

Alexander Neuwirth

ZO Resonanz

ZO-Resonanz
Alexander Research

wissen.leben

Gliederung

Experimentelle Untersuchung

Zusammenfassung

Historischer Überblick

-Gliederung 2018-11-2

ZO Resonanz

└─Gliederung

Historischer Überblick

Gliederung

Theorie

ZO Resonanz

Historischer Überblick

Historischer Überblick

2018

WWU MÜNSTER ZO Resonanz

Historischer Überblick

Alexander Neuwirth

Z0 Resonanz

Historischer Überblick

Historischer Überblick

- 1. Vereinheitlichung von elektr. + schwache WW. Kräfteaustausch durch Photon, W^{\pm} , Z^0
- 2. 1979 Nobelpreis für GWS
- 3. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Photon nur bei elektr. Prozessen. (=> neutraler Strom, Z) Anhand von Winkel und 1/3 Energie des e^- folgt Wechselwirkung durch neutrale Ströme. 700000 Bilder überprüft. Spiral/Bremsstrahlung. Neutrionstrahl durch bsplw. $\pi^+ \to \mu^+ + \overline{\nu}_\mu$ und Ladungsfilter
- 4. CERN
- 5. Large Electron Positron Ring (CERN) Präzessionsmessungen weiter Bestätigtbis 2000, gute Bestätigung des Standardmodells W,Z-Boson
- 6. 2013 Francois Englert und Peter Higgs Nobelpreis

Historischer Überblick

- 1. Vereinheitlichung von elektr. + schwache WW. Kräfteaustausch durch Photon. W^{\pm} . Z^0
- 2. 1979 Nobelpreis für GWS
- 3. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Photon nur bei elektr. Prozessen. (=> neutraler Strom, Z) Anhand von Winkel und 1/3 Energie des e^- folgt Wechselwirkung durch neutrale Ströme. 700000 Bilder überprüft. Spiral/Bremsstrahlung. Neutrionstrahl durch bsplw. $\pi^+ \to \mu^+ + \overline{\nu}_\mu$ und Ladungsfilter
- 4. CERN
- 5. Large Electron Positron Ring (CERN) Präzessionsmessungen weiter Bestätigtbis 2000, gute Bestätigung des Standardmodells W,Z-Boson
- 6. 2013 Francois Englert und Peter Higgs Nobelpreis

Historischer Überblick

- 1. Vereinheitlichung von elektr. + schwache WW. Kräfteaustausch durch Photon, W^{\pm} , Z^0
- 2. 1979 Nobelpreis für GWS
- 3. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Photon nur bei elektr. Prozessen. (=> neutraler Strom, Z) Anhand von Winkel und 1/3 Energie des e^- folgt Wechselwirkung durch neutrale Ströme. 700000 Bilder überprüft. Spiral/Bremsstrahlung. Neutrionstrahl durch bsplw. $\pi^+ \to \mu^+ + \overline{\nu}_\mu$ und Ladungsfilter
- 4. CERN
- 5. Large Electron Positron Ring (CERN) Präzessionsmessungen weiter Bestätigtbis 2000, gute Bestätigung des Standardmodells W,Z-Boson
- 6. 2013 Francois Englert und Peter Higgs Nobelpreis

Historischer Überblick

- 1. Vereinheitlichung von elektr. + schwache WW. Kräfteaustausch durch Photon, W^{\pm} , Z^0
- 2. 1979 Nobelpreis für GWS
- 3. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Photon nur bei elektr. Prozessen. (=> neutraler Strom, Z) Anhand von Winkel und 1/3 Energie des e^- folgt Wechselwirkung durch neutrale Ströme. 700000 Bilder überprüft. Spiral/Bremsstrahlung. Neutrionstrahl durch bsplw. $\pi^+ \to \mu^+ + \overline{\nu}_{\mu}$ und Ladungsfilter
- 4. CERN
- 5. Large Electron Positron Ring (CERN) Präzessionsmessungen weiter Bestätigtbis 2000, gute Bestätigung des Standardmodells W,Z-Boson
- 6. 2013 Francois Englert und Peter Higgs Nobelpreis

Historischer Überblick

- 1. Vereinheitlichung von elektr. + schwache WW. Kräfteaustausch durch Photon, W^{\pm} , Z^0
- 2. 1979 Nobelpreis für GWS
- 3. Neutrale Ströme von links nach rechts Antineutrinostrahl in Blasenkammer. Photon nur bei elektr. Prozessen. (=> neutraler Strom, Z) Anhand von Winkel und 1/3 Energie des e^- folgt Wechselwirkung durch neutrale Ströme. 700000 Bilder überprüft. Spiral/Bremsstrahlung. Neutrionstrahl durch bsplw. $\pi^+ \to \mu^+ + \overline{\nu}_\mu$ und Ladungsfilter
- 4. CERN
- 5. Large Electron Positron Ring (CERN) Präzessionsmessungen weiter Bestätigtbis 2000, gute Bestätigung des Standardmodells W,Z-Boson
- 6. 2013 Francois Englert und Peter Higgs Nobelpreis

Z0 Resonanz └─Theorie

Theorie
Einordnung im Standardmodell der Elementarteilchen
Elektroschwache Vereinhe Blichung
Lepenteenstell Untersachung
Zusammend stang

Historischer Überblic

Theorie

Einordnung im Standardmodell der Elementarteilchen Elektroschwache Vereinheitlichung

Experimentelle Untersuchung

Zusammenfassur

4

Einordnung im Standardmodell der Elementarteilchen

Standardmodell[3]

ZO Resonanz

-Theorie Einordnung im Standardmodell der Elementarteilchen

Einordnung im Standardmodell der

Einordnung im Standardmodell der Elementarteilcher

- Elamontartailchan Fichboson und Flementarteilchen
- Ladung
- uct: 2/3
- dsb: -1/3
- v: 0 $- e\mu\tau$: -1
- Antiteilchen invers
- Spin
 - Fermionen (Quarks+Leptonen): 1/2 - Bosonen: 1
- Masse steigt mit Generation
- schwache WW
- W+- => elek. Teilchen WW (beta Zerfall)
- Z0 => auch neutral Teilchen WW (Neutrino)
- eigenes Antiteilchen • Higgs aus Vollständigkeit

Elektroschwache VereinheitlichungAustauschteilchen

- 1. Allg. Grund + Was es ist.
- 2. Warum? Weil Divergenzen in höherer Ordnung/Energien auftreten
- 3. Vereint QED mit schwacher WW.
- 4. Kräfte durch Austauschteilchen
- 5. W,Z bsplw. Beta-Zerfall, Gluon Kernzusammenhalt,Farbladung,8 (n-p-Anziehung)
- 6. (Higgs)
- 7. ?schwere Austauschteilchen ⇒ geringe Stärke der WW. (Graviton schwerer als Higgs)?
- 8. (experimentelle Bestimmung)

Elektroschwache VereinheitlichungAustauschteilchen

ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung

Alexander Neuwirth

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ Photon → elektromagnetische Wechselwirkung

- 1. Allg. Grund + Was es ist.
- 2. Warum? Weil Divergenzen in höherer Ordnung/Energien auftreten
- 3. Vereint QED mit schwacher WW.
- 4. Kräfte durch Austauschteilchen
- 5. W,Z bsplw. Beta-Zerfall, Gluon Kernzusammenhalt,Farbladung,8 (n-p-Anziehung)
- 6. (Higgs)
- 7. ?schwere Austauschteilchen => geringe Stärke der WW. (Graviton schwerer als Higgs)?
- 8. (experimentelle Bestimmung)

Elektroschwache VereinheitlichungAustauschteilchen

ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung

► W,Z-Boson → schwache Wechselwirkung

Z0 Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

Photon → elektromagnetische Wechselwirkung
 W,Z-Boson → schwache Wechselwirkung

- 1. Allg. Grund + Was es ist.
- 2. Warum? Weil Divergenzen in höherer Ordnung/Energien auftreten
- 3. Vereint QED mit schwacher WW.
- 4. Kräfte durch Austauschteilchen
- 5. W,Z bsplw. Beta-Zerfall, Gluon Kernzusammenhalt,Farbladung,8 (n-p-Anziehung)
- 6. (Higgs)
- 7. ?schwere Austauschteilchen => geringe Stärke der WW. (Graviton schwerer als Higgs)?
- 8. (experimentelle Bestimmung)

Elektroschwache VereinheitlichungAustauschteilchen

- ightharpoonup Photon ightharpoonup elektromagnetische Wechselwirkung
- ► W,Z-Boson → schwache Wechselwirkung
- ➤ Gluon → starke Wechselwirkung

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

Photon → elektromagnetische Wechselwirkun
 W,Z-Boson → schwache Wechselwirkung
 Gluon → starke Wechselwirkung

- 1. Allg. Grund + Was es ist.
- 2. Warum? Weil Divergenzen in höherer Ordnung/Energien auftreten
- 3. Vereint QED mit schwacher WW.
- 4. Kräfte durch Austauschteilchen
- 5. W,Z bsplw. Beta-Zerfall, Gluon Kernzusammenhalt,Farbladung,8 (n-p-Anziehung)
- 6. (Higgs)
- 7. ?schwere Austauschteilchen => geringe Stärke der WW. (Graviton schwerer als Higgs)?
- 8. (experimentelle Bestimmung)

Elektroschwache Vereinheitlichung Schwacher Isospin

	Ferr	mionmultiple		
Leptonen	$\left(\begin{array}{c} u_{\mathrm{e}} \\ \mathrm{e} \end{array} \right)_{\mathrm{L}}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L}$ μ_{R}	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{\mathrm{L}}$	
Quarks	$ \begin{pmatrix} u \\ d' \end{pmatrix}_L $ $ u_R $ $ d_R $	$\left(\begin{array}{c} \mathrm{c} \\ \mathrm{s'} \end{array} \right)_{\mathrm{L}}$ c_{R}	$\left(\begin{array}{c} t \\ b' \end{array} \right)_L$ t_R b_R	

Schwacher Isospin[4]

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

- Einführung von schwachem Isospin, analogon zu starkem Isospin
 Umwandung durch Absorption von W[±]-Boson innerhalb Multiplett (darin Ladungsdifferenz = 1)
- Chiralität Index R/L formal: Zerlegung von Dirac-Spinoren in orthogonale Zustände die unter Paritätsoperationen ineinander übergehen. Eigenzustände +1
- Rechtshändige e, μ, τ Singulett Zustand.
- invers für Antiteilchen: rechshändige Fermionen (linkshändige Antifermionen) Singulettt ($T=0=T_3$)
- Chiralität (l/r), Spinor Symmetrie
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt
- z_f beschreibt Ladung
- Der' bedeuted != Masseneigenzustände, sondern Quarkmisch-Matrix CKM

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ { m e} \end{pmatrix}_{ m L}$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array} \right)_{ m L}$	$\left(\begin{array}{c} \nu_{\tau} \\ \tau \end{array}\right)_{\mathrm{L}}$	1/2	
Le	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	
Quarks	$\begin{pmatrix} u \\ d' \end{pmatrix}_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c} t \\ b' \end{array}\right)_L$	1/2	
Qua	u_{R}	c_{R}	t_{R}	0	
	d_{R}	\mathbf{s}_{R}	b_{R}	0	

Schwacher Isospin[4]

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- Einführung von schwachem Isospin, analogon zu starkem Isospin
 Umwandung durch Absorption von W[±]-Boson innerhalb Multiplett (darin Ladungsdifferenz = 1)
- Chiralität Index R/L formal: Zerlegung von Dirac-Spinoren in orthogonale Zustände die unter Paritätsoperationen ineinander übergehen. Eigenzustände +1
- Rechtshändige e, μ, τ Singulett Zustand.
 invers für Antiteilchen: rechshändige Fermionen (linkshändige
- Antifermionen) Singulettt ($T = 0 = T_3$)
 Chiralität (I/r), Spinor Symmetrie
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt
- z_f beschreibt Ladung
- Der' bedeuted != Masseneigenzustände, sondern Quarkmisch-Matrix CKM
- ?was bedeutet der ' (Cabibbo-Rotation)?

Elektroschwache Vereinheitlichung Schwacher Isospin

		Fermionmultipletts			T	T_3	
ntonen	repronen	$\begin{pmatrix} \nu_{\rm e} \\ { m e} \end{pmatrix}_{ m L}$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mathrm{L}}$	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{\mathrm{L}}$	1/2	$+1/2 \\ -1/2$	
I	,	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	
Onarks	AL IVO	$\begin{pmatrix} u \\ d' \end{pmatrix}_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_{L}$	$\begin{pmatrix} t \\ b' \end{pmatrix}_L$	1/2	$+1/2 \\ -1/2$	
Į Č	on >	u_{R}	c_{R}	$\mathrm{t_R}$	0	0	
		d_{R}	s_{R}	b_{R}	0	0	

Schwacher Isospin[4]

ZO Resonanz
Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

- Einführung von schwachem Isospin, analogon zu starkem Isospin
 Umwandung durch Absorption von W[±]-Boson innerhalb Multiplett (darin Ladungsdifferenz = 1)
- Chiralität Index R/L formal: Zerlegung von Dirac-Spinoren in orthogonale Zustände die unter Paritätsoperationen ineinander übergehen. Eigenzustände +1
- Rechtshändige e, μ, τ Singulett Zustand.
- invers für Antiteilchen: rechshändige Fermionen (linkshändige Antifermionen) Singulettt ($T=0=T_3$)
- Chiralität (l/r), Spinor Symmetrie
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt
- z_f beschreibt Ladung
- Der' bedeuted != Masseneigenzustände, sondern Quarkmisch-Matrix CKM
- ?was bedeutet der ' (Cabibbo-Rotation)?

Elektroschwache Vereinheitlichung Schwacher Isospin

	Fermionmultipletts			T	T_3	$z_{ m f}$
Leptonen	$\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix}_{\rm L}$	$\left(\begin{array}{c} \nu_{\mu} \\ \mu \end{array}\right)_{\mathrm{L}}$	$\left(\begin{array}{c} \nu_{ au} \\ au \end{array} ight)_{ ext{L}}$	1/2	$^{+1/2}_{-1/2}$	$0 \\ -1$
Lej	e_{R}	$\mu_{ m R}$	$ au_{ m R}$	0	0	-1
ırks	$\begin{pmatrix} u \\ d' \end{pmatrix}_L$	$\begin{pmatrix} c \\ s' \end{pmatrix}_L$	$\left(\begin{array}{c} t \\ b' \end{array}\right)_L$	1/2	$^{+1/2}_{-1/2}$	$+2/3 \\ -1/3$
Quarks	u_{R}	c_{R}	t_{R}	0	0	+2/3
	d_{R}	s_{R}	b_{R}	0	0	-1/3

Schwacher Isospin[4]

ZO Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

- Einführung von schwachem Isospin, analogon zu starkem Isospin
 Umwandung durch Absorption von W[±]-Boson innerhalb Multiplett (darin Ladungsdifferenz = 1)
- Chiralität Index R/L formal: Zerlegung von Dirac-Spinoren in orthogonale Zustände die unter Paritätsoperationen ineinander übergehen. Eigenzustände +1
- Rechtshändige e, μ, τ Singulett Zustand.
- invers für Antiteilchen: rechshändige Fermionen (linkshändige Antifermionen) Singulettt ($T=0=T_3$)
- Chiralität (l/r), Spinor Symmetrie
- Rechtshändige Neutrinos $T_3 = z = 0$, keine WW, Auftreten in Natur unbekannt
- z_f beschreibt Ladung
- Der' bedeuted != Masseneigenzustände, sondern Quarkmisch-Matrix CKM
- ?was bedeutet der ' (Cabibbo-Rotation)?

Elektroschwache Vereinheitlichung

Austauschteilchen

 β -Zerfall[5]

Alexander Neuwirth

Elektroschwache Vereinheitlichung Austauschteilchen

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$
- 3. analog $u \rightarrow d + W^+$
- 4. T: d(-1/2)=W(?)+u(1/2)
- 5. T: W(?)=e(-1/2)+v(-1/2)
- 6. ?Wieso T=1?
- 7. B^0 postuliert
- 8. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

 β -Zerfall[5]

Alexander Neuwirth

Z0 Resonanz

Theorie

Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

T₃ soll erhalten bleiben

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$
- 3. analog u \rightarrow d + W^+
- 4. T: d(-1/2)=W(?)+u(1/2)
- 5. T: W(?)=e(-1/2)+v(-1/2)
- 6. ?Wieso T=1?
- 7. B^0 postuliert
- 8. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

$$W^-: T_3 = -1$$

 β -Zerfall[5]

Alexander Neuwirth 8

Z0 Resonanz
—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

▶ T_2 soll erhalten bleiben ▶ W^- : $T_2 = -1$

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$
- 3. analog $u \rightarrow d + W^+$
- 4. T: d(-1/2)=W(?)+u(1/2)
- 5. T: W(?)=e(-1/2)+v(-1/2)
- 6. ?Wieso T=1?
- 7. B⁰ postuliert
- 8. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

Austauschteilchen

 $ightharpoonup T_3$ soll erhalten bleiben

$$W^-: T_3 = -1$$

$$W^+: T_3 = 1$$

 β -Zerfall[5]

ZO Resonanz

Theorie

Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung

Elektroschwache Vereinheitlichung Austauschteilchen

T₃ soll erhalten bleiben
 W⁻: T₃ = −1
 W⁺: T₃ = 1

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$
- 3. analog u \rightarrow d + W^+
- 4. T: d(-1/2)=W(?)+u(1/2)
- 5. T: W(?)=e(-1/2)+v(-1/2)
- 6. ?Wieso T=1?7. B⁰ postuliert
- 8. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

Austauschteilchen

- $ightharpoonup T_3$ soll erhalten bleiben
- $W^-: T_3 = -1$
- $W^+: T_3 = 1$
- W^0 : $(T=1, T_3=0)$
- B^0 : $(T = 0, T_3 = 0)$

 β -Zerfall[5]

Z0 Resonanz -Theorie

 V^0 : $(T = 1, T_1 = 0)$ B^0 : $(T = 0, T_1 = 0)$

Elektroschwache Vereinheitlichung

-Elektroschwache Vereinheitlichung

-Elektroschwache Vereinheitlichung

- 1. Bekannt aus schwacher WW
- 2. $d\rightarrow u + W^-$
- 3. analog u \rightarrow d + W^+
- 4. T: d(-1/2)=W(?)+u(1/2)
- 5. T: W(?)=e(-1/2)+v(-1/2)
- 6. ?Wieso T=1?
- 7. B^0 postuliert
- 8. Mehr zum Beta-Zerfall nächste Woche (+Paritätsverletzung)

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

ZO Resonanz

Theorie
Elektroschwache Vereinheitlichung
Elektroschwache Vereinheitlichung

troschwache Vereinheitlichung $|\gamma\rangle = +\cos\theta_W |B^0\rangle + \sin\theta_W |W^0\rangle$ $|Z^0\rangle = -\sin\theta_W |B^0\rangle + \cos\theta_W |W^0\rangle$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. spontane Symmetriebrechung, diagonaliesierung der Massematrix führt zu diesen.
- 3. orthogonal + linear Kombination
- 4. Kopplungsstärke g für schwache WW. aus QFT => Kopplungskonstante
- 5. experimentelle Bestimmung, später mehr

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\rm W} |B^0\rangle + \sin\theta_{\rm W} |W^0\rangle$$

 $|Z^0\rangle = -\sin\theta_{\rm W} |B^0\rangle + \cos\theta_{\rm W} |W^0\rangle$

$$\cos \theta_{
m W} = rac{M_{
m W}}{M_{
m Z}} pprox 0.88$$

ZO Resonanz

—Theorie
—Elektroschwache Vereinheitlichung
—Elektroschwache Vereinheitlichung

ektroschwache Vereinheitlichung $\begin{aligned} |\gamma\rangle &= +\cos\theta_W |\mathcal{B}^0\rangle + \sin\theta_W |W^0| \\ |\mathcal{I}^0\rangle &= -\sin\theta_W |\mathcal{B}^0\rangle + \cos\theta_W |W^0| \end{aligned}$

 $\cos\theta_W = \frac{M_W}{M_Z} \approx 0.88$

- Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. spontane Symmetriebrechung, diagonaliesierung der Massematrix führt zu diesen.
- 3. orthogonal + linear Kombination
- 4. Kopplungsstärke g für schwache WW. aus QFT => Kopplungskonstante
- 5. experimentelle Bestimmung, später mehr

Elektroschwache Vereinheitlichung

$$|\gamma\rangle = +\cos\theta_{\mathrm{W}}|B^{0}\rangle + \sin\theta_{\mathrm{W}}|W^{0}\rangle$$

 $|Z^{0}\rangle = -\sin\theta_{\mathrm{W}}|B^{0}\rangle + \cos\theta_{\mathrm{W}}|W^{0}\rangle$

$$\cos \theta_{\rm W} = \frac{M_{\rm W}}{M_{\rm Z}} \approx 0.88$$

$$e = g \cdot sin\theta_{W}$$

- 1. Drehung um Weinberg-Winkel/elektroschwachen Mischungswinkel, Naturkonstante
- 2. spontane Symmetriebrechung, diagonaliesierung der Massematrix führt zu diesen.
- 3. orthogonal + linear Kombination
- 4. Kopplungsstärke g für schwache WW. aus QFT => Kopplungskonstante
- 5. experimentelle Bestimmung, später mehr

Historischer Überblick

Theorie

Experimentelle Untersuchung

Erzeugung

Nachweis

Eigenschaften

Neutrinogenerationen

7usammenfassun

ZO Resonanz
Experimentelle Untersuchung

Hastorischer Überblick
Theorie
Experimentelle Untersuchung
Ezreugung
Nachweis
Eigenschaften
Neutrinogenerationen

Alexander Neuwirth

10

Z0 Resonanz

Erzeugung

- W/Z-Boson durch Antilepton+Lepton/AntiQuark+Quark Reaktion
- kollidierende Teilchenstrahlen
- feynman diagram
- Zeit nach rechts
- Antiteilchen Zeitlich invers (Aus Dirac-Gleichung (Schrödinger gleichung mit eingesetzter Impuls/Energie Relation wirkt auf vier komponentigen Dirac Spinor) ergeben sich positive und negative Lösungen für die Energie) (bzw. Klein Gordon Gleichung (entkoppelt))
- nach Stückelberg-Feynman-Interpretation, bsplw. E-Feld e^- vs e^+ mit anderer Richtung ist gleich. (Dirac sagte Antiteilchen vorher/definierte, wobei negative Energien besetzt sind und Löcher sich ausbreiten basierend auf Pauli-Ausschlussprinzip, da Bosonen nicht gehorchen \Rightarrow reverse Zeit Interpretation)
- über yoder Z zu Fermion und Antifermion paar.
- bei passender Energie approx M_Z dominiert Z^0 , aus QFT+Feynmanregeln

Erzeugung

Schwerpunktsenergie $\sqrt{s} = 2E_e \ge M_Z c^2 \approx 91.6 \, GeV$

Erzeugung

► Schwernunktsenerele √3 = 2E. > M-c² ≈ 91.6 GeV

- 1. 1989 am Stanford Linear Collider und LEP
- 2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d) => e-e+ Kollision einfacher

12

Erzeugung

- Schwerpunktsenergie $\sqrt{s} = 2E_{\rho} \ge M_7 c^2 \approx 91.6 \, GeV$
- ▶ pp-Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600 \, GeV$ pro Proton

ZO Resonanz

Experimentelle Untersuchung

Erzeugung

Erzeugung

Erzeugung

▶ Schwerpunktsenergie $\sqrt{s} = 2E_x \ge M_2 c^2 \approx 91.6 \text{ GeV}$ ▶ pp-Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600 \text{ GeV}$ pro Proton

- 1. 1989 am Stanford Linear Collider und LEP
- 2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d) => e-e+ Kollision einfacher
- 3. 1996 am LEP, 50 \rightarrow 86 \rightarrow 104,6 GeV

12

Erzeugung

- Schwerpunktsenergie $\sqrt{s} = 2E_{\rho} \ge M_7 c^2 \approx 91.6 \, GeV$
- ▶ pp-Kollision: $u + \overline{u} \rightarrow Z^0$ benötigt $\sqrt{s} \gtrsim 600$ GeV pro Proton
- $ightharpoonup e^+ + e^-
 ightarrow W^+ + W^-$ benötigt $\sqrt{s} \ge 2M_{\rm W}c^2 \approx 160.8~{\rm GeV}$

ZO Resonanz

Experimentelle Untersuchung

Erzeugung

Erzeugung

Erzeugung

▶ Schwerpunktsenergie $\sqrt{s} = 2E_x \ge M_y c^2 \approx 91.6 \text{ GeV}$ ▶ ρ_0 -Kollision: $u + \overline{u} \rightarrow z^0$ benötigt $\sqrt{s} \gtrsim 600 \text{ GeV}$ pro Proton

▶ $e^+ + e^- \rightarrow W^+ + W^-$ benötigt $\sqrt{s} \ge 2M_{tt}c^2 \approx 160.8 \text{ GeV}$

- 1. 1989 am Stanford Linear Collider und LEP
- 2. Energie muss in Quarks enthalten sein \rightarrow sehr viel mehr Energie auf Protonen (analog mit d) => e-e+ Kollision einfacher
- 3. 1996 am LEP, 50 \rightarrow 86 \rightarrow 104,6 GeV

Erzeugung Luminosität

Bhabha Streuung [7]

Alexander Neuwirth 13

ZO Resonanz
—Experimentelle Untersuchung
—Erzeugung
—Erzeugung

- 1. Gibt Events pro Zeit Detektion pro Wirkungsquerschnitt an.
- 2. Luminosität hängt von Beschleuniger ab
- 3. sigma ist gesucht
- 4. N sind Anzahl Teilchen be REaktion
- 5. eig. noch Fehler korrektur mit Akzeptanzraten und Effizienzen
- 6. Wirkungsquerschnitt für Bhabha-Streuung ee → ee reine QED ziemlich genau bekannt (Kamera am detektor?)

ErzeugungEinfluss durch Gezeiten

LEP Ausdehunung[8]

ZO Resonanz

Experimentelle Untersuchung

Erzeugung

Erzeugung

- 1. weiter Effekt
- 2. Energie schwankt im Tages verlauf
- 3. Resonante depolarisation
- 4. Größe primär relevant für Energie (+Synchrotron strahlung)

ErzeugungEinfluss durch Gezeiten

Relative Strahlenergieänderung[7]

Alexander Neuwirth 14

Z0 Resonanz
C-II-Erzeugung
LErzeugung
Erzeugung

- 1. weiter Effekt
- 2. Energie schwankt im Tages verlauf
- 3. Resonante depolarisation
- 4. Größe primär relevant für Energie (+Synchrotron strahlung)

Nachweis Detektor

L3 Detektor [7]

Alexander Neuwirth 15

ZO Resonanz
Experimentelle Untersuchung
Nachweis
Nachweis

- 1. Analog Vorlesung, Hadronen Jets
- 2. Masse/Ladung durch Felder+ Drifts mit Magnetfeld

Nachweis Detektor

L3 Detektor [7]

Z0 Resonanz

—Experimentelle Untersuchung

└─Nachweis

└─ Nachweis

- 1. Analog Vorlesung, Hadronen Jets
- 2. Masse/Ladung durch Felder+ Drifts mit Magnetfeld

Nachweis

1983 am CERN

 $q + \overline{q} \rightarrow Z^0 \rightarrow e^+ + e^-$ [4]

Alexander Neuwirth 16

ZO Resonanz

Experimentelle Untersuchung

Nachweis

Nachweis

- Plane unten sind Kaloriemeterzellen
- Energie Summe = Masse Z^0
- Beispiel Event einer Messung
- Winkel 180° => entgegen gesetzte Richtungen
- ?Woher sicher, dass Z⁰ Zerfall?

Nachweis

1993 am LEP/CERN

 $e^- + e^-
ightarrow {\it Z}^0
ightarrow$ hadronische Jets [7]

ZO Resonanz

Experimentelle Untersuchung

└─Nachweis

└─Nachweis

- 1. Balken sind die Energien die Kaloriemeter messen
- 2. L3 detector LEP
- 3. Beispiel Muon
- 4. Winkel 180° ⇒ entgegen gesetzte Richtungen
- 5. ?Woher sicher, dass Z^0 Zerfall?

Nachweis 1993 am LEP/CERN

 $e^- + e^- \to Z^0 \to e^+ + e^-$ [7]

00

Z0 Resonanz

Experimentelle Untersuchung

└─Nachweis

└─Nachweis

- 1. Balken sind die Energien die Kaloriemeter messen
- 2. L3 detector LEP
- 3. Beispiel Muon
- 4. Winkel 180° ⇒ entgegen gesetzte Richtungen
- 5. ?Woher sicher, dass Z^0 Zerfall?

Nachweis

1993 am LEP/CERN

$$e^- + e^- \rightarrow Z^0 \rightarrow \mu^+ + \mu^-$$
 [7]

Z0 Resonanz

Experimentelle Untersuchung

└─Nachweis

- 1. Balken sind die Energien die Kaloriemeter messen
- 2. L3 detector LEP
- 3. Beispiel Muon
- 4. Winkel 180° ⇒ entgegen gesetzte Richtungen
- 5. ?Woher sicher, dass Z^0 Zerfall?

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \, GeV/c^2$
 - $\Gamma_7 = 2,495(2) \, GeV$

ZO Resonanz

Experimentelle Untersuchung

Eigenschaften

Eigenschaften

Experimentelle Bestimmung

Messung:

M₂ = 91,188(2) GeV/c²

F₂ = 2,495(2) GeV

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2.
- 3. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- 4. Anti+Neutrino schwer detektierbar \Rightarrow % über Γ_{tot}

5. totale Breite = alle Zerfälle Anti+Fermion???

Eigenschaften

Experimentelle Bestimmung

- Messung:
 - $M_7 = 91,188(2) \, GeV/c^2$
 - $\Gamma_7 = 2,495(2) \, GeV$
- > Zerfall:

$$Z^0 \rightarrow e^+ + e^-$$
 3,363(4) %
 $\mu^+ + \mu^-$ 3,366(7) %
 $\tau^+ + \tau^-$ 3,370(8) %
 $V^+_{e,\mu,\tau} + \overline{V}_{e,\mu,\tau}$ 20,0(6) %
Hadronen 69,91(6) %

ZO Resonanz
Experimentelle Untersuchung
Eigenschaften
Eigenschaften

- 1. Über Wirkungsquerschnitt? src [PD12]
- 2
- 3. Hadronen (idR. Anti+Quark) nicht unterscheidbar
- 4. Anti+Neutrino schwer detektierbar \Rightarrow % über Γ_{tot}
- 5. totale Breite = alle Zerfälle Anti+Fermion???

Neutrinogenerationen

Wirkungsquerschnitt

$$\sigma_f = \frac{12\pi \cdot \Gamma_f \cdot \Gamma_e}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$$

ZO Resonanz

Experimente

2018-1

Neutrinogenerationen Wirkungsquerschnitt

 $\sigma_f = \frac{12\pi \cdot \Gamma_f \cdot \Gamma_e}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2}$

- 1. Formel für σ Breit-Wigner
- 2. Einheiten *h* und *c* multiplizieren
- 3. Abhängig von ...
- 4. y unterdrückt

Neutrinogenerationen

Zerfallsbreite

$$\Gamma_Z = \sum_f \Gamma_{Z \to f\bar{f}}$$

20 Alexander Neuwirth

ZO Resonanz

Experimentelle Untersuchung Neutrinogenerationen

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 2. G_F Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}
- 5. Had: u,c = 2/3; d,s,b = -1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie aus Z^0 ($\approx 175 \, GeV$)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot} = 3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\Gamma_{Z} = \sum_{f} \Gamma_{Z o f ar{f}}$$

$$= \Gamma_{\mathsf{Had}} + \Gamma_{\mathsf{Lep}} + \Gamma_{\mathsf{v}}$$

18-11-29

Z0 Resonanz

Experimentelle Untersuchung

Neutrinogenerationen

Neutrinogenerationen

eutrinogenerationen erfallsbreite $= \sum_{f} \Gamma_{Z \rightarrow ff}$ $= \Gamma_{\text{Nad}} + \Gamma_{\text{Lep}} + \Gamma_{\nu}$

1.
$$\Gamma_f = \frac{G_f M_2^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

2. G_F Fermikonstante

3. Q_f Ladung des Fermions

4. Lép: e^{\pm} , μ^{\pm} , τ^{\pm}

5. Had: u,c=2/3; d,s,b=-1/3

6. Neutrinos

7. kein top-Quark weil nicht genug Energie aus Z^0 ($\approx 175 \, GeV$)

8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur

9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)

10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} \Gamma_{Z} &= \sum_{f} \Gamma_{Z \to f\bar{f}} \\ &= \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{v} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{v} \end{split}$$

ZO Resonanz

Experimentelle Untersuchung

1.
$$\Gamma_f = \frac{G_f M_2^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

2. *G_F* Fermikonstante

3. Q_f Ladung des Fermions

4. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}

5. Had: u,c = 2/3; d,s,b = -1/3

6. Neutrinos

7. kein top-Quark weil nicht genug Energie aus Z^0 ($\approx 175 \, GeV$)

8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur

9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)

10. $\Gamma_e/\Gamma_{tot} = 3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} & \Gamma_{Z} = \sum_{f} \Gamma_{Z \to f\bar{f}} \\ & = \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{\nu} \\ & = N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{\nu} \\ & = 3 \cdot 2 \cdot 94,9 \, \textit{MeV} + 3 \cdot 3 \cdot 122,4 \, \textit{MeV} + 3 \cdot 83,3 \, \textit{MeV} + 3 \cdot 165,8 \, \textit{MeV} \end{split}$$

Z0 Resonanz

Experimentelle Untersuchung

Neutrinogenerationen

Neutrinogenerationen

The state of the

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 2. *G_F* Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}
- 5. Had: u,c=2/3; d,s,b=-1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie aus Z^0 ($\approx 175 \, GeV$)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} &\Gamma_{Z} = \sum_{f} \Gamma_{Z \to f\bar{f}} \\ &= \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{\nu} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{\nu} \\ &= 3 \cdot 2 \cdot 94.9 \, \text{MeV} + 3 \cdot 3 \cdot 122.4 \, \text{MeV} + 3 \cdot 83.3 \, \text{MeV} + 3 \cdot 165.8 \, \text{MeV} \\ &= 2.42 \, \text{GeV} \end{split}$$

ZO Resonanz Experimentelle Untersuchung

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 2. *G_F* Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lep: e^{\pm} , μ^{\pm} , τ^{\pm}
- 5. Had: u,c = 2/3; d,s,b = -1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie aus Z^0 ($\approx 175 \, GeV$)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot} = 3,37\%$ passt auch zu Exp.

20

Neutrinogenerationen

Zerfallsbreite

$$\begin{split} &\Gamma_{Z} = \sum_{f} \Gamma_{Z \rightarrow f\bar{f}} \\ &= \Gamma_{\text{Had}} + \Gamma_{\text{Lep}} + \Gamma_{v} \\ &= N_{C} \cdot 2 \cdot \Gamma_{u} + N_{C} \cdot 3 \cdot \Gamma_{d} + 3 \cdot \Gamma_{e} + 3 \cdot \Gamma_{v} \\ &= 3 \cdot 2 \cdot 94,9 \, \textit{MeV} + 3 \cdot 3 \cdot 122,4 \, \textit{MeV} + 3 \cdot 83,3 \, \textit{MeV} + 3 \cdot 165,8 \, \textit{MeV} \\ &= 2,42 \, \textit{GeV} \\ &\xrightarrow[\text{korrektur}]{\text{Strahlungs-}} 2,497 \, \textit{GeV} \end{split}$$

Z0 Resonanz

Red Integer at Jones Part State Sta

1.
$$\Gamma_f = \frac{G_F M_Z^3}{24\sqrt{2}\pi} \cdot (1 + (1 - e|Q_f|\sin^2\theta_W)^2)$$

- 2. G_F Fermikonstante
- 3. Q_f Ladung des Fermions
- 4. Lép: e^{\pm} , μ^{\pm} , τ^{\pm}
- 5. Had: u,c= 2/3; d,s,b=-1/3
- 6. Neutrinos
- 7. kein top-Quark weil nicht genug Energie aus Z^0 ($\approx 175 \, GeV$)
- 8. Korrekturen aus QFT, höherer Ordungen, Strahlungskorrektur
- 9. Passt mit Unsicherheiten zu Exp. (nicht auf Folie)
- 10. $\Gamma_e/\Gamma_{tot}=3,37\%$ passt auch zu Exp.

Neutrinogenerationen

Wirkungsquerschnitt $e^+e^- \rightarrow$ Hadronen [4]

Alexander Neuwirth 21

Z0 Resonanz

Experimentelle Untersuchung

Neutrinogenerationen

-- Neutrinogenerationen

- 1. Cern Experiment
- 2. Schwerpunkt energie gegen Wirkungsquerschnitt
- 3. Ähnlich der Breit Wigner Funktion aber nicht passend symmetrisch durch Korrekturen höherer Ordnung udn Bremstrahlung durch e^-
- 4. Verschiedene Anzahl-Neutrinogenerationen-Kurven
- 5. 3 Neutrinogenerationen \rightarrow 3 Leptonen 3 Quarks Generationen

2018-11-2

Z0 Resonanz
L—Zusammenfassung

Historischer Ot Theorie Experimentells

Zusammenfassung Zusammenfassung

Historischer Überblic

Theorie

Experimentelle Untersuchun

Zusammenfassung Zusammenfassung

Zusammenfassung

- ightharpoonup Weinbergwinkel $\cos \theta_{\rm W} \approx 0.88$
- ightharpoonup Zerfallsbreite $\Gamma_7 \approx 2.4 \, GeV$
- ▶ 3 Neutrinogeneration

Zusammenfassung

➤ Weinbergvinkel cos θ₀ ≈ 0.88

➤ Zeffalsbroles Γ₂ ≈ 2.4 GeV

➤ 3 Neutrinogeneration

- 1. Weinbergwinkel Massenverhältniss W,Z Boson
- 2. Zerfallsbreite aus QFT großer Erfolg in Übereinstimmung mit Experiment
- 3. Bestätigung, dass es 3 Neutrinogenerationen gibt
- 4. Weiterfüherend Große Vereinheitlichung Analog ab 10¹⁶ GeV ⇒ keine Differenzierung Fermionen, Quarks und Leptonen. (Astrovorträge, Universumentwicklungröhre)
- 5. Noch Weiterfüherend Quantengravitation kombiniert mit GUT

Quellen I

Sheldon Glashow, Abdus Salam and Steven Weinberg. URL: http://thescientificodyssey.libsyn.com/episode-225-putting-the-puzzle-together (besucht am 12.11.2018).

F.J. Hasert u. a. "Search for elastic muon-neutrino electron scattering". In: Physics Letters B 46.1 (1973), S. 121–124. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(73)90494-2. URL: http://www.sciencedirect.com/science/article/pii/0370260373004042

Z0 Resonanz

Zusammenfassung

Zusammenfassung

Quellen

Quellen I

Sheldon Glashow, Abdus Salam and Steven Weinberg, URL http://thescientificodyssey.libum.com/episode-zp putting-the-puzzle-together (besucht am 12.11.2018 F.J. Hasert u. a., Search for elastic muon-neutrino electron

scattering*. In: Physics Letters B 46.1 (1973), S. 121-124.1551 0370-2693.000; io. 1016/0370-2693(73)90494-2. URL: http://www.sciencedirect.com/science/article/pii/ 03709893739006942

Quellen II

- Standardmodell. URL: https://de.wikipedia.org/wiki/Standardmodell (besucht am 12.11.2018).
- Povh et al. Teilchen und Kerne. Springer Spektrum, 2014. Kap. 12.
- Beta-Decay. URL: https://de.wikipedia.org/wiki/Betastrahlung (besucht am 12.11.2018).
- Donald H. Perkins. Introduction to High Energy Physics. Cambridge University Press, 2000.

Z0 Resonanz

Zusammenfassung

Zusammenfassung

Description of the control of the

Quellen III

Versuch ZO-Resonanz. URL: https://www.physik.hu-berlin.de/de/eephys/teaching/lab/zOresonance/index_html (besucht am 25.11.2018).

How is the beam energy calibrated through the resonant spin depolarization? URL:

http://tlep.web.cern.ch/content/how-beam-energy-calibrated-through-resonant-spin-depolarization (besucht am 29.11.2018).

ZO Resonanz
Zusammenfassung
Zusammenfassung
Quellen

Quellen III

- Versuch ZO-Resonanz, URL: https://www.physik.huharlin.da/da/marhys/teaching/lah/mfrasonance/in
- | How is the beam energy calibrated through the resonant spin depolarization? uni: http://lisp.web.cerm.ch/content/how-beam-energy-chitp://lisp.web.cerm.ch/content/how-beam-energy-chitpstded-through-resonant-apin-depolarization (bes

Alexander Neuwirth

ZO Resonanz

ZO Resonanz

-Zusammenfassung

Vielen Dank für eure Aufmerksamkeit!

Vielen Dank für eure Aufmerksamkeit!

Fragen?