Sets, Vectors, and Matrices Quiz 1 Practice

10-606

Latex Template: https://www.overleaf.com/read/pztqstyswzzg#39555d

Disclaimer: This isn't exactly a "specimen paper." That is, some problems here are going to be more difficult, and some are going to be easier. However, this is a good place to start to find out which concepts you need to work on more. This also isn't meant to reflect the length or format of the actual quiz. :)

1 Set Operations

Key Points: Review addition, subtraction, products, unions, intersections, types for sets.

- 1. What is the Cartesian product $A \times B \times C$, where $A = \{0,1\}$, $B = \{1,2\}$, and $C = \{0,1,2\}$?
- 2. Let $A = \{x \in \mathbb{N} : 3 \le x < 16\}$ and $B = \{x \in \mathbb{N} : x \text{ is even}\}.$
 - Find $A \cap B$.
 - Find $A \setminus B$.

- 3. Recall $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ (the integers). Let $\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$ be the positive integers. Let $2\mathbb{Z}$ be the even integers $2\mathbb{Z} = \{\ldots, -4, -2, 0, 2, 4, \ldots\}$, $3\mathbb{Z}$ be the multiples of 3, $3\mathbb{Z} = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$
 - Is $\mathbb{Z}^+ \subseteq 2\mathbb{Z}$? Explain.
 - Is $2\mathbb{Z} \subseteq \mathbb{Z}^+$? Explain.

- Find $2\mathbb{Z} \cap 3\mathbb{Z}$. Describe the set in words, and using set notation.
- Express $\{x \in \mathbb{Z} : \exists y \in \mathbb{Z} (x = 2y \lor x = 3y)\}$ as a union or intersection of two sets already described in this problem.

2 Set Builder Notation

Key Points: Review how to convert between natural language expression to set notation (and vice versa).

1. Describe the set of all odd numbers between 100 and 200 using set builder notation.

- 2. Describe each of the following sets both in words and by listing out enough elements to see the pattern.
 - $\{x: x+3 \in \mathbb{N}\}$
 - $\bullet \ \{x \in \mathbb{N} : x + 3 \in \mathbb{N}\}$
 - $\bullet \ \{x: x \in \mathbb{N} \lor -x \in \mathbb{N}\}$
 - $\{x: x \in \mathbb{N} \land -x \in \mathbb{N}\}$
 - $\{x \in \mathbb{Z} : x^2 \in \mathbb{N}\}$
 - $\bullet \ \{x^2: x \in \mathbb{N}\}$

3 Set Comprehension

Key Points: Python syntax (chained for loops using one line, set comprehension, conditionals, range function, etc.)

Write a Python set comprehension that does the following:

- 1. $\{(a, b, c) \in \mathbb{Z}_+^3 \mid a \text{ is even or } b \text{ is divisible by 5}\}$
- 2. $\{(a,b) \in \mathbb{Z}^2 \mid a^2 + b^2 < 4\}$
- 3. $\{x \in \mathbb{Z} \mid x \text{ is odd}\}$

4 Vectors

Key Points: Vector addition, subtraction, scalar multiplication, dot product, outer and inner product, transpose, magnitude, L1 norm, types

- 1. Given $\vec{a} = (8,5)$ and $\vec{b} = (-3,6)$ compute each of the following.
 - 6*a*
 - $7\vec{b} 2\vec{a}$
 - $\bullet \ \|10\vec{a} + 3\vec{b}\|$

2. Let
$$\mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix}$. Calculate The dot product $\mathbf{u} \cdot \mathbf{v}$.

3. Given the matrix
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
, find its transpose A^T .

4. Let
$$\mathbf{a} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$. Calculate the inner product $\langle \mathbf{a}, \mathbf{b} \rangle$ and the outer product $\mathbf{a}\mathbf{b}^T$.

5. Given a vector
$$\mathbf{v} = \begin{pmatrix} -3 \\ 5 \\ -2 \end{pmatrix}$$
, calculate the L_1 norm, denoted as $||\mathbf{v}||_1$.

5 Matrices

Key Points: Matrix operations and properties (addition, subtraction, scalar multiplication), matrix multiplication, trace, types

1. Given two matrices $A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & 0 \\ -2 & 6 \end{pmatrix}$, calculate the sum A + B and the difference A - B.

- 2. If $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$, find the scalar multiple 3A.
- 3. Let $C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $D = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$. Compute the matrix product CD.

- 4. Find the trace of the matrix $E = \begin{pmatrix} 4 & 7 & 1 \\ 2 & 9 & 5 \\ 3 & 8 & 6 \end{pmatrix}$.
- 5. Classify the following matrices as either a row vector, a column vector, a square matrix, or a diagonal matrix:

(a)
$$F = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

(b)
$$G = \begin{pmatrix} 4 & -1 \end{pmatrix}$$

(c)
$$H = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$$

(d)
$$I = \begin{pmatrix} 7 & 8 \\ 9 & 10 \end{pmatrix}$$