Grupos de Dëmushkin

Henrique A. M. S. Souza

Orientador: Prof. Theo A. D. Zapata

O que eu estudei?

- Grupos de Dëmushkin
 - Definição, exemplos, invariantes
- Teorema de Classificação
- M. Shusterman & P. Zalesskii (Trans. Am. Math. Soc. 2019)
 - Propriedade de Howson
 - Propriedade de Retração Virtual
 - Extra: produtos pro-p livres e grupos de M. Hall
- A. Jaikin-Zapirain & M. Shusterman (Adv. Math. 2019)
 - Conjectura de Atiyah
 - Desigualdade de Hanna Neumann
- Inércia de Dicks-Ventura para retrações.

Algumas convenções

- G = grupo pro-p
- Por simplicidade, gerador = gerador topológico
 - d(G) = cardinalidade de um conjunto minimal de geradores
- $[x, y] = xyx^{-1}y^{-1}$
- $\mathbb{F}_p G$ = álgebra de grupo completa
- $H^n(G, \mathbb{F}_P) = H^n(G)$
- $H_n(G, \mathbb{F}_p) = H_n(G)$

Parte 1 de 3

Definições Exemplos Invariantes Classificação

Definição

- 1. $H^1(G)$ finito
- 2. $H^2(G) \simeq \mathbb{F}_p$
- 3. $U: H^1(G) \times H^1(G) \to H^2(G)$ não degenerado
- Infinito \Rightarrow U: $H^i(G) \times H^{2-i}(G) \rightarrow H^2(G)$ não degenerado
- cd(G) = 2

Invariantes numéricos

- $G \simeq \langle x_1, \cdots, x_d | r = 1 \rangle$
 - d = d(G)
- $G^{ab} \simeq \mathbb{Z}_p/q\mathbb{Z}_p \times \mathbb{Z}_p^{d(G)-1}$
 - q(G) = q
- G infinito, $H \leq_C G$
 - $[G:H] < \infty \Rightarrow H$ é Dëmushkin
 - $[G:H] = \infty \Rightarrow H \text{ \'e pro-}p \text{ livre}$
- Fórmula do posto: d(U) 2 = [G:U](d(G) 2)

- $d(G) = 1 \Leftrightarrow G \text{ \'e finito} \Leftrightarrow G \simeq \mathbb{Z}/2\mathbb{Z}$
- G é abeliano \iff G é finito ou \mathbb{Z}_p^2
- $\mathbb{Z}_p \rtimes_{1+qu} \mathbb{Z}_p \simeq \langle x, y | xyx^{-1} = y^{1+qu} \rangle$
- Completamentos pro-p de superfície
 - orientável de gênero $g \Rightarrow G_g^+$
 - não orientável de gênero $g \Rightarrow G_g^-$ (p=2)

Exemplos

Invariante

X

- Módulo dualizante $I_G \simeq \mathbb{Q}_p/\mathbb{Z}_p$
- Homomorfismo ciclotômico

$$\chi: G \to \operatorname{Aut}(I_G) \simeq 1 + p\mathbb{Z}_p$$

- $J=\mathbb{Z}_p$, ação por χ
 - Der(G,J) podem ser definidas arbitrariamente
 - $\operatorname{Im}(\chi) \subseteq 1 + q(G)\mathbb{Z}_p$
 - $scd(G) = 3 \Leftrightarrow Im(\chi)$ é finita

G	d(G)	q(G)	$\operatorname{Im}(\chi)$
\mathbb{Z}_p^2	2	0	{1}
$\mathbb{Z}_p \rtimes_{1+qu} \mathbb{Z}_p$	2	q	$\langle 1 + qu \rangle$
G_g^+	2 <i>g</i>	0	{1}
G_g^-	g	2	{±1}

Cálculos

Teorema de Classificação

- Parcial: $G \simeq \langle x_1, \dots, x_d | r = 1 \rangle \operatorname{com} q(G) = q$
 - (1) $q \neq 2$: $r = x_1^q [x_1, x_2] \cdots [x_{d-1}, x_d]$
 - (2) q = 2, d impar: $r = x_1^2 x_2^{2^f} [x_2, x_3] \cdots [x_{d-1}, x_d]$
 - (3) q = 2, d par $r = x_1^{2+\alpha}[x_1, x_2]x_3^{2^f}[x_3, x_4] \cdots [x_{d-1}, x_d]$
- Completa:
 - (3.A) $[\operatorname{Im}(\chi): \operatorname{Im}(\chi)^2] = 2: \quad r = x_1^{2+2^f}[x_1, x_2] \cdots [x_{d-1}, x_d]$
 - (3.B) $[\operatorname{Im}(\chi): \operatorname{Im}(\chi)^2] = 4: \quad r = x_1^2[x_1, x_2]x_3^{2^f}[x_3, x_4] \cdots [x_{d-1}, x_d]$

Esboço da classificação parcial

•
$$F = F(x_1, \dots, x_d)$$

•
$$F_1 = F$$
, $F_{i+1} = \overline{F_i^q[F_i, F]}$

•
$$r \equiv \prod_{i=1}^d x_i^{qa_i} \prod_{1 \le i < j \le d} \left[x_i, x_j \right]^{a_{ij}} \pmod{F_3}$$

• Coeficientes são controlados por

$$\eta_{x_i} \cup \eta_{x_j} \in H^2(G, \mathbb{Z}_p/q\mathbb{Z}_p)$$

• Forma simplética em

$$H^1\big(G,\mathbb{Z}_p/q\mathbb{Z}_p\big)=\langle \eta_{x_i}\rangle$$

Descendo a série q-central.

Howson Retrações

Parte 2 de 3

Propriedade de Howson

- $H, K \leq_c G$ finitamente gerados $\Rightarrow d(H \cap K) < \infty$?
- Sim, se...
 - G finito
 - $\operatorname{rk}(G) < \infty$
 - *G* pro-*p* livre
- Sim se *G* for Dëmushkin
 - $d(H \cap K) 1 \le p^2(d(H) + d(K) 2)^2(d(H) 1)(d(K) 1)$

A demonstração

- Se *H* ou *K* for aberto, $d(H \cap K) 1 \le (d(H) 1)(d(K) 1)$.
- Fazemos $n = \lfloor \log_p(d(H) + d(K) 2) \rfloor + 1$
- Existem $H_n \leq_o H$ e $K_n \leq_o K$ com

$$[H:H_n]$$
 e $[K:K_n] \le p^n$, $H_n \cap K_n = H \cap K$

- $C = \langle H_n, K_n \rangle$ é pro-p livre
- Desigualdade de Hanna Neumann para pro-p livres

Retração

 $H \leq_c G$ é uma retração se...

- existe $\tau: G \to H \operatorname{com} \tau_{|H} = \operatorname{Id}_H$
- $\Leftrightarrow \exists N \leq_c G \text{ tal que } G = N \rtimes H$
- $\iff \exists \lambda : G \to H/\Phi(H) \in \mu : G \to H \text{ tais que}$

Retração virtual

- Propriedade: retração *virtual* para subgrupos f.g. $H \leq_c G$
 - Existem $H \leq_c U \leq_o G$ e $N \trianglelefteq_c U$ tal que $U = N \bowtie H$
- Grupos finitos
- Grupos abelianos f.g.
- Grupos pro-*p* livres f.g.
- Grupos de Demushkin com d(G) > 2
- O exceptional $\Re = \langle x, y | xyx^{-1} = y^{-1} \rangle$

A prova (d(G) > 2)

- s.p.g. λ existe pela finitude de $H/\Phi(H)$
- Se $q \neq 0$, $\theta = \eta_1$ ou η_2 dependendo da paridade de d
 - Existe $H \leq_c U \leq_o G$ tal que $\theta \in \operatorname{Im}(\operatorname{res}_U^G)$

- Refinamento da apresentação
 - $U \simeq \langle x_1, \cdots, x_d | r = 1 \rangle$ tal que $\eta(x_{2i-1}) = 0$ para todo $\eta \in \operatorname{Im}(\operatorname{res}_U^G)$
- λ se levanta em $\mu: U \to H$

A prova (d(G) = 2)

- $G = \langle x, y | xyx^{-1} = y^z \rangle$
- Se $\langle y \rangle$ é uma retração virtual, G é virtualmente abeliano
- Dëmushkin não abeliano + virtualmente abeliano $\Rightarrow G \simeq \Re$
- $\mathfrak{K} = \langle x, y | xyx^{-1} = y^{-1} \rangle$ tem retrações virtuais

Aplicações: Greenberg

- G grupo de Dëmushkin com d(G) > 2
- Se retração virtual contivesse N pro-p livre normal em G $\Rightarrow G$ conteria \mathbb{Z}_p^2
- Centro trivial

Extensões

- G_1 e G_2 são Howson $\Rightarrow G_1 \coprod G_2$ é Howson
- G_1 e G_2 tem retrações virtuais $\Rightarrow G_1 \coprod G_2$ tem retrações virtuais
- G é M. Hall se todo $H \leq_c G$ f.g. é virtualmente um fator livre
- Nenhum Dëmushkin infinito é M. Hall
- $G \notin M$. Hall f.g. $\iff G \notin produto pro-p$ livre de finitos e pro-p livres

Parte 3 de 3

Hanna Neumann, Atiyah & Inércia

Desigualdade de Hanna Neumann

- *G* grupo de Dëmushkin com d(G) > 2
- $H, K \leq_{\mathcal{C}} G$ f.g.
 - $X = \text{conjunto completo de representantes de } H \setminus G / K$
- $S = S(G, H, K) = \{x \in X | H \cap xKx^{-1} \neq \{1\}\}$ é finito

$$\sum_{x \in S} d(H \cap xKx^{-1}) - 1 \le (d(H) - 1)(d(K) - 1)$$

$$\beta_i^G(M) = \inf_{U \le {}_{O}G} \frac{\dim_{\mathbb{F}_p} H_i(U, M)}{[G:U]}$$

- $\beta_i^U(M) = [G:U]\beta_i^G(M)$
- $\beta_i^G (\operatorname{Ind}_H^G M) = \beta_i^H (M)$
- $M' \leq_c M \Rightarrow \beta_i^G(M) \leq \beta_i^G(M') + \beta_i^G(M/M')$
- $M \simeq \llbracket \mathbb{F}_p G \rrbracket^d / N \Rightarrow \beta_1^G(M) = \beta_0^G(N) d + \beta_0^G(M)$

L²-invariantes

Esboço da finitude de S

- S infinito $\Rightarrow \exists F \leq_c G$ pro-p livre $eH', K' \leq_c F$ f.g. com $|S(F, H', K')| = \infty$
- Como $[\mathbb{F}_p H']$ -módulos:

$$\llbracket \mathbb{F}_p(F/K') \rrbracket \simeq \bigsqcup_{x \in X'} \llbracket \mathbb{F}_p(H'/H' \cap xK'x^{-1}) \rrbracket$$

- Cada $H_1(H', \llbracket \mathbb{F}_p(H'/H' \cap xK'x^{-1}) \rrbracket)$ é finito
- $\dim_{\mathbb{F}_p} \operatorname{Tor}_1^{\llbracket \mathbb{F}_p F \rrbracket} (\llbracket \mathbb{F}_p(H' \setminus F) \rrbracket, \llbracket \mathbb{F}_p(F/K') \rrbracket)$

Estratégia da desigualdade

- $\beta_1^G(\llbracket \mathbb{F}_p(H \setminus G) \rrbracket) = d(H) 1, \qquad \beta_1^G(\llbracket \mathbb{F}_p(G/K) \rrbracket) = d(K) 1$
- $\beta_1^G (\llbracket \mathbb{F}_p(H \setminus G) \rrbracket \widehat{\otimes} \llbracket \mathbb{F}_p(G/K) \rrbracket) = \sum_{x \in S} d(H \cap xKx^{-1}) 1$
- Submultiplicatividade ⇒ desigualdade
- Conjectura de Atiyah: $\beta_0^G(M)$ é um inteiro
 - $\llbracket \mathbb{F}_p(H \setminus G) \rrbracket$ e $\llbracket \mathbb{F}_p(G/K) \rrbracket$ tem muitos submódulos com β_1^G nulo
- Subaditividade ⇒ submultiplicatividade

Atiyah & Kaplansky

- Vale se G é analítico p-ádico livre-de-torção
- Dëmushkin é residualmente isso
- $\beta_0^G(M)$ arbitrariamente perto de um inteiro
 - $\beta_1^G(M)$ também é inteiro
- $\llbracket \mathbb{F}_p G \rrbracket$ não possui divisores de 0

G grupo de Dëmushkin infinito, $H \leq_c G$ f.g.

- 1. Todo $\llbracket \mathbb{F}_p G \rrbracket$ -módulo M finitamente apresentado sobre H possui um submódulo aberto B tal que $\beta_1^H(B)=0$
- 2. $\exists U \leq_o G$ e um $\llbracket \mathbb{F}_p U \rrbracket$ -submódulo A de $\llbracket \mathbb{F}_p (H \setminus G) \rrbracket$ tais que:

$$I. \quad \dim_{\mathbb{F}_p}(\llbracket \mathbb{F}_p(H \setminus G) \rrbracket / A) \le \beta_1^G(\llbracket \mathbb{F}_p(H \setminus G) \rrbracket)$$

$$II. \quad \beta_1^U(A) = 0$$

E os tais submódulos?

Submultiplicatividade

- Tomando U e A como em (2):
 - $\beta_1^U(\llbracket \mathbb{F}_p(H \setminus G) \rrbracket \widehat{\otimes} \llbracket \mathbb{F}_p(G/K) \rrbracket) \le \beta_1^U(A \widehat{\otimes} \llbracket \mathbb{F}_p(G/K) \rrbracket) +$ $\beta_1^U(\llbracket \mathbb{F}_p(H \setminus G) \rrbracket / A \widehat{\otimes} \llbracket \mathbb{F}_p(G/K) \rrbracket)$
- Último termo é limitado por $\beta_1^G (\llbracket \mathbb{F}_p(H \setminus G) \rrbracket) \beta_1^U (\llbracket \mathbb{F}_p(G/K) \rrbracket)$
- (1) nos fornece *B* tal que:
 - $\beta_1^U(A \widehat{\otimes} \llbracket \mathbb{F}_p(G/K) \rrbracket) \le \beta_1^U(A \widehat{\otimes} B) + \beta_1^U(A \widehat{\otimes} \llbracket \mathbb{F}_p(G/K) \rrbracket/B)$

L²-independência

• $H \leq_c G \notin L^2$ -independente se

$$\beta_1^G \left(\ker \left(\llbracket \mathbb{F}_p(H \setminus G) \rrbracket \to \mathbb{F}_p \right) \right) = 0$$

- Se $H
 in L^2$ -independente, então $d(H) \le d(G)$
- Toda retração de G é L^2 -independente
- $H \not\in L^2$ -independente em $G, K \leq_c G$ f.g. $\Rightarrow H \cap K \not\in L^2$ -independente em K

$$M = \ker(\llbracket \mathbb{F}_p(H \cap K \setminus K) \rrbracket \to \mathbb{F}_p), \qquad N = \ker(\llbracket \mathbb{F}_p(H \setminus G) \rrbracket \to \mathbb{F}_p)$$

$$\beta_1^K(N) = \beta_1^G (N \widehat{\otimes} \llbracket \mathbb{F}_p(G/K) \rrbracket) = 0$$

Corolários

- $H \leq_{c} G$ é inerte se $d(H \cap K) \leq d(K)$ para todo $K \leq_{c} G$
- Toda retração de um grupo de Dëmushkin é inerte em G
- Todo subgrupo de um grupo de Dëmushkin é virtualmente L^2 -independente

Obrigado!

