Thermodynamic Cycles and Their Efficiencies.

· Reactor Power Cycle

Overall thermal efficiency
$$\eta = \frac{\text{Net output Work}}{\text{Input Heat}} = \frac{\text{UT-Wp}}{\text{Q}}$$

$$= \frac{\text{Q} - \text{QR}}{\text{Q}} = 1 - \frac{\text{QR}}{\text{Q}}$$

Carnot Cycle:

Efficiency of this cycle abod
$$\eta = \frac{Q - Q_R}{Q} = \frac{T_s(S_b - S_a) - T_R(S_c - S_d)}{T_s(S_b - S_a)}$$

$$= 1 - \frac{T_R}{T_c}$$

- Da-b-isothermal heat addition

- 2) b-c isentropic expansion.

 3) c-d isothermal heat rejection

 4) d-a isentropic compression

Shaft work of the turbine

$$M_T = h_1 - h_{2s}$$

Pumping Work $M_P = h_{4s} - h_3$.

 $= \frac{V}{J}(P_1 - P_2)$

Not work por kg of working fluid

 $M_{NOT} = (h_1 - h_{2s}) - (h_{4s} - h_3)$
 $= (h_1 - h_{2s}) - \frac{V}{J}(P_1 - P_2)$

Heat input

 $Q = (h_1 - h_{4s}) = (h_1 - h_3) - \frac{V}{J}(P_1 - P_2)$

Overall thormal efficiency

 $Q = \frac{M_{NOT}}{Q} = \frac{(h_1 - h_{2s}) - \frac{V}{J}(P_1 - P_2)}{(h_1 - h_3) - \frac{V}{J}(P_1 - P_2)}$

Actual Edeal Rankine Cycle:

pump (compresse) $p_1 = \frac{h_{4s} - h_3}{h_4 - h_3}$

turbine (exponsion) $p_2 = \frac{h_{4s} - h_3}{h_4 - h_3}$
 $p_3 = \frac{h_1 - h_2}{h_1 - h_2s}$
 $p_3 = \frac{h_1 - h_2}{h_1 - h_2s}$

1-2, isentropic expansion, 2, >3, steam condensation

3 -> 4s - isentropic coropression P2 -> P, with pump.

(boiler pressure)

4s -> 5-1- high pressure liquid ernorges as steam
at 1.

Thermodynamic Analysis of Nuclear Power Plants

Rankine and Brayton Cycles.

Constant pressure heat addition and rejection for steady flow operation.

Thermodynamic efficiency (or effectiveness) & = Wu, actual Wu, max.

Wu, max = 20-To3 + \(\frac{1}{T_s} \) \(\hat{Q} + \frac{1}{T_s} \) \(\hat{Q} \)

isentrupic efficiency $\eta = \left(\frac{\dot{W}_{u, actual}}{\dot{W}_{u, max}}\right) \dot{Q} = 0$

For adiabatic control volume of = 1/s.

Wymax/s=0 = - [ay +]mihis.

steady state Klu, mox | Q = = Z mi Lis.

Wu,act = = mihi

Thermal efficiency.

Thermal efficiency.

Muant

Qin

$$\frac{m_p}{m_s} = \frac{h_3 - h_a}{\overline{c_p}[T_s - (T_a + \delta T_p)]} = \frac{h_a - h_2}{\overline{c_p}[(T_a + \delta T_p) - T_6]}$$

$$\xi = \frac{m_p (h_s - h_s)}{m_s (h_i - h_{out})} + \frac{m_s (h_{in} - h_{out})}{m_s (h_{in} - h_{out})}$$

$$\xi = \frac{[m_s (h_{in} - h_{out})]}{[m_s (h_{out} - h_{in})]} = \frac{m_s (h_{in} - h_{out})}{s_{ss}}$$

$$= \frac{h_3 - h_4 + h_1 - h_2}{h_3 - h_2}$$