# Lineare Algebra Übung 5

# Aufgabe 1

Implemeniteren Sie in der Programmiersprache Ihrer Wahl folgende Funktionalität:

Abgabe: Kalenderwoche 18

- Eingabe: Einen Modulo n und zwei Vektoren in  $(\mathbb{Z}/n)^2$ .
- Ausgabe: frei wenn die Vektoren frei sind und eine "nichttriviale Darstellung" des Nullvektors sonst.

# Beispiele

- 1. Eingabe: modulo = 5 und v = (2,4), w = (4,2) Ausgabe: frei
- 2. Eingabe: modulo = 5 und v = (2,3), w = (1,4)Ausgabe: 1\*(2, 3) + 3\*(1, 4) = (0, 0)

# Aufgabe 2

Wir betrachten den Vektorraum  $\mathbb{K} = ((\mathbb{Z}/11)^2, +, \cdot)$ . Skizzieren Sie die Geraden

g: Geht durch den Punkt  $(\bar{4}, \bar{5})$  und hat die "Steigung" 2

h: Geht durch den Punkt  $(\bar{4},\bar{5})$  und hat die "Steigung"  $\frac{1}{6}$ 

Skizzieren Sie die "Geraden" g und h.

#### Aufgabe 3

- (a) Schreiben Sie in  $(\mathbb{R}^3, +, \cdot)$  den Vektor (2, 4, 1) als Linearkombination der Vektoren (1, 0, 0), (1, 1, 0) und (1, 1, 1).
- (b) Schreiben Sie in  $((\mathbb{Z}/5)^2, +, \cdot)$  den Vektor  $(\bar{1}, \bar{1})$  als Linearkombination der Vektoren  $(\bar{2}, \bar{0})$  und  $(\bar{3}, \bar{4})$ .

# Aufgabe 4

Entscheiden Sie ob folgende Vektoren linear unabhängig sind. Begründen Sie Ihre Antwort.

- (a)  $(\bar{2}, \bar{3})$  und  $(\bar{3}, \bar{2})$  in  $(\mathbb{Z}/5, +, \cdot)$ .
- (b) (2,3) und (3,2) in  $(\mathbb{R}^2, +, \cdot)$ .
- (c) (1,2,3) und (3,2,1) in  $(\mathbb{R}^3,+,\cdot)$ .
- (d) (0,0) und (1,0) in  $(\mathbb{R}^2, +, \cdot)$ .

# Aufgabe 5 (Bonusaufgabe)

Es sei V ein beliebiger Vektorraum und  $B = \{b_1, \ldots, b_n\}$  sei eine Basis, weiter sei vein beliebiger Vektor ausser dem Nullvektor. Zeigen Sie, dass es ein Element  $b \in B$ gibt, so dass  $(B \setminus \{b\}) \cup \{v\}$  eine Basis von V ist.

### Aufgabe 6 (Bonusaufgabe)

Wir fassen  $(\mathbb{R}, +, \cdot)$  (mit der üblichen Addition und Multiplikation) als Vektorraum über dem Körper  $(\mathbb{Q}, +, \cdot)$  auf. Unsere Skalare sind demnach rationale Zahlen und unsere Vektoren reelle Zahlen.

Geben Sie eine unendliche, freie Familie  $v_1, v_2 \dots$  von Vektoren (reellen Zahlen) an.

**Hinweis:**  $\pi$  ist eine transzendente Zahl.

Aufgose 2

