Circuits and Signals

Equivalent devices

Marek Rupniewski 2022 spring semester

WARSAW UNIVERSITY OF TECHNOLOGY

Devices are called equivalent if they are governed by equivalent equations.

Equivalent devices

In DC case

resistor R = 0

u = 0

inductor ; L

$$i = 0$$

open-circuit

resistor G = 0 $(R = \infty)$ source j = 0

capacitor

C
u

Series connections of one-ports

Two one-ports are said to be connected in a series if and only if they have exactly one common terminal and no other device is connected to that terminal.

Resistor *R* and inductor *L* do form a series connection.

Inductors L_1 and L_2 do not form a series connection.

Series connections of resistors

$$R_1$$
 R_2 R_n R_n R_n R_n R_n

$$u \stackrel{\text{KVL}}{=} u_1 + \dots + u_n \stackrel{u_R = R_R i}{=} i \underbrace{(R_1 + R_2 + \dots + R_n)}_{R_{\text{eq}}}$$

Series connections of voltage sources

$$\begin{array}{ccc}
E_1 & E_2 & E_n \\
\hline
& & & \\
\hline
& & & \\
\end{array}$$

$$\begin{array}{cccc}
E_{eq} & = E_1 + \cdots + E_n \\
\hline
& & & \\
\end{array}$$

Series connections of inductors

Series connections of capacitors

$$C_{1} \qquad C_{2} \qquad C_{n} \qquad \equiv \qquad C_{eq} = \left(\frac{1}{C_{1}} + \dots + \frac{1}{C_{n}}\right)^{-1}$$

$$U \qquad U_{1} \qquad U_{2} \qquad U_{n} \qquad U_{n}$$

$$U' \stackrel{\text{KVL}}{=} u'_{1} + \dots + u'_{n} \stackrel{i=C_{k}u'_{k}}{=} i\left(\frac{1}{C_{1}} + \dots + \frac{1}{C_{n}}\right)$$

$$i = \underbrace{\left(\frac{1}{C_1} + \dots + \frac{1}{C_n}\right)^{-1}}_{} u'.$$

Series connections of current sources

Parallel connections of one-ports

Two or more one-ports form a parallel connection if and only if there exist two distinct nodes that are terminals of each of the one-ports.

One-ports *L* and *C* do not form a parallel connection.

The capacitor is parallel connected with one-port that is a series connection of *L* and *R*.

Parallel connections of resistors

$$i \stackrel{\text{KCL}}{=} i_1 + \dots + i_n \stackrel{u = R_k i_k}{=} u(\frac{1}{R_1} + \dots + \frac{1}{R_n})$$

$$u = \underbrace{\left(\frac{1}{R_1} + \dots + \frac{1}{R_n}\right)^{-1}}_{R_{eq}} i.$$

Parallel connections of 2 resistors

Parallel connections of inductors

Parallel connections of current sources

Parallel connections of capacitors

$$\underbrace{(C_1 + \dots + C_n)}_{C_{eq}} U$$

Parallel connections of voltage sources

One-port connections — reordering

$$X$$
 Y \equiv Y X

