1. Chains

A singular 0-cube in \mathbb{R}^n is a function $c:\{0\}\to\mathbb{R}^n$ and a (piecewise smooth) singular k-cube in \mathbb{R}^n is a function

$$c:[0,1]^k\to\mathbb{R}^n$$

that can be extended to a smooth function $\phi: V \to \mathbb{R}^n$ defined on an open subset V of \mathbb{R}^k containing $[0,1]^k$. (We will use c for ϕ for simplicity). A singular 1-cube in \mathbb{R}^n is called a singular curve in \mathbb{R}^n and a singular two cube in \mathbb{R}^n is called a singular surface in \mathbb{R}^n . The restriction of the identity function $I: \mathbb{R}^n \to \mathbb{R}^n$ to $[0,1]^n$ is a singular n-cube called the standard n-cube in \mathbb{R}^n and denoted by I^n .

Definition 1.1. A (piecewise smooth) singular k-chain in \mathbb{R}^n is a (formal) \mathbb{Z} -linear combination of (piecewise smooth) singular k-cubes in \mathbb{R}^n , i.e. a (piecewise smooth) singular k-chain is of the form

$$n_1\gamma_1 + \cdots + n_s\gamma_s$$

where $n_1, \dots, n_s \in \mathbb{Z}$ and $\gamma_1, \dots, \gamma_s : [0, 1]^k \to \mathbb{R}^n$.

A (piecewise smooth) singular k-chain in \mathbb{R}^n can be rewritten as

$$c = \sum_{\gamma} n_{\gamma} \gamma$$

where γ runs through the set of all (piecewise smooth) singular k-cubes and $n_{\gamma} = 0$ for all but finitely many (piecewise smooth) singular k-cubes γ in \mathbb{R}^n . The set of all (piecewise smooth) singular k-chains in \mathbb{R}^n is denoted by $C_k(\mathbb{R}^n)$.

We define the sum of two (piecewise smooth) singular k-chains $c = \sum_{\gamma} n_{\gamma} \gamma$ and $c' = \sum_{\gamma} n'_{\gamma} \gamma$ by

$$c + c' = \sum_{\gamma} (n_{\gamma} + n'_{\gamma})\gamma.$$

Then $C_k(\mathbb{R}^n)$ forms an abelian group.

Let $I^k: [0,1]^k \to \mathbb{R}^k$ be the standard k-cubes in \mathbb{R}^k . For each $1 \le i \le k$ and $0 \le a \le 1$, we defines functions $I^k_{(i,a)}: [0,1]^{k-1} \to \mathbb{R}^k$ by

$$I_{(i,0)}^k(t_1,\cdots,t_{k-1})=(t_1,\cdots,t_{i-1},0,t_i,\cdots,t_k)$$

$$I_{(i,1)}^k(t_1,\cdots,t_{k-1})=(t_1,\cdots,t_{i-1},1,t_i,\cdots,t_k).$$

We call $I_{(i,a)}^k$ the (i,a)-th face of I^k . The (algebraic) boundary of I^k is defined to be

$$\partial_k I^k = \sum_{i=1}^k \sum_{a=0}^1 (-1)^{i+a} I^k_{(i,a)}.$$

Then $\partial_k I^k$ is a (piecewise smooth) singular k-1-chain in \mathbb{R}^n .

If $\gamma:[0,1]^k\to\mathbb{R}^n$ is a (piecewise smooth) singular k-cube in \mathbb{R}^n , we define the (i,a)-th face of γ to be

$$\gamma_{(i,a)} = \gamma \circ I_{(i,a)}^k$$

for any $1 \le i \le k$ and for $0 \le a \le 1$. The algebraic boundary of γ is defined to be

$$\partial_k \gamma = \sum_{i=1}^k \sum_{a=0}^1 (-1)^{i+a} \gamma_{(i,a)}.$$

In general, we define the (algebraic) boundary of a (piecewise smooth) singular k-chain c to be the following singular k-1-chain

$$\partial_k c = \sum_{\gamma} n_{\gamma}(\partial_k \gamma).$$

Lemma 1.1. The function $\partial_k : C_k(\mathbb{R}^n) \to C_{k-1}(\mathbb{R}^n)$ is an abelian group homomorphism such that

$$\partial_{k-1} \circ \partial_k = 0$$

for any $k \geq 1$.

We denote $\ker \partial_k$ by $Z_k(\mathbb{R}^n)$ and $\operatorname{Im} \partial_{k+1}$ by $B_k(\mathbb{R}^n)$. Elements of $Z_k(\mathbb{R}^n)$ are called (piecewise smooth) singular k-cycles in \mathbb{R}^n and elements of $B_k(\mathbb{R}^n)$ are called (piecewise smooth) singular k-boundaries in \mathbb{R}^n . Since $\partial_{k-1} \circ \partial_k = 0$, $B_k(\mathbb{R}^n)$ is an abelian subgroup of $Z_k(\mathbb{R}^n)$. We define the k-th (piecewise smooth) singular homology group of \mathbb{R}^n to be the quotient group

$$H_k(\mathbb{R}^n) = Z_k(\mathbb{R}^n)/B_k(\mathbb{R}^n).$$

Remark. One can prove that

$$H_k(\mathbb{R}^n) = \begin{cases} 0 & \text{if } k > 0 \\ \mathbb{Z} & \text{if } k = 0. \end{cases}$$

Now let us state the Stoke's Theorem. For convenience, all the chains and cubes mentioned below are assumed to be piecewise smooth.

Let $\omega = f(x)dx_1 \wedge \cdots \wedge dx_n$ be any *n*-form on an open subset U of \mathbb{R}^n . We define the integral of ω over a Jordan measurable subset S of \mathbb{R}^n contained in U to be

$$\int_{S} \omega = \int_{S} f(x) d\mu$$

where $\int_S f(x)d\mu$ is the Riemann integral of the function f over S.

Remark. It you are not familiar with the notion of Jordan measurable sets in \mathbb{R}^n , you take S to be any n-dimensional compact interval $S = \prod_{i=1}^n [a_i, b_i]$.

If ω is a k-form on \mathbb{R}^n and $\gamma:[0,1]^k\to\mathbb{R}^n$ is a singular k-cube, we define

$$\int_{\gamma} \omega = \int_{[0,1]^k} \gamma^* \omega.$$

In general, if $c = \sum_{\gamma} n_{\gamma} \gamma$ is a singular k-chain in \mathbb{R}^n , we define the integral of ω over c by

$$\int_{c} \omega = \sum_{\gamma} n_{\gamma} \int_{\gamma} \omega.$$

Theorem 1.1. (Stoke's Theorem) Let ω be any k-1 form on \mathbb{R}^n and c be any k-chain in \mathbb{R}^n . Then

$$\int_{\mathcal{C}} d\omega = \int_{\partial \mathcal{C}} \omega.$$

Let us prove the case when $\omega = Q(x,y)dy$ is a one form on \mathbb{R}^2 and c is any singular two chain in \mathbb{R}^2 . At first, we prove that

$$\int_{\partial I^2} \omega = \int_{I^2} d\omega$$

where $I^2:[0,1]\times[0,1]\to\mathbb{R}^2$ is the standard 2-cube. Since I^2 is the restriction of the identity function $I:\mathbb{R}^2\to\mathbb{R}^2$,

$$(I^2)^*d\omega = d\omega = Q_x dx \wedge dy.$$

By definition.

$$\int_{I^2} d\omega = \int_{[0,1]^2} (I^2)^* d\omega = \int_{[0,1]^2} Q_x(x,y) dx \wedge dy$$

$$= \iint_{[0,1] \times [0,1]} Q_x(x,y) dA = \int_0^1 \left(\int_0^1 Q_x(x,y) dx \right) dy$$

$$= \int_0^1 (Q(1,y) - Q(0,y)) dy.$$

Since $\partial I^2 = I_{(2,0)}^2 + I_{(1,1)}^2 - I_{(2,1)}^2 - I_{(1,0)}^2$,

$$\int_{\partial I^2} \omega = \int_{I^2_{(2,0)}} \omega + \int_{I^2_{(1,1)}} \omega - \int_{I^2_{(2,1)}} \omega - \int_{I^2_{(1,0)}} \omega.$$

One can show that

$$(I_{(2,0)}^2)^*\omega = (I_{(2,1)}^2)^*\omega = 0, \quad (I_{(1,1)}^2)^*\omega = Q(1,t)dt, \quad (I_{(1,0)}^2)^*\omega = Q(0,t)dt.$$

As a consequence,

$$\int_{I^2} d\omega = \int_0^1 (I_{(1,1)}^2)^* \omega - \int_0^1 (I_{(1,0)}^2)^* \omega = \int_0^1 (Q(1,t) - Q(0,t)) dt$$

which coincides with $\int_{I^2} d\omega$. Now let us prove that the statement is true for any singular 2-cube γ in \mathbb{R}^2 . To do this, we need the following Lemma and its Corollary.

Lemma 1.2. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^p$ be any smooth functions. For any r form ω on \mathbb{R}^p ,

$$(g \circ f)^* \omega = f^*(g^* \omega).$$

Proof. When $\omega = h$ is a zero form,

$$(g \circ f)^*h = h \circ g \circ f = f^*(h \circ g) = f^*(g^*h).$$

Assume that ω is a r form on \mathbb{R}^k . For each $p \in \mathbb{R}^n$, and each $(v_1)_p, \cdots, (v_r)_p$ in $T_p(\mathbb{R}^n)$,

$$(g \circ f)^* \omega(p)((v_1)_p, \dots, (v_r)_p) = \omega((g \circ f)(p))(d(g \circ f)_p(v_1)_p, \dots, d(g \circ f)_p(v_r)_p)$$

$$= \omega((g \circ f)(p))(dg_{f(p)}(df_p(v_1)_p), \dots, dg_{f(p)}(df_p(v_r)_p))$$

$$= (g^* \omega)(f(p))(df_p((v_1)_p), \dots, df_p((v_1)_p))$$

$$= f^*(g^* \omega)(p)((v_1)_p, \dots, (v_r)_p).$$

Thus $(g \circ f)^*\omega(p) = f^*(g^*\omega)(p)$ for any $p \in \mathbb{R}^n$. Hence the statement is true.

Corollary 1.1. Let γ be any singular k-cube on \mathbb{R}^n and ω be any k-form on \mathbb{R}^n . Then

$$\int_{\gamma} f^* \omega = \int_{f \circ \gamma} \omega$$

for any smooth function $f: \mathbb{R}^n \to \mathbb{R}^n$

Proof. Using the previous lemma, we find

$$(f \circ \gamma)^* \omega = \gamma^* (f^* \omega).$$

By definition,

$$\int_{f \circ \gamma} \omega = \int_{[0,1]^k} (f \circ \gamma)^* \omega = \int_{[0,1]^k} \gamma^* (f^* \omega) = \int_{\gamma} f^* \omega.$$

Let γ be any 2-cube in \mathbb{R}^2 . We consider γ as a smooth function from an open subset of \mathbb{R}^2 containing $[0,1] \times [0,1]$ to \mathbb{R}^2 . By definition, the boundary of γ is

$$\partial \gamma = \gamma \circ I^2_{(2,0)} + \gamma \circ I^2_{(1,1)} - \gamma \circ I^2_{(2,1)} - \gamma \circ I^2_{(1,0)}.$$

By Corollary 1.1,

$$\int_{\partial \gamma} \omega = \int_{I_{(2,0)}^2} \gamma^* \omega + \int_{I_{(1,1)}^2} \gamma^* \omega - \int_{I_{(2,1)}^2} \gamma^* \omega - \int_{I_{(1,0)}^2} \gamma^* \omega = \int_{\partial I^2} \gamma^* \omega.$$

By Stoke's Theorem for standard 2-cube,

$$\int_{\partial I^2} \gamma^* \omega = \int_{I^2} d(\gamma^* \omega).$$

Since $d(\gamma^*\omega) = \gamma^*(d\omega)$, we find

$$\int_{I^2} d(\gamma^* \omega) = \int_{I^2} \gamma^* (d\omega) = \int_{\gamma \circ I^2} d\omega = \int_{\gamma} d\omega.$$

We find that the statement is true for any singular 2-cube γ in \mathbb{R}^2 . In general, if $c = \sum_{\gamma} n_{\gamma} \gamma$ is a 2-chain, then

$$\int_{\partial c} \omega = \sum_{\gamma} n_{\gamma} \int_{\partial \gamma} \omega = \sum_{\gamma} n_{\gamma} \int_{\gamma} d\omega = \int_{c} d\omega.$$

We prove that the statement is true for any 2-cubes in \mathbb{R}^2 for $\omega = Q(x,y)dy$. When $\omega = P(x,y)dx$, the proof is similar. When $\omega = P(x,y)dx + Q(x,y)dy$, we let $\omega_1 = P(x,y)dx$ and $\omega_2 = Q(x,y)dy$. Using Stoke's theorem for ω_1 and for ω_2 respectively, we obtain

$$\int_{\partial c} \omega = \int_{\partial c} \omega_1 + \int_{\partial c} \omega_2 = \int_{c} d\omega_1 + \int_{c} d\omega_2 = \int_{c} d\omega.$$

Here we use the fact that $d\omega = d\omega_1 + d\omega_2$. The idea of the above proof can be applied to the proof of Stoke's Theorem for general cases. Let us prove that

$$\int_{\partial I^k} \omega = \int_{I^k} d\omega$$

holds for k-1 form of the form $\omega = f(x)dx_2 \wedge \cdots \wedge dx_k$. Then

$$d\omega = f_{x_1} dx_1 \wedge \dots \wedge dx_k.$$

By definition and the Fubini's Theorem,

$$\int_{I^k} d\omega = \int_{[0,1]^k} f_{x_1} dx_1 \wedge \dots \wedge dx_k$$

$$= \int_{[0,1]^{k-1}} (f(1, x_2, \dots, x_n) - f(0, x_2, \dots, x_n)) d\mu_{k-1}.$$

Here $d\mu_{k-1}$ is the Jordan measure on \mathbb{R}^{k-1} . On the other hand,

$$(I_{(i,a)}^k)^*\omega = 0$$
 for $2 \le i \le k$

and

$$(I_{(1,0)}^k)^*\omega = f(0, t_1, \dots, t_{k-1})dt_1 \wedge \dots \wedge dt_{k-1}$$
$$(I_{(1,1)}^k)^*\omega = f(1, t_1, \dots, t_{k-1})dt_1 \wedge \dots \wedge dt_{k-1}.$$

By definition, $I^k = \sum_{i=1}^k \sum_{a=0}^1 (-1)^{i+a} I^k_{(i,a)}$, and hence

$$\int_{\partial I^k} \omega = \sum_{i=1}^k \sum_{a=0}^1 (-1)^{i+a} \int_{I_{(i,a)}^k} \omega.$$

By the previous observation,

$$\int_{I_{(i,a)}^k} \omega = \int_{[0,1]^{k-1}} (I_{(i,a)}^k)^* \omega = 0 \text{ for } 2 \le i \le k$$

and

$$\int_{I_{(1,0)}^k} \omega = \int_{[0,1]^{k-1}} (I_{(1,0)}^k)^* \omega = \int_{[0,1]^{k-1}} f(0, t_1, \dots, t_{k-1}) d\mu_{n-1}$$

$$\int_{I_{(1,1)}^k} \omega = \int_{[0,1]^{k-1}} (I_{(1,1)}^k)^* \omega = \int_{[0,1]^{k-1}} f(1, t_1, \dots, t_{k-1}) d\mu_{n-1}.$$

We see that

$$\int_{\partial I^k} \omega = \int_{[0,1]^{k-1}} (f(1,t_1,\cdots,t_{k-1}) - f(0,t_1,\cdots,t_{k-1})) d\mu_{n-1}$$

which coincides with $\int_{I^k} d\omega$. For the case when ω is a k-1 form of the form

$$\omega = f(x)dx_1 \wedge \cdots dx_{i-1} \wedge dx_{i+1} \wedge \cdots \wedge \cdots dx_k,$$

the proof is similar. If ω is a k-1 form of the form

$$\omega = \sum_{i=1}^{k} f_i(x) dx_1 \wedge \cdots dx_{i-1} \wedge dx_{i+1} \wedge \cdots \wedge \cdots dx_k,$$

we write $\omega_i = f_i(x)dx_1 \wedge \cdots dx_{i-1} \wedge dx_{i+1} \wedge \cdots \wedge \cdots dx_k$. Then

$$\int_{\partial I^k} \omega_i = \int_{I^k} d\omega_i.$$

Since $d\omega = \sum_{i=1}^k d\omega_i$, we find

$$\int_{\partial I^k} \omega = \sum_{i=1}^k \int_{\partial I^k} \omega_i = \sum_{i=1}^k \int_{I^k} d\omega_i = \int_{I^k} \left(\sum_{i=1}^k d\omega_i\right) = \int_{I^k} d\omega.$$

If $\gamma:[0,1]^k\to\mathbb{R}^n$ is a k-cube on \mathbb{R}^n and ω is a k-form on \mathbb{R}^n , then

$$\int_{\partial \gamma} \omega = \int_{\partial I^k} \gamma^* \omega = \int_{I^k} d(\gamma^* \omega) = \int_{I^k} \gamma^* (d\omega) = \int_{\gamma} d\omega.$$

We prove that the theorem holds for any k-cubes and any k-forms. One can show that the Stoke's theorem holds for any k-form and for any k-chains on \mathbb{R}^n .