动物和植物在家养下的变异

第二卷

达尔文著

科学出版社

THE VARIATION OF ANIMALS & PLANTS UNDER DOMESTICATION

BY CHARLES DARWIN, M.A., LL.D., F.R.S. EDITED BY FRANCIS DARWIN, FELLOW OF CHRIST'S COLLEGE, CAMBRIDGE

POPULAR EDITION

IN TWO VOLUMES—VOL. II.

WITH ILLUSTRATIONS

LONDON

JOHN MURRAY, ALBEMARLE STREET, W.

动物和植物在 家养下的变异

第二卷 C. 达尔文著 叶篇庄譯

科学出版社

1958年12月

內容提要

动物和植物在家养下的变异中譯本分兩卷出版,本書为第二卷。

动物和植物在家养下的变异是在 1868 年 1月达尔文 59 岁的时候出版的,迟于他的偉大著作物中起源(1859 年) 9 年。正如他自己所說的,"这一巨大的著作,費了我四年又两个月的劳动。 其中刊載了我对于家养动物和栽培植物的全部观察,以及我从各种著作中所蒐集到的大部分事实。第二卷就现在知識所允許的范围之內論述了变异、遺传等原因及共法则。 在本書的結尾我举出了我的飽受責點的汎生学說。"实际上,本書的写作开始于 1860 年 1月,其間不斷的患病以及其他工作占去了他不少的时間。

我們知道,物种起源是以一种"摘要"的形式发表的,这尔文在該書的"緒論"中 說道: "这里我只能举出我所得到的一般結論,用少数事实来作說明……沒有人比我 更感覚到有把結論所依据的一切事实和参考資料在这里詳細刊印出来的必要,我希 望在将来的著作中能做到这一点。"这就是动物和植物在家养下的变异一書的由来。

本書第一版問世以后,于一周內就售出了 1,500 部,第二周即行重印。 **2隔七**年,即 1875 年始出第二版,其中作了一些修正和增补;这就是今日流传于世的、譯本所根據的最后一版。

物种起源及动物和植物在家养下的变异二書虽然差不多已經历时百年,但其不 灭的光芒依然照耀着我們今日的整个生物科學。从这里我們不但可以理解这位**偉大** 学者的学說、思想方法和他的治学精神,而且也可能把它們作为我們治学的指导,**使** 它們变成为今日科学研究和生产实踐中的实际力量。

动物和植物在家养下的变异

目 錄

	返祖的不同形式——純粹的、即未杂交的品种的返祖,例如: 鴿、鷄、无角牛和无角羊以及栽培
-	植物——野化动物和野化植物的返祖——杂交品种和杂交物种的返祖——通过 芽繁 殖的返
	祖,通过同一朶花或同一个果实的一些部分的返祖——同一动物的不同身体部分的返祖——
	作为返祖的一个直接原因的杂交作用,各种不同的例子,关于本能——返祖的其他近因——
	潘伏的性状——
	出現——具有一切潛伏性状的胚种是一种奇怪的東西——畸形——反常整齐 花在某些場合
	中是由于返祖。
第	十四章 遺传(續)——性状的固定性——遺传优势——性的限制——年龄的
	相应
	性状的固定性显然不是由于遗传的古远——在同科的个体中以及在杂交品种和 杂交物种中
	的遺传优势;这在某一性中比在另一性中常常表現得更加强烈;这有时是由于同一性状在某
	一品种中是显現的而在其他品种中是潛伏的——在受到性的限制的 場合中的遺传——在我
	們的家养动物中新获得的性状常常只由一性遺传下去,有时只由一性而消失掉——在生命的
	相应时期的遗传——胚胎学的原理的重要性;在家养动物中所表示的:在遗传的疾病的出現
	和消失中所表示的;有时在子代中比在亲代中发生得更早——以前三章的提要。
第	·十五章 論杂交······· 375
	自由杂交消除了近似品种之間的差异——当两个混合品种的个体数量不等时,一个吸收了另
	一个——遺传优势、生活条件以及自然选择决定着吸收的比率——所有生物的偶然相互杂
25	变;明显的例外——关于不能融合的某些性状;主要的或者完全的是关于那些在个体中曾經
	突然出現的性状——关于旧族因杂交而改变、新族因杂交而形成——有些杂交族从最初产生
	起就純粹地繁育——关于同家养族的形成有关的不同物种的杂交。
第	十六章 干涉变种自由杂交的原因——家养对于能育性的影响 386
	判断变种杂交时的能育性的困难——保持变种区别的各种原因,例如繁育和性选择的期間
	——杂交时据說不稔的小麦变种——玉蜀黍、毛蕊花、蜀葵、胡蘆、甜瓜以及煙草的一些变种
	在某种程度上变得相互不稳——家养消除了物种杂交时自然具有的不育傾向——未杂交的
	动物和植物由于飼养和栽培而增大了能育性。

第十七章 論杂交的良好效果以及近亲交配的恶劣效果	396
近亲交配的定义——病态傾向的增大——杂交的良好效果以及近亲交配的 恶劣效果	的一般
証据——牛的近亲交配;在同一园圃中长期飼养的半野生牛——綿羊——黇鹿——狗	、兔、猪
——人类,嫌恶血族婚姻的起源——鶏——鴿——蜜蜂——植物,关于杂交的利益的	一般考
察——甜瓜、果树、豌豆、甘藍、小麦以及森林树木——杂种植物体积的增大,并不完全	由于它
們的不稔性——关于无論正常地或异常地自交不稔的某些植物,但它們当和同一物种	或另一
物种的 不同个体杂交时无論在雄性方面或雌性方面都是能稳 的——結論。	
第十八章 改变生活条件的利与不利:不育性的各种原因	419
由生活条件的微小变化而发生的利益——动物在其原产地以及在动物园中由于生活	条件改
变而发生的不育性——哺乳类、鳥类以及昆虫类——次級性征和本能的消失——不育	性的原
因——由于生活条件改变而发生的家养动物的不育性——个体动物的性的不調和—	一由于
生活条件改变而发生的植物的不稳性——花葯的不完全——作为不稳性的原因的畸	形——
重瓣花——无子果实——由于营养器官的过度发育而发生的不稔性——由于长期不	断的芽
繁殖而发生的不稔性——初发的不稔性、即重瓣花和无子果实的主要原因。	新五.或4
第十九章 前四章的提要,兼論杂种性質	440
N. 1704 INCHAMES, MINISTER INCHAMENTAL INC	
杂交的效果——家养对于能育性的影响——极近亲交配——生活条件的变化所产生	的良好
結果和恶劣結果——变种杂交并不永远能育——杂交时物种和变种之間在能育性上	
关于杂种性質的結論——花柱异长植物的 异型花結合对于杂交性質提供了解释	——只
是由于生殖系統的差异而发生的 杂交物种的不育性——不是自然选择的积累——家	
为什么相互不育——关于杂交物种和杂交变种的能育性的差异被强調得过分了——	吉論。
第二十章 人工选择	452
选择是一种困难的技术——有計划选择、无意識选择以及自然选择——有計划选择	的結果
在选择中所付与的注意——植物的选择——古人以及半开化人所进行的选择—	一常常
受到注意的不重要性状——无意識选择——由于环境条件慢慢变化,所以家养动物通	过无意
識选择的作用发生变化——不同的育种者对于相同的 亚变种所发生的影响——无意	識选择
对于植物的影响——最受人重视的部分表現了最大差异量,这闡明了选择的效果。	
第二十一章 选择(續)	475
自然选择对于家养动物的影响——价值微小的 性状往往具有真正的重要性——有利	于人工
选择的环境条件——防止杂交的便利以及生活条件的性質——密切注意和坚持性是	
少的——大量个体的产生是特别有利的——不进行选择,就不会形成不同的族——高	
的动物容易退化——人对各个性状的选择有进行到极点的倾向,这会导致性状的分歧	5,稀罕
地也会导致性状的趋同——性状朝着它們已經变异的同一方向繼續变异——性状的	分歧以
及中間变种的絕灭导致家养族的不同——选择力的限制——时間的 經过是重要的—	一家养
佐	

第二十二章 变異的原因494
变异性不一定同生殖相伴随——
条件而发生的各种变异性——关于这等变化的性質——气候、食物、过多的营养——微小的
变化就足够了——嫁接对于实生树的变异性的影响——家养产物对于变化了的生活条件的
习惯——变化了的生活条件的积累作用——密切的近亲交配和假定可以引起变异性的母亲
的想象力——杂交,新性状出現的一种原因——由于性状的混和以及由于返祖而发生的变异
性一关于通过生殖系統直接地或間接地誘发变异性的諸种原因的作用方式和作用时期。
第二十三章 外界生活条件的直接的和一定的作用 509
由于变化了的生活条件的一定作用,植物在大小、顏色、化学性質以及組織状态上所发生的微
小改变——地方病——由于变化了的气候或食物等而发生的显著改变——鳥类的羽衣所受
到的特殊营养以及毒物接种的影响——陸棲貝类——自然状况下的生物通过外界条件的一
定作用所发生的改变——美洲树和欧洲树的 比較——树瘿——寄生菌类的影响——同变化
了的外界条件可以发生有力影响的信念相反的考察——变种的平行系列——变异量同生活
条件的变化程度并不一致——芽变——由于不自然处理而产生的畸形——提要。
第二十四章 变異的法則——用进废退及其他 525
"形成努力"、即体制的調整力——器官的增强使用和不使用的效果——变化了的生活习性——动物和植物的風土馴化——实現这一点的种种方法——发育的被阻止——痕迹器官。
第二十五章 变異的法則(續)——相关的变異性 544
SELECTIVE IN THE SELECTION OF THE PARTY OF THE SECOND SECOND SERVICE S
"相关"这一术語的解释——同发育的关联——同各部分的增大 或 縮小相关的改变——同原 都分的相关变异—— 鳥类的羽脚呈現翼的构造——头和四肢的相关——皮肤 和 皮肤附屬物
的相关——
头骨和耳的相关——头骨和羽冠的 相关——头骨和角 的相关——由于自然选择的累积作用
而复杂化的生长相关——同体質特性相关的類色
第二十六章 变異的法則(續)——提要 558
同原部分的融合——重复的和同原的部分的变异性——生长的补偿——机械的压力——当
誘发变异时,同軸有关的芽的 相对位置以及子房中种子的相对位置——近似的或平行的变异
——三章的是要
第二十七章 关于汎生論的暫定假證 569
緒論——第一部分:在一个观点下联系起来的諸事实,即各种繁殖——切断部分的再生——
嫁接杂种——雄性生殖要素对雌性生殖要素的 直接作用——发育——身体的諸单位的机能
独立性——变异性——遺传——返祖
第二部份:关于这个假說的敍述——必要的假說不可能到怎样程度——用这个假說对第一部
分中 的 几类事实的說明——結論。

第二十八章	結束語	•• ••• ••• ••• ••• ••• •••			602
家养——	E异的性質及其原因——	一选择——性状的经	分歧和 区别——	一族的絕灭—	一有利于人
工选择的现	不境条件——某些族的	古远性——关于各	个特殊变异是不	不是特別被預	先注定的問
題。					a factorial
中外名詞对	照表	•••••			620

The same was

第十三章 遺傳(續)——返祖

返祖的不同形式——純粹的、即未杂变的品种的返祖,例如: 66、第、无角牛和无角羊以及栽培植物——野化动物和野化植物的返祖——杂变品种和杂变物种 的 返 祖——通过芽繁殖的返祖,通过同一朵花或同一个果实的一些部分的返祖——同一动物的不同身体部分的返祖——作为返祖的一个直接原因的杂变作用,各种不同的例子,关于 本能——返祖的共他近因——潜伏的性状——次級性征——身体两侧的不 等 发 育——来自杂变的性状随着年龄的增长而出现——具有一切潜伏性状的胚种是 一种 奇怪的东西——畸形——反常整齐花在某些場合中是由于返祖。

返祖 (atavism) 是由一个拉丁字 "先祖" (atavus) 衍变出来的,本章将要討論的、 用这一科学术語所表示的伟大遺传原理已被各国的农学者們和作者們所公認了; 这 一个字的英文是 Reversion 或 Throwing-back; 法文是 Pas en-Arrière; 德文是 Rückschlag 或 Rückschritt。 如果一个孩子象他的祖父或祖母比象他的父母更厉害, 这並不会引 起我們的非常注意, 虽然这个事实是高度值得注意的; 不过,如果一个孩子象某一个 遠祖或者象某一个旁系的遠亲——在后一个場合中我們必須把这种現象归因于所有 成員都是从一个共同祖先传下来的——我們就会感到适当程度的惊奇。如果仅仅是 亲代的一方表現了某种新获得的和一般可以遗传的性状,而这种性状並不遺传給后 代,其原因可能在于亲代的另一方具有优勢的遺传力量。但是,如果亲代的双方都具 有同样的性状, 而子代, 不管原因是什么, 並不遺传有这种性状, 但同它的祖父母相 似,那末这就是返祖現象的最簡单事例中的一个。 我們不断地看到另一个甚至更加 簡单的返祖例子,虽然这个例子一般並不被放在这个問題之內;这就是: 儿子在某种 雄的屬性方面,例如在男子的胡須、公牛的角、雄鷄的頸羽和鷄冠的特性方面,或者在 某种只限于男性所患有的疾病方面,象它的母系祖父比象中的父系祖父更加密切;这 是因为母亲並不具有或表現这等雄的屬性,而子代必須通过她的血液从他的母系祖 父把它們繼承下来。

返祖的諸例,虽然在某些場合中混淆在一起了,但仍然可以分为两个主要的大类;第一,一个沒有杂交过的变种或族由于变異而丧失了某种先前所具有的性状,以后这种性状又重現出現了。 第二类包括所有以下的例子:一个具有某种可区别的性状的个体、一个族、或者一个物种,在以前某一个时期曾經杂交过,从这个杂交中产生出来的一种性状消失了一代或数代之后,又突然重新出现了。 大概还可以設第三

类,这只是在繁殖方法上有所不同,它包括一切由芽而发生的返祖的例子,所以同真 正的或种子的生殖並无关系。 恐怕甚至还可以設一个第四类,它包括的返祖現象是 由同一朵个别的花或果实的一些部份而发生的,並且是在同一个个体动物的不同身 体部份当它年老的时候而发生的。不过最先的主要两类对于我們的目的来說将是夠 用的了。

純粹的、即未杂交的类型所亡失的性狀的返祖 这第一类的显著例子在第六章中已經举出来了,这就是在各种不同顏色的鴿子品种中,不时重現具有野生岩鴿的一切特征的青色鴿子。在鷄的場合中也举出过一些相似的例子。 关于普通斯,因为它的野生祖先几乎永遠都具有腿条紋,所以我們可以肯定在家养斯中这种条紋的不时重現就是一个单純返祖的例子。 但是以后我必須再度談到这些例子,所以这里先不談它們。

我們的家养牛和家养綿羊所来自的原始物种无疑是有角的,但是若干无角的品种现在已經很好地确立了。然而在这等品种中,例如在南邱羊中,"找到一些生有小角的公羊羔並不是稀罕的事情"。在其他一些无角的品种中这样重現的角或者"长到充分的大小",或者仅仅奇妙地附着在皮肤上並且"松散地悬垂下来,或者脱落""。加罗威牛(Galloways)和薩福克牛(Suffolk cattle)在晚近一百年或一百五十年以来已經是无角的了;但是不时还会产生出一头有角的牛犢,它的角往往是松散地附着的²⁾。

有理由可以相信,綿羊在它們的早期家养状况下是"褐色或傲黑色的";不过甚至在大卫(David)时代有某些羊羣据說白得象雪一般。在希腊、罗馬时代,若干古代作者把西班牙的綿羊描述为黑色、紅色或黃褐色的³)。今日,尽管非常注意去防止以下情形的发生,我們的最高度改良而有价值的品种,例如南邱羊,还会不时地、甚至屡屡地产出杂色的、甚至完全黑色的羊羔。自从著名的具克威尔(Bakewell)的时代以来,在前一世紀期間,萊斯特羊就受到了非常細心的养育;然而灰脸的、或黑点的、或完全黑色的羊羔还不时出現¹)。这种情形在改良較少的品种(例如諾福克羊)中的发生就更

¹⁾ 尤亚特論羊,第20,234頁。 在德国观察过同样的事实:松散地悬垂下来的角不时在无角品穩出現;且四斯坦,德国的博物学,第一卷,第362頁。

²⁾ 尤亚特論牛,第155,174頁。

³⁾ 尤亚特論羊,1838年,第17,145頁。

⁴⁾ 这个事实是福克斯牧师告訴我的,其根据是威爾摩特先生的權威著作; 关于这一問題的意見, 再参閱一篇文章, 見每季評論(Quarterly Review), 1849年, 第395頁。

加頻繁了¹⁾。同綿羊返归暗色的这种傾向有关的一种情形,我願說一說(虽然我这样作是侵入了杂交品种的返祖的范围,同样也侵入了遺传优势的問題):福克斯牧师听說有七只白色的母南邱羊同一只所謂公西班牙羊交配了,后者在两脇生有两个小黑点,而它們产生的十三只羊羔都是完全黑色的。福克斯先生相信这只公羊屬于他自己曾經养过的一个品种,这个品种一向具有黑点或白点;他並且发現用萊斯特羊同这个品种杂交,产生出来的羊羔永遠是黑色的:他曾用这等杂种羊繼續同純粹的白色萊斯特羊再杂交了三代,但是所得到的結果总是一样的。福克斯先生还听一位朋友說(他从这个人得到斑点品种的),他曾用白色綿羊繼續进行了六、七代的杂交,但是生下来的羊羔还永遠是黑色的。

关于各种动物的无尾品种也能举出相似的事实。例如,<u>赫維特先生</u>²⁾ 說,无臀鷄被認为是优良的,它們曾在展覽会上得过奖,而从某些无臀鷄繁育出来的小鷄"在相当多的事例中具有充分发育的尾羽"。 詢問的結果是,最初育成这等鷄的人說,自从他最初养育它們的时期以来,它們就常常产生有尾的鷄;但是这等有尾的鷄还会再度繁殖无臀鷄。

在植物界中也有相似的返祖例子发生;例如,"从三色堇(Viola tricolor)的最优良的栽培品种採集来的种子,屡屡会产生在叶和花的方面都是完全野生的植株³⁾;但是在这个事例中,返祖並沒有达到很古老的时期,因为三色堇的最优良的現存变种的起源都是比較近代的。关于我們大多数的栽培植物,它們都有返归既知的、或者可以推測出来的原始状态的某种傾向;如果艺园者不全面地查究他們的苗床和攏除劣株、即他們所謂的'恶棍',这种情形就更加明显了。已經有人指出,某些少数实生的苹果和梨一般地类似它們所由来的野生树,但显然並不完全一样。 在我們的蕪菁⁴⁾ 和胡蘿蔔的苗床中,少数植株常常'突然开花'——这就是說,花开得过早;並且它們的根就象在亲种的場合中那样,一般是硬而多筋的。在少数几代間繼續进行一点选择,大多数我們的栽培植物借着这种帮助,縱使它們的生活条件沒有任何巨大的变化,大概也会被帶回一种野生的或接近野生的状态:巴克曼先生曾經用美洲防风(parsnip)实現过这种情形⁵⁾;华生先生告訴我說,在三个世代中,他选择了<u>苏格兰</u>羽衣甘蓝

¹⁾ 尤亚特,第19,284頁。

²⁾ 家鶏之書,推葛梅尔 1866 年,第 231 頁。

³⁾ 拉烏頓的艺园者杂誌,第十卷,1834年,第396頁;一位对于这个問題富有經驗的艺园者同样地向我保証說,这种情形是时时发生的。

⁴⁾ 艺园者紀录, 1855年, 第777頁。

⁵⁾ 艺园者紀录, 1862年, 第721頁。

(Scotch kale)的最分岐的植株,这恐怕是廿蓝中的改变最小的变种之一;在第三代,一些植株就同現今在英格兰古老城堡附近定居下来的、被叫作土著植物的类型很接近。

野化的動物和植物的返租 截至現在,在討論过的一些例子中,返祖的动物和植物並沒有暴露在足以引起这种傾向的生活条件的任何重大或突然的变化之下;但是关于已經野化了的动物和植物,其情形就很不相同了。 許多作者都以断然的态度一再主张,野化的动物和植物必然返归它們的原种的模式。奇怪的是,这种信念所依賴的証据是非常少的。 在我們的家养动物中,有許多是不能在野生状况下生存的;例如,非常高度改良了的鴿子品种不会"野生"或尋求它自己的食物。綿羊从来沒有野化过,几乎每一种猛兽大概都会把它們毁灭掉10。 在若干例子中,我們还不知道原始的亲种,而且不可能說出是否有任何密切程度的返祖。 在任何事例中都不知道什么变种是最先发生的;在某些例子中,有几个变种大概都野化了,而且仅仅是它們之間的杂交大概就有消除它們的固有性状的傾向。我們的家养动物和栽培植物当野化了的时候,一定永遠都处于新的生活条件之下,因为,正如华来斯先生10 所充分指出的那样,它們势必取得自己的食物,並且暴露在同土著产物的竞争之下。如果我們的家养动物在这样坏境中並不发生任何种类的变化,其結果同本書所得到的結論将会是完全相反的。 尽管如此,我并不怀疑动物和植物的野化这个簡单事实确会引起返归原始状态的某种傾向;虽然这种倾向曾被一些作者們大大地誇大了。

我将大略地談一談記載下来的例子。关于馬或牛,还不知道它們的原始祖先;在以前几章中會經指出,它們在不同的地方呈显了不同的顏色。例如在南美野化了的馬一般是淡褐色的,在东方野化了的馬則是黄棕色的;它們的头变得較大而且較粗糙了,这可能是由于返祖。关于野化的山羊,还沒有蓬严的描述。在各地野化了的狗几乎无論在什么地方都沒有呈現一种一致的性状;不过它們大概是从若干家养族传下来的,并且原始是从若干不同物种传下来的。 无論 在欧洲或拉普拉他的野化貓一律都具有条紋;在某些場合中它們长得异常大,但在其他任何性状上同家养貓并沒有差异。 当不同顏色的馴死在欧洲被驅逐出去之后,它們一般都重新获得了野生兔的顏色;无法怀疑确实有这种情形发生,但是我們应当記住,奇异顏色的和显眼的动物大概很多会受到猛

¹⁾ 包納(Borner)先生說(羚羊的狩猎, Chamoishunting, 第二版, 1860 年, 第92頁), 綿羊常在巴威的阿尔卑斯山 (Bavarian Alps) 野化; 不过根据我請求他所作的進一步的調查, 他发现它們是不能自己生活的;它們一般會因附着在毛上的凍雪而死亡, 並且它們喪失了越过峻峭的水裂坡所必需有的技能。 有一次, 有兩只母羊活过了一个冬季, 但它們的羊羔则死亡了。

²⁾ 参閱华来斯先生的对于这个問題的卓越意見,見林納学会会报,1858年,第三卷,第60頁。

兽的损害,而且会容易遭到射猎;这至少是一位紳士的意見,他會試图把一个接近白色的变种养在 他的森林中:如果是这样被毁灭了的話,它們大概是被普通冤所代替,而不是变成了普通冤。 我們 已經知道,牙買加的、特 別是波托・桑托的野化兔呈現了新的顏色和其他新的性状。一 个最著名 的返祖的例子,就是关于猪的例子;在返祖的普遍性方面广泛扩大了的信念显然是以这个例子为 根据的。这等动物在西印度鼋島、南美和福克兰鼋島都已經野化了,它們无論在哪一处地方都获得 了暗的顏色、粗的紫毛以及野猪(Wild boar)的大獠牙;并且幼猪重新获得了縱条紋。 但是,縱使在 猪的場合中,罗林也描述过居住在南美不同部分的半野生猪在若干点上是有所不同的。 猪在路易 斯安那 (Louisiana) 已經野化了1),据說这种猪同家猪在形态上稍有不同,在顏色上有 很大 的不 同,然而同欧洲的野猪丼不密切相似。关于鴿和鷄2),还不知道最初发生的是什么变种,同时也不 知道这等野化鳥呈現了什么性状。西印度 零島的珠鷄当野化之后,似乎比在家养状况下有更大的 变异。关于野化了的植物,虎克博士³⁾强烈地認为它們返归原始状态的普通信念并沒有足以称道 的証据。 高德龙4) 对洋蕪菁、胡蘿卜和芹菜进行过描述; 不过这等植物在栽培状态下同它們的 野生原型几乎沒有什么差异,除了多汁性和某些部分扩大了以外——当植物生长在瘠薰的土壤上 并且同其他植物进行斗争的时候,上述性状肯定是会消失的 象拉普拉他的食用薊 (Cynara cardunculus) 那样大規模野化的栽培植物还沒有过。看到过它們在那里的广大地面上长得同馬背一样 高的每一位植物学者,都被它的特殊外貌所打动了;但是,它在任何重要之点上同栽培的西班牙类 型是否有所差异——据說后者象它的美洲后代那样地不生刺;或者,它同野生的地中海的物种是 否有所差异——据說后者不是丛生的(虽然这可能只是由于各种条件的性質),我还不知道。

在亚变种、族和物种的場合中返归來自杂交的性狀 如果一个具有某种可辨識的特性的个体同一个不具有这种特性的同一亚变种的另一个体相結合,这种特性經过几代之后常常会在后代中重現。每一个人一定都曾注意过或者听老年人說过,小孩子們在外貌或精神素質上,或者在非常微小而复杂的一种性状(如表情)上,同祖父或祖母密切类似,或者同某一个更疏遠的旁系亲族密切类似。 在前一章已經举出一些事例来說明,很多畸形构造和疾病50 从一亲传给了一个家族,並且經过两三代之后又在后代中重現。我由通信中得知下述的一个例子,它有良好的根据,我相信它是可以充分信賴的:一只母嚮导狗(pointer-bitch)产生了七只小狗;四只有青白斑,这种顏色在嚮导狗中非常少見,以致想到她一定曾經同一只灵缇杂交过,因而聲寫的小狗都

¹⁾ 医警·得拉瑪尔,提告書,第四十一卷,1855年,第 807 頁。 根据上面的敍述,作者斷言野生的路易斯安 那猪不是从欧洲的野猪 (Sus scrofa) 传下来的。

²⁾ 爱倫船長在他的奈遮河探险記(Expedition to the Niger)中說道, 雞在安諾邦島 (Annobon) 上已經野化了,並且在形态和鳴叫方面都改变了。 这个記載是如此貧乏和模糊,以致我認为不值得加以抄寫;不过現在我发現丢餐。得拉瑪尔把它作为有关返归原始祖先的一个好例子,並且用它来証明瓦羅在羅馬时代所作的敍途是更加模糊的。

³⁾ 澳洲植物誌, 1859年, 緒論, 第9頁。

⁴⁾ 物种,第二卷,第54,58,60 頁。

⁵⁾ 塞治維克先生关于这一点举出过許多事例,見英国和外国外科医学評論,4月和7月,1863年,第448,118頁。

給弄死了;不过猎場看守人被允許留下一只作为稀奇物来养。两年以後,这位主人的一个朋友看到了这只小狗,並且宜称,它非常象他的一只老母嚮导狗"薩弗"(Sappho),这是他曾經看到的唯一青白斑的純粹血統的嚮导狗。 这引起了严密的調查,結果証明它就是"薩弗"的四代玄孙;因此,按照普通的說法,在它的血管中只有她的血液的十六分之一。我还可以根据一位京加丁郡(Kincardineshire)的伟大的牛育种家瓦克尔(R. Walker) 先生的权威材料再举一个例子。他买过一头公牛,它是一头白腿、白腹、部份白尾的黑母牛的儿子;1870年这头母牛的六代玄孙(gr.-gr.-gr.-grandchild)降生了,它具有同样独特的颜色;而所有中間的后代都是黑色的。 在这等場合中,几乎不能怀疑和同一变种的一个个体杂交后产生出来的一种性状,在前一例子中經过了三代,在后一例子中經过了五代,又重新出現了。

如果两个不同的族进行杂交,大家都知道,其后代返归祖先类型的一方或双方的傾向是強烈的,而且这种傾向可以持續許多世代。 我在杂种鴿以及各种不同的植物中就曾亲自看到过最明显的証据。 西得內先生¹⁾ 說,在埃塞克斯猪生下来的一窝小猪中,有两只非常象勃克郡(Berkshire)公猪,后者是在二十八年以前用来改進这个品种的大小和体質的。我在具特雷·赫尔(Betley Hall)的一个农家庭院中看到一些鷄同馬来品种非常类似,陶列特(Tollet)先生告訴我說,他在四十年前曾使他的鷄同馬来鷄杂交过;他还說,最初他想把这个血統排除掉,但后来他絕望地放棄了这种企图,因为馬来鷄的性状常常再現。

杂交品种中这样返祖的强烈傾向引起了无穷的爭論:同一个不同的品种或者仅仅同一个劣等动物进行一次杂交之后,要經过多少代,这个品种才可以被看作是純粹的,並且免脫一切返祖的危险。沒有人設想三代以下就可以滿足这种需要了,大多数育种者認为六代、七代或八代是必要的,有些人認为还需要更长的时間²⁾。无論在一个品种仅仅由于一次杂交而被弄杂的場合中,或者,为了試图形成一个中間品种,在半杂种动物交配了許多代的場合中,都不能定出任何法則来說明返祖的傾向要經过多久才可以被消除。 这取决于两个祖先类型中遺传力量或遺传优势的差異,取决于它們的实际差異量,並且取决于杂种后代所处在的生活条件的性質。 但是我們必須注意不要把这等返祖——返归在一次杂交中所获得的性状——的例子,同第一类返祖的例子混淆起来,在第一类場合中,重新出現的是,最初为双亲所共有的、但在以前

^{1) &}quot;尤亚特論猪",1860年,第27頁。

²⁾ 卢凱斯博士,自然遺传論,(Héréd. Nat.)第二卷,第 314,892 頁。参閱一篇实际的优秀文章,見艺园者紀录,1856 年,第 620 頁。我还可以提出大批的参考文献,但沒有必要这样作。

某一个时期已經消失的性状;因为这等性状經过无限多的世代之后还可以再現。

当物种間的交配是充分能育的时候,或者,当它們反复不断地同任何一个純粹的 祖先类型进行杂交的时候,返祖的法則对于物种間杂种就象在变种間杂种的場合中 一样地有力。这並沒有举例的必要。关于植物、几乎每一个研究过这个問題的人、从 开洛依德的时代一直到今天,都是主张有这种倾向的。 該特納記載过一些良好的事 例;但沒有人比諾丹1) 所举的例子更加动人的了。 在不同的类羣中这种傾向的程度 或力量也是不同的,正如我們即将看到的那样,它部份取决于亲本植物是否經过长期 的栽培。 虽然返祖的傾向在变种間杂种和物种間杂种的場合中極为普遍、但不能認 为这是它們所必然具有的特性;这种傾向还受长期不断的洗择所支配;不过在将来討 論"杂交"的那一章中来討論这一問題将更加适当。根据我們在純系的族中以及在杂 **变的变种和物种中所看到的返祖的力量和范围来說,我們可以这样推論:几乎每一种** 类的性状都能在长久消失之后而重新出現。 但不能据此就推論說,某些性状在各个 特殊的場合中都会再現:例如、当一个族同另一个具有遺传优勢的族进行杂交的时 候,就不会有这种情形发生。 有时竟会完全缺少这种返祖的能力,至于为什么缺少, 我們还无法提出任何原因: 例如,有一个法国人的家族, 六代間在六百个成員中有八 十五人患夜盲症,"不患这种病症的双亲所生下来的孩子而感染这种病的, 連一个例 子都沒有"?)。

通过芽繁殖的返租 通过同一朵花或同一个果实的一些部份的部份返祖或通过同一个体动物的不同身体部份的部份返祖——我們在第十一章里举出过許多同种子生殖无关的、通过芽而发生的返祖例子。 例如,一个斑叶的变种、一个捲縮叶的变种或者一个細长裂片的变种的叶芽突然重新呈現了它的固有性状;又如,在一株苔蔷薇上出現了卜洛万蔷薇,或者在油桃树上出現了桃。在这些例子中,有些只是半朵花或半个果实,或者更小的一个部份,或者仅仅一个条紋重新呈現了它們的以前性状;这就是通过一些部份而发生的返祖。威尔摩林³)关于由种子繁殖的植物还举出过几个例

¹⁾ 开洛依德列举了一些奇異的例子, 見他的第三續編(Dritte Fortsetzung), 1766年, 第53,59頁; 还見他的 著名著作关于花麥屬和加拉帕屬的研究报告(Memoirs on Lavatera and Jalapa)。 該特納, 杂种的形成, 第437,441頁, 等。 諾丹, 杂种性質的研究 (Recherches sur I'Hybridité), 見時物館新报, 第一卷, 第25頁。

²⁾ 塞治威克的引文, 見外科医学評論(Med.-Chirurg. Review), 4月, 1861年, 第485頁。道貝尔博士在外科医学报告(第四十六卷)举出过一个相似的例子, 其中說道, 在一个大家族中, 具有积大关节的手指在五代中传給了若干成員, 但是, 当这种缺陷一度消失之后, 就从来沒有再现过。

³⁾ 沃尔洛特,变种(Des Variétés), 1865年,第63頁。

子,指明它們在花的条紋或斑点上返归了原始顏色:他說,在所有这等例子中,最初形成后的一定是一个白花的或灰花的变种,当这个变种用种子繁殖了一个相当长的时期以后,便会有条紋花的实生苗不时出現;此后这些即可以細心地用种子来繁殖。

刚才談到的条紋和一些部份,就我們所能知道的来說,並不是返归由杂交产生出 来的性状,而是返归由变異而消失了的性状。 然而这等例子正如諾丹1 在他討論性 状的分离时所主张的那样,同第十一章中所載的例子是密切近似的; 我們知道,在 該意中所列举的杂种植物产生了各半的或条紋的花和果实,或者在同一个根上产生 了类似两个祖先类型的不同种类的花。許多具有斑紋的动物大概可以放在这个顯目 之下。 我們在討論"杂交"的那一章中将会看到,这等例子显然是由某些性状不能容 易地混合在一起而引起的結果,並且因为缺少这种融合的能力,其后代或者完全同双 亲相似,或者它們的一部份同一亲相似,而另一部份同另一亲相似;要不就是在幼小的 时候具有中間的性状,随着年龄的增长則全部地或者部份地返归任何一个祖先类型 或两个祖先类型。例如,亚当金雀花(Cylisus adami)的幼树的叶子和花是介于两个祖 先类型之間的:但是当它較老的时候,它的芽則部份地或者全部地不断返归两个祖先 类型。 在第十一章中所列举的有关星金灌、仙人鞭、曼陀罗、山黧豆的杂种在成长期 間所发生的变化的例子都是相似的。但是,因为这等植物是第一代杂种,並且因为它 們的芽經过一段时期之后便长得同它們的亲本相似而不同它們的祖父母本相似,所 以这等例子最初看来似乎不能納入按照普通意义所講的返祖这一法則之下: 尽管如 此,这种变化是通过同一植株上的一連串芽的繁殖而完成的,因而它們还可以納入这 一法則之下。

在动物界中也曾观察过相似的事实,而且更加显著,因为它們是以最严格的意义 在同一个个体中发生的,並不象植物那样,是通过一連串芽的繁殖而发生的。在动物 中,返祖的作用,如果可以这样称呼的話,並不經过一种真正的繁殖,而只經过同一个 体的初期生长阶段。 例如,我使几只白母鷄同一只黑公鷄杂交过,許多雛鷄在第一 年都是完全白色的,但在第二年則获得了黑色的羽毛;另一方面,有些雛鷄在第一年 是黑色的,到了第二年則变得具有白斑了。一位伟大的育种者²⁾ 說道,条班<u>勃拉瑪母</u> 鷄只要有一点輕型的<u>勃拉瑪</u>鷄的血液,它就会"偶尔产生一只在第一年具有明显条班 的小母鷄,但在第二年,它的肩羽極可能脫換成褐色的,因而就变得同它的原来顏色

¹⁾ 博物館新报,第一卷,第 25 頁。亚力山大·勃农显然持有相似的意見(見他的復壯現象,雷伊學会, 1853年,第 315 頁)。

²⁾ 提貝(Teebay)先生,見推葛梅尔先生的家鷄之書,1866年,第72頁。

完全不一样了"。如果輕型的<u>物拉</u>瑪鷄的血統不純,也会发生这种情形。在由不同顏色的鴿子产生出来的杂种后代中,我看到过完全一样的例子。我有一只浮羽鴿,在它的胸前由倒轉的羽毛形成了一个襞狀部(frill),我使它同一只喇叭鴿杂交过,在这样育成的小鴿子中有一只最初表現了沒有一点襞狀部的痕跡,但是当脫換了三次羽毛之后,在它的胸前出現了一小块、但非常明显的襞状部。 按照 古鲁"的材料,紅色母牛和黑色公牛所产生的牛犢,或者黑色母牛和紅色公牛所产生的牛犢,生下来常常是紅色的,而以后就变成黑色的了。我有一只狗,它是一只白色母㹴(terrier)和一只狐色公叭喇狗(bull dog)的女儿;当它幼小的时候,它是完全白色的,但长到六个月,在它的鼻子上出現了一个黑点,在它的耳朵上出現了一些褐点。 当它又长大了一点的时候,它的背部受到了严重的創伤,而在疤上长出来的毛則是一种褐色的,这种褐色显然来自它的父亲。由于大多数生有带色的毛的动物在其負伤的表面上长出来的毛都是白色的,上述这个例子就更加显著了。

在上述的例子中,随着年龄的增长而重現的性狀是直接存在于前一世代的;但是有些性狀有时在长期消失之后也按照同样的方式重新出現。例如,在哥連得(Corrientes)发源的无角族的牛生下来的牛犢,虽然开始是无角的,但当它們长大了的时候,有时会获得小形的、弯曲的和松散悬垂的角;这等角在此后的年代中偶尔会变得附着在头骨上¹⁾。 白色的和黑色的斑塔姆鷄一般都是可以純粹繁殖的,当它們长大了的时候有时会获得番紅花色的或紅色的羽衣。 例如,曾經描述过这样一只第一級的黑色斑塔姆鷄,它在生下后的三个季节中都是完全黑色的,但此后就一年比一年变得更紅了;值得注意的是,这种变化的傾向无論什么时候在斑塔姆鷄中发生,"几乎肯定都可以証明它是遺传的"³⁾。 杜鵑鷄、即具有青色斑点的公道根鷄在年老的时候都有一种傾向:即以黄色的或橙色的頸羽代替原来的青灰色的頸羽⁴⁾。 那末,因为原鷄(Gallus bankiva)的顏色是紅色的和橙色的,並且因为道根鷄和斑塔姆鷄都是从这个物种传下来的,所以我們几乎不能怀疑,随着年龄的增长这等鷄的羽衣偶尔发生的变化是由个体中所存在的一种返归原始模式的傾向所引起的。

作为返祖的直接原因的雜交 长久以来大家就知道了,物种間杂种和变种間杂

¹⁾ 赫法克引用, 見关于性狀, 第98頁。

²⁾ 亚莎拉,有关巴拉圭的博物学論文(Essais Hist. Nat. de Paraguay),第二卷, 1801年,第 372頁。

³⁾ 这些事实是根据赫維特先生的权威材料,見家雞之書,推葛梅尔著,1866年,第248頁。

⁴⁾ 家鷄之書,推葛梅尔著,1866年,第97頁。

种經过七代或八代,或者按照某些权威者的意見,甚至經过更多的世代之后,常常返 归祖先类型的双方或一方。但是,杂交作用本身对于返祖的刺激,象长久消失了的性 狀的再現所闡明的那样,我相信迄今为止还决沒有得到証明。这样說的根据在于:並 不构成直系双亲的特徵的、因而不能从它們发生出来的特点常常在两个品种的杂种 后代中出現;而当这等同样的品种被禁止杂交时,这些特点就从来不出現,或者非常 稀有地出現。因为我認为这个結論是高度引人注意和新奇的,所以我願詳細地提出 証据。

最初引起我注意这个問題并且进行多次試驗的,是因为包依塔和考尔比說过: 当他們使某些 鴿的品种进行杂交时,具有野生岩鴿(C. livia)那样顏色的鴿子、即普通鵓鴿——石板青色,具有 二重的黑色翅带,有时具有黑色的拱盤斑,白腰,尾有黑色横斑,外側羽毛的边緣呈白色——几乎 不可避免地会产生出来。 我杂交过的一些品种以及所得到的显著結果已在第六章作过充分 的 檢 述。 我选用的鴿子都是屬于純系的和古老的品种,它們沒有一点青色的痕迹或上面所列举的任何 特征;但是当它們杂交之后,用它們的杂种再进行杂交,产生出来的幼鸽常常或多或少地具有明显 的石板青色,并且具有某些或全部的固有特征。我願喚起讀者囘忆一个例子,即关于一只同謝特兰 野生种几乎沒有区别的鴿子,它是一只紅色斑点鴿、一只白色扇尾鴿和两只黑色排鵓鴿的孙代,而 当这些品种中的任何一个品种純粹地进行繁殖时,如果产生出一只具有野生岩鴿那样顏 色 的 鴿子,那大概是一件怪事。

我就这样被引导着对于鷄进行了一些試驗,这些試驗在第七章已經有所記載。我选用的是长期稳定的純系品种,它們沒有任何紅色的痕迹,但是在若干杂种中还出現了这种顏色的羽毛;还有一只华丽的鶏,它是一只黑色西班牙公鷄和白色絲羽鷄的后代,这只鷄同野生原鷄的顏色几乎完全一样。稍微知道一点家鷄繁育情形的人都会承認,可以育出成千上万的純粹西班牙鷄以及純粹白色絲羽鷄而不具有一根紅色羽毛。根据推葛梅尔先生的权威材料可以举出这样一个事实,即在杂种鷄中屡屡出現条斑的、即横遠的羽毛,許多鶉鷄类的鳥都具有这样的羽毛,这显然同样地也是返归該科某一个祖先以前所具有的一种性状的例子。由于这位优秀观察者的厚意,我得到一个机会去攷察一个杂种的頸羽和尾羽,这个杂种是普通鷄和一个很不相同的物种——载尾鷄(Gallu⁵-varius)的后代;这等羽毛显著地具有暗金屬色的青色的和灰色的横条紋,而这种性状不可能来自任何一个直来的亲屬。

勃連特先生告訴我說,他會使一只白色的公爱尔斯保利鸭同一只黑色的所謂母腊布拉多鴨杂交过,这两个品种都是純系的,而他得到的一只小公鴨却同野鴨 (A. boschas) 密切相似。在麝香鴨 (Cairina moschata) 中有两个亞品种:一个是白色的,一个是石板色的;我听說这两个亞品种都能純粹地或者近乎純粹地繁育。但是福克斯牧师告訴我說,讓一只白色的公鴨同一只石板色的母鴨交配,产生出来的永远是象野生麝香鴨那样的白斑黑鴨。我听勃里斯先生說,金絲雀和金色 礦 (goldfinch) 之間的杂种在它們的背上几乎永远都生有条紋的羽毛;这种条紋一定是来自原始的野生金絲雀。

我們在第四章中已經看到,所謂<u>客馬拉雅</u>冤具有雪白的体部,黑色的耳朵、鼻、尾和脚,它們可以完全純粹地繁育。据知这个族是由銀灰冤的两个变种的結合而形成的。 那末,如果一只**雌<u>客馬</u>拉雅冤同一只沙色的公**冤进行了交配,并且产生了一只銀灰冤;这显然是返归亲代变种的一方的

例子。 喜馬拉雅兔的幼兔生下来是雪白色的,暗色的斑只有經过一段时間之后才会出現;但是幼**喜**馬拉雅兔也有偶尔生下来是銀灰色的,不过这种顏色不久便消失了;所以这里我們看到在生命**的早**期存在有同任何最近的杂交无关的返归祖先变种的一点痕迹。

在第三章中會指出,在不列顛的比較荒野地区里,有一些牛的品种是白色的,而耳朶是暗色的;現今养在某些园面中的半野生牛以及在世界的两处远隔地方完全野化了的牛也同样具有这种颜色。还有,一位有經驗的育种者,諾坦普吞邵(Northamptonshire)的比斯雷(J. Beasley)先生¹⁾用一些細心选择出来的西部高地(West Highland)的母牛同純系的公短角牛进行杂交。 公牛是紅色的、紅白相間的以及在栗紅褐色中密杂灰白色的;高地牛都是紅色的,带有浅的、即黄的色調。 但相当多的后代是白色的,或者是白色而具有紅色耳朶的; 比斯雷先生認为这是一个异常的事实而唤起对于它的注意。 如果記住双亲中沒有一个是白色的,而且它們都是純系的,那末这种情形非常可能是,它們的后代由于杂交而返归了已往的某些半野生祖先品种的颜色。 下述的例子恐怕可以称入同一个題目之下:母牛在自然状下的乳扇不很发达,而且远不如我們的家养牛产乳量大。現在,我們有某种理由可以相信²⁾,象阿尔得內牛(Alderneys)和短角牛那样的两个产乳良好的种类之間的杂种常常会变得产乳不好。

在討論馬的那一章中已經列举了一些理由可以使我們相信,馬的原始祖先是具有条紋的,而且是黃棕色的;同时还举出了一些詳細的材料来闡明,世界各地的一切品种和一切顏色的馬沿其脊柱、橫切其四腿并且在其肩部屡屡出現暗色的条紋,这种条紋偶尔是双重的或三重的。 不过在不同种类的黄棕色馬中这种条紋的出現最为常見。 在馬駒的身上它們有时有明显的表現,而以后便消失了。 当具有黄棕色和条紋的馬同任何其他种类的馬相杂交时,这等特征是强烈遺传的;但我不能証实兩个非黄棕色的不同品种相杂交,一般都会产生具有条紋的黄棕色馬,虽然这种情形有时确会发生。

廳的腿常常具有条紋,这可以看作是返归野生祖先类型——常常具有这种条紋的阿比西尼亞 鹽(Equus taeniopus)——的表現³⁾。 家养动物的肩条紋有时是双重的,或者象某些斑馬的物种 (zebrine species) 那样,在其末端是分叉的。有理由可以相信,馬駒的腿上出現条紋比成长馬的腿上 出現条紋更加常見。 象在馬的場合中一样,我沒有得到任何明确的証据可以証实,不同顏色的驙 的变种相杂交会产生条紋。

現在讓我們看一看馬同驢的杂交結果。 縣在英国虽然远不如驢那样多,但是我會看到极大多数的騾在腿上都具有条紋,而且比任何一个祖先类型的腿条紋更为显著。 这等騾一般是後色的,或者可以說是鹿黃棕色的。 在一个例子中肩条紋在其一端分叉得很厉害,在另一个例子中肩条紋虽然是双重的,但在中間是結合在一起的。 馬丁先生发表过一张画有一匹西班牙騾的图,这匹騾在腿上强烈地具有斑馬般的特征⁴⁾,据他說,騾的腿上特別容易出現这种条紋。 按照 罗林⁵⁾ 的材料,在南美,这等条紋在騾的身上比在驢的身上更加常見而且更加明显。高斯先生⁶⁾ 当談到这些 动

¹⁾ 艺园者紀錄及农艺新报, 1866年, 第528頁。

²⁾ 同前杂誌,1860年,第343頁。 我高兴地知道,如此富有經驗的一位牛的育种家威尔比·烏得 (Willoughby Wood)先生对于我所說的杂交可以发生返跑的傾向这一原理表示首肯 (艺园者紀录,1869年, 第1216頁)。

³⁾ 斯雷特尔,动物学会会报, 1862年,第163頁。

⁴⁾ 馬的歷史,第212頁。

⁵⁾ 法国科学院当代各門科学論文集,第六卷,1835年,第338頁。

⁶⁾ 来自阿拉巴瑪的書信集(Letters from Alabama),1859 年,第 280 頁。

物时說道,在美國,"大多數,恐怕十分之一,在腿上都具有暗色的橫条紋"。

許多年前我在"动物园"中看到过一个奇特的三重杂种(triple hybrid),这个杂种的母亲是一匹 栗色馬,父亲是雄驢和雌斑馬之間的杂种。这个动物在年老的时候几乎不具有任何条紋;但是管理 員肯定地向我說道,它在年幼的时候有过肩条紋,同时在側腹和腿上也有过模糊的条紋。 我提出 这个例子特別是为了說明条紋在幼年时期要比在老年时期明显得多。

由于斑馬的体部和腿部都具有如此显著的条紋,因此大概可以預料到,斑馬和普通驅之間的杂种在某种程度上会具有腿条紋,但是,根据葛雷博士的"諾斯雷諸事集录" (Knowsley Gleanings)所 職的图,而且更加明显地根据聖事来尔以及居維叶的图,腿条紋似乎比其余身体部分的条 紋 要显著得多;只有我們相信驅通过返祖的力量帮助把这种性状传給它的杂种后代,这个事实才是可以理解的。 南非斑馬 (Quagga) 在其身体的前部具有斑馬般的带斑,但是它的腿不具条紋,或者只有一点痕迹。但是,莫尔登勳爵2从一匹栗色的、接近純系的母亞拉伯馬和一匹公南非斑馬 育成了一个著名的杂种,它的腿条紋"比南非斑馬的腿条紋明显得多而且它的顏色也深得多。"此后,这匹母馬同一匹黑色的公亞拉伯进行了交配并且生下了两匹馬駒;这两匹馬駒,象以前所談到的那样,都具有明显的腿条紋,而且其中之一在頸部和体部上也具有条紋。

印度野驅(Equus indicus)³⁾ 以青条紋为其特征,它沒有肩条紋或腿条紋;但是甚至在成兽中也偶尔可以看到后述的这等条紋⁴⁾; 普尔上校有过充分的机会来进行这种观察,他告訴我說,当馬駒刚生下来的时候,它的头和腿常常具有条紋。但它的肩条紋不如家养驢的那样明显;所有这等条紋,除了脊条紋以外,不久都会消失掉。 現在,在諾斯雷育成了一个杂种⁵⁾,它的母亲就是这个物种*,它的父亲是一匹家养驢,它的四条腿具有明显的横条紋,在每一个肩上具有三条短条紋,并且在脸上甚至具有一些斑馬般的条紋! 葛雷博士告訴我說,同一血統的第二代杂种也具有同样的条紋。

很据这些事实,我們知道,若干馬屬的物种相杂交有引起在身体各部分、特別是在腿上出現条 紋的显著傾向。因为我們还不知道馬屬的祖先类型是否具有条紋,所以只能把这种条紋的出現假 設地归因于返祖。 但是,我就杂种鴿和杂种鶏进行了一些試驗,其中表明了各种顏色特征通过返 祖而重現的許多明确例子,大多數的人效應到这些例子之后,也会对于馬屬作出同样的結論;如果 是这样的話,我們就必須承認这一类摯的祖先在腿、肩和脸上,可能还象斑馬那样地在全身,都具 有条紋。

最后談一談捷哥(Jaeger) 教授所举出的一个关于猪的好例子⁶)。他曾使一个<u>日本</u>品种、即畸面品种同普通的德国品种进行杂交,其后代在性状上介于二者之間。 于是,他使这些杂种个体中

¹⁾ 哺乳动物誌, 1820年, 第一卷。

²⁾ 皇家皇会会报, 1821年, 第20頁。

³⁾ 斯雷特尔, 动物学会会报, 1862 年, 第 163 頁: 这个物种是印度西北部的"哥尔·科尔" (Ghor-khur), 並且常常被叫作"帕拉斯的騫馿"(Hemionus of Pallas) 再参閱物里斯先生的优秀論文, 見孟加拉亚細亚学会会报, 第二十八卷, 1860 年, 第 229 頁。

⁴⁾ 野原的另一个物种是真正的鶩原 (Equus hemionus),又叫作"Kiang",它通常不具屑條款,据說偶尔也有;这等条款就象在馬和原的場合中一样,有时是双重的;再参閱: 勃里斯先生的上述論文,以及他在印度狩猎評論(1856年,第320頁)中发表的一篇論文;司密斯,博物学者丛書,馬部,第318頁;博物学分类辞典,第三卷,第563頁。

⁵⁾ 葛雷博士著,諾斯雷巡迴动物园諸事集錄(Gleanings from the Knowsley Menageries)所載的图。

^{*} 卽 Equus indicus --- 譯者。

⁶⁾ 达尔文的理論及其对于道德和宗教的态度 (Darwin'sche Theorie und ihre Stellung zu Moral und Religion), 第85頁。

的一个同純系<u>日本</u>猪再进行杂交,在这样产生出来的一窝小猪中有一只在所有性状上都同野猪相似;这只小猪的鼻子是长的,耳朵是直立的,而且在背部具有条紋。 应当記住,<u>日本</u>品种的小猪不具条紋,并且它們的鼻子是短的,耳朵是显著下垂的。

返归长久消失的性狀的同样傾向甚至对于杂种动物的本能也是有效的。有一些 鷄的品种被称为"終年产卵鷄",因为它們已經失去了孵卵的本能;同时它們孵卵的 情形是如此罕見,以致当这等品种的母鷄掩卵时,我曾看到在家鷄著作中还特別加以 报导1)。但原种当然是一个优良的孵卵者;关于在自然狀况下的鳥类,几乎沒有任何 本能比这种本能更加強烈的。 可是,两个都非孵卵者的族产生出来的杂种后代却会 成为第一流的掩卵鷄,关于这种情形已經記載过許多例子了,所以这种本能的重現一 定要归因干涌过杂交而引起的返祖。有一位作者甚至这样說:"两个不勒卵的变种相 杂交,几乎不可避免地会产生爱苑卵的而且显著坚定的苑卵的杂种"2)。另一位作者 在举出一个显著的例子之后設道,这个事实只有根据"否定之否定会成为肯定"这一 原理才能得到解釋。然而我們不能主张从两个不掩卵的品种的杂交中产生出来的母 鷄—定会恢复这种本能,正如我們不能主张杂种鷄或杂种鴿—定会恢复它們的原型 的紅色的或靑色的羽衣一样。 例如,我从一只母波兰鷄和一只公西班牙鷄——这两 个品种都不菢卵——的交配中育成了几只雛鷄,所有小母鷄在最初都沒有表現任何 **- 苑卵的**傾向:不过其中有一只——保存下来的唯一的一只——在第三年对于它的卵 很好地进行了孵莉,並且孵出了一窝雛鷄。所以,我們在这里看到原始本能随着年龄 的增长又重新出現的情形,正如我們所看到的不同种类的杂种鷄和純系鷄在长大了 的时候有时会重新获得原鷄的紅色羽衣一样。

当然,所有我們家养动物的祖先的秉性原来都是野的;如果一个家养的物种同一 个不同的物种进行杂交,不管后者是家养的或者仅仅是养剔的动物,产生出来的杂种 意会常常野到这种程度,以致只有根据杂交可以引起部分地返归原始性情的原理,这

¹⁾ 关于母西班牙鶏和母波蘭鶏抱卵的例子,見家禽紀录,1855年,第三卷,第477頁。

²⁾ 家籍之書,推葛梅尔先生著,1866年,第119,163頁。談到否定之否定的那位作者說道(园艺學报,1862年,第325頁),有一只公"西班牙鶏"同一只母銀色条斑汉堡鶏交配,因而育出了兩窝小鶏,不过上逃兩个品种都是不解卵的鶏,而这兩窝小鶏在八只中就有七只在花卵方面表現得十分顽固。 狄克逊牧师(观赏鴉,1848年,第200頁)說,由金色波兰鶏和黑色波兰鶏的杂交中育成的雛鶏都是"优秀的和堅定的花卵者"。勃連特先生告訴我說,他从条斑汉堡鶏和波兰鶏的杂交中育出了一些花卵的母鶏。从一只不解卵的公西班牙鶏和范卵的母交趾鶏的杂交中育出过一只杂种鶏,这只杂种鶏被說成是一个"模范的母亲",見家鶏紅菜,第三卷,第13頁。另一方面,也有一个例外,即从一只不解卵的公西班牙鶏和母黑色波兰鶏的杂交中育出过一只不解卵的母鶏,見家庭艺园者,1860年,第388頁。

一事实才是可以理解的。例如,泡伊斯伯爵以前曾从印度輸入了几头彻底家养的瘤牛,並且使它們同一个屬于不同物种的英国品种进行杂交;他的总管沒有受到任何詢問就告訴我說,这个杂种动物是奇怪地野。 欧洲野猪和中国家猪几乎肯定不是同一个物种。弗·达尔文(F. Darwin)爵士使一只中国母猪同一只已經变得极其驯順的阿尔卑斯野猪进行杂交,生下来的小猪虽然在它的血管內有一半家养品种的血液,但它"在拘禁中还是极其野的,而且不象普通英国猪那样地吃食殘余的飼料"。 赫頓船长在印度使一只养驯了的山羊同一只喜馬拉雅的野山羊进行杂交,他告訴我說,其后代真是野得令人吃惊。赫維特先生对于使雄雉同屬于五个品种的鷄相杂交积有丰富的經驗,他說"異常的野性"是所有个体的特徵¹⁾;但是关于这个規律,我亲自看見过一个例外。沙尔特先生²⁾曾从一只母班塔姆鷄和灰原鷄(Gallus sonneratii)的杂交中青出了大量的杂种,他說,"所有都是非常野的"。华特頓先生³⁾从一只普通鴨孵壳的卵育出了一些野鴨,小鴨可以彼此自由地进行交配,也可以同馴鴨自由地进行交配;它們是"半野半驯的;它們到窗前来求取飼料,但是它們还非常显著地有所戒备"。

另一方面,从馬和驢的杂交中产生出来的騾肯定是一点也不野的,虽然它的頑固和恶癖是众所週知的。 勃連特先生曾使金絲雀同許多种类的磺酚进行过杂交,他告訴我說,他沒有看到过它們的杂种在任何方面显著地帶有野性;但是积有更丰富經驗的珍納·威尔先生却持有完全相反的意見。他說,黃雀(siskin)在磺酚中是最剔順的,但它的杂种在幼小时就象新捉到的鳥那样野,並且由于它們不断地努力逃走而常常跑掉。 从普通鴨和麝香鴨的杂交中常常产生杂种,有三位养过这等杂种鴨的人肯定地向我說过,它們並不野;但是加內特 (Garnett) 先生1) 观察到它的杂种是野的,並且表現有"迁徙的癖性",而这种癖性在普通鴨和麝香鴨中連一点痕跡也沒有。 关于麝香鴨在欧洲或亚洲巡跑出去而变为野生的,还不知道有一个例子,除了按照帕拉斯的材料,在里海曾发生过这种情形;普通家鴨在富有大湖和沼泽的地区只是偶尔地会变为野生的。 尽管如此,关于这两种鴨之間的杂种在完全野生状态下被射猎到的例子还是有过大量的記載5),虽然飼养它們要比飼养純系的普通鴨和麝香鴨少得多。 这

¹⁾ 家鷄之書,推葛梅尔著, 1866年,第 165,167 頁。

²⁾ 博物学評論, 1863年, 4月,第277頁。

³⁾ 博物学論文集,第917頁。

⁴⁾ 奥尔东先生的敍述, 見他的育种的生理学(Physiology of Breeding), 第12頁。

⁵⁾ 塞勒斯·耶切姆卜斯談到(布魯塞尔皇家科学院院报,第十二卷,第10號)在瑞士和法国射猎到的这等杂种总在七只以上。得比(M. Deby)确言(动物学者,第五卷,1845—46年,第1254頁): 在比利时和法国南部曾射猎到若干只。 與杜旁(烏类学記,第三卷,第168頁)談到这等杂种时設道,在北美,它們"时时迷失而变得十分野"。

等杂种不可能是由于麝香鴨同真正野鴨进行过交配而获得了它們的野性;而且在<u>北</u>美据知就是这样的;因此,我們必須这样来推論,它們通过返祖而重新获得了它們的 野性以及复活的飞翔能力。

¹⁾ 調查日誌, 1845年, 第71頁。

²⁾ 贊比齊河探除記(Expedition to the Zambesi), 1865年,第25,150頁。

³⁾ 勃洛加博士,人层的杂种性(Hybridity in the Genus Homo)英譯本, 1864年,第39頁。

固有的或者是潛伏的。

我們在将来一章中将闡明,莖軸頂端的花的位置以及**两內的种子的位置有时会** 决定返祖的傾向;而这种情形显然取决于花芽和种子所得到的树液、即养分的数量。 芽的位置,无論在枝上或根上的,如前所示,也有时决定这个变种所固有的性状的遗 传,或者决定它的返归以前的状态。

我們在本章的前一部分看到,当两个族或两个物种杂交时,其后代就有重現长久 消失的性状的最強傾向,这等性状既不为双亲所具有,也不为祖父母所具有。 当两 只屬于充分稳定的品种的白色鴿,或紅色鴿,或黑色鴿进行交配时,其后代几乎肯定 都会遺传有同样的颜色;但是当不同颜色的鴿子进行杂交时,相反的遺传力量显然彼 此受到抵消,而双亲所固有的产生石板青色后代的倾向則居于优势。 在若干其他場 合中也是如此。但是,例如,当馿同印度野馿或者同馬——它們的腿不具条紋——进 行杂交而其杂种在腿、甚至在臉上具有明显的条紋时,所能說的只是,固有的返祖傾 向由于杂交作用在体制中引起某种混乱而得到了发展。

返祖的另一方式更加常見得多、对于杂种后代来說,这的确差不多是普遍的一种 方式,这就是返归任何一个純系祖先类型所固有的性状。 按照一般的規律,第一代 杂种差不多都是介于两亲之間的,但是第二代杂种及其以后的各代則不断地返归祖 先的一方或双方。 若干作者主张物种間杂种和变种間杂种包含有双亲的一切性状, 这些性状並不融合在一起,而仅是在身体的不同部分以不同的比例混合起来:或者,象 諾丹1) 所說的那样,杂种就是一件剪嵌細工的成品,我們的眼睛辨識不出其中的不調 和的要素、它們是如此完善地混合起来了。我們几乎不能疑怀这在某种意义上是真实 的,正如当我們看到下述情形的时候一样:一个杂种中的两个物种的要素由于自我吸 引力(Self-attraction)、即自我亲和力(Self-affinity)的作用而在同一朵花或同一个果实 中分离为种种部分;这种分离是借着种子繁殖或芽繁殖而发生的。諾丹進一步相信, 两个物种的要素、即本質的分离特別容易在雄性的和雌性的生殖物質中发生;他就这 样来解釋在相繼的杂种世代中所发生的几乎普遍的返祖傾向。 因为,这大概是花粉 和胚珠的結合的自然結果,同一物种的要素无論在花粉或胚珠中由于自我亲和力都 另一方面,如果包含有某一个物种的要素的花粉碰巧同包含有另一个, 物种的要素的胚珠結合在一起, 那末中間的、即杂种的状态大概还会得到保持, 並且 不会有返祖現象发生。但是据我猜想,更正确的說法大概是,两个亲种的要素以二重

¹⁾ 博物館新报,第一卷,第 151 頁。

状态存在于每一个杂种之中,即它們是混合在一起的或者是完全分离的。 这怎么是可能的,物种的本質或要素这个詞儿可能被假定表达了什么意义;关于这些,我将在討論汎生假說那一章中加以闡明。

但是,正如<u>諾丹</u>所提出的,他的观点不能适用于因变異而长久消失了的性状的重 現的情形,而且也几乎不能适用于以下的情形,即有些族或物种在已往某一个期間曾 和不同的类型杂交过,而且此后就丧失了一切杂交的痕迹,尽管如此,还偶尔产生返 归杂交类型(例如"薩弗"响导狗的玄孙的情形)的个体。 返祖的最簡单的例子,即物 种間杂种或变种間杂种返归祖父母的例子,以几乎完整的連續同純系的族重現长久 消失的性状的例子連結在一起;这样,我們便被引导着作出如下的推論:所有的例子 一定以某种共同的紐帶而联系在一起了。

該特納相信只有高度不稔的物种間杂种植物才多少表現有返归祖先类型的傾向。根据他用来杂交的屬的性質,这种錯誤的信念或者可以得解釋,因为他承認这种傾向在不同的屬中也有所不同。 这个敍述还同諾丹的观察直接抵触,也同下述的著名事实直接抵触,即完全能稔的变种間杂种高度地表現有这种傾向——按照該特納的說法,其程度比物种間杂种所表現的还要厉害¹⁾。

該特納進一步說,关于非栽培的物种之間的杂种,很少发生返祖,然而关于长久 栽培的物种之間的杂种,則屡屡发生返祖。这个結論解釋了一个奇妙的矛盾:麦克斯· 威丘拉(Max Wichura)²⁾ 专門研究沒有受过栽培的柳树,他从来沒有看見过一个返祖 的例子;他甚至怀疑謹慎的<u>該特納沒有充分保护好他的杂种不受亲种花粉的沾染</u>:另一方面,主要研究葫蘆科植物和其他栽培植物的諾丹却比其他任何作者都更加坚决 地主张所有物种間杂种都有返祖的傾向。受到栽培影响的亲种的条件是引致返祖的 近因之一,这个結論同下述的相反的情形是充分一致的,即家养动物和栽培植物当野 化时容易发生返祖;因为在这两种場合中体制和体質都一定受到干扰,虽然其方式很 不相同³⁾。

最后,我們已經看到,在純系的族中常常发生性状的重現,但我們不能举出任何 近因来;不过当它們野化之后,这种性状的重現可以說是直接或間接由生活条件的变

¹⁾ 杂种的形成, 第582, 438 頁等。

化而引起的。关于杂交品种,杂交作用本身肯定引致了长久消失的性状的恢复,並且引致了那些来自任何一个祖先类型的性状的恢复。 由栽培而引起的条件的变化,以及植株上的芽、花和种子的相对位置,都显然有助于这种同样倾向的发生。通过种子繁殖或芽繁殖都可以发生返祖,这一般是在誕生时发生的,但有时只是随着年龄的增长才发生。可能只有个体的分片或一些部份受到这样的影响。一个生物在某些性状上同一个隔了两三代的、在某些場合中隔了几百代甚至几千代的祖先相似,这的确是一个可惊的事实。在这等場合中,按照普通的說法是,孩子从它的祖父母或者更远的祖先直接把这等性状繼承下来了。不过这种見解几乎是不能想象的。 但是,如果我們假定每一个性状都完全是从父亲或母亲那里传下来的,而許多性状在一长串的世代里是以潛伏的或休止的状态存在于双亲之中的,那末上述事实就是可以理解的了。关于性状的潛伏方式是怎样的,我們将在刚才提到的那一章里加以討論。

另一方面,雄性动物被去势之后,其次极性徵就要或多或少地完全消失掉。 例如,小公鷄如果被去勢,就象雅列尔所說的那样,它决不再嗚叫了: 鷄冠、肉垂以及距

¹⁾ 雅列尔,皇家学会会报, 1827年,第268頁;汗米尔頓(Hamilton),动物学会会报, 1862年,第23頁。

²⁾ 斯堪底那維亚博物学文庫(Archiv. Skand. Beiträge Zur Naturgesch),第八卷,第 397—413 頁。

³⁾ 赫維特先生在屆艺學报 (7 月 12 日, 1864 年, 第 37 頁) 中會就母雄举出过相似的例子, 見他的博物學論文集, 1838 年。小圣喜来尔在他的普通动物学論文集 (Essais de Zoolog. Gén. [積布丰, suites à Buffon], 1842 年, 第 496—513 頁)里于十个不同种类的鳥中蒐集了这等例子。亚里士多德仰乎十分認識了老母鶏的性情的变化。 噪塵获得角的例子見第 513 頁。

成長不到充分的大,而且頸羽呈現了介於真正頸羽和母鷄羽毛之間的中間外貌。 拘禁常常影响生殖系統,并且招致相似的結果,关于这一点曾經記載过一些例子。 但是,仅为雌性所固有的性状同样也会被雄性得到;閹鷄菢卵而且会撫养雛鷄;更加奇妙的是,雉和鷄之間的完全不育的雄性杂种也有同样的行为,"它們高兴的是,窺同母鷄何时离巢而去,以便自己把菢卵的职务担当起来"¹⁾。那位可称讚的观察者料米欧(Réaumur)²⁾确言,把一只公鷄长久拘禁在孤独和黑暗之中,就能教育它去照顧雛鷄;这时它会发出特殊的鳴声,並把这种新获得的母性本能保持終生。 有許多充分确实的例子指出各种雄性哺乳动物会分泌乳汁,这闡明它們的退化乳腺还以一种潛伏状态保持这种能力。

这样,我們看到,在許多場合中,可能在所有場合中,雌性的或雄性的次級性徵都以一种休止的或潛伏的状态存在于相反的性別中,並且准备随时在特殊的环境条件下发展。我們于是可以理解:例如,一头优良的乳牛怎么可能把她的优良性質通过她的雄性后代传递給将来的一些世代;因为我們可以确信,这等性質在雄性的各代中虽然是潛伏的,但是存在的。公斗鷄也是如此,它能把它的勇敢和体力的优越性通过它的雌性后代传递給它的雄性后代;关于人,我們知道³⁾,象阴囊水肿(hydrocele)那样的疾病一定只限于男人才会有,而这种疾病却能夠通过女性传給孙子。 諸如此类的例子,象本章开始时所指出的那样,提供了最簡单的返祖的例子;根据这样的信念——同一性别的祖父或祖母和其孙代所共有的性状在相反性别的居間一亲中虽然是潛伏的,但是存在的——这等例子就是可以理解的了。

象我們在以后一章中将要看到的那样,潛伏性状的問題是如此重要,所以我还要举一个例証。有許多动物,它們身体的右側和左側的发育是不均等的:大家都知道比目魚就是这样,它的一側在厚度、顏色以及鰭形上都同另一側有所不同,並且在幼魚成长的期間,有一只眼逐漸地从下面扭向上面⁴⁾。 在大部分的比目魚中盲目的一侧在左面,但在某些比目魚中盲目的一側却在右面;虽然在这两种場合中顛倒的、即"失常的魚"都会偶尔发生;並且在 Platessa flesus 中,左侧和右侧无差别地都是上面。关

¹⁾ 家庭艺园者, 1860年, 第379頁。

²⁾ 解化的技术(Art de faire Eclore), 1749年, 第二卷, 第8頁。

³⁾ 何兰得爵士,医学上的意見和感想,第三版,1855年,第31頁。

⁴⁾ 参閱斯登斯特魯普 (Steenstrup) 的木葉鰈的斜眼 (Obliquity of Flounders), 見博物学年报, 5月, 1865年, 第361頁。 关于这种可繫的現象, 我曾在第六版的物种起源第186頁(中譯本,三咲書店版, 第263頁——譯者)把曼姆(Malm)的解說摘要举出。

有关休止性状的最好的而且最簡单的例子恐怕就是上述那些例子,它們指出:从不同顏色的雞或鴿育成的雛鷄和雛鴿最初具有某一亲的顏色,但是經过一两年之后便获得另一亲的羽毛的顏色:因为在这个場合中羽衣变化的傾向在小鳥中显然是潛伏的。 关于牛的无角品种也是如此,有些无角牛当长大了的时候,便获得了小型的角。 純系的黑色班塔姆鷄和白色班塔姆鷄随着年龄的增长,偶尔会呈現亲种的紅色羽毛。 这里我再补充一个稍微不同的例子,因为它显著地連接两类的潛伏性状。 赫维特先生的拥有一只非常优良的塞勃来特·金边班塔姆母鷄,当它老了的时候,它的卵巢得病了,于是呈現了雄性的性状。在这个品种中,雄性除了它們的鷄冠、肉垂、距和本能以外,在所有方面都同雌性相类似:因此可以預料到这只病母鷄大概只会呈現这个品种所固有那些雄性的性状,但是除了这等性状之外,它还获得了足有一呎长的弯得十分美的鐮刀形尾羽,腰部的鞍状羽,以及頸羽——象赫維特先生所說的那样,它获得了"在这个品种中大概是討厌的"一些装飾。我們知道塞勃来特·班塔姆鷄。50 是在 1800 年左右育成的:先是用普通班塔姆鷄同荷兰鷄进行杂交,又用具有母鷄尾的班塔姆鷄进行再杂交,然后进行仔細的选择;因此,一点也不能怀疑在老母鷄身上

¹⁾ 馬登斯(E. von Martens)博士,博物学年报, 3月, 1866年,第209頁。

^{2) &}lt;u>藤壶科</u>, 雷伊学会, 1854 年, 第 499 頁: 再参閱有关高等甲壳类的左侧胸肢和右侧胸肢显然变化无常的发育的补充意见。

³⁾ 一种兰科植物(Mormodes ignea);达尔文,兰科植物的受精, 1862年,第251頁。

⁴⁾ 园艺学报,7月,1864年,第38頁。蒙<u>推葛梅尔</u>先生的厚意帮助,我获得机会来研究这等值得注意的**观** 毛。

⁵⁾ 家鷄之書,推葛梅尔先生著, 1866年, 第241頁。

出現的鐮刀形尾羽以及頸羽是发源于<u>波兰</u>鷄或普通班塔姆鷄的;这样,我們知道不仅是<u>塞勃来特·班塔姆</u>鷄所固有的某些雄性的性状,而且連被消除了六十年左右的发源于这个品种的第一代祖先的其他一些雄性的性状,也潛伏在这只母鷄中,而且一俟它的卵巢得病,即行发展起来。

从这几个事实看来,必須承認:某些性状、能力以及本能可以在一个个体中,甚至在一連串的个体中潛伏下来,但我們連它們存在的一点形跡也不能看出来。 当不同顏色的鷄、鴿或牛进行杂交並且它們的后代在老年期間改变顏色的时候,或者当杂种浮羽鴿在第三次脱羽之后获得了表示特徵的髮状部的时候,或者当純系班塔姆鷄部分地呈現它們原型的紅色羽衣的时候,我們不能怀疑这等性質正如在幼虫中存在有蛾的性状那样,从最初就在各个动物中存在了,虽然这是潛伏的。 現在,如果这等动物的后代是在它們随着年龄的增长而获得新性状以前产生的,那末最可能的是,它們会把这等新性狀传递給它們的某些后代,而在这种場合中它們的后代看上去大概是从它們的祖父母或更远的祖先承受了这等性狀。 于是,我們得到了一个返祖的例子一一即在子代中重現的祖代性狀在亲代中实际是存在的,虽然在幼小期間是完全潛伏的;我們可以安全地作出这样的結論:这就是在所有返祖的場合中发生的情形,不論这是多么远的祖先。

关于通过返祖而出現的所有性狀潛伏于各代的这种观点,还有以下的支持,即在某些場合中这等性狀只在极幼小的期間才是实际存在的,或者它們在这期間比在成熟期間出現得更加頻繁而且更加明晰。 我們已經看到,馬屬的几个物种的面部条紋和腿部条紋就常常是这样的。 喜馬拉雅兔当杂交时,有时产生返归銀灰色祖先品种的后代,並且我們已經看到,純系的喜馬拉雅兔在极幼小期間偶尔重現銀灰色的毛皮。 由于返祖,黑貓会偶尔产生斑貓,这是我們可以确信的;並且在小黑貓——据知它的譜系长久以来都是純粹的¹⁾——的身上,几乎永远可以看到条紋的糢糊痕迹,此后便消失了。 由于返祖,无角的<u>薩福克</u>牛偶尔产生有角的牛;尤亚特²⁾ 断言,甚至在无角的个体中,"角的痕迹在幼小期間也常常可以感觉得到"。

毫无疑問,以下的情形最初一看似乎是高度不可能的:即在每一代的每一匹馬中都有产生条紋的潛在能力和傾向,虽然这在一千代中不見得出現一次;在几世紀以来都可以传递它們的固有顏色的每一只黑色的、白色的或其他顏色的鴿子中,其羽衣

¹⁾ 卡尔·沃哥特(Carl Vogt),关于人类的问义(Lectures on Man),英馨本, 1864年,第 411 号。

²⁾ 論牛,第174頁。

具有一种变成青色的和出現某种特有横斑的潛在能力;在一个六指家族中,每一孩子都有产生多余指的能力;以及其他等等情形。然而,看来比此似乎更加根本不可能的情形是:一个无用的痕迹器官,或者甚至只是产生一种痕迹器官的倾向,在几百万代中被遗传下来了;众所熟知,許多生物都发生过这种情形。还有一种看来根本不可能的情形是:每一只家养猪于一千代的期間保持着在适宜条件下发展大獠牙的能力和倾向;而看来比此更加根本不可能的是:幼小的牛犢在无限的世代中保持了从来不突出齿齦以外的門牙。

在下一章的結尾我将对前三章作出一个提要;但是,因为我在这里主要地討論了返祖的孤立而显著的例子,所以我願提醒讀者千万不要假定返祖是由于环境条件的某种稀有的或偶然的配合。如果一个性狀消失了几百代之后又突然重現,毫无疑問,一定有某种这样的配合发生;但是,可能經常看到的是返归直接的前代——至少在大多数雌雄两性結合的后代中是如此。这种情形在物种間杂种和变种間杂种中已得到普遍的承認,不过这种承認只是根据杂交类型之間的差異致使其后代类似祖父母或易于探知的更远祖先而已。返祖对于某种疾病,象塞治威克所曾闡明的那样,几乎必然是一种規律。因此,我們必須作出这样的結論,这种特殊形式的遺传傾向是一般遺传法則的一个主要部分。

畸形 每一个人都承認,畸形的成长以及程度較輕的異态大部分是由于发育受到阻挠——即由于胚胎状态的持續。 不过有許多畸形不能这样来解釋;因为有一部分畸形,在胚胎中不能找出它的任何痕迹来,但在同类动物的其他成員中发生的畸形却不时在胚胎中出現,老实講,这大概可以归因于返祖。然而我在人类的由来(Descent of Man,第一章,第二版)*中已經尽可能充分地討論了这个問題,所以我不願再在这里重复。

当普通具有不規則的构造花变为規則的,即变为反常整齐花时,这种变化一般被植物学者們看作是返归原始状态了。但是,麦克斯威尔·馬斯特博士¹⁾ 巧妙地討論了这个問題,他說,例如,一种旱金蓮的所有萼片 如果都变为綠色的井且具有同样的形态,而不是伸长成 距狀的那一葉片

^{*} 人类的由来第一版在 1871 年、第二版在 1874 年間世。 本書第一版于 1868 年、第二版于 1875 年出版。——壽者。

¹⁾ 博物学評論, 4月, 1863年,第 258 頁。再参閱他的講演, 1860年 3月 16日发表于"皇家研究所"。 关于同一問題,参閱臺坤·丹頓,畸形学原理, 1841年,第 184,352 頁。拜里采(Peyritsch)博士蒐集了大量的很有趣的例子,見魏恩科学院报告(Sitzb. d. k. Akad. d. Wissensch:Wien), 第四十卷,特别是第四十六卷, 1872年,第 125 頁。

着有額色、或者、一种柳穿魚 (Linaria) 的所有花瓣如果都变为單瓣而規則的,那末这等情形只能归 因于发育受到阻撓;因为这等花的所有器官的最初状态都是对称的,而且如果在这一生长阶段受到 阻撓,它們大概不会变为不規則的。 还有,如果阻撓发生在更早的发育时期,其結果大概只是一簇 綠叶而已,恐怕沒有人会把这种情形叫作返祖的。 馬斯特博士把上述这种情形称为規則的反常整 齐花:把其他的情形称为不規則的反常整齐花:就象柳穿魚的所有花瓣变为距状时那样,所有它的 同价部分都呈現了同一形态的不規則性。 我們沒有权利把后述这等情形归因于返祖,除非我們能 够闡明祖先类型的、例如柳穿魚屬的祖先类型的所有花瓣會經至是距长的。。因为依据将来一章所 更討論的同原部分有按照同样方式发生变异的傾向这一法則,这种性質的偶然性可能是由于一种 异常构造的扩展而引起的。 但是,由于两种形态的反常整齐花常常在柳穿魚的同一个体植株上 发生1)、它們之間大概存在着某种密切的关系。如果根据反常整齐花單純是发育受到阻撓的結果, 那就难于理解在生长的很早期間受到阻撓的一种器官怎么会获得机能上的充分完善化; ———片 花瓣假定这样受到阻撓, 怎么会获得它的爆烂的颜色, 又怎么会作为花的外被或者作为产生充分 花粉的雄蕊而发生作用; 然而許多反常整齐花都有这种情形发生。 我們从摩兰的观察2)中可以推 論出,这种反常整齐花不是由于單純的偶然变异性,而是由于发育受到阻撓或返祖,根据他的观察 来說,具有不規則花的科常常"由于这等畸形的成长而返归它們的規則的形态;相反地,我們从来 沒有看到过一种規則花出現过一种不規則花的构造"。

象下述那个有趣的例子所闡明的那样,某些花几乎都肯定地通过返祖而变为反常整齐 花 了,不过其完善化的程度大小有所不同。 块茎紫堇 (Corydalis tuberosa) 的两个蜜腺中大概有一个 是 无色的,不具花蜜,只有另一个蜜腺的一半大,所以在某种程度上它是痕迹状态的; 雌蕊弯向那个 完善的蜜腺,并且由内花瓣形成的盔状复盖物使雌蕊和雄蕊只在一个方向脱出,因此,当一只蜜蜂 来吸那个完善的蜜腺时,柱头和雄蕊就露出而磨擦到昆虫的身体。 在若干近似的屬中,例如在荷包牡丹花等中,生有两个完善的蜜腺; 雌蕊是笔直的,并且按照蜜蜂吸哪一个蜜腺,盔状复盖物就向哪一边脱出。 現在,我已經检查过块茎紫堇的若干花,这些花的两个蜜腺都是同等发达的而且 都含有蜜。 在这种情形中我們所看到的只是局部退化器官的再发育; 不过随着这种再发育,雌蕊变得笔直了,而且盔状复盖物可以向任何一个方向脱出,所以这等花获得了非常善于适应昆虫媒介作用的荷包牡丹花及其近緣植物的那种完善构造。 我們 不能 把这等相互适应的改变归因于偶然,或者归因于相关的变异性;我們必須把它們归因于返归这个物种的原始状态。

天竺奏屬的反常整齐花具有五个完全一样的花瓣,并且沒有蜜腺;所以它同一个密切近似的屬——老鸛草的等数花(Symmetrical flowers)相类似;不过互生的雄蕊还有时缺少花药,縮短了的花絲只成了一点痕迹,在这一方面它們則同另一个近似屬——牦牛儿苗屬(Erodium)的对数花相类似。

把金魚草的反常整齐花的类型称为"珍奇之物"是适当的,它的細长的管状花同普通金 魚 草的花有可驚的差异;萼和花冠口是由六个相等的萼片組成的,并且包含有六个相等的雄蕊,而不是四个不等的雄蕊。 在两个多余的雄蕊中有一个显然是由于极其微小的乳头状突起的发达而 形成的;在我检查过的十九株普通金魚草的花中,它們生于花的上唇瓣的基部。 在普通金魚草和反常整齐花的金魚草之間的杂种植株中这种乳头状突起有各种不同程度的发育,这充分闡明了它是雄

¹⁾ 沃尔洛特,变种, 1865年,第89頁; 諾丹,博物館新报,第一卷,第137頁。

²⁾ 見他的对于某种奇異的整齐反常花的荷包花 (Calceolaria) 的討論中,园艺学报(2月24日,1863年,第152頁)曾加以引用。

蕊的痕跡。再者,我的花园中有一株黃色大天使花(Galeobdolon luteum)*,它的五个相等的花瓣都有同普通下唇瓣那样的条紋,并且包含有五个相等的雄蕊,而不是四个不等的雄蕊;但是这株植物的贈与人契實 (R. Keeley) 先生告訴我說,它的花大大地变异了,因为它的花冠是由四到六个裂片形成的,雄蕊为三到六个¹)。現在,因为金魚草屬和野芝蘸屬(Galeobdolon)所屬的这两大科的成員原来都具有五数花,其中有些部分是合生的,其他一些部分是隐蔽的,所以我們不应把第六个雄蕊或花冠的第六个裂片在任何一种場合中看成是由于返祖而发生的,正如我們不应把这两科植物的重瓣花的多余花瓣看成是由于返祖而发生的一样。但是关于反常整齐花的金魚草的第五个雄蕊,其情形就有所不同了,它是由于一个永远存在的痕迹物的再发育而产生的,并且只就雄蕊来就,它大概向我們揭示了这种花在某一往昔时代中的状态。我們也难于相信其他四个雄蕊和花瓣的发育在很早的胚胎时期受到阻撓之后,它們会在颜色、构造和机能方面达到充分完善的程度,除非这等器官在以前的某一时期會經正常地經过同样的生长过程。因此我認为大概是这样的:金魚草屬在某一遙远的时代一定生有五个雄蕊,并且开的花在某种程度上同反常整齐花类型現在开的花相类似。反常整齐花这种构造常常是强烈遗传的,反常整齐花的金魚草和大岩桐就是如此,反常整齐花的球茎紫堇(Corydalis solida)2)等有时也是如此;这个事实支持了以下的結論:反常整齐花不仅是一种畸形;不論这个物种的以前状态怎样。

最后,我願補充一点: 有些花一般不被看作反常整齐花,但它的某些器官异常地增多了数目; 关于这种情形,曾經記載过許多事例。 这等部分的增多不能被看作发育受到阻撓,也不能被看作 痕迹物的再发育,因为这里根本沒有痕迹物存在,同时这等多余部分把这种植物同它的自然的亲 緣植物之間的关系带到更加接近,所以大概应当把它們看作是返归原始状态。

这几个事实以一种有趣的方式向我們闡明了,某些畸形的状态多么密切地連結在一起;即,发育的受到阻挠引起一些部分变为痕跡的,或者完全被压抑下去——現今多少处于痕跡状态的一些部分的再发育,連一点痕跡都无法查得的一些器官的再現——除此之外还有,在动物的場合中偶尔在其一生中保持的某些性状存在于幼小期間,但此后便消失了。 有些博物学者認为所有这等畸形构造都是返归这样受到影响的生物所屬于的那个类羣的理想状态;但是难于想象得出这种說法所表达的意义是什么。 其他博物学者以一种更加可能的和更加明确的观点主张,上述几个例子之間的关系的共同紐帶实际是,虽然部分地是,返归这个类羣的古代祖先的构造。如果这种观点是正确的話,那末我們必須相信能夠发展的无数性状都是潛藏在每一个有机体中的。 但是,如果假設这等性状的数目在一切有机体中是同等多的,那就錯了。例如,我們知道,許多目的植物偶尔会变得生有反常整齐花;在唇形科(Labiatae)和玄参科(Scrophulariaceae)中比在其他目中这种情形更加常見得多;在玄参科的一个屬

¹⁾ 关于唇形科和支参科的反常整齐花的六裂的其他例子,参阅糜坤。丹頓的畸形学,第192頁。

²⁾ 高德龙,自斯塔尼斯拉斯科学院紀要(Mémoires de l'Acad. de Stanislas, 1868.)翻印。

[●] 即 Laminum luteum, 即 "Yellow Archangel"——課者。

^{**} Corydalis solida, 亦称 bulbòsa; 即"山延胡索"——器者。

——即柳穿魚屬中,不下十三个物种被描述为处于这种状态¹⁾。根据有关反常整齐花的性質的这种观点看来,並且記住动物界中的某些畸形,我們必須作出如下的結論:大多数的植物和动物的祖先都曾在它們后代的胚种上留下了具有再发育的能力的影响,虽然这等影响此后发生过深刻的改变。

一种高等动物的受精胚种从生殖細胞到老年时期蒙受了如此巨大的一系列变化 一条 夸垂费什所恰当称謂的"生命的旋风"(tourbillion vital)使它不断地受到了激动;这种受精的胚种恐怕是自然界中最奇異的物体。 几乎沒有对任何一亲发生了影响的任何一种变化而不在胚种上留下某种印記的。 但是,根据本章所提出的返祖学 說来看,胚种变成了一种远为奇異的物体,因为,除去它所經历的可見的变化之外,我們必須相信它还充满了不可見的性状,这些性状是两性所固有的,是身体的左右两侧所固有的,並且是几百代甚至几千代以前雌雄两性的祖先的悠长系統所固有的;同时这等性状象用隱显墨水写在紙上的字那样,只要当它的体制受到了某种已知条件或未知条件的攪扰的时候,就会发展起来。

¹⁾ 摩坤·丹頓,畸形学,第 168 **页。**

第十四章 遺传(續)——性狀的固定性——遺传 优势——性的限制——年龄的相应

性状的固定性显然不是由於遺传的古遠——在同科的个体中以及在杂交品 种 和 杂 交物种中的遺传优势;这在某一性中比在另一性中常常表現得更加强烈;这有时是由於 同一性状在某一品种中是显現的而在其他品种中是潛伏的——在受到性的限制 的 場 合 中的遺传——在我們的家养动物中新获得的造状常常只由一性遺传下去,有时只由一性而消失掉——在生命的相应时期的遺传——胚胎学的原理的重要性;在家养动物中所表示的:在遺传的疾病的出现和消失中所表示的;有时在子代中比在親代中发 生 得 更 早 ——以前三章的提要。

在以前两章中我們討論了,"遺传"的性質和力量,同其力量相冲突的环境条件, "返祖"的傾向及其值得注意的偶发事象。 在本章中,我将在材料所允許的范围之內 对其他一些有关現象加以充分的討論。

性 狀 的 固 定 性

育种者們普遍相信,一个品种的任何性状遺传得愈久,它就会愈加充份地被遺传下去。我並不想駁斥遺传单单通过长期的繼續就可以获得力量的这种主张是否正确,但是我怀疑这是否能夠得到証实。 从某一种意义来說,如果任何性状在許多世代中保持不变,这种主张同一种自明之理並沒有差別,而生活条件如果保持不变,性状大概会这样繼續下去的。再者,当改良一个品种的时候,如果相当长期地注意了排除所有劣等个体,那末这个品种显然有变得更純的倾向,因为它在許多世代中不曾同劣等动物杂交过。 我們在以前已經看到,但沒有能夠举出什么原因: 当一种新性状出現时,它有时一开始就是不变的,或者是很徬徨不定的,或者是完全不能遺传下去。 关于构成一个新变种的一羣微小差異就是如此,因为有些变种一开始就遠比其他变种能夠更純粹地繁殖它們的种类。 甚至关于用鳞莖、压条等——在某种意义上可以說它們形成了同一个体的一些部份——来繁殖的植物,大家也都知道通过連續的芽繁殖,某些变种比其他变种能夠更純粹地保持和传递它們的新获得的性状。在这等場合中,以及在下述的場合中,一种性状被遺传下去的力量同它曾被遺传了多久之間似乎並不存在任何关系。有些变种,例如白花和黄花的洋水仙以及白花的甜豌豆,比那些

保持天然顏色的变种,能夠更忠实地遺传它們的顏色。在第十二章提到的那个<u>爱尔</u> 一些人的家族中,特殊的龟甲般的眼睛顏色遠比其他任何普通顏色能夠更忠实地被遺 传下去。安康羊、摩強卜羊以及尼亚太牛都是比較近代的品种,它們却表現了显著強 **烈的遺传能力。还可以举出許多**相似的例子。

所有家养动物和栽培植物都曾发生过变異,但它們本来都是从野生类型传下来的,而野生类型无疑地从无限遙遠的时代以来就保持了同样的性状,因此我們知道,几乎沒有任何程度的古遠可以保証一种性状完全純粹地被遺传下去。 但是在这种場合中,我們可能說变化了的生活条件誘发了某些改变,而不是遺传能力不中用了;不过在遺传能力不中用的每一个場合里,一定会有某种內在的或外在的原因的干涉。一般可以发現,在我們家养生物中已經变異了的、或者还要繼續变異的那些器官或部份——即不能保持它們的以前状态的器官或部份——和在同屬的自然物种中有所差異的部份是同一部份。 因为根据家系变化学說,同屬的物种从一个共同祖先分岐出来之后就被改变了,所以它們彼此賴以区別的性状在体制的其他部份保持不变的期間已經发生了变異;也許会有人这样来爭論:由于这等性状比較不古遠,所以它們現在才在家养下发生变異,或者才不能被遺传下去。但是,在自然状况下的变異同变化了的生活条件似乎有某种密切的关系,在这等条件下已經变異了的性状,在由家养所引起的更大变化中,大概是容易变異的,这同它們的古遠程度的大小並无关系。

性状的固定性,即遺传的強度,常用不同族間的杂种后代中某些性状的优勢来判断;但是遺传优勢在这里开始起作用了,而我們即将看到,这同遺传的強和弱是很不相同的一种概念¹⁾。 曾經常常观察到,不能用我們的改良品种来永久地改变那些棲息在荒涼而多山的地方的动物品种;因为前者起源于近代,所以曾經認为較野品种的比較古遠程度就是抵抗用杂交来改进它們的原因;但更可能是由于它們的构造和体質能夠更好地适应周围的条件。当植物最初被引进栽培时,曾經发現,它們在数代間都能純粹地传递它們的性状,这就是說,它們並不变異,曾把这种情形归因于古老性状被強烈地遺传下来:但同等可能或者更大可能的是,这是由于变化了的生活条件需要一个长时間来积累它的作用。 尽管有这等考虑,要否認性状遺传得愈久它們就固定得愈牢稳,恐怕还未免輕率;但是我相信这个命題終归是这样——即一切种类的性状,不論新或老,都有遺传下去的倾向,並且那些已經抵抗了所有反对作用而能純粹地遺传下去的性状,按照一般的規律,将会繼續地抵抗它們,因而被忠实地遺传下

¹⁾ 参閱尤亞特論牛,第 92、69、78、88、163 頁;尤亞特論羊,第 325 頁。 <u>卢凱斯</u>,自然遺传論,第二卷,第 310 頁。

去。

性狀遺傳中的优势

当屬于同科的、但明显到足以識別的諸个体进行杂交时,或者当两个特徵显著的族或物种进行杂交时,正如前一章所敍述的那样,通常的結果是,第一代杂种介于两亲之間,或者有一部份同某一亲相似,而另一部份同另一亲相似。但这决不是一条不变的規律;因为在許多場合中可以发現某些个体、族以及物种在遺传它們的外貌方面佔有优勢。 波洛斯浦尔·卢凱斯¹⁾ 巧妙地討論了这个問題,但由于有时在两性中同等地佔有优勢,有时在这一性中比在那一性中佔有更強的优勢,这个問題被弄得極端复杂;同时由于次級性征的存在,这个問題也同样地被弄得复杂了,这是因为次級性征使得杂交品种难于同它們的双亲进行比較。

在某些家族中某一个祖先,以及在他們以后的同一家族的其他人,似乎在通过男系来遺传他們的外貌方面具有強大的能力;否則,我們就不能理解为什么同样的容貌,像在奧地利皇帝的場合中那样,当同許多女性結婚之后常常会被遺传;按照尼布尔(Niebuhr)的材料,某些罗馬人家族的精神素質也是如此²⁾。著名的"宠儿"(Favourite)公牛据信³⁾对于短角族有优勢的影响。 关于英国竞跑馬,也曾观察到")某些母馬一般地遺传了它們自己的性状,但具有同等純粹血統的其他母馬則讓种馬的性状居先遺传。我听勃朗先生告訴我說,一只著名的黑色灵狠——"在人"(Bedlamite)"的仔狗永遠都是黑色的,不管同他交配的母狗是什么顏色";然而这只"在人""无論在父兽方面或母兽方面都有他的血液中的黑色优势"。

当不同的族杂交时,优势原理的正确性就更明确地表現出来了。尽管改良的短角牛是一个比較近代的品种,但一般都承認它拥有强大的能力来把它的外貌刻印在所有其他品种之上;它在輸出方面之所以受到如此高度的評价⁵⁾,主要就是因爲这种能力。 <u>葛丹</u> (Godine) 举出過一个 引人 注意的例子:有一个好望角产的山羊般的綿羊品种,它的公羊当同十二个其他品种的母羊杂交之后,产生出来的后代同他自己几乎沒有任何區別。 但是用这等杂种的两只母羊同一只公<u>美利奴</u> 羊 交配,产生出来的羊羔則同美利奴品种密切相似。吉魯·得别沙連格⁶⁾发現,有兩个法國綿羊的族。

¹⁾ 自然遺传論,第二卷,第112-120頁。

²⁾ 荷兰得爵士,有关精神生理学的数章,1852年,第234页。

³⁾ 艺园者紀录, 1860年, 第270頁。

⁴⁾ 司密斯(N. H. Smith), 关于育种的观察 (Observations on Breeding), 在田园狩猎百科全营中引用,第
278 頁。

⁶⁾ 卢凱斯,自然遺传論,第二卷,第112頁。

当其中一个族的母羊在連續的各代中同公美利奴羊进行杂交时,在遺传它們的性状上遠比其他一个族的母羊快得多。斯特姆(Sturm)和吉魯就其他羊的品种以及牛举出过相似的例子,在这等例子中优势是通過雄性这方面的;但是南美的權威材料使我确信,当尼亚太牛同普通牛杂交时,不論用公亞亚太牛或母尼亚太牛,它都佔优势,但是通过雌性方面时优势最强。 曼島猫(Manx cat)是无尾的並且具有长的后腿;威尔遜博士用一只公曼島猫同普通猫杂交,在生下来的二十三只仔貓中,有十七只是无尾的;但当母曼島貓同普通公貓杂交时,所有仔貓都是有尾的,虽然它們的尾一般是短而不完善的¹⁾。

当使突胸鴿和扇尾鴿进行互交时,突胸鴿族似乎通过雌雄兩性都比扇尾鴿佔优势,与其說这 是由于突胸鴿所具有的任何异常的强大能力,勿宁說大概是由于扇尾鴿的能力薄弱,因为我會看 到排字鴿也比扇尾鴿佔优势。 虽然扇尾鴿是一个古老的品种,据說它的遺传能力普遍都是 薄 弱 的2):但是我曾在一只扇尾鴿和笑鴿的杂交中看到过一个例外。据我所知,有关雌雄兩性的薄弱遺 传能力的一个最奇特的事例是关于喇叭鴿的。 众所熟知,这个品种至少已經存在130年了: 它能 完全純粹地繁育,因为长期飼养許多这种鴿子的人們向我保証过这一点;它的特征是,喙上生有一 个奇異羽簇,头上生有羽冠,奇特的鳴声同其他任何品种都完全不一样,並且脚羽很多。 我曾使雌 雄两性的喇叭鴿同二个亚品种的浮羽鴿、同扁桃翻飞鴿、同斑点鴿並且同侏儒鴿杂交过,我育成了 許多杂种,使它們再杂交;虽然羽冠和羽棋被遺传下去了(大多数品种一般都是如此),但是,关于 **喙上的羽簇我从来沒有看見过有一点痕迹,我也沒有听到过它那种奇特的鳴声。包依塔和考尔比3)** 确言,用喇叭鴿同其他品种杂交,这是不可避免的結果;但是紐美斯特說49,在德国得到过具有羽簇 和发出喇叭般鳴声的杂种,虽然这是很罕見的;不过我輸入过这样具有羽簇的一对杂种,它們都从 来不会发出喇叭般的鳴声。勃連特先生50說,一只喇叭鴿的杂种后代同喇叭鴿杂交了三代,这时在 杂种的血管中流有八分之七的这种血液,然而喙上的羽簇並沒有出現。 到了第四代,羽簇出現了, 这时杂种虽然具有十六分之十五的喇叭鴿的血液,但它还不发出喇叭般的鳴声。 这个例子很好地 闡明了遺传和优势之間的广大差異;因为我們在这里看到了一个能够忠实地遺传其性状而十分稳 定的古老的族,但它同任何其他族杂交时,在遺传其兩個主要特征方面都具有极薄弱的能力。

关于鷄和鴿把同一性状遺传給杂种后代时所表現的能力的强弱,我再举另一個例子。 絲羽鷄能够純粹地繁殖,並且有理由相信它是一个很古老的族; 但是在我从一只母絲羽鷄和一只公西班牙鷄所育成的大量杂种中,沒有一只表現有那怕一点所謂絲羽的痕迹。 赫維特先生确言,关于这个品种同任何其他变种杂交而把絲羽遺传下去的例子还沒有过一个。但是,與尔東先生从一只公絲邪鷄和一只母班塔姆鷄的杂交中育成了許多杂种,其中有三只具有絲羽⁶)。所以肯定的是,这个品种很少有把它的奇特羽衣遺传給其杂种后代的能力。 另一方面,有一个扇尾鴿的絲羽亚变种,它的羽毛状态同絲羽鷄的几乎一样: 我們已經看到,扇尾鴿当杂交时在遗传它們的一般性質上具有非常薄弱的能力; 但是絲羽亚变种当同任何其他小形的族杂交时,不可避免地会把它的絲羽遺传下去!?

^{.1)} 奥尔東先生, 育种生理学 (Physiology of Breeding), 1855年, 第9頁。

²⁾ 包依塔和考尔比, 鸽, 1824年, 第224頁。

³⁾ 鴿,第168,198頁。

⁴⁾ 鴿飼育全書, 1837年,第39頁。

⁵⁾ 鴿之書,第46頁。

⁶⁾ 育种生理学,第22頁;赫維特先生,見家鶏之書,推葛梅尔著,1866年,第224頁。

⁷⁾ 包依塔和考尔比, 鴿, 1824年, 第226页。

著名的國藝家保罗先生告訴我說,他用白色球形蜀葵的、檸檬蜀葵的以及黑色王子蜀葵的花粉使黑色王子蜀葵受精,並且进行反交;但是从这三种杂交中产生出来的实生苗沒有一株遺传有黑色王子的黑色。 再者,在豌豆杂交工作中具有如此丰富經驗的拉克斯東先生給我写信說,"无論什么时候只要在白花豌豆和紫花豌豆之間,或者在白色种子豌豆和紫色斑点种子豌豆之間,要不在白色种子豌豆和褐色或楓色种子豌豆之間完成了一次杂交,其后代似乎把白花的和白色种子的变种的几乎所有特征都丧失了;无論这等变种用作母本或者用作父本,其結果都是这样的。"

当物种杂交时,优势的法則就像在族以及个体的杂交中一样地发生作用。 該特納明確地闡明了¹⁾在植物方面也是如此。茲举一例:当圓錐花序煙草(Nicotiana paniculata)和长春花煙草(Nicotiana vincaeflora)杂交时,前者的性状在杂种中几乎完全消失了;但是当印第安煙草(N. quadrivaluis)和长春花煙草杂交时,以前如此佔优势的长春花煙草現在在印第安煙草的力量之下就几乎消失了。 值得注意的是,像这特納所闡明的那样,某一个物种比另一个物种在遺传上佔有优势这件事同某一个物种能够使另一个物种容易受精與否这件事完全沒有关系。

关于动物,胡狼比狗佔有优势,弗勞倫斯这样說过,他使这等动物进行过多次杂交;有一次我看到一个胡狼和便之間的杂种,其情形也是如此。根据考林(Colin)以及其他人士的观察,我不能怀疑驢比馬佔有优势;在这个事例中,优势在雄驢方面比在雌驢方面表現得更加强烈;所以騾(mule)比驢騾(hinny)²)*更加同驢密切相似。根据赫維特先生的描述³)来判断,並且根据我會看到过的杂种来說,雄雉比家鷄佔有优势;不过专就顏色来看,后者具有相当的遺传能力,因为从五个不同顏色的母鷄育成的杂种在羽衣方面表現了巨大的差異。以前我在"动物园"中檢查过普通鴨的企鵝变种和埃及鵝(Anser aegyptiacus)之間的一些奇異的杂种,虽然我不願断言家养变种比自然物种佔有优势,但是家养变种却把它的不自然的直立姿势强烈地传給了这等杂种。

我知道,有許多作者不把上述这等例子归于某一个物种、一个族或一个个体在遺传其性状給杂种后代方面比其他物种、族或个体佔有优势,而把它們归于以下的規律: 即父親影响外在性状,而母親影响內在性状、即有关生命的器官。 但是,許多作者所举出的这等規律表現了巨大的不同,这就差不多証明了它們的錯誤性。 液洛斯浦尔·卢凱斯博士會經充分地討論过这点並且指出¹); 沒有一条这样的規律(我对他引用的那些还能有所补充)可以应用于所有动物的。关于植物也宜

^{*} 即"駃騠",為馬父和斯母之間的杂种。——譯者。

¹⁾ 杂种的形成,第 256 頁, 290 頁等。 諮丹舉出一個显著的例子: 一种曼陀罗 (Datura stramonium) 当间 其他兩个物种杂交时佔有优势(博物館新报,第一卷,第 149 頁)。

²⁾ 弗勢命斯,发情期 (Longévité Humaine),第 144 頁,关于杂种胡狼。关于驟和斯縣之間的差異,我知道一般都把这种情形归因于公馬和母馬在遺传它們的性状上有所不同;但是,考林強調地主張斯在这两种杂交中都佔有优势,不过其程度有所不同;关于这等反交的杂种,考林在他的比較生理学概論 (Traité Phys. Comp.) 中所作的該述,据我所知,是最充分的。弗勞命斯的結論是相同的;貝酉斯坦的結論也是相同的,見他的德国的博物学,第一卷,第 294 頁。 斯縣的尾巴象馬的尾巴比象驟的尾巴厉害得多,一般都用这两个物种以較大的能力遺传构造的这一部分來解釋这種情形;但是我在"動物园"中看見过一个复合杂种,它是从一匹母馬同斯-斑馬杂种的杂交中育成的,它的尾巴同它的母亲的尾巴密切相似。

³⁾ 在繁育選等杂种中具有如此丰富經驗的<u>替維特</u>先生說(家雞之書,推葛梅尔著,1866 年,第 165—167 頁),所有選等杂种的头部都缺少內垂、內冠以及耳內垂;並且在尾形和一般身体輪廓上都同雄密切相似。 这等杂种是从几个品种的母為同雄維的杂交中育成的;但是另一个杂种,根据<u>赫維</u>特先生的描述,是从 一只雌雄同一只母"銀边班塔姆翁"的杂交中育成的,这个杂种具有一点肉冠的以及肉垂的痕迹。

⁴⁾ 自然遺传論,第二卷,第二册,第一章。

在討論"杂交"的下一章中,我將有机会来闡明某些性状稀少地或者決不由于杂交而混合在一起,而是以一种不变的状态从任何一个祖先类型被遺传下去;我之所以在这里提到这个事实,是因为它有时在某一方同优势相伴随,因此这种优势便带来了具有异常力量的假象。 在同一章中我还要闡明,一个物种或品种从反复的杂交中吸收和消除另一个物种或品种的程度主要取决于遗传的优势。

总之,上面所列举的有些例子——譬如喇叭鴿——証实了在单純的遺传和优势 之間存在着广泛的差異。 由于我們的无知,后述这种力量在我們看来大都是完全不 定地发生作用的。同一性状,縱使它是一个異常的、即畸形的性状,例如絲羽,当杂交 时,由于不同的物种,或以优势的力量或以非常薄弱的力量被遗传下去。 显然是,任 何一性的純系类型,在这一性不比那一性佔有更強的优势的所有場合中,都将以一种 优势的力量凌駕一个杂种化的和P.經变異了的类型而遺传它的性状³⁾。 根据上述的 几个例子,我們可以作出这样的結論,单是性状的古遠决不一定会使它成为优势的。 在一些場合中、优势显然取决于同一性状在两个杂交品种的一个品种中是显現的而 在另一个品种中是潛隐的;在这样場合中,在两个品种中都潛伏存在的性状当然佔有 优势。 因此,我們有理由相信,在所有的馬中都有成为黃棕色的和条紋的潛在傾向; 当这种馬同任何其他顏色的馬杂交时,据說其后代几乎肯定是具有条紋的。 綿羊具有 变成暗色的同样潛在傾向,並且我們已經看到,具有少数黑点的公羊当同不同品种的 白色綿羊杂交时, 它以何等优势的力量使其后代着上了颜色。 所有鴿子都有变成带 着某些表示特征的标誌和石板青色的潛在傾向,並且我們知道,如果具有这样顏色的 一只鴿子同任何其他顏色的鴿子进行杂交,此后就极难把这种靑的色調消除掉。班塔 姆鷄提供了一个差不多相似的例子,当它年老的时候,一种获得紅色羽毛的潛在傾向 就发展起来了。 不过关于这个規律也有一些例外: 牛的无角品种具有再生角的潛在 能力,但是当同有角品种杂交时,它們並不一定产生有角的后代。

¹⁾ 杂种的形成,第264—266頁。 諾丹得到了同样的結論(博物館新报,第一卷,第148頁)。

²⁾ 家庭艺园者, 1856年, 第101, 137頁。

³⁾ 关於綿羊的这个問題,参閱威尔遜先生的一些意見,見艺园者紀录,1863年,第15頁。关于英国綿羊和 法国綿羊之間的杂交,瑪林季・努尔举出过許多显著的事例(皇家农学会学报,第十四卷,1853年,第220 頁)。他发現,他有意識地用杂种化的法国品种同純系的英国品种进行杂交,因而得到了所希望的影响。

关于植物,我們也遇到相似的例子。 具有条紋的花虽然可以由种子純粹地进行 繁殖,但它們有变成单一色的潛在傾向;如果它們一度同单一色的变种进行杂交,它 們此后就永遠不产生具有条紋的实生苗10。另一个例子在某些点上更引人注意:然有 反常整齐花的植物开放正规的整齐花的潛在傾向是如此強烈,以致当一株植物被移 植到較瘠薄的或較肥沃的土壤中时2),这种情形常常通过芽而发生。我曾用金魚草的 普通类型的花粉使前一章所描述的反常整齐花的金魚草(Antirrhinum majus)受精; 然后又用后者的花粉进行反交。 这样我育成了两大苗床的实生苗,其中沒有一株是 开反常整齐花的。 諾丹用一种反常整齐花的柳穿魚同普通类型杂交,所得到的結果 是一样的。 我仔細地检查了这两个苗床中九十株杂种金魚草的花,它們的构造一点 也沒有受到杂交的影响,除了在少数事例中永遠存在的第五个雄蕊的微小痕迹更充 分地、甚至更完善地发达了。 千万不要假定反常整齐花构造在杂种植物中的全部被 消除可以用遺传能力的任何缺少来解释;因为我用反常整齐花的金魚草的花粉人为 地使它自己受精,只有十六株活到冬天,它們完全象亲本一样,全都开反常整齐花。 我們在这里看到了一个良好的事例:一种性状的遺传同把它遺传給杂种后代的能力 之間存在有广泛的差異。 把同普通金魚草完全相似的杂种植物单独进行播种,那末 在一百二十七株实生苗中,有八十八株被証实是普通金魚草,两株处于反常整齐花和 正常状态之間的中間状态,三十七株返归了祖父母一方的构造而完全开反常整齐花。 这个例子最初一看似乎对于刚才談到的那条規律提供了一个例外,那条規律是:如果 一种性状在某一类型中是显現的、在另一类型中是潛伏的、那末当这两个类型杂交 时,这种性状一般是以优勢的力量被遺传下去的。因为在所有玄参科植物中,特別是 在金魚草屬和柳穿魚屬中,正如前章所闡明的那样,都有一种变成反常整齐花的強烈 的潛在傾向;但是我們也看到,在所有反常整齐花的植物中还有一种更加強烈的傾向 去获得它們的正常的不規則构造。所以在同一植物中具有两种相反的潛在傾向。那 末,在杂种金魚草中产生正常的或不規則的花的傾向,就像普通金魚草那样,在第一 代佔有优势;而产生反常整齐花的倾向似乎由于中断了一代才获得力量,因而在第二 代实生苗中才大規模地佔有优势。 一种性状怎么可能由于中断了一代才获得力量, 这将在汎生說那一章中加以討論。

总之,遺传优勢这个問題是極其錯綜复杂的,这是由于在不同的动物中其力量变

¹⁾ 沃尔洛特,变种, 1865年,第66頁。

²⁾ 摩坤-丹頓, 畸形学,第191頁。

³⁾ 博物館新报, 第一卷, 第137頁。

異得非常大,甚至关于同一性状也是如此——由于它或者在两性中有同等的表現,或者在某一性中遠比在另一性中表現得更加強烈;在动物中屡屡出現后述这种情形,在植物中並不如此——由于次級性征的存在——由于某些性状的遺传受到了性的限制,我們就要看到这一点——恐怕偶尔也由于对于母体所发生的前受精的作用。 因此,迄今还沒有人能夠对于遺传优势这个問題訂出一些一般的規律,这並不足为奇。

在受到性的限制的場合中的遺傳

新性状常常在一性中出現,並且此后或者完全地遺传給同性,或者遺传給同性的程度遠比遺传給另一性的程度大得多。 这个問題是重要的,因为关于在自然状况下的許多种类的动物,不論高等的或低等的,它們的同生殖器官沒有直接关联的次級性征是显著存在的。 关于我們的家养动物,其次級性征同区别亲种的性别的那些性状有广泛的差異;在受到性的限制的場合中的遺传原理解释了这怎么是可能的。

户割斯博士會指出¹⁾,当一种同生殖器官沒有任何关联的特性出現于任何一亲時,它常常完全被遺传給同性的后代,或者同性的后代遺传有这种特性的遠比相反一性的后代多得多。例如,在兰卦尔奘的家族中,皮肤上角状突起物只从父亲遺传給他的儿子和孫子:关于鱗皮症(ichthyosis)的其他例子,关于多趾,关于趾和趾骨的缺少,也是如此,关于各种疾病,例如色盲,血友病素質(haemorrhagic diathesis)——輕微的受伤即可引起大量的和不可控制的出血,也是如此,不过其程度較輕。另一方面,母亲在若干世代中把多趾和少趾、色盲以及其他特性只遺传給女儿。同一特性可能变得隸屬于任何一性,並且长期地只遺传給这一性;不过在某些場合中隸屬于一性的情形只是远比隸屬于另一性的情形为多。同一特性也可能乱杂无章地遺传給任何一性。卢凱斯举出其他一些例子来闡明,雄性把他的特性只遺传給他的女儿,而母亲只遺传給她的儿子;即便在这种場合中,我們也看到遺传在某种程度上是受性的支配的,虽然这种情形是反轉的。卢凯斯博士在权衡了整个的证据之后作出这样的結論:每一种特性都有遺传給它最初出現于其中的那一性的傾向,不过其程度的大小有所不同。但是,一条更加明确的規律,象我在他处所闡明的那样²⁾,一般是适用的;这条規律是,如果变異是在生殖机能活跃的生命晚期最初出現于任何一性中,那末它就有单独在这一性中发展的倾向;相反地,在生命早期最初出現于任何一性中的变異普通是遺传給两性的。然而我決沒有假定这是唯一的決定性的原因。

这里可以把塞治威克先生³)所蒐集的許多例子的二三細节列举出来。由于某种未知的原因, 色盲在雄性中比在雌性中更加常見得多;在<u>塞治威克</u>所蒐集的二百个以上的例子中,十分之九是

¹⁾ 自然遺传論,第二卷,第 137—165 頁。再參閱即将談到的塞治威克先生的四篇报告。

²⁾ 人类的由来,第二版,第32頁。

³⁾ 关于在遺传的疾病中的性的限制 (On Sexual Limitation in Hereditary Diseases), 英国和外国外科医学評論,4月 1861 年,第 477 頁;7月,第 198 頁;4月,1863 年,第 445 頁;7月,第 159 頁。再参閱:1867 年的关于在遺传的疾病中的年龄的影响。

同男性有关的;但是它非常容易地通过妇女被遗传下去。但是在阿尔 (Earle) 博士所举的例子中,具有亲緣关系的八个家族的成員在五代中部罹有此病:这些家族共有六十一人,男三十二人,其中十六分之九不能識別顏色,女二十九人,其中只有十五分之一惠有此症。 惠有色盲的虽然一般都是男性,但有一个事例指出,它最初在一个女性身上出現,並且在五代中遗传給十三个人,所有这些人都是女性。 我們知道,常常同風湿症相伴随的血友病素質,虽然是通过女性被遗传下去的,但有在五代中只遗传給男性的情形。 有人說过指骨的缺少在十代中只遗传給女性的情形。 在另一个例子中,一个男子的两手和两足都这样缺少指骨和趾骨,而遗传有这样特性的是他的两个儿子和一个女儿;但到了第三代,在孙雅的十九人中,十二个孙子都有这种家族的缺陷,而七个孙女却沒有这种缺陷。在受到性的限制的普通場合中,儿子或女儿从他們的父亲或母亲那里遗传到一种特性——不管这种特性是什么,并且把遗种特性遗传給相同性别的兒女;但是关于血友病素質,儿子从来不直接从父亲那里遗传到这种特性,而專門通过女儿传递这种潜在的倾向,所以只是女儿的儿子才表現有这种病症:关于色盲以及其他一些例子也常是如此。这样,父亲、孙子和玄孙子将呈现一种特性,——祖母、女儿、鲁孙女则以一种潜伏的状态遗传这种特性。 因此,正如塞治威克先生所指出的那样,我們有一种双重的隔代遗传、即返祖;每一个孙子显然都从祖父那里接受特性并且加以发展,而每一个女儿显然都从祖母那里接受潜伏的倾向。

根据卢凱斯博士、塞治威克先生以及其他人士所記載下来的各式各样的事实来看,無可怀疑的是,最初出現于任何一性中的特性,虽然決不一定或不可避免地同这一性有关联,却有被遺传給同一性別的后代的强烈傾向;但它常常以一种潛伏的状态通过相反的一性而被遺传下去。

現在囘轉来談一談家紊动物,我們发現,原非亲种所固有的某些性状常常只局限于或者只遺传給某一性;不过我們并不知道这等性状最初出現的历史。在討論"羊"的那一章中,我們已經看到某些族的公羊在角的形状上同母羊大有差異,有些品种的母羊是沒有角的;它們在尾部脂肪的发育上以及在前額的輪廓上也有差異。根据近似的野生种来判断,我們不能用它們是起源于不同的過光类型这样的假定来解释这等差異的。在一个印度的山羊品种中雌雄两性的角也表現有巨大差異。公印度瘤牛的背瘤据說比母瘤牛的为大。在苏格兰的猎鹿狗中,雌雄两性在大小上所表現的差異比在任何其他狗的变种中都大¹⁾,根据类推的方法来判断,其差異也比在原始亲种中所表现的为大。玳瑁毛这种特殊的顏色在雌貓中很少見;这个变种的雌貓是銹色的。

在鷄的各个品种中,雄性和雌性常常有巨大差異;而这等差異同那些区别亲种原鷄的雌雄两性的差異决不一样;因而它們是在家养中发生的。 在斗鷄族的某些亚变种中有一个異常的例子,即母鷄彼此之間的差異比母鷄同公鷄之間的差異为大。 在一个籠罩着黑色的白色印度品种中,母鷄的皮一定是黑色的,并且它們的骨被有一层黑色的骨膜;相反地,公鷄却从来不、或者极少具有这样的性状。 鴿子提供了一个更加有趣的例子;在整个大科中雌雄两性常常沒有多大差異,并且祖先类型——岩鴿——的雌雄两性則沒有区別;但是我們已經看到,关于突胸鴿,突胸这种特征在雄性中比在雌性中有更加强烈的发展;在某些亚变种中,只是雄性具有黑色的斑点、或黑色的条紋,要不就在其他方面具有不同的颜色。 当英国传書鴿的雌雄两性分別在不同的艦籠中展出时,它們的喙上肉垂和眼周肉垂的发展所表現的差異是显著的。所以我們在这里看到一个事例:在自然状况下完全不存在这等差異的物种的一些家养族中出現了次級性征。

另一方面,屬于自然状况下的物种的次級性征有时在家养下完全消失或者大大

¹⁾ 斯克罗普, 猎鹿的狙击技术(Arr of Deer Stalking), 第 354 頁。

縮小。我們知道,改良品种的猪的獠牙同野猪的獠牙比較起来是小形的。有些鷄的亚品种,它們的雄性已經丧失了美丽的悬垂的尾羽和頸羽;还有一些亚品种,它們的雌雄两性在顏色上沒有任何差異。橫斑的羽衣在鶉鷄类中普通是雌鳥的屬性,在某些場合中它被传給了公鷄,杜鵑亚品种就是如此。在另外一些場合中,雄性的性状部分地被传給了雌性,例如母金色点斑汉堡鷄的美丽羽衣,母西班牙鷄的扩大了的肉冠,母斗鷄的好斗秉性,以及在各个品种的母鷄中偶尔出現的充分发达的距。 波兰鷄的雌雄两性都装飾有頂毛,雄性的頂毛是由頸羽状的羽毛形成的,这是原鷄屬中的一种新的雄性性状。总之,根据我所能判断的来說,新性状在家养动物的雄性中比在雌性中更容易出現17,並且此后完全遺传給或者更加強烈地遺传給雄性。最后,按照在受到性的限制的場合中的遺传原理来看,自然物种的次級性征的保存和增強沒有提供特別的难点,因为这种情形大概是通过我所謂的性选择那种选择的方式而发生的。

在生命的相应时期的遗传

这是一个重要的問題。 自从我的物种起源出版以来,我还沒有看到有任何理由可以怀疑該書中对于生物学中的一个极其值得注意的事实——胚胎和成长动物之間存在着差異——所提供的解释的正确性。它的解释是:变異並不一定或者並不一般都在胚胎成长的很早时期中发生,並且这等变異是在相应的年龄中被遗传的。因此,甚至当祖先类型发生了巨大改变之后,胚胎还只有很微小的改变;並且从一个共同祖先传下来的大不相同的动物的胚胎在許多重要之点上彼此还保持着相似,大概同它們的共同祖先也保持着相似。这样我們便能理解,当分类应当尽可能是系統的时候,为什么胚胎学对于分类的自然体系投射了大量的光明。如果胚胎过的是一种独立的生活,这就是說它变成了幼虫,那末它就势必在同双亲的构造和本能並无关系的它的构造和本能上适应周围的条件;在生命的相应时期的遗传原理使得这种情形成为可能。

这一原理从某一方面来說, 誠然是显而易見的, 所以沒有受到人們的注意。我們拥有許多动物的和植物的族, 当它們彼此或者同它們的祖先类型进行比較时, 无論在未成熟状态下或者在成熟状态下, 都表現有显著的差異。 看一看能夠純粹进行繁育的几个种类的豌豆、蚕豆、玉米的种子, 並且观察一下它們在大小、顏色以及形状上表現了何等的差異, 而充分成长的植株却几乎沒有什么差異。 另一方面, 甘蓝在叶子和生长方式上表現了巨大的差異, 但它們的种子几乎完全沒有任何差異; 一般可以看

¹⁾ 我在人类的由来(第二版,第223頁)中會華出充分的証据来捐明雄性动物普通比雌性动物更容易变異。

出,在不同成长期間的栽培植物之間的差異並不一定有密切的关联,因为植物可能在种子方面有很大的差異,而当充分成长时則差異很小,相反地,它們所产生的种子可能几乎沒有区別,而当充分成长时則差異很大。 在从单一物种传下来的几个家禽的品种中,卵以及被有絨毛的雛的差異,第一次以及此后脱换的羽衣的差異,肉冠和肉垂的差異,都是遺传的。 关于人,乳齿和永久齿的特点是遗传的(关于这一点我收到过詳細的材料),长寿也常常是遗传的。还有,在牛和羊的改良品种中,包括牙的早期发育在内的早熟性,以及在某些鷄的品种中,次級性征的早期出現,都可以納入在相应时期的遗传这同一問題之中。

还能举出无数近似的事实。 蚕蛾恐怕提供了一个最好的事例;因为在純粹地遺传其性状的品种中,卵在大小、颜色和形状上表現了差異:幼虫在脱皮三次或四次上,在颜色上,甚至在眉般的暗色标誌上,以及在某些本能的丧失上,表現了差異; 茧在大小、形状上,以及在絲的顏色和品質上,表現了差異;这几种差異在成熟的蛾中即形消失,跟着发生的是微小的或仅可辨識的差異。

但可以这样說,在上述場合中一种新的特性如果得到遺传,那一定是在发育的相 应阶段,因为卵和种子只能同卵和种子相似,而充分成长的公牛的角只能同牛的角相 似。 下述的一些例子更明确地闡明了在相应时期的遺传,因为就我們所能知道的来 說,它們涉及到的那些特性可能在生命的較早期間或較晚期間发生,但是这些特性的 遺传是在它們最初出現的那同一时期。

在兰勃尔特的家族中,父亲和儿子是在同一年龄、即在降生后允个星期左右,呈現豪猪般的瘤子¹⁾。 在克劳弗得先生所描述的一个異常多毛的家族中²⁾,在三代中生下来的孩子都有多毛的耳朵;父亲全身长滿毛的期間是在六岁,他的女儿多少早一点,是在一岁;在这两代中,乳齿的出現是在生命的后期,此后永久齿生得非常之少。 在一些家族中,毛髮的灰色是在特別小的年龄中得到清佳的。这些例子同我即將談到的那些在生命的相应時期被消传的疾病是相似的。

扁桃翻飞鸽有一种著名的特性:它的羽衣的丰满美及其特異的性状直到脱羽两三次之后才会出現。紐美斯特描述过一对鸽子,并且繪过它們的图,它們的整个体部除了胸、頸和头以外,都是白色的;但是它的第一次羽衣的所有白色羽毛都有帶顏色的边緣。另一个品种更值得注意:它的第一次羽衣是黑色的,翅上具有銹紅色的橫斑,胸前具有新月形的标志;这等标志此后变为白色的,并且可以保持到第三、四次脱羽的時期;但是过了这一時期之后,白色就扩展到全身,这時它便丧失了它的美³)。 获奖的金絲雀具有黑色的翅和尾;然而这种顏色只能保持到第一次脫羽,所以

¹⁾ 波利卡得,人类的体格史 (Phys. Hist of Mankind), 1851 年,第一卷,第349 頁。

²⁾ 阿瓦宮廷出使記 (Embassy to the Court of Ava), 第一卷,第 320 頁。关于第三代,見余咎 (Yule) 大 尉的出使阿瓦宮廷逸記 (Narrative of the Mission to the Court of Ava), 1855 年,第 94 頁。

³⁾ 鸽的飼养, 1837年, 第24頁, 第四表, 第二图; 第21頁, 第一表, 第四图。

必須在发生变化之前把它們展覽出来。一旦脫羽,这种特点便行絕跡。 当然,从这个血統育出的所有金絲雀在第一年都有黑色的翅和尾¹⁾。 會經有过这样一个奇異而多少相似的記載²⁾: 有一窝野生的斑色白嘴鴉,最初是于 1798 年在卡尔芳特 (Chalfont) 附近看到的,从那时起直到发表报告的那一年、即 1837 年止,每一年"这一窝总有几只鳥是黑白斑的。 这种羽衣的斑色无論如何在第一次脱羽時即行消失;但是在新生的下一窝中总有少数几只是斑色的"。这等变化在鴿、金絲雀以及白嘴鴉中都是于各种不同的生命的相应時期被遺传的,它們之所以值得注意,是因为亲种并不經过这种变化。

遺传的疾病所提供的証据在某些方面不如上述例子那样有价值,因为疾病并不一定同構造的任何变化有关联;但在其他方面,它們的价值却較大,因为对于它們的遺传時期进行了更加仔細的观察。某些疾病显然是以接种(inoculation)那样的一种程序传給孩子的,并且孩子从最初就被感染了,关于这等例子,这里略而不談。很多种类的疾病通常是在一定的年龄中出現的,例如:跳舞病(St. Vitus's dance)出現在幼年,肺病在壮年的早期,痛風在較晚的時期,中風(apoplexy)在更晚的時期,这些病自然是在同一時期被遺传的。然而,甚至关于这种疾病,例如关于跳舞病,也會記載过一些事例,闡明異常早地或異常晚地感染这种疾病的傾向是可以遺传的动。在大多激場合中,任何遺传的疾病的出現都是由每一个人生命中的某些危險時期以及不利的生活条件所决定的。有許多其他的疾病同任何特殊的時期并沒有連带的关系,但肯定有这样一种傾向,即当双亲最初感染的大体一样的年龄在于子女身上出现。支持这种主张的,可以举出一系列古代的和近代的优秀权威者。著名的亨特是相信这一点的,皮臭利的警告医生要在双亲感染任何重大的遗传的疾病的時期中严密注意他們的孩子。 波洛斯浦尔·卢凯斯动在蒐集了各种来源的事实之后,断言一切种类的疾病,虽然同生命的任何特殊時期并沒有关系,都有在祖先最初感染的那一生命的時期重現于后代的傾向。

埃斯奎洛尔 (Esquirol) 就精神錯乱发生在同一年齡中的情形举出若干显著的例子,例如关于

¹⁾ 基得,关于金絲雀的論文 (Treatise on the Conary), 第 18 頁。

²⁾ 查理沃茨,博物学杂誌,第一卷,1837年,第167頁。

³⁾ 波洛斯浦尔·卢凱斯,自然遺传論,第二卷,第713 頁。

⁴⁾ 疾病的遺传性 (L'Héréd. dans les' Maladies), 1840 年,第 135 頁。关于亨特,參閱哈兰的医学的研究 (Med. Researches), 第 530 頁。

⁵⁾ 自然遺传論,第二卷,第850頁。

⁶⁾ 塞治威克,英国和外国外科医学評論,4月,1861年,第485頁。在某些报告中,儿子和孙子为三十七人;但根据塞治威克懷懷贈給我的巴鉄莫尔医学和生理学期刊(1809年)第一次发表的那篇文章来判断,这是錯誤的。

⁷⁾ 波洛斯浦尔•卢凱斯,自然遺传論,第一卷,第400 頁。

⁸⁾ 塞治威克, 阿前書, 7月, 1861年, 第202頁。

祖父、父亲和儿子都在近五十岁時自杀的事情。还可以举出許多其他的例子,例如有这样一个家族,所有人都在四十岁的時候发狂了¹⁾。其他腦病有時也遵循同一規律——例如癲癇症和腦溢血症。有一个妇人在六十三岁的時候死于腦溢血;她的一个女儿在四十三岁的時候、还有一个女儿在六十七岁的時候死于腦溢血;后者有十二个孩子,都死于結核性的腦膜炎(tubercular meningitis)²⁾。我之所以举出后面这个例子,是因为它例证了常常发生的一种情形,即在遗传的疾病的精确性實中常常发生变化,虽然得这种疾病的还是同一器官。

同一家族的若干成員在四十岁的時候得了哮喘病(Asthma),而其他家族則在幼小時期得这种病。最不相同的疾病,例如狹心症(angina pectoris)、膀胱結石以及各种皮肤病,都在連續的世代中于差不多同一年檢出現。有一个人的小指由于未知的原因开始向內长,他的两个儿子的小指也在同一年檢以同样的方式开始向內弯曲。 奇怪而不可解释的神經痛病約在生命的同一時期使 双亲和孩子們受到了苦痛³⁾。

我将再举其他两个有趣的例子,因为它們例証了疾病在同一年龄中的消失和出現。两个兄弟、他們的父亲、他們的叔父、七个叔伯兄弟以及他們的祖父,都同样地得了一种叫做糠秕疹(pityriassi versicclor)的皮肤病;"这种病严格限于这个家族的男性(虽然是通过女性向下遺传的),它通常在青春期出現,在四十岁或四十五岁左右即行消失"。第二个例子是,有四个兄弟,他們在十二岁左右的時候,几乎每一个人都要惠严重的头痛,只有在暗室中横臥下来才能減輕痛苦。他們的父亲、叔父、祖父和叔祖都同样地惠头痛,所有能活到五十四岁或五十五岁的人們都在这样的年龄停止头痛。这个家族的女性沒有一人惠过头痛。

讀了上述的記載以及許多有关在三代甚至更多代中同一家族的若干成員于同一年齡发病的其他記載之后,就不可能怀疑疾病在生命的相应时期被遺传的強烈傾向;特別是当在稀有疾病的場合中不能把这种一致的情形归因于偶然时更加如此。当这种規律不适用时,子女的发病就往往比两亲为早;相反的例外則少見得多。 卢凱斯博士5)提到在比較早的时期发生遺传的疾病的若干例子。我已举出一个有关三代盲目的显著事例;勉曼指出白內障(Cataract)也屡屡有这样的情形发生。 关于癌,其遺传似乎特別容易較早。 帕給特爵士特別注意过这个問題,並且把大量的例子制成了表,他告我說,他相信在十个例子中有九个是,后代比前代发病为早。 他还說,"在同此相反的、即后代的成員比前代发病为迟的例子中,我想将会发現其不发癌病的两亲曾經活到极大的年龄。 所以未发病的亲代的长寿似乎有左右其后代的死期的力量;

¹⁾ 皮奥利,第109頁;波洛斯浦尔,第二卷,第759頁。

²⁾ 波洛斯浦尔·卢凱斯,第二卷,第748頁。

³⁾ 波洛斯浦尔·卢凱斯,第三卷,第 678,700,702 頁;塞治威克,同前書,4 月,1863 年,第 449 頁;7 月,1863 年,第 162 頁;斯坦因博士,关于遺传的疾病的論文,1843 年,第 27,34 頁。

⁴⁾ 这些领子是由塞治威克先生根据司徒需登(H. Stewart) 博士的权威材料举出来的, 見外科医学評論, 4月, 1863年, 第449, 477页。

⁵⁾ 自然遺传論,第二卷,第852頁。

于是我們在遺传中显然得到了另一个复杂的要素。

那些闡明某些疾病的遺传时期有时甚至屡屡提早的事实对于一般的家系学說是 重要的,因为它們确定了同样的事情大概也会在构造的普通变異中发生。 一长系列 这等提早的最后結果大概是胚和幼虫的固有性状的漸次消灭,这样,胚和幼虫同成熟 的祖先类型的类似大概愈来愈密切。 但是,各个个体如果有在过早的年龄丧失其固 有性状的任何傾向,那末在这个生长阶段中的破坏将会使有益于胚和幼虫的任何构 造得到保存。

最后,根据栽培植物和家养动物的无数的族(它們的种子或卵,它們的老者或幼者他之間都有差異,並且同亲种的种子或卵以及老者或幼者也有差異);——根据新性状出現于特別的时期並且此后遺传于同一时期的一些例子;——以及根据我們所知道的有关疾病的情形,我們必須相信在生命的相应时期的遺传的伟大原理是真实的。

以前三章的提要 遺传的力量虽然是強的,但它並不妨碍新性状的不断出現。这等性状,不論是有利的或有害的——最不重要的如一朵花的色調、一結带顏色的头发、或者仅仅是一种态度——或者最重要的如对于脑以及对于如此完善而复杂的一种器官、即眼睛的影响——或者具有如此重大的性質,以致值得叫作畸形的——或者如此特殊,以致在同一个自然綱中在正常情况下沒有发生过的——常常在人类、低等动物以及植物中得到遺传。在无数的場合中,只要一亲具有某种特性,这种特性就足可以遗传下去。身体两侧的不相等,虽然同对称的法則相反对,也可以遗传下去。有充分的証据可以証明,毁損和橫禍的效果有时可以遗传,当因毁損和橫禍而引起疾病时就特別地或完全地更加如此。毫无疑問,亲代长期繼續处于有害条件下所得到的恶劣結果有时可以遗传給其后代。正如我們在将来一章将要看到的那样,部份的使用和不使用以及精神习性的效果也是如此。週期的习性(periodical habits)同样也是可以遗传的,但象它所表現的那样,它的遗传力量一般是小的。

因此,我們就得把遺传看作是規律,把不遺传看作是变則。但是在我們看来,这种力量常常由于我們的无知而是反复无常地发生作用的,一种性状以不可解释的強和弱而被遺传下去。 同一特性,例如树的垂枝性或絲羽等,可以稳定地遺传給或者完全不遺传給同羣的不同成員、甚至同一物种的不同个体,虽然对于它們的处理是一样的。在后述这种場合中,我們知道,遺传的能力是一种性質,这种性質在其附着上完全是个別的。同单一性状一样,区別亚变种或族的若干併发的微小差異也是如此,因为

在这等亚变种或族中有些几乎可以象物种那样地进行純粹繁育,而其他却不能如此。 同一規律对于以鳞莖、短匐枝等进行繁育的植物也可适用,在某种意义上它們依然形成了同一个体的一些部分;这样說是因为有些变种通过芽的繁殖遠比其他变种能夠 純粹地保持或遺传它們的性状。

有些原非亲种所固有的性状的确从极遙遠的时代起就被遺传了,因而可以被看作是牢稳地固定下来了。但是长期的遺传就其本身来說是否給与了性状的固定性,还是一个疑問;虽然以下的情形显然是可能的:即长久被純粹遺传的、即不变的任何性状只要在生活条件保持一致的情况下还可以純粹地被遺传下去。我們知道,許多物种在它們的自然条件下生活时把同一性状保持了无限的岁月,当它們被家养之后便以极其多种多样的方式发生变異了——这就是說,停止遺传它們的原始形态了;所以沒有任何性状看来是絕对固定的。有时我們可以用生活条件反对某些性状的发展来解释遺传的停止;並且象在以枝接或芽接进行栽培的植物中那样,我們更常用那些引起新的微小改变不断出现的一些条件来进行解释。在后述这种場合中,並不是遺传完全停止了,而是新性状繼續地添加了。在双亲具有相似性状的某些少数場合中,遺传由于双亲的联合作用似乎得到了如此巨大的力量,以致这种力量被中和了,因而其結果就是新的改变。

在許多場合中,双亲停止遺传它們的外貌是由于品种在以前某一时期杂变了;因而子女便同外来血統的祖父母或者更遠的祖先相似。 在品种沒有杂变过的、但某些旧性状通过变異已經消失的其他場合中,它有时通过返祖而重新出現,所以看来好象是双亲停止遺传它們自己的外貌了。 然而在所有場合中,我們可以安全地作出这样的結論:子女从双亲那里遺传了所有自己的性状,在双亲中某些性状就象这一性所具有的那一性的次級性征那样,是潛伏的。 如果一朵花或一个果实經过了长期連續的芽繁殖之后而分离成具有祖先类型双方的顏色或其他屬性的不同部分,我們不能怀疑这等性状在初期的芽中是潛伏的,虽然我們在那时不能发觉它們,或者只能在非常混杂的状态下发觉它們。 具有杂种血統的动物也是如此,它們随着年龄的增长有时表現了来自双亲之一的性状,而这等性状在双亲身上最初連一点痕迹也不能被觉察出来。同博物学者們所謂的該氫的典型类型相似的某些畸形显然可以納入同样的返祖法則之下。有一个的确可惊的事实: 雌雄的性要素,芽、甚至充分成长的动物,就像用隐显墨水写的字那样,在杂种的場合中把性状保持数代,在純系的場合中保持数千代之久,而这些性状无論何时如果处于一定的条件下即可发展起来。

这些条件精确地說来是什么,我們还不知道。 但是任何干扰体制或体質的原因

似乎就足夠了。 杂交肯定引起了一种强烈的倾向,即重現长久消失的肉体的或精神的性状。 关于植物,在长久栽培之后进行杂交因而它們的体質由于这种原因以及杂交而受到干扰的物种所具有的这种倾向, 遠比一向在自然条件下生活的並且在那时进行杂交的物种强烈得多。家养动物和栽培植物返归到野生状态的情形也是对返礼 說的支持;但是在这等环境条件下的这种倾向曾被大大地誇张了。

当同科的多少有些差異的个体进行杂交时,以及当族或物种进行杂交时,一方在 遺传它的性状上常比另一方佔优势。一个族可能拥有强烈的遗传力量,但当杂交时, 却象我們在喇叭鴿中看到的情形那样,把优势讓位給所有其他的族。 遺传优势在同 一物种的雌雄两性中可能是相等的,但某一性常比另一性表現得更加強烈。 遺传优 势在决定一个族由于同另一个族反复进行杂交而被改变或者完全被吸收的程度方面 起着重要的作用。我們很难說出致使一个族或物种比另一个族或物种佔优勢的是什 么;但它有时取决于同一性状在一亲中是显現的、而在另一亲中是潛在的。

性状最初可能在任何一性中出現,但在雄性中比在雌性中更加常常出現,並且此后遺传給同性的后代。在这种場合中,我們感到可以确信的是,問題中的特性在相反的一性中虽然是潛伏的,但确实是存在的!因此,父亲可以通过他的女儿把任何性状遺传給孙子;相反地,母亲可以通过她的儿子把任何性状遗传给孙女。这样,我們知道了一个重要的事实:遗传和发育是两种不同的力量。有时这两种力量似乎是对抗的,即不能在同一个个体中結合起来;因为曾經記載下来的几个例子指出,儿子並不是直接从他的父亲那里承繼了某一种性状,也不是把这种性状又遗传给他的儿子,而是通过他的沒有表現这种性状的母亲把它承繼下来,並且通过他的沒有表現这种性状的女儿把它遺传下去。由于遺传受到了性的限制,我們知道次級性征是怎样在自然状况下发生的;它們的保存和积累取决于它們对于任何一性的用处。

无論在生命的哪一时期中最初出現的一种新性状,直至到达相应的年龄之前,一般在后代中都是潛伏的,此后便发育起来了。当这条規律不适用时,子代一般比亲代在較早的时期呈現这种性狀。 根据在相应时期的遗传这个原理,我們便能理解大多数动物为什么从胚种到成熟显示了如此不可思議的一連串的性状。

最后,关于"遗传"虽然还有很多暧昧不明之处,但我們可以把以下的法則看作已 經相当充分地得到了証实。 第一,每一种性状,无論新的或旧的,都有一种借着种子 生殖或芽生殖而被遗传下去的傾向,虽然这种傾向常常由于各种已知的和未知的原 因而受到阻碍。 返祖取决于作为两种不同力量的遗传和发育;它通过种子生殖和芽 生殖以各种不同的程度和方式发生作用。第三,遗传的优势,可能局限于一性,也可能 为两性所共有。第四,当遗传受到性的限制的时候,最初呈現某种性状的那一性一般 承繼有这种性状;在許多、可能在大多数場合中,这种情形取决于新性状的最初出現 是在多少晚一点的生命时期。第五,遗传如果是在生命的相应时期,那末遗传的性状 就有較早发育的傾向。 就象"遗传"法則在家养下所显示的那样,我們在这等法則中 看到了通过变異性和自然选择为新的物种类型的产生所作的充分准备。

第十五章 論 雜 交

自由杂交消除了近似品种之間的差異——当两个混合品种的个体数量不等时,一个 吸收了另一个——遺传优势、生活条件以及自然选择决定着吸收的比率——所有生物的 偶然相互杂交;明显的例外——关于不能融合的某些性状;主要的或者完全的是关于那 些在个体中曾經突然出現的性状——关于旧族因杂交而改变、新族因杂交而形成——有 些杂交族从最初产生起就純粹地繁育——关于同家养族的形成有关的不同物种的杂交。

在以前两章,当討論返祖和优势的时候,我必然被引导举出許多有关杂变的事实。在这一章,我将对杂变在相反两个方面所发生的作用加以考察——第一,在消灭性状因而阻止新族的形成方面;第二,在旧族由于性状的結合而发生改变或新族和中間族由于性状的結合而被形成方面。我还要闡明不能融合的某些性状。

同一变种或密切近似变种的成員之間的自由的或无管制的繁育結果是重要的; 但是汝等結果是如此一目了然,所以无須詳加討論。 无論在自然状况下或者在家養 状况下,当同一物种或变种混杂地生活在一起並且沒有暴露在任何誘起过量的变異 性的原因之中时,正是自由杂交主要地把一致性給予了这等个体。 防止自由杂交以 及有意識地使个体动物进行杂变就是育种技术的基础。 除非把他的动物分离开,任 何一个有理性的人大概都不会期望以任何特殊的方式来改进或改变一个品种的,也 不会期望把一个旧品种純粹地和不混杂地保持下来的。 在每一代把劣等动物杀掉, 其結果同把它們分离开是一回事。 在野蛮的和半开化的地区,如果那里的居民沒有 把动物分离开的方法,很少有或者从来沒有比同一物种的单一变种更多的变种。 以 前甚至在美国也沒有明显区别的綿羊族,因为所有都混合在一起了1)。 著名的农学 家馬歇尔²⁾ 說道,"養在柵栏內的綿羊以及在开闊地方放牧的各个羊羣的个体如果沒 有性状的一致性,一般都有性状的相似性";因为它們自由地在一起交配繁育,並且防 止它們同其他种类杂交;然而在英国的未被圈起的地方,非放牧的綿羊,即便是同一 羣的,也遠遠不是純粹的或一致的,因为各个不同品种混合在一起而且杂交了。我們 已經看到若干处英国园囿的半野生牛,在各个园囿中它們的性状几乎都是一致的;但 在不同的园囿中,由于沒有在許多世代中混合起来並且进行过杂交,它們便有某种微

¹⁾ 給农业部的信(Communications to the Board of Agriculture),第一卷,第 367 頁。

²⁾ 英格兰北部报告的評論(Review of Reports, North of England), 1808年第 200 頁。

小程度的差異。

我們不能怀疑鴿的变种和亚变种的異常多量的数目(总数至少有一百五十)部分地由于它們一度交配之后即行終身为配偶,这一点是同其他家禽有所不同的。 另一方面,輸入到英国的貓的品种很快就消失了,这是因为它們的夜間漫游习性使得它們几乎不可能避免自由杂交。 倫格1) 举出一个有关巴拉圭貓的有趣例子:在这个王国的各个遠隔的地方,显然由于气候的作用,貓都呈現有一种特殊的性状,但在首都附近,象他所主张的那样,由于本地的貓同由欧洲輸入的貓屡屡杂交,这种变化已經受到了阻止。 在象上述那样的所有場合中,一次偶然杂交的作用将会由于杂种后代的活力和能育性的增强而被扩大,关于这一事实的証据将在以后提出;其所以如此,是因为这将会导致杂种比純粹的亲品种增加得更加迅速。

当两个进行混合的族之一在数量上大大地超过另一个族时,数量比較少的族很快就会全部地或者几乎全部地被吸收或消失掉⁴⁾。例如,<u>欧洲</u>的猪和狗曾被大量地引进到<u>太平洋</u>的一些島屿上,土著的族在五、六十年左右的期間就被吸收而消失了⁵⁾;不过引进的族无疑是得到了有利的条件的。 鼠可以被看作是半家养的动物。 有些

¹⁾ 巴拉圭的哺乳动物(Saugethiere von Paraguay), 1830年,第212頁。

²⁾ 倫格,哺乳动物,第154頁。

³⁾ 怀特,人类的有规律的最进(Regular Gradation in Man), 第 146 頁。

⁴⁾ 爱德华博士,人种的生理性状(Caractères Physiolog. des Races Humaines),他在第24 頁首先喚起了对于这个問題的注意,並且进行了巧妙的討論。

^{5) &}lt;u>紫尔曼(D. Tierman)和本內特, 航海誌(Journal of Voyages)</u>, 1821—1829 年, 第一卷, 第 300 页。

亚历山大鼠(Mus alexandrinus)在"倫敦动物园"里逃跑出来了,"此后在很长期間里看园人不断地捉到杂种鼠,最初是半杂种,以后亚历山大鼠的性状就逐漸減少,最后它的性状終于完全消失了¹⁾。另一方面,在倫敦的一些地方,特別是在新的鼠屡屡被輸入的船塢附近,可以找到褐鼠、黑鼠和亚历山大鼠之間的无数中間变种,而这三种鼠通常是被分类为不同的物种的。

由于反复不断的杂交,一个物种或族需要多少代才能把另一个物种或族吸收掉, 对此已經常常有所討論2): 所需要的代数恐怕被大大地被誇张了。 有些作者曾主张 需要十二代、二十代或者甚至更多的代;但本質上这是不可能的,因为在第十代,其后 代大概只有外来血液的 1024 分之 1。 該特納发現3),关于植物,一个物种在三至五 代就能把另一个吸收掉,並且他相信在六至七代总能完成这一点。然而,开洛依德 1) 在一个事例中談到、紫茉莉(Mirabilis vulgaris)同长花紫茉莉(Mirabilis longiflora)在 連續的八代中进行了杂交,因为紫茉莉的后代如此密切类似后一物种,以致最謹慎的 观察者才能看出"它們是有相当显著差異的",或者象他所說的那样,他成功地"使它 們完成了接近完全的变化"。但是这种說法闡明吸收作用在那时甚至还沒有完成,虽 然这些杂种植物只含有紫茉莉的 256 分之 1。 象該特納和开洛依德那样正确的观察 **者們所做出的結論,其价值是遠遠大于那些育种者們在沒有科学目的的情况下所作** 出的結論的。 我所遇到的最精确記載是由司頓亨5) 作出的,並且有照象作为說明。 仅需(Hanley) 先生使一只母灵缇同一只叭喇狗进行杂交;其后代在連續的各代中又 **同第一流的灵狠进行杂交。正如司頓亨所說的,自然地可以这样設想,要把叭喇狗** 的笨重的形态消除掉,大概要进行几次杂交的;但叭喇狗的第三代女儿"歇斯特里" (Hysterics) 在外部形态上一点也沒有表現出这个品种的痕迹。然而她以及和她同胎 的狗"虽然跑得快速而且伶俐,但显著缺少強壮性"。我相信伶俐是指旋轉的技能而言 的。"歇斯特里"同"在人"之子进行了交配、"但我相信第五次的杂交結果还不如第四 次的杂交結果令人滿意。"另一方面,关于綿羊,弗列希曼6) 指出单单一次杂交的作用 就可能多么持久:他說,"原来的粗毛綿羊(德国的)一方吋有5,500 根毛纖維,同美利

¹⁾ 沙尔特先生,林納学会学报,第六卷,1862年,第71頁。

²⁾ 斯特姆,关于族……, 1825年,第107頁。 <u>勃龙,自然史,第二卷,第170頁,举出一个連續杂交后的血統</u> 比例表。卢凱斯博士,自然遺传論,第二卷,第308頁。

³⁾ 杂种的形成, 第463, 470 頁。

⁴⁾ 圣彼得堡新报 (Nova Acta st. Petersburg), 1794 年第 393 頁:再参閱前書。

⁵⁾ 狗, 1867年, 第179—184頁。

^{6) &}lt;u>麥克奈克(C. H. Macknight)</u>和<u>梅登(H. Madden)</u>博士, 育种的正確原理(True Principles of Breeding), 1865 年,第 11 頁引用。

双羊杂交过三次或四次之后可以产生8,000根左右,杂交二十次之后可以产生27,000根,完全純粹血統的美利奴羊可以产生40,000至48,000根"。所以普通德国绵羊同美利奴羊連續杂交二十次之后还决不能得到象純系那样纖細的毛。但在所有場合中,吸收的程度将大部取决于对任何特殊性状是否有利的生活条件;我們可以臆測在德国的气候下,除非用細心的选择来进行防止,美利奴羊的毛大概是有不断退化的倾向的;上述显著的例子或者可以这样得到解釋。吸收的程度一定还取决于两个杂交类型之間的可区別的差異量,並且象該特納所主张的,特別取决于一个类型超过另一个类型的遺传优势。我們在前一章已經看到,当两个法国綿羊品种同美利奴羊杂交时,其中之一在传递它的性状上遠比另一个品种慢得多;弗列希曼提到的普通德国綿羊在这一点上可能是相似的。在所有場合中,在許多繼起的世代中或多或少地都会有返祖的倾向,而且正是这个事实大概引导了一些作家們主张一个族吸收另一个族需要二十代或更多的代才成。当考察两个或更多品种的混合的最后结果时,我們必須不要忘記,杂交的作用在本質上有把並非直接亲类型所固有的长久亡失的性状招致回来的倾向。

关于对任何两个被允許自由杂交的品种所发生的生活条件的影响,除非它們都是固有的並且已經长期地习惯于它們的生活地方,它們多半都要不等地受到生活条件的影响,而且这将会改变其結果。甚至固有的品种,也很少或者从来沒有发生过这样的情形,即两个品种同等地善于适应周围的环境条件;特别是当允許自由漫游而沒有受到細心的照管时更加如此,被允許杂交的品种一般都是如此。其結果是,自然选择将会在某种程度上发生作用,最适者将会生存下去,並且这对于决定混合体的最后性状将有所帮助。

在动物的这样一种杂交体于有限制的区域内呈現一种一致性状之前大概需要多久时間,誰也說不出来;我們感到可以确信的是,它們由于自由的相互杂交並且由于最适者的生存最終会变得一致;但是,正如从上述考察可以推論出来的那样,这样获得的性状大概很少是或者从来不会是介于两个亲品种的性状之間的。关于同一亚变种或者甚至近似变种的个体所賴以作为特征的很傲小的差異,自由杂交显然可以很快地把这等小差別消除掉。 同选择无关的新变种的形成大概也会这样受到阻止;除非同样的变異由于某种強烈容易发生的原因的作用而不断地再現。所以我們可以作出这样的結論:自由杂交在所有場合中对于把性状的一致性給予同一家養族以及同一自然物种的一切成員,都起了重要的作用,虽然这大部分是受自然选择和周围条件的直接作用所支配的。

关于所有生物偶然相互雜交的可能性 但是,可以这样問:雌雄同体的动物和植物能发生自由杂交嗎? 所有高等动物以及已被家养的少数昆虫都是雌雄分体的,因而每生育一次不可避免地要結合一次。 有关雌雄同体的动物和植物的杂交,对于現在这部書来說是一个太大的問題,不过我在物种起源中已經簡单扼要地把我相信以下情形的理由举出来了,即所有生物都偶然杂交,虽然在某些場合中这只是在长的間隔期間內发生的''。我只把以下的事实再說一遍: 許多植物在构造上虽然是雌雄同体的,但在机能上則是单性的; 例如被斯普兰格尔 (C. K. Sprengel) 叫作雌雄蕊異熟的,但在机能上則是单性的; 例如被斯普兰格尔 (C. K. Sprengel) 叫作雌雄蕊異熟的那些植物,它們的同一朵花的花粉和柱头是在不同时期成熟的; 又如被我叫作相互一下的那些植物,它們的花粉不适于叫它們自己的柱头受精; 还有許多种类,它們生有奇妙的机械装置,可以有效地防止自花受精。然而有許多雌雄同体的植物,尽管它們沒有任何适于杂交的特別构造,但它們几乎象雌雄分体的动物那样自由地进行杂交。甘蓝、灌卜和洋葱都是这样的,我是根据对于它們的試驗才知道这种情形的: 甚至力究立亚的农民也說,必須防止甘兰彼此"陷入恋爱"之中。在柑橘类中,加列肖2)指出各个种类的改良受到了它們不断的並且几乎定期的杂交的抑制。关于其他无数的植物也是如此。

另一方面,有些栽培植物很少或者从不杂变,例如普通豌豆和紫色甜山黧豆(Lathyrus odoratus)就是如此,然而它們的花肯定是适于異花受精的。番茄、茄(Solanum)以及野生丁子(Pimenta vulgaris?)据說³)从不杂变,甚至彼此靠弄生长时也是如此。但是应当注意到,所有它們都是外国的植物,而且我們不知道当它們在原产地受到适当的昆虫訪問时会有怎样的表現。 关于普通豌豆,我曾确定它們在英国由于早期受精(premature fertilization)很少进行杂交。然而有些植物,例如蜂兰(Ophrys apifera)以及少数的其他兰科植物,在自然状况下似乎永遠是自花受精的;然而这等植物对于異花受精表現了最明显的适合性。再者,某些少数植物据信只产生关闭的花,叫作闭花受精(cleistogene),它們不可能进行杂交。很久以来都認为鞘糠草(Leersia oryzoides)⁴)是这样的,但是現在知道这种草偶尔产生結子的具备花(perfect flowers)。

¹⁾ 关于植物,喜尔特勃兰曾就这个問題发表了一篇可称讚的論文(植物的分类,1867年),他所得出的一般結 論同我的結論是一样的。 此后关于同一問題发表了其他种种論文,特別是赫尔曼·繆勒和道尔皮諾 (Delpino)的論文。

²⁾ 植物的繁育理論, 1816年, 第12頁。

³⁾ 沃尔洛特,变种, 1865年,第72頁。

⁴⁾ 丢瓦尔·周維(Duval Jouve), 法国植物学会会报(Bull. Soc. Bot. de France),第十卷, 1863年,第194頁。

某些植物,无論是土著的和順化的,虽然很少或者从来不产生花,或者它們如果产生花却不結子,但沒有一个人怀疑显花植物是适于产生花的,而且它們的花是适于結子的。 当它們不是这样的时候,我們相信这等植物处于不同的条件下将会实行它們的固有机能,或者相信它們以前曾如此,将来还会如此的。根据相似的論据,我相信上述那种特殊場合中的現在並不杂交的花,将会在不同的条件下偶尔进行杂交,或者它們以前曾如此——影响这种情形的途徑一般还是保留着的——在某一未来的期間內还会再杂交,除非它們真的絕灭了。只有根据这种观点,雌雄同体的植物和动物的生殖器官的构造及其作用的許多問題才是可以理解的,——例如这样的事实:雄性器官和雌性器官决不会关閉得那样完全以致使得它們同外面接近都不可能。因此我們可以作出这样的結論:把一致性給予同一物种的諸个体的所有手段中的最重要手段,即偶然相互杂交的能力,对于所有生物来說都是存在的,或者以前會經存在过,也許某些最低等的生物是例外。

關於某些不混合的性狀 当两个品种杂交时,它們的性狀通常会密切地融合在一起;不过有些性狀則拒絕混合,从双亲或一亲以不变的状态遺传下去。 当灰色小鼠 (mice) 同白色小鼠交配时,生下来的仔鼠是黑白斑的,或是純白的,要不就是純灰的,但沒有中間色的;当白色雉鳩同普通毛領雉鳩交配时,也是如此。 在进行斗鶏的育种时,一位伟大的权威者道格拉斯 (J. Douglas) 先生說道,"我不妨在遺里敍述一个奇怪的事实:假如你用一只黑色斗鶏同一只白色斗鶏杂交,你得到的是具有明显颜色的两个品种的鶏"。 赫朗爵士多年以来使白色的、黑色的、褐色的以及淡黄色的安哥拉冤进行了杂交,在同一动物中这几种颜色从来沒有一次混合过,但在同一胎中常常出现所有这四种颜色¹⁾。 从这样的例子——双亲的颜色完全分列地遺传給后代——开始,我們有所有种类的級进,一直到完全融合为止。 茲举一例:一位皮肤白色、头皮浅色、但眼睛黑色的先生同一位头发和皮肤都是深色的女士結了婚;他們的三个孩子的头皮颜色都是很浅的,但經过仔細的检查,发现在这三个人的浅色头发中間散在着十二根左右的黑色头发。

当短腿的曲膝狗和安康羊各自同普通品种杂交时,其后代並不具有中間的构造,而是同任何一亲相似。当无尾的和无角的动物同具备的动物杂交时,屡屡发生的是其后代或者具有完全形态的尾和角,或者完全缺如,但这决不是一成不变的。 按照偏格的材料,巴拉圭狗的无毛状态或者完全地遗传給或者完全不遗传給其杂种后代; 不过关于这个系統的狗,我看到过一个局部的例外:

¹⁾ 雅列尔給我的有关赫朗爵士的一封信的摘要,1838年。关于驥鼠,参阅博物学会年报,第一卷,第180頁;我还听說过其他相似的例子。关于雉埠,参閱色依塔和考尔比的鸽,第238頁。关于斗轎,参閱家魏之書。1866年,第128頁。关于无尾鶇的杂交,参閱且西斯坦的德国的博物学,第三卷,第403頁。 勃龙,自然史,第二卷,第170頁,关于馬举出了一些近似的事实。 关于杂种南美狗的无毛状态,参阳给格的巴拉圭的哺乳动物,第152頁;不过我在"动物园"中看見过从同样杂交中产生出来的杂种,牠們是无毛的,但有一块一块的毛——这就是說,具有毛斑。 关于道根籍和其他鶏的杂交,参阅家禽肥柔,第二卷,第355頁。关于杂种精,参阅赫朗爵士给雅列尔先生的一封信的摘要。 关于其他例子,参阅卢凱斯的自然遺传論,第一卷,第212頁。

它的皮肤上一部分有毛,一部分无毛,这两部分就象在黑白斑动物中那样明确地分开。 当具有五趾的道根鷄同其他品种杂交时,雛鷄常常在一只脚上生有五趾,在另一只脚上生有四趾。 赫朗爵士从单蹄猪和普通猪育成的一些杂种猪,其四脚完全不介于中間状态,但是两只脚的蹄是正当地分开的,两只脚的蹄是合在一起的。

关于植物,也曾看到过相似的事实: 垂威尔·克拉克少校用大形、紅花、粗糙叶的二年生紫罗 兰(法国人称之为 cocardeau) 的花粉使小形、光滑叶的一年生紫罗兰受精,其結果是,一半实生苗 的叶子是光滑的,另一半实生苗的叶子是粗糙的,但沒有一片叶子是介于中間状态的。光滑叶实生 苗的高大而强壮的生长习性闡明了它們是粗糙叶变种的产物、而不是偶然地由于母本的花粉而产 生出来的¹⁾。从粗糙叶杂种实生苗培育出来的連續世代,其中出現了一些光滑叶植株,这闡明了光 滑这种性状虽然不能同粗糙叶混合起来并使粗糙叶改变, 却永远是潛伏在 这个 植物的系統之中 的。以前會經談到的我从反常整齐花的金魚草同普通金魚草的相互杂交中育成的无数植物提 供了 一个近乎相似的例子;因为在一代中所有植株都同普通类型相类似,在第二代的137个植株中,只 有两株介于中間状态,其余不是同反常整齐花类型完全相似就是同普通类型完全相似。 垂威尔・ 克拉克少校还用紫花皇后紫罗兰的花粉 使上述 紅花紫 罗兰受 精,約有一半的实生苗在习性上簡 直同母本沒有区别,并且在花的紅色上完全沒有区别,另一半实生苗开的花是浓紫色的,同父本的 花密切相似。 該特納使毛蕊花屬的許多白花物种同黃花物种以及变种杂交过;这些顏色从来沒有 混合过,但其后代开的花不是純白的就是純黄的,純白色的花佔的比例較大2)。赫伯特博士告訴我 說,他从蕪菁甘蓝(Swedish turnips)同其他两个变种的杂交中育成了許多实生苗,这些实生苗从来不 开中間色調的花,而是永远同双亲之一的花色相似。"紫色甜山黧豆"具有暗紅紫色的旗瓣以及紫 罗兰色的翼瓣和龙骨瓣,蝴蝶甜豌豆具有浅樱桃色的旗瓣以及几乎白色的翼瓣和龙骨瓣,我會用 后者的花粉使前者受精;有两次我从同一个莢育成的植物完全同两个种类相似;同父本相似的佔 大部份。它們是如此酷似,要不是最初同父本变种——即蝴蝶甜豌豆——完全一样的植株,象前 章所提到的那样,在后一季产生了暗紫点班和暗紫条斑的花,我会認为其中是有錯誤的。 我从这 等杂种植株培育出第二代以及第三代,它們还繼續同蝴蝶甜豌豆相似,但在以後的世代中紫色斑 点变得更多一些,然而却沒有完全返归原始的母本紫色甜山黧豆。下述的例子虽稍有不同,但闡 明了同一原理: 諾丹3)从黃花柳穿魚 (Linaria vulgaris) 和紫花柳穿魚 (Linaria purpurea) 育成了无 数杂种,在連續的三代中,同一朶花的不同部分保持了不同的額色。

从上述那样的例子——第一代完全同任何一亲相似,我們跨进一小步便达到这样的一些例子:在同一个根上生长的不同顏色的花同双亲相似,我們再跨进一步又达到另外的一些例子:同一來花或一个果实具有两个亲本顏色的条紋或点斑,或者仅具有一个亲类型顏色的条紋或它的其他特有品質。 关于物种間杂种和变种間杂种,屡屡地甚至一般地发生的是,其体部的一部分或多或少地同一亲相似,而另一部分同其他一亲相似;这里对于融合的某种抗拒,或者用另外一种說法,即同一性質的有机原子之間的某种相互亲和力,显然又起着作用,因为如果不是这样,体部的一切部分大概会同等地具有中間性状的。 还有,当几乎具有中間性状的物种間杂种或变种間杂种的后代全部地或者部份地返祖时,相似原子的亲和或者不相似原子的排斥这一原理一定发生作用。关于这一似乎极其一般的原理,还要在討論汎生說的那一章中再行談及。

¹⁾ 倫敦国际园艺学和植物学会議(Internat. Hort. and Bot. Congress of London), 1866 年。

²⁾ 杂种的形成,第307頁。但是开浴依德(第三續編,第34,39頁) 从毛蕊花屬的同样杂交中得到了中間的 色調。关于燕蒂,参閱辦伯特的石蒜科,1837年,第370頁。

³⁾ 博物館新报,第一卷,第100頁。

象小圣喜来尔对于动物所强烈主張的那样,当物种杂交时,性状不融合而被遗传下去的情形显著是很少发生的;我所知道的只有一个例子,即关于普通鴉和黑头鴉(hooded crow)之間在自然状况下产生出来的杂种,它們虽然是密切近似的物种,但除了顏色之外,別无差异。甚至当受到人工选择而被緩慢形成的因之在某种程度上同自然物种相似的两个族杂交、一个类型比另一个类型强烈地佔有优势时,我也沒有遇到过任何这种十分确定的遗传例子。象同胎仔狗密切类似两个不同品种的那样例子大概是由于复好(Superfactation)——这就是說,由于两个父亲的影响。所有上述以完善状态遗传給某些后代而不遗传給其他后代的性状——例如不同的顏色、无毛的皮肤、平滑的叶、无角或无尾、多余的趾、反常整齐花、矮生构造等等——据知都是在个体动物和个体植物中突然出现的。根据这个事实,并且根据不适于这种特殊遗传形式的、区别家养族和物种的若干微小的集团差异,我們可以作出这样的結論:这同問題中的一些性状的突然出现有某种关联。

关于旧族因杂交而改变和新族由杂交而形成 迄今为止,我們所考察的主要是杂交对于性状一致性的影响,現在我們必須看一看相反的結果。 无可怀疑,杂交在若干代严格选择的帮助之下,对于改变旧族和形成新族曾經是一个有效的途徑。 奥尔福特 動爵曾使他的著名的种狗灵提同叭喇狗杂交过一次,为的是使前 者 得 到 勇敢和坚忍。我听福克斯牧师說,某些响导狗曾同狐缇杂交过,为的是使前者得到冲力和速力。道根鷄的某些品系混合有少量的斗鷄血液;我知道有一位伟大的养鸽者,为了获得喙的較大寬度,他曾使他的浮羽鴿同排孛鴿杂交过一次。

在上述場合中,为了改变某种特殊性状,品种只杂变了一次;但是关于大部分現在純粹繁育的猪的改良族,却进行过反复的杂变——例如,埃塞克斯改良猪的优秀性是靠着同那不勒斯猪的反复杂变而来的,其中恐怕还有某种程度的中国猪的血液的融合¹)。关于我們的英国綿羊也是如此:除了南邱羊以外,几乎所有的族都曾大事杂交过;"其实这就是我們的主要品种的历史"²)。茲举一例,牛津郡·丹茲羊(Oxfordshire Downs)現在被列为一个确定的品种³)。 它們是在 1830 年左右用"毋罕布郡羊,在某些場合中用毋南邱羊同公科次沃尔羊"进行杂变而产生出来的:現在公罕布郡羊本身是由土著的罕布郡羊同南邱羊之間的反复杂变而产生出来的;长毛的科次沃尔羊是由于同萊斯特羊进行杂变而被改进的,人們相信萊斯特羊又是从几种长毛綿羊之間的杂交而产生出来的。 斯普納先生在考察了仔細記載下来的种种例子之后,作出了如下的結論,"从杂种动物的合宜的交配中去創立一个新品种是可以行得通的。"

¹⁾ 里卡逊,猪,1847年,第37,42頁;西得內出版的尤亞特論猪,1860年,第3頁。

²⁾ 参閱斯普納先生的关于杂交育种的优秀論文,皇家农学会学报,第二十卷,第二都: 再参閱同等好的一篇 論文,何华德 (Ch. Hovvard) 先生著,見艺园者紀录,1860年,第320頁。

³⁾ 艺园者紀录, 1857年, 第649,652頁。

在大陸上,牛以及其他动物的若干杂交族的历史已被很好地确定下来了。茲举一例: 符騰堡王(King of Wurtemberg)經过了二十五年仔細的育种工作之后,即經过了六、七代之后,从一个荷兰品种和瑞士品种的杂交,並同其他品种相結合,育成了一个牛的新品种¹⁾。塞勃来特·班塔姆鷄同任何其他种类的鷄一样純粹地进行繁育,它是約在六十年以前从复杂的杂交中育成的²⁾。有些养鷄者相信暗色勃拉瑪鷄构成了一个不同的物种,毫无疑問,它是在美国于最近期間从契他岡鷄和交趾鷄的杂交中而被育成的³⁾。关于植物,蕪菁甘兰几乎无可怀疑的是从杂交中育成的;根据权威的材料曾經記載过一个小麦变种的历史,它是从两个不同变种育成的,經过六年的栽培之后,呈現了均一的标准品質⁴⁾。

直到最近,慎重而有經驗的育种者們虽然並不反对外来血統的单一混合,却几乎普遍相信試图創立一个介于两个大不相同的族之間的新族是沒有希望的:"他們固执地迷信血統純粹性的理論,認为它是諾亚的方舟*,只有在这条船上才可以找到真正的安全"5)。这种信念並非是不可理解的:当两个不同的族杂交时,第一代的性状一般几乎是一致的;即使是这种情形有时也不如此,特別是杂种狗和和杂种鷄更是这样,它們的仔狗和雛鷄从最初起有时就是变化多端的。因为杂种动物一般都是体大而強健的,所以大量地養育它們作为直接消費之用。但对于育种,它們被发現是完全无用的;因为它們的性状虽然是一致的,但它們在許多世代中产生出来的后代却是非常变化多端的。育种者絕望了,並且断言他将永遠不会育成一个中間族。不过根据已經举出来的例子,並且根据曾經記載下来的其他例子,似乎唯一需要的是耐心;因为斯普納先生說,"自然对于成功的混合並沒有設下障碍;在长年累月中,借着选择和仔細淘汰的帮助,創立一个新品种是有实际可能性的。"經过六、七代之后,在大多数場合中都可以得到所希冀的結果,即便在那时也可以預料到偶然返祖或不能保純的情形还会发生。然而,生活条件如果对于任何一亲的性状决定性地不适宜,那末这种努力肯定将是白鹭的60。

¹⁾ 馴化学会会报,1862年,第九卷,第463頁。关于其他例子,参閱摩尔和加約的論牛,1860年,第32頁。

²⁾ 家禽記录,第二卷, 1854年, 第36頁。

³⁾ 家鷚之書,推葛梅尔著,1866年,第58頁。

⁴⁾ 艺园 看記录, 1852年, 第765頁。

⁵⁾ 斯普納,皇家农学会学报,第二十卷,第二部。

^{*} 传說世界大洪水时諾亞所乘的大船。——譯者

⁶⁾ 参閱珍林的家养动物比較生理学(Traité de Phys. Comp. des Animaux Domestiques), 第二卷, 第536 頁, 在鄂敦对于这个問題作了充分的討論。

杂种动物的第二代以及此后的世代虽然一般是极度容易变化的,但对于杂交族 和杂交种来說,已經观察到一些引人注意的例外。例如包依塔和考尔比1) 断言,从突 胸鴿和侏儒鴿的杂交中"可以出現卡威利尔(Cavalier)鴿,我們已經把它列入鴿的純粹 族之中,因为它把它的所有性質都传給了它的后代"。家禽記录的編者1)从一只黑色 公西班牙鷄和母馬来鷄育成了一些浅蓝色的鷄;並且它們"--代又一代"地純粹地保 持了这种顏色。 强的喜馬拉雅品种肯定是从銀灰兔的两个亚变种的杂变而形成的; 虽然它突然呈現了現在这样的同任何一亲都大不相同的性状,但自此以后它是容易 地而且純粹地被繁殖下来了。 我使腊布拉多鴨同企鵝鴨杂交过,並且使它們的杂种 同企鵝鴨再进行杂交:在以后三代中育成的大多数鴨子在性状上都是接近一致的,旱 褐色,胸的下部具有一个新月形的白斑,喙的基部具有一些白点; 所以借着一点选择 的帮助,一个新品种可能是容易形成的。关于植物的杂交变种,比东先生說³⁾,"梅維 尔 (Melville) 在苏格兰羽衣甘蓝和早熟甘蓝之間所得到的杂种,其純粹和真实同記載 中的任何杂种都是一样的;不过在这个場合中无疑进行过选择。 該特納 會举出过 五个有关杂种的例子,它們的后代都是保持不变的;阿迈利亚石竹(Dianthus armeria) 和少女石竹(deltoides) 之間的杂种保持純粹和一致竟达到第十代。赫伯特博士也會 告訴过我有一个刺蓮花屬的两个物种之間的杂种,它从最初育成起,在若干代中都保 持不变。

我們在第一章里已經看到几个种类的狗几乎肯定是从一个以上的物种传下来的,牛、猪以及一些其他家养动物也是如此。因此,在現今的族的形成上,原始不同的物种的杂交大概在初期就发生作用了。根据卢特梅耶的观察,牛也发生过这种情形;不过在大多数場合中,一个类型大概会吸收和消灭另一个类型,因为半开化人恐怕不可能苦心孤詣地借着选择去改变他們的混合的、杂交的和彷徨不定的家畜。 尽管如此,那些最善于适应生活条件的动物大概通过自然选择而生存下来了;通过这种途徑,杂交在原始家养品种的形成上可能常常起了間接帮助的作用。在近代,专就动物来說,不同物种的杂交对于族的形成或改变,並沒有起过多大作用,或者沒有起过作用。現在还不知道最近在法国进行杂交的几个蚕的物种会不会产生永久的族。关于能夠用芽和插条来繁殖的植物,杂交工作已經創造了奇蹟,例如对于許多种类的舊

¹⁾ 館,第37頁。

²⁾ 第一卷, 1854年第101頁。

³⁾ 家庭艺园者, 1856年, 第110頁。

⁴⁾ 杂种的形成,553 頁。

意、杜鵑、天竺葵、荷包花以及撞羽朝顏,就是如此。几乎所有这等植物都能用种子来 繁殖,其中大部分可以随意地这样进行繁殖;但只有极少数这等植物或者沒有一种这 等植物可以通过种子繁殖而保持純粹。

有些作者相信杂变是变異性——即絕对新的性状的出現——的主要原因。有些人甚至到了这样的地步,竟認为它是唯一的原因;但是在討論"芽变"那一章中所举出的事实証明了这个結論是錯誤的。关于在任何一亲或在它們的祖先中並不存在的性状屡屡从杂交发生的那种信念是可疑的;它們偶尔如此是可能的,不过在将来 討論"变異性"的原因那一章中来談这个問題将更加方便。

这一章和以下三章的压縮的提要,以及有关"杂种性質"的一些意見,将在第十九章中提及。

第十六章 **干涉变种自由杂交的原因—— 家养对于能育性的影响**

判断变种杂交时的能育性的困难——保持变种区别的各种原因,例如繁育和性选择的期間——杂交时据說不稳的小麦变种——玉蜀黍、毛蕊花、蜀葵、胡芦、甜瓜以及烟草的一些变种在某种程度上变得相互不稳——家养消除了物种杂交时自然具有的 不育 傾向——未杂交的动物和植物由于飼养和栽培而增大了能育性。

动物和植物的家养族当杂变时,除了极少的例外,都是十分多产的——在某些场合里甚至比其純系的双亲更加多产。同样地,从这等杂变中产生出来的后代,象我們在下一章里就要看到的那样,一般也比他們的双亲更具活力並且更加能育。相反地,物种当杂交时却几乎不可避免地在某种程度上是不育的,而且它們的杂种后代也是如此;在这里,族和物种之間似乎存在有一种广大而无法排除的区别。这个問題显然是重要的,因为它同物种的起源有关;以后我們还要进行討論。

不幸的是,对于动物和植物的变种間杂种在若干連續世代中的能**育性所作的精**确观察非常之少。<u>物洛加博士¹⁾曾指出,沒有一个人看到过</u>,例如,变种間杂种狗当相互交配时是否无限能育;然而,当自然的类型相杂交时,如果根据仔細的观察发现其后代有一点不育性的影子,那末就会認为它們的物种区别得到了証明。但是,綿羊、牛、猪、狗以及家禽的如此众多的品种以各种方式进行了杂交和再杂交,所以任何不育性如果是存在的話,几乎肯定都会被观察到,因为不育性是有害的。在研究杂交变种的时候,有許多疑問发生。无論什么时候,只要<u>开洛依德</u>、特别是数計过每一个确中的种子精确数的<u>这特纳</u>发现了不管怎样近似的两种植物之間存在有一点不育性的痕跡时,这两个类型立刻就会被分类为不同的物种;如果遵循这个法则,那末肯定永遠不会証明变种当杂交时有任何程度的不育性。在此之前,我們已經看到狗的某些品种不容易交配,不过关于它們交配时是否会产生充分数目的仔狗,並且仔狗互相杂交时是否完全能育,並沒有进行过观察;但是,假定发现存在有某种程度的不育性的話,博物学者們大概会簡单地推論这些品种是从原始不同的物种传下来的;这种解释是否正确,几乎无法确定。

塞勃来特 • 班塔姆鷄在生产力上比任何品种都差得多, 它起源于两个很不相同

¹⁾ 生理学学报,第二卷, 1859年,第385頁。

的物种之間的杂交并且同第三个亚变种进行了再杂交。 但是,如果推論它的能育性 的損失同它的杂交起源有任何关联,那就未免太輕率了,因为更加可能的是,这种損 失或者可以归因于长期不断的近亲杂交,或者可以归因于同缺少頸羽和鐮刀状尾羽 相关的不育性的內在傾向。

关于有些必須被分类为变种的类型当杂交时有某种程度的不育性,我将举出少数見諸記載的例子,在此之前我願先說一說有时干涉变种自由杂交的其他原因。譬如說,它們象狗和鷄的某些种类那样,可能在大小上有非常巨大的差異:例如,园艺学报的編者說¹⁾,他能把班塔姆鷄和大形品种养在一起,而不致有多大的杂交危险,但不能和小形品种(如斗鷄、汉堡鷄等)养在一起。关于植物,开花期的差異可以保持变种的区别,玉蜀黍和小麦的各个种类就是如此:例如,考特尔上校說²⁾,"特拉威拉小麦(Talavera wheat)的开花期比任何其他种类都早得多,因此它肯定可以繼續保持它的純度。"在福克兰羣島的不同地方,牛分裂成不同顏色的羣;苏利文爵士告訴我說,在那里,高地的牛一般都是白色的,这种牛的繁育要比低地的牛早三个月;这对防止这两种牛羣不相混合显然有所帮助。

某些家养族似乎欢喜同它們的种类杂交;这一事实具有某种重要性,因为这是走向本能的情感的一个步驟,这种情感帮助密切近似的物种在自然状况下保持了它們的区別。我們現在有丰富的証据可以証明:如果不是为了这种情感,自然产生的杂种大概会比在这种場合中为多。我們在第一章里已經看到墨西哥的阿魯考(Alco)狗不喜欢同其他狗的品种杂交;巴拉圭的无毛狗同欧洲狗杂交不象欧洲狗彼此之間的杂变那样容易。在德国,据說雌尖耳狗同其他种类的狗杂交不象同狐杂交那样容易;母澳洲野狗在英格兰吸引野生的雄狐。但是,在各个品种的性本能及其吸引力方面所表現的这等差異,可能完全由于它們是从不同物种传下来的原故。在巴拉圭,馬有很大的自由,一位优秀的观察者³ 相信,同样颜色和同等大小的馬喜欢彼此結合,从音得勒・里俄斯(Entre Rios)和东方班达(Banda Oriental)輸入到巴拉圭的馬同样也是喜欢彼此結合的。塞加西亚(Circassia)有六个不同名的馬的亚族;当地的一个地主断言⁴,在这等族中有三个族当自由地生活时,几乎总是拒絕混居和杂交,甚至还要彼此攻击。

^{1) 12}月,1863年,第484頁。

²⁾ 小麦的变种,第66頁。

³⁾ 倫格,巴拉圭的哺乳动物,第336頁。

⁴⁾ 参閱列尔貝特 (MM. Lherbette) 和得夸重费什的报告,見馴化学会会报,第八卷,7月,1861年,第312頁。

已經观察到,在养有重型林肯郡綿羊和輕型諾福克綿羊的一处地方,这两个种类 虽然在一起飼养,但当放出去的时候,"用不了多大时候就会完全分开了";林肯郡綿 羊走向肥沃的土壤,諾福克綿羊則走向它們自己的干燥輕土壤;並且当那里还生长着 充分的草的时候,"这两个品种区别得就象白嘴鴉和鴿那样地分明"。在这种場合里,不 同的生活习性有保持各族的区别的倾向。 非罗羣島中有一个島屿,其直徑不超过华 哩,据說那里的半野生土著黑綿羊同引进的白色綿羊不容易混居在一起。 更加引人 注意的一个事实是,晚近起源的半畸形安康羊"据知当同其他绵羊放入到同一个围栏 中时,它們就会离开其他羊而自己聚集在一起"1)。关于在半家养状态下生活的黇鹿, (fallow deer)本內特說2),深色的和浅色的羣在"副主教森林"(Forest of Dean),在"高 收場森林"(High Meadow Woods),在"新森林"(New Forest)曾經长期地受到飼养,但 从来不知道它們有混血的情形: 还可以补充一点, 深色的鹿据信是詹姆斯一世 (James I) 最初从挪威引进的,因为它們有較大的耐寒性。 我从波托·桑托島輸入两只野化 冤,象在第四章已經描述过的那样,它們同普通冤有所不同;这两只冤被証明都是雄 性的,虽然,它們在"动物园"里生活了数年,該园管理人巴列特先生努力使它們和不 同的馴化种类交配繁育,但都失敗了;不过这种拒絕交配繁育究竟是由于本能的任何 变化还是簡单地由于它們的极端野性、或者是不是象往往发生的那样、拘禁招致了不 育性、还无法决定。

为了試驗,我會使許多最不相同的鴿的品种进行交配,我屡屡看到它們虽然忠実于結婚誓約,但还保有追求自己种类的慾望。因此我曾請教<u>威金先生</u>,他在英国的把各个品种飼在一起的鴿羣比任何人的都大,我問他,假定有足夠数量的雄鴿和雌鴿,他是否認为它們願意同自己的种类交配;他毫不犹豫地答道,事实确系如此。人們已經常常注意到,鵓鴿似乎确是討厌若干玩賞品种的³⁾;但所有它們肯定都是从一个共同祖先发源的。福克斯牧师告訴我說,他的白色的和普通的中国鵝罩是界限分明的。

这些事实和敍述,虽然其中有些还不能得到証实,却完全是以富有經驗的观察者的意見为依据的,它們闡明了,某些家养族由于不同的生活习性被引导着保持着一定程度的区別,並且还有一些家养族象自然状况下的物种那样地喜欢同它們自己的种类交配,虽然其程度遠遠为輕。

¹⁾ 关于蓝福克羊,参閱馬歇尔的諾福克的农村經济,第二卷,第136頁。参閱兰特 (L. Landt) 的非罗記述, 第66頁。关于安康羊,参閱皇家学会会报,1813年,第90頁。

²⁾ 怀特的賽尔波恩的博物学 (Nat. Hist. of Selborne),本內特編,第39頁。关于深色的處,参閱英國應圈 記 (Some Account of English Deer Parks),希尔雷 (E. P. Shirley)先生著。

³⁾ 熟鵠, 秋克进牧师著,第155頁; 貝西斯坦, 德国的博物学, 第四卷, 1795年, 第17頁。

关于由家养族的杂交而引起的不育,在动物的場合中我知道沒有一个十分确定的例子。鉴于 偽、鷄、猪、狗等的一些品种之間在构造上的重大差异,这个事实同許多密切近似的自然物种的杂 交不育对服起来看,是特殊的,但我們以后将試图闡明,它并不象最初看来那样特殊。 現在同想一下以下的情形可能是有好处的:两个物种之間的外在差異量对于断定他們能否在一起杂交繁育 並不是一个安全的指針——某些密切近似的物种当杂交时是完全不育的,而其他一些极不相似的物种却是适度能育的。我已經說过,沒有一个关于杂交族的不育性的例子是建筑在令人滿意的証据之上的;不过这里有一个最初看来似乎可以信賴的例子。 最高权威尤亚特10先生說,以前在兰开郡长角牛和短角牛屡屡进行杂交;第一次杂交是极好的,但其生产力並不可靠;第三代或第四代母牛产乳不好;"此外母牛能否受孕非常不可靠;在某些这等半杂种中足有三分之一的母牛是不育的"。最初看来这似乎是一个好例子:但是威金逊(Wilkinson)先生說20,从同样的杂交中产生出来的一个品种在英国的另一地方确实是固定下来了;如果它缺少能育性,这个事实肯定会被注意到。再者,假定尤亚特先生证实了他的例子,那末大概可以这样争論:这种不育性完全是由于两个亲品种从原始不同的物种传下来的原故。

关于植物,該特納說,他會用紅子高玉蜀黍的花粉使黃子矮玉蜀黍的十三个穗受精(其后又有九个)³);只有一个产生了好种子,但仅有五粒。这等植物是雌雄同株的,所以不需要去势,但是,如果不是該特納明确地說过他把这两个变种栽培在一起已有許多年了,并且它們並不自然地杂交,我会怀疑在对它們进行处理时发生了某种意外的事情;鉴于这等植物是雌雄同株的并且有丰富的花粉,众所熟知它們一般是自由杂交的,所以上述这种情形只有根据这两个变种相互之間有某种程度的不稔性的信念似乎才可以得到解释。从上述五粒种子培育出来的杂种植株具有中間构造,极端容易变异,并且完全能育⁴)。同样地,喜尔特勃兰教授⁵)却沒有能够成功地用某一黄子种类的花粉使一个褐子植株的雌花受精;虽然同一植株的其他花以自己的花粉受了精并且产生了良好的种子。我相信甚至沒有人会怀疑这等玉蜀黍的变种是不同的物种;但杂种如果有一点不育性,毫无疑問,該特納立刻会把它們分类为不同的物种的。这里我願提一下,关于确定的物种,在第一次杂交的不育性和杂种后代的不育性之間並不一定有任何密切的关联。有些物种可以容易地杂交,但产生了完全不育的杂种;其他一些物种的杂交极端困难,但产生出来的杂种却是适度能育的。但是,我还不知道有任何一个例于同这个玉蜀黍的例子十分相象,即第一次杂交是困难的,但产生出来的杂种却是完全能育的⑤。

下述的例子更加值得注意,並且显然使該特納感到困惑,他的强烈願望是在物种和变种之間 划一条明显的線。关于毛蕊花屬,他在十八年間作了大量的試驗,杂交了不下 1085 杂花,同时数計 了它們的种子。 有許多試驗是使高加索毛蕊花 (Verbascum lychnitis) 和北亞毛蕊花 (此外还有九 个物种及其杂种) 的白花变种和黄花变种相杂交。 誰也沒有怀疑过,这两个物种的白花植株和黄 花植株是真正的变种;实际上,該特納在这两个物种的場合中都會从这一个变种的种子培育出那一 个变种。他在他的两种著作中⁷⁾明确地断言,同色花之間的杂交比异色花之間的杂交可以產生更多

¹⁾ 論牛,第202頁。

²⁾ 威金逊,对塞勃来特爵士的意見 (Remarks addressed to Sir Sebright), 1820年,第38頁。

³⁾ 杂种的形成,第87,169頁。再参閱卷尾的表。

⁴⁾ 杂种的形成,第87,577 頁。

⁵⁾ 植物学新报, 1868年, 第327頁。

⁶⁾ 希瑞夫先生以前以为(艺园者和录,1858年,第771頁)从某些小麥变种之間的杂交产生出来的后代,到第四代就变成不稔的了;但他現在承認这是一个錯誤(谷类的改良,Improvement of the Cereals, 1873年)。

⁷⁾ 化石馬的知識,第137頁;杂种的形成,第92頁,181頁。关于从种子培育这两个变种,参閱第307頁。

的种子;所以任何一个物种的黄花变种用它自己种类的花粉来交配比用白花变种的花粉来交配可以产生更多的种子(相反地白花变种也是如此);不同颜色的物种杂交时也是如此。在他著作的卷足的一张表中列举了一般結果。关于一个事例,他敍述了如下的詳細情形¹⁾;但我必须先提一下,該特納为了避免誇大他的杂交中的不育程度,他总是用从杂交得到的最高数同純系母本植株所自然給予的平均数相比較。高加索毛蕊花的白花变种当用自己的花粉来自然地受精时,平均 12个薄有 96 粒良好种子;而用同一物种的黄花变种的花粉来使白花变种的 20 杂花受精时,其最高数只有 89 粒良好种子;所以按照該特納的普通算法,其比例是 1000 比 908。 我會以为能育性如此微小的差异可能用强迫去势的恶劣影响得到解释;但該特納指出,高加索毛蕊花的白花变种如果先由北亞毛蕊花的白花变种来授精,然后再由这个物种的黄花变种来受精,所产生的种子的比例为 622 比 438;在这两种場合中都會施行过去势。那末,由同一物种的不同颜色的变种相杂交所发生的不育性和在不同物种相杂交的許多場合中所發生的不育性是同样的大。不幸的是,該特納只比較了第一次結合的結果,而关于由北亞毛蕊花的白花变种和黄花变种来授精的高加索毛蕊花的白花变种所产生的两組杂种的不育性,并沒有进行比較,因为它們在这一点上可能有所不同。

司各脫先生把他在"爱丁堡植物园"做的一系列有关毛蕊花試驗的結果都給我了2)。他會就 不同的物种重复了一些該特納的試驗,但所得到的結果是不肯定的,有些結果同該特納的結果是 一致的,有些結果則是相反的;尽管如此,要推翻該特納从大量試驗中所得出的結論,这些結果似 乎还不够充分。 司各脫先生还就同一物种的同色变种和異色变种之間在結合上的比較能育 性作 了試驗。例如他用高加索毛蕊花黃花变种的花粉使它自己的六杂花受精,得到了六个两;为了进行 比較,他把各个蒴中的良好种子的平均数作为100,他发現同一黃花变种,如果由白花变种来授精, 产生出来的七个蒴平均有 94 粒种子。 根据同一原則,高加索毛蕊花的白花变种用它自己的花粉 来授精(六个蒴) 并且用黄花变种的花粉来授精(八个蒴),产生出来的种子在比例上為100比 94。 最后, 北亞毛蕊花的白花变种用它自己的花粉来授精 (八个蒴) 并且用黄花变种的花粉来授 精(五个蒴),产生出来的种子在比例上为100比79。所以在每一个場合中,同一物种的同色变种 的結合比異色变种的結合更加能育;如果把所有例子都汇集在一起,能育性之差为100对86。还作 过一些补充的試驗,36个同色的結合产生了35个良好的蒴;而35个异色的結合只产生了26个良 好的蒴。除了上述的試驗以外,还使紫花的費尼毛蕊花(V. phaeniceum)和同一物种的薔薇色变 种和白色变种进行杂交;这两个变种彼此也进行了杂交,这几个結合所产生的种子比费尼毛蕊花 由自己花粉来投精所产生的种子为少。因此,根据司各股先生的試驗可以知道:在毛蕊花屬中,同 一物种的同色变种和异色变种当杂交时,其行为同密切近似的、但不相同的物种是相象的3)。

¹⁾ 杂种的形成, 第216 頁。

²⁾ 这些結果以后曾发表于孟加拉亚細亚学会会报,1867年,第145頁。

³⁾下列事实发表于开洛依德的第三撬鑷,第 34,39 頁,最初看来这些事实似乎強有力地証实了司各股先生和該特納的敍達; 而它們在某种范围內确实作到了这一点。 开洛依德根据无数的观察断骨,昆虫不断地把花粉从毛蕊花的这一物种和变种帶到另一物种和变种; 並且我能証实这种断胃; 然而他发现高加索毛蕊花的白花变种和黄花变种常常混淆地野生在一起: 再者,他在他的花园中把这两个变种大量地栽培了四代,并且它們可以由种子保持它們的稳度; 不过当他使它們杂交时,它們产生出来的花具有中間的色調。 因此,可以这样設想:这两个变种对于自己变种的花粉比对于其他变种的花粉具有更强的选择紊和力(elective affinity);我可以楠充疏,各个物种对于自己花粉的这种选择紊和力是一个完全被确定下来的事实(开洛依德,第三續編,第 39 頁,並且散見于該特納的杂种的形成。 但是,上述事实的力量由于該特納的无效試驗而被大大地減弱了,因为,不同于开洛依德,他用毛蕊花的黄花变种和白花变种进行杂交时,一次也沒有得到过中間色調(杂种的形成,第 307 頁)。 所以白花变种和黄花变种由种子保持它們的种度这一事实並未延实它們沒有由昆虫带来带去的花粉而相互受精。

同色变种的性亲和力的这种显著事实,像該特納和司各股先生所观察的那样,並非很少发生;因为其他人还沒有注意过这个問題。下面的例子值得一提,它部分地闡明了避免錯誤是多么困难。赫伯特博士1)會指出,蜀葵的各种颜色的二重变种(double variety)可以准确地从那些靠近生长的植株的种子培育出来。我听說那些培育种子来出售的艺园者們并不把他們的植物分开栽培;因此我得到了十八个已被命名的变种的种子;其中有十一个变种产生了六十二个植株,所有都同它們的种类完全一致;还有七个变种产生了四十九个植株,一半同它們的种类一致,一半不一致。堪特尔巴利的馬斯特先生向我說过一个更加显著的例子;他从一片栽培有二十四个已被命名的变种的大苗床上采集种子,这些变种都栽培在密切隣接的行中,每一个变种都能纯粹地繁殖自己,只是有时在色調上微現不同。 丰富的蜀葵花粉在同一杂花的柱头准备接受它們之前就已經成熟而几乎完全脱落了2); 因为沾着花粉的蜜蜂不断地从这一植株飞到那一植株,所以隣接的变种好象难逃杂交。但这种情形並沒有发生,因此在我看来,各个变种的花粉对于自己的柱头恐怕比所有其他变种的花粉佔有优势,不过关于这一点我还沒有証据。斯劳(Slough)的特納尔先生由于能够成功地栽培这种植物而聞名,他告訴我說,这种花的重瓣阻止了蜜蜂去接近花粉和柱头;他并且发現,甚至人工地使它們进行杂交也有困难。 这一解释是否可以充分說明亲緣密切的变种能够非常純粹地用种子来繁殖它們自己,我不知道。

以下的例子值得一提,因为它們同雌雄同株的类型有关,这些类型并不需要去势,因而不会受到去势的害处。 吉鲁·得别沙連格杂交了三个由他命名的葫蘆变种³⁾,並且断言它們相互受精的困难按照它們所表現的差异而增加。我晓得关于这一类羣的类型,至到最近还知道的非常不完全;但按照它們的相互能育性对它們进行分类的薩哥瑞特⁴⁾ 却認为上述三个类型是变种,而且更高的权威諾丹⁵⁾也有这种看法。薩哥瑞特⁶⁾ 曾經观察到,某些甜瓜,不論其原因是什么,比其他甜瓜有更大的保純的傾向;对于这一类羣有如此丰富經驗的諾丹告訴我說,他相信某些变种比同一物种的其他变种能够更加容易地相互杂交;但他沒有証实这一結論的正确性;在巴黎附近,花粉的屡屡敗育(abortion)是一个大困难。 尽管如此,他曾在七年間把西瓜屬的某些类型密切接近地栽培在一起,因为可以完全容易地使它們进行人工杂交并且产生能育的后代,所以把它們分类为变种;但当不人工地进行杂交时,这些类型是可以保純的。另一方面,同一类羣的其他变种可以如此容易地进行杂交,象諾丹所反复主張的那样,以致不把它們隔离得很远來栽培,它們一点也不能保純。

另一个例子虽稍有不同,但可以在这里提一下,因为它是高度值得注意的,并且被优秀的证据所证实了。 开洛依德詳細地描述过五个普通烟草的变种⁷⁾,它們相互杂交,其后代具有中間的性状,并且同它們的亲本一样地能育; 开洛依德根据这个事实推論它們是真正的变种;而且就我所知道的来說,沒有人似乎怀疑过事实确係如此。 他还用粘性烟草 (N. glutinosa) 同这五个变种相互地杂交,并且产生了很不育的杂种;但由多年生变种(var. gerennis) 培育出来的那些后代,不論把前

¹⁾ 石蒜科, 1837年, 第366頁。 該特納作过相似的試驗。

²⁾ 开洛依德第一次观察了这一事实,圣彼得堡科学院院报,第三卷,第127頁。 再参閱斯普兰格尔,被发现之秘密 (Das Entdeckte Geheimniss),第345頁。

³⁾ 即 Barbarines, Pastissons, Giraumous: 見自然科学年报,第三十卷, 1833 年,第 398 和 405 頁。

⁴⁾ 葫蘆科植物紀要, 1826年, 第46,55頁。

⁵⁾ 自然科学年报,第四輯,第六卷。諾丹認为这些类型无疑地是西葫蘆 (Cucurbita-pepo) 的变种。

⁶⁾ 葫蘆科植物紀要,第8頁。

⁷⁾ 第二續編 (Zweite Forts),第53 頁,这五个变种是: (1) Nicotiand major vulgaris; (2) perennis; (3) transylvanica; (4) 最后一个变种的亚变种; (5) major latifol. fl. alb.

者用作父本或母本,都不象由其他四个变种产生出来的杂种那样不育¹⁾。 所以这一个变种的性的能力在某种程度上肯定地改变了,以致接近了粘性烟草的性質²⁾。

有关植物的这些事实闡明了,在少数場合中某些变种的性能力已經改变到如此 地步,以致它們比同一物种的其他变种更难杂交並且产生更少的种子。 我們即将看 到,大多数动物和植物的性机能显著容易地受到它們所暴露于其中的生活条件的影响;此后我們将大略地討論一下这一事实以及其他事实同杂交变种和杂交物种在能 育性方面的差異有什么关系。

家养消除了物种当杂交时一般具有的不育傾向

最初提出这个假說的是帕拉斯³⁾,还有几位作者也采納了这一假說。 我簡直沒有找到任何可以支持这一假說的直接事实;但不幸的是,无論在植物或动物場合中,沒有一个人对于古代家养变种和不同物种杂交的能育性同野生亲种同样地杂交的能育性进行过比較。例如,沒有一个人对于原鷄和原鷄屬或雉屬的不同物种杂交的能育性更行过比較;这样的試驗在所有性同家鷄和原鷄屬或雉屬的不同物种杂交的能育性进行过比較;这样的試驗在所有場合中大概都会被許多难点环繞着。曾經如此細密地研究过古典文献的丟魯·得拉瑪尔說³,在罗馬时代,普通騾的繁殖比今日为难;但这一敍述是否可信,我不知道。哥罗兰得(M. Groenland)⁵⁾举出过一个例子,虽稍有不同,但重要到多,即阿季洛卜斯

³⁾ 圣彼得堡科学院院报, 1780年, 第二部, 第84, 100頁。

⁴⁾ 自然科学年报,第二十一卷,(第一輯),第61.頁。

⁵⁾ 法国植物学会会报, 12 月 27 日, 1861 年, 第八卷, 第 612 頁。

草(山羊草, Aegilops)和小麦之間的杂种以具有中間性状和不稔性而聞名,而这种植物自从1857年以来在栽培下一直存續下来了,在每一代中它的能育性都有迅速的、但程度不同的增大。到了第四代,这种植物还保持它們的中間性状,但其能育性却变得同普通栽培小麦一样了。

有利于帕拉斯学說的間接証据在我看来是極其強有力的。我在以前几章中已經關明,我們的狗的各个不同品种是从几个野生种传下来的;綿羊恐怕也是如此。印度瘤牛、即有背峯的印度牛,屬于一个不同于欧洲牛的物种;进一步說,欧洲牛是从两个可以叫作物种或族的类型传下来的。我們有良好的証据可以証明我們的家猪至少屬于两个物种型,即野猪(S. Scrofa)和印度野猪(S. indicus)。現在,一种广泛扩大了的比論引致了如下的信念:如果这几个物种在最初馴化的时候进行杂交,它們在第一次結合以及在其雜种后代中大概会表現有某种程度的不育性。 尽管如此,从它們传下来的若干家养族,就我們所能确定地来說,現在都是完全能育的。如果这一推論可以信賴而且显然是正确的話,那末我們必須承認帕拉斯的学說:长期繼續的家养有消灭物种在原始状态下杂交时所自然具有的不育傾向。

由家养和栽培所引起的能育性的增大

关于同杂交沒有任何关系而是由家养所引起的能育性可以大略地在这里考察一下。这个問題在同生物变化有連系的几点上間接地有关系。象很早以前布丰曾經說过¹⁾的那样,家养动物比同一物种的野生动物在一年之中繁育的次数为多,而且在一胎中所产的仔数也为多;它們有时还在更早的年龄中生育。如果不是一些作者最近試图闡明能育性的增大或降低同食物量成反比例的話,这个例子几乎不值得进一步加以注意。这个奇怪学說的发生,显然是由于个体动物在得到異常大量食物的供給时以及許多种类的植物在生于过份肥沃的土壤中时变成为不育的了:不过关于后一点,不久我还有机会来談一談。几乎沒有一个例外:长期慣于規則而丰富的食物供給並且不需劳力去尋找食物的家养动物总是比相应的野生动物更加能育。众所周知,貓和狗的繁育次数是多么多,而且在一胎中所产的仔数又是多么多。据說野生冤(wild rabbit)一般地每年繁育四次,並且每次所产的小兔最多是六只;馴冤(tame rabbit)每年繁育六、七次,每次所产的小兔从四只到十一只;哈利逊·威尔先生告訴过我一个例

¹⁾ 小圣喜来尔引用,普通博物学,第三卷,第 476 頁。 这个原稿送往印刷之后,在赫伯特·斯賓塞的生物学原理(第二卷,1867年,第 457 頁以次)中出現了关于这一問題的充分討論。

子:一次所产的小兔竟有十八只之多,而且全都活了。雪貂(ferret)一般虽然受到了如此严密的拘禁,却比它的假想野生原型更加多产。母野猪显著是多产的;它常常每年繁育两次,每次所产的小猪从四只到八只,有时甚至到十二只;但母家猪規則地每年繁育两次,如果允許的話,繁育次数还可以更多一些;每次产仔少于八只的母猪"很少值得注意,对于屠戶来說,它肥得愈快愈好。"食物的量对于同一个体的能育性有影响:例如,在山上生活的綿羊每次所产的羊羔决不會多於一只,如果在低地牧場中放牧它們,常常產生兩只羊羔。这种差異显然不是由于高地的寒冷,因为綿羊和其他家养动物据說在拉伯兰(Lapland)是极其多产的。困难的生活也可以延迟动物的受孕期;因为已經发現,在苏格兰的北方諸島讓牛在四岁以前产仔是不利的10。

关于由家养引起能育性的增大,鳥类提供了更好的証据: 野生原鷄的母鷄产六个到 10 个卵,这个数目同家鷄相比是毫不足道的。 野鴨产五个到 10 个卵; 馴鴨在一年中可产八十个到一百个卵。 野生灰腿鴉产五个到八个卵; 馴鴉产十三个到十八个卵,並且它还产第二次卵;象狄克逊先生散过的那样,"高度丰富的铜料、細心的管理以及适当的温度可以誘发多产的习性,这种习性多少是遗传的"。 华家养的籍鴿是否比野生岩鴿更加能育,我不知道;但更加彻底家养的品种的能育性几乎相当于鵓鴿的能育性的两倍; 然而,如果把鵓鴿养在範中並且給以高度丰富的铜料,它的能育性就会变得同家鴿的能育性一样。 我听審判官凱頓 (Caton) 說,美国的野生吐綬鷄在一岁的时候不产卵,而家养的吐綬鷄在一岁的时候一定产卵。 根据一些記載,在家养的鳥类中只有孔雀当在它的原产地印度野生的时候比它在歐洲的寒冷得多的气候中更加能育²)。

关于植物,大概沒有一个人会期望小麦在瘠薄的土壤中比在肥沃的土壤中分**糜較多而且每一**个穗結生子粒較多;也不会期望豌豆和大豆在瘠薄土壤中可以获得丰收。 种子的数量有如此重大的变异,以致难于对它們进行估計;但是,在一个苗圃中如果对胡蘿卜和野生植株进行比較,前者似乎可以多產两倍左右的种子。栽培甘藍比原产于南威尔斯岩石間的野生甘藍按照計算可以多产三倍的蒴。栽培天門冬(Asparagus)同野生植株相比較,前者产生的浆果多得非常。毫无疑問,許多高度栽培的植物,如梨、风梨、香蕉、甘蔗等,几乎或者完全是不稔的:我以为这种不稳性可以归因于

¹⁾ 关于麵和物等,参閱伯林格里,自然科学年报,第二轉,动物部分,第十二卷,第 155 頁。 关于雲貂,参閱 貝四斯坦,德国的博物学,第一卷,1801 年,第 786,795 頁。 关于苑,同前書,第 1123,1131 頁;以及勃定 的自然史,第二卷,第 99 頁。关于山地的綿羊,同前書,第 102 頁。 关于母野猪的能育性,参閱貝四斯坦 的德国的博物学,第一卷,1801 年,第 534 頁;关于家猪,参閱尤亚特論猪,四得內版,1860 年,第 62 頁。 关于拉伯兰,参閱阿塞比 (Acerbi) 的北角旅行配 (Travels to the North Cape),英譯本,第二卷,第222 頁,关于高地的牛,参閱赫文論羊,第 263 頁。

²⁾ 关于原籍的卵,参閱物里斯,博物学年报,第二輯,第一卷,1848年,第456頁。 关于野鴨和馴鴨,麥克季利夫雷,英国的鳥类,第五卷,第37頁;鴨 (Die Enten),第87頁。关于野鴨,洛伊得,斯堪底那維亚探險配,第二卷,1854年,第413頁;关于馴鴨,观賞的家禽,狄克逊牧师者,第139頁。 关于鸽的育种,皮斯特,鴿的飼育,1831年,第46頁;包依塔和考尔比,鴿,第158頁。 关于孔雀,按照得明克的材料(鴿的普通博物学,1813年,第26,第41頁),雖孔雀在印度甚至可以下二十个卵;但按照季尔顿和另一位作者的材料(在推荔梅尔的家鷄之書中引用,1866年,第280,282頁),她在那里只产四个到九个或十个卵:揭家雞之書所載,据說她在英国产五个到六个卵,但另一位作者說,产八个到十二个卵。

过剩的食物以及其他不自然的条件;不过以后我还要談到这个問題。

在一些場合中,例如在猪、冤等以及由于种子而受到重視的那些植物的場合中,对于更能育的个体的直接选择,恐怕大大地增強了它們的能育性;在所有場合中,这种情形可能是間接地发生的,因为从更能育的个体产生出来的无数后代中有些获得了被保存下来的更良好机会。但是,关于貓、雪貂和狗,以及关于象胡蘿卜、甘蓝和天門冬那样的非以多产性而受到重視的植物,选择只能起从屬的作用;而且它們的增大了的能育性必須归因于它們长期生活于其中的更有利的生活条件。

第十七章 **論杂交的良好效果以及** 近亲交配的恶劣效果

对于異族同一变种的个体之間的一次偶然杂变或不同变种之間的一次偶然杂变 所发生的体質增強, 並不象对于过分近亲交配的恶劣效果那样地进行**过大量而屡屡** 的討論。但前一点比后一点更加重要,因为其証据更富有决定性。 把近亲交配的恶 劣結果检查出来是困难的,因为它們是緩慢地积累起来的,並且不同的物种有很大程 度的差異;而由杂交所必然发生的良好影响一开始就是显著的。但应当明确理解:专 就性状的保持来說,近亲交配的利益是无可爭辯的,而且其利益往往胜过体質強壮性 傲小損失的恶劣結果。关于家养,整个这个問題都具有某种重要性,因为近亲交配会 妨碍旧族的改进。因为,它間接地同"杂种性質"(Hybridism)有关系,而且当任何类 型变得如此稀少以致只有少数个体殘存在一个有限制的区域之內吋,它可能同物种 的絕灭有关系,所以是重要的。它以重要的方式同自由杂交的影响有关系,消除个体 差異,因而对于同一族或同一物种的个体給与了性状的一致性;因为強壮和能育性如 果借此而有所提高,那末杂种后代将会增殖並且佔有优势,其最終結果遠比在其他場 合中发生的結果要深刻得多。 最后,这个問題因为同人类有关系,所以是高度有趣 的。因此,我将对这个問題进行充分的討論。 因为可以証明近亲交配的恶劣效果的 事实比有关杂交的良好效果的事实更加丰富,虽然其决定性較小,所以我将从前一类 事实开始。

給杂交下一个定义並不困难;但給"近亲交配"下一个定义决不容易,因为,象我們即将看到的那样,同等程度的近亲交配对于动物的不同物种所发生的影响是不同的。父与女、母与子或者兄弟姐妹之間的交配如果連續进行几代,这是近亲交配最可

能的密切方式了。不过有些判断者,例如塞勃来特爵士,却相信兄妹交配比父女交配更加相近得多,因为,如果父与女交配,据說他只同他自己的一半血統进行杂交。 近亲杂交如果繼續得过久,一般相信,其結果是体积、体質強壮性以及能育性的丧失,有时还伴随着畸形的傾向。最近亲的交配,通常在两代、三代、甚至四代中还不会呈現恶劣的結果;不过有几种原因妨碍我們去检查恶劣的結果——例如,恶化是很逐漸的,把这种直接的恶劣結果同在双亲中可能潛在的或明显存在的任何病态傾向的扩大加以区别是困难的。 另一方面,杂交的利益,甚至当沒有任何很近亲交配的时候,几乎永遠是立刻显著的。 有良好的理由可以相信,分离了少数几代的和处于不同生活条件之下的具有亲緣关系的个体可能抑制或完全阻止近亲交配的恶劣影响,最有經驗的观察者塞勃来特爵士¹¹ 也持有这种意見。 現在許多育种家們都相信这一結論;例如卡尔(Carr) 先生說²¹,这是一个众所週知的事实:"土壤和气候的变化所引起的体質变化,恐怕同注入新血液所引起的体質变化几乎一样大"。我希望在将来的一部著作中来闡明血緣本身並无足輕重,它只是由于一般具有相似体質並且在大多数場合中处于相似条件之下的亲緣相关的有机体而发生作用。

許多人都否認近亲交配会直接产生任何恶劣的結果;但实践的育种家們很少这样否認;而且据我所知,大量育成了迅速繁殖其种类的动物的人决不否認这一点。許多生理学家們把这种恶劣結果完全归因于双亲所共有的病态傾向的結合以及因此而引起的这种傾向的增大;毫无疑問,这是謬誤的有力来源。 不幸的是,大家都十分知道:具有恶劣体質以及疾病的強烈遗传傾向(如果实际上不是疾病的話)的人們和各种家养动物都充分能夠繁殖它們的种类。另一方面,近亲交配却常常引起不育性;这 示明了双亲所共有的病态傾向的扩大完全是另外一回事。即将提出的証据使我相信以下的情形是一个伟大的自然法則,即所有生物同在血統上沒有密切关系的个体偶然进行一次杂交,可以获得利益;相反地,长期不断的近亲交配是有害处的。

各种一般的考察在引导我作出这个結論时发生了巨大的影响;不过讀者可能更加信賴特殊的事实和意見。 有經驗的观察者們的权威意見,甚至在他們沒有提出其信念的根据时,也多少具有一点价值。現在,曾經繁育过許多种类的动物並且曾就这个問題写过文章的几乎所有的人們,例如塞勃来特爵士、安朱·奈特等等3),都最強

¹⁾ 改良品种的技术, 1809年, 第16頁。

²⁾ 基勒比的興起及其发展, 赫茲 (the History of the Rise and Progress of the Killrby, & c. Herds), & 41 百.

³⁾ 关于安朱·奈特,参閱瓦克尔的血族通婚, 1838年,第227頁。 塞勃来特爵士的論文剛才已被引用。

烈地表示相信:长期不断的近亲变配是不可能的。 那些編纂农业著作並且同青种 者有密切变往的人們,例如敏銳的尤亚特、罗武等等,都曾对于同样的效果強有力地 宣佈了他們的意見。 十分信賴 法国权威者的波洛斯浦尔·卢凱斯作出了同样的結 論。 著名的德国农学家赫尔曼·馮那修西亚斯曾就这个問題写过一篇論文,这是我 看到过的最好的論文,他也表示同意;因为将来我势必引用这篇論文,所以我可以說 那修西亚斯不仅精通所有語言的农业著作,比大多数英国人还更熟悉英国品种的譜 系,而且他还輸入許多我們的改良动物,因而他自己就是一个有經驗的育种者。

关于近亲繁殖的恶劣效果,其証据在动物的場合中是最容易得到的,例如類、鴿等等就是如此,这些动物繁殖得快,並且由于养在同一地方,所以是处于同样的条件之下的。現在,我會問过很多这等鳥的育种者,迄今为止,我还沒有遇到过一个人,他不彻底相信和同一亚变种的另一品系偶尔进行杂交是絕对必要的。高度改良鳥或玩賞鳥的大多数育种者們都重視它們自己的品系,他們極不願意使它們杂交,因为他們認为这有恶化的危险。 購买另一品系的第一流鳥要花很多錢,而且这种交易是麻煩的;但据我所能听到的来說,所有育种者們,除了那些为着杂交而在不同地方养有大零鳥类的人們,都被迫經过一个时期之后采取这一步驟。

对于我的思想有巨大影响的另一个一般考察是,关于雌雄同体的动物和植物,可能想象它們永遠是自我受精的,因而长期进行了近亲交配,但据我所能发现的来說,沒有一个物种,其构造可以保証自我受精。相反地,象在第十五章已經大略說过的那样,在許多場合中它們都有一些显著的适应性,以利于或者不可避免地引致同一物种的雌雄同体的个体不时进行一次杂变;据我們所能知道的来說,这等适应的构造对于任何其他目的都是沒有意义的。

关于牛,毫无疑問,长期繼續进行最近亲交配对于外在性状可能是有利的,并且就其体實來脫, 并沒有任何显著的惡劣結果。具克威尔的长角牛的例子常被引用,这种牛长期进行了近亲交配;然 而<u>尤亚特</u>說¹⁾,这个品种"获得了同普通管理不相調和的娇弱体質",而且"这个物种的繁殖并不 永远是有把握的"。但是短角牛提供了一个有关近亲交配的最显著的例子;例如,著名的公牛"笼 儿"(它自己是"福尔佳姆"的半兄妹的後代)同它自己的女儿、孙女以及曾孙女交配;最后一个糖 合所产生出来的后代,即第四代玄孙女,在她的血管中流有"宠儿"的 ¹⁵/₁₆(百分之 93.75)的血液。 这只母牛同公<u>成灵吞</u>牛(Wellington) 交配,在后者的血管中流有"宠儿"的百分之 62.5 的血液, 于是产生了<u>卡拉瑞沙(Clarissa);卡拉瑞沙</u>又同公<u>兰开斯特</u>牛(Lancaster) 交配,在后者的血管中流

¹⁾ 牛,第199頁。

有"宠儿"的百分之 68.75 的血液,于是产生了有价值的后代¹⁾。 侭管如此,育成这等动物的抖且 热烈鼓吹近亲交配的科林一度使他的牛羣同一只"加罗威牛"进行杂交,从这个杂交中产生 出来的一些母牛售价极高。 倍芝的牛羣被看作是世界上最有名的牛羣。 十三年以来,他施行了最近亲的繁殖;但在此后的十七年期間,虽然他对自己的牛的系統的价值非常讚賞,但會三次在他的牛羣中注入新的血液:据說他之所以这样做,并不是为了改进他的动物的类型,而是为了它們的减弱的能育性。像一位著名的飼育者²⁾所說的那样,倍芝先生自己的观点是,"在一个恶劣系统中进行近亲繁殖,其結果是毁灭和恶化;但双亲的亲緣关系如果非常接近而且是从第一流动物传下来的,近亲繁殖就可以在一定的范围内施行。"这样,我們知道在短角牛中曾經进行过最近亲的交配;但那修西亚斯在非常仔細地研究了它們的譜系之后說道,关于一位育种者終身严格施行近亲交配的,他还沒有发現过一个事例。根据这种研究以及他自己的經驗,他作出如下的結論:近亲交配对于改进一个系统来說,是必要的;但是由于不育性和衰弱化的倾向,在实现这个目的时,需要最大的注意。 还可以補充一点:另一位高度权威者³⁾断言,从短角牛产生出來的牛犢比从其他亲緣关系比较疏远的牛的族交配中产生出來的牛犢,更多是残废的。

虽然借着仔細选择最优良的动物(象"自然"根据斗争法則所能有效地作到的那样)近亲交配在牛的場合中可以长期繼續进行,但是几乎任何两个品种之間的杂交的良好效果可以从后代的体积和活力的增大而立刻显示出来;象斯普納先生写信向我說的那样,"不同品种的杂交的确可以为屠户改良牛。"这等杂种动物对于育种者來說当然是沒有价值的;但許多年来在英国的若干地方为了屠宰而飼育了它們句;它們的价值現在已經这样充分地得到承認,以致在肥牛展覽上为了容納它們而单独設一部門。1862年在伊斯林頓(Islington)举行的大展覽会上最肥的牛就是一个杂种。

牛野生牛在英国园囿中恐怕已經飼养了四、五百年,或者甚至还要更长一些,居雷以及其他的人們把这样的牛提出来作为一个例子来說明在同一兽鹭的范围之內长期不断地进行近亲 交 配 并 沒有任何有害的結果。关于奇玲哈姆园囿中的牛,已故的譚克威爵士承認它們是恶劣的种畜5)。总管哈代 (Hardy) 先生估計 (在 1861 年 5 月給我的一封信中),在五十头的一羣中,每年被屠杀的、相斗而亡的以及自行死去的平均数字約为十头,即一对五。 因为牛羣中的增加是按照同样的平均数字,所以每年的增加率一定也是一对五左右。我可以補充地說,公牛之間的斗爭是激烈的,关于

¹⁾ 我举出这一点是根据那修西亞斯的权威著作关于短角牛 (Ueber Shorthorn Rindvich), 1857 年, 第71 頁(再参閱艺园者記录, 1860 年, 第270 頁)。但是一位伟大的牛的飼育家斯陶尔 (J. Storer) 先生告訴我說, 卡拉瑞沙牛的血統还沒有得到充分的确証。在华蓥之書 (Herd Book) 的第一卷里, 卡拉瑞沙牛被配为具有从"宠几"传下来的六代血統, "这是一个明显的錯誤", 在該書的此后版本中她被設成只具有四代血統。斯陶尔先生甚至怀疑这四代血統, 因为沒有母牛的名字被列举出来。再者, 卡拉瑞沙只生过"两头公牛和一头母牛, 而且在下一代中它的后代便絕灭了。关于近亲交配的相似例子見麥克奈特先生和梅登博士合著的一本小册子: 育种的真正原理 (On the true Principles of Breeding), 墨尔本, 澳大利亞, 1865 年。

^{2) &}lt;u>烏得</u>, 艺园者記录, 1855 年, 第 411 頁; 1860 年, 第 270 頁。 **参阅**那修西亞斯的关于短角牛第 72—77 頁中的很明白的表格和諮系。

³⁾ 薬特先生, 皇家农学会学报, 第七卷, 1846年, 第204頁。 道宁先生(一位爱尔兰短角牛的成功育种者) 告訴我說, "短角牛"的大族的育成者們細心地把它們的不育性和体質的亏損隱蔽起来了。他还說, 倍芝先生使他的牛辈进行了数年的近亲交配之后, "在一季中就失去了二十八头牛幢, 这只是因为体 質的 亏损"。

⁴⁾ 尤亞特論牛,第202頁。

⁵⁾ 英国科学协会报告,动物部分 (Report British Assoc., Zoolog. Sect.), 1838 年。

这种斗爭,現在的譚克威爵士會向我作过生动的描述,所以那里永远有最强壮公牛的严格 选择。1855 年我从开密尔顿公爵的总管該得納 (D. Gardner) 先生那里得到了有关兰开郡公爵园囿中的野生牛的如下記載,这个园面的范围約有 200 噸。 牛的数目变化于 65 到 80 头之間;每年被杀害 (我猜測是由于各种原因)的数目为 8 至 10 头;所以每年的增加率几乎不能超过一对六。 南美的牛都是牛野生的,所以提供了一个近乎公平的比较标准,根据亚莎拉的材料,在那里一座牧場中中的自然增加为总数的三分之一到四分之一,即一对三或一对四;毫无疑問,这种情形专门适于可以杀宰作为食用的成年动物。 因此,在同一墅的范围内长期进行近亲交配的半野生英国牛的能育力就相对地小得多了。在象巴拉圭那样沒有被围起的地方,不同牛拿之間多少一定会进行杂交的,虽然如此,甚至那里的居民們还相信从远地不时引进动物对于阻止"体積的縮小和能育性的减弱是必要的"。奇奇哈姆牛和汗密尔顿牛自古以来在体积上的縮小一定是可惊的,因爲卢特梅耶教授曾指出,它們几乎肯定是巨大原牛(Bos primigenius)的后代。毫无疑問,这种体积縮小大部分可以归因于比較不利的生活条件;但是很难認为漫遊于大园囿中的、并且在严冬里得到饲养的动物是处于很不利的条件之下的。

关于綿羊,在同一羣的范围之內會經往往长期不断地进行了近亲交配;但是否象在短角牛的場合中那样屡屡地进行了最近亲交配,我不知道。 勃朗先生五十年以来从沒有在他的最优良萊斯特羊羣中注入过新的血液。 巴福特 (Barford) 先生自从 1810 年以后按照同一原则对于 福斯叩特羊羣进行了处理。他肯定地說道,华世紀的經驗使他相信:如果两個亲緣关系密切接近的动物在体質上是十分健全的話,那末近亲交配不会誘发退化;但他又說,他 "并不以从最近的亲緣关系进行育种而自傲"。 法国的納茲 (Naz) 羊羣已經飼养了六十年,并沒有同一个異种公羊杂交过2)。 保管如此,大多数伟大的綿羊育种家們还是反对长期进行近亲交配3)。 一位最著名的近代育种家乔納斯·韋卜 (Jonas Webb) 分別飼育了五个羊蕈,这样,"保持了两性之間的关系的必要距离"4);更加重要的可能是,分別飼育的羊羣大概是处于多少不同的条件之下的。

借着仔細选择的帮助,綿羊的近亲交配虽然可以长期繼續进行而沒有任何显著的恶劣結果,但农民們为了获得适于屠戶所要求的动物,常常使不同品种进行杂交,这明显地闡明了从这种实践中可以得到某种利益。关于这个問題、朱司(S. Druce)先生5⁵給我們提供了最好的証据,他詳細地列举了具有同样基础的四个純系品种和一个杂交品种的比較数字,并且列举了它們的羊毛产量和躯体产量。一位卓越的权威者皮尤西先生按照貨币价值总計了同等期間內的这种結果(先令以下未計): 科次沃尔羊 248 鎊,萊斯特羊 223 鎊,南丘羊 204 鎊,罕布那丘原羊 264 鎊,杂种 羊 293 鎊。以前的著名育种家核梅維尔勳爵說,他从賴兰得羊(Ryelands)和西班牙羊育成的杂种不論比純系的賴兰得羊或純系的西班牙羊都大。 斯普納先生在他的优秀的"論杂交"的論文中作出这样的結論: 在合宜的杂交育种中可以得到金錢上的利益,特別当雄者大于雌者时更加如此⁶)。

- 因为某些英国园面是古老的,所以在我看来,那里飼养的黇鹿 (Cervus dama) 一定曾經长期不

¹⁾ 亞莎拉,巴拉圭的四足兽,第二卷,第354,368頁。

²⁾ 关于勃朗的例子,参閱艺园者記录,1855年,第26頁。 关于疆斯叩特羊,参閱艺园者記录,1860年,第416頁。 关于納茲羊,参閱則化学会会报,1860年,第477頁。

³⁾ 那修西亞斯,关于短角牛,第65頁;尤亞特論羊,第495頁。

⁴⁾ 艺园者記录, 1861年, 第631頁。

⁵⁾ 皇家农学会学报,第十四卷, 1853年,第 212 百。

^{6) &}lt;u>楼卷維尔</u>爵士,有关<u>總羊和农业的材料</u>,第6页。 <u>斯普納先生,英国皇家农学会学报</u>,第二十卷,第二部。 再参閱一篇有关同一問題的优秀論文,見艺园者記录,1860年,第321頁,查里士。何华德著。

断地进行了近亲交配;但根据調查的結果,我发現从其他圆囿引进雄鹿来注入新血液却是一項普通的措施。 仔細研究过鹿的管理的希尔雷先生¹⁾認为在一些圆囿中自从有史以前就沒有 混 入 过 外来的血液。 但他断言,不断的近亲交配最終对于整个的羣肯定是不利的,虽然可能需要很长的时間才能证明这一点;再者,象很常常发生的情形那样,当我們发現引进新血液在改进它們的大小和外覌上,特別是在消除傴僂病(如果不是其他的病,当不改换血液的时候鹿时常得这种病)的感染上对于鹿非常有利的时候,我認为,同一个优良系統進行合乎机宜的杂交,无疑是最重要的,而且退早对于每一个秩序并然的圆囿的繁荣确实是不可缺少的。

梅奈勒 (Meynell) 先生的著名狐堤曾被引用来闡明近亲交配不会产生恶劣的 結果;塞勃来特爵士根据他的說法确定了他屡屡使父与女、母与子,而且有时甚至使兄弟姐妹交配繁育。 灵堤也曾进行过最近亲交配,不过优秀的育种家們一致認为这可能太走极端心。但塞勃来特爵士 宣称³⁾,从近亲交配——他所指的是兄弟姐妹之間的交配,他实际看到的是,强壮的满的后代退化成衰弱而小型的巴儿 狗了。 福克斯牧师写信向我說过一个例子:在同一家庭中长期飼养的一小羣血堤(bloodhound)变成很恶劣的繁育者了,所有它們几乎在尾部都生有一块骨的扩大物。 和不同品系的血堤仅仅进行一次杂交就可恢复它們的能育力,而且消除尾部的畸形傾向。我曾听說关于另一血堤的严格例子,即母血堤必須同公血堤結合。 所有高度改良的品种几乎都暗示着长期不断的近亲交配,考虑到狗的自然增殖是多么迅速,除非相信近亲交配减弱了能育力并且增加了感染狗瘟热以及其他疾病的傾向,那末这等高度改良品种的高昂售价就难于理解了。 卓越的权威者斯克罗普先生把苏格兰猎鹿狗(以前存在於全国的少数个体都有亲緣关系)的稀有以及在大小上的 退化主要归因于近亲交配。

关于高度繁育的动物,要使它們迅速繁殖,多少是有些困难的,并且所有它們都在体質上陷于 虚弱。一位伟大的冤的判断者⁴)說,"长耳雌冤常常过于高度地繁育了,即当它們幼小时被迫作为 极有价值的繁育者,它們常常变成爲不育者或不好的母亲"。它們常常拋棄幼兔,所以必須有餵奶 的兔,但我并不企图把所有这等恶劣的結果都归因于近亲交配⁵)。

在猪的場合中,育种者們对于近亲交配的恶劣結果的意見比在其他任何大型动物的場合中更加一致。 改良牛津郡猪(一个杂交族)的伟大而成功的育种者朱司先生写道,"如果不改用不同族的公猪,而用同一品种的公猪,其体質是不能保存下来的"。著名"改良埃塞克斯品种"的育成者非謝尔·赫伯斯(Fisher Hobbs)把他的猪羣分成为三个独立的系統,这是借着"從这三个不同系統进行合宜的选择"6)而完成的,他用这个方法把这个品种保持了二十年以上的时間。<u>成斯特恩</u>

¹⁾ 有关英国庭囿的記載 (Some Account of English Deer Parks), 希尔雷著, 1867年。

²⁾ 司頓亨,狗,1867年,第175-188頁。

³⁾ 改良品种的技术,第13頁。关于苏格兰獵鹿狗,委閱斯克罗普的獵鹿的技术,第350-353頁。

⁴⁾ 家庭艺园者, 1861年, 第327頁。

⁵⁾ 哈茨先生(近亲通婚, The Marriage of Near kin, 1875 年, 第 302 頁), 从比利时皇家医学会会报, (Bulletin de l'Acad. R. de Méd. de Belgique, 第九卷, 1866 年, 第 287,305 頁) 引用了列格倫所作的若干敍述: 趸的兄弟姐妹之間的杂交連續地进行了五、六代,並沒因此引起恶劣的結果。 我对于这个記藏以及列格倫在他試驗中的永远成功感到非常驚異,所以我写信給一位著名的比利时博物学者詢問列格倫是不是一位可信賴的观察者。 我得到的答复是,人們对于这些試驗的真实根据表示了怀疑,所以指定了一个調查委員会,在学会的下次会議上,克治叩(Crocq)博士作了如下的报告:"我認为列格倫自己所說的諮种經驗事实上是不可能的"。 对于这种公子的非难,並沒有任何滿意的答复。(比利时皇家医学会会报, 1867 年,第三輯,第一卷, 1—5号)

⁶⁾ 尤亞特論格, 西得內版, 1860年, 第30頁; 第33頁, 引自朱司的著作; 第29頁, 关于威斯特恩的例子。

動肾是那不勒斯品种的公猪和母猪的第一个引进人。"他使这一对猪进行近亲交配,直到这个品种有絕灭的危险时才停止,近亲交配肯定会产生这种結果(这是西得内先生的意見)。于是威斯特恩勳爵使他的那不勒斯猪同古老的埃塞克斯品种进行杂交,这向改良埃塞克斯品种迈进了第一大步。这里有一个更有趣的例子。作为一个育种家而馳名的莱特(J. Wright)先生¹⁾ 使同一个公猪同共女儿、孙女以及曾孙女进行杂交,这样进行了七代。 結果是,在許多事例中其后代不能繁殖;在其他一些事例中它們产生了少数活着的小猪,在这些小猪中,有些是白痴的,甚至沒有吸乳的感觉,而且当它們活动时,不能直綫地行走。 現在特別值得注意的是,經过这种长期近亲交配过程所产生出来的最后两头母猪当其同其他公猪交配后,却产生了几窝健康的猪。在整个七代間产生出来的外貌最好的母猪是在这个系统最后阶段中的一头;但这头母猪是包含在一窝小猪之中的。它沒有同自己系統的公猪交配繁育,而在第一次試驗中是同不同血統的公猪交配繁育的。 因此,在莱特先生的例子中,长期不断的极近亲交配并沒有影响小猪的外形及其优点;但在它們之中有許多小猪的一般体質和智力,特別是繁殖机能,却受到了严重的影响。

那修西亚斯²⁾举出一个相似的、甚至更显著的例子:他从英国輸入一头大形約克郡品种的怀孕的母猪,并且使其后代进行入三代近亲交配;結果是不好的,因为仔猪的体質衰弱,能育性受到損害。在最近产生出来的母猪中,有一头据他看是优良的,这头母猪同它自己的叔父(据知它同其他品种的母猪交配是多产的)交配,产生了一窝六头仔猪,第二次交配,只生产了一窝五头衰弱的仔猪。此后,他使这头母猪同一头小形黑色品种的公猪交配,这头公猪也是从英国輸入的;这头公猪同它自己品种的母猪交配,产生了七到九头仔猪。那末,这头大形品种的母猪同它自己的叔父交配是非常低产的,而同小形黑色品种的公猪交配,却在第一窝产生了二十一头,在第二窝产生了十八头;所以在一年之內它产生了三十九头优良的仔猪!

有如在已經提到的若干其他动物的場合中一样,甚至当从适度的近亲交配看不出任何有害結果的时候,叩特(Coate)先生(曾經五次获得"司密斯斐尔得俱乐部展覽会"每年頒发的关于最优良猪的金質奖章)还这样說:"杂交对于农民是有利的,因为可以从中得到更好的体質和更快的成长;但对我——以出售大多数的猪作为繁育之用的一个人——来說,杂交并不会給予任何利益,因为再度获得象純粹血統那样的任何东西都需要許多年代"。

上面談到的几乎所有动物都是羣居的,雄者一定屡屡同它自己的女儿交配,因为就象逐出侵入者那样,它們也把幼小的雄者逐出,直到由于年老和失去精力而被迫讓位于某一更強有力的雄者时为止。所以羣居性的动物比非羣居性的物种不容易受到近亲交配的恶劣影响,並不是不可能的,因此它們可以在羣中生活而不会有害于它們的后代。不幸的是,我們不知道象貓那样的非羣居性动物比其他家养动物是否会更大程度地受到近亲交配的为害。但据我所能看出的来說,猪並不是严格羣居性的,而

¹⁾ 英国皇家农学会学报,1846年,第七卷,第205頁。

²⁾ 关于短角牛, 第78頁。 考特尔上校对于捷尔塞的农业作过很多事情, 他写信告訴我說, 由于他拥有一个 猪的优良品种, 他使它們进行了最近亲的交配, 兄弟姐妹之間進行两次交配, 不过几乎所有仔**猪都发生了** 整叠而突然地死去了。

³⁾ 西得內論班,第 36 頁。再参閱注釋,第 34 頁。里卡逊論指, 1847 年,第 26 頁。

且我們已經知道它們似乎显著容易受到近亲交配的恶劣影响。关于猪,哈茨(Huth) 把这等影响归因于它們的"培育主要是为了脂肪"(第 285 頁),即归因于被选择的个 体具有衰弱的体質;但是我們必須記住,提出上述例子的人,都是伟大的育种家,他們 对于那些可能干涉他們的动物的能育性的原因遠比普通人熟悉得多。

在人类的場合中,近亲交配的影响是一个困难的問題,我将稍微談一談。各方面 的作者在許多观点下曾对这个問題进行过討論1)。 泰勒 (Tylor) 先生2) 曾指出,世界 极其远隔地方的广泛不同的种族都严格禁止近亲通婚——甚至禁止远亲通婚。然而 哈茨先生3) 充分地举出了許多例外。在早期的野蛮时代怎样产生了这等禁止,是一个 引人注意的問題。 泰勒先生有这样的傾向:把它們归因于血族通婚的恶劣影响已被 观察到了; 他巧妙地試图解释, 在男方和女方的亲屬中这种禁止有不同等的延展, 关 于这种禁止有某种明显的变則。 但是他承認其他原因——例如友誼的联姻的扩张 ——可能发生作用。相反地亚当先生断言,近亲通婚的被禁止並且受到嫌忌是由于 这样会引起财产承繼的混乱以及其他更加奥妙的原因。 但我不能接受这等观点,因 为象澳洲和南美的未开化人4)也都痛恨血族通婚,他們並沒有传給后代的財产,也沒 有对于財产承繼混乱的优雅情感,而且不可能仔細想到其后代的遙远恶果。按照 哈 **茨的說法,这种情感是異族通婚的間接結果,因为,这种作法在任何族中停止了並且** 变成为同族通婚之后,婚姻就严格地限于同族,这时还会保持以前作法的痕跡並非不 可能,因此近亲通婚大概会受到禁止的。关于異族同婚本身,麦克嫩南(MacLennan) 先生相信,这是由于妇女的稀少而发生的,而妇女的稀少則由于杀害女婴,恐怕还有 其他原因的帮助。

哈茨先生明确地闡明了人类在反对血族通婚方面所具有的本能的情感並不比羣居性动物为甚。我們还知道,象信奉印度教的印度人所表示的那样,对于招致污秽的事物多么容易发生嫌忌的偏見或情感。虽然在人类中似乎沒有反对血族通婚的強烈的遗传的情感,但在原始时代,生疏的妇女比那些一貫相处的妇女大概更可能使男人

¹⁾ 达利 (Dally) 博士发表过一篇优秀的論文(譯文見人类學評論, Anthropolog, Review, 5月, 1864年, 第65頁) 批評所有主張血族通婚有恶劣結果的作者。 毫无疑問, 站在問題这一方面的許多拥護者們由于不精确而損害了他們的理由:例如有人这样說(德正伊,血族婚姻的危险, 1862年, 第141頁),俄亥俄的法律禁止堂兄弟姐妹結婚,但是我曾向美国作过調查,得到的肯定答复是:这种敍述只是无稽之談。

²⁾ 参閱他的有趣著作,人类的早期歷史 (Early History of Man), 1865年,第十章。

³⁾ 近亲通婚,1875年。 如果哈茨只引用那些長期在所提到的各个地方居住的並且証明具有判断力和审慎力的人們的著作,我認为他所举出的証据比这一点或其他一些点甚至更有价值。 参閱亞当先生的血族通婚一交,見双週評論 (Fortnightly Review),1865年,第710頁。再参閱赫法克的关于性状,1828年。

^{4) &}lt;u>葛瑞</u> (G. Grey) 的澳洲探险記,第二卷,第 243 頁;道勃瑞越法,南美的阿比朋族 (On the Abipones of South America)。

兴奋;按照克卜勒(Cupple)的材料¹⁾,同样地,猎鹿狗是傾心于生疏的**母狗的,而母狗** 則喜欢同它們有过交往的公狗。如果人类在以前具有这样的情感,那末**这种情感大概** 会导致喜欢同最近亲以外的人們通婚,而且由于这等通婚所产生的后代可以活下来 的比較多,这种情感可能便被加強了,推論使我們相信情形大概是这样的。

象在文明国家所許可的那种血族通婚(这在家养动物的場合中不看作近亲变配) 是否会招致任何損害,除非就这个問題进行一次人口調查,将永遠不会得到明确的了解。我的儿子乔治·达尔文在現今可能的范围之內进行过統計的研究²⁾,根据他自己的以及来契尔 (Mitchell) 博士的研究,他得出这样的結論: 有关由此引起的恶劣结果的証据是相互矛盾的,但总的看来,其恶劣结果是很小的。

鳥類 关于鷄,可以举出一系列的权威者是反对最近亲交配的。塞勃来特爵士肯定地断言,他會作过許多試驗,并且他的鶏当受到这样处理时,它們的起变长了,身体变小了,同时变为恶劣的繁育者了³)。 他用复杂的杂交以及近亲交配育成了著名的塞勃来特·班塔姆鶏;自从他的时代以后,在这等动物中进行了太多的近亲交配;现在它們是著名的恶劣繁育者了。 我曾看見过从他的系統直接传下来的銀色班塔姆鷄,它們变得几乎同杂种一样地不育了;因为那年从两整窝鷄卵中沒有孵出过一只小鶏。 赫維特先生說,关于这等班塔姆鶏,除了稀有的例外,公鶏的不育性同某些次級雄性征的丧失有最密切的关系:他还說,"我注意到,按照一般規律,雄塞勃来特鶏的尾甚至同雌鷄的性状有最微小的偏差——酱如說,两支主尾羽仅仅长出半时,这也会給能育性的增大带来可能性"¹⁴)。

來特先生說5),克拉克先生的"斗鶏是非常著名的,它們繼續进行近亲交配的結果是 斗 志 全 消,站在那里被啄而不作任何抵抗,而且体重減輕到最优等奖的标准以下;不过它們同來亨 (Leighton)先生的品种进行了一次杂交,便再度恢复了以前的勇敢和体重"。应当記住,斗鶏在相斗之前总是要称体重的,所以关于其体重的任何增加或減少,并沒有什么假想。克拉克先生似乎沒有用兄弟姐妹来交配繁育,这是一种最有害的結合;他在反复試驗之后发現,从父与女交配中产生出来的雛鶏比从母与子交配中产生出来的雛鶏在体重上要減輕得多。伊頓地方的伊頓先生是一位著名的鳥类学者,并且是灰色道根鶏的伟大育成者,他告訴我說,它們除非偶尔同另一品系进行一次杂交,否則肯定地要縮小,而且其能育性也要变得較弱。专就大小来說,按照赫維特先生的材料,馬来 鋾也是如此6)。

¹⁾ 人类的由来,第二版,第524頁。

²⁾ 統計学会学报 (Journal of Statistical Soc.),6 月, 1875年,第153頁; 双週評論, 6 月, 1875年。

³⁾ 改良品种的技术,第13頁。

⁴⁾ 家雞之书,推葛梅尔著, 1866年,第245頁。

⁵⁾ 皇家农学会学报,1846年,第七卷,第205頁;再参閱弗哥逊論籍,第83,317頁;再参閱家鑑之書,推舊 梅尔著,1866年,第135頁,关于近亲交配的程度,斗鶏者发现他們可以冒险地進行近亲交配,即偶尔使 母与子交配;"但要注意它們不再重复近亲交配"。

⁶⁾ 家鶏之書,推葛梅尔著, 1866年, 第79頁。

一位有經驗的作者¹⁾指出:同一位业余养鷄者,象众所熟知的那样,很少可以长久保持他的鷄的优越性;他还說,这无疑是由于他的鷄的系統"具有同样的血液"。因此不可避免的是,他必須偶尔取得另一品系的鷄。但这对于在不同場所飼养一个鷄的系統的人并沒有必要。例如飼育馬来鷄有三十年历史的、并且在英国比其他任何爱好者获得养鷄奖的次数都多的巴兰斯先生說,近亲交配并不一定会招致衰退;"但一切都决定于如何处理"。"我的計划是保持五、六个不同的鷄囊,每年育出二百只或三百只左右的雛鷄,并且从每一零中选出最优良的鷄进行杂交。这样我就可以获得足够的杂交来防止衰退"²⁾。

由此我們知道,养鷄家的差不多完全一致的意見是,当在同一地方养鷄时,近亲交配繼續进行到在大多数四足兽的場合中并沒有什么关系的程度,就会迅速地引起恶劣結果。还有,一个普遍被接受的意見是,杂种的雛鷄是最結实的而且是最容易繁育的³)。仔細注意过所有品种的家禽的推舊來說ф,如果讓母道根鷄同公赫丹鷄或克列布·哥尔鷄进行杂交,"它們在早春产生出来的雛鷄在大小、强健、早熟性以及对于市場的适合性上都优于我們會經育成过的任何純系品种的鷄"。赫維特先生認为,品种杂交可以增大体積,这对于雞来說,是一般的規律。他提出这一意見是在敘述了以下情形之后,即雉和鷄之間的杂种相当地大于任何一方的祖先;还有,金黃色公雉和普通母雉之間的杂种"远比任何一亲大得多"。5)关于杂种增大体积这一問題,我立刻还要談到。

关于鴿,象以前所說的那样,育种者們的一致意見是: 保管偶尔使他們十分宝貴的鴿子同另一品采、当然屬于同一变种的个体进行杂交是麻煩而費錢的事,这还是不可缺少的。 值得注意的是: 象在突胸鴿的場合中那样⁶⁾,当体大是所需求的性状的之一时,近亲交配的恶劣效果远比当 小形鴿子 (例如短面翻飞鴿)被珍視时出現得迅速的多。 高度玩賞的品种,例如这等翻飞鴿以及改良英国传书鴿,其极端新弱性是显著的; 它們容易得許多疾病,并且常常在卵中或第一次脫羽时死去; 它們的卵一般势必由养母来解。 虽然这等高度宝贵的鴿子一定曾經进行过极近亲杂交,但它們的体質的极端新弱性恐怕不能由此得到完滿的解释。 雅列尔先生告訴我說,塞勃来特爵士連續地使一些鴞鴿进行近亲交配,最后由于它們的极端不育性,他差不多失去了这整个的一族。勃連特先生"为了育成一个喇叭鴿的品种,曾試图使一只普通鴿同一只雄喇叭鴿进行杂交,然后再 使它們的女儿、孙女、曾孙女和玄孙女和同一只雄喇叭鴿再杂交,最后他得到的一只鴿子具有十六分之,十五的喇叭鴿血統;不过到了这时試驗失敗了,因为"如此近亲的交配使生殖停止了"。富有經驗的 超美斯特⁸⁾也断言,鵓鴿和其他各个品种之間的后代"一般是很能育的和强壮的鴿子";还有,包依 塔和考尔比⁹⁾根据四十五年的經驗劝告人們不妨使他們的品种进行杂交来消遣; 因为,他們 如果在育成有趣的鴿子方面失敗了,他們将会在經济的观点下得到成功,"因为据发现,杂种的能育性比純系鴿子的为大"。

我只再提一提其他一种动物,即蜜蜂,因为一位著名的昆虫学者曾經把它提出来作为一个不可避免的近亲交配的例子。 因为一个蜂巢里只有单独一个雌蜂居住,所以可能攷虑到她的雄性的

¹⁾ 家禽記录, 1854年, 第一卷, 第43頁。

²⁾ 家鷚之書,推葛梅尔著, 1866年, 第79頁。

³⁾ 家鶏之書,第一卷,第89頁。

⁴⁾ 家鷄之醬, 1866年, 第210頁。

⁵⁾ 家鶏之書, 1866年, 第167頁; 家禽記录, 第三卷, 1855年, 第15頁。

⁶⁾ 論玩賞鴿,伊頓著,第56頁。

⁷⁾ 鴿之書,第46頁。

⁸⁾ 鴿的飼养, 1837年, 第18頁。

⁹⁾ 鴿, 1824年, 第35頁。

和雌性的后代會經永远是彼此交配繁育的,特別是因为不同巢的蜜蜂相互敌对,更会如此致虑;一只陌生的工蜂当試图进入另一蜂巢时,几乎永远会遭到攻击。但是推惠梅尔先生會經闡明¹⁾,这种本能并不适用于雄蜂,它們被允許进入任何蜂巢;所以关于一只后蜂同一只異巢的雄蜂交配,并沒有先天的不可能性。結合一定而且必須在后蜂的結婚飞翔期間中飘飘欲仙地实行,这种情形似乎是为了反对連續的近亲交配而特別准备的。但是經驗已經証明,自从黃色带斑的力究立亚族引进到德国和英国之后,蜜蜂是自由杂交的:把力究立亚蜜蜂引进到得女那的烏得巴利先生发現,距离他的蜂巢有一、二哩之逾的三辈仅仅在一季中就同他的雄蜂杂交了。在某一場合中,力究立亚雄蜂必須飞越埃克塞特(Exeter)城,并且还要飞越若干中間的蜂巢。在另一个場合中,几只普通黑色的后蜂在一哩乃至三哩半的距离同力究立亚雄蜂进行了杂交²⁾。

植物

当一个新物种的单独一株植物被引进到任何地方时,如果由种子来繁殖,那末很快地就会育出許多个体,因此那里如果有适当的昆虫存在,杂交大概会发生的。 关于那些不由种子来繁殖的新引进的树或其他植物,不在这里予以攷虑。 关于那些自古以来就已存在的植物,偶尔交换它們的种子,几乎是普遍进行的,借着这种方法,暴露在不同生活条件之下的一些个体——象我們在动物的場合中看到的那样,这可以减低由近亲交配而发生的恶劣效果——会偶尔被引进到各个地区去的。

关于那些屬于同一亚变种的个体,在准确和經驗方面超越了所有其他观察者的該特納說道³⁾,他會多次观察到由这一步驟所产生的良好效果,特別是那些在能稳性上受到損害的外国屬,例如西香蓮屬、半边蓮屬、吊金鐘屬,更加如此。 赫伯特也說⁴⁾,"我倒以为用同一变种的另一个体的花粉、至少用另一杂花的花粉使我准备采取种子的花受精,而不是用它自己的花粉去受精,曾經使我得到了利益"。还有,列孜克斯言,杂种后代比其双亲更富活力而且更加强壮⁵⁾。

但对于这种一般的敍述很少能够充分信賴: 所以我开始了一长串的試驗,一直繼續了十年左右,我想它們可以确实地闡明同一变种的不同植株的杂交会产生良好效果,并且长期不断的自花受精会产生恶劣效果。 因此,以下的問題便可以得到清楚的解释,例如花为什么永远构造得容許、或者有利于、或者需要两个个体的結合。 我們将会清楚地理解,为什么有雌雄同株的和雌雄異株的植物的存在——为什么有雌雄異熟的、二形的和三形的植物的存在以及許多其他这等例子。我打算很快地发表这些試驗記录,这里我只举出少数的例子作为例证。 我追随的計划是,叫植物在同一花盆里、或者在同等大小的一些花盆里、或者靠近地在露地上生长;細心地隔断昆虫;然后使一些花进行自花受精,使同株上的其他花用不同的但鄰近的植株的花粉来受精。在許多这等試驗中,異花受精的植物远比自花受精的植物結子多得多;我从来沒有看見过相反的情形。 把这样获得的自花受精的种子和異花受精的种子放在同一玻璃皿中的湿砂土上使它們发芽;当种子发芽之后,把它們一对一对地栽在同一玻璃皿中的相对两侧,它們之間留有表面的間隔,以便同等地感受陽光。在其他場合中,只是把自花受精的种子和異花受精的种子播在同一小皿中的相对两侧。总

¹⁾ 昆虫学会会报,8月6日,1860年,第126頁。

²⁾ 园艺学报, 1861年, 第39,77,158頁; 1864年, 第206頁。

³⁾ 有关受精知識的論文 (Beiträge zur Kenntniss der Befruchtung), 1844年, 第 366 頁。

⁴⁾ 石蒜科,第371頁。

⁵⁾ 关于繁殖, 第2版, 1862年, 第79頁。

之,我曾实行过不同的計划,但在每一种場合中我都侭我可能地作到十分小心,所以双方都得到了同等的条件。在屬于 52 个屬的物种中,我仔細观察了从自花受精的种子和異花受精的种子长出来的植株由发芽到成熟的生长情况;在大多数場合中,它們在生长方面并且在抵抗不利条件方面所表現的差異是显著的而且是具有强烈特征的。重要的是,这两类种子是被播种在或栽植在同一玻璃皿中的相对两侧的,所以实生苗可能彼此进行斗争;因为如果把它們隔离地播种在廣大而优良的土壤上,它們的生长往往只有一点点差異。

我大略地把我观察的第一类例子中的两个例子敍述一下。从用上述方法处理的紫色蕃藷(Ipomoea purpurea)采取六粒異花受精的种子和自花受精的种子,它們一发芽,就被一对一对地栽植在两个花盆中的相对两侧,并且插上同等粗細的小桿以备它們攀緣。 異花受精的植株中有五株一开始就比对面的自花受精的植株生长迅速;然而第六株却是衰弱的,并且在一个时期內被对方胜过了;不过它的較强壮的体質最后还是佔了优势,并且追过了对方。 当各个異花受精的植株一达到七呎小桿的頂点时,就量它的对手,結果是: 当異花受精的植株高达七呎时,自花受精的植株的平均高度只有五呎四、五吋。異花受精的植株开花稍微早一点,而且比自花受精的植株开得茂盛。在另一个小花盆的相对两侧播种了大量異花受精的和自花受精的种子,所以它們为了勉勉强强的生存势必进行斗爭;在这两小区种子間各按一个小桿;在这里異花受精的植株一开始又表現了它們的优势;它們从来沒有完全达到七呎小桿的頂点,不过同自花受精的植株比較起来,它們的平均高度則为七呎对五呎二吋。这个試驗重复了几个連續的世代,采取了完全一样的处理,其結果差不多是一样的。在第二代中,对于異花受精的植株再度进行異花受精,于是产生了121个种子蒴,而对于自花受精的植株再度进行自花受精,結果只产生了84个蒴。

黄色沟酸浆(Mimulus luteus)的某些花进行了自花受精,其他一些花用同一花盆中不同植株的花粉来杂交。它們的种子密播在一个花盆中的相对两侧。 实生苗的高度在最初是相等的,但当幼小的異花受精的植株高达半时时,自花受精的植株只高达四分之一时。 但这种不等的程度并不持久,因为当異花受精的植株高达四吋半时,自花受精的植株高达三吋,并且直到它們的成长完成时,它們都保持了同样的相对差異。 異花受精的植株看起来远比未进行異花受精的植株茂盛得多,并且开花較早;它們产生的蒴也多得多。同前一个例子一样,这个試驗在几个連續世代中重复了三次。 如果我沒有在这等沟酸浆和蕃藷的全部生长期間观察过它們,我就不能相信以下的情形是可能的: 即从同一杂花采取的花粉或者从同一花盆中的不同植株采取的花粉看来只有微小的差異,但在这样产生出来的植株的生长和活力方面,这种微小的差異却造成了如此可繁的不同。从生理学观点看来,这是一种极其值得注意的现象。

关于从不同变种杂交中所得到的利益,已經发表了大量的証据。 藍哥瑞特¹⁾ 反复强調地談到由不同变种杂交中所育成的甜瓜是强壮的,并且还說,它們比普通甜瓜容易受精,可以产生大量的优良种子。以下是一位英国艺园者的証据²⁾: "这个夏季我在栽培甜瓜方面得到了好成績,它們是在沒有保护的状态下栽培的,用的是杂种种子,这比用旧变种的成績来得好。 由三种不同杂交中产生出来的后代(特别是其中一个,它的双亲是我所能选择的最不相似的变种)所结的果实 比二十个和三十个稳定变种之間的任何后代所结的果实都更多而且更好。"

安朱·奈特³⁾ 相信他的苹果杂交变种的实生苗在强壮和繁茂上增强了; 契烏路尔 (M. Chev-

¹⁾ 消產科植物紀要,第36,28,30頁。

²⁾ 拉烏頓的艺园者杂誌,第八卷,1832年,第52頁。

³⁾ 园艺学会会报 (Transact. Hort. Soc.), 第一卷, 第25 頁。

reul)1) 提到薩哥瑞特所育成的某些杂种果树的极端强壮性。

奈特使最高的豌豆同最低的豌豆相互地进行了杂交,他說²⁾:在这个試驗中我得到了一个有 关品种杂交的刺激效果的显著例子;因为高度很少超過二呎的最小变种增高到六呎,而大形和繁 茂的种类的高度则減低的很少"。拉克斯东先生給过我一些从四个不同种类之間的杂交产生出来 的豌豆种子;这样育出的植株非常强壮,在各个場合中比密切靠近它們生长的亲类型高出一呎、二 呎或三呎。

魏格曼 (Weigmann)³⁾ 使几个甘蓝变种进行了多次杂交,他以惊奇的口气談到杂种的强壮及其高度,凡是看到它們的艺园者都感到惊異。 <u>姜得</u> (Chaundy) 先生把六个不同的甘蓝变种栽植在一起,因而育成了大量的杂种。 这些杂种表现了性状的无限多样性;"但最值得注意的事情是,当所有其他甘蓝和羽衣甘蓝在圃場里被严寒的冬季所毁灭时,这等杂种很少受到損害,并且当沒有其他甘蓝的时候,它还可以供应厨房"。

芒得 (Maund) 先生在"皇家农学会" 展覽了杂种小麦及其亲本变种,編者說,它們的性状是中間的,"而且具有較强的生长势,在植物界和动物界中都有这种情形,这是第一次杂交的結果"。 奈特也杂交过几个小麦变种5),他說"1795 和 1796 年,当該島谷类的整个收成遭到摧残时,这样得到的变种,而且只有这些变种,在邻近逃脱了这場災害,虽然它們是在几种不同的土壤和地点播种的"。

这里有一个显著的例子: 克勞采 (M. Clotzsch)⁶⁾ 杂交了苏格兰赤 松 (Pinus sylvestris) 和黑松 (Pinus nigricans)、蒙古櫟 (Quercus robur) 和英国櫟(Q. pedunculata)、榿木(Alnus glutinosa)和山榿木 (A. incana) 以及鑽天楡 (Ulmus campestris) 和开張楡 (U. effusa);这些異花受精的种子以及純系 亲本树的种子都于同时同地播种下去了。結果是,經过八年之后,杂种树比純系树高出三分之一!

上述事实所涉及的都是无疑的变种,克勞采所杂交的那些树是例外,不同的植物学者們把它們分类为特征显著的族、亚种或物种。从完全不同物种育成的真正杂种虽然在能稳性上有所失,但肯定地会在大小和体質强壮上有所得。引述任何事实都将是多余的,因为所有的試驗者們如开洛依德、該特納、赫伯特、薩哥瑞特、列攷克和諾丹都对他們的杂种的非常强壮、高度、大小、生活頑强性、早熟性以及抗性感到惊奇。 該特納引以非常强烈的語气就这个問題总結了他的信念。 开洛依德⁸⁾ 关于他的杂种的重量和高度列举了許多精确的測計数字,这是在同双亲类型的测計的比較下进行的,他以惊奇的語气談到它們的"非常的体积",它們的"巨大的范围以及非常显著的高度"。但是,該特納和赫伯特都會注意到在很不稳杂种的場合中的一些例外,不过最显著的例外还是麦克斯·威丘拉⁹⁾举出的,他发现杂种柳树一般在体質上是纖弱的,矮小而短命。

¹⁾ 自然科学年报,第三輯,植物部分,第六卷,第189頁。

²⁾ 皇家学会会报, 1799年, 第200頁。

⁴⁾ 艺园者記录, 1846年, 第601頁。

⁵⁾ 皇家学会会报, 1799年, 第201頁。

⁶⁾ 在法国植物学会会报中引用,第二卷, 1855年,第327頁。

⁷⁾ 該特納,杂种的形成,第259,518,526等頁。

⁸⁾ 續編 (Fortsetzung), 1763年,第29頁;第三載編 (Dritte Fortsetzung), 第44,96頁; 圣彼得堡科学院 院报, 1782年,第二部, 第251頁; Nova Acta,1793年, 第391, 394頁; Nova Acta, 1795年, 第316, 323頁。

⁹⁾ 杂种的形成, 1865年, 第31,41,42 頁。

开洛依德說明他的杂种的根、莖等的非常增大是由于不稔性而发生的一种补償的結果,許多被闍割的动物也是如此,它們比未被闍割的雄者为大。 最初一看,这个观点似乎是极端正确的,并且已經为不同的作者們所接受¹⁾;但該特納²⁾很好地指出,完全承認它还是有极大困难的,因为就許多杂种来說,在不稔的程度和增大的体積以及强壮之間并沒有平行的关系。 已經观察到的繁茂生长的最显著事例是关于那些并非极度不稔的杂种。 在紫茉莉屬中,某些杂种是異常能稔的,它們的格外繁茂的生长势以及庞大的根³⁾ 已經被传递給后代了。 在所有場合中这种結果可能是部分由于通过生殖器官不完全地或者根本不活动而发生的营养和生命力的节約,但特别是由于杂交可以产生利益的一般规律。 因为特別值得注意的是,动物和植物的变种間杂种决不是不稔的,而它們的能稔性实际常常是增大了,如前所述,它們的大小、抗性以及体質健壮性一般都增高了。 在能稔性的提高和降低的相反条件下这样发生的强壮性和体積的增大不少是显著的。

这是一个完全确定的事实¹: 杂种同任何一个純系亲代交配繁殖永远比它們彼此之間交配繁殖来得容易,杂种同一个不同物种交配繁殖的情形也不罕見。 赫伯特甚至想用从杂交产生出来的利益来解释这一事实; 不过<u>該特納</u>用以下的說法更合理地說明了这一事实,他認为杂种的花粉、可能还有它的胚珠在某种程度上受到了損害,而純系双亲的以及任何第三个物种的花粉和胚珠却是健全的。 保管如此,但象我們就要看到的那样,有一些十分确定而显著的事实闡明了,杂交本身无疑有提高或重建杂种能育性的傾向。

同样的法則,即变种的和物种的杂种后代比亲本类型为大,也以最显著的方式适用于动物的变种間杂种和物种間杂种。 巴列特先生拥有这样伟大的經驗,他說:"在脊椎动物的所有杂种 中有一种体積显著增加的現象"。于是他列举了关于动物(包括猴在內)以及关于不同鳥类5)的許多例子。

关于無論正常地或異常地需要不同个体或不同 物种的花粉来受精的某些雌雄同体植物

現在列举的事实同上述事实有所不同,因为这里所談的自交不稔性幷不是长期不断的近亲交配的結果。然而这些事实同現在这个題目有关,因为已經闡明和不同个体进行杂交或是必要的或是有利的。 二形植物或三形植物虽然是雌雄同体的,但为了充分地能稔,在某些場合里为了任何程度地能稔,却必須相互地进行杂交,即一組类型同其他类型进行杂交。 如果沒有喜尔特勃兰博士提供了下述例子,我大概不会注意到这些植物的⁶⁾

¹⁾ 麥克斯·威丘拉完全接受这一观点(杂种的形成,第43頁),同巴尔克雷牧師在园艺学报(1月,1866年, 第70頁)上接受这一观点一样。

²⁾ 杂种的形成, 第394,526,528 頁。

³⁾ 开洛依德, Nova Acta, 1795年,第316頁。

⁴⁾ 該特納,杂种的形成,第430頁。

⁵⁾ 慕利 (Murie) 博士引用, 見动物学会会报, 1870年, 第 40 頁。

⁶⁾ 植物学新报, 1月, 1864年, 第3頁。

藏报春 (Primula sinensis) 是一种相互二形的植物: 喜尔特勃兰博士用两个类型彼此的花粉使 28 梁花受精,得到了完全数量的蒴,平均每一个蒴含有 42.7 粒种子; 这里我們看到的是完全而 正常的能稳性。然后他用同一类型但不同株的花粉使两个类型的 42 朵花受精,所有这些花都結了 蒴,平均只含有 19.6 粒种子。最后,我們在这里接觸到我們更直接的一点:他用同一类型而且同花 的花粉使两个类型的 48 朵花受精,当时他只得到了 32 个蒴,平均含有 18.6 粒种子,每一个蒴所含的种子比在前一場合中少一粒。因此,关于这等異型花的結合(illegitimate union),花粉和胚珠屬于同 花比花粉和胚珠屬于同一类型的两个不同个体,其受精作用较小,而且其能稳性也微低。 喜尔特勃兰博士最近用酱鎏色酢浆草 (Oxalis rosea) 的长花柱类型进行了相似的試驗,得到了同样的 結果。1)。

最近发現:某些植物当在它們的原产地生长于自然条件之下时,不能用同株的花粉来受精。 它們有时是如此自交不稔,以致它們虽然能夠容易地用不同物种的或者甚至不同屬的花粉来受精,但奇怪的是它們用自己的花粉却从来不产生一粒种子。再者,在某些場合中,植物的自己花粉同柱头相互有害地发生作用。即将列举的大部份事实都同兰科植物有关,但我开始談到的植物却屬于一个大不相同的科。

喜尔特勃兰博士²⁾用同种其他植株的花粉使长在不同植株上的一种 紫堇(Corydalis cava)的 63 杂花受精;得到了 58 个蒴, 平均每一个蒴含有 4.5 粒种子。然后他使同一总状花序上的 16 杂花 彼此受精,但只得到 3 个蒴,含有稍微良好种子的蒴只有一个,其中的种子不过两个。最后,他使 27 杂花各自进行自花受粉;他还留下 57 杂花进行天然受精,如果可能发生这种情形,它肯定会发生的,因为花药不仅接觸了柱头,而且喜尔特勃兰看到花粉管穿入了它; 尽管这 48 杂花沒有产生过一个种子蒴! 整个这个例子具有高度的教育意义,因为它阐明了,把花粉放在同花的柱头上或者放在同一总状花序的另一杂花的柱头上,或者放在不同植株的柱头上,同样花粉的作用是多么大不相同。

关于外国兰科植物,也有若干相似的例子被观察过,这主要是由约翰·司各股先生进行的。³) 巴西春翁西迪姆兰(Oncidium sphacelatum)具有有效的花粉,因为司各股先生用它的花粉 使一两个不同物种受了精; 胚珠也是能稔的,因为用洪都拉斯秋翁西迪姆兰(O. divaricatum)可以容易地使它們受精; 保管如此,用自己花粉来受精的一、二百杂花却沒有产生一个蒴,虽然花粉管穿入了柱头。"爱丁堡皇家植物园"的罗勃逊·蒙罗(Robertson Munro)先生也告訴我說(1864 年),他用它們自己的花粉使这个物种的 120 杂花受精,結果沒有产生一个蒴,但用洪都拉斯秋翁西迪姆兰的花粉来受精的八杂花却产生了四个良好的蒴: 还有,洪都拉斯秋翁西迪姆兰的二、三百杂花由它們自己的花粉来受精,沒有产生一个蒴,但用波状翁西迪姆兰(O. flexuosum)的花粉来受精的12 杂花却产生了八个良好的蒴: 所以在这里我們看到了三个板端自交不稔的物种,从它們的相互受精看

¹⁾ 德国科学院月报 (Monatsbericht Akad. Wissen.),柏林, 1866 年,第 372 頁。

^{2) &}quot;国际园艺学大会", 倫敦, 1866年。

³⁾ 爱丁堡植物学会会报,5月,1863年:这些观察是以摘要方式发表的,其余部分发表于林納学会会报,第八卷,植物部分,1864年,第162頁。

来,它們的雄性器官和雌性器官都是完善的。在这等場合中,只有借助于不同的物种,受精才能完成。但是,象我們即将看到的那样,波状翁西迪姆兰的从种子育成的不同植株完全能够彼此受精,因为这是自然的程序;其他物种大概也是这样。再者,可各股先生发現另一种翁迪西姆兰(O. microchilum)的花粉是有效的,因为他用这种花粉使两个不同物种受了精;他发現它的胚珠是良好的,因为用任何一个这等物种的花粉以及用这个物种的不同株的花粉都可使它們受精;但用同株的花粉却不能使它們受精,虽然花粉管穿入了柱头。 利威尔1)关于危地馬拉·翁迪西姆兰(O. Carendishinum)的两个植株記載过一个相似的例子,它們都是自交不稔的,但可以相互受精。所有这些例子都同翁迪西姆兰屬有关,不过可各股先生发現,暗赤色顎兰(Maxillaria atro-rubens)"完全不能用自己的花粉来受精",但可以用一个大不相同的物种、即污色顎兰(M. squalens)来受精。

因为这等兰科植物是在温室的不自然条件下生长的,所以我断定它們的自交不稔性是由于这 种原因。但弗瑞芝・繆勒告訴我說,他在巴西的得斯泰罗 (Desterro) 使土著的上述波状翁迪西姆 兰由自己的花粉以及不同株的花粉来受精;所有前者都是不稔的,而由同种任何其他植株的花粉 来受精的那些植株都是能稔的。在最初三天,两类花粉的作用并沒有差異;放在同株柱头上的花粉 按照普通的涂徑分裂成花粉粒,发生花粉管,穿入柱头,于是柱头室便閉合起来了;但只有由不同 株的花粉来受精的那些花才产生种子蒴。 此后又大量重复了这些試驗,得到了同样的結果。弗瑞 芝·繆勒发現翁迪西姆兰的其他四个土著物种由自己的花粉来受精同样是极端不稔的,但由任何 其他植株的花粉来受精却是能稔的;其中有些物种由大不相同的屬、如杓兰屬(Cyrtopodium)和罗 氏兰屬 (Rodriguezia) 的花粉来受精,同样可以产生种子蒴。 但是,縐縮翁迪西姆兰 (Oncidium crispum) 同上述物种有所不同,它的自交不稔性有很大变異,有些植株用自己的花粉可以产生良好的 蒴,在两三个事例中其他植株却不能如此,弗瑞芝·繆勒观察到由同株異花的花粉产生出来的蒴 比由自花的花粉产生出来的药为大。在屬于另一部类的兰科植物朱紅色树兰(Epidendrum cinnabarinum) 里,用植株的自己花粉可以产生良好的蒴,但它們所包含的种子在重量上只有用不同株 的花粉来受精的蒴所产生出来的种子的一半,在一个事例里是由一个不同物种的花粉来受精的, 其情形也是一样; 再者,用植株的自己花粉所产生出来的大部分种子,在某些場合里这样产出来的 几乎所有种子,都缺少胚。顎兰的一些自花受精的蒴是处于同样状况之下的。

弗瑞芝·穆勒进行的另一观察是高度值得注意的,即关于各种不同的兰科植物,植株的自己花粉不仅不能使花受精,而且对于柱头还会发生有害的或有毒的作用,并且从柱头接受同样的作用。这一点从与花粉接觸的柱头面以及花粉本身得到了闡明,它們在三到五日內变为暗褐色,然后就腐烂了。这种变色和腐烂并不是由寄生的隐花植物所引起的,弗瑞芝·穆勒只在一个事例中观察过这种情形。把植株的自己花粉,并且把同种異株的花粉或者另一物种的花粉或者甚至另一个亲缘关系非常远的一个圆的花粉同时放在同一柱头上,就能充分闡明这等变化。例如,把植株的自己花粉以及不同株的花粉并排地放在波状翁迪西姆兰的柱头上,經过五天之后,后者还是完全新鲜的,而植株的自己花粉则变成褐色的了。另一方面,当把波状翁迪西姆兰的不同株的花粉和斑紋树兰(Epidendrum zebra,新种?)的花粉一齐放在同一柱头上时,它們的表現是完全一样的,花粉粒分裂,生出花粉管,穿入柱头,所以这两种花粉块經过十一天之后,除了花粉块柄的差異之外,簡直沒有差别,花粉块柄当然不发生变化。再者,弗瑞芝·穆勒在兰科植物中作了大量的物种情杂交和屬間杂交,他发現在所有場合中当花沒有受精的时候,它們的花梗先开始凋萎;这种凋萎緩慢地向上发展,經过一、二个星期,在一个事例中經过六、七个星期,胚芽最終脫落了;但是,甚至在后一种場合中,并且在大多数其他場合中,花粉和柱头还在表面上保持新鲜状态。但是,花粉偶尔会

¹⁾ 列考克,关于紧殖,第二版, 1862年,第76頁。

变得微現褐色,这一般是在外面,而不是在同柱头接觸的那一面, 当使用植株的自己**花粉时,同柱** 头接觸的那一面的花粉永远是褐色的。

弗瑞芝·穆勒在上述波状翁迪西姆兰和其他两个物种(O.unicorne, pubes?)以及两个未命名的物种中观察到植株的自己花粉的有毒作用。在罗氏兰的两个物种中,在諾提利亚兰(Notylia)的两个物种中,在布林頓兰(Burlingtonia)的一个物种中,并且在同一类型的第四个屬的一个物种中,也是如此。在所有这等場合中,除去最后一个,正如可以預料到的那样,用同种異株的花粉都可以使这些花受精。关于諾提利亚兰的一个物种,有許多花是由同一总状花序的花粉来受精的;經过两天后,它們都凋萎了,胚芽开始收縮,花粉块变为暗褐色,沒有一个花粉粒生出花粉管。所以在这种兰科植物中植株的自己花粉的有害作用比在波状翁迪西姆兰中还来得迅速。同一总状花序上的其他八朵花是由同种異株的花粉来受精的;对于其中的两朵花进行了解剖,发现有无数花粉管穿入了它們的柱头;其他六朵花的胚芽有良好的发育。此后,許多其他的花由自己的花粉来受精,几天之內全都死去而脫落了;但同一总状花序上的未进行受精的一些花却沒有脫落而且长期保持了新鮮状态。我們已經看到,在极不相同的兰科植物的杂交組合中,花粉长期地保持了不窗烂;但在这一点上,諾提利亚兰的表現有所不同;因为当把它的花粉放在波状翁迪西姆兰的柱头上时,柱头和花粉都迅速地变为褐色的了,其情况就好象使用植株的自己花粉似的。

<u>弗瑞芝。穆勒</u>提出:象在所有这等場合中那样,植株的自己花粉不仅是不稳的(这样便有效地阻止了自花受精),而且象在<u>諾提利亚</u>兰和波状<u>翁迪西姆</u>兰的場合中那样,还阻止了此后施用的不同个体的花粉的作用,这对于那些由于自己的花粉而日益受到有害作用的植株大概是有利的;因为这样,胚芽会迅速地被致死而脱落,这就不致于在营养一个最終沒有用处的部分上作进一步的消耗。

同一位博物学者发現,在巴西,比格諾尼亚兰 (Bignonia) 的三个植株紧密地生长在一起。他使其中一株的 29 朶小花由它們自己的花粉来受精,它們沒有結一个薄。 然后用一个不同植株三个植株之——的花粉使 30 朶花受精,它們只結了两个蒴。 最后,用一个不靠近生长的第四株的花粉使 5 朶花受精,所有这 5 朶花都結了蒴。 弗瑞芝·繆勒認为这三个靠近生长的植株大概是同一亲体的实生苗,由于它們的亲緣关系很近,所以它們彼此发生的作用很微弱。这个观点是极端可能的,因为此后他在一篇值得注意的論文¹⁾中闡明了,有些苘麻屬 (Abutilon) 的巴西物种是自交不稳的,他育成了一些复杂的物种間杂种,这些物种如果有密切的亲緣关系,它們之間的能育性就远比亲緣关系不密切的那些物种低得多。

現在我們談一談同刚才举出来的那些例子密切相似的例子,但这同**物种只有某**些个体是自变不稔的情形毕竟有所不同。这种自变不稔性並不决定于花粉或胚珠的不适于受精,因为已經知道,花粉或胚珠在和同一物种或不同物种的其他植株的結合中是有效的。植物已經获得了如此特殊的一种体質,以致用不同物种的花粉比用自己的花粉更容易使它們受精,这个事实同所有普通物种发生的情形恰恰相反。 因为在普通物种的場合中,同一个体植株的雌雄两性生殖要素当然能夠相互自由地发生作用;但它們如果和不同物种的雌雄两性生殖要素相結合,它們的构造却使它們或多

¹⁾ 捷納自然杂誌 (Jenaische Zeitschrift für Naturwiss), 第七卷, 第22頁, 1872年; 第441頁, 1873年。 这篇論文的大部分曾被喬成英文, 見美国自然學者 (American Naturalist), 1874年, 第223頁。

或少成为不稔的,並且产生或多或少的不稔杂种。

整特納对于从不同地方引进来的亮毛半边薄(Lobelia fulgens)的两个植株进行了試驗,他发現¹⁾ 它們的花粉是良好的,因为他用它們的花粉使鮮紅色半边蓮(L. cardinalis)和蓝色半边蓮(L. syphilitica)受了精;它們的胚珠同样也是良好的,因为用这两个物种的花粉使它們受了精;但亮毛半边蓮的这两个植株却不象这个物种一般能够完全容易完成受精那样地用自己的花粉来受精。再者,該特納发現²⁾ 一株盆栽的黑色毛蕊花(Verbascum nigrum)的花粉可以使 Verbascum lychnitis和 V. austriacum 受精;它的胚珠可以由 V. thapsus 的花粉来受精,但不能由自己的花粉来受精。开洛依德³⁾还举出一个例子:Verbascum phaeniceum 的三个栽培植株两年以来开了許多花;他用不下四个物种的花粉成功地使它們受了精,但用它們自己的显然良好的花粉却不能产生一粒种子;此后,这三个植株以及从种子育成的其他植株呈現了一种徬徨的状态,一时在雄性方面或雌性方面,或在雌雄两性方面是不稔的,一時在雌雄兩性方面是能稔的;但其中两个植株在整个夏季都是完全能稔的。

关于木犀草 (Reseda odorata),我曾发現某些个体用它們自己的花粉是十分不稔的,土著的黄色木犀草 (Relutea) 也是如此。这两个物种的自交不稔的植株当用同一物种的任何其他个体的花粉来杂交时却是完全能稔的。 这些观察以后将在另一著作中予以发表,我还要在該書中說明,弗瑞芝·繆勒曾把花菱草 (Eschscholtzia californica) 的一些种子送給我,它們在巴西是十分自交不稔的,但在英国却产生了只是稍微自交不稔的植株。

白色百合花(Lilium candidum)⁴⁾ 的某些植株上的某些花似乎用不同个体的花粉比用它們自己的花粉更能自由地受精。 再者,馬鈴薯的变种也是如此。廷茲曼 (Tinzmann)⁵⁾ 对于这种植物作过 許多試驗,他說,另一变种的花粉有时可以 "发揮强有力的影响,我曾发现这样一些种类的馬鈴薯:它們用自花的花粉來受精,不能結子,但用其他花粉來受精,却能結子"。但是,似乎沒有証明对于自花的柱头不发生作用的花粉本身是良好的。

在西番蓮屬 (Passiflora) 里,长久以来人們都知道除非用不同物种的花粉来受精,有几个物种是不結果的:例如,壓勃雪⁶ 先生发現除非用有翅西番蓮 (P. alata)和总状花序西番蓮 (P. racemosa) 的花粉相互受精,它們是不結果的;在德國和法国也有人观察过同样的情形⁷⁾。我會收到过两个報告,其中說明当四角形西番蓮 (P. quadrangularis) 用自己的花粉时决不結果,但在一个例子中当用西番蓮 (P. caerulea) 的花粉来受精时,在另一个例子中当用西番蓮果 (P. edulis) 的花粉来受精时,却能非常自由地結果。不过在其他三个例子中,这个物种当用自己的花粉来受精时却能自由地結果;这位作者把一个例子中的良好結果归因于室內溫度在花受精之后比以前的溫度提高了华氏5°到

¹⁾ 杂种的形成,第64,357 頁。

²⁾ 同前書,第357頁。

³⁾ 第二續編,第10頁;第三續編,第40頁。 司各脫先生同样地使包括两个变种的發尼毛蕊花的54 梁花由自己的花粉来受精,沒有結一个蒴。許多花粉粒发生了花粉管,但只有少数花粉管穿入了柱头;无論如何还是发生了某种輕微的影响,因为有許多子房多少变得发达了: 見孟加拉亞細亞学会学报, 1867 年, 第150頁。

⁴⁾ 丢沃諾伊 (Duvernoy), 該特納引用, 見杂种的形成, 第334頁。

⁵⁾ 艺园者記录, 1846年, 第183頁。

⁶⁾ 园艺学会会报,第七卷,1830年,第95頁。

⁷⁾ 列考克,关于繁殖, 1845年,第70頁;該特納,杂种的形成,第64頁。

10°1)。关于月桂状叶西番蓮 (P. laurifolia),一位具有丰富經驗的栽培者指出²⁾,它們的花"一定是由西番蓮的或其他某一普通种类的花粉而受精的,因为它們自己的花粉不会 使它們受精"。但是,关于这个問題的最詳細敍述是由司各脫先生和罗勃逊·蒙罗提出的³⁾;总状花序西番蓮、西番蓮以及有翅西番蓮許多年来都 在"爱丁堡植物园"中繁茂地开花,虽然反复不断地用它們自己的花粉来受精,却从来沒有产生过任何种子;但这三个物种当以各种途徑彼此杂交时,它們立即結了种子。 在西番蓮的場合中,三个植株 (其中有两株是在"植物园"生长的) 仅仅由于使用彼此的花粉来受精,就全都能稳。 在有翅西番蓮的場合中,按照同样的途徑得到了同样的結果,但这只是三株中的一株。 因为已經提到了如此众多的西番蓮屬的自交不稔的物种,所以应当散一能一年生的纖美西番蓮 (P. gracilis),它的花用自己的花粉和用不同植株的花粉几乎同样是能稔的;例如,自然地自花受精的 16 杂花結了果,平均每一个含有 21.3 粒种子,同时由 14 杂異花受精的花結的果含有 24.1 粒种子。

现在再来談談有翅西番蓮,1866 年我會收到罗勃逊·蒙罗的关于这种植物的詳細 敍 述。已 經談到三 种植物 (其中包括英国的一种)是頑固地自交不稳的,蒙罗先生告訴我說还有 其他 几种植物,經过多年的試驗之后,已被发現具有同样的性質。但在其他一些地方,这个物种当用自己的花粉来受精时,就容易地結果。在豪靡萎城有一株植物,道納尔得逊 (Donaldson) 先生以前會把它嫁接在一个名称不詳的不同物种上,嫁接之后,它用自己的花粉产生了大量的果实;所以这种不大的和不自然的变化在这株植物的这种状况下已經恢复了它的自交能稳性! 已經发現这种泰摩萎城植物的某些实生苗不仅用它們自己的花粉是不稳的,就是用彼此的花粉以及不同物种的花粉,也是不稳的。这种泰摩茨城植物的花粉不能使同一物种的某些植株受精,但能成功地使"爱丁堡植物园"中的一个植株受精。从后一組合培育出一些实生苗,蒙罗先生用它們自己的花粉使它們的一些花受精;但象母本一向証明的那样,除非由嫁接的秦摩茨城植物来授精,并且我們即将看到,除非由它自己的实生苗来授精,它們是自交不稳的。因为蒙罗先生用它自己的自交不稳实生苗的花粉使自交不稳母本植株上的 18 杂花受精,其显著有如事实所示,得到了充满优良种子的 18 个好蒴!我还没有遇到过一个有关植物的例子,它能象有翅西番蓮那样充分地闡明了:完善的能稳性或完善的不稳性取决于多么微小而神祕的原因。

迄今所举出的事实都同以下的情形有关,即純种当用自己的花粉来受精时,其能 稔性会大大減低或者完全遭到破坏,这是同它們当由不同个体或不同物种来受精时 的能稔性相比較而言;但在杂种中曾經观察过密切近似的事实。

赫伯特說⁴),有九个孤挺花(Hippeastrums)的 杂种同时开了花,这些杂种具有复杂的起源,是从几个物种传下来的,他发现"几乎每一杂花接觸另一杂种的花粉之后就能大量地产生种子;而接觸它們自己花粉的那些花或者完全不結英,或者緩慢地結較小爽,含有較少的种子"。他在园艺学报中还說,"把另一杂种孤挺花(不論是多么复杂的杂种)的花粉放入任何一杂花中,几乎肯定会

¹⁾ 艺园者記录, 1868年, 第1341頁。

²⁾ 同前書, 1866年,第1068頁。

³⁾ 林納学会会报,第八卷, 1864年,第1168頁。罗勃逊・罗蒙,爱丁堡植物学会会报,第九卷,第399頁。

⁴⁾ 石蒜科, 1837年, 第371頁。园艺学会学报, 第二卷, 1847年, 第19頁。

抑制其他花結实"。赫伯特博士在 1839 年写給我的一封信中說道,他已經在連續五年中进行了这些試驗,此后他又重复进行,其結果永远是一样的。 这样,他被引导对于一个純种(Hippeastrum aulicum)进行了相似的試驗,这是他最近从巴西輸入的: 这个鳞茎抽出了四朵花,其中的三朵花由它們自己的花粉来受精,第四朵花由孤挺花的三个物种(H. bulbulosum, riginae, vittatum)的三重杂种的花粉来受精;結果是,"最初三朵花的子房很快就停止生长,过了几天之后,完全死去了:而由杂种的花粉来受精的那朵花則結了蒴,它强壮而迅速地走向成熟,并且結了自由生长的良好种子"。正如赫伯特指出的那样,这試然是"一个奇怪的事实",但还不象下述事实那样奇怪。

作为这些事实的証明,我願補充以下一点:梅耶斯(M. Mayes)先生¹⁾在进行孤挺花屬的物种間杂交方面获得了丰富經驗之后說道,"我們充分知道,无論純种或杂种,用自己的花粉不如用其他的花粉可以那样大量地产生种子"。再者,新南威尔斯(New South Wales)的比得威尔(Bidwell)先生²⁾断言,頗茄形孤挺花(Amaryllis belladonna)用 Brunswigia(某些作者所訂的 Amaryllis 的異名)josephinae 或 B. multiflora 的花粉来受精比用它們自己的花粉来受精,可以产生多得多的种子。比东先生使曲花(Cyrtanthus)的四朵花由它們自己的花粉来受精,并且使其他四朵花由代洛塔花(Vallota[Amaryllis]purpurea)的花粉来受精;到了第七天,"那些接受自己花粉的花在生长上变慢了,并且最終死去了;那些同代洛塔花杂交的花还繼續发育"³⁾。但是,后面这些例子是同未杂交的物种有关的,同上述有关西番蓮屬、兰科植物等例子相似;在这里提到它們只是因为它們都屬于石蒜科(Amaryllidaceae)的同一类羣。

在对杂种孤挺花的試驗中,如果赫伯特发現,只有两三个种类的花粉比它們自己的花粉对于 某些种类更加有效的話,那末大概会发生这样的爭論: 这些种类由于它們的混杂系統,比其他种类 具有更密切的相互亲和力; 但这种解释难于被接受, 因为这些試驗是对九个不同的杂种交互进行 的: 无論用哪一种方式进行杂交, 永远可以証明这是高度有益的。 我再来補充一个显著而相似的 例子,这是勃罗姆雷・康芒 (Bromley Common) 的罗生 (A. Rawson) 牧师对于唐菖蒲 (Gladiolus) 的 一些复杂杂种所进行的試驗。 这位熟練的园艺家拥有這种植物的大量法国变种,彼此仅在花的顏 色和大小上有所差異, 所有这些变种都是从一个著名的古老杂种 (Gandavensis) 传下来的, 据說它 是从那塔尔唐菖蒲 (G. natalensis) 由南非东部唐菖蒲 (G. oppositiflorus) 授粉而传下来的⁴⁾。 罗牛 先生在重复了这些試驗之后发現,沒有一个变种用它們自己的花粉可以結子,縱使这是取自同一 变种(它当然是由鳞茎来繁殖的)的不同植株的花粉,但是,如果用任何其他变种的花粉,所有它們 都可以自由地結子。举两个例: Ophir 用它自己的花粉,連一个蒴也不結,但用 Janire, Brenchleyensis, Vulcain 和 Linné 的花粉来受精,却結了 10 个良好的蒴; Ophir 的花粉是健全的,因为 Linné 用它来受 精、結了 7 个蒴。相反地、这最后一个变种用它自己的花粉、是极端不稳的、但把它的花粉用于 Ophic 却是完全有效的。 罗生先生在 1861 年用其他变种的花粉一共使四个变种的 26 杂花受了精,每一 梁花都結了一个良好的种子蒴;但同时用自己的花粉使同样这些植株上52梁花受精,却沒有結一 个种子蒴。罗生先生在一些場合里用其他变种的花粉使互生的花受精,在其他場合里用其他变种 的花粉使穗状花序一侧的所有花受精,其余的花则由它們自己的花粉来受精。 当它們的蒴接近成 熟时我看到过这些植株,它們的奇妙排列立刻使人充分相信这些杂种的杂交产生了巨大的利益。

¹⁾ 拉烏頓的艺园者杂誌,第十一卷, 1835年,第260頁。

²⁾ 艺园者記录, 1850年, 第470頁。

³⁾ 园艺学会学报,第五卷,第135頁。这样育成的实生苗會經送於"园艺学会";但是根据詢問的結果,得知它們不幸于盈冬死去了。

⁴⁾ 比东先生,园艺学会学报,1861年,第453頁。 但列考克說(关于繁殖,1862年,第369頁),这个杂种是从 G. psittacinus 和 cardinalis 传下来的;但这同赫伯特的經驗相反,他发現前一个物种不能杂交。

最后,安提貝斯的包尔內特博士在岩薔薇(Cistus)的物种間杂交方面會經作过无数的試驗,但还沒有发表他的結果,他告訴我說:"当任何这等杂种是能稳的时候,就其机能来看,可以說它們是雌雄異株的;因为当雌蕊由自花的或同株上的花粉来受精时,它們总是不稳的。但是,使用的花粉如果取自具有同样杂种性質的不同个体,或者取自一个由反交 (reciprocal cross) 形成的杂种,它們便常常是能稳的"。

結論 雌雄两性要素虽然都适于生殖,但一些植物还是自交不稔的,这种情形最初一看好象同所有类推都相矛盾。 关于物种,所有它的个体虽然是在自然条件下住活,但都是处于上述状况之下的,所以我們可以作出这样的結論: 它們获得自交不稔性是为了有效地阻止自花受精。这种情形同二形的和三形的植物或花柱異长的植物是密切相似的,这些植物只有用不同类型植物的花粉才能充分地受精,並且象在上述場合中那样,同一物种的任何其他个体也可使它們受精。 某些这等花柱異长的植物用同一植株或同一类型的花粉是完全不稔的。关于生活在自然条件下的物种只有某些个体是自交不稔的(例如黄色木犀草),大概是这些植物为了保証偶尔的異花受精而成为自交不稔的,同时其他个体保持自交能稔是为了这个物种的繁殖。 这个例子同赫尔曼·繆勒所发现的那些产生两个类型的植物似乎是相似的,即一个类型开的花比較显眼,它們的构造适于由昆虫进行異花受精,另一个类型开的花比較不显眼,适于自花受精。但是,某些上述植物的自交不稔性是随着它們的生活条件而发生的,例如花菱草屬、費尼毛蕊毛(它的不稔性随着季节而变異)、有翅西番蓮(当嫁接在不同砧木上时它的自交能稔性就恢复了)都是如此。

在上述几个例子中,我們有趣地看到一个級进的系列:有些植物当进行自花受精时,产生充分数量的种子,但其实生苗比較矮小一些——有些植物当进行自花受精时,产生很少的种子——有些植物不产生种子,不过其子房多少有点发育——最后,有些植物的自己花粉和柱头彼此就象毒药般地相互发生作用。我們还有趣地看到,在上述某些例子中,完全的自交不稔性或完全的自交能稔性必須取决于花粉或胚珠的性質中多么微小的一点差異。自交不稔物种的各个个体当由任何其他个体的花粉来受精时,似乎都能产生完全数量的种子(虽然根据有关商麻屬的概述事实来判断,具有最近亲缘关系者必須除外):但沒有一个个体能由自己的花粉来受精。因为各个有机体和同一物种的各个其他个体之間只有某种輕微程度的差異,所以毫无疑問,它們的花粉和胚珠也是如此;在上述場合中,我們必須相信,完全的自交不稔性和完全的自交能稔性取决于胚珠和花粉中何等微小的差異,而不取决于它們在某种特殊方式上彼此有所分化;因为成千上万的个体的两性生殖要素不可能对于每一个其他个体

都特殊化了。 但是,在上述某些場合中,例如在某些西番蓮的場合中,花粉和胚珠之間的足以受精的分化量只是由使用不同物种的花粉才得到的;但这可能是由以下情形造成的,即这等植物由于它們的不自然生活条件而多少成为不稔的了。

拘禁在动物园中的外国动物同上述自变不稔的植物有时处于几乎一样的状况之下;因为,象我們在下一章将要看到的那样,某些猴,大形食肉类动物,几种磺鶸,親以及雉都和同一物种的个体一样地可以完全自由变配繁育,甚至能夠更加自由地变配繁育。 还要举出一些例子来指明,某些雄性的和雌性的家养动物尽管和同一种类的任何其他个体变配是能育的,但它們彼此之間却存在着性的不相合性。

在本章的前一部份中已經闡明,屬于同族而不同类的、要不是屬于不同族或不同 物种的个体之間的杂变可以增加后代的大小,提高其体質的強壮性,除了在杂交物种 的場合中,还可以提高其能育性。这个事实已經得到了育种者們的普遍証明(应当注 意到,我在这里所談的並不是近亲交配的恶劣結果),实际上,为了直接消費而育成的 杂种动物具有較高价值的情形已經証实了这一点。 在一些动物和植物的場合中,杂 交的良好結果还由实际的重量和大小得到了証明。由于杂交,純血統的动物就其特有 的品質来說虽然会明显地退化,但是,由于杂交而获得刚才提到的那种利益,似乎沒 有例外,甚至以前沒有进行过任何近亲交配,其情形也是如此;对于可以长期經得住 最近亲交配的动物,如牛和羊,这一法則也是适用的。

关于杂交物种,虽然在大小、強壮、早熟和抗性方面有所得,(除了稀有的例外),在能育性方面,程度大小不等地有所失;但上述各点的获得不能归因于补偿的原理;因为在杂种后代的增大和增強同其不育性之間並不存在密切的平行現象。 还有,已經明确証实了,完全能育的变种間杂种和不育的物种間杂种一样,都得到这些同样的利益。

在高等动物的場合中,关于保証不同种类之間的不时杂交,似乎並不存在特殊的适应性。导致雄者之間进行兇猛竞争的热烈慾望就足夠了;因为,甚至在羣棲动物的場合中,佔有支配地位的老的雄者經过一个时期之后将会被赶下台去,如果同族的一个亲緣关系最密切的成員是胜利的繼承者,那末这也不过是一种侥倖而已。 許多低等动物——如果是雌雄同体——的构造阻止它們的卵由同一个体的雄性生殖要素而受精;所以两个个体的变配还是必要的。在其他場合中,和不同个体的雄性生殖要素相接触至少是可能的。 关于植物,它們是固定于地中的,不能象动物那样地漫遊于各地,对于異花受精,它們的无数适应性完善得令人吃惊,凡是研究过这个問題的人都承認这一点。

长期不断的近亲交配的恶劣結果並不象杂交的良好效果那样容易地得到辨識。 因为银化县涿衡的。尽管如此, 那些具有最丰富經驗的人們还普遍認为, 恶劣結果迟 早不可避免地要发生,不过不同的动物有不同的速度,特别是关于繁殖迅速的动物更 加如此。 毫无疑問, 一种錯誤的信念会象一种迷信那样地广泛流行: 但难于想象的 是,如此众多的敏銳观察者們花了非常大的代价和麻煩而全部陷于錯誤。 一个雄性 动物有时可能同它的女儿、孙女等等交配,甚至連續交配七代而沒有任何显著的恶劣 結果,但关于被視为最近亲交配的兄弟姐妹之間的交配从来沒有在若干相等的世代 中进行过試驗。我們有良好的理由可以相信,把同族的成員养在不同的場所,特別是 暴露在多少不同的生活条件下,並且使这些族偶尔进行杂交,近亲交配的恶劣結果可 能大大減小或者完全消失。 这等恶劣結果是指体質強壮性、大小和能育性的損失而 言,但在身体的一般形态方面或在其他优良品質方面並不一定有所退化。 我們已經 看到,关于猪,第一流动物是經过长期不断的近亲交配而产生出来的,虽然它們当同 近亲进行交配时变得極其不育了。 能育性的損失, 当它发生时, 似乎从来不是絕对 的,而只是和同一血統的动物的比較而言;所以这种不育性在某种范围內同自交不稔 的植物是相似的,这等植物不能由自己的花粉而受精,只有由同一物种的任何其他个 •体的花粉才是完全能稔的。作为长期近亲交配之結果的这种特殊性質的不育性的事 实闡明了,近亲交配的作用並不仅仅是結合和扩大双亲所共有的各种病态倾向;因为 具有这等倾向的动物,如果当时不是实际有病的,一般都能繁殖它們的种类。虽然从 最近亲屬传下来的后代並不一定在构造上都是退化的,但有些作者相信它們有变成 畸形的显著倾向:这並不是不可能的,因为減小生命力的每一件事都按着这一途徑发 生作用。在猪、血狠以及某些其他动物的場合中这种事例已有所記載。

最后,当我們考虑到現在列举的各种事实,它們明显地闡明了杂交可以产生良好結果,並且較不明显地闡明了近亲交配可以产生恶劣結果,同时如果我們配住,在很多有机体的場合中对于不同个体的偶尔結合已經有精巧的設备,那末一項伟大自然法則的存在差不多就得到了証实;这就是,亲緣关系并不密切的动物或植物的杂交是高度有利的,甚至是必不可少的,同时在許多世代中連續进行近亲交配是有害的。

第十八章 **改变生活条件的利与不利**: **不育性的各种原因**

由生活条件的微小变化而发生的利益——动物在其原产地以及在动物园中 由于 生活条件改变而发生的不育性——哺乳类、鳥类以及昆虫类——次級性徵和本能的 消失——不育性的原因——由于生活条件改变而发生的家养动物的不育性——个体 动物的性的不調和——由于生活条件改变而发生的植物的不稳性——花药的不 完全——作为不稳性的原因的畸形——重瓣花——无子果实——由于营养器官的过度发育而 发生的不稳性——由于長期不断的芽繁殖而发生的不稳性——初发的不稳性、即重瓣花和无子果实的主要原因。

由于生活条件的微小变化而发生的利益 当考虑到是否有任何既知事实对于上一章所达到的結論——即杂交可以产生利益,並且所有生物都必須不时杂交是一項自然的法則——可以提供說明的时候,我認为由于生活条件的微小变化而发生利益这一点可能合乎这一目的之用,因为这是一种相似的現象。 沒有两个个体在体質和构造上是絕对相象的,至于两个变种就更加如此了;当一方的胚由另一方的雄性生殖要素而受精时,我們可以相信,它的作用同一个个体暴露在稍微变化了的条件之下多少有些相似。現在,每一个人一定都已經注意到易地疗养对于病人复原的显著影响,並且沒有一个医生怀疑这种疗法的正确性。拥有一点土地的小农确信改换牧場对于他們的牛是有巨大利益的。在植物的場合中,从尽可能不同的土壤或地方交换种子、块茎、鱗茎和插条可以得到巨大利益,在这方面是有強有力的証据的。

关于植物可以这样得到利益的信念,不論它是否有良好的根据,自从哥留美拉(耶穌紀元不久即行著述)一直到今天,已經稳定地被保持下来了;这种信念現在还流行于英国、法国和德国¹⁾。一位敏鋭的观察者 勃賴德雷在 1724 年的著述²⁾中說道,"当我們一旦成为一种优良种子的所有者时,我們至少应当把它們送給兩三个人家,那里的土壤和地点的差异愈大愈好,每年这种种子的栽培者应該彼此进行交換;利用这种办法,我发现种子的优良性可以保持若干年。因为如果不用这种办法,許多农民的收获就会不好並且成为重大的损失者",于是他提供了他自己对于这个問題的实

¹⁾ 关于英国,参阅下交。关于德国,参阅梅兹加, 谷类作物的性質 (Getreidearten), 1841 年, 第 63 頁。 关于法国,罗兹列尔-德隆卡姆就这个問題举出了很多参考资料。关于法国南部,参阅高德龙, Florula Juvenalis, 1854 年, 第 28 頁。

²⁾ 农业通論 (A General Treatise of Husbandry), 第三卷, 第 58 頁。

际經驗。一位近代作者¹⁾ 确言,"在农业中最能明确証实的是:任何一个变种連續生長于同一地区,都会使它容易在質量上发生退化"。另一位作者說,他在同一块土地上密切靠近地播种了兩小区小麦,它們原是同一系統的产物,其中一小区的小麦种子是在同一块土地上收获的,另一小区的小麥种子是在隔开一些的土地上收获的,从后面这些种子得到的好收成有显著差異。 <u>薩立</u>(Surrey)有一位先生長久以来就从事培育並出售小麥种子的交易,而且他的小麥售价在市場上 永 远 比别人的高,他肯定地向我說,他发现不断地变換他的种子是緊要的事情,为了这个目的,他設置了兩处农場,它們的土壤和海拔都有很大差异。

关于馬鈴薯的块茎,我发現交換它們的秧苗几乎在各地都是实行的。 <u>兰开那</u>的优秀馬 鈴薯 栽培者們以前慣于从<u>苏格兰</u>取得块茎,但他們发現,"从沼地 (moss-lands) 移植,或者相反地进行,一般就足够了"。以前在法国,沃斯季 (Vosge) 的馬鈴薯收成五、六十年以来都按照 120—150 布什爾 (Bushel) 到 30—40 布什爾这样的比例減低;著名的奧勃林 (Oberlin)把他得到的可惊的良好結果大部份归因于变換秧苗²⁾。

一位著名的实践艺园者鲁滨孙先生³⁾肯定地說道,他自己會亲眼看到从同一种类、但来自英国的不同土壤和远隔地方的玉葱鳞茎、馬鈴薯块茎以及各种种子所得到的决定性利益。他进一步說道,关于由插条繁殖的植物,就象天竺葵屬、特別象大丽菊屬那样,可以从曾經栽培于另一地方的同一变种的植株得到显著的利益;或者,"如果場所范围允許的話,那末可以从某一种类的土壤中取得插条,栽植在另一种类的土壤里,以便对于植物的利益提供似乎非常必要的变化"。他主张經过一段时間之后这种性質的交換就会"强制栽培者这样进行,不論他是否对此有所准备"。另一位优秀的园艺者费施(Fish)先生作过相似的敍述:他从一位隣人那里得到了荷包花屬的同一变种的插条,"它們比他自己所有的插条强壮得多,对于二者的处理是接照完全一样的方式进行的",他把这种情形完全归因于他自己拥有的植物已經使它們的地点消耗殆尽或者厌倦于那个地点了"。这种情形多少在嫁接的和芽接的果树中明显地发生过;因为按照阿貝(Abbey)的材料,在不同的變种、甚至物种上或者在以前會經嫁接过的砧木上,比在用作嫁接的变种的种子所产生出来的砧木上,接枝或接芽一般可以更容易地成活;他相信这完全不能由該砧木更好地适于該地的土壤和气候来作解释。但应当补充說明的是,变种被嫁接在或芽接在很不相同的种类上虽然比被嫁接在密切近似的砧木上能够更容易地成活,並且一开始就能更旺盛地生長,不过此后往往会变得不健康。

我會研究过得謝尔的周密而精細的試驗¹,这些試驗是为反駁变換种子可以得到利益的那种普通信念而进行的;他肯定地指出,同一粒种子被謹慎地栽培在同一农場中(沒有提到是否在完全一样的土壤中),可以連續十年而沒有任何損失。另一位优秀的观察者考特尔上校⁵,得出 同样的結論;但是,他然后明确地补充說道,如果使用同一粒种子,"那末在施用一年堆肥的土地上生长的植株,会变得适于播种在施用石灰的土地上,然后会变得适于播种在施用草木灰的土地上,于是又会变得适于播种在施用混合肥料的土地上,等等。" 实际上这就是在同一农場范围之內的有系

¹⁾ 艺园者紀錄和农业新报, 1858年, 第247頁; 关于第二种敍達, 同前書, 1850年, 第702頁。 关于同一問題, 参閱互克尔牧师的高地农业協会的懸賞論文 (Prize Essay of Highland Agricult, Soc.), 第二卷, 第200頁。 还有馬歇尔的农业备忘錄 (Minutes of Agriculture), 11 月, 1775年。

²⁾ 奥勃林 (Oberlin) 的回忆錄 (Memoirs), 英譯本。第 73 頁。 关于兰开郡, 参閱馬歇尔的報告評論 (Review of Reports), 1808 年, 第 295 頁。

³⁾ 家庭艺园者, 1856年,第186頁,关于魯滨孫先生的以后敍述,参閱园艺学报, 2月18日, 1866年,第121頁。关于阿貝的有关嫁接的意見等等,同前書, 7月18日, 1865年,第44頁。

⁴⁾ 法国科学院院报, 1790年, 第209頁。

⁵⁾ 小麥品种 (On the Varieties of Wheat), 第52頁。

統的交換种子。

总之,許多栽培者們所支持的交換种子、块茎等等可以产生良好結果的这一信念似乎具有相当充分的基础。 几乎不可相信的是,这样产生的利益好像是由于种子在某一土壤中得到了其他土壤中所缺少的某种化学元素,因而大量地影响了这种植物以后的全部生长,特别当它們是很小的种子时,好象就更加不可相信。当植物一旦发芽之后即行固定于同一地点时,大概可以預料到它們由于变換地方而得到的良好效果比不断漫遊的动物更加明显;而实际情形显然就是如此。 生活取决于或者存在于极其复杂力量的不断活动,它們的作用在某种途徑上似乎是受各个有机体生活于其中的环境的微小变化所刺激。 像赫伯特·斯賓塞1)所說的那样,自然界的所有力量有一种趋于平衡的傾向,並且对于各个有机体的生活来說,这种傾向受到抑制是必要的。 这种观点以及上述事员一方面对于品种杂交的良好效果大概可以提供解释,因为胚将会由于新的力量而这样发生微小的改变或受到微小的作用;另一方面,对于延續許多世代的近亲交配的恶劣效果大概也可以提供解释,在这些世代中胚将会从具有几乎同一体質的雄者那里受到作用。

由于生活条件变化而发生的不育性

現在我将試着闡明,动物和植物当离开它們的自然条件时,常常在某种程度上变得不育或者完全不育;甚至当条件沒有多大变化的时候,这种情形也会发生。这个結論同我們刚刚做出的結論、即其他种类的較小变化对于生物是有利的,並不一定有矛盾。 現在討論的这个問題具有某种重要性,因为它同变異性的原因有紧密的关联。間接地,恐怕它同物种当杂交时的不育性也有关系;这因为一方面生活条件的微小变化对于植物和动物是有利的,並且变种的杂交可以使它們的后代在大小、強壮性和能育性方面有所增加,所以另一方面生活条件的某种其他变化便成了不育性的原因;同时由于这种情形同样地是从大大改变了的类型或物种而发生的,所以我們便拥有一系列平行而重复的事实,它們之間的关系显然是密切的。

众所周知,許多动物虽然是完全馴化的,但还不能在拘禁中繁育。 因此,小圣喜

¹⁾ 斯宾塞先生在他的生物学原理 (Principles of Biology, 1864年, 第二卷, 第一章) 中充分而且巧妙地討論了这整个問題。我在粉种起源第一版(1859年, 第267頁) 中談到: 从生活条件的微小变化以及杂交鉴育可以产生良好效果,从生活条件的巨大变化以及大不相同的类型之間的杂交可以产生恶劣效果,这一系列的事实"是由某种普通的、但未知的紐带連系在一起,並且同生命原理有不質的关联"。

来尔1) 在不能于拘禁中繁育的馴化动物和能夠自由繁育的真正家养动物之間划出了 一条寬闊的界線;如第十六章所示,后者一般比在自然状况下更能自由地繁育。大多 数动物的馴化是可能的,而且一般是容易的;但經驗示明,有規律地繁育它們却是困 雅的, 甚至很少的繁育也具困难的。我对这个問題将詳細地进行討論: 但具举那些似 平島有說明力的例子。我的材料取自散在于各种著作中的記載,特別是取自"倫敦动 物学会"的职員們亲切为我作出的报告,这份报告具有特別的价值,因为它配录了 1836—46 年这九年間的所有例子、它們指出: 动物交配不产生后代,还有就已經知道 的情况来說、它們从不交配。我根据相繼发表到 1865 年的各个年度的报告修正了这 份报告的原稿2)。 关于动物的繁育,在葛雷博士所写的諾斯雷动物园拾集(Gleanings from the Menageries of Knowsley Hall) 那部巨著中列举了許多事实。 我还向旧"薩 立动物园"的有經驗的鳥类飼養者作过特別調查。我应当先說一下,对于动物处理的 **做小变化有时会造成它們的能育性的巨大差異:因而在不同动物园中所看到的結果** 可能有所不同。 的确,自从 1846 年以后,我們"动物园"中的某些动物已經变得更加 能夠生育了。根据弗·居維叶对于"法国植物园"(Jardin des Plantes)的記載³⁾,那里 动物的繁育在以前显然不如現在这样自由;例如,在高度多产的鴨族中,那时只有一 个物种产生小鴨。

然而最显著的例子是由在原产地飼养的动物提供的,它們虽然完全馴化了,十分健康,並且被允許有某种自由,但絕对地不繁育。倫格⁴⁾ 在巴拉圭特別注意过这个問題,他詳細列举了六种四足兽都处于这种状态中;他还提到其他两三种动物只有极其稀少的繁育。 <u>倍芝先生在他有关亚馬逊河的著作中堅决主张相似的情况⁵⁾;他并且說,当印第安</u>人飼养彻底馴化的当地哺乳类和鳥类时,它們不繁育,这个事实不能由他們的讀散或不关心得到全部解释,因为各个辽远的部落都飼养并且繁育吐綬鶏和鶏。 在世界上差不多每一处地方——例如在非洲的腹地以及波里尼西亚 諸 島的若干地方——土人极其喜欢馴养当地的四足兽类和鳥类;但他們很少或者从来沒有能够成功地使它們繁育。

关于动物在拘禁中不繁育的例子,最显著的是关于象的。在土著的印度人家庭中大量饲养着象,它們可以活到老年,强壮得足可以从事最剧烈的劳动;但除去很少的例外,从来不知道它們甚至

¹⁾ 普通动物学論文集, 1841年, 第256頁。

²⁾ 自从本書第一版問世以后,斯雷特尔先生发表了一张从1848至1867年在动物园中曾經繁育过的哺乳动物的物种表(动物学会会报,1868年,第623頁)。关于偶蹄类,侗养了85个物种,其中在20年間只少繁育过一次的物种为1比1.9;有袋类有28种,繁育过的为1比2.5;食肉类有74种,繁育遇的为1比3.0; 警齿类有52种,繁育过的为1比4.7;四手类(Quadrumana)有75种,繁育过的为1比6.2。

³⁾ 关于发情 (Du Rut),博物館年报, 1807年,第九卷,第 120頁。

⁴⁾ 巴拉圭的哺乳动物, 1830年, 第49,106,118,124,201,208,249,265,327頁。

^{5/} 亚馬逊河上的博物学者, 1863年, 第一卷, 第99, 103頁; 第二卷, 第113頁。

会交配,虽然雄者和雌者都有定时的发情期。但是,我們如果稍微向东前进到阿瓦,克劳弗得先生1)告訴我們說,"它們在家养状态下或者至少在一般飼养雌象的半家养状态下的繁育情形是每天都要发生的";克劳弗得先生告訴我說,他相信这种差异必須完全归因于允許雌象以某种程度的自由漫遊于森林之中。 另一方面,根据海勃尔 (Heber) 主教的記載²⁾,被捕获的犀牛在印度的繁育似乎比象容易得多。 馬屬的四个野生种曾在歐洲繁育过,虽然这里在它們的生活习性方面遭遇了巨大的变化;但它們的物种一般都彼此进行过杂交。 猪族的大多数成員在我們动物园中能够容易地繁育; 甚至来自西非酷热平原的紅色河猪 (Potamochoerus penicillatus) 在"动物园"中也繁育过两次。在这里西猯 (Dicotyles torquatus) 也繁育过数次,但另一物种(D. labiatus) 虽然已經馴化到半家养的地步,据說在巴拉圭的原产地却极少繁育,以致按照倫格的說法³⁾,这种情形还需要证实。 倍芝先生說,在亚馬索拿 (Amazonia),印第安人虽然常常馴养養,但它們从来不繁育。

反獨类在英国一般可以十分自由地繁育,虽然它們是从大不相同的气候引进的,这在动物园 年报以及德尔比勳爵动物园拾集中都有所敍述。

食肉动物除了其中的跛行类以外,其自由繁育的程度約当反芻类的一半(虽然不时 出 現 例 外)。貓科 (Felidae) 的許多物种會在各个动物园中繁育,虽然它們是从各种不同气候的地区輸入 的,而且还是受到严密拘禁的。 現任"动物园"主任巴列特4)先生說,獅子比該科其他任何物种 的繁育更加常見,而且每胎可以产生更多的小獅子。他又說,虎极少繁育;"但是关于雌虎和雄獅之 間的繁育,却有若干十分确凿的事例"。許多拘禁中的动物同不同物种交配并且产生杂种,其自由 的程度就象同它們自己的物种進行繁育一样,或者甚至还要自由些,这种情形雖似奇怪,但确會发 生。根据法更納博士以及其他人們的調查,拘禁中的虎在印度好象不繁育,虽然据知它們是交配 的。巴列特先生从来不知道猎豹 (Felis jubata) 在英国繁育, 但它在弗兰克福 (Frankfort) 繁育;在 印度它也不繁育,印度大量飼养它們以供狩猎之用;但使它們繁育並不費力,因为只有在自然状 况下猎取食物的那些动物才是有用的,而且才是有訓練价值的5)。 按照倫格的材料,在巴拉圭有 兩个野貓的物种,虽然彻底馴化了,但从来不繁育。貓科的許多品种虽然在"动物园"中可以容易 地繁育,但交配之后决不会每次都怀胎;在那份九年間的"报告"中,列举了各个不同的物种,曾 經看到它們交配过 73 次,毫无疑問,一定还有許多次沒有被看到;但在这 73 次的交配中只有 15 **次生产。"动物园"中的食**肉类动物以前並不象現在这样自由地暴露在大气和寒冷中,前"动物 园"主任米勒(Miller) 向我肯定地說道,这种管理上的变化大大增加了它們的能育性。 最有 才能 的判断者巴列特先生說,"值得注意的是,獅子在旅行团体中比在'动物园'中能够更自由地繁育; 从轉移的地方产生出来的不断兴奋和刺激,或者空气的变化,大概对于这桩事情有相当的影响"。

大科的許多成員在拘禁中可以容易地 繁育。 道尔狗 (Dhole) 是印度最不容易馴化的动物中的一种,法更納博士在那里养过一对,产生了小狗。另一方面,狐极少繁育,我从来沒有听說歐洲狐有过这种情形: 但是北美銀狐 (Canis argentatus) 在"动物园"中已經繁育过数次了。 甚至水獭在那里也繁育。 任人皆知, 华家养的雪貂品种多么容易繁育, 虽然它們是被关在小得可怜的箍子中的;但灵貓 (Viverra) 和狸貓 (Paradoxurus) 的其他物种在"动物园"中却絕对不繁育。 袭 (Genetta)

¹⁾ 阿瓦宮廷出使記,第一卷,第153頁。

²⁾ 日記 (Journal), 第一卷, 第 213 頁。

³⁾ 哺乳动物 (Saugethiere),第 327 頁。

⁴⁾ 关于大形黏料动物的繁育 (On the Breeding of the Larger Felidae), 动物学会会报, 1861 年, 第 140 頁。

⁵⁾ 斯利曼 (Sleeman) 的印度漫游記 (Rambles in India),第二卷, 策 10 頁。

在这里和"法国植物园"中都曾繁育过,而且产生了杂种。有一种豫(Herpestes fasciatus)同样地可以繁育;但以前有人肯定地向我說过,另一种樣(H. griseus)在"动物园"中雖然飼养的很多,但从不繁育。

跛行食肉类在拘禁中的繁育远不象其他食肉类那样地自由,虽然关于这个事实不能举出任何理由。 在那份九年間的"报告"中說道,熊被看到在"动物园"中是自由交配的,但在 1848 年以前,受孕的情形极其罕見。在迄今为止所发表的"报告"中,已經說到有三个物种产生了小熊(其中一例是杂种),但可惊的是,北极白熊也會产生过小熊。獾(Meles taxus)在"动物园"中繁育过数大,但我沒有听說在英国其他地方发生过这种情形,这种事一定很罕見,因为在德国的一个事例曾被認为有記載下来的价值¹⁾。 在巴拉圭,土著的狗(Nasua)虽然成配偶地被飼养了許多年而且完全馴化了,但按照倫格的材料,从来不知道它們繁育过或者有过任何性的性慾;我听倍芝先生散,这种动物或蜜熊(Cercoleptes)在亚馬索拿繁育过。其他兩个跛行的屬——浣熊(Procyon)和狼獾(Gulo)——虽然常常可以在巴拉圭馴養,但从来不在那里繁育。 在"动物园"中,曾看到狗和浣熊的物种交配过,但它們沒有产过仔。

因为家兔、豚鼠和小白鼠当被拘禁在各种气候之下时能够如此大量地繁育, 所以可能設想到 齧齿目的大多数其他成員大概也可以在拘禁中繁育,但事实並非如此。 当闡明繁育能力和亲緣之 間如何有关系的时候,值得注意的是,巴拉圭有一种齧齿动物叫做驵蝨 (Cavia aperea),它在那里自 由地繁育,并且連續产生了各代;这种动物同豚鼠如此密切相似,以致曾被錯誤地認为是它的通 先类型"。在"动物园"中,有些齧齿动物曾經交配过,但从不产仔;还有些旣不交配也不繁育;只有 少数是繁育的,例如:豪豬 (Porcupine) 繁育过不止一次, 巴貝利鼠 (Parbary mouse)、旅鼠 (Lemming)、岑其拉泵以及刺鼠(Dasyprocta aguti)繁育过数次。刺鼠在巴拉圭也产过仔,虽然它們生下来 就是死的或是畸形的;但按照倍芝先生的材料,它們在亚馬索拿从不繁育,虽然它們常常被馴养于 住家的周围。 狀狐 (Caelogenys paca) 在那里也不繁育。 我相信普通山兔在歐洲决不于拘禁中繁 育,雖然按照最近的記述,它會同家免杂交过30。 我从来沒有听說睡鼠(dormouse)在拘禁中繁育 过。 但松鼠提供了一个更引人注意的例子:除了一个例外,在"动物园"中沒有一个物种繁育过, 雖然松鼠的一个物种 (S. palmarum) 的十四个个体在一起被飼养了若干年。 松鼠的另一物种 (S. cinerca) 曾被看到交配过,但不产仔;这个物种在原产地北美极端剔化之后,也从来沒有听說它产 过仔4)。 在德尔比勳爵的动物园中,大量飼养了許多种类的松鼠,但管理人湯卜逊先生告訴我說, 沒有一种在那里繁育過,据他所知,在別处也沒有繁育过。我从来沒有听說英国松鼠在拘禁中繁育 过。但在"动物园"中有一物种,即飞松鼠 (Sciuropterus volucella),繁育过不止一次,这恐怕是預料 不到的。 它在伯明翰附近也繁育过数次;但雌者在一胎中产的仔从来沒有超过2只,而在它的原 产地美洲,一胎可产3到6只5)。

¹⁾ 魏格曼的博物学女庫 (Aschiv für Naturgesch), 1837年,第162頁。

²⁾ 給格,哺乳动物,第276頁。关于豚鼠的血統,参閱小圣喜来尔的普通博物学。我會把我从拉普拉他的租 每身上采集的虱子送給利茲(Leeds)的彈尼(H. Denny)先生,他告訴我說,这同在豚鼠身上找到的虱 子並不屬于同一層。关于租篷不是豚鼠的祖先,这是一个重要的証据;而且值得提出,因为有些作者錯誤 地認为豚鼠自从家养以后,如果同<u>粗碎进</u>行杂交,就变成不育的了。

³⁾ 正如勃洛加博士所描述的(生理学学报,第二卷,第 370 頁), 冤科 (Leporides) 的存在虽然已被断然地 否定了,但皮季奥 (Pigeaux) 博士还断言山兔和家兔曾經产生过杂种(博物学年报,第二十卷 1867 年,第 75 頁)。

⁴⁾ 北美四足兽 (Quadrupeds of North America), 奧杜旁和巴哈曼著, 1846 年, 第 268 頁。

⁵⁾ 拉烏頓的博物学杂志,第九卷,1836年,第571頁;奧杜劳和巴哈曼的北美四足獸,第221頁。

在那份有关"动物园"的九年間"报告"中,据說樑类极其自由地交配,但在这一期間,許多个体虽然飼养在一起,却只有7次生育。我听說只有美洲猴——弗(Ouistiti)——在歐洲繁育¹⁾。 按照弗劳 金斯的材料,一种獼猴(Macacus)在巴黎繁育,該屬的不止一个物种在倫敦都产仔,特別是恆河猴(Macacus rhesus)在任何地方都表現有于拘禁中繁育的特別能力。在巴黎以及在倫敦从这一屬产生了杂种。亚拉伯狒狒(Cynocephalus hamadryas)²⁾ 以及一种長尾猴(Cercopithecus)都會在"动物园"中繁育过,而且后一物种还在諾森勃兰公爵的动物园中繁育过。狐猴(Lemurs)这一科的若干成員在"动物园"中产生过杂种。远远更加值得注意的是,猴类在原产地于拘禁中繁育的情形是很罕見的;例如一种卷尾猴(Cebus azarce)在巴拉圭屡屡而且完全地馴化了,但倫格說³⁾,它的繁育是如此罕見,以致他看到过的产仔雌猴决不超过兩只。对于巴西土人常常剔养的猴类进行过相似的观察⁴⁾。在亚馬索拿,这等动物如此常常地在馴化状态下被飼养着,以致倍芝先生当走过帕拉(Pará)的一条街的时候就数出了13个物种,但象他所断言的那样,从来不知道它們于拘禁中繁育过⁵⁾。

鳥類

鳥类在某些方面比四足类提供了更好的証据,因为它們繁育較快,而且飼养的數量較大6)。我們已經看到,在拘禁中食肉动物的能育性比其他大多数哺乳动物都强。对于食肉鳥类来說,其情形恰恰相反。据說7)在歐洲用于狩猎的鷹,多至 18 个物种,在波斯和印度还有其他几个物种8);它們在原产地一向以最美好的条件被飼养着,并且已經从事狩猎达六年、八年或九年之久9),但关于它們产仔的情形却沒有任何記載。这等鳥是在以前幼小的时候被捉到的,代价很高,从冰島、挪威、瑞典輸入,因此,如果可能的話,它們大概会被繁殖的。在"法国植物园",据知沒有一种食肉鳥會經交配过10)。在"动物园"中,或者在旧"蓬利动物园"中,應、兀鷹或鴞都沒有产生过能育的卵,只有一次例外:在"动物园"中神鹰和禽(Milvus niger)产生过能育的卵。然而有几个物种,即Aguila fusea,Haliaetus leucocephalus,Falco tinnunculus,F. subbuteo,Buteo vulgaris,在"动物园"中曾被看到交配过。摩利斯(Morris)先生11)把一只茶隼(Falco tinnunculus)在鳥籠中生育的情形作为

²⁾ 参閱动物学会年度报告 (Annual Reports Zoolog. Soc.), 1855,1858,1863,1864年;时代新聞, 8月10日,1847年;弗勞侖斯,关于本能,第85頁。

³⁾ 哺乳动物,第34,49 頁。

⁴⁾ 关于巴西 (Art. Brazil), 小百科全書 (Penny Cyclop.), 第 363 頁。

⁵⁾ 亚馬逊河上的博物学者,第一卷,第99頁。

⁶⁾ 自从本書第一版問世以后,斯雷特尔先生发表了一张 1848 至 1867 年在"动物园"中曾經繁育过的鳥类的物种表,見动物学学会报,1869 年,第626 頁。关于鳩鶴亚目,飼养了51 个物种,关于雁屬,飼养了80 个物种,在这两科中,20年間至少繁育过一次的物种为1 比 2.6。关于碧鶏类,飼养了83 个物种,繁育过的为1 比 2.7; 涉禽類有57 種,繁育過的為1 比 9; 执握類 (Prehensores) 有110 種,繁育過的為1 比 22; 鳴禽类有178 种,繁育过的为1 比 25.4; 鷹类有94 种,繁育过的为1 比 47; 啄木鳥类有25 种,肴繁类 (Herodiones) 有35 种,这两类中没有一个物种繁育过。

⁷⁾ 田猎百科全書,第691頁。

⁸⁾ 按照勃尔恩斯爵士的材料(卡布尔,第51頁),在信德用于狩獵的鷹有8个物种。

⁹⁾ 拉鳥頓的博物学杂誌,第六卷,1833年,第110頁。

^{·10)} 弗·居維叶,博物館年报,第九卷,第128頁。

¹¹⁾ 动物学者,第七一八卷,1849-50年,第2648頁。

唯一的事实来敍述。据知在"动物园"中交配过的一种鴞是驚鵵(Bubo Maximus);这个物种表現有 在拘禁中繁育的特別傾向;因为在阿兰得尔城 (Arundel Castle)有一对这种鳥,它們被养在更接近 自然的状况之下,"从来沒有落到被剥夺自由的一种动物的那样命運"¹¹⁾,实际上它們是产仔的。 革尼先生关于这只鴞于拘禁中繁育举过另一事例;并且他还記載了一个例子:鴞的第二个物种,即 Strix passerina,,于拘禁中繁育²⁾。

关于較小的草食鳥类,許多种类已經在它們的原产地养馴,而且可以活得長久;但是,正如龍鳥的最高权威者³⁾所說的那样,它們的繁殖是"非常困难的"。金絲雀表明了这等鳥在拘禁中自由繁育並沒有先天的困难; 奥杜旁說⁴⁾,北美的一种燕雀 (Fringilla ciris) 繁育得就象金絲雀那 样完 善。关于在拘禁中饲养的許多雀类在繁育上的困难是格外显著的,因为可以指出 12 个以上的物种,曾用金絲雀交配并且产生过杂种;但是除了黄雀 (Fringilla spinus)以外,几乎沒有一种这等鳥繁殖过它們自己的种类。甚至鷽 (Loxia pyrrhula) 同屬于异屬的金絲雀之間的繁育也象同它自己的物种之間的繁育一样地常見⁵⁾。关于鷚 (Alauda arvensis),我會听說它們在範中生活了七年,从来沒有产过仔;一位伟大的倫敦养鳥家肯定地向我說,他从来不知道关于它們繁育的事例;保管會經有过一个例子被記載下来了⁶⁾。在那份来自"动物学会"的九年間"报告"中,列举了24个不繁育的燕雀类的物种,在这等物种中据知只有四个會經交配过。

鸚鵡是活得奇怪长久的鳥; 洪波特提到一种南美鸚鵡的引人注意的事实,它們說的是一种絕 灰的印第安部落的語言,所以这种鳥保存了亡失語言的唯一遺蹟。 甚至在这个地区,也有理由可 以相信⁷⁾ 鸚鵡會經活过将近一百年;虽然在歐洲飼养了許多鸚鵡,但它們的繁育是如此罕見,以致 这种情形被認为有載于最重要出版物中的价值⁸⁾。 保管如此,当布克斯頓 (Buxton) 先生在諾福克 放走了大量的鸚鵡之后,有三对在兩季間繁育了 10 只小鸚鵡;这种成功可以归因于它們的自由生活⁹⁾。 按照貝西斯坦的材料¹⁰⁾,非洲貫珠舌 (Psittacus erithacus) 的繁育比其他任何德国品种 都 更 加常見: 另外一种鸚鵡 (P. macoa) 也偶尔产生能育的卵,但成功地把它們孵化出来的情形則罕見;然而这种鳥孵卵的本能有时发达得如此强烈,以致它会孵鶏卵或鴿卵。 在"动物园"以及旧"薩利动物园"中有少数物种交配过,但是除了长尾鸚鵡 (parrakeets) 以外,都不繁育。 远远更加值得注意的一个事实是,在基阿那,象肖恩勃克告訴我說的那样,印第安人常常把兩个种类的鸚鵡从集中拿走,並且大量地飼养它們;它們是如此馴順,以致可以自由地飞翔于住房的周围,当发出喂食的呼喚时,它們就象鴿子一般地飞回来;但关于它們的繁育,他从来沒有听說过一个事例¹¹⁾。 一位居

¹⁾ 克諾克斯 (Knox), 隨賽克斯島类漫談 (Ornithological Rambles in Sussex), 節 91 頁。

²⁾ 动物学者, 第七一八卷, 1849-50 年, 第2566 頁; 第九-十卷, 1851-2 年, 第3207 頁。

³⁾ 貝西斯坦, 籠鳥誌, 1840年, 第20頁。

⁴⁾ 鳥类学記,第五卷,第517 頁。

⁵⁾ 在动物学者(第一一二卷, 1843—45年)中記載过一个例子。 关于黄雀的繁育, 見第三一四卷, 1845—46年, 第1075頁。 貝西斯坦, 籠鳥誌; 第139頁, 他談到營造巢, 但极少产仔。

⁶⁾ 雅列尔的不列颠鳥类誌, 1839年, 第一卷, 第412頁。

⁷⁾ 拉烏頓的博物学杂誌,第十九卷,1836年,第347頁。

⁸⁾ 博物館紀要 (Mémoires du Muséum d'Hist. Nat.) 第十卷, 第 314 頁: 关于鸚鵡在法国的擁有記載了 5 个例子。 再参閱英国动物学会报告 (Report Brit. Assoc. Zoolog.), 1843 年。

⁹⁾ 博物学年报, 11 月, 1868年, 第311 頁。

¹⁰⁾ 籠鳥誌,第105,83頁。

¹¹⁾ 汗考克 (Hancock) 博士說 (查理沃茨的博物学杂誌,第二卷,1838年,第492頁),"奇怪的是,在基阿那的土著有用鳥类当中,沒有发现一种在印地安人部落里是可以繁殖的; 但这个地区到处都有普通鶏的飼養"。

住在牙買加的自然学者希尔¹⁾說,"沒有任何鳥比鸚鵡族更容易得到人的信賴了,但关于鸚鵡在这种馴化生活中繁育的事例,还不知道有一个"。 希尔先生列举了許多其他在西印度羣島养馴的土著鳥类,它們在这种状况下从不繁育。

鴿的大科对鸚鵡提供了一个显著的对照:在那份九年間的"报告"中,被記載下来的有十三个物种會經繁育过,更引人注意的是,只有二个物种會被看到交配而沒有产仔。 自从上述时期以后,各个年度的报告都記載了各种不同鴿子的許多繁育例子。 兩 种 大 形 的 羽 冠 鴿(Goura coronata 和 victoriae)产生了杂种;促管如此,关于前一个物种,象克劳弗得先生告訴我說的那样,在派南(Penang)公园饲养了 12 只以上,那里的气候完全适宜,但它們从来沒有繁育过一次。 有一种鴿(Columba migratoria)在原产地北美永远产两个卵,但在德尔比勳爵的动物园中产的卵从来沒有多过一个。有人观察到另一种鴿(C. leucocephala)也是如此²)。

許多屬的鶉鷄类的鳥同样地表現了一种在拘禁中繁育的显著能力。 维类特别如此,但英国物种在拘禁中产卵很少多于 10 个;而在野生状况下,其数量通常为 18 到 20 个³)。 在鶉鷄类的場合中就象在其他所有"目"的場合中那样,关于某些物种和屬在拘禁中的能育性是有显著而无 法解释的例外的。 有关普通鷓鴣的試驗虽然进行了許多,但它們很少繁育,甚至在大鳥籠中飼养时也是如此;而且母鷓鴣从来不孵自己的卵⁴)。 顧安鳥(Guans)、即凤冠雉科的美洲族显著容易 地 馴化,不過在这个地区它是很羞怯的繁育者⁵);但是如果加以注意,各个不同的物种以前在荷兰頗能自由地繁育⁶。 印第安人常常在它們的原产地飼养这一族鳥,它們是处于完全馴化状态之下的,但它們从不繁育¬。 大概会預料到松鷄由于它們的生活习性在拘禁中不繁育,特別是因为据說它們很快就衰弱而死去శ³)。 但是关于它們的繁育却記載了許多例子: 有一种松鷄(Tetrao urogallus)會在"动物园"中繁育;当它在挪威受到拘禁时,它的繁育也沒有多大困难,在俄国會經連續地繁育了五代: Tetrao tetrix 同样地在挪威繁育;T. scoticus 在冰島繁育;T. umbellus 在德尔比勳爵公园中繁育;T. cupido 在北美繁育。

在自由漫遊于热带砂漠平原或茂密森林之后,駝鳥科的成員一旦被关进溫暖气候中的狹小籠子里去,那末比它們在习性上所必須遭受的变化还要再大的变化,是几乎不可能想象出来的;但几乎所有种类在各个不同的动物园中都會屡屡地产仔,甚至从新爱尔兰来的食火鷄(Casuarias bennettii)也是如此。非洲駝鳥在法国南部虽然完全健康而且可以活得久,但它們产卵从来不会多于12到15个,而它在原产地則可产卵25到30个9。这里我們看到能育性于拘禁中受到損害而不是

¹⁾ 皇家港的一週 (A Week at Port Royal), 1855年, 第7頁。

²⁾ 奥杜旁,美国鳥类誌 (American Ornithology), 第五卷, 第552,557 頁。

³⁾ 摩勃雷論鶏,第七版,第133頁。

⁴⁾ 覃明克, 始鴿类的普通博物学, 1813年, 第三卷, 第288, 382頁; 博物学年报, 第十二卷, 1843年, 第453頁。 鹧鸪的其他物种曾經偶尔繁育过; 紅胞鷓鴣 (P. rubra) 在法國的一个大庭院中飼养时曾繁育过(参閱生理学学报, 第二十五卷, 第294頁), 1856年在"动物园"中也曾繁育过。

⁵⁾ 狄克逊牧师, 鵓鴿, 1851年, 第243—252頁。

⁶⁾ 覃明克,鳩鴿类的普通博物學,第二卷,第456,458頁;第三卷,第2,13,47頁。

⁷⁾ 倍芝,亚馬逊河上的博物学者,第一卷,第193頁;第二卷,第112頁。

⁸⁾ 覃明克, 始鴿类的普通动物学, 第二卷, 第125頁。关于 Tetrao urogallus, 参閱洛伊得的北歐田猎 (Field Sports of North of Europe), 第一卷, 第287, 314頁; 馴化学会会报, 第七卷, 1860年, 第609頁。关于 T. scoticus, 参閱湯 卜逊, 爱尔兰的博物学, 第二卷, 1850年, 第49頁。关于 T. Cupido, 参阅波土顿博物学学报, 第三卷, 第199頁。

⁹⁾ 瑪賽尔・得賽尔斯 (Marcel de Serres), 博物学年报,第二轉,动物部份,第十三卷,第 175 頁。

消失的另一事例,飞松鼠、雌雉以及美洲鸽的两个物种也是如此。

正如狄克逊牧師向我說的那样,大部份涉禽类都能显著容易地馴化;不过其中有几种不能于拘禁中活久,所以它們的不育性在这种状况下並不足为奇。鎖的繁育比其他屬容易:在巴黎和在英国"动物园"中的一种鶴(Grus montigresia)曾經繁育了数次,在"动物园"中的 G. cinerea 以及在加尔哥客的 G. antigone 也是如此。在这个大"目"的其他成員中,Tetrapteryx paradisea 曾在諾斯雷繁育过,青鷄(Porphyrio)曾在西西里繁育过,並且歐洲黑水鶏(Gallinula chloropus)曾在"动物园"中繁育过。另一方面,见于这个目的几种鳥在它們的原产地子買加井不繁育;基阿那的印第安人虽然把喇叭鳥(Psophia)养在他的房屋附近,"但据知它們很少或者从不繁育""。

鴨这一大科的成員就象鳩鴿类和鶉鶏类一样容易地于拘禁中繁育; 攷虑到它們的水生习性和漫遊习性以及食物性質,这种情形是預料不到的。 甚至在前些时候,大約有两打物种會在"动物區"中繁育过;塞勒斯·郎切姆卜斯記載了从該科的 44 个不同成員产生出来的杂种;牛頓教授在其中又加上了少數几个例子²)。 狄克逊先生³) 說,"在广大的世界中,从严格的意义来說,不能家养的鵝是沒有的";这就是說,它們都能于拘禁中繁育;不过这一敍述未免太大胆了。同一物种的不同个体的繁育能力有时有所不同;例如奥杜旁⁴)把一种野鵝(Anser canadensis)飼养了八年以上,但它們沒有交配过;然而同一物种的其他个体都在第二年就产仔了。我只知道一个事例:在全科中有一个物种于拘禁中絕对拒絕繁育,这就是 Dendrocygna viduata,虽然按照肖恩勃克的材料⁵),它是容易馴化的,而且基阿那的印第安人常常飼养它們。最后,关于鷗(Gulls),虽然會經在"动物園"以及在旧"薩利动物园"中飼养了許多,但关于它們在1848年以前交配和繁育的事例,还不知道有一个;不过自从那一时期以后,矢尾鷗(Larus argentatus)在"动物园"中以及在诺斯雷已經繁育过許多次了。

我們有理由可以相信,昆虫也象高等动物那样地受到拘禁的影响。众所熟知,天蛾科如果受到这样的待遇,則很少繁育。一位巴黎的昆虫学者⁶⁾饲养了一种天蚕蛾科昆虫(Saturnia pyri)的 25 个标本,但从来沒有成功地得到一粒能育的 卵。在拘禁中饲养的栗蚕蛾科昆虫(Orthosia munda)的以及地蚕蛾科昆虫的許多雌者,对于雄者沒有吸引力⁷⁾。 紐泡特 (Newport) 先生饲养了两个蛱蝶物种的差不多 100 个个体,但沒有交配的;然而,这种情形大概可以归因于它們在飞翔中交配的习性⁸⁾。阿特金逊 (Atkinson) 先生在印度从来沒有能够成功地使塔罗蚕 (Tarroo) 于拘禁中繁育过⁹⁾。有許多蛾、特別是天蛾科当在非孵化季节的秋季孵化时,似乎是完全不育的;但后面这个例子多少还有些暖味不明¹⁰⁾。

¹⁾ 汗考克博士,查理沃茨的博物學杂態,第二卷, 1838年,第 491 頁;希尔,皇家港的一週,第 8 頁;動物同导游 (Guide to the Zoological Gardens),斯雷特尔著, 1859年,第 11,12 頁; 賭斯雷动物园,舊雷博士著, 1846年,第 14 頁;勃里斯,孟加拉亚耙亚学会报告,5 月, 1855年。

²⁾ 牛頓教授, 动物学会会报, 1860年, 第336頁。

³⁾ 鴿合和鳥籠 (Dovecote and Aviary), 第 428 頁。

⁴⁾ 鳥类学記,第三卷,第9頁。

⁵⁾ 地理学报 (Geograph. Journal), 第十三卷, 1844年, 第 32 頁。

⁶⁾ 拉烏頓的博物学杂誌,第五卷, 1832年,第153頁。

⁷⁾ 动物学者,第五-六卷, 1847-48年, 第1660頁。

⁸⁾ 昆虫学会会报,第四卷, 1845年,第60頁。

⁹⁾ 林納学会会招,第七卷,第40頁。

¹⁰⁾ 参閱紐曼先生在动物学者(1857年,第5764頁)所寫的一篇有趣論文;华来斯博士,昆虫学会会报,6月4日,1860年,第119頁。

且不論許多动物于拘禁中不交配或者交配而不产仔的事实,还有另一种証据可以証明它們的性机能受到了攪扰。 关于雄鳥当被拘禁时失去它們的特有羽衣,已經記載了許多例子。例如普通紅雀(Linota cannabina)当被关进籠子里的时候,便不在胸前出現漂亮的深紅色,並且有一只黃道眉(Emberiza passerina)失去了它的头上的黑色。鷽和黃鸝据观察呈現了雌鳥的顏色单調的羽衣;白隼又返归了早期的羽衣¹⁾。 諾斯雷动物园主任<u>湯卜逊</u>先生告訴我說,他常常观察到相似的事实。一种雄鹿(Cervus canadensis)的角在从美国出发的航行期間发育不好,但此后在巴黎又生出了完善的角。

当怀胎是在拘禁中发生的时候,产出来的仔常常是死的,或者很快地死去,或者是畸形的。这种情形屡屡在"动物园"中发生,並且按照<u>偷格</u>的材料,<u>巴拉圭</u>的土著动物在拘禁中也是如此。母兽常常沒有乳汁。我們还可以把常常发生的导致母兽吃掉其初生后代的那种異常本能——一种不可思議的倒錯症(Perversion)的例子——归因于性机能的受到攪扰。

現在已經提出了足夠的証据,可以証明动物当初受拘禁时它們的生殖系統显著 有遭到損害的傾向。 最初我們自然想把这种結果归因于健康的損失,或者至少归因 于活力的損失;但是我們如果考虑到許多动物在拘禁中是多末健康、长寿而且活力強 一例如: 鸚鵡,用于狩猎的鷹,用于狩猎的猎豹(Chetahs)以及象,那末上述这种观 点便差不多是不能接受的。 生殖器官本身並沒有得病;通常使动物园中的动物死去 的疾病决不是那些影响其能育性的疾病。沒有一种家养动物比綿羊更容易得病的了, 但它是显著多产的。 动物于拘禁中不繁育有时可以完全归因于它們的性本能的衰 退: 这可能偶尔起作用,但是,的确除非間接地由于生殖系統本身受到攪扰,就沒有明 显的理由可以說明为什么这种本能在完全馴化的动物中应当特別容易受到影响。再 者,关于各种动物于拘禁中可以自由地交配、但从不受孕,已經举出了很多例子;或者 它們如果受孕並且产仔,不过其后代在数量上比該物种在自然状况下为少。 在植物 界中,本能当然沒有作用;我們即将看到,当植物被移开它們的自然条件时,它們几乎 就象动物那样地受到影响。 气候的变换不能是能育性損失的原因,因为从极不相同 气候的地区輸入到欧洲的許多动物可以自由地繁育,同时当其他动物在原产地受到 拘禁时却是完全不育的。食物的变换也不能是主要的原因;因为鸵鳥、鴨以及許多其

¹⁾ 雅列尔的英国的鳥类,第一卷,第506頁;貝西斯坦,龍鳥誌,第185頁;皇家學会会型,1772年,第271頁。勃龙曾經蒐集过很多例子(自然史,第二卷,第96頁)。 关于鹿的例子,参閱小百科全書,第八卷,第350頁。

他动物在这一方面一定遭遇到改变,但它們自由地繁育。 食肉鳥类当受到拘禁时是 极端不育的,而大部分食肉哺乳动物,除了蹠行类以外,都是适度能育的。 食物的量 也不能成为一个原因;因为对于有价值的动物肯定会有足夠的供給;而沒有理由可以 假設供給它們的食物比供給我們的保持充分能育性的优良家养动物还要多得多。最后,根据象、猎豹、各种鬻以及在原产地被允許过着差不多自由生活的許多动物的情形,我們可以推論無少运动也不是唯一的原因。

生活习性的任何变化,不管这等习性是什么,如果大到足夠的程度,就有按照无 法說明的涂徑影响繁殖能力的傾向。这种結果取决于物种的体質比取决于变化的性 質为多;因为某些整个的类羣比其他类羣受到的影响为大;但是例外总会发生,因为 在最能育的类羣中有些物种拒絕繁育。在最不育的类羣中有些物种却自由地繁育。正 如有人肯定地向我說过的那样,通常于拘禁中自由繁育的那些动物在最初輸入后的 一两年之內,很少在"动物园"中繁育。 当一般于拘禁中不育的动物偶然繁育了的时 候,它們的仔並不承繼这种能力:因为如果承繼这种能力,那末在展覽会上有价值的 各种四足兽类和鳥类大概就会变得不稀罕了。勃洛加博士甚至断言1,"法国动物园" 中的許多动物在連續产仔三、四代之后,还是变成不育的了;但这可能是过于近亲交 配的結果。有一种值得注意的情形: 許多哺乳类和鳥类于拘禁中曾經产生过杂种,其 容易的程度同它們繁殖自己的种类完全一样,或者甚至还要容易。关于这一事实,已 經举过許多例子2);这使我們想起,有些植物当被栽培时拒絕由自己的花粉受精,但 能夠容易地由不同物种的花粉受精。 最后,我們必須象結論所限定的那样做出如下 的結論: 变化了的生活条件对于生殖系統具有发生有害作用的特殊能力。 整个这种 情形是十分特殊的,因为这等器官虽然沒有得病,但它們因此便不能施行或者不能完 全地施行其固有机能了。

由于变化了的生活条件而发生的家养动物的不育性 关于家养动物,因为家养主要决定于它們在拘禁中的自由繁育,所以我們不应期待任何中等程度的变化对于它們的生殖系統会发生影响。有些四足兽类和鳥类的野生物种最容易在动物园中繁育,这些四足兽类和鳥类向我們提供了最大多数的家养产物。 世界上大部份地方的未开化人都欢喜剧养动物3;如果任何这等动物能够按期

¹⁾ 生理学学报,第二卷,第347頁。

²⁾ 关于这个問題的补充証据,参閱弗·居維叶,博物館年报,第十二卷,第119頁。

³⁾ 可以举出很多亦例。例如利威斯東說(旅行記,第217頁),巴洛朵(Barotse)是一个內地的部落,同白种人素无来往,該地之王极其喜欢馴养动物,每一个小羚羊都得送給他。高尔顿告訴我說,达班拉斯人(Damaras)也喜欢飼养兽类。南美的印第安人有同样的习惯。章尔克斯(Wilkes)船长說,薩摩亚琴島(Samoan Islands)的玻里尼西亚人馴养鸽子;新西兰人,象曼特尔(Mantell)先生告訴我說的那样,飼养各种总类。

产仔而且同时是有用的話,它們大概立刻就会受到家养。当它們的主人迁移到其他地方的时候;如果发現它們还能經得住各种不同的气候;那末它們的价值将会更大;在拘禁中容易繁育的动物似乎一般都能經得住不同的气候。少数的家养动物,如馴鹿(reindeer)和駱駝,提供了一个例外。許多家养动物能够忍受最不自然的条件而不減低其能育性;例如家兔、豚鼠以及雪貂能够在可怜的狭窄小箱中繁育。少数任何种类的歐洲狗經得住歐洲的气候而不退化,但是象法更納博士告訴我說的那样,在它們活着的期間,它們都保持了能育性;按照但尼尔博士的材料,带到塞拉·勒窩內的英国狗也是如此。原产于印度炎热丛林中的鷄在世界各地变得比其原始祖先更能育,直到远在北方的格林兰和西伯利亚北部才不如此,鷄在那里不繁育。我在秋季从塞拉·勒窩內直接收到的鷄和鴿都立刻准备交配。我还看到鴿子在从上尼罗(Upper Nile)輸入后的一年內就和普通种类一样地自由繁育。 珠鷄原产于非洲炎热而干燥的沙漠地带,当生活在我們潮湿而凉爽的气候中时,它們大量地产卵。

尽管如此,在新条件之下的家养动物还偶尔表現了能育性减低的征候。 罗林断言,在赤道戈 迪列拉的炎热山谷中,綿羊不能充分受精²⁾;按照檢梅維尔勳爵的材料³⁾,他从西班牙輸入的美利 奴羊一开始并不完全能育。 据說4)母馬用料喂大,然后換以靑草,最初不繁育。象我們已經看到的 能育的金絲雀也不常見5)。在德里的炎热而干燥的地方,象法更納博士告訴我說的那样,吐綬 鷄的 卵虽然被放在雌者之下,也非常不容易孵化。 按照罗林的材料,把鵝带到波哥大的极高的高原地 带,最初难得产卵,其后也只产少数的卵;能孵化的卵几乎不到四分之一,而且二分之一的小鹅要死 去;到了第二代,它們就比較能育了;当罗林这样記述时,它們已經变得同歐洲鵝一样地能育了。关 于奎托 (Quito) 山谷, 奥尔东先生說道6): "山谷中仅有的一些鵙都是从歐洲輸入的, 并且它們拒絕 繁殖"。有人断言,在菲律宾羣島,鵝不繁育,甚至不产卵"。 更引人注意的一个例子是,按照罗林 的材料, 当鷄最初被引进到波利非亚 (Bolivia) 的克斯科 (Cusco) 时是不育的, 但以后变得十分能育 了;后来引进的英国斗鷄还沒有达到充分能育的地步,因为从一窩鷄卵中育出两三只雛鷄就被認 为是幸运的了。在歐洲,严密拘禁对于鷄的能育性有显著影响:在法国已經发現,如果允許鷄有 相当的自由,只有百分之二十的卵不孵化;如果允許它們有較少的自由,就有百分之四十的卵不孵 化;如果把它們放在严密的拘禁中,則有百分之六十的卵不孵化⁸⁾。所以我們知道,不自然而变 化了的生活条件对于大部份彻底家养化的动物的能育性产生了某种影响,其情形同捕获的野生动 物是一样的,虽然在程度上輕得多。

某些雄者同雌者不能进行繁育,但据知双方同其他雄者和雌者却完全能育,这种情形并不罕見。我們沒有理由假設,这种情形是由于这等动物遭遇到生活习性上的任何变化而引起的;因此这等例子同現在的問題差不多沒有什么关系。其原因显然在于交配双方的內在的性的不調和。斯

¹⁾ 有关鶏的例子,参閱料米欧, 學化的方法 (L'Art de faire Eclore), 1749年,第243頁;賽克斯上校, 动物学会会报, 1832年。关于鶏在北方不育, 参閱拉索姆 (Latham) 的鳥类誌,第八卷, 1823年,第169頁。

²⁾ 法国科学院当代各門科学論文集,第六卷,1835年,第347頁。

³⁾ 尤亚特論羊,第181頁。

⁴⁾ 米勒斯 (J. Mills), 关于牛的論文, 1776, 第72 頁。

⁵⁾ 貝西斯坦, 籠鳥誌, 第242頁。

⁶⁾ 安第斯山和亚馬逊河 (The Andes and Amazon), 1870 年, 第107 頁。

⁷⁾ 克勞弗得,印度羣島描述辞與, 1856年, 第145頁。

⁸⁾ 驯化学会会报,第九卷, 1862年,第380,384頁。

营納先生(以他的"杂交育种"的論文而聞名)、伊頓的伊頓先生、韦克斯特得(Wicksted)先生以及其他育种者、特別是吉斯菲尔得(Chelsfield)的卫村先生都写信向我說过有关馬、牛、猪、狐堤、其他狗和鴿的若干事例」。在这等事例中,以前或以后都被証明是能育的雌者却不能同某些雄者进行繁育,这些都會是她們特別願意同其交配的雄者。在一个雌者同第二个雄者交配之前,她的体質有时可能发生变化;但在其他場合中,这种解說几乎是不可支持的,据知并非不孕的一个雌者同一个据知也是完全能育的同一雄者交配了七、八次,都失敗了,二輪車母馬有时同純血統的种馬不能进行繁育,但此后却同二輪車种馬进行繁育,斯普納先生有意把这种失敗归因于公竟跑馬的性的能力較小。但是通过卫林先生,我會从現今一位最伟大的竟跑馬育种者那里听到,"一匹母馬常常发生这样一种情形:她在一个或两个生殖季节中同一匹具有公認生殖能力的特別种馬交配了几次,但証明是不孕的;这匹母馬此后同某一匹公馬交配,却立刻繁育了"。这些事实是值得記載下来的,因为它們象上述如此众多的事实那样地闡明了动物的能育性取决于多么微小的体質差异。

由于变化了的生活条件以及其他原**因** 而发生的植物的不稔性

在植物界中,不稔性的情形屡屡发生,这同上述动物界中的情形是相似的。但这个問題由于即将討論的以下几种情况而暧昧不明,即被<u>該特納命名为某种病害的花</u>药不完全——畸形——花的重瓣——非常增大了的果实——由芽来进行的长期不断而过度的繁殖。

众所周知,許多植物在我們的花园中或溫室中虽然可以最完全健康地生活着,但是很少或者 从不結子。我所指的不是那些由于太湿、或太热或肥料太多而只长叶的植物;因为这等植物不开 花,而且整个情况是完全不同的。 我所指的也不是那些由于缺少热而不能成熟的果实或者由于水 分太大而致腐烂的果实。 但是許多外国植物的胚珠和花粉看来好象都是完全健康的,却一点也不 結子。 根据我自己的观察得知,在許多場合中,不稳性仅仅是由于缺少适当的昆虫把花粉运到柱 头所致。 除了剛才所举的几个例子以外,还有許多这样的植物:它們的生殖器官由于它們居处于 其中的生活条件发生了改变而严重地受到影响。

对于許多細节进行敍述会令人生厌。林納很久以前就观察了高山植物虽然在自然 状况 下結子²⁾,但在花园中加以栽培之后,結的子就很少,或者一点也不結。但是例外常常发生:野生 華麗(Draba sylvestris) 是一种彻头彻尾的高山植物,它們在<u>倫敦</u>附近 华生 先生的花园中由种子自行 繁殖;克納 (Kerner) 特別注意过高山植物的栽培,他发现各个不同种类在栽培之后都能自然地播散自己的种子³⁾。 自然生长于泥炭土中的許多植物,在我們的花园中是完全不稔的。 我會注意过有关若

¹⁾ 关于鴿, 参閱賈波獨斯, 比利时的渡鴿 (Le Pigeon Voyageur Belge), 1865年, 第66頁。

²⁾ 瑞典法典 (Swedist Acts),第一卷,1739年,第3頁。 帕拉斯作过同样的敍述,見他的旅行記(英國本), 第一卷,第292頁。

³⁾ 克納,高山植物的栽培 (Die Culture der Alpenpflanzen), 1864年,第139頁; 华生的不列颠的賽貝尔,第一卷,第131頁; 卡美命也曾写过关于高山植物栽培的交章, 見艺园者紀錄, 1848年,第253,268頁,並且提到其中有少數是結子的。

千百合科植物的相同事实, 侭管这些植物的生長是旺盛的。

正如我自己观察的那样,施肥过多可以致使某些种类完全不稳。由于这种原因而引起的不稳 性的傾向是遺传的;例如,按照該特納的材料1),对于大多数禾本科、十字花科和豆科的植物施以 过多肥料几乎是不可能的,同时多浆的球根植物容易受到影响。土壤的极端瘠薄比較不容易引起不 稔性:但我发現在一块常常刈割而从不施肥的草地上生长的小三叶草(Trifolium minus)和白三叶 草(T. repens)的矮生植株决不結子。 土壤溫度和植物灌水期对于它們的能稔性常常有显著的影 响,开洛依德在紫茉莉屬的場合中观察过这种情形2)。"爱丁堡植物园"的司各脱先生观察到洪都 拉斯秋翁西迪姆兰 (Oncidium divaricatum) 虽然在一个篮子中繁茂地生长,但不結子,而在水分多 一点的花盆中便能受精。一种天竺葵 (Pelargonium fulgidum) 自从被引进后的多年以来都自由地結 子;然后又变得不稔了;現今如果在冬季把它养在干燥的溫室中,它还是能稔的3)。其他一些天竺葵 的变种是不稔的,还有些是能稔的,关于这点我們不能举出任何理由。一株植物的位置上的很微小 变化,或者栽植在堤岸上或者栽植在堤岸的基部,有时就会在它的結子方面造成完全的不同。溫度 对于植物的能稔性比对于动物的能育性显然具有更强的影响。促管如此,奇怪的是,有少数植物經 得住何等重大的变化而不減低其能稔性:例如原产于普拉他中等溫暖堤岸上的葱蓮 (Zephyranthes Candida) 可以在利瑪 (Lima) 附近的炎熱而干燥的地方自行播散其种子,在約克郡它可以抵抗最严 酷的霜寒,并且我曾看到从复雪达三周之久的蒴中采集到的种子4。来自炎热的印度卡西亚(Khasia) 区域的一种小檗(Berberis Wallichii)沒有受到我們最剧烈的霜寒为害,并且它的果实在我們的凉 爽夏季中成熟了。 侭管如此, 我还認为我們必須把許多外来植物的不稔性归因于气候的变化; 例 如,波斯和中国的丁香花 (Syringa persica 和 chinensis) 虽然在这里完全能抗寒,但从不結子;普通 丁香花(S. vulgaris)在我們这里可以适当地結子,但在德国的一些地方,它的蒴却从来不含有种 子5)。前一童所举出的有关自交不稔植物的少数例子似乎可以在这里加以介紹,因为它們的状况 大概是由于它們遭遇到的生活条件所致。

因为花粉一旦在形成的过程中就不容易受到損害,所以植物的能稳性由于生活件条的微小变化而容易受到影响的傾向更加值得注意;植物可以移植,或者一个具有花芽的枝条可以被切下来放在水中并且其花粉将会成熟。花粉也是一旦成熟之后,可以保持几个星期、甚至几个月⁶)。雌性器官的感受性較强,因为該特納⁷⁾发現,当双子叶植物受到小心移植而并不衰弱的时候,它們也很少能够受精;盆栽植物甚至也会发生这种情形,如果它們的根已經长出盆底的孔眼之外。但在少数場合中,例如在毛地黄屬的場合中,移植并不妨碍受精;按照莫茲(Mawz)的証明,蕪菁(Brassica rapa)連根被拔出之后放入水中,它的种子可以成熟。几种单子叶植物的花茎被切下来放入水中,同样可以結子。但在这等場合中我認为花已經受精了,因为赫伯特发现⁸⁾,在番紅花屬(Crocus)的場合中,植株在受精之后可以移植或切断,而且其种子还会完成;但是如果在受精以前移植,再施以花粉就沒有力量了。

¹⁾ 有关受精知識的論交, 1844年, 第333頁。

²⁾ 圣彼得堡新报(Nova acta Petrop.) 1793年,第391頁。

³⁾ 家庭艺园者, 1856年, 第44,109頁。

⁴⁾ 赫伯特博士, 石蒜科, 第176頁。

⁵⁾ 該特納,关于受精的知識,第560,564頁。

⁶⁾ 艺园者紀錄, 1844年,第 215 頁; 1850年,第 470 頁。 費維尔在他的物种的变异性 (La Variabilité des Espèces, 1868年,第 155 頁)一書中就这个問題作出过一个优秀的摘要。

⁷⁾ 关于受精的知識,第252,333頁。

⁸⁾ 园艺学会学报,第二卷, 1847年,第83頁。

經过长久栽培的植物一般能够忍受各种巨大的变化而不減低其能稔性;然而在大多数場合中,这不是家养动物所能忍受的那样巨大变化。 值得注意的是,許多植物在这等环境条件下受到如此 重大的影响,以致它們的化学成分的比例和性質都有所改变,但它們的能稔性却沒有受到損害。例如,像法更納博士告訴我說的那样,当以下的植物被栽培在印度的平原和山岳地带时,大麻糠維的特性、亚麻种于的含油量、罂粟中的尼古丁(narcotin)和嗚啡(morphine)的比例、小麦中淀粉对麸質(gluten)的比例都有巨大的差异;保管如此,所有它們都保持了充分的能稔性。

枯萎的,或者变成褐色而坚硬的,并且不含良好的花粉。 当处于这种情况之下时,它們同大多数不 稔的杂种完全相似。 該特納¹⁾ 在关于这个問題的討論中闡明了許多"目"的植物偶尔会受到这样 的影响;但石竹科(Caryophyllaceae)和百合科(Liliaceae)受到的影响最大,我認为还可以把計劃科 (Ericaceae) 加入到这等"目"的植物中去。 雌蕊不完全 (Contabescence) 在程度上有所不同。但同一 植株上的花所受到的影响程度却一般几乎是一样的。 在花芽的很早时期花藕就受到了影响,而且 在这株植物的全部生活期間都保持同一状态 (只有一个記載下来的例外)。这种影响不能借着处理 的任何变化得到矯正,并且可以由压条、插条等等、恐怕甚至还可以由种子繁殖下去。在雄蕊不完 全的植物中雌性器官很少受到影响,或者仅是在它們的发育中变成为早熟**的。 这种影响的原因还** 不明,并且在不同的場合中有所不同。直到我讀了該特納的討論之前,我把它归因于植物受到了不 自然的处理,赫伯特好象也是这样主张;但是它在变化了的条件下的不变性以及雌**性器官的不受** 影响似乎同这一观点有矛盾。 我們花園中的几种土著植物变成雄蕊不完全这一專实最初看 来 似 乎同这一观点也有同等的矛盾; 但开洛依德相信这是移植的結果。魏格曼所发現的野生石竹屬和 毛蕊花屬的雄蕊不完全的植物生长于干燥而不毛的堤岸上。 外国植物显著有受到这种影响 的 傾 向,这一事实似乎也闡明了它在某种方式上是由不自然处理所引起的。 在某些事例中,例如在麦 瓶草屬 (Silene) 的場合中, 影特納的观点似乎最可能是正确的,那就是說, 这种影响是由物种所固 有的一种变成雌雄异株的倾向所引起的。 我还可以补充另一种原因,即花柱异长植物的异型花精 合、因为我會观察过报春屬的三个物种的实生苗以及柳状千屈菜 (Lythrum salicaria) 的实生苗,它 們是由用自己类型的花粉进行异型花受精的那些植株育成的,它們的一些花莉或者全部花葯都处 于雄蕊不完全的状况之下。恐怕还有另外一种原因,即自花受精;因为从自花受精的种子育成的石 竹屬和半边蓮屬的許多植物的花药都处于这种状况之下;但这些事例并不是沒有爭論余地的。因 为这两个屬都有由于其他原因而受到这种影响的傾向。

相反性質的例子同样地会发生,即有些植物的雌性器官受到不稳性的打击,而雄性器官却保持完全。該特納²⁾描述过日本石竹(Dianthus japonicus)、一种西番蓮以及煙草都是处于这种异常状态之下的。

作为不稳性的一种原因的畸形 构造的巨大偏差甚至在生殖器官本身沒有受到严重 影响的时候有时也会致使植物成为不稔的。但在其他場合中,植物可能变成为极端的畸形,然而还保持它們的充分能稔性。 加列肖肯定有丰富的經驗³⁾,他常常把不稔性归于这种原因;但可以怀疑的是,在他所举的某些例子中,不稔性是畸形生长的原因,并非其結果。 奇妙的圣瓦列利苹果虽然结果,但极少产生种子。 以前描述过的寒地秋海棠的不可思議的畸形花虽然好象适于結实,但是不

¹⁾ 关于受精的知識,第117頁以次;開洛依德,第二續編,第10頁,121頁;第三續編,第57頁。 **赫伯特**,五 壽科,第355頁。魏格曼,杂种的形成,第27頁。

²⁾ 杂种的形成, 第356 頁。

³⁾ 植物繁育的理論, 1816年, 第84頁; 柑橘类的研究, 1811年, 第67頁。

稔的¹⁾。 报秦屬的萼色鮮明的物种据說²⁾常常是不稔的,虽然我知道它們是能稔的。 另一方面, 沃尔洛特举出能够由种子繁殖的多育花 (proliferous flowers) 的几个例子。 有一种罂粟也是如此, 由于花瓣的融合,它变成为单瓣的了。 还有一种异常的罂粟3),它的雄蕊由无数小形的附加包囊 所代替,同样地可以由种子繁殖自己。 有一种叫作水楊梅形虎耳草 (Saxifraga geum) 的植物也是 如此,一系列偶发的心皮在它們的雄蕊和正常心皮之間发育了4),在这些心皮在的边緣上生有胚 珠。最后,关于离开自然构造非常之远的反常整齐花——柳穿魚的反常整齐花一般似乎是多少不 稔的,而以前描述过的金魚草(Antirrhinum majus)当用自己的花粉进行人工授精时却是完全能稳 的,虽然当放任不管它們的时候就是不稔的,因为蜜蜂不能爬进狹窄的管形花。 按照高德龙的材 料5), 球茎紫堇 (Corydalis solida) 的反常整齐花有时是不稔的, 有时是能稔的; 而大岩桐(Gloxina) 可以結大量的种子是众所熟知的。在温室的天竺葵中,繖形花的中央花常常是反常整齐的,馬斯特 先生告訴我說,他在数年期間試图从这种花得到种子,但都失敗了。 同样地,我也作过許多失敗的 尝試,但有时用另一变种的正常花的花粉使它們受精而获得成功;相反地,我也會几次用反常整齐 花的花粉使正常花受精。只有一次我从一朵由另一变种的反常整齐花的花粉来受精的反常整齐花 成功地培育出一株植物来;但可以补充一点;这株植物在构造上并沒有表現什么特別的地方。因 此我們可以断言:沒有任何一般的法則可以被制定出來;但是,离开其正常构造的任何巨大偏差, 甚至在生殖器官本身沒有受到严重影响的时候,也肯定会常常引致性的不能。

重辦花 当雄蕊轉化为花瓣的时候,这株植物在雄性方面就会变成不育的;当雄蕊和雌蕊都发生这样变化的时候,这株植物就会变成完全不稳的。 具有很多雄蕊和花瓣的等数花最有变成重瓣的傾向,这恐怕是由于复数器官最富变异性而发生的。但是,只具有少数雄蕊的花以及在构造上是非等数的其他一些花有时会变成重瓣的,我們所看到的林納豆(Ulex)和金魚草就是如此。菊科植物开放被称为重瓣的花,这是由于它們中央管花花冠的畸形发育。 重瓣性有时同多产性⁶¹或花軸的繼續生长有关。重瓣性是强烈遗传的。 像林德雷所說的那样⁷¹,沒有人用促进植物完全健康的方法产生过重瓣花。相反地,不自然的生活条件却有利于它們的产生。有某种理由可以使我們相信,保存多年的种子以及据說是受精不完全的种子比新鮮的和受精完全的种子能够更自由地产生重瓣花⁸¹。 在肥沃土壤中长期不断的栽培似乎是最普通的激发原因。一种重瓣水仙以及一种重瓣罗馬加密儿列菊(Anthemis nobilis)被移植到很瘠薄的土壤之后,据观察就变成为单瓣的了⁹¹;我曾看到一株完全重瓣的白色报春花由于在盛花期間进行分株和移植而永远成为单瓣的了。摩兰教授

• ,

¹⁾ 克罗克尔先生, 艺园者紀錄, 1861年, 第1092頁。

²⁾ 沃尔洛特,变种, 1865年,第80頁。

³⁾ 沃尔洛特,同前書,第88頁。

⁴⁾ 阿尔曼教授,英国科学協会,植物学者(Phytologist),第二卷,第 483 頁。 哈威教授根据发现这种植物的 安朱先生的权威材料告訴我說,这种畸形可以由种子来繁殖。 关于罌粟,参閱該波特(Goeppert)教授, 在园艺学报,7 月 1 日,1863 年,第 171 頁引用。

⁵⁾ 报告書, 12月19日, 1864年,第1039頁。

⁶⁾ 艺园者記錄, 1866年, 第681頁。

⁷⁾ 园艺理論,第333頁。

⁸⁾ 費尔威塞先生,园艺学会会报,第三卷,第 406 頁; 中龙引用包西的材料,見自然史,第二卷,第 77 頁。 关于去除花葯的效果,参閱雷特納, 整利曼 (Silliman) 的北美科学学报 (North American Journ. of Science),第二十三卷,第 47 頁;沃尔洛特,变种,1865 年,第 84 頁。

⁹⁾ 林德雷的园艺理論,第333頁。

會观察到花的重瓣和叶的有班是处于相反状态之下的,但最近有如此众多的例外被記載下来了¹⁾,以致这一規律虽是一般的,但不能被看作是不变的。 斑叶似乎一般是由植物的衰弱或退化的状态而引起的,从斑叶的双亲育成的大部份突生苗通常在早期就会死去;因此,我們或者可以这 样推論: 处于相反状态的重瓣花普通是由活力旺盛的状态而引起的。另一方面,极端瘠薄的土壤有时似乎会引起重瓣性,虽然这是罕見的:以前我曾描述过²⁾由于阻碍在瘠薄白垩質堤岸上生长的一种龙胆(Gentiana amarella)的野生植株的发育,因而大量地产生了完全重瓣的、蓓蕾般的花。我也曾注意到毛莨、七叶树(Hotse-Chestnut)和省沽油(Ranunculus repens AEsculus pavia, Staphylea)的花在重瓣性方面有不同的傾向,它們都是生长在很不利的条件之下的。 列曼(Lehmann)教授³⁾发現生长在温泉附近的几种野生植物开重瓣的花。 像我們看到的那样,重瓣性是在广泛不同的条件下发生的,关于它的原因,我将試图闡明最可能的观点是: 不自然的条件最先提供了不稳性的倾向,然后,根据补偿的原理,由于生殖器官不施行其固有的机能,它們或者发育成花瓣,或者附加的花瓣被形成了。 这种观点最近已經受到拉克斯东先生的支持⁴⁾,他提出一些普通豌豆的例子,这些豌豆經过速镶不断的大雨之后,又第二次开花,于是产生了重瓣花。

无子的果实 許多我們的最貴重的果实,从相应的意義来說,虽然是由一些广泛不同的器官构成的,但它們或者是完全不稳的,或者产生极少的种子。 众所周知,我們的最优良的梨、葡萄和无花県以及凤梨、香蕉、面包树、安石榴、那不勒斯枸杞(azarole)、君迁子(date-plum)以及柑橘类的一些成員都是如此。这等果树的比較不好的变种慣常地或者偶尔地产生种子5)。 大部份國艺学者都認为果实的大形和异常发育是因,不稳性是果;但是,象我們即将看到的那样,相反的观点似乎是更正确的。

由生长器官或营养器官的过度发育而引起的不稳性 由于某种原因而生长过于茂盛的、并且过剩地产生叶、茎、纖匐枝、吸枝、块茎、鳞茎等的植物有时不开花,縱使开花,也不結子。要使歐洲植物在印度的炎热气候下結子,抑制其生长是必要的;当它們生长到三分之一的时候,就对它們进行处理,把它們的茎和主根切去6)。杂种也是如此7);例如,列考克教授有三株紫茉莉,它們虽然生长茂盛并且开花,却完全不稳;不过用一根提向一株敲打,直到仅仅留下少数枝条之后,它們立刻就結优良的种子了。 甘蔗生长旺盛并且产生大量的多浆茎,按照各个观察者的材料,它們从来不在西印度羣島、瑪拉加 (Malaga)、印度、交趾支那、莫里求斯或馬来羣島結子8)。大量产生块茎

¹⁾ 艺园者記录, 1845年, 第626頁; 1866年, 第290,730頁; 沃尔洛特, 变种, 第75頁。

²⁾ 艺园者記錄, 1843 年, 第 628 頁。我在这篇論女中关于花的重演性提出上述的理論。 <u>卡瑞埃尔</u>探納了这个观点, 变种的产生和固定 (Production et. Fix. des Variétés), 1865 年, 第 67 頁。

³⁾ 該特納引用,杂种的形成,第567頁。

⁴⁾ 艺园者記錄, 1866年, 第901頁。

⁵⁾ 林德雷, 园艺理論, 第 175—179 頁; 高德龙, 物种, 第二卷, 第 106 頁; 皮克林, 人种; 加列脅, 植物繁育的理論, 1816 年, 第 101—110 頁。梅安 (Meyen) 在地球环游記 (Reise um Erde) 中設道, 馬尼拉 (Manilla) 的一个香蕉变种充满了种子: 卡米索 (Chamisso) 描述過(虎克的植物学杂記, 第一卷, 第 310 頁) 一个馬利亚納霉鳥 (Mariana Islands) 的面包树的变种, 它有小的果实, 常常含有完善的种子。 勃尔恩斯在他的布克拉旅行記中把安石榴在梅贊得兰 (Mazenderan) 結子作为一种值得注意的特性来說的。

⁶⁾ 即列丢 (Ingledew), 印度农艺和园艺学会会报 (Transact. of Agricult. and Hort. Soc. of India), 第

⁷⁾ 关于受精 (De la Fécondation), 1862年, 第 308 頁。

^{8) &}lt;u>成克的植物学杂配,第一卷,第99頁;加列的,植物繁育的理論</u>,第110頁。考得摩伊 (Cordemoy) 博士, 莫里求斯皇家学会会报 (Transact. of the R. Soc. of Mauritius),新輯,第六卷,1873年,第60—67頁, 他举出决不結子的植物的很多例子,其中有几个是莫里求斯的土著物种。

的植物容易陷于不稳,例如,普通馬鈴薯在一定程度上发生过这种情形;弗尔琼(Fortune)先生告訴我說,中国的甘藷(Convolvulus batatas),据他所知道的,从来不結子。罗伊尔博士說¹⁾,在印度有一种龙舌兰(Agave vivipara),当生长在肥沃土壤中的时候,常常产生鳞茎,但不結子;而瘠薄的土壤和干燥的气候则可导致相反的結果。 按照弗尔琼先生的材料,在中国,山药(Yam)的叶軸上有异常多的小球茎发育,但这种植物不結子。 在这等場合中,例如在重瓣花和无子果实的場合中,由变化了的生活条件而引起的性的不稔是不是导致营养器官过度发育的主要原因,还有疑問;虽然可以提出有利于这一观点的某种证据。 更可能的一种观点恐怕是,主要用一种方法、即用芽来繁殖自己的植物对于另一种有性生殖的方法就沒有足够的活力或有机物質。

几位著名的植物学者和优秀的实际判断者相信,由插条、纖匐枝、块茎、鳞茎等来进行的长期不断的繁育,且不論这等部份的任何过度发育,可以說是許多植物不开花或只开不稳的花的原因——好像它們已經失掉了有性生殖的习性²⁾。 毫无疑問,許多植物当这样来繁殖的时候都是不稳的,但这等繁殖方式的长久繼續是不是不稳性的真实原因,由于缺少足够的証据,我还不敢冒險表示意見。

我們可以稳妥地推論,植物可以长期地由芽来繁殖,而不必借助于有性生殖;这一推論的根据 是,許多一定會經长期生存于自然状况下的植物就是这样繁殖的。 因为在談这个問題之前我已經 得到了根据,所以我将在这里把我蒐集到的这等例子举出来。 許多高山植物登上的山岳高度超过 了它們能够結子的范围³⁾。 早熟禾屬 (Poa) 和羊茅屬 (Festuca) 的某些物种当生长在山地牧 場 的 时候, 像边沁先生告訴我說的那样, 几乎完全由小鱗茎 (bulblets) 来繁殖自己。 卡尔姆举出几种美 国树木的更引人注意的例子4),它們在沼地和密林中生长得非常旺盛,所以肯定是完全适应 这 等 地点的,然而很少結过子;但它們当偶然地生长在沼地或森林以外的地方时,却結子了。在瑞典北 部和俄国发現有常春藤 (ivy), 但只在南方它們才开花結果。菖蒲 (Acorus calamus) 蔓延于地球的 大部份,但产生完全果实的情形是如此罕見,以致只有少数植物学者看見过;按照卡斯巴利的材 料,全部它的花粉粒都处于沒有价值的状态中50。 有一种金絲桃 (Hypericum calycinum) 在我們的 灌木林中非常自由地由根茎来繁殖自己,并且在爱尔兰順化了,它茂盛地开花,但极少产生任何种 子,这只是在一定的年代中是如此;在我的花园中,当用隔开生长的一些植株上的花粉来投精时, 它也不結任何种子。 具有长纖匐枝的一种排草 (Lysimachia nummularia) 产生种子蒴的情形 是如 此罕見,以致特別注意这种植物的德开斯內教授6)从来沒有看見它們結过子。 在苏格兰、拉伯兰、 格林兰、德国以及美国的新汗卜夏 (New Hampshire),有一种苔 (Carex rigida) 常常不能完成它們 的种子⁷⁾。主要由纖匐枝来散布的长春藤(Vinca minor)据說在英国很少結过果⁸⁾;不过这种植

¹⁾ 林納学会会报,第十七卷,第563頁。

²⁾ 高德龙,物种,第二卷,第 106 頁;赫伯特論番紅花屬 (Crocus),見园艺学会学报,第一卷,1846 年,第 254 頁;外特 (Wight) 博士根据他在印度看到的情形,相信了这一观点;馬得拉斯文学与自然科学学报,第四卷,1836 年,第 61 頁。

³⁾ 华倫堡 (Wahlenberg) 列举了八个物种在拉伯兰·阿尔卑斯是处于这种状態之下的:参阅林納的拉伯兰 游記 (Tour in Lapland) 一書的附錄,司密斯爵士譯,第二卷,第 274—280 頁。

⁴⁾ 北美旅行記,英譯本,第三卷,第175頁。

⁵⁾ 关于常春籐和番紅花屬,参閱勃洛姆斐尔得 (Bromfield) 博士,植物学者,第三卷,第 376 頁。 关于番紅花屬,再参閱林德雷和沃契尔 (Vaucher),並且参閱卡斯巴利如下。

⁶⁾ 自然科学年报,第三輯,动物部份,第四卷,第 280 頁。 德开斯內关于巴黎附近的苔类和地衣类也提过相似的例子。

⁷⁾ 特克曼 (Tuckermann) 先生, 息利曼的美国科学杂誌, 第四十五卷, 第1頁。

⁸⁾ 司密斯,英国植物誌,第一卷,第339頁。

物需要昆虫的媒介来受精,可能这里沒有适当的昆虫,或者很少。大花水龙(Jussiaea grandiflora)在法国南部已經順化了,并且由根茎散布得如此广泛,以致阻碍了河上的航行,但它从来不結能稳的种子¹⁾。辣根(Cochlearia armoracia)顽强地散佈于歐洲的各处地方,并且在那里順化了;它虽然开花,但这些花很少产生蒴;卡斯巴利教授告訴我說,自从 1851 年以后,他就注意观察这种植物,但从来沒有看見过它的果实;它的 65% 的花粉都是坏的。一种普通毛茛(Ranunculus ficaria)在英国、法国或瑞士很少結子。但在 1863 年,我看到在我家附近生长的几个植株結了于²⁾。同上述相似的其他例子还可以举出一些;例如,苔和地衣的一些种类从来沒有在法国結**过于。**

有些这等当地的順化植物大概由于过度的芽繁殖以及因此引起的不能产生种子和营养种子,而成为不稳的了。 不过其他植物的不稳性更可能是取决于它們生活于其中的特殊条件,例如北欧的常春藤以及美国沼地的树木; 然而这等植物一定在某些方面显著地适应于它們所佔据的場所,因为它們抵抗了大批的竞争者并且保持着自己的地方。

最后,常常伴同重瓣花或果实过度发育的高度不稔性很少是立刻接着发生的。一种初发的倾向被观察到了,連續的选择完成了这种結果。似乎最可能正确的、把上述事实連系在一起並且归納到这个題目中的一种观点是:变化了的和不自然的生活条件最先引起了不稔性的傾向;因此,生殖器官便不能再充分执行其固有机能,在种子发育上所不需要的有机物質的供給,或者流入这等器官使其成为叶状的,或者流入果实、茎、块茎等等,增加其大小和多浆性。但是,且不談任何初发不稔性的傾向,当任何一种繁殖方式、即种子繁殖或芽繁殖进行到极度的时候,这两种方式之間便有矛盾。 初发不稔性在重瓣花上以及在刚才列举的其他場合中起着重要的作用,我这样来推論主要是根据以下的事实。 当能稔性由于完全不同的原因、即杂种性質而消失的时候,正如該特納³)所断言的那样,花就有变成重瓣的強烈傾向,而且这种傾向是遺传的。 再者,众所熟知,在杂种中雄性器官先雌性器官而变成不稔的,並且在重瓣花中雄蕊最先变成叶状的。 后一事实已被雌雄異株植物的雄性花所充分阐明了,按照加列肖的材料⁴¹,,这等植物最先变成重瓣的。<u>該特納</u>⁵)还主张甚至不結任何种子的

¹⁾ 普兰肯, 曼皮列植物誌, 1864年, 第20頁。

²⁾ 关于在英国不产生种子,参閱克罗克尔先生,艺园者每週杂誌(Gardener's Weekly Magazine), 1852年, 第70頁;沃契尔,歐洲植物生理学史(Hist. Phys. Plantes d'Europe), 第一卷,第33頁;列考克,歐洲植物地理学,第四卷,第466頁;克勞斯(Clos),自然科学年报,第三輯,植物部份,第十七卷,1852年,第129頁;后一位作者提出其他相似的例子。关于这种植物以及其他近似例子,特別参阅卡斯巴利敦授,再途意屬(Die Nuphar), 見哈勒自然科学学会論文集(Abhand. Naturw. Gesellsch. Zu Halle),第十一卷,1870年,第40,78頁。

³⁾ 杂种的形成,第565頁。开洛依德(第三續編,第73,87,119頁)也指出,当一个单續物种同一个重響物种相杂交时,其杂种容易成为極度重變的。

⁴⁾ 植物繁育的理論, 1816年, 第73頁。

⁵⁾ 杂种的形成,第573頁。

完全不稔的杂种一般也会产生完全的蒴或果实,<u>諾丹</u>在葫蘆科植物中重复观察过同样的事实;所以无論通过什么原因而致不稔的植物还会产生果实是可以理解的。 <u>开</u> 洛依德对于某些杂种的块茎的大小和发育也表示了无限的惊奇; 所有試驗者們¹⁾ 都 曾注意到在杂种中根、纖匐枝以及吸枝增大的強烈傾向。 由于在性質上多少是不稔的杂种植物这样便有产生重瓣花的傾向; 由于它們的包含种子的部分、即果实, 有完全的发育,甚至在不含有种子的时候也是如此; 由于它們有时产生巨大的根; 由于它們主要由吸枝以及其他这等途径而几乎永遠有增大的傾向; 並且由于根据本章前些部分所列举的許多事实得知几乎所有生物当暴露在不自然条件之下时都有多少变成不稔的傾向,所以极其可能的观点似乎是, 在栽培植物中不稔性是激发的原因, **重瓣花、肥大的无子果实以及在某些**場合中的大大发育了的营养器官等等是间接的结果; 这些结果在大多数場合中由于人的連續选择而大大地扩大了。

¹⁾杂种的形成,第527页。

第十九章 前四章的提要,兼論雜种性質

杂交的效果——家养对于能育性的影响——根近亲交配——生活条件的变化所产生的良好結果和惡劣結果——变种杂交並不永远能育——杂交时物种和变种之間在能育性上的差異——关于杂种性質的結論——花柱異長植物的異型花結合对于杂种性質提供了解释——只是由于生殖系統的差異而发生的杂交物种的不育性——不是自然选择的积累——家养变种为什么相互不育——关于杂交物种和杂交变种的能育性的差異被强調得过分了——結論。

在第十五章中已經關明,当同一变种、甚至不同变种的个体被容許自由进行杂变时,最終可以获得性狀的一致性。但少数性狀是不能融合的,不过这些性狀並不重要,因为它們常常具有半畸形的性質並且是突然出現的。因此,为了保持我們家养品种的純粹性,为了利用有計划的选择去改进它們,把它們隔离开显然是必要的。尽管如此,象我們将在以后一章中所看到的那样,在不把它們分成不同羣的情况下,通过无意識的选择,个体的全体是可以慢慢改变的。 由于同某一近似族进行了一两次杂变,甚至由于同很不相同的族偶尔进行了反复的杂交,家养族常常被有意識地改变了;但是,在几乎所有这等場合中,长期不断而仔細的选择是絕对必要的,这是因为杂种后代由于返祖原理具有过度的变異性。无論如何,在少数事例中,有些变种間杂种自从最初产生以来就保持了一致的性狀。

当两个变种被容許自由进行杂交时,並且一个比另一个在数量上多得多,那末前者終于会把后者吸收掉。如果两个变种的存在数量差不多相等,那么大概要經过相当的时間,才会获得一致的性狀;而且最終获得的性狀主要取决于遺传的优勢以及生活条件;因为这等条件的性質一般对于某一个变种会比对于另一个变种更加有利,所以一种自然选择大概就发生作用了。除非人对于杂种后代毫无差别地加以宰殺,某种程度的无計划选择大概也会同样地发生作用。根据这几种考察我們可以推論,当两个或两个以上的密切近似物种为同一部落所有时,它們的杂交不会以常常所想象的那样巨大程度影响其杂种后代的将来性狀;虽然在某些場合中是可能发生相当影响的。

按照一般規律,家养可以提高动物和植物的多产性。 当最初取自自然状况下的 物种进行杂交时,家养可以消除它們所普逼具有的不育傾向。关于后一問題,我們並 沒有直接的証据;但是,因为我們的狗、牛、猪等的族几乎肯定都是从不同原始祖先传 下来的,並且因为这等族現在都是相互能育的,至少比大多数物种的相互杂变是无比能育的,所以我們可以滿怀信心地接受这一結論。

关于杂交可以增加后代的大小、活力以及能育性,已經提供了丰富的証据。当以 前沒有进行过近亲交配的时候,这也是适用的。 对于同一变种的、但屬于異族的个 体,对于不同的变种、亚种,甚至对于物种,这都是适用的。 在后一种場合中,虽然获 得了大小,但失去了能育性;不过許多物种間杂种在大小、活力以及能育性方面的增 加却不能完全根据由于生殖系統不活动的补偿原理得到解釋。生长在自然状况下的 某些植物,受到栽培的其他一些植物,以及具有杂种来源的另外一些植物,虽然是完 全健康的,但都是完全自交不稔的;这等植物只有和同一物种或不同物种的其他个体 进行杂交,才能刺激它們的能稔性。

另一方面,最近亲屬之間的长期不断的密切近亲交配会減低后代的体質活力、大小以及能育性;偶尔会导致畸形,但不一定会导致形态或构造的一般退化。这种能育性的减退闡明了,近亲交配的恶劣結果並不取决于双亲所共有的疾病傾向的扩大,虽然这种扩大无疑常常是高度有害的。我們对于密切近亲交配产生恶劣結果的信念在某种程度上是以实际育种者們的經驗为根据的,特別是以那些飼育許多迅速繁殖的动物的人們的經驗为根据的;但是它也同样地以若干仔細記录下来的試驗为根据的。对于某些动物,由于选择最富活力而且最健康的个体,密切近亲的交配可以长期进行而无害;但迟早会有恶劣結果发生。但是,恶劣结果的出現是如此緩慢而逐漸,以致容易从观察中漏掉,不过当长期进行近亲交配的动物同一个異族动物进行杂交时,会以几乎即刻的方式重新获得大小、体質活力以及能育性,根据这种方式便能辨識其恶劣結果。

这两大类事实,即杂交可以产生良好結果、密切近亲交配可以产生恶劣結果,以及对于在整个自然界中对于强迫、有利于或者至少容許不同个体偶尔結合的无数适应性的考察,导致了如下的結論:生物为了永存不会自我受精是一条自然的法則。关于植物,安朱·奈特最初在 1799 年就明显地暗示了这一法則1),此后不久,那位敏銳的观察者开洛依德在闡明了錦葵科植物(Malvaceae)可以多么充分地适于杂交之后問道,"当同一种类生活于一隅的时候,它們的花彼此不結合,但常常以怎樣的途径由其他种类来受精,这不是一种正当的質問嗎?自然的确不会作沒有效果的事"。鑑于有

¹⁾ 哲学学会会报 (Transactions Phil. Soc.), 1799 年,第 202 頁。关于开洛依德,参閱圣彼得堡科学院院报,第三卷,1809 年 (1811 年出版),第 107 頁。当讀到斯普兰格尔的著名著作被发現之祕密 (1793 年)的时候,引人注意的是我們看到这位非常敏銳的观察者多么常常不能理解他所描述过的花的构造的 完全 意义,这是由于他並沒有永远想到这个問題的关键,即从不同个体的杂交中可以产生良好結果。

如此众多痕跡的和无用的器官,我們虽然可以反对<u>开洛依德</u>的自然不会作沒有效果的事这种說法,但是根据有利于杂交的无数装置而提出的論証无疑还是極有价值的。这一法則的最重要結果是,它导致了同一物種的个体的性狀一致性。 某些两性花可能只在相隔很长的时期之后才进行杂交,棲息于多少相隔的地区內的单性动物只能偶尔地接触和交配,在这两种場合中,杂种后代的較大活力和能育性最終会有給予性狀一致性的傾向。但是,当我們超越了同一物种的范围以外,自由杂交就会由于不育性的法則而受到阻止。

在对于杂变产生良好效果以及密切近亲变配产生恶劣效果的原因可能提供解释的事实进行調查的时候,我們已經看到,一方面有一种广泛流行而古老的信念:即动物和植物由于生活条件的微小变化可以获得利益;按照差不多同样的途徑,胚种由不同个体的、因而在性質上稍有改变的雄性生殖要素比由完全一样体質的个体的雄性生殖要素所受到的刺激似乎更加有效。另一方面,已經举出来的无数事实闡明了,动物当最初受到拘禁时,甚至在它們的原产地,而且虽然被容許有很大的自由,它們的生殖机能也常常受到巨大的損害或者完全消失。某些类型的动物比其他类羣受到的影响較大,不过在每一个类羣中都有显著无常的例外。 有些动物在拘禁中从不变配或者極少变配;有些自由地变配,但从不受孕或者極少受孕。 次級雄性征、母性机能以及本能偶尔会受到影响。关于植物,当它們最初受到栽培时,也曾观察到相似的事实。我們大概会把重瓣花,味道美好的无子果实,並且在某些場合中把大大发育了的块茎归功于上述性質的初发不稔性以及丰富的营养供給。长期家养的動物和长期栽培的植物一般都能經得住生活条件的巨大变化,而其能育性並不受到損害;虽然它們有时会稍微受到一点影响。关于动物,在拘禁中多少是罕見的自由繁育能力,再加上它們的实用性,便决定了曾經被家养的种类。

我們在任何場合中都不能明确地說出一种动物当最初被捕时其能育性減低的原因,或者一种植物当最初被栽培时其能稔性減低的原因;我們只能推論这是由自然生活条件中的某种变化所引起的。 象我們将在未来一章中看到的那样,生殖系統对于这等变化的显著易感性——任何其他器官普通所沒有的一种易感性——显然同"变異性"有重要的关系。

刚才举出来的这两类事实之間的双重平行关系不可能不打动我們。 一方面,生活条件的微小变化,以及稍微改变了的类型或变种之間的杂交,就多产性和体質活力来說是有利的。另一方面,生活条件的較大程度的或不同性質的变化,以及按照自然方法緩慢地而且巨大地发生了改变的类型之間的杂交——換句話說,物种之間的杂

交——就生殖系統来說,並且在某些少数事例中就体質活力来說,是高度有害的。这种平行現象能夠是偶然的嗎? 更正确的說,它沒有暗示某种真正关系的紐帶嗎? 就象火除非被煽动起来不会熄灭那样,按照赫伯特·斯賓塞的說法,生命力除非通过其他力量的作用受到攪动或复壮,永遠有趋于平衡状态的傾向。

在少数場合中,变种由于繁育期的不同,由于大小的巨大差異,或者由于性选择,有保持特殊的傾向。但是变种的雜交一般可以增加第一次結合以及杂种后代的能育性,决不会減低它們的能育性。 所有更加广泛不同的家养变种是否在杂交时永遠都是完全能育的,我們还不确实地知道;需要很多的时間和麻煩来进行必要的試驗,並且还会有許多困难发生,例如来自原始不同的物種的各个族的系統,以及有关某些类型是否应当分类为物種或变种的疑問。 尽管如此,实际育种者們的广泛經驗还証明了大多数变种,縱使其中有些被証明以后並不是彼此无限能育的,比大多数密切近似的自然物种在杂交时能育得多。然而根据优秀观察者們的权威材料所提出的少数顯著例子闡明了,毫无疑問应当被分类为变种的某些植物类型在杂交时所結的子比亲种在自然状况下所結的子为少。 其他变种的生殖力发生了如此深刻的改变,以致它們当同一个不同物种杂交时,多少比其双亲更加能育。

尽管如此,下述事实还是不可爭辯的,即在构造上彼此差異巨大的、但肯定是从同一个原始物种传下来的动物和植物的家养变种,例如鷄、鴿、許多蔬菜以及其他大量家养产物的族,在杂交时都是極其能育的;这似乎在家养变种和自然物種之間造成了一个广闊而不能通过的障碍。但是,象我現在将要試图闡明的那样,这种区別並不象初看起来那样大,那样压倒地重要。

杂交时变种和物种之間在能育性上的差異

这一著作对于充分討論杂种性質的問題並不是适当的場所,我在物種起源中已 經提出了一个适当充分的提要。在这里我只列举可以依賴的以及同我們現在的論点 有关的一般結論。

第一,支配杂种产生的法則在动物界和植物界中是相同的或是近于相同的。

第二,不同物种在第一次結合时的不育性及其杂种后代的不育性,以几乎无限的步骤从零(胚珠决不受孕並且种子ັ,为决不形成)級进到完全能育。我們只有决定把所有完全能育的类型叫作变种,才能逃避有些物種在杂交时是完全能育的这一結論。然而这样高度的能育性是罕見的。 尽管如此,处于不自然条件之下的植物有时会以如此奇特的方式发生改变,以致它們和不同物種杂交比用自己的花粉来受精还要能

第三,两个物種之間第一次杂交的不育程度同其杂种后代的不育程度並不永遠 严格平行。关于物种能夠容易地杂交、但其杂种过度不育的例子已經知道很多了;相 反地,有些物種的杂交非常困难,但其杂种却相当能育。根据物种被特別赋与了相互 不育性以便保持它們之間的区別这一观点来看,这是一个不可理解的事实。

第四,当两个物种进行互交时,不育性的程度常常有巨大区别;因为,第一个物种 ***
将会容易地使第二个物种受精;但經过数百次試驗之后,后者却不能使前者受精。从 同样两个物种之間的互交中产生出来的杂种有时在不育性的程度上也有差異。根据 不育性是被特別賦与的这一观点来看,这等例子也是完全不可解釋的。

第五,第一次杂交以及杂种的不育程度在一定范围内同相结合的类型之一般的或系統的亲和力是平行的。 这是因为属于異屬的物種極少能夠杂交,並且屬于異科的物种根本不能杂交。然而,它們的平行性远远不是完全的;因为許多密切近似物种不結合或者极难結合,而其他彼此广泛不同的物种却能完全容易地杂交。 其困难的程度也不取决于普通的体質差異,因为一年生的和多年生的植物、落叶的和常青的树,在不同季节开花的、在不同場所棲息的以及在极其相反的气候下自然生活的植物,常常能夠容易地杂交。 难与易显然完全取决于杂交物种的性的素質(sexual constitution);或者取决于它們的性选择的亲和力,即該特納所謂的 Wahlverwandtschaft(亲和力)。因为物种很少或者决不会在一种性状上发生改变而不同时在許多性状上发生改变,並且因为系統的亲和力(systematic affinity)包括所有看得見的相似点和不相似点,所以两个物种之間在性的素質上的任何差異都自然或多或少地同它們分类学上的地位有密切关系。

第六,不同物种第一次杂交时的不育性及其杂种的不育性可能在某种程度不同上取决于不同的原因。 純粹物种的生殖器官都是处于完善状态之下的,而杂种的生殖器官則常常是明显退化的。兼有父的体质和母的体質的杂种胚只要在母本类型的子宫、卵或种子中受得营养,它就是处在不自然的条件之下的;因为我們知道不自然的条件常常引起不育性,所以杂种的生殖器官可能在这样早的时期就已經受到了永久的影响。 但这原因同第一次結合的不育性並沒有关系。 第一次結合所产生的后代数目的減少可能常常是由于大多数杂种胚的过早死亡,有时情形确系如此。 但我們即将看到,有一項性質不明的法則显然存在,它导致了从多少不育的結合中产生出

来的后代是不育的;現在所能說的只是这一点而已。

第七,除了能育性的一个大例外,物种間杂种和变种間杂种在其他所有方面有极 其显著的一致性;即在同其双亲的相似性的法則方面,在返祖的傾向方面,在它們的 变異性方面,以及在通过反复杂交被任何一个亲类型所吸收的方面。

当我得出这些結論以后,我被引导去研究一个对于杂交性質提供了相当說明的問題,即关于花柱異长植物或二形的和三形的植物进行異型花結合时的能育性。我已經几次談到这等植物了,我願意在这里把我的观察的簡短提要提出来。屬于不同'目'的若干植物表現有两个类型,它們大約以相等的数目存在着,它們彼此之間除了生殖器官以外並沒有其他方面的差異;一个类型具有长雌蕊和短雄蕊,另一个类型具有短雌蕊和长雄蕊;二者的花粉粒大小不同。关于三形植物,它們有三个类型,在雌蕊和雄蕊的长度上,在花粉粒的大小和顏色上,以及在其他一些点上,同样也有所不同。因为在这三个类型中每一个都有二組雄蕊,所以共有六組雄蕊和三种雌蕊。这等器官的长度彼此是这样协調,以致在任何两个类型中,每一个类型的一半雄蕊都相当于第三个类型的柱头那样高。我已經闡明了,为了获得这等植物的充分能育性,必需的是某一个类型的柱头须由另一類型的相应高度的雄蕊的花粉来受精,其他观察者也截实了这一结果。所以关于二形物种,有两种结合可以称为同型花结合,它們是或多或少不育的。关于三形物种,有六种结合是同型花结合,它們是充分能育的,有十二种结合是異型花结合,它們是或多或少不育的¹⁾。

当进行異型花受精时,即用同雌蕊高度不相应的雄蕊的花粉来受精时,各种不同的二形的和三形的植物都表現了不稔性,这种不稔性在程度上有很大差異,一直到絕对的和完全的不稔;就象在不同物种杂交时所发生的情形完全一样。 因为在后一場合中不稔性的程度显著地取决于生活条件的利与不利,所以我发现在異型花結合时也是如此。众所熟知,如果把不同物种的花粉放在一朵花的柱头上,並且放它自己的花粉以后、甚至經过相当长的期間以后被放在同一个柱头上,它的作用是如此强烈地佔有优势,以致它一般可以消灭外来花粉的影响;同一物种的几个类型的花粉也是这样,因为同型花的花粉和異型花的花粉被放在同一柱头之上时,前者比后者强烈地佔有优势。我是根据以下情形肯定了这一点的,即用一个特殊颜色的变种的花粉先使几朵花进行異型花的受精,二十四小时之后再进行同型花的受精,所有实生苗都是同样颜

¹⁾ 关于从二形植物和三形植物的異型花結合产生出来的后代的性状及其类似杂种的性質,我的这一观察材料截于林纳学会会很,第十卷,第393页。这里所举出的提要同物种起源第六版所举出的大致相似。

色的;这鬧明了同型花花粉虽然是在二十四小时以后施用的,但它完全破坏了或阻止 了以前施用的異型花花粉的作用。再者,当同样两个物种相互杂交时,其結果偶尔会 有巨大差異,关于三形植物也有同样情形发生;例如,柳状千屈菜的中等花柱类型能 夠极其容易地用短花柱类型的长雄蕊的花粉进行異型花的受精,並且結了許多种子; 但是,短花柱类型当用中等花柱类型的长雄蕊的花粉来受精时,連一粒种子也不結。

在所有这些方面,同一确定物种的一些类型当进行異型花結合时,它們所表現的 和两个不同物种杂交时所表现的一样。这引导我对于从若于異型花結合中培育出来 的許多实生苗仔細地进行了四年的观察。 主要的結果是,这等可以被称作異型花植 物的,並不充分能育。从二形物种可能育成长花柱和短花柱的異型花植物,从三形植 物可能育成所有三个異型花的类型。 于是,这等植物便能在同型花結合的方式下进 行正当的結合。当这样作了之后,沒有明显的理由可以指出,为什么它們結的种子不 象它們双亲进行同型花結合时所結的种子那样多。 但实际情形並非如此:所有它們 都是不稔的,不过其程度有所不同;有些是如此极端而无法矯正地不稔,以致在四个 季节中它們連一粒种子、甚至連一个种子萌也不結。 这等如此不育的異型花植物虽 然是按照同型花結合的方式彼此結合,但它們可以同彼此进行杂交时的物种間杂种 严格相比; 众所週知, 后者一般是不稔的。 另一方面, 当物种間杂种同任何一个純粹 亲种进行杂交时,其不稔性通常是会大大被減低的.当異型花植株由同型花植株来受 精时,情形也是如此。 物种間杂种的不稔性同两个亲种第一次杂变的困难並不永远 平行,同样地,某些異型花植物的不稔性是非常大的,而产生它們的結合的不稔性决 不是大的。从同一个种子萌育出的物种間杂种,其不稔性的程度是天生有变異的,異 型花植物显著地也是如此。最后,許多物种間杂种能夠繁茂而持久开花,而其他比較 不稔的物种間杂种只开少数的花,並且是衰弱的,矮得可怜;各种二形植物和三形植 物的異型花后代也有完全一样的情形发生。

異型花植物和物种間杂种之間虽然在特性和行为上是最密切一致的,但以下的主张几乎並不誇张,即異型花植物就是杂种,不过是在同一物種的范围之內由某些类型的不适当結合产生出来的,而普通杂种却是由所謂不同物种之間的不适当結合产生出来的。 我們已經看到,第一次異型花結合和不同物种之間的第一次杂交在所有方面都有最密切的相似性。 用一个例子恐怕更能充分地說明这一点;我們姑且假設有一位植物学者发現了三形柳状千屈菜的长花柱类型的两个显著变种(确有这种情形发生),並且他决定用杂交来試驗一下它們是不是不同的物种。 他大概会发现,它們所結种子只有正常数目的五分之一左右,它們表現了所有其他上述各点,好象它們

是两个不同物种似的。 但是为了肯定这种情形,他大概会用他的假想的杂交种子来 培育植物,他会发現实生苗矮得可怜而且極端不稔,並且在所有其他方面它們表現得 同普通物种間杂种一样。于是他可能按照普通的观点主张他确实証明了他的两个变 种同世界上任何真实的和不同的物种一样;但他大概是完全錯了。

現在所举出的关于二形植物和三形植物的事实是重要的,第一,因为它們闡明了 在第一次杂交中以及在杂种中能育性减低的生理学試驗並不是区別物种的标准:第 二,因为我們可能作出这样的結論:在異型花結合的不稔性和它們的異型花后代的不 稔性之間有某一种未知的紐帶把它們連接起来了,並且我們被引导把这同一观点扩 张到第一次杂交和杂种; 第三, 因为我們发現同一物种的两三个类型可能存在, 而且 以外部状态为准它們无論构造或体質上可能沒有任何差異之点,但以某些方法相結 合时却是不稔的,我認为这一点似乎特別重要。因为我們必須記住,不稔的是同一类 型的、例如两个长花柱类型的个体的性要素的結合;而能稔的却是两个不同类型所固 有的性要素的結合。因此,最初看来,这个例子似乎和同一物种的个体的普通結合所 发生的情形以及和不同物种杂交时所发生的情形完全相反。然而真实情形是否如此 还值得怀疑:但我不准备对这个暧昧的問題进行詳細的討論。

然而根据对于二形植物和三形植物的考察,我們大概可以作如下的推論:不同 物种杂交时的不稔性及其杂种后代的不稔性完全取决于它們的性要素的性質,而不 是取决于它們的构造或一般体質的任何差異。 根据对于相互杂交的考察,我們也被 引导作出了同样的結論,即在相互杂交中某一物種的雄者不能同第二个物种的雌者 相結合,或者只能非常困难地相結合;而在反交中却能完全容易地相結合。那位优秀 的观察者該特納同样地断言物种在杂交时的不稔仅是由于它們的生殖系統的差異。

当人类选择和改进家养变种时,把它們隔离开是必要的,根据这一原理,处于自 然状况下的变种、即初发物种(incipient species)如果通过性的嫌恶或者由于变得相互 不育而能防止混合的話,显然它們会因此得到利益。 所以,有一个时期我認为,其他 人也勢必这样認为,这种不育性可能是通过自然选择而获得的。根据这一观点,我們 必須假設先有一点点能育性減低的影子,就象其他任何变化那样,在一个物种的某些 个体和同一物种的其他个体的雜交中自然发生了;由于这是有利的,相繼的微小程度 的不育性便慢慢地积累起来了。我們如果承認二形植物和三形植物之間在构造上的 差異,例如雌蕊的长度和曲度等等,通过自然选择而变得相互适应了,那末上述观点就 更加是可能的,因为如果承認这一点,我們就几乎不能避免地把这一結論引伸到它們 的相互不育性。再者,为了其他广泛不同的目的,不育性通过自然选择而被获得了,例如中性昆虫对它們的社会构成就是如此。在植物的場合中,雪球(Viburnum opulus)的傘形花上的周围的花以及长毛葡萄百合(Muscari comosum)的穗状花頂端上的花,为了昆虫容易发現和訪問它們的具备花,而成为显眼的幷且显然因此成为不稔的了。但是,当我們努力把自然选择原理应用在不同物種所获得的相互不育性上时,我們遇到了一些巨大的难点。第一,可以注意的是,物种羣或单独一个物种常常棲息于隔离的地区,当它們被帶到一起並且进行杂变的时候,可以发現它們或多或少是不育的;那末,这等分离的物种成为相互不育,显然不会有什么利益,因而这不能是通过自然选择而完成的;但恐怕可以这样爭論:一个物種如果同某一个同胞交配成为不育的話,那末同其他物种杂变的不育性大概是随之而来的必然結果。第二,在相互杂变时,某一个类型的雄性生殖要素对于第二个类型是极端不育的,而第二个类型的雄性生殖要素对能自由地使第一个类型受精,这种情形不能适合自然选择說正如不能适合物種創造說一样;因为生殖系統的这种特殊状况对于任何一个物種不可能是有利的。

当考察自然洗择对于物種相互不育发生作用的可能性时、将会发現最大的难点 之一在于从稍微減低的能育性到絕对的能育性之間有許多級进阶段的存在。根据上 述原理可以承認,一个初发物种同其亲类型或某一其他变种进行杂交如果有某种傲 小程度的不育性,对于它大概是有利的;因为这样一来,产生出来的杂种化和退化的 后代就比較少了,因而在形成过程中使它們的血液同新种混合起来的程度也 比較 小 了。但是,一个人如果不憚厌煩地去考虑这种最初的不育程度通过自然洗择能 夠提 高到較高不育程度所遵循的步驟——这种高度不育性是如此众多物种所共有的,而 且对于分化到屬的等級或科的等級的物种来說是普遍的,那末他会发現这个問題是 非常复杂的。 經过深思熟虑之后,我認为这不可能是通过自然选择来完成的。茲以 任何两个在雜交中产生少数不育后代的物种为例:那末,有些个体偶尔稍微高度地被 赋与了相互不育性,这样,它們向前跨进一小步便接近了絕对不育性,这对于这些个 体的生存来說能夠有什么利益嗎? 然而,如果同自然选择說发生关系,这种情形的推 进一定曾經不断地使許多新的物种出現了,因为大多数是彼此完全不育的。 关于不 育的中性昆虫,我們有理由相信它們的构造和能育性的改变是由于自然选择而 緩 慢 地积累起来的,这是因为这样間接地給予了它們所屬的羣落一种利益,使得它們优于 同一物种的其他羣落;但是个体动物並不屬于社会性的羣落,如果它們同某一其他变 种杂变而稍微不育的話,大概本身不会由此得到任何利益,也不会間接地給予同一变 种的其他个体任何利益,因而不会导致它們的保存。

不过沒有必要对于这个問題进行詳細的討論;因为关于植物我們已經有明确的 配据証明了杂交物种的不育性是由于同自然选择完全无关的某种原理。該特納和 开洛依德都証明了,从杂交时产生愈来愈少种子的物种,到决不产生一粒种子、但受 其他某些物种花粉的影响因而胚珠膨大的物种,可以形成一个系列,一般地这里包括 很多物种。选择那些已經停止結子的更加不育的个体在这里显然是不可能的;所以 这种不育性的頂点,当只是胚珠受到影响的时候,不能是通过选择而获得的;由于支 配各种不同程度的不育性的法則在植物界和动物界中是如此一致,所以我們可以推 論其原因在所有場合中都是一样的或者接近一样的,不管这种原因是什么。

因为物种不是通过自然选择的累积作用而成为相互不育的,並且因为我們根据上述以及其他更加一般的考察可以稳妥地断言它們不是通过創造作用而被賦与了这种性質,所以我們必須作出如下的推論:即相互不育性是在它們緩慢形成期間偶然发生的,这种形成同它們的体制中的其他未知变化有关联。关于偶然发生的一种性質,我所指的是这样一些情形:例如动物和植物的不同物种从它們在自然状况下沒有接触过的毒物那里所受到的影响是不同的;这种感受性的差異显然是由于它們体制中的其他未知差異而偶然发生的。再者,不同种类的树彼此嫁接的能力以及在第三个物种上的嫁接能力有很大差異,这种能力对于这等树並沒有利益,不过是由于木質組織构造的或机能的差異而偶然发生的。当我們記住生殖系統可以多么容易地由于各种原因受到影响——往往由于生活条件的极其傲小变化、最近亲的交配以及其他作用而受到影响,我們便不必对以下的情形感到惊奇,即不育性是由不同物种——一个共同祖先的改变了的后代——的杂交而偶然产生出来的。最好把以下的情形配住:例如有翅西番莲(Passiflora alata)由于嫁接在不同物种上而恢复了自交能稔性——有些植物正常地或者不正常地是自交不稔,但能夠容易地由一个不同物种的花粉来受精——最后,个体家养動物表明了性的彼此不調和。

現在我們終于来到了应予討論的直接之点:除了某些果树的例外,彼此在外部性 状上比許多物种差異更大的家养变种,例如狗、鷄、鴿、若干果树以及蔬菜的变种,在 杂变时都是完全能育的,甚至是过份能育的,而密切近似的物种都几乎常常在某种程 度上是不育的,这是为什么?我們在某种范围內对于这个問題能夠提供完滿的解答。 且不談两个物种之間的外在差異量並不是相互不育程度的可靠引导因而在变种場合 中的相似差異大概也不是可靠的引导,我們知道在物种的場合中其原因完全在于性 組織的差異。 且說,家养动物和栽培植物的生活条件对于把生殖系統改变到相互不 育具有如此微小的倾向,以致我們有很好的根据来承認帕拉斯的直接相反的学說,即 这等条件一般会消除这种倾向;所以物种在自然状况下当杂交时虽有某种程度的不 育性,但它們的家养后代却可以变得彼此完全能育。在植物的場合中,栽培非但沒有 引起相互不育的倾向,反而在几个上面常常提到的十分可靠的例子中某些物种在很 不相同的方式下受到了影响,因为它們变成自交不稔的了,但还保有使不同物种受精 或由不同物种受精的能力。如果帕拉斯的关于通过长期不断家养可以消减不育性的 学說得到承認,而且这几乎是不能不被接受的,那末同样的坏境条件非常不可能既誘 发了而且又消减了同样的倾向;虽然在某些場合中,对于具有特殊体質的物种来說, 不育性可能偶尔这样被誘发出来。这样,象我相信的那样,我們便能理解在家养动物 的場合中为什么相互不育的变种沒有产生出来;在植物的場合中为什么只有少数这 样的例子,即該特納所观察的玉米和毛蕊花的某些变种,其他試驗者所观察的胡蘆和 甜瓜的变种,以及开洛依德所观察的一种煙草。

关于在自然状况下发生的变种,要期待由直接的证据来证明它們成为相互不育,几乎是沒有希望的;因为甚至只有一点不育性的痕跡如果被觉察出来,这等变种就会被差不多每一位博物学者提升到不同物种的等級。例如,該特納的关于海綠(Anagallis arvensis)的蓝花类型和紅花类型在杂交时是不育的敍述如果得到証实的話,那末我敢說現在以各种証据主张这两个类型仅是徬徨变种的所有植物学者大概都会立刻承認它們是不同的物种。

我認为我們現在这个問題的真正难点並不是家养变种为什么在杂交时变成为相互不育的了,而是只要自然变种充分而永久地改变到物种的等級,相互不育性为什么会如此一般地发生。 我們还远远不能清楚地知道它的原因;但我們能夠知道物种由于同无数的竞争者进行生存斗争,所以它們在长久时期內所处在的生活条件一定比家养变种更加一致,这就充分可能在結果中造成广泛的差異。因为我們知道,当把野生的动物和植物从它們的自然条件中取出来並且放在被拘束的状态下,它們会多么普遍地成为不育的;一向在自然条件下生活的並且緩慢改变的生物的生殖机能对于不自然杂交的影响大概会按照相似的方式有显著的感受。 另一方面,象仅仅由家养这一事实所闡明的那样,家养产物对于它們生活条件中的变化並沒有高度的感受,並且現在一般能夠抵抗生活条件的反复变化而不減低其能育性,大概可以預料它們会产生这样的变种: 即它們的生殖能力不容易由于同其他在家养中发生的变种进行杂交而受到有害的影响。

我認为某些博物学者最近对于变种和物种在杂交时所表現的差異是过于強調

了。某些树的近似物种不能彼此嫁接,而所有变种却能彼此嫁接。某些近似動物以很不相同的方式受到相同毒物的影响,但是关于变种,直到最近还不知道有这种例子;然而現在已經証明了对于某些毒物的免疫性有时和同一物种的个体的顏色是相关的。在不同物种中姙娠期一般有很大差異,但关于变种,直到最近还沒有观察到这种差異。在某一物种和同屬的另一物种之間是有各种生理差異的,无疑还有其他差異,这等差異在变种的場合中並不发生或者极少发生;这等差異显然是完全地或者主要地由于其他体質差異而偶然发生的,正如杂交物种的不育性仅仅由于性系統的差異而偶然发生的一样。那末,后面这等差異,无論对于保存同一地区的生物可能間接地多么有用处,如果同其他偶然的和机能的差異比較起来,为什么会被認为具有根本的重要性?对于这个問題还不能提供充分的解答。因此以下的事实——即不大相同的家养变种除了很少的例外在杂交时都是完全能育的並且产生能育的后代,而密切近似的物种除了很少的例外都是多少不育的,最初看来同近似物种的共同由来的学說几乎不是非常相反的。

第二十章 人工选擇

选择是一种困难的技术——有計划选择、无意識选择以及自然选择——有計划选择的結果——在选择中所付与的注意——植物的选择——古人以及半开化人所进行的选择——常常受到注意的不重要性状——无意識选择——由于环境条件慢慢变化,所以家养动物通过无意識选择的作用发生变化——不同的育种者对于相同的亚变种所发生的影响——无意識选择对于植物的影响——最受人重视的部分表現了最大差异量,这闡明了选择的效果。

选择的力量完全取决于生物的变異性,不論这是人工选择,或是通过生存斗争以及由此引起的最适者生存的自然选择。沒有变異性,什么也不能完成;可是微小的个体差異就足可以发生作用,这在新物种的产生中恐怕是主要的或唯一的途徑。因此,关于变異性的原因和法則的討論,按照严格的順序来說,应当放在目前这个題目以及遺传、杂交等等之前;不过現在这样的排列实际上被发现是最方便的。人类並不企图引起变異;虽然由于把有机体暴露在新生活条件下以及由于使已經形成的品种相杂交,他們无意識地实現了这种結果。但有了变異性,人类便可以創造奇蹟。象我們以前所看到的那样,除非进行某种程度的选择,同一变种的个体的自由混合很快就会消除已經发生的微小差異,並且对于全部个体給予性状的一致性。在隔离的地区里,长期不断的暴露在不同的生活条件之下,可能不需要选择的帮助就可以产生新族;不过关于生活条件的直接作用这一問題,我将在以后一章里进行討論。

当动物和植物生来就有某种显著的並且可以坚定遺传的新性状的时候,选择就降低到保存这等个体並且因此防止它們杂交的地步;所以关于这个問題不必再多說什么了。但在絕大多数的場合里,一种新性状或者一种古老性状中的某种优越性最初表現得是模糊的,而且不是強烈遺传的;于是便会体驗到选择的充分困难。不屈不挠的忍耐性、最优秀的辨別能力以及正确的判断力,必須經过多年的鍛鍊才能获得。在心中必須坚定地有明确預定的目标。 很少人拥有一切这等能力,特别是关于辨别很微小差異的能力;判断力只有通过长期的經驗才能获得;但是,如果缺少任何这等能力,一生的劳动可能就白白浪費了。 当著名的育种者們——他們的技巧和判断力从他們在展覽会上的成功得到了証明——向我說明他們的表現得完全一样的动物並且举出为什么使这个个体同那个个体进行交配的理由的时候,我感到惊異。 伟大的"选择"原理的重要性主要在于对几乎看不見的差異进行选择的能力,尽管到了各个

观察者看到这种显著的結果以后,这等差異会被发現是遺传的並且能夠被积累起来。

选择原理可以方便地分为三种。 有計划选择是这样一种原理:它指导人按照預定的标准去系統地努力改变一个品种。 无意識选择是这样一种原理:它的产生是由于人們自然地保存最有价值的和毀掉比較沒有价值的品种,而沒有改变品种的任何意图;毫无疑問,这种过程可以徐徐地完成重大的变化。无意識选择可以逐漸变成为有計划选择,只有极端的例子才能被明确地分开;因为凡是保存一种有用而完善的动物的人一般都希望从它育成具有同样性状的后代;不过只要他还沒有改良这个品种的預定目的,那就可以說他所进行的选择是无意識的¹⁾。最后,还有自然选择,它的含义是:最适于复杂的和在长年累月中变化着的生活条件的个体一般都可以生存下来 並繁殖其种类。关于家养产物,自然选择会在某种程度上发生作用,但同人类的願望 无关,甚至相反。

有計划选擇 改良的四足兽和玩賞鳥类的展覽明确地闡明了近代在英国人类用有計划选择所完成的是些什么。关于牛、羊和猪,我們应当把它們的重大改良归功于一长列的著名名字——具克威尔 (Bakewell)、科林 (Colling)、埃勒曼 (Ellman)、倍芝 (Bates)、乔納斯·韦卜 (Jonas Webb)、萊斯特 (Leicester) 勳爵、威斯特恩 (Western) 勳爵、斐謝尔·赫勃斯 (Fisher Hobbs) 及其他。 农业方面的作者对于选择的力量是一致同意的:有关这种作用的敍述可以引用很多;只举少数的敍述就足夠了。一位敏 统的並且富有經驗的观察者尤亚特写道²⁾,"农学家可以作到的不仅是改变他的畜羣的性状,而且是改变它的一切"。一位短角牛的伟大育种者³⁾ 說道,"在肩的解剖中,近代育种者借着改正肩关节的缺点,並且借着把肩的頂端更低地隐藏在短毛之下因而把它后面的凹陷充满,对于凱頓 (Ketton) 短角牛作了重大的改进……。 在不同的时期中眼睛有不同样子;在某一时期眼睛高吊並且突出于头部,在另一时期感觉迟鈍的眼睛在头部塌陷下去;但是这等极端的样子又化为一种中間状态,即外观平静的、完善的、澄明的和暴出的眼睛"。

再者, 听一听一位猪的优秀判断者的 說些什么吧: "腿长最好不大于刚刚可以防

¹⁾ 有人反对无意識选择这个术語,說它是矛盾的;不过請參閱赫胥黎教授关于这个問題的一些最优秀的观察(博物学評論,10月,1864年,第578頁),他說,当風把沙丘吹積成的时候,它从海岸砂礫中把同等大小的砂子飾取和无意識选择出来了。

²⁾ 綿羊, 1838年, 第60頁。

³⁾ 萊特先生論"短角牛"見皇家农学会学报,第七卷,第208,209頁。

⁴⁾ 里卡逊,猪,1847年,第44頁。

止猪的腹部在地上拖曳的程度。 猪腿是利益最小的一部分,所以除了支持它身体的 絕对必要以外,我們对于它再沒有什么需要了"。任何人都可以把野猪同任何改良品 种比較一下,他将看到腿是多么有効地被縮短了。

除了育种者之外、很少人知道在洗择动物时所付出的注意、而且也不知道清楚地 和差不多預見地幻想到将来的必要性。 斯賓塞勳爵的技巧和判断力是著名的;他写 道1), "所以,在任何人开始牛或羊的育种以前,最相宜的是,他应当决定他所希求获 得的形状和性質,並且坚定地追随这个目标"。梭梅維尔在談到貝克威尔及其后繼者 所完成的新萊斯特羊的可惊改进时說道,"这好象他們最初画出了一个完善的形象, 然后給予它生命"。尤亚特3)主张在各个畜掌中每年进行选拔是必要的,因为許多动 物肯定会从育种者的思想中所建立的优良标准退化下来"。 甚至关于重要性如此小 的一种鳥,如金絲雀,很久以前(1780-1790年)就定立了一些規則,並且还規定了完 善的标准,按照这种标准,倫敦的养鳥者育成了几个亚变种³⁾。 一位在鴿子展覽会中 的伟大获奖者4)当描述扁桃翻飞鴿时說道,"有許多第一流养鴿者特別喜欢所謂金色 磺酚嗪,这是很美丽的;另外一些人說,取一粒充分大小的圓櫻桃,然后再找一个大麦 粒,把它活宜地按进樱桃中,于是就形成了你所想象的那样喙;这並不是一切,因為, 象我以前所說的那样,如果作得适宜,它会形成一个漂亮的头和喙;其他一些人取用 一粒燕麦:但是因为我以为命色碃鸛喙是最美丽的,所以我建議沒有經驗的养鴿者还 县取得金色碃鹬的头,並且飼养它作为观察之用"。岩鴿的喙和金色碃鷸的喙表現了 可惊的差異、专就外形和比例来說、这个目的无疑是几乎达到了。

不仅要非常細心地研究动物在活着时的情形,而且还要象安得逊所說的那样⁵⁾, 詳細检查它們的屍体,"以便只从屠戶所謂的那些能夠完全割裂的后代进行繁育"。 中的"肉紋理",具有美丽大理石条紋般的脂肪⁶⁾,以及綿羊腹中脂肪的或多或少的积 累,都曾受到注意,而且获得了成功。 关于鷄也是如此,变趾支那鷄据說在肉的性質 方面有很大差異,一位作者⁷⁾ 当談到这种情况时說道,"最好的方法是买两只同胞小 公鷄,杀掉一只加以烹調;如果它的味道平庸,那末就对于另一只进行同样的处理,再 試一次;然而它的味道如果很好,那末用它的兄弟作为食用鷄进行繁育就不会有什么

¹⁾ 皇家农学会学报,第一卷,第24頁。

³⁾ 綿羊,第520,319頁。

⁴⁾ 拉烏頓的博物学杂誌,第八卷, 1835年,第618頁。

⁴⁾ 論繁育扁桃翻飞鸽的技术,1851年,第9頁。

⁵⁾ 农业的改造,第二卷,第409頁。

⁶⁾ 尤亞特論牛,第191,227頁。

⁷⁾ 弗哥逊, 獲奖的家禽 (Prize Poultry), 1854 年, 第 208 頁。

差錯了"。

伟大的分工原则同选择发生了关系。 在某些地区1),"公牛的繁育只限于很少数 的人去讲行,他們聚精会神地致力于这一部門的工作,所以能夠年年供給一个种类的 公牛夫不断地改讲这一地区的一般品种"。众所调知, 飼育和选择公羊长期以来就是 若干卓越育种者們的主要收入来源。在德国的一些地方,这一原則对于美利奴羊已經 进行到頂点2)。"对于进行繁育的动物的适当选择如此受到重視,以致最优秀畜羣的主 人們並不相信他們自己的判断或牧羊人的判断,而是雇用那些叫作綿羊分級者的人 們去判断, 他們的专門职业就是对于几个羊羣进行选择, 这样在羊羔中来保存、如果 可能的話来改进双亲的最优良性質"。在撒克逊內(Saxony),"当羊羔断奶的时候、輪流 **地把每一**只羊羔放在桌上,以便对于它的毛和形态进行細密的观察。把最优良的羊羔 选择出来作为繁育之用,並且在它身上作出第一个記号。当它們一岁的时候,在剪毛 之前,对于上述各点再进行一次严密的检查:在那些沒有缺点的羊身上作出第二个記 号,其余的就被淘汰了。几个月之后,再进行第三次、即最后一次細查:在最優良的公羊 和母羊身上作出第三次、即最后一次記号,不过最微小的一点瑕疵就足可以使动物受 到淘汰"。这等绵羊的被繁育和受到重視差不多完全是由于它們的毛的优良性;这一 結果同在洗餐中付出的劳力是相活应的。精确計量羊毛纖維粗細度的器具已經被发 明了;"澳洲羊毛十二根相当于萊斯特羊毛一根那样粗,前一种羊已經产生出来了"。

在全世界,凡是产絲的地方,对于蚕茧的选择都付出了最重大的注意,从这些茧育出作为繁育之用的蛾。一位細心的养蚕者3)对于蛾也同样地进行了检查,並且毁掉那些不完善的个体。同我們更加直接有关系的是,在法国,有些家庭专門培育蚕卵来出售4)。在中国的上海附近,有两块小地区的居民拥有培育蚕卵供給周围地区的特权,这样他們便能专門从事这种职业,並且法律禁止他們从事絲的生产5)。

成功的育种者們在使鳥类交配时所付出的注意是令人吃惊的。約翰·塞勃来特 醫士的声誉由于塞勃来特·班塔姆鷄而永垂不朽,他經常"用两三天的时間同一位朋 友检查、磋商和爭論在五、六只鷄中哪一只是最优良的"⁶)。 布尔特先生的突胸鴿获

^{1) &}lt;u>威尔逊</u>,高地农学会会报 (Transact. Hinhland Agricult. Soc.),在艺园者記录中引用, 1844年, \$29 页。

²⁾ 西蒙茲,在艺园者記录中引用,1855年,第637頁。关于第二句引文,参閱尤亞特論羊,第171頁。

³⁾ 罗比內,蠶(Vers à Soie), 1848年,第271頁。

⁴⁾ 夸垂萤什,蠶病 (Les Maladies du Ver à Soie), 1859年,第101頁。

⁵⁾ 西門, 馴化學会会报, 第九卷, 1862年, 第221頁。

⁶⁾ 家禽記录,第一卷, 1854年,第607頁。

得了很多次奖励,並且由专人照料輸送到北美,他告訴我說,在他使每一对鴿子进行交配之前,他总要細細地思索几天。因此我們便能理解一位卓越养鴿者的如下建議,他写道¹¹,"这里我特別提醒你們不要飼养太多的鴿的变种,否則你們对于全体将知道的很少,而对于你們应当知道的那一个变种却一无所知"。 要飼育所有种类,显然是超过了人类的智力:"对于玩賞鴿具有一般良好知識的养鴿者們可能只有少数;而在強不知以为知的情形下进行工作的人們大概比較多"。 一个亚变种——扁桃翻飞鴿——的优秀性在于它的羽衣、步态、头、喙和眼;但是一个新手如果試图实现所有这些点,那就未免太不自量了。 上述那位伟大的判断者說道,"有些年青的养鴿者們太想入非非了,他們希图立刻获得上述五种性質;但他們的报酬却是一无所得"。这样,我們便知道就連玩賞鴿的育种也不是一种簡单的技术: 我們对于这种警語的庄严性可以一笑置之,不过誰嘲笑它,誰就不会获奖。

象已經說过的那样,我們的"展覽会"充分証明了有計划选择对于动物的効果是什么。象貝克威尔和威斯特恩勳爵那些早期育种者們所拥有的綿羊发生了如此重大的变化,以致不能使許多人相信它們沒有杂变过。 象考林哈姆(Corringham)所說的2),我們的猪在晚近二十年以来,通过严格的选择以及杂变,已經发生了完全的变态。"动物园"举行的第一次家禽展覽会是在 1845 年;自从那年以后,改進的効果是巨大的。 正如伟大的判断者貝利先生向我說的,以前已經預先規定了公西班牙雞的肉冠应当是直立的,四、五年之后所有优良的公西班牙雞都具有直立的肉冠了;关于公波兰鷄,也預先規定了它們不应具有肉冠或肉垂,現在,具有肉冠或肉垂的雞将就立刻受到淘汰;鬚是預先規定了的,最近(1860 年)在"水晶宫"展覽的五十七栏的雞都有餐。其他許多例子也是如此。 但在所有場合中,判断者預先規定的仅是那些偶然产生的、能够改進的、以及借着选择可以成为稳定的性状。最近几年我們的雞、吐綬鷄、鴨和鵝在重量上的不断增加是众所遇知的;"六磅重的鴨現在是普通的,而以前的平均重量只有四磅"。因为关于形成一种变化所需要的时間往往沒有被記載下来,所以值得提一提威金先生,他費了十三年的时間才在扁桃翻飞鴿的身体上按上一个洁白的头,另一位养鴿者說,"这是一种正当地值得他驕傲的胜利"3)。

具特雷·赫尔 (Betley Hall) 的陶列特先生选择那些从优良奶牛传下来的母牛、特别是公牛,其目的完全在于改進他的牛在干酪方面的生产;他用驗乳器 (lactometer)

^{1) &}lt;u>伊</u>頓,論玩賞鴿 (A Treatise on Fancy Pigeons), 1852年,第十四卷;論扁桃翻飞鸽, 1851年,第11頁。

²⁾ 皇家农学会学报,第六卷,第22頁。

³⁾ 家禽記录,第二卷,1855年,第596頁。

不断地进行試驗,八年来他使产量增加了四分之一。关于不断而緩慢的改進,这里有一个引人注意的例子¹⁾,不过其目的还沒有完全达到:1784年有一个蚕的族被引進到 法国,其中千分之一百不能結白茧,但是經过了六十五代的选择之后,現在的黄茧已 經減少到千分之三十五了。

选择对于植物就象对于动物一样,产生了同样的良好結果。 不过其程序比較簡单,因为植物在絕大多数場合中都是雌雄同株的。 尽管如此,对于大多数种类,就象对于动物和单性植物一样,非常小心地防止杂交还是必要的;但是关于某些植物,例如豌豆,这种小心並沒有必要。 关于所有改良的植物——由芽和插条等来繁殖的植物当然例外,几乎不可避免的是,检查实生苗並把离开其固有模式的实生苗毁掉。这就叫作"拔除劣苗",其实这同淘汰劣等动物一样,也是一种选择的方式。富有經驗的园艺学者和农学者不断地劝告每一个人把最优良的植物保存下来,作为产生种子之用。

虽然植物往往比动物所表現的变異显著得多,但是要发觉每一个微小的和有利的变化,一般还需要最严密的注意。 馬斯特先生說²⁾,当他年幼的时候,为了专心在种用豌豆中发現差異,他花了"多么多的坚忍时刻"。巴內特先生說³⁾,古老的猩紅色美国草莓已經栽培了一个世紀以上,連一个变种也沒有产生过;另一位作者观察到一件多么奇怪的事:当艺园者最初开始注意这种果实的时候,它开始变異了;毫无疑問,真实的情况是,它經常在变異,但是直到微小的变異得到选择並且由种子来繁殖之前,是不会得到什么显著結果的。对于小麦的最細微的些許差異,几乎就象考特尔上校、特別是哈列特少校在高等动物的場合中那样細心进行的一样,进行了区别和选择。

有关植物的有計划选择的例子,值得提出几个;不过所有古代栽培植物的重大改進,事实上可以归因于长期进行的选择,部分是有計划的,部分是无意識的。 在前一章我已經闡明了醋栗的重量怎样通过有系統的选择和栽培而得到了增加。三色堇的花同样地在重量方面和輪廓整齐方面得到了增進。关于瓜叶菊,哥侖內(Glenny)先生1)"真是胆大得够可以的了,当花是难看的、星形的而且顏色混沌不清的时候,他定下了一个当时被認为高得荒謬的而且不可能达到的标准,級使达到这个标准,据說它将破坏花的美,結果我們还是一无所得。他坚持他是对的,事实证明了他是对的"。借

¹⁾ 小圣喜来尔,博物学通論,第三卷,第254頁。

²⁾ 艺园者記录, 1850年,第198頁。

³⁾ 园艺学会会报,第六卷,第152頁。

⁴⁾ 园艺学报, 1862年, 第369頁。

着細心的选择,已經若干次地实現了花的重辦性:威廉逊牧师¹⁾ 把一种白头翁(Anemone coronaria)播种了几年之后,发現一株具有附加的花瓣;他播种了这种种子,他在同一方針下坚定地努力,因而得到了几个具有六、七列花瓣的变种。单瓣的苏格兰蔷薇成为重瓣的了,並且在九年或十年間产生了八个优良变种²⁾。 堪特尔巴利鈡形花(Campanula medium)在四代間受到了細心的选择,而成为重瓣的了³⁾。巴克曼先生⁴⁾借着栽培和細心选择把从野生种子育成的美洲防风改变成一个新优良变种。借着长年累月的选择,豌豆的早熟性加速了十至二十一天⁵⁾。 甜菜提供了一个更加引人注意的例子,自从在法国栽培以来,它的含糖量几乎增加了一倍。这是借着最細心的选择而完成的;对于根的比重进行了正规的試驗,把最好的根留下来作为結子之用⁶⁾。

古人和半開化人的选擇

把动物和植物的选择看得如此重要,所以可以反对在古代沒有进行过有計划选择的說法。一位著名的博物学者認为,如果設想半开化人会实行任何种类的选择,那是荒謬的。毫无疑問,这一原理已經得到了系統的承認,並且在近一百年內比在任何期間所进行的范围更加广泛得多,並且得到了相應的結果:但是,像我們即將看到的那樣,如果設想在最古时期以及半开化人沒有認識到选择的重要性和实行过选择,那将是很大的錯誤。我先說一下,現在所列举的一些事实只是闡明在繁育工作中所付出的注意;但是,实际情形倘真如此,那末选择几乎肯定是在某种范围內实行了。以后我們将能更好地判断,当选择只是偶尔由一个地区的少数居民来进行的时候,它所慢慢产生的巨大効果将会多么深遠。

在創世紀第三十章中有一节是很著明的,它指出影响綿羊顏色的法則,当时認为这是可能的;据說斑点品种和黑色品种是分开 飼养 的。在大卫时代,羊毛就象雪一样地白。尤亚特")討論过旧約中的有关繁育各节,他断言在这样早的时期"一定有某些最好的繁育原理被不断而长期地採用了"。按照摩索斯(Moses)的材料,已經指出"你不要叫你的牛和不同种类交配";但是他們購买騾⁸⁾,可見其他地方在这样早的时

¹⁾ 园艺学会会报,第四卷,第381頁。

²⁾ 同前書,第285頁。

³⁾ 勃罗姆赫得牧师 (Rev. W. Bromehead), 艺园者記录, 1857年, 第550頁。

⁴⁾ 艺园者記录, 1862年, 第721頁。

⁵⁾ 安得逊博士,蜜蜂,第六卷,第96頁;巴內斯 (Baines) 先生,艺园者記录, 1844 年,第476頁。

⁶⁾ 高德龙,物种, 1859年,第二卷,第69頁;艺园者肥景, 1854年,第258頁。

⁷⁾ 総羊,第18頁。

⁸⁾ 沃尔兹, 文化史, 1852年, 第47頁。

期一定使馬和驢进行杂交了。据說1)在特洛伊战争(Trojan war)以前的某些年代, 埃瑞契騷尼阿斯 (Erichthonius) 已經拥有許多种母馬了,"由于他在选择种馬时的細 心判断,一个馬的品种被育成了,这个品种比周围地区的任何品种都优良"。荷馬(第 五册)說,阿尼斯 (Aeneas) 馬是从同洛美頓 (Laomedon) 駿馬交配过的母馬繁育出来 的。柏拉图 (Plato) 在他的共和国一書中向哥劳卡斯 (Glaucus) 說道,"我知道你为了 打猎在家中养了大羣的狗。 你注意它們的繁育和交配嗎? 在具有优良血統的动物 中,是不是常有比其余更加优越的个体呢?"哥劳卡斯对于这个問題作了肯定的答 复²⁾。 亚历山大大帝挑选了最优良的印度牛送到馬其頓 (Macedonia) 去改良品种³⁾。 按照普利尼的材料⁴⁾,皮洛士王 (King Pyrrhus) 有一个特別有价值的公牛品种;在它 們四岁以前,他不叫公牛和毋牛在一起,这样,品种就不会退化了。 威吉尔在他的田 园詩(Georgics, 第三編)中提出了任何近代农学家所能提出的強烈建議:細心选择被 繁育的畜羣;"注意种族、血統和种兽;把它作为畜羣的牡亲保留下来";——在后代身 上打上烙印:——选择最純白的綿羊,检查它們的舌头是否是黑的。我們已經知道罗 馬人保持他們的鴿子的譜系,如果对于它們的繁育不是付出了重大的注意,这大概是 一种无意义的举动。哥留美拉对于鷄的繁育提出了詳細的教导:"所以从事繁育的母 **鷄最好具有上等的顏色、強健的身体、角形而丰滿的胸部、大的头,亮紅色的直立肉冠。** 具有五趾的鷄据說是最优良的品种5)。 按照塔西特斯 (Tacitus) 的材料,居尔特人对 **于他們的家养动物的族是注意的**;凱撒說,他們用高价向商人購买优良的輸入馬⁶⁾。 关于植物,威吉尔談到年年选择最大粒种子的情形;西尔斯斯說,"在谷类收获量很少 的地方,我們必須挑选最优良的谷类穗子,在其中把用作种子的谷粒分別地保藏起 来"。

此后的情形我只簡略地談一談。約在十九世紀初叶,查理曼(Charlemagne)特別 命令他的官員們要非常小心地照顧他的种馬;如果任何种馬被証明是劣而老的,就要 在它們同母馬交配之前于适当时期預先提醒他⁸⁾。 甚至在九世紀的文化如此低的愛

¹⁾ 米特弗得,希腊史 (History of Greece),第一卷,第73頁。

²⁾ 达利博士, 見人类学評論中的譯文, 5月, 1864年, 第101頁。

³⁾ 沃尔茲, 文化史, 1852年, 第80頁。

⁴⁾ 世界史,第45章。

⁵⁾ 艺园者記录, 1848年, 第323頁。

⁶⁾ 列哥尼尔,居尔特人的公共經濟, 1818年,第487,503頁。

⁷⁾ 考特尔論小麥,第15頁。

⁸⁾ 密切尔 (Michel), 关于馬羣 (Des Haras), 1861年,第84頁。

<u>尔兰</u>,从描述考尔麦克 (Cormac) 要求贖身的一些古詩中可以看出¹⁾,来自特殊地方的 或具有特殊性状的动物似乎是受到重视的。例如:

两只麦克·利尔的猪,

丰满的和紅肉的一支公羊和一支母羊、

都是我亲自从安加斯带来的。

我从瑪南南的美丽馬犟中,

亲自带来了一匹种馬和一匹母馬,

还从杜鲁姆·凱恩带来了一匹公牛和一匹白母牛。

阿塞尔斯坦 (Athelstan) 在 930 年从德国收到了作为礼物的竞跑馬;並且他禁止英国 馬輸出。約翰王"从弗兰得茲 (Flanders) 輸入了一百匹精选的种馬"。 威尔斯亲 王在 1305 年 6 月 16 日給堪特尔巴利的大主教写过一封信,要求借用任何精选的种 馬,並答应在配馬季节結束之后送还³⁾。在英国历史中有許多古代紀录指出各种精选 动物的輸入情形以及反对輸出的愚蠢法律。在亨利第七和第八統治的时候,曾命令米 恰尔瑪斯 (Michaelmas) 的长官必須搜索荒地和公地,把所有在一定大小之下的母馬 一律杀掉"。 一些早期的英国君王颁布过一些法律来禁止屠杀七岁以前的任何优良 品种的公羊,以便它們有时間进行繁育。 西班牙的枢密官在 1509 年对于选择作为繁 育之用的公羊颁布过一些规定⁵⁾。

据說亚格伯汗皇帝在 1600 年以前用品种杂变的方法"令人吃惊地改变了"他的 鴿子;这必然暗示着細心的选择。 約在同一时期,荷兰人非常細心地注意了鴿的繁育。 貝隆在 1555 年說道,法国的有本事的管理人为了获得白色的鵝和更好的种类对于小鵝的顏色进行了检查。 瑪卡姆在 1631 年告訴育种者說,"要选择最大的和最优良的冤",並且对此进行过詳細的討論。 甚至关于在花园栽培的植物种子,汗莫尔(J. Hanmer) 爵士在 1660 年左右写道60,"在选择种子时,最优良的种子是最重的,並且是从最强壮的和最富活力的茎上得到的";于是他指出一項法則,即在植株上只留很少的花来結子;所以甚至在二百以前对于花园植物已經注意到这等細节了。 为了

¹⁾ 外總**爵士**,一篇关于未經制造的动物遺骸的論文 (An Essay on Unmanufactured Animal Remains), 1860 年,第 11 頁。

²⁾ 汗米尔顿。司密斯上校,博物学者丛書,第十二卷,馬,第135,140頁。

³⁾ 密切尔,关于馬掌,第90頁。

⁴⁾ 貝克尔先生,馬點,兽医部分,第十三卷,第 423 頁。

⁵⁾ 拉貝·卡利叶 (M. l'Abbé Carlier),生理学学报, 第二十四卷, 1784 年, 第 181 頁; 关于羊的古代选择这篇論文有很多材料,关于在英国不杀小公羊羔,这篇論文是我的根据。

⁶⁾ 艺园者記录, 1843年, 第389页。

關明在沒有指望的場所靜靜进行的选择,我願补充一个事例:在前一世紀中叶, 古極 先生在北美的辽远地方借着选择, 改進了全部他的蔬菜, "所以它們大大地优于其他 任何人的蔬菜。例如, 当他的蘿卜到了合用的时候, 他就挑选十个或二十个他最贊許 的个体, 把它們栽植到距离其他同时开花的个体至少一百碼以外。 他用同样的方法 来处理所有他的其他植物, 按照它們的本性变換环境条件。"11)

在前一世紀"耶苏会会員們"(Jesuits)出版了一部有关中国的巨大著作,这一著作主要是根据古代中国百科全書編成的,关于綿羊,据說"改良它們的品种在于特別細心地选择那些預定作为繁殖之用的羊羔,給予它們丰富的营养,保持羊羣的隔离"。中国人对于各种植物和果树也应用了同样的原理²⁾。皇帝的上諭劝告人們选择显著大形的种子;甚至皇帝还自己亲手进行选择,因为据說"御米"、即皇家的米,是往昔康熙皇帝在一块田地里注意到的,于是被保存下来了,並且在御花园中进行栽培,此后由于这是能够在长城以北生长的唯一种类,所以变成为有价值的了³⁾。甚至关于花卉植物,按照中国的传统来說,牡丹(P. moutan)的栽培已經有1400年了;並且育成了200到300个变种,它受到的珍爱就象荷兰人以前对于郁金香一样⁴⁾。

現在轉来談一談半开化人和未开化人:我在南美的若干地方看到那里沒有牧場棚栏,並且牲畜的价值很小,所以我設想对于它們的繁育和选择絕对沒有給予注意;在很大程度上确系如此。然而⁵⁾罗林描述过一个哥倫比亚的裸牛的族,由于它們的脆弱体質,不准它們增加。按照亚莎拉的材料⁶⁾,巴拉圭的馬常常生下来是卷毛的,但是因为当地人不喜欢这种馬,所以都把它們杀掉了。另一方面,亚莎拉說,在 1770 年降生的一头无角公牛被保存下来了,並且繁殖了它的族。 有人告訴我說在东方班达有一个卷毛的品种; 並且異常的尼亚太牛自从最初出現以来就在拉普拉他保持了不同。因此,某些显著的变異得到了保存,其他不大利于細心选择的变異在这些地方就遭到了习惯性的毁灭。 我們还看到居民們时常把新的牛引進到他們的所在地,以便防止近亲交配的恶劣効果。另一方面,我由可靠的方面听到,彭巴草原上的高卓人(Gauchos)从来不費力去选择最优良的公牛或种馬作为繁育之用,这或者可以說明在阿根廷共和国的广大范围內牛和馬的性状是显著一致的。

¹⁾ 給农业部的信,在达尔女博士的"Phytologia"中引用, 1800年,第 451 頁。

²⁾ 关于中国的报告 (Mémoirc sur les Chinois), 1786年,第十一卷,第55頁;第五卷,第507頁。

³⁾ 关于中国农业的研究 (Recherches sur l'Agriculture des Chinois), 达威·圣德内斯 (L. D'Hervery Saint-Denys), 1850 年, 第 229 頁。 关于康熙,参閱胡克的大清帝国 (Chinese Empire),第 311 頁。

⁴⁾ 安得逊,林納学会会报,第十二卷,第253頁。

⁵⁾ 法国科学院当代各門科学論文集,第六卷,1835年,第333頁。

⁶⁾ 巴拉圭的四足兽, 1801年, 第二卷, 第333, 371頁。

看一看旧世界,在撒哈拉大沙漠(Sahara Desert),"陶瑞格人(Touareg)就象亚拉伯人选择他們的馬那样細心地选择那些进行繁育的瑪哈利(Mahari,单峯駱駝的一个优良的族)。它們的血統一代一代地传下去,並且許多单峯駱駝都能誇耀它比达雷。亚拉伯(Darley Arabian)的后代具有悠长得多的譜系。""按照帕拉斯的材料,蒙古人努力繁育產牛、即具有白尾的馬尾水牛,因为这些尾巴可以卖給中国官吏作为蝇拂之用;約在帕拉斯七十年以后的慕尔克罗夫特发現白尾的动物还被选择作为繁育之用。"

我們在討論狗的那一章中看到,按照普利尼的材料,北美不同地方以及基阿那的 未开化人就象古代高魯人(Gauls)那样地便他們的狗同野生的犬科动物 进行杂变。 这样作是为了使他們的狗得到力量和活力,其情況就象养兽者現今在大养兽場中时 常使他們的雪貂同野生雞貂进行杂交一样(雅列尔先生告訴我的),后者是为了"使它 們得到更大的兇恶性"。 按照瓦罗的材料,以前捕捉野驢同馴驢进行杂变,以改良它 們的品种,这就象今日爪哇的土人时常把他們的牛赶進森林內同野生的爪哇牛(Bos sondaicus) 进行杂交一样3)。 在北西伯利亚的奥斯塔克 (Ostyaks), 不同地区的狗有 不同的斑紋、不过无論在任何地区它們都具有黑色的和白色的斑点、却是非常一致 的1);仅仅根据这一事实我們便可推論出那里有細心的繁育工作,特別是当某一地区 的狗以其优越性聞名于全境时更加如此。我听說爱斯基摩人的某些部落以他們的狗 队具有一致的顏色而自豪。象肖恩勃克爵士告訴我說的那样50,在基阿那,特魯瑪。 印第安人的狗价值很高,並且广为交易:一只优良狗的价格同娶一个妻子用的錢是相 等的:它們被飼养在一种籠子里,印第安人"在母狗发情的季节,特別注意防止它們同 恶劣种类的公狗进行交配"。印第安人告訴罗勃特爵士說,如果一只狗被証明是恶劣 的或无用的,它不是被杀掉,就是由于全然得不到照顧而 死去。 此火地土人更野 蛮的人,几乎是沒有的,但我听传道团体的传道师勃里季斯說,"当火地土人拥有一只 大形、強壮而活泼的母狗时,他們注意地使她同优良的公狗進行交配,他們甚至注意 地喂給她好的食物,为的是使她的仔狗強壮並且得到良好的影响。"

在非洲腹地同白人沒有往来的黑人对于改良他們的动物表現了很大的热望;他們"总是选择較大的和較強壮的雄性动物作为传种之用";瑪拉哥洛人(Malakolo)对

¹⁾ 撒哈拉大沙漠 (The Great Sahara), 垂斯特拉姆 (H. B. Tristram) 牧师著, 1860年, 第238頁。

²⁾ 帕拉斯, 聚彼得堡科学院院报, 1777年, 第249頁; 臺尔克罗夫特和垂貝克, 喜馬拉雅地方旅行記, 1841年。

³⁾ 引自拉弗尔斯 (Raffles), 見印度原野, 1859年, 第196頁: 关于瓦罗, 参阅帕拉斯, 同前書。

⁴⁾ 埃尔曼,西伯利亞旅行記,英譯本,第一卷,第453頁。

⁵⁾ 再参閱皇家地質学会学报,第十三卷,第一部分,第65頁。

于利威斯东答应送給他們一头公牛國到非常高兴,巴卡洛洛人(Bakalolo)把一只公鷄从罗安达(Loanda)一路带到腹地去¹⁾。温鳥得·雷得(Winwood Reade)先生在法拉巴(Falaba)注意到一匹異常优良的馬,黑人的土王告訴他說,"这匹馬的所有者以他的繁育工作的技巧而著名。"在非洲更南的地方,安得逊說他知道有一个达瑪拉人(Damara)用两匹优良的公牛換了一只他所喜欢的狗。 达瑪拉人特别喜欢整羣的牛具有同样的顏色,他們特別看重公牛同牛角大小的比例。"納瑪瓜人(Namaquas)对于一羣一致的鳥兽是十分狂热的;几乎所有南美的人都把牛的价值看作仅次于他們的女人,並且以拥有优良品种的动物而自豪。""他們很少或者从来不把漂亮的动物作为馱兽用"。这些未开化人的辨別能力是可惊的,他們能够辨識任何牛屬于哪一个族。 安得逊先生進一步告訴我說,土人屢屢用一头特殊的公牛同一头特殊的母牛進行交配。

我在記載中找到的半开化人进行选择(其实任何人民都進行选择)的最引人注意的例子,是由戛西拉佐·得·拉韦加(Garcilazo de la Vega)举出的,他是印加人的后裔,在西班牙人征服秘鲁之前,他在那里从事选择工作³)。印加人年年举行大狩猎,届时把所有野生动物从广大的周围赶到中心地点。食肉兽最先被杀掉,因为它們是有害的。野生的原鸵(Guanacos)和駱馬(Vicunas)被杀掉;老的雄兽和雌兽也被杀掉,其他则放任自由。不同种类的鹿受到了检查,老的雄鹿和雌鹿也同样被杀掉;"但是从最美丽而强壮的个体中选择出来的幼小雌兽以及一定数量的雄兽"则被給予了自由。于是这里就有了在自然选择帮助下的人工选择。所以印加人所採取的方式同苏格兰猎人所採取的完全相反,苏格兰猎人不断地杀死最优良的雄鹿,以致引起整个族的退化,他們因此受到了譴責⁴)。 关于美洲鸵(Llamas)和羊鸵(Alpacas),它們曾在印加时代按照顏色被分別飼养过:如果在一羣中偶然生下顏色不正的一只,它最終会被放到另一羣中去。

在羊駝屬(Auchenia)中有四个类型,——原駝和駱馬,被发現有野生的,无疑是不同的物种;美洲駝和羊駝,据知只有家养的。 这四种动物看来如此不相同,以致大多数博物学者,特別是在其原产地研究过这些动物的人們,都主张它們是不同的物种,尽管誰也沒有妄想看到过一只野生的美洲駝和羊駝。但是,在祕魯和在它們向澳

¹⁾ 利威斯东的初旅 (First Travels), 第 191,439,565 頁;再参閱贊比齊探險記, 1865 年,第 495 頁,共中有一个关于山羊优良品种的相似例子。

²⁾ 安得逊的南美旅行記,第232,318,319頁。

³⁾ 瓦瓦沙尔 (Vavasseur), 馴化学会会报,第八卷, 1861年,第 136頁。

⁴⁾ 狄·賽得的博物学 (The Natural History of Dee Side), 1855年,第476頁。

洲輸出期間密切研究过这等动物並且对于它們的繁殖作过許多試驗的列吉尔 (Ledger) 先生提出一些論据說¹⁾,美洲駝是原駝的家养后代,羊駝是緊馬的家养后代;在我看来,这些論据是沒有爭辯余地的。 現在我們知道这等动物在許多世紀以前就經过了系統的繁育和选择,所以对于它們所发生的大量变化是沒有什么值得惊奇的。

有一个时期我認为可能是、古代半开化人虽然注意到比較有用的动物在重要之 点上的改進,但他們不会注意不重要的性状。不过人类的本性在全世界都是一样的: 时尚到处有最高的支配力,並且人对于他偶然拥有的东西,容易看重。 我們已經看 到, 南美的尼亚太牛的短面和朝上翻的鼻孔肯定是沒有用处的,但它們被保存下来 了。达瑪拉人以一致的顏色和非常长的角来評价他們的牛。現在我将闡明我們大部分 有用动物的几乎任何特点由于时尚、迷信或某种其他动机都曾受到重视、並且因而被 保存下来。关于牛,按照尤亚特的材料²⁾,"往昔的記載指出,北威尔斯和南**威尔斯的** 亲王要求一百头紅耳白牛作为賠偿。如果是暗色的或黑色的牛,那就要献出150头"。 所以在威尔斯被英格兰征服以前,那里的人已經注意到顏色了。在中非,凡是用尾巴 打地的公牛都被杀死;在南美,有些达瑪拉人不吃有斑点的公牛的肉。开弗尔人認为 具有音乐声調的动物是有价值的;"在英領开弗拉利亚(British Kaffraria)的一場交易 中,一头小母牛的鳴声会博得如此重大的贊賞,以致引起激烈的佔有竞争,並且它会 售得相当的价錢"3)。 关于綿羊,中国人喜欢无角的公羊; 韃靼人喜欢螺旋形角的公 羊,因为无角被設想是失去了勇气的⁶⁾。 有些达瑪拉人不吃无角綿羊的肉。关于馬, 在十五世紀末,具有被敍述为一种苹果(Liart pommé) 那样顏色的馬在法国最有价 值。亚拉伯人有一句諺語,"千万不要买四个蹄都是白的馬,因为它把 考衣給 带来 了"5);象我們已經看到的那样,亚拉伯人还輕視黃棕色的馬。关于狗也是如此,古时 的色譜芬 (Xenophon) 和另外一些人对于某些顏色是偏爱的; "白色的或石板色的猎 狗是不受重視的"6)。

轉回来談一談家禽,古代罗馬的饕餮者認为白鵝肝的味道是最好的。在巴拉圭, 黑皮鷄之所以被飼养,是因为它們被設想生殖力較強,而且肉最适于病人之用"。在

¹⁾ 馴化学会会报,第七卷,1860年,第457頁。

²⁾ 牛, 第48頁。

³⁾ 利威斯东的旅行記,第 576 頁;安得逊,納米湖 (Lake Ngami), 1856 年,第 222 頁。 关于开弗拉利亞的交易,参閱每季評論, 1860 年,第 139 頁。

⁴⁾ 关于中国的报告(捷修茲著), 1786年, 第十一卷, 第57頁。

⁵⁾ 密切尔,关于馬蒙,第 47,50 頁。

⁶⁾ 汗米尔頓·司密斯上校,狗,見博物学者丛書,第十卷,第103頁。

⁷⁾ 亞莎拉,布拉圭的四足兽,第二卷,第324頁。

基阿那,象肖恩勃克向我說的那样,土人不吃鷄肉和鷄蛋,但分別地飼养了两个族,那 仅是为了装飾之用。在<u>菲律賓</u>,被飼养和已被命名的亚变种不下九个,所以它們一定 是分別繁育的。

目前在欧洲,我們最有用的动物的最微小特点,或是由于时尚,或是作为純粹血統的标誌,都受到了仔細的注意。 有許多例子可以举出;举两个就够了。"在英国的西部諸郡,对于白猪的偏見之強,就象在約克郡对于黑猪的偏見一样"。 关于桓克郡(Berkshire)的一个亚变种,据說"白色只限于四个蹄是白的,两限之間的一个斑点是白的,並且各肩之后的少数毛是白的"。薩得勒(Saddler)先生拥有三百只猪,其中每一只都有这样的标誌"¹⁾。 将近前一世紀末叶的馬歇尔在談到約克郡的一个牛品种的变化时說道,它們的角已經相当地改变了,这是"晚近二十年以来流行的一种端正的小而尖的角"²⁾。在德国的某一部分,哥费尔族(Race de Gfoehl)的牛由于有許多优良性質而受到重視,不过它們必須有特殊曲度和特殊顏色的角,如果它們朝着錯誤的方向,那就要採用机械的方法;但是居民們認为最高度重要的却是公牛的鼻孔应当是肉色的,睫毛应当是淡色的;这是必要的条件。 具有青色鼻孔的牛犢沒有人买,要不只能售很低的价錢"³⁾。 所以誰也不必說,任何点或性状会微小到不受繁育者們的有計划的注意和选择的。

無意識的选擇 象不止一次已經說明过的那样,我借这个名辞所表示的意义是,人把价值最大的个体保存下来,把价值最小的个体毁掉,在他本身来說,並沒有改变品种的任何有意識的企图。关于从这种选择产生出来的結果,很难提出直接的証据;不过間接的証据是很多的。 其实,除了人在某一場合中是有意識地进行的而在另一場合中是无意識地进行的以外,在有計划选择和无意識选择之間並沒有多大差別。在这两种場合中,人都是把那些最有用的或最使他喜爱的动物保存下来了,其他的則遭到毁灭或忽視。但是,毫无疑問,有計划选择比无意識选择所产生的結果要迅速得多。艺园者在植物中所进行的"去劣"以及根据亨利第八王朝的法律所进行的把所有标准以下的母馬全部杀掉,按照字面的普通意义来說,这是一种同选择相反的处置方法,但导致了同样的一般結果。把具有特殊性状的个体毁掉的影响,由下述情况可以得到充分的闡明:即为了保持羊羣的白色,把每一只具有一点黑色痕迹的羊羔都杀掉

¹⁾ 尤亞特的著作, 西得內版, 1860年, 第24, 25頁。

²⁾ 約克郡的农村經濟,第二卷,第182页。

³⁾ 加約, 牡牛, 1860 年, 第547 頁。

是必要的;还有,在拿破崙的毁灭性战争中,法国人的平均高度受到了影响,在战争中 許多高大的人被杀掉了,留下来作父亲的則是一些矮人。 某些密切研究过徵兵結果 的人們的結論至少是如此,自从拿破崙时代以后,軍队的标准肯定是降低了两三次。

无意識选择和有計划选择是混淆不清的,所以要把它們分开簡直是不可能的。 当往昔一位养鴿者最初偶然注意到一只具有異常短喙的鴿子或者一只尾羽異常发达的鴿子的时候,他虽然是在繁殖这个变种的明确意图之下来养育它們,但他不会有育成短面翻飞鴿或扇尾鴿的意图,而且他决不会知道他已經朝着这个目的踏出了第一步。如果他能看到最終結果,他大概会感到吃惊,不过根据我們所知道的养鴿者的习惯来說,他們恐怕不会讚賞这种結果的。英国的传书鴿、排孛鴿和短面翻飞鴿按照同样的途徑大大地改变了,因为我們可以从两方面——从討論鴿子那一章所举出的历史証据,以及从不同国家引进的鴿子的比較——作出如上的推論。

关于狗也是如此;我們現在的狐提同古老的英国是是不相同的;我們的灵**提变得** 比較輕快了;<u>苏格兰</u>鹿猩也改变了,而且現在是罕見的。我們的叭喇狗同以前用作逗 牛的那些叭喇狗是不相同了。我們的响导狗和紐芬兰狗同其原产地的現在的任何土 著狗都不密切相似。 这等变化的发生部分是由于杂变,但是在每一个場合中其結果 还是受最严格选择的支配的。 尽管如此,我們还沒有任何理由来假定人有意識地或 者有計划地造成了同現在品种完全一样的品种。因为我們的馬变得更快了並且乡村 更开拓了和更平坦了,所以需要而且生产了更快的狐猩,但是任何人恐怕都不会預見 到它們会变成什么样子。我們的响导狗和諜狗按照时尚和增快速度的要求已經大大 地改变了;而諜狗几乎可以肯定是从大形獚传下来的。 狼絕灭了,猎狼狗也絕灭了; 鹿比較稀少了,华不再被逗了,相应品种的狗回答了这种变化。但我們几乎可以肯定 的是;譬如牛不再被逗了,沒有一个人会向他自己說,現在我将繁育比較小形的狗,因 而創造了目前这样的族。 因为环境条件变化了,人們就会无意識地而且緩慢地改变 他們的选择路線。

关于竞跑馬,对快速性的选择是有計划地进行的,並且我們的馬現在容易地超过了它們的祖先。英国竞跑馬的增大和不同外貌引起一位在印度的优秀观察者发出了这样的質問,"在 1856 年的今年,当任何人看到我們竞跑馬的时候,他能想像出它們是亚拉伯馬和非洲母馬的結合結果嗎?"1)这种变化的发生,恐怕大部分是通过无意識的选择,即由于在每一代中希图繁育尽可能优良的馬的願望以及訓練和高度丰富

¹⁾ 印度狩獵評論,第一卷,第181頁;种馬場,塞西尔著,第58頁。

的喂养,不过对于它們現在这样的外貌並沒有任何意图。按照尤亚特的材料¹⁾,在與利瓦·克侖威尔(Oliver Cromwell)时代引進的三匹著名东方种馬很快地就影响了英国品种;"一位旧派的哈萊(Harleigh)動爵报怨說,大形的馬匹在迅速地消灭着"。关于多么細心的选择一定曾經受到注意,这是一个最好的証明;因为如果沒有这等細心,如此微少注入的东方血統的一切痕迹大概就会很快地被吸收而消失掉。尽管英国的气候从来沒有被認为特別适于馬,但是长期不断的选择——有計划的和无意識的,以及亚拉伯人在更长的而且更早的时期所进行的选择,終于使我們得到了世界上馬的最优良品种。麦考雷(Macaulay)²⁾ 說,"有二个人——新垒大公(Duke of Newcastle)和約翰·范韦克(Jhon Fenwick)——关于这个問題的权威意見受到了很大的尊重,他們宣称曾經从坦吉尔(Tangier)輸入的最劣等的出租馬預料不到地比我們土著品种产出了更优良的后代。 他們大概不相信会有这样—天来到;即鄰近地方的諸侯和貴族熱切从英国得到馬的心情就象英国人曾經熱切从巴巴利(Babary)得到馬的心情,一样"。

倫敦較馬在外貌上同任何自然物种都有非常重大的差異,並且它的体积使許多东部的亲王非常吃惊,它的形成大概是由于最大的而且最有力的馬在弗兰得茲和英格兰于許多世代中受到了选择,但沒有任何意图或預期創造象我們現在所看到的那种較馬。如果我們追溯到早期的历史,正如夏弗赫生(Schaaffhausen)所說的³⁾,我們在古希腊的彫象中可以看到同竟跑馬和輓馬都不相似的並且同任何現存品种都有差別的馬。

在早期,无意識选择的結果,从同一系統所发生的、但由細心的育种者們所分別培育的羊羣之間的差異,得到了充分的闡明。 尤亚特就巴克萊先生和勃給斯 (Burgess) 先生的綿羊举出过一个有关这个事实的最优秀事例,"他們的綿羊都从貝克威尔先生的原始系統繁育了五十年以上。凡是熟悉这个問題的人一点也不会怀疑任何羊囊的所有者在任何情况下都脱离了貝克威尔先生的羊羣的純粹血統;可是这两位先生所拥有的綿羊之間的差異是如此之大,以致它們在外貌上看来就象两个完全不同的变种似的"")。我在鴿子中看到过若干相似而十分显著的例子;譬如,我有一羣排孛鴿是从塞勃来特爵士的长期繁育的排孛鴿传下来的,还有一羣是另一位养鴿者所长

¹⁾ 腐,第22頁。

²⁾ 英国史,第一卷,第 316 頁。

³⁾ 关于物种的稳定性。

⁴⁾ 尤亞特論羊,第315頁。

期繁育的,这两羣鴿子明显地有所不同。 那修西亚斯——比他更有能力的証人是无法举出的——观察到,短角牛在外貌上虽然是显著一致的(顏色除外),但是个体的性状以及每一个育种者的要求在他的牛上打下了記号,所以不同的牛羣彼此还微有不同¹⁾。 赫福特牛在 1769 年之后不久,通过<u>渴姆金斯</u> (Tomkins)²⁾ 的細心选择,就呈現了現在这样的性状,而这个品种最近又分离为两个品系——一个品系具有白色的顏面,据說³⁾ 在其他一些点上微有不同:但沒有理由可以相信这种起原不明的分离是有意識地造成的,最可能的是把它归因于不同的育种者們曾經注意了不同之点。 还有,1810 年猪的 植克斯郡品种从 1780 年的状态发生了重大变化;自从 1810 年以后,至少有两个同名的不同亚品种发生了⁴⁾。 請記住一切动物都是多么迅速地增加着,並且有些一定年年被杀掉,有些被保存下来作为繁育之用,于是,如果同一位育种者在长年累月中审慎地决定哪些应当被保存下来,哪些应当被杀掉,那末几乎不可避免的是,他的个人癖好将会影響他的獸羣,而他並沒有改變品種的任何意图。

无意識选择——即保存比較有用的动物以及忽視或杀掉比較无用的动物,而沒有任何想到将来的思想——按照这个字的严格意义来說,一定从极古时代起並且在最不开化的地方时刻繼續地进行了。 未开化人时常苦于飢饉,並且不时被战爭所迫而离乡背土。 在这等場合中,他們将把最有用的动物保存下来,几乎是无可怀疑的。当火地人受到缺少食物的严重压迫时,他們宁把年老的妇人杀掉作为食物,而不肯杀掉他們的狗;因为,正如我們确切知道的那样,"老妇无用——狗可捉獺"。 同一坚強的感觉大概会引导他們在受到更严重飢饉的压迫时也会把他們更有用的狗保存下来的。奥尔特非尔得先生看到过很多澳洲土人,他告訴我說,"所有他們都很高兴得到一只欧洲的猎袋鼠狗,並且已經知道有几个事例:父亲把他自己的婴儿杀死,以便叫母亲把奶汁餵給小狗吃"。 不同种类的狗,对于澳洲人猎取食鼠和袋鼠有用处,对于火地人猎取魚和獺有用处;在这两处地方最有用的狗的偶然保存最終会导致两个不相同的品种的形成。

关于植物,从最早的文明的黎明期起,已被知道的最优良变种一般在各个时期都得到了栽培,並且它的种子不时被播下;所以从極遙远的时期起就进行了某种选择,而沒有任何既定的最优良标准或想到将来。 今天,我們經过了几千年来偶然地或无

¹⁾ 关于短角牛 (Uebe Shorthorn Rindvieh), 1857年,第51頁。

²⁾ 罗武, 家养动物, 1845年, 第363頁。

³⁾ 每季評論, 1849年, 第392頁。

⁴⁾ 馮那修西亞斯,"猪的头盖……初步研究", 1864年, 第140頁。

意識地所进行的选择过程而得到了利益。 正如前章所指出的,奥斯瓦尔得·喜尔 (Oswald Heer) 在对于瑞士湖上居民的研究中用一种有趣的方式証明了上述情形; 因为他闡明了現在的小麦、大麦、燕麦、豌豆、蚕豆、扁豆以及罌粟的一些变种的谷粒和种子在大小上都超过了新石器时代和青銅时代在瑞士栽培过的那些变种。这等古代人民在新石器时代还拥有一种野生小苹果(Crab),它比現在野生于株拉(Jura)的那种大得多¹'。 曹利尼所描述的梨在品質上显然極端劣于現在的梨。我們还能从另一方面来体会長期不斷的選擇和栽培的効果,因為任何有理性的人都會期望从真正野生小苹果的种子培育出第一流的苹果或者从野生梨培育出甘美的軟化梨来嗎? 得康多尔告訴我說,他最近在罗馬的一件古代鑲木細工上看到一种甜瓜的彫刻: 因为如此貪吃的罗馬人对于这种果实沒有过記載,所以他推論甜瓜自从古罗馬时代以后已經大大地被改良了。

到了近代, 布丰2)把 当时栽培的花卉、果树和蔬菜同一百五十年以前的一些最好 的图画加以比較之后,不禁对于它們所完成的改进感到惊奇;他並且說,現在不仅花 卉研究者、就是乡村的养花人也不会再要这等古代的花卉和蔬菜了。 自从布丰那一 时代以后,改良工作是在不断而迅速地进行着的。 凡是把現在的花卉同不久以前出 版的書籍中的图繪加以比較的花卉研究者都会对于它們的变化感到惊奇。一位著名 业余花卉研究者3) 当談到只在二十二年以前由卡茨(Garth) 先生育成的天竺葵屬的 一些变种时指出,"它們激起了多么热烈的风行:据說我們确实达到了完善化;而到了 現在人們对于那时的任何一种花是不会看上一眼的。但是对于那些看到了应当作些 什么而且作了的人們,我們的感激却一点也不減少"。著名的园艺家保罗先生在写到 同一种花的时候說道⁴⁾,他記得年青时对于斯威特(Sweet)的著作中的天竺葵图是 宴爱的:"但县它們在美丽这一点上同今天的天竺葵相比,又怎样了呢? 这里再度說 明了自然界的前进不是跳跃的; 改进是逐漸的; 如果我們忽略了那些很逐漸的前进, 我們就一定看不到現在的巨大結果"。 这位实际的园艺家对于逐渐的和积累的选择 力給予了多么恰当的評价和說明! 大严菊的美丽是按照相似的途徑来改进的;改进 的路線被时尚所支配,也被花緩慢发生的連續改变所支配⁵⁾。 許多其他花的不断而 逐漸的变化也受到了注意:例如一位老花卉研究者6) 在描述了生长于 1813 年的石竹

¹⁾ 再参閱克瑞斯特博士,見蘆特梅耶的湖上家居,1861年,第226頁。

²⁾ 該交見馴化学会会报,1858年,第11頁。

³⁾ 园艺学报, 1862年, 第394頁。

⁴⁾ 艺园者記录, 1857年, 第85頁。

⁵⁾ 参阅威得曼先生对花卉学会的演說,見艺园者記录,1843,第86頁。

⁶⁾ 园艺学报, 10月24日, 1865年, 第239頁。

的主要变种之后补充說道,"那时的石竹很少作为庭园花卉来栽培"。 如果我們知道 歐洲最古的、即在帕雕亚 (Padua) 的花园仅是在 1545 年¹⁾ 才建立的,那末如此众多的 花卉植物的被改良以及大量变种的被育成就愈益使人吃惊了。

最受人重視的部分表現了最大差異量,这關明了选擇的效果 不論是有計划的、或无意識的、或二者結合在一起的长期不断的选择力量用一般的方法都可得到闡明,即比較不同物种的变种之間的差異,它們受到重視是由于它們的不同部分,例如叶、茎、块茎、种子、果实或花。无論哪一部分,只要是最受人重视的,就会看出这一部分表现有最大的差異量。关于为了採取果实而栽培的树,薩哥瑞特說,它們的果实比亲种的为大,然而关于为了採取种子而栽培的那些树,例如关于坚果、核桃、扁桃、栗等等,只是种子本身比較大;他对于这一事实的解释是,在某一种場合中是果实受到了小心的注意和多年的选择。而注意和多年的选择,而在另一种場合中則是种子受到了小心的注意和多年的选择。加列肖进行过同样的观察。 高德龙坚决主张馬鈴薯的块茎、洋葱的球茎以及甜瓜的果实是多种多样的,而这些植物的其余部分則是密切相似的²)。

为了判断我对于这个問題的意見正确到怎样程度,我把同一物种的很多变种彼此靠近地进行栽培。广泛不同的器官之間的比較,必然是模糊不清的;所以我只就少数例子举出其結果。 以前我們在第九章中曾經看到,甘蓝的变种在叶和茎上表現了多么巨大的差異,这些都是被选择的部分;並且它們在花、蓟和种子上是多么密切相似。 在蘿卜的七个变种中,它們的根在顏色和形状上表現了巨大的差異,但在叶、花和种子上却找不出任何差異。 現在,如果我們把这两种植物的变种的花同我們花园中的为了装飾之用而进行栽培的任何物种的花加以比較;或者,如果我們把它們的种子同那些由于种子而受到重視和栽培的玉蜀黍、豌豆、蚕豆等的种子加以比較,它們的对照是多么显明。在第九章中已經闡明,豌豆的变种在植株高度方面有差異,在荚的形状方面有相当差異,在豆的本身方面有巨大差異,除此之外,几乎沒有差異,而所有这些正是被选择之点。然而甜豌豆(Pois sans parchemin)則在荚的方面表現了更大的差異,它們的荚是食用的並且是被重视的。我栽培过普通蚕豆的十二个变种;只有一个变种矮生法恩(Dwarf Fan)在一般外形上表現了相当的差異;两个变种在花的顏色上表現了差異,一个是白变种,另一个是以全部紫色代替了部分紫色;几个变种

¹⁾ 帕瑞斯考特 (Prescott) 的墨西哥歷史,第二卷,第61頁。

²⁾ 歷哥瑞特,果想生理学,1830年,第47頁;加列貨,植物的繁育理論,1816年,第88頁;高德龙,物种,1859年,第二卷,第6367,70頁。我在本書第十章和第十一章中对于馬鈴薯进行了詳細的論述;关于玉葱,我能肯定提出同样的意見。我也曾提出諾丹对甜瓜变种表示費同到怎样程度。

在莢的形状和大小上表現了相当的差異,不过在豆的本身方面所表現的差異更为巨大,这是被重視的和被选择的部分。例如,陶克蚕豆(Toker's bean)在长度和寬度上都比蚕豆(horse-bean)大两倍半,而且皮薄得多,同时具有不同的形状。

如前所述,醋栗的变种在果实上表現了巨大差異,但在花和营养器官上几乎看不出任何差異。关于李,它們在果实上的差異好象也比在花和叶上的差異为大。另一方面,相当于李的果实的草莓种子几乎完全沒有差異;而每一个人都知道,它們的果实——即增大了的花托——表現了多么巨大的差異。苹果、梨、桃在花和叶上表現了相当差異,但就我所能判断的来說,它們的差異却不能同果实方面的差異成比例。另一方面,中国重瓣花的桃闡明了这种桃树的变种已經形成了,它們在花的方面比在果实方面所表現的差異更大。如果桃是扁桃的改变了的后代(这是高度可能的),那末在同一物种中已經完成了可惊的变化量,这表現在前者的多肉果被上和后者的果仁上。

象种子和多肉果被(不論它的同源性質怎样)那样地,如果那些部分彼此具有密 切的关系,那末某一部分发生变化,另一部分通常也要随着发生变化,虽然其程度並 不一定一样。 例如,关于李树,有些变种结的李子是几乎一样的,但它們所含的核在 形状上則极端不相同;相反地,另外一些变种結的李子並不一样,但它們的核則几乎 沒有区別; 一般說来,虽然核从来沒有被选择过,但在李的几个变种中它們表現了巨 大差異。在其他一些場合里,沒有显著关系的器官通过某种連鎖而一齐发生变異,因 而这些器官在沒有人的意图之下也容易同时受到选择的影响。 例如,紫罗兰的一些 变种仅仅由于花的美而受到了选择,但它們的种子在顏色上表現了巨大的差異,同时 在大小上多少也表現了差異。 萵苣的一些变种仅仅由于叶子而受到了选择,但它們 的种子在顏色上也表現了差異。一般說来,通过相关的法則,当一个变种同其相似的 变种在任何一种性状上有巨大差異时,它在其他几种性状上也有某种程度的差異。当 我把同一物种的許多变种栽培在一起的时候,我观察到上述事实,因为通常我最先把 那些在叶子和生长方式上彼此最不相同的变种列成一个表,然后把那些在花上最不 相同的变种列成一个表,其次把那些在种子蒴上最不相同的变种列成一个表,最后把 那些在成熟种子上最不相同的变种列成一个表;我发現同一个名称一般在两个、三个 或者四个連續的表上出現。尽管如此,就我所能判断的来說,变种之間的最大差異量 总是由那种部分或器官——即为了它才栽培这种植物——表示出来的。

如果我們記住各种植物的最初栽培都是因为它們对人有用,而它的变異則是以 后的、常常是长久以后的事情,那末我就不能假定物种是按照任何特殊途徑而被赋与 了一种变異的特殊傾向並且它們本来是被选出来的,所以我們不能借此来說明被重 视的部分为什么表現了比較大量的多样性。我們必須把这种結果归因于这些部分的 变異是曾經連續被保存下来的、因而是不断被扩大的;而其他变异,除了那些通过相 关作用而不可避免出現的以外,則受到忽视而消失了。所以們我可以推論,通过长期 不断的选择,大概可以使大部分植物产生一些族,彼此在任何性状上的差異就象它們 現今在那些受到重视而被栽培的部分上所表現的差異一样。

在动物中我們沒有看到同样的情形;不过为了公平的比較並沒有飼养过足够数量的物种。綿羊的价值在于它們的毛,几个族的羊毛之間的差異比牛毛之間的差異大得多。 綿羊、山羊、歐洲牛或猪都不是由于它們的快迅和力大而受到重視;並且我們不拥有在这些方面表現了輓馬和竞跑馬那样差異的品种。 但在駱駝和狗中,快迅和力大是受到重視的;关于前者,我們有快迅的单峯駱駝和笨重的駱駝;关于后者,則有灵堤和獒。不过狗的被看重甚至更高程度地由于它們的智力和感觉;每一个人都知道它們在这些方面表現了多么巨大的差異。另一方面,在专为食用而飼养狗的地方,譬如在这里尼西亚羣島和中国,它們被描述是一种极其愚蠢的动物¹)。 布魯曼巴哈說,"許多狗,譬如猎獾狗(bager-dog),对于特殊目的具有如此显著和如此适宜的一种体格,以致我不得不感到我很难相信这种可惊的形状是由于退化的偶然結果"²)。 如果布魯曼巴哈考虑到伟大的选择原理,他大概就不会使用退化这个术語了,而且他对于狗和其他动物变得非常适于为人类服务大概也不会感到惊奇了。

总之,我們可以作出如下的結論:不論最受到重視的是哪一部分或哪一种性状 ——植物的叶、茎、块茎、鳞茎、花、果实或种子也好,动物的大小、力量、快迅、毛被或 智力也好——那种性状会被发現几乎不可避免地在样式和程度上表現有最大的差異 量。 这种結果可以安全地归因于人在长期过程中把对他有用的变異保存下来了,並 且忽視了其他变異。

我将对一个重要的問題說几句話,来結束这一章。关于象长頸鹿那样的动物,其 整个构造对于某些目的是非常調和一致的,于是有人想象所有这些部分一定是同时 改变的;而曾經爭論的是,根据自然选择的原理,这几乎是不可能的。 不过在这样的 爭論中,曾經默契地假定变異是突然的而且是巨大的。毫无疑問,如果一种反芻动物的頸是突然大大变长了的,它的前肢和背大概势必会同时变得強有力而发生改变;但 不能否認的是,一种动物的頸、或头、或舌、或前肢伸长得很小,而身体的其他部分並沒 有任何相应的改变;这样改变微小的动物在缺少食物的期間大概会获得微小的利益,

¹⁾ 高德龙,物种,第二卷,第27頁。

²⁾ 布鲁曼巴哈的人类学論文集 (The Anthropological Treatises of Blumenbach), 1856年,第292頁。

能够吃到較高的小枝,因而生存下来了。 每日的少量食物,不論多少,在生与死之間 就会造成完全不同的情况。由于同样过程的重复,並且由于生存者的偶尔交配,将会 朝向长頸鹿的非常調和一致的构造前进一些,虽然这种前进是緩慢的和徬徨不定的。 如果具有圓錐形小嘴、球形头、圓形身体、短翅和小脚——这些性状显得非常調和—— 的短面翻飞鴿曾是一个自然的物种,那末它的整个构造将会被看成是非常适于它的 生活的;不过在这种場合中,沒有經驗的育种者們对于各点是逐次加以注意的,而不 是試图同时改进整个的构造。 請看一看灵缇那种优美的、对称的和富有活力的完善 的肖象吧:沒有一个自然的物种可以誇耀有比它更美妙調和一致构造,它有逐漸变細 的头、苗条的体部、厚的胸、縮进去的腹、鼠状尾以及肌肉发达的长腿, 所有这些都适 于极端的快迅和追赶弱小的猎物。現在,根据我們看到的动物的变異性,根据我們知 道的不同的人在改良家畜时所採用的方法——有些人主要注意某一点、其他的人注 意另一点,还有一些人利用杂交来改正缺点等等——我們可以肯定的是,如果我們能 够知道第一流灵程的悠长的祖先系統、直到它的狼般的野生祖先为止、那末我們应当 看到无数最微小的級进,有时这是关于这一种性状的,有时是关于那一种性状的,不 过所有这些都引向現在那样的完善模式。 从这等微小而暧昧的步骤,象我們可以确 信的那样、本性在她的改进和发展的伟大行进中心进步了。

同样的理論体系就象对整个体制的适用那样也可适用于各別器官。一位作者¹⁾ 最近主张,"假定对于眼睛那样的器官进行全部改进,必須同时採取十种不同的改进方法,这大概一点也不誇张。 以任何一种这等方法来产生任何复杂器官並达到完善化的不可能性,其性質和程度正如把字母胡乱地丢在掉子上来作出一首詩或一个数学演算的不可能性一样"。如果眼睛的改变是突然的和巨大的,那末,毫无疑問,許多部分势必同时发生变化,以便保持这种器官的用处。

但在变化較小的場合中也是这样嗎? 有些人只有在暗的光線下才能看得清楚, 我相信这种状态决定于网膜的敏感性,而且据知是遗传的。例如,如果一种鳥由于能 够在黄昏看得清楚而得到某种巨大利益,那末一切具有最敏感的网膜的个体将会得 到最大的成功而且最可能生存下去;为什么所有那些偶然具有大一点眼睛的或者朣 孔能够开张得較大的个体不应当同样地被保存下来呢(不論这等改变是否严格同时 发生的)?这些个体以后还会杂交並且把它們各自的优越性混合在一起。由于这等微

¹⁾ 英尔斐(J. J. Murphy)先生对貝尔法斯特(Belfast)博物学会的公开讓演 見貝尔法斯特北部民权党(Belfast Northern Whig), 11 月 19 日, 1866年。莫尔斐先生在演講中是追隨皇家天文学会主席波利卡得(Pritchard)牧师的論点体系来反对我的观点的,后者在以前並且更加慎重地在对"諾定昂的英国协会"的佈道中发表了他的这种論点体系。

小而連續的变化,一种夜息昼出的鳥的眼大概会被带到鴞眼的状态,后者常常被作为 一个有关适应性的最优秀的例子提出来。 近視眼往往是遺传的, 它可以使一个人在 非常近的距离下清楚地看到微小的物体,而对于普通眼睛,这是不能清楚地看到的: 这里我們知道、在某些条件下可能有用的一种能力是突然得到的。貝格尔号艦上的几 个火地人由于很长久的实践在看远距离的目标时,肯定比我們的水手看得清楚:我不 知道这究竟是取决于敏威性,还是取决于焦点調节的能力:不过这种看远的能力可能 是由于上述任何一种連續变化的微小扩大。不論在水中或空气中都能**看**見东西**的两** 棲动物,正如帕拉脫(M. Plateau)1)所闡明的那样,需要和拥有按照以下設計所构成的 眼睛:"角膜总是扁平的,或者至少在晶体的前方是非常扁平的並且遮蔽着同那个晶 体的直徑相等的空間,而橫的部分可能是能弯曲的"。晶体很接近球形,其中液体同水 的索度差不多一样。 当一种陸棒动物在它的习性上日益变成水棒的时候,最初在角 膜或晶体的曲度上、然后在液体的密度上发生很微小的变化,或者与此相反地,也可 能連續地发生很微小的变化:这些变化在对于空气中的视力沒有严重损害的情况下, 对于动物呆在水中大概是有利的。当然不可能推測脊椎动物的眼睛的基本构造原来 是根据什么步骤才获得的,因为有关該綱最初祖先的眼睛,我們什么也不知道。关于 **最低等的动物、最初眼睛所可能經过的变迁状态、在类推的帮助下、是能够得到闡明** 的,就象我在物种起源中曾經試图闡明的那样2)。

•

¹⁾ 关于魚类和两棲类的視力,見博物学年招中的課文,第十八卷,1866年,第469頁。

²⁾ 節六版, 1872年, 第644頁。

第二十一章 选 择(續)

自然选择对于家养动物的影响——价值微小的性状往往具有真正的重要性——有利于人工选择的环境条件——防止杂交的便利以及生活条件的性質——密切注意和坚持性是不可缺少的——大量个体的产生是特別有利的——不进行选择,就不会形成不同的族——高度繁育的动物容易退化——人对各个性状的选择有进行到极点的傾向,这会导致性状的分歧,稀罕地也会导致性状的趋同——性状朝着它們已經变异的同一方向碰撞变异——性状的分歧以及中間变种的絕灭导致家养族的不同——选择力的限制——时間的經过是重要的——家养族发生的途径——提要。

自然选择或最适者生存对于家养生物的影响 关于这个問題,我們知道的很少。但是,因为未开化人所养的动物在一年之中势必完全自己去覓食,或者在很大程度上自己去覓食,所以几无可怀疑的是,在不同地方,具有不同体質和不同性状的变种最能成功,因而受得到自然的选择。 因此,就像不止一位作者所說的那样,未开化人所养的少数动物既有它們主人那样的野性外貌,而且也同自然的物种相似。 甚至在具有悠久文化的地方,至少是在比較蛮野的部分,自然选择对于我們的家养族一定是有作用的。明显的是,具有很不相同的习性、体質和构造的一些变种在山上和在肥沃的低地散場上最能成功。例如,改良的莱斯特羊以前曾被帶到兰麦穆尔山脈(Lammermuir Hills);但一位聪明的羊主人报告說,"我們的劣等的瘠薄牧場对于維持如此身体重大的羊是不能胜任的;它們的体躯逐漸变小了;一代不如一代;当春季天气不好的时候,在暴风雨的摧残下,小羊的成活很少超过三分之二"11。 北威尔斯和赫布里得零島的山地牛也是如此,据知它們經不住同較大而娇弱的低地品种进行杂变。 两位法国博物学者在描述塞加西亚馬时說道,它們生活在变化极大的气候之下,必須尋找仅少的牧場,而且經常处在狼的袭击危险中,于是生存下来的只是最强壮的和精力最正盛的20。

每一个人一定都会被斗鷄的无比的优美、力气和活力所打动,它有勇敢的和自信的风度,长而坚定的頸,結实的身体,有力而紧贴的翅膀,肌肉发达的大腿,基部寬大的坚固的喙,生在腿的下部以便进行致命攻击的強而銳的距,以及作为防护之用的致密

¹⁾ 尤亚特論羊中引用,第325頁。再参閱尤亚特論牛,第62,69頁。

²⁾ 列尔貝特(M. M. Lherbette)和夸重費什, 馴化学会会报, 第八卷, 1861年, 第311頁。

的、光亮的和鎧甲般的羽衣。現在英国的斗雞不仅在許多年代中由于人的仔細选择,同时就推高梅尔先生所說的那样¹⁾,还由于一种自然选择,而被改良了;因为最強的、最敏捷的和最有勇气的鷄在斗鷄場中一代又一代地打敗了它們的敌手,因而被用作它們这一族的祖先。同类的双重选择对于传书鴿(Carrier pigeon)发生了作用,因为在它們的訓練期間,劣等的鴿子不能回到家中而走失了,所以級使沒有人的选择,繁殖它們这一族的,也只有优越的鴿子。

在大不列颠,以前几乎每一个地区都有自己的牛的品种和羊的品种;"对于各地的土壤、气候以及它們所賴以为生的該地草場,它們是土生土长的;它們好像是为了这个地区和被这个地区所形成的"²⁾。但在这种場合中,我們完全分不开生活条件的——使用或习性的——自然选择的——以及人工选择(我們已經看到,甚至在最不开化的历史时期中人也偶尔地和无意識地进行这种选择)的直接作用所发生的效果。

現在讓我們看一看自然选择对于特殊性状的作用。对于自然,虽然难于抵制,但 人常常反抗她的力量,而且有时获得成功。从即将提出的事实看来,我們也会知道自 然选择对于許多家养产物会发生強有力的影响,如果它們是沒有被保护起来的。 这 一点非常有趣,因为,这样我們便可晓得重要性显然很傲小的差異,在一个类型被迫 为自己的生存进行斗争的时候,肯定会决定它的存在的。就像我以前所認为的那样, 某些博物学者可能曾經認为,在自然状况下发生作用的选择虽然会决定一切重要器 官的构造,但不能影响那些我們所認为重要性很小的性状;然而这是我們显著容易犯 的一种錯誤,因为关于什么性状对于各个生物具有真正的价值,我們是无知的。

如果人試图形成这样一个品种,它在构造上或在若干部分的相互关系上具有某种缺陷,他将部分地或完全地陷于失敗,或者遭遇很大的困难;事实上他是受到了一种自然选择的抵制。我們已經看到,在約克郡曾經一度試图育成具有巨大臀部的牛,但当母牛产犢的时候如此常常死去,以致这种試图不得不被放棄了。 在繁育短面翻飞鴿的时候,伊頓先生³⁾ 說道,"我确信具有比較漂亮的头和喙的鴿子在卵壳中死去的比孵化出来的为多;理由是,異常短面的鴿子的喙不能达到卵壳而弄破它,因而死去"。 这里有一个更引人注意的例子,它指明自然选择只在长的間隔期間发生作用:在普通的季节里尼亚太牛能夠同其他牛一样地吃草,但从 1827 年到 1830 年,拉普拉他的平原不时受到长期的旱魃为害,牧場都干死了;到了这样的时候,普通的牛和馬

¹⁾ 家念之書, 1866年, 第123頁;推葛梅爾先生, 傳書鴿, 1871年, 第45-58頁。

²⁾ 尤亚特論羊,第 312 頁。

³⁾ 論扁桃翻飞皓 (Treatise on the Almond Tumbler), 1851年,第33頁。

成千地死去,但有許多由于吃到小枝和蘆葦等便活下来了;而尼亚太牛由于它們的朝上翻的顎以及唇的形状不能那样順利地吃到这些东西;因而它們如果得不到照顧,就会先于其他牛死去。在哥倫比亚,按照罗林的材料,有一个叫作佩隆的牛的品种,是几乎无毛的;这等牛在它們故乡的炎热地方能夠成功地生活,但发現它們对于戈迪烈拉就太脆弱了;然而在这种場合中自然选择只决定了变种的分佈范围。多数的人为的族显然决不能在自然状况下生存;——例如意大利灵缇,——无毛的和几乎无齿的土耳其狗,——逆着強风不能良好飞翔的扇尾鴿,——视力受到眼周肉垂和巨大羽冠的妨碍的排孛鴿和波兰鷄,——由于无角而不能同其他雄者进行竞争、因此遗留后代的机会不多的公牛和公羊———不结种子的植物以及許多其他这样的例子。

分类学者一般認为顏色是不重要的: 所以讓我們看一看顏色对于家养产物的間接影响有多大,並且看一看它們如果被放在自然选择的充分力量之下,顏色对于它們的影响有多大。在以后章节里,我勢必闡明,容易蒙受某些毒物作用的最稀奇种类的体質特点同皮肤顏色是相关的。这里我根据外曼教授的高度权威的意見只举一个例子;他告訴我說,关于所有在維基尼亚的一个地方的猪都是黑色的,他感到惊奇,于是他作了調查,确知这等猪是以赤根(Lachnanthes tinctoria)为飼料的,这种植物把它們的骨染成淡紅色的了,除了在黑色变种的場合中,这会引起蹄的脱落。 因此,正如一位养猪者所說的那样,"我們从一胎小猪中选择那些黑色的来养育,因为只有它們才有良好的生活机会"。 所以我們在这里看到了人工选择和自然选择协同发生作用。我再补充一点, 塔侖提諾(Tarentino)的居民只养黑色的羊,因为那里充满了一种金絲桃(Hypericum crispum);这种植物对于黑色的羊无害,但对于白色的羊約在两週間就会把它們弄死10。

人們相信在人类和下等动物中肤色和易于感染某些疾病是相关的。例如致命的 狗瘟熱 (distemper) 对于白色㹴的为害比对于其他任何顏色的㹴都厉害²⁾。 在<u>北美李</u> 树容易感染一种病,道宁³⁾ 相信这不是由昆虫引起的;紫色果实的种类受到的影响最 大,"我們从来不知道綠色果实或黃色果实的变种受过感染,除非其他种类最先长满 了瘤"。另一方面,在北美桃树受到黄叶病 (Yellows) 的为害极大,这种病似乎为該大 陸所特有,"当这种病最初发生时,黄肉果实的桃树受害的达十分之九以上。 白肉果 实的种类受害的就少得多;在这个国家的某些部分从来沒有受害过"。在莫里求斯白

¹⁾ 霍依兴格 (Heusinger), 医学杂誌 (Wochenschrift für die Heilkunde) 柏林, 1846年, 第 279 頁。

²⁾ 尤亚特論狗,第232頁。

³⁾ 美国的果树, 1845年, 第270頁; 关于桃, 第466頁。

色甘蔗近年来如此严重地受到一种病的为害,以致許多栽培者被迫放棄了这个变种(虽然从中国輸入了一些新鮮的植物来試驗),而只栽培紅色的甘蔗¹⁾。 現在,如果这等植物被迫同其他竞争的植物和敌害进行斗争,那末毫无疑問,被看作不重要性状的果皮和果肉的顏色将会严格地决定它們的生存。

容易受到寄生生物为害的情形也同顏色有关。白色的雛雞肯定比黑色的雛雞客易得张嘴病(gapes),这种病是由一种寄生虫侵入气管而引起的²)。相反地,經驗闡明,在法国結白茧的蚕比結黃茧的蚕能够較好地抵抗致死的菌类³)。关于植物也观察到相似的事实:从法国输入的一种新而美丽的玉葱虽然靠近其他种类栽植,但只有它受到一种寄生菌为害¹)。白色的馬鞭草(Verbenas)特別容易感染露霉病⁵)。瑪拉加附近,在葡萄病初期,綠色种类受害最大;"紅色的和黑色的葡萄即使同病株混杂在一起,也全然不受害"。在法国整羣的变种比較地不受害,而其他变种,例如卡塞拉(Chasselas),則沒有提供一个侥倖的例外;不过我不知道在这里是否观察到在容易罹病和顏色之間有任何相关⁵)。在前一章已經闡明草莓的一个变种多么奇怪地容易感染自粉病。

当高等动物在自然状态下生活时,昆虫在許多場合中肯定地限制了它們的分布范围、甚至它們的生存。在家养状况下,淡色的动物受害最大:条林吉亚(Thuringia)"的居民不喜欢灰色、白色或青白色的牛,因为它們受到各种蝇的煩扰要比褐色的、紅色的和黑色的牛厉害得多。据說⁸⁾ 一个黑人的天老儿对于昆虫的咬螫特别敏感。在西印度窒息⁹⁾,据說"唯一适于工作的有角牛是那些黑色很浓的牛。白色的牛受到了昆虫的可怕折磨;同黑色的牛相比,它們是衰弱而呆鈍的"。

在<u>得文郡</u>,对于白色的猪有一种偏見,因为人們相信当它們走出去的时候,会受到日灼¹⁰);我知道有一个人由于同样的理由在肯特也不养白色的猪。花的受到日灼

¹⁾ 英里求斯文学和科学皇家学会会报 (Proc. Royal Soc. of Arts and Science of Mauritius), 1852年, 第 135 頁。

²⁾ 艺园者記录, 1856年, 第379頁。

³⁾ 夸重费什,蛋的实际病害 (Maladies Actuelles du Ver à Soie), 1859 年,第 12,214 頁。

⁴⁾ 艺园者記录, 1851年, 第595頁。

⁵⁾ 园艺学报, 1862年, 第476頁。

⁶⁾ 艺园者記录, 1852年, 第435,691頁。

⁷⁾ 貝西斯坦,德国的博物学, 1801年,第一卷,第310 厂。

⁸⁾ 波利卡得,人类的体格史, 1851年,第一卷,第224頁。

⁹⁾ 刘伊斯 (G. Lewis), 西印度零鳥居留記 (Journal of Residence in West Indies), 麥麗和团体丛會,第
100 頁。

¹⁰⁾ 尤亚特論務, 西得內限, 第24頁。 我在人类的場合中提出了相似的亦实, 見人类的由来, 第二版, 第195頁。

似乎同样地也决定于顏色;例如暗色的天竺葵受害最大;根据各种記載得知,金線錦变种显然經不住其他变种所能享受的那样程度的日光。 另一位业余养花者确言,不仅所有暗色的馬鞭草,而且猩紅色的馬鞭草,都会受到太阳的为害:"顏色較淡的种类受害較輕,淡青色的种类恐怕是最好的"。 三色堇也是如此;炎热的天气对于具有污斑的种类是适宜的,却毁坏了一些其他种类的美丽斑紋¹⁾。 在荷兰,所有紅花的洋水仙在一个极冷的季节里,据观察都表現了很坏的品質。 許多农学者們都相信紅色小麦比白色小麦在北方的气候下表現得更能抗寒²⁾。

白色的韃靼樱桃,"不論是由于它的顏色同叶色非常相似,或者由于果实从远处看总是显得不成熟",並不像其他种类那样容易地受到鳥类的为害。一般可以几乎純粹由种子产生的黄色果实的树莓"很少受到鳥类的折磨,鳥类显然不喜欢它;所以在紅色果实沒有受到其他保护的場所可以把鳥巢除掉"⁶⁾。 这种不受害性对于艺园者虽然有利,但对于自然状况下的樱桃和树莓大概不利,因为传播种子是依賴鳥类的。

¹⁾ 园艺学报, 1862年, 第476, 496; 1865年, 第460頁。关于三色菫, 見艺园者記录, 1863年, 第628頁。

²⁾ 洋水仙及其栽培 (Des Jacinthes, de leur Culture), 1768 年,第53 頁; 关于小麥, 見艺园者記录, 1846 年,第653 頁。

³⁾ 推葛梅尔,大地,2月25日,1865年。关于黑色的雏,参围<u>汤卜逊的爱尔兰的博物学一</u>营中引文,1849年,第一卷,第22頁。

⁴⁾ 关于达尔交反对魏干得的事件 (In Sachen Darwin's contra Wigand), 1874年,第70頁。

⁵⁾ 馴化学会会报, 第七卷, 1860年, 第359頁。

⁶⁾ 园艺学会会报,第一卷,第二辑, 1835年,第275頁。 关于树莓,参阅艺园者配录, 1855年,第154頁; 1863年,第245頁。

我在几个多季注意了一些黄色浆果的多青树满被着果实,这些树是由我父亲找到的一株野生树上的种子培育出来的,而在鄰近的普通种类的树上却看不見一粒猩紅色的浆果。一位朋友告訴我說,在他的花园中生长着一株山梨 (Pyrus aucuparia),虽然其浆果的颜色並沒有什么不同,但总先于其他树上的果实被鳥吃掉。这样,这个山梨的变种比普通变种大概能够更自由地传播;而多青树的黄色浆果变种大概不如普通变种那样自由地传播。

关于顏色姑置不論,且說其他微小差異对于栽培植物有时被发現也具有重要性,如果它們势必自己同許多竞爭者进行战斗,这等微小差異就具有极大的重要性。 叫作 Pois sans parchemin 的薄皮豌豆比普通豌豆受到鳥类为害的情形普遍得多¹⁾。另一方面,具有硬皮的紫荚豌豆在我的花园中逃脱白脸山雀(Parus major)的为害,远比其他种类为优。薄壳胡桃受到山雀的为害同样是巨大的²⁾。据观察,这等鳥飞越大榛而不为害它,只为害同一果园中的其他种类的坚果³⁾。

某些梨树变种的树皮是軟的,它們严重地受到鑽孔的甲虫为害;据知其他变种在抵抗它們的为害方面就好得多⁴⁾。在北美,果实平滑、即不具茸毛在抵抗谷象虫(Weevil)的为害方面造成了巨大差别,"谷象虫是一切无毛核果类的顽固敌人";栽培者"常常痛苦地看到几乎所有的果实,实际上往往是全部的果实当达到华熟或三分之二成熟的时候,便从树上脱落了"。因此,油桃比桃受到的为害更大。在北美培育的摩瑞洛樱桃的特殊变种沒有任何可以归与的原因,却比其他樱桃树更容易受到这种谷象虫为害⁵⁾。由于某种未知的原因,某些苹果变种正如我們已經看到的那样,在世界各地在不受介壳虫的侵袭方面,具有巨大的优越性。另一方面,有一个特别的例子被配載下来,它指明蚜虫(Aphides)只局限于为害<u>冬季·內利斯</u>(Winter Nelis)梨,对于广大果园中的其他种类却不触及⁶⁾。桃、油桃和杏的叶子上有微小的腺的存在,被植物学者們認为是一点也不重要的性状,因为在从同一亲本传下来的关系密切的一些亚变种中有的有叶腺,有的就沒有叶腺;但是良好的证据⁷⁾可以证明缺少这种腺就会导致白粉病的发生,这种病对于这等树是高度有害的。

¹⁾ 艺园者記录, 1843年, 第806頁。

²⁾ 同前杂誌, 1850年, 第732頁。

³⁾ 同前杂誌, 1860年, 第956頁。

⁴⁾ 得喬紐, 艺园者記录, 1860年, 第120頁。

⁵⁾ 道寧,北美的果树,第266,501頁;关于樱桃,第198頁。

⁶⁾ 艺园者記录, 1849年, 第755頁。

⁷⁾ 园艺学报,9月26日,1865年,第254頁;参助第十章中的其他参考交獻。

在某些变种中香气或營养量的差異,会致使它們比同一物种的其他变种受到各种故害的更热切的侵袭。鷽(Pyrrhula vulgaris)为害我們的果树是把花芽吃掉,有人看到一对鷽"在两天之內就把一株巨大李树上的几乎所有花芽吃光";不过苹果和山楂(Crataegus oxyacantha)的某些变种¹⁾更加特別容易地受到鷽的为害。在利威尔先生的花园中曾經观察到有关这种情形的一个显著例子,在那里有两行特殊变种的李树²⁾必須受到小心的保护,因为在冬季它們的所有花芽通常都要被吃光,而生长在它們附近的其他种类却不受害。梁氏蕪菁甘兰(Laing's Swedish turnip)的根(即增大了的茎)是山兔(hare)所喜爱的,所以它比其他变种受到的为害更大。 当普通黑麦和圣約翰日黑麦(St. John's-day-rye)在一起生长时,山兔和家兔先吃掉普通黑麦³)。在法国南部,当造成一个扁桃园的时候,播种下去的是苦味变种的坚果,"这是为了它們可以不被野鼠吃掉" 4),在这里我們看到了苦味的原理对于扁桃的应用。

被認为十分不重要的其他微小差異,毫无疑問,有时对于植物和动物有重大的用处。正如以前所說的那样,怀特司密斯氏醋栗(Whitesmith's gooseberry)比其他变种抽叶較迟,这样,它們的花便得不到保护,因而果实常常脱落。 按照利威尔先生的材料50,在某一个樱桃变种中,花瓣向后捲得很厉害,因此,人們观察到它們的柱头被严霜打死了,同时在一个花瓣不捲的变种中,花柱却一点也沒有受害。范頓小麦(Fenton wheat)的麦桿高度是显著不等的;一位有才能的观察者認为这个变种是高度丰产的,部分地因为麦穗在地上分布在不同的高度,所以比較不挤在一起。同一位观察者主张,在直生的变种中,当风吹得麦穗在一起冲击时,分出的麦芒由于可以减弱这种冲击,所以是有用的60。 如果一种植物的几个变种生长在一起並且不加区别地收获它們的种子,那末較強壮和生产力較大的种类,由于一种自然选择,将会比其他种类逐漸估有优势;正如考特尔上校所相信的那样70,这种情形之所以在我們麦田里发生,如上所述,是因为沒有一个变种的性状是完全一致的。艺园者肯定地告訴我說,在我們的花园里,如果不分別保存不同变种的种子,也会发生同样的情形。当野鴨和馴鴨的卵在一起孵化时,小野鴨几乎不可避免地要死去,因为它的身体較小而且得不到公平的

¹⁾ 塞尔比(Selby)先生,动物学和植物学杂誌 (Mag. of Zoology and Botany), <u>爱丁堡</u>,第二卷, 1838 年, 第 393 頁。

²⁾ 带梅园艺学报 11 月 27 日, 1864 年, 第 511 頁。

³⁾ 皮尤西,皇家农学会学招,第六卷,第179頁。关于燕菁甘睦,参閱艺园者記录,1847年,第91頁。

⁴⁾ 高德龙,物种第二卷,第98頁。

⁵⁾ 艺园者記录, 1866年, 第732頁。

⁶⁾ 艺园者記录, 1862年, 第820,821頁。

⁷⁾ 小多品种,第59頁。

食物分配1)。

現在已經举出了充分数量的事实来闡明,自然选择常常抑制人工选择,不过偶尔 也有利于人工选择。此外,这等事实还給我們上了有价值的一課,即我們应当极其慎 重地去判断什么性状在自然状况下对于那些从生到死势必进行生存斗爭的动物和植 物是重要的,——它們的生存取决于生活条件,关于这一点我們是深刻无知的。

有利于人工选择的環境条件

选择的可能性是以变異性为依据的,像我們在下一章将要看到的那样,这主要取决于变化的生活条件,不过受无限复杂而未知的法則所支配。家养、甚至是长期連續的家养,偶尔只能引起很微小的变異量,在鵝和吐綬鷄的場合中就是如此。然而,构成各个动物个体和植物个体的特征的微小差異在大多数場合中,可能在所有場合中,对于通过細心而长期的选择产生不同的族,是可以滿足需要的。 当同族的牛睪、羊 零和鴿羣等等在許多年代中由不同的人来分别繁育而他們並沒有改变品种的任何要求时,我們看到选择能够完成怎样的效果,虽然它只对个体差異发生作用。我們在为了不同地区的狩猎所繁育的猎狗之間的差異中²) 並且在許多其他这等場合中看到同样的事实。

为了选择必須产生任何結果,显然地不同族的杂变一定要被禁止;因此,容易变配,譬如在鴿的場合中,对于这一工作是高度有利的;而难于变配,譬如在貓的場合中,就会妨碍不同品种的形成。根据几乎同样的原理,提尔塞小島上的牛的产乳能力被改进了,"其迅速的程度是不能在象法国那样的广闊地方得到的"³)。虽然每一个人都知道自由杂变在一方面是危险的,但过于密切的近亲变配在另一方面则是一种隐蔽的危险。不利的生活条件可以压倒选择的力量。我們的改良的牛和羊的重型品种不能在山地牧場中形成;而且也不能在象福克兰羣島那样的不毛而荒凉的地方养育較馬,甚至拉普拉他的輕型馬在福克兰羣島也要迅速地縮小。在法国維持几个英国的綿羊品种似乎是不可能的;因为羊羔一断奶,它們的活力就会随着夏季炎熱的增高而衰弱下去¹);在熱帶使綿羊生有很长的羊毛是不可能的;不过在种种不同而不利的条件下选择把美利奴品种保持到几乎純粹的程度。选择的力量是如此巨大,以致最

¹⁾ 赫維特及其他,园艺学招,1862年,第773頁。

²⁾ 田獵百科全書,第405頁。

³⁾ 考特尔上校, 皇家农学会学报, 第四卷, 第43頁。

⁴⁾ 瑪林季·努尔, 皇家农学会学招, 第十四卷, 1853 年, 第215, 217 頁。

大形的和最小形的狗、羊和鷄的品种,长喙的和短喙的鴿子以及其他具有相反性状的品种,虽然处在同样的气候之下並飼以同样的食物——受到的处理完全一样,它們的构成特征的性質还是增大了。然而,选择作用不是受到使用或习性的效果的抑制就是受到它的支持。如果猪被迫尋找自己的食物,我們的異常改进了的猪就永远不能形成;如果不进行訓練,英国的竞跑馬和灵狠就不能被改进到現在这样高的优良标准。

因为构造的显著偏差很少发生,所以各个品种的改进一般是对于微小的个体差 異的选择結果。因此,最严密的注意、最敏銳的观察能力以及不屈不挠的坚持是不可 缺少的。 对于准备改进的品种,应当养育它的很多个体,这也是高度重要的;因为这 样,在变異按照正确方向出現的方面,便有較好的机会,而且按照不利的途徑发生变 異的个体便可以毫无拘束地被排除或消灭掉。 但关于养育大量个体的事情,生活条 件有利于物种的繁殖是必要的。如果孔雀的繁育象鷄那样地容易,那末在此以前我們 大概已經得到許多不同的族了。根据苗圃艺园者們在新变种展覽会上几乎永远胜过 业余者这一事实,我們便可知道培育大量植物的重要性。据 1845 年的估計1,在英国 每年从种子培育出来的天竺葵为 4000 株到 5000 株之間, 然而明确被改进的变种却 很少得到。在卡特尔(Carter)先生的位于埃塞克斯(Essex)的土地上整亩地种植着半 边蓮屬、粉蝶花屬(Nemophila)、木犀草屬(Mignonette)等那样的花卉植物,作为採种 之用, 那里"几乎沒有一季空过而不培育出一些新种类或改进一些旧种类"?)。正如 比东先生所說的那样,在基由植物园培育了普通植物的很多实生苗,在那里"你可以 看到金鏈花屬 (Laburnums),繡綫菊屬 (Spiraeas) 以及其他灌木的新类型³)。关于动 物,也是如此:馬歇尔()在談到約克郡某一地方的綿羊时說道,"因为它們是屬于穷人 的,而且大部分是小羣的,所以它們从来不能改进"。当有人問到利威尔爵士为什么他 能永远成功地获得第一流灵猩时,他答道,"我繁育了很多,而且絞死了很多"。 正如 另一个人所說的,"这是他成功的祕密;在鷄的展覽中也可发現同样的情形,——成功 的竞争者們进行大量的繁育,並且飼养最优良的个体"5)。

由此可以知道,能够在幼年或短期間进行繁育,例如在鴿和兔的場合中,对于选择是便利的;因为这样就可以很快地看到結果,因而对于工作的坚持便給予了鼓励。 曾經产生过很多族的烹調作物和农作物大都是一年生或二年生的,这几乎不是偶然

¹⁾ 艺园者記录, 1845年, 第273頁。

²⁾ 园艺学报, 1862年, 第157頁。

³⁾ 家庭艺园者, 1860年, 第368頁。

⁴⁾ 英格兰北部报告的評論, 1808年, 第406頁。

⁵⁾ 艺园者記录, 1853年, 第45頁。

的事情;因为它們能够迅速地繁殖,这样便能得到改进。 滨菜 (Sea-kale)、天門冬、普通朝鮮薊 (artichokes) 和菊芋 (Jerusalem artichoke)、馬鈴薯以及玉葱因为都是多年生的,所以必須除外:不过馬鈴薯是象一年生植物那样来繁殖的,所以除了馬鈴薯以外,刚才列举的其他植物沒有一种在英国产生过一个或两个以上的变种。在地中海地区朝鮮薊常常是由种子来培育的,我听边心先生說,那里有几个种类。 毫无疑問,不能由种子进行迅速繁殖的果树已經产生了大量的变种,虽然这不是不变的族;但根据史前的遺物来判断,这些变种是在比較晚近的时期中产生出来的。

一个物种可能是高度变異的,但是,如果由于任何原因而沒有应用洗择,不同的 族便不会形成。由于魚类的棲息場所,对于它們的微小变異进行洗择是困难的;鯉魚 虽然是极端容易变異的,並且在德国得到了很大的照顧,但正如卢塞尔(A. Russell) 爵士告訴我說的那样,它只形成了一个特征显著的族,即光鱗鯉(Spiegelcarpe); 这种 鯉魚同普通鱗的种类被小心地隔离开了。 另一方面,一个密切近似的物种,金角,由 于养在小魚缸中,並且由于受到了中国人的細心照顧,已經产生了許多族。 无論从极 古时代起就行半家养的蜜蜂,或被墨西哥土人1)培育的臙脂虫(Cochineal insect),都沒 有产生过族; 使后蜂同任何特殊的雄蜂交配是不可能的, 使臙脂虫交配是极困难的。 另一方面,蚕蛾受到了严格的选择,並且产生了大量的族。貓由于有夜出的习性,不能 对它們进行选择繁育,正如以前所說的,它們在同一地方沒有产生不同的族。狗在东 方是被厌恶的,它們的交配沒有受到注意;因而正如莫利茲·瓦格納(Moritz Wagner) 教授3) 所說的,在那里只有一个种类。英国的驢在顏色和大小上变異很大;但因为它 是一种价值很小的动物, 而且是由穷人繁育的, 所以沒有进行过选择, 因而沒有形成 不同的族。 我們不应把英国驢的低劣归因于气候,因为印度驢甚至还有比歐洲驢更 小的。但是,当选择同驢发生了关系,一切就都变了。化学工程师韦卜(W. E. Webb) 先生告訴我說(1860 年 2 月),在哥尔多瓦(Cordova)附近,它們是被細心地繁育的,对 于一头种驢付出过 200 鎊,因而它們大大地被改进了。在恳塔启(Kentucky),會从西 班牙、莫尔太(Malta)和法国輸入驢(作为繁育騾之用);这等驢的"平均高度很少超过 14 掌幅: 但恳塔启人以非常的細心把它們增高到 15 掌幅,有时甚至到 16 掌幅。 于这些的确漂亮的动物所付出的价錢,可以証明它們的需要是多么大。 一头大名鼎 鼎的雄驢曾經卖到一千鎊以上"。这等精选的驢被送往家畜展覽会,並且划出一天来

¹⁾ 小圣喜来尔,博物学通論,第三卷,第49頁。关于臙脂虫,第46頁。

²⁾ 达尔文学說及生物的迁徙法则(Die Darwin sche Theorie und das Migrationsgesetz der Organismen), 1868年, 第19頁。

展覽它們」)。

关于植物,也观察到相似的事实: 馬来羣島的肉豆冠树(Nutmeg-tree)是高度变異的,但沒有进行过选择,因而沒有不同的族²)。普通木犀草(Reseda odorata)由于开的花不引人著目,所以只以它們的香气受到重視,它們"同最初被引进时一样,还停留在沒有改进的状态"³)。我們的普通森林树是容易变異的,在每一个广大的苗圃內都可以看到这种情形;但是,因为它們不象果树那样地受到人們的重視,而且因为它們在一生的后期結子,所以对它們沒有应用选择;因而正如帕垂克·馬太(Patrick Matthews)先生¹)所說的那样,它們沒有产生一些不同的族: 在不同时期生叶,生长到不同的大小,並且产生适于不同目的的木材。我們只得到一些奇異的和半畸形的变种,毫无疑問,这些变种是突然出現的,就象我們現在看到的它們状态一样。

某些植物学者主张,植物不会象一般所設想的那样具有如此強烈的变異傾向,因为許多物种长期在植物园中生长,或者年年无意識地同谷类混合栽培,而它們並沒有产生不同的族;不过关于这种情形可以由微小差異沒有得到选择和繁殖来进行解釋。讓現在生长于植物园中的一种植物或任何一种普通杂草大量栽培,並且讓一位观察、敏銳的艺园者注意每一个微小的变異,播下它們的种子,这时如果还沒有产生不同的族,那末上述的主张就是正确的了。

对于特殊性状的考察也可以闡明选择的重要性。例如,关于鷄的大多数品种,肉冠的形状和羽衣的顏色都曾受到注意,因而它們显著地构成了各个族的特征;但是关于道根鷄,时尚从来不要求肉冠和顏色的一致;在这等方面一般表現了极端的多样性。在純种的和亲緣关系密切接近的道根鷄中可以看到蔷薇肉冠、双重肉冠、杯形肉冠等等以及所有种类的顏色;而其他各点,例如一般的体形和多余趾的存在,都曾受到了注意,这些点是不变地存在着的。 也曾确定在这个品种中就象在其他品种中一样,顏色是能夠被固定下来的50。

当一个品种形成或改进之际,总会发现它的成员在那些被特别注意的性状上变 異很大,这些性状的每一个細小的改进都受到了热切的探求和选择。例如,关于短面 翻飞鴿,喙的短度、头和羽衣的形状,——关于传书鴿,喙的肉垂的长度,——关于扇 尾鴿,尾和步熊,——关于西班牙鷄,白面和肉冠,——关于长耳兔,耳的长度,都是显

¹⁾ 瑪利亚特(Marryat)船长,勃里斯引用,見孟加拉亚細亚学会学报,第二十八卷,第 229 頁。

²⁾ 奧克斯雷(Oxley)先生,印度零鳥杂誌,第二卷, 1848年,第645頁。

³⁾ 阿貝先生,园艺学报,12月1日,1863年,第430頁。

⁴⁾ 关于造船木材(On Naval Timber), 1831年, 第107頁。

⁵⁾ 貝利,家禽記录,第二卷,1854年,第150頁。第一卷,第342頁;第三卷,第245頁。

著容易变異之点。在各种場合中都是如此;对第一流动物所付出的高价,証明了把它們育成到最高度优良标准的困难。 玩賞家們已經討論过这个問題了¹⁾,同对于那些現今沒有迅速改进的旧品种所給予的奖金比較起来,对于高度改进的品种給予較多奖金是完全有理由的。那修西亚斯討論到改良的短角牛和英国馬譬如說同未被改良的匈牙利牛和亚洲草原的馬相比,前者的性状是比較不一致的;他在討論中提出同上述相似的意見²⁾。 在正值受到选择之际的部分中这种一致性的缺少主要取决于返祖原理的力量;同样地它在某种程度上也取决于最近变異了的部分的繼續变異。 我們必須承認同样的部分确可按照同样的方式繼續变異,因为,倘不如此,則不能有超过早期的优良标准的改进,我們知道这样的改进不仅是可能的,而且是一般发生的。

作为連續变異的、特別是作为返租的一种后果,所有高度改进了的族,如果被忽視或者沒有受到不断的选择,就会很快地退化。尤亚特就以前在格拉莫干郡(Glamorganshire) 飼养的某种牛举出一个引人注意的这种例子;不过在这个例子中对于牛的饲养並沒有給予充分的照顧。 具克尔先生在他的关于馬的論文中这样总結地說道:"在本文的以前部分中一定可以看到,凡是遭到忽视的时候,品种就会比例地退化³)。如果同一个族的相当数量的改进了的牛、羊和其他动物被允許自由地在一起繁育,沒有选择,但生活条件也沒有变化,那末毫无疑問,在二十代或一百代之后,它們大概决不会再有它們种类的优秀性了;不过根据我們看到的沒有受到任何特殊照顧的狗、牛、鷄、鴿等的許多普通族长期保持了几乎一样的性状,我們沒有任何理由来相信它們都一概会越出它們的模式。

育种者們一般相信,所有种类的性状由于长期不断的遺传,就会固定下来。但我 在第十四章中試图關明这种信念可以融化为如下的命题,即所有性状,不論是新获得 的或古老的,都有遺传下去的傾向,但是那些已經长期抵抗了反作用的影响性状,按 照一般的規律,还会繼續抵抗它們,因而可以忠实地遺传下去。

人对选择实踐有进行到极点的傾向

有一項重要的原理是,在选择过程中人几乎必然地希望进行到极点。例如,关于 繁育尽可能快的馬和狗的某些种类以及尽可能力大的其他种类,关于为了极細羊毛的某些綿羊种类以及为了极长羊毛的其他种类,人的慾望是沒有止境的;並且他还希

¹⁾ 家庭艺园者, 1855年, 12月, 第171頁; 1856年, 1月, 第248, 323頁。

²⁾ 关于短角牛, 1857年, 第51頁。

³⁾ 兽医,第十三卷,第720頁。关于格拉英干那牛,参阅尤亚特論牛,第51頁。

望产生尽可能大而优良的果实、谷物、块茎以及植物的其他有用部分。关于为了消遣而繁育的动物,同一原理甚至更加有力;正如我們在服装方面所看到的情形一样,时尚永远是趋于极端的。这一观点已經明确地为玩賞家們所承認。在討論鴿子的各章中,已經举出了一些事例,不过这里还要再举一个:伊頓先生在描述了一个比較新的变种、即大天使之后說道,"玩賞家們对于这种鴿子希图作些什么,我不知道,究竟他們希图把它繁育成具有翻飞鴿那样的头和喙呢,还是叫它具有传书鴿那样的头和喙呢;听任它們保持現状,並不是进步"。 弗哥遜当談到鷄时說道,"它們的特点,不論是什么,必然会充分发展:一个小特点只会形成醜陋,因为它破坏了現存的对称法則"。 所以勃連特先生在討論 比利时金絲雀的亚变种的特点时說道,"玩賞家們永远走极端,他們並不贊賞不定的性質"1)。

这一原理必然会导致性状的分歧,它对种种家养族的現在状态提供了解釋。 这样我們便能知道,在各种性状上彼此相反的竟跑馬和輓馬、灵猩和獒——变趾支那鷄和斑塔姆鷄,具有很长喙的传书鴿和具有极短喙的翻飞鴿是怎样从同一系統发生的。因为各个品种的改进是緩慢的,所以劣等变种最先受到忽視,而終于消失了。在少数場合中,借着旧記載的帮助,或者根据在流行其他时尚的地方依然生存的中間变种,我們能够部分地追蹤某些品种所曾通过的級进变化。 选择,无論是有計划的或无意識的,永远有走向极点的傾向,再加上中間的和价值較小的类型的受到忽視和緩慢絕灭,它便成为打开人怎样产生了如此奇異結果这一秘密的一把鑰匙。

在少数事例中,被用于单独一个目的的选择曾經导致了性状的趋同。 所有猪的 改进了的和不同的族,正如那修西亚斯²⁾ 所充分闡明的那样,在性状上,即在它們的 短腿和口部上,在几乎无毛上,在大而圓的体部上,以及在小的獠牙上,都是彼此密切接近的。在屬于不同族的优良牛的相似体形方面,我們看到了某种程度的趋同³⁾。我 知道的还沒有其他这样的例子。

性状的繼續分岐取决于同样部分按照同一方向繼續变異,並且正如以前所說的, 这的确是同样部分按照同一方向繼續变異的明显証明。单单是体質的一般变異性或 可塑性的傾向肯定是能夠遺传的,正如該特納和开洛依德所闡明的那样,在从两个物 种(其中只有一个是容易变異的)产生变異的杂种那样場合中,这种傾向甚至可以从

¹⁾ **伊顿**, 論玩賞鸽, 第82 頁; <u>弗哥逊</u>, 舔有的和获奖的家食, 第162 頁; <u>勃連特</u>先生, 家庭艺园者, 10 月, 1866 年, 第13 頁。

²⁾ 猪的族, 1860年, 第48頁。

³⁾ 参閱夸垂費什的关于这个問題的一些优秀意見,关于人种的单位 (Unité de l'Espèce Humaine), 1861年,第119頁。

一亲遗传下去。这种情形本質上可能是,当一种器官以任何方式变異了,它将按照同样的方式再变異,如果最初引起該生物发生变異的条件,按照所能判断的来說,保持不变。 所有园艺学者或暗或明地都承認这种情形:如果一位艺园者观察到一片或两片附加的花瓣,他感到确信的是,在少数几代中,他将能培育出拥有大量花瓣的重瓣花。从垂枝摩加傑(Moccas oak)培育出来的一些实生苗的匍匐性是如此之强,以致它們只沿着地面爬来爬去。从直生的爱尔兰紫杉培育出来的一株实生苗据描述同亲类型大不相同,"因为它的枝条的直生习性太强了"。1)在培育小麦新种类上获得高度成功的希瑞夫先生說道,"一个优良变种可以稳妥地被视为一个更优良变种的先驅者"。2)一位伟大的蔷薇栽培者利威尔先生对于蔷薇作过同样的敍述。 經驗丰富的薩哥瑞特3)在談到果树的未来进步时說道,最重要的原理是,"植物超出它們的原始模式愈远,它們就愈有超出这种模式的倾向"。 这种說法显然有很大正确性;因为我們用其他方法都不能理解在变种的受到重视的部分和性質之間为什么有可惊的差異量,而其他部分却差不多保持了原始的性状。

上述討論自然会引出这样一个問題,关于任何部分或性質的变異的可能量有极限嗎?因而关于选择所能完成的結果有任何极限嗎?将来可以培育出比<u>舊立克</u>馬更快的竞跑馬嗎?我們的获奖的牛和綿羊还能更进一步改良嗎?将来可以有一种醋栗比 1852 年在倫敦所产的果实更重嗎? 法国的甜菜能产生百分比更大的糖份嗎?小麦的和其他谷类作物的未来变种将比現在的变种有更大的产量嗎?对于这些問題不能作肯定的答复;但是要作否定的答复,无疑地我們应当慎重才是。在变異的某些方面可能已經达到了极限。 尤亚特認为在某些綿羊中骨的减少已經到达这样的程度,以致遺留下体質的非常纖弱性"。但是,由于我們的牛和綿羊、特別是我們的猪在晚近时期內所获得的巨大改进;由于我們的所有种类的家禽最近几年間在重量上的可惊增加;主张已經达到完善化的人,大概是大胆的。 人們常常說,舊立克馬的速度过去决不会、将来也决不会被任何其他馬超过;但是我根据調查,得知最优秀的裁判者認为我們現在的竞跑馬跑得更快些"。 育成一个比許多旧种类的产量更大的新小麦变种的企图,截至最近被認为是完全无望的;但是哈列特根据細心的选择已經实现了这一企图。 关于几乎所有我們的动物和植物,那些判断力最強的人們並不相信已

¹⁾ 沃尔洛特,变种, 1865年, 第94頁。

²⁾ 帕·希瑞夫 先生, 艺园者記录, 1858年, 第771頁。

³⁾ 果树生理学, 1830年, 第106頁。

⁴⁾ 尤亚特論羊,第521頁。

⁵⁾ 再参問司頓亨,英国的田猎 (British Rural Sports), 1871 年版, 第 384 頁。

經到达了完善化的极点,甚至关于已經被带到高标准的性状,也是如此。例如,短面翻飞鴿大大地被改变了;尽管如此,按照伊頓先生的說法¹⁾,"对于新竞争者来說,現在的活动場所就象一百年以前那样,依然是敞开着的"。一次又一次地說过我們的花卉已經达到了完善化,但很快又达到了更高的标准。 比草莓改进得更多任何果实簡直是沒有的,然而一位伟大的权威者說道²⁾,"一定不要隱瞞这一点:我們距离我們可能达到的极限还很远"。

毫无疑問,是有一种极限,体制不能超越它而改变,虽然这种改变同健康或生活不发生矛盾。 譬如說,陸棲动物能夠有的那种极度的快迅已經由我們現在的竞跑馬得到了;但是,正如华来斯所充分闡明的那样³⁾,使我們感到兴趣的問題"並不是在任何或所有方向上的不定而无限的变化是否可能,而是象那些确在自然状况下发生的差異是否能夠借着选择由变異的积累而产生"。 在我們的家养产物中,毫无疑問,已經受到人的注意的体制的許多部分比同屬的、甚至同科的自然物种的相应部分有更大程度的改变。在我們的輕型的和重型的狗或馬的形态和大小——在我們的鴿子的喙和許多其他性状——在許多果树的大小和性質——同屬于同一自然类羣的物种的比較中,我們看到了上述情形。

在家养族的形成上时間是一个重要的因素,因为它可以讓无数个体产生,並且当这些个体处在多种多样的条件之下时,就会致使它們发生变異。 有計划的选择从古代到今天都在不时地实行着,甚至半开化人也实行有計划的选择;在往昔它大概产生了某种效果。无意識选择的效果还要大;因为,在长期間內比較有价值的个体动物将会不时地被保存下来,而比較沒有价值的将会受到忽視。在时間的推移中,不同的变种,特別是在文化較低的地方的,将会或多或少地通过自然选择而发生改变。虽然关于这个問題我們掌握的証据並不多或者根本沒有証据,但一般都相信新性状随着时間的推移会变得固定下来;並且在长期保持了固定之后,它們在新条件之下再度发生变異似乎是可能的。

自从人第一次对于动物进行家养和对于植物进行栽培以来,时間究竟經过了多久,我們还是开始模糊地知道一点。当人在新石器时代居住于瑞士湖上住所的时候,几种动物已經被家养了,並且种种植物已經被栽培了。語言学告訴我們,在如此古远的时期已經有耕地和播种的技术了而且主要的动物已經被家养了,那时梵語(Sanskrit

¹⁾ 論扁桃翻飞鴿,第1頁。

²⁾ 得喬紐, 艺园者記录, 1858年, 第173頁。

³⁾ 劉于自然选择学說的貢献(Contributions to the Theory of Natural Selection)第二版,1871年,第 292 頁。

Language)、希腊語、拉丁語、哥特語 (Gothic language)、居尔特語以及斯拉夫語还沒有 从共同的原始語言中分歧出来¹⁾。

对于在数千代中以种种方式並在种种地方不时进行的选择的效果,几乎不可能不給予过高的估价。关于絕大多数的品种的历史、甚至比較近代的品种的历史,所有我們知道的,並且在更大程度上所有我們不知道的²¹,都符合以下的观点,即通过无意識的和有計划的选择,它們的产生緩慢得几乎难于看出。 当一个人对于他的动物繁育比通常更加密切注意时,他几乎肯定可以微小程度地改进它們。 因而这等动物就会受到近邻的重视,並由他人来繁育它們;于是它們所特有的特征,不論是什么,有时通过有計划的选择而几乎永远通过无意識的选择,将会緩慢但不断地增大。 最后一个值得被称为亚变种的品系被人知道的多少比較广泛一点,得到了一个地方性的名称,並且传播开了。这种传播在古代和文化較低的时代是极端緩慢的,而現在是迅速了。 到了新品种呈現一种多少不同的性状时,当时沒有受到注意的它的历史将会完全被忘卻了;因为正如罗武所說的那样³¹,"我們知道这等事情被遺忘得多么快"。

一旦一个新品种这样形成时,通过同样的过程,它就有分成新品系和新亚变种的傾向。 因为不同的变种对于不同的环境条件是适宜的,並且在不同的环境条件下是有价值的。时尚虽然有变化,但一种时尚如果持續即便是中等长的期間,因为遺传原理如此強有力,所以对于品种大概会发生某种作用。 例如,变种繼續增加其数目,並且历史向我們關明,自从最初的紀录以来,它們的增加是多么可惊⁴'。 当每一个新变种产生之后,較早的、中間的和价值較小的类型将会受到忽视而死去。 当一个品种因没有受到重视而被小量飼养时,它的絕灭儿乎不可避免地迟早要发生,这或是由于偶然的毁灭原因,要不就是由于密切的近亲交配;在特征显著的品种中,这是引人注意的事情。 一个新家养族的出世或产生是如此缓慢的一种过程,以致它会逃脱人們的注意;它的死亡或毁灭是比較突然的,往往被記录下来,如果过时太久而不加以記录,有时就会后悔莫及了。

若干作者在人为的族和自然的族之間划出了一条广闊的界線。自然的族在性状上是比較一致的,高度具有自然物种的外貌,並且它的起源是古老的。它們的被发現一般是在文化較低的地方,它們的大部分改变大概是由于自然选择,而只在微小程度上

¹⁾ 麥克斯·繆勒(Max Müller),語言學, 1861年,第 223 頁。

²⁾ 尤亚特論牛,第116,128頁。

³⁾ 家養动物, 第 188 頁。

⁴⁾ 沃尔茲, 文化史, 1852年, 第99頁及其他。

是由于人的无意識的和有計划的选择。它們还长期地受到了它們的住地的外界条件的直接作用。另一方面,所謂人为的族在性状上並不这样一致;有些具有一种半畸形的性状,例如在"猎兔上非常有用的歪腿㹴""),曲膝狗,安康羊,尼亚太公牛,波兰鷄,扇尾鴿等等;它們所特有的特征一般是突然获得的,虽然此后在許多場合中由于細心的选择而有所增加。还有一些族,必須被称为人为的,因为它們是由于有計划的选择並且由于杂交而大大地改变了,例如英国竞跑馬、㹴、英国的斗鷄、安特卫普传书鴿等等(Antwerp carrier-pigeons),尽管如此,还不能說它們具有不自然的外貌;依我看来,在自然的族和人为的族之間不能划出一条明确的界線。

家养族一般应該呈現不同于自然族的外貌,这沒有什么奇怪。 人选择和繁殖变異只是为了他自己的使用或嗜好,而不是为了生物自身的利益。 人的注意是由特征強烈显著的变異所引起的,这等变異是由于体制中的某种重大的扰乱原因而突然出现的。 人所注意的几乎全是外部性状; 如果他成功地改变了內部性状——例如,他縮減骨和肉,或者在內脏里积滿脂肪,或者給予早熟性等等——那末他同时削弱体質的机会将是很大的。 另一方面,如果一种动物在难以想象那样复杂的和容易变化的条件之下势必一生同許多竞争者和敌对者进行斗争,那末在內部器官和外部性状中,在各部分的机能和相互关系中,具有最容易变異的性質的改变,将会受到严格的考验,被保存下来或者被排斥掉。自然选择常常抑制人在改进工作中所作的比較微弱而无常的努力; 倘非如此,則人的工作結果和自然的工作結果还会有甚至更大的差別。尽管如此,我們千万不要对于自然物种和家养族之間的差異量給予过高的估計;大多数富有經驗的博物学者們都曾常常爭論家养族究竟是从一个原始祖先传下来的呢,还是从几个原始祖先传下来的,这明确地闡明了物种和族之間並沒有明显的差異。

家养族繁殖它們的种类要比大多数博物学者們所願承認的純粹得多,並且它們的存續期間也比大多数博物学者們所願承認的长得多。育种者們对于这一点沒有感到任何怀疑:問一問长期养育过短角牛或赫福特牛、萊斯特羊或南邱羊、西班牙鷄或斗鷄、翻飞鴿或传书鴿的人,这等族是否不是从一个共同祖先发生出来的,那末他大概会嘲笑你的。育种者承認,他希望产生具有毛較細的或毛較长的以及肉較多的羊,或是較美丽的鷄,或是具有熟練眼睛刚刚看得出的那种比較长一点的喙的传书鴿,以便在展覽会上获得成功。他所要走的就这么远,不会比这更远。 他沒有考虑到由于在长期內把許多微小而連續的改变加在一起,将会产生什么后果;他也沒有考虑到把各个系統分歧線的环节連結在一起的无数变种的以往存在。就象在本書前几章中所

¹⁾ 布兰, (Blaine), 田猎百科全書, 第 213 頁。

闡明的那样,他断言所有受到他的长期注意的主要品种都是原始祖先的产物。 另一方面,分类的博物学者一般都不晓得育种的技术,也不要求知道若干家养族是怎样而且在什么时候形成的,而且不能看到过它們的中間的級进,因为它們現在並不存在,尽管如此,他們还不怀疑这等族是从单独一个来源发生的。但是,向他問一問他所研究过的密切近似的自然物种是否可能不是从一个共同祖先传下来的,这时他恐怕也会以嘲笑的态度来否定这种想法。 因此,博物学者和育种者可以互相学习到有益的一课。

选择发生作用的可能性在于变異性,正如我們以后将要看到的那样,变异性主要是由生活条件的变化所引起的。由于生活条件同所要求的性状或性質处于对立的状态,有时会造成选择的困难,甚至不可能。由于在长期不断的密切近亲交配中发生了能育性减低和体質衰退,选择有时会受到抑制。有計划选择可能得到成功,最細致的注意力以及辨別力,再加上不屈不挠的耐性,是絕对必要的;这等同样的品質在无意識选择的場合中虽然不是必不可少的,但是高度有用的。 培育大量的个体几乎是必要的;因为这样,关于具有所要求的性質的变異的发生,关于具有缺点最微小的或在任何程度上低劣的每一个个体的毫无拘束地被排斥,将有一个良好的机会。因此,时間的长短是一个成功的重要因素。 这样,能在幼年繁殖以及在短期間繁殖也对择选有利。容易使动物交配,或者它們棲息于局限的地区内,对于抑制自由杂交都是有利的。不論在什么时候和什么地方,如果不进行择选,就不会在同一地方內形成不同的族。当身体的任何一部分或任何一种性質沒有受到注意的时候,它或者保持不变,或

者以徬徨不定的方式发生变異,同时其他部分和其他性質可能永久而巨大地发生改变。 但是由于返祖以及繼續变異的傾向,那些通过选择現今正在进行迅速改进的部分或器官被发現还会发生更大的变異。因此,高度繁育的动物当受到忽視时,很快就会退化;但是我們沒有任何理由相信,如果生活条件保持不变,长期不断的选择作用会很快而完全地消失掉。

人在有用的和悅人的性質的选择中,无論这是有計划的或无意識的,总有走到极点的傾向。这是一項重要的原理,因为它导致了性状的繼續分歧,並且在一些罕見的場合中也导致了性状的趋同。各个部分或器官有按照已經变異的那种同样方式繼續变異的傾向;这就是継續分歧的可能性的依据;这种情形的发生由許多动物和植物在长久期間內的不断而逐漸的改进得到了証明。 性状分歧的原理,再結合上所有以前价值較小的和中間的变种的遭到忽視和最后絕灭,闡明了我們若干族之間的差異量和区別。 虽然我們可能已經达到了某种性状能夠被改变的极限,但我們在大多数場合中,正如我們有理由可以相信的那样,还远远沒有达到极限。 最后,根据人工选择和自然选择之間的差別,我們便能理解家养族同密切近似的自然物种在一般外貌上为什么常常有所不同,但决非永远有所不同。

我在整个这一章中以及在他处把选择說成是最主要的力量,但是它的作用絕对取决于那种由于我們无知而被称为自发的或偶然的变異性。假定有一位建筑师被追用从悬崖落下来的而沒有經过凿琢的石头来建筑一座大廈,各个碎块的形状可能被称为偶然的,然而各个碎块的形状已經由重力(force of gravity)、岩石性質以及悬崖倾斜度所决定了,——所有这些事情和条件都取决于自然法則;但在这等法則和建筑者使用各个碎块的目的之間並不存在任何关系。 按照同样的方式,每一种生物的变異是由固定的和不变的法則所决定的;但是这等法則同通过选择力量而緩慢造成的生物构造並沒有任何关系,不論这是自然选择或人工选择。

如果我們的建筑师把凸凹不平的楔形碎块用于拱門,把較长的石块用于門楣等等,成功地盖起一座高貴的大廈,那末我們将会对于他的技巧加以称讚,这种称讚的程度甚至比他使用为了这种目的而凿琢好了的石块时还要高。 关于选择,不論是人工的或自然的,也是如此;因为变異性虽然是絕对必要的,但是当我們看到某种高度复杂的和非常适应的有机体时,变異性同选择比較起来,前者的重要性便下降到完全从屬的地位,这同下述的情形是一样的,即我們想象的建筑师所使用的各个碎块的形状同建筑师的技巧比較起来,前者就不重要了。

第二十二章 变 異 的 原 因

变异性不一定同生殖相伴随一一諸作者所提出的原因——个体差异——由于变化了的生活条件而发生的各种变异性——关于这等变化的性質——气候、食物、过多的营养——微小的变化就足够了——嫁接对于实生树的变异性的影响——家养产物对于变化了的生活条件的有累作用——密切的近亲交配和假定可以引起变异性的母亲的想象力——杂交,新性状出現的一种原因——由于性状的混和以及由于返祖而发生的变异性——关于通过生殖系統直接地或間接地誘发变异性的精种原因的作用方式和作用时期。

在能力所允許的范围之內,現在我們将对家养产物的几乎普遍的变異性进行考察。 这是一个难解的問題,但它对于探刺我們的无知是有益处的。 有些作者,例如波洛斯浦尔·卢凱斯,把变異性看作是由于生殖而必然不时发生的事情,並且同生长和遺传一样,也是一項基本的法則。最近还有一些人恐怕无意識地助长了这种观点;他們說遺传和变異性是同等而对立的原理。帕拉斯主张变異性完全取决于基本不同的类型的杂交,在这方面他还有一些追随者。其他作者把变異性归因于食物的过多;在動物的場合中,还归因于运动量的相对的过多以及比較温暖气候的影响。 所有这等原因都高度可能是有效的。 但是我認为我們必須采取一个更加明朗的观点,並且作出結論說,生物当在若干世代中遭到任何变化时,不論是处在什么样的生活条件下,都有变異的傾向;在大多数場合中,变異的种类取决于生物的性質或体質遠比取决于变化了的生活条件的性質在程度上要大得多。

有些作者相信各个个体彼此之間有某种微小程度的差異是一項自然的法則;他們可能主张,不仅所有家养動物和栽培植物是如此,而且在自然状况下的所有生物也同样是如此,这种主张显然是正确的。拉伯兰人(Laplander)根据长期的实践可以辨識每一只馴鹿,並且給每一只鹿都起了名字,虽然,象林納所說的,"在这样多的个体中要把它們彼此区別开,是我办不到的,因为他們多得象蚁塚上的螞蚁一样"。在德国,牧羊人由于在一百头的羊罩中把每一头羊都辨認出来,可以在打赌中获胜,而他們在两周之前决沒有看到过这些羊。这种辨別力如果同某些花卉栽培者所获得的辨别力比較起来,就沒有什么了。沃尔洛特提到一位艺园者,他能在未开花时辨别山茶屬的150个种类;曾經肯定地断言,著名的荷兰古代花卉栽培者沃尔亥养过洋水仙屬的一千二百个以上的变种,他从鳞茎即可辨識每一个变种,並且几乎从来沒有錯过。因此

我們必須作出这样的結論: 洋水仙屬的鱗茎以及山茶花屬的枝和叶虽然在沒有經驗的眼睛看来絕对沒有区別,但它們的确是有差異的¹⁾。

因为林納用螞蚁同馴鹿的数量作了比較,我可以再补充一点,即每一个螞蚁都知道它的同窝伙伴。有几次我把同一物种(Formica rufa)的螞蚁从这一个蚁塚移到另一个显然有数万个螞蚁的蚁塚;不过这些不速之客立刻就被发现並且被弄死了。于是我把从一个很大的窝中捉到的一些螞蚁放进一个瓶子,这个瓶子強烈地薰有阿魏(assafaetida)的香气,二十四小时之后又把它們放回窝中;最初它們受到了它們的伙伴的威胁,但很快就被辨認出来,並且允許它們通过了。因此每一个螞蚁都認識它的伙伴,这同气味並沒有关系;如果同窝的所有螞蚁沒有某种暗号或口令,它們在彼此的威覚上一定表現有某种可区别的性状。

同一家庭的兄弟姊妹的不相似以及来自同一个蒴的实生苗的不相似,从双亲的性状的不等混合,以及从祖代性状通过返祖在任何一方的重現,可以部份地得到解釋;不过这样我們只是把这个难題推到往昔的时候罢了,因为,是什么造成了双亲或它們祖先的不同?因此,关于內在变異傾向的存在同外在差異无关的那种信念²⁾,最初一看好象是确实的。但是,甚至在同一个蒴中被营养的一些种子也不会遇到絕对一致的条件,因为它們从不同点吸收养分;我們将在未来的一章中看到,这种差異有时就足可以影响未来植株的性状了。同一家庭中的接連生出来的孩子們同孿生子比較起来,表現有较大的不相似,后者在外貌、气質以及体質上彼此非常相似;这显然証明了恰在怀孕期間的双亲的状况或此后胚胎发育的性質,对于后代的性状具有直接而強有力的影响。尽管如此,当我們考虑到在自然状况下的生物之間的个体差異时,就象每一个野生动物都能辨識它的伙伴所闡明的那样;並且当我們考虑到家养产物

¹⁾ 洋水仙,阿姆斯特丹,1768年,第43頁;沃尔洛特,变种,第86頁。关于馴鹿,参悶林納的拉伯兰游記,司 密斯爵士譯,第一卷,第314頁。关于德國牧羊人的敍述,是根据魏恩兰得的权威材料。

²⁾ 繆勒的生理学,英譯本,第二卷,第1662頁。关于攀生子在体質上的相似,威廉·奥哥尔給過我一段陶梭 (Trousseau) 教授的講演摘要(臨床医學, Clinique Médicale, 第一卷,第523頁),在这段摘要中記載 过一个引人注意的例子:

[&]quot;我會照顧过一对孿生子,二人非常相象,如果从側面看是不可能把他們分別开的。 他們的体格也 非常相似,如果允許我說,他們的疾病也是非常类似的。其中一人患有風濕性的眼病,他在巴黎新溫泉由 我診病的时候向我說道,"現在我的兄弟一定也患有同样的眼病。"于是我給他进行治疗,数日后我收到 他的一封信,这时他为了迎接章恩內(Vienne)的兄弟离开了这里,他的兄弟实际上是这样說的——"我 正在患着您那样的眼病"。 关于这里所見到的这种奇妙的情形,我完全不能理解:虽然别人沒有告訴我 說,实际上我还看到其他相似之点,他們二人都患喘病,並且喘到可怕的程度。 他們降生于馬賽,但不在 那里居住,他們在馬賽犯了这种病之后就无法忍受,他們常常这样說並且引以为戒,而在巴黎就不那样痛苦。 所幸他們在馬賽犯了这种病,只要去土倫就可以了。 他們常常为了一些事务在国內旅行,他們所注意的事情是找一处可以逃脫一切压迫现象的地方作为最后的住处"。

的許多变种的无限多样性时,我們可能十分傾向于大声急呼地說,"变異性"必須被看作是由于生殖而必然不时发生的一种根本的事实,虽然象我相信的那样这是錯誤的。

那些采用后一观点的作者們大概不会承認每一个独立的变異都有它自己的特有的激发原因。虽然我們很少能够追蹤出因果之間的明确关系,但即将提出的考察会导致这样的結論:即每一种变化一定都有它自己的特殊原因,而不是被我們盲目地称为偶发事件的結果。下面的一个显著例子是威廉·奥哥尔写信告訴我的。有两个攀生的女子,她們在一切方面都极端相似,双手上的小指都是弯曲的;她們二人的右側上顎的第二成齿的第二二峯齿(bicuspid tooth)都长錯了部位;因为它沒有同其他牙齿长在一列上,而是从口盖长在第一二峯齿的后面了。 据知不論她們的双亲或家庭的任何其他成員一点也沒有表現过同样的特点;不过其中一女的一个男孩子的同一牙齿同样地长錯了部位。现在,因为这两个女子受到了完全一样的影响,所以認为是偶然的那种想法立刻就会被打消: 並且我們被追承認这里一定有某种明确而充分的原因存在,这种原因如果出現一百次,它大概会使一百个小孩具有弯曲的小指和长錯了部位的二峯齿。 当然,这种情形由于返归某一长久被遗忘了的祖先,也是可能的,这样会大大地降低上述論点的价值。 我曾被引导去散想返祖的可能性,因为高尔顿先生曾向我說过另外一个有关琴生女子的例子,她們生下来也具有稍微弯曲的小指,这是从外祖母那里遺传来的。

現在我們来考察一下支持下述观点的一般論証,在我看来,这些論証是很有分量的;这种观点是,所有种类和所有程度的变異都是由各个生物、特別是它的祖先暴露于其中的生活条件直接地或接間地所引起的。

誰都不会怀疑,家养产物比从来沒有离开过自然条件的那些生物更容易变異。 畸形会如此不知不覚地漸次成为純粹的变異,以致不可能把它們分开;所有那些研究 过畸形的人們都相信,畸形在家养的動物和植物的場合中远比在野生的动物和植物 的場合中普通得多¹⁾;关于植物,畸形在自然状下和在家养状况下一样,大概是同等 显著的。在自然状况下,同一物种的个体都暴露在接近一致的条件下,因为它們被很 多竞争的动物和植物严格地抑制在固有的場所;同时它們也长期地习惯于它們的生 活条件了;但不能說它們所遇到的条件是完全一致的,它們还有发生某种程度的变異 傾向。 我們的家养产物所处在的环境条件是大相同的:它們被保护不受竞争者的侵 犯;它們不仅被迁出它們的自然条件,而且常常被迁出它們的故土,但它們屡屡从这 一地区被帶到另一地区,在那里受到了不同的待遇,所以它們极少在相当长的期間內

^{1) &}lt;u>小圣喜来尔</u>,畸形史, 第三卷, 第 352 頁; <u>隆坤·丹頓, 植物畸形学</u> (Tératologie Végétale), 1841 年, 第 115 頁。

暴露在密切相似的条件之下。同这种情形相一致,所有我們的家养产物,除了极罕見的例外,都远比自然物种变異得厉害。蜜蜂是自己覓食的,並且在大多数方面遵循了它的自然生活习性,在家养动物中它是变異最少的;家鵝大概是其次变異最少的一种,不过即便是家鵝也几乎比任何野生鳥的变異为大,所以不能完全肯定地把它归入到任何自然物种中去。几乎指不出一种长期栽培的和由种子繁殖的植物不是高度变異的;普通黑麦(Secale cereale)几乎比任何其他栽培植物所产出的变种都少而且其特征較不显著1);不过值得怀疑的是,这种价值最小的谷类作物的变異是否曾經受到了密切的注意。

在前一章中已經充分討論过的芽变向我們闡明了,变異性同种子生殖可能完全沒有关系,也可能同返归长久遺失了的祖先性状完全沒有关系。誰也不会主张在一株 卜洛万薔薇上突然出現苔薔薇是返归以前的状态,因为在自然物种中沒有看見过尊 上有苔;同样的論証可适用于斑叶和条裂叶;同样地在桃树上出現油桃也不能用返祖 原理来解釋。但是,芽变同我們的关系更加密切,因为它的发生,在长期高度栽培的植物中远比在較不高度栽培的植物中更加常見得多;在生长于严格自然条件下的植物中,只观察到很少的十分显著的事例。我曾举出过一个有关梣树的事例,这是生长在一位紳士的花园中的;在山毛櫸和其他树上偶尔可以看見一些新梢的抽叶时期不同于其他枝条。但英国的森林树几乎不能被看作是生活于严格自然条件之下的;实生苗是在苗圃中育成的,並且在那里受到了保护,它們一定常常被移植到不是該种类的野生树自然生长的地方。如果生长于篱笆中的一株狗薔薇由于芽变产生了苔蔷薇,或者一株野生西洋李或野生樱桃树抽生了一个枝条結有不同于正常果实的形状和顏色的果实,这大概会被看成为一件怪事。如果这等变異了的枝条被发現不仅能够用接穗而且有时能够用种子来繁殖,这大概会被看成为更大的怪事;但在許多高度栽培的树和草本植物中曾經发生过相似的情形。

仅凭这几种考察大概就可以知道,每一种类的变異性都是直接地或間接地由变化 了的生活条件所引起的。或者把这种情形置于另一观点之下,如果可能把一个物种的 所有个体在許多世代中放在絕对一致的生活条件之下,那末大概就不会有变異发生。

在誘发变異性的生活条件中的变化性質

从古代一直到今天,在可能想象到的那种不同的气候和环境条件下,所有种类的

¹⁾ 梅茲加,谷类(Dic Getreidearten), 1841年,第 39 頁。

生物当被家养或栽培时,都发生变異了。在屬于不同目的兽类和鳥类的家养族中,在金 魚和蚕中,在世界各地养育的許多种类的植物中,我們看到了上述情形。在北非沙漠中 君迁子产生了三十八个变种;在印度的肥沃平原上,众所熟知,有何等多的水稻变种 和何等多的其他大量植物的变种;只在玻里尼西亚的一个島上,土人就栽培了面包树的二十四个变种、香蕉的二十四个变种以及白星海芋(arum)的二十二个变种;在印度 和欧洲,桑树产生了許多供給蚕食的变种;在中国,竹子有六十三个变种,适于种种不 同的家庭用途¹⁾。这等事实以及还可补充的其他无数事实指明了,生活条件的几乎任何种类的一种变化就足可以引起变異性——不同的变化对于不同的有机体起作用。

安朱·奈特²⁾ 把动物和植物的变異都归因于物种在自然状况下所不能获得的那样丰富的营养供給以及那样良好的气候。然而比較温和的气候絕不是必要的;常常受到我們春霜为害的菜豆以及需要一种篱壁来保护的桃在英格兰都发生了很大变異,这正如柑橘树在意大利北部的情形一样,柑橘树在那里仅仅能够生存³⁾。 北极地方的植物和貝类是显著容易变異的⁴⁾,这一事实同我們現在討論的問題虽然沒有直接关联,但也不能忽視。 再者,气候的一种变化,不論它变得比較温和一些或比較不温和一些,看来似乎都不是变異性的最有力的原因之一;因为关于植物,得康多尔在他的植物地理学(Géographie Botanique)一書中反复指出,一种植物的原产地是它产生最大数量的变种的地方,在大多数場合中它在那里被栽培得最为长久。

食物性質的变化是否是变異性的有力原因,还值得怀疑。 几乎沒有一种家养动物比鴿和鷄的变異更大,但它們的食物,特別是高度繁育的鴿的食物,一般是一样的。在这方面,我們的牛和綿羊也沒有遇到过任何重大的变化。但是,在所有这等場合中,食物种类的变換比物种在自然状况下所消費的食物种类的变換大概要小得多50。

¹⁾ 关于君迁子,参阅沃格尔 (Vogel), 博物学年招, 1854年, 第 460 頁。 关于印度的变种, 汗米尔顿博士, 林納学会会报, 第十四卷, 第 296 頁。关于在塔希提 (Tahiti) 栽培的变种, 参阅本内特, 見拉島嶼的博物学杂志, 第五卷, 1832年, 第 484 頁。 再参阅伊利斯(Ellix), 玻里尼西亚的研究(Polynesian Researches), 第一卷, 第 370, 375 頁。关于馬利亚納島(Marianne Island)的認完稅屬 (Pandanus) 的二十个变种以及其他树, 参阅虎克随笔 (Hooker's Miscellany), 第一卷, 第 308 頁。关于中国行子, 参阅胡克 (Huc) 的大清帝国(Chinese Empire), 第二卷, 第 307 頁。

²⁾ 輪苹果栽培(Treatise on the Culture of the Apple), 第 3 頁。

³⁾ 加列肖,植物的繁育理論,第125頁。

⁴⁾ 参閱虎克博士的关于北极植物的报告,見林納学会会报,第二十三卷,第二部。最高权威<u>高</u>得瓦得(Woodward)先生說,北极軟体动物是显著容易变异的(見他的初步論文, Rudimentary Treatise 1856 年,第355 頁)。

^{5) &}lt;u>貝西斯坦</u>关于这个問題有一些好的意見,見籠鳥誌, 1840 年,第 238 頁。 他說他的金絲雀虽然被翻啜一 致的食物,在顧色上还有变异。

在誘发变異性的一切原因中,食物的过剩,不論其性質是否有变化,大概是最有力的。关于植物,过去安朱·奈特持有这种观点,现在許賴登(Schliden)也持有这种观点,特別是关于食物的无机要素更是如此¹⁾。为了給予一株植物更多的食物,在大多数場合中足可以使它分开生长,这样就会阻止其他植物从它的根部那里抢夺食物。正如我常常看到的那样,奇怪的是,我們的普通野生物种当独自被栽培时,虽然不在高度施肥的土地上,也能多么茂盛地生长;实际上,分开生长就是栽培的第一步。 关于食物的过剩可以誘发变異性的信念,一位一切种类的种子的伟大培育者作过如下的敍述²⁾:"对于我們有一項不变的規律,即当我們希望保持任何一个种类的种子的純系时,就叫它們在沒有施过粪的瘠薄土壤中生长;但当我們为了数量而栽培它們时,那就相反而行,而有时我們会深深地感到后悔"。按照对于花卉植物的种子拥有丰富經驗的卡瑞埃尔的材料,"一般認为具有平均活力的植物是那些能够最好地保持其性状的植物"。

在动物的場合中,正如貝西斯坦所指出的,缺少适当的运动量(同任何特殊器官不使用的直接效果无关)在引起变異性上恐怕起了一种重要的作用。 我們可以模糊地知道,身体的有机营养液在生长期間沒有被使用,或者由于組織的耗損而沒有被使用,那末它們将会过剩;由于生长、营养和生殖是密切連接的过程,所以这种过剩可能妨害生殖器官的正常活动,因而会影响未来后代的性状。但是可以爭論: 无論食物的过剩或身体的有机液的过多都不一定会誘发变異性。鵝和吐綬鷄已被丰富地飼养了許多代,但它們的变異很小。 如此容易变異的果树和烹調用植物自从古代以来就被栽培了,虽然它們今后还可能比在自然状况下接受更多的养分,但它們以往在許多代中所接受的养分量一定差不多是一样的;可以設想,它們大概已經变得习慣于这种过剩了。尽管如此,从整体来看,安朱·奈特的关于食物过剩是变異性的一种最有为原因这一观点,根据我所能判断的,似乎还是正确的。

不管我們的各种栽培植物是否曾經过剩地接受了养分,所有它們都曾經暴露在各种变化之中。果树被嫁接在不同的砧木上,並且生长在各种土壤中。 烹調用植物 和农作物从这一地方被帶到那一地方;在上一世紀中作物的輪栽以及施肥起了重大的变化。

¹⁾ 植物,計類登著,汗弗瑞譯, 1848年,第 169 頁。再参閱亚力山大·勃农,見植物学研究报告 (Bot. Memoirs),需伊学会, 1853年,第 313 頁。

^{2) &}lt;u>摩尔丹</u> (Maldon) 的哈代先生及其子,見艺园者記录,1856年,第458頁。卡瑞埃尔,变种的产生和同定,1865年,第31頁。

处理上的微小变化常常足可以誘发变異性。差不多所有栽培植物和家养动物在所有地方和所有时間都发生了变異,仅仅这一事实就可导致上述結論。从在原有气候下生长的、沒有經过高度施肥或其他人工处理的普通英国森林树上采得的种子,产生了变異很大的实生苗,这种情形在每一个大苗床上都可以看到。 我在前一章中曾經闡明,山楂产生了何等多的特征显著而奇異的变种;然而这种树几乎沒有受到任何栽培。我在斯塔福郡細心地检查了大量的两种英国植物,即从来沒有受过高度栽培的褐色老穗草(Geranium phaeum)和庇里尼斯老穗草(G. pyrenaicum)。这等植物从一所普通的花园借着种子自发地在开闢的耕地上散佈开了;实生苗在几乎每一种性状上,例如花和叶上,都发生了变異,而且超过了我从来沒有看到过的那种程度;然而它們过去不会暴露在它們的生活条件的任何重大变化之中。

关于动物,亚莎拉¹⁾ 以非常惊奇的口气配道,彭巴草原上的野化馬总是具有三种 顏色中的一种顏色,並且那里的牛总是具有一致的顏色,然而这等动物当在沒有遮栏 的牧場上繁育时,虽然它們被养在几乎不能称为家养的状况下,而且显然暴露在同它 們在野生时几乎完全一样的条件下,尽管如此,它們在顏色上还表現了巨大的变化。 再者在印度有几个淡水魚的物种,它們所受到的人工处理仅仅是把它們养在大桶內; 但这种微小的变化就足可以誘发变異性了²⁾。

关于树的变異性,一些有关嫁接效果的事实值得我們注意。凱巴尼斯 (Cabanis) 断言,当某些梨被嫁接在榅桲上,它們的种子比梨的同一变种被嫁接在野生梨上所获得的种子,可以产生更多的变种³⁾。 不过,梨和榅桲的亲緣关系虽然如此密切,以致一方能够容易地被嫁接在另一方而且可以获得非常的成功,但它們究竟是不同的物种,所以由此而引起的变異性並不值得惊奇;这使我們可以看到它的原因就是砧木和接穗的很不相同的性質。 众所熟知,几个北美的李和桃的变种可以由种子純粹地繁殖它們自己;但道宁断言⁴⁾,"当把李或桃的接穗嫁接在另一方的砧木上时,这种嫁接树便被发現失去了它的由种子产生同样变种的特有性質,並且变得同所有其他嫁接树一样了"——这就是說,它的实生苗变得高度容易变異了。 还有一个例子值得一提:胡桃树的拉兰得 (Lalande) 变种在四月二十日到五月十五日之間抽叶,它的实生苗不变地遗传有同样的习性;而胡桃的其他几个变种却在六月抽叶。现在,如果从五

¹⁾ 巴拉圭的四足兽, 1801年, 第二卷, 第319頁。

²⁾ 瑪克兰得(M'Clelland)論印度的鯉科 (Cyprinidae), 見亚洲研究 (Asiatic Researches), 第十九卷, 第二 都。1839年, 第266, 268, 313 頁。

³⁾ 薩葛瑞特引用,果树生理学,1830年,第43頁。低德开斯內並不相信这种敍述。

⁴⁾ 美洲的果树, 1845年, 第5頁。

月抽叶的<u>拉兰得</u>变种培育出实生苗,並把它們嫁接在另一五月抽叶的变种上,虽然 砧木和接穗具有同样早期抽叶的习性,但实生苗却在各种不同的时間里抽叶,甚至 有晚至六月五日的¹⁾。 这样的事实非常适于闡明决定变異性的原因是多么暧昧而微 小。

我在这里稍微談一談在森林中以及在荒地上出現果树和小麦的有价值的新品种的情形;最初看来,这似乎是一件极异常的事情。在法国,有相当数量的最优良的梨是在森林中发現的;这种情形如此常常发生,以致泡陶断言:"栽培果树的改良变种很少是由养树者育成的"。另一方面,在英国,还沒有記載过优良梨有野生的事例;利威尔先生告訴我說,他只知道一个有关苹果的事例,即貝斯·普尔(Bess Poole)是在諾定昂郡(Nottinghamshire)的森林中发现的。两国之間的这种差异从法国的比較适宜气候可能得到部分的解释,但主要还是由于在法国森林中生长起来的实生苗非常之多。根据一位法国艺园者的意見3),我推論情形确系如此,他認为这样多的梨树在结果之前都被周期性地砍掉作为柴火,真是国家的不幸。在森林中这样发生的新变种,虽然不能接受任何过剩的养分,但会暴露在突然变化的条件之中,不过这是不是它們产生的原因,很值得怀疑。然而所有这些变种可能都是从生长于邻近果园中的古老栽培种类传下来的1)——这种情况可以說明它們的变异性;在大量的变异树中,总有出现一个有价值的种类的良好机会。在北美,果树常常是在荒地上发生的,华盛頓梨(Washington pear)是在树篱中发现的,皇帝桃(Emperor peach)是在森林中发现的5)。

关于小麦,有些作者認为⁶⁾ 在荒地上发现新变种好象是一件平常的事情;范頓小麦肯定被发现是生长在采石場的玄武岩碎屑堆上的,不过在这等場所植物大概会接受充足的养分。 契达姆小麦 (Chidham wheat) 是从在篱笆上发现的一个麦穗培育出来的;亨特小麦 (Hunter's wheat) 是在苏格兰的路边发现的,不过这并不是說这个变种是在它被发现的那个地方生长的 ⁷⁾。

我們的家养产物过去是否对于它們現在生活于其中的条件已經变得如此完全习慣,以致停止了变異,关于这一点,我們还沒有足够的方法去判断。但是,事实上我們的家养产物从来沒有长期地暴露在一致的条件之中,我們的最古老的栽培植物以及家

¹⁾ 卡丹,見报告書, 12月, 1848年,在艺园者記錄引用, 1849年,第101頁。

²⁾ 亚力克斯·喬丹提出有四种优良型是在法国森林中发现的,並且談到其他情形(里昂科学院紀要,第二卷,1852年,第159頁)。泡陶的意見在艺园者杂志中引用,第四卷,1828年,第385頁。 关于在法国于一个篱笆中发现一个梨的新变种的另一例子,参閱艺园者記录,1862年,第335頁。 再参閱拉烏頓的园艺百科辞典(Encyclop. of Gardening),第901頁。利威尔給过我相似的材料。

³⁾ 丢瓦尔(Duval),梨树誌 (Hist. du Poirier), 1849年,第2頁。

⁴⁾ 根据凡蒙斯的敍述——他在森林中发現一些实生苗,它們同梨和苹果的所有主要栽培族相似(果树, Arbres Fruitiers, 1835年, 第一卷, 第446頁), 我推論这是事实。然而凡蒙斯把这些野生变种看成为原始物种。

⁵⁾ 道寧,北美的果树,第422頁;弗雷(Foley),园艺学会会报,第六卷,第412頁。

⁶⁾ 艺园者記錄, 1847年, 第244頁。

⁷⁾ 艺园者記錄, 1841年, 第383頁; 1850年, 第700頁; 1854年, 第650页。

养动物肯定还在繼續变異,因为所有它們在最近都有显著的改进。 然而在某些少数 場合中植物已經变得习慣于新的条件了。 例如,在德国多年以来栽培了来自不同地 方的很多小麦变种的梅茲加¹⁾ 說道,有些变种最初是极易变異的,但逐漸地就变得稳定了,在一个事例中是經过了二十五年以后才稳定的;看来这种情形好象不是由于选择比較稳定的类型的結果。

关于变化了的生活条件的累積作用 我們有良好的根据可以相信变化了的生活 条件的影响是累积的、所以、除非一个物种在几代中受到連續的栽培或家养、对于它是 不会发生任何作用的。 普遍的經驗向我們闡明了,当新的花卉植物最初被引进到我 們的花园中时,它們並不变異:但除了极罕見的例外,所有它們最終都要或多或少地发 生变異。在少数場合中、必要的代数以及变異进程中的連續步驟會被記載下来、例如 常常被引用的大丽菊的例子就是如此2)。 經过了几年栽培之后,百日草屬(Zinnia)仅 在最近 (1860年) 才开始变異得大一些。"在最初七、八年的高度栽培中,天鵝河雛菊 (Brachycome iberidifolia) 保持了原有的顏色;此后它的顏色就变成淡紫色、紫色和其 他深色的了"3)。关于苏格兰蔷薇,也記載了相似的情形。几位有經驗的园艺家們在討 論植物的变異性时,談到了同样的一般效果。沙尔特先生⁴⁾ 說,"每一个人都知道,主要 的困难在于突破物种的原始的形态和颜色,每一个人都会注意从种子或者从枝条发 生的任何自然变异; 如果一旦获得这种变異,无論这是多么微細的一种变化, 其結果 就有待于他自己来决定了"。在培育梨和草莓的新变种上获得非常成功的得乔紐說50, 关于梨,"还有一項原則,即一种模式进入变異的状态愈深,它的繼續变異的傾向就愈 大;它变異得离开原始模式愈远,它的依然向前变異的傾向就愈大"。 当我們以前談 到人通过选择具有按照同一方向繼續增大各种改变的力量时,已經对后面那一点討 論过了:因为这种力量依賴同样的一般种类的繼續变異性。 最著名的法国园艺学家 威尔摩林6) 甚至主张, 当希望获得任何特殊的变異时, 第一步就是叫植物变異, 无論 按照任何方式变異都可以,然后繼續选择变異最大的个体,即便是它們按照錯誤方向 变異的:因为物种的固定性状一旦被打破、所希望的变異迟早就会出现。

¹⁾ 谷类 1843 年, 第66, 116, 117 頁。

²⁾ 隆巴恩,园艺学会会报,第三卷,第225頁; 勃龙,自然界的历史,第二卷,第119页。

³⁾ 园艺学报, 1861年, 第112頁;关于百日草屬,艺园者祀錄, 1860年, 第852頁。

⁴⁾ 菊屬及其历史(Chrysanthemum, its History), 1865年, 第 3 頁。

⁵⁾ 艺园者記錄, 1855年, 第54頁; 园艺学报, 5月9日, 1865年, 第363頁。

⁶⁾ 沃尔洛特引用,变种,1865年,第28頁。

因为几乎所有动物都是在极古远的时代被家养的、当然我們說不出当它們最初 被放在新条件之下时,究竟是变異得快或变異得慢。但巴哈曼博士說1),他曾看到从 野生物种的卵育成的吐綬鷄在第三代便失去了它們的金屬光泽並且变得具有白色斑 点。雅列尔先生在許多年以前告訴我說,在圣詹姆士公园的池塘中繁育的野鴨,据信从 来沒有同家鴨杂交过,它們經过少数几代之后便失去了它們的真正羽衣。 一位优秀 的观察者2) 常常用野鴨的卵来孵鴨,他小心地防止它們同家鴨进行杂交;如上所述,他 对干它們逐漸发生的变化作了十分詳細的記載。他发現他不能把这等野鴨純粹地繁 育到五、六代以上、"因为那时它們被証明大大地不如以前那样美丽了。雄野鴨的白 色頸环比以前寬了而且不規則了,並且在小鴨的翅膀上出現了白色羽毛"。它們的身 体也增大了;它們的腿不如以前纖細了,而且它們失掉了优雅的步态。这时再从野鴨 那里取得新卵,但結果还是一样。 在这等鴨和吐綬鷄的場合中,我們看到动物就象 植物那样,除非几代被置于家养之下,它們是不会离开它們的原始模式的。 另一方 面,雅列尔先生告訴我說,在"动物园"中繁育的澳洲狄恩戈狗(Dingos)几乎不可避 免地在第一代就会产生具有白色的以及其他顏色的斑点的小狗; 不过这等被引进的 狄恩戈狗大概是从土人那里得到的。他們是把这等狗放在半家养状况之下的。这肯 定是一个值得注意的事实,即变化了的生活条件根据我們所能知道的来說,最初絕对 不会发生任何影响;但此后它們会引起物种的性状发生变化。 在討論汎生說的那一 章里、我将試图对这一事实进行一点說明。

現在轉回来談一談假定的誘发变異性的原因。有些作者³⁾相信密切的近亲交配引起了这种傾向,並且导致了畸形的产生。 在第十七章中举出的少数事实闡明了畸形好象是不时这样被誘发出来的;毫无疑問,密切的近亲交配引起了能育性的減低以及体質的衰退;因此它可能导致变異性的发生;不过关于这一点,我沒有足够的証据。相反地,密切的近亲交配如果不是进行到极端有害的程度,决不会引起变異性,而是傾向于把各个品种的性状固定下来的。

以前有一种普通的信念,認为母亲的幻想可以影响胎儿⁴⁾,現在还有一些人持有这种信念。这一观点显然不能应用于低等动物,它們下不受精的卵,而且也不能应用

¹⁾ 對于屬和物种的性狀的檢定(Examination of the Characteristics of Genera and Species), 查理斯東 (Charteston), 1855年,第14頁。

²⁾ 赫維特先生, 园艺学报, 1863年, 第39頁。

³⁾ 德瓦伊,血族通婚 (Marriages Consanguins), 第 97,125 頁。在談話中我发現两三位博物学者持有同样的意見。

⁴⁾ 繆勒曾明廟地反对过这种信念,生理学原理 (Elements of Phys.),英譯本,第二卷, 1842年,第 1405 頁。

于植物。 <u>威廉·亨特医生在前一世</u>紀告訴我父亲說,在一所大型的"<u>倫敦产科医院"</u>里,每一孕妇在分娩前都被詢問是否有什么事情特別影响过她的精神,答案都被記录下来了;孕妇的答案能够同任何畸形构造巧合的事例还沒有一个;不过当她知道了构造的性質以后,她常常会提出某种新的原因。 关于母亲的幻想力这种信念恐怕是从以下的情形发生的,即母亲第二次結婚后所生的小孩同以前的父亲相象,按照在第十一章中所举的事实,这种情形肯定是会时时发生的。

作为变異性的一种原因的杂交 在本章的前一部分曾經談到帕拉斯¹⁾ 以及少数 其他博物学者們主张变異性完全是由于杂交。 如果这种主张意味着,在我們的家养 族中新性状从来沒有自发地出現过,而是直接来自某些原始物种,那末,这是一种不合 理的主张;因为它的含义是,象意大利灵缇、巴儿狗、叭喇狗、突胸鴿和扇毛鴿等那样 的动物都能在自然状况下生存。 不过这个主张可能意味着大不相同的情形,即不同 物种的杂交是新性状最初出现的唯一原因,如果沒有这种帮助,人就不能形成各个不同的品种。然而,因为在某些場合中新性状的出现是由于芽变,所以我們可以肯定地 断言杂交对于变异性並不是必要的。再者,种种动物的品种,例如兔、鴿、鴨等的品种,以及若干植物的变种肯定都是单独一个野生物种的改变了的后代。 尽管如此,如果 一个类型或两个类型是长期被家养或被栽培的,它們的杂交还可能增添后代的变異 性,这同来自两个亲类型的性状的混合並无关系,这意味着新性状的确发生了。但我 們千万不要忘記在第十三章中所举的事实,它們清楚地証明了杂交的作用常常导致 长久亡失的性状的重现或返祖;在大多数場合中,要对旧性状的重现和絕对的新性状的第一次出现加以区别,大概是不可能的。实际上,不論是新或旧,对于重现这些性 状的品种散来,它們都是新的。

該特納宣称²⁾,当他使沒有栽培过的土著植物相杂交时,他在后代中从来沒有看**至**之一大任何新性状;但从来自亲代的性状的奇妙結合方式看来,它們有时好象是新的。 关于这一点,他的經驗有极大的价值。 另一方面,当他使栽培植物相杂交时,他承認新性状是不时出現的,但他强烈地傾向于把它們的出現归因于普通的变异性,而决不归因于杂交。 然而,一个相反的結論,在我看来,可能是更正确的。按照开洛依德的材料,在紫茉莉屬中杂种的变异几乎是无限的,他在种子形态上,在花莉顏色上,在子叶的非常大形上,在新而非常特殊的香气上,在早期开花上,在夜晚閉花上,描述了新而奇特的性状。 关于这些杂种的一辈他說道,它們所表現的性状同那些預料可能从双亲发生的性状恰恰相反³⁾。

¹⁾ 圣彼得堡科学院院报, 1780年, 第二部, 第84 頁等。

²⁾ 杂种的形成,第 249,255,295 頁。

³⁾ 圣彼得堡新报, 1794年, 第378頁; 1795年; 第307, 313, 316頁; 1787年, 第407頁。

关于这个圈,列攷克教授13强烈地談到同样的效果,他并且断言秘魯紫茉莉 (Mirabilis jalapa) 和多花紫茉莉 (M. multiflora) 之間的許多杂种可能容易地被誤为不同的物种,他还說,它們同秘 魯紫茉莉的差异在程度上比同該屬其他物种的差异为大。赫伯特也曾描述过2〕某些杂种 杜鵑, "在 叶子上它們同所有其他物种都不相象,它們好象是一个独立的物种"。 花卉栽培者的普通經驗証 明了、不同而近似的植物——例如矮牽牛屬 (Petunic)、荷包花屬 (Calceolaria)、吊金鐘屬 (Fuchsia)、 馬鞭草屬 (Verbena) 等的物种——的杂交和再杂交会誘发过度的变异性; 因此, 完全新的性状的出 現是可能的。卡瑞埃尔 3)最近对于这个問題进行过討論:他說。鷄冠刺桐 (Erythrina cristagalli) 多年 以来都是由种子繁殖的,但沒有产生过任何变种;于是使它同近似的草本性刺桐(E. herbacea)进行 了杂交,"現在这种抗拒被克服了,并且产生了变种,它們具有大小、形状和顏色极其不同的花"。有 些植物学者甚至主张4),当一个屬只包含一个物种时,这个物种在栽培后决不变异;这种主张可能 是从下述那种一般的而且看来似乎是十分有根据的信念发生的,卽認为不同物种的杂交除了混合 它們的性状以外,还可以大大地增添它們的变异性。 这种如此粗枝大叶的主张是不能被承認的: 不过可能正确的是,包含一个物种的屬在栽培后的变异性不如包含很多物种的屬在栽培后的变异 性那样大,而这种情形同杂交的作用并沒有关系。我在物种起源中曾指出,屬于小屬的物种在自 然状况下所产生的变种一般比屬于大屬的物种所产生的为少。 因此,小屬的物种在栽培状况下所 产生的变种可能比大屬的已經变异的物种所产生的为少。

关于从未栽培过的物种的杂交导致新性状的出現,虽然我們現在还沒有充分的証据,但对于那些通过栽培而在某种程度上已經发生变异的物种来說,上述情形显然是会发生的。因此,杂交就象生活条件的任何其他变化那样,在引起变异性上似乎是一个因素,而且可能是一个有力的因素。但是,如前所述,我們很少有方法来对真正新性状的出現和通过杂交作用而引起的长久亡失性状的重現加以区别。关于区别这等情形的困难,我将举一个事例。曼陀罗屬(Datura)的物种可分为两个部分,一是具有自花和綠茎的,一是具有紫花和褐茎的;且說,諾丹使光果曼陀罗(D. Laevis)同多刺曼陀罗(D. ferox)进行了杂交,它們都屬于白花的种类,从它們育成了 205 个杂种。在这些杂种中,每一个杂种都生有褐色的茎,并且开白色的花;所以它們同該屬的另一部分的物种相似,而同它們自己的双亲并不相似。諾丹5)对于这一事实感到如此驚奇,以致他被引导对于这两个亲种进行了仔細观察,他发现多刺曼陀罗的純粹实生苗在刚刚萌芽之后,它的从幼根到子叶的这一段茎是暗紫色的,当植株长大之后这种颜色就成为一个环,围繞着茎的基部。那末,我在第十三章中曾經闡明一种早期性状的保持和扩大同返祖有如此紧密的关系,所以上述情形显然也是在同一原理下发生的。因此,我們大概应当把紫花和褐茎看成为返归某一古老祖先的以往状态,而不应把它們看成为由于变异性而发生的新性状。

且不談由于杂交而出現的新性状,現在对于在前面一些章中已經談过的两个亲类型所固有的 性状的不等結合和遺传談几句話。 当两个物种或族杂交时,第一代一般是一致的,但此后产生的 那些代却呈現了几乎无限多样的性状。 开洛依德⁶ 說,想从杂种获得无数变种的人应当使它們杂

¹⁾ 关于繁殖, 1862年, 第311頁。

²⁾ 石蒜科, 1837年, 第362頁。

³⁾ 艺园者記錄中所載的提要, 1860年, 第1081頁。

⁴⁾ 这是老得康多尔的意見,在博物学分类辞典中引用,第八卷,第 405 頁。帕威斯,关于生殖,1837 年,第 37 頁,对同一問題进行过討論。

⁵⁾ 报告書,11月21日,1864年,第838頁。

⁶⁾ 圣彼得堡新报, 1794年, 第391頁。

变,再杂交。 当物种間杂种或变种間杂种由于同任何一个純粹的亲类型进行反复杂交而被还原或吸收时,也有大量的变异性发生;当三个不同物种、特别是当四个不同物种由于連續杂交而混合在一起的时候,还会有更高度的变异性发生。超出四个物种的結合,整特納¹⁾(以上的敍述是根据他的权威材料)从来沒有完成过一个;不过麦克斯·威丘拉²⁾會把柳类的六个不同物种結合成一个杂种。亲种的性别以一种不可理解的方式影响着杂种的变异程度;因为該特納³⁾反复地发现,如果一个杂种被用作父本,任何一个純粹的亲种或者一个第三物种被用作母本,它們的后代比当同一杂种用作母本并且任何一个純粹的亲种或者同一个第三物种用作父本时有更大的变异:例如,当美洲瞿麦(Dianthus barbatus)和中国石竹(D. chinensi)的杂种由純粹的美洲瞿麦来受精,并且美洲瞿麦由上述杂种来受精,前者的变异就不如后者的变异大。麦克斯·威丘拉⁴⁾强烈地主张他的杂种柳也有相似的结果。 还有,整特納断言⁵⁾,由同样的两个物种之間的相互杂交培育出来的杂种,它們的变异性有时在程度上有差异;这里唯一的不同就是某一物种先被用作父本,然後被用作母本。总之,我們知道,姑且不談新性状的出现,連續的杂交世代的变异性也是极端复杂的,这一部分是由于它們的后代不等地食有两个亲类型的性状,特别是由于它們的后代返归这等性状或者返归更古祖先的那些性状的不等倾向。

关于誘发变異性的諸种原因的作用方式和作用时期 这是一个极端暧昧的問題,这里我們需要考虑的只是,遺传的变異究竟是由于某些部份在它們形成之后受到作用,还是由于生殖系統在它們形成之前受到作用;並且在前一場合中,这种作用究竟是在生长或发育的什么时期产生的。我們在以下两章中将看到,种种作用,例如丰富的食物供給、暴露在不同的气候下、部分的增強使用或不使用等等,会延續几个世代,这肯定会改变整个的体制或某些器官;显然这种作用是不能通过生殖系統的,至少在芽变的場合中是如此。

关于通过生殖系統而被引起变异的部分,我們在第十八章中已經看到,甚至生活条件的微小变化在引起或大或小的不育性方面都具有显著的力量。因此,通过如此容易受到影响的系統而发生的生物,其本身受到影响,或者,沒有遺传或过多地遺传双亲所固有的性状,似乎不是不可能的。我們知道,生物的某些类羣,除了各个类羣中的例外,它們的生殖系統远比其他类羣的生殖系統更容易受到变化了的生活条件的影响;例如,食肉鳥比食肉哺乳类容易受到影响,鸚鵡比鴿子容易受到影响;这一事实同动物和植物的种种类羣在家养下变异的显著无常的方式和程度是一致的。

开洛依德⁶⁾曾被以下的情形所打动,即杂种以种种方式进行杂交或再杂交时的 过度变异性 ——这些杂种的生殖力或多或少地受到了影响——和古老栽培植物的变异性之間有平行現象。麦

¹⁾ 杂种的形成, 第507, 516, 572 頁。

²⁾ 杂种的受精, 1865年, 第24頁。

³⁾ 杂种的形成,第452,507頁。

⁴⁾ 杂种的受精,第56頁。

⁵⁾ 杂种的形成, 第423 頁。

⁶⁾ 第三續編, 1766年,第85頁。

克斯·威丘拉 1) 更向前进了一步,他指出有許多高度栽培的植物,例如洋水仙、郁金香、黄色报春花(Auricula)、金魚草、馬鈴薯、甘蓝等等,沒有任何理由可以相信它們是杂交过的,而它們的花荔就象杂种的情形一样,含有許多不規則的花粉粒。 他还发現,在某些野生类型中就象在悬鈎子屬(Rubus)的許多物种中那样,花粉的状态和高度的不育性也有同样的一致性;但在蓝灰色悬鈎子(R. caesius)和爱达山悬鈎子(R. idaeus)中(它們并不是高度变异的物种),花粉是健全的。大家还熟知,許多栽培植物——例如香蕉、凤梨、面包树以及其他以前提过的栽培植物——的生殖器官如此严重地受到了影响,以致一般是十分不育的:当它們产生种子时,根据現存的大多数栽培族来判断,它們的实生苗一定有极度的变异。 这些事实暗示了生殖器官的状态和变异性的傾向有某种关系;但是我們千万不要断言这种关系是严格的。虽然許多高度栽培植物的花粉可能处于退化的状态之下,但是,正如我們以前看到的那样,它們还会产生更多的种子,我們的古老家养动物比自然状况下的相应物种的生产力更强。孔雀几乎是唯一的鳥,据信它在家养状况下比在自然状况下的能育性为低,并且它的变异程度非常小。 根据这些攷察可以知道,似乎是生活条件的变化导致了不育性或者导致了变异性,或者同时导致了不育性和变异性;而不是不育性誘发了变异性。总之,影响生殖器官的任何原因大概同样地会影响其产物——即由此产生的后代。

誘发变异性的諸种原因在生命的哪一时期发生作用,同样也是一个暧昧的問題,不同的作者們已对这个問題进行过討論了²⁾。关于由变化了的生活条件的直接作用而引起的可以遺传的改变,即将在下一章中談到;在某些这等場合中,毫无疑問,諸种原因會对成熟的或接近成熟的动物发生过作用。另一方面,同較小变异无法明显区别的畸形常常是在母亲的子宫和卵中由于胚胎受到損害而被引起的。例如,小圣喜来尔断言³⁾,在怀孕期間尙須勞苦工作的貧穷婦女,以及精神痛苦并且被迫隐瞒怀孕情况的私生子的母亲,比起处在安乐环境中的婦女远远容易产生 畸 形 的 小孩。鷄的卵当被豎放或者受到其他不自然的处理时,屡屡产生畸形的小鷄。然而复杂的畸形似乎与其說在胚胎生活的很早期勿宁說在其晚期更常常发生;不过这种情形可能部分地由于在早期受到損害的某一部分借着它的畸形生长影响了此后发育的其他部分;并且这种情形在晚期受到損害的部分中可能較少发生⁴⁾。当任何部分或器官通过发育不全而成为畸形时,一般会留下一种痕迹,这种情形也暗示了它的发育已經开始。

昆虫的触角和腿有时是畸形的,而它們的幼虫既沒有触角,也沒有腿;在这等場合中,正如<u>夸</u>重費什⁵⁾所相信的那样,我們能够看到发育的正常进程受到扰乱的正确时期。 不过給予幼虫的食物性質有时会影响蛾的顏色,而幼虫本身并不受到影响; 所以成熟昆虫的其他性状通过幼虫間接地被改变,似乎是可能的。 我們沒有任何理由来假定,已經成为畸形的器官永远在它們的发育期間受到作用;畸形的原因可能在很早的阶段对体制发生作用。 甚至可能是雄性生殖要素或雌性生殖要素,或者同时二者,在結合以前就受到了这样的影响,以致导致在生命晚期中发育的器官发生改变;这几乎同小孩从他父亲那里遗传的疾病不到老年不出現的情形一样。

上述事实証明了,在許多場合中,变异性和由变化了的生活条件所引起的不育性之間存在着一种密切的关系;根据这些事实我們便能作出如下的結論:激发的原因常常在侭可能早的时期发

¹⁾ 杂种的受精,1865年,第92頁;再参閱巴尔克雷对于同一問題的意見,皇家园艺学会学报,1866年,第80百

²⁾ 卢凱斯博士曾写过有关这一問題的意見的历史;自然遺傳論,1847年,第一卷,第175頁。

³⁾ 畸形史,第三卷,第 499 頁。

⁴⁾ 同前书,第三卷,第392,502頁。今后即将提到的达列斯特的几篇研究报告对于这整个問題特別有价值。

⁵⁾ 参阅他的有趣的著作,人的变化(Métamorphoses de l'Homme)。

生作用,即在受孕发生前对性生殖要素发生作用。根据芽变的发生情形,我們同样地可以推論雌性生殖要素受到影响因而誘发变异性是可能的;因为芽似乎就是胚珠的相似物。但是,雄性生殖要素显然远比雌性生殖要素或胚珠更常常受到变化了的生活条件的影响,至少在內眼得見的情况下是如此;我們从該特約的和威丘拉的敍述中得知,如果把一个杂种用作父本,使其同一个純粹的物种进行杂交,那末它給予后代的变异性在程度上比当同一个杂种被用作母本时为大。最后,变异性肯定可以通过任何一种性生殖要素而被传递下去,不論这种变异性是否原来在这等性生殖要素中被激发起来的,因为开洛依德和該特納1)发现,当两个物种杂交时,如果任何一个是变异的,那末它們的后代就被賦与了变异性。

提要 根据本章所举出的事实,我們可以作出这样的結論:生物在家养下的变異性虽然是非常一般的,但並不是生活中的不可避免的偶发事件,而是由双亲暴露于其中的生活条件所引起的。生活条件的任何种类的变化,哪怕是极端傲小的变化,也常常是可以引起变異性。营养的过剩恐怕是一种最有效的激发原因。动物和植物自从最初被家养之后在无限长的时期中繼續地变異;但是它們暴露于其中的生活条件决不会长期保持完全一致。 在时間的推移中它們能够习惯于某些变化,因而变異就較小了;当最初被家养时,它們的变異甚至可能比在今天还要大。有良好的証据可以証明变化了的生活条件的力量是积累的;所以在任何作用可以被肉眼看見之前,必須有两代、三代或更多的代暴露在新的条件之下。已經发生变異的不同类型的杂变,可以增加后代的进一步变異的倾向,这是由于双亲性状的不等混合,由于长久亡失性状的重現,並且由于絕对新性状的出現。 有些变異是由于周围条件对整个体制或仅仅对某些部份直接发生作用而被誘发的;其他变異似乎是通过生殖系统受到影响而間接地被誘发的,因为我們知道,当种种生物被移开它們的自然条件而成为不育时,就往往是这种情形。誘发变异性的諸种原因对于成熟的有机体,对于胚胎,大概也对于受孕完成前的性生殖要素,发生作用。

¹⁾ 第三續編,第123頁;杂种的形成,第249頁。

第二十三章 外界生活条件的直接的 和一定的作用

由于变化了的生活条件的一定作用,植物在大小、颜色、化學性質以及組織状态上所发生的微小改变——地方病——由于变化了的氣候或食物等而发生的显著改变——鳥类的羽衣所受到的特殊营养以及毒物接种的影响——陸棲貝类——自然状况下的生物通过外界条件的一定作用所发生的改变——美洲树和欧洲树的比較——树瘿——寄生菌类的影响——同变化了的外界条件可以发生有力影响的信念相反的考察——变种的平行系列——变異量同生活条件的变化程度并不一致——芽变——由于不自然处理而产生的畸形——提要

如果我們自問,为什么这种或那种性状在家养下发生了变異:在大多場合中,我們无以为答。許多博物学者,特別是法国学派的博物学者把每一种改变都归因于"外界",这就是說,归因于变化了的气候——变化多端的熱和冷、湿和干、光和电,归因于土壤的性質以及各式各样的食物种类和食物量。本章所用的一定作用这个辞儿意味着这样一种性質的作用:即同一变种的許多个体当在几代中暴露于生活条件的任何特殊变化之下时,所有个体或者几乎所有个体都按照同样的方式发生改变。习性的作用以及种种器官的增强使用或不使用的作用大概可以包括在这个題目之下;不过在另一章中来討論这个問題将是方便的。不定作用这个辞儿意味着这样一种作用:它使某一个体在某一途徑上变異,使另一个体在另一途徑上变異,就象我們常常看到的植物和动物在几代中处于变化了的生活条件下的那种情形。但是我們所知道的变異的原因和法則太少了,所以不能作出无疵的分类。变化了的生活条件的作用,不論它导致一定的結果或不定的結果,同选择的作用完全不是一回事;因为选择取决于人对某些个体的保存,或者取决于它們在各种复杂的自然环境中的生存,而同各个特殊变異的任何根本原因並无关系。

首先我将詳細地举出我所能夠蒐集的所有事实,指出下述情形是可能的,即气候、食物等对于家养产物的体制发生了如此一定而有力的作用,以致新变种或族在沒有人工选择或自然选择的帮助下也可以这样形成。然后我将举出同这个結論相反的事实和考察,最終我們再尽可能公平地对双方的証据加以衡量。

如果我們考虑到在欧洲各个帝国、甚至以往在英国各个地区生存的几乎所有家

养动物的不同族,最初我們会強烈地傾向于把它們的起源归因于各个地方的外界条件的一定作用:並且这曾經是許多作者的結論。但我們应当記住,人每年都勢必选出哪些动物应被保存,哪些应被屠宰。我們还看到,以往曾經实行过有計划的和无意識的选择,而且現在最不开化的种族也不时实行这等选择,其实行的范围比可以預料到的要大得多。因此,譬如說,英国几个地区之間的生活条件有多大差異才足以改变在各个地区中养育的品种,是难以判断的。可以这样爭論:因为无数野生的动物和植物在許多年代中散佈于整个大不列颠並且保持了同样的性狀,所以几个地区之間的生活条件的差異不能显著地改变牛、羊、猪和馬的各种不同的土著族。当我們对那些棲息于气候、土壤性質等差異不大的两处地方(例如北美和欧洲)的密切近似物种加以比較时,我們在区別自然选择的作用和外界条件的一定作用方面所遭遇的同样困难还要大,因为在这种場合中,自然选择会在长期連續的年代中不可避免地並且严格地发生了作用。

魏斯曼教授¹⁾提出,当一个变異的物种進入新而孤立的地方时,虽然变異的一般性質可能同以前一样,但它們不可能以同样的比例数量发生。 經过一段或长或短的时間之后,由于变異着的个体的不断杂变,物种就有在性狀上变成差不多一致的傾向:但是在长或短这两种場合中按照不同途徑变異着的个体的比例並不一样,所以最終結果将是两个彼此多少有所不同的类型的产生。 在这种場合中,会錯誤地以为好象生活条件誘发了某些一定的改变,其实它們只是引起了不定的变異性,不过变異的比例数量微有不同。这种觀点对于以下的事实可能提供某种說明,即以往在大不列顛若干地区棲息的家养动物,以及最近在几处英国园面中生存的半野生牛,彼此做有差異;因为这等动物被禁止漫遊于全国和杂交,但在各个地区和园面内则可以自由地进行杂交。

由于对变化了的生活条件會引起构造的一定改变到怎样地步加以判断是困难的,所以举出保可能多的事实將是适宜的,这样便能闡明在同一地方內或在不同季节中的极端微小差異肯定可以产生些許效果,至少对那些已經处于不稳定状态下的变种是如此。 装飾用的花卉植物是适于这个目的的,因为它們是高度变異的,并且受到了仔細的观察。所有花卉栽培者一致認为,在它們生长于其中的人工堆肥性質上、該地土壤性質上、以及季节上的很小差異对于某些变种都有影响。 例如,一位熟練的判断者当写到香石竹和荷兰石竹(Picottees)时間 道²⁾,"在哪里能够看到克宗海軍上將石竹(Admiral Curzon)具有它在得比郡(Derbyshire)那样的顏色、大小和茂盛力?在哪里能够发現斯勞那样的弗罗拉·嘎兰得(Flora's Garland)?在哪里浓色的花比在烏尔章契(Woolwich)

¹⁾ 分函在物种形成中的影响 (Ueber den Einfluss der Isolirung auf die Artbildung), 1872年。

²⁾ 艺园者記錄, 1853年, 第183頁。

和伯明翰开得更漂亮?然而在任何两个这等地区中的同一变种决沒有得到同等程度的优越性,虽然每一个变种都会受到最熟練的栽培者的注意"。于是同一位作者劝告每一个栽培者保持五种不同的土壤和肥料,"努力适合你所栽培的植物的各自口味,因为沒有这种注意,一切全面成功的希望将会落空"。关于大丽菊也是如此¹⁾;古<u>相</u>大人极少在<u>倫敦</u>附近获得成功,但在其他地区却作得非常出色;相反的情形見于其他变种;再者,还有其他变种在种种不同場所可以同等地得到成功。一位熟練的艺园者說²⁾,他得到一个古老而著名的馬鞭草变种(pulchella)的插条,这些插条由于在一个不同場所繁殖而呈現了微有不同的色調;此后这两个变种都用插条来繁殖,并且小心地分别栽培;但在第二年它們就几乎沒有区别,在第三年誰也无法区别它們了。

季节的性質对于某些大丽菊变种特別有影响:有两个变种在1841年是非常好的,而在翌年同样这两个变种就是非常壞的了。一位著名的业余栽培者³⁾断言,有許多薔薇变种在1861年所表現的性状如此不純,"以致几乎不可能辨識它們,并且常常以为栽培者遺失了掛在植株上的名牌"。同一位业余栽培者⁴⁾又說,他的黄色报春花(Auriculas)有三分之二在1862年产生了中心花束,这等花束不容易保純;他补充說道,这种植物的某些变种在一些季节被証明都是好的,而在下一季节被証明都是壞的;同时其他变种发生了恰恰相反的情形。艺园者記录的編輯⁵⁾在1845年說道,这一年的許多荷色花都有呈現管状的傾向,眞是多么奇怪的事。关于三色堇⁶⁾,斑点种类在炎热氣候来到之前不会获得它們的固有性状;而其他变种当炎热氣候一来就失去了它們的美丽斑点。

关于叶子,也观察过相似的事实: 比東先生断言⁷⁾,他在舒伯兰 (Shrubland) 六年来从潘契天竺葵 (Punch Pelargonium) 培育了两万株实生苗,其中沒有一株是班叶的;但在薩利的塞尔比東 (Surbiton),来自同一变种的实生苗有三分之一或者甚至更多的实生苗或多或少是斑叶的。 薩利 另一地区的土壤有引起斑叶的强烈傾向,这从波洛克爵士給我的材料中可以看出。 沃尔洛特⁸⁾說,斑叶草莓只要在干燥土壤中生长就可以保持它的性状,但把它栽植在肥沃而潮湿的土壤中,很快就会失去它的性状。 沙尔特先生由于在栽培班叶植物方面的成功而聞名于世,他告訴我說,1859 年在他的花园中按照普通方法栽植了許多行草莓;在某一行中种种不同距离的几个植株同时变成斑叶的了;把这种情形弄得更加可惊的是,所有这些植株都是按照完全一样的方式变成斑叶的。这等植株被除掉了,但接連三年同一行中的其他植株也变成斑叶的了,而任何隣行中的植株一点也沒有受到影响。

植物的化学性質、香气和組織常常由于在我們看来似乎是微小的一种变化而发生改变。据 說苏格兰的一种毒人参 (Hemlock) 不产生"康宁"毒鹼 (conicine)。 毛茛科的一种植物 (Acontium napellus) 的根在严寒气候下变成无毒的了。 毛地黄屬 (Digitalis) 的药性容易受到栽培的影响。漆 树科的一种植物 (Pistacia lentiscus) 在法国南部茂盛地生长,可見那里的气候一定适合它,但它

^{1) &}lt;u>威德曼</u>先生,"花卉協会"(Floricultoral Soc.), 2月7日, 1843年, 見艺园者記錄的报告, 1843年, 第86 頁。

³⁾ 园艺学报, 1861年, 第24頁。

⁴⁾ 同前杂誌, 1862年, 第83頁。

⁵⁾ 艺园者記錄, 1845年, 第660頁。

⁶⁾ 同前杂誌, 1863年, 第628頁。

⁷⁾ 园艺学报, 1861年, 第64,309頁。

⁸⁾ 变种,第76頁。

不产乳香。一种月桂树(Laurus sassafras)在欧洲失去了它在美洲所固有的香氣¹⁾。还可以举出許多相似的事实,这是值得注意的,因为可能有人設想一定的化学成分无論在質上或量上大概是很不容易变化的。当美国刺槐(Robinia)在英国生长时,它的木料几乎是沒有价值的,就象櫟树在好望角生长时它的木料沒有价值的情形一样²⁾。正如法更納博士告訴我說的那样,大麻和亚麻在印度平原上生长茂盛抖且产生大量种子,但它們的纖維却是脆而无用的。相反地,大麻在英国不产生那种胶状物質,这在印度大量地被用作麻醉剂。

甜瓜的果实由于栽培和氣候的微小差異会大大地受到影响。因此,按照諾丹的意見,改进旧种类比把一个新种类引进任何地区,一般是更好的方法。 波斯甜瓜在巴黎附近产生的果实比市場上最坏的种类还要坏,但在波尔多 (Bordeaux) 它产生的果实却很好吃³⁾。 甜瓜种子每年都从西藏运往克什米尔 (Kashmir)⁴⁾,产生的果实从四磅到十磅,但翌年用在克什米尔結的种子培育出来的植株,其果实只有两三磅重。众所熟知,美国的苹果变种在原产地产生的果实既大而且顏色 鲜明,但在英国,这些变种产生的果实就具有不好的品質和阴暗的顏色。 在匈牙利有許多菜豆的变种,它們的种子非常美麗,但巴尔克雷牧師⁵⁾发现,它們的美麗在英国簡直不能保持,而且在一些場合中顏色大大地变化了。我們在第九章中看到,关于小麦,从法国北部調換到南部,从法国南部調換到北部,对于谷粒的重量产生了多么显著的影响。

当人不能觉察到暴露在新气候或不同处理下的动物和植物有什么变化的时候,有时昆虫就能觉察到一种显著的变化了。有一种仙人掌(Cactus)从广东、馬尼拉、莫里求斯、並且从基由植物园的温室被輸入到印度,那里还有一个所謂土著的种类,是以往从南美引进的;所有这些植株都屬于同一个物种,並且在外貌上是相象的,但胭脂虫只在土著种类上才繁荣,它們在那里大量地繁殖⁶⁾。洪波特⁷⁾說,"在熱帶降生的白人在公寓里秦然自若地光着脚走路,而在同一所公寓里,一个最近上岸的欧洲人却受到了一种蚤(Pulex penetraus)的攻击"。所以这种昆虫,还有著名的沙蚤(Chigoe),一定能夠觉察最精密的化学分析所不能发現的东西,即欧洲人和降生在熱帶的白人在血液和組織上的差異。但是沙蚤的辨別力并不象最初看来那样可惊,因为按

¹⁾ 愿格尔 (Engel), 變用衝勢的特性 (Sur les Prop. Médicales des Plantes), 1860 年,第 10,25 頁。关于植物的香梨的变化,参閱达利勃特 (Dalibert) 的試驗,克曼引用,見新发型 (Inventions), 第二卷,第 344 頁; 法眷隨克 (Ferussac) 的尼斯 (Nees),自然科学通报 (Bull. des Sc. Nat.), 1824 年,第一卷,第 60 頁。关于介用大黃 (rhubarb),再参閱艺园者記錄,1849 年,第 355 頁; 1862 年,第 1123 頁。

²⁾ 虎克,印度植物誌 (Flora Indica), 第 32 頁。

³⁾ 諸丹,自然科学年报,第四嗣,植物学部分,第十一卷,1859年,第81頁。 艺园者記錄,1859年,第464頁。

⁴⁾ 慕尔克罗夫特的旅行記,第二卷,第143页。

⁵⁾ 艺园者記錄, 1861年, 第1113页。

⁶⁾ 罗伊尔,印度的生產養源,第59頁。

⁷⁾ 南美旅行記(Personal Narrative), 英譯本,第五卷,第 101 頁。这一敍述已被卡斯汀 (Karsten, Beitrag zur Kenntniss der Rhynchoprion) 和其他人証实了。

照利比西 (Liebig) 的材料¹⁾,不同肤色的人虽然住在同一地方,但他們的血液放出的气味却是不同的。

关于某些地区、高度或气候中所特有的疾病在这里大略地提一提,因为这可以简明外界条件对于人类身体的影响。只限于人的某些种族所特有的疾病同我們沒有关系,因为該种族的体質可能起更重要的作用,而这一点大概是由一些未知的原因所决定了的。在这一方面,糾发病(Plica Polonica)处在差不多中間的地位;因为德国人极少感染这种病,他們就住在威斯杜拉(Vistula)的隣近,而威斯杜拉则有非常多的波兰人严重地感染这种病;俄国人也不感染这种病,据說他們同波兰人屬于同一原始系統²⁾。一个地區的高度常常支配疾病的出現;在墨西哥,黄热病不会蔓延到924米以上;在秘鲁,只有住在海拔600到1600米之間的人才感染威尔加斯病(Verugas);还可以举出許多其他这样的例子。一种叫做 Bouton d'Alep 的特殊皮肤病在阿勒頗(Aleppo)和一些隣近地区几乎感染了每一个土著的婴孩以及一些外地人;似乎相当充分地証实了这种奇特的疾病取决于喝某些水。在健康的圣赫勒拿(St. Helena)小島上,猩紅热就象鼠疫那样地可怕;在智利和墨西哥也观察到相似的事实³⁾。甚至在法国的不同县分中也发现了种种使壮丁不适于在軍隊中服务的疾病以显著不等的程度流行着,根据鲍丁(Boudin)的观察得知其中有許多是風土病,从来沒有人有过另外的怀疑⁴⁾。任何研究疾病分佈的人都会吃惊地被以下的情形所打动,即周围环境的一些多么微小的差異就会支配人至少暂时感染的那些疾病的性質和严重程度。

截至目前为止,我們所提到的那些改变都是极端微小的,并且根据我們所能判断的来說,在大 多数場合中,这些改变都是由生活条件中的同等微小差異所引起的。 不过在一系列世代中发生作 用的这等条件恐怕会产生一种显著的效果。

在植物的場合中,氣候的相当变化有时会产生显著的結果。 我在第九章曾举出一个我知道的最显著的例子,即玉蜀黍的变种当从热带地方移到较冷的地方时,或者与此相反,仅在两三代的过程中就会大大地改变。 法更納博士告訴我說,他會看到英国的皮平·瑞勃斯東苹果,喜馬拉雅的櫟树、梨屬和李屬在印度的比較炎热地方都呈現了直生的或尖塔形的习性;这个事实更加有趣,因为一个中国梨屬的热带物种自然就生长得这样。 虽然在这些場合中,生长方式的变化似乎是由高温直接引起的,但是我們知道,許多直生的树是在它們的温带家乡发生的。在"錫兰植物园"中,苹果树5)"在地下伸出許多匍匐枝,它們繼續长出小茎,生长在亲本树的周围"。 在欧洲产生叶球的甘蓝在某些热带地方就不能这样6)。 細毛杜鵑(Rhododendron ciliatum)在基由植物园开的花远比在它的原产地喜馬拉雅山开的花大得多,而且顏色淡得多,以致虎克博士7)只根据它的花几乎不能辨識这个物种。关于花的顏色和大小,还能举出許多相似的事实。

威尔摩林和巴克曼对于胡蘿卜和美洲防風(parsnips)的試驗証明了丰富的营养对于它們的根

¹⁾ 有机化学 (Organic Chemistry), 英譯本,第一版,第 369 頁。

²⁾ 帕利卡得,人类的体格史,1851年,第一卷,第155頁。

³⁾ 达尔女,調查日誌, 1845年, 第434頁。

⁴⁾ 这些关于疾病的彼逃引自鲍丁哥士的地理学及医学統計学 (Géographie et Statistique Médicale), 1857 年,第一卷,第 44,52 頁,第二卷,第 315 頁。

⁵⁾ 錫兰, 談嫩特爵士著, 第一卷, 1859年, 第89頁。

⁶⁾ 高德龙,物种,第二卷,第52页。

⁷⁾ 园艺学会学报,第七卷, 1852年,第117頁。

产生了一定而遺传的影响,而植株的其他部份却几乎沒有任何变化。明礬(alum)直接地影响八仙花屬(Hydrangea)的花色¹⁾。干燥似乎一般有利于植物的多毛性。 <u>該特納</u>发現,杂种毛**族毛在花盆**中生长时,就变得满生軟毛。另一方面,<u>馬斯特</u>先生說,白毛仙人掌(Opuntia leucotricha)"当在潮热中生长时就滿被美丽的白毛,而在干热中生长时却不表現这种特性"²⁾。不值得詳加說明的許多种类的变異,只要植物生长在某些土壤中,就可以得到保持;关于这一点,<u>薩哥瑞特³⁾ 根据他的經</u>驗举出过一些事例。 强烈主張葡萄变种的不变性的<u>奥达特</u>承認⁴⁾,某些变种当在不同氣候中生长或者受到不同处理时,就有輕微程度的变異,例如果实的色泽和成熟期就是这样。 有些作者否認嫁接会使变种发生即便是最輕微的差異;但有充分的证据可以证明,果实的大小和風味、叶的存在期以及花的外观常常受到嫁接輕微影响⁵⁾。

毫无疑問,根据第一章中所举出的事实,<u>欧洲狗在印度</u>是退化了,不論在本能和构造上都是如此;但它們所发生的变化具有这样一种性質,即这等变化就象在野化动物的場合中那样,部份地是由于返归原始类型。在印度的一些地方,吐綬鷄的体积縮小了,"而喙上的下垂附屬物非常发达"。我們已經看到野鸭被家养后,它的真正性状便多么迅速地消失了,这是由于丰富的或变化了的食物的影响,或者由于运动的不足。由于潮湿气候和瘠薄牧場的直接作用,馬的体積在<u>個克</u>兰羣島迅速地变小了。根据我收到的报告,綿羊在澳洲的情形似乎也是这样。

气候对于动物身体的被毛情形有一定影响;在西印度羣島,綿羊的毛大約經过三代就发生重大的变化。 法更納博士說⁷⁾,西藏的獒和山羊从喜馬拉雅被运到低处的克什米尔,便失去它們的优良絨毛。在安哥拉,不仅山羊,而且牧羊狗和貓都有优良的羊毛般的毛,阿因遲斯(Ainsworth)先生⁸⁾把它們的厚毛归因于严寒的冬天,把絲一般的光泽归因于炎热的夏天。勃尔恩斯肯定地說道⁹⁾,卡拉庫尔羊当被移到任何其他地方之后,便失去它們特有的黑色卷毛。甚至在英格兰的境界之內, 我也確信两个綿羊变种的羊毛由于在不同地点放牧而发生了微小的变化¹⁰⁾。根据优秀的权 成 材料¹¹⁾,有人断言在<u>比利时</u>媒矿深处呆过几年之后的馬便被有天鵝絨般的毛,同胰鼠的毛几乎一样。这些例子同毛皮在冬季和夏季的自然变化大概有密切的关系。 若干动物的无毛变种曾經不时 出现;但沒有任何理由可以相信这同它們暴露于其中的气候性質有任何关係¹²⁾。

我們的改良的牛、綿羊和猪的体積增大、变肥傾向、早期成熟以及形态改变,最初一看,大概是由丰富的食物供給所引起的。这是許多有才能的判断者的意見,这种意見恐怕在很大程度上是正确

¹⁾ 园艺学会学报,第一卷,第160页。

²⁾ 参阅列考克,关于植物的絨毛性,植物地理学,第三卷,第287,291頁,該特納,杂种的形成,第261頁;馬斯特先生,关于仙人掌,艺园者記錄,1846年,第444頁。

³⁾ 果树生理学,第136页。

⁴⁾ 关于葡萄的研究, 1849年, 第19頁。

⁵⁾ 該特納,杂种的形成,第606頁,其中蒐集了几乎所有的镀肥載下来的事实。安朱·奈特(园艺学会学报,第二億,第160頁)甚至主要当少数变种由芽或接穗来繁殖时,在性狀上絕对不变。

⁶⁾ 勃里斯先生,博物学年报,第二十卷,1847年,第391頁。

⁷⁾ 博物学評論, 1862年, 第113頁。

⁸⁾ 皇家地理学会学报, 第九卷, 1839年, 第275頁。

⁹⁾ 布克拉旅行記,第三卷,第151頁。

¹⁰⁾ 关于沼地牧草对于羊毛的影响,再参閱高德龙,物种,第二卷,第22頁。

¹¹⁾ 小圣喜来尔,博物学通論,第三卷,第438頁。

¹²⁾ 亚莎拉对于这个問題作过良好的發達,巴拉圭的四足兽,第二卷,第 337 頁。参閱一項关于在英国产生的一寬无毛嚴嚴的記載,見动物學会學报,1856 年,第 38 頁。

的。但是专就形态来說,我們千万不要忽略四肢和肺的減少使用所发生的更有力的影响。再者,专就体积来說,我們知道选择比起大量的食物供給显然是一个更有力的动因,因为只有这样,我們才能解釋勃里斯先生告訴我的最大形綿羊品种和最小形綿羊品种为什么会存在于同一地方,以及交趾支那鷄和班塔姆鷄、小形翻飞鴿和大形侏儒鴿为什么会同时存在,而它們都被养在一起抖飼以丰富的营养物。促管如此,我們的家养动物还是无疑地由于它們所处在的生活条件而被改变了,这里并沒有选择的帮助,而且同一些部份的增强使用或減少使用无关。例如,卢特梅耶教授¹⁾ 指出,家养动物的骨同野生动物的骨可以从骨的表面和一般外观加以区别。讀了那修西亚斯的优秀著作历史的預备研究²⁾ 之后,几乎不可能怀疑在猪的高度改良族中丰富食物对于一般体形、对于头和面的宽度、甚至对于牙齿产生过显著影响。 那修西亚斯非常信赖的一个例子是关于一只純种植克斯郡猪(Berkshire)的,这只猪在长到两个月的时候,它的消化器官得了病,并且被保存到十九个月作为观察之用;这时它失去了該品种所特有的几种特征,并且获得了长而狹的头,同它的小形身体比較起来显得很大,同时还获得了細长的腿。 但在这种場合以及其他一些場合中我們不应这样来假定:因为在某一种处理过程中某些性状恐怕通过返祖而消失了,所以这等消失的性状最初是由于一种相反的处理而直接产生的。

在波托·桑托島上已經野化的家冤的場合中,最初我們强烈地被誘惑把全部变化——体积的大大縮小、毛皮的改变顏色以及某些特征的消失——都归因于它們暴露于其中的新生活条件的一定作用。 但在所有这等場合中,我們势必还得考虑或远或近的返祖傾向以及对于最微細差異的自然选择。

食物的性質有时可以一定地誘发某些特性,或者同它們有某种密切的关系。 <u>帕拉斯</u>很久以前 断言,西伯利亚的肥尾羊当被移出盐性牧地以后便退化了,并且失去了它們的肥大尾巴; <u>埃尔曼</u>³⁾ 最近說,当吉尔吉斯羊被运到奥侖堡 (Orenburgh) 之后,也有这种情形发生。

众所熟知,大麻子可以使屬和某些其他鳥变黑。 華来斯先生写信向我說过一些远远更加显著的同样性質的事实,亚馬逊地方的土人用大形鮎魚的脂肪飼喂普通綠色鸚鵡 (Chrysotis festiva, Linn.),受到这样待遇的鸚鵡便呈現美丽的杂色,它們的羽毛是紅色和黃色的。在馬来羣島,基罗罗(Gilolo)的土人按照相似的方式改变了另一种鸚鵡,即 Lorius garrulus, Linn.,這样便产生了勞瑞王鸚鵡 (Lori rajah)。这等鸚鵡在馬来羣島和南美当由土人飼以天然的植物性食物时,例如米和香蕉,便保持固有的颜色。 華来斯先生还記載过一个更加奇特的事实。 "印第安人(南美的)有一种奇妙的技巧,他們借此可以改变許多鳥的羽毛颜色。 他們从准备着色的那一部份把羽毛拔掉,然后用小蝦蟆皮肤上的乳状分泌物接种在新鮮的伤口上。 这样长出的羽毛具有灿烂的黄色,据說把這些羽毛拔掉,再长出的羽毛还具有同样的颜色,并不須新的处理"。

具西斯坦⁵⁾一点也不怀疑光線的遮閉可以影响、至少可以暫时地影响籠鳥的顏色。

众所熟知,陸棲軟体动物的介壳在不同地区由于石灰的丰富而受到影响。 小圣喜来尔6 举出一个有关白色蝸牛 (Helix lactea) 的例子,这种蝸牛是最近从西班牙带到法国南部和里約·普拉他 (Rio Plata) 去的,它們現今在这两处地方呈現了不同的外观,但这是否由食物或气候所引起的,还

¹⁾ 湖上住居动物誌, 1861年, 第15頁。

²⁾ 猪的头骨, 1864年, 第99頁。

³⁾ 西伯利亚旅行記,英譯本,第一卷,第228頁。

⁴⁾ 华来斯,亚馬逊河和內革罗河旅行記 (Travels on the Amazon and Rio Negro) 第 294 頁。

⁵⁾ 籠鳥誌, 1840年, 第262,308頁。

⁶⁾ 博物学通論,第三卷,第402頁。

不知道。关于普通矮(Oyster),巴克兰(F. Buckland)先生告訴我說,他一般能够区別来自不同地区的介壳;把来自威尔斯的幼蠔放在"土著康"居住的場所,它們在两个月的短期內便开始呈現"土著矮"的性状。考斯达(M. Costa)¹⁾ 記載过一个显著得多的同样性質的例子,把来自英格兰海岸的幼蠔放入地中海,它們立刻就改变它們的生长方式,并且形成了显著輻射的条紋,就像固有的地中海蠔的介壳上的条紋那样。 表現有两种生长类型的同一个体的介壳曾在巴黎的一个学会上展覽过。最后,众所熟知,飼以不同食物的幼虫有时自己获得不同的顏色,或者产生具有不同顏色的蛾²⁾。

在这里来討論自然状况下的生物由于变化了的生活条件而发生的一定改变有多大,大概是超越了我的正当范围。我在物种起源中对于同这一点有关的事实作过一个简略提要,我會闡明光線对于鳥羽顏色的影响。在海的附近生活对于昆虫的暗淡色調的影响以及对于植物的多汁性的影响。赫伯特·斯賓塞先生3)最近从一般的根据出发非常有才能地討論了这整个問題。例如他主张,在所有的动物中內部組織和外部組織所受到的周围条件的作用是不同的,因而它們在微細的构造上一定有所不同。还有,眞叶的上面和下面所受到的光照等等影响是不同的,因而它們的构造显然有所不同,当茎和叶柄执行叶的机能并且占据叶的位置时也是如此。但是正如赫伯特·斯宾塞所承認的那样,在所有这等場合中最困难的是区别外界条件一定作用的效果和通过自然选择所积累的遗传变异,这等变异对于有机体是有用的,并且它的发生同这些条件的一定作用并无关系。

虽然我們这里所考虑的並不是生活条件对于自然狀況下的有机体的一定作用,但我可以說,晚近几年以来对于这个問題已經得到了大量的証据。例如在美国,已經明确地証实了,特別是要倫先生証实了鳥类的許多物种自北向南在顏色、体和喙的大小以及尾长上表現了差異;这等差異似乎必須归因于气温的直接作用。 关于植物,我将举出一个多少相似的例子: 米汗先生5 把二十九个种类的美洲樹同它們的亲緣关系最近的欧洲樹作了比較,它們的生长地点非常接近,並且处在差不多一样的生活条件下。 在美洲的物种中他发现,除了极罕見的例外,落叶期都較早,並且在落叶之前呈現較鮮明的顏色;叶的鋸齿比較不深;芽較小;樹的生长較扩散並且具有較少的小枝;最后,种子較小——所有这些点都是同欧洲的物种作比較的。 现在,鉴于这等

¹⁾ 馴化学会会报, 第八卷, 第351頁。

²⁾ 参閱格列哥逊关于 Abraxas grossulariaia 的試驗記錄,見昆虫实会会报,1月6日,1862年;这些試驗已被格林恩 (Greening) 先生証实,見北部昆虫学会会报 (Proc. of the Northern Entomolog. Soc.),7月28日,1862年。关于食物对于幼虫的影响,参閱密切利 (M. Michely) 的一項引人注意的記載,見馴化学会会报,第八卷,第563頁。 关于引自达尔劳 (Dahlbom) 的有关膜翅类的相似事实,参閱威斯特島得的近代昆虫分类学 (Modern Class. of Insects),第二卷,第98頁。再参閱鉴勒 (L. Möller) 博士的昆虫类的从屬 (Die Abhāngigkeit der Insecten),1867年,第70頁。

³⁾ 生物学原理,第二卷,1866年。本章是在我讀到薪伯特·斯賓塞的著作以前寫成的,所以我沒有能够大量地利用它;如果我先讀过这一著作,大概会这样作的。

⁴⁾ 魏斯曼 教 授 关 于某些歐洲蝴蝶得出了同样的結論, 見他的有价值的論文媒类的季节的二型性 (Ueber den Saison-Dimorphismus der Schmetterlinge), 1875年。我还可以提出几位其他作者关于这一問題的最近著作, 例如克納的良种和劣种 (Gute und Schlechte Arten), 1866年。

⁵⁾ 發拉德斐亚自然科学院院报 (Proc. Acad. Nat. Sc. Philadelphia), 1月28日, 1862年。

相应的樹屬于几个不同的目,而且它們适应于大不相同的場所,所以几乎不能假定它們的差異对于它們在"新世界"或"旧世界"有任何特殊的用处;如果是这样,这等差異便不能是通过自然选择而获得的,那就必須归因于不同气候的长期不断的作用了。

树瘪 同栽培植物无关的另一类事实值得我們注意。我指的是樹瘋的产生。每 一个人都知道野蔷薇上的奇妙的、亮紅的和多毛的产物,櫟樹也产生各种不同的树瘿。 櫟樹的某些樹癭同果实相象,它的一面是薔薇色的,就象薔薇色最深的苹果那样。这 等亮色对形成樹癭的昆虫或者对于树都不能有什么用处,这恐怕是光的作用的直接 結果,其情形就同諾代·斯科細亚 (Nova Scotia) 或加拿大的苹果比英国的苹果較紅 一样。按照奥斯汀·薩肯(Osten Sacken)的最近修正、由癭蜂(Cynips)及其亚屬在 機樹的几个物种上所产生的樹癭不下五十八种;华尔許 (B. D. Walsh) 先生說1),除 此之外他还可以补充許多。一个柳的美国物种,矮柳(Salix humilis),有十种不同的 樹癭。从各种英国柳的树癭长出来的叶子在形狀上同自然的叶子完全不同。檜树和 冷杉的幼小新梢被某些昆虫刺了之后,就会产生同花和球果相似的奇異生长物,並且 某些植物的花由于同一原因在外觀上完全改变了。在世界的每一个角落里都有樹癭 产生;色章滋先生从錫兰給我送来若干,其中有些就象菊科的花在蓓蕾期間那样地对 称,还有一些平滑得而且圓得象一个浆果;有些由长刺保护着,还有一些满被黄色的 絨毛,有的是由細胞狀长毛形成的,有的是由規則的簇毛形成的。有些树瘿的內部构 造是簡单的,还有一些是高度复杂的;例如拉卡茲·杜塞尔(M. Lacaze-Duthiers)2) 画 过一个普通的墨树樹瘿 (ink-gall), 它的同心层不少于七个, 每一层都由不同的組織 所构成、即表皮、亚表皮、海綿狀組織、中間組織以及由奇怪厚的木質細胞所形成的坚 硬保护层,最后,中心的一团充满了幼虫所吃的淀粉粒。

树瘿是由各个不同的自的昆虫所产生的,但大部份是由瘿蜂的一些物种所产生的。讀了拉卡茲·杜塞尔的討論之后,几乎不可能怀疑昆虫的有毒分泌物可以招致树瘿的生长;每一个人都知道黄蜂和蜜蜂的分泌物的毒性是多么大,它們同瘿蜂屬于同一类羣。 树瘿的生长非常迅速,据說几天之內就可达到充分的大小³);肯定的是,在幼虫羽化之前它們就几乎完全发展了。鉴于許多树瘿昆虫(Gall-insects)是极其小

¹⁾参閱华尔許先生的优秀論文, 見發拉德斐亚昆虫学会会报, 12 月, 1866年, 第284頁。 关于柳类, 同前書, 1864年, 第546頁。

²⁾ 参閱他的可称徵的著作树瘦誌 (Histoire des Galles), 見博物学年报,植物学部份, 第三輯, 第十九卷, 1853 年, 第 273 頁。

³⁾ 科比 (Kirby) 和斯賓司 (Spence) 的昆虫学, 1818 年, 第一卷, 第 450 頁; 拉卡茲·杜塞尔同前書, 第 284 頁。

的,所以分泌的毒滴一定非常微少;它大概只能对一两个細胞发生作用,这一两个細胞受到異常刺激之后,便由于細胞分裂的進行而迅速增加。正如华尔許所說的¹⁾,树瘦提供了良好的、不变的和一定的性狀,每一种樹癭都象任何独立的生物那样地可以保持純粹的形态。 当我們听到以下的情形,这一事实就更加值得注意;例如,在矮柳(Salix humilis) 上产生的十种不同樹癭,其中有七种是由瘿蝇(Cecidomyidae) 所形成的,"这等瘿蝇在本質上虽是不同的物种,但它們是如此密切相似,以致在几乎所有場合中都难于把那些充分成长的昆虫加以区别,並且在大部份場合中不可能加以区别²⁾。 因为根据广泛的相似,我們可以这样推論:昆虫所分泌的毒物是如此密切相似,以致在性質上大概不会有很大差異;然而这种微小的差異就足可以誘发大不相同的結果。在某些少数場合中,瘿蝇的同一物种在柳的不同物种上产生了无法区别的树瘿;有一种瘿蜂(Cynips fecundatrix)据知在它原来不附着的土耳其櫟上产生的树瘿同在欧洲櫟上产生的一样³⁾。 后面这些事实明显地証明了毒物的性質在决定树瘿的形态上比被作用的树的物种特性是一个更有力的动因。

因为屬于異目的昆虫的有毒分泌物对于各种不同植物的生长有特殊的影响力;因为毒物性質的像小差異足可以产生大不相同的結果;最后,因为我們知道,植物所分泌的化学成份由于改变了的生活条件显著地容易改变,所以我們可以相信植物的种种部份通过它自己的改变了的分泌物的动因可能发生改变。 例如,把在上洛万蔷薇上突然出現的苔蔷薇的粘質苔狀導同野蔷薇的被接种的叶子上的紅苔树瘿比較一下吧,这种树瘿的每一条絲的分枝就象一株具体而微的云杉(Spruce-fir)那样对称,頂端有腺並且分泌芳香的樹胶狀物質⁴⁾。或者把具有毛皮的、多肉的、硬核壳和核仁的桃的果实同具有表皮、海綿层、木質层以及周围組織被淀粉粒充满的一种比較复杂的樹瘿比較一下吧。这等正常的和異常的构造显著地表現了某种程度的相似性。或者把上述有关鹦鹉的例子再想一想吧,由于飼以某些魚或者由于接种虾蟆的毒物,它們的血液发生了某种变化,通过这种变化它們的羽衣被灿烂地装饰起来了。 我决不是希图主張,苔蔷薇或桃核的硬壳或鳥的灿烂颜色实际上是由樹液中或血液中的任何化学变化所引起的;但这等樹瘿和鹦鹉的例子非常适于向我們闡明,外界的动因可以多么有力地而且充分地影响构造。 有了这等事实在我們面前,我們对于任何生物中的

¹⁾ 賽拉得斐亚昆虫学会会报,1864年,第558页。

²⁾ 华尔許先生,同前杂誌, 第633頁; 12月, 1866年, 第275頁。

^{3) &}lt;u>华尔</u>許先生, 同前杂誌, 1864 年, 第 545, 411, 495 頁; 12 月, 1866 年, 第 278 頁。 再**参閱拉卡茲·杜塞**尔。

⁴⁾ 拉卡茲・杜塞尔,同前杂誌,第 325,328 頁。

任何改变的出現就不必感到惊奇了。

我在这里还願提一提寄生菌有时对于植物所产生的显著影响。雷賽克¹⁾ 描述过一种 百 蕊草 (Thesium) 受到了一种菌的 (Oecidium) 的影响,它发生了重大改变并且呈显了某些近似物种、甚至 屬的一些特征。 雷賽克說,假定"原来由菌类所引起的状态在时間的推移中变成了稳定的,那末,如果发現这种植物是野生的,它大概会被看成为一个不同的物种,甚至会被看成为屬于一个新屬"。 我引用这一記載是为了闡明这种植物一定是多么深刻地、然而以一种多么自然的方式由于寄生菌而被改变了。米汗先生²⁾ 也說,大戟屬 (Euphorbia) 的三个物种和馬齿莧 (Portulaca oleracea) 都是自然地平臥生长的,当它們受到这种菌 (Oecidium) 的袭击之后,便成为直生的了。 在这种場合中, 班点大戟 (Euphorbia maculata) 也成为多节的了,它的小枝比較平滑,并且叶的形状改变了,在这些方面它同一个不同的物种、即金絲桃叶大戟(E. hypericifolia) 接近。

同生活条件在引起构造的一定改变上可以发生 有力作用的信念相反的事实和考察

我會談到自然生长于不同地方的、处于不同生活条件下的物种所表現的微小差異;最初我們傾向于把这等差異归因于周围条件的一定作用,这大概常是正确的。但必須記住,有許多广泛分佈的、暴露在非常多样气候之下的、但保持一致性狀的动物和植物的存在。如前所述,有些作者用烹調用植物和农作物在大不列顛的不同部份所暴露于其中的生活条件的一定作用来說明它們的变种;但在每一处英国地方发现的植物約有200种³⁾;这等植物一定很长期地曾經暴露于气候和土壤的相当差異中,但它們並沒有任何差異。再者,有些动物和植物分佈于世界的大部份地方,但是保持了同样的性狀。

关于高度特殊的地方病的发生、关于由昆虫的毒物接种所引起的植物构造的奇异改变以及其他相似的例子,尽管在上面举出了一些事实,但是还有多数的变异——例如公尼亚太牛和叭喇狗的改变了的头骨,开弗尔牛的长角、单蹄猪的相連的趾、波兰鶏的非常大形的羽冠及其突出的头骨、突胸鴿的嗉囊以及其他这等例子——按照前面所指的意义来說,还不能归因于外界生活条件的一定作用。毫无疑問,在每一种場合中一定都有某种激发的原因;但是,我們看到无数的个体暴露于几乎一样的生活条件下,而受到影响的仅仅只有一个个体,所以我們可以作出这样的結論:这个个体的体質比它暴露于其中的生活条件还重要得多。誠然,这是一項一般的規律:显著的变异极少发生,在几百万个体中只有一个发生显著的变异,虽然根据我們所能判断的来說,所有它們都可能會經暴露于几乎一样的生活条件之下。因为最强烈显著的变异不知不覚地漸次变为微小的变

¹⁾ 林納学会会报,第十七卷,1843年;馬斯特博士引用,皇家研究所,3月6日,1860年。

²⁾ 發拉得斐亚自然科学院院报,6月16日,1874年;7月23日,1875年。

³⁾ 华生,不列頭的賽貝尔,第一卷,1847年,第11頁。

异,所以我們便被同一思視線索引导着把各个微小的变量(不論这是怎样被引起的) **歸因于 体質** 內在差异的远远比归因于周围条件一定作用的要多得多。

当我們考虑到以前所提的一些例子 一續和簡虽然在許多世代申被养在几乎一样的生活条件下,但它們會經按照完全相反的途径发生了变异,而且无疑地將会繼續发生变异。例如,有些獨和鴿的喙、翼、尾、腿就短一点。 借着对于同一籍中的鳥所发生的这等微小的个体差异进行长期不断的选择,大不相同的族肯定能够被形成;长期不断选择的結果是重要的,而它所作的,在我們看来,也不过是把那些自然发生的变异加以保存罢了。

我們在这等場合中看到,家养动物虽然受到了你可能一致的处理,但它們在无限多的特性上发生了变异。另一方面还有一些事例:无論在自然状况下或家养状况下的动物和植物虽然暴露于很不相同的生活条件中,但它們按照几乎一样的方式变异了。雷雅得先生告訴我說,他看到南非的开弗尔人有一条狗,同一条北极的爱斯基摩狗非常相象。 鴿子在印度就象在欧洲那样,表現了同样的廣泛多样的顏色;我曾看到來自塞拉·勒寫內、馬得拉、英格兰和印度的棋盘班的和簡单橫班的鴿子以及青腰和白腰的鴿子。在大不列顛的不同部份繼續地培育了花卉植物的新变种,但展覽会的判断者們发現許多这等变种同古老变种几乎是相同的。 在北美产生了大量的新果树和烹調用的蔬菜:它們和欧洲变种之間的差异同在欧洲培育的几个变种之間的差异一般是一样的:沒有人妄想过美国的气候曾經給予了許多美国变种所顧以被識別的任何一般性状。保管如此,从根据米汗先生的权威材料所提出的有关美洲森林树和欧洲森林树的上述事实看来,要断言在这两处地方培育的变种随着年代的推移沒有呈現一种不同的性状,还是未免輕率了。 馬斯特博士記載过一个同这个問題有关的显著例子1): 他由种子培育了木槿(Hybiscus syriacus)的无数植株,这些种子是由南卡罗利納(South Carolina)和圣地(Holly Land)采集来的,亲本植物在那里一定曾經聚露于相当不同的生活条件中;然而来自这两处地方的实生苗分成两个相似的品系,一个品系具有鲍形叶和紫色的或深紅色的花,另一个品系具有长形叶和多少淡紅色的花。

从本書前面几章中所举出的有关平行的变种系列的若干事实看来,我們也可以推論出有机体的体質的影响是比生活条件的一定作用占优势的,一一这是一个重要的問題,此后还要进行更充分的討論。已經指出,几种小麦、葫蘆、桃和其他植物的亚变种,并且在有限制的范围內鷚、鴿和狗的亚变种,按照密切相应的或平行的方式彼此相似或者相异。在另外一些場合中,某一物种的一个变种同一个不同物种相似;或者两个不同物种的变种彼此相似。虽然这等平行的相似性无疑常常是由返归一个共同祖先的以往性状所引起的,但在另外一些場合中,当新性状最初出現时,这种相似性必須归因于相似体質的遺传,因而必須归因于按照同样方式发生变异的傾向。在动物的同一物种中,并且象麦克斯威尔·馬斯特博士告訴我說的那样,在植物的同一物种中,同一畸形会出現和重复出現許多次;我們在这里看到同上述多少相似的情形。

我們至少可以这样断言, 动物和植物在家养下所发生的变異量同它們所处在的 生活条件的变化程度並不一致。 因为我們了解家养鳥类的血統比了解大多数四足兽 的血統清楚得多, 所以我們来流覽一下它們的名单。 在欧洲, 鴿的变異比几乎任何其 他鳥的变異都大; 然而它是一个土著的物种, 並且未曾暴露于生活条件的異常变化之

¹⁾ 艺园者記錄, 1857年,第629頁。

中。鷄的变異同鴿相等,或者几乎相等,它是印度的炎热藪地的土著。不論印度的土著种孔雀,或者非洲的干燥沙漠中的居住者珠鷄,完全变異了,或者只在顏色上变异了。来自墨西哥的吐綬鷄几乎沒有变異。另一方面,欧洲的土著种鴨子产生了一些特徵显著的族;因为它是一种水鳥,它一定比鴿、甚至比鷄在习性上遭遇了严重得多的变化,尽管鴿和鷄的变異程度要大得多。鵝也是欧洲的土著,並且象鴨那样是一种水鳥,它的变異比任何其他家养鳥都小,但孔雀除外。

从我們現在的觀点看来, 芽变也是重要的。在某些少数場合中, 譬如当馬鈴薯的 同一块蓝上的所有芽眼、或者同一李树上的所有果实、或者同一植株上的所有花突然 按照同一方式发生变異时,有人可能主張变異一定是由这等植物暴露于其中的生活 条件的某种变化所引起的;但在其他一些場合中,便极端难于这样承認了。因为在亲 种中或者在任何近似物种中所沒有的新性狀却由于芽变而时常出現,所以我們可以 否認,至少在这等場合中可以否認它們是由于返祖的那种想法。現在,关于芽变的一 些显著例子,譬如关于桃的例子,是非常值得充分加以考虑的。这种樹在世界各地成 百万株地被栽培了,並且受到了不同的处理,有的是本根生长的,有的是嫁接在种种 不同的砧木上的,有的是作为自然樹而被栽培的,有的是靠着墙壁或在温室中而被翳 枝栽培的:然而每一个亚变种的每一个芽都純粹地保持了它的系統。 但是偶尔地在 英格兰或者在維基尼亚的大不相同的气候中間或有一株桃樹产生了一个唯一的芽, 这个芽所抽出的枝条后来結了油桃。正如每一个人都知道的,油桃以它的平滑、大小 和风味同桃有所差異;它們的差異是如此之大,以致某些植物学者曾經主張它們是不 同的物种。 这样突然获得的性狀是如此稳定,以致由芽变产生出来的油桃曾經由种 子繁殖了自己。 为了防止推測芽变和种子变異之間有某种基本的区别,我們最好記 住从桃的核也同样地产生过油桃;而且相反地,从油桃的核也产生过桃。 那末,可能 想象出还有比同一株樹上的一些芽所暴露于其中的条件更加密切相似 的 外界条件 嗎? 然而在同一株樹上成千上万的芽中,仅有一个芽並沒有任何明显的原因却突然 产生了一个油桃。但是还有甚至比此更加有力的例子,因为同一个花芽产生了一个果 实,它的一半或四分之一是油桃,另一半或四分之三是桃。再者,桃的七、八个变种由 芽变产生了油桃;这样产生的油桃无疑地彼此稍有差異,但它們毕竟还是油桃。当然 一定有某种原因,内在的或外在的,刺激桃芽改变它的本性;但我想象不出还有比上 述更好的一类事实适于迫使我們相信:"关于任何特殊的变異,我們所謂的外界生活条 件同变異着的該生物的体制或体質比較起来,前者在許多場合中都是十分不足道的。

从老圣喜来尔的工作中以及最近从达列斯特和其他一些人的工作中得知,如果

把鷄卵加以搖动,直立,穿孔,部份漆以洋漆等等,就会产生畸形的雛鷄。 那末,这等畸形可以說是由上述那样的不自然条件所直接引起的,但这样誘发出来的改变却不具有一定的性質。一位卓越的觀察者达列斯特¹⁾說,"各式各样的畸形物种並不是由特殊的原因所决定的;改变胚胎发育的外界动因仅仅是起一种扰乱作用而已——即颠倒了正常的发育过程"。 他在我們所看到的疾病中把这种结果作了比較:例如,突然的寒冷在許多人中只影响某一个人,因而引起伤风,或喉炎、风湿症、或肺炎、肋膜炎。传染性的物質按照相似的方式发生作用²⁾。 我們可以举出一个更加特殊的事例:有七只鴿子被响尾蛇咬了³⁾,有些鴿子发生痙糧;有些鴿子血液凝固,而其他鴿子的血液則完全是液态的;有些鴿子的心脏呈現紫色斑点,而其他鴿子的腸呈現紫色斑点等等;还有一些鴿子在任何器官上都沒有呈現可見的伤害。 众多熟知,依酒过度在不同的人中招致了不同的疾病;不过酗酒在热带所发生的影响同在寒冷气候中所招致的结果是不同的⁴⁾:我們在这种場合中看到相反条件的一定作用。 关于外界条件在許多場合中怎样直接地、虽然不是一定地引起构造的改变,上述事实显然给予了我們大概在长期中才能获得的一种完全的概念。

提要 毫无疑問,根据本章所举的事实,生活条件的极微小变化有时而且可能常常以一定的方式对我們的家养产物发生作用;並且,因为变化了的生活条件在引起不定变異性上所发生的作用是积累的,所以它們可能帶有一定的作用。因此,构造的相当而一定的改变大概是由在一长系列世代中发生作用的改变了的生活条件所引起的。在某些少数事例中,对于暴露在气候、食物或其他环境条件的显著变化中的所有个体或者几乎所有个体迅速地产生了显著作用。 在美国的欧洲人,在印度的欧洲狗,在福克兰奉島的馬,发生过这种情形;在安哥拉的种种动物显然发生过这种情形;在地中海的外来的蠔,从这一种气候被移入另一种气候的玉蜀黍,也发生过这种情形。我們已經看到某些植物的化学成分及其組織的狀态是容易受到变化了的生活条件的影响的。在某些性狀和某些生活条件之間显然存在着一种关系,所以后者如果变化了,

¹⁾ 关于人工产生畸形的报告 (Mémoir sur la Production Artificielle des Monstruosités), 1862 年, 第 8-12 頁; 关于产生畸形的条件的研究 (Recherches sur les Conditions, &c., chez les Monstres), 1863 年。 关于老圣喜来尔的試驗,他的儿子作过一个摘要,見生活,勞动 (Vie, Travaux), 1847 年, 第 290 頁。

²⁾ 帕給特,外科病理学譜义 (Lectures on Surgical Pathology), 1853年,第一卷,第 483 頁。

³⁾ 关于响尾蛇的毒液的研究 (Researches upon the Venom of the Rattle-snake), 1 月, 1861 年,来契尔博士著,第67頁。

⁴⁾ 塞治威克先生, 英国和外国外科医学評論, 7月, 1863年, 第175頁。

性狀也就消失了——例如花的顏色、某些烹調用植物的狀态、甜瓜的果实、肥尾羊的 尾巴以及其他綿羊的特有羊毛,都是如此。

樹癭的产生以及鸚鵡当被飼以特殊食物或用虾蟆的毒物接种之后所发生的羽衣 变化向我們証明了,构造和顏色的多么重大而神秘的变化可能是营养液或組織中的 化学变化的一定結果。

現在我們几乎肯定地知道,在自然狀況下的生物可能由于它們长期暴露于其中的生活条件而按照种种一定的途径被改变,例如,在美国南部和美国北部的鳥类和其他动物的場合中,在美洲樹同它們的歐洲代表進行比較的場合中,都是如此。但是在許多場合中,把变化了的生活条件的一定結果同已被証明有用的不定变異通过自然选择的积累加以区別,是极其困难的。 如果使一种植物在潮湿地点生活而不在干燥地点生活是有利的話,那末它的体質中的适应变化可能是由环境的直接作用所引起的;虽然我們沒有任何根据可以相信,在比普通潮湿一点的地点生活的植物比其他植物更常常发生切合的变異。 不論地点是異常地干燥或潮湿,使植物在輕微程度上适应于直接相反的生活习性的变異大概不时发生,根据我們在其他場合中实际看到的情形,我們有良好的理由可以这样相信。

在决定变異的性質方面,被作用的生物的体制或体質比起变化了的生活条件的性質,一般是一个重要得多的因素。这一点的証据是,在不同的生活条件下出現几乎一样的改变,在显然几乎一样的生活条件下出現不同的改变。还有更好的証据是,不同的族、甚至不同的物种屡屡产生密切平行的变种;同一物种屡屡重現同一畸形。我們还看到,家养鳥类的变異程度同它們所遭遇的变化量並沒有任何密切的关系。

再来談一談芽变。当我們在某一个芽发生变異之前考虑到許多樹所产生的无数 芽时,对于各个变異的正确原因是什么,我們会感到迷惑。讓我們回忆一下安朱·奈特所举的那个例子:有一株四十年生的黄色大型美李樹,这是一个古老的变种,长久以来它在欧洲和北美曾被嫁接在种种不同的砧术上而進行繁殖,在这株樹上唯一的一个芽突然产生了紅色美李。 我們还应当記住,某些蔷薇和山茶花的不同变种、甚至不同物种——就象在桃、油桃和杏的場合中那样,虽然已經从任何一个共同祖先分离了无数世代,並且栽培在种种不同的生活条件下,它們却由于芽变产生了密切相似的变种。当我們考虑到这些事实时,便会深深相信,在这等場合中变異的性質很少取决于植物暴露于其中的生活条件,並且也不以任何特殊方式取决于它的个体性狀,而是大大地取决于該植物所屬的整个近似物种羣的遗传的性質或体質。 这样,我們便不得不作出如下的結論:在引起任何特殊的改变上,生活条件在大多数場合中所起的

作用是次要的;就象火花在可燃物突然燒起来时所起的作用一样——火焰取决于可燃物,並不取决于火花¹⁾。

毫无疑問,每一个微小的变異都有它的有效原因; 試图发現每一个变異的原因, 其无望就象断定寒冷和毒物为什么对于每一个人的影响有所不同是一样的。甚至关 于由生活条件的一定作用所引起的变異——当暴露在同样生活条件下的所有个体或 者几乎所有个体受到同样影响时,我們也极少能夠看到原因和結果之間的正确关系。 在下一章将關明,种种不同器官的增強使用或不使用产生了遺传的效果。 進一步还 会看到,某些变異由于相关作用以及其他法則而被联系在一起了。 关于生物的变異 性的原因或性質,我們現在所能解說的还不会超越这个范围。

¹⁾ 魏斯曼教授在他的蝶类的季节的二题性(1875年,第40-43頁)中強烈支持这一观点。

第二十四章 变異的法則——用进 废退及其他

"形成努力"、即体制的調整力——器官的增强使用和不使用的效果——变化了的生活习性——动物和植物的风土剔化——实現这一点的种种方法——发育的被阻止——痕迹器官。

在問題的难点所許可的情况下,我在本章以及以下两章将对支配变異性的几个 法則加以討論。 这等法則可以类集在使用和不使用的效果之下,其中包括变化了的 习性和风土驯化——发育的被阻止——相关变異——同原部分的融合——重复部分 的变異性——生長的补偿——同植物的軸有关的芽的位置——最后,相似变異。 这 几个問題如此容易漸次互变,以致它們之間的界線常常是任意划出的。

·首先大略地討論一下一切生物或多或少都具有的調整力和恢复力,可能是方便的;以前生理学者們把它叫作"形成努力" (nisus formativus)。

布魯曼巴哈和其他人¹⁾ 主张,水螅当被切成几段之后,发育成两个或两个以上的完善水螅的原理同高等动物受伤后結成伤疤的原理是一样的。 象水螅这样的例子,同低等动物的自然分裂或分裂生殖以及植物的分芽显然是相似的。 在这等极端的例子和仅仅一片伤疤那样的例子之間 有各种级进。斯帕拉赞尼²⁾ 用切掉一只蠑螈的腿和尾巴的方法,在三个月的过程中他六次得到了这等部分;所以一个动物在一季中就再生了 687 个完善的骨。 四肢在哪里被切掉的,缺少的部分就恰恰在哪里再生,并且此后不再有这种再生的情形了。 当一根病骨被切除以后,新骨时常"逐渐呈現正規的形态,并且肌肉、韌带等附屬物会变得同以前一样地完善"³⁾。

然而这种再生力並非永远可以完全地发生作用;蜥蜴的再生尾在鳞的形态上同正常尾有所差异;在某些直翅类昆虫中,它們的大形后腿再生之后,是比較小的⁴⁾;在高等动物中,同重伤的边缘相結合的白色伤疤并不是由完善的皮肤形成的,因为彈性的組織須在长期以后方能产生⁵⁾。 <u>布魯</u>曼巴哈說,"'形成努力'的活动同有机体的年龄成反比例"。在动物中,体制的等級愈低,它的力

关于生殖的論文 (An Essay on Generation), 英譯文,第 18 頁;帕給特,外科病理学關义, 1853 年,第一卷,第 209 頁。

²⁾ 关于动物的再生的論文 (An Essay on Animal Reprodution), 英譯本, 1769年, 第79頁。

³⁾ 卡本特 (Carpenter) 的比較生理学原理 (Principles of Comp. Physiology), 1854 年, 第 479 頁。

⁴⁾ 查理沃茨的博物学杂誌,第一卷,1837年,第145頁。

⁵⁾ 帕給特,外科病理学講义,第一卷,第239頁。

量也愈大;低等动物同屬于同一綱的高等动物的胚胎相当。紐泡特的观察¹⁾ 对于这个事实提供了例証,因为他发现"多足类"(myriapods)的最高发育几乎不能超过完全昆虫的幼虫階段,前者在最后一次脱皮之前都能再生四肢和触角;真的昆虫的幼虫也能这样,但是除了一个目以外,成虫並不能这样。 蠑螈在发育上相当于无尾两棲类的蝌蚪或幼虫,二者都拥有很大的再生力;但成熟的无尾兩棲类不拥有再生力。

吸收对于恢复损伤常常起重要的作用。当一根骨折断而不能融合时,骨端就被吸收而成为圆形的,所以形成了假关节;如果骨端融合了,但重迭起来,那末突出的部分就消失了²⁾。脱臼的骨会为它自己形成一个新臼(Socker)。 錯位的腱和暴腫的靜脈会在它們所緊压着的骨上形成新的槽。但是,正如微耳和(Virchow)所說的,吸收是在骨的正常生长期間发生作用的;在幼小期間本是实質的部分随着骨的增大由于骨髓組織而成为中空的了。为了試着理解在吸收作用帮助下的再生的許多充分适应的例子,我們应当記住,几乎体制的所有部分甚至在保持同一形态时,也不断地进行更新;所以不更新的部分大概容易被吸收。

通常被类集在所謂"形成努力"之下的某些例子最初好像是作为另一个問題而出現的;因为不仅是老构造再生,还有新构造形成。例如,在炎症之后,具有血管、淋巴管和神經的"假膜"(false membrance)发育了;或者,胎儿从喇叭管出来并且进入腹部,"自然流出一定量的可塑的淋巴液,这种液形成了有机的膜,具有大量的血管",因而胎儿在此可以得到暫时的營养。在腦水腫(hydrocephalus)的某些病例中,头骨上的开裂和危險的部位充满了新骨,这些新骨由完全鋸齿状的接缝連結在一起3。但是大多数的生理学者,特別是歐洲大陸上的生理学者,現在已經放棄了可塑的淋巴液或元体質(blastema)那种信念,并且微耳和4)主张每一种构造无論是新的或老的,都是由于以前存在的細胞的增生而形成的。从这种观点来看,"假膜"就像癌和其他瘤那样地只是正常生長的异常发育而已;这样我們便能理解它們为什么同問围的构造相似;例如"浆液醛(serous cavities)中的假膜获得一个由皮膜(epithelium)形成的外被,这个外被同原来的浆液膜的外被完全一样;虹膜的粘着部分可能成为黑色的,这显然是由于像眼色素層(uvea)那样的色素細胞产生了"50。

毫无疑問,恢复力虽然並不永远是完善的,却是一种防范各种危急的可称讚的准备,甚至对于那种仅在长的間隔期間內发生的危急也是如此⁶¹。然而这种能力並不比各个生物的生长和发育更不可思議,特別是並不比營分裂生殖的那些生物的生长和发育更不可思議。 这个問題已在这里提到,因为这样我們便可以推論,当任何一个部分或器官通过变异和繼續选择而大大增大或完全受到压抑时,体制的調整力將繼續有使所有部分彼此調和起来的傾向。

論器官的增强使用和不使用的效果

众所熟知,增強使用或增強活动会使肌肉、腺、感覚器官等加強;另一方面,不使

¹⁾ 卡本特引用,見比較生理学,第479頁。

²⁾ 瑪瑙 (Marcy) 教授对于体制的所有部分的互相适应力的討論是卓越的。 动物的机械(La Machine Animale), 1837 年, 第九章。 再参閱帕給特, 外科病理 学讓义, 第 257 頁。

³⁾ 布魯曼巴哈在关于生殖的論文中举出了这些例子, 見第52,54頁。

⁴⁾ 細胞病理学 (Cellular Pathology), 強司 (Chance) 博士譯, 1860年,第27,441頁。

⁵⁾ 帕給特,外科病理学講义,第一卷,1853年,第357頁。

⁶⁾ 帕給特,同前書,第105頁。

用会使它們削弱;关于这一点我們即将提出証据。並克(Ranke)¹⁾用試驗証实,流向任何正在工作着的部分的血液大大地增強了,当这个部分停止工作时,流向那里的血液又減弱了。因此,如果常常工作,血管就会增大,並且該部分就会得到較好的营养。帕給特²⁾ 也用血液流往某一部分的增強来說明長的、粗的和暗色的毛不时生長在多年的創伤表面或折骨附近;甚至在小孩中也有这样情形。 当亨特把一只公鷄的距插入富有血管的鷄冠之后,在一种場合中,它螺旋地長到六吋長,在另一种場合中,它象角一般地向前伸出,所以这只鷄的喙不能接触地面。按照塞地洛特(M. Sedillot)³⁾的有趣观察,当动物的某一腿骨的一部分被切除之后,关連的骨就会增大,直到它达到这两根骨的同等大小为止,它勢必执行这两根骨的机能。在狗被切除脛骨的場合中,最明显地表示了这种情形;关連的骨原来几乎是絲状的,大小不及另一根骨的五分之一,但很快地它便达到了同脛骨相等的大小,或者大于脛骨。 且說,我們最初难于相信,对于一根直骨发生作用的重量的增加,由于交互地增加和減少其压力,会致使血液在血管中更加自由地流通,这样便会透过骨膜供給骨以更多的营养。尽管如此,斯賓塞先生⁴⁾对于軟骨病小孩的弯骨沾着凹面加強的情形所作的观察,还导使我們相信这种情况是可能的。

摇动一株树的莖会使被拉紧的那一部分的木質組織显著地增強生長。 薩克斯 (Sachs) 教授根据他举出的理由相信,这是由于这等部分的树皮所受到的压力被松弛了,而不是象奈特和斯賓塞所說的那样,由于树幹运动而引起树液的流通增强了50。但是,坚硬的木質組織沒有任何运动的帮助也可以发育起来,例如我們看到的紧密附着在一面旧墙上的常春藤就是这样。 在所有这等場合中,对于长期不断的选择作用和某一部分增强活动的作用或直接由某种其他原因所引起的作用加以区别是很困难的。斯賓塞先生60 承認这种困难,並且举出树棘和坚果壳作为例子。 在这里我們看到极端坚硬的木質組織,是在沒有任何运动的可能性下,並且根据我們所能知道的来說也沒有任何直接的激发原因,发育起来的;因为这等部分的坚硬性对于植物有显著的用处,所以我們可以把这样結果看成是大概由于所謂自发变異的选择。 每一个人都知道,辛勤的劳动可以使手的表皮变厚; 当我們听到嬰孩在降生很久以前,他的手

¹⁾ 器官的血液分配 (Die Blutvertheilung, &c., der Organe), 1871年,捷帮引用, 見关于达尔文反魏干得的事件, 1874年, 第48頁。再参閱斯宾塞, 生物学原理, 第二卷, 1866年, 第3-5章。

²⁾ 外科病理学, 1853年, 第一卷, 第71頁。

³⁾ 报告書,9月26日,1864年,第539頁。

⁴⁾ 斯宾塞,生物学原理,第二卷,第243頁。

⁵⁾ 同前書,第二卷,第 269 頁。薩克斯,植物学教科書 (Text-book of Botany), 1875年,第 734 頁。

⁶⁾ 斯宾塞,生物学原理,第二卷,第273頁。

掌和足蹠上的表皮比身体的其他任何部分都厚的时候,例如阿尔比那斯 (Albinus)¹⁾ 以惊叹的心情所观察到的那种情形,我們自然地就会傾向于把这种結果归因于长期不断的使用或压力的遗传作用。 我們甚至想把这同一观点扩展到四足兽类的蹄;但是誰敢决定自然选择在这等对于动物显然重要的构造的形成中有多大帮助呢?

在从事各种职业的工匠的四肢上可以看到使用加强了肌肉的情形;当肌肉被加强时,肌肉所附着的踺和骨椅也增大了;同样地血管和神經也一定会这样。另一方面,当一肢不被使用时,象东方的宗教狂者那样,或者当供給它神經力的神經有效地受到破坏时,肌肉便会萎縮。还有,当眼被破坏时,視神經就变得萎縮了,甚至在少数几个月的过程中就会如此²⁾。 盲螈 (Proteus) 有鳃也有肺;<u>許賴勃斯</u> (Schreibers)³⁾ 发现,当这种动物被迫在深水中生活时,鳃便发展到普通大小的三倍,而肺便部分地萎縮了。另一方面,当这种动物被迫在淡水中生活时,肺便变得較大并且**推管较多,**而鳃便或多或少地完全消失了。 然而,象这样的改变对我們来說并沒有多大价值,因为我們实际上并不知道它們有遺传的傾向。

在許多場合中,我們有理由可以相信种种器官的減少使用影响了后代的相当部分。 但沒有良 好的証据可以証明仅仅在一个世代的过程中就会发生这种情形。正如在一般的或不定的变异性的 場合中那样,似乎必須有几代蒙受习性的变化,才能得到任何些許結果。我們的家养的鶏、鴨和鴉 不仅在个体中而且也在族中几乎失去了飞翔的能力;因为我們沒有看到一只小雞当受到惊嚇时象 一只小雉那样地飞起来。因此,这使我仔細地把鶏、鴨、鴿和冤的胶骨同它們的野生亲种的肢骨逃 行了比較。因为我在本书的前几章中已經充分举出了它們的尺寸和重量,所以无須在这里重复線。 述这种結果。在家鴿中,胸骨的長度、胸錃的高度、肩胛骨和叉骨的長度、挠骨两端之間的翅膀長度 同野鴿的相同部分比較起来,都縮小了。然而翼羽和尾羽的長度增加了,不过这同翼和尾的使用沒 有什么关联,就象狗的長毛同它习惯地所进行的運动量沒有关联一样。鴿的脚,除了長喙的族以外, 都縮小了。关于鶏,胸峯是比較不突出的,而且常常是歪的或畸形的;如以腿骨为准,翼骨变得較 輕了,并且同祖先类型原鶏的翼骨比較起来,显然稍微短一点。关于鴨,胸峯受到了同上述情形一 样的影响,又骨、喙状骨和肩胛骨如以整个骨骼为准,都减輕了;同野鴨的翼骨和腿骨比較起来,家 鴨的翼骨和腿骨如互以为准并且以整个骨骼爲准,前者較短而且較輕,后者較长而且較重。 在上 述場合中,骨的減輕和縮小大概是由于骨受到肌肉減弱的作用而发生的間接結果。 我沒有比較馴 鴨和野鴨的翼羽;但哥劳格尔 (Gloger) () 确言,野鴨的翼羽頂端差不多可以达到尾端,而家鴨的翼 羽頂端几乎常常达不到尾基。他还指出家鸭的腿大大地变粗了, 并且說趾間的游泳膜縮小了; 不 过我还沒有发現后面这种差异。

关于家兔,它的身体和全部骨骼一般都比野兔的大而重,并且腿骨也以适当**的比例加重了;但**是无論取什么作为比較的标准,腿骨或肩胛骨都沒有按照其余骨骼增长的比例而增加它們的长度。头骨显著地变得狭小了,並且根据以前所提到的头骨容量的測計看来,我們可以断言,这种狭小是由于脑的縮小而引起的,而脑的縮小則是由于这等受到严密拘禁的动物所过的智力不活动的

¹⁾ 帕給特,外科病理学講义,第二卷,第209頁。

²⁾ 繆勒的生理學,英壽本,第 54,791 頁。 利得 (Reed) 教授有过一項引入注意的記載 (生理學和解剖學的研究 (Physiological and Anat. Researches, 第 10 頁); 绝的四肢在神經被破环以后便萎縮了。

³⁾ 列考克引用,植物地理学,第一卷,1854年,第182頁。

⁴⁾ 烏之变化 (Das Abandern den Vögel), 1833年, 第74頁。

生活。

我們在第八章中看到,許多世紀以来在严密拘禁中被飼养的蚕从繭出来时就具有歪的翅膀,不能飞,而且常常大大地縮小了,按照夸垂費什的材料,它們甚至是完全痕迹的。翅的这种状态可能大部分由于当野生鳞翅类人为地从繭育出时常常对它們发生影响的同一种畸形;或者这可能部分地由于許多蚕蛾科的雌者所共有的一种遗传的傾向,即它們的翅或多或少是痕迹状态的;但是影响的一部分恐怕还可以归因于长期連續的不使用。

从上述事实看来,毫无疑問,古老家养动物的某些骨由于增强使用或減少使用在 大小和重量上已經增加了或減少了;但如在本書前几章中所闡明的,它們在形状或构 造上並沒有改变。 关于过着自由生活並且不时进行剧烈竞争的动物,減縮的傾向是 比較大的,因为对它們来說,节約每一个部分的发育,大概都是有利的。另一方面,关 于高度被甸喂的家养动物,似乎沒有生长的經济,也沒任何消除多余的細小部分的傾 向。关于这一問題以后还要討論。

現在轉来看一看更加一般的观察,那修西亚斯曾闡明,在猪的改良族中,短的腿和鼻,枕骨的关节髁的形状,以及上犬齿以最異常的方式突出于下犬齿之前的顎的位置,都可归因于这等部分沒有被充分使用。 因为高度被飼养的族不須走来走去尋找食物,也不須用它們的輪状鼻子去掘土¹⁾。 所有都是严格遗传的这等构造改变,构成了几个改良品种的特征,所以它們不是由任何单独一个家养祖先传下来的。关于牛, 譚納(Tanner)教授說道,改良品种的肺和肝"同完全自由的牛的肺和肝比較起来,被发现相当地縮小了"²⁾,这等器官的縮小影响了体部的一般形状。在高度飼育的动物中,肺縮小的原因显然是由于它們缺少运动; 肝恐怕是由于它們大部靠以为生的营养丰富的人工食物而受到了影响。再者,威尔斡斯确言³⁾,在若干家养动物的高山品种和低地品种中,由于它們的不同生活习性,身体的各个部分肯定是不同的;例如,頸和前腿的长度以及蹄的形状就是这样。

众所熟知,当动脈被紮住时,接合的枝脈由于被迫传送更多的血液,它們的直径增大了;这种增大用单純的扩张不能得到說明,因為它們的膜壁增强了。关于腺,帕給特爵士观察到"当一个腎坏了的时候,另一个腎常常变得很大并且做着双倍的工作"的。如果我們把长期被家养的母牛的

¹⁾ 那修西亞斯, 猪的族, 1860年, 第53,57頁; 猴头骨的基础研究 (Vorstudien-----Schweineschädel), 1864年, 第103,130,133頁。 卢凱教授支持並且扩大了馮那修西亞斯的結論, 見斷面猪的头骨 (Der Schädel des Maskenschweines), 1870年。

²⁾ 高地农学会学报 (Journal of Agriculture of Highland Soc.), 7月, 1860年,第321頁。

³⁾ 农业週刊 (Landwirth, Wochenblatt.), 第 10 號。

⁴⁾ 外科病理学講义, 1853年, 第一卷, 第27頁。

乳房及其泌乳力以及某些山羊品种的几乎接触到地面的乳房同野生的或半家养的母牛和山羊的这等器官加以比较,就可知道它們的差异是巨大的。我們飼养的一头优良母牛每日产乳可达五加侖*以上或四十品脫(Pints);然而,譬如說,由南非的达瑪拉斯人飼养的第一流的牛1)"每日产乳很少超过兩三品脫,如果不叫牛犢离开她,她絕对連一点乳也不会給"。我們可以把我們的母牛以及某些山羊的优越性部分地归因于連續选择产乳量最高的动物,部分地归因于分泌腺通过人的技巧而增加活动的遺传效果。

众所週知,近視是遺传的;我們在第十二章中从吉洛-泰侖的統計研究已經看到,**观看近物的** 习慣会引起近視的傾向。兽医工作者們一致認为,由于打罐鉄和走硬道,馬会惠飞节內腫、管骨瘤、 趾骨上附着骨質等病症,并且他們几乎同样地一致認为,这等畸形的傾向是遺传的。 以前在北卡 罗林納不給馬打蹄鉄,有人确言,在那时馬的腿和脚不惠这些病²⁾。

根据所能知道的来說,我們的家养四足兽都是从具有直豎耳朵的物种传下来的;但是我們能夠指出的其中至少連一个族也不具有下垂耳朵的种类是很少的。中国的貓、俄国一些地方的馬、意大利和其他地方的綿羊、德国以前的豚鼠、印度的牛以及在所有文化悠久的国家中的兔、猪和狗都有下垂的耳朵。关于野生动物,它們不断地使用耳朵象漏斗般地去捕捉每一个过往的声音,特別是去确定声音所来自的方向,正如勃里斯先生所說的,在野生动物中,除了象以外,沒有任何物种具有下垂的耳朵。 因此,不能把耳朵直豎起来在某程度上肯定是家养的結果;而且很多作者3)都把这种不能豎起归因于不使用,因为受到人的保护的动物不会被迫习惯地使用它們的耳朵。汗米尔頓·司密斯上校1)說,在狗的古代彫象中,"除了埃及的一个例外,早期希腊时代的彫刻所表現的猎狗沒有一个是完全垂耳的;也沒有看到在最古的作品中有半垂耳的彫象;这种性状是在罗馬时代的作品中逐漸增大的。高德龙也曾說过,"古代埃及人的猪沒有大而下垂的耳朵"5)。不过值得注意的是,耳的下垂並不同它的縮小相伴随,相反地,象玩尝免、山羊的某些印度品种、我們所宠爱的货、血缇和其他狗那样不同的动物,都有非常长的耳朵,所以看来似乎是耳朵的重量,多半在不使用的帮助下,招致了它們的下垂。关于兔,非常延长的耳朵的下垂甚至影响了头骨的构造。

^{*} 每一英国加侖等于 4.546 公升— 課者。

¹⁾ 安得逊, 南非旅行記, 第318 頁。 关于南美的相似例子, 参閱老圣喜来尔, 哥雅斯地方旅行記 (Voyage dans la Province de Goyaz), 第一卷, 第71 頁。

²⁾ 勃利克勒的北卡罗利納的博物学 (Nat. Hist. of North Carolina), 1739 年, 第53 頁。

³⁾ 利威斯东,尤亞特在論羊中引用,第 142 頁。 結絡逊,孟加拉亞和亞學会学提,第十六卷, 1874 年,第1006 頁等等。 另一方面, 威尔幹斯強烈反对垂耳是不使用的結果这种信念: 德国畜牧年报 (Jahrbuch der deutschen Viehzucht), 1866 年。

⁴⁾ 博物学者从書,狗,第二卷,1840年,第104頁。

⁵⁾ 物种,第一卷, 1859年, 第367頁。

正如<u>物里斯</u>向我說的,沒有一种野生动物的尾巴是卷的;而猪以及狗的某些族却有非常卷的尾巴。 所以这种畸形似乎是家养的結果,然而这同尾巴的減少使用是否有任何关联却是难决定的。

辛苦的劳动容易使我們手上的表皮变厚,这是每一个人都知道的。 在<u>錫兰</u>的一个地区,綿羊"生有保护膝的角質皮肤硬結,这是由于它們跪下去吃短草的习性而产生的,这就是提弗納 (Jaffna) 羊羣同該島其他部分的羊羣的区別之点";不过沒有談到这种特性是否可以遺传¹⁾。

胃壁內側的黏膜同身体的外皮是相連的,所以无怪它的組織会受到食物性質的影响,不过其他更加有趣的变化也同样地会发生。 亨特很久以前观察到,三趾鷗(Larus tridactylus)主要地被喂了一年谷物之后,它的胃壁肌肉变厚了;按照埃得孟特斯东博士的材料,謝特兰羣島上矢尾鷗(Larus argentatus)的胃也周期地发生相似的变化,这种鷗在春季时常出入于谷物田地,並且吃它們的种子。同一位細心的观察者曾注意到长期吃植物性食物的渡鴉(raven)的胃起了重大的变化。 在受到同样处理的一种鴞(Strix grallaria)的場合中,梅湟垂斯(Ménétries)說道,胃的形状变化了,其內壁变成革質的了,而且肝增大了。 关于这等消化器官的改变是否可以随着世代的推移而得到遗传,目前还不知道²¹。

显然由于食物变换而发生的腸的增長和縮短是一种更加值得注意的情形,因为它是某些动物在家养状况下的特征,所以一定是遗传的。 淋巴系、血管、神經和肌肉必然全部跟着腸一起发生变化。 按照都本頓的材料,家貓的腸比歐洲野貓的腸长出三分之一; 虽然这个物种並不是家貓的祖先,但是正如小圣喜来尔所說的,家貓的几个物种非常密切近似,所以这种比較大概是适当的。 腸的这种增長似乎是由于家貓同任何野生貓科物种相比不是那严格吃肉的;例如,我曾看到一个法国小貓吃蔬菜就象吃肉那样地欣然。 按照居維叶的材料,家猪的腸在比例長度上六大地超过了野猪的腸。在馴免和野生免中,这种变化具有相反的性質,这大概是由于給予馴免以营养丰富的食物而发生的³⁾。

变化了的和遺傳的生活習性 专就动物的智力来說,这个問題同本能如此地混

¹⁾ 錫兰,談嫩特爵士著, 1859年, 第二卷, 第531頁。

²⁾ 关于以前的敍述,参閱亨特的短論和观察 (Essays and Observations), 1861年,第二卷,第329頁; 埃得 孟特斯東博士,在麥克季利夫雷的英國的鳥類中引用,第五卷,第550頁; 梅涅垂斯,在勃龙的自然史中引用,第二卷,第110頁。

³⁾ 这等有关腸的敍述,引自小圣喜来尔的博物学通論,第三卷,第427,441頁。

清在一起了,以致我願在这里提醒讀者注意那些有关家养动物的馴熟性的例子——狗的指示目标和衡回猎获物——它們不攻击人所养的小动物——等等。至于这等变化有多少应当单純地归因于习性,有多少应当归因于按照人所希望的方式发生变異的个体选择(同它們被飼养于其中的特殊环境条件无关),很少能夠說出。

我們已經看到动物可以习惯于一种改变的食物;不过还可以补充几个例子。 <u>波</u>里尼西亚翠島的和中国的狗吃的全是植物性食物,它們对于这种食物的爱好在某程度上是遺传的¹⁾。我們的猎狗不吃猎获的鳥类的骨头,而大多数其他的狗却很喜欢吃这种东西。在世界的某些地方,綿羊主要是用魚来飼养的。家猪喜欢吃大麦,据說野猪却不喜欢吃它;而这种不喜欢吃是部分地遺传的,因为一些在拘禁中繁育的小野猪对于大麦表現了嫌恶,而同胎的其他小野猪却喜欢吃它²⁾。我有一位亲戚使一只中国母猪同一只阿尔卑斯山的公野猪交配,得到了一些小猪;它們在园囿内自由地生活着,它們是如此驯順,以致到房中来求食;但它們不吃其他猪所吃的猪食。 一种动物当习惯于不自然的食物时,——般这只能在幼小时期受到影响,它就不喜欢固有的食物,斯帕拉贊尼发现一只长期被飼以肉类的鴿子就是如此。 同一物种的一些个体吃新食物的容易程度是不同的;据說有一匹馬很快就学会吃肉了,而另一匹宁願餓死也不願吃一部分肉³⁾。 有一种蚕 (Bombyx hesperus) 在自然状况下以咖啡叶为食物,但飼以臭椿屬 (Ailanthus) 之后,它們便不吃咖啡叶,而且实际上是餓死了¹⁾。

有人发現使海棲魚习慣于在淡水中生活是可能的;不过魚和其他海棲动物的这等变化主要是在自然状况下被观察到的,所以它們大概不屬于我們現在討論的問題。正如在本書前几章中所闡明的,姙娠期和成熟期——繁育行为的季节和頻率——全都在家养下大大地改变了。 在埃及鵝中,有关繁育行为的季节的变化速度已有所記載50。 公野鴨只同一个母鴨交配,而公家鴨却是一夫多妻的。 某些鷄的品种已經失去了孵卵的习性。 馬的步态以及某些鴿品种的飞翔方式都被改变了而且被遺传了。 牛、馬和猪已經学会在东佛罗里达的圣約翰河 (St. John's River) 中的水下吃嫩草,苦草屬 (Vallisneria) 已在那里充分地順化了。 外曼教授观察到母牛把头浸在水中可以維持"十五秒到三十五秒钟的不同时間"60。 在鷄和鴿的某些种类中,鳴声的差異非

¹⁾ 怀特,餐尔波恩的博物学,1825年,第二卷,第121頁。

²⁾ 勃尔达契,生理学膨識 (Traité de Phys.),第二卷,第 267 頁, 卢凱斯博士在自然遺传中引用,第一卷,第 388 頁。

³⁾ 这个例子以及其他几个例子是考林举出的, 見家养动物比較生理学, 1854年, 第一卷, 第426頁。

⁴⁾ 开云的密切利, 見馴化学会会报, 第八卷, 1861年, 第563页。

⁵⁾ 夸垂独什,关于人种的单位,1861年,第79页。

⁶⁾ 美国的博物学者 (The American Naturalist), 4月 1874年, 第237頁。

常之大。有些变种是吵嚷的,有些变种是安静的,例如饒舌鴨和普通鴨或尖耳狗和响导狗就是这样。 誰都知道,在狩猎的态度上並且在追求不同种类的猎物或害兽害鳥的热情上,狗的一些品种彼此之間表現了何等差異。

关于植物,生长期是容易变化的而且是遗传的,例如在夏性的和冬性的小麦、大麦和大巢菜的場合中就是这样;不过我們就要在风土馴化那一节中談到这个問題。一年生植物在新的气候下有时会变成多年生植物,我听虎克博士說,塔斯馬尼亚的紫罗栏和木犀草就是这样。另一方面,多年生的有时会变成一年生的,英国的蓖麻腐(Ricinus)就是这样,並且根据曼格尔斯(Mangles)船长的材料,三色堇的許多变种也是这样。馮勃尔哥(Von Berg)¹⁾从普通一年生的大紅毛蕊花(Verbascum phaeniceum)的种子育成了一年生的和二年生的变种。有些落叶性的矮灌木在热带地方变成常綠的了²⁾。稻需要大量的水,但在印度有一个变种能夠在沒有灌溉的情况下生长³⁾。燕麦和其他谷类作物的某些变种最适于在某些土壤中生长⁴⁾。在动物界和植物界中可以举出无数相似的事实。我們在这里提到它們,是因为它們說明了密切近似的自然物种的相似差異,並且因为这等生活习性的变化,不論这是由于习性,或是由于外界条件的直接作用,或是由于所謂自发的变異性,大概容易导致构造的改变。

風土馴化 根据上述,自然会把我們引到爭論很大的风土馴化問題。 这里有两个不同的問題:来自同一物种的变种在不同气候下的生活力是不同的嗎? 其次,如果是不同的話,它們是怎样变得这样适应的? 我們已經看到歐洲狗在印度不能很成功地生活,並且有人确言⁵⁾,誰也不能成功地叫紐芬兰狗在那里活很长久; 不过現在可以这样主张,而且这种主张大概是正确的,即这等北方品种同那些在印度繁盛的土著狗是不同的物种。关于綿羊的不同品种也可提出同样的意見,按照尤亚特的材料⁶⁾,沒有一个"来自炎热气候的"綿羊品种可以在"动物园"中"活到第二年"。不过綿羊在某种程度上能夠风土剔化,因为在好望角繁育的美利奴羊被发現远比从英国輸入的美利奴羊适于印度⁷⁾。几乎可以肯定,所有鷄的品种都是由一个物种传下来的:但是,

¹⁾ 植物誌, 1835年, 第二卷, 第504頁。

²⁾ 得康多尔,植物地理学,第二卷,第1078頁。

³⁾ 罗伊尔,喜馬拉亞的植物学图解 (Illustations of the Botany of the Himalaya),第19頁。

⁴⁾ 艺园者記录, 1850年, 第204, 219頁。

⁵⁾ 埃維瑞斯特牧师,孟加拉学会学报,第三卷,第19頁。

⁶⁾ 尤亞特論羊, 1838年, 第491頁。

⁷⁾ 罗伊尔,印度的生产资源,第 153 頁。

有良好理由可以相信,发生于地中海附近的西班牙品种¹⁾ 虽然在英国是那样漂亮和活泼,却比其他任何品种容易受到寒害。从孟加拉 (Bengal) 引进的阿林狄蚕(Arrindy silk moth) 和来自中国山东温带地方的臭椿蚕(Ailanthus silk moth) 屬于同一物种,因为根据它們在幼虫、茧以及成熟状态中的一致性,我們可以推論出这一点²⁾;然而它們在体質上有很大差異: 印度类型"只能在温暖的緯度繁盛",而另一个类型却是十分富有抗性的,既抗寒又抗雨。

植物比动物对于气候的适应更严格。 动物当被家养以后可以抵抗如此重大的气候变化,我們 发現在热带和溫带有几乎一样的物种;而植物却大不相同。 因此在植物的风土馴化方面比在动物 的风土驯化方面有更大的研究范围。可以毫不誇张地說,在几乎每一种长久栽培的植物中,都有被 賦与适于很不相同气候的体質的变种存在,我将选出少数几个比較显著的例子,因爲把所有例子 都举出来会冗長得令人生厌。 在北美育成了很多果树,并且在园艺出版物中——例如在道宁的著 作中——举出了最能抵抗北部賭省和加拿大的严寒气候的变种名单。 梨、李和桃的許多美国变种 在它們自己的国家里是优良的,但直到最近,据知几乎沒有一个变种在英国获得成功;关于苹果3), 沒有一个变种得到成功。虽然美国变种比我們的变种能够抵抗严寒的冬季,但这里的夏季是不够 热的。在歐洲发生的果树也具有不同的体質,但它們沒有受到很多注意,因为这里的苗圃經营者 不供应廣大的区域。弗列尔梨 (Forelle pear) 开花早, 当它們的花剛开的时候, 正值危險期, 据观 察它們能够抵抗華氏 18° 甚至 14° 的严寒,这样的溫度会使所有其他种类的梨花凍死4),不論它們 是盛开的或在蓓蕾期都是一样。 我們根据良好的权威材料得知50, 花的这种抗寒力以及此后結果 力並不一定取决于一般的体質活力。 再向北去,能够抵抗严寒气候的变种数目便銳減了,种情这 形見于能够在斯德哥尔摩 (Stockholm) 隣近栽培的樱桃、苹果和梨的变种名单6)。 在莫斯科附近, 特洛别茨考伊(Troubetzkoy)在开闊地上試驗性地栽培过几个梨的变种,只有一个叫做无核梨(Poire sans Pepins) 的变种能够抵抗冬寒⁷⁾。这样,我們便可知道我們的果树在体質上对于不同气候的适 应性就像同屬的不同物种那样地肯定彼此有所差异。

在許多植物的变种中,对于气候的适应性常常是很有限制的。例如,根据反复的試驗證明了"英国的小麦变种适于在苏格兰栽培的簡直是絕无仅有"⁸⁾;不过在这种場合中,最初的失敗 仅 仅 表現在谷物的产量上,但是最終还表現在質上。 巴尔克雷牧师在英国小麦曾經肯定有过好收成的 - 地上播种了印度的小麦种子,所得到的是"极瘦弱的穗"⁹⁾。在这等場合中是把变种从較暖气候引到较冷气候中;在相反的場合中,例如"把小麦直接从法国輸入到西印度零島,它所产生的是完全不

¹⁾ 推葛梅尔,家鶏之書,1866年,第102頁。

²⁾ 桶特逊 (R. Paterson) 博士提給加拿大植物学会的一篇論文,在讀者杂誌 (Reader) 中引用,1863年,12月13日。

³⁾ 参閱艺园者記录編者的話,1848年,第5頁。

⁴⁾ 艺园者記录, 1860年, 第938頁。編者的話以及引自德开斯內的材料。

⁵⁾ 布魯塞尔 (Brussels) 的得喬紐, 艺园者記录, 1857年, 第612頁。

⁶⁾ 瑪修斯 (Ch. Martius) 挪威北部的植物学旅行 (Voyage Bot. Côtes Sept. de la Norvège), 第 26 頁。

⁷⁾ 干得园艺研究所学报 (Journal de l'Acad. Hort. de Gand.), 在艺园者記录中引用 1859 年,第7頁。

⁸⁾ 艺园者記录, 1851年, 第396頁。

⁹⁾ 同前杂誌, 1862年, 第235頁。

孕的穗,要不只有兩三粒可憐的子实,而在旁边的西印度羣島的种子却有巨大的收集¹⁾。这里还有另外一个例子指明了,对于稍微寒冷一点的气候的有限制的适应性;在英格兰有一种小麦可以无差别地当作多性变种或夏性变种来使用,当它被栽培在法国格利南(Grignan)的比較温暖气候之下时,它的表現就恰似真正的冬小麦那样了²⁾。

植物学者們相信所有玉蜀黍的变种都屬于同一物种;我們已經看到,在北美愈向北去,栽培于各地带的变种就在愈来愈短的期間內开花和結子。所以植株高的和成熟慢的南方变种在新英格兰(New England)不会成功,并且新英格兰的变种在加拿大也不会成功。我还沒遇到过任何記述指出,南方变种实际上是由于北方变种能够无害地抵抗的那种程度的寒冷而受到損害或致死的,虽然这是可能的;但是开花早的和結子早的变种的产生值得被看作是风土馴化的一种类型。因此,按照卡尔姆的材料,在美国把玉蜀黍的栽培逐渐远向北方推移,被发現是可能的。正如我們从得康多尔提出的証据所知道的那样,在歐洲玉蜀黍的栽培自从上一世紀末也向北超出了以前境界九十哩³)。根据林納的权威材料⁴),我可以引用一个相似的例子:在瑞典,由当地种子長出的煙草比由外来种子長出的煙草在种子成熟上早一个月,而且比較不易失敗。

葡萄和玉蜀黍不同,自从中世紀以来它的实际栽培線稍稍向南退了⁵⁾;不过这似乎是由于 現在的商业比以前容易进行了,所以从南方輸入酒比在北方作酒更方便一些。 促管如此,有关葡萄沒有推广到北方这一事实还是闡明了它的风土馴化在几个世紀中沒有什么进展。 然而几个变种的体質有显著差异——有些变种是有抗性的,而其他变种,例如亚力山大麝香葡萄(muscat of Alexandria),需要很高的溫度才能成熟。按照拉巴特的材料⁶⁾,把葡萄从法国运到西印度羣島,极难成功,而从馬得拉和加那利羣島运去的葡萄則繁茂得令人惊叹。

关于橙在意大利的馴化,加列肖举出一項引人注意的記載。許多世紀以来甜橙完全是由嫁接来繁殖的,而且如此常常受到霜害,所以需要保护。在1709年的严重霜害之后,特别是在1763年的严重霜害之后,死去的树如此之多,以致培育了甜橙的实生苗,使居民感到吃惊的是,它們的果实彼发現是甜的。这样培育出来的树比旧有的种类大,生产力高,而且抗性强;现在还繼續培育实生苗。因此,加列肖作出这样的結論:关于橙在意大利的馴化,由偶然产生新种类在六十年左右所完成的比嫁接古老变种在許多世紀中所完成的还要多得多7)。我可以补充一点,刊校8)描述过一些葡萄牙的橙变种,說它們对于寒冷是极端敏感的,比某些其他变种脆弱得多。

紀元前 322 年提奥夫拉斯塔⁹⁾*已經知道桃了。按照罗尔(F. Rolle)博士所引用的权威材料¹⁰⁾, 当桃最初被引进到希腊时,是脆弱的,甚至在罗得斯島上也只是偶尔才結果。如果这种說法是正确

¹⁾ 根据拉达特的权威材料,在艺园者記录中引用,1862年,第235頁。

²⁾ 爱德华和考林,自然科学年报,第二辑,植物学部分,第五卷,第22页。

³⁾ 植物地理学,第337頁。

⁴⁾ 瑞典法典, 茭譯本, 1739—40 年, 第一卷。 卡尔姆在他的旅行記中举出过一个相似的例子: 用来自卡罗利納的种子在新泽阿 (New Jersey) 培育棉花, 見該雲第二卷, 第 166 頁。

⁵⁾ 得康多尔,植物地理学,第339頁。

⁶⁾ 艺园者記录, 1862年, 第235頁。

⁷⁾ 加列肖,植物繁育的理論, 1816年,第125頁;論掛橋, 1811年,第359頁。

⁸⁾ 关于柑橘歷史的論文 (Essai sur l'Hist. des Orangers), 1813年,第20頁等等。

⁹⁾ 得康多尔,植物地理学,第882頁。

^{*} 希腊的哲学家——譯者

¹⁰⁾ 达尔文的关于起源的教导 (Ch. Darwin's Lehre von der Entstehung), 1862年,第87頁。

的話,那末桃在过去二千年間散佈于中歐的时間,其抗性一定大大地变强了。目前不同变种的抗性 有很大差异;有些法国变种在英格兰不会成功;在巴黎附近,一个桃的变种(Pavie de Bonneuil)縱 使在保护下生长,其果实也得在很迟的时候才能成熟;"所以它只适于很热的南方气候"")。

我将簡单地談一談少数其他例子。罗伊(M. Roy)培育的一个大花玉兰(Magnolia grandiflora)的变种所能抵抗的温度比其他任何变种所能抵抗的温度要低几度。山茶屬在抗寒性上有很大差异。我們的諾賽薔薇的一个特殊变种"抵抗了 1806 年的严重看害,絲毫沒有受到損害而且健全,但其他諾賽薔薇普遍地被毁灭了"。在紐約,"爱尔兰紫杉十分富有抗性,但普通紫杉則容易死去"。我还可以补充一点,甘薷(Convolvulus batatas)有一些变种既适于温暖气候,也适于寒冷气候?)。

上而提到的那些植物是当充分成长时被发现能夠抵抗異常程度的寒冷和炎热。 下述例子所涉及的是幼小时候的植物。 在一个大苗床上同龄的幼小南洋杉 (Araucarias) 索切靠近生长着,並且处于相等的条件下,据观察3, 經过 1860-61 年的異常严 寒的冬季之后,在这苗床上的"死者当中有很多个体生存下来了,严寒对于它們一点 也沒有影响"。 林德雷博士在談到这个例子以及其他相似的例子之后說道,"最近这 次可怕的冬季給我們的教訓是、植物的同一物种的个体甚至在抗寒力上也是显著不 同的"。 在索尔茲巴利 (Salisbury) 附近, 1836 年 5 月 24 日夜降了一次严霜,在一个 苗床上的法国菜豆 (Phaseolus vulgaris) 除了三十分之一左右得到倖免之外,全部死 掉了4)。 这个月的同一天、但是在1864年,在肯特降了一次严霜,我的花园中的包含 有 390 个同龄植株並且处于同等条件之下的两行紅花菜豆 (P. multiflorus) 除了十 二个左右的植株之外,全都变黑而死掉了。 在鄰接的一行"福氏矮生菜豆"(Fulmer's dwarf bean, P. vulgaris) 中只有一个植株得到倖免。 四天之后又降了一次更厉害的 严霜,以前得到倖免的那十二个植株只有三株活下来了;这三个植株並不比其他幼小 植株高,而且也不更具活力,但它們完全得到倖免了,就連叶尖也一点沒有变褐。 这三个植株同它們周围的变黑的、枯萎的和死去的兄弟植株加以同等看待而一眼看 不出它們在抗寒的体質能力上存在着广泛差異、那是不可能的。

本書並不是适当的場所来闡明,自然生长于不同高度或不同緯度的同一物种的 野生植物在某种程度上变得风土驯化了,这由它們的实生苗在另一地方培育时所表 現的不同生长情况得到了証明。 我在物种起源中提到过一些例子,我还可以补充許

¹⁾ 德开斯內,在艺园者記录中引用,1865年,第271頁。

²⁾ 关于玉兰,参阅拉鳥頓的艺园者杂誌,第十三卷,1837年。关于山茶屬和鬱濛屬,参閱艺园者記录,1860年,第384頁。 关于紫杉,参阅园艺学报,3月3日,1863年,第174頁。 关于甘藷,参閱馮西包尔得(Von Siebold),艺园者記录,1855年,第822頁。

³⁾ 艺园者記录,編者, 1861年,第239頁。

⁴⁾ 拉烏頓的艺园者杂誌,第十二卷,1836年,第378頁。

多其他例子。 只举一个一定就可以满足需要了: 福列斯 (Forres) 地方的哥利格尔 (Grigor) 先生¹⁾ 說,"从歐洲大陸的种子和苏格兰森林中的种子培育出来的苏格兰赤 松 (Pinus sylvestris) 的实生苗大不相同。"在一年生的实生苗中就可以看出它們的差異,在二年生的实生苗中它們的差異就更加显著;不过冬季对于第二年的生长的影响几乎一致地使那些来自大陸的实生苗完全变褐了,而且如此受到損害,以致到了三月它們便成为无人买的东西了,同时来自土著苏格兰赤松的植株处在同样的处理之下並且生长在旁边,它們虽然比前者相当地矮,但頗強壮,而且是完全綠的,所以在一哩以外便能識別出这个苗床和那个苗床了"。关于落叶松,也可观察到密切相似的情形。

在歐洲只有抗性强的变种才受到重視或注意,而需要比較溫暖气候的脆弱变种是不被注意的, 不过这等情况也偶尔发生。例如拉烏頓2)敍述过榆树的一个考恩瓦尔变种(Cornish variety),它几 平是常綠的, 它的新稍常常因秋霜而致死, 所以它的木料沒有什么价值。 园艺家們知道有些变种 比其他变种要脆弱得多:例如,所有木立花椰菜(broccoli)的变种都比甘蓝脆弱;不过在这方面 木立花椰菜的亚变种却表現了很大的差异;淡紅色和紫色的种类比白色好望角木立花 椰 菜 的 抗 性强一点, "不过溫度表降到華氏 24°以下,它們便不可靠了"; 发尔赫梭 (Walcherern) 木立花椰 **菜不如好望角木立花椰菜脆弱,还有几个变种远比发尔赫梭木立花椰菜更能抵抗严寒³)。 花椰菜** (cauliflowers) 在印度比甘蓝能够更自由地結子4)。 茲举一个有关花的例子:从一株叫作"白花 皇 后"(Queen of the Whites)5) 的蜀葵培育出来的十一个植株被发現比种种其他实生苗脆弱得多。可 以这样設想,所有脆弱变种在比較溫暖的气候下大概比我們的变种可以获得更大的成功。 关于果 树,大家都知道某些变种——例如梨的——比其他变种更适于在温室中进行促成栽培;这闡明了 它們的体制的柔順性或体質上的差异。櫻桃树的同一个体受到促成栽培的处理之后,据观察在連 續的年代中逐漸改变了它的生長期⁶⁾。 很少天竺葵能够抵抗溫室的热度,不过白花天竺葵(Alba multiflora) 正如一位最熟練的艺园者所确言的那样,"整个冬季完全抵抗了风梨温室的热度就像在 普通溫室生长那样地一点也不显得更枯萎;白花变种的育成好像是爲了使它象許多鱗茎那样地在 冬季生长,在夏季休眠""。 白花天竺葵的体質同这种植物的大多数其他变种的体質一定大不相 同,这几乎是无可怀疑的;它大概可以抵抗甚至是赤道的气候。

¹⁾ 艺园者記录, 1865年, 第699 頁。 莫島 (G. Maw) 举出許多显著的例子(艺匠者記录, 1870年, 第895 頁);他从四班牙南部和北非引进几种植物在英格兰栽培于从北方引进的标本植物之傍;他不僅在它們的冬季抗寒性上表現了巨大差異,而且在它們当中发現有些在夏季的表現上也有巨大差異。

²⁾ 植树园和果树园,第三卷,第1376頁。

³⁾ 餐滨逊先生,园艺学报, 1861年,第23頁。

⁴⁾ 包那威亞博士,澳德农业-园艺学会报告 (Report of the Agri-Hort. Soc. of Oudh), 1866年。

⁵⁾ 家庭艺园者, 1860年, 4月24日, 第57頁。

⁶⁾ 艺园者記录, 1841年, 第291頁。

⁷⁾ 比东,家庭艺园者, 3 月 20 日, 1860 年, 第 377 頁。 "瑪勒皇后" (Queen Mab) 也能忍耐溫室的热度。 参閱艺园者記录, 1845 年, 第 226 頁。

我們已經看到, 按照拉巴特的材料,為了成功地在西印度羣島生长,葡萄和小麦是需要风土馴 化的。在馬得拉斯看到过相似的事实:"有两小包木犀草种子同时播种飞,一包直接来自歐洲,一 包是在邦加罗尔 (Bangalore, 这里的平均温度比馬得拉斯的低得多) 收下来的;它們的生长同样良 好,不过前者在长出地面几天之后都死掉了,而后者还活着,並且是活力旺盛的、健康的植物"。再 者,在海达拉巴(Hyderabad)收下来的洋蕪菁(turnip)和胡蘿蔔的种子比杂自歐洲或好鑒角的种 子被发現更适于馬得拉斯"1)。 加尔哥答植物园的司各脱先生告訴我說,从英格兰輸入的紫色甜 山黧豆 (Lathyru vdoratus) 的种子长出的植株具有粗大而硬直的茎,小叶,极少开花,从不結子;从 法国的种子培育出来的植株也极少开花,而且所有的花都是不稔的;另一方面,从上印度(Upper India) 大吉岭 (Darjeeling) 附近生长的紫色甜山黧豆培育出来的植株却能成功地在印度平原上 栽 培,而这种植物原本是由英国引进的;它們大量地开花結子,并且它們的茎是鬆弛而攀緣的。在上 述的某些例子中, 正如虎克博士向我說的那样, 这种较大的成功恐怕可以归因于种子在比較良好 的气候中比较充分地成熟了:不过几乎不能把这种观点扩展到如此众多的例子,这些例子包括以 下的情形:植物由于在比它們原产地更热的气候中栽培,就变得适于愈益热的气候。 所以我可以 稳妥地作出这样的結論,植物在某种程度上能够变得习惯于比它們原产地更热的或更冷的 气候; 虽然后面的情形更加常常地被观察到。

現在我們来考察一下风土馴化所賴以完成的方法,卽通过具有不同体質的变种的出現,以及通过习性的作用。 关于新变种,沒有任何証据可以証明后代在体質上的变化一定同双亲棲息于其中的气候的性質有什么直接关系。 相反地,同一物种的抗性强的和脆弱的变种肯定在同一地方出現的。这样自然发生的新变种按照两种不同的途徑变得适于微有不同的气候;第一,无論是在实生苗或充分成长的时候,它們可能具有抵抗严寒的能力,莫斯科梨就是这样;或者具有抵抗高热的能力,天竺葵的某些种类就是这样;或者它們的花可以抵抗严霜,弗列尔梨就是这样。 第二,由于开花和结果較早或較迟,植物可以变得适应于大不同于它們原产地的气候。 在这两种場合中,人使植物风土驯化的能力仅仅在于选择和保存新变种。但是,在沒有人的获得一个抗性較强的变种的任何直接意图之下,借着仅仅由种子培育脆弱的植物,以及借着偶尔武图把这等脆弱植物的栽培逐步远向北方推移,就象在玉蜀黍、橙和桃的場合中那样,风土驯化还可以无意識地完成。

有多少影响应当归因于动物和植物的风土剔化中的遗传的习性或习惯,是一个更加困难得多的問題。在許多場合中,自然选择几乎不能不起作用,并且使得結果复杂了。众所週知,山地綿羊可以抵抗那种毁灭低地品种的严酷气候和暴风雪;但是山地綿羊从太古时代起就暴露在这样的气候之中,所有脆弱的个体都被毁灭了,抗性最强的个体被保存下来了。 中国的和印度的阿林狄蚕就是这样;能能說出在現今适于

¹⁾ 艺园者記录, 1841年, 第439頁。

如此大不相同的气候的这两个族的形成中自然选择起了多大作用呢? 最初一看,如 此完全活干北美的炎热夏季和寒冷冬季的許多果树、在同它們在我們气候中沒有成 就的对照下,似乎是通过习性而变得适应的;但是如果我們考慮到每年在北美培育了 无数字生苗, 並且除非生来就有适宜的体質, 哪一株实生苗也不会获得成功, 那末仅 仅是习性可能不会对它們的风土剔化起什么作用。 另一方面,如果我們听到在好望 角繁育了少数几代的美利奴羊——在印度的比較寒冷地方只培育了少数几代的某些 欧洲植物远比直接从英格兰輸入的綿羊和种子能夠更好地抵抗該地的更热 的 气候, 那末我們必須把某种影响归因于习性。 如果我們听到諾丹1) 的意見,也会被引导作 出同样的結論; 諾丹說, 长期在北欧栽培的甜瓜、南瓜和葫蘆的諸族同新近由热帶引 进的同一物种的諸变种比較起来,前者是相当地早熟的,而且在果实成熟上所需要的 热量心少得多。在冬性的和夏性的小麦、大麦和大巢菜的相互轉变中、习性在很少几 代的过程中便产生了显著作用。 同样的情形显然也見于玉蜀黍的变种,从美国南部 諸省輸入的玉蜀黍,或者引进到德国的玉蜀黍,很快就变得适于它們的新家乡了。来 自馬得拉的葡萄植株在西印度羣島据說比直接来自法国的葡萄植株可以获得更好的 成功,我們在这里看到了个体的某种程度的风土馴化,这同由种子产生新变种並无关 系。

农学者們的普通經驗具有某种价值,他們常常提醒人們当把某一地方的产物試在另一地方栽培时要慎重小心。中国的古代农业作者們建議应当栽培和保存各个地方的特有变种。在古罗馬时代,哥留美拉写道,"土著的家畜比外来的动物要优越得多"²²。

我知道使动物和植物风土剔化的企图曾被称为无用的空想。毫无疑問,如果这种企图同被赋与了不同体質的新变种的产生无关,那末在大数場合中这样来說它是应当的。关于由芽来繁殖的植物,习性极少产生任何作用;它显然只通过連續的种子生殖发生作用。由插条或块莖来繁殖的月桂(laurel)、南欧月桂(bay)、一种欧洲的忍冬科灌木(laurestinus)等等以及菊芋(Jerusalem artichoke) 現今在英格兰大概还象最初被引进时那样地脆弱;直到最近还很少用种子来繁殖的馬鈴薯的情形似乎也是这样。关于由种子来繁殖的植物以及关于动物,除非把抗性較强的个体有意識地或无意識地保存下来,很少有或者根本不会有风土剔化的情形。菜豆常常作为这样的

¹⁾ 爱沙·葛雷引用,美国科学杂誌,第二輯,1月,1865年,第106頁。

²⁾ 关于中国,参阅关于中国的报告,第十一卷,1786年,第60页。晋留美拉的請係卡利叶引用,見生理学学报,第二十四卷,1784年。

一个例子而被提出来,即这种植物自从最初引进到不列颠以后,其抗性並沒有变得更強。然而我們根据最优秀的权威材料得知¹⁾,从国外輸入的很优良的种子所产生的植株"开花极盛,但几乎所有的花都是发育不全的,而在一旁生长的由英国种子产生的植物却大量地结荚";这显然闡明了英国植物有某种程度的风土驯化。我們还看到具有显著抗寒力的菜豆实生苗的不时出現;但根据我所能听到的来說,誰也沒有把这等抗性強的实生苗隔离开过,以便阻止偶尔的杂变,然后採集它的种子,並且年复一年地重复这一过程。然而确实可以反对自然选择对于我們的菜豆的抗性应該发生过决定性的作用;因为在每一个严寒的春季最脆弱的个体一定会冻死,而抗性被強的个体则被保存下来。但是应該記住,抗性的增強完全是由于永远渴望尽量早期收获的艺园者們比以前早几天播种了它們的种子。且說,因为播种期大部取决于各个地区的土壤和高度,並且随着季节而改变;同时因为常常从国外输入新变种,我們能夠确信我們的菜豆的抗性沒有多少強一点嗎?我曾在古园艺著作中查究,但沒有能夠滿意地解答这一問題。

总之,現在所举的事实闡明了,习性虽然对于风土驯化发生一些作用,但体質不同的个体的出現則是一个远远更加有效的动因。因为关于动物和植物沒有記載过这样一个事例,即抗性較強的个体受到了长期而不断的选择,虽然这种选择被承認对于任何其他性状的改进是不可缺少的,所以无怪人在家养动物和栽培植物的风土驯化中所作的很少。然而我們无須怀疑,在自然状况下新族和新物种借着在习性帮助下並且在自然选择支配下的变異大概会变得适应于大不相同的气候。

发育的阻止: 痕迹的和退化的器官

由于发育受到阻止而发生的构造改变是如此重大而严重,以致应該被称为畸形,这种情形在家养动物中并不常常发生;但是因为它們同正常构造有很大的差异,所以需要人致地談一談。例如整个头部由一个柔軟的乳頭状突起来表示,四肢仅仅由乳头来表示。 这种四肢的痕迹有时是遗传的,例如在一只狗的身上就看到过这种情形²⁾。

許多較小的畸形似乎是由于发育受到阻止。 阻止的原因是什么,除了在直接損害了胚胎的場合中,我們很少知道。 受到影响的器官很少全部退化並且一般總留有一点痕迹,根据这一点我們可以推論这种原因一般不在极早的胚胎期間发生作用。一个中国綿羊品种的外耳仅由一点痕迹来代表;另一个品种的尾巴"在某种程度上已为脂肪所代替,而縮小为一个釦子般的小球"。在无尾

¹⁾ 哈代及其子,艺园者記录, 1856年, 第589頁。

²⁾ 小圣喜来尔,畸形史, 1836年,第二卷,第210,223,224,395頁;皇家學会会根,1775年,第313頁。

³⁾ 帕拉斯,尤亞特在論羊中引用,第25頁。

狗和无尾貓的身上尾巴还留有一点根儿。 在雞的某些品种中,肉冠和肉垂縮小得只有一点痕迹;在变趾支那的品种中,趾几乎全是痕迹的。关于无角的蕯福克牛,"角的痕迹常常在幼小时期可以被摸到"");关于在自然状况下的物种,痕迹器官在生命早期的比較巨大发育,高度构成了这等器官的特征,关于牛和綿羊的无角品种,另一种奇异的痕迹被观察到了,这就是仅仅附着在皮上的悬掛着的极小的角,它們常常脫落,然后再生长。按照得瑪別的材料²),关于无角山羊,原来支持角的骨突起只留有一点痕迹。

关于栽培植物,就象在自然物种中所观察到的情形那样,仅仅由痕迹来代表的花瓣、雄蕊和雌 蕊并不罕見。許多果实的完全的种子就是这样,例如,阿斯脫拉罕(Astrakhan)附近有一种葡萄,它 的种子仅仅是痕迹的,"如此之小并且如此靠近果柄,以致在吃葡萄时覚察不出它們"3)。按照諾 丹的材料,在葫蘆的某些变种中,卷須由痕迹或种种畸形的生长物来代表。 在木立花椰花和花椰 菜中,大多数的花不能开放并且包含有痕迹的器官。长毛葡萄百合(Muscari comosum)在自然状况 下,其上部和中央的花具有鮮明的顏色,但是痕迹的;在栽培状况下,这种退化傾向走向下部和外 侧, 并且全部的花都变成痕迹的了; 不过退化的雄蕊和雌蕊在下部的花中不象在上部的花中那样 小。另一方面,雪球(Viburnum opulus)在自然状况下,其外侧花的结实器官是痕迹状态的,花冠 是大形的;在栽培状况下,这种变化蔓延到中央,并且全部的花都受到了影响。 在菊科中,所謂花 的重瓣是由于中央小花的花冠的巨大发育,一般这要伴随着某种程度的不稔性;据观察4),漸增的 重瓣化一定是从周圍蔓延到中央,——即从如此常常包含有痕迹器官的边花 (ray florets)蔓延到心 花 (disc florets)。我再补充同这个問題有关係的一点,关于紫菀 (Asters),从周围小花采的种子被 发現可以产生絕大部分的重瓣花⁵⁾。 在上述場合中,我們看到某些部分的痕迹化的自然傾向,这 种傾向在栽培中向着或者从植物的軸进行蔓延。 为了闡明同一法則怎样支配着自然物种和 人工 变种所发生的变化, 值得注意的是, 在一种菊科植物紅花屬 (Carthamus) 的物种中, 对于冠毛的退 化傾向可以从周围扩展到花盤的中央来追蹤,正如該科一些成員所发生的花的重瓣化情形一样。 例如,按服得朱修(A. de Jussieu)6)的材料,这种退化在克里特紅花 (Carthamus creticus)中仅是部 分的, 但在綿毛紅花 (C. lanatus) 中这种退化便扩展了; 因为在这个物种中, 只有两三粒中央部分 的种子具有冠毛,而周围的种子不是完全无毛的就是只有少数几根毛;最后在紅花(C. tinctorius) 中, 甚至中央部分的种子也不具冠毛, 完全退化了。

在家养的动物和植物的場合中,如果一种器官消失了,仅仅留下一点痕迹,那末这种消失一般是突然的,例如无角的和无尾的品种就是这样;这等例子可以归类为可以遗传的畸形。但在某些少数場合中,这种消失是逐漸的,并且部分地受到了选择的影响,例如某些鷄的痕迹的肉冠和肉垂就是这样。我們还看到,某些家养鳥的翅膀由于不使用而稍微縮小了,并且某些蚕蛾的翅膀大大地縮小了,只留下一点痕迹,这种縮小大概也受到了不使用的帮助。

关于在自然状况下的物种,痕迹器官是极端普通的。 正如若干博物学者所观察

¹⁾ 尤亞特論牛, 1834年, 第174頁。

²⁾ 哺乳动物分类百科全書, 1820 年, 第 483 頁; 关于印度瘤牛换价, 参閱第 500 頁。 关于欧州牛的同样例子, 見第三章。

³⁾ 帕拉斯,旅行記,英譯本,第一卷,第 243 頁。

⁴⁾ 比东先生,园艺学报,5月21日,1861年,第133頁。

⁵⁾ 列考克,关于受精, 1862年, 第233頁。

⁶⁾ 博物館年报,第六卷,第319頁。

的那样,这等器官一般是容易变異的;因为它們是无用的,所以不受自然选择的支配, 並且它們或多或少是容易返祖的。同一規律肯定地也活用于在家养下变成痕迹的部 分。 我們还不知道在自然状况下痕迹器官通过什么步驟才縮小到今天这样的状态; 但我們在同一类臺的物种中如此不断地看到痕迹器官和完全器官之間的最微細的級 进,以致我們被引导去相信这种推移一定是极端逐漸的。象一种器官突然消失那样地 突然发生的构造变化是否对于自然状况下的物种有用,是可以怀疑的;因为一切有机 体所密切活应的生活条件的变化通常基很緩慢的。縱使由于发育受到阻止一种器官 在某一个体中的确是突然消失了,同同一物种的其他个体进行杂交也有招致它部分 重現的傾向: 所以它的最后減縮只能由某些其他方法来完成。最可能的观点是, 現在 的痕迹器官以前由于变化了的生活习性被使用得日益減少,同时由于不使用它便縮 小了, 直到最后它变得完全无用並且成为多余的了。但是, 因为大多数的部分和器官 在生命的早期並不进行活动,所以不使用或減少活动在有机体达到稍微大一点的年 龄之前不会导致它們的縮小;根据在相应年龄遺传的原理,这种縮小将在同样晚的生 长阶段遺传給后代。 部分和器官就这样在胚胎中保持了充分的大小,我們知道大部 分痕迹器官都是如此。 一个部分一旦变成为无用的,另一生长的經济原理就会发生 作用,这是因为节約任何无用部分的发育对于暴露在剧烈竞争之下的有机体都是有 利的; 具有比較不发育的无用部分的个体将比其他个体稍佔优勢。但是, 正如米伐特 (Mivart) 先生所公正指出的那样, 一个部分一旦大大地縮小了,来自进一步縮小的节 約就毫无意义了:所以这不能被自然选择所影响。 如果这一部分由单純的細胞組織 所形成並且只消費很少的养分,上述一点显然还是适用的。那末,一个已經多少精 小了的部分的进一步縮小怎样才能完成呢? 完全的器官和仅仅是一点痕跡的器官之 間存在着許多級进这一点闡明了这种情形在自然状况下是反复发生的。我認为罗瑪 内斯先生1)在这个問題上投射了很大的光明。在用少数几个字所能說出的范围之內, 他的观点如下:所有部分的大小都是环繞着平均点或多或少地变異的和徬徨的。 且 說, 当一个部分由于任何原因已經开始減縮了的时候, 朝着增加方向的变異很不可能 象朝着減縮方向那样大:因为它的以前的縮小闡明了环境条件对于它的发育是不利 的;而且沒有任何东西来抑制朝着相反方向的变異。如果是这样的話,那末当許多个 体具有一种朝着減縮大于朝着增加而徬徨的器官时、它們的长期不断的杂交将会緩

¹⁾ 我在自然杂誌 (Nature, 第八卷, 新 432,505 頁)中提出,处于不利条件下的有机体,其所有部分都有新減的傾向,在这等环境条件下,由于自然选择並沒有达到标準大小的任何部分因为相互杂交大概会緩慢而不断地縮減。罗瑪內斯在他相繼三次致自然杂誌的信中(3月12日,4月9日,7月2日,1874年)提出了他的改进观点。

慢地、但稳定地导致这种器官的減縮。关于一个部分的完全的和絕对的退化,在有关 汎生說那一章中将要加以討論的另一原理大概会发生作用。

在人所养育的动物和植物中,沒有剧烈而反复的生存斗爭,並且生长的經济原理 不会发生作用,所以一个器官的縮小不会这样得到帮助。 誠然在某些少数場合中非 但不是这样, 在自然状况下的亲种的痕跡器官反而在家养的后代中部分地重新发育 起来了。例如,母牛同大多数其他反芻动物一样,具有四个活动的乳房和两个痕跡的 乳房;但在我們的家养母牛中,两个痕迹的乳房偶尔地相当发育了,而且泌乳。 家养动物(包括人在內)的萎縮了的乳房在一些稀有的場合中长到了充分的大小,而 且泌乳,这恐怕提供了一个相似的例子。在自然状况下,狗的后脚包含有第五趾的痕 跡;在某些大形品种中这等趾虽然是痕迹的,却变得相当地发育了,而且有爪。 在普 通的母鷄中, 距和肉冠是痕迹的, 但在某些品种中, 它們变得十分发育了, 这同年龄和 卵巢的疾病並无关系。 母馬有犬齿,但公馬只有齿槽的痕迹,正如卓越的兽医勃朗 (G. T. Brown) 先生告訴我說的那样,这种齿槽常常包含微小的不規則的骨块。 然 而这种微小的骨块有时会发育成不完全的齿,突出齿齦以外並且被有一层釉質;它們 偶尔会长到母馬的犬齿四分之一、甚至三分之一那样长。 关于植物,我还不知道痕迹 器官的再发育在栽培状况下是否比在自然状况下更加常見。 梨树恐怕是这样的,因 为当野生时它就生棘,这是由痕跡状态的枝条形成的,並且有保护用涂,但当梨树被 栽培时,这等棘又复原为枝条了。

第二十五章 变異的法則(續)——相关的变異性

"相关"这一术語的解释——同发育的关联——同各部分的增大或縮小相关的改变——同原部分的相关变异——高类的羽脚呈現翼的构造——头和四肢的相关——皮肤和皮肤附屬物的相关——视觉器官和听觉器官的相关——植物的各器官的相关变异——相关的畸形——头骨和耳的相关———头骨和羽冠的相关———头骨和角的相关——由于自然选择的累积作用而复杂化的生长相关——同体質特性相关的颜色

体制的所有部分在某种程度上都是关連在一起的;但这种关連可能非常微小,以 致几乎不存在, 零糖动物 (compound animals) 或同一株树上的芽就是这样。 即便在 高等动物中,种种部分也不全是密切关連的;因为某一部分可能完全被压抑或成为畸 形的、而身体的其他任何部分並不受到影响。 但在一些場合中,当一个部分变異了, 某些其他部分永远或者几乎永远同时发生变異:这时它們便受相关变異的法則所支 整个身体对于各个生物的特殊生活习性都是美妙地相互調和的,正如阿該尔公 餌(Duke of Argyll)在"法則的統制"(Reign of Law)中所主张的那样,这可以說是对 于这个目的相关。再者,在动物的大类罩中某些构造总是同时存在:例如特殊形态的 胃和特殊形态的齿,这等构造在某种意义上可以說是相关的。 不过这等例子同本章 所討論的法則並沒有必要的关連:因为我們不知道若干部分的初发的或原始的变異 彼此有任何关系: 直到获得最后的完全相互适应的构造, 微小的改变或个体差異可能 先在这一部分然后在那一部分被保存下来;关于这一問題,我們立刻就要談到。 者,在动物的許多类羣中,只有雄者生有用作武器的器官並且装飾着漂亮的顏色; 这 等性状同雄者的生殖器官显著有某种相关,因为当它們的生殖器官被除掉以后,这等 性状就消失了。在第十二章中已經闡明,同样的这种特性可能在任何年龄表現于任何 一性,並且此后在相应的年龄完全遺传給同性。在这等場合中,我們看到遺传同时受 到了性別和年龄的限制;但我們沒有任何理由来假定,变異的最初原因同生殖器官或 者同被影响的生物的年龄必然有关連。

在真正相关变異的場合中,我們有时能夠看到关連的性質;但在大多数場合中, 它是隱蔽的,而且在不同的場合中肯定是不同的。我們很少能夠說出,在两个相关的 部分中哪一个部分是首先变異的,並且誘发了另一部分的变化;或者这两个部分的变 異是不是某种共同原因的結果。 相关变異对我們来說是一个重要的問題,因为当某 一部分无論是人为地或在自然状况下通过連續选择而发生改变的时候,体制的其他 部分将不可避免地发生改变。由于这种相关,显然会发生以下的情形,即在家养的动物和植物中,变种彼此之間的差異很少或者决不表現在仅仅一种性状上。

相关的一个最簡单的例子是,在生长的早期阶段发生的改变有影响同一部分的此后发育以及其他关系密切的部分的发育的傾向。 小圣喜来尔¹⁾說,在动物界的畸形中可能經常观察到这种情形; <u>摩坤·丹頓</u>²⁾ 說,在植物中,除非以后从軸产生出来的器官受到某种影响,軸不会变成畸形的,所以軸的畸形几乎永远伴随着附屬部分的构造的偏差。我們即将看到,关于狗的短嘴族,骨的基本成分中的某种組織变化阻止了嘴的发育並且使它們縮短了,这影响了此后发育的臼齿的位置。 昆虫的幼虫的某种改变大概会影响成虫的构造。但我們必須小心,不要把这一观点引伸得太远,因为在正常的发育过程中,某些物种通过了異常的变化过程,而其他密切近似的物种只在构造上发生很少变化便达到成熟。

相关的另一个簡单例子是,随着整个身体或任何特殊部分的增大或縮小,某些器官在数量上增加了或減少了,或者发生其他改变。例如,养鴿者曾以身体的长度对突胸鴿进行了連續选择,我們看到,它們的椎骨不仅在大小上而且也在数量上一般地都有所增加,而且它們的肋骨也增寬了。翻飞鴿曾以小形身体而受到选择,它們的肋骨和初級飞羽一般在数量上都減少了。 扇尾鴿曾以大而闊张的、具有多数尾羽的尾而受到选择,它們的尾椎在大小和数量上都增加了。传書鴿曾以喙的长度而受到选择,它們的舌变长了,但同喙的长度並不严格一致。 在后述这一品种以及其他大脚的品种中,鳞甲的数目比在小脚的品种中较多。还可以举出許多相似的例子。 在德国曾观察到牛的大形品种比小形品种的妊娠期較长。 关于所有种类的高度改良品种,同动物年龄有关的成熟期和生殖期都提前了,相应地它們的牙齿这时比以前发育得早了,所以使农学家們感到惊奇的是,根据牙齿的状态来判断动物年龄的古老慣例不再可靠了30。

同原部分的相关变異 同原部分有按照同样方式进行变異的倾向;这大概是可以預料到的,因为这等部分的形态和构造在胚胎发育的早期是相同的,並且在卵或子宫中暴露在相似的条件之下。 在动物的大多数种类中,身体左侧和右侧的相应的或

¹⁾畸形史,第三卷,第392頁。赫胥黎教校在一篇討論有关軟体动物的形态學論交中,釆用了同一原理来解释軟体动物神經系統的排列所表现的显著的、虽然是正常的差異,見皇家学会会报,1853年,第56頁。

²⁾ 植物畸形学原理 (Eléments de Tératologie Vég.), 1841年,第 13頁。

³⁾ 西蒙茲,关于牛、綿羊等的年龄,在艺园者記錄中引用,1854年,第588頁。

同原的器官之对称就是最简单的适当例子;不过这种对称有时会落空的,例如,冤只有一耳,雄鹿只有一角,或是許多有角綿羊在头的一侧生有一个多余的角。关于具有整齐花冠的花,所有花瓣一般都按照同一方式进行变異,例如我們在中国石竹花的复杂而对称的型式上所看到的情形就是这样;不过关于不整齐花,花瓣当然是同原的,但这种对称常常落空,例如金魚草的一些变种或菜豆(Phaseolus)的那个具有白色旗瓣的变种就是这样。

在脊椎动物中前肢和后肢是同原的,並且它們有按照同样方式进行变異的傾向,例如我們在馬和狗的长腿和短腿的族或粗腿和細腿的族中所看到的情形就是这样。 小圣喜来尔¹⁾曾指出,人类的多余指有这样一种倾向,它們不仅在左侧和右侧出現,而且也在上肢和下肢出現。梅克尔主张²⁾,当臂的肌肉在数量或排列上离开其固有的模式时,它們几乎永远模拟腿的肌肉;相反地,变異的腿的肌肉也模拟臂的正常肌肉。

在鴿和鷄的几个不同品种中,脚和外趾生有很密的羽毛,所以在喇叭鴿中,它們好象小翅膀一般。在"羽腿"的班塔姆鷄中,这两只"长靴"或羽毛从腿的外侧並且一般从两个外趾生出,按照赫維特先生的卓越的权威材料³⁾,这等羽毛超出了翅膀的长度,並且在一个例子中其实长竟达九吋半! 正如勃里斯先生向我說的,这等腿羽同初級飞羽相似,而同某些鳥、例如松鷄和鴞的腿上自然生长的纖細絨羽完全不相似。因此可以这样怀疑: 过剩的食物首先引起羽毛的过多,然后同原变異的法則导致腿羽的发育,其位置相当于翅膀的位置,即在跗和趾的外侧。下述引人注意的相关例子使我加強了这种信念,长期以来我認为它是完全不可解釋的,即在任何鴿的品种中,如果腿是生羽的,两个外趾就部分地由皮連在一起。 这两个外趾相当于我們的第三趾和第四趾⁴⁾。 且說,在鴿或任何其他鳥的翅膀中,第一指和第五指都退化了;第二指是痕迹的並且帶有所謂的"小翼羽"(bastard-wing);而第三指和第四指則由皮完全地連在一起並且被围繞起来了,这样一同形成了翅膀的末端。所以在羽脚的鴿中,不仅腿的外部表面生有一列象翼羽那样的长羽,而相当于翅膀中由皮完全連在一起的第三指和第四指的那两个外趾也变得部分地由皮連在一起了: 这样,根据同原部分相关变異的法則,我們便能理解羽腿和两个外趾間的皮膜的奇妙关連。

¹⁾ 畸形史,第一卷,第674頁。

²⁾ 小圣喜来尔引用,同前書,第635頁。

³⁾ 家鸡之書,推葛梅尔著, 1866年, 第250頁。

⁴⁾ 博物学者[[对于鳥类的指的问题排育不同的意见; 不过有几个人支持上面提出来的观点。 关于这一问题,参阅膨尔斯(E.S. Morse), 見紐約博物学会年抄(Annals of the Lyceum of Nat. Hisr. of New York), 第十卷, 1872 年, 第 16 頁。

随着鴿喙长度的增加,不仅舌的长度的增加了,同样地鼻孔长度也增加了。但是 鼻孔长度的增加恐怕同喙基的縐皮即垂肉的发育有更密切的相关,因为,如果环繞眼 睛有大量垂肉,那末眼瞼的长度就会大大增加、甚至会增加二倍。

甚至头和四肢之間在顏色上也有某种相关。例如关于馬,額部的大形白星或白斑一般伴随着白脚²⁾。关于白色的冤和牛,暗色的斑在耳尖和脚上常常同时存在。在不同品种的黑色的和黄褐色的狗中,眼上方的黄褐色斑点同黄褐色脚几乎必然同时存在。后面这些顏色相关的例子可能由于返祖,也可能由于相似变異,——这一問題以后还要談到,——但这並不一定决定它們的原始相关問題。 杰克逊 (H. W. Jackson) 告訴我說,他观察了几千只白脚的貓,他发現所有它們都是多少显著地在頸或胸的前部具有白色的标記。

玩賞冤的大耳向前垂和向下垂似乎是部分地由于肌肉的不使用,部分地由于耳的重量和长度,后者是在許多世代中由于选择而增加的。且說,随着耳的大小的增加以及方向的变换,骨听道不仅在外形、方向并且大大地在大小上有所改变了,而且整个的头骨也輕微地改变了。在"半垂耳兔"(即一只耳垂向前方的兔)中可以清楚地看到这种情形,因为它們的头骨的相对两侧並不是严格对称的。 我認为这是一个奇妙的相关事例,即硬的头和象外耳那样的如此柔軟而易弯的並且在生理学观点下如此不重要的器官是相关的。毫无疑問,这种結果大部分是由于单纯的机械作用,即由于耳的重量,这同人类嬰孩的头骨由于压力容易改变的原理是一样的。

¹⁾ 瓦克尔論近亲婚姻, 1838年, 第160頁。

²⁾ 兽医和博物学者 (The Farrier and Naturalist),第一卷, 1828 年,第 456 頁。注意过这一点的一位先生告訴我說,自面的馬約有四分之三是白腿的。

整个身体的皮以及毛、羽、蹄、角和齿的附屬物都是同原的。每一个人都知道,皮的顏色和毛的顏色通常一起变異;所以威吉尔劝告牧羊人注意公羊的嘴或舌是不是黑色的,免得羊羔不是純粹白色的。 皮肤、毛髮的顏色和皮肤的腺所放出的气味据 說 "甚至在同种的人中也是有关系的。一般說来,全身的毛在长度、細度和卷曲度上都按照同一途徑进行变異。 同一規律也适用于羽毛,例如我們看到的鷄和鴿的花边品种和卷毛品种就是这样。在普通公鷄中,頸部和腰部的羽毛永远具有特殊的形状,它們叫作长羽;且說,在波兰品种中,雌雖两性都以头上的羽簇为其特征,並且雄性的这等羽毛通过相关作用总是呈現长羽的形状。翼羽和尾羽虽然是从非同原部分发生的,但它們的长度也一齐变異;所以长翼的或短翼的鴿一般有长尾或短尾。毛領鴿的例子就更加引人注意了,因为它們的翼羽和尾羽非常之长;它們的发生显然同形成头巾的頸后部的长逆毛相关。

蹄和毛是同原的附屬物;一位謹慎的观察者亚莎拉²⁾說,在巴拉圭各种顏色的馬常常生下来就具有黑人头髮那样的卷毛。 这种特性是強烈遺传的。 但值得注意的是,这等馬的蹄"絕对同騾的蹄相象"。它們的鬃毛和尾毛一定比普通的短得多,其长度只有四到十二吋;所以在这里毛的卷和短,就象在黑人的場合中那样,显然是相关的。

关于綿羊的角,尤亚特³)說,"角的重复生长在任何品种中都沒有**发現有很大价值**;它一般伴随着长而粗的毛"。 几个热带的綿羊品种具有山羊般的角,它們身上生的是粗毛,而不是絨毛。斯特姆⁴)明确地宣称,在不同的族中,絨毛越卷曲,角越是螺旋的。 在第三章中曾經举出了其他相似的例子,在那里我們看到以毛聞名于世的壓強卜羊的祖先具有特殊形状的角。安哥拉的居民們确言⁵),"只有有角的白色山羊才具有非常被人称讚的长而卷的毛;而无角的山羊則具有比較短的毛"。根据这些例子我們可以推論毛或絨毛和角有按照相关方式发生变異的傾向⁶)。 那些試过水疗的人們都感到不断地使用冷水会刺激皮肤;凡是刺激皮肤,都有增大毛的生长的倾向,这

¹⁾ 高德龙,物种,第二卷,第217頁。

²⁾ 巴拉圭的四足兽,第二卷,第333页。

³⁾ 論羊,第142頁。

⁴⁾ 关于族,杂种 (Ueber Racen, Kreuzungen), 1825年,第 24 頁。

⁵⁾ 引自考諾利 (Conolly), 見印度原野, 2月, 1859年, 第二卷, 第266頁。

⁶⁾ 我在第三章中會說,"毛和角的改此关系如此密切,以致它們容易一齐进行变異"。威尔干斯博士把我的 話譯成"具有长而和的毛的动物一定傾向于有长而多的角"(达尔交的理論,見德国畜牧年报,1866年,第 一号),于是他公正地对于这一主张进行了爭論;不过共真正說过的話,从剛才引用的权威材料看來,我想 大概是可靠的。

在旧发炎表面附近的毛的畸形生长中已經充分地得到闡明了。 且說,罗武¹⁾ 教授相信在英国牛的不同族中,厚皮和长毛取决于它們住地气候的湿度。 这样我們便可看出潮湿的气候怎样可以影响角——首先直接影响皮和毛,其次通过相关作用影响角。 再者,无論在綿羊或牛的場合中,角的存在与否象我們即将看到的那样,通过某种相关对头骨有影响。

关于毛和齿,雅列尔先生2) 发现三只无毛"埃及狗"和一只无毛㹴的許多齿有缺 陷。 門齿、犬齿和小臼齿的損害最大、但在一种場合中、除了两侧的大形瘤状臼齿以 外,所有的齿都有缺陷。 关于人,記載过若干显著的例子³⁾: 遺传的秃头伴随着牙齿 的完全的或部分的遗传缺陷。我还可以举一个相似的例子,这是韦得勃恩(W. Wedderburn) 先生写信告訴我的,他說,在信德的一个信奉印度教的家庭中,十个人在四代 期間,上下两顎加在一起,只有四个小而弱的門齿和八个后臼齿。这样受到影响的人 在身体上只有很少的毛,並且在生命的早期头就秃了。 在炎热的天气中由于皮肤过 干,他們受到的損害也很大。 值得注意的是,沒有一个女儿受到过这样影响;这个事 实使我們想起在英格兰男人比女人非常容易禿头。上述家庭中的女儿虽然决不受影 响,但它們把这种傾向遺传給儿子。 这样的影响只在交替的世代中或在长的間隔期 間以后才出現。按照塞治威克先生的材料,在老年重新生长头髮那样罕見的場合中, 毛和齿也有同样的关連,因为这种情形"通常伴随着齿的重新生长"。 我在本卷的前 一部分中曾指出、家养公猪的长牙的大事縮小同起某种保护作用的刺毛的减少大概 密切关連: 野化了的並且完全暴露在暴风雨中的公猪的长牙重新出現大概取决干刺 毛的重現。我还可以补充一点,虽然这同我們現在的討論並沒有严格的关連,即有一 位农学者"确言,"在身体上只有很少毛的猪最容易失去它們的尾巴,这闡明了外皮构 造的衰退。同比較多毛的品种进行杂交,可以防止这种情形"。

在上述場合中,毛的缺陷和齿的数量和大小上的缺陷显然有关連。 在下述場合中,異常多量的毛同齿的缺陷和过多同样也有关連。 克劳弗得先生⁵⁾ 在緬甸宮庭中看見过一个三十岁的男人,他的全身除了手足以外滿生絲一样的直毛,在两肩和脊骨上的毛长达五吋。在降生时只有耳毛。在二十岁以前,他还沒有到达发情期或脱換乳齿;在这期間,它的上顎有五个牙齿,即四个門齿和一个犬齿,下顎有四个門齿,所有

¹⁾ 不列顛桑島的家养动物,第 307,368 頁。<u>威尔干斯</u>就德国家养动物討論了同一效果(农业周刊,第 10 號, 1869 年)。

²⁾ 动物学会会报, 1833年,第113頁。

³⁾ 塞治威克,英国和外国外科医学評論,4月,1863年,第453頁。

⁴⁾ 艺园者記錄, 1849年, 第205頁。

⁵⁾ 阿瓦宮庭出使記,第一卷,第320頁。

的牙齿都是小的。这个男人有一个女儿,生下来就有耳毛;並且毛很快地便扩展到她的全身。当余鲁船长¹⁾ 訪問緬甸宮庭时,他看到这个女儿长大了;她的象貌奇怪,就連她的鼻子也密生軟毛。象她的父亲那样,她只有門齿。 皇帝困难地花錢找到一个人同她結婚,她生下两个孩子,其中一个男孩的耳毛在十四个月的时候就长出耳外,並且还生有胡鬚。因此,这种奇怪的特性已經遗传了三代,並且外祖父和母亲都缺少臼齿,嬰孩将来是否也沒有臼齿,現在还无法說。

最近在俄国发生过一个类似的例子,一个五十岁的男人和他的儿子滿脸生毛。 亚力克·勃兰得 (Alex Brandt) 博士曾給我送来一篇有关这个例子的記載,並附有類 上的极細的毛。这个人的牙齿是不完全的,下顎只有四个門齿,上顎有两个門齿。他 的儿子約三岁,除了下顎的四个門齿以外,全无牙齿。 正如<u>勃兰得博士在信中所說</u> 的,这种情形无疑是由于毛和齿的发育受到了阻止。我們在这里看到,这等阻止一定 同普通的生活条件非常无关,因为一个俄国农民的生活同一个<u>缅甸士人的生活是完</u> 全不同的²)。

这里还有另一个多少不同的例子,是由华来斯先生根据牙医波尔兰得(Purland)博士的权威材料写信告訴我的:西班牙舞蹈家朱理亚·帕斯特拉娜(Julia Pastrana)是一位非常优雅的妇女,但她有脓密的男性鬚和多毛的額:她照过相片,並且她的剁制的皮肤在一次展覽会上展覽过;不过同我們有关系的是她的上顎和下顎有两列不整齐的牙齿,一列位于另一列的內側,波尔兰得博士取过一个模型。由于牙齿的过多,她的嘴向前突出,並且她的面容象一个大猩猩。 这等例子以及那些无毛狗的例子有力地使我們想起以下的事实,即哺乳动物的两个目——贫齿目(Edentata)和鯨目(Cetacea)——的皮肤是最異常的,它們的齿同样也是異常的,不是不完全就是过多。

视觉器官和听觉器官以及种种皮肤附屬物一般被承認是同原的;因此,这等部分容易相关地受到異常的影响。怀特·考栢(White Cowper)先生說,"在他注意到的双眼小眼症(microphthalmia)的所有場合中,他总是同时遇到齿系的不完全发育"。某些类型的盲目似乎和毛髮的顏色相伴随;一个黑头髮的男人同一个淡色头髮的女人結婚了,他們的体質都健壮,有九个孩子,生下来全是盲目的,其中五个孩子的"头髮是黑的,虹膜是褐色的並且患黑內障 (amaurosis);另外四个孩子的头髮是淡色的,虹膜是蓝色的,兼患黑內障和白內障(cataract)"。还可以举几个例子来闡明各种眼病和耳

^{1) 1855}年出使阿瓦宮庭記,第94頁。

²⁾ 我感謝圣彼得堡的巧曼 (M. Chauman), 他贈給我这个人及其子的照相,他們此后在巴黎和伦敦被展覽 过。

病之間存在着某种关連:例如,李勃瑞哈(Liebreich)說,在柏林的 241 个聋哑人中思有一种叫作色素網膜炎(pigmentary retinitis)的罕見疾病的,不下 14 人。怀特·考相先生和阿尔博士說,不能分辨顏色、即色盲症"常常伴随着相应地不能分辨音乐的声调"1)。

这里有一个更奇妙的例子:白貓如果具有蓝色的眼睛,它們几乎永远是聋的。以前我以为这是一个不变的規律,但我听到少数可信的例外。最初两个报告在 1829 年发表,是关于英国貓和波斯貓的:勃瑞牧师有一只雌的波斯貓,他說,"在同一胎的后代中,凡是象母亲那样完全是白色的小貓(蓝眼睛)都象她那样,一定是聋的:而那些在毛皮上稍微有一点色斑的小貓一定都有普通的听觉"20。 达尔文·福克斯牧师告訴我說,他在英国貓、波斯貓和丹麦貓中所看到的这种相关的事例总在十二个以上;但他补充說,"正如我几次观察到的,如果一只眼不是蓝色的,这只貓就能听。 另一方面,我从来沒有看見过具有普通顏色的眼睛的白貓是聋的"。在法国,西切尔(Sichel)30 在二十年間观察了同样的事实;他还补充一个值得注意的例子,即在四个月的末尾虹膜开始变黑时,这只貓也最初开始能听了。

貓的这个相关的例子曾經打动了許多人,都認为这是不可思議的。 蓝眼和白毛之間的关系並不異常,我們已經看到視覚器官和听覚器官常常同时受到影响。 在現在这个事例中,其原因大概在于同感覚器官有关連的神經系統的发育受到了輕微的阻止。小貓在最初生下来的九天中似乎是完全聋的,这时它們的眼睛是閉着的;我曾用火鉗和煤鏟在它們的头上弄出很响的叮鸣声音,无論在它們睡或醒的时候,都沒有产生任何影响。 千万不要这样来試驗: 靠近它們的耳朵喊叫,因为即便在睡着的时候,它們对于呼出的气也是极端敏感的。 且說,只要小貓的眼睛还是繼續閉着的时候,如膜无疑是蓝色的,因为在我看到的所有小貓中,这种顏色要保持到眼瞼开放之后的一些时候。 因此,如果我們假定視覚器官和听觉器官的发育在眼瞼关閉的阶段受到了阻止,那末眼睛大概会永远保持蓝色,而耳朵大概也不能听到声音;这样,我們就可以理解这个奇妙的例子了。然而,因为毛的顏色在降生很久以前就被决定了,並且因为眼的蓝色和毛的白色显然是有关連的,所以我們必須相信有某种根本原因在

¹⁾ 这些敘述引自塞治威克先生,見外科医学評論,7月,1861年,第198頁;4月,1863年,第455,458頁。 李勃瑞哈,在德瓦伊的血族通婚中引用,1862年,第116頁。

²⁾ 拉烏頓的博物学杂誌,第一卷,1829年,第66,178頁。再参閱卢凱斯,自然遺传,第一卷,第428頁,关于 貓的耳聋的遺传。推特 (L. Tait) 先生說,只有雄貓才这样受到影响(自然杂誌,1873年,第323頁);但 这一归納一定是輕率的。 关于雌貓,在英国的第一个例子是由勃瑞先生記載的,並且驅克斯先生告訴我 說,他會由一只藍眼白黏繁育出一些小貓,它們都是完全俸的;他还看到过其他雌貓也是这样。

³⁾ 自然科学年报,动物学部分,第三輯,1847年,第八卷,第239頁。

更加早得多的时期发生了作用。

截至現在,我們所举的相关变異性的事例主要是关于动物界的,現在我們談一談植物。叶、萼片、花瓣、雄蕊和雌蕊全是同原的。在重瓣花中,我們看到雄蕊和雌蕊按照同样方式进行变異,並且呈現花瓣的形态和颜色。 在重瓣 標斗菜 (Aquilegia vulgaris) 中,雄蕊的連續的輸 (whorls) 变成了丰饒角(comucopias),它們一层包着一层,同真的花瓣相似。 在重迭花 (hose-in-hose flowers) 中,萼片模拟花瓣。 在某些場合中,花和叶的顏色一齐变異: 在所有紫花的普通豌豆变种中,托叶上都有一个紫色标記。

豐維尔說,在藏报春 (Primula sinensis) 的变种中,花的顏色显然同叶的底面的顏色相关;他还补充說,具有流苏状花的变种儿乎永远有大而气球般的事¹⁾。 关于其他植物,叶和果实或种子的顏色一齐变異,例如美国梧桐 (sycamore) 的一个奇妙的淡色叶的变种就是这样,这个变种最近在法国被人描述过²⁾;还有紫叶的欧洲榛子也是这样,它的叶、坚果壳、环繞仁的薄皮全是紫色的³⁾。 果树学者根据实生苗的叶的大小和外观可以在某种范围内推测果实的大概性質;因为,正如凡蒙斯所說的⁴⁾,叶的变異一般伴随着花的、因而果实的某种改变。 在具有狭而弯扭的、长度一碼以上的果实的蛇甜瓜 (Serpent melon) 中,植株的茎、雌花的梗和叶的中央裂片全是显著地长形的。另一方面,具有矮小莖的南瓜屬 (Cucurbita) 的几个变种,就象譜丹所說的那样,全都生有同样特殊形状的叶子。莫烏先生告訴我說,具有短縮或不完全的叶的腥紅色天竺葵的所有变种都有短縮的花:"华美" (Brilliant) 和它的亲本"矮人" (Tom Thumb) 之間的差異是关于这一点的良好事例。利核⁵⁾ 描述过一个关于柑橘变种的奇妙例子:这个变种在幼小新梢上生出具有有翅叶柄的圆形叶子,其后在长的、但无翅的叶柄上生出长形叶子;可以怀疑这个例子同果实在发育期間所发生的形态和性質的显著变化有关連。

在下述事例中,我們看到花瓣的顏色和它的形态显然是相关的,並且这都取决于季节的性質。精通这个問題的一位观察者写道⁶⁾, "在 1842 年我 注 意 到,凡是具有任何腥紅色傾向的大丽菊都有深的缺口,——的确,缺口大到这样的程度,以致它們

¹⁾ 科学界評論, 6月5日, 1869年, 第430頁。

²⁾ 艺园者記錄, 1864年, 第1202頁。

³⁾ 沃尔洛特举出几个其他事例,变种,1865年,第72頁。

⁴⁾ 果树 (Arbres Fruitiers), 1836年,第二卷,第 204,226 頁。

⁵⁾ 博物館年报,第二十卷,第 188 頁。

⁶⁾ 艺园者記錄, 1843年, 第877頁。

的花瓣象一个鋸;在某些事例中,这种缺刻深达四分之一吋"。再者,大丽菊的花的尖端如果同其余部分的花色不一样,它們就是很不稳定的;在相当的年代中有些花、甚至全部的花都会变成一致颜色的;已經观察了几个变种¹⁾:当这种情形发生时,花瓣就大大地变长了並且失去了固有的形状。然而,这种情形可能是由于在颜色和形态上返归原始物种的原故。

在这一关于相关作用的討論中,截至現在我們所取用的例子都是我們能夠部分地理解其連結关系的;不过現在我将举一些例子,在这里我們甚至无法推測或者只能模糊地知道这种关系的性質。 小圣喜来尔在他的論"畸形"的著作中主张²⁾ "某些畸形很少是同时存在的,其他畸形則常常是同时存在的,还有一些畸形差不多是常常同时存在的,虽然它們之間有重大性質的差異並且看来好象是彼此完全无关的"。我們在某些疾病中看到多少相似的情形:例如,患了一种罕見的副腎(renal capsules)疾病(副腎的机能还不知道),皮肤就会变成青銅色;患有遺传性的梅毒,正如帕給特爵士向我說的,乳齿和永久齿便呈現一种特殊的形状。罗列斯頓教授也向我說,和結核病的肺內沉淀相关,門齿时常具有維管环。 在肺結核和黄萎病(cyanosis)的其他例子中,指甲和指端变成为槲果般的棍状。 我相信对于这等以及許多其他相关的疾病的例子,还沒有提供过任何解釋。

此以前根据推葛梅尔先生的权威材料所提出的事实更加奇妙和更加不易理解的,还能有嗎?这就是,所有品种的幼小鴿子当成熟以后如果具有白色、黄色、銀青色或黄棕色的羽衣,它們在孵化出来的时候几乎都是无毛的;而其他顏色的鴿子在最初孵化时却被有丰滿的絨毛。白色孔雀,正如在英国和法国所看到的那样³⁾,並且象我自己所看到的那样,都小于普通顏色的种类;这种情形不能用白化(albinism)永远伴随着体質衰弱的那种信念来解釋;因为白色的或白化的鼹鼠一般都大于普通种类。

轉来談一談更加重要的性状: 彭巴草原的尼亚太牛以它們的短額、向上翻的嘴和弯曲的下顎而引人注意。在头骨中,鼻骨和前頜骨大大縮短了,上頜骨同鼻骨一点也不連接,並且所有的骨都微有改变,甚至枕骨的平面也是如此。根据今后将要举出的有关狗的相似例子看来,鼻骨和鄰接骨的縮短大概是头骨的其他改变——包括下顎的向上弯曲——的近因(proximate cause),虽然我們还不能查明这等变化所賴以完成的步驟。

¹⁾ 艺园者記錄, 1845年, 第102頁。

²⁾ 畸形史,第三卷,第402頁。再参閱达列斯特,关于产生畸形的條件的研究,1863年,第16,48頁。

³⁾ 狄克逊牧师,观赏鸡, 1848年,第111頁;小圣喜来尔,畸形史,第一卷,第211頁。

波兰鷄在头上有一个大羽簇:並且它們的头骨穿有无数小孔,所以用一根針就可刺入脑中而一点也不触及头骨。 从羽冠鴨和羽冠鵝同样也有穿孔的头骨看来,这种骨的缺陷显然同羽簇有某种关連。有些作者大概把这个例子视为平衡或补偿。我在討論鷄的那一章中已經闡明,波兰鷄的羽簇最初大概是小的,由于連續的选择它变大了,並且这时位于一个纖維質块之上;最后,它就变得益发大了,头骨本身也变得愈益隆起,直到它获得現在这样的異常构造。通过和头骨隆起的相关,前颌骨和鼻骨的形状、甚至它們的相互接合、鼻孔的形状、額头的寬度、額骨和鱗骨的后面侧突起的形状以及耳的骨內腔的方向全都改变了。头骨的內部形状和脑髓的整个形状同样地也以真正不可思議的方式改变了。

在<u>波兰</u>鷄的这个例子之后,再提出以前所举出的有关以下情形的細节大概是多 余的:即在鷄的各个不同品种中,肉冠的形状变化影响了头骨,通过相关作用,这成为 羽冠,头骨表面的隆起和低陷的原因。

关于我們的牛和綿羊,角和头骨的大小並且和額骨的形状有密切的关連;例如克林¹⁾发现有角公羊的头骨比同龄的无角公羊的头骨重五倍。当牛变成无角的时候,額骨"向着后头部的寬度大大地縮減了";並且骨板之間的腔"也不那样深了,而且它們沒有超出額骨"²⁾。

我們最好在这里暫时停下来看一看相关的变異性的效果、部分的增強使用的效果以及通过自然选择的所謂自发变異的积累效果在許多場合中怎样难解难分混淆在一起了。我們可以借用一个赫伯特·斯賓塞先生的例子,他說,当爱尔兰糜获得它的重达一百磅以上的巨大角的时候,构造的很多相互調和的变化大概是不可避免的一这就是說,为了支持住角,头骨变厚了;頸椎加強了,韧帶也加強了;为了支持住頸,胸椎变大了,前腿和脚也更強有力了;所有这等部分都被供給了适当的肌肉、血管和神經。 那末,构造的这等令人讚叹的相互調和的变化是怎样获得的呢? 按照我所主张的学說,雄麋的角是通过性选择而慢慢得到的——这就是說,由于装备最好的雄麋打敗了装备最坏的雄麋,並且遺留下大量的后代。但是,身体的几个部分同时发生变異則毫无必要。每一个雄鹿都表現有个体的特征,在同一地区内,那些具有稍微大一点的角、或比較強的頸、或比較強的身体、或勇气最大的雄鹿将会得到大量的雌鹿,因而可以有大量的后代。 它們的后代将会或多或少地遺传有这等同样的性質,它們

¹⁾ 家养动物的繁育, 1829年, 第6頁。

²⁾ 尤亚特論牛, 1843年, 第283頁。

将会偶尔地彼此进行变配,或者同其他按照某种有利途徑发生变異的个体进行变配;在它們的后代中,那些在任何方面被賦与最优良性質的个体将会繼續繁殖;这样前进下去,有时在这一个方向,有时在那一个方向,永远朝着雄麋的相互調和得最好的构造前进。为了把这一点搞清楚,讓我們回想一下在第十二章中所举出的一种情形,即竟跑馬和輓馬达到今天这样优良状态所經过的大概步驟;如果我們能夠看到其中一种馬和早期未改进的祖先之間的中間类型的整个系列,我們就会看到大量这样的动物:它們的整个构造在每一个世代都有不等的改进,有时在这一点改进得多一些,有时在那一点改进得多一些,但总的看来,它們在性状上逐漸接近我們現在的竟跑馬或輓馬,这等馬在一种場合中非常令人讚叹地适于快跑,而在另一种場合中則非常令人讚叹地适于拉車。

虽然自然选择会象上述那样地¹⁾ 把雄麋的現在构造給予它,但使用的遗传效果以及各个部分的相互作用的遗传的效果大概同等重要或者更加重要。当角逐漸增加其重量时,頸肌以及頸肌所附着的骨大概在大小和力量上也增加了;这等部分大概又会对于身体和腿发生作用。 我們千万不要忽略以下的事实,即头骨和四肢的某些部分,根据类推来判断,从最初大概就有按照相关方式发生变異的傾向。 角的增加重量也会直接影响头骨,这同以下的情形是一样的: 当狗的腿骨被移去一根之后,势必支持全身重量的另一根就会增粗。 但从有关无角牛和有角牛的事实看来,角和头骨大概通过相关原理立刻彼此发生作用。 最后,增大了的肌肉和骨的此后消耗大概需要血液的增多供給,因而需要食物的增多供給;这又需要咀嚼、消化、呼吸以及排泄各种能力的增大。

和体質特性相关的顏色

有一种古老的信念: 肤色和体質之間有一种关連: 我发現有些最高的权威者直到 今天还相信这一点²⁾。 例如, <u>具斗</u> (Beddoe) 用他的表闡明了³⁾毛髮、眼睛、皮肤的顏 色和易患肺病之間有一种关系存在。 有人断言⁴⁾,在侵入俄国的法国軍队中,来自欧

¹⁾ 赫伯特·斯賓塞先生採用了不同的观点(生物学原理,1864年,第一卷,第 452,468頁);他在某一地方說 道,"我們有理由相信,当基礎的能力增加得愈来愈快的时候,並且当在任何旣定的机能中相互合作的器 實增多得愈来愈快的时候,通过自然選擇的間接平衡所具有的产生特殊适应性的能力就愈来愈小:能够 完全作到的只是維持体質对于生活條件的一般适应而已"。这种观点——自然選擇在改变高等动物中能够作的不多——使我感到驚奇,因为人工選擇无疑地对于家养四足兽和家养鳥类起了很大作用。

²⁾ 波洛斯浦尔·卢凱斯显然不相信这种关連;自然遺传, 第二卷, 第88—94頁。

³⁾ 英国医学学报, 1862年, 第 433 頁。

⁴⁾ 脑丁, 医学地理 (Géograph. Médicale), 第一卷, 第 406 頁。

洲南部的具有暗色皮肤的兵士比来自北方的淡色皮肤的兵士可以**被好地抵抗严寒**; 不过这等敍述无疑是容易有錯誤的。

在討論"洗怪"的第二章中*,我已举出几个例子来証明在动物和植物的場合中商 色的差異和体質的差異是相关的,这从对于某些疾病的較大或較小的免疫性,从对于 客牛植物或客牛动物的攻击的較大或較小的免疫性,从对于日灼的較大或較小的不 减性,以及从对于某些毒物作用的較大或較小的不感性得到了說明。 当任何一个变 种的所有个体都具有这种性質的免疫性时,我們不知道这和它們的顏色有任何程度 的相关;但是当同一物种的几个同样顏色的变种具有这样的特性时,而其他顏色的变 种却不能这样免疫,那末我們必須相信这种相关是存在的。例如,在美国許多种类的 紫色果实的李远比綠色果实或黃色果实的变种容易感染某一种病。 另一方面,各种 黄色果肉的桃远比白色果肉的变种容易受到另一种病的为害。在莫里求斯、白色甘 **推沅比紅色**甘蔗容易咸染一种特殊病。 白色的玉葱和馬鞭草最容易咸染露瞿病;在 西班牙、綠色果实的葡萄比其他顏色的变种受到葡萄病的为害較大。 暗色的天竺葵 和馬鞭草所受到的日灼比其他顏色的变种为甚。紅皮小麦据信比白皮小麦的抗性較 強; 在荷兰的一个特殊的冬季里, 紅花洋水仙比其他顏色的变种受到了更大的損害。 关于动物,白色的㹴受到犬瘟热病的为害最甚,白色的雛鷄受到气管中寄生虫的为害 最甚,白色的猪受到日灼的为害最甚,白色的牛受到蝇的为害最甚;但在法国产生白 革的蚕的幼虫却比产生黄絲的蚕的幼虫受到致死的寄生菌为害較小。

同顏色有关連的对于某些植物性毒物的不感性的例子更加有趣,並且在目前来說,这还是完全不能解釋的。 我已經根据外曼教授的权威材料提出了一个显著的事例,即所有的猪,除了黑色的以外,由于在維基尼亚吃了赤根而受到严重的为害。 按照斯皮諾拉(Spinola)和其他人的材料¹⁾,荞麦(Polygonum fagopyrum)在开花时对于白色的或白色斑点的猪高度有害,如果这等猪是暴露在太阳的炎热之下的,但对于黑色的猪却完全无害。按照两項記載,在西西里有一种金絲桃(Hypericum crispum)只对白色的綿羊有毒害;但按照利斯(Lecce)的材料这种植物只在生長于沼地时才有毒;这並不是不可能的,因为我們知道植物的生活条件可以多么容易地对于它們的毒質发生影响。

^{*} 即本書的第二十一章 --- 譯者。

¹⁾这个事实以及下述的例子,当沒有說到同此相反的情形时,都是引自霍依兴格的一篇很引人注意的論文, 見医學杂誌,5月,1846年,第277頁。 沙特加斯特(Settegast)說,白色的或白色斑点的绵羊由于吃了 蓄麦,像猪那样地受到損害,甚至死去;而黑毛的或暗色毛的个体則一点不受影响。

有关波斯东部发表过三項报告,其中指出白色的和白色斑点的馬吃了发霉的和由害虫分泌的蜜所沾染的野豌豆就会受到重大損害;生有白毛的每一片皮肤都会发炎而腐烂。罗得威尔(Rodwell) 牧师告訴我說,他父亲在一片野豌豆地上放牧了約十五匹二輪車馬,这些野豌豆部分地長滿了黑蚜虫,毫无疑問,这等部分会沾有蚜虫分泌的蜜而且可能是发霉的;这些馬除了两匹以外都是栗色的,並且在面部和骹部有白斑,只有这等白色的部分肿起而結下发炎的痂。 那两匹沒有白斑的馬則完全沒有受到損害。在顧恩西,当馬吃了欧洲繖形芹(Aethusa cynapium)之后,有时会大泻;这种植物"对于鼻和唇有特殊的影响,使它們深深裂开並发生潰瘍,特別是对于白嘴的馬更加如此"1)。 关于牛,尤亚特和埃尔特(Erdt)发表过的一些例子指出,同任何毒物的作用无关,使体質受到很大扰乱的皮肤病感染了每一处生有白毛的地方(在一事例中是暴露在炎热太阳下之后),但身体的其他部分则完全沒有感染。关于馬,也观察到相似的例子²⁾。

这样,我們便可知道,不仅生有白毛的皮肤同生有其他任何顏色的毛的皮肤显著 地有差異,而且某种体質上的巨大差異一定也同毛的顏色有关;因为在上述場合中, 植物性毒物致使了所有白色的或白色斑点的动物发烧、头部肿胀以及其他病症而至 死亡。

¹⁾ 摩哥弗特 (Mogford) 先生, 兽医, 在大地中引用, 1月22日, 1861年, 第545頁。

²⁾ 爱丁堡兽医学报 (Edinburgh Veterinary Journal), 10 月, 1860 年,第 347 頁。

第二十六章 变異的法則(續)——提要

同原部分的融合 一重复的和同原的部分的变异性——生长的补偿——机械的 压力——当誘发变异时,同軸有关的芽的相对位置以及子房中种子的相对位置——近似的或平行的变异——三章的提要

同原部分的融合 老圣喜来尔以前提出过他所謂的"彼此亲和的法則"(la loi de l'affinité de soi pour soi),他的儿子小圣喜来尔就動物界的畸形1) 幷且靡坤·丹頓就 畸形的植物討論了並且解說了这一法則。 这一法則的含义似乎是,同原部分实际上 彼此吸引然后結合。毫无疑問,有許多这样不可思議的例子,这等部分密切地融合在 一起了。在双头怪物中恐怕最好地看到了这种情形、它的頂端和頂端、或者脸和脸、 或者两面神般地背面和背面、或者斜着侧面和侧面結合起来了。 在一个微斜地脸和 脸儿乎結合起来的双头事例中,四只耳朵都是发育的,並且在一侧是一个完全的脸, 这个脸显然是由于两个半脸的融合而被形成的。当两个体部或两个头结合起来的时 候,每一根骨、肌肉、血管和神經好象都找到了它的伙伴、並且同它完全融合起来了。 勒包尔特(Lereboullet)2) 仔細研究过魚类的双头畸形的发育,他在十五个事例中观察 了两个头逐漸結合成一个头的步驟。大多数有才能的判断者現在都認为,在所有这等 場合中同原部份彼此並不吸引,但劳恩先生3) 說, "因为这种結合是在不同器官分化 以前发生的, 所以它們是彼此連續地被形成的"。他又說, 已經分化了的器官大概在 任何場合中都不会同同原器官結合起来。达列斯特"並沒有十分肯定地反对"彼此 亲和的法則",但他的結論却是、"如果結合的胚屬于同一个卵、畸形的形成就是完全 可以理解的;融合是在形成的同一时期,在胚的最初生活时期以外不营結合,細胞或 器官都是由一样的元体質构成的"。

同原部分的畸形融合无論是以怎样的方式来完成的,这等例子对于以下的情形 总是投射了光明,即常常有些器官在胚胎期間是双重的(在同綱的其他低等成員的一 生中都是如此),但此后在正常过程中結合成单独一个中間器官了。关于植物界,摩

¹⁾ 畸形史, 1832年, 第一卷, 第22, 537-556頁; 第三卷, 第462頁。

²⁾ 报告書, 1855年,第855,1029頁。

³⁾ 皇家外科協会博物館畸形类目錄 (Catalogue of the Teratological Series in the Museum of the R. Coll. of Surgeons), 1872 年, 第 16 頁。

⁴⁾ 动物学实驗文存 (Archives de Zoolog. Expèr.), 1 月, 1874 年, 第78 頁。

坤·丹頓¹⁾ 举出了一长系列的例子,它們闡明了象叶、花瓣、雄蕊、雌蕊和花那样的同原部分以及象芽和果实那样的聚合的同原部分正常地或異常地以完全的对称多么常常地混合在一起了。

重复的和同原的部分的变異性 小圣喜来尔主张²⁾,当任何部分或器官在同一動物中重复許多次时,它們特別容易在数量和构造上发生变異。关于数量,我認为这种主张已經完全得到了确認;不过它的証据主要是来自在自然状况下生活的生物,这一点同我們在这里所討論的沒有关系。 当象椎骨或牙齿、魚类的鰭刺、或鳥类的尾羽、或花瓣、雄蕊、或种子是非常多的时候,其数量一般是容易变異的。 关于重复部分的构造,有关变異性的証据並不那样具有决定性;但就可以相信的来說,这个事实大概决定于重复部分的生理重要性不如单一部分的大;因而它們的构造所受到的自然选择的監护就比較不严格。

生長的补價或平衡 哥德 (Goethe) 和老圣喜来尔几乎同时提出了这一法則,並把它应用于自然的物种。它的含义是,当大量的有机物質被用来建造某一部分时,其他部分就要陷于飢餓而变得縮小了。 若干作者,特別是植物学者,都相信这一法則;还有一些人則反对它。就我所能判断的来說,它时常是适用的;不过它的重要性大概被夸大了。 几乎不可能把这种补偿的假定效果和可能导致某一部分增大、同时另一部分縮小的长期不断的选择效果加以区别。 无論如何,一个器官在一个鄰接器官並不相应縮小的情况下无疑可以大大地增大。回头来看一看以前提出的那个爱尔兰麋的例証,那末可以这样問:由于角的巨大发育,什么部分受到了牺牲呢?

已經看到,生存斗爭在家养产物中並不剧烈,結果生长的經济原理就很少起作用,所以我們不应期望在它們当中屡屡找到补偿的証据。然而我們还有一些这等例子。摩坤·丹頓描述过一种畸形的豆³),它的托叶非常发达,因而它的小叶显然完全退化了;这个例子是有趣的,因为它代表了一种山黧豆(Lathyrus aphaca)的自然状态,这种山黧豆的托叶是大形的,叶縮小成仅仅一条綫,作为卷須来发生作用。 得康多尔¹)曾說,小根的蘿蔔(Raphanus sativus)产生很多含油量大的种子,而那些大根的蘿蔔种子的含油量並不大;芸苔属的一个物种(Brassica asperifolia)也是如此。按照諧丹

¹⁾ 植物畸形学 (Tératologie Vég.), 1841 年, 第三卷。

²⁾ 畸形史, 第三卷, 第4,5,6頁。

³⁾ 植物畸形学,第156頁。再参閱書的著作攀緣植物的运动和习性,第二版,1875年,第202頁。

⁴⁾ 博物館紀要,第八卷,第178頁。

的材料,大果实的西葫蘆产量小;而小果实的西葫蘆則产量大。 最后,我在十八章中 曾試图闡明,在許多栽培植物中,不自然的处理会抑制生殖器官的充分的和固有的作 用,这样它們便或多或少成为不稔的了;因而在补偿的情况下果实便大大地增大了, 並且重瓣花的花瓣在数量上大大增加了。

关于動物,已經发現育成在一种大量泌乳之后还能充分长肥的母牛是困难的。关于具有大形羽冠和須的鷄,它們的肉冠和肉垂一般都大大地縮小了;虽然对于这一规律还有例外。 扇尾鴿的油腺的完全缺如可能同它們的尾的巨大发育有关連。

作为变化的一种原因的机械压力 在某些少数場合申有理由可以相信,仅仅机械的压力就影响了某些构造。弗洛利克和韦勃尔¹⁾主张,母亲的骨盆形状对于人类的头形有影响。 不同鳥的腎脏在形状上大不相同,圣安季(St. Ange)²⁾ 相信这是由骨盆形状所决定的,毫无疑問,骨盆的形状同运动能力又有密切的关系。 蛇的内脏位置同其他脊椎动物的内脏位置比較起来,是美妙地被轉換了;有些作者把这种情形归因于它們的身体的伸长: 但正如在許多上述場合中那样,在这里要把这种直接结果和自然选择所引起的结果分清是不可能的。 高德龙主张³⁾,在紫堇屬 (Corydalis) 中花的內距的退化是由于芽在地下时的很早生长期間彼此紧压並且向茎紧压而引起的。有些植物学者認为,无論种子的或花冠的形状的奇特差異以及某些菊科植物和繖形科植物的內小花和外小花的奇特差異,都是由于內小花所蒙受的那种压力所致;不过这个結論是可怀疑的。

刚才举出的那些事实同家养产物沒有关系,所以同我們沒有严格的关系。 不过这里有一个比較适当的例子: 經動⁴⁾曾指出,在狗的短面族中,某些臼齿的位置同其他狗的、特別是同长嘴狗的臼齿位置稍有差異;正如他所說的,齿的排列的任何遺传的变化,就其在分类上的重要性来看,都是值得注意的。这种位置上的差異是由于某些面骨的縮短以及因此而引起的缺少空間所致;而这种縮短則是由于胚胎时期的輀骨的特殊而異常的状态所致。

¹⁾ 波利卡得,人类体格史, 1851年, 第一卷, 第324頁。

²⁾ 自然科学年报,第一輯,第十九卷,第 327 頁。

³⁾ 报告書, 12月, 1864年, 第1039頁。

⁴⁾ 胎儿佝僂病,韦尔包克尔医学杂誌 (Würzburger Medicin Zeit.chrift), 1860年,第一卷,第 265 頁。

, 当誘发变異时, 同軸有关的花的相对位置 以及子房中种子的相对位置

在第十三章中对于各种反常整齐花已經有所描述,并且闡明了它們的产生不是由于发育受到阻止就是由于返归原始状态。壓坤·丹頓會說,主茎頂端或側枝頂端上的花比边上的花容易成为反常整齐的¹⁾;他并且在其他事例中引用了鐘形石蚕(Teucrium campanulatum)作为例証。关于我栽培的另一种唇形科植物、即黄色大天使花(Galeobdolon luteum),反常整齐花永远产于頂端,那里通常是不开花的。在天竺葵屬中,往往花簇中只有一朵花是反常整齐的,当这种情形发生时,我曾在几年中不可避免地观察到这朵花一定是中央花。这种情形如此屡屡发生,以致一位观察者²⁾举出了同时开花的十个变种的名称,每一个变种的中央花都是反常整齐的。在花簇中偶尔有一朵以上的花是反常整齐的,这时附加的花当然是侧生的。这等花是有趣的,因为它們闡明了整个构造何等彼此相关。在普通天竺葵中上萼片长成为附着在花梗的蜜腺;两个上花瓣在形状上稍微不同于三个下花瓣,并且是暗色的;雄蕊渐次变长并且向上翻。在反常整齐花中,蜜腺退化了;所有花瓣的形状和顏色都变得相似了;雄蕊的数目一般減少了而且成为直形的,所以整个的花间其近似屬辖牛儿苗(Erodium)的花相似。当两个花瓣的仅仅一个失去它的暗色标誌时,这等变化之間的相关便得到了充分的闡明,因为在这种場合中,蜜腺并不完全退化,但其长度通常是縮短了。³⁾

摩兰會經描述过⁴⁾荷包花屬(Calceolaria)的一种奇异的瓶状花,其长度几乎达四时,而且差不多是完全反常整齐的;它生长在植物的頂端,每一边生有一朶正常花;威斯特烏得教授也會描述过⁵⁾ 三杂相似的反常整齐花,它們全都佔据着花枝的中央位置。在兰科植物的一屬——蝴蝶兰(Phalaenopsis)中,已經看到其頂花变成反常整齐的了。

在金鏈花中,我观察到总状花序的約四分之一产生了失去蝶形构造的頂花。在同一总状花序上的几乎所有其他花凋謝之后,它們才开。 最完全反常整齐花的例子是六个花瓣各都具有旗瓣縱縫条那样的黑色縱縫条。 定骨瓣(Keel)似乎比其他花瓣能够抵抗这种变化。 <u>丢楚謝</u>(Dutrochet)曾描述过6)一个法国的完全一样的例子,我相信,关于金鏈花的反常整齐花,这是被記載下来的仅有两个事例。 <u>丢楚謝</u>說,金鏈花的总状花序原来不产生頂花,所以(正如在大天使花的場合中那样)它們的位置以及构造都是畸形的,并且无疑在某种方式上是相关的。 <u>馬斯特</u>博士大略地描述过另一种豆科植物7⁷,即三叶草的一个物种,这个物种的最上方的中央花是整齐的,即失去了它們的蝶形构造。在某些这等植物中,其花序也是多育的。

最后,柳穿魚屬(Linaria)产生两种反常整齐花,一种是单瓣的,另一种全部生距。正如諾丹所 說的⁸⁾,这两种类型常常发生在同一植株上,在这样場合中有距的类型几乎一定生在穗状花序的 頂端。

¹⁾ 植物畸形学,第192頁。

²⁾ 园艺学报,7月2日,1861年,第253頁。

³⁾ 值得試驗一下用同样的花粉使天竺亮的中央花和侧花受精,当然要使它們同昆虫隔离:然后分別播种它們的种子,看一看究竟是这一区还是那一区的实生苗变异最大。

⁴⁾ 在园艺学报中引用, 2月24日, 1863年, 第152頁。

⁵⁾ 艺园者記錄, 1866年, 第612頁。关于蝴蝶兰, 参閱同杂誌, 1867年, 第211頁。

⁶⁾ 植物的……报告, 1837年, 第二卷, 第170頁。

⁷⁾ 园艺学报,7月23日,1861年,第311頁。

⁸⁾ 博物館新报,第一卷,137页。

頂花或中央花比其他花更常常成为反常整齐的倾向大概是由于"枝条末端的芽所接受的树液 最多;由它长成的枝条比位于下部的枝条较强壮"门。我曾討論过反常整齐北和中央位置的关連。 我这样作部分地因为某些少数植物据知正常地产生一朶不同于侧花构造的頂花; 但主要地还是因 为以下的情形,在这种情形中我們可以看到一种同同一位置相关連的变异性或返祖的傾向。一位 伟大的黄色报春花(Auriculas)的判断者2)說道,当边花开放时,它相当肯定地可以保持它的性状; 如果在植株的中央部分开花,那末不管其边緣的顏色怎样,"它們总不同于原来的种类"。这是一 个如此有名的事实, 以致一些花卉栽培者按时地揑掉中央花簇。 在高度改良的变种中, 中央花簇 离开其固有模式是否由于返祖,我不知道。 道勃瑞恩(Dombrain)先生主张,不論各个变种中的不 完善具有怎样最普通的性質,中央花簇的这种情形一般是被誇大了。例如,一个变种"时常有在花 的中央产生綠色小花的缺点",而在中央花中这等小花变得非常大。在道勃瑞恩先生送給我的一 些中央花中,花的所有器官的构造都是痕迹的,形小,并且是綠色的,所以再向前变化一点,所有的 花大概都会轉变为小叶。 在这种場合中我們清楚地看到一种再育 (prolification) 的傾向——对于 沒有研究过植物学的人們,我願意解释一下这个术語,它的意义是,从另一來花产生出一个校条、 或一朶花、或花序。 那末,馬斯特博士30說,一种植物的中央的或最上方的花一般最容易再育。例 如,在黄色报春花的变种中,它們的固有性状的消失和再育的傾向,还有反常整齐花的再育的傾 向,全是彼此有关連的,这不是由于发育受到阻止就是由于返归以前的状态。

下面是一个更有趣的例子: 梅茲加⁴⁾ 在德国栽培了几种引自美国炎热地方的玉蜀黍,正如以前所描述的,他发现在两三代中<u>毅</u>粒的形状、大小和顏色都发生了重大变化;关于两个族,他明确地說道,当各个穗上的下部穀粒还保持其固有的性状时,最上方的穀粒已經呈現了所有穀粒在第三代中所获得的那种性状。因为我們不知道玉蜀黍的原始祖先,所以我們还不能說出这等变化同返祖是否有什么关連。

在下述一些場合中,返顧发生了作用,并且是由蘭中的种子位圖來決定的。 藍色皇家 豌豆 (Blue Imperial pea) 是蓝色普魯士豌豆 (Blue Prussian pea) 的后代,并且它們的种子比亲本的为大,而且莢較寬。 堪特巴利的馬斯特先生是一位謹慎的观察者和豌豆新品种的培育者,他說50,蓝色皇家豌豆总是有一种返归原始祖先的强烈傾向,这种傾向 "是按照这样的方式发生的: 莢中最后的 (即最上方的) 豆粒往往比其余的豆粒小得多; 如果細心地采集这等小形种子并且隔离播种,很多小形种子比荚的其余部分的种子在比例上将会更多地返归它們的原始祖先"。再者,賈得 (M. Chatè)60 說道,在培育实生的植株时,他成功地得到了百分之八十的枝条都开重鷞花,只留下少数的次生枝 (secondary branches) 結子; 但他接着又說,"在选出种子的时候,荚的上部种子应被分开并且放在旁边,因为已經确定,位于荚的这个部分的种子所长出的植株将开百分之八十的单瓣花"。那末,从重瓣植株的种子产生出单瓣植株显然是一种返祖的情形。 后面这些事实以及中央位置同 反常整齐花和再育之間的关連以一种有趣的方式闡明了,多么微小的一种差异——即流向植物的某一部分的体液多一点或少一点——就会决定构造的重要变化。

¹⁾ 雨果·馮廢尔 (Hugo Von Mohl), 植物的細胞,英露本, 1852年, 第76頁。

²⁾ 道勃瑞恩牧师,园艺学报, 1861年, 6月4日, 第174頁; 6月25日, 第234頁; 1862年, 4月29日, 第

³⁾ 林納学会会报,第二十三卷, 1861年,第360頁。

⁴⁾ 禾谷类, 1845年, 第208, 209 頁。

⁵⁾ 艺园者記錄, 1850年, 第198頁。

⁶⁾ 在艺园者記錄中引用, 1866年, 第74頁。

相似的或平行的变異 我借这个术語来表示,相似的性状不时出現于从一个物种传下来的几个变种或族並且比較罕見地出現于大不相同的物种的后代。我們在这里考虑的並不是象以前所討論的变異原因,而是变異結果;不过在任何部分都不如在这里提出这一討論更方便。相似变異的例子,就其起原来說,如果不顧細小的区分,可以分为主要的两类;第一,由于对相似体質的有机体发生作用的未知原因,因而按照相似方式进行变異;第二,由于重現多少遙远一点的祖先所拥有的性状。不过这两种主要的区分常常只能臆測地被划出,並且象我們即将看到的那样,它們漸次互变。

在不是由于返祖的第一类相似变异中,我們有許多这样的例子: 屬于完全异目的树产生了垂枝的和直生的变种。山毛櫸、欧洲榛子和刺蘖产生了紫叶的变种;并且正如勃恩哈狄 (Bernhardi)¹⁾ 所說的,大量的最不相同的植物产生了具有深缺刻叶或条裂叶的变种。从芸苔屬 (Brassica) 的三个不同物种传下来的变种,它們的茎、即所謂根都扩大为球状块。油桃是桃的后代;桃和油桃的变种在果实的白色的、紅色的或黃色的果內方面——在黏核或离核方面——在北的大或小方面——在叶的锯齿状或圆齿状、具有球形腺或臀形腺或完全不具腺的方面提供了显著的平行現象。应当指出,油桃的各个变种的性状并不是来自相应的桃的变种。一个密切近似的屬、即否的若干变种也是按照差不多一样的平行方式而彼此有所差异。沒有任何理由可以相信任何这等变种仅仅重新获得了长久亡失的性状;在大多数变种中肯定不是这样的。

南瓜屬的三个物种产生了大量的族,它們的性状如此密切一致,以致象譜丹所主张的那样,它們可以被排列在几乎严格平行的系列中。甜瓜的若干变种是有趣的,因为它們在重要性状上同同屬的或近似屬的其他物种相似;例如,有一个变种的果实无論外在地和內在地同一个完全不同的物种、即胡瓜(cucumber)的果实如此相似,以致几乎它們沒有区別;另一个变种具有圓筒状的果实,扭曲得象一条蛇;另一个变种的种子附着在果肉上;还有一个变种的果实在成熟时突然裂开而成为粉碎;所有这等高度显著的特性都是屬于近似屬的物种的特性。我們用返归单独一个古老类型几乎不能解释如此众多的异常性状的出現;但我們必須相信,同科的一切成員都从一个早期祖先那里遺传了几乎一样的体質。我們的穀类以及許多其他植物提供了相似的例子。

关于动物,同直接返祖无关的相似变异的例子比較少。 我們在巴儿狗 (pug-dog) 和 叭 刺 狗 (bull-dog) 那样短嘴族之間的相似上多少看到了这种情形;在鷄、鴿和金絲雀的羽脚族中,在表現同样色調的最不相同的馬的族中,在具有黃褐色的眼点和脚的一切黑黃褐色的狗中,我們也多少看到了这种情形,不过在后一种場合中,返祖可能起了一部分作用。 罗武曾就²⁾,牛的若干变种"被盖上了床单",一一这就是說,环繞它們的体部有一条寬闊的带班,就象一条床单那样;这种性状是强烈遗传的,并且有时是从杂交中发生的;在返归早期模式上这可能是第一步,因为正如在第三章中所闡明的那样,具有暗色的耳、脚和尾端的白牛以前曾經存在过,并且現在以野化的或半野化的状态存在于世界上的几个地方。

在我們的第二个主要的类中,即在由于返祖的相似变异这一类中,鴿子提供了最好的实例。在 所有最不相同的品种中,亚变种不时表現有同原种岩鴿——具有黑翼带、白腰和带斑的尾等等—— 完全一样的顏色;沒有人会怀疑这等性状是由于返祖。关于一些細节也是如此;浮粉鴿的尾原来是

¹⁾ 对于植物种的理解 (Ueber den Begriff der Pflanzenart), 1834年, 第 14 頁。

²⁾ 家養动物, 1845年, 第351頁。

白色的,但不时有一只浮羽鴿生下来就具有暗色的和带斑的尾;突胸鴿的初級飞羽原来是白色的,但时常出現一只"劍状囊"的突胸鴿,这就是說,少数初級飞羽成为暗色的了;我們在这等場合中看到岩鴿所固有的、但对該品种来說則是一种新的性状,它們的出現显然是由于返祖。某些家养变种的翼带不象岩鴿那样是单純黑色的而是美丽地鑲着不同色唇的边緣,这时它們同同科的某些自然物种(例如 Phaps chalcoptera)的翼带表現了显著的相似;从該科的所有物种都是由同一远直传下来的并且具有按照同一方式发生变异的倾向,这种情形大概可以得到解释。这样,我們人概还能理解笑鴿的咕咕鳴声为什么几乎同雉鳩(turde-dove)的一样;既然某些自然物种(即 G. torque-trix 和 palumbus)在飞翔上表現了奇特的样子,所以我們大概还能理解若干族的飞翔为什么各具特点。在其他場合中,一个族不是同一个不同物种相似,而是同某一个其他族相似;例如,某些侏儒 鴿象扇尾鴿那样地颤慄并且微举其尾;浮羽鴿象突胸鴿那样地使食管上部膨胀。

有一种普通的情况:某些颜色的标誌不变地构成了一屬的一切物种的特征,但其色調大不相同;同样的情形也見于鴿的变种:例如,有些具有紅囊带的雪白变种,有些具有白翼带的黑色变种,而不是具有黑翼带的普通的青色羽衣;还有一些变种的翼带,正如我們已經看到的那样,优美地具有不同色調的形衣。斑点鴿的特征是,除了額和尾有一斑点,整个羽衣都是白色的;不过这等斑点可能是紅色的、黃色的或黑色的。岩鴿以及許多变种的尾都是青色的,外羽的外緣是白色的;但在僧侶鴿的亚变种中,我們看到一种相反样式的相关,因为它們的尾是白色的,而外羽的外緣则是黑色的1)。

在鳥类的一些物种中,例如三趾鷗,某些有色的部分好象是差不多洗淨了的那样,我**會观察到** 某些鸽的暗色末端的尾带具有完全一样的外观,某些鸭变种的整个羽衣也是如此。关于植物界也 可举出相似的事实。

鴿的許多亚变种在头的后部生有倒逆的抖且多少长一点的羽毛,这肯定不是由于返归 亲 种,因为关于这等构造亲种連一点痕迹也沒有表現;但是,如果我們想起鶏、吐綬鶏、金絲雀、鴨和鵝的 亚变种在它們的头上不是生有羽冠就是生有逆羽; 抖且如果我們想起在鳥类的大自然类基中几乎不能指出一个,它的一些成員在头上不具羽簇,那末我們便可推測在这里返归某一极端遙远的类型大概发生了作用。

製的若干品种具有点斑的或条斑的羽毛;这等羽毛不能来自亲种原鶏;虽然这一物种的某一早期祖先具有点斑并且另一祖先具有条斑,当然是可能的。 但是,因为許多鶉鶏类的鳥不是具有点斑就是具有条斑,所以比較可能的一个观点是,鷄的若干家养变种从該科一切这样的成員获得了这种羽衣,即这等成員都遺传有按照同样方式进行变异的傾向。同样的原理可以用来解释无角的某些綿羊品种的母羊同某些其他中空角的反芻类的母兽相似;它可以用来解释家貓的微具簇毛的耳朵同林独的耳朵相似;还可以用来解释家养免的头骨常常在山兔屬(Lepus)的不同物种的头骨所赖以区别的同样性状上而彼此有所差異。

我将只举另外一个已經討論过的例子。 既然我們知道驢的野生祖先普通都有題条紋,所以我們可以确信家驢的題上不时出現条紋是由于返祖;但这不能解释肩条紋的下端为什么有时是角形地弯曲的或稍微地分叉的。 再者,如果我們看到黃棕色的和其他顏色的馬在脊、肩和腿上具有条紋,那末根据上述,便会使我們相信它們的重現是由于返归野生的亲种馬。 但是,如果馬具有两三条肩条紋,其中一条的下端偶尔分叉,或者如果它們具有面条紋,要不象馬仔那样地几乎全身都具有模糊的条紋,額部的条紋一条压着一条地成角形弯曲,或者在其他部分不規則的分叉,那末把这等分歧的性状归因于原始野馬所面的性状的重現,就未免輕率了。 因为馬屬的三个非洲物种具有

¹⁾ 貝西斯坦,德国的博物学,第四卷, 1795年,第31頁。

大量的条紋,丼且因为看到不具条紋的物种的杂交常常导致杂种后代显著地具有条紋——还要記住杂交的作用肯定可以引起长久亡失的性状的重現——所以比較可能的一个观点是,上述条紋丼不是由于返归直接的野生亲种馬,而是由于返归全屬的具有条紋的祖片。

我所以用相当的篇幅对这个相似变異的問題进行討論,是因为大家都很知道,一个物种的一些变种往往同一个不同物种相似——这个事实同上述例子是完全一致的,並且根据家系学說(theory of descent)可以得到解釋。第二,因为这等事实是重要的,正如在前一章中所指出的那样,它們闡明了每一个微小的变異都受法則所支配,並且体制的性質对它們的决定远远大于变異着的生物所暴露于其中的生活条件的性質对它們的决定。第三,因为这等事实在某一范围內同一个更加一般的法則有关連,这个法則被华尔許先生¹⁾ 称为"均等变異性的法則"(Law of Equable Variability),他的解釋是,"如果一个类羣的一个物种的任何既定性状是很容易变異的,那末这种性状在近似物种中就有容易变異的傾向;如果一个类羣的一个物种的任何既定性状是

这使我想起在論"选择"那一章中所进行的討論,在那里會闡明,关于現今正在經历着迅速改进的家养族,最受重视的部分或性状变異最大。 这种情形是由于下述情形而自然发生的,即最近被选择的性状繼續傾向于返归以前改进較少的标准,並且最初引起該性状进行变異的同一动因(不管这等动因是什么)依然对它們发生作用。同一原理对于自然物种也是适用的,因为正如在我的物种起源中所指出的那样,屬的性状不如物种的性状容易变異;物种的性状是这样的,自从被一屬的所有物种由一个共同祖先分歧出来之后,它們由于变異和自然选择而改变了,而屬的性状則是这样的,自从更加遙远得多的时代起,它們就保持不变,因而現在是比較不易变異的。这一敍述很接近华尔許先生的"均等变異性的法則"。 可以补充地說,次級性征很少构成異屬的特徵,因为他們在同屬的物种中通常有很大差異,並且它們在同一物种的个体中是高度容易变異的;我們在本書的前几章中已經看到次級性征在家养下多么容易变異。

有关变異法則的以上三章的提要

在第二十三章中我們看到,变化了的生活条件偶尔地、甚至常常地以一定的方式 对体制发生作用,所以暴露在这样条件之下的所有个体或者几乎所有个体都按照同

¹⁾ 費拉得裴亚昆虫学会会报, 10 月, 1863年, 第213頁。

一方式进行改变。 但变化了的生活条件的更加常見得多的結果,不論它們对体制直接地发生作用或通过生殖器官間接地发生作用,都是不定的和徬徨的变**異性。 在以**上三章中,支配这种变異性的法則已被討論过了。

增強使用使肌肉增大了,跟着使血管、神經、韌帶、骨櫛以及它們所附着的全部骨都增大了。机能活动的增強使各种腺增大了並且使感觉器官增強了。增強而間歇的压力使表皮增厚了。 食物性質的变化时常会使胃膜改变,並且使腸的长度增加或減少。另一方面,連續的不使用則使体制的所有部分衰退和縮小。 在許多世代中运动极少的动物的肺縮小了,因而胸部的骨构造以及身体的整个形态都改变了。 关于我們的自古以来就被家养的鳥类,它們的翅膀很少使用,並且微有縮小;随着翅膀的縮小,胸骨的高度、肩胛骨、喙状骨以及叉骨全都縮小了。

在家养动物中,一个部分决不会由于不使用而縮小到仅仅是痕迹的地步;然而我們有理由可以相信这种情形在自然状况下常常发生;在后面这种場合中,不使用的效果受到了生长經济的帮助,还受到了許多变異着的个体相互杂变的帮助。 自然状况下的和家养状况下的有机体之間的这种差異大概是因为在家养状况下对于任何很大的变化沒有足够的时間,同时生长的經济原理不发生作用。相反地,在亲种中原是痕迹的构造有时在我們的家养产物中又部分地重新发育了。在家养下不时出現的痕跡器官似乎永远是由于发育突然受到了阻止;尽管如此,它們还是有趣的,因为它們闡明了痕迹器官是一度完全发达的器官的遗物。

肉体的、週期的和精神的习性,虽然后者在本书中几乎未加討論,都在家养下变化了,並且这等变化常常是遗传的。生物中的这等变化了的习性,特别是当它們自由生活时,将会常常导致种种器官的增大或縮小,因而导致它們的改变。由于长期連續的习性,特別是由于具有稍微不同体質的个体的不时产生,家养動物和栽培植物在某种范围內变得馴化了,並且适应了新的气候,这种气候是不同于亲种原来生活于其中的气候的。

通过相关变異性的原理,按其最广泛的意义来說,当一个部分变異的时候,其他部分也变異,这或是同时发生的,或是一个跟着一个发生的。 例如,在早期胚胎时代改变了的一种器官可以影响此后发育的其他部分。当象喙那样的一种器官增长或縮短的时候,象舌和鼻孔那样的邻接的或相关的部分就有按照同样方式进行变異的倾向。当整个身体增大或縮小的时候,种种部分也改变了;例如关于鴿子,肋骨的数量和寬度增大了或縮小了。在早期发育中是同样的並且暴露在同样条件之下的同原部分有按照同样方式或某种相关方式进行变異的倾向,——在身体的左侧和右侧的場

合中以及在前肢和后肢的場合中就是这样。 視覚器官和听覚器官也是这样;例如蓝眼的白貓几乎永远是聋的。在整个身体中皮肤和种种皮肤附屬物、如毛、羽、蹄、角和齿之間有一种显著的关連。在巴拉圭,卷毛的馬具有騾蹄那样的蹄;綿羊的毛和角常常一齐变異;无毛狗的齿有缺陷;毛发过多的人具有異常的齿,它們不是缺少就是过多。长翼羽的鳥通常具有长尾羽。当长羽从鴿的腿和趾的外侧长出时,两个外趾就由膜連在一起了;因为整个的腿有呈現翅膀构造的傾向。 各种鷄的头上羽冠和头骨的可惊的变化量之間有一种显著的关連。兔的大大伸长了的垂耳和头骨的构造之間也有一种程度較輕的关連。关于植物,叶、花的各部分以及果实常常按照相关的方式一齐变異。

在某些場合中,我們发現有相关的情形而其关連的性質甚連直推測都无法推測 出来,关于种种畸形和疾病就是这样。 成长鴿的顏色和幼鴿的絨毛存在与否之間的 关連也是这样。 关于体質特性和顏色的关連已經举出了很多奇妙的事例,这从某一 种顏色的个体对于某些疾病、对于寄生物的攻击、对于某些植物性毒物的作用的不感 性得到了闡明。

相关作用是一个重要的問題;因为在物种中並且程度較輕地在家养族中,我們不断地发現某些部分为了适于某种有用的目的而大大地改变了;但我們几乎不可避免地发現其他部分同样地也或多或少改变了,而我們在这种变化中並不能看出任何利益。毫无疑問,关于后面这一点必須非常小心,因为我們对于体制的各个部分的用处是无知的,我們难于对这方面的知識給予过高的估价;但根据我們所看到的,我們可以相信許多改变並沒有直接的用处,而是随着其他有用的变化相关地发生的。

同原部分在其早期发育中常常融合在一起。 重复的同原器官在数量上、大概也在形态上特别容易变異。 因为有机物質的供給並不是沒有限制的,所以补偿的原理时常发生作用;因此,当一个部分大事发育时,邻接的部分就容易縮小;但这一原理比生长的經济那一更加一般的原理在重要性上大概要小得多。 通过单純的机械压力,坚硬的部分不时影响其邻接的部分。 关于植物,軸上的花的位置以及子房中的种子的位置通过体液自由流通的多或少常常会导致构造的变化; 不过这等变化往往是由于返祖。无論是怎样引起的改变在某种范围内将受互相調和的能力、即所謂"形成努力"的支配,其实这种能力就是低等動物在分裂生殖和分芽生殖的能力中所显示的那种简单繁殖形态的遗跡。最后,直接或間接控制变異性的法則的作用,可能大部分是由人工选择来支配的,並且会受到自然选择的决定,即有利于任何族的变化将受到支持,而不利的变化将受到抑制。

从同一物种或者从两个或两个以上的近似物种传下来的家养族有返归来自共同 祖先的性状的倾向;因为它們遺传有多少相似的体質,所以它們有按照同样方式进行 变異的倾向。由于这两个原因,相似的变異时常发生。 如果我們考虑到我們还不能 完全理解上述几項法則,並且如果我們記住还有如何多的事物尚待发現,我們就不必 惊奇于家养产物以錯綜复杂的和我們不能了解的方式曾經变異了並且依然繼續变異 着。

第二十七章 关于汎生論的暫定假說

第二部分:关于這個假說的敍述——必要的假說不可能到怎样程度——用这个假說 对第一部分中的几类事实的說明——結論。

在前几章中对干豁大类的事实——例如芽变、各种型式的遗传、变異的原因和法 則已經进行了討論: 这等問題以及几种生殖法显然彼此有某种关連。我被引导、勿宁 說被迫形成这样一种观点: 它以一种确实的方法在某种范围内把这等事实連系起来 了。哪怕是以一种不完善的方式,每一个人大概都希望向自己說明,某一个徭远祖先 **所拥有的性状怎么可能在后代中突然重現**; 肢的增強使用或減少使用的効果怎么能 够遗传給子代: 雄性生殖要素怎么不仅能够影响卵,而且还不时能够影响母体:一个。 杂种怎么能够从两种植物的細胞組織的結合(同生殖器官无关)而被产生出来:肢怎 么能够精密地在切除的范围内再生,既不太大也不太小;通过象出芽生殖和真正种子 生殖那样大不相同的程序怎么能够产生出同样的有机体;最后,在两个近似的类型中, 怎么一个在其发育过程中經过了最复杂的变态而另一个則不然,但在成熟时这两个 类型怎么在每一个构造細节上都是相似的。我知道我的观点仅是一种暫定的假說或 臆測;但在一个更好的被提出以前,它大概可以招現今不能用任何有效理由联系起来 的大量事实集合在一起。正如归納科学的历史家惠威尔 (Whewell) 所說的:"假說当 含有一定部分的不完善性、甚至錯誤的时候,它們对于科学也可能是常常有用的"。 在这种观点下,我冒险地提出了汎生論的假說,它的含义是,整个体制的每一个独立 部分都可以繁殖自己。所以胚珠、精子和花粉粒——受精卵、种子和芽,——都含有 由各个独立部分、即单位放出的大量胚种(germ)、並且是由这等胚种組成的¹⁾。

¹⁾ 这个假說會經受到了許多作者的严厉批評,把最重要的論文提一提將是公平的。 我看到的一篇最好的論文是由得尔皮諾敦揆寫的,題目是达尔文的迅生說(Sulla Darwiniana Teoria della Pangenesi, 1896年),譯文見科学意見 (Scientific Opinion), 9 月 29 日, 1869年,及以后几期。他反对这个假說,但批評得公平,我发现他的批評很有用。米伐特先生(物种的发生, Genesis of Species, 1871年, 第十章)是追随得尔皮諾的,但沒有补充任何有分量的新的反对意見。貝斯蘭(Bastain) 博士說,这个假說"与其說是新进化哲学的領域,莫如說是旧的遺物"(生命的起源, The Beginings of Life, 1872年,第二卷,第98頁)。他指出我不应使用"汎生論"这个术語,因为哲罗斯(Gro:)博士以前曾經用过它。利奧內尔·比尔(Lionel Beale) 非常剥毒而多少公平地談詢了整个的理論(自然杂誌, Nature, 5 月 11 日, 1871年,第

在第一部分,我将尽量簡略地举出似乎需要連系的数类事实;但对于迄今尚未討論过的問題,則必須以不相称的篇幅来处理。 在第二部分,将举出假說;在考察了必要的假說本身不可能到怎样程度之后,我們将会看到它是否可以把种种事实集合在单独一个观点之下。

第一部分

生殖可以分为主要的两类,即有性的和无性的。 无性生殖通过許多途徑来完成一通过各个种类的芽的形成,通过分裂生殖,这就是通过自然的或人为的分裂。 众所週知,有些低等动物当被切成許多部分以后,还可以繁殖如此众多的完善个体。 里奥內特(Lyonnet)把仙女虫(Nais)、即一种淡水蠕虫切成了差不多四十段,所有这些段全都长成了完善的动物¹⁾。 在某些原生动物中,卵裂(segmentation)所完成的大概还要多得多; 在某些低等动物中各个細胞都会繁殖亲类型。 琼斯·繆勒(Johannes Müller) 認为出芽和分裂之間有一种重要的区别; 因为在分裂的場合中,分裂的部份无論多么小,都比芽的发育更加充分, 芽是一种比較幼小的形成物; 但大多数的生理学者現在都相信这两种过程在本質上是相似的²⁾。 赫胥黎教授說,"分裂同出芽生殖的特殊方法並无差别",克拉克(H. J. Clark) 教授詳細地闡明了"自行分裂同出芽生殖之間时常是沒有矛盾的"。 当肢被切除或者当整个身体被分成两分的时候,切除的四肢被称为芽生³⁾;最初形成的乳头状突起是由未发育的細胞組織构成的,这等細胞組織同形

²⁶頁)。威干得(Wigand)教授認为这个假說是不科學的而且沒有价值的(馬尔堡自然科學协会論文全集, Schriften der Gesell, der gesammt. Naturwissen, zu Marburg, 第九卷, 1870 年)。留斯(G. H. Lewes)似乎認为这个假說可能是有用的,他的完全公正的精神提出了許多有益的批評(及週評論, 11 月 1 日, 1868 年, 第 503 頁)。 高尔顿先生在敍達了他的有价值的实驗——关于兔的不同变种的相互输血——之后,作出如下的結論,他認为他得到的結果毫无疑問地同汎生說相反(皇家學会会報,第十九卷,第 393 頁)。 他告訴我說,在他发表那篇論文之后,他更大規模地进行了兩代实驗,在大量后代中沒有表現任何杂种性的形跡。 我确會預料过在血液中大概有芽球存在,但这不是假說的必要部分,它显著地可以应用于植物和最低等的动物。 高尔顿先生在致自然杂誌的一對信中(4 月 27 日, 1871 年,第 502 頁)也批評了我所使用的种种不正确的辞句。 另一方面,若干作者却贊同地談到了这个假說,但引用这等文献是毫无益处的。然而我願意提一下罗斯(Ross)博士的著作,疾病的接种論;达尔文先生的汎生說的应用(The Graft Theory of Disease; being an application of Mr. Darwin's hypothesis of Pangenesis), 1872 年, 因为他进行了若干創造性的和巧妙的討論。

¹⁾ 帕給特引用,外科病理学講义,1853年,第159頁。

²⁾ 拉哈曼博士关于滴虫类 (infusoria) 也會观察到,"分裂生殖和出芽生殖几乎不可觉察地漸次互变(博物学年报,第二輯,第十九卷,1857年,第231頁)。再者,麦納 (W. C. Minor) 先生指出,关于环节动物在分裂生殖和出芽生殖之間所劃出的界線並不是基本的(博物学年报,第三轉,第十一卷,第328頁)。再参閱克拉克教授的著作,自然界的意志(Mind in Nature) 紐約,1865年,第62,94頁。

³⁾ 参閱**旁**內特,博物学 (Oeuvres d'Hist. Nat.), 第五卷, 1781 年, 第 339, 关于蠑螈的切除肢的芽生的意見。

成普通芽的細胞組織一样,所以上面的說法显然是正确的。 我們从另外一种途徑也可看出这两种过程的关連; 垂姆勃雷 (Trembley) 观察到在水螅翳 (Hydra) 中被切断的头的再生一到这种动物长出生殖芽 (reproductive gemmae) 时就受到了抑制¹⁾。

由分裂生殖产生出两个或两个以上的个体和甚至很輕損伤的恢复之間,有如此完全的級进,以致不可能怀疑这两种过程是有关連的。 因为在各个生长阶段切断部分由处于同样发育状态的部分所替换,所以我們必須追随帕給特爵士来承認,"来自胚胎的发育能力同来自創伤的恢复能力是相等的,换句話說,最初达到完善化的力量同完善化失去后再恢复的力量是一样的²)"。最后,我們可以作出这样的結論:几种型式的出芽生殖、分裂生殖、創伤的恢复以及发育在本質上完全是由一种力量产生出来的結果。

有性生殖 雌雄两性生殖要素的結合最初一看似乎在有性生殖和无性生殖之間划了一条显著的界線。但是,藻类的接合显然向我們指出了走向有性結合的第一步,通过这一程序两个細胞的內容結合成能够发育的一团:帕林西姆(Pringsheim)在他那篇关于游动孢子(Zoospores)的論文³)中指出,接合漸次变成真正的有性生殖。 再者,有关孤雌生殖(Parthenogenesis)的現今已經确定下来的例子証明了有性生殖和无性生殖之間的界線並不象以前所設想的那样大;因为卵偶尔地、甚在某些場合中常常地在沒有同雄者接合下也能发育成完善的生物。在低等动物中,甚至在哺乳动物中,卵表現了孤雌生殖能力的痕跡,因为不受精它們就通过了卵裂的第一阶段⁴)。正如拉卜克(J. Lubbock)爵士所闡明的並且現在为賽包尔得(Siebold)所承認的那样,不需受精的假卵(pseudova)同真卵也无法加以区别。还有,据留卡特(Leuckart)說⁵),瘿蚊(Cecidomyia)幼虫的生殖球(germballs)是在卵巢中形成的,但它們不需要受精。还应当注意,在有性生殖中,卵和雄性生殖要素在把任何一亲所拥有的每一个性状遗传給后代方面具有同等的能力。当杂种相互交配时,我們明确地看到了这种情形,因为祖父母双方的性状常常完全地或者部分地在后代中出現。假定雄者传递某些性状並且雌者传递其他性状,这是一种錯誤;虽然由于未知的原因某一性毫无疑問地时常比另一性具

¹⁾ 帕給特病理学講义,第158頁。

²⁾ 帕給特,病理学講义,第 152,164 頁。

³⁾ 譯文見博物学年报, 4月, 1870年, 第272頁。

⁴⁾ 比巧夫,馮塞包尔得引用,孤雌生殖 (Ueber Parthenogenesis), Sir zung der math. phys. Classe, Munich, 11 月 4 日, 1871 年,第 240 頁。再参閱夸重費什,自然科学年报,动物部分, 3 月, 1866 年,第 167, 171 頁。

⁵⁾ 关于瘿蚊幼虫的无性生殖 (On the Asexual Reproduction of Cecidomyide Larvae), 譯文見博物学年报, 3-月, 1866年,第167,171頁。

有強得多的传递力。

然而,有些作者主张芽同受精卵在本質上是不同的,芽永远再現亲代的完全性状,而受精卵則产生多种多样的生物。不过这里並沒有一条象这样的明确界線。在第十一章提出的很多事实闡明了由芽长成的植物偶尔具有完全新的性状;这样产生出来的变种在一定长的期間內可以由芽来繁殖並且偶尔也可以由种子来繁殖。尽管如此,还必須承認由有性生殖产生出来的生物比由无性生殖产生出来的生物容易变異得多;关于这一事实,此后将試着提出部分的說明。在两种場合中的变異性都是由同样的一般原因所决定的,並且是受同样的法則所支配的。因此,从芽产生出来的新变种同从种子产生出来的新变种是无法区别的。虽然由芽产生出来的变种普通在建續的芽生殖中可以保持它們的性状,但它們甚至在一长列的芽生殖之后还偶尔返归以往的性状。芽的这种返祖傾向是芽的后代和种子生殖的后代之間的最显著的几点一致性之一。

但是,有性地产生出来的有机体和无性地产生出来的有机体之間有一种很一般的差異。 前者在其发育过程中是經过很低的阶段到达最高的阶段,例如我們在昆虫和許多其他动物的变态中並且在脊椎动物的隱蔽变态中所看到的情形就是这样。另一方面,由出芽或分裂来无性繁殖的动物,是在出芽的或自我分裂的动物所碰巧处在的那一阶段开始发育的,所以並不經过某种低級的发育阶段¹⁾。 此后它們常常在体制上提高了,就象我們在"世代交替"(alternate generation) 的許多場合中所看到的那样。当我这样談到世代交替的时候,我是追随那些博物学者的,他們把这一程序看成在本質上是內在的出芽生殖或分裂生殖的一种。然而象蘚类或某些藻类那样的低等植物,按照拉克弗尔(L. Radlkofer)博士²⁾的材料,当无性繁殖时,确經逆行的变态。就終极原因来說,我們便能在一定范围內理解由芽繁殖的生物为什么不經过一切早期的发育阶段;因为关于各个有机体,在各个阶段获得的构造必須适应它的特殊习性;如果在某一阶段有可以維持許多个体的場所,那末最简的方法将是,它們在这一阶段繁殖起来了,而不是在发育中最初退到大概不适于当时环境条件的比較早期的或比較簡单的构造。

根据上述几点考察,我們可以作出如下的結論:有性生殖和无性生殖之間的差異 並不象乍看起来那样大;主要的差異在于卵除非同雄性生殖要素結合就不能繼續生

¹⁾ 阿尔曼教授就螅形目对于这个問題肯定地說道,"在單虫体的接續中沒有发生过湮積的退化,是一項普遍的規律"。

²⁾ 博物学年报,第二輯,第二十卷, 1857年,第 153--455 頁。

活和充分发育;但是,甚至这种差異也决不是永远如此,在孤雌生殖的許多例子中已有所闡明。 所以我們自然地被引导去追究,在普通生殖中怎样的終極原因对于雌雄两性生殖要素的結合是必要的。

种子和卵作为植物和动物的散布手段並且在休眠状态下把它們保存一个或一个以上的季节,常常是高度有用的;但未受精的种子或卵以及分离的芽对于这两种目的大概是同等有用的。然而我們能够指出两性的結合、勿宁說屬于異性的两个个体的結合所产生两种重要利益;因为,正如我在前一章中所闡明的那样,每一个有机体的构造似乎都特别适于、至少偶尔地适于两个个体的結合。 当物种由于变化了的生活条件而成为高度变異的时候,变異着的个体的自由杂交就有保持各个类型适于它在自然界中所固有的場所;而杂交只能由有性生殖来完成;但这样得到的結果对于解释两性交配的最初起源是否具有充分的重要性,却大有疑問。其次,我曾根据大量的事实闡明了生活条件的微小变化对于各个生物都是有利的,与此相似,和一个不同个体的有性结合在胚种中所引起的变化也是有利的;由于观察到在整个自然界中为了这个目的而有的許多广泛扩充了的設备,由于所有种类的杂种有机体象实驗所証明的那样都具有較大的活力,並且由于密切的近亲交配当长期繼續时所产生的恶劣结果,我被引导去相信,这样得到的利益是很大的。

在受精之前进行过一定发育的胚种除非受到雄性生殖要素的作用为什么就会停止发育而死去;相反地,在某些昆虫的場合中可以活上四、五年的、並且在某些植物的場合中也可以活上几年的雄性生殖要素除非对胚种发生作用或同其結合,为什么同样地也会死去,这等問題还不能得到确切的解答。然而,雌雄两性生殖要素除非結合就会死亡这一点大概仅仅在于它們所含有的为独立发育之用的形成物質太少了。夸重費什在凿船虫(Teredo)的場合中¹¹就象帕瑞沃斯特(Prevost)和丟瑪斯(Dumas)以前在其他动物的場合中那样地闡明了,使卵受精需要一个以上的精子。这一点同样也被紐泡特闡明了²¹,他用很多实驗証明了如果把很少量的精子施于蛙类(Batrachians)*的卵,它們只能部分地受精,而且胚决不会充分发育。卵裂的速度也受精子数量所决定。关于植物,开洛依德和該特納得到了差不多一样的結果。 后面这一位謹慎的观察者用逐漸增多花粉粒的方法对錦葵屬 (Malva) 进行了一連串的实驗,然后他发現³¹

¹⁾ 自然科学年报,第三輯、1850年,第十三卷。

²⁾ 皇家学会会报, 1851年, 第196, 208, 210頁; 第245, 247頁。

^{*} 又名无尾类(Anura) - - 譯者。

³⁾ 有关受精知識的論文, 1844年, 第345頁。

甚至三十粒花粉都不能使一粒种子受精;不过当把四十粒花粉施于柱头上时,才有少 数小形的种子形成。在紫茉莉 (Mirabilis) 的場合中,花粉粒特別大,並且子展只含有 一个胚珠:这等情况引导器丹1 进行了以下的实驗: 一朵花由三粒花粉来受糖,完全 成功了;十二朵花由两粒花粉来授精,十七朵花由一粒花粉来授精,其中只各有一朵 花結了种子: 特別值得注意的是,由这两粒种子产生出来的植株从来沒有达到固有的 大小,而且开的花非常之小。 我們从这等事实可以明显地看出,精子中和花粉粒中 **所含有的形成物質的量在受精作用上是一个最重要的因素,这不仅对于种子的充分** 发育是如此,而且对于从这等种子产生出来的植株的活力也是这样。 我們在孤雌生 殖的某些場合中申看到多少一样的情形,这就是說,在这里雄性生殖要素完全被排除 了;因为儒尔丹(M. Jourdan)20发现,在未受精的蚕蛾所下的約 58,000 个卵中,許多通 过了早期的胚胎阶段,这說明它們是能够自行发育的,但在总数中只有 29 个孵化为 幼虫。有关量的同一原理似乎甚至适用于人为分裂生殖,因为赫克尔3 发现,把管水 母类(Siphonophorae)的分裂的受精卵或幼虫切成許多段,段越小,发育的速度就越慢, 而且这样产生出来的幼虫非常不完善,倾向于畸形。 所以在分离的雌雄两性生殖要 素中,形成物質在量上的不足大概是它們沒有延长生存和发育的能力的主要原因,除 非它們結合起来並且这样一来彼此都有所增大。認为精子的机能是把生命传递給卵 的独立发育。 由此可以看出有性生殖和无性生殖之間並沒有本質的差異;並且我們 已經闡明了无性生殖、再生力以及发育是同一伟大法則的全部。

切除部分的再生 这个問題值得稍微进一步予以討論。大量的低等动物以及某些脊椎动物都有这种不可思議的能力。 例如,斯帕拉費尼把同一蠑螈的腿和尾連續切除了六次,旁內特 (Bonnet)⁴⁾ 这样作了八次;每一次腿都准确地在切除的范围內再生出来,沒有一个部分缺少或过多。一种近似动物墨西哥螈 (axolotl) 的一肢被咬掉了,它以一种畸形状态再生出来,不过当把它切除以后,在那里又长出了完善的

¹⁾ 博物館新报,第一卷,第27頁。

³⁾ 管水母类的发育史(Entwickelungsgeschichte der Siphonophora), 1869年,第73頁。

肢¹。在这等場合中新的肢芽生了,並且其发育方式同在幼小动物的正規发育期間一样。例如,关于褐黄色螈(Amblystoma lurida),三个趾先发育,然后第四趾发育,其次后脚的第五趾发育,而再生肢的发育也是如此²)。

再生力一般在动物的幼小期間或早期的发育阶段比在成熟期間大得多。蛙类的 幼体、即蝌蚪能够再生失去的部分,而成体則不能这样³⁾。 成熟的昆虫沒有再生力,除了一个目是例外,而許多种类的幼虫都有这种能力。 低等动物再生其失去的部分 按照一般規律来說都比体制較高的动物容易得多。 关于这一規律,多足类提供了良好的例証;不过还有一些奇怪的例外——例如紐虫(Nemerteans)虽然是低等体制的,据說它們表現了很小的再生力。 在象鳥类和哺乳动物那样的高等脊椎动物中,这种能力是极其有限制的⁴⁾。

有些动物可以被一切为二或者被切成許多段,每一段都会再生其整体,在这样場合中再生力一定散佈于整个身体。尽管如此,<u>列騷那</u>(Lessona)⁵⁾ 教授所主张的观点还是有很大正确性的,他認为这种能力一般是局部的和特殊的一种能力,为替換那些在各个特殊动物中显著容易失掉的部份而服务。 支持这一观点的最显著例子是,陸樓蠑螈按照列騷那的材料不能再生其失去的部分,而同屬的另一物种水樓蠑螈,正如我們刚才看到的那样,都具有異常的再生力;这种动物的肢、尾、眼和顎非常容易被其他法螺(tritons)咬掉⁶⁾。 即便在水棲蠑螈中,这种能力在某种范围內也是局部性的,因为当斐利泡(M. Philipeaux)⁷⁾ 把整个前肢連同肩胛骨一齐根除的时候,再生力就完全消失了。 还有一个值得注意的事实,它同一般的規律正相反,即水棲蠑螈的幼体所拥有的恢复 肢的 能力不如成体那样大⁸⁾;不过我不知道它們是否比成体活泼或者用其他方法能够更好地避免失去它們的肢。手杖虫(Diapheromera femorata)就象同目

¹⁾ 沃尔皮安(Vulpian),費維尔引用,物种的变異性(La Variabilité des Espèces), 1868年,第 112 頁。

²⁾ 赫伊(P. Hoy)博士, 美国博物学者, 1871年,第 579 頁。

³⁾ 那塞博士, 見奧溫的脊椎动物解剖学(Anatomy of Vertebrates), 第一卷, 1866年, 第567頁。 斯帕拉贊 尼作过同样的观察。

⁴⁾ 一只鶇曾于 1853 年在"哈尔英国科学协会"上展覽过,它失去了跗,据說曾再生过三次;我猜想每一次都是因病失去的。帕給特爵士告訴我說,他对于辛普生 (J. Simpson) 爵士記載的一項事实有些感到怀疑,即在人类的場合中,四肢于子宫內再生了 (医学月刊, Monthly Journal of Medical Science, 爱丁堡,1848 年, 新輯,第二卷,第 890 頁)。

⁵⁾ 意大利自然科学协会会招(Atti della Soc. Ital. di Sc. Nat.)第十一卷, 1869年, 第 493 頁。

⁶⁾ 列發那在剛才提到的那篇論文中說,情形确是这样的。再参閱美国博物学者,9月,1871年,第579頁。

⁷⁾ 报告書, 10月1日, 1866年; 6月, 1867年。

第內特,博物学,第五卷,第294頁,罗列斯頓在"英国医学协会"第三十六週年紀念会上发表的那篇著名演說中會加以引用。

的其他昆虫那样在成熟状态中能够再生它的腿,这等腿由于巨大的长度一定是容易失掉的:但这种能力是局部性的(就象在蠑螈的場合中那样),因为斯庫得尔(Scudder)博士¹⁾发現,如果在轉股关节(trochanto-femoral articulation)內把肢去掉,它决不会再生。当螃蟹的一支腿被捉住时,这支腿便在基本关节处脱掉,此后則由一支新腿来替换;一般承認这是对于动物安全的一种特殊准备。最后,关于腹足軟体动物(gasteropod molluscs),大家都知道它們有再生其头部的能力,列騷那指出它們的头很容易被魚类咬掉:身体的其余部分是由壳来保护的。甚至在植物中我們也看到多少一样的情形,因为不落的叶子和幼茎不具有再生力,这等部分由新芽的生长可以容易地被替换;而树皮以及树幹的下面組織却有巨大的再生力,这大概是由于它們在直徑上的增大以及它們容易受到动物咬嘴的損害。

嫁接杂种 从世界各地所进行的无数实驗可以充分地知道,可以把芽插入砧木, 並且这样培育出来的植物所受到的影响程度可以由养分的变化得到解释。从这等接 芽培育出来的幼苗並不兼有砧木的性状,虽然它們比来自自根的同一变种的幼苗更 容易变異。一个芽还可能突变成特征显著的新变种,而同株的其他芽一点也沒有受到 影响。所以我們按照普通的覌点可以推論,每一个芽就是一个不同的个体,它的形成 因素並不会扩张到此后由它发育出来的部分以外。 尽管如此,我們在第十一章的有 关嫁接杂交的提要中还看到, 芽肯定含有形成物質, 这种物質偶尔能够同不同的变种 或物种的組織中所含有的形成物質結合起来;一种介于双亲类型之間的植物便这样 产生了。 我們在馬鈴薯的場合中已經看到,把一个种类的芽插入另一种类,由这个 芽产生出来的块茎在颜色、大小、形状以及表面状态上都是介于二者之間的;它的茎、 叶, 甚至象早熟那样的体質特性也是介于二者之間的。关于这等十分确定的情形, 金 鏈花、柑橘、葡萄等也产生嫁接杂种似乎就是充分的証据。但我們不知道在怎样的条 件下这种罕見的繁殖法是可能的。 我們从这等例子中弄明白一个重要的事实,即形 成要素同一个不同个体的形成要素相混合(这是有性生殖的主要特征)並不限于生殖 器官才能办到,在植物的芽和細胞組織中也有这种能力;这个事实在生理学上具有最 高度的重要性。

雄性生殖要素对于雖者的直接作用 在第十一章中已經提出的大量証据証明了 異花粉偶尔以一种直接的方式影响母本。例如加列肖用檸檬的花粉使一种橙的花受精,这样产生出来的果实具有完全是檸檬果皮所特有的那种条紋。关于豌豆,若干观察者看到种皮的颜色、甚至荚的颜色都直接受到了不同变种的花粉的影响。 苹果的

¹⁾ 波斯頓博物学会会招(Proc. Boston Soc. of Nat. Hist.)第十二卷, 1868—69年,第1頁。

果实也是如此,它們是由改变了的尊和花梗上部构成的。 在普通場合中这等部分完全是由母本形成的。我們在这里看到一个变种的雄性生殖要素或花粉所含有的形成要素不仅能影响它們当然适于影响的那一部分、即胚珠並使其杂种化,而且还能影响一个不同变种或不同物种的部分发育的組織並使其杂种化。这样我們便被带到嫁接杂种的中途,在嫁接杂种中,一个个体的組織所含有的形成要素同一个不同变种或不同物种的組織所含有的形成要素結合起来,便产生了一个中間的新类型,这同雄者或雌者的性器官並无关系。

有些动物在接近成熟以前不繁育,而且它們的所有部分这时才充分发育,在这样場合中雄性生殖要素几乎不可能直接影响雌者。不过我們有一个相似的完全确定的例子,即雄性生殖要素是以这样的方式来影响雌者或它的卵的(象在南非斑馬和莫尔登爵士的母馬的場合中那样): 当它由另一雄者而受精时,它的后代受到了第一个雄者的影响並使其杂种化。如果精子于雌者体內能够在两次受精行为之間时常有的那一段长的間隔期間內繼續活着,那末对于上述情形的解释就簡单了;不过誰也不会假定这对于高等动物是可能的。

发育 受精的胚种經过大量的变化才达到成熟:这等变化或是微小而緩慢的,或是巨大而突然的,前者如小孩长成大人,后者如大多数昆虫的变态。在这两极端之間我們看到每一个級进,甚至在同一类中也是如此;例如象拉卜克爵士所闡明的那样¹⁾,有一种蜉蝣类的昆虫(Ephemerous insect),它脱皮二十次以上,每一次在构造上都发生一种微小而决定性的变化;这等变化正如他进一步指出的那样,向我們揭露了发育的正常阶段,这等阶段在大多数其他昆虫中是隱蔽而急促通过的或是受到压抑的。在普通变态中,部分和器官似乎是在下一发育阶段变成相应的部分:但还有另一种发育的形式,臭温教授把它叫作后形成(metagenesis)。在这种場合中,"新部分不是在旧部分的內部表面上形成。可塑力改变了它的作用过程。外壳以及給予先前个体以形态和性状的全部东西都死去而脱掉了;它們並不变成新个体的相应部分。这是由于新而不同的发育程序所致",云云²⁾。然而变态可以如此不知不觉地渐次变成后形成,以致这两种程序无法明确地被区别开。例如,在蔓足类(Cirripedes)所发生的后一种变化中,消化管以及一些其他器官都是在既存部分上形成的;但老动物和幼动物的眼却是在身体的完全不同部分发育的;成熟的肢端是在幼体的肢內形成的,也可以說是

¹⁾ 林納学会会报,第二十四卷, 1863年,第62頁。

²⁾ 孤雌生殖,1849年,第25,26頁。 赫胥黎教授就这个問題对海轄車的发育提出了一些卓越的意見,他闡明了变態多么奇妙地渐次变成出芽生殖或單体形成,其实后者同变態是一样的。

它們的变态;但它們的基部和整个胸部却是在同幼体的肢和胸成直角的面上形成的;这大概可以被称为后形成。后形成的程序在某些棘皮动物(Echinoderms)的发育中已 經进行到頂点了,因为第二发育阶段的动物儿乎象芽一样地在第一发育阶段的动物 内形成,这时第一发育阶段的动物就象衣服那样地被脱掉了,然而有时还能在短期内 繼續維持独立的生存¹⁾。

如果若干个体(而不是单独一个个体)在既存类型內这样后形成地发育起来,那 末这一程序大概可以被称为世代交替(alternate generation)的一种。 这样发育起来的 幼体可能同装着它的亲类型密切相似,例如瘿蚊的幼虫就是这样,也可能同亲类型不 同到可惊的程度,例如許多寄生虫和水母就是这样;但这並沒有使这一程序同昆虫变 态中的巨大或突然的变化有什么本質上的区别。

发育的整个問題对于現在这个題目是非常重要的。 如果一种器官——例如眼——在以前发育阶段沒有眼存在的身体的那一部分后形成了,那末我們必須把它看成是一种新的和独立的生长。新构造和旧构造虽然在构造和机能上是相应的,但正如在世代交替的場合中那样,它們的絕对独立性在若干个体于以前类型中形成的时候就愈益明显。同一重要的原理甚至在显然連續生长的的場合中大概也起了大規模的作用,当我們考察到变化是在相应的年龄被遺传这一問題时,我們将会看到这一点。

完全不同的另一类事实把我們引导到同样的結論——即連續发育的部分的独立性。众所熟知,屬于同目的、因而彼此沒有广泛差異的許多动物所通过的发育过程是极端不同的。例如,某些甲虫在任何方面和同目的其他甲虫都沒有显著的差異,它們却經历了所謂复变态(hypermetamorphosis)——这就是說,它們通过的早期阶段完全不同于普通螃螬状的幼虫。 在蟹类的同一亚目、即长尾类(Macroura)中,正如弗瑞芝·穆勒所說的那样,刺蛄(River crayfish) 是在以后所保持的同样形态下孵化的;幼小的蟹祖(Lobster)象糠虾(Mysis)那样地具有裂脚;长臂虾(Palaemon)似乎处于水蚤(Zoea)形态下,而对虾(Peneus)則处于老布里司形态(Nauplius-form)下;这等幼体形态彼此之間的何等可惊的差異已为每一位博物学者所知道了²)。还有一些甲壳类动物,正如同一位作者所观察的那样,从同一点出发並且到达几乎一样的終点,但在发育的中途却彼此大不相同。关于棘皮动物,还可举出更加惊人的例子。关于水母(Medusae),阿尔曼

¹⁾ 楮林(J. Reay Greene)教授,見郡塞的动物学交献集(Record of Zoolog. Lit.), 1865年,第 625 頁。

²⁾ 弗瑞芝·經勒的支持达尔文 (Für Darwin), 1864年,第65,71 頁。甲壳类的最高權威密尔內一爱德华 (Milne-Edwards) 主張密切近似屬的变態是有差異的 (自然科学年报,第二輯, 动物学部分,第三卷,第322 頁。

教授观察到"螅形目 (Hydroida) 的分类大概是一件比較簡易的工作,如果象錯誤地所主张的那样,同屬的水母形永远发生于同屬的螅形:另一方面,同屬的螅形永远发生于水母形"。再者,斯垂灰尔·萊特(Strethill Wright)曾說,"在螅形目的生活史中,实囊幼虫形、螅形和水母形的任何时期都可能不存在1)。

按照最优秀的博物学者們現在一般承認的信念,同目或同綱——例如水母或长 尾类甲壳动物——的一切成員都是从一个共同祖先传下来的。在它們世代相传的期間,它們在构造上大大地分岐了,但还保持着很多共同的东西;虽然它們曾經通过了並且依然还要通过不可思議的不同变态,但上述情形发生了。 这个事实充分地說明了各种构造在发育过程中多么独立于以前的和后繼的构造以外。

身体的諸分子或諸單位的机能独立性 生理学者們一致認为整个有机体是由在某种范围內彼此独立的很多基本部分构成的。 克劳得·勃尔納德 (Claude Bernard) 說²⁾,各种器官都有它固有的生命和它的自律性(autonomy);它能发育和繁殖自己,而同邻接的組織沒有关系。一位伟大的德国作者微耳和³⁾更強調地断言,各个系統是由"大量微小的活动中心所构成的……。每一个分子都有它自己的特殊作用,縱使对它的活动的刺激来自其他部分,它还独自地完成它的职务……。 每一个单独的皮膜細胞(epithelial cell)和肌肉纖維細胞(muscular fibre-cell)同身体其余部分的关系都是这的一种寄生生活。……每一个单独的骨小体 (bone-corpuscle) 实际上都拥有它的独特的营养条件"。正如帕給特爵士所說的,每一个分子活到一定时間之后就死亡了,並且在脱落或被吸收之后得到替换⁴⁾。 我以为沒有一个生理学者会怀疑——譬如說——手指的各个骨小体同脚趾的相应关节的相应骨小体是有差異的; 並且几乎不能怀疑甚至身体相应两侧的那些部分虽然在性質上几乎一致,也是有差異的。 这种非常的一致性在許多疾病中已經奇妙地得到了闡明,即身体的左侧和右侧的完全一样的部分感染了同样的疾病; 帕給特爵士⁵⁾提供一张病骨盆的繪图,其中的骨长成极复杂的样子,但是"一侧的一点一線在另一侧都被表現出来了,其精确就象照鏡子一般"。

有許多事实可以支持这种观点——身体的各个微小分子都营独立的生活。<u>微耳</u>和主张一个单独的骨小体或皮肤中一个单独的細胞都会得病。一只公鷄的距被插入

¹⁾ 阿尔曼教授,博物学年报,第三辑,第十三卷,1864年,第348頁; 萊特博士,同前杂誌,第十三卷,1861年,第127頁。关于薩斯(Sars)的同样敍述,再参閱358頁。

²⁾ 活的組織(Tissus Vivants), 1866年,第22頁。

³⁾ 細胞病理学(Cellular Pathology),強司博士譯, 1860年,第 14,18,83,460 頁。

⁴⁾ 帕給特,外科病理学講义,第一卷,1853年,第12-14頁。

⁵⁾ 同前書,第19頁。

一只公牛的耳朵之后,活了八年,並且得到的重量达 396 克(約 14 盎司),令人吃惊的 长度为 24 厘米,即 9 吋左右;所以这头公牛的头上好象是长了三只角¹⁾。 一只猪的 尾巴被移植到背的中部,並且重新获得了感觉。奥利叶 (Ollier)博士²⁾从一只幼狗的 骨上取了一片骨膜(periosteum)並把它插在一只兔的皮下,于是真的骨发育了。 还可以举出大量的同样事实。在卵巢肿瘍中常常有头髮、完全发育的齿,甚至有第二生齿期的齿³⁾,这是引致同一結論的一些事实。推特先生提到一个肿瘍,其中"发現有 300 个以上的齿,它們在許多方面都同乳齿相似";还有一个肿瘍,"其中生满了头髮,这些头髮曾是从不大于我的小指端的一小块皮肤生长出来並从那里脱落了的。臺中的毛髮如果是从相等于那块头皮的面积生长出来並脱落的,那末生长和脱落这样数量的毛髮几乎需要一生的时間才可以"。

身体中的无数自律分子的每一个是否都是一个細胞或一个細胞的产物,是一个更难于决定的問題,即使給这个逃語下的定义广泛到把沒有壁和核的細胞状体都包括在內分,其情况也是如此。細胞來自細胞 (omnis cellula e cellulâ) 的学說对于植物是适用的,而且对于动物也是广泛有效的50。这样,細胞理論的伟大支持者微耳和虽然承認有困难,但还主张組織的每一个原子都是从細胞发生的,这些細胞是从既存細胞发生的,而这些既存細胞最初是从卵发生的,他認为卵就是一个大細胞。每一个人都承認依然保持同样性質的細胞是借着自我分裂或增生(proliferation)而增加起来的。但是,当一个有机体在发育期間发生构造的重大变化时,那些假定在各个阶段直接从既存細胞发生的細胞一定在性質上也有重大的变化;細胞学說的支持者們把这种变化归因于細胞所拥有的某种遺传力,而不把它归因于外界的作用。另外一些人主张所有种类的細胞和組織都可由造形液(lymph)和元体質(blastema)形成,而同既存細胞无关。无論哪一个观点是正确的,每一个人都承認身体是由大量的有机单位构成的,一切这等单位都拥有本身的固有屬性,並且在某种范围內同所有其他单位沒有关系。因此,随便使用"細胞"或"有机单位"或簡单地使用"单位"都是方便的。

变異性和遺傳 我們在第二十二章中已經看到,变異性和生命或生殖不是同等

²⁾ 骨之人工形成(De la Production Artificielle des Os),第8頁。

³⁾ 小圣喜来尔,畸形史,第二卷,第 549,560,562 頁;徽尔和,同前書,第 484 頁。推特,卵巢病理学(the Pathology of Diseases of Ovaries), 1874 年,第 61,62 頁。

⁴⁾ 关于細胞的最新的分类,参阅赫克尔的形态学通論(Generelle Morpholog.),第二卷, 1866年,第275頁。

⁵⁾ 转納尔博士,細胞病理学的现状 (the Present Aspect of Cellular Pathology), 爱了堡医学月报, 4月, 1863年。

的原理,变異性是由特殊原因、一般是由在連續世代中发生作用的变化了的生活条件 所引起的。 这样引起的徬徨变異性显然部分地是由于生殖系統容易受到影响,所以 它常常成为不育的;如果它受到的影响不这样严重,那末它就常常缺少把双亲性状传 递給后代的那种固有机能。 正如我們在芽变的場合中所看到的,变異性並不一定同 生殖系統有关連。 虽然我們很少能够追蹤出关連的性質,但构造的許多偏差无疑是 由直接对体制发生作用的变化了的生活条件所引起的,而同生殖系統无关。 在某些 事例中, 当暴露在同样生活条件之下的一切或者几乎一切个体都同样地而且一定地 受到影响时,我們就会感到上述情形是确实的,在这方面已經举出了几个事例。 但 是,为什么双亲暴露于其中的新条件会对后代发生影响,为什么在大多数場合中需要 几代这样地暴露在新条件下,决不是清清楚楚的。

再者,我們怎样能够解释特殊器官的使用和不使用的遺传效果呢? 家鴨比野鴨飞的少而走的多,家鴨的肢骨同野鴨的肢骨比較起来已經按照相应的方式有所增減。馬被訓練走某种步法,而小馬遺传有同样的交感运动(consensual movement)。家兔由于严密的拘禁而变得馴順了;狗由于同人交往而聪明了;拾獚(retriever)被教导去取东西和带东西;这等精神的秉赋以及体力全是遺传的。 在生理学的范围內沒有比这种情形更加不可思議的了。单独的一个肢或者脑的使用或不使用怎么能够影响位于身体的遙远部分的一小团生殖細胞呢? 这种影响的方式是,从这等細胞发育出来的生物遺传有一亲的或双亲的性状。 对于这个問題哪怕有一个不完善的解答,大概也会令人满足的。

在討論遺传的那一章中已經闡明,大量新获得的性状,不論是有害的或有利的,不論具有最低的或最高的生活重要性的,常常都能忠实地遺传下去——即使一亲单独拥有某种新特性,也往往如此:总起来說,我們可以作出如下的結論:遺传是規律,不遺传是变則。 在某些事例中,一种性状沒有被遺传是由于生活条件直接对抗它的发育所致;在許多事例中,則是由于生活条件不断地誘发新的变異性所致,例如嫁接的果树以及高度栽培的花卉植物就是这样。 在其余的例子中,不遺传可以归因于返祖;由于返祖,子代同其祖父母或更远的祖先相似,而不同其双亲相似。

遺传是受种种法則的支配的。在任何特別年龄出現的性状具有在相应年龄重望 的傾向。它們常常同一年的某些季节相伴随,並且在后代中于相应的季节重現。 如 果在一性中它們出現于較晚的生命时期,那末它們就有专在同一性中于同样生命时 期重現的傾向。

最近提到的返祖原理是最不可思議的"遺传"屬性之一。 它向我們証明了,普通

一齐进行的、因而逃脱了区别的一种性状的遗传及其发育,是两种不同的力量;这两 种力量在某些場合中甚至是对立的,因为每一种力量在連續世代中交替地发生作用。 返祖並不是罕見的事情,它取决于环境条件的某种異常的或适宜的配合,但它在杂交 的动物和植物中如此有規則地发生並且在非杂交的品种中也如此常常出現、所以显 然它是遺传原理的一个根本的部分。我們知道,正如在动物野化的場合中那样,变化 了的生活条件具有一种喚起长久亡失的性状的力量。杂交作用的本身高度地具有这 种力量。还有什么比以下情形更加不可思議的嗎? 即消失了几十代、几百代、甚至几 千代的性状突然重現並且完全地发育了,例如在純粹繁育的、特別是杂交的雞和鴿的 場合中就是如此,或者黃棕色馬身上的斑馬般的条紋以及其他这样的情形也是如此。 許多畸形可以放入同一項目,例如当痕迹器官重新发育的时候就是这样,或者象某些 玄参科植物(Scrophulariaceae)的第五雄蕊那样,当一种被我們确信为該物种的一个早 期祖先所具有的、但甚至連一点痕迹都沒有留下的器官突然出現的时候,也是这样。 我們已經看到返祖在出芽生殖中发生作用;並且我們知道,它在同一个体的发育中偶 尔发生作用,特别当它是杂种时更加如此,但並不完然如此,——例如在已經描述过 的鷄、鴿、牛和菜的罕見例子中就是这样,它們在长大的时候返归了双亲或祖先之一 的顏色。

正如以前所說明的那样,我們被引导去相信,每一种偶尔重現的性状在各个世代中都是以一种潛伏状态存在的,其方式同相反两性的次級性征在雌体和雄体內是潛伏的並且当生殖器官受到損害时随时可以发展起来的情形差不多是一样的。从記載下来的一只"母鷄"的例子来看,潛伏于两性中的次級性征同其他潛伏性状的这种比較就更加适切,这只"母鷄"呈現了雄性的性状,这不是它本族所有的,而是一个早期 祖先所有的;这样它同时表現了两种潛伏性状的再发育。我們可以确信,在每一种生物中都有大量的长久亡失的性状潛伏着,並且准备在适宜的条件下随时发展。 我們怎样才能使这种不可思議的和普通的返祖能力——这种喚起长久亡失性狀复活的力量——成为可以理解的並使它同其他事实連系起来呢?

第二部分

每一个人都希望看到現在我所举出的主要事实用某种可以理解的 線索 联系 起来。如果我們作出如下的假定,我們便能作到上述那一点,並且可以提出很多事实来 支持主要的假定。次要的假定同样地也能由种种生理学上的理由来支持。普遍承認 細胞或身体的单位借着自我分裂或增生而增加起来,它們保持着同样的性質,並且最 移轉变成身体的各种組織和实質。但是,除了这种增殖的方法以外,我假定这等单位还会放出微粒,它們散佈于整个系統;这等微粒当受到适当营养的支持时,便由自我分裂而繁殖起来,最終发育成的单位同它們所原始来自的单位一样。 这等单位可以被称为芽球(gemmules)。它們从系統的一切部分集中起来而构成性生殖要素,並且它們在下一世代的发育形成了新的生物;但它們也能以一种休眠的状态传递給将来的世代,于是发育起来。 它們的发育取决于它們同其他局部发育的細胞或初发的細胞之結合,这等細胞是在正規的生长过程中先于它們发生的。 我为什么使用結合这个术語呢,当我們討論到花粉对于母本植株的組織的直接作用时就会知道。 芽球被假定是由每一个单位放出的,这不仅在成熟期間是如此,而且在每一个有机体的各个发育阶段也是如此;但它的放出並不一定在同一单位的繼續生存的期間。最后,我假定芽球在休眠状态中具有相互的亲和力,导致它們集合成芽或性生殖要素。因此,产生新有机体的並不是生殖器官或芽,而是构成各个个体的单位。 这等假定組成了我称为"汎生論"的暫定假說。各方面的作者曾經提出在許多方面同此相似的观点¹⁾。

第一,这等假定本身可能到怎样的程度;第二,它們把我們所討論的各类事实連系到並解释到怎样的程度,在对这两点进行闡明之前,举出一个有关这个假說的尽量簡单的例証可能是有用处的。如果一种原生动物(Protozoa)就象在显微鏡下看到的那样由一小团同質的胶状物形成了,那末由任何部分放出的並在适宜条件下受到营养的微粒或芽球大概就会产生其整体;但是,如果上面和下面在組織上彼此有所差異並且同中心部分有所不同,那末所有这三个部分大概都会放出芽球,这等芽球当由相互的亲和力集合起来时,大概就会形成芽或性生殖要素,並且最終发育成同样的有机体。正是这种观点大概也可能引伸到一种高等动物;虽然在这种場合中,在各个发育

¹⁾ 留斯先生提到几位持有差不多相似观点的作者(双週評論,11 月 1 日,1868 年,第 506 頁)。二千余年以前亚里士多德反对过这种观点,奥哥尔博士告訴我說,希波革拉第 (Hippocrates) 和其他人持有这种观点。雷伊(Ray)在他的上帝的智慧(Wisdom of God, 第二版,1692 年,第 68 頁)一書中說道,"身体的各部分似乎协力对于种子有所貢献"。 在丰的"有机分子"(organic molecules)最初看来似乎同我的假說中的芽球是一样的(博物学通論,1749 年版,第二卷,第 54,62,329,333,420,425 頁),但它們本質上是不同的。旁內特說肢具有适于恢复一切可能損失的胚种(博物学,第五卷,第一部分,1781 年,第四版,第 334 頁);但这等胚种同芽內和生殖器官內的胚种是否一样,还不清楚。 與溫教授說,他沒有看到他在極雄生殖一書(1849 年,第 5—8 頁)中所提出的並且他現在認为是錯誤的观点同我的況生論的假說有什么基本不同(脊椎动物解剖学,第三卷,1868年,第813頁):但有一位評論者却指出它們实际上是多么不同(解剖学和生理学学形,5 月,1869 年,第 441 頁)。 我以前認为赫伯特·斯賓器的"生理單位"(physiological unit) 同我的芽球是一样的(生物学原理,第一卷,第四章和第八章,1863—64 年),但我现在知道並不是这样。最后,根据关于曼特加莎的最近写的一篇評論(Nuova Antologia, Maggio 1868年)看来,他似乎对于汎生說有先見之明(見他的衞生学原理,第三版,第 540 頁)。

阶段由身体的各个部分—定会放出大量的的芽球来;这等芽球在正**当的繼承次序**中 同既存的初发細胞結合之后,便发育起来了。

正如我們所看到的,生理学者們都主张身体的各个单位虽然大部分是依存于其他单位的,但在某种范围內也是独立的或自律的,並且具有由自我分裂而增殖的能力。我向前进了一步並且假定,各个单位放出游离的芽球,它們散佈于整个的系統,並且在适当的条件下能够发育成同样的单位。这种假定不能被视为沒有理由的和不可能的。显然性生殖要素和芽都含有能够发育的某种形成物質;並且根据嫁接杂种的产生我們現在知道,同样的物質散佈于植物的整个組織,並且能够同另一种不同植物的这等物質結合起来,产生中間性状的新生物。我們还知道,雄性生殖要素能够直接地对母本植物的局部发育的組織发生作用,並且能够对雌性动物的未来后代发生作用。这样散佈于植物整个組織中的並且能够发育成各个单位或部分的形成物質一定是借着某些方法在那里产生的;我的主要假定是,这种物質是由各个单位或細胞所放出的微粒或芽球所构成的10。

但是我必須进一步假定,芽球在不发育的状态下也能象独立的有机体那样地借着自我分裂来大量繁殖自己。得尔皮諾主张,"如果承認动物細胞借着分裂而增殖的現象是同种子或芽相似的話,那末这是同所有相似的現象都相违背的"。不过这似乎是一种奇怪的反对論調,因为塞瑞特(Thuret)²⁾已經看到一种藻类的游动孢子一分为二,而且每一半都发芽。赫克尔把一种管水母的分裂卵分为許多片,它們都发育了。芽球在性質上同最低的和最簡单的有机体几乎沒有很大的差異,不会由于芽球的极端微小,它們就不可能生长和增殖。一位伟大的权威比尔博士³⁾ 說道,"微小的酵母細胞能够放出比值徑一吋的 1/100000 还要小得多的芽或芽球;他認为这等芽或芽球实际上可以无限地一再分裂"。

天花的脓粒子是如此微小,以致可以由风运载,它們在受到传染的人的身体里一定几千倍地增殖;腥紅热的传染物質也是这样⁴⁾。最近有人确言⁵⁾,从感染牛瘟的牛排出的一点粘液如果注入健康牛的血液中,它們增加得非常之快,以致在很短的时間內

¹⁾ 勞恩先生會經观察了蝇的幼虫的組織中所发生的某些显著的变化(奎克特显微鏡俱樂部學报,Journal of Queckett Microscopical Club, 9 月 23 日, 1870 年),这使他相信"器管和有机体可能是时常由非常像小的芽球——就象达尔文的假設所要求的那样芽球——的集合而发育起來的"。

²⁾ 自然科学年报,第三韓,植物学部分,第十四卷,1850年,第244頁。

³⁾ 病原体(Disease germs),第20頁。

⁴⁾ 再参閱比尔博士的关于这个問題的几篇有趣論交,見医学时代新报(Medical Times and Gazette), 9 月 9 日, 1865年,第 273,330 頁。

⁵⁾ 皇家調查委員会关于牛瘟的第三次报告,在艺园者記錄中引用,1866年,第446頁。

"若干磅的全部血液都被感染了,血液的每一个微粒都含有足够的毒物,在四十八小时之内就可以把这种病传給另一头牛"。

在同一身体內把游离的和未发育的芽球从幼年保持到老年似乎是不可能的,但 我們应当記住,种子在地下、芽在树皮中休眠了何等长久的时間。它們一代一代地传 递下去似乎越发不可能了;但在这里我們又应当記住,許多痕迹的和无用的器官已經 传递了无数世代。 我們即将看到,未发育的芽球的长久不断的传递多么充分地解释 了許多事实。

因为整个身体內的每一个单位或一羣同样的单位都放出芽球,因为这等芽球都包含在最小的胚珠、各个精子或花粉粒之內,並且因为某些动物和植物产生可惊数量的花粉粒和胚珠¹⁾,所以芽球的数量和微小是很难想象的。但是,如果考虑到分子是何等微小,並且考虑到何等众多的分子参加了任何普通物質的最小顆粒的形成,那末有关芽球的这种难題就不是不能解决的了。根据<u>湯姆遜</u>爵士所得到的材料,我的儿子乔治发現一万分之一时的玻璃或水的立方体所含有的分子一定在 16,000,000 兆和131,000,000,000 兆之間。毫无疑問,由于有机体更加复杂,所以形成有机体的分子比形成无机物的分子还要多,大概許多分子参加了一个芽球的形成;但是,如果我們記住一万之一时的立方体比任何花粉粒、胚珠或芽都小得多,那末我們就能看到一个这样的有机体含有何等巨量的芽球。

从各个部分或器官发生的芽球一定彻底地散佈于整个系統中。例如,我們知道, 甚至秋海棠的一小块叶子也会产生原样的植物;如果一种淡水蠕虫被切成小碎块,每一块都会产生原样的动物。 如果再考虑到芽球的微小以及所有有机組織的透过性, 那末芽球的彻底分佈就沒有什么奇怪了。那样的物質在沒有血管或导管的帮助下可 以容易地从身体的这一部分轉移到另一部分,在帕給特爵士所記載的一位妇人的場 合中我們看到了良好的事例,她的头髮在每一次連續的神經痛中都失掉了顏色,並且 少数几天之后又恢复了顏色。然而,关于植物,可能关于珊瑚那样的羣棲动物,芽球 普通並不从这个芽散佈到那个芽,而是局限于从各个分离的芽发育起来的部分,对于 这个事实还沒有什么解释可以提供。

¹⁾ 巴克曼先生在一条

經(Cod-fish)中找到了 6,867,840 个卵 (陆与水,1868年,第 62 頁)。一条蛔虫 (Ascaris) 約產 64,000,000 个卵 (卡本特的比較生理学,1854年,第 590 頁)。

爱丁堡皇家植物园的司谷股先生按照我对某些英国關科植物所用的同样方法(關料植物的受精,第 344 頁)計算了一株 Acropera 的一个蒴中的种子数,发現为 371,250 粒。

现在这样检验在一个總狀花序上開了若干花,在一个季节中产生了許多總狀花序。

在一个近似局 Gongora 中,司谷股先生曾經看到二十个前长在一个總狀花序上;

Acropera 的十个这样總狀花序將会产生七千四百万个以上的种子。

在正常的发育的次序中各个芽球对先在的特殊細胞具有选择的亲和力,这种假定受到了許多类推的支持。 在有性生殖的一切正常場合中,雌性生殖要素和雄性生殖要素肯定具有相互的亲和力;例如,人們相信菊科植物有一万个物种,如果所有这等物种的花粉同时地或接連地被放在任何一个物种的柱头上,那末毫无疑問,这个物种将会完全无誤地选择它自己的花粉。这种选择力越发不可思議的是因为它的获得一定在这一大类羣植物的許多物种从一个共同祖先分歧出来之后。根据有关有性生殖的性質的任何观点, 胚珠和雄性生殖要素所含有的各个部分的形成物質是按照某种特殊亲和力的法則而相互作用的, 所以相应的部分彼此发生影响;例如,短角母牛和长角公牛交配从而产生出来的牛犢,它的角受到了两个类型結合的影响,具有不同額色的尾部的两只鳥的后代,它的尾部也受到了影响。

正如許多生理学者們所主张的那样¹⁾,身体的各种組織明显地闡明了对于特殊有机物質的亲和力,不論这等物質是身体原来有的或外来的,都是如此。在腎脏細胞从血液吸收尿素的場合中,在箭毒(curare)对于神經的影响中,在芫青(Lytta vesicatoria)对于腎脏的影响中,以及在各种疾病——如天花、腥紅熱、百日咳、鼻疽和恐水病——的毒質对身体的某些一定部分的影响中,我們看到了上述的情形。

还有一种假定,即各个芽球的发育取决于它同刚刚开始发育的、並且在正常生长次序中先于它的另一个細胞或单位的結合。 根据我們的假說,植物花粉內的形成物質是由芽球构成的,並且能够同母本植株的部分发育的細胞相結合,而且还能改变后者,我們在討論这个問題的部分中已經清楚地看到了这种情形。 根据我們所能知道的来說,植物的組織只能由既存細胞的增生而形成,所以我們必須作出如下的結論:来自異花粉的芽球不会发育成独立的新細胞,而是渗入和改变母本植株的初发細胞。可以把这一程序同普通受精作用中所发生的情形作一比較,在普通受精作用中花粉管的內容物渗入到胚珠中的密閉胚囊,並且决定了胚的发育。按照这种观点,毋本植株的細胞几乎可以正确地說是由異花粉的芽球而受精了。在这样以及所有其他場合中,适当的芽球由于它們的选择亲和力一定在正常次序中同既存初发細胞結合起来了。 芽球和初发細胞在性質上的微小差異决不会干涉它們的結合和发育,因为我們在普通繁殖的場合中得知,性生殖要素中的这样細微的分化对于它們的結合和此后的发育以及这样产生出来的后代的活力是显著有利的。

在我們的假說的帮助下,我們对于摆在面前的那些問題所能提供的模糊說明只

¹⁾ 帕給特,病理学離义,第 27 頁; 徽耳和,細胞病理学,強司博士譯,第 123,126,294 頁; 克勞得·勃尔納德 关于活組織(Des Tissus Vivants),第 177,210,337 頁; 繆勒的生理学,英譯本,第 290 頁。

有那样多;但必須承認还有許多点依然是完全不能解决的。例如,推測身体的每个单位在什么发育期間放出它的芽球,那是徒劳的,因为各种組織的整个发育問題还远远不是清楚的。我們不知道芽球是不是仅仅借着某些未知的方法在某些季节中于生殖器官內集合起来的,或者是不是它們在这样集合起来之后便迅速地在那里增殖起来了,从血液在各个繁育季节中流往这等器官的情形看来,这似乎是可能的。 我們还不知道芽球为什么在某些一定的位置集合起来形成芽,导致了樹和珊瑚的对称生长。我們沒有方法来决定組織的普通磨損究竟是利用芽球来补足,还是仅仅由既存細胞的增生来补足。 如果芽球是这样消耗的——从磨損的恢复、再生力以及发育之間的密切关系看来,特別是从許多雄性动物在顏色和构造上所发生的周期变化看来,这似乎是可能的;那末,生殖力和創伤恢复力減退的老年現象大概可以得到某种說明,而且有关长寿的这个曖昧問題大概也可以得到某种說明。除非芽球的确是在生殖器官內小量集合起来之后而大量增殖的,否則去势动物在授精作用中並不放出无数芽球而且並不比完全动物更加长寿这个事实似乎就同芽球在磨損組織的普通恢复中受到消耗的那种信念对立起来了」。

从一只公鷄的距被接在一只公牛的耳朵上而长得很大的这样一些例子看来,同样的細胞或单位可能活得很久而且繼續增殖,並不会由于同任何种类的游离芽球結合而有所改变。 同它們和不同性質的芽球相結合无关,这等单位在正常生长中由于吸收周围組織的特殊养分而有怎样程度的改变,是另一个难解决的問題²⁾。如果我們想起植物的細胞当受到制造虫癭的昆虫的毒物接种之后会有多么复杂而对称的生长,那末我們就会玩味到上述的难点了。 关于动物,一般承認种种多倍的瘤和肿瘍是变为異常的正常細胞通过增生的直接产物³⁾。在骨的正常生长和恢复中,正如微耳和所說的⁴⁾,組織发生了一整系列的交換和代替。 軟骨細胞可能直接轉变成骨髓細胞,並且这样繼續下去;或者可能先变成硬骨組織,然后变成骨髓組織;最后,它們可能先变成骨髓,然后变成骨。 这等組織的交換非常富有变化,它們本身如此密切相似,它們的外观又如此完全不同"。 但是,因为这等組織在任何时期都会这样改变它們的性質,而在它們的营养方面並沒有明显的变化,所以,按照我們的假說,我們必須假定来自某一种組織的芽球同另一种細胞結合了,并且引起了連續的改变。

¹⁾ 雷伊·兰开斯特(Ray Lankester)教授在他的有趣論文人类和低等动物的寿命比較中討論了这里所提出的有关汎生說的几点。

²⁾ 罗斯博士在他的疾病的接种理論 (Graft Theory of Disease)一書中(1872年,第53頁)提及这个問題。

³⁾ 微耳和,細胞病理学,強司博士課,1860年,第60,162,245,441,454頁。

⁴⁾ 同前書,第 412-426 頁。

我們有良好的理由可以相信,同一单位或細胞的发育需要几个芽球;否則我們就 无法理解单独一个或者甚至两三个化粉粒或精子为什么是不够的。但我們还远远不 知道所有单位的芽球同其他芽球是不是分离的,或者有些芽球是不是从最初就結合 成小团了。例如,一根羽毛的构造是复杂的,並且因为各个分离的部分对于变異都有 遺传的傾向,所以我断言每一根羽毛都会发生大量的芽球;不过可能的是,这等芽球 可能集合成一个复合的芽球。同样的意見对于花瓣也适用,花瓣有时具有高度复杂 的构造,每一个凸和凹的部分都是为了一种特殊目的而設計的,所以各个部分一定是 分別改变的,並且这等改变是遺传的;因此,按照我們的假說,分离的芽球一定是从各 个細胞或单位放出来的。 但是,因为我們时常看到一半花葯或者一小部分花絲变成 花瓣的形状,或者專的一部分或仅仅它的条紋呈显了花冠的顏色和組織,所以在花瓣 中各个細胞的芽球可能沒有集合成一个复合的芽球,而是游离的。 甚至在具有原生 質、細胞核、核仁和細胞壁的完全細胞那样的簡单場合中,我們也不知道它的发育是 否取决于来自各个部分的复合芽球¹⁾。

現在已經尽力闡明了上述几个假定在某种范围內是由一些相似的事实来支持 的,而且也提到了某些最有疑問之点,我們即将考察这个假說能够多大程度地把"第 一部分"所举的各种例子納入单独一个观点之下。 所有生殖法都漸次互变而且在它 們的产物方面都是一致的;因为把从芽产生出来的、从自我分裂产生出来的以及从受 糕胚种产生出来的有机体区别开是不可能的;这等有机体具有发生同样性質的变異 的傾向,並且具有进行同样种类的返祖傾向:按照我們的假說,因为所有生殖法都取决 于来自全身的芽球的集合,所以我們能够理解这种显著的一致性。 孤雌生殖不再是 不可思議的了,如果我們不了解来自两个不同个体的性生殖要素的結合所产生的巨 大利益,那末不可思議的大概是孤雌生殖的发生沒有比实际情形更多。 根据任何普 通的生殖理論,嫁接杂种的形成、雄性生殖要素对于母本植物的作用,以及对于雌性 动物的未来后代的作用,都是重大的異常情形;但根据我們的假說,它們就是可以理 解的。 生殖器官实际上並不創造性生殖要素: 它仅仅以特殊的方法来决定芽球的集 合,恐怕还决定它們的增殖。 然而这等器官以及它們的附屬部分可以执行高度的机 能。 它們为了独立的暫时生存或者为了相互的結合,可以活应于一方的或双方的生 殖要素。柱头分泌液对同一物种的植物花粉所发生的作用完全不同于它对異屬或異 科的植物花粉所发生的作用。 头足类 (Cephalopoda) 的精包 (spermataphores) 具有非 常复杂的构造,以前曾被人們誤为寄生虫;某些动物的精子所具有的特質,如果在一

¹⁾ 参阅得尔皮諾和智斯对于这一問題的一些良好批評,見双週評論,11月1日,1868年,第509頁。

种独立的动物中来观察,大概会被認为是由感觉器官所支配的本能——就象当昆虫的精子找到进入細小卵孔的途徑时那样。

已經长期观察到¹⁾ 在生长和有性生殖力之間²⁾——在創伤恢复和出芽之間——关于植物,在由芽和根茎等所进行的迅速增殖和种子的产生之間,除了某些例外,存在着对立,这种对立可以由沒有足够数量的芽球来同时进行这等程序而得到部分的 說明。

在生理学中几乎沒有任何事实比再生力更加不可思議的了;例如,蜗牛能够恰好在切除的地方再生它的表,蠑螈能够恰好在切除的地方再生它的眼、尾和腿。这等例子可以由来自各个部分的並且散佈于全身的芽球得到說明。我曾听到把这等程序同結晶体的破裂了的稜由于再結晶而得到恢复的情形来比較;这两种程序有很多共同之处,在一个場合中分子的极性(polarity)是有效的原因,在另一个場合中,芽球对于特殊初发細胞的亲和力是有效的原因。但是我們在这里势必遇到两种反对意見,它們不仅应用于一个部分或一个两断个体的再生,而且也应用于分裂生殖和出芽生殖。第一种反对意見是,再生部分所处的发育阶段同被切除的或两断的生物所处的发育阶段是一样的;在芽的場合中,这样产生出来的新生物和出芽的亲代所处的发育阶段是一样的。例如,被切掉尾巴的一只成熟蠑螈不会再生幼体的尾巴;一只蟹不会再生幼体的腿。我們在本章的第一部分中已經闡明,在出芽生殖的場合中,这样产生出来的新生物在发育上不倒退——这就是說,並不通过受精胚种所必須通过的那些早期阶段。尽管如此,按照我們的假說,被切除的或由芽来增殖的有机体一定含有来自每一个早期发育阶段的部分或单位的无数芽球;为什么这等芽球不在相应的早期发育阶段再生被切除的部分或整个的身体?

第二种反对意見是得尔皮諾所主张的,它是:譬如說,被移去一肢的一只成熟的 蠑螈或蟹的組織已經分化而且通过了它們的整个发育过程;这等組織怎么能够按照 我們的假說去吸引应当再生的那一部分的芽球並同它們結合呢?在回答这两种反对 意見时,我們必須記住已經提出的那一証据,它闡明了至少在大多数場合中再生力是

¹⁾ 赫伯特·斯賓塞先生,关于这种对立已經作了充分討論(生物学原理,第二卷,第430頁)。

²⁾ 雄鮭揚知在很早期間即行繁育。 按照斐利卜和丟梅尔的材料,泥螺(Triton)和鰓鯢(Siredon)当保持着 幼体期的鰓时就能 生 薙(博物学杂誌,第三輯,1866 年,第157 頁)。 薩克尔曼近观察了一个有关水母的奇異例子(柏林科学院月刊,2月2日,1865 年),它的生殖器官是活潑的,借着出芽生殖,它产生了大不相同的水母类型;后者还有生殖力。科倫(Krohn)曾經開明,某些其他水母当性成熟时就用解芽(gemmae) 来紧痛(博物学杂誌,第三輯,第十九卷,1862 年,第6頁)。再参閱考利克尔(Kolliker),海鳃类的形態和发生(Morphologie und Entwickelungsgeschichte des Pennatulidenstammes), 1872 年, 第12頁。

一种局部的能力,它的获得乃是为了恢复各个特殊生物容易遭到的特殊损伤:在出芽生殖或分裂生殖的場合中,乃是为了在能够大量得到支持的那一生命期間迅速增殖有机体。 这等理由引导我們相信,在所有这样的場合中,为了这个特殊的目的,局部地或者全身保持着一羣初发細胞或部分发育的芽球,准备同那些在正常接續中其次发生的細胞所放出的芽球相結合。 如果这一点得到承認,那末我們就可以充分地回答以上的两种反对意見了。 无論如何,汎生說似乎对于不可思議的再生力提供了相当的說明。

根据刚才提出的观点还可以知道,性生殖要素同芽的差別在于前者在多少迟一点的发育阶段中不含有初发細胞或芽球,所以最先发育的只是屬于最早阶段的芽球。因为幼动物和低等动物一般比老动物和高等动物的再生力大得多,所以看来也似乎是它們比那些已經通过一长系列发育变化的动物更容易保持初发状态的細胞或部分发育的芽球。在这里我还可以补充地說,在大多数或者全部的雌性动物中,虽然能于极早的时期看到它們的卵,但沒有理由可以怀疑在成熟期間改变了的部分所放出的芽球能够进入卵中。

关于杂种性質,汎生說同大多数确定的事实是充分符合的。正如以前所闡明的, 我們必須相信每一个細胞或单位的发育需要几个芽球。但是,根据孤雌生殖的情况, 特別是根据胚胎仅仅是部分形成的那些例子、我們可以推論、雌性生殖要素一般含有 差不多足够数量的芽球作为独立发育之用,所以当同雄性生殖要素結合时,这等芽球 就过剩了。 且說,当两个物种或族进行相互杂交时,它們的后代普通並沒有差異,这 闡明了性生殖要素在能力上是一致的、並且同雌雄两性生殖要素含有同样芽球的那 种观点相符合。 物种間杂种和变种間杂种在性状上一般也是介于双亲类型之間的, 然而它們偶尔在这一部分上同某一亲密切相似,而在另一部分、甚至全部构造上同另 一亲密切相似:这样不是难理解的,如果我們承訓受精胚种中的芽球在数量上是过 剩的,而且来自某一亲的芽球可能在数量、亲和力或活力上比来自另一亲的芽球多少 佔有优势。 杂种类型时常以条紋或斑駁来表現任何一亲的顏色或其他性狀;这种情 形发生于第一代,或者通过返祖发生于以后的芽世代和种子世代,关于这一事实已在 第十一章中举出了几个例子。在这等場合中,我們必須追随諾丹1),並且承認两个物 种的"本質"(essence)或"要素"(element)——我似乎可以把这两个术語譯为芽球——对 于它們自己的种类具有一种亲和力,这样便把它們自己分离为不同的条紋或斑駁;当 我們在第十五章中討論某些性状結合的不可能性时,已經举出了这等相互亲和力可

¹⁾ 参閱他对于这个問題的优秀討論,見博物館新招,第一卷,第 151 頁。

以被相信的理由。 当两个类型杂变时,常常发现一个类型在传递它的性状上比另一类型佔有优势; 我們还可以用以下的假定来說明这种情形, 即一个类型在芽球的数量、活力和亲和力上比另一类型佔有优势。然而在一些場合中,某些性状在一个类型中是显现的,而在另一个类型中却是潛伏的; 例如,在所有鴿子中都有一种变成青色的傾向,当一只青色鴿子同其他任何顏色的鴿子杂变时,青色一般佔有优势。当我們考察到"返祖"的时候,对于这种优势型式的說明就会清楚了。

当两个物种杂交时,众所週知,它們不产生充分的或原来的数量的后代;关于这一問題我們只能說,因为各个有机体的发育取决于大量芽球和初发細胞之間的恰好平衡的亲和力,所以我們对于来自两个不同物种的芽球的混合会导致部分的或全部的不发育就不必感到惊奇了。关于从两个不同物种的結合而产生出来的杂种的不育性,我們在第十九章中已經闡明这完全取决于生殖器官受到了特殊的影响;但为什么这等器官应該这样受到影响,我們还不知道,正如我們不知道以下的情形一样:为什么不自然的生活条件虽然同健康沒有矛盾,也会引起不育性;或者,为什么連續的密切近亲交配或花柱異长植物的異型花結合会誘发同样的結果。只是生殖器官而不是整个体制受到影响的这种結論同杂种植物中芽的繁殖力不但沒有受到損害、甚至有所增強的情形是完全符合的;因为按照我們的假說,这意味着杂种的細胞放出杂种化的芽球,它們集合成芽,但沒有在生殖器官內集合起来而形成性生殖要素。同样地,許多植物当被放在不自然的生活条件之下时不結子,却能容易地由芽来繁殖。 我們一即将看到,汎生說同所有杂种动物和杂种植物所表現的強烈返祖傾向是非常符合的。

 个发育阶段放出芽球,它們增殖並且传递給后代。在后代中,任何特殊的細胞或单位一經部分地发育,就同以次接續的細胞結合起来了(比喻地說前者是受精了),並且一直这样前进下去。但是,有机体在发育的某一阶段往往遇到生活条件的变化。因而稍微有所改变:从这等改变了的部分放出的芽球将倾向于再生一些按照同样方式进行改变的部分。直到这一部分的构造在某一特殊发育阶段发生重大变化以前,这一程序可能重复进行,不过这並不一定影响以前形成的或以后形成的其他部分。 这样我們便能理解在連續变态中、特別是在許多动物的連續后形成中构造的显著独立性。有些疾病是在正常生殖期以后的老年期間发生的,尽管如此,它还是遗传的,例如脑病和心脏病的情形就是如此,在这种場合中我們必須假定,这等器官在早年就受到了影响,並且在这一期間放出了受到影响的芽球;不过这种影响只在——按照严格的意义来說——該部分的长期生长以后才成为显著的或有害的。在照例于老年期間发生的一切构造变化中,我們大概可以看到退化的生长的效果,而不是真正发育的效果。

各个部分的独立形成的原理,由于适当芽球同某些初发細胞的結合,并且由于来自双亲的芽球的过剩和此后芽球的自我增殖,对于大不相同的各类事实提供了說明,而按照任何发育的普通观点,这等事实似乎是很奇怪的。 我所指的器官是異常地轉位的或增殖的。例如,伊利阿特·考斯 (Elliott Couse)博士¹⁾ 記載过一个有关畸形继 鶏的例子,这只雛雞具有一支多余的完全右腿,用关节接合在骨盆的左侧。金魚常常具有多余的鰭,位于身体的各个部分。当蜥蜴的尾被切掉时,时常再生双重的尾。当 蠑螈的脚被旁內特縱向地割裂以后,偶尔会形成多余的趾。范倫泰 (Valentin)把一个胚胎的尾端伤了,三天之后它产生了双重骨盆和双重后肢的痕跡²⁾。 蛙和蟾蜍有时生下来就具有双重的肢,正如热而未所說的³⁾,这种双重性不是由于肢以外的两个胚的完全融合所致,因为幼体是无肢的。 同样的論点也可应用于⁴⁾生下来就有多重的腿和触角的某些昆虫,因为这等昆虫是从无腿的或无触须的幼虫变态而来的。 密尔内·爱德华⁵⁾ 描述过甲壳动物的一个引人注意的例子,这个甲壳动物的眼柄所支持的不是完善的眼,而仅仅是一个不完善的角膜,从这个角膜的中心发育出一个触角。关于某人,記載过这样一个例子⁶⁾,两次生齿期間他的左第二門齿都由一个双重齿所

¹⁾ 波斯頓博物学会会报,在科学意見中重載,11月10日,1869年,第488頁。

²⁾ 陶得的解剖学和生理学从書(Cyclop. of Anat. and Phys.),第四卷, 1849—52年,第 975 頁。

³⁾ 报告書, 11月14日, 1865年, 第800頁。

⁴⁾ 正如以前夸重费什在他的人的变化(1862年, 第129页)中所說的那样。

⁵⁾ 該特納的动物學記錄, 1864年, 第279頁。

⁶⁾ 塞治威克,外科医学評論, 4月, 1863年,第454頁。

代替,他从父系的祖父那里遗传了这种特性。还知道有几个这样的例子¹⁾:多余的齿在眼眶里发育起来了,特别是在馬中,多余的齿在腭上发育起来了。毛髮常常在奇怪的部分中出現,例如"在脑的物質中"²⁾。某些綿羊品种在額部生着許多角。 在某些斗鷄的两只腿上看到的距竟有五个之多。 公波兰鷄的羽冠的长羽同頸部的长羽相似,而母波兰鷄的羽冠則是由普通羽毛形成的。在羽脚的鴿和鷄中,从腿和趾的外侧长出来的羽毛同翼羽相似。 甚至同一羽毛的基本部分也可能轉位;因为关于塞巴斯托堡鵝,羽小支是在羽軸的分裂絲羽上发育的。 不完善的指甲时常在人的切除后的 殘指上出現³⁾;有一个关于蛇状蜥蜴的有趣事实,它呈現了一系列愈来愈不完善的 肢,趾骨之端最先消失,"趾甲轉移到殘余的基部,甚至轉移到不是趾骨的部分"⁴⁾。

相似的情形在植物中如此屡屡发生,以致沒有使我們感到惊奇。多余的花瓣、雄蕊和雌蕊常常产生。我曾看到在巢菜(Vicia sativa)的复叶下的一个小叶由卷須代替了;而卷須拥有許多特殊的性質,例如自然运动和刺激感应性。萼有时全部地或者以条紋呈現了花冠的顏色和組織。 雄蕊如此常常完全地或不完全地变成花瓣,以致这等例子被認为沒有被注意的价值而遭到忽視;但是因为花瓣具有特殊的机能,即保护其中的器官,吸引昆虫,並且在不少的場合中以充分适应的装置引导昆虫的进入,所以我們簡直不能仅仅用不自然的或过剩的养分来解释雄蕊变成花瓣的情形。 还有,偶尔可能发現花瓣的边緣含有植物的一种最高产物,即花粉;例如,我曾看到一种蜂兰(Ophrys)的构造很复杂的花粉块在一个上花瓣的边緣发育了。 已經观察到普通豌豆的萼片部分地变成了含有胚珠的心皮,並且它們的頂端变成了柱头。沙尔特先生和麦克斯威尔·馬斯特博士在西番蓮和蔷薇的胚珠中发現了花粉。芽可能在最不自然的部位——例如花瓣——上发育起来。还可以举出很多相似的事实50。

我不知道生理学者們怎样看待上述的事实。按照汎生說,轉位器官的芽球在錯誤的部位上发育是由于它們同錯誤的初发細胞或初发細胞羣結合起来的原故;这大概是由于它們选择亲和力的微小改变而发生的。如果我們想起第十七章中的許多引人注意的例子,即植物絕对拒絕由它自己的花粉来受精,但它們却能充分地由同一物种的任何其他个体的花粉来受精,而且在某些場合中只能由不同物种的花粉来受精,那

¹⁾ 小圣喜来尔,畸形史,第一卷, 1832年,第435,657頁;第二卷,第560頁。

²⁾ 細胞病理学, 1860年, 第66頁。

³⁾ 繆勒的生理学,英譯本,第一卷, 1833 年,第 407 頁。最近有人寫信向我說过这样一个例子。

Dr. Fürbringer, "类似蛇的蜥蜴类的骨头等等"在"Journal of Anat. & Phys.," 杂誌上被評論过的, 1870年5月,286頁。

⁵⁾ 麼坤·丹頓, 植物畸形学, 1841年, 第218, 220, 353頁。 关于豌豆的例子, 参閱艺园者記錄, 1866年, 第897頁。 关于胚珠內的花粉, 参閱馬斯特博士在科学評論(10月, 1873年, 第369頁)中的文章。巴尔克雷牧师描述过在山字草(Clarkia) 花瓣上发育的一个芽, 見艺园者記錄, 4月28日, 1866年。

末我們对于細胞和芽球的亲和力的变異就不应当感到非常惊奇了。这等植物的性选择亲和力(sexual elective affinities)——借用該特納的术語——显然已經有所改变。因为邻接的或同原的部分的細胞会有差不多一样的性質,所以它們借着变異特別容易获得彼此之間的选择亲和力;这样我們便能在某种范围內理解下面的例子:某些綿羊的头上生有很多角,鷄的腿上生有几个距,其他公鷄的头上生有长羽般的羽毛,並且在鴿的腿上生有翼羽般的羽毛以及趾間的皮膜,因为腿和翼是同原部分。因为植物的所有器官都是同原的並且从一个共同的釉发生的,所以它們自然应当非常容易于轉位。 应当注意,当任何复合部分——例如多余的肢或触角——从一个錯誤部位发生时,只是需要少数的最初芽球錯誤地附着就可以了;因为这等芽球当发育时,在正常接續中就象在切除肢的再生中那样将会吸引其他芽球。如果象蛇的椎骨或多雄蕊花的雄蕊等那样的同原的和构造相似的部分在同一有机体中重复多次,那末密切相似的芽种球一定极多,同样地它們应当結合之点也一定极多;按照上述的观点,我們便能在某种范围內理解小圣喜来尔的法則,即已經重复的部分极其容易在数量上发生变異。

正如我會試图闡明的那样,变異性常常取决于变化了的生活条件对生殖器官发生了有害的影响:在这种場合中,来自身体各个部分的芽球大概是以不規則的方式集合起来的,有的过剩,有的不足。芽球的过剩是否会导致任何部分的增大,还不能說;但我們可以知道它們的部分不足並不一定导致該部分的全部退化,却可能引起相当的改变;因为植物的花粉如果被排除,它們就容易杂交,在細胞的場合中也是一样,如果沒有适当連續的芽球,正如我們在轉位植物中刚刚看到的那样,它們大概会容易地同其他近似的芽球相結合。

关于由变化了的生活条件的直接作用所引起的变異已經举过几个事例了,在这样場合中,身体的某些部分直接受到了新生活条件的影响,因而放出改变了的芽球,这等芽球被传递給后代。 按照普通的观点,无論是对胚胎、幼体或成体发生作用的变化了的生活条件为什么能引起可以遗传的变異,則是不可理解的。 为什么一个部分的长期不断的使用或不使用的效果或身体和精神的变化了的习性的效果能够被遗传,也是同等地或者甚至更加不可理解的。几乎提不出比这更加复杂的問題了;但是根据我們的观点,我們只是假定某些細胞最后在构造上改变了,並且这等細胞放出了同样改变的芽球。 这种情形可能在任何发育期間发生,並且这种改变在相应的期間被遗传下去;因为改变了的芽球在一切普通場合中将同适当的先在細胞相結合,因而将在最初发生改变的同样期間发育起来。 关于精神习性或本能,我們对于脑和思考

力之間的关系如此深刻无知,以致我們肯定不知道一种固定的习性是否会誘发神經系統的任何变化,虽然这似乎是高度可能的;但是,当这种习性或其他精神屬性、即瘋狂被遺传时,我們就必須相信某种实际的改变被传递下去了¹⁾;按照我們的假說,这意味着来自改变了的神經細胞的芽球被传递給后代了。

为了这样获得的任何改变在后代中出現,一般需要的是一个有机体应当在几代期間暴露于改变了的生活条件或习性之下。这种情形可能部分地由于这等变化最初並沒有显著到足以引起注意的程度,但这一說明是不够充分的;我只能根据如下的假定来說明这个事实,我們在返祖項下将会看到这个假說是得到了強烈支持的,即来自各个未变的部分或单位的芽球大量地被传递給連續的世代,並且来自已經改变了的同一单位的芽球在最初引起改变的同样的适宜条件下繼續增殖,直到最后它們有足够的多数来压倒和代替旧芽球。

在这里有一个难点可能受到注意;我們已經看到在由有性生殖和无性生殖来繁殖的植物中,它們的变異性質虽然沒有重大差異,但它們的变異頻度則有重大差異。就变異性取决于生殖器官在变化了的生活条件下的不完全作用来看,我們立刻就能知道为什么无性繁殖的植物远不如有性繁殖的植物容易变異。关于变化了的生活条件的直接作用,我們知道由非产生出来的有机体不通过早期的发育阶段,所以它們在构造最容易改变的那一生活期間並不象胚胎和幼体那样地暴露于誘发变異性的各种原因之中;但这是不是一个充分的說明,我不知道。

关于由返祖而发生的变異,从芽繁殖的植物和从种子繁殖的植物之間也有相似的差異。許多变种可以确实地由芽来繁殖,但由种子来繁殖,則一般地或者不可避免地返归它們的亲类型。杂种植物在某种范围內可以由芽来繁殖,但由种子来繁殖,則不断有返祖的傾向,——这就是說,有失去杂种性状或中間性状的傾向。关于这等事实我还不能提供令人满意的說明。 斑叶的植物、具有条紋花的福录考(phloxes)、无子果实的刺蘗全能由茎上的芽或枝上的芽来确实地繁殖;但这等植物的根芽儿乎不可避免地失去它們的性状並且返归以往的状态。我們知道茎芽就象独立有机体那样地进行活动,除非根芽同茎芽的差異象茎芽彼此之間的差異那样,否則后面那个事实也是不可理解的。

最后,根据汎生論的假說,我們看到,变異性至少取决于两类不同的原因。第一, 取决于芽球的不足、过剩和轉位以及长期休眠的芽球的再发育;芽球本身並沒有发生 任何改变;这等变化将会充分地說明非常徬徨的变異性。 第二,取决于变化了的生

¹⁾ 参閱何兰得爵士对于这种効果的一些意見,見他的正学笔記,1839年,第32頁。

活条件对于体制的直接作用以及部分的增强使用或不使用:在这种場合中,来自改变了的单位的芽球本身将会改变,当它們充分增殖时,就会代替旧芽球並且发育成新的构造。

現在轉来談一談"遺传"法則。如果我們假定一种同質的胶状原生动物发生了变異並且呈現淡紅色,那末一个分离的微粒当长大时自然会保持同样的顏色;于是我們看到了遺传的最簡单型式¹⁾。同一观点完全可以引伸到构成一种高等动物的整个身体的各式各样的无数单位;分离的微粒就是我們的芽球。 我們已經含蓄地对于在相应年齡遺传的重要原理进行了充分討論。如果我們相信身体各单位的选择亲和力在雌雄两性中、特別是在成熟后微有差異,並且在一性或两性中于不同季节微有差異,所以它們同不同的芽球相結合,那末被性別所限制的以及被季节所限制(例如冬季变白的动物)的遺传性就是可以理解的了。应当記住,我們在討論器官的異常轉位时已經知道,有理由可以相信这等选择亲和力是容易改变的。

但有一种反对意見,最初看来对我們的假說似乎是致命的,即一个部分或器官在連續的世代中被移去,如果在手术之后不繼之以疾病,这个失去的部分会在后代中重現。 狗和馬的尾巴以往在許多世代中被割掉了,而沒有任何遺传的效果;虽然象我們已經看到的,有某种理由可以相信某些牧羊狗的无尾状态是由于这种遺传所致。 犹太人自从古代以来就实行割礼,在大多数場合中这种手术的效果不見于后代;虽然有些人主張一种遺传的效果确偶尔出现。如果遺传取决于来自身体一切部分的广为散布的芽球的存在,那末为什么一个部分的切除或殘損,特別是当兩性都受到这样影响时,並不一定影响其后代呢? 按照我們的假說,对于这个問題的解答大概是,芽球在一长系列的世代中增殖並且传递下去——在馬身上重現斑馬条紋的場合中,在人类重現其低等祖先所固有的肌肉和其他构造的場合中,並且在許多其他这样的場合中,我們看到了这种情形。所以在許多世代中曾被移去的一个部分的长期不断的遺传並不是真的变則,因为以前来自这一部分的芽球一代一代地增殖並且传递下去。

截至現在我們所談的只是一些部分被移去之后並不繼之以疾病作用的情形;但是,当手术之后繼之以疾病作用时,这种缺陷肯定有时是遺传的。在前一章中已經举出了一些事例,例如一只母牛在失去一个角以后跟着就化脓了,她的一些牛犢都在头的同一侧缺少一个角。但是公認的确实証据还是勃朗·稅奎所举出的关于豚鼠的例

这是赫克尔教授在形态等。論中所持的观点,他說:"双亲同子代的特殊构成物質有一部是相同的,这等物質在生殖时的分离就是遺传的原因。

子,它們的臀神經被取走之后,它們就咬掉了自己的腐烂的脚趾,它們的后代至少在十三个事例中都在相应的脚上缺少脚趾。 在几个这等例子中,因为只有一亲受到影响,所以失去部分的遗传就愈益显著了;但我們知道,先天的缺陷常常只从一亲传递下去——例如,任何性别的无角牛当同完善的牛杂交时,其后代常常是无角的。 那末,如果殘废繼之以疾病作用,按照我們的假說,怎样能够說明这等殘废有时是強烈遺传的呢? 对于这个問題的解答大概是,殘废部分或被切除部分的所有芽球都在恢复过程中逐漸被吸引到疾病的表面,並且在那里被疾病的作用所破坏了。

关于器官的完全不发育必須稍微补充地談上几句話。当一个部分由于在許多世代中长期不使用而縮小时,生长經济的原理以及相互杂交就象以前所說的那样,具有使它进一步縮小的傾向,但这不会說明,譬如代表雌蕊的細胞組織的微小乳头状突起或者代表牙齿的极端微小的骨块为什么会完全地或者几乎完全地消失掉。在压抑还沒有完成的某些場合中,痕迹部分不时通过返祖而重現,按照我們的观点来看,这时来自这一部分的分散的芽球一定依然存在;所以我們必須假定,除了在返祖的偶尔場合中,細胞——由于同它們結合痕跡部分以前发育了——对于这等芽球失去了亲和力。但是,不发育如果是完全的和最后的,那末芽球本身无疑地就会死亡;在任何方面这都不是不可能的,因为活动的和长期休眠的大量芽球虽然在各个生物中得到了营养,但对于它們的数量一定还有某种限制;並且来自縮小的和无用的部分的芽球比那些新近来自机能活动依然充分的其他部分的芽球大概更易死亡,这似乎是自然的。

最后需要討論的一个問題是返祖,它依据的原理是,传递和发育虽然一般是連合活动的,却是不同的力量; 芽球的传递及其此后的发育向我闡明了这是多么可能。我們在許多場合中清楚地看到了这种区別,在这些場合中,祖父把他的女儿不拥有的或者不能拥有的性状传給孙子。 但在討論之前,先对潛伏的或休眠的性状稍微談儿句話大概是适宜的。 大多数的或者全部的屬于一性的次級性徵在另一性中都是休暇的;这就是說,能够发育成雄性次級性徵的芽球都包含在雌性之內;相反地,雌性的次級性征也包含在雄性之內:关于这一点,我們在某些雄性性状上得到了証据,当雌性的卵巢得病或者由于年老而不发生作用时,无論肉体的或精神的雄性性状就会出现于雌性。同样地,雌性的性状也出现于去势的雄性,例如公牛的角形以及雄鹿的沒有角就是这种情形。甚至由于拘禁而发生的生活条件的微小变化也足可以阻碍维性性状在雄性动物中发育,虽然它們的生殖器官並不是永久受到损害的。 在雄性性状週期地苏醒的許多場合中,这等性状在其他季节中是潛伏的;受到性別限制和季节限制的遗传在这里結合在一起了。再者,直到维性动物到达适于繁殖的年龄之前,维性性

状一般在雄性动物中是休眠的。 以前曾举过一个有关"母鷄"的例子,这只母鷄呈現了不是自己品种的、而是遙远祖先的雄性性状,这个奇妙的例子說明了潛伏性征和普通返祖之間有着密切的关連。

关于那些习惯地产生几个类型的动物和植物,例如华来斯先生所描述的某些蝴蝶有三个雌性类型和一个雄性类型同时存在,再如千屈菜屬(Lythrum)和酢浆草屬(Oxalis)的三形性物种,能够产生这等不同类型的芽球在各个个体中一定是潛伏的。

不时产生这样的昆虫,它們身体的一侧或四分之一象雄性,其他一半或四分之三 則象雌性。在这等場合中,两侧的构造时常表現了可惊的差異,並且彼此由一条鮮明 界線分开。 因为来自每一部分的芽球存在于雌雄两性的各个个体中,所以这等場合 中的初发細胞的选择亲和力在身体两侧一定有異常的差異。同样的原理几乎对以下 的动物发生作用,例如某些腹足类以及蔓足类中的<u>韦尔卡(Verruca)</u>,它們的身体两侧 正常地是按照大不相同的方式构成的;但是几乎同等数量的个体的任何一侧都是按 照同样显著的方式改变了。

按照返祖这个字的普通意义来說,它是如此不断地起作用,以致它显然形成了一般遺传法則的一个重要部分。 在无論是由芽来繁殖的或由种子来繁殖的生物中,都会发生返祖的情形,甚至在同一个体的老年时也会时常发生这种情形。 返祖的倾向常常是由生活条件的变化而被诱发起来的,並且最明显地是由杂变而被誘发起来的。第一代的杂种类型在性状上一般几乎介于双亲之間;但在第二代中杂种后代普通会返归祖父母的一方或双方,偶尔会返归更加遥远的祖先。 我們怎样才能說明这些事实呢? 按照汎生說,杂种的每一个单位一定放出大量杂种化的芽球,因为杂种植物能够容易地並且大量地由芽来繁殖;但是根据同一原理,来自两个純粹亲类型的休眠芽球也同样存在:並且因为这等芽球保持着它們的正常状态,所以它們大概在各个杂种的一生期間能够大量增殖。 因此,一个杂种的性生殖要素既会包含純粹的芽球,也会包含杂种化的芽球;当两个杂种变配时,来自一个杂种的純粹芽球同来自另一个杂种的同一部份的純粹芽球的結合一定会导致性状的完全返祖;并且未改变的和未退化的同一性質的芽球大概特別容易結合,这恐怕不是一种过于大胆的假設。純粹芽球同杂种化芽球的結合大概会导致部分的返祖。 最后,来自两个亲杂种的杂种化芽球大概仅仅产生原始杂种类型¹⁾。 所有这等返祖的例子和返礼的程度都不断

¹⁾ 关于这个意見,实际上我是追隨語丹的,他讓到兩个杂交物种的要素或本質。参閱他的优秀論女,見妙物 館新报,第一卷,第 151 頁。

地发生。

在第十五章中已經闡明,某些性状彼此是对立的或者是不容易混合的;因此,当 两种具有对立性状的动物进行杂变时,很可能发生的是,单独存在于雄性中的、为了 繁殖他的特殊性状的芽球是不充分的,並且单独存在于雌性中的、为了繁殖她的特殊 性状的芽球也是不充分的;在这种場合中,来自某一遙远祖先的同一部分的休眠芽球 可能容易地得到优势,並且招致长久亡失的性状的重現。 例如,当黑鴿同白鴿杂交 时,或者黑鸡同白鸡杂交时,---不容易混合的颜色---在前一場合中表現为青色羽 衣,这显然是来自岩鴿,在后一場合中表現为紅色羽衣,这是来自野生原鷄——不时 重現。关于未杂交的品种,如果处在有利于某些休眠芽球增殖和发育的条件之下,同 样的結果也会发生,例如动物野化之后返归原始性状的情形就是这样。 各个性状的 发育需要一定数量的芽球,受精需要若干精子或花粉粒的情形已經說明了这是事实: 这种情形以及有利于增殖的时机大概說明了塞治威克先生所主張的那些引人注意的 例子, 即某些疾病有規律地出現于交替的世代中。 这同样地也可以或多或少严格地 应用于其他可以微弱遺传下去的改变。因此,正如我听說的那样,某些疾病似乎由于 在一个世代里中断而得到了力量。休眠芽球在許多連續世代中的传递,正如以前所說 的,其本身几乎不比痕跡器官在长年累月中的保留、甚至也不比仅仅产生痕跡器官的 一种傾向的保留更加不可能;但沒有任何理由可以假定,休眠芽球能够永远传递並繁 殖下去。据信芽球是非常微小的而且是无数的,所以在变化和传續的长久过程中来自 各个祖先的各个单位的无限数量的芽球是不能得到有机体的支持或营养的。但在适 宜条件下的某些芽球比其他芽球应当在长得多的期間內得到保持並且繼續增殖,似 乎並非不可能。 最后,根据这里提出的观点,我們肯定可以洞察下述不可思議的事 实,即小孩可能离开双亲的模式,而同祖父母或相距数百代的远祖相似。

結 論

汎生論的假說,正如应用于刚才討論到的几大类事实那样,无疑是极端复杂的,但这等事实也同样是复杂的。 主要的假定是,身体的所有单位除了拥有自我分裂的生长力以外,还放出散佈于整个系統的微小芽球。这个假定不能被看作是太大胆的,因为我們根据嫁接杂交的例子得知,某种形成物質存在于植物的組織中,它們能够同其他个体所含有的形成物質相結合並且产生整个有机体的每一个单位。但我們必須进一步假定,芽球生长、增殖並且集合成芽和性生殖要素;它們的发育取决于它們同其他初发細胞或单位的結合。还可以相信它們能够象地下种子那样地在一种体眼状

态下传递給連續的世代。

在高等体制的动物中,从全身的各个不同单位放出的芽球一定是难于想象的那样多而微小。 因为各个部分的各个单位在发育期間是变化的,並且我們知道某些昆虫至少要經过二十次变态,所以这等单位一定放出它的芽球。但是,同样的細胞可能由于自我分裂而长久不断地增加,甚至可能由于吸收特殊养分而有所改变,但它們並不一定放出改变了的芽球。再者,所有生物都含有来自祖父母的或更远祖先的、但不是所有祖先的許多休眠芽球。 这等几乎无限多的而且微小的芽球包含在每一个芽、胚珠、精子和花粉粒中。对于这种情形的承認将被宣告是不可能的;但数量和大小仅是相对的难点。 有一些独立的有机体仅仅在高倍的显微鏡下才能看得見,它們的胚种一定是非常微小的。 传染物質的微粒是如此微小,以致可以由风来吹送或附着于平滑的纸上,它們将如此迅速地增殖起来,以致在短期內就会感染大形动物的整个身体。 我們还应当考虑到构成普通物質的一个微粒的分子公認是非常多而且微小的。所以,在相信芽球的存在按照我們的假說一定是非常多而且微小的方面所遇到的难点,最初看来似乎是不能克服的,却沒有重大的分量。

生理学者們一般承認身体的諸单位是自律的。我进一步假定它們放出生殖的芽 球。这样,一个有机体並不是整体地产生它的种类,而是各个分离的单位产生它的种 类。博物学者們常常說,植物的各个細胞具有产生整个植株的潛在能力,但它具有这 种能力只是靠着它含有来自每一个部分的芽球。如果一个細胞或单位由于某种原因 改变了,来自这个細胞或单位的芽球也以同样的方式发生改变。 如果我們暫时地接 受这个假說,那末我們必須把所有型式的无性生殖——无論是在成熟期发生的或是 在幼年期发生的——看作是同有性生殖基本上相同的,並且取决于芽球的相互集合 和增殖。被切除的肢的再生以及創伤的癒合是局部完成的同一程序。芽显然含有初 发細胞,这等細胞屬于出芽的那一发育阶段,並且它們随时可以同来自以次接續細胞 的芽球相結合。另一方面,性生殖要素不含有这等初发細胞;除了孤雌生殖的場合以 外,雄性生殖要素或雌性生殖要素单独地都不含有适于独立发育的足够数量的芽球。 包含着所有型式的变态和后形成的各个生物的发育取决于在各个生命期間放出的茅 球,並且取决于它們在相应时期同先在細胞相結合而进行的发育。 这等細胞可以說 由在正常发育次序中以次发生的芽球而受精了。 因此,普通受精的作用同各个生物 的各个部分的发育是密切近似的程序。严格地說,小孩並沒有长成大人,而是前者所 含有的胚种緩慢而連續地发育起来而形成了大人。在小孩以及在大人中都是各个部 分产生同样的部分 遺传必須被看作仅仅是一种生长的型式,就象低等体制的单細

胞有机体的自我分裂那样。 返祖取决于祖先把休眠芽球传递給它的后代,这等休眠 芽球偶尔在某些已知的或未知的条件下发育起来了。每一种动物和植物都可以比拟 为一个充满种子的苗床,其中有些种子很快地发芽了,有些种子休眠一个时期,还有些种子死去了。 当我們听說一个人在他的体質中含有一种遗传的疾病种子时,上面的說法就非常正确了。 就我所能知道的来說,还沒有人作过其他試图把这几大类事实联系在一个观点之下,那怕象我這种显然不完善的試图也沒有人作过。 一个生物就是一个小宇宙,由一羣自我繁殖的有机体形成,它們是难以想象地那样微小並且多得象天上的星星一样。

第二十八章 結 東 語

家养——变异的性質及其原因——选择——性状的分歧 和 区别——族的絕灭——有利于人工选择的环境条件——某些族 的 古远性——关于各个特殊变异是不是特别被 預先注定的問題。

因为差不多每一章都附有摘要,並且因为在討論汎生說的那一章中对于种种問題 一例如生殖的型式、遺传、返祖、变異的原因和法則等等,刚刚进行了討論,所以我在这里,只是对那些可以从全書五花八門的細节中推断出来的比較重要結論,稍作一般的敍述。

世界上所有地方的未开化人在剔养野生动物方面都可以容易地获得成功; 棲息在最初被人訪問的任何地方或鳥屿上的那些动物恐怕更容易被剔养。动物的完全被征服一般取决于这种动物在习性上是羣居的,並且取决于接受人作为兽羣或該族的首領。一种动物在变化了的生活条件下必須是能育的,它才会被家养,而这种情形决不是永远如此。一种动物除非对人有利益,大概就不值得人們費力去家养它們,至少在早期是这样。由于这等条件,家养动物的数量从来不是很大的。关于植物,我在第九章中已經闡明了它們的各种各样的用途最初大概是怎样被发現的,並且闡明了它們被栽培的早期步骤。 当人最初对一种动物或植物进行家养时,他不能知道,当它被轉移到其他地方时是否可以繁盛和增殖,所以在他的选择上他不能受到这样的影响。我們看到,馴鹿和駱駝对极端寒冷的和炎熱的地方的密切适应並沒有阻碍它們的家养。关于他的动物和植物是否在連續世代中变異並且产生新族,人所能預見的还要更少; 鵝的微小变異能力並沒有阻碍它自古以来的家养。

除了极少数例外,所有長期家养的动物和植物都有重大的变異。 在怎样的气候中,或者为了怎样的目的来养它,无論是作为人的或兽的食物,作为拉車用或狩猎用,作为衣着用或娱乐用,都沒有关系,——在所有这等环境条件下产生出来的族彼此之間的差異都比那些在自然状况下被分类为不同物种的类型彼此之間的差異更大。为什么某些动物和植物在家养下比其他动物和植物变異較大,我們还不知道,正如我們不知道为什么有些在变化了的生活条件下比其他变得更加不育。但我們势必主要根据被形成的各族之間的差異的数和量来判断我們家养产物曾經发生的变異量,並且我們能够常常清楚地看到,为什么許多不同的族沒有被形成,这就是因为微小的連續

变異沒有得到不断的积累;如果一种动物或植物沒有受到密切的注意、非常的重視、 以及大量的养育,这等变異将永远不会得到积累。

家养产物的徬徨的並且就我們所能判断的来說永无止境的变異性,——它們的差不多整个体制的可塑性,——是我們从本書前几章所举出的很多細节中得到的最重要教导之一。然而家养的动物和植物所暴露于其中的生活条件的变化几乎不能比許多自然物种在这个世界曾經发生的地質的、地理的和气候的不断变化期間所暴露于其中的生活条件的变化更大;但家养产物大概常常暴露在突然的变化以及較不連續的不一致生活条件之中。因为人曾經家养了如此众多的屬于大不相同的种类的动物和植物,並且因为他肯定沒有以預知的本能来选择那些变異将会最大的物种,所以我們可以推論所有自然物种如果暴露在相似的生活条件中,平均起来大概都会发生同样程度的变異。今天很少人会主张,动物和植物是帶着一种变異傾向被創造出来的,並且这种傾向为了日后玩賞家育成譬如鷄、鴿和金絲雀那样的奇妙品种而长期保持休眠状态。

从若干原因看来,要判断家养产物曾經发生过的变異量是困难的。 在某些場合中,原始祖先已經絕灭了;或者由于它的假定的后代发生了非常的变化,它不能确实地得到辨識。在另外一些場合中,两个或两个以上的类型在被家养之后进行了杂交;于是难于估計現今后代的性狀有多少应当归因于变異,有多少应当归因于若干祖先的影响。但是,家养品种由于不同物种的杂交而被改变的程度恐怕被某些作者們过份地誇张了。 一个类型的少数个体很少会持久地影响以較大数量存在的另一类型;因为,如果沒有細心的选择,外来血統的沾染很快就会被取消,在早期未开化的时代,当我們的动物最初被家养时,大概很少有这种細心的选择。

在狗、牛、猪以及某些其他动物的場合中,有理由可以相信若干家养族都是从明确,的野生原型传下来的;尽管如此,少数博物学者和許多育种者把有关家养动物的多源的信念已經扩展到沒有根据的程度。育种者們拒絕在单独一个观点下来看整个的問題;有一个人主张我們的鷄至少是从六个原始物种传下来的,我曾听他說过,鴿、鴨和兔的共同起源的証据对于鷄毫无用处。育种者們忽略了在早期未开化的时代不可能有許多物种被家养。他們沒有考虑到如果同現在的家养品相似、那末同所有它們的同类比較起来就会高度異常的物种不可能曾經在自然狀況下存在过。 他們主张,以往存在过的某些物种已經絕灭了,或者現在还沒有被发現,虽然以往曾是被人知道的。最近的大量絕灭这一假定在他們眼中並不是一个难点,因为他們並不根据其他密切近似的野生类型的絕灭的难易来判断它的可能性。最后,他們常常完全不顧整个地

理分佈的問題,好象这是偶然的結果似的。

虽然根据刚才举出的理由我們对于家养产物曾經发生过的变化量常常难于进行 准确的判断,但在所有品种据知是从单独一个物种传下来的場合中——例如关于鴿、 鴨、兔以及几乎肯定地关于鷄都是如此——这还是能够被探查出来的:並且在类推的 帮助下,对于从若于野生祖先传下来的动物,这也能够在某种范围内被判断出来。如 果讀过了本書前几章中的以及許多出版物中的細节或者参观了我們的各种展覽品, 而不被家养动物和栽培植物的极端变異性所深深打动,那是不可能的。 体制的任何 部份都逃不脱变異的傾向。变異一般对生活的或生理的重要性不大的那些部份发生 影响,但密切近似的物种之間所存在的差異也是如此。关于这等不重要的性狀,同一 物种的諸品种之間的差異往往比同一屬的自然物种之間的差異还要大,例如小圣喜 来尔曾刚明有关大小的情形就是这样,並且有关毛发、羽毛、角以及其他皮肤附屬物 的顏色、組織和形态等等也是这样。

往往有人主张,重要的部份在家养下决不变異,但这完全是錯誤。看一看任何一个高度改良的猪品种的头骨吧,它們的枕骨髁以及其他部份都大大地改变了;或者看一看尼亚太牛的头骨吧。要不观察一下几个家兔品种的伸长了的头骨吧,它們具有不同形狀的枕骨孔、寰椎以及其他頸椎。 波兰鷄的脑髓以及头骨的整个形状都已經改变了;在鷄的其他品种中,椎骨的数目和頸椎的形狀改变了。 在某些鴿中,下顎的形狀,舌的相对长度、鼻孔和眼瞼的大小、肋骨的数目和形狀以及食管的大小全都发生变異了。在某些四足兽中,腸的长度大大地增加了或者縮減了。关于植物,我們在各种果核上看到了可惊的差異。 在葫蘆科植物中,若干高度重要的性狀——例如子房上柱头的固定位置、心皮的位置以及子房突出花托以外——都变異了。 但把前几章中所举出的事实再說一遍大概沒有什么用处。

众所週知,在家养动物中性情、口味、习性、神經反射运动、喧噪或沉靜以及声調 发生多么重大的变異而且被遺传下去。 关于精神特性的变化,狗提供了最显著的事 例,这等差異是无法由传自不同野生模式得到解釋的。

在任何发育阶段新性狀可能出現、旧性狀可能消失,並且在相应的阶段得到遺传。我們在各个品种的鷄卵、雛鷄絨毛以及第一羽衣之間的变異中看到了这种情形;在各个蚕品种的幼虫和茧之間的差異中更加明显地看到了这种情形。这等事实看来好象簡单,但对于近似自然物种的幼虫狀态和成虫狀态之間的差異並且对于胚胎学的整个大問題都提供了說明。 新性狀如果在某一性的生命后期中第一次出現,那末它就有完全附着于这一性的傾向,或者它們可能在这一性中比在那一性中有程度大

得多的发展;或者它們在附着于一性之后,可能轉移到相反的一性。这等事实以及新性狀由于某种未知原因特別容易附着于雄性的情况同动物在自然狀况下获得次級性征有重要的关系。

时常有人說,我們的家养族在体質特性上沒有差異,但这种說法不能得到支持。 在我們改良的牛、猪等等中,成熟期、包括第二次生齒期都大大提前了。 姙娠期大大 变異了,並且在一两个場合中是按照固定方式改变的。在鷄和鴿的某些品种中,获得 絨毛和第一羽衣的时期是有差異的。蚕的幼虫所通过的脱皮次数有变異。在不同品 种中,长肥、泌出大量的乳、一次或一生中产生很多幼体或卵的傾向都有差異。 我們 发現对于气候的适应性有不同的程度,对于某些疾病的感染,对于寄生物的袭击,对 于某些植物性毒物的作用,有不同的傾向。关于植物,对某些土壤的适应性,对寒冷 的抵抗力,开花期和結果期,生命的持續,在冬季中的落叶期和不落叶期,組織或种子 中的某些化合物的比率和性質,全都变異了。

然而在家养族和物种之間还有一种重要的体質差異;我所指的是,当物种杂交时 几乎不可避免地会发生或大或小的不育性,並且当大多数不同家养族进行同样杂交 时,除了很少数植物以外,都有完全的能育性。这肯定是一个最值得注意的事实,即在 外貌上差異极小的許多密切近似物种当杂交时只能产生很少的多少不育的后代,或 者根本不产生后代:而彼此差異显著的家养族当結合时却是非常能育的而且产生能 育的后代。但这个事实实际上並不象最初看来那样不可解释。第一,在十九章中P. 經明确地闡明了杂交物种的不育性主要並不取决于它們的外部构造或一般体質的差 異,而是取决于生殖系統的差異,同引起二形植物或三形植物的異型花結合的能育性 减低的情形相似。第二,帕拉斯的学說——物种在长期家养之后便失去它們在杂交时 不育的自然傾向——已被闡明是高度可能的而且几乎是肯定的。当我們考虑到几个 狗的品种的、印度瘤牛和欧洲牛的以及两个猪的主要种类的血統及其現在的能育性 时,我們就无法逃避这个結論。因此,如果期望在家养下形成的族应当在杂交时获得 不育性,但同时我們又承認家养可以消除杂交物种的正常不育性,那大概是不合理的。 为什么在密切近似的物种中它們的生殖系統几乎不可避免地按照如此特殊的方式发 生改变,以致不能相互地发生作用——虽然正如同一物种在互交中表現有不同能育 性所闡明的那样,在两性中其改变程度有所不同——我們还不知道,但推論其原因非 常可能如下。大多数自然物种已經长期地习惯于几乎一致的生活条件,这是家养族所 不可比拟的: 我們肯定地知道变化了的生活条件对于生殖系統可以发生特殊的和論 有力的影响。因此,这种差異可能充分地說明了杂交时的家养族和杂交时的物种在生

殖力上所表現的差異。家养族可以突然地从一种气候轉移到另一种气候,或者可以被放在大不相同的生活条件之下,並且在大多数場合中都能保持它們的能育性不受損害;但遭遇到較小变化的大批物种便不能繁育,这大概主要是由于上述同样的原因。

杂交家养族的后代和杂交物种的后代,除了能育性这个重要的例外,在大多数方面都是彼此相似的;他們常常以同样的不等程度具有双亲的性狀,一亲的性狀常常比另一亲的性狀佔有优势;並且它們都有同样方式的返祖傾向。由于連續的杂交,可以使一个物种把另一个物种完全吸收掉,众所週知,家养族也是如此。家养族还在許多其他方面同物种相似。它們有时几乎或者甚至完全象物种那样稳定地把新获得的性狀遺传下去。导致变異的条件和支配变異性質的法則在双方似乎是一样的。变种可以在类羣之下分类为类羣,正如物种可以被分类在屬下,屬被分类在在科和目之下一样;这种分类可以是人为的——即以任意决定的性狀作为基础——也可以是自然的。关于变种,自然分类肯定是以共同的血統以及諸类型曾經发生的变化量为基础的,关于物种,自然分类的基础显然也是这样。家养变种彼此赖以区别的性狀比物种赖以区别的性状容易变異,虽然几乎不比某些多形的物种更甚;但这种較大程度的变異性並不奇怪,因为变种一般在最近期間內都暴露在徬徨不定的生活条件中,而且它們进行杂交也容易得多;在許多場合中它們由于人的有計划的或无意識的选择还在进行着或在最近进行过改变。

按照一般的規律,家养变种比起物种肯定是在重要性較小的部份上彼此有所差異;当重要的差異发生时,它們很少可以牢穩地固定下来;但是,如果我們考虑到人的选择方法,这个事实便是可以理解的。在活的动物和植物中,人不能观察比較重要器官的內部改变;只要同健康和生命沒有矛盾,人並不注意它們。对于猪的臼齒的任何微小变化,或者对于狗的一个多余的臼齿,要不对于腸子或其他內部器官的任何变化,育种者怎么会給予注意呢?育种者所注意的是,他的牛应当有五花三层的肉,他的綿羊的腹內应当积累脂肪,並且他完成了这一点。对于子房或胚珠在构造上的任何变化,花卉栽培者怎么会給予注意呢?因为重要的內部器官肯定是容易发生无数的微小变異的,並且因为这等变異大概是遺传的,一由于許多奇怪的畸形都是遺传的,所以人毫无疑問地能够引起这等器官发生一定的变異量。当人使一个重要部份发生任何改变时,他一般是无意識地、在这一部份同某一其他显著部份相关的情形下而完成的。例如,由于人注意了肉冠的形狀或者注意了头上的羽飾,他便使鷄的头骨有了隆起和突起。由于人注意了突胸鴿的外部形态,他便使它們的食管非常地增大了,並且使肋骨的数目增多了而且增寬了。关于传書鴿,由于通过不断的选择使上嘴的肉

垂增加,人便大大地改变了它的下嘴形狀;还有許多情形也是如此。 另一方面,自然物种的改变完全是为了它們自己的利益,为了使它們适于无限多样的生活条件,为了避免各种敌害,並且为了对大量的竞争者进行斗争。 因此,在这等复杂的条件下,大概常常会发生这样的情形: 最容易变異的种类在重要的以及不重要的部份上的改变都是有利的、甚至是必要的; 并且这种改变大概可以通过最适者生存被緩慢地、但确实地获得。 更加重要的一个事实是,通过相关变異的法則同样地也可发生种种間接的改变。

家养品种常常具有一种異常的或半畸形的性狀,例如狗中的意大利灵提、叭喇狗、勃来汉獚以及血猩——牛和鴿的一些品种,——鷄的几个品种,——鴿的主要品种,都是这样。在这等異常的品种中,象在近似自然物种中的那些差異仅少的或者完全沒有差異的部份都大大地改变了。 这种情形可能由人常常选择、特别是在最初选择显著的和半畸形的构造偏差而得到說明。 然而,当我們决定什么偏差应当被称为畸形时必須慎重:几乎毫无疑問,如果公吐綬鷄胸前的馬般的毛丛最初在家养种类中出現,大概会被視为一种畸形;公波兰鷄头上的巨大羽飾也被称为畸形,虽然許多种鳥的头上普通都有羽飾;我們大概把英国传書鴿的喙基周围的肉垂或縐皮叫作畸形,但我們不把一种鳥鳩(Carpophaga oceanica)的喙基上的球形肉瘤叫作畸形。

有些作者在人工品种和自然品种之間划了一条寬闊的界線;虽然在极端的場合中这条界線是明显的,但在許多其他場合中它却是被任意决定的;其差異主要取决于被应用的选择方式。人工品种是由人有意識地改进了的品种;它們常常具有不自然的外貌,並且特別容易通过返祖和連續的变異而失去它們的性狀。另一方面,所謂自然品种是在半开化地方发現的品种,它們以前棲息于几乎所有歐洲王国的隔离地区中。它們很少受到过人的有意識的选择;比較常常受到的是无意識的选择,部份地受到自然的选择,因为在半开化地方飼养的动物势必自己去尋找大部份食物。 这等自然品种还会直接受到周围条件的差異的作用,虽然这等差異是微小的。

在我們的若干品种之間还有一項更加重要得多的区別,即有些品种是从特征显著的或半畸形的构造偏差发生的,不过这种构造偏差以后可能由于选择而增大起来;而另外一些品种是以如此緩慢和不可觉察的方式被形成的,以致我們如果能够看到它們的早期祖先,我們簡直不能說出这个品种最初是在什么时候或怎样发生的。 根据竟跑馬、灵獆、斗鷄等的历史並且根据它們的一般外貌,我們差不多可以感到确信的是,它們是由于一种緩慢的改进程序而被形成的;我們知道传書鴿以及一些其他鴿子的情形都是这样。 另一方面,綿羊的安康品种和<u>學強</u>卜品种肯定是以我們現在看

到的差不多一样狀态而突然出現的,尼亚太牛、曲膝狗和巴儿狗、跳雞和卷毛雞、短面翻飞鴿、鈎喙鴨等等也几乎肯定是这样的。 許多栽培植物的情形也是如此。 这等情形的屡屡出现大概会导致如下的錯誤信念,即認为自然物种常常是以同样的突然方式而发生的。但是,关于在自然狀况下构造突然改变的出現、至少是連續的产生,我們还沒有証据;而且可以举出种种一般的理由来反对这种信念。

另一方面,关于极其多样的微小个体差異在自然狀況下的不断发生,我們却有丰富的証据;这样,我們便被引导着作出如下的結論:物种一般是由于极其微小差異受到自然选择而发生的。这一程序可以严格地同竞跑馬、灵缇和斗鷄的緩慢而逐漸的改进进行比較。因为在各个物种中构造的每一細微之点势必都同它的生活习性严密地适应,所以很少有单独一个部份发生改变的情形;但是正如以前所闡明的那样,相互适应的改变並沒有絕对同时发生的必要。然而,許多变異一开始就是被相关法則連系在一起的。因此,甚至密切近似的物种也很少或者决不会仅仅以一种性狀而彼此有所差异;同样的意見在某种范围內对于家养族也是适用的,因为它們如果有很大的差異,一般是在許多方面有差異的。

有些博物学者大胆地主张¹⁾,物种是絕对不同的产物,它們决不会借着中間的环节而彼此互变;然而它們又主张家养变种能够永远彼此地或者同它們的亲类型相連系。但是,如果我們能够永远找到狗、馬、牛、綿羊等的若干品种之間的环节,那末关于它們究竟是从一个物种还是从几个物种传下来的,大概就不会有如此不断的疑問了。恐怕除非我們追溯到古埃及的紀念碑,灵提屬——如果这样的术語可以用的話——是不能同任何其他品种連系起来的。英国的叭喇狗也形成了一个很不同的品种。在所有这等場合中,杂交品种当然必須除外,因为不同的自然物种同样也能这样被連系起来的。变趾鷄借着怎样的环节才能同其他鷄密切連結起来呢?借着尋找那些依然保存在遙远島屿上的品种,並且借着追溯历史的記載,翻飞鴿、传書鴿以及排字鴿便能同亲岩鴿密切連系起来;但我們不能这样把浮羽鴿或突胸鴿联系起来。 各个家养品种之間的不同程度取决于它們曾經发生过的变化量,特別是取决于中間的和价值較小的类型的被忽視以及最后絕灭。

常常有人这样爭論:根据家养族的公認的变化,不能对自然物种的据信**曾經发生**的变化提供任何說明,因为据說家养族仅是临时的产物,一旦野化后,永远会返归**它們**的原始类型。华来斯²⁾ 先生很好地进行了这种討論;詳情已見第十三章,在那里闡明

¹⁾ 高德龙,物种,1859年,第二卷,第44頁等。

²⁾ 林納学会会报, 1858年, 第三卷, 第60頁。

了野化的动物和植物的返祖傾向是被大大地誇张了,虽然毫无疑問,这种情形在某种 范围內是存在的。如果家养动物暴露在新生活条件下並且为了自己的需要被迫同大 羣的外来竞争者进行斗争,而不在时間的推移中有所改变,那末本書所諄諄提出的一 切原理大概都是可以反对的。还应当記住,許多性狀在所有生物中都是潛伏的,准备随 时在适宜的条件下发展;在最近期間內发生改变的品种中,返祖傾向特別強烈。但某 些我們的品种的古远性明确地証明了只要生活条件保持一样它就会几乎保持不变。

有些作者大胆地主张,家养产物容易发生的变異量是有严格限制的;但这种断言 的根据很少。不論朝着任何特殊方向的变化量是否有限制,就我們所能判断的来說, 一般变異的傾向是沒有限制的。 正如卢特梅耶和其他人所闡明的那样, 牛、綿羊和 猪自从最盗远的时代起已在家养下变異了;然而这等动物却是在十分近期內才无比 程度地得到了改进,这意味着构造的連續变異性。 小麦象我們根据从瑞士湖上住所 中找到的遺物所知道的情形那样,是最古老的栽培植物之一,然而在今天新的和更 好的变种还屡屡发生。 可能决不会产出比今天的公牛更大的和各部份更 相称 的公 牛,或者可能决不会产出比今天的意跑馬更快的意跑馬,也許可能不会产出比倫敦变 种更大的醋栗; 但是,如果一个人断定在这些方面已經最后达到了极限, 那末他大概 是一个鹵莽的人。关于花和果实,有人反复地断言已經达到了完善的地步,但是这个 标准很快地又被超过了。 可能决不会产出这样一个鴿的品种,它的喙短于現在的短 面翻飞鴿的喙,或者长于英国传書鴿的喙,因为这等鴿的体質是衰弱的而且是不良的 繁育者;但喙的短和长是最近 150 年以来不断改进之点,並且某些最优秀的判断者否 認已經达到了目标。 根据能够举出的理由, 現在已經达到最高发育的部份在长期保 持不变之后,可能在新生活条件下再朝着增強的方向进行变異。但是,正如华来斯先 生1) 非常正确地指出的那样,关于自然的和家亲的产物,朝着某些方向的变化一定有 限制;例如,任何陸棲动物的速度一定有限制,因为速度是由克服阻力、移动身体重量 以及肌肉纖維的收縮力来决定的。 英国的竞跑馬可能已經达到了这个界限;但它在 速度上已經超过了它自己的野生祖先和所有其他馬屬的物种。短面翻飞鴿的喙以身 体大小为准比該科的任何自然物种的喙都小,传書鴿的喙以身体大小为准則比該科 的任何自然物种的喙都长。 我們的苹果、梨和醋栗的果实比同屬的任何自然物种的 果实都大;在許多其他場合中也是如此。

由于許多家养品种之間的重大差異,无怪某些少数博物学者断言各个品种都是从一不同的原始祖先传下来的,特別是因为选择原理受到忽視並且作为动物的育种

¹⁾ 科学季招(Quarterly Journal of Science), 10, 1867年,第 486 頁。

者的人类的高度古远性只是最近才被知道。然而大多数博物学者直率地承認我們的各个品种无論怎样不相似,都是从单独一个祖先传下来的,虽然他們对于育种的技术並不知道很多,不能剛明連系的环节,而且也說不出这些品种是在什么地方和什么时候发生的。 但是这等博物学者却以哲学家那样的小心态度宣称,直到他們看到了所有过渡的步驟,他們决不会承認一个自然物种曾經产生过另一个自然物种。玩賞家們对于家养品种使用了完全一样的語言:例如,一篇有关鴿的优秀論文的作者說,直到过渡类型"实际被看到,並且当人决定这样作时,随时都能重演",他决不会承認传書鴿和屬尾鴿是野生岩鴿的后代。 毫无疑問,长年累月加在一起的微小变化能够产生这等重大結果是难于体会的:不过凡是願意理解家养品种或自然物种的起源的人一定可以克服这一难点。

激发变異性的原因以及支配变異性的法則刚刚被討論过,所以我只需要在这里把主要之点举出来就可以了。因为家养有机体远比在自然条件下生活的物种容易发生微小的构造偏差和畸形,並且因为分佈广闊的物种一般比棲息于特定地域的物种变異較大,所以我們可以推論出变異性主要取决于变化了的生活条件。 我們千万不要忽視双亲性狀不等結合的效果或返归以往祖先的效果。变化了的生活条件特別傾向于致使生殖器官多少成为不育的,在討論这一問題的那一章中已經有所闡明:因而这等器官常常不能忠实地传递亲代的性狀。变化了的生活条件还直接地和一定地对体制发生作用,所以繁暴在这等条件之下的同一物种的一切或者几乎一切个体都按照同样的方式发生改变;但是为什么这一部份或那一部份会特别受到影响,我們很少能或者从来不能断定。 然而生活条件的变化似乎是不定地发生作用的,其方式就象暴露在寒冷中和吸收同样毒物对于不同个体按照不同途徑发生作用一样。我們有理由来推測,高度营养食物的日常过剩或以体制由于运动的消耗为准的食物过剩是一个激发变異性的強有力原因。当我看到由树瘦昆虫的一小滴毒物所引起的对称而复杂的瘤狀物时,我們可能就会相信树液或血液的化学性質的微小变化可以导致构造的異常改变。

具有种种附着部份的肌肉的增強使用以及腺或其他器官的增強活动导致了它的增強发育。不使用的效果是相反的。 在家养动物中,它們的器官虽然时常通过不发育而成为痕跡的,但我們沒有理由来假定这种情形永远完全是由于不使用而发生的。相反地,在自然物种中,許多器官似乎是由于不使用並且在生长經济的原理以及相互杂交的帮助下而成为痕迹的。完全的不发育只能由最后一章所举出的假說得到說明,即无用部份的胚种或芽球最后毁灭了。 物种和家养变种之間的这种差異,可以从不

使用对于家养变种发生作用的时間不够充分得到部份說明,还可以从它們免脫任何 剧烈生存斗爭得到部份說明,生存斗爭在各个部分的发育上引起严格的經济,而所有 在自然狀況下的物种都会遇到这种斗爭。 尽管如此,同样取决于生长經济的补偿或 平衡的法則显然在某种范围內对于我們的家养产物也有影响。

因为体質的几乎每一部份在家养下都会成为高度变異的,並且因为变異容易受到有意識的和无意識的选择,所以很难区别一定变異的选择效果和生活条件的直接作用。例如,我們的水禽猎狗(water-dogs)和勢必常常在雪上往来的美国狗可能由于趾的广泛伸張而变得部份有蹼;但更加可能的是,这种蹼就象某些鴿的趾間蹼那样,是自然发生的,並且以后由于最善游泳的狗和最善在雪上往来的狗在許多世代中被保存下来而增大了。一位希望縮小他的班塔姆鷄和翻飞鴿的体积的玩賞家决不会想到使它們挨餓,但会选择自然出現的最小个体。四足兽时常生下来就缺少毛,並且无毛的品种被形成了,但沒有理由認为这是由炎熱气候所引起的。在熱帶地方,炎熱常常致使綿羊失去它們的毛;另一方面,潮湿和寒冷的作用則可直接刺激毛的生长;但是,誰会妄想去决定北极动物的厚毛皮或它們的白色有多少是由于严酷气候的直接作用?有多少是由于最受保护的个体在长期連續的世代中的保存?

在所有支配变異性的法則中,相关的法則是最重要的一項。 在微小构造偏差以及重大畸形的許多場合中,我們甚至不能推測連結的紐絆是什么。但是,在早期发育中密切相似的並且暴露在相似的生活条件之下的同原部份之間——前肢和后肢之間——毛、蹄、角和齿之間,我們能够看到它們显著地有按照同一方式进行改变的傾向。同原部份由于具有同样的性質容易混合在一起,並且当有許多存在时,容易在数量上发生变星。

虽然每一种变異是直接地或間接地由周围条件的某种变化所引起的,但我們决不要忘記被作用的体制性質在結果上是一个更加重要得多的因子。我們在以下的情形中看到这一点,即不同的有机体当被放在同样的生活条件之下时按照不同的方式发生变異,而密切近似的有机体在不同的生活条件下却常常按照几乎一样的方式发生变異。我們在同一变种于长的間隔期間內屡屡重現同一种变化中看到这一点,同样地在相似变異或平行变異的若干显著場合中也看到这一点。虽然在后面这等場合中有些是由于返祖,但其他則不能这样得到說明。

由于变化了的生活条件对于体質所发生的間接作用,这是因为生殖器官这样受到了影响——由于这等生活条件所发生的直接作用,並且它們将致使同一物种的豁 个体按照同样方式发生变異,或者依据它們体質中的微小差異致使它們按照不同方 式发生变異——由于諸部份的增強使用或減弱使用所产生的效果——以及由于相关作用,——我們的家养产物的变異性复杂到极点了。整个的体制成为輕微可塑的了。 虽然各种改变一定都有它自己的激发原因,虽然各种改变都服从法則,但是我們如此 稀少地能够追蹤出原因和結果之間的正确关系,以致我們被誘惑去說变異好象是自 然发生的。 我們甚至可能把它們称为偶然的,但这一定是仅仅按照以下的意义来說 的,即我們断定一块岩石从高处落下全靠它的偶然的形狀。

对于同一物种的大量动物暴露在不自然的条件下並且允許它們自由杂变而不加以任何选择的結果,值得大略地考察一下,然后再对于选择发生作用时的結果考察一下。 讓我們假定有 500 只野生岩鴿被拘禁在原产地的一个鳥舍中,按照普通的飼养方法来飼养它們: 並且不允許它們在数量上增加。因为鴿子繁殖得非常之快,我推測每年要杀掉一千只或一千五百只。經过几代这样培育之后,我們感到肯定的是,某些幼鴿会变異,这等变異有被遺传的傾向: 因为构造的微小偏差在今天常常发生並且得到遺传。即便把依然繼續变異的或已經变異的許多点举出来,大概也会令人生厌的。許多变異是彼此相关地发生的,例如翼长同尾羽相关——初級飞羽、肋骨的数目和寬度同身体的大小和形态相关——鳞甲的数目同脚的大小相关——舌长同喙长相关——鼻孔和眼瞼的大小、下颚的形态同肉垂的发育相关——幼鴿的裸毛同未来的羽衣颜色相关——脚的大小同喙的大小相关,还有其他这样的情形。最后,因为我們的鴿子是被假定拘禁在一个鳥舍中,所以它們大概很少使用翅膀和腿,結果骨骼的某些部份——例如胸骨、肩胛骨和脚——将会稍微地縮小。

因为在我們假定的場合中每年势必无差別地杀掉許多鴿子,所以任何新变种很少有足够的长期生存机会来进行繁育。並且因为发生的变異具有极端多样的性質,所以按照同一方式变異的两只鴿子进行变配的机会就非常之少;尽管如此,一只变異着的鴿子甚至当沒有这样变配时,也会偶尔把它的性狀传递給幼鴿;这等幼鴿不仅会暴露在最初引起該变異出現的同样条件下,此外还会从它們的改变了的一亲遺传有再度按照同一方式进行变異的傾向。 所以,如果生活条件决定地傾向于誘发某种特殊的变異,那末所有鴿子在时間的推移中可能都会有同样的改变。 但远远更加普通的一个結果大概是,一只鴿子按照某一途徑变異,而另一只鴿按照另一种途徑变異:一只鴿子可能生下来具有稍微长一点的喙,而另一只鴿子可能具有稍短的喙;一只鴿子可能得到一些黑色的羽毛,而另一只鴿子可能得到一些白色的或紅色的羽毛。因为这等鴿子将会繼續地相互杂交,所以最后的結果大概是,一大羣个体在許多方面彼此

有所差異,但仅有微小的差異;然而却比原始岩鴿之間的差異为大。但是形成几个不同品种的傾向並不很小。

如果对于两組鴿子按照刚才描述的方法进行处理,一組在英格兰,另一組在熱帶地方,並且对于它們供給不同种类的食物,那末在許多世代之后它們会有差異嗎?当我們考慮到第二十章中所举出的事实以及歐洲的几乎每一地区的牛、綿羊等品种在以往所存在的差異时,我們就会強烈地倾向于承認这两組鴿子通过气候和食物的影响大概会有不同的改变。但是,在六多数場合中,关于变化了的生活条件的一定作用的証据是不够充分的;我曾有机会检查过伊利阿特爵士由印度送給我的家养种类的大量蒐集品,它們同欧洲鴿子是按照显著一样的方式进行变異的。

如果两个品种以同等的数量混合在一起时,那末就有理由来推测它們大概在某种范围內喜欢同自己的种类交配;但它們大概也常常相互杂交。 因为杂种后代具有較大的活力和能育性,全体由于杂交将比由于其他方法更快地相互混合起来。 因为某些品种比其他品种佔有优势,所以相互混合起来的后代在性狀上大概不会是严格中間的。 我还証明了杂交作用本身会产生返祖的强烈傾向,所以杂种后代大概有返归原始岩鴿狀态的傾向;並且随着时間的推移,它們的性狀比起在第一种場合中——同一品种的鴿子被拘禁在一起——大概远远不是異質的。

我刚才提到杂种后代在活力和能育性上大概会增进。根据第十七章中所举出的一些事实看来,这个事实是无可懷疑的;並且长期不断的密切近亲交配导致恶劣的結果也是无可懷疑的,虽然关于这一問題的証据非常不易得到。 关于所有种类的雌雄同体,如果同一个体的性生殖要素慣常地彼此发生作用,那末可能最密切的近亲交配大概会不断进行的。但我們应当記住,所有雌雄同体的动物的构造,就我所能知道的来說,容許而且常常需要同不同的个体进行杂交。 关于雌雄同体的植物,我們不断地遇到适于杂交的精巧而完善的装置。 可以毫不誇張地断言,如果食肉动物的鉤爪和獠牙的使用或者种子的毛和鉤的使用可以安全地从它們的构造推論出来,那末我們便可同等安全地推論出許多花就是为了保証同不同植物进行杂交的特別目的而构成的。根据这种种考察,且不說我进行过的一长列試驗的結果,在刚才提及的那一章中所得到的結論——即不同个体的性結合可以产生某种重大利益——必須被承認。

回到我們的例証: 迄今我們所假定的是, 借着无差別的宰杀来維持鴿子的同样数量; 但在它們的保存中稍微容許一点选择, 整个的結果就会改变。如果养鴿者观察到他的某一只鴿子有任何輕微的变異並且希望得到一个具有这样特征的品种, 那末他根据細心的选择大概会在可惊的短期內得到成功。因为已經一度变異了的任何部份

一般会按照同一方向繼續变異,所以借着連續地保存特征最強烈显著的个体,就会容易地把差異量增加到一个高度的、預定的优良标准。

如果养鴿者沒有形成新品种的任何意图,而只是讚賞譬如說短喙比讚賞长喙为多,那末当他势必減少数量时,他大概一般会把后者杀掉,毫无疑問,他这样随着时間的推移就会明显地改变他的鴿羣。 如果两个养鴿的人都按照这种方法养鴿,他們大概不可能喜欢完全一样的性狀: 正如我們知道的,他們大概常常喜欢恰恰相反的性狀,並且这两組終于会达到不同的地步。 关于被不同育种者飼养的並且受到他們仔細注意的牛、綿羊和鴿的品系或族就會实际发生过这种情形,而他們本身却沒有形成新的和不同的亚品种的任何要求。这种无意識的选择对于高度有用的动物将会特别发生作用;因为每一个人都試图得到最优良的狗、馬、母牛或綿羊,而沒有想到它們的未来后代,但这等动物还会或多或少确实地把它們的优良性質传递給后代。 大概任何人都不会粗心到用他的最劣等的动物进行繁育。甚至未开化人当由于极端需要而被追杀掉他們的某些动物时,大概也会杀掉那些最劣的,保存那些最好的。关于为了使用而不是单純为了娱乐而飼养的动物,在不同地区流行着不同的时尚,这导致所有种类的微小特性的保存,因而导致它們的传递。关于果树和蔬菜,将会遵循同样的程序,因为最优良的果树和蔬菜,还会受到最大量的栽培,並且会不时地产生优于双亲的实生苗。

刚才談到,不同的品系实际上是由育种者在沒有获得这种結果的任何意图下而被产生出来的,这对于无意識选择的力量提供了最好的証据。 无意識选择大概比有計划选择所导致的結果重要得多,並且在同其密切相似的自然选择的理論观点下也同样是更加重要的。因为在这一程序中,並不把最优良的或最有价值的个体分离开,也不防止它們同同一品种的其他个体进行杂交,而只是选拔和保存,然而这不可避免地会导致它們的逐漸改变和改进:所以它們終于会佔有优势,把旧的亲类型排除掉。

关于我們的家养动物,自然选择抑制具有任何有害的构造偏差的族产生出来。 由未开化人或半开化人飼养的动物,势必在不同的环境条件下自己去尋找大部份的 食物,在这样場合中,自然选择将会起更重要的作用。 因此,它們大概常常同自然物 种密切相似。

因为人对于拥有在任何方面愈来愈有用的动物和植物的希图是沒有止境的,並 且因为玩賞家由于时尚的趋向极端总是希望产生愈来愈強烈显著的各个性狀,所以 通过有計划的和无意識的选择的长期作用,在各个品种中都有一种变得愈来愈不同 于其亲代的稳定倾向;当几个品种产生出来並且以不同的品質而受到重视的时候,彼 此之間的差异就会愈来愈大。这就导致了"性狀的分歧"。因为改良的亚变种和族是 緩慢形成的,所以較旧的和改良較少的品种便受到忽視而在数量上減少。 当任何品 种的少数个体生存于同一地点时,密切的近亲交配由于减低其活力和能育性便助成 了它們的最后絕灭。因此,中間的环节便失去了,留存下来的品种在"性狀的不同"上 便增进了。

在討論鴿子的那一章中,我們借着历史的証据並且借着有关系的亚变种在遙远地方的存在,証明了若干品种在性狀上曾經不断地发生分歧並且許多旧的中間亚品种已經消失。关于家养品种的絕灭,还能举出其他的例子,譬如爱尔兰狼狗、旧英国灵穆以及法国的两个品种——其中一个品种在以往曾高度受到重视。1)——就是这样。皮克林先生說2),"在最古老的埃及紀念碑上彫刻的綿羊今天已不被人知道了;大家所知道的已往在埃及的至少一个公牛变种也同样地絕灭了"。古欧洲居民在新石器时代飼养的某些动物和若干植物也是如此。在秘鲁,馮茨德3)在显然早于印加(Incas)王朝的某些坟墓中发現了該地所不知道的两个玉蜀黍的种类。关于我們的花卉植物和烹調用的蔬菜,新变种的产生及其絕灭曾不断地反复出現。 今天改良品种时常以非常快的速度代替了較旧的品种;例如在英国最近发生的关于猪的情形就是这样。由于短角牛的引进,长角牛在它的原产地"好象得了某种疫病似地被一扫而光"4)。

在某种范围內受自然选择所支配的有計划选择和无意識选择的长期不断的作用会发生怎样巨大的結果,在我們的周围左右都可以看到。 把在我們的展覽会上展覽的許多动物和植物同它們的亲类型——如果我們知道这些类型的話——比較一下吧,要不查一查关于它們以往狀況的历史記載吧。 大多数家养动物都曾經产生了很多不同的族,但不能容易受到选择的那些动物——例如貓、胭脂虫和蜜蜂——必須除外。按照我們所知道的选择过程来說,我們的許多族的形成是緩慢而逐漸的。 如果一个人最初注意了和保存了具有稍微扩大一点的食管的一只鴿子、或具有稍微长一点的喙的一只鴿子、或具有比普通稍微开張一点的尾的一只鴿子,他决不会梦想到他在創造突胸鴿、传書鴿和扇尾鴿方面已經走了第一步。 人不仅能够創造異常的品种,而且能够創造象竞跑馬、輓馬、或灵提和喇叭狗那样的对于某些目的具有非常調和的全部构造的其他品种。引向优良性的全身构造的各个微小变化决沒有必要是同

¹⁾ 卢茲·得拉威生(M. Rufz. de Lavison),馴化学会会招, 12 月, 1862年,第 1009 頁。

²⁾ 人种, 1850年, 第315頁。

³⁾ 秘鲁旅行記,英譯本,第177頁。

⁴⁾ 允亚特論牛, 1834年, 第200頁。关于猪, 参閱艺园者記錄, 1854年, 第410頁。

时发生的並且受到选择。虽然人很少注意到在生理学观点下是重要的那些器官的差 異,但人如此深刻地改变了一些品种,以致它們如果在野生状况下肯定会被**分类为不** 同的屬。

以下的事实对于选择产生了怎样效果恐怕提供了最好的証明,即在任何动物中、 特別是在任何植物中无論哪一部份或性質最受人重視,这一部份或性質在若干族中 所表現的差異就最大。 在和同一变种的其他不受重视的部份对照之下,把几个果树 品种的果实之間的差異量、花卉植物的花朵之間的差異量、烹調用植物和浓作物的种 子、根和叶之間的差異量比較一下,就可以充分地看出上述的結果。根据喜尔1)所确 定的事实,提供了不同种类的显著証据,即古代瑞士湖上居民为了种子而栽培的大多 数植物——小麦、大麦、燕麦、豌豆、蚕豆、扁豆、罂粟——的种子全比我們現存变种的种 子为小。卢特梅耶曾闡明早期湖上居民所飼养的綿羊和牛也同样地比我們的現在品 种为小。根据在丹麦的貝塚中所发現的最早期的狗的遺骸可以知道它們是极弱的;这 种狗在青銅时代由一个較強的种类接替下来了,这个較強的种类在鉄器时代由一个 更加強壮的种类所接替了。 丹麦綿羊在青銅时代具有異常纖弱的腿,並且那时的馬 比現在的馬为小2°。 毫无疑問,在大多数这等場合中,新而較大的品种是由新游牧民 族的迁徙从外地引进来的。但是,在时間的推移中,排斥了以前較小品种的各个較大 品种大概不是不同的較大物种的后代;远远更加可能的是,种种动物的家养族是在大 欧亚大陸(Great Europaeo-Asiatic Continent)的不同部份逐漸改进的,然后从那里散佈 到其他地方。我們的家养动物逐漸增大的这个事实是一个格外显著的事实,因为某 些野生的和半野生的动物——例如赤鹿、—种野牛(aurochs)、园桶牛以及野猪3)-都曾在几乎同样的期間內縮小了。

有利于人工选择的条件是,一一对于每一种性狀的最密切注意,一一长期不断的坚持——使动物交配或分离的便利,——特别当大量飼养时,劣等个体可以自由地被排斥或毁掉並且比較优良的个体可以被保存下来。 当保持許多动物和植物时,还有少发生特征显著的构造偏差的較多机会。 时間的长度是最重要的;因为各个性狀的扩大必須借着对同一种类的連續变異进行选择,这样它才会成为強烈显著的,这只有在一长系列的世代中才能完成。 借着不断地排斥那些返祖或变異的个体,並且借着保存那些依然遗传有新性狀的个体,时間的长度还会讓任何新特征固定下来。因此,一

¹⁾ 湖上住居动物誌,1865年。

²⁾ 莫洛特,沃多斯自然科学学会,1860年,第298頁。

³⁾ 卢特梅耶,湖上住居动物誌,1861年,第30頁。

些少数动物虽然象印度的狗和西印度羣島的綿羊那样地在某些方面于新生活条件下发生了变異,但是曾經产生过特征強烈显著的族的所有动物和植物还是在极其遙远的时代里就被家养了,这往往在有史以前。其結果是,关于我們的主要家养品种的起源,沒有任何記載被保存下来。 甚至在今天,新品系或亚品种是如此緩慢地形成的,以致它們的最初出現也逃脫了人們的注意。 一个人注意某种特殊的性狀,或者单純是非常細心地使他的动物交配,並且經过一段时間之后他的鄰人发覚了一种微小差異;这种差異由于无意識的和有計划的选择而繼續增大,最后終于形成一个新的亚品种,接受一个地方的名字而散佈出去;但这时它的历史就几乎被忘掉了。当新品种广泛地散佈了的时候,它就产生新品系和亚品种,並且最优良的新品系和亚品种获得成功並且散佈出去,把其他較旧的品种排斥掉;在改良的进行中永远如此前进下去。

当一个特征显著的品种一旦形成的时候,如果它沒有被进一步改良的亚品种排斥掉,並且如果沒有暴露在那些誘发变異或返归长久亡失性狀的重大变化了的生活条件下,那末它显然可能持續一个非常长的时間。我們根据某些族的高度古远性可以推論情形确系如此;但是对于这个問題必須給予某种注意,因为同样的变異可能隔了长期之后还会独立地出現,或在不同的地方出現。我們可以稳妥地假定,曲膝狗的情形就是这样,在古埃及的紀念碑會經彫刻过一只这种狗——亚里士多德所提到的单蹄猪」——哥留美拉所描述的五趾鷄都是这样,油桃肯定也是这样。約在紀元前2000年的埃及紀念碑上彫刻的狗向我們闡明了,某些主要的品种在那时就存在了,但非常可疑的是,是否有任何品种同現在的品种完全一样。在紀元前640年的一座亚独人的坟墓上彫刻的一个大形獒据說同現在依然从西藏輸入到該地的狗是一样的。真正的灵猩在古罗馬时就已經存在了。到了較晚的时期,我們看到,鴿子的大多数主要品种虽然在二百年到三百年以前就已經存在了,不过它們都沒有把完全一样的性狀保持到今天:但在沒有改进要求的某些場合中,例如在斑点鴿和印度地面翻飞鴿的場合中,曾經发生过这种情形。

得康多尔²⁾ 对于植物的各个族进行过充分的討論;他說在荷馬时代已經知道黑子罌粟了,古欧洲人已經知道白子胡麻了,希伯来人已經知道甜仁的和苦仁的扁桃了;但似乎並非不可能的是,某些变种可能曾經消失並且又重現了。瑞士湖上居民在非常遙远时期栽培的一个大麦变种、显然还有一个小麦变种現今依然存在。据說³⁾

¹⁾ 高德龙,物种,第一卷, 1859年,第368頁。

²⁾ 植物地理学, 1855年, 第989頁。

³⁾ 皮克林,人种,1850年,第318頁。

从秘鲁的一个古代墓地中发掘出来一个小形 葫 蘆变种的标本,这个变种今天在利瑪市場上依然是普通的"。得康多尔說,在十六世紀的書籍和繪画中,甘蓝、菁蕪和葫蘆的主要族还能被辨識出来:在如此近的时期中这种情形是可能預料到的,但任何这等植物是否同我們的現在亚变种絕对一致,却不一定。 然而,据說抱子甘蓝 (Brussels sprout),一个在某些地方容易退化的变种,在被認为是它的发生地方已經保純了四个世紀以上1)。

按照我在本書以及他处所提出的观点,不仅各个家养族,而且同一大类中的最不 相同的赠和目——例如哺乳类、鳥类、爬行类和魚类,全都是一个共同祖先的后代,並、 且我們必須承認这些类型之間的整个的巨大差異量最初是从单純的变異性发生的。 在这个观点下来考察問題,足可以使一个人惊奇得哑口无言。 但是当我們考虑到以 下的情形时,我們的惊奇就应当有所減輕:即生物在数量上几乎是无限的,在几乎无 眼长的时間內,它們的整个体制往往在某种程度上已經被弄成可塑的了,並且在非常 复杂的生活条件下任何方面有利的各种微小的构造改变都已經被保存下来了,同时 任何方面有害的各种改变都被严格地毁灭了。有利变異的长期不断的积累必然会导 致我們在周围的动物和植物中所看到的那样多样化、那样适应种种不同的目的、那样 极好地相互調和。因此我把选择說是一种最高的力量,无論是由人应用于家养品种的 形成上,或是由自然应用于物种的产生上,都是如此。我願意把前一章所举的比喻再 說一遍:如果一位建筑师建造一座华丽而寬敞的大廈,沒有使用琢磨过的石头**,而是从** 悬崖基部的碎石块中选择楔形的石头用于他的拱門,选择长形的石头用于門楣,选择 石片用于房頂,那末我們將会称讚他的精巧,並且把他看作是最高的力量。碎石块对 干建筑师虽然是不可缺少的,但它們同建筑师所建造的大厦之間的关系和生物的徬 **傳变異同它們的改变了的后代最終获得的变異而美妙的构造之間的关系是一样的。**

某些作者宣称,除非各个微小的个体差異的精确原因被弄清楚之后,自然选择什么也說明不了。 如果向一个完全不懂建筑术的未开化人解释,那座大廈是怎样用石头一块压着一块地盖起来的,为什么楔形石块用于拱門、石片用于屋頂等等; 並且如果向他指明了每一部份以及整个建筑的用途,他还宣称什么也沒有給他說明白,因为不能說出各个碎石块形状的精确原因,这大概是不合理的吧。 但这同以下的反对意 見是差不多相似的例子,即認为选择什么也說明不了,因为我們不知道各个生物的构造中的各个个体变異的原因。

¹⁾ 园艺学旅行日記(Journal of a Horticultural Tour),凱洛頓歷史学会代表团編, 1823年,第293頁。

悬崖基部的碎石块的形状可能被称为偶然的,但这並不是严格正确的:因为每一 个石块的形状都取决于一长串的事件,所有这些事件都服从自然的规律;即取决于岩 石的性質、沉积的或劈理的線、因隆起和以后剝蝕而成的山形,最后还取决于使碎块 落下的暴风雨或地震。 但是,关于碎石块的可能被指定的用途,它們的形状可以严 格地說是偶然的。 在这里我們被引导面对一个重大的难点,談到它我觉得我正走到 我的正式領域以外。全知的"造物主"一定已經預見到由"他"所置放的法則而引起 的各种結果。 但是,主張"造物主"有意識地注定了——如果我們按照任何普通的意 义来使用这些字的話——某些岩石块应当呈現某些形状,以便建筑者可以修建他的 大厦,这能够是合理的嗎? 如果决定各个碎石块形状的种种法则不是为了建筑者而 预先决定了的,那末能够以任何較大的可能性来主張"他"为了育种者而特别注定了 家养的动物和植物的无数变異中的各个变異嗎?——許多这等变異对于人类並沒有 用处,对于生物本身沒有利益並且常常是非常有害的。 是"他"注定了鴿子的嗉囊和 尾羽应当变異以便养鴿者可以造成他的奇異的突胸品种和扇尾品种嗎?是"他"致使 狗的构造和智力发生变異以便为了人的殘忍的遊戏而形成一个具有难制服的凶猛性 和适于压服公牛的上下顎的品种嗎?但是,如果我們在一种場合中放棄原則,——如 果我們不承認初期的狗的变異是有意地受到指导的,以便灵堤、例如它的对称的和活 力充沛的完全形象可以被形成,——那末对于以下的信念便举不出任何理由,即認为 性質相同的並且作为同样的一般法則的結果的变異是有意識地和特別地受到指导 的,而变異正是通过自然选择形成世界上包括人类在內的最完善适应的动物的基础。 无論我們怎样地希望, 我們簡直不能遵从爱沙·葛雷的信念, 即認为"变異是沿着某 些有利的線受到引导",正如"沿着一定而有益的灌溉線"的水流一样。如果我們假定 各个特殊的变異一开始就是被預先注定了的,那末导致許多有害的构造偏差的体制 可塑性以及必然导致生存斗争、因而导致自然选择或最适者生存的过大的生殖力对 于我們来說一定是多余的自然法則了。 相反地,一位全能的和全知的"造物主"却注 定着每一事物並且預見着每一事物。 这样,我們便被帶到面对着象自由意志和宿命 論的难点那样无法解决的难点。

中外名詞对照表

大卫 凡蒙斯 小圣喜来

卫林

卫德

David Van Mons

Hilaire, Saint Isidore

Waring Wade

Barford

Bartram

71 田

巴勃拉・凡貝克 巴福德 巴特拉姆 巴莱 巴哈麦尔 巴列特 巴宾顿 巴內特 巴兰斯 巴内斯 巴菲尔 巴哈堡

巴尔克雷 巴克萊 巴达科夫 巴克曼 巴克勒 巴克兰 比东 比斯雷 比契伊 比得威尔 比安科尼 丹多洛

韦尔克斯 书倫堡 韦得勃恩 韦勃尔 韦伯尔特 内托 內克东

丹得尔斯

韦卜

生頓

尤得·得隆卡姆 开茨・阿包特

Barbara Van Beck

Barth Bachmaier Bartlett Babington Barnet Ballance Barnes Basel Bachman Berkeley M. J. Buckley Butakoff Buckman Buckle Buckland Beaton Beasley Beechey Bidwell Bianconi Dandolo Donders Webb, W. E. Wicksted Wilkes

Wahlenberg

Wedderburn

Vibert, M.

Weber

Nato

Necton

Newton M. Eudes-Deslongchamps Abbott, Keith

长丁

巧曼

兰特

开拉尔特 开洛依德 匹克推特

Kolreuter Pictet

Kellaert

五

画

边沁 Bentham 本內特 Bennet 包納 Borner 何斯克 Rosc 包温 Bowen 包尔内特 Bornet, E. 包哈麦耶尔 Borchmeyer 包依塔 Boitard, M. 包威尔班克 Bowerbank 包曼 Bowmann 包恰达特 Bouchardat 包西 Bossi 包丁 Boundin

包利得·圣温慎特 St.-Vincent, Boryde 布兰威 Blainville 布鲁曼巴哈 Blumenbach 布賴得雷 Bradlev 布浪 Browne, C. M. 布尔特 Bult

布丰 Buffon 布顿 Button 布克斯頓 Buxton 布夏 Putsche 圣安秀 St. Ange 圣約翰 St. John Cartier 卡泰尔 Carter 卡特尔 卡特林 Catlin 卡斯得尔諾 Castelnau 卡瑞埃尔 Carriere 卡勃列尔 Cabral 卡丹 Cardan 卡斯巴利 Caspary Cada Mosto 卡达・摩斯托 卡列斯尔 Carlisle Cameronn 卡美仑 Chardin Carr 卡尔 卡木特 Carpenter Chamisso 卡米索

Chauman

Landt

尼克尔遜 尼布尔 尼斯 宁得 皮特尔。卡尔姆 皮斯特 皮克林

皮埃垂門 皮奥利 皮尤西 **内**季图 皮洛士 卢凱 卢特梅耶 卢塞尔

卢茲·得拉威生 甲奎。 薩瓦利 甲克

甲威斯 司各脱 司密斯 司順享 司徒需登 台尔曼 瓦列林納斯 瓦克尔 瓦罗 瓦瓦沙尔 瓦尔特 瓦維克 瓦特勒 瓦茲 瓦得 弗洛利克 弱· 居維叶 弗哥遜 弗瑞尔斯 弗劳仑斯 弗利希曼

弗奥勒 **弗瑞芝・繆勒** 弗尔琼

弗雷 外德 外曼 外特

节拉尔得

六

田

安得孫 安孫 Anson

Nicholson Niehuhr Nees Nind Peter Kalm

Pistor Pickering Pietrement Piorry Pusey Pigeaux **Pvrrhus** Lucae

Rütimeyer

Russell. M. Rufz. de Lavison Savary, Jacques

Tack Tarves Scott Smith. W. Stonehenge Stewart Tverman Valerianus Walker Varro Vavasseur Walter Warwick Waterer

Watts Ward Vrolik Cuvier, F. Ferguson Ferrers

Flourens

Fleischman Fowler Fritz Muller Fortune Foley

Wilde Wyman Wight Gerarde

Anderson

安提目斯 安朱。邓肯

安得孫。亨利 安朱・奈特 达尔勃瑞特

达列斯特 达生特 达勃尔得伊

认构

达利 达利勃特 达伊尔 丢。 夏华

丢切斯內 买两 丢沃諾伊 丢瓦尔 丢愁謝 丢瑪斯 手梅尔

丢瓦尔・周維 丢魯・得拉瑪尔 伊頓 伊利阿特

併威林 伊帕 伊利斯 汗夫雷斯 汗雷 汗考克 汗草.尔

汗米尔顿公爵 汗諾威

汗塞尔 汗米尔頓 汗斯罗 吉尔斯 吉里伯特 吉拉尔德

吉鲁·得別沙連格 吉洛・泰仑

吉尔 印列丢 朱利恩 朱利斯 朱司

列斯里 列古阿特 列老克 列茨勃瑞季 Antibes

Duncan, Andrew Henry, I. Anderson Knight, Andrew

Dalbret D'Asso Darvill Dareste Dasent Doubleday, H.

Dally Dalibert Dahlbom Duer

Du Chaillu Duchesne Ducie Duvernov Duval Dutrochet* Dumas **Dumeril** Iouve, Duval . Malle, Dureau de la

Eaton, J. M. Elliot, W. Evelyn Eyton, R. Ellis. Humphreys Hanley Hancock Hanmer

Duke of Hamilton Hanover Hansell. Hamilton Henslow

Giles Gilibert Girard, M. Girou de Buzareignues ·

Giraud-Teulon, M. Keer Ingledew

Julien Juries Druce Leslie Lequat Lecog. Lethbridge

初落 列群全 列塞姆・赫尔 列基 列吉尔 列尔貝特 列哥尼尔 列伊斯 列緊那 列则特 米汗 米巧克斯 来特弗得 来契尔 来勒 来勒斯 来伐特 亚当 亚格伯汗 亚力士多德 亚斯山大 亚海拉 亚历山大・狄恩 亚力克斯・乔丹 西尔斯斯 西里西 四多 西蒙茲 四四 西得內 西切尔 色韦滋 色斯比 托姆斯 华特豪斯 华尔群 华利希 华特顿

Lesson Legrain Hale, Wretham Lehmann Ledger Lerbette Regnier Lewis Lessona Luzizet Mechan Michaux, F. Mitford Mitchell Miller Mills Mivart Adam Akher Khan Aristotle Alexandria Azara Dean, Alex. Jordan, Alexis Celsus Silliman Seeman Simonds Simon Sidney Sichel Thwaites Thursby Tomes Waterhouse Walsh Wallich Waterton Wallace Whately

七 画

华来斯

华特利

Tinzmann
Bakewell
Beddoe
Bastain
Baker
Baily
Baird
Beschstein
Beck

目降 目尔 貝韦克 貝克曼 目格尔 貝修斯 伯林格里 未上所謂 坎菲尔多 坎貝尔 坎宁 老斯达 老得英仰° 考尔麦克 老林 考林哈姆 考點利 老利克尔 考特尔 克罗成 克瑞斯特 克拉克 克列門特 克拉克森 克拉法姆 克利斯卜 克劳弗得 克罗克尔 克列市馬 克犹尼叶 克尔提斯 克林 克勒威尔 克卜勒 克洛叫 克劳采 克劳斯 克尔 克来內 克尼卜 克納 克諾克斯 但尼尔 狄克生 狄克遜

来普修斯

来因巴哈

享利七世

享特

利控

利威尔

Belon Bell Bewick Beckman Beagle Boethius Bellingeri Dufour Canfield Campbell Canning, A.S.G. Costa Cordemov Cormac Colin Corringham Conolly Kolliker Couteur Crowe Christ Clark Clements Clarkson Clapham Crisp Crawfurd Crocker Cretzschmar Cunier, M. Curtis, H. Cline Calver Cupple Croca Clotzsch Clos Kerr Kleine Knip Kerner Knox Daniel1 Dickson Dixion, E. S. Lepsius Reichenbach Henry VII Hunter, J. Rivers Risso

Acosta

Albin

利得 Reed Beale, Lionel 利奥内尔・比尔 Lipara 利伯拉 利威斯东 Livingston 利比西 Liebig Lecce 利斯 Lowne 劳恩 Lawrence 劳倫斯 麦肯兹 Mackonzie Master, Maxewell 麦克斯威尔 · 馬斯特 麦克奈特 Macknight 麦克嫩南 MacLennan 麦老需 Macaulay Macfayden 麦克碧容 Macnab 麦克納勃 Macgillivray 麦克季利夫雷 Minor 麦納 麦亚特 Mvatt 那尔維兹 Narvaez Lichtenstein 里許登斯坦 Lyonnet 里臭內特 里卡遜 Richardson Maund 芒得 Salvin 沙尔女 Salter 沙尔特 沙特加斯特 Sattegast 希尔 Hill 希勃特 Hibert Hippocrates 希波龙拉第 希尔湾 Shirley Shirreff 希瑞夫 Hindmarsh 辛得瑪西 辛普生 Simpson 沃尔皮安 Vulpian Verlot 沃尔洛特 Vogt, Carl 沃哥特 Voorhelm. 沃尔亥 沃尔茲 Volz 沃契尔 Vaucher Voge1 沃格尔 Harcourt, E. Vernon 沃尔南, 哈利特 沃尔茲勃格 Würzburger 怀特 White Holland 何兰得 求克斯 Tukes 作恩勃克 Schonburgk 余智 Yule 佐林格 Zollinger 1 [3]

阿老斯塔 阿尔滨 阿因湿斯 阿尔比納斯 阿尔曼 阿洛姆 阿尔祝万狄 阿尔斐勒德 阿蒙 阿尔諾得 阿里斯托芬 阿瑞斯 阿寒比 阿貝 阿特金孫 阿賽尔斯坦 波捷奥 波斯曼 波罗 波那帕特 波洛斯浦尔・卢凱斯 波拿法斯 波尔兰得 波西瓦尔 波洛克 波顏特 波利卡得 波瑞耶尔 波超斯 垂姆勃雷 垂威利安 垂尔 重斯特拉姆 垂目克 垂威尔・克拉克 泡列利 泡陶 泡达尔 泡伊斯 泡特尔 帕給特 帕拉斯 帕金遜 帕門泰尔 帕威斯 帕拉脫 帕瑞斯老特 帕利特卡得

帕斯特拉娜

帕林西姆

帕瑞沃斯特

Ainsworth Albinus . Allman 'Alom Aldrovandi Alefield Ammon Arnold Aristophanes Avres Acerbi Abbey Atkinson Athelstan Berieau Bosman Borrow Bonaparte Lucas Prosper Bonafous Purland Percival1 Pollock Povnter Prichard Prever Price Trembley Trevelvan Trail Tristram Trebeck Clarke, R. Trevor Borelli Poiteau Portal. Powis Porter Matthew, Patrick Paget Pallas Parkinson Parmentier Puvis Plateau Prescott Pritchard Pastrana Pringsheim Prevost

八

阿巴斯·帕卡

Abbas Pacha

拉索姆及斯拉拉加馬克拉加馬克拉加馬克拉加馬克拉加馬克拉加馬克拉加馬克拉拉加馬拉拉拉斯特里拉拉斯修物尔东拉克克拉卡茲。杜塞尔

拉拉拉拉拉拉拉拉斯那克姆雷居康克林利克尔弗尤斯特顿克林利克尔那那克姆雷尔那水尤斯尔尔那尤斯尔克斯尔克斯尔克斯尔克斯尔克斯尔克斯沃特

林德雷

林納

罗斯 罗伊 罗得威尔 罗伯遜·蒙罗

罗瑪內斯

罗賽林尼

罗比内

罗生

罗尔

罗遜 罗武 罗得 罗底季

Latham Lachmann

La Bresse Ladakh La Gasca

Lamare-Picquot
Labat
Lasterye
La Touche
Lambertye
Laxton
Lacaze-Duthiers

La Comte
Loudon
Lubbock
Rafarin
Radclyffe
Rasck
Raffles
Ralkofer
Ramu
Culley
Güldenstädt
Hooker

Lindley
Linnaeus
Lindemuth
Rintoul

Collinson, Peter Hugo Jerdon Gray, G. Sulivan Rawlinson Royle Robertson Robert Rolleston Roulin Romanes Robinet

Robinet Rosellini Rawson Rolle Ross Roy Rodwell

Munro, Robertson

Lawson Low Lord, J.K. Loddige 九

画

勃兰得 勃尔达其 勃尔恩斯 勃洛姆斐尔得 勃罗姆雷・展芒

勃来斯

勃朗 勃瑞 勃臧季曼 勃朗罗

物尔特·外尔得哈威哈克 哈威哈对特哈拉姆哈兰 哈特曼哈特多人 哈洛特金斯特哈夫

哈代

哈萊 哈利遜·威尔 洛伊得克 洛克·哈特 高克哈特 塞尔女

 Bernhardi
Bernard
Bertero
Blyth
Broca
Bridges
Brickwell
Blackheath
Bromehead
Brickell
Brooke
Bronn

Brown-Séquard
Brent
Brehm
Brace
Brandt
Burdach
Burns
Bromfield

Bromlay Common

Brown Bree

Bridgeman W. K.
Brownlow
Wilder, Burt
Haddon
Harvey
Hallet
Hallam
Harlan
Hartman
Hasselquist
Hutchinson
Huth
Hardy
Harleigh
Weir, Harrison

Weir, Harris
Lloyd
Lombok
Lowe
Lockhart
Vasey
Vertuch
Virgil
Vilmoria
Vigne
Vicillot
Wakefield

威斯特恩 威塞列尔 成斯特烏德 威尔森 成康 威德导 威尔干斯 威金 威尔比 威廉斯 威尔矮特 威廉孫 成而拉 成金孫 威干得 成珍保 范倫泰 科林 科哈 科比 科倫 却克 胡沙得 洪波特 查理沃茨 杏特雷 查理斯东 查丁 柏特孫 柏拉图 珍特尔斯 珍納・威尔 保罗 公南特 許克 姜得 济埃尔宗 契尔西 法布尔 法更納 約翰・巴布特 約翰・范韦克 約翰生

Western Wetherrell Westwood Wilson William Wildman Wilckens Wicking Willughby Willams Wilmot Williamson Wichura Wilkinson Wigand Weijenbergh Valentin Colling Koch Kirby Krohn Huc Huzard Humboldt Charlesworth Chartley Charleston Tardine Paterson Plato **Jeitteles** Weir, Jenner Paul Pennant Corker Chaundy Dzierzon Chelsea Fabre, M. Falconer Barbut, John

旁尼茲 紅泡特 紐勃尔特 組墨 紐美斯特 評倫布 哥留美拉 哥劳德 哥里頓 哥美林 哥罗兰德 哥倫內 哥劳卡斯 哥罗 哥利格尔 哥德 哥罗斯 高尔頓 高得里 高地巧得 高德龙 高斯 高尔德 高拉瑪 高尔・烏茲雷 格報德文 松林 格林豪 格鲁姆·拿比尔 格列哥孫 格林恩 格劳格尔 那寒 埃尔特 埃季尔吞 埃勒曼 埃得沃茨 埃得孟特斯东 埃尔哈特 埃尔曼 埃斯馬克 埃斯奎兰特 埃維瑞斯特 埃斯奎洛尔 埃瑞契隱尼阿斯 庫恩斯伯利公爵 恩捷尔 倫格 息利曼 爱倫堡

爱倫

爱莎・葛雷

Bonizzi Newport Newbert Newman Newmeister Columbus Columella Gloede, F. Gliddon Gmelin Groenland Glenny Glaucus Graux Grigor Goethe Gros Galton Gaudry Gaudichaud Godron Goose Gould Gorama Ouseley, Gore Gladwin Greene Greenhow Groom-Nanier Gregson Greening Gloger Günther Erdt Egerton Ellman Edgeworth Edmondstone Erhardt, S. Erman Esmarck Esquilant Everest Esquirol Erichthonius Duke of Queensberry

Engel

Allen.

Rengger

Silliman

Ehrenberg

Grey, Asa

十 画

 Bates Birch Boeck Bonnet Bombas

Fenwick, John

Johnson

海亦斯 海縣斯 施砂 海勃尔 深勒 器瓦尼尔 悉尔岛 悲勒 特拉哈恩 非纳尔 特尔拉勒 特洛别茨老伊 特利斯坦·达昆雅 特克马 灰德 留卡斯 松斯 馬登斯 馬尔薩斯 馬得拉斯

热而未 热而未茲・現卡姆

烏得

馬丁

馬歇尔

馬格納斯

馬林泡伊

馬可亦

馬克西英契

Hayes
Haynes
Heimann
Heber
Tayler
Tavernier
Tierman
Tylor
Traherne

Turner
Turral
Troubetzkoy
Tristan d'Acunha
Tuckermann
Tschudi
Leuckart
Lewes
Martens
Malthus
Madras
Martin

Marshall

Magnus

M'coy

Maximowicz

Marrimpoev

Geravis Markham, Geravise

Ulloa Ulm Woodward Wollwich Wooler, W. A. Woodburn Woodbury

十 - 画

得明克

Candolle (M. Alph. De)
de Clermont-Tonnerre
De Jonghe
de Jussieu
M. de Quatrefages
Davy
Delamer
Desmarest
Deby, M.
Delpino

Tessier

Temminck

両校 憂四拉佐・得・拉・韦加

梅奈勒 曼等尔 曼特尔 曼格尔斯 曼得加莎

曼斯斐尔得・帕金斯

英利茲・瓦格納

密切尔 密切利 密尔内・爱徳华

密尔内・安全 許賴勃斯 計類登 強司 荷馬 基得 Teschemacher
Daubenton
Dut Rut
Gay, M.
Gambier
Gerstäcker
Somerville
Tait, L.
Tegetmeir
Todd
Tollet

Thoutmousis III
Trousseau

Garcilazo de la Vega
Lefour
Lemoine, M.
Lereboullet
Madden
Maty
Mason
Mayes, M.
Mayer
Matzger
Merrick
Meckel
Melville
Ménétries
Meven

Meynell

Mantell

Malm

Mangles
Mantegazza
Parkyns, Mansfield
Mauchamp
Maupertuis
Maw
Mawz
Morton
Morlot, M.
Murphy, J. J.
Wagner, Moritz

Michel Michely Milne-Edwards Schreibers Schleiden Chance Homer Kidd

十二画

乔納斯・韦ト 惠威尔 温鳥得・雷得

雅列尔 登凯巴尼斯 凯顿尔威尔 赛维 普 教

費劳斯 費契 費茲帕垂克 費津加尔 費施 費特

傑美・布頓 傑克遜 喜尔 喜尔特勃兰

斐尔・赫勃斯 斐尔令・布尔 斯克罗普 斯加利基尔 斯雷特尔 斯庫得尔

斯雷特尔 斯康得尔 斯克烏恩 斯帕洛尔 斯帕拉贊尼 斯族塞 Webb, Jonas Whewell

Reade, Winwood

Yarell
Denham
Cabanis
Caton
Fairweather
Faivre, M.
Fernandez
Fenn
Fellowes
Fitch
Fitzpatrick
Fitzinger
Fish
Veith

Jemmy Button Jackson, H. W.

Heer Hilderbrand

Jesse
Jaeger
Jesuits
Pliny
Planchon
Pouchet
Poole
Poeppig
Haywood
Hesiod

Von Nathusius Von Berg Von Siebold Philippi Fillipi Phillippar King, Philip Philipeaux Hobbs, Fisher

Burr, Fearing Scrope Scaliger Sclater Scudder Skirving Sproule

Sproule Spallanzani Spencer 斯普納 斯塔尼斯拉斯 斯垂克兰得

斯陶克东·胡哥 斯楚塞

斯蒂芬

斯坦因

斯溫赫 斯密尔那 斯登斯特魯普 斯特姆 斯普兰格尔 斯陶尔 斯利曼 斯皮諾拉 湯姆孫 湯卜逊 提布尔求斯 浆斯特 浆特 散狲 散得福特 舒茲 富兰克林

琼斯

Spooner Stanislas
Strickland

Stockton-Hough, J. Struthers Stephen Steinan Swinhoe Smyrna Steenstrup Sturm Sprengel Storer Sleeman Spinola Thomson Thompson Tiburtius Leicester Wright, J. Sanson Sandford Shütz Franklin Jones

十三画

葛丹 葛瑞夫 葛拉巴 葛瑞

葛瑞 葛兰特雷・弗・巴尔克雷 奥斯汀・薩肯 奥尼尔・威尔逊 奥勃斯坦納

奥哥尔 奥尔特非尔得 奥尔特非尔得

奥列威尔・得塞尔斯

奥达特

奥譚雷**次** 奥利瓦・克倫威尔 奥斯瓦尔得・喜尔 Godine Grieve Graba Grey, G.

Berkely, F. Grantly Sacken, Osten Wilson, B. O'Neile Obersteiner

Oberstein
Odart
Ogle
Oldfield
Olivier,

Olivier, de Serres

Orton
Orford
Osborne
Owen
Ogleby
Oberlin
Oxley
Ollier
Audubon
Autenrieth
Cromwell,

Cromwell, Oliver Heer, Oswald

瑪修斯

瑪斯丹

份撒 曾波补斯 實得 買波曼 福勃斯 福克斯 福来 該特协 該得納 該波特 詹姆斯·汗特 詹姆逊 詹姆斯·巴科雷 詹宁斯 雷雅得 雪縣縣 雷特納 體頓 雷伊·兰开斯特

器伯爵 監得尔 黑伊 赚得尔 雷塞克 塞尔比 塞地洛特 寒勃来特 寒治成克

塞勒斯・那切姆ト斯 塞西尔 宪奥哥尼斯 塞瑞特 塔西特斯 塔班巴哈 塔季奥尼·托則特 微尔和

路克·威尔士 路透 道貝尔 道格拉斯 道勃瑞赵法 道納尔得逊 道汀 道勃瑞恩

> + 四 田

赫克 赫伯特 赫姆普利許 赫伯特 赫維特

Hawker Hebert Spencer Hemprich Herbert Hewitt

Caesar, Julius Chapuis Chaté Chapman Forbes Fox Frv Gartner Gardner Goeppert Hunt, James Jameson

L. Jenyns Layard, E. Laing Leitner Leighton, W. A. Lankester, Ray Ré, La Comte

Barclay, James

Riedel Ray Reidel Reisseck Selby Sedillot Sebright Sedgwick

Selys-Longchamps Cecil

Theognis Thurst . Tacitus Tagebuch Targioni-Tozzett. Virchow Wells, Luke Reuter Dobell

Douglas, J. Dobrizhoffer Donaldson Daudin Dombrain

赫朗 Heron 赫尔塞 Hearsey 赫格逊 Hodgson 赫治金 Hodekin 赫法克 Hofacker Huxley 赫胥黎 Hutton 林如 以林 Hogg 赫克尔 Haeckle Hov 林小 Mackinnon 瑪金南 现金恩特 Marguand 琪林季・努尔 Malingie-Nouel Marcel de Serres 瑪塞尔・得塞尔斯 Manannan 瑪南南 Marryat 瑪利亚特 瑪克兰得 M' Celland Marey 瑪瑙

五画

Martius

Marsden

億开斯內 Decaisne Deportes 德波尔特 Demerara 德英拉拉 德瓦伊 Devay 德尔IE Derby 邓尼 Denny 塞尔 Moore Musari 墓雕利 Murie 薬利 Muniz 雜尼茲 Moorcroft **墓尔克罗夫特** Rilev 朝朝 摩洛瑞生 Moggridge Monnier 摩尼尔 壓物雷 Mowbray Morren 除兰

Mostvn 膜斯汀 Moll 睡尔

籐坤・丹頓 Moquin-Tandon Morris 摩利斯

Moses 摩索斯 Möller 解統 Morse 摩尔斯 Mogford 糜哥弗特 Robson 鲁滨逊 Tennent 談嫩特

六 画

Hoffmann 電夫曼

霍依兴格 霍普喀克 禁牲 諾特曼 諾丹 儒尔丹

Heusinger Hopkirk Nott Nord'mann Noudin Iourdan

田

經勤 賽尔 賽克斯 賽包尔得 謝勤尔

Muller Salle Sykes Siebold Shailer

围

薩克斯 薩泡法 隆米斯路寒 薩得勘

Sachs Saporta Samesreuther Saddler

B

国

萨斯 薩威 薩巴恩 薩利斯巴利 薩哥瑞特 魏瑪 魏格曼 魏恩兰得

魏斯曼

九. 画

Sars

Savi

Sabine

Sageret

Weimar

Weigmann

Weinland

Weismann

Salisbury

酒克威 證納

Tankeville Tanner

H

歷威內 騒尔 歷季消頓 縣风乔

Sauvigny Saul Shouthampton Thornton

地 么

力究立亚

Liguria

Ξ

大吉岭 Darjeeling 大馬士革 Damascus Shrewsbury 士魯茲巴利 土洛普那 Shropshire 七魯斯 Toulouse

几

圍

开罗 开云 巴里 巴图巴拉 巴洛采 巴佩道斯 巴拉圭 巴塔哥尼亚 孔坡 戈迪列拉 日內瓦 牙买加 火地

Cairo Cavenne Bali Batubara Barotse Barbadoes Paraguay Patagonia Cawnpore Cordillera Geneva Jamaica Tierra del Fuego

五

画

本盖拉 包那威亚 布克拉 布魯塞尔 布宜諾斯與来斯 布尔特 发尔赫 兰开那 兰开斯特 兰麦穆尔山脉 北方諸島 弗兰得茲 弗兰克福 弗劳仑斯 弗恰勃尔斯 卡克留 卡罗列納 卡尔芳特 卡达姆基島 卡西亚 卡布尔

加罗林蒌島

加那利塞島

加拉巴哥塞島

加尔各答

Benguela Bonavia Bokhara Brusseles Buenos Avres Bult Walcherern Lancashire Lancaster . Lammermuir Hill Northern Islands Flanders Frankfort Florence Fochabers Carclew Carolina Chalfont Chatham Islands Khasia Cabool Caroline Archipelago Canary Islands

Calcutta

Galapagos Archipelago

尼尼皮皮皮皮基基地

圣約翰河

安的瓜 安邻斯山 安加斯 安特卫普 安提列斯 公认祭四亚 安垂姆 安梯Ц斯 安哥拉 印度斯坦 西里伯 四奥 मुख भा 西伯利亚 邓金 西印度基岛 四列斯 交趾支那 吉斯菲尔得 吉斯本 开西 汗諾威 研朗 ⊕拉· 都罗拉斯 伊斯林顿 米恰尔瑪斯 米兰諾 法馬拉 条林吉亚 **托波儿斯克** 鱼諾芬 亚森森 亚历山大 亚馬逊河 亚馬索拿馬 亚拉伯

亚拉瓦克

安司

Nicoba Islands
Nile
Ngami
Pellew Islands
Piedmont
Pitmaston
Piacentino
St. Thomas

St. Valery Holly Land St. Helena St. Jhon's River

160 Antigua Andes Aengus Antwerp Antilles Andalusia Antrim Antibes Apgora Hindostan Celebes Sioux Sisily Siberia Sikkim West Indies Xeres Cochin China Chelsfield Gisburne Hansi

Hanover
Iran
Ilha dos Rollas
Islington
Michaelmas
Milano
Damara
Thuringia
Tobolsk
Xenophon
Ascension
Alexandria
Amazons

Amazonama

Arab

Hythe

Arawaak

七

画

邦加罗尔 Bangolore 伯楚阿那 Bechuana Birmingham 伯明翰 Belfast 具尔法斯特 Bedford 日徳福 Betley Hall 日特雷・赫尔 Campania **坎**佩尼亚 Cumberland 坎勃兰 君士坦丁堡 Constantinople Crimea 克里米亚 Cusco 克斯科 Druim Cain 杜徐姆。凱恩 佛罗里法 Florida Flores 佛罗勒斯 Leeds 利茲 Lima 利瑪 Lycia 和西亚 步加 Mecca Mackenzie-river 麦肯兹河 里斯本 Lisbon Rio Plata 里杓· 普拉他 Lüneburg 日內堡 Nubia 努比亚 Namaqua 那馬瓜 Natunas Islands 那塔纳斯桑島 別古 Pleasant Port 快乐排 庇里尼斯 Pyrences Vosge 沃斯季

Λ

阿比西尼亚

阿尔及利亚

阿琴

阿尼斯

阿勒頗

阿果阿濟

阿尔及尔

阿尔卑斯

阿拉

阿姆斯特丹

阿兰得尔城

阿斯脫拉罕

阿鲁菜島

阿特拉斯

阿瓦

阿瓦西

阿斯本山

囲

Abvssinia Achin Aeneas Algeria Aleppo Algoa Bay Algiers Alps Amsterdam Aral Arundel Castle Aru Islands Astrakhan Atlas Ava Awhasie Usborn

东方班法

保拉 肯特 京加工那 拉布累斯 拉达克 拉得福特 拉諾斯 拉普拉他 拉伯兰 拉塔姆 林肯那 帕夫拉哥尼亚 帕拉摩斯 帕拉那 罗安达 罗德斯 罗西尔坎得

松巴

松巴瓦

坦波拉

坦吉尔

孟加拉

孟加拉湾

Banda Oriental

Pogarth
Bogota
Bolivia
Bonn
Bordeaux
Bosjemans
Parth
Poitou

Polynesian Islands Porto Santo Faroe Jura . Kent

La Bresse
Ladakh
Radford
Lianos
La Plata
Lapland
Latham
Lincolnshire
Paphlagonia
Paramos
Parana
Loanda
Rhodes
Rohilcund
Sumba

Sumhawa

Tambora

Tangier

Bengal

Bay of Bengal

九 画

Berkshire
Blackheath
Burgundy
Burton Constable
British Kaffraria
Corsica
Chartley
Entre Rios
Falaba
Férussac
Juan de Nova
Juan Fernandez

Los Agneles

Syria

派南 信德 突尼斯 秋林 威亚·参得 威罗那 威寒 威克裴尔得 威尔斯 威斯特发利亚 成海孙 則特兰 約克那 哈尔列姆 哈麦斯密斯 哈得逊河 哈尔 南錫

Penang Sinde Tunis Turin Uyea Sound Verona Vasev Wakefield Wales Westohalia Williamson Zetland Yorkshire Haarlem Hammesmith Hudson Hull Nancy

十 画

馬馬斯斯 馬斯斯 馬斯斯 馬斯斯斯 馬利斯 馬利亚納島

馬馬恩埃埃格格格高海海紐拉塞 克塞克拉林利地德达芬克塞莫斯兰南 堡拉兰

倫巴底

旁遮普

秘魯

Anglesea Kentucky Columbia Cordova Corrientes Edingburg Norway Madrid Mariana Isla

Mariana Islands Malayan Archipelago

Malayan Archipel Macedonia Madras Madagascar Maderia Marianne Island

Manilla Massachusetts Emden Essex Exeter

Essex
Exeter
Glamorganshire
Glasgow
Greenland
Grignan
Highland
Heidelberg
Hyderabad
Newfoundland
Lombardy
Peru
Punjab

紫尔兹巴利 鳥西河 烏特列西特 塞摩茶城

特特

Salisbury Ouse Utrecht

Taymouth Castle

Tete

Rima 基础 Borneo 婆罗洲 Malta 英尔泰 Mauchamp 英恰姆 英里求斯 Mauritius 得克蹄斯 Texas Derbyshire 得比那 Devonshire 學女那 Desterro 得斯泰罗 Dublin 都波林 机兰 Turan Gilolo 基罗罗 Guiana 基阿那 Kew 基山 琅波克 Lomboc Mississippi क्षांत्रमाम सः Maldonado 麻尔斯那多 Manchester 曼彻斯特 Mazenderan 梅攬得兰

Timor

Icrsey

提摩尔岛 捷尔塞 喀什米尔 消巴认 彭巴在原 普芙茅斯 給森 散得維契臺島 舒伯兰 斯坎尼亚 斯劳 断密尔那 斯波坎斯 斯塔福郡 斯塔姆福得 斯德哥尔摩

斯利那姆

堪特巴利

堪特尔巴利

PH BY

智娄

Kashmir Nerbudda Pampas Portsmouth Giessen Sandwich Islands Shrubland Scania Slough Smyrna Spokans Staffordshire Stamford Stockholm Surinam Amov Caterbury Canterbury Chiloe

IEI

即海 福克兰岛 福列斯 路易斯安那 道利亚 道则哥 道根 新华 新茶格兰 新春林汉 新袼拉那法 新几內亚 新汗小夏 新泽四 新南威尔斯 涨到.11 奥威尔内 **東京尼慈島** 與公保 奥斯塔克 奥尔乔 奥得 塔西提 塔仑提諾 塔斯瑪尼亚 **花**类山 寒巴斯托保 寒尔比东 寒拉・物窓内 寒拉 塞加亚

Caspian Sea Falkland Forres Lousiana Daouria Domingo Dorking New Castle New England New Forest New Granada New Guinea New Hampshire New Iersey New South Wales Rooky Mountains Auvergne Orkney Islands Orenbugh Ostvaks Oulton Oude Tahiti Tarentino Tasmania Ghauts Schastopol Surbiton Sierra Leone Sierras

(B)

赫布里得臺島 赫堪納尼恩 赫福得 蒙特洛伊 維斯村拉 維基尼亚

黎巴樹

得克散

縣洛哥

显尔本

德莫拉拉

福邦

Hebrides Herculaneum Hereford Montreuil Vistula Virginia

Circassia

五 田

Lebanon Luxan Marocoo Melbourne Shan Denerara

總里 潘西威尼亚 撒哈拉大沙漠 撒地尼亚 撒克逊內 暹選(泰国) Delhi Pennsylvania Sahara Desert Sardinia Saxony Siam

十六画

錫兰 諾斯雷 諾曼第 諾坦音 諾定 語 諾尼克 諾麗克 Ceylon Knowsley Normandy Northamptonshire Nottinghamshire Norfolk

十七画

謝特兰島Shetland Island賽尔波恩Selborne賽奈山Sinai

十八画

Saharunpore

Surrey

Sussex

Zambesi

Samoan Islands

薩哈倫波 薩摩亚羣島 薩利

薩利 薩賽克斯

十九画

贊比齐

二十画 系波頓 Southampton

騷桑波頓 騷勃賴季沃茨

Sawbridgeworth

二十一画

Gunungapi Guernsey 中科院植物所图书馆 80017166

Charles Darwin

THE VARIATION OF ANIMALS AND PLANTS UNDER DOMESTICATION

(Second Edition, Revised)

John Murray, London, 1905

动物和植物在家养下的变异

第二卷(全書兩卷)

原著者	[英]	C.	达	尔	文
翻譯者	叶		篤		庄
出版者	科	学	出	版	社
	北京朝陽門大街 117 号				
	北京市書刊出版業費業許可證出字第 061 号				
原 文 出版者	倫敦	約	翰・	穆瑞言	書 店
印刷者	中国	科	学 院	印刷	1 厂
總經售	新	华	2	書	店

1958 年 12月第 一 版 1958 年 12月第一次印刷 書号:1553 开本:787×1092 1/18

(京) 精:1- 630 平:1-1,090 字数:337,000 印張:17 插頁:2

定价: (10)精装本 2.70 元 平装本 2.10 元

ながま 195 元 12条が 4.8.7 之で2件 63.4.13 01931.

統一书号: 13031.942

定 价: 2.70 元