โจรสลัดคนหนึ่งกำลังจะสร้างเรือใบเพื่อออกเดินทางไปในท้องทะเลที่กว้างใหญ่ เรือใบนี้ได้ออกแบบมาให้มีเสาเรือ N เสา แต่ ละเสาได้แบ่งให้ติดตั้งใบเรือออกเป็นส่วนๆ แต่ละส่วนมีใบเรือได้ 1 ใบ โดยความสูงของเสาเรือจะเท่ากับจำนวนช่องสำหรับ ติดตั้งใบเรือ ใบเรือจะติดตั้งอยู่ส่วนไหนของเสาก็ได้

การออกแบบเรือนี้ได้คำนึงถึงแรงลม ใบเรือที่อยู่ด้านหน้าของเรือจะได้รับแรงลมน้อยกว่าส่วนหลังของเรือเมื่อเปรียบเทียบที่ ระดับความสูงเดียวกัน ใบเรือแต่ละใบได้ถูกกำหนดประสิทธิภาพการทำงานจากตำแหน่งการติดตั้งด้วยหลักการข้างต้น โดย แสดงถึงค่าความด้อยประสิทธิภาพเมื่อติดตั้งใบเรือในแต่ละตำแหน่ง สำหรับประสิทธิภาพการทำงานจะคำนึงถึงตำแหน่งที่ ติดตั้งใบเรือแล้วทำให้การทำงานด้อยที่สุด นั่นคือการออกแบบเรือที่แย่ที่สุดคำนวณได้จากผลรวมของค่าความด้อย ประสิทธิภาพของตำแหน่งติดตั้งใบเรือแต่ละใบ

เรือลำนี้มี 6 เสา ความสูง 3, 5, 4, 2, 4 และ 3 ตามลำคับ โดยนับจากข้างหน้า การติดตั้งใบเรือนี้มีค่าความค้อยประสิทธิภาพ เท่ากับ 10

จงเขียนโปรแกรม โดยกำหนดความสูงและจำนวนใบเรื่อของแต่ละเสา จำนวน N เสา และหาค่าความด้อยประสิทธิภาพที่ต่ำ ที่สุดที่เป็นไปได้

ข้อมูลนำเข้า

บรรทัดแรกคือเลขจำนวนเต็ม N แทนจำนวนเสาบนเรือ โดยที่ $2 \le N \le 100,000$ บรรทัดถัดมาอีก N บรรทัด ประกอบด้วยเลขจำนวนเต็ม 2 จำนวน H และ K ($1 \le H \le 100,000$, $1 \le K \le H$) โดยที่ H คือ ความสูงของเสาเรือ และ K คือจำนวนใบเรือ และข้อมูลทางด้านหน้าเรือจะอยู่บรรทัดที่ 2 และท้ายเรือจะอยู่บรรทัดสุดท้าย

ข้อมูลส่งออก

เลขจำนวนเต็ม 1 จำนวน แทนผลรวมของความค้อยประสิทธิภาพในการติดตั้งใบเรือที่ต่ำที่สุด

Input	Output
6	10
3 2	
5 3	
4 1	
2 1	
4 3	
3 2	