CYK Probabiliste

Lapraye & Lévêque & Viegas

Paris VII

1er juillet 2016

L'Algorithme CYK

- Un algorithme de parsing ascendant
- Complexité $\mathcal{O}(|G|n^3)$
- Parsing tabulaire
- Extention aux grammaire hors-contexte probabilistes (PCFG)

L'Algorithme CYK

Algorithm 1 CYK normal

```
function CKY(w[1..n], G :< NT, T, P, \rho >, R[1..n, 1..n])
    for all i de 1 à m do
       if N \rightarrow w_i then
            R[i, i+1] \leftarrow N
    for all k de 2 à n do
        for all i de 1 à n-i+2 do
           for all i de i+1 à i+k do
               for all A \in R[i, j] do
                   for all do
                       for all NT \in P do
                           if NT \rightarrow AB then
                               R[i, i+k] = R[i, i+k] \cup \{NT\}
```

if $S \in R[0, n]$ then return True

• Les CFG : un quadruplet (Σ, V, S, P)

- Les CFG : un quadruplet (Σ, V, S, P)
- Les CFG pondérées : ajout d'une fonction de poids $f: p \mapsto \alpha, w \in W, \alpha \in \mathbb{R}$

- Les CFG : un quadruplet (Σ, V, S, P)
- Les CFG pondérées : ajout d'une fonction de poids $f: p \mapsto \alpha, w \in W, \alpha \in \mathbb{R}$
- Les CFG probabilistes : les poids correspondent à des probabilités pour une réécriture donnée.

$$f: p \mapsto \alpha, p \in P, \alpha \in [0, 1]$$

 $\forall X \in V, \sum_{X \to \alpha} p(X \to \alpha) = 1$

- Les CFG : un quadruplet (Σ, V, S, P)
- Les CFG pondérées : ajout d'une fonction de poids $f: p \mapsto \alpha, w \in W, \alpha \in \mathbb{R}$
- Les CFG probabilistes : les poids correspondent à des probabilités pour une réécriture donnée.

$$f: p \mapsto \alpha, p \in P, \alpha \in [0, 1]$$

 $\forall X \in V, \sum_{X \to \alpha} p(X \to \alpha) = 1$

 Les CFG probabilistes représentent un modèle de prédiction déduit à partir du corpus dont elles sont extraites.

- Les CFG : un quadruplet (Σ, V, S, P)
- Les CFG pondérées : ajout d'une fonction de poids $f: p \mapsto \alpha, w \in W, \alpha \in \mathbb{R}$
- Les CFG probabilistes : les poids correspondent à des probabilités pour une réécriture donnée.

$$f: p \mapsto \alpha, p \in P, \alpha \in [0, 1]$$

 $\forall X \in V, \sum_{X \to \alpha} p(X \to \alpha) = 1$

- Les CFG probabilistes représentent un modèle de prédiction déduit à partir du corpus dont elles sont extraites.
- Extraction des PCFG

La forme normale de Chomsky (CNF)

- l'axiome S est inaccessible
- Les règles de production adoptent une des formes suivantes, avec ε la production vide, $A,B,C,D\in V$, et $e\in\Sigma$:

$$A \rightarrow BC$$

$$D \rightarrow e$$

$$S o \varepsilon$$

Transformer la grammaire en CNF

- Faire en sorte que l'axiome n'apparaisse plus dans les parties droites de règles
- ② Supprimer les règles d'effacement (c'est à dire de la forme $A \to^* \varepsilon$) pour les non-terminaux autres que l'axiome.
- Faire en sorte que tout les terminaux apparaissent uniquement dans la partie droite de règles unaires
- Remplacer les règles de production n-aire par des règles binaires équivalentes.
- **Supprimer** les productions singulières de non-terminaux, c'est à dire les règles de la forme $A \to B$ avec $A, B \in V$

Transformer la grammaire en CNF

- Faire en sorte que l'axiome n'apparaisse plus dans les parties droites de règles
- ② Supprimer les règles d'effacement (c'est à dire de la forme $A \to^* \varepsilon$) pour les non-terminaux autres que l'axiome.
- Faire en sorte que tout les terminaux apparaissent uniquement dans la partie droite de règles unaires
- Remplacer les règles de production n-aire par des règles binaires équivalentes.
- § Supprimer les productions singulières de non-terminaux, c'est à dire les règles de la forme $A \to B$ avec $A, B \in V$

Le corpus Sequoia

- Un corpus diversifié
- Des phrases de longueur variable
- Extraction de la grammaire

L'Algorithme CYK

Algorithm 2 CYK probabiliste (argmax)

```
function CYK(w[1..n], G :< NT, T, P, \rho >, R[1..n, 1..n])
                                                                        \triangleright w : mot : G :
Grammaire: C: charte
   for all k \leftarrow 2, |n| do

⊳ Boucle gérant l'empan

       for all i \leftarrow k-2,0 do
           for all nt \in NT do
                                                            best = 0:
               for all nt \rightarrow nt^1nt^2 \subset P do
                   for all i \leftarrow i+1, k-1 do
                        t1 = R[i, j][nt^1]
                        t2 = R[i, k][nt^2]
                        candidate = t1 * t2 * \rho(nt \rightarrow nt^1nt^2);
                       if candidate > best then
                            best = candidate:
                R[i, k][nt] = best;
```

Notre implémentation du CYK

• Un algorithme gourmand en temps et en mémoire

Notre implémentation du CYK

- Un algorithme gourmand en temps et en mémoire
- Optimiser la recherche des réécritures possibles

Notre implémentation du CYK

- Un algorithme gourmand en temps et en mémoire
- Optimiser la recherche des réécritures possibles
- Le backtracking

Evaluation

• Une évaluation problématique.

Evaluation

- Une évaluation problématique.
- La mesure dite de PARSEVAL

Evaluation

- Une évaluation problématique.
- La mesure dite de PARSEVAL
- Précision, Rappel et f-mesure

Résultats

	Étiqueté	Non-étiqueté
Précision	0.829	0.870
Rappel	0.828	0.868
F-mesure	0.829	0.869

Références

Brian Roark, Richard Sproat.

Computational Approaches to Morphology and Syntax.

Oxford University Press, 2007.

Mariana Romanyshyn, Vsevolod Dyomkin.

The Dirty Little Secret of Constituency Parser Evaluation, 2014.

http://tech.grammarly.com/blog/posts/The-Dirty-Little-Secret-of-Constituency-Parser-Evaluation.html

Martin Lange, Hans Leiss

 \ll To CNF or not to CNF : An Efficient Yet Presentable Version of the CYK Algorithm », 2009

Informatica Didactica Nº 8

E. Black, S.Abney et al.

 \ll Procedure for Quantitatively Comparing the Syntactic Coverage of English Grammars \gg

1991, DARPA Speech and Natural Language Workshop

