Simulation Result 1: $C\sim Exp(0.2)$

Success rate, include non-converged results

Yi

2023-02-19

Table 1: Summary of the estimated SAUC for Biomarker 1 when the true censoring is distributed as Exp(0.2).

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop}_n \end{aligned}$	0.00 (73.45, 76.48) 1.33 (74.33, 78.03) 0.56 (73.34, 77.73)	99.4 99.4 99.4	0.00 (73.43, 75.97) 1.73 (74.57, 78.51) -0.12 (72.30, 77.25)	99.2 99.2 99.2	0.00 (73.69, 75.66) 2.35 (75.15, 79.14) -0.95 (71.08, 76.28)	98.2 98.2 98.2
		Prop_{o} Prop_{p}	1.32 (73.91, 78.60) 0.76 (73.47, 77.88)	$99.4 \\ 99.4$	1.50 (73.63, 78.58) 0.45 (73.02, 77.68)	99.2 99.2	1.28 (73.02, 78.95) 0.02 (72.10, 77.02)	98.2 98.2
	30	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop}_n \ & \operatorname{Prop}_o \ & \operatorname{Prop}_p \end{aligned}$	0.00 (73.58, 75.95) 1.10 (74.27, 77.41) 0.47 (73.61, 77.12) 0.87 (74.00, 77.81) 0.59 (73.72, 77.27)	99.7 99.7 99.7 99.7 99.7	0.00 (73.54, 75.58) 1.62 (74.54, 77.85) -0.20 (72.43, 76.43) 0.68 (73.10, 77.53) 0.20 (72.84, 76.69)	99.6 99.6 99.6 99.6 99.6	0.00 (73.76, 75.32) 2.48 (75.42, 78.57) -0.79 (71.64, 76.14) 0.74 (72.85, 77.47) -0.05 (72.28, 76.40)	99.1 99.1 99.1 99.1 99.1
	50	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (73.78, 75.58) 1.08 (74.67, 76.93) 0.47 (73.59, 76.57) 0.64 (73.84, 76.85) 0.51 (73.68, 76.58)	100.0 100.0 100.0 100.0 100.0	0.00 (73.73, 75.38) 1.67 (75.06, 77.32) -0.12 (73.00, 75.91) 0.31 (73.30, 76.59) 0.03 (73.16, 76.16)	100.0 100.0 100.0 100.0 100.0	0.00 (73.85, 75.12) 2.28 (75.60, 78.07) -0.74 (71.90, 75.78) -0.07 (72.60, 76.53) -0.31 (72.42, 76.02)	99.9 99.9 99.9 99.9
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (73.87, 75.17) 0.99 (74.75, 76.31) 0.29 (73.81, 76.07) 0.42 (73.89, 76.18) 0.34 (73.85, 76.11)	100.0 100.0 100.0 100.0 100.0	0.00 (73.96, 75.05) 1.59 (75.32, 76.94) 0.03 (73.37, 76.02) 0.26 (73.61, 76.24) 0.10 (73.50, 76.13)	100.0 100.0 100.0 100.0 100.0	0.00 (73.93, 74.82) 2.38 (75.93, 77.54) -0.37 (72.62, 75.44) -0.09 (72.99, 75.66) -0.22 (72.92, 75.48)	100.0 100.0 100.0 100.0 100.0
50-300	20	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (74.66, 77.07) 0.86 (75.22, 78.36) 0.04 (73.60, 77.91) 1.11 (74.93, 78.66) 0.65 (74.68, 78.10)	99.4 99.4 99.4 99.4 99.4	0.00 (74.79, 76.82) 1.56 (75.65, 78.87) -0.28 (72.87, 77.78) 1.23 (74.88, 78.91) 0.62 (74.51, 77.90)	99.6 99.6 99.6 99.6 99.6	0.00 (74.99, 76.53) 2.18 (76.18, 79.45) -1.77 (69.71, 76.45) 0.84 (74.66, 79.21) 0.09 (73.93, 77.37)	98.9 98.9 98.9 98.9
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (74.85, 76.88) 0.93 (75.43, 77.98) 0.11 (74.29, 77.55) 0.81 (75.17, 78.11) 0.62 (75.03, 77.75)	100.0 100.0 100.0 100.0 100.0	0.00 (74.84, 76.53) 1.34 (75.77, 78.34) -0.13 (73.65, 77.53) 0.76 (74.87, 78.35) 0.34 (74.59, 77.53)	99.6 99.6 99.6 99.6 99.6	0.00 (75.03, 76.33) 2.10 (76.19, 79.14) -1.18 (71.58, 76.61) 0.55 (74.59, 78.21) 0.10 (74.15, 77.29)	99.7 99.7 99.7 99.7 99.7
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (74.96, 76.51) 0.75 (75.48, 77.45) 0.13 (74.75, 77.25) 0.49 (75.15, 77.54) 0.36 (75.04, 77.33)	100.0 100.0 100.0 100.0 100.0	0.00 (75.04, 76.22) 1.13 (75.81, 77.69) -0.10 (74.30, 76.84) 0.35 (74.92, 77.23) 0.17 (74.79, 76.96)	100.0 100.0 100.0 100.0 100.0	0.00 (75.08, 76.07) 1.81 (76.36, 78.48) -0.76 (73.01, 76.32) 0.27 (74.57, 77.21) -0.02 (74.42, 76.76)	100.0 100.0 100.0 100.0 100.0
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (75.04, 76.11) 0.72 (75.58, 76.95) 0.30 (75.12, 76.74) 0.41 (75.20, 76.82) 0.38 (75.15, 76.78)	100.0 100.0 100.0 100.0 100.0	0.00 (75.10, 75.98) 1.03 (75.92, 77.29) 0.07 (74.79, 76.49) 0.29 (75.04, 76.65) 0.21 (74.96, 76.59)	100.0 100.0 100.0 100.0 100.0	0.00 (75.15, 75.81) 1.61 (76.37, 77.76) -0.46 (74.02, 75.99) -0.05 (74.65, 76.40) -0.14 (74.54, 76.27)	100.0 100.0 100.0 100.0 100.0

Table 2: Summary of the estimated SAUC for Biomarker 2 when the true censoring is distributed as Exp(0.2).

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (56.65, 58.68) 1.79 (58.40, 60.65) 1.26 (57.56, 60.17) 1.49 (57.82, 60.40) 1.11 (57.45, 59.85)	98.7 98.7 98.7 98.7 98.7	0.00 (56.91, 58.64) 2.95 (59.44, 61.90) 1.78 (57.62, 61.13) 2.60 (58.50, 61.74) 1.43 (57.54, 60.66)	98.9 98.9 98.9 98.9 98.9	0.00 (57.07, 58.42) 4.28 (60.72, 63.20) 2.39 (57.02, 62.10) 3.81 (59.17, 62.99) 1.96 (57.22, 61.72)	97.8 97.8 97.8 97.8 97.8
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (56.95, 58.56) 1.85 (58.67, 60.63) 1.33 (57.76, 60.19) 1.49 (58.03, 60.41) 1.00 (57.67, 59.81)	99.6 99.6 99.6 99.6 99.6	0.00 (57.03, 58.42) 2.87 (59.74, 61.60) 1.85 (57.61, 61.07) 2.51 (58.64, 61.39) 1.52 (57.69, 60.63)	99.7 99.7 99.7 99.7 99.7	0.00 (57.23, 58.27) 4.11 (60.92, 62.90) 2.62 (56.93, 62.04) 3.89 (60.12, 62.79) 2.42 (57.32, 61.83)	97.6 97.6 97.6 97.6 97.6
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \end{array}$ Prop_n Prop_o Prop_p	0.00 (57.09, 58.33) 1.85 (58.88, 60.38) 1.40 (58.21, 60.02) 1.53 (58.21, 60.14) 1.05 (57.76, 59.65)	99.9 99.9 99.9 99.9	0.00 (57.16, 58.24) 2.94 (59.98, 61.41) 1.98 (57.55, 60.92) 2.75 (59.44, 61.24) 1.75 (57.61, 60.63)	99.6 99.6 99.6 99.6 99.6	0.00 (57.32, 58.15) 4.27 (61.22, 62.73) 3.13 (56.98, 62.14) 4.11 (60.66, 62.64) 2.83 (57.09, 61.98)	95.8 95.8 95.8 95.8 95.8
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (57.31, 58.19) 1.92 (59.13, 60.14) 1.74 (58.71, 60.03) 1.73 (58.51, 60.05) 1.29 (57.97, 59.72)	100.0 100.0 100.0 100.0 100.0	0.00 (57.36, 58.10) 2.96 (60.14, 61.21) 1.87 (57.27, 60.72) 2.84 (59.81, 61.14) 1.97 (57.54, 60.69)	99.6 99.6 99.6 99.6 99.6	0.00 (57.44, 58.02) 4.26 (61.44, 62.53) 3.46 (57.19, 62.11) 4.21 (61.30, 62.50) 3.69 (57.61, 62.17)	95.9 95.9 95.9 95.9 95.9
50-300	20	HZ_P HZ_O $Prop_o$ $Prop_p$	0.00 (57.09, 58.64) 1.36 (58.30, 60.07) 0.55 (57.41, 59.46) 1.01 (57.82, 59.91) 0.47 (57.46, 59.23)	97.8 97.8 97.8 97.8	0.00 (57.31, 58.54) 2.18 (59.24, 60.89) 1.02 (57.46, 60.09) 1.77 (58.02, 60.76) 0.46 (57.17, 59.43)	97.8 97.8 97.8 97.8 97.8	0.00 (57.50, 58.38) 3.13 (60.11, 61.99) 1.58 (57.18, 61.26) 2.85 (58.70, 61.94) -0.03 (56.53, 59.14)	94.2 94.2 94.2 94.2 94.2
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (57.24, 58.59) 1.39 (58.57, 60.05) 0.47 (57.61, 59.26) 0.87 (57.73, 59.89) 0.37 (57.47, 59.11)	97.4 97.4 97.4 97.4 97.4	0.00 (57.37, 58.37) 2.22 (59.44, 60.82) 0.84 (57.41, 60.03) 1.51 (57.65, 60.60) 0.23 (57.19, 59.03)	97.5 97.5 97.5 97.5 97.5	0.00 (57.52, 58.33) 3.15 (60.30, 61.81) 1.98 (57.25, 61.33) 2.86 (58.83, 61.78) -0.32 (56.63, 58.77)	95.1 95.1 95.1 95.1 95.1
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \end{array}$ Prop_n Prop_o Prop_p	0.00 (57.47, 58.40) 1.40 (58.82, 59.91) 0.36 (57.62, 59.03) 0.67 (57.72, 59.49) 0.27 (57.61, 58.89)	99.0 99.0 99.0 99.0 99.0	0.00 (57.50, 58.35) 2.16 (59.55, 60.68) 0.55 (57.47, 59.76) 1.27 (57.64, 60.38) 0.03 (57.18, 58.74)	98.3 98.3 98.3 98.3 98.3	0.00 (57.60, 58.23) 3.17 (60.50, 61.64) 2.20 (57.51, 61.22) 3.01 (59.34, 61.58) -0.48 (56.64, 58.30)	95.5 95.5 95.5 95.5 95.5
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (57.56, 58.21) 1.38 (58.92, 59.64) 0.12 (57.53, 58.50) 0.28 (57.61, 58.89) 0.11 (57.52, 58.45)	99.1 99.1 99.1 99.1 99.1	0.00 (57.61, 58.18) 2.20 (59.71, 60.53) 0.12 (57.29, 59.57) 0.65 (57.48, 60.04) -0.18 (57.17, 58.29)	99.6 99.6 99.6 99.6 99.6	0.00 (57.68, 58.15) 3.11 (60.66, 61.49) 2.56 (57.42, 61.18) 3.01 (60.03, 61.45) -0.62 (56.69, 57.91)	94.1 94.1 94.1 94.1 94.1

Table 3: Summary of the estimated SAUC for Biomarker when the true censoring is distributed as U(1,4), but a misspecified exponential distribution is fitted.

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median~(Q1,~Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (73.54, 76.47) 1.22 (74.13, 78.10) 1.37 (74.01, 78.84) 2.08 (74.91, 79.43) 1.40 (74.27, 78.62)	99.9 99.9 99.9 99.9	0.00 (73.75, 76.05) 1.86 (74.77, 78.67) 0.42 (72.79, 77.89) 2.42 (74.61, 79.83) 0.93 (73.57, 77.99)	100 100 100 100 100	0.00 (74.04, 75.88) 2.65 (75.62, 79.53) -1.21 (71.39, 76.53) 2.26 (73.85, 80.34) 0.17 (72.99, 77.49)	100.0 100.0 100.0 100.0 100.0
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (73.89, 76.20) 1.19 (74.85, 77.58) 1.14 (74.35, 78.33) 1.85 (74.82, 79.14) 1.22 (74.64, 78.23)	100.0 100.0 100.0 100.0 100.0	0.00 (73.98, 75.91) 1.84 (75.36, 78.17) 0.41 (73.20, 77.59) 1.82 (74.40, 79.05) 0.84 (73.92, 77.63)	100 100 100 100 100	0.00 (74.06, 75.66) 2.39 (75.80, 78.85) -1.26 (71.47, 75.97) 1.53 (73.55, 79.17) -0.03 (72.72, 76.92)	100.0 100.0 100.0 100.0 100.0
	50	$ HZ_P $ $ HZ_O $ $ Prop_n $ $ Prop_o $ $ Prop_p $	0.00 (73.92, 75.78) 1.01 (74.84, 77.03) 0.92 (74.36, 77.53) 1.29 (74.65, 78.08) 1.00 (74.50, 77.38)	100.0 100.0 100.0 100.0 100.0	0.00 (74.04, 75.59) 1.50 (75.05, 77.39) 0.11 (73.09, 76.49) 0.95 (73.70, 77.91) 0.27 (73.51, 76.59)	100 100 100 100 100	0.00 (74.21, 75.36) 2.18 (75.87, 78.08) -1.40 (71.84, 75.31) 0.28 (73.05, 77.74) -0.38 (72.73, 76.17)	100.0 100.0 100.0 100.0 100.0
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (74.14, 75.41) 1.00 (74.98, 76.59) 0.74 (74.46, 76.75) 0.86 (74.51, 77.01) 0.73 (74.48, 76.72)	100.0 100.0 100.0 100.0 100.0	0.00 (74.27, 75.28) 1.55 (75.54, 77.10) 0.10 (73.64, 76.24) 0.47 (74.01, 76.66) 0.22 (73.85, 76.25)	100 100 100 100 100	0.00 (74.30, 75.19) 2.27 (76.18, 77.76) -1.14 (72.32, 74.97) -0.05 (73.23, 76.53) -0.42 (73.01, 75.60)	100.0 100.0 100.0 100.0 100.0
50-300	20	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (75.28, 77.32) 0.91 (75.76, 78.71) 1.01 (74.27, 80.09) 1.82 (75.16, 80.72) 1.21 (75.14, 79.55)	99.9 99.9 99.9 99.9	0.00 (75.17, 77.04) 1.61 (76.27, 79.15) 0.71 (73.69, 79.38) 2.05 (75.32, 81.35) 0.78 (74.83, 78.65)	100 100 100 100 100	0.00 (75.20, 76.64) 2.27 (76.68, 79.81) -0.72 (71.38, 77.56) 2.04 (74.75, 81.51) 0.08 (74.26, 77.71)	99.9 99.9 99.9 99.9
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (75.08, 76.99) 0.91 (75.62, 78.19) 0.61 (74.55, 79.18) 1.21 (75.08, 79.86) 0.88 (75.11, 78.73)	100.0 100.0 100.0 100.0 100.0	0.00 (75.14, 76.71) 1.52 (76.27, 78.79) 0.58 (73.80, 78.95) 1.41 (74.93, 80.52) 0.57 (74.86, 78.17)	100 100 100 100 100	0.00 (75.30, 76.36) 2.34 (76.64, 79.48) -0.49 (72.40, 77.26) 1.36 (74.52, 80.73) 0.22 (74.49, 77.57)	100.0 100.0 100.0 100.0 100.0
	50	$ HZ_P $ $ HZ_O $ $ Prop_n $ $ Prop_o $ $ Prop_p $	0.00 (75.23, 76.61) 0.75 (75.82, 77.63) 0.54 (74.95, 78.27) 0.77 (75.36, 78.82) 0.66 (75.38, 78.08)	100.0 100.0 100.0 100.0 100.0	0.00 (75.36, 76.50) 1.38 (76.24, 78.24) 0.21 (74.18, 77.92) 0.80 (75.00, 78.84) 0.51 (75.08, 77.62)	100 100 100 100 100	0.00 (75.34, 76.26) 1.98 (76.50, 79.06) -0.79 (72.96, 76.79) 0.34 (74.46, 78.70) -0.18 (74.52, 76.95)	100.0 100.0 100.0 100.0 100.0
	100	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop}_n \ & \operatorname{Prop}_o \ & \operatorname{Prop}_p \end{aligned}$	0.00 (75.31, 76.34) 0.65 (75.79, 77.16) 0.35 (75.25, 77.34) 0.47 (75.39, 77.43) 0.46 (75.47, 77.20)	100.0 100.0 100.0 100.0 100.0	0.00 (75.37, 76.19) 1.04 (76.15, 77.60) -0.14 (74.52, 76.81) 0.35 (75.17, 77.16) 0.21 (75.11, 76.89)	100 100 100 100 100	0.00 (75.40, 76.05) 1.62 (76.62, 78.16) -1.10 (73.27, 75.74) -0.38 (74.40, 76.49) -0.45 (74.47, 76.16)	100.0 100.0 100.0 100.0 100.0

Table 4: Summary of the estimated SAUC for Biomarker when the true censoring is distributed as U(1,4), but a misspecified exponential distribution is fitted.

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (56.84, 58.68) 2.04 (58.64, 60.88) 1.02 (57.30, 60.27) 1.94 (58.21, 60.94) 0.93 (57.60, 59.84)	99.3 99.3 99.3 99.3 99.3	0.00 (56.96, 58.65) 3.29 (59.90, 62.16) 1.63 (57.16, 61.33) 2.98 (59.17, 62.13) 1.03 (57.39, 60.22)	99.6 99.6 99.6 99.6 99.6	0.00 (57.16, 58.39) 4.68 (61.29, 63.67) 2.44 (56.70, 62.73) 4.40 (60.38, 63.62) 0.65 (56.70, 60.35)	99.2 99.2 99.2 99.2 99.2
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (56.99, 58.42) 2.07 (58.96, 60.71) 1.08 (57.54, 60.01) 1.88 (58.42, 60.57) 0.86 (57.60, 59.57)	99.3 99.3 99.3 99.3	0.00 (57.13, 58.40) 3.29 (60.17, 61.93) 1.48 (57.10, 61.18) 2.88 (59.07, 61.74) 0.83 (57.28, 59.96)	99.7 99.7 99.7 99.7 99.7	0.00 (57.29, 58.32) 4.70 (61.65, 63.44) 3.37 (56.81, 62.87) 4.37 (60.11, 63.25) 0.23 (56.56, 60.13)	98.9 98.9 98.9 98.9 98.9
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (57.27, 58.43) 2.06 (59.30, 60.62) 0.95 (57.69, 60.10) 1.70 (58.39, 60.48) 0.60 (57.77, 59.39)	99.9 99.9 99.9 99.9	0.00 (57.34, 58.29) 3.26 (60.49, 61.76) 1.24 (57.26, 61.16) 2.81 (58.53, 61.55) 0.48 (57.39, 59.55)	99.6 99.6 99.6 99.6 99.6	0.00 (57.37, 58.16) 4.64 (61.72, 63.12) 3.88 (57.00, 62.82) 4.35 (59.47, 63.01) -0.09 (56.48, 59.24)	98.4 98.4 98.4 98.4 98.4
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (57.37, 58.21) 2.04 (59.38, 60.32) 0.85 (57.57, 59.89) 1.72 (58.60, 60.14) 0.54 (57.69, 59.07)	99.8 99.8 99.8 99.8 99.8	0.00 (57.47, 58.17) 3.32 (60.64, 61.59) 1.12 (57.23, 61.14) 2.75 (58.17, 61.33) 0.11 (57.24, 58.84)	99.6 99.6 99.6 99.6 99.6	0.00 (57.54, 58.08) 4.64 (61.98, 62.94) 4.38 (57.18, 62.83) 4.15 (57.73, 62.72) -0.55 (56.42, 58.31)	99.6 99.6 99.6 99.6 99.6
50-300	20	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (57.28, 58.74) 1.51 (58.68, 60.39) 0.58 (57.52, 59.78) 1.46 (58.31, 60.47) 0.39 (57.45, 59.34)	98.1 98.1 98.1 98.1 98.1	0.00 (57.33, 58.50) 2.43 (59.49, 61.11) 0.66 (57.36, 59.97) 2.22 (58.74, 61.12) 0.13 (57.16, 58.98)	98.1 98.1 98.1 98.1 98.1	0.00 (57.50, 58.45) 3.40 (60.52, 62.26) 1.59 (57.22, 61.51) 3.33 (60.08, 62.37) -0.27 (56.65, 58.71)	96.7 96.7 96.7 96.7 96.7
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	0.00 (57.37, 58.56) 1.53 (58.84, 60.14) 0.39 (57.49, 59.34) 1.22 (58.07, 60.01) 0.25 (57.47, 58.98)	98.2 98.2 98.2 98.2 98.2	0.00 (57.43, 58.41) 2.46 (59.66, 61.00) 0.39 (57.33, 59.76) 2.20 (58.58, 61.01) 0.08 (57.23, 58.74)	97.3 97.3 97.3 97.3 97.3	0.00 (57.58, 58.30) 3.42 (60.65, 61.98) 2.11 (57.21, 61.48) 3.32 (60.09, 61.94) -0.35 (56.65, 58.38)	98.9 98.9 98.9 98.9 98.9
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	0.00 (57.50, 58.43) 1.53 (58.97, 59.99) 0.29 (57.54, 58.99) 1.00 (58.00, 59.77) 0.21 (57.58, 58.79)	98.1 98.1 98.1 98.1 98.1	0.00 (57.51, 58.30) 2.42 (59.83, 60.86) 0.24 (57.32, 59.35) 2.08 (58.07, 60.79) -0.06 (57.19, 58.53)	98.7 98.7 98.7 98.7 98.7	0.00 (57.66, 58.22) 3.42 (60.79, 61.83) 0.98 (56.96, 61.42) 3.26 (59.88, 61.81) -0.52 (56.64, 58.12)	99.3 99.3 99.3 99.3 99.3
	100	$ HZ_P $ $ HZ_O $ $ Prop_n $ $ Prop_o $ $ Prop_p $	0.00 (57.63, 58.24) 1.54 (59.11, 59.83) 0.15 (57.65, 58.58) 0.55 (57.86, 59.44) 0.13 (57.65, 58.50)	99.6 99.6 99.6 99.6 99.6	0.00 (57.68, 58.18) 2.41 (59.99, 60.72) 0.02 (57.37, 58.63) 2.01 (57.85, 60.59) -0.13 (57.27, 58.30)	99.6 99.6 99.6 99.6 99.6	0.00 (57.73, 58.13) 3.47 (61.02, 61.75) 2.89 (57.20, 61.58) 3.30 (60.28, 61.67) -0.59 (56.75, 57.93)	99.9 99.9 99.9 99.9