# CE6146 Introduction to Deep Learning Optimization and Regularization

Chia-Ru Chung

Department of Computer Science and Information Engineering
National Central University
2023/10/5

#### **20230928 Exercise**

| 1. <b>C</b>  | 2. <b>C</b>  | 3. <b>B</b>  | 4. <b>A</b>  | 5. <b>B</b>  |
|--------------|--------------|--------------|--------------|--------------|
|              |              |              |              |              |
| 6. <b>A</b>  | 7. <b>D</b>  | 8. <b>C</b>  | 9. <b>C</b>  | 10. <b>B</b> |
|              |              |              |              |              |
| 11. <b>D</b> | 12. <b>B</b> | 13. <b>A</b> | 14. <b>C</b> | 15. <b>C</b> |
|              |              |              |              |              |
| 16. <b>B</b> | 17. <b>B</b> | 18. <b>C</b> | 19. <b>C</b> | 20. <b>C</b> |
|              |              |              |              |              |

#### **Outline**

- Review
- Optimization and Regularization
- Hand-on Feedforward Networks

# Review

- Evaluation Metrics
- Cross-Validation
- Activation Function
- Forward and Backward Pass

#### **Evaluations for Classification**

- Sensitivity (hit rate, true positive rate, or recall) =  $\frac{TP}{P} = \frac{TP}{TP + FN}$
- Specificity (true negative rate) =  $\frac{TN}{N} = \frac{TN}{TN + FP}$
- Precision (Positive Predictive Value, PPV) =  $\frac{TP}{TP+FP}$
- Accuracy (ACC) =  $\frac{TP+TN}{P+N} = \frac{TP+TN}{TP+TN+FP+FN}$
- F1 score =  $\frac{2TP}{2TP+FP+FN}$

#### Confusion matrix

|           |                             | Predicted condition |                     |
|-----------|-----------------------------|---------------------|---------------------|
|           | Total population<br>= P + N | Positive (PP)       | Negative (PN)       |
| condition | Positive (P)                | True positive (TP)  | False negative (FN) |
| Actual c  | Negative (N)                | False positive (FP) | True negative (TN)  |

Source: https://en.wikipedia.org/wiki/Confusion\_matrix

• Matthews correlation coefficient (MCC) =  $\frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$ 

## **Confusion Matrix in Python**

#### Examples

In the binary case, we can extract true positives, etc. as follows:

```
>>> tn, fp, fn, tp = confusion_matrix([0, 1, 0, 1], [1, 1, 1, 0]).ravel()
>>> (tn, fp, fn, tp)
(0, 2, 1, 1)
```

## Receiver Operating Characteristic Curve

- A graphical representation to evaluate the performance of <u>a binary</u> classification model.
- Plots <u>True Positive Rate (TPR)</u> against <u>False Positive Rate (FPR)</u> at various thresholds.

• TPR = 
$$\frac{TP}{P} = \frac{TP}{TP + FN}$$

• FPR = 
$$\frac{FP}{N} = \frac{FP}{FP + TN} = 1$$
 - Specificity

## Steps to Create an ROC Curve



Step 1: Sort all predicted probabilities in descending order.

$$p_1 \ge p_2 \ge \cdots \ge p_n$$

Step 2: Calculate TPR and FPR for each threshold *t*.

- Classify instances with  $p_i \ge t$  as positive and  $p_i < t$  as negative
- Calculate TP, FP, TN, and FN for this t
- Calculate TPR(t) and FPR(t)

Step 3: For each t, plot FPR(t) on the X-axis and TPR(t) on the Y-axis.

## Interpreting the ROC Curve

• Ideal Point: The top-left corner of the plot, indicating a FPR of 0

and a TPR of 1.

- AUC: Area Under the Curve
  - Closer to 1 indicates a better model.
  - Perfect classifier: AUC = 1
  - Random classifier: AUC = 0.5



#### **Precision-Recall Curve**

- A curve that visualizes the trade-off between <u>Precision</u> and <u>Recall</u> for different threshold values.
- Useful for evaluating the performance of a classification model, especially when classes are imbalanced.
- Precision =  $\frac{TP}{TP+FP}$
- Recall =  $\frac{TP}{TP+FN}$

## Steps to Create a PR Curve



Step 1: Sort all predicted probabilities in descending order.

$$p_1 \ge p_2 \ge \cdots \ge p_n$$

Step 2: Calculate Recall and Precision for each threshold *t*.

- Classify instances with  $p_i \ge t$  as positive and  $p_i < t$  as negative
- Calculate TP, FP, and FN for this t
- Calculate Precision(*t*) and Recall(*t*)

Step 3: For each *t*, plot Recall(*t*) on the X-axis and Precision(*t*) on the Y-axis.

## Interpreting the PR Curve



- The "ideal" PR Curve is close to the <u>top right corner</u>, where both Precision and Recall are 1.
- A steeper curve suggests the model has better precision and recall.
  - A steeper curve is an indicator that for a small sacrifice in recall, you can get a significant increase in precision, or vice versa.
  - It suggests that the model is able to achieve high precision without sacrificing much recall, or high recall without sacrificing much precision.

# **Evaluations Metrics in Python**

#### **Classification metrics**

See the Classification metrics section of the user guide for further details.

| <pre>metrics.accuracy_score(y_true, y_pred, *[,])</pre>     | Accuracy classification score.                                                                   |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| metrics.auc(X, y)                                           | Compute Area Under the Curve (AUC) using the trapezoidal rule.                                   |
| metrics.average_precision_score(y_true,)                    | Compute average precision (AP) from prediction scores.                                           |
| metrics.balanced_accuracy_score(y_true,)                    | Compute the balanced accuracy.                                                                   |
| metrics.brier_score_loss(y_true, y_prob, *)                 | Compute the Brier score loss.                                                                    |
| metrics.class_likelihood_ratios(y_true,)                    | Compute binary classification positive and negative likelihood ratios.                           |
| <pre>metrics.classification_report(y_true, y_pred, *)</pre> | Build a text report showing the main classification metrics.                                     |
| metrics.cohen_kappa_score(y1, y2, *[,])                     | Compute Cohen's kappa: a statistic that measures inter-annotator agreement.                      |
| <pre>metrics.confusion_matrix(y_true, y_pred, *)</pre>      | Compute confusion matrix to evaluate the accuracy of a classification.                           |
| <pre>metrics.dcg_score(y_true, y_score, *[, k,])</pre>      | Compute Discounted Cumulative Gain.                                                              |
| <pre>metrics.det_curve(y_true, y_score[,])</pre>            | Compute error rates for different probability thresholds.                                        |
| <pre>metrics.f1_score(y_true, y_pred, *[,])</pre>           | Compute the F1 score, also known as balanced F-score or F-measure.                               |
| <pre>metrics.fbeta_score(y_true, y_pred, *, beta)</pre>     | Compute the F-beta score.                                                                        |
| <pre>metrics.hamming_loss(y_true, y_pred, *[,])</pre>       | Compute the average Hamming loss.                                                                |
| <pre>metrics.hinge_loss(y_true, pred_decision, *)</pre>     | Average hinge loss (non-regularized).                                                            |
| metrics.jaccard_score(y_true, y_pred, *[,])                 | Jaccard similarity coefficient score.                                                            |
| <pre>metrics.log_loss(y_true, y_pred, *[, eps,])</pre>      | Log loss, aka logistic loss or cross-entropy loss.                                               |
| <pre>metrics.matthews_corrcoef(y_true, y_pred, *)</pre>     | Compute the Matthews correlation coefficient (MCC).                                              |
| <pre>metrics.multilabel_confusion_matrix(y_true,)</pre>     | Compute a confusion matrix for each class or sample.                                             |
| <pre>metrics.ndcg_score(y_true, y_score, *[, k,])</pre>     | Compute Normalized Discounted Cumulative Gain.                                                   |
| metrics.precision_recall_curve(y_true,)                     | Compute precision-recall pairs for different probability thresholds.                             |
| metrics.precision_recall_fscore_support()                   | Compute precision, recall, F-measure and support for each class.                                 |
| metrics.precision_score(y_true, y_pred, *[,])               | Compute the precision.                                                                           |
| metrics.recall_score(y_true, y_pred, *[,])                  | Compute the recall.                                                                              |
| metrics.roc_auc_score(y_true, y_score, *[,])                | Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores. |
| <pre>metrics.roc_curve(y_true, y_score, *[,])</pre>         | Compute Receiver operating characteristic (ROC).                                                 |
| <pre>metrics.top_k_accuracy_score(y_true, y_score, *)</pre> | Top-k Accuracy classification score.                                                             |
| metrics.zero_one_loss(y_true, y_pred, *[,])                 | Zero-one classification loss.                                                                    |

#### **Regression metrics**

See the Regression metrics section of the user guide for further details.

| metrics.explained_variance_score(y_true,)                    | Explained variance regression score function.                           |
|--------------------------------------------------------------|-------------------------------------------------------------------------|
| metrics.max_error(y_true, y_pred)                            | The max_error metric calculates the maximum residual error.             |
| <pre>metrics.mean_absolute_error(y_true, y_pred, *)</pre>    | Mean absolute error regression loss.                                    |
| metrics.mean_squared_error(y_true, y_pred, *)                | Mean squared error regression loss.                                     |
| <pre>metrics.mean_squared_log_error(y_true, y_pred, *)</pre> | Mean squared logarithmic error regression loss.                         |
| metrics.median_absolute_error(y_true, y_pred, *)             | Median absolute error regression loss.                                  |
| metrics.mean_absolute_percentage_error()                     | Mean absolute percentage error (MAPE) regression loss.                  |
| metrics.r2_score(y_true, y_pred, *[,])                       | ${\it R}^{2}$ (coefficient of determination) regression score function. |
| <pre>metrics.mean_poisson_deviance(y_true, y_pred, *)</pre>  | Mean Poisson deviance regression loss.                                  |

#### **Clustering metrics**

See the Clustering performance evaluation section of the user guide for further details.

The sklearn.metrics.cluster submodule contains evaluation metrics for cluster analysis results. There are two forms of evaluation:

- · supervised, which uses a ground truth class values for each sample.
- · unsupervised, which does not and measures the 'quality' of the model itself.

| Adjusted Mutual Information between two clusterings.                    |
|-------------------------------------------------------------------------|
| Rand index adjusted for chance.                                         |
| Compute the Calinski and Harabasz score.                                |
| Compute the Davies-Bouldin score.                                       |
| Compute completeness metric of a cluster labeling given a ground truth. |
| Build a contingency matrix describing the relationship between labels.  |
| Pair confusion matrix arising from two clusterings [R9ca8fd06d29a-1].   |
| Measure the similarity of two clusterings of a set of points.           |
| Compute the homogeneity and completeness and V-Measure scores at once.  |
| Homogeneity metric of a cluster labeling given a ground truth.          |
| Mutual Information between two clusterings.                             |
| Normalized Mutual Information between two clusterings.                  |
| Rand index.                                                             |
| Compute the mean Silhouette Coefficient of all samples.                 |
| Compute the Silhouette Coefficient for each sample.                     |
| V-measure cluster labeling given a ground truth.                        |
|                                                                         |

#### **Cross-Validation**



#### Visualization of High-Dimensional Data

- The goal is to reduce the dimensions in a way that retains the most important structures or patterns in the data, allowing us to visualize it in 2D or 3D space.
- Techniques for Visualization:
  - Principal Component Analysis (PCA)
  - t-Distributed Stochastic Neighbor Embedding (t-SNE)
  - Uniform Manifold Approximation and Projection (UMAP)

#### Importance of Visualization

• Insight into Data:

Helps in understanding the underlying structure of the data.

• Cluster Identification:

Easier to identify clusters or groups within the data.

Outlier Detection:

Helps in spotting anomalies or outliers in the dataset.

# **Example of Visualization**



# Overfitting

• Overfitting is a common problem where <u>a model learns the training</u> data too well, including its noise and outliers, <u>but performs poorly</u> on unseen or validation data.



Source: https://www.mathworks.com/discovery/overfitting.html

## **Indicators of Overfitting**

- High Training Accuracy, Low Validation/Test Accuracy:
  This is the most straightforward indicator.
- Learning Curves Divergence:
   If training and validation loss diverge significantly during training, it's a sign of overfitting.
- Complexity Analysis:
  - A model with excessive complexity relative to the simplicity of the problem may overfit.

#### **Activation Function**

- An activation function takes the output signal from a neuron in a neural network and transforms it into a form that can serve as the input to the next layer.
- Mathematically, for a given neuron with input *x* and output *y*, the activation function *f* can be defined as:

$$y = f(w \cdot x + b)$$

where w is the weight and b is the bias associated with the neuron.

#### Choice of Activation Function (1/2)

• Hidden Layers:

- Leaky ReLU(x) =  $\begin{cases} \frac{x}{a}, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$
- ReLU is the most commonly used activation function because of its simplicity and efficiency. Parametric ReLU(x) =  $\begin{cases} ax, if & x < 0 \\ x, if & x \ge 0 \end{cases}$
- Leaky ReLU or Parametric ReLU is used to address the "dying ReLU" problem.
- tanh or sigmoid functions are less commonly used now but are still applicable for certain types of problems.

#### Choice of Activation Function (2/2)

- Output Layers:
  - For binary classification, a sigmoid function is used. ...



- For multi-class classification, the softmax function is suitable.
- For regression problems, identity activation function is used, or a linear activation function can be applied.

$$softmax(x) = \frac{e^x}{\sum_{i=1}^{K} e^{x_i}}$$

#### Forward and Backward Pass (1/2)

- In the forward pass, the input data passes through the network, layer by layer, until it reaches the output layer.
- The backward pass is the part of backpropagation where gradients are computed, layer by layer, starting from the output layer and going back to the input layer.

#### Forward and Backward Pass (2/2)

- The <u>forward pass produces an output</u> that is compared to the target to compute a loss.
- The backward pass uses this loss to calculate gradients, which tell us how to adjust the weights to minimize the loss.

#### **Role of Forward Pass**

- Primarily used for making predictions.
- Provides the information needed to calculate the loss, which is essential for training the model.

#### Role of Backward Pass

- Computes how much each weight contributed to the error.
- This information (gradients) is used to <u>update the weights</u> in the optimization step.

#### Example

- Let's consider a simple neural network for binary classification with:
  - Input layer with 2 neurons
  - One hidden layer with 2 neurons (ReLU activation)
  - Output layer with 1 neuron (sigmoid activation)

$$ReLU(x) = \begin{cases} 0, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$$

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

ReLU(0.1 + 0.2
$$x_1$$
 + 0.3 $x_2$ )

0.5 sigmoid(0.1 + 0.6 $a_1$  + 0.7 $a_2$ ) = 0.644

ReLU(0.2 + 0.4 $x_1$  + 0.5 $x_2$ )

## Training a Deep Feedforward Neural Network

Step 1 – Data Collection and Preprocessing

Step 2 – Initialize Weights and Biases

Step 3 – Forward Propagation

Step 4 – Compute Loss

Step 5 – Backpropagation

Step 6 – Update Weights and Biases (Optimization)

# Optimization and Regularization

- Introduction
- Regularization Techniques
- Practical Guidelines

#### **Optimization**

- Optimization is the overarching goal in training a neural network.
- It refers to the process of adjusting the model parameters (usually weights and biases) to minimize the loss function.
- We need optimization to find the "best" set of parameters that make our model as accurate as possible, given the training data.
- The "best" set usually refers to the minimum of the loss function.

#### **Gradient Decent (1/2)**

- Gradient Descent is a specific optimization algorithm used for <u>finding the</u> minimum of a function.
- Gradient Descent is an efficient way to <u>navigate the high-dimensional loss</u> landscape and find a local or global minimum.
- Different variants of gradient descent (like Stochastic Gradient Descent, Mini-batch Gradient Descent, and their adaptations like Adam, RMSprop, etc.) offer trade-offs between computational efficiency and the quality of the solution.

## **Gradient Decent (2/2)**

• Step 1. Compute the derivatives of the loss (*L*) with respect to the parameters  $(\phi = [\phi_0, \phi_1, ..., \phi_N]^T)$ :

$$\frac{\partial L}{\partial \phi} = \left[ \frac{\partial L}{\partial \phi_0}, \frac{\partial L}{\partial \phi_1}, \dots, \frac{\partial L}{\partial \phi_N} \right]^T$$

• Step 2. Update the parameters according to the rule:

$$\phi \leftarrow \phi - \alpha \cdot \frac{\partial L}{\partial \phi}$$

where the positive scalar  $\alpha$  determines the magnitude of the change.

## **Learning Rate**

- The learning rate is a hyperparameter in neural networks that controls how much the model's weights and biases should be updated during training.
- It's a small positive scalar value used to scale the gradient in the update equation.

# Why Use a Learning Rate (1/4)

- Convergence Control:
  - The learning rate helps manage how quickly or slowly a neural network learns.
  - A high learning rate can cause the model to converge too quickly and overshoot the minimum cost, while a low learning rate may cause the model to learn too slowly, consuming more resources.

## Why Use a Learning Rate (2/4)

- Stability and Accuracy:
  - A well-tuned learning rate ensures that the model reaches a minimum loss value that is both low and stable, thereby improving the model's performance on unseen data.

# Why Use a Learning Rate (3/4)

- Overcoming Optimization Challenges:
  - In non-convex optimization landscapes common in deep learning, a well-set learning rate can help the model escape local minima or saddle points.

## Why Use a Learning Rate (4/4)

- Resource Efficiency:
  - An optimal learning rate can make the training process more computationally efficient by requiring fewer epochs to reach the minimum loss.

#### Gradient Decent – Example (1/2)

- Given a dataset  $\{x_i, y_i | i = 1, 2, ..., I\}$  containing I input/output pairs.
- Build up a linear model  $y = f(x, \phi) = \phi_0 + \phi_1 x$
- Loss function

$$L(\phi) = \sum_{i=1}^{I} (f(x_i, \phi) - y_i)^2 = \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

• The derivative of the loss function

$$\frac{\partial L}{\partial \phi} = \frac{\partial}{\partial \phi} \sum_{i=1}^{I} \ell_i = \sum_{i=1}^{I} \frac{\partial \ell_i}{\partial \phi}$$

$$\frac{\partial \ell_i}{\partial \phi} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} & \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix}^T = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) & 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}^T$$

#### Gradient Decent – Example (2/2)

$$[\phi_0, \phi_1]^T \leftarrow [\phi_0, \phi_1]^T - \alpha \cdot \sum_{i=1}^I [2(\phi_0 + \phi_1 x_i - y_i) \quad 2x_i(\phi_0 + \phi_1 x_i - y_i)]^T$$







#### **Local Minima and Saddle Points**



- a) The loss function is non-convex, with multiple local minima (cyan circles) in addition to the global minimum (gray circle).
- It also contains saddle points where the gradient is locally zero, but the function increases in one direction and decreases in the other.
- The blue cross is an example of a saddle point; the function decreases as we move horizontally in either direction but increases as we move vertically.
- b–f) Models associated with the different minima. In each case, there is no small change that decreases the loss.
- Panel (c) shows the global minimum, which has a loss of 0.64.

#### Stochastic Gradient Descent (1/2)

- Stochastic Gradient Descent (SGD) is a variant of the basic Gradient Descent algorithm.
- Instead of using the entire dataset to compute the gradient of the loss function, SGD uses only a single data point chosen randomly at each iteration to update the model parameters (weights and biases).

#### Stochastic Gradient Descent (2/2)

- For each iteration, a random data point is selected, and the gradient of the loss function with respect to this data point is computed.
- The model parameters are then updated in the opposite direction of this gradient.

# Gradient Descent vs. Stochastic Gradient Descent



#### **Backpropagation**

- Backpropagation is <u>an algorithm used to compute the gradients</u> needed during the gradient descent step.
- Backpropagation provides an efficient way to compute the gradients for a multi-layer neural network by <u>applying the chain rule of calculus</u>.
- Backpropagation calculates the gradients, which are then used by the gradient descent algorithm to update the model parameters, fulfilling the overarching goal of optimization.

#### **Example** (1/6)

- Let's consider a simple neural network for binary classification with:
  - Input layer with 2 neurons
  - One hidden layer with 2 neurons (ReLU activation)
  - Output layer with 1 neuron (sigmoid activation)
- Assume our dataset has 4 samples for simplicity:

$$X = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}, y = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

#### **Example (2/6)**

• Initialize weights and bias (intercept):

$$W_{1} = \begin{pmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{pmatrix}, b_{1} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$W_{2} = \begin{pmatrix} 0.5 \\ 0.6 \end{pmatrix}, b_{1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- Hyperparameters:
  - Learning rate  $(\alpha) = 0.1$
  - Batch Size = 2
  - Epochs = 3

#### **Example (3/6)**

- Forward Pass (Batch 1: First 2 samples)
  - Input layer:  $X_{batch} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
  - Hidden layer:  $z_1 = X_{batch} \times W_1 + b_1$

$$a_1 = ReLU(X_{batch} \times W_1 + b_1) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0.3 & 0.4 \end{pmatrix}$$

- Output layer:  $z_2 = a_1 \times W_2 + b_2$ 

$$a_2 = sigmoid(a_1 \times W_2 + b_2) = \begin{pmatrix} 0 & 0 \\ 0.3 & 0.4 \end{pmatrix} \times \begin{pmatrix} 0.5 \\ 0.6 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 0.596 \end{pmatrix}$$

#### **Example (4/6)**

• Compute Loss (Batch 1: First 2 samples)  $y = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 

$$-L = -[ylog(a_2) + (1 - y)log(1 - a_2)] =$$

$$\begin{pmatrix} -[0 \cdot log(0.5) + (1-0) \cdot log(1-0.5)] \\ -[1 \cdot log(0.596) + (1-0.596) \cdot log(1-0.596)] \end{pmatrix} = \begin{pmatrix} 0.69 \\ 0.52 \end{pmatrix}$$

$$L = -[ylog(a_2) + (1 - y)log(1 - a_2)], \frac{\partial L}{\partial a_2} = -(\frac{y}{a_2} - \frac{1 - y}{1 - a_2})$$

## **Example (5/6)** $a_2 = sigmoid(z_2) = \frac{1}{1+e^{-z_2}}, \frac{\partial a_2}{\partial z_2} = a_2 \times (1-a_2)$

Backward Pass

$$\frac{\partial L}{\partial z_2} = \frac{\partial L}{\partial a_2} \times \frac{\partial a_2}{\partial z_2} = -\left(\frac{y}{a_2} - \frac{1 - y}{1 - a_2}\right) \times a_2 \times (1 - a_2) = a_2 - y$$

$$\frac{\partial L}{\partial z_2} = \begin{pmatrix} 0.5 \\ 0.596 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.5 \\ -0.404 \end{pmatrix}$$

$$\frac{\partial L}{\partial z_1} = \frac{\partial L}{\partial z_2} \times \frac{\partial z_2}{\partial a_1} \times \frac{\partial a_1}{\partial z_1} = (a_2 - y) \times W_2^T \times ReLU'(z_1)$$

$$= \begin{pmatrix} 0.5 \\ -0.404 \end{pmatrix} (0.5 \quad 0.6) \times ReLU' \begin{pmatrix} 0 & 0 \\ 0.3 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.25 & 0.3 \\ -0.202 & -0.2424 \end{pmatrix}$$

#### **Example** (6/6)

• Weight and Bias Updates (Gradient Descent):

$$W_1^{new} = W_1 - \alpha \times \frac{\partial L}{\partial W_1}, W_2^{new} = W_2 - \alpha \times \frac{\partial L}{\partial W_2}$$

$$b_1^{new} = b_1 - \alpha \times \frac{\partial L}{\partial b_1}, b_2^{new} = b_2 - \alpha \times \frac{\partial L}{\partial b_2}$$

#### Challenges in Optimization f(x)





#### • Local Minima:

- For non-convex cost functions, there's a risk of getting stuck in a local minimum rather than finding the global minimum.

#### • Overfitting:

- A very low cost on the training set is not always desirable.
- It might indicate that the network has memorized the training data and will perform poorly on unseen data.
- This is where regularization techniques come into play.

#### Regularization Techniques

- Regularization is a technique used to prevent overfitting by adding an additional term to the loss function.
- This term penalizes certain parameter configurations, effectively limiting the capacity of the model.
- The regularized loss function L' is then:

 $L' = L + \lambda \times \text{Regularization term}$ 

Here,  $\lambda$  is the regularization coefficient, and L is the original loss.

#### Regularization Coefficient

- The regularization coefficient, often denoted by  $\lambda$ , is a hyperparameter that controls the strength of the regularization term in the loss function.
- It balances the trade-off between fitting the training data well and keeping the model parameters small to avoid overfitting.
- A larger  $\lambda$  means stronger regularization, potentially reducing overfitting but at the risk of underfitting if set too high.

#### L1 and L2 Regularization

- L1 Regularization:
  - Adds "absolute value of magnitude" of the coefficient as a penalty term to the loss function.

$$-L' = L + \lambda \sum_{i=1}^{n} |w_i|$$

- L2 Regularization:
  - Adds "squared magnitude" of the coefficient as a penalty term to the loss function.

$$-L' = L + \lambda \sum_{i=1}^{n} w_i^2$$

## Dropout (1/2)

- Dropout is a technique where randomly selected neurons are ignored during training, effectively dropping out during the forward and backward passes.
- Use dropout when you notice overfitting in your model.

#### Dropout (2/2)









- a) Original network.
- b–d) At each training iteration, a random subset of hidden units is clamped to zero (gray nodes).
- The result is that the incoming and outgoing weights from these units have no effect, so we are training with a slightly different network each time

## **Early Stopping**

- Early stopping involves halting the training process when the model's performance stops improving on a held-out validation dataset.
- It's a simple and effective technique to <u>prevent overfitting</u> by stopping the training process when the validation error increases, while the training error is still decreasing.

#### **Regularization Methods**



## Hyperparameter Tuning (1/2)

- What are Hyperparameters?
  - Hyperparameters are parameters that are not learned from the data but must be set prior to the learning process.
  - Examples include the learning rate, regularization strength, and architecture settings like the number of layers or hidden units in each layer.

#### Hyperparameter Tuning (2/2)

- Tuning Methods
  - **Grid Search:** Useful when you have a limited number of hyperparameters and possible values. However, it's computationally expensive as it checks every possible combination.
  - Random Search: More efficient than grid search and often as effective.

    Randomly samples the hyperparameter space a fixed number of times.
  - **Bayesian Optimization:** A probabilistic model-based optimization technique. More efficient than random or grid search but can be more complex to set up.

#### Guidelines for Hyperparameter Tuning

- Start Small: Begin with a small subset of data and a simpler model to check the code and pipeline.
- Range over Orders of Magnitude: For parameters like learning rate, search in ranges like [0.001, 0.01, 0.1, 1].
- Use Coarse-to-Fine Strategy: Start with a broad range and then narrow it down.
- Parallelize: If possible, run multiple experiments in parallel to save time.
- Track Results: Use tools like TensorBoard, MLflow, or custom logging to track the experiments.
- Revalidate: After finding the optimal hyperparameters, retrain the model on the entire dataset.

#### Batch vs Mini-batch vs Stochastic

• Batch Gradient Descent:

Uses all training samples for each update.

• Mini-batch Gradient Descent:

Uses a subset of training samples for each update.

Stochastic Gradient Descent:

Uses a single training sample for each update.

#### **Learning Rate**

- Constant Learning Rate
  - The learning rate remains the same throughout training.
- Decaying Learning Rate
  - The learning rate decreases during training.
- Adaptive Learning Rate
  - The learning rate changes based on the performance on the validation set.

#### Practical Guidelines (1/6)

- Determining the Number of Neurons and Layers
  - The number of neurons in the hidden layer should be between the size of the input layer and the size of the output layer.
  - If your model underfits, consider increasing the number of neurons or adding more layers.

#### Practical Guidelines (2/6)

- Choosing Activation Functions
  - Use ReLU (Rectified Linear Unit) as the default activation function for hidden layers.
  - For the output layer, use softmax for multi-class classification and sigmoid for binary classification.

#### Practical Guidelines (3/6)

- Optimization Choices
  - SGD (Stochastic Gradient Descent): Good for large datasets.
  - Adam: Good for quick convergence; generally a safe bet.

#### **Practical Guidelines (4/6)**

- Learning Rate
  - Start with 0.01 or 0.001; use learning rate decay or adaptive learning rates for better results.

#### Practical Guidelines (5/6)

- Smaller batch sizes (32, 64) offer a regularizing effect and lower generalization error.
- Start with a smaller number of epochs, such as 10 or 20, and utilize early stopping to avoid overfitting.
- Use dropout layers in between fully connected layers to prevent overfitting. A dropout rate of 0.5 is a good starting point.

#### **Practical Guidelines (6/6)**

- Monitor your validation loss and stop training once the loss starts to increase.
- Use grid search when you have a small set of hyperparameters.
- Use random search when the hyperparameter space is large.
- For automated hyperparameter tuning, consider using tools like AutoML or Hyperopt.

## Hand-on Feedforward Networks

- Implementing a Feedforward Network in Sklearn
- Implementing a Feedforward Network in Keras
- Implementing a Feedforward Network in Pytorch

## Implementing a Feedforward Network in Sklearn

neural\_network.BernoulliRBM([n\_components, ...])Bernoulli Restricted Boltzmann Machine (RBM).neural\_network.MLPClassifier([...])Multi-layer Perceptron classifier.neural\_network.MLPRegressor([...])Multi-layer Perceptron regressor.

• Initialize the Model

Source: https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neural\_network

```
from sklearn.neural_network import MLPClassifier
mlp_classifier = MLPClassifier(hidden_layer_sizes=(64,
64), max_iter=200, alpha=0.0001, solver='adam',
random_state=42)
```

• Train the Model

```
mlp_classifier.fit(X_train, y_train)
```

Make Predictions

```
y_pred = mlp_classifier.predict(X_test)
```

# Implementing a Feedforward Network in Keras (1/3)

Initialize the Model

```
from keras.models import Sequential
model = Sequential()
```

Adding Layers

```
from keras.layers import Dense
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
```

## Implementing a Feedforward Network in Keras (2/3)

### Compilation

#### • Model Training

```
# x_train and y_train should be numpy arrays
model.fit(x_train, y_train, epochs=5, batch_size=32)
```

Source: https://keras.io/guides/sequential\_model/

### Regularization in Keras (1/2)

### • L1 Regularization

```
from keras.regularizers import l1
model.add(Dense(64, activation='relu',
kernel_regularizer=11(0.01)))
```

### Dropout in Keras

```
from keras.layers import Dropout
model.add(Dropout(0.5))
```

Source: https://keras.io/guides/sequential\_model/

### Regularization in Keras (1/2)

#### • L1 Regularization

```
from keras.regularizers import l1
model.add(Dense(64, activation='relu',
kernel_regularizer=l1(0.01)))
```

### • L2 Regularization

```
from keras.regularizers import 12
model.add(Dense(50, activation='relu',
input_shape=(10,), kernel_regularizer=12(0.001)))
```

### Regularization in Keras (2/2)

### Dropout

```
from keras.layers import Dropout

model = Sequential()

model.add(Dense(50, activation='relu',
  input_shape=(10,)))

model.add(Dropout(0.5))

model.add(Dense(1, activation='linear'))
```

# Implementing a Feedforward Network in Pytorch (1/4)

• Initialize the Model

```
import torch
import torch.nn as nn
import torch.optim as optim
class Net(nn.Module):
   def init (self):
        super(Net, self). init ()
        self.fc1 = nn.Linear(100, 64)
        self.fc2 = nn.Linear(64, 10)
```

# Implementing a Feedforward Network in Pytorch (2/4)

### Compilation

```
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)
```

# Implementing a Feedforward Network in Pytorch (3/4)

#### Model Training

```
for epoch in range(5): # loop over the dataset multiple times
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data
        optimizer.zero grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
```

# Implementing a Feedforward Network in Pytorch (4/4)

#### Model Evaluation

```
correct = 0
total = 0
with torch.no grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        , predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
```

## Regularization in Pytorch (1/2)

• L2 Regularization in PyTorch

```
import torch.nn as nn
class Net(nn.Module):
    def init (self):
        super(Net, self). init ()
        self.fc1 = nn.Linear(100, 64)
        self.fc2 = nn.Linear(64, 10)
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, weight decay=0.01) # L2
regularization
```

## Regularization in Pytorch (1/2)

#### • Dropout

```
class SimpleModelWithDropout(nn.Module):
   def init (self):
        super(SimpleModelWithDropout, self). init ()
        self.fc1 = nn.Linear(10, 50)
        self.dropout = nn.Dropout(0.5)
        self.fc2 = nn.Linear(50, 1)
   def forward(self, x):
       x = self.fcl(x)
        x = self.dropout(x)
        x = self.fc2(x)
        return x
```



## Thank you