Seminar 7 Formula Green-Riemann

1 Formula Green-Riemann

Fie $(K, \partial K)$ un compact cu bord orientat inclus în \mathbb{R}^2 și considerăm o 1-formă diferențială de clasă \mathbb{C}^1 pe o vecinătate a lui K, $\alpha = Pdx + Qdy$. Atunci are loc *formula Green-Riemann*:

$$\int_{\partial K} P dx + Q dy = \iint_{K} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

Această formulă ne permite să calculăm integrale curbilinii cu ajutorul integralelor duble, însă doar în cazul în care forma diferențială are proprietățile din ipoteză.

O consecință imediată este o formulă de calcul pentru arie:

$$A(K) = \frac{1}{2} \int_{aK} x dy - y dx.$$

2 Exerciții

1. Calculați integralele duble:

(a)
$$\iint_D y dx dy$$
, unde D este mărginit de parabola $y^2 = x$, cercul $x^2 + y^2 - 2x = 0$ și dreapta $x = 2$;

(b)
$$\iint_{D} e^{x^2 + y^2} dxdy, \text{ unde } D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\};$$

(c)
$$\iint_D y dx dy$$
, unde $D = \{(x, y) \in \mathbb{R}^2 \mid (x - 2)^2 + y^2 \le 1\}$.

2. Fie $D \subseteq \mathbb{R}^2$ si $f: D \to [0, \infty)$ o functie continuă. Definim multimea:

$$\Omega = \{(x,y,z) \in \mathbb{R}^3 \mid (x,y) \in D, 0 \leqslant z \leqslant f(x,y)\}.$$

Să se calculeze volumul mulțimii Ω , folosind formula:

$$\mathcal{V}(\Omega) = \iint_{\mathcal{D}} f(x, y) dx dy,$$

în cazurile:

(a)
$$D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 2y\}, f(x,y) = x^2 + y^2;$$

(b)
$$D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leqslant x, y > 0\}, f(x,y) = xy;$$

(c)
$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 2x + 2y - 1\}, f(x, y) = y.$$

3. Calculați direct și aplicînd formula Green-Riemann integrala curbilinie $\int_{\Gamma} \alpha$ în următoarele cazuri:

- (a) $\alpha = y^2 dx + x dy$, unde Γ este pătratul cu vîrfurile A(0,0), B(2,0), C(2,2), D(0,2);
- (b) $\alpha = y dx + x^2 dy$, unde Γ este cercul cu centrul în origine și rază 2;
- (c) $\alpha = y dx x dy$, unde Γ este elipsa de semiaxe α și β și de centru δ .
 - 4. Fie forma diferențială:

$$\alpha = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy.$$

Să se calculeze $\int_{\Gamma} \alpha$, unde Γ este cercul cu centrul în origine și rază 2.

5. Să se calculeze integrala curbilinie $\int_{\Gamma} xy dx + \frac{x^2}{2} dy$, pe conturul:

$$\Gamma = \{(x,y) \mid x^2 + y^2 = 1, x \le 0 \le y\} \cup \{(x,y) \mid x + y = -1, x, y \le 0\}.$$

Indicație: curba Γ nu este închisă, deci nu putem aplica formula Green-Riemann. Considerăm segmentul orientat [AB], cu A(0,-1) și B(0,1), cu care închidem curba, definind $\Lambda = \Gamma \cup [AB]$.

Acum putem aplica formula Green-Riemann pe Λ și găsim:

$$\int_{\Lambda} xy dx + \frac{x^2}{2} dy = \iint_{K} 0 dx dy = 0,$$

unde K este compactul mărginit de Λ .

Atunci:

$$\int_{\Gamma} xy \, dx + \frac{x^2}{2} \, dy = -\int_{[AB]} xy \, dx + \frac{x^2}{2} \, dy = 0.$$