Intro

Collaborative Filtering

Mathieu Lagrange

slides from Lester Mackey and Aleksandr Simma (used with permission)

March 4, 2020

Outline

Intro

- Problem Formulation
 - Centering
 - Shrinkage
- 2 Preliminaries
 - Naive Bayes
 - KNN
- 3 Classification/Regression
 - SVD
 - Factor Analysis
- 4 Low Dimensional Matrix Factorization
 - References

Intro

Intro

- Observe some user-item preferences
- Predict new preferences:

Does Bob like strawberries???

Intro

Amazon.com recommends products based on purchase history

Millions of users. millions of articles

history

Google News

recommends new

articles based on

click and search

Das et al., 2007

Washington Post - 3 hours ago JS stocks gained last week, pushing the Dow Jones industrial average to its highest close in a year, as Alcoa unexpectedly reported a profit and economic data signaled the US recession

Duo of IBM, Intel Propels Dow's Run Wall Street Journal Stocks Finish with Gains BusinessWeek

Bloomberg - Reuters - The Associated Press

Barnes & Noble's E-Reader Gets Real Wired News Barnes & Noble's Sales Down in Aug-Sep; New View Given Wall Street Journal CNET News - San Francisco Chronicle - Register - FOXNews

all 208 news articles ». I⊠Email this story

Intro

Netflix predicts other "Movies You'll ♥" based on past numeric ratings (1-5 stars)

- ⊱ Recommendations drive 60% of Netflix's DVD rentals
- ⊱ Mostly smaller, independent movies (Thompson 2008)

Intro

Netflix Prize: Beat Netflix recommender system, using Netflix data →

⊱ Data: 480,000 users 18.000 movies 100 million observed ratings = only 1.1% of

ratings observed

"The Netflix Prize seeks to substantially improve the accuracy of predictions about how much someone is going to love a movie based on their movie preferences"

Intro

Insight: Personal preferences are correlated

If Jack loves A and B, and Jill loves A, B, and C, then Jack is more likely to love C

Collaborative Filtering Task

- Discover patterns in observed preference behavior (e.g. purchase history, item ratings, click counts) across community of users
- Predict new preferences based on those patterns

Does not rely on item or user attributes (e.g. demographic info, author, genre)

Content-based filtering: complementary approach

Intro

Given:

Intro

- \vdash Users $u \in \{1, ..., U\}$
- \vdash Items $i \in \{1, ..., M\}$
- \succeq Training set \mathcal{T} with observed, real-valued preferences r_{ui} for some user-item pairs (u,i)
 - $r_{ij} = e.g.$ purchase indicator, item rating, click count . . .

Goal: Predict unobserved preferences

 \vdash Test set Q with pairs (u,i) not in \mathcal{T}

View as matrix completion problem

Fill in unknown entries of sparse preference matrix

$$\mathbf{R} = \left[\begin{array}{cccc} ? & ? & 1 & \dots & 4 \\ 3 & ? & ? & \dots & ? \\ ? & 5 & ? & \dots & 5 \end{array} \right] U \text{ users}$$

$$M \text{ items}$$

Measuring success

Intro

- Interested in error on unseen test set Q, not on training set
- For each (u,i) let $r_{i,i}$ = true preference, $\hat{r}_{i,i}$ = predicted preference
- Root Mean Square Error

Mean Absolute Error

$$\vdash \mathsf{MAE} = \frac{1}{|Q|} \sum_{(u,i) \in Q} |r_{ui} - \hat{r}_{ui}|$$

- Ranking-based objectives
 - e.g. What fraction of true top-10 preferences are in predicted top 10?

Intro

Centering Your Data

What?

Remove bias term from each rating before applying CF methods: $\tilde{r}_{ii} = r_{ii} - b_{ii}$

⊱ Why?

- Some users give systematically higher ratings
- Some items receive systematically higher ratings
- Many interesting patterns are in variation around these systematic biases
- Some methods assume mean-centered data
 - Recall PCA required mean centering to measure variance around the mean

Centering Your Data

- What?
 - Remove bias term from each rating before applying CF methods: $\tilde{r}_{i,i} = r_{i,i} - b_{i,i}$
- ⊢ How?
 - Global mean rating

$$\vdash b_{ui} = \mu := \frac{1}{|\mathcal{T}|} \sum_{(u,i) \in \mathcal{T}} r_{ui}$$

⊱ Item's mean rating

$$\vdash b_{ui} = b_i := \frac{1}{|R(i)|} \sum_{u \in R(i)} r_{ui}$$

- \vdash R(i) is the set of users who rated item i
- User's mean rating

$$\vdash b_{ui} = b_u := \frac{1}{|R(u)|} \sum_{i \in R(u)} r_{ui}$$

- \vdash R(u) is the set of items rated by user u
- Item's mean rating + user's mean deviation from item mean

$$\vdash b_{ui} = b_i + \frac{1}{|R(u)|} \sum_{i \in R(u)} (r_{ui} - b_i)$$

Intro

Shrinkage

What?

Interpolating between an estimate computed from data and a fixed, predetermined value

⊱ Why?

- Common task in CF: Compute estimate (e.g. a mean rating) for each user/item
- Not all estimates are equally reliable
- Some users have orders of magnitude more ratings than others
- Estimates based on fewer datapoints tend to be noisier

Hard to trust mean based on one rating

Intro

Shrinkage

- What?
 - Interpolating between an estimate computed from data and a fixed, predetermined value
- ⊢ How?
 - e.g. Shrunk User Mean:

$$\tilde{b}_{u} = \frac{\alpha}{\alpha + |R(u)|} * \mu + \frac{|R(u)|}{\alpha + |R(u)|} * b_{u}$$

- $\succeq \mu$ is the global mean, α controls degree of shrinkage
- \succeq When user has many ratings, $\tilde{b}_{\mu} \approx$ user's mean rating
- \succeq When user has few ratings, $\tilde{b}_{u} \approx$ global mean rating

			J , u J						0
		Α	В	C	D	Ε	F	User mean	Shrunk mean
$\mathbf{R} =$	Alice	2	5	5	4	3	5	4	3.94
	Bob	2	?	?	?	?	?	4 2	2.79
	Craia	3	3	4	3	?	4	3.4	3.43

Classification/Regression for CF

Interpretation: CF is a set of *M* classification/regression problems, one for each item

- Consider a fixed item i
- E Treat each user as incomplete vector of user's ratings for all items except i: $\vec{r}_u = (3,?,?,4,?,5,?,1,3)$
- Class of each user w.r.t. item i is the user's rating for item i (e.g. 1,2,3,4, or 5)
- ⊱ Predicting rating r_{ui} ≡ Classifying user vector \vec{r}_u

Classification/Regression for CF

Approach:

- Choose your favorite classifier/regression algorithm
- Train separate predictor for each item
- \succeq To predict r_{ii} for user u and item i, apply item i's predictor to vector of user u's incomplete ratings vector

Class/Red

Pros:

- Reduces CF to a well-known, well-studied problem.
- Many good prediction algorithms available

Cons:

- Predictor must handle missing data (unobserved ratings)
- ⊱ Training M independent predictors can be expensive
- Approach may not take advantage of problem structure
 - Item-specific subproblems are often related

Naive Bayes Classifier

- ⊱ Treat distinct rating values as classes
- Consider classification for item i
- Main assumption
 - For any items $j \neq k \neq i$, r_j and r_k are conditionally independent given r_i
 - \succeq When we know rating r_{ui} all of a user's other ratings are independent
- Parameters to estimate
 - \vdash Prior class probabilities: $P(r_i = v)$
 - \vdash Likelihood: $P(r_i = w | r_i = v)$

Intro

Naive Bayes Classifier

Train classifier with all users who have rated item i

⊱ Use counts to estimate prior and likelihood

$$P(r_{i} = v) = \frac{\sum_{u=1}^{U} \mathbf{1}(r_{ui} = v)}{\sum_{w=1}^{V} \sum_{i=1}^{U} \mathbf{1}(r_{ui} = w)}$$

$$P(r_{j} = w | r_{i} = v) = \frac{\sum_{u=1}^{U} \mathbf{1}(r_{ui} = v, r_{uj} = w)}{\sum_{z=1}^{V} \sum_{u=1}^{U} \mathbf{1}(r_{ui} = v, r_{uj} = z)}$$

Complexity

 \mathcal{E} $O(\sum_{u=1}^{U} |R(u)|^2)$ time and $O(M^2V^2)$ space for all items Predict rating for (u,i) using posterior

$$P(r_{ui} = v | r_{u1}, ..., r_{uM}) = \frac{P(r_{ui} = v) \prod_{j \neq i} P(r_{uj} | r_{ui} = v)}{\sum_{w=1}^{V} P(r_{ui} = w) \prod_{j \neq i} P(r_{uj} | r_{ui} = w)}$$

Intro

Naive Bayes Summary

Pros:

- Easy to implement
- Off-the-shelf implementations readily available

Cons:

- Large space requirements when storing parameters for all M predictors
- Makes strong independence assumptions
- Parameter estimates will be noisy for items with few ratings

⊱ E.g.
$$P(r_i = w | r_i = v) = 0$$
 if no user rated both *i* and *j*

Addressing cons:

- Tie together parameter learning in each item's predictor
- Shrinkage/smoothing is an example of this

K Nearest Neighbor Methods

Most widely used class of CF methods

- Flavors: Item-based and User-based
- Represent each item as incomplete vector of user ratings: $\vec{r}_i = (3,?,?,4,?,5,?,1,3)$
- \succeq To predict new rating r_{ii} for query user u and item i:
 - 1 Compute similarity between i and every other item
 - Find K items rated by u most similar to i
 - 3 Predict weighted average of similar items' ratings
- Intuition: Users rate similar items similarly.

KNN: Computing Similarities

How to measure similarity between items?

⊱ Cosine similarity

$$S(\vec{r}_{.i}, \vec{r}_{.j}) = \frac{\langle \vec{r}_{.i}, \vec{r}_{.j} \rangle}{\left\| \vec{r}_{.i} \right\| \left\| \vec{r}_{.j} \right\|}$$

⊱ Pearson correlation coefficient

$$S(\vec{r}_{.i}, \vec{r}_{.j}) = \frac{\langle \vec{r}_{.i} - \text{mean}(\vec{r}_{.i}), \vec{r}_{.j} - \text{mean}(\vec{r}_{.j}) \rangle}{\left\| \vec{r}_{.i} - \text{mean}(\vec{r}_{.i}) \right\| \left\| \vec{r}_{.j} - \text{mean}(\vec{r}_{.j}) \right\|}$$

⊱ Inverse Euclidean distance

$$S(\vec{r}_{.i}, \vec{r}_{.j}) = \frac{1}{\|\vec{r}_{.i} - \vec{r}_{.j}\|}$$

Problem: These measures assume complete vectors Solution: Compute over subset of users rated by both items Complexity: $O(\Sigma^U \cup |B(u)|^2)$ time

KNN: Choosing K neighbors

How to choose *K* nearest neighbors?

Select K items with largest similarity score to guery item i

Problem: Not all items were rated by query user u

Solution: Choose K most similar items rated by u

Complexity: $O(min(KM, M \log M))$

Herlocker et al., 1999

KNN: Forming Weighted Predictions

Predicted rating for guery user u and item i

- \vdash N(i; u) is the *neighborhood* of item i for user u
 - ⊱ i.e. the K most similar items rated by u

$$\epsilon$$
 $\hat{r}_{ui} = b_{ui} + \sum_{N(i;u)} w_{ij} (r_{uj} - b_{uj})$

How to choose weights for each neighbor?

- \vdash Equal weights: $w_{ij} = \frac{1}{|N(i:u)|}$
- \succ Similarity weights: $w_{ij} = \frac{S(i,j)}{\sum_{i \in N(i:n)} S(i,j)}$ (Herlocker et al., 1999)
- Learn optimal weights for each user (Bell and Koren, 2007)
- Learn optimal global weights (Koren, 2008)

Complexity: O(K)

KNN: User Optimized Weights

Intuition: For a given query user u and item i, choose weights that best predict other known ratings of item i using only N(i; u):

$$\min_{\mathbf{W}_{i.}} \sum_{s \in R(i), s \neq u} \left(r_{si} - \sum_{j \in N(i;u)} w_{ij} r_{sj} \right)^{2}$$

With no missing ratings, this is a linear regression problem:

KNN: User Optimized Weights

Bell and Koren, 2007

- \succeq Optimal solution: $w = A^{-1}b$ for $A = X^T X \cdot b = X^T v$
- ⊱ Problem: X contains missing entries
 - \vdash Not all items in N(i; u) were rated by all users
- ⊱ Solution: Approximate A and b

$$\hat{A}_{jk} = \frac{\sum_{s \in R(j) \cap R(k)} r_{sj} r_{sk}}{|R(j) \cap R(k)|}$$

$$\hat{b}_k = \frac{\sum_{s \in R(i) \cap R(k)} r_{si} r_{sk}}{|R(i) \cap R(k)|}$$

$$\hat{w} = \hat{A}^{-1} \hat{b}$$

Estimates based on users who rated each pair of items

KNN: User Optimized Weights

Benefits

- Weights optimized for the task of rating prediction
 - Not just borrowed from the neighborhood selection phase
- Weights not constrained to sum to 1
 - Important if all nearest neighbors are dissimilar
- Weights derived simultaneously
 - Accounts for correlations among neighbors
- Outperforms KNN with similarity or equal weights
- \succeq Can compute entries of \hat{A} and \hat{b} offline in parallel

Drawbacks

Must solve additional KxK system of linear equations per query

KNN: Globally Optimized Weights

Consider the following KNN prediction rule for query (u,i):

$$\hat{r}_{ui} = b_{ui} + |N(i; u)|^{-\frac{1}{2}} \sum_{i \in N(i; u)} w_{ij} (r_{uj} - b_{uj})$$

Could learn a single set of KNN weights w_{ij} , shared by all users, that minimize regularized MSE:

$$E = \frac{1}{|\mathcal{T}|} \sum_{(u,i) \in \mathcal{T}} \frac{1}{2} (\hat{r}_{ui} - r_{ui})^2 + \lambda \sum_{i=1}^{M} \sum_{j=1}^{M} \frac{1}{2} w_{ij}^2 = \frac{1}{|\mathcal{T}|} \sum_{(u,i) \in \mathcal{T}} E_{ui}$$

Optimize objective using stochastic gradient descent:

 \vdash For each example (u,i) ∈ \mathcal{T} , update w_{ij} $\forall j \in N(i;u)$

$$w_{ij}^{t+1} = w_{ij}^t - \gamma \frac{\partial}{\partial w_{ij}} E_{ui}$$

= $w_{ij}^t - \gamma (|N(i; u)|^{-\frac{1}{2}} (\hat{r}_{ui} - r_{ui}) (r_{uj} - b_{uj}) + \lambda w_{ij}^t)$

KNN: Globally Optimized Weights

Benefits

- Weights optimized for the task of rating prediction
 - Not just borrowed from the neighborhood selection phase
- Weights not constrained to sum to 1
 - Important if all nearest neighbors are dissimilar
- Weights derived simultaneously
 - Accounts for correlations among neighbors
- Outperforms KNN with similarity or equal weights

Drawbacks

- Must solve global optimization problem at training time
- \vdash Must store $O(M^2)$ weights in memory

Intro KNN

KNN: Summary

Comparison of KNN weighting schemes on Netflix quiz data

KNN: Summary

Pros

- ⊱ Intuitive interpretation
- ⊱ When weights not learned...
 - Easy to implement
 - Zero training time
- Learning prediction weights can greatly improve accuracy for little overhead in space and time

Cons

- When weights not learned...
 - ⊱ Need to store all item (or user) vectors in memory
 - ⊱ May redundantly recompute similarity scores at test time
 - ⊱ Similarity/equal weights not always suitable for prediction
- When weights learned...
 - ► Need to store $O(M^2)$ or $O(U^2)$ parameters
 - ⊱ Must update stored parameters when new ratings occur

Low Dimensional Matrix Factorization

Matrix Completion

Intro

 \succeq Filling in the unknown ratings in a sparse $U \times M$ matrix R

$$\mathbf{R} = \begin{bmatrix} ? & ? & 1 & \dots & 4 \\ 3 & ? & ? & \dots & ? \\ ? & 5 & ? & \dots & 5 \end{bmatrix}$$

Low dimensional matrix factorization

Model R as a product of two lower dimensional matrices

- \succeq A is $U \times K$ "user factor" matrix, $K \ll U, M$
- \vdash B is $M \times K$, "item factor" matrix
- Learning A and B allows us to reconstruct all of R

Low Dimensional Matrix Factorization

Interpretation: Rows of A and B are low dimensional feature vectors a_{ij} and b_i for each user u and item i

Motivation: Dimensionality reduction

- Compact representation: only need to learn and store UK + MK parameters
- Matrices can often be adequately represented by low rank factorizations

Low Dimensional Matrix Factorization

Very general framework that encapsulates many ML methods

- Singular value decomposition
- Clustering

Intro

- A can represent cluster centers
- B probabilities of belonging to each cluster
- Factor Analysis/Probabilistic PCA

IProjecting movies

Intro

Projecting users and movies

Intro

Singular Value Decomposition

Squared error objective for MF

$$\underset{A,B}{\operatorname{argmin}} \|R - AB^{T}\|_{2}^{2} = \underset{A,B}{\operatorname{argmin}} \sum_{u=1}^{U} \sum_{i=1}^{M} (r_{ui} - \langle a_{u}, b_{i} \rangle)^{2}$$

Reasonable objective since RMSE is our error metric

When all of R is observed, this problem is solved by singular value decomposition (SVD)

- \succ SVD: $R = H\Sigma V^T$
 - \vdash H is $U \times U$ with $H^T H = I_{U \times U}$
 - \vdash V is $M \times M$ with $V^T V = I_{M \times M}$
 - $\succeq \Sigma$ is $U \times M$ and diagonal
- Solution: Take first K pairs of singular vectors
 - ⊱ Let $A = H_{IJ \times K} \Sigma_{K \times K}$ and $B = V_{M \times K}$

Weighted SE objective

$$\underset{A,B}{\operatorname{argmin}} \sum_{u=1}^{U} \sum_{i=1}^{M} W_{ui} (r_{ui} - \langle a_u, b_i \rangle)^2$$

Binary weights

- $W_{ii} = 1$ if r_{ii} observed, $W_{ii} = 0$ otherwise
- Only penalize errors on known ratings

How to optimize?

- Straightforward singular value decomposition no longer applies
- Local minima exist ⇒ algorithm initialization is important

Insight: Chicken and egg problem

- If we knew the missing values in R, could apply SVD
- If we could apply SVD, we could find the missing values in R
- Idea: Fill in unknown entries with best guess; apply SVD; repeat

Expectation-Maximization (EM) algorithm

- Alternate until convergence:
 - 1 E step: $X = W * R + (1 W) * \hat{R}$ (* represents entrywise product)
- 2 M step: $[H, \Sigma, V] = SVD(X)$, $\hat{R} = H_{U \times K} \Sigma_{K \times K} V_{M \times K}^T$

Complexity: O(UM) space and O(UMK) time per EM iteration

- ⊱ What if *UM* or *UMK* is very large?
- Complete ratings matrix may not even fit into memory!

Regularized weighted SE objective

$$\underset{A,B}{\operatorname{argmin}} \sum_{u=1}^{U} \sum_{i=1}^{M} W_{ui} (r_{ui} - \langle a_u, b_i \rangle)^2 + \lambda (\sum_{u=1}^{U} ||a_u||^2 + \sum_{i=1}^{M} ||b_i||^2)$$

Equivalent form

$$\underset{A,B}{\operatorname{argmin}} \sum_{(u,i) \in \mathcal{T}} (r_{ui} - \langle a_u, b_i \rangle)^2 + \lambda (\sum_{u=1}^{U} ||a_u||^2 + \sum_{i=1}^{M} ||b_i||^2)$$

Motivation

- Counters overfitting by implicitly restricting optimization space
 - Shrinks entries of A and B toward 0
- Can improve generalization error, performance on unseen test data

Insight: If we knew B, could solve for each row of A via ridge regression and vice-versa

Alternate between optimizing A and optimizing B with the other matrix held fixed

Alternating least squares (ALS) algorithm

- Alternate until convergence:
 - 1 For each user u, update $a_u \leftarrow (\sum_{i \in R(u)} b_i b_i^T + \lambda I)^{-1} \sum_{i \in R(u)} r_{ui} b_i$
 - 2 For each item i, update $b_i \leftarrow (\sum_{u \in R(i)} a_u a_u^T + \lambda I)^{-1} \sum_{u \in R(i)} r_{ui} a_u$

Complexity: O(UK + MK) space, $O(UK^3 + MK^3)$ time per iteration

- Note: updates for vectors au can all be performed in parallel (same for b_i)
- No need to store completed ratings matrix

Insight: Use standard gradient descent

$$\vdash \nabla_{a_u} E = \lambda a_u + \sum_{i \in R(u)} b_i (\langle a_u, b_i \rangle - r_{ui})$$

$$\vdash \nabla_{b_i} E = \lambda b_i + \sum_{u \in R(i)} a_u (\langle a_u, b_i \rangle - r_{ui})$$

Gradient descent algorithm

- Repeat until convergence:
 - 1 For each user u, update $a_u \leftarrow a_u \gamma(\lambda a_u + \sum_{i \in R(u)} b_i(\langle a_u, b_i \rangle r_{ui}))$
 - 2 For each item *i*, update $b_i \leftarrow b_i \gamma(\lambda b_i + \sum_{u \in R(i)} a_u(\langle a_u, b_i \rangle r_{ui}))$
- \succeq Can update all a_u in parallel (same for b_i)

Complexity: O(UK + MK) space, O(NK) time per iteration

- No need to store completed ratings matrix
- ⊱ No K³ overhead from solving linear regressions

Insight: Update parameter after each observed rating

$$\vdash \nabla_{a_u} E_{ui} = \lambda a_u + b_i (\langle a_u, b_i \rangle - r_{ui})$$

$$\vdash \nabla_{b_i} E_{ui} = \lambda b_i + a_u (\langle a_u, b_i \rangle - r_{ui})$$

Stochastic gradient descent algorithm

- Repeat until convergence:
 - **1** For each (u,i) ∈ \mathcal{T}
 - 1 Calculate error: $e_{ij} \leftarrow (\langle a_{ij}, b_i \rangle r_{ij})$
 - 2 Update $a_{ij} \leftarrow a_{ij} \gamma(\lambda a_{ij} + b_i e_{ij})$
 - 3 Update $b_i \leftarrow b_i \gamma(\lambda b_i + a_{ii}e_{ii})$

Complexity: O(UK + MK) space, O(NK) time per pass through training set

- No need to store completed ratings matrix
- \succeq No K^3 overhead from solving linear regressions

Constrained MF as Clustering

Insight: Soft clustering of items is MF

- Row b_i represents item i's fractional belonging to each cluster
- Columns of A are cluster centers
- Yields greater interpretability

Constrained weighted SE objective

$$\underset{A,B}{\operatorname{argmin}} \sum_{u=1}^{U} \sum_{i=1}^{M} W_{ui} (r_{ui} - \langle a_u, b_i \rangle)^2 \text{ s.t. } \forall i \ b_i \geq 0, \sum_{k=1}^{K} b_{ik} = 1$$

⊱ Wu and Li (2008) penalize constraints in the objective and optimize via stochastic gradient descent

Takeaway: Can add your favorite constraints and optimize with standard techniques

Factor Analysis

Motivation

- Explain data variability in terms of latent factors
- Provide model for how data is generated

The Model

- ⊱ For each user, r_u = partially observed ratings vector in \mathbb{R}^M
- \vdash For each user, b_u = latent factor vector in \mathbb{R}^K
- \succeq A is an $M \times K$ matrix of parameters (factor loading matrix)
- $\succeq \Psi$ is an $M \times M$ covariance matrix
 - ► Probabilistic PCA: Special case when $Ψ = σ^2I$
- \succeq To generate ratings for user u:
 - 1 Draw $b_u \sim \mathcal{N}(0, I_{K \times K})$
 - 2 Draw $r_u \sim \mathcal{N}(Ab_u, \Psi)$

Factor Analysis

Factor Analysis

Parameter Learning

- \succeq Only need to learn A and Ψ
- $\vdash b_u$ are variables to be integrated out
- Fully use EM algorithm (Canny, 2002)
- Alternative: Stochastic gradient descent on negative log likelihood (Lawrence and Urtasun, 2009)

Low Dimensional MF: Summary

Pros

- \succeq Data reduction: only need to store UK + MK parameters at test time
 - \vdash MK + M² needed for Factor Analysis
- Gradient descent and ALS procedures are easy to implement and scale well to large datasets
- Empirically yields high accuracy in CF tasks
- Matrix factors could be used as inputs into other learning algorithms (e.g. classifiers)

Cons

- Missing data MF objectives plagued by many local minima
- Initialization is important
- EM approaches tend to be slow for large datasets

Factor Analysis

Intro

This Spark afternoon

create a wordcount

recommend music

User: 0 Listens to:

elizabeth mitchell, the frames, ween, the decemberists, the delgados, tlc, clem snide, johnny cash, real mccoy, the beatles, camera obscura, belle and sebastian

Recommended: radiohead, coldplay, sigur ros, the beatles, sufjan stevens, the white stripes, bob dylan, animal collective, the smashing pumpkins, kings of leon

Intro

- K. Ali and W. van Stam, "TiVo: Making Show Recommendations Using a Distributed Collaborative Filtering Architecture," Proc. 10th ACM SIGKDD Int. Conference on Knowledge Discovery and Data Mining, pp. 394-401, 2004.
- J. Basilico, T. Hofmann. 2004. Unifying collaborative and content-based filtering. In Proceedings of the ICML.
- J. Bennet and S. Lanning, "The Netflix Prize," KDD Cup and Workshop, 2007. www.netflixprize.com.
- L. Breiman, (1996). Stacked Regressions. Machine Learning, Vol. 24, pp. 49-64.
- ⊱ J. Canny, "Collaborative Filtering with Privacy via Factor Analysis," Proc. 25th ACM SIGIR Conf. on Research and Development in Information Retrieval (SIGIR02), pp. 238-245, 2002.
- & A. Das, M. Datar, A. Garg and S. Rajaram, "Google News Personalization: Scalable Online Collaborative Filtering," WWW07, pp.

- S. Funk, "Netflix Update: Try This At Home," http://sifter.org/simon/journal/20061211.html, 2006.
- ⊱ J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, "An Algorithmic Framework for Performing Collaborative Filtering," in Proceedings of the Conference on Research and Development in Information Retrieval, 1999.
- Y. Koren. Collaborative filtering with temporal dynamics KDD, pp. 447-456, ACM, 2009.
- Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. Proc. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD08), pp. 426-434, 2008.
- N. Lawrence and R. Urtasun. Non-linear matrix factorization with Gaussian processes. ICML, ACM International Conference Proceeding Series, Vol. 382, p. 76, ACM, 2009.
- ⊱ G. Linden, B. Smith and J. York, "Amazon.com Recommendations: Item-to-item Collaborative Filtering," IEEE Internet Computing 7 (2003), 76-80.

- E. B. Marlin, R. Zemel, S. Roweis, and M. Slaney, "Collaborative filtering and the Missing at Random Assumption," Proc. 23rd Conference on Uncertainty in Artificial Intelligence, 2007.
- ⊱ A. Paterek, "Improving Regularized Singular Value Decomposition for Collaborative Filtering," Proc. KDD Cup and Workshop, 2007.
- ⊱ M. Piotte and M. Chabbert, "Extending the toolbox," Netflix Grand Prize technical presentation, http://pragmatictheory.blogspot.com/, 2009.
- E. R. Salakhutdinov, A. Mnih and G. Hinton. Restricted Boltzmann Machines for collaborative filtering. Proc. 24th Annual International Conference on Machine Learning, pp. 791-798, 2007.
- ⊱ N. Srebro and T. Jaakkola. Weighted low-rank approximations. In 20th International Conference on Machine Learning, pages 720-727. AAAI Press, 2003.
- Gabor Takacs, Istvan Pilaszy, Bottyan Nemeth, and Domonkos Tikk. Scalable collaborative Itering approaches for large recommender systems. Journal of Machine Learning Research, 10:623-656, 2009.
- C. Thompson. If you liked this, youre sure to love that. The New York Times, Nov 21, 2008.

Intro

- J. Wu and T. Li. A Modified Fuzzy C-Means Algorithm For Collaborative Filtering, Proc. Netflix-KDD Workshop, 2008.
- E K. Yu, J. Lafferty, S. Zhu, and Y. Gong. Large-scale collaborative prediction using a nonparametric random effects model. In The 25th International Conference on Machine Learning (ICML), 2009.
- Y. Zhou, D. Wilkinson, R. Schreiber, R. Pan. "Large-Scale Parallel Collaborative Filtering for the Netix Prize," AAIM 2008: 337-348.
- Y. Koren, R. Bell, C. Volinsky "Matrix Factorization techniques for recommender systems" IEEE/ACM Computer Journal 30-37, 2009

