Proyecto Final: Estación de Monitoreo Ambiental Basada en Raspberry Pi, entrega 1 Integrantes:

Christian Mateo Almeida Gómez Fabián De Jesús Pérez Salazar

1. Enunciado del Problema

El acceso a zonas con riesgo biológico, tóxico o con potencial de explosión representa un peligro significativo para la vida humana. En estos entornos, la detección temprana de gases peligrosos, humo, fuego o condiciones extremas de temperatura resulta esencial.

Se plantea el desarrollo de una estación de monitoreo ambiental fija basada en Linux embebido (Raspberry Pi), capaz de detectar, registrar y transmitir datos ambientales en tiempo real sobre gases, temperatura, humedad y partículas, además de activar alarmas o sistemas de ventilación de emergencia cuando se superen umbrales críticos.

2. Descripción General del Sistema

El sistema se compone de los siguientes elementos:

- Nodo de monitoreo fijo basado en Raspberry Pi 3 Modelo B (Ubuntu Linux).
- **Sensores** conectados por GPIO/I²C/UART, encargados de medir gases tóxicos (MQ-2, MQ-135), temperatura y humedad (DHT11) y flama (KY-026).
- Actuadores (buzzer, luz, servomotor, válvula, ventilación) controlados por relés o puente H.
- Alimentación redundante mediante fuente principal de 9 V y batería de respaldo.
- Comunicación remota vía Wi-Fi o MQTT para transmisión de datos y alarmas.
- Software en C sobre Linux, con estructura modular, comunicación por nodos y lógica de control basada en condiciones AND/OR.

3. Diagramas del Sistema

3.1 Arquitectura de Hardware El diagrama de hardware muestra la conexión física entre los sensores, la Raspberry Pi, los actuadores, el sistema de alimentación y los elementos de control (relé, puente H, divisores de tensión).

3.2 Arquitectura de Software El diagrama de software representa el flujo lógico en Linux: sensores digitales procesados en GPIO → condiciones lógicas (OR, AND, IF) → activación de actuadores mediante salidas GPIO.

4. Requerimientos del Sistema

4.1 Requerimientos Funcionales (RF)

ID	DESCRIPCIÓN	CRITERIO DE ACEPTACIÓN
RF- 01	El sistema deberá medir concentración de gases inflamables (MQ-2) y tóxicos (MQ-135) cada 5 s.	Se reciben datos válidos cada ≤5 s en consola o base de datos.
RF- 02	El sistema deberá medir temperatura y humedad mediante el sensor DHT11.	Lecturas correctas en rango 0–50 °C y 20–90 % HR.
RF- 03	Si la temperatura supera los 50 °C o se detecta flama, se deberá activar la válvula de aspersores.	Relé de válvula activo <1 s después de detección.
RF- 04	Si se detectan gases peligrosos (MQ-2 o MQ-135), se deberá activar el sistema de ventilación.	Ventilador encendido durante el evento de alerta.
RF- 05	El sistema deberá emitir alarma sonora y visual ante cualquier condición de riesgo.	Buzzer y luz encendidos ante detección de gas o fuego.
RF- 06	Los datos de sensores deberán transmitirse vía MQTT a un broker remoto.	Se visualizan lecturas en servidor MQTT o dashboard.
RF- 07	El sistema deberá continuar operando al menos 15 min con batería de respaldo.	Sensores y alertas operativos tras desconexión de alimentación principal.

4.2 Requerimientos No Funcionales (RNF)

ID	DESCRIPCIÓN	CRITERIO DE ACEPTACIÓN
RNF-01	El sistema debe ejecutarse bajo Linux Ubuntu en Raspberry Pi 3.	Sistema operativo instalado y estable.

RNF-02	El código deberá estar implementado en lenguaje C con compilación nativa.	Proyecto compilable sin errores en GCC.
RNF-03	Tiempo de respuesta máximo 1 s ante condiciones críticas.	Delay ≤ 1 s medido con timestamp en logs.
RNF-04	El sistema deberá registrar los datos localmente (CSV o SQLite).	Archivo de registro actualizado periódicamente.
RNF-05	El diseño deberá ser modular y escalable para nuevos sensores.	Nuevos sensores integrables sin modificar el núcleo.

5. Plan de Verificación

TEST ID	REQ ID	OBJETIVO	PROCEDIMIENTO	RESULTADO ESPERADO	PRIORIDAD
TC-01	RF-01	Verificar lectura de gases MQ-2 y MQ-135	Encender sistema, observar datos en consola cada 5 s	Lecturas válidas con valores distintos de cero	Alta
TC-02	RF-03	Activar válvula al detectar flama o temperatura > 50 °C	Aplicar calor con soplete y medir tiempo de reacción	Relé activa en < 1 s	Alta
TC-03	RF-05	Validar alarma sonora y visual	Inyectar señal de gas MQ-2	Buzzer y LED encendidos	Alta
TC-04	RF-06	Verificar envío MQTT	Observar mensajes publicados en broker remoto	Datos recibidos con timestamp correcto	Media
TC-05	RNF-07	Validar autonomía	Desconectar fuente principal y medir tiempo operativo	Sistema activo ≥ 15 min	Media

6. Justificación según la Rúbrica

Criterio	Commitmients
Criterio	Cumplimiento
Motivación y problema real	Riesgo biológico y tóxico claramente identificado con solución tecnológica justificada.
Cohesión del sistema	Hardware, software, flujo de datos y control integrados coherentemente.
Requerimientos medibles y trazables	Todos los RF/RNF son cuantificables y enlazados con criterios de prueba.
Diagramas técnicos claros	Incluyen conexión física (hardware) y lógica (software).
Plan de verificación inicial	Se definen casos de prueba trazables con IDs y criterios de éxito.