

7. Ans: (c) 1.5 mol8. Ans: (c) Sulphate

10. a) CuBr₂

11. a) NH₃ 14:3

 $= 4 \times 6.023 \times 10^{23}$ $= 24.092 \times 10^{23}$ $= 2.4092 \times 10^{24}$

9. $32g ext{ of } S = 1 ext{mole } S = X ext{ atoms} = N_o$

13. a) Number of moles of $N_2O = m/M$

Ans: 5g of **NO has more no. of moles**

32g of oxygen = 2 moles Oxygen = 2X atoms = 2x N_o

b) CO 3:4

No. of P atoms in 1 mole of P_4 = Avogadro constant

No. of P atoms in 4 moles of $P_4 = 4 \times Avogadro$ constant

= 5/44 = 0.11 molNumber of moles of NO= m/M

= 5/30 = 0.5 mol

b) Al(NO₃)₃

NAME:

DELHI PUBLIC SCHOOL BANGALORE - EAST

CHEMISTRY

ATOMS AND MOLECULES

ANSWER KEY

SEC:

c) $Ca_3(PO_4)_2$

c) M g S 3:4 d) AlF₃ 9:19

 $M = (2 \times 14) + (16) = 44g$

M = 14 + 16 = 30g

DATE:

CLASS:IX

1. Ans: (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
2. Ans: (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
3. Ans: (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
Number of atoms present in a molecule of a gaseous element is called atomicity. e.g., O2 has two atoms and hence, its atomicity is 2.
4. Ans: (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
5. Ans: (b) atomicity
6. Ans: (b) cation, positive

12. No. of moles of P_4 molecules in 124g of Phosphorus = m/M = 124/31 = 4 moles

1

b) Mass of
$$CO_2 = n \times M = 1 \times 44g = 44 g$$

Mass of CO =
$$n \times M = 1 \times 38g = 38g$$

1 mole of CO₂ has higher mass

14. a) No. of molecules in 90g of H₂O

$$N = (m/M) \times N_0$$
= (90g/18g) \times 6.022x10^{23}
= 3.011 \times 10^{24}

b) Number of moles in 19g of H₂O₂

$$n = m/M$$

= 19g/34g = 0.56 moles

$$M = (1x2) + (2x16) = 34g$$

15. Atomic mass unit: 1 amu is the mass unit equal to exactly 1/12 th mass of one atom of carbon12.

Molecular mass	Molar mass
It is the sum of the atomic masses of all the	Mass of one mole of a substance
Atoms/ molecules of a substance.	
It is expressed in "u"	It is expressed in gmol ⁻¹

16. a) Molecular mass of $CaCO_3 = 100g$

100g of CaCO₃ contains 6.022x10²³ molecules

50g of CaCO₃ contains X molecules

$$X = 6.022 \times 10^{23} \times 50 \text{ g/ } 100 \text{g}$$

= 3.011x 10²³ molecules

OR

$$\begin{array}{ll} n = m/M & = 50/100 = 0.5 \; moles \\ n = N/N_A & 0.5 = X/6.022 x 10^{23} \end{array}$$

 $X = 3.011x \ 10^{23}$ molecules

b)1 mole of N_2 gas =28g

$$0.5 \text{ mole of } N_2 \text{ gas} = 28 \text{gx } 0.5 \text{ mole}$$

= 14 g

c) No. of moles= Given mass of sodium chloride/ Molar mass of sodium chloride

$$= 50g/58.5g = 0.855$$
 moles

17. a) 1 mole of $CO_2 = 44g$ of CO_2

Mass of 5 moles of
$$CO_2 = n \times M$$

= 5 x 44= 220g

1mole of
$$H_2O = 18g$$

Mass of 5 moles of
$$H_2O = n \times M$$

$$= 5 \times 18 = 90g$$

$$n = m/M$$

= 240g/40g = 6

Number of moles of Mg

$$n = m/M$$

$$=240g/24g=10$$

Ratio of Ca: Mg is 6:10 = 3:5

- 18. The number of atoms in one mole of hydrogen gas is double the number of atoms in one mole of helium gas because hydrogen molecule is diatomic i.e., a molecule of hydrogen consists of two atoms of hydrogen, whereas helium is monoatomic.
- 19. Flask P(O₂)

No. of Oxygen molecules = $n \times N_0$

No. of Oxygen atoms, $N = n \times N_0 \times 2$

$$= 0.5 \times 6.022 \times 10^{23} \times 2$$

$$= 6.022 \times 10^{23}$$
 atoms

Flask Q (O₃)

Number of ozone molecules = $n \times N_0$

Number of oxygen atoms, $N = n \times N_0 \times 3$

$$= 0.4 \times 6.022 \times 10^{23} \times 3$$

$$= 7.23 \times 10^{23} \text{ atoms}$$

Ans: Flask Q contains more number of oxygen atom

20.

Compound	Cation	Anion
CH₃COOH	H ⁺	CH ₃ COO
NaCl	Na ⁺	Cl ⁻
NH ₄ NO ₃	NH ₄ ⁺	NO ₃ -

- **21.** Valency of X = 1
 - a) X_3N
- b) X₂O

- **22**. (i) O^{2}
- (ii) Fe³⁺
- (iii) I⁻

- **23.** a) CaF₂
- b) H₂S
- c) CCl₄
- **24.** a) Mass of Carbon dioxide (m) = $N/N_0 \times M$

$$= 1.0505 \text{ X} 10^{23} \text{ x } 44 \text{ g} / 6.022 \text{ x} 10^{23}$$

= 7.68g

b) 1 mole of Ammonia contains 6.022x10²³ molecules

Number of molecules in 0.25 moles of ammonia = $0.25 \times 6.022 \times 10^{23}$

$$=1.5055 \times 10^{23}$$
 molecules

c) Formula unit mass of Na₂SO = (2x23) + (1x32) + (4x16) = 142u

```
25. Molar mass of NaCl = 58.5 \text{ g}

58.5 \text{ g} of NaCl = 6.022 \times 10^{23} \times 2 ions

5.85 \text{ of NaCl contains } 6.022 \times 10^{23} \times 2 \times 5.85/58.5 ions

= 1.2044 \times 10^{23} ions

OR
```

No. of moles of NaCl in 5.85 g NaCl = m/M
$$= 5.85/58.5 = 0.1$$
 moles 0.1 moles $= 6.022 \times 10^{23} \times 0.1$ formula units of NaCl $= 6.022 \times 10^{23} \times 0.1 \times 2$ ions $= 1.2044 \times 10^{23}$ ions
