第7章 存储管理

- 7.1内存管理功能
- 7.2物理内存管理
- 7.3虚拟内存管理
- 7.4 Intel CPU与Linux内存管理

7.4 Intel CPU与Linux内存管理

- 7.4.1 Intel CPU物理结构
- 7.4.2 Intel CPU段机制
- 7.4.3 Linux页面机制
- ______7.4.4 Linux对段的支持

《操作系统原理》

7.4.2 Intel CPU 段机制

教师: 苏曙光

华中科技大学软件学院

■ 描述符(Descriptor)

◆ 段基址: 32位(段基址1+段基址2)

◆ 段界限: 20位(段界限1+段界限2)

3124		1916	230	150		
段基址1	属性	段界限2	段基址2	段界限1		

7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
G	D/B	0	AVL		段界	限2		Р	DI	PL	S		TY	PE	

段的粒度:G=0,段长以字节计量;

G=1以页面4KB计量

描) 类型:描述符类型 ,扩展,访 及组合

- ◆ P: Present, 是否在内存中【1在】
- ◆ G: 段的粒度(段长计量单位)
 - G=0,字节(段最长1M)
 - G=1,页面4KB(段最长4G)
- ◆ DPL: Descriptor Privilege Level 描述符特权级别
- ◆ S: 描述符的类型
 - 【数据段/代码段S=1】
 - 【系统描述符/门描述符S=0】
- ◆ TYPE: 描述段的存取类型或类型(与S有关)
 - 【读,写,扩展,访问标志等及其组合】

TYPE 值	数据段和代码段描述符 S=1	系统段和门描述符 S=0	- 「进入MOOC课堂
0	只读	<未定义>	
1	只读, 已访问	可用 286TSS	_
2	读/写	LDT	_
3	读/写,已访问	忙的 286TSS	_
4	只读, 向下扩展	286 调用门	_
5	只读, 向下扩展, 已访问	任务门	_
6	读/写, 向下扩展	286 中断门	_
7	读/写,向下扩展,已访问	286 陷阱门	_
8	只执行	<未定义>	_
9	只执行、已访问	可用 386TSS	_
A	执行/读	<未定义>	_
В	执行/读、已访问	忙的 386TSS	_
С	只执行、一致码段	386 调用门	
D	只执行、一致码段、已访问	<未定义>	
Е	执行/读、一致码段	386 中断门	_
F	执行/读、一致码段、已访问	386 陷阱门	
平中件	又入子。小咱儿老师,《18	F尔尔尔耳/ NO	JC课程组版权所有

描述符的数据结构

```
typedef struct Descriptor
  unsigned int base24_31
                                         //基地址的高8位
  unsigned int g
                                         //段长单位, 0:字节, 1:4K
  unsigned int d b
                                    :1:1:4:1:1:4:1:1:4:
  unsigned int unused
  unsigned int avl
  unsigned int seg_limit_16_19
                                          //段界限高4位
  unsigned int p
  unsigned int dpl
unsigned int s
  unsigned int type
  unsigned int base_0_23
unsigned int seg_limit_0_15
                                :24
                                          //基地址的低24位
                                   :16
                                          //段界限低16位
```

网址: www.icourses.cn, 主页搜索"苏曙光"即可进入MOOC课堂描述符表(Descriptor Table)

- ◆ 描述符表
 - 存放描述符的数组
 - 长度:8字节的整数倍。
- ◆ 描述符表类型
 - 全局描述符表GDT: Global Descriptor Table
 - 局部描述符表LDT: Local Descriptor Table
 - 中断描述符表IDT: Interrupt Descriptor Table

网址: www.icourses.cn, 主页搜索"苏曙光"即可进入MOOC课堂描述符表(Descriptor Table)

- ◆ 全局描述符表GDT: Global Descriptor Table
 - 包含所有进程可用的段的描述符。系统仅1个GDT。
- ◆ 局部描述符表LDT: Local Descriptor Table
 - 包含与特定进程有关的描述符,每个进程有自己的LDT。
- ◆ 中断描述符表IDT: Interrupt Descriptor Table
 - 包含中断服务程序段的描述符(中断门描述符)
 - 类似中断向量表

网址: www.icourses.cn, 主页搜索"苏曙光"即可进入MOOC课堂 选择子(Selector)

- ◆ 选择子用于选择GDT/LDT中的某个描述符。
 - ◆ 存放在段寄存器中:高13位是整数索引。
- ◆ 构成
 - 索引域 (INDEX):13位:给出<mark>段描述符</mark>在GDT或LDT中的位置。
 - TI域 (Table Indicator):1位:GDT(0)或LDT(1)
 - 特权级别域 (Request Privilege Level): 2位

网址: www.icourses.cn, 主页搜索"苏曙光"即可进入MOOC课堂 选择子(Selector)

- ◆ 索引域 (INDEX)
 - 给出<mark>段描述符在GDT或LDT中的位置。</mark>
- ◆ TI域 (Table Indicator)
 - TI=1,从LDT中选择相应描述符,
 - TI=0,从GDT中选择描述符。
- ◆ 特权级别域 (Request Privilege Level)
 - 请求者最低特权级的限制。
 - 只有请求者特权级高于或等于DPL,对应段才能被存取,实现段的保护。

例:LDT基址0012 0000H, GDT基址00100000H, CS=1007H

- ①请求的特权级是多少?
- ②目标段的描述符位于GDT中还是LDT中?
- ③目标段的描述符的基地址是多少?

解:(CS)=1007H=0001 0000 0000 0111B

① RPL=3,申请的特权级为3

② TI=1, 描述符位于LDT中

③ 描述符相对于LDT基址的偏移量为 0001 0000 0000 0B×8=512 ×8=4096=1000H 段描述符的地址为

0012 0000H+1000H=00121000H

■ 把逻辑地址转换到线性地址(32位,4G)

