Table 1: Comparison of Different MTL Methods

Method	Before evolution $(\%) \uparrow$			After evolution $(\%) \uparrow$		
	$\overline{ ext{CLS}}$	DET	AVG	CLS	DET	AVG
Expert(CLS)+MAD						
Expert(CLS)+VisionLLM						
Expert(DET)+MAD						
Expert(DET)+VisionLLM						
DISC						

Table 2: The Relationship from Human Society to Machine Society to Method Design

Human Society	Machine Society	Method Design		
Social Hierarchy [5]	Hierarchical organizational structures	Layer-wise Hierarchical structures		
Sequential Progression [6]	Progressive interaction modes	Dynamic Hierarchical Collaboration		
Cultural Learning [4]	Strong-guided communication mechanisms	Dynamic Selective Collaboration		

Table 3: Comparison of Different Training Methods

Method	CLS	DET	SEG	AVG
ResNet-50 (Scratch)				
ResNet-50 (ImageNet)				
ResNet-50 (GV-D)				
MetaNet-B4 (GV-D)				

Table 4: Comparison of Different Knowledge Acquisition Methods

Method	\mathbf{CLS}	DET	AVG
Data (Direct Experience)	69.84	82.96	
Data-augmentation (Direct Experience)	70.68	83.89	
General-Model (Indirect Experience)	70.95	83.91	
Specialist-Model (Indirect Experience)	71.13	84.01	
DISC (Direct and Indirect Experience)	72.28	84.92	

Table 5: Comparison of Different Training Methods on Multiple Datasets

(CIFAR100) (Food-101) (Caltech-101) (VOC07+12) (WIDER FAC	
LSKD(CLS)+MTL	
LSKD(DET)+MTL	
CrossKD(CLS)+MTL	
CrossKD(DET)+MTL	
PPAL(CLS)+MTL	
PPAL(DET)+MTL	
DISC	

Table 6: Comparison of Computational Cost (FLOPs and Params) Across Knowledge Distillation and MTL Methods

Method	FLOPs	Params
LSKD(CLS)		
LSKD(DET)		
CrossKD(CLS)		
CrossKD(DET)		
PPAL(CLS)		
PPAL(DET)		
MAD(CLS)		
MAD(DET)		
VisionLLM(CLS)		
VisionLLM(DET)		
DISC(CLS)		
DISC(DET)		

We theoretically justify that dynamic fusion outperforms static fusion via a tighter generalization bound.

Proof 1. (Superiority of Dynamic Fusion)

Let $D_{\text{train}} = \{x_i, y_i\}_{i=1}^N$ be a training dataset of N samples, and $\hat{\ell}(f^m)$ be the empirical error of the m-th model f^m on D_{train} . For any hypothesis $f \in \mathcal{H}$ (i.e., $\mathcal{H} : \mathcal{X} \to \{-1, 1\}$), with probability at least $1 - \delta$, the generalization error is upper bounded by:

$$\operatorname{GError}(f) \leq \underbrace{\sum_{m=1}^{M} \mathbb{E}(w^m) \hat{\ell}(f^m)}_{\text{Term-L (empirical loss)}} + \underbrace{\sum_{m=1}^{M} \mathbb{E}(w^m) \mathfrak{R}_m(f^m)}_{\text{Term-C (complexity)}} + \underbrace{\sum_{m=1}^{M} \operatorname{Cov}(w^m, \ell^m)}_{\text{Term-Cov (covariance)}} + M \sqrt{\frac{\ln(1/\delta)}{2N}}, \quad (1)$$

where $\mathbb{E}(w^m)$ is the expected fusion weight, $\mathfrak{R}_m(f^m)$ is the Rademacher complexity of model f^m , and $\text{Cov}(w^m, \ell^m)$ is the covariance between the weight and the loss.

In static fusion, the weights w_{static}^m are constant, hence

$$Cov(w_{\text{static}}^m, \ell^m) = 0. (2)$$

In dynamic fusion, the fusion weight w_{dynamic}^m increases as the model loss ℓ^m decreases. Thus,

$$Cov(w_{\text{dynamic}}^m, \ell^m) < 0, \tag{3}$$

which effectively reduces the Term-Cov and thereby lowers the generalization bound.

Since both strategies use the same model architecture, the empirical loss remains unchanged:

$$\sum \mathbb{E}(w_{\text{dynamic}}^m) \,\hat{\ell}(f^m) = \sum w_{\text{static}}^m \,\hat{\ell}(f^m). \tag{4}$$

Additionally, dynamic fusion tends to assign higher weights to models with lower complexity. Therefore,

$$\sum \mathbb{E}(w_{\text{dynamic}}^m) \,\mathfrak{R}_m(f^m) \le \sum w_{\text{static}}^m \,\mathfrak{R}_m(f^m). \tag{5}$$

Since the confidence term $M\sqrt{\frac{\ln(1/\delta)}{2N}}$ is independent of the fusion strategy, it remains the same. Therefore, suppose the hypothesis space is $\mathcal{H}: \mathcal{X} \to \{-1,1\}$. Then for any $f_{\text{dynamic}}, f_{\text{static}} \in \mathcal{H}$, and for $1 > \delta > 0$, it holds that

$$\mathcal{O}(GError_{dynamic}) \le \mathcal{O}(GError_{static}),$$
 (6)

proving that dynamic fusion yields a tighter generalization error bound than static fusion.

Remark. To further explore the nature of dynamic collaboration, we analyze the generalization error upper bound in multimodal systems as shown in Eq 7:

$$GE(f) \leq |\mathcal{M}| \left(\mathcal{R}_{N}(\mathcal{H}) + \sqrt{\frac{\ln(1/\Delta)}{2N}} \right) + \sum_{m=1}^{|\mathcal{M}|} e^{\hat{r}r}(f^{m})$$

$$- \sum_{m=1}^{|\mathcal{M}|} \left[\frac{1}{|\mathcal{M}|} \underbrace{Cov(\omega^{m}, \ell^{m})}_{Negative \ self-correlation \ in \ DSC} - \frac{|\mathcal{M}| - 1}{|\mathcal{M}|} \sum_{j \neq m} \underbrace{Cov(\omega^{m}, \ell^{j})}_{Positive \ collaborative \ correlation \ in \ DSC} \right].$$

$$(7)$$

This bound reveals that the participation weight ω^m of a model is not only negatively correlated with its own loss (self-regularization), but also positively influenced by the losses of its collaborators. The first covariance term penalizes poor performance (negative self-correlation), while the second encourages collaboration with underperforming agents (positive cross-covariance). Such behavior closely mirrors human-like cultural learning, where individuals adapt based on both personal and peer performance, thus validating the dynamic collaboration mechanism in DISC.