Aleksandra Perz Wren Lab Oklahoma Medical Research Foundation

Overview

- MNEMONIC
 - Goals
 - Data acquisition and processing
 - Results and current state
- PubQC
 - Goals
 - Results so far

There is knowledge out there: objectives

Bring in the already available knowledge to interpret a new finding

Make and evaluate statements about global relationships between entities

Find samples that are similar: learn something new about the finding based on the literature

Compare shifts observed between conditions: find samples that exhibit similar changes in taxonomic abundance

Predict characteristics of the finding: confirm the finding

Data

- Batch-download count data from EBI
- Represent counts as a fraction of total count within a sample (compositional data)
- Set low-count observations to zero
- TF-IDF transform counts (term frequency - inverse document frequency)
- Calculate cosine distances

Entities and entity hierarchy:

- Samples
 - Projects
 - Biomes
 - Keywords
 - Contrasts
- Taxa
 - Genera
 - Families
 - •
- Genes
 - Functions

Validation?

Comparison of results for samplesample cosine distance between taxonomic data and functional data Comparison of mean similarity within taxonomic levels against permuted values

Mantel test: 0.28
 Permuted: ~0.00
 (10439 samples)

Where I stand

Metadata browsing

http://10.84.146.16:9000/home

 Sample-sample (also project-project, biome-biome)

http://10.84.146.16:9000/projects/ERP010458 http://10.84.146.16:9000/biomes/Fecal

Taxon-taxon

http://10.84.146.16:9000/taxa/k__Bacteria;%20p__Firmicutes;%20c__Clostridia;%20o__Clostridiales;%20f__Peptostreptococcaceae;%20g_[Clostridium];%20s__difficile

Contrasts (differential abundance)

http://10.84.146.16:9000/contrasts/soil-fecal

 Data management, optimization: getting results for > 300 samples and 3000 taxons is very slow!

Sample, project, biome results

- Precalculated distance matrix for all sample-sample relationships
- Collapsing and averaging for a higher-level entity (e.g. project)

Biomes most similar to Fecal Samples most similar to ERS940246

For agglomerative entities like project,

Biome 2	Metric
Fecal	0.719689
Rectum	0.731858
<u>Human</u>	0.752949
Digestive system	0.766736
<u>Large intestine</u>	0.858444
Soil	0.876893
<u>Aquatic</u>	0.889793
<u>Host-associated</u>	0.905403
Gut	0.917661
Rumen	0.917746

Sample 2	Metric
ERS940246	0.000000
ERS939804	0.261820
ERS939485	0.324476
ERS941546	0.346890
ERS939653	0.348082
ERS920506	0.353270
ERS941537	0.355168
ERS915909	0.356859
ERS915910	0.358304
ERS918534	0.358816
ERS940404	0.360702

TODO:

• Include more metrics (already implemented in taxon comparison)

Taxon results

HOME

HELP

ABOUT

K_BACTERIA; P_FIRMICUTES; C_CLOSTRIDIA; O_CLOSTRIDIALES; F_PEPTOSTREPTOCOCCACEAE; G_[CLOSTRIDIUM]; S_DIFFICILE

DOWNLOAD TABLE

Tf-idf cosine; ascending=True

Taxon 2	Tf-idf cosine	N overlapping	Fisher exact p-value	Correlation	Chisquare kernel
k Bacteria; p Firmicutes; c Clostridia; o Clostridiales; f Peptostreptococcaceae; g [Clostridium]; s difficile	0.000000	2596.0	0.000007	1.000000	1.0
k Bacteria; p Firmicutes; c Clostridia; o Clostridiales; f Peptostreptococcaceae; g ; s	0.283319	2452.0	0.000010	0.642032	0.0
k Bacteria; p Firmicutes; c Clostridia; o Clostridiales; f Clostridiaceae; g Clostridium; s neonatale	0.297549	1176.0	0.000007	0.133426	0.0
k Bacteria; p Firmicutes; c Clostridia; o Clostridiales; f Clostridiaceae; g Clostridium; s perfringens	0.329332	1937.0	0.000009	0.139407	0.0
k Bacteria; p Firmicutes; c Clostridia; o Clostridiales; f Clostridiaceae; g Clostridium; s butyricum	0.387502	1207.0	0.000006	0.086361	0.0
k Bacteria; p Firmicutes; c Clostridia; o Clostridiales; f Eubacteriaceae; g Pseudoramibacter Eubacterium; s	0.439118	619.0	0.000006	0.158153	0.0
k Bacteria; p Firmicutes; c Bacilli; o Lactobacillales; f Carnobacteriaceae; g ; s	0.466686	771.0	0.000007	0.195472	0.0
k Bacteria; p Firmicutes; c Erysipelotrichi; o Erysipelotrichales; f Erysipelotrichaceae; g Coprobacillus; s cateniformis	0.467144	657.0	0.000005	0.121383	0.0
k Bacteria; p Firmicutes; c Bacilli; o Lactobacillales; f Enterococcaceae; g Enterococcus; s	0.475901	2300.0	0.000009	0.031046	0.0
k Bacteria; p Firmicutes; c Bacilli; o Lactobacillales; f Enterococcaceae; g Enterococcus; s casseliflavus	0.484032	1258.0	0.000008	0.112064	0.0
k Bacteria; p Firmicutes; c Erysipelotrichi; o Erysipelotrichales; f Erysipelotrichaceae; g [Eubacterium]; s dolichum	0.494058	1383.0	0.000010	0.141750	0.0
k Bacteria; p Firmicutes; c Bacilli; o Lactobacillales; f ; g ; s	0.497414	1666.0	0.000010	0.032788	0.0
k Bacteria; p Firmicutes; c Bacilli; o Lactobacillales; f Enterococcaceae; g Vagococcus; s	0.500240	1556.0	0.000008	0.030739	0.0
k Bacteria; p Firmicutes; c Bacilli; o Lactobacillales; f Leuconostocaceae; g Weissella; s	0.505225	1012.0	0.000008	0.105376	0.0
k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Clostridiaceae; g_; s_	0.523169	2566.0	0.000007	0.137969	0.0
k Bacteria; p Actinobacteria; c Coriobacteriia; o Coriobacteriales; f Coriobacteriaceae; g Eggerthella; s lenta	0.529286	1162.0	0.000010	0.104832	0.0
k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Leuconostocaceae; g_; s_	0.554177	897.0	0.000008	0.023938	0.0

TODO:

- Add genus, family, ... collapsing
- Draw plots for taxon results similar to sample results

Contrasts

SOIL-FECAL

Comparison of fecal to soil (reference).

Comparison of fecal to soil (reference). Showing 14 out of 282 taxa for which adjusted p-value < 0.01. Standard errors are shown.

TODO:

- Add a possibility to specify arbitrary groups of samples
- Log fold change plots for higher taxonomy levels

One step higher: cluster contrasts

PubQC

Correct errors in scientific publications submitted to journals ("Reviewer n+1" scheme)

Analyze the errors in scientific literature in the wild

PubQC

http://10.84.146.16:9001/home

http://10.84.146.16:2460/notebooks/pubqc_test_results.ipynb

PubQC – IDs (regex)

- 251,868 found
- Belinostat (PXD101) is a novel HDAC inhibitor with IC50 of 27 nM in a cellfree assay, with activity demonstrated in cisplatin-resistant tumors
- **rs12979860** is a SNP near the IL28B gene, encoding interferon-lambda-3 (IFN-lambda-3)
- rs9939609 is a SNP in the fat mass and obesity associated FTO gene, aka the "Fat Gene"
- ATCC 33277 Porphyromonas gingivalis genome - human pathogen
- rs8099917 is related to hepatitis C treatment response
- GSE16011 is a glioma cohort
- (TODO) GSM1 is a protein, GSM06 is a cell line, CRD1 a protein domain, etc.

PubQC – URLs (regex)

- 65,995 found
- www.springer.com/00266 aesthetic plastic surgery (??)
- (TODO) 'http://www' is almost always matched when there's a space after the 'www.'
- (TODO) spaCy results were rubbish why?
- (TODO) programatically get respone from the server

PubQC – terms (simple pattern match)

- 10,932,987 found
- (TODO) ignore case

PubQC – chemicals, genes (spaCy)

• 128,301 found, but...

PubQC – CI, OR, p-value

- Number of values associated with each
 - Statistics: CI
 3
 12043

 4
 545

 2
 12

 5
 5

 6
 4

 Statistics: OR
 1
 6208

 2
 1

 Statistics: p-value
 1
 63403

- (TODO) scientific notation
- (TODO) recalculate statistics

Extracted p-values

13836
11933
8188
3201
1857
1543
184
1
1

PubQC – concentrations, percentages

• (TODO) Get chemicals in the proximity

1:1 2:1 18:2 18:1 16:0	385 178 143 121 106
100mg/kg)	8
50mg/kg)	8
12:0	8
200mg/kg)	7
5mg/kg)	7
19:00	7

95%	10130
50%	3683
10%	2510
20%	2378
100%	2207
5%	2033
30%	1892
90%	1857
80%	1794
40%	1744
25%	1550
60%	1487
70%	1465
1%	1369