

**CLEAN VERSION OF REWRITTEN OR ADDED CLAIMS  
PURSUANT TO 37 CFR § 1.21 (c)(1)(i)**

Please cancel claims 3, 4 & 9 without prejudice.

Please amend the following claims.

1. A method of labeling an organic compound for fluorescent detection, comprising:  
providing a fluorophore having the structure illustrated by Formula A

## FORMULA A



where  $R_1$  and  $R_{10}$  taken alone are hydrogen or halogen;  $R_2$ ,  $R_5$ ,  $R_6$  and  $R_9$  taken alone are hydrogen, alkyl, carboxyalkyl, aminoalkyl, alkylether, alkylthioether, halogen or alkoxy;  $R_3$ ,  $R_4$ ,  $R_7$  and  $R_8$  taken alone are hydrogen, and substituted or unsubstituted alkyl, carboxyalkyl, aminoalkyl, cycloalkyl, aryl;  $R_2$  and  $R_3$  taken together are alkyl chains each having from 2 to 5 carbon atoms connecting the 2' carbon to the nitrogen attached to the 3' carbon;  $R_9$  and  $R_8$  taken together are alkyl chains each having from 2 to 5 carbon atoms connecting the 7' carbon to the nitrogen attached to the 6' carbon;  $R_4$  and  $R_5$  taken together are alkyl, each having from 2 to 5 carbon atoms connecting the 4' carbon to the nitrogen attached to the 3' carbon;  $R_6$  and  $R_7$  taken together are alkyl, each having from 2 to 5 carbon

atoms connecting the 5' carbon to the nitrogen attached to the 6' carbon; R<sub>3</sub> and R<sub>4</sub> taken together form an alkyl or alkylene chain containing up to 5 atoms in the principal chain, consisting of carbon and one or more heteroatoms from the group consisting of nitrogen or oxygen, with both terminal valence bonds of said chain being attached to the nitrogen attached to the 3' carbon; R<sub>7</sub> and R<sub>8</sub> taken together form an alkyl or alkylene chain containing up to 5 atoms in the principal chain, consisting of carbon and one or more heteroatoms from the group consisting of nitrogen or oxygen, with both terminal valence bonds of said chain being attached to the nitrogen attached to the 6' carbon; R<sub>11</sub>, R<sub>12</sub>, R<sub>13</sub>, and R<sub>14</sub> are each hydrogen or halogen, where R<sub>a</sub> and R<sub>a'</sub> are selected from the group consisting of alkyl, carboxyalkyl, aminoalkyl, cycloalkyl, aryl and arylalkyl, wherein R<sub>a</sub> confers resistance to lactam ring formation, and further wherein R<sub>a'</sub> contains a functional group; and,

conjugating the fluorophore with a biomolecule selected from the group consisting of an amino acid, peptide, protein, nucleotide, oligonucleotide, nucleic acid, cell surface membrane and viral coat through the R<sub>a'</sub> functional group of the fluorophore, the resultant conjugate being fluorescent upon excitation with light of a determinable wavelength.

5. The method as in claim 1 wherein the biomolecule is attached to a solid support.
6. The method as in claim 1 wherein the biomolecule is an oligonucleotide and the fluorophore is attached via a phosphoramidite at the 5' end in the conjugate.
8. The method as in claim 1 wherein the biomolecule is an amino acid, a peptide or a protein, and the fluorophore is attached at an amine or sulphydryl in the conjugate.
10. A fluorophore conjugate comprising:  
a conjugated substance and a fluorophore, the conjugated substance being an amino acid, peptide, protein, nucleotide, oligonucleotide, or nucleic acid to which is attached one or more fluorophores, the fluorophore conjugate having the structure illustrated by  
Formula 1



FORMULA 1



where R<sub>1</sub> and R<sub>10</sub> taken alone are hydrogen or halogen; R<sub>2</sub>, R<sub>5</sub>, R<sub>6</sub> and R<sub>9</sub> taken alone are hydrogen, alkyl, carboxyalkyl, aminoalkyl, alkylether, alkylthioether, halogen or alkoxy; R<sub>3</sub>, R<sub>4</sub>, R<sub>7</sub> and R<sub>8</sub> taken alone are hydrogen, and substituted or unsubstituted alkyl, carboxyalkyl, aminoalkyl, cycloalkyl, aryl; R<sub>2</sub> and R<sub>3</sub> taken together are alkyl chains each having from 2 to 5 carbon atoms connecting the 2' carbon to the nitrogen attached to the 3' carbon; R<sub>9</sub> and R<sub>8</sub> taken together are alkyl chains each having from 2 to 5 carbon atoms connecting the 7' carbon to the nitrogen attached to the 6' carbon; R<sub>4</sub> and R<sub>5</sub> taken together are alkyl, each having from 2 to 5 carbon atoms connecting the 4' carbon to the nitrogen attached to the 3' carbon; R<sub>6</sub> and R<sub>7</sub> taken together are alkyl, each having from 2 to 5 carbon atoms connecting the 5' carbon to the nitrogen attached to the 6' carbon; R<sub>3</sub> and R<sub>4</sub> taken together form an alkyl or alkylene chain containing up to 5 atoms in the principal chain, consisting of carbon and one or more heteroatoms from the group consisting of nitrogen or oxygen, with both terminal valence bonds of said chain being attached to the nitrogen attached to the 3' carbon; R<sub>7</sub> and R<sub>8</sub> taken together form an alkyl or alkylene chain containing up to 5 atoms in the principal chain, consisting of carbon and one or more heteroatoms from the group consisting of nitrogen or oxygen, with both terminal valence bonds of said chain being attached to the nitrogen attached to the 6' carbon; R<sub>11</sub>, R<sub>12</sub>, R<sub>13</sub>, and R<sub>14</sub> are each hydrogen or halogen, where R<sub>a</sub> is an alkyl, carboxyalkyl, aminoalkyl, cycloalkyl, aryl, or arylalkyl having from 1 to 10 carbon atoms, and Z represents a linker plus the conjugated substance, wherein said conjugated substance lacks a lactam ring.