Exercise 3 Due: 24/12/2020

- 1. Given a graph G = (V, E) with weights $w : E \to \mathbb{R}_+$, define for a spanning tree T the value $\lambda(T) = \max_{e \in T} \{w(e)\}$ (the maximal edge weight in T).
 - (a) Prove that the MST of G has minimal value $\lambda(MST)$ among all spanning trees.
 - (b) Devise a deterministic linear time algorithm for finding a spanning tree T with minimal $\lambda(T)$.
- 2. Show that there exists a linear time deterministic algorithm for MST in planar graphs.
- 3. Given a graph G with n vertices and m edges, show an O(n+m) time algorithm that determines whether G has P_3 as an induced subgraph (recall P_3 is the path on 3 vertices).
- 4. Given a weighted directed graph G=(V,E) with n vertices, and $0<\epsilon<1$, devise a randomized $O(n^{3-\epsilon}\log n)$ time algorithm, that computes a value $\hat{d}(u,v)$ for every $u,v\in V$, so that with high probability: For every pair u,v, if they have a shortest path that contains at least n^{ϵ} edges, then $\hat{d}(u,v)=d(u,v)$.
- 5. **Bonus** (3 points to course grade): Given a graph G = (V, E) with m = |E| edges, show a $O(m^{4/3})$ time algorithm to decide if G contains a C_4 (not necessarily induced).