Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií

Semestrální práce MPC-AUP

Radim Říha, 221013 Petr Šopák, 221022 Brno, 2023

Zadání:

Technologický proces slouží k pasterizaci kapalin. Nerezová nádrž je vysoká 2000 mm a její objem je přesně 2 m³. Pro přívod materiálu je využito vstupní a pro odvod výstupní potrubí. Vstupní potrubí o průměru DN125 je konstantně tlakováno vstupním materiálem. Výstupní potrubí, rovněž o průměru DN125 je přivedeno do zásobníků, které uchovávají výstupní produkt pro další zpracování. Technologie je vybavena mechanismem pro míchání materiálu uvnitř tanku (mixérem), jehož statický krouticí moment v okamžiku kdy je tank zcela plný je 380 N/m a jehož maximální přípustná rychlost je 40 ot./min. Tento mechanismus je vybaven převodovkou s převodovým poměrem 38:1. Pro ohřev je k technologii připojen tepelný okruh z přidružené výroby (jaderné elektrárny) s plynule regulovatelným jmenovitým výkonem 25 MW. Maximální přípustná teplota veškerých mechanických částí je 95 °C, po jejímž překročení dojde k nenávratným škodám a technologie bude zničena.

Požadavky:

- 1. Nerezová nádrž výška 2000 mm a objem 2 m³
- 2. Vstupní a výstupní potrubí DN125
- 3. Vstupní potrubí je tlakováno konstantně
- 4. Mixér statický krouticí moment 380 N/m, maximální přípustná rychlost 40 ot./min, převodovka 38:1
- 5. Ohřev jmenovitý výkon 25 MW
- 6. Maximální přípustná teplota mechanických částí 95 °C

Schéma:

Obr.1.: Zjednodušený proces pasterizační jednotky

Obr.2.: Process flow diagram pasterizační jednotky

Hazardní stavy a jejich detekce:

stav	detekce stavu
trhlina v nádrži	snímač hladiny kapaliny v nádrži
porucha vstupního ventilu	průtokoměr vstupního potrubí
porucha výstupního ventilu	průtokoměr výstupního potrubí
porucha motoru	snímač otáček hřídele motoru
porucha převodovky nebo míchadla	snímač otáček hřídele motoru
přehřátí motoru	snímač teploty motoru
přehřátí nádrže	snímač teploty kapaliny v nádrži
porucha tepelného okruhu	snímač teploty tepelného okruhu

2. P&ID diagram:

Obr.3.: P&ID diagram procesní jednotek pro topení a manipulace se vstupní kapalinou

Obr.4.: P&ID diagram procesní jednotky pro čištění tanku vodou a louhem

Použité snímače:

označení	typ	účel
F01.01	FICQ	měření a regulace množství napuštěné kapaliny
F01.02	FIQ	měření množství vypuštěné kapaliny
S01.01	SI	detekce poruchy míchadla nebo převodovky
T01.01	TC	regulace teploty kapaliny v tanku
T01.02	TI	detekce přehřátí motoru
L01.01	LC	regulace výšky hladiny kapaliny v nádrži
L01.02	LM	detekce napuštění maximálního množství kapaliny
T02.01	TC	měření množství tepla předaného z tepelného okruhu do nádrže
T02.02	TC	měření množství tepla předaného z tepelného okruhu do nádrže
F02.01	FICQ	měření množství tepla předaného z tepelného okruhu do nádrže
L03.01	LM	detekce napuštění maximálního množství čisté vody
C03.01	CI	měření koncentrace louhu

Použité akční členy:

označení	popis
V01.01	vypouštěcí ventil kapaliny pro pasterizaci do tanku
V01.02	vypouštěcí ventil pasterizované kapaliny z tanku
V01.03	vypouštěcí ventil čisticí kapaliny z tanku
V01.04	přetlakový ventil tanku
M01.01	motor míchadla
V02.01	vstupní ventil hlavního čerpadla tepelného okruhu
V02.02	výstupní ventil hlavního čerpadla tepelného okruhu
V02.03	vstupní ventil záložního čerpadla tepelného okruhu
V02.04	výstupní ventil záložního čerpadla tepelného okruhu
V02.05	rozdělovací ventil tepelného okruhu
P02.01A	hlavní čerpadlo tepelného okruhu
P02.01B	záložní čerpadlo tepelného okruhu
V03.01	vstupní ventil čisté vody
V03.02	napouštěcí ventil nádrže s čistou vodou
V03.03	oddělovací ventil nádrží
V03.04	napouštěcí ventil nádrže s použitou vodou
V03.05	oddělovací ventil nádrží
V03.06	napouštěcí ventil nádrže s louhem
V03.07	vypouštěcí ventil nádrže s čistou vodou
V03.08	vypouštěcí ventil nádrže s použitou vodou
V03.09	výstupní ventil použité vody
V03.10	vypouštěcí ventil nádrže s louhem
P03.01	čerpadlo nádrží

3. Instrumentace

a) Zvolené snímače:

	Označení	Rozsah	Citlivost	Rozlišení	Provozní podmínky	Chyba měření	Mechanické vlastnosti	Rozhraní	Data
1	F01.01 F01.02	0135 m ³ /h	0,07 V*h/m³	-	-20120 °C 1600 kPa	±2 %	příruba DN125	0,510 V	<u>URL</u>
3	T01.01	-50150 °C	0,08 mA/°C	0,04 K	30 Mpa	±0.3 K	závit G1/2	420 mA	LIDI
3	101.01	-50150 C	0,08 MA/ C	0,04 K	зо імра	IU.3 K	Zavit G1/Z	420 MA	<u>URL</u>
4	T01.02	-40300 °C	13,8 Ω/Κ	ı	-	±6 K	v motoru	odpor	<u>URL</u>
5	S01.01	36000 ot./min	-	-	-2080°C	-	závit M18	pulzní	<u>URL</u>
6	L01.01	0,152 m	8,65 mA/m	<1 mm	-3070°C	±0,15 %	závit G1	420 mA	<u>URL</u>
7	L01.02	on/off	-	-	-40100°C	-	závit G3/4	NPN/PNP	<u>URL</u>
8	F02.01	021 m ³ /h	0,45 V*h/m³	-	-20120 °C 1600 kPa	±2 %	závit DN50	0,510 V	<u>URL</u>
9 10	T02.01 T02.02	-30130 °C	0,39 Ω/°C	-	595 % r. v.	±1 K	příložné čidlo	odporový výstup	<u>URL</u>

Snímače F01.01; F01.02: Rozsah snímače je 0 – 135 m³/h. Provozní podmínky až do 120°C. Pro potrubí o průměru DN125. Analogový napěťový výstup v rozsahu 0,5 až 10 V.

Snímač T01.01: Rozsah měřené teploty v rozmezí -50 až 150 °C. Vyrobeno z nerezové oceli a ochrana IP 67. Má proudové rozhraní (4 až 20 mA).

Snímač S01.01: Snímač otáček v rozsahu 3 až 6000 ot./min, což splňuje maximální otáček motoru dle zadání. Provozní teplota může být menší. Je mimo pasterizační tank.

Snímač L01.01: Hladinoměr s proudovým výstupem anebo linkou RS-485 s Modbus RTU. Vhodný pro teploty až 100 °C.

Snímač L01.02: Binární hladinoměr s maximální provozní teplotou až 100 °C.

Snímač F02.01: Tento snímač je řiditelný a dostáváme z něho analogový výstup v rozsahu 0,5-10 V. Splňuje provozní podmínky – maximální provozní podmínka pro tento snímač je 120 °C. Pro potrubí o průměru DN50.

Snímače T02.01; T02.02: Snímače měří v rozsahu -30 – 130 °C. Lze s ním měřit i při maximální provozní teplotě 95 °C.

b) **Zvolené ventily:**

	Označení	Mechanické vlastnosti	Provozní podmínky	Maximální průtok	Doba přestavení	Způsob otevíraní	Datasheet
1	V01.01	n řím uh o	-10120 °C				
2	V01.02	příruba DN125	1600 kPa	250 m ³ /h	150 s	servopohon	<u>URL</u>
3	V01.03	DIN125	1000 KPa				
4	V01.04	vnější závit DN23	-196185 °C 200 kPa 5 MPa	-	-	-	<u>URL</u>
5	V02.01						
6	V02.02	vnitřní závit	-40185 °C			ruční	LIDI
7	V02.03	DN50	3,5 MPa	-	-	ruciii	<u>URL</u>
8	V02.04						
9	V02.05	příruba DN50	5120 °C 600 kPa	40 m ³ /h	113 s	zdvihový servopohon	<u>URL</u>

Ventily V01.01; V01.02; V01.03: Byly vybrány ventily pro potrubí o průměru DN125. Materiál ventilu je z nerezové oceli, která je vhodná pro potravinářské odvětví. Dále jsou řiditelné za pomocí servopohonů, které budou popsány níže. Dle zadání splňují provozní podmínky – do 120 °C, je řiditelný a pro potrubí o průměru DN125.

Přetlakový ventil V01.04: Nerezový pojistný ventil nastavitelný v rozmezí 200 kPa – 5 MPa. Hodnota nastavení musí být předem známa. Určen pro průměr potrubí DN23. Je vhodný pro jakýkoliv druh unikajícího plynu. Je vhodný pro teploty až do 185 °C.

Ventily V02.01; V02.02; V02.03; V02.04: pro průměr potrubí DN50, určené pro studenou i horkou vodu a provozní podmínky až do 185 °C, což splňují všechny podmínky zadání jako je maximální přípustná teplota.

Ventil V02.05: pro průměr potrubí DN50, je možnost řízení ventilu, určen pro medium vody a splňuje podmínku maximální přípustné teploty. Provozní podmínky až do 120 °C.

c) **Zvolené motory a čerpadla:**

	Označení	Kroutící moment	Jmenovité napětí	Jmenovitý proud	Jmenovité otáčky	Provozní podmínky	Datasheet	Pozn.
1	V01.01M							
2	V01.02M	40 Nm	24 V DC/AC	460 mA	-	-3050 °C	<u>URL</u>	*1
3	V01.03M							
4	M01.01	10 Nm	230 VAC	6,5 A	1445 ot./min	-2040 °C	1LE1003-0EB4	*2
5	V02.05M	zdvih 1500N	24 V DC/AC	83 mA	-	050 °C	<u>URL</u>	*1
6	P02.01A		230 VAC	2 27 4		-10110 °C	LIDI	
7	P02.01B	-	230 VAC	2,37 A	_	1 Mpa	<u>URL</u>	

^{*1:} Standardní servomechanismy pro přidružené ventily.

Servomechanismy V01.01M; V01.02M; V01.03M: modulační rotační pohony s funkcí nouzového ovládání. Krouticí moment 40 Nm a spojité ovládání DC (0)2-10 V.

Servomechanismus V02.05M: zdvihový pohon pro 3-cestné zdvihové ventily. Ovládání spojité DC v rozsahu (0)2-10 V.

Motor M01.01: Krouticí moment 10Nm, jmenovité otáčky 1445 ot./min. Splňuje podmínky zadání.

Čerpadla P02.01A; P02.01B: Vhodné pro teploty až do 110 °C a pro potrubí o průměru DN50. Splňují podmínky z parametrů zadání.

^{*2:} Asynchronní elektromotor pro míchadlo. Výsledný krouticí moment za převodovkou je 10*38 = 380 Nm a otáčky 1445/38 = 38 ot./min.

4. Elektrotechnické schéma

a) **Zvolené moduly:**

	Označení	Typ modulu	Popis	Datasheet	Poznámka
1	MODULE1	Analogový výstupní modul	AQ 4xU/I HF	<u>URL</u>	
2	MODULE2	Analogový vstupní modul	AI 8xU/I/RTD BA	<u>URL</u>	
3	MODULE3	Digitální vstupní/výstupní modul	DI 16x24VDC DQ16x24VDC/0,5A	<u>URL</u>	
4	-	CPU	SIMATIC S7-1500	<u>URL</u>	*1
5	-	Zdroj	PS 25W 24 V DC	<u>URL</u>	*1

^{*1:} Jsou připojeny za pomocí šasi

b) Další přidané součástky:

	Označení	Typ modulu	Datasheet
1	KM1	Stykač	<u>URL</u>
2	FR1	Motorový spouštěč	<u>URL</u>
3	F1	Dojistka	LIDI
4	F2	Pojistka	<u>URL</u>

5. UML diagramy

a) Use-Case diagram:

Obr.5.: User-Case diagram

Specifikace:

UC1 - Konfigurace systému:

Krátký popis

Use case umožňuje nastavení konfigurace pasterizačního systému.

Aktéři

Technolog

Systém

Podmínky pro spuštění

Technolog musí vlastnit administrativní účet v daném systému.

Základní tok

- 1. Systém vygeneruje uživatelské rozhrání umožňující přihlášení technologa
- 2. Technolog vyplní přihlašovací údaje (uživatelské jméno a heslo)
- 3. Sytém ověří data od technologa
- 4. Systém následně pošle validační zprávu na mail technologa a vygeneruje pole pro vepsání doručeného kódu ze zprávy
- 5. Technolog vepíše kód z svého mailu a je připuštěn
- 6. Systém připustí technologa do nastavení konfigurace systému
- 7. Po změnách konfigurace a následného potvrzení technologem jsou změny uloženy

Alternativní tok 1

3.1 Pokud technolog zadal nesprávné uživatelské údaje, systém vyhlásí chybu, odstraní vyplněné údaje a technolog pokračuje v základním toku 2.

Alternativní tok 2

5.1 Pokud technolog zadal nesprávný kód, systém vyhlásí chybu, odstraní vyplněné údaje a systém se vrátí do bodu 4 základního toku.

Podmínky pro dokončení

Technolog uloží změny konfigurace systému, potvrdí změnu a případně odhlásí se ze systému

b) Stavový diagram:

Obr.6.: Stavový diagram

c) Sekvenční diagram:

Obr.7.: Sekvenční diagram