

Máquinas Paralelas

Programação Paralela Avançada - PPA

Mestrado em Computação Aplicação – MCA Programa de Pós-Graduação em Computação Aplicada – PPGCA Centro de Ciências Tecnólogicas - CCT Universidade do Estado de Santa Catarina – UDESC

Profs Maurício A. Pillon e Guilherme P. Koslovski

Linha de Sistemas Computacionais Grupo de Pesquisa de Redes de Computadore e Sistemas Distribuídos Laboratório de Pesquisa LabP2D

Agenda

- Linha do tempo de máquinas paralelas
- Aglomerados (Clusters)
- Grades (Grids)
- Nuvem Computacional (Cloud Computing)
- Coprocessadores & Aceleradores Gráficos (Graphics Processing Units)

Linha do tempo

Linha do tempo

Centralised

Control

Decentralised

Exemplos de Máquinas Paralelas

	Cla	ssificação		
Categoria	Flynn	Tempo de acesso a memória	Memória	Exemplos
PVP (Processadores Vetorias Paralelos)	SIMD	UMA	Compartilhada	Cray C-90, Cray T-90, NEC Sx
SMP (Multiprocessadores Simétricos)	MIMD	UMA	Compartilhada	SGI Power Challange, Sun Ultra Enterprise,
MPP (Máquinas Maciçamente Paralelas)	MIMD	NORMA	Local	Intel Paragon, IBM SP2
Agregados	MIMD	NORMA	Local	LabP2D, dahu (G5k-Grenoble)
Grades	MIMD	NORMA	Local	Grid5000
Aceleradores Gráficos	SIMD	UMA	Local/ Compartilhada	Intel Xeon Phi, NVIDIA Volta

Top500: Arquitetura de Computadores

https://www.top500.org/statistics/overtime/

	1993	2003	2013	2018
Single Processor	13.13			
MPP	36.11	51.13	38.65	25.64
Constellations		14.18		
SIMD	5.68			
SMP	45.08			_
Cluster		34.69	61.35	74.36

Aglomerados (Clusters)

Aglomerados (Clusters) udesc

NOW (Network of Workstation)

Aglomerados (Clusters) udesc

- Aglomerado é um tipo sistema de processamento paralelo e distribuído, o qual consiste de uma coleção de computadores (nós) stand-alone interconectados.
 - Eles cooperaram trabalhando juntos como um único supercomputador, com recursos de computação integrados.
- **Nó ou nódulo**: um computador mono ou multiprocessado independente com sistema de memória, E/S e sistema operacional.

Aplicações Sequenciais

Aplicações Sequenciais
Aplicações Sequencias

Aplicações Paralelas

Aplicações Paralelas

Ambientes de Programação Paralela

Middleware de Aglomerado

(Imagens Individuais do Sistema e Infraestrutura de Disponibilidade)

PC/Workstation

Software de Comunicação

Interface Hardware (rede)

PC/Workstation

Software de Comunicação

Interface Hardware (rede)

PC/Workstation

Software de Comunicação

Interface Hardware (rede)

PC/Workstation

Software de

Comunicação

Interface Hardware (rede)

Rede de Interconexão do Aglomerado/Switch

Agregados (Clusters) udesc

Classificação em função do tipo do hardware

- Aglomerado de PCs (CoPs Clusters of PCs)
 - Piles of PCs (PoPs)
- Aglomerado Heterogêneo (COWs Clusters of Workstations)
- Aglomerado de SMPs (CLUMPs Clusters of SMPs)

Aglomerados (Clusters) udesc

Classificação em função do sistema de gerência

Aglomerado Homogêneo

Todos os nós possuem a mesma arquitetura de hardware e sistema operacional.

Aglomerado Heterogêneo

Nós com arquiteturas, caracteríticas ou fabricantes de hardwares distintos e/ou sistemas operacionais também distintos.

Aplicação em um aglomerado

Applicação

PVM / MPI/ RSH

Middleware de Cluster:

- PBS
- OAR
- OGS

Esquema RMS

Usuário Nós de Computação Gerente de Nós Nó-1 de **Gerente de Recursos** computação Execução dos resultados Execução dos Resultados Usuário 1 Gerente de Job job _job Nó Monitor Usuário u Nó-c de Escalonador de Job computação

Grades Computacionais (Grid)

Grades Computacionais udesc

- "Um tipo de sistema paralelo e distribuído que permite o compartilhamento, troca e seleção, agregando recursos autônomos geograficamente distribuídos." [Buyya et al.]
- Recursos podem ser:
 - Computadores
 - Softwares
 - Catálogo da dados e base de dados;
 - Dispositivos/Instrumentos específicos (por exemplo, telescópio); e
 - Pessoas/Colaboradores.
- O sistema passa a depender da disponibilidade, capacidade, custo e requisitos de QoS do usuário.
- "Recursos compartilhados aplicados a uma solução de um problema coordenado em uma organização virtual multi-institucional dinâmica." [Foster et. al]

Como as grades se parecem?

Iniciativas de Grades udes

- Gridbus
- GrangeNet.
- **APACGrid**
- ARC eResearch
- Brazil
 - OurGrid, EasyGrid
 - LNCC-Grid + many o

- ChinaGrid Education
- **CNGrid** application
- Europe
 - **UK eScience**
 - EU Grids...
 - and many more...
- India
 - Garuda
- Japan
- **NAREGI**
- Korea...
 - N*Grid
- Singapore NGP

- GridSec
- AccessGrid
- **TeraGrid**
- Cyberinfrasture
- and many more...
- **Industry Initiatives**
 - **IBM On Demand Computing**
 - **HP Adaptive Computing**
 - Sun N1
 - Microsoft .NET
 - Oracle 10a
 - Infosys Enterprise Grid
 - Satyam Business Grid
 - StorageTek -Grid...
 - and many more
- **Public Forums**
 - Open Grid Forum
 - Australian Grid Forum
 - Conferences:
 - **CCGrid**
 - Grid
 - **HPDC**
 - E-Science

http://www.gridcomputing.com

Grid5000 (França)

http://www.grid5000.fr

Mais de 9 sites interconectados por uma rede dedicada

- +/- 8000 processors
- Rede?

Ponto no Brasil: UFRGS / POA

Grid5000

Processor families

Processors \ Sites	Bordeaux	Grenoble	Lille	Luxembourg	Lyon	Nancy	Reims	Rennes	Sophia	Toulouse	Processors total
AMD Opteron	226		52		158		88	80	212	280	1096
Intel Xeon	102	232	148	44		328		178	90		1122
Sites total	328	232	200	44	158	328	88	258	302	280	2218

Processor details

Processors \ Sites	Bordeaux	Grenoble	Lille	Luxembourg	Lyon	Nancy	Reims	Rennes	Sophia	Toulouse	Processors total
AMD Opteron 2218	186								100	280	566
AMD Opteron 250					158						158
AMD Opteron 275									112		112
AMD Opteron 285			52								52
AMD Opteron 6164 HE							88	80			168
AMD Opteron 8218	40										40
Intel Xeon E5420 QC		68									68
Intel Xeon E5440 QC			92								92
Intel Xeon E5520		164							90		254
Intel Xeon E5620			56								56
Intel Xeon EM64T	102										102
Intel Xeon L5335				44							44
Intel Xeon L5420						184		128			312
Intel Xeon X3440						144					144
Intel Xeon X5570								50			50
Sites total	328	232	200	44	158	328	88	258	302	280	2218

Nuvem Computacional (Cloud Computing)

Nuvem Computacional udesc

 Nuvens Computacionais introduziram uma nova forma de entrega de serviços de TI, baseada em diminuição de custos, escalabilidade e aprovisionamento sob demanda, guiado pelos requisitos dos usuários.

Motivações:

- Flexibilidade
- Elasticidade
- Economia
- Simplificação das infraestruturas de TI: recursos físicos e administração
- Motivador Tecnológico:
 - · Virtualização de recursos computacionais.

Tecnologia de Virtualização

"A virtualização de um recurso consiste na desmaterialização de sua capacidade física e funcional, e em sua representação através de entidades e serviços virtuais [MG09]"

Exemplos:

- Criação de máquinas virtuais que atuam como recursos físicos
- Criação de canais de comunicação virtuais que abstraem o verdadeiro caminho físico

Motivação

- Melhor utilização dos recursos físicos
- Possibilidade de reconfiguração rápida
- Mobilidade
- Segurança, abstração, acesso controlado
- Diminuição de custos administrativos
- Redução de custos com consumo de energia e gerenciamento

Tipos de Nuvens

#UDESC

Internet

Hybrid

- Nuvens Privadas (Nuvens internas ou Private Clouds):
 - Recursos internos de uma organização
 - Usualmente os administradores possuem total controle sobre os recursos;
 - Maior confiabilidade e confidencialidade
 - Uso controlado
 - Exemplos de Soluções VMware vCloud Director, OpenNebula, Xen Cloud Platform, Eucalyptus, Lyatiss CloudWeaver
- Public Cloud provider B

Public Cloud provider A

- Nuvens Públicas (Nuvens externas ou Public Clouds):
 - Recursos são expostos sob a forma de serviços que podem ser comercializados
 - Recursos virtuais geograficamente distribuídos
 - Acesso via Internet
 - Exemplo de soluções: Amazon EC2, Microsoft Azure, Salesforce.com, 3Tera, Google App Engine
- Nuvens Híbridas (Hybric Clouds):
 - Combinação de Nuvens Privadas e Públicas
 - Motivação: picos de execução, aumento da carga momentânea, aumento do número de usuários

Modelos de Serviços LUDESC

- Software como serviço (Software as a Service SaaS):
 - Mais alto nível de abstração;
 - Permite a execução de aplicações que estão alocadas em servidores remotos, usualmente virtualizados; e
 - Exemplos de provedores: Microsoft Online, Salesforce.com, Rackspace, SAP Business ByDesign, Google Apps, NetSuite.
- Plataforma como serviço (Platform as a Service PaaS):
 - Oferece frameworks que permitem o desenvolvimento de aplicações;
 - Exemplos de ferramentas: desenho, modelagem, desenvolvimento, testes e integração;
 - Não requer a instalação local das ferramentas;
 - Gerenciamento automático da escalabilidade; e
 - Exemplos de provedores: Google App Engine, Microsoft Windows Azure e Force.com.

Modelos de Serviços Ludesc

- Infraestrutura como serviço (Infrastructure as a Service laaS)
 - Oferece máquinas virtuais como serviços sob demanda
 - Atualmente, MVs são interconectadas usando uma abordagem besteffort
 - Exemplos de provedores: Amazon EC2, GoGrid, Rackspace e Flexiscale

Coprocessadores & Aceleradores Gráficos

Introdução

- Um coprocessador é um processador de computador com funções suplementares utilizado para auxiliar o processador principal (CPU).
 - Coprocessadores podem ser usados para funções especializadas, e.g. aritmética de pontos flutuantes, processamento gráfico, processamento de sinais.
- Aceleradores Gráficos são coprocessadores em forma de placas gráficas, bastante comuns em computadores modernos, chamados de GPU (Graphics Processor Units)
 - 2006: PhysX PPU (Physycs Processing Units)
 - 2008: Nvidia e AMD (GPU's)
 - 2012: Intel Xeon Phi

Evolução da Arquitetura de GPU

- Pipeline Gráfico (propósito específico)
 - Operações de vértices
 - Primitivas de montagem
 - Rasterização
 - Operações de fragmentos
 - Composição
- Hardware para processar as operações específicas de vértices e fragmentos precisaram ser mais complexos.
 - Nova realidade das aplicações gráficas
 - O nicho de atuação das GPUs sempre foi naturalmente o paralelismo
- CPUs dividem seu pipeline em "passos de tempo", enquanto GPUs em "passos de espaços"

CPU → PCIe → GPU

PCle

CPU vs. GPU

TOP500: Junho/2018 UDESC

Accelerator/CP Family System Share

Esquema Arquitetura GPU

Acesso de Memória: GPU

Interface de Programação em GPU

- GPGPU (General-Purpose Computation on Graphics Hardware)
 - http://gpgpu.org/
- O que usar para programar em GPU?
 - OpenCL (Open Computing Language)
 - Suportado tanto pela AMD quanto pela Nvidia.
 - CUDA (Compute Unified Device Architecture)
 - Normalmente, mais eficiente que OpenCL nos dispositivos Nvidia.