Title

D. Zack Garza

Friday 21st August, 2020

Contents

1 Friday, August 21

1

1 Friday, August 21

Reference:

 $\verb|https://www.mathematik.uni-kl.de/~gathmann/class/alggeom-2019/alggeom-2019.| pdf$

General idea: functions a coordinate ring $R[x_1, \dots, x_n]/I$ will correspond to the geometry of the variety cut out by I.

Example 1.1.

- $x^2 + y^2 1$ defines a circle, say, over \mathbb{R}
- $y^2 = x^3 x$ gives an elliptic curve:

- $x^n + y^n 1$: does it even contain a Q-point? (Fermat's Last Theorem)
- The variety $\langle x^2 + 1 \rangle$, which has no \mathbb{R} -points.

•

Theorem 1.1 (Harnack Curve Theorem).

If $f \in \mathbb{R}[x, y]$ is of degree d, then

$$\pi_1 V(f) \subseteq \mathbb{R}^2 \le 1 + \frac{(d-1)(d-2)}{2}$$

Actual statement: the number of connected components is bounded above by this quantity.

Example 1.2.

Take the curve

$$X = \left\{ \mathbf{x} = (t^3, t^4, t^5) \in \mathbb{C}^3 \mid t \in \mathbb{C} \right\}.$$

Then X is cut out by three equations:

•
$$y^2 = xz$$

- $x^2 = yz$ $z^2 = x^2y$