

# 《模式识别与机器学习》第2次习题课

助教: 许修为、黄原辉

2023年12月05日



#### □一、选择题

1. (多选题)对于下图中的贝叶斯网络,下列独立性关系成立的有(AB)2分←



A. E $\perp$ F B. A $\perp$ D C. A $\perp$ K $\mid$ C D. D $\perp$ I $\mid$ J E. C $\perp$ E $\mid$ K F. A $\perp$ E $\mid$ J, K $\leftarrow$ 

#### 一般步骤:

- 1. 根据原始概率图,构建包括表达式中包含的 变量以及这些变量的ancestor节点(父节点、 父节点的父节点...)的图
- 2. 道德化该子图
- 3. 从图中删除需要判断的概率表达式中作为条件的变量,以及和他们相连的路径
- 4. 根据待观测变量在图上的连通性判断独立性

参考: d-separation.pdf (mit.edu)



## □一、选择题

以 A 选项和 C 选项为例:



С. А \_ K | С





#### 一般步骤:

- 1. 根据原始概率图,构建包括表达式中包含的变量以及这些变量的ancestor节点(父节点、 父节点的父节点...)的图
- 2. 道德化该子图
- 3. 从图中删除需要判断的概率表达式中作为条件的变量,以及和他们相连的路径
- 4. 根据待观测变量在图上的连通性判断独立性
- 1. (多选题)对于下图中的贝叶斯网络,下列独立性关系成立的有(AB)2分↔



A. E $\perp$ F B. A $\perp$ D C. A $\perp$ K|C D. D $\perp$ I|J E. C $\perp$ E|K F. A $\perp$ E|J,K $\leftarrow$ 

## □二、计算题

1. (贝叶斯网络) 写出如下贝叶斯网络所有变量的联合概率分布: 4分



图 1 贝叶斯网各个变量的关联关系图←

P(ABCDEFGHIJK) = P(A)P(B)P(C|AB)P(D|B)P(E)P(F|C)P(G|CD)P(H|DE)P(I|F)P(J|G)P(K|H)

## □二、计算题

2. (贝叶斯网的学习)已知西瓜数据集如图 2 所示,计算图 3 中贝叶斯网的 BIC 评分。

| 编号  | 色泽 | 根蒂 | 敲声   | 纹理 | 脐部 | 触感 | 好瓜 |
|-----|----|----|------|----|----|----|----|
| 1   | 青绿 | 蜷缩 | 浊响   | 清晰 | 凹陷 | 硬滑 | 是  |
| 2   | 乌黑 | 蜷缩 | 沉闷   | 清晰 | 凹陷 | 硬滑 | 是  |
| 3   | 乌黑 | 蜷缩 | 浊响   | 清晰 | 凹陷 | 硬滑 | 是  |
| 4   | 青绿 | 蜷缩 | 沉闷   | 清晰 | 凹陷 | 硬滑 | 是  |
| 5   | 浅白 | 蜷缩 | 浊响   | 清晰 | 凹陷 | 硬滑 | 是  |
| 6   | 青绿 | 稍蜷 | 浊响   | 清晰 | 稍凹 | 软粘 | 是  |
| 7   | 乌黑 | 稍蜷 | 浊响   | 稍糊 | 稍凹 | 软粘 | 是  |
| - 8 | 乌黑 | 稍蜷 | 浊响   | 清晰 | 稍凹 | 硬滑 | 是  |
| 9   | 乌黑 | 稍蜷 | 沉闷   | 稍糊 | 稍凹 | 硬滑 | 否  |
| 10  | 青绿 | 硬挺 | 清脆   | 清晰 | 平坦 | 软粘 | 否  |
| 11  | 浅白 | 硬挺 | 清脆   | 模糊 | 平坦 | 硬滑 | 否  |
| 12  | 浅白 | 蜷缩 | 浊响   | 模糊 | 平坦 | 软粘 | 否  |
| 13  | 青绿 | 稍蜷 | 浊响   | 稍糊 | 凹陷 | 硬滑 | 否  |
| 14  | 浅白 | 稍蜷 | 沉闷   | 稍糊 | 凹陷 | 硬滑 | 否  |
| 15  | 乌黑 | 稍蜷 | 浊响   | 清晰 | 稍凹 | 软粘 | 否  |
| 16  | 浅白 | 蜷缩 | 浊响   | 模糊 | 平坦 | 硬滑 | 否  |
| 17  | 青绿 | 蜷缩 | , 沉闷 | 稍糊 | 稍凹 | 硬滑 | 否  |

图 2 西瓜数据集↩



$$BIC = \frac{\log m}{2}|B| - LL(B|D)$$
(1)  $m = 17 \leftarrow$ 

#### 



(2) 计算
$$|B| = 4 + 1 + 6 \times 4 + 2 = 31 \leftarrow 4$$

脐部: 3 种取值, 2×(3-1) = 4←

触感: 2种取值, 1←

根蒂: 3 种取值, 3×(3-1) = 6←

纹理: 3 种取值, 3×(3-1) = 6←

敲声: 3 种取值, 3×(3-1) = 6←

色泽: 3 种取值, 3×(3-1) = 6←

好瓜: 2种取值, 2×(2-1) = 2←



## □二、计算题

$$BIC = \frac{\log m}{2}|B| - LL(B|D)$$

| 编号  | 色泽  | 根蒂 | 敲声  | 纹理 | 脐部 | 触感 | 好瓜 |
|-----|-----|----|-----|----|----|----|----|
| 1   | 青绿  | 蜷缩 | 浊响  | 清晰 | 凹陷 | 硬滑 | 是  |
| 2   | 乌黑  | 蜷缩 | 沉闷  | 清晰 | 凹陷 | 硬滑 | 是  |
| 3   | 乌黑  | 蜷缩 | 浊响  | 清晰 | 凹陷 | 硬滑 | 是  |
| 4   | 青绿  | 蜷缩 | 沉闷  | 清晰 | 凹陷 | 硬滑 | 是  |
| 5   | 浅白  | 蜷缩 | 浊响  | 清晰 | 凹陷 | 硬滑 | 是  |
| 6   | 青绿  | 稍蜷 | 浊响  | 清晰 | 稍凹 | 软粘 | 是  |
| 7   | 乌黑  | 稍蜷 | 浊响  | 稍糊 | 稍凹 | 软粘 | 是  |
| - 8 | 乌黑  | 稍蜷 | 浊响  | 清晰 | 稍凹 | 硬滑 | 是  |
| 9   | 乌黑  | 稍蜷 | 沉闷  | 稍糊 | 稍凹 | 硬滑 | 否  |
| 10  | 青绿  | 硬挺 | 清脆  | 清晰 | 平坦 | 软粘 | 否  |
| 11  | 浅白  | 硬挺 | 清脆  | 模糊 | 平坦 | 硬滑 | 否  |
| 12  | 浅白  | 蜷缩 | 浊响  | 模糊 | 平坦 | 软粘 | 否  |
| 13  | 青绿  | 稍蜷 | 浊响  | 稍糊 | 凹陷 | 硬滑 | 否  |
| 14  | 浅白  | 稍蜷 | 沉闷  | 稍糊 | 凹陷 | 硬滑 | 否  |
| 15  | 乌黑  | 稍蜷 | 浊响  | 清晰 | 稍凹 | 软粘 | 否  |
| 16  | 浅白. | 蜷缩 | 浊响  | 模糊 | 平坦 | 硬滑 | 否  |
| 17  | 青绿  | 蜷缩 | ,沉闷 | 稍糊 | 稍凹 | 硬滑 | 否  |
|     | ,   |    |     |    |    |    |    |

#### 图 2 西瓜数据集←

#### -(3) 使用极大似然法估计网络参数↔

| P(脐部 触感)← | 硬潰↩   | 软粘↩  | +        |
|-----------|-------|------|----------|
| 凹陷↩       | 7/12↩ | 0←3  | +        |
| 稍與←       | 3/12↩ | 3/5↩ | <b>+</b> |
| 平坦↩       | 2/12↩ | 2/5↩ | <b>←</b> |

 $\forall$ 

| P(触感)←       | ←      | 7 |
|--------------|--------|---|
| <b> 頭</b> 潰↩ | 12/17↩ | ↵ |
| 软粘↩          | 5/17←  | 4 |

\_

| P(根蒂 脐部)↩ | 凹陷↩  | 稍與↩  | 平坦↩  | ↵ |
|-----------|------|------|------|---|
| 蜷缩↩       | 5/7↩ | 1/6↩ | 2/4← | ↩ |
| 稍蜷↩       | 2/7← | 5/6↩ | 0←1  | ← |
| 硬挺↩       | 0<-1 | 0←   | 2/4← | ← |

#### 

(4) 计算各样本的似然概率↔

$$LL(脐部|触感) = 7\log\frac{7}{12} + 3\log\frac{3}{12} + 2\log\frac{2}{12} + 3\log\frac{3}{5} + 2\log\frac{2}{5} = -14.88$$
4
$$LL(触感) = 12\log\frac{12}{17} + 5\log\frac{5}{17} = -10.30$$
4
$$LL(根蒂|脐部) = 5\log\frac{5}{7} + 2\log\frac{2}{7} + \log\frac{1}{6} + 5\log\frac{5}{6} + 2\log\frac{2}{4} + 2\log\frac{2}{4} = -9.66$$
4
$$LL(\cancel{324}|\mathring{R}\mathring{R}\mathring{R}\mathring{R}) = 5\log\frac{5}{7} + 2\log\frac{2}{7} + 3\log\frac{3}{6} + 3\log\frac{3}{6} + \log\frac{1}{4} + 3\log\frac{3}{4} = -10.60$$
4
$$LL(\cancel{324}|\mathring{R}\mathring{R}\mathring{R}) = 6\log\frac{6}{12} + 6\log\frac{6}{12} + 2\log\frac{2}{5} + 3\log\frac{3}{5} = -11.68$$
4
$$LL(\cancel{324}|\mathring{R}\mathring{R}) = 5\log\frac{5}{8} + 3\log\frac{3}{8} + 5\log\frac{5}{7} + 2\log\frac{2}{7} + 2\log\frac{2}{2} = -9.48$$
4
$$LL(\mathring{R}\mathring{R}) = 3\log\frac{3}{10} + 4\log\frac{4}{10} + 3\log\frac{3}{10} + 2\log\frac{2}{5} + 2\log\frac{2}{5} + \log\frac{1}{5} + \log\frac{1}{2} + \log\frac{1}{2} = -17.55$$
4
$$LL(\mathring{R}|D) = -84.15$$
4

(5)  $BIC = \frac{\log m}{2} |B| - LL(B|D) = 128.06$  或者 184.76 (以 2 为底) $\leftarrow$ 



# 第八章作业

## □ 选择题

- B: 弱分类器的错误率小于0.5是集成学习的前提, 否则该分类器参与集成将 会产生负面影响
- C: Adaboost是串行算法

- (多选题)下列说法错误的是 (BC)
  - A. 集成学习需要各个弱分类器之间具备一定的差异性←
  - B. 弱分类器的错误率可以大于 0.5℃
  - C. Adaboost 算法使用并行式策略训练基学习器←
  - D. Adaboost 算法结合弱学习器以避免欠拟合←



## 第八章作业

## □ 选择题

- A: boosting是组合弱学习器避免欠拟合, bagging是组合强学习器避免过拟合
- D: Boosting是串行算法

- 2. (多选题)下列说法正确的是(BC)←
  - A. Bagging 和 Boosting 都是对弱学习器的组合
  - B. Bagging 算法能够降低模型预测结果的方差
  - C. 随机森林能进一步减小 Bagging 算法中基学习器之间的相关性←
  - D. Boosting 能通过并行计算求解←

# 第八章作业

## □计算题

■ 注意: 答案并不唯一, 和选择弱分类器的顺序有关

**(AdaBoost 算法)** 训练数据如下表所示,假设弱分类器由竖直或水平分类面( $x_1 < v_1$ 或  $x_1 > v_1$ 或 $x_2 < v_2$ 或 $x_2 > v_2$ )产生,其阈值 $v_1$ 或 $v_2$ 使该分类器在训练数据集上分类错误率最低。试用 AdaBoost 算法学习一个强分类器。 $\leftarrow$ 

| 序号           | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $(x_1, x_2)$ | (2,2) | (3,1) | (4,2) | (5,2) | (1,3) | (2,3) | (3,3) | (1,4) | (2,5) | (5,4) |
| y            | 1     | 1     | 1     | -1    | 1     | -1    | -1    | 1     | -1    | -1    |

 $H = \underline{sign}(0.42(x1<1.5) + 0.65(x1<4.5) + 0.92(x2<2.5)) \leftarrow$ 



# 第九章作业

## □一、选择题

- 1. (单选题)下列哪个神经网络结构会发生权重共享 ( D ) ←
  - A. 卷积神经网络←
  - B. 循环神经网络←
  - C. 全连接神经网络↩
  - D. 卷积神经网络和循环神经网络↩
- 2. (单选题)与传统机器学习方法相比,深度学习的优势在于(A)。
  - A. 深度学习可以自动学习特征↩
  - B. 深度学习不需要做数据预处理←
  - C. 深度学习完全不提取底层特征,如图像边缘、纹理等↩
  - D. 深度学习不需要调参←
- 3. (单选题) LSTM 总共有三个门机制,不包括下面哪项? ( B ) ←
  - A. 输入门←
  - B. 更新门←
  - C. 遗忘门←
  - D. 输出门←

# 第九章作业

#### □二、计算题

1. (卷积神经网络)假设如下左图是二维卷积神经网络某层某通道的特征图,如下右图为下一层的一个 3×3 卷积核: ←

(a) 特征图

| 3 | 2 | 5 | 0 | 5 | 3 |
|---|---|---|---|---|---|
| 9 | 4 | 0 | 1 | 2 | 6 |
| 3 | 0 | 2 | 6 | 7 | 7 |
| 1 | 1 | 3 | 7 | 1 | 0 |
| 7 | 9 | 8 | 6 | 6 | 9 |
| 3 | 9 | 0 | 4 | 1 | 7 |

(b) 卷积核

| 0  | 1  | 0 |
|----|----|---|
| -1 | 0  | 1 |
| 0  | -1 | 0 |

- (1) 卷积操作是卷积神经网络的必要步骤。请写出上述卷积核滤波后的特征图,其中边界延拓(padding)参数为0,卷积步长(stride)参数为1。←
- (2) 请写出卷积之后的特征图再经过一个最大值池化(max-pooling)层之后的特征图, 其中 kernel 大小为 2, stride 参数为 2. ←
- (3) 请写出(1)中卷积核滤波后的特征图以 ReLU 函数为激活函数的输出特征图。←



# 第九章作业

## □二、计算题

#### (a) 特征图

| 3 | 2 | 5 | 0 | 5 | 3 |
|---|---|---|---|---|---|
| 9 | 4 | 0 | 1 | 2 | 6 |
| 3 | 0 | 2 | 6 | 7 | 7 |
| 1 | 1 | 3 | 7 | 1 | 0 |
| 7 | 9 | 8 | 6 | 6 | 9 |
| 3 | 9 | 0 | 4 | 1 | 7 |

#### (b) 卷积核

| 0  | 1  | 0 |
|----|----|---|
| -1 | 0  | 1 |
| 0  | -1 | 0 |

#### (1) 卷积运算

| -7 | 0 | -4 | 3  |
|----|---|----|----|
| 2  | 3 | -1 | 2  |
| -7 | 0 | -2 | -6 |
| -7 | 0 | 1  | 3  |

#### (2) 最大值池化

| 3 | 3 |
|---|---|
| 0 | 3 |

#### (2) ReLU激活

| 3 | 0 | 0 | 3 |
|---|---|---|---|
| 2 | 3 | 0 | 2 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 3 |

 $\leftarrow$