Differentiable Inductive Logic Programming (& ILP) for Fraud Detection

Boris Wolfson, Dr. Erman Acar (Data Science Master's Thesis)

- "Learning Explanatory Rules from Noisy Data", Richard Evans, **Edward Grefenstette**
- Learns set of rules $\alpha \leftarrow \alpha_1, ..., \alpha_m$
- Required input: Positive, Negative examples and a set of facts
- Neurosymbolic AI Deep NN + Symbolic Reasoning

Objectives:

- Compare performance to classical rule generation methods: Deep Symbolic Regression, Decision Tree
- Test Recursive Structures for the fraudulent relationships detection

Contributions

- Pipeline for converting tabular dataset to required input format

- Set of templates for different programs

Examples

Chain of fraud

- Transaction(X,Y) X sends transaction to Y
- Transaction from Z to X is Fraud(Z,X) Fraud
- Fraud_Chain(X,Y) X and Y are in a chain of a fraud event
- Template $\tau_{target}^1 = (n_{\exists} = 1, int = 0)$
- Rule $Fraud_Chain(X, Y) \leftarrow Fraud(Z, X), Transaction(X, Y)$

	orig	destination	Fraud_chainorigdestination
0	16058	16066	False
1	16065	16052	False
2	16036	16067	False
3	16086	16014	True
4	16043	16004	False
5	16011	16067	True
6	16002	16011	False
7	16051	16086	False
8	16080	16077	False

Fraud Relationship

- Fraudsters(X,Y) X and Y are Fraudsters
- Fraud(X,Y) Transaction from X to Y is Fraud
- Template

$$\tau_{target}^1 = (n_{\exists} = 0, int = 1)$$

$$\tau_{target}^2 = (n_{\exists} = 1, int = 1)$$

 $Fraudsters(X, Y) \leftarrow Fraud(X, Y)$ Rule $Fraudsters(X, Y) \leftarrow Fraud(Z, Y),$

Fraudsters(Z,X)

X Y Fraudsters--X--Y Fraud--X--Y 1 2 3 **2** 3 4 **3** 2 1 4 1 3 5 1 4 7 2 4 8 2 2 False

PaySim Dataset

- Binarised Columns from Decision Trees Thresholds
- X transaction id
- Template

$$\tau_{target}^{1} = (n_{\exists} = 0, int = 1)$$
 $\tau_{target}^{2} = (n_{\exists} = 0, int = 1)$
 $\tau_{p1}^{1} = (n_{\exists} = 0, int = 1)$
 $\tau_{p1}^{2} = None$
 $\tau_{p2}^{1} = (n_{\exists} = 0, int = 0)$

 $\tau_{p2}^2 = None$ Rule $isFraud(X_0) \leftarrow NOT\{oldbalanceDest > -0.007\}(X_0), pred2(X_0)$ $isFraud(X_0) \leftarrow pred2(X_0), amount > 1.297(X_0)$ $pred1(X_0) \leftarrow NOT\{oldbalanceDest > -0.007\}(X_0), pred2(X_0)$ $pred2(X_0) \leftarrow external_dest(X_0), type_TRANSFER(X_0)$

DSC Performance 0.999Accuracy Precision 0.984Recal 0.501 0.803 0.702

Program Template

- Rules (τ_p^1, τ_p^2) define predicate p template
- $\tau = (n_{\exists}, int)$ defines the range of clauses C to generate, each clause consists of two atoms
- Number of existential predicates
- A flag to use an intensional (auxiliary) predicate in generated clauses
- rules are defined for each predicate P
- arity α The arity of an auxiliary predicate P_{α}
- Generates a set of clauses:

Induction as Satisfiability

For each P_{O} , ∂ILP learns a weight matrix W_{D} , to find a set of clauses best explaining Positive, Negative instances of a Target predicate

Inference Steps

 $\mathsf{connected}(X,Y) \leftarrow \mathsf{edge}(X,Y)$ edge(a, b) $\mathsf{connected}(X,Y) \leftarrow \mathsf{edge}(X,Z), \mathsf{connected}(Z,Y)$ $\mathsf{edge}(b,c)$ $\mathsf{edge}(c,a)$ $\{\mathsf{edge}(a,b),\mathsf{edge}(b,c),\mathsf{edge}(c,a)\}$ $C_{R,2} = C_{R,1} \cup \{\mathsf{connected}(a,b), \mathsf{connected}(b,c), \mathsf{connected}(c,a)\}$ $C_{R,3} = C_{R,2} \cup \{\mathsf{connected}(a,c), \mathsf{connected}(b,a), \mathsf{connected}(c,b)\}$ $C_{R,4} = C_{R,3} \cup \{\mathsf{connected}(a,a), \mathsf{connected}(b,b), \mathsf{connected}(c,c)\}$

- **ILP** can generalize from a small amount of data; not datahungry
- Creates recursion predicates
- Provides shorter explainable rules than Decision Tree

Cons:

- Hard to scale
- Did not outperform other techniques
- Required to define Program Template, and to convert dataset to binary dataset

