Brundan-Stroppel's generalised Khovanov's arc algebras

```
Family of symmetric f.d. algebras: H_m^n Family of quasi-hereditary f.d. algebras: K_m^n K_m^n = \text{q.h.} cover of H_m^n H_m^n \cong H_n^m; K_m^n \cong K_n^m \Rightarrow can assume m \leq n Direct limits give K_m^\infty, K_m^{\pm \infty}, K_\infty^\infty, these are locally unital, and has highest weight structure. Both families are positively graded cellular [BS1] K_*^* are Koszul [BS2] Khovanov categorification of Jones polynomial: H_n^n
```

Results of BS3:

```
\begin{array}{l} \mathfrak{g} = \mathfrak{gl}_{m+n} \\ \mathfrak{l} = \mathfrak{gl}_m \oplus \mathfrak{gl}_n \\ \mathfrak{p} = \mathfrak{l} + \mathfrak{b} \\ \mathcal{O} = \underline{\text{parabolic}} \text{ analogue of BGG category associated to Hermitian pair } (\mathfrak{g}, \mathfrak{l}) \\ \mathcal{O}(m,n) = \underline{\text{category of f.g. }} \mathfrak{g}\text{-modules} \\ & \text{locally finite over } \mathfrak{p} \\ & \text{semisimple over } \mathfrak{h} \\ & \text{with weight in } \mathbb{Z}\epsilon_1 \oplus \cdots \oplus \mathbb{Z}\epsilon_{m+n} \\ = \bigoplus \text{integral blocks of } \mathcal{O} \end{array}
```

Previous works of Stroppel: K_m^n -fdmod \cong PerverseSheaves $(Gr(m, m+n)) \cong \mathcal{O}_0$

```
Construct weights set = \Lambda(m,n) (m ups, n downs)
Construct blocks set = \Lambda(m,n)/\sim (equivalence given by permutation of arrows)
(Note: \Gamma is principal block \Rightarrow K_{\Gamma} \cong K_{m}^{n})
Define K(m,n) = \bigoplus_{\Gamma \in \Lambda(m,n)/\sim} K_{\Gamma}
```

(Main) Theorem

$$\mathcal{O}(m,n) \stackrel{\sim}{\longrightarrow} K(m,n)$$
-fdmod simples $\mathcal{L}(\lambda) \mapsto \text{simples } L(\lambda)$

restricting to principal block:

$$\mathcal{O} \stackrel{\sim}{\to} K_m^n$$
-fdmod

The followings are some important theorems proved along the way:

Let
$$I$$
 be indexing set = $\{o+1, o+2, \dots\}$
 $I^+ = I \cup (I+1)$ (e.g. $o = 0, I = I^+$) need $0 \le m, n \le |I| + 1$
 U = universal enveloping algebra of GL_{I^+}

Theorem $K_0(K(m, n)\text{-Mod}) \cong \bigwedge^m V \otimes \bigwedge^n V \cong K_0(\mathcal{O}(m, n))$ as \dot{U} -module

$$P(m,n) = \text{set of weights with non-zero multiplicity in } \bigwedge^m V \otimes \bigwedge^n V$$

 $\Lambda = \Lambda_{o+m} + \Lambda_{o+n} = \text{unique max. elt. in } P(m,n) \text{ wrt dominance order}$
 $\Rightarrow \text{ any weight has form } \Gamma = \Lambda - \alpha$

Fix
$$\Gamma = \Lambda - \alpha$$

Define $T_{\alpha}^{\Lambda} \in K_{\Gamma}$ -Mod and $\mathcal{T}_{\alpha}^{\Lambda} \in \mathcal{O}_{\Gamma}$

To prove equivalence of categories above, is equivalent to, showing $E_{\alpha}^{\Lambda} := \operatorname{End}_{K_{\Gamma}}(T_{\alpha}^{\Lambda})^{op} \cong \operatorname{End}_{\mathfrak{g}}(\mathcal{T}_{\alpha}^{\Lambda})$

Theorem Identify K_{α}^{Λ} to K_{Γ} or 0 (depends on situation) E_{α}^{Λ} Morita to $H_{\alpha}^{\Lambda} = eK_{\alpha}^{\Lambda}e$ some idem. e KLR-algebra $R_{\alpha}^{\Lambda} \stackrel{\sim}{\longrightarrow} E_{\alpha}^{\Lambda}$ as graded algebras

Let $p \le q$ integers (typically p = o + m, q = o + n)

 H_d = degenerate affine Hecke algebra

 $H_d^{p,q} = H_d/\langle (x_1 - p)(x_1 - q)\rangle$

= degenerate cyclotomic Hecke algebra of level 2

= degenerate cyclotomic Hecke algebra (Ariki-Koike algebra) of G(2,1,d)

Theorem For some idem. e_{α} , there is a unique algebra isomorphism $\sigma: e_{\alpha}H_d^{p,q} \xrightarrow{\sim} R_{\alpha}^{\Lambda}$

Applications: Basis of Specht modules, Khovanov-Lauda conjecture on level 2

Results of BS4:

$$G = GL(m|n)$$
 General linear supergroup $\mathcal{F} \oplus \Pi \mathcal{F} = \text{category of all f.d. } G\text{-modules}$ $M \in \mathcal{F} = \mathcal{F}(m|n) \text{ if } M = M_+$ $M \in \Pi \mathcal{F} \text{ if } M = M_-$

Construct weight set = $\Lambda(m|n)$ Construct block set = $\Lambda(m|n)/\sim$ Define $K(m|n) = \bigoplus_{\Gamma \in \Lambda(m|n)/\sim} K_{\Gamma}$

(Main) Theorem

$$\mathcal{F}(m|n) \xrightarrow{\sim} K(m|n) \text{ -fdmod}$$
 simples $\mathcal{L}(\lambda) \mapsto \text{ simples } L(\lambda)$ Kac (Verma) modules $\mathcal{V}(\lambda) \mapsto \text{ cell modules } \Delta(\lambda)$ PIMs $\mathcal{P}(\lambda) \mapsto \text{ PIMs } P(\lambda)$

Important theorems proved/used along the way of proving the main one:

 $R_d^{p,q}={\rm cyclotomic~KLR}\text{-algebra, identified with }e_{d,q,p}H_d^{p,q}$ as in BS3

Theorem

If $d \leq \min(m, n)$, then $R_d^{p,q} = H_d^{p,q}$ and as algebras, we have

$$\Phi: H_d^{p,q} \xrightarrow{\sim} \operatorname{End}_G(\mathcal{V}(\lambda_{p,q}) \otimes V^{\otimes d})^{op}$$

Theorem (Super Schur-Weyl duality)

For any $d \geq 0$, Φ (above) is surjective

$$R^{p,q} = \bigoplus_{d \ge 0} R_d^{p,q}$$

Generalised Khovanov algebra $K^{p,q} := eK(m|n)e$ some (non-central) idem e

Theorem $K^{p,q}$ Morita to $R^{p,q}$

Results of BS5

 $B_{r,s}(\delta)$ = walled Brauer algebra over \mathbb{C} , $\delta \in \mathbb{Z}$

Construct weight set Λ , using δ ($\Lambda \leftrightarrow$ set of all bipartitions) Construct block set Λ / \sim $\leadsto K(\delta) := \bigoplus_{\Gamma \in \Lambda / \sim} K_{\Gamma}$

Define
$$\Lambda_{r,s} := \left\{ \lambda \in \Lambda \mid |\lambda^{\mathcal{L}}| = r - t \text{ and } |\lambda^{\mathcal{R}}| = s - t \text{ for } 0 \leq t \leq \min(r,s) \right\}$$

$$\dot{\Lambda}_{r,s} := \left\{ \begin{array}{l} \Lambda_{r,s} & \text{if } \delta \neq 0 \text{ or } r \neq s \text{ or } r = s = 0, \\ \Lambda_{r,s} \setminus \{(\varnothing,\varnothing)\} & \text{if } \delta = 0 \text{ and } r = s > 0. \end{array} \right.$$
Idem. $e_{r,s} := \sum_{\lambda \in \dot{\Lambda}_{r,s}} e_{\lambda}$

(Main) Theorem $B_{r,s}(\delta)$ Morita to $e_{r,s}K(\delta)e_{r,s}$

Corollary: $B_{r,s}(\delta)$ is Koszul for $\delta \neq 0$