Universidad Nacional del Altiplano Facultad de Ingeniería Estadística e Informática

Docente: Fred Torres Cruz

Autor: Gallegos Lizárraga Rudy Alex

Trabajo Encargado - Nº 005

TAXONOMÍA DE DUNCANH

RESUMEN GENERAL

En el libro Arquitectura de Computadoras Paralelas: Una Perspectiva de Hardware/Software" de David Culler, J.P. Singh y Anoop Gupta (1998) nos dice que LA TAXONOMIA DE DUN-CAN es una clasificación de arquitecturas de computadoras que amplía la taxonomía de Flynn. La taxonomía de Flynn categoriza las arquitecturas de computadoras en función del número y la distribución de los flujos de instrucciones y datos

CATEGORIAS:

La taxonomía de Duncan es fundamental para comprender y clasificar los diferentes tipos de arquitecturas .La taxonomía se basa en tres dimensiones principales:

Dimension 1: FLUJO DE INSTRUCCIONES:

- * SISD (Single Instruction, Single Data): Un solo procesador ejecuta una sola instrucción en un solo dato a la vez. Este es el modelo de computación secuencial más común, utilizado en computadoras de escritorio y portátiles.
- * SIMD (Single Instruction, Multiple Data): Un solo procesador ejecuta una sola instrucción en múltiples datos simultáneamente. Este modelo es adecuado para aplicaciones que realizan la misma operación en múltiples datos, como el procesamiento de imágenes y el procesamiento de señales.
- * MISD (Multiple Instruction, Single Data): Múltiples procesadores ejecutan diferentes instrucciones en un solo dato a la vez. Este modelo es menos común y se utiliza en aplicaciones que requieren que diferentes procesadores trabajen en el mismo conjunto de datos.
- *MIMD (Multiple Instruction, Multiple Data): Múltiples procesadores ejecutan diferentes instrucciones en múltiples datos simultáneamente. Este es el modelo de computación paralela más general y se utiliza en una amplia gama de aplicaciones.

Dimension 2: ESTRUCTURA DE LA MEMORIA: MEMORIA COMPARTIDA:

Todos los procesadores tienen acceso a una memoria global común. Este tipo de arqui-

tectura proporciona un acceso rápido y uniforme a los datos para todos los procesadores, pero puede tener problemas de escalabilidad y contención de memoria. MEMORIA DISTRI-

BUIDA: Cada procesador tiene su propia memoria local y los procesadores se comunican entre sí a través de una red de interconexión. Este tipo de arquitectura ofrece una mayor escalabilidad y flexibilidad, pero la comunicación entre procesadores puede ser más lenta y compleja. Memoria híbrida: Combina elementos de arquitecturas de memoria compartida y distribuida. Este tipo de arquitectura intenta aprovechar las ventajas de ambos tipos de arquitecturas.

Dimension 3: CONTROL DE LA COMUNICACION:

- * CENTRALIZADO: Un controlador centralizado es responsable de la comunicación entre procesadores. Este tipo de control es simple de implementar, pero puede ser un cuello de botella en sistemas grandes.
- * DISTRIBUIDO: Los procesadores se comunican entre sí de forma distribuida, sin un controlador central. Este tipo de control es más escalable, pero puede ser más complejo de implementar.

REFERENCIAS

Duncan, R. H. (1990). A taxonomy of parallel architectures. ACM SIGARCH Computer Architecture News, 18(1), 14-19.