

DEPARTMENT OF PHYSICS AND NANOTECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

18PYB101J-Electromagnetic Theory, Quantum Mechanics, Waves and Optics

Module I Lecture-16

Solving Problems

1. Calculate the polarisability and relative permittivity in hydrogen gas with a density of 9.8×10^{26} atoms/m³. Given the radius of the hydrogen atom to be 0.50×10^{-10} m.

Given: N =
$$9.8 \times 10^{26}$$
 atoms/m³ R = 0.50×10^{-10} m; α_e = ?; ϵ_r = ? We Know

$$\alpha_{\rm e} = 4\pi\epsilon_{0}^{3} R^{3}$$
 $\alpha_{\rm e} = 1.389 \times 10^{-41} \text{ Fm}^{2}$

To find ε_r we know that,

$$\alpha_e = \epsilon_0 \times (\epsilon_r - 1)/N$$

$$\{(N \alpha_e)/\epsilon_0\}+1 = \epsilon_r -1$$

$$1.0015 = \varepsilon_{\rm r}$$

2. If a NaCl crystal is subjected to an elecrtical filed of 1000 V/m and the resulting polarization is 4.3×10^{-8} C/m², calculate the relative permittivity of NaCl.

Solution:

Given: E = 1000 V/m, P =
$$4.3 \times 10^{-8}$$
 C/m²; $\epsilon_0 = 8.854 \times 10^{-12}$ F/m

We Know that

$$P = \varepsilon_0 (\varepsilon_r - 1)E$$

$$\varepsilon_{\rm r} = 1 + (P/\varepsilon_0 E)$$

$$5.86 = \varepsilon_{\rm r}$$

3. Calculate the electronic polarisabilty of argon atom given $\varepsilon_r = 1.0024$ at NTP and N= 2.7×10^{25} atoms/m³

Solution:

Given:
$$\varepsilon_r = 1.0024$$
; N= 2.7×10²⁵ atoms/m³; $\varepsilon_0 = 8.854 \times 10^{-12}$ F/m

We Know that

$$P = \varepsilon_0 (\varepsilon_r - 1)E$$

Also,
$$P = N\alpha_e E$$

$$\alpha_{\rm e} = \{\epsilon_0(\epsilon_{\rm r} - 1)\}/N$$

Subtituting the given values, we have

$$\alpha_{\rm g} = 7.9 \times 10^{-40} \, \rm Fm^2$$

4. The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarisability of He atoms if the gas contains 2.7×10^{25} atoms per m³

Solution:

Given:
$$\varepsilon_r = 1.0000684$$
; N= 2.7×10²⁵ atoms/m³; $\varepsilon_0 = 8.854 \times 10^{-12}$ F/m

We Know that

$$\alpha_{\rm e} = \{\epsilon_0(\epsilon_{\rm r} - 1)\}/N$$

Substituting the given values, we have

$$\alpha_e = 2.242 \times 10^{-41} \text{Fm}^2$$