Business Case: Aerofit - Descriptive Statistics & Probability

Problem Statement:

Identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to the new customers.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno
sns.set_theme(style="darkgrid")

df = pd.read_csv(r"https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/125/original/aerofit_treadmill.csv?1639992749"

df.head()
```

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	1
0	KP281	18	Male	14	Single	3	4	29562	112	
1	KP281	19	Male	15	Single	2	3	31836	75	
2	KP281	19	Female	14	Partnered	4	3	30699	66	
3	KP281	19	Male	12	Single	3	3	32973	85	
4	KP281	20	Male	13	Partnered	4	2	35247	47	

▼ 1. Analyzing Basic Metrics.

```
print(f"Number of rows: {df.shape[0]}\nNumber of columns: {df.shape[1]}")
     Number of rows: 180
     Number of columns: 9
df.dtypes
     Product
                      object
                       int64
     Age
     Gender
                      object
                       int64
     Education
                      object
     MaritalStatus
                       int64
     Usage
     Fitness
                       int64
     Income
                       int64
     Miles
                       int64
     dtype: object
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 180 entries, 0 to 179
     Data columns (total 9 columns):
                         Non-Null Count Dtype
          Column
                                          object
                         180 non-null
          Product
      1
                         180 non-null
                                          int64
          Age
      2
          Gender
                         180 non-null
                                          object
          Education
                         180 non-null
                                          int64
          MaritalStatus 180 non-null
                                          object
      5
                         180 non-null
                                          int64
          Usage
                         180 non-null
      6
          Fitness
                                          int64
      7
          Income
                         180 non-null
                                          int64
      8
          Miles
                         180 non-null
                                          int64
```

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

df['Product'].value counts()

80

KP281

▼ 2. Non-Graphical Analysis: Value Counts and Unique Attributes.

```
KP481
               60
     KP781
     Name: Product, dtype: int64
There are only Three products in the dataset
df['Age'].value_counts().head(10)
     25
           25
     23
           18
           12
     24
     26
           12
     28
            9
     35
            8
     33
     30
     38
            7
     21
     Name: Age, dtype: int64
Age range is from 7 to 25 year
df['Education'].value_counts()
```

```
85
     16
     14
           55
     18
           23
     15
            5
     13
            5
     12
            3
     21
            3
     20
            1
     Name: Education, dtype: int64
df['MaritalStatus'].value_counts()
     Partnered
                  107
                   73
     Single
     Name: MaritalStatus, dtype: int64
df['Usage'].value_counts()
     3
          69
          52
          33
          17
           7
           2
     Name: Usage, dtype: int64
df['Fitness'].value_counts()
          97
     3
          31
          26
          24
     1
     Name: Fitness, dtype: int64
```

→ 3. Missing Value & Outlier Detection.

Analyzing Missing Data

There are no missing values in the dataset

df.describe()

	Age	Education	Usage	Fitness	Income	Miles	8
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000	
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444	
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605	
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000	
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000	
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000	

df.describe(include='all')

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	7
count	180	180.000000	180	180.000000	180	180.000000	180.000000	180.000000	180.000000	
unique	3	NaN	2	NaN	2	NaN	NaN	NaN	NaN	
top	KP281	NaN	Male	NaN	Partnered	NaN	NaN	NaN	NaN	
freq	80	NaN	104	NaN	107	NaN	NaN	NaN	NaN	
mean	NaN	28.788889	NaN	15.572222	NaN	3.455556	3.311111	53719.577778	103.194444	
std	NaN	6.943498	NaN	1.617055	NaN	1.084797	0.958869	16506.684226	51.863605	
min	NaN	18.000000	NaN	12.000000	NaN	2.000000	1.000000	29562.000000	21.000000	
25%	NaN	24.000000	NaN	14.000000	NaN	3.000000	3.000000	44058.750000	66.000000	
50%	NaN	26.000000	NaN	16.000000	NaN	3.000000	3.000000	50596.500000	94.000000	
75%	NaN	33.000000	NaN	16.000000	NaN	4.000000	4.000000	58668.000000	114.750000	
max	NaN	50.000000	NaN	21.000000	NaN	7.000000	5.000000	104581.000000	360.000000	

▼ Detecting Outlier

```
fig, axis =plt.subplots(nrows=3 ,ncols=2 , figsize =(11,9))
fig.subplots_adjust(top=1)

sns.boxplot(data=df ,x='Age',orient='h',ax=axis[0,0])
sns.boxplot(data=df ,x='Education',orient='h',ax=axis[0,1])
sns.boxplot(data=df ,x='Usage',orient='h',ax=axis[1,0])
sns.boxplot(data=df ,x='Fitness',orient='h',ax=axis[1,1])
sns.boxplot(data=df ,x='Income',orient='h',ax=axis[2,0])
sns.boxplot(data=df ,x='Miles',orient='h',ax=axis[2,1])
plt.show()
```


From the above boxplot we can observe that

1 Age, Education and Usgae are having few outliers

2 Income and Miles are having more outliers

```
fig, axes = plt.subplots(2, 3, sharex=True, figsize=(20,10))
for col, x, y in [['Age', 0, 0], ['Education', 0, 1], ['Usage', 0, 2], ['Fitness', 1, 0], ['Income', 1, 1], ['Miles', 1, 2]]:
    sns.boxplot(data=df, y=col, ax=axes[x, y], x='Product')
plt.show()
```


Observation

1. Product vs Age

> Customers whose age lies between 25-30, are more likely to buy KP781 product

2. Product vs Education

> Customers whose eduation is more then 16 are more likely to go for the top model (KP781)

3. Product vs Fitness

> The more the customer is fit (fitness >= 3), higher the chances of the customer to purchase the KP781 product.

4. Product vs Income

> Higher the Income of the customer (Income >= 60000), higher the chances of the customer to purchase the high end KP78

4

▼ 4. Univariate & Bivariate Analysis

▼ Univariate Analysis

Understanding the distubution of data for the quantitative attribute:

- 1.Age
- 2.Education
- 3.Usage
- 4.Fitness
- 5.Income
- 6.miles

```
fig, axis =plt.subplots(nrows=3 ,ncols=2 , figsize =(11,9))
fig.subplots_adjust(top=1)

sns.histplot(data=df,x='Age',kde=True,ax=axis[0,0])
sns.histplot(data=df,x='Education',kde=True,ax=axis[0,1])
sns.histplot(data=df,x='Usage',kde=True,ax=axis[1,0])
sns.histplot(data=df,x='Fitness',kde=True,ax=axis[1,1])
sns.histplot(data=df,x='Income',kde=True,ax=axis[2,0])
sns.histplot(data=df,x='Miles',kde=True,ax=axis[2,1])
plt.show()
```


Categorical variable Uni-variante Analysis

```
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(12, 5))
sns.countplot(data=df, x='Product', ax=axs[0])
sns.countplot(data=df, x='Gender', ax=axs[1])
```

sns.countplot(data=df, x='MaritalStatus', ax=axs[2])

axs[0].set_title("Product - counts", pad=10, fontsize=14)
axs[1].set_title("Gender - counts", pad=10, fontsize=14)
axs[2].set_title("MaritalStatus - counts", pad=10, fontsize=14)
plt.show()

df1=df[['Product','Gender','MaritalStatus']].melt()
df1.groupby(['variable','value'])[['value']].count()/len(df)

Obervation

Product

44.44% of the customers have purchased KP2821 product.

33.33% of the customers have purchased **KP481** product.

22.22% of the customers have purchased **KP781** product.

Gender

The percentage of male is more the female

Bivariate Analysis

```
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(12, 4))
sns.countplot(data=df, x='Product', hue='Gender', edgecolor="0.15", ax=axs[0])
sns.countplot(data=df, x='Product', hue='MaritalStatus', edgecolor="0.15", palette='Set3', ax=axs[1])
axs[0].set_title("Product vs Gender", pad=10, fontsize=14)
axs[1].set_title("Product vs MaritalStatus", pad=10, fontsize=14)
plt.show()
```


For Product vs Gender

Equal number of product KP281 is purchased by male and female and the ratio is also same for the product KP481

For the product KP781 the ratio of male buyer is more then female

For Product vs MaritalStatus

The partnered is more likely to buy the product

▼ 5. Visual Analysis - Univariate & Bivariate.

```
plt.figure(figsize=(14,7))
df['Product'].value_counts().plot.pie(autopct='%1.1f%%',figsize=(8,8))
plt.title("\nDistribution of Product sales Data.\n", fontsize=40, color="green")
plt.show()
```

Distribution of Product sales Data.

ax = sns.displot(data=df, x='Age', aspect=3, kde=True, binwidth=1/3, palette="Set1")
ax.set(xticks=df['Age'])
plt.title("\nDistribution of Product Sales per Age Group.\n", fontsize=40, color="green")
plt.show()

Distribution of Product Sales per Age Group.


```
fig, axes = plt.subplots(1, 2, figsize=(20,7))
for col, x in [['Gender', 0], ['MaritalStatus', 1]]:
    sns.countplot(data=df, x=col, hue='Product', ax=axes[x])
plt.show()
fig, axes = plt.subplots(1, 2, figsize=(20,7))
for col, x in [['Education', 0], ['Usage', 1]]:
    sns.countplot(data=df, x=col, hue='Product', ax=axes[x])
plt.show()
fig, axes = plt.subplots(1, 1, figsize=(20,7))
sns.countplot(data=df, x='Fitness', hue='Product', ax=axes)
plt.show()
```



```
sns.displot(data=df, x='Miles', aspect=4, hue='Product', palette="Set1")
plt.title("\nDistribution of Product sales per Miles\n", fontsize=40, color="green")
plt.show()
```

Distribution of Product sales per Miles

sns.displot(data=df, x='Income', aspect=4, hue='Product', palette="Set1")
plt.title("\nDistribution of Product sales per Income\n", fontsize=40, color="green")
plt.show()

Distribution of Product sales per Income


```
plt.figure(figsize = (15,8))
sns.set_style("whitegrid")
sns.boxplot(x = 'Gender', y = 'Income', data = df, hue= 'Product')
plt.title("\nBivariate Analysis of Gender and Income per each Product category\n", fontsize=40, color="green")
plt.show()
```

Bivariate Analysis of Gender and Income per each Product category

6. Convert data to Numerical Categories.

```
df['Gender'] = df['Gender'].apply(lambda x: 1 if str(x)=='Male' else 0)
df['MaritalStatus'] = df['MaritalStatus'].apply(lambda x: 1 if str(x)=='Partnered' else 0)
df['AgeCategory'] = df['Age'].apply(lambda x: int((int(x)-18)/4))
df['MilesCategory'] = df['Miles'].apply(lambda x: int(float(x)/50))
df['IncomeCategory'] = df['Income'].apply(lambda x: int((int(x)-30000)/5000))
df.drop(['Age', 'Miles', 'Income'], axis=1, inplace=True)
df.head()
```

Product Gender Education MaritalStatus Usage Fitness AgeCategory MilesCategory IncomeCategory

fig, ax = plt.subplots(figsize=(20,9))
sns.heatmap(df.corr(), linewidths=.5, cmap=sns.cm.rocket_r, annot=True, ax=ax)
plt.title("\nHeatmap of Correlation Between All Columns\n", fontsize=40, color="green")
plt.show()

Heatmap of Correlation Between All Columns

▼ 7. Conditional Probabilities of All Columns per each Product Category.

```
fig, ax = plt.subplots(1, 2, figsize=(20,7))
for i in range(1, len(df.columns)):
    y = (i-1)%2
    sns.heatmap(pd.crosstab(df.Product, df[df.columns[i]], normalize='columns'), linewidths=.5, cmap=sns.cm.rocket_r, annot=True, ax:
    if y == 1:
        plt.show()
        if i < len(df.columns)-1:
            fig, ax = plt.subplots(1, 2, figsize=(20,7))</pre>
```


▼ 8. Business Insights & Recommendations.

Business Insights

- A. People with higher income prefer to buy KP781 over the other products.
- **B.** People with lower and middle income prefer to buy KP281 and KP481 over the other products.
- C. People with higher fitness levels prefer to buy KP781 over the other products.
- **D.** People with lower and middle fitness levels prefer to buy KP281 and KP481 over the other products.
- **E.** People who expect extensive use of the product prefer to buy KP781 over the other products.
- **F.** People who expect less extensive use of the product prefer to buy KP281 and KP481 over the other products.
- **G.** Marital Status seems to have no apparent effect over individual preferences to buy different products.
- **H.** Males prefer to buy KP781 significantly more than Women.
- I. Female prefer to buy KP281 and KP481 significantly more than Men.
- **J.** People with higher education prefer to buy KP781 over the other products.
- **K.** People with lower and middle education prefer to buy KP281 and KP481 over the other products.
- **L.** Individuals with Age between 20-30 are more likely to buy any of the products than other Age groups.

Recommendations

- **A.** Aerofit should target selling KP781 product to the men with higher fitness levels, higher income and higher education.
- **B.** Aerofit should target selling KP281 and KP481 products to the individuals with average or below average fitness levels, income and education.
- C. Aerofit should target selling KP781 product to the people who are expecting more extensive usage of the product.
- **D.** Aerofit should target selling KP281, KP481 products to the people who are expecting less extensive usage of the product.
- **E.** Aerofit should target selling products to the people who are aged between 20-30 years, more than other age groups. Targeted advertisements should be used for the same.

Double-click (or enter) to edit