UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i:	MAT-INF 1100 — Modellering og beregninger.
Eksamensdag:	Onsdag 7. desember 2005.
Tid for eksamen:	9:00 - 12:00.
Oppgavesettet er på 3 sider.	
Vedlegg:	Formelark.
Tillatte hjelpemidler:	Godkjent kalkulator.
Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Husk å fylle inn kandidatnummer under. Kandidatnr:	
Første del av eksamen består av 7 flervalgsoppgaver som teller 4 poeng hver. Det er bare ett riktig svaralternativ på hver av disse oppgavene. Dersom du svarer feil eller lar være å krysse av på en oppgave, får du null poeng. Du blir altså ikke "straffet" for å gjette. Andre del av eksamen består av tradisjonelle oppgaver. I denne delen teller hvert av de 6 delspørsmålene 12 poeng. Den totale poengsummen er altså maksimalt 100 poeng. I andre del av eksamen må du begrunne hvordan du har kommet fram til resultatene dine. Svar som ikke er begrunnet får 0 poeng selv om de er riktige!	
Del 1: Flervalgsoppgaver	
Oppgave 1. Koeffisienten foran x^2 i Taylorpolynomet til funksjonen $f(x) = x^2 - \sin x$ utviklet om punktet $a = 0$ er $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
Oppgave 2. Taylorpolynomet av grad 2 til funksjonen $f(x) = e^{x^2}$ utviklet om punktet $a = 0$ er gitt ved	

Oppgave 3. Hvilken av lølgende differensialligninger er lineær?
Oppgave 4. Differensialligningen $y'' + 4y' + 5y = 0$ har den generelle løsningen $y(x) = e^{-2x}(C\sin x + D\cos x)$ $y(x) = Ce^{-2x} + De^x$ $y(x) = Ce^{-2x} + De^{-x}$ $y(x) = C\cos x + D\sin x$ $y(x) = e^x(C\sin 2x + D\cos 2x)$ der C og D er vilkårlige, reelle tall.
Oppgave 5. Differensialligningen $y' + x^2y = x^2$, der $x > 0$, har løsningen
Oppgave 6. Vi benytter Eulers metode for å finne numeriske løsninger av ligningen $y'=ay$. Dette gir en differensligning for $\{y_j\}$ der $y_j\approx y(jh)$, hvilken $\{y_j\}$ der
Oppgave 7. Vi tilnærmer den deriverte til funksjonen $f(x)$ med uttykket $\big(f(h)-f(0)\big)/h$. Da er feilen
$\left f'(0) - \frac{f(h) - f(0)}{h}\right $
begrenset av

Del 2

Husk at i denne delen må alle svar begrunnes!

Oppgave 1. Løs differensligningen

$$x_{n+2} - 3x_{n+1} + 2x_n = 1$$
, $x_0 = 1$, $x_1 = 0$.

Oppgave 2. Finn Taylorpolynomet av grad 3 om a = 0 for funksjonen

$$f(x) = \frac{e^x + e^{-x}}{2}.$$

Oppgave 3. Vis ved induksjon at den n'te deriverte av funksjonen $f(x) = xe^x$ er gitt ved

$$f^{(n)}(x) = (n+x)e^x$$

for ethvert heltall $n \geq 0$.

Oppgave 4. Vi har gitt en differensialligning med tilhørende randverdier på intervallet [0, 1],

$$y'' + \alpha^2 y = 0$$
, $y(0) = 0$, $y(1) = 1$,

der α er en reell konstant. Legg merke til at vi har gitt en randbetingelse ved x=0 og en ved x=1.

Finn løsningen.

Finnes det verdier av α slik at løsningen ikke eksisterer?

Oppgave 5. Vi har gitt en førsteordens differensialligning med en initialverdi,

$$y' = -y, \quad y(0) = 1.$$

- a) Løs differensialligningen og vis at $\lim_{x\to\infty} y(x) = 0$.
- b) Vi forsøker å løse ligningen med en numerisk metode som bestemmer en tilnærming $y_j \approx y(jh)$ til løsningen i punktene $x_j = jh$ der $j = 0, 1, 2, \ldots$ og h er en positiv steglengde. Dette gjør vi med følgende algoritme:
 - 1. Fra initialbetingelsen finner vi $y_0 = 1$ mens y_1 bestemmes til $y_1 = 1 h$ ved hjelp av Eulers metode.
 - 2. Vi finner y_j for $j \geq 2$ ved "hoppe-bukk" ("leap-frog") metoden

$$\frac{y_j - y_{j-2}}{2h} = -y_{j-1}.$$

Dersom vi simulerer denne differensligningen ved hjelp av flyttall, vil den numeriske løsningen ikke nærme seg 0 når x blir stor, men vokse over alle grenser. Forklar hvorfor dette skjer.

Hint: Finn den generelle løsningen til differensligningen.

Lykke til og god jul!