

MAΣ 002 - MAΘHMAΤΙΚΑ ΙΙ

ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ

16 Φεβρουαρίου 2019

Εαρινό Εξάμηνο 2018-19

ONOMA:	ΕΠΩΝΥΜΟ:	
А.Ф.Т.:	ETO Σ :	
$oldsymbol{\Delta}$ ιδάσκοντες: Δ ρ. Π . \Box	Μπατακίδης, Δρ. Ζ. Κουντουριώτης	
$oldsymbol{\Delta}$ ιάρχεια εξέτασης: 1	.20 λεπτά.	

- Η χρήση σημειώσεων, βιβλίων, υπολογιστικών αριθμομηχανών και κινητών τηλεφώνων δεν επιτρέπεται.
- Η αποχώρηση από την αίθουσα επιτρέπεται μόνο μετά την παράδοση του γραπτού ή μετά από άδεια.
- Καλή Επιτυχία!

Άσκηση	1	2	3	4	Βαθμός
Μονάδες (ΜΑΧ)	6	6	6	7	25

Θ EMA 1º [2+2+2]

- (1) Να βρεθεί το εμβαδόν του χωρίου που περιεχλείεται από την y=sinx, την y=cosx και τις ευθείες x=π και x=2π.(Δίνεται ότι sin $\frac{\pi}{4}=cos$ $\frac{\pi}{4}=\frac{\sqrt{2}}{2}$).
- (2) Να βρεθεί ο όγκος του στερεού που παράγεται από την πλήρη περιστροφή του χωρίου που περικλείεται από τις καμπύλες $y=x^2$ και $x=y^2$ γύρω απο τον άξονα τον yy'.
- (3) Να βρεθεί το εμβαδόν της επιφάνειας που παράγεται από την πλήρη περιστροφή του τόξου της καμπύλης $y=\sqrt{1-x^2}$ από το x=0 εώς το $x=\frac{1}{2}$ γύρω από τον άξονα τον xx'.

$\Theta { m EMA} \,\, 2^o \,\, [{ m Mo}$ νάδες $2\!+\!2\!+\!1\!+\!1]$

(Α) Να υπολογιστούν τα πιο κάτω γενικευμένα ολοκληρώματα.

$$(1) \int_1^\infty \frac{\ln x}{x} dx,$$

(2)
$$\int_{-1}^{1} x^{-1/3} dx$$
,

(Β) Να υπολογιστούν τα πιο κάτω όρια.

(1)
$$\lim_{x\to\infty} \frac{7-2x}{e^x+3x}$$
,

$$(2) \lim_{x \to -\infty} e^x \cdot (2 - x^2),$$

$\Theta { m EMA}$ 3^o [Μονάδες $1{+}1{+}2{+}2]$

Να εξεταστεί αν οι πιο κάτω ακολουθίες είναι μόνοτονες και φραγμένες (να αναφέρεται έαν είναι κάτω ή/και άνω φραγμένη). Στην συνέχεια να εξεταστεί αν είναι συγκλίνουσες.

(1)
$$a_n = (-1)^n(-n+2), \quad n \geqslant 1$$

(2)
$$a_n = n - n^2, \quad n \geqslant 1$$

(3)
$$a_n = \frac{5^n}{2^{(n^2)}}, \quad n \geqslant 1$$

(4)
$$a_n = \frac{3n^2 - 1}{n^2}, \quad n \geqslant 1$$

Θ EMA 4^o [Μονάδες 1+1+1+2+2]

- $({\bf A}){
 m N}$ α εξεταστούν ως προς την σύγκλιση οι παρακάτω σειρές με την χρήση του δοσμένου κριτηρίου.
 - (1) $\sum_{k=1}^{\infty} \frac{2\sqrt{k}}{k+4}$ (κριτήριο οριακής σύγκρισης).
 - (2) $\sum_{k=3}^{\infty} \frac{e^{4n}}{(n-3)!}$ (αριτήριο λόγου).
 - (3) $\sum_{k=1}^{\infty} \left(\frac{k}{5^k}\right)^k$ (κριτήριο της ρίζας).
 - (4) $\sum_{k=1}^{\infty} \frac{k+3}{k+2}$ (κριτήριο ολοκλήρωσης).
- (Β) Να αποδειχθεί το πιο κάτω

$$\sum_{k=1}^{\infty} \frac{6 \cdot 5^k - 5}{6^k} = 29.$$