Document reconstruction with Reinforcement Learning

CSCK700: Santiago F. Blanco

References:

Bello, I., Pham, H., Le, Q. V., Norouzi, M. & Bengio, S. 2016. Neural Combinatorial Optimization with Reinforcement Learning.

Charikar, M. S. 2002. Similarity estimation techniques from rounding algorithms. 2002 2002 New York, NY, USA. 2002: ACM, 380-388.

Douglas, D. H., Peucker, T. K. & Dodge, M. 2011. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature. Chichester, UK: John Wiley & Sons, Ltd.

Dunteman, G. H. 1989. Principal components analysis George H. Dunteman, Newbury Park, [Calif.];, SAGE.

Fan, J., Wang, Z., Xie, Y. & Yang, Z. 2020. A Theoretical Analysis of Deep Q-Learning. Ithaca: Cornell University Library, arXiv.org.

Hassani, H., Nikan, S. & Shami, A. 2025. Improved exploration—exploitation trade-off through adaptive prioritized experience replay. Neurocomputing (Amsterdam), 614, 128836.

He, W., Motlicek, P. & Odobez, J.-M. Adaptation of Multiple Sound Source Localization Neural Networks with Weak Supervision and Domain-adversarial Training. 2019 2019. IEEE, 770-774.

Igl, M. 2021. Inductive Biases and Generalisation for Deep Reinforcement Learning. ProQuest Dissertations & Theses.

Nouri, A. & Littman, M. L. 2010. Dimension reduction and its application to model-based exploration in continuous spaces. Machine learning, 81, 85-98.

Shi, J. & Tomasi, C. 1994. Good features to track. 1994 1994. IEEE Comput. Soc. Press, 593-600

Icons' copyright:

Freepik

https://www.flaticon.com/free-icon/paper-shredder_1979234?term=shredder&related_id=1979234

https://www.flaticon.com/free-icon/reinforcementlearning_12538761?term=reinforcement+learning&page=1&position=7&ori gin=search&related_id=12538761

https://www.flaticon.com/freeicon/file_2822678?related_id=2822676&origin=search

Those icons

https://www.flaticon.com/freeicon/paper_812955?term=paper+pieces&related_id=812955