Résumé maths bac M. belabbadi

> Cardinal d'un ensemble:

Soit E un ensemble fini

Le **cardinal** de E est le nombre d'éléments de E , on le note $\operatorname{{\it card}} {\bf \it E}$

Soit A et B deux parties d'un ensemble fini $Card\left(A\cup B\right)=CardA+CardB-Card\left(A\cap B\right)$

Principe fondamental du dénombrement:

Soit une expérience peut être réalisée en p choix $\left(p\in\mathbb{N}^*\right)$ Si le premier choix peut être réalisé en n_1 façons différentes et le second choix peut être réalisé en n_2 façons différentes

•

et le $\,p$ -ème choix peut être réalisé en $\,n_p\,$ façons différentes alors le nombre façons différentes de réaliser cette expérience est **le produit :** $n_1 \times n_2 \times n_3 \times ... \times n_p$

ightharpoonup Les nombres : n!, A_n^p et C_n^p

$n! = n \times (n-1) \times (n-2) \times \times 2 \times 1$	
$A_n^p = \frac{n!}{(n-p)!}$	$C_n^p = \frac{n!}{p!(n-p)!}$
$C_n^{p-1} + C_n^p = C_{n+1}^p$	$C_n^p = C_n^{n-p}$
$C_n^n = 1$	$C_n^{n-1} = n$

> Types de tirages:

On tire $\,p\,$ objets parmi $\,n\,$ objets

Type de tirage:	Nombre de tirages possible est :	L'ordre :
simultané	$C_n^p \qquad (p \le n)$	n'a pas d'importance
Successif avec remise	n^p	est important
Successif sans remise	$A_n^p \qquad \left(p \le n\right)$	est important

Résumé maths bac M. belabbadi

> Probabilités d'un ensemble fini:

La probabilité d'un événement A est la somme des probabilités des événements élémentaires qui le composent, on la note $p\left(A\right)$

> Propriétés:

Soit Ω l'univers associé à une expérience aléatoire

L'événement:	Probabilités:
A	$0 \le p(A) \le 1$
\overline{A}	$p\left(\overline{A}\right) = 1 - p\left(A\right)$
$A \cup B$	$p(A \cup B) = p(A) + p(B) - p(A \cap B)$
	$p(A \cup B) = p(A) + p(B)$
	(si A et B sont incompatibles)

S'il y a **équiprobabilité** alors pour tout événement A de Ω , on a :

$$p\left(A\right) = \frac{cardA}{card\,\Omega} = \frac{nombre\ des\ cas\ favorables}{nombre\ des\ cas\ possibles}$$

> Loi d'une variable de probabilité aléatoire:

Soit Ω l'univers associé à une expérience aléatoire

Pour définir la loi de probabilité de la variable X sur Ω on suit les étapes suivantes :

- 1) On détermine $X\left(\Omega\right)=\left\{ x_{1};x_{2};x_{3};...;x_{n}\right\}$ l'ensemble des valeurs prises par X
- 2) On calcule pour chaque valeur x_i sa probabilité $p_i=p\left(X=x_i\right)$ avec $i\in\left\{1;2;...;n\right\}$
- 3) On résume la loi de probabilité de la variable X par le tableau suivant :

x_i	x_1	x_2	x_3	•••	x_n
$p\left(X=x_{i}\right)$	p_1	p_2	p_3	•••	p_{n}

Probabilité conditionnelle :

Soit A et B deux événements liés à une même expérience aléatoire tel que: $p\left(A\right)\neq0$ La probabilité de l'événement B sachant que A est réalisé est le nombre :

$$p_{A}\left(B\right) = p\left(\cancel{B_{A}}\right) = \frac{p\left(A \cap B\right)}{p\left(A\right)}$$

> Evénements indépendants :

Soit A et B deux événements liés à une même expérience aléatoire

$$A \text{ et } B \text{ sont indépendants } \Leftrightarrow p(A \cap B) = p(A) \times p(B)$$

M. belabbadi

> L'espérance, la variance et l'écart - type d'une variable aléatoire:

Soit X une variable aléatoire dont la loi de probabilité est définie par le tableau suivant:

x_i	x_1	x_2	x_3	 x_n
$p\left(X=x_{i}\right)$	p_1	p_2	p_3	 p_{n}

L'espérance mathématique ${\it de la variable} \ {\it X}$	$E\left(X\right) = x_1 \times p_1 + x_2 \times p_2 + x_3 \times p_3 + \ldots + x_n \times p_n$
La variance de la variable $ X $	$V(X) = E(X^2) - [E(X)]^2$
L'écart -type de la variable X	$\sigma\left(X\right) = \sqrt{V\left(X\right)}$

> Epreuve répétée :

Soit p la probabilité d'un événement A, lors d'une expérience aléatoire si on répète n fois l'épreuve dans des conditions identiques alors la probabilité de réalisation de A exactement k fois durant les n épreuves est :

$$C_n^k (p)^k (1-p)^{n-k}$$
 $(k \le n)$

> Loi binomiale:

Soit p la probabilité d'un événement A, lors d'une expérience aléatoire on répète n fois l'épreuve dans des conditions identiques si la variable aléatoire X, égale au nombre de réalisation de A durant les n épreuves alors la loi de probabilité de la variable X est donnée par :

$$\forall k \in \left\{0; 1; 2; ...; n\right\} \qquad \qquad p\left(X = k\right) = C_n^k \times p^k \times \left(1 - p\right)^{n - k}$$

On dit que la variable X suit une **loi binomiale** de paramètres n et p et on a

$$E\left(X\right) = n \times p \quad \text{et } V\left(X\right) = np\left(1-p\right)$$