Week 4

14.5 The Chain Rule

1. Use the Chain Rule to find dz/dt.

$$z = xy^3 - x^2y$$
, $x = t^2 + 1$, $y = t^2 - 1$

2. Use the Chain Rule to find $\partial z/\partial s$ and $\partial z/\partial t$.

$$z = (x - y)^5$$
, $x = s^2 t$, $y = st^2$

3. Find dy/dx.

$$y\cos x = x^2 + y^2$$

4. Find $\partial z/\partial x$ and $\partial z/\partial y$.

$$x^2 + 2y^2 + 3z^2 = 1$$

14.6 Directional Derivatives

5. Find the derictional derivative of f at the given point in the direction indicated by the angle θ .

$$f(x,y) = y\cos(xy), \quad (0,1), \quad \theta = \pi/4$$

6. Find the derictional derivative of f at the given point in the direction of the vector \mathbf{v} .

$$f(x,y) = e^x \sin y$$
, $(0,\pi/3)$, $\mathbf{v} = \langle -6, 8 \rangle$

14.7 Maximum and Minimum Values

7. Find the local maximum and minimum values and saddle point(s) of the function.

$$f(x,y) = x^2 + xy + y^2 + y$$