PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:	1	(11) International Publication Number:	WO 96/19576
C12N 15/52, 1/21, 15/29, C12Q 1/25, C12P 21/00, C12Q 1/68	A1	(43) International Publication Date:	27 June 1996 (27.06.96)

(21) International Application Number:

PCT/EP95/04880

(81) Designated States: AL, AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC,

amendments.

(30) Priority Data:

08/361,611

08/565,655

22 December 1994 (22.12.94)

08/565,655

29 November 1995 (29.11.95)

US

NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, LS,
MW, SD, SZ, UG).

(71) Applicant: CIBA-GEIGY AG [CH/CH]; Klybeckstrasse 141, CH-4002 Basle (CH).

(72) Inventors: POTTER, Sharon, Lee; 3837 Whispering Branch Road, Raleigh, NC 27613 (US). WARD, Eric, Russell; 3003 Montgomery Street, Durham, NC 27705 (US). Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

(54) Title: PLANT ADENYLOSUCCINATE SYNTHETASE AND DNA CODING THEREFOR

(57) Abstract

The present invention provides novel plant DNA sequences coding for native adenylosuccinate synthetase (ADSS). Methods for using the complete or partial ADSS coding sequence as a probe for diagnostic, mapping and other purposes are taught. Generation of transformed host cells capable of expressing ADSS is also taught. Methods of using the transformed host cells are taught, including methods for recombinant production of ADSS enzymes. A method for using the plant ADSS enzyme to screen for inhibitors of ADSS activity is also provided.

BNSDOCID: <WO 9619576A1 I >

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑŤ	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	it	Italy	PL	Poland
BR	Brazil	JР	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		•		

PLANT ADENYLOSUCCINATE SYNTHETASE AND DNA CODING THEREFOR

The invention relates generally to an enzymatic activity involved in adenosine 5'-monophosphate biosynthesis in plants. In particular, the invention relates to the plant enzyme which catalyzes the synthesis of adenylosuccinate and the gene encoding this enzyme. In one aspect, the invention relates to the recombinant production of this enzyme in a heterologous host. In another aspect, the invention is applied to the identification of new herbicides. In yet another aspect, the invention relates to the development of genetic markers in plants.

Adenosine 5'-monophosphate (AMP, also known as adenylic acid) is a precursor of adenosine 5'-triphosphate (ATP), the key energy carrying molecule for all living systems. The first committed enzymatic step in the biosynthesis of AMP is the synthesis of adenylosuccinate from inosine 5'-monophosphate (IMP; inosinic acid) and aspartate. The enzyme which catalyzes this step is known as adenylosuccinate synthetase (IMP:L-aspartate ligase(GDP-forming), EC 6.3.4.4, referred to herein as "ADSS").

In *E. coli*, ADSS is a dimer of identical 48 kD subunits. Its three-dimensional structure has been determined to 2.8 Å resolution (Poland *et al., J. Biol. Chem.* 268:25334-25342 (1993). In mammalian cells, the ADSS enzyme is present as two isoforms. An acidic form, present in non-muscle tissues, is thought to be involved in *de novo* production of AMP. A basic form, present in muscle tissue, thought to act as part of the purine nucelotide cycle, which involves interconversion of IMP and AMP with the net result of deaminating aspartate to fumarate (Lehninger, *Biochemistry*. Worth Publishers, NY (1975), p. 743; Lowenstein, *Int. J. Sports Med.11*: S36-S46 (1990).

Genes encoding the ADSS enzyme have been isolated from a variety of species including *E. coli* (Wolfe and Smith, *J. Biol. Chem. 263:* 19147-19153 (1988)), *D. discoideum* (Weismuller et al., *J. Biol. Chem. 266:* 2480-2485 (1991)), mouse (Guicherit et al., *J. Biol. Chem. 266:* 22582-22587 (1991); Guicherit et al., *J. Biol. Chem. 269:* 4488-4496 (1994), *Bacillus subtilus* (Maentsaelae and Zalkin, *J. Bacteriol. 174:* 1881-1890 (1992), human (Powell et al., *FEBS Lett. 303:* 4-10 (1992), *S. cerevisia* (Genbank accession no. L22185), and *Caenorhabditis elegans* (EST; Genbank accession no. M75738). However, genes encoding the ADSS enzyme have her tofore not been isolated from any plant species.

WO 96/19576 PCT/EP95/04880

- 2 -

Presently, too little is known about the plant ADSS enzyme and its relationship to the ADSS enzymes/genes which have been isolated from other organisms to allow isolation of ADSS encoding genes from any plant species using known approaches.

Methods for isolating genes which are based upon knowledge of the structure of the proteins they encode cannot be applied to plant ADSS genes because too little is presently known about plant ADSS enzymes. Metabolic enzymes such as ADSS are typically very difficult to purify from plants because of their extremely low abundance. In addition, the presence of various phenolic and carbohydrate compounds in plants can interfere with the isolation of pure enzyme with native activity.

In the absence of direct structural information, a number of standard techniques are available for the isolation of proteins and their corresponding genes. Such standard techniques include nucleic acid hybridization and amplification by polymerase chain reaction using oligonucleotide primers corresponding to conserved amino acid sequence motifs. Unfortunately, these techniques would not be expected to be useful for isolation of plant ADSS genes because they rely upon the presence of significant structural similarity (i.e. amino acid and DNA sequence) with known proteins and genes that have the same function. Since there is no significant structural similarity even among the known ADSS genes and proteins from non-plant organisms (see, e.g. Powell et al., FEBS Lett. 303: 4-10 (1992)) it is unlikely that these proteins would share any significant structural similarity with plant ADSS proteins.

Another approach that has been used to isolate biosynthetic genes in other metabolic pathways from higher eukaryotes is the complementation of microbial mutants deficient in the activity of interest. For this approach, a library of cDNAs from the higher eukaryote is cloned in a vector that can direct expression of the cDNA in the microbial host. The vector is then transformed or otherwise introduced into the mutant microbe, and colonies are selected that are phenotypically no longer mutant.

This strategy has worked for isolating genes from higher eukaryotes that are involved in several metabolic pathways, including histidine biosynthesis (e.g. see also International patent application WO 94/26909, incorporated by reference herein in its entirety), lysine biosynthesis (e.g. Frisch et al., Mol. Gen. Genet. 228: 287 (1991)), purine biosynthesis (e.g. Aimi et al., J. Biol. Chem. 265: 9011 (1990)), and tryptophan biosynthesis (e.g. Niyogi et al., Plant Cell 5: 1011 (1993)). This strategy has also been us d to isolate plant gen s including those coding for maiz glutamine synthase (Snustad et al, Genetics 120:1111-1114 (1988)), soybean -pyrroline -5-carboxylate reductase (Delaun y et al., Mol. Genet. 221:299-305 (1990), maize dihydrodipicolinate synthase (Frisch et al., Mol. Gen. Genet. 228:287-293(1991)), rape chloroplast

3-isopropylmalate dehydrogenase (Ellerström et al., Plant Mol. Biol. 18:557-566 (1992); Elledge et al, Proc. Natl. Acad. Sci, USA 88:1731-1735 (1991)), and dihydroorotate dehydrogenase (Minet et al., Plant J. 2:417-422 (1992)).

Microbial mutants thought to be defective in ADSS activity are available (e.g. E. coli purA mutant designated CGCS 5408 and E. coli strains CGCS 4431 and 7039 from E. coli Genetic Stock Center, Yale Univ.; yeast ade12 mutants reported in Dorfman, Genetics 61:377-389 (1969)). However, despite the availability of these mutants, application of the complementation technique to isolate cDNAs encoding ADSS enzymatic activity has proven to be unsuccessful for avian (Powell et al., FEBS Lett. 303: 4-10 (1992)) and B. subtilis ADSS (Maentsaelae and Zalkin, J. Bacteriol. 174: 1881-1890 (1992).

There are several reasons which may explain the failure of this complementation strategy when applied to ADSS, particularly eukaryotic ADSS genes. First, the eukaryotic ADSS cDNA sequence may not be expressed at adequate levels in the mutant microbe, for instance because of codon usage inconsistent with the usage preferences of the microbial host. Second, the primary translation product from the cloned eukaryotic coding sequence may not produce a functional polypeptide, for instance if activity requires a post-translational modification, such as glycosylation, that is not carried out by the microbe. Third, the heterologous protein expressed in E. coli may also be lethal to the cells in which it is expressed, thus rendering its isolation impossible. Fourth, the eukaryotic protein may fail to assume its active conformation in the microbial host, for instance if the protein is normally targeted to a specific organellar membrane system that the microbial host specifically lacks. This last possibility is especially likely for the plant ADSS enzyme, which has been associated in the plant cell with organelles not present in microbial hosts used in the complementation assay (Schubert, Annu. Rev. Plant Physiol.37:539-574 (1986), and presumably reaches that organellar system as a result of a post-translational targeting mechanism involving both an N-terminal transit sequence, and intrinsic properties of the mature polypeptide (see, e.g. Kohorn and Tobin, Plant Cell 1: 159 (1989); Li et al., Plant Cell 3: 709 (1991); Li et al., J. Biol. Chem. 267: 18999 (1992)). Moreover, two other purine biosynthetic genes isolated from plants, 5'-phosphoribosyl-5-aminoimdazole synthetase (Senecoff and Meagher, Plant Physiol. 102:387-399 (1993)) and glycinamide synthetase (Schnorr et al., Plant J. 6:113-121 (1994)) also appear encode proteins that are targ ted to the chloroplast.

It is thus one of the main objectives of the present invention to identify and isolate DNA molecules encoding an adenylosuccinate synthetase (ADSS) enzyme from a plant source. This objective could be reached within the scope of this invention.

Accordingly, the present invention provides an isolated DNA molecule encoding the adenylosuccinate synthetase (ADSS) enzyme from a plant source.

The DNA coding sequences for ADSS enzymes in *Arabidopsis thaliana, Zea mays* and wheat are provided in SEQ ID NOS: 1, 3 and 5, respectively. Using the information provided by the present invention, the DNA coding sequence for the adenylosuccinate synthetase (ADSS) enzyme from any plant source may now be obtained using standard methods.

The present invention thus relates to an isolated DNA molecule encoding a protein from a plant, preferably from a dicotyledonous or a monocotyledounus plant, more preferably from an *Arabidopsis* species, a maize or a wheat plant, having adenylosuccinate synthetase(ADSS) activity.

In particular, the invention relates to the isolated DNA molecule comprising the coding sequences for ADSS enzymes in *Arabidopsis thaliana, Zea mays* and wheat, which enzymes comprise the amino acid sequence set forth in SEQ ID NO: 2, 4 and 6, respectively.

The invention further relates to an expression cassette comprising a promoter operably linked to a DNA molecule encoding a protein from a plant, preferably from a dicotyledonous or a monocotyledounus plant, more preferably from an *Arabidopsis* species or a maize and wheat plant, having adenylosuccinate synthetase(ADSS) activity.

A further object of the invention is a recombinant vector comprising the said expression cassette wherein said vector is capable of being stably transformed into a host cell. Also comprised is the host cell stably transformed with the said vector wherein said host cell is preferably a cell selected from the group consisting of a bacterial cell, a yeast cell, and an insect cell and is further capable of expressing the DNA molecule according to the invention.

The present invention also encompasses the recombinant production of the ADSS enzyme. In particular, the invention relates to a method of producing a protein having adenylosuccinate synthetas (ADSS) activity in a host organism comprising (a) inserting a DNA sequence encoding a protein having adenylosuccinate synthetase(ADSS) activity into an expression cassette designed for the chosen host;

- (b) inserting the resultant molecule, containing the individual elelments linked in proper reading frame, into a vector capable of being transformed into the host cell;
- (c) growing the thus transformed host cell in a suitable culture medium; and
- (d) isolating the protein product either from the transformed cell or the culture medium or both and purifying it.

Also comprised by the invention are methods for using recombinantly produced ADSS. In particular, the present invention provides methods of using purified ADSS to screen for novel herbicides which affect the activity of ADSS.

Preferred is a method for assaying a chemical for the ability to inhibit the activity of an ADSS enzyme from a plant comprising

- (a) combining said ADSS enzyme in a first reaction mixture under conditions in which said ADSS enzyme is capable of catalyzing the synthesis of adenylosuccinate;
- (b) combining said chemical and said ADSS enzyme in a second reaction mixture under the same conditions as in said first reaction mixture; and
- (d) comparing the amount of adenylosuccinate produced in said first and said second reaction mixture;

wherein said chemical is capable of inhibiting the activity of said ADSS enzyme if the amount of adenylosuccinate in said second reaction mixture is significantly less than the amount of adenylosuccinate in said first reaction mixture.

The present invention is further directed to probes capable of specifically hybridizing to a plant adenylosuccinate synthetase gene or mRNA, wherein said probe comprises a contiguous portion of the coding sequence for an adenylosuccinate synthetase enzyme from a plant at least 10 nucleotides in length.

A further embodiment of the invention is a method of producing a DNA molecule comprising a DNA portion encoding a protein having adenylosuccinate synthetase(ADSS) activity comprising

- (a) preparing a nucleotide probe capable of specifically hybridizing to a plant adenylosuccinate synthetase gene or mRNA, wherein said probe comprises a contiguous portion of the coding sequence for an adenylosuccinate synthetase enzyme from a plant at least 10 nucleotides in length;
- (b) probing for other ADSS coding sequences in popluations of cloned genomic DNA fragments or cDNA fragments from a chosen organism using the nucleotide probe prepared according to step (a); and
- (c) isolating a DNA molecule comprising a DNA portion incoding a protein having adenylosuccinate synthetase(ADSS) activity.

The invention further embodies methods for detecting the presence and form of the ADSS gene and quantitating levels of ADSS transcripts in an organism. These methods may be used to diagnose disease conditions which are associated with an altered form of the ADSS enzyme or altered levels of expression of the ADSS enzyme.

In one aspect, the present invention is directed to an isolated DNA molecule which encodes a eukaryotic form of adenylosuccinate synthetase (referred to herein as "ADSS"), the enzyme which catalyzes the synthesis of adenylosuccinate from IMP. The DNA coding sequence and corresponding amino acid sequence for an ADSS enzyme from *Arabidopsis thaliana* is provided as SEQ ID NOS:1 and 2, respectively. The DNA coding sequence and corresponding amino acid sequence for a maize ADSS enzyme is provided as SEQ ID NOS:3 and 4, respectively. The DNA coding sequence and corresponding amino acid sequence for a wheat ADSS enzyme is provided as SEQ ID NOS:5 and 6,

The DNA encoding the ADSS enzyme may be isolated from the genome of any plant species desired according to the invention. One method taught for isolating a plant ADSS coding sequence is represented by Example 1. In this method cDNA clones encoding an ADSS enzyme are identified from a library of cDNA clones derived from the eukaryote of interest based on their ability to supply ADSS enzymatic activity to a mutant host organism deficient in this activity. Suitable host organisms for use in this method are those which can be used to screen cDNA expression libraries and for which mutants deficient in ADSS activity are either available or can be routinely generated. Such host organisms include, but are not limited to, *E. coli* and yeast.

Alternatively, plant ADSS coding sequences may be isolated according to well known techniques based on their sequence homology to the *Arabidopsis thaliana* (SEQ ID NO:1), *Zea mays* (SEQ ID NO:3), or wheat (SEQ ID NO:5) ADSS coding sequences taught by the present invention. In these techniques all or part of the known ADSS coding sequence is used as a probe which selectively hybridizes to other ADSS coding sequences present in population of cloned genomic DNA fragments or cDNA fragments (i.e. genomic or cDNA libraries) from a chosen organism. Such techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, e.g.. Sambrook et al., "Molecular Cloning", eds., Cold Spring Harbor Laboratory Press. (1989)) and amplification by PCR using oligonucleotide primers corresponding to s quence domains cons rved among known ADSS amino acid sequences (see, e.g. Innis et al., "PCR Protocols, a Guide to Methods and Applications", pub. by Academic Press (1990)). This methods are particularly well suited to the isolation of ADSS

coding sequences from organisms closely related to the organism from which the probe sequence is derived. Thus, application of these methods using the *Arabidopsis*, *Zea mays* or wheat coding sequence as a probe would be expected to be particularly well suited for the isolation of ADSS coding sequences from other plant species.

The isolated plant ADSS sequences taught by the present invention may be manipulated according to standard genetic engineering techniques to suit any desired purpose. For example, the entire ADSS sequence or portions thereof may be used as probes capable of specifically hybridizing to ADSS coding sequences and messenger RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique among ADSS coding sequences and are at least 10 nucleotides in length, preferably at least 20 nucleotides in length, and most preferably at least 50 nucleotides in length. Such probes may be used to amplify and/or analyze ADSS coding sequences from a chosen organism via the well known process of polymerase chain reaction (PCR). This technique may be useful to isolate additional ADSS coding sequences from a desired organism or as a diagnostic assay to determine the presence of ADSS coding sequences in an organism. This technique may also be used to detect the presence of altered ADSS coding sequences in a plant associated with a particular condition of interest such as herbicide resistance, AMP deficiency, poor health, etc.

ADSS specific hybridization probes may also be used to map the location of the native ADSS gene(s) in the genome of a chosen plant using standard techniques based on the selective hybridization of the probe to genomic ADSS sequences. These techniques include, but are not limited to, identification of DNA polymorphisms identified or contained within the ADSS probe sequence, and use of such polymorphisms to follow segregation of the ADSS gene relative to other markers of known map position in a mapping population derived from self fertilization of a hybrid of two polymorphic parental lines (see e.g. Helentjaris et al., Plant Mol. Biol. 5: 109 (1985); Sommer et al. Biotechniques 12:82 (1992); D'Ovidio et al., Plant Mol. Biol. 15: 169 (1990)). While any plant ADSS sequence is contemplated to be useful as a probe for mapping ADSS genes, preferred probes are those ADSS sequences from plant species more closely related to the chosen plant species, and most preferred probes are those ADSS sequences from the chosen plant species. Mapping of ADSS genes in this manner is contemplated to be particularly useful for breeding purposes. For instanc, by knowing the ginetic map position of a mutant ADSS gene that confers h rbicide r sistance, flanking DNA markers can be identified from a refer nce genetic map (see, e.g., Helentjaris, Trends Genet. 3: 217 (1987)). During introgression of the

herbicide resistance trait into a new breeding line, these markers can then be used to monitor the extent of ADSS-linked flanking chromosomal DNA still present in the recurrent parent after each round of back-crossing.

ADSS specific hybridization probes may also be used to quantitate levels of ADSS mRNA in a plant using standard techniques such as Northern blot analysis. This technique may be useful as a diagnostic assay to detect altered levels of ADSS expression that may be associated with particular conditions such as deficiencies in adenylosuccinate or AMP levels or enhanced tolerance to herbicides which target ADSS.

For recombinant production of the enzyme in a host organism, the plant ADSS coding sequence may be inserted into an expression cassette designed for the chosen host and introduced into the host where it is recombinantly produced. The choice of specific regulatory sequences such as promoter, signal sequence, 5' and 3' untranslated sequences, and enhancer appropriate for the chosen host is within the level of skill of the routineer in the art. The resultant molecule, containing the individual elements linked in proper reading frame, may be inserted into a vector capable of being transformed into the host cell. Suitable expression vectors and methods for recombinant production of proteins are well known for host organisms such as E. coli (see, e.g. Studier and Moffatt, J. Mol. Biol. 189: 113 (1986); Brosius, DNA 8: 759 (1989)), yeast (see, e.g., Schneider and Guarente, Meth. Enzymol. 194: 373 (1991)) and insect cells (see, e.g., Luckow and Summers, Bio/Technol. 6: 47 (1988)). Specific examples include plasmids such as pBluescript (Stratagene, La Jolla, CA), pFLAG (International Biotechnologies, Inc., New Haven, CT), pTrcHis (Invitrogen, La Jolla, CA), and baculovirus expression vectors, e.g., those derived from the genome of Autographica californica nuclear polyhedrosis virus (AcMNPV). A preferred baculovirus/insect system is pVI11392/Sf21 cells (Invitrogen, La Jolla, CA).

Recombinantly produced plant ADSS enzyme can be isolated and purified using a variety of standard techniques. The actual techniques which may be used will vary depending upon the host organism used, whether the ADSS enzyme is designed for secretion, and other such factors familiar to the skilled artisan (see, e.g. chapter 16 of Ausubel, F. et al., "Current Protocols in Molecular Biology", pub. by John Wiley & Sons, Inc. (1994).

Recombinantly produced plant ADSS enzyme is useful for a vari ty of purposes. For example, it may b used to supply ADSS enzymatic activity *in vitro* to synthesize ad nylosuccinate. *In vitro* synthesis of adenylosuccinate may be accomplished by reacting IMP, GTP, and aspartate in the presence of ADSS enzyme in

an appropriate buffer, containing a divalent cation such as Mg²⁺ (see, e.g. Baugher et al. Biochem. Biophys. Res. Commun. 94:123-129 (1980); Stayton et al. Curr. Top. Cell. Regul. 22:103-141 (1983); Bass et al., Arch. Biochem. Biophys. 256:335-342 (1987)). The adenylosuccinate produced is a useful reagent which may be used as a substitute for purified adenylosuccinic acid previously available commercially from other sources.

Recombinantly produced plant ADSS enzyme may also be used in an *in vitro* assay to screen known herbicidal chemicals whose target has not been identified to determine if they inhibit ADSS. Such an *in vitro* assay may also be used as a more general screen to identify chemicals which inhibit ADSS activity and which are therefore herbicide candidates. Alternatively, recombinantly produced ADSS may be used to elucidate the complex structure of this enzyme. Such information regarding the structure of the ADSS enzyme may be used, for example, in the rational design of new inhibitory herbicides.

Typically, the inhibitory effect on ADSS is determined by a reduction or complete inhibition of adenylosuccinate synthesis in the *in vitro* assay (see, e.g. Baugher et al. Biochem. Biophys. Res. Commun. 94:123-129 (1980); Stayton et al. Curr. Top. Cell. Regul. 22:103-141 (1983); Bass et al., Arch. Biochem. Biophys. 256:335-342 (1987)). Such a determination may be made simply by comparing the amount of adenylosuccinate synthesized in the *in vitro* assay in the presence and absence of the candidate inhibitor.

A chemical is identified as an ADSS inhibitor if the amount of adenylosuccinate synthesized in the presence of the chemical is significantly less than the amount synthesized in its absence. The term 'significantly less' is to be understood to refer to a decrease in the amount of ADSS that is less than the margin of error inherent in the measurement technique.

The invention will be further described by reference to the following detailed examples. These examples are provided for purposes of illustration only, and are not intended to be limiting unless otherwise specified.

WO 96/19576 PCT/EP95/04880

- 10 -

EXAMPLES

Standard recombinant DNA and molecular cloning techniques used here are well known in the art and are described by T. Maniatis, E. F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory manual, Cold Spring Harbor laboratory, Cold Spring Harbor, NY (1982) and by T.J. Silhavy, M.L. Berman, and L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and by Ausubel, F.M. et al., Current Protocols in Molecular Biology, pub. by Greene Publishing Assoc. and Wiley-Interscience (1987).

EXAMPLE 1: Isolation of Arabidopsis cDNAs encoding ADSS genes by functional complementation of an E. coli mutant.

An Arabidopsis thaliana (Landsberg) cDNA library in the plasmid vector pFL61 (Minet et al., Plant J. 2:417-422 (1992)) was obtained and amplified. The E. coli purA mutant PC0543 (CGSC #5408; E. coli Genetics Stock Center, Yale University, New Haven, CT) was obtained and maintained on N agar. The plasmid libraries were transformed into CGSC #5408 by electroporation using the Bio-Rad Gene Pulser and the manufacturer's conditions. The cells were plated on minimal E agar (Vogel and Bonner, J. Biol. Chem. 218:97-106 (1956) containing 100 mg/ml ampicillin and 0.4% casamino acids at a density of approximately 10,000,000 transformants/10 cm plate. Adenine prototrophs were recovered at a frequency of 1/6x10⁷ from the pFL61 library. Plasmid DNA was isolated from the colony for sequence analysis. Purified plasmid DNA was shown to transform CGSC #5408 to purine prototrophy at high frequency. The purified plasmid complemented two additional E. coli purA mutants: ES4 (CGSC #4431; E. coli Genetics Stock Center, Yale University, New Haven, CT) and TX595 (CGSC #7039; E. coli Genetics Stock Center, Yale University, New Haven, CT), further confirming that it encoded a functional ADSS enzyme.

A restriction digest revealed that the cDNA insert was greater than 3 kB; sequence analysis revealed that the cDNA was chimeric, containing at the 3' end 1512 bp preceded by a polyA region. This 1512 bp region encodes an incomplete ADSS containing the mature protein sequence and a partial probable chloroplast transit peptide. A database search with the GAP program (Deveraux et al., Nucleic Acids Res. 12:387-395 (1984) reveals homology with the ADSS from S. cerevisiae. The two proteins are 70% similar, 51% identical with regions of high homology. The protein is 65% similar, 44% identical with E. coli ADSS.

ADSS-1, in the pBluescript SK vector, was deposited September 22, 1994 with the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, U.S.A. as pWDC-6 (NRRL #B-21328).

The complete <u>Arabidopsis</u> cDNA sequence encoding ADSS-1 is set forth in SEQ ID NO:1. With the exception of the first four nucleotides, this sequence is contained in pWDC-6. The ADSS-1 amino acid sequence encoded by this cDNA is set forth in SEQ ID NO: 2.

EXAMPLE 2: Isolation of Maize cDNAs encoding ADSS genes based on sequence homology to Arabidopsis ADSS.

A custom-made Unizap Zea Mays (cv. Blizzard) cDNA library was purchased from Clontech. Approximately 160,000 pfu of the phage library was plated at a density of 8,000 plaques per 10 cm Petri dish, and duplicate filter lifts were made onto nitrocellulose membrane (Scheiller and Scheull) after approximately 7 hours growth at 37°C. The filter lifts were probed with a PCR amplified fragment of the Arabidopsis ADSS cDNA labeled with ³²P-dCTP by the random priming method (Life Technologies, Bethesda, MD). Hybridization and wash conditions were at 50°C as described in Church and Gilbert, 1984 [*Proc. Natl. Acad. Sci. USA 81:* 1991-1995 (1984)].. After purification to single positively hybridizing plaques, plasmids were *in vivo* excised and cDNA inserts sequenced using dideoxy terminators labeled with fluorescent dyes (Applied Biosystems, Inc., Foster City, CA). The sequence thus obtained for the maize ADSS cDNA and the protein it encodes are provided as SEQ ID NOS:3 and 4, respectively. A plasmid containing this maize ADSS cDNA insert was deposited October 24, 1994 as pWDC-9 (NRRL #B-21349).

EXAMPLE 3: Isolation of of Wheat cDNAs encoding ADSS genes based on sequence homology to Maize ADSS

A custom made Unizap Triticum aestivum (cv Kanzler) cDNA library was purchased from Clontech. Approximately 50,000 pfu of the phage library was plated at a density of 5,000 plaques per 10 cm Petri dish, and duplicate filter lifts were made onto nitrocellulose membrane (Scheiller and Scheull) after approximately 7 hours growth at 37° C. The filter lifts were probed with a 1005 base pair EcoRI, Xbal restriction fragment from the 5' nd of th maiz ADSS cDNA labeled with 32P-dCTP

by the random priming method (Life Technologies, Bethesda, MD). Hybridization and wash conditions were at 50°C as described in Church and Gilbert (1984), *supra*. After purification to single positively hybridizing plaques, plasmids were in vivo excised and cDNA inserts sequenced using dideoxy terminators labeled with fluorescent dyes (Applied Biosystems, Inc., Foster City, CA). The sequence thus obtained for the wheat ADSS cDNA and the protein it encodes are provided as SEQ ID NOS: 5 and 6, respectively. This wheat ADSS cDNA is not full-length but it includes the entire coding sequence for the mature ADSS protein which begins at approximately amino acid 35 of SEQ ID NO: 6 based on information obtained by N-terminal sequencing of the mature protein purified from wheat germ. Based on its homology to maize ADSS, the wheat ADSS cDNA lacks coding sequence for nine amino acids of a contemplated chloroplast transit peptide which is not present in the mature protein. A plasmid containing this wheat ADSS cDNA insert was deposited November 3, 1995 as pWDC-10 (NRRL #B-21505).

EXAMPLE 4: Isolation of additional ADSS genes based on sequence homology to known ADSS coding sequences

A phage or plasmid library is plated at a density of approximately 10,000 plaques on a 10 cm Petri dish, and filter lifts of the plaques are made after overnight growth of the plates at 37° C. The plaque lifts are probed with one of the cDNAs set forth in SEQ ID NOS:1, 3, 5, or a portion of such a cDNA exhibiting high sequence conservation among the elucidated plant ADSS sequences. The cDNA probe is labeled with 32P-dCTP by the random priming method by means of a PrimeTime kit (International Biotechnologies, Inc., New Haven, CT). Hybridization conditions are 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO4 pH 7.0, 1 mM EDTA at 50° C. After hybridization overnight, the filters are washed with 2X SSC, 1% SDS. Positively hybridizing plaques are detected by autoradiography. After purification to single plaques, cDNA inserts are isolated, and their sequences determined by the chain termination method using dideoxy terminators labeled with fluorescent dyes (Applied Biosystems, Inc., Foster City, CA).

The standard experimental protocol described above can be used by one of skill in the art to obtain ADSS genes sequentially homologous to the known ADSS coding sequences from any other eukaryote, particularly other higher plant species.

An alignment of the amino acid s qu nces of the *Arabidopsis*, maize and wheat proteins (SEQ ID NOS: 2,4 and 6, respectively) is set forth in Table 1. An alignment of

- 13 -

the nucleotide sequences encoding these proteins (SEQ ID NOS: 1,3 and 5, respectively) is set forth in Table 2. For each alignment the *Arabidopsis* sequence is used as the reference sequence. Gaps inserted into the sequences to obtain optimal alignment are indicated by dashes. Sequences identical to the *Arabidopsis* sequence in the maize and wheat sequences are denoted by a period and nonidentical sequences are shown.

TABLE 1

Comparison of the Arabidopsis (SEQ ID NO:2and

Maize (SEQ ID NO:4), and Wheat (SEQ ID NO:6) S-1 Amino Acid Sequences

Identical residues are denoted by a period. Gaps in the alignment are indicated by a dash.

		10	20	30	40	50	
		*	*	*	*	*	
Arabidopsis	MSLSSLTI	LDSNPRFAVO	GPYHRRYPP:	LHHPRSFVSCS	Sakrpavs	ASLSVAADSAA'	re
Maize	т	H.AA.A	A.SGKSLF.A	GPAAQ.VHFPI	KRL.VPA	S.AT	√H
Wheat	- 1 - 1 - 1	A.A	VAGRG.SFS.	AAPAP.S.RLE	PGRQ.PAAA	SA.A.EP	== week right
	60	70	80	90	100	110	
	*	*	*	*	*	*	
	SLGRIGSI	LSQVSGVLG	O WGDEGKGK	LVDILAQHFD:	[VAROQGGANA	GHTIYNSEGKK	FA
	AED.VS.	.T	S	VPR	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••
	D.VS.		S	VPR	• • • • • • • • • •		••
	120	130	140	150	160	170	
	*	*	*	*	*	*	
	LHLVPSG	LNEDTTCV	[GNGVVVHLP	GLFKEIDGLES	SNGVSCKGRII	VSDRAHLLFDF	HQ
		H.G.LV	JA.I.V.	.F.G	R.G	L	
		H.G.LV	/A.I.V.	.F.GQ		L	
	180	190	200	210	220	230	
	*	*	*	*	*	*	
	EVDGLRES	SELAKSFIG	TKRGIGPAY	SSKVIRNGIR	VGDLRHMDTLE	QKLDLLLSDAA	AR

and the second of the second

- 14 -

A	AEN		TL.	.cF0	DI.FK	.s.
T	AN		TL.	.CFG	DV.FE	• • •
240	250	260	270	280	290	
*	*	*	*	*	*	
FQGFKYTI	PEMLREEVE	AYKRYADRLEE	YITDTVHFII	NDSISQKKKVI	VEGGOATMLD	IDF
Q.SI	KSL.K	RKF	F.AVL	.EKI.	• • • • • • • • • • • • • • • • • • • •	• • •
.ES	KGK	RF.E	F.AVL	.ERI.	• • • • • • • • • •	• • •
300	310	320	330	340	350	
*	*	*	*	*	*	
GTYPFVI	SSSPSAGGI(CTGLGIAPSV	/GDLIGVVKA	YTTRVGSGPFI	TENLGIGGDL	LRL
					LF.EER	
					LEEV	

360	370	380	390	400	410	
*	*	*	*	*	*	
					* ŒIQLGVAYKR	SDG
AGQEFGT	TTGRPRRCG	WLDIVALKFS	QINGFASLN	LTKLDVLSDL		
AGQEFGT	TTGRPRRCG	WLDIVALKFS	QINGFASLN	LTKLDVLSDL	nei <u>o</u> lgvaykr	т
AGQEFGT	TTGRPRRCG	WLDIVALKFS	QINGFASLN	LTKLDVLSDL	NEIQLGVAYKR SKVS.TQ	т
AGQEFGT	TTGRPRRCG	WLDIVALKFS	QINGFASLN	LTKLDVLSDL	NEIQLGVAYKR SKVS.TQ	т
AGQEFGT	TTGRPRRCG	WLDIVALKFS(QINGFASLN S .DS	LTKLDVLSDLY	NEIQLGVAYKR SKVS.TQ PKS.NQ	т
AGQEFGTMM 420	TTGRPRRCG	WLDIVALKFS(H. YC 440	COINGFASIN S .DS 450	LTKLDVLSDL2 G.S G.1 460	NEIQLGVAYKR SKVS.TQ PKS.NQ 470	т м
AGQEFGTMM 420 * TPVKSFP	TTGRPRRCG 430 * GDLRLLEEL	WIDIVALKFSO	CQINGFASINSDS 450 * KSDISSVRNY	LTKLDVLSDL G.S G.I 460 * SDLPKAAQQY	NEIQLGVAYKR SKVS.TQ PKS.NQ 470	T M
AGQEFGTMM 420 * TPVKSFP QKLQ	TTGRPRRCG 430 * GDLRLLEELDTQV	WIDIVALKFSOHYC 440 HVEYEVIPGWI	COINGFASIN S .DS 450 * KSDISSVRNY	LTKLDVLSDL G.S G.I 460 * SDLPKAAQQY DEQRL.	NEIQLGVAYKR SKVS.TQ PKS.NQ 470 * VERIEELVGVP	T M IHY V
AGQEFGTMM 420 * TPVKSFP QKLQ	TTGRPRRCG 430 * GDLRLLEELDTQV	WIDIVALKFSOHYC 440 HVEYEVIPGWI	COINGFASIN S .DS 450 * KSDISSVRNY	LTKLDVLSDL G.S G.I 460 * SDLPKAAQQY DEQRL.	NEIQLGVAYKR SKVS.TQ PKS.NQ 470 * VERIEELVGVP	T M IHY V
AGQEFGTMM 420 * TPVKSFP QKLQ	TTGRPRRCG 430 * GDLRLLEELDTQV	WIDIVALKFSOHYC 440 HVEYEVIPGWI	COINGFASIN S .DS 450 * KSDISSVRNY	LTKLDVLSDL G.S G.I 460 * SDLPKAAQQY DEQRL.	NEIQLGVAYKR SKVS.TQ PKS.NQ 470 * VERIEELVGVP	T M IHY V
AGQEFGTM 420 * TPVKSFP QKLQ EKLQ	430 * * * * * * * * * * * * * * * * * *	WIDIVALKFSOHYC 440 HVEYEVIPGWI	COINGFASIN S .DS 450 * KSDISSVRNY	LTKLDVLSDL G.S G.I 460 * SDLPKAAQQY DEQRL.	NEIQLGVAYKR SKVS.TQ PKS.NQ 470 * VERIEELVGVP	T M IHY V
AGQEFGTM 420 * TPVKSFP QKLQ EKLQ	430 * GDLRLLEELDTQVDTQV	WIDIVALKFSOHYC 440 HVEYEVIPGWI	COINGFASIN S .DS 450 * KSDISSVRNY	LTKLDVLSDL G.S G.I 460 * SDLPKAAQQY DEQRL.	NEIQLGVAYKR SKVS.TQ PKS.NQ 470 * VERIEELVGVP	T M IHY V
AGQEFGTM 420 * TPVKSFP QKLQ EKLQ 480 *	430 * * * * * * * * * * * * * * * * * *	WIDIVALKFSOHYC 440 HVEYEVIPGWI	COINGFASIN S .DS 450 * KSDISSVRNY	LTKLDVLSDL G.S G.I 460 * SDLPKAAQQY DEQRL.	NEIQLGVAYKR SKVS.TQ PKS.NQ 470 * VERIEELVGVP	T M IHY V

- 15 -

TABLE 2

Comparison of the Arabidopsis (SEQ ID NO:1) Maize (SEQ ID NO:3) and Wheat (SEQ ID NO:5) S-1 Nucleic Acid Sequences in the Coding Region

Identical residues are denoted by a period. Gaps in the alignment are indicated by a dash.

				40	50	60	70
80	90						
		*	*	*	*	*	*
Arabidops	is	ATGICTCTCI	CTTCCCTCAC	CTCTCGACTC	CAATCCAAGA	TCGCTGTTGG	TGGACCTTAT
Maize		G	.CA.A	C.A.CCGG.	.GCCG	c.cc	G.GG.A
Wheat	-		GC.G.	.cccc.g.		G.GC.GG	ATC.
		100	110	120	130	140	150
		*	*	*	*	*	*
		CACCGCCGTT	ATCCTCTCT	TCACCACCC	ICGAAGCTIC(STCTCTTGCTC	TGCTAAACGT
		A.T.C	T.T.C.6G.	.GGCGG.G	GCC.	ACAT.C.	CAAGGCG
		.c	GG.(cc.gg.gg	TC.G.G.	CC.	G.GAG.CA.G
		1	.60 1	170	180	190	200
		*** **	artina di Santana	• • ★	*	★ ** ***	*
		CCAGCT	-GICICCGCI	TCACTGAGO	TCGCCG	CTGATTCAGCC	GCC-ACTGAG
		.TCC	c	œ	T	.C.C.A.TG	T-GT.C.C
		cc.gcccc	c.c.g(GCGC.CT.	.CGG.G.AG.	.Gcc.c	GA.G.
		210	220	230	240	250	260
		*	*	*	*	*	*
		TCTCTTGGAC	XGGATTGGAT(CACTGAGTCA	agiatciggi	STACTOGGTTG	CCAATGGGGA
		G.GGAG.ATA	GTCG.	.GC	ccc	GGG.C	GGC
			G.	.GC	GCCC	GG.C	GGC
		270	280	290	300	310	320
		*	*	*	*	*	*
		GATGAAGGTA	AAGGCAAAC	ICGITGACAT	CTTAGCCCAA	CACITIGACAT	CGTTGCTCGT
		CGA.	.GG.	CG.	sc.ccc	.GC	ACG
		CGG.	.GGG.	C G .	GC.CCC	.GC	CG

WO 96/19576 PCT/EP95/04880

- 16 -

330	340	350	360	370	380
*	*	*	*	*	*
TGTCAGGGTG	GAGCTAATGC	TGGACACACT	ATATACAATT	CAGAGGGAAA	AGAAATTTGCA
cg.	GC	TC	cc.	AC	GT
c	A	c	cc.	.TAC	
390	400	410	420	430	440
*	*	*	*	*	*
CTTCACCTTC	TGCCTTCAGG	TATCCTGAAT	GAGGATACTA	CITGIGICAI	PTGGAAACGGA
GT	.TAT	TCC	A.GGAC	TGTG.	Ст
T	.TAT	TCC	A.GAAC	TCTG	c
450	460	470	480	490	500
*	*	*	*	, ★	*
GITGIGGIG	ATTTGCCAGG	TCTCTTCAAA	GAGATTGATO	GTTTGGAGT	CCAATGGTGTC
.CACA.C	G.T	GTTGG.	A	C.T	A
.CGA.C	G.T	GTTGGC	CA	C.TC.A.	.AA
510	520	530	540	550	560
*	*	*	*	*	*
TCCTGTAAA	GAAGGATTT	GGICTCTGAT	CGCGCTCAC	TGTTATTCG	ATTTCCATCAA
CGCGCT	AC	AC	CGAT	CC.GT.	c.gcg
AGTG.T	AAC	G	A.GT	c.cT.	c.gg
	•				
570	580	590	600	610	620
*	*	*	*	*	*
GAGGITGAT	GGGCTCAGGGI	AATCTGAGCT	IGCCAAGICG	ITCATTGGCA	CCACCAAGAGG
.CTG	AT	G.A	AATA	TAG.	AA.
ACTA	AT	G.C	ATC	AA.	.GTA
630	640	650	660	670	680
*	*	*	*	*	*
GGAATTGGT	CCTGCCTACTY	CTAGTAAAGT	GATAAGGAAT	GGTATTAGAG	TAGGTGATCTC
c	TGT	.ccg	A.CTC.A	AC.GC.G.	A.TTT.
cA			c cmc a	CC CC	ע יוציים
	TGTT.	.CCG	C.CIC.A		.11n
	TGTT.	.CCG	C.CIC.A		

S. 100

- 17 -

*	*	*	*	*	÷
AGGCACATG	GATACTTTAC	CTCAAAAGCTT	GACCTITTA	CTATCAGATG	CAGCGGCAAGG
C.A	cTG	3GG.T	A.C	r.caac.	.TTT.GA
• • • • • • • • • • • • • • • • • • • •	CTG	GGG.T	T G	r.CGA	.TTG
750	760	770	780	790	800
*	*	*	*	*	*
TTTCAAGGG	TTCAAGTATA	CTCCTGAAATG	CTTCGGGAA	CAAGTTGAAG	CATACAAGAGA
c	TCC.	GCAAAAGCT	CAA	GGA	3AG
GC		GCAAA.GC	CAA	G, .GA(3GG
810	820	830	840	850	860
*	*	*	*	*	*
TACGCTGAC	AGATTGGAGC	CTACATTACT	GACACTGTC	CATTICATCA	ATGACTCGATT
.TTT	c.c	TG.	TCG	G.GC.A.	ATC
.TTAG	C.T	TG	т	G.GT.G.	ACC
870	880	890	900	910	920
*	*	*	*	*	*
TCGCAGAAG	AAAAAGGTTT	TGGTCGAAGGT	GGTCAAGCT	ACAATGTTGG	ACATTGACTTT
AA	GAA.CC		CCA	TC	.TT
CGA	GAAC	T	GA	TC	.TCT
930	940	950	960	970	980
*	*	*	*	*	*
GGGACTTAT	CCTTTTGTTA	CTTCCTCCAG	CCCTCAGCC	GTGGGATCT	SCACAGGTCTT
c	AG.	TT	тт	ca.	CA
A	AG.	т.т.	TCT	Ат.	TC
990	1000	1010	1020	1030	1040
*	*	*	* .	*	*
GGTATTGCA	CCAAGTGTTG	TTGGTGATCT	AATTGGAGTG	GTAAAAGCAT	ACACTACAAGA
G1	G.CAA	cc	3	cT.	T.TA
GC	TGA	cc	Э т	т.	AG
1050	1060	1070	1080	1090	1100
*	*	*	*	*	*

e roet to

- 18 -

					TTCTTAGGTTA
CT	CT	.ATCR	C.T., AGAG.	AA16	AAG
			_		
1110	1120	1130	1140	1150	1160
*	*	*	*	*	*
GCTGGACAG	CAGTTTGGCAG	CTACAACTGG	CCTCCTCCTC	CGTGTGGCT	GCTTGACATT
AT.	A	.AA	CAA.G.	.TC	• • • • • • • • • • • •
CAT.	A A.	.GTA	CAA.A.	T	
1170	1180	1190	1200	1210	1220
*	*	*		*	*
	Y Y Walehale W W W	ግር የመስከተ መስከተ መስከተ መስከተ መስከተ መስከተ መስከተ መስከተ	TO THE PROPERTY OF THE	PC X CHITTX X PVC	
					ICACTAAGCTT
					.GCAG
A	AC.GC.	.TG.C	GT.C	A	.AAA
1230	1240	1250	1260	1270	1280
*	*	*	*	*	*
GATGTACTT	TCGGATCTGA	ACGAAATCCA	SCIGGGIGIG	CTTACAAGA	GGAGTGACGGC
TG	c.ggtt	CATA.	.GT	гт.ссс	ACTA
TG	C.GGT.AC	CATA.		rTTC	AA.TGTA
1290	1300	1310	1320	1330	1340
*	*	*	*	*	*
» CCCCTICTUT					
					ATGTGGAGTAT
					.GCA.C
GAGAAAC.A	cc	.AG	.GACACCG	GCG.A.	.GCA.C
1350	1360	1370	1380	1390	1400
*	*	*	*	*	*
GAAGTCTTA	CCTGGGTGGA	AGTCTGACAT	ATCCTCGGTC	AGAAACTACT	CTGATCTTCCA
GTC.G	<i>.</i>	.AAG	TTTT	CGAG	AAC
GGC.T	`	.CAG	тт	CGTA	GACC
1410	1420	1430	1440	1450	1460
1410	*	*	*	*	*
AAGGCTGCT	CAGCAATATC	TTGAGAGGAT	TGAAGAACTC	GTGGGTGTGC	CCATTCATTAC

- 19 -

C.AC	GC.TC	.G	A	тт	т	.G.G	с
C.AC	GC.GIC.	.G	AG	cc	T2	AG.C	c
1470	1480	1490	1500				
*	*	*	*				
ATTGGTATT	GGCCCGGTC	GTGATGCCCT	TATATATAA	ATGA			
G	ATCA	.AT	cc	G.A.			
G.C	TGA	.GT	GC	G.A.			

DEPOSITION

Within the scope of this invention depositions were made with the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, U.S.A.

A plasmid containing the *Arabidopsis* ADSS-1 cDNA insert provided as SEQ ID NO:1, was deposited September 22, 1994 as pWDC-6 (NRRL #B-21328).

A plasmid containing the maize ADSS cDNA insert provided as SEQ ID NO:3 was deposited October 24, 1994 as pWDC-9 (NRRL #B-21349).

A plasmid containing the wheat ADSS cDNA insert provided as SEQ ID NO: 6 was deposited November 3, 1995 as pWDC-10 (NRRL #B-21505).

Various modifications of the invention described herein will become apparent to those skilled in the art. Such modifications are intended to fall within the scope of the appended claims.

- 20 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: CIBA-GEIGY AG
 - (B) STREET: Klybeckstr. 141
 - (C) CITY: Basel
 - (E) COUNTRY: Switzerland
 - (F) POSTAL CODE (ZIP): 4002
 - (G) TELEPHONE: +41 61 69 11 11
 - (H) TELEFAX: + 41 61 696 79 76
 - (I) TELEX: 962 991
- (ii) TITLE OF INVENTION: Plant Adenylosuccinate Synthetase and DNA Coding Therefor
- (iii) NUMBER OF SEQUENCES: 6
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30B
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1516 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- 21 -

		(ii)	MOL	ECUL	E TY	PE:	CDNA											
	(iii)	НҮР	OTHE	TICA	L: N	Ю											
		(ix)	FEA	TURE	::													
		,,		A) NA		ΞY:	CDS											
							11	470										
			(E) OI	HER	INFC	RMAT	ION:	/pr	oduc	t= "	Arab	idop	sis				
	Ac	enyl	osuc	cina	ite S	ynth	etas	e"										
		(xi)	SEC	QUENC	Œ DE	SCRI	CPTIC	N: S	EQ I	D N C):1:							
								CTC									48	
		Ser	Leu	Ser		Leu	Thr	Leu	Asp		Asn	Pro	Arg	Phe		Val		
	1				5					10					15			
	CCT	CCA	رحان	ጥልጥ	CAC	ccc	ССТ	TAT	CCT	ررس.	ىلىلمى	CAC	CAC	רכיזוי	CGA	AGC	96	
ot																	e ja en kan ka kan kan kanse	para tapandas p
	0 11	-		20		9		-1-	25					30				
	TTC	GTC	TCT	TGC	TCT	GCT	AAA	CGT	CCA	GCT	GTC	TCC	GCT	TCA	CTG	AGC	144	
	Phe	Val	Ser	Cys	Ser	Ala	Lys	Arg	Pro	Ala	Val	Ser	Ala	Ser	Leu	Ser		
			35					40					45					
	GTC	GCC	GCT	GAT	TCA	GCC	GCC	ACT	GAG	TCT	CTT	GGA	CGG	ATT	GGA	TCA	192	
	Val	Ala	Ala	Asp	Ser	Ala	Ala	Thr	Glu	Ser	Leu	Gly	Arg	Ile	Gly	Ser		
		50					55					60						
								CTC									240	
	Leu	Ser	Gln	Val	Ser	Gly	Val	Leu	Gly	Cys		Trp	Gly	Asp	Glu			
	65					70					75					80		
														>		~~-	200	
	AAA	GGC	AAA	CTC	GTT	GAC	ATC	TTA	GCC	CAA	CAC	TTT	GAC	ATC	GIT	GCT	288	

Lys Gly Lys Leu Val Asp Ile Leu Ala Gln His Phe Asp Ile Val Ala

- 22 -

	85	90	95	
			OT ATA TAC AAT TCA	
Arg Cys Gln Gly		Ala Gly His Th	nr Ile Tyr Asn Ser 110	Glu
GGA AAG AAA TTT	GCA CTT CAC	CTT GIG CCT TO	CA GGT ATC CTG AAT	GAG 384
Gly Lys Lys Phe		Leu Val Pro Se 120	er Gly Ile Leu Asn 125	Glu
			IG GTG CAT TTG CCA	
Asp Thr Thr Cys	135	Asn Gly Val Va	al Val His Leu Pro 140	GIÀ
			AT GGT GTC TCC TGT	
Leu Phe Lys GI	150		sn Gly Val Ser Cys 55	Lys 160
			IG TTA TTC GAT TTC	
Gly Alg Tie De	. 165	170	eu Leu Phe Asp Phe 175	
			TT GCC AAG TCG TTC	
Gin Giu Vai Asj		185	eu Ala Lys Ser Phe 190	He
GGC ACC ACC AA	g agg gga att	GGT CCT GCC T	ac tct agt aaa gtg	ATA 624
Gly Thr Thr Ly	s Arg Gly Ile	Gly Pro Ala T	yr Ser Ser Lys Val 205	Ile
AGG AAT GGT AT	t aga gta ggt	GAT CTC AGG C	AC ATG GAT ACT TTA	CCT 672
Arg Asn Gly Il	e Arg Val Gly 215	Asp Leu Arg H	is Met Asp Thr Leu 220	Pro
CAA AAG CTT GA	C CTT TTA CTA	TCA GAT GCA G	CG GCA AGG TTT CAA	GGG 720
Gln Lys Leu As	p Leu Leu Leu	Ser Asp Ala A	la Ala Arg Phe Gln	Gly
225	230	2	:35	240

TTC	AAG	TAT	ACT	CCT	GAA	ATG	CTT	CGG	GAA	GAA	GTT	GAA	GCA	TAC	AAG		768
Phe	Lys	Tyr	Thr	Pro	Glu	Met	Leu	Arg	Glu	Glu	Val	Glu	Ala	Tyr	Lys		
				245					250					255			
AGA	TAC	GCT	GAC	AGA	TTG	GAG	ccc	TAC	ATT	ACT	GAC	ACT	GTC	CAT	TTC		816
Arg	Tyr	Ala	Asp	Arg	Leu	Glu	Pro	Tyr	Ile	Thr	Asp	Thr	Val	His	Phe		
			260					265					270				
ATC	AAT	GAC	TCG	ATT	TCG	CAG	AAG	AAA	AAG	GTT	TTG	GTC	GAA	GGT	GGT		864
Ile	Asn	Asp	Ser	Ile	Ser	Gln	Lys	Lys	Lys	Val	Leu	Val	Glu	Gly	Gly		
		275					280					285					
CAA	GCT	ACA	ATG	TTG	GAC	ATT	GAC	TTT	GGG	ACT	TAT	CCT	TTT	GTT	ACT		912
Gln	Ala	Thr	Met	Leu	Asp	Ile	Asp	Phe	Gly	Thr	Tyr	Pro	Phe	Val	Thr		
	290					295					300						
TCC	TCC	AGC	CCC	TCA	GCC	GGT	GGG	ATC	TGC	ACA	GGT	CTT	GGT	ATT	GCA	:	960
Ser	Ser	Ser	Pro	Ser	Ala	Gly	Gly	Ile	Cys	Thr	Gly	Leu	Gly	Ile	Ala		
305					310					315					320		
•			. * *.		* *	•••		•	بهوس درا		•		• • •				
CCA	AGT	GTT	GTT	GGT	GAT	CTA	ATT	GGA	GTG	GTA	AAA	GCA	TAC	ACT	ACA	10	800
Pro	Ser	Val	Val	Gly	Asp	Leu	Ile	Gly	Val	Val	Lys	Ala	Tyr	Thr	Thr		
				325					330					335			
AGA	GTT	GGT	TCA	GGT	CCA	TTC	ccc	ACA	GAA	AAT	TTG	GGC	ACA	GGT	GGT	10	056
Arg	Val	Gly	Ser	Gly	Pro	Phe	Pro	Thr	Glu	Asn	Leu	Gly	Thr	Gly	Gly		
			340					345					350				
GAC	CTT	CTT	AG G	TTA	GCT	GGA	CAG	GAG	TTT	GGC	ACT	ACA	ACT	GGT	CGT	. 11	L04
Asp	Leu	Leu	Arg	Leu	Ala	Gly	Gln	Glu	Phe	Gly	Thr	Thr	Thr	Gly	Arg		
		355					360					365					
CCT	CGT	CGG	TGT	GGC	TGG	CTT	GAC	ATT	GTT	GCC	CTG	AAA	TTT	TCT	TGC	11	152
Pro	Arg	Arg	Cys	Gly	Trp	Leu	Asp	Ile	Val	Ala	Leu	Lys	Phe	Ser	Cys		
	370					375					380						

- 24 -

CAA	ATC	AAT	GGA	TTT	GCA	TCA	CTT	AAT	CTC	ACT	AAG	CIT	GAT	GTA	CIT	1200
Gln	Ile	Asn	Gly	Phe	Ala	Ser	Leu	Asn	Leu	Thr	Lys	Leu	Asp	Val	Leu	
385					390					395					400	
TCG	GAT	CTG	AAC	GAA	ATC	CAG	CTG	GGT	GIG	GCT	TAC	AAG	AGG	AGT	GAC	1248
Ser	Asp	Leu	Asn	Glu	Ile	Gln	Leu	Gly	Val	Ala	Tyr	Lys	Arg	Ser	Asp	
				405					410					415		
GGC	ACC	CCT	GTT	AAA	TCA	TTC	CCT	GGT	GAT	CTT	CGT	CIT	CTC	GAA	GAA	1296
Gly	Thr	Pro	Val	Lys	Ser	Phe	Pro	Gly	Asp	Leu	Arg	Leu	Leu	Glu	Glu	
			420					425					430			
															TCC	1344
Leu	His			Tyr	Glu	Val		Pro	Gly	Trp	Lys			Ile	Ser	
		435					440					445				
					mom	C M	~~~	003	220	~~	COM	CAC	~~ n	መእመ	~mm	1392
															GTT	1392
Ser		_	ASD	ıyr	Ser	455		PIO	гу	MIA	460		GIII	TYL	Val	
	450					400	,				400					
CAG	NGC	ייים א	י כאם	CAA	رسار	CTIC:	: (3)	GTG	: 000	חייים	CAT	' ጥልር	: ATT	· GGT	TTA	1440
															, Ile	-
465	_	1110	. 010		470		,			475		-,,-		·	480	
100																
GGG	ccc	GGT	CGI	' GAT	GCC	: CII	TATA	TAT	AAA 1	TGA	TTT	TAG	TGT	ragg(TT	1490
							ı Ile									
- 4				485					490							
TTT	TGG:	TCC	TCC	CAAZ	ACT (CAAA	AT									1516

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 490 amino acids

(B) TYPE: amino acid(D) TOPOLOGY: linear

- 25 -

(ii) MO	LECULE	TYPE:	protein
---------	--------	-------	---------

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: Met Ser Leu Ser Ser Leu Thr Leu Asp Ser Asn Pro Arg Phe Ala Val Gly Gly Pro Tyr His Arg Arg Tyr Pro Pro Leu His His Pro Arg Ser Phe Val Ser Cys Ser Ala Lys Arg Pro Ala Val Ser Ala Ser Leu Ser Val Ala Ala Asp Ser Ala Ala Thr Glu Ser Leu Gly Arg Ile Gly Ser Leu Ser Gln Val Ser Gly Val Leu Gly Cys Gln Trp Gly Asp Glu Gly Lys Gly Lys Leu Val Asp Ile Leu Ala Gln His Phe Asp Ile Val Ala Arg Cys Gln Gly Gly Ala Asn Ala Gly His Thr Ile Tyr Asn Ser Glu Gly Lys Lys Phe Ala Leu His Leu Val Pro Ser Gly Ile Leu Asn Glu Asp Thr Thr Cys Val Ile Gly Asn Gly Val Val Val His Leu Pro Gly Leu Phe Lys Glu Ile Asp Gly Leu Glu Ser Asn Gly Val Ser Cys Lys

Gly Arg Ile Leu Val Ser Asp Arg Ala His Leu Leu Phe Asp Phe His

and the second of the second of the second

Gln	Glu	Val	Asp 180	Gly	Leu	Arg	Glu	Ser 185	Glu	Leu	Ala	Lys	Ser 190	Phe	Ile
Gly	Thr	Thr 195	Lys	Arg	Gly	Ile	Gly 200	Pro	Ala	Tyr	Ser	Ser 205	Lys	Val	Ile
Arg	Asn 210	Gly	Ile	Arg	Val	Gly 215	Asp	Leu	Arg	His	Met 220	Asp	Thr	Leu	Pro
Gln 225	Lys	Leu	Asp	Leu	Leu 230	Leu	Ser	Asp	Ala	Ala 235	Ala	Arg	Phe	Gln	Gly 240
Phe	Lys	Tyr	Thr	Pro 245	Glu	Met	Leu	Arg	Glu 250	Glu	Val	Glu	Ala	Tyr 255	Lys
Arg	Tyr	Ala	Asp 260	Arg	Leu	Glu	Pro	Tyr 265	Ile	Thr	Asp	Thr	Val 270	His	Phe
Ile	Asn	Asp					Lys	Lys	Lys	Val	Leu	Val	Glu	Gly	Gly
·** ` . **		275	. 4	***** ,			280	24 V 4	•			285			. ***
Gln	Ala 290	Thr	Met	Leu	Asp	Ile 295	Asp	Phe	Gly	Thr	Tyr 300	Pro	Phe	Val	Thr
Ser 305	Ser	Ser	Pro	Ser	Ala 310	Gly	Gly	Ile	Cys	Thr 315	Gly	Leu	Gly	Ile	Ala 320
Pro	Ser	Val	Val	Gly 325	Asp	Leu	Ile	Gly	Val 330	Val	Lys	Ala	Tyr	Thr 335	Thr
Arg	Val	Gly	Ser 340	Gly	Pro	Phe	Pro	Thr 345		Asn	Leu	Gly	Thr 350	Gly	Gly
Asp	Leu	Leu 355	Arg	Leu	Ala	Gly	Gln 360		Phe	Gly	Thr	Thr 365	Thr	Gly	Arg

- 27 -

Pro Arg Arg Cys Gly Trp Leu Asp Ile Val Ala Leu Lys Phe Ser Cys 370 380

Gln Ile Asn Gly Phe Ala Ser Leu Asn Leu Thr Lys Leu Asp Val Leu 385 390 395 400

Ser Asp Leu Asn Glu Ile Gln Leu Gly Val Ala Tyr Lys Arg Ser Asp 405 410 415

Gly Thr Pro Val Lys Ser Phe Pro Gly Asp Leu Arg Leu Glu Glu 420 425 430

Leu His Val Glu Tyr Glu Val Leu Pro Gly Trp Lys Ser Asp Ile Ser 435 440 445

Ser Val Arg Asn Tyr Ser Asp Leu Pro Lys Ala Ala Gln Gln Tyr Val 450 455 460

Glu Arg Ile Glu Glu Leu Val Gly Val Pro Ile His Tyr Ile Gly Ile 465 470 475 480

Gly Pro Gly Arg Asp Ala Leu Ile Tyr Lys 485 490

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1835 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

- 28 -

(ix)	FEATURE:	:
------	----------	---

(A) NAME/KEY: CDS

(B) LOCATION: 18..1469

(D) OTHER INFORMATION: /product= "Maize Adenylosuccinate Synthetase"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

(XI) SEQUE	CE DESCRIPTION.			
AAAACCCTCC CACC	ATC ATG TOG CTC	TCC ACA CTC AG	c cac cos soc soc	50
	Met Ser Leu	Ser Thr Leu Se	r His Pro Ala Ala	
		495	500	
ecc ecc ecc egg	G AGC GGA AAA TCC	C CTT TTC CCG G	SCT GGC CCG GCG GCG	98
Ala Ala Ala Gly	y Ser Gly Lys Ser	r Leu Phe Pro A	la Gly Pro Ala Ala	
505	5	510	515	
CAG TCC GTA CAT	TTTC CCC AAG GC	A CGG CTC CCT (enc coc goc goc gic	146
Gln Ser Val His	s Phe Pro Lys Ala	a Arg Leu Pro V	/al Pro Ala Ala Val	
520	52	5	530	
				,
TCC GCC GCT AC	T GCG GCT GTT CA	C GCG GAG GAT 1	AGG GIT TOG TOG CTG	194
Ser Ala Ala Th	r Ala Ala Val Hi	s Ala Glu Asp A	Arg Val Ser Ser Leu	
535	540	!	545	
ACT CAA GTC TO	c GGC GTG CTG GG	G TOG CAG TGG	GGC GAC GAG GGA AAG	242
Thr Gln Val Se	r Gly Val Leu Gl	y Ser Gln Trp	Gly Asp Glu Gly Lys	
550	555	560	565	
GGC AAG CTC GT	C GAC GTG CTC GC	OC CCC CGC TTC	GAC ATA GTC GCG CGT	290
Gly Lys Leu Va	ıl Asp Val Leu Al	la Pro Arg Phe	Asp Ile Val Ala Arg	
	570	575	580	
TGC CAG GGG GG	ga gog aac got go	GA CAT ACC ATC	TAC AAC TCA GAA GGC	338
Cys Gln Gly Gl	ly Ala Asn Ala G	ly His Thr Ile	Tyr Asn Ser Glu Gly	
58	35	590	595	

- 29 -

aag	AAG	TTT	GCT	CTG	CAT	CTT	GTT	CCA	TCT	GGT	ATT	CTC	CAT	GAA	GGG	386
Lys	Lys	Phe	Ala	Leu	His	Leu	Val	Pro	Ser	Gly	Ile	Leu	His	Glu	Gly	
		600					605					610				
ACA	CTG	TGT	GTT	GTT	GGC	AAT	GGA	GCA	GTC	ATC	CAT	GTT	CCA	GGG	TTC	434
Thr	Leu	Cys	Val	Val	Gly	Asn	Gly	Ala	Val	Ile	His	Val	Pro	Gly	Phe	
	615					620					625					
TTT	GGA	GAA	ATT	GAT	GGT	CIT	GAG	TCC	AAT	GGA	GTC	CGC	TGC	GGT	GGA	482
Phe	Gly	Glu	Ile	Asp	Gly	Leu	Glu	Ser	Asn	Gly	Val	Arg	Cys	Gly	Gly	
630					635					640					645	
AGG	ATA	CTG	GTA	TCC	GAC	CGG	GCA	CAT	CTG	CTG	TTT	GAT	CTG	CAC	CAG	530
Arg	Ile	Leu	Val	Ser	Asp	Arg	Ala	His	Leu	Leu	Phe	Asp	Leu	His	Gln	
				650					655					660		
	GTG															578
Ala	Val	Asp		Leu	Arg	Glu	Ala	Glu	Leu	Glu	Asn	Ser	Phe	Ile	Gly	
			665					670					675			
												_				
	ACT															62 6
Thr	Thr		Arg	сту	тте	GTA		Cys	Tyr	Ser	Ser		Val	Thr	Arg	
		680					685					690				
አአጥ	GGA	CTIC	ccc	بلغلت	ינוביאנו	Cam	mm x	CCA	CNC	» mv	CNO	1 CT		~~~	Cam	
	Gly															674
ıωıı	695	Deu	ALG	Val	Cys	700	Leu	ALG	UTS	ræt	705	III	Pne	GTĀ	ASP	
	0,5					,00					705					
AAG	CTT	GAC	ATC	TTA	TTC	AAA	GAC	GCT	GCT	TCG	AGA	لملعك	CAA	GGC	بلململ	722
	Leu															,
710		_F			715	-,, -	<u>-</u> -			720	9	0	02	-	725	
					•											
CAG	TAC	AGC	AAA	AGC	TTG	CTC	AAG	GAA	GAG	GTT	GAG	AGA	TAC	AAG	AAG	770
	Tyr															, . 0
	4 .=			730					735			9	-1-	740	-1-	
TrTrT	GCT	GAT	CGC	TTG	GAG	CCC	שרר	אייים	CCT	САТ	ACC	CIIC	ርልጥ	GTG	СТА	នាន

- 30 -

Phe	Ala	Asp	Arg	Leu	Glu	Pro	Phe	Ile	Ala	Asp	Thr	Val	His	Val	Leu	
			745					750					755			
AAT	GAA	TCT	ATC	AAG	CAG	AAG	AAG	AAA	ATC	CTG	GTC	GAA	GGC	GGC	CAA	866
Asn	Glu	Ser	Ile	Lys	Gln	Lys	Lys	Lys	Ile	Leu	Val	Glu	Gly	Gly	Gln	
		760					765					770				
GCA	ACT	ATG	CTG	GAT	ATT	GAT	TTT	GGC	ACT	TAT	CCA	TTT	GIG	ACT	TCT	914
Ala	Thr	Met	Leu	Asp	Ile	Asp	Phe	Gly	Thr	Tyr	Pro	Phe	Val	Thr	Ser	
	775					780					785					
TCT	AGC	CCT	TCA	GCT	GGC	GGG	ATA	TGC	ACA	GGC	CTA	GGG	ATT	GCT	CCA	962
Ser	Ser	Pro	Ser	Ala	Gly	Gly	Ile	Cys	Thr	Gly	Leu	Gly	Ile	Ala	Pro	
790					79 5					800					805	
AGG	GCA	ATT	GGC	GAC	CTG	ATT	GGA	GTG	GTC	AAA	GCT	TAC	ACA	TCT	AGA	1010
Arg	Ala	Ile	Gly	Asp	Leu	Ile	Gly	Val	Val	Lys	Ala	Tyr	Thr	Ser	Arg	
				810					815					820		
GTC	GGC	TCT	GGC	CCT	TTC	CCA	ACT	GAA	CTA	TTT	GGA	GAG	GAA	GGT	GAT	1058
Val	Gly	Ser		Pro	Phe	Pro	Thr			Phe	Gly	Glu		Gly	Asp	. ,
			825					830					835			
CGC	CIT	AGG	AAA	GCT	GGA	ATG	GAA	TTT	GGC	ACA	ACA	ACA	GGT	CGC	CCA	1106
Arg	Leu	Arg	Lys	Ala	Gly	Met	Glu	Phe	Gly	Thr	Thr	Thr	Gly	Arg	Pro	
		840					845					850				
AGG	CGT	TGC	GGC	TGG	CTT	GAC	ATT	GIT	GCG	CTT	AAG	CAC	AGC	TGC	CAA	1154
Arg	Arg	Cys	Gly	Trp	Leu	Asp	Ile	Val	Ala	Leu	Lys	His	Ser	Cys	Gln	
	855					860					865					
ATC	AAT	GGG	TTC	TCA	TCA	CTT	AAT	CTG	ACC	AAA	CTG	GAT	GIT	CIG	TCC	1202
Ile	Asn	Gly	Phe	Ser	Ser	Leu	Asn	Leu	Thr	Lys	Leu	Asp	Val	Leu	Ser	
870					875					880					885	
GGG	TTG	TCA	GAA	ATT	AA G	GTG	GGT	GII	TCI	TAT	ACC	CAG	ACT	GAT	GGA	1250
Gly	יים	Ser	Glin	Tla	Tare	Val	Glu	Val	Ser	ጥነሥ	The	GIA	ጥ _ኮ ~	Acr	Gly	

- 31 -

				890					895					900		
CAG	aag	CTG	CAA	TCC	TTC	CCT	GGG	GAT	CTT	GAT	ACC	CTT	GAG	CAA	GTA	1298
Gln	Lys	Leu	Gln	Ser	Phe	Pro	Gly	Asp	Leu	Asp	Thr	Leu	Glu	Gln	Val	
			90 5					910					915			
CAG	GTC	AAC	TAT	GAG	GTT	CTG	CCT	GGG	TGG	CAA	AGT	GAC	ATT	TCT	TCT	1346
Gln	Val	Asn	Tyr	Glu	Val	Leu	Pro	Gly	Trp	Gln	Ser	Asp	Ile	Ser	Ser	
		920					925					930				
														GTG		1394
Val	Arg	Arg	Tyr	Asp	Glu	Leu	Pro	Gln	Ala	Ala	Arg	Leu	Tyr	Val	Glu	
	935					940					945					
														GTT		1442
Arg	Ile	Glu	Glu	Leu	Val	Gly	Val	Pro	Val	His	Tyr	Ile	Gly	Val	Gly	
950					955					960					965	
CCT	GGC	AGA	GAT	GCT	CTC	ATA	TAC	AAG	TAAA	AGC	AC 1	TTAT	TTG	T		1489
Pro	Gly	Arg	Asp	Ala	Leu	Ile	Tyr	Lys								
				970												
CCTI	GGT	rgg g	CGG?	AACC	T GO	CCGG	GACI	cec	GAGC	ATT	TGCA	\TTTT	CT 1	rggcg	TGGT	A 1549
GCTT	TIG	ATA C	CCTC	aagi	C AC	TGAC	TCGI	GGA	GTGA	TGT	TGCI	CAAT	'AA 1	CAGA	ACCT.	r 1609
GITC	TAAT	'AC A	ecce	CTGA	G AC	ATCA	GCTA	AGG	CGAA	TAA	GGGA	AGGA	TG A	GTCA	TTTG	C 1669
ACCA	TGTT	TG A	CCAC	CAAT	T GI	TAGG	TGGT	CCA	TATA	TTT	TGTA	CTAA	TT G	TGAG	ACTT	r 1729
GTGC	TATG	GA I	CTCA	ACTG	T AI	ACCT	TGCT	GGI	GCAT	GGC	TTTG	GGII	TA C	ATGG	TTGA	A 1789
AATG	AGAI	TG G	TGTA	CTAA	T TG	TCTA	AAAA	AAA	AAAA	AAA	AAAA	AA				1835

(2) INFORMATION FOR SEQ ID NO:4:

- 32 -

	(i) S	EOUE	NCE	CHAR	ACTE	RIST	ICS:							
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 484 amino acids														
			• •				aci		·						
			• •												
			(D)	TOP	OLC	1: 1	inea.	I							
	(1	.i) M	OLEC	ULE	TYPE	: pr	otei	n							
	(>	ci) S	EQUE	NCE	DESC	RIPI	:NOI	SEC	ID	NO:4	:				
Met	Ser	Leu	Ser	Thr	Leu	Ser	His	Pro	Ala	Ala	Ala	Ala	Ala	Gly	Ser
1				5					10					15	
Glv	Lvs	Ser	Leu	Phe	Pro	Ala	Gly	Pro	Ala	Ala	Gln	Ser	Val	His	Phe
•	•		20				_	25					30		
Pro	Lys	Ala	Arg	Leu	Pro	Val	Pro	Ala	Ala	Val	Ser	Ala	Ala	Thr	Ala
	•	35	_				40					45			
Ala	Val	His	Ala	Glu	Asp	Arg	Val	Ser	Ser	Leu	Thr	Gln	Val	Ser	Gly
	50				•	55					60				•
									• .						
Val	Len	Glv	Ser	Gln	Tro	Glv	Asp	Glu	Glv	Lvs	Glv	Lvs	Leu	Val	Asp
65		0_,			70				,	- <u>,</u> -	_	-3-			80
00															-
Vəl	LOU	λla	Pro	Δm	Phe	Asn	Ile	Val	Ala	Arm	Cvs	Gln	Glv	Glv	Ala
٧٥٠	Deu	nia.	110	85		·wp		V C.	90	_	0,0		CLY	95	
				65					20)	
3	N1-	C1	. Dia	mb	T10	Th r	Asn	80=	C1	C1	Tuo	Teen	Dho	71-	Lou
ASII	ALG	СТУ			116	ıyı	ווכת			GIY	пуз	ту			Deu
			100					105					110		
	_			_	61	- T1 -	•	.	61.	6 3	m ⊱	•	.	**- 3	17-3
HIS	Leu			Ser	GIA	тте	Leu		GIU	. Сту	Thr		_	vai	vai
		115)				120					125			
														_	
Gly		_	Ala	Val	Ile		Val	Pro	Gly	Phe		_	Glu	Ile	Asp
	130	l				135	•				140	١			

Gly Leu Glu Ser Asn Gly Val Arg Cys Gly Gly Arg Ile Leu Val Ser

- 33 -

145					150					155					160
Asp	Arg	Ala	His	Leu 165		Phe	Asp	Leu	His 170		Ala	Val	Asp	Gly 175	
Arg	Glu	Ala	Glu 180	Leu	Glu	Asn	Ser	Phe 185		Gly	Thr	Thr	Lys 190	Arg	Gly
Ile	Gly	Pro 195	Cys	Tyr	Ser	Ser	Lys 200	Val	Thr	Arg	Asn	Gly 205	Leu	Arg	Val
Cys	Asp 210	Leu	Arg	His	Met	Asp 215	Thr	Phe	Gly	Asp	Lys 220	Leu	Asp	Ile	Leu
Phe 225	Lys	Asp	Ala	Ala	Ser 230	Arg	Phe	Gln	Gly	Phe 235	Gln	Tyr	Ser	Lys	Ser 240
Leu	Leu	Lys	Glu	Glu 245	Val	Glu	Arg	Tyr	Lys 250	Lys	Phe	Ala	Asp	Arg 255	Leu
Glu	Pro	Phe	Ile 260	Ala	Asp	Thr	Val	His 265	Val	Leu	Asn	Glu	Ser 270	Ile	Lys
Gln	Lys	Lys 275	Lys	Ile	Leu	Val	Glu 280	Gly	Gly	Gln	Ala	Thr 285	Met	Leu	Asp
Ile	Asp 290	Phe	Gly	Thr	Tyr	Pro 295	Phe	Val	Thr	Ser	Ser 300	Ser	Pro	Ser	Ala
Gly 305	Gly	Ile	Cys	Thr	Gly 310	Leu	Gly	Ile	Ala	Pro 315	Arg	Ala	Ile	Gly	As p 320
Leu	Ile	Gly	Val	Val 325	Lys	Ala	Tyr	Thr	Ser 330	Arg	Val	Gly	Ser	Gly 335	Pro
Phe	Pro	Thr	Glu 340	Leu	Phe	Gly	Glu	Glu 345	Gly	Asp	Arg	Leu	Arg 350	Lys	Ala

WO 96/19576 PCT/EP95/04880

- 34 -

Gly Met Glu Phe Gly Thr Thr Thr Gly Arg Pro Arg Arg Cys Gly Trp 360 365 355 Leu Asp Ile Val Ala Leu Lys His Ser Cys Gln Ile Asn Gly Phe Ser 375 380 370 Ser Leu Asn Leu Thr Lys Leu Asp Val Leu Ser Gly Leu Ser Glu Ile 390 395 385 Lys Val Gly Val Ser Tyr Thr Gln Thr Asp Gly Gln Lys Leu Gln Ser 405 410 415 Phe Pro Gly Asp Leu Asp Thr Leu Glu Gln Val Gln Val Asn Tyr Glu 420 425 430 Val Leu Pro Gly Trp Gln Ser Asp Ile Ser Ser Val Arg Arg Tyr Asp 435 440 445 Glu Leu Pro Gln Ala Ala Arg Leu Tyr Val Glu Arg Ile Glu Glu Leu 450 455 460 Val Gly Val Pro Val His Tyr Ile Gly Val Gly Pro Gly Arg Asp Ala

475

480

Leu Ile Tyr Lys

465

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1741 base pairs

(B) TYPE: nucleic acid

470

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- 35 -

(iii) HYPOTHETICAL: NO

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1428

(D) OTHER INFORMATION: /product= "Wheat Adenylosuccinate Synthetase"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Ala Ala Ala Ala Gly Arg Gly Arg Ser Phe Ser Pro Ala Ala Pro	
1 5 10 15	
GCG CCG TCG TCG GTG CGC CTG CCC GGG AGA CAG GCC CCC GCC CCC GCC	96
Ala Pro Ser Ser Val Arg Leu Pro Gly Arg Gln Ala Pro Ala	•
20 25 30	
GCC GCG TCC GCG CTC GCG GTG GAG GCG GAC CCC GCC GCC GAC AGG GTC	144
Ala Ala Ser Ala Leu Ala Val Glu Ala Asp Pro Ala Ala Asp Arg Val	
35 40 45	
TCG TCG CTG AGC CAG GTC TCC GGC GTG CTC GGG TCG CAG TGG GGC GAC	192
Ser Ser Leu Ser Gln Val Ser Gly Val Leu Gly Ser Gln Trp Gly Asp	
50 55 60	
GAG GGG AAG GTC GTC GAC GTG CTC GCC CGC TTC GAC ATC	240
Glu Gly Lys Gly Lys Leu Val Asp Val Leu Ala Pro Arg Phe Asp Ile	
65 70 75 80	
GTC GCG CGT TGC CAG GGT GGA GCA AAT GCT GGA CAC ACC ATC TAC AAC	288
Val Ala Arg Cys Gln Gly Gly Ala Asn Ala Gly His Thr Ile Tyr Asn	

WO 96/19576 PCT/EP95/04880

- 36 -

85		90	95	
TCT GAA GGC AAG AAA Ser Glu Gly Lys Lys				
100		105	110	
CAT GAA GGA ACA CTC				
His Glu Gly Thr Leu 115	120	GIY ASH GIY AI	125	vai
CCA GGG TTC TTT GGC	GAA ATT GAT	GGT CTT CAA TO	CA AAT GGA GTC	AGT 432
Pro Gly Phe Phe Gly	_	-	_	Ser
130	135	14	iU	
TGT GAT GGA AGA ATA	A CTG GTG TCT	GAC AGG GCT CA	AT TIG CIC TIT	GAT 480
Cys Asp Gly Arg Ile	e Leu Val Ser	Asp Arg Ala Hi	is Leu Leu Phe	Asp
145	150	155		160
CTG CAT CAG ACT GT	A GAT GGA CTT	AGG GAA GCC GA	AG ርግጥ GCA AAጥ	TCC 528
Leu His Gln Thr Val		_		
16:		170	175	
TTC ATA GGA ACG AC				
Phe Ile Gly Thr Th	r Lys Arg Gly	185	ys Tyr Ser Ser 190	Lys
100		103	190	
GTC ACT CGA AAT GG	g ctg cga gti	TGT GAT CTA A	GG CAC ATG GAC	ACT 624
Val Thr Arg Asn Gl	y Leu Arg Val	. Cys Asp Leu A	rg His Met Asp	Thr
195	200)	205	
TTT GGG GAT AAG CT	ייי כאייר דייויים	יייי כא א כאייי כ	ביי כיי כיי אכב	TTT 672
Phe Gly Asp Lys Le				
210	215	_	20	
GAA GGC TTC AAG TA	AC AGC AAA GGO	C ATG CTC AAG G	aa gag git gag	AGG 720
Glu Gly Phe Lys Ty			Glu Glu Val Glu	
225	230	235		240

TA	C AA	G AG	G T	rr (3CA	GAG	GG1	TTC	GA(G CC	CTT	AT.	r GC	r ga	C AC	T GTT	768
																r Val	
					245					250					25		
CA'	r Gr	G TT	G A	AT G	AA	TCC	ATC	CGA	CAG	AAC	AAG	AA.	TTA A	CIO	GT	r gaa	816
																l Glu	
			26						265					270			
GG7	r GG	CA	G GC	A A	CT	ATG	CTG	GAT	ATC	GAT	TTT	GGA	ACT	TAT	· ccz	TTT	864
Gl	/ Gly	/ Gl	n Al	a T	hr	Met	Leu	Asp	Ile	Asp	Phe	Gly	Thr	Tyr	Pro	Phe	
		27.						280					285				
GTG	ACI	TC	r TC	TA	GC	CCT	TCC	GCT	GGT	GGA	ATT	TGC	ACT	GGC	CIT	GGG	912
Val	Thr	Se	r Se	r S	er	Pro	Ser	Ala	Gly	Gly	Ile	Cys	Thr	Gly	Leu	Gly	
	290						295					300					
ATT	GCC	CCI	' AG	G G	ΓT	ATT	GGC	GAC	CTG	ATT	GGA	GTT	GTA	AAA	GCT	TAC	960
Ile	Ala	Pro	Ar	g Va	al	Ile	Gly	Asp	Leu	Ile	Gly	Val	Val	Lys	Ala	Tyr	
30 5						310					315					320	
	-11							*		***	÷				•		
													CTG				1008
Thr	Thr	Arg	Va.	l G1	Ly :	Ser	Gly	Pro	Phe	Pro	Thr	Glu	Leu	Leu	Gly	Glu	
				32	25					330					335		
													GGA				1056
GIU	GLy	Asp			u 2	Arg	Lys	Ala	Gly	Met	Glu	Phe	Gly	Thr	Thr	Thr	
			340)					345					350			
																	•
													GCA				1104
GLY	Arg		Arg	Ar	g (Cys	Gly	Trp	Leu	Asp	Ile	Val	Ala	Leu	Lys	Tyr	
		35 5						360					365				
mc-																	
													ACA				1152
Cys		Asp	Ile	As	n G	Sly 1	Phe :	Ser .	Ser	Leu	Asn .	Leu	Thr	Lys	Leu	Asp	
	370						375					380					

GIT	CTG	TCC	GGG	TTA	CCA	gaa	ATT	AAG	CTG	GGT	GTT	TCT	TAT	AAT	CAA	1200
Val	Leu	Ser	Gly	Leu	Pro	Glu	Ile	Lys	Leu	Gly	Val	Ser	Tyr	Asn	Gln	
385					390					395					400	
ATG	GAT	GGA	GAG	AAA	CTA	CAA	TCC	TTC	CCA	GGG	GAT	CTT	GAC	ACC	CIG	1248
Met	Asp	Gly	Glu	Lys	Leu	Gln	Ser	Phe	Pro	Gly	Asp	Leu	Asp	Thr	Leu	
				405					410					415		
									•				GAC			1296
Glu	Gln	Val		Val	Asn	Tyr	Glu		Leu	Pro	Gly	Trp	Asp	Ser	Asp	
			420					425					430			
ama.	m/m	m/vii	C TTC	~~n	3 ~ TI	ma c	» Cm	C	OTTO	000	~~	~~	~~~	000	000	3344
													GCC Ala			1344
TTE	Ser	435	Val	Arg	Ser	TAT	440	GIU	Den	PIO	GTII	445	WIG	Arg	Aig	
		155					110					333				
TAC	GIG	GAG	AGG	ATA	GAA	GAG	CTC	GCC	GGT	GIT	CCA	GTC	CAC	TAC	ATT	1392
													His			
-	450		•			455			3		460			-1-		
GGT	GTC	GGG	CCT	GGG	AGG	GAT	GCT	CIG	ATA	TAC	AAG	TAA	AGGG	CAA		1438
Gly	Val	Gly	Pro	Gly	Arg	Asp	Ala	Leu	Ile	Tyr	Lys					
465					470					475						
ACT	CGAT	TTG	GTAC	TATT	GT A	TCGG	ACGA	A AT	AATT	CAGT	CIT	AACT	AGG	CCGT	IGIGA	G 1498
																٠
CAT	IGCI	GIG	TCAG	CACA	∝ c	TTGA	TTGO	CAA	TCGT	AGCG	GGT	ATA	CGA	TCGA	CAAGC	r 1558
ACT	GGCG	GGC	GGGG	TGAT	GT A	ATAC	CIGC	A AT	AATG	ATTT	CCG	GGAA	ATG	TCCC	GATAT	A 1618
TCA	CCAT	AAG	GATG	CAGT	GT T	agag	TTTG	G TG	GTAA	CATT	TTG	TCTT	TCG	ACTC	CACCA	A 1678
maa		~=~	~~~	ms				m								
TGG	TTIG	GIG	GIAT	TATC	AC A	ATTC	ACCG	T CA	AAAA	AAAA	. AAA	AAAA	AAA	AAAA	AAAAA	A 1738
AAA																1741
CALACIA CO																1/41

í	2) INFORMATION	FOR	SEO	TD	NO.6.
١	ے,	TIME OF TAXALLEON	FUR	كحر	\mathbf{L}	MO:D:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 476 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Ala Ala Ala Ala Gly Arg Gly Arg Ser Phe Ser Pro Ala Ala Pro

1 5 10 15

Ala Pro Ser Ser Val Arg Leu Pro Gly Arg Gln Ala Pro Ala Pro Ala 20 25 30

Ala Ala Ser Ala Leu Ala Val Glu Ala Asp Pro Ala Ala Asp Arg Val 35 40 45

Ser Ser Leu Ser Gln Val Ser Gly Val Leu Gly Ser Gln Trp Gly Asp
50 55 60

Glu Gly Lys Gly Lys Leu Val Asp Val Leu Ala Pro Arg Phe Asp Ile
65 70 75 80

Val Ala Arg Cys Gln Gly Gly Ala Asn Ala Gly His Thr Ile Tyr Asn 85 90 95

Ser Glu Gly Lys Lys Phe Ala Leu His Leu Val Pro Ser Gly Ile Leu 100 105 110

His Glu Gly Thr Leu Cys Val Val Gly Asn Gly Ala Val Ile His Val 115 120 125

Pro Gly Phe Phe Gly Glu Ile Asp Gly Leu Gln Ser Asn Gly Val Ser 130 135 140 WO 96/19576 PCT/EP95/04880

- 40 -

Cys	Asp	Gly	Arg	Ile	Leu	Val	Ser	Asp	Arg	Ala	His	Leu	Leu	Phe .	Asp
145					150					155					160
Leu	His	Gln	Thr	Val 165	Asp	Gly	Leu	Arg	Glu 170	Ala	Glu	Leu		Asn 175	Ser
Phe	Ile	Gly	Thr 180	Thr	Lys	Arg	Gly	Ile 185	Gly	Pro	Cys	Tyr	Ser 190	Ser	Lys
Val	Thr	Arg 195		Gly	Leu	Arg	Val 200	Cys	Asp	Leu	Arg	His 205	Met	Asp	Thr
Phe	Gly 210	-	Lys	Leu	Asp	Val 215	Leu	Phe	Glu	Asp	Ala 220	Ala	Ala	Arg	Phe
Glu 225	-	Phe	Lys	Tyr	Ser 230	Lys	Gly	Met	Leu	Lys 235	Glu	Glu	Val	Glu	Arg 240
Tyr	Lys	Arg	Phe	Ala 245	Glu	Arg	Leu	Glu	Pro 250	Phe	Ile	Ala	Asp	Thr 255	Val
His	Val	Leu	260		Ser	Ile	Arg	Gln 265		Lys	Lys	Ile	Leu 270	Val	Glu
Gly	, GJ	7 Glr 275		a Thr	: Met	Leu	Asp 280		Asp	Phe	Gly	Thr 285		Pro	Phe
Va]	290		r Sei	c Ser	Pro	Ser 295		Gly	, Gly	, Ile	: Cys 300		Gly	Leu	Gly
11e		a Pro	o Ar	g Val	1 Ile 310		/ Asp	Let	ı Ile	315		. Val	. Lys	: Ala	Tyr 320
Th	r Th	r Ar	g Va	1 G1 ₅		c Gly	y Pro	Phe	9 Pro		c Glu	ı Let	ı Lev	Gly 335	Glu

Glu	Gly	Asp	Val	Leu	Arg	Lys	Ala	Gly	Met	Glu	Phe	Gly	Thr	Thr	Thr
			340					345					350		

- Gly Arg Pro Arg Arg Cys Gly Trp Leu Asp Ile Val Ala Leu Lys Tyr 355 360 365
- Cys Cys Asp Ile Asn Gly Phe Ser Ser Leu Asn Leu Thr Lys Leu Asp 370 375 380
- Val Leu Ser Gly Leu Pro Glu Ile Lys Leu Gly Val Ser Tyr Asn Gln 385 390 395 400
- Met Asp Gly Glu Lys Leu Gln Ser Phe Pro Gly Asp Leu Asp Thr Leu 405 410 415
- Glu Gln Val Gln Val Asn Tyr Glu Val Leu Pro Gly Trp Asp Ser Asp 420 425 430
- Ile Ser Ser Val Arg Ser Tyr Ser Glu Leu Pro Gln Ala Ala Arg Arg
 435
 440
 445
- Tyr Val Glu Arg Ile Glu Glu Leu Ala Gly Val Pro Val His Tyr Ile 450 455 460
- Gly Val Gly Pro Gly Arg Asp Ala Leu Ile Tyr Lys 465 470 475

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

B. IDENTIFICATION OF I	EPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution	Agricultural Resea	rch Service Culture Collection
Address of depositary institution	(including postal code and country)
	1815 North Univers Peoria, IL 61604 USA	dity Street
Date of deposit	· · · · · · · · · · · · · · · · · · ·	Accession Number
22 September 1	994 (22.09.94)	B-21328
C. ADDITIONAL INDICAT	TONS (leave blank if not applicat	ole) This information is continued on an additional sheet
	We request the Exp	pert Solution where available
D. DESIGNATED STATES	·	
	FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated State
E. SEPARATE FURNISHIN	FOR WHICH INDICATION NG OF INDICATIONS (lear	ONS ARE MADE (if the indications are not for all designated State one blank if not applicable)
E. SEPARATE FURNISHIN	FOR WHICH INDICATION NG OF INDICATIONS (learner submitted to the International	ONS ARE MADE (if the indications are not for all designated State
E. SEPARATE FURNISHIN The indications listed below will to the value of Deposit*) For receiving Of	FOR WHICH INDICATION NG OF INDICATIONS (learner submitted to the International	ONS ARE MADE (if the indications are not for all designated State one blank if not applicable) Bureau later (specify the general nature of the indications e.g., "Access

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

-	ferred to in the description 8-17							
B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet								
Agricultural Resea	arch Service Culture Collection							
Address of depositary institution (including postal code and country)								
Peoria, IL 61604	rity Street							
	Accession Number							
(24.10.94)	B-21349							
ONS (leave blank if not applicab	ole) This information is continued on an additional sheet							
	ONS ARE MADE (if the indications are not for all designated States)							
The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit")								
1	For International Bureau use only							
he international applicati n	This sheet was received by the International Bureau on:							
A.J.A. PASCHE	Authorized officer							
	Agricultural Resea (NRRL) ncluding postal code and country 1815 North Universe Peoria, IL 61604 USA (24.10.94) ONS (leave blank if not applicable) We request the Exp. OR WHICH INDICATIONS (leave submitted to the International application in the internationa							

3. 8.

- 44 -

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below r		
on page 19	, line	8-17
B. IDENTIFICATION OF D	DEPOSIT	Further deposits are identified on an additional sheet
Name of depositary institution	Agricultural Reseaution (NRRL)	rch Service Culture Collection
Address of depositary institution	(including postal code and country)	
	1815 North Univers Peoria, IL 61604 USA	ity Street
Date of deposit		Accession Number
03 November 19	95 (03.11.95)	B-21505
C. ADDITIONAL INDICAT	IONS (leave blank if not applicab	le) This information is continued on an additional sheet
D. DESIGNATED STATES	FOR WHICH INDICATION	ONS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHIN	NG OF INDICATIONS (leav	e blank if not applicable)
The indications listed below will length of Deposit')	oe submitted to the International	Bureau later (specify the general nature of the indications e.g., "Accession
For receiving Of	fice use only	For International Bureau use only
This sheet was received wit	h the international applicati n	This sheet was received by the International Bureau on:
Authorized officer	AVA, PASCHE	Authorized officer

We claim:

- 1. An isolated DNA molecule encoding a protein from a plant having adenylosuccinate synthetase(ADSS) activity.
- 2. The isolated DNA molecule of claim 1, wherein said plant is a dicotyledon.
- 3. The isolated DNA molecule of claim 2, wherein said dicotyledon is an *Arabidopsis* species.
- 4. The isolated DNA molecule of claim 3, wherein said protein comprises the amino acid sequence set forth in SEQ ID NO: 2.
- 5. The isolated DNA molecule of claim 4 comprising the sequence set forth in SEQ ID NO: 1.
- 6. The isolated DNA molecule of claim 1, wherein said plant is a monocotyledon.
- 7. The isolated DNA molecule of claim 6, wherein said monocotyledon is selected from the group consisting of maize and wheat.
- 8. The isolated DNA molecule of claim 7, wherein said monocotyledon is maize.
- 9. The isolated DNA molecule of claim 8, wherein said protein comprises the amino acid sequence set forth in SEQ ID NO: 4.
- 10. The isolated DNA molecule of claim 9 comprising the sequence set forth in SEQ ID NO: 3.
- 11. The isolated DNA molecule of claim 7 wherein said monocotyledon is wheat.
- 12. The isolated DNA molecule of claim 11, wherein said protein comprises the amino acid sequence set forth in SEQ ID NO: 6.

- 13. The isolated DNA molecule of claim 12 comprising the sequence set forth in SEQ ID NO: 5.
- 14. An expression cassette comprising a promoter operably linked to the DNA molecule of any one of claims 1 to 13.
- 15. A recombinant vector comprising the expression cassette of claim 14, wherein said vector is capable of being stably transformed into a host cell.
- 16. A host cell stably transformed with the vector of claim 15, wherein said host cell is capable of expressing said DNA molecule.
- 17. A host cell of claim 16 selected from the group consisting of a bacterial cell, a yeast cell, and an insect cell.
- 18. A method for assaying a chemical for the ability to inhibit the activity of an ADSS enzyme from a plant comprising
- (a) combining said ADSS enzyme in a first reaction mixture under conditions in which said ADSS enzyme is capable of catalyzing the synthesis of adenylosuccinate;
- (b) combining said chemical and said ADSS enzyme in a second reaction mixture under the same conditions as in said first reaction mixture; and
- (d) comparing the amount of adenylosuccinate produced in said first and said second reaction mixture;
- wherein said chemical is capable of inhibiting the activity of said ADSS enzyme if the amount of adenylosuccinate in said second reaction mixture is significantly less than the amount of adenylosuccinate in said first reaction mixture.
- 19. A nucleotide probe capable of specifically hybridizing to a plant adenylosuccinate synthetase gene or mRNA, wherein said probe comprises a contiguous portion of the coding sequence for an adenylosuccinate synthetase enzyme from a plant at least 10 nucleotides in length.
- 20. A method of producing a protein having adenylosuccinate synthetase(ADSS) activity in a host organism comprising
- (a) inserting a DNA sequence encoding a protein having adenylosuccinate synthetase(ADSS) activity into an expression cassette designed for the chosen host;

- (b) inserting the resultant molecule, containing the individual elelments linked in proper reading frame, into a vector capable of being transformed into the host cell;
- (c) growing the thus transformed host cell in a suitable culture medium; and
- (d) isolating the protein product either from the transformed cell or the culture medium or both and purifying it.
- 21. A method of producing a DNA molecule comprising a DNA portion encoding a protein having adenylosuccinate synthetase(ADSS) activity comprising
- (a) preparing a nucleotide probe capable of specifically hybridizing to a plant adenylosuccinate synthetase gene or mRNA, wherein said probe comprises a contiguous portion of the coding sequence for an adenylosuccinate synthetase enzyme from a plant at least 10 nucleotides in length;
- (b) probing for other ADSS coding sequences in popluations of cloned genomic DNA fragments or cDNA fragments from a chosen organism using the nucleotide probe prepared according to step (a); and
- (c) isolating a DNA molecule comprising a DNA portion encoding a protein having adenylosuccinate synthetase(ADSS) activity.
- 22. Use of a nucleotide probe according to claim 19 to amplify and/or analyse ADSS coding sequences from a chosen organism via the process of polymerase chain reaction (PCR).
- 23. Use of a nucleotide probe according to claim 19 to map the location of the native ADSS gene(s) in the genome of a chosen plant using standard techniques based on the selective hybridization of the probe to genomic ADSS sequences.

BNSDOCID: <WO 9619576A1 1 >

INTERNATIONAL SEARCH REPORT

International . ication No PCT/EP 95/04880

A. CLASSI IPC 6	C12N15/52 C12N1/68 C12P21/00 C12Q1/68	21 C12N15 C12Q1/25
According to	International Patent Classification (IPC) or to both national cla	ssification and IPC
	SEARCHED	
Minimum de IPC 6	ocumentation searched (classification system followed by classifi C12N C12Q C12P	cation symbols)
Documentat	on searched other than minimum documentation to the extent th	at such documents are included in the fields searched
Electronic d	ata base consulted during the international search (name of data	base and, where practical, search terms used)
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the	e relevant passages Relevant to claim No.
X	PHYTOCHEMISTRY, vol. 6, 1967 pages 115-119, M.D. HATCH; 'Inhibition of pla adenylosuccinate synthetase by and the mode of action of hadac structurally related compounds growth' see the whole document.	hadacidin idin and
		-/
X Furt	her documents are listed in the continuation of box C.	Patent family members are listed in annex.
"A" docum consid "E" earlier filing "L" docum which citatio "O" docum other "P" docum later ti	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but han the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
	actual completion of the international search 3 April 1996	Date of mailing of the international search report 7. 05, 96
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Yeats, S

Form PCT/ISA/218 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International . :cation No PCI/EP 95/04880

	PC1/EP 95/04880
POCUMENTS CONSIDER TO BE RELEVANT	
on of document, with indication, where appropriate, of the relevant passi	ages Relevant to claim No.
DBJ Database entry OSO501A, accession umber D15352, 17 May 1993. ee sequence. PLANT J., ol. 6, 1994 ages 615-624, SASAKI ET AL.; 'Towarscataloguing a ice genes: large-scale sequencing of andomly chosen rice cDNAs from a calluDNA library'	
EBS LETT., ol. 303, 1992 ages 4-10, .M. POWELL ET AL.; 'Cloning and haracterization of the cDNA encoding uman adenylosuccinate synthetase' ited in the application ee Introduction and Experimental secti nd page 9.	ons 20
ENETICS, ol. 120, 1988 ages 1111-1124, .P. SNUSTAD ET AL.; 'Maize glutamine ynthetase cDNAs: isolation by direct enetic selection in Escherichia coli' ited in the application ee abstract, introduction and the firs aragraph of the discussion.	it 1
	·

1

Form PCT/ISA/219 (continuation of second sheet) (July 1992)

.

.

· ·