

INT104 ARTIFICIAL INTELLIGENCE

L6 - Support Vector Machine

Fang.kang@xjtlu.edu.cn Fang Kang

- Hard-margin Classification
- Soft-margin Classification
- ➤ Non-Linear SVM
- Nonlinear SVM Classification
- Kernel method
- Polynomial Features
- > SVM Regression

Support Vector Machine

- SVM is a classifier derived from statistical learning theory by Vapnik and Chervonenkis in 1963.
- SVMs are learning systems that
- use a hyperplane of linear functions
- in a high dimensional feature space Kernel function
- trained with a learning algorithm from optimization theory Lagrangian duality
- Implements a learning bias derived from statistical learning theory Generalization

Linear Classifiers

Linear Classifiers

..but which is best?

Maximum Margin

Maximum Margin

Linear Separable

(M)

Training data $\,\{(x_i,y_i)\}_{i=1...N}\,$

 $\exists (\mathbf{w},b)$ let:

 $orall i = 1 \sim N$ have:

a) If $y_i = +1$ then $\mathbf{w}^{ op} \mathbf{x}_i + b \geq 0$ then $\mathbf{w}^{ op}\mathbf{x}_i + b < 0$ b) If $y_i = -1$

 $y_i(\mathbf{w}^{\top}\mathbf{x}_i+b)\geq 0$ (Eq. 1)

(SVM) Support Vector Machine

optimization problem

(convex quadratic optimization problems with linear constraints)

$$\text{Minimize:} \quad \frac{1}{2}||\mathbf{w}||^2$$

Subject to:
$$y_i(\mathbf{w}^{ op}\mathbf{x}_i+b)\geq 1$$
 $(i=1\sim N)$

 $y_i(\mathbf{w}^{\top}\mathbf{x}_i+b)\geq 1$

Why?

Linear SVM Classification

- Linear separability
- Fitting widest possible "street"
- Performs better with new data between classes
- Large Margin Classification
- Margin, Support Vectors
- 4

- Decision boundary is not affected by more training instances
- It is determined by support vectors (instances located on the edge of street)

Feature Scales

Large Margin Classification

Sensitive to scale

Use Scikit-Learn's StandardScaler

The decision boundary could be much better if the feature

Hard Margin Classification

- The main limitation of hard margin classification is
 The data must be linearly separable
 Sensitive to outliers

Soft Margin SVM

Minimize:
$$\frac{1}{2}||\mathbf{w}||^2$$

ct to:
$$y_i(\mathbf{w}^{ op}\mathbf{x}_i+b)\geq 1$$

Subject to:
$$y_i(\mathbf{w}^{ op}\mathbf{x}_i+b)\geq 1$$

$$1 \quad (i=1 \sim N)$$

The margin
$$\frac{1}{2}||\mathbf{w}||^2+C\cdot \mathrm{loss}$$
 the mark $\{0,1-y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i+b)\}$. Hinge loss

Minimize:

= ssol

 $\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^N \xi_i \text{ (Slack variable)}$

Minimize:

 $\xi_i = \max\{0, 1 - y_i(\mathbf{w}^{\top}\mathbf{x}_i + b)\}$

Hard

1

(i)

 $y_i(\mathbf{w}^\top\mathbf{x}_i+b)\geq 1-\xi_i$

Subject to:

 $\xi_i \geq 0$

Soft Margin Classification

- Allow margin violations
- The algorithm balances

Subject to: $y_i(\mathbf{w}^{\top}\mathbf{x}_i+b)\geq 1-\xi_i$ $(i=1\sim N)$

 $\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^N \xi_i$ (Slack variable)

Minimize:

- The width of street
- The amount of margin violations
- A hyper-parameter C is defined

A low value of c leads to more margin violations
 A high value of c limits the flexibility

Figure 5-4. Large margin (left) versus fewer margin violations (right)

 $J(\boldsymbol{\theta}) = \text{MSE}(\boldsymbol{\theta}) + \alpha \frac{1}{2} \sum_{i=1}^n \theta_i^2$

Soft Margin Classification

LinearSVC:

- LinearSVC(Loss="hinge", C=1)
 Accepts two loss functions: "hinge" and "squared hinne"
- Doesn't output support vectors (use .intercept ...ocf_ to find support vectors in the training data) Regularizes bias term too...so center the data by usin standardscaler. Default loss is "squared_hinge"

0 0

center the data by using

Set dual=False if training instances >

SVC:

- "linear", C=1)
- For linear classifier use <code>kernel="linear"</code> For hard margin classifier use <code>C=float("inf")</code> <code>C=lel0</code> (a large value)

SGDClassifier:

- SGDClassifier(loss="hinge", alpha = 1/(m*C)) Slow to converge, but good for online or huge datasets

Nonlinear SVM Classification Not linearly separable How do we deal with these cases? Linearly separable

Nonlinear SVM Classification

How do we deal with nonlinearity?

Suppose we're in 1-dimension

What would SVMs do with this data?

Not a big surprise

Harder 1-dimensional dataset

What would SVMs do with this data?

- That's wiped the smirk off SVM's face.
- What can be done about this?

2-dimensional dataset

Harder 1-dimensional dataset

the decision boundary is nonlinear. When transformed back to R2,

Nonlinear SVM Classification

- Classes are not linearly separable in the input space
- What to do? Project input space into a high dimensional feature
- Polynomial Features

Polynomial features involve taking an existing feature and raising it to a power. This is useful for capturing non-linear relationships between the feature and the target variable. For example, if you have a feature X, polynomial features could include X^2, X^3, etc.

Nonlinear SVM Classification

Nonlinear SVM Classification

 ξ_i (Slack variable) (i) $y_i(\mathbf{w}^{\top}\mathbf{x}_i+b)\geq 1$ $\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^N \xi$ Subject to: Minimize:

Nonlinear SVM: Kernel Method

Linear SVM

Kernel Method: Ideologically, transform low-dimensional non-linear space to high-dimensional linear space, using Kernel function.

 $\phi(x)$ +hard-margin -> kernel SVM

A little violations Soft-margin SVM

Kernel Function: Kernel Function = < g(x), g(x) >, <> means dot-product It covers non-linear transformations and an inner product operation on nonlinear transformations.

Subject to: $y_i(\mathbf{w}^{ op}\phi(\mathbf{x})_i+b)\geq 1-\xi_i \quad (i=1\sim N)$

 $\xi_i \geq 0$

 $rac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^N \xi_i$ (Slack variable)

Minimize:

Nonlinear SVM

· Project input space into a very high-dimensional feature space, may be even infinity Problem:

Projecting training data in to a high-dimensional space is expensive
 large number of parameters

Kernel Trick: Computationally, avoiding explicitly computing the transformation to another feature space.

- Trick:

Kernel Function = $< \phi(x_1), \phi(x_2) > = \phi(x_1)^T \phi(x_2)$

 $\phi(\mathbf{x})_i$ High dimension (infinite)

Compute dot-product between training samples in the projected high-dimensional space without ever projecting.

Nonlinear SVM: Kernel Trick

 $\begin{bmatrix} b_1 \\ b_2 \\ a_n \end{bmatrix} \begin{bmatrix} b_3 \\ \vdots \\ b_n \end{bmatrix}$

Expensive operation and requires large memory

 $K(\phi(a),\phi(b)) = \phi(a)^T \phi(b) = [\phi_1(a) \quad \phi_2(a) \quad \phi_3(a)$ $\phi(a)^T \phi(b) = \text{function } (a^T b)$

 a_3

 $K(\boldsymbol{a},\boldsymbol{b}) = \boldsymbol{a}^T\boldsymbol{b} = [a_1$

Kernel Trick

Universal approximator.
Corresponding feature space $\phi(x)$ is infinite dimensional space non-linearly separable data

Linear: $K(\mathbf{a},\mathbf{b}) = \mathbf{a}^{\mathsf{T}}\mathbf{b}$ Polynomial: $K(\mathbf{a},\mathbf{b}) = (\gamma\mathbf{a}^{\mathsf{T}}\mathbf{b} + \gamma)^d$ Gaussian Radial Basis Function: $K(\mathbf{a},\mathbf{b}) = \exp(-\gamma \|\mathbf{a} - \mathbf{b}\|^2)$ Sigmoid: $K(\mathbf{a},\mathbf{b}) = \tanh(\gamma\mathbf{a}^{\mathsf{T}}\mathbf{b} + \tau)$

Common kernels:

Nonlinear SVM: Polynomial Kernels

• d is degree of polynomial features
• r is polynomial kernel hyperparamter
(aka coeft)
• C is the soft margin hyperparameter

 Increase if underfitting decrease if overfitting
Coef 0 influences high-degree terms vs low-deg
Use grid search for tuning hyperparameters
 Coarse grid search first
 Followed by finer grid search Degree of polynomial d:

Polynomial features of degree 3 2D to 10D with coef0

(177) (372) (372) (372) (373) (374) (374) 1 1xx

SVM Regression

- SVM algorithm is versatile: Classification & Regression

SVM Classification
Fitting widest possible "road"
between classes with few on
street violations

Hyperparameter ε Model is " $\varepsilon-insensitive$ " (training instances within margin doesn't affect the model prediction)

 $svm_reg = LinearSVR(epsilon=1.5, \ random_state=42) \\ svm_reg.fit(X, y)$ from sklearn.svm import LinearSVR

34

Regression SVM

SVM Regression

- Nonlinearity through kernelized SVM
 Example on a quadratic training set
 Use SVR dass with kernel = "poly"
 Soft margh via hyperparameter C

svm_poly_reg = SVR(kern svm_poly_reg.fit(X, y)

- LinearSVC \Leftrightarrow LinearSVR
- No support vector attribute, no kernel ${\rm SVC} \ \Leftrightarrow \ {\rm SVR}$
- Support vectors, kernels, slow to train

