Exercise: Laplace approximation to $p(\mu, \log \sigma | \mathcal{D})$ for a univariate Gaussian.

In this exercise, we will compute a Laplace approximation of $p(\mu, \log \sigma | \mathcal{D})$ for a Gaussian, using an uninformative prior $p(\mu, \log \sigma) \propto 1$.

First, let $\ell = \log \sigma$ and $s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$. The log posterior is

$$\log p(\mu, \ell | \mathcal{D}) = -n \log \sigma - \frac{1}{2\sigma^2} [ns^2 + n(\overline{x} - \mu)^2] + \text{const}$$
 (1)

where we ignore the dependence of $\log p(\mathcal{D})$ on the parameters.

1. Show that the first derivatives are

$$\frac{\partial}{\partial \mu} \log p(\mu, \ell | \mathcal{D}) = \frac{n(\overline{x} - \mu)}{\sigma^2}$$
 (2)

$$\frac{\partial}{\partial \ell} \log p(\mu, \ell | \mathcal{D}) = -n + \frac{ns^2 + n(\overline{x} - \mu)^2}{\sigma^2}$$
(3)

2. Show that the Hessian matrix is given by

$$\mathbf{H} = \begin{pmatrix} \frac{\partial^{2}}{\partial \mu^{2}} \log p(\mu, \ell | \mathcal{D}) & \frac{\partial^{2}}{\partial \mu \partial \ell} \log p(\mu, \ell | \mathcal{D}) \\ \frac{\partial^{2}}{\partial \ell^{2}} \log p(\mu, \ell | \mathcal{D}) & \frac{\partial^{2}}{\partial \ell^{2}} \log p(\mu, \ell | \mathcal{D}) \end{pmatrix}$$
(4)

$$= \begin{pmatrix} -\frac{n}{\sigma^2} & -2n\frac{\overline{x}-\mu}{\sigma^2} \\ -2n\frac{\overline{x}-\mu}{\sigma^2} & -\frac{2}{\sigma^2}(ns^2 + n(\overline{x}-\mu)^2) \end{pmatrix}$$
 (5)

3. Use this to derive a Laplace approximation to the posterior $p(\mu, \ell | \mathcal{D})$.