

Aufgabenblatt 4

Aufgaben der Hörsaalübung

1. Ein massebehafteter elastischer Stab (Dehnsteifigkeit EA, Massebelegung μ , Länge l) ist am linken Rand (x=0) fest eingespannt und trägt am rechten Rand (x=l) eine Punktmasse m. Die Punktmasse ist außerdem über eine Feder (Steifigkeit k) an die Umgebung gekoppelt.

Die Feder sei entspannt, wenn der Stab unverformt ist. Es werden ausschließlich Längsschwingungen $u\left(x,t\right)$ betrachtet.

- (a) Wie lautet die geometrische Randbedingung für das System?
- (b) Berechnen Sie die kinetische Energie T und die potentielle Energie U des Gesamtsystems.
- (c) Formulieren Sie das Prinzip von Hamilton für das untersuchte System.
- (d) Leiten Sie die Feldgleichung und die dynamische Randbedingung her.

Geg.: $m, k, l, EA = \text{konst.}, \mu := \rho A = \text{konst.},$

2. Der skizzierte Euler-Bernoulli-Balken (μ , EI, l) ist linksseitig eingespannt, an seinem rechten Ende mit einem Dämpfer (Dämpferkonstante d) verbunden, sowie durch eine Streckenlast q(x,t) belastet.

- (a) Ermitteln Sie die kinetische Energie T, die potentielle Energie U und die virtuelle Arbeit der potentiallosen Kräfte und Momente δW für Biegeschwingungen w(x,t).
- (b) Geben Sie die geometrischen Randbedingungen an.
- (c) Bestimmen Sie über das Prinzip von Hamilton die Feldgleichung sowie die dynamischen Randbedingungen.

Geg.: μ , EI, l, q(x,t), d

Kontinuumsmechanik Aufgabenblatt 4

Tutoriumsaufgaben

3. Das skizzierte Modell eines Antriebsstrangs besteht aus zwei diskreten Drehmassen (starre Körper, Massenträgheitsmoment θ_1 bzw. θ_2 bezüglich der Drehachse) sowie dem dargestellten Torsionsstab (Dichte ρ , Schubmodul G, polares Flächenträgheitsmoment I_p , Länge l). Er wird bei x=0 mit dem Moment M_1 und bei x=l mit dem Moment M_2 belastet. Mit dem Prinzip von Hamilton sollen die Feldgleichung sowie die dynamischen Randbedingungen bestimmt werden.

- (a) Geben Sie die kinetische Energie T und die potentielle Energie U des Systems an.
- (b) Formulieren Sie die virtuelle Arbeit δW der potentiallosen Kräfte und Momente.
- (c) Existieren geometrische Randbedingungen? Wenn ja, geben Sie diese an.
- (d) Bestimmen Sie mittels des Prnizip von Hamilton die Feldgleichung sowie die dynamischen Randbedingungen.
- 4. Ein elastischer, massebehafteter Balken (Biegesteifigkeit EI, Länge l) ist links und rechts gelenkig gelagert. An beiden Enden greift ein periodisches Moment $M(t) = M_0 \cos \Omega t$ an.

- (a) Wie lauten die geometrischen Randbedingungen für das System?
- (b) Berechnen Sie die kinetische Energie T, die potentielle Energie U sowie die virtuelle Arbeit δW für das Gesamtsystem.
- (c) Formulieren Sie das Prinzip von Hamilton für das untersuchte System.
- (d) Leiten Sie nun die Bewegungsdifferentialgleichung und die dynamischen Randbedingungen her.

Geg.: M_0 , Ω , l, EI, μ

Kontinuumsmechanik Aufgabenblatt 4

Weitere Aufgaben

5. Ein eingespannter, massebehafteter Stab mit kreisförmigem Querschnitt trägt an seinem Ende eine Einzelmasse.

- (a) Wie lautet die *geometrische* Randbedingung für das System?
- (b) Berechnen Sie die kinetische Energie T und die potentielle Energie U für das Gesamtsystem.
- (c) Formulieren Sie das Prinzip von Hamilton für das untersuchte System.
- (d) Leiten Sie nun die Bewegungsdifferentialgleichung und die dynamische Randbedingung her.

Geg.: $l, m, G, I_p, A, \varrho, r$

6. Gegeben ist der skizzierte homogene Dehnstab.

- (b) Berechnen Sie die kinetische Energie T und die potentielle Energie U für das Gesamtsystem.
- (c) Formulieren Sie das Prinzip von Hamilton für das untersuchte System.
- (d) Leiten Sie nun die Bewegungsdifferentialgleichung und die dynamischenRandbedingungen her.

Geg.: μ , A, E, l

7. Ein bei x=0 eingespannter Balken (Länge l, Biegesteifigkeit EI= konst., Massenverteilung $\mu=$ konst.) mit der Endmasse m an der Stelle x=l soll Eigenschwingungen durchführen. Mit Hilfe des Hamilton Prinzips sind die dynamischen Randbedingungen und die Bewegungsdifferentialgleichung zu ermitteln.

Geg.: EI, l, μ , m