Contents

Radon Transform

10.1 Definition Fourier Slice Theorem 10.2

Big equations

10 Radon Transform

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} = \begin{bmatrix} A + \\ A + i \\ A + i \\ B + i \\ B + i \\ C + i \end{bmatrix}$$

$$\Leftrightarrow K\mathbf{x} = \mathbf{b}$$
$$\sim K^T K\mathbf{x} = K^T \mathbf{b}$$

$$\begin{bmatrix} x_1 T & x_1 \end{bmatrix}^{-1} x_2 T$$

$$\sim \left[K^T K \right]^{-1} K^T \mathbf{b} = \mathbf{x}$$

Over-determined non-square matrix K. Larger problems must be solved iteratively using standard methods for solving large matrix operation problems.

10.1 Definition

We will use teh coordinate system defined in the figure above to describe line integrals and projections. In this example the object is represented by a twodimensional function f(x, y) and each line integral by the (θ, t) parameters. The equation of line AB in the figure above is

$$x \cos \theta + y \sin \theta = t$$

and we will use this relationship to define

line integral $P_{ heta}$ as $P_{\theta}(t) = \int_{(\theta, t) \text{line}} ds f(x, y)$ Using a delta function, this can be rewrit-

ten as
$$P_{\theta}(t) = \int_{\mathbb{R}^2} \mathrm{d}x \mathrm{d}y \, f(x, y)$$

$$\int \mathbb{R}^2 \cdot \delta(x \cos \theta + y \sin \theta - t)$$

10.2 Fourier Slice Theorem

Two-dimensional Fourier transform of the object function

$$F(u, v) = \int_{\mathbb{R}^2} dx dy f(x, y)$$
$$\cdot e^{-j2\pi(ux + vy)}$$

Likewise, define a projection at an angle θ , $P_{\theta}(t)$, and its fourier transform by

$$S_{\theta}(w) = \int_{\mathbb{R}^2} \mathrm{d}t \, P_{\theta}(t) e^{-j2\pi wt}$$

The simplest example of the Fourier Slice Theorem is given for a projection at $\theta = 0$. First, consider the Fourier transform of the object along the line in the frequency domain given by v = 0. The Fourier transform integral now simplifies to F(u, 0)

$$= \int_{\mathbb{R}^2} dx dy f(x, y) e^{-j2\pi ux}$$
$$= \int_{-\infty}^{\infty} dx P_{\theta=0} e^{-j2\pi ux}.$$

This represents the 1D FT of the projection $P_{\theta=0}$; thus we have the following relationship between the vertical projection and the 2D transform of the object func-

$$F(u,0) = S_{\theta=0}(u)$$

This is the simplest form of the Fourier

$I_{\text{comp}} = I_{\alpha}I_{\alpha} + (1 - I_{\alpha})I_{b}$

- MAP, Maximum a posteriori detec-
- graph cuts

11 Questions

- Solve MRFs with graph cuts
- impulse response t(-x, -y)
- · Canny nonmaxima suppression
- Entropy Coding (Huffman code)
- · Aperture problem: normal flow
- Lucas-Kanade: Iterative refinement/local gradient method
- · Coarse-to-fine-estimation
- · SNR scalability EI, EP frame
- MPEG Structure

A Big equations

$$\mathcal{F}[h](u,v) = \frac{1}{2\ell} \int_{-\ell}^{\ell} \mathrm{d}x_1 \, \exp(-i2\pi u x_1) \cdot \underbrace{\int_{-\infty}^{\infty} \mathrm{d}x_2 \, \delta(x_2) \exp(-i2\pi v x_2)}_{=1}$$

$$= \operatorname{sinc}(2\pi u \ell) \tag{A.1}$$

$$E = \iint \mathrm{d}x \mathrm{d}y \left[\left(\frac{\partial I}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t} \right)^{2} + \alpha^{2} (\|\nabla \dot{x}\| + \|\nabla \dot{y}\|)^{2} \right]$$
(A.2)

$$\mathbf{v} = \left(\sum_{i} w_{i} I_{X}(q_{i})^{2} \sum_{i} w_{i} I_{X}(q_{i}) I_{Y}(q_{i}) \right)^{-1}$$

$$\cdot \left(-\sum_{i} w_{i} I_{X}(q_{i}) I_{I}(q_{i}) \right)$$

$$\cdot \left(-\sum_{i} w_{i} I_{X}(q_{i}) I_{I}(q_{i}) \right)$$
(A.3)