Register	Name	Description
		These bits are written by software to configure the I/O direction
		mode. Input (reset state), general purpose output mode, alternate
GPIOx->MODER	Port mode register	function mode and analog mode.
		These bits can be read and written by software. This register
GPIOx->ODR	Port output data register	controls pin output state (high/low).
GPIOx->IDR	Port input data register	Input pin state (high/low) can be read by using this register.
		Alternate function low selection for pins. Each pin has its own
		alternate function. System has 16 different alternate functions for
GPIOx->AFR[0]	Alternate function low register	pins.
		Alternate function high selection for pins. Each pin has its own
		alternate function. System has 16 different alternate functions for
GPIOx->AFR[1]	Alternate function high register	pins.
GPIOx->PUPDR	Port pull-up/pull-down register	Input pin no pull-up or pull-down, pull-up, pull-down selection.
		Output configuratio for output pin(s). Output can be configure to
GPIOx->OTYPER	Port output type register	push-pull or open-drain.
RCC->AHBENR	Peripheral clock enable register	Input/Output GPIOx clock enable.
		Peripheral clock enable register 1. Enables for example USART 2-5,
RCC->APB1ENR	Peripheral clock enable register 1	timers 2-7 and I2C1-2 etc
USARTx->BRR	USARTx baud rate register	Baudrate must be calculated to this register in order to use USARTx.
OSANTX->BINK	OSTATA SAGA FACE FEGISCES	Controls USARTx and for example this register determines word
USARTx->CR1	USARTx control register 1	lenght.
05/11/1X / CH2		USARTx status. For example indication for transmit data register
		empty and indication when received data transferred to
USARTx->SR	USARTx status register	USARTx_DR register.
		Contains the Received or Transmitted data character, depending on
USARTx->DR	USARTx data register	whether it is read from or written to.
USARTx->CR2	USARTx control register 2	For example USARTx stop bit configuration.

		This timer (systick) is dedicated to the OS, but could also be used as
		a standard downcounter.It is based on a 24-bit downcounter with
		autoreload capability and a programmable clock source. For
SysTick->CTRL	Systick control and status register	example Systick counter enable and clock source selection etc.
		The LOAD register specifies the start value for the Systick
SysTick->LOAD	SysTick reload value register	downcounter.
SysTick->VAL	SysTick current value register	Current counter value for Systick timer.
		For example timers 9-11 clocks can be enabled or USART1EN can be
RCC->APB2ENR	Peripheral clock enable register 2	enabled.
TIMx->PSC	TIMx prescaler	Timer x prescaler (divider) for APB1 bus frequency.
		For example in TIMx upcounting mode, the counter counts from 0
		to the auto-reload value (content of the TIMx_ARR register), then
TIMx->ARR	TIMx auto-reload register	restarts from 0 and generates a counter overflow (update) event.
		When an (overflow) update event occurs, all the registers are
		updated and the update flag (Update Interrupt Flag UIF bit in
TIMx->SR	TIMx status register	TIMx_SR register) is set.
		For example selection for TIMx up/down mode and TIMx counter
TIMx->CR1	TIMx control register 1	enable.
TIMx->CNT	TIMx counter	Current timer x counter value.
	TIMx capture/compare mode	For example output pin Toggle can be selected in CCMR1 register.
TIMx->CCMR1	register 1	Toggle event when TIMx_CNT=TIMx_CCRx.
		Capture/Compare value. Can locate CCRx register depending output
TIMx->CCR2	TIMx capture/compare register 2	Channel (see in timer block diagram)
		For example Capture/Compare 2 output enable. For example OC2
		signal is output on the corresponding output pin. Corresponding
	TIMx capture/compare enable	output pin must be configured with MODER register alternate
TIMx->CCER	register	function.
	TIMx DMA/Interrupt enable	
TIMx->DIER	register	Timer interrupt enable register.

voiddisable_irq();	Disable interrupts	Disables all interrupts
voidenable_irq();	Enable interrupts	Enables all interrupts
		This register bits are written by software to select the source input
		for the EXTIx external interrupt. For example port C (PC13) for
	External interrupt configuration	EXTI13 can be selected "SYSCFG->EXTICR[3] = 0x0020;". (access
SYSCFG->EXTICR[3]	register 4	must be EXTICR[n-1] where n is register number)
		Interrupts must be masked. For example in Nucleo board EXTI13
EXTI->IMR	Interrupt mask register	(MR13).
	Falling edge trigger selection	
EXTI->FTSR	register	External interrupt falling edge selection.
	Rising edge trigger selection	
EXTI->RTSR	register	External interrupt rising edge selection.
void NVIC_EnableIRQ(IRQn_t IRQn)	Enable IRQn (function)	Specified interrupt enable.
		This register is software controlled and used interrupt
EXTI->PR	EXTI pending register	corresbonding bit have to be cleared after each interrupt event.
		Sampling time can be selected. Reference manual page 280 shows
ADC1->SMPR3	ADC sample time register 3	sampling time versus resolution
		Bits 25:24 RES[1:0]: Resolution can be selected 6,8,10 or 12-bits.
ADC1->CR1	ADC control register 1	
		A/D Converter ON/OFF swich, mode selection, start conversion
		switch for regular channels and Data alignment selection.
ADC1->CR2	ADC control register 2	
ADC1->SR	ADC status register	ADC status can be read from this register.
		These bits are read-only. They contain the conversion result from
ADC1->DR	ADC regular data register	the regular channels.
		Select an ADC input channel. STM32L152RET6 datasheet pages 37-
		55 shows ADC_INx numbers. The temperature sensor is internally
		connected to the ADC_IN16 input channel which is used to convert
		the sensor output voltage into a digital value.
ADC1->SQR5	ADC Regular sequence register 5	

ADC->CCR	ADC common control register	For example internal temperature sensor activation.
DAC->CR	DAC control register	DAC channel enable and output buffer ON/OFF selection.
	DAC channel1 12-bit right-aligned	
DAC->DHR12R1	data holding register	Software controlled DAC output register.
I2C1->CR1	I ² C Control register 1	I ² C Control register 1. For example start and stop bit generation.
		For example peripheral clock frequency have to be written to this
I2C1->CR2	I ² C Control register 2	register.
I2C1->CCR	I ² C Clock control register	I ² C bus frequency selection
I2C1->TRISE	I ² C TRISE register	I ² C bus risetime selection
		I ² C Status register 1. For example Address transmission indication can be found from SR1 and in 7-bit addressing, the SR1 register ADDR bit is set after the ACK of the byte. ADDR is not set after a
I2C1->SR1	I ² C Status register 1	NACK reception.
I2C1->SR2	I ² C Status register 2	I ² C Status register 2. SR2 is used for example to clear SR1 ADDR flag. ADDR have to be cleared in master mode by reading I2C_SR2 after reading I2C_SR1 which clears the SR1 register ADDR flag.
I2C1->DR	I ² C Data register	Byte received or to be transmitted to the bus.