

考试科目: Probability Theory (MA215) 开课单位: Department of Mathematics

考试时长: 2021/01/06: 10:30-12:30 **命题教师:** <u>Prof. Z. Liu & Prof. J. Sun</u>

题号	1	2	3	4	5	
分值	30 分	20 分	30 分	10 分	10 分	

本试卷共(5)大题,满分(100)分

(考试结束后请将试卷、答题卡、草稿纸一起交给监考老师)

1. Let (X,Y) be a random vector with joint probability density function

$$f(x,y) = \begin{cases} ce^{-2x-y}, & 0 < x < \infty, \ 0 < y < \infty, \\ 0, & \text{otherwise,} \end{cases}$$

where c is a constant.

(i) Find the value of c.

[4 marks]

- (ii) Find the two marginal probability density functions f_X and f_Y and identify the distributions of X and Y, respectively, and determine with reasons whether X and Y are independent. [10 marks]
- (iii) Compute the probabilities $\mathbb{P}\{X > 2, Y < 1\}$ and $\mathbb{P}\{X < Y\}$. [8 marks]
- (iv) Find the probability density function $f_Z(z)$ of $Z := \frac{X}{Y}, z \in \mathbb{R}$. [8 marks]

[Total for Question 1: 30 marks]

1. 令随机向量 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} ce^{-2x-y}, & 0 < x < \infty, \ 0 < y < \infty, \\ 0, & \text{otherwise,} \end{cases}$$

其中 c 为常数.

(i) 求出常数 c. [4 分]

(ii) 求出 X 与 Y 的边缘概率密度函数 f_X 和 f_Y , 并确定 X 和 Y 的分布. 试 判断 X 和 Y 是否独立, 并说明理由. [10 分]

- (iii) 计算 $\mathbb{P}(X > 2, Y < 1)$ 和 $\mathbb{P}(X < Y)$. [8 分]
- (iv) 求出随机变量 $Z := \frac{X}{Y}$ 的概率密度函数 $f_Z(z), z \in \mathbb{R}$. [8 分]

[题 1 总分: 30 分]

- 2. Suppose that X and Y are independent random variables with the same moment generating function $M_X(t) = M_Y(t) = \frac{4}{\sqrt{16-t}}$ (t < 16) and $Z = \ln(X + Y)$.
 - (i) Find $\mathbb{E}(X)$ and Var(X).

[6 marks]

- (ii) Find the moment generating function $M_{X+Y}(t)$ of X+Y, t<16, and identify its distribution. [4 marks]
- (iii) Find a probability density function $f_Z(z)$ of $Z, z \in \mathbb{R}$. [5 marks]
- (iv) Find the moment generating function $M_Z(t)$ of Z, t > 0. [5 marks] Hint: You may need to represent the result in (iv) by the gamma function Γ (see Appendix).

[Total for Question 2: 20 marks]

2. 假设 X 和 Y 为独立的随机变量, 它们具有相同的矩生成函数 $M_X(t) = M_Y(t) = \frac{4}{\sqrt{16-t}} (t < 16); <math>Z = \ln(X + Y)$.

- (i) 求 $\mathbb{E}(X)$ 和 Var(X). [6 分]
- (ii) 找出 X + Y 的矩生成函数 $M_{X+Y}(t)$ 和分布, t < 16. [4 分]
- (iii) 求出 Z 的概率密度函数 $f_Z(z), z \in \mathbb{R}$. [5 分]
- (iv) 求出 Z 的矩生成函数 $M_Z(t)$, t > 0. [5 分]

提示: 你可能需要用伽马函数 Γ (表达式见附录) 表示出 (iv) 的结果.

[题 2 总分: 20 分]

- 3. Let $\{X_1, X_2, \dots\}$ be a sequence of independent identically distributed N(2, 5)random variables. Denote $S_n = \sum_{i=1}^n X_i$, $\overline{X}_n = S_n/n$, and $Z_n := (\overline{X}_n 2)/\sqrt{5/n}$ for $n \in \mathbb{N}_+$.
 - (i) What distributions do S_{10} , S_{20} , and \overline{X}_{20} obey? [3 marks]
 - (ii) Estimate $\mathbb{P}\{1.5 < \overline{X}_{20} < 2.49\}$ and $\mathbb{P}\{S_{20} \ge 49\}$. [6 marks]
 - (iii) Are S_{10} and S_{20} uncorrelated or correlated? Find the correlation coefficient $\sigma(S_{10}, S_{20})$ of S_{10} and S_{20} to support your conclusion. [5 marks]

- (iv) Find the moment generating functions $M_{\overline{X}_n}(t)$ and $M_{Z_n}(t)$ of \overline{X}_n and Z_n , respectively, $t \in \mathbb{R}$. [6 marks]
- (v) Determine the random variables (a constant is also viewed as a random variable) whose moment generating functions are $\phi(t) := \lim_{n \to \infty} M_{\overline{X}_n}(t)$ and $\psi(t) := \lim_{n \to \infty} M_{Z_n}(t)$, respectively, $t \in \mathbb{R}$. [4 marks]
- (vi) Prove $\mathbb{P}\{|\overline{X}_n 2| < \varepsilon\} \ge 1 \frac{5}{n\varepsilon^2}$ for any $n \in \mathbb{N}_+$, $\varepsilon > 0$ and $\lim_{n \to \infty} \mathbb{P}\{|\overline{X}_n 2| < \varepsilon\} = 1$ for any $\varepsilon > 0$. [6 marks]

Hint: Use law of large numbers and central limit theorem. You may need to use the table

x	0.02	0.1	0.9	0.98	1	1.98
$\int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \mathrm{d}y$	0.5080	0.5398	0.8159	0.8365	0.8413	0.9761

[Total for Question 3: 30 marks]

- 3. 令 $\{X_1, X_2, \dots\}$ 是独立同分布的 N(2, 5)-随机变量序列. 对 $n \in \mathbb{N}_+$, 定义 $S_n = \sum_{i=1}^n X_i, \overline{X}_n = S_n/n$ 和 $Z_n := (\overline{X}_n 2)/\sqrt{5/n}$.
 - (i) S_{10} , S_{20} , 与 \overline{X}_{20} 分别服从何种分布? [3 分]
 - (ii) 估计 $\mathbb{P}\{1.5 < \overline{X}_{20} < 2.49\}$ 与 $\mathbb{P}\{S_{20} \ge 49\}$. [6 分]
 - (iii) S_{10} 与 S_{20} 是否相关? 求出 S_{10} 与 S_{20} 的相关系数 $\sigma(S_{10}, S_{20})$ 来证明你的结论.
 - (iv) 分别求出 \overline{X}_n 与 Z_n 的矩生成函数 $M_{\overline{X}_n}(t)$ 和 $M_{Z_n}(t)$, $t \in \mathbb{R}$. [6 分]
 - (v) 确定其矩生成函数分别为 $\phi(t):=\lim_{n\to\infty}M_{\overline{X}_n}(t)$ 和 $\psi(t):=\lim_{n\to\infty}M_{Z_n}(t)$ $t\in\mathbb{R}$ 的随机变量(常数也被视为随机变量). [4 分]
 - (vi) 证明对任意的 $\varepsilon > 0$ 和 $n \in \mathbb{N}_+$, $\mathbb{P}\{|\overline{X}_n 2| < \varepsilon\} \ge 1 \frac{5}{n\varepsilon^2}$; 对任意的 $\varepsilon > 0$, $\lim_{n \to \infty} \mathbb{P}\{|\overline{X}_n 2| < \varepsilon\} = 1$. [6 marks]

提示: 应用大数定律和中心极限定理. 可能用到的数据附下表:

x	0.02	0.1	0.9	0.98	1	1.98
$\int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \mathrm{d}y$	0.5080	0.5398	0.8159	0.8365	0.8413	0.9761

[题 3 总分: 30 分]

4. Suppose that X and Y are independent **discrete** random variables taking values of $\{x_i\}$ and $\{y_j\}$ and having probability mass functions f_X , f_Y and cumulative distribution functions F_X , F_Y , respectively. Find the following probability or distribution represented by f_X , f_Y , F_X , F_Y , $\{x_i\}$, and $\{y_j\}$.

- (i) Compute the probability $\mathbb{P}\{X > Y\}$. [5 marks]
- (ii) Find the distribution $F_{X+Y}(z) := \mathbb{P}\{X + Y \leq z\}, z \in \mathbb{R}$. [5 marks] Hint: Compute probabilities by conditioning (or use the total probability formula).

[Total for Question 4: 10 marks]

4. 假定 X 与 Y 是取值为 $\{x_i\}$ 和 $\{y_j\}$ 的独立**离散**型随机变量, 他们分别具有概率质量函数 $f_X(x_i)$, $f_Y(y_j)$ 和累积分布函数 F_X , F_Y . 求出以下由 f_X , f_Y , F_X , F_Y , $\{x_i\}$ 和 $\{y_j\}$ 表示的概率或分布.

(i) 计算
$$\mathbb{P}(X > Y)$$
. [5 分]

(ii) 求出 $F_{X+Y}(z) := \mathbb{P}(X+Y \le z), z \in \mathbb{R}.$ [5 分] 提示: 通过条件概率计算 (或利用全概率公式).

[题 4 总分: 10 分]

- 5. A miner is trapped in a mine containing four doors. The first door leads to a tunnel which takes him to safety after 2h's travel. Another three doors lead to a tunnel which returns him to the mine after 3h's, 4h's, and 5h's travel, respectively. Assume that the miner is equally to choose one of the doors. Let X denote the time until the miner reaches safety. Calculate $\mathbb{E}(X)$, i.e., find the expected length of time until the miner reaches safety, under the following two situations.
 - (i) The door where the miner had tried but had not reached safety is not excluded (can not be marked), and it is still in the next choice. [5 marks]
 - (ii) The door where the miner had tried but had not reached safety is excluded (can be marked), and it is not in the next choice. [5 marks]

[Total for Question 5: 10 marks]

5. 一名矿工被困在一个有四扇门的矿井里. 第一扇门通向一条通道, 沿此通道在经过 2 小时之后可到达安全地带. 另外三扇门通向三条通道, 沿这些通道会分别在 3 小时、4 小时和 5 小时后重新返回矿井. 假设矿工等可能地选择其中一个通道. 令 X (小时)表示矿工到达安全地带的时间. 在下面两种情形下计算 E(X), 即矿工到达安全地带的预期时间长度.

- (i) 矿工在试过但没有到达安全地带的通道不排除 (不能做标记), 仍在下次选择之列. [5分]
- (ii) 矿工在试过但没有到达安全地带的通道 (做标记) 排除在外, 不在下次选择之列. [5分]

[题 5 总分: 10 分]