第9章 COMS逻辑电路的高级技术

本章概要

- 镜像电路
- 准nMOS电路
- 三态电路
- 时钟控制CMOS
- 动态CMOS电路
- 多米诺逻辑
- 双轨逻辑电路

- 什么是镜像电路?
 - □ 电路的nFET和pFET部分具有相同的拓扑结构。
 - □ **nFET**和**pFET**部分的晶体管尺寸可以有不同, 以便使电特性对称。
- 镜像电路的特点:
 - □速度较快。
 - □ pFET与nFET版图较为一致。

实现XOR的镜像电路(1)

实现XOR的镜像电路(2)

开关模型

Elmore时间常数

$$t_r \approx 2.2\tau_p$$

$$\tau_p = C_{out} \left(2R_p \right) + C_p R_p$$

$$t_f \approx 2.2\tau_n$$

$$\tau_n = C_{out} (2R_n) + C_n R_n$$

镜像电路: 2个pFET对

Cp有贡献,t,较小

实现XOR的镜像电路(3)

AOI电路: 4个pFET对 C_p 有贡献, t_r 较大

实现XNOR的镜像电路

 $\overline{a \oplus b} = a \cdot b + \overline{a} \cdot \overline{b}$

镜像电路实现

AOI电路实现

有比逻辑

如何减少静态CMOS中的晶体管数?

目标:比互补CMOS使用的器件数量少。

准nMOS结构

nMOS 逻辑电路用1个pFET为负载

 $V_{SGp} \equiv V_{DD} \Rightarrow pFET$ 永远导通 nFET阵列截止 \Rightarrow 开关开路 $\Rightarrow pFET$ 将输出电平上拉到 V_{DD}

nFET阵列导通 \Rightarrow 开关短路 \Rightarrow nFET将输出电平下拉到低电平 V_{OL} 但因pFET导通, V_{OL} 较高

准nMOS反相器: 输出低电平

$$V_{in} = V_{DD} \Rightarrow V_{out} = V_{OL} << V_{DD}$$

$$pFET饱和, nFET非饱和$$

$$I_{Dn}(非饱和) = I_{Dp}(饱和)$$

$$\frac{\beta_n}{2} \left[2(V_{DD} - V_{Tn})V_{OL} + V_{OL}^2 \right] = \frac{\beta_p}{2} \left[V_{DD} - |V_{Tp}| \right]^2$$

$$V_{OL} = (V_{DD} - V_{Tn}) - \sqrt{(V_{DD} - V_{Tn})^2 - \frac{\beta_p}{\beta_n} (V_{DD} - |V_{Tn}|)^2}$$

$$\Xi V_{OL} \downarrow, \quad \text{就要} \frac{\beta_n}{\beta_p} \uparrow$$

 $\beta = \mu C_{ox}(W/L)$: 增益因子 (Gain factor)

 $k'=\mu C_{or}$: 工艺跨导系数 (Process transconductance parameter)

有比逻辑

准nMOS反相器: 实例

$$V_{\text{DD}} = 5\text{V}, \quad V_{Tn} = +0.7\text{V}, V_{Tp} = -0.8\text{V},$$

 $\kappa_n = 150 \,\mu\text{A/V}^2, \kappa_p = 68 \,\mu\text{A/V}^2$

$$\beta_p = \kappa_p \left(\frac{W}{L}\right)_p$$

$$\beta_n = \kappa_n \left(\frac{W}{L}\right)_n$$

$$\left(\frac{W}{L}\right)_{n} = 4, \left(\frac{W}{L}\right)_{p} = 6 \Rightarrow V_{OL} = 1.75 \text{V}$$

$$\left(\frac{W}{L}\right)_{n} = 8, \left(\frac{W}{L}\right)_{p} = 2 \Rightarrow V_{OL} = 0.24 \text{V}$$

增大N管尺寸,使VoL降低,增大了功耗。

减小P管尺寸,使Vol降低,上升延时增大,速度变慢。

输出低电平时,有静态功耗!!!

9.2 淮nMOS电路 淮nMos反相器: VTC曲线

(a) NOR2 gate

准nMOS NAND2/NOR2

(b) NAND2 gate

准nMOS: 逻辑设计优先采用NOR门, 以相对减少低电平

静态CMOS: 逻辑设计优先采用NAND门, 以相对提高电路速度

9.2 准nMOS电路

淮nMOS AOI

(a) General circuit

(b) Layout example

9.3 三态电路

三态反相器

 $E_n = 0 \Rightarrow M1$ 、M2均截止 $\Rightarrow f = 5V_{DD}$ 、GND均断开,输出为高阻态 $E_n = 1 \Rightarrow M1$ 、M2均导通 \Rightarrow 成为以Data为输入端、f为输出端的COMS反相器

9.4 C²MOS电路

C²MOS门: 结构

C2MOS: 时钟控制CMOS电路

 ϕ =1时,M1、M2导通,输出=静态逻辑运算的结果,与输入有关 ϕ =0时,M1、M2截止,输出=高阻态Hi-Z,与输入无关

9.4 C²MOS电路

C2MOS门:电路

9.4 C²MOS电路

C2MOS门:版图

(a) Inverter

(b) NAND2

М

9.4 C²MOS电路——电荷泄漏

衰减时间与 C_{out} 有关, C_{out} 太小,衰减时间很短, C_{out} 太大,影响电路工作速度。

时钟信号必须有一个最小周期,以保证输出电压不会因为电荷泄漏导致信息丢失。通常**DRAM**的动态刷新时间在**us**数量级。

- 在静态电路中,每个输出在所有时间内(除了电路切换的时刻) 总是通过一个低阻通路或者接到GND或者接到V_{DD}。
 - □ n个扇入需要2n个晶体管(n个NMOS, n个PMOS)
- 伪NMOS逻辑只要n+1个晶体管实现n输入逻辑,但有静态功耗。
- 动态电路靠暂时把信号值存在高阻结点的电容上,避免了静态 功耗
 - □ 需要n + 2 (n+1个NMOS + 1个PMOS)晶体管

基本结构

 ϕ =0预充电: M_p 导通, M_n 截止, V_{DD} 通过 M_p 对 C_{out} 充电, $V_{out}=V_{DD}$

 ϕ =1求值: M_p 截止, M_n 导通,输入经nFET逻辑阵列运算得到输出⇒ 若运算结果为逻辑1,则输出为高阻态,保持 $V_{out}=V_{DD}$; 若运算结果为逻辑0,则输出通过逻辑阵列和 M_n 放电,使 $V_{DD}=0$ V

优点:晶体管数目少,速度快;缺点:结果只在半个时钟周期有效,难以设计和应用。

基本类型

下拉n网络

上拉n网络

静态CMOS

电路实例:AOI门

动态CMOS

$$Out = \overline{CLK} + \overline{(A \cdot B + C)} \cdot CLK$$

版图:NAND3

版图:NAND4

M

9.5 动态CMOS电路 与静态CMOS的比较

- 与静态CMOS相同之处
- 全逻辑摆幅,无比逻辑
- 下拉网络由nMOS逻辑链构成,构成方式与静态CMOS相同
- 无静态功耗
- 与静态CMOS不同之处
- 晶体管数少: 只需N+2个FET, 而静态CMOS需2N个FET
- **开关速度快**:晶体管数少,无低至高延迟时间,负载电容小,无短路电流
- 噪声容限小: V_M、V_{IH}、V_{IL}均近似等于V_{Tn},而静态CMOS近似等于V_{DD}/2
- 动态功耗较大:时钟电路消耗功率较大(负载电容大,翻转频度高),预 充电过程需消耗电流
- 需要时钟控制信号
- 需要保持输出高电平:电荷泄漏、电荷分享、背栅耦合、时钟反馈等问题 使输出高电平保持时间有限

信号完整性问题

- ◆ 电荷泄漏
- ◆ 电荷分享
- ◆ 电容耦合
- ◆互连串扰
- ◆少子电荷注入
- ◆电源噪声

电荷泄漏问题

CLK=1且A=0时,输出处于高阻态, V_{out} = V_{DD} 应保持不变。但因存在漏电流 \Rightarrow V_{out} 随时间逐渐衰减 \Rightarrow V_{out} 保持高电平的时间应大于时钟周期($t_h > T$) \Rightarrow 时钟频率 $f > 1/t_h = f_{min}$

$$M_1$$
的漏电流 $\Rightarrow V_{out} \downarrow$
 M_p 的漏电流 $\Rightarrow V_{out} \uparrow$
 V_{out} 最终稳定在一个中间电压上

占主要地位的是亚阈值电流!

电荷泄漏:实例

电荷泄漏:对策

Out

常通上拉器件,为负载电容补充电 荷,尺寸较小以削弱因此而产生的 有比问题及静态功耗 上拉器件仅在输出为高电平时接通, 为负载电容补充电荷,无静态功耗。 缺点?

NAND2 Clk Out M_a B=0 M_b Clk

电荷分享:概念

时钟上升沿前: Ma、Mb均截止, C_L上电荷充满,以保持其高电平 时钟上升沿后: Ma导通, Mb截 止, C_L上的电荷在C_L和C_A间重 新分配,使V_{out}有所下降。

电荷分享 (Charge sharing)

FET之间的寄生电容与负载

电

容分享放电电荷和充电电荷,导致输出电压衰减。

9.5 动态CMOS电路——电荷分享

基本原理: 电荷C₁V_{DD}守恒。

$$C_{L}V_{DD} = C_{L}\left(V_{DD} - \Delta V_{out}\right) + C_{a}\left(V_{DD} - V_{Tn}(V_{X})\right)$$

$$\Delta V_{out} = \frac{C_a}{C_L} \left(V_{DD} - V_{Tn} (V_X) \right)$$

$$C_{L}V_{DD} = C_{L}\left(V_{DD} - \Delta V_{out}\right) + C_{a}\left(V_{DD} - \Delta V_{out}\right)$$

$$\Delta V_{out} = \frac{C_a}{C_a + C_L} V_{DD}$$

$$\frac{C_a}{C_L} = \frac{V_{Tn}}{V_{DD} - V_{Tn}}$$

电荷分享:对策

为内部寄生电容预充电,但 会增加面积和电容

M

9.5 动态CMOS电路 电容耦合: 时钟馈通(1)

电容耦合: 时钟馈通(2)

时钟的上升沿和下降沿均会引发时钟馈通效应

M

9.5 动态CMOS电路——特点

- 逻辑功能只由下拉网络(PDN)实现
 - 晶体管数目为 N + 2 (而静态互补CMOS的为2N)
- 全电压摆幅输出 (VOL = GND 且 VOH = VDD)
- 无比电路 器件的尺寸不影响逻辑电平
- 更快的开关切换速度
 - 由于降低了输入电容Cin,所以减小了负载电容
 - 由于输出负载(Cout)更小,负载电容减小
 - 无短路电流Isc, 所以PDN产生的所有电流都用于对CL放电。
 - tpLH=0,但没有考虑预充电时间的影响
 - tpHL∝CL及IPD

M

9.5 动态CMOS电路——特点

- 总功耗通常比静态CMOS门大
 - + 实际负载电容较小
 - + V_{DD} 和GND之间从不存在任何静态电流通路(包括 P_{sc})
 - + 没有毛刺(每个时钟最多只翻转一次)
 - 更高的开关活动性(周期性预充电、放电)
 - 需要额外的CLK负载, CLK功耗很大(每个周期都要翻转)
 - 当增加抗漏电器件时,可能会有短路功耗
- 下拉网络PDN在输入信号电压一旦超过V_{Tn}时就开始工作,所以V_M,
 V_{IH} 和V_{IL}等于 V_{Tn}
 - □ 低的噪声容限 (NM_L)
- 需要预充电/求值时钟

9.5 动态CMOS电路——输入输出信号特点

- 一旦动态门的输出放电,在下一个预充电周期到来前,它是不能被再 充电的。
- 门的输入在求值期间至多只能有一次跳变。
- 无毛刺。

■ 在求值期间或者之后(PDN断开),输出处于高阻状态,状态保存在电容CL上。

动态CMOS门的串联问题

预充电: $CLK=0 \Rightarrow out1=V_{DD}$, $out2=V_{DD}$

求值: $在out1 \downarrow = 0$ 之前的延时期内, $out1 > V_{Tn} \Rightarrow$

M2导通 $\Rightarrow out2$ ↓; 直至out1↓< V_{Tn} \Rightarrow M2截止 \Rightarrow

out2停止 \downarrow ,但此时out2已损失了 ΔV 且无法恢复

动态CMOS门的输入若出现1→0的翻转,就会导致预充电电荷的损失

要避免这种损失,应使动态CMOS门在求值时只出现 0→1的翻转,方法是在预充电期间置所有的输入为0

在动态CMOS单元之间加1个反相器(多米诺单元)

多米诺逻辑单元构成

静态反相器

多米诺逻辑的级联

- 静态反相器保证动态逻辑所有输入初始都为0。
- 级联的动态门输入全部为0->1变化。
- 反相器还可以用来驱动电平恢复晶体管。

特点

■ 优点

- □ 抗噪声能力强:输出反相器可根据扇出来优化
- □ 开关速度非常快: 只有输出上升沿的延时(t_{pHL}=0)
- □ 抵抗电荷泄漏能力强:反相器加1个pMOS管即可构成电平恢复器

■缺点

- □ 非反相门,难以实现诸如XOR、XNOR这样需要NOT运算的逻辑, 这是主要限制因素(单纯用多米诺逻辑的设计很少)
- □必须有时钟

基本逻辑门

多米诺逻辑门实例

逻辑链构成

 $\phi=0$ 预充电: C_1 、 C_2 、 C_3 同时进行,使所有的 f 置0

 $\phi=1$ 求值: f_1 、 f_2 、 f_3 依次进行,有如"多米诺骨牌"

名称由来

只有当所有前级的电平转换已完成,本级才会有动作。

电荷保持电路1:同前面动态电路中的方法。

(a) Single-FET charge keeper

 $VG \equiv 0 \Rightarrow MK$ 始终导通 提供一个电流来补充 C_x 上的电荷

> $\frac{W}{L}$ 很小 \Rightarrow MK弱导通 \Rightarrow 不至于过多影响 C_x 上电荷的释放

9.6 多米诺逻辑 电荷保持电路2: 同前面动态电路中的方法。

 C_x 充电时, V_x 较大 \Rightarrow MK 导通 \Rightarrow 提供附加充电电流 \Rightarrow 加速充电 C_x 放电时, V_x 较小 \Rightarrow MK 不导通 \Rightarrow 不提供附加电流 \Rightarrow 不影响放电

动态逻辑设计难度

- 由于其高阻的本质,动态逻辑电路的设计很复杂,需要在电路 级格外小心进行。
- 难以实现设计自动化——综合、自动布局布线等这些基于静态 CMOS标准单元的设计流程。
- 动态逻辑的功耗通常更大。
- 一点不比标准CMOS容易...
- 动态逻辑的主要优点是可以达到**更高的速度**性能。

DCVSL:结构

(Differential Cascode Voltage Switch Logic)

双轨逻辑,输出有原信号和反信 号,利用其差作为检测可以提高 速度,大约为传统的2倍。

特点

- 优点
 - □ 速度快; 大约是单轨电路的2倍
 - □ 同时实现非反相逻辑和反相逻辑
- ■缺点
 - □ 输入、输出数加倍
 - □ 电路复杂,布线开销大,设计难度高

(a) AND/NAND

(b) OR/NOR

DCVSL: 结构化设计

简单的nFET逻辑对

堆叠的逻辑对

以nFET逻辑对为基本单元,堆叠形成各种逻辑

DCVSL:结构化设计实例1

用nFET对构成的逻辑树

逻辑树选通某一通路时,表示该路顶端信号将为0,如果这时f要求为0,则该通路顶端就为f,否自为"f的非"。

DCVSL:结构化设计实例2

F	0	0	1	1	0	1	1	0
c b a	0	O	1	1 1 0	0 0 1	1 0 1	0 1 1	1 1 1

具有3层逻辑<mark>树</mark>的动态CVSL电路

CPL:AND/NAND

互补传输管逻辑(Complimentary Pass Transistor Logic)

(b) AND/NAND array

$$a \cdot \overline{b} + \overline{a} = \overline{a} + \overline{b} = \overline{a \cdot b}$$

逻辑树选通后,根据需要在顶端提供相应信号 (不一定是高低电平,可为输入变量)。

反相器的作用是电平恢复和增加驱动能力。

CPL: OR/XOR

电路结构相同, 但是输入顺序不同可以构成版图的输入门。

 $a \oplus b$ $b \oplus b$ $a \oplus b$

(a) OR/NOR

(b) X OR/XNOR

优点: 电路简单, 版图结构可以复用

缺点:阈值电压损失,驱动能力弱,一个输入变量需要接多个FET