COVID-19 Notebook: O Worldwide Cases and Deaths

Importing Libraries

```
In [3]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use('https://github.com/dhaitz/matplotlib-stylesheets/raw/master/pitayasmoothie-dark.mplstyle')
import plotly.express as px
import plotly.graph_objects as go
from plotly import tools
from plotly.subplots import make_subplots
from plotly.offline import iplot,init_notebook_mode
init_notebook_mode()
import warnings
warnings.filterwarnings('ignore')
from wordcloud import WordCloud,STOPWORDS
```

Reading Data

```
In [8]:
```

```
df=pd.read_csv('covid_worldwide.csv')
```

In [11]:

at

Out[11]:

Serial Number		Country	Total Cases	Total Deaths	Total Recovered	Active Cases	Total Test	Population
0	1	USA	104,196,861	1,132,935	101,322,779	1,741,147	1,159,832,679	334,805,269
1	2	India	44,682,784	530,740	44,150,289	1,755	915,265,788	1,406,631,776
2	3	France	39,524,311	164,233	39,264,546	95,532	271,490,188	65,584,518
3	4	Germany	37,779,833	165,711	37,398,100	216,022	122,332,384	83,883,596
4	5	Brazil	36,824,580	697,074	35,919,372	208,134	63,776,166	215,353,593
226	227	Diamond Princess	712	13	699	0	NaN	NaN
227	228	Vatican City	29	NaN	29	0	NaN	799
228	229	Western Sahara	10	1	9	0	NaN	626,161
229	230	MS Zaandam	9	2	7	0	NaN	NaN
230	231	Tokelau	5	NaN	NaN	5	NaN	1,378

231 rows × 8 columns

In [9]:

df.head()

Out[9]:

	Serial Number	Country	Total Cases	Total Deaths	Total Recovered	Active Cases	Total Test	Population
0	1	USA	104,196,861	1,132,935	101,322,779	1,741,147	1,159,832,679	334,805,269
1	2	India	44,682,784	530,740	44,150,289	1,755	915,265,788	1,406,631,776
2	3	France	39,524,311	164,233	39,264,546	95,532	271,490,188	65,584,518
3	4	Germany	37,779,833	165,711	37,398,100	216,022	122,332,384	83,883,596
4	5	Brazil	36,824,580	697,074	35,919,372	208,134	63,776,166	215,353,593

```
In [10]:
```

```
df.tail()
```

Out[10]:

	Serial Number	Country	Total Cases	Total Deaths	Total Recovered	Active Cases	Total Test	Population
226	227	Diamond Princess	712	13	699	0	NaN	NaN
227	228	Vatican City	29	NaN	29	0	NaN	799
228	229	Western Sahara	10	1	9	0	NaN	626,161
229	230	MS Zaandam	9	2	7	0	NaN	NaN
230	231	Tokelau	5	NaN	NaN	5	NaN	1,378

In [12]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 231 entries, 0 to 230
Data columns (total 8 columns):

Column Non-Null Count Dtype ---0 Serial Number 231 non-null int64 1 Country 231 non-null object Total Cases 231 non-null object 3 Total Deaths 225 non-null object 4 Total Recovered 210 non-null object 212 non-null 5 Active Cases object Total Test 213 non-null object Population 228 non-null object

dtypes: int64(1), object(7)
memory usage: 14.6+ KB

In [15]:

df.isnull().sum()

Out[15]:

Serial Number 0 Country 0 Total Cases 0 Total Deaths 6 Total Recovered 21 Active Cases 19 Total Test 18 Population 3 dtype: int64

In [16]:

```
#another way
df.isna().sum()
```

Out[16]:

Serial Number 0 Country 0 Total Cases 0 Total Deaths 6 Total Recovered 21 **Active Cases** 19 Total Test 18 Population 3 dtype: int64

In [17]:

```
df=df.fillna('0')
```

```
In [18]:
df.isna().sum()
Out[18]:
Serial Number
Country
                   0
Total Cases
Total Deaths
                   0
Total Recovered
                   0
Active Cases
Total Test
                   0
Population
dtype: int64
In [19]:
df.columns
Out[19]:
Index(['Serial Number', 'Country', 'Total Cases', 'Total Deaths']
       'Total Recovered', 'Active Cases', 'Total Test', 'Population'],
      dtype='object')
In [20]:
df['Total Cases']=df['Total Cases'].str.replace(',','',regex=True).astype('float')
In [21]:
df['Total Deaths']=df['Total Deaths'].str.replace(',','',regex=True).astype('float')
In [22]:
df['Total Recovered']=df['Total Recovered'].str.replace(',','',regex=True).astype('float')
In [23]:
df['Active Cases']=df['Active Cases'].str.replace(',',','regex=True).astype('float')
In [24]:
df['Total Test']=df['Total Test'].str.replace(',','',regex=True).astype('float')
In [25]:
df['Population']=df['Population'].str.replace(',','',regex=True).astype('float')
```

In [26]:

df

Out[26]:

Serial Number		Country	Total Cases	Total Deaths	Total Recovered	Active Cases	Total Test	Population
0	1	USA	104196861.0	1132935.0	101322779.0	1741147.0	1.159833e+09	3.348053e+08
1	2	India	44682784.0	530740.0	44150289.0	1755.0	9.152658e+08	1.406632e+09
2	3	France	39524311.0	164233.0	39264546.0	95532.0	2.714902e+08	6.558452e+07
3	4	Germany	37779833.0	165711.0	37398100.0	216022.0	1.223324e+08	8.388360e+07
4	5	Brazil	36824580.0	697074.0	35919372.0	208134.0	6.377617e+07	2.153536e+08
226	227	Diamond Princess	712.0	13.0	699.0	0.0	0.000000e+00	0.000000e+00
227	228	Vatican City	29.0	0.0	29.0	0.0	0.000000e+00	7.990000e+02
228	229	Western Sahara	10.0	1.0	9.0	0.0	0.000000e+00	6.261610e+05
229	230	MS Zaandam	9.0	2.0	7.0	0.0	0.000000e+00	0.000000e+00
230	231	Tokelau	5.0	0.0	0.0	5.0	0.000000e+00	1.378000e+03

231 rows × 8 columns

In [27]:

df.describe()

Out[27]:

	Serial Number	Total Cases	Total Deaths	Total Recovered	Active Cases	Total Test	Population
count	231.000000	2.310000e+02	2.310000e+02	2.310000e+02	2.310000e+02	2.310000e+02	2.310000e+02
mean	116.000000	2.923460e+06	2.927706e+04	2.721732e+06	8.351410e+04	2.996123e+07	2.812322e+07
std	66.828138	9.479286e+06	1.041073e+05	9.116089e+06	7.344789e+05	1.133726e+08	1.016625e+08
min	1.000000	5.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
25%	58.500000	2.400100e+04	1.795000e+02	1.208250e+04	1.850000e+01	2.260585e+05	4.063530e+05
50%	116.000000	2.065920e+05	1.965000e+03	1.315590e+05	7.390000e+02	1.671684e+06	5.511370e+06
75%	173.500000	1.296146e+06	1.390850e+04	1.255186e+06	9.328500e+03	1.148478e+07	2.152480e+07
max	231.000000	1.041969e+08	1.132935e+06	1.013228e+08	1.095262e+07	1.159833e+09	1.406632e+09

In [28]:

df.describe(include='all')

Out[28]:

	Serial Number	Country	Total Cases	Total Deaths	Total Recovered	Active Cases	Total Test	Population
count	231.000000	231	2.310000e+02	2.310000e+02	2.310000e+02	2.310000e+02	2.310000e+02	2.310000e+02
unique	NaN	231	NaN	NaN	NaN	NaN	NaN	NaN
top	NaN	USA	NaN	NaN	NaN	NaN	NaN	NaN
freq	NaN	1	NaN	NaN	NaN	NaN	NaN	NaN
mean	116.000000	NaN	2.923460e+06	2.927706e+04	2.721732e+06	8.351410e+04	2.996123e+07	2.812322e+07
std	66.828138	NaN	9.479286e+06	1.041073e+05	9.116089e+06	7.344789e+05	1.133726e+08	1.016625e+08
min	1.000000	NaN	5.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
25%	58.500000	NaN	2.400100e+04	1.795000e+02	1.208250e+04	1.850000e+01	2.260585e+05	4.063530e+05
50%	116.000000	NaN	2.065920e+05	1.965000e+03	1.315590e+05	7.390000e+02	1.671684e+06	5.511370e+06
75%	173.500000	NaN	1.296146e+06	1.390850e+04	1.255186e+06	9.328500e+03	1.148478e+07	2.152480e+07
max	231.000000	NaN	1.041969e+08	1.132935e+06	1.013228e+08	1.095262e+07	1.159833e+09	1.406632e+09

The number of countries in which the virus was detected

```
In [30]:
```

df['Country'].nunique()

Out[30]:

231

In [31]:

sns.pairplot(df,hue='Population')
plt.show()

Distribution of the number of people who could not cope with the disease

In [32]:

Distribution of the number of deaths by country

In [40]:

Distribution of the number of deaths by country

In [50]:

Distribution of the number of deaths by country

Distribution the number of people who were able to recover by country

In [53]:

Distribution of the number of recoveries by country

In [54]:

Distribution of the number of recoveries by country

In [55]:

Distribution of the number of active cases by country

In [59]:

Distribution of the number of active cases by country

In [60]:

Distribution of the number of active cases by country


```
In [62]:
```

Distribution of the number of active cases by country

Distribution of the total number of tests performed by country

In [63]:

Distribution of the total number of tests performed by country

In [65]:

Distribution of the total number of tests performed by country

In [67]:

Distribution of the number of cases in countries depending on the population

In [70]:

Distribution of the number of cases in countries depending on the population

In [71]:

Distribution of the number of cases in countries depending on the population

In [72]:

Distribution of the number of cases in countries depending on the population

Distribution of the total number of deaths depending on the population of countries

Distribution of the total number of deaths depending on the population of countries

In [75]:

Distribution of the total number of deaths depending on the population of countries

In [76]:

Distribution of the total number of deaths depending on the population of countries

Distribution of active cases depending on recoveries across all countries

In [79]:

Distribution of active cases depending on recoveries across all countries

In [80]:

Distribution of active cases depending on recoveries across all countries

In [81]:

Distribution of active cases depending on recoveries across all countries

Distribution of recoveries depending on the population of all countries

In [82]:

Distribution of recoveries depending on the population of all countries

In [83]:

Distribution of recoveries depending on the population of all countries

In [84]:

Distribution of recoveries depending on the population of all countries

Distribution of the number of tests performed depending on the population of all countries

In [85]:

Distribution of the number of tests performed depending on the population of all countries

In [86]:

Distribution of the number of tests performed depending on the population of all countries

In [87]:

Distribution of the number of tests performed depending on the population of all countries

Distribution of the number of active cases depending on the population of countries

In [88]:

Distribution of the number of active cases depending on the population of countries

In [89]:

Distribution of the number of active cases depending on the population of countries


```
In [91]:
```

```
riolin(df,x='Population',y='Active Cases',color='Country',hover_data=df.columns,points='all',
    template='plotly_dark',title='Distribution of the number of active cases depending on the population of countries',
    height=600)
r()
```

Distribution of the number of active cases depending on the population of countries

In [97]:

In [98]:


```
In [99]:
```

```
plt.figure(figsize=(14,12))
sns.heatmap(df.corr(),annot=True,cmap="YlGnBu",fmt='.2f')
plt.show()
```


Cluster

```
In [100]:
```

```
df=df.drop(['Serial Number'],axis=1).set_index('Country')
```

In [101]:

```
df.head()
```

Out[101]:

	Total Cases	Total Deaths	Total Recovered	Active Cases	Total Test	Population
Country						
USA	104196861.0	1132935.0	101322779.0	1741147.0	1.159833e+09	3.348053e+08
India	44682784.0	530740.0	44150289.0	1755.0	9.152658e+08	1.406632e+09
France	39524311.0	164233.0	39264546.0	95532.0	2.714902e+08	6.558452e+07
Germany	37779833.0	165711.0	37398100.0	216022.0	1.223324e+08	8.388360e+07
Brazil	36824580.0	697074.0	35919372.0	208134.0	6.377617e+07	2.153536e+08

In [102]:

from sklearn.preprocessing import MinMaxScaler

In [103]:

```
scaler=MinMaxScaler()
names=df.columns
d=scaler.fit_transform(df)
scaled_df=pd.DataFrame(d,columns=names)
scaled_df.head()
```

Out[103]:

	Total Cases	Total Deaths	Total Recovered	Active Cases	Total Test	Population
0	1.000000	1.000000	1.000000	0.158971	1.000000	0.238019
1	0.428830	0.468465	0.435739	0.000160	0.789136	1.000000
2	0.379323	0.144962	0.387519	0.008722	0.234077	0.046625
3	0.362581	0.146267	0.369099	0.019723	0.105474	0.059634
4	0.353413	0.615282	0.354504	0.019003	0.054987	0.153099

In [105]:

```
from sklearn.cluster import KMeans
wcss=[]
for i in range(1,15):
    km=KMeans(n_clusters=i)
    km.fit_predict(scaled_df)
    wcss.append(km.inertia_)
plt.scatter(range(1,15),wcss)
plt.show()
```


In []:

localhost:8888/notebooks/Covid-19 Analysis .ipynb