import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

Step 1: Extract Data

heart_disease_data = pd.read_csv(r'/Heart Disease data.csv')

heart_disease_data

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
0	52	1	0	125	212	0	1	168	0	1.0	2	2
1	53	1	0	140	203	1	0	155	1	3.1	0	С
2	70	1	0	145	174	0	1	125	1	2.6	0	С
3	61	1	0	148	203	0	1	161	0	0.0	2	1
4	62	0	0	138	294	1	1	106	0	1.9	1	3
1020	59	1	1	140	221	0	1	164	1	0.0	2	С
1021	60	1	0	125	258	0	0	141	1	2.8	1	1
1022	47	1	0	110	275	0	0	118	1	1.0	1	1
1023	50	0	0	110	254	0	0	159	0	0.0	2	С
1024	54	1	0	120	188	0	1	113	0	1.4	1	1
1025 rows × 14 columns												

sex_mapping = {0: 'female', 1: 'male'}

heart_disease_data['sex'] = heart_disease_data['sex'].map(sex_mapping)

heart_disease_data

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope
0	52	male	0	125	212	0	1	168	0	1.0	2
1	53	male	0	140	203	1	0	155	1	3.1	0
2	70	male	0	145	174	0	1	125	1	2.6	0
3	61	male	0	148	203	0	1	161	0	0.0	2
4	62	female	0	138	294	1	1	106	0	1.9	1
1020	59	male	1	140	221	0	1	164	1	0.0	2
1021	60	male	0	125	258	0	0	141	1	2.8	1
1022	47	male	0	110	275	0	0	118	1	1.0	1
1023	50	female	0	110	254	0	0	159	0	0.0	2
1024	54	male	0	120	188	0	1	113	0	1.4	1
1025 rows × 14 columns										•	

Start coding or generate with AI.

Calculate overall heart disease rate

```
# Calculate overall heart disease rate
overall_heart_disease_rate = heart_disease_data['target'].mean()
overall_heart_disease_rate
    0.5131707317073171
```

Group data by gender and calculate heart disease rates for each gender

```
heart_disease_by_gender = heart_disease_data.groupby('sex')['target'].mean()
heart_disease_by_gender
    sex
    female    0.724359
    male     0.420757
    Name: target, dtype: float64
```

Define the bins for age groups

```
bins = [0, 30, 40, 50, 60, 70, 80]
```

Define labels for the age groups

```
labels = ['0-29', '30-39', '40-49', '50-59', '60-69', '70-79']
```

Create a new column 'age_group' in the DataFrame

heart_disease_data

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope
0	52	male	0	125	212	0	1	168	0	1.0	2
1	53	male	0	140	203	1	0	155	1	3.1	0
2	70	male	0	145	174	0	1	125	1	2.6	0
3	61	male	0	148	203	0	1	161	0	0.0	2
4	62	female	0	138	294	1	1	106	0	1.9	1
1020	59	male	1	140	221	0	1	164	1	0.0	2
1021	60	male	0	125	258	0	0	141	1	2.8	1
1022	47	male	0	110	275	0	0	118	1	1.0	1
1023	50	female	0	110	254	0	0	159	0	0.0	2
1024	54	male	0	120	188	0	1	113	0	1.4	1
1025 rd	1025 rows × 15 columns										

```
age_group_counts = heart_disease_data['age_group'].value_counts()
```

```
age_group_counts
```

```
age_group
50-59 422
60-69 275
40-49 237
30-39 53
70-79 34
```

df = pd.DataFrame(heart_disease_data)

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope
0	52	male	0	125	212	0	1	168	0	1.0	2
1	53	male	0	140	203	1	0	155	1	3.1	0
2	70	male	0	145	174	0	1	125	1	2.6	0
3	61	male	0	148	203	0	1	161	0	0.0	2
4	62	female	0	138	294	1	1	106	0	1.9	1
1020	59	male	1	140	221	0	1	164	1	0.0	2
1021	60	male	0	125	258	0	0	141	1	2.8	1
1022	47	male	0	110	275	0	0	118	1	1.0	1
1023	50	female	0	110	254	0	0	159	0	0.0	2
1024	54	male	0	120	188	0	1	113	0	1.4	1
1025 rows × 15 columns											

```
counts = df.isna().sum()
counts
```

age sex ср trestbps 0 chol 0 fbs restecg 0 thalach exang 0 oldpeak slope 0 ca thal target 0 age_group dtype: int64 0

num_rows = df.shape[0]
num_rows

1025

num_columns = df.shape[1]
num_columns

15

Start coding or $\underline{\text{generate}}$ with AI.

counts = heart_disease_data['target'].value_counts()
print("Counts:", counts)

Counts: target 1 526 0 499

Name: count, dtype: int64

plt.figure(figsize=(6, 4))
sns.countplot(x='target', data=heart_disease_data)
plt.title('Distribution of Heart Disease Cases')
plt.xlabel('Heart Disease')
plt.ylabel('Count')
plt.show()

Distribution of Heart Disease Cases 500 400 200 100 0 Heart Disease

numeric_columns = heart_disease_data.select_dtypes(include=['number'])

```
plt.figure(figsize=(10, 8))
sns.heatmap(numeric_columns.corr(), annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Heatmap of Numerical Attributes')
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.histplot(data=heart_disease_data, x='age', hue='target', kde=True, bins=20)
plt.title('Age Distribution by Heart Disease Status')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
```



```
plt.figure(figsize=(8, 6))
sns.countplot(x='sex', hue='target', data=heart_disease_data)
plt.title('Gender Distribution by Heart Disease Status')
plt.xlabel('Sex')
plt.ylabel('Count')
plt.legend(title='Heart Disease')
plt.show()
```


 ${\tt sns.pairplot(heart_disease_data, \; hue='target', \; diag_kind='hist')} \\ {\tt plt.show()}$


```
heart_disease_data['target'].value_counts()

    target
    1    526
    0    499
    Name: count, dtype: int64

sns.set_style('whitegrid')
sns.countplot(x='target',data=heart_disease_data,palette='RdBu_r')
```

```
cipython-input-75-5e8111ca5ebb>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.

sns.countplot(x='target',data=heart_disease_data,palette='RdBu_r')

<Axes: xlabel='target', ylabel='count'>

500
400

100

0
1
```

target

Finds the Counts of males and Females

```
heart_disease_data['sex'].value_counts()

sex
male 713
female 312
Name: count, dtype: int64

sns.set_style('whitegrid')
sns.countplot(x='sex',data=heart_disease_data,palette='RdBu_r')
plt.title('Count of Male and Female')

<ipython-input-77-b9ccb3f0da73>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.

sns.countplot(x='sex',data=heart_disease_data,palette='RdBu_r')
Text(0.5, 1.0, 'Count of Male and Female')

Count of Male and Female

700
```


Gender wise

```
sns.countplot(data=heart_disease_data,x='sex', hue='target')
plt.xticks([1,0],['Male','Female'])
plt.legend(labels=['No-Disease','Disease'])
plt.title('Gender Distribution by Disease ')
plt.show()
```



```
sns.lineplot(x='cp',data=heart_disease_data,y='age', hue='sex')
plt.xlabel('Chest Pain',fontsize=17)
plt.ylabel('Age',fontsize=17)
plt.title('Chest pain by Age',fontsize=17)
```

Text(0.5, 1.0, 'Chest pain by Age')


```
sns.countplot(data=heart_disease_data,x='fbs', hue='target')
plt.xlabel('Blood Sugar',fontsize=17)
plt.ylabel('Count',fontsize=17)
plt.title('FBS by Targeted People',fontsize=17)
```

Text(0.5, 1.0, 'FBS by Targeted People')


```
sns.histplot(x='trestbps',data=heart_disease_data, color='green')
plt.show
plt.xlabel('trestbps',fontsize=17)
plt.ylabel('Count',fontsize=17)
plt.title('trestbps',fontsize=17)
```



```
sns.histplot(x='chol',data=heart_disease_data,color='red')
plt.xlabel('Cholesterol',fontsize=18)
plt.ylabel('count',fontsize=18)
plt.title('Cholesterol',fontsize=18)
plt.show
```