

Data exploratory analysis Antonia Chroni for SJCRH DNB_BINF_Core

Contents

1	Information about this notebook	3
2	Set up	3
3	Directories and paths to file Inputs/Outputs	3
4	Read raw data file	3
5	Read processed data file	3
6	Update processed data file by Jackie Norrie on 2025-01-03	3
7	 10x matched scRNA-seq and scATAC-seq cohort 7.1 Type of sequencing assay and unit	3 3 4 5
8	10x Genomics Multiome cohort 8.1 Type of sequencing assay and seq_unit	6 6 6 7
9	Notes	9
10	References	9
11	Session Info	10
## ##	The following object is masked _byGlobalEnv:	
## ##		

PI: NA	
Project:	test-dataset
Task· NA	

Project Lead(s): NA

Department: Developmental Neurobiology

DNB Bioinformatics Core Analysis Team:

Lead Analyst(s): Antonia Chroni, PhD

Group Lead: Cody A. Ramirez, PhD

Contact E-mail: antonia.chroni@stjude.org¹

DNB Bioinformatics Core Pipeline: Standard sc-/sn-ATAC-Seq Analysis in

10X Genomics data

Date started: Dec-16-2024 Date completed: ONGOING

Report generated: 11:49:20 CST 01/07/2025

Reviewed by:	Date:	

 $^{^1}$ mailto:antonia.chroni@stjude.org

1 Information about this notebook

This is an exploratory analysis of the data available for the testing phase for the sc-atac-seq pipeline(s). We are investigating number of samples overall per condition and variables as defined in the params.

We are looking for cohorts that fit the following criteria as described in the ./analy-ses/README.md².

- Control vs condition (min. 3+3 samples)
- Number of cells/sample size of datasets might determined packages/pipelines to be used
- Single cell/Single-nucleus ATAC
- Integration of scRNA-seq and scATAC-seq data from the same biological system (multiple modalities)
- Pipeline for same samples but not same cells with scRNA-seq and scATAC-seq
- Annotate scATAC-seq cells via label transfer by using scRNA data: cell type annotation
- Available bulk ATAC-seq data for the same samples (matched) this could be used for cell type annotation
- 2 Set up
- 3 Directories and paths to file Inputs/Outputs
- 4 Read raw data file
- 5 Read processed data file
- 6 Update processed data file by Jackie Norrie on 2025-01-03

This is the cohorts_10x_rna_atac_testing_phase_2024-12-17.tsv file updated by Jackie Norrie on 2025-01-03 to fix empty cells and/or inconsistencies.

7 10x matched scRNA-seq and scATAC-seq cohort

7.1 Type of sequencing assay and unit

We should investigate if there are samples from different sequencing technologies and unit.

Single cell sequencing was done by using cell, nucleus and there are 10Xv3_RNA, 10Xv2_ATAC sequencing technologies and assays in the database. Cohort is formed and processed accordingly.

7.2 Number of samples per experiment

Table 1: Summary of samples per experiment

experiment	n
Cerebellum	9
More Retina	7
Stressed Retina	3
Victoria Knockout	8

²https://github.com/stjude-dnb-binfcore/sc-atac-seq/tree/main/analyses

7.3 Number of samples per experiment, seq_unit, assay, and condition

Table 2: Summary of samples per experiment, seq_unit, assay, and condition $\,$

experiment	seq_unit	assay	condition	n
Cerebellum	cell	RNA	age	2
Cerebellum	cell	RNA	sorted	2
Cerebellum	nucleus	ATAC	age	3
Cerebellum	nucleus	ATAC	sorted	2
More Retina	cell	ATAC	age	2
More Retina	cell	ATAC	none	2
More Retina	cell	ATAC	sorted	1
More Retina	cell	RNA	age	1
More Retina	cell	RNA	sorted	1
Stressed Retina	cell	RNA	LPS Injection	1
Stressed Retina	cell	RNA	PBS Injection	1
Stressed Retina	nucleus	ATAC	LPS Injection	1
Victoria Knockout	cell	RNA	knock-out	2
Victoria Knockout	cell	RNA	wt	2
Victoria Knockout	nucleus	ATAC	knock-out	2
Victoria Knockout	nucleus	ATAC	\mathbf{wt}	2

7.4 Number of samples per experiment, tissue, seq_unit, seq_technology_assay, condition, and sample

 $\label{thm:condition} \begin{tabular}{ll} Table 3: Summary of samples per experiment, tissue, seq_unit, seq_technology_assay, condition, and Sample \\ \end{tabular}$

			seq_technol-			
experiment	tissue	seq_unit	ogy_assay	condition	Sample	n
Cerebellum	Cerebel-	cell	$10 Xv3 _RNA$	age	6 week	1
	lum				cerebellum	
Cerebellum	Cerebel-	cell	$10 \text{Xv} 3 \text{_RNA}$	age	P0 cerebellum	1
	lum					
Cerebellum	Cerebel-	cell	$10 \mathrm{Xv} 3 \mathrm{_RNA}$	sorted	ATOH HI	1
	lum					
Cerebellum	Cerebel-	cell	$10 Xv3 _RNA$	sorted	ATOH Low	1
	lum					
Cerebellum	Cerebel-	nucleus	$10 \mathrm{Xv2}$ ATAC	age	6 week	2
	lum				cerebellum	
Cerebellum	Cerebel-	nucleus	$10 \mathrm{Xv2}$ ATAC	age	P0 cerebellum	1
	lum			J		
Cerebellum	Cerebel-	nucleus	10Xv2 ATAC	sorted	ATOH HI	1
	lum		_			
Cerebellum	Cerebel-	nucleus	$10 \mathrm{Xv2}$ _ATAC	sorted	ATOH Low	1
	lum		_			
More Retina	Retina	cell	10Xv2 ATAC	age	E14.5 Retina	2
More Retina	Retina	cell	10Xv2 ATAC	none	Retina	2
More Retina	Retina	cell	10Xv2_ATAC	sorted	NRL Dep	1
More Retina	Retina	cell	10Xv3 RNA	age	E14.5 Retina	1
More Retina	Retina	cell	10Xv3 RNA	sorted	NRL Dep	1
Stressed	Retina	cell	10Xv3_RNA	LPS	LPS	1
Retina	100011100	0011	1011/0_101/11	Injection	21 0	-
Stressed	Retina	cell	$10 Xv3 _RNA$	PBS	PBS	1
Retina	10001110	0011	1011/0_101/11	Injection	1 20	_
Stressed	Retina	nucleus	$10 \mathrm{Xv2}$ _ATAC	LPS	LPS ATAC	1
Retina	10001110	nacioas	101112_111110	Injection	LI 5_11110	1
Victoria	Retina	cell	10Xv3_RNA	knock-out	SEKO 21	1
Knockout	recoma	CCII	102110_10111	KHOCK-OUT	DLITO_21	1
Victoria	Retina	cell	10Xv3_RNA	knock-out	SEKO 25	1
Knockout	recoma	CCII	102110_10111	KHOCK-OUT	5LIC_20	1
Victoria	Retina	cell	10Xv3 RNA	wt	Wt1	1
Knockout	recoma	CCII	102110_10111	W	***************************************	1
Victoria	Retina	cell	10Xv3_RNA	wt	Wt2	1
Knockout	Hellia	Cen	10AV5_1ttVA	W C	VV 62	1
Victoria	Retina	nucleus	10Xv2 ATAC	knock-out	SEKO 21	1
Knockout	пенна	nucieus	10AV2_A1AC	KHOCK-OUU	SERO_21	1
Victoria	Retina	nucleus	10Xv2 ATAC	knock-out	SEKO_25	1
Knockout	пенна	nucieus	IUAVZ_AIAO	KHOCK-OUU	DEIXO20	1
Victoria	Doting	nucleus	10V ₂₂ 9 ATAC	****	Wt1	1
Victoria Knockout	Retina	nucieus	10Xv2_ATAC	wt	VV U1	1
Victoria	Doting	nucleus	10V ₂₂ 9 ATAC	****	Wt2	1
	Retina	nucieus	10Xv2_ATAC	wt	VV ∪∠	1
Knockout						

8 10x Genomics Multiome cohort

8.1 Type of sequencing assay and seq_unit

We should investigate if there are samples from two different sequencing technologies and unit.

Single cell sequencing was done by using nucleus and there are 10X_RNA, 10X_ATAC sequencing technologies and assays in the database. Cohort is formed and processed accordingly.

8.2 Number of samples per experiment

Table 4: Summary of samples per experiment

experiment	n
Multiome Retina	6

8.3 Number of samples per experiment, seq_unit, assay, and condition

Table 5: Summary of samples per experiment, seq_unit, assay, and condition $\,$

experiment	seq_unit	assay	condition	n
Multiome Retina	nucleus	ATAC	age	3
Multiome Retina	nucleus	RNA	age	3

8.4~ Number of samples per experiment, tissue, seq_unit, seq_technology_assay, condition, and sample

 $\label{thm:condition} Table 6: Summary of samples per experiment, tissue, seq_unit, seq_technology_assay, condition, and Sample$

			seq_technology_as-			
experiment	tissue	seq_unit	say	condition	Sample	\mathbf{n}
Multiome	Retina	nucleus	10X_ATAC	age	Adult	1
Retina					Retina	
Multiome	Retina	nucleus	$10X_ATAC$	age	E14.5	1
Retina					Retina	
Multiome	Retina	nucleus	$10X_ATAC$	age	P0 Retina	1
Retina						
Multiome	Retina	nucleus	$10X$ _RNA	age	Adult	1
Retina					Retina	
Multiome	Retina	nucleus	$10X$ _RNA	age	E14.5	1
Retina					Retina	
Multiome	Retina	nucleus	$10X$ _RNA	age	P0 Retina	1
Retina						

9 Notes

I have identified the following datasets that almost fit the criteria for the testing phase:

- 10x matched scRNA-seq and scATAC-seq: Victoria Knockout experiment with 1 replicate/knock-out group (4 samples for 10x RNA + 4 samples 10x ATAC). Replicates could be potentially grouped together and have 2 replicates for WT and 2 replicates for knock-out.
- 10x Genomics Multiome: Multiome Retina experiment with 1 replicate/age group (3 samples for 10x RNA (Multiome) + 3 samples for 10x ATAC (multiome).

10 References

- More Retina experiment published by Norrie et al., 2025³.
- Victoria Knockout experiment published by Honnell et al., 2022⁴.

³https://doi.org/10.1016/j.devcel.2024.12.014

 $^{^4}$ https://www.nature.com/articles/s41467-021-27924-y#Sec13

11 Session Info

```
## R version 4.4.0 (2024-04-24)
## Platform: x86_64-pc-linux-gnu
## Running under: Red Hat Enterprise Linux 8.8 (Ootpa)
## Matrix products: default
## BLAS:
           /usr/lib64/libblas.so.3.8.0
## LAPACK: /usr/lib64/liblapack.so.3.8.0
##
## locale:
                                    LC_NUMERIC=C
    [1] LC_CTYPE=en_US.UTF-8
##
    [3] LC_TIME=en_US.UTF-8
##
                                    LC_COLLATE=en_US.UTF-8
    [5] LC_MONETARY=en_US.UTF-8
                                    LC_MESSAGES=en_US.UTF-8
##
    [7] LC_PAPER=en_US.UTF-8
                                    LC_NAME=C
##
    [9] LC_ADDRESS=C
                                    LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/Chicago
## tzcode source: system (glibc)
## attached base packages:
                 graphics grDevices utils
## [1] stats
                                                datasets methods
                                                                     base
##
## other attached packages:
   [1] readxl_1.4.3
                        knitr_1.48
                                         lubridate_1.9.3 forcats_1.0.0
##
    [5] stringr_1.5.1
                        dplyr_1.1.4
                                         purrr_1.0.2
                                                         readr_2.1.5
   [9] tidyr_1.3.1
                        tibble_3.2.1
                                         ggplot2_3.5.1
                                                         tidyverse_2.0.0
##
## [13] yaml_2.3.10
##
## loaded via a namespace (and not attached):
    [1] bit_4.0.5
                          gtable_0.3.5
##
                                             jsonlite_1.8.8
                                                                crayon_1.5.3
##
    [5] compiler_4.4.0
                          tidyselect_1.2.1
                                             parallel_4.4.0
                                                                jquerylib_0.1.4
    [9] scales_1.3.0
                          fastmap_1.2.0
                                             mime_0.12
                                                                R6_2.5.1
## [13] generics_0.1.3
                          munsell_0.5.1
                                             bslib_0.8.0
                                                                pillar_1.9.0
## [17] tzdb_0.4.0
                          rlang_1.1.4
                                             utf8 1.2.4
                                                                stringi_1.8.4
## [21] cachem_1.1.0
                          xfun_0.47
                                             sass_0.4.9
                                                                bit64_4.0.5
## [25] timechange_0.3.0
                          cli_3.6.3
                                             withr_3.0.1
                                                                magrittr_2.0.3
## [29] digest_0.6.37
                          grid_4.4.0
                                             vroom_1.6.5
                                                                hms_1.1.3
## [33] lifecycle_1.0.4
                          vctrs_0.6.5
                                             evaluate_0.24.0
                                                                glue_1.7.0
## [37] cellranger_1.1.0
                          fansi_1.0.6
                                             colorspace_2.1-1
                                                                rmarkdown_2.28
## [41] tools_4.4.0
                          pkgconfig_2.0.3
                                             htmltools_0.5.8.1
```