

Leveraging the Apache Flight Python Client and InfluxDB

Anais Dotis Georgiou

Anais Dotis-Georgiou Developer Advocate

Agenda

- Introduction to InfluxDB and Time Series Data
- Commitment to Open Data Architecture with the FDAP Stack
- Leveraging the Arrow Flight Client InfluxDB v3 Python Client
 Library
- Projects that Leverage th

Introduction to InfluxDB and Time Series Data

Time Series Data

Time Series Data

Time Series Data Types

Metrics

Measurements at **regular** time intervals

Events

Measurements at **irregular** time intervals

Time Series Databases

Time Series
Data

High write throughput

Efficient
Queries Over
Time Ranges

Scalability and Performance

InfluxDB 3.0

Some of our customers

IoT monitoring

WayKonect

Ingest Benchmark

Commitment to Open Data Architecture with the FDAP Stack

Data Storage

InfluxDB is a database purpose-built for handling time series data at massive scale for real-time analytics.

Developers can ingest, store, and analyze all types of time series data; metrics, events, traces in a single platform. Designed to handle high-speed, high-volume, and high-cardinality data.

InfluxDB 3.0

Schema on write

Write and query millions of rows per second

Single datastore for all time series data (metrics, logs, and traces)

SQL, InfluxQL Support

Advantages of Columnar Data Storage (sidebar)

Sidebar–Advantages of Columnar Data Storage

```
measurement1, tag1=tagvalue1 field1=1i timestamp1
measurement1, tag1=tagvalue2 field1=2i timestamp2
measurement1, tag2=tagvalue3 field1=3i timestamp3
measurement1, tag1=tagvalue1, tag2=tagvalue3 field1=4i, field2=true timestamp4
measurement1, field1=1i timestamp5
```


Sidebar–Advantages of Columnar Data Storage

Name: measurement1							
field1	field2	tag1	tag2	tag3	time		
1i	null	tagvalue1	null	null	timestamp1		
2i	null	tagvalue2	null	null	timestamp2		
3i	null	null	tagvalue3	null	timestamp3		
4i	true	tagvalue1	tagvalue3	tagvalue4	timestamp4		
1i	null	null	null	null	timestamp5		

Sidebar–Advantages of Columnar Data Storage

1i	2i	3i	4i	1i
null	null	null	true	null
tagvalue1	tagvalue2	null	tagvalue1	null
null	null	tagvalue3	tagvalue3	null
null	null	null	tagvalue4	null
timestamp1	timestamp2	timestamp3	timestamp4	timestamp5

```
1i, 2i, 3i, 4i, 1i;
null, null, true, null;
tagvalue1, tagvalue2, null, tagvalue1, null;
null, null, null, tagvalue3, tagvalue3, null;
null, null, null, tagvalue4, null;
timestamp1, timestamp2, timestamp3, timestamp4, timestamp5
```


Leveraging the Arrow Flight Client InfluxDB v3 Python Client Library

pip install pyarrow

```
from pyarrow.flight import FlightClient, Ticket
import ison
host = "us-east-1-2.aws.cloud2.influxdata.com"
database = 'my_db'
sql = "SELECT * from my_table"
client = FlightClient(f"grpc+tls://{host}:443")
ticket_data = {
    "namespace_name": "my_db",
    "sql_query": sql,
    "query_type": "sql",
ticket_bytes = json.dumps(ticket_data)
ticket = Ticket(ticket_bytes)
flight_reader = client.do_get(ticket)
arrow_table = flight_reader.read_all()
data_frame = arrow_table.to_pandas()
```

print(data_frame.to_markdown())

Library Import

Initialization

Query

Arrow Flight SQL Client

pip install flightsql-dbapi

```
from flightsql import FlightSQLClient
                                                                                     Library Import
client =
FlightSQLClient(host='cluster-id.influxdb.io',
                                                                                      Initialization
    token='DATABASE_TOKEN',
    metadata={'database': 'DATABASE_NAME'},
    features={'metadata-reflection': 'true'})
info = client.execute("SELECT * FROM home")
ticket = info.endpoints[0].ticket
                                                                                         Query
reader = client.do_get(ticket)
table = reader.read_all()
print(table)
                                                                                     influxdata®
```

InfluxDB v3 Python Client Library

```
from influxdb_client_3 import InfluxDBClient3
host = "eu-central-1-1.aws.cloud2.influxdata.com"
org="6a841c0c08328fb1"
token = ""
database = "database"
client = InfluxDBClient3(
    token=token,
    host=host,
    org=org)
```

table = client.query(query=sql, language='sql',

sql = '''SELECT * FROM table'''

mode='all')
print(table)

```
-----
```

Library Import

Initialization

Query

Projects that Leverage the Arrow Flight

Grafana Flow

Explore Datasource

Try it yourself - Grafana Quick Starts

https://github.com/InfluxCommu nity/InfluxDB-3-Quick-Starts

Mage & InfluxDB - Anomaly Detection

Try it yourself

https://github.com/InfluxCommunity/ Mage_Demo

Try it yourself

https://github.com/InfluxCommunity/ quix-anomaly-detection-example

Join the InfluxDB Community

Sign up

Influxdata.com

Get InfluxDB

Via cloud marketplace

Learn

- ✓ Self-service content
- Documentation
- ✓ InfluxDB University

Community

https://influxdbu.com/

https://influxcommunity.slack.co
 m/

Thank you

THANK YOU