- 1. Zaokružite tačne iskaze:
 - (a.) Linearna regresija spada u nadgledano obučavanje.
 - Linearnom regresijom predviđamo binarnu varijablu na osnovu kontinualne varijable.
 - 💫 Linearna regresija modeluje odnos dve kontinualne varijable.
 - d. Kod jednostruke linearne regresije modelujemo y na osnovu više ulaza x.
 - Moguće je konstruisati model linearne regresiję koristeći neuronsku mrežu.
- 2. Napišite formulu za jednostruku linearnu regresiju: $h_{\theta} \neq 0$. Zaokružite parametre ovog modela.
- 3. Zaokružite metrike adekvatne za evaluaciju regresionog modela: accuracy, cross-entropy loss, mean squared error, F-measure \mathbb{R}^2 .
- 4. Dat je sledeći trening skup:

x	1	2	4	0	Ako biste ove podatke iskoristili za treniranje modela linearne regresije, koje
У	0.5	1	2	0	vrednosti biste dobili za $ heta_0$ i $ heta_1$?

- (a) $\theta_0 = 0.5, \theta_1 = 0$ (b) $\theta_0 = 0.5, \theta_1 = 0.5$ (c) $\theta_0 = 1, \theta_1 = 0.5$ (d) $\theta_0 = 0, \theta_1 = 0.5$ (e) $\theta_0 = 1, \theta_1 = 1$ 5. Ako imamo $\theta_0 = -1, \theta_1 = 0.5$, koliko je $h_\theta(4)$, a koliko $J(\theta_0, \theta_1)$?
- 6. Na grafiku skicirajte model i označite šta predstavljaju parametri modela

MPG - Miles Per Gallon (koliko milja automobil pređe sa galonom goriva)

- 7. Minimalna vrednost funkcije greške linearne regresije je _ a maksimalna . Skicirajte tipičan oblik funkcije greške linearne regresije.
- 8. Neka je data funkcija greške $f(\theta_0, \theta_1)$ koja vraća realan broj i ima više lokalnih optimuma. Primenom gradijentnog spusta (GD) minimizujemo f i odabrali smo learning rate α . Zaokružite tačne iskaze:
 - a. Čak i za veliko α , svaka iteracija GD će smanjiti vrednost f.
 - Ako α ima previše nisku vrednost, GD će trebati puno vremena da konvergira.
 - Ako su θ_0 i θ_1 u lokalnom optimumu, jedna iteracija GD neće promeniti njihovu vrednost.
 - d. Ako su θ_0 i θ_1 inicijalizovani tako da važi $\theta_0=\theta_1$, onda će nakon jedne iteracije GD, i dalje biti $\theta_0=\theta_1$.
 - Ako prve iteracije GD rezultuju uvećanjem vrednosti $f(\theta_0, \theta_1)$, verovatno smo postavili preveliko α .
 - Bez obzira na inicijalizaciju θ_0 i θ_1 , uz dobar odabir α , GD će sigurno konvergirati u isti optimum.
 - Postavka α na malu vrednost nije štetno i može samo da ubrza kovergenciju GD.
- 9. Neka smo pomoću GD uspeli da pronađemo minimum funkcije greške za model linearne regresije takav da važi $J(\theta_0, \theta_1) = 0$. Koji od sledećih iskaza su tačni:
 - a. Da bi ovo bilo moguće, moramo imati $y^{(i)} = 0$ za svaki primer iz trening skupa.
 - b. GD se "zaglavio" u lokalnom optimumu.
 - c. Da bi ovo važilo, sigurno je $\theta_0=0$ i $\theta_1=0$, tako da model uvek vraća $h_{\theta}(x)=0$.
 - Trening skup je takav da svi primeri perfektno leže na pravoj liniji.
 - Možemo perfektno da predvidimo vrednost y čak i za nove primere (koji nisu bili u trening skupu).

- f. Ovo nije moguće ne postoje vrednosti θ_0 i θ_1 za koje važi $J(\theta_0, \theta_1) = 0$.
- 10. Tačno ili netačno: Linearna regresija je osetljiva na outlier-e.
- 11. Šta je od sledećeg tačno za reziduale: (a) manje vrednosti su bolje (b) veće vrednosti su bolje (c) a ili b, zavisno od situacije (d) nijedan od ponuđenih odgovora nije tačan.
- 12. Koja od ilustrovanih rastojanja koristimo da bismo uklopili model linearne regresije?

- 13. Neka za model fitovan na podacima iz zadatka 6 važi da je $\theta_0=48.8$, a $\theta_1=-8.37$.
 - a. Kako interpretirate vrednost obeležja θ_0 ?

ako vozilo nema tezinu ono prenosi 48.8 mpg, tj ako je x 0 onda je y Oo

b. Kako interpretirate vrednost obeležja θ_1 ?

na svakih 1000 lbs tezine mozemo preci 8.37 milja manje

- 14. Zaokružite tačne odgovore:
 - a. Ne moramo birati nikakve parametre kada tražimo rešenje pomoću Gradient Descent.
 - Ne moramo birati nikakve parametre kada tražimo rešenje pomoću Normal Equation.
 - c. Preferiramo Normal Equation u slučaju velikog broja obeležja.
 - d. Normal Equation je iterativan algoritam.
 - e. Uvek možemo pronaći rešenje primenom Normal Equation.
- 15. Kako biste unapredili sledeći model?

izbacivanjem outlajera

16. Šta od navedenog je tačno za *learning rates* α_A , α_B i α_C koji su proizveli sledeće grafike?

- a) $\alpha_A < \alpha_B < \alpha_C$
- $\alpha_{\rm B} < \alpha_A < \alpha_C$
- c) $\alpha_A = \alpha_B = \alpha_C$
- d) Ne možemo zaključiti o a) c) na osnovu grafika