Machine Learning and the 'Mogi' model

Improving the efficiency of ensemble-based methods for volcano deformation analyses

SZ4D ML/Al Virtual Workshop 2nd August 2023

MODEL-DATA FRAMEWORK

- 1) Ensemble Kalman Filter (EnKF)

 Adapted for analyses of volcanic
 ground deformation
- 2) Finite Element Method (FEM)
 Physics-based modelling
- Sequentially assimilate and invert geodetic observations
- Constrain the nature of deforming magmatic systems

SIERRA NEGRA, GALAPAGOS

- Inversion of InSAR observations (Gregg et al., 2022)
 - March 2015 January 2018
 - 3D model geometry
 - Refine 8 parameters
- Assess mechanical stability
 - Assumed pressure evolution
 - 10-day rolling failure forecast
 - 25th June 5th July 2018
- Eruption began 26th June 2018

SIERRA NEGRA, GALAPAGOS

- Inversion of InSAR observations (Gregg et al., 2022)
 - March 2015 January 2018
 - 3D model geometry
 - Refine 8 parameters
- Assess mechanical stability
 - Assumed pressure evolution
 - 10-day rolling failure forecast
 - 25th June 5th July 2018
- Eruption began 26th June 2018

LIMITATIONS

- Computational load
 - 240 ensemble members
 - 67 observations, 6 iterations
 - 1680 core hours (~1min per FEM)
- GPS observations
 - Temporally dense
 - Non-feasible with current approach
- Determine 'true' stress state after the 2005 eruption
 - Need entire timeseries
 - Temporal downsampling, or...?

LIMITATIONS

- Computational load
 - 240 ensemble members
 - 67 observations, 6 iterations
 - 1680 core hours (~1 min per FEM)
- GPS observations
 - Temporally dense
 - Non-feasible with current approach
- Determine 'true' stress state after the 2005 eruption
 - Need entire timeseries
 - Temporal downsampling, or...?

OBJECTIVES

- Reduce the number of FEMs evaluated for the EnKF analysis
- Predict deformation field for a given model state
 - Regression algorithm
 - Must be accurate and precise
- Implemented within python
- Start with a simple approach
 - *k*-nearest neighbors

SYNTHETIC TEST

- 'Mogi' point source (Mogi, 1957)
 - Analytical model
 - 5 free parameters

$$\begin{pmatrix} Ux \\ Uy \\ Uz \end{pmatrix} = \frac{(1-v)}{\mu} a^3 \Delta P \begin{pmatrix} x/R^3 \\ y/R^3 \\ z/R^3 \end{pmatrix}$$

- Output 51 x 51 grid (2601 pixels)
- Line-of-sight displacement (InSAR)
 - Add noise

ENKF ANALYSIS

>>> from sklearn.neighbors

import KNeighborsRegressor

- Prediction by local interpolation of k-nearest neighbors
- Only one hyperparameter, k
- 'uniform' or 'distance' weighting
- Different distance metrics
- Doesn't perform well for datasets with large number of features
 - Here we only have 5
- Performs particularly badly with sparse datasets

>>> from sklearn.neighbors

import KNeighborsRegressor

- Prediction by local interpolation of k-nearest neighbors
- Only one hyperparameter, k
- 'uniform' or 'distance' weighting
- Different distance metrics
- Doesn't perform well for datasets with large number of features
 - Here we only have 5
- Performs particularly badly with sparse datasets

>>> from sklearn.preprocessing

ML algorithms typically require features to be of similar magnitude

import StandardScaler

- Remove mean
- Scale to unit variance

Outliers can negatively influence the sample mean and variance

import RobustScaler

- Remove median
- Scale based on interquartile range

>>> from sklearn.model_selection

import train_test_split

- Randomly splits input data into training and testing subsets
- Calculate score for 10 splits
- Not suitable evaluation for use case

import cross_val_score

- Later folds achieve score > 0.95
- Capable of predicting output as EnKF refines parameters
- Later model states are a poor predictor of early model states

>>> from sklearn.model_selection

import train_test_split

- Randomly splits input data into training and testing subsets
- Calculate score for 10 splits
- Not suitable evaluation for use case

import cross_val_score

- Later folds achieve score > 0.95
- Capable of predicting output as EnKF refines parameters
- Later model states are a poor predictor of early model states

ENSEMBLE DIVISION

import StandardScaler

- Standardise model parameters
- Criteria to identify 'similar' model states
 - Threshold, as function of variance
 - Count within threshold

ENSEMBLE DIVISION

MODEL EVALUATION

KNeighborsRegressor.score()

- Consider different numbers of neighbors, k
- Proportional to
 - number of required states
- Inversely proportional to
 - number of neighbours
 - threshold width

MODEL EVALUATION

- L2-Norm
- Maximum Amplitude Residual

MODEL EVALUATION

- L2-Norm
- Maximum Amplitude Residual

FUTURE WORK

- Alternative analytical model
 - 'Yang' ellipsoid (Yang et al., 1988)
 - 8 free parameters

Overpressure trajectories

- Finite Element Model
 - Topography

- Alternative ML algorithms?
 - k-NN performance decreases with added complexity

THANK YOU FOR LISTENING!

ANY QUESTIONS?

Many thanks to our colleagues and collaborators: Jack Albright, Andy Bell, Trish Gregg, Pete LaFemina, Zhong Lu, Yan Zhan

