UNIT 2. SETS AND RELATIONS

Dr. Jin-Xing Hao

RELATIONS

Chapter 9

CHAPTER SUMMARY

- Relations and Their Properties
- *n*-ary Relations and Their Applications
- Representing Relations
- Closures of Relations
- Equivalence Relations
- Partial Orderings

RELATIONS AND THEIR PROPERTIES

Section 9.1

SECTION SUMMARY

- Relations and Functions
- Properties of Relations
 - Reflexive Relations
 - Symmetric and Antisymmetric Relations
 - Transitive Relations
- Combining Relations

BINARY RELATIONS

Definition: A *binary relation R* from a set *A* to a set *B* is a subset $R \subseteq A \times B$.

Example:

- Let $A = \{0,1,2\}$ and $B = \{a,b\}$
- $\{(0, a), (0, b), (1,a), (2, b)\}$ is a relation from A to B.
- We can represent relations from a set *A* to a set *B* graphically or using a table:

Relations are more general than functions. A function is a relation where exactly one element of B is related to each element of A.

BINARY RELATIONS

- a R b denotes that $(a,b) \in R$, a is related to b by R.
- $a \mathbb{R} b$ denotes that $(a,b) \notin R$
- e.g., 1 R a and 1 R b
- Relationships between the elements of two sets are binary, in contrast with *n*-ary relations, which express relationships among elements of more than two sets.

RELATIONS ON A SET

Definition: A binary relation R on a set A is a subset of $A \times A$ or a relation from A to A.

Example:

- Suppose that $A = \{a,b,c\}$. Then $R = \{(a,a),(a,b),(a,c)\}$ is a relation on A.
- Let $A = \{1, 2, 3, 4\}$. The ordered pairs in the relation $R = \{(a,b) \mid a \text{ divides } b\}$ are

$$(1,1)$$
, $(1,2)$, $(1,3)$, $(1,4)$, $(2,2)$, $(2,4)$, $(3,3)$, and $(4,4)$.

PROPERTIES OF RELATIONS

REFLEXIVE RELATIONS

Definition: R is *reflexive* iff $(a,a) \in R$ for every element $a \in A$. Written symbolically, R is reflexive if and only if

$$\forall x[x \in A \longrightarrow (x, x) \in R]$$

Example: The following relations on the integers are reflexive:

$$R_1 = \{(a,b) \mid a \le b\},\$$

$$R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},\$$

$$R_4 = \{(a,b) \mid a = b\}.$$

The following relations are not reflexive:

$$R_2 = \{(a,b) \mid a > b\}$$
 (note that $3 > 3$),

$$R_5 = \{(a,b) \mid a = b + 1\}$$
 (note that $3 \neq 3 + 1$),

$$R_6 = \{(a,b) \mid a+b \le 3\}$$
 (note that $4 + 4 \le 3$).

SYMMETRIC RELATIONS

Definition: R is symmetric iff $(b,a) \in R$ whenever $(a,b) \in R$ for all $a,b \in A$. Written symbolically, R is symmetric if and only if $\forall x \forall y [(x,y) \in R \longrightarrow (y,x) \in R]$

Example: The following relations on the integers are symmetric:

$$R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},\$$

 $R_4 = \{(a,b) \mid a = b\},\$
 $R_6 = \{(a,b) \mid a + b \le 3\}.$

The following are not symmetric:

$$R_1 = \{(a,b) \mid a \le b\}$$
 (note that $3 \le 4$, but $4 \le 3$), $R_2 = \{(a,b) \mid a > b\}$ (note that $4 > 3$, but $3 > 4$), $R_5 = \{(a,b) \mid a = b + 1\}$ (note that $4 = 3 + 1$, but $3 \ne 4 + 1$).

ANTISYMMETRIC RELATIONS

Definition:A relation R on a set A such that for all $a, b \in A$ if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called *antisymmetric*. Written symbolically, R is antisymmetric if and only if

$$\forall x \forall y [((x,y) \in R \land (y,x) \in R) \longrightarrow x = y]$$

• Example: The following relations on the integers are antisymmetric:

$$R_1 = \{(a,b) \mid a \le b\},\$$

 $R_2 = \{(a,b) \mid a > b\},\$
 $R_4 = \{(a,b) \mid a = b\},\$
 $R_5 = \{(a,b) \mid a = b + 1\}.$

For any integer, if $a \le b$ and $b \le a$, then a = b.

The following relations are not antisymmetric:

$$R_3 = \{(a,b) \mid a = b \text{ or } a = -b\}$$

(note that both (1,-1) and (-1,1) belong to R_3),
 $R_6 = \{(a,b) \mid a+b \le 3\}$
(note that both (1,2) and (2,1) belong to R_6).

TRANSITIVE RELATIONS

Definition: A relation R on a set A is called *transitive* if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$. Written symbolically, R is transitive if and only if

$$\forall x \forall y \ \forall z [(x,y) \in R \ \land \ (y,z) \in R \longrightarrow (x,z) \in R]$$

• Example: The following relations on the integers are transitive:

$$R_1 = \{(a,b) \mid a \le b\},\$$
 $R_2 = \{(a,b) \mid a > b\},\$
 $R_3 = \{(a,b) \mid a = b \text{ or } a = -b\},\$
 $R_4 = \{(a,b) \mid a = b\}.$

For every integer, $a \le b$ and $b \le c$, then $a \le c$.

The following are not transitive:

$$R_5 = \{(a,b) \mid a = b+1\}$$
 (note that both (4,3) and (3,2) belong to R_5 , but not (4,2)), $R_6 = \{(a,b) \mid a+b \le 3\}$ (note that both (2,1) and (1,2) belong to R_6 , but not (2,2)).

COMBINING RELATIONS

COMBINING RELATIONS

- Given two relations R_1 and R_2 , we can combine them using basic set operations to form new relations such as $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 R_2$, and $R_2 R_1$.
- **Example:** Let $A = \{1,2,3\}$ and $B = \{1,2,3,4\}$. The relations $R_1 = \{(1,1),(2,2),(3,3)\}$ and $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ can be combined using basic set operations to form new relations:

$$R_1 \cup R_2 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\}$$

$$R_1 \cap R_2 = \{(1,1)\}$$

$$R_1 - R_2 = \{(2,2),(3,3)\}$$

$$R_2 - R_1 = \{(1,2), (1,3), (1,4)\}$$

COMPOSITION

Definition: Suppose

- R_1 is a relation from a set A to a set B.
- R_2 is a relation from a set B to a set C.

Then the *composition* (or *composite*) of R_2 with R_1 , is a relation from A to C where

• if (x,y) is a member of R_1 and (y,z) is a member of R_2 , then (x,z) is a member of $R_2 \circ R_1$.

REPRESENTING THE COMPOSITION OF A RELATION

$$R_2 \circ R_1 = \{(b, D), (b, B)\}$$

POWERS OF A RELATION

Definition: Let R be a binary relation on A. Then the powers R^n of the relation R can be defined inductively by:

- Basis Step: $R^1 = R$
- Inductive Step: $R^{n+1} = R^n \circ R$

Example: Let $R = \{(1, 1), (2, 1), (3, 2), (4, 3)\}$. Find the powers R^n , $n = 2, 3, 4, \ldots$