Analysis II Homework 3

Nutan Nepal

February 21, 2023

Pack Pledge: I have neither given nor received unauthorized aid on this test or assignment.

- 1. Let (X, \mathcal{M}) be a measurable space.
 - (a) Let $f: X \to \mathbb{R}$, measurable and bounded. Show that for each $\varepsilon > 0$, there are simple functions φ_{ε} and ψ_{ε} on X such that

$$\varphi_{\varepsilon} \leq f \leq \psi_{\varepsilon}$$
 and $0 \leq \psi_{\varepsilon} - \varphi_{\varepsilon} < \varepsilon$ on X .

- (b) Show that $f: X \to [-\infty, \infty]$ is measurable if and only if there exists a sequence $\{s_n\}$ of simple, measurable functions on X such that $s_n \to f$ pointwise as $n \to \infty$, and $|s_n| \le |f|$ on X, for all n.
 - (a) Since f is bounded, we note that there exists an open interval [c,d] such that $f(X) \subset [c,d]$. For every $\varepsilon > 0$, we can take the partition of the interval [c,d] such that $y_k y_{k-1} < \varepsilon$ and $c = y_0 < y_1 < \cdots < y_{n-1} < y_n = d$ for some integer n. For each $I_k = [y_{k-1}, y_k)$, we define E_k to be $f^{-1}(I_k)$ which is measurable since f is measurable.

Now we define the functions φ_{ε} and ψ_{ε} by

$$\varphi_{\varepsilon}(x) = \sum_{k=1}^{n} y_{k-1} \cdot \chi_{E_k}$$
 and $\psi_{\varepsilon}(x) = \sum_{k=1}^{n} y_k \cdot \chi_{E_k}$.

For $x \in E$, there is a unique $k \in \overline{1, \ldots, n}$ such that $x \in E_k$ and we have $y_{k-1} \le f(x) < y_k$. But $\varphi_{\varepsilon}(x) = y_{k-1}$ and $\psi_{\varepsilon}(x) = y_k$ and hence $\varphi_{\varepsilon}(x) \le f(x) < \psi_{\varepsilon}(x)$ with $\psi_{\varepsilon} - \varphi_{\varepsilon} < \varepsilon$ on X.

(b) For a measurable function f, we take the sequence of simple functions defined on **Homework 2 - Problem 11** which we proved to be monotone increasing and pointwise convergent to f.

Now assume that we have a sequence $\{s_n\}$ of simple, measurable functions that converge to f pointwise and $|s_n| \leq |f|$ on X for all n. We first note that for any number $c \in [-\infty, \infty]$, since $\lim_{n\to\infty} s_n(x) = f(x)$ for each x, we have f(x) < c if and only if there exist $n, k \in \mathbb{N}$ with $f_j(x) < c - 1/n$ for all $j \geq k$. Since each set $E_{j,n} = \{x \in E : c \in E : c \in E\}$

 $f_j(x) < c - 1/n$ } is measurable (because f_j is measurable), for each k, we have $\bigcap_{j=k}^{\infty} E_{j,n}$ is measurable. Hence

$$\{x \in E : f(x) < c\} = \bigcup_{1 \le k, n < \infty} \left(\bigcap_{j=k}^{\infty} E_{j,n}\right)$$

which, in turn, implies that f is a measurable function.

2. Let $X = \mathbb{N}$, $\mathcal{M} = \mathcal{P}(\mathbb{N})$, and μ is the counting measure. Show that for every function $f : \mathbb{N} \to [0, \infty]$,

$$\int_X f \ d\mu = \sum_{n=1}^\infty f(n).$$

We take the sets $E_k = \{1, 2, ..., k\}$ and define the sequence $\{f_k\}$ by $f_k = f \cdot \chi_{E_k}$. Then $\{f_k\}$ is a monotone increasing sequence of simple functions that converges pointwise to f and

$$\int_{X} f_k \ d\mu = \int_{E_k} f_k \ d\mu = \sum_{n=1}^{k} f(n).$$

By monotone convergence theorem we have the required result as $k \longrightarrow \infty$.

- 3. Let (X, \mathcal{M}, μ) be a measure space. Let $f: X \to [0, \infty]$ be measurable. Show that $\varphi(A) = \int_A f \ d\mu$ is a positive measure on \mathcal{M} .
 - (a) For any set $A \in \mathcal{M}$, we see that $\varphi(A) = \int_A f \ d\mu \ge 0$ since f is a non-negative function $(\varphi(\emptyset) = 0)$.
 - (b) For any countable collection of measurable pairwise disjoint sets $\{A_n\}$, we have

$$\varphi\left(\bigcup_{n=1}^{\infty} A_n\right) = \int_{\bigcup_{n=1}^{\infty} A_n} f \ d\mu = \sum_{n=1}^{\infty} \left(\int_{A_n} f \ d\mu\right) = \sum_{n=1}^{\infty} \varphi(A_n)$$

where the second equality follows from the additivity property of integrals over the domain of integration.

Thus φ is a positive measure on \mathcal{M} .

- 4. Let $f_n: X \to [0, \infty]$ be a monotone decreasing sequence of functions with $f_n \searrow f$ pointwise.
 - (a) Show by counterexample that $\lim_{n\to\infty}\int_X f_n\ d\mu$ is not necessarily $\int_X f\ d\mu$.
 - (b) Find an additional assumption that would make the statement true.

(a) We define a sequence $\{f_n\}$ of functions $f_n: X = [0, \infty] \to [0, \infty]$ as follows:

$$f_n(x) = \begin{cases} n & x \in [n, \infty] \\ 0 & x \in [0, n). \end{cases}$$

We see that $\{f_n\}$ is clearly a decreasing sequence of functions and $\int_X f_n \ d\mu = \infty$ for all n, but $\int_X \lim_{n\to\infty} f_n \ d\mu = \int_X 0 \ d\mu = 0$.

(b) If $f_1 \in L^1(\mu)$ then the statement is true. We first note that if $f_1 \geq f_2 \geq \cdots \geq f \geq 0$, then $-f_1 \leq -f_2 \leq \cdots \leq -f \leq 0$ is a monotone increasing sequence. We define $g_n = f_1 - f_n$ and take the sequence $\{g_n\}$ which is monotone increasing and converges to $f_1 - f$. f is measurable since it is a pointwise limit of measurable functions and by monotone convergence theorem for increasing sequence we have

$$\lim_{n \to \infty} \int_X f_1 - f_n \ d\mu = \int_X f_1 - f \ d\mu \implies \lim_{n \to \infty} \int_X f_n \ d\mu = \int_X f \ d\mu.$$

5. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) = 1$. Suppose $E_1, E_2, ..., E_n$ are a finite number of measurable sets in X, such that each point in X belongs to at least M of these sets (where M is a positive integer with $M \leq n$). Show that there exists k such that $\mu(E_k) \geq \frac{M}{n}$.

Define a function $g: X \to \mathbb{N}$ by $g(x) = \sum_{k=1}^n \chi_{E_k}$. Then $g(x) \geq M$ for all $x \in X$. We have

$$M = M \cdot \mu(X) \le \int_X g(x) \ d\mu \le \sum_{k=1}^n \int_{E_k} g(x) \ d\mu.$$

For each E_k , $\int_{E_k} g(x) d\mu$ is at most $\mu(E_k)$. Thus, $M \leq n \cdot \mu(E_k)$ for some k and hence we have the required result.

6. Prove an analogous result to Fatou's Lemma for lim sup.

 $n \rightarrow \infty$

Theorem 1 (Fatou's Lemma, reverse). Let $\{f_n\}$ be a sequence of non-negative bounded measurable functions on X and $f_n \to f$ pointwise, then

$$\limsup_{n \to \infty} \int_X f_n \ d\mu \le \int_X f \ d\mu.$$

Proof. Since $\{f_n\}$ is a bounded sequence and hence there exists a function g such that $f_n(x) \leq g(x)$ for all n. Then $\{g - f_n\}$ is a sequence of non-negative functions that converge to g - f. By Fatou's Lemma, we have

$$\int_{X} g - f \ d\mu \le \liminf_{n \to \infty} \int_{X} g - f_n \ d\mu.$$

Using linearity and multiplying by -1, we have

$$\int_X f \ d\mu \ge - \liminf_{n \to \infty} \int_X -f_n \ d\mu = \limsup_{n \to \infty} \int_X f_n \ d\mu$$

as required.

7. Give an example where we have strict inequality in Fatou's Lemma. Then illustrate by example that the assumption " f_n are non-negative" is necessary in Fatou's Lemma.

We define a sequence of functions $\{f_n\}$ by

$$f_n(x) = \begin{cases} 1/n & x \in [0, n] \\ 0 & \text{otherwise.} \end{cases}$$

The sequence $\{f_n\}$ converges to the 0 function which has integral 0. However, each function f_n has integral 1. Thus we have the strict inequality.

To see the importance of the non-negativity, we define a similar functions as above by

$$f_n(x) = \begin{cases} -1/n & x \in [0, n] \\ 0 & \text{otherwise.} \end{cases}$$

Each functions f_n has integral -1 but the limit is the 0 function which has integral 0 which is more than the lim inf of the integral.

8. Suppose that $\mu(X) < \infty$, and $\{f_n\}$ is a sequence of bounded complex measurable functions on X, and $f_n \to f$ uniformly on X. Prove that

$$\lim_{n \to \infty} \int_X f_n \ d\mu = \int_X f \ d\mu.$$

We know that each f_n is bounded since f_n converges uniformly to f and thus f is also bounded. Since each f_n are measurable, f is also measurable. Now, for each $\varepsilon > 0$, we know that there exists $N \in \mathbb{N}$ such that $|f - f_n| < \varepsilon/\mu(X)$ for all n > N. Then

$$\left| \int_{E} f - \int_{E} f_{n} \right| = \left| \int_{E} f - f_{n} \right| \le \int_{E} |f - f_{n}| \le \frac{\varepsilon}{\mu(X)} \cdot \mu(X) = \varepsilon.$$

Thus, $\lim_{n\to\infty} \int_E f_n = \int_E f$.

9. Assume that $f \in L^1(\mu)$ and $\left| \int_X f \ d\mu \right| = \int_X |f| \ d\mu$. Then there exists $\alpha \in \mathbb{C}$, with $|\alpha| = 1$ such that $\alpha f = |f|$ a.e. on X.

We define $\beta = \left(\int_X f \ d\mu\right) / \left|\int_X f \ d\mu\right|$. Clearly, $|\beta| = 1$ and we have $\int_X f \ d\mu = \beta \left|\int_X f \ d\mu\right| = \beta \int_X |f| \ d\mu$. Since the integrals are equal, we conclude that $f = \beta |f|$ a.e. on X. Taking $\alpha = 1/\beta$ gives the required equality.

10. Let (X, \mathcal{M}, μ) be a measure space and suppose f is a non-negative measurable function on X. If $\int_X f \ d\mu = 0$, show that $\mu(\{x \in X \mid f(x) \neq 0\}) = 0$ (i.e. f = 0 a.e. on X).

Assume that $\mu(\{x \in X \mid f(x) \neq 0\}) > 0$ instead. We take the sets $A_n = \{x \mid f(x) > 1/n\}$ and note that $\mu(A_k) > 0$ for some k. Then,

$$\int_{X} f \ d\mu \ge \int_{A_{k}} f \ d\mu > \int_{A_{k}} \frac{1}{k} \ d\mu = \frac{1}{k} \cdot \mu(A_{k}) > 0$$

which is a contradiction. Thus $\mu(\{x \in X \mid f(x) \neq 0\}) = 0$.

11. (A small extension of the LDCT)

Let $\{f_n\}$ be a sequence of either complex-valued or extended real-valued functions such that $f_n(x) \to f(x)$ a.e. on X and suppose there is $g \in L^1(\mu)$ such that $|f_n(x)| \leq g(x)$ for a.e. X. Show that

$$\lim_{n \to \infty} \int_X f_n(x) \ d\mu = \int_X f(x) \ d\mu$$

Let N be the set where $|f_n(x)| > |g(x)|$ or where f_n doesn't converge to f. This set is a union of two sets that have measure 0 and hence itself has measure 0. Then by Lebesgue Dominated Convergence theorem,

$$\lim_{n \to \infty} \int_{X-N} f_n(x) \ d\mu = \int_{X-N} f(x) \ d\mu.$$

But, for each n, we have $\int_X f_n(x) \ d\mu = \int_{X-N} f_n(x) \ d\mu + \int_N f_n(x) \ d\mu$. We note that $\int_N f_n(x) \ d\mu \le \int_N g(x) \ d\mu \le \sup_{x \in N} g(x) \cdot \mu(N) = 0$. Using this result for each n and also for f itself, we get the required result.

12. (Absolute Continuity of the Integral) Let f be a non-negative measurable function in $L^1(\mu)$. Show that for each $\varepsilon > 0$ there exists a $\delta > 0$ such that for every measurable set A with $\mu(A) < \delta$, we have $\int_A f \ d\mu < \varepsilon$.

Hint: Argue by contradiction: If not, then there is some ε_0 and a sequence of measurable sets A_n with $\mu(A_n) < 2^{-n}$ and

$$\int_{A_n} f \ d\mu > \varepsilon_0.$$

Consider the sequence $g_n = f \cdot \chi_{A_n}$. Show that g_n converges to 0 except at points x in infinitely many of the sets A_n . What is the measure of this "exceptional" set? Now apply a convergence result to the sequence $f_n = f - g_n$ to get a contradiction.

We prove the given statement by contradiction. If the statement is false then there is some $\varepsilon_0 > 0$ and a sequence of measurable sets A_n with $\mu(A_n) < 2^{-n}$ and $\int_{A_n} f \ d\mu > \varepsilon_0$. We define a sequence $\{g_n\}$ of functions by $g_n = f \cdot \chi_{A_n}$. For $x \notin A_n$, we have $g_n(x) = 0$ and for $x \in A_n$,

 $g_n(x) = f$ with $\mu(A_n) = 2^{-n}$. Then $f_n = f - g_n$ is 0 in the set A_n and is f otherwise.

$$0 = \int_{A_n} f - g_n \ d\mu = \int_{A_n} f \ d\mu - \int_{A_n} g_n \ d\mu.$$

Not able to continue. I cannot see how I can make progress on this question.