Machine Learning 读书会第8期

主题模型简介

沈志勇 Data scientist @ IDL.Baidu

合办方:超级计算大脑研究部@自动化所

outline

- What's topic model
 - 来龙去脉
 - 相关模型的比较
- Learning topic model
 - 来自模型的痛苦
 - 来自数据的痛苦
- Using topic model
 - -参数的使用
 - 模型层面的利用:表达能力、学习机制等

来龙去脉

什么是Topic Model?

生成模型: 汪老师写歌词

有一位网友统计了汪老师在大陆发行的9张专辑共**117**首歌曲 的歌词

同一词语在一首歌出现只算一次。形容词,名次和动词的前十名分别是(词语后面的数字是出现的次数):

	形容词		名词		动词
0	孤独: 34	0	生命: 50	0	爱: 54
1	自由: 17	1	路: 37	1	碎: 37
2	迷惘: 16	2	夜: 29	2	哭: 35
3	坚强: 13	3	天空: 24	3	死: 27
4	绝望: 8	4	孩子: 23	4	飞: 26
5	青春: 7	5	雨: 21	5	梦想: 14
6	迷茫: 6	6	石头: 9	6	祈祷: 10
7	光明: 6	7	鸟: 9	7	离去: 10
9	理想: 6	8	瞬间: 8	8	再见: 9
9	20社3学12/ 5	9	桥: 5	9	埋: 6

如果我们随便写一串数字,然后按数位,依次在形容词,名 次和动词中取出个词,连在一起会怎样呢?

比如圆周率3.1415926,对应的词语就是:**坚强,路,飞,**自由,雨,埋,迷惘。

稍微连接和润色一下:

坚强的孩子,

依然前行在路上,

张开翅膀飞向自由,

让雨水埋葬他的迷惘。

再来一个,今年是2013对应的词语就是:**迷惘,生命,碎,坚强**。

润色一下:

不再迷惘的生命,

被燃碎千万次, 也依然坚强。

「akecas@gmail.com(来自 @于弦cos 微博图片)

生成模型: PLSA

PLSA的图模型表达

LDA的图模型表达

• 层次化 (deep化)

从PLSA到LDA (续)

- 参数p(z/d)有了以 α 为参数的先验(贝叶斯化)
 - 若α未知、需学习
 - 模型可描述整个Corpus的生成
 - 不同的文档之间的p(z/d)不独立:短的doc可从长的doc得到帮助;"差"的doc不会带来太大的影响
 - 若α由人为设定
 - 注入领域知识
 - MAP, 相当于正则——稀疏表达 + 平滑
- 为什么是Dirichlet?
 - 指数族分布
 - 多项式分布的共轭先验

学习的便利

3维Dirichlet的参数向量 $\vec{\alpha} = (\alpha, \alpha, \alpha)$

•当 α 小于 1 时,生成的概率向量偏向于某几维,值越小,偏的越厉害 - 稀疏表达 •当 α 大于 1 时,生成的概率向量倾向于中间,值越大,趋中越厉害 - 平滑 rakecas@gmail.com

TM是降维:对比PCA

• PCA :

目标最小化下面的 X 重构误差:

$$J(\mathbf{W}, \mathbf{Z}) = ||\mathbf{X} - \mathbf{W}\mathbf{Z}^T||_F^2$$

其中W正交,和X同维数,Z为 score(投影坐标)矩阵,降维

(图片来自Murphy的MLAPP)

PCA → PLSA

$$\begin{array}{ccc} X & \rightarrow & p(w/d) \\ W & \rightarrow & p(w/z) \\ Z & \rightarrow & p(z/d) \end{array}$$

rakecas@gmail.com图片来自Hofmann的PLSA论文)

PLSA是矩阵分解:对比NMF

$$\vec{p}(w|d_i) = \sum_{z} \vec{p}(z|d_i) \vec{p}(w|z)$$

- 1. K<<W, K<<D
- 2. 所有矩阵行和为1,且所有元素大于0(概率)

(Chris Ding AAAI06 的论文中给出了一个等价性证明)

TM是聚类:对比co-clustering

• TM 是一种soft co-clustering

p(z|d): doc 类从属概率

p(z/w): word 类从属概率

如何求p(z/w)?

• 在TM的参数上很容易得到传统 co-clustering的结果:

$$C_d = \arg\max_c p(z = c/d)$$

$$C_w = \operatorname{arg\,max}_c p(z = c/w)$$

(图片来自Rege DMKD2008)

什么是Topic Model-回顾

outline

- What's topic model
 - 来龙去脉
 - 相关模型的比较
- Learning topic model
 - 来自模型的痛苦
 - 来自数据的痛苦
- Using topic model
 - -参数的使用
 - 模型层面的利用:表达能力、学习机制等

TM参数学习:最大化似然

PLSA:

2013/12/8

$$\mathcal{L} = \sum_{d,w} \log \sum_{z} \mathcal{Q}(z) \frac{p(w|z;\beta)p(z|d;\theta)}{\mathcal{Q}(z)}$$

(Jensen's inequality)

$$\geq \sum_{d,w} \sum_{z} \mathcal{Q}(z) \log \frac{p(w|z;\beta)p(z|d;\theta)}{\mathcal{Q}(z)}$$

where

$$Q(z) = p(z|d, w; \beta^{\text{old}}, \theta^{\text{old}})$$

Jensen不等式可以把求和从log中提出来,得到原似然的一个下界

迭代起来就是——EM算法:

•E步: 更新Q(z)

•M步: 最大化下界

来自数据的痛苦

- 数据"少"
 - Word 出现频率的幂律分布
 - 部分doc较短
 - 所有doc都是短文本

Burn-in + voting

将短文根据某种context拼成长文

- 数据多
 - Online 算法 → EM和bayes框架都有较好的online特性
 - 分布式算法
 - 以MPI为主
 - 本人提出过一种2个map+1个reduce的近似解法

参见拙作: Topic Modeling Ensembles. ICDM 2010

outline

- What's topic model
 - 来龙去脉
 - 相关模型的比较
- Learning topic model
 - 来自模型的痛苦
 - 来自数据的痛苦
- Using topic model
 - -参数的使用
 - 模型层面的利用:表达能力、推理机制等

参数的使用

- 各种条件概率的使用
 - p(w|z)-top words主题相关的关键词表
 - p(z|d) doc的soft clustering; doc的低维表达等
 - p(w'|w)-关联关系,可用于关联推荐等
 - 可视化
- 超参数的使用 注入领域知识(supervision)
 - p(w|z)的超参数η-某些topic已知的关键字提权
 - p(z|d)的超参数α-如果η有监督信息,也可以相应控制权重;一般情况,短文本适当取大一点
 - K的确定: 肉眼看最靠谱; 有一些系统评估P(D|K)的方法, 没必要

运用图模型强大的表达能力

Rosen et al. UAI 2004

Blei et al. NIPS 2007

Zhuang et al. TKDE 2012 $^{\text{rakecas@gmail.com}}$

Zhuang et al. ICDM 2010

利用模型的可推理机制

- 固定的p(w/z), 动态变化的doc
 - 可以随时对p(z|d)做inference
 - $-p(w'|w_1,w_2,...)$,高阶association
- 利用优质数据学习p(w|z),对剩余doc上的 p(z|d)只作inference
 - Inference过程是独立的
 - 也可以在一定程度上解决单机内存不足的问题

Thanks

PDF版略作删节,有任何问题请联系:

Weibo: @沈醉2011

Email: rakecas@gmail.com

QQ: 7997868