Regression Models and Simulation for Problem 3

```
In [1]: import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    from scipy import linalg
    from scipy import stats
```

```
In [2]: computer_data = pd.read_csv('./computer-data-hwl.csv')
        fig = plt.figure(figsize=(6, 3.75))
        ax = fig.gca()
        ax.grid(True)
        for i, subject in enumerate(computer_data['subj'].unique()):
            sub data = computer data[computer data['subj'] == subject]
            ax.plot(sub_data['total.age'], sub_data['literacy'].values, '-k')
        for i, follow_per in enumerate(computer_data['follow.per'].unique()):
            sub_data = computer_data[computer_data['follow.per'] == follow_per]
            ax.plot(sub_data['total.age'], sub_data['literacy'],
                     'o', color=plt.cm.Set1(i), label='{}'.format(follow_per))
        ax.set_xlabel('Age')
        ax.set_ylabel('Literacy')
        ax.set title('Longitudal Subject Literacy Scores')
        ax.legend(title='Follow Period')
        fig.tight_layout()
        fig.savefig('p3_data.pdf', bbox_inches='tight')
        computer_data.head(n=10)
        computer_data[computer_data['follow.per'] == 1].describe()
```

Out[2]:

	subj	base.age	delta.age	total.age	literacy	follow.per
count	13.00000	13.00000	13.000000	13.000000	13.000000	13.0
mean	7.00000	7.00000	2.218935	9.218935	52.103420	1.0
std	3.89444	3.89444	0.879002	3.019735	49.541677	0.0
min	1.00000	1.00000	1.000000	4.698225	0.120457	1.0
25%	4.00000	4.00000	1.514793	6.863905	10.463912	1.0
50%	7.00000	7.00000	2.136095	9.136095	38.377584	1.0
75%	10.00000	10.00000	2.863905	11.514793	84.414795	1.0
max	13.00000	13.00000	3.698225	14.000000	147.606099	1.0


```
In [3]: def fit_ols(X, y):
            gram matrix = X.T.dot(X)
            gram_matrix_inv = linalg.cho_solve(linalg.cho_factor(gram_matrix), np.eye(len(
        gram_matrix)))
            beta hat = gram matrix inv.dot(X.T).dot(y)
            sigma 2 hat = np.sum(np.square(y - X.dot(beta hat)))/(len(y) - len(beta hat))
            return beta_hat, gram_matrix_inv*sigma_2_hat, sigma_2_hat
In [4]: def fit_original(data):
            X = np.column_stack((np.ones(len(data)), data[['base.age', 'delta.age']].value
        s))
            y = data['literacy'].values
            return fit_ols(X, y)
        fit original(computer data)
Out[4]: (array([133.02690855, -11.9680251 ,
                                             1.24721578]),
         array([[35.38965932, -3.08971504, -4.28560487],
                [-3.08971504, 0.36085295, 0.25406082],
                [-4.28560487, 0.25406082, 1.12990206]]),
         165.83485669258215)
In [5]: def fit alternative(data):
            sub_data = data[data['follow.per'] == 0][['subj', 'literacy']]
            sub_data = pd.merge(data, sub_data.rename(columns={'literacy': 'base.literacy'
        }))
            sub_data = sub_data[sub_data['follow.per'] != 0]
            X = sub_data[['delta.age']].values
            y = sub_data['literacy'].values - sub_data['base.literacy'].values
            return fit_ols(X, y)
        fit alternative(computer data)
Out[5]: (array([1.02185154]), array([[0.00105099]]), 0.3850802073163594)
```

Simulations

```
In [6]: def make covariates(n):
            X = []
            for i in range(n):
                base_age = stats.uniform.rvs(0, 15)
                X.append([i, base age, 0, 0])
                for j in range(2):
                    delta_age = stats.norm.rvs(3 + j*3, scale=0.5)
                    X.append([i, base age, delta age, j + 1])
            return pd.DataFrame(X, columns=['subj', 'base.age', 'delta.age', 'follow.per'
        ])
        def make_independent_covariates(n):
            subj = \{\}
            X = []
            for i in range(n):
                base age = stats.uniform.rvs(0, 15)
                X.append([i, base age, 0, 0])
                subj[i] = {'follow_per': 0, 'base_age': base_age}
            for j in range(n*2):
                i = stats.randint.rvs(low=0, high=n)
                subj[i]['follow_per'] += 1
                X.append([i, subj[i]['base_age'], stats.uniform.rvs(0, 10), subj[i]['follo
        w_per']])
            return pd.DataFrame(X, columns=['subj', 'base.age', 'delta.age', 'follow.per'
        ])
        def make_response(data, f):
            data = data.copy()
            data['literacy'] = stats.norm.rvs(f(data['base.age']) + 2*data['delta.age'], s
        cale=1)
            return data
```

```
In [7]: np.random.seed(2020)
    simulated_data = make_covariates(64)
```

Both Assumptions Violated

```
In [8]: beta_hat_original_estimates = []
beta_hat_alternative_estimates = []

for i in range(100):
    response_data = make_response(simulated_data, lambda x: 200*np.exp(-x))
    beta_hat, beta_hat_variance, sigma_2_hat = fit_original(response_data)
    beta_hat_original_estimates.append(beta_hat)

beta_hat, beta_hat_variance, sigma_2_hat = fit_alternative(response_data)
    beta_hat_alternative_estimates.append(beta_hat)

np.mean(beta_hat_original_estimates, 0), np.mean(beta_hat_alternative_estimates, 0)
)
```

Out[8]: (array([31.96619861, -3.20229314, 2.16353098]), array([2.00158068]))

Linear f but Dependent Covariates

Only the Part (b) condition is now violated.

```
In [9]: beta_hat_original_estimates = []
beta_hat_alternative_estimates = []

for i in range(100):
    response_data = make_response(simulated_data, lambda x: 200 - 12*x)
    beta_hat, beta_hat_variance, sigma_2_hat = fit_original(response_data)
    beta_hat_original_estimates.append(beta_hat)

beta_hat, beta_hat_variance, sigma_2_hat = fit_alternative(response_data)
    beta_hat_alternative_estimates.append(beta_hat)

np.mean(beta_hat_original_estimates, 0), np.mean(beta_hat_alternative_estimates, 0)
)

Out[9]: (array([200.00853446, -11.9993114 , 1.99779186]), array([1.99509547]))
```

Non-linear f but Independent Covariates

Only the Part (a) condition is violated now.

```
In [10]: beta_hat_original_estimates = []
beta_hat_alternative_estimates = []

np.random.seed(2019)
for i in range(1024):
    simulated_data = make_independent_covariates(64)
    response_data = make_response(simulated_data, lambda x: 200*np.exp(-x))
    beta_hat, beta_hat_variance, sigma_2_hat = fit_original(response_data)
    beta_hat_original_estimates.append(beta_hat)

    beta_hat, beta_hat_variance, sigma_2_hat = fit_alternative(response_data)
    beta_hat_alternative_estimates.append(beta_hat)

np.mean(beta_hat_original_estimates, 0), np.mean(beta_hat_alternative_estimates, 0)

Out[10]: (array([47.92338712, -4.63105486, 1.99852915]), array([2.00052851]))
```

Standard Error Simulations

```
In [11]: beta_hat_estimates = []
         beta_hat_l_variances = []
         is covered = []
         is_covered_sandwich = []
         np.random.seed(2019)
         for i in range(2048):
             simulated data = make independent covariates(64)
             response data = make response(simulated data, lambda x: 200*np.exp(-x))
             beta_hat, beta_hat_variance, sigma_2_hat = fit_original(response_data)
             X = np.column stack((np.ones(len(response data)), response data[['base.age',
         'delta.age']].values))
             y = response_data['literacy']
             gram_inverse = beta_hat_variance/sigma_2_hat
             sandwich variance = X.T.dot(np.diag(np.square(y - X.dot(beta hat)))).dot(X)
             sandwich variance = gram inverse.dot(sandwich variance).dot(gram inverse)
             beta hat estimates.append(beta hat)
             beta_hat_l_variances.append(beta_hat_variance[2,2])
             is_covered.append(np.abs(beta_hat[2] - 2) <= stats.norm.ppf(0.975)*np.sqrt(bet</pre>
         a hat variance[2,2]))
             is_covered_sandwich.append(np.abs(beta_hat[2] - 2) <= stats.norm.ppf(0.975)*np</pre>
         .sqrt(sandwich_variance[2,2]))
         np.sum(is_covered)/len(is_covered), np.sum(is_covered_sandwich)/len(is_covered_san
         dwich)
```

Out[11]: (0.98095703125, 0.9775390625)