GROUPES ET ANNEAUX 2 CORRIGÉ DU CONTRÔLE CONTINU N°1

Exercice 1. Soit G un groupe, $K \triangleleft G$ un sous-groupe distingué, et H < G un sous-groupe. Montrer que :

- (i) $K \cap H$ est un sous-groupe distingué de H;
- (ii) $KH = \{kh \mid k \in K, h \in H\}$ est un sous-groupe de G;
- (iii) $H/(K \cap H) \cong KH/K$.

Solution. (i) Comme l'intersection entre deux sous-groupes de G est un sous-groupe, alors $K \cap H$ est un sous-groupe. Pour montrer qu'il est distingué dans H, il faut vérifier que $hxh^{-1} \in K \cap H$ pour tout $x \in K \cap H$ et $h \in H$. Mais $hxh^{-1} \in K$ car $x \in K$ et $K \triangleleft G$, et $hxh^{-1} \in H$ car $x \in H$ est $H \triangleleft G$.

(ii) Tout d'abord, $e=ee\in KH$ car $e\in K$ et $e\in H.$ Ensuite, pour tout $kh,k'h'\in KH,$ on a

$$khk'h' = k(hkh^{-1})hh' \in KH$$

car $K \triangleleft G$, donc KH est clos par multiplication. De plus, pour tout $kh \in KH$, on a

$$(kh)^{-1} = h^{-1}k^{-1} = (h^{-1}k^{-1}h)h^{-1} \in KH$$

car $K \triangleleft G$, donc KH est clos par inversion.

(iii) Considérons la projection canonique $G \twoheadrightarrow G/K$, et soit $\pi: H \to G/K$ sa restriction à H. Son noyau est ker $\pi = K \cap H$ car, pour tout $h \in H$, on a

$$h \in \ker \pi \quad \Leftrightarrow \quad hK = eK \quad \Leftrightarrow \quad h \in K.$$

De plus, son image est im $\pi = KH/K$. En effet, pour tout $h \in H$, on a

$$\pi(h) = hK = ehK \in KH/K,$$

donc im $\pi \subset KH/K$. De plus, pour tout $khK \in KH/K$, on a

$$khK = h(h^{-1}kh)K = hK = \pi(h) \in \operatorname{im} \pi,$$

car $K \triangleleft G$, donc im $\pi \supset KH/K$. L'isomorphisme suit alors du Théorème de noyau et image. \Box

Exercice 2. Soit H < G un sous-groupe d'un groupe G. Le centralisateur de H dans G est $C_G(H) := \{g \in G \mid gh = hg \, \forall \, h \in H\} < G$, et le normalisateur de H dans G est $N_G(H) := \{g \in G \mid gHg^{-1} = H\} < G$.

- (i) Montrer que $C_G(H) \triangleleft N_G(H)$.
- (ii) Déterminer $C_G(H)$ et $N_G(H)$ lorsque $G = \mathfrak{S}_3$ et $H = \langle (1\ 2\ 3) \rangle$.
- (iii) Montrer que $C_G(gHg^{-1}) = gC_G(H)g^{-1}$ pour tout $g \in G$ et en déduire que, si $H \triangleleft G$, alors $C_G(H) \triangleleft G$.
- (iv) Montrer que $[G:\mathcal{N}_G(H)]$ est égal au nombre de sous-groupes de G conjugués à H. Indication : étudier l'action par conjugaison de G sur l'ensemble X de ses sous-groupes.

Solution. (i) On commence par montrer que $C_G(H) \subset N_G(H)$. En effet, on a que

$$g \in \mathcal{C}_G(H) \quad \Leftrightarrow \quad gh = hg \quad \forall h \in H \quad \Leftrightarrow \quad ghg^{-1} = h \quad \forall h \in H$$

$$\Rightarrow \quad gHg^{-1} = H \quad \Leftrightarrow \quad g \in \mathcal{N}_G(H).$$

Ensuite, pour montrer que $C_G(H)$ est distingué dans $N_G(H)$, on doit vérifier que $xyx^{-1} \in C_G(H)$ pour tout $x \in N_G(H)$ et $y \in C_G(H)$. Cela suit du fait que, pour tout $h \in H$, on a

$$(xyx^{-1})h = xy(x^{-1}hx)x^{-1} = x(x^{-1}hx)yx^{-1} = h(xyx^{-1}),$$

car $x \in N_G(H)$ et $y \in C_G(H)$.

(ii) Comme $H = \langle (1\ 2\ 3) \rangle$ est cyclique, pour tout $\sigma \in G = \mathfrak{S}_3$ on a que

$$\sigma \in C_G(H) \Leftrightarrow \sigma(1\ 2\ 3)\sigma^{-1} = (1\ 2\ 3).$$

Au même temps, pour tout $\sigma \in G$ on a que

$$\sigma(1\ 2\ 3)\sigma^{-1} = (\sigma(1)\ \sigma(2)\ \sigma(3)).$$

Considérons alors $\sigma \in C_G(H)$.

$$\diamond$$
 Si $\sigma(1) = 1$, alors $\sigma(2) = 2$, $\sigma(3) = 3$, et $\sigma = id$.

$$\diamond$$
 Si $\sigma(1) = 2$, alors $\sigma(2) = 3$, $\sigma(3) = 1$, et $\sigma = (1 \ 2 \ 3)$.

$$\diamond$$
 Si $\sigma(1) = 3$, alors $\sigma(2) = 1$, $\sigma(3) = 2$, et $\sigma = (1 \ 3 \ 2)$.

Donc

$$C_G(H) = H.$$

Par contre, [G:H]=2 implique $H \triangleleft G$, ce qui implique

$$N_G(H) = G.$$

(iii) On commence par montrer que $C_G(gHg^{-1}) = gC_G(H)g^{-1}$. En effet, on a que

$$x \in \mathcal{C}_G(gHg^{-1}) \quad \Leftrightarrow \quad x(ghg^{-1}) = (ghg^{-1})x \quad \forall h \in H$$

$$\Leftrightarrow \quad (g^{-1}xg)h = h(g^{-1}xg) \quad \forall h \in H$$

$$\Leftrightarrow \quad g^{-1}xg \in \mathcal{C}_G(H) \quad \Leftrightarrow \quad x \in g\mathcal{C}_G(H)g^{-1}.$$

Ensuite, si $H \triangleleft G$, alors, pour tout $g \in G$, on a

$$C_G(H) = C_G(gHg^{-1}) = gC_G(H)g^{-1}.$$

Cela implique que $C_G(H) \triangleleft G$.

(iv) Soit X l'ensemble des sous-groupes de G, sur lequel G agit par conjugaison. Alors, par définition, le stabilisateur de $H \in X$ est $G_H = N_G(H)$, et son orbite est $G \cdot H = \{gHg^{-1} \mid g \in G\}$. On obtient une bijection

$$G/G_H \to G \cdot H$$

 $[g] \mapsto gHg^{-1}.$

On déduit que

$$[G: \mathcal{N}_G(H)] = |G/G_H| = |G \cdot H|.$$

Remarque. Une méthode alternative pour voir que, si $H \triangleleft G$, alors $C_G(H) \triangleleft G$, consiste à remarquer que $N_G(H) = G$, et à appliquer le point (i) de l'Exercice 2.

Exercice 3. Soit G un groupe fini d'ordre $n \in \mathbb{N}$, et soit $p \in \mathbb{N}$ le plus petit nombre premier divisant n. Montrer que, si $H \triangleleft G$ et |H| = p, alors $H \subset \mathrm{Z}(G)$. Indication : étudier l'action par conjugaison de G sur H, ainsi que le groupe d'automorphismes $\mathrm{Aut}(H)$.

Solution. Vu que $H \triangleleft G$, alors G agit par conjugaison sur H. Comme il s'agit d'une action par homomorphisme, on obtient un morphisme de groupes

$$\rho: G \to \operatorname{Aut}(H)$$
$$g \mapsto g_g^{-1}$$

Vu que |H|=p, alors $H\cong \mathbb{Z}/p\mathbb{Z}$. Maintenant, pour définir un automorphisme de $\mathbb{Z}/p\mathbb{Z}$, il suffit de choisir l'image de 1, qui doit être un élément d'ordre p. Comme il y en a exactement p-1 (tous sauf 0), on déduit que $|\operatorname{Aut}(H)|=p-1$. Mais $(p-1)\not\mid n$, car p est le plus petit nombre premier divisant n. Alors le seul morphisme de groupes $\rho:G\to\operatorname{Aut}(H)$ est le morphisme trivial. En d'autres termes, $ghg^{-1}=h$ pour tout $g\in G$ et $h\in H$. Donc $H\subset\operatorname{Z}(G)$.