DRP 2025

1 Refreshers from Lie Theory

Definition 1.1. A representation of a Lie Algebra is a vector space V with a morphism $\rho : \mathfrak{g} \to End(V)$ such that the bracket is preserved: $\rho([X,Y]) = [\rho(X), \rho(Y)]$.

Definition 1.2. Given representations V and W, the tensor representation $V \otimes W$ is given by

$$X(v\otimes w)=(Xv)\otimes w+v\otimes (Xw)$$

2 Overview

Our objects of study are Lie Algebras. These are vector spaces (usually over \mathbb{C}), equipped with a bracket. They have been fully classified in some context.

Theorem 2.1. Finite dimensional simple complex Lie algebras are classified by Dynkin Diagrams: $A_n, B_n, C_n, D_n, E_6, E_7, E_8, F_4, G_2$.

We want to understand the representation theory of these Lie Algebra. The theory is simpler in type ADE (simply laced).

For example, the Lie algebra of type A_n is $sl_{n+1}(\mathbb{C}) = \{X \in M_{n+1}(\mathbb{C}) : tr(X) = 0\}$. The bracket is given by [X,Y] = XY - YX.

An easy representation is given by the natural action $sl_{n+1}(\mathbb{C}) \curvearrowright \mathbb{C}^{n+1}$ given by matrix operation on vectors $\rho_X(v) = Xv$. This is indeed a representation since $\rho([X,Y]) = [\rho(X), \rho(Y)]$. We can go further

Proposition 2.1. The Lie algebra $sl_{n+1}(\mathbb{C})$ acts on $\wedge^k\mathbb{C}^{n+1}$ for all k. Moreover, any irreducible representation arises as a subrepresentation of some tensor products of these.

Let's look precisely at $\wedge^2 \mathbb{C}^4$. First, $sl_4(\mathbb{C})$ has dimension $4^2 - 1 = 15$, and a Chevalley basis given by:

The Cartan subalgebra is $\mathfrak{h} = span_{\mathbb{C}}(H_1, H_2, H_3)$. Note that it is commutative. $\wedge^2 \mathbb{C}^4$ has dimension 6. If e_1, e_2, e_3, e_4 is the standard basis for \mathbb{C}^4 , then $e_1 \wedge e_2$, $e_1 \wedge e_3$, $e_1 \wedge e_4$, $e_2 \wedge e_3$, $e_2 \wedge e_4$, $e_3 \wedge e_4$ forms a basis. How do the H_i act on these?

$$H_1e_1 \wedge e_2 = H_1e_1 \wedge e_2 + e_1 \wedge H_1e_2 = 0$$
 $H_2e_1 \wedge e_2 = e_1 \wedge e_2$ $H_3e_1 \wedge e_2 = 0$

Notice that H_i acts as a scalar. Hence we make the following definition

Definition 2.1. Let $\lambda : \mathbb{C}H_1 \oplus \mathbb{C}H_2 \oplus \mathbb{C}H_3 \to \mathbb{C}$ be such that $He_1 \wedge e_2 = \lambda(H)e_1 \wedge e_2$.

Note $\lambda \in \mathfrak{h}^*$. In our case, we found out that λ is 1 only for H_2 and 0 otherwise, which we write as $\lambda = \varpi_2$. In genral, $\varpi_i(H_j) = \delta_{i,j}$.

3 The Clifford Algebra

Definition 3.1. The tensor algebra $T^{\bullet}V = \bigoplus T^kV = \bigoplus V^{\otimes k}$ has ring structure from the maps $T^kV \otimes T^{k'}V \to T^{k+k'}V$.

Given a vector space V and a quadratic bilinear form Q on V, we define Cliff(V,Q) to be the quotient of $T^{\bullet}V$ by the ideal generated by $v \otimes v - Q(v,v)1$.

This algebra arises as the universal object of the following diagram:

Given $j: V \to E$ where E is any associate algebra and $i: V \to C(V, Q)$ such that $i(v) \otimes i(v) = Q(v, v)1$, there exists a unique homomorphism of algebras ϕ such that $\phi(i(v)) = j(v)$ for all $v \in V$.