(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-108243 (P2002-108243A)

(43)公開日 平成14年4月10日(2002.4.10)

j.	特願2001-166198(P2	001 — 166198)	(71) }	出願人	0001538	378		
		審査請求	未請求	請求	項の数39	OL,	(全 31 頁)	最終頁に続く
21/8238					29/78		624	5 F 1 1 0
21/3205			H 0 1	L	27/08		331E	5F048
9/30	3 3 8		G 0 9	F	9/30		338	5 F O 3 3
31/02			G 0 1	R	31/02			5 C O 9 4
9/00	352		G 0 9	F	9/00		352	2G014
	徽別記号		FΙ				Ť	-マコード(参考)
		敵別記号	微別記号	敵別記号 F I	敵別記号 F I	敵別記号 F I	識別記号 F I	酸別記号 FI デ

(21)出願番号	特願2001-166198(P2001-166198)
(22)出願日	平成13年6月1日(2001.6.1)
(31)優先権主張番号	特願2000-168203 (P2000-168203)
(32)優先日	平成12年6月5日(2000.6.5)
(33)優先権主張国	日本 (JP)
(31)優先権主張番号	特願2000-168214(P2000-168214)
(32)優先日	平成12年6月5日(2000.6.5)
(33)優先権主張国	日本 (JP)

(71) 出願人	000153878
	株式会社半導体エネルギー研究所
	神奈川県厚木市長谷398番地

(72)発明者 山崎 舜平 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内

(72) 発明者 小山 潤 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内

(72)発明者 荒井 康行 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内

最終頁に続く

(54) 【発明の名称】 表示パネル、検査方法及び該表示パネルの作製方法

(57) 【要約】

【課題】 表示パネルを封止する前に、ELパネルが良品か不良品かの区別をつけることが可能な表示パネルの 検査方法を提供する。

【解決手段】 導電膜を流れる電流の値を測定し、測定値によって不良画素を検出する工程の後、導電膜をパターニングし画素電極を形成する第1の検査方法と、全ての画素電極を検査用導電膜で接続し、前記検査用導電膜を流れる電流の値を測定し、測定値によって不良画素を検出する工程の後、前記検査用導電膜を除去する第2の検査方法。

【特許請求の範囲】

【請求項1】 TFTと、前記TFTと電気的に接続されている画素電極とを含む複数の画素を有する表示パネルの、作製工程における検査方法であって、

前記画素電極を導電膜をパターニングして形成する前に、前記複数の画素のそれぞれにおいて、各画素の有するTFTを順次オンにして、前記導電膜を流れる電流の値を測定し、前記測定した電流の値から前記TFTの良不良を確認することを特徴とする検査方法。

【請求項2】配線とTFTと画素電極とを含む複数の画素を有する表示パネルの作製工程における検査方法であって、

前記画素電極を導電膜をパターニングして形成する前に、前記複数の画素のそれぞれにおいて、前記配線の電位を制御することで、各画素の有するTFTを順次オンにして、前記導電膜を流れる電流の値を測定し、前記測定した電流の値から前記TFTと前記配線の良不良を確認することを特徴とする検査方法。

【請求項3】スイッチング用TFTと、EL駆動用TFTと、ソース信号線と、ゲート信号線と、電源供給線と、前記EL駆動用TFTと電気的に接続されている画楽電極とを含む複数の画素を有する表示パネルの作製工程における検査方法であって、

前記画素電極を導電膜をパターニングして形成する前に、前記複数の画素のそれぞれにおいて、前記ゲート信号線の電位を制御することで各画素の有する前記スイッチング用TFTを順次オンにし、前記リース信号線の電位を制御することで各画素の有する前記EL駆動用TFTを順次オンにし、前記電源供給線の電位を制御し、前記導電膜を流れる電流の値を測定し、前記測定した電流の値から、前記スイッチング用TFT、前記EL駆動用TFT、前記ソース信号線、前記ゲート信号線及び前記電源供給線の良不良を確認することを特徴とする検査方法。

【請求項4】スイッチング用TFTと、EL駆動用TFTと、ソース信号線と、ゲート信号線と、電源供給線と、前記EL駆動用TFTのドレイン領域に接続された画素電極とを含む複数の画素を有する表示パネルの作製工程における検査方法であって、

前記画素電極を導電膜をパターニングして形成する前に、前記複数の画素のそれぞれにおいて、前記ゲート信号線の電位を制御することで各画素の有する前記スイッチング用TFTを順次オンにし、前記リース信号線の電位を制御することで各画素の有する前記EL駆動用TFTを順次オンにし、前記電源供給線の電位を制御し、前記導電膜を流れる電流の値を測定し、前記測定した電流の値から、前記スイッチング用TFT、前記EL駆動用TFT、前記ソース信号線、前記ゲート信号線及び前記電源供給線の良不良を確認することを特徴とする検査方法。

2

【請求項5】第1のスイッチング用TFTと、第2のスイッチング用TFTと、EL駆動用TFTと、ソース信号線と、第1のゲート信号線と、第2のゲート信号線と、電源供給線と、前記EL駆動用TFTと電気的に接続されている画素電極とを含む複数の画素を有する表示パネルの作製工程における検査方法であって、

前記画素電極を導電膜をパターニングして形成する前に、前記複数の画素のそれぞれにおいて、前記第1のゲート信号線の電位を制御することで各画素の有する前記第1のスイッチング用TFTを順次オンにし、前記ソース信号線の電位を制御することで各画素の有する前記EL駆動用TFTを順次オンにし、前記電源供給線の電位を制御し、前記導電膜を流れる電流の値を測定する工程と、

前記画素電極を導電膜をパターニングして形成する前に、前記複数の画素のそれぞれにおいて、前記第2のゲート信号線の電位を制御することで各画素の有する前記第2のスイッチング用TFTを順次オン、各画素の有する前記EL駆動用TFTを順次オフにし、前記導電膜を流れる電流の値を測定し、前記測定した電流の値から、前記第1のスイッチング用TFT、前記EL駆動用TFT、前記ソース信号線、前記第1のゲート信号線、前記第2のゲート信号線及び前記電源供給線の良不良を確認する工程と、を有することを特徴とする検査方法。

【請求項6】第1のスイッチング用TFTと、第2のスイッチング用TFTと、EL駆動用TFTと、ソース信号線と、第1のゲート信号線と、第2のゲート信号線と、電源供給線と、前記EL駆動用TFTのドレイン領域に接続された画素電極とを含む複数の画素を有する表示パネルの作製工程における検査方法であって、前記画素電極を導電膜をパターニングして形成する前

前記画素電極を導電膜をパターニングして形成する制 に、前記複数の画素のそれぞれにおいて、前記第1のゲート信号線の電位を制御することで各画素の有する前記 第1のスイッチング用TFTを順次オンにし、前記ソー ス信号線の電位を制御することで各画素の有する前記E L駆動用TFTを順次オンにし、前記電源供給線の電位 を制御し、前記導電膜を流れる電流の値を測定する工程 と、

40 前記画素電極を導電膜をパターニングして形成する前に、前記複数の画素のそれぞれにおいて、前記第2のゲート信号線の電位を制御することで各画素の有する前記第2のスイッチング用TFTを順次オフにし、前記導電膜を流れる電流の値を測定し、前記測定した電流の値から、前記第1のスイッチング用TFT、前記EL駆動用TFT、前記ソース信号線、前記第1のゲート信号線、前記第2のゲート信号線及び前記電源供給線の良不良を確認する工程と、を有す50 ることを特徴とする検査方法。

【請求項7】請求項1乃至請求項6のいずれか1項において、前記画素電極が形成された後に、前記画素電極上にEL層と対向電極とを順に積層するように形成することを特徴とする検査方法。

【請求項8】請求項1乃至請求項7のいずれか1項において、前記導電膜を流れる電流の値は、前記導電膜に接続された測定用配線を流れる電流の値を測定することで求められることを特徴とする検査方法。

【請求項9】 TFTと、前記TFTと電気的に接続されている画素電極とを含む複数の画素を有する表示パネル 10の作製工程における検査方法であって、

前記複数の画素に含まれる画素電極を全て検査用導電膜 で電気的に接続する工程と、

前記複数の画素のそれぞれにおいて、各画素の有する前 記TFTを順次オンにして、前記検査用導電膜を流れる 電流の値を測定し、前記測定した電流の値から、前記T FT及び前記画素電極の良不良を確認する工程と、

前記検査用導電膜を除去する工程と、を有することを特 徴とする検査方法。

【請求項10】配線とTFTと、前記TFTと電気的に接続されている画素電極とを含む複数の画素を有する表示パネルの作製工程における検査方法であって、

前記複数の画素に含まれる画素電極を全て検査用導電膜 で電気的に接続する工程と、

前記複数の画素のそれぞれにおいて、前記配線の電位を 制御することで各画素の有する前記TFTを順次オンに して、前記検査用導電膜を流れる電流の値を測定し、前 記測定した電流の値から、前記TFT、前記配線及び前 記画素電極の良不良を確認する工程と、

前記検査用導電膜を除去する工程と、を有することを特徴とする検査方法。

【請求項11】スイッチング用TFTと、EL駆動用TFTと、ソース信号線と、ゲート信号線と、電源供給線と、前記EL駆動用TFTと電気的に接続されている画素電極とを含む複数の画素を有する表示パネルの作製工程における検査方法であって、

前記複数の画素に含まれる画素電極を全て検査用導電膜 で電気的に接続する工程と、

前記複数の画素のそれぞれにおいて、前記ゲート信号線の電位を制御することで各画素の有する前記スイッチング用TFTを順次オンにし、前記ソース信号線の電位を制御することで各画素の有する前記EL駆動用TFTを順次オンにし、前記電源供給線の電位を制御し、前記検査用導電膜を流れる電流の値を測定し、前記測定した電流の値から、前記スイッチング用TFT、前記EL駆動用TFT、前記ソース信号線、前記ゲート信号線、前記電源供給線及び前記画素電極の良不良を確認する工程

前記検査用導電膜を除去する工程と、を有することを特 徴とする検査方法。 【請求項12】スイッチング用TFTと、EL駆動用TFTと、ソース信号線と、ゲート信号線と、電源供給線と、前記EL駆動用TFTのドレイン領域に接続されている画素電極とを含む複数の画素を有する表示パネルの作製工程における検査方法であって、

前記複数の画素に含まれる画素電極を全て検査用導電膜 で電気的に接続する工程と、

前記複数の画素のそれぞれにおいて、前記ゲート信号線の電位を制御することで各画素の有する前記スイッチング用TFTを順次オンにし、前記ソース信号線の電位を制御することで各画素の有する前記EL駆動用TFTを順次オンにし、前記電源供給線の電位を制御し、前記制定した電流の値から、前記スイッチング用TFT、前記EL駆動用TFT、前記ソース信号線、前記ゲート信号線、前記電源供給線及び前記画素電極の良不良を確認する工程と

前記検査用導電膜を除去する工程と、を有することを特徴とする検査方法。

20 【請求項13】第1のスイッチング用TFTと、第2のスイッチング用TFTと、EL駆動用TFTと、ソース信号線と、第1のゲート信号線と、第2のゲート信号線と、電源供給線と、前記EL駆動用TFTと電気的に接続されている画素電極とを含む複数の画素を有する表示パネルの作製工程における検査方法であって、

前記複数の画素に含まれる画素電極を全て検査用導電膜 で電気的に接続する工程と、

前記複数の画案のそれぞれにおいて、前記画案電極を導電膜をパターニングして形成する前に、前記第1のゲー ト信号線の電位を制御することで各画素の有する前記第 1のスイッチング用TFTを順次オンにし、前記ソース 信号線の電位を制御することで各画素の有する前記EL 駆動用TFTを順次オンにし、前記電源供給線の電位を 制御し、前記検査用導電膜を流れる電流の値を測定する 工程と、

前記複数の画素のそれぞれにおいて、前記画素電極を導 電膜をパターニングして形成する前に、前記第2のゲート信号線の電位を制御することで各画素の有する前記第 2のスイッチング用TFTを順次オン、各画素の有する 前記EL駆動用TFTを順次オフにし、前記検査用導電 膜を流れる電流の値を測定し、前記拠定した電流の値か 6、前記第1のスイッチング用TFT、前記第2のスイ ッチング用TFT、前記EL駆動用TFT、前記ソース 信号線、前記第1のゲート信号線、前記第2のゲート信 号線、前記電源供給線及び前記画素電極の良不良を確認 する工程と、

前記検査用導電膜を除去する工程と、を有することを特 徴とする検査方法。

【請求項14】第1のスイッチング用TFTと、第2の 50 スイッチング用TFTと、EL駆動用TFTと、ソース

覆って層間絶縁膜を形成する工程と、

信号線と、第1のゲート信号線と、第2のゲート信号線と、電源供給線と、前記EL駆動用TFTのドレイン領域に接続されている画素電極とを含む複数の画素を有する表示パネルの作製工程における検査方法であって、

前記複数の画素に含まれる画素電極を全て検査用導電膜 で電気的に接続する工程と、

前記複数の画素のそれぞれにおいて、前記画素電極を導 電膜をパターニングして形成する前に、前記第1のゲー ト信号線の電位を制御することで各画素の有する前記第 1のスイッチング用TFTを順次オンにし、前記ソース 信号線の電位を制御することで各画素の有する前記EL 駆動用TFTを順次オンにし、前記電源供給線の電位を 制御し、前記検査用導電膜を流れる電流の値を測定する 工程と、

前記複数の画素のそれぞれにおいて、前記画素電極を導 電膜をパターニングして形成する前に、前記第2のゲート信号線の電位を制御することで各画素の有する前記第 2のスイッチング用TFTを順次オン、各画素の有する 前記EL駆動用TFTを順次オフにし、前記検査用導電 膜を流れる電流の値を測定し、前記測定した電流の値から、前記第1のスイッチング用TFT、前記第2のスイッチング用TFT、前記第2のスイッチング用TFT、前記FL駆動用TFT、前記ソース 信号線、前記第1のゲート信号線、前記第2のゲート信 号線、前記電源供給線及び前記画素電極の良不良を確認 する工程と、

前記検査用導電膜を除去する工程と、を有することを特 徴とする検査方法。

【請求項15】請求項9乃至請求項14のいずれか1項において、前記檢查用導電膜が除去された後に、前記画 素電極上にEL層と対向電極とを順に積層するように形成することを特徴とする検査方法。

【請求項16】請求項9乃至請求項15のいずれか1項において、前記檢查用導電膜を流れる電流の値は、前記檢查用導電膜に接続された測定用配線を流れる電流の値を測定することで求められることを特徴とする検査方法。

【請求項17】請求項9乃至請求項16のいずれか1項において、前記検査用導電膜は液体状であることを特徴とする検査方法。

【請求項18】絶縁表面上に設けられた全ての複数のTFT及び測定用配線とに電気的に接続された導電膜を形成する工程と、

前記複数のTFTを順次オンにして、前記測定用配線に 流れる電流の値を測定し、前記測定した電流の値から、 前記複数のTFTの良不良を確認する工程と、

前記導電膜をパターニングして、前記複数のTFTのそれぞれに電気的に接続されている複数の画素電極を形成する工程と、を有することを特徴とする表示パネルの作製方法。

【請求項19】絶縁表面上に設けられた複数のTFTを 50

前記層間絶縁膜にコンタクトホールを形成する工程と、 前記コンタクトホールを介して、前記複数のTFTのソ ース領域またはドレイン領域にそれぞれ接する複数の接 続配線と、前記絶縁表面に接する測定用配線とを形成す る工程と、

前記複数の接続配線及び前記測定用配線に接する導電膜 を形成する工程と、

前記複数のTFTを順次オンにして、前記測定用配線に の 流れる電流の値を測定し、前記測定した電流の値から、 前記複数のTFT及び前記接続配線の良不良を確認する 工程と、

前記導電膜をパターニングして、前記複数のTFTのそれぞれに電気的に接続されている複数の画素電極を形成する工程と、を有することを特徴とする表示パネルの作製方法。

【請求項20】請求項18または請求項19において、 前記複数の画素電極が形成された後に、前記複数の画素 電極上にE1層と対向電極とを順に積層するように形成 することを特徴とする表示パネルの作製方法。

【請求項21】絶縁表面上に設けられた複数のTFTに それぞれ電気的に接続された複数の画素電極の全でと、 測定用配線とに、電気的に接続された検査用導電膜を形成する工程と、

前記複数のTFTを順次オンにして、前記測定用配線に 流れる電流の値を測定し、前記測定した電流の値から、 前記複数のTFT及び前記複数の画素電極の良不良を確 認する工程と、

前記検査用導電膜を除去する工程と、を有することを特 徴とする表示パネルの作製方法。

【請求項22】絶縁表面上に設けられた複数のTFTを 覆って層間絶縁膜を形成する工程と、

前記層間絶縁膜にコンタクトホールを形成する工程と、 前記コンタクトホールを介して、前記複数のTFTのソ ース領域またはドレイン領域にそれぞれ接する複数の接 続配線と、前記絶縁表面に接する測定用配線とを形成す る工程と、

前記複数の接続配線に接する導電膜を形成する工程と、 前記導電膜をパターニングして、前記複数のTFTのそ 40 れぞれに電気的に接続されている複数の画素電極を形成 する工程と、

全ての前記複数の画素電極及び前記測定用配線に接する 検査用導電膜を形成する工程と、

前記複数のTFTを順次オンにして、前記測定用配線に 流れる電流の値を測定し、前記測定した電流の値から、 前記複数のTFT、前記複数の画素電極及び前記接続配 線の良不良を確認する工程と、

前記検査用導電膜を除去する工程と、を有することを特 徴とする表示パネルの作製方法。

【請求項23】請求項21または請求項22において、

6

前記検査用導電膜が除去された後に、前記画素電極上に EL層と対向電極とを順に積層するように形成すること を特徴とする表示パネルの作製方法。

【請求項24】請求項21乃至請求項23のいずれか1項において、前記検査用導電膜は液体状であることを特徴とする表示パネルの作製方法。

【請求項25】請求項18乃至請求項24のいずれか1項にに記載の、作製方法を用いて形成されていることを特徴とする表示パネル。

【請求項26】請求項25において、前記表示パネルと ソース信号線駆動回路とゲート信号線駆動回路とを有す ることを特徴とする駆動回路付表示パネル。

【請求項27】請求項25において、前記表示パネルと ソース信号線駆動回路とゲート信号線駆動回路とコント ローラーとを有することを特徴とするコントローラー及 び駆動回路付表示パネル。

【 請求項28】 請求項25において、前記表示パネルと ソース信号線駆動回路とゲート信号線駆動回路とコント ローラーとマイコンとを有することを特徴とするマイコ ン及びコントローラー及び駆動回路付表示パネル。

【請求項29】請求項25において、前記表示パネルを 用いることを特徴とする電子機器。

【請求項30】請求項26において、前記駆動回路付表示パネルを用いることを特徴とする電子機器。

【請求項31】請求項27において、前記コントローラ 一及び駆動回路付表示パネルを用いることを特徴とする 電子機器。

【請求項32】請求項28において、前記マイコン及びコントローラー及び駆動回路付表示パネルを用いることを特徴とする電子機器。

【請求項33】請求項29乃至請求項32のいずれか1項において、ELディスプレイ、ビデオカメラ、デジタルカメラ、ゴーグル型表示装置、ナビゲーションシステム、音響再生装置、ノート型パーソナルコンピュータ、携帯情報端末またはDVD装置であることを特徴とする電子機器。

【請求項34】TFTと、前記TFTと電気的に接続されている画業電極とを含む複数の画素を有する表示パネルの作製方法であって、

前記IFTと電気的に接続されている導電膜を成膜し、 前記複数の画素のそれぞれにおいて、各画素の有するI FTを順次オンにして、前記導電膜を流れる電流の値を 測定し、前記測定した電流の値から前記IFTの良不良 を確認し、

前記導電膜をパターニングして前記画素電極を形成する ことを特徴とする表示パネルの作製方法。

【請求項35】配線とTFTと画素電極とを含む複数の 画素を有する表示パネルの作製方法であって、

前記複数の画素のそれぞれにおいて、前記配線の電位を 制御することで、各画素の有するTFTを順次オンにし 50

て、前記導電膜を流れる電流の値を測定し、前記測定した電流の値から前記TFTと前記配線の良不良を確認

前記導電膜をパターニングして前記画素電極を形成することを特徴とする表示パネルの作製方法。

【請求項36】スイッチング用TFTと、EL駆動用TFTと、ソース信号線と、ゲート信号線と、電源供給線と、前記EL駆動用TFTと電気的に接続されている画 素電極とを含む複数の画素を有する表示パネルの作製方法であって、

前記複数の画素のそれぞれにおいて、前記ゲート信号線の電位を制御することで各画素の有する前記スイッチング用TFTを順次オンにし、前記ソース信号線の電位を制御することで各画素の有する前記EL駆動用TFTを順次オンにし、前記電源供給線の電位を制御し、前記導電膜を流れる電流の値を測定し、前記測定した電流の値から、前記スイッチング用TFT、前記EL駆動用TFT、前記ソース信号線、前記ゲート信号線及び前記電源供給線の良不良を確認し、

20 前記導電膜をパターニングして前記画素電極を形成することを特徴とする表示パネルの作製方法。

【請求項37】TFTと、前記TFTと電気的に接続されている画素電極とを含む複数の画素を有する表示パネルの作製方法であって、

前記複数の画素に含まれる画素電極を全て検査用導電膜 で電気的に接続し、

前記複数の画素のそれぞれにおいて、各画素の有する前 記TFTを順次オンにして、前記検査用導電膜を流れる 電流の値を測定し、前記測定した電流の値から、前記T FT及び前記画素電極の良不良を確認し、

前記検査用導電膜を除去することを特徴とする表示パネルの作製方法。

【請求項38】配線とTFTと、前記TFTと電気的に接続されている画素電極とを含む複数の画素を有する表示パネルの作製方法であって、

前記複数の画素に含まれる画素電極を全て検査用導電膜 で電気的に接続し、

前記複数の画素のそれぞれにおいて、前記配線の電位を 制御することで各画素の有する前記TFTを順次オンに して、前記検査用導電膜を流れる電流の値を測定し、前 記測定した電流の値から、前記TFT、前記配線及び前 記画素電極の良不良を確認し、

前記検査用導電膜を除去することを特徴とする表示パネルの作製方法。

【請求項39】スイッチング用TFTと、EL駆動用TFTと、ソース信号線と、ゲート信号線と、電源供給線と、前記EL駆動用TFTと電気的に接続されている画素電極とを含む複数の画素を有する表示パネルの作製方法であって、

50 前記複数の画素に含まれる画素電極を全て検査用導電膜

3

で電気的に接続し、

前記複数の画素のそれぞれにおいて、前記ゲート信号線 の電位を制御することで各画素の有する前記スイッチン グ用TFTを順次オンにし、前記ソース信号線の電位を 制御することで各画素の有する前記EL駆動用TFTを 順次オンにし、前記電源供給線の電位を制御し、前記検 査用導電膜を流れる電流の値を測定し、前記測定した電 流の値から、前記スイッチング用TFT、前記EL駆動 用TFT、前記ソース信号線、前記ゲート信号線、前記 電源供給線及び前記画素電極の良不良を確認し、

前記検査用導電膜を除去することを特徴とする表示パネ ルの作製方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はEL(エレクトロル ミネッセンス)素子を基板上に作り込んで形成された電 子ディスプレイにおいて、EL素子を形成する前に画素 部が正常に動作するかどうかを検査する方法に関する。 特に半導体素子(半導体薄膜を用いた素子)を用いたE Lディスプレイにおいて、EL素子を形成する前に画素。 部が正常に動作するかどうかを検査する方法(検査方 法)に関する。

[0002]

【従来の技術】近年、基板上にTFTを形成する技術が 大幅に進歩し、アクティブマトリクス型の電子ディスプ レイへの応用開発が進められている。特に、ポリシリコ ン膜を用いたTFTは、従来のアモルファスシリコン膜 を用いたTFTよりも電界効果移動度(モビリティとも いう)が高いので、高速動作が可能である。そのため、 従来基板の外に設けられた駆動回路で行っていた画素の 制御を、画素と同一の基板上に形成した駆動回路で行う ことが可能となっている。

【0003】このようなアクティブマトリクス型の電子 ディスプレイは、同一基板上に様々な回路や素子を作り 込むことで製造コストの低減、電子ディスプレイの小型 化、歩留まりの上昇、スループットの低減など、様々な 利点が得られる。

【0004】そして特に電子ディスプレイの中でも、自 発光型素子としてEL素子を有したアクティブマトリク ス型のELディスプレイの研究が活発化している。EL ディスプレイは有機ELディスプレイ (OELD: Orga nic EL Display) 又は有機ライトエミッティングダイオ ード (OLED: Organic Light Emitting Diode) とも 呼ばれている。

【0005】ELディスプレイは、液晶ディスプレイと 異なり自発光型である。EL素子は一対の電極(陽極と 陰極) 間にEL層が挟まれた構造となっているが、EL **屆は通常、積層構造となっている。代表的には、コダッ** ク・イーストマン・カンパニーのTangらが提案した「正 孔輸送層/発光層/電子輸送層」という積層構造が挙げ 50 子の発光を制御する配線やTFTに何らかの不具合が生

られる。この構造は非常に発光効率が高く、現在、研究 開発が進められているELディスプレイは殆どこの構造 を採用している。

10

【0006】また他にも、陽極上に正孔注入層/正孔輸 送層/発光層/電子輸送層、または正孔注入層/正孔輸 送層/発光層/電子輸送層/電子注入層の順に積層する 構造でも良い。発光層に対して蛍光性色素等をドービン グしても良い。

【0007】本明細書において陰極と陽極の間に設けら 10 れる全ての層を総称してEL層と呼ぶ。よって上述した 正孔注入層、正孔輸送層、発光層、電子輸送層、電子注 入層等は、全てEL層に含まれる。

【0008】そして、上記構造でなるEL層に一対の電 極から所定の電圧をかけることによって、EL層に直流 の電場が発生し、それにより発光層においてキャリアの 再結合が起こって発光する。EL層におけるルミネッセ ンスには、一重項励起状態から基底状態に戻る際の発光 (蛍光) と三重項励起状態から基底状態に戻る際の発光 (リン光)とがあるが、本発明のELディスプレイは、 20 上述した発光のうちのいずれか一方の発光を用いても良

いし、または両方の発光を用いても良い。 【0009】なお、本明細書中では、陽極、EL層及び

陰極で形成される発光素子をEL素子と呼ぶ。またEL 素子が発光することを本明細書中では、EL素子が駆動 すると呼ぶ。

【0010】EL層は熱、光、水分、酸素等によって劣 化が促進されることから、一般的にアクティブマトリク ス型のELディスプレイの作製において、画素部に配線 やTFTを形成した後にEL素子が形成される。

【0011】そしてEL素子が形成された後、EL素子 が設けられる基板(ELパネル)とカバー材とを、EL 素子が外気に曝されないように貼り合わせてシール材等 により封止(パッケージング)する。

【0012】パッケージング等の処理により気密性を高 めたら、基板上に形成された素子又は回路から引き回さ れた端子と外部信号端子とを接続するためのコネクター (FPC、TAB等) を取り付けて、アクティブマトリ クス型のELディスプレイが完成する。

[0013]

【発明が解決しようとする課題】アクティブマトリクス 型のELディスプレイにおいて、EL素子の一対の電極 からEL層にかかる電圧は、各画素に設けられたTFT によって制御される。そのため、画素部が有するTFT がスイッチング素子として機能しなかったり、配線が断 線またはショートするなど、何らかの不具合が生じる と、EL素子が有するEL層に所定の電圧をかけること ができなくなる。その場合、画素は所望の階調を表示す ることができない。

【0014】そして、このように画素部においてEL素

じていても、ELディスプレイを完成させて実際に表示を行うまで、その不具合の存在を確認することが難しい。そのため実際には製品にならないELパネルであっても、良品との区別をつけるために、EL素子を形成し、パッケージングし、コネクターを取り付けてELディスプレイとして完成させる必要がある。この場合、EL素子を形成する工程と、パッケージングする工程と、コネクターを取り付ける工程とが無駄になるため、時間とコストを抑えることができない。また多面取りの基板を用いてELパネルを形成する場合でも、パッケージングしコネクターを取り付ける工程が無駄になり、同様に時間とコストを抑えることができない。

【0015】アクティブマトリクス型のELディスプレイに先行して量産化されているアクティブマトリクス型の液晶ディスプレイでは、画素部を有するパネル(液晶パネル)と対向電極を有する基板との間に液晶を封入して液晶ディスプレイを完成させる前に、画素部において配線やTFTを形成した後、各画素が有するコンデンサに電荷を蓄積し、その電荷量を各画素ごとに測定することで、画素部に不具合が生じていないかどうかを確認している。

【0016】しかしアクティブマトリクス型のELディスプレイの場合、一般的に各画素ごとにTFTが2つ以上設けられていることが多い。そしてEL素子が有する一方の電極(画素電極)とコンデンサとが、TFTを間に介して接続されている場合がある。この場合、コンデンサに蓄積した電荷量を測定しても、コンデンサと画素電極との間に接続されている配線およびTFTに不具合があるかどうかを確認することが難しい。

【0017】アクティブマトリクス型のELディスプレイの量産化に向けて、ELディスプレイを完成させる前に、画素部において配線およびTFTに不具合が生じていないか、言いかえると、各画素のEL素子の画素電極に所定の電圧を印加することができるかどうかの検査方法の確立が求められている。

[0018]

【課題を解決するための手段】本発明で開示するELパネルの第1の検査方法では、画素部において配線およびTFTが形成された後、EL素子の画素電極となる導電性を有する膜(導電膜)を画素部全体に形成する。導電膜は、画素部の配線およびTFTが全てショートすることがないように、間に層間絶縁膜を挟んで配線またはTFTの上に形成することが必要である。そして該導電膜は、各画素が有する少なくとも1つのTFTのソース領域もしくはドレイン領域と、それぞれ接続するように形成されている。

【0019】そして各画素が有する配線に、実際に画像を表示するのに必要な高さの電位を与える。なお本明細書において、画素が有する配線、言いかえると画素に設けられるEL素子の駆動を制御するために電位が与えら

れる配線に、実際に画像を表示するのに必要な高さの電 位が与えられている状態を、該画素が選択状態にある (該画素が選択される)と呼ぶ。

12

【0020】そして、各画素が選択されているときに、 導電膜に流れる電流を測定する。そして、測定した電流 の値がある所定の範囲内に納まっているかどうかで、各 画素が有する配線およびTFTに不具合が生じていない かどうかを判断することができる。

【0022】なお、TFTおよび配線が正常に機能しているとみなすことができる電流値の範囲は、実施者が適20 宜設定することができる。また検査した結果、不具合が生じている画素(不良画素)の数が1つのELパネルに n個以上存在している場合、該パネルは不良品とみなされる。なお不良品とみなす不良画素の数nは、実施者が適宜設定することができる。

【0023】また第1の検査方法では、検査終了後、該 導電膜をパターニングすることで画素電極を形成するこ とができる。よって検査のために工程数を増やす必要が ない。

【0024】またさらに、本発明の第1の検査方法は液晶ディスプレイにも適用することができる。液晶ディスプレイの場合、液晶パネルの画素部において配線およびTFTが形成された後、画素電極となる導電性を有する導電膜を画素部全体に形成する。この場合、画素部の配線およびTFTが導電膜によって全てショートすることがないように、該導電膜を、間に層間絶縁膜を挟んで配線またはTFT上に形成することが必要である。

【0025】なお本明細書において、画素部を有するパネルを表示パネルと呼び、ELパネルと液晶パネルは表示パネルに含まれる。

【0026】そして画素が有する配線に、実際に表示を行うのに必要な高さの電位を与え、全ての画素を順に選択していく。なお液晶パネルの場合、画素が有する配線とは、各画素の画素電極と対向電極の間に設けられる液晶を駆動させるために電位が与えられる配線を意味する。

【0027】各画素が選択されているときに、画素電極または画素電極となる導電膜に流れる電流の値を測定する。そして、測定した電流の値がある一定の範囲内に納まっているかどうかで、各画素が有する配線およびTF 50 Tに不具合が生じていないかどうかを判断することがで

(8)

きる。

【0028】検査終了後、液晶パネルと、対向電極を有する対向悲板との間に液晶を封入して液晶ディスプレイを完成させる。上記構成によって、液晶ディスプレイを完成させる前に画素部に不具合が生じていないかどうかを検査することが可能になる。よって液晶を封入する工程と、封入した後にコネクターを取り付ける工程とを省略することができ、時間とコストを抑えることができる。また対向電極を有する対向基板を無駄にすることがなくなる。

13

【0029】本発明で開示するELパネルの第2の検査 方法では、画素部において配線、TFTおよびEL素子 の画素電極が形成された後、検査用として用いる導電性 を有する膜(検査用導電膜)により、検査しようとする 全ての画素の画素電極を電気的に接続する。

【0030】そして各画素が有する配線に、実際に画像を表示するのに必要な高さの電位を与える。

【0031】そして、各画素が選択されているときに、 検査用導電膜に流れる電流を測定する。そして、測定し た電流の値がある所定の範囲内に納まっているかどうか 20 で、各画素が有する配線およびTFTに不具合が生じて いないかどうかを判断することができる。

【0032】例えば、ある画素が選択されているときに検査用導電膜に流れる電流が所定の範囲からはずれてた場合、該画素が有するTFTがスイッチング素子として機能していなかったり、配線が断線またはショートするなどの不具合が生じていると判断することができる。逆にある画素が選択されているときに検査用導電膜に流れる電流が所定の範囲に納まっている場合、該画素が有するTFTおよび配線は正常に機能しているものとみなすことができる。

【0033】なお、TFTおよび配線が正常に機能しているとみなすことができる電流値の範囲は、実施者が適 直設定することができる。また検査した結果、不具合が 生じている画素(不良画素)の数が1つのELパネルに n個以上存在している場合、該ELパネルは不良品とみ なされる。なお不良品とみなす不良画素の数nは、実施 者が適直設定することができる。

【0034】検査終了後、該検査用導電膜は除去される。

【0035】本発明の検査方法によって、ELパネルをELディスプレイとして完成させなくても、ELパネルが良品か不良品かの区別をつけることが可能になる。よって、実際には製品にならない不良品のELパネルをELディスプレイとして完成させる必要がなくなる。そのため、不良品のELパネルについて、EL素子を形成する工程と、パッケージングする工程と、コネクターを取り付ける工程とを省くことができ、時間とコストを抑えることができる。また多面取りの基板を用いてELパネルを形成する場合でも、パッケージングする工程と、コ

ネクターを取り付ける工程とを省くことができ、同様に 時間とコストを抑えることができる。

【0036】なお本発明の検査方法は、各画素にEL素子の発光を制御するためのTFTが複数設けられているELパネルにのみ適用できるわけではない。各画素にEL素子の発光を制御するためのTFTが1つしかないELパネルの場合でも、本発明の検査方法を用いることによって、良品と不良品の区別をつけることが可能である。

7 【0037】またさらに、本発明の第2の検査方法は液晶ディスプレイにも適用することができる。液晶ディスプレイの場合、液晶パネルの画素部において配線、画素電極およびTFTが形成された後、導電性を有する検査用導電膜によって検査する画素の画素電極を全て電気的に接続する。

【0038】そして画素が有する配線に、実際に表示を 行うのに必要な高さの電位を与え、全ての画素を順に選 択していく。なお液晶パネルの場合、画素が有する配線 とは、各画素の画素電極と対向電極の間に設けられる液 晶を駆動させるために電位が与えられる配線を意味す る。

【0039】各画素が選択されているときに、画素電極または検査用導電膜に流れる電流の値を測定する。そして、測定した電流の値がある一定の範囲内に納まっているかどうかで、各画素が有する配線およびTFTに不具合が生じていないかどうかを判断することができる。

【0040】検査終了後、液晶パネルと、対向電極を有する対向基板との間に液晶を封入して液晶ディスプレイを完成させる。上記構成によって、液晶ディスプレイを 完成させる前に画素部に不具合が生じていないかどうかを検査することが可能になる。よって液晶を封入する工程と、封入した後にコネクターを取り付ける工程とを省略することができ、時間とコストを抑えることができる。また対向電極を有する対向基板を無駄にすることが なくなる。

[0041]

50

【発明の実施の形態】本発明のELパネルの第1の検査 方法について、図1を用いて詳しく説明する。図1は検 査時におけるELパネルの上面図であり、ソース信号線 40 駆動回路101、ゲート信号線駆動回路102、画素部 103が図に示すように設けられている。画素部103 において、ソース信号線とゲート信号線と電源供給線と を1つづつ含む領域が画素104である。画素部103 上には導電膜105が形成されている。

【0042】なお導電膜105は画素電極を形成するための膜である。導電膜105は画素部103に設けられたソース信号線、ゲート信号線および電源供給線とショートしないようにすることが必要であり、本実施の形態では導電膜105を画素部103上に形成された層間絶縁膜(図示せず)上に形成している。

【0043】外部接続配線107は、コネクターを介してELパネルの外部からの信号をソース信号線駆動回路101またはゲート信号線駆動回路102に入力するための配線である。

15

【0044】導電膜105は、測定用配線106を介してELパネルの外部の電流計に接続される。測定用配線106は、導電性を有する材料を用いて形成されていれば良い。導電膜105を流れる電流は、測定点(Prove Point)において測定されることになる。

【0045】次に、本発明のELパネルの第2の検査方法について、図2を用いて詳しく説明する。図2は検査時におけるELパネルの上面図であり、ソース信号線駆動回路111、ゲート信号線駆動回路112、画素部113が図に示すように設けられている。画素部113において、ソース信号線とゲート信号線と電源供給線とを1つづつ含む領域が画素114である。画素部113上には検査用導電膜115が形成されている。

【0046】なお検査用導電膜115は全ての画素114が有する画素電極を電気的に接続するための膜である。検査用導電膜115は画素部113に設けられたソース信号線、ゲート信号線および電源供給線とショートしないように形成することが必要である。

【0047】検査用導電膜115に用いられる材料は、 導電性を有し、検査後に検査用導電膜115のみを除去することができるものであることが重要である。検査用 導電膜に用いられる材料として、導電性を有する合成樹脂、または導電性物質と合成樹脂とを混合したものを用いることができる。前者としては例えばポリアセチレン、ポリビニルカルバゾール等が挙げられる。後者としては、ポリイミド、アクリル、ポリイミドアミド、BCB(ベンゾシクロブテン)、ポリエチレン、ポリスチレン、ポリロブテン)、ポリエチレン、ポリスチレン、ポリエチレン、ポリスチレン、ポリエチレン、ポリエチレン、ポリスチレン・ポリエチレン、ポリスチレン・ポリ塩化ビニル、ポリアミド等の合成樹脂に、Au、Ag、Cu、Ni、カーボンブラック、黒鉛なの導電性粉末または箔、金属繊維、炭素繊維などの導電性粉末または箔、金属繊維、炭素繊維などの導電性繊維を多量に配合した、等方導電性のものを用いることが可能である。また導電性を有する合成樹脂に金属塩を添加したものを用いても良い。

【0048】また画素電極を腐食させることなくウェットエッチングにより除去することが可能な材料であれば、金属を検査用導電膜に用いても良い。

【0049】また、画素電極に結晶化されたITOを用いた場合、検査用導電膜としてアモルファスのITOを用いることも可能である。結晶化されたITOはウェットエッチングされないことから、検査終了後、ウェットエッチによって検査用導電膜であるアモルファスのITOのみを除去することができる。

【0050】外部接続配線117は、コネクターを介してELパネルの外部からの信号をソース信号線駆動回路111またはゲート信号線駆動回路112に入力するための配線である。

【0051】検査用導電膜115は、測定用配線116 を介してELパネルの外部の電流計に接続される。測定 用配線116は、導電性を有する材料を用いて形成され ていれば良い。検査用導電膜115を流れる電流は、測 定点 (Prove Point) において測定されることになる。

【0052】図3に、図1に示した画素部103の回路図を示す。なお、図2に示した画素部113も、回路図では画素部103と同じなので、図3を参照することができる。ゲート信号線G1~Gyのいずれか1つと、ソ10 一ス信号線S1~Sxのいずれか1つと、電源供給線V1~Vxのいずれか1つとを有する領域が画素104(または画素114)である。画素部103(または画素部113)にはマトリクス状に複数の画素104が配置されている。

【0053】ゲート信号線駆動回路102(または112)からの選択信号が入力されるゲート信号線(G1~Gy)は、各画素が有するスイッチング用TFT201のゲート電極に接続されている。また各画素の有するスイッチング用TFT201のソース領域とドレイン領域は、一方がソース信号線S1~Sxに、もう一方が各画素が有するEL駆動用TFT202のゲート電極及び各画素が有するコンデンサ203にそれぞれ接続されている。ソース信号線S1~Sxには、ソース信号線駆動回路101(または111)から出力されるアナログのビデオ信号が入力される。

【0054】コンデンサ203はスイッチング用TFT201がオフの時、EL駆動用TFT202のゲート電圧(ゲート電極とソース領域間の電位差)を保持するために設けられている。なお本実施の形態ではコンデンサ203を設ける構成を示したが、本発明はこの構成に限定されず、コンデンサ203を設けない構成であっても良い

【0055】各画素が有するEL駆動用TFT202の ソース領域は電源供給線V1~Vxに接続されている。 本明細書では、電源供給線V1~Vxの電位を電源電位 と呼ぶ。電源電位は、ELパネルの外付けのIC等により設けられた電源によって与えられる。また電源供給線 V1~Vxは、各画素が有するコンデンサ203に接続されている。そして画素104(または画素114)が 40 有するEL駆動用TFT202のドレイン領域は、導電 膜105(図2に示した画素の場合検査用導電膜11 5)によって全て電気的に接続されている。導電膜10 5(図2に示した画素の場合検査用導電膜11 5)によって全で電気的に接続されている。導電膜10 5(図2に示した画素の場合検査用導電膜115)に流れる電流が、Prove Pointにおいて測定される。

【0056】以下に、第1と第2の検査方法の、Prove Pointにおける電流の測定手順について、図4を用いて説明する。

【0057】図4(A)は、図3で示した画素部103 (または画素部113)における画素104(または画 50 素114)の配置を、簡略的に示したものである。括弧

【0058】まず、電源供給線V1~Vxの電源電位は、実際に表示を行うときと同じ高さの電位に保たれる。具体的には、ELディスプレイが完成して表示を行う際、EL素子の画素電極に電源電位が与えられたときにEL素子が発光する程度に、対向電極との間に電位差を有する高さに保たれる。なお対向電極とは、EL素子が有する2つの電極のうち、画素電極ではないほうの電極を意味する。

【0059】そしてゲート信号線駆動回路102(または112)からゲート信号線G1に選択信号が入力される。選択信号は、ゲート信号線G1にゲート電極が接続されているスイッチング用TFT201を、理想的には全てオンにするような高さの電位を有している。

【0060】なお、本明細書では、TFTのソース領域またはドレイン領域のうち、いずれか一方に所定の電位を与えることで、もう一方に所望する電位を与えることができる状態のことを、該TFTがオンであると定義する。逆に、TFTのソース領域またはドレイン領域のうち、いずれか一方に所定の電位を与えても、もう一方に所望する電位を与えることができない状態のことを、該TFTがオフであると定義する。

【0061】次にソース信号線駆動回路101(または111)からソース信号線S1に検査用のビデオ信号が入力される。検査用のビデオ信号の電位は、実際にELディスプレイが表示を行う際に、一番明るい表示を行うときにソース信号線S1~Sxに入力されるビデオ信号の電位と同じ高さに設定されている。またデジタルのビデオ信号を用いて表示を行うELディスプレイの場合、検査用のビデオ信号の電位は、実際の表示と同じ明るさでEL素子が発光するような高さであれば良い。

【0062】このように、画素(1, 1)が画像を表示するのに必要な信号線(表示に携わる信号線)(図3の場合ソース信号線S1、ゲート信号線G1、電源供給線V1)に、該画素が実際に表示を行うときと同じ高さの電位が与えられる。そしてこの画素(1, 1)の表示に携わる信号線に、該画素が実際に表示を行うときと同じ高さの電位が与えられており、画素(1, 1)が選択されていることになる。

【0063】図3の場合具体的には、電源供給線V1の 電源電位が実際に表示を行うときと同じ高さの電位に保 たれ、ゲート信号線G1に選択信号が入力され、かつソ ース信号線S1に検査用のビデオ信号が入力されている 状態を、画素(1,1)が選択されていると呼ぶ。

【0064】画素(1, 1)が選択されると、電源供給 線V1の電源電位は導電膜105または検査用導電膜1 15に与えられ、Prove Pointにおいて電流値が測定さ れる。

【0065】そして順に全ての画素104が選択され、 Prove Pointにおいて電流値が測定される。

18

【0066】各画素104が有するTFT(図3の場合 スイッチング用TFT201とEL駆動用TFT20 2)のいずれか1つが正常に機能していなかったり、ソ ース信号線S(S1~Sxのいずれか1つ)、ゲート信 号線G(G1~Gyのいずれか1つ)、電源供給線V (V1~Vxのいずれか1つ)や、その他TFT同士を 10接続する配線が断線またはショートしていると、Prove Pointにおける電流の測定値は理想とする値にはならない。

【0067】Prove Pointにおける電流の測定値が理想とする値かどうかの判断基準は、実施者が適宜設定することができる。例えば、図4(B)に示した画素(1,1)、(1,2)等のように、電流の測定値が i_1 から i_2 の範囲内に納まっていれば、測定値が理想とする値であると判断することができる。 i_1 と i_2 の値は、実施者が適宜設定することができる。なお図4(B)において×印は該画素を選択したときのProve Pointの電流の測定値を示す。

【0068】測定値が理想とする値であれば、該画素において配線およびTFTに不具合が生じておらず、該画素に形成するEL素子の画素電極に所定の電圧を印加することができると判断される。

【0069】また例えば図4(B)に示した画素(1,3)や画素(x-1,y)のように、電流の測定値がi1からi2の範囲からはずれている場合、測定値が理想とする値ではないと判断することができる。よって該画素30において配線およびTFTに不具合が生じており、該画素に形成するEL素子の画素電極に所定の電圧を印加することができないと判断される。

【0070】不具合が生じていると判断された画素(不良画素)を有するELパネルは、ELディスプレイに用いるかどうか判断される。画素部103または画素部113に不良画素が1つでも存在するELパネルは不良品としてELディスプレイに用いないとしても良いし、実施者が決めた以上の数の不良画素が存在するELパネルを不良品としてELディスプレイに用いないようにしても良い。

【0071】第1の検査方法において、1つの基板から1つのELパネルが形成される場合、良品と判断されたELパネルは、検査終了後、導電膜105をパターニングすることによって画素電極(図示せず)が形成される。そしてその後EL層と対向電極が画素電極上に順に積層して形成され、EL素子204が完成する。また不良品と判断されたELパネルは、検査終了後の工程を省略することができる。(図5)

【0072】1つの基板から複数のELパネルが形成さ 50 れる場合、検査終了後、全てのELパネルについて導電

膜105がパターニングされ、画素電極(図示せず)が 形成される。そしてその後EL層と対向電極を画素電極 上に順に積層して形成し、EL素子204が完成する。 そして基板を切断することによって複数のELパネルを 分離し、良品と判断されたELパネルはカバー材によっ て封止した後コネクターを接続することによってELデ ィスプレイとして完成し、不良品と判断されたELパネ ルは切断後の工程を省略することができる。

【0073】第1の検査方法では、検査終了後、該導電 膜をパターニングすることで、画素電極を形成すること ができる。そのため検査のために工程数を増やす必要が ない。

【0074】第2の検査方法において、1つの基板から 1つのELパネルが形成される場合、良品と判断された ELパネルは、検査終了後、検査用導電膜115は溶剤 によって除去される。溶剤は、検査用導電膜115に用 いられている合成樹脂のみを溶解することができるもの を用いる。

【0075】そしてその後EL層と対向電極が画素電極 上に順に積層して形成され、EL素子204が完成す る。また不良品と判断されたELパネルは、検査終了後 の工程を省略することができる。 (図5)

【0076】1つの基板から複数のELパネルが形成さ れる場合、検査終了後、全てのELパネルについて検査 用導電膜115が除去される。そしてその後EL層と対 向電極を画素電極上に順に積層して形成し、EL素子2 0.4 が完成する。そして基板を切断することによって複 数のELパネルを分離し、良品と判断されたELパネル はカバー材によって封止した後コネクターを接続するこ とによってELディスプレイとして完成し、不良品と判 30 断されたELパネルは切断後の工程を省略することがで

【0077】EL素子204の対向電極の電位(対向電 位)は、ELパネルの外付けのIC等により設けられた 電源によって与えられる。

【OO78】EL素子204が形成された後、EL素子 204を覆うように保護膜(図示せず)を形成して、E Lパネルを完成させても良い。なお保護膜は必ずしも設 けなくとも良く、その場合EL素子204が形成された らELパネルが完成したものとみなす。

【0079】上述した本発明の検査方法によって、EL パネルをELディスプレイとして完成させなくても、E L パネルが良品か不良品かの区別をつけることが可能に なる。そのため、実際には製品にならない不良品のEL パネルをELディスプレイとして完成させる必要がなく なる。よってEL素子を形成する工程と、パッケージン グ(封止)する工程と、コネクターを取り付ける工程と を省くことができ、時間とコストを抑えることができ る。また多面取りの基板を用いてELパネルを形成する 場合でも、パッケージングする工程と、コネクターを取 50 か1つに、もう一方が各画素が有するEL駆動用TFT

り付ける工程とを省くことができ、同様に時間とコスト を抑えることができる。

【0080】なお本発明の検査方法は、各画素にEL素 子の発光を制御するためのTFTが複数設けられている ELパネルにのみ適用できるわけではない。各画素にE L素子の発光を制御するためのTFIが1つしかないE Lパネルの場合でも、本発明の検査方法を用いることに よって、良品と不良品の区別をつけることが可能であ る。また、各画素にEL素子の発光を制御するためのT 10 FTが2つ以上設けられたELパネルの場合でも、本発 明の検査方法を用いることによって、良品と不良品の区 別をつけることが可能である。

【0081】なお図3、図5に示したELパネルにおい て、スイッチング用TFT201とEL駆動用TFT2 02は、nチャネル型TFTでもpチャネル型TFTで もどちらでも構わない。EL素子204の陽極がEL駆 助用TFT202のドレイン領域と接続している場合、 EL素子204の陽極が画素電極、陰極が対向電極とな り、EL駆動用TFT202はpチャネル型TFTを用 20 いるのが好ましい。逆にEL 泰子204の陰極がEL駆 動用TFT202のドレイン領域と接続している場合、 EL素子204の陽極が対向電極、陰極が画素電極とな り、EL駆動用TFT202はnチャネル型TFTを用 いるのが好ましい。

【0082】またスイッチング用TFT201、EL駆 動用TFT202は、シングルゲート構造ではなく、ダ ブルゲート構造、やトリプルゲート構造などのマルチゲ ート構造を有していても良い。

[0083]

【実施例】以下に、本発明の実施例について説明する。

【0084】 (実施例1) 本実施例では、実施の形態で 示したELパネルとは異なる構成の画素部を有するEL パネルについて、本発明の検査方法を適用する例につい て説明する。

【0085】本実施例で用いるELパネルの画素部50 1の回路図を図6に示す。本実施例において、第1のゲ ート信号線Ga1~Gayのいずれか1つと、第2のゲ ート信号線Ge1~Geyのいずれか1つと、ソース信 号線S1~Sxのいずれか1つと、電源供給線V1~V 40 xのいずれか1つとを有する領域が画素502である。 画素部501にはマトリクス状に複数の画素502が配 置されている。

【0086】第1のゲート信号線駆動回路からの第1の 選択信号が入力される第1のゲート信号線Gal~Ga yのいずれか1つは、各画素502が有する第1のスイ ッチング用TFT503のゲート電極に接続されてい る。また各画案の有する第1のスイッチング用TFT5 03のソース領域とドレイン領域は、一方がアナログの ビデオ信号を入力するソース信号線S1~Sxのいずれ (12)

22

504のゲート電極及び各画素が有するコンデンサ50 5にそれぞれ接続されている。

【0087】コンデンサ505は第1のスイッチング用 TFT503がオフの時、EL駆動用TFT504のゲ ート電圧 (ゲート電極とソース領域間の電位差) を保持 するために設けられている。なお本実施例ではコンデン サ505を設ける構成を示したが、本発明はこの構成に 限定されず、コンデンサ505を設けない構成にしても 良い。

源供給線V1~Vxのいずれか1つに接続されている。 そして第1の検査方法では、EL駆動用TFT504の ドレイン領域はEL素子の画素電極となる導電膜(図示 せず) によって、全て電気的に接続されている。電源供 給線V1~Vxのいずれか1つはコンデンサ505に接 続されている。そして第2の検査方法では、EL駆動用 TFT504のドレイン領域は、EL素子の画素電極に 接続されており、全ての画素の画素電極は検査用導電膜 (図示せず) によって電気的に接続されている。電源供 給線V1~Vxのいずれか1つはコンデンサ505に接 続されている。

【0089】また第2のスイッチング用TFT506の ソース領域とドレイン領域のうち、第1のスイッチング 用TFT503のソース領域またはドレイン領域に接続 されていない方は、電源供給線V1~Vxのいずれか1 つに接続されている。そして第2のスイッチング用TF T506のゲート電極は、第2のゲート信号線駆動回路 からの第2の選択信号が入力される第2のゲート信号線 Gel~Geyのいずれか1つに接続されている。

【0090】電源供給線V1~Vxの電源電位は、EL パネルの外付けのIC等により設けられた電源によって 与えられる。また電源供給線V1~Vxは、各画素が有 するコンデンサ505に接続されている。

【0091】導電膜または検査用導電膜に流れる電流を Prove Pointにおいて測定する。以下にProve Pointにお ける測定の手順について、図7を用いて説明する。

【0092】図7は、図6で示した画素部501におけ る画素502の配置を、簡略的に示したものである。括 弧内の数字は、左が該画素が有するソース信号線の番号 を示し、右が該画素が有する第1のゲート信号線および 40 号を入力する。 第2のゲート信号線の番号を示している。例えば(x, y)は、ソース信号線Sxと第1のゲート信号線Gay および第2のゲート信号線Geyとを有する画素を意味 する。

【0093】図6に示した画素部501を有するELパ ネルの場合、第1のゲート信号線に第1の選択信号が入 力されているときと、第2のゲート信号線に第2の選択 信号が入力されているときと、各画素につき2回づつ測 定を行う必要がある。

【0094】まず、電源供給線V1~Vxの電源電位は 50 【0103】このように、画素(1, 1)を選択した後

実際に表示を行うときと同じ高さの電位に保たれる。具 体的には、ELディスプレイが完成して表示を行う際、 EL素子の画素電極に電源電位が与えられたときにEL 素子が発光する程度に、対向電極との間に電位差を有す る高さに保たれる。

【0095】そして第1のゲート信号線駆動回路から第 1のゲート信号線Ga1に第1の選択信号が入力され る。第1の選択信号は、第1のゲート信号線Ga1にゲ ート電極が接続されている第1のスイッチング用TFT 【0088】EL駆動用TFT504のソース領域は電 10 503を、理想的には全てオンにするような高さの電位 を有している。

> 【0096】次にソース信号線駆動回路からソース信号 線S1に検査用のビデオ信号が入力される。検査用のビ デオ信号の電位は、実際にELディスプレイが表示を行 う際に、一番明るい表示を行うときにソース信号線S1 ~Sxに入力されるビデオ信号の電位と同じ高さに設定 されている。またデジタルのビデオ信号を用いて表示を 行うELディスプレイの場合、検査用のビデオ信号の電 位は、実際の表示と同じ明るさでEL素子が発光するよ うな高さであれば良い。

> 【0097】このように、画素(1,1)の表示に携わ る信号線(図6の場合ソース信号線S1、第1のゲート 信号線Ga1、電源供給線V1)には、該画素が実際に 表示を行うときと同じ高さの電位が与えられており、該 画素が選択されていることになる。図6の場合具体的に は、電源供給線V1の電源電位が実際に表示を行うとき と同じ高さの電位に保たれ、第1のゲート信号線Ga1 に第1の選択信号が入力され、かつソース信号線S1に 検査用のビデオ信号が入力されている状態を、画素

(1, 1)が選択されていると呼ぶ。

【0098】画素(1,1)が選択されると、電源供給 線VIの電源電位は導電膜または検査用導電膜に与えら れるため、Prove Pointにおいて電流値が測定される。

【0099】そして順に全ての画素502が選択され. Prove Pointにおいて電流値が測定される。

【0100】次に、再び画素(1,1)を選択する。そ して、電源供給線V1~Vxの電源電位を実際に表示を 行うときと同じ高さに保ったまま、第2のゲート信号線 駆動回路から第2のゲート信号線Ge1に第2の選択信

【0101】第2の選択信号は、第2のゲート信号線G e 1にゲート電極が接続されている第2のスイッチング 用TFT506を、理想的には全てオンにするような高 さの電位を有している。

【0102】図6に示した画素部501の場合、第2の スイッチング用TFT506がオンになると、画素

(1, 1)、(2, 1)、...(x、1)が有するEL 駆動用TFT504が全てオフになり、理想的には導電 膜または検査用導電膜に電流が流れなくなる。

(13)

に、画素(1, 1)が表示を行わなくなるような電位を、画素(1, 1)の表示に携わる信号線(図 6 の場合、第 2 のゲート信号線 G e 1、電源供給線 V 1)に与える。この状態を、本明細書では該画素が非選択状態にあると呼ぶ。図 6 の場合、具体的には、電源供給線 V 1 の電源電位が実際に表示を行うときと同じ高さの電位に保ち、かつ第 2 のゲート信号線 G e 1 に第 2 の選択信号が入力されている状態を、画素(1, 1)が非選択状態にあると呼ぶ。

23

【 0 1 0 4 】 そして画素 (1, 1) を非選択状態にし、 Prove Pointにおいて電流値を測定する。

【0105】同様に、全ての画素502を選択状態にした後に非選択状態にし、Prove Pointにおいて電流値を測定する。

【0106】各画素502が有するTFTのうち(図6 切断後の工程 の場合第1のスイッチング用TFT503と、第2のス イッチング用TFT506と、EL駆動用TFT20 【0113】 該導電膜をクラス 「10113】 は導電膜をクラス 「10113】 では 「10113】 では 「10114】 「

【0107】画素が非選択状態のときのProve Pointにおける電流の測定値が理想とする値かどうかの判断基準は、実施者が適宜設定することができる。例えば、電流の測定値が i_3 から i_4 の範囲内に納まっていれば、測定値が理想とする値であると判断することができる。 i_3 と i_4 の値は、実施者が適宜設定することができる。

【0108】測定値が理想とする値であれば、該画素において配線およびTFTに不具合が生じておらず、該画素に形成するEL素子の画素電極に所定の電圧を印加することができると判断される。

【0109】また例えば電流の測定値が i_3 から i_4 の範囲からはずれている場合、測定値が理想とする値ではないと判断することができる。よって該画素において配線およびTFTに不具合が生じており、該画素に形成するEL素子の画素電極に所定の電圧を印加することができないと判断される。

【0110】不具合が生じていると判断された画素(不良画素)を有するELパネルは、ELディスプレイに用いるかどうか判断される。この場合、画素部501に不良画素が1つでも存在するELパネルは、不良品としてELディスプレイに用いないとしても良いし、実施者が決めた以上の数の不良画素が存在するELパネルは、不良品としてELディスプレイに用いないとしても良い。

【0111】第1の検査方法では、1つの基板から1つ ネルをELディスプレイとして完成させる必要がなくなのELパネルが形成される場合、良品と判断されたEL 50 る。そのためEL素子を形成する工程と、パッケージン

パネルは、検査終了後、導電膜をパターニングすることによって画素電極(図示せず)が形成される。そしてその後EL層と対向電極が画素電極上に順に積層して形成され、EL素子507が完成する。また不良品と判断されたELパネルは、検査終了後の工程を省略することができる。(図8)

【0112】1つの基板から複数のELパネルが形成される場合、検査終了後、全てのELパネルについて導電膜がパターニングされ、画素電極(図示せず)が形成される。そしてその後EL層と対向電極を画素電極上に順に積層して形成し、EL素子507が完成する。そして悲板を切断することによって複数のELパネルを分離し、良品と判断されたELパネルはカバー材によって対止した後コネクターを接続することによってELディスプレイとして完成し、不良品と判断されたELパネルは切断後の工程を省略することができる。

【0113】また第1の検査方法の場合、検査終了後、 該導電膜をパターニングすることで、画素電極を形成す ることができる。そのため検査のために工程数を増やす 必要がない。

【0114】第2の検査方法では、1つの基板から1つのELパネルが形成される場合。良品と判断されたELパネルは、検査終了後、検査用導電膜が除去される。そしてその後EL層と対向電極が画素電極上に順に積層して形成され、EL素子507が完成する。また不良品と判断されたELパネルは、検査終了後の工程を省略することができる。(図8)

【0115】1つの基板から複数のELパネルが形成される場合、検査終了後、全てのELパネルについて検査30 用導電膜が除去される。そしてその後EL層と対向電極を画素電極上に順に積層して形成し、EL素子507が完成する。そして基板を切断することによって複数のELパネルを分離し、良品と判断されたELパネルはカバー材によって封止した後コネクターを接続することによってELディスプレイとして完成し、不良品と判断されたELパネルは切断後の工程を省略することができる。

【0116】EL素子507の対向電極の電位(対向電 位)は、ELパネルの外付けのIC等により設けられた 電源によって与えられる。

7 【0117】EL素子507が形成された後、EL素子507を覆うように保護膜(図示せず)が形成され、ELパネルが完成する。なお保護膜は必ずしも設けなくとも良く、その場合EL素子507が形成されたらELパネルが完成する。

【0118】上述した本発明の検査方法によって、ELパネルをELディスプレイとして完成させなくても、ELパネルが良品か不良品かの区別をつけることが可能になる。よって、実際には製品にならない不良品のELパネルをELディスプレイとして完成させる必要がなくなる。そのためEL素子を形成する工程と、パッケージン

(14)

グする工程と、コネクターを取り付ける工程とを省くことができ、時間とコストを抑えることができる。また多面取りの基板を用いてELパネルを形成する場合でも、パッケージングする工程と、コネクターを取り付ける工程とを省くことができ、同様に時間とコストを抑えることができる。

【0119】なお本発明の検査方法は、各画素にEL素子の発光を制御するためのTFTが複数設けられているELパネルにのみ適用できるわけではない。各画素にEL素子の発光を制御するためのTFTが1つしかないELパネルの場合でも、本発明の検査方法を用いることによって、良品と不良品の区別をつけることが可能である。また、各画素にEL素子の発光を制御するためのTFTが4つ以上設けられたELパネルの場合でも、本発明の検査方法を用いることによって、良品と不良品の区別をつけることが可能である。

【0120】なお図6~図8に示したELパネルにおいて、第1のスイッチング用TFT503と第2のスイッチング用TFT503と第2のスイッチング用TFT506とEL駆動用TFT504は、nチャネル型TFTでもどちらでも構わない。EL素子507の陽極がEL駆動用TFT504のドレイン領域と接続している場合、EL素子507の陽極が画素電極、陰極が対向電極となり、EL駆動用TFT504はpチャネル型TFTを用いるのが好ましい。逆にEL素子507の陰極がEL駆動用TFT504のドレイン領域と接続している場合、EL素子507の陽極が対向電極、陰極が画素電極となり、EL駆動用TFT504はnチャネル型TFTを用いるのが好ましい。

【0121】また第1のスイッチング用TFT503. 第2のスイッチング用TFT506、EL駆動用TFT 504は、シングルゲート構造ではなく、ダブルゲート 構造、やトリプルゲート構造などのマルチゲート構造を 有していても良い。

【0122】 (実施例2) 本実施例では、本発明の検査 方法を用いて検査した後の、ELパネルの画素の上面図 の一例を示す。

【0123】図9(A)に本実施例の画素の上面図を、また図9(B)に画素の回路図を示す。4402はスイッチング用TFTであり、4406はEL駅動用TFTである。

【0124】スイッチング用TFT4402は、ゲート信号線4404の一部であるゲート電極4404a、4404bを有している。スイッチング用TFT4402のソース領域はソース信号線4415に接続され、ドレイン領域はドレイン配線4405に接続される。また、ドレイン配線4405はEL駆動用TFT4406のゲート電極4407に電気的に接続される。また、EL駆動用TFT4406のソース領域は電源供給線4416に電気的に接続され、ドレインはドレイン配線4417

に電気的に接続される。また、ドレイン配線4417は 画素電極4418に電気的に接続される。

【0125】このとき、4419で示される領域にはコンデンサが形成される。コンデンサ4419は、電源供給線4416と電気的に接続された半導体膜4420、ゲート絶縁膜と同一層の絶縁膜(図示せず)及びゲート電極4407との間で形成される。また、ゲート電極4407、第1層間絶縁膜と同一の層(図示せず)及び電源供給線4416で形成される容量もコンデンサとして10用いることが可能である。

【0126】本実施例において画素電極はソース信号線4415と電源供給線4416と重なっていないが、層間絶縁膜を間に介して重なるような構成にしても良い。 【0127】また図示していないが、画素電極4418 上にEL層と対向電極とが順に積層してEL素子441

【0128】(実施例3)本実施例では、図5に示した ELパネルにおいて、同一基板上に画素部と、画素部の 周辺に設ける駆動回路のTFT(nチャネル型TFT及 びpチャネル型TFT)を同時に作製し、なおかつ第1 の検査方法を用いて検査する方法について詳細に説明す る。

4を形成している。

【0129】まず、図10(A)に示すように、コーニング社の#7059ガラスや#1737ガラスなどに代表されるバリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどのガラス、または石英基板から成る基板400上に酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜などの絶縁膜から成る下地膜401を形成する。例えば、プラズマCVD法でSiH4、NH3、N3020から作製される酸化窒化シリコン膜を10~200nm(好ましくは50~100m)形成し、同様にSiH4、N2Oから作製される酸化窒化水素化シリコン膜を50~200nm(好ましくは100~150nm)の厚さに積層形成する。なお図10(A)では下地膜を1つの層で示した。本実施例では下地膜401を2層構造として示したが、前記絶縁膜の単層膜または2層以上積層させた構造として形成しても良い。

【0130】半導体層402~405は、非晶質構造を有する半導体膜をレーザー結晶化法や公知の熱結晶化法40を用いて作製した結晶質半導体膜で形成する。この半導体層402~405の厚さは25~80nm(好ましくは30~60nm)の厚さで形成する。結晶質半導体膜の材料に限定はないが、好ましくはシリコンまたはシリコンゲルマニウム(SiGe)合金などで形成すると良い

【0131】公知の結晶化方法としては、電熱炉を使用した熱結晶化方法、レーザー光を用いたレーザーアニール結晶化法、赤外光を用いたランプアニール結晶化法、触媒金属を用いた結晶化法がある。

□ 【 0 1 3 2 】レーザー結晶化法で結晶質半導体膜を作製

するには、パルス発振型または連続発光型のエキシマレ ーザーやYAGレーザー、YVO1レーザーを用いる。 これらのレーザーを用いる場合には、レーザー発振器か ら放射されたレーザー光を光学系で線状に集光し半導体 膜に照射する方法を用いると良い。結晶化の条件は実施 者が適宣選択するものであるが、エキシマレーザーを用 いる場合はパルス発振周波数300Hzとし、レーザー エネルギー密度を100~400mJ/cm²(代表的には2 $00~300 \text{ mJ/cm}^2$)とする。また、YAGレーザーを 用いる場合にはその第2高調波を用いパルス発振周波数 30~300kH2とし、レーザーエネルギー密度を3 00~600mJ/cm²(代表的には350~500mJ/cm²) とすると良い。そして幅100~1000μm、例えば 400μmで線状に集光したレーザー光を基板全面に渡 って照射し、この時の線状レーザー光の重ね合わせ率。 (オーバーラップ率)を50~90%として行う。

【0133】次いで、半導体層402~405を覆うゲ 一ト絶縁膜406を形成する。ゲート絶縁膜406はプ ラズマCVD法またはスパッタ法を用い、厚さを40~ 150 nmとしてシリコンを含む絶縁膜で形成する。本 実施例では、120nmの厚さで酸化窒化シリコン膜で 形成する。勿論、ゲート絶縁膜406はこのような酸化 窒化シリコン膜に限定されるものでなく、他のシリコン を含む絶縁膜を単層または積層構造として用いても良 い。例えば、酸化シリコン膜を用いる場合には、プラズ マCVD法でTEOS (Tetraethyl Orthosilicate) と O2とを混合し、反応圧力40Pa、基板温度300~4 00℃とし、高周波 (13 56MHz) 電力密度 0 5 ~0.8 W/cm²で放電させて形成することができる。こ のようにして作製される酸化シリコン膜は、その後40 0~500℃の熱アニールによりゲート絶縁膜として良 好な特性を得ることができる。

【0134】そして、ゲート絶縁膜406上にゲート電極を形成するための第1のゲート電極用導電膜407と第2のゲート電極用導電膜408とを形成する。本実施例では、第1のゲート電極用導電膜407をTaで50~100nmの厚さに形成し、第2のゲート電極用導電膜408をWで100~300nmの厚さに形成する。

【0135】 Ta 膜はスパッタ法で形成し、TaのターゲットをArでスパッタする。この場合、Arに適量のXeやKrを加えると、Ta 膜の内部応力を緩和して膜の剥離を防止することができる。また、 α 相のTa 膜の抵抗率は 20μ Ω cm程度でありゲート電極に使用することができるが、 β 相のTa 膜の抵抗率は 180μ Ω cm程度でありゲート電極とするには不向きである。 α 相のTa 膜を形成するために、Ta の α 相に近い結晶構造をもつ窒化タンタルを $10\sim50$ n m程度の厚さでTa の下地に形成しておくと α 相のTa 膜を容易に得ることができる。

【0136】W膜を形成する場合には、Wをターゲット

としたスパッタ法で形成する。その他に6フッ化タングステン(WF6)を用いる熱CVD法で形成することもできる。いずれにしてもゲート電極として使用するためには低抵抗化を図る必要があり、W膜の抵抗率は2 $0~\mu$ Ω c m以下にすることが望ましい。W膜は結晶粒を大きくすることで低抵抗率化を図ることができるが、W中に酸素などの不純物元素が多い場合には結晶化が阻害され高抵抗化する。このことより、スパッタ法による場合、純度99.999%のWターゲットを用い、さらに成膜時に気相中からの不純物の混入がないように十分配慮してW膜を形成することにより、抵抗率9~2 $0~\mu$ Ω c mを実現することができる。

【0137】なお、本実施例では、第1のゲート電極用 導電膜407をTa、第2のゲート電極用導電膜408 をWとしたが、特に限定されず、いずれもTa、W、T i、Mo、Al、Cuから選ばれた元素、または前記元 素を主成分とする合金材料若しくは化合物材料で形成し てもよい。また、リン等の不純物元素をドーピングした 多結晶シリコン膜に代表される半導体膜を用いてもよ い。本実施例以外の他の組み合わせの一例は、第1のゲ ート電極用導電膜を窒化タンタル (TaN) で形成し、 第2のゲート電極用導電膜をWとする組み合わせ、第1 のゲート電極用導電膜を窒化タンタル(TaN)で形成 し、第2のゲート電極用導電膜をA1とする組み合わ せ、第1のゲート電極用導電膜を窒化タンタル(Ta N) で形成し、第2のゲート電極用導電膜をCuとする 組み合わせで形成することが好ましい。(図10 (B))

【0138】次に、レジストによるマスク $409\sim41$ 2を形成し、電極及び配線を形成するための第1のエッチング処理を行う。本実施例ではICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング用ガスにCF $_4$ とC $_1$ 2を混合し、 $_1$ Paの圧力でコイル型の電極に $_500$ WのRF($_1$ 3 $_56$ MHz)電力を投入してプラズマを生成して行う。基板側(試料ステージ)にも $_100$ WのRF($_1$ 3 $_56$ MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。CF $_4$ とC $_1$ 2を混合した場合にはW膜及び $_1$ a 膜とも同程度にエッチングされる。

40 【0139】なお図10(C)では図示しなかったが、上記エッチング条件では、レジストによるマスクの形状を適したものとすることにより、悲板側に印加するバイアス電圧の効果により第1の導電層及び第2の導電層の端部がテーパー形状となる。テーパー部の角度は15~45°となる。ゲート絶縁膜上に残渣を残すことなくエッチングするためには、10~20%程度の割合でエッチング時間を増加させると良い。W膜に対する酸化窒化シリコン膜の選択比は2~4(代表的には3)であるので、オーバーエッチング処理により、酸化窒化シリコン 膜が露出した面は20~50m程度エッチングされるこ

とになる。また図10(C)では図示しなかったが、ゲ ート絶縁膜406は、上記エッチングによって第1の形 状の導電層 4 1 4 ~ 4 1 7 で 覆われない 領域 が 2 0 ~ 5 Onm程度エッチングされ薄くなった。

【0140】こうして、第1のエッチング処理により第 1の導電層と第2の導電層から成る第1の形状の導電層 414~417 (第1の導電層414a~417aと第 2の導電層414b~417b)を形成する。

【0141】次に、図10(D)に示すように第2のエ ッチング処理を行う。同様にICPエッチング法を用 い、エッチングガスにCF4とC12とO2を混合して、 1 Paの圧力でコイル型の電極に 5 0 0 Wの R F 電力(13. 56MHz)を供給し、プラズマを生成して行う。基板側(試 料ステージ) には50WのRF (13 56MHz) 電力を投入 し、第1のエッチング処理に比べ低い自己バイアス電圧 を印加する。このような条件によりW膜を異方性エッチ ングし、かつ、それより遅いエッチング速度で第1の導 電層である Taを異方性エッチングして第2の形状の導 電層419~422 (第1の導電層419a~422a と第2の導電層419b~422b)を形成する。また 図10(D)では図示しなかったが、ゲート絶縁膜40 6は、上記エッチングによって第2の形状の導電層41 9~422で覆われない領域がさらに20~50m程度 エッチングされ薄くなった。

【0142】W膜やTa膜のCF4とCl2の混合ガスに よるエッチング反応は、生成されるラジカルまたはイオ ン種と反応生成物の蒸気圧から推測することができる。 WとTaのフッ化物と塩化物の蒸気圧を比較すると、W のフッ化物であるWF6が極端に高く、その他のWC 15、TaF5、TaCl5は同程度である。従って、C F4とC12の混合ガスではW膜及びTa膜共にエッチン グされる。しかし、この混合ガスに適量のO2を添加す るとCF4とO2が反応してCOとFになり、Fラジカル またはFイオンが多量に発生する。その結果、フッ化物 の蒸気圧が高いW膜のエッチング速度が増大する。一 方、TaはFが増大しても相対的にエッチング速度の増 加は少ない。また、TaはWに比較して酸化されやすい ので、O2を添加することでTaの表面が酸化される。 Taの酸化物はフッ素や塩素と反応しないためさらにT a 膜のエッチング速度は低下する。従って、W膜とTa 膜とのエッチング速度に差を作ることが可能となりW膜 のエッチング速度をTa膜よりも大きくすることが可能

【0143】そして、マスク409a~マスク412a を除去し、図11(A)に示すように第1のドーピング 処理を行い、n型を付与する不純物元素を添加する。例 えば、加速電圧を 70~120ke Vとし、1×10¹³ /cm²のドーズ量で行う。ドーピングは、第2の形状の導 電層419~422を不純物元素に対するマスクとして 用い、第2の導電層419a~422aの下側の領域に 50 446のn型を付与する不純物元素の濃度を抑えつつ、

も不純物元素が添加されるようにドーピングする。こう して、第2の導電層419a~422aと重なる第1の 不純物領域425~428と、第1の不純物領域よりも 不純物の濃度が高い第2の不純物領域429~432と が形成される。なお本実施例ではマスク409a~41 2 a を除去してからn型を付与する不純物元素を添加し たが、本発明はこれに限定されない。図11 (A) の工 程においてn型を付与する不純物元素を添加してからマ

30

【0144】次に第2の導電層421a、421bを覆 うように半導体層404上にレジストからなるマスク4 33を形成する。マスク433はゲート絶縁膜406を 間に挟んで第2の不純物領域431と一部重なってい る。そして第2のドーピング処理を行いn型を付与する 不純物元素を添加する。この場合、第1のドーピング処 理よりもドーズ量を上げて低い加速電圧の条件としてn 型を付与する不純物元素をドーピングする。(図11

スク409a~マスク412aを除去しても良い。

(B)) ドーピングの方法はイオンドープ法若しくはイ オン注入法で行えば良い。イオンドープ法の条件はドー ズ量を $1 \times 10^{13} \sim 5 \times 10^{14} \text{atoms/cm}^2$ とし、加速電 圧を60~100keVとして行う。n型を付与する不 純物元素として15族に属する元素、典型的にはリン

(P) または砒素 (As) を用いるが、ここではリン

(P) を用いる。この場合、第2の形状の導電層419 ~422がn型を付与する不純物元素に対するマスクと なり、自己整合的にソース領域434~437、ドレイ ン領域438~441、Lov領域442~445が形 成される。またマスク433によってLof「領域44 6が形成される。ソース領域434~437、ドレイン 領域 $438\sim441$ には $1\times10^{20}\sim1\times10^{21}$ atomic /cm³の濃度範囲でn型を付与する不純物元素を添加す

【0145】本実施例はマスク433のサイズを制御す ることで、Loff領域446の長さを自由に設定する ことが可能<u>であ</u>る。

【0146】なお本明細書において、ゲート絶縁膜を介 してゲート電極と重なるLDD領域をLov領域と呼 ぶ。またゲート絶縁膜を介してゲート電極と重ならない LDD領域をLoff領域と呼ぶ。

【0147】n型を付与する不純物元素は、Loff領 域で $1 \times 10^{17} \sim 1 \times 10^{19}$ atoms/cm³の濃度となるよ うにし、L o v 領域で 1×1 $0^{16} \sim 1 \times 1$ 0^{18} atoms/cm ³の濃度となるようにする。

【0148】なお図11 (B) において、上述したよう な条件でη型を付与する不純物元素をドーピングする前 または後に、半導体層404上にマスク433を形成し た状態で加速電圧を70~120keVとしn型を付与 する不純物元素をドーピングしても良い。上記工程によ って、スイッチング用TFTのLofF領域となる部分

駆動回路に用いられるTFTのLov領域となる部分442、443のn型を付与する不純物元素の濃度を高めることができる。スイッチング用TFTのLoff領域となる部分446のn型を付与する不純物元素の濃度を抑えることで、スイッチング用TFTのオフ電流を提言することが可能である。また駆動回路に用いられるnチャネル型TFTのLov領域となる部分443のn型を付与する不純物元素の濃度を高めることで、ホットキャリア効果による.ドレイン近傍の高電界によって発生したホットキャリアが劣化現象を引き起こすのを防ぐことができる。

【0149】そして、マスク433を除去した後、図11 (C)に示すように、p チャネル型TFTを形成する半導体層402、405に一導電型とは逆の導電型のソース領域447、448と、ドレイン領域449、450と、L o V 領域451、452を形成する。第2の形状を有する導電層419、422を不純物元素に対するマスクとして用い、自己整合的に不純物領域を形成する。このとき、n チャネル型TFTを形成する半導体層402、403はレジストマスク453で全面を被覆しておく。ソース領域447、448及びドレイン領域449、450と、L o V 領域451、452とにはそれぞれ異なる濃度でリンが添加されているが、ジボラン(B_2H_6)を用いたイオンドープ法で形成し、そのいずれの領域においても不純物濃度を2×10 20 ~2×10 21 atoms/cm 3 となるようにする。

【0150】以上までの工程でそれぞれの半導体層402~405に不純物領域(ソース領域、ドレイン領域、 Lov領域、Loff領域)が形成される。半導体層と 重なる第2の導電層419~422がゲート電極として 機能する。

【0151】こうして導電型の制御を目的として、それぞれの半導体層に添加された不純物元素を活性化する工程を行う。この工程はファーネスアニール炉を用いる熱アニール法で行う。その他に、レーザーアニール法、またはラピッドサーマルアニール法(RTA法)を適用することができる。熱アニール法では酸素濃度が1ppm以下、好ましくは0.1ppm以下の窒素雰囲気中で400~700℃、代表的には500~600℃で行うものであり、本実施例では500℃で4時間の熱処理を行う。ただし、419~422に用いた配線材料が熱に弱い場合には、配線等を保護するため層間絶縁膜(シリコンを主成分とする)を形成した後で活性化を行うことが好ましい。

【0152】さらに、3~100%の水素を含む雰囲気中で、300~450℃で1~12時間の熱処理を行い、半導体層を水素化する工程を行う。この工程は熱的に励起された水素により半導体層のダングリングボンドを終端する工程である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)

を行っても良い。

【0153】次いで、第1の層間絶縁膜455は酸化窒化シリコン膜から100~200nmの厚さで形成する。(図12(A))その上に有機絶縁物材料から成る第2の層間絶縁膜458を形成する。

32

【0154】そして、ゲート絶縁膜406、第1の層間 絶縁膜455、第2の層間絶縁膜458にコンタクトホ ールを形成し、該コンタクトホールを介して、ソース領 域447、439、436、448と接するようにソー 10 ス配線459~462を形成した。また同様に、ドレイ ン領域449、435、440、450と接するドレイ ン配線463~465を形成する(図12(B))。

【0155】なお、ゲート絶縁膜406、第1の層間絶縁膜455、第2の層間絶縁膜458がSiO2膜またはSiON膜の場合、CF4とO2とを用いたドライエッチングでコンタクトホールを形成するのが好ましい。またゲート絶縁膜406、第1の層間絶縁膜455、第2の層間絶縁膜458が有機樹脂膜の場合、CHF3を用いたドライエッチング、またはBHF(緩衝フッ酸:HF+NH4F)でコンタクトホールを形成するのが好ましい。またゲート絶縁膜406、第1の層間絶縁膜455、第2の層間絶縁膜458が異なる材料で形成されている場合、膜ごとにエッチングの方法及び用いるエッチャントやエッチングガスの種類を変えることが好ましいが、エッチングガスの種類を変えることが好ましいが、エッチングの方法及び用いるエッチャントやエッチングガスを全て同じにしてコンタクトホールを形成しても良い。

【0156】次に、有機樹脂からなる第3層間絶縁膜467を形成する。有機樹脂としてはポリイミド、ポリア30 ミド、アクリル、BCB(ベンソシクロブテン)等を使用することができる。特に、第3層間絶縁膜467は平坦化の意味合いが強いので、平坦性に優れたアクリルが好ましい。本実施例ではTFTによって形成される段差を十分に平坦化しうる膜厚でアクリル膜を形成する。好ましくは $1\sim5\,\mu{\rm m}$ (さらに好ましくは $2\sim4\,\mu{\rm m}$)とすれば良い。

【0157】次に第3層間絶縁膜467に、ドレイン配線465に達するコンタクトホールを形成し、画素部上に画素電極となる導電膜466を形成する(図12

40 (C))。本実施例ではメタルマスクを用いて画素部上に酸化インジウム・スズ(ITO)膜を110nmの厚さに形成し、導電膜466とした。また、酸化インジウムに2~20%の酸化亜鉛(ZnO)を混合した材料を導電膜466に用いても良い。また酸化亜鉛(ZnO)からなる膜でも良いし、酸化スズ(In2O3)からなる膜でも良い。なお本発明において画素電極となる導電膜466は、EL駆動用TFTのドレイン領域以外の部分とショートしないようにすることが必要であり、本実施例では第3層間絶縁膜467上に形成することで防いで50いる。

(18)

【0158】図12(C)の状態で、本発明の第1の検査方法により各画素が選択され、導電膜480を流れる電流の値が測定される。

33

【0159】測定後、導電膜466をパターニングし画 素電極468を形成する。この画素電極468がEL素 子の陽極となる。(図13(A))

【0160】次に、樹脂材料でなる第1バンク469及 び第2バンク470を形成する。第1バンク469及び 第2バンク470は後に形成されるEL層及び陰極を隣 り合う画素間で分離するために設けられる。よって第1 バンク469よりも第2バンク470の方が横に張り出 している構成にすることが望ましい。なお第1バンク4 69と第2バンク470とを合わせた厚さは1~2μm 程度であることが好ましいが、後に形成されるEL層及 び陰極を隣り合う画素間で分離することができるならこ の厚さに限らない。また第1バンク469及び第2バン ク470は絶縁膜で形成されることが必要であり、例え ば酸化物、樹脂等で形成することが可能である。そして 第1バンク469と第2バンク470は互いに同じ材料 で形成されていても、異なる材料で形成されていてもど ちらでも良い。第1バンク469及び第2バンク470 は画素と画素との間にストライプ状に形成される。第1 バンク469及び第2バンク470はソース配線(ソー ス信号線)上に沿って形成しても良いし、ゲート配線 (ゲート信号線) 上に沿って形成しても良い。なお第1 バンク469及び第2バンク470を樹脂に顔料等を混 ぜたもので形成しても良い(図13(A))。

【0161】次に、EL層471及び陰極(MgAg電極)472を、真空蒸着法を用いて大気解放しないで連続形成する。なお、EL層471の膜厚は800~200nm(典型的には100~120nm)、陰極472の厚さは180~300nm(典型的には200~250nm)とすれば良い。なお、本実施例では一画素しか図示されていないが、このとき同時に赤色に発光するEL層、緑色に発光するEL層及び背色に発光するEL層が形成される。なおバンク470上にEL層と陰極を形成する材料が一部積層されるが、本明細書ではこれらをEL層471と陰極472に含めない。

【0162】この工程では、赤色に対応する画素、緑色に対応する画素及び背色に対応する画素に対して順次EL層471及び陰極472を形成する。但し、EL層471は溶液に対する耐性に乏しいためフォトリソグラフィ技術を用いずに各色個別に形成しなくてはならない。そこでメタルマスクを用いて所望の画素以外を隠し、必要箇所だけ選択的にEL層471及び陰極472を形成するのが好ましい。

【0163】即ち、まず赤色に対応する画素以外を全て 隠すマスクをセットし、そのマスクを用いて赤色発光の EL層及び陰極を選択的に形成する。次いで、緑色に対 応する画素以外を全て隠すマスクをセットし、そのマス クを用いて緑色発光のEL層及び陰極を選択的に形成する。次いで、同様に背色に対応する画素以外を全て隠すマスクをセットし、そのマスクを用いて背色発光のEL層及び陰極を選択的に形成する。なお、ここでは全て異なるマスクを用いるように記載しているが、同じマスクを使いまわしても構わない。また、全画素にEL層及び陰極を形成するまで真空を破らずに処理することが好ましい。

【0164】なお、本実施例ではEL層471を発光層10のみからなる単層構造とするが、EL層は発光層の他に正孔輸送層、正孔注入層、電子輸送層、電子注入層等を有していても構わない。このように組み合わせは既に様々な例が報告されており、そのいずれの構成を用いても構わない。EL層471としては公知の材料を用いることができる。公知の材料としては、EL駆動電圧を考慮すると有機材料を用いるのが好ましい。また、本実施例ではEL素子の陰極としてMgAg電極を用いた例を示すが、公知の他の材料を用いることが可能である。

【0165】こうして図13 (B) に示すような構造の 20 ELパネルが完成する。なお、第1バンク469と第2 バンク470を形成した後、陰極472を形成するまで の工程をマルチチャンバー方式 (またはインライン方式) の薄膜形成装置を用いて、大気解放せずに連続的に 処理することは有効である。

【0166】本実施例において、スイッチング用TFT 501の半導体層は、ソース領域504、ドレイン領域505、Loff領域506、Lov領域507、チャネル形成領域508を含んでいる。Loff領域506はゲート絶縁膜406を介してゲート電極421と重な6ないように設けられている。またLov領域507はゲート絶縁膜406を介してゲート電極421と重なるように設けられている。このような構造はオフ電流を低減する上で非常に効果的である。

【0167】また、本実施例ではスイッチング用TFT 501はシングルゲート構造としているが、本発明では スイッチング用TFTはダブルゲート構造やその他のマルチゲート構造を有していても良い。ダブルゲート構造 とすることで実質的に二つのTFTが直列された構造と なり、オフ電流をさらに低減することができるという利 40 点がある。

【0168】また本実施例ではスイッチング用TFT5 01はnチャネル型TFTであるが、pチャネル型TF Tであってもかまわない。

【0169】EL駆動用TFT502の半導体層は、ソース領域510、ドレイン領域511、Lov領域512、チャネル形成領域513を含んでいる。Lov領域512はゲート絶縁膜406を介してゲート電極422と重なるように設けられている。なお本実施例においてEL駆動用TFT502はLoff領域を有していないが、Loff領域を有する構成にしても良い。

【0170】また本実施例ではEL駆動用TFT502 はpチャネル型TFTであるが、nチャネル型TFTで あってもかまわない。

【0171】まず、極力動作速度を落とさないようにホットキャリア注入を低減させる構造を有するTFTを、駆動回路部を形成するCMOS回路のnチャネル型TFT503として用いる。なお、ここでいう駆動回路としては、シフトレジスタ、バッファ、レベルシフタ、サンプリング回路(サンプル及びホールド回路)などが含まれる。デジタル駆動を行う場合には、D/Aコンバータなどの信号変換回路も含まれ得る。

【0172】本実施例の場合、CMOS回路のnチャネル型TFT503の半導体層は、ソース領域521、ドレイン領域522、Lov領域523及びチャネル形成領域524を含んでいる。

【0173】また本実施例の場合、CMOS回路のpチャネル型TFT504の半導体層は、ソース領域53 1、ドレイン領域532、Lov領域533及びチャネル形成領域534を含んでいる。

【0174】なお、実際には図13(B)まで完成したち、さらに外気に曝されないように気密性が高く、脱ガスの少ない保護フィルム(ラミネートフィルム、紫外線硬化樹脂フィルム等)や透光性のシーリング材でパッケージング(封入)することが好ましい。その際、シーリング材の内部を不活性雰囲気にしたり、内部に吸湿性材料(例えば酸化バリウム)を配置したりするとEL素子の信頼性が向上する。

【0175】また、パッケージング等の処理により気密性を高めたら、基板上に形成された素子又は回路から引き回された端子と外部信号端子とを接続するためのコネクター(フレキシブルプリントサーキット:FPC)を取り付けて製品として完成する。このような出荷できるまでした状態を本明細書中ではEL表示装置(ELディスプレイ)という。

【0176】上述したように本実施例の作製行程では、 ゲート電極のチャネル長方向の長さ(以下単にゲート電 極の幅と呼ぶ)が異なっているため、ゲート電極をマス クとしてイオン注入を行うことにより、ゲート電極の厚 さが異なることによるイオンの侵入深さの違いを利用し て、第1のゲート電極の下に位置する半導体層中のイオ ン濃度を、第1のゲート電極の下に位置しない半導体層 中のイオン濃度より低くすることが可能である。

【0177】またマスクを用いてLoff領域を形成するために、エッチングで制御しなくてはならないのはLov領域の幅のみであり、Loff領域とLov領域の位置の制御が容易である。

【0178】本発明の第1の検査方法は、本実施例において示したELディスプレイに限定されることはなく、他のあらゆるELディスプレイに用いることが可能である。

【0179】本発明の第1の検査方法は、画素電極となる導電性を有する導電膜を画素部全体に形成し、該導電膜を流れる電流の値を測定することで検査を行うので、検査終了後、該導電膜をパターニングすることで、画素電極を形成することができる。そのため検査のために工程数を増やす必要がない。

36

【0180】次に本発明の第2の検査方法を用いた場合について説明する。図12(C)の工程までは、第1の検査方法を有する作製方法と同じである。図12(C)の工程が終了したら、画素電極となる画素電極用の導電膜466を形成し、パターニングすることで画素電極468を形成する(図14)。本実施例では酸化インジウム・スズ(ITO)膜を110nmの厚さに形成し、パターニングすることで画素電極468を形成した。また、酸化インジウムに2~20%の酸化亜鉛(ZnO)を混合した材料を画素電極468に用いても良い。また酸化亜鉛(ZnO)からなる膜でも良いし、酸化スズ(In2O3)からなる膜でも良い。この画素電極468がEL素子の陽極となる。

20 【0181】次に画素電極468に接するように、前記第3層間絶縁膜467上に検査用導電膜480を形成する。検査用導電膜480は画素部の全ての画素電極468を電気的に接続する。なお検査用導電膜480は画素部にのみ形成し、ソース信号線駆動回路やゲート信号線駆動回路などを含む駆動部には形成しないことが重要である。本実施例では検査用導電膜480として、ポリアセチレンからなる200μmの厚さの検査用導電膜480を、メタルマスクを用いて形成した。

【0182】なお本発明において検査用導電膜480 30 は、画素電極468以外の配線やTFTとショートしないようにすることが必要であり、本実施例では第3層間 絶縁膜467上に形成することで防いでいる。

【0183】図14の状態で、本発明の検査方法により各画素が選択され、導電膜467を流れる電流の値が測定される。

【0184】測定後、検査用導電膜480を溶剤で除去する。(図14)

【0185】次に、樹脂材料でなる第1バンク469及び第2バンク470を形成する。この後の工程について 40 は、第1の検査方法の場合と同じなので、ここでは説明を省略する。

【0186】なお本実施例ではEL層から発せられる光が基板側に向いている例について説明したが、本発明はこれに限定されず、EL層から発せられる光が基板の上に向いているような構成であっても良い。この場合EL素子の隆極が画素電極となり、EL駆動用TFTはnチャネル型TFTであることが望ましい。

【0187】なお本実施例は実施例1、2と自由に組み合わせることが可能である。

50 【0188】 (実施例4) 本実施例では、本発明の検査

(20)

38

方法によって良品と判断されたELパネルを用いて、E Lディスプレイを作製した例について説明する。なお、 図15(A)は本実施例のELディスプレイの上面図で あり、図15 (B) はその断面図である。

【0189】図15(A)、(B)において、4001 は基板、4002は画素部、4003はソース信号線駆 助回路、4004はゲート信号線駆動回路であり、それ ぞれの駆動回路は配線 4005を経てFPC(フレキシ ブルプリントサーキット) 4006に至り、外部機器へ と接続される。

【0190】このとき、画素部4002、ソース信号線 駆動回路4003及びゲート信号線駆動回路4004を 囲むようにして第1シール材4101、カバー材410 2、充填材4103及び第2シール材4104が設けら れている。

【0191】図15 (B) は図15 (A) をA-A'で 切断した断面図に相当し、基板4001の上にソーヌ信 号線駆動回路 4003 に含まれる駆動 TFT (但し、こ こではnチャネル型TFTとpチャネル型TFTを図示 している。) 4201及び画素部4002に含まれるE 20 L駆動用TFT(EL素子への電流を制御するTFT) 4202が形成されている。

【0192】本実施例では、駆動TFT4201には公 知の方法で作製されたpチャネル型TFTまたはnチャ ネル型TFTが用いられ、EL駆動用TFT4202に は公知の方法で作製されたpチャネル型TFIが用いら れる。また、画素部4002にはEL駆動用TFT42 02のゲート電極に接続されたコンデンサ (図示せず) が設けられる。

【0193】駆動TFT4201及び画素TFT420 2の上には樹脂材料でなる層間絶縁膜(平坦化膜) 43 01が形成され、その上に画素 TFT4202のドレイ ンと電気的に接続する画素電極(陽極)4302が形成 される。本実施例では、画素電極4302として仕事関 数の大きい導電膜が用いられる。導電膜としては、酸化 インジウムと酸化スズとの化合物、酸化インジウムと酸 化亜鉛との化合物、酸化亜鉛、酸化スズまたは酸化イン ジウムを用いることができる。また、前記導電膜にガリ ウムを添加したものを用いても良い。

【0194】そして、画素電極4302の上には絶縁膜 4303が形成され、絶縁膜4303は画素電極430 2の上に開口部が形成されている。この開口部におい て、画素電極4302の上にはEL(エレクトロルミネ ッセンス) 園4304が形成される。EL園4304は 公知の有機EL材料または無機EL材料を用いることが できる。また、有機EL材料には低分子系(モノマー 系) 材料と高分子系(ポリマー系) 材料があるがどちら を用いても良い。

【0195】EL層4304の形成方法は公知の蒸着技

構造は正孔注入層、正孔輸送層、発光層、電子輸送層ま たは電子注入層を自由に組み合わせて積層構造または単 層構造とすれば良い。

【0196】E L 層 4304の上には遮光性を有する導 電膜(代表的にはアルミニウム、銅もしくは銀を主成分 とする導電膜またはそれらと他の導電膜との積層膜)か らなる陰極4305が形成される。また、陰極4305 とEL層4304の界面に存在する水分や酸素は極力排 除しておくことが望ましい。従って、真空中で両者を連 10 続成膜するか、EL層4304を窒素または希ガス雰囲 気で形成し、酸素や水分に触れさせないまま陰極430 5を形成するといった工夫が必要である。本実施例では マルチチャンバー方式(クラスターツール方式)の成膜 装置を用いることで上述のような成膜を可能とする。

【0197】そして陰極4305は4306で示される 領域において配線4005に電気的に接続される。配線 4005は陰極4305に所定の電圧を与えるための配 線であり、異方導電性フィルム4307を介してFPC 4006に電気的に接続される。

【0198】以上のようにして、画素電極(陽極) 43 02、EL層4304及び陰極4305からなるEL素 子が形成される。このEL素子は、第1シール材410 1及び第1シール材4101によって基板4001に貼 り合わされたカバー材4102で囲まれ、充填材410 3により封入されている。

【0199】カバー材4102としては、ガラス材、金 **届材(代表的にはステンレス材)、セラミックス材、プ** ラスチック材(プラスチックフィルムも含む)を用いる ことができる。プラスチック材としては、FRP(Fi 30 berglass-Reinforced Plast ics) 板、PVF(ポリビニルフルオライド)フィル ム、マイラーフィルム、ボリエステルフィルムまたはア クリル樹脂フィルムを用いることができる。また、アル ミニウムホイルをPVFフィルムやマイラーフィルムで 挟んだ構造のシートを用いることもできる。

【0200】但し、EL素子からの光の放射方向がカバ 一材側に向かう場合にはカバー材は透明でなければなら ない。その場合には、ガラス板、プラスチック板、ポリ エステルフィルムまたはアクリルフィルムのような透明 40 物質を用いる。

【0201】また、充填材4103としては紫外線硬化 樹脂または熱硬化樹脂を用いることができ、PVC(ポ リビニルクロライド)、アクリル、ポリイミド、エポキ シ樹脂、シリコーン樹脂、PVB(ポリビニルブチラ ル)またはEVA (エチレンビニルアセテート)を用い ることができる。この充填材4103の内部に吸湿性物 質(好ましくは酸化バリウム)もしくは酸素を吸着しう る物質を設けておくとEL素子の劣化を抑制できる。

【0202】また、充填材4103の中にスペーサを含 術もしくは塗布法技術を用いれば良い。また、EL層の 50 有させてもよい。このとき、スペーサを酸化バリウムで (21)

40

形成すればスペーサ自体に吸湿性をもたせることが可能である。また、スペーサを設けた場合、スペーサからの圧力を緩和するバッファ層として陰極4305上に樹脂膜を設けることも有効である。

【0203】また、配線4005は異方導電性フィルム4307を介してFPC4006に電気的に接続される。配線4005は画素部4002、ソース信号線駆助回路4003及びゲート信号線駆動回路4004に送られる信号をFPC4006により外部機器と電気的に接続される。

【0204】また、本実施例では第1シール材4101の露呈部及びFPC4006の一部を覆うように第2シール材4104を設け、EL素子を徹底的に外気から遮断する構造となっている。こうして図15(B)の断面構造を有するELディスプレイとなる。

【0205】(実施例5)本実施例では、本発明を実施したELディスプレイの画素構造の例を図16に示す。なお、本実施例において、4701はスイッチング用TFT4702のソース配線を含むソース信号線、4703はスイッチング用TFT4702のゲート電極を含む 20ゲート信号線、4704はEL駆動用TFT、4705はコンデンサ(省略することも可能)、4710は電源供給線、4707は電源制御用TFT、4709は電源制御用ゲート配線、4708はEL素子とする。電源制御用TFT4707の動作については特願平11-341272号を参照すると良い。

【0206】また、本実施例では電源制御用TFT4707をEL駆動用TFT4704とEL素子4708との間に設けているが、電源制御用TFT4707とEL素子4708との間にEL駆動用TFT4704が設けられた構造としても良い。また、電源制御用TFT4707はEL駆動用TFT4704と同一構造とするか、同一の活性層で直列させて形成するのが好ましい。

【0207】また、図16(A)は、二つの画素間で電源供給線4706を共通とした場合の例である。即ち、二つの画素が電源供給線4706を中心に線対称となるように形成されている点に特徴がある。この場合、電源供給線の本数を減らすことができるため、画素部をさらに高精細化することができる。

【0208】また、図16(B)は、ゲート配線4703と平行に電源供給線4710を設け、ソース信号線4701と平行に電源制御用ゲート配線4711を設けた場合の例である。なお、図16(B)では電源供給線4710とゲート配線4703とが重ならないように設けた構造となっているが、両者が異なる層に形成される配線であれば、絶縁膜を介して重なるように設けることもできる。この場合、電源供給線4710とゲート配線4703とで専有面積を共有させることができるため、画素部をさらに高精細化することができる。

【0209】本発明の検査方法は、図16に示した以外 50 駆動回路1803が有する配線は外部接続用FPC18

の、様々な構成の画素を有する、あらゆるELディスプレイに適用することが可能である。

【0210】本実施例は実施例2~4と自由に組み合わせて実施することが可能である。

【0211】(実施例6)本実施例では、本発明の表示パネルにFPCやTAB等のコネクターを接続し、実際に製品として出荷することができる形体にした場合について、図17及び図18を用いて説明する。

【0212】1801は本発明の検査方法をパスした画 10 素部であり、複数の画素が設けられている。画素部18 01と、画素部1801が有する配線を外部へ接続する コネクターとを有するモジュールを本明細書では表示パ ネル1806と呼ぶ。

【0213】1802はソース信号線駆動回路、1803はゲート信号線駆動回路である。ゲート信号線駆動回路1803から出力された選択信号によって、ソース信号線駆動回路1802から出力されたビデオ信号が画素部1801の指定された画素に入力される。ビデオ信号はデジタルでもアナログでもどちらでも良い。またソース信号線駆動回路1802とゲート信号線駆動回路1803はいくつ設けられていても良い。

【0214】ソース信号線駆動回路1802及びゲート信号線駆動回路1803からなる駆動回路と、画素部1801が有する配線及び駆動回路が有する配線を外部へ接続するコネクターとを有するモジュールを、本明細書では駆動回路付表示パネル1807と呼ぶ。駆動回路付表示パネル1807は表示パネル1806に駆動回路を付けたものである。

【0215】駆動回路付表示パネル1807は、駆動回路と画素部1801とが別の基板上に設けられFPCやTAB等のコネクターにより接続されている場合と、駆動回路と画素部1801とが同じ基板上に設けられている場合とがある。本明細書では、前者を駆動回路外付型駆動回路付表示パネルと呼び、後者を駆動回路一体形成型駆動回路付表示パネルと呼ぶ。

【0216】図17(A)は駆動回路外付き型駆動回路付表示パネルの上面図である。基板1810上に画素部1801が設けられており、画素部1801が有する配線はFPC1811を介して、外付用基板1813上に設けられたソース信号線駆動回路1802とゲート信号線駆動回路1803とに接続されている。そして外部接続用FPC1812により、ソース信号線駆動回路1802とびゲート信号線駆動回路1803と、画素部1801とが有する配線が外部へ接続されている。

【0217】図17(B)に駆動回路一体形成型駆動回路付表示パネルの上面図を示す。基板1810上に画素部1801、ソース信号線駆動回路1802及びゲート信号線駆動回路1803が設けられている。画素部1801、ソース信号線駆動回路1802及びゲート信号線駆動回路1802及びゲート信号線駆動回路1802及びゲート信号線

12を介して、外部へ接続されている。

【0218】図18において、1804はコントローラーであり、駆動回路を駆動し、画素部に1801に画像を表示させるための機能を有している。例えば、外部から入力された画像情報を有する信号をソース信号線駆動回路1802に入力したり、駆動回路が駆動するための信号(例えばクロック信号(CIK)、スタートパルス信号(SP))を生成したり、駆動回路や画素部1801に電位を供給するための電源としての機能を有している。

【0219】駆動回路と、画素部1801と、コントローラー1804と、画素部1801、駆動回路、及びコントローラーがそれぞれ有する配線を外部へ接続するコネクターとを有するモジュールを、本明細書ではコントローラー及び駆動回路付表示パネル1808と呼ぶ。コントローラー及び駆動回路付表示パネル1808は、表示パネル1806に駆動回路及びコントローラーを付けたものである。

【0220】1805はマイコンであり、コントローラーの駆動を制御している。マイコン1805と、駆動回 20路と、画素部1801と、コントローラー1804と、画素部1801、駆動回路、及びコントローラーがそれぞれ有する配線を外部へ接続するコネクターとを有するモジュールを、本明細書ではマイコン及びコントローラー及び駆動回路付表示パネル1809と呼ぶ。マイコン及びコントローラー及び駆動回路付表示パネル1809は、表示パネル1806に駆動回路及びコントローラーを付けたものである。

【0221】なお実際には、表示パネル1806、駆動回路付表示パネル1807、コントローラー及び駆動回路付表示パネル1808またはマイコン及びコントローラー及び駆動回路付表示パネル1809の形体で製品として出荷される。本明細書において、表示パネル1806、駆動回路付表示パネル1807、コントローラー及び駆動回路付表示パネル1808及びマイコン及びコントローラー及び駆動回路付表示パネル1808及びマイコン及びコントローラー及び駆動回路付表示パネル1809を全て表示用モジュールと呼ぶ。

【0222】(実施例7)本実施例では、実施例3及び 実施例4で示した構成とは異なるEL素子を有する画素 部の詳しい構成について説明する。

【0223】図19(A)はEL素子1907の断面図であり、樹脂に顔料を加えて層間絶縁膜に遮光膜としての機能を加えた遮光膜1901である。遮光膜1901上に陽極1902上にEL層1903が設けられており、陽極1902上にEL層1903が設けられている。

【0224】EL層1903上にクラスタ1906が設けられており、クラスタ1906を覆ってEL層1903上に透明電極1904が形成されている。透明電極1904上にEL層に酸素または水分が入り込むのを防ぐ効果がある保護膜1905を形成した。

42

【0225】クラスタ1906は周期表の1族もしくは2族に属する元素の集合体であり、EL層1903上に点状もしくは塊状に設けられている。図19(A)の構造では、クラスタ1906の仕事関数が電子の注入障壁を決め、クラスタ1906を介してEL層1903に電子が注入される。

【0226】クラスタ1906はEL層1903上に点在して設けられているため、クラスタ1906の隙間からEL1903から発せられる光を透過することができる。

【0227】クラスタ1906は、その直径もしくは長径が $10\sim100$ nm、高さ $5\sim10$ nmとすることが好ましく、この程度の大きさならばクラスタ1906は、 $5\sim10$ nmといった薄い膜厚を目標として、蒸着法により成膜することで形成することができる。

【0228】図19(B)は、図19(A)におけるクラスタ1906を、EL層1903上ではなく、陽極1902上に形成した例である。

20 【0229】図19(B)において、樹脂に顔料を加えて層間絶縁膜に遮光膜としての機能を加えた遮光膜1901上に透明電極1904が設けられており、透明電極1904上にEL層1903が設けられている。

【0230】透明電極1904上にクラスタ1906が 設けられており、クラスタ1906を覆って透明電極1 904上にEL層1903が形成されている。

【0231】EL層1903上に陽極1902が形成されている。陽極1902は図19(B)では透明な材料を用いる。陽極1902上にEL層に酸素または水分が入り込むのを防ぐ効果がある保護膜1905を形成した。

【0232】クラスタ1906は周期表の1族もしくは2族に属する元素の集合体であり、EL層1903上に点状もしくは塊状に設けられている。クラスタ1906は図19(A)に示したものと同じ材料を用いることが可能である。図19(B)の構造では、クラスタ1906の仕事関数が電子の注入障壁を決め、クラスタ1906を介してEL層1903へ電子が注入される。

【0233】(実施例8)本発明の検査方法を適用した 40 ELディスプレイは、自発光型であるため液晶ディスプレイに比べて明るい場所での視認性に優れ、しかも視野角が広い。従って、様々な電子機器の表示部として用いることが出来る。例えば、TV放送等を大画面で鑑賞するには対角30インチ以上(典型的には40インチ以上)のディスプレイの表示部において本発明の検査方法を適用したELディスプレイを用いると良い。

【0234】なお、ELディスプレイには、パソコン用表示装置、TV放送受信用表示装置、広告表示用表示装置等の全ての情報表示用表示装置が含まれる。また、その他にも様々な電子機器の表示部に本発明の検査方法を

用いることが出来る。

【0235】その様な本発明の電子機器としては、ビデ オカメラ、デジタルカメラ、ゴーグル型表示装置(ヘッ ドマウントディスプレイ)、ナビゲーションシステム、 音響再生装置(カーオーディをディオコンポ等)、ノー ト型パーソナルコンピュータ、ゲーム機器、携帯情報端 末(モバイルコンピュータ、携帯電話、携帯型ゲーム機 または電子書籍等)、記録媒体を備えた画像再生装置

(具体的にはデジタルビデオディスク(DVD)等の記 録媒体を再生し、その画像を表示しうるディスプレイを 備えた装置) などが挙げられる。特に、斜め方向から見 ることの多い携帯情報端末は視野角の広さが重要視され るため、ELディスプレイを用いることが望ましい。そ れら電子機器の具体例を図20および図21に示す。

[0236]図20(A)はELディスプレイであり、 **筺体3301、支持台3302、表示部3303等を含** む。本発明の検査方法を適用したELディスプレイは表 示部3303に用いることが出来る。ELディスプレイ は自発光型であるためバックライトが必要なく、液晶デ ィスプレイよりも薄い表示部とすることが出来る。

【0237】図20(B)はビデオカメラであり、本体 3311、表示部3312、音声入力部3313、操作 スイッチ3314、バッテリー3315、受像部331 6等を含む。本発明の検査方法を適用したELディスプ レイは表示部3312にて用いることが出来る。

【0238】図20 (C) はヘッドマウントELディス プレイの一部(右片側)であり、本体3321、信号ケ ーブル3322、頭部固定バンド3323、表示部33 24、光学系3325、表示装置3326等を含む。本 発明の検査方法を適用したELディスプレイは表示装置 3326にて用いることが出来る。

【0239】図20(D)は記録媒体を備えた画像再生 装置(具体的にはDVD再生装置)であり、本体333 1. 記録媒体 (DVD等) 3332、操作スイッチ33 33、表示部(a) 3334、表示部(b) 3335等 を含む。表示部 (a) 3334は主として画像情報を表 示し、表示部(b) 3335は主として文字情報を表示 するが、本発明の検査方法を適用したELディスプレイ はこれら表示部 (a) 3334、表示部 (b) 3335 にて用いることが出来る。なお、記録媒体を備えた画像 再生装置には家庭用ゲーム機器なども含まれる。

【0240】図20(E)はゴーグル型表示装置(ヘッ ドマウントディスプレイ)であり、本体3341、表示 部3342、アーム部3343を含む。本発明の検査方 法を適用したELディスプレイは表示部3342にて用 いることが出来る。

【0241】図20(F)はパーソナルコンピュータで あり、本体3351、筺体3352、表示部3353、 キーボード3354等を含む。本発明の検査方法を適用 したELディスプレイは表示部3353にて用いること 50 【0249】以上の様に、本発明の適用範囲は極めて広

が出来る。

【0242】なお、将来的にEL材料の発光輝度が高く なれば、出力した画像情報を含む光をレンズ等で拡大投 影してフロント型あるいはリア型のプロジェクターに用 いることも可能となる。

44

【0243】また、上記電子機器はインターネットやC ATV(ケーブルテレビ)などの電子通信回線を通じて 配信された情報を表示することが多くなり、特に動画情 報を表示する機会が増してきている。EL材料の応答連 10 度は非常に高いため、ELディスプレイは動画表示に好 ましい。

【O244】また、ELディスプレイは発光している部 分が電力を消費するため、省消費電力化のためには発光 部分が極力少なくなるように情報を表示することが望ま しい。従って、携帯情報端末、特に携帯電話や音響再生 装置のような文字情報を主とする表示部にELディスプ レイを用いる場合には、非発光部分を背景として文字情 報を発光部分で形成するように駆動することが望まし ٧١<u>.</u>

【0245】図21 (A) は携帯電話であり、本体34 01、音声出力部3402、音声入力部3403、表示 部3404、操作スイッチ3405、アンテナ3406 を含む。本発明の検査方法を適用したELディスプレイ は表示部3404にて用いることが出来る。なお、表示 部3404は黒色の背景に白色の文字を表示することで 携帯電話の消費電力を抑えることが出来る。

【0246】図21 (B) は音響再生装置、具体的には カーオーディオであり、本体3411、表示部341 2、操作スイッチ3413、3414を含む。本発明の 30 検査方法を適用したELディスプレイは表示部3412 にて用いることが出来る。また、本実施例では車載用オ ーディを示すが、携帯型や家庭用の音響再生装置に用い ても良い。なお、表示部3414は黒色の背景に白色の 文字を表示することで消費電力を抑えられる。これは携 帯型の音響再生装置において特に有効である。

【0247】図21 (C) はデジタルカメラであり、本 体3501、表示部(A)3502、接眼部3503、 操作スイッチ3504、表示部(B)3505、バッテ リー3506を含む。本発明の検査方法を適用したEL 40 ディスプレイは、表示部 (A) 3502、表示部 (B) 3505にて用いることが出来る。また、表示部(B) 3505を、主に操作用パネルとして用いる場合、黒色 の背景に白色の文字を表示することで消費電力を抑える ことが出来る。

【0248】また、本実施例にて示した携帯型電子機器 においては、消費電力を低減するための方法としては、 外部の明るさを感知するセンサ部を設け、暗い場所で使 用する際には、表示部の輝度を落とすなどの機能を付加 するなどといった方法が挙げられる。

く、あらゆる分野の電子機器に用いることが可能であ る。また、本実施例の電子機器は実施例1~実施例7に 示したいずれの構成を適用しても良い。

[0250]

【発明の効果】本発明の検査方法によって、ELパネル をELディスプレイとして完成させなくても、ELパネ ルが良品か不良品かの区別をつけることが可能になる。 よって、実際には製品にならない不良品のELパネルを ELディスプレイとして完成させる必要がなくなる。そ 工程と、コネクターを取り付ける工程とを省くことがで き、時間とコストを抑えることができる。また多面取り の基板を用いてELパネルを形成する場合でも、パッケ ージングする工程と、コネクターを取り付ける工程とを 省くことができ、同様に時間とコストを抑えることがで きる。

【0251】また第1の検査方法では、検査終了後、該 導電膜をパターニングすることで画素電極を形成するこ とができる。よって検査のために工程数を増やす必要が ない。

【0252】なお本発明の検査方法は、様々な構成を有 する画素を含む、あらゆるELディスプレイの良品と不 良品の区別をつけることが可能である。

【図面の簡単な説明】

102

【図1】 本発明の検査方法を適用するELパネルの上 面図。

【図2】 本発明の検査方法を適用するELパネルの上 面図。

【図3】 本発明の検査方法を適用するELパネルの画 素部の回路図。

【図4】 画素部の配置パターンと測定値の判断基準を 示すグラフ。

【図1】

【図5】 本発明の検査方法を適用した後のELパネル の画素部の回路図。

46

【図6】 本発明の検査方法を適用するELパネルの画 素部の回路図。

【図7】 画素部の配置パターン。

本発明の検査方法を適用した後のELパネル [図8] の画素部の回路図。

【図9】 本発明の検査方法を適用した後のELパネル の画素の拡大図と回路図。

のためEL素子を形成する工程と、パッケージングする 10 【図10】 本発明の検査方法を適用するELパネルの 作製方法を示す図。

> 【図11】 本発明の検査方法を適用するELパネルの 作製方法を示す図。

> 【図12】 本発明の検査方法を適用するELパネルの 作製方法を示す図。

> 【図13】 本発明の検査方法を適用するELパネルの 作製方法を示す図。

> 【図14】 本発明の検査方法を適用するELパネルの 作製方法を示す図。

20 【図15】 本発明の検査方法を適用したELパネルを 用いたELディスプレイの上面図と断面図。

【図16】 本発明の検査方法を適用したELパネルの 画素の回路図。

本発明の検査方法を適用した駆動回路付表 【図17】 示パネルの上面図。

【図18】 本発明の検査方法を適用した表示用モジュ ールを示す図。

EL素子の断面図。 【図19】

【図20】 本発明の検査方法を適用したELディスプ 30 レイを用いた電子機器。

【図21】 本発明の検査方法を適用したELディスプ レイを用いた電子機器。

- 期定用配線 116

[図2]

外部接続配線107 外部接続配線117 Prove Point -Prove Point 測定用配練 麻素 画森 ソース信号線駆励団路 101 ソース信号線駆動回路 111 信号被駆動回路

信号級聯動回路 **301.11**00 105 **検査用導電膜 1**15 Prove Paint

(A)

(B)

201 Xイッチング・用TFT 103 or 113 国政部 203 コンデ・ンサ V1 S2 V2 Sx Vx 104 or 114 国文 G2

[図3]

(1.1)	(8. 2)	(1.1)	(4, 2)	 (x-1 2)	(z.)
(E 4)	(2 d) (2 d)	(L.1) (L.4)	(4, 3) (4, 4)	 (u-1. 1) (u-1. d)	(z. /

[図4]

[図5]

【図7】

(1, 4)	(1.4)	(1. 4)	(4.4)	 (x-1, 4)	(3. 4)
(1, 6)	(1.4)	(3, 4)	(4.4)	 (x-1. 4)	(s. 4)

【図13】

[図15]

[図16]

【图17】

【図18】

【図19】

(A)

【図21】

【図20】

フロントページの続き

(51) Int. Cl. 7		識別記号	FI		:	テーマコード(参考)
H 0 1 L	27/08	3 3 1	H 0 1 L	29/78	6 1 2 B	5 G 4 3 5
	27/092			21/88	M	
	29/786				Z	
				27/08	3 2 1 D	
					3 2 1 F	

```
F ターム(参考) 2G014 AA02 AA03 AB20 AB21 AC19
   5C094 AA43 AA44 BA03 BA27 CA19
         CA25 DA09 DA13 DB02 EA03
         EA04 FA01 FB01 FB12 FB14
         FB15 FB20 GA10 GB10 HA08
         HA10
   5F033 HH00 HH04 HH08 HH11 HH18
         HH19 HH20 HH21 HH32 MM05
         MM08 PP06 PP15 QQ12 QQ37
         QQ58 QQ65 QQ73 QQ82 QQ83
         RR04 RR08 RR21 VV04 VV06
         VV12 VV15 XX10 XX14 XX19
         XX37
   5F048 AB10 AC04 AC10 BA16 BB02
         BB04 BB06 BB09 BB12 BC06
         BF01 BF04 BF07 BF11
   5F110 AA16 AA24 BB01 BB02 BB04
         CC02 CC07 CC08 DD02 DD03
         DD13 DD14 DD15 DD17 EE01
         EE02 EE03 EE04 EE09 EE14
         EE15 EE23 EE28 EE44 EE45
         FF02 FF03 FF04 FF28 FF30
         FF36 GG01 GG02 GG13 GG15
         GG24 GG25 GG45 HJ01 HJ04
         HJ12 HJ18 HJ23 HK03 HK04
         HK09 HK16 HL07 HL23 HM15
         HM17 HM18 NN03 NN04 NN22
         NN23 NN24 NN27 NN35 NN72
         NN73 PP02 PP03 PP05 PP34
         QQ01 QQ04 QQ24 QQ25 QQ30
   5G435 AA17 BB05 CC09 CC12 EE37
```

HH12 KK05 LL01 LL07