

Hale School

Mathematics Specialist

Term 3 2018

Test 4 - Integration

SECTION ONE

Name: ANT. I. DIFF

/ 26

Instructions:

- SECTION ONE: Calculators are NOT allowed
- External notes are not allowed
- Duration of SECTION ONE: 25 minutes
- Show your working clearly
- Use the method specified (if any) in the question to show your working (otherwise, no marks awarded)
- This test contributes to 7% of the year (school) mark

Question 1

(8 marks)

Determine the following integrals:

a)
$$\int \sin^3(x)\cos^3(x) dx$$
 (4 marks)

$$= \int \sin x \left(1 - \cos^2 x\right) \cos^3 x dx$$

$$= \int \sin x \left(6 \cos^3 x\right) - \sin x \cos^3 x dx$$

$$= \frac{\cos^4 x}{4} + \frac{\cos^6 x}{6} + c$$

$$\int \left(\frac{1}{2} \sin 2x\right)^3 dx = \frac{1}{8} \int \sin 2x \left(1 - \cos^4 2x\right) dx$$

$$= -\frac{\cos^4 x}{4} + \frac{\cos^5 2x}{6} + c$$

$$\int \cos x \left(\sin^3 x\right) \left(1 - \sin^4 x\right) dx = \frac{\sin^4 x}{48} + \sin^6 x + c$$
b) $\int \frac{\cos \pi x}{2 + \sin(\pi x)} dx$

$$= \int \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin \pi x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin x\right) \int_0^{12} dx$$

$$= \frac{1}{17} \ln \left(2 + \sin x\right) \int_0^{12} dx$$

Using the substitution $u = \tan x$ and the identity $\sec^2 x = 1 + \tan^2 x$ determine the following definite

$$\int_{-\pi/4}^{\pi/3} \tan^2 x + \tan^4 x \ dx$$

dr = sec2 x dr

$$x = \frac{\pi}{4}$$
 $v = 1$

$$=\int_{1}^{\sqrt{3}} \frac{v^2 + v^4}{1 + v^2} dv$$

$$= \int_{1}^{\sqrt{3}} \frac{v^{2}(1+v^{2})}{1+v^{2}} dv$$

$$= (\sqrt{3})^3 - \frac{1}{3}$$

$$= \sqrt{3} - \frac{1}{3}$$

$$\sqrt{\sqrt{3}-\frac{1}{3}}$$

Ouestion 3

(6 marks)

a) Express
$$\frac{2x^2 - 9x + 12}{(x - 2)(x - 3)}$$
 in the form $A + \frac{B}{x - 2} + \frac{C}{x - 3}$

(3 marks)

$$\frac{2n^2-9n+12}{(6n-2)(n-3)} = A + \frac{B}{n-2} + \frac{C}{n-3}$$

$$(n-2)(n-3)$$

$$= 2n^2 - 9n + (2 = A(n-2)(n-3) + B(n-3) + C(n-2)$$

Consider
$$\kappa = 3$$
: $\frac{k=2}{2=-B}$: $\frac{B=-2}{Consider}$
Consider $\kappa = 3$: $3=C$: $C=3$

$$2 = -B$$

$$\int B = -2$$

$$C = 3$$

$$\frac{2x^2-9x+(2)}{(x-2)(x-3)}=2-\frac{2}{x-2}+\frac{3}{x-3}$$

b) Hence determine
$$\int_{4}^{5} \frac{2x^2 - 9x + 12}{(x - 2)(x - 3)} dx$$

$$= \int_{4}^{5} 2 - \frac{2}{x-2} + \frac{3}{x-3} dx$$

$$= \left[2u - 2\ln(u-2) + 3\ln(u-3)\right]_{4}^{5}$$

$$= (10 - 21 - 3 + 31 - 2) - (8 - 21 - 2 + 31 - 1)$$

$$= 2 - 2 \cdot 1 \cdot 3 + 5 \cdot 1 \cdot 1 \cdot 2$$

V idegates

$$\left(=2+\ln\frac{32}{9}\right)$$

(6 marks)

The graphs defined by $(y-2)^2 = 4-x$ and x+y=4 are shown below. Calculate the exact area enclosed between the two curves as shaded in the diagram below.

or
$$\int_{0}^{3} 2+\sqrt{u-u}-(u-v)du$$

 $+\int_{0}^{4} 2+\sqrt{u-u}-(2-\sqrt{u-u})du$
 $=\left[-2u+\frac{u^{2}}{2}\frac{1}{3}(u-u)^{3}i_{3}^{3}\right]^{3}$
 $+\left[-\frac{4}{3}(u-u)^{3}i_{3}^{3}\right]^{4}$
 $=\left(-6+4.5-\frac{1}{3}\right)+\frac{16}{3}$
 $=\left(-6+4.5-\frac{1}{3}\right)+\frac{16}{3}$
 $=\left(-6+4.5-\frac{1}{3}\right)+\frac{16}{3}$
 $=\left(-6+4.5-\frac{1}{3}\right)+\frac{16}{3}$

hea =
$$\int_{1}^{4} x_{1} - x_{2} dy$$

= $\int_{1}^{4} 4 - (y-2)^{2} - (u-y) dy$
= $\int_{1}^{4} y - (y-2)^{2} dy$
= $\left[y \frac{7}{2} - \left(\frac{y-2}{3} \right)^{3} \right]_{1}^{4}$
= $\left(8 - \frac{8}{3} \right) - \left(\frac{1}{2} + \frac{1}{3} \right)$
= $8 - 3 - \frac{1}{2}$
= $4 \frac{1}{2}$ with

The graph above shows the circle $x^2 + y^2 = 25$ and the line 3x + 4y = 25 which is a tangent to the circle, touching at point B. Points A and C are x - intercepts for the circle and the line respectively.

The region bounded by the minor arc AB, line segment BC and the x - axis is rotated 360° about the

Determine the volume of the resulting solid accurate to 0.1 cubic units.

Interests of
$$x^2y^2 = 25$$
 } $x = 3, y = 4$
 $8:(3,4)$

Whene =
$$\int_{-5}^{3} \pi (25 - \kappa^{2}) d\kappa + \int_{3}^{25/3} \pi (\frac{2r - 3\kappa}{4})^{2} d\kappa$$
 | that's
= $\frac{1600\pi}{7}$
= 558.5 miles (1ap)

The diagram opposite shows the graph of the function $y = \sin(\sqrt{x})$.

A is the area of the region between the curve and the x - axis.

a) Write down an integral for the value of A and calculate this value to 5 decimal places. (2 marks)

$$A = \int_{0}^{\pi^{2}} \sin(\sqrt{3}x) dx = 6.28319 (54p)$$
 Vistegral and limits
$$6.28184$$
 V evaluation

b) Estimate the value of A using 6 midpoint rectangles and state the percentage error for this result accurate to 0.1%.

c) Investigate the number of strips required using midpoint rectangles so that the percentage error between the estimated value and the true result is less than 1%. Show evidence for your answer.