

Thiago A. S. Pardo Leandro C. Cintra M.C.F. de Oliveira Moacir Ponti Jr.

Exemplos de Busca

Registros de tamanho fixo

- 1. Recupere os dados do registro relativo ao João
- 2. Recupere os dados do registro relativo ao Pedro

Exemplos de Busca

Registros de tamanho variável

```
M A R I A | R U A b 1 | S A O b C A R L O S | # J O A O | R U A b A | R I O b C L A R O | # P E D R O | R U A b X V | S A O b C A R L O S | # A N T O N I A | R U A b X V b D E b M A I O | I B A T E | # A N A | R U A b A U G U S T O b P A I V A | I B A T E | #
```

- 3. Recupere os dados do registro relativo ao João
- 4. Recupere os dados do registro relativo ao Pedro

Ordenação

- Facilita a busca
- Pode ajudar a diminuir o número de acessos a disco

Exemplo de Busca

Registros de tamanho fixo

- 5. Recupere os dados do registro relativo ao João
- 6. Recupere os dados do registro relativo ao Pedro

Busca Sequencial e Binária

- Busca sequencial
 - recupera cada registro do arquivo, verificando se os valores dos atributos satisfazem à condição de seleção
- Busca binária
 - recupera registros quando a condição de seleção envolve uma comparação de igualdade no atributo que determina a ordenação do arquivo

Custos: Comparações

- n: número de registros que são comparados
- todos os registros são varridos (pior caso)
- complexidade: O(n)

Cbusca_binária =
$$log_2(n) + 1$$

- n: número de registros que são comparados
- complexidade: O(log n)

Custos: Acessos a Disco

- b: número de blocos que contêm os registros
- todos os blocos são varridos

Cbusca_binária =
$$log_2(b) + \lceil s/bfr \rceil - 1$$

- log2(b): custo para localizar o primeiro registro
- [s/bfr]: blocos ocupados pelos registros que satisfazem à condição de seleção
- 1: custo para recuperar o primeiro registro

- Arquivo completo cabe em RAM
- Estratégia
 - leitura de todos os registros armazenados em disco para a RAM
 - ordenação dos registros em RAM
 - escolha do campo base para ordenação
 - uso de um método de ordenação
 - escrita de todos os registros armazenados em RAM para o disco

Arquivo Ordenado

Registros de tamanho fixo

```
A
N
A
I
R
U
A
b
A
U
G
U
S
T
O
B
A
I
I
B
A
T
E
I
b
b

A
N
T
O
N
I
A
I
R
U
A
D
A
D
A
D
B
A
I
E
I
B
A
T
E
I
B
A
T
E
I
B
A
T
E
I
B
A
T
E
I
B
A
T
E
I
B
A
T
E
I
B
A
T
E
I
B
A
T
E
I
B
A
T
E
I
B
A
D
B
A
D
B
A
D
B
A
D
B
A
D
B
A
D
B
A
D
B
B
D
D
D
```

ordenação baseada em um determinado campo, usando suas chaves

Chave (KEY)

- Está associada a um registro e permite a sua recuperação
- Chave primária
 - identifica univocamente um registro
 - não tem repetição
- Chave secundária
 - não identifica univocamente um registro
 - tem repetição

Forma Canônica da Chave

- Uma única representação para uma determinada chave
- Exemplo
 - "Ana", "ANA", ou "ana" devem indicar o mesmo registro
 - Forma canônica: todos os caracteres em letras maiúsculas → ANA

- Arquivo completo não cabe em RAM
- Estratégia: ordenação por chave
 - conhecida como keysorting
 - armazena e ordena em RAM somente
 - chaves para ordenação
 - RRNs ou byte offsets dos registros

Ordenação por Chave (Keysorting)

1. Leitura completa do arquivo de dados, trazendo para a RAM a chave e o RRN (ou byte offset) dos registros

	chave	RRN														
МА	RIA	0	Μ	Α	R	Ι	Α		R	U	Α	b	1	Ī	S	
J O	АО	1	J	0	Α	0		R	U	Α	b	Α	I	R	Ι	
P E	D R O	2	Р	Ε	D	R	0		R	U	Α	b	Χ	٧		
A N	TONIA	3	Α	N	Т	0	N	Ι	Α		R	U	Α	b	X	
A N	Α	4	Α	N	Α	1	R	U	Α	b	Α	U	G	U	S	
	vetor em RAM				ar	qui	VO (des	orde	ena	do	em	dis	СО		

Ordenação por Chave (Keysorting)

- 2. Ordenação do vetor em RAM
 - uso de um método de ordenação

chave	RRN	chave	RRN
M A R I A	0	A N A	4
J O A O	1	ANTONIA	3
P E D R O	2	J O A O	1
A N T O N I A	3	MARIA	0
A N A	4	PEDRO	2

vetor ordenado em RAM

vetor desordenado em RAM

Ordenação por Chave (Keysorting)

- 3. Para cada registro do vetor em RAM
 - obtém o RRN
 - identifica o byte offset do registro em disco (byte offset = RRN * tamRegistro)
 - lê o registro do arquivo em disco
 - arquivo de entrada desordenado
 - escreve o registro de forma ordenada em outro arquivo
 - arquivo de saída ordenado

Ordenação por Chave (Keysorting)

Arquivo ordenado em disco

Ordenação

Perguntas

- e se a busca for feita por outro campo que não seja o campo ordenado?
- o que acontece quando BEATRIZ é inserida?

Pensando em Índices

- Por que realizar a tarefa custosa de escrever em disco a versão ordenada do arquivo?
- Solução melhor
 - grava-se a ordenação da chave em um novo arquivo (arquivo de índice)
 - realiza-se busca binária no arquivo de índice, e recupera-se o RRN ou byte offset
 - realiza-se acesso direto no arquivo original (arquivo de dados)