Barème.

- Calculs : chaque question sur 2 point, total sur 36 points, ramené sur 5 points.
- Problèmes: chaque question sur 4 points, total sur 92 points, ramené sur 15 points, +40%.

Statistiques descriptives.

Soit
$$\varphi : \mathbb{R} \to \mathbb{R}, \ x \mapsto \min\left(\frac{1}{10} \lceil 10x \rceil; 20\right).$$

	Calculs	Problème	Note finale
Transformation	c	p	$\varphi\left(\frac{5c}{36} + 1, 4\frac{15p}{92}\right)$
Note maximale	32	65	19,1
Note minimale	9	11	3,8
Moyenne	$\approx 23,48$	$\approx 35,55$	$\approx 11,42$
Écart-type	$\approx 5,11$	$\approx 14, 11$	$\approx 3,72$
Premier quartile	20,75	26	9, 1
Médiane	24	35, 5	11,9
Troisième quartile	27	43, 5	13, 55

Remarques générales.

- Encadrez toutes vos conclusions. Il y en a parfois plusieurs par questions (par exemple : justifiez que u est dérivable et donner une expression de u').
- \bullet Vous manipulez le symbole X comme un nombre. C'est incorrect : X est un symbole formel (c'est un polynôme!). Bien entendu, je ne l'ai pas pénalisé. Rendez-vous dans le chapitre sur les polynômes pour tous les détails!
- On vous demande de justifier toutes vos affirmations. La première utilité de cette justification est de vous faire éviter des erreurs!

I - Un exercice vu en TD

Ceux qui concluent leur calcul par « donc m = ac - bd et n = ad + bc » montrent qu'ils n'ont pas bien compris la question. Les variables m et n ne sont pas introduites par l'énoncé, une telle conclusion n'a donc pas de sens.

II – Autour de π .

Les erreurs de calcul étaient très dommageables ici. Vérifiez vos calculs!

- 1a) On attendait une factorisation complète.
- 1c) Il convenait de justifier proprement le signe strict de u'(x).
- **2a)** Il convenait de simplifier l'expression de $\tan\left(\frac{\pi}{12}\right)$, par la méthode de la quantité conjuguée.
- **2b)** On vous demande une réponse pertinente (en plus d'être correcte). J'attendais que vous évaluiez l'inégalité f(x) < x < g(x) en un point judicieux (par exemple, $x = \frac{\pi}{12}$!). De même que précédemment, il convenait de simplifier les résultats.
- **3b)** Une bonne partie de la réponse se trouve dans la justification du signe de a_{n+1} et de b_{n+1} . La plupart sont passés au travers, c'est anormal.
- **3c)** Question fort simple quand on la considère à la lumière des questions précédentes! La partie **2)** était juste le traitement du cas particulier n = 2.

III – Involutions continues de \mathbb{R} .

Aucune des fonctions manipulées ici n'est supposée dérivable.

Beaucoup n'ont pas compris le problème, ni l'enchaînement des questions.

- 1) En lisant la suite de l'énoncé, vous pouviez voir que les fonctions $\mathrm{Id}_{\mathbb{R}}$ et $-\mathrm{Id}_{\mathbb{R}}$ vous étaient très (très) fortement suggérées.
 - Certains donnent des fonctions constantes, c'est faux! Une justification vous aurait permis de vous en apercevoir. On vous demandait des fonctions définies sur \mathbb{R} , la fonction « inverse » ne convenait pas ici.
- 2) Il suffisait d'appliquer f. Certains utilisent la monotonie stricte de f, qui n'est admise qu'après : j'ai du mal à le comprendre.
- **4)** La fonction g n'est pas supposée être involutive (elle ne l'est pas...).
- **4a)** Vous pourriez appliquer le théorème de la bijection pour y compris entre les limites de f en $-\infty$ et en $+\infty$ (qui ne sont pas encore établies), mais pas pour y quelconque.
- **4c)** La principale question était celle de la détermination des limites de f.
- 5) Les hypothèses des questions précédentes ne sont plus valides, ici.
- **6)** Certains ont essayé de donner des fonctions, avec $g: x \mapsto x^n$ pour n impair. Toutefois, il convenait de vérifier que les involutions obtenues étaient distinctes, ce qui n'est pas le cas ici!

FIGURE 1 – Évolution des rangs des étudiants en 2020-2021