Kathleen Young IEMS 308, Professor Klabjan February 8th, 2017

Utilizing Association Rules to Rearrange Dillard's

Executive Summary

The following report outlines the methodology and resulting recommendations of an association rules-based analysis of customer data from Dillard's store.

Dillard's is a department store chain with 453 stores nationwide. A single Dillard's can house up to 1048576 unique items, or SKUs. In order to organize their stores to better suit their customers' needs, association rules were applied to the dataset. The association rules uncover patterns in what items customers tend to buy together. Armed with this knowledge, the corporation as a whole can decide how to promote items, as well as how to place them in the store.

Problem Statement

Dillard's is rearranging its planograms. Ideally, the products (SKUs) will move to locations in the store that maximize the probability that customers will purchase them. In order to analyze how Dillard's products are related to each other, association rules were built based on the typical market basket of a Dillard's customer.

Assumptions

- Only a subset of the data was analyzed for the association rules. A single store was selected for analysis—store 4903 in Moline, IL. After selecting the store, the data was further parsed into departments. It is assumed that because the SKUs exist within their departments, the most accurate rules would involve SKUs in the same department moving amongst themselves, making this an appropriate way to subsection the data. Because of this approach, the same analysis could be applied to other store locations or larger sets of data.
- Quantity was disregarded for this analysis. That is, if a customer purchased two of a single item, the quantity purchased was instead treated as one. This simplified the onehot encoding method used to build the association rules.
- The "trnsact" columns were identified as the following: c1 = sku, c2 = store, c3 = register, c4 = trannum, c5 = seq, c6 = sale date, c7 = stype, c8 = quantity, c9 = amt, c10 = orgprice, c11 = sprice, c12 = interid, c13 = mic, and c14 was disregarded.

Methodology

A significant amount of data exploration was required before the association rules were built. First, the columns of trnsact were identified. The headers of these columns had been removed, so it was necessary to look at the data and match up the columns with the given attribute descriptions.

The second data exploration step was a series of simple database queries. Several variables were queried to see how many existed in the database, as well as for more information on what was contained in them. For example, COUNT(*) was applied to the dept, sku, and store variables. Additionally, the specific number of SKUs in a select number of departments was examined, as well as which SKUs appeared in which departments. The following important information was uncovered:

Variable	COUNT(*)
Number of rows in trnsact table	120916896
Number of distinct departments	60
Number of distinct SKUs	1048576
Number of distinct store locations	453

At this point, the store location and then department were selected as the best ways to divide up the data. The package MLxtend was used to find the frequent item sets, as well as the association rules. The data was one-hot encoded, and then the apriori function was used to identify frequent item sets. The minimum support value (the relative frequency that rule appears in a dataset) was set to 0.05. Finally, the association_rules function was used to identify the actual association rules.

Analysis

Frequent item sets and association rules were created for each of the 60 unique departments in the Moline, IL store location (again, this analysis could easily be expanded for a larger dataset). The frequent item sets and association rules were reviewed, and the full table of results, along with corresponding support, confidence, and lift scores can be found in appendix A.

Conclusions

Based on the association rules provided, I would recommend focusing on reorganizing the following departments: Gary F, 4711, Bora, Coffret, and Annasui. These were the departments with the most rules. A full list of recommended rules can be found in Appendix A, but upon closer inspection of the list of rules, it is clear that the rules with the highest confidence, support, and lift should be moved together.

Next Steps

It is clear that this analysis would benefit from more time and more computing power. An obvious next step would be to expand the number of stores examined before splitting the data up into departments. I would like to look at all of the stores in Illinois. Originally, the data was supposed to be divided by department only and nothing else. However, this proved impractical as creating this table took up more space than my schema had available.

Another obvious next step is looking at how departments are placed within the store. A fascinating analysis would involve looking at departments customers shop at, rather than the exact SKUs they buy. This also may be of more general practicality to an actual department store.

Appendix A

antecedants	consequents	support	confidence	lift
183088	173088	0.1	0.5	1.2
173088	183088	0.417	0.12	1.2
2177157	2107157	0.197	0.261	1.696
2107157	2177157	0.154	0.333	1.696
4037330	2107157	0.274	0.219	1.422
2107157	4037330	0.154	0.389	1.422
2177157	3597708	0.197	0.348	3.13
3597708	2177157	0.111	0.615	3.13
2177157	4037330	0.197	0.348	1.272
4037330	2177157	0.274	0.25	1.272
2177157	5289751	0.197	0.261	4.36
5289751	2177157	0.06	0.857	4.36
2177157	6386649	0.197	0.304	1.874
6386649	2177157	0.162	0.368	1.874
4037330	3597708	0.274	0.25	2.25
3597708	4037330	0.111	0.615	2.25
6386649	3597708	0.162	0.316	2.842

3597708	6386649	0.111	0.462	2.842
4037330	4017330	0.274	0.219	1.347
4017330	4037330	0.162	0.368	1.347
4037330,				
2177157	3597708	0.068	0.875	7.875
3597708,				
2177157	4037330	0.068	0.875	3.199
4037330,				
3597708	2177157	0.068	0.875	4.451
	4037330,			
2177157	3597708	0.197	0.304	4.451
	3597708,			
4037330	2177157	0.274	0.219	3.199
	4037330,			
3597708	2177157	0.111	0.538	7.875
4737469	5649840	0.545	0.167	1.146
5649840	4737469	0.145	0.625	1.146
6571028	4737469	0.091	0.6	1.1
4737469	6571028	0.545	0.1	1.1
6571028	5649840	0.091	0.6	4.125
5649840	6571028	0.145	0.375	4.125
6347532	1508645	0.186	0.313	2.443
1508645	6347532	0.128	0.455	2.443
2419753	6347532	0.081	0.714	3.839
6347532	2419753	0.186	0.313	3.839
3638860	3428013	0.102	0.6	7.35
3428013	3638860	0.082	0.75	7.35
3718013	3428013	0.204	0.3	3.675
3428013	3718013	0.082	0.75	3.675
3848088	3428013	0.102	0.6	7.35
3428013	3848088	0.082	0.75	7.35
3428013	5798907	0.082	0.75	7.35
5798907	3428013	0.102	0.6	7.35
3718013	3578013	0.204	0.3	3.675
3578013	3718013	0.082	0.75	3.675
3658013	3718013	0.102	0.6	2.94
3718013	3658013	0.204	0.3	2.94
3658013	3728013	0.102	0.6	4.9
3728013	3658013	0.122	0.5	4.9
3658013	5798907	0.102	0.6	5.88
5798907	3658013	0.102	0.6	5.88
3728013	3668013	0.122	0.5	4.9

3668013	3728013	0.102	0.6	4.9
3718013	3737654	0.204	0.3	2.94
3737654	3718013	0.102	0.6	2.94
3718013	3848088	0.204	0.3	2.94
3848088	3718013	0.102	0.6	2.94
3718013	5798907	0.204	0.3	2.94
5798907	3718013	0.102	0.6	2.94
3718013,				
3848088	3428013	0.061	1	12.25
3428013,				
3718013	3848088	0.061	1	9.8
3428013,				
3848088	3718013	0.061	1	4.9
	3428013,			
3718013	3848088	0.204	0.3	4.9
	3428013,			
3848088	3718013	0.102	0.6	9.8
	3718013,			
3428013	3848088	0.082	0.75	12.25