Einführung in die Algebra

Arthur Henninger

October 11, 2024

Contents

rapitei i		Gruppen	Serie 2
	1.1	Grundbegriffe	2
	1.2	Normalteiler und Quotienten	7
Kapitel 3		Ringe	Seite 11
_			
Kapitel 4		Körper	Seite 12
r		TO per	
TZ '1 1 F			
Kapitel 5		Caloisthoorio	Soito 13

Gruppen

1.1 Grundbegriffe

Definition 1.1: (abelsche) Gruppe

Eine Gruppe ist eine Menge G zusammen mit einer Abbildung

sodass:

1) Assoziativität

$$\forall a, b, c \in G : (a \cdot b) \cdot c = a \cdot (b \cdot c).$$

2) Existenz eines linksneutralen Elements:

$$\exists e \in G : \forall a \in G : e \cdot a = a.$$

3) Existenz von Linksinversen:

$$\forall a \in G \exists b \in G : b \cdot a = e.$$

Bemerkung 1.2

Eine Gruppe Gheißt
 <u>abelsch</u> oder <u>kommutativ,</u> wenn zusätzlich gilt:

4) Kommutativität:

$$\forall a, b \in G : a \cdot b = b \cdot a.$$

Notation 1.2

Wir schreiben $a \cdot b = ab$ und $a^n = \underbrace{a \cdot \ldots \cdot a}_{n \text{ mal}} \forall n \in \mathbb{N} \setminus \{0\}$ und falls G abelsch ist $a + b := a \cdot b, n \cdot a = a^n$

Lemma 1.3

Sei G eine Gruppe. Dann gilt

(1) $G \neq \emptyset$

(2) Linksinverse sind eindeutig und rechtsinvers, d.h.

$$\forall a, b, c \in G : ba = ca = e \implies b = c \text{ und } ab = e.$$

(3) Das linksneutrale Element ist eindeutig und rechtsneutral, d.h.

$$\forall e' \in G \text{ mit } e' \cdot a = a \forall a \in G \text{ gilt } e = e' \text{ und } a \cdot e = a \forall a \in G.$$

Proof: (1) Da $e \in G$ ist $G \neq \emptyset$

(2) Seien $a,b \in G$ mit ba = e. Sei $a' \in G$ das linksinverse zu b also a'b = e. Dann gilt

$$ab = eab = a'$$
 ba $b = a'eb = a'b = e$.

Also ist b rechtsinvers zu a.

Sind $b, c \in G$ mit ba = ca = e. Dann gilt

$$c = ec = bac = be = bab = eb = b$$
.

(3) Seien $a, b \in G$ mit ba = ab = e. Dann ist

$$ae = aba = ea = a$$
.

Also ist *e* rechtsneutral.

Ist $e' \in G$ ein linksneutrales Element, dann gilt e = e'e = e'.

Notation 1.4

Für $a \in G$ schreiben wir a^{-1} für das Inverse (rechts- und links-) von a und $a^{-n} = (a^{-1})^n$. Wir nennen das (links- und rechts-) Neutrale Element $e \in G$ auch Einheit oder Eins.

Fakt 1.5

Analog zu 1.3:

Sei G eine Gruppe. Dann gilt

- $(1) (a^{-1})^{-1} = a$
- (2) $(ab)^{-1} = b^{-1}a^{-1}$
- (3) Ist ab = ac, so ist b = c
- (4) Ist $a^2 = a$, so ist a = e.

Definition 1.6: Untergruppe

Sei G eine Gruppe. Eine Untergruppe von G ist eine Teilmenge $H\subseteq G$ sodass

- (1) $e \in H$
- (2) $\forall a \in H \text{ ist } a^{-1} \in H$
- (3) $\forall a, b \in H \text{ ist } ab \in H$.

Dann ist H mit $\cdot|_{H\times H}$ selbst eine Gruppe.

Bemerkung 1.7

Schneller: $\emptyset \neq H \subseteq G$ ist eine Untergruppe $\iff \forall a, b \in H : ab^{-1} \in H$.

Definition 1.8: Gruppenhomomorphismus und Gruppenisomorphismus

Eine Abbildung $\varphi:G_1\to G_2$ zwischen zwei Gruppen G_1 und G_2 heißt

1) Gruppenhomomorphismus (oder Homomorphismus oder Morphismus), falls

$$\varphi(ab) = \varphi(a) \cdot \varphi(b) \quad \forall a, b \in G_1.$$

2) Gruppenisomorphismus (oder Isomorphismus), falls φ ein bijektiver Homomorphismus ist.

 G_1 und G_2 heißen dann isomorph und wir schreiben $G_1\cong G_2$, falls ein Isomorphismus zwischen den Gruppen existiert.

Bemerkung 1.9

Sei $\varphi:G_1\to G_2$ ein Homomorphismus:

(1) φ ist ein Isomorphismus

$$\iff \exists \psi: G_2 \to G_1 \text{ Hom.}$$
 mit $\varphi \circ \psi = \text{Id}$
$$\varphi \circ \psi = \text{Id}.$$

 $(\Leftarrow$ ist klar, für \Longrightarrow prüft man, dass φ^{-1} ein Hom. ist)

(2) $\varphi(e) = e$, denn

$$\varphi(e)^2 = \varphi(e^2) = \varphi(e) \implies \varphi(e) = e.$$

(3) $\varphi(a^{-1}) = \varphi(a)^{1}$, denn

$$e = \varphi(e) = \varphi(aa^{-1}) = \varphi(a)\varphi(a^{-1}).$$

(4) φ ist injektiv $\iff \varphi^{-1}(e) = \{e\}, \text{ denn:}$

Für
$$a \neq b \in G_1$$
 mit $\varphi(a) = \varphi(b)$ gilt $\varphi(\underbrace{ab^{-1}}_{\neq e}) = e$.

Definition 1.10: Kern und Bild

Sei $\varphi: G_1 \to G_2$ ein Homomorphismus.

(1) Der Kern von φ ist

$$\operatorname{Ker}(\varphi) = \{ a \in G_1 : \varphi(a) = e \}.$$

(2) Das Bild von φ ist

$$Im(\varphi) = \{b \in G_2 : \exists a \in G_1, \varphi(a) = b\}.$$

Aus 1.9 (4) folgt dann: φ injektiv \iff Ker $(\varphi) = \{e\}$

Lemma 1.11

Sei $\varphi:G_1\to G_2$ ein Homomorphismus. Dann sind $\operatorname{Ker}(\varphi)\subseteq G_1,\operatorname{Im}(\varphi)\subseteq G_2$ Untergruppen.

Proof: Klar ist $Ker(\varphi)$, $Im(\varphi) \neq \emptyset$. Für $a, b \in Ker(\varphi)$ gilt:

$$\varphi(ab^{-1}) = \varphi(a)\varphi(b^{-1})$$

$$= \varphi(a)\varphi(b)^{-1}$$

$$= ee^{-1}$$

$$= e$$

$$\implies ab^{-1} \in \text{Ker}(\varphi).$$

Für $c, d \in \text{Im}(\varphi)$, wähle $a, b \in G_1$ mit $\varphi(a) = c, \varphi(b) = d$. Dann gilt

$$\varphi(ab^{-1}) = \varphi(a)\varphi(b^{-1})$$

$$= \varphi(a)\varphi(b)^{-1}$$

$$= cd^{-1}$$

$$\implies cd^{-1} \in \operatorname{Im}(\varphi).$$

Beispiel 1.12

(1) Die triviale Gruppe ist $G = \{e\}$ mit der eindeutigen Abbildung

$$G \times G \rightarrow G$$
.

Bis auf Isomorphie gibt es nur eine Gruppe mit einem Element.

(2) Sind G_1 und G_2 Gruppen, so ist $G = G_1 \times G_2$ mit

$$G \times G \to G$$

$$(a_1, a_2), (b_1, b_2) \mapsto (a_1b_1, a_2b_2)$$

eine Gruppe. Sind G_1,G_2 abelsch, dann schreiben wir

$$G_1 \oplus G_2 := G_1 \times G_2$$
.

(3) Ist K ein Körper, so sind

$$(K, +)$$
 und $(K \setminus \{0\}, \cdot)$

Gruppen.

- (4) Die Paare $(\mathbb{N}, +)$, $(\mathbb{Z} \setminus \{0\}, \cdot)$ sind jeweils keine Gruppen, sondern sogenannte <u>Monoide</u> da lediglich Inverse fehlen.
- (5) \forall Mengen M ist

$$Bij(M) = \{f : M \to M : f \text{ bijektiv } \}$$

mit Komposition eine Gruppe.

- (6) Die symmetrische Gruppe aus n Elementen ist $S_n = \text{Bij}(\{1, \dots, n\})$.
- (7) Die Abbildung

$$\operatorname{sgn}: S_n \to (\{\pm 1\}, \cdot)$$

ist ein Homomorphismus. Die alternierende Gruppe auf n Elementen ist $A_n := \operatorname{Ker}(\operatorname{sgn}) \subseteq S_n$.

- (8) Die linearen Gruppen $Gl_n(K)$, $SL_n(K)$, $O_n(K)$, $SO_n(K)$, $U_n(K)$, etc. sind Gruppen (wobei teilweise nicht jeder Körper die Grundlage für die Gruppen bilden kann oder Skalarprodukte existieren müssen).
- (9) Ist K ein Körper, so ist die Automorphismengruppe von K

$$\operatorname{Aut}(K) = \{ \varphi : K \to K : \varphi \in \operatorname{Bij}(K), \varphi(a+b) = \varphi(a) + \varphi(b), \varphi(ab) = \varphi(a)\varphi(b) \quad \forall a, b \in K \}.$$

(10) Allgemeiner: Ist $\mathscr C$ eine Kategorie, sodass $\forall A, B \in \mathrm{Ob}(\mathscr C)$ die Abbildungen zwischen A und B eine Menge $\mathrm{Hom}_{\mathscr C}(A,B)$ bilden. Dann ist

$$\operatorname{Aut}_{\mathscr{C}}(A) = \{ \varphi : A \to A : \varphi \text{ invertierbar} \} \subseteq \operatorname{Hom}(A, A)$$

eine Gruppe via Komposition. Beispiele sind

- Bij(M) mit $\mathscr{C} = Mengen$
- $\operatorname{Gl}_n(M)$ mit $\mathcal{C}=$ endlich dimensionale Vektorräume
- Aut(M) mit $\mathcal{C} = K\ddot{o}rper$
- (11) Sei M eine Menge
 - \bullet Ein Wort w über M ist eine Sequenz

$$m_1^{n_1}\cdot\ldots\cdot m_k^{n_k}$$
.

- Das <u>leere Wort</u> ist die leere Sequenz.
- Ein Wort w heißt reduziert, falls $m_i = m_{i+1}$ für alle i.
- Jedes Wort w über M kann via $n^n m^{n'} \rightsquigarrow m^{n+n'}$ reduziert werden.

$$abba \rightsquigarrow ab^2a$$

 $b^0 \rightsquigarrow -$
 $aa^{-1} \rightsquigarrow -$.

- (12) Die Menge F_M aller reduzierten Wörter über M mit "Hintereinanderschreiben & reduzieren" ist eine Gruppe, die freie Gruppe über M. Es ist $F_{\{a\}} \cong \mathbb{Z}$ durch $a^n \mapsto n$.
- (13) Ist $M \subseteq G$ eine Teilmenge einer Gruppe G, so ist

$$\varphi_M: F_m \to G$$

$$m_1^{n_1} \dots m_k^{n_k} \mapsto m_1^{n_1} \cdot \dots \cdot m_k^{n_k}$$

ein Homomorphismus.

Definition 1.13

Sei Geine Gruppe, $M\subseteq G$ Teilmenge. Die von Merzeugte Untegruppe von G ist

$$\langle M \rangle := \mathfrak{I}_{\partial M}$$
.

Ist $\langle M \geq G$, so sagen wir, dass M G erzeugt.

Definition 1.14

Sei G eine Gruppe.

(1) G heißt endlich erzeugt, wenn sie von einer endlichen Teilmenge erzeugt wird.

(2) G heißt zyklisch, wenn G von einem Element erzeugt wird.

Beispiel 1.15 (zyklische Gruppen)

Ist |M| = 1, dann ist $F_m \cong \mathbb{Z}$. \leadsto Ist G zyklisch, so $\exists \varrho : \mathbb{Z} \to G$ surjektiver Homomorphismus. $\Longrightarrow G$ ist abelsch. Setze $1 = \varrho(1)$. Zwei Fälle:

(1)

 $\not\exists 0 \neq m \in \mathbb{Z} \text{ mit } m \cdot 1 = 0 \in G \iff y \text{ injektiv } \iff \varphi \text{ isomorphismus }.$

(2) $\exists 0 \neq m \in \mathbb{Z}$ mit $m \cdot 1 = 0$. Sei m > 0 minimal mid dieser Eigenschaft. Definiere:

$$C_m := \mathbb{Z}/m\mathbb{Z} := \{0,\ldots,m-1\}.$$

mit der Gruppenstruktur

$$ab = a + b \mod m$$
.

Dann ist

$$C_m \to G$$

 $a \mapsto \varphi(a)$.

Ein Isomorphismus $\Longrightarrow \mathbb{Z}/m\mathbb{Z} \cong G$.

- Untergruppen: Ist $H \subseteq \mathbb{Z}$ eine Untergruppe, so $\exists n \in \mathbb{Z}$ mit $H = n\mathbb{Z}$ (Beweis via Division mit Rest).
- Ist auch $\varphi^{-1}(H) \subseteq \mathbb{Z}$ eine Untergruppe, also ist $H = n(\mathbb{Z}/m\mathbb{Z})$.
- kleine Übung: Für $n \neq 0$ gilt $n\mathbb{Z} \cong \mathbb{Z}$ und $(n(\mathbb{Z}/m\mathbb{Z})) \cong \mathbb{Z}/\left(\frac{m}{\operatorname{ggT}(n,m)}\right)\mathbb{Z}$. \Longrightarrow Untegruppen zyklischer GRuppen sind wieder zylkisch.

Definition 1.16

Sei G eine Gruppe.

- (1) Die Ordnung von G ist die Kardinalität der Menge G.
- (2) Die Ordnung von $a \in G$ ist

$$\operatorname{ord}(a) := |a| := \min \left\{ n \in \mathbb{N} | a^n = e \right\}.$$

1.2 Normalteiler und Quotienten

Ziel: Definiere "G/H".

Definition 2.1

Sei $H \subseteq G$ eine Untergeuppe.

(1) Die Linksnebenklasse von H nach a ist $aH := \{ab | b \in H\} \subseteq G$ (falls $a \in H$, so ist AH = H wegen $aa^{-1}b = b$.). (vgl. mit $v + W \subseteq V$ für UVR $W \subseteq V$, $v \in V$)

(2) Die Rechtsnebenklasse von H nach a ist

$$HA = \{ba | b \in H\}$$
.

(3) Die zu H via a konjugierte Untegruppe ist

$$aHa^{-1} = \left\{ aba^{-1} | b \in H \right\} \subseteq G.$$

(4)

$$G/H = \{\text{Linksnebenklassen von } H \quad \forall a \in G\}$$

 $H/G = \{\text{Rechtsnebenklassen von } H \quad \forall a \in G\}.$

Der Index von H in G ist

$$(G:H) := |G/H|$$
.

Naiv: $(aH, a'H) \mapsto aa'H$

Bemerkung 2.2

(1) Für jede Teilmenge $M \subseteq G$ und alle $a \in G$ sind

$$a \cdot : M \to aM$$

 $\cdot a : M \to Ma$

Bijektionen, wobei aM analog zu aH definiert ist.

(2) Erinnerung: aH=H für $a\in H\subseteq G$ Untergruppe. Allgemeiner: Für $a,b\in G$ äquivalent:

- (a) aH = bH
- (b) $\exists c \in H \text{ mit } a = bc$
- (c) $aH \cap bH \neq \emptyset$
- (d) $b^{-1}a \in H$

Zwei Linksnebenklassen sind daher entweder gleich oder disjunkt.

- (3) Analoges für Rechtsnebenklassen
- (4) Nach (2) gilt (nach (1) ist |aH| = |H|)

$$G = \bigcup_{aH \in G/H} aH.$$

Insbesondere: Ist G endlich, so ist $|G| = |H|(G:H) \implies |H||G|(|H| \text{ teilt } |G|)$

Beweis von (2):

$$aH = bH \implies \exists c \in H \text{ mit } a = ae = bc$$

$$\implies aH \cap bH \neq \emptyset(\text{denn } a \in aH \cap bH)$$

$$\implies \exists c, d \in H \text{ mit } ac = bd$$

$$\implies b^{-1}a \in H(\text{denn } b^{-1}a = dc^{-1} \in H)$$

$$\implies b^{-1}aH = H$$

$$\implies bH = bb^{-1}aH = aH. \qquad (\text{Mult. ist Bijektion})$$

Definition 2.2

Eine Untergruppe $H\subseteq G$ heißt Normalteiler (normale Untergruppe, normal in G), wenn $aHA^{-1}=H$ $\forall a\in G$. Wir schreiben $H\triangleleft G$.

Lemma 2.4

Sei $\varphi: G_1 \to G_2$ ein Homomorphismus. Dann ist $\operatorname{Ker}(\varphi) \subseteq G_1$ normal.

Proof: $\operatorname{Ker}(\varphi) \subseteq G_1$ ist Untergruppe. Sei $b \in \operatorname{Ker}(\varphi), a \in G_1$. Dann ist

$$\varphi(aba^{-1}) = \varphi(a) \underbrace{\varphi(b)}_{=e} \varphi(a)^{-1} = e$$

$$\implies aba^{-1} \in \operatorname{Ker}(\varphi)$$

$$\implies a \operatorname{Ker}(\varphi)a^{-1} \subseteq \operatorname{Ker}(\varphi)$$

Da $Ker(\varphi) \supseteq a Ker(\varphi)a^{-1}$ folgt die Gleichheit.

Beispiel 2.5

$$\langle (1 \ 2) \rangle \subseteq S_3$$

ist nicht normal, denn

$$(1 \ 2 \ 3) (1 \ 2) (3 \ 2 \ 1) = (2 \ 3) \notin \langle (1 \ 2) \rangle.$$

Lemma 2.6

Sei $H \subseteq G$ eine Ungergruppe. Dann sind äquivalent:

- (1) H ist normal in G
- (2) $aH = Ha \quad \forall a \in G$
- (3) Die Abbildung

$$\cdot: G/H \times G/H \rightarrow G/H$$

 $(aH, bH) \mapsto abH$

ist wohldefiniert.

Proof: • $(1) \iff (2)$. Nach 2.2.(1) gilt

$$aHa^{-1} = H \iff aH = Ha$$
.

• $(1) \iff (3)$. Die Abbildung in (3) ist wohldefiniert

$$\iff \forall a,b \in G, \forall c,d \in H : \cdot (acH,bdH) = acbdH = abH = \cdot (aH,bH).$$

Das gilt nach 2.2.(2) genau dann, wenn

$$(ab)^{-1}acbd = b^{-1}a^{-1}acbd = b^{-1}cbd \in H.$$

Also genau dann, wenn

$$b^{-1}cb \in Hd^{-1} = H \iff H \text{ normal.}$$

Lemma 2.7

Sei $H \triangleleft G$ normale Untegruppe. Die Menge G/H mit

$$: G/H \times G/H \rightarrow G/H$$

 $(aH, bH) \mapsto abH$

ist eine Gruppe. Wir nennen diese Gruppe den Quotient von G nach H.

Proof: Details im Skript

Theorem 2.10 Satz von Lagrange

Sei G endliche Gruppe.

- (1) Für jede UG $H\subseteq G$ mit $H=\langle a\rangle$ gilt $|H|\,|\,|G|.$
- (2) Für alle $a \in G$ gilt ord(a)||G|.
- (3) Für alle $a \in G$ gilt $a^{|G|} = e$.

Ringe

Körper

Galoistheorie