第五章 分类

- 5.1 模型评估和性能度量
- 5.2 决策树
 - 5.2.1决策树概况
 - 5. 2. 2决策树构造
 - 5.2.3剪枝
- 5.3 贝叶斯分类
- 5.4 k最近邻分类
- 5.5 组合分类

决策树模型-概况

决策树基于"树"结构进行决策

- □ 每个"内部结点"对应于某个属性上的"测试"(test)
- □ 每个分支对应于该测试的一种可能结果(即该属性的某个取值)

□ 每个"叶结点"对应于一个"预测结果"

学习过程:通过对训练样本的分析来确定"划分属性"(即内部结点所对应的属性)。

预测过程:将测试示例从根结点开始,沿着划分属性所构成的"判定测试序列"下行,直到叶结点。

基于决策树的预测

基于西瓜数据集构建的决策树

决策树的优点以及相关算法

优点:

- 直观,具有很好的可解释性;
- 不需要任何先验假设。

发展历史及主要算法:

- 使决策树受到关注、成为机器学习主流技术的算法: ID3
- 最常用的决策树算法: C4.5
- 用于分类和回归任务的决策树算法: CART
- 基于决策树的最强大算法: RF (Random Forest) 一集成学习

决策树构造: 最佳属性度量

策略: "分而治之" (divide-and-conquer)从根至叶的递归过程

在每个中间结点寻找一个"划分"(split or test)属性

关键: 寻找当前最具有辨别力 (discriminative) 的特征。

编号	色泽	敲声	好瓜
1	青绿	清脆	是
2	青绿	沉闷	是 否
3	乌黑	沉闷	否
4	乌黑	清脆	否

哪个特征更有利于分类?

一个特征的每个取值对应的类别越纯则该辨别力越大

度量一: 信息增益 (information gain)

信息熵 (entropy) 是度量样本集合"纯度"最常用的一种指标。 假定当前样本集合 D 中第 k 类样本所占的比例为 p_k ,则 D 的信息熵定 义为:

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k$$
 计算信息熵时约定: 若 $p = 0$, 则 $p \log_2 p = 0$.

Ent(D) 的值越小,则 D 的纯度越高

Ent(D) 的最小值为 0, 最大值为 $log_2 |\mathcal{Y}|$.

信息增益直接以信息熵为基础,计算当前划分对信息熵所造成的变化

度量一: 信息增益 (information gain)

离散属性 a 的取值: $\{a^1, a^2, \dots, a^V\}$

 D^v : D 中在 a 上取值 = a^v 的样本集合

以属性 a 对数据集 D 进行划分所获得的信息增益为:

一个例子

该数据集包含17个训练样例,属于2个 训练样例,属于2个 类别,即 $|\mathcal{Y}| = 2$, 其中正例占 $p_1 = \frac{8}{17}$, 反例占 $p_2 = \frac{9}{17}$,

则根结点的信息熵为

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

$$\operatorname{Ent}(D) = -\sum_{k=1}^{2} p_k \log_2 p_k = -\left(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17}\right) = 0.998$$

一个例子(续)

- □ 以属性 "色泽"为例,其对应的3个数据子集分别为 D^1 (色泽=青绿), D^2 (色泽=乌黑), D^3 (色泽=浅白)。
- □ 子集 D^1 包含编号为 $\{1,4,6,10,13,17\}$ 的6 个样例,即 $|D^1|=6$,其中正例占 $p_1=\frac{3}{6}$,反例占 $p_2=\frac{3}{6}$, D^2 、 D^3 同理。3 个结点的信息熵为:

$$\operatorname{Ent}(D^{1}) = -\left(\frac{3}{6}\log_{2}\frac{3}{6} + \frac{3}{6}\log_{2}\frac{3}{6}\right) = 1.000$$

$$\operatorname{Ent}(D^{2}) = -\left(\frac{4}{6}\log_{2}\frac{4}{6} + \frac{2}{6}\log_{2}\frac{2}{6}\right) = 0.918$$

$$\operatorname{Ent}(D^{3}) = -\left(\frac{1}{5}\log_{2}\frac{1}{5} + \frac{4}{5}\log_{2}\frac{4}{5}\right) = 0.722$$

□属性"色泽"的信息增益为

Gain(D, 色泽) = Ent(D) -
$$\sum_{v=1}^{3} \frac{|D^v|}{|D|}$$
Ent(D^v)
= 0.998 - $(\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722)$
= 0.109

一个例子(续)

□ 类似的,其他属性的信息增益为

$$Gain(D, R) = 0.143$$
 $Gain(D, R) = 0.141$

$$Gain(D, 纹理) = 0.381$$
 $Gain(D, 脐部) = 0.289$

Gain(D, 触感) = 0.006

□ 显然,属性"纹理"的信息增益最大,其被选为当前划分属性

一个例子(续)

对每个分支结点做进一步划分, 最终得到决策树

度量二:增益率(gain ratio)

信息增益:对可取值数目较多的属性有所偏好

有明显弱点,例如:考虑将"编号"作为一个属性

增益率:
$$Gain_ratio(D, a) = \frac{Gain(D, a)}{IV(a)}$$

C4.5算法中使用信息增益

其中
$$IV(a) = -\sum_{v=1}^{V} \frac{|D^v|}{|D|} \log_2 \frac{|D^v|}{|D|}$$

属性 a 的可能取值数目越多 (即 V 越大),则 IV(a) 的值通常就越大

启发式: 先从候选划分属性中找出信息增益高于平均水平的,再从中选取增益率最高的。

度量三: 基尼指数 (gini index)

$$Gini(D) = \sum_{k=1}^{|\mathcal{Y}|} \sum_{k' \neq k} p_k p_{k'}$$

|反映了从 D 中随机抽取两个样例, | 其类别标记不一致的概率

$$=1-\sum_{k=1}^{|\mathcal{Y}|}p_k^2$$
.

 $=1-\sum_{k=1}^{|\mathcal{Y}|}p_k^2$. Gini(D) 越小,数据集 D 的纯度越高 当 $p_k = \frac{1}{|\mathcal{V}|}$ 时,Gini(D)最大,为1- $\frac{1}{|\mathcal{Y}|}$

总体趋势与信息熵类似。

属性
$$a$$
 的基尼指数: Gini_index $(D,a) = \sum_{v=1}^{V} \frac{|D^v|}{|D|}$ Gini (D^v)

在候选属性集合中,选取那个使划分后基尼指数最小的属性

决策树构造的基本算法

```
输入: 训练集 D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\};
     属性集 A = \{a_1, a_2, \dots, a_d\}.
过程: 函数 TreeGenerate(D, A)
1: 生成结点 node:
                                      递归返回,
  if D 中样本全属于同一类别 C then
                                      情形(1)
    将 node 标记为 C 类叶结点; return
4 end if
5 if A = \emptyset OR D 中样本在 A 上取值相同 then
                                                              递归返回,
                                                              情形(2)
    将 node 标记为叶结点, 其类别标记为 D 中样本数最多的类; return
7 end if
8: 从 A 中选择最优划分属性 a*;
                                  利用当前结点的后验分布
9: for a<sub>*</sub> 的每一个值 a<sub>*</sub> do
    为 node 生成一个分支; 令 D_v, 表示 D 中在 a_* 上取值为 a_*^v 的样本子集;
10:
    if D_n 为空 then
                                                                 递归返回,
      将分支结点标记为叶结点, 其类别标记为 D 中样本最多的类; return
                                                                 情形(3)
12
    else
                                              将父结点的样本分布作为
      以 TreeGenerate(D_v, A \setminus \{a_*\})为分支结点
14:
                                              当前结点的先验分布
    end if
15:
16: end for
                                决策树算法的
输出: 以 node 为根结点的一棵决策树
                                    核心
```

剪枝

为了尽可能正确分类训练样本,有可能造成分支过多叶子节点对应的样本数目可能太少,不具有统计意义

导致过拟合!

可通过主动去掉一些分支来降低过拟合的风险

基本策略:

- 预剪枝 (pre-pruning): 提前终止某些分支的生长
- 后剪枝 (post-pruning): 生成一棵完全树, 再"回头"剪枝

剪枝

研究表明: 划分选择的各种准则虽然对决策树的尺寸有较大影响,但对泛化性能的影响很有限。

例如信息增益与基尼指数产生的结果,仅在约2%的情况下不同

剪枝方法和程度对决策树泛化性能的影响更为显著

在数据带噪时甚至可能将泛化性能提升 25%

剪枝 (pruning) 是决策树对付"过拟合"的主要手段!

剪枝的基本思路:比较剪枝前后决策树的优劣-验证集的准确率。剪枝后错误率是否降低/准确率是否提高来决定是否剪枝

数据集

	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
ر آ	1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
	2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
	3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
) In / / 	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
训练集	10	青绿	硬挺	清脆	清晰	平坦	软粘	否
	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
L	17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否
8	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
٦	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
验证集	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
	11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
	12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

剪枝过程中需评估剪枝前后决策树的优劣, 现在我们假定使用"留出法"

方法一: 预剪枝(自顶向下)

	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
验	4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
正集	9 11 12 13	乌黑 浅白 浅白 青绿	稍蜷 硬挺 蜷缩 稍蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点**1**: 若不划分,则将其标记为叶结点,类别标记为训练样例中最多的类别,若选"好瓜"。验证集中, $\{4, 5, 8\}$ 被分类正确,得到验证集准确率为 $\frac{3}{7} \times 100\%=42.9\%$

预剪枝 (续)

	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
验	4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰清晰清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
集	9 11 12 13	乌黑 浅白 浅绿	稍硬蜷稍蜷缩	沉闹 清油响 浊响	稍糊糊糊糊糊糊糊	稍凹 坦坦 四陷	硬滑 領滑 料 預	否否否否

结点1: 若划分,根据结点②③,④的训练样例,将这3个结点分别标记为"好瓜"、"好瓜"、

此时,验证集中编号为 $\{4, 5, 8, 11, 12\}$ 的样例被划分正确,验证集准确率为: $\frac{5}{7} \times 100\%=71.4\%$

验证集准确率 "脐部=?" 划分前: 42.9%

划分后: 71.4%

预剪枝决策:划分

预剪枝(续)

8	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
验	4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
证 集	9 11 12 13	乌黑 浅白 浅白 青绿	稍蜷 硬缎缩 稍蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

对结点②,③,④ 分别进行剪枝判 断,结点②和③都禁止划分,结点④ 本身为叶子结点。最终得到仅有一 层划分的决策树。

验证集准确率

"脐部=?" 划分前: 42.9%

划分后: 71.4%

预剪枝决策: 划分

验证集准确率

"色泽=?" 划分前: 71.4%

划分后: 57.1%

预剪枝决策:禁止划分

验证集准确率

"根蒂=?" 划分前: 71.4%

划分后: 71.4%

预剪枝决策:禁止划分

方法二: 后剪枝

先生成一棵完整的决策树,其验证集准确率测得为 42.9%

自底向上。首先考虑结点 ⑥ ,若将其替换为叶结点,根据落在其上的训 练样例 {7,15} 将其标记为"好瓜",测得验证集准确率提高至 57.1%,于

剪枝前: 42.9%

剪枝后: 57.1%

决策:剪枝,替换为叶子节点好瓜

然后考虑结点⑤,若将其替换为叶结点,根据落在其上的训练样例将其标记为"好瓜",测得验证集精度仍为 57.1%,可以不剪枝

对结点②,若将其替换为叶结点,根据落在其上的训练样例{1,2,3,14},将其标记为"好瓜",测得验证集准确率提升至71.4%,决定剪枝。

剪枝后: 71.4%

后剪枝决策:剪枝,替换为叶子节点好瓜

对节点③和①先后替换为叶结点,均未测得验证集准确率提升,于是不剪枝。

最终,后剪枝得到的决策树:

预剪枝 vs. 后剪枝

- □ 时间开销:
- 预剪枝: 训练时间开销降低, 测试时间开销降低
- 后剪枝: 训练时间开销增加, 测试时间开销降低
- □ 过/欠拟合风险:
- 预剪枝: 过拟合风险降低, 欠拟合风险增加
- 后剪枝: 过拟合风险降低, 欠拟合风险基本不变
- □ 泛化性能: 后剪枝通常优于预剪枝

剪枝评判标准:

除了准确率,还可以同时考虑 模型的复杂度,比如树叶节点 的个数、对树编码需要的二进 位位数等。

连续属性

基本思路:连续属性离散化

常见做法:二分法 (bi-partition):一个连续属性转化成多个二值离散属性

- 把n 个属性值排序,取相邻两个属性值的中间值作为候选划分点;
- 然后将每个候选划分点当做一个(二值)离散属性处理;

结论:一个连续属性转换成t 个二值属性, t为候选划分点 的个数。

从"树"到"规则"

- 一棵决策树对应于一个"规则集"
- 每个从根结点到叶结点的分支路径对应于一条规则

- IF (纹理=清晰) ∧ (密度≤0.381) THEN 坏瓜
- IF (纹理=清晰) ^ (密度>0.381) THEN 好瓜
- IF (纹理=稍糊) ^ (触感=硬滑) THEN 坏瓜
- IF (纹理=稍糊) ^ (触感=软粘) THEN 好瓜
- IF (纹理=模糊) THEN 坏瓜

好处:

- □改善可理解性
- □进一步提升泛化能力

由于转化过程中通常会进行前件合并、泛化等操作例如 C4.5Rule 的泛化能力通常优于 C4.5决策树

决策边界: 轴平行 vs. 倾斜

单变量决策树: 在每个非叶结点仅考虑一个划分属性

多变量(multivariate)决策树

多变量决策树:每个非叶结点不仅考虑一个属性

例如"斜决策树" (oblique decision tree) 不是为每个非叶结点寻找最优划分属性,而是建立一个线性分类器

更复杂的"混合决策树"甚至可以在结点嵌入神经网络或其他非线性模型

