Notes for the Australian Mathematics Advanced Stage 6 Course

Contents

Ι	Year 11							
1	Functions		7					
	1.1 Functions and Relations							
	1.1.1	Definition of a function	7					
	1.1.2	Domain, range, independent and dependent variables	7					
	1.1.3	Domain, range, independent and dependent variables	7					
	1.1.4	Types of functions and relations	7					
	1.1.5	Properties of functions	8					
	1.1.6	Solutions to functions	8					
II	Year 12		9					

4 CONTENTS

Part I

Year 11

Chapter 1

Functions

1.1 Functions and Relations

A function takes in input and returns exactly one output, whereas a relation can return more than one. A function is a mapping between two sets.

1.1.1 Definition of a function

Functions can be thought of as a set of ordered pairs (x, y).

1.1.2 Domain, range, independent and dependent variables

Definition 1.1.1 (Domain and range). The domain of a function is the set of all possible inputs values a function can have. The range of a function is the set of all possible outputs a function can have.

Definition 1.1.2 (Independent and dependent variables). A function f(x) has x as the independent variable. The output (or f(x) itself) is the dependent variable, as it is dependent on x.

Interval notation is used to describe unbroken portions of the real line.

Definition 1.1.3 (Interval notation). The *open* interval (a, b) represents the set of all real numbers between a and b but not including a or b. The *closed* interval [a, b] contains all real numbers between a and b and includes the endpoints a and b. The *half-open* interval [a, b) is the set of all real numbers between a and b but only includes the endpoint a. Similarly, the half-open interval [a, b] only contains the endpoint b.

1.1.3 Graphs of functions

1.1.4 Types of functions and relations

Definition 1.1.4 (One-to-one). A *one-to-one* function takes in one input and returns exactly one output. It passes both horizontal and vertical line tests. For example,

$$f(x) = x$$

is a one-to-one function.

Definition 1.1.5 (Many-to-one). A *One-to-many* function has more than one input that produce the same output. It fails the horizontal line test but passes ther vertical. An example is

$$f(x) = x^2$$

where both x = -1 and x = 1 give the output 1.

Definition 1.1.6 (One-to-many). A *one-to-many* relation has an input that outputs more than one number. It passes the horizontal line test but fails the vertical. An example relation is

$$y^2 = x$$

where x = 1 has the outputs -1 and +1.

Definition 1.1.7 (Many-to-many). A *many-to-many* relation has multiple input which output multiple of the same outputs. It fails both horizontal and vertical line tests. An example is the circle

$$x^2 + y^2 = 1$$

where x = 1 or x = -1 both produce outputs 1 and -1.

1.1.5 Properties of functions

Definition 1.1.8 (Even function). A function *f* is even if it satisfies,

$$f(-x) = f(x).$$

The graph of f is symmetric about the y-axis.

Definition 1.1.9 (Odd function). A function f is odd if it satisfies,

$$f(-x) = -f(x).$$

The graph of f has point symmetry about the origin (if you spin the graph 180° about the origin, its the same graph).

Definition 1.1.10 (Algebra of functions). Two functions f and g can be added (f(x) + g(x)), subtracted (f(x) - g(x)), multiplied (f(x)g(x)) together or divided (f(x)/g(x)) provided g(x) is never 0), forming a new function. The domain of the new function is the intersection of the domain of f and the domain of g. The range is more difficult to find.

Definition 1.1.11 (Function composition). Function composition is another way to combine functions to form new functions. The composition of functions f and g is denoted as

$$f\circ g(x)=f(g(x)).$$

The domain of $f \circ g$ is the domain of g, whose outputs must also lie in the domain of f. The range of $f \circ g$ is all the outputs that from the range of g as input.

1.1.6 Solutions to functions

When we consider the equation

$$f(x) = 0,$$

we are solving for the x values that are sent to 0 by the function. Graphically, they are the x-intercepts. This is because we are finding all ordered pairs whose y (output) value is 0, corresponding to the x-intercepts.

Part II

Year 12