

IIT Madras ONLINE DEGREE

Zeros of Polynomial Functions

Recall: If f is a polynomial function, the values of x for which f(x)=0 are called **zeros** of f.

If the equation of the polynomial function can be factored, we can set each factor equal to zero and solve for the zeros.

Also, any value x=a that is a zero of a polynomial function yields a factor of the polynomial, of the form (x-a).

Given the equation of a polynomial function, we can use this method to find x-intercepts because at the x-intercepts we find the input values whose output value is zero.

For general polynomials, this can be a challenging prospect. However quadratic functions can be solved using the quadratic formula.

The corresponding formulas for cubic and fourth-degree polynomials are not simple enough to remember. And formulas do not exist for general higher-degree polynomials.

Zeros of Polynomial Functions and Factoring

- The polynomial can be factored using known methods:
 - a. greatest common factor,
 - b. factor by grouping, and
 - c. trinomial factoring.
- The polynomial is given in factored form.
- Technology is used to determine the intercepts.

x-intercept of Polynomial Function by Factoring

- 1. Set f(x)=0.
- 2. If the polynomial function is not given in factored form:
 - a. Factor out any common monomial factors.
 - b. Factor any factorable binomials or trinomials.
- 3. Set each factor equal to zero and solve to find the x-intercepts.

Example

Find x-intercepts of $f(x) = x^6 - 8x^4 + 16x^2$.

Set
$$f(x)=0$$

$$\chi^6 - 8\chi^4 + 16\chi^2 = 0$$

$$\chi^{2}(\chi^{4}-8\chi^{2}+16)=0$$

$$\chi^2(\chi^2-4)^2=0$$

 χ =0, 2,-2 are the χ -intercepts of f.

Example

Find x-intercepts of $f(\chi) = \chi^3 - 4\chi^2 - 3\chi + 12$.

Set
$$f(x)=0$$

$$\chi^3 - 4\chi^2 - 3\chi + 12 = 0$$

$$\chi^{2}(\chi-4)-3(\chi-4)=0$$

$$(\chi^2-3)(\chi-4)=0$$

 $\chi=4$, $\sqrt{3}$, $-\sqrt{3}$ are the χ -intercepts of f.

Example

Find the y- and x-intercepts of $g(x)=(x-1)^2(x+3)$.

$$Set g(\chi) = 0$$

 $\chi = 1$, -3 are the χ -intercepts of f.

For y-intercept, g(0) = 3

