Mateusz Bartnicki, grupa nr 3 środa 16:45-18:15

Metody obliczeniowe w nauce i technice, ćwiczenie 2b - 20.03.2024 r.

Interpolacja - zagadnienie Hermite'a

1. Opracowana funkcja

$$f(x) = x^2 - m \cdot \cos\left(\frac{\pi x}{k}\right)$$

Dla k = 1, m = 10 oraz x \in [-7, 7].

Rysunek 1 – wykres funkcji f(x)

2. Dane techniczne

Program został napisany przy użyciu języka Python (3.10.12) z wykorzystaniem bibliotek numpy oraz matplotlib. Ćwiczenie zostało wykonane na WSL (Windows Subsystem for Linux) - Ubuntu 22.04.3 LTS na procesorze Intel Core i5-11400H 2.70GHz.

3. Interpolacja

W tym ćwiczeniu wielomian interpolacyjny został wyznaczony w zagadnieniu Hermite'a liczony z metody Newtona. W mojej implementacji używana była tylko pochodna pierwszego rzędu, a więc otrzymywany wielomian interpolacyjny był stopnia (2 * liczba węzłów – 1).

4. Dokładność przybliżenia wyznaczonej funkcji względem funkcji zadanej

W celu oszacowania dokładności przybliżenia wyznaczonej funkcji względem funkcji zadanej, wykorzystałem dwa wskaźniki:

- a) Maksymalna różnica pomiędzy wartością zadanej funkcji oraz wyznaczonego wielomianu: $\max_k\{|f(x_k)-w(x_k)|\}, k\in\{1,2,\dots,N\}$
- b) Suma kwadratów różnic między wartościami zadanej funkcji oraz wyznaczonego wielomianu: $\sum_{i=1}^N (f(x_i) w(x_i))^2$

N - liczba punktów, w których obliczana jest wartość funkcji

5. Analiza rezultatów dla różnych funkcji i różnej liczby węzłów

Wszystkie wartości były obliczane dla 1000 punktów (N = 1000)

5.1 Wartości błędów przy interpolacji

Liczba węzłów	Węzły równomiernie rozmieszczone		Węzły w zerach Czebyszewa	
	Maksymalny błąd bezwzględny	Suma kwadratów różnic	Maksymalny błąd bezwzględny	Suma kwadratów różnic
2	20	74925	25.797	67384
3	19.203	33022	23.866	62405
5	61.583	137553	29.156	39194
10	1307.889	12607362	29.977	10780
15	90.496	23473	0.0539	0.0494
20	0.061	0.0055	0.002	1.112e-06
25	0.00601	6.628e-06	0.0246	0.000165
30	0.0375	0.00018	0.182	0.00689
35	8.597	21.837	25.850	42.375
40	101648	569193998	4418564	1501861354398

Tabela 1 – wartości błędów dla różnej liczby węzłów

Na powyższym zestawieniu błędów można dostrzec, że interpolacja wielomianu z węzłami umieszczonymi w zerach Czebyszewa jest początkowo dokładniejsza (błędy są mniejsze), jednakże przy większej liczbie węzłów również szybciej zaczyna występować efekt Rungego, a później błędy numeryczne.

5.2 Wykresy dla interpolacji

Rysunek 2 – Interpolacja metodą Hermite'a dla 2 węzłów

Dla 2 węzłów otrzymujemy wielomian 3 stopnia. Dla tak małej liczby węzłów przybliżenie nie jest dokładne.

Rysunek 3 – Interpolacja metodą Hermite'a dla 7 węzłów

Dla 7 równomiernie rozmieszczonych węzłów można zaobserwować pierwsze wystąpienie efektu Rungego. W przypadku węzłów umieszczonych w zerach Czebyszewa efekt ten nie występuje, lecz nadal potrzebna jest większa ilość węzłów w celu lepszego przybliżenia funkcji.

Rysunek 4 – Interpolacja metodą Hermite'a dla 17 węzłów

Dla 17 węzłów w końcu zanika efekt Rungego w przypadku równomiernie rozmieszczonych węzłów. W zerach Czebyszewa natomiast, efekt ten jeszcze nie wystąpił, a przybliżenie jest już całkiem dokładne (suma kwadratów różnic jest rzędu 10⁻⁵. 56 węzłów. Zamieszczony jest tylko jeden rysunek, gdyż wyglądają one w tej skali identycznie – błąd dla węzłów równomiernie rozmieszczonych jest nadal bardzo mały, wręcz niedostrzegalny.

Rysunek 5 – Interpolacja Hermite'a dla 19 węzłów

Zwiększając liczbę węzłów otrzymujemy coraz lepsze przybliżenie dla węzłów w zerach Czebyszewa, aż ostatecznie dla 19 węzłów przybliżenie jest najdokładniejsze – błąd maksymalny wynosi 0,0011, a suma kwadratów różnic jest liczbą rzędu 10⁻⁷. W przypadku węzłów równomiernie rozmieszczonych przybliżenie również jest dosyć dokładne, jednak najlepsze przybliżenie otrzymujemy dla 23 węzłów, gdzie błąd w tym przypadku jest liczbą rzędu 10⁻⁶. Nie zamieszczam rysunku dla tego przypadku, gdyż różni się on jedynie liczbą zaznaczonych węzłów – przybliżenie jest już na tyle dokładne, że różnice między tymi dwoma wykresami nie są dostrzegalne bez odpowiednio dużego przybliżenia, którego niestety biblioteka matplotlib nie dostarcza.

Rysunek 6 – Interpolacja Hermite'a dla 34 węzłów

Dla 34 węzłów można zobaczyć pierwsze błędy numeryczne w przypadku węzłów umieszczonych w zerach Czebyszewa. Objawiają się one błędnie przybliżaną funkcją na krańcach przedziału i nie pokrywają się one z wartościami zadanej funkcji w węzłach. Z każdym dodaniem kolejnego węzła błąd staje się coraz większy i uzyskujemy coraz większe rozbieżności.

Rysunek 7 – Interpolacja Hermite'a dla 35 węzłów

Po dodaniu zaledwie jednego węzła, błąd numeryczny wystąpił również w przypadku równomiernie rozmieszczonych węzłów, i podobnie jak w przypadku węzłów w zerach Czebyszewa, efekt ten utrzymywał się przy dalszym zwiększaniu liczby węzłów.

6. Wnioski

Podsumowując wszystkie otrzymane wyniki i wykresy, w interpolacji Hermite'a, podobnie jak w przypadku interpolacji metodami Lagrange'a i Newtona, najlepiej sprawdza się umieszczenie węzłów w zerach Czebyszewa – otrzymujemy lepsze przybliżenie oraz unikamy efektu Rungego. Co jednak odróżnia tę metodę, to fakt, że najlepsze dopasowanie w przypadku zer Czebyszewa wymaga mniejszej liczby węzłów niż dla przypadku równomiernie rozmieszczonych węzłów, a przy interpolacji metodami z poprzedniego ćwiczenia było na odwrót.

Pierwszy efekt Rungego pojawia się dla wielomianu stopnia 13, a błędy numeryczne pojawiają się przy stopniu 67 – są to liczby podobne jak dla metod Newtona i Lagrange'a, dla których efekt Rungego pojawiał się dla 12 stopnia, a błędy numeryczne dla stopnia 65.