Введение

Общий вид задачи оптимизации:

1. Задача оптимального выбора

 $\min(\max)f(x), x \in X$ - множество операторов.

Если $X = \mathbb{R}^n$ - задача безусловной минимизации (задача без ограничений)

2. Общая задача математического программирования

 $\min f_0(x)$ - функция m переменных. $x \in X_0 \subset R^n$

$$f_i(x) \le 0, i \in \overline{1, m_1}$$

 $f_i(x) = 0, i \in \overline{m_1 + 1, m}$

3. Задача вариационного исчисления

$$\min J(x) = \int_{t_0}^T L(t, x(t), x'(t))$$
$$x(t_0) = x_0, x(T) = x_1$$

Задача планирования производства

Переработка m видов ингредиентов (ресурсов)

 b_i – объем i-го ресурса

n технологий

 $a_{i,j}$ – затраты i-го ресурса при использовании j-ой технологии с единичной интенсивностью (например, за единицу времени)

 c_i – ценность за ед. времени j-го способа

Требуется спланировать производство так, чтобы не выходя за рамки отпущенных ресурсов получить конечную продукцию максимальной суммарной ценности.

Ищем интенсивность j-ого способа производства x_i .

Ищем x = (x1...xn) - план производства, который максимизирует суммарную ценность.

$$\begin{cases} \max \sum_{j=1}^{n} c_j x_j \\ \sum_{j=1}^{n} a_{i,j} x_j \le b_i, i \in \overline{1, m} \\ x_j \ge 0, j \in \overline{1, n} \end{cases}$$

Задача диеты

т полезных вешеств

 b_i - минимальное количество i-го вещества

п продуктов питания

 $a_{i,j}$ - количество i-го вещества в единице веса j-го продукта

 c_i - цена единицы j-го продукта

Требуется найти количество продуктов x_i

$$\begin{cases} \min \sum_{j=1}^{n} c_j x_j \\ \sum_{j=1}^{n} a_{i,j} x_j \ge b_i, i \in \overline{1, m} \\ x_j \ge 0, j \in \overline{1, n} \end{cases}$$

Транспортная задача

m пунктов производства

 a_i - количество продукта в i-м пункте

n потребителей

 b_{i} - потребность j-го потребителя

 $c_{i,j}$ - стоимость перевозки из пункта i в пункт j единицы продукта

Требуется организовать перевозки так, чтобы:

- 1. из каждого пункта производства вывезти весь имеющийся там продукт
- 2. полностью насытить потребности каждого потребителя
- 3. суммарные транспортные затраты были минимальны

Определить объемы перевозок $x_{i,j}$

$$\begin{cases} \min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i,j} x_{i,j} \\ \sum_{j=1}^{n} x_{i,j} = a_i, i \in \overline{1, m} \\ \sum_{i=1}^{m} x_{i,j} = b_j, j \in \overline{1, n} \\ x_{i,j} \ge 0, \forall i, j \end{cases}$$

Все три задачи оптимизационные, во всех надо найти оптимум линейной функции. Существуют ограничения в виде неравенств и равенств. В ограничениях левая часть – линейная функция. Есть условия неотрицательных переменных $(x_{i,j} > 0)$

Примеры задач линейного программирования вкладываются в общую схему задач математического программирования.

Общая задача линейного программирования

$$\begin{cases} \min(\max) \sum_{j=1}^{n} c_j x_j \\ \sum_{j=1}^{n} a_{i,j} x_j \{=, \leq, \geq\} b_i, i \in \overline{1, m} \\ x_j \geq 0, j \in \overline{1, m} \end{cases}$$

Целевая функция - функция, которая минимизируется или максимизируется.

Вектор цели $c = (c_1 \dots n)$ определяет целевую функцию.

Ограничения могут быть равенствами или неравенствами.

Матрица задачи (условий) $A = (a_{i,j})_{m \times n}$.

Вектор правых частей (ограничений) $B = (b_1 \dots b_m)$.

Условие неотрицательности переменных $x_i >= 0$.

План задачи $x = (x_1 \dots x_n)$ - допустимый, если удовлетворяет всем ограничениям.

Допустимое множество X – множество всех допустимых планов задачи.

$$\overline{x}=(\overline{x_1}\dots\overline{x_n})$$
 - Оптимальный план , если $\forall x\in X:\sum_{j=1}^n c_j\overline{x_j}\leq \sum_{j=1}^n c_jx_j$

 $\sum_{j=1}^n c_j \overline{x_j}$ - Оптимальное значение задачи

Pemenue задачи линейного программирования - найти хотя бы один оптимальный план и вычислить оптимальное значение.

Частные формы задачи ЛП

1. Планирования производства

$$\begin{cases} \max \sum_{j=1}^{n} c_j x_j \\ \sum_{j=1}^{n} a_{i,j} x_j = b_i, \forall i \\ x_j \ge 0, \forall j \end{cases}$$

2. Каноническая задача

$$\begin{cases} \min \sum_{j=1}^{n} c_j x_j \\ \sum_{j=1}^{n} a_{i,j} x_j = b_i, \forall i \\ x_j \ge 0, \forall j \end{cases}$$

3. Основная задача

$$\begin{cases} \min \sum_{j=1}^{n} c_j x_j \\ \sum_{j=1}^{n} a_{i,j} x_j \le b_i, \forall i \end{cases}$$

Существуют правила перехода от одной задачи к другой (формы эквивалентны).

- 1. важна с точки зрения приложений
- 2. решается алгебраическими методами, приводим задачи к этому виду для решения

3

- 3. важна при рассмотрении теоретических вопросов
- Матричная запись:

$$X,C,B$$
 - вектор-столбцы

$$\begin{cases} \max C^T X \\ AX \le B \\ X \ge 0 \end{cases}$$

• Векторная запись:

$$A = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}$$
 - набор векторов (строк)

$$\begin{cases} \max(C, X) \\ (a_i, X) \leq b_i, \forall i \\ X \geq 0 \end{cases}$$

• Запись через столбцы:

$$A = (A_1 \dots A_n)$$
 - набор столбцов $\max(C, X)$

$$\begin{cases} \max(C, X) \\ \sum_{j=1}^{n} A_j x_j \le B \\ X \ge 0 \end{cases}$$

Правила перехода

1.
$$\max_{x \in S} f(x) = -\min_{x \in S} (-f(x))$$

$$x^*$$
 - точка максимума $f(x)$

$$\forall x \in S : f(x^*) \ge f(x)$$

$$\forall x \in S : -f(x^*) \le -f(x)$$

$$x^*$$
 - точка минимума $-f(x)$

2.
$$f_i(x) \ge 0 \sim -f_i(x) \le 0$$

3.
$$(a_i, x) \leq b_i$$

Добавим переменную $x_{n+i} = b_i - (a_i, x) \ge 0$

$$(a_i, x) \le b_i \sim \begin{cases} (a_i, x) + x_{n+i} = b_i \\ x_{n+i} \ge 0 \end{cases}$$

4.
$$(a_i, x) = b_i \sim \begin{cases} (a_i, x) \le b_i \\ -(a_i, x) \le b_i \end{cases}$$

5.
$$a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$$

Пусть
$$a_{i,1} \neq 0$$

$$x_1 = \frac{1}{a_{i,1}}(b_i - a_{i,2}x_2 - \dots - a_{i,n}x_n)$$

$$x_i \ge 0 \Rightarrow a_{i,2}x_2 + \dots + a_{i,n}x_n \le b_i$$

Применим метод Жордана-Гаусса. Количество ограничений сократится.

6.
$$x_j \ge 0 \sim -x_j \le 0 \sim (a_j, x) \le b_j, b_j = 0, a_j = -1$$

7.
$$x_j$$
 - свободная переменная.

Замена
$$x_j = x_i' - x_i'', x_i', x_i'' \ge 0$$