Технические средства ИТ

Мониторы

- На основе электронно-лучевой трубки (ЭЛТ)
- Жидкокристаллические мониторы
- Плазменные мониторы
- Лазерные мониторы

ЭЛТ Мониторы

1 — магнито-отклоняющая система, 2 — электронный луч, 3 — фокусирующая система с сердечником (11) и фокусирующей катушкой, 4 — люминофор, 5 — нить накала нагревающая катод (8), 6 — проводящий слой на поверхности трубки для отведения заряда электронов с люминофора (аквадаг - графитовый), 7(13) — высоковольтные гнезда, 9 — вакуумный баллон,10 — экран, 12 — модулятор эмиссии электронов,14 — анод (7-30 кВ)

Устройство цветного кинескопа. 1 — Электронные пушки. 2 — Электронные лучи. 3 — Фокусирующая катушка. 4 — Отклоняющие катушки. 5 — Анод. 6 — Маска, благодаря которой красный луч попадает на красный люминофор, и т. д. 7 — Красные, зелёные и синие зёрна люминофора. 8 — Маска и зёрна люминофора

ЖК Мониторы (LCD-liquid crystal display)

Второй поляризатор пропускает полностью в горизонтально й плоскости поляризации, и частично под остальными углами с ослаблением по углу.

Стоят вертикальные и горизонтальные поляризационные фильтры. Жидкий кристалл поворачивает плоскость поляризации излучения на какой-то угол в зависимости от напряжения. Без подачи напряжения поворачивает все на 90, при подаче напряжения перестроив структуру поворачивает на какой-то меньший угол, либо перестает поворачивать и в результате получается черный цвет, при отсутствии напряжения белый.

TN-film, IPS

- Основные характеристики:
- Частота развертки
- Время отклика
- Угол обзора

Плазменный монитор

Устройство плазменной панели

- Работа плазменной панели состоит из трёх этапов:
- инициализация, в ходе которой происходит упорядочение положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подаётся импульс инициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочение расположения ионной газовой среды, на второй ступени разряд в газе, а на третьей завершение упорядочения.
- адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подаётся положительный импульс (+75 B), а на шину сканирования отрицательный (-75 B). На шине подсветки напряжение устанавливается равным +150 B.
- подсветка, в ходе которой на шину сканирования подаётся положительный, а на шину подсветки отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, сменой полярности импульсов обеспечивается многократный разряд ячейки.
- Один цикл «инициализация адресация подсветка» образует формирование одного подполя изображения. Складывая несколько подполей можно обеспечивать изображение заданной яркости и контраста. Фактически управление осуществляется изменением ширины импульса, например для формирования 8 битного пикселя дискретная ширина должна иметь 128 уровней, 1 бит нет подсветки, темный.

Принтеры

- Матричный
- Струйный
- Лазерный

Матричный

Струйный принтер

- На данный момент существует две технические реализации способа подачи красителя:
- Термическая (Thermal Ink Jet), также называемая BubbleJet Разработчик компания Canon. Принцип был разработан в конце 1970-х годов. В сопле расположен микроскопический нагревательный элемент, который при прохождении электрического тока мгновенно нагревается до температуры около 500 °C, при нагревании в чернилах образуются газовые пузырьки (англ. bubbles отсюда и название технологии), которые выталкивают капли жидкости из сопла на носитель. В 1981 году технология была представлена на выставке Canon Grand Fair. В 1985 году появилась первая коммерческая модель монохромного принтера Canon BJ-80. В 1988 году появился первый цветной принтер BJC-440 формата A2, разрешением 400 dpi.
- Пьезоэлектрическая (Piezoelectric Ink Jet) над соплом расположен пьезокристалл с диафрагмой. Когда на пьезоэлемент подаётся электрический ток, он изгибается и тянет за собой диафрагму формируется капля, которая впоследствии выталкивается на бумагу. Широкое распространение получила в струйных принтерах компании Epson. Технология позволяет изменять размер капли.

Пьезоэлектрическая технология печати

CMYK RGB M

Лазерный принтер

- три способа переноса тонеров:
- двухкомпонентный (система с двумя компонентами проявления с раздельным тонером и девелопером) красящие частицы, предназначенные для переноса на фотобарабан, не могут самостоятельно удерживаться на магнитном валу блока проявки, но прилипают к частицам специального магнитного порошка носителя (девелопера), которые при перемешивании заряжаются из-за взаимного трения.
- двухкомпонентный, где тонер и девелопер уже смешаны заранее в заводском картридже.
- однокомпонентный (напр., в современных принтерах Canon и HP) только тонер без каких-либо примесей, красящие частицы которого сами по себе обладают магнитными свойствами. В принтерах Xerox/Samsung/Brother используется немагнитный тонер с электростатической системой нанесения тонера.
- В двухкомпонентной системе девелопер остается на магнитном валу блока проявки и продолжает служить дальше (тонер, естественно, расходуется). В технических описаниях многих аппаратов производители заявляют, что девелопер вообще не требует восполнения, однако на практике его рабочие характеристики со временем ухудшаются, что сказывается на качестве копий.

Заправить лазерный принтер?

Цветная лазерная печать

Механическая мышка

Оптическая мышка

Поиск вектора движения

Standard Optical

Image of glossy surface using optical mouse

MX™ Laser Engine

Laser reveals microscopic detail for precise tracking

Гладкая поверхность

Прозрачная поверхность