mirrorlist 选项之一。

#### 语法

url --url=FROM [OPTIONS]

## 选项

- --url=FROM 指定要从中安装的 HTTP、HTTPS、FTP 或文件位置。
- --mirrorlist= 指定要从中安装的镜像 URL。
- --proxy= 指定在安装过程中要使用的 HTTP、HTTPS 或者 FTP 代理。
- --noverifyssl 连接到 HTTPS 服务器时禁用 SSL 验证。
- --metalink=URL 指定要从中安装的 metalink URL。变量替换用于 URL 中的 \$releasever 和
   \$basearch。

#### 示例

● 从 HTTP 服务器安装:

url --url=http://server/path

从 FTP 服务器安装:

url --url=ftp://username:password@server/path

### 注

● 要实际运行安装,您必须指定 cdrom,harddrive,hmc,nfs,liveimg,ostreesetup,rhsm, 或 url 其中之一,除非inst.repo 选项在内核命令行上指定了。

## B.2.21. vnc

vnc Kickstart 命令是可选的。它允许通过 VNC 远程查看图形安装。

与文本模式相比,这个模式通常是首选模式。因为在文本模式中有某些大小和语言的限制。如果没有附加选项,这个命令将在不需要密码的系统中启动 VNC 服务器,并显示连接它所需要的详情。

#### 语法

vnc [--host=host\_name] [--port=port] [--password=password]

#### 选项

#### --host=

连接在给定主机名中侦听的 VNC viewer 进程。

### --port=

提供远程 VNC viewer 进程侦听的端口。如果没有提供,Anaconda 将使用 VNC 默认端口 5900。

## --password=

设定必须提供用来连接到 VNC 会话的密码。这是可选的,但推荐使用。

#### 其它资源

● 准备使用 PXE 从网络安装

#### **B.2.22.** %include

%include Kickstart 命令是可选的。

使用 **%include** 命令,将另一文件的内容包含在 Kickstart 文件中,就好像其内容在 Kickstart 文件中的 **%include** 命令的位置一样。

它的内容只在 %pre 脚本部分之后评估,因此可用于将脚本生成的文件包含在 %pre 部分中。要在评估 %pre 部分之前包含文件,请使用 %ksappend 命令。

#### 语法

%include path/to/file

## B.2.23. %ksappend

%ksappend Kickstart 命令是可选的。

使用 **%ksappend** 命令将另一个文件的内容包含在 Kickstart 文件中,就好像其内容在 Kickstart 文件中 **%ksappend** 命令的位置一样。

这个内容在 %pre 脚本部分之前评估,这与 %include 命令包括的内容不同。

### 语法

%ksappend path/to/file

# B.3. KICKSTART 命令进行系统配置

这个列表中的 Kickstart 命令配置结果系统的更多详情,比如用户、库或服务。

# B.3.1. auth 或 authconfig(已弃用)



## 重要

使用新的 authselect 命令而不是已弃用的 auth 或 authconfig Kickstart 命令。 auth 和 authconfig 仅适用于有限的向后兼容性。

auth 或 authconfig Kickstart 命令是可选的。它使用 authconfig 工具为系统设置身份验证选项,也可以 在安装完成后在命令行中运行该工具。

## 语法

authconfig [OPTIONS]

#### 备注

- 在以前的版本中,auth 或 authconfig Kickstart 命令称为 authconfig 工具。在 Red Hat Enterprise Linux 8 中已弃用这个工具。这些 Kickstart 命令现在使用 authselect-compat 工具调用新的 authselect 工具。有关兼容性层及其已知问题的描述,请参阅 authselect-migration(7) 手册页。安装程序将自动检测弃用命令的使用并在系统上安装 authselect-compat 软件包以提供兼容性层。
- 默认使用影子密码。
- 使用带有 **SSL** 协议的 OpenLDAP 时,请确保在服务器配置中禁用了 **SSLv2** 和 **SSLv3** 协议。这是因为 POODLE SSL 漏洞(CVE-2014-3566)。详情请查看 https://access.redhat.com/solutions/1234843。

#### B.3.2. authselect

authselect Kickstart 命令是可选的。它使用 authselect 命令为系统设置身份验证选项,也可以在安装完成后在命令行中运行该命令。

#### 语法

authselect [OPTIONS]

## 备**注**

- 这个命令会将所有选项传递给 authselect 命令。详情请查看 authselect(8) 手册页和 authselect --help 命令。
- 这个命令替换了 Red Hat Enterprise Linux 8 中已弃用的 auth 或 authconfig 命令以及 authconfig 工具。
- 默认使用影子密码。
- 使用带有 **SSL** 协议的 OpenLDAP 时,请确保在服务器配置中禁用了 **SSLv2** 和 **SSLv3** 协议。这是因为 POODLE SSL 漏洞(CVE-2014-3566)。详情请查看 https://access.redhat.com/solutions/1234843。

#### B.3.3. firewall

firewall Kickstart 命令是可选的。它为安装的系统指定防火墙配置。

## 语法

firewall --enabled|--disabled [incoming] [OPTIONS]

### **必填**选项

- --enabled 或 --enable 拒绝那些不是响应出站请求(如 DNS 回复或 DHCP 请求)的传入连接。如果需要访问在这个机器中运行的服务,您可以选择允许指定的服务通过防火墙。
- --disabled 或 --disable 不配置任何 iptables 规则。

#### 可选选项

- --trust 在此处列出设备,如 em1,允许进出该设备的所有流量通过防火墙。要列出多个设备,请多次使用这个选项,如 --trust em1 --trust em2。不要使用逗号分隔的格式,如 --trust em1、em2。
- --remove-service 不允许服务穿过防火墙。
- incoming 使用以下服务中的一个或多个来替换,从而允许特定的服务穿过防火墙。
  - o --ssh
  - --smtp
  - --http
  - o --ftp
- --port= 您可以使用 port:protocol 格式指定允许通过防火墙的端口。例如,要允许 IMAP 通过您的防火墙,可指定 imap:tcp。数字端口也可以明确指定;例如,要允许 UDP 数据包在端口 1234 到,请指定 1234:udp。要指定多个端口,用逗号将它们隔开。
- --service= 此选项提供允许服务穿过防火墙的更高级别方法。有些服务(如 cups、vahi 等)需要打开多个端口或其他特殊配置才能使服务正常工作。您可以使用 --port 选项指定各个端口,或者指定 --service= 并一次性全部打开它们。
  - 有效选项是 firewalld 软件包中 firewall-offline-cmd 程序可识别的任何内容。如果 firewalld 服务正在运行,firewall-cmd --get-services 会提供已知服务名称的列表。
- --use-system-defaults 完全不配置防火墙。这个选项告诉 anaconda 不做任何工作,并允许系统依赖软件包或者 ostree 提供的默认值。如果将这个选项与其它选项一同使用,则将忽略所有其他选项。

## B.3.4. group

**group** Kickstart 命令是可选的。它在系统中创建新用户组。

group --name=name [--gid=gid]

## 必填选项

--name= - 提供组的名称。

### 可选选项

• **--qid=** - 组的 GID。如果没有提供,则默认使用下一个可用的非系统 GID。

### 备**注**

- 如果具有指定名称或 GID 的组群已经存在,这个命令会失败。
- user 命令可用于为新创建的用户创建新组。

## B.3.5. keyboard(必需)

keyboard Kickstart 命令是必需的。它为系统设置一个或多个可用的键盘布局。

### 语法

keyboard --vckeymap|--xlayouts OPTIONS

#### 选项

- --vckeymap= 指定应使用的 VConsole 键映射。有效名称与 /usr/lib/kbd/keymaps/xkb/ 目录中的文件列表对应,没有 .map.gz 扩展名。
- --xlayouts= 指定 X 布局列表,该列表应当用作逗号分隔的列表,没有空格。接受与 setxkbmap(1) 相同格式的值,可以是 *布局* 格式(如 as cz),也可以是 *布局* (*变体*) 格式(如 cz (qwerty))。 可以在下方的 xkeyboard-config(7) man page 中查看所有可用 布局。
- --switch= 指定布局切换选项列表(在多个键盘布局之间切换的快捷方式)。必须使用逗号分开 多个选项,没有空格。接受与 setxkbmap(1) 相同格式的值。
   您可以在 xkeyboard-config(7) man page 上的 Options 下查看可用的切换选项。

#### 备注

必须使用 --vckeymap= 或 --xlayouts= 选项。

### 示例

以下示例使用 --xlayouts= 选项设置了两种键盘布局(English (US) 和 Czech (qwerty)),并允许使用 Alt+Shift 在它们之间进行切换:

keyboard --xlayouts=us,'cz (qwerty)' --switch=grp:alt\_shift\_toggle

## B.3.6. lang(必需)

lang Kickstart 命令是必需的。它设置了在安装过程中使用的语言以及系统的默认语言。

#### 语法

lang language [--addsupport=language,...]

### **必填**选项

● *language* - 安装对此语言的支持并将其设置为系统默认。

#### 可选选项

● --addsupport= - 添加对其他语言的支持。格式为使用逗号分开的列表,无空格。例如:

lang en\_US --addsupport=cs\_CZ,de\_DE,en\_UK

#### 备注

- locale -a | grep \_ 或 localectl list-locales | grep \_ 命令返回支持的区域列表。
- 文本模式安装中不支持某些语言(比如中文、日语、韩文和印度的语言)。如果您使用 lang 命令指定这些语言中的一种,安装过程将继续使用英语,但安装的系统会使用您选择的语言作为其默认语言。

### 示例

要将语言设置为英语, Kickstart 文件应包含以下行:

lang en US

## B.3.7. module

**module** Kickstart 命令是可选的。使用这个命令在 kickstart 脚本中启用软件包模块流。

## 语法

module --name=NAME [--stream=STREAM]

#### 必填洗项

### --name=

指定要启用的模块名称。使用实际名称替换 NAME。

#### 可选选项

## --stream=

指定要启用的模块流的名称。将 STREAM 替换为实际名称。

您不需要为定义的默认流的模块指定此选项。对于没有默认流的模块,这个选项是强制的,省略它将 导致错误。无法多次启用带有不同流的模块。

#### 备注

- 通过这个命令和 %packages 部分的组合,您可以安装由启用的模块和流组合提供的软件包,而无需明确指定模块和流。安装软件包前必须启用模块。使用 module 命令启用模块后,您可以通过在 %packages 部分列出此模块启用的软件包来安装它们。
- 单个 module 命令只能启用单个模块和流组合。要启用多个模块,请使用多个 module 命令。无法多次启用带有不同流的模块。

● 在 Red Hat Enterprise Linux 9 中,模块仅存在于 AppStream 软件仓库中。要列出可用的模块,请在已安装的 Red Hat Enterprise Linux 9 系统上使用带有有效订阅的 **dnf module list** 命令。

#### 其他资源

● 使用 DNF 工具管理软件

## **B.3.8.** repo

**repo** Kickstart 命令是可选的。它配置额外的 dnf 存储库,可用作软件包安装的来源。您可以添加多个 **repo** 行。

#### 语法

repo --name=repoid [--baseurl=url|--mirrorlist=url|--metalink=url] [OPTIONS]

#### 必填选项

● --name= - 存储库 ID。这个选项是必需的。如果库的名称与另一个之前添加的库冲突,则会忽略 它。因为安装程序使用预设置程序库列表,这意味着您无法添加名称与预先设置的库的名称相同 的库。

## **URL** options

这些选项是互斥的,也是可选的。此处不支持 dnf 存储库配置文件中可以使用的变量。您可以使用字符串 \$releasever 和 \$basearch,它们由 URL 中的对应值替换。

- --baseurl= 存储库的 URL。
- --mirrorlist= 指向存储库镜像列表的 URL。
- --metalink= 存储库的 metalink 的 URL。

#### 可选选项

- --install 将已安装系统上的仓库配置保存在 /etc/yum.repos.d/ 目录中。如果不使用这个选项, 在 Kickstart 文件中配置的程序库将只在安装过程中使用,而无法在安装的系统中使用。
- --cost= 为这个存储库分配成本的整数值。如果多个库提供同样的软件包,这个数字就会被用来 决定优先使用哪个库。成本低的软件仓库优先于成本高的软件仓库。
- --excludepkgs= 不能从此存储库拉取的软件包名称,是一个以逗号分隔的列表。如果多个存储库提供同样的软件包,您希望这个软件包来自特定的仓库,可以使用它。可接受完整软件包名称(如 publican)和 globs(如 gnome-\*)。
- --includepkgs= 允许从此存储库拉取的软件包名称和 glob 的逗号分隔列表。该程序仓库提供的 其他软件包将被忽略。如果您只想从库中安装单个软件包或软件包组而不包括该程序库提供的所 有其他软件包,这个选项就很有用了。
- --proxy=[protocol://][username[:password]@]host[:port] 指定仅用于此存储库的 HTTP/HTTPS/FTP 代理。此设置不会影响任何其他存储库,也不会影响在 HTTP 安装中如何获取 install.img。
- --noverifyssl 连接到 HTTPS 服务器时禁用 SSL 验证。

#### 备注

● 用于安装的软件仓库必须是稳定版本。如果在安装完成前修改库,则安装会失败。

## B.3.9. rootpw(必需)

需要 rootpw Kickstart 命令。它将系统的根密码设置为 password 参数的值。

## 语法

rootpw [--iscrypted|--plaintext] [--lock] password

### 必填选项

password - 密码规格。纯文本或者加密字符串。请参阅以下 --iscrypted 和 --plaintext。

## 选项

--iscrypted - 如果给出这个选项,则假设 password 参数已被加密。这个选项与 --plaintext 相互排斥。要创建一个加密的密码,您可以使用 python:

\$ python -c 'import crypt,getpass;pw=getpass.getpass();print(crypt.crypt(pw) if (pw==getpass.getpass("Confirm: ")) else exit())'

这会使用随机 salt 为密码生成 sha512 兼容哈希。

- --plaintext 如果给出这个选项,则假设 password 参数为纯文本。这个选项与 --iscrypted 相互 排斥。
- **--lock** 如果给出这个选项,则默认锁定 root 帐户。这意味着 root 用户无法从控制台登录。这个选项还在图形和文本手动安装中禁用 Root 密码 页面。
- **--allow-ssh** 如果存在这个选项, root 用户可以使用带密码的 SSH 登录到系统。这个选项只在 RHEL 9.1 及更新的版本中可用。

在 kickstart 安装方法期间向 kickstart 文件中添加以下行,以启用 **基于密码的 SSH root 登**录。选项 **-- allow-ssh** 在 RHEL 9.0 中不可用。

%post echo "PermitRootLogin yes" > /etc/ssh/sshd\_config.d/01-permitrootlogin.conf %end

### B.3.10. selinux

**selinux** Kickstart 命令是可选的。它在安装的系统中设定 SELinux 状态。默认 SELinux 策略为 **enforcing**。

#### 语法

selinux [--disabled|--enforcing|--permissive]

#### 选项

#### --enforcing

使用默认目标策略 enforcing 启用 SELinux。

#### --permissive

根据 SELinux 策略输出警告,但并不强制执行该策略。

#### --disabled

在系统上完全禁用 SELinux。

#### 其它资源

● 使用 SElinux

#### B.3.11. services

**services** Kickstart 命令是可选的。它修改在默认 systemd 目标下运行的默认服务集合。禁用的服务列表会在启用的服务列表前进行处理。因此,如果服务出现在这两个列表中,它将被启用。

## 语法

services [--disabled=list] [--enabled=list]

#### 选项

- --disabled= 禁用在逗号分隔列表中给出的服务。
- --enabled= 启用逗号分隔列表中给出的服务。

#### 注

- 当使用 services 元素启用 systemd 服务时,请确保在 %packages 部分中包含指定服务文件的软件包。
- 应该用逗号分开多个服务,没有空格。例如,要禁用四个服务,请输入:

services --disabled=auditd,cups,smartd,nfslock

如果您包含任何空格, Kickstart 只启用或禁用到第一个空间的服务。例如:

services --disabled=auditd, cups, smartd, nfslock

这仅禁用 auditd 服务。要禁用所有四个服务,此条目不得包含空格。

## B.3.12. skipx

**skipx** Kickstart 命令是可选的。如果存在,安装的系统上就不会配置 X。

如果您在软件包选择选项中安装 display manager,这个软件包会创建一个 X 配置,安装的系统会默认使用 graphical.target。这会覆盖 skipx 选项的影响。

### 语法

skipx

#### 备注

• 这个命令没有选项。

## **B.3.13.** sshkey

**sshkey** Kickstart 命令是可选的。它将 SSH 密钥添加到已安装系统上指定用户的 **authorized\_keys** 文件中。

## 语法

sshkey --username=user "ssh\_key"

#### 必填洗项

- --username= 要安装密钥的用户。
- ssh\_key 完整的 SSH 密钥指纹。它必须用引号括起。

## B.3.14. syspurpose

**syspurpose** Kickstart 命令是可选的。使用它来设置系统在安装后的系统目的。这些信息有助于在系统中应用正确的订阅授权。



## 注意

Red Hat Enterprise Linux 9.0 及更新的版本使您能够通过使 role、service-level、usage,以及 addons 子命令在一个 subscription-manager syspurpose 模块下可用来管理并显示系统目的属性。之前,系统管理员使用四个独立的 syspurpose 命令之一来管理每个属性。从 RHEL 9.0 开始,这个独立的 syspurpose 命令已弃用,并计划在 RHEL 9 后删除。红帽将在当前发行生命周期中将提供对这个功能的 bug 修复和支持,但此功能将不再获得改进。从 RHEL 9 开始,单个 subscription-manager syspurpose 命令及其相关的子命令是使用系统用途的唯一方法。

## 语法

syspurpose [OPTIONS]

### 选项

- --role= 设置预期的系统角色。可用值有:
  - Red Hat Enterprise Linux Server
  - Red Hat Enterprise Linux Workstation
  - Red Hat Enterprise Linux Compute 节点
- --SLA= 设置服务级别协议。可用值有:
  - o Premium (高级)
  - Standard (标准)

- Self-Support (自助)
- --usage= 系统预定用途。可用值有:
  - Production
  - Disaster Recovery
  - Development/Test
- --Addon= 指定额外的层次产品或功能。您可以多次使用这个选项。

#### 备注

- 输入有空格的值,并使用双引号包括它们:
  - syspurpose --role="Red Hat Enterprise Linux Server"
- 虽然强烈建议您配置系统目的,但它是 Red Hat Enterprise Linux 安装程序的可选功能。

## B.3.15. timezone(必需)

timezone Kickstart 命令是必需的。它设置系统时区。

## 语法

timezone [OPTIONS]

#### 必填选项

• timezone - 为系统设定的时区。

## 可选选项

- --UTC 如果存在,系统假定硬件时钟被设置为 UTC(格林威治 Mean)时间。
- --nontp 禁用 NTP 服务自动启动。这个选项已弃用。
- --ntpservers= 指定用作没有空格的逗号分隔列表的 NTP 服务器列表。这个选项已弃用,改为使用 timesource 命令。

## 注

在 Red Hat Enterprise Linux 9 中,时区名称使用 pytz 软件包提供的 pytz.common\_timezones 列表进行验证。

## B.3.16. timesource (可选)

**timesource** kickstart 命令是可选的。使用它来设置提供时间数据的 NTP、NTS 服务器和池,以及控制系统上是否启用或禁用 NTP 服务。

#### **Syntax**

timesource [--ntp-server NTP\_SERVER | --ntp-pool NTP\_POOL | --ntp-disable] [--nts]

### 必填选项

在使用 timesource 命令时,必须指定以下选项之一:

● --ntp-server - 添加一个 NTP 服务器作为时间源.这个选项只能添加到单个命令中,以添加一个 NTP 时间源服务器。要添加多个源,每次都使用单个 --ntp-server 或 --ntp-pool 选项添加多个 timesource 命令。例如,为 *Europe* 时区添加多个源

timezone *Europe* timesource --ntp-server *0.rhel.pool.ntp.org* timesource --ntp-server *1.rhel.pool.ntp.org* 

timesource --ntp-server 2.rhel.pool.ntp.org

- --ntp-pool 添加 NTP 服务器池作为时间源.这个选项只能添加一次,以添加单个 NTP 时间源池。重复 timesource 命令,以添加多个源。
- --ntp-disable 禁用已安装系统的 NTP 时间源。

## 可选选项

• --ntp-disable 此命令添加的服务器或池使用 NTS 协议。请注意,即使使用 --ntp-disable,也可以添加这个选项,但它无效。

## 备注

- timezone 命令中的 --ntpservers 选项已弃用。红帽建议使用这个新选项来表达 timesource 命令的功能。
- 只有 timesource 命令可以将服务器和池标记为使用 NTS, 而不是普通的 NTP 协议。

#### B.3.17. user

user Kickstart 命令是可选的。它在系统上创建新用户。

## 语法

user --name=username [OPTIONS]

#### 必填洗项

• --name= - 提供用户名称。这个选项是必需的。

#### 可选选项

- --GECOS= 为用户提供 GECOS 信息。这个字符串包括使用逗号分开的各种具体系统字段。它 通常用来指定用户全名、办公室号码等等。详情请查看 passwd(5) 手册页。
- --groups= 除默认组外,还有以逗号分隔的用户应属于的组名列表。组群必须在创建该用户帐户前就已经存在。请参阅 group 命令。
- --homedir= 用户的主目录。如果没有提供,则默认为 /home/username。
- **--lock** 如果给出这个选项,则默认锁定这个帐户。这意味着用户无法从控制台登录。这个选项还在图形和文本手动安装中禁用**创建用户**页面。

- --password= 新用户的密码。如果没有提供,则默认锁定该帐户。
- --iscrypted 如果给出这个选项,则假设 password 参数已被加密。这个选项与 --plaintext 相互 排斥。要创建一个加密的密码,您可以使用 python:

\$ python -c 'import crypt,getpass;pw=getpass.getpass();print(crypt.crypt(pw) if (pw==getpass.getpass("Confirm: ")) else exit())'

这会使用随机 salt 为密码生成 sha512 兼容哈希。

- --plaintext 如果给出这个选项,则假设 password 参数为纯文本。这个选项与 --iscrypted 相互 排斥
- --shell= 用户的登录 shell.如果没有提供,则使用系统默认。
- --uid= 用户的 UID(用户 ID)。如果没有提供,则默认使用下一个可用的非系统 UID。
- --gid=-用于用户组的 GID(组 ID)。如果没有提供,则默认使用下一个可用的非系统组群 ID。

#### 备注

- 请考虑使用 --uid 和 --gid 选项设置常规用户及其默认组的 ID, 范围从 5000 开始, 而不是 1000。这是因为为系统用户和组保留的范围(0到999)将来可能会增加, 因此与常规用户的 ID 重叠。
- 使用不同权限创建的文件和目录,由用来创建文件或目录的应用程序指定。例如,mkdir 命令创建启用了所有权限的目录。但是,应用无法为新创建的文件授予某些权限,如 user file-creation mask 设置所指定。

user file-creation mask 可通过 umask 命令控制。新用户的 user file-creation mask 默认设置由安装系统上的 /etc/login.defs 配置文件中的 UMASK 变量定义。如果未设置,则默认为 022。这意味着,默认情况下,当应用程序创建一个文件时,会防止为该文件所有者以外的用户授予写入权限。不过,这可以被其他设置或脚本覆盖。

## B.3.18. xconfig

xconfig Kickstart 命令是可选的。它配置 X 窗口系统。

#### 语法

xconfig [--startxonboot]

#### 洗项

• --startxonboot - 在安装的系统上使用图形登录。

#### 备注

● 因为 Red Hat Enterprise Linux 9 不包含 KDE 桌面环境,请不要使用上游 **--defaultdesktop=** 文档。

# B.4. KICKSTART 命令用于网络配置

在这个列表中的 Kickstart 命令可让您在系统中配置联网。

## B.4.1. network (可选)

可选的 **network** Kickstart 命令配置目标系统的网络信息,并在安装环境中激活网络设备。第一个 **network** 命令中指定的设备会自动激活。您还可以使用 **--activate** 选项明确要求激活设备。

#### 语法

network OPTIONS

#### 洗项

• --activate - 在安装环境中激活这个设备。

如果您在已经激活的设备中使用 **--activate** 选项(例如,使用引导选项配置的界面以便系统可以 检索 Kickstart 文件),则会重新激活该设备以使用 Kickstart 文件中指定的详情。

使用 --nodefroute 选项可防止设备使用默认路由。

- --no-activate 不要在安装环境中激活这个设备。
   默认情况下,无论 --activate 选项是什么, Anaconda 都会激活 Kickstart 文件中的第一个网络设备。您可以使用 --no-activate 选项禁用默认设置。
- --bootproto= dhcp、bootp、ibft 或 static 之一。默认选项为 dhcp; dhcp 和 bootp 选项的 处理方式相同。要禁用设备的 ipv4 配置,可使用 --noipv4 选项。



#### 注意

这个选项配置设备的 ipv4 配置。对于 ipv6 配置,请使用 --ipv6 和 --ipv6gateway 选项。

DHCP 方法使用 DHCP 服务器系统来获得它的网络配置。BOOTP 方法类似,需要 BOOTP 服务器来提供网络配置。要指示系统使用 DHCP:

network --bootproto=dhcp

要指示机器使用 BOOTP 获取其网络配置,在 Kickstart 文件中使用以下行:

network --bootproto=bootp

要指示机器使用 iBFT 中指定的配置,使用:

network --bootproto=ibft

**static** 方法要求您在 Kickstart 文件中至少指定 IP 地址和子网掩码。这个信息是静态的,并在安装过程中和安装后使用。

所有静态网络配置信息必须在一行中指定;您不能象在命令行中换行一样使用反斜杠(\)来换行。

network --bootproto=static --ip=10.0.2.15 --netmask=255.255.255.0 --gateway=10.0.2.254 --nameserver=10.0.2.1

您还可以同时配置多个名称服务器。要做到这一点,使用 --nameserver= 选项一次,并指定每个 IP 地址,用逗号分开:

network --bootproto=static --ip=10.0.2.15 --netmask=255.255.255.0 --gateway=10.0.2.254 --nameserver=192.168.2.1,192.168.3.1

--device= - 使用 network 命令指定要配置的设备(最终在 Anaconda 中激活)。
 如果 在 第一次 使用 network 命令时缺少 --device= 选项,则使用 inst.ks.device= Anaconda 引导选项的值(如果提供的话)。请注意,这被视为已弃用的行为;在大多数情况下,您应该始终为每个 network 命令指定 --device=。



## 重要

网络团队在 Red Hat Enterprise Linux 9 中已弃用。考虑使用网络绑定驱动程序作为替代方案。详情请参阅 配置网络绑定。

如果缺少其 --device= 选项,则同一 Kickstart 文件中后续 network 命令的行为都会被取消指定。验证您是否为第一个以外的任何一个 network 命令指定这个选项。

您可以使用以下任一方法指定要激活的设备:

- o 接口的设备名称,如 em1
- 接口的 MAC 地址, 例如 01:23:45:67:89:ab
- o 关键字 link,它指定链接为 up 状态的第一个接口
- 关键字 bootif, 它使用 pxelinux 在 BOOTIF 变量中设置的 MAC 地址。在 pxelinux.cfg 文件中设置 IPAPPEND 2,使 pxelinux 设置 BOOTIF 变量。

## 例如:

network --bootproto=dhcp --device=em1

● --ipv4-dns-search/--ipv6-dns-search - 手动设置 DNS 搜索域。您必须将这些选项与 --device 选项一起使用,并镜像其相应的 NetworkManager 属性,例如:

network --device ens3 --ipv4-dns-search domain1.example.com,domain2.example.com

- --ipv4-ignore-auto-dns/--ipv6-ignore-auto-dns 设置其来忽略 DHCP 中的 DNS 设置。您必须将这些选项与 --device 选项一起使用,这些选项不需要任何参数。
- **--ip=** 设备的 IP 地址。
- --ipv6= 设备的 IPv6 地址,格式为 address[/prefix length] 例如,3ffe:ffff:0:1::1/128。如果 省略了 prefix,则使用 64。您还可以使用 auto 进行自动配置,或使用 dhcp 仅进行 DHCPv6 配置(无路由器广告)。
- --gateway= 作为单一 IPv4 地址的默认网关。
- --ipv6gateway= 作为单一 IPv6 地址的默认网关。
- --nodefroute 防止被设置为默认路由的接口。当您激活使用 --activate= 选项的其他设备时,请使用这个选项,例如:iSCSI 目标的单独子网中的 NIC。
- --nameserver= DNS 名称服务器作为 IP 地址。要指定一个以上名称服务器,使用这个选项, 并使用逗号分隔每个 IP 地址。

- --netmask= 安装系统的网络掩码。
- --hostname= 用于配置目标系统的主机名。主机名可以是完全限定域名 (FQDN),格式为 hostname.domainname,也可以是不包括域的短主机名。许多网络具有动态主机配置协议 (DHCP)服务,该服务自动为连接的系统提供域名。要允许 DHCP 服务为这台机器分配域名,请只指定简短主机名。

使用静态 IP 和主机名配置时,它取决于计划的系统用例是否使用短名称或 FQDN。红帽身份管理在置备过程中配置 FQDN,但有些第三方软件产品可能需要短名称。在任何一种情况下,要确保在所有情况下两种形式都可用,请在 /etc/hosts 中为主机添加一个条目,格式为 IP FQDN 短别名。

主机名只能包含字母数字字符和 - 或 .。主机名应等于或小于 64 个字符。主机名不能以 - 和 . 开 头或结尾要与 DNS 兼容,FQDN 的每个部分都应等于或小于 63 个字符,并且 FQDN 总长度 (包括点)不应超过 255 个字符。

如果您只想配置目标系统的主机名,请在 network 命令中使用 --hostname 选项,且不包含任何其他选项。

如果您在配置主机名时提供附加选项,network 命令将使用指定的选项来配置设备。如果您没有使用 --device 选项指定要配置的设备,则使用默认的 --device link 值。另外,如果您不使用 --bootproto 选项指定协议,则该设备会被配置为默认使用 DHCP。

- --ethtool= 指定将传递给 ethtool 程序的网络设备的其他低级别设置。
- --onboot= 是否在引导时启用该设备。
- --dhcpclass= DHCP 类。
- --mtu= 设备的 MTU。
- --noipv4 在这个设备上禁用 IPv4。
- --noipv6 在这个设备上禁用 IPv6。
- --bondslaves= 使用这个选项时,由 --device= 选项指定的绑定设备会使用 --bondslaves= 选项中定义的辅助设备创建。例如:

network --device=bond0 --bondslaves=em1,em2

以上命令创建了一个名为 bond0 的绑定设备,将 em1 和 em2 接口用作其辅助设备。

● --bondopts= - 绑定接口的可选参数列表,使用 --bondslaves= 和 --device= 选项指定。这个列表中的选项必须以逗号(",")或分号(";")分开。如果某个选项本身包含一个逗号,请使用分号来分隔选项。例如:

network --bondopts=mode=active-backup,balance-rr;primary=eth1



#### 重要

- --bondopts=mode=参数只支持完整的模式名称,如 balance-rr 或 broadcast,而不是其数字表示,如 0 或 3。有关可用模式和支持的模式列表,请参阅配置和管理网络指南。
- --vlanid= 指定使用 --device= 中指定的设备作为父级创建的设备的虚拟 LAN (VLAN) ID 号 (802.1q 标签)。例如, network --device=em1 --vlanid=171 创建虚拟 LAN 设备 em1.171。

● --interfaceName= - 为虚拟 LAN 设备指定自定义接口名称。当 --vlanid= 选项所生成的默认名称 并不是您所需要的名称时,应使用此选项。此选项必须与 --vlanid= 一起使用。例如:

network --device=em1 --vlanid=171 --interfacename=vlan171

以上命令在 em1 设备上创建一个名为 vlan171 的虚拟 LAN 接口,其 ID 为 171。

接口名称可以是任意名称(如 my-vlan),但在某些情况下,必须遵循以下约定:

- o 如果名称包含句点(.),则必须采用 *NAME.ID* 的形式。*NAME* 是任意的,但 *ID* 必须是 VLAN ID。例如: em1.171 或 my-vlan.171。
- o 以 vlan 开头的名称必须使用 vlanID 的形式,如 vlan171。
- --teamslaves= 由 --device= 选项指定的团队设备将使用这个选项中指定的辅助设备创建。辅助设备用逗号分开。辅助设备可以跟随其配置,这是单引号括起的 JSON 字符串,其中双引号用\字符转义。例如:

network --teamslaves="p3p1'{\"prio\": -10, \"sticky\": true}',p3p2'{\"prio\": 100}'"

另请参阅 --teamconfig= 选项。



#### 重要

网络团队在 Red Hat Enterprise Linux 9 中已弃用。考虑使用网络绑定驱动程序作为替代方案。详情请参阅 配置网络绑定。

• --teamconfig= - 由双引号括起的组设备配置,这是一个 JSON 字符串,其中双引号由 \字符转义。设备名称由 --device= 选项指定,其辅助设备及其配置由 --teamslaves= 选项指定。例如:

network --device team0 --activate --bootproto static --ip=10.34.102.222 -- netmask=255.255.255.0 --gateway=10.34.102.254 --nameserver=10.34.39.2 -- teamslaves="p3p1'{\"prio\": -10, \"sticky\": true}',p3p2'{\"prio\": 100}''' --teamconfig="  ${\"runner\": \"name\": \"active backup\"}}$ "



## 重要

网络 teaming 在 Red Hat Enterprise Linux 9 中已弃用。考虑使用网络绑定驱动程序作为替代方案。详情请参阅配置网络绑定。

● --bridgeslaves= - 使用此选项时,将创建 --device= 选项指定的设备网桥,并将 -- bridgeslaves= 选项中定义的设备添加到网桥中。例如:

network --device=bridge0 --bridgeslaves=em1

- --bridgeopts= 一个可选的、由逗号分隔的 桥接接口参数列表。可用值包括 stp、priority、forward-delay、hello-time、max-age 和 RunAsAny-time。有关这些参数的详情,请查看 nm-settings(5) 手册页中的 bridge setting 表,或者查看 网络配置设置规范。 有关网络桥接的常规信息,请参阅配置和管理网络文档。
- --bindto=mac 在安装的系统上将设备配置文件绑定到设备 MAC 地址(HWADDR), 而不是默认 绑定到接口名称(DEVICE)。请注意,这个选项独立于 --device= 选项 - 即使相同的 network 命 令也指定了设备名称、link 或 bootif,也将应用 --bindto=mac。

#### 注

- 由于命名方案的变化**,ethN** 设备名称(如 **eth0**)在 Red Hat Enterprise Linux 中不再可用。有关设备命名方案的更多信息,请参阅上游文档可扩展网络接口名称。
- 如果您使用 Kickstart 选项或者引导选项指定网络中的安装程序库,但安装过程开始时无法使用网络,安装程序会在显示 安装概述窗口前,显示网络配置窗口以用于设置网络连接。如需了解更多详细信息,请参阅 配置网络和主机名选项。

### B.4.2, realm

**realm** Kickstart 命令是可选的。使用它加入 Active Directory 或 IPA 域。有关此命令的更多信息,请参阅 **realm(8)man** page 的 **join** 部分。

#### 语法

realm join [OPTIONS] domain

## **必填**选项

• domain - 要加入的域。

#### 选项

- --computer-ou=OU= 提供可分辨的机构单元名称以便创建计算机帐户。可识别名称的具体格式取决于客户端软件和成员软件。可省略可识别名称的根 DSE 部分。
- --no-password 无需密码自动加入.
- --one-time-password= 使用一次性密码加入。不是所有域都支持它。
- --client-software= 仅加入能够运行此客户端软件的域。有效值包括 sssd 和 winbind。不是所有域都支持所有值。默认情况下自动选择客户端软件。
- --server-software= 仅加入能够运行此服务器软件的域。可能的值包括 active-directory 或 freeipa。
- --membership-software= 加入域时使用此软件。有效值包括 samba 和 adcli。不是所有域都支持所有值。默认情况下自动选择成员软件。

# B.5. 用于处理存储的 KICKSTART 命令

这部分中的 Kickstart 命令配置存储的各个方面,比如设备、磁盘、分区、LVM 和文件系统。



## 重要

sdX(或 /dev/sdX)格式不能保证重启后一致的设备名称,这可能会使某些 Kickstart 命令的使用变得复杂。当命令需要设备节点名称时,您可以使用 /dev/disk 中的任何项目作为替代。例如,改为使用以下设备名称:

part / --fstype=xfs --onpart=sda1

您可以使用类似以下条目之一:

part / --fstype=xfs --onpart=/dev/disk/by-path/pci-0000:05.0-scsi-0:0:0:0-part1

part / --fstype=xfs --onpart=/dev/disk/by-id/ata-ST3160815AS 6RA0C882-part1

通过使用这种方法,命令总是以相同的存储设备为目标。这在大型存储环境中特别有用。要利用系统上的可用设备名称,您可以在交互式安装过程中使用 Is -IR /dev/disk 命令。有关一致引用存储设备的不同方法的更多信息,请参阅 持久性命名属性的概述。

## B.5.1. autopart

autopart Kickstart 命令是可选的。它自动创建分区。

自动创建的分区是:根(/)分区(1 GiB 或更大)、swap 分区,以及适合架构的 /boot 分区。在足够大的驱动器(50 GiB 及更高版本)上,这还会创建一个 /home 分区。

## 语法

## autopart OPTIONS

#### 选项

- --type= 选择您要使用的预定义自动分区方案之一。可接受以下值:
  - o lvm: LVM 分区方案。
  - o plain:没有 LVM 的常规分区。
  - **thinp**: LVM Thin Provisioning 分区方案。
- --fstype= 选择其中一个可用文件系统类型。可用值包括 ext2、ext3、ext4、xfs 和 vfat。默认的文件系统是 xfs。
- --nohome 禁用自动创建 /home 分区。
- --nolvm 不使用 LVM 进行自动分区。这个选项等同于 --type=plain。
- --noboot 不创建 /boot 分区。
- --noswap 不创建交换分区。
- --encrypted 使用 Linux 统一密钥设置 (LUKS) 加密所有分区。这等同于在手动图形安装的初始 分区界面中选择加密分区选项。



## 注意

在加密一个或多个分区时, Anaconda 会尝试收集 256 字节熵,以保证安全加密分区。收集熵可能需要一些时间 - 无论是否有收集到足够的熵,该过程将在最多 10 分钟后停止。

与安装系统互动(通过键盘输入或移动鼠标)可加速此进程。如果要在虚拟机中安装,您还可以将 virtio-rnq 设备(虚拟随机数生成器)附加到客户机。

- --LUKS-version=*LUKS\_VERSION* 指定应该使用哪个版本的 LUKS 格式来加密文件系统。只有在指定了 --encrypted 时这个选项才有意义。
- --passphrase= 为所有加密设备提供默认的系统范围密码短语。
- --escrowcert=*URL\_of\_X.509\_certificate* 将所有加密卷的数据加密密钥保存在 /root 的文件中,使用来自 *URL\_of\_X.509\_certificate* 指定的 URL 的 X.509 证书进行加密。每个加密卷的密钥都作为单独的文件保存。只有在指定了 --encrypted 时这个选项才有意义。
- --backuppassphrase 为每个加密卷添加随机生成的密码短语。将这些密码短语存储在 /root 中的单独文件中,使用通过 --escrowcert 指定的 X.509 证书进行加密。只有在指定了 -- escrowcert 时这个选项才有意义。
- --cipher= 指定在 Anaconda 默认 aes-xts-plain64 时要使用的加密类型。这个选项必须与 -- encrypted 选项一同使用;其本身无效。安全强化 文档中列出了可用的加密类型,但红帽强烈建议您使用 aes-xts-plain64 或 aes-cbc-essiv:sha256。
- **--pbkdf=***PBKDF* 为 LUKS keylot 设置 PBKDF(Password-Based Key Derivation Function)算法。另请参阅 man page *cryptsetup(8)*。只有在指定了 **--encrypted** 时这个选项才有意义。
- **--PBKDF-memory=***PBKDF\_MEMORY* 设置 PBKDF 的内存成本。另请参阅 man page *cryptsetup(8)*。只有在指定了 **--encrypted** 时这个选项才有意义。
- **--PBKDF-time=PBKDF\_TIME** 设置 PBKDF 密码处理所花费的毫秒数。另请参阅 man page cryptsetup(8) 中的 **--iter-time**。只有在指定了 **--encrypted** 时这个选项才有意义,并且与 **-- pbkdf-iterations** 相互排斥。
- --PBKDF-iterations=*PBKDF\_ITERATIONS* 设定直接迭代数量并避免 PBKDF 基准测试。另请 参阅 man page *cryptsetup(8)* 中的 --pbkdf-force-iterations。只有在指定了 --encrypted 时这 个选项才有意义,并且与 --pbkdf-time 相互排斥。

#### 备**注**

- autopart 选项不能与同一 Kickstart 文件中的 part/partition、raid、logvol 或 volgroup 选项一同使用。
- **autopart** 命令不是强制的,但如果 Kickstart 脚本中没有 **part** 或 **mount** 命令,则必须包含该命令。
- 在 CMS 类型的单个 FBA DASD 中安装时,建议使用 **autopart --nohome** Kickstart 选项。这样可保证安装程序不会创建单独的 /**home** 分区。安装过程可以成功进行。
- 如果您丢失了 LUKS 密码短语,那么就完全无法访问所有加密的分区及其数据。丢失的密码短语是无法找回的。但是,您可以使用 --escrowcert 保存加密密码短语,并使用 -- backuppassphrase 选项创建加密密码短语备份。
- 在使用 autopart、autopart --type=lvm 或 autopart=thinp 时,确保磁盘扇区大小一致。

## B.5.2. bootloader(必需)

bootloader Kickstart 命令是必需的。它指定引导装载程序的安装方式。

语法

bootloader [OPTIONS]

### 选项

• --append= - 指定附加内核参数。要指定多个参数,使用空格分隔它们。例如:

bootloader --location=mbr --append="hdd=ide-scsi ide=nodma"

安装 plymouth 软件包时会自动添加 rhgb 和 quiet 参数,即使您在此未指定参数或根本不使用 -- append= 命令。要禁用此行为,请明确禁止安装 plymouth:

%packages

-plymouth

%end

这个选项可用于禁用在大多数现代处理器中存在的 Meltdown 和 Spectre speculative 安全漏洞(CVE-2017-5754、CVE-2017-5753 和 CVE-2017-5715)。在某些情况下,这些机制可能并不是必需的,启用它们可能会导致性能降低而不会提高安全性。要禁用这些系统,请在您的Kickstart 文件中添加相关选项,例如: bootloader --append="nopti noibrs noibpb"(在AMD64/Intel 64 系统中)。



#### 警告

在禁用任何漏洞缓解机制前,请确定您的系统不会受到安全攻击。有关 Meltdown 和 Spectre 漏洞的详情,请查看红帽漏洞响应文章。

● --boot-drive= - 指定引导装载程序应写入的驱动器,因此要从哪个驱动器引导计算机。如果您使用多路径设备作为引导驱动器,使用它的 disk/by-id/dm-uuid-mpath-WWID 名称指定该设备。



#### 重要

目前,在使用 **zipl** 引导装载程序的 64 位 IBM Z 系统上的 Red Hat Enterprise Linux 安装中会忽略 **--boot-drive**= 选项。安装 **zipl** 后,它会自行确定引导驱动器。

--leavebootorder - 安装程序将 Red Hat Enterprise Linux 9 添加到 UEFI 中安装的系统的列表中。它不会将安装的系统添加到引导顺序中。所有现有的引导条目及其顺序都会被保留。



#### 重要

这个选项适用于 Power 和 UEFI 系统。

--driveorder= - 指定哪个驱动器最先在 BIOS 引导顺序中。例如:

bootloader --driveorder=sda,hda

- --location= 指定引导记录的写入位置。有效值如下:
  - o **mbr** 默认选项.具体要看驱动器是使用主引导记录(MBR)还是 GUID 分区表(GPT)方案:

在 GPT 格式的磁盘中,这个选项会在 BIOS 引导分区中安装 stage 1.5 引导装载程序。

在使用 MBR 格式化的磁盘中,会在 MBR 和第一个分区之间的空白空间中安装 stage 1.5。

- o partition 在包含内核的分区的第一个扇区安装引导装载程序。
- o none 不安装引导装载程序。

在大多数情况下,不需要指定这个选项。

- --nombr 不在 MBR 中安装引导加载器。
- --password= 如果使用 GRUB2,则将引导装载程序密码设置为使用这个选项指定的密码。这应该被用来限制对可传入任意内核选项的 GRUB2 shell 的访问。 如果指定密码,GRUB2 还会询问用户名。用户名始终为 **root**。
- --iscrypted 通常当您使用 --password= 选项指定引导装载程序密码时,会以明文形式将其保存在 Kickstart 文件中。如果要加密密码,使用这个选项和一个加密的密码。要生成加密的密码,请使用 grub2-mkpasswd-pbkdf2 命令,输入要使用的密码,并将命令的输出(以 grub.pbkdf2开头的哈希值)复制到 Kickstart 文件中。带有加密密码的 bootloader Kickstart 条目示例类似如下:

bootloader -- iscrypted --

password=grub.pbkdf2.sha512.10000.5520C6C9832F3AC3D149AC0B24BE69E2D4FB0DBE EDBD29CA1D30A044DE2645C4C7A291E585D4DC43F8A4D82479F8B95CA4BA4381F8550 510B75E8E0BB2938990.C688B6F0EF935701FF9BD1A8EC7FE5BD2333799C98F28420C5 CC8F1A2A233DE22C83705BB614EA17F3FDFDF4AC2161CEA3384E56EB38A2E39102F53 34C47405E

- --timeout= 指定引导装载程序在引导默认选项前等待的时间(以秒为单位)。
- --default= 在引导装载程序配置中设置默认引导镜像。
- --extlinux 使用 extlinux 引导装载程序而不是 GRUB2。这个选项只适用于支持 extlinux 的系统。
- --disabled 这个选项是更强大的 --location=none 版本。虽然 --location=none 只是禁用引导 装载程序安装,但 --disabled 禁用引导装载程序安装,同时禁用包含引导装载程序的软件包安 装,从而节省了空间。

#### 备注

- 红帽建议在每个系统中设置引导装载程序密码。一个没有保护的引导装载程序可以让潜在的攻击 者修改系统的引导选项,并获得对系统的未授权访问。
- 在某些情况下,需要一个特殊的分区来在 AMD64、Intel 64 和 64 位 ARM 系统上安装引导装载程序。这个分区的类型和大小取决于您要安装引导装载程序的磁盘是否使用主引导记录(MBR)还是 GUID 分区表(GPT)模式。如需更多信息,请参阅配置引导装载程序 部分。

● sdX(或 /dev/sdX)格式不能保证重启后一致的设备名称,这可能会使某些 Kickstart 命令的使用 变得复杂。当命令需要设备节点名称时,您可以使用 /dev/disk 中的任何项目作为替代。例如, 改为使用以下设备名称:

part / --fstype=xfs --onpart=sda1

您可以使用类似以下条目之一:

part / --fstype=xfs --onpart=/dev/disk/by-path/pci-0000:00:05.0-scsi-0:0:0:0-part1 part / --fstype=xfs --onpart=/dev/disk/by-id/ata-ST3160815AS\_6RA0C882-part1

通过使用这种方法,命令总是以相同的存储设备为目标。这在大型存储环境中特别有用。要利用系统上的可用设备名称,您可以在交互式安装过程中使用 Is -IR /dev/disk 命令。有关一致引用存储设备的不同方法的更多信息,请参阅 持久性命名属性的概述。

# **B.5.3.** zipl

**zipl** Kickstart 命令是可选的。它为 64 位 IBM Z 指定了 ZIPL 配置。

#### 选项

• --secure-boot - 如果安装系统支持,则启用安全引导。



### 注意

当在 IBM z14 之后的系统中安装时,无法从 IBM z14 或更早的型号引导安装的系统。

• --force-secure-boot - 无条件启用安全引导。



#### 注意

IBM z14 及更早的型号不支持安装。

--no-secure-boot - 禁用安全引导.



#### 注意

IBM z14 及更早的型号不支持安全引导。如果要在 IBM z14 及更早的型号中引导安装的系统,请使用 --no-secure-boot。

## B.5.4. clearpart

**clearpart** Kickstart 命令是可选的。在创建新分区之前,它会从系统中删除分区。默认情况下不会删除任何分区。

## 语法

clearpart OPTIONS

选项

• --all - 断掉系统中的所有分区。

这个选项将擦除安装程序可以访问的所有磁盘,包括任何附加的网络存储。请小心使用这个选项。

为了防止您需要保留的存储会被 **clearpart** 清除,您可以使用 **--drives**= 选项指定需要删除的存储,或在以后附加网络存储(例如:在 Kickstart 文件的 **%post** 部分),或将用来访问网络存储的内核模块列入阻塞名单。

 --drives= - 指定从中清除分区的驱动器。例如,下面的命令清除了主 IDE 控制器上前两个驱动器 上所有分区:

clearpart --drives=hda,hdb --all

要清除多路径设备,请使用格式 disk/by-id/scsi-*WWID*,其中 *WWID* 是该设备的通用识别符。例如:要清除 WWID 58095BEC5510947BE8C0360F604351918 的磁盘,请使用:

clearpart --drives=disk/by-id/scsi-58095BEC5510947BE8C0360F604351918

这个格式是所有多路径设备的首选,但如果出现错误,没有使用逻辑卷管理(LVM)的多路径设备也可以使用disk/by-id/dm-uuid-mpath-*WWID*格式进行清除,其中 *WWID*是该设备的通用识别符。例如,若要清除 WWID 为 **2416CD96995134CA5D787F00A5AA11017** 的磁盘,请使用:

clearpart --drives=disk/by-id/dm-uuid-mpath-2416CD96995134CA5D787F00A5AA11017

切勿按设备名称(如 mpatha )指定多路径设备。这样的设备名称并不是特定磁盘特有的。在安装过程中名为 /dev/mpatha 的磁盘可能不是您期望的磁盘。因此, clearpart 命令可能会以错误的磁盘为目标。

--initlabel - 通过为所有磁盘在其对于的架构中创建一个默认的磁盘标签来格式化磁盘(例如:对于 x86,使用 msdos)。因为 --initlabel 可以查看所有磁盘,因此请确保只连接要格式化的驱动器。clearpart 清理的磁盘将创建标签,即使 --initlabel 没有使用。

clearpart --initlabel --drives=names\_of\_disks

例如:

clearpart --initlabel --drives=dasda,dasdb,dasdc

● --list= - 指定要清除哪些分区。如果使用此选项,这个选项将覆盖 --all 和 --linux 选项。可在不同的驱动器间使用。例如:

clearpart --list=sda2,sda3,sdb1

- --disklabel=*LABEL* 设置要使用的默认 disklabel。只有支持该平台的磁盘标签才会被接受。例如,在 64 位 Intel 和 AMD 构架中,接受 **msdos** 和 **gpt** disklabels,但不接受 **dasd**。
- --linux 删除所有 Linux 分区.
- --none (默认) 不删除任何分区。
- --cdl 将所有 LDL DASD 重新格式化为 CDL 格式。

注

● sdX(或 /dev/sdX)格式不能保证重启后一致的设备名称,这可能会使某些 Kickstart 命令的使用 变得复杂。当命令需要设备节点名称时,您可以使用 /dev/disk 中的任何项目作为替代。例如, 改为使用以下设备名称:

part / --fstype=xfs --onpart=sda1

您可以使用类似以下条目之一:

part / --fstype=xfs --onpart=/dev/disk/by-path/pci-0000:00:05.0-scsi-0:0:0:0-part1 part / --fstype=xfs --onpart=/dev/disk/by-id/ata-ST3160815AS\_6RA0C882-part1

通过使用这种方法,命令总是以相同的存储设备为目标。这在大型存储环境中特别有用。要利用系统上的可用设备名称,您可以在交互式安装过程中使用 Is -IR /dev/disk 命令。有关统一引用存储设备的不同方法的更多信息,请参阅 持久性命名属性的概述。

● 如果使用 clearpart 命令,则无法在逻辑分区中使用 part --onpart 命令。

#### B.5.5. fcoe

**fcoe** Kickstart 命令是可选的。它指定除了由 EDD (Enhanced Disk Drive Services)发现的设备外,还要自动激活哪些 FCoE 设备。

### 语法

fcoe --nic=name [OPTIONS]

#### 选项

- --nic= (必需) 要激活的设备的名称。
- --dcb= 建立数据中心桥接 (DCB) 设置。
- --autovlan 自动发现 VLAN。默认启用这个选项。

# B.5.6. ignoredisk

ignoredisk Kickstart 命令是可选的。这会导致安装程序忽略指定的磁盘。

如果您使用自动分区并希望忽略某些磁盘,这就很有用。例如,如果没有 **ignoredisk**,尝试在 SAN-cluster 中部署,Kickstart 将失败,因为安装程序检测到到 SAN 的被动路径没有分区表。

#### 语法

ignoredisk --drives=drive1,drive2,... | --only-use=drive

# 选项

- --drives=driveN,... 使用 sda、sdb、...、hda、... 等之一替换 driveN。
- --only-use=*driveN*,... 指定安装程序要使用的磁盘列表。其它磁盘将被忽略。例如:要在安装过程中使用磁盘 da 并忽略所有其他磁盘:

ignoredisk --only-use=sda

要包括不使用 LVM 的多路径设备:

ignoredisk --only-use=disk/by-id/dm-uuid-mpath-2416CD96995134CA5D787F00A5AA11017

要包括使用 LVM 的多路径设备:

ignoredisk --only-use==/dev/disk/by-id/dm-uuid-mpath-

bootloader --location=mbr

您必须仅指定 --drives 或 --only-use 中的一个。

#### 注

● 要忽略不使用逻辑卷管理(LVM)的多路径设备,使用格式 disk/by-id/dm-uuid-mpath-*WWID*,其中 *WWID* 是该设备的通用识别符。例如,要忽略 WWID 为 2416CD96995134CA5D787F00A5AA11017 的磁盘,请使用:

ignoredisk --drives=disk/by-id/dm-uuid-mpath-2416CD96995134CA5D787F00A5AA11017

- 切勿按设备名称(如 mpatha )指定多路径设备。这样的设备名称并不是特定磁盘特有的。在安装过程中名为 /dev/mpatha 的磁盘可能不是您期望的磁盘。因此, clearpart 命令可能会以错误的磁盘为目标。
- sdX(或 /dev/sdX)格式不能保证重启后一致的设备名称,这可能会使某些 Kickstart 命令的使用 变得复杂。当命令需要设备节点名称时,您可以使用 /dev/disk 中的任何项目作为替代。例如, 改为使用以下设备名称:

part / --fstype=xfs --onpart=sda1

您可以使用类似以下条目之一:

part / --fstype=xfs --onpart=/dev/disk/by-path/pci-0000:00:05.0-scsi-0:0:0:0-part1

part / --fstype=xfs --onpart=/dev/disk/by-id/ata-ST3160815AS 6RA0C882-part1

通过使用这种方法,命令总是以相同的存储设备为目标。这在大型存储环境中特别有用。要利用系统上的可用设备名称,您可以在交互式安装过程中使用 Is -IR /dev/disk 命令。有关统一引用存储设备的不同方法的更多信息,请参阅 持久性命名属性的概述。

# **B.5.7.** iscsi

iscsi Kickstart 命令是可选的。它指定了在安装过程中要添加的附加 iSCSI 存储。

# 语法

iscsi --ipaddr=address [OPTIONS]

# 必填选项

• --ipaddr= (必需) - 要连接的目标的 IP 地址。

# 可选选项

- --port= (必需) 端口号。如果没有,则默认自动使用 --port=3260。
- --target= 目标 IQN (iSCSI 限定名称)。
- --iface= 将连接绑定到特定网络接口,而不使用由网络层决定的默认接口。一旦使用,必须在整个 Kickstart 文件的 iscsi 命令的所有实例中指定它。
- --user= 与目标进行身份验证所需的用户名
- --password= 与为目标指定的用户名对应的密码
- --reverse-user= 从使用反向 CHAP 身份验证的目标向启动器进行身份验证所需的用户名
- --reverse-password= 与为启动器指定的用户名对应的密码

#### 备注

- 如果使用 iscsi 命令,还必须使用 iscsiname 命令为 iSCSI 节点分配名称。在 Kickstart 文件中,iscsiname 命令需要在 iscsi 命令的前面。
- 尽可能在系统 BIOS 或固件(Intel 系统的iBFT)中配置 iSCSI 存储,而不是使用 **iscsi** 命令。 Anaconda 自动检测并使用在 BIOS 或固件中配置的磁盘,且在 Kickstart 文件中不需要特殊配置。
- 如果您必须使用 iscsi 命令,请确保在安装开始时激活联网,并且在使用 clearpart 或 ignoredisk 等命令引用 iSCSI 磁盘 前,iscsi 命令会出现在 Kickstart 文件中。

#### B.5.8. iscsiname

iscsiname Kickstart 命令是可选的。它为 iscsi 命令指定的 iSCSI 节点分配名称。

# 语法

iscsiname iqname

# 选项

• *igname* - 分配给 iSCSI 节点的名称。

#### 备注

● 如果在 Kickstart 文件中使用 **iscsi** 命令,则必须在 Kickstart 文件 *前面* 指定 **iscsiname**。

# B.5.9. logvol

logvol Kickstart 命令是可选的。它为逻辑卷管理(LVM)创建一个逻辑卷。

#### 语法

logvol mntpoint --vgname=name --name=name [OPTIONS]

# 必填选项

#### mntpoint

挂载分区的挂载点。必须是以下格式之一:

#### /path

例如:/或/home

#### swap

该分区被用作交换空间。

要自动决定 swap 分区的大小,请使用 --recommended 选项:

swap --recommended

要自动决定 swap 分区的大小,并允许系统的额外空间可以休眠,请使用 --hibernation 选项:

swap --hibernation

分配的大小将相当于由 --recommended 分配的交换空间加上您系统上的 RAM 量。有关这些命令分配的 swap 大小,请参阅为 AMD64、Intel 64 和 64 位 ARM 系统 推荐的分区方案。

#### --vgname=name

卷组名称。

#### --name=name

逻辑卷名称。

#### 可选选项

## --noformat

使用现有逻辑卷且不要对其进行格式化。

#### --useexisting

使用现有逻辑卷并重新格式化它。

#### --fstype=

为逻辑卷设置文件系统类型。有效值为 xfs、ext2、ext3、ext4、swap 和 vfat。

#### --fsoptions=

指定挂载文件系统时要使用的选项的自由格式字符串。该字符串将复制到安装的系统的 /etc/fstab 文件中,并且应用引号括起来。



#### 注意

在 EFI 系统分区(/boot/efi)中,anaconda 硬编码了值,并忽略了用户指定的 -- fsoptions 值。

### --mkfsoptions=

指定要传递给在这个分区上创建文件系统的程序的其他参数。没有对参数列表进行任何操作,因此必须以可直接传递给 mkfs 程序的格式提供。这意味着,根据具体文件系统,多个选项应该用逗号分开,或使用双引号分开。例如,

part /opt/foo1 --size=512 --fstype=ext4 --mkfsoptions="-O has\_journal,^flex\_bg,^metadata\_csum"

part /opt/foo2 --size=512 --fstype=xfs --mkfsoptions="-m bigtime=0,finobt=0"

详情请查看您要创建的文件系统的手册页。例如:mkfs.ext4 或 mkfs.xfs。

#### --fsprofile=

指定传递给在这个分区上创建文件系统的程序的使用类型。使用类型定义了创建文件系统时使用的各种微调参数。要使用这个选项,文件系统必须支持使用类型,且必须有一个配置文件来列出有效类型。对于 ext2、ext3 和 ext4, 此配置文件为 /etc/mke2fs.conf。

#### --label=

为逻辑卷设置标签。

## --grow

扩展逻辑卷以占据可用空间(若有),或使用指定的最大值(若有)。只有在磁盘镜像中预分配了最小存储空间时,必须使用该选项,并希望该卷扩展并占据所有可用空间。在物理环境中,这是一次性的操作。但是在虚拟环境中,当虚拟机将任何数据写入虚拟磁盘时,卷大小会增加。

#### --size=

MiB 中的逻辑卷的大小。此选项不能与 --percent= 选项一同使用。

#### --percent=

考虑任何静态大小逻辑卷时的逻辑卷大小,作为卷组中剩余空间的百分比。这个选项不能与 --size= 选项一同使用。



# 重要

在创建新逻辑卷时,您必须使用 --size= 选项静态指定其大小,或使用 --percent= 选项 指定剩余空间的百分比。您不能在同一逻辑卷中同时使用这些选项。

## --maxsize=

当将逻辑卷设置为可扩充时 MiB 的最大值。在这里指定一个整数值,如 500 (不要包含单位)。

#### --recommended

创建逻辑卷时使用这个选项,根据您的系统硬件自动决定这个卷的大小。有关推荐方案的详情,请参考为 AMD64、Intel 64 和 64 位 ARM 系统 推荐的分区方案。

#### --resize

重新调整逻辑卷大小。如果使用这个选项,还必须指定 --useexisting 和 --size。

#### --encrypted

指定该逻辑卷应该使用 Linux Unified Key Setup(LUKS)进行加密,使用 --passphrase= 选项中提供的密码短语。如果您没有指定密码短语,安装程序将使用 autopart --passphrase 命令设定的默认系统级密码,或者在未设定默认密码时暂停安装并提示您输入密码短语。



# 注意

在加密一个或多个分区时, Anaconda 会尝试收集 256 字节熵,以保证安全加密分区。 收集熵可能需要一些时间 - 无论是否有收集到足够的熵,该过程将在最多 10 分钟后停止。

与安装系统互动(通过键盘输入或移动鼠标)可加速此进程。如果要在虚拟机中安装,您还可以将 virtio-rng 设备(虚拟随机数生成器)附加到客户机。

#### --passphrase=

指定在加密这个逻辑卷时要使用的密码短语。这个选项必须与 --encrypted 选项一同使用,单独使用无效。

#### --cipher=

如果 Anaconda 默认的 aes-xts-plain64 不符合要求,则指定要使用的加密类型。这个选项必须与 -- encrypted 选项一同使用;其本身无效。安全强化 文档中列出了可用的加密类型,但红帽强烈建议您使用 aes-xts-plain64 或 aes-cbc-essiv:sha256。

#### --escrowcert=URL\_of\_X.509\_certificate

将所有加密卷的数据加密密钥保存为 /**root** 中的文件,使用来自  $URL_of_X.509_certificate$  指定的 URL 的 X.509 证书进行加密。每个加密卷的密钥都作为单独的文件保存。只有在指定了 **--encrypted** 时这个选项才有意义。

### --luks-version=LUKS VERSION

指定应用来加密文件系统的 LUKS 格式版本。只有在指定了 --encrypted 时这个选项才有意义。

# --backuppassphrase

为每个加密卷添加随机生成的密码短语。将这些密码短语存储在 /root 中的单独文件中,使用通过 -- escrowcert 指定的 X.509 证书进行加密。只有在指定了 --escrowcert 时这个选项才有意义。

## --pbkdf=PBKDF

为 LUKS keylot 设置基于密码的身份验证(PBKDF)算法。另请参阅 man page *cryptsetup(8)*。只有在指定了 --encrypted 时这个选项才有意义。

### --pbkdf-memory=PBKDF\_MEMORY

为 PBKDF 设置内存成本。另请参阅 man page *cryptsetup(8)*。只有在指定了 **--encrypted** 时这个选项才有意义。

# --pbkdf-time=PBKDF\_TIME

设置 PBKDF 密码处理所消耗的毫秒数。另请参阅 man page cryptsetup(8) 中的 --iter-time。只有在指定了 --encrypted 时这个选项才有意义,并且与 --pbkdf-iterations 相互排斥。

#### --pbkdf-iterations=PBKDF ITERATIONS

设定直接迭代的次数,并避免 PBKDF 基准出现。另请参阅 man page *cryptsetup(8)* 中的 **--pbkdf-force-iterations**。只有在指定了 **--encrypted** 时这个选项才有意义,并且与 **--pbkdf-time** 相互排斥。

#### --thinpool

创建精简池逻辑卷。(使用 none 挂载点)

#### --metadatasize=size

指定新精简池设备的元数据大小(单位 MiB)。

#### --chunksize=size

为新的精简池设备指定块大小(单位 KiB)。

# --thin

创建精简逻辑卷。(需要使用 --poolname)

### --poolname=name

指定要在其中创建精简逻辑卷的精简池名称。需要 --thin 选项。

## --profile=name

指定与精简逻辑卷搭配使用的配置配置集的名称。如果使用,该名称也会包含在给定逻辑卷的元数据中。默认情况下,可用的配置集为 default 和 thin-performance, 在 /etc/lvm/profile/ 目录中定义。有关其他信息,请参见 lvm(8) 手册页。

#### --cachepvs=

用逗号分开的物理卷列表,它应用作这个卷的缓存。

### --cachemode=

指定应该使用哪种模式缓存这个逻辑卷 - writeback 或 writethrough。



# 注意

有关缓存的逻辑卷及其模式的详情,请参考 lvmcache(7)手册页。

#### --cachesize=

附加到逻辑卷的缓存大小,以 MiB 为单位。此选项需要 --cachepvs= 选项。

### 备**注**

● 使用 Kickstart 安装 Red Hat Enterprise Linux 时,请勿在逻辑卷和卷组名称中使用短划线 (-) 字符。如果使用这个字符,安装会完成,但 /dev/mapper/ 目录会列出这些卷和卷组的每个横线都会加倍。例如,名为 volgrp-01 的卷组,其包含名为 logvol-01 的逻辑卷将被列为 /dev/mapper/volgrp-01-logvol-01。

这个限制只适用于新创建的逻辑卷和卷组名称。如果您使用 --noformat 选项重复使用现有的名称,则不会更改它们的名称。

● 如果您丢失了 LUKS 密码短语,那么就完全无法访问所有加密的分区及其数据。丢失的密码短语是无法找回的。但是,您可以使用 --escrowcert 保存加密密码短语,并使用 -- backuppassphrase 选项创建加密密码短语备份。

### 示例

首先创建分区,然后创建逻辑卷组,然后创建逻辑卷:

```
part pv.01 --size 3000
volgroup myvg pv.01
logvol / --vgname=myvg --size=2000 --name=rootvol
```

● 首先创建分区, 然后创建逻辑卷组, 再创建逻辑卷以占据卷组中剩余的 90% 空间:

```
part pv.01 --size 1 --grow
volgroup myvg pv.01
logvol / --vgname=myvg --name=rootvol --percent=90
```

# 其它资源

● 配置和管理逻辑卷

#### **B.5.10.** mount

**mount** Kickstart 命令是可选的。它为现有块设备分配挂载点,并选择性地将其重新格式化为给定格式。

### 语法

mount [OPTIONS] device mountpoint

#### 必须的选项

• device - 要挂载的块设备。

● *mountpoint* - 挂载 *device* 的位置。它必须是有效的挂载点,如 / 或 /usr,如果设备不可卸载,则为 none(如 swap)。

# 可选选项:

- --reformat= 指定应重新格式化该设备的新格式(如 ext4)。
- --mkfsoptions= 指定要传递给 命令的附加选项,该命令将创建 --reformat= 中指定的新文件系统。这里提供的选项列表没有被处理,因此必须使用可直接传递给 mkfs 程序的格式指定。根据具体文件系统,选项列表应该用逗号分开,或使用双引号分开。有关具体详情,请参阅 mkfs man page(例如 mkfs.ext4(8)或 mkfs.xfs(8))。
- --mountoptions= 指定自由格式字符串,其中包含挂载文件系统时要使用的选项。字符串将复制到安装的系统上的/etc/fstab 文件,并使用双引号括起来。有关挂载选项的完整列表,请参见mount(8) 手册页,有关基础知识,请参见 fstab(5)。

### 备注

- 与 Kickstart 中的大多数其他存储配置命令不同,**mount** 不需要您在 Kickstart 文件中描述整个存储配置。您只需要确定系统中存在描述的块设备。但是,如果要使用挂载的所有设备*创建*存储堆栈,则必须使用其他命令,比如 **part** 要这样做。
- 在同一个 Kickstart 文件中,您不能将 mount 与其他存储相关的命令,如 part、logvol 或 autopart 一起使用。

## B.5.11, nvdimm

nvdimm Kickstart 命令是可选的。它对非线性内存模块(NVDIMM)设备执行操作。

# 语法

nvdimm action [OPTIONS]

#### 操作

● **reconfigure** - 将特定 NVDIMM 设备重新配置为给定模式。另外,指定的设备被隐式标记为要使用的,因此后续的同一设备 **nvdimm use** 命令就冗余了。这个操作使用以下格式:

nvdimm reconfigure [--namespace=*NAMESPACE*] [--mode=*MODE*] [--sectorsize=*SECTORSIZE*]

- --namespace= 按命名空间的设备规格。例如:
  - nvdimm reconfigure --namespace=namespace0.0 --mode=sector --sectorsize=512
- o --mode=-模式规格。目前,只有值 sector 可用。
- · --sectorsize= 扇区模式的扇区大小。例如:

nvdimm reconfigure --namespace=namespace0.0 --mode=sector --sectorsize=512

支持的扇区大小为512和4096字节。

● use - 将 NVDIMM 设备指定为安装目标。该设备必须已通过 nvdimm reconfigure 命令配置为扇 区模式。这个操作使用以下格式:

nvdimm use [--namespace=NAMESPACE|--blockdevs=DEVICES]

• --namespace= - 按命名空间指定设备。例如:

nvdimm use --namespace=namespace0.0

• --blockdevs= - 指定与要使用的 NVDIMM 设备对应的块设备列表。支持星号 \* 通配符。例 如:

nvdimm use --blockdevs=pmem0s,pmem1s nvdimm use --blockdevs=pmem\*

#### 备注

● 默认情况下,安装程序忽略所有 NVDIMM 设备。您必须使用 **nvdimm** 命令在这些设备中启用安装。

# B.5.12. part 或 partition

需要 part 或 partition Kickstart 命令。它在系统上创建一个分区。

# 语法

part|partition mntpoint [OPTIONS]

# 选项

- mntpoint 挂载分区的位置。该值必须是以下格式之一:
  - /path

例如: /、/usr、/home

o swap

该分区被用作交换空间。

要自动决定 swap 分区的大小,请使用 --recommended 选项:

swap --recommended

分配的大小将生效,但不会根据您的系统进行精确校准。

要自动确定 swap 分区的大小,同时允许系统的额外空间可以休眠,请使用 --hibernation 选项:

swap --hibernation

分配的大小将相当于由 --recommended 分配的交换空间加上您系统上的 RAM 量。有关这些命令分配的 swap 大小,请参阅 AMD64、Intel 64 和 64 位 ARM 系统的 第 D.4 节 "推荐的分区方案"。

o raid.id

该分区用于软件 RAID(请参阅 raid)。

o pv.id

该分区用于 LVM(请参阅 logvol)。

biosboot

该分区将用在 BIOS 引导分区中。在使用 BIOS 的 AMD64 和 Intel 64 系统中使用 GUID 分区 表(GPT)中需要 1 MiB BIOS 引导分区;引导装载程序将被安装到其中。UEFI 系统中不需要此功能。另请参阅 **bootloader** 命令。

# o /boot/efi

一个 EFI 系统分区。基于 UEFI 的 AMD64、Intel 64 和 64 位 ARM 上需要 50 MiB EFI 分区。推荐的大小为 200 MiB。它在 BIOS 系统上并不需要。另请参阅 **bootloader** 命令。

● **--size=** - 最小分区大小,以 MiB 为单位。在这里指定一个整数值,如 **500** (不要包含单位)。



#### 重要

如果 --size 值太小,安装会失败。将 --size 值设置为您需要的最小空间量。

有关大小建议,请参阅第 D.4 节 "推荐的分区方案"。

● --grow - 告诉分区使用所有可用空间(若有),或使用设置的最大值(如果指定了最大值)。



# 注意

如果您在交换分区上使用 **--grow=** 但没有设置 **--maxsize=**,Anaconda 会限制 swap 分区的最大大小。对于物理内存小于 2 GiB 的系统,强制的限制为物理内存的两倍。对于拥有超过 2 GiB 的系统,强制限制为物理内存大小加上 2GiB。

- --maxsize= 分区设置为增长时的最大分区大小(以 MiB 为单位)。在这里指定一个整数值,如 500(不要包含单位)。
- --noformat 指定不要被格式化的分区,以便与 --onpart 命令一起使用。
- --onpart= 或 --usepart= 指定要放置分区的设备。使用现有的空白设备并将其格式化到新指定 类型。例如:

partition /home --onpart=hda1

将 /home 放置到 /dev/hda1。

这些选项还可以在逻辑卷中添加分区。例如:

partition pv.1 --onpart=hda2

设备必须已在系统上存在;--onpart 选项不会创建它。

在这种情况下,Anaconda 会在不创建分区表的情况下格式化并使用驱动器。但请注意,使用这种方式格式化的设备中不支持 GRUB2 安装,且必须将其放在有分区表的驱动器中。

partition pv.1 --onpart=hdb

--ondisk=或 --ondrive= - 在现有磁盘中创建分区(由 part 命令指定)。这个命令总是创建一个分区。强制在特定磁盘中创建分区。例如: --ondisk=sdb 将分区放在系统的第二个 SCSI 磁盘中。

要指定不使用逻辑卷管理(LVM)的多路径设备,使用格式 disk/by-id/dm-uuidmpath-*WWID*, 其中 *WWID* 是该设备的通用识别符。例如,要指定 WWID 为 2416CD96995134CA5D787F00A5AA11017 的磁盘,请使用:

part / --fstype=xfs --grow --asprimary --size=8192 --ondisk=disk/by-id/dm-uuid-mpath-2416CD96995134CA5D787F00A5AA11017



#### 警告

切勿按设备名称(如 mpatha )指定多路径设备。这样的设备名称并不是特定磁盘特有的。在安装过程中名为 /dev/mpatha 的磁盘可能不是您期望的磁盘。因此,part 命令可能会以错误的磁盘为目标。

- --asprimary 强制将该分区分配为 primary 分区。如果无法将该分区作为主分区分配(通常是因为已经分配了太多的主分区),则该分区进程会失败。只有使用主引导记录(MBR)时这个选项才有意义。
- --fsprofile= 指定要传递给在这个分区上创建文件系统的程序的使用类型。使用类型定义了创建文件系统时使用的各种微调参数。要使用这个选项,文件系统必须支持使用类型,且必须有一个配置文件来列出有效类型。对于 ext2、ext3、ext4,此配置文件为 /etc/mke2fs.conf。
- --mkfsoptions= 指定要传递给在此分区上创建文件系统的程序的其他参数。这与 --fsprofile 类似,但适用于所有文件系统,而不仅仅是支持配置集概念的文件系统。没有对参数列表进行任何操作,因此必须以可直接传递给 mkfs 程序的格式提供。这意味着,根据具体文件系统,多个选项应该用逗号分开,或使用双引号分开。例如,

part /opt/foo1 --size=512 --fstype=ext4 --mkfsoptions="-O has\_journal,^flex\_bg,^metadata\_csum"

part /opt/foo2 --size=512 --fstype=xfs --mkfsoptions="-m bigtime=0,finobt=0"

详情请查看您要创建的文件系统的手册页。例如:mkfs.ext4 或 mkfs.xfs。

- --fstype= 为分区设置文件系统类型。有效值为 xfs、ext2、ext3、ext4、swap、vfat、efi 和 biosboot。
- --fsoptions 指定在挂载文件系统时要使用的自由格式选项字符串。该字符串将复制到安装的系统的 /etc/fstab 文件中,并且应用引号括起来。



#### 注意

在 EFI 系统分区(/boot/efi)中,anaconda 硬编码了值,并忽略了用户指定的 -- fsoptions 值。

--label= - 为单个分区分配标签。

● **--recommended** - 自动确定分区的大小。有关推荐方案的详情,请参阅 AMD64、Intel 64 和 64 位 ARM 的 第 D.4 节 "推荐的分区方案"。



# 重要

这个选项只能用于生成文件系统(如 /boot 分区和 交换空间)的分区。它不能被用来创建 LVM 物理卷或 RAID 成员。

- --onbiosdisk 强制 BIOS 发现的特定磁盘上创建的分区。
- --encrypted 指定该分区应该用 LUKS 加密,使用 --passphrase= 选项中提供的密码短语。如果您没有指定密码短语,Anaconda 将使用 autopart --passphrase 命令设定的默认系统级密码,或者停止安装并在未设定默认密码短语时提示您输入密码短语。



### 注意

在加密一个或多个分区时, Anaconda 会尝试收集 256 字节熵,以保证安全加密分区。收集熵可能需要一些时间 - 无论是否有收集到足够的熵,该过程将在最多 10 分钟后停止。

与安装系统互动(通过键盘输入或移动鼠标)可加速此进程。如果要在虚拟机中安装,您还可以将 virtio-rng 设备(虚拟随机数生成器)附加到客户机。

- --LUKS-version=*LUKS\_VERSION* 指定应该使用哪个版本的 LUKS 格式来加密文件系统。只有在指定了 --encrypted 时这个选项才有意义。
- --passphrase= 指定在加密此分区时要使用的密码短语。这个选项必须与 --encrypted 选项一同使用;其本身无效。
- --cipher= 指定在 Anaconda 默认 aes-xts-plain64 时要使用的加密类型。这个选项必须与 -- encrypted 选项一同使用;其本身无效。安全强化 文档中列出了可用的加密类型,但红帽强烈建议您使用 aes-xts-plain64 或 aes-cbc-essiv:sha256。
- **--escrowcert=** *URL\_of\_X.509\_certificate* 将所有加密分区的数据加密密钥保存在 /root 的文件中,使用来自 *URL\_of\_X.509\_certificate* 指定的 URL 的 X.509 证书进行加密。每个加密分区的密钥都作为单独的文件保存。只有在指定了 **--encrypted** 时这个选项才有意义。
- --backuppassphrase 为每个加密分区添加随机生成的密码短语。将这些密码短语存储在 /root 中的单独文件中,使用通过 --escrowcert 指定的 X.509 证书进行加密。只有在指定了 -escrowcert 时这个选项才有意义。
- **--pbkdf=***PBKDF* 为 LUKS keylot 设置 PBKDF(Password-Based Key Derivation Function)算法。另请参阅 man page *cryptsetup(8)*。只有在指定了 **--encrypted** 时这个选项才有意义。
- **--PBKDF-memory=***PBKDF\_MEMORY* 设置 PBKDF 的内存成本。另请参阅 man page *cryptsetup(8)*。只有在指定了 **--encrypted** 时这个选项才有意义。
- **--PBKDF-time=PBKDF\_TIME** 设置 PBKDF 密码处理所花费的毫秒数。另请参阅 man page cryptsetup(8) 中的 **--iter-time**。只有在指定了 **--encrypted** 时这个选项才有意义,并且与 **-- pbkdf-iterations** 相互排斥。
- **--PBKDF-iterations=** *PBKDF\_ITERATIONS* 设定直接迭代数量并避免 PBKDF 基准测试。另请 参阅 man page *cryptsetup(8)* 中的 **--pbkdf-force-iterations**。只有在指定了 **--encrypted** 时这 个选项才有意义,并且与 **--pbkdf-time** 相互排斥。

--resize= - 调整现有分区的大小。使用这个选项时,使用 --size= 选项指定目标的大小(单位 MiB),使用 --onpart= 指定目标分区。

#### 备注

- part 命令不是强制的,但您必须在 Kickstart 脚本中包含 part、autopart 或 mount。
- 如果因为某种原因分区失败,虚拟控制台3中会显示诊断信息。
- 除非使用 --noformat 和 --onpart, 否则所有创建的分区都会格式化为安装过程的一部分。
- sdX(或 /dev/sdX)格式不能保证重启后一致的设备名称,这可能会使某些 Kickstart 命令的使用 变得复杂。当命令需要设备节点名称时,您可以使用 /dev/disk 中的任何项目作为替代。例如, 改为使用以下设备名称:

part / --fstype=xfs --onpart=sda1

您可以使用类似以下条目之一:

part / --fstype=xfs --onpart=/dev/disk/by-path/pci-0000:00:05.0-scsi-0:0:0:0-part1 part / --fstype=xfs --onpart=/dev/disk/by-id/ata-ST3160815AS\_6RA0C882-part1

通过使用这种方法,命令总是以相同的存储设备为目标。这在大型存储环境中特别有用。要利用系统上的可用设备名称,您可以在交互式安装过程中使用 Is -IR /dev/disk 命令。有关统一引用存储设备的不同方法的更多信息,请参阅 持久性命名属性的概述。

● 如果您丢失了 LUKS 密码短语,那么就完全无法访问所有加密的分区及其数据。丢失的密码短语是无法找回的。但是,您可以使用 --escrowcert 保存加密密码短语,并使用 -- backuppassphrase 选项创建加密密码短语备份。

# B.5.13. raid

raid Kickstart 命令是可选的。它组成一个软件 RAID 设备。

#### 语法

raid mntpoint --level=level --device=device-name partitions\*

#### 选项

mntpoint - 挂载 RAID 文件系统的位置。如果是 /,RAID 级别必须是 1,除非引导分区 (/boot) 存在。如果引导分区存在,/boot 分区必须是级别 1, root (/)分区可以是任意可用的类型。partitions\* (代表多个分区可以被列举)列出了要添加到 RAID 阵列的 RAID 标记。



# 重要

- o 在 IBM Power 系统上,如果 RAID 设备已经准备好,且在安装过程中没有重新格式化,如果您打算将 /boot 和 PReP 分区放在 RAID 设备上,请确保 RAID 元数据版本为 0.90 或 1.0。对于 /boot 和 PReP 分区 mdadm 元数据版本 1.1 和 1.2 不支持。
- PowerNV系统上不需要 PReP 引导分区。

- --level= 使用的 RAID 级别(O、1、4、5、6 或 10)。
- --device= 要使用的 RAID 设备的名称 例如 --device=root。



# 重要

不要使用 md0 格式的 mdraid 名称 - 无法保证这些名称具有持久性。相反,应使用有意义的名称,如 root 或 swap。使用有含义的名称可生成一个从 routhdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdetauthdet

如果您有一个无法为其分配名称的旧阵列(v0.90 元数据),您可以使用文件系统标签或 UUID 指定该阵列。例如,--device=LABEL=root 或 -- device=UUID=93348e56-4631-d0f0-6f5b-45c47f570b88。

您可以使用 RAID 设备上文件系统的 UUID 或者 RAID 设备本身的 UUID。RAID 设备的 UUID 应为 8-4-4-4-12 格式。mdadm 报告的 UUID 为 8:8:8:8 格式,需要更改。例如 93348e56:4631d0f0:6f5b45c4:7f570b88 应改为 93348e56-4631-d0f0-6f5b-45c47f570b88。

- --CHUNKSIZE= 以 KiB 为单位设置 RAID 存储的块大小。在某些情况下,使用与默认块不同的块大小 (512 Kib) 可以提高 RAID 的性能。
- --spares= 指定分配给 RAID 阵列的备用驱动器数量。可使用备用驱动器在驱动器失败时重建阵列。
- --fsprofile= 指定要传递给在这个分区上创建文件系统的程序的使用类型。使用类型定义了创建文件系统时使用的各种微调参数。要使用这个选项,文件系统必须支持使用类型,且必须有一个配置文件来列出有效类型。对于 ext2、ext3 和 ext4,此配置文件为 /etc/mke2fs.conf。
- --fstype= 为 RAID 阵列设置文件系统类型。有效值为 xfs、ext2、ext3、ext4、swap 和 vfat。
- --fsoptions= 指定在挂载文件系统时要使用的自由格式选项字符串。该字符串将复制到安装的系统的 /etc/fstab 文件中,并且应用引号括起来。



#### 注意

在 EFI 系统分区(/boot/efi)中,anaconda 硬编码了值,并忽略了用户指定的 -- fsoptions 值。

● --mkfsoptions= - 指定要传递给在此分区上创建文件系统的程序的其他参数。没有对参数列表进行任何操作,因此必须以可直接传递给 mkfs 程序的格式提供。这意味着,根据具体文件系统,多个选项应该用逗号分开,或使用双引号分开。例如,

part /opt/foo1 --size=512 --fstype=ext4 --mkfsoptions="-O has journal, flex bg, metadata csum"

part /opt/foo2 --size=512 --fstype=xfs --mkfsoptions="-m bigtime=0,finobt=0"

详情请查看您要创建的文件系统的手册页。例如:mkfs.ext4或 mkfs.xfs。

- --label= 指定要生成的文件系统的标签。如果给定标签已被另一个文件系统使用,则会创建一个 新标签。
- --noformat 使用现有的 RAID 设备,且不要格式化 RAID 阵列。

- --use existing 使用现有的 RAID 设备并重新格式化它。
- --encrypted 指定该 RAID 设备应该用 LUKS 加密,使用 --passphrase= 选项中提供的密码短语。如果您没有指定密码短语,Anaconda 将使用 autopart --passphrase 命令设定的默认系统级密码,或者停止安装并在未设定默认密码短语时提示您输入密码短语。



## 注意

在加密一个或多个分区时, Anaconda 会尝试收集 256 字节熵,以保证安全加密分区。收集熵可能需要一些时间 - 无论是否有收集到足够的熵,该过程将在最多 10 分钟后停止。

与安装系统互动(通过键盘输入或移动鼠标)可加速此进程。如果要在虚拟机中安装,您还可以将 virtio-rnq 设备(虚拟随机数生成器)附加到客户机。

- --LUKS-version=*LUKS\_VERSION* 指定应该使用哪个版本的 LUKS 格式来加密文件系统。只有在指定了 --encrypted 时这个选项才有意义。
- --cipher= 指定在 Anaconda 默认 aes-xts-plain64 时要使用的加密类型。这个选项必须与 -- encrypted 选项一同使用;其本身无效。安全强化 文档中列出了可用的加密类型,但红帽强烈建议您使用 aes-xts-plain64 或 aes-cbc-essiv:sha256。
- --passphrase= 指定加密此 RAID 设备时使用的密码短语。这个选项必须与 --encrypted 选项 一同使用;其本身无效。
- --escrowcert= *URL\_of\_X.509\_certificate* 将这个设备的数据加密密钥保存在 /root 中的一个文件中,使用来自 *URL\_of\_X.509\_certificate* 指定的 URL 的 X.509 证书加密。只有在指定了 -- encrypted 时这个选项才有意义。
- --backuppassphrase 向这个设备添加随机生成的密码短语。将该密语存储在 /root 中的文件中,使用通过 --escrowcert 指定的 X.509 证书进行加密。只有在指定了 --escrowcert 时这个选项才有意义。
- --pbkdf=*PBKDF* 为 LUKS keylot 设置 PBKDF(Password-Based Key Derivation Function)算法。另请参阅 man page *cryptsetup(8)*。只有在指定了 --encrypted 时这个选项才有意义。
- **--PBKDF-memory=***PBKDF\_MEMORY* 设置 PBKDF 的内存成本。另请参阅 man page *cryptsetup(8)*。只有在指定了 **--encrypted** 时这个选项才有意义。
- **--PBKDF-time=PBKDF\_TIME** 设置 PBKDF 密码处理所花费的毫秒数。另请参阅 man page cryptsetup(8) 中的 **--iter-time**。只有在指定了 **--encrypted** 时这个选项才有意义,并且与 **-- pbkdf-iterations** 相互排斥。
- --PBKDF-iterations=*PBKDF\_ITERATIONS* 设定直接迭代数量并避免 PBKDF 基准测试。另请参阅 man page *cryptsetup(8)* 中的 --pbkdf-force-iterations。只有在指定了 --encrypted 时这个选项才有意义,并且与 --pbkdf-time 相互排斥。

# 示例

下面的例子展示,假定系统里有三个 SCSI 磁,如何为 / 创建 RAID 1 分区,为 /home 创建 RAID 5。它还 创建三个交换分区,每个驱动器都有一个。

part raid.01 --size=6000 --ondisk=sda part raid.02 --size=6000 --ondisk=sdb part raid.03 --size=6000 --ondisk=sdc part swap --size=512 --ondisk=sda

```
part swap --size=512 --ondisk=sdb
part swap --size=512 --ondisk=sdc
part raid.11 --size=1 --grow --ondisk=sda
part raid.12 --size=1 --grow --ondisk=sdb
part raid.13 --size=1 --grow --ondisk=sdc
raid / --level=1 --device=rhel8-root --label=rhel8-root raid.01 raid.02 raid.03
raid /home --level=5 --device=rhel8-home --label=rhel8-home raid.11 raid.12 raid.13
```

#### 备注

如果您丢失了 LUKS 密码短语,那么就完全无法访问所有加密的分区及其数据。丢失的密码短语是无法找回的。但是,您可以使用 --escrowcert 保存加密密码短语,并使用 --backuppassphrase 选项创建加密密码短语备份。

# B.5.14. reqpart

reqpart Kickstart 命令是可选的。它自动创建您的硬件平台所需的分区。这为带有 UEFI 固件的系统包括一个 /boot/efi 分区,带有 BIOS 固件和 GPT 的系统包括 biosboot 分区,为 IBM Power 系统包括 PRePBoot 分区。

# 语法

reqpart [--add-boot]

#### 选项

● --add-boot - 除基础命令创建的特定于平台的分区之外,还创建一个单独的 /boot 分区。

#### 备注

● 这个命令不能与 autopart 命令一同使用,因为 autopart 会做所有 reqpart 命令要做的工作,另外,还创建其他分区或者逻辑卷,比如 / 和 swap。与 autopart 不同,这个命令只创建特定于平台的分区,并将驱动器的其余部分留空,允许您创建自定义布局。

# B.5.15. snapshot

**snapshot** Kickstart 命令是可选的。在安装过程中使用 LVM 精简卷快照来创建 LVM 精简卷快照。这可让您在安装前或安装后备份逻辑卷。

要创建多个快照,请多次添加 snaphost Kickstart 命令。

# 语法

snapshot vg\_name/lv\_name --name=snapshot\_name --when=pre-install|post-install

### 选项

- vg name/Iv name 设置卷组和逻辑卷的名称,以便从中创建快照。
- --name=snapshot\_name 设置快照的名称。这个名称在卷组中必须是唯一的。
- --when=*pre-install*|*post-install* 如果在安装开始前或安装完成后创建快照,则设置。

# B.5.16. volgroup

volgroup Kickstart 命令是可选的。它创建一个逻辑卷管理(LVM)组。

# 语法

volgroup name [OPTIONS] [partition\*]

## **必填**选项

• name - 新卷组的名称。

# 选项

- partition 用作卷组存储支持的物理卷分区。
- --noformat 使用现有卷组而不对其进行格式化。
- --useexisting 使用现有卷组并重新格式化它。如果使用这个选项,不要指定分区。例如:

volgroup rhel00 --useexisting --noformat

- --pesize= 以 KiB 为单位设置卷组物理扩展的大小。默认值为 4096(4 MiB),最小值为 1024(1 MiB)。
- --reserved-space= 指定在 MiB 的卷组中保留未使用的空间量。只适用于新创建的卷组。
- --reserved-percent= 指定卷组空间占未使用空间的百分比。只适用于新创建的卷组。

#### 备注

首先创建分区,然后创建逻辑卷组,然后创建逻辑卷。例如:

part pv.01 --size 10000 volgroup my\_volgrp pv.01 logvol / --vgname=my\_volgrp --size=2000 --name=root

使用 Kickstart 安装 Red Hat Enterprise Linux 时,请勿在逻辑卷和卷组名称中使用短划线 (-)字符。如果使用这个字符,安装会完成,但 /dev/mapper/ 目录会列出这些卷和卷组的每个横线都会加倍。例如,名为 volgrp-01 的卷组,其包含名为 logvol-01 的逻辑卷将被列为 /dev/mapper/volgrp--01-logvol--01。

这个限制只适用于新创建的逻辑卷和卷组名称。如果您使用 --noformat 选项重复使用现有的名称,则不会更改它们的名称。

# B.5.17, zerombr

**zerombr** Kickstart 命令是可选的。**zerombr** 会初始化磁盘上找到的所有无效分区表,并销毁具有无效分区表的磁盘的所有内容。当在带有未格式化的 Direct Access Storage Device(DASD)磁盘的 64 位 IBM Z系统中执行安装时,需要这个命令,否则未格式化的磁盘不会被格式化并在安装过程中使用。

### 语法

zerombr

#### 备注

- 在 64 位 IBM Z 上,如果指定了 **zerombr**,安装程序可以看到的直接访问存储设备 (DASD) 都会使用 dasdfmt 自动低级格式化。这个命令还可防止用户在互动安装过程中进行选择。
- 如果没有指定 **zerombr**,且安装程序至少可以看到一个未格式化的 DASD,非互动的 Kickstart 安装将无法成功退出。
- 如果没有指定 **zerombr**,且安装程序至少可以看到一个未格式化的 DASD,如果用户同意格式化 所有可见和未格式化的 DASD,则会退出交互式安装。要绕过这个过程,请只激活那些您要在安 装过程中使用的 DASD。您总是可在安装完成后添加更多的 DASD。
- 这个命令没有选项。

# B.5.18. zfcp

**zfcp** Kickstart 命令是可选的。它定义了光纤通道设备。

这个选项只适用于 64 位 IBM Z。

### 语法

zfcp --devnum=devnum [--wwpn=wwpn --fcplun=lun]

#### 洗项

- --devnum= 设备号(zFCP 适配器设备总线 ID)。
- --WWPN= 设备的全球端口名称 (WWPN)。形式为 16 位数字, 前面带有 **0x**。
- --fcplun= 该设备的逻辑单元号 (LUN)。形式为 16 位数字, 前面带有 **0x**。



#### 注意

如果自动 LUN 扫描可用且安装 9 或更高版本,则指定 FCP 设备总线 ID 足够了。否则,所有这三个参数都是必需的。如果没有通过 **zfcp.allow\_lun\_scan** 模块参数禁用,自动 LUN 扫描可用于在 NPIV 模式下对 FCP 设备的操作。(默认启用)它对使用指定的总线 ID 附加到 FCP 设备上的存储区域网络中发现的所有 SCSI 设备提供访问权限。

#### 示例

# B.6. RHEL 安装程序提供的附加组件的 KICKSTART 命令

这部分中的 Kickstart 命令与 Red Hat Enterprise Linux 安装程序默认提供的附加组件相关: Kdump 和 OpenSCAP。

# B.6.1. %addon com\_redhat\_kdump

%addon com\_redhat\_kdump Kickstart 命令是可选的。这个命令配置 kdump 内核崩溃转储机制。

### 语法

%addon com\_redhat\_kdump [OPTIONS] %end



### 注意

这个命令的语法比较特殊,因为它是一个附加组件,不是内置的 Kickstart 命令。

# 备注

Kdump 是内核崩溃转储机制,可让您保存系统内存内容,以便稍后进行分析。它依赖于 **kexec**,可用于在不重新启动系统的情况下从另一个内核上下文引导 Linux 内核,并保留第一个内核内存的内容,否则会丢失第一个内核的内存。

如果系统崩溃,kexec 引导进入第二个内核(捕获内核)。这个捕获内核位于系统内存的保留部分。然后 Kdump 会捕获崩溃内核的内存(崩溃转储)并将其保存到指定位置。无法使用这个 Kickstart 命令配置该位置;必须在安装后通过编辑 /etc/kdump.conf 配置文件来配置该位置。

有关 Kdump 的详情, 请参阅 安装 kdump。

## 选项

- --enable 在安装的系统中启用 kdump。
- --disable 在安装的系统中禁用 kdump。
- --reserve-mb= 要为 kdump 保留的内存量,单位为 MiB。例如:

%addon com\_redhat\_kdump --enable --reserve-mb=128 %end

您还可以指定 **auto** 而不是数字值。在这种情况下,安装程序将根据 *管理、监控和更新内核* 文档中的 kdump 内存要求部分中描述的标准自动决定内存量。

如果启用 kdump 且没有指定 --reserve-mb= 选项,则会使用 auto 值。

--enablefadump - 在允许它的系统中(特别是 IBM Power Systems 服务器)启用固件辅助转储。

#### B.6.2. %addon com\_redhat\_oscap

**%addon com\_redhat\_oscap** Kickstart 命令是可选的。

OpenSCAP 安装程序附加组件是用来在安装的系统中应用 SCAP(安全内容自动化协议)内容 - 安全策略。从 Red Hat Enterprise Linux 7.2 开始默认启用此附加组件。启用后,会自动安装提供这个功能的软件包。但默认情况下不会强制任何策略。这代表,除非特别指定,在安装过程中或安装后不会执行任何检查。



### 重要

不需要在所有系统中应用安全策略。只有在您的机构规则或政府法规强制某种策略时,才使用这个命令。

与大多数命令不同,此附加组件不接受常规选项,而是使用 %addon 定义正文中的键值对。这些键值对 无法验证空白。值可以选择使用单引号 (') 或者双引号 (") 括起来。

### 语法

%addon com\_redhat\_oscap key = value %end

# Keys

以下键可以被附加组件识别:

# content-type

安全内容的类型。可能的值有 datastream、archive、rpm 和 scap-security-guide。 如果 content-type 是 scap-security-guide,则附加组件将使用 scap-security-guide 软件包提供的内容,该内容存在于引导介质中。这意味着,除了 profile 外所有其他键都无效。

#### content-url

安全内容的位置。必须通过 HTTP、HTTPS 或者 FTP 访问该内容。必须有可用的网络连接方可访问远程位置中的内容定义。

#### datastream-id

content-url 值中引用的数据流的 ID。仅在 content-type 是 datastream 时使用。

#### xccdf-id

要使用的基准 ID。

#### content-path

应使用到 datastream 或 XCCDF 文件的路径,在归档中使用相对路径。

#### 配置集

要应用的配置集 ID。使用 default 应用 default 配置文件。

# fingerprint

由 content-url 引用的内容的 MD5、SHA1或 SHA2 的校验和。

#### tailoring-path

应使用的定制文件的路径, 在归档中作为相对路径指定。

#### 示例

以下是 %addon com\_redhat\_oscap 部分的示例,它使用安装介质的 scap-security-guide 中的内容:

例 B.1. 使用 SCAP 安全指南的 OpenSCAP 附加组件定义示例

%addon com\_redhat\_oscap content-type = scap-security-guide profile = xccdf\_org.ssgproject.content\_profile\_pci-dss %end

以下是从 web 服务器加载自定义配置集的复杂示例:

例 B.2. 使用 Datastream 的 OpenSCAP 附加组件定义示例

%addon com\_redhat\_oscap content-type = datastream content-url = http://www.example.com/scap/testing\_ds.xml datastream-id = scap\_example.com\_datastream\_testing xccdf-id = scap\_example.com\_cref\_xccdf.xml profile = xccdf\_example.com\_profile\_my\_profile fingerprint = 240f2f18222faa98856c3b4fc50c4195 %end

# 其它资源

- 安全强化
- OpenSCAP 安装程序附加组件
- OpenSCAP Portal

# B.7. ANACONDA 中使用的命令

pwpolicy 命令是 Anaconda UI 特定的命令,只能在 kickstart 文件的 %anaconda 部分中使用。

# B.7.1. pwpolicy (已弃用)

**pwpolicy** Kickstart 命令是可选的。在安装过程中使用这个命令强制使用自定义密码策略。策略要求您为 root、用户或 luks 用户帐户创建密码。密码长度和强度等因素决定了密码的有效性。

#### 语法

pwpolicy *name* [--minlen=*length*] [--minquality=*quality*] [--strict|--notstrict] [--emptyok|--notempty] [--changesok|--nochanges]

### 必填选项

● name - 使用 root、user 或 luks 替换,以分别强制执行与 root 密码、用户密码或 LUKS 密码短语相关的策略。

### 可选选项

- --minlen= 以字符为单位设置允许密码长度的最小值。默认值为 6。
- --minquality= 设置 libpwquality 库定义的最小允许密码质量。默认值为 1。
- --strict 启用严格的密码强制.不接受没有满足 --minquality= 和 --minlen= 中指定的要求的密码。默认禁用这个选项。
- --notstrict 在 GUI 中点 Done 两次后,可以接受 不符合 --minquality= 和 -minlen= 选项中指定 的最低质量要求的密码。文本模式界面使用类似的机制。
- --emptyok 允许使用空密码。对于用户密码,默认启用。
- --notempty 不允许使用空密码。对于 root 密码和 LUKS 密码,默认启用。

- --changesok 允许在用户界面中更改密码,即使 Kickstart 文件已指定了密码。默认禁用此选项。
- --nochanges 不允许更改在 Kickstart 文件中已设置的密码。默认启用此选项。

# 备**注**

- pwpolicy 命令是 Anaconda UI 特定的命令,只能在 kickstart 文件的 %anaconda 部分中使用。
- **libpwquality**程序库用于检查最低密码要求(长度和服务)。您可以使用 **libpwquality** 软件包提供的 **pwscore** 和 **pwmake** 命令检查密码质量得分,或使用给定分数创建随机密码。有关这些命令的详情,请查看 **pwscore(1)** 和**pwmake(1)** man page。

# B.8. KICKSTART 命令进行系统恢复

这部分中的 Kickstart 命令修复安装了的系统。

## B.8.1. rescue

**rescue** Kickstart 命令是可选的。它提供有 root 特权的 shell 环境,以及一组系统管理工具修复安装以及排除问题,例如:

- 以只读方式挂载文件系统
- 阻塞列表或添加驱动程序磁盘中提供的驱动程序
- 安装或升级系统软件包
- 管理分区



#### 注意

Kickstart 的救援模式与系统的救援模式和紧急模式不同,后者是 systemd 和服务管理器的一部分。

**rescue** 命令不自行修改系统。它只能通过在 /mnt/sysimage 下挂载系统的读写模式来设置救援环境。您可以选择不挂载系统,或者将其挂载为只读模式。

# 语法

rescue [--nomount|--romount]

# 选项

 --nomount 或 --romount - 控制如何在救援环境中挂载安装的系统。默认情况下,安装程序会找 到您的系统并以读写模式挂载它,同时告知它在什么位置进行挂载。您可以选择不挂载任何内容 (-- nomount 选项)或以只读模式挂载(-- romount 选项)。只能使用这两个选项中的一个。

#### 备注

要运行救援模式, 请制作 Kickstart 文件的副本, 并在该文件中包含 **rescue** 命令。

使用 rescue 命令可使安装程序执行以下步骤:

- 1. 运行 %pre 脚本。
- 2. 为救援模式设置环境。 下面的 kickstart 命令生效:
  - a. updates
  - b. sshpw
  - c. logging
  - d. lang
  - e. network
- 3. 设置高级存储环境。
  - 下面的 kickstart 命令生效:
  - a. fcoe
  - b. iscsi
  - c. iscsiname
  - d. nvdimm
  - e. zfcp
- 4. 挂载系统
  - rescue [--nomount|--romount]
- 5. 运行 %post 脚本 只有在安装的系统被挂载为读写模式时才运行这一步。
- 6. 启动 shell
- 7. 重启系统

# 附录 C. 系统要求参考信息

这部分提供了在安装 Red Hat Enterprise Linux 时的硬件、安装目标、系统、内存和 RAID 的信息和指南。

# C.1. 支持的安装目标

安装目标是保存 Red Hat Enterprise Linux 并引导系统的存储设备。Red Hat Enterprise Linux 支持 AMD64、Intel 64 和 64 位 ARM 系统的以下安装目标:

- 通过标准内部接口(如 SCSI、SATA 或 SAS)连接的存储
- BIOS/固件 RAID 设备
- Intel64 和 AMD64 架构上扇区模式下的 NVDIMM 设备,由 nd\_pmem 驱动程序支持。
- 光纤通道主机总线适配器和多路径设备.有些操作需要厂商提供的驱动程序。
- Xen 虚拟机上 Intel 处理器上的 Xen 块设备.
- KVM 虚拟机上 Intel 处理器上的 VirtIO 块设备.

红帽不支持安装到 USB 盘或 SD 内存卡。有关支持第三方虚拟化技术的详情,请查看 红帽硬件兼容性列表。

# C.2. 磁盘和内存要求

如果安装了一些操作系统,必须确定分配的磁盘空间与 Red Hat Enterprise Linux 要求的磁盘空间分离。



# 注意

- 对于 AMD64、Intel 64 和 64 位 ARM, Red Hat Enterprise Linux 至少需要两个专用的分区(/和 swap)。
- 对于 IBM Power 系统服务器,Red Hat Enterprise Linux 至少需要三个专用的分区 (/、swap 和 PReP 引导分区)。

您必须至少有 10GiB 可用磁盘空间。要安装 Red Hat Enterprise Linux,必须至少有 10GiB 未分区磁盘空间或可删除分区。如需更多信息, 请参阅 分区参考。

#### 表 C.1. 最低 RAM 要求

| <b>安装</b> 类型    | 推荐的最小内存                                                                               |
|-----------------|---------------------------------------------------------------------------------------|
| 本地介质安装(USB、DVD) | <ul> <li>1.5 GiB 用于 aarch64、s390x 和 x86_64 架构</li> <li>3 GiB 用于 ppc64le 架构</li> </ul> |

| 安装类型                   | 推荐的最小内存                                                                               |
|------------------------|---------------------------------------------------------------------------------------|
| NFS 网络安装               | <ul> <li>1.5 GiB 用于 aarch64、s390x 和 x86_64 架构</li> <li>3 GiB 用于 ppc64le 架构</li> </ul> |
| HTTP、HTTPS 或者 FTP 网络安装 | <ul> <li>3 GiB 用于 s390x 和 x86_64 架构</li> <li>4 GiB 用于 aarch64 和 ppc64le 架构</li> </ul> |



# 注意

使用比推荐的最低要求小的内存可完成安装。具体的要求取决于您的环境和安装路径。建议您测试各种配置,以确定环境所需的最小内存。使用 Kickstart 文件安装 Red Hat Enterprise Linux 与标准安装有相同的推荐最小 RAM 要求。然而,如果您的 Kickstart 文件包含需要额外内存的命令,或者将数据写入 RAM 磁盘,则可能需要额外的 RAM。如需更多信息,请参阅自动安装 RHEL 文档。

# C.3. 图形显示器分辨率要求

您的系统必须具有以下最低分辨率,以确保 Red Hat Enterprise Linux 的顺利和无错安装。

#### 表 C.2. 显示器分辨率

| 产品版本                       | 分辨率                    |
|----------------------------|------------------------|
| Red Hat Enterprise Linux 9 | <b>最小</b> : 800 x 600  |
|                            | <b>推荐</b> : 1026 x 768 |

# C.4. UEFI 安全引导和 BETA 版本要求

如果您计划在启用了 UEFI 安全引导的系统中安装 Red Hat Enterprise Linux Beta 版本,请首先禁用 UEFI 安全引导选项,然后开始安装。

UEFI 安全引导要求操作系统内核使用可识别的私钥签名,系统的 firware 使用对应的公钥进行验证。对于 Red Hat Enterprise Linux Beta 版本,内核使用特定于红帽 Beta 的公钥进行签名,系统默认无法识别该公钥。因此,系统甚至无法引导安装介质。

# 附录 D. 分区参考

# D.1. 支持的设备类型

### 标准分区

标准分区可以包含文件系统或者 swap 空间。标准分区最常用于 /boot、BIOS 引导 和 EFI 系统分区。 多数其他用途,推荐使用 LVM 逻辑卷。

#### LVM

选择 **LVM** (或者逻辑卷管理)作为设备类型会生成一个 LVM 逻辑卷。LVM 可在使用物理磁盘时提高性能,并允许高级设置,比如在一个挂载点使用多个物理磁盘,并设置软件 RAID 来提高性能、可靠性或两者。

#### LVM 精简配置

使用精简配置,您可以管理一个空闲空间的存储池,称为精简池,可在应用程序需要时将其分配给任 意数量的设备。您可以根据需要动态地扩展池,以便有效分配存储空间。



### 警告

安装程序不支持超额提供的 LVM 精简池。

# D.2. 支持的文件系统

这部分论述了 Red Hat Enterprise Linux 中可用的文件系统。

#### xfs

XFS 是一个高度可扩展的高性能文件系统,它最多支持 16 EB(大约 1600万 TB)的文件系统、8 EB 文件(大约 800万 TB)以及包含千百万条目的目录结构。XFS 还支持元数据日志,提高崩溃恢复速度。单个 XFS 文件系统最多支持 500 TB。XFS 是 Red Hat Enterprise Linux 中默认和推荐的文件系统。XFS 文件系统无法缩小以获得可用空间。

#### ext4

**ext4** 文件系统基于 **ext3** 文件系统,但包括了很多改进。这包括对更大文件系统和更大文件的支持、更快更有效的磁盘空间分配、一个目录中无限的子目录数、更快速的文件系统检查及更强大的日志能力。单个 **ext4** 文件系统最多支持 50 TB。

#### ext3

ext3 文件系统基于 ext2 文件系统,它有一个主要优点 - 日志。使用日志记录文件系统可减少在文件系统终止后恢复文件系统所花费的时间,因为不需要每次运行 fsck 程序检查文件系统元数据一致性。

#### ext2

**ext2** 文件系统支持标准 Unix 文件类型,包括常规文件、目录或符号链接。它允许分配长文件名,最多255 个字符。

#### swap

交换分区是用来支持虚拟内存的。换句话说,当内存不足以贮存系统正在处理的数据时,数据就会被写入 swap 分区。

#### vfat

VFAT 文件系统是一个 Linux 文件系统,与 Microsoft Windows 的 FAT 文件系统中的长文件名兼容。



# 注意

Linux 系统分区不支持 VFAT 文件系统。例如: /、/var、/usr 等等。

# BIOS 引导

从在 BIOS 系统和 BIOS 兼容模式的 UEFI 系统上使用 GUID 分区表(GPT)引导的设备所需小分区。

### EFI 系统分区

UEFI 系统上引导使用 GUID 分区表(GPT)设备所需小分区。

#### **PReP**

这个小引导分区位于磁盘的第一个分区中。**PReP** boot 分区包含 GRUB2 引导装载程序,它可允许 IBM Power Systems 服务器引导 Red Hat Enterprise Linux。

# D.3. 支持的 RAID 类型

RAID 代表独立磁盘冗余阵列,可让您将多个物理磁盘合并为逻辑单元。有些设置的设计思想是以可靠性来换取性能的提高,另一些设备会通过需要更多的磁盘空间来获得高可靠性。

这部分论述了您可以在 LVM 和 LVM Thin Provisioning 中使用的软件 RAID 类型在安装的系统中设置存储。

#### RAID 0

性能:在多个磁盘间分配数据。RAID O 提供比标准分区优越的性能,并可用来将多个磁盘的存储池化到一个大的虚拟设备中。请注意,RAID O 不提供冗余,且阵列中的一个设备失败会破坏整个阵列中的数据。RAID O 要求至少有两个磁盘。

#### RAID 1

冗余: 镜像将所有数据从一个分区复制到一个或多个其他磁盘。阵列中的附加设备提供增大的冗余级别。RAID1要求至少有两个磁盘。

#### RAID 4

错误检查: 在多个磁盘间分配数据,并使用阵列中的一个磁盘存储奇偶校验信息,这样可在阵列中的任意磁盘失败时保护阵列。因为所有奇偶校验信息都存储在一个磁盘上,访问这个磁盘会为阵列的性能创建一个"bottleneck"。RAID 4 要求至少有三个磁盘。

## RAID 5

分布式错误检查: 在多个磁盘间分配数据和奇偶校验信息。RAID 5 提供在多个磁盘间分布数据的性能 优势,但没有 RAID 4 的性能瓶颈,因为也在阵列间发布奇偶校验信息。RAID 5 要求至少有三个磁盘。

#### RAID 6

冗余错误检查: RAID 6 与 RAID 5 类似。不同之处是会保存两组奇偶校验数据,而不是一组。RAID 6 要求至少有四个磁盘。

#### RAID<sub>10</sub>

性能和冗余: RAID 10 是嵌套的或混合的 RAID。它由在磁盘镜像组件中分布的数据组成。例如:一个由四个 RAID 分区组成的 RAID 10 阵列由两对条状分区组成。RAID 10 要求至少有 四 个磁盘。

# D.4. 推荐的分区方案

红帽建议您在以下挂载点创建单独的文件系统。但是,如果需要,您还可以在 /usr、/var 和 /tmp 挂载点创建文件系统。

- /boot
- /(root)

- /home
- swap
- /boot/efi
- PReP

建议对裸机部署中使用此分区方案,它不适用于虚拟和云部署。

#### /boot 分区 - 建议大小至少为 1 GiB

挂载在 /boot 上的分区包含操作系统内核,它允许您的系统引导 Red Hat Enterprise Linux 9,以及在bootstrap 过程中使用的文件。鉴于多数固件的限制,推荐创建一个较小的分区来容纳这些文件。在大多数情况下,1 GiB 引导分区足够了。和其它挂载点不同,不能使用 LVM 用于 /boot - /boot 必须位于独立磁盘分区中。



### 警告

通常情况下,/boot 分区由安装程序自动创建。但是,如果 / (根)分区大于 2 TiB,且(U)EFI 用于引导,您需要创建一个小于 2 TiB 的独立 /boot 分区才能成功引导机器。



#### 注意

如果有一张 RAID 卡,请注意某些 BIOS 类型不支持从 RAID 卡中引导。在这种情况下,/boot 分区必须在 RAID 阵列之外的分区上创建,比如在单独的磁盘上。

#### root - 推荐的大小为 10 GiB

这是"/"或根目录的位置。root 目录是目录结构的最顶层。默认情况下,所有文件都会写入此文件系统,除非在要写入的路径中挂载了不同的文件系统,例如 /boot 或 /home。

虽然 5 GiB 根文件系统允许您最小安装,但建议至少分配 10 GiB,以便可以尽可能安装您想要的软件包组。



#### 重要

不要将 /**root** 目录与 / 目录混淆。/**root** 目录是 root 用户的主目录。/**root** 目录有时被称为 *slash root*,将其与根目录区分开。

# /home - 建议大小至少为 1 GiB

要独立于系统数据存储用户数据,请为 /home 目录创建一个专用的文件系统。文件系统大小基于本地存储的数据大小、用户数量等。您可以在不删除用户数据文件的情况下升级或重新安装 Red Hat Enterprise Linux 9。如果您选择自动分区,建议至少有 55 GiB 的磁盘空间用于安装,以确保可以创建 /home 文件系统。

# swap 分区 - 建议大小至少为 1 GiB

swap 文件系统支持虚拟内存; 当内存不足以贮存系统正在处理的数据时,数据就会被写入 swap 文件系统。swap 大小是系统内存负载的一个功能,而不是系统内存总量,因此不等于系统内存总量。务必要分析系统将要运行的应用程序以及那些应用程序将服务的负载,以确定系统内存工作负载。应用程

序供应商和开发人员可提供支持。

当系统没有 swap 空间时,内核会终止进程,因为系统 RAM 内存已耗尽。配置太多 swap 空间会导致存储设备被分配但处于闲置状态,因此资源使用不足。太多 swap 空间也会隐藏内存泄漏的问题。swap 分区的最大大小以及其它附加信息可在 mkswap(8) 手册页中找到。

下表根据系统中的 RAM 量以及需要足够的内存以便系统休眠提供推荐的 swap 分区大小。如果您让安装程序自动为系统分区,则使用这个指南建立 swap 分区大小。自动分区设置假设不使用休眠功能。swap 分区的最大大小限制为磁盘总大小的 10%,且安装程序无法创建大于 1TiB 的 swap 分区。要设置足够的 swap 空间以便允许休眠功能,或者想将 swap 分区大小设定为超过系统的存储空间 10%,或者 1TiB 以上,您必须手动编辑分区布局。

# 表 D.1. 推荐的系统 swap 空间

| 系统中的 RAM 量     | 推荐的 swap 空间          | 如果允许休眠则推荐使用 swap 空<br>间 |
|----------------|----------------------|-------------------------|
| 小于 2 GiB       | RAM 量的 2 倍           | RAM 量的 3 倍              |
| 2 GiB - 8 GiB  | 与 RAM 量相等            | RAM 量的 2 倍              |
| 8 GiB - 64 GiB | 4 GiB 到 RAM 量的 0.5 倍 | RAM 量的 1.5 倍            |
| 64 GiB 以上      | 依赖工作负载(至少 4GiB)      | 不推荐休眠                   |

#### /boot/efi 分区 - 建议大小为 200 MiB

基于 UEFI 的 AMD64、Intel 64 和 64 位 ARM 需要 200 MiB EFI 系统分区。推荐的最小值是 200 MiB, 默认大小为 600 MiB, 最大为 600 MiB。BIOS 系统不需要 EFI 系统分区。

例如,在每个范围间有 2 GiB、8 GiB 或 64 GiB 系统 RAM 的系统。可根据所选 swap 空间和休眠支持自由裁量。如果您的系统资源允许此操作,增加 swap 空间可提高性能。

将 swap 空间分布到多个存储设备中 - 特别是对于那些使用高速驱动器、控制程序和接口的系统,还可提高 swap 空间性能。

很多系统的分区和卷超过了最低要求。根据具体系统需要选择分区。



# 注意

- 只为那些您需要的分区立即分配存储容量。您可以在任何时间分配空闲空间来满足 需要。
- 如果您不确定如何配置分区,使用安装程序提供的自动默认分区布局。

# PReP boot 分区 - 建议大小为 4 到 8 MiB

当在 IBM Power System 服务器上安装 Red Hat Enterprise Linux 时,磁盘的第一个分区应包含 **PReP** 引导分区。它包含 GRUB2 引导装载程序,可允许 IBM Power Systems 服务器引导 Red Hat Enterprise Linux。

# **D.5.** 分区建议

无法为每个系统分区最佳方法; 最理想的设置取决于您计划如何使用要安装的系统。然而,下面的提示可能帮助您找到最合适的布局以满足您的需要:

- 首先创建具有特定要求的分区,例如,某个分区必须位于特定磁盘中。
- 考虑加密任何可能包含敏感数据的分区和卷。加密可防止未授权的人访问分区中的数据,即使他们可以访问物理存储设备。在大多数情况下,应该至少为包含用户数据的 /home 分区加密。
- 在有些情况下,为 /、/boot 和 /home 以外的目录创建独立挂载点可能非常有用。例如,在运行 MySQL 数据库的服务器中,拥有一个单独的挂载点 /var/lib/mysql 允许您在重新安装的过程中保留数据库,而无需之后从备份中恢复它。但是,使用不必要的挂载点使存储管理更为困难。
- 一些特殊的限制适用于某些可以放置分区布局的目录。值得注意的是,/boot 目录必须总是位于物理分区(不能在 LVM 卷中)。
- 如果您不熟悉 Linux, 请考虑查看 Linux 文件系统层次结构标准, 以了解有关各种系统目录及其内容的信息。
- 每个内核需要大约:60MiB (initrd 34MiB、11MiB vmlinuz 和 5MiB System.map)
- 对于救援模式:100MiB(initrd 76MiB、11MiB vmlinuz 和 5MiB 系统映射)
- 当在系统中启用 **kdump** 时,它将需要大约额外的 40MiB(另一个包含 33MiB 的 initrd) /**boot** 的默认 1 GiB 分区大小应该足以满足大多数常见用例的需要。但如果您计划保留多个内核发行本或者勘误内核,则建议您增大这个分区的大小。
- /var 目录包含许多应用的内容,包括 Apache Web 服务器,DNF 软件包管理器使用该目录临时存储下载的软件包更新。确保分区或包含 /var 的卷至少 5 GiB。
- /**usr** 目录在典型的 Red Hat Enterprise Linux 安装中持有大部分软件。因此,包含此目录的分区或卷应该至少 5 GiB 用于最小安装,使用图形环境的安装需要至少 10 GiB。
- 如果 /usr 或 /var 是独立于剩余 root 卷的分区,引导过程会变得非常复杂,因为这些目录包含了对引导极为重要的组件。在某些情况下,比如这些目录位于 iSCSI 驱动器或 FCoE 位置,系统可能无法引导,或者在关机或重启时挂起并出现 Device is busy 出错信息。这个限制只适用于 /usr 或 /var,不适用于下面的目录。例如: /var/www 的单独分区可以正常工作。



#### 重要

有些安全策略要求将/usr和/var分离,即使它使管理更加复杂。

- 考虑在 LVM 卷组中保留一部分空间不分配。如果您的空间要求改变,但您不希望从其他卷中删除数据,这个未分配空间为您提供了灵活性。您也可以为分区选择 LVM Thin Provisioning 设备类型,使其让卷自动处理未使用的空间。
- 不能缩小 XFS 文件系统的大小 如果您希望使这个文件系统的分区或卷更小,必须备份数据,销 毁文件系统,然后创建一个新的、较小的文件系统。因此,如果您计划稍后更改分区布局,则应 使用 ext4 文件系统。
- 如果您希望在安装后添加更多磁盘或扩展虚拟机磁盘来扩展存储,请使用逻辑卷管理(LVM)。通过使用 LVM,您可以在新驱动器中创建物理卷,然后将其分配给任何您认为适合的卷组和逻辑卷 例如,您可以轻松地扩展您的系统/home(或者其它位于逻辑卷的目录)。

● 取决于系统的固件、引导驱动器大小以及引导驱动器磁盘标签,可能需要创建 BIOS 引导分区或者 EFI 系统分区。请注意,如果您的系统不需要,则无法在图形安装中创建 BIOS 引导或 EFI 系统分区 - 在这种情况下,会在菜单中隐藏它们。

#### 其他资源

● 如何在 IBM Z、LinuxONE 和 PAES 密码中使用 dm-crypt

# D.6. 支持的硬件存储

非常重要的一点是,了解如何配置存储技术以及如何在 Red Hat Enterprise Linux 主要版本间的更改对存储技术的支持。

### 硬件 RAID

您的计算机主板或者附加控制器卡提供的所有 RAID 功能都需要在开始安装进程前进行配置。在 Red Hat Enterprise Linux 中,每个活跃的 RAID 阵列都以一个驱动器的形式出现。

# 软件 RAID

在有多个磁盘的系统上,您可以使用 Red Hat Enterprise Linux 安装程序来把几个驱动器作为 Linux 软件 RAID 阵列操作。使用软件 RAID 阵列时,RAID 功能是由操作系统而非专用硬件控制的。



#### 注意

当预先存在的 RAID 阵列成员设备都是未分区的磁盘/驱动器时,安装程序会将阵列视为一个磁盘,且没有方法来删除阵列。

#### USB 磁盘

您可在安装后连接和配置外部 USB 存储。大多数设备可被内核识别,但有些设备可能无法识别。如果在安装过程中不需要配置这些磁盘,请断开连接以避免潜在的问题。

#### NVDIMM 设备

要使用非易失性双内存模块(NVDIMM)设备作为存储,必须满足以下条件:

- 系统的构架是 Intel 64 或者 AMD64。
- 该设备被配置为扇区模式。Anaconda 可将 NVDIMM 设备重新配置成此模式。
- 该设备必须被 nd\_pmem 驱动程序支持。

在以下附加条件下可使用 NVDIMM 设备引导:

- 系统使用 UEFI。
- 该设备必须使用系统中可用的固件或者 UEFI 驱动程序支持。UEFI 驱动程序可以从设备本身的 ROM 选项加载。
- 该设备必须在命名空间下提供。

要在引导过程中利用 NVDIMM 设备的高性能,将 /boot 和 /boot/efi 目录放在该设备中。



# 注意

引导过程中不支持 NVDIMM 设备的 Execute-in-place(XIP)功能,内核被加载到传统内存中。

# Intel BIOS RAID 设定的注意事项

Red Hat Enterprise Linux 使用 **mdraid** 在 Intel BIOS RAID 组件中安装。这些组件会在引导过程中自动探测到,设备节点路径可在多个引导过程中更改。建议您使用文件系统标签或者设备 UUID 替换设备节点路径(比如 /dev/sda)。您可以使用 **blkid** 命令查找文件系统标签和设备 UUID。

# 附录 E. 更改订阅服务

要管理订阅,您可以在 Red Hat Subscription Management Server 或者 Red Hat Satellite Server 中注册 RHEL 系统。如果需要,可以稍后更改订阅服务。要更改您注册的订阅服务,请从当前服务中取消注册该系统,然后使用新服务进行注册。

本节介绍了如何从 Red Hat Subscription Management Server 和 Red Hat Satellite Server 中取消注册 RHEL 系统。

# 先决条件

使用以下方法注册了您的系统:它包括以下之一:

- Red Hat Subscription Management Server
- Red Hat Satellite Server version 6.11



### 注意

要接收系统更新,请向任一管理服务器注册您的系统。

# E.1. 从 SUBSCRIPTION MANAGEMENT SERVER 中取消注册。

本节介绍如何使用命令行和 Subscription Manager 用户界面从 Red Hat Subscription Management Server 取消注册 RHEL 系统。

# E.1.1. 使用命令行取消注册

使用 unregister 命令从 Red Hat Subscription Management Server 取消注册 RHEL 系统。

# 流程

- 1. 作为 root 用户运行 unregister 命令, 无需任何附加参数。
  - # subscription-manager unregister
- 2. 提示时请提供 root 密码。

在 Subscription Management Server 中取消注册该系统,状态会显示"系统当前没有注册"信息,且**Register** 按钮可用。



#### 注意

要继续不间断的服务,请使用任一管理服务重新注册系统。如果您没有使用管理服务注册系统,您可能无法收到系统更新。有关注册系统的更多信息,请参阅 使用命令行注册您的系统。

#### 其它资源

● 使用和配置红帽订阅管理器

# E.1.2. 使用 Subscription Manager 用户界面取消注册

本节介绍如何使用 Subscription Manager 用户界面从 Red Hat Subscription Management Server 中取消注册 RHEL 系统。

#### 流程

- 1. 登录到您的系统。
- 2. 从窗口的左上方点击 Activities。
- 3. 在菜单选项中点显示应用程序图标。
- 4. 点 Red Hat Subscription Manager 图标,或使用 Red Hat Subscription Manager 进行搜索。
- 5. 在 Authentication Required 对话框中输入管理员密码。Subscriptions 窗口会出现并显示订阅、系统目的和已安装产品的当前状态。未注册的产品会显示红色 X。



# 注意

需要进行身份验证才能在系统上执行特权任务。

6. 点 Unregister 按钮。

在 Subscription Management Server 中取消注册该系统,状态会显示"系统当前没有注册"信息,且**Register** 按钮可用。



#### 注意

要继续不间断的服务,请使用任一管理服务重新注册系统。如果您没有使用管理服务注册系统,您可能无法收到系统更新。有关注册系统的更多信息,请参阅 使用订阅管理器用户界面注册您的系统。

## 其它资源

● 使用和配置红帽订阅管理器

# E.2. 在 SATELLITE 服务器中取消注册

要从 Satellite 服务器中取消 Red Hat Enterprise Linux 系统注册,从 Satellite 服务器中删除该系统。

如需更多信息,请参阅 Satellite Server 文档中的 *管理主机* 指南中的 从 Red Hat Satellite 中删除主机 部分。

# 附录 F. 安装程序中的 ISCSI 磁盘

Red Hat Enterprise Linux 安装程序可以通过两种方式发现并登录到 iSCSI 磁盘:

● 安装程序启动后,它会检查 BIOS 或系统的附加引导 ROM 是否支持 iSCSI 引导固件表(iBFT),它 是可以从 iSCSI 启动的系统的 BIOS 扩展。如果 BIOS 支持 iBFT,安装程序会从 BIOS 读取配置 的引导磁盘的 iSCSI 目标信息,并登录到此目标,使它可用作安装目标。



# 重要

要自动连接到 iSCSI 目标,请激活网络设备以访问该目标。要做到这一点,请使用 ip=ibft 引导选项。如需更多信息,请参阅 网络引导选项。

● 您可以在安装程序的图形用户界面中手动发现和添加 iSCSI 目标。如需更多信息,请参阅 配置存储设备。



# 重要

您不能将 /boot 分区放在使用此方法(包含 /boot 分区的 iSCSI 目标必须配置为与 iBFT 一起使用)手动添加的 iSCSI 目标上。但是,如果安装的系统预期从具有固件 iBFT 以外的方法提供的 iBFT 配置的 iSCSI 启动(例如使用 iPXE),则您可以使用 inst.nonibftiscsiboot 安装程序引导选项删除 /boot 分区限制。

安装程序使用 iscsiadm 查找并登录到 iSCSI 目标,iscsiadm 会自动将这些目标的任何信息存储在 iscsiadm iSCSI 数据库中。然后,安装程序将此数据库复制到安装的系统,并标记任何不用于 root 分区的 iSCSI 目标,以便系统在启动时可以自动登录到这些 iSCSI 目标。如果将 root 分区放在 iSCSI 目标上,initrd 会登录此目标,且安装程序不会将此目标包含在启动脚本中,以避免多次尝试登录到同一目标。