Ибаева Анастасия Смотрова Кристина

Руководитель: Мария Воробьева

Построение модели прогнозирования страхового тарифа

Команда

Анастасия

Кристина

Задачи

https://github.com/anastasia ibaeva/DABproject

1 Анализ предоставленных данных, создание производных переменных

3

Выбор наилучшей модели

2 Разработка моделей

Анастасия

Выделение таргета

Кристина

Предобработка данных: заполнение пропусков, удаление лишней информации

Этапы проекта Анастасия

Выделение новых признаков

Анализ моделей

Построение моделей

Анализ результатов

Таргет

Сумма убытков, которые принес клиент страховой за месяц

Работа с данными

13 категориальных и 10 числовых признаков

547868 объектов, 24 признака

199808 объектов, 23 признака

- Заполнение пропусков
- Удаление признаков: patient_id, folk_4_code, has_doctor, is_paid_by_patient
- Приведение признака date к единому формату
- Анализ распределения данных по признакам

Новые признаки

25000 20000 15000 5000 2 4 6 8 10

Количество страховых писем за неделю

Количество страховых писем за месяц

Количество назначенных клиенту услуг за один прием

Decision tree

Random forest

CatBoost

Строит модели регрессии или классификации в виде древовидной структуры

Алгоритм обучения с учителем, который использует метод ансамблевого обучения для регрессии.

Библиотека, использующая градиентный бустинг

Используемые модели

Метрики

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

$$MAE = rac{1}{n} \sum_{j=1}^n |y_j - \hat{y_j}|$$

$$R^{2} = 1 - \frac{\frac{1}{n} \sum_{i} |y_{i} - \hat{y}_{i}|^{2}}{\frac{1}{n} \sum_{i} |y_{i} - \bar{y}_{train}|^{2}},$$

Подбор гиперпараметров

Random forest	Decision tree	CatBoost	
max_features: ['auto', 'log2', 'sqrt']	max_features: ['auto', 'log2', 'sqrt']	depth: [1, 3, 5, 7, 9]	
max_depth: [2, 4, 6, 8, 10, 20, 50]	max_depth: [2, 4, 6, 8, 10, 20, 50]	iterations: [1, 11, 21, 31, 41, 51, 61, 71, 81, 91]	
min_samples_leaf: [1, 4, 8, 32]	min_samples_leaf: [1, 4, 8, 32]	learning_rate: [0.001, 0.01, 0.02, 0.03, 0.5, 0.1, 1]	

Оптимальные гиперпараметры

Random forest

'max_depth': 50, 'max_features': 'auto', 'min_samples_leaf': 1

Decision tree

'max_depth': 50, 'max_features': 'auto', 'min_samples_leaf': 4

CatBoost

'depth': 3, 'iterations': 91, 'learning_rate': 0.1

Полученые результаты

	Decision tree	Random forest	CatBoost
RMSE	3.804142	3.03141	5.851731
MAE	0.589576	0.743685	2.525766
R2	0.902283	0.937949	0.768779
R2	0.902283	0.937949	0.768779

Спасибо за внимание!

