1. First we will check that d(x,y) is, indeed, a metric. Clearly the first axiom is satisfied from the definition of the metric. If x=y then d(x,y)=d(x,x)=d(y,x)=0 which satisfies the second axiom. If $x\neq y$ then d(x,y)=1=d(y,x) so it satisfies the second axiom. Also, S=d(x,y)+d(y,z) can be one of three values: 0,1,2. If S=0 then x=y and y=z so x=z and the third axiom is satisfied. If S=1 or 2 then the triangle inequality is satisfied since d(x,z) is at most 1. So d(x,y) is, in fact, a metric.

Now we will show that all subsets of X are both open and closed, and that the only dense set is all of X.

Let $E \subseteq X$, and $x \in X$. Let $N = N_{1/2}(x)$. There are no points other than x in N, since all other points are at a distance 1 from it. Thus x cannot be a limit point of any subset of X. However, if $x \in E$ it is an interior point of E, since N does not contain any points not in E, so trivially lies completely inside E. Thus any subset E of X is open, since every point in it is an interior point. Also, since there are no limit points in X, E contains all of its limit points, and so E is also closed.

Now suppose that E is dense in X, and suppose $x \in X$, $x \notin E$. Then, since N only contains x, $E \cap N = \emptyset$. Thus E is not dense in X, a contradiction. So there must not exist an $x \in X$, $x \notin E$. So the only subset of X that is dense in X is all of X.

2. First we will show that d_0 is a metric. Let $x, y, z \in X$. Clearly, since $d(x, y) \geq 0$ and $1 + d(x, y) \geq 1$ we know that

$$\frac{d(x,y)}{1+d(x,y)} \ge 0.$$

Also, since d(x,y) = 0 iff x = y, $d_0(x,y) = 0$ iff x = y. So d_0 satisfies the first axiom. Also,

$$d_0(x,y) = \frac{d(x,y)}{1+d(x,y)} = \frac{d(y,x)}{1+d(y,x)} = d_0(x,y).$$

Thus d_0 satisfies the second axiom.

Now notice that the function f(x) = x/(1+x) is everywhere increasing on the positive reals. Thus if $x \ge y$ we know that $f(x) \ge f(y)$. Thus

$$\frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)} = \frac{d(x,y)+d(y,z)+2d(x,y)d(y,z)}{1+d(x,y)+d(y,z)+d(x,y)d(y,z)}$$

$$\geq \frac{d(x,y)+d(y,z)+d(x,y)d(y,z)}{1+d(x,y)+d(y,z)+d(x,y)d(y,z)}$$

$$\geq \frac{d(x,y)+d(y,z)+d(y,z)}{1+d(x,y)+d(y,z)}$$

$$\geq \frac{d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)}$$

$$\geq \frac{d(x,z)}{1+d(x,z)}$$

$$= d_0(x,z).$$

So d_0 satisfies the third axiom, and is thus a metric.

Let $N_{r,d}(p)$ denote a neighborhood of p with radius r under the metric d. Consider a subset E of X and a point $p \in E$. Let $M = N_{r,d}(p)$ and $M' = N_{r/(1+r),d_0}(p)$. Then if

$$x \in M \Longleftrightarrow d(x,p) < r \Longleftrightarrow \frac{d(x,p)}{1+d(x,p)} < \frac{r}{1+r} \Longleftrightarrow d_0(x,p) < \frac{r}{1+r} \Longleftrightarrow x \in M'.$$

This shows that $M \cap E = M$ if and only if $M' \cap E = M'$, since every point is in M if and only if it is in M'. Thus a point is interior under d iff it is interior under d_0 . So E is open under d iff it is open under d_0 .

We know that

$$\frac{x}{1+x} = 1 - \frac{1}{1+x}.$$

In this case, x is always nonnegative (since x = d(y, z), $y, z \in X$) so 1/(1+x) is always positive. This the above fraction will always be less than 1, regardless of how large x gets. Thus the metric space (X, d_0) is bounded.

3. $d_1(x,y)$ is not a metric, since it does not satisfy the triangle inequality. Letting x=1, y=2, z=3 we get $(1-3)^2 < (1-2)^2 + (2-3)^2$ which is clearly false.

 $d_2(x,y)$ is a metric. It obviously satisfies axioms 1 and 2. To show axiom 3 we do the following:

$$\begin{array}{rcl} |x-z| & \leq & |x-y|+|y-z| \Rightarrow \\ |x-z| & \leq & |x-y|+|y-z|+2\sqrt{|x-y||y-z|} \Leftrightarrow \\ \sqrt{|x-z|}^2 & \leq & (\sqrt{|x-y|}+\sqrt{|y-z|})^2 \Leftrightarrow \\ \sqrt{|x-z|} & \leq & \sqrt{|x-y|}+\sqrt{|y-z|}. \end{array}$$

Thus $d_2(x, y)$ is a metric.

 $d_3(x,y)$ does not satisfy axiom 1, since if x=1 and y=-1 then $x\neq y$ but $d_3(x,y)=|1-1|=0$.

 $d_4(x,y)$ is a metric. It trivially satisfies axioms 1 and 2. We wish to check the third axiom, $d(x,z) \le d(x,y) + d(y,z)$. Without loss of generality, $x \le z$.

Case 1: y < x. Then $|x^3 - z^3| \le |x^3 - y^3| + |z^3 - y^3| \Leftrightarrow y^3 < x^3$ which is true.

Case 2: $x \le y \le z$. Then $|x^3 - z^3| \le |x^3 - y^3| + |z^3 - y^3| \Leftrightarrow 0 \le 0$ which is also true.

Case 3L y > z. Then $|x^3 - z^3| \le |x^3 - y^3| + |z^3 - y^3| \Leftrightarrow z^3 \le y^3$ which is true. So $d_4(x, y)$ satisfies the third axiom and so is a metric.

 $d_5(x,y)$ is not a metric because it does not satisfy axiom 2, since $d_5(1,2) = 3$ but $d_5(2,1) = 0$. (Incidentally, this shows it does not satisfy axiom 1, also).

 $d_6(x,y)$ is a metric. We know that |x-y| is a metric, because it is the standard metric for the real numbers. From problem 2 we know that if d(x,y) is a metric then so is d(x,y)/(1+d(x,y)). Thus |x-y|/(1+|x-y|) is a metric.

- 4. (a) Clearly, f(x) = x is injective, because if f(x) = f(y) then trivially x = y. Also, for all $x \in X$ f(x) = x so the map is surjective. d(x, y) = d(f(x), f(y)) because f(x) = x. Thus the identity map is always an isometry.
 - (b) Suppose that $i^{-1}(x) = i^{-1}(y)$. Then, $i(i^{-1}(x)) = i(i^{-1}(y)) \Rightarrow x = y$. Thus i^{-1} is injective. Consider an $x \in X$. $i(x) \in Y$ and $i^{-1}(i(x)) = x$ so i^{-1} is surjective. Thus it is a bijection.

Let the metric on X be d_X and the metric on Y be d_Y . Then, for $x, y \in Y$

$$d_X(i^{-1}(x), i^{-1}(y)) = d_Y(i(i^{-1}(x)), i(i^{-1}(y))) = d_Y(x, y).$$

Thus i^{-1} is also an isometry.

(c) Suppose $x, y \in X$ and j(i(x)) = j(i(y)). Then, since j is injective, i(x) = i(y). But since i is injective, that means that x = y. So $j \circ i$ is injective. Consider $z \in Z$. Since j is surjective, we know there exists a $z' \in Y$ such that j(z') = z. Also, we know that there exist a $z'' \in X$ such that i(z'') = z' beause i is injective. Thus j(i(z'')) = j(z') = z, so $j \circ i$ is surjective. Thus it is a bijection.

Let the metrics on X, Y, Z be d_X, d_Y, d_Z , respectively. Then, for $x, y \in X$ we know that $d_X(x, y) = d_Y(i(x), y(y))$ because i is an isometry. Also, we know that $d_Y(i(x), i(y)) = d_Z(j(i(x)), j(i(y)))$, because j is an isometry. Thus we know that $d_X(x, y) = d_Z(j(i(x)), j(i(y)))$ so $j \circ i$ is an isometry.

- (d) Clearly, both the functions f(x) = -x and g(x) = x + a are both injective and surjective, since they are linear functions. Also |f(x) f(y)| = |-x + y| = |y x| = |x y| so f is an isometry. |g(x) g(y)| = |x + a y a| = |x y| so g is an isometry.
- (e) I will show that if we know $a \in \mathbb{R}$ such that f(a) = 0 and we know whether $f(a+1) = \pm 1$ the rest of the isometry is uniequly determined. Consider some $x \in \mathbb{R}$, $x \neq a, a+1$. We know that $|f(x) f(a)| = |x a| \Rightarrow |f(x)| = |x a|$. Suppose f(a+1) = 1. Then we know that $|f(x) f(a+1)| = |x a-1| \Rightarrow |f(x) 1| = |x a-1|$. We already know that f(x) = a x or x a. Now we also know that f(x) 1 = x a 1 or 1 + a x which implies that f(x) = x a or 2 + a x. From this, it is clear that f(x) = x a (since for no other value of f(x) do our equations agree). Analogously, if f(a+1) = -1 we get that f(x) = a x. Thus any isometry that maps something to zero will be of the form either x a (j a) or j a thowever, every isometry must map something to zero, since an isometry is surjective. Thus all isometries of \mathbb{R} are of the form j a or j a.
- 5. First we will show that \sim is an equivalence relation. We know that d(p,p)=0 by the first axiom of a metric. Thus $p\sim p$. Also, since d(p,q)=d(q,p), if d(p,q)=0 then d(q,p)=0, so $p\sim q$ implies $q\sim p$. Also, if d(p,q)=0 and d(q,r)=0, by the triangle inequality we know that $0\leq d(p,r)\leq d(p,q)+d(q,r)=0$ so d(p,r)=0. Thus if $p\sim q$ and $q\sim r$ then $p\sim r$. Thus \sim is an equivalence relation. To show that $\overline{d}([p],[q])$ is well defined we need to show that if $p\sim p'$ and $q\sim q'$ then d(p,q)=d(p',q'), because that would mean that for two different representatives of [p] and [q] the distance between them is the same, since all elements $p'\in [p]$ have $p'\sim p$ and $q'\in [q]$ has $q'\sim q$. So we apply the triangle inequality: $d(p,q)\leq d(p,p')+d(p',q')+d(q',q)=d(p',q')$. Also, $d(p',q')\leq d(p,p')+d(p,q)+d(q',q)=d(p,q)$. Since $d(p,q)\leq d(p',q')$ and $d(p',q')\leq d(p,q)$ we get that d(p,q)=d(p',q'). This shows that the function \overline{d} is well-defined. It trivially satisfies axiom 2, since d is symmetric. For $[p]\neq [q]$ we know that $\overline{d}([p],[q])=d(p,q)$. Thus, since d(p,q)>0 (by definition of [p] and [q]) we know that $\overline{d}([p],[q])>0$. Also, if [p]=[q] we know that $\overline{d}([p],[q])=d(p,q)=0$ by definition of [p] and [q]. So \overline{d} satisfies axiom 1. Lastly, $\overline{d}([p],[q])+\overline{d}([q],[r])=d(p,q)+d(q,r)\geq d(p,r)=\overline{d}([p],[r])$. Thus \overline{d} satisfies axiom 3. Since it satisfies all of the axioms it is a metric.

In \mathbb{R}^3 with the example metric, two points are at distance zero if their z-coordinates are equal. Also, their distance apart otherwise is the d_{∞} metric in \mathbb{R}^2 . Thus $\overline{\mathbb{R}^3}$ is equivalent to \mathbb{R}^2 with the d_{∞} metric.

6. Let z be a limit point of E'. Then we know that, for r>0 there exists a $y\in E'$ such that d(y,z)< r. Let d(z,y)=h. Let $r'=\min(h,r-h)$. $y\in E'$ implies that there exists $x\in E$ such that d(y,x)< r'. Then $d(x,z)\leq d(x,y)+d(y,z)< r'+h\leq r-h+h=r$. Thus for any r>0 there exists $x\in E$ such that d(z,x)< r, so $z\in E'$. Thus E' is closed. If all limit points of \overline{E} are limit points of either E or E' then we are done, since E' contains all of those limit points, so \overline{E} would simply have E' as its limit points, which would mean that it has the same limit points as E. So suppose \overline{E} has a limit point $z\notin E'$. Consider a sequence of points $\{a_n\}$ such that $d(z,a_n)<1/n$. An infinite subsequence of these must be in either E or E', since $\overline{E}=E\bigcup E'$. But then z is a limit point of that set. However, we know that E' is the set of limit points of E and E' is closed. Thus E is in E, contradicting our conjecture. Thus E and E have the same limit points.

However, E and E' do not necessarily have the same limit points. The set $A_{0,1}$ (look in 7 for definition of $A_{x,y}$) has only one limit point, 0. Thus $A'_{0,1} = 0$, which has no limit points because it is finite.

7. First I will construct a bounded subset $A_{x,y}$ of \mathbb{R} that has only one limit point. $A_{x,y}$ will be a sequence of points $\{a_n\}_{n=1}^{\infty}$ such that

$$a_n = x + \frac{1}{2^n} |x - y|.$$

Then clearly no point outside of [x,y) is a limit point. Also no point in (x,y) is a limit point, since the sequence is monotonically decreasing with limit x as $n \to \infty$. Thus every number is between two

members of the sequence (which means it is not a limit point) or is a member of the sequence (and is thus also not a limit point. However, x is a limit point, since for r > 0, if $n = \lceil \log_2(|x - y|/r) \rceil$, $d(x, a_n) < r$.

- (a) Consider the set $A = A_{0,1} \cup A_{2,3} \cup A_{4,5} \cup \{0,2,4\}$. From the demonstration above it is clear that this set only has three limit points. Also, the set is clearly closed.
- (b) Consider the set

$$A = \bigcup_{n=0}^{\infty} A_{2^{-n}, 2^{-n-1}} \cup \bigcup_{n=0}^{\infty} \{2^{-n}\}$$

This set will be contained in the closed interval [0, 1], so is bounded. Clearly, no point outside this interval is a limit point. Also, each of the intervals $[2^{-n}, 2^{-n-1})$ clearly has only one limit point, by the definition of $A_{x,y}$. Also, 0 is a limit point, since the sequence 2^{-n} converges to 0. Thus this set has an infinite, though countable, set of limit points. Clearly this set is also bounded.

- 8. (a) Consider any limit point z of B, and consider an infinite sequence of points a_n such that $d(z, a_n) < 1/n$. An infinite number of these must be in one of the sets A_i . Thus z will be a limit point of that A_i . Thus, since any limit point of B is in some $\overline{A_i}$ we know that $\overline{B} \subseteq \bigcup_{k=1}^m \overline{A_k}$. Now consider any limit point z of some A_i . We know that the sequence of points $\{a_n\}$ such that $d(z, a_n) < 1/n$ is in A_i , and is thus also in B. Thus z is a limit point of B. So $\bigcup_{k=1}^m \overline{A_k} \subseteq \overline{B}$. Thus $\overline{B} = \bigcup_{k=1}^m \overline{A_k}$.
 - (b) We know that B contains all of the points in each A_i . Consider a limit point z of some A_i . Since $A_i \subseteq B$ we know that z must be a limit point of B. Thus all of the points in each A_i and all of the limit points of every A_i are in \overline{B} , so $\bigcup_{n=0}^{\infty} \overline{A_i} \subseteq \overline{B}$.

Consider the sets $A_i = [2^{-i}, 2^{-i-1}]$. The point 0 is not contained in the closure of any of the A_i , since each is already a closed set that does not contain 0. However, the closure of their union contains the point 0.