Fonctions exponentielles de base a

Propriété. Fonction exponentielle de base a.

Soit a un réel strictement positif.

Il existe une unique fonction f dérivable sur \mathbb{R} telle que f(x+y)=f(x)f(y) et telle que f(1)=a.

Définition. Cette fonction est appelée fonction exponentielle de base a.

Pour tout $x \in \mathbb{R}$, on note $a^x = f(x)$

Sa représentation graphique varie selon que a < 1 ou a > 1

Propriété. La fonction $x \mapsto a^x$ est positive, et $\begin{cases} \text{strictement croissante} & \text{si } a > 1 \\ \text{strictement décroissante} & \text{si } a < 1 \end{cases}$

Propriété. $x \mapsto k \times a^x$ a le <u>même</u> sens de variation que $x \mapsto a^x \underline{\text{si } k > 0}$, le sens *contraire* si $\underline{k < 0}$

Exemple. $x \mapsto 7 \times 0.5^x$ est décroissante car a = 0.5 < 1 et k = 7 > 0

Exemple. $x \mapsto -0.3 \times 4^x$ est décroissante car a = 4 > 1 mais k = -0.3 < 0

Propriétés. $a^{x+y} = a^x \times a^y$ $a^{x-y} = \frac{a^x}{a^y}$ $(a^x)^y = a^{xy}$

Propriétés. $a^{-x}=\frac{1}{a^x}$ Propriétés. $a^0=1$ $a^1=a$ $a^{-1}=\frac{1}{a}$

Exemples. $2^3 \times 2^4 = 2^{3+4} = 2^7 = 128$ $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$ $(2^{1,5})^4 = 2^{1,5 \times 4} = 2^6 = 64$

Propriété. Si $a^x = a^y$ alors x = y.

Exemple. Résoudre $3^x = 3^{2x+5}$. Alors x = 2x + 5 donc -x = 5 donc x = -5.

Définition. Lors de n évolutions successives à des taux $t_1, t_2, ..., t_n$ entre une valeur V_0 et une valeur V_n , on appelle taux d'évolution moyen le taux noté t_M qu'il faut appliquer n fois successivement à la valeur V_0 pour obtenir la valeur V_n .

$$\begin{split} V_1 &= V_0 \times (1+t_1) & V_2 &= V_0 (1+t_1) (1+t_2) \ \dots \\ & V_n = V_0 (1+t_1) (1+t_2) \dots (1+t_n) \\ \text{Le taux moyen doit v\'erifier} : & V_n &= V_0 (1+t_M) (1+t_M) \dots (1+t_M) = V_0 (1+t_M)^n \\ \text{On a donc } & (1+t_M)^n &= (1+t_1) (1+t_2) \dots (1+t_n) \end{split}$$

$$t_{M} = ((1 + t_{1})(1 + t_{2}) \dots (1 + t_{n}))^{\frac{1}{n}} - 1$$