Esercizi per il corso di Probabilità e Statistica

Foglio 4: Variabili casuali

Domanda 1

Un'urna contiene tre palline numerate da 1 a 3. Si estraggono con reinserimento due palline e sia X la variabile aleatoria che indica la differenza in modulo dei numeri estratti. Si determini:

- (a) La funzione di probabilità di X, con relativa rappresentazione grafica
- (b) $\mathbb{P}[X \le 2] \in \mathbb{P}[2 \le X < 5]$
- (c) $\mathbb{P}[X < 2]$
- (d) $\mathbb{P}[2 \le X < 5]$

Domanda 2

Il numero giornaliero di interruzioni dei servizi di rete ha la seguente distribuzione di probabilità

$$\begin{array}{c|ccccc} x & 0 & 1 & 2 \\ \hline P(x) & 0.7 & 0.2 & 0.1 \\ \end{array}$$

Una piccola azienda di commercio online stima che, ad ogni interruzione, perde 500\$. Trovare la funzione di probabilità (con relativa rappresentazione graficha) delle perdite giornaliere dovute alle interruzioni di rete che subisce questa azienda.

Domanda 3

Il reparto di assistenza clienti di un'azienda di computer dispone di sei linee telefoniche. Sia X il numero di linee in uso in un determinato momento, con funzione di ripartizione:

Trovare la funzione di probabilità di X e determinare la probabilità dei seguenti eventi:

- (a) {Sono in uso al massimo tre linee}
- (b) {Sono in uso meno di tre linee}
- (c) {Sono in uso al meno tre linee}
- (d) {sono in uso tra due e cinque linee, comprese}
- (e) {non sono in uso tra due e quattro linee, comprese}
- (f) {almeno quatro linee sono libere}

Una compagnia aerea dispone di due tipi di aerei, uno da 20 e uno da 10 posti. Dato che si sa che i passeggeri che prenotano poi non si presentano con una probabilità del 10%, vengono sempre accettate 22 e 11 prenotazioni rispettivamente. Per quale dei due tipi di aereo è maggiore il rischio di lasciare a terra almeno un passeggero, in un volo in cui si è accettato il numero massimo di prenotazioni?

Domanda 5

Una macchina produce pezzi con una percentuale di difettosità pari al 4%. Si scelgono a caso 15 pezzi dalla produzione della macchina.

- (a) Calcolare la probabilità che fra i 15 pezzi non ve ne sia nemmeno uno difettoso.
- (b) Calcolare la probabilità che fra i 15 pezzi ve ne siano almeno 2 difettosi.
- (c) Si supponga di sapere con certezza che in un lotto di 20 pezzi ve ne sono 4 difettosi. Un compratore acquista 8 di questi pezzi. Calcolare la probabilità che fra gli 8 pezzi acquistati ve ne siano esattamente 3 difettosi.

Domanda 6

Il preside di una facoltà desidera formare una commissione con 5 dei 40 membri del Consiglio di Facoltà. La selezione avviene a caso e nel Consiglio di Facoltà vi sono 8 docenti di statistica. Si calcoli la probabilità che la commissione:

- (a) non contenga nessun docente di statistica;
- (b) contenga almeno un docente di statistica;
- (c) contenga non più di un docente di statistica.

Domanda 7

Ad un casello autostradale arriva ogni ora un numero di automobili che segue una distribuzione di Poisson di parametro $\lambda=20$.

- (a) Qual è la probabilità che in un'ora arrivino non più di 7 automobili?
- (b) E che il numero di macchine sia compreso fra 6 e 12 (estremi inclusi)?

Domanda 8

Si sa che il 4% degli alberi di un frutteto non dà frutto.

- (a) Qual è la probabilità che su 200 alberi esattamente 7 non diano frutti?
- (b) E che meno di 2 piante non diano frutti?
- (c) Fornire approssimazioni adeguatamente giustificate per le due probabilità calcolate ai punti (a) e (b).

Domanda 9

In media 1 computer su 800 va in *crash* durante un violento temporale. Si consideri un'azienda con 4000 computer in attività durante un violento temporale.

- (a) Calcolare la probabilità che vadano in crash meno di 10 computer.
- (b) Calcolare la probabilità che vadano in crash esattamente 10 computer.
- (c) Fornire approssimazioni adeguatamente giustificate per le due probabilità calcolate ai punti (a) e (b).

Dopo che un virus ha infettato un sistema informatico, un sistemista controlla lo stato di tutti i file importanti. Ogni file viene danneggiato dal virus con probabilità 0.2 indipendentemente dagli altri files.

- (a) Calcolare la probabilità che almeno 5 dei primi 20 file siano stati danneggiati.
- (b) Calcolare la probabilità che il sistemista debba controllare almeno 6 file per trovarne uno danneggiato.

Domanda 11

In una località balneare la probabilità che piova in un qualunque giorno del mese di agosto è 0.05. Assumendo che vi sia indipendenza tra i vari giorni del mese:

- (a) Qual è la probabilità che la prima pioggia del mese si osservi il 15 agosto?
- (b) E prima del 15 agosto?
- (c) Dato che fino al 10 agosto non ha piovuto, qual è la probabilità che non piova fino al 25?

Domanda 12

Il 40% degli ordini effettuati a una società di e-commerce viene effettuato telefonicamente, mentre il restante 60% viene effettuato online. Gli ordini effettuati per telefono ricevono uno sconto speciale il 29% delle volte, mentre gli ordini effettuati online ricevono uno sconto simile il 26% delle volte. Si considerino 10 ordini scelti a caso.

- (a) Qual è la probabilità che esattamente cinque di questi ordini siano stati effettuati per telefono e abbiano ottenuto uno sconto speciale?
- (b) Qual è la probabilità che esattamente cinque di questi ordini abbiano ottenuto uno sconto speciale?
- (c) Qual è la probabilità che al massimo cinque di questi ordini abbiano ottenuto uno sconto speciale?

Domanda 13

Un provider di servizi Internet addebita ai propri clienti per l'utilizzo di Internet una cifra proporzionale al tempo in ore di utilizzo, arrotondandolo all'ora più vicina, e dipendente dalla fascia oraria. La distribuzione congiunta del tempo utilizzato X in ore e il prezzo Y di ogni ora in centesimi viene data nella tabella sottostante.

p(x,y)		X			
		1	2	3	4
	1	0	0.06	0.06	0.10
Y	2	0.10	0.10	0.04	0.04
	3	0.40	0.10	0	0

A ciascun cliente vengono addebitati $Z = X \cdot Y$ centesimi, cioè il numero di ore moltiplicato per il prezzo di ogni ora.

(a) Trovare la distribuzione di Z.

- (b) Trovare la distribuzione marginale di X.
- (c) Trovare la distribuzione marginale di Y.
- (d) Trovare la distribuzione del tempo di utilizzo nella fascia in cui il prezzo è uguale a 2.

Siano X e Y il numero di guasti hardware in due laboratori informatici in un dato mese. La distribuzione congiunta di X and Y viene data nella tabella sottostante.

p(x,y)		X			
		0	1	2	
	0	0.52	0.20	0.04	
Y	1	0.14	0.02	0.01	
	2	0.06	0.01	0	

- (a) Trovare la distribuzione marginale di X.
- (b) Trovare la distribuzione marginale di Y.
- (c) Calcolare la probabilità che si verifichi almeno un guasto hardware.
- (d) Le variabili X e Y sono indipendenti?

Domanda 15

In un piccolo laboratorio informatico il numero di guasti hardware X e il numero di errori software Y in un dato giorno hanno la seguente distribuzione congiunta p(x, y): p(0,0) = 0.6, p(0,1) = 0.1, p(1,0) = 0.1, p(1,1) = 0.2.

Sulla base di queste informazioni:

- (a) Trovare la distribuzione marginale di X.
- (b) Trovare la distribuzione marginale di Y.
- (c) Le variabili X e Y sono indipendenti?
- (d) Trovare la distribuzione di X+Y, cioè del numero totale di errori durante un giorno.

Domanda 16

Si consideri un'urna contenente 3 palline numerate da 1 a 3. L'esperimento consiste nell'estrarre 2 palline senza reinserimento. Sia X la variabile casuale associata al più grande dei numeri estratti e sia Y la variabile casuale somma dei due numeri estratti. Trovare:

- 1. la funzione di probabilità congiunta di $X \in Y$;
- 2. la funzione di probabilità condizionata di Y dato X=3 e la funzione di ripartizione condizionata di Y dato X=3;
- 3. $X \in Y$ sono indipendenti?

Domanda 17

Sia data la funzione $p_{XY}(x,y) = k(2y+x)$, con x=2,4 e y=0,1,2.

(a) Determinare il valore k affinché $p_{X,Y}(x,y)$ sia una funzione di probabilità congiunta.

- (b) Determinare $P(Y \ge X)$.
- (c) Calcolare i valori della funzione di ripartizione $F_{X,Y}(2,1)$, $F_{X,Y}(4,1)$.
- (d) Calcolare $p_{X|Y}(x|1)$.
- (e) Valutare se X e Y sono indipendenti.

Siano X e Y due variabili casuali tali che $(X|Y=y) \sim Bin(y,1/3)$ e Y è una variabile casuale discreta che assume i valori 1 e 2 con probabilità 1/4 e 3/4, rispettivamente.

- (a) Si determini la funzione di probabilità congiunta di (X, Y).
- (b) Si calcoli la distribuzione di Y|X=1.
- (c) Si calcoli Pr(Y > X).