4 System Testing

4.1 Interface Testing

	1	I	I .	I	
	unchecked		ray box go from visible to invisible		Display angles Beam thickness: 3
9	Deleting a ray box	Typical	When the delete button is clicked the selected ray box is removed from the viewport and the properties panel cleared.	Pass	Global position/oriental Before: Lead or the Constant C
10	Adding a ray box	Typical	When Add > Ray box is clicked in the menu bar, a ray box pointing towards the world's origin with 0 global pitch and a random global heading is created and selected	Pass	After: Gobal positionionentation Neading Pitch 90° 45° 90° 45° 180° 90° 45° 180° 90° 45° 180° 90° 45° 180° 90° 45° 180° 90° 45° 180° 90° 45° 180° 90° 45° 180° 90° 45° 180° 90° 45° 180° 90° 90° 45° 180° 90° 90° 45° 180° 90° 90° 90°
11	Angles obey Snell's law	Typical	The refractive index of the final material	Pass	World has refractive index of 1.33, target has refractive index of 1.77. Target relative to world: $\frac{1.77}{1.33} = 1.3308$.

12	Target object can change shape, causing all angles and beam paths to be recalculate d	Typical	relative to the initial material should be the sin of the angle of incidence divided by the sin of the angle of refraction After starting the application, adding another ray box and clicking Target > Shape > Sphere in the menu bar should change the target from a cube to a sphere approximatio n and the angles and paths of	Pass	World relative to target: $\frac{1.33}{1.77} = 0.7514$ $\frac{31.35^{\circ}}{23.01^{\circ}}$ $\frac{\sin (31.35)}{\sin (23.01)} = 1.3310$ $\frac{\sin (23.01)}{\sin (31.35)} = 0.7513$ Before: Ray box Ray box Ray box After:
			change the target from a cube to a sphere approximatio n and the		7.11° 35.19° After: Ray box Ray box 6.22° 5.753
13	Orthograph ic	Typical	After pressing 'P'	Pass	6.22° 3.78° 6.22° 5.75° 9.47° Before:
	projection		with the		
<u></u>	projection	j	with the	<u> </u>	

4.2 Hand tracing

4.2.1 Multiplying Matrices

This method belongs to the matrix class and has the intended purpose of returning the matrix for which this method has been called after it has been post-multiplied by the matrix passed as a parameter.

```
public Matrix multiply(Matrix toMultiply) {
       if (this.m != toMultiply.n) {
               throw new IllegalArgumentException("Matrices size mismatch for
multiplication");
       } else {
              Matrix result = new Matrix(toMultiply.m, this.n);
              for (int thisRow = 0; thisRow < this.n; thisRow++) {</pre>
                      for (int toMultiplyCol = 0; toMultiplyCol < toMultiply.m;</pre>
toMultiplyCol++) {
                             double sum = 0;
                             for (int thisCol = 0; thisCol < this.m; thisCol++)</pre>
{
                                     sum += this.mat[thisCol][thisRow] *
toMultiply.mat[toMultiplyCol][thisCol];
                             result.mat[toMultiplyCol][thisRow] = sum;
               if ((this.detKnown) && (toMultiply.detKnown)) {
                      result.det = this.det * toMultiply.det;
               } else {
                      result.detKnown = false;
              return result;
       }
Let \mathbf{A} = \begin{bmatrix} 1 & -5 \\ 3 & 0 \end{bmatrix}
Let \mathbf{B} = \begin{bmatrix} -2 & 6 \\ 12 & -1 \end{bmatrix}
Initialising this in pseudocode:
A.mat \leftarrow [[1, 3], [-5, 0]]
A.m \leftarrow 2
A.n ← 2
A.detKnown ← false
B.mat \leftarrow [[-2, 12], [6, -1]]
B.m \leftarrow 2
B.n ← 2
```

Within the method, this refers to A and toMultiply refers to B.

$$\mathbf{AB} = \begin{bmatrix} 1(-2) - 5(12) & 1(6) - 5(-1) \\ 3(-2) + 0(12) & 3(6) + 0(-1) \end{bmatrix} = \begin{bmatrix} -62 & 11 \\ -6 & 18 \end{bmatrix}$$

B.detKnown ← false

Therefore, we expect A.multiply (B) to return a matrix with mat containing [[-62, -6], [11, 18]].

	result							thisRow	toMultiplyCol	thisCol	sum
m	n	det	detKnown	mat[0]		mat[1]					
				[0]	[1]	[0]	[1]				
2	2	0	true	0	0	0	0	0	0	_	0
										0	-2
										1	-62
				-62					1	-	0
										0	6
										1	11
						11			-	-	_
								1	0	_	0
										0	-6
										1	-6
					-6				1	-	0
										0	18
										1	18
							18		-	-	_
			false					-			

result is returned, so A.multiply (B) does indeed return a matrix with mat containing [[-62, -6], [11, 18]].