

Wit Jakuczun @ WLOG Solutions

Effective Data Science process

ABD point of view

Effective data science is a conjunction of three aspects

Effective data science is a conjunction of three aspects

Knowledge

Tools

Use any reasonable methodology.

Deployment

Automate, automate, automate.

Evaluation

Tools

- 1. What is a business case for a model?
- 2. When exactly the model is being run?
- 3. What data is available at the moment?
- 4. When and how is the recommendation using score generated?
- 5. When do you get the feedback how good was the recommendation?
- 6. What is a test plan for the evaluation phase?
- 7. Is all the data historized?

R development & deployment

Software engineer point of view

POC vs Deployment

	POC	Productional
Goal	Evaluate: Is feasible? Estimate: Is it worth? Response can be No	Deliver functionality
User	Internal / Developer	External / Non developer
Environment	Development	Production
Lifetime	Short	Long

Production ready setup

Need to support

At the same time

- Development
- On production
 - Bug fixing
 - Backward support
 - Data & configuration migrations

Reproducibility is required!

Preparation for release

- Get ready for upgrade
 - How not to break consumer systems?
 - How not to break used functionalities?
 - How not to lose valuable data on production?
 - What version is deployed on production?
- Get ready for support: in case of problem
 - Is it possible to detect cause?
 - Is it possible to reproduce?
 - o Is it possible to fix without upgrade?

Conclusion

To productionize analytical solution you should handle it as **any other software solution**

You need to use **software solution development guidelines**

Version control - why?

- Collaboration
 - Working on same source code
 - Merging automatization

- Change history
 - Change description
 - Change log
 - o "Time machine"

Version control - svn vs git

Centralized version control

Distributed version control

Standardized project (RSuite)

Project is integral - must be managed as a whole

- Master scripts to control a workflow
- Project local packages to control complexity of your code
- Dependencies definition to reproduce results

Why do we need standardization

- Flat learning curve
- Easier automatization
- Simpler project launch
- Support good practices from beginning

Dependency management

How to **support** Project A and **develop** Project B on same computer?

Project A

Developed in Jan 2016 Uses data.table v 1.9.6

System-wide Packages

/usr/local/lib/R/site-library

Project B

Developed now Uses data.table v 1.12.2

Don't forget sub-dependencies!!

Project environment encapsulation

Project A

Developed in Jan 2016 Uses data.table v 1.9.6

Project A packages

./Project_A/libs

Project B

Developed now Uses data.table v 1.12.2

Project B packages

./Project_B/libs

That's not enough

Package versions on CRAN: come and go Use MRAN - daily CRAN snapshots COLUMN

Some packages are on GitHub only no control over versioning

Use in-house package repository

Testing - what do we test

- Unit tests
 - White box can see internals
 - Small and fast
 - Responds if code works properly
- Integration tests
 - Black box can not see internals
 - Do systems communicate as expected
 - Can be time consuming
 - Responds if solution fits "architectural puzzle"
- Performance/Load/Stress tests

Continuous Integration/Delivery

CI/CD - Why?

- Automatization
 - no human no errors
 - o clear environment clone of prod: "works for me" issue
 - o routine tasks check every commit
 - possible: frequent integrations

Dev/Prod mediator

CI/CD - Hows

Lots of tools, much alike concept:

Production setup for ML

Development, Deployment, Production

Production setup for ML

Model development process

Model development process

ML Development phase

ML Deployment phase

ML "On Production" phase

Production setup for ML

Important concepts/abstractions

Important concepts

Feature store design pattern

Feature store design pattern

Feature store design pattern

Model factory & Scoring Engine design pattern

- Recommended approach
- Not recommended approach

Model factory & Scoring Engine design pattern Model Use abstraction to define feature transformations. Data Feature transformation is part of model building. mart Code transformations once for train and score phase. Consider using AutoML pattern. Recommended approach Not recommended approach

Model repository

- Model A
 - o Model Instance A.1
 - Model Instance A.2
- Model B
 - Model instance B.1
 - Model instance B.2
 - Model instance B.3
- ..

Summary

Always Be Deploying policy

Deployment starts with business understanding phase

 Deploying R is like for any other programming language

 Deploying ML requires additional abstractions: Feature Store, Model Factory, Model Repository, Scoring Engine.

Wit Jakuczun

- @ wit.Jakuczun@wlogsolutions.com
- +48 601820620
- http://www.wlogsolutions.com