Assignment 1 key

#1 4x1 Mux using only 3 gates (AND, OR, NOT).

#2 Truth table

X2	×ı	×a	Fi	Fz	F3	F4
0	0	0 -	-0	0	1	5
0	0	1 -	-0	1	1	0
6	1	0 —	-0	1	1	0
6	_{- 1} 1	1 —	-1	0	1	0
	0	0 -	-0	1	0	1
1	0	1 -	-1	0	0	i
l	1	0-	-1	0	0	
l		1-	-0	1	0	1

$$F_1 = \overline{\chi_2} \cdot \chi_1 \cdot \chi_0 + \chi_2 \cdot \overline{\chi_1} \cdot \chi_0 + \chi_2 \cdot \chi_1 \cdot \overline{\chi_0}$$

$$F_3 = \overline{X_2} \cdot \overline{X_1} \cdot \overline{X_0} + \overline{X_2} \cdot \overline{X_1} \cdot \overline{X_0} + \overline{X_2} \cdot \overline{X_1} \cdot \overline{X_0} + \overline{X_2} \cdot \overline{X_1} \cdot \overline{X_0}$$

$$et, F_3 = \overline{X_2}$$

F4=
$$X_2$$
: $X_2 \cdot \overline{X_1} \cdot \overline{X_0} + X_2 \cdot \overline{X_1} \cdot X_0 + X_2 \cdot \overline{X_1} \cdot \overline{X_0} + X_2 \cdot \overline{X_1} \cdot \overline{X_0}$
or, $\overline{F_4} = X_2$

Rewrite F_2 $F_2 = X_2 \oplus X_1 \oplus X_0$ $X_0 \longrightarrow X_1 \longrightarrow F_2$ $X_2 \longrightarrow F_2$

#4
$$E = ((A \cdot B) + (A \cdot c) + (B \cdot c)) \cdot (\overline{A} \cdot B \cdot \overline{c})$$
 $= ((A \cdot B) + (A \cdot c) + (B \cdot c)) \cdot (\overline{A} + \overline{B} + \overline{c}) - by \underline{b} \cdot \underline{b} \cdot$

#5 proof
$$X \circ R = (A \cdot \overline{B}) + (\overline{A} \cdot B) = (A + B) \cdot (\overline{A} \cdot B)$$

start from $(A + B) \cdot (\overline{A} \cdot B)$
 $= (A + B) \cdot (\overline{A} + \overline{B})$
 $= (A + B) \cdot \overline{A} + (A + B) \cdot \overline{B}$
 $= (A \cdot \overline{A}) + (B \cdot \overline{A}) + (A \cdot \overline{B}) + (B \cdot \overline{B})$
 $= (B \cdot \overline{A}) + (A \cdot \overline{B}) = (A \cdot \overline{B}) + (\overline{A} \cdot B)$

3-input XOR - True if # of Truths is odd.