Devoir surveillé n°14

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

A Préliminaires

1 1.a Soit (z_k) une suite p-périodique. Alors (z_k) est à valeurs dans l'ensemble fini $\{z_0, \dots, z_{p-1}\}$: elle est donc bornée.

1.b Une suite 1-périodique est constante (et inversement).

1.c Récurrence triviale.

1.d Soit (z_k) une suite p-périodique convergeant vers $\ell \in \mathbb{C}$. Fixons $n \in \mathbb{N}$. Alors, pour tout $k \in \mathbb{N}$, $z_{n+kp} = z_n$. Mais $\lim_{n \to +\infty} z_{n+kp} = \ell$ donc $z_n = \ell$. La suite z est donc constante.

2 2.a Soit (A, B) $\in \mathcal{M}_n(\mathbb{C})^2$. Soit $(i, j) \in [1, n]^2$. Alors

$$\begin{split} |(\mathbf{AB})_{i,j}| &= \left|\sum_{k=1}^n \mathbf{A}_{i,k} \mathbf{B}_{k,j}\right| \\ &\leq \sum_{k=1}^n |\mathbf{A}_{i,k}| |\mathbf{B}_{k,j}| \quad \text{par inégalité triangulaire} \\ &\leq \sum_{k=1}^n \|\mathbf{A}\|_0 \|\mathbf{B}\|_0 = n \|\mathbf{A}\|_0 \|\mathbf{B}\|_0 \end{split}$$

Cette inégalité étant vraie pour tout $(i, j) \in [1, n]^2$, $\|AB\|_0 \le n\|A\|_0\|B\|_0$.

2.b Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $Y \in \mathcal{M}_{n,1}(\mathbb{C})$. Pour tout $i \in [[1, n]]$

$$|(AY)_i| = \left|\sum_{j=1}^n A_{i,j}Y_j\right| \le \sum_{j=1}^n ||A_{i,j}||Y_j| \le \sum_{j=1}^n ||A||_0 ||Y||_\infty = n||A||_0 ||Y||_\infty$$

Ceci étant vrai pour tout $i \in [1, n]$, $||AY||_{\infty} \le n||A||_0||Y||_{\infty}$.

B Exemples de suite récurrente linéaire d'ordre 2 à coefficients périodiques

$$\forall k \in \mathbb{N}^*, \ z_{k+1} + az_k + z_{k-1} = 0 \tag{B.1}$$

3.a Si
$$r_1 \neq r_2$$
,
Sol(B.1) = vect($(r_1^k)_{k \in \mathbb{N}}, (r_2^k)_{k \in \mathbb{N}}$)

Si
$$r_1 = r_2 = r$$
,
Sol(B.1) = vect($(r^k)_{k \in \mathbb{N}}$, $(kr^k)_{k \in \mathbb{N}}$)

On sait que $r_1 + r_2 = -a$ et $r_1 r_2 = 1$.

3.b Supposons |a| > 2. Alors $|r_1| + |r_2| \ge |r_1 + r_2| = |a| > 2$. On a donc $|r_1| > 1$ ou $|r_2| > 1$. Supposons sans perte de généralité que $|r_1| > 1$. Comme $r_1r_2 = 1$, on a alors $|r_2| < 1$ (notamment $r_1 \ne r_2$). Soit alors $z \in Sol(B.1)$ périodique. Il existe donc $(\lambda, \mu) \in \mathbb{C}^2$ tel que

$$\forall k \in \mathbb{N}, \ z_k = \lambda r_1^n + \mu r_2^n$$

Puisque $|r_1| > 1$ et $|r_2| > 1$, (r_1^k) n'est pas bornée et (r_2^k) est bornée (elle converge vers 0). Comme (z_k) est périodique, elle est bornée : ceci impose $\lambda = 0$. Mais alors (z_k) converge vers 0. Comme (z_k) est périodique : elle est constamment nulle.

3.c Si a = -2, alors $r_1 = r_2 = 1$. On sait alors que

$$Sol(B.1) = vect((1)_{k \in \mathbb{N}}, (k)_{k \in \mathbb{N}})$$

Notamment, $\text{vect}((1)_{k \in \mathbb{N}})$ est un ensemble infini de solutions bornées de (B.1) tandis que $\text{vect}((k)_{k \in \mathbb{N}}) \setminus \{(0)_{k \in \mathbb{N}}\}$ est un ensemble inifini de solutions non bornées de (B.1).

3.d Si a = -2, alors $r_1 = r_2 = -1$. On sait alors que

$$Sol(B.1) = vect(((-1)^k)_{k \in \mathbb{N}}, ((-1)^k k)_{k \in \mathbb{N}})$$

Notamment, $\operatorname{vect}(((-1)^k)_{k\in\mathbb{N}})$ est un ensemble infini de solutions 2-périodiques de (B.1) tandis que $\operatorname{vect}(((-1)^k k)_{k\in\mathbb{N}}) \setminus \{(0)_{k\in\mathbb{N}}\}$ est un ensemble inifini de solutions non bornées de (B.1).

3.e On souhaite par exemple que r_1 et r_2 soient toutes les deux des racines p-ièmes de l'unité. Comme il faut que $r_1r_2=1$, on peut par exemple prendre $r_1=e^{\frac{2i\pi}{p}}$ et $r_2=e^{-\frac{2i\pi}{p}}$, ce qui donne $a=r_1+r_2=2\cos\frac{2\pi}{p}$. On a alors bien $a\in]-2,2[$ puisque $0<\frac{2\pi}{p}\leq\frac{2\pi}{3}<\pi$.

$$\forall k \in \mathbb{N}^*, \ b_k z_{k+1} + a_k z_k + b_{k-1} z_{k-1} = 0$$
(B.2)

4.a L'application Ψ est clairement linéaire.

Soit $z \in \text{Ker }\Psi$. Alors $z_0 = z_1 = 0$. Supposons qu'il existe $k \in \mathbb{N}^*$ tel que $z_k = z_{k-1} = 0$. Alors $b_k z_{k+1} = 0$ puis $z_{k+1} = 0$ car $b_k \neq 0$. Par récurrence, z est la suite nulle. L'application ψ est injective. Soit $(a,b) \in \mathbb{C}^2$. On définit alors une suite par récurrence en posant $z_0 = a$, $z_1 = b$ et

$$\forall k \in \mathbb{N}^*, \ z_{k+1} = -\frac{a_k}{b_k} z_k - \frac{b_{k-1}}{b_k} z_{k-1}$$

Par construction, $z \in Sol(B.2)$ et $\Psi(z) = (a, b) : \Psi$ est surjective.

L'application Ψ est donc bien un isomorphisme de \mathbb{C} -espaces vectoriels.

4.b Un calcul évident montre que $W_{k+1} = W_k$ pour tout $k \in \mathbb{N}$.

Remarque. On remarquera l'analogie avec le wronskien de deux solutions d'une équation différentielle linéaire scalaire homogène d'ordre 2.

4.c On sait que les isomorphismes conservent les bases. Ainsi

$$(y, z)$$
 est une base de Sol(B.2)
 $\iff (\Psi(y), \Psi(z))$ est une base de \mathbb{C}^2
 $\iff \begin{vmatrix} y_0 & z_0 \\ y_1 & z_1 \end{vmatrix} \neq 0$
 $\iff W_0 \neq 0 \text{ (car } b_0 \neq 0)$

$$\boxed{\mathbf{5}} \text{ Il suffit de prendre } \mathbf{A}_k = \frac{1}{b_{k+1}} \begin{pmatrix} 0 & b_{k+1} \\ -b_k & -a_{k+1} \end{pmatrix}.$$

6.a On calcule aisément $det(A_k) = \frac{b_k}{b_{k+1}}$. Par télescopage,

$$\det(\mathbf{Q}) = \prod_{k=0}^{p-1} \det(\mathbf{A}_k) = \prod_{k=0}^{p-1} \frac{b_k}{b_{k+1}} = \frac{b_0}{b_p} = 1$$

car (b_k) est p-périodique.

6.b Trivial.

7.a Supposons que (B.2) admette une solution périodique non nulle (z_k) . Avec les notations précédentes, on a donc $Z_p = QZ_0 = Z_0$. Remarquons que $Z_0 \neq 0$, sinon (z_k) est nulle via l'isomorphisme Ψ . Ainsi $1 \in Sp(Q)$.

Réciproquement supposons que $1 \in Sp(Q)$. Notons U un vecteur propre associé. En posant $z = \Psi^{-1}(U) \in Sol(B.2)$, $Z_0 = U$ donc $Z_p = QZ_0 = Z_0$. Supposons que $Z_{k+p} = Z_k$ pour un certain $n \in \mathbb{N}$. Comme les suites a et b sont p-périodiques, $A_{k+p} = A_k$ donc $A_{k+p}Z_{k+p} = A_kZ_k$ i.e. $Z_{k+p+1} = Z_{k+1}$. On a donc prouvé que $Z_{k+p} = Z_k$ pour tout $k \in \mathbb{N}$. La suite (Z_k) est donc p-périodique. La suite (Z_k) l'est donc également. De plus, $U \neq 0$ donc $z = \Psi^{-1}(U) \neq 0$ car Ψ^{-1} est un isomorphisme.

7.b D'après la question précédente, il s'agit de montrer que $1 \in Sp(Q) \iff tr(Q) = 2$. Remarquons que $\chi_Q = X^2 - 2 tr(Q)X + 1$. Ainsi

$$1 \in Sp(Q) \iff \chi_Q(1) = 0 \iff tr(Q) = 2$$

Supposons tr(Q) = 2. Alors $\chi_Q = (X - 1)^2$. Q est alors semblable à une matrice $T = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$.

Si $\alpha=0$, on a en fait $Q=I_2$. Si on se donne $z\in Sol(B.2)$, on a alors $Z_p=QZ_0=Z_0$. On prouve alors comme précédemment que (Z_k) est p-périodique et donc (z_k) également.

Si $\alpha \neq 0$, il existe une matrice $P \in GL_2(\mathbb{C})$ telle que $Q = PTP^{-1}$. Comme indiqué dans l'énoncé, on se donne $z = \Psi^{-1}(Pe_2)$

avec
$$e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
. Alors, pour tout $k \in \mathbb{N}$, $Z_{kp} = Q^k Z_0 = PT^k e_2$. Or une récurrence facile monter que $T^k = \begin{pmatrix} 1 & k\alpha \\ 0 & 1 \end{pmatrix}$ de

sorte que $Z_{kp} = PW_k$ avec $W_k = \binom{k\alpha}{1}$. La suite (W_k) n'est clairement pas bornée. De plus, d'après la question **2.b**,

$$\forall k \in \mathbb{N}, \ \|\mathbf{W}_k\|_{\infty} \le 2\|\mathbf{P}^{-1}\|_0\|\mathbf{Z}_{kp}\|_{\infty}$$

Comme $P^{-1} \neq 0$, $||P^{-1}||_0 > 0$ de sorte que

$$\forall k \in \mathbb{N}, \ \|Z_{kp}\|_{\infty} \ge \frac{1}{2\|P^{-1}\|_{0}} \|W_{k}\|_{\infty}$$

La suite (Z_{kp}) n'est donc pas bornée. On en déduit alors que les suites (Z_k) et (z_k) ne sont pas non plus bornée.

Remarque. On aurait aussi pu invoquer le fait que $X \in \mathbb{C}^2 \mapsto \|PX\|_{\infty}$ est une norme sur \mathbb{C}^2 (facile à vérifier, l'inversibilité de P joue dans l'axiome de séparation). Toutes les normes sur \mathbb{C}^2 étant équivalentes (dimension finie), le fait que (W_k) n'est pas bornée équivaut au fait que (Z_{kp}) n'est pas bornée.

7.c Supposons $|\operatorname{tr}(Q)| < 2$. Remarquons que Q est à coefficients réels donc χ_Q également. En notant Δ son discriminant, $\Delta = 4\operatorname{tr}(Q)^2 - 4 < 0$. Q possède donc deux valeurs propres complexes distinctes et conjuguées dont le produit vaut 1: elles sont de la forme $e^{i\theta}$ et $e^{-i\theta}$. Comme χ_Q est simplement scindé, Q est diagonalisable et donc semblable à la matrice

$$\mathbf{D} = \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$$
. Notons $\mathbf{P} \in \mathrm{GL}_2(\mathbb{C})$ telle que $\mathbf{Q} = \mathrm{PDP}^{-1}$. Pour tout $k \in \mathbb{N}$, $\mathbf{D}^k = \begin{pmatrix} e^{ik\theta} & 0 \\ 0 & e^{-ik\theta} \end{pmatrix}$ donc (\mathbf{D}_k) est bornée. D'après la question **2.a**,

$$\forall k \in \mathbb{N}, \ \|\mathbf{Q}^k\|_0 = \|\mathbf{P}\mathbf{D}^k\mathbf{P}^{-1}\| \le 2\|\mathbf{P}\|_0\|\mathbf{D}^k\|_0\|\mathbf{P}^{-1}\|_0$$

donc (Q^k) est également bornée.

Remarque. On aurait aussi pu employer le fait que $M \in \mathcal{M}_2(\mathbb{C}) \mapsto \|PMP^{-1}\|_0$ est une norme équivalente à $\|\cdot\|_0$ ($\mathcal{M}_2(\mathbb{C})$ est de dimension finie).

D'après la question 2.a,

$$\forall k \in \mathbb{N}, \ \|\mathbf{Z}_{kp}\|_{\infty} \le \|\mathbf{Q}^k\|_0 \|\mathbf{Z}_0\|_{\infty}$$

donc la suite (Z_{kp}) est bornée. La question **6.b** permet alors d'affirmer que pour tout $r \in [0, p-1]$, les suites $(Z_{kp+r})_{k \in \mathbb{N}}$ sont bornées. Comme

$$\mathbb{N} = \bigsqcup_{r=0}^{p-1} (p\mathbb{Z} + r)$$

la suite (Z_k) est bornée et donc la suite (z_k) également.

C Généralisation

$$\forall k \in \mathbb{N}, \ Y_{k+1} = A_k Y_k \tag{C.1}$$

8 La suite (Φ_k) est bien à valeurs dans $GL_n(\mathbb{C})$ car $GL_n(\mathbb{C})$ est un groupe.

Si $Y_{k+1} = A_k Y_k$ pour tout $k \in \mathbb{N}$, alors on montre aisément par récurrence que $Y_k = \Phi_k Y_0$ pour tout $k \in \mathbb{N}$. Réciproquement, si $Y_k = \Phi_k Y_0$ pour tout $k \in \mathbb{N}$, alors $Y_{k+1} = \Phi_{k+1} Y_0 = A_k \Phi_k Y_0 = A_k Y_k$ pour tout $k \in \mathbb{N}$.

9 9.a Puisque $\Phi_0 = I_n$, $\Phi_p = \Phi_0 \Phi_p$. Supposons que $\Phi_{k+p} = \Phi_k \Phi_p$ pour un certain $k \in \mathbb{N}$. Alors $\Phi_{k+p+1} = A_{k+p} \Phi_{k+p}$. Mais, par p-périodicité, $A_{k+p} = A_k$ donc $\Phi_{k+p+1} = A_k \Phi_k \Phi_p = \Phi_{k+1} \Phi_p$. On conclut par récurrence.

9.b 9.b.i Soit U un vecteur propre de Φ_p associé à la valeur propre ρ . Posons $Y_k = \Phi_k U$ pour tout $k \in \mathbb{N}$. Alors (Y_k) est bien solution de (C.1). De plus, pour tout $k \in \mathbb{N}$,

$$Y_{k+n} = \Phi_{k+n} Y_0 = \Phi_k \Phi_n Y_0 = \rho \Phi_k Y_0 = \rho Y_k$$

9.b.ii On prouve aisément par récurrence que

$$\forall r \in [0, p-1], \ \forall k \in \mathbb{N}, \ Y_{kp+r} = \rho^k Y_r$$

Comme $|\rho| < 1$, pour tout $r \in [0, p-1]$, $(Y_{kp+r})_{k \in \mathbb{N}}$ converge vers 0. A nouveau,

$$\mathbb{N} = \bigsqcup_{r=0}^{p-1} (p\mathbb{Z} + r)$$

donc (Y_k) converge vers 0.

Remarque. Ce dernier résultat n'est pas explicitement au programme sauf pour le cas p=2. On peut le prouver rapidement. Soit $\varepsilon > 0$. Pour tout $r \in [0, p-1]$, il existe $N_r \in \mathbb{N}$ tel que

$$\forall k \geq N_r, \|Y_{kp+r}\|_{\infty} \leq \varepsilon$$

Posons N = $\max_{0 \le r \le p-1} \{pN_r + r\}$. Soit $k \ge N$. Par division euclidienne, il existe $j \in \mathbb{N}$ et $r \in [0, p-1]$ tels que k = jp + r. Puisque $k = jp + r \ge N \ge pN_r + r$, $j \ge N_r$ donc $\|Y_n\|_{\infty} = \|Y_{jp+r}\|_{\infty} \le \varepsilon$. On a donc bien montré que (Y_k) converge vers 0.

10 On doit nécessairement avoir $P_k = \Phi_k B^{-k}$ pour tout $k \in \mathbb{N}$. Il faut alors simplement vérifier que (P_k) est une suite p-périodique de matrices inversibles.

Or pour tout $k \in \mathbb{N}$, $B^{-k} \in GL_n(\mathbb{C})$ et $\Phi_k \in GL_n(\mathbb{C})$ donc $P_k \in GL_n(\mathbb{C})$.

De plus, d'après la question 9.a

$$\forall k \in \mathbb{N}, \ P_{k+p} = \Phi_{k+p} B^{-(k+p)} = \Phi_k \Phi_p B^{-k-p} = \Phi_k B^p B^{-k-p} = \Phi_k B^{-k} = P_k$$

11 11.a D'après la question précédente, la suite (P_k) est p-périodique donc à valeurs dans $\{P_0, \dots, P_{p-1}\}$. En posant $M = \max_{0 \le r \le p-1} \|P_r\|_0$ (une partie finie de $\mathbb R$ admet toujours un maximum), on a alors bien $M = \max_{k \in \mathbb N} \|P_k\|_0$. D'après la question 2.a,

$$\forall k \in \mathbb{N}, \|Phi_k\|_0 = \|P_kB^k\|_0 \le n\|P_k\|_0\|B^k\|_0 \le nM\|B^k\|_0$$

11.b.i D'après la question précédente, si (B^k) converge vers 0, alors (Φ_k) également. L'application $M \in \mathcal{M}_n(\mathbb{C}) \mapsto MY_0$ est linéaire donc continue (car $\mathcal{M}_n(\mathbb{C})$ est de dimension finie) donc la suite de terme général $Y_k = \Phi_k Y_0$ converge vers 0.

11.b.ii C'est le même raisonnement. Supposons que (B^k) est bornée. Puisque

$$\forall k \in \mathbb{N}, \|\Phi_k\|_0 \le n\mathbf{M}\|\mathbf{B}^k\|_0$$

 (Φ_k) est bornée. Mais comme

$$\forall k \in \mathbb{N}, \ \|Y_k\|_{\infty} \le n \|\Phi_k\| \|Y_0\|_{\infty}$$

 (Y_k) est bornée.

Remarque. On peut aussi remarquer que (Φ_k) étant bornée, elle est à valeurs dans un compact. L'application $M \in \mathcal{M}_n(\mathbb{C}) \mapsto Y_0$ étant continue, (Y_k) est donc également à valeurs dans un compact (l'image d'un compact par une application continue est un compact). On en déduit que (Y_k) est bornée.

12 12.a Supposons que R(0) = 0. Alors il existe $S \in \mathbb{R}[X]$ tel que R = XS. Alors $R(X^p) = X^p S(X^p)$ n'est pas scindé à racines simples puisque 0 est alors racine de R de multiplicité au moins égale à $p \ge 2$.

Supposons que $R(X^p)$ n'est pas scindé à racines simples. Comme $R(X^p)$ est effectivement scindé (comme tout polynôme de $\mathbb{C}[X]$), c'est qu'il possède une racine multiple $\alpha \in \mathbb{C}$. Alors $R(X^p)$ et $R(X^p)' = pX^{p-1}R'(X^p)$ s'annulent en α . Ainsi $R(\alpha^p) = p\alpha^{p-1}R'(\alpha^p) = 0$. On ne peut avoir $R'(\alpha^p) = 0$ sinon α^p serait une racine multiple de R. On en déduit que $\alpha^{p-1} = 0$ et donc $\alpha = 0$. Ainsi $R(\alpha^p) = R(0) = 0$.

On a donc prouvé l'équivalence de l'énoncé par contraposition.

12.b Supposons Φ_p diagonalisable. Notons R son polynôme minimal. Comme Φ_p est inversible, $R(0) \neq 0$. Ainsi $R(X^p)$ est scindé à racines simples (d'après la question précédente) et annule B puisque $R(B^p) = R(\Phi_p) = 0$. On en déduit que B est diagonalisable.

Inversement, si B est diagonalisable, il est clair que $\Phi_p = B^p$ l'est également.

12.c Il existe $P \in GL_n(\mathbb{C})$ et $D = diag(\lambda_1, ..., \lambda_n)$ telles que $B = PDP^{-1}$. Alors la suite de terme général $D^k = diag(\lambda_1^k, ..., \lambda_n^k)$ converge vers 0 puisque $|\lambda_i| < 1$ pour tout $i \in [1, n]$. L'application $M \in \mathcal{M}_n(\mathbb{C}) \mapsto PMP^{-1}$ est linéaire donc continue puisque $\mathcal{M}_n(\mathbb{C})$ est de dimension finie. Ainsi la suite de terme général $B^k = PD^kP^{-1}$ converge aussi vers 0. La question **11.b.i** montre que (Y_k) converge aussi vers 0.

D Le cas continu en dimension 2

$$\forall t \in \mathbb{R}, \ X'(t) = A(t)X(t) \tag{D.1}$$

13 13.a

$$\forall t \in \mathbb{R}, \ \mathbf{M}'(t) = \mathbf{A}(t)\mathbf{M}(t) \tag{D.2}$$

Pour tout $t \in \mathbb{R}$,

$$E'(t) = [U'(t), V'(t)] = [A(t)U(t), A(t)V(t)] = A(t)[U(t), V(t)] = A(t)E(t)$$

De plus, $E(t_0) = [U(0), V(0)] = I_2$. Ainsi E est bien la solution de (D.2) vérifiant $E(t_0) = I_2$.

13.b Si M = [F, G] est solution de (D.2), alors F et G sont solutions de (D.1). Comme (D.1) est un système différentiel linéaire homogène, l'ensemble de ses solutions est un espace vectoriel donc $MW = w_1F + w_2G$ est également solution de (D.1).

14 14.a D'après la question précédente, Y est solution de (D.1). Comme Y s'annule en t_1 , elle est constamment nulle d'après l'unicité de la solution du problème de Cauchy $\begin{cases} X' = AX \\ X(t_1) = 0 \end{cases}$. Notamment, $W = Y(t_0) = 0$. On a donc prouvé que

 $E(t_1)W = 0 \implies W = 0$, ce qui prouve que $E(t_1)$ est inversible. Finalement, E est bien à valeurs dans $GL_2(\mathbb{R})$.

14.b Posons $N(t) = E(t)M(t_0)$ pour $t \in \mathbb{R}$. L'application $X \in \mathcal{M}_2(\mathbb{C}) \mapsto XM(t_0)$ est linéaire, $\mathcal{M}_2(\mathbb{C})$ est de dimension finie et E est de classe \mathcal{C}^1 sur \mathbb{R} donc N est de classe \mathcal{C}^1 sur (\mathbb{R}) et

$$\forall t \in \mathbb{R}, \ N'(t) = E'(t)M(t_0) = A(t)E(t)M(t_0) = A(t)M(t)$$

Ainsi M et N sont toutes deux solutions du système (D.2) et vérifient $M(t_0) = N(t_0)$ car $E(t_0) = I_2$.

ATTENTION! On ne peut pas conclure à l'égalité de M et N via l'unicité de la solution d'un problème de Cauchy car l'équation différentielle (D.2) admet pour inconnue une fonction à valeurs *matricielles*.

Néanmoins, on vérifie aisément que les colonnes de M et N vérifient le système (D.1) et coïncident en t_0 . Par unicité de la solution d'un problème de Cauchy, ces colonnes coïncident sur \mathbb{R} . Ainsi

$$\forall t \in \mathbb{R}, \ \mathbf{M}(t) = \mathbf{N}(t) = \mathbf{E}(t)\mathbf{M}(t_0)$$

14.c L'unicité est évidente puisque l'on a nécessairement $B = E(t_0 + T)$.

Comme E est à valeurs dans $GL_2(\mathbb{C})$, $B \in GL_2(\mathbb{C})$.

Posons F(t) = E(t + T) pour $t \in \mathbb{R}$. Alors F est de classe \mathcal{C}^1 sur \mathbb{R} et

$$\forall t \in \mathbb{R}, \ F'(t) = E'(t+T) = A(t+T)E(t+T) = A(t)F(t)$$

car A et T-périodique. D'après la question précédente, on a donc

$$\forall t \in \mathbb{R}, \ F(t) = E(t)F(t_0)$$

ou encore

$$\forall t \in \mathbb{R}, \ E(t+T) = E(t)E(t_0+T) = E(t)B$$

15 15.a 15.a.i Par définition de B et ρ,

$$\forall t \in \mathbb{R}, \ Y(t+T) = E(t+T)Z = E(t)BZ = \rho E(t)Z = \rho Y(t)$$

15.a.ii Comme B est inversible, $\rho \neq 0$. L'exponentielle complexe étant surjective sur \mathbb{C}^* , il existe $\alpha \in \mathbb{C}$ tel que $e^{\alpha} = \frac{1}{\rho}$.

On pose alors $\mu = -\frac{\alpha}{T}$ de sorte que $\rho e^{-\mu T} = 1$.

Posons alors S: $t \in \mathbb{R} \mapsto e^{-\mu t} Y(t)$. On a donc bien $Y(t) = e^{\mu t} S(t)$ pour tout $t \in \mathbb{R}$. De plus, en vertu de la question précédente,

$$\forall t \in \mathbb{R}, \ S(t + T) = e^{-\mu t} e^{-\mu T} Y(t + T) = \rho e^{-\mu T} Y(t) = S(t)$$

donc S est bien T-périodique.

15.b Supposons que 1 soit valeur propre de B. Notons Z un vecteur propre associé et considérons Y : $t \mapsto E(t)Z$. D'après la question **15.a.i**, Y est T-périodique. De plus, comme $X \in \mathcal{M}_2(\mathbb{C}) \mapsto XZ$ est linéaire, Y est de classe \mathcal{C}^1 et

$$\forall t \in \mathbb{R}, \ Y'(t) = E'(t)Z = A(t)E(t)Z = A(t)Y(t)$$

donc Y est solution de (D.1). Enfin, Y n'est pas nulle puisque $Y(t_0) = Z \neq 0$.

Réciproquement, supposons que (D.1) admette une solution T-périodique non nulle que l'on note encore Y. On montre comme à la question **14.b** que $Y(t) = E(t)Y(t_0)$ pour tout $t \in \mathbb{R}$. Par T-périodicité de Y,

$$\forall t \in \mathbb{R}, \ \mathbf{Y}(t) = \mathbf{Y}(t+\mathbf{T}) = \mathbf{E}(t+\mathbf{T})\mathbf{Y}(t_0) = \mathbf{E}(t)\mathbf{B}\mathbf{Y}(t_0)$$

Notamment, $Y(t_0) = E(t_0)BY(t_0) = BY(t_0)$. De plus, $Y(t_0) \neq 0$ car sinon Y serait nulle par unicité de la solution d'un problème de Cauchy. Ainsi 1 est valeur propre de B.

15.c On reprend les notations de la question **15.a.i**. Comme la fonction S est périodique et non nulle, on montre aisément que la fonction Y : $t \mapsto E(t)Z = e^{\mu t}S(t)$ est bornée si et seulement si $Re(\mu) = 0$ i.e. $\rho \in \mathbb{U}$.

Soit (Z_1, Z_2) une base de vecteurs propres de B respectivement associés aux valeurs propres ρ_1 et ρ_2 i.e. les multiplicateurs de Floquet de (D.1). Les fonctions $Y_1: t \mapsto E(t)Z_1$ et $Y_2: t \mapsto E(t)Z_2$ sont des solutions de (D.1). Comme (Z_1, Z_2) est libre, la famille (Y_1, Y_2) l'est aussi : c'est donc une base de Sol(D.1). Ainsi le système (D.1) admet une solution non bornée si et seulement si B possède une valeur propre de module différent de 1.

16 16.a Posons E = [F, G]. Par bilinéarité du déterminant,

$$\forall t \in \mathbb{R}, \ W'(t) = \det([F'(t), G(t)]) + \det([F(t), G'(t)])$$

Or pour tout $t \in \mathbb{R}$, E'(t) = A(t)E(t) donc pour tout $t \in \mathbb{R}$, F'(t) = A(t)F(t) et G'(t) = A(t)G(t). On en déduit que

$$\forall t \in \mathbb{R}, \ W'(t) = \det([A(t)F(t), G(t)]) + \det([F(t), A(t)G(t)])$$

Fixons $M \in \mathcal{M}_2(\mathbb{C})$. L'application $\varphi : (u,v) \in (\mathbb{C}^2)^2 \mapsto \det([Mu,v]) + \det([u,Mv])$ est bilinéaire alternée. Elle est donc colinéaire à det. Il existe ainsi $\lambda \in \mathbb{C}$ tel que

$$\forall (u, v) \in (\mathbb{C}^2)^2, \varphi(u, v) = \lambda \det([u, v])$$

En prenant $[u, v] = I_2$, on obtient $\lambda = tr(M)$.

On en déduit donc que

$$\forall t \in \mathbb{R}, \ \mathbf{W}'(t) = \operatorname{tr}(\mathbf{A}(t))\mathbf{W}(t)$$

16.b W vérifiant une équation différentielle linéaire scalaire homogène d'ordre 1, on en déduit que

$$\forall t \in \mathbb{R}, \ W(t) = W(t_0) \exp\left(\int_{t_0}^t \operatorname{tr}(A(s)) \ \mathrm{d}s\right)$$

Or $W(t_0) = \det(E(t_0)) = \det(I_2) = 1$ donc

$$\forall t \in \mathbb{R}, \ W(t) = \exp\left(\int_{t_0}^t \operatorname{tr}(A(s)) \ \mathrm{d}s\right)$$

Notamment,

$$\rho_1 \rho_2 = \det(\mathbf{B}) = \det(\mathbf{E}(t_0 + \mathbf{T})) = \mathbf{W}(t_0 + \mathbf{T}) = \int_{t_0}^{t_0 + \mathbf{T}} \operatorname{tr}(\mathbf{A}(s)) \, ds$$

Comme la fonction A est T-périodique, on peut alors affirmer que

$$\rho_1 \rho_2 = \int_0^T \operatorname{tr}(\mathbf{A}(s)) \, \mathrm{d}s$$

E Racines *p*-ièmes dans $GL_n(\mathbb{C})$

17 Récurrence évidente.

18 18.a Si $a = \lambda$,

$$\sum_{j=0}^{p-1} \lambda^{p-1-j} a^j = p\lambda^p \neq 0$$

car $\lambda \neq 0$.

Dans le cas où $\lambda^p \neq \alpha^p$, la formule de Bernoulli donne

$$(\lambda - a) \sum_{j=0}^{p-1} \lambda^{p-1-j} a^j = \lambda^p - a^p \neq 0$$

 $\operatorname{donc} \sum_{j=0}^{p-1} \lambda^{p-1-j} a^j \neq 0.$

18.b Comme $\mathcal{T}_n(\mathbb{C})$ est un sous-anneau de $\mathcal{M}_n(\mathbb{C})$, $\sum_{j=0}^{p-1} \lambda^{p-1-j} A^j$ est triangulaire supérieure. De plus, ses coefficients diagonaux, à savoir les $\sum_{j=0}^{p-1} \lambda^{p-1-j} a_{i,i}^j$ ne sont pas nuls d'après la question précédente. Par conséquent, $\sum_{j=0}^{p-1} \lambda^{p-1-j} A^j$ est inversible.

18.c Notons \mathcal{P}_n la propriété de l'énoncé. \mathcal{P}_1 est vraie car tout nombre complexe non nul possède une racine $p^{\text{ème}}$. Plus précisément, si $z=re^{i\theta}$ avec $r\in\mathbb{R}_+^*$ et $\theta\in\mathbb{R}$, alors, en posant $u=r^{\frac{1}{p}}e^{\frac{i\theta}{p}}$, $u^p=z$.

Supposons que \mathcal{P}_n soit vraie pour un certain $n \in \mathbb{N}^*$. Soit $\mathbf{B} \in \mathrm{GL}_{n+1}(\mathbb{C}) \cap \mathcal{T}_{n+1}(\mathbb{C})$. On peut alors écrire $\mathbf{B} = \begin{pmatrix} \tilde{\mathbf{B}} & \mathbf{X} \\ \mathbf{0}_{1,n} & \lambda \end{pmatrix}$ avec $\tilde{\mathbf{B}} \in \mathrm{GL}_n(\mathbb{C})$ et $\lambda \in \mathbb{C}^*$. D'après \mathcal{P}_n , il existe $\tilde{\mathbf{A}} \in \mathrm{GL}_n(\mathbb{C})$ telle que $\tilde{\mathbf{A}}^p = \tilde{\mathbf{B}}$ et $\forall (i,j) \in [\![1,n]\!]^2, \frac{\tilde{a}_{i,i}}{\tilde{a}_{j,j}} \notin \mathcal{V}_p$. Si λ est égal à l'un des $\tilde{b}_{i,i}$, on pose $\rho = \tilde{a}_{i,i}$ et sinon on choisit pour ρ une racine p-ième de λ . Posons alors $\mathbf{A} = \begin{pmatrix} \tilde{\mathbf{A}} & \mathbf{Y} \\ \mathbf{0}_{1,n} & \rho \end{pmatrix}$. D'après la question 17,

$$\mathbf{A}^p = \left(\begin{array}{cc} \tilde{\mathbf{A}}^p & \mathbf{Z} \\ \mathbf{0}_{1,n} & \boldsymbol{\rho}^p \end{array} \right) = \left(\begin{array}{cc} \tilde{\mathbf{B}} & \mathbf{Z} \\ \mathbf{0}_{1,n} & \boldsymbol{\lambda} \end{array} \right)$$

avec Z = $\left(\sum_{j=0}^{p-1} \rho^{p-1-j} \tilde{\mathbf{A}}^j\right)$ Y. Le choix de ρ fait que $\frac{\tilde{a}_{j,j}}{\rho} \notin \mathcal{V}_p$ pour tout $j \in [1,n]$. On en déduit que $\sum_{j=0}^{p-1} \rho^{p-1-j} \tilde{\mathbf{A}}^j$

est inversible et on peut donc poser $Y = \left(\sum_{j=0}^{p-1} \rho^{p-1-j} \tilde{A}^j\right)^{-1} X$ de sorte que Z = X. On a donc bien $B = A^p$. De plus,

 $\forall (i,j) \in [\![1,n]\!]^2, \frac{\tilde{a}_{i,i}}{\tilde{a}_{j,j}} \notin \mathcal{V}_p \text{ et le choix de } \rho \text{ fait alors que } \forall (i,j) \in [\![1,n+1]\!]^2, \frac{a_{i,i}}{a_{j,j}} \notin \mathcal{V}_p.$

Par récurrence, la propriété \mathcal{P}_n est donc vraie pour tout $n \in \mathbb{N}^*$. A fortiori toute matrice trianguaire supérieure inversible admet au moins une racine p-ième.

18.d Soit $M \in GL_n(\mathbb{C})$. Alors M est trigonalisable. Il existe donc $T \in GL_n(\mathbb{C}) \cap \mathcal{T}_n(\mathbb{C})$ et $P \in GL_n(\mathbb{C})$ tel que $M = PTP^{-1}$. D'après la question précédente, il existe $S \in \mathcal{M}_n(\mathbb{C})$ telle que $T = S^p$. Il est alors clair que $M = (PSP^{-1})^p$.