Intelligent Stock Market Prediction Using BERT FineTuning and LSTM Deep Learning

CSYE 7280 – User Experience Design & Testing (Fall 2025)

Nithin Yash Menezes

This project integrates Natural Language Processing and Deep Learning to predict stock market movements, bridging technical AI modeling with user experience interpretability.

Project Overview

Goal

Develop a hybrid system combining BERT for text sentiment analysis and LSTM for price prediction to model complex stock market behavior.

Our Approach

- Fine-tune **BERT-base-cased** on financial tweet sentiment data
- Train LSTM networks on AAPL closing prices from Yahoo Finance
- Correlate emotional tone from social data with numerical price trends

Key Outcome: A robust, interpretable pipeline that predicts both market sentiment and stock trajectory with high accuracy.

Motivation & Relevance

Sentiment Drives Markets

Market sentiment from tweets, news, and discussions directly affects stock volatility and investor behavior.

Traditional Model Gaps

Conventional models rely purely on numeric indicators and miss crucial psychological context from social signals.

Bridging Two Worlds

This project combines linguistic intelligence (BERT) with temporal forecasting (LSTM) for holistic prediction.

UX Connection: Visual insights and interpretable results enhance decision-making capabilities for traders and analysts, transforming complex data into actionable intelligence.

Dataset Preparation

Data Sources

Hugging Face

StephanAkkerman/stock-market-tweets-data — Financial sentiment classification dataset with labeled positive and negative tweets.

Yahoo Finance

AAPL daily closing prices spanning October 2024 to October 2025 for comprehensive time-series forecasting.

Preprocessing Pipeline

- **Text normalization:** Lowercasing, whitespace trimming, and tokenization using BERT tokenizer
- Data cleaning: Noise removal and emoji standardization
- Dataset split: 80-10-10 for train-validation-test ensuring balanced evaluation

Purpose: Create domain-specific, clean, and labeled datasets for reliable fine-tuning and forecasting accuracy.

Model Selection & Architecture

BERT-base-cased

- Pre-trained on English corpus with case sensitivity preservation
- Adapted for binary sentiment classification (positive vs. negative)
- Interprets investor mood and emotional signals

LSTM Network

- Two stacked layers capturing 60-day sequential dependencies
- Predicts next-day closing price with temporal awareness
- Models market trends and price patterns

Emotional Intelligence

BERT processes text to understand sentiment

Temporal Patterns

LSTM captures time-based dependencies

Combined Power

Integration enables comprehensive market prediction

Fine-Tuning Setup & Hyperparameter Optimization

Training Environment

0

Framework

Hugging Face Transformers

 $\overline{\wedge}$

Configuration

Epochs: 3-5 | Batch Size: 8-16

<u>(</u>8)

Learning Rates

1e-5, 2e-5, 5e-5 tested

Optimizer

AdamW with weight decay (0.01)

Optimization Process

We implemented a systematic approach to identify optimal hyperparameters:

- Defined multiple training configurations to explore parameter space
- Tracked model performance via validation accuracy and F1-score metrics
- Automatic logging and checkpointing saved to ./logs and ./results directories

Result: Model stabilized with approximately 87% validation accuracy and balanced F1 performance across sentiment classes.

Model Evaluation

89.7%

87.9%

88.6%

88.3%

Accuracy

Overall classification correctness

Precision

Positive prediction reliability

Recall

True positive detection rate

F1-Score

Harmonic mean balance

Evaluation Metrics

 $eval_loss = 0.42$

 $eval_accuracy = 0.897$

eval f1 = 0.883

 $eval_precision = 0.879$

 $eval_recall = 0.886$

Key Insights

The fine-tuned BERT model effectively distinguishes positive and negative sentiment with strong performance across all metrics.

High F1-score indicates excellent balance between precision and recall, minimizing both false positives and false negatives.

User Experience Value: Clear, quantifiable metrics provide trust and transparency in system outputs for end users.

Outerlance Petrym There are applys is and lets of and that is iten fore scurye 25.305 565% amples th It is one on manying want it frince and Error text my nove for soon is decca r er cer to seire: you or pointion. all lost is see then for earsy for to dibits. When our commer are "passive for a tolly even for any flee # # # # cree for thew to pary whiten for 201% A forcer freh on Wintt analyses is for this rer can sivers with a bit? Tor ighe to large lan suggest stelly.

Error Analysis & Inference Pipeline

Common Misclassification Patterns

Sarcastic Tone

"TSLA down a bit — still bullish" contains ambiguous sentiment signals

Emoji-Heavy Posts

Mixed-sentiment tweets with complex emoji usage challenge the model

Context Shortage

Very short, context-free posts lack sufficient information for accurate classification

Proposed Improvements

- Incorporate emoji
 normalization and financial
 lexicon expansion
- Add context windows to capture surrounding discussion
- Explore FinBERT domain adaptation for finance-specific language

Inference Demo

Input: "TSLA to the moon \mathscr{A} "

Output: Positive | Confidence:

0.94

UX Note: Probability outputs improve interpretability for analysts

LSTM Forecasting & Visualization

Data Collection 1 year of AAPL closing prices via Yahoo Finance API Preprocessing MinMaxScaler normalization (0–1 range) Training 60-day lookback window, 2 epochs Validation Low RMSE error rate achieved

Model Performance

The LSTM network demonstrated strong predictive capability with low root mean squared error.

Prediction Accuracy

Predicted Price (Oct 1, 2025): ~\$254.97 with high confidence alignment to actual trends.

UX Impact

Visual charts enhance user trust and comprehension in predictive systems through transparent result presentation.

Conclusion & Future Work

Project Achievements

Successful Integration

Combined BERT sentiment classification with LSTM price forecasting for intelligent market prediction

Comprehensive Pipeline

Demonstrated fine-tuning, evaluation, error analysis, and graphical output cohesively

Strong Results

89.7% sentiment accuracy and accurate next-day price prediction (~\$254.97 for AAPL)

Future Enhancement Roadmap

Feature Fusion

Integrate BERT sentiment outputs as LSTM input features

Efficient Training

Implement LoRA/PEFT for resourceefficient fine-tuning

Interactive Deploy

Create live dashboard for real-time trader insights

Final Takeaway: This project exemplifies how AI interpretability combined with UX design principles can transform raw financial data into actionable, human-centered intelligence that empowers better decision-making.