Literature Review

Sr. No.	Name, Year	Algorithm	Dataset Used	
1	Cho et al., 2017	PaletteNet,	Custom dataset	
		CNN-based	from Design-	
			seeds.com	
2	Wang et al.,	Quadtree De-	Standard	
	2024	composition	grayscale	
			datasets	
3	Liu et al., 2019	Autoencoder	CIFAR-10	
		with Attention		
4	Zhang et al.,	GAN with Per-	r- CelebA	
	2021	ceptual Loss		
5	Kim et al., 2018	U-Net-based	VOC2012	
		Segmentation		
6	Patel et al.,	ResNet-50	ImageNet	
	2020	Transfer Learn-		
		ing		
7	Singh et al.,	Hybrid LSTM-	IMDB Reviews	
	2022	CNN Model		
8	Gupta et al.,	Reinforcement	BSD500	
	2023	Learning for		
		Image Enhance-		
		ment		
9	Lee et al., 2020	Deep Reinforce-	Custom dataset	
		ment Learning	for object track-	
		(DRL)	ing	
10	Rao et al., 2019	K-Means Clus-	MNIST	
		tering with PCA		

Table 1: Literature Review: Algorithms and Datasets

Accuracy/Results	Advantages	Limitations	Remarks
High-quality results in ¡1s	High-quality	Slow process-	**** Well-
	recolorization	ing speed	rounded
			model but
			needs speed
			optimization
Fast computation	Reduced time	Loss of fine	**** Effec-
	with good	details in ag-	tive for time-
	quality	gressive sam-	sensitive
		pling	tasks
92% accuracy	Focus on	Computationall	y Good for im-
	feature ex-	intensive	age recogni-
	traction		tion tasks
Realistic outputs	Good visual	High resource	Excellent for
	quality	consumption	facial image
			generation
85% IoU score	Efficient for	Limited to	Versatile for
	semantic seg-	specific ob-	segmenta-
	mentation	jects	tion tasks
95% accuracy	High accuracy	Needs large	Pretrained
		amounts of	models
		data	improve
			efficiency
89% sentiment accuracy	Effective in	Long training	Good for
	text classifica-	times	sentiment
	tion		analysis
Improved edge detection	Enhanced im-	Requires	Promising
	age sharpness	large training	for real-time
		dataset	applications
87% tracking accuracy	Robust in	Struggles with	Effective for
	dynamic envi-	real-time pro-	robotic vi-
	ronments	cessing	sion systems
98% accuracy	Dimensionality	Not suitable	Works well
	reduction	for non-linear	for clustering
		data	simple data

Table 2: Literature Review: Results and Remarks