Small World, Power Law

François Théberge theberge@ieee.org

August 2019

Outline

- Small world graphs
- Clustering coefficients
- Power law graphs
- Barabasi-Albert and other models

Small world

Real graph do not typically look like ER graphs, or CL graphs with uniform degree distribution;

Some observed characteristics include:

- relatively short paths between nodes (small diameter)
- local density behaviour (triangles, communities)
- large number of low degree nodes
- presence of high degree nodes (hubs, authorities)

Definition: A graph exhibits *small world* behaviour if the characteristic path length (average distance between nodes) grows proportionally to the logarithm of the number of nodes *n*.

Small world

Famous "6 degrees of separation" experiment: chain letters in the USA (Milgram, 1963)

The "6 degree" refer to the characteristic path length

Social networks today typically have lower values:

REF: Facebook Research (2016)

Most networks, in particular social networks, exhibit homophily;

Friends share common friends with higher than random probability;

We can measure this by looking at triangles in a graph (graph transitivity) or density of edges between neighbours of each node (clustering coefficient);

We assume undirected graphs G = (V, E).

A *triad* is a subgraph of 3 nodes forming a tree; let n_{\wedge} the number of triads in a graph G;

A *triangle* is a fully-connected subgraph with 3 nodes; let n_{Δ} be the number of triangles in graph G;

Definition: The *graph transitivity* of *G* is defined as

$$T(G)=\frac{3n_{\Delta}}{n_{\wedge}}.$$

For a given node $i \in V$ of degree d_i , let $n_i(e)$ be the number of edges between neighbours of node i;

Node i's (local) clustering coefficient is defined as:

$$c_i = \frac{n_i(e)}{\binom{d_i}{2}}.$$

It is also called the local transitivity, as is corresponds to \mathcal{T} for the ego-net of node i.

The clustering coefficient of graph G is defined as:

$$CC(G) = \frac{1}{n} \sum_{i} c_{i}$$

the average over all local clustering coefficients.

It is also called the average local transitivity.

Quantities T(G) and CC(G) are often similar, but this can be misleading;

Consider the following graph with n + 2 nodes (n grey nodes):

In this graph, $n_{\Delta} = n$ and $n_{\wedge} = 3n + n(n-1) = n^2 + 2n$, so

$$T(G)=\frac{3}{n+2}\to 0$$

with the limit as $n \to \infty$.

For the 2 red nodes, we get $c_i = 2/(n+1)$ while for the grey nodes, $c_i = 1$. The clustering coefficient is therefore:

$$CC(G) = \frac{n^2 + n + 4}{n^2 + 3n + 2} \rightarrow 1.$$

For an ER graph, the probability of "closing" any given wedge is given by p, the probability of each node pair forming an edge;

Thus, the (expected) clustering coefficient and transitivity is p; examples with n = 500:

	р	Т	cc
0	0.1	0.099344	0.099291
1	0.2	0.200384	0.200429
2	0.3	0.299115	0.299171
3	0.4	0.398637	0.398633
4	0.5	0.498615	0.498613
5	0.6	0.601092	0.601100

In a *power law* function, one quantity varies as a power of the other;

This is often observed in real graphs, in particular for the degree distribution;

Let p_k the proportion of nodes with degree k, then

$$p_k = ck^{-\gamma}$$

is an example of a power-law distribution, where c is the normalizing constant.

For degree distribution in social networks, the values typically observed are 2 $\leq \gamma \leq$ 3.

A famous power law distribution is known as **Zipf's law**;

In a written language, rank the words in decreasing order of appearance starting from rank r = 1

With Zipf's law, the proportion of times word at rank r appears is proportional to 1/r, in other terms:

$$p_r \propto r^{-1}$$
.

A power law function is scale-free or scale-invariant

With the function for p_k , we get:

$$p_{ak} = c(a) \cdot p_k$$

where only the constant changes as a function of the multiplier *a*.

In practice, we can draw a sequence of degrees from a power law distribution with parameter γ , in some interval [d_{min} , d_{max}].

We then generate a graph via the configuration or CL model.

Here is an example of a graph with power-law degree distribution where $d_i \in [2, 20]$ and $\gamma = 2$, built with the configuration model:

it's degree distribution:

On a log-log plot, we see a roughly linear relation (with log binning of degrees):

Here is a graph with $\gamma=$ 3:

We see a higher proportion of low degree nodes:

log-log plot:

Here is another log-log plot for a much larger graph with $\gamma =$ 2.5:

We can also use CL, but isolates may appear given the large number of low (expected) degree nodes:

Therefore, power-law graphs exhibit a degree distribution with:

- a fairly large number of small degree nodes, and
- a "long tail" which amounts to the presence of high degree nodes.

Such high degree nodes are called hubs (hubs and authorities for directed graphs).

This is an example of a preferential attachment model, also referred to as *the rich gets richer*;

A graph is generated node by node:

- start from some initial graph (ex: empty graph, small clique) at step t=0
- at step t > 0, add a new node with (up to) m edges to existing nodes
- the probability that the new node has an edge with (existing) node i is proportional to d_i(t), the degree on node i before adding this new node.
- continue until *n* nodes are generated.

The model favours attaching to high degree nodes, thus forming hubs;

Asympotically, the proportion of degree k nodes is:

$$p_k \approx 2m(m+1)k^{-3}$$

There are several variations on that theme.

BA graph with n = 50 and m = 2:

The degree distribution:

Binned log-log plot of the degree distribution:

fitted gamma: -2.3930958076836606

The same log-log plot for an ER graph with same number of nodes and edges; clearly no power law;

Random Graphs

Notebook #3