Summary of course

Main topics

- o Discretization + errors (truncation and round-off,)
 o Num. differentiation
- o Num. differentiation
- Lear algebra

 Solve eq. $A \overline{x} = \overline{b}$ [Gods elm special focus matrices on tridiag. matrices on tridiag. o Linear algebra
 - Solve eigenvel/eigenvec probs = A = 1x
 - Matrix operations (diagonalization, LU decomps ...)
- o Ordinary differential eqs (ODEs)
 - Boundary value problems (Solve retain eqs (Proj 2)
 - = Initial value problems

> | Euler's ferward method Euler - Crower Leaptrog predictor-corrector RKY >> Proj 3

- · Probobility, rundon numbers, Monte Carlo methods
 - Meaning
 - pdfs
 - Random numbers
 - sampling from pdfs -> Marken Chair -> Proj. 4 (Ising model) Monte Coulo
- o Numerical jytegration
 - Deterministic algos for low dim problems
 - MC integration for high dim. problems.
- · Portial differential egs. (PDE)
 - Explicit (F.D.)
 - Implicit (B.D. and Crunk-Nicolson) Proj 5 (Simulator double-slit)

- o writing proper reports in Tex
- · Basic git
- · Basic C++
- o Parallelization w/ openMP

Potentially four points on your (V.

- 6 C++
 - Compiletion and linking
 - Program structure
 - _ Classes
 - Using external libraries (here: Armadolla)

Things I would have liked to cover

- & Eigenvalue problems: Householder's method for tridiagonalization,

 OR alapoithm for finding eigenvalues
- Pointers (incl. function pointers!)

 Pointers (incl. function pointers!)

 Dynamic memo-1 allocation

 Polymorphism (inheritance

 Parallelization w/ MPI
- · More git
- o Numerical optimization
- · A useful library: The GNU Scientific Cibrary (65L)