The Link Layer and Local Area Networks: Multiple Access Protocol

Instructor: Dr. Sunho Lim (Ph.D., Assistant Professor)

Lecture 05

sunho.lim@ttu.edu

Adapted partially from Computer Networking – A Top-Down Approach, by J. F. Kurose and K. W. Ross, 7th Editions, Addison Wesley, and Mobile Communications, Jochen Schiller.

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

1

Overview: Medium Access Control (MAC) Protocol

- For example,
 - Crossing intersection
 - How to control vehicles without collision?
 - What is shared?
- MAC protocol:
 - Decide when competing nodes may access the shared medium
- In the event of collision?
 - A MAC protocol deals with through some contention resolution algorithm
 - For example,
 - Resending the packet later at a randomly selected time
 - Simply discard the packet and leave the retransmission to upper layer

Multiple Access Protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if a node receives two or more signals at the same time
- multiple access protocol
 - distributed algorithm that determines how nodes share channel
 - . i.e., determine when node can transmit
 - communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

5

Ideal Multiple Access Protocol

- broadcast channel of rate R bps
 - I. when one node wants to transmit, it can send at rate R
 - 2. when M nodes want to transmit, each can send at average rate R/M
 - 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
 - 4. simple

MAC Protocols: a taxonomy

Three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- random access
 - channel not divided, allow collisions
 - "recover" from collisions
- "taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

7

Channel Partitioning MAC Protocols:TDMA

- TDMA: time division multiple access
 - access to channel in "rounds"
 - each station gets fixed length slot (length = pkt trans time) in each round
 - unused slots go idle
 - no collision and perfectly fair
 - $\, \bullet \,$ a node is limited to an average rate of R/N
 - example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

Channel Partitioning MAC Protocols: FDMA

- FDMA: frequency division multiple access
 - channel spectrum divided into frequency bands
 - each station assigned fixed frequency band
 - unused transmission time in frequency bands go idle
 - no collision and perfectly fair
 - a node is limited to an average rate of R/N
 - example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

9

Random Access Protocols

- When a node has a packet to send
 - transmit at full channel data rate R
 - no a priori coordination among nodes
- two or more transmitting nodes → "collision"
 - wait a random delay before re-transmitting the frame
 - each node will choose independent random delay
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA (cont.)

pros

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

cons

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

13

CSMA (Carrier Sense Multiple Access)

- CSMA: listen before transmit:
 - if channel is sensed idle, transmit entire frame
 - if channel is sensed busy, defer transmission
 - wait a random amount of time (back off) and again sense the channel
- human analogy: don't interrupt others!
 - listen before speaking
 - node listen to the channel before transmitting, carrier sensing
 - if someone else begins talking at the same time, stop talking
 - collision detection

<u>.</u>

CSMA/CD (Collision Detection)

- CSMA/CD: carrier sensing, deferral as in CSMA
 - collisions detected within short time
 - colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
 - CSMA/CA (Collision Avoidance)

CSMA/CD (Collision Detection) (cont.)

- Why not CSMA/CD in wireless networks?
 - In wired networks,
 - The sender is the one detecting collision
 - If a collision happens somewhere in the wire, everybody will notice it
 - In wireless networks,
 - The sender can detect an idle medium, but a collision happens at the receiver
 - Most radios are half-duplex,
 - Send or receive, not simultaneously
 - Hidden terminal problem
 - Exposed terminal problem

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

19

Contention-based Medium Access: CSMA/CA

- Carrier Sense Multiple Access/ Collision Avoidance (CSMA/CA):
 - Similar to CSMA,
 - Carrier sensing:
 - First, listen to the media to determine if it is free
 - Collision avoidance:
 - Minimize chance for collision by starting (random) back-off timer, when medium is sensed free, and prior to transmission

Summary of MAC Protocols

- channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- taking turns
 - polling from central site, token passing
 - Bluetooth, Fiber Distributed Data Interface (FDDI), IBM Token Ring

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

31

IEEE 802.11

- IEEE computer society published the IEEE 802.11 wireless LAN standard
 - Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
 - http://standards.ieee.org/getieee802/download/802.11-2007.pdf
- Operated in the 2.4 GHz or 5 GHz band
- Dual modes:
 - Infrastructure mode
 - Ad-hoc mode
- Reference papers,
 - S. Choi, "Overview of Emerging IEEE 802.11 Protocols for MAC and Above," SK Telecom Telecommunications Review, Special Issue on Wireless Communications and Broadcasting Standards, November 2003
 - Youngsoo Kim, Jeonggyun Yu, Sunghyun Choi, and Kyunghun Jang, "A Novel Hidden Station Detection Mechanism in IEEE 802.11 WLAN," IEEE Communications Letters, vol. 10, no. 8, pp. 608-610, August 2006

