

IRW

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of

Docket No: Q80751

Seishi KASAI, *et al.*

Appln. No.: 10/809,832

Group Art Unit: Not yet assigned

Confirmation No.: Not yet assigned

Examiner: Not yet assigned

Filed: March 26, 2004

For: **PROCESS OF PRODUCING THREE-DIMENSIONALLY SHAPED OBJECT**

SUBMISSION OF PRIORITY DOCUMENTS

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

Submitted herewith are certified copies of the priority documents on which claims to priority were made under 35 U.S.C. § 119. The Examiner is respectfully requested to acknowledge receipt of said priority documents.

Respectfully submitted,

REG. NO.
47,125
for Mark Boland
Registration No. 32,197

SUGHRUE MION, PLLC
Telephone: (202) 293-7060
Facsimile: (202) 293-7860

WASHINGTON OFFICE
23373
CUSTOMER NUMBER

Enclosures: Japan 2003-090961
Japan 2003-163648

Date:

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年 6月 9日

出願番号 Application Number: 特願 2003-163648

[ST. 10/C]: [JP 2003-163648]

出願人 Applicant(s): 富士写真フィルム株式会社

2004年 4月 23日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願

【整理番号】 838178F286

【あて先】 特許庁長官殿

【国際特許分類】 B29C 67/00

【発明者】

【住所又は居所】 静岡県榛原郡吉田町川尻4000番地 富士写真フィルム株式会社内

【氏名】 笠井 清資

【発明者】

【住所又は居所】 静岡県榛原郡吉田町川尻4000番地 富士写真フィルム株式会社内

【氏名】 大澤 定男

【特許出願人】

【識別番号】 000005201

【住所又は居所】 神奈川県南足柄市中沼210番地

【氏名又は名称】 富士写真フィルム株式会社

【代理人】

【識別番号】 100101719

【住所又は居所】 東京都港区西新橋1丁目4番10号 野口特許事務所

【弁理士】

【氏名又は名称】 野口 恭弘

【電話番号】 03-3519-7788

【先の出願に基づく優先権主張】

【出願番号】 特願2003- 90961

【出願日】 平成15年 3月28日

【手数料の表示】

【予納台帳番号】 081571

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 9909596

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 三次元造形物の製造方法

【特許請求の範囲】

【請求項1】 屈折率 n_1 を有する粉末材料を支持体上に所定の厚さを有する層に形成する層形成工程、及び上記の粉末材料の層を屈折率 n_2 を有する結着剤により所定の断面形状に結合させる断面形状形成工程（ただし、 $-0.1 \leq n_1 - n_2 \leq 0.1$ である。）、を順次繰り返すことを特徴とする三次元造形物の製造方法。

【請求項2】 (a) 屈折率 n_1 を有する粉末材料を所定の厚さを有する層に形成する層形成工程、および

(b) 前記工程により形成された粉末材料層に対して紫外線（UV）硬化性結合剤を断面形状に供給し、UV光を照射することにより硬化させて、硬化後の屈折率が n_2 である結着剤により結合して造形対象物をある一つの面で切断した切断面に対応する断面形状に前記粉末材料の結着体を形成する断面形状形成工程を、

(c) 順次繰り返すことにより前記造形対象物を複数の面で切断した切断面に対応する前記粉末材料の結着体を順次積層形成して三次元造形物を製造する方法であって、

(d) $-0.1 \leq n_1 - n_2 \leq 0.1$ である

ことを特徴とする三次元造形物の製造方法。

【請求項3】 (a) 粉末材料を所定の厚さを有する層に形成する層形成工程および

(b) 前記工程により形成された粉末材料層に対してUV硬化性結合剤を断面形状に供給し、UV光を照射することにより結合剤を硬化させた結着剤により造形対象物の一切断面に対応する断面形状に前記粉末材料の結着体を形成する断面形状形成工程を、

(c) 順次繰り返すことにより前記造形対象物を複数の面で切断した切断面に対応する前記粉末材料の結着体を順次積層形成して三次元造形物を製造する方法であって、

(d) 前記UV硬化性結合剤のUV硬化後の揮発成分が5重量%以下である

ことを特徴とする三次元造形物の製造方法。

【請求項 4】 粉末材料が結合に用いる UV 硬化性結合剤の硬化物である請求項 1～3 いずれか 1 つに記載の三次元造形物の製造方法。

【請求項 5】 粉末材料が水酸化マグネシウム、シリカゲルまたは水酸化アルミニウムである請求項 1～4 いずれか 1 つに記載の三次元造形物の製造方法。

【請求項 6】 UV 硬化性結合剤を硬化させた後の揮発成分が 5 重量% 以下である請求項 2 記載の三次元造形物の製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、三次元造形技術に関するものであって、特に、結合剤を付与して粉末を結合させることにより、三次元造形物を製造する三次元造形物の製造方法に関する。

【0002】

【従来の技術】

従来から、立体的な造形対象物を平行な複数の面で切断した各断面に対応させて粉末の薄層を結合剤により結合し、この結合された薄層を順次積層させることによって、造形対象物の三次元モデルとなる造形物を作成する技術が知られている。

【0003】

このような技術は、ラピッドプロトタイピングと呼ばれる部品試作及びデザイン確認用途に利用することができ、近年、安価かつ高速、さらにはカラーモデリング作成に適するインクジェットを利用する方式のものが提案されており、例えば特許文献 1 に開示されたものがある。この立体造形の具体的な手順を以下に説明する。

【0004】

まず、ブレード機構により粉末の薄層を平らな表面上に均一に拡げ、この粉末の薄層における所定の領域に対して、インクジェットノズルヘッドを走査させてバインダー（結合剤）を吐出する。バインダーが吐出された領域の粉末材料は、

必要な操作を施して接合状態となるとともに、既に形成済の下層とも結合する。そして、造形物全体が完成するまで、粉末層を上部に順次形成させ、バインダーを吐出する工程を繰り返す。最終的に、バインダが付着されなかった領域は、粉末が個々に独立した互いに非結合な状態であるため、造形物を装置から取り出す際に、粉末は容易に除去でき造形物が分離可能となる。以上の操作により、所望の三次元造形物が製造できることとなる。

【0005】

また、同様な方法で、結合剤にイエロー（Y）、マゼンタ（M）およびシアン（C）の着色を施し、カラー化を施しつつ接合強度を向上させた、例えば特許文献2が開示されている。

【0006】

しかしながら、上記の手法では、造形物の特性（質感、色）が所望の物に比べ、満足できるレベルには至らないのが実状である。特に、透明感の必要な三次元造形物は、粉末とバインダーの性質の違い、粉末を用いるため生じる空隙の存在により、従来の方法では不可能とされている。さらに、表面になめらかさを付与するためには、上塗り、研磨処理を人手により行わなければならぬため時間と費用が必要となる。

また、人手での彩色では、三次元造形物の所定の位置に所望の模様などを確実に描くことが一般的に困難である。

【0007】

一方で、形成直後の三次元造形物はバインダによる接合力のみにより形作られているため、三次元造形物の取り扱い方法によっては強度が弱く壊れてしまう場合もある。そこで、従来より、形成後の三次元造形物の粉末粒子の間に樹脂及びワックスなどを含浸させることにより強度を増大させてきた。しかしながら、このような工程は手間と時間を要する。

【0008】

【特許文献1】

特許第2729110号公報

【特許文献2】

特開 2001-150556 号公報

【0009】

【発明が解決しようとする課題】

本発明は、上記課題に鑑みてなされたものであり、適切な三次元造形物を製造することができる三次元造形技術を提供することを主たる目的としている。特に、短時間かつ低コストで、種々の外観特性を有する三次元造形物を製造することを目的としている。

【0010】

【課題を解決するための手段】

本発明の上記課題は、下記の手段により解決された。

(1) 屈折率 n_1 を有する粉末材料を支持体上に所定の厚さを有する層に形成する層形成工程、及び上記の工程により形成された粉末材料層を所定の断面形状に屈折率 n_2 を有する結着剤により結合させる断面形状形成工程（ただし、 $-0.1 \leq n_1 - n_2 \leq 0.1$ である。）、を順次繰り返すことを特徴とする三次元造形物の製造方法、

(2) (a) 屈折率 n_1 を有する粉末材料を支持体上に所定の厚さを有する層に形成する層形成工程および

(b) 前記の工程により形成された粉末材料層に対して UV 硬化性結合剤を断面形状に供給し UV 光を照射することにより硬化させて、硬化後の屈折率が n_2 である結着剤により、造形対象物をある一つの面で切断した切断面に対応する前記粉末材料の結合体を形成する工程を、

(c) 順次繰り返すことにより前記造形対象物を複数の面で切断した切断面に対応する、前記粉末材料の結合体を順次積層形成して三次元造形物を製造する方法であって、

(d) $-0.1 \leq n_1 - n_2 \leq 0.1$ である

ことを特徴とする三次元造形物の製造方法。

(3) (a) 粉末材料を所定の厚さを有する層に形成する層形成工程および

(b) 前記の工程により形成された粉末材料層に対して UV 硬化性結合剤を断面形状に供給し UV 光を照射することにより硬化させて、造形対象物をある一つの

面で切断した切断面に対応する前記粉末材料の結合体を形成する工程を、

(c) 順次繰り返すことにより前記造形対象物を複数の面で切断した切断面に対応する前記粉末材料の結合体を順次積層形成して三次元造形物を製造する方法であって、

(d) 前記UV硬化性硬化剤のUV硬化後の揮発成分が5重量%以下であることを特徴とする三次元造形物の製造方法。

(4) 粉末材料が結合に用いるUV硬化性結合剤の硬化物である(1)～(3)いずれか1つに記載の三次元造形物の製造方法。

(5) 粉末材料が水酸化マグネシウム、シリカゲルまたはアルミナである(1)～(4)いずれか1つに記載の三次元造形物の製造方法。

(6) UV硬化性結合剤を硬化させた後の揮発成分が5重量%以下である(2)記載の三次元造形物の製造方法。

【0011】

(7) 水酸化マグネシウム、シリカゲル、アルミナの平均粒子径が0.1～1000μmである(5)記載の三次元造形物の製造方法。

(8) UV硬化性結合剤が多官能アクリレート及びメタアクリレートモノマーの少なくとも一種類を含む(2)又は(3)記載の三次元造形物の製造方法。

(9) 多官能アクリレート及びメタアクリレートモノマーの少なくとも一種類がUV硬化性結合剤全体の20重量%～90重量%である(8)記載の三次元造形物の製造方法。

(10) UV硬化性結合剤が粘度調整用添加剤を0重量%～70重量%含有する(2)又は(3)記載の三次元造形物の製造方法。

(11) UV硬化性結合剤が450～250nmのUV光に対して、感度を有する、光重合開始剤を0.05重量%～10重量%含有する(2)又は(3)記載の三次元造形物の製造方法。

【0012】

(12) UV硬化性結合剤がイエロー(Y)、マゼンタ(M)、シアン(C)、ホワイト(W)等の一色以上の着色剤をそれぞれ含有する(2)又は(3)記載の三次元造形物の製造方法。

(13) 上記着色剤が、染料または顔料を少なくとも一種以上含む(12)記載の三次元造形物の製造方法。

(14) UV硬化性結合剤の粘度が1~30 mPa·sである(2)又は(3)記載の三次元造形物の製造方法。

(15) UV硬化性結合剤の粉末材料への供給手段が、インクジェット方式である(2)又は(3)記載の三次元造形物の製造方法。

【0013】

【発明の実施の形態】

本発明は、屈折率 n_1 を有する粉末材料を支持体上に所定の厚さを有する層に形成する工程、及び、上記の工程により形成された粉末材料層を所定の断面形状に屈折率 n_2 を有する接着剤により結合させる工程(ただし、 $-0.1 \leq (n_1 - n_2) \leq 0.1$ である。)、を順次繰り返すことを特徴とする三次元造形物の製造方法に係る。

本発明に使用する粉末材料の屈折率は間接法により求めることができる。すなわち、粉末材料と混合しても粉末が目視で確認できないような混合溶媒を調製して、その混合溶媒の屈折率を求め、この屈折率を粉末材料の屈折率に等しいとすることができる。この間接法による具体的な測定操作は、例えば、株式会社アタゴ製アッペ屈折計3型の取扱説明書において「粉末の測定」項目に記載されている。測定の具体例は、後掲の実施例に記載する。

ここで、粉末材料は、平均粒径が $0.1 \sim 1, 000 \mu\text{m}$ の微粉末であることが好ましく、平均粒径が $1 \sim 50 \mu\text{m}$ の微粉末であることがより好ましい。粒径分布は広くても良いが、狭い方が好ましい。粉末材料は有機材料、無機材料および無機・有機複合材料でも良い。詳細な説明は後に行う。

【0014】

支持体としては、任意の表面形状を有する支持体が使用できるが、なめらかな表面を有する支持体が好ましく、平坦な面を有する支持体が好ましく使用できる。製造する三次元造形物の高さ以上に伸長可能な枠を周囲に有する支持体を使用することが好ましい。

粉末材料層の所定の厚さとしては、1スライスピッチあたり $10 \sim 500 \mu\text{m}$

の厚さの層とすることが好ましく、50～150μmの厚さとすることがより好ましい。層形成工程および断面形状形成工程を1回繰り返すごとに粉末材料層全体の積層厚さを前記のスライスピッチづつ増大させる。

所定の断面形状とは、造形対象物をある一つの面で切断した切断面に対応する彩色を伴う形状を言う。

【0015】

本発明の三次元造形物の製造方法における好ましい一実施態様について、以下に説明する。以下の4ステップは、層形成工程および断面形状形成工程に先立って、3次元形状色彩データ作成工程および断面データ作成工程を実施するものである。

第1ステップでは、コンピュータに、表面にカラー模様等が施された三次元造形対象物を表現したモデルデータを作成させる。造形するための基になるモデルデータには、一般の3D-CADモデリングソフトウェアで作成されるカラー三次元モデルデータを使用することができる。また、三次元形状入力装置で計測された三次元形状のデータおよびテクスチャを利用することも可能である。

【0016】

第2ステップでは、上記のモデルデータから造形対象物を水平方向にスライスした断面ごとの断面データを生成する。モデルデータから積層する粉末の一層分の厚みに相当するピッチでスライスされた断面体を切り出し、断面の存在する領域を示す形状データおよび彩色データを断面データとして作成する。なお、本発明において、「形状データ」および「彩色データ」を併せて「断面形状データ」ともいう。

続いて、造形対象物を造形する際における粉末の積層厚さ（断面データ作成の際のスライスピッチ）及び積層数（断面データセットの数）に関する情報が、コンピュータから断面形状作成装置の駆動制御部に入力される。

【0017】

第3ステップでは、造形ステージにおいて三次元造形物を製造する材料となる粉末材料の供給を行う。粉末材料のカウンター回転機構（以降「カウンターローラー」と称する。）を用いて、粉末材料を平らな層状に敷き詰め、所定量の粉末

を供給完了した後、粉末材料の供給を停止する。

【0018】

第4ステップでは、切断面の断面形状データに基づく断面形状を形成する工程である。この工程は非接触の方式を採用することが好ましい。代表例としてインクジェット方式を例に取り説明する。

第2ステップで作成された形状データおよび彩色データに従ってインクジェットヘッドをXY平面内に移動させる。そして、移動中に色データに基づいて各インクジェット吐出ノズルから紫外線(UV)硬化性結合剤の吐出を適宜に行わせ、同時にUV露光装置により吐出した結合剤の表面にUV露光をおこなうことにより、粉末材料の接着体が生成される。

UV露光はUV硬化結合剤の吐出後に行っても良いが、予めUV照射した結合剤表面に吐出することが好ましい。

UV照射の雰囲気を窒素やアルゴン等の不活性ガス雰囲気にすると酸素によるラジカル重合遅延効果を低減できる。

【0019】

ここで使用するインクジェット方式とは、主としてオンデマンドインクジェット方式を指し、ピエゾオンデマンドインクジェット方式、サーマルオンデマンドインクジェット方式、静電オンデマンドインクジェット方式等が挙げられ、好ましくは、UV硬化性結合剤の安定性から、ピエゾオンデマンドインクジェット方式、静電オンデマンドインクジェット方式が挙げられる。

さらに、第3ステップ及び第4ステップを繰り返しおこなうことで、目的の三次元造形物が得られる。

なお、結合剤が塗布されない粉末材料の領域では粉末が個々に独立した状態を保持している。

【0020】

第5ステップでは、接着剤が付与されていない領域の粉末材料を分離して、接着剤により結合された粉末の結合体(三次元造形物)を取り出す。なお、結合されなかった粉末材料は回収して、再度材料として利用することが可能である。

第3ステップ～第4ステップを順次繰り返すことにより、造形対象物を複数の

面で切断した切断面に対応する粉末材料の結合体を順次積層形成して三次元造形物を製造することができる。

屈折率 n_1 を有する粉末材料の層を屈折率 n_2 を有する結着剤により断面形状に結合させること（ただし、 $-0.1 \leq (n_1 - n_2) \leq 0.1$ である。）により、略透明な 3 次元造形物を製造することができる。

【0021】

本発明で使用する各成分について、以下に説明する。ただし、具体的な内容については、以下の説明内容に限定されるものではない。

（粉末材料）

粉末材料としては、無機粉末及び有機粉末、さらには無機・有機複合粉末すべてが使用できる。

無機粉末としては、例えば、金属、金属の、酸化物、複合酸化物、水酸化物、炭酸塩、硫酸塩、ケイ酸塩、リン酸塩、窒化物、炭化物硫化物及びこれらの少なくとも 2 種以上の複合化物等が挙げられる。具体的には、水酸化マグネシウム、シリカゲル、水酸化アルミニウム、アルミナ、硝子、酸化チタン、酸化亜鉛、酸化ジルコン、酸化錫、チタン酸カリウム、硼酸アルミニウム、酸化マグネシウム、硼酸マグネシウム、水酸化カルシウム、塩基性硫酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、リン酸カルシウム、窒化珪素、窒化チタン、窒化アルミニ、炭化珪素、炭化チタン、硫化亜鉛及びこれらの少なくとも 2 種以上の複合化物等が挙げられる。好ましくは、水酸化マグネシウム、シリカゲル、水酸化アルミニウム、アルミナ、硝子、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸マグネシウム等が挙げられる。

【0022】

有機粉末としては、例えば合成樹脂粒子、天然高分子粒子等が挙げられ、具体的にはアクリル樹脂、ポリエチレン、ポリプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエチレンイミン、ポリスチレン、ポリウレタン、ポリウレア、ポリエステル、ポリアミド、ポリイミド、カルボキシメチルセルロース、ゼラチン、デンプン、キチン、キトサン等であり、好ましくはアクリ

リル樹脂、ポリウレタン、「ゼラチン、ポリスチレン等であり、より好ましくは、アクリル樹脂から成るUV硬化性結合剤の重合体樹脂粒子が挙げられる。

【0023】

無機有機複合粉末としては、例えば、上記有機粉末と無機粉末の複合化物が挙げられる。

【0024】

粉末材料の平均粒子径は、0.1～1000μmであり、好ましくは0.5～500μm、より好ましくは1～300μm、特に好ましくは1～50μmの範囲である。

粉末材料の形状としては、無定型、球形、平板状、針状、多孔質状等どのようなものでも使用可能である。

【0025】

粉末材料の屈折率n₁の範囲は、1.4～1.7であることが好ましい。

粉末材料を相互に結合しうる状態の接着剤の屈折率をn₂とする。エチレン性不飽和单量体を結合剤として使用する場合には、この单量体が重合してできる接着剤の屈折率をn₂とする。(n₁-n₂)は、その絶対値が小さいほど得られる造形物の透明性が高くなる。屈折率の差の絶対値が0.2以下で透明感が出はじめ、0.1以下で透明感が高くなり、0.06以下で透明に近い造形物が得られる。ここで、本発明において「透明に近い」または「ほとんど濁り無く透明」とは、光路1cmあたり透過率が50%以上のこととをいう。

【0026】

(UV硬化性結合剤)

本発明においてUV硬化性結合剤を硬化させた接着剤が好ましく使用される。

UV硬化性結合剤は光重合開始剤、重合性モノマー、粘度調整用添加剤から成り、ほぼすべての構成材料がUV光により硬化し、粉末材料を接着する機能を有する。

各構成材料の割合は、光重合開始剤を、モノマー、光重合開始剤及び粘度調整用添加剤の総量に対して、好ましくは0.05重量%～10重量%、より好ましくは0.1重量%～5重量%、モノマーを好ましくは20重量%～90重量%、

より好ましくは40重量%～80重量%、粘度調整用添加剤を好ましくは0重量%～70重量%、より好ましくは10重量%～60重量%である。結合剤の液粘度は、1～30mPa・sが好ましく、2～20mPa・sが更に好ましい。

【0027】

[重合性モノマー]

UV硬化性結合剤に使用できる重合性モノマーとしては、UV光照射により、光重合開始剤から生じるラジカル種またはカチオン種により、付加重合が開始され、重合体を生じるものが好ましく使用される。例えば、少なくとも一個のエチレン性不飽和二重結合を有する单量体がラジカル重合性化合物であり、末端エチレン性不飽和結合を少なくとも1個、好ましくは2個以上有する化合物から選ばれる。この様な化合物群は当該産業分野において広く知られるものであり、本発明においてはこれらを特に限定無く用いる事ができる。

これらは、例えばモノマー、プレポリマー（すなわち2量体、3量体およびオリゴマー）、またはそれらの混合物の化学的形態をもつ。モノマーの例としては、不飽和カルボン酸（例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など）や、そのエステル類又はアミド類があげられ、好ましくは、不飽和カルボン酸と脂肪族多価アルコール化合物とのエステル、不飽和カルボン酸と脂肪族多価アミン化合物とのアミド類が用いられる。

また、ヒドロキシル基や、アミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル又はアミド類と单官能もしくは多官能イソシアネート類、エポキシ類との付加反応物、单官能もしくは、多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステルまたはアミド類と、单官能もしくは多官能のアルコール類、アミン類およびチオール類との付加反応物、さらに、ハロゲン基やトシリオキシ基等の脱離性置換基を有する不飽和カルボン酸エステルまたはアミド類と、单官能もしくは多官能のアルコール類、アミン類およびチオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等に置き換えた化合物群を使用することも可能である。

【0028】

脂肪族多価アルコール化合物と不飽和カルボン酸とのエステルであるラジカル重合性化合物の具体例としては、（メタ）アクリル酸エステルとして、エチレングリコールジ（メタ）アクリレート、トリエチレングリコールジ（メタ）アクリレート、1, 3-ブタンジオールジ（メタ）アクリレート、テトラメチレングリコールジ（メタ）アクリレート、プロピレングリコールジ（メタ）アクリレート、ネオペンチルグリコールジ（メタ）アクリレート、トリメチロールプロパントリ（メタ）アクリレート、トリメチロールプロパントリ（（メタ）アクリロイルオキシプロピル）エーテル、トリメチロールエタントリ（メタ）アクリレート、ヘキサンジオールジ（メタ）アクリレート、1, 4-シクロヘキサンジオールジ（メタ）アクリレート、テトラエチレングリコールジ（メタ）アクリレート、ペンタエリスリトールジ（メタ）アクリレート、ペンタエリスリトールトリ（メタ）アクリレート、ペンタエリスリトールテトラ（メタ）アクリレート、ジペンタエリスリトールジ（メタ）アクリレート、ジペンタエリスリトールヘキサ（メタ）アクリレート、ソルビトールトリ（メタ）アクリレート、ソルビトールテトラ（メタ）アクリレート、ソルビトールペンタ（メタ）アクリレート、ソルビトールヘキサ（メタ）アクリレート、トリ（（メタ）アクリロイルオキシエチル）イソシアヌレート、ポリエステル（メタ）アクリレートオリゴマー、ビス〔p-（3-（メタ）アクリルオキシ-2-ヒドロキシプロポキシ）フェニル〕ジメチルメタン、ビス-〔p-（（メタ）アクリルオキシエトキシ）フェニル〕ジメチルメタン等がある。

【0029】

ここで上記の（メタ）アクリル酸エステルの表記はメタクリル酸エステルおよびアクリル酸エステルの両方の構造をとり得ることを表す省略的表記である。

【0030】

イタコン酸エステルとしては、エチレングリコールジイタコネート、プロピレングリコールジイタコネート、1, 3-ブタンジオールジイタコネート、1, 4-ブタンジオールジイタコネート、テトラメチレングリコールジイタコネート、ペンタエリスリトールジイタコネート、ソルビトールテライタコネート等があ

る。

【0031】

クロトン酸エステルとしては、エチレングリコールジクロトネート、テトラメチレングリコールジクロトネート、ペンタエリスリトールジクロトネート、ソルビトールテトラジクロトネート等がある。

【0032】

イソクロトン酸エステルとしては、エチレングリコールジイソクロトネート、ペンタエリスリトールジイソクロトネート、ソルビトールテライソクロトネート等がある。

【0033】

マレイン酸エステルとしては、エチレングリコールジマレート、トリエチレングリコールジマレート、ペンタエリスリトールジマレート、ソルビトールテトラマレート等がある。

【0034】

その他のエステルの例として、例えば、特公昭46-27926、特公昭51-47334、特開昭57-196231記載の脂肪族アルコール系エステル類や、特開昭59-5240、特開昭59-5241、特開平2-226149記載の芳香族系骨格を有するもの、特開平1-165613記載のアミノ基を含有するもの等も好適に用いられる。

【0035】

また、脂肪族多価アミン化合物と不飽和カルボン酸とのアミドのモノマーの具体例としては、メチレンビスーアクリルアミド、メチレンビスーエタクリルアミド、1, 6-ヘキサメチレンビスーアクリルアミド、1, 6-ヘキサメチレンビスーエタクリルアミド、ジエチレントリアミントリスアクリルアミド、キシリレンビスアクリルアミド、キシリレンビスマタクリルアミド等がある。

【0036】

その他の好ましいアミド系モノマーの例としては、特公昭54-21726記載のシクロヘキシレン構造を有すものをあげる事ができる。

【0037】

また、イソシアネートと水酸基の付加反応を用いて製造されるウレタン系付加重合性化合物も好適であり、そのような具体例としては、例えば、特公昭48-41708号公報中に記載されている1分子に2個以上のイソシアネート基を有するポリイソシアネート化合物に、下記式(I)で示される水酸基を含有するビニルモノマーを付加させた1分子中に2個以上の重合性ビニル基を含有するビニルウレタン化合物等が挙げられる。

【0038】

一般式(I)

(ただし、R¹およびR²は、HまたはCH₃を示す。)

【0039】

粉末材料を結着剤と同一の組成にすることは粉末材料と結着剤の屈折率差をゼロに近づける一方法である。このために結合剤モノマーを塊状重合して粉碎した粉末粒子を用いることができる。結合剤モノマーを懸濁重合またはパール重合して所望の粒径を有する粉末材料とすることができます。

【0040】

本発明において、エポキシ基及び／又はオキセタン基等の環状エーテル基を分子内に2つ以上有するカチオン重合性のモノマーをUVカチオン重合開始剤と共にUV硬化性の結合剤として使用することができる。

【0041】

UV硬化性結合剤の硬化後の揮発成分は5重量%以下であることが好ましい。このために結合剤を有機溶媒を使用しない無溶媒処方とすることが好ましい。また、単官能のエチレン性不飽和モノマーの使用量を全モノマー重量の70重量%以下にすることが好ましい。

硬化後の揮発成分を低減するために、3次元造形物を製造した後に、残存モノマーをUV光照射または加熱により後重合させることができる。

【0042】

[光重合開始剤]

本発明で使用する单量体は光重合開始剤を用いて硬化させることが好ましい。

熱重合開始剤も使用できる。

光重合開始剤としては、UV光のエネルギーによりラジカル種又はカチオン種を発生し、重合性のエチレン性不飽和基を有する化合物の重合を開始、促進する化合物が使用できる。

熱重合開始剤は、公知であり、結合解離エネルギーの小さな結合を有する化合物を使用することができる。熱重合開始剤は単独で使用しても又は2種以上を併用して用いることができる。

【0043】

付加重合を開始することができるラジカル種またはカチオン種を発生する化合物としては、例えば、有機ハロゲン化化合物、カルボニル化合物、有機過酸化化合物、アゾ系重合開始剤、アジド化合物、メタロセン化合物、ヘキサアリールビイミダゾール化合物、有機ホウ酸化合物、ジスルホン酸化合物、オニウム塩化合物、が挙げられる。

【0044】

上記有機ハロゲン化化合物としては、具体的には、若林等、「Bull. Chem. Soc. Japan」42、2924（1969）、米国特許第3,905,815号明細書、特公昭46-4605号、特開昭48-36281号、特開昭55-32070号、特開昭60-239736号、特開昭61-169835号、特開昭61-169837号、特開昭62-58241号、特開昭62-212401号、特開昭63-70243号、特開昭63-298339号、M. P. Hutt “Journal of Heterocyclic Chemistry” 1 (No 3), (1970)」筆に記載の化合物が挙げられ、特に、トリハロメチル基が置換したオキサゾール化合物：S-トリアジン化合物が挙げられる。

【0045】

より好適には、すくなくとも一つのモノ、ジ、又はトリハロゲン置換メチル基がS-トリアジン環に結合したS-トリアジン誘導体、具体的には、例えば、2, 4, 6-トリス（モノクロロメチル）-S-トリアジン、2, 4, 6-トリス（ジクロロメチル）-S-トリアジン、2, 4, 6-トリス（トリクロロメチル

) -s-トリアジン、2-メチル-4, 6-ビス(トリクロロメチル)-s-トリアジン、2-n-プロピル-4, 6-ビス(トリクロロメチル)-s-トリアジン、2-(α , α , β -トリクロロエチル)-4, 6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4, 6-ビス(トリクロロメチル)-s-トリアジン、2-(3, 4-エポキシフェニル)-4, 6-ビス(トリクロロメチル)-s-トリアジン、2-(p-クロロフェニル)-4, 6-ビス(トリクロロメチル)-s-トリアジン、2-[1-(p-メトキシフェニル)-2, 4-ブタジエニル]-4, 6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4, 6-ビス(トリクロロメチル)-s-トリアジン、2-(4-ナトキシナフチル)-4, 6-ビス(トリクロロメチル)-s-トリアジン、2-フェニルチオ-4, 6-ビス(トリクロロメチル)-s-トリアジン、2-ベンジルチオ-4, 6-ビス(トリクロロメチル)-s-トリアジン、2, 4, 6-トリス(ジブロモメチル)-s-トリアジン、2-メチル-4, 6-ビス(トリブロモメチル)-s-トリアジン、2-メトキシ-4, 6-ビス(トリブロモメチル)-s-トリアジン等が挙げられる。

【0046】

上記カルボニル化合物としては、ベンゾフェノン、ミヒラーケトン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2-クロロベンゾフェノン、4-ブロモベンゾフェノン、2-カルボキシベンゾフェノン等のベンゾフェノン誘導体、2, 2-ジメトキシ-2-フェニルアセトフェノン、2, 2-ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、 α -ヒドロキシ-2-メチルフェニルプロパノン、1-ヒドロキシ-1-メチルエチル-(p-イソプロピルフェニル)ケトン、1-ヒドロキシ-1-(p-ドデシルフェニル)ケトン、2-メチル-(4'--(メチルチオ)

フェニル) - 2 - モルホリノ - 1 - プロパノン、 1, 1, 1 - トリクロロメチル - (p - ブチルフェニル) ケトン等のアセトフェノン誘導体、 チオキサントン、 2 - エチルチオキサントン、 2 - イソプロピルチオキサントン、 2 - クロロチオキサントン、 2, 4 - ジメチルチオキサントン、 2, 4 - ジエチルチオキサントン、 2, 4 - ジイソプロピルチオキサントン等のチオキサントン誘導体、 p - ジメチルアミノ安息香酸エチル、 p - ジエチルアミノ安息香酸エチル等の安息香酸エステル誘導体等を挙げることができる。

上記アゾ化合物としては例えば、 特開平8-108621に記載のアゾ化合物等を使用することができる。

【0047】

上記有機過酸化化合物としては、 例えば、 トリメチルシクロヘキサノンパーオキサイド、 アセチルアセトンパーオキサイド、 1, 1 - ビス (tert - ブチルパーオキシ) - 3, 3, 5 - トリメチルシクロヘキサン、 1, 1 - ビス (tert - ブチルパーオキシ) シクロヘキサン、 2, 2 - ビス (tert - ブチルパーオキシ) ブタン、 tert - ブチルハイドロパーオキサイド、 クメンハイドロパーオキサイド、 ジイソプロピルベンゼンハイドロパーオキサイド、 2, 5 - ジメチルヘキサン - 2, 5 - ジハイドロパーオキサイド、 1, 1, 3, 3 - テトラメチルブチルハイドロパーオキサイド、 tert - ブチルクミルパーオキサイド、 ジクミルパーオキサイド、 2, 5 - ジメチル - 2, 5 - ジ (tert - ブチルパーオキシ) ヘキサン、 2, 5 - オキサノイルパーオキサイド、 過酸化こはく酸、 過酸化ベンゾイル、 2, 4 - ジクロロベンゾイルパーオキサイド、 ジイソプロピルパーオキシジカーボネット、 ジ - 2 - エチルヘキシルパーオキシジカーボネット、 ジ - 2 - エトキシエチルパーオキシジカーボネット、 ジメトキシイソプロピルパーオキシカーボネット、 ジ (3 - メチル - 3 - メトキシブチル) パーオキシジカーボネット、 tert - ブチルパーオキシピバレート、 tert - ブチルパーオキシネオデカノエート、 tert - ブチルパーオキシオクタノエート、 tert - ブチルパーオキシラウレート、 ターシルカーボネット、 3, 3', 4, 4' - テトラ - (tert - ブチルパーオキシカルボニル) ベンゾフェノン、 3, 3', 4, 4' - テトラ - (t - ヘキシルパ

ーオキシカルボニル) ベンゾフェノン、3, 3', 4, 4' - テトラ- (p-イソプロピルクミルパーオキシカルボニル) ベンゾフェノン、カルボニルジ (t-ブチルパーオキシ二水素二フタレート) 、カルボニルジ (t-ヘキシルパーオキシ二水素二フタレート) 等が挙げられる。

【0048】

上記メタロセン化合物としては、特開昭59-152396号公報、特開昭61-151197号公報、特開昭63-41484号公報、特開平2-249号公報、特開平2-4705号公報、特開平5-83588号公報記載の種々のチタノセン化合物、例えば、ジーシクロペンタジエニル-Ti-ビス-フェニル、ジーシクロペンタジエニル-Ti-ビス-2, 6-ジフルオロフェニ-1-イル、ジーシクロペンタジエニル-Ti-ビス-2, 4-ジフルオロフェニ-1-イル、ジーシクロペンタジエニル-Ti-ビス-2, 4, 6-トリフルオロフェニ-1-イル、ジーシクロペンタジエニル-Ti-ビス-2, 3, 5, 6-テトラフルオロフェニ-1-イル、ジーシクロペンタジエニル-Ti-ビス-2, 3, 4, 5, 6-ペンタフルオロフェニ-1-イル、ジーメチルシクロペンタジエニル-Ti-ビス-2, 6-ジフルオロフェニ-1-イル、ジーメチルシクロペンタジエニル-Ti-ビス-2, 4, 6-トリフルオロフェニ-1-イル、ジーメチルシクロペンタジエニル-Ti-ビス-2, 3, 5, 6-テトラフルオロフェニ-1-イル、ジーメチルシクロペンタジエニル-Ti-ビス-2, 3, 4, 5, 6-ペンタフルオロフェニ-1-イル、特開平1-304453号公報、特開平1-152109号公報記載の鉄-アレーン錯体等が挙げられる。

【0049】

上記ヘキサアリールビイミダゾール化合物としては、例えば、特公平6-29285号、米国特許第3, 479, 185号、同第4, 311, 783号、同第4, 622, 286号等の各公報記載の種々の化合物、具体的には、2, 2' - ビス (o-クロロフェニル) - 4, 4', 5, 5' - テトラフェニルビイミダゾール、2, 2' - ビス (o-ブロモフェニル)) 4, 4', 5, 5' - テトラフェニルビイミダゾール、2, 2' - ビス (o, p-ジクロロフェニル) - 4, 4', 5, 5' - テトラフェニルビイミダゾール、2, 2' - ビス (o-クロロフ

エニル) -4, 4', 5, 5' -テトラ (m-メトキシフェニル) ビイジダゾール、2, 2' -ビス (o, o' -ジクロロフェニル) -4, 4', 5, 5' -テトラフェニルビイミダゾール、2, 2' -ビス (o-ニトロフェニル) -4, 4', 5, 5' -テトラフェニルビイミダゾール、2, 2' -ビス (o-メチルフェニル) -4, 4', 5, 5' -テトラフェニルビイミダゾール、2, 2' -ビス (o-トリフルオロフェニル) -4, 4', 5, 5' -テトラフェニルビイミダゾール等が挙げられる。

【0050】

上記有機ホウ酸塩化合物としては、例えば、特開昭62-143044号、特開昭62-150242号、特開平9-188685号、特開平9-188686号、特開平9-188710号、特開2000-131837、特開2002-107916、特許第2764769号、特開2002-116539号、等の各公報、及び、Kunz, Martin "Rad Tech' 98. Proceedings April 19-22, 1998, Chicago" 等に記載される有機ホウ酸塩、特開平6-157623号公報、特開平6-175564号公報、特開平6-175561号公報に記載の有機ホウ素スルホニウム錯体或いは有機ホウ素オキソスルホニウム錯体、特開平6-175554号公報、特開平6-175553号公報に記載の有機ホウ素ヨードニウム錯体、特開平9-188710号公報に記載の有機ホウ素ホスホニウム錯体、特開平6-348011号公報、特開平7-128785号公報、特開平7-140589号公報、特開平7-306527号公報、特開平7-292014号公報等の有機ホウ素遷移金属配位錯体等が具体例として挙げられる。

上記ジスルホン化合物としては、特開昭61-166544号、特開2002-328465等記載される化合物が挙げられる。

【0051】

[粘度調整用添加剤]

粘度調整用添加剤としては、低粘度かつモノマーと共に重合可能な化合物が用いられる。例えば、アクリレート、メタアクリレート、アクリルアミド類が挙げられる。具体的には、トリルオキシエチル(メタ)アクリレート、フェニルオキシエ

チル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、エチル(メタ)アクリレート、メチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、メチレンビスアクリルアミド、1, 6-ジ(メタ)アクリロイルオキシヘキサン等、好ましくは、トリルオキシエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、1, 6-ジ(メタ)アクリロイルオキシヘキサン等が挙げられる。

【0052】

(着色剤)

[染料]

染料としては、印刷の技術分野（例えば印刷インキ、感熱インクジェット記録、静電写真記録等のコピー用色材または色校正版など）で一般に用いられるものを使用することができる。

例えば、有機合成化学協会編「染料便覧」丸善株式会社（1970年刊）、安部田貞治、今田邦彦「解説 染料化学」（株）色染社（1988年刊）、大河原信編「色素ハンドブック」（株）講談社（1986年刊）、インクジェットプリンタ用ケミカルスー材料の開発動向・展望調査一」（株）シーエムシー（1997年刊）、前記の甘利武司「インクジェットプリンター技術と材料」等に記載の染料類が挙げられる。

【0053】

染料の具体例としては、アゾ染料、含金属アゾ染料、金属錯塩染料、アゾメチニン染料、ナフトール染料、アントラキノン染料、インジゴ染料、カーボニウム染料、キノンイミン染料、キサンテン染料、シアニン染料、キノリン染料、ニトロ染料、ニトロソ染料、ベンゾキノン染料、ナフトキノン染料、縮合多環系染料（例えば、フタロシアニン染料、金属フタロシアニン染料、ペリレン染料等）、ニグロシン染料等の染料が好ましい。

これらの染料は、単独で用いてもよいし、適宜組み合わせて使用することもできる。

【0054】

(顔料)

顔料としては、特に限定されるものではなく、一般に市販されているすべての有機顔料及び無機顔料、または顔料を分散媒に不溶性の樹脂等に分散させたもの、あるいは顔料表面に樹脂をグラフト化したもの等を用いる事ができる。また、樹脂粒子を染料で染色したもの等も用いる事ができる。

【0055】

有機顔料及び無機顔料の具体例としては、例えば、イエロー色を呈するものとして、C. I. ピグメントイエロー-1 (ファストイエローG等)、C. I. ピグメントイエロー-74 の如きモノアゾ顔料、C. I. ピグメントイエロー-12 (ジスアジイエローAAA等)、C. I. ピグメントイエロー-17 の如きジスアゾ顔料、C. I. ピグメントイエロー-180 の如き非ベンジジン系のアゾ顔料、C. I. ピグメントイエロー-100 (タートラジンイエローレーキ等) の如きアゾレーキ顔料、C. I. ピグメントイエロー-95 (縮合アゾイエローGR等) の如き縮合アゾ顔料、C. I. ピグメントイエロー-115 (キノリンイエローレーキ等) の如き酸性染料レーキ顔料、C. I. ピグメントイエロー-18 (チオフラビンレーキ等) の如き塩基性染料レーキ顔料、フラバントロンイエロー (Y-24) の如きアントラキノン系顔料、イソインドリノンイエロー-3RLT (Y-110) の如きイソインドリノン顔料、キノフタロンイエロー (Y-138) の如きキノフタロン顔料、イソインドリンイエロー (Y-139) の如きイソインドリン顔料、C. I. ピグメントイエロー-153 (ニッケルニトロソイエロー等) の如きニトロソ顔料、C. I. ピグメントイエロー-117 (銅アゾメチンイエロー等) の如き金属錯塩アゾメチン顔料等が挙げられる。

【0056】

マゼンタ色を呈するものとして、C. I. ピグメントレッド3 (トルイジンレッド等) の如きモノアゾ系顔料、C. I. ピグメントレッド38 (ピラゾロンレッドB等) の如きジスアゾ顔料、C. I. ピグメントレッド53:1 (レーキレッドC等) やC. I. ピグメントレッド57:1 (ブリリアントカーミン6B) の如きアゾレーキ顔料、C. I. ピグメントレッド144 (縮合アゾレッドBR等) の如き縮合アゾ顔料、C. I. ピグメントレッド174 (フロキシンBレーキ等) の如き酸性染料レーキ顔料、C. I. ピグメントレッド81 (ローダミン

6 G' レーキ等) の如き塩基性染料レーキ顔料、C. I. ピグメントレッド177 (ジアントラキノニルレッド等) の如きアントラキノン系顔料、C. I. ピグメントレッド88 (チオインジゴボルドー等) の如きチオインジゴ顔料、C. I. ピグメントレッド194 (ペリノンレッド等) の如きペリノン顔料、C. I. ピグメントレッド149 (ペリレンスカーレット等) の如きペリレン顔料、C. I. ピグメントレッド122 (キナクリドンマゼンタ等) の如きキナクリドン顔料、C. I. ピグメントレッド180 (イソインドリノンレッド2BLT等) の如きイソインドリノン顔料、C. I. ピグメントレッド83 (マダーレーキ等) の如きアリザリンレーキ顔料等が挙げられる。

【0057】

シアン色を呈する顔料として、C. I. ピグメントブルー25 (ジアニシジンブルー等) の如きジスアゾ系顔料、C. I. ピグメントブルー15 (フタロシアニンブルー等) の如きフタロシアニン顔料、C. I. ピグメントブルー24 (ピーコックブルーレーキ等) の如き酸性染料レーキ顔料、C. I. ピグメントブルー1 (ビクロチアピュアブルーBOレーキ等) の如き塩基性染料レーキ顔料、C. I. ピグメントブルー60 (インダントロンブルー等) の如きアントラキノン系顔料、C. I. ピグメントブルー18 (アルカリブルーV-5:1) の如きアルカリブルー顔料等が挙げられる。

【0058】

白色顔料の具体例としては、塩基性炭酸鉛 ($2\text{PbCO}_3\text{Pb(OH)}_2$ 、いわゆる、シルバーホワイト) 、酸化亜鉛 (ZnO 、いわゆる、ジンクホワイト) 、酸化チタン (TiO_2 、いわゆる、チタンホワイト) 、チタン酸ストロンチウム (SrTiO_3 、いわゆる、チタンストロンチウムホワイト) などが利用可能である。

【0059】

ここで、酸化チタンは他の白色顔料と比べて比重が小さく、屈折率が大きく、科学的、物理的にも安定であるため、顔料としての隠蔽力や着色力が大きく、さらに、酸やアルカリ、その他の環境に対する耐久性にも優れている。したがって、白色顔料としては酸化チタンを利用することが好ましい。もちろん、粉末材料

や結合剤成分の種類に応じて他の白色顔料（列挙した白色顔料以外であってもよい。）を使用してもよい。

【0060】

その他、ロジンエステル樹脂や塩化ビニル-酢酸ビニル樹脂等に顔料微粒子を分散させた加工顔料が市販されており、これを用いても良い。市販加工顔料の具体例としては、チバスペシャリティケミカルズ社のマイクロリス顔料等が挙げられ、好ましい加工顔料の例としては、ロジンエステル樹脂で顔料を被覆したマイクロリス-T顔料が挙げられる。

【0061】

（UV露光）

UV硬化性結合剤を硬化させるためのUV露光に関しては、一般に用いられる高压水銀ランプ、低压水銀ランプ、Deep UVランプ等が使用可能であり、露光波長は450～250nm、好ましくは、400～300nmで、露光エネルギーは500mJ/cm²以下が好ましく、400mJ/cm²以下がより好ましい。ただし、10mJ/cm²以上が好ましい。UV光源からUV透過性の光ファイバーを用いて粉末材料面にUV光を導くことができる。

【0062】

【実施例】

＜実施例1＞

（UV硬化性接着剤の作成）

モノマー：ジペンタエリスリトールヘキサアクリレート 8.0g

光重合開始剤：2-ヒドロキシ-2-メチルプロピオフェン 0.6g

（チバ・スペシャリティ・ケミカルズ製）

希釈剤：トリロキシエチルアクリレート 8.0g

（総研化学工業（株）製）

以上の成分を搅拌混合し、約20MPa・sの無色透明な液体を得た。

【0063】

（粉末材料Aの作成）

粉末材料として、屈折率調整を不要にするため、上記UV硬化性接着剤をロッ

ドコーターでガラス板上に約 $500\mu\text{m}$ の厚さで塗布し、高圧水銀灯ランプの300~350nmの波長光をガラスファイバーで塗布膜上方へ導き、塗布面状で $50\text{mJ}/\text{cm}^2$ の光強度とし10分間照射した。その後、瑪瑙乳鉢（電動式ライカイ機）及び瑪瑙ボールミルにより微粉末化し、さらに分別して最大粒径 $20\mu\text{m}$ の粉末材料Aを得た。

【0064】

（三次元モデル作成）

粉末材料Aを約 $100\mu\text{m}$ の厚さになるようロッドで粉末層を敷設した後、該UV硬化性接着剤をインクとしたインクジェット方式により強度の要する部分などは必要に応じて吐出量を調節して描画し、該UV光を60秒間照射して硬化させた。さらに、この操作を繰り返すことで三次元造形物を作成した。

【0065】

（屈折率測定方法）

本発明における粉末材料の屈折率は、株式会社アタゴ製アッベ屈折計3型を用いて、取扱説明書の「粉末の測定」項目に記載の方法に従い測定した。

即ち粉末材料は液体と異なり屈折計で直接測定することはできないので、以下のような間接法で行った。

a. 良く混合しうる屈折率がn1とn2の2種類の透明液体を使用した。このとき文献等から予想される粉末材料の屈折率がn1とn2の間にあり、粉末材料を溶解せず、液体同士が反応しないような液体を選択した。

b. きれいな試験管に少量の粉末材料を入れ、一方の液体（屈折率n1）を1mlほど入れたところ、粉末材料は白っぽく見えた。

c. 他方の液体（屈折率n2）を少量ずつ入れては搅拌、混合していくと、粉末が目視で確認できなくなった。

d. この時の混合液体の屈折率をアッベ屈折計3型を用いて25℃において測定し、間接的に粉末材料の屈折率を求めた。

これは同説明書に記載されているように、粉末材料と液体の屈折率が一致すると、粉末材料の表面における乱反射が消滅して、透明に見えるという現象を利用したものである。

なお、アッペ式屈折計の測定原理に関しては以下の文献を参照した。

社団法人日本機械学会編、「機械工学事典」初版、社団法人日本機械学会発行
、丸善株式会社発売、1997年8月20日、p. 94~95

本発明で必要な屈折率データは、屈折率既知の液体二種を混合して、任意に屈折率を変化させた液体を作成した。この液体中に求める材料を添加し、「アタゴ製モデル3型アッペ式屈折計」を用い、25℃にて測定することで求めた。

【0066】

(揮発分量の測定方法)

UV硬化性接着剤の揮発分量(w)の測定は下式により重量法により求めた。

$$w = (w_1 - w_2) / w_1 \times 100\%$$

w₁：硬化前のUV硬化性接着剤重量

w₂：硬化後のUV硬化性接着剤重量

(評価方法)

上記方法にて作成した、縦、横、及び高さ3cmの立方体造形物を新聞紙上に置き、真上から文字の見え方を目視評価し、透明性の指標とした。

また、表面のなめらかさを手で触った感触で官能評価し、質感の指標とした。

【0067】

<実施例2>

粉末として無機物の水酸化マグネシウム(Mg(OH)₂)を軽く粉碎して用い他は実施例1と同様に評価した。

【0068】

<実施例3>

粉末として流動性の良好で、帯電しにくく凝集塊がないためハンドリングのし易い水酸化アルミニウム(Al(OH)₃)（ポアフリー、透光性、平均粒径=25μm、セラミックス原料、カタログ屈折率=1.5~1.56。ナカライトクス製）を用い、他は実施例1同様に評価した。

<実施例4>

(Al(OH)₃)粉末へのモノマー混合液吐出と同時に、あるいは相前後してモノマー混合液吐出ノズル付近に設けた別の少なくとも1つ以上の吐出ノズル

より着色インキを重ねて吐出した。他は実施例1同様に評価した。

【0069】

＜実施例5＞

有機合成樹脂であるポリメチルメタクリレート『PMMA』（屈折率=1.50、平均粒径=1.5 μ mの单一分散粒子。総研化学製）を粉末として用いた。

【0070】

＜比較例1＞

粉末としてポリスチレン粒子『PSt』（屈折率=1.61、平均粒径=1.3 μ mの单一分散粒子）。総研化学製）を用いて、同様の造型を行った。しかしモノマー混合液の屈折率を該PStに合わせ込むことは難しく、他は実施例1同様に評価した。

【0071】

以上の結果を表1にまとめた。

【表1】

N o.	粉末	屈折率差*	揮発分 [%]	透明感	質感
実施例 1	粉末材料A	0.01	0.1	○	○
〃 2	Mg(OH) ₂	0.09	0.3	○	○
〃 3	Al(OH) ₃	0.06	0.2	○	○
〃 4	〃 (着色インク併用)	0.06	0.2	○	○
〃 5	PMMA	0.04	0.3	○	○
比較例 1	PSt	0.15	0.2	×	○

* 粉末材料の屈折率と硬化後UV硬化性接着剤の屈折率の差

【0072】

透明感は官能評価とし、以下のランクに分けた。

○・・・ほとんど濁り無く透明

×・・・ほとんど不透明～不透明

××・・・不透明で不均一なボイドあり

質感は同じく官能評価とし以下のランクに分けた。

○・・・表面に光沢感、滑らかさをあり

×・・・砂粒状表面、部分的に比較的大きなクレーター状開口部あり

【0073】

実施例1～5に示すように、粉末材料と硬化後UV硬化性接着剤の屈折率差が小さく、かつ揮発成分による空隙(ボイド)の発生を押さえることにより、透明感の高くかつ質感に優れた造形物を得ることができる。

しかし、比較例1のように、屈折率がずれてくれる揮発分が少なくとも透明感が損なわれる。

【0074】

【発明の効果】

粉末材料とこれを結合する接着剤の屈折率の差の絶対値を0.1以下にすることにより表面がなめらかで、質感に優れ、透明な三次元造形物作成の製造が可能になり、さらには彩色を鮮やかにすることができる、今まで不可能とされていた、高品位三次元造形物が簡便に安価に作成可能となる。揮発成分を低減することも空隙(ボイド)による乱反射のない造形物の製造に有利である。

【書類名】 要約書

【要約】

【課題】 短時間にかつ低成本で、種々の外観特性を有する三次元造形物の製造方法を提供すること。

【解決手段】 屈折率 n_1 を有する粉末材料を支持体上に所定の厚さを有する層に形成する層形成工程、及び上記の工程により形成された粉末材料層を所定の断面形状に屈折率 n_2 を有する接着剤により結合させる断面形状形成工程（ただし、 $-0.1 \leq n_1 - n_2 \leq 0.1$ である。）、を順次繰り返すことを特徴とする三次元造形物の製造方法。 $(n_1 - n_2)$ の絶対値が 0.06 以下であることが好ましい。

認定・付加情報

特許出願の番号 特願 2003-163648
受付番号 50300961088
書類名 特許願
担当官 第六担当上席 0095
作成日 平成15年 6月12日

<認定情報・付加情報>

【提出日】 平成15年 6月 9日
【特許出願人】
【識別番号】 000005201
【住所又は居所】 神奈川県南足柄市中沼 210番地
【氏名又は名称】 富士写真フィルム株式会社
【代理人】
【識別番号】 100101719
【住所又は居所】 東京都港区西新橋1丁目4番10号 西新橋3森
ビル 野口特許事務所
【氏名又は名称】 野口 恭弘

次頁無

特願 2003-163648

出願人履歴情報

識別番号 [000005201]

1. 変更年月日 1990年 8月14日

[変更理由] 新規登録

住 所 神奈川県南足柄市中沼210番地
氏 名 富士写真フィルム株式会社