# SIMULACIÓN

Hillier y Liebermann (2002): Técnica de muestreo estadístico para estimar el desempeño de sistemas estocásticos complejos cuando los modelos analíticos no son suficientes.

Sahnnon y Bernal (1988): Proceso de diseñar y desarrollar un modelo computarizado de un sistema o proceso y conducir experimentos con este modelo con el propósito de entender el comportamiento del sistema o evaluar varias estrategias con las cuales se puede operar el sistema.

### **SISTEMAS**

Jaime Barceló define un sistema como un conjunto de cosas que ordenadamente relacionadas entre sí contribuyen a determinado objeto.



## **ELEMENTOS**

Entidad: Objetos o individuos que forman parte de las entradas al sistema y cuya actividad de modela.

Localización: Representaciones de espacios físicos o lugares donde las entidades son transformadas.

Atributo: Características o propiedades que identifican a una entidad o localización.

Evento: Suceso que hace cambiar el estado del sistema.

Estado: Conjunto de valores (atributos) necesarios para describir la situación del sistema en un punto del tiempo dado.

Tiempo de simulación: Es el valor del tiempo que el simulador puede avanzar a una velocidad superior a la habitual de un reloj común, evolucionando así el estado de un sistema de forma acelerada.

# **EJEMPLO**

Sistema: Supermercado

Subsistema: Caja del supermercado





## **ELEMENTOS**

### Subsistema: Caja del supermercado

| Entidad      | Cliente                                                |
|--------------|--------------------------------------------------------|
| Localización | Caja de supermercado (Servidor, pc, etc)               |
| Atributos    | Pago con efectivo o tarjeta                            |
| Evento       | Arribo de cliente a caja, inicio de atención a cliente |
| Estado       | En cola, ocupado                                       |



# EJEMPLO 2

### Sistema: Aeropuerto

| Entidad      | Pasajeros                                                                                                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Localización | Check in (counter), terminal, sala de espera                                                                                               |
| Atributos    | Tipo de pasajero (Vip, turista)<br>Número de vuelo                                                                                         |
| Evento       | Arribo de pasajeros al aeropuerto, registro de pasajero por parte de encargados de counter, ingreso de pasajero a avión, despegue de avión |
| Estado       | En cola (Para entrar a counter), ocupado (En counter), ocioso (En sala de espera)                                                          |



#### Ejemplo 4.3: Able & Baker

A un restaurant llegan clientes en sus automóviles y son atendidos por 2 mozos, Able y Baker, quienes les llevan comida a sus automóviles. Able es más rápido y mejor que Baker atendiendo. Si ambos están ociosos, Able atiende al cliente que llegue primero. Determine los siguientes componentes:

\*Sistema

- \*Eventos
- \* Estado del sistema
- Actividades

• Entidades

\*Delay

Atributos

#### Ejemplo 4.3: Able & Baker

#### Solución:

- · Atributos: ordenar comida.
- · Eventos:
  - Evento de llegada.
  - Término de servicio de Able.
  - Término de servicio de Baker.
- · Actividades:
  - Tiempo entre llegadas.
  - Tiempo de servicio de Able.
  - > Tiempo de servicio de Baker.
- Delay: un cliente espera en cola hasta que Able o Baker queda desocupado.

#### Ejemplo 4.3: Able & Baker

#### Solución:

- Sistema: clientes que quieren comer.
- Estado del sistema:
  - $L_o(t)$ : n° autos esperando ser atendidos en el tiempo t.
  - L<sub>A</sub>(t): 0 ó 1, para indicar si Able está ocioso u ocupado en el tiempo t.
  - L<sub>B</sub>(t): 0 ó 1, para indicar si Baker está ocioso u ocupado en el tiempo t.
- Entidades: si se necesitan estadísticas, los clientes en sus automóviles.

#### 4.5 Definición mediante preguntas

- La definición del modelo proporciona una descripción estática de la situación. Algunas preguntas a responder serán:
- ¿Cómo afecta al estado del sistema cada evento, cada atributo de las entidades, etc.?
- ¿Cómo están definidas las actividades (determinísticas, probabilísticas o se determinan por medio de una ecuación matemática)?
- 3. ¿Qué eventos provocan el comienzo o final de cada tipo de delay? ¿Bajo que condiciones comienza o termina un delay?
- 4. ¿Cuál es el estado del sistema al tiempo cero? ¿Qué eventos deberían generarse al comienzo de la simulación (t = 0)?.

### **EJERCICIOS A REALIZAR**

Describa los elementos de los siguientes sistemas:

- a) Un cibercafé con servicio de impresión y fotocopiado
- b) La sala de emergencia de un hospital
- c) Una lavandería donde alquilen maquinas de lavado