

ZESPÓŁ SZKÓŁ ELEKTRYCZNO-ELEKTRONICZNYCH

im. prof. Maksymiliana Tytusa Hubera w Szczecinie

DOKUMENTACJA WYKONAWCZA

PROJEKTU PRZEJŚCIOWEGO z MODUŁU

Badanie i projektowanie układów elektronicznych

"Migające logo TME"

Realizatorzy projektu: Klasa/Grupa Rok szkolny

Kozaki:

Adam Kołodyński III Tn 2020/21

Mateusz Świątek

SPIS ZAWARTOŚCI

I.	CEL PROJEKTU1
II.	ZAŁOŻENIA PROJEKTOWE1
III.	SCHEMAT BLOKOWY3
IV.	OBLICZENIA PROJEKTOWE4
V.	WYNIKI SYMULACJI KOMPUTEROWEJ10
VI.	SCHEMAT IDEOWY
VII.	MOZAIKI PCB I SCHEMATY MONTAŻOWE 12
VIII.	WYKAZ KOMPONENTÓW (BOM)14
IX.	KOSZTORYS REALIZACYJNY PROJEKTU
Х.	MONTAŻ I URUCHOMIENIE URZĄDZENIA16
XI.	WNIOSKI
XII.	METRYKA PROJEKTU
XIII.	ŹRÓDŁA22

I. CEL PROJEKTU

Celem tego cudownego, najlepszego projektu jest zaprojektowanie oraz montaż skomplikowanych połączeń elektronicznych, których efektem będzie migające logo TME z uśmieszkiem. Część elektroniczna będzie wykonana z wykorzystaniem inwerterów Schmitta, omawianych na lekcjach z modułu "badanie i projektowanie urządzeń elektronicznych". Celem realizacji projektu jest udoskonalanie umiejętności z zakresu dobierania odpowiednich wartości konkretnych komponentów, projektowania schematów układu oraz tworzenie mozaik ścieżek. Kolejną bardzo przydatną umiejętnością którą rozwiniemy podczas realizacji projektu jest umiejętność wytwarzania płytek PCB oraz lutowania komponentów na wytrawionej już płytce.

II. ZAŁOŻENIA PROJEKTOWE

Zasilanie układu będzie realizowane przez gniazda w dwóch standardach, mini- USB typu B oraz jack 2.1mm. Przycisk z dwoma pozycjami stabilnymi, daje nam możliwość wyboru rodzaju gniazda z którego będzie doprowadzone napięcie do układu sygnalizacji poprawnego podłączenia zasilania, w momencie gdy zasilanie zostanie podłączone poprawnie, zaświeci się dioda zielona, natomiast gdy zostanie podłączone na odwrót, zaświeci się dioda czerwona, w tym momencie dalej przez układ nie popłynie prąd, dzięki odpowiednio podłączonej diodzie schottky. Zabezpieczeniem diody czerwonej przed wysokim napięciem wstecznym jest dioda dioda prostownicza, natomiast przed wysokim napięciem wstecznym diodę zieloną "ochrania" wcześniej wymieniona dioda schottky. Układ będzie składał się z kilku bloków, mianowicie:

Blok zasilania – układ dwóch gniazd, mini USB typu B oraz Gniazdo power jack 2,1mm, wraz z przełącznikiem do wyboru gniazda zasilającego, zintegrowany z tym blokiem jest

Blok sygnalizacji, składający się z diody czerwonej, zielonej, oraz odpowiednio dobranych rezystorów ograniczających prąd ledów. Dodatkowo w tym bloku jest umiejscowiona dioda schottky, która jest zabezpieczeniem układu przed niepoprawnym podłączeniem zasilania, równocześnie ochrania diodę zieloną przed wysokim napięciem wstecznym. Diodę czerwoną ochrania dioda prostownicza. Na końcu układu zasilania i sygnalizacji, jest przełącznik którym załącza się napięcie do układu.

Blok generatorów składa się inwerterów schmitta, kondensatora o wybranej pojemności, 100uF, oraz odpowiednio dobranych rezystorów (dla największych częstotliwości z danego bloku) oraz z potencjometrów, za pomocą których jest realizowana regulacja częstotliwości (w dół, górną granicę częstotliwości ogranicza rezystancja rezystora, natomiast dolną suma rezystancji rezystora oraz potencjometru). Generatory dla liter będą miały

możliwość regulacji częstotliwości w zakresie od 4-6 Hz, natomiast generatory dla bloków buzi oraz języka, częstotliwość będzie regulowana w granicach od 10-12 Hz. Sygnał z generatorów jest dostarczany do

Bloku mocy, który składa się odpowiednio z rezystorów ograniczających prąd podawanych na bazę odpowiednio dobranych tranzystorów które sterują prądem płynącym w

Blokach ledów. Bloki obciążenia składają się z segmentów w których występuje równoległe podłączenie diod LED wraz z rezystorami ograniczającymi prąd płynący przez pojedynczą diodę. Założeniem jest aby w wymienionych segmentach obciążenia występowało kolejno w segmentach:

Napisu:

"T" – 5 diod LED czerwonych, zakładany prąd płynący przez 1 diodę: 16mA "M" – 9 diod LED niebieskich, zakładany prąd płynący przez 1 diodę: 15mA "E" – 10 diod LED żółtych, zakładany prąd płynący przez jedną diodę: 16mA

Buzi:

7 diod LED zielonych, zakładany prąd płynący przez jedną diodę: 16mA Języka:

2 diody LED czerwone, zakładany prąd płynący przez jedną diodę: 16mA

Urządzenie będzie składało się z dwóch płytek połączonych board to board, za pomocą dwurzędowych goldPinów, 2x5. Na płytce generatora będą się znajdować bloki: zasilania (+blok zintegrowany sygnalizacji), generatorów, mocy. Na płytce wyświetlacza będzie znajdował się blok wyświetlacza (/ obciążenia, w którego skład wchodzą odpowiednie segmenty ledów)

III. SCHEMAT BLOKOWY

Rys.3.1 Schemat blokowy zaprojektowanego układu *Źródło:* Opracowanie własne

IV. OBLICZENIA PROJEKTOWE

1. Obliczenia bloku zasilania

Obliczam napięcie jakie będzie uznawane za napięcie zasilania w układzie:

$$U_{cc} = U_z - U_S = 5V - 0.5V = 4.5V$$

gdzie:

Ucc – Umowne napięcie zasilające układ

U_z – Napięcie podane poprzez gniazdo

U_s – Spadek napięcia na diodzie schottkyego, która jest zabezpieczeniem przed odwrotnym podłączeniem, przy polaryzacji w kierunku przewodzenia

Obliczam rezystancję dla rezystora, który będzie ograniczał prąd płynący przed diodę LED czerwoną w przypadku odwrotnego podłączenia zasilania

$$R_1 = \frac{U_Z - U_F - U_{Fred}}{I_{Fred}} = \frac{5 - 0.7 - 2}{0.015A} = 153\Omega$$

gdzie:

R₁ – Rezystancja rezystora R1 który ogranicza prąd diody LED czerwonej

Uz – Napięcie podane przez gniazdo

U_F – Spadek napięcia na diodzie zabezpieczającej przed wysokim napięciem wstecznym

U_{Fred} – napięcie charakterystyczne diody LED czerwonej w kierunku przewodzenia

I_{Fred} – Zakładany prąd który będzie płynął przez diodę LED czerwoną w przypadku odwrotnego podłączenia napięcia zasilania.

Obliczam moc wydzielaną na rezystorze:

$$P_{R1} = U_{R1} * I_{Fred} = 2.3 * 0.015 = 34mW$$

Gdzie

P_{R1} – Moc czynna wydzielana na rezystorze R1

U_{R1} – Napięcie odłożone na rezystorze R1

I_{Fred} – Prad płynacy przez rezystor

Z oferty został dobrany rezystor o parametrach: SMD0805; 150Ω; 125mW; ±1%; -55÷125°C

Obliczam rezystancję dla rezystora, który będzie ograniczał prąd płynący przed diodę LED zieloną w przypadku poprawnego podłączenia zasilania

$$R_2 = \frac{U_{cc} - U_{Fg}}{I_{Fg}} = \frac{4,5 - 2,3}{0.010A} = 220\Omega$$

gdzie:

R₂ – Rezystancja rezystora R2

U_{cc} – Umowne napięcie zasilania (już po diodzie schottkiego)

U_{Fg} – Napięcie charakterystyczne diody LED Zielonej w kierunku przewodzenia

I_{Fg} – Zakładany prąd który będzie płynął przez diodę LED zieloną w przypadku poprawnego podłączenia napięcia zasilania. Obliczam moc wydzielaną na rezystorze R2:

$$P_{R2} = U_{R2} * I = 2,2 * 0,01 = 22mW$$

Gdzie

P_{R2} – Moc czynna wydzielana na rezystorze R2

U_{R2} – Napięcie odłożone na rezystorze R2

I_{Fg} – Prąd płynący przez rezystor R2

Z oferty został dobrany rezystor o parametrach: SMD0805; 220Ω; 125mW; ±1%; -55÷125°C

2. Obliczenia bloków generatorów

a. Blok generatora dla "buzi" i "języka" – zakładana częstotliwość 10-12 Hz

Obliczam rezystancję rezystora dla 12 Hz

$$R_3 = \frac{1}{0.8 * f_1 * C} = \frac{1}{0.8 * 12 * 0.0001} = 1041.7\Omega$$

gdzie:

R₃ – Rezystancja rezystora R3 w bloku generatora dla "buzi" i "języka"

f₁ – częstotliwość 12Hz

C – Pojemność kondensatora

Z oferty został dobrany rezystor o parametrach SMD1206; 820Ω ; 250 mW; $\pm 1\%$; $-55 \div 125 ^{\circ}\text{C}$ z braku dostępności w sklepach stacjonarnych rezystorów $1 \text{k}\Omega$

Obliczam rezystancję dla 10 Hz

$$R_{buzij} = \frac{1}{0.8 * f_2 * C} = \frac{1}{1.1 * 10 * 0.0001} = 1250\Omega$$

gdzie:

R_{buzij}– Rezystancja rezystora oraz potencjometru w bloku generatora dla "buzi" i bloku "języka"

f₂ – częstotliwość10Hz

C – Pojemność kondensatora

Obliczam rezystancję potencjometru:

$$R_{Pb} = R_{buzii} - R_3 = 1250 - 1041,7 = 208,3\Omega$$

gdzie:

R_{Pb} – Rezystancja potencjometru w bloku buzi i w bloku jezyka

R₃ - Rezystancja rezystora R₃ w bloku generatora dla "buzi" i "języka"

R_{buzij} - Rezystancja rezystora oraz potencjometru w bloku generatora dla "buzi" i "języka"

Z oferty został dobrany potencjometr 200 Ω w obudowie CA6V

b. Blok generatora liter – zakładana częstotliwość 4-6 Hz

Obliczam rezystancję dla 6 Hz

$$R_4 = \frac{1}{0.8 * f_3 * C} = \frac{1}{0.8 * 6 * 0.0001} = 2.08k\Omega$$

gdzie:

R₄ – Rezystancja rezystora R4

f₃ – częstotliwość 6 Hz

C – Pojemność kondensatora

Z oferty został dobrany rezystor o parametrach SMD1206; 2,2kΩ; 125mW; ±1%; -55÷125°C

Obliczam rezystancję dla 4 Hz

$$R_{nap} = \frac{1}{0.8 * f_4 * C} = \frac{1}{0.8 * 4 * 0.0001} = 3125\Omega$$

gdzie:

R_{nap} - Rezystancja rezystora oraz potencjometru w bloku generatora dla "napisów"

f₄ – częstotliwość 4 Hz

C – Pojemność kondensatora

Obliczam rezystancję potencjometru:

$$R_{Pn} = R_{nap} - R_4 = 3125 - 2,08 = 1045\Omega$$

gdzie:

R_{Pn} – Rezystancja potencjometru w bloku napisów

R₄ - Rezystancja rezystora R4 w bloku generatora dla "buzi"

R_{nap} - Rezystancja rezystora oraz potencjometru w bloku generatora dla "buzi"

Z oferty został dobrany potencjometr 1k Ω w obudowie CA6V

3. Obliczenia w Blokach LED-ów oraz tranzystorów

a. Blok "T"

Obliczam rezystancję dla pojedynczego rezystora ograniczającego prąd diody LED czerwonej

$$R_5 = \frac{U_{cc} - U_{Fr}}{I_{Fr}} = \frac{4.5 - 2}{0.016A} = 156\Omega$$

gdzie:

R₅ – Rezystancja rezystora R5

U_{cc} – Umowne napięcie zasilania (już po diodzie schottkiego)

U_{Fr} – Napięcie charakterystyczne diody LED czerwonej w kierunku przewodzenia

IFr – Zakładany prąd który będzie płynął przez diodę LED czerwoną

Obliczam moc wydzielaną na rezystorze:

$$P_{R5} = U_{R5} * I_{Fr} = 2.5 * 0.0166 = 41 mW$$

gdzie:

P_{R5} – Moc czynna wydzielana na rezystorze R5

U_{R5} – Napięcie odłożone na rezystorze R5

I_{Fr} - Prąd płynący przez diodę czerwoną

Z oferty został dobrany rezystor o parametrach SMD0805; 150Ω ; 125mW; $\pm 1\%$; $-55 \div 125^{\circ}\text{C}$

Obliczam prąd płynący przez cały blok (5 diod LED czerwonych)

$$I_{TC} = 5 * I_{Fb} = 5 * 0.016 = 0.08A = 80mA$$

gdzie:

I_{TC} - Prąd płynący przez blok "T"

I_{Fb} - Prąd płynący przez pojedynczą diodę LED czerwoną

Do bloku T został dobrany tranzystor BC847, na podstawie noty katalogowej, maksymalnie 100mA, napięcie kolektor-emiter 45V oraz minimalnie wzmocnienie = 110

Obliczam minimalny prąd który musi wpływać do bazy tranzystora

$$I_{bT} = \frac{I_{TC}}{h_{EE}} = \frac{80}{110} = 0.72 mA$$

gdzie:

 $I_{bT}-\ minimalny\ prąd\ płynący\ przez\ tranzystor\ bloku\ "T"$

h_{FE} - Minimalne wzmocnienie tranzystora

I_{TC} - Prąd płynący przez blok "T"

Obliczam maksymalną rezystancję

$$R = \frac{3.8}{0.00072} = 5.2k\Omega$$

Obliczam minimalny rezystor wiedząc iż z bloku generatora prąd <25mA

$$R = \frac{3.8}{0.025} = 152 \,\Omega$$

b. Blok "M"

Obliczam rezystancję dla pojedynczego rezystora ograniczającego prąd diody LED niebieskiej

$$R_6 = \frac{U_{cc} - U_{Fb}}{I_{Fb}} = \frac{4.5 - 3}{0.015A} = 100\Omega$$

gdzie:

R₆ – Rezystancja rezystora R6

U_{cc} – Umowne napięcie zasilania (już po diodzie schottkiego)

U_{Fb} – Napięcie charakterystyczne diody LED niebieskiej w kierunku przewodzenia

I_{Fb} – Zakładany prąd który będzie płynął przez diodę LED niebieską

Obliczam moc wydzielaną na rezystorze:

$$P_{R6} = U_{R6} * I_{Fb} = 1.5 * 0.015 = 22.5 mW$$

gdzie:

P_{R6} – Moc czynna wydzielana na rezystorze R6

U_{R6} – Napięcie odłożone na rezystorze R6

I_{Fb} - Prąd płynący przez diodę niebieską

Z oferty został dobrany rezystor o parametrach SMD0805; 100Ω ; 125mW; $\pm 1\%$; $-55 \div 125^{\circ}\text{C}$

Obliczam prąd płynący przez cały blok "M" (9 diod LED niebieskich)

$$I_{Mc} = 9 * I_{Fb} = 9 * 0.015 = 0.135 = 135 mA$$

gdzie:

I_{Mc} - Prąd płynący przez blok "M"

I_{Fb} – Prąd płynący przez pojedynczą diodę LED niebieską

Do bloku T został dobrany tranzystor BC639, na podstawie noty katalogowej, maksymalnie 1A, napięcie kolektor-emiter 80V oraz minimalnie wzmocnienie = 40

Obliczam minimalny prąd który musi wpływać do bazy tranzystora

$$I_{bM} = \frac{I_{MC}}{h_{FE}} = \frac{135}{40} = 3,375 mA$$

gdzie:

I_{bM} – minimalny prąd płynący przez tranzystor bloku "M"

H_{FE} – Minimalne wzmocnienie tranzystora

I_{MC} – Prąd płynący przez blok "M"

Obliczam maksymalną rezystancję

$$R = \frac{3,8}{0.00337} = 1,127k\Omega$$

Obliczam minimalny rezystor wiedząc iż z bloku generatora prąd <25mA

$$R = \frac{3.8}{0.025} = 152 \,\Omega$$

c. Blok "E"

Rezystancje rezystorów są takie same jak dla bloku T Obliczam prąd płynący przez cały blok (10 diod LED żółtych)

$$I_{Yc} = 10 * I_{Fy} = 10 * 0.0166 = 0.166 = 166mA$$

gdzie:

I_{Yc} - Prąd płynący przez blok "E"

I_{Fy} – Prąd płynący przez pojedynczą diodę LED żółtą

Do bloku T został dobrany tranzystor BC639, na podstawie noty katalogowej, maksymalnie 1A, napięcie kolektor-emiter 80V oraz minimalnie wzmocnienie = 40 Obliczenia rezystorów takie same jak wcześniej dla tego tranzystora

d. Blok "Buzia"

Rezystancje rezystorów są takie same jak dla bloku T,E Obliczam prąd płynący przez cały blok (7 diod LED zielonych)

$$I_{BC} = 7 * I_{Fq} = 10 * 0.0166 = 0.116 = 116mA$$

gdzie:

I_{Bc} - Prąd płynący przez blok "Buzia"

I_{Fg} – Prąd płynący przez pojedynczą diodę LED zieloną

Do bloku T został dobrany tranzystor BC639, na podstawie noty katalogowej, maksymalnie 1A, napięcie kolektor-emiter 80V oraz minimalnie wzmocnienie = 40 Obliczenia rezystorów takie same jak wcześniej dla tego tranzystora

e. Blok "Język"

Rezystancje rezystorów są takie same jak dla bloku T,E, Buzia Obliczam prąd płynący przez cały blok (2 diod LED czerwone)

$$I_{IC} = 2 * I_{Fr} = 2 * 0.0166 = 0.032 = 32mA$$

gdzie:

I_{Jc} - Prąd płynący przez blok "Język"

I_{Fr} – Prąd płynący przez pojedynczą diodę LED czerwoną

Do bloku T został dobrany tranzystor BC847, na podstawie noty katalogowej, maksymalnie 100mA, napięcie kolektor-emiter 45V oraz minimalnie wzmocnienie = 110 Obliczenia rezystorów takie same jak wcześniej dla tego tranzystora.

Ujednolicając, jako tranzystor bazy wszystkich tranzystorów został wybrany rezystor o parametrach SMD1206; 470Ω ; 125mW; $\pm1\%$; $-55\div125^{\circ}\text{C}$

V. Symulacja komputerowa

VI. SCHEMAT IDEOWY

Rys.5.1 Schemat ideowy zaprojektowanego układu

Źródło: Opracowanie własne, Eagle 9.6.1

VII. MOZAIKI PCB i SCHEMATY MONTAŻOWE

Rys.6.1 Mozaika PCB płytki generator – warstwa bottom, wymiary PCB: $70 \times 110 \ mm$

Źródło: Opracowanie własne Eagle 9.6.1

Rys.6.2 Mozaika PCB płytki wyświetlacza – warstwa *bottom,*

wymiary PCB: $50 \times 100 \text{ mm}$

Źródło: Opracowanie własne, Eagle 9.6.1

Rys.6.3 Schemat montażowy płytki generatora – warstwa *bottom,* wymiary PCB: $70 \times 110 \ mm$

Źródło: Opracowanie własne, Eagle 9.6.1

Rys.6.4 Schemat montażowy płytki wyświetlacza – warstwa *bottom,* wymiary PCB: $50 \times 100 \ mm$

Źródło: Opracowanie własne, Eagle 9.6.1

VIII. WYKAZ KOMPONENTÓW (BOM)

Desygnator (oznaczenie na schemacie)	Nazwa podzespołu	Symbol podzespołu / oznaczenie producenta	Parametry	Obudowa podzespołu	
C1 - C5	Kondensator elektrolityczny	C100uF/16V	100uF/16V	Ø6x10mm - THT	
R8, R9	Potencjometr	201	200 Ω	CA6V – THT	
R10 - R12	Potencjometr	102	1k Ω	CA6V – THT	
R13-R17	Rezystor węglowy	1206S4F4700T5 E	470 Ω	1206 – SMD	
R3 - R5	Rezystor węglowy	1206S4F2201T5 E	2,2k Ω	1206 – SMD	
R6, R7	Rezystor węglowy	1206S4F8200T5 E	820Ω	1206 – SMD	
T1, T3	Tranzystor NPN	BC847	45V / 100mA	SOT23 – SMD	
T2, T6, T7	Tranzystor NPN	BC639	80V / 1A	TO92 – THT	
J1	Gniazdo Jack 21mm	-	-	-	
X1	Gniazdo mini-USB-b	-	-	-	
IC1	Przerzutnik Schmitta	74HC14D	5V / 25mA	SO14 – SMD	
S1,S2	Przycisk dwustanowy	M251	-	M251 – THT	
R1, R27-R50	Rezystor węglowy	0805S4F1500T5 E	150 Ω	0805 – SMD	
R2	Rezystor węglowy	0805S4F2200T5 E	220 Ω	0805 – SMD	
D1	Dioda Schottky'ego	SK12-DIO	20V / 1A	DO214AC	
D2	Dioda Prostownicza	FR1M	1000V / 1A	DO214	
JP1	Gniazdo GoldPin	GoldPin-2X5	2x5	2X05	
JP2	Wtyk GoldPin kątowy	GoldPin-2X5/90	2x5	2X05/90	
R18- R26	Rezystor węglowy	0805S4F1000T5 E	100 Ω	0805 – SMD	
Led 3- Led 7, Led 17 Led 18	Dioda LED Czerwona	LED5mm	2V / 20mA	LED5mm	
Led 8 – Led 16	Dioda LED Niebieska	LED5mm	3V / 20mA	LED5mm	
Led 26–Led 35	Dioda LED Żółta	LED5mm	2V / 20mA	LED5mm	
Led 19- Led 25	Dioda LED Zielona	LED3mm	2V / 20mA	LED3mm	

IX. KOSZTORYS REALIZACYJNY PROJEKTU

	Nazwa podzespołu	Typ / symbol / model / parametry	Ilość [szt.]	Cena / szt. [pln]	Koszt brutto [pln]
	Kondensator elektrolityczny	C100uF/16V	5	0,20	1
	Potencjometr	201 / CA6V	2	1	2
	Potencjometr	102 / CA6V	3	1	3
	Rezystor węglowy	1206S4F4700T5E	5	0,20	1
	Rezystor węglowy	1206S4F2201T5E	3	0,20	0,60
	Rezystor węglowy	1206S4F8200T5E	2	0,20	0,40
	Tranzystor NPN	BC847 / SOT23	2	0,30	0,60
	Tranzystor NPN	BC639 / TO92	3	0,50	1,50
_	Gniazdo Jack 21mm	-	1	1	1
zna	Gniazdo mini-USB-b	-	1	1	1
Część elektryczna urządzenia	Przerzutnik Schmitta	74HC14D / SO14	1	1,50	1,50
elel	Przycisk dwustanowy	M251	2	1,50	3
ęść urz	Rezystor węglowy	0805S4F1500T5E	25	0,20	5
$\mathbf{C}\mathbf{z}$	Rezystor węglowy	0805S4F2200T5E	1	0,20	0,20
	Dioda Schottky'ego	SK12-DIO 20V / 1A	1	0,20	0,20
	Dioda Prostownicza	FR1M 1000V / 1A	1	0,30	0,30
	Gniazdo GoldPin	GoldPin-2X5	1	1	1
	Wtyk GoldPin	GoldPin-2X5 90	1	1	1
	Rezystor węglowy	0805S4F1000T5E	9	0,2	1,80
	Dioda LED Czerwona	LED5mm	8	0,6	4,80
	Dioda LED Niebieska	LED5mm	9	0,8	7,20
	Dioda LED Żółta	LED5mm	10	0,6	6
	Dioda LED Zielona	LED3mm	8	0,6	4,8
		•		SUMA:	48,9

	Nazwa materiału	Typ / wymiary / parametry	Ilość [szt.]	Cena / szt. [pln]	Koszt brutto [pln]
Cześć mechan iczna urządze nia	Laminat szklano- epoksydowy	jednostronny 300x130mm	1	14,00	14,00
				SUMA:	14,00

X. MONTAŻ I URUCHAMIANIE PROJEKTU

Rys.9.1 Widok mozaiki PCB modułu generatorów przed montażem Źródło: Opracowanie własne

Rys.9.2 Widok mozaiki PCB modułu wyświetlacza przed montażem Źródło: Opracowanie własne

Rys.9.3 Widok zmontowanej płytki PCB generatorów – strona komponentów *Źródło: Opracowanie własne*

Rys.9.4 Widok zmontowanej płytki PCB generatorów – strona lutowania Źródło: Opracowanie własne

Rys.9.5 Widok zmontowanej płytki PCB modułu wyświetlacza – strona komponentów *Źródło: Opracowanie własne*

Rys.9.6 Widok zmontowanej płytki PCB modułu wyświetlacza – strona lutowania Źródło: Opracowanie własne

Rys.9.7 Widok zmontowanego i uruchomionego urządzenia Źródło: Opracowanie własne

XI. WNIOSKI

Projekt staraliśmy się realizować wspólnie, przez co pojawiło się kilkanaście problemów podczas przesyłania swoich cześci projektu pomiędzy soba oraz przy końcowej realizacji całego projektu. Z założeń udało się wszystko zrealizować. Podczas tworzenia schematu, zostały zamienione przypadkowo bloki mocy pomiędzy dwoma blokami, na szczęście udało się ten błąd wyłapać i poprawić. Problemy pojawiły się również podczas wytrawiania płytki. Problem polegał na trefnych pisakach do płytek PCB które kupiliśmy w sklepie elektronicznym, to co poprawialiśmy i tak się wytrawiało co utrudniło znacząco realizację projektu. Po zmontowaniu płytek i uruchomieniu, zobaczyliśmy iż dwa segmenty się nie świecą. Po dalszych pomiarach zdiagnozowaliśmy problemy, jednym z nich był zimny lut w jednej z przelotek, drugi polegał na odwrotnym przylutowaniu tranzystora. Po poprawieniu błędów i ponownym uruchomieniu, wszystko działało porwanie, każdy blok migał +- z założoną częstotliwością, również regulacja częstotliwości każdego z bloków działa poprawnie. Podczas realizacji znaczaco polepszyliśmy swoje umiejetności w komunikacji zdalnej, w projektowaniu i wykonywaniu swoich płytek PCB. Praktycznie poznaliśmy zastosowanie układów schmitta dzięki którym można uzyskać sygnały prostokatne. Projekt można rozwinać poprzez dodanie w blokach generatorów inne czujniki, np. czujnik rezystancyjny temperatury, przez co częstotliwość będzie zależeć od temperatury, można zaprojektować inna płytkę wyświetlacza, pamiętając o maksymalnych wartościach prądu jakie mogą płynąć przez odpowiednie tranzystory. Można również wymienić rodzaj podłaczenia, np. montując buzzer, zamieszczając kolejne bloki mocy, dzięki którym będzie można sterować np. silnikami. Realizacja poprawnie działającego urządzenia przyniosła bardzo dużo satysfakcji, ponieważ wszystko udało się tak jak zaplanowaliśmy. Z racji na niewielkie zakresy regulowanej częstotliwości, ciężko jest zobaczyć ją na filmiku, który jest nagrywany w 60 fps. Natomiast w rzeczywistości można ją dostrzec. Niestety w zaciszu domowym nie posiadamy oscyloskopów aby dokładnie sprawdzić zakresy regulowanej częstotliwości.

XII. METRYKA PROJEKTU

Faza realizacji projektu / czynności realizacyjne	Rzeczywisty czas realizacji [h]	
I. FAZA - CZYNNOŚCI PRZYGOTOWAWCZE	Σ:	3,5h
Zdefiniowanie celu(ów) projektu		1h
Opracowanie koncepcji urządzenia:		
a. Struktura blokowa urządzenia		2.54
b. Konstrukcja elektroniczna/mechaniczna urządzeniac. Planowane funkcjonalności urządzenia		2,5h
d. Parametry elektryczne urządzenia (zasilanie, pobór mocy		
II. FAZA - PROTOTYPOWANIE	Σ:	3,5h
Wstępny BOM do konstrukcji prototypu.		1,5
Zakup komponentów do budowy prototypu urządzenia.		•
3. Montaż prototypu projektowanego urządzenia		1
4. Uruchamianie / pomiary / testowanie / modyfikacje prototypu		1
III. FAZA – PROJEKTOWANIE ELEKTRONICZNE	Σ:	9,5h
Opracowanie schematu ideowego prototypu urządzenia		1
Symulacje komputerowe funkcjonowania urządzenia		1,25
Stworzenie ostatecznej wersji schematu ideowego urządzenia (CAD)		1,75
4. Projektowanie layoutu PCB urządzenia (CAD)		4
5. Finalny BOM do konstrukcji urządzenia		1,5
Zakup komponentów do budowy urządzenia FAZA – PROJEKTOWANIE MECHANICZNE	Σ:	nd.
Projekt obudowy urządzenia	Ζ.	nd.
Projekt obadowy drządzenia Projekt okablowania obudowy		nd.
Projekt okasiowania osadowy Projekt paneli użytkownika / projekt graficzny paneli (MUI)		nd.
V. FAZA - WYKONANIE i MONTAŻ ELEKTRONICZNY	Σ:	4,5h
Wykonanie PCB urządzenia	│ ∠ .	3
Montaż elektryczny PCB urządzenia finalnego		
	ς.	1,5
VI. FAZA – WYKONANIE i MONTAŻ MECHANICZNY 1. Wykonanie i montaż obudowy	Σ:	nd. nd.
Wykonanie i montaż obudowy Montaż urządzenia w obudowie / okablowanie		nd.
VII. FAZA - URUCHAMIANIE i TESTOWANIE	Σ:	1h
Uruchamianie / testowanie urządzenia finalnego	Ζ.	0,5
	· · · · · · · · · · · · · · · · · · ·	
2. Pomiary / modyfikacje urządzenia finalnego	0,5	
VIII. FAZA - DOKUMENTACJA PROJEKTOWA	5h	
Sporządzenie kosztorysu realizacyjnego projektu	1,5	
Sporządzenie wniosków, kierunki dalszych prac	2	
Sporządzenie dokumentacji wykonawczej urządzenia		1,5
Łączny czas realizac	ji (∑):	27h

^{*}nd. - nie dotyczy - czynności nie były realizowane w toku prac projektowych.

III. ŹRÓDŁA

Literatura:

- [1] Materiały udostępnione przez nauczyciela
- [2] Notatki z zajęć
- [3] Noty katalogowe "bardziej znaczących" komponentów (linki niżej)

Strony internetowe:

- [4] <u>https://assets.nexperia.com/documents/data-sheet/BC847_SER.pdf</u> data dostępu: 22.11.2020
- [5] <u>https://sklepelektroniczny.com/produkt/fr1m-1000v-1a-dioda-smd-do214/</u>
 - data dostępu: 22.11.2020
- [6] <u>http://www.elenota.pl/datasheet-pdf/123179/ON-.</u>
 - <u>Semiconductor/BC635?sid=132673253018bc3aa71ac3514adb3cf6</u> data dostępu: 22.11.2020
- [7] https://sklepelektroniczny.com/produkt/bzp-687-075v-05w-dioda-zenera/
 - data dostępu: 22.11.2020
- [8] https://www.tme.eu/Document/c3f390c466ce2de4bc68ffaa2d216550/74HC_H

CT14.pdf data dostępu: 10.11.2020