Outline

Operational Semantics

Dr. Mattox Beckman

Illinois Institute of Technology Department of Computer Science

Dr. Mattox Beckman (IIT)

Operational Semantics

Introduction

Objectives

□ ▶ ← □ ▶ ←

Church Rosser Activity

Church Rosser Activity

Operational Semantics

2/1

Church Rosser Activity

Operational Semantics

2/1

The purpose of formal system

Evaluate an expression according to the given transition semantic rules

Write some semantic rules for a

Evaluate an expression

Transition Activity Write rules for and, or, and tail

Demonstrate that C++ does not have the Church Rosser property.

common Haskell expression Explain the significance of the

Church Rosser property.

Transitions
Substitution
The Church Rosser Theoren

Objectives

You should be able to...

Dr. Mattox Beckman (IIT)

In order to express the meaning of a program, we need a formal language to capture these meanings. Today's semantics will use *transitions* to specify the value of an expression. By the end of lecture, you should know how to use transitional semantics.

- what the word "semantics" means.
- determine the value of an expression (i.e., be able to read)
- specify the meaning of a language (i.e., be able to write).

You should also know the Church-Rosser property and be able to give examples of languages that have it and languages that don't have it.

Operational Semantics

Parts of a Formal System

Operational Semantics

To create a formal system, you must specify the following:

- A set of *symbols* or an *alphabet*.
- A definition of a valid sentence.
- A set of *transformation rules* to make new valid sentences out of old ones.
- A set of initial valid sentences.

You do NOT need:

• An *interpretation* of those symbols.

They are highly recommended, but the formal system can exist and do its work without one.

4 □ ト 4 畳 ト 4 差 ト 差 シ 2 少 3 / 1
3 / 1 Dr. Mattox Beckman (III) Operational Semantics
4 / 1

Formal Systems Formal Systems

Example

Example

Symbols S, (,), Z, P, x, y.

Definition of a furbitz

- Z is a furbitz. x and y are variables of type furbitz.
- if x is a furbitz, then S(x) is a furbitz.
- if x and y are furbitzi, then P(x, y) is a furbitz.

Definition of the gloppit relation

- Z has the gloppit relation with Z.
- If x and y have the gloppit relation, then S(x) and S(y)have the gloppit relation.
- If α and β , then we can write $\alpha g\beta$.

True Sentences If $\alpha g\beta$, then also

• $P(S(\alpha), \beta)gP(\alpha, S(\beta))$, and $P(Z, \alpha)g\alpha$

Definition of an integer

- 0 is an integer. *x* and *y* are variables of type integer.
- if x is an integer, then S(x) is an integer.
- if x and y are integers, then P(x, y) is an integer.

Definition of the equality relation

Symbols S, (,), Z, P, x, y.

- 0 has the equality relation with 0.
- If x and y have the equality relation, then S(x) and S(y)have the equality relation.
- If α and β , then we can write $\alpha = \beta$.

True Sentences If $\alpha = \beta$, then also

• $P(S(\alpha), \beta) = P(\alpha, S(\beta)),$ and $P(0, \alpha) = \alpha$

Dr. Mattox Beckman (IIT)

Operational Semantics

Dr. Mattox Beckman (IIT)

Operational Semantics

Example

Symbols S, (,), Z, P, x, y.

Definition of an integer

- 1 is an integer. *x* and *y* are variables of type integer.
- if x is an integer, then S(x) is an integer.
- if x and y are integers, then P(x, y) is an integer.

Definition of the equality relation

- 1 has the equality relation with 1.
- If x and y have the equality relation, then S(x) and S(y)have the equality relation.
- If α and β , then we can write $\alpha = \beta$.

True Sentences If $\alpha = \beta$, then also

•
$$P(S(\alpha), \beta) = P(\alpha, S(\beta))$$
, and $P(1, \alpha) = \alpha$

Transformations

- There are many ways we can specify the meaning of an expression. One way is to specify the steps that the computer will take during an evaluation.
- An *evaluation* has the following form:

$$e_1 \rightarrow e_2$$

where e is some expression, and e_2 is another expression, possibly a value.

Operational Semantics

Examples:

Dr. Mattox Beckman (IIT)

- ullet if true then 4 else 38 ullet 4
- 13 + 4 * 5 \rightarrow 13 + 20
- Note well: \rightarrow indicates *exactly one* step of evaluation.

Preliminaries

If Statements

• In transition semantics we need to be able to distinguish between values and expressions.

- A *value* is a valid *expression* that can not be evaluated any further.
- (Note, the converse is not true.)
- Use letters *U*, *V*, and *W* to represent values.
- Use letters *M*, *N*, and *L* to represent expressions.

Here are three semantic rules for the if statement.

- if true then M else $N \rightarrow M$
- ullet if false then M else $N \to N$

if L then M else $N o ext{if } L'$ then M else N

In English:

- If the conditional part is true, evaluate the first branch.
- If the conditional part is false, evaluate the second branch.
- Otherwise, if the conditional part is not yet evaluated, evaluate it one step.

4□ → 4□ → 4 = → 4 = → 9 < 0</p>

Dr. Mattox Beckman (IIT)

Operational Semantics

Dr. Mattox Beckman (IIT)

Operational Semantics

Transformations

Transformations

Obvious Rules

Example Evaluation

• These rules are boring. But we need to include them anyway.

$$\frac{M \to M'}{M \oplus N \to M' \oplus N} \qquad \frac{N \to N'}{V \oplus N \to V \oplus N'}$$

Where \oplus is +, -, >, <, ...

• These rules are so boring that we don't include them.

$$0+0 \rightarrow 0$$
 $0+1 \rightarrow 1$... $1+0 \rightarrow 1$ $1+1 \rightarrow 2$... et cetera...

5 + 9

Dr. Mattox Beckman (IIT)

Evaluate: if 3 > 2 then 5 + 9 else 2 * 4if 3 > 2 then 5 + 9 else 2 * 4 if true then 5 + 9 else 2 * 4

Transformations Transformations

Other Notations

Be careful with \leftrightarrow^*

Notations

$$\rightarrow^0$$
 \equiv The identity

$$\rightarrow^1 \equiv \rightarrow$$

$$\rightarrow^n = \rightarrow \cdot \rightarrow^{n-1}$$

$$\rightarrow^* \equiv \bigcup_{i=0}^{\infty} \rightarrow$$

$$a \leftarrow b \equiv b \rightarrow a$$

$$\leftrightarrow$$
 \equiv \rightarrow \cup \leftarrow

$$\leftrightarrow^* \equiv (\rightarrow \cup \leftarrow)^*$$

$$a \leftrightarrow^* b \not\equiv a \leftarrow^* b \cup a \rightarrow^* b$$

For example $a \leftrightarrow^* b$ when

$$a \leftarrow a_1 \rightarrow a_2 \rightarrow a_3 \leftarrow b_2 \leftarrow b_1 \rightarrow b$$

Example

$$3 \rightarrow^* 3$$
, and if $3 > 2$ then $5 + 9$ else $2 * 4 \rightarrow^* 14$

Dr. Mattox Beckman (IIT)

Operational Semantics

◆□▶◆□▶◆■▶◆■▶ ■ 900

Dr. Mattox Beckman (IIT)

Transformations

Operational Semantics

Transformations

Substitution

More formally...

Dr. Mattox Beckman (IIT)

- This particular semantics does not use an environment.
- To express the meaning of variable substitution, we use the substitution operator.
- $[e_1/x]e_2$ means "Replace all occurrences of x in e_2 with e_1 ."
- So, $[3/x](2+x) \Rightarrow (2+3)$

$$\begin{array}{ll} [y/x]x & \Rightarrow y \\ [y/x]z & \Rightarrow z \\ [y/x](a \oplus b) & \Rightarrow [y/x]a \oplus [y/x]b \\ [y/x](\text{if M then N else O}) & \Rightarrow (\text{if } [y/x]M \text{ then } [y/x]N \\ & & \text{else } [y/x]O) \end{array}$$

Substitution has to be done more carefully for let.

Transformations Transformations

More formally...

Example

$$[y/x](\text{let } x = M \text{ in } N) \qquad \Rightarrow \text{let } x = [y/x]M \text{ in } N \\ [y/x](\text{let } z = M \text{ in } N) \qquad \Rightarrow \text{let } z = [y/x]M \text{ in } [y/x]N \\ [y/x](\text{let rec } x = M \text{ in } N) \qquad \Rightarrow \text{let rec } x = M \text{ in } N \\ [y/x](\text{let rec } z = M \text{ in } N) \qquad \Rightarrow \text{let rec } z = [y/x]M \\ \text{in } [y/x]N$$

Evaluate: let
$$x = 2 + 3$$
 in let $y = x * x$ in $x + y$

$$let x = 2 + 3$$
 in let $y = x * x$ in $x + y$

$$let x = 5$$
 in let $y = x * x$ in $x + y$

$$let y = 5 * 5$$
 in $x + y$

$$let y = 25$$
 in $x + y$

$$let y = 25$$
 in $x + y$

$$x + y$$

$$x + y$$

$$y + z$$

$$y + z$$

$$z + z$$

$$z$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 夕◎

> 4 D' > 4 E > 4 E > E *) Q (*

Dr. Mattox Beckman (IIT) Operational Semantics 17 / 1 Dr. Mattox Beckman (IIT)

Transformations 17 / 1 Dr. Mattox Beckman (IIT)

Operational Semantics
Church Rosser Property

18 / 1

Activity

Term Rewriting Systems

Transition semantics can be thought of as a *term-rewriting system*. Common questions:

- Does an expression always terminate?
- Can we tell if two expressions are equal?

Church-Rosser Property: If $x \leftrightarrow^* y$ then x and y normalize to the same value.

Do the Operational Semantics activity.

◆□▶◆□▶◆壹▶◆壹▶ 壹 からぐ

◆□▶◆□▶◆■▶◆■▶ ■ 900

Church Rosser Property Church Rosser Property

Example

Confluence

If $x \to y_1$ and $x \to y_2$ then y_1 and y_2 normalize to the same value. (Confluence and the Church-Rosser Property coincide.)

This is also known as the "diamond property"

• Alonzo Church and J. Barkley Rosser proved that the λ -calculus has these properties in 1936.

- Very important for theorem provers.
- Most programming languages have this property... some of the time...
- One Benefit: you can check for equality of *x* and *y* by evaluating them.

Dr. Mattox Beckman (IIT)

Operational Semantics

Dr. Mattox Beckman (IIT)

Who has it?

Operational Semantics

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣९♡

Activity

Do the Diamond Property Activity.