

Fuzzy C-Means Clustering

- Step 3: Find out the distance of each point from the centroid.
- $D_{11} = \sqrt{(1 1.568)^2 + (3 4.051)^2} = 1.2$

• $D_{12} = \sqrt{(1 - 5.35)^2 + (3 - 8.215)^2} = 6.79$

• $D_{21} = \sqrt{(2 - 1.568)^2 + (5 - 4.051)^2} = 1.04$

• $D_{22} = \sqrt{(2 - 5.35)^2 + (5 - 8.215)^2} = 4.64$

• $D_{31} = \sqrt{(4 - 1.568)^2 + (8 - 4.051)^2} = 4.63$

• $D_{32} = \sqrt{(4 - 5.35)^2 + (8 - 8.215)^2} = 1.36$ • $D_{31} = \sqrt{(7 - 1.568)^2 + (9 - 4.051)^2} = 7.34$

• $D_{32} = \sqrt{(7 - 5.35)^2 + (9 - 8.215)^2} = 1.82$

Centroids are:

(1.568, 4.051) and (5.35, 8.215)

Cluster	(1, 3)	(2, 5)	(4, 8)	(7, 9)
1	0.8	0.7	0.2	0.1
2	0.2	0.3	0.8	0.9
	1	1	2	2

Machine Learning Techniques, Dept of CS

Fuzzy C-Means Clustering

• Step 4: Updating membership values.

$$\bullet \ \, \gamma_{ki} = \left(\sum_{j=1}^n \left\{ \begin{matrix} d_{ki}^2 \\ d_{kj}^2 \end{matrix} \right\}^{\left(\frac{1}{(m-1)}\right)} \right)^{-1}$$

• For point 1 new membership values are:

•
$$\gamma_{11} = \left(\left\{ \frac{(1.2)^2}{(1.2)^2} + \frac{(1.2)^2}{(6.79)^2} \right\}^{\left(\frac{1}{(2-1)}\right)} \right)^{-1} = 0.97$$

- $D_{11} = 1.2, \quad D_{12} = 6.79$
- $D_{21} = 1.04, \ D_{22} = 4.64$ $D_{31} = 4.63, \ D_{32} = 1.36$
- $D_{31}=7.34,\ D_{32}\!=1.82$

Cluster	(1, 3)	(2, 5)	(4, 8)	(7, 9)
1	0.97	0.7	0.2	0.1
2	0.03	0.3	0.8	0.9

• Step 4: Updating membership values.

•
$$\gamma_{ki} = \left(\sum_{j=1}^{n} \left\{\frac{d_{ki}^2}{d_{kj}^2}\right\}^{\left(\frac{1}{(m-1)}\right)}\right)^{-1}$$

• For point 4 new membership values are:

•
$$\gamma_{41} = \left(\left\{ \frac{(7.34)^2}{(7.34)^2} + \frac{(7.34)^2}{(1.82)^2} \right\} \left(\frac{1}{(2-1)} \right)^{-1} = 0.06$$

• $\gamma_{42} = \left(\left\{ \frac{(1.82)^2}{(7.24)^2} + \frac{(1.82)^2}{(1.27)^2} \right\} \left(\frac{1}{(2-1)} \right)^{-1} = 0.94$

$D_{11} =$	= 1.2,	D_{12}	= 6.79
D	1 0 1	D	111

$$D_{21} = 1.04, \ D_{22} = 4.64$$

 $D_{31} = 4.63, \ D_{32} = 1.36$

 $D_{31} = 7.34, \ D_{32} = 1.82$

Cluster	(1, 3)	(2, 5)	(4, 8)	(7, 9)
1	0.97	0.95	0.08	0.06
2	0.03	0.05	0.92	0.94

Fuzzy C-Means Clustering

• Step 5: Repeat the steps (2-4) until the constant values are obtained for the membership values or the difference is less than the tolerance value

Cluster	(1, 3)	(2, 5)	(4, 8)	(7, 9)
1	0.8	0.7	0.2	0.1
2	0.2	0.3	0.8	0.9

Cluster	(1, 3)	(2, 5)	(4, 8)	(7, 9)
1	0.97	0.95	0.08	0.06
2	0.03	0.05	0.92	0.94

Machine Learning Techniques, Dept of CS

Hierarchical Clustering

Agglomerative Clustering

Bottom-up algorithms treat each data as a singleton cluster at the outset and then successively agglomerates pairs of clusters until all clusters have been merged into a single cluster that contains all data.

Divisive clustering

Top-down clustering requires a method for splitting a cluster that contains the whole data and proceeds by splitting clusters recursively until individual data have been split into singleton clusters.

Hierarchical Clustering-Distance Metric

Names	Formula
Euclidean distance	$\ a-b\ _2=\sqrt{\sum_i(a_i-b_i)^2}$
Squared Euclidean distance	$\ a-b\ _2^2 = \sum_i (a_i-b_i)^2$
Manhattan (or city block) distance	$\ a-b\ _1=\sum_i a_i-b_i $
Maximum distance (or Chebyshev distance)	$\ a-b\ _{\infty}=\max_{i} a_{i}-b_{i} $
Mahalanobis distance	$\sqrt{(a-b)^{ op}S^{-1}(a-b)}$ where S is the Covariance matrix

Machine Learning Techniques, Dept of CS

Decision Trees

Decision Trees are a type of Supervised Machine Learning where the data is continuously split according to a certain parameter. In a decision tree, node represents a feature (attribute), link (branch) represents a decision (rule) and each leaf represents an outcome(categorical or continues value).

Decision Trees - ID3 Algorithm

- The core algorithm, called ID3 by J. R. Quinlan
- A top-down, greedy search through the space of possible branches with no backtracking.
- ID3 uses *Entropy* and *Information Gain* to construct a decision tree.

Machine Learning Techniques, Dept of CS

ID3 Algorithm - Entropy

Entropy

A decision tree is built top-down from a root node and involves partitioning the data into subsets that contain instances with similar values (homogenous). ID3 algorithm uses entropy to calculate the homogeneity of a sample. If the sample is completely homogeneous the entropy is zero and if the sample is an equally divided it has entropy of one.

Total Entropy

$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$

Play Golf

Entropy(PlayGolf) = Entropy (5,9) = Entropy (0.36, 0.64)

= - (0.36 log₂ 0.36) - (0.64 log₂ 0.64)

Entropy of an attribute

$$E(T,X) = \sum_{c \in X} P(c)E(c)$$

		Play	Play Golf	
		Yes	No	
	Sunny	3	2	5
Outlook	Overcast	4	0	4
	Rainy	2	3	5
				14

= (5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971

