Tema 3: Funciones holomorfas

Variable Compleja I

- Derivada
- 2 Ecuaciones de C-R
- Reglas de derivación
- 4 Funciones holomorfas
- Primeras propiedades

Definición de derivada

$$\emptyset \neq A \subset \mathbb{C}$$
, $f \in \mathcal{F}(A)$, $a \in A \cap A'$

Definimos
$$f_a: A \setminus \{a\} \to \mathbb{C}$$
 por: $f_a(z) = \frac{f(z) - f(a)}{z - a} \quad \forall z \in A \setminus \{a\}$

Decimos que f es derivable en el punto a cuando f_a tiene límite en a En tal caso, la derivada de f en a viene dada por:

$$f'(a) = \lim_{z \to a} f_a(z) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a}$$

Si $\emptyset \neq B \subset A \cap A'$, f es derivable en B cuando lo es en todo punto de B.

Sea ahora $A_1 = \{z \in A \cap A' : f \text{ es derivable en } z\}.$

La función $z \to f'(z)$ es la función derivada de f:

$$f': A_1 \to \mathbb{C}$$
, $f'(z) = \lim_{w \to z} \frac{f(w) - f(z)}{w - z}$ $\forall z \in A_1$

Derivada.

illieras observaciones

Relación con la continuidad

$$f$$
 derivable en $a \implies f$ continua en a

Carácter local

$$\begin{array}{ccc} & B \subset A \ , \ b \in B \cap B' \\ f \ \text{derivable en } b & \Longrightarrow & f\big|_B \ \text{derivable en } b \ \text{con} \ \left(f\big|_B\right)'(b) = f'(b) \\ & \int_B b \ \text{derivable en } b \\ \exists \delta > 0 : D(b,\delta) \cap A \subset B \end{array} \Longrightarrow \quad f \ \text{derivable en } b$$

Funciones de variable real

- Para funciones reales de variable real, la definición de derivada recién introducida coincide con la que ya conocíamos
- Supongamos $A \subset \mathbb{R}$, $f: A \to \mathbb{C}$ y $a \in A \cap A'$. Entonces f es derivable en a si, y sólo si, $\operatorname{Re} f$ y $\operatorname{Im} f$ son derivables en a, en cuyo caso:

$$f'(a) = \left(\operatorname{Re} f\right)'(a) + i\left(\operatorname{Im} f\right)'(a)$$

Ecuaciones de Cauchy-Riemann

Teorema

$$\emptyset \neq A \subset \mathbb{C} \ (\equiv \mathbb{R}^2) \ , \ \ f \in \mathcal{F}(A)$$

Sean $u, v: A \to \mathbb{R}$ las funciones definidas, para todo $(x, y) \in A$, por $u(x, y) = \operatorname{Re} f(x + iy)$ y $v(x, y) = \operatorname{Im} f(x + iy)$

Para $z_0 = (x_0, y_0) \in A^{\circ}$, las siguientes afirmaciones son equivalentes:

- (i) f es derivable en el punto z_0
- (ii) u y v son diferenciables en el punto (x_0,y_0) , verificando que

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) \quad \text{y} \quad \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)$$

Caso de que se cumplan (i) y (ii), se tiene:

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0)$$

Observaciones

Ecuaciones de C-R

Las igualdades que aparecen en la afirmación (ii) del teorema anterior se conocen como ecuaciones de Cauchy-Riemann. Cuando A es abierto y f es derivable en A, las funciones u y v son soluciones de un sistema de ecuaciones en derivadas parciales:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 y $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

Usando dichas ecuaciones, la derivada $f'(z_0)$ puede expresarse de cuatro formas, en términos de las derivadas parciales de u y v. Concretamente:

$$f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$

entendiendo que todas las derivadas parciales se evalúan en el punto (x_0, y_0) .

Un ejemplo negativo

$$f(z) = \text{Re } z \ \forall z \in \mathbb{C} \ ; \quad u(x,y) = x \quad y \quad v(x,y) = 0 \quad \forall (x,y) \in \mathbb{R}^2$$

$$\frac{\partial u}{\partial x}(x,y) = 1 \neq 0 = \frac{\partial v}{\partial y}(x,y) \quad \forall (x,y) \in \mathbb{R}^2$$

ji f no es derivable en ningún punto del plano!!

Un ejemplo positivo

La función exponencial: $f(z) = e^{\text{Re}z} \left(\cos(\text{Im}z) + i \sin(\text{Im}z) \right) \quad \forall z \in \mathbb{C}$

$$u(x,y) = e^x \cos y$$
 y $v(x,y) = e^x \sin y$ $\forall (x,y) \in \mathbb{R}^2$

u, v son differenciables en \mathbb{R}^2 con $\frac{\partial u}{\partial x} = u = \frac{\partial v}{\partial v}$ y $\frac{\partial u}{\partial v} = -v = -\frac{\partial v}{\partial x}$

luego f es derivable en $\mathbb C$ con $f' = \frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} = u + iv = f$

Operaciones algebraicas

Ejemplos obvios

- $\lambda \in \mathbb{C}$, $f(z) = \lambda \quad \forall z \in \mathbb{C} \implies f'(z) = 0 \quad \forall z \in \mathbb{C}$
- $f(z) = z \quad \forall z \in \mathbb{C} \implies f'(z) = 1 \quad \forall z \in \mathbb{C}$

Sumas, productos y cocientes

 $\emptyset\neq A\subset\mathbb{C}$, $f,g\in\mathcal{F}(A),$ derivables en un punto $a\in A\cap A'$, $\lambda\in\mathbb{C}.$ Entonces:

- f+g es derivable en a con (f+g)'(a) = f'(a) + g'(a)
- fg es derivable en a con (fg)'(a) = f'(a)g(a) + f(a)g'(a)
- λf es derivable en a con $(\lambda f)'(a) = \lambda f'(a)$
- Suponiendo que $g(A) \subset \mathbb{C}^*$, entonces f/g es derivable en a con

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$$

Polinomios

Potencias de exponente natural

Fijado $n \in \mathbb{N}$ sea $f \in \mathcal{F}(\mathbb{C})$ dada por: $f_n(z) = z^n \quad \forall z \in \mathbb{C}$.

Entonces f_n es derivable en \mathbb{C} con: $f'_n(z) = nz^{n-1} \ \forall z \in \mathbb{C}$

Polinomios

 $\emptyset \neq A \subset \mathbb{C}$. Decimos que $P \in \mathcal{F}(A)$ es una función polinómica cuando existen $n \in \mathbb{N} \ \text{v} \ \alpha_0, \alpha_1, \dots, \alpha_n \in \mathbb{C} \ \text{tales que}$

$$P(z) = \sum_{k=0}^{n} \alpha_k z^k \quad \forall z \in A$$

Entonces P es derivable en $A \cap A'$ y su derivada es la función polinómica dada por

$$P'(z) = \sum_{k=1}^{n} k \alpha_k z^{k-1} = \sum_{k=0}^{n-1} (k+1) \alpha_{k+1} z^k \quad \forall z \in A \cap A'$$

Funciones racionales y regla de la cadena

Funciones racionales

 $f \in \mathcal{F}(A)$ es una función racional cuando existen funciones polinómicas $P,Q \in \mathcal{F}(A)$ tales que:

$$Q(z) \neq 0$$
 y $f(z) = \frac{P(z)}{Q(z)}$ $\forall z \in A$

Entonces f es derivable en $A\cap A'$ y su derivada $f':A\cap A'\to\mathbb{C}$ es otra función racional.

Regla de la cadena

Sea $A \subset \mathbb{C}$ y $f \in \mathcal{F}(A)$ una función derivable en un punto $a \in A \cap A'$.

Supongamos que $f(A) \subset B \subset \mathbb{C}$, que $f(a) \in B'$ y que $g \in \mathcal{F}(B)$ es derivable en el punto f(a).

Entonces $g \circ f$ es derivable en a con

$$(g \circ f)'(a) = g'(f(a)) f'(a)$$

$$\emptyset
eq \Omega = \Omega^{\circ} \subset \mathbb{C} \;,\;\; f \in \mathcal{F}(\Omega)$$

f es holomorfa en Ω cuando es derivable en todo punto de Ω El conjunto de todas las funciones holomorfas en Ω se denota por $\mathcal{H}(\Omega)$

Observaciones

 \bullet Las funciones holomorfas son continuas, pero el recíproco es falso:

$$\mathcal{H}(\Omega) \subsetneq \mathcal{C}(\Omega) \subsetneq \mathcal{F}(\Omega)$$

• La holomorfía es una propiedad local: Supongamos que $\Omega = \bigcup_{\lambda \in \Lambda} U_{\lambda}$ donde Λ es un conjunto no vacío arbitrario y U_{λ} es un abierto no vacío de $\mathbb C$ para todo $\lambda \in \Lambda$. Para cada $\lambda \in \Lambda$ sea f_{λ} la restricción de f a U_{λ} . Entonces:

$$f \in \mathcal{H}(\Omega) \iff f_{\lambda} \in \mathcal{H}(U_{\lambda}) \ \forall \lambda \in \Lambda$$

Operaciones con funciones holomorfas

Operaciones algebraicas y regla de la cadena

$$\emptyset
eq \Omega = \Omega^\circ \subset \mathbb{C}$$

$$\mathcal{H}(\Omega)$$
 es un subanillo y un subespacio vectorial de $\mathcal{C}(\Omega)$

$$f,g\in\mathcal{H}(\Omega)\ ,\ g(\Omega)\subset\mathbb{C}^*\ \implies\ f/g\in\mathcal{H}(\Omega)$$

 $\mathcal{P}(\Omega)~$ funciones polinómicas en Ω ; $~\mathcal{R}(\Omega)~$ funciones racionales en Ω

$$\mathcal{P}(\Omega) \subset \mathcal{R}(\Omega) \subset \mathcal{H}(\Omega) \subset \mathcal{C}(\Omega) \subset \mathcal{F}(\Omega)$$

La restricción a Ω de la exponencial nunca es una función racional, luego

$$\mathcal{R}(\Omega) \subsetneq \mathcal{H}(\Omega)$$

$$f\in \mathcal{H}(\Omega)\ ,\ f(\Omega)\subset U=U^\circ\subset \mathbb{C}\ ,\ g\in \mathcal{H}(U)\ \implies\ g\circ f\in \mathcal{H}(\Omega)$$

Funciones enteras

Una funcion entera es una función holomorfa en todo el plano. Por tanto $\mathcal{H}(\mathbb{C})$ es el conjunto de todas las funciones enteras.

$$\mathcal{R}(\mathbb{C}) \stackrel{!!}{=} \mathcal{P}(\mathbb{C}) \subsetneq \mathcal{H}(\mathbb{C})$$

La exponencial es una función entera no polinómica, luego

Ejemplos

Para funciones complejas no hay un teorema de Rolle o del valor medio:

- Una función de variable real: $g(y) = \cos y + i \operatorname{sen} y \quad \forall y \in \mathbb{R}$
- \bullet Es derivable en \mathbb{R}
- $g(0) = g(2k\pi) \quad \forall k \in \mathbb{Z}$
- $g'(y) = ig(y) \forall y \in \mathbb{R}$ luego $|g'(y)| = |g(y)| = 1 \quad \forall y \in \mathbb{R}$

La exponencial: $f(z) = e^{\text{Re}z} (\cos(\text{Im}z) + i \sin(\text{Im}z)) \quad \forall z \in \mathbb{C}$

- $f \in \mathcal{H}(\mathbb{C})$
- $f(0) = f(2k\pi i) \quad \forall k \in \mathbb{Z}$
- $|f'(z)| = |f(z)| = e^{\operatorname{Re} z} > 0 \quad \forall z \in \mathbb{C}$

Dominios

Un dominio es un subconjunto no vacío, abierto y conexo del plano

Funciones con derivada nula

Sea Ω un dominio y $f\in\mathcal{H}(\Omega)$ tal que f'(z)=0 para todo $z\in\mathbb{C}.$ Entonces f es constante.

Consecuencias

Sea Ω un dominio y $f \in \mathcal{H}(\Omega)$.

- \bullet Si Re f es constante, entonces f es constante
- \bullet Si Im f es constante, entonces f es constante
- Si |f| es constante, entonces f es constante

Caso de un abierto no conexo

Ejemplo

Supongamos que $\Omega = U \cup V$ donde U, V son abiertos, no vacíos, disjuntos

$$f(z) = 1 + i \quad \forall z \in U \quad y \quad f(z) = 1 - i \quad \forall z \in V$$

- $f \in \mathcal{H}(\Omega)$
- $f'(z) = 0 \quad \forall z \in \mathbb{C}$
- Re f y |f| son constantes
- Pero f no es constante

Componentes conexas de un abierto

$$\emptyset
eq \Omega = \Omega^{\circ} \subset \mathbb{C}$$

- Las componentes conexas de Ω son dominios
- ullet El conjunto de las componentes conexas de Ω es numerable

Generalización de los resultados anteriores

Caso de un abierto no conexo

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C} \ \ \mathrm{y} \ \ f \in \mathcal{H}(\Omega)$$

Si
$$f'(z) = 0$$
 para todo $z \in \Omega$

o bien cualquiera de las funciones $\operatorname{Re} f$, $\operatorname{Im} f$ o |f| es constante,

entonces f es constante en cada componente conexa de Ω y por tanto $f(\Omega)$ es numerable