C.M. Bishop's PRML: Chapter 5; Neural Networks

Vasil Khalidov & Miles Hansard

Introduction

The aim is, as before, to find useful decompositions of the target variable;

$$t(\mathbf{x}) = y(\mathbf{x}, \mathbf{w}) + \epsilon(\mathbf{x}) \tag{3.7}$$

- ▶ $t(\mathbf{x}_n)$ and \mathbf{x}_n are the observations, n = 1, ..., N.
- $ightharpoonup \epsilon(\mathbf{x})$ is the residual error.

Linear Models

For example, recall the (Generalized) Linear Model:

$$y(\mathbf{x}, \mathbf{w}) = f \left(\sum_{j=0}^{M} w_j \phi_j(\mathbf{x}) \right)$$
 (5.1)

- $lack \phi = (\phi_0, \dots, \phi_M)^{\top}$ is the fixed model basis.
- $\mathbf{w} = (w_0, \dots, w_M)^{\top}$ are the model coefficients.
- ▶ For regression: $f(\cdot)$ is the identity.
- **\triangleright** For classification: $f(\cdot)$ maps to a posterior probability.

Feed-Forward Networks

Feed-forward Neural Networks generalize the linear model

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=0}^{M} w_j \phi_j(\mathbf{x})\right)$$
 (5.1 again)

- ▶ The basis itself, as well as the coefficients w_j , will be adapted.
- ▶ Roughly: the principle of (5.1) will be used twice; once to define the basis, and once to obtain the output.

Activations

Construct M linear combinations of the inputs x_1, \ldots, x_D :

$$a_j = \sum_{i=0}^{D} w_{ji}^{(1)} x_i \tag{5.2}$$

- ▶ a_i are the activations, j = 1, ..., M.
- $w_{ji}^{(1)}$ are the layer one weights, $i=1\ldots D$.
- $w_{j0}^{(1)}$ are the layer one biases.

Each linear combination a_j is transformed by a (nonlinear, differentiable) activation function:

$$z_j = h(a_j) (5.3)$$

Output Activations

The hidden outputs $z_j = h(a_j)$ are linearly combined in layer two:

$$a_k = \sum_{j=0}^{M} w_{kj}^{(2)} z_j \tag{5.4}$$

- ▶ a_k are the output activations, k = 1, ..., K.
- $w_{kj}^{(2)}$ are the layer two weights, j=1...D.
- $w_{k0}^{(2)}$ are the layer two biases.

The output activations a_k are transformed by the output activation function:

$$y_k = \sigma(a_k) \tag{5.5}$$

- $ightharpoonup y_k$ are the final outputs.
- $ightharpoonup \sigma(\cdot)$ is, like $h(\cdot)$, a sigmoidal function.

The Complete Two-Layer Model

The model $y_k = \sigma(a_k)$ is, after substituting the definitions of a_j and a_k :

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=0}^{M} w_{kj}^{(2)} h \left(\sum_{i=0}^{D} w_{ji}^{(1)} x_i \right) \right)$$

$$a_k$$

$$(5.9)$$

▶ $h(\cdot)$ and $\sigma(\cdot)$ are a sigmoidal functions, e.g. the logistic function.

$$s(a) = \frac{1}{1 + \exp(-a)}$$
 $s(a) \in [0, 1]$

- ▶ If $\sigma(\cdot)$ is the identity, then a regression model is obtained.
- ▶ Evaluation of (5.9) is called forward propagation.

Network Diagram

The approximation process can be represented by a network:

Figure: 5.1

- ▶ Nodes are input, hidden and output units. Links are corresponding weights.
- ▶ Information propagates 'forwards' from the explanatory variable \mathbf{x} to the estimated response $y_k(\mathbf{x}, \mathbf{w})$.

Properties & Generalizations

- ▶ Typically $K \le D \le M$, which means that the network is redundant if all $h(\cdot)$ are linear.
- ► There may be more than one layer of hidden units.

- ▶ Individual units need not be fully connected to the next layer.
- ▶ Individual links may skip over one or more subsequent layers.
- ▶ Networks with two (cf. 5.9) or more layers are universal approximators.
- Any continuous function can be uniformly approximated to arbitrary accuracy, given enough hidden units.
- ▶ This is true for many definitions of $h(\cdot)$, but excluding polynomials.
- ► There may be symmetries in the weight space, meaning that different choices of **w** may define the same mapping from input to output.

Maximum Likelihood Parameters

The aim is to minimize the residual error between $\mathbf{y}(\mathbf{x}_n, \mathbf{w})$ and \mathbf{t}_n . Suppose that the target is a scalar-valued function, which is Normally distributed around the estimate:

$$p(t|\mathbf{x}, \mathbf{w}) = \mathcal{N}(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$
 (5.12)

Then it will be appropriate to consider the sum of squared-errors

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y(\mathbf{x}_n, \mathbf{w}) - t_n \right)^2$$
 (5.14)

The maximum-likelihood estimate of \mathbf{w} can be obtained by (numerical) minimization:

$$\mathbf{w}_{\mathsf{ML}} = \min_{\mathbf{w}} \ E(\mathbf{w})$$

Maximum Likelihood Precision

Having obtained the ML parameter estimate \mathbf{w}_{ML} , the precision, β can also be estimated. E.g. if the N observations are IID, then their joint probability is

$$p\Big(\{t_1,\ldots,t_N\}\Big|\{\mathbf{x}_1,\ldots,\mathbf{x}_N\},\mathbf{w},\beta\Big)=\prod_{n=1}^N p(t_n|\mathbf{x}_n,\mathbf{w},\beta)$$

The negative log-likelihood, in this case, is

$$-\log p = \beta E(\mathbf{w}_{\mathsf{ML}}) - \frac{N}{2}\log \beta + \frac{N}{2}\log 2\pi \tag{5.13}$$

The derivative $\mathrm{d}/\mathrm{d}\beta$ is $E(\mathbf{w}_{\mathrm{ML}})-\frac{N}{2\beta}$ and so

$$\frac{1}{\beta_{\mathsf{ML}}} = \frac{1}{N} 2E(\mathbf{w}_{\mathsf{ML}}) \tag{5.15}$$

And $1/\beta_{\rm ML} = \frac{1}{NK} 2E(\mathbf{w}_{\rm ML})$ for K target variables.

Error Surface

The residual error $E(\mathbf{w})$ can be visualized as a surface in the weight-space:

- ► The error will, in practice, be highly nonlinear, with many minima, maxima and saddle-points.
- ► There will be inequivalent minima, determined by the particular data and model, as well as equivalent minima, corresponding to weight-space symmetries.

Parameter Optimization

Iterative search for a local minimum of the error:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)} \tag{5.27}$$

- ightharpoonup
 abla E will be zero at a minimum of the error.
- ightharpoonup au is the time-step.
- $ightharpoonup \Delta \mathbf{w}^{(\tau)}$ is the weight-vector update.
- The definition of the update depends on the choice of algorithm.

Local Quadratic Approximation

The truncated Taylor expansion of $E(\mathbf{w})$ around a weight-point $\hat{\mathbf{w}}$ is

$$E(\mathbf{w}) \simeq E(\hat{\mathbf{w}}) + (\mathbf{w} - \hat{\mathbf{w}})^{\top} \mathbf{b} + \frac{1}{2} (\mathbf{w} - \hat{\mathbf{w}})^{\top} \mathbf{H} (\mathbf{w} - \hat{\mathbf{w}})$$
 (5.28)

- ▶ **b** = $\nabla E|_{\mathbf{w} = \hat{\mathbf{w}}}$ is the gradient at $\hat{\mathbf{w}}$.
- $ightharpoonup (\mathbf{H})_{ij} = \left. \frac{\partial E}{\partial w_i \partial w_j} \right|_{\mathbf{w} = \hat{\mathbf{w}}}$ is the Hessian $\nabla \nabla E$ at $\hat{\mathbf{w}}$.

The gradient of E can be approximated by the gradient of the quadratic model (5.28); if $\mathbf{w} \simeq \hat{\mathbf{w}}$ then

$$\nabla E \simeq \mathbf{b} + \mathbf{H}(\mathbf{w} - \hat{\mathbf{w}}) \tag{5.31}$$

where
$$\frac{1}{2}\left((\mathbf{H} + \mathbf{H}^{\top})\mathbf{w} - \mathbf{H}\hat{\mathbf{w}} - \mathbf{H}^{\top}\hat{\mathbf{w}}\right) = \mathbf{H}(\mathbf{w} - \hat{\mathbf{w}})$$
, as $\mathbf{H}^{\top} = \mathbf{H}$.

Approximation at a Minimum

Suppose that \mathbf{w}^{\star} is at a minimum of E, so $\nabla E|_{\mathbf{w}=\mathbf{w}^{\star}}$ is zero, and

$$E(\mathbf{w}) = E(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^{\top} \mathbf{H}(\mathbf{w} - \mathbf{w}^*)$$
 (5.32)

- ▶ $\mathbf{H} = \nabla \nabla E|_{\mathbf{w} = \mathbf{w}^*}$ is the Hessian.
- ▶ The eigenvectors $\mathbf{H}\mathbf{u}_i = \lambda \mathbf{u}_i$ are orthonormal.
- ▶ $(\mathbf{w} \mathbf{w}^*)$ can be represented in **H**-coordinates as $\sum_i \alpha_i \mathbf{u}_i$.

Hence the second term of (5.32) can be written

$$\frac{1}{2}(\mathbf{w} - \mathbf{w}^{\star})^{\top} \mathbf{H}(\mathbf{w} - \mathbf{w}^{\star}) = \frac{1}{2} \left(\sum_{i} \lambda_{i} \alpha_{i} \mathbf{u}_{i} \right)^{\top} \left(\sum_{j} \alpha_{j} \mathbf{u}_{j} \right)$$

So that

$$E(\mathbf{w}) = E(\mathbf{w}^*) + \frac{1}{2} \sum_{i} \lambda_i \alpha_i^2$$
 (5.36)

Characterization of a Minimum

The eigenvalues λ_i of **H** characterize the stationary point \mathbf{w}^* .

- ▶ If all $\lambda_i > 0$, then **H** is positive definite ($\mathbf{v}^{\top} \mathbf{H} \mathbf{v} > 0$).
- ▶ This is analogous to the scalar condition $\frac{\partial^2 E}{\partial w^2}\Big|_{w^*} > 0$.
- ▶ Zero gradient and positive principle curvatures mean that $E(\mathbf{w}^*)$ is a minimum.

Gradient Descent

The simplest approach is to update \mathbf{w} by a displacement in the negative gradient direction.

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$
 (5.41)

- This is a steepest descent algorithm.
- \blacktriangleright η is the learning rate.
- ▶ This is a batch method, as evaluation of ∇E involves the entire data set.
- Conjugate gradient or quasi-Newton methods may, in practice, be preferred.
- ▶ A range of starting points $\{\mathbf{w}^{(0)}\}$ may be needed, in order to find a satisfactory minimum.

Optimization Scheme

An efficient method for the evaluation of $\nabla E(\mathbf{w})$ is needed.

- ▶ Each iteration of the descent algorithm has two stages:
- I. Evaluate derivatives of error with respect to weights (involving backpropagation of error though the network).
- ▶ II. Use derivatives to compute adjustments of the weights (e.g. steepest descent).

Backpropagation is a general principle, which can be applied to many types of network and error function.

Simple Backpropagation

The error function is, typically, a sum over the data points $E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$. For example, consider a linear model

$$y_k = \sum_i w_{ki} x_i \tag{5.45}$$

The error function, for an individual input \mathbf{x}_n , is

$$E_n = \frac{1}{2} \sum_k (y_{nk} - t_{nk})^2$$
, where $y_{nk} = y_k(\mathbf{x}_n, \mathbf{w})$. (5.46)

The gradient with respect to a weight w_{ji} is

$$\frac{\partial E_n}{\partial w_{ji}} = (y_{nj} - t_{nj}) x_{ni} \tag{5.47}$$

- $\blacktriangleright w_{ii}$ is a particular link $(x_i \text{ to } y_i)$.
- $ightharpoonup x_{ni}$ is the input to the link (*i*-th component of \mathbf{x}_n).
- $(y_{nj} t_{nj})$ is the error output by the link.

General Backpropagation

Recall that, in general, each unit computes a weighted sum:

$$a_j = \sum_i w_{ji} z_i$$
 with activation $z_j = h(a_j)$. (5.48,5.49)

For each error-term:
$$\frac{\partial E_n}{\partial w_{ji}} = \underbrace{\frac{\partial E_n}{\partial a_j}}_{\equiv \delta_j} \underbrace{\frac{\partial a_j}{\partial w_{ji}}}$$
(5.50)

So, from 5.48:
$$\frac{\partial E_n}{\partial w_{ji}} = \delta_j z_i$$
 (5.53)

In the network:
$$\delta_j \equiv \frac{\partial E_n}{\partial a_j} = \sum_k \frac{\partial E_n}{\partial a_k} \frac{\partial a_k}{\partial a_j}$$
 where $j \rightarrow \{k\}$ (5.55)

Algorithm:
$$\delta_j = h'(a_j) \sum_k w_{kj} \delta_k$$
 as $\frac{\partial a_k}{\partial a_j} = \frac{\partial a_k}{\partial z_j} \frac{\partial z_j}{\partial a_j}$ (5.56)

Backpropagation Algorithm

The formula for the update of a given unit depends only on the 'later' (i.e. closer to the output) layers:

Figure: 5.7

Hence the backpropagation algorithm is:

- Apply input x, and forward propagate to find the hidden and output activations.
- Evaluate δ_k directly for the output units.
- ▶ Back propagate the δ 's to obtain a δ_j for each hidden unit.
- ▶ Evaluate the derivatives $\frac{\partial E_n}{\partial w_{ji}} = \delta_j z_i$.

Computational Efficiency

The back-propagation algorithm is computationally more efficient than standard numerical minimization of E_n . Suppose that W is the total number of weights and biases in the network.

- ▶ Backpropagation: The evaluation is O(W) for large W, as there are many more weights than units.
- ▶ Standard approach: Perturb each weight, and forward propagate to compute the change in E_n . This requires $W \times O(W)$ computations, so the total complexity is $O(W^2)$.

Jacobian Matrix

The properties of the network can be investigated via the Jacobian

$$J_{ki} = \frac{\partial y_k}{\partial x_i} \tag{5.70}$$

For example, (small) errors can be propagated through the trained network:

$$\Delta y_k \simeq \frac{\partial y_k}{\partial x_i} \Delta x_i \tag{5.72}$$

This is useful, but costly, as J_{ki} itself depends on \mathbf{x} . However, note that

$$\frac{\partial y_k}{\partial x_i} = \sum_j \frac{\partial y_k}{\partial a_j} \frac{\partial a_j}{\partial x_i} = \sum_j w_{ji} \frac{\partial y_k}{\partial a_j}$$
 (5.74)

The required derivatives $\partial y_k/\partial a_j$ can be efficiently computed by backpropagation.

