Math 111 Chapter 3.8: Natural Growth/Decay

Law of Natural Growth/Decay

$$\frac{dy}{dt} = ky$$

This differential equation is often given together with an initial condition $y(0) = y_0$. Together, the equation and initial condition are known as an *initial value problem*.

$$\begin{cases} \frac{dy}{dt} = ky\\ y(0) = y_0 \end{cases}$$

(THEOREM) The only solution to the initial value problem is $y(t) = y_0 e^{kt}$.

(EXAMPLE)

Find the solution to the initial value problem.

$$\left\{ \begin{array}{l} \frac{dy}{dt} = 2y\\ y(0) = 10 \end{array} \right.$$

APPLICATION: POPULATION GROWTH

Suppose that a colony of bacteria grows at a rate proportional to its size (law of natural growth) and that the population of the colony doubles in 8.5 hours. Find the population of the colony at time t if the initial population is 1200 bacteria.

A city population is 120000 and experiences a continuous relative growth of 3% in the population over 10 years. What is the population at the end of the 10 year period?

The following statements are equivalent:

- y has a growth rate proportional to its size.
- \bullet y has a constant *relative* growth rate.
- \bullet y grows exponentially.
- y has a fixed "doubling time".

APPLICATIONS: EXPONENTIAL DECAY

1. Suppose that the amount of a drug in the bloodstream decays exponentially with a half-life of 0.5 hours. If the amount of the drug starts at 180 mg, how much of the drug remains 2 hours later? How much remains 15 minutes later? At what time T will there be exactly 50 mg of the drug in the bloodstream?

2. The level of carbon-14 decays exponentially and is used to date old organic objects. The half-life of carbon-14 is known to be 5730 years. If a wooden object contains 17.1% of the level of carbon-14 as a living tree does, how old is the object?

- 3. A pond has water volume 200000 m³. The pond is fed by a stream at a rate of 1000 m³/day, and is drained at the same rate by a stream on the opposite side so that the volume remains constant. Suppose that at time t = 0, 4kg of a pollutant is spilled into the pond. Assume that the pollutant mixes uniformly around the pond and drains with the outflowing stream.
 - (a) Write down P(t), the amount of pollution remaining after t days.
 - (b) How many days before the level of pollution in the pond is reduced to 0.1kg?

LAW OF COOLING

Consider an object with temperature T(t) that is exposed to an environment with contant temperature A. The temperature may be modeled with Newton's Law of Cooling.

$$\begin{cases} \frac{dT}{dt} = k(A - T) \\ T(0) = T_0 \end{cases}$$

(EXAMPLES)

1. A hot cake is removed from the oven and placed in a room of temperature 70° F. If the temperature of the cake follows $\frac{dT}{dt} = 0.92(70-T)$ and the inital temperature of the cake is 200° F, find the temperature at time t=2 hours.

2. A hot coffee at 80°C is left in a room at 20°C. After 10 minutes the coffee is 76°C. How long until the coffee cools to 72°C?

(EXERCISES)

- 1. It is determined that an invasive species of fish grows with a constant relative growth rate and that the population doubles in 3 years
 - (a) How long does it take to increase by a factor of 10?
 - (b) What is the value of the relative growth rate? (Units will be fish/year/fish.)
- 2. A certain radioactive material has half-life of 2.5 years.
 - (a) How long until a mass of 300 grams of this material decays to 5 gram?
 - (b) What is the growth rate at the time it reaches mass 5 gram? (Units will be grams/year.)
- 3. Let v(t) be the velocity of a falling object of mass 1 kg. A simple model for the velocity is the equation v' = 9.8 0.1v.
 - (In this model, 9.8 is the acceleration due to gravity, and 0.1v is the drag force that the object experiences as it falls.)
 - (a) Find a formula for v(t) if v(0) = 0. (Hint: Change variables. Let u(t) = 9.8 0.1v(t).)
 - (b) Determine what happens to the velocity as $t \to \infty$.