Logică pentru Informatică - Subiectul 4 (23.11.2018)

Nume, prenume: An grupă:	Se va completa de către student	
An grupă:	Nume, prenume:	
Till, Stapa.	An, grupă:	

Începeți rezolvarea pe această pagină. Numerotați toate paginile.

Se va completa de		
profesorul corector		
Subject	Punctaj	
1		
2		
3		
4		
5		
Total		

Reguli de inferență pentru deducția naturală:

$$\wedge i \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \varphi'}{\Gamma \vdash (\varphi \land \varphi')}, \qquad \wedge e_1 \frac{\Gamma \vdash (\varphi \land \varphi')}{\Gamma \vdash \varphi}, \qquad \wedge e_2 \frac{\Gamma \vdash (\varphi \land \varphi')}{\Gamma \vdash \varphi'}, \qquad \rightarrow e \frac{\Gamma \vdash (\varphi \rightarrow \varphi') \quad \Gamma \vdash \varphi}{\Gamma \vdash \varphi'}, \qquad \rightarrow i \frac{\Gamma, \varphi \vdash \varphi'}{\Gamma \vdash \varphi'}, \qquad \forall i_1 \frac{\Gamma \vdash \varphi_1}{\Gamma \vdash (\varphi \land \varphi')}, \qquad \forall i_2 \frac{\Gamma \vdash \varphi_2}{\Gamma \vdash (\varphi_1 \lor \varphi_2)}, \qquad \forall e \frac{\Gamma \vdash (\varphi \land \varphi')}{\Gamma \vdash \varphi'}, \qquad \neg e \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi'}, \qquad \neg e \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi}, \qquad \Box e \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi},$$

- 1. (5p). Enunțați teorema care stabilește legătura dintre FNC și FND.
- 2. (10p). Scrieți o formulă din LP care modelează următoarea afirmație: sunt student dacă și numai dacă merg la ore, iar eu merg la ore.
- 3. (10p). Arătați că, oricum am alege o formulă $\varphi \in LP$, formula $\neg \varphi$ este satisfiabilă dacă și numai dacă $\varphi \models \bot$.
- 4. (10p). Arătați, folosind metoda rezoluției și algoritmul lui Tseitin, că $p \land q \models p$.
- 5. (10p). Dați o demonstrație formală pentru secvența $p \to q$, $\neg r \vdash p \to (q \land \neg r)$, folosind deducția naturală.