

# **ASR6601**

# **Test Report**

Version 1.0.0

Issue Date 2021-05-08

Copyright © 2021 ASR

#### **About This Document**

This document provides the test report for IoT LPWAN SoC ASR6601.

### **Intended Readers**

This document is mainly for engineers who use this chip to develop their own platform and products, for instance:

- PCB Hardware Development Engineer
- Software Engineer
- Technical Support Engineer

# **Included Chip Models**

The product models corresponding to this document are as follows.

| Model      | Flash  | SRAM  | Core                                                        | Package       | Frequency     |
|------------|--------|-------|-------------------------------------------------------------|---------------|---------------|
| ASR6601SE  | 256 KB | 64 KB | 32-bit 48 MHz<br>Arm China STAR-                            | QFN68, 8*8 mm | 150 ~ 960 MHz |
| ASR6601CB  | 128 KB | 16 KB | MC1 Processor  32-bit 48 MHz  Arm China STAR-               | QFN48, 6*6 mm | 150 ~ 960 MHz |
| ASR6601SER | 256 KB | 64 KB | MC1 Processor  32-bit 48 MHz  Arm China STAR- MC1 Processor | QFN68, 8*8 mm | 150 ~ 960 MHz |
| ASR6601CBR | 128 KB | 16 KB | 32-bit 48 MHz<br>Arm China STAR-<br>MC1 Processor           | QFN48, 6*6 mm | 150 ~ 960 MHz |

# **Copyright Notice**

© 2021 ASR Microelectronics Co., Ltd. All rights reserved. No part of this document can be reproduced, transmitted, transcribed, stored, or translated into any languages in any form or by any means without the written permission of ASR Microelectronics Co., Ltd.

#### **Trademark Statement**

ASR and ASR Microelectronics Co., Ltd. are trademarks of ASR Microelectronics Co., Ltd.

Other trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners.

#### **Disclaimer**

ASR do not give any warranty of any kind and may make improvements and/or changes in this document or in the product described in this document at any time.

This document is only used as a guide, and no contents in the document constitute any form of warranty. Information in this document is subject to change without notice.

All liability, including liability for infringement of any proprietary rights caused by using the information in this document is disclaimed.

# **ASR Micro**electronics Co., Ltd.

Address: 9F, Building 10, No. 399 Keyuan Road, Zhangjiang High-tech Park, Pudong New Area,

Shanghai, 201203, China

Homepage: http://www.asrmicro.com/

## **Revision History**

| Date    | Version | Release Notes  |
|---------|---------|----------------|
| 2021.05 | V1.0.0  | First Release. |

# **Table of Contents**

| 1. | Test ( | Overview                        | . 1 |
|----|--------|---------------------------------|-----|
|    | 1.1    | Hardware                        | 1   |
|    | 1.2    | Software                        | 1   |
|    | 1.3    | Equipment                       | 1   |
|    | 1.4    | Test Items and Results Summary  |     |
| 2. | Test I | Implementation                  |     |
|    | 2.1    | TX Test                         | 2   |
|    |        | 2.1.1 Setup TX Test Environment |     |
|    |        | 2.1.2 Frequency Offset Test     | 3   |
|    |        | 2.1.3 Transmit Power Test       | 4   |
|    |        | 2.1.4 Harmonic Test             | 5   |
|    |        | 2.1.5 Phase Noise Test          |     |
|    | 2.2    | RX Test                         | 8   |
|    |        | 2.2.1 RX Test Environment Setup | 8   |
|    |        | 2.2.2 RX Sensitivity Test       |     |
|    | 2.3    | Power Consumption Test          | 10  |

# **List of Tables**

| able 1-1 Test Items and Results Summary     | 1 |
|---------------------------------------------|---|
| able 2-1 Frequency Offset Test Result       | 3 |
| able 2-2 Maximum Transmit Power Test Result | 4 |
| able 2-3 Harmonic Test Result               | 6 |
| able 2-4 Phase Noise Test Result            | 7 |
| able 2-5 RX Sensitivity Test Specification  | ξ |
| able 2-6 RX Sensitivity Test Result         | ç |
| able 2-7 Power Consumption Test Result      |   |

# **List of Figures**

| Figure 2-1 Setup TX Test Environment     | 2  |
|------------------------------------------|----|
| Figure 2-2 Frequency Offset Test         | 3  |
| Figure 2-3 Transmit Power Test           | 4  |
| Figure 2-4 2nd/3rd/4th/5th Harmonic Test | 5  |
| Figure 2-5 Phase Noise Test              | 7  |
| Figure 2-6 Setup RX Test Environment     | 8  |
| Figure 2-7 Power Consumption Test        | 10 |

1. Test Overview ASR6601 Test Report

# 1.

# **Test Overview**

### 1.1 Hardware

68-Pin ASR6601-SE V1.0 Development Board

### 1.2 Software

ASR6601 V1.0 SDK

# 1.3 Equipment

Agilent N5182B and Agilent N9020A

# 1.4 Test Items and Results Summary

**Table 1-1 Test Items and Results Summary** 

| No. | Category               | Test Item                   | Result                                |  |
|-----|------------------------|-----------------------------|---------------------------------------|--|
|     |                        | Frequency Offset            | 4.25 ppm (XO)                         |  |
| 1   | TX Test                | Transmit Power              | 21.06 dBm (22 dBm)                    |  |
| I   |                        | Harmonic Test               | -46.94 dBm (2 <sup>nd</sup> harmonic) |  |
|     |                        | Phase Noise                 | -99.965                               |  |
| 2   | RX Test RX Sensitivity |                             | -138.4 dBm                            |  |
|     | Power Test             | TX Power Consumption        | 111 mA (22 dBm)                       |  |
| 3   |                        | RX Power Consumption        | 8.7 mA                                |  |
|     |                        | DeepSleep Power Consumption | 1.5 uA                                |  |

# 2.

# **Test Implementation**

### 2.1 TX Test

#### 2.1.1 Setup TX Test Environment

See Figure 2-1 for TX test environment setup:



**Figure 2-1 Setup TX Test Environment** 

### 2.1.2 Frequency Offset Test

#### 1. Test Method

- (1) Frequency setting:
  - Set to LoRa CW mode with 470.0 MHz frequency
  - Set the power to 22.0 dBm
- (2) Spectrum analyzer setting:
  - Center frequency is 470.0 MHz, Span is 2 MHz, Ref amp is 25.0 dBm
  - Measure the CW frequency with the marker of the spectrum analyzer

#### 2. Illustration



Figure 2-2 Frequency Offset Test

**Table 2-1 Frequency Offset Test Result** 

| SN | Set (MHz) | Test (MHz) | PPM  |
|----|-----------|------------|------|
| 1# | 470.000   | 469.9980   | 4.25 |

#### 2.1.3 Transmit Power Test

#### 1. Test Method

- (1) Frequency setting:
  - Set to LoRa CW mode with 470.0 MHz frequency
  - Set the power to 22 dBm
- (2) Spectrum analyzer setting:
  - Set frequency point at 1st, 2nd, 3rd, 4th and 5th of the basic frequency.
     Span is 2 MHz (or 5 MHz), Ref amp is 25 dBm
  - Max Hold mode

#### 2. Illustration



Figure 2-3 Transmit Power Test

**Table 2-2 Maximum Transmit Power Test Result** 

| SN | Frequency (MHz) | Set (dBm) | Basic (dBm) |
|----|-----------------|-----------|-------------|
| 1# | 470             | 22        | 21.06       |
| 2# | 470             | 22        | 20.97       |

#### 2.1.4 Harmonic Test

#### 1. Test Method

- (1) Frequency settings
  - Set to LoRa CW mode with 470.0 MHz frequency
  - Set the power to 22 dBm
- (2) Spectrum analyzer settings
  - Set frequency point at 1st, 2nd, 3rd, 4th and 5th of the basic frequency.
     Span is 2 MHz (or 5 MHz), Ref amp is 25 dBm
  - Max Hold mode

#### 2. Illustration



Figure 2-4 2nd/3rd/4th/5th Harmonic Test

**Table 2-3 Harmonic Test Result** 

| SN | Frequency (MHz) | Set<br>(dBm) | Basic<br>(dBm) | 2nd<br>(dBm) | 3rd<br>(dBm) | 4th<br>(dBm) | 5th<br>(dBm) |
|----|-----------------|--------------|----------------|--------------|--------------|--------------|--------------|
| 1# | 470             | 22           | 21.06          | -46.94       | -50.74       | -55.80       | -60.41       |
| 2# | 470             | 22           | 20.97          | -45.42       | -49.57       | -56.22       | -59.28       |



#### 2.1.5 Phase Noise Test

#### 1. Test Method

- (1) Frequency setting:
  - Set to LoRa CW mode with 470.0 MHz frequency
  - Set the power to 22 dBm
- (2) Spectrum analyzer setting:
  - Maker → Delta; Function → maker noise
  - Span is 2 MHz (or 5 MHz), Ref amp is 25 dBm
  - Max Hold mode

#### 2. Illustration



Figure 2-5 Phase Noise Test

**Table 2-4 Phase Noise Test Result** 

| SN | Frequency (MHz) | ACT (MHz) | Phase Noise (dB/Hz) |
|----|-----------------|-----------|---------------------|
| 1# | 470             | 469.999   | -98.653             |
| 2# | 470             | 469.999   | -99.965             |

# 2.2 RX Test

### 2.2.1 RX Test Environment Setup

See Figure 2-6 for RX Test environment setup:



Figure 2-6 Setup RX Test Environment

### 2.2.2 RX Sensitivity Test

#### 1. Test Method

- (1) Frequency setting:
  - Set to LoRa RX test mode with 470.0 MHz frequency
- (2) Signal generator setting:
  - Load related waveform for different SF
  - Measure the SNR threshold as below

**Table 2-5 RX Sensitivity Test Specification** 

| SF   | BW (KHz) | Package RSSI (dBm) | SNR Limit (dB) |
|------|----------|--------------------|----------------|
| SF7  | 125      | <123               | -7.5           |
| SF8  | 125      |                    | -10            |
| SF9  | 125      |                    | -12.5          |
| SF10 | 125      | <130               | -15            |
| SF11 | 125      | 70                 | -17.5          |
| SF12 | 125      | <135               | -20            |

**Table 2-6 RX Sensitivity Test Result** 

| SN | Frequency (MHz) | SF | BW (KHz) | SNR (dB) | Sensitivity (dBm) |
|----|-----------------|----|----------|----------|-------------------|
| #1 |                 | 7  | - 125    | -5       | -124.5            |
|    | 470             | 8  |          | -9.5     | -127.8            |
|    |                 | 9  |          | -11.5    | -130.7            |
|    |                 | 10 |          | -14      | -132.8            |
|    |                 | 11 |          | -16.5    | -135.7            |
|    |                 | 12 |          | -19      | -138.4            |

# 2.3 Power Consumption Test

#### 1. Test Method

- (1) Frequency setting:
  - Set to 470 MHz frequency under TX, RX, Standby and Sleep mode
- (2) Multimeter setting:
  - Set the multimeter to current test mode
- (3) AT Command:
  - TX: AT+CTXCW=470000000,22
  - RX: AT+CRX=470000000,0
  - Deep sleep: AT+CSLEEP=1

#### 2. Illustration



**Figure 2-7 Power Consumption Test** 

#### 3. Test Result

**Table 2-7 Power Consumption Test Result** 

| SN | Frequency | Test Mode  | Power<br>Consumption | Test AT Command       | Remark                |
|----|-----------|------------|----------------------|-----------------------|-----------------------|
| #1 | 470 MHz   | тх         | 111 mA               | AT+CTXCW=470000000,22 | DC-DC used,<br>22 dBm |
|    |           | RX         | 8.7 mA               | AT+CRX=470000000,0    | DC-DC used            |
|    |           | Deep Sleep | 1.5 uA               | AT+CSLEEP=1           | DC-DC used            |

#### 4. Note

The power consumption test result is for ASR6601 SoC with front-end RF.