Systèmes à base de règles en logique des propositions

Négation par défaut

ML Mugnier

DEUX SORTES DE NÉGATION

Négation classique (¬)

 $\neg B \rightarrow C$: « si on sait que B est faux alors C est vrai »

Pour appliquer cette règle, il **faut** avoir le fait ¬**B**

Négation par défaut, par l'échec, du monde clos (not)

not B → C: « si rien n'indique que B est vrai alors C est vrai »

Pour appliquer cette règle, il **ne faut pas** avoir le fait **B**

Règles conjonctives avec négation par défaut

- Fait : atome (= symbole, littéral positif)
- Règle : <conjonction de littéraux> → <atome>

$$A \wedge B \wedge \text{not } C \wedge \text{not } D \rightarrow E$$
 aussi notée : A, B, not C, not D \rightarrow E

De façon abstraite, une règle sera aussi notée H+, H- → C où :

H+ est l'ensemble des littéraux positifs

H- est l'ensemble des symboles des littéraux négatifs

C est un littéral positif

Sur la règle de l'exemple : $H+ = \{A, B\}$ et $H- = \{C, D\}$

APPLICATION D'UNE RÈGLE EN CHAÎNAGE AVANT

- Soit BF une base de faits et une règle R : H+, H- → C
- R est **bloquée** sur BF si H- \cap BF ≠ \emptyset .
- R est applicable sur BF si
 - (1) elle n'est pas bloquée, et
 - (2) la règle positive H+ → C est applicable (autrement dit H+ ⊆ BF)

$$R: A \land B \land not C \land not D \rightarrow E$$

$$H+ = \{A, B\} \text{ et } H- = \{C, D\}$$

$$BF = \{A,C\}$$

$$BF = \{A\}$$

R n'est pas applicable car
A
$$\wedge$$
 B \rightarrow E n'est pas applicable

$$BF = \{A,B,E\}$$

R est applicable mais son application n'est pas utile

LA NÉGATION PAR DÉFAUT REND L'INFÉRENCE NON MONOTONE

$$BF = \{A\}$$

 $R_1: A$, not $B \rightarrow C$

On perd la monotonie de l'inférence : de $\{A, R_1\}$ on infère C mais de $\{A, B, R_1\}$ on n'infère plus C

Selon l'ordre d'application des règles, on peut obtenir une base de faits saturée différente

$$BF = \{A\}$$

 $R_1: A, \text{ not } B \rightarrow C$

 $R_2:A\to B$

Si
$$R_1$$
 est appliquée avant R_2 :

$$BF^* = \{A,C,B\}$$

$$BF^* = \{A,B\}$$

PROBLÈME : QUELLE EST LA SÉMANTIQUE D'UNE BASE DE CONNAISSANCES ?

Reprenons l'exemple précédent :

$$BF = \{A\}$$

 $R_1: A$, not $B \rightarrow C$

 $R_2:A\to B$

$$BF^* = \{A,B,C\} \text{ ou } BF^* = \{A,B\} ?$$

Appliquer R₁ avant R₂ est intuitivement choquant :

on infère C car « rien n'indique que B est vrai », puis on s'aperçoit que B est vrai

On va imposer que **toute règle appliquée** à un moment donné **reste applicable** par la suite (en particulier sur la base de faits saturée)

DÉRIVATION PERSISTANTE, DÉRIVATION COMPLÈTE

- O Dérivation : suite d'applications de règles à partir d'une base de faits $BF = BF_0 R_1 BF_1 R_2 BF_2 ... R_i BF_i$ On dit que $\mathcal{D} = (R_1, ..., R_i)$ est une dérivation de BF à BF_i (le résultat)
- D est persistante si aucune règle de \mathcal{D} n'est bloquée sur BFⁱ: pour toute règle H+, H- \rightarrow C de \mathcal{D} , on a H- \cap BFⁱ = \emptyset
- D est complète si aucune règle n'est applicable de façon utile sur BFⁱ:
 pour toute règle H+, H- → C de D, on a C ∈ BFⁱ

BF = {A}

$$R_1 : A, \text{ not } B \rightarrow C$$

 $R_2 : A \rightarrow B$

 (R_1,R_2) menant à $BF_2 = \{A,C,B\}$: complète, pas persistante, (R_2) menant à $BF_1 = \{A,B\}$: persistante et complète (R_2,R_1) : n'est pas une dérivation (car R_1 pas appliquée)

PROBLÈME : QUELLE EST LA SÉMANTIQUE D'UNE BASE DE CONNAISSANCES ? (SUITE)

Base de faits saturée : résultat d'une dérivation persistante et complète

Mais ...

2 dérivations persistantes et complètes peuvent mener à des résultats différents !

$$BF = \{A\}$$

$$R_1$$
: not $B \rightarrow C$

$$R_2$$
: not $C \rightarrow B$

$$BF^* = \{A,C\} \text{ ou } BF^* = \{A,B\}$$

DEUX APPROCHES

1) On impose des conditions sur les ensembles de règles pour avoir un **résultat unique** quelle que soit la dérivation persistante et complète

C'est cohérent avec l'hypothèse du monde clos Exemple : Datalog avec négation (dit stratifié)

2) On admet qu'il y ait plusieurs bases de faits saturées

C'est cohérent avec l'hypothèse du monde ouvert

Exemple : Answer Set Programming (ASP)

Une base de faits saturée est appelée « answer » ou « modèle stable »

Assurer l'unicité de la base de faits saturée

A, not B
$$\rightarrow$$
 C
C, not B \rightarrow D
D, E \rightarrow H

Ici, partant d'une BF, peut-on avoir plusieurs BF* (par des dérivations persistantes et complètes) ?

Non

Ensemble de règles semi-positif :

Les symboles qui apparaissent en conclusion de règles ne peuvent pas être niés

Soit la règle R : H+, H- \rightarrow C

- Si H- ∩ BF ≠ Ø : R est bloquée
- Sinon, on peut oublier H- (R ne sera jamais bloquée) et se ramener à une règle positive H+ → C

Assurer l'unicité de la base de faits saturée (suite)

- Ensemble de règles stratifié : les règles sont partitionnées en un ensemble totalement ordonné de strates :
 - Chaque strate est un ensemble semi-positif
 - Si une règle de la strate i contient not A en hypothèse, alors toute règle qui a A en conclusion est dans une strate j < i
 - Si une règle de la strate i contient A en hypothèse, alors toute règle qui a
 A en conclusion est dans une strate j ≤ i

La saturation est effectuée par ordre croissant des strates :

- À l'étape 1, on sature la base de faits initiale avec les règles de la strate 1
- À une étape i > 1, on sature la base de faits calculée à l'étape i-1 avec les règles de la strate i

Bonnes propriétés des ensembles de règles stratifiables

Propriété 1 : Toute dérivation qui suit une stratification est persistante

<u>Propriété 2</u>: Si un ensemble de règles est stratifiable, alors toutes ses stratifications sont équivalentes : à partir d'une base de faits BF quelconque, toutes les dérivations qui suivent une stratification produisent la **même** base de faits saturée BF*

<u>Propriété 3</u>: Si un ensemble de règles est stratifiable, alors quelle que soit la base de faits BF, la saturation de BF par n'importe quelle dérivation persistante et complète produit le même résultat

OUTIL UTILE : GRAPHE DE PRÉCÉDENCE DES SYMBOLES

- Sommets : symboles des conclusions des règles
- Arc (p,q) si p apparaît en hypothèse d'une règle H+,H- → q
 - Arc positif si p ∈ H+
 - Arc négatif si p ∈ H-

<u>Propriété 4</u>: Un ensemble de règles est stratifiable si et seulement si son graphe de précédence n'admet aucun circuit avec un arc négatif

CALCUL D'UNE STRATIFICATION

Si le graphe de précédence des symboles n'a aucun circuit avec un arc négatif :

- 1. On calcule ses composantes fortement connexes (cfc) (elles ne contiennent que des circuits positifs)
- 2. On calcule le graphe des cfc :

Sommets: les cfc

Arcs: (Ci,Cj) si une règle de Ci a un arc vers une règle de Cj

Ce graphe définit un ordre partiel sur les cfc

3. On range les cfc en strates de façon compatible avec cet ordre partiel : si arc (Ci,Cj) positif, alors strate(Ci) ≤ strate(Cj) si arc (Ci,Cj) négatif, alors strate(Ci) < strate(Cj)</p>

4. On affecte à chaque règle la strate de son symbole de conclusion

Answet Set Programming (voir TP)

- Tous les ensembles de règles sont admis
- On peut avoir une ou plusieurs saturations (answers, modèles stables)
- En plus des règles à conclusion positive, on peut avoir des contraintes négatives :
 H → ⊥ (où ⊥ est le symbole « toujours faux »)
- Dans ce cas, un modèle stable doit aussi satisfaire chaque contrainte H → ⊥, c'est-à-dire ne doit pas satisfaire H
- Une base de connaissances peut n'avoir aucun modèle stable : on dit qu'elle est insatisfiable

not
$$p \rightarrow p$$

$$p \rightarrow q$$
$$p \wedge q \rightarrow \bot$$

EXEMPLE (ASP AVEC CLINGO)

```
omnivore(chaperon). mange(chaperon, chevre).
```

plante(Y) :- omnivore(X), mange(X,Y).
animal(Y) :- omnivore(X), mange(X,Y).

:- plante(X), animal(X).

insatisfiable

```
omnivore(chaperon). mange(chaperon, chevre).
```

plante(Y) :- omnivore(X), mange(X,Y), not animal(Y).
animal(Y) :- omnivore(X), mange(X,Y), not plante(Y).

:- plante(X), animal(X). % ne sert à rien ici

2 modèles stables

CONCLUSION

Approche 1 : assurer l'unicité de la base de faits saturée (par une dérivation persistante et complète)

- stratification de l'ensemble des règles
- mais tous les ensembles de règles ne sont pas stratifiables

Approche 2 : admettre plusieurs bases de faits saturées (par des dérivations persistantes et complètes)

- processus de saturation plus complexe
- selon le problème modélisé :
 - chaque base de faits saturée est une solution
 - ou on considère l'intersection des bases de faits saturées