Bayes Classifier and Naïve Bayes

Probabilistic Classification

- Credit scoring:
 - Inputs are income and savings
 - Output is low-risk vs high-risk
- Input: $\mathbf{x} = [x_1, x_2]^T$, Output: $C \in \{0, 1\}$
- Prediction:

choose
$$\begin{cases} C = 1 \text{ if } P(C = 1 \mid x_1, x_2) > 0.5 \\ C = 0 \text{ otherwise} \end{cases}$$

or equivalently

choose
$$\begin{cases} C = 1 \text{ if } P(C = 1 \mid x_1, x_2) > P(C = 0 \mid x_1, x_2) \\ C = 0 \text{ otherwise} \end{cases}$$

A side note: probabilistic inference

H = "Have a headache"F = "Coming down withFlu"

P(H) = 1/10 P(F) = 1/40P(H|F) = 1/2

One day you wake up with a headache. You think: "Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu"

Is this reasoning good?

Probabilistic Inference

H = "Have a headache"F = "Coming down with Flu"

$$P(H) = 1/10$$

 $P(F) = 1/40$
 $P(H|F) = 1/2$

P(F ^ H) =
$$P(F)P(H | F) = \frac{1}{40} * \frac{1}{2} = \frac{1}{80}$$

$$P(F|H) = \frac{P(F^{\wedge}H)}{P(H)} = \frac{1}{8}$$

Bayes classifier

A simple bayes net

Given a set of training examples, to build a Bayes classifier, we need to

- 1. Estimate P(y) from data
- 2. Estimate P(x|y) from data

Given a test data point x, to make prediction

- 1. Apply bayes rule: $P(y | \mathbf{x}) \propto P(y) P(\mathbf{x} | y)$
- 2. Predict $arg max P(y | \mathbf{x})$

Bayes Classifiers in a nutshell

- 1. Estimate $P(x_1, x_2, ..., x_m | y=v_i)$ for each value v_i
- 3. Estimate $P(y=v_i)$ as fraction of records with $y=v_i$.
- 4. For a new prediction:

$$y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(y = v \mid x_1 = u_1 \cdots x_m = u_m)$$

$$= \underset{v}{\operatorname{argmax}} P(x_1 = u_1 \cdots x_m = u_m \mid y = v) P(y = v)$$

Estimating the joint distribution of $x_1, x_2, ... x_m$ given y can be problematic!

Joint Density Estimator Overfits

- Typically we don't have enough data to estimate the joint distribution accurately
- It is common to encounter the following situation:
 - If no training examples have the exact $\mathbf{x} = (u_1, u_2, u_m)$, then $P(x/y=v_i) = 0$ for all values of Y.
- In that case, what can we do?
 - we might as well guess a random y based on the prior, i.e., p(y)

$$P(y \mid \mathbf{x}) = \frac{P(y) p(\mathbf{x} \mid y)}{p(\mathbf{x})}$$

The Naïve Bayes Assumption

 Assume that each attribute is independent of any other attributes given the class label

$$P(x_1 = u_1 \cdots x_m = u_m \mid y = v_i) = P(x_1 = u_1 \mid y = v_i) \cdots P(x_m = u_m \mid y = v_i)$$

Conditional Independence

- $P(x_1|x_2,y) = P(x_1|y)$
 - $-X_1$ is independent of X_2 given y
 - $-x_1$ and x_2 are conditionally independent given y
- If X₁ and X₂ are conditionally independent given y, then we have
 - $-P(X_1,X_2|y) = P(X_1|y) P(X_2|y)$

Naïve Bayes Classifier

- By assuming that each attribute is independent of any other attributes given the class label, we now have a *Naïve* Bayes Classifier
- Instead of learning a joint distribution of all features, we learn p(x_i|y) separately for each feature x_i
- Everything else remains the same

Naïve Bayes Classifier

- Assume you want to predict output y which has n_y values v_1 , v_2 , ... v_{ny} .
- Assume there are m input attributes called $\mathbf{x} = (x_1, x_2, ... x_m)$
- Learn a conditional distribution of $p(\mathbf{x}|y)$ for each possible y value, $y = v_1, v_2, ... v_{ny}$, we do this by:
 - Break training set into n_{γ} subsets called S_1 , S_2 , ... S_{ny} based on the y values, i.e., S_i contains examples in which $y=v_i$
 - For each S_i , learn $p(y=v_i) = |S_i| / |S|$
 - For each S_i , learn the conditional distribution each input features, e.g.:

$$P(x_1 = u_1 \mid y = v_i), \dots, P(x_m = u_m \mid y = v_i)$$

$$y^{\text{predict}} = \operatorname{argmax} P(x_1 = u_1 \mid y = v) \cdots P(x_m = u_m \mid y = v) P(y = v)$$

Example

X_1	X_2	X_3	Υ
1	1	1	0
1	1	0	0
0	0	0	0
0	1	0	1
0	0	1	1
0	1	1	1

Apply Naïve Bayes, and make prediction for (1,0,1)?

- 1. Learn the prior distribution of y. P(y=0)=1/2, P(y=1)=1/2
- 2. Learn the conditional distribution of x_i given y for each possible y values $\mathbf{p}(X_1|y=0)$, $\mathbf{p}(X_1|y=1)$ $\mathbf{p}(X_2|y=0)$, $\mathbf{p}(X_2|y=1)$ $\mathbf{p}(X_3|y=0)$, $\mathbf{p}(X_3|y=1)$

For example, $\mathbf{p}(X_1|y=0)$: $\mathbf{P}(X_1=1|y=0)=2/3$, $\mathbf{P}(X_1=1|y=1)=0$

To predict for (1,0,1):

$$P(y=0|(1,0,1)) = P((1,0,1)|y=0)P(y=0)P((1,0,1))$$

$$P(y=1|(1,0,1)) = P((1,0,1)|y=1)P(y=1)/P((1,0,1))$$

Laplace Smoothing

- With the Naïve Bayes Assumption, we can still end up with zero probabilities
- E.g., if we receive an email that contains a word that has never appeared in the training emails
 - $P(\mathbf{x}|\mathbf{y})$ will be 0 for all y values
 - We can only make prediction based on p(y)
- This is bad because we ignored all the other words in the email because of this single rare word
- Laplace smoothing can help

```
P(X_1=1|y=0)
= (1+ # of examples with y=0, X<sub>1</sub>=1) /(k+ # of examples with y=0)
```

k =the total number of possible values of x

For a binary feature like above, p(x|y) will not be 0

Bayes Classifier is a *Generative Approach*

- Generative approach:
 - Learn p(y), p(\mathbf{x} |y), and then apply bayes rule to compute p(y| \mathbf{x}) for making predictions
 - This is equivalent to assuming that each data point is generated following a *generative process* governed by p(y) and p(X|y)

- Generative approach is just one type of learning approaches used in machine learning
 - Learning a correct generative model is difficult
 - And sometimes unnecessary
- KNN and DT are both what we call discriminative methods
 - They are not concerned about any generative models
 - They only care about finding a good discriminative function
 - For KNN and DT, these functions are deterministic, not probabilistic
- One can also take a probabilistic approach to learning discriminative functions
 - i.e., Learn p(y|X) directly without assuming X is generated based on some particular distribution given y (i.e., p(X|y))
 - Logistic regression is one such approach