Centralizers of nilpotent elements

George McNinch

Department of Mathematics Tufts University

Special session on Combinatorial Aspects of Nilpotent orbits

Contents

Bala-Carter

Nilpotent orbits for groups over local fields

Outline

Bala-Carter

Nilpotent orbits for groups over local fields

The Bala-Carter Theorem

Let G be a connected and reductive group over a field k.

- ▶ A parabolic $P \subset G$ has a dense ("Richardson") orbit \mathcal{O} on Lie(R_uP); \mathcal{O} has a k-rational element X.
- ▶ for Richardson elts *X*, condition "*X* is *distinguished*" can be characterized via properties of *P* (*P* is a "distinguished parabolic").
- ▶ Let $X \in Lie(G)$ be any nilpotent element.
- ▶ If X is not distinguished, choose $S \subset C_G(X)$ a max torus and let $L = C_G(S)$. Then $X \in Lie(L)$ is dist for L.

The Bala-Carter Theorem

- ▶ If *G* is *standard* there is a cocharacter ϕ : $\mathbf{G}_m \to (L, L)$ such that $X \in \text{Lie}(L)(\phi; 2)$.
- ϕ determines a (distinguished) parabolic $Q=Q(\phi)\subset L$.
- ▶ X is in the dense ("Richardson") Q-orbit on Lie(R_uQ).
- ▶ If k alg closed, assignment $X \mapsto (L, Q)$ gives a bij between nilpotent orbits and G-classes of such pairs "Levi subgroup L, distinguished parabolic $Q \subset L$ ".
- from the POV of combinatorics, this means that one can label nilpotent orbits using data related to root systems and their Dynkin diagrams.

Nilpotent orbits for groups over local fields

Outline

Bala-Carter

Nilpotent orbits for groups over local fields

Setting of local fields

- ▶ Let K = Frac(A) where A is a complete DVR and $A/\pi A = k$.
- ▶ Want to study connected reductive *G* defined over *K*.
- And want to study nilpotent G(K)-orbits in Lie(G) = Lie(G)(K).
- ▶ When k is finite, these orbits play important role in harmonic analysis for locally compact group *G*(K).
- ▶ Crucial question: if X and X' are geometrically conjugate i.e. conjugate by an element of G(L) for some extension field $K \subset L$, when are X and X' conjugate by G(K)?

Symplectic group example

Consider split symplectic group $G = \operatorname{Sp}(V, \sigma)$ where dim V = 4m; suppose char $K \neq 2$. ("Type C_{2m} ")

- Let (W, β) and (U, γ) be vector spaces with non-degenerate forms, where β is symplectic and γ is symmetric. Suppose dim W = 2m and dim U = 2.
- ▶ There is K-isometry $(V, \sigma) \simeq (W \otimes U, \beta \otimes \gamma)$.
- ▶ Let X_0 reg nilpotent in $\mathfrak{sp}(W)$ and check that $X_{\gamma} = X_0 \otimes 1_U \in \mathfrak{sp}(W \otimes U, \beta \otimes \gamma) \simeq \mathfrak{sp}(V, \sigma) = \text{Lie}(G)$.

Symplectic group example

- ▶ partition of X_{γ} is (2m, 2m); the Bala-Carter datum of X_{γ} is indep of γ .
- ▶ The reductive quotient M_{γ} of $C_G(X_{\gamma})$ is orthog gp $O(U, \gamma)$
- if $\gamma = \gamma_{\text{split}}$ is split, $M_{\gamma}^0 = \mathbf{G}_m$.
- if $\gamma=\gamma_{\rm L}$ is the norm form for quad ext ${\rm K}\subset {\rm L}$, then $M_{\gamma}^0=R_{{\rm L/K}}^1{\bf G}_m.$

Symplectic group - conclusion

- ▶ In particular, $X_{\gamma_{\text{split}}}$ and $X_{\gamma_{\text{L}}}$ are not G(K)-conjugate for a quadratic field extension L of K.
- ▶ Rough idea (originating with Waldspurger and (DeBacker 2002)) If L is unramified over K, distinguish among between $X_{\gamma_{\rm split}}$ and $X_{\gamma_{\rm L}}$ using data "over k". If L ramified over K, need to distinguish using parahoric group schemes.

Parahoric group schemes

Outline

Bala-Carter

Nilpotent orbits for groups over local fields

Split reductive group schemes over ${\cal A}$

- ▶ Suppose that *G* is split reductive over *K*.
- ▶ There is a split reductive group scheme \mathcal{G} over \mathcal{A} with $\mathcal{G}_K = G$ for which \mathcal{G}_k a reductive group over k with the same root datum as G.
- ► Theorem (McNinch 2017)

Assume G and \mathcal{G}_k are "standard", and let $X_0 \in \text{Lie}(\mathcal{G}_k)$ be nilpotent. Then there is a section $\mathcal{X} \in \text{Lie}(\mathcal{G})(\mathcal{A})$ such that

- (a) $\mathcal{X}_k = X_0$ and \mathcal{X}_K is nilpotent.
- (b) \mathcal{X}_k and \mathcal{X}_K have the same Bala-Carter datum.
- (c) the identity component of $C_{\mathcal{G}}(\mathcal{X})$ is smooth over \mathcal{A} .
- (c) means in particular that $dimC_G(\mathcal{X}_K)$ and $dim C_{\mathcal{G}_k}(X_0)$ coincide.

Symplectic example - reductive parahoric

The symplectic group $\operatorname{Sp}(V,\sigma)$ is the generic fiber of the reductive \mathcal{A} -group scheme $\mathcal{G}=\operatorname{Sp}(\mathcal{L})$ where \mathcal{L} is a \mathcal{A} -lattice in V for which $\sigma(\mathcal{L},\mathcal{L})=\mathcal{A}$ and for which σ determines a non-degenerate form $\overline{\sigma}$ on $\overline{V}=\mathcal{L}/\pi\mathcal{L}$.

- $\blacktriangleright \ \mathcal{G}_{\mathbf{k}} = \mathsf{Sp}(\overline{V}, \overline{\sigma}).$
- ▶ consider the nilpotent elements $X_{\sf split}, X_{\gamma_\ell}$; in $\sf Lie(\mathcal{G}_k)$ where $k \subset \ell$ is a separable quadratic ext,
- ▶ Let $\mathcal{X}_{\mathsf{split}}, \mathcal{X}_{\ell} \in \mathsf{Lie}(\mathcal{G})$ as in the preceding Theorem.
- ▶ If $K \subset L$ is the unramified ext realizing residue field ext $k \subset \ell$, it is clear that $\mathcal{X}_{\ell,K} = X_{\gamma_1}$.
- ▶ On the other hand, if $K \subset F$ is ramif quad ext, X_{γ_F} can't be the generic fiber of any section $\mathcal{X} \in \text{Lie}(\mathcal{G})$ for which $\mathcal{C}_{\mathcal{G}}(\mathcal{X})$ has smooth identity component.

Parahoric group schemes

If G is reductive over K, a parahoric group scheme attached to G is a smooth group scheme \mathcal{P} over \mathcal{A} with generic fiber $\mathcal{P}_K = G$.

- ▶ In general \mathcal{P}_k is not reductive.
- ▶ (McNinch 2014) If G splits over a tamely ramified ext of K, \mathcal{P}_k has a Levi factor, at least *geometrically*.

► Theorem (McNinch 2018)

If G splits over an unramified extension of K, there is a reductive subgroup scheme $\mathcal{M} \subset \mathcal{P}$ such that \mathcal{M}_k is a Levi factor of \mathcal{P}_k and such that the reductive subgroup \mathcal{M}_K contains a maximal torus of G.

▶ In fact, \mathcal{M}_{K} is - geometrically, at least - the centralizer of a homomorphism $\mu_{\mathit{N}} \to \mathit{G}$.

Nilpotent sections and parahoric group schemes

Let \mathcal{P} be a parahoric group scheme attached to G, and suppose that G and \mathcal{P}_k are "standard" reductive groups.

- ▶ Spose G splits over unramif ext of K, and let $\mathcal{M} \subset \mathcal{P}$ as in the preceding Thm.
- ▶ Spose the residue char. p > 2h 2 where h is the max of the Coxeter numbers of the components of Dynkin diagram of $G_{\overline{K}}$.
- ▶ identify $\mathsf{Lie}(\mathcal{M}_k)$ with Lie algebra of reduc quot of \mathcal{P}_k .
- ▶ let $X_0 \in Lie(\mathcal{M}_k)$ nilpotent.
- ► Theorem (McNinch 2017)

There is a section $\mathcal{X} \in Lie(\mathcal{M}) \subset Lie(\mathcal{P})$ such that

- (a) $\mathcal{X}_k = X_0$ and \mathcal{X}_K is nilpotent
- (b) the identity component of $C_{\mathcal{P}}(\mathcal{X})$ is smooth over \mathcal{A} .

Symplectic parahoric example

▶ There is a parahoric group scheme \mathcal{P} attached to Sp_{4m} for which \mathcal{P}_k has reductive quotient $\mathsf{Sp}_{2m/k} \times \mathsf{Sp}_{2m/k}$. (" $C_m \times C_m \subset \widetilde{C_{2m}}$ ")

- ▶ A reductive subgroup scheme $\mathcal{M} \subset \mathcal{P}$ as in the preceding theorem has generic fiber $M = \mathcal{M}_K \simeq \mathsf{Sp}_{2m/K} \times \mathsf{Sp}_{2m/K}$.
- ▶ Let $X_0 = (X_{reg}, X_{reg}) \in \mathfrak{sp}_{2m,k} \times \mathfrak{sp}_{2m,k}$.
- ▶ Choose $\mathcal{X} \in \mathsf{Lie}(\mathcal{M})$ as in previous theorem. Then \mathcal{X}_{K} is $X_{\gamma_{\mathrm{L}}}$ for ramified quadratic extension $\mathrm{K} \subset \mathrm{L}$.

Symplectic parahoric example, redux

- ▶ There is a parahoric group scheme \mathcal{P} attached to Sp_{4m} for which \mathcal{P}_k has reductive quotient GL_{2m} . (" $A_{2m-1} \subset C_{2m}$ ")
- ▶ If $\mathcal{M} \subset \mathcal{P}$ is as before, then $\mathcal{M}_{\mathrm{K}} = \mathsf{GL}_{2m}$.
- ▶ If X_0 is regular in Lie(\mathcal{M}_k), then \mathcal{X}_K is X_{split} .

Bibliography

- DeBacker, Stephen (2002). "Parametrizing nilpotent orbits via Bruhat-Tits theory". In: Ann. of Math. (2) 156.1, pp. 295–332.

 DOI: 10.2307/3597191. URL:
 - http://dx.doi.org/10.2307/3597191.
- McNinch, George (2014). "Levi factors of the special fiber of a parahoric group scheme and tame ramification". In: Algebr. Represent. Theory 17.2, pp. 469–479.
- (2017). On the nilpotent orbits of a reductive group over a local field. preprint. URL: http:
 - //math.tufts.edu/faculty/gmcninch/manuscripts.html.
- (2018). "Reductive subgroup schemes of a parahoric group scheme". In: *Transf. Groups* to appear. URL: http://math.tufts.edu/faculty/gmcninch/manuscripts.html.