

これまでは、電源を1つのバッテリーから取ると、 モータの電圧降下により、制御部分のリセットが かかるという問題があったため、電源を制御用、 駆動用と2つに分ける必要がありました。 今年は、安定化にDCDCコンバータを 採用することで、1つの バッテリーから電源を取って もモータの電圧降下による

制御部分のリセットに対応 しました。これにより、 回路の簡易化、基板の 888 省スペース化を実現 しました。

カメラのライン制御

超音波センサーで壁との距離を測って ライン制御をするという制御方法から、 カメラを用いてライン制御をする方法に 変更し、コートの中心方向に移動する アルゴリズムを実装しました。常に カメラでコートの中心を取り続け、 ロボットからコートの中心への角度を 算出することによってラインが反応 したときにコートの中心方向へ移動する ことが可能になるだけでなく、 ラインにどの角度で乗っても 正確にコート内に移動することが可能に なりました。

技術共有

私たちは、RoboCupJuniorに参加 する上で、技術の共有をすることは必要 不可欠であると考えました。そこで、 私たちでTwitterのアカウント、 ウェブブログを作成しました。 Twitterではロボットの進捗やチーム メイトの独り言をつぶやいたり、他チー ムへの積極的な交流を行っています。 ブログでは、Twitterではまとめきれ ないような技術公開記事や、ロボットの 詳細について、また大会の反省について も記事にまとめています。

Twitter:@munachu artemis Blog:

ぜひ一度覗いてみてはいかがでしょうか。

https://asahi-rcj.github.io

通過センサ

通過センサを用いることでロボットが ボールを保持しているかを認識できるよう になります。

このセンサはLEDと光変調をロボットの ボール捕捉エリアの横に配置し、 光線を遮断したかを判断させることに よって実現させることができました。 しかしながらこのセンサはこの大会では 活用することができませんでした。 福岡ノード大会以降、センサを有効活用し、 より良い動きができるよう調整していきた いと思います。

技術の駆使、そして最適化へ

Fusion360やKiCadを用いてほぼすべての部品を独自で 設計しています。また、3DプリンタやCNCを使用することで、 さらに正確に短時間での部品の製作、量産が可能になりました。 基板類も、発注基板によって自分たちのロボットに特化した 機能、形のものを実現可能になりました。また、チーム内での ファイル共有のためにGitHubを用いることで、複数での 大規模プロジェクト開発が容易に行えるようになりました。

部品設計:Fusion360 基板設計:KiCad 基板発注:JLCPCB

部品製作:Originalmind kitmill CL100 FLASHFORGE Adventurer3 lite

基盤制作:Originalmind kitmill BS200

Sponsored by JLCPCB

金銭面で支援していただいております。 本当にありがとうございます!