

SCMS School of Engineering & Technology

Department of Computer Science and Engineering

Road Accident Detection & Alert System

❖ PROJECT GUIDE :

Dr.Noora VT,

Associate Professor,

Department of Computer Science and Engineering,

SSET

❖ TEAM MEMBERS :

- •Abhinav Suresh C (SCM22CS007)
- •Akash Vinod (SCM22CS029)
- •Aizza Maria Sabu (SCM22CS026)
- •Adarsh P R (SCM22CS010)

CONTENTS

- > INTRODUCTION
- > OBJECTIVES
- > LITERATURE REVIEW
- > METHODOLOGY
- > SYSTEM DESIGN / ARCHITECTURE
- > IMPLEMENTATION
- > FUTURE SCOPE
- > CONCLUSION
- > REFERENCES

INTRODUCTION

- A system designed to detect road accidents in real-time using AI and computer vision.
- The system triggers emergency alerts and provides location-based notifications to reduce response time.

PROBLEM STATEMENT

- •Delay in emergency response leads to casualties.
- •Lack of automated systems for real-time accident detection.
- •Need for an integrated system that provides real-time alerts and assistance.

SIGNIFICANCE & MOTIVATION

- Faster Response: Reduces time taken to alert emergency services.
- Automated Detection: Uses AI for accurate accident identification.
- •Integration with Emergency Services: Notifies authorities with location details.

OBJECTIVES

Develop an AI-Based Accident Detection System

- Implement computer vision techniques and deep learning models to accurately detect accidents in real-time.
- Utilize video surveillance and image processing for effective monitoring.

Integrate an Alert Mechanism for Immediate Emergency Response

- Automate emergency notifications to authorities and nearby responders.
- Use API-based messaging solutions like Twilio for instant alerts.

Capture Accident Images and Store Them for Analysis

- Enable automatic image capturing upon accident detection.
- Store captured images securely in an external database for further evaluation.

Implement Google Maps Integration for Precise Location Tracking

- Use GPS-based tracking to pinpoint the exact accident location.
- Display accident locations on an interactive map for better response coordination.

LITERATURE REVIEW

Existing Research and Technologies

1. AI-Based Vehicle Detection

Author: K. Patel (IEEE, 2022)

Key Insights:

- AI models enable real-time vehicle recognition in traffic surveillance.
- Machine learning improves accuracy in accident detection.

Relevance to Our Project:

- Supports our approach of using AI for real-time accident identification.
- Justifies the use of computer vision techniques for accident analysis.

2. OpenCV and TensorFlow for Image Classification

Author: R. Mehta (Springer, 2023)

Key Insights:

- OpenCV and TensorFlow are widely used for image processing tasks.
- Convolutional Neural Networks (CNNs) improve object detection in real-world environments.

Relevance to Our Project:

- Reinforces our use of CNNs for accurate accident recognition.
- Highlights OpenCV's efficiency in real-time video processing.

3. Automated Emergency Communication Systems

Author: S. Lee (ACM, 2021)

Key Insights:

- Emergency response systems often lack automation, causing delays.
- API-based messaging solutions improve response times.

Relevance to Our Project:

- Justifies the integration of Twilio API for instant accident notifications.
- Confirms the importance of automated emergency alerts for faster assistance.

METHODOLOGY

Approach and Workflow:

- AI Model Training CNN (Convolutional Neural Networks) to classify accident and non-accident images.
- Image Processing OpenCV detects crashes in real-time by analyzing video frames.
- Communication Twilio API sends SMS and initiates calls to emergency contacts for immediate response.
- User Interface Flask-based web application provides a monitoring dashboard for real-time tracking.
- Data Logging Captures accident screenshots for documentation and future analysis.

Technologies Used:

- AI Model & Processing CNN, OpenCV
- Backend Flask
- Communication Twilio API
- Data Logging Image Storage System

SYSTEM ARCHITECTURE DIAGRAM:

IMPLEMENTATION

- AI-Powered Detection: Real-time accident detection using a trained CNN model.
- Instant Alerts: Automated emergency calls and SMS notifications via Twilio API.
- Audio & Visual Cues: Triggers an audio alert and captures accident screenshots for documentation.
- User Control: Start/Stop detection functionality for flexible monitoring.
- Web-Based Interface: Flask-powered dashboard for live video monitoring and accident alerts.

Front-End

Crash-Screenshots

Start-Detection

FUTURE SCOPE

- Enhance accuracy with more training data.
- • IoT-based sensors for more precise accident detection.
- • Multi-type accident detection capabilities.
- Reduce Processing overhead and to provide fast and smooth video relay.
- • To integrate an accident log and auto-email system.

CONCLUSION

- Successfully implemented AI-based accident detection.
- Immediate emergency alerts improve response time.
- Future advancements can make the system even more robust.
- This project successfully detects accidents in real-time and sends alerts.
- It provides quick emergency responses by notifying predefined contacts.
- The system can be further enhanced with AI-based improvements and more model training.

Final Thought: This can be a life-saving technology for road safety.

REFERENCES

TensorFlow & Keras Documentation

TensorFlow: https://www.tensorflow.org/

• Keras: https://keras.io/

OpenCV Library for Image Processing

OpenCV Documentation: https://docs.opencv.org/

Twilio API Documentation

• Twilio Messaging API: https://www.twilio.com/docs/sms

Research Papers on AI-Based Accident Detection

- AI-Based Vehicle Detection (IEEE): https://ieeexplore.ieee.org/document/8944469
- Automated Emergency Communication Systems: https://dl.acm.org/doi/10.1145/2345396.2345449