Digital System Design Course

Sistemas Digitales II

Flash....
Smart...

$$\frac{1}{n} \sin x = ?$$

$$\frac{1}{n} \sin x =$$

$$\sin x =$$

$$\sin x =$$

$$\sin x =$$

$$\sin x =$$

$$\frac{\text{LIM}}{X \to 8} = \infty$$

$$\frac{\text{LIM}}{X \to 5} = \checkmark$$

$$X \to 5$$

Sistemas Digitales II

Sistemas Digitales II

femory Name:	Imem_ram:800 LPM_RAM_DQ:2 altram:sram content Value:							
ddress:								
000 07 05 15 15 16 23 24 31 38	0001 0000 0000 0005 0000 0000 0000 0000	0010 0000 0000 0008 0000 0000 0000 0000	000A 0000 0000 000D 0000 0000 0000 0000	0000 0000 0001 0015 0000 0000 0000 0000	0000 0000 0001 0022 0000 0000 0000 0000	0000 0000 0002 0000 0000 0000 0000 000	0000 0000 0000 0000 0000 0000 0000	
Addi Radix C BIN C OCT C DEC G HEX	BIN C BIN OCT C OCT DEC C DEC		List One Address Per Line Memory Info: Depth 256 Width (Bits): 16 Type: RAM			•	Initializ	e to 0's e to 1's

Initialize Memory								
Memory Name:	mem_ro	m:714 LF	M_ROM:1	altrom:sro	m content			▼
Address:	Value:							
00 07 0E 15 1C 23 2A 31 38 3F	0000 0C48 5D37 5D37 0000 0000 0000 0000 0000	0404 1048 02D8 0118 0000 0000 0000 0000 0000 0000	0449 1448 5815 5815 0000 0000 0000 0000 0000 000	4895 0884 4D95 4D95 0000 0000 0000 0000 0000	0044 0189 0189 239F 0000 0000 0000 0000 0000	0889 0105 0145 0000 0000 0000 0000 0000 0000	1808 56C5 5255 0000 0000 0000 0000 0000 0000	:
Addr Radix BIN OCT DEC HEX	Value O BII O OC O DE	CT EC	List 0 Memory Depth Width (25 Bits): 16	56	÷	Ini	ialize to 0's
OK		C	ancel				Е	xport File

Sistemas Digitales

Sistemas Digitales

1.1 Basic logic gates

1.1 Basic logic gates

1.2 Combinational components


```
O =
I0 if S=0..00
I1 if S=0..01
...
I(m-1) if S=1..11
```

sum = A+B
 (first n bits)
carry = (n+1)'th
 bit of A+B

With enable input $e \rightarrow$ all O's are 0 if e = 0

With carry-in input Ci→

$$sum = A + B + Ci$$

1.2 Combinational components

less = 1 if A<B equal =1 if A=B greater=1 if A>B O = A op B op determined by S.

May have status outputs carry, zero, etc.

1.3 Combinational logic design

A) Problem description

- y is 1 if a is to 1, or b and c are 1.
- z is 1 if b or c is to 1, but not both, or if all are 1.

B) Truth table

-	Inputs	Outputs		
a	b	С	У	Z
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

1.3 Combinational logic design

C) Output equations

$$y = a'bc + ab'c' + ab'c + abc' + abc$$

$$z = a'b'c + a'bc' + ab'c + abc' + abc$$

1.3 Combinational logic design

2.1 Sequential components

A) Problem Description

- You want to construct a clock divide
- Slow down your pre-existing clock so that you output a1 for every four clock cycles

D) State Table (Moore-type)

	Inputs	S	Outputs			
Q1	Q0	a	I1	10	X	
0	0	0	0	0	0	
0	0	1	0	1		
0	1	0	0	1	0	
0	1	1	1	0		
1	0	0	1	0	0	
1	0	1	1	1		
1	1	0	1	1	1	
1	1	1	0	0		

□ Basic FSM Structure

FSM Block Diagram

2.2 Sequential logic design: VHDL

LENGUAJES DE DESCRIPCIÓN DE HARDWARE

```
LIBRARY IEEE:
USE IEEE.STD LOGIC SIGNED.ALL;
USE IEEE.STD LOGIC ARITH.ALL:
USE IEEE.STD LOGIC 1164.ALL;
ENTITY MUX IS
PORT(
    A,B,S: IN STD LOGIC;
         OUT STD LOGIC);
END:
ARCHITECTURE FIRST OF MUX IS
BEGIN
    CASE S IS
         WHEN 0 \Rightarrow Z \leq A;
         WHEN 1 => Z <= B;
    END CASE:
END FIRST;
```

Verilog HDL:

Verilog Hardware Description Language

VHDL:

Very High Speed Integrated
Circuit HDL

3. Digital System Basic Model

Controller and Datapath

3. View inside: controller and datapath

3. Synchronous System Structure

4. Anatomy of a Computer

□ Block diagram view: processor

4. Anatomy of a Computer

□ Block diagram view: memory system

4. Anatomy of a Computer

□ Block diagram view: memory system

4.1 Anatomy of a Digital System

- □ Block diagram view
 - * Data path: fuctional building blocks are involved
 - * Control path: circuits of decision are involved

4.2 Anatomy of a Basic Processor

- ☐ Block diagram view
 - Data path: ALU and registers
 - Control path:
 control unit

Data-Path Unit Design: UV1-2005

Data-Path Unit Design: UV2-2005

Data-Path Unit Design: UV2-2005

Superscalar procesor

Systolic Implementation: DNA Processor

□ *DNA processor* → uni-dimensional architecture

Systolic Implementation: DNA Processor

□ *DNA processor* → uni-dimensional architecture

DATA PATH

