7 非线性方程和非线性方程组的数值解

求方程 f(x) = 0 的根是最常见的数学问题之一. 当 f(x) 是一次多项式时,称 f(x) = 0 为线性方程,否则称之为非线性方程.

当 f(x) = 0 是非线性方程时,由于 f(x) 的多样性,求方程 f(x) = 0 的根尚无一般的解析解法可用. 如果在满足一定的精度要求下,能求出方程的近似根,则可以认为求根的计算问题已经解决.

本章介绍求非线性方程实根近似值的对分法、迭代法、牛顿法和割线法. 使用这些方法要先确定求根区间[a,b],或给出某根的近似值 x_0 . x_0 可以根据物理背景确定,也可根据 y = f(x) 的草图等方法确定,还可用对分法大致确定根的分布情况. 本章最后简单介绍解非线性方程组的迭代法和牛顿法.

7.1 对分法

对分法适用于求有根区间内的单实根或奇重实根,其理论根据是连续函数的性质.

设 f(x) 在 [a,b] 上连续, $f(a) \cdot f(b) < 0$,即 f(a) > 0,f(b) < 0 或 f(a) < 0,f(a) > 0,则根据连续函数的介值定理,在(a,b) 内至少存在一点 ξ ,使 $f(\xi) = 0$.

对分法首先取区间[a,b]的中点 $x_1 = \frac{a+b}{2}$,把 区间[a,b]分为两个小区间[a, x_1]、[x_1 ,b],如果 f (a)• f(x_1) < 0,令 $a_1 = a$, $b_1 = x_1$; 否则令 $a_1 = x_1$, $b_1 = b$,得到有根区间[a_1 , b_1].用同样的方法把区间[a_1 , b_1]对分,得到有根区间[a_2 , b_2]……这样一直下去,可得到长度每次减半的有根区间序列[a_k , b_k].当 k 足够大时,有根区间[a_k , b_k]长度趋于零,区间任一点都可作为根的近似值,如图 7-1 所示.

7.1.0.1 对分法算法

- ①给出精度 $\delta, \varepsilon, \diamondsuit a_0 = a, b_0 = b, k = 0$.
- ②令 $x_k = (a_k + b_k)/2$, 计算 $f(x_k)$.
- ③若 $|f(x_k)| < \delta$,则 x_k 是f(x) = 0的根,停止计算,输出结果 $\xi = x_k$;若 $f(a_k) \cdot f(x_k) < 0$,则令 $a_{k+1} = a_k$, $b_{k+1} = x_k$; 否则令 $a_{k+1} = x_k$, $b_{k+1} = b_k$.
- ④若 $b_{k+1} a_{k+1} \le \varepsilon (\varepsilon)$ 为预先给定的精度要求),退出计算,输出结果 $\xi \approx (a_{k+1} + b_{k+1})/2$;反之,令 k = k + 1,返回②.

上面方法可得到区间长度每次缩小一半的区间序列 $\{[a_k,b_k]\}$, (a_k,b_k) 中总含有方程的根. 当区间长 b_k – a_k 很小时,取其中点 $x_k = \frac{a_k + b_k}{2}$ 为根的近似值.

7.1.0.2 收敛性分析

因为

$$|x_k - \xi| \le \frac{1}{2} (b_k - a_k) = \frac{1}{2^2} (b_{k-1} - a_{k-1}) = \dots = \frac{1}{2^{k+1}} (b - a)$$
 (7.1)

所以, 当 $k \rightarrow \infty$ 时, x_k 收敛于 ξ .

公式(7.1)还可用于估计对分次数 k.

对分法的收敛速度与公比为 1/2 的等比级数相同. 由于 2^{10} = 1 024,可知大约 每对分 10 次,近似根的精度就可提高三位小数位. 对分法的收敛速度较慢,常用来试探实根的分布区间,或求根的初始近似值.

例 7 - 1 求 x^3 - 3x + 1 = 0 的实根分布情况,并求[0,1]中的实根近似值. 要求实根近似值精确到三位小数.

解 从区间[-4,4]以步长为 1 计算 $f(x) = x^3 - 3x + 1 = 0$ 的函数值,结果如表 7 – 1 所示.

表7-1 函数值表

х	-4	-3	-2	- 1	0	1	2	3	4
f(x)	-51	- 17	-1	3	1	- 1	3	19	53

可见,在区间[-2,-1]、[0,1]、[1,2]各有一实根,如图 7-2 所示.下面求[0,1]区间上的实根,计算列表如表 7-2 所示.

图 7-2

k	a_k	b_k	x_k	$f(x_k)$
1	0	1	0. 5	-33.75
2	0	0. 5	0. 25	0. 265 625
3	0. 25	0. 5	0. 375	-0.072 27
4	0. 25	0. 375	0. 312 5	0. 093 02
5	0. 312 5	0. 375	0. 343 75	0. 009 369
6	0. 343 75	0. 375	0. 359 375	-0.03171
7	0. 343 75	0. 359 375	0. 351 562 5	-0.011 24
8	0. 343 75	0. 351 562 5	0. 347 656 25	-0.000 949
9	0. 343 75	0. 347 656 25	0. 345 703 125	0. 004 206
10	0. 345 703 125	0. 347 656 25	0. 346 679 687	0. 001 627
11	0. 346 679 687	0. 347 656 25	0. 347 167 968	0. 000 338 7
12	0. 347 167 968	0. 347 656 25	0. 347 412 109	-0.000 305 4
13	0. 347 167 968	0. 347 412 109	0. 347 290 038	0. 000 016 66

表 7-2 对分法试算表

由于 $x \in [0.347\ 167\ 968, 0.347\ 412\ 109]$,可取 $x \approx 0.347\ 290\ 033$ 作近似解. 7.1.0.3 对分法的特点

对分法的优点是对函数的要求低(只要求 f(x)连续),方法简单、可靠,程序设计容易,可事先估计计算次数. 缺点是收敛速度较慢,不能求出偶重根. 如图 7-3 所示,因为 f(x) 在根 x 的两边附近函数值同号,不能用对分法求之.

图 7-3

7.2 迭代法

7.2.1 迭代法

给定方程 f(x) = 0,可用多种方法构造它的等价方程 $x = \varphi(x)$,取定根的一个近似值 x_0 ,构造序列

$$x_{k+1} = \varphi(x_k) \quad (k = 0, 1, 2, \cdots)$$
 (7.2)

若 $\{x_k\}$ 收敛,即 $\lim_{k\to\infty}x_k=x^*$,并且 $\varphi(x)$ 连续,则有

$$\lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} \varphi(x_k) = \varphi(\lim_{k \to \infty} x_k)$$
$$x^* = \varphi(x^*)$$

即

故, $\{x_k\}$ 的极限 x^* 是方程 $x = \varphi(x)$ 的根,也就是方程 f(x) = 0 的根.

当然, $若\{x_k\}$ 发散,迭代法就失败.

7.2.1.1 迭代法算法

- ①给定初值 x_0 ,精度 $\varepsilon, k = 0$.
- ②计算 $x_{k+1} = \varphi(x_k)$.
- ③若 $|x_{k+1} x_k| < \varepsilon$,输出 x_{k+1} ;否则取k = k + 1,返回②

例 7-2 求 $x^3 - 3x + 1 = 0$ 在 0.5 附近的根. 要求精确到第四位小数.

解 构造等价方程 $x = \varphi_1(x) = \frac{x^3 + 1}{3}$,格式 $x_{k+1} = \frac{x_k^3 + 1}{3}$, $k = 0, 1, 2, \dots$, 取 $x_0 = 0.5$. 计算结果如表 7 – 3 所示.

表7-3 计算结果

k	0	1	2	3	4	5	6
x_k	0.500 00	0. 375 00	0. 350 91	0. 347 74	0. 347 35	0. 347 30	0.347 30

由表 7-3 可知, $x_5 = x_6 = 0.34730$ 为根的近似值.

注意:格式 $x_{k+1} = \frac{x_k^3 + 1}{3}$ 不能求出方程在 1.5 和 -2 附近的根,请读者自己验证.

此外,方程还可以有另外的格式,如

$$x_{k+1} = \varphi_2(x_k) = \frac{1}{3 - x_k^2} \quad (k = 0, 1, 2, \dots)$$
 (7.3)

$$x_{k+1} = \varphi_3(x_k) = {}^{3} \overline{\beta x_k - 1} \quad (k = 0, 1, 2, \dots)$$
 (7.4)

7.2.2 迭代法的几何意义

从上例可看到,由 f(x) = 0 构造出的等价方程 $x = \varphi(x)$ 可以有多种,有的可能 收敛,有的可能不收敛,这取决于 $\varphi(x)$ 的性态. 这里先叙述迭代法的几何意义,关于迭代法的收敛性,后面再讨论.

将 $x = \varphi(x)$ 写成

$$\begin{cases} y = x \\ y = \varphi(x) \end{cases}$$

则求解方程 $x = \varphi(x)$ 等价于求直线 y = x 和曲线 $y = \varphi(x)$ 的交点的横坐标 x^* , 如图 7-4、图 7-5、图 7-6 和图 7-7 所示.

图 7 – 4、图 7 – 5 是收敛情况,而图 7 – 6、图 7 – 7 是发散情况.可以大致看出,如 $\varphi(x)$ 在 x^* 附近形状比较陡峭(不管是上升或是下降),则发散;若 $\varphi(x)$ 比较平坦,则收敛.

7.2.3 迭代法收敛条件

定义 7.1 如果在根 x^* 的某个邻域 **R**: $|x - x^*| \le \delta$ 中,对任意的 $x_0 \in \mathbf{R}$,格式 $x_{k+1} = \varphi(x_k)$, $k = 0, 1, 2, \cdots$ 收敛,则称格式在 x^* 附近局部收敛.

定理 7.1 设 $x^* = \varphi(x^*), \varphi'(x)$ 在 x^* 的某个领域 **R** 内连续,并且 $|\varphi'(x)| \le q, q < 1$ 是常量,则

(1)对任意 $x_0 \in \mathbf{R}$,由格式 $x_{k+1} = \varphi(x_k)$ 决定的序列 $\{x_k\}$ 收敛于 x^* .

$$(2) |x_k - x^*| \le \frac{q^k}{1 - q} |x_1 - x_0| \tag{7.5}$$

$$|x_{k} - x^{*}| \leq \frac{1}{1 - q} |x_{k+1} - x_{k}| \tag{7.6}$$

证明 (1)由拉格朗日中值定理,存在 $\xi \in \mathbf{R}$,使

$$x_k - x^* = \varphi(x_{k-1}) - \varphi(x^*) = \varphi'(\xi)(x_{k-1} - x^*)$$

$$|x_k - x^*| \leq q |x_{k-1} - x^*| \leq \cdots \leq q^k |x_0 - x^*|$$

所以 $\lim x_k = x^*$.

(2)由拉格朗日中值定理,有

$$x_{k+1} - x_k = \varphi(x_k) - \varphi(x_{k-1}) = \varphi'(\xi)(x_k - x_{k-1})$$

$$|x_{k+1} - x_k| \le q |x_k - x_{k-1}| \le \dots \le q^k |x_1 - x_0|$$

$$x_{k+p} - x_k = x_{k+p} - x_{k+p-1} + x_{k+p-1} - \dots - x_{k+1} + x_{k+1} - x_k$$

因为 所以

$$|x_{k+p} - x_k| \le |x_{k+p} - x_{k+p-1}| + |x_{k+p-1} - x_{k+p-2}| + \dots + |x_{k+1} - x_k|$$

$$\le (q^p + q^{p-1} + \dots + 1) |x_{k+1} - x_k| = \frac{q^{p+1} - 1}{q - 1} |x_{k+1} - x_k|$$

♦ p → ∞ ,有

$$|x^* - x_k| \le \frac{1}{1 - q} |x_{k+1} - x_k| \le \frac{q}{1 - q} |x_k - x_{k-1}| \le \dots \le \frac{q^k}{1 - q} |x_1 - x_0|$$

说明:(7.5)式常用来估计次数,但结果偏保守,次数偏大;(7.6)式常用来作为程序退出的条件,即当 $|x_k-x_{k-1}|<\varepsilon$ 时退出.

定理 7.2 给定方程 x = φ(x), 若 φ(x)满足:

- ①对任意的 $x \in [a,b]$, 有 $\varphi(x) \in C[a,b]$;
- ②对任意的 $x,y \in [a,b]$,有 | $\varphi(x) \varphi(y)$ | $\leq q \mid x-y \mid$,0 $\leq q < 1$ 为常数. 则对任意的 $x_0 \in [a,b]$,格式 $x_{k+1} = \varphi(x_k)$ 生成的序列 $\{x_k\}$ 收敛于 $x = \varphi(x)$ 的根 x^* .

证明与定理7.1类似,不再重复.

注意:满足条件①和②的函数 $\varphi(x)$ 称为区间的压缩映射.

定理7.1可用来粗略估计格式在根的附近的收敛情况.

例 7 – 3 讨论例 7 – 2 的三种格式在三个根附近的收敛情况,这三个根近似地取 x_1 = 0.347, x_2 = 1.53, x_3 = –1.88.

解 格式 —
$$x_{k+1} = \frac{x_k^2 + 1}{3}$$
, $\varphi_1'(x) = x^2$

$$|\varphi_1'(x_1)| = 0.124 \ 09 < 1 \quad 收敛$$

$$|\varphi_1'(x_2)| = 2.340 \ 9 > 1 \quad 不收敛$$

$$|\varphi_1'(x_3)| = 3.534 \ 4 > 1 \quad \text{不收敛}$$
格式 — $x_{k+1} = \frac{1}{3 - x_k^2}$, $\varphi_2'(x) = \frac{2x}{(3 - x^2)^2}$

$$|\varphi_1'(x_1)| = 0.08 < 1 \quad 收敛$$

$$|\varphi_2'(x_2)| = 7.04 > 1 \quad \text{不收敛}$$

$$|\varphi_3'(x_3)| = 13.16 > 1 \quad \text{不收敛}$$

格式三
$$x_{k+1} = {}^{3} \bar{\beta} x_{k} - 1$$
, $\varphi'_{3}(x) = \frac{1}{3} (3x - 1)^{-\frac{2}{3}}$

$$|\varphi'_{3}(x_{1})| = 8.41 > 1 \quad \text{不收敛}$$

$$|\varphi'_{3}(x_{2})| = 0.426 < 1 \quad \text{收敛}$$

$$|\varphi'_{3}(x_{3})| = 0.283 < 1 \quad \text{收敛}$$

7.2.4 迭代法的加速

由定理 7.1 可知, 若由 f(x) = 0 构造出的格式 $x = \varphi(x)$ 收敛时, 收敛速度取决于 $|\varphi'(x)|$ 的大小, 当 $|\varphi'(x)|$ 接近于 1 时, 收敛可能很慢. 能否从 $x = \varphi(x)$ 出发构造出新的格式, 使收敛速度加快呢? 下面讨论两种常用的加速方法.

7.2.4.1 松弛法

已知 $\varphi(x_k)$ 与 x_k 同是 x^* 的近似值. 那么 $x_{k+1} = (1 - \omega_k) x_k + \omega_k \varphi(x_k)$ 是两个近似值的加权平均. 其中 ω_k 称为权重. 现通过确定 ω_k 看能否得到加速.

因为
$$x = (1 - \omega)x + \omega\varphi(x) = \varphi(x)$$
 令 $\varphi'(x) = 1 - \omega + \omega\varphi'(x) = 0$, 当 $\varphi'(x) \neq 1$ 时, 解得 $\omega = \frac{1}{1 - \varphi'(x)}$. 即取
$$\omega_k = \frac{1}{1 - \varphi'(x_k)}, 1 - \omega_k = \frac{-\varphi'(x_k)}{1 - \varphi'(x_k)}$$
 时,可望获得较好的加速效果.

松弛法格式如下:

$$\begin{cases} \omega_{k} = \frac{1}{1 - \varphi'(x_{k})} \\ x_{k+1} = (1 - \omega_{k})x_{k} + \omega_{k}\varphi(x_{k}) \end{cases}$$
 (7.7)

松弛法算法

- ①给定初值 x_0 ,精度 $\varepsilon,k=0$.
- ②计算:

$$\omega_k = \frac{1}{1 - \varphi'(x_k)}$$

$$x_{k+1} = (1 - \omega_k)x_k + \omega_k \varphi(x_k)$$

③若 $| |x_{k+1} - x_k| < \varepsilon$,输出 x_{k+1} ;否则,取 k = k+1,返回②.

松弛法的加速效果是明显的.

7.2.4.2 埃特金(Aitken)方法

松弛法要计算导数 $\varphi'(x_k)$,使用中有时不方便,为此引入埃特金方法.

设方程 $x = \varphi(x)$, x^* 是它的准确根, x_0 是其近似根. 取 $x_1 = \varphi(x_0)$, $x_2 = \varphi(x_1)$. 因为

$$x^* = x_2 + x^* - x_2 = x_2 + \varphi'(\xi)(x^* - x_1)$$

用差商

$$\frac{x_2 - x_1}{x_1 - x_0} = \frac{\varphi(x_1) - \varphi(x_0)}{x_1 - x_0}$$

近似代替 $\varphi'(\xi)$,有

$$x^* \approx x_2 + \frac{x_2 - x_1}{x_1 - x_0} (x^* - x_1)$$

解出 x*得

$$x^* \approx x_2 - \frac{(x_2 - x_1)^2}{x_2 - 2x_1 + x_0}$$

由此得到公式

$$\begin{cases} x_k^{(1)} = \varphi(x_k) \\ x_k^{(2)} = \varphi(x_k^{(1)}) \\ x_{k+1} = x_k^{(2)} - \frac{(x_k^{(2)} - x_k^{(1)})^2}{x_k^{(2)} - 2x_k^{(1)} + x_k} & (k = 0, 1, 2, \cdots) \end{cases}$$

$$(7.8)$$

这就是埃特金公式,它的加速效果也十分明显(见例7-4).

埃特金算法

①给定初值 x_0 ,精度 $\varepsilon, k=0$.

②计算:

$$x_k^{(1)} = \varphi(x_k)$$

$$x_k^{(2)} = \varphi(x_k^{(1)})$$

$$x_{k+1} = x_k^{(2)} - \frac{(x_k^{(2)} - x_k^{(1)})^2}{x_k^{(2)} - 2x_k^{(1)} + x_k}$$

③若 $|x_{k+1} - x_k| < \varepsilon$,输出 x_{k+1} ;否则取k = k + 1,返回②.

下面给出埃特金迭代算法的几何解释.

如图 7-8,设 x_0 为方程 $x=\varphi(x)$ 的一个近似根,由 $x_1^{(1)}=\varphi(x_0)$ 和 $x_1^{(2)}=\varphi(x_1^{(1)})$ 在曲线 $y=\varphi(x)$ 上可以定出两点 $p_0(x_0,x_1^{(1)}),p_1(x_1^{(1)},x_1^{(2)})$,作 弦 $\overline{p_0p_1}$ 与直线 y=x 交于 p,则 p 点的坐标 x_1 满足

$$x_1 = x_1^{(1)} - \frac{x_1^{(2)} - x_1^{(1)}}{x_1^{(1)} - x_0} (x_1 - x_1^{(1)})$$

解出 x, 即得埃特金公式.

例7-4 解方程 $x^3 - 3x + 1 = 0$,格式 $x_{k+1} = \frac{x_k^3 + 1}{3}$,用松弛法和埃特金法,取 $x_0 = 0.5$,精确到 6 位小数.

解 松弛法
$$\varphi(x) = \frac{x^3 + 1}{3}, \varphi'(x) = x^2, \omega_k = \frac{1}{1 - x_k^2}.$$
 公式为
$$x_{k+1} = (1 - \omega_k)x_k + \omega_k \frac{x_k^3 + 1}{3}$$

计算结果如表 7-4 所示.

表 7-4 松弛法计算结果

k	0	1	2	3	4
x_k	0. 5	0. 333 333	0. 347 222	0. 347 296	0. 347 296
ω_k	1. 333 333	1. 125 000	1. 137 091	1. 137 158	

可见确有明显的加速效果.

埃特金法
$$x_k^{(1)} = \frac{x_k^3 + 1}{3}$$

$$x_k^{(2)} = \frac{\left(x_k^{(1)}\right)^3 + 1}{3}$$

$$x_{k+1} = x_k^{(2)} - \frac{\left(x_k^{(2)} - x_k^{(1)}\right)^2}{x_k^{(2)} - 2x_k^{(1)} + x_k} \quad (k = 0, 1, 2, \cdots)$$

计算结果如表7-5所示。

表 7-5 埃特金法计算结果

k	x_k	$\chi_k^{(1)}$	$\chi_k^{(2)}$
0	0. 5	0. 375	0. 350 911
1	0. 345 161	0. 347 040	0. 347 265
2	0. 347 296		

例7-5 对上题,取 $x_0 = 1.5$,用埃特金算法计算.

解 计算结果如表 7-6 所示.

k	x_k	$x_k^{(1)}$	$x_k^{(2)}$
0	1.5	1. 458 333	1. 367 163
1	1. 535 071	1. 539 102	1. 548 626
2	1. 532 113	1. 532 145	1. 532 222
3	1. 532 090	1. 532 092	1. 532 096
4	1. 532 088	1. 532 087	1. 532 084
5	1. 532 088		

表 7-6 埃特金法计算结果($x_0 = 1.5$)

7.3 牛顿(Newton)法

7.3.1 牛顿公式

由于 f(x) = 0 是非线性方程,一般解决非线性问题较困难,而解决线性问题较容易,故可以考虑将非线性问题线性化,采取线性化方法进行求解. 把 f(x) 在 x_0 作泰勒展开.有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\xi)}{2!}(x - x_0) = p(x) + \frac{f''(\xi)}{2!}(x - x_0)$$

其中

$$p(x) = f(x_0) + f'(x_0)(x - x_0) = 0$$

是线性方程. 用 p(x) = 0 作为 f(x) = 0 的近似方程,即把求曲线 f(x) = 0 与 X 轴交点的横坐标近似为求直线 p(x) = 0 与 X 轴交点的横坐标.

$$p(x) = f(x_0) + f'(x_0)(x - x_0) = 0$$

的解为

$$x = x_{0} - \frac{f(x_{0})}{f'(x_{0})} \quad (\stackrel{\sim}{\mathbb{R}} f'(x_{0}) \neq 0)$$

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$\vdots$$

$$x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})} \quad (k = 0, 1, 2, \cdots)$$

$$(7.9)$$

记

这就是牛顿法公式.

例7-6 用牛顿法计算 $x^3 - 3x + 1 = 0$ 在 0.5 和 -2 附近的两个根.

解 因为
$$f(x) = x^3 - 3x + 1$$
, $f'(x) = 3x^2 - 3$, 所以

$$x_{k+1} = x_k - \frac{x_k^3 - 3x_k + 1}{3x_k^2 - 3}$$

计算结果如表7-7所示.

表7-7 牛顿法计算结果

k	0	1	2	3	4
$x_k^{(1)}$	0. 5	0. 333 333	0. 347 222	0. 347 296	0. 347 296
$x_k^{(2)}$	-2	-1.888889	-1.879 452	-1.879 385	-1.879 385

牛顿法实质上是一般迭代法用松弛法加速,把f(x) = 0 化为等价方程 $x = x + f(x) = \varphi(x)$,对此使用松弛法:

$$\varphi'(x) = 1 + f'(x)$$

$$\omega_k = \frac{1}{1 - \varphi'(x_k)} = -\frac{1}{f'(x_k)}$$

可得牛顿法公式:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

由此可知牛顿法的收敛速度应当较快,例7-6也印证了这一点.

牛顿算法

- ①给定初值 x_0 ,精度 $\varepsilon, k=0$.
- ②计算 $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$.
- ③若 $|x_{k+1} x_k| < \varepsilon$,输出 x_{k+1} ;否则取k = k + 1,返回②.

下面给出牛顿法的几何意义.

f(x) = 0 的解就是 y = f(x) 与 X 轴的交点的横坐标. 若 x_k 是近似解,过(x_k , $f(x_k$))作 y = f(x)的切线,则切线方程为

$$y - f(x_k) = f'(x_k)(x - x_k)$$

它与 X 轴的交点横坐标是 $x_k - \frac{f(x_k)}{f'(x_k)}$, 如图 7-9 所示.

7.3.2 牛顿法的收敛速度

迭代法的基本要求是能收敛,而迭代法的优劣取决于收敛的快慢.为了衡量收敛序列的收敛速度,先给出收敛序列收敛阶定义.

定义 7.2 设序列 $\{x_k\}$ 收敛于 x^* , 令 $\varepsilon_k = x^* - x_k$, 设 $k \to \infty$ 时, 有

$$\frac{|\varepsilon_{k+1}|}{|\varepsilon_k|^p} \to c \quad (c > 0 \ 为常数)$$

则称序列 $\{x_k\}$ 是p阶收敛. 当p=1时称线性收敛;当p=2时称二阶收敛(几何收敛);1 时称超线性收敛.

下面是迭代法阶收敛定理.

定理 7.3 设 $x^* = \varphi(x^*)$, 在 x^* 的某个邻域 **R** 内 $\varphi^{(p)}(x)$ 连续 p > 1 是常量, 并且满足

$$\varphi^{(l)}(x^*) = 0 \quad (l = 1, 2, \dots, p-1)$$

$$\varphi^{(p)}(x^*) \neq 0$$
(7.10)
$$(7.11)$$

则由 $x_{k+1} = \varphi(x_k)$ 生成的序列 $\{x_k\}$ 收敛于 x^* ,并且序列 $\{x_k\}$ 是 p 阶收敛.

证明 由 $\varphi'(x^*)$ = 0 和定理 7.1 可知, x_{k+1} = $\varphi(x_k)$ 生成的序列 $\{x_k\}$ 收敛于 x^* . 再由泰勒展开

$$x_{k+1} = \varphi(x_k) = \varphi(x^*) + \varphi'(x^*)(x - x^*) + \dots + \frac{\varphi^{(p-1)}(x^*)}{(p-1)!}(x_k - x^*)^{p-1} + \frac{\varphi^{(p)}(\xi_k)}{p!}(x_k - x^*)^p$$

其中 ξ 在 x_k 和 x^* 之间. 代入 $x^* = \varphi(x^*)$ 和条件(7.10)得

$$\frac{e_{k+1}}{e_k^p} = \frac{\varphi^{(p)}(\xi_k)}{p!}$$

注意到当 $k \to \infty$, $x_k \to x^*$,从而 $\xi_k \to x^*$,又 $\varphi^{(p)}(x^*) \neq 0$,定理得证.

下面讨论牛顿法的收敛速度.

因为牛顿法的格式为

$$x = x - \frac{f(x)}{f'(x)} = \varphi(x)$$

$$\varphi'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

有

当 $f'(x^*) \neq 0$ 时,由于分子上的 $f(x^*) = 0$,所以 $\varphi'(x^*) = 0$.因此,牛顿法至少是二阶收敛,即牛顿法在单根附近至少是二阶收敛的,而在重根附近,牛顿法是线性收敛.

牛顿法的优点是收敛很快,算法简单,是常用的快速收敛法;缺点是对重根收

敛较慢,对初值 x_0 要求较严,要求 x_0 相当接近真解 x^* .实际应用中,它常与其他方法联用,先用其他方法确定初值 x_0 ,再用牛顿法提高精度.

7.4 割线法

已知 f(x) = 0 的两个近似根 $x_k, x_{k-1},$ 过点 $(x_{k-1}, f(x_{k-1})), (x_k, f(x_k))$ 连一条直线,据两点式可写出直线方程:

$$\frac{y - f(x_k)}{x - x_k} = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

把求曲线 f(x) = 0 与 X 轴交点的横坐标近似为求直线(割线)与 X 轴交点的横坐标. 即把该直线与 X 轴的交点的横坐标作 x^* 的新的近似值 x_{k+1} :

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1}) \quad (k = 1, 2, \dots)$$
 (7.12)

此种方法称为割线法.

很明显,也可由牛顿法用差商 $\frac{f(x_k)-f(x_{k-1})}{x_k-x_{k-1}}$ 近似代替微商 $f'(x_k)$ 得到. 它是牛顿法的一种近似方法.

割线法算法

- ①给定初值 x_0 , x_1 , 精度 ε , k = 1.
- ②计算 $x_{k+1} = x_k \frac{f(x_k)}{f(x_k) f(x_{k-1})} (x_k x_{k-1}).$
- ③若 $|x_{k+1} x_k| < \varepsilon$,输出 x_{k+1} ;否则取k = k+1,返回②.

割线法需要两个初值 x_0 , x_1 , 在单根附近是超线性收敛, 通过较复杂的推导可知收敛阶 p 在单根附近为 1. 618…, 收敛也相当快, 而且不用计算导数值.

它的几何意义如图 7-10 所示. 它的收敛定理下面直接给出.

定理 7.4 如 f(x) 在零点 x^* 附近有连续的 2 阶导数. $f'(x^*) \neq 0$, 且初值 x_0 , x_1 充分接近 x^* , 则割线法收敛, 收敛速度为

$$|x_{k+1} - x^*| \approx \left| \frac{f''(x^*)}{2f'(x^*)} \right|^{0.618} |x_k - x^*|^{1.618}$$

割线法需要两个初值 x_0, x_1 , 故也称为双点割线法. 有时为了简单起见. 可只用一个初值 x_0 .

图 7-10

称为单点割线法.单点割线法如下:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_0)} (x_k - x_0) \quad (k = 1, 2, \dots)$$

例 7 - 7 用双点割线法求 x^3 - 3x + 1 = 0 在 0.5 附近的根,精确到小数点后第六位.

$$\mathbf{\widetilde{H}} \quad f(x) = x^3 - 3x + 1 = 0, x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1}) (k = 1, 2, \dots).$$

取 $x_0 = 0.5, x_1 = 0.2$, 计算结果如表 7-8 所示.

k	1	2	3	4	5
x_{k-1}	0. 5	0. 2	0. 356 322	0. 347 731	0. 347 295
x_k	0. 2	0. 356 322	0. 347 731	0. 347 295	0. 347 296

表7-8 割线法计算表

7.5 解非线性方程组的迭代法和牛顿法

解一元非线性方程的迭代法和牛顿法可以推广到多元. 本节简单介绍解非线性方程组的迭代法和牛顿法.

n个未知数 n个方程的非线性方程组可表示为

$$\begin{cases} f_{1}(x_{1}, x_{2}, \dots, x_{n}) = 0 \\ f_{2}(x_{1}, x_{2}, \dots, x_{n}) = 0 \\ \vdots \\ f_{n}(x_{1}, x_{2}, \dots, x_{n}) = 0 \end{cases}$$

$$(7.13)$$

其中 $X = (x_1, x_2, \dots, x_n)^{\mathsf{T}}$ 为n维列向量; $f_i(X)(i=1,2,\dots,n)$ 中至少有一个是X的非线性函数,并假设自变量和函数值都是实数.

7.5.1 迭代法

记

$$F(X) = [f_1(X), f_2(X), \cdots, f_n(X)]^T$$

则方程组(7.13)可简写为

$$F(X) = 0 \tag{7.14}$$

显然,函数 F(X) 的值也是 n 维列向量. 多元非线性方程组(7.14) 与一元非线性方程 f(x) = 0 具有相同的形式,可以与一元函数一样讨论它的解法,例如迭代法和牛顿法.

下面叙述迭代法.首先把方程组(7.14)转换成等价方程组

$$\mathbf{X} = \Phi(\mathbf{X}) \tag{7.15}$$

其中

$$\Phi(X) = [\varphi_1(X), \varphi_2(X), \cdots, \varphi_n(X)]^{\mathrm{T}}$$

并构造格式

$$X^{(k+1)} = \Phi(X^{(k)}) \quad (k=0,1,2,\cdots)$$
 (7.16)

对于给定的初始点 $X^{(0)}$, 若由此生成的序列收敛, 如 $\lim_{k \to \infty} X^{(k)} = X^*$,则 X^* 满足 $X^* = \Phi(X^*)$,即 X^* 是方程组(7.14)的解.

非线性方程组的算法

- ①给定初值 $X^{(0)}$,精度 $\varepsilon, k = 1$.
- ②计算 $X^{(k+1)} = \Phi(X^{(k)})$.
- ③ $\|X^{(k+1)} X^{(k)}\| < \varepsilon$,输出 $X^{(k+1)}$;否则取 k = k+1,返回②.

定义 7.3 **R**ⁿ 中集合 *M* 称为闭集,是指 *M* 中的任一个向量序列 { $X^{(k)}$ } , 若 $X^{(k)} \rightarrow X^*$ (即 $\|x^{(k)} - x^*\| \rightarrow 0$),则 $x^* \in \mathbf{R}^n$.

定义 7.4 设 $\Phi(X) = [\varphi_1(X), \varphi_2(X), \cdots, \varphi_n(X)]^T$ 是一个 n 维列向量函数, $M \in \mathbf{R}^n$ 中的子集合,若满足,

- $\textcircled{1}X \in M \Rightarrow \Phi(X) \in M;$
- ②存在常数 q,0 $\leq q$ <1,使 M 中任意 X,Y,满足

$$\|\Phi(X) - \Phi(Y)\| \leq q \|X - Y\|$$

则称 $\Phi(X)$ 为 M上的压缩映射.

类似于一元函数,有下面压缩映射定理.

定理 7.5 若 $\Phi(X)$ 为闭集 M 上的压缩映射,则 $X = \Phi(X)$ 在 M 上有惟一解. 且对任意 $X^{(0)} \in M$,由格式 $X^{(k+1)} = \Phi(X^{(k)})$ 产生的向量序列 $\{X^{(k)}\}$ 收敛于这个解.

例7-8 设有非线性方程组

$$\begin{cases} x_1^2 - 10x_1 + x_2^2 + 8 = 0\\ x_1x_2^2 + x_1 - 10x_2 + 8 = 0 \end{cases}$$
 (7.17)

把它写成等价形式

$$\begin{cases} x_1 = \varphi_1(x_1, x_2) = \frac{1}{10}(x_1^2 + x_2^2 + 8) \\ x_2 = \varphi_2(x_1, x_2) = \frac{1}{10}(x_1x_2^2 + x_1 + 8) \end{cases}$$

并由此构造格式

$$\begin{cases} x_{1}^{(k+1)} = \varphi_{1}(x_{1}^{(k)}, x_{2}^{(k)}) = \frac{1}{10} [(x_{1}^{(k)})^{2} + (x_{2}^{(k)})^{2} + 8] \\ x_{2}^{(k+1)} = \varphi_{2}(x_{1}^{(k)}, x_{2}^{(k)}) = \frac{1}{10} [x_{1}^{(k)}(x_{2}^{(k)})^{2} + x_{1}^{(k)} + 8] \end{cases}$$
 (7.18)

取初始点 $\boldsymbol{X}^{(0)} = (0,0)^{\mathrm{T}}$, 计算结果如表 7 – 9 所示. 可见迭代收敛到方程组(7.17)的解 $\boldsymbol{X}^* = (1,1)^{\mathrm{T}}$.

k	0	1	2	•••	18	19
$x_1^{(k)}$	0.0	0.8	0. 928 0		0. 999 999 972	0. 999 999 989
$x_2^{(k)}$	0.0	0.8	0. 931 2		0. 999 999 972	0. 999 999 989

表7-9 计算结果

7.5.2 牛顿法

对于非线性方程组,也可以构造类似于一元方程的牛顿法,而且同样具有二次局部收敛性.首先介绍多元收敛阶的定义.

定义 7.5 设序列 $\{X^{(k)}\}_{k=0}^{\infty} \subset \mathbf{R}^{n}$ 收敛到 X^{*} , 若有常数 $p \ge 1$ 和 c > 0, 使得

$$\lim_{k \to \infty} \frac{\parallel \boldsymbol{X}^{(k+1)} - \boldsymbol{X}^* \parallel}{\parallel \boldsymbol{X}^{(k)} - \boldsymbol{X}^* \parallel^p} = c$$

则称 p 为该序列的收敛阶. 当 p=1 时称为线性收敛; 当 p>1 时称为超线性收敛; 当 p=2 时称为二次收敛或平方收敛.

设 X^* 是方程组(7.13)的解, $X^{(k)}$ 是某个值. 用点 $X^{(k)}$ 处的一阶泰勒展开近似每一个分量函数值 $f_i(X^*)=0$,有

$$0 = f_i(\boldsymbol{X}^*) \approx f_i(\boldsymbol{X}^{(k)}) + \sum_{j=1}^n \frac{\partial f_i(\boldsymbol{X}^{(k)})}{\partial x_j} (x_j^* - x_j^{(k)}) \quad (i = 1, 2, \dots, n)$$

或按方程组(7.14)用矩阵和向量表示为

$$0 = F(X^*) \approx F(X^{(k)}) + F'(X^{(k)})(X^* - X^{(k)})$$
 (7.19)

其中函数 F(X) 的导数

$$F'(\boldsymbol{X}) = \begin{bmatrix} \nabla f_{1}(\boldsymbol{X})^{\mathsf{T}} \\ \nabla f_{2}(\boldsymbol{X})^{\mathsf{T}} \\ \vdots \\ \nabla f_{n}(\boldsymbol{X})^{\mathsf{T}} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_{1}(\boldsymbol{X})}{\partial x_{1}} & \frac{\partial f_{1}(\boldsymbol{X})}{\partial x_{2}} & \dots & \frac{\partial f_{1}(\boldsymbol{X})}{\partial x_{n}} \\ \frac{\partial f_{2}(\boldsymbol{X})}{\partial x_{1}} & \frac{\partial f_{2}(\boldsymbol{X})}{\partial x_{2}} & \dots & \frac{\partial f_{2}(\boldsymbol{X})}{\partial x_{n}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_{n}(\boldsymbol{X})}{\partial x_{1}} & \frac{\partial f_{n}(\boldsymbol{X})}{\partial x_{2}} & \dots & \frac{\partial f_{n}(\boldsymbol{X})}{\partial x_{n}} \end{bmatrix}$$

F'(X) 称为函数 F(X) 的 Jacobi 矩阵. 若矩阵 $F'(X^{(k)})$ 非奇异,则可从(7.19)中解出近似值,并把它作为下一次值. 于是得到牛顿格式:

$$\boldsymbol{X}^{(k+1)} = \boldsymbol{X}^{(k)} - F'(\boldsymbol{X}^{(k)})^{-1} F(\boldsymbol{X}^{(k)}) \quad (k = 0, 1, 2, \dots)$$
 (7. 20)

其中,X(0)是给定的初始值.

非线性方程组的牛顿算法

- ①给定初值 $X^{(0)}$,精度 $\varepsilon, k=1$.
- ②计算 $X^{(k+1)} = X^{(k)} F'(X^{(k)})^{-1}F(X^{(k)}).$
- ③ $\|X^{(k+1)} X^{(k)}\| < \varepsilon$,输出 $X^{(k+1)}$:否则,取 k = k+1,返回②.

牛顿法的收敛性,可归为迭代法来讨论.它的迭代函数是:

$$\Phi(X) = X - F'(X)^{-1} F(X)$$

定理 7.6 对于函数 $F: D \subset \mathbf{R}^n \to \mathbf{R}^n$. 设 $X^* \in D$ 满足 $F(X^*) = 0$. 若有 X^* 的 开邻域 $S_0 \subset D$, F'(X) 在其上存在并连续, 而且 $F'(X^*)$ 非奇异, 则存在 X^* 的闭球 $S = S(X^*, \delta) \subset S_0$ (其中 $\delta > 0$)

- (1)牛顿函数 $\Phi(X)$ 对所有 $X \in S$ 有定义,并且 $\Phi(X) \in S$.
- (2)对于任何初值 $X^{(0)} \in S$,牛顿序列 $\{X^{(k)}\}$ 超线性收敛于 X^* .
- (3) 若有常数 q > 0, 使得

$$||F'(X) - F'(X^*)|| \leq q ||X - X^*||$$

 $\forall X \in S$,则牛顿序列 $\{X^{(k)}\}$ 至少二阶收敛于 X^* .

例7-9 用牛顿法求解例7-8中的方程组(7.17).

解 此例的函数 F(X) 和它的导数 F'(X) 分别为

$$F(X) = \begin{bmatrix} x_1^2 - 10x_1 + x_2^2 + 8 \\ x_1x_2^2 + x_1 - 10x_2 + 8 \end{bmatrix} \qquad F'(X) = \begin{bmatrix} 2x_1 - 10 & 2x_2 \\ \frac{2}{x_2} + 1 & 2x_1x_2 - 10 \end{bmatrix}$$

取初值 $X^{(0)} = (0,0)^{\mathsf{T}}$,用牛顿法公式(7.20),计算结果如表 7-10.

表 7-10 计算结果

k	0	1	2	3	4
$x_1^{(k)}$	0.0	0. 80	0. 991 787 22	0. 999 975 229	1. 000 000 000
$x_{2}^{(k)}$	0.0	0. 88	0. 991 711 737	0. 999 968 524	1. 000 000 000

可见, 牛顿法的收敛速度比例7-8中的迭代法(7.18)式要快.

练习与思考

- 1. 用对分法求下列方程的根,要求绝对误差限 0.005.
- $(1)x^3 x + 4 = 0$.求根区间为(-2, -1):
- $(2)2x = e^{-x}$,求根区间为(0,1).
- 2. 举出对分法不能求偶数重根的例子.
- 3. 用对分法搜索方程 $6x^3 4x 1 = 0$ 的实根分布情况, 初始搜索区间为

(-2,2),并求出(0,1)中的根,精确到0.01.

4. 证明方程 $f(x) = 5x^2 - 120x + 30 = 0$ 在区间[0,1]中有惟一实根. 并验证下面两种格式的收敛性:

$$(1)x = \varphi_1(x) = 5x^2 - 119x + 3;$$

$$(2)x = \varphi_2(x) = \frac{5x^3 + 3}{120}.$$

- 5. 若 $\varphi(x) \in c[a,b]$,且 $a \leq \varphi(x) \leq b$,证明方程 $x = \varphi(x)$ 在 [a,b] 上有惟一解.
- 6. 用迭代法求 $x^3 2x 5 = 0$ 的正根. 下面有三种格式:

$$(1)x = \frac{x^3 - 5}{2};$$

$$(2)x = \frac{5}{x^2 - 2};$$

$$(3)x = {}^{3}\sqrt{2x+5}.$$

判别它们的收敛情况.

- 7. 证明方程 $x = \varphi(x) = \frac{1}{x+4}$ 在 $(-\infty, +\infty)$ 上有惟一解. 且对任意 $x_0 \in (-\infty, +\infty)$, 迭代法收敛.
- 8. 用迭代法求 $x = \cos x$ 的正根,收敛较慢. 试用埃特金方法加速收敛,求此根到 4 位小数,并与迭代法的速度比较.
 - 9. 写出牛顿法的格式,并用牛顿法计算:
 - (1)不开平方计算 10,精确到5位小数;
 - (2)方程 $x^3 x 1 = 0$ 在1.3 附近的根,精确到5位小数.
 - 10. 用割线法解方程 $6x^3 4x 1 = 0$,取初值 $x_0 = 1, x_1 = 1.3$,精确到 5 位小数.
- 11. 给定方程 f(x) = 0,取格式为 x = x + cf(x),其中 c 为非零常数. 若 f(a) = 0, $f'(a) \neq 0$, 求使 f(x) 收敛于 a, c 的取值范围是多少?
 - 12. 用迭代法解方程组

$$\begin{cases} x_1^2 - 10x_1 + x_2^2 + 23 = 0 \\ x_1 x_2^2 + x_1 - 10x_2 + 2 = 0 \end{cases}$$

取 $x_0 = 3.8, y_0 = 0.9$, 迭代两次.

13. 用牛顿法解方程组

$$\begin{cases} x^2 + y^2 - 1 = 0 \\ x^2 - y = 0 \end{cases}$$

取 $x_0 = 0.8$, $y_0 = 0.6$, 迭代两次.