

DSE 230 - Spring 2021

M. H. Nguyen

REVIEW: COMPUTER SYSTEMS & PARALLELISM

Basics of Computer Systems

- Hardware & Software
- Computer Instruction Cycle
- Memory Hierarchy
- Virtualization

Parallelism

- Parallel Processing
- Task & Data Parallelism
- Speedup

COMPUTER HARDWARE & SOFTWARE

Hardware:

Physical parts of computer

Software:

Programs (instructions) to perform tasks on computer

3

KEY HARDWARE COMPONENTS

Processor

Executes instructions as specified in program to manipulate data

Network Interface Controller

Sends/Retrieves data over network to/from interconnected computers/devices

Main Memory
Stores data
and programs
for fast access

External Storage

Stores data and programs; slower but more persistent than Main Memory

MAIN TYPES OF COMPUTER SOFTWARE

Firmware

- Specially designed for device to help control functionality of device
- e.g.: TV, remote control, appliances

System Software

- Controls and manages operations of computer hardware
- Operating System: Manages computer's resources to enable application software to execute efficiently
 - e.g.: Linux, MacOS, Windows

Application Software

- Implements end user applications
- e.g.: email, spreadsheet, Web browser, communications

DSE 230 - Spring 2021

MEMORY HIERARCHY

https://www.researchgate.net/figure/The-memory-hierarchy-pyramid_fig1_319529366

COMPUTER INSTRUCTION CYCLE

- Modern processors can run millions of instructions per second
- But when data has to be fetched from memory, CU and ALU are idle -> memory stall
- Careful use of different levels of memory is essential for overall system performance
 - Want to maximize cache hits to optimize processor utilization

LOCALITY OF REFERENCE

Locality of Reference

- Many programs tend to access memory locations in a somewhat predictable manner
- 2 types: spatial and temporal
- Spatial locality (locality in space)
 - Items with nearby locations tend to be referenced close together in time
- Temporal locality (locality in time)
 - Recently referenced items are likely to be referenced again in the near future

OPERATING SYSTEM

Operating System (OS)

- Systems software that manages hardware and software resources of computer system
- Provides consistent way for application software to use computer hardware effectively, efficiently, and securely

Functionality provided

- Process management
- Main memory management
- File management
- Networking
- Device management

Common OS

MacOS, Windows, Linux

PROCESS VIRTUALIZATION

- OS enables process isolation
 - Each process sees its "own" processor
 - Each process is isolated from other processes
- User can run multiple apps at once on single machine

VIRTUAL MEMORY

- Memory (also hardware) can also be virtualized by OS
- Virtual memory
 - Allows multiple processes to safely share available memory
 - Allows main memory to be extended through secondary storage
- Virtual memory allows multiple processes to safely and efficiently share available memory

https://en.wikipedia.org/wiki/Virtual_memory

PARALLEL PROCESSING

 Split workload across multiple cores / processors / nodes in order to speed up processing

MULTI-PROCESSING

- Modern computers often have multiple cores per processor
 - Can also have multiple processors
- Multiprocessing: Executing multiple processes simultaneously on multiple cores/processors

TASK PARALLELISM VS. DATA PARALLELISM

SPEEDUP

- Parallel Computing
 - Processing large-scale data using multiple processors/nodes
- Scaling/Scalability
 - Ability of a computer system to process more data when the amount of resources is increased
- Speedup
 - How much faster a parallel algorithm is compared to a corresponding sequential algorithm

Speedup = Execution time with 1 core/ processor / worker

Execution time with N cores / processors / workers

AMDAHL'S LAW & GUSTAFSON'S LAW

Amdahl's Law

- Gives upper limit of speedup for problem of fixed size
- In practice, problem size scales with amount of available resources

Gustafson's Law

- Reformulate so that solving larger problem in same amount of time is possible
- Parallel part scales linearly with amount of resources, and serial part does not increase with respect to problem size

STRONG VS WEAK SCALING

Strong Scaling

- How execution time varies with number of processors for a fixed total problem size
- Speedup for a fixed problem size wrt number of processors
- How much does parallelism reduce execution time of a fixed problem?
- Governed by Amdahl's law

Weak Scaling

- How execution time varies with number of processors for fixed problem size per processor
- Speedup for a scaled problem size wrt number of processors
- How much more data can we process in same amount of time through parallelism?
- Governed by Gustafson's law

DSE 230 - Spring 2021

QUANTIFYING PARALLELISM

Speedup plot / Strong scaling

Speedup (scaled data size)

Scaleup plot / Weak scaling

Arun Kumar, DSC102

REVIEW: COMPUTER SYSTEMS & PARALLELISM

Basics of Computer Systems

- Hardware & Software
- Computer Instruction Cycle
- Memory Hierarchy
- Virtualization

Parallelism

- Parallel Processing
- Task & Data Parallelism
- Speedup

SESSION 2 TOPICS

- Big Data
- Distributed Processing
- Big Data Analytics

BIG DATA & DISTRIBUTED PROCESSING

- Big Data Overview
- Scalable Systems
- Hadoop
- Spark
- PySpark Exercise
- Assignment

BIG DATA & DISTRIBUTED PROCESSING

- Big Data Overview
- Scalable Systems
- Hadoop
- Spark
- PySpark Exercise
- Assignment

WHAT IS BIG DATA?

http://www.digitalzenway.com/2011/12/data-diet-a-resolution-you-can-stick-to/

- "Growing torrent" of data
- Data
 - Comes in large volumes
 - Continuous
 - Complex

MGTA 495 - Winter 2021 M. H. Nguyen

WHERE DOES BIG DATA COME FROM?

MGTA 495 - Winter 2021 M. H. Nguyen 28

Stricts condition of two calliding paytron cture. Condit. National Science.

HOW IS BIG DATA USED?

WHY BIG DATA NOW?

- Advances in processing power, storage capacity, mobile computing, interconnectivity
 - Create unprecedented data
 - Can store and process more data
- Data-driven applications in all areas
 - Science: bioinformatics, image analysis
 - Medicine: drug design, healthcare
 - Retail: targeted advertisement, dynamic pricing
 - Finance: fraud detection, risk analysis
 - Manufacturing: preventive maintenance, supply chain management
 - Law enforcement: crime pattern detection
 - Others

MGTA 495 - Winter 2021 M. H. Nguyen 30

HOW WICH DATAS

How much data is big data?

SATELLITE IMAGE ANALYSIS

- MODIS Satellite Instruments
 - Capture images of Earth's surface every 1-2 days
 - 219 TB / year

PRECISION MEDICINE

https://www.cancer.gov/news-events/cancer-currents-blog/2015/precision-medicine-initiative-2016

- Patients with tumors that share the same genetic change receive the drug that targets that change, no matter the type of cancer
- ~3GB genome per human; 900PB+ for nation

ASTRO-PHYSICS

LIGO: Laser Interferometer Gravitational-Wave Observatory Generates TBs of data *daily*!

BIG DATA ON THE INTERNET

How much data is generated every minute on the Internet

https://www.allaccess.com/merge/archive/31294/infographic-what-happens-in-an-internet-minute

HOM WICH DATAS

HOW BIG ARE THEY?

https://www.technotification.com/2017/08/gigabytes-terabytes-petabytes.html DSE 230 - Spring 2021

36

HOM WICH DATAS

WHAT CAN YOU DO WITH

TERABYTE

OF INTERNET DATA
EVERY MONTH?

- WATCH 140 TWO-HOUR HD MOVIES
 - WATCH 100 HALF-HOUR STANDARD DEFINITION TV SHOWS
 - WATCH 1,500 THREE-MINUTE VIDEOS
 - SURF THE WEB FOR 2,000 HOURS
 - LISTEN TO 500 HOURS OF STREAMING MUSIC (7,500 SONGS THAT ARE 4-MINUTES LONG EACH)

Know YOUR Data

Understand how your household's online activities affect your monthly data usage. Go to www.cox.com/datausage for your Data Usage Meter and Data Usage Calculator.

https://www.noozhawk.com/article/what is a terabyte and what can you do with it 20171117

CHARACTERISTICS OF BIG DATA

CHARACTERISTICS OF BIG DATA

- Goal of processing data is to extract value from data
- Not sufficient to collect data
- Need to analyze data to make sense of it and gain insights
- So 5th 'V' of big data: Value!

BENEFITS OF BIG DATA

- Higher sales
- Targeted ads
- Better customer satisfaction
- Customer retention
- Increased efficiency
- Better demand prediction
- Data-driven risk management
- Improved safety

•

ANALYZING BIG DATA

Requires Big Data techniques and tools!

BIG DATA & DISTRIBUTED PROCESSING

- Big Data Overview
- Scalable Systems
- Hadoop
- Spark
- PySpark Exercise
- Assignment

SCALABLE SYSTEMS

- Key components
 - Distributed Computing
 - Processing of large data volumes
 - Scalability
 - Fault tolerance
 - Support for various workloads
 - Distributed File System
 - Data Partitioning
 - Data Replication

DISTRIBUTED COMPUTING

Distributed Computing

Processing is performed on multiple nodes (systems)

Parallel Computer

- Large number of single computing nodes with specialized capabilities via a network
 - e.g., SDSC Expanse is supercomputer
- Specialized => Expensive

Commodity cluster

- Large number of low-cost computers with generic computing nodes used in parallel
- Generic => Cost-effective

DISTRIBUTED COMPUTING

DSE 230 - Spring 2021 M. H. Nguyen

46

PROCESSING LARGE DATA VOLUMES

- Processing is performed on multiple cores/processors/nodes
- Data parallelism

SCALABILITY

Scalability

 Ability of a computer system to accommodate more data when the amount of resources is increased

Scaling Up

- Adding resources (processors, memory, etc.) to single node
- Requires specialized hardware (e.g., supercomputer)
- aka Vertical Scaling

Scaling Out

- Adding more nodes
- Achievable with cluster of commodity systems
- aka Horizontal Scaling

FAULT TOLERANCE

- Ability of system to recover from failures and continue operating
- Points of failure in distributed system:
 - node, rack, connection, etc.
- When processing large-scale data, restarting is not practical!
- Approaches
 - Data redundancy
 - Periodically save snapshot of data & results (aka checkpoint)
 - Continue processing from last checkpoint
 - Data-parallel job restart
 - Restart process on failed partition

WORKLOADS

- Scalable systems for processing big data should be extensible to various workloads
- Handle different data types
 - numeric, text, images, audio, geospatial, etc.
- Handle different types of processing
 - batch vs streaming
 - static vs dynamic
 - calculate-once vs. iterative
 - o etc.

SCALABLE SYSTEMS

Key components

- Distributed Computing
 - Processing of large data volumes
 - Scalability
 - Fault tolerance
 - Support for various workloads
- Distributed File System
 - Data Partitioning
 - Data Replication

FILE SYSTEM

- Data for/from computing is stored in files on secondary storage
- File system
 - Keeps track of data
 - Organizes data so data can be stored and retrieved efficiently

DISTRIBUTED FILE SYSTEM

- For efficient processing of very large data file
 - Partition data across many computer systems (aka sharding)
- Distributed file system (DFS)
 - Manages data that is distributed across many networked systems
 - Each local file system manages its own partition
 - Works on top of local file systems
 - Data is accessed and processed as if it was
 - stored on local client machine
 - Virtualization: Gives illusion of a single local file
 - Generalization of virtual memory on single system

File F

DISTRIBUTED FILE SYSTEM

Data Partitioning

- Divide large dataset and distribute subsets across nodes
- Enables handling of large data files via data parallelism
- Provides scalability Data

DISTRIBUTED FILE SYSTEM

Data Replication

- Data partitions are copied, and copies are distributed across nodes
- Enables fault tolerance and high concurrency

DSE 230 - Spring 2021

SCALABLE SYSTEMS

Key components

- Distributed Computing
 - Processing of large data volumes
 - Scalability
 - Fault tolerance
 - Support for various workloads
- Distributed File System
 - Data Partitioning
 - Data Replication

BIG DATA & DISTRIBUTED PROCESSING

- Big Data Overview
- Scalable Systems
- Hadoop
 - History
 - HDFS
 - O YARN
 - MapReduce
 - Hadoop Ecosystem
- Spark
- PySpark Exercise
- Assignment

HADOOP

- System for distributed processing of large data sets across clusters of computers
 - Data partitioning, fault tolerance, etc. all handled by the Hadoop library under the covers
 - Scalable platform on commodity clusters
- History
 - Google published Google File System paper in 2003
 - Google published MapReduce paper in 2004
 - Yahoo created Hadoop in 2005

HADOOP ECOSYSTEM

HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

HDFS

- Distributed file system in Hadoop ecosystem
- Open-source spinoff of Google File system (GFS)
- Highly scalable; can do 10s of 1000s of nodes, PB files
- Design features
 - Designed for clusters of commodity nodes
 - Provides scalable storage for many scalable systems
 - Parallel reads/writes of partitioned data "blocks"
 - Replication of blocks improves fault tolerance

HDFS

NameNode: One per cluster

https://www.oreilly.com/library/view/distributed-computing-in/9781 787126992/3275691a-477f-4e3a-a00c-9a64bda93b16.xhtml

- Coordinates operations of HDFS
- Manages metadata related to datafile
- Maps data blocks to DataNodes and issues commands to DataNodes
- DataNode: One per node
 - Provides storage for data blocks, which are replicated on multiple nodes
 - Gets commands from NameNode to create, store, delete, replicate data blocks

YARN

- Yet Another Resource Negotiator (YARN)
- Provides job scheduling and cluster resource management
- Enables different types of applications to run in Hadoop

YARN

HADOOP 1.0

MAP REDUCE

HDFS

- Hadoop 1.0
 - No resource manager!
 - All applications had to use MapReduce

- Hadoop 2.0
 - Resource management decoupled from data processing and job scheduling & monitoring
 - Allows non-MapReduce applications to run in Hadoop
 - Provides standard platform for variety of applications
 - Much higher overall efficiency

MapReduce

- Programming model for parallel processing on distributed system
- System implementation handles orchestration of data distribution, parallelization, synchronization, etc.
- Programmer doesn't have to worry about low-level mechanisms of parallel programming

DSE 230 - Spring 2021

MapReduce

- Map: Apply operation to all data elements
- Reduce: Summarize elements

MapReduce: WordCount

MapReduce: WordCount in Detail

https://www.todaysoftmag.com/article/1358/hadoop-mapreduce-deep-diving-and-tuning

Data is partitioned across nodes

Map generates key-value pairs

Pairs with same key moved to same node

Reduce sums values for each key

MapReduce

HIGH-LEVEL FUNCTIONALITY

HIGH-LEVEL FUNCTIONALITY

Zookeeper: coordinates services in distributed environment

OTHER TOOLS

- Large community support
- Download separately or part of pre-built image
 - Cloudera, Hortonworks, MapR

SESSION 2 QUIZ

What are the main Vs of Big Data as discussed in Class?

- A. volume, velocity
- B. veracity, value
- C. variety, value
- D. A & B
- E. A, B, & C

How big is a TB of data?

- A. 10¹² bytes
- B. 10⁹ bytes
- C. 1,000,000 bytes
- D. Approximately equivalent to one 3-minute video

Which of the following is *false*:

A distributed system...

- A. can support processing large data volumes
- B. can handle fault tolerance
- C. can only execute in a cluster of systems
- D. can enable scalability
- E. can leverage data parallelism

What is MapReduce?

- A. A system implementation of Hadoop
- B. A programming model that allows you to process large-scale data in parallel in a cluster environment
- C. A resource manager in the Hadoop 2 ecosystem
- D. A distributed file system that consists of Map, Split, and Reduce steps
- E. A distributed platform created by Hadoop

In a distributed system, fault tolerance ...

- A. Is not necessary since restarting a job can be accomplished by any of the nodes in the system
- B. Happens rarely since there are many physical nodes in the system
- C. Is difficult to achieve in a commodity cluster
- D. Refers to the ability of the system to continue operating even when a node fails

HADOOP RESOURCES

- Hadoop: http://hadoop.apache.org/
- MapReduce: Simplified Data Processing on Large Clusters.
 Jeffrey Dean and Sanjay Ghemawat. In OSDI 2004.
- MapReduce Tutorial: http://bit.ly/2rS2B5j
- MapReduce for relational queries: http://bit.ly/2rkSRj8