UNIT-II

Combinational Logic System

Lecture 15
Prepared By:
Dr.Krishan Arora
Assistant Professor and Head

Location of Minterms

Adjacent terms in 3-variable K map.

(a) Binary notation

(b) Decimal notation

Three Variable Maps

• A three variable Karnaugh Map is shown

below:

	yz=00	yz=01	yz=11	yz=10
x=0	$\mathbf{m_0}$	\mathbf{m}_1	m_3	\mathbf{m}_2
x=1	m_4	\mathbf{m}_{5}	\mathbf{m}_7	\mathbf{m}_{6}

Where each minterm corresponds to the product

terms below

V:	yz=00	yz=01	yz=11	yz=10
x=0	$ \overline{x}$ \overline{y} \overline{z}	$ \overline{x}$ \overline{y} z	$-\frac{1}{x}yz$	-xyz
x=1	$x \overline{y} \overline{z}$	$x \dot{y} z$	хух	x y z

• Note that if the binary value for an index differs in one bit position, the minterms are adjacent on the Karnaugh Map

Combining Squares Example

• Example: Let $F = \sum m(2,3,6,7)$

\mathbf{F}	yz=00	yz=01	yz=11	yz=10
x=0			1	1
x=1			1	1

• Applying the Minimization Theorem three times:

$$F(x,y,z) = x y z + x y z + x y z + x y z$$

$$= yz + yz$$

$$= y$$

• Thus the four terms that form a 2×2 square correspond to the term "y".

K Map Example

K-map of F(a,b,c) = $\sum m(1,3,5) = \prod M(0,2,4,6,7)$

\	RC.	
bc a	0	1
00	0 0	0 4
01	1	1 5
11	1 3	0 7
10	0 2	0 6

Karnaugh Map of $F(a, b, c) = \sum m(1, 3, 5) = \prod M(0, 2, 4, 6, 7)$

Chap 5 C-H 5

More Than Two Minimum Solutions

• $F = \sum m(0,1,2,5,6,7)$

Chap 5 C-H 6

4-Variable K Map

- Each minterm is adjacent to 4 terms with which it can combine.
 - 0, 8 are adjacent squares
 - 0, 2 are adjacent squares, etc.
 - 1, 4, 13, 7 are adjacent to 5.

C-H 7

$$f(A, B, C, D) = \sum_{m(0,1,3,4,5,7,12,13,15)}$$

$$\overline{AC} + \overline{AD} + \overline{BC} + \overline{BD}$$

$$f(A,B,C,D) = \prod_{M(2,6,8,9,10,11,14)}$$

$$f(A,B,C,D) = (\overline{A}+B)(\overline{C}+D)$$

Kmap with Don't Care

In a Kmap, a don't care condition is identified by an X in the cell of the minterm(s)

In simplification, we are free to include or ignore the X's when creating our groups.

Simplification with Don't Care

 Don't care "x" is covered if it helps. Otherwise leave it along.

$$f = \sum m(1, 3, 5, 7, 9) + \sum d(6, 12, 13)$$

= $a'd + c'd$

F(A, B, C, D) = m(1, 2, 6, 7, 8, 13, 14, 15) + d(0, 3, 5, 12)

