# Why do Larger Firms Pay Executives More for Performance?

Performance-based versus Market-based incentives

Bo Hu

June 1, 2018

VU University Amsterdam and Tinbergen Institute

Introduction

#### **Executive Labor Market and Contract incentives**

 No. 1 compensation philosophy for named executive officers in Amazon

"to attract and retain the highest caliber employees by providing above industry-average compensation ..."

Apple Inc.'s 2016 proxy statement

"experienced personnel in the technology industry are in high demand, and competition for executive talent is intense ... "

Their executives contract incentives are designed

"to attract and retain a talented executive team and align executives interests with those of shareholders ..."

# **Motivating Facts**

A typical executive compensation package:

```
fixed salary + performance-based pay
(bonus, stocks, options, etc.)
30% 70%
```

• Performance-based incentives:

$$\mathtt{delta} = \frac{\Delta \mathtt{Wealth(in\ dollars)}}{\Delta \mathtt{Firm\ Value(in\ percentage)}}$$

 Firm size premium in performance-based incentives delta increases in firm size,

## **Motivating Facts**

• A typical executive compensation package:

```
fixed salary + performance-based pay
(bonus, stocks, options, etc.)
30% 70%
```

• Performance-based incentives:

$$ext{delta} = rac{\Delta ext{Wealth(in dollars)}}{\Delta ext{Firm Value(in percentage)}}$$

Firm size premium in performance-based incentives
 delta increases in firm size, controlling for total compensation

# **Motivating Fact: Size Premium**



# **Motivating Fact: Size Premium**

Table 1: Pay-for-performance Incentives Increase with Firm Size

|                              | $\log(delta)$        |                       |                      |                      |  |
|------------------------------|----------------------|-----------------------|----------------------|----------------------|--|
|                              | (1)                  | (2)                   | (3)                  | (4)                  |  |
| log(Firm Size)               | 0.578***<br>(250.03) | 0.295***<br>(112.20)  | 0.274***<br>(104.10) | 0.273***<br>(103.68) |  |
| log(tdc1)                    |                      | 0.7159***<br>(176.18) |                      |                      |  |
| tdc1 Dummies (50)            |                      | (170.10)              | Yes                  |                      |  |
| tdc1 Dummies (100)           |                      |                       |                      | Yes                  |  |
| Year FEs                     | Yes                  | Yes                   | Yes                  | Yes                  |  |
| Industry FEs                 | Yes                  | Yes                   | Yes                  | Yes                  |  |
| $Year \times Industry \ FEs$ | Yes                  | Yes                   | Yes                  | Yes                  |  |
| Observations                 | 129458               | 129184                | 129185               | 129185               |  |

# Motivating Fact: Size Premium and Labor Market

Table 2: Firm Size Premium Increases with Market Competition

|                                                       | $\log(delta)$        |                       |                       |                       |  |
|-------------------------------------------------------|----------------------|-----------------------|-----------------------|-----------------------|--|
|                                                       | (1)                  | (2)                   | (3)                   | (4)                   |  |
| log(Firm Size)                                        | 0.340***<br>(35.18)  | 0.372***<br>(68.97)   | 0.254***<br>(23.82)   | 0.247***<br>(17.45)   |  |
| $log(Firm\ Size) \times External\ CEO$                | 0.121***<br>(4.27)   |                       |                       |                       |  |
| Firm_Number                                           |                      | 0.000331***<br>(3.67) |                       |                       |  |
| $log(Firm\ Size) \times Firm\_Number$                 |                      | .0000151<br>( 2.55)   |                       |                       |  |
| Size-Dist-CV                                          |                      |                       | -2.652***<br>(-14.01) |                       |  |
| $log(Firm\ Size) \times Size\text{-}Dist\text{-}CV$   |                      |                       | 0.220***<br>(10.23)   |                       |  |
| Size-Dist-Gini                                        |                      |                       |                       | -5.743***<br>(-11.60) |  |
| $log(Firm\ Size) \times Size\text{-}Dist\text{-}Gini$ |                      |                       |                       | 0.462***<br>(8.11)    |  |
| log(tdc1)                                             | 0.589***<br>(106.98) | 0.589***<br>(106.91)  | 0.652***<br>(146.40)  | 0.651***<br>(146.23)  |  |
| Observations                                          | 71959                | 71959                 | 126541                | 126541                |  |

*Note:* We have controlled for age,  $age^2$ , year and industry fixed effects and their interaction terms.

### Summary

#### Motivating Facts:

- Size premium exists controlling for total compensation.
- Size premium is larger in industries where the executive labor market is more active.

### Summary

#### Motivating Facts:

- Size premium exists controlling for total compensation.
- Size premium is larger in industries where the executive labor market is more active.

#### Research Questions:

- How does the labor market interact with contract incentives?
- Why do larger firms pay more for performance?

#### What do I do?

- 1. Modeling: executive labor market and contract incentives
  - how do career concerns and performance-based incentives interact
  - firm size premium in performance-based incentives
- 2. Estimation: take the model to US executives data (ExecuComp)
- 3. Evaluation: work on counter-factuals
  - regulations on executive compensation
  - spillover effect of corporate governance on executive compensation

## Key Elements in the Model



### Key Elements in the Model



# Key Mechanism in the Model

#### Market competition generates incentives

- taking effort today improves managerial skills
- higher managerial skills leads to higher market values

#### Market-based incentives are weaker in larger firms

- market competition gives rise to higher expected pay
- especially higher for executives in larges firms because they can make use of current firm to negotiate better offers
- by diminishing marginal utility, market-based incentives are lower for them

#### **Related Literature**

- Assignment Models
  - Edmans, Gabaix and Landier (2009), Edmans and Gabaix (2011)
  - executives in larger firms value leisure more  $u(w \times g(e))$ .
- Moral Hazard Models
  - Margiotta and Miller (2000), Gayle and Miller (2009), Gayle, Golan and Miller (2015)
  - moral hazard problem is more severe / the quality of signal (about effort) is poor in larger firms
- Dynamic contract literature
  - moral hazard: Spear and Srivastava (1987), etc.
  - limited commitment: Thomas Worrall (1988, 1990), etc.
- Labor search literature
  - sequential auction: Postel-Vinay and Robin (2002)

**Illustrative Model** 

# **Two-period Model**

#### Period 1: Moral Hazard Period

the firm provides incentive pay

#### Period 2: Market Competition Period

- no moral hazard problem
- executives receive offers from outside firms randomly
- incumbent and outside firms bid for the executive

#### **Moral Hazard Problem**

- risk averse executives, u(w)-c(e), where  $e\in\{0,1\}$ , c(1)=c, c(0)=0
- ullet effort stochastically increases manager's productivity  $z \in \mathcal{Z}$
- z follows  $\Gamma(z)$  when e=1, and  $\Gamma^s(z)$  when **S**hirks
- once first period z is realized, it becomes a constant
- likelihood ratio  $g(z) = \Gamma^s/\Gamma$  decreases in z

$$\sum_{z'} u(z')\Gamma(z') - \sum_{z'} u(z')\Gamma^{s}(z') \ge c$$
$$\sum_{z'} u(z')(1 - g(z'))\Gamma(z') \ge c$$

 consider the match between one firm and one executive with production

$$f(s,z)=\alpha sz,$$

where s is firm size

# **Market Competition**

Another firm with size s' poaches the executive

ullet for simplicity, with  $\lambda \in (0,1)$  get an offer from firm s'>s

#### Bertrand competition

ullet since s'>s, the executive transits to s' and gets a pay of lpha sz

# **Contracting Problem**

The firm chooses  $\{w_1(z), w_2(z)\}$  to maximize

$$\int_{z} \left\{ \left[ \alpha sz - w_{1}(z) \right] + \beta \left[ (1 - \lambda) \left( \alpha sz - w_{2}(z) \right) + \lambda \times 0 \right] \right\} d\Gamma(z)$$

subject to

$$\lambda : \int_{z} \left\{ \left[ u(w_{1}(z)) - c \right] + \beta \left[ (1 - \lambda)u(w_{2}(z)) + \lambda u(\alpha sz) \right] \right\} d\Gamma(z) = u_{0}$$
(PC)

$$\mu: \int_{z} \left\{ \frac{u(w_{1}(z)) + \beta \left[ (1 - \lambda)u(w_{2}(z)) + \lambda u(\alpha sz) \right] \right\} (1 - g(z)) d\Gamma(z) \ge c$$
(IC)

Note: period 1 in red, period 2 in blue.

# **Optimal Contract**

The optimal contract follows

$$w_1(z) = w_2(z) = \lambda + \mu(1 - g(z)),$$

where  $\mu$  determines the pay-for-performance incentive

$$\underbrace{\int_{z} \left[ u(w_{1}(z))s + \beta(1-\lambda)u(w_{2}(z)) \right] (1-g(z))d\Gamma(z)}_{\text{Performance-based Incentives}} + \underbrace{\int_{z} \left[ \beta \lambda \underline{u}(\alpha sz) \right] (1-g(z))d\Gamma(z)}_{\text{Market-based Incentives}} \tag{IC}$$

How binding IC constraint is depends on how large market-based incentives are.

# Compare market-based incentives between $s_1 < s_2 < s'$



#### Market-based incentives decrease in firm size

#### Proposition

In the two-period model, the market-based incentives decrease with firm size iff the utility function has a relative risk aversion larger than 1

$$-\frac{wu''(w)}{u'(w)}>1.$$

#### Intuition

Market competition raises the overall compensation level making the executive less sensitive to market incentives due to diminishing marginal utility

# **Towards a Dynamic Model**

Why do we need a dynamic model?

- Match the data.
  - Two-period model is too simple to generate the moments.
- Job ladder equilibrium effect.
  - The maximum value a firm is willing to bid depends on the market competition that it faces, in particular the bids of firms higher on the job ladder.
- Study the contagion effects.
   In the equilibrium, we study the spillover effects of corporate governance in large firms.

# Towards a Dynamic Model

#### Two-period Model

- no moral hazard in period 2
- $z_2 = z_1$
- only one outside firm s' > s
- no or static eq.

#### Dynamic Model

- dynamic moral hazard
- persistent productivity  $\Gamma(z, z')$
- outside firm follows F(s')
- spillover effect in the eq.

**Dynamic Model** 

### Set Up

#### Executives:

- risk averse, u(w) c(e),  $e \in \{0, 1\}$ , c(1) = c, c(0) = 0
- ullet effort increases individual productivity  $z \in \mathcal{Z}$
- z' follows a Discrete Markov Chain process  $\Gamma(z,z')$  if e=1,  $\Gamma^s(z,z')$  if e=0 likelihood ratio  $g(z,z')=\Gamma^s/\Gamma$  decreases in z'
- die with  $\delta \in (0,1)$ , the match breaks up, job disappears

#### Firms:

- firm size  $s \in \mathcal{S}$ , exogenous and permanent
- production  $y(s, z) = \alpha sz$

# Set Up

#### Search Market:

- on the job search
- with  $\lambda_1 \in (0,1)$  sample an outside firm from F(s)

#### Sequential Auction:

- Bertrand competition between current and outside firms
- Each firm has a bidding frontier,  $\bar{W}(z,s)$ , defined by  $\Pi(z,s,\bar{W}(z,s))=0$
- $\bar{W}(z,s)$  increases in z and s

# **Timing**



# **Dynamic Contract**

- State at t  $h_t = (z'_t, s_t, s'_t)$ , history  $h^t = (h_1, h_2, ..., h_t)$
- A feasible contract is a plan that stipulates

$$\{e_t(h^{t-1}), w_t(h^{t-1}), I_t(h^t)\}_{t=0}^{\infty},$$

- Simplifications  $\to \{w_t(h^{t-1})\}_{t=0}^{\infty}$ 
  - e = 1 is always optimal.
  - exclude firing, to be extended.
- ullet Use the executive's beginning-of-period expected utility, V, as a co-state variable

$$\sigma \equiv \{w(V), W(z', s', V)|z' \in \mathbb{Z} \text{ and } V \in \Phi\},$$

# **Contracting Problem**

Firms maximize profits

$$\Pi(z, s, V) = \max_{w, W(z', s')} \sum_{z' \in \mathbb{Z}} \left[ \alpha s z' - w + \tilde{\beta} \sum_{s' \in \mathbb{S}} \Pi(z', s, W(z', s')) \tilde{F}(s') \right] \Gamma(z, z')$$

subject to

$$\lambda : V = u(w) - c + \tilde{\beta} \sum_{z' \in \mathbb{Z}} \sum_{s' \in \mathbb{S}} W(z', s') \tilde{F}(s') \Gamma(z, z'), \quad \text{(Promise-K)}$$

$$\mu : \tilde{\beta} \sum_{z' \in \mathbb{Z}} \sum_{s' \in \mathbb{S}} W(z', s') \tilde{F}(s') (1 - g(z, z')) \Gamma(z, z') \ge c. \quad \text{(IC)}$$

$$\mu_0 : W(z', s') \ge \min\{\overline{W}(z', s'), \overline{W}(z', s)\} \quad \text{(PC-Executive)}$$

$$\mu_1 : W(z', s') \le \overline{W}(z', s). \quad \text{(PC-Firm)}$$

**Optimal Contract** 

# The Optimal Contract

Given the beginning of the period state (z, s, V), the current period compensation is given by w,

$$w:\frac{\partial\Pi(z,s,V)}{\partial V}=-\frac{1}{u'(w)},$$

and the continuation utility follows

$$W(z',s') = \begin{cases} \overline{W}(z',s) & \text{if } \overline{W}(z',s') \ge \overline{W}(z',s) \\ \overline{W}(z',s') & \text{if } \overline{W}(z',s) > \overline{W}(z',s') > W(z') \\ W(z') & \text{if } \overline{W}(z',s) > W(z') \ge \overline{W}(z',s') \end{cases}$$

where W(z') satisfies

$$\frac{\partial \Pi(z',s,W(z'))}{\partial W(z')} = \frac{\partial \Pi(z,s,V)}{\partial V} - \mu(1-g(z,z')).$$

# **Contracting Problem**

Insert in the optimal contract, the participation constraint becomes

$$V = u(w) - c + \tilde{\beta} \sum_{z'} \left[ \lambda_1 \sum_{s' \in \mathcal{M}_1} F(s') \overline{W}(z', s) + \lambda_1 \sum_{s' \in \mathcal{M}_2} F(s') \overline{W}(z', s') + \left( 1 - \lambda_1 \sum_{s' \in \mathcal{M}_1 \cup \mathcal{M}_2} F(s') \right) W(z') \right] \Gamma(z, z'),$$

$$(PKC')$$

and the incentive compatibility constraint becomes

$$\widetilde{\beta} \sum_{z'} \left[ \lambda_1 \sum_{s' \in \mathcal{M}_1} F(s') \overline{W}(z', s) + \lambda_1 \sum_{s' \in \mathcal{M}_2} \overline{W}(z', s') F(s') \right. \\
+ \left. \left( 1 - \lambda_1 \sum_{s' \in \mathcal{M}_1 \cup \mathcal{M}_2} F(s') \right) W(z') \right] (1 - g(z, z')) \Gamma(z, z') \ge c. \quad (IC')$$

# The Optimal Contract in terms of wage w

For exhibition, impose  $u(w) = \log(w)$ , then

$$w(z',s') = \begin{cases} \overline{w}(z',s) & \text{if } \overline{w}(z',s') \ge \overline{w}(z',s) \text{ or } w(z') > w(z',s) \\ \overline{w}(z',s') & \text{if } \overline{w}(z',s) > \overline{w}(z',s') > w(z') \\ w(z') & \text{if } \overline{w}(z',s) > w(z') \ge \overline{w}(z',s') \end{cases}$$

where  $w(z') = w(z) + \mu(1 - g(z, z'))$ .

$$\bar{w}(z', s')$$
  $w(z')$   $\bar{w}(z', s)$   $w(z', s)$   $w(z', s') = \max\{\min\{w(z), w(\bar{z'}, s)\}, w(\bar{z'}, s')\}$ 

$$ar{w}(z',s)$$
  $ar{w}(z',s')$   $w(z',s')=w(ar{z'},s)$ 

# **Optimal Contract**









































#### No Moral Hazard, Full Commitment



# **Only Moral Hazard**



#### **Only Limited Commitment**





#### Market-based incentives

#### **Proposition**

Market-based incentives decrease in firm size iff the utility function has a relative risk aversion larger than 1

$$-\frac{wu''(w)}{u'(w)}>1.$$

#### Bidding frontier is more flat as firm becomes larger



#### Market-based incentives for executive in firm s<sub>2</sub>



#### Market-based incentives for executive in firm $s_2$



#### Market-based incentives for executive in firm $s_3$



#### Market-based incentives for executive in firm $s_3$



# Estimation

#### **Moments and Estimation**

| Moments                            | Target   | Model  | Estimates            | Standard Error |
|------------------------------------|----------|--------|----------------------|----------------|
| Exit Rate                          | 0.0691   | 0.0691 | $\delta = 0.0691$    | 0.0012         |
| EE Rate                            | 0.0523   | 0.055  | $\lambda_1 = 0.2759$ | 0.0017         |
| $\hat{ ho_z}$                      | 0.8111   | 0.5499 | $ ho_z=0.7$          | 0.0036         |
| Mean(z)                            | 0.1284   | 0.1763 | $\mu_z^w = 0.06$     | 0.0006         |
| Var(z)                             | 0.0141   | 0.0141 | $\sigma_z = 0.12$    | 0.0014         |
| Mean(log(wage))                    | 7.17714  | 6.5241 | $\mu_{s} = 1.7847$   | 0.228385       |
| Mean(log(size))                    | 7.44379  | 8.7934 | $\sigma_s = 1.3982$  | 0.0314657      |
| $eta_{	extsf{wage-size}}$          | 0.370295 | 0.3196 |                      |                |
| Mean(log(delta))                   | 4.01842  | 3.8080 |                      |                |
| $eta_{	extsf{delta}-	extsf{size}}$ | 0.297673 | 0.2941 | c = 1.91385          | 0.0259         |
| $eta_{	extsf{delta-wage}}$         | 0.717209 | 2.1228 | $\sigma = 2.50748$   | 0.0046         |
| Mean(delta > 0)                    | 0.994725 | 0.9844 |                      |                |

#### **Model Predictions**



#### Model Predictions v.s. Data



**Quantitative Analysis** 

#### Quantitative Analysis: Plan

#### Decompose the contributions

• market-based v.s. performance-based incentives

Work on contagion effect of corporate governance

• less entrenchment (lower  $\alpha$ ) v.s. better monitoring (lower c)

And more? ...

# Conclusion

#### Summary

- Executives are motivated by performance-based incentives and market-based incentives.
- Market-based incentives are smaller in larger firms. So larger firms need more performance-based pay.
- The model can fit the size premium very well and generate the reasonable delta over firm size and total compensation.

# **Questions?**

```
CEO's of "Small Firms" in S&P 500
._____
```

ALASKA AIR GROUP INC

ACUITTY BRANDS INC.

ANSYS INC

tdc1: total compensation delta: dollar-percentage incentive Company Market Cap tdc1 delta | millions 000's 000's/%|

INCYTE CORP 446.408 2432.9734 60.939838 | WESTROCK CO 547.828 2800.668 130.96215 | ENVISION HEALTHCARE CORP 678.6906 1777.991 217.729 | PRICELINE GROUP INC 1775.531 165.73476 I 886.0817

HOLOGIC INC 1276.448 2709.708

1328.171

1368.129

GARTNER INC 1474.909 8945.338

889.9763 2602.093 LKQ CORP 473.70974 I REGENERON PHARMACEUTICALS 897.3801 3094.134 566.14187 SKYWORKS SOLUTIONS INC 1113.547 2638.243 128.10688 I

1194.977 950.098

CENTENE CORP 1130.155 344.02299 I 4584.605

1102.528

3738.803

99.525198 I

428.10996

133.42285 |

431.01562 |

158.65569

```
CEO's of "Large Firms" in S&P 500
```

COCA-COLA CO 95494.39 12781.61

126749.6

INTEL CORP 147738.2 6101.835

94944.89 17283.529

97836.48 15268.415

121238.6 16269.85

129381.2 21693.615

192048.2 16652.894

EXXON MOBIL CORP 344490.6 48922.808 3843.027 |

13125.882

1666.3201 I

425.62199 I

2919.7995 I

5981.3853 | 1106.8351 |

1298.8777 I

1874.5755 I

1465.7708 I

AT&T INC

PEPSICO INC

CHEVRON CORP

CISCO SYSTEMS INC

WAL-MART STORES INC

INTL BUSINESS MACHINES CORP

**+-----**