Université d'Ottawa Faculté de génie

École de science informatique et de génie électrique

Faculty of Engineering

University of Ottawa

School of Electrical Engineering and Computer Science

L'Université canadienne Canada's university

SYS 5160

Assignment 2

Fuzzy Logic Level Control of a Cylindrical Water Tank

Consider a cylindrical water tank. Water enters the tank from the top at a rate proportional to the voltage, V, applied to the pump. The water leaves through an opening in the tank base at a rate that is proportional to the square root of the water height, H, in the tank. The presence of the square root in the water flow rate results in a nonlinear plant.

The differential equation for the tank is given by

$$\frac{dH}{dt} = \frac{bV - a\sqrt{H}}{\pi R^2}$$

where R is the radius of the tank, H is actual water height in the tank, V is the voltage applied to the pump, a (in m^2 per minute) is a constant related to the flow rate out of the tank and b (in m^3 per minute per volt) is a constant related to the flow rate into the tank. The goal is to design a fuzzy logic controller for the pump so that the water level is always at the desired level.

a) Simulate your design using the following data:

$$R = 5 \text{ m}$$
, $V_{max} = 48 \text{ volts}$, $a = 0.1$, $b = 0.01$, $H(0) = 0 \text{ m}$, desired $H = 4 \text{ m}$

b) Simulate your design using the following data:

$$R = 5 \text{ m}, V_{max} = 48 \text{ volts}, b = 0.01, H(0) = 1 \text{ m}, desired H = 5 \text{ m}$$

$$a(t) = \begin{cases} 0.1 & t \le 20 \text{min} \\ 0.2 & t > 20 \text{min} \end{cases}$$