Gaussian Matching

Jiaxin Hu

April 2, 2022

1 Model Formulation

1.1 Notations

- Let the lowercase letters (e.g., a, c) denote the scalar; the bold lowercase letters (e.g., $\boldsymbol{\omega}, \boldsymbol{v}$) denote the vector; the uppercase letters with sup-script in parentheses (e.g., $P^{(m)}, Q^{(m)}$) denote the dimension-m index sets with elements in the form $(i_1, \ldots, i_m) \in \mathbb{Z}_+^m$, and drop the sup-script when m = 1 for simplicity; the bold uppercase letters (e.g., $\boldsymbol{P}, \boldsymbol{Q}$) denote the matrix; and the calligraphy letters (e.g., $\boldsymbol{A}, \boldsymbol{B}$) denote the tensor of order three or greater.
- For a positive integer n, let [n] denote the index set $\{1, \ldots, n\}$.
- For an index set S and a positive integer m, let S^m denote the dimension-m vector space of S, where $S^m = \{(i_1, \ldots, i_m) : i_k \in S, \text{ for all } k \in [m]\}.$
- For two index sets S and T, we call the function $\pi: S \mapsto T$ the perfect matching between S and T if π is an one-to-one function; i.e., $\pi(i_1) = \pi(i_2)$ if and only if $i_1 = i_2$ for any $i_1, i_2 \in S$. When T = S, we call the π the permutation on S.
- For a perfect matching $\pi: S \mapsto T$, we call the dimension-2 index set $P^{(2)} = \{(i, \pi(i)) : i \in S\}$ the set corresponding to π , and we call π the perfect matching corresponding to $P^{(2)}$.
- For a perfect matching $\pi: S \mapsto T$ and an index set $S_0 \subset S$, let $\pi|_{S_0}: S_0 \mapsto T_0$ denote the sub-matching of π for the nodes in S_0 , where $T_0 = \{\pi(i) : i \in S_0\} \subset T$.
- For a perfect matching $\pi: S \mapsto T$ and a dimension-m vector $\mathbf{v} = (v_1, \dots, v_m) \in S^m$, let $\pi \circ \mathbf{v} = (\pi(v_1), \dots, \pi(v_m)) \in T^m$ denote the permutation of the vector \mathbf{v} .
- Let $\mathcal{A} \in \mathbb{R}^{n^{\otimes m}}$ denote an order-m real tensor of dimension n on each mode. For the vector $\boldsymbol{\omega} = (\omega_1, \dots, \omega_m) \in [n]^m$, we use $\mathcal{A}_{\boldsymbol{\omega}}$ to denote the $(\omega_1, \dots, \omega_m)$ -th entry of \mathcal{A} .
- We call a tensor $\mathcal{A} \in \mathbb{R}^{n^{\otimes m}}$ super-symmetric if for all $\boldsymbol{\omega} = (\omega_1, \dots, \omega_m) \in [n]^m$ we have $\mathcal{A}_{\boldsymbol{\omega}} = \mathcal{A}_{\pi \circ \boldsymbol{\omega}}$ for all permutations π on the set $\{\omega_1, \dots, \omega_m\}$.
- Let \times_k denote the tensor-by-matrix multiplication on the k-th mode.
- Let $\|\cdot\|_F$ denote the Frobenius norm for tensors. Let $\langle\cdot,\cdot\rangle$ denote the inner product for tensors.

1.2 Higher-order Correlated Winger Model

Consider two random super-symmetric tensors $\mathcal{A}, \mathcal{B}' \in \mathbb{R}^{n^{\otimes m}}$. Assume that all the pairs $\{(\mathcal{A}_{\omega}, \mathcal{B}'_{\omega}) : \omega \in [n]^m \cap \{\omega : \omega_1 \leq \cdots \leq \omega_m\}\}$ follow the i.i.d. correlated multivariate zero-mean Gaussian distribution with variance 1 and correlation $\rho \in (0, 1)$; i.e.,

$$\begin{pmatrix} \mathcal{A}_{\boldsymbol{\omega}} \\ \mathcal{B}'_{\boldsymbol{\omega}} \end{pmatrix} \sim \mathcal{N} \left(\boldsymbol{0}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right), \quad \text{and} \quad \begin{pmatrix} \mathcal{A}_{\boldsymbol{\omega}} \\ \mathcal{B}'_{\boldsymbol{\omega}} \end{pmatrix} \text{ is independent with } \begin{pmatrix} \mathcal{A}_{\boldsymbol{\omega}'} \\ \mathcal{B}'_{\boldsymbol{\omega}'} \end{pmatrix},$$

for all $\omega' \neq \omega$ and $\omega' \in [n]^m \cap \{\omega : \omega_1 \leq \cdots \leq \omega_m\}$. The tensors $\mathcal{A}, \mathcal{B}'$ are two correlated Winger tensors. Let π^* be a permutation on [n], and $\Pi^* \in \{0,1\}^{n \times n}$ denote the corresponding permutation matrix with entries $\Pi^*_{ij} = 1$ if $j = \pi^*(i)$ and $\Pi^*_{ij} = 0$, otherwise. Consider the permuted tensor \mathcal{B} such that for all $\omega \in [n]^m$

$$\mathcal{B}_{\omega} = \mathcal{B}'_{\pi^* \circ \omega}$$
, or equivalently $\mathcal{B} = \mathcal{B}' \times_1 \Pi^* \times_2 \cdots \times_m \Pi^*$.

We call the pair $(i, k) \in [n]^2$ as a true pair if $k = \pi^*(i)$, and (i, k) is a fake pair, otherwise. We also call the observation $(\mathcal{A}, \mathcal{B})$ follow the permuted higher-order correlated Winger model (pHCWM) with parameter π^* and ρ , denoted as $(\mathcal{A}, \mathcal{B}) \sim pHCWM_n(\pi^*, \rho)$.

Our goal is to recover π^* (or equivalently Π^*) observing \mathcal{A}, \mathcal{B} .

1.3 Maximum Likelihood Estimate

Theorem 1.1 (MLE for Higher-order correlated Winger model). Suppose that the order-m tensor observation $(\mathcal{A}, \mathcal{B}) \sim pHCWM_n(\pi^*, \rho^*)$. The MLE of the true permutation π^* , denoted $\hat{\pi}$ satisfies

$$\hat{\Pi} = \arg \max_{\Pi \in \mathcal{P}_n} \langle \mathcal{A} \times_1 \Pi \times_2 \cdots \times_m \Pi, \mathcal{B} \rangle,$$

where $\hat{\Pi}$ is the permutation matrix corresponding to $\hat{\pi}$, and \mathcal{P}_n is the collection for all possible permutation matrices on [n].

Proof of Theorem 1.1. Let Σ denote the covariance matrix $\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ with inverse $\Sigma^{-1} = \frac{1}{1-\rho^2} \begin{pmatrix} 1 & -\rho \\ -\rho & 1 \end{pmatrix}$. With given (π, ρ) , the pHCWM assumes that pairs $(\mathcal{A}_{\pi \circ \omega}, \mathcal{B}_{\omega}) \sim \mathcal{N}(\mathbf{0}, \Sigma)$ for all $\omega \in [n]^m$ and $(\mathcal{A}_{\pi \circ \omega}, \mathcal{B}_{\omega})$ are independent with $(\mathcal{A}_{\pi \circ \omega'}, \mathcal{B}_{\omega'})$ for all $\omega \neq \omega'$. Hence, we have the likelihood for the higher-order correlated Winger model

$$\mathcal{L}(\Pi, \rho | \mathcal{A}, \mathcal{B}) = \frac{1}{[2\pi \det(\Sigma)]^{n^m/2}} \exp\left(-\frac{1}{2} \sum_{\boldsymbol{\omega} \in [n]^m} (\mathcal{A}_{\pi \circ \boldsymbol{\omega}}, \mathcal{B}_{\boldsymbol{\omega}}) \Sigma^{-1} (\mathcal{A}_{\pi \circ \boldsymbol{\omega}}, \mathcal{B}_{\boldsymbol{\omega}})^T\right)$$

$$= \frac{1}{[2\pi \det(\Sigma)]^{n^m/2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\|\mathcal{A}\|_F^2 + \|\mathcal{B}\|_F^2 - 2\rho \left\langle \mathcal{A} \times_1 \Pi \times_2 \dots \times_m \Pi, \mathcal{B} \right\rangle \right] \right).$$

Note that $\max_{\Pi,\rho} \mathcal{L}(\Pi,\rho|\mathcal{A},\mathcal{B}) = \max_{\rho} \max_{\Pi} \mathcal{L}(\Pi|\rho,\mathcal{A},\mathcal{B})$. Then for any $\rho \in (0,1)$, we consider the estimator

$$\hat{\Pi}(\rho) = \arg\max_{\Pi} \mathcal{L}(\Pi|\rho, \mathcal{A}, \mathcal{B}) = \arg\max_{\Pi} \langle \mathcal{A} \times_1 \Pi \times_2 \cdots \times_m \Pi, \mathcal{B} \rangle.$$

Note that $\hat{\Pi}(\rho)$ is independent with ρ . Therefore, we let $\hat{\Pi}$ denote the estimator $\hat{\Pi}(\rho)$, and $\hat{\Pi}$ is the MLE of Π^* . The permutation $\hat{\pi}$ corresponding to $\hat{\Pi}$ is the MLE of π^* .

2 Algorithm

2.1 Matching via Empirical Distributions

We describe each node by the slice empirical distribution and adapt the sup-norm distance for distributions as the similarity measure to construct the mapping. Specifically, we define the sup-norm distance for all pairs $(i, k) \in [n]^2$ as

$$d_{ik} = \sup_{t \in \mathbb{R}} |F_n^i(t) - G_n^k(t)|, \tag{1}$$

where for all $t \in \mathbb{R}$

$$F_n^i(t) = \frac{1}{n^{m-1}} \sum_{\omega \in [n]^{m-1}} \mathbb{1} \{ \mathcal{A}_{i,\omega} \le t \}, \quad G_n^k(t) = \frac{1}{n^{m-1}} \sum_{\omega \in [n]^{m-1}} \mathbb{1} \{ \mathcal{B}_{k,\omega} \le t \}$$

are slice empirical distributions for node i with observation \mathcal{A} and node k with observation \mathcal{B} , respectively. The sup-norm distance d_{ik} is smaller when F_n^i are G_n^k are more correlated, which motivates our Algorithm 1 for Gaussian tensor matching.

Algorithm 1 Gaussian tensor matching via empirical distribution

Input: Gaussian tensors $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{n^{\otimes m}}$.

- 1: Calculate the sup-norm distances d_{ik} as (1) for all pairs $(i,k) \in [n]^2$.
- 2: Obtain the set $P^{(2)} = \{(i, k) \in [n]^2 : d_{ik} \text{ is no larger than the } n\text{-th smallest } d_{ik}\}.$
- 3: if there exists a permutation on [n], $\hat{\pi}$, corresponding to the set $P^{(2)}$ then
- 4: Output $\hat{\pi}$.
- 5: **else**
- 6: Output error.
- 7: end if

Output: Estimated permutation $\hat{\pi}$ or error.

Following theorem shows the guarantee for Algorithm 1 to exactly recover true permutation π^* .

Theorem 2.1 (Guarantee for Algorithm 1). Let $\sigma^2 = \sqrt{1 - \rho^2}$. Suppose $\sigma \leq c \log^{-2} n$ for some sufficiently small positive constant c. Algorithm 1 exactly recovers the true permutation π^* with probability tends to 1 as $n \to \infty$.

Remark 1. The condition $\sigma \lesssim \log^{-2} n$ is stricter than Ding's condition $\sigma \lesssim \log^{-1} n$. The current unideal tail bound for the sup-norm distance in note 0403 leads to the decrement.

2.2 Improved Matching with Seeded Algorithm

We improve the Algorithm 1 with seeded algorithm. Our seeded algorithm involves three steps: (1) generating seeds that reveals the true permutation π^* for a subset of nodes; (2) recovering the full permutation with the seed; (3) refining the estimated permutation in (2) to achieve exact recovery.

Specifically, we consider the seed that involves high-similarity and high-degree pairs in step (1). We measure the similarity by the sup-norm distance defined in (1). The "degree" of node i in \mathcal{A} and node k in \mathcal{B} for all $i, k \in [n]$ are represented as

$$a_i = \frac{1}{n^{(m-1)/2}} \sum_{\boldsymbol{\omega} \in [n]^{m-1}} \mathcal{A}_{i,\boldsymbol{\omega}}, \quad \text{and} \quad b_k = \frac{1}{n^{(m-1)/2}} \sum_{\boldsymbol{\omega} \in [n]^{m-1}} \mathcal{B}_{k,\boldsymbol{\omega}}.$$
 (2)

Hence, we consider the following seed set $Q^{(2)}$ with given thresholds ξ, ζ

$$Q^{(2)} = \{(i,k) \in [n]^2 : a_i, b_k \ge \xi, d_{ik} \le \zeta\}.$$
(3)

The $Q^{(2)}$ contains more seeds with a smaller ξ and larger ζ . As our proof shows later, the set $Q^{(2)}$ with proper thresholds ξ and ζ contains only true pairs with high probability. Suppose that there exists a perfect matching $\pi_0: S \mapsto T$ corresponding to $Q^{(2)}$, where S and T are two subsets of [n]. Then, we solve the rest permutations by transferring the multiway tensor matching to a bipartite matching problem with π_0 . Detail procedures are in Algorithm 2.

Following theorem shows the guarantee for Algorithm 2 to exactly recover true permutation π^* .

Theorem 2.2 (Guarantee for Algorithm 2). Let $\sigma^2 = \sqrt{1-\rho^2}$. Suppose $\sigma \leq c \log^{-1/3(m-1)} n$ for some sufficiently small positive constant c. Choose thresholds $\xi \geq c_1 \sqrt{\log^{1/(m-1)} n}$ and $\zeta \leq c_2 \sqrt{\sigma/n^{m-1}}$ for some positive constants c_1, c_2 . Algorithm 2 exactly recovers the true permutation π^* with probability tends to 1 as $n \to \infty$.

References

Algorithm 2 Improved Gaussian tensor matching with seeded algorithm

Step 1: Seeds generation

Input: Gaussian tensors $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{n^{\otimes m}}$, thresholds ξ and ζ .

- 1: Calculate the sup-norm distances d_{ik} as (1) for all pairs $(i,k) \in [n]^2$ and the degrees a_i and b_i as (2) for all $i \in [n]$.
- 2: Obtain the seed set $Q^{(2)}$ as (3) with ξ and ζ .
- 3: if there exists a perfect matching $\pi_0: S \mapsto T$ corresponding to $Q^{(2)}$ then
- 4: Output π_0 .
- 5: **else**
- 6: Stop the entire Algorithm 2 immediately and output error.
- 7: end if

Output: Perfect matching π_0 or error.

Step 2: Seeded matching

Input: Gaussian tensors $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{n^{\otimes m}}$ and the perfect matching $\pi_0 : S \mapsto T$ from **Step 1**.

8: Calculate the analogy of sample covariance H_{ik} for all pairs (i, k) such that $i \in S^c$ and $k \in T^c$, where $S^c = [n]/S, T^c = [n]/T$, and

$$H_{ik} = \sum_{\boldsymbol{\omega} \in S^{m-1}} \mathcal{A}_{i,\boldsymbol{\omega}} \mathcal{B}_{k,\pi_0 \circ \boldsymbol{\omega}}.$$

9: Find the optimal perfect matching $\tilde{\pi}_1 : S^c \mapsto T^c$ such that

$$\tilde{\pi}_1 = \operatorname*{arg\,max}_{\pi \colon S^c \mapsto T^c} \sum_{i \in S^c} H_{i\pi(i)}.$$

10: Concatenate the matching π_0 and $\tilde{\pi}_1$ to a permutation π_1 on [n] such that $\pi_1|_S = \pi_0$ and $\pi_1|_{S^c} = \tilde{\pi}_1$.

Output: Estimated permutation π_1 .

Step 3: Non-iterative clean-up

Input: Gaussian tensors $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{n^{\otimes m}}$ and the permutation π_1 on [n] from Step 2.

- 11: Calculate $W_{ik} = \sum_{\omega \in [n]^{m-1}} \mathcal{A}_{i,\omega} \mathcal{B}_{k,\pi_1 \circ \omega}$ for all pairs $(i,k) \in [n]^2$.
- 12: Obtain the set $P^{(2)} = \{(i, k) \in [n]^2 : W_{ik} \text{ is no smaller than the } n\text{-th largest } W_{ik}\}.$
- 13: if there exists a permutation on [n], $\hat{\pi}$, corresponding to the set $P^{(2)}$ then
- 14: Output $\hat{\pi}$.
- 15: **else**
- 16: Output error.
- 17: **end if**

Output: Estimated permutation $\hat{\pi}$ or error.