

Project Report Hospital Network Design Course Title - Computer Network Lab Course Code - CSE 416

Submitted by

Name: Jannatul Firdous Samiya

ID: 222400024

Department of CSE

Submitted to

Momtaj Hossain Mow

Lecturer

Eastern University

Introduction

This project focuses on designing a structured and scalable **Hospital Network System** using **Cisco Packet Tracer**. The goal is to ensure **reliable communication**, **secure data sharing**, and **efficient resource access** across different hospital departments including IT, Clinical, General and Private Wards, and Reception.

Network Zones

The hospital network is logically divided into several subnet-based departments:

Department	Subnet
IT Department	192.168.1.0/24
Clinical Area	192.168.2.0/24
Entrance Reception	192.168.3.0/24
General Ward	192.168.4.0/24
Private Ward	192.168.5.0/24
Guest Wi-Fi Zone	DHCP-based (Wi-Fi)

Devices Used

- Routers: 5 (Router0 to Router4)
- **Switches:** 6 (2960-24TT switches)
- End Devices: PCs, Laptops, Smartphones, Tablets
- Servers: DNS, HTTP, SMTP, FTP
- Wireless Router: WRT300N (for Guests)

Network Topology Overview

- Router0 (IT Department) connects the IT PCs, servers, and links with Clinical & Reception routers via serial links.
- Router1 (Clinical) connects Ultrasound, OT, Rooms, etc.
- Router2 (General Ward) connects ward PCs and doctors.
- Router3 (Private Ward) connects private ward PCs.
- Router4 (Entrance) connects Reception, Info Counter, Billing.
- WRT300N Router serves Guest Wi-Fi, isolated from the core hospital LAN.

IP Addressing

Each subnet is assigned a unique Class C private network with subnet mask **255.255.0**. IPs are statically assigned to routers and PCs.

Routing Configuration:

Routing between subnets is achieved using either:

- Static routing: Simple for small networks
- or **OSPF dynamic routing**: Recommended for scalability (if implemented)

Each router includes proper routes to reach all subnets.

Services Configured

- **DNS Server**: Resolves domain names
- HTTP Server: Web-based access
- SMTP/FTP Server: Mail and file sharing
- **DHCP**: Likely used for Wi-Fi guest zone

Connectivity & Testing

Successful Communication:

- IT Dept ↔ Clinical Area
- Clinical \leftrightarrow General \leftrightarrow Private
- Entrance \leftrightarrow IT \leftrightarrow Clinical
- Servers accessible within hospital LAN

Restricted Communication

• Guest Wi-Fi devices **cannot access** hospital PCs or servers, maintaining **security**.

All connections were tested via **ping**, and each zone communicates successfully if routing is configured properly.

Limitations & Recommendations

- Wi-Fi zone should be NAT-enabled if internet access is required.
- Add Access Control Lists (ACLs) to secure sensitive subnets.
- Consider VLANs in future to segment traffic further.

Network Diagram

Conclusion

This hospital network design demonstrates how a medium-sized organization like a hospital can implement a robust and secure LAN infrastructure using routers, switches, and basic services. Proper segmentation and routing ensure data isolation, internal communication, and service availability.