Abdullah Menisoon HW BONDS #16 Solutions of HWTC#12 Alorus => F{8(H)}=1, F{woexp(-wot)}= wo linearity of fourier, FEH(+)3= 1- wor = Jw +wo $F\{h(t)\}=H(w)=\frac{Jw/wo}{1+Jw/wo}-J(im)\frac{Jw/wo}{w+1+Jw/wo}=\frac{\infty}{\infty}$ so l'hospital then lim J/wo = In - lim H(w) = 1 So we serves as a low pass cut off frequency, How has a high pass response. The Bode plots are as follows. w(redist 1 Hours 1 H(jw) (12/15) Now, we are interested in the following system. proved Y(+) is. WSS. Therefore, the following -> Y(+) N(+) -> | n(+) |quentities are relevant. (zero-mean white noise E[Y(+)] = My, Ryy(Y) = E[Y(+), Y(++Y)] Process with constant PSD No12) $SYY(w) = F \{ Ryy(y) \} = |H(w)|^2 SNN(w)$ 544(w)= \ \frac{Jw}{wo} \ \frac{2}{1+Jw} \ \frac{2}{2} 10 logio (S44 (W) = 20 logio) Julio 14 Julio 2

HW Bonus 1. Compute the final forms of the expressions in (eq.3). (eq.4) and (eq. 5c) [eq.3] E[Y(+)] = My $Y(+) = \int_{-\infty}^{+\infty} h(+-s) N(s) ds \Longrightarrow E[Y(+)] = E\left[\int_{-\infty}^{+\infty} h(+-s) N(s) ds\right]$ => E[Y(H)] = E[Stank(+-s). Nesids] = Stank(+-s) Nesids] Expectation So h(+-s) comes out - white h(+-s). E[NCs]]ds N(s) TS WSS so E[X(s)] -> constant MN ESYLH] = Mw. Stoo h(+-s)ds, V=+-s s=+-v dv=-ds = Mu. S-m(v)[-dv] = [Sth(v)dv] Mu A F {h(H) = H(W) = Sh(H). exp(-jw+)d+ A = H(0) = 5 h(+) exp(-1.0.+)d+ = 5 h (+)d+-E[Y(t)] = MN. A = MN. H(0) = My
constant constant E[Y(+1]=My

eq.4
$$R_{YY}(\gamma) = E[Y(t),Y(t+7)]$$
 $Y(t) = \int_{-\infty}^{+\infty} h(s) N(t-s) ds$, $Y(t+\gamma) = \int_{-\infty}^{+\infty} h(r) N(t+\gamma-r) dr$ so

 $E[Y(t), Y(t+\gamma)] = R_{YY}(t,t+\gamma) = E[\int_{-\infty}^{+\infty} dr h(r), \int_{-\infty}^{+\infty} ds h(s) N(t+s), -c}]$
 $C[Qq, 1]$
 $C[Qq, 2]$
 $C[Qq, 2]$

(3)

$$\begin{array}{l} \left[\begin{array}{c} \frac{J\omega}{Wo} \\ -\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{l} \left\{ \begin{array}{c} h(H) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$= \int_{-\infty}^{\infty} h(-v) \exp(+J\omega v) \left[-dv \right] \rightarrow \left[\begin{array}{c} h(\omega) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{l} \left\{ \begin{array}{c} h(-v) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{c} \left\{ \begin{array}{c} h(-v) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{c} \left\{ \begin{array}{c} h(\omega) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{c} \left\{ \begin{array}{c} h(\omega) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{c} \left\{ \begin{array}{c} h(\omega) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{c} \left\{ \begin{array}{c} h(\omega) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{c} \left\{ \begin{array}{c} h(\omega) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{c} \left\{ \begin{array}{c} h(\omega) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{c} \left\{ \begin{array}{c} h(\omega) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{c} \left\{ \begin{array}{c} h(\omega) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{c} \left\{ \begin{array}{c} h(\omega) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{c} \left\{ \begin{array}{c} h(\omega) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{c} \left\{ \begin{array}{c} h(\omega) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

$$\begin{array}{c} \left\{ \begin{array}{c} h(\omega) \\ +\frac{J\omega}{Wo} \end{array} \right]^{2} \cdot \frac{N_{o}}{2} \\ \end{array}$$

CamScanner ile tarandı

Condolland Propolation frameda

HW Bonus 2 Plot the expression in (eg. 6) on the w-2x3.

for
$$Syy(w) = \left| \frac{J\omega}{wo} \right|^2 \frac{1}{1+Jw} \frac{1}{wo}$$

from lecture "Response of Low Pass

Filter to white noise "

Sx: Index of the kth success event in a sequence of indefinite length of EEd Bernoullir trials with success Probability p. HWTC# 12 02: SIN Geometric (P) pmfs, (k) = gk-1p

a.b: Deterministic indices with the following values

a=5, b=10 then P\SIL1+a, S2>b\S=6

= P&S162, S2>b3= 51 P&S2>b | S1=k3. P&S1=k3

for Ed RV's Si and Si, we May express the following

P& S2>6 | S1=63 $S_2 = S_1 + S_1 = S_2$ How Bonus. 3 Explain each step of (eq. 11)

S2=S1+S1 we know S1 and S2-) Sk-) a sequence of modefable knowled for Sk and tid the formula can be knowled tid Bernoulli trials

so def of Su and tid the formula can be written as $5_2 = S_1 + S_1$

P{ S2>b|S1=k}= P{ S1+S1>b|S1=k}= P{ S1>b-k|S1=k} Used "given that Si=k" then Given that Si=k than

P& 51 > b-12 | SI=12 = P& Si> b-12 = P&SI> b-123 LHS of "1" SI-) K

> independent SI and SI

Siad Si are ild

HW bonus Li. Through (eq. 11) compute the explicit expression for (eq. 10)
PESIEA, Sz>b3 = 2 PESz>b|SI=k3, PESI=k3 PZSi>b-k3=1-PZSI 6 b-k3 5 (1-cafs, (b-k))-Pmfs,(k) b=10, 2=5 5 (1-cdfs, (10-k)). Pmfs,(k) cets, (10-k) = 1-(1-P)10-k $= \frac{1}{2} \left(1 - \left(1 - \left(1 - P \right)^{(0-k)} \right) \cdot P \cdot \left(1 - P \right)^{k-1} = \frac{5}{2} \left(1 - P \right)^{10-k} \cdot P \cdot \left(1 - P \right)^{k-1}$ $= \frac{5}{2} (1-P)^9 P = \left[5P.9^9 \right] 9 = 1-P$ Q2 (Path) PESIL 2+1, S2Lb+1 = PESILa, S2Lb3 PESILD, SZEB3 = PESILD3 - PESILD, SZ>b3 cofs, (a)=cofs, (5) 5pg9 (1-g) = (1-dz) PESILA, Szeb3= (1-95)-5p99 Q2(Partc) PES26613 = PES2663 = fm PES160, S2663 $= (1-9^{6}) - 5pq^{9} = (1-9^{10}) - 5pq^{9} / (1-9^{2}) - 5pq^{9}$

.

Conditional expectation tomula,
Conditional expectation formula.
Dec 1 2 5, 4 63 - 19 51 4 27 - 1 2010 1
A JACANCAL UBINE
PZA, 165 + PZH, 163 = 12113
A BY BIN Isaselli bölge PEA,B3 ys,
A Travelli bölge PEA, BS yi tensil saetli bölge PEA, BS yi tensil eder
böylece P3:A,B3+PEA,BC3=PEA3 olding in garolan.
PESIL2, S2663+PESIGE, S256=1ESIESI
PS(1/2, S26)3 = PES(23-123122)3 bumm.
Hwbonus 6 - Compute on explict expression for the probability Th (eq.13) P\(\S_1 \le \alpha , S_2 \le \beta \} = P\(\frac{1}{2} \S_1 \le \alpha \} = P\(\frac{1}{2} \S_1 \le \alpha \} = P\(\frac{1}{2} \S_2 \le \beta \} \]
Th (eq.13) PESILO, S26b3=PESILO3-PESA62, S2>b3
cdfs,(a) - 5pq93 Hwbonus Li'te
P&S142, S24b3=(1-95)-5p99

Hw bonus 7. Go through this computation and compute an exploit expression
for (eq. 14) $\{S_1 \leq b-1\}$ implies $\{S_2 \leq b\}$
{S2 ≤ b3 - 1Mplies {S1 ≤ b-13
£ S2 ≤ b3 - IMPlies = S1 ≤ b-13 = BB =
$\frac{1}{A}$
P\(S_2 \le b\) = P\(S_2 \le b, P\(S_3 \le b - 1\) P\(A_1 B\(S_3 = P\(S_4 A \) \]
() eq.15
= PES26b, PESI66-13 = lim PESI62,52663 oldugugarilar
Part d & B. Maddede darruluk kalada wal
Part d. * Bu Maddede doğruluk kontrolü yapılması isterigor. Bu Kontrol Hu bonus 7. Kapsamında yapılmıştır.
HWTC#12 Q3.
Sx: Arrival time of the first attack in minutes counting from 14:00 These are RVs. But So=0 min deterministically.
These are RVs. But So= 0 min deterministically.
Ty: Interarrival times for the attacks. These are itd PV
TK = SK-SK-1, TK NEXPONENTIAL (A= = Min) TI = SI-B= SI-O=SI
The Sh-Sh-1, The Newponential () = 1 min) TI = SI-SO = SI-O = SI R'S Deterministic time for the money transfer to be concluded without any attacks intorupting. R=10 min
Without any attacks Intorupting- R=10min
L: Brandom variable reporting the total amount of time for
Li Bandon variable reporting the total amount of time for the money transfer to be concluded in the presence of altedy including the deterministic duration R.
Looking forward to E[L]=E[E[LISI]]={

Conditional expectation formula. E[L] = E[E[LISi]] = SE[LISi] Poffs, (x)dx split the Integral two parts. E[L] = SE[L|S_1=x] Pofs, (x) dx + SE[L|S_1=x] Pofs, (x) dx E[x+4] Lexpl-dx) R A(exp/-dx)) E[L]= 1 [exp(AR)-1] Hwbonus 8. Explain how we come to interpret the parametric expectation values in the integral expression of (eq.21). E[I]= S'E[LISI=X] Pofsi(x) dx dx + SE[LISI=X] Pofsi(x) dx S[E[x]+E[L]]. A-exp(-1x)dx+ S R. A. exp(-dx) 51. A exp(-Ax) + SPE[L] A. exp(-Ax)dx + SP. X. exp(-Ax)dx E[X]: I for exponential RV [-] exp(-XX) + [- E[L]. exp(-XX) + | - Rexp(-XX) = E[L] (-Lexpl-RA) + 1)+(-E[L). expl-AR)+E[L])+(0+12.expl-AR)]=E[L] E[L] and E[L] identically distributed. t-(t+n) exp(-dr) = E[L].exp(-dr) by[. E[L]= expland - (1+R) = f(exp(AR)-1+RA)

Qui

L: The random variable reporting the time it takes for the Money transfer to be concluded, including the deterministic time for the actual transfer, which is denoted by R.

PZL 4+3 = cot(+)

Lraw=L-R, P\(\frac{1}{2}\) Lraw=\(\frac{1}{2}\) = cdf_Lraw(t)
we are going to formulate an equation for the survival function
of Lraw, which is \(\frac{1}{2}\) = \(\frac{1}{2}\) Lraw \(\frac{1}{2}\) = \(\frac{1}{2}\) Lraw \(\frac{1}{2}\)

Recall: Si: Denotes the arrival times of the attacles, with K(index) corresponding to the kth attacle.

we wight suppose that an affack arrives just at the beginning (14:00), and we denote by So as the time, in minutes away from 14:00 of the Oth affack, and in this formulation So=0

 $T_{k} = S_{k} - S_{k-1} \sim Exp(\lambda) \longrightarrow T_{1} = S_{1} - S_{0} = S_{1} - O = S_{1}$ $F(t) = Cdf_{T_{1},row}(t) = \begin{cases} cdf_{T_{1}}(t) & t \leq k \\ cdf_{T_{1}}(k) & t \leq k \end{cases}$

TI, row is the RV used to account for the transpert stochastic frocess with arrival times. The row = for k=1,2, __ 2re 7/2/
So, row = 0, The row = Syrrow - Sk-1 row

This jump is given by $1-F(\infty)$ $= 1-cdf_{T_{1}}(R)$

This part on between Oand 72 is given by coltrilt

(10)

f(t)= P& Lraw >t3= E[P& Lraw >t | Sirow 3] = SPElraw>t|S1,row=X3.d[cdfs1,row(x)]+ + St P& Lraw>t | SI, raw = x 3 d [cdfsi, raw (x)] $P\{-3=1$ $cdf_{51,row}=cdf_{7,row}=F(x)$ Replace -> Lrow => Si,row + Lrow, Lrow and Lrow identically destributed.

f(+)= P\{\int \Lrow>t\} = \int \def(+\int) + \int \text{p\{Si,row + Lrow>t | Sirow = x\}.} = [F(\infty) - F(H) + Stelrow>t-x]d[F(xy) SpElirow>t |Si,row=x3 $P\{[raw > t - x\} - - = P\{x + 1 \text{ row } > t\}$ fet = [F(\omega) - F(t)] + [f(t-x) · d) F(x)] => f(+)= [F(0)-f(+)] + F*f(+) Let us suppose there exists a function with following property.

Uraw & F(+1 = Uraw (+)-1 the Beneval Function -> Suraw for 1=0.1. -

Uraw of fit = Uraw of [F(00)-Fit) + Uraw of Fick Fit = F(00). Uraw (+1 - [Uraw (+1-1] + Uraw * fc+1 - fc+) => f(+)=1+[F(∞)-1]. Uraw(+)=)1-[1-F(∞)]Uraw(+) = |P\f Law >t } = f(4) => 1-PCH= cdflow(+) = P & Low = +3 = $[1-F(\infty)]$ Urow(t), Urow(t) $=\frac{1}{1-F(\infty)}$ lem Urawlt1 = 1 1-FCO) -> figure from pg lo 1-f(00) = 1-cdf7,(e)=1-[1-exp(-dR)] = exp(-dR) Hw bonus 9. You right want to very all steps of (eq.13) according to the identity in (eq.12) and the convalution definition used in this write up.

We know $f(t) = [f(\infty) + F(t)] + f *f(t)$ and f(t) = U(2w) *f(t) *f(t) = U(2w) *f(t) *fthen Uraw * fett = Uraw * [F(00)-F(+)] + Faxfet] konvolingonun

degilma o zelligi Uran * fet = Uran * [Fcos) - Fet] + Uran * F * fit Uraw & fett = Uraw & Fco) - Uraw & fett + Uraw & Fox Fett [Uraw(+)-1] draw * fett= f(00) Uraw - [Uraw(+1-1] + Uraw * F * f(+) Uraw * fc+1 = 1 - Uraw (+1 + Uraw F(00) + Uraw * Fox fc+1 Uraw & fex) = 1- [1-F(00)]. Uraw (+) + Uraw * Fax fex) Urew (+1*fc+) - fc+)

(12)

Uraw * fc+1 = 1- [1- fco)]. Uraw (+1 + Uraw (+1 * fc+1-fc+)

Fc+) = 1- [1- fco)] Uraw (+1 =

Eq. 13.9 -) 1-fc+1= [1-fco)] Uraw (+)