$$\frac{\overline{X}}{\overline{Y}} = \frac{ZX_1}{n} = -0.9$$

$$\frac{\overline{X}}{\overline{Y}} = \frac{ZX_1}{n} = 1.4$$

Let,
$$S_{xx} = \angle (x_i - \overline{x})^2 = 160.9$$

 $S_{xx} = \angle (y_i - \overline{y})^2 = 164.4$

=>
$$6x = \sqrt{\frac{5xx}{(n-1)}} = 4.2282$$

=> $6y = \sqrt{\frac{5yy}{(n-1)}} = 4.274$

Let,
$$2x_i = (x_i - \overline{x})/6x$$

 $2y_i = (y_i - \overline{y})/6y$

i	x_i	y_i	z_{xi}	z_{yi}
1	-2	1	-0.260	-0.094
2	-5	-4	-0.970	-1.263
3	-3	1	-0.497	-0.094
4	0	3	0.213	0.374
5	-8	11	-1.679	2.246
6	-2	5	-0.260	0.842
7	1	0	0.449	-0.328
8	5	-1	1.395	-0.562
9	-1	-3	-0.024	-1.029
10	6	1	1.632	-0.094

Standard Form Pata E

Let,
$$Z = 2^{T}2(n-1)^{-1}$$

Since the data is standarized,
 $Z = \begin{bmatrix} 1 & 1 \end{bmatrix}$ where r is
 $\begin{bmatrix} x & 1 \end{bmatrix}$ correlation coeff.

$$=> v = \frac{5xy}{(nn)6x6y} = -0.4083$$

$$\Rightarrow 2 = \begin{bmatrix} 1 & -0.4083 \\ -0.4083 & 1 \end{bmatrix}$$

$$\det(Z - \lambda I) = 0$$

$$\Rightarrow (1 - \lambda)^2 - \kappa^2 = 0$$

$$\Rightarrow \lambda = 1 \pm \kappa$$

$$\Rightarrow \lambda_1 = 1.4083 \Rightarrow \lambda_2 = 0.5917$$

$$(2-\lambda_{1})V_{1} = 0$$

 $= \sum_{-0.4083}^{-0.4083} [V_{1x}] = 0$

$$=> U_1 = 2^{-1/2} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Similarly,
$$42 = 2^{-1/2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

PC1; =
$$u_1 z_1 = 2^{-1/2} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 2_{1x} & z_{1y} \end{bmatrix}$$

= $(z_{1x} - z_{1y}) z^{-1/2}$
 $\frac{1}{1} \frac{PC1_1}{1}$