Inequality and the Zero Lower Bound

Jesús Fernández-Villaverde University of Pennsylvania, NBER, CEPR

> **Galo Nuño** Banco de España and BIS

Joël Marbet CEMFI

Omar Rachedi ESADE Business School

August 24, 2023

Outline

- Introduction
- 2 Mode
- Solution Approach
- 4 Results: Aggregate dynamics and IRFs
- Inflation target and real interest rates
- Conclusion

Motivation

- Secular decline in global real rates over the past 30 years. Fiorentini *et al.* (2019), Del Negro *et al.* (2019).
- Decline made acuter by the 2007-2008 financial crisis and the COVID-19 shock.
- As a result, the zero lower bound (ZLB) on nominal rates has become a pervasive feature of advanced economies.
- Likely to return once current inflationary pressures abate.
- Traditional analysis of the macro effects of the ZLB rely on representative agent models.
 Eggertsson and Woodford (2003); Christiano, Eichenbaum, and Rebelo (2011); Fernández-Villaverde et al., (2015).
- We argue that the effects of the ZLB on both aggregate dynamics and the stance of monetary policy depend on household inequality.

What do we do?

- Heterogeneous-agent new Keynesian (HANK) model with aggregate shocks and the ZLB.
 - ► Fully non-linear solution: neural networks approximate the aggregate laws of motion Fernández-Villaverde, Hurtado, and Nuño (2023).
- The presence of the ZLB implies three channels that alter the room for maneuver of the central bank by reducing the level of the interest rates:
 - 1. Deflationary bias (operative also in representative-agent model):
 - Agents expect that inflation cannot be stabilized at the ZLB → nominal rates decrease out of the ZLB.
 - 2. Precautionary savings due to idiosyncratic risk:
 - Agents insure against the realizations of the idiosyncratic shocks to labor earnings.
- 3. Precautionary savings due to aggregate risk:
 - ▶ ZLB recessions are relatively larger and weigh more on wealth-poor households.
 - Agents insure against the occurrence of ZLB events.

The long-run Fisher equation

- In this setting, monetary policy is non-neutral in the long run:
 - ▶ A reduction in the inflation target leads to a drop in the real interest rate.
 - ▶ The model features a long-run Fisher equation that equals

$$i(\tilde{\pi}) = r(\tilde{\pi}) + \pi(\tilde{\pi}),$$
 where $dr/d\tilde{\pi} > 0$.

- Households' inequality amplifies the degree of non-neutrality.
- The combination of changes in trend inflation and households' inequality explains at least 21% of the drop in real rates over the recent decades:
 - ▶ We consider a drop in trend inflation from 4% to 1.7% and an increase in the Gini index of wealth matching its variation in the 2000s.
 - ▶ The real rate drops by 46 bps in our HANK economy and 14 bps in the RANK model.
 - In the data, the real rate drops by around 150 bps from the late 1980s on.

Related literature

- Representative agent models.
- ▶ Monetary policy and low rates: Blanchard, Dell'Ariccia, and Mauro (2010); Andrade et al. (2019).
- ► **ZLB**: Eggertsson and Woodford (2003); Christiano, Eichenbaum, and Rebelo (2011); Fernández-Villaverde *et al.* (2015).
- ▶ **Deflationary bias:** Adam and Billi (2007), Nakov (2008), Hills, Nakata, and Schmidt (2019); Bianchi, Melosi, and Rottner (2020).
- Heterogeneous agent models.
 - Nominal Rigidities: McKay, Nakamura, and Steinsson (2016); Kaplan, Moll, and Violante (2018); Luetticke (2019).
 - ▶ **Methodology:** Krusell and Smith (1998); Boppart, Krusell, and Mitman (2018); Auclert *et al.* (2019); Fernández-Villaverde, Hurtado, and Nuño (2020).
- Closest papers.
 - ► HANK with Permanently-binding ZLB: McKay and Reis (2016); Auclert and Rognlie (2020).

Outline

- Introduction
- 2 Model
- Solution Approach
- Results: Aggregate dynamics and IRFs
- Inflation target and real interest rates
- Conclusion

Setup

- Discrete-time, infinite horizon, sticky-price economy.
- Heterogeneous households:
 - Ex-ante identical and face idiosyncratic productivity shocks.
 - Choose consumption, bond holdings, and labor supply.
 - Bond holdings limited by a borrowing constraint.
- Firms:
 - Final-good producer (perfectly competitive; CES aggregator).
 - Intermediate-good producers (monopolistic competition).
 - Nominal rigidity: Rotemberg price adjustment costs.
- Preference shocks as source of aggregate uncertainty.
 Christiano, Eichenbaum, and Rebelo (2011).

Households

Households:

$$\max_{\{c_{i,t},b_{i,t},h_{i,t}\}_{t=0}^{\infty}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \xi_{t} \frac{1}{1-\sigma} \left(c_{i,t} - \chi \frac{h_{i,t}^{1+\nu}}{1+\nu} \right)^{1-\sigma} \\
\text{s.t.} \quad c_{i,t} + b_{i,t} = \tau \left(w_{t} \mathbf{s}_{i,t} h_{i,t} \right)^{1-\gamma} + \frac{R_{t-1}}{\pi_{t}} b_{i,t-1} + \Pi_{t} \mathbf{s}_{i,t}, \\
b_{i,t} \geq \underline{b}$$

- Aggregate preference shock ξ_t follows AR(1) process.
- Idiosyncratic productivity shock $s_{i,t}$ follows a Markov chain.
- Progressive labor-income taxation (i.e., flat tax if $\gamma = 0$).
- Bond holdings limited by the borrowing constraint \underline{b} .
- \bullet Firm profits Π_t are re-distributed according to households' idiosyncratic productivity.

Firms

- Final-good producer assembles intermediate goods with $Y_t = \left(\int_0^1 y_{j,t}^{\frac{\varepsilon-1}{\varepsilon}} dj\right)^{\frac{\varepsilon-1}{\varepsilon-1}}$.
- CRS technology of intermediate-good producers is $y_{j,t} = l_{j,t}$.
- Intermediate-good producers choose prices $\{p_{j,t}\}_{t\geq 0}$ to maximize:

$$\mathbb{E}_{t} \sum_{k=t}^{\infty} \beta^{k} \left[\underbrace{\left(\frac{p_{j,k}}{P_{k}} - mg \ cost_{k} \right) \left(\frac{p_{j,k}}{P_{k}} \right)^{-\varepsilon} Y_{k}}_{\text{Profits net of adjustment cost}} - \underbrace{\frac{\theta}{2} \left(\log \left(\frac{p_{j,k}}{p_{j,k-1} \times \tilde{\pi}} \right) \right)^{2} Y_{k}}_{\text{Rotemberg adjustment cost}} \right],$$

where $\tilde{\pi}$ is the inflation target and P_t is the aggregate price level.

Solving this problem yields the New Keynesian Philips curve:

$$\log\left(\frac{\pi_t}{\tilde{\pi}}\right) = \beta \mathbb{E}_t \left[\log\left(\frac{\pi_{t+1}}{\tilde{\pi}}\right) \frac{Y_{t+1}}{Y_t}\right] + \frac{\varepsilon}{\theta} \left(mg \, cost_k - \frac{\varepsilon - 1}{\varepsilon}\right).$$

Monetary and fiscal authority

• The monetary authority follows a Taylor rule subject to the ZLB constraint:

$$R_t = \max \left\{ 1, ilde{R} \left(rac{\pi_t}{ ilde{\pi}}
ight)^{\phi_\pi} \left(rac{Y_t}{ ilde{Y}}
ight)^{\phi_y}
ight\},$$

where \tilde{R} is the DSS nominal rate, and \tilde{Y} is DSS output.

- The fiscal authority raises progressive labor income taxes to finance a fixed amount of outstanding debt \tilde{B} .
- The government budget constraint:

$$\int_0^1 \left[w_t s_{i,t} h_{i,t} - \tau_t \left(w_t s_{i,t} h_{i,t} \right)^{1-\gamma} \right] di = (r_t - 1) \tilde{B}.$$

Closing the model

Labor market clears:

$$\int_0^1 \mathit{l}_{j,t} \mathit{d}j = \int_0^1 \mathit{s}_{it,} \mathit{h}_{i,t} \mathit{d}i.$$

Bond market clears:

$$\tilde{B}=\int_0^1 b_{i,t}di.$$

Resource constraint:

$$Y_t = \int_0^1 I_{j,t} dj = \int_0^1 c_{it} di.$$

Calibration

- Inflation target is 2% (annualized). Time discount factor implies a 1% real rate in the DSS.
- Volatility of demand shock reproduces a 10% ZLB frequency.
 Coibion et al. (2016).
- Idiosyncratic risk calibrated to match:
 - ➤ 30% share of borrowers Kaplan, Violante, and Weidner (2014).
 - ▶ 10% average marginal propensity to consume Johnson, Parker, and Souleles (2006); Parker et al. (2013).
- Aggregate liquid wealth (i.e., government debt) equals 25% of annual GDP McKay, Nakamura, and Steinsson (2016); Kaplan, Moll, and Violante (2018).
- Tax progressivity is $\gamma = 0.18$ Heathcote, Storesletten, and Violante (2017).
- Rotemberg costs equivalent to a Calvo parameter that yields a 1-year price duration.

More on calibration, I

Para	Parameter		Target/Source					
Panel A. Aggregate Risk								
$ ho_{\xi}$	AR coefficient of process for ξ	0.6	Bianchi, Melosi, and Rottner (2020)					
ω_{ξ}	Standard deviation of ξ shock	0.0105	10% ZLB frequency					
Panel B. Idiosyncratic Risk								
$ ho_{ extsf{s}}$	AR coefficient of process for s_t	8.0	10% Average MPC					
ω_s	Standard deviation of s_t shock	0.05	30% Borrowers					
<u>b</u>	Borrowing limit	-0.29	Monthly average labor income					
	Panel (C. Prefere	ences					
β	Discount factor	0.997	1% real interest rate in the DSS					
σ	Risk aversion	1	Standard value					
1/ u	Frisch elasticity of labor supply	1	Standard value					
χ΄	Disutility of labor	0.71	Labor supply equals 1 in the DSS					

More on calibration. II Target/Source **Parameter** Value Panel D. Production 15% price markup Demand elasticity ε 7.67 θ Rotemberg price Equivalent to 0.75 Calvo parameter 79 41 adjustment cost Panel E. Monetary Authority $\tilde{\pi}$ 2% Annual inflation target **Inflation Target** $\exp(0.02/4)$ Coeff. on inflation 2.5 Standard value ϕ_{π} Coeff. on deviations 0.1Standard value from DSS output Panel F. Fiscal Authority R Government debt 0.25 Liquid assets = 25% annual GDP 0.18 Heathcote, Storesletten, and Violante (2017) Tax prog,

Outline

- Introduction
- 2 Mode
- Solution Approach
- Results: Aggregate dynamics and IRFs
- Inflation target and real interest rates
- Conclusion

Solution approach

- Agents form expectations keeping track of how the distribution of bonds evolves:
 - Computationally intractable.
 - Possible solution: Bounded rationality as in Krusell and Smith (1998).
 - However, this approach hinges on log-linear law of motion.
- We use neural networks to determine the fully non-linear laws of motion:
 - In our case, agents predict inflation, $\log \pi_t$, and a term related to inflation expectations, $\log \left(\frac{\pi_{t+1}}{\tilde{\pi}}\right) \frac{Y_{t+1}}{Y_t}$, from the NK Philips curve.
 - ZLB introduces non-linearities into the aggregate law of motion.
 - Neural Network is able to capture this non-linearity.

Non-linearity due to the ZLB

- Different inflation policies arise from bounded rationality assumption:
 - ▶ Perceived inflation → how agents nowcast inflation.
 - Simulated inflation → actual realization of inflation.
- ZLB introduces non-linearities into the inflation policies captured by the neural network.

Nowcast errors for inflation

- Neural network improves upon the linear regression approach, especially at the ZLB.
- Results are very similar for forecasts of the inflation expectation term.

Outline

- Introduction
- 2 Mode
- Solution Approach
- Results: Aggregate dynamics and IRFs
- Inflation target and real interest rates
- Conclusion

The macro of the ZLB: Ergodic distribution

The macro of the ZLB: Aggregate IRFs

The macro of the ZLB: Taking stock

- ZLB skews the dynamics of the model to the left relative to a standard HANK:
 - ▶ These are the cases in which the ZLB. constrains the nominal rate
 - Sharp drop in aggregate consumption amidst a deflationary spiral.
 - ▶ All these dynamics are absent in the standard HANK model.
- IRFs to small demand shocks coincide in the model with and without ZLB:
- IRFs to large shocks do differ:
 - ▶ A large shock brings the nominal interest rate down to zero.
 - Much larger drop in both inflation and output.
- ZLB events are characterized by deflation and substantial household consumption losses.

The micro of the ZLB: Households' income IRFs

The micro of the ZLB: Households' consumption IRFs

The micro of the ZLB: Taking stock

- ZLB alters the distributional effects of a recessionary shocks.
- ZLB amplifies the drop in total income:
 - ▶ This holds for any realization of labor earnings and any position in wealth distribution.
 - ▶ ZLB makes wages drop more whereas interest payments relatively rise.
 - Larger drop in the total income of wealth-poor households.
- ZLB also amplifies the drop in consumption:
 - ▶ This drop is larger for wealth-poor households.
 - ► Consumption drop for wealth-poor individuals increases by 0.2 pp due to the ZLB.
- Burden of recessions tilted towards households at lower end of the wealth distribution.

Deterministic and stochastic steady states

- What is the difference between the deterministic and stochastic steady states?
 - ▶ Deterministic Steady State (DSS): Agents ignore aggregate risks ($\sigma_{\varepsilon} = 0$).
 - Stochastic Steady State (SSS): Agents make their decisions taking into account aggregate risks ($\sigma_{\xi} > 0$) but no shock arrives along the equilibrium path.
 - Idiosyncratic shocks are taken into account by agents in both cases.
- In DSS households do not anticipate the effect of future aggregate shocks.
- Instead, in the SSS, households are aware of the existence of future aggregate shocks that may hit the economy.
- Why do we care about the SSS?

Comparison of DSS and SSS in ZLB-HANK, HANK, and ZLB-RANK

	ZLB	-HANK	H	ANK	ZLB-RANK	
Variable	DSS	SSS	DSS	SSS	DSS	SSS
Inflation	2.0%	1.91%	2.0%	1.99%	2.0%	1.93%
Nominal Rate	3.0%	2.80%	3.0%	2.96%	3.22%	3.08%
Real Rate	1.0%	0.89%	1.0%	0.97%	1.22%	1.15%
(Shadow) ZLB Frequency	-	10.17%	-	(6.09%)	-	8.35%
(Shadow) ZLB Duration Quarters	-	1.65	-	(1.50)	-	1.60

Decomposition exercise

	Real Rate	Nominal Rate	Inflation
ZLB-RANK DSS	1.22%	3.22%	2.0%
ZLB-RANK SSS	1.15%	3.08%	1.93%
(i) Deflationary Bias	0.08pp	0.14pp	0.07pp
ZLB-RANK DSS	1.22%	3.22%	2.0%
ZLB-HANK DSS	1.0%	3.0%	2.0%
(ii) Precautionary Savings - Idiosyncratic Risk	0.22pp	0.22pp	0.0pp
ZLB-RANK DSS	1.22%	3.22%	2.0%
ZLB-HANK SSS	0.89%	2.8%	1.91%
(iii) Total	0.33pp	0.42pp	0.09pp
(iii)-(i)-(ii) Precautionary Savings - Aggregate Risk	0.03pp	0.05pp	0.02pp

The determinants of the differences between DSS and SSS Real Rates

- Deflationary bias reduces the level of real rate by 8 bps.
- Precautionary savings due to idiosyncratic risk reduce the level of real rate by 22 bps:
 - ► Although this result traces back to Aiyagari (1994), our setting grants it a novel perspective.
 - Precautionary savings reduce the room of maneuver for the central bank's policy rate.
 - In standard HANK literature, the precautionary savings are immaterial for aggregate dynamics because of the lack of the ZLB.
- Precautionary savings due to aggregate risk reduce the level of real rate by 3 bps.

Outline

- Introduction
- 2 Mode
- Solution Approach
- Results: Aggregate dynamics and IRFs
- 5 Inflation target and real interest rates
- Conclusion

The role of the inflation target

- Changes in inflation target $\tilde{\pi}$ alter the ZLB frequency and households' expectations \rightarrow affect the level of real interest rates.
- Monetary policy is not neutral: the SSS real rate depends on central bank's inflation target.
- The model features a long-run Fisher equation:

$$i\left(\tilde{\pi}\right) = r\left(\tilde{\pi}\right) + \pi\left(\tilde{\pi}\right), \quad \text{where } dr/d\tilde{\pi} > 0.$$

• To uncover this result, we compare the real interest rate level in different model economies, which uniquely differ in the inflation target $\tilde{\pi}$.

DSS/SSS in ZLB-RANK/ZLB-HANK as a function of the inflation target

Differences between the SSS and DSS as a function of the inflation target

The monetary policy non-neutrality in the ZLB-HANK model

- When the inflation target is around 3%, the probability of ZLB events is low \rightarrow not quantitatively relevant in shaping households' expectations.
- \bullet For targets below 3%, the non-linearity due to the ZLB kicks in \to SSS and DSS levels diverge.
- When the target is 1.7%, the ZLB probability is as high as 20%, and the real rate is 0.75%
 → real rate is 25 bp lower than that associated with the 4% target.
- Non-neutrality is also present in RANK model.
- However, households' heterogeneity increases substantially the quantitative relevance of the long-run Fisher equation.

The interaction between the inflation target and wealth inequality

The role of wealth inequality

- A drop in the inflation target from 4% to 1.7% together with an increase in the Gini index of wealth of three p.p. reduces the level of the real rates by 46 bps.
- The drop in the inflation target is consistent with the reduction in inflation between the 1980s-1990s and 2000s-2010s.
- The increase in the Gini index of wealth is consistent with that measured by Kuhn and Ríos-Rull (2016) in the 2000s.
- In comparison, in the RANK model, the drop in the inflation target would reduce the real rate by just 14 bps.
- Overall, the interaction of these changes accounts for 21% of the overall 150 bps drop in the real rates over the last three decades.

Outline

- Introduction
- 2 Mode
- Solution Approach
- Results: Aggregate dynamics and IRFs
- Inflation target and real interest rates
- **6** Conclusion

Conclusion

- This paper introduces a HANK model that explicitly incorporates the non-linearity due to the ZLB constraint.
- We have solved the model with a novel neural-network algorithm.
- The model shows that the ZLB constraint alters the dynamics of both macroeconomic and individual variables.
- The burden of recessions is tilted towards wealth-poor individuals.
- We uncover the non-neutrality of the central bank's inflation target.
 - ► The model features a long-run Fisher equation.
 - Changes in the inflation target reduces the level of the real rate.
 - ► This channel is substantially amplified by households' inequality through changes in precautionary savings.