	<pre>from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Activation, Dense, Flatten, BatchNormalization, Conv2D, MaxPool2D from tensorflow.keras.optimizers import Adam from tensorflow.keras.metrics import categorical_crossentropy from tensorflow.keras.preprocessing.image import ImageDataGenerator from sklearn.metrics import confusion_matrix import itertools import os import shutil import random import alob</pre>
In [54]:	<pre>import glob import matplotlib.pyplot as plt import warnings warnings.simplefilter(action='ignore', category=FutureWarning) %matplotlib inline #organize data into train , valid , test dirs os.chdir('C:\\Users\\User\\Desktop\\Projects\\dog-vs-cat') if os.path.isdir('train/dog') is False: os.makedirs('train/dog')</pre>
	<pre>os.makedirs('train/cat') os.makedirs('valid/dog') os.makedirs('valid/cat') os.makedirs('test/dog') os.makedirs('test/cat') for c in random.sample(glob.glob('cat*') , 2000): shutil.move(c, 'train//cat') for c in random.sample(glob.glob('dog*'), 2000):</pre>
	<pre>shutil.move(c,'train//dog') for c in random.sample(glob.glob('cat*'),1000): shutil.move(c,'valid/cat') for c in random.sample(glob.glob('dog*'),1000): shutil.move(c,'valid/dog') for c in random.sample(glob.glob('cat*'),500): shutil.move(c,'test/cat') for c in random.sample(glob.glob('dog*'),500): shutil.move(c,'test/dog')</pre>
<pre>In [56]: In [2]: In [3]:</pre>	<pre>train_path='C:\\Users\\User\\Desktop\\Projects\\dog-vs-cat\\train' valid_path='C:\\Users\\User\\Desktop\\Projects\\dog-vs-cat\\valid' test_path='C:\\Users\\User\\Desktop\\Projects\\dog-vs-cat\\test'</pre> train_batches = ImageDataGenerator(preprocessing_function=tf.keras.applications.vgg16.preprocess_input) \ .flow_from_directory(directory=train_path, target_size=(224,224), classes=['cat', 'dog'], batch_size=10) valid_batches = ImageDataGenerator(preprocessing_function=tf.keras.applications.vgg16.preprocess_input) \ valid_batches = ImageDataGenerator(preprocessing_function=tf.keras.applications.vgg16.preprocess_input) \ flow_from_directory(directory=valid_path_target_size=(224,224), classes=['cat', 'dog'], batch_size=10) valid_batches = ImageDataGenerator(preprocessing_function=tf.keras.applications.vgg16.preprocess_input) \ flow_from_directory(directory=valid_path_target_size=(224,224), classes=['cat', 'dog'], batch_size=10)
In [4]:	<pre>assert valid_batches.n==2000 assert test_batches.n==1000</pre>
In [5]:	<pre>assert train_batches.num_classes==valid_batches.num_classes==test_batches.num_classes==2 imgs, labels =next(train_batches) def plotImages(images_arr): fig, axes = plt.subplots(1, 10, figsize=(20,20)) axes = axes.flatten() for img, ax in zip(images_arr, axes): ax.imshow(img) ax.axis('off')</pre>
In [7]:	<pre>plt.tight_layout() plt.show() plotImages(imgs) print(labels) Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers).</pre>
	Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers).
	[[0. 1.] [0. 1.] [1. 0.] [1. 0.] [1. 0.] [0. 1.] [0. 1.]
In [8]:	<pre>[1. 0.] [1. 0.] [0. 1.]] model=Sequential ([Conv2D(filters=32, kernel_size=(3,3), activation='relu', padding='same' ,input_shape=(224,224,3)), MaxPool2D(pool_size=(2,2), strides=2), Conv2D(filters=64, kernel_size=(3,3), activation='relu', padding='same'), MaxPool2D(pool_size=(2,2), strides=2), Flatten(), Dense(units=2, activation='softmax'),</pre>
In [9]:	model.summary() Model: "sequential" Layer (type)
	conv2d_1 (Conv2D) (None, 112, 112, 64) 18496 max_pooling2d_1 (MaxPooling2 (None, 56, 56, 64) 0 flatten (Flatten) (None, 200704) 0 dense (Dense) (None, 2) 401410 ================================
In [10]: In [11]:	Mon-trainable params: 0 model.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x=train_batches, validation_data=valid_batches,epochs=5,verbose=2) Epoch 1/5 400/400 - 310s - loss: 7.3676 - accuracy: 0.6062 - val_loss: 1.2673 - val_accuracy: 0.6590 Epoch 2/5 400/400 - 249s - loss: 0.3981 - accuracy: 0.8558 - val_loss: 0.9245 - val_accuracy: 0.6955
Out[11]: In [12]:	<pre>test_imgs, test_labels= next(test_batches) plotImages(test_imgs)</pre>
	Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers).
	Clipping input data to the valid range for imshow with RGB data ([01] for floats or [0255] for integers). [[1. 0.]]
In [13]:	[1. 0.] [1. 0.] [1. 0.] [1. 0.] [1. 0.] [1. 0.] [1. 0.] [1. 0.] [1. 0.]
Out[13]:	array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
In [14]: In [15]: Out[15]:	<pre>1, 1, 1, 1, 1, 1, 1, 1, 1]) predictions=model.predict(x=test_batches, verbose=0) np.round(predictions) array([[1., 0.],</pre>
In [16]: In [17]:	<pre>[0., 1.], [0., 1.], [0., 1.]], dtype=float32) cm=confusion_matrix(y_true=test_batches.classes, y_pred=np.argmax(predictions, axis=1)) def plot_confusion_matrix(cm, classes,</pre>
	This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize:
	<pre>cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j],</pre>
In [18]: Out[18]:	<pre>horizontalalignment="center",</pre>
In [19]:	<pre>cm_plot_labels=['cat', 'dog'] plot_confusion_matrix(cm=cm, classes=cm_plot_labels, title='Confusion Matrix') Confusion matrix, without normalization [[322 178] [149 351]] Confusion Matrix - 350 - 325</pre>
	cat - 322 178 - 300 - 275 - 250 - 225 - 225 - 200 - 175
In [20]:	Build Fine-Tuned VGG16 model #Downloadng model vgg16_model=tf.keras.applications.vgg16.VGG16()
In [21]:	Vgg16_model.summary() Model: "vgg16" Layer (type) Output Shape Param # ====================================
	block1_conv2 (Conv2D) (None, 224, 224, 64) 36928 block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 block2_conv1 (Conv2D) (None, 112, 112, 128) 73856 block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 block3_conv1 (Conv2D) (None, 56, 56, 256) 295168
	block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808
	block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
	flatten (Flatten) (None, 25088) 0 fc1 (Dense) (None, 4096) 102764544 fc2 (Dense) (None, 4096) 16781312 predictions (Dense) (None, 1000) 4097000 =================================
In [22]: In [23]:	<pre>#Converting orignal vgg16 model to sequential model model=Sequential() for layer in vgg16_model.layers[:-1]: model.add(layer)</pre> model.summary()
	Model: "sequential_1" Layer (type) Output Shape Param # ===================================
	block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 block3_conv2 (Conv2D) (None, 56, 56, 256) 590080 block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 block3_pool (MaxPooling2D) (None, 28, 28, 256) 0
	block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
	block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 flatten (Flatten) (None, 25088) 0 fc1 (Dense) (None, 4096) 102764544 fc2 (Dense) (None, 4096) 16781312
In [24]: In [25]:	fc2 (Dense) (None, 4096) 16781312 Total params: 134,260,544 Trainable params: 134,260,544 Non-trainable params: 0 for layer in model.layers: layer.trainable=False model.add(Dense(units=2, activation='softmax'))
In [26]:	model.summary() Model: "sequential_1" Layer (type)
	block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 block2_conv1 (Conv2D) (None, 112, 112, 128) 73856 block2_conv2 (Conv2D) (None, 112, 112, 128) 147584 block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 block3_conv1 (Conv2D) (None, 56, 56, 256) 295168 block3_conv2 (Conv2D) (None, 56, 56, 256) 590080
	block3_conv3 (Conv2D) (None, 56, 56, 256) 590080 block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 block4_conv1 (Conv2D) (None, 28, 28, 512) 1180160 block4_conv2 (Conv2D) (None, 28, 28, 512) 2359808 block4_conv3 (Conv2D) (None, 28, 28, 512) 2359808 block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
	block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808 block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808 block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808 block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 flatten (Flatten) (None, 25088) 0
	fc1 (Dense) (None, 4096) 102764544 fc2 (Dense) (None, 4096) 16781312 dense_1 (Dense) (None, 2) 8194 ===================================
In [27]: In [28]:	Training fine tuned vgg16 model model.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x=train_batches, validation_data=valid_batches, epochs=5, verbose=2) Epoch 1/5 400/400 - 1995s - loss: 0.1423 - accuracy: 0.9450 - val_loss: 0.0625 - val_accuracy: 0.9760 Epoch 2/5
Out[28]:	Epoch 2/5 400/400 - 2055s - loss: 0.0524 - accuracy: 0.9810 - val_loss: 0.0590 - val_accuracy: 0.9805 Epoch 3/5 400/400 - 2852s - loss: 0.0394 - accuracy: 0.9845 - val_loss: 0.0515 - val_accuracy: 0.9810 Epoch 4/5 400/400 - 2085s - loss: 0.0300 - accuracy: 0.9895 - val_loss: 0.0576 - val_accuracy: 0.9835 Epoch 5/5 400/400 - 1838s - loss: 0.0225 - accuracy: 0.9925 - val_loss: 0.0534 - val_accuracy: 0.9830 <tensorflow.python.keras.callbacks.history 0x275565e1970="" at=""></tensorflow.python.keras.callbacks.history>
In [29]:	test_batches.classes array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

 $\verb|cm=confusion_matrix(y_true=test_batches.classes, y_pred=np.argmax(predictions, axis=1))| \\$

In [32]: cm_plot_labels=['cat','dog']
 plot_confusion_matix(cm=cm, classes=cm_plot_labels,title='confusion Matrix')

SyntaxError: positional argument follows keyword argument

File "<ipython-input-32-fd37231501c4>", line 2
plot_confusion_matix(cm=cm, classes_plot_labels,title='confusion Matrix')

In [30]:

test_batches.class_indices

Out[31]: {'cat': 0, 'dog': 1}

Classifying images fg dogs and cats using modified vgg 16 model and plotting the results using confusion matrix

import numpy as np
import tensorflow as tf
from tensorflow import keras