Debugging a Policy: A Framework for Automatic Action Policy Testing

Marcel Steinmetz, Timo P. Gros, Philippe Heim, Daniel Höller, Jörg Hoffmann

Saarland University, Saarland Informatics Campus Saarbrücken, Germany

{steinmetz, timopgros, hoeller, hoffmann}@cs.uni-saarland.de, s8phheim@stud.uni-saarland.de

DNNs Are Taking Over Control!

How to gain trust in the policy's learned decisions? Here: Testing!

The Assumptions

- Deterministic action policies π mapping states s to actions $\pi(s)$.
- Policy value function V^{π} mapping every state s to the objective value achieved by π on s.

For qualitative objectives:

no run of π on s satisfies the objective

 $V^{\pi}(s) := \{0.5 \text{ some run of } \pi \text{ on } s \text{ satisfies the objective } \}$

- all runs of π on s satisfy the objective • Optimal value function V^* mapping every state s
- to best value any policy can achieve on s.
- Generic **better than** notion: $V(s) \prec V(s')$ iff

V(s) < V(s') objective is minimization

 $|V(s)\rangle V(s')$ objective is maximization

Policy Bugs: Examples

- Classical planning: the cost of running the policy on s exceeds that an optimal plan by Δ .
- Oversubscription planning and discounted-reward MDPs: running the policy on s achieves Δ less reward than possible.
- MaxProb MDPs: running the policy on s reaches the goal with Δ less probability than possible.

In qualitative setting:

- Classical planning: Δ must be 1 \Rightarrow s is solvable but π does not reach the goal from s
- Contingent planning: goal can be reached with certainty, but

 $\Delta = 0.5$: policy only reaches the goal in some cases. $\Delta = 1$: policy does not reach the goal at all.

Policy Bugs: Definition

Definition (Bug)

A state s is a **bug in** π if

$$\Delta := |V^{\pi}(s) - V^*(s)| > 0$$

 $\Rightarrow \pi$ is bug-free iff π is optimal

Note: π can have bugs despite each $\pi(s)$ being optimal individually. Consider $\pi(s_1) = \pi(s_2) = a$ with the (qualitative) objective to reach g:

But, how can we actually

- \rightarrow **confirm** whether a given state s is a bug?
- → **generate** suitable candidates for testing?

Bug Confirmation: The Easy Cases

- V^* can be computed for all states offline, before starting testing / deploying the policy.
- Domain-specific knowledge: user provides V^* for certain states as input, can use these states for testing.
- Specifically design test-case generation methods, generating only states s with a given $V^*(s)$ value. Example: in qualitative setting, generate states via backward samples from the goal.
- $V^*(s)$ may be efficiently computable for certain states s, e.g., due to structural properties of the domain, or if a fixed-depth lookahead search is sufficient.

Bug Confirmation: The General Case

If V^* cannot be computed exactly, then **approximate!**

- Optimistic approximation of V^{π} : $h_{\pi}(s) \leq V^{\pi}(s)$
- Pessimistic approximation of V^* : $H_*(s) \succeq V^*(s)$

Proposition 4 (Bug Confirmation):

If (i) $h_{\pi}(s) \succeq V^*(s)$ and (ii) $H_* \preceq V^{\pi}(s)$, then $|h_{\pi}(s) - H_{*}(s)| \leq |V^{\pi}(s) - V^{*}(s)|.$

Test-Case Generation: Fuzzing

Idea:

- Start from some state s.
- Mutate this state while enlarging the optimality gap.

Definition (Fuzzing-Bug):

A state s' is a **fuzzing-bug** relative to s if

 $\Delta := |V^{\pi}(s') - V^*(s')| - |V^{\pi}(s) - V^*(s)| > 0$

- \Rightarrow If s' is a fuzzing-bug relative to some s, then s' is a bug.
- \Rightarrow Every bug s' with non-minimal optimality gap is a fuzzing-bug relative to some s.

Fuzzing-Bug Confirmation

How to decide whether s' is a fuzzing-bug relative to s, without knowing the exact gap values?

- Optimistic approximation of V^* : $h_*(s) \leq V^*(s)$
- Pessimistic approximation of V^* : $H_*(s) \succeq V^*(s)$

Proposition 9 (Fuzzing-Bug Confirm. I):

s' is a fuzzing-bug relative to s if $H_*(s') \prec h_*(s)$ and either $V^{\pi}(s') \succeq V^{\pi}(s) \text{ or } |V^{\pi}(s') - V^{\pi}(s)| < |H_*(s') - h_*(s)|.$

Proposition 10 (Fuzzing-Bug Confirm. II):

Let $\delta_1 := |H_*(s') - h_*(s)|, \ \delta_2 := |h_*(s') - H_*(s)|.$ s' is a fuzzingbug relative to s if $V^{\pi}(s') \succeq V^{\pi}(s)$ and $|V^{\pi}(s') - V^{\pi}(s)| > 1$ $\max(\delta_1, \delta_2)$.

Bug Confirmation: Comparison & Takeaway

Theorem

Let s and s' be arbitrary states. If either Proposition 9 or Proposition 10 confirms s' to be a fuzzing-bug relative to s, then Proposition 4 confirms s' to be a bug.

- → All boil down to:
- Approximate $V^{\pi}(s)$ up to a high degree of precision.

Conclusion & Outlook

Bug confirmation:

- Many special cases where $V^*(s)$ feasible to compute.
- If not, fall back to well-known policy-improvement algorithms.

Let's debug your policies!

- Develop fuzzing methods (start states, fuzzing operators, biases, termination, ...)
- Adapt other techniques from software testing (e.g., metamorphic testing).
- See what it does in your favorite planning & learning scenarios.