June 15, 1973. Prof Grothendrede, the last proposition stated in the cause on alg groups was Prop: If ke is a field, Gran affine alg, monaid (usp, on offine alg group). a) G= hur Gi where each Gi is on Hene algemoraid of finite (resp, affine alg. group of finte b) If Gr is of finite type, Fa closed immersion (of morboids). G => GL(H) I still su difficulty in accepting S). The closed immunion of monoids corresponds to a surjective mayoring of coalgebras B on algebra regresenting A an algebra regresuiting B has an antipodal may (conesponding to the inverse map in the on the group object in the cat. Aff)

the surjectivity B ->> A will induce the ontyold map on the k-algebra A and thus force "D to be a group object (not the more general monaid object) in Aff. Consider the example Sets
{0,1}: Alg & Sets

k' >> Hom (kxke, k').

k-alg. Mobe A = kxk into a coalgebra over k by A TO > A OA $(a,b) \leftarrow (a,b) \otimes (1,0) + (1,1) \otimes (0,b)$ the two projections P, i (a, b) -> a. represent k-valued points of {0,13} multiplication table: TI PI P2

PI P1 P2 (This is easy to check: (PI,PI): (a,b)&(c,d) > ac (P1,P2)! H> bc (P21P1): 1-> bd (P2)P2):

-3-
So that (P,P) o To = P,
$(P_1,P_2)\circ T_0=P_2$
$(P_3, P_1) \circ T_0 = P_2$
(P2, P3)0 To = P2.
Hat To is co-associative, [: {0,1} is a commutative monoil object in Affix.
co-commutative monoid object in Affir.
But {0,1}(k) cont be a group object in sets.
$\left\{P_{1},P_{2}\right\}$.
moreover A court be given a co-inversion or antipodal mag. One way of characteringing the inverse for common gos is that. For to Sor sud that
mag. One way of charactering the awerse for comment
gos is that. Joic > Or sud that
On Taxo Cox Cor factors through the final then
To initial object:
Gr.
C-ICXG C-XCH
GEXO GX Commute since (x+>(x,x-1)) III + the final + civilid objs conicade.
e. I tufund tanced of contact.
ě->G
18

-4-
On the coalgebra level $\exists A \xrightarrow{\varsigma_0} A$ s.t. $A \xleftarrow{I_A \otimes \varsigma_0} A \otimes A$ Suppose ς_0 exists in this case: Shortifie $\uparrow \tau_0$ $\sigma_0(c,d) = (\sigma_0(c,d), \sigma_0(c,d))$.
k Covint Where.
how compute: the lower left route gives: (a,a) stufture. a \((a,b) \)
The apper right route gros: $(a,b)\cdot(\sigma_{01}(1,0),\sigma_{02}(1,0)) \leftarrow (a,b)\otimes(1,0) + (1,1)\otimes(0,b)$ $(1,1)\cdot(\sigma_{01}(0,b),\sigma_{02}(0,b) \qquad (a,b)$
(a50(1,0)+ 501(0,b), b502(1,0)+502(0,b))
This above is to be equal to (a, a) for all (a, b)? Perhaps I am very confused! a perhaps GL(M) & could be changed to Ful (M).
d'un eigoige the courses very much. Mony thouls for letting me attend. As Servedis Dallowie U., Holifax, N.S.
Dollowsie U. Halifax, N.S.