BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION MO/2024)

CLASS:

B. TECH.

BRANCH: ECE/CSE/AJML/EEE

SEMESTER: IN/ADD

SESSION: MO/2024

SUBJECT: EC203 DIGITAL SYSTEM DESIGN

TIME:

02 Hours

FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

				CO	BL	
	Q.1(a)	Let R_1 , R_2 , and R_3 are 4-bit registers that store signed numbers in 2's complement form. Say, $R_1=1100$ and $R_2=1011$, and the result of (R_1+R_2) is stored in R_3 . Does R_3 contain a valid data? Justify your answer.	[2]	1,2	7	
25	Q.1(b)	(i) Convert the decimal number 0.456 into its octal equivalent. (ii) In a number system of base r , the equation $x^2-12x+37=0$, has $x=8$ as one of its solutions. Calculate the value of r .	[1+2]	1,2	2	
	Q.2(a)	Explain the following parameters regarding logic gates:	[2]	1.2	7	
	A'reint	(i) Noise Margin (ii) Fan out.	f-1			
	Q.2(b)	Explain the working of a standard TTL-inverter circuit with diagram.	[3]	1,2	2	
	Q.3(a)		[2]	1,2	**	
	Q.3(b)	using CMOS logic (Complemented inputs allowed). Minimize the following Boolean function using K-Map and further implement using NAND gates (upto three inputs) only.	[3]	1,2	2	
		$Y(A,B,C,D) = \sum m(0,2,3,5,6,8) + d(10,11,12,13,14,15)$				
	Q.4(a)	Convert the following Boolean function into maxterm representation:	[2]	1,2	使物	
		Y(A, B, C)=(A+B)(B+C)(A+C')				
	Q.4(b)	Minimize the following Boolean function using K-Map and further implement using NOR gates (upto three inputs) only.	[3]	1,2	1	
		$F(A,B,C,D) = \pi(1,2,3,5,8,9,10.11).d(7,15)$				
	Q.5(a)	Define entity and architecture in VHOL coding with an example.	[2]	1,2	*	
	Q.5(b)	A digital system has a 3-bit input from 000 to 111. Design a logic circuit that produces a high output whenever the equivalent decimal input is an odd number. Perform the steps using K-Map simplification and realization with NAND gates.	[3]	1,2	Z.	
		PERING PRINCES BE TO THE PROPERTY OF THE PERING PROPERTY OF THE PERING PROPERTY OF THE PERING PROPERTY.				