Separation of Variables in Spherical Coordinates

Consider a neutral metal sphere placed in en electric field $\tilde{E} = E_{1} + E_{2} + E_{3} + E_{4} + E_{5} + E_$

Separation of variables

Boundary conditions:

(2) As
$$r \rightarrow \infty$$
 we should approach $\dot{E} = -74 = E_{\hat{z}}$

Up to a constant. In addition, we know that the potential from the spere falls faster than Ur since the sphere is neutral. So

Overview

After separating variables we will see that

With l=0,1,2,3,... and P_{g} the legendre polynom.

- The A and B are then adjusted to match the b.c.
- You may wish to skip the next several pages to see this in action

Separating Variables. Eigenvalue Problem.
In spherical coordinates (with no of dependence)
$\begin{bmatrix} -1 & 2 & r^2 & 2 & 1 & -1 & 2 & sin \theta & 2 & 1 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9$
[r2 dr dr r2 dsine de]
Let x = coso so do = sinododo = dxdo.
Also try separated solution
9 = R(r) IP(x)
Then -r2724 = 0 yields with -1 2 = 2
x sine de dx
-19 L39K + -1 9 (1-x3) 9K = 0
Rar dr ID dx dx
leading to
O
Secondard (= 2 2
Separated R2 Dr Dr T2
Equations
- 2 (1-x2) 2 P = V (V+1) P
3. 3~
constant. later we will see that V=l=0,12,3,
We expect that the direction
11 to the boundary data will lead to an
e-value problem. While the perpendicular
direction encodes the propagation

- The eigen-values turn out to be N=2 with 1=0,1,2,3...
- The eigen-functions are the Legendre Polynomials

$$P_{J}(x) = \begin{cases} 1 & l=0 \\ x & l=1 \\ 3x^{2}-1 & l=2 \\ \overline{2} & 2 \end{cases}$$

, etc

To show this a numerical procedure consists of the following: O Pick a v start at x=1 where P(x) has a series solution, which you find from the diffEQ:

 $P_{\nu}(x) = 1 - \nu(\nu - 1)(1 - x) + O(1 - x^{2})$

- ② Using A as initial condition integrate the diffEQ to x=-1. ③ Generally P_V(x) will be irregular there and behave as ~log(1+x). But if you choose V to be an integer P_V(x) → ±1
- Examining the handout, we see that P_V(x) is at x=-1 regular when v is an integer.
- An analytic approach to the e-value problem is discussed by jackson

Now that I is specified we return to the radial equation

$$\begin{bmatrix} -1 & 2 & r^2 & 2 \\ r^2 & 3r & 3r \end{bmatrix} + \begin{pmatrix} l(l+1) & R & = 0 \\ r^2 & 3r & 3r \end{pmatrix}$$

Try a solution ra and find a=l, -(l+1) leading to

So the general form is

$$Q(r,\Theta) = \sum_{s} (A_s r^l + B_s) P_s(\cos \Theta)$$

Solving the boundary problem

the

- The boundary data involve \(^2 l = 0\) mode at \(^2 = a\) (constant) and the \(^2 = 1\) mode (050)
- So it is reasonable to expect a solution involving only these modes

 $Q = (A_0 + B_0) + (A_1 + B_1) \cos \theta$

From r→∞ and y→-Ercoso+const+O(L)
we find

 $A_1 = -E_0$ $B_0 = 0$

From r=a, 4=0 boundary condition

 $A_0 = 0 \qquad A_1 = 0$

i.e

 $B = -E_0 a^3$

So

 $\Psi = \left(-\frac{E_0r}{F^2}\right)\cos\theta$

p² = 4TT E, a3 as above