Stack and Heap

Stack is first-in-last-out (FILO) storage used to support function procedure calls

Heap is memory that is allocated and freed in blocks, accessed by pointers.

Stack Usage by fac (I)

Compilers use the stack to keep track of local values for function input parameters and return values.

So the call fac 2 will create a stack "frame" as follows on top of the stack:

n	2
ret	\square_2
prior stack	

Stack Usage by Functions (I)

Consider the obvious way to do factorial in Haskell:

```
fac 0 = 1; fac n = n * fac (n-1)
```

We get the following evaluation of fac 2:

```
fac 2
= 2 * fac 1
= 2 * (1 * fac 0)
= 2 * (1 * 1)
```

The key thing to note here is that when a recursive call (fac 1 say) terminates, there is still some more work to be done by its caller (fac 2 in this case, which still has to multiply by 2)

Stack Usage by fac (II)

It will then make a recursive call, noting that it needs to multiply the result by \mathbf{n} .

n	1
ret	\Box_1
n	2
ret	2 * □ ₁
nrior stack	

Stack Usage by fac (III)

The call $fac\ 1$ will then itself make a recursive call, noting that it needs to multiply the result by n.

n	0
ret	\Box_0
n	1
ret	1 * □0
n	2
ret	2 * □1
prior stack	

Stack Usage by fac (IV)

The call **fac 0** produces result **1** . . .

n	0	
ret	1	
n	1	
ret	1 * □ ₀	
n	2	
ret	2 * □1	
prior stack		

Stack Usage by fac (V)

We pop the stack and return the result

n	1
ret	1 * 1
n	2
ret	2 * □1
prior stack	

Stack Usage by fac (VI)

We pop the stack and return the result

n	2
ret	2 * (1*1)
prior stack	

Stack Usage by fac (VII)

We pop the stack and return the result 2*(1*1) to the original caller

prior stack

Stack Usage by factr (I)

So the call **factr 1 2** will create a stack "frame" as follows on top of the stack:

p	1	
n	2	
ret	\square_2	
stack for fac' 2		

Stack Usage by Functions (II)

Consider the following less obvious way to do factorial in Haskell:

```
fac' n = factr 1 n
factr p 0 = p
factr p n = factr (n*p) (n-1)
```

We get the following evaluation of fac' 2:

```
fac' 2
= factr 1 2
= factr (2*1) 1
= factr (1*(2*1)) 0
= 1*(2*1)
```

The key thing to note here is that when a recursive call (factr (2*1) 1 say) terminates, there is no more work to be done by its caller (factr 1 2).

Stack Usage by factr (II)

It will then make a recursive call, noting that it just returns the result.

p	2*1	
n	1	
ret	\Box_1	
р	1	
n	2	
ret	\Box_1	
stac	k for fac'	2

Stack Usage by factr (III)

factr (2*1) 1 will then make a recursive call, noting that it just
returns the result.

p	1*(2*1)
n	0
ret	\Box_0
р	2*1
n	1
ret	\Box_0
p	1
n	2
ret	\Box_1

stack for fac' 2

Stack Usage by factr (V)

We pop the stack and return the result

p	2*1
n	1
ret	1*(2*1)
р	1
n	2
ret	\Box_1
stack for fac' 2	

Stack Usage by factr (IV)

factr (1*(2*1)) 0 just returns the result, p, which is 1*(2*1).

р	1*(2*1)
n	0
ret	1*(2*1)
р	2*1
n	1
ret	\Box_0
р	1
n	2
ret	\square_1

stack for fac' 2

Stack Usage by factr (VI)

We pop the stack and return the result

р	1
n	2
ret	1*(2*1)

stack for fac' 2

Stack Usage by factr (VII)

We pop the stack and return the result to the caller fac' 2

stack for fac' 2

Tail Call Optimisation factr (I)

So the call **factr 2** from fac' 2 will create a stack "frame" as normal on top of the stack:

p	1	
n	2	
ret	\square_2	
stack for fac'		2

Tail Recursion

Function factr is tail recursive:

- ▶ If making a recursive call, it is the last thing it does.
- ▶ It simply passes on the result of the call to its own caller.
- ▶ We don't need a new stack frame for each recursive call!
- ▶ No need to track own local information once call is made.

This leads to so-called "tail-call optimisation"

Tail Call Optimisation factr (II)

The call factr 1 2 will compute n*p and (n-1) and will then simply update the stack items in place:

р	(2*1)	
n	1	
ret	\square_2	
stac	k for fac'	2

Tail Call Optimisation factr (III)

The call factr (2*1) 1 will compute n*p and (n-1) and will then simply update the stack items *in place*:

р	1*(2*1)
n	0
ret	\square_2
stack for fac' 2	

Tail Call Optimisation factr (V)

We pop the stack and return the result to the caller fac' 2.

stack for fac' 2

Tail Call Optimisation factr (IV)

The call factr (1*(2*1)) 0 will simply return p:

р	1*(2*1)	
n	0	
ret	1*(2*1)	
stack for fac' 2		

Tail Recursion is a While Loop!

In effect we can implement tail recursion just like a while-loop from an imperative language.

Any decent compiler does this optimisation.

Lazy Evaluation

Haskell uses Lazy (non-Strict) Evaluation

- ▶ Expressions are only evaluated *when* their value is needed
- ► In particular, argument expressions are not evaluated before a function is applied
- ▶ We find this approach allows us to write sensible programs not possible if strict-evaluation is used.
- ▶ However, it comes at a price . . .

len and down

▶ We have a length function len:

```
len xs = if null xs then 0 else 1 + len (tail xs)
```

► We have a function down that generates a list, counting down from its numeric argument:

```
down n = if n \le 0 then [] else n : (down (n-1))
```

For example, down 3 = [3,2,1]

▶ We shall consider pattern matching versions shortly

Example: isOdd

- We define a function checking for 'oddness' as follows: isOdd n = n 'mod' 2 == 1
- ► Consider the call isOdd (1+2)
- ▶ A strict (non-lazy) evaluation would be as follows:

► A non-strict (lazy) evaluation would be as follows:

1+2 is only evaluated when mod needs its value to proceed.

Strict evaluation of len (down 1)

```
len (down 1)
= len (if 1 <= 0 then [] else 1 : (down (1-1))
= len (1 : (down (1-1))
= len (1 : (down 0))
= len (1 : (if 0 <= 0 then [] else 0 : (down (0-1))))
= len (1 : [])
= if null (1 : []) then 0 else 1 + len (tail (1 : []))
= 1 + len (tail (1 : []))
= 1 + len []
= 1 + len (if null [] then 0 else 1 + len (tail []))
= 1 + 0
= 1</pre>
```

We have 11 steps

Lazy evaluation of len (down 1) (part 1)

```
len (down 1)
= if null xs_1 then 0 else 1 + len (tail xs_1)
where xs_1 = down 1
= if null xs_1 then 0 else 1 + len (tail xs_1)
where xs_1 = if 1 <= 0 then [] else 1 : (down (1-1))
= if null xs_1 then 0 else 1 + len (tail xs_1)
where xs_1 = 1 : (down (1-1))
= 1 + len (tail xs_1) where xs_1 = 1 : (down (1-1))
= 1 + ( if null xs_2 then 0 else 1 + len (tail xs_2)
where xs_2 = tail xs_1)
where xs_1 = 1 : (down (1-1))

(continued overleaf)
```

Why the $xs_1 = \dots$?

► Consider the first step:

```
len (down 1) = if null xs_1 then 0 else 1 + len (tail xs_1) where xs_1 = down 1
```

- ▶ We don't evaluate down 1 we bind it to formal parameter xs₁
- ▶ Parameter xs occurs twice, but we don't copy:

```
\dotsdown 1 \dotsdown 1 \dots
```

Instead we share the reference, indicated by the where clause:

```
\dots xs_1 \dots xs_1 \dots where xs_1 = down 1
```

- ► Function len is recursive, so we get different instances of xs which we label as xs₁, xs₂, ...
- ► The grouping of an (unevaluated) expression (down 1) with a binding (xs₁ = down 1) is called either a "closure", or a "thunk".
- ▶ Building thunks is a *necessary* overhead for implementing lazy evaluation.

Lazy evaluation of len (down 1) (part 2)

```
1 + (if null xs_2 then 0 else 1 + len (tail xs_2)
        where xs_2 = tail xs_1)
  where xs_1 = 1 : (down (1-1))
= 1 + ( if null xs_2 then 0 else 1 + len (tail xs_2)
        where xs_2 = tail (1 : (down (1-1)))
= 1 + ( if null xs_2 then 0 else 1 + len (tail xs_2)
        where xs_2 = down (1-1)
= 1 + ( if null xs_2 then 0 else 1 + len (tail xs_2)
        where xs_2 = (if (1-1) \le 0
                      then [] else (1-1) : (down ((1-1)-1)))
= 1 + ( if null xs_2 then 0 else 1 + len (tail xs_2)
        where xs_2 = (if 0 \le 0)
                      then [] else (1-1): (down ((1-1)-1)))
= 1 + ( if null xs_2 then 0 else 1 + len (tail xs_2)
        where xs_2 = [] )
= 1 + 0
= 1 12 steps, each more expensive!
```

Lazy Evaluation: the costs

- ▶ Lazy evaluation has an overhead: building thunks
- Memory consumption per reduction step is typically slightly higher
- ► In our examples so far: isOdd (1+2)

len (down 1) we needed to evaluate almost everything

▶ So far we have observed no advantage to lazy evaluation . . .

Advantages of Laziness (I)

▶ Imagine we have a function definition as follows:

```
myfun carg struct1 struct2
= if f carg
    then g struct1
    else h struct2
```

where f, g and h are internal functions

► Consider the following call:

```
myfun val s1Expr s2Expr
```

where both s1Expr and s2Expr are very expensive to evaluate.

- ► With strict evaluation we would have to compute both before applying myfun
- ▶ With lazy evaluation we evaluate f val, and then only evaluate one of either s1Expr or s2Expr, and then, only if g or h requires its value.

Advantages of Laziness (II)

▶ Prelude function take n xs returns the first n elements of xs

```
take 0 _ = []
take _ [] = []
take n (x:xs) = x : (take (n-1) xs)
```

► Function from n generates an *infinite* ascending list starting with n.

```
from n = n : (from (n+1))
```

- ▶ Evaluating from n will fail to terminate for any n.
- ► Evaluation of take 2 (from 0) depends on the evaluation method.

Laziness and Pattern Matching

► Consider a pattern matching version of len

```
len [] = 0
len (x:xs) = 1 + len xs
```

- ► How is call len aListExpression evaluated?
- ▶ In order to pattern match we need to know if aListExpression is empty, or a cons-node.
- ► We evaluate aListExpression, but only to the point were we know this difference

If it is not null, we do not evaluate the head element, or the tail list.

Strict Evaluation of take 2 (from 0)

```
take 2 (from 0)
= take 2 (0 : from 1)
= take 2 (0 : 1 : from 2)
= take 2 (0 : 1 : 2 : from 3)
= take 2 (0 : 1 : 2 : 3 : from 4)
= take 2 (0 : 1 : 2 : 3 : 4 : from 5)
= ...

(You get the idea ...)
```

Lazy Evaluation of take 2 (from 0)

Here we don't bother to show the closures explicitly (using where $xs_1 = ...$).

```
take 2 (from 0)

= take 2 (0 : from 1)

= 0 : (take 1 (from 1))

= 0 : (take 1 (1 : from 2))

= 0 : (1 : take 0 (from 2))

= 0 : (1 : [])
```

We are done! We only built the bit of from 0 that we actually needed.

Evaluation Strategy and Termination

We can summarise the relationship between evaluation strategy and termination as:

► There are programs that simply do not terminate, no matter how they are evaluated

```
e.g. from 0
```

► There are programs that terminate if evaluated lazily, but fail to terminate if evaluated strictly

```
e.g. take 2 (from 0)
```

► There are programs that terminate regardless of chosen evaluation strategy

```
e.g. len (down 1)
```

► However, there are *no* programs that terminate if evaluated strictly, but fail to terminate if evaluated lazily.