Zadaća II iz Predmeta Tehnologije za Podršku Tehničkom Pisanju _____

Abstract

U okviru zadaće II biti će demonstrirano svo stečeno znanje iz predmeta *Tehnologije za podršku tehničkom pisanju* vezano za I^ATEX. Studenti će *demonstrirati stečeno znanje* na način da repliciraju sadržaj dokumenta (stranice od 1 do 6) pri čemu moraju obratiti pažnju na svaki detalj u originalnom dokumentu. Replicirani dokument mora biti vjerodostojna kopija originalnom dokumentu (100% kopija osim dijela prezime i ime, i broj indeksa). Kako rezultat, studenti će *predati kod* (*.tex file) prema pravilima definiranim na prethodnoj stranici teksta zadaće.

Naslov dokument vertikalno je pomjeren za 6 mm u odnosu na prethodni i naredni sadržaj.

Kratak sadržaj

1	\mathbf{Stil}	dokumenta 1						
	1.1	Margine dokumenta						
	1.2	Zaglavlje i podnožje dokumenta						
2	Mat	tematički mod i tabele 2						
	2.1	Matematički mod						
	2.2	Tabele						
3	Pak	Paketi za crtanje u IATEX-u						
	3.1	TikZ paket						
	3.2	Električne, blok sheme i <i>circuitikz</i> paket						
K	Crat	ka lista slika						
	1	Frekventni odzivi hipotetičkih sistema						
	2	Sinusne funkcije sa i bez izobličenja						
	3	Verzije sinc funkcije						
	4	Implementacija logičke funkcije f sa NAND logičkim kolima						
	5	Ekvivalentna shema hipotetičkog pojačavača						
	6	Primjer modela komunikacijskog sistema						
K	Crat	ka lista tabela						
	1	Redoslijed propagacija signala u mreži						
	2	Bodovi i ocjene						
	3	Spajanje ćelija						

1 Stil dokumenta

Redefiniranjem funkcionalnosti komande \contentsname{} promijeniti naziv liste sadržaja u Kratak sadržaj. Na sličan način ponoviti za komande \listfigurename{}, \listtablename{}, \figurename{} i \tablename{} uslijed nedostatka podrške za govorno područje Bosne i Hercegovine u paketu babel.

1.1 Margine dokumenta

Margine stranica dokumenta su postavljene na sljedeći način: lijeva i donja na 22 mm, desna na 28 mm i gornja na 30 mm. Na mjesto *Prezime Ime* upisat vaše <u>prezime i ime</u>. *Obratiti pažnju* da se na tekućoj i narednim stranicama dokumenta zadaće, nalazi zaglavlje i podnožje a na prethodnoj ne! U okviru zadaće kreirati L^AT_PX komande i okruženja samo na mjestima gdje to ima smisla.

1.2 Zaglavlje i podnožje dokumenta

Stil dokumenta generirati sa komandama iz paketa fancyhdr pri čemu će se novi stil zvati $logo_stil$. Slika unutar zaglavlja stranice dokumenta (logo.pdf), skalirana je na 0.05 a prostor oko slike skraćen je za 0.25 mm sa svih strana . Debljina linije u zaglavlju je 0.47 pt.

Upotrijebiti trim & clip opcije

2 Matematički mod i tabele

2.1 Matematički mod

Tokom semestra, u IATEX-u smo upoznali matematički mod¹ koji nam omogućava i formatiranje matrica

$$R_{xx} = x^T x = \begin{bmatrix} x(-1) & 0 & 0 \\ x(0) & x(-1) & 0 \\ x(1) & x(0) & x(-1) \\ 0 & x(1) & x(0) \\ 0 & 0 & x(1) \end{bmatrix} = \begin{bmatrix} \frac{\alpha}{2} & 0 & 0 \\ 1 & \frac{\alpha}{2} & 0 \\ \frac{\alpha}{2} & 1 & \frac{\alpha}{2} \\ 0 & \frac{\alpha}{2} & 1 \\ 0 & 0 & \frac{\alpha}{2} \end{bmatrix} = \begin{bmatrix} 1 + \frac{\alpha^2}{2} & \alpha & \frac{\alpha^2}{4} \\ \alpha & 1 + \frac{\alpha^2}{2} & \alpha \\ \frac{\alpha^2}{4} & \alpha & 1 + \frac{\alpha^2}{2} \end{bmatrix}$$

U nastavku imamo primjer jedne Bessel-ove funkcije u integralnom obliku:

$$I_{\alpha}(x) = \frac{1}{\pi} \int_{0}^{\pi} e^{x \cos(\theta)} \cos(\alpha \theta) \ d\theta - \frac{\sin(\alpha \pi)}{\pi} \int_{0}^{\infty} e^{-x \cosh(t) - \alpha t} dt \tag{1}$$

pri čemu se Bessel-ove funkcije $K_{1/3}$ i $K_{2/3}$ mogu izraziti kao:

$$K_{\frac{1}{3}}(\epsilon) = \sqrt{3} \int_0^\infty \exp\left[-\epsilon \left(1 + \frac{4x^2}{3}\right) \sqrt{1 + \frac{x^2}{3}}\right] dx \tag{2}$$

$$K_{\frac{2}{3}}(\epsilon) = \frac{1}{\sqrt{3}} \int_0^\infty \frac{3 + 2x^2}{\sqrt{1 + \frac{x^2}{3}}} \exp\left[-\epsilon \left(1 + \frac{4x^2}{3}\right) \sqrt{1 + \frac{x^2}{3}}\right] dx \tag{3}$$

U sljedećem redu upisati broj vašeg indeksa koristeći familiju fonta New Century Schoolbook (pnc) visine 79 pt^2

¹Ne zaboravite da matematički mod zahtjeva uključenje paketa amsmath.

²Obratiti pažnju da će nam trebati paket fix-cm

2.2 Tabele

U nastavku imamo tri table postavljene koristeći okruženje minipage, tabular i table.

Put br.	Redoslijed propagacije signala	Težinski faktor $g_i(f)$
1	$A \to B \to C$	t_{1B}
2	$A \to B \to D \to B \to C$	$t_{1B}r_{3D}t_{3B}$
:	÷ :	<u>:</u>
N	$A \to B(\to D \to B)^{N-1} \to C$	$t_{1B}r_{3D}(r_{3B}r_{3D})^{N-2}t_{3B}$

Tabelica 1: Redoslijed propagacija signala u mreži

Bodovi	Ocjena
94 - 100	10
84 - 93	9
74 - 83	10
64 - 73	9
54 - 63	10

L1	L2	L3	
MC	MR1		
A	В	MILLI	
MR2	MC2		
MINZ	D	Е	
G	Е	M	

Tabelica 2: Bodovi i ocjene

Tabelica 3: Spajanje ćelija

U malom ograničenom paragrafu širine 105 mm prikazana je lista malih Grčkih karaktera, velikih rimskih cirata 3 i heksadecimalnih cifara 4

a)
$$\alpha$$
, Δ , σ , Γ , ρ , Ψ , μ , γ , ϵ , Ω , ψ , π , κ , ϑ , δ , ω , λ , τ .

Sistem jednačina zapisanih prema Kirchhoff-ovim zakonima, za neko elektirčno kolo je

$$i_1 - i_2 - i_3 = 0$$

$$-R_1 i_2 + \mathcal{E}_2 - R_2 i_1 = 0$$

$$-R_3 i_3 - \mathcal{E}_1 - \mathcal{E}_2 + R_1 i_2 = 0$$
(4)

3 Paketi za crtanje u LAT_EX-u

3.1 TikZ paket

Na slici 1^5 prikazani su frekventni odzivi hipotetičkih sistema 6 a u nastavku funkcije oblika $x(t) = \sin(180t) + 0.4 \cdot rand$ i $y(t) = \sin(180t) \pm 0.5$ kreirane sa okruženjem **tikzpicture** i **axis**. Za crtanje konkretnih krivi koristiti komandu **addplot**{}. Aktiviranje mrežice na grafiku izvodimo sa opcijom **grid**. Postavke opsega grafika (plot-a) su xmin=-5,xmax=5,ymin=-4 i ymax=4 u okviru **axis** okruženja. Za skaliranje dijagrama na slikama 2 i 3 koristiti opciju **scale** u okviru okruženja **tikzpicture**.

 $^{^5 \}text{Obavezno}$ koristiti princip referenciranja sa komandom **\ref**{}

 $^{^6}$ Vrijednosti odziva sistema uključeni su u pdf-u teksta zadaće a legendu dijagrama dodati koristeći komaandu $\addlegendentry{}$

Sličica 1: Frekventni odzivi hipotetičkih sistema

Sličica 2: Sinusne funkcije sa i bez izobličenja

Sličica 3: Verzije sinc funkcije

Na slici 3 prikazane su sljedeće funkcije:

$$x(t) = \frac{\sin(180x + x^2)}{x} \tag{5}$$

$$y(t) = -\frac{\sin(180x + x^2)}{x} \tag{6}$$

3.2 Električne, blok sheme i circuitikz paket

Na slici 4 prikazana je implementacija logičke funkcije $f = AB + \overline{A} \, \overline{B} \, C$. Ukoliko imate poteškoća sa realizacijom logičke i električne sheme, možete se poslužiti primjerima iz kratkog manuala circutikz paketa, koje se nalazi na CTAN stranici.

 $^{^7}$ Prilikom crtanja logičke sheme neophodno je uključiti $\it tikz$ biblioteku $\it circuits.logic.US$

Sličica 4: Implementacija logičke funkcije f sa NAND logičkim kolima

Na slici 5 prikazana je ekvivalentna shema jednog hipotetičkog pojčavačkog stepena. <u>U</u> okviru električne sheme (na slici 5) korištene su ljedeće komponente: R, L,C i american current source.

Sličica 5: Ekvivalentna shema hipotetičkog pojačavača

Slika 6 predstavlja model jednog komunikacijskog sistema. Prilikom crtanja modela i ostalih tikz baziranih dijagrama/grafika/slika možete se poslužiti aplikacijama kao što je ktikz, QTikZ, TpX, $fredokun\ TikZ$ -Editor i sl.

Upotrijebiti opciju american
u okruženju
circuitikz za
generiranje simbola prema
američkom
standardu
označavanja
elektroničkih
komponenti.

Sličica 6: Primjer modela komunikacijskog sistema