Basics of Cryptography

Terminology

- Plaintext the original message
- Ciphertext the coded message
- Cipher algorithm for transforming plaintext to ciphertext
- key info used in cipher known only to sender/receiver
- Cryptanalysis (codebreaking) the study of principles/ methods of deciphering ciphertext without knowing key
- Cryptology the field of both cryptography and cryptanalysis

More Terminology

- Symmetric Encryption
 - Both Sender/Receiver use the same algorithms/keys for encryption/decryption
- Asymmetric Encryption
 - Sender/receiver can employ different keys

Symmetric Encryption Model

Encryption Basics

- Gen() algorithm for generating keys
- Encryption algorithm to convert plaintext into ciphertext
 - E(M, keys) = C
- Decryption algorithm to convert ciphertext to plaintext
 - -D(C, keys) = M

Some early ciphers

- Substitution (eg., Caesar cipher)
- Security is hard: tfdvsjuz jt ibse
- $C = (M+k) \mod 26$
- $M = (C-k) \mod 26$
- Only 26 possibilities with English Alphabet
- Brute Force search can decrypt

Monoalphabetic cipher

- Instead of plain rotation, use random letter substitution
- Key is 26 letters long

```
Plain: abcdefghijklmnopqrstuvwxyz
```

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: security is hard

Ciphertext: AFVOYWUZ WA JDYQ

Monoalphabetic cipher

- 26! Combinations
- Difficult to decrypt?
- Not really!
- Language gives lots of hints
 - Single letters are I or A
 - Most common letter E
- Use Lang. characteristics to break

English letter Frequencies

Breaking substitution ciphers

- Use Letter frequencies of ciphertext
- Compare to plaintext frequencies
- These don't change –enable analysis
- Use common two-letter words etc.

Measures of ciphers

- Shannon Secrecy
- Pr(M = m | E(K,m) = c) = Pr(M = m)
 - Probability of guessing the plaintext knowing the ciphertext = probability of guessing plaintext without knowing ciphertext

Perfect Secrecy

- Pr(E(K, m) = c) = Pr(E(K, m') = c)
- Probability of any message giving a ciphertext is the same

Block vs. Stream ciphers

- Block ciphers encrypt block at a time
- Message is broken into blocks and encrypted
- Stream ciphers process a bit or byte at a time during encryption/decryption

Shannon and ciphers

- Claude Shannon introduced idea of substitution-permutation (S-P) networks (1949)
 - the basis of modern block ciphers
- S-P networks are based on the two primitive cryptographic operations:
 - substitution (S-box)
 - permutation (P-box)
- Provide confusion and diffusion of message

Confusion and Diffusion

- Cipher needs to completely obscure statistical properties of original message
- Shannon suggested confusion & diffusion
- Diffusion dissipates statistical structure of plaintext over bulk of ciphertext
- Confusion makes relationship between ciphertext and key as complex as possible

Shannon's one-time pad

- Choose a key as long as the message
- E (M, k) = k XOR M = C
- D (C, k) = k XOR C = M
- Choose k randomly (uniformly distributed in {0,1}^I), I = message length
- One-time pad has perfect secrecy
 - $Pr (m xor k = c) = Pr (m' xor k = c) = 2^{-1}$

One time pad

- Each key works only once
- Works with fixed length messages
- Key length = message length
- Not very practical

Fiestel Cipher

Fiestel Cipher (IBM, 70s)

- Partitions input block into two halves
 - Employs multiple rounds of processing
 - Performs a substitution on left data half based on a fn. of right half & subkey
 - Employs permutation swapping halves
- Implements Shannon's substitutionpermutation network concept

Cipher parameters

Block size

increasing size improves security, but slows cipher

key size

 increasing size improves security, makes exhaustive key searching harder, but may slow cipher

Number of rounds

increasing number improves security, but slows cipher

Subkey generation

greater complexity can make analysis harder, but slows cipher

Round function

greater complexity can make analysis harder, but slows cipher

Decryption

DES cipher

- Data Encryption Standard
- Most widely used block cipher in world
- Adopted in 1977 by NIST as a standard
- Encrypts 64-bit data using 56-bit key
- Based on I BM's Lucifer cipher (128bit key)

DES Encryption

Initial permutation

- First step of the data computation
- IP reorders the input data bits
- Even bits to LH half, odd bits to RH half
- Quite regular in structure
 - easy to build h/w

DES Rounds

- Uses two 32-bit L & R halves
- Similat to Feistel cipher can describe as:

$$L_i = R_{i-1}$$

 $R_i = L_{i-1} \text{ xor } F(R_{i-1}, K_i)$

- Takes 32-bit R half and 48-bit subkey and:
 - expands R to 48-bits using perm E
 - adds to subkey
 - passes through 8 S-boxes to get 32-bit result
 - finally permutes this using 32-bit perm P

DES Round

Strength of DES

- 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values
- Brute force search requires lot of work
- But, possible
 - in 1997 on Internet in a few months
 - in 1998 on dedicated h/w in a few days
 - in 1999 above combined in 22hrs!
- Must be able to recognize plaintext
- Alternatives to DES being considered

References

 [1] Network Security Essentials, Applications and Standards, 2nd edition by William Stallings -Chapter2