

Introduction to Machine Learning [Fall 2022]

Perceptron (Part 2)

October 25, 2022

Lerrel Pinto

Logistics

- Great to see many students doing well on the HWs and the blog posts!
- We are introducing 'extra credit' questions on the next HWs to help if you have a low-score.

Logistics

- Project (30%) will be announced today!
 - Needs to be done individually no collaboration allowed.
 - Only discussion of the project is on chatroom project-discussion.
 - We have setup a Kaggle system for submitting solutions.
 - You will be evaluated on your final score (taken from Kaggle leaderboard) and creativity (taken from project report).

Topics for today

• Bringing gradients to Perceptron.

Lerrel Pinto

Recap: A general-purpose recipe for ML

- Step 1: Collect a dataset $D \equiv \{x^i, y^i\}_{i=1}^N$
- Step 2: Choose a decision function $\hat{y} = f_{\theta}(x)$
- Step 3: Construct a loss function $l(\hat{y}^i, y^i)$
- Step 4: Define goal:

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^{N} l(f_{\theta}(x^i), y^i)$$

• Step 5: Train with SGD (or variants of GD).

Recap: Rosenblatt's Perceptron

A learning rule for the computational/mathematical neuron model

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton. Project Para. Cornell Aeronautical Laboratory.

$$\sigma\left(\sum_{i=0}^{m} x_i w_i\right) = \sigma\left(\mathbf{x}^T \mathbf{w}\right) = \hat{y}$$

$$\sigma(z) = \begin{cases} 0, \ z \le 0 \\ 1, \ z > 0 \end{cases}$$

$$w_0 = -\theta$$

- Let: $D \equiv \{x^i, y^i\}_{i=1}^N$
- Initialize $\overrightarrow{w}^0 = 0^d$
- For every training 'epoch':
 - For every $(x^i, y^i) \in D$:

$$\bullet \hat{y}^i = \sigma(\overrightarrow{w}^T x^i)$$

$$\bullet \ e = (y^i - \hat{y}^i)$$

•
$$\overrightarrow{w}^{t+1} \leftarrow \overrightarrow{w}^t + e \times x^i$$

- Let: $D \equiv \{x^i, y^i\}_{i=1}^N$
- Initialize $\overrightarrow{w}^0 = 0^d$
- For every training 'epoch':
 - For every $(x^i, y^i) \in D$:

$$\bullet \hat{y}^i = \sigma(\overrightarrow{w}^T x^i)$$

$$\bullet \ e = (y^i - \hat{y}^i)$$

•
$$\overrightarrow{w}^{t+1} \leftarrow \overrightarrow{w}^t + e \times x^i$$

Credits: Sebastian Raschka

Principle:

- If there is no error, do not update.
- If output is 0 and target is 1, add input to weight vector.
- If output is 1 and target is 0, subtract input from weight vector.

- Let: $D \equiv \{x^i, y^i\}_{i=1}^N$
- Initialize $\overrightarrow{w}^0 = 0^d$
- For every training 'epoch':
 - For every $(x^i, y^i) \in D$:

$$\bullet \hat{y}^i = \sigma(\overrightarrow{w}^T x^i)$$

$$\bullet \ e = (y^i - \hat{y}^i)$$

•
$$\overrightarrow{w}^{t+1} \leftarrow \overrightarrow{w}^t + e \times x^i$$

Credits: Sebastian Raschka

Principle:

- If there is no error, do not update.
- If output is 0 and target is 1, add input to weight vector.
- If output is 1 and target is 0, subtract input from weight vector.

Guaranteed to converge if solution exists!

- No non-linear boundaries possible with classical perceptron
- Does not converge when classes are non-separable
- In its current form not compatible with gradient descent

How to make perceptron differentiable?

How to make perceptron differentiable?

How to make perceptron differentiable?

• Input data: $X \in \mathbb{R}^{d \times n}$, $Y \in \{0,1\}^n$, where $(\overrightarrow{x} \in \mathbb{R}^d, y \in \{0,1\})$ corresponds to a data point.

• Input data: $X \in \mathbb{R}^{d \times n}$, $Y \in \{0,1\}^n$, where $(\overrightarrow{x} \in \mathbb{R}^d, y \in \{0,1\})$ corresponds to a data point.

• Decision function:
$$p(y = 1 | x) = \frac{1}{1 + e^{-\overrightarrow{w}x}}$$

• Input data: $X \in \mathbb{R}^{d \times n}$, $Y \in \{0,1\}^n$, where $(\overrightarrow{x} \in \mathbb{R}^d, y \in \{0,1\})$ corresponds to a data point.

• Decision function:
$$p(y = 1 \mid x) = \frac{1}{1 + e^{-\overrightarrow{w}x}}$$

• Objective: $\underset{w}{\operatorname{arg min}} L(\overrightarrow{w}; D)$

• Input data: $X \in \mathbb{R}^{d \times n}$, $Y \in \{0,1\}^n$, where $(\overrightarrow{x} \in \mathbb{R}^d, y \in \{0,1\})$ corresponds to a data point.

• Decision function:
$$p(y = 1 \mid x) = \frac{1}{1 + e^{-\overrightarrow{w}x}}$$

- Objective: $\underset{\overrightarrow{w}}{\operatorname{arg min}} L(\overrightarrow{w}; D)$
- What should the Loss function be?

• Loss function: Negative Log Likelihood (aka surprisal)

• Loss function: Negative Log Likelihood (aka surprisal)

• If
$$y^i = 1$$
, $l(x^i, y^i) = -ln(p^i)$

• If
$$y^i = 0$$
, $l(x^i, y^i) = -ln(1 - p^i)$

• Loss function: Negative Log Likelihood (aka surprisal)

• If
$$y^i = 1$$
, $l(x^i, y^i) = -ln(p^i)$

• If
$$y^i = 0$$
, $l(x^i, y^i) = -ln(1 - p^i)$

• Together: $l(x^i, y^i) = -y^i ln(p^i) - (1 - y^i) ln(1 - p^i)$

- Input data: $X \in \mathbb{R}^{d \times n}$, $Y \in \{0,1\}^n$, where $(\overrightarrow{x} \in \mathbb{R}^d, y \in \{0,1\})$ corresponds to a data point.
- Decision function: $p(y = 1 | x) = \frac{1}{1 + e^{-\overrightarrow{w}x}}$
- Objective: $\underset{\overrightarrow{w}}{\operatorname{arg min}} L(\overrightarrow{w}; D)$
- Loss function: $l(x^i, y^i) = -y^i ln(p^i) (1 y^i) ln(1 p^i)$
- Solve with SGD or its variants.

Example of data

Credits: MNIST

Example of data

Credits: MNIST

Example of data

Credits: MNIST

Better feature

Credits: <u>iq.opengenus.org</u>

Better feature

Histogram of Oriented Gradients

Credits: <u>iq.opengenus.org</u>

Logistic regression with 'features'

Credits: <u>iq.opengenus.org</u>

Additional Reading

- Book chapter and exercises: https://nhorton.people.amherst.edu/ips9/
 IPS_09_Ch14.pdf
- History of logistic regression: https://papers.tinbergen.nl/02119.pdf

Questions?