SN74HC4060-Q1 14-STAGE ASYNCHRONOUS BINARY COUNTERS AND OSCILLATORS

SCLS726 - DECEMBER 2011

- Qualified for Automotive Applications
- Wide Operating Voltage Range of 2 V to 6 V
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, 80-μA Max I_{CC}
- Typical t_{pd} = 14 ns

- ±4-mA Output Drive at 5 V
- Low Input Current of 1 μA Max
- Allow Design of Either RC- or Crystal-Oscillator Circuits

SN74HC4060-Q1...D PACKAGE (TOP VIEW)

description/ordering information

The 'HC4060–Q1 devices consist of an oscillator section and 14 ripple-carry binary counter stages. The oscillator configuration allows design of either RC- or crystal-oscillator circuits. A high-to-low transition on the clock (CLKI) input increments the counter. A high level at the clear (CLR) input disables the oscillator (CLKO goes high and CLKO goes low) and resets the counter to zero (all Q outputs low).

ORDERING INFORMATION

T _A	PACKA	GE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 125°C	SOIC - D	Reel of 2500	SN74HC4060QDRQ1	HC4060Q

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLE (each buffer)

INP	UTS	FUNCTION				
CLK	CLR	FUNCTION				
1	L	No change				
\downarrow	L	Advance to next stage				
×	Н	All outputs L				

Logic diagram (positive logic)

Absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) (see Note 1)	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) (see Note 1)	±20 mA
Continuous output current, I _O (V _O = 0 to V _{CC})	±25 mA
Package thermal impedance, θ _{JA} (see Note 2): D package	73°C/W
Storage temperature range, T _{sta}	65°C to 150°C
ESD rating: Human Body Model (HBM)	2000 V
Charged Device Model (CDM)	1000 V
Machine Model (MM)	200 V

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS726 - DECEMBER 2011

Recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage		2	5	6	٧	
	High-level input voltage	V _{CC} = 2 V	1.5				
V_{IH}		$V_{CC} = 4.5 V$	3.15			V	
		V _{CC} = 6 V	4.2				
		V _{CC} = 2 V			0.5		
V_{IL}	Low-level input voltage	$V_{CC} = 4.5 \text{ V}$			1.35	v	
		V _{CC} = 6 V			1.8		
VI	Input voltage		0		V_{CC}	٧	
Vo	Output voltage		0		V_{CC}	>	
		$V_{CC} = 2 V$			1000		
Δt/Δv	Input transition rise/fall time	$V_{CC} = 4.5 \text{ V}$			500	ns	
	$V_{CC} = 6 V$				400		
T _A	Operating free-air temperature		-40		125	°C	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

D4.0	AMETER	TEST SOUR	TIONS		Ţ	_A = 25°C	;	'HC406	60-Q1	UNIT
PAR	AMETER	TEST CONDI	ITIONS	v _{cc}	MIN	TYP	MAX	MIN	MAX	ONII
				2 V	1.9	1.998		1.9		
	All outputs	$V_I = V_{IH}$ or V_{IL} ,	I _{OH} = -20 μA	4.5 V	4.4	4.499		4.4		
V _{OH}				6 V	5.9	5.999		5.9		V
	0	M MM	$I_{OH} = -4 \text{ mA}$	4.5 V	3.98	4.3		3.7		
	Q outputs	itputs $V_I = V_{IH}$ or V_{IL} $I_{OH} = -5.3$	$I_{OH} = -5.2 \text{ mA}$	6 V	5.48	5.8		5.2		
				2 V		0.002	0.1		0.1	
	All outputs	$V_{I} = V_{IH}$ or V_{IL} ,	$I_{OL} = 20 \mu A$	4.5 V		0.001	0.1		0.1	
V _{OL}				6 V		0.001	0.1		0.1	V
	0	N N N	I _{OL} = 4 mA	4.5 V		0.17	0.26		0.4	
	Q outputs	$V_{I} = V_{IH}$ or V_{IL}	$I_{OL} = 5.2 \text{ mA}$	6 V		0.15	0.26		0.4	
II		V _I = V _{CC} or 0		6 V		±0.1	±100		±1000	nA
Icc		$V_I = V_{CC}$ or 0,	I _O = 0	6 V			8		160	μΑ
C _i				2 V to 6 V		3	10		10	pF

SN74HC4060-Q1 14-STAGE ASYNCHRONOUS BINARY COUNTERS AND OSCILLATORS

SCLS726 - DECEMBER 2011

Timing requirements over recommended operating free-air temperature range (unless otherwise noted)

			.,	T _A = 25°C		T _A = 25°C 'HC4060-Q1		LINUT		
			v _{cc}	MIN	MAX	MIN	MAX	UNIT		
			2 V		5.5		3.7			
f _{clock}	Clock frequency		4.5 V		28		19	MHz		
			6 V		33		22			
			2 V	90		135				
		CLKI high or low	4.5 V	18		27		ns		
	B		6 V	15		23				
t _w	Pulse duration		2 V	90		135				
		CLR high	4.5 V	18		27				
			6 V	15		23				
		•		<u> </u>	2 V	160		240		
t_{su} Setup time, CLR inactive before CLKI \downarrow			4.5 V	32		48		ns		
			6 V	27		41				

Switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO ,	.,	T _A = 25°C		;	'HC4060-Q1		LINUT
PARAMETER	(INPUT)	(OUTPUT)	V _{CC}	MIN	TYP	MAX	MIN	MAX	UNIT
			2 V	5.5	10		3.7		
f _{max}			4.5 V	28	45		19		MHz
			6 V	33	53		22		
	CLKI	Q_{D}	2 V		240	490		735	ns
t _{pd}			4.5 V		58	98		147	
·			6 V		42	83		125	
			2 V		66	140		210	
t _{PHL}	CLR	Any Q	4.5 V		18	28		42	ns
			6 V		14	24		36	1
			2 V		28	75		110	
t _t		Any	4.5 V		8	15		22	ns
-			6 V		6	30		19	

Operating characteristics, $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd} Power dissipation capacitance	No load	88	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and test-fixture capacitance.

- B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r = 6$ ns, $t_f = 6$ ns.
- C. For clock inputs, f_{max} is measured when the input duty cycle is 50%.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

CONNECTING AN RC-OSCILLATOR CIRCUIT TO THE 'HC4060-Q1 DEVICE

The 'HC4060-Q1 devices consist of an oscillator section and 14 ripple-carry binary counter stages. The oscillator configuration allows design of either RC- or crystal-oscillator circuits.

When an RC-oscillator circuit is implemented, two resistors and a capacitor are required. The components are attached to the terminals as shown:

To determine the values of capacitance and resistance necessary to obtain a specific oscillator frequency (f), use this formula:

$$f = \frac{1}{2(R1)(C)\binom{0.405 R2}{R1 + R2} + 0.693}$$

If R2 > R1 (i.e., R2 = 10R1), the above formula simplifies to:

$$f = \frac{0.455}{RC}$$