Численное моделирование случайных процессов

Лектор: Ромаданова Мария Михайловна, конспект студента ПМИ-3 Згода Ю. 13 июня 2017 г.

Содержание

1 По заданному ряду распределения, функции распределения или плотности смоделировать случайные величины. Построить ряд распределения и функцию распределения, либо плотность и функцию распределения. Отобразить полученные случайные величины на графике и построить гистограмму распределения. Вычислить числовые характеристики: математическое ожидание, дисперсию и среднее квадратическое отклонение по формулам. Получить те же числовые характеристики, используя стандартные встроенные функции MATLAB. 3 3 Вторая Часть 2.1 Числовые характеристики дискретных случайных величин и их свойства. . . . 3 2.2Функция распределения и её свойства. Плотность вероятности и её свойства. 4 Равномерное распределение на отрезке [a, b]. Плотность и функция распределе-2.3 ния равномерного распределения. Моделирование случайных величин, равномерно распределённых на отрезке [a, b] в MATLAB, и построение гистограммы распределения. Вычисление числовых характеристик: математического ожида-5 Нормальное распределение $N(\mu, \sigma^2)$. Плотность и функция распределения нормального распределения. Функция Лапласа. Свойства плотности нормального распределения. Построение плотности и функции распределения в МАТLAB, моделирование случайных величин и построение гистограммы распределения. Вычисление числовых характеристик: математического ожидания, дисперсии, 5 2.5Вероятность попадания нормально распределенной случайной величины в заданный интервал. Правило 3 сигм. Моделирование случайных величин с нор-6 Моделирование дискретных случайных величин. Общий метод: моделирование 2.6 а) по заданному закону распределения; б) по заданной функции распределения. 7 Моделирование дискретных случайных величин. Частный метод: моделирова-2.7ние дискретного равномерного распределения. Вычисление числовых характе-8

	2.8	Моделирование непрерывных случайных величин. Общие методы. Метод об-	
		ратной функции. Моделирование случайных величин экспоненциально распре-	
		деленных с параметром λ	9
	2.9	Моделирование непрерывных случайных величин. Общие методы. Метод Ней-	
			10
	2.10	Приближенное моделирование нормальной случайной величины на основе цен-	
		тральной предельной теоремы.	10
	2.11	Метод Бокса-Мюллера	10
	2.12	Моделирование многомерного гауссовского распределения	11
3	\mathbf{Tpe}	тья Часть	11
	3.1	Вероятностные пространства, случайные величины и случайные процессы	11
	3.2	Условное математическое ожидание и его свойства	12
	3.3	Мартингалы, субмартингалы и супермартингалы. Привести примеры	
	3.4	Предельные теоремы для мартингалов.	14
	3.5	Многомерное гауссовское распределение	15
	3.6	Процессы с независимыми приращениями.	16
	3.7	Распределение Пуассона. Процесс Пуассона. Неоднородный процесс Пуассона.	
		Сложный процесс Пуассона	16
	3.8	Винеровский процесс	18
	3.9	Марковские цепи	19
4	Лиц	шнее	20
	4.1	Дискретные случайные величины	22
	4.2	Основные понятия	
	4.3	Независимые одинаково-распределенные сдучайные ведичины НОР СВ	22

По заданному ряду распределения, функции распределения или плотности смоделировать случайные величины. Построить ряд распределения и функцию распределения, либо плотность и функцию распределения. Отобразить полученные случайные величины на графике и построить гистограмму распределения. Вычислить числовые характеристики: математическое ожидание, дисперсию и среднее квадратическое отклонение по формулам. Получить те же числовые характеристики, используя стандартные встроенные функции МАТLАВ.

2 Вторая Часть

2.1 Числовые характеристики дискретных случайных величин и их свойства.

Законом распределения случайной величины называется любое соотношение, устанавливающее связь между возможными значениями случайной величины и вероятностями, соответствующими этим значениям.

Рядом распределения дискретной СВ называется совокупность всех ее возможных значений $x_1, x_2, ..., x_n$ и вероятностями $p_1, p_2, ..., p_n$ появления каждого из этих событий.

Ряд распределения:

Математическое ожидание $M(X) = x_1 p_1 + ... + x_n p_n = \sum_{i=1}^n x_k p_k$ (может быть $n = \infty$) **Свойства** математического ожидания:

- 1. $M\left(C\right)=C$,с константа
- 2. M(CX) = CM(X)
- 3. M(XY) = M(X)M(Y), X,Y независимые СВ
- 4. M(X+Y) = M(X) + M(Y)- в данном случае X,Y могут быть не независимыми

Рассмотрим новую случайную величину $X-M\left(X\right)$ - отклонение случайной величины от ее MO. Это распределение будет принимать значения $x_1-M\left(X\right), x_2-M\left(X\right), ...x_n-M\left(X\right)$ с вероятностями $p_1, p_2, ..., p_n$ соответственно.

2 BTOPAS YACTЬ 4

 $M\left(X-M\left(X
ight)
ight)=0$, т.к. $M\left(X-M\left(X
ight)
ight)=M\left(X
ight)-M\left(M\left(X
ight)
ight)=M\left(X
ight)-M\left(X
ight)=0$ Дисперсией дискретной СВ называют МО квадрата отклонения СВ от ее МО: $D\left(X
ight)=M\left[X-M\left(X
ight)
ight]^{2}$

$$D(X) = M[X^{2} - 2X \cdot M(X) + (M(X))^{2}] = M(X)^{2} - (M(X))^{2}$$

Свойства дисперсии:

- 1. D(C) = 0, C-const, $D(C) = M[C M(C)]^2 = 0$
- 2. $D(CX) = C^2D(X)$
- 3. D(X + Y) = D(X) + D(Y), X, Y независимые
- 4. D(X Y) = D(X) + D(-Y) = D(X) + D(Y)

Средним квадратическим отклонением СВ называется отклонение квадратный корень из дисперсии: $\sigma\left(X\right) = \sqrt{D\left(X\right)}$ - данное понятие нужно для совпадения размерностей.

В Matlab есть встроенные функции: mean (MO), var (varience), std (среднее квадратическое отклонение)

Введем m=1000, u=rand(1,m), тогда мы можем применить эти функции: mean(u), var(u), std(u). Полученные результаты будут сходиться с формулами.

Пусть $X_1, X_2, ..., X_n$ - независимые случайные величины, то $X = X_1 + X_2 + ... + X_n$ $D(X) = D(X_1) + D(X_2) + ... + D(X_n)$ $\sqrt{D(X)} = \sqrt{D(X_1) + D(X_2) + ... + D(X_n)}$ $\sigma(X) = \sqrt{\sigma^2(X_1) + ... + \sigma^2(X_n)}$

2.2 Функция распределения и её свойства. Плотность вероятности и её свойства.

Рассмотрим СВ X. Ее функцией распределения называется функция $F_X\left(x\right) = P\left(X \leq x\right)$ Свойства:

- 1. $0 \le F(x) \le 1$
- 2. F(x)- неубывающая, $F(x_2) > F(x_1)$, $x_2 > x_1$??? Здесь ведь \geq должно быть (по крайней мере, первый знак неравенства)
- 3. P(a < X < b) = F(b) F(a)??? В силу того, что Φ Р непрерывна справа, здесь должно быть ... $\leq X <$... в противном случае нужно рассматривать в выражении пределы. Т.е. это выполняется только в том случае, если СВ непрерывна.
- 4. $P(x_1 < X < x_1 + \Delta x) = F(x_1 + \Delta x) F(x_1)$ Вероятность того, что непрерывная СВ примет одно конкретное значение, равняется нулю.
- 5. $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to+\infty} F(x) = 1$

Плотность - производная от функции распределения, f(x) = F'(x). Ее свойства:

- 1. $f(x) \ge 0$
- $2. \int_{-\infty}^{\infty} f(x) dx = 1$
- 3. $P(a < x < b) = \int_a^b f(x) dx$
- 4. $F\left(x\right) = \int_{-\infty}^{x} f\left(t\right) dt = P\left(-\infty < X < x\right)$, т.к. $F\left(x\right) = P\left(X \le x\right) = P\left(-\infty < X \le x\right)$

2 BTOPAS YACTЬ 5

2.3Равномерное распределение на отрезке [a, b]. Плотность и функция распределения равномерного распределения. Моделирование случайных величин, равномерно распределённых на отрезке [a, b] в MATLAB, и построение гистограммы распределения. Вычисление числовых характеристик: математического ожидания, дисперсии, среднего квадратического отклонения.

Случайная величина имеет непрерывное равномерное распределение на отрезке от а до b, где $a, b \in R$,

$$f_{X}\left(x
ight) = egin{cases} rac{1}{b-a} & x \in [a,b] \\ 0 & x
ot \in [a,b] \end{cases}, \ X \sim U\left[a,b\right]$$
??? Какая из точек у плотности будет выколота?

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{a}^{x} \frac{1}{b-a} dt = \frac{x-a}{b-a} \ a \le x < b, \text{ r.e. } F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & x \ge b \end{cases}$$

 $\frac{1}{b^2a}$ Плотность $\frac{1}{b^2}$ Если $X \sim$ Если $X \sim$ Математическое ожидание $E(X) = \int_{-\infty}^{\infty} x \cdot f(x) \, dx = \int_{-\infty}^{\infty} x \frac{1}{b-a} dx = \frac{1}{b-a} \int_a^b x dx = \frac{1}{b-a} \frac{x^2}{2} |_a^b = \frac{1}{b^2}$

$$\begin{array}{l} ^{-a)} 2 \\ D\left(X\right) = E\left(\left(X - E\left(X\right)\right)^2\right) = E\left(X^2\right) - \left(E\left(X\right)\right)^2 \\ E\left(X^2\right) = \int_{-\infty}^{\infty} \frac{x^2}{b - a} dx = \frac{1}{b - a} \int_{-\infty}^{+\infty} x^2 dx = \frac{1}{b - a} \frac{x^3}{3} \Big|_a^b = \frac{b^3 - a^3}{3(b - a)} = \frac{(b - a)\left(b^2 + ba + a^2\right)}{3(b - a)} = \frac{b^2 + ba + a^2}{3} \\ D\left(X\right) = \frac{b^2 + ba + a^2}{3} - \frac{(a + b)^2}{4} = \frac{4b^2 + 4ba + 4a^2 - 3a^2 - 6ab - 3b^2}{12} = \frac{(a - b)^2}{12} \\ \text{Если } X^{\sim} U\left[0, 1\right], \text{ то } Y = a + (b - a) \cdot X \Rightarrow Y \sim U\left[a, b\right] \end{array}$$

Нормальное распределение $N(\mu, \sigma^2)$. Плотность и функция рас-2.4 пределения нормального распределения. Функция Лапласа. Свойства плотности нормального распределения. Построение плотности и функции распределения в MATLAB, моделирование случайных величин и построение гистограммы распределения. Вычисление числовых характеристик: математического ожидания, дисперсии, среднего квадратического отклонения.

Плотность функции распределения имеет вид:

$$f\left(x
ight)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}},$$
 функция распределения $N\left(\mu,\sigma^2
ight)=F\left(x
ight)=rac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^x e^{-rac{(t-\mu)^2}{2\sigma^2}}dt$ Когда $\mu=0,\sigma=1,$ $F_0\left(x
ight)=rac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-rac{t^2}{2}}dt=rac{1}{\sqrt{2\pi}}\int_{-\infty}^0 e^{-rac{t^2}{2}}dt+rac{1}{\sqrt{2\pi}}\int_0^x e^{-rac{t^2}{2}}dt=0,$ $f_0\left(x
ight)=\frac{1}{\sigma\sqrt{2\pi}}\int_0^x e^{-rac{t^2}{2}}dt=0$, $f_0\left(x
ight)=\frac{1}{\sigma\sqrt{2\pi}}\int_0^x e^{-rac{t^2}{2}}dt$ $f_0\left(x
ight)=\frac{1}{\sigma\sqrt{2\pi}}\int_0^x e^{-rac{t^2}{2}}dt$ $f_0\left(x
ight)=\frac{1}{\sigma\sqrt{2\pi}}\int_0^x e^{-rac{t^2}{2}}dt$

Иногда вместо этой функции используют интеграл ошибок, error function: $erf\left(x\right)=\frac{2}{\sqrt{2\pi}}\int_{0}^{x}e^{-t^{2}}dt=$ $2\Phi\left(\frac{x}{\sqrt{2}}\right)$.

2 BTOPAS YACTL

Свойства плотности:

- 1. Функция плотности определена на всей оси
- 2. $f(x) > 0 \forall x \in \mathcal{R}$
- 3. $\lim_{x \to -\infty} f(x) = 0, \lim_{x \to +\infty} f(x) = 0$
- 4. $\max f(x) = f(\mu) = \frac{1}{\sigma\sqrt{2\pi}}$
- 5. График функции плотности симметричен относительно прямой $x=\mu$
- 6. График функции f(x) имеет 2 точки перегиба, симметричные относительно точки $x=\mu$ и эти точки перегиба имеют координаты $x_{1,2}=\mu\pm\sigma,\ f(x_{1,2})=\frac{1}{\sigma\sqrt{2\pi e}}$

Если
$$X \sim N(0,1)$$
 то $Y = \mu + \sigma X \sim N(\mu, \sigma^2)$

2.5 Вероятность попадания нормально распределенной случайной величины в заданный интервал. Правило 3 сигм. Моделирование случайных величин с нормальным распределением $N(\mu, \sigma 2)$ в MATLAB.

Рассмотрим интервал (α, β)

$$\begin{split} &P\left(\alpha < x < \beta\right) = \Phi\left(\frac{\beta - \mu}{\sigma}\right) - \Phi\left(\frac{\alpha - \mu}{\sigma}\right), \text{ где } \Phi\left(x\right) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt \text{ - функция Лапласа} \\ &|x - \mu| < \delta \to \mu - \delta < x < \mu + \delta \\ &P\left(|x - \mu| < \delta\right) = P\left(\mu - \delta < x < \mu + \delta\right) = \Phi\left(\frac{\mu + \delta - \mu}{\sigma}\right) - \Phi\left(\frac{\mu - \delta - \mu}{\sigma}\right) = \Phi\left(\frac{\delta}{\sigma}\right) - \Phi\left(-\frac{\delta}{\sigma}\right) = 2\Phi\left(\frac{\delta}{\sigma}\right). \\ &\text{Если} \end{split}$$

$$\delta = 1\sigma : P(|x - \mu| < 1\sigma) = 2\Phi(1) = 0{,}6827$$

$$\delta = 2\sigma : P\left(|x - \mu| < 2\sigma\right) = 2\Phi\left(2\right) = 0,9545$$

$$\delta = 3\sigma : P(|x - \mu| < 3\sigma) = 2\Phi(3) = 0,9973$$

Больше чем 3σ можно принебречь.

Правило: с вероятностью 0,9973 значение нормального распределения СВ лежит в интервале $[\mu - 3\sigma; \mu + 3\sigma]$

$$X \sim N(0,1), Y = \mu + \sigma X \sim N(\mu, \sigma^2)$$

$$E\left(X\right) = 0, D\left(X\right) = 1$$

$$E(Y) = E(\mu) + \sigma E(x) = \mu$$

$$D(Y) = D(\mu) + \sigma^2 D(x) = \sigma^2$$

Функция распределения

2.6 Моделирование дискретных случайных величин. Общий метод: моделирование а) по заданному закону распределения; б) по заданной функции распределения. Вычисление числовых характеристик.

X	x_1	x_2	 x_n	$\sum_{i=1}^{n} n_i = 1$
р	p_1	p_2	 p_n	$\sum_{i=1}^{n} p_i = 1$

Многоугольник распределения

Ряд распределения

Функция распределения.

Функция распределения для дискретной целочисленной случайной величины:

2 ВТОРАЯ ЧАСТЬ 8

$$F(x) = \begin{cases} 0 & x \le x_1 \\ \sum_{i=0}^{k} p_i & k = 1, 2, ..., n \\ 1 & x \ge x_n \end{cases}$$

Общий метод моделирования дискретной СВ.

$$X \in \{x_1, ..., x_n\}$$

- 1. Отрезок [0,1] разбивается на n непересекающихся участков, длины которых равны $p(x_i)$ или p_i . Устанавливается взаимно однозначное соответствие между множеством указанных участков и множество генерируемых ДСВ. При этом, участку длины p_i соответствует значение x_i .
- 2. Моделируется непрерывная CB $Y \sim U[0,1]$. Она попадает на один из указанных участков. Значение X_i , соответствующее этому участку, принимается за реализацию X.

Пример:

 $M\left(X\right)=\frac{1}{n}\sum_{i=1}^{n}X_{i}$, $DX=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-\left(M\left(X\right)\right)^{2},\sigma\left(X\right)=\sqrt{D\left(X\right)}$, где X_{i} - реализации случайных величин. В Matlab для этого встроены mean, var, std.

2.7Моделирование дискретных случайных величин. Частный метод: моделирование дискретного равномерного распределения. Вычисление числовых характеристик.

Функции округления: round - до ближайшего целого, fix - усечение дробной части числа, floor - возвращает значения, округленные до ближайшего целого $\leq X$, ceil - возвращает значения, округленные до ближайшего целого > X

Дискретный случай

$$p(x) = \frac{1}{n}, x = a, a + 1, a + 2, a + n - 1$$

 $p\left(x\right)=rac{1}{n},\,x=a,a+1,a+2,a+n-1$ n - параметр масштаба, число возможных значений $n\geq 2$

а - параметр положения

$$M(X) = a + \frac{n-1}{2}, \ D(X) = \frac{n^2-1}{12}, \ \sigma(X) = \sqrt{D(X)}$$

 $X_i = [n \cdot r_i] + a, \ \text{где } r_i \sim U(0, 1)$

2 BTOPAЯ ЧАСТЬ 9

2.8 Моделирование непрерывных случайных величин. Общие методы. Метод обратной функции. Моделирование случайных величин экспоненциально распределенных с параметром λ.

Метод обратной функции

Пусть ξ задана в a < x < b . p(x) > 0 при a < x < b . Обозначим F(x) - функцию распределения ξ , которая определена на a < x < b: $F(x) = \int_a^x p(u) \, du$

Теорема: (метод обратной функции)

СВ ξ удовлетворяющая уравнению $F\left(\xi\right)=\gamma$ (*) , $\gamma\in U\left(0,1\right)$, имеет плотность распределения $p\left(x\right)$.

Доказательство:

Т.к. F(x) строго возрастает на (a,b) от F(a)=0 до F(b)=1, то (*) имеет единственный корень при каждом γ .

При этом равны вероятности $P\left(x < \xi < x + dx\right) = P\left(F\left(x\right) < \gamma < F\left(x + dx\right)\right)$. Т.к. γ - равномерно распределенный на (0,1), то $P\left(x < \xi < x + dx\right) = F\left(x + dx\right) - F\left(x\right) = p\left(x\right) dx$

Доказано

Моделирование случайных величин экспоненциально распределенных с параметром λ .

СВ X имеет экспоненциальное распределение, если плотность $f_{X}(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x < 0 \end{cases}$

$$\Phi P: F_X(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0\\ 0 & x < 0 \end{cases}$$

 $F(\xi) = \gamma \Rightarrow 1 - e^{-\lambda \xi} = \gamma \Rightarrow e^{-\lambda \xi} = 1 - \gamma \Rightarrow -\lambda \xi = \ln(1 - \gamma) \Rightarrow \xi = -\frac{1}{\lambda} \ln(1 - \gamma)$

 $\gamma \in U(0,1), 1 - \gamma \in (0,1), \xi = -\frac{1}{\lambda} \ln(\gamma)$ $M(x) = \int_{-\infty}^{\infty} x f(x) dx, D(x) = M(X^{2}) - (M(X))^{2} = \int_{-\infty}^{\infty} x^{2} f(x) dx - (M(X))^{2}, \sigma(x) = \sqrt{D(X)}$

Если случайная величина $X \sim U[0,1]$, то $Y = -\frac{1}{\lambda} \ln{(X)} \sim Exp(\lambda)$.

ВТОРАЯ ЧАСТЬ 10

MO:
$$E(Y) = \frac{1}{\lambda}, D(Y) = \frac{1}{\lambda^2}, \sigma(Y) = \frac{1}{\lambda}$$

2.9Моделирование непрерывных случайных величин. Общие методы. Метод Неймана.

Случайная величина ξ определена на $a < x < b, p(x) \le 1$

Теорема: пусть γ_1 и γ_2 - независимые СВ, $\gamma_1 \in U[0,1]$, $\gamma_2 \in U[0,1]$, и $\xi' = a + \gamma_1 (b-a)$, $\eta' = C\gamma_2$. Случайная величина ξ , определяемая условием $\xi = \xi'$, если $\eta' < p(\xi')$, имеет плотность равную p(x)

$$\int_{a}^{b} f(x) dx = 1 \Rightarrow C$$

2.10Приближенное моделирование нормальной случайной величины на основе центральной предельной теоремы.

Пусть
$$R \in U[0,1], M(R) = \frac{1}{2}, D(R) = \frac{1}{12}.$$
 Тогда $M\left(\sum_{j=1}^{n} R_j\right) = \frac{n}{2}, D\left(\sum_{j=1}^{n} R_j\right) = \frac{n}{12}, std\left(\sum_{j=1}^{n} R_j\right) = \sqrt{\frac{n}{12}}$ Нормируем:

 $\frac{\sum_{j=1}^n R_j - \frac{n}{2}}{\sqrt{n}}$ - в силу центральной предельной теоремы, при $n \to \infty$ распределение этой

нормированной случайной величины стремится к $\sim N(0,1)$. При конечном п распределение приближенно нормальное. В частности, при $n=12:\sum_{j=1}^{n}R_{j}-6\sim N\left(0,1\right)$

2.11Метод Бокса-Мюллера.

 $X \sim N(0,1), Y \sim N(0,1)$. Выполним переход к полярным координатам: $X = r \cdot cos(\vartheta), Y = r \cdot cos(\vartheta)$ $r\cdot sin(\vartheta)$, $X^2+Y^2=r^2\in Exp\left(\frac{1}{2}\right)$ (один из частных случаев, см. Википедия - Распределение Хи-Квадрат)

Применим метод обратной функции - экспоненциальное распределение, откуда f(x) =

Генерируем 2 CB: с равномерным и экспоненциальным распределением. $u \in U[0,1], v \in$ U[0,1].

$$N^0 1. \ \vartheta = 2\pi u \sim U \ [0,2\pi]$$
 $N^0 2. \ r^2 = -2 \ln \left(v\right) \Rightarrow r = \sqrt{-2 \ln \left(v\right)}$
 $X = \sqrt{-2 \ln \left(v\right)} \cos \left(2\pi u\right), Y = \sqrt{-2 \ln \left(v\right)} \sin \left(2\pi u\right).$
Формулы можно упростить: из полярных координат переходим обратно в декартовы $s = X^2 + Y^2$, если $0 < s < 1$, $\cos \left(\vartheta\right) = \frac{x}{\sqrt{s}}, \sin \left(\vartheta\right) = \frac{y}{\sqrt{s}}$
Таким образом, необходимы $CB \ X \in U \ [-1;1], Y \in U \ [-1,1], s = X^2 + Y^2 : 0 < s < 1$
 $z_1 = \frac{X}{\sqrt{s}} \cdot \sqrt{-2 \ln \left(s\right)} = X \sqrt{\frac{-2 \ln \left(s\right)}{s}}$
 $z_2 = \frac{Y}{\sqrt{s}} \sqrt{-2 \ln \left(s\right)} = Y \sqrt{\frac{-2 \ln \left(s\right)}{s}}$
Тогда $z_1 \sim N \ (0,1), z_2 \sim N \ (0,1).$

Моделирование многомерного гауссовского распределения 2.12

 $\xi = (\xi_1, \xi_2, ..., \xi_n)$ - случайный вектор, имеющий многомерное нормальное распределение с век-

тором математических ожиданий
$$\mu = (\mu_1 \mu_2, ... \mu_n)$$
 и ковариационной матрицей $\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & ... & \sigma_{1n} \\ \vdots & & & & \\ \sigma_{n1} & \sigma_{n2} & ... & \sigma_{nn} \end{pmatrix}$

 $\sigma_{ij} = M \left[(\xi_i - \mu_i) (\xi_j - \mu_j) \right]$ симметричная положительно определенная матрица.

Тогда $\xi = A\eta + \mu$, где η - вектор, каждая компонента которого имеет рапределение N(0,1), A - нижняя треугольная матрица, полученная из матрицы Σ разложением Холецкого $\Sigma =$ $A \cdot A^T$

3 Третья Часть

Вероятностные пространства, случайные величины и случайные 3.1процессы.

Определение: Пусть Ω - заданное множество, тогда σ - алгебра на Ω есть семейство $\mathcal F$ подмножеств со следующими со следующими свойствами

- 1. $\phi \in \mathcal{F}$
- 2. $F \in F \Rightarrow F^C \in F$ где $F^C = \Omega/F$ дополнение множества F в Ω
- 3. $A_1, A_2 \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Пара (Ω, \mathcal{F}) называется измеримым прсотранством.

Вероятностной мерой на измеримом пространстве (Ω, \mathcal{F}) называется функция $P: F \to$ [0, 1] такая что

- 1. $P(0) = 0, P(\Omega) = 1$
- 2. Если $A_1, A_2, ... \in \mathcal{F}$ и $\{A_i\}_{i=1}^{\infty}$ непересекающаяся система $(A_i \cap A_j = \emptyset \text{ при} i \neq j)$, то $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P\left(A_i\right)$

Тройка (Ω, F, P) называется **вероятностным пространством**.

Вероятностное пространство называется **полным**, если \mathcal{F} содержит все подмножества Gмножества Ω с P - внешней мерой ноль, т.е. такие подмножества, что

$$P^*(G) = inf(P(F); F \in \mathcal{F}, G \in \mathcal{F}) = 0$$

Пусть (Ω, \mathcal{F}, P) - заданное вероятностное пространство. Тогда функция $Y : \Omega \to \mathcal{R}^N$ называется \mathcal{F} -измеримой, если $Y^{-1}(U) := \{\omega \in \Omega, Y(\omega) \in U\} \in \mathcal{F}$ для всех открытых множеств $U \in \mathcal{R}^n$

Если $X: \Omega \to \mathcal{R}^N$ - произвольная функция, то σ -алгебра \mathcal{H}_X порожденная X есть наименьшая σ - алгебра на Ω , содержащая все множества $U \in \mathcal{R}^n$ открыты. ???

Случайная величина X есть \mathcal{F} -измеримая функция $X:\Omega\to\mathcal{R}^n$. Каждая случайная величина порождает вероятностную меру μ_X на \mathcal{R}^n , определеяемую равенством $\mu_X(B)=P\left(X^{-1}\left(B\right)\right)$. Мера μ_X называется распределением величины X. Если $\int_{\Omega}|X\left(\omega\right)|\,dP\left(\omega\right)<\infty$, то число $E\left[X\right]=\int_{\Omega}X\left(\omega\right)dP\left(\omega\right)=\int_{\mathcal{R}^n}xd\mu_X\left(x\right)$ называется математическим ожиданием величины X (относительно меры P)

Случайный процесс - это параметризованный набор случайных величин $\{X_t\}_{t\in T}$ определенных на вероятностном пространстве пространстве (Ω, \mathcal{F}, P) и принимающих значения в \mathcal{R}^n . Множеством параметров T обычно является полупрямая $[0, \infty)$, однако это может быть и отрезок [a, b].

Другое определение: Случайным процессом на интервале $T \subset \mathcal{R}$ называется семейство СВ $X = (X_t)_{t \in T}$ (относительно базиса (Ω, \mathcal{F}, P)) - это функция от двух аргументов $X_t(\omega)$, $\omega \in \mathcal{R}$.

Для каждого фиксирвоанного $t \in T$ мы получаем случайную величину $\omega \mapsto X_t(\omega)$, $\omega \in \Omega$ С другой стороны, фиксируя $\omega \in \Omega$, мы можем рассмотреть функцию $t \mapsto X_\tau(\omega)$, $t \in T$ которая называется **траекторией процесса** X_t

3.2 Условное математическое ожидание и его свойства.

Пусть (Ω, \mathcal{F}, P) - вероятностное пространство, $X \to \mathcal{R}^n$ - CB; $E(|X|) < \infty$. Если $\mathcal{H} \in \mathcal{F}$ есть σ -алгебра, то условное математическое ожидание случайной величины X относительно $\mathcal{H} E[X|\mathcal{H}]$ - функция, действующая из Ω в \mathcal{R}^n и удовлетворяющая условиям:

- 1. $E\left[X|\mathcal{H}\right]$ является \mathcal{H} измеримой функцией
- 2. $\int_H E\left[X|\mathcal{H}\right] = \int_H XdP$ для всех $H \in \mathcal{H}$

Свойства условного МО:

Пусть $Y:\Omega\to\mathcal{R}^n$ - другая случайная величина с математическим ожиданием $E\left[|Y|\right]<\infty$ и пусть a и $b\in\mathcal{R}^n$. тогда:

- 1. $E[aX + bY|\mathcal{H}] = aE[X|\mathcal{H}] + bE[Y|\mathcal{H}]$
- 2. $E[E[X|\mathcal{H}]] = E[X]$
- 3. $E\left[X|\mathcal{H}\right]=X$, если X \mathcal{H} измеримая функция.
- 4. $E[X|\mathcal{H}] = E[X]$, если X не зависит от \mathcal{H}
- 5. $E[Y \cdot X | \mathcal{H}] = Y \cdot E[X | \mathcal{H}]$, если Y \mathcal{H} -измеримая случайная величина. \cdot означает скалярное произведение в \mathcal{R}^n .

Доказательство:

№4. Если X не зависит от \mathcal{H} , то для $H \in \mathcal{H}$ мы получаем $\int_H X dP = \int_\Omega X \cdot I_H dP = \int_\Omega X dP \cdot \int_\Omega I_H dP = E(X) P(H)$

Следовательно, постоянное значение E[X] удовлетворяет условиям (1) и (2) из определения.

№5. Сначала докажем результат для случая, когда $Y = I_H$ для некоторого $H \in \mathcal{H}$. Тогда для всех $G \in \mathcal{H}$ мы имеем $\int_G Y \cdot E[X|\mathcal{H}] dP = \int_{G \cap H} E[X|\mathcal{H}] dP = \int_{G \cap H} X dP = \int_G Y \cdot X dP$ Следовательно, $Y \cdot E[X|\mathcal{H}]$ удовлетворяет условиям (1) и (2).

Аналогично доказывается, что утверждение справедливо если Y - простая функция: $Y = \sum_{j=1}^m c_j I_{H_j}$ где $H_j \in \mathcal{H}$. В общем случае утверждение следует из аппроксимации величины Y такими простыми функциями.

Теорема 1: Пусть G, \mathcal{H} - σ - алгебры такие, что $G \subset \mathcal{H}$, тогда $E[X|G] = E[E[X|\mathcal{H}]|G]$ **Теорема 2 (Неравенство Йенсена):** если $\Phi : \mathcal{R} \to R$ - выпуклая функция и $E[|\Phi(X)| < \infty$, то $\Phi(E[X|\mathcal{H}]) \leq E[\Phi(X)|\mathcal{H}]$ Следствия:

- 1. $E[X|\mathcal{H}] \leq E[|X||\mathcal{H}]$
- 2. $(E[X|\mathcal{H}])^2 \le E[|X|^2|\mathcal{H}]$

Если $X_n \to X$ в то $E[X_n|\mathcal{H}] \to E[X|\mathcal{H}]$ в L^2 .

3.3 Мартингалы, субмартингалы и супермартингалы. Привести примеры.

Адаптированный СП $(X_t)_{t\geq 0}$ называется **мартингалом** если $\forall t\geq 0$ $E\left|X_t\right|<\infty, E\left(X_{t+s}\middle|\mathcal{F}_t\right)=X_t(P$ - почти наверное) $s,t\geq 0$

(предыдущие два условия - *)

Адаптированный СП $(X_t)_{t\geq 0}$ называется **субмартингалом**, если он удовлетвоярет условию (*) и $E(X_{t+s}|\mathcal{F}_t)\geq X_t$

Адаптированный СП $(X_t)_{t\geq 0}$ называется **супермартингалом**, если он удовлетворяет условию (*) и $E[X_{t+s}|\mathcal{F}_t] \leq X_t$

Если X_{t} $(t \geq 0)$ - субмартингал, то процесс $(-X_{t})$ - супермартингал.

 $(X_t)_{t\geq 0}$ называется **мартингал-разностью** если он удовлетворяет условию (*) и выполянется $E\left[X_{t+s}|\mathcal{F}_t\right]=0$

Пусть задана некоторая фильтрация $\{\mathcal{F}_t, t \in T \subset \mathcal{R}\}$, т.е. неубывающее семейство σ - алгебры $\mathcal{F}_t \in \mathcal{F}, t \in T(\mathcal{F}_s \in \mathcal{F}_t \text{ при } s \leq t, t \in T)$.

Последовательность CB (X_t) $(t \ge 0)$ называется **адаптированной относительно фильтрации** F_t , если $\forall t \ge 0$ CB X измерима относительно σ - алгебры F_t .

Адаптированный случайный процесс $X_t \, (t \geq 0)$ наызывается **мартингалом**, если для всех $t \geq 0$

- 1. $E(X_t) < \infty$
- 2. $E\left(X_{t+s}|\mathcal{F}_t\right) = X_t$

Мартингал является одновременно и субмартингалом и супермартингалом.

 $№1.\ X_t = \sum_{k=1}^t \xi_k(t \ge 0\ \text{целое}),\ (\xi_t)_1^\infty$ - последовательности независимых CB, для которых $E\xi_t = 0$

$$E(X_{t+1}|\mathcal{F}_t) = E\left(\sum_{k=1}^{t+1} \xi_k | \mathcal{F}_t\right) = E\left(\sum_{k=1}^{t+1} \xi_k | \xi_1, \xi_2, ..., \xi_t\right) = \sum_{k=1}^{t} \xi_k + E(\xi_{t+1}|\xi_1, \xi_2, ..., \xi_t) = \sum_{k=1}^{t} \xi_k = X_t + E(\xi_{t+1}) = X_t$$

 N_{2} . $X_{t} = \sum_{k=1}^{t} \xi_{k}$, $(\xi_{t})_{1}^{\infty}$ - мартингал-разность. $E\left(\sum_{k=1}^{t+1} \xi_{k} | \xi_{1}, \xi_{2}, ..., \xi_{k}\right) = \sum_{k=1}^{t} \xi_{k} + E\left(\xi_{t+1} | \xi_{1}, ..., \xi_{k}\right) = X_{t}$ N_{2} 3. $X_{t} = \bigcap_{k=1}^{t} \xi_{k}$, $(\xi_{t})_{1}^{\infty}$, $(\xi_{t})_{1}^{\infty}$ - разность независимых CB, $E\xi_{k} = \alpha$ $E\left(\prod_{k=1}^{t} \xi_{k} | \xi_{1}, ..., \xi_{t}\right) = \prod_{k=1}^{t} \xi_{k} \cdot E\left(\xi_{t+1} | \xi_{1}, ..., \xi_{t}\right) = X_{t}$ $N_{2}4.\ X_{t}=E\left(\xi|F_{t}\right)$,где ξ - CB с конечным MO $E(X_{t+1}|F_t) = E(E(\xi|F_{t+1})|F_t) = E(\xi|F_t) = X_t$ Примеры субмартингалов \mathbb{N}^0 1. $X_t = \sum_{k=1}^t \xi_t, (t \ge 0), \, \xi_k$ - последовательность неотрицательных интегрируемых СВ $E\left(\sum_{k=1}^{t+1} \xi_k | \xi_1, ..., \xi_t\right) = \sum_{k=1}^t \xi_k + E\left(\xi_{t+1} | \xi_1, ... \xi_t\right) \ge X_t$ \mathbb{N}^{2} . $X_{t}=g\left(\xi_{t}\right)$, где ξ_{t} - мартингал, g - выпуклая вниз функция, $E\left|g\left(\xi_{t}\right)\right|<\infty,\,t\geq0$ Неравенство Йенсена: $\phi(E[x|\mathcal{H}]) \leq E[\phi(x)|\mathcal{H}]$ $E(X_{t+1}|F_t) = E(g(\xi_{t+1})|F_t) \ge g(E(\xi_{t+1}|F_t)) = g(\xi_t) = X_t$ \mathbb{N} 3. $X_t=Y_t^+$, где $Y^+=max\left(0,Y\right)$, где $\left(Y_t,\mathcal{F}_t\right)$ - субмартингал. $E(X_{t+1}|F_t) = E(Y_{t+1}^+|F_t) = E(max(0,Y_{t+1})|F_t) \ge max(0,E(Y_{t+1}|\mathcal{F}_t)) \ge max(0,Y_t) =$ $Y_t^+ = X_t$

Предельные теоремы для мартингалов. 3.4

Предельные теоремы для мартингалов

Пусть $(X_n, F_n)_{n \in \mathcal{N}}$ - субмартингал и (a, b) - непустой интервал.

Определим марковские моменты

 $\tau_1 = min (t \geq 0 : X_t \leq a)$

 $\tau_2 = min (t \ge \tau_1, X_t \ge b)$

 $\tau_{2,m-1} = min (t \ge \tau_{2m-2} : X_t \le a)$ $\tau_{2m} = min (t \geq \tau_{2m-1} : X_t \geq b)$

Введем СВ
$$\beta_{N}\left(a,b\right)=\begin{cases} 0 & \tau_{2}>N\\ \max\left\{m:\tau_{2m}\leq N\right\} & \tau_{2}\leq N \end{cases}$$

 $\beta_N(a,b)$ - число пересечений снизу вверх интервала [a,b] последовательностью $X_1...X_t$ Лемма (о числе пересечений; Дуб)

Для описанных выше величин справедливо неравенство $E\beta_{N}\left(a,b\right) \leq \frac{E\left(X_{N}-a\right)^{+}}{b-a} \leq \frac{EX_{N}^{+}+\left(a\right)}{b-a}$ где $X^{+} = \max(0, X)$

Доказательство:

Т.к. $\beta_N\left(a,b\right)$ для последовательности $\left(X_n,F_n\right)_{n\in\mathbb{N}}$ совпадает с $\beta_N\left(0,b-a\right)$ для последовательности $((X_N - a)^+, F_n)_{n \in N}$ мы будем считать, что a = 0 и $X_n \ge 0, n \in N$.

Положим $X_0 = 0, F_0 = \{ \emptyset, \Omega \}$

Пусть для $i \in N, \phi_i = 1$ $\{\tau_m < \tau \le \tau_{m+1}$ для нечетного $m\}$ Тогда в $\beta_N(0,b) \le \sum_{i=1}^N (X_i - X_{i-1}) \phi_i$

Заметим, что $\{\phi_i = 1\} = U_m \{\{\tau_m < i\} \{\tau_{m+1} < 1\}\} \subset F_{i+1}, i \in \mathcal{N}$??? Поэтому в $E\beta_N(a,b) \leq \sum_{i=1}^N E\left[(X_i - X_{i-1})\phi_i\right] = \sum_{i=1}^N E\left[\phi_i\left(E\left(X_i|F_{i-1}\right) - X_{i-1}\right)\right] \leq \sum_{i=1}^N E\left[\phi_i\left(E\left(X_i|F_{i-1}\right) - X_{i-1}\right)\right]$ $\leq \sum_{i=1}^{N} E\left[E\left(X_{i}|F_{i-1}\right) - \overline{X_{i+1}}\right] = \sum_{i=1}^{N} \left(EX_{i} - EX_{i-1}\right) = EX_{N}$

Теорема: пусть $(X_n, F_n)_{n \in \mathbb{N}}$ - субмартингал такой, что $\sup_n E|X_n| < \infty$. Тогда с вероятностью 1 существует $X_{\infty} = \lim_{n \to \infty} X_n$ причем $E\left|X_{\infty}\right| < \infty$

Доказательство:

Пусть
$$\underline{X} = \lim_{n \to \infty} \inf X_n, \overline{X} = \lim_{n \to \infty} \sup X_n$$

Допустим, что
$$P\left(\underline{X} < \overline{X}\right) > 0$$
. Т.к. $\left\{\underline{X} < \overline{X}\right\} = \bigcup_{a,b \in Q, a < b} \left\{\underline{X} < a < b < \overline{X}\right\}$????

$$E\beta_{N}\left(a,b\right) \leq \frac{EX_{N}^{+}+\left(a\right)}{b-a}$$
 Обозначим $\beta_{\infty}\left(a,b\right) = \lim_{N \to \infty} \beta\left(a,b\right)$
$$\sup_{E} EX_{N}^{+}+\left|a\right|$$

$$\sup EX_N^+ + |a|$$

$$E\beta_{\infty}(a,b) \leq \frac{1}{b-a}$$

Заметим, что для субмартингалов $(X_n, F_n)_n \in N$

$$\sup EX_n^+ < \infty \Leftrightarrow \sup E\left|X_n\right| < \infty$$

$$T.$$
к. $EX_n^+ \le E|X_n| = 2EX_n^+ - EX_n \le 2EX_n^+ - EX_1$

Следовательно, $E\beta_{\infty}\left(a,b\right)<\infty$ почти наверное, что противоречит предположению, что $P\left(\underline{X} < a < b < \overline{X}\right) > 0.$

Таким образом, $P\left\{\underline{X}<\overline{X}\right\}=0$. По лемме Фату $E\left|X_{\infty}\right|\leq\sup E\left|X_{n}\right|<\infty$. Доказано

3.5 Многомерное гауссовское распределение.

Если X - CB, имеет **нормальное** или **гауссовское распределение** с плотностью $f_{X}\left(x\right)=$ $\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(x-m)^2}{2\sigma^2}\right), m = EX, \sigma^2 = E(X-m^2)$

Характеристическая функция $\phi_X\left(lpha
ight)=E\left[e^{ilpha x}
ight],\;\phi_x\left(lpha
ight)=\int_{-\infty}^{\infty}e^{ilpha x}f_X\left(x
ight)dx.$ Для гауссовского распределения $\phi_X(\alpha) = E\left[e^{i\alpha X}\right] = exp\left(i\alpha m - \frac{\alpha^2\sigma^2}{2}\right)$

Рассмотрим **многомерную гауссовскую СВ** $X = (X_1, X_2, ..., X_n)^T, m = (m_1, m_2, ..., m_n)^T$? $B = (b_{kl})_{n imes n}$ - матрица ковариаций, $b_{kl} = E\left[(X_k - m_k) \left(x_l - m_l
ight)
ight]$

Характеристическая функция

$$\phi_X(\alpha) = \exp\left(i\alpha^T m - \frac{\alpha^T B \alpha}{2}\right) = \exp\left(i\sum_{k=1}^n \alpha_k m_k - \frac{1}{2}\sum_{k=1}^n \sum_{l=1}^n b_{kl}\alpha_k \alpha_l\right)$$

Выведем плотность невырожденного распределения многомерной гауссовской СВ общего вида.

Предположим, что EX = m = 0. - нулевой вектор. B - симметричная неотрицательно определенная матрица с действительными элементами $B=B^T,$ т.е. для любого небора чисел $z_1, ..., z_n, \sum_{k=1}^n \sum_{l=1}^n b_{kl} z_k z_l \ge 0.$

Из линейной алгебры для любого симметричного и неотрицательного определения матрицы $M(n \times n)$ существует матрица $N(n \times n)$ ортогонального преобразования, переводящая М в диагональную матрицу: $M \mapsto N^T M N$.

Ортогональная матрица N $N \cdot N^T = N^T N = E \Rightarrow N^{-1} = N^T$, $\det(N) = 1$

Пусть С матрица ортогонального преобразования и $D = C^T BC$, D- диагональная матрица с диагональю $\sigma_1^2, ..., \sigma_n^2$.

Для случайного вектору Y, имеющего независимые гауссовские координаты с дисперсия-

ми
$$\sigma_k^2$$
, плотность распределений равна произведению частных плотностей
$$f_Y(x) = \prod_{k=1}^n \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{x_k^2}{2\sigma_k^2}\right) = \left(\frac{1}{\sqrt{2\pi}}\right)^n (\sigma_1\sigma_2...\sigma_n)^{-1} \exp\left(-\frac{x^TD^{-1}x}{2}\right)$$
 где $x = (x_1,...,x_n)^T$; D^{-1} - диагональная матрица, имеющая своей диагональю $(\sigma_1^{-2},...,\sigma_n^{-2})$.

$$f_Y(x) = \left(\frac{1}{\sqrt{2\pi}}\right)^n (\det D)^{-1/2} \exp\left(\frac{-x^T (C^T B C)^{-1} x}{2}\right) =$$

$$N^{\circ}1 \det (D) = \det \left(C^T B C\right) = \det \left(C^T\right) \det (B) \det (C) = \det B$$

$$N^{\circ}2 (AM)^{-1} = M^{-1} A^{-1}$$

$$N^{\circ}3 (C_x)^T = x^T C^T$$

$$= \left(\frac{1}{\sqrt{2\pi}}\right)^n (\det B)^{-1/2} \cdot \exp\left(\frac{-(Cx)^T B^{-1} C x}{2}\right)$$
Обозначим $y = Cx \Rightarrow x = C^{-1} Y$

$$f_Y(C^{-1}Y) = \left(\frac{1}{\sqrt{2\pi}}\right)^n (\det B)^{-1/2} \exp\left(\frac{-Y^T B^{-1} Y}{2}\right)$$
С другой стороны
$$\phi_x(\alpha) = \exp\left(-\alpha^T B \alpha\right) = \exp\left(-\alpha^T C D C^T \alpha\right) = \exp\left(-(C^{-1}\alpha)^T \cdot (C^{-1}\alpha)\right).$$
Обозначим $\beta = C^{-1}\alpha$ и учитывая, что $\phi_X(C\beta) = E \exp\left(i(C\beta)^T X\right) = E \exp\left(i\beta^T C^T X\right) =$

$$\phi_{C^T X}(\beta)$$
 получаем $\phi_X(C\beta) = \exp\left(-\beta^T D \beta\right) = \phi_{C^{-1} x}(\beta)$

Отсюда следует, что вектор, обозначенный Y равен $C^{-1}X$. Нам известно значение плот-

ности распеределения вектора $C^{-1}x$ в т. $C^{-1}Y$. Можно показать, что $f_{CX}(Cx) = f_X(x)$ т.к. ${\cal C}^{-1}$ - матрица, ортогональная преобразвоанию.

Получим искомую формулу
$$f_X(X) = \left(\frac{1}{\sqrt{2\pi}}\right)^n (\det(B))^{-1/2} \exp\left(\frac{-x^T B^{-1} x}{2}\right)$$
 (если $m = Ex = 0$)
Если $m \neq 0$, то $f_{X+m}(x) = f_{X+m}(y+m) = f_X(y) = \left(\frac{1}{\sqrt{2\pi}}\right)^n (\det B)^{-1/2} \exp\left(\frac{-y^T B^{-1} y}{2}\right) = 0$

$$\left(\frac{1}{\sqrt{2\pi}}\right)^n \left(\det B\right)^{-1/2} \exp\left(-\frac{(x-m)^T B^{-1}(x-m)}{2}\right)$$

3.6 Процессы с независимыми приращениями.

Действительный случайный процесс называется процессом с независимым приращением, если для $\forall n \in N$ и всех $t_0,...,t_k: 0=t_0 < t_1... < t_n$ величины $X_{t_0},X_{t_1}-X_{t_0},...,X_{t_n}-X_{t_{n-1}}$ независимы в совокупности.

3.7 Распределение Пуассона. Процесс Пуассона. Неоднородный процесс Пуассона. Сложный процесс Пуассона.

Распределением Пуассона называется распределение на множестве \mathcal{Z}_+ , неотрцитальеных целых чисел, задаваемое формулой $p_n = P\left(x=n\right) = \frac{\mu^k}{n!}e^{-\mu} \left(n \in Z_+\right), \ \mu > 0$ - параметр распределения.

Пуассоновкая CB X - это целочисленная CB, имеющая распределение Пуассона. E(X) = $\mu, D(X) = \mu.$

Свойство: Пусть X_1 и X_2 - две независимых СВ с параметрами μ_1 и μ_2 , тогда их сумма тоже будет пуассоновской СВ с параметром $\mu_1 + \mu_2$.

Это свойство доказывается с помощью производящей функции

$$M_X(t) = E\left[e^{tx}\right]$$
 $M_X(t) = \int_{-\infty}^{\infty} e^{tX} p^x \left(dx\right)$
 $M_X(t) = \sum_{i=1}^{\infty} e^{tX_i p_i}$ - производящая функция.
 $Ee^{\alpha X} = \sum_{n=0}^{\infty} e^{\alpha n(X_1 + X_2)} = Ee^{\alpha X_1} Ee^{\alpha X_2} = \exp\left(-\left(\mu_1 + \mu_2\right)\left(1 - e^{\alpha}\right)\right)$, тогда $Ee^{\alpha(X_1 + X_2)} = Ee^{\alpha X_1} Ee^{\alpha X_2} = \exp\left(-\left(\mu_1 + \mu_2\right)\left(1 - e^{\alpha}\right)\right)$, что по теореме о единственности для производящей функции может быть только у Пуассоновского распределения.

Предложение: если (τ_i) для $i \geq 1$ независимые экспоненциально распределенные СВ с параметром λ , тогда для него $\forall t > 0$ СВ $N_t = \inf \{ n \geq 1, \sum_{i=1}^n \tau_i > t \}$ имеет пуассоновское распределение λt , такое что $\forall n \in N$ $P(Nt = n) = e^{-\lambda t} \left(\frac{\lambda t}{n!}\right)^n$

Случайный процесс X = X(t), $t \ge 0$ наызвается **процессом Пуассона**, если X(0) = 0 и существует некоторая величина $\lambda > 0$ (параметр процесса) и:

- 1. Х неубывающий, непрерывный справа процесс
- 2. Х процесс с незваисимыми приращениями
- 3. X процесс с целочисленными значениями, где случайное приращение на любом интервале длины t имеет распределение Пуассона с параметром λt

Пусть $\sigma_1, \sigma_2, \dots$ - это последовательные моменты скачков процесса X. Распределение 1-го скачка $P\left(\sigma_1 > t\right) = P\left(x\left(t\right) = 0\right) = e^{-\lambda t}$.

Можно доказать, что остальные интервалы меджу соседними скчаками распределены экспоненциально и независимо, построив по этим условиям новый процесс и показав эквивалентностть (по условиям Колмогрова) вновь построенного процесса с исходным. Другой способ доказательства связан с независимостью и однородностью приращений процесса X(t).

Пусть (τ_i) где $i \geq 0$, последовательность независимых экспоненциально распределенных СВ с параметром λ и $\tau_n = \sum_{1}^n \tau_i$, тогда процесс определенный с помощью $N_t = \sum_{n=1}^n I_t \geq \tau_k$, называется **процессом Пуассона** с интенсивностью λ .

Неоднородный процесс Пуассона.

Пусть $\lambda(t)$ - это произвольная интегрируемая функция на $S = [0, \infty]$.

Процесс X называется процессом Пуассона с интенсивностью $\lambda\left(t\right)$ если $X\left(0\right)=0$ и:

- 1. Х неубывающая непрерывный справа процесс
- 2. Х процесс с независимыми приращениями
- 3. X процесс с целоисленными значениями, где CB приращения на интервале [a,b) имеет распределение Пуассона с параметрами $\mu\left(a,b\right)=\int_{a}^{b}\lambda\left(t\right)dt$.

Сложный процесс Пуассона

Пусть N(t) - однородный процесс Пуассона с параметром β и (U(n)), где (n=1,2,...)последователность незвисимых случайно распределенных НОР величин. Причем Пуассоновский процесс и последовательность независимы между собой. Сложным процессом Пуассона называется процесс X(t), $t \ge 0$ вида $X(t) = \sum_{k=1}^{N(t)} U_k$.

В отличие от одногродного Пуассона, этот процесс в момент времени σ_n разделен независимыми промежутками, имеет скачки случайные по величине и необязательно положительные.

3.8 Винеровский процесс.

Однородным стационарным винеровским процессом называется процесс $w\left(t\right), t>0$ обладающий следующими свойствами

- 1. Процесс w(t) непрерывен с вероятностью 1 в любой точке t>0
- 2. Процесс является однородным процессом с независимыми приращениями
- $3.\ w\left(0
 ight)=0$ с вероятностью 1 и приращение $w\left(t_{2}
 ight)-w\left(t_{1}
 ight)$ при $t_{2}>t_{1}$ имеет гауссовское распределение с нулевым средним и дисперсией t_2-t_1 .

С помощью 3) свойства как раз и моделируется винеровский процесс.

Из однородности процесса следует значение одномерной плотности процесса $f_t(x) = \frac{1}{\sqrt{2\pi t}}$ Свойства винеровского процесса:

- 1. Винеровский процесс с вероятностью 1 траектории этого процесса непрерны, и не дифференцируемы ни в одной точке t > 0;
- 2. С вероятностью 1 траектории процесса выходят из любого конечного интервала, но в то же время для траекторий выполнился закон повторного логарифма

Закон повторного логарифма

$$\lim_{t \to \infty} \sup \frac{w(t)}{\sqrt{2t \ln \ln t}} = 1 \operatorname{u} \lim_{t \to \infty} \inf \frac{w(t)}{\sqrt{2t \ln \ln t}} = -1$$

 $\lim_{t\to}\sup\frac{\overline{w(t)}}{\sqrt{2t\ln\ln t}}=1$ и $\lim_{t\to\infty}\inf\frac{\overline{w(t)}}{\sqrt{2t\ln\ln t}}=-1$. Это показывает, что почти все траектории в<u>инеровс</u>кого процесса остаются внутри расширяющейся трубы, между кривыми $\pm (1 + \epsilon) \sqrt{2t \ln \ln t} \ (\forall \epsilon > t)$

Винеровский процесс (нестандартным) называют также результат линейного линейного преобразовани $X\left(t\right)=x+at+bw\left(t\right)$, где $x,a,b\in R$

Брауновским мостом называется процесс $w_{0}\left(t\right)=w\left(t\right)-tw\left(t\right)$ $t\in\left[0,1\right],\ w_{0}\left(0\right)=0$ $w_0(1) = 0$

3.9 Марковские цепи.

Марковской цепью называется случайная последовательность X(t), t=0,1,2... с конечным множеством значений $x(t) \in \{x_1,x_2,...x_n\}$, $x_i \neq x_j$ где N - целое положительное.

Все конечномерные распределения последовательности X(t) вычисляются по формуле:

$$P(x(0) = x_{k0}, x(1) = x_{k1}, ..., x(t) = x_{kt}) =$$

 $=p_{k_{0}}\left(0\right)p\left(0,\left(k_{0}\right),\left(1,k_{1}\right)\right)p\left(\left(1,k_{1}\right),\left(2,k_{2}\right)\right)...p\left(\left(t-1,k_{t-1}\right),\left(t,k_{t}\right)\right)$, где $p_{i}\left(0\right)=P\left(X\left(0\right)=X_{i}\right)$ и вектор $\left(p_{1}\left(0\right),p_{2}\left(0\right),...,p_{n}\left(0\right)\right)^{T}$ - начальное распределение; $p\left(\left(t,i\right),\left(t+1,j\right)\right)$ - переходные вероятности.

Обозначим $P\left((t,i)\left(t+m,j\right)\right)=\frac{P(x(t)=i,x(t+m,j)=j)}{P(X(t)=i)}$ - переходная вероятность за m шагов.

Пусть $p_{i}\left(t\right)=P\left(X\left(t\right)=x_{i}\right)$ и вектор $p\left(t\right)=\left(p_{1}\left(t\right),p_{2}\left(t\right),...p_{n}\left(t\right)\right)^{T}$ - распределение цепи в момент времени t.

Тогда согласно марковскому свойству $p_{j}\left(t+m\right)=\sum_{k=1}^{N}p_{k}\left(t\right)p\left(\left(t,k\right),\left(t+m,j\right)\right)$

Однородная марковская цепь.

Однородной марковской цепью называется марковская цепь, для которой переходная вероятность (на один шаг) не зависит от "времени" (от номера в последовательности), т.е. $\forall i, j, t, m, p\left((t, i), (t + m, j)\right) = p_{ij}\left(m\right)$

В этом случае распределение последовательности задается с помощью начального распределения - вектора $p\left(0\right)$ и переходной матрицы $Q=\left(p_{ij}\right)\sim N\times N$, где $p_{ij}\equiv p_{ij}\left(1\right)\geq 0, \forall i:\sum_{j=1}^{N}p_{ij}=1$

Матрица переходных вероятностей на m шагов совпадает с m-ой степенью Q. Распределение цепи с номером t+1 задается равенствами $p_j\left(t+1\right)=\sum_{i=1}^N p_{ij}p_i\left(t\right)\;(1\leq j\leq N)$ или $p\left(t+1\right)=Q^Tp\left(t\right)$ откуда $p^T\left(t+1\right)=p^T\left(t\right)Q$ а также представление распределения на шаге $t\geq 1$ через начальное распределение: $p^T\left(t\right)=p^T\left(0\right)\left[Q\right]^t$, t - степень.

Эргодическая теорема (совпадение временного и пространственного среднего). для любой измеримой и ограниченной функции *f* равны следующие величины:

- 1. среднее по времени $\lim_{t\to\infty}\frac{1}{t}\int_0^t f\left(X\left(s\right)\right)ds$ предел имеет одно и то же значение почти для всех траектрий процесса
- 2. пространственна среднее E(f(x(t))), которое имеет одно и то же значение для всех t > 0.

Однородная марковская цепь называеся эргодическая тогда и только тогда, когда для любой пары точек i,j существует $\lim_{t\to\infty} p_{ij}\left(t\right)$ и этот предел имеет одно и тоже значение для всех $i\in\{1,N\}$

Теорема: Для того, чтобы однородная МЦ была эргодической достаточно, чтобы при некотором $m \ge 1$ все элементы матрицы $[Q]^m$ были положительны $[Q]^m > 0$

Доказательство:

Благодаря конечности числа элементов матрицы существует положительная величина δ такая, что $\forall i,j,\ p_{ij}\left(m\right)\geq\delta$. Обозначим $M_{j}\left(n\right)=\max\left\{ p_{ij}\left(n\right):1\leq i\leq N\right\}$ и $m_{j}\left(n\right)=\min\left\{ p_{ij}\left(n\right):1\leq i\leq n\right\}$.

$$\begin{aligned} & n \langle p_{ij} (n) \cdot 1 \leq t \leq n \rangle \cdot \\ & p_{ij} (m+n) = \sum_{k=1}^{N} p_{ik} (m) \, p_{kj} (n) = \sum_{k=1}^{N} \left(p_{ik} (m) - \frac{\delta}{N} \right) p_{kj} (n) + \frac{\delta}{N} \sum_{k=1}^{N} p_{kj} (n) \leq \\ & \leq M_j (n) \sum_{k=1}^{N} \left(p_{ik} (m) - \frac{\delta}{N} \right) + \frac{\delta}{N} \sum_{k=1}^{N} p_{kj} (n) = M_j (n) \cdot (1 - \delta) + \frac{\delta}{N} \sum_{k=1}^{N} p_{kj} (n) \\ & \text{Откуда} \Rightarrow M_j (m+n) \leq M_j (n) (1 - \delta) + \frac{\delta}{N} \sum_{k=1}^{N} p_{kj} (n) \text{ и, аналогично } m_j (m+n) \geq m_j (n) (1 - \delta) + \frac{\delta}{N} \sum_{k=1}^{N} p_{kj} (n) \end{aligned}$$

 $\frac{\delta}{N}\sum p_{kj}\left(n\right)$. Из них следует

$$M_j(m+n) - m_j(m+n) \le (M_j(n) - m_j(n))(1-\delta)$$

Повторяем это неравенство к раз:

 $M_{i}(km+n)-m_{i}(km+n) \leq (M_{i}(n)-m_{i}(n))(1-\delta)^{k} \Rightarrow$ разность $M_{i}(n)-m_{i}(n)$ убывает экспоненциально быстро при $n \to \infty$, значит при любом k существует предел

 $\lim_{n\to\infty}m_j\left(n\right)=\lim_{n\to\infty}\widetilde{M_j}\left(n\right)=\lim_{n\to\infty}p_{ij}\left(n\right)$ не зависит от k ??? в методичке $\lim_{n\to\infty}m_j\left(n\right)=\lim_{n\to\infty}M_j\left(n\right)=\lim_{n\to\infty}M_j\left(n\right)=\lim_{n\to\infty}M_j\left(n\right)=\lim_{n\to\infty}M_j\left(n\right)=\lim_{n\to\infty}M_j\left(n\right)$ ы обозначим \widetilde{p}_j . ??? $\sum\widetilde{p}_i=1$ как и сумма всех $n\to\infty$ элементов в строке матрицы $\left[Q\right]^n$ Доказано

 $p^{T}(t) = p^{T}(0)[Q]^{t}$. Распределение значения цепи в момент t стремится к \tilde{p} . Это пределельное распределение является стационарным (инвариантным) распределением эргодической МЦ, т.е. удовлетворяет уравнению $\tilde{p} = Q^T \tilde{p}$ позволяющеу вычислить вектор стационарного распредеелния.

Счетное множество состояний.

Однородная МЦ со счетным множеством состояний также может быть определена с помощью заданной системы из начального распределения и переходной функцией на один шаг

$$\sum_{k=1}^{\infty} p_k(0) = 1, \ p_{ij} \ge 0, \ \sum_{j=1}^{\infty} p_{ij} = 1, \ i = 1, 2, \dots$$

 $\sum_{k=1}^{\infty} p_k\left(0\right) = 1, \ p_{ij} \geq 0 \ , \ \sum_{j=1}^{\infty} p_{ij} = 1, \ i=1,2,...$ Таким образом, распределение цепи определяется с помощью матрицы Q бесконечного размера.

В этом случае достаточое условие эргодичности цепи можно задать с помощью коэффициента эргодичности

$$k\left(n\right)=1-\frac{1}{2}\sup\sum_{i,j}^{\infty}\sum_{k=1}^{\infty}\left|p_{ik}\left(n\right)-p_{jk}\left(n\right)\right|$$
 где $p_{ik}\left(n\right)$ переходная функция на n шагов $p_{ij}\left(n+1\right)=\sum_{k=1}^{\infty}p_{ik}\left(n\right)p_{kj}$ $\left(n\geq1,p_{ij}\left(1\right)\equiv p_{ij}\right)$

Теорема: Для того, чтобы однородная марковская цепь была эргодической, достаточно, чтобы при некотором n_0 коэффициент $k\left(n_0
ight)$ был положительным и при любом начальном распределении $p_i(0)$ $(i \ge 0)$ переходная вероятность $p_{ij}(n)$ сходится при $n \to \infty$ к стационарной вероятности \tilde{p}_{j} причем $\sup_{p_{i}(0)}|p_{ij}\left(n\right)-\tilde{p_{0}}|\leq\left(1-k\left(n_{0}\right)\right)^{\frac{n}{n_{0}}-1}$

Лишнее 4

Марковские цепи с дискретным временем и конечным числом состояний

$$\{s_1,...,s_n\}$$

 $s_i \to s_j$. В фиксированный момент времени $\{t_1, t_2, ..., t_n\}$.

При известном состоянии системы в данный момент времени, прогноз о ее будущем состоянии не зависит от состояний в котрых находилась система в прошлом.

Пусть система может находиться в s_1, s_2, s_3 . $p_{ij}, i, j = 1, 2, 3$ - вероятности перехода системы из i в j за 1 шаг.

$$p=\left(egin{array}{ccc} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{array}
ight)$$
- матрица вероятностей перехода.

Если p_{ii} не зависит от номера шага, на котором осуществляется переход из s_i в s_j , то такая цепь называется однородной.

Свойства:

1.
$$0 \le p_{ij} \le 1$$

4 JIMIIIHEE 21

2.
$$\sum_{i=1}^{3} p_{ij} = 1, i = 1, 2, 3$$

Обозначим $Q\left(k\right)=\left(p_{1}\left(k\right),p_{2}\left(k\right),p_{3}\left(k\right)\right),\ k$ - вероятность того, что после k - го шага система находится в состоянии s_{i} . $\sum_{i=1}^{3}p_{i}=1$

 $k=0:Q\left(0\right)=\left(p_{1}\left(0\right),p_{2}\left(0\right),p_{3}\left(0\right)\right)$ - начальное распределение вероятностей состояний.

М. Р.
$$Q(k)$$
, $Q(0)$ удовлетворяет $Q(k) = Q(k-1) \cdot P$, $Q(k) = Q(0) \cdot P^k$

Это уравнение позволяет определить вероятность состояния после каждого шага по известному начальному распределению и заданной матрице P вероятностей перехода за 1 шаг.

Состояние S_i называется **существенным**, если выйдя из этого состояния система может в него вернуться за один или несколько шагов.

 $p_{ij}\left(n
ight)>0$ и существует k такое, что $p_{ij}\left(k
ight)>0$.

Состояние S_i называется несущественным, если выйдя из S_i система не может в него вернуться. $p_{ij}(k) > 0, p_{ji}(k) = 0 \forall k$

1 - несущественное состояние, система из него вышла, но войти не может.

Распределение вероятностей состояний Марковской цепи называется стационарным, если он не изменятся во времени. СТационраное распределение Q удовлетворяет матричнму уравнению: $Q = Q \cdot P$

$$\begin{cases} p_1 = & p_1 p_{11} + p_2 p_{21} + p_3 p_{31} \\ p_2 = & p_1 p_{12} + p_2 p_{22} + p_3 p_{32} \\ p_3 = & p_1 p_{13} + p_2 p_{23} + p_3 p_{33} \\ 1 = & p_1 + p_2 + p_3 \end{cases}$$

Марковская цепь называется регулярной, если из любого существенного состояния можно попсть в любое другое существенное состояние за конечное число шагов.

Вероятности $\tilde{p}_i = \lim_{n \to \infty} p_i(n)$ называются предельными или финальными вероятностями состояний системы.

Если марковская цепь регулярно, то предельные вероятности состояний системы совпадают со стационарными вероятностиями.

Пример:

4 ЛИШНЕЕ 22

$$P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}.$$

$$S1 \qquad \frac{1}{3} \qquad \frac{4}{2} \qquad S2 \qquad \frac{1}{2}$$

Найти матрицу $p(2) = p(1) \cdot p(1)$

Определить распределение вероятностей состояний системы за 1,2,3 шага, считая начальным состояние s_1

$$Q(0) = (1,0,0), \ Q(1) = Q(0) \cdot P = (1,0,0) \cdot \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$Q(k) = Q(k-1) P = Q(0) P^{k}$$

$$Q(k) = Q(k-1) P = Q(0) P^{k}$$

 $Q(3) = Q(2) P = Q(0) P^{3}$

Найти стационарное распределение вероятности системы Q=QP

$$\begin{cases} p_1 = \frac{1}{3}p_1 + 0 \cdot p_2 + \frac{1}{2}p_3 \\ p_2 = \frac{1}{3}p_1 + \frac{1}{2}p_2 + \frac{1}{2}p_3 \\ p_3 = \frac{1}{3}p_1 + \frac{1}{2}p_2 + 0 \cdot p_3 \\ 1 = p_1 + p_2 + p_3 \end{cases}$$

Т.к. система регулярна, то предельные вероятности совпадают со стационарными

15.02.17 лекция

4.1 Дискретные случайные величины

4.2 Основные понятия

4.3 Независимые одинаково-распределенные случайные величины HOP CB.

Пусть
$$X_1, X_2, ..., X_n$$
- HOP CB Обозначим $\bar{X} = \frac{X_1 + ... + X_n}{n}$, тогда $M\left(\bar{X}\right) = \frac{M(X_1) + ... + M(X_n)}{n} = \frac{n \cdot a}{n} = a$ где $M\left(X_i\right) = a, i = 1, 2, ..., n$
$$D\left(\bar{X}\right) = D\left(\frac{X_1 + X_2 + ... + X_n}{n}\right) = \frac{D(X_1) + D(X_2) + ... + D(X_n)}{n^2} = \frac{n \cdot D}{n^2} = \frac{D}{n}$$

$$\sigma\left(\bar{X}\right) = \sqrt{D\left(\bar{X}\right)} = \sqrt{\frac{D}{n}} = \frac{\sqrt{D}}{\sqrt{n}} = \frac{\sigma}{\sqrt{n}}, \text{ где } \sigma = \sigma\left(X_i\right)$$