TD1 - Logique, ensembles, applications

Exercice 1. Démontrer que $(1 = 2) \Rightarrow (2 = 3)$.

Exercice 2. Soient les quatre assertions suivantes :

- (a) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x+y>0$; (b) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x+y>0$;
 - (c) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y > 0$; (d) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ y^2 > x$.
- 1. Les assertions a, b, c, d sont-elles vraies ou fausses?
- 2. Donner leur négation.

Exercice 3. Soit f une application de \mathbb{R} dans \mathbb{R} . Nier, de la manière la plus précise possible, les énoncés qui suivent :

- 1. Pour tout $x \in \mathbb{R}$ $f(x) \leq 1$.
- 2. L'application f est croissante.
- 3. L'application f est croissante et positive.
- 4. Il existe $x \in \mathbb{R}^+$ tel que f(x) < 0.
- 5. Il existe $x \in \mathbb{R}$ tel que quel que soit $y \in \mathbb{R}$, si x < y alors f(x) > f(y).

On ne demande pas de démontrer quoi que ce soit, juste d'écrire le contraire d'un énoncé.

Exercice 4. Montrer que $\sqrt{2} \notin \mathbb{Q}$.

Exercice 5. Soit X un ensemble et f une application de X dans l'ensemble $\mathcal{P}(X)$ des parties de X. On note A l'ensemble des $x \in X$ vérifiant $x \notin f(x)$. Démontrer qu'il n'existe aucun $x \in X$ tel que A = f(x).

Exercice 6. 1. Soit p_1, p_2, \ldots, p_r , r nombres premiers. Montrer que l'entier $N = p_1 p_2 \ldots p_r + 1$ n'est divisible par aucun des entiers p_i .

2. Utiliser la question précédente pour montrer par l'absurde qu'il existe une infinité de nombres premiers.

Exercice 7. Soit la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0=4$ et $x_{n+1}=\frac{2x_n^2-3}{x_n+2}$.

1. Montrer que : $\forall n \in \mathbb{N} \quad x_n > 3$.

- 2. Montrer que : $\forall n \in \mathbb{N}$ $x_{n+1} 3 > \frac{3}{2}(x_n 3)$.
- 3. Montrer que : $\forall n \in \mathbb{N} \quad x_n \geqslant \left(\frac{3}{2}\right)^n + 3.$
- 4. La suite $(x_n)_{n\in\mathbb{N}}$ est-elle convergente?

Exercice 8. Montrer que

$$\forall n \ge 2, n! \le \left(\frac{n+1}{2}\right)^n.$$

Exercice 9. Montrer par récurrence que pour tout entier $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k},$$

pour tout réel a et b.

Exercice 10. Montrer par contraposition les assertions suivantes, E étant un ensemble :

- 1. $\forall A, B \in \mathcal{P}(E) \quad (A \cap B = A \cup B) \Rightarrow A = B,$
- 2. $\forall A, B, C \in \mathcal{P}(E)$ $(A \cap B = A \cap C \text{ et } A \cup B = A \cup C) \Rightarrow B = C.$

Exercice 11. Soit un ensemble E et deux parties A et B de E. On désigne par $A \triangle B$ l'ensemble $(A \cup B) \setminus (A \cap B)$. Dans les questions ci-après il pourra être commode d'utiliser la notion de fonction caractéristique.

- 1. Démontrer que $A \triangle B = (A \setminus B) \cup (B \setminus A)$.
- 2. Démontrer que pour toutes les parties A, B, C de E on a $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.
- 3. Démontrer qu'il existe une unique partie X de E telle que pour toute partie A de E, $A \triangle X = X \triangle A = A$.
- 4. Démontrer que pour toute partie A de E, il existe une partie A' de E et une seule telle que $A\triangle A' = A'\triangle A = X$.

Exercice 12. Montrer que chacun des ensembles suivants est un intervalle, éventuellement vide ou réduit à un point

$$I_1 = \bigcap_{n=1}^{+\infty} \left[3, 3 + \frac{1}{n^2} \left[\text{ et } I_2 = \bigcap_{n=1}^{+\infty} \right] - 2 - \frac{1}{n}, 4 + n^2 \right].$$

Exercice 13. Est-il vrai que $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$? Et $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$?

Exercice 14. Donner la liste des éléments de $\mathcal{P}(\mathcal{P}(\{1,2\}))$.

Exercice 15. Montrer que la relation \mathcal{R} définie sur \mathbb{R} par :

$$x\mathcal{R}y \iff xe^y = ye^x$$

est une relation d'équivalence. Préciser, pour x fixé dans \mathbb{R} , le nombre d'éléments de la classe de x modulo \mathcal{R} .

Exercice 16. La relation "divise" est-elle une relation d'ordre sur \mathbb{N} ? sur \mathbb{Z} ? Si oui, est-ce une relation d'ordre total?

Exercice 17. Un ensemble est dit bien ordonné si toute partie non vide admet un plus petit élément.

- 1. Donner un exemple d'ensemble bien ordonné et un exemple d'ensemble qui ne l'est pas.
- 2. Montrer que bien ordonné implique totalement ordonné.
- 3. La réciproque est-elle vraie?

Exercice 18. Soit l'application de \mathbb{R} dans \mathbb{R} , $f: x \mapsto x^2$.

- 1. Déterminer les ensembles suivants : $f([-3, -1]), f([-2, 1]), f([-3, -1] \cup [-2, 1])$ et $f([-3, -1] \cap [-2, 1])$. Les comparer.
- 2. Mêmes questions avec les ensembles $f^{-1}(]-\infty,2]), f^{-1}([1,+\infty[),f^{-1}(]-\infty,2]\cup[1,+\infty[)$ et $f^{-1}(]-\infty,2]\cap[1,+\infty[)$.

Exercice 19. Les fonctions suivantes sont-elles injectives? surjectives? bijectives?

$$f: \mathbb{Z} \to \mathbb{Z}, \ n \mapsto 2n \quad ; \quad f: \mathbb{Z} \to \mathbb{Z}, \ n \mapsto -n$$

 $f: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2 \quad ; \quad f: \mathbb{R} \to \mathbb{R}_+, \ x \mapsto x^2$
 $f: \mathbb{C} \to \mathbb{C}, \ z \mapsto z^2.$

Exercice 20. On considère quatre ensembles A, B, C et D et des applications $f: A \to B, g: B \to C, h: C \to D$. Montrer que :

$$g \circ f$$
 injective $\Rightarrow f$ injective,
 $g \circ f$ surjective $\Rightarrow g$ surjective.

Montrer que:

 $(g \circ f \text{ et } h \circ g \text{ sont bijectives}) \Leftrightarrow (f, g \text{ et } h \text{ sont bijectives}).$

Exercice 21. Soit $f: X \to Y$. Montrer que

- 1. $\forall B \subset Y \ f(f^{-1}(B)) = B \cap f(X)$.
- 2. f est surjective ssi $\forall B \subset Y \ f(f^{-1}(B)) = B$.
- 3. f est injective ssi $\forall A \subset X \ f^{-1}(f(A)) = A$.
- 4. f est bijective ssi $\forall A \subset X \ f(CA) = Cf(A)$.