```
In [26]: M import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge, RidgeCV, Lasso
from sklearn.preprocessing import StandardScaler
```

In [27]: data=pd.read_csv(r"C:\Users\MY HOME\Downloads\Advertising.csv")
 data

Out[27]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

In [28]: ► data.head()

Out[28]:

_		TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1
	1	44.5	39.3	45.1	10.4
	2	17.2	45.9	69.3	12.0
	3	151.5	41.3	58.5	16.5
	4	180.8	10.8	58.4	17.9

Out[29]:

	TV	Radio	Newspaper	Sales
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4


```
    features=data.columns[0:2]

In [32]:
             target=data.columns[-1]
             #x and y values
             x=data[features].values
             v=data[target].values
             x train,x test,y train,y test=train test split(x,y,test size=0.3,random state=17)
             print("The dimension of X train is {}".format(x train.shape))
             print("The dimension of X test is {}".format(x test.shape))
             scaler=StandardScaler()
             X train=scaler.fit transform(x train)
             X test=scaler.fit transform(x test)
             The dimension of X_train is (140, 2)
             The dimension of X test is (60, 2)
In [33]:
          #modeL
             lr=LinearRegression()
             #fit model
             lr.fit(x train,y train)
             #prediction
             actual=y test
             train score lr=lr.score(x train,y train)
             test score lr=lr.score(x test,y test)
             print("Linear Regression Model:")
             print("The train score for lr model is {}".format(train score lr))
             print("The train score for lr model is {}".format(test score lr))
             Linear Regression Model:
             The train score for lr model is 1.0
             The train score for lr model is 1.0
```

```
In [34]: In [34]
```

Ridge Model:

The train score for ridge model is 0.990287139194161 The test score for ridge model is 0.9665155846267538

Lasso Model:

The train score for ls model is 0.0
The test score for ls model is -0.0042092253233847465

```
pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "bar")
In [40]:
   Out[40]: <Axes: >
                0.04
                0.02
                0.00
              -0.02
              -0.04
                                   ≥
```

- 0.9999999343798134
- 0.9891149672489288

```
In [47]: N

#plot size
plt.figure(figsize = (10, 10)) #add plot for ridge regression
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,color='red',label=r'Ridge; $

#add plot for Lasso regression
plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=5,color='blue',label=r'lasso; $\alpha=

#add plot for Linear model
plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label='Linear Regres

#rotate ax
plt.xticks(rotation = 90)
plt.legend()
plt.title("Comparison plot of Ridge, Lasso and Linear regression model")
plt.show()
```

Comparison plot of Ridge, Lasso and Linear regression model

The train score for ridge model is 0.999999999997627
The train score for ridge model is 0.9891531024915332

ELASTICNET

2.026383919311004

Mean squared error on test set 0.036287050935513675