Euclid's Elements

Book I

If Euclid did not kindle your youthful enthusiasm, you were not born to be a scientific thinker.

Albert Einstein

Table of Contents, Chapter 1

- 1 Construct an equilateral triangle
- 2 Copy a line
- 3 Subtract one line from another
- 4 Equal triangles if equal side-angle-side
- 5 Isosceles triangle gives equal base angles
- 6 Equal base angles gives isosceles triangle
- 7 Two sides of triangle meet at unique point
- 8 Equal triangles if equal side-side-side
- 9 How to bisect an angle
- 10 Bisect a line
- 11 Construct right angle, point on line
- 12 Construct perpendicular, point to line
- 13 Sum of angles on straight line = 180
- 14 Two lines form a single line if angle = 180

- 15 Vertical angles equal one another
- 16 Exterior angle larger than interior angle
- 17 Sum of two interior angles less than 180
- 18 Greater side opposite of greater angle
- 19 Greater angle opposite of greater side
- 20 Sum of two angles greater than third
- 21 Triangle within triangle has smaller sides
- 22 Construct triangle from given lines
- 23 Copy an angle
- 24 Larger angle gives larger base
- 25 Larger base gives larger angle
- 26 Equal triangles if equal angle-side-angle
- 27 Alternate angles equal then lines parallel
- 28 Sum of interior angles = 180, lines parallel

- 29 Lines parallel, alternate angles are equal
- 30 Lines parallel to same line are parallel to themselves
- 31 Construct one line parallel to another
- 32 Sum of interior angles of a triangle = 180
- 33 Lines joining ends of equal parallels are parallel
- 34 Opposite sides-angles equal in parallelogram
- 35 Parallelograms, same base-height have equal area
- 36 Parallelograms, equal base-height have equal area
- 37 Triangles, same base-height have equal area
- 38 Triangles, equal base-height have equal area

Table of Contents, Chapter 1

- 39 Equal triangles on same base, have equal height
- 40 Equal triangles on equal base, have equal height
- 41 Triangle is half parallelogram with same base and height
- 42 Construct parallelogram with equal area as triangle
- 43 Parallelogram complements are equal
- 44 Construct parallelogram on line, equal to triangle
- 45 Construct parallelogram equal to polygon
- 46 Construct a square
- 47 Pythagoras' theorem
- 48 Inverse Pythagoras' theorem

Proposition 27 of Book I

If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.

If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.

Definition - Parallel Lines

Parallel straight lines are straight lines which, being in the same plane and being produced indefinitely in both directions, do not meet one another in either direction.

If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.

Definition - Alternate Angles

If a line intersect two straight lines AB and CD at the points E and F, then the pairs of alternate angles are: AEF (α) , DFE (δ) and CFE (γ) , BEF (β)

Proposition 27 of Book I

If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.

If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.

In other words

Start with two straight lines AB and CD

If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.

In other words

Start with two straight lines AB and CD

Construct a third line such that it intersects lines AB and CD at points E and F

If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.

if
$$\alpha = \delta$$

=> AB || CD

In other words

Start with two straight lines AB and CD

Construct a third line such that it intersects lines AB and CD at points E and F

If angles AEF and EFD are equal, then the lines are parallel

If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.

$$\alpha = \delta$$
 $\exists \Delta EFG$

In other words

Start with two straight lines AB and CD

Construct a third line such that it intersects lines AB and CD at points E and F

If angles AEF and EFD are equal, then the lines are parallel

Proof by Contradiction

Assume that the lines intersect at point G

If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.

$$\alpha = \delta$$
 $\exists \Delta EFG$
 $\alpha > \delta$

In other words

Start with two straight lines AB and CD

Construct a third line such that it intersects lines AB and CD at points E and F

If angles AEF and EFD are equal, then the lines are parallel

Proof by Contradiction

Assume that the lines intersect at point G

Then angle AEF is an exterior angle to the triangle EFG, which means that angle AEF is larger than angle EFG (I·16)

If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.

In other words

Start with two straight lines AB and CD

Construct a third line such that it intersects lines AB and CD at points E and F

If angles AEF and EFD are equal, then the lines are parallel

Proof by Contradiction

Assume that the lines intersect at point G

Then angle AEF is an exterior angle to the triangle EFG, which means that angle AEF is larger than angle EFG (I·16)

But AEF equals EFG, so there is a contradiction

If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.

In other words

Start with two straight lines AB and CD

Construct a third line such that it intersects lines AB and CD at points E and F

If angles AEF and EFD are equal, then the lines are parallel

Proof by Contradiction

Assume that the lines intersect at point G

Then angle AEF is an exterior angle to the triangle EFG, which means that angle AEF is larger than angle EFG (I·16)

But AEF equals EFG, so there is a contradiction

Thus the initial assumption must be wrong

If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.

In other words

Start with two straight lines AB and CD

Construct a third line such that it intersects lines AB and CD at points E and F

If angles AEF and EFD are equal, then the lines are parallel

Proof by Contradiction

Assume that the lines intersect at point G

Then angle AEF is an exterior angle to the triangle EFG, which means that angle AEF is larger than angle EFG (I·16)

But AEF equals EFG, so there is a contradiction

Thus the initial assumption must be wrong

The two lines can never meet at point G, and are therefore parallel

If a straight line falling on two straight lines makes the alternate angles equal to one another, then the straight lines are parallel to one another.

In other words

Start with two straight lines AB and CD

Construct a third line such that it intersects lines AB and CD at points E and F

If angles AEF and EFD are equal, then the lines are parallel

Proof by Contradiction

Assume that the lines intersect at point G

Then angle AEF is an exterior angle to the triangle EFG, which means that angle AEF is larger than angle EFG (I·16)

But AEF equals EFG, so there is a contradiction

Thus the initial assumption must be wrong

The two lines can never meet at point G, and are therefore parallel

Youtube Videos

https://www.youtube.com/c/SandyBultena

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc/3.0