Лабораторная работа № 5.4.2 Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра

Тенгиз Пазов

Октябрь 2025

1 Теоретическая справка

Электронный β -распад:

$$_{Z}^{A}X \rightarrow_{Z+1}^{A}X + e^{-} + \widetilde{\nu} \tag{1}$$

Величина $W(p_e)$ является плотностью вероятности. Распределение электронов по энергии может быть вычислено теоретически. Для разрешенных переходов вероятность β -распада просто попрорциональна сатистическому весу.

$$W(p_e)dp_e \propto p_e^2 (T_m - T_e)^2 dp_e. \tag{2}$$

Кинетическая энергия электрона и его импульс связаны друг с другом обычной формулой:

$$T = \sqrt{(p_e c)^2 + (m_e c^2)^2} - m_e c^2$$

Выражение (2) приводит к спектру, имеющему вид широкого колокола. Кривая плавно отходит от нуля и стольже плавно, по параболе, касается оси абсцисс в области максимального импульса электронов.

2 Экспериментальная установка

Блок-схема установки для изучения β -спектров изображена на схеме слева.

Рис. 1. Экспериментальная установка.

Энергию β -частиц определяют с помощью β -спектрометров(схема снизу). импульс сфокусированных электронов пропорционален величине тока:

$$p_e = kI. (3)$$

Связь между числом частиц, регистрируемых установкой, и функцией $W(p_e)$ выражается формулой:

$$N(p_e) \propto W(p_e)p_e$$

откуда

$$\frac{\sqrt{N}}{p_e^{3/2}} \propto T_m - T \tag{4}$$

3 Ход работы

Полученные в результате эксперимента значения представлены на фото:

На основе данных, приведеных выше, были построены графики зависимости. А также на последнем графике была выделена линейная область и по точкам из данной линейной области построена и экстраполирова до пересечения с осью Т прямая.

Определим по нему значение $T_{max}.\ k = -0.53 \pm 0,02$ $b = 333.68 \pm 8$

$$T_{max} = 625.18 \pm 40$$
кэВ

Коэффециент детерминации $R^2 = 0.956055$.

4 Вывод

В ходе лабораторной работы с помощью магнитного спектрометра был исследован энергетический спектр β -частиц при распаде ядер $^{137}\mathrm{Cs}$. При помощи графика Ферми-Кюри была также определена максимальная энергия $T_{max}=625.18\pm40$ кэВ вылетающих электронов при β -распаде ядря $^{137}\mathrm{Cs}$. Истинное же значение равно $T_{max}=624$ кэВ.