概统第十三周习题课材料

2022年5月12日

- 1. 设随机变量 X 与 Y 相互独立,分别服从参数为 λ_1 和 λ_2 的泊松分布,试求 E(X|X+Y=n).
- 2. 如果 $X_n \xrightarrow{L} X$, 且数列 $a_n \to a$, $b_n \to b$. 试证 $a_n X_n + b_n \xrightarrow{L} a X + b$.
- 3. 设随机变量 X_n 服从柯西分布, 其密度函数为

$$p_n(x) = \frac{n}{\pi(1 + n^2 x^2)}, \quad -\infty < x < \infty.$$
 (1)

试证: $X_n \xrightarrow{P} 0$.

4. 若 $X_1, X_2, ..., X_n$ 相互独立,均服从 N(0,1),而

$$Y_1 = \sum_{k=1}^{n} a_k X_k, \quad Y_2 = \sum_{k=1}^{n} b_k X_k \tag{2}$$

试证 Y_1 与 Y_2 独立的充要条件为 $\sum_{k=1}^n a_k b_k = 0$.

- 5. 试用特征函数的方法证明伽马分布的可加性:若随机变量 $X \sim Ga(\alpha_1, \lambda), Y \sim Ga(\alpha_2, \lambda),$ 且 X 与 Y 独立,则 $X + Y \sim Ga(\alpha_1 + \alpha_2, \lambda).$
- 6. 若 $X \sim N(\mu, \sigma^2)$,试用特征函数法求 $E[(X \mu)^n]$.
- 7. 求证:对于任何实值特征函数 f(t),以下两个不等式成立:

$$1 - f(2t) \le 4(1 - f(t)),\tag{3}$$

$$1 + f(2t) \ge 2(f(t))^2. \tag{4}$$

8. 设随机变量 $X \sim Ga(\alpha, \lambda)$, 证明: 当 $\alpha \to \infty$ 时,随机变量 $(\lambda X - \alpha)/\sqrt{\alpha}$ 按分布收敛于标准正态变量.