

Prova de Hidrostática e Hidrodinâmica – ITA

1 - (ITA-13) Um recipiente contém dois líquidos homogêneos e imiscíveis, A e B, com densidades respectivas, ρ_a e ρ_b . Uma esfera sólida, maciça e homogênea, de massa m igual a 5kg, permanece em equilíbrio sob ação de uma mola de constante elástica k igual a 800N/m, com metade de seu volume imerso em cada um dos líquidos, respectivamente, conforme a figura. Sendo ρ_a igual a 4 ρ e ρ_b igual a 6 ρ , em que ρ é a densidade da esfera, pode-se afirmar que a deformação da mola é de:

- a) 0m. b) 9/16 m. c) 3/8 m. d) ¼ m e) 1/8 m
- **2 -** (ITA-09) Uma balsa tem o formato de um prisma reto de comprimento L e seção transversal como vista na figura. Quando sem carga, ela submerge parcialmente até a uma profundidade h_0 . Sendo ρ a massa específica da água e g a aceleração da gravidade, e supondo seja mantido o equilíbrio hidrostático, assinale a carga P que a balsa suporta quando submersa a uma profundidade h_1 .

A)
$$P = \rho g L (h_1^2 - h_0^2) sen\theta$$

B)
$$P = \rho g L (h_1^2 - h_0^2) \tan \theta$$

C)
$$P = \rho g L (h_1^2 - h_0^2) sen \theta / 2$$

D)
$$P = \rho g L (h_1^2 - h_0^2) \tan \theta / 2$$

E)
$$P = \rho g L (h_1^2 - h_0^2) 2 \tan \theta / 2$$

3 - (ITA-04) Um painel coletor de energia solar para aquecimento residencial de água, com **50%** de

- eficiência, tem superfície coletora com área útil de **10 m**². A água circula em tubos fixados sob a superfície coletora. Suponha que a intensidade da energia solar incidente é de **1,0** x **10**³ **W/m**² e que a vazão de suprimento de água aquecida é de **6,0** litros por minuto. Assinale a opção que indica a variação da temperatura da água.
- a) 12°C b) 10°C c) 1,2 °C d) 1,0 °C e) 0,10 °C
- **4** (ITA-03) Durante uma tempestade. Maria fecha as janelas do seu apartamento e ouve o zumbido do vento lá fora. Subitamente o vidro de uma janela se quebra. Considerando que o vente soprado tangencialmente à janela, o acidente pode ser melhor explicado pelo(a).
- a) princípio de conservação da massa.
- b) equação de Bernoulli
- c) princípio de Arquimedes.
- d) princípio de Pascal.
- e) princípio de Stevin.
- **5** (ITA-02) Um pedaço de gelo flutua em equilíbrio térmico com uma certa quantidade de água depositada em um balde. À medida que o gelo derrete, podemos afirmar que:
- a) O nível da água no balde aumenta, pois haverá uma queda de temperatura da água.
- b) O nível da água no balde diminui, pois haverá uma queda de temperatura de água.
- c) O nível da água no balde aumenta, pois a densidade da água é maior que a densidade do gelo.
- d) O nível da água no balde diminui, pois a densidade da água é maior que a densidade do gelo.
- e) O nível da água no balde não se altera.
- **6** (ITA-01) Um pequeno barco de massa igual a 60 kg tem o formato de uma caixa de base retangular cujo comprimento é 2,0 m e a largura 0,80 m. A profundidade do barco é de 0,23 m. Posto para flutuar em uma lagoa, com um tripulante de 1078 N e um lastro, observa-se o nível da água a 20 cm acima do fundo do barco. O melhor valor que representa a massa do lastro em kg é
- a) 260 b)210 c)198 d)150
- e) indeterminado, pois o barco afundaria com o peso deste tripulante
- **7 -** (ITA-98) Um astronauta, antes de partir para uma viagem até a Lua, observa um copo de água contendo uma pedra de gelo e verifica que 9/10 do volume da

pedra de gelo está submersa na água. Como está de partida para a Lua, ele pensa em fazer a mesma experiência dentro da sua base na Lua. Dada que o valor da aceleração de gravidade na superfície da Lua é 1/6 do seu valor na Terra, qual é porcentagem do volume da pedra de gelo que estaria submersa no copo de água na superfície da Lua?

- a) 7%. b) 15%.
- c) 74%.
- d) 90%. e) 96%.

8 - (ITA-98) Um cilindro maciço flutua verticalmente, com estabilidade, com uma fração f do seu volume submerso em mercúrio, de massa especifica D. Colocase água suficiente (de massa especifica d) por cima do mercúrio, para cobrir totalmente o cilindro, e observase que o cilindro continue em contato com o mercúrio após a adição da água. Conclui-se que o mínimo valor da fração f originalmente submersa no mercúrio é:

- c) $\frac{d}{D}$

9 - (ITA-98) Na extremidade inferior de uma vela cilíndrica de 10 cm de comprimento (massa especifica 0,7 g cm⁻³) é fixado um cilindro maciço de alumínio (massa específica 2,7 g cm⁻³), que tem o mesmo raio que a vela e comprimento de 1,5 cm. A vela é acesa e imersa na água, onde flutua de pé com estabilidade, como mostra a figura. Supondo que a vela queime a uma taxa de 3 cm por hora e que a cera fundida não escorra enquanto a vela queima, conclui-se que a vela vai apagar-se:

- a) imediatamente, pois não vai flutuar.
- b) em 30 min.
- c) em 50 min.
- d) em 1h 50 min.
- e) em 3h 20 min.
- 10 (ITA-97) Um anel, que parece ser de ouro maciço, tem massa de 28,5 g. O anel desloca 3 cm³ de água quando submerso. Considere as seguintes afirmações:
- I O anel é de ouro maciço.
- II O anel é oco e o volume da cavidade 1,5 cm³.

- III O anel é oco e o volume da cavidade 3,0 cm³.
- IV O anel é feito de material cuja massa específica é a metade da do ouro.

Das afirmativas mencionadas:

- a) Apenas I é falsa.
- b) Apenas III é falsa.
- c) Apenas I e III são falsas. d) Apenas II e IV são falsas.
- e) Qualquer uma pode ser correta.
- 11 (ITA-97) Um vaso comunicante em forma de U possui duas colunas da mesma altura h = 42,0 cm, preenchidas com água até a metade. Em seguida, adiciona-se óleo de massa específica igual a 0,80 g/cm³ a uma das colunas até a coluna estar totalmente preenchida, conforme a figura B. A coluna de óleo terá comprimento de:
- a) 14,0 cm.
- b) 16,8 cm.
- c) 28,0 cm
- d) 35,0 cm.
- e) 37,8 cm.

12 - (ITA-95) Num recipiente temos dois líquidos não miscíveis com massas específicas $\rho_1 < \rho_2$. Um objeto de volume V e massa específica ρ sendo $\rho_1 < \rho < \rho_2$ fica em equilíbrio com uma parte em contato com o líquido 1 e outra com o líquido 2 como mostra a figura. Os volumes V₁ e V₂ das partes do objeto que ficam imersos em 1 e 2 são respectivamente:

a) $V_1 = V(\rho_1/\rho)$

$$V_2 = V(\rho_2/\rho)$$

b)
$$V_1 = V (\rho_2 - \rho_1)/(\rho_2 - \rho)$$

$$V_2 = V (\rho_2 - \rho_1)/(\rho - \rho_1)$$

c)
$$V_1 = V (\rho_2 - \rho_1)/(\rho_2 + \rho_1)$$

$$V_2 = V (\rho - \rho_1)/(\rho_2 + \rho_1)$$

d) $V_1 = V (\rho_2 - \rho)/(\rho_2 + \rho_1)$

$$V_2 = V (\rho + \rho_1)/(\rho_2 + \rho_1)$$

e)
$$V_1 = V (\rho_2 - \rho)/(\rho_2 - \rho_1)$$

$$V_2 = V (\rho - \rho_1)/(\rho_2 - \rho_1)$$

13 - (ITA-95) Um tubo cilíndrico de secção transversal constante de área S fechado numa das extremidades e com uma coluna de ar no seu interior de 1,0 m encontra-se em equilíbrio mergulhado em água cuja massa específica é ρ = 1,0 g/cm³ com o topo do tubo coincidindo com a superfície (figura abaixo). Sendo Pa = $1,0.10^5$ Pa a pressão atmosférica e g = 10 m/s² a aceleração da gravidade, a que distância h deverá ser

elevado o topo do tubo com relação à superfície da água para que o nível da água dentro e fora do mesmo coincidam?

- a) 1,1 m
- b) 1,0 m
- c) 10 m
- d) 11 m
- e) 0,91 m
- **14** (ITA-93) Os dois vasos comunicantes a seguir são abertos, têm seções retas iguais a S e contêm um líquido de massa específica ρ. Introduz-se no vaso esquerdo um cilindro maciço e homogêneo de massa M, seção S' < S e menos denso que o líquido. O cilindro é introduzido e abandonado de modo que no equilíbrio seu eixo permaneça vertical. Podemos afirmar que no equilíbrio o nível de ambos os vasos sobe:
- a) M / [ρ (S S')].
- b) M / [ρ (2S S')].
- c) M / [2p (2S S')].
- d) $2M / [2\rho (2S S')]$.
- e) M / [2ρ S].

15 - (ITA-92) Dois vasos comunicantes contêm dois líquidos não miscíveis, I e II, de massas específicas d_1 e d_2 , sendo $d_1 < d_2$, como mostra a figura. Qual é a razão entre as alturas das superfícies livres desses dois líquidos, contadas a partir da sua superfície de

separação?

a)
$$h_1 = d_2 / (h_2 d_1)$$

b)
$$(h_1/h_2) = (d_2/d_1) - 1$$

c)
$$(h_1/h_2) = (d_2/d_1)$$

d)
$$(h_1/h_2) = (d_2/d_1) + 1$$

e)
$$(h_1/h_2) = (d_1/d_2)$$

16 - (ITA-91) O sistema de vasos comunicantes da figura cujas secções retas são S e S', está preenchido com mercúrio de massa específica ρ_m . Coloca-se no ramo esquerdo um cilindro de ferro de massa específica $\rho_F < \rho_m$, volume V e secção S". O cilindro é introduzido de modo que seu eixo permaneça vertical. Desprezando o empuxo do ar, podemos afirmar que no equilíbrio:

a) há desnível igual a $\rho_F V/(\rho_m S')$ entre os dois ramos;

- b) o nível sobe $\rho_F V/(\rho_m (S + S' S''))$ em ambos os ramos;
- c) há desnível igual a $\rho_F V/(\rho_m S'')$ entre os dois ramos;
- d) o nível sobe $(\rho_m \rho_F)V/(\rho_m(S + S' S''))$ em ambos os ramos;
- e) o nível sobe (V/S") em ambos os ramos.
- 17 (ITA-90) Para se determinar a massa específica de um material fez-se um cilindro de 10,0 cm de altura desse material flutuar dentro do mercúrio mantendo o seu eixo perpendicular à superfície do líquido. Posto a oscilar verticalmente verificou-se que o seu período era de 0,60 s. Qual é o valor da massa específica do material ? Sabe-se que a massa específica do mercúrio é de 1,36 x 10^4 kg/m³ e que aceleração da gravidade local é de 10,0 m/s².
- a) Faltam dados para calcular. $\,$ b)1,24 \cdot 10^4 kg/m 3
- c)1,72 . 10⁴ kg/m³
- d) $7,70 \cdot 10^3 \text{ kg/m}^3$
- e) Outro valor.
- **18** (ITA-90) Um cone maciço e homogêneo tem a propriedade de flutuar em um líquido com a mesma linha de flutuação, quer seja colocado de base para baixo ou vértice para baixo. Neste caso pode-se afirmar que:
- a) A distância da linha d'água ao vértice é a metade da altura do cone.
- b) O material do cone tem densidade 0,5 em relação à do líquido.
- c) Não existe cone com essas propriedades.
- d) O material do cone tem densidade 0,25 em relação ao líquido.
- e) Nenhuma das respostas acima é satisfatória.
- **19** (ITA-90) Um termômetro em uma sala de 8,0 x 5,0 x 4,0m indica 22°C e um higrômetro indica que a umidade relativa é de 40%. Qual é a massa(em kg) de vapor de água na sala se sabemos que nessa temperatura o ar saturado contém 19,33 g de água por metro cúbico ?
- a)1,24 b)0,351 c)7,73 d)4,8 x 10^{-1} e) Outro valor.
- 20 (ITA-89) Numa experiência sobre pressão foi montado o arranjo ao lado, em que R é um recipiente cilíndrico provido de uma torneira T que o liga a uma bomba de vácuo. O recipiente contém uma certa quantidade de mercúrio (Hg). Um tubo t de 100,0 cm de comprimento é completamente enchido com Hg e emborcado no recipiente sem que se permita a entrada de ar no tubo. A rolha r veda completamente a junção do tubo com o recipiente. As condições do laboratório

são de pressão e temperatura normais (nível do mar). O extremo inferior do tubo está a uma distância L = 20,0 cm da superfície do Hg em R. O volume de Hg no tubo é desprezível comparado com aquele em R. São feitas medidas da altura h do espaço livre acima da coluna de Kg em t, nas seguintes condições :

- I) torneira aberta para o ambiente;
- II) pressão em A reduzida à metade;
- III) todo o ar praticamente retirado de A.

Procure abaixo uma das situações que corresponda à

altura h.

	Condição	h
A)	1	0,0 cm
В)	II	42,0 cm
C)	III	100,0 cm
D)	II	50,0 cm
E)	1	24,0 cm

21 - (ITA-89) Numa experiência de Arquimedes foi montado o arranjo abaixo. Dentro de um frasco contendo água foi colocada uma esfera de vidro (e₁) de raio externo r₁ , contendo um líquido de massa específica $\rho_1 = 1.10 \text{ g/cm}^3$, que é a mesma do próprio vidro. Ainda dentro dessa esfera está mergulhada outra esfera (e₂) de plástico, de massa específica $\rho_2 < \rho_1$ e raio $r_2 = 0.5 r_1$, de modo que todo o volume de e_1 é preenchido. Qual deve ser o valor de ρ_2 para que o sistema permaneça em equilíbrio no seio da água?

- A) 1,0 g/cm³ B) 0,55 g/cm³
- C) 0.90 g/cm^3
- D) 0,40 g/cm³
- E) 0,30 g/cm³

22 - (ITA-88) Dois blocos, A e B, homogêneos e de massa específica $3,5 \text{ g/cm}^3$ $6,5 \text{ g/cm}^3$, respectivamente, foram colados um no outro e o conjunto resultante foi colocado no fundo (rugoso) de um recipiente, como mostra a figura. O bloco A tem o

formato de um paralelepípedo retangular de altura 2 a , largura a e espessura a. O bloco B tem o formato de um cubo de aresta a. Coloca-se, cuidadosamente, água no recipiente até uma altura h, de modo que o sistema constituído pelos blocos A e B permaneça em equilíbrio, i é, não tombe. O valor máximo de h é:

23 - (ITA-88) Uma haste homogênea e uniforme de comprimento L, secção reta de área A, e massa específica ρ é livre de girar em torno de um eixo horizontal fixo num ponto P localizado a uma distância d = L /2 abaixo da superfície de um líquido de massa específica $\rho = 2 \rho$. Na situação de equilíbrio estável, a haste forma com a vertical um ângulo θ igual a:

() A. 45⁰ () B. 60° () C. 30^{0} () D. 75° $() E. 15^{\circ}$

24 - (ITA-84) Um sistema de vasos comunicantes contém mercúrio metálico em A, de massa específica 13,6g.cm⁻³, e água em B de massa específica 1,0g.cm⁻³. As secções transversais de A e B têm áreas cm^2 e $S_B \cong 150 \ cm^2$ respectivamente. Colocando-se em B um bloco de 2,72 x 10³ e massa específica 0,75 g.cm⁻³, de quanto sobe o nível do mercúrio em A? Observação: O volume de água é suficiente para que o corpo não toque o mercúrio.

- A) Permanece em N.
- B) Sobe 13,5 cm.
- C) Sobe 40,8 cm.
- D) Sobe 6,8 cm.
- E) Sobe 0,5 cm.
- **25** (ITA-83) Na figura, os blocos B são idênticos e de massa específica $d>1,0~g/cm^3$. O frasco A contém água pura e o D contém inicialmente um líquido ℓ_1 de massa específica 1,3 g / cm3 . Se os blocos são colocados em repouso dentro dos líquidos, para que lado se desloca a marca P colocada no cordão de ligação ? (As polias não oferecem atrito e são consideradas de massa desprezível).

- (A) Para a direita.
- (B) Para a esquerda.
- (C) Depende do valor de d.
- (D) Permanece em repouso.
- (E) Oscila em torno da posição inicial.
- **26** (ITA-83) Na questão anterior, supondo-se que P sofra deslocamento, acrescenta-se ao frasco D um líquido ℓ_2 de massa específica 0,80 g / cm3 miscível em ℓ_1 . Quando se consegue novamente o equilíbrio do ponto P, com os blocos B suspenso dentro dos frascos, quais serão as porcentagens em volume dos líquidos ℓ_1 e ℓ_2 .

	Q_1	ℓ_2
(A)	50%	50%
(B)	30%	70%
(C)	40%	60%
(D)	Dependem do valor de d.	

- (E) 60% 40%
- **27 -** (ITA-83) A Usina de Itaipú, quando pronta, vai gerar 12.600 MW (Megawatt) de potência. Supondo que

não haja absolutamente perdas e que toda a água que cai vai gerar energia elétrica, qual deverá ser o volume de água, em metros cúbicos, que deve escoar em uma hora, sofrendo um desnível de 110 m, para gerar aquela potência ? $\left(g=9.8 \text{ m} / \text{s}^2\right)$

- (A) 1,17 x 107 m3 (B) 1,20 x 104 m3
- (C) 4,21 x 107 m3 (D) 4,19 x 108 m3
- (E) 7,01 x 108 m3

GABARITO

1	D
2	D
3	Α
4	В
5	E
6	D
7	D
8	С
9	В
10	С
11	D
12	E
13	Α
14	E
15	С
16	*
17	В
18	В
19	Α
20	В
21	E
22	С
23	Α
24	E
25	В
26	С
27	С