What we claim is:

1. A compound having the formula:

and a pharmaceutically-acceptable salt thereof, wherein;

n is an integer selected from 1 through 4;

X is oxy;

 \boldsymbol{R}_1 is selected from the group consisting of haloalkyl, haloalkenyl,

haloalkoxymethyl, and haloalkenyloxymethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n-N(A)Q \ wherein \ A \ is \ Formula \ (II) \ and \ Q \ is \ Formula \ (III);$

10

15

 R_{16} is selected from the group consisting of hydrido, alkyl, acyl, aroyl, heteroaroyl, trialkylsilyl, and a spacer selected from the group consisting of a covalent single bond and a linear spacer moiety having a chain length of 1 to 4 atoms linked to the point of bonding of any aromatic substituent selected from the group consisting of R_4 , R_8 , R_9 , and R_{13} to form a heterocyclyl ring having from 5 through 10 contiguous members;

 D_1 , D_2 , J_1 , J_2 and K_1 are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is a covalent bond, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is O, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is S, one of D_1 , D_2 , J_1 , J_2 and K_1 must be a covalent bond when two of D_1 , D_2 , J_1 , J_2 and K_1 are O and S, and no more than four of D_1 , D_2 , J_1 , J_2 and K_1 are N;

 D_3 , D_4 , J_3 , J_4 and K_2 are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that no more than one is a covalent bond, no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is O, no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is S, no more than two of D_3 , D_4 , J_3 , J_4 and K_2 are O and S, one of D_3 , D_4 , J_3 , J_4 and J_5 .

10

15

20

bond when two of D_3 , D_4 , J_3 , J_4 and K_2 are O and S, and no more than four of D_3 , D_4 , J_3 , J_4 and K_2 are N;

 $\rm R_2$ is selected from the group consisting of hydrido, aryl, aralkyl, alkyl, alkenyl, alkenyloxyalkyl, haloalkyl, haloalkenyl, halocycloalkyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, heteroaryl, dicyanoalkyl, and carboalkoxycyanoalkyl with the proviso that $\rm R_2$ has a lower Cahn-Ingold-Prelog system ranking than both $\rm R_1$ and (CHR $_3$) $_{\rm n}$ - N(A)O;

 R_3 is selected from the group consisting of hydrido, hydroxy, cyano, aryl, aralkyl, acyl, alkoxy, alkyl, alkenyl, alkoxyalkyl, heteroaryl, alkenyloxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocyanoalkyl, dicyanoalkyl, carboxamide, and carboxamidoalkyl with the provisos that $(\text{CHR}_3)_n\text{-N(A)}Q$ has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-

Y is selected from a group consisting of a covalent single bond, $(C(R_{14})_2)_q \text{ wherein } q \text{ is an integer selected from 1 and 2 and } (CH(R_{14}))_g \text{-W-} \\ (CH(R_{14}))_p \text{ wherein } g \text{ and } p \text{ are integers independently selected from 0 and 1;}$

Ingold-Prelog stereochemical system ranking than R2;

R₁₄ is selected from the group consisting of hydrido, hydroxy, cyano, hydroxyalkyl, acyl, alkoxy, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, carboalkoxy, carboxamide, carboxamidoalkyl;

10

Z is selected from the group consisting of covalent single bond, $(C(R_{15})_2)_q \text{ wherein } q \text{ is an integer selected from 1 and 2, and } (CH(R_{15}))_j \text{-W-} \\ (CH(R_{15}))_k \text{ wherein } j \text{ and } k \text{ are integers independently selected from 0 and 1;}$

W is selected from the group consisting of O, C(O), C(S), $C(O)N(R_{14}), C(S)N(R_{14}), (R_{14})NC(O), (R_{14})NC(S), S, S(O), S(O)_2, \\ S(O)_2N(R_{14}), (R_{14})NS(O)_2, \text{ and } N(R_{14}) \text{ with the proviso that } R_{14} \text{ is other than cyano;}$

R₁₅ is selected from the group consisting of hydrido, cyano, hydroxyalkyl, acyl, alkoxy, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, carboalkoxy, carboxamide, and carboxamidoalkyl;

 $R_4, R_5, R_6, R_7, R_8, R_9, R_{10}, R_{11}, R_{12},$ and R_{13} are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, 15 heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, 20 heteroarylamino, N-heteroarylamino-N-alkylamino, heteroarylaminoalkyl,haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkenyloxyalkyl, 25 cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro,

lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino,

arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, arylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, 5 alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido. diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, 10 aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydroxyheteroaralkyl, 15 haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkenyl, 20 carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl with the proviso that and R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, and R₁₃ are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature 25 of sulfur, and the divalent nature of oxygen:

 R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , R_7 and R_8 , R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having

10

15

from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the provisos that no more than one of the group consisting of spacer pairs R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , and R_7 and R_8 , is used at the same time and that no more than one of the group consisting of spacer pairs R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} is used at the same time;

 R_4 and R_9 , R_4 and R_{13} , R_8 and R_9 , and R_8 and R_{13} are independently selected to form a spacer pair wherein said spacer pair is taken together to form a linear moiety wherein said linear moiety forms a ring selected from the group consisting of a partially saturated heterocyclyl ring having from 5 through 8 contiguous members and a heteroaryl ring having from 5 through 6 contiguous members with the proviso that no more than one of the group consisting of spacer pairs R_4 and R_9 , R_4 and R_{13} , R_8 and R_9 , and R_8 and R_{13} is used at the same time.

2. The compound as recited in Claim 1 having the formula of:

15

or a pharmaceutically acceptable salt thereof, wherein;

n is an integer selected from 1 through 3;

X is oxy;

 R_{16} is selected from the group consisting of hydrido and a spacer selected from the group consisting of a covalent single bond and a linear spacer moiety having a chain length of 1 to 4 atoms linked to the point of bonding of any aromatic substituent selected from the group consisting of $R_4, \\$

10 R_8 , R_9 , and R_{13} to form a heterocyclyl ring having from 5 through 10 contiguous members;

 R_1 is selected from the group consisting of haloalkyl and haloalkoxymethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(A)Q wherein A is Formula (II) and Q is Formula (III);

 D_3 , D_4 , J_3 , J_4 and K_2 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is a covalent bond, no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is O, no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is S, one of D_3 , D_4 , J_3 , J_4 and K_2 must be a covalent bond when two of D_3 , D_4 , J_3 , J_4 and K_2 are O and S, and no more than four of D_3 , D_4 , J_3 , J_4 and K_2 are N;

R₂ is selected from the group consisting of hydrido, aryl, alkyl,
 alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaralkyl,

10

15

20

25

perhaloaryloxyalkyl, and heteroaryl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(A)Q;

 R_3 is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl with the provisos that $(CHR_3)_n$ -N(A)Q has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is selected from the group consisting of a covalent single bond, ${\rm (CH_2)}_q \ {\rm wherein} \ q \ {\rm is \ an \ integer} \ {\rm selected} \ {\rm from} \ 1 \ {\rm and} \ 2, \ {\rm and} \ {\rm (CH_2)}_j {\rm -O-(CH_2)}_k$ wherein j and k are integers independently selected from 0 and 1;

Z is selected from the group consisting of covalent single bond, ${\rm (CH_2)}_q \ {\rm wherein} \ q \ {\rm is} \ {\rm an integer} \ {\rm selected} \ {\rm from} \ 1 \ {\rm and} \ 2, \ {\rm and} \ {\rm (CH_2)}_j {\rm -O-(CH_2)}_k$ wherein j and k are integers independently selected from 0 and 1;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido, halo, haloalkyl, and alkyl;

 $\rm R_5, R_6, R_7, R_{10}, R_{11},$ and $\rm R_{12}$ are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkyl, aralkylyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, Nheteroarylamino-N-alkylamino, heteroarylaminoalkyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkenyloxy, cycloalkoxy, cycloalkylenedioxy, halocycloalkoxy, cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy,

10

15

20

25

halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl. arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, arvlsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, heteroaralkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl;

 R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , R_7 and R_8 , R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a

15

cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the provisos that no more than one of the group consisting of spacer pairs R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , and R_7 and R_8 , is used at the same time and that no more than one of the group consisting of spacer pairs R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} is used at the same time.

3. The compound as recited in Claim 2 having the formula of:

or a pharmacuetically acceptable salt thereof, wherein;

n is an integer selected from 1 through 3;

 R_{16} is selected from the group consisting of hydrido and a spacer selected from the group consisting of a covalent single bond and a linear

spacer moiety having a chain length of 1 to 4 atoms linked to the point of bonding of any aromatic substituent selected from the group consisting of R_4 , R_8 , R_9 , and R_{13} to form a heterocyclyl ring having from 5 through 10 contiguous members;

 R_1 is selected from the group consisting of haloalkyl and haloalkoxymethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (II-P) and Qp is Formula (III-P);

$$\begin{array}{c} R_{6} \\ R_{7} \\ R_{8} \\ R_{13} \\ R_{12} \end{array}$$

10

15

5

 R_2 is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, and heteroaryl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Ap)Qp;

 R_3 is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking

10

15

20

25

than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is selected from the group consisting of a covalent single bond, ${\rm (CH_2)}_q \ {\rm wherein} \ q \ {\rm is} \ {\rm an integer} \ {\rm selected} \ {\rm from} \ 1 \ {\rm and} \ 2, \ {\rm and} \ {\rm (CH_2)}_j {\rm -O-(CH_2)}_k$ wherein j and k are integers independently selected from 0 and 1;

Z is selected from the group consisting of covalent single bond, $(CH_2)_q$ wherein q is an integer selected from 1 and 2, and $(CH_2)_j$ -O- $(CH_2)_k$ wherein j and k are integers independently selected from 0 and 1;

 $R_4, R_8, R_9, \text{ and } R_{13} \text{ are independently selected from the group} \\$ consisting of hydrido, halo, haloalkyl, and alkyl;

 R_5 , R_6 , R_7 , R_{10} , R_{11} , and R_{12} are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, Nheteroarylamino-N-alkylamino, heteroarylaminoalkyl.haloalkylthio. alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, arylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl,

alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl,

- heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy,
- hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydroxyheteroaralkyl, haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, heteroaralkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboxyalkyl, carboalkoxyalkenyl, carboxyalkoxyalkenyl, carboxyalkoxyalkoxyalkoxyalkoxyalkoxyalkyl,
 - carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl;

 $\rm R^{}_4$ and $\rm R^{}_5, R^{}_5$ and $\rm R^{}_6, R^{}_6$ and $\rm R^{}_7, R^{}_7$ and $\rm R^{}_8, R^{}_9$ and $\rm R^{}_{10}, R^{}_{10}$ and

- R₁₁, R₁₁ and R₁₂, and R₁₂ and R₁₃ are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially
 saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the provisos that no more than one of the group consisting of spacer pairs R₄ and
 - $\rm R_5, R_5$ and $\rm R_6, R_6$ and $\rm R_7,$ and $\rm R_7$ and $\rm R_8,$ is used at the same time and that

no more than one of the group consisting of spacer pairs R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} is used at the same time.

4. The compound as recited in Claim 3 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

 R_{16} is taken together with R_4 , R_8 , R_9 , or R_{13} to form a spacer selected from the group consisting of a covalent single bond, CH_2 , $CH(CH_3)$, CF_2 ,

10 C(O), C(S), and SO₂;

R₁ is selected from the group consisting of trifluoromethyl, 1,1,2,2tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl,
chlorodifluoromethyl, and pentafluoroethyl with the proviso that R₁ has a
higher Cahn-Ingold-Prelog stereochemical system ranking than both R₂ and
(CHR₃)_n-N(Apc)Qp wherein Apc is Formula (III-PC) and Qp is Formula (III-P);

;

15

20

 R_2 is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, vinyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, and 2,2,3,3,3-pentafluoropropyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Apc)Qp;

 R_3 is selected from the group consisting of hydrido, methyl, ethyl, vinyl, phenyl, 4-trifluoromethylphenyl, trifluoromethyl, trifluoromethyl, trifluoromethyl, and pentafluoroethyl with the provisos that $(CHR_3)_n$ -N(Apc)Qp has a lower

Cahn-Ingold-Prelog stereochemical system ranking than $\bf R_1$ and a higher Cahn-Ingold-Prelog stereochemical system ranking than $\bf R_2$;

Y is selected from the group consisting of covalent single bond, oxy, methyleneoxy, methylene, and ethylene;

Z is selected from the group consisting of covalent single bond, oxy, methyleneoxy, methylene, and ethylene;

 ${\rm R_4,R_8,R_9,} \ {\rm and} \ {\rm R_{13}} \ {\rm are \ independently \ selected \ from \ the \ group}$ consisting of hydrido and fluoro;

 $\rm R_5$ and $\rm R_{10}$ are independently selected from the group consisting of 4-aminophenoxy, benzoyl, benzyl, benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 4-bromo-2-nitrophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromophenoxy, 5-bromopyrid-2-yloxy, 4-butoxyphenoxy, chloro, 3-chlorobenzyl, 2-chlorophenoxy, 4-chloro-3-ethylphenoxy, 3-chloro-4-fluorobenzyl.

3-chloro-4-fluorophenyl, 3-chloro-2-fluorobenzyloxy, 3-chlorobenzyloxy,

4-chlorobenzyloxy, 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy,

- 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy,
- 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy,
- 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy,
- 2-cyanopyrid-3-yloxy, 4-cyanophenoxy, cyclobutoxy, cyclobutyl,
- 5 cyclohexoxy, cyclohexylmethoxy, cyclopentoxy, cyclopentyl,
 - cyclopentylcarbonyl, cyclopropyl, cyclopropylmethoxy, cyclopropoxy,
 - 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl,
 - 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy,
 - 3.4-difluorophenoxy, 2.3-difluorobenzyloxy, 2.4-difluorobenzyloxy,
- 10 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy,
 - 3,4-difluorophenyl, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy,
 - 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
 - 3,5-dimethoxyphenoxy, 3-dimethylaminophenoxy, 3,5-dimethylphenoxy,
 - 3,4-dimethylphenoxy, 3,4-dimethylbenzyl, 3,4-dimethylbenzyloxy,
- 15 3,5-dimethylbenzyloxy, 2,2-dimethylpropoxy, 1,3-dioxan-2-yl,
 - 1,4-dioxan-2-yl, 1,3-dioxolan-2-yl, ethoxy, 4-ethoxyphenoxy,
 - 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
 - 3-ethyl-5-methylphenoxy, fluoro, 4-fluoro-3-methylbenzyl,
 - 4-fluoro-3-methylphenyl, 4-fluoro-3-methylbenzoyl, 4-fluorobenzyloxy,
- 20 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
 - 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
 - 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy,
 - 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
- 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 - 4-fluoropyrid-2-yloxy, 2-furyl, 3-furyl, heptafluoropropyl,
 - 1.1.1.3.3.3-hexafluoropropyl, 2-hydroxy-3.3.3-trifluoropropoxy,
 - 3-iodobenzyloxy, isobutyl, isobutylamino, isobutoxy, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, isopropyl, 4-isopropylbenzyloxy,
- 30 3-isopropylphenoxy, 4-isopropylphenoxy, isopropylthio,

- 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl,
- 5-isothiazolyl, 3-methoxybenzyl, 4-methoxycarbonylbutoxy,
- 3-methoxycarbonylprop-2-enyloxy, 4-methoxyphenyl,
- 3-methoxyphenylamino, 4-methoxyphenylamino, 3-methylbenzyloxy.
- 5 4-methylbenzyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
 - 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
 - 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
 - 3-nitrophenyl, 4-nitrophenylthio, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl,
 - pentafluoroethyl, pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl,
- 10 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy,
 - $phenylamino, \ 1-phenylethoxy, phenylsulfonyl, \ 4-propanoylphenoxy,$
 - propoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl, sec-butyl,
 - 4-sec-butylphenoxy, tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy,
 - 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl,
- 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl,
 - thiophen-2-yl, 2,3,5-trifluorobenzyloxy, 2,2,2-trifluoroethoxy,
 - 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 - 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl,
- 20 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
 - 2,4-bis-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
 - 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
 - 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 3-trifluoromethylthiobenzyloxy,
- 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy,
 - 2,3,4-trifluorophenyl, 2,3,5-trifluorophenoxy, 3,4,5-trimethylphenoxy,
 - 3-difluoromethoxyphenoxy, 3-pentafluoroethylphenoxy,
 - 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 3-trifluoromethylthiophenoxy, and trifluoromethylthio;

10

15

 ${
m R}_6$ and ${
m R}_{11}$ are independently selected from the group consisting of chloro, fluoro, hydrido, difluoromethoxy, trifluoromethyl, trifluoromethoxy, pentafluoroethyl, and 1,1,2,2-tetrafluoroethoxy;

 $\rm R_7$ and $\rm R_{12}$ are independently selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

5. The compound as recited in Claim 4 or a pharmaceutically acceptable salt thereof, wherein:

 R_{16} is taken together with R_4 , R_8 , R_9 , or R_{13} to form a covalent single bond.

n is the integer 1;

 R_1 is selected from the group consisting of trifluoromethyl and pentafluoroethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and (CHR $_3$) $_n$ -N(Apc)Qp wherein Apc is Formula (II-PC) and Qp is Formula (III-P);

$$\begin{array}{c} R_{6} \\ R_{7} \\ R_{8} \\ \end{array}$$

$$\begin{array}{c} R_{9} \\ R_{10} \\ R_{11} \\ \end{array}$$

$$\begin{array}{c} R_{11} \\ R_{12} \\ \end{array}$$

 R_2 is selected from the group consisting of hydrido and phenyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Apc)Qp;

 \boldsymbol{R}_3 is selected from the group consisting of hydrido, methyl,

5 trifluoromethyl, and difluoromethyl with the provisos that (CHR₃)_n-N(Apc)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R₁ and a higher Cahn-Ingold-Prelog stereochemical system ranking than R₂;

Y is methylene;

10 Z is covalent single bond;

 ${\rm R_4,R_8,R_9,}$ and ${\rm R_{13}}$ are independently selected from the group consisting of hydrido and fluoro;

R₅ is selected from the group consisting of 5-bromo-2-fluorophenoxy,
4-chloro-3-ethylphenoxy, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3difluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy,
3-ethylphenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylphenoxy,
4-fluorophenoxy, 3-isopropylphenoxy, 3-methylphenoxy, 3pentafluoroethylphenoxy, 3-tert -butylphenoxy, 3-(1,1,2,2tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy),
3-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy,
3-trifluoromethylbenzyloxy, and 3-trifluoromethylthiophenoxy;

 R_{10} is selected from the group consisting of cyclopentyl, 1,1,2,2-tetrafluoroethoxy, 2-furyl, 1,1-bis-trifluoromethyl-1-hydroxymethyl, isobutyl, isopropoxy, pentafluoroethyl, trifluoromethoxy, trifluoromethyl, and trifluoromethylthio;

 ${\bf R_6}$ and ${\bf R_{11}}$ are independently selected from the group consisting of fluoro and hydrido;

 $\rm R_7$ and $\rm R_{12}$ are independently selected from the group consisting of hydrido and fluoro.

5

6. The compound as recited in Claim 3 or a pharmaceutically acceptable salt thereof, wherein:

10

n is an integer selected from 1 and 2;

 R_1 is selected from the group consisting of haloalkyl and haloalkoxymethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (II-P) and Qp is Formula (III-P);

$$\begin{array}{c} R_{6} \\ R_{7} \\ R_{8} \\ \end{array}$$

15

R₁₆ is hydrido;

 ${
m R}_2$ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxy, haloalkoxy, perhaloaryl, perhaloaryl, perhaloaryl,

10

perhaloaryloxyalkyl, and heteroaryl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Ap)Qp;

 $\rm R_3$ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl with the provisos that $\rm (CHR_3)_n$ - N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than $\rm R_1$ and a higher Cahn-Ingold-Prelog stereochemical system ranking than $\rm R_2$;

Y is selected from the group consisting of a covalent single bond, oxy and C1-C2 alkylene;

Z is a covalent single bond;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and halo;

R₅, R₆, R₇, R₁₀, R₁₁, and R₁₂ are independently selected from the group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl.

20

15

7. The compound as recited in Claim 6 or a pharmaceutically acceptable salt thereof wherein;

n is the integer 1;

25 R₁₆ is hydrido;

 R_1 is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (II-P) and Qp is Formula (III-P);

$$\begin{array}{c} R_{6} \\ R_{7} \\ R_{8} \\ \end{array}$$

 $\rm R_2$ is selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, vinyl, phenyl, 4-trifluoromethylphenyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, and 2,2,3,3,3-pentafluoropropyl with the proviso that $\rm R_2$ has a lower Cahn-Ingold-Prelog system ranking than both $\rm R_1$ and (CHR $_3$) $_n$ -N(Ap)Qp;

R₃ is selected from the group consisting of hydrido, phenyl, 4trifluoromethylphenyl, methyl, ethyl, vinyl, trifluoromethyl,
trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and

pentafluoroethyl with the provisos that (CHR₃)_n-N(Ap)Qp has a lower CahnIngold-Prelog stereochemical system ranking than R₁ and a higher CahnIngold-Prelog stereochemical system ranking than R₂;

Y is a covalent single bond;

Z is a covalent single bond;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and fluoro;

5 R₅ and R₁₀ are independently selected from the group consisting of 4aminophenoxy, benzyl, benzyl, benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 4-bromo-2-nitrophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromophenoxy, 5-bromopyrid-2-yloxy, 4-butoxyphenoxy, chloro, 3-chlorobenzyl, 2-chlorophenoxy, 10 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 3-chloro-4-fluorobenzyl, 3-chloro-4-fluorophenyl, 3-chloro-2-fluorobenzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy. 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy, 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy, 15 2-cyanopyrid-3-yloxy, 4-cyanophenoxy, cyclobutoxy, cyclobutyl, cyclohexoxy, cyclohexylmethoxy, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropyl, cyclopropylmethoxy, cyclopropoxy, 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl, 20 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy, 3,4-difluorophenoxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy, 3,4-difluorophenyl, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy, 25 3,5-dimethoxyphenoxy, 3-dimethylaminophenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzyl, 3,4-dimethylbenzyloxy, 3,5-dimethylbenzyloxy, 2,2-dimethylpropoxy, 1,3-dioxan-2-yl, 1,4-dioxan-2-yl, 1,3-dioxolan-2-yl, ethoxy, 4-ethoxyphenoxy,

4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,

- 3-ethyl-5-methylphenoxy, fluoro, 4-fluoro-3-methylbenzyl,
- 4-fluoro-3-methylphenyl, 4-fluoro-3-methylbenzoyl, 4-fluorobenzyloxy,
- 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
- 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
- 5 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy,
 - 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
 - 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 - 4-fluoropyrid-2-yloxy, 2-furyl, 3-furyl, heptafluoropropyl,
- 10 l,1,1,3,3,3-hexafluoropropyl, 2-hydroxy-3,3,3-trifluoropropoxy,
 - 3-iodobenzyloxy, isobutyl, isobutylamino, isobutoxy, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, isopropyl, 4-isopropylbenzyloxy,
 - 3-isopropylphenoxy, 4-isopropylphenoxy, isopropylthio,
 - 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl,
- 5-isothiazolyl, 3-methoxybenzyl, 4-methoxycarbonylbutoxy,
 - 3-methoxycarbonylprop-2-enyloxy, 4-methoxyphenyl,
 - 3-methoxyphenylamino, 4-methoxyphenylamino, 3-methylbenzyloxy,
 - 4-methylbenzyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
 - 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
- 20 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
 - 3-nitrophenyl, 4-nitrophenylthio, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl,
 - pentafluoroethyl, pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl,
 - 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy, phenylamino, l-phenylethoxy, phenylsulfonyl, 4-propanoylphenoxy,
- propoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl, sec-butyl,
 - 4-sec-butylphenoxy,tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy,
 - 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-vl.
 - 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl,
 - thiophen-2-yl, 2,3,5-trifluorobenzyloxy, 2,2,2-trifluoroethoxy,
- 30 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,

15

20

25

- 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
- 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl,
- 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
- 2,4-bis-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
- 5 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
 - 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 3-trifluoromethylthiobenzyloxy,
 - 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy,
 - 2,3,4-trifluorophenyl, 2,3,5-trifluorophenoxy, 3,4,5-trimethylphenoxy,
 - 3-difluoromethoxyphenoxy, 3-pentafluoroethylphenoxy,
 - 3-(1,1,2,2-tetrafluoroethoxy) phenoxy, 3-trifluoromethylthiophenoxy, and trifluoromethylthio;

 ${
m R}_6$ and ${
m R}_{11}$ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, trifluoromethyl, and trifluoromethoxy;

 ${
m R}_7$ and ${
m R}_{12}$ are independently selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

8. The compound as recited in Claim 7 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

R₁₆ is hydrido;

 R_1 is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that R_1 has a

10

15

higher Cahn-Ingold-Prelog stereochemical system ranking than both R₂ and (CHR₃)_n-N(Ap)Qp wherein Ap is Formula (II-P) and Qp is Formula (III-P);

 R_2 is selected from the group consisting of hydrido, methyl, ethyl, phenyl, 4-trifluoromethylphenyl, trifluoromethoxymethyl, 1,1,2,2-tetrafluoroethoxymethyl, difluoromethyl, and 2,2,3,3,3-pentafluoropropyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Ap)Qp;

 R_3 is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, methyl, trifluoromethyl, difluoromethyl, and chlorodifluoromethyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is a covalent single bond;

Z is a covalent single bond;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and fluoro;

R₅ and R₁₀ are independently selected from the group consisting of

benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy,

- 3-bromobenzyloxy, 4-bromophenoxy, 4-butoxyphenoxy,
- 3-chlorobenzyloxy, 2-chlorophenoxy, 4-chloro-3-ethylphenoxy,
- 5 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy,
 - 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy,
 - 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy,
 - 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy,
 - cyclobutoxy, cyclobutyl, cyclohexylmethoxy, cyclopentoxy, cyclopentyl,
- cyclopentylcarbonyl, cyclopropylmethoxy, 2,3-dichlorophenoxy,
 - 2,4-dichlorophenoxy, 2,4-dichlorophenyl, 3,5-dichlorophenyl,
 - 3,5-dichlorobenzyl, 3,4-dichlorophenoxy, 3,4-difluorophenoxy,
 - 2,3-difluorobenzyloxy, 3,5-difluorobenzyloxy, difluoromethoxy,
 - 3,5-difluorophenoxy, 3,4-difluorophenoxy,
- 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethoxyphenoxy,
 - 3-dimethylaminophenoxy, 3,4-dimethylbenzyloxy, 3,5-dimethylbenzyloxy,
 - 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 1,3-dioxolan-2-yl,
 - 3-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
 - 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylbenzyl, 4-fluorobenzyloxy,
- 20 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
 - 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
 - 3-fluoro-5-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
 - 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 2-furyl, 3-furyl,
- 25 heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl,
 - 2-hydroxy-3,3,3-trifluoropropoxy, isobutoxy, isobutyl, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy,
 - 3-isopropylbenzyloxy, 3-isopropylphenoxy, isopropylthio,
 - 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl,
- 30 3-methoxybenzyl, 4-methoxyphenylamino, 3-methylbenzyloxy,

- 4-methylbenxyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
- 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
- 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
- 3-nitrophenyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, pentafluoroethyl,
- 5 pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl,
 - 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy,
 - phenylamino, 1-phenylethoxy, 4-propylphenoxy, 4-propoxyphenoxy,
 - thiophen-3-yl,tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy,
 - 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl,
- 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,2,2-trifluoroethoxy, 2,2,2-trifluoroethyl,
 - 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 - 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 4-trifluoromethoxyphenoxy, 3-trifluoromethoxyphenoxy, trifluoromethyl,
- 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
 - 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
 - 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
 - 3,4,5-trimethylphenoxy, 3-difluoromethoxyphenoxy,
- 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy,
 - 3-trifluoromethylthiophenoxy, 3-trifluoromethylthiobenzyloxy, and trifluoromethylthio:

 $\rm R_6$ and $\rm R_{11}$ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, and trifluoromethyl;

 $\rm R_7$ and $\rm R_{12}$ are independently selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

9. The compound as recited in Claim 6 or a pharmaceutically acceptable salt thereof wherein;

n is the integer 1;

5 R₁₆ is hydrido;

 R_1 is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (III-P) and Qp is Formula (III-P);

$$\begin{array}{c} \begin{array}{c} R_{6} \\ R_{7} \\ \end{array} \\ \begin{array}{c} R_{9} \\ \end{array} \\ \begin{array}{c} R_{10} \\ \end{array} \\ \begin{array}{c} R_{11} \\ \end{array} \\ \begin{array}{c} R_{11} \\ \end{array} \\ \begin{array}{c} R_{11} \\ \end{array} \\ \begin{array}{c} R_{12} \end{array}$$

 R_2 is selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, vinyl, phenyl, 4-trifluoromethylphenyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, and $2,2,3,3,3\text{-pentafluoropropyl with the proviso that } R_2 \text{ has a lower Cahn-Ingold-Prelog system ranking than both } R_1 \text{ and } (\text{CHR}_3)_n\text{-N}(\text{Ap})\text{Qp};$

 ${
m R}_3$ is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, methyl, ethyl, vinyl, trifluoromethyl, trifluoromethyl, difluoromethyl, chlorodifluoromethyl, and

pentafluoroethyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is oxy;

Z is a covalent single bond;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and fluoro;

 ${\rm R}_{\rm 5}$ and ${\rm R}_{\rm 10}$ are independently selected from the group consisting of 4aminophenoxy, benzyl, benzyl, benzyloxy, 5-bromo-2-fluorophenoxy, 10 4-bromo-3-fluorophenoxy, 4-bromo-2-nitrophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromophenoxy, 5-bromopyrid-2-yloxy, 4-butoxyphenoxy, chloro, 3-chlorobenzyl, 2-chlorophenoxy, 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 3-chloro-4-fluorobenzyl, 3-chloro-4-fluorophenyl, 3-chloro-2-fluorobenzyloxy, 3-chlorobenzyloxy, 15 4-chlorobenzyloxy, 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy, 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 4-cyanophenoxy, cyclobutoxy, cyclobutyl, 20 cyclohexoxy, cyclohexylmethoxy, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropyl, cyclopropylmethoxy, cyclopropoxy, 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl, 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy, 3,4-difluorophenoxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy, 25 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy, 3,4-difluorophenyl, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,

- 3,5-dimethoxyphenoxy, 3-dimethylaminophenoxy, 3,5-dimethylphenoxy,
- 3,4-dimethylphenoxy, 3,4-dimethylbenzyl, 3,4-dimethylbenzyloxy,
- 3,5-dimethylbenzyloxy, 2,2-dimethylpropoxy, 1,3-dioxan-2-yl,
- 1,4-dioxan-2-yl, 1,3-dioxolan-2-yl, ethoxy, 4-ethoxyphenoxy,
- 5 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
 - 3-ethyl-5-methylphenoxy, fluoro, 4-fluoro-3-methylbenzyl,
 - 4-fluoro-3-methylphenyl, 4-fluoro-3-methylbenzoyl, 4-fluorobenzyloxy,
 - 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
 - 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
- 10 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy,
 - 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
 - 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 - 4-fluoropyrid-2-yloxy, 2-furyl, 3-furyl, heptafluoropropyl,
- 15 1,1,1,3,3,3-hexafluoropropyl, 2-hydroxy-3,3,3-trifluoropropoxy,
 - 3-iodobenzyloxy, isobutyl, isobutylamino, isobutoxy, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, isopropyl, 4-isopropylbenzyloxy,
 - 3-isopropylphenoxy, 4-isopropylphenoxy, isopropylthio,
 - 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl,
- 5-isothiazolyl, 3-methoxybenzyl, 4-methoxycarbonylbutoxy,
 - 3-methoxycarbonylprop-2-enyloxy, 4-methoxyphenyl,
 - 3-methoxyphenylamino, 4-methoxyphenylamino, 3-methylbenzyloxy,
 - 4-methylbenzyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
 - 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
- 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
 - 3-nitrophenyl, 4-nitrophenylthio, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl,
 - pentafluoroethyl, pentafluoroethyl thio, 2,2,3,3,3-pentafluoropropyl,
 - 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy,
 - phenylamino, 1-phenylethoxy, phenylsulfonyl, 4-propanoylphenoxy,
- propoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl, sec-butyl,

- 4-sec-butylphenoxy, tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy,
- 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl,
- 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl,
- thiophen-2-yl, 2,3,5-trifluorobenzyloxy, 2,2,2-trifluoroethoxy,
- 5 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 - 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl,
 - 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
 - 2,4-bis-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
- 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
 - 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 3-trifluoromethylthiobenzyloxy,
 - 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy,
 - 2,3,4-trifluorophenyl, 2,3,5-trifluorophenoxy, 3,4,5-trimethylphenoxy,
- 3-difluoromethoxyphenoxy, 3-pentafluoroethylphenoxy,
 - 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 3-trifluoromethylthiophenoxy, and trifluoromethylthio:

 $\rm R_6$ and $\rm R_{11}$ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy,

20 trifluoromethyl, and trifluoromethoxy;

 ${
m R}_7$ and ${
m R}_{12}$ are independently selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

10. The compound as recited in Claim 9 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1:

R₁₆ is hydrido;

15

 R_1 is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (III-P) and Qp is Formula (III-P);

$$\begin{array}{c} R_{6} \\ R_{7} \\ R_{8} \\ \end{array}$$

$$\begin{array}{c} R_{9} \\ R_{10} \\ R_{11} \\ R_{11} \\ R_{12} \\ \end{array}$$

 R_2 is selected from the group consisting of hydrido, methyl, ethyl, phenyl, 4-trifluoromethylphenyl, trifluoromethoxymethyl, $1,1,2,2\text{-tetrafluoroethoxymethyl, difluoromethyl, and }2,2,3,3,3\text{-pentafluoropropyl with the proviso that }R_2 \text{ has a lower Cahn-Ingold-Prelog}$ system ranking than both R_1 and $(CHR_3)_n\text{-N(Ap)}Qp$;

 R_3 is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, methyl, trifluoromethyl, difluoromethyl, and chlorodifluoromethyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is oxy;

Z is a covalent single bond;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and fluoro:

 \boldsymbol{R}_{5} and \boldsymbol{R}_{10} are independently selected from the group consisting of 5 benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy, 4-bromophenoxy, 4-butoxyphenoxy, 3-chlorobenzyloxy, 2-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy, 10 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy, cyclobutoxy, cyclobutyl, cyclohexylmethoxy, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropylmethoxy, 2,3-dichlorophenoxy, 15 2,4-dichlorophenoxy, 2,4-dichlorophenyl, 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy, 3,4-difluorophenoxy, 2,3-difluorobenzyloxy, 3,5-difluorobenzyloxy, difluoromethoxy, 3,5-difluorophenoxy, 3,4-difluorophenyl, 2,3-difluorophenoxy. 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethoxyphenoxy, 20 3-dimethylaminophenoxy, 3,4-dimethylbenzyloxy, 3,5-dimethylbenzyloxy, 3.5-dimethylphenoxy, 3,4-dimethylphenoxy, 1,3-dioxolan-2-yl, 3-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylbenzyl, 4-fluorobenzyloxy, 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy, 25 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,

3-fluoro-5-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 2-furyl, 3-furyl, heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl,

- 2-hydroxy-3,3,3-trifluoropropoxy, isobutoxy, isobutyl, 3-isoxazolyl,
- 4-isoxazolyl, 5-isoxazolyl, isopropoxy,
- 3-isopropylbenzyloxy, 3-isopropylphenoxy, isopropylthio,
- 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl,
- 5 3-methoxybenzyl, 4-methoxyphenylamino, 3-methylbenzyloxy,
 - 4-methylbenxyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
 - 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
 - 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
 - 3-nitrophenyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, pentafluoroethyl,
- pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl,
 - 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy,
 - phenylamino, 1-phenylethoxy, 4-propylphenoxy, 4-propoxyphenoxy,
 - thiophen-3-yl,tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy,
 - 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl,
- 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,2,2-trifluoroethoxy, 2,2,2-trifluoroethyl,
 - 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 - 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 4-trifluoromethoxyphenoxy, 3-trifluoromethoxyphenoxy, trifluoromethyl,
- 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
 - 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
 - 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
 - 3,4,5-trimethylphenoxy, 3-difluoromethoxyphenoxy,
- 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy,
 - 3-trifluoromethylthiophenoxy, 3-trifluoromethylthiobenzyloxy, and trifluoromethylthio:
 - \mathbf{R}_{6} and \mathbf{R}_{11} are independently selected from the group consisting of
 - chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, and
- 30 trifluoromethyl:

 $\rm R_7$ and $\rm R_{12}$ are independently selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

11. The compound as recited in Claim 6 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

R₁₆ is hydrido;

 R_1 is selected from the group consisting of trifluoromethyl, 1,1,2,2-10 tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (III-P) and Qp is Formula (III-P);

$$R_{11}$$
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{12}

R₂ is selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, vinyl, phenyl, 4-trifluoromethylphenyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, and 2,2,3,3,3-pentafluoropropyl with the proviso that R₂ has a lower Cahn-Ingold-Prelog system ranking than both R₁ and (CHR₃)_n-N(Ap)Qp;

 R_3 is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, methyl, ethyl, vinyl, trifluoromethyl, trifluoromethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the provisos that $(CHR_3)_{\pi}$ -N(Ap)Qp has a lower Cahn-

Ingold-Prelog stereochemical system ranking than R₁ and a higher Cahn-Ingold-Prelog stereochemical system ranking than R₂;

Y is selected from the group consisting of methylene and ethylene; Z is a covalent single bond:

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and fluoro;

 $\rm R_{5}$ and $\rm R_{10}$ are independently selected from the group consisting of 4aminophenoxy, benzyl, benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 4-bromo-2-nitrophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromophenoxy, 5-bromopyrid-2-vloxy, 15 4-butoxyphenoxy, chloro, 3-chlorobenzyl, 2-chlorophenoxy, 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 3-chloro-4-fluorobenzyl, 3-chloro-4-fluorophenyl, 3-chloro-2-fluorobenzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy, 20 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 4-cyanophenoxy, cyclobutoxy, cyclobutyl, cyclohexoxy, cyclohexylmethoxy, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropyl, cyclopropylmethoxy, cyclopropoxy, 25 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl,

3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy, 3,4-difluorophenoxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy,

- 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy,
- 3,4-difluorophenyl, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy,
- 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
- 3,5-dimethoxyphenoxy, 3-dimethylaminophenoxy, 3,5-dimethylphenoxy,
- 5 3,4-dimethylphenoxy, 3,4-dimethylbenzyl, 3,4-dimethylbenzyloxy,
 - 3,5-dimethylbenzyloxy, 2,2-dimethylpropoxy, 1,3-dioxan-2-yl,
 - 1,4-dioxan-2-yl, 1,3-dioxolan-2-yl, ethoxy, 4-ethoxyphenoxy,
 - 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
 - 3-ethyl-5-methylphenoxy, fluoro, 4-fluoro-3-methylbenzyl,
- 4-fluoro-3-methylphenyl, 4-fluoro-3-methylbenzoyl, 4-fluorobenzyloxy,
 - 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
 - 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
 - 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy,
 - 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
- 15 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
 - 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 - 4-fluoropyrid-2-yloxy, 2-furyl, 3-furyl, heptafluoropropyl,
 - 1,1,1,3,3,3-hexafluoropropyl, 2-hydroxy-3,3,3-trifluoropropoxy,
 - 3-iodobenzyloxy, isobutyl, isobutylamino, isobutoxy, 3-isoxazolyl,
- 4-isoxazolyl, 5-isoxazolyl, isopropoxy, isopropyl, 4-isopropylbenzyloxy,
 - 3-isopropylphenoxy, 4-isopropylphenoxy, isopropylthio,
 - 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl,
 - 5-isothiazolyl, 3-methoxybenzyl, 4-methoxycarbonylbutoxy,
 - 3-methoxycarbonylprop-2-enyloxy, 4-methoxyphenyl,
- 3-methoxyphenylamino, 4-methoxyphenylamino, 3-methylbenzyloxy,
 - 4-methylbenzyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
 - 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
 - 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
 - 3-nitrophenyl, 4-nitrophenylthio, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl,
- pentafluoroethyl, pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl,

- 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy, phenylamino, 1-phenylethoxy, phenylsulfonyl, 4-propanoylphenoxy, propoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl, *sec*-butyl, 4-*sec*-butylphenoxy, *tert* -butoxy, 3-*tert* -butylphenoxy, 4-*tert* -butylphenoxy, 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl, 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,3,5-trifluorobenzyloxy, 2,2,2-trifluoroethoxy, 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl,
- 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl,
 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
 2,4-bis-trifluoromethylbenzyloxy,
 3-trifluoromethylbenzyl,
 3,5-bis-trifluoromethylbenzyloxy,
 4-trifluoromethylphenoxy,
 3-trifluoromethylphenoxy,
- 3-trifluoromethylphenyl, 3-trifluoromethylthiobenzyloxy,
 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy,
 2,3,4-trifluorophenyl, 2,3,5-trifluorophenoxy, 3,4,5-trimethylphenoxy,
 3-difluoromethoxyphenoxy, 3-pentafluoroethylphenoxy,
 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 3-trifluoromethylthiophenoxy, and
 trifluoromethylthio;

 ${
m R}_6$ and ${
m R}_{11}$ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, trifluoromethyl, and trifluoromethoxy;

 $m R_7$ and $m R_{12}$ are independently selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

12. The compound as recited in Claim 11 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

R₁₆ is hydrido;

 R_1 is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (II-P) and Qp is Formula (III-P);

$$\begin{array}{c} R_{6} \\ R_{7} \\ R_{8} \\ \end{array}$$

 $R_2 \ is \ selected \ from \ the \ group \ consisting \ of \ hydrido, \ methyl, \ ethyl,$ $phenyl, \ 4-trifluoromethylphenyl, \ trifluoromethoxymethyl,$ $l, 1, 2, 2-tetrafluoroethoxymethyl, \ difluoromethyl, \ and \ 2, 2, 3, 3, 3 pentafluoropropyl \ with \ the \ proviso \ that \ R_2 \ has \ a \ lower \ Cahn-Ingold-Prelog$ $system \ ranking \ than \ both \ R_1 \ and \ (CHR_3)_n-N(Ap)Qp;$

15 R₃ is selected from the group consisting of hydrido, phenyl,
4-trifluoromethylphenyl, methyl, trifluoromethyl, difluoromethyl, and
chlorodifluoromethyl with the provisos that (CHR₃)_n-N(Ap)Qp has a lower

15

20

Cahn-Ingold-Prelog stereochemical system ranking than \boldsymbol{R}_1 and a higher

Cahn-Ingold-Prelog stereochemical system ranking than R₂;

Y is methylene;

Z is a covalent single bond;

5 R₄, R₈, R₉, and R₁₃ are independently selected from the group consisting of hydrido and fluoro;

R₅ and R₁₀ are independently selected from the group consisting of benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy, 4-bromophenoxy, 4-butoxyphenoxy, 3-chlorobenzyloxy, 2-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy, 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-vloxy, cyclobutoxy, cyclobutyl, cyclohexylmethoxy, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropylmethoxy, 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl, 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy, 3,4-difluorophenoxy, 2,3-difluorobenzyloxy, 3,5-difluorobenzyloxy, difluoromethoxy, 3,5-difluorophenoxy, 3,4-difluorophenyl, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethoxyphenoxy, 3-dimethylaminophenoxy, 3,4-dimethylbenzyloxy, 3,5-dimethylbenzyloxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 1,3-dioxolan-2-yl,

3-ethyl-5-methylphenoxy, 4-fluoro-3-methylbenzyl, 4-fluorobenzyloxy,
 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy,
 3-fluoro-2-nitrophenoxy,
 2-fluoro-3-trifluoromethylbenzyloxy,
 3-fluoro-5-trifluoromethylbenzyloxy,
 2-fluorophenoxy,
 4-fluorophenoxy,

3-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,

- 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
- 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 2-furyl, 3-furyl, heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl,
- 2-hydroxy-3,3,3-trifluoropropoxy, isobutoxy, isobutyl, 3-isoxazolyl,
- 4-isoxazolyl, 5-isoxazolyl, isopropoxy,
 - 3-isopropylbenzyloxy, 3-isopropylphenoxy, isopropylthio,
 - 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl,
 - 3-methoxybenzyl, 4-methoxyphenylamino, 3-methylbenzyloxy,
 - 4-methylbenxyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
- 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
 - 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
 - 3-nitrophenyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, pentafluoroethyl, pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl,
 - 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy,
- $15 \qquad phenylamino, \ l\text{--phenylethoxy, 4--propylphenoxy, 4--propoxyphenoxy,} \\$
 - thiophen-3-yl,tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy,
 - 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl,
 - 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl,
 - thiophen-2-yl, 2,2,2-trifluoroethoxy, 2,2,2-trifluoroethyl,
- 20 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 - $\hbox{$3$-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,}\\$
 - 4-trifluoromethoxyphenoxy, 3-trifluoromethoxyphenoxy, trifluoromethyl,
 - 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl.
 - 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
- 25 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
 - 3,4,5-trimethylphenoxy, 3-difluoromethoxyphenoxy,
 - 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy.
 - 3-trifluoromethylthiophenoxy, 3-trifluoromethylthiobenzyloxy, and
- 30 trifluoromethylthio;

 $\rm R_6$ and $\rm R_{11}$ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, and trifluoromethyl;

 ${
m R}_7$ and ${
m R}_{12}$ are independently selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

13. The compound as recited in Claim 6 or a pharmaceutically acceptable salt, wherein;

n is the integer 1;

R₁₆ is hydrido;

 R_1 is haloalkyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (III-P) and Qp is Formula (III-P);

15

5

 R_2 is selected from the group consisting of hydrido, alkyl, haloalkyl, aryl, and haloalkoxy with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Ap)Qp;

 \boldsymbol{R}_3 is selected from the group consisting of hydrido, alkyl, and

haloalkyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-

Prelog stereochemical system ranking than R2;

Y is a covalent single bond;

Z is covalent single bond;

10 R₄, R₈, R₉, and R₁₃ are independently selected from the group consisting of hydrido and halo;

 $R_5, R_6, R_7, R_{10}, R_{11}, \text{ and } R_{12} \text{ are independently selected from the} \\ \text{group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl,} \\ \text{alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy,} \\ \text{heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy,} \\ \text{cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl,} \\ \text{heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl,} \\ \text{heteroarylthio, and heteroarylsulfonyl.} \\$

20 14. The compound as recited in Claim 13 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

 $\rm R_1$ is selected from the group consisting of trifluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that $\rm R_1$ has a higher Cahn-Ingold-Prelog stereochemical system ranking than both $\rm R_2$ and (CHR3)_n-N(Ap)Qp wherein Ap is Formula (II-P) and Qp is Formula (III-P);

$$\begin{array}{c} R_{6} \\ R_{7} \\ R_{8} \\ \end{array}$$

$$\begin{array}{c} R_{9} \\ R_{10} \\ R_{11} \\ R_{12} \\ \end{array}$$

$$\begin{array}{c} R_{11} \\ R_{12} \\ \end{array}$$

R₁₆ is hydrido;

 R_2 is selected from the group consisting of hydrido and phenyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Ap)Qp;

 R_3 is selected from the group consisting of hydrido, methyl, trifluoromethyl, and difluoromethyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is a covalent single bond;

Z is a covalent single bond;

15

10

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and fluoro;

 R_5 is selected from the group consisting of 5-bromo-2-fluorophenoxy,

- 4-chloro-3-ethylphenoxy, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3-
- difluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy,
 - 3-ethylphenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylphenoxy,
 - $\hbox{\it 4-fluorophenoxy, 3-isopropylphenoxy, 3-methylphenoxy, 3-}\\$
- pentafluoroethylphenoxy, 3-tert -butylphenoxy, 3-(1,1,2,2-
- tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy),
- ${\small 10} \hspace{0.5cm} 3-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy, \\$
 - 3-trifluoromethylbenzyloxy, and 3-trifluoromethylthiophenoxy;

 R_{10} is selected from the group consisting of cyclopentyl, 1,1,2,2-tetrafluoroethoxy, 2-furyl, 1,1-bis-trifluoromethyl-1-hydroxymethyl, isobutyl, isopropoxy, pentafluoroethyl, trifluoromethoxy, trifluoromethyl, and trifluoromethylthio;

 \boldsymbol{R}_{6} and \boldsymbol{R}_{11} are independently selected from the group consisting of fluoro and hydrido;

 ${\bf R}_7$ and ${\bf R}_{12}$ are independently selected from the group consisting of hydrido and fluoro.

20

15

5

15. The compound as recited in Claim 14 or a pharmaceutically acceptable salt thereof, wherein:

n is the integer 1:

25 R₁ is selected from the group consisting of trifluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

```
R<sub>16</sub> is hydrido;
```

R₂ is hydrido;

R₂ is hydrido;

Y is a covalent single bond;

5 Z is a covalent single bond;

 $\rm R_4, R_8, R_9,$ and $\rm R_{13}$ are independently selected from the group consisting of hydrido and fluoro;

R₅ is selected from the group consisting of 5-bromo-2-fluorophenoxy,
4-chloro-3-ethylphenoxy, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3difluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy,
3-ethylphenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylphenoxy,
4-fluorophenoxy, 3-isopropylphenoxy, 3-methylphenoxy, 3pentafluoroethylphenoxy, 3-tert -butylphenoxy, 3-(1,1,2,2tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy),
3-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy,
3-trifluoromethylbenzyloxy, and 3-trifluoromethylthiophenoxy;

 R_{10} is selected from the group consisting of 1,1,2,2-tetrafluoroethoxy, pentafluoroethyl, and trifluoromethyl;

 $\rm R_6$ and $\rm R_{11}$ are independently selected from the group consisting of fluoro and hydrido;

 $\rm R_7$ and $\rm R_{12}$ are independently selected from the group consisting of hydrido and fluoro.

16. The compound as recited in Claim 6 or a pharmaceutically acceptablesalt, wherein;

n is the integer 1;

R₁₆ is hydrido;

 R_1 is haloalkyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (II-P) and Qp is Formula (III-P);

$$\begin{array}{c}
R_{6} \\
R_{7} \\
R_{8}
\end{array}$$

$$\begin{array}{c}
R_{9} \\
R_{10} \\
R_{11} \\
R_{11} \\
R_{12}
\end{array}$$

$$\begin{array}{c}
R_{11} \\
R_{12}
\end{array}$$

 R_2 is selected from the group consisting of hydrido, alkyl, haloalkyl, aryl, and haloalkoxy with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Ap)Qp;

 R_3 is selected from the group consisting of hydrido, alkyl, and haloalkyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-

Prelog stereochemical system ranking than R₂;

Y is oxy;

Z is a covalent single bond;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and halo;

 $R_5, R_6, R_7, R_{10}, R_{11}, \text{ and } R_{12} \text{ are independently selected from the} \\ \text{group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl,} \\ \text{alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy,} \\ \text{heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy,} \\ \text{cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl,} \\ \text{heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl,} \\ \text{heteroarylthio, and heteroarylsulfonyl.} \\$

10

5

17. The compound as recited in Claim 16 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

15

 R_1 is selected from the group consisting of trifluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (III-P);

15

20

R₁₆ is hydrido;

 R_2 is selected from the group consisting of hydrido and phenyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Ap)Qp;

 R_3 is selected from the group consisting of hydrido, methyl, trifluoromethyl, and difluoromethyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is oxy;

Z is a covalent single bond;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and fluoro;

 $\rm R_5$ is selected from the group consisting of 5-bromo-2-fluorophenoxy, 4-chloro-3-ethylphenoxy, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3-difluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3-ethylphenoxy, 3-ethylphenoxy, 4-fluoro-3-methylphenoxy, 4-fluorophenoxy, 3-isopropylphenoxy, 3-methylphenoxy, 3-pentafluoroethylphenoxy, 3-tert -butylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy), 3-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy, 3-trifluoromethylphenoxy, 3-trifluorom

 R_{10} is selected from the group consisting of cyclopentyl, 1,1,2,2-tetrafluoroethoxy, 2-furyl, 1,1-bis-trifluoromethyl-1-hydroxymethyl, isobutyl,

isopropoxy, pentafluoroethyl, trifluoromethoxy, trifluoromethyl, and trifluoromethylthio;

 ${\rm R}_{\rm 6}$ and ${\rm R}_{\rm 11}$ are independently selected from the group consisting of fluoro and hydrido;

 $^{\rm 5}$ $\rm\,R_{\rm 7}$ and $\rm\,R_{\rm 12}$ are independently selected from the group consisting of hydrido and fluoro.

18. The compound as recited in Claim 17 or a pharmaceutically acceptable salt thereof, wherein;

10

n is the integer 1;

 ${\bf R}_1$ is selected from the group consisting of trifluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

R₁₆ is hydrido;

15 R₂ is hydrido;

R₃ is hydrido;

Y is oxy;

Z is a covalent single bond;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group 20 consisting of hydrido and fluoro;

 ${
m R}_5$ is selected from the group consisting of 5-bromo-2-fluorophenoxy, 4-chloro-3-ethylphenoxy, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3-difluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3-ethylphenoxy, 3-ethylphenoxy, 4-fluoro-3-methylphenoxy,

4-fluorophenoxy, 3-isopropylphenoxy, 3-methylphenoxy, 3-pentafluoroethylphenoxy, 3-tert -butylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy), 3-trifluoromethoxybenzyloxy,3-trifluoromethoxyphenoxy,

5 3-trifluoromethylbenzyloxy, and 3-trifluoromethylthiophenoxy;

 R_{10} is selected from the group consisting of 1,1,2,2-tetrafluoroethoxy, pentafluoroethyl, and trifluoromethyl;

 $\rm R_{6}$ and $\rm R_{11}$ are independently selected from the group consisting of fluoro and hydrido;

 ${
m R}_7$ and ${
m R}_{12}$ are independently selected from the group consisting of hydrido and fluoro.

19. The compound as recited in Claim 6 or a pharmaceutically acceptable salt, wherein;

n is the integer 1;

R₁₆ is hydrido;

R₁ is haloalkyl with the proviso that R₁ has a higher Cahn-Ingold-

Prelog stereochemical system ranking than both R₂ and (CHR₃)_n-N(Ap)Qp wherein Ap is Formula (III-P) and Qp is Formula (III-P);

15

$$\begin{array}{c} R_{6} \\ R_{7} \\ R_{8} \\ \end{array}$$

 R_2 is selected from the group consisting of hydrido, alkyl, haloalkyl, aryl, and haloalkoxy with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Ap)Qp;

 R_3 is selected from the group consisting of hydrido, alkyl, and haloalkyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

10 Y is methylene;

Z is a covalent single bond;

 $\rm R_4$, $\rm R_8$, $\rm R_9$, and $\rm R_{13}$ are independently selected from the group consisting of hydrido and halo;

 R_5 , R_6 , R_7 , R_{10} , R_{11} , and R_{12} are independently selected from the group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl,

10

15

heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl.

20. The compound as recited in Claim 19 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

 R_1 is selected from the group consisting of trifluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(Ap)Qp wherein Ap is Formula (II-P) and Qp is Formula (III-P);

 R_{16} is hydrido;

 R_2 is selected from the group consisting of hydrido and phenyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Ap)Qp;

10

15

20

 R_3 is selected from the group consisting of hydrido, methyl, trifluoromethyl, and difluoromethyl with the provisos that $(CHR_3)_n$ -N(Ap)Qp has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is methylene;

Z is a covalent single bond;

 $\rm R_4, R_8, R_9$, and $\rm R_{13}$ are independently selected from the group consisting of hydrido and fluoro;

 $\rm R_5$ is selected from the group consisting of 5-bromo-2-fluorophenoxy, 4-chloro-3-ethylphenoxy, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3-difluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3-ethylphenoxy, 3-ethylphenoxy, 4-fluoro-3-methylphenoxy, 4-fluorophenoxy, 3-isopropylphenoxy, 3-methylphenoxy, 3-pentafluoroethylphenoxy, 3-tert -butylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy), 3-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy, 3-trifluoromethylbenzyloxy, and 3-trifluoromethylthiophenoxy;

 R_{10} is selected from the group consisting of cyclopentyl, 1,1,2,2-tetrafluoroethoxy, 2-furyl, 1,1-bis-trifluoromethyl-1-hydroxymethyl, isobutyl, isopropoxy, pentafluoroethyl, trifluoromethoxy, trifluoromethyl, and trifluoromethylthio;

 ${\bf R}_{\bf 6}$ and ${\bf R}_{11}$ are independently selected from the group consisting of fluoro and hydrido;

 $\rm R_7$ and $\rm R_{12}$ are independently selected from the group consisting of $$\rm 25$$ $\,$ hydrido and fluoro.

21. A compound as recited in Claim 2 having the formula:

5 or a pharmaceutically acceptable salt thereof, wherein;

 D_1 , D_2 , J_1 , J_2 and K_1 are each carbon with the proviso that at least one of D_3 , D_4 , J_3 , J_4 and K_2 is selected from the group consisting of O, S, and N, wherein D_3 , D_4 , J_3 , J_4 and K_2 are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is a covalent bond, no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is O, no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is S, one of D_3 , D_4 , D_3 , D_4 , D

 D_1, D_2, J_1, J_2 and K_1 are independently selected from the group

consisting of C, O, S, N and covalent bond with the provisos that D_3, D_4, J_3 ,

15

 J_4 and K_2 are each carbon and at least one of D_1 , D_2 , J_1 , J_2 and K_1 is selected from the group consisting of O, S, and N wherein, when D_1 , D_2 , J_1 , J_2 and K_1 are selected from the group consisting of C, O, S, covalent bond, and N, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is a covalent bond, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is O, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is S, one of D_1 , D_2 , J_1 , J_2 and K_1 must be a covalent bond when two of D_1 , D_2 , J_1 , J_2 and J_1 , J_2 and J_2 and J_3 and J_4 are O and S, and no more than four of J_1 , J_2 , J_3 , J_4 and J_4 are J_4 are J_4 and J_5 and $J_$

 R_{16} is selected from the group consisting of hydrido and a spacer selected from the group consisting of a covalent single bond and a linear spacer moiety having a chain length of 1 to 4 atoms linked to the point of bonding of any aromatic substituent selected from the group consisting of R_4 , R_8 , R_9 , and R_{13} to form a heterocyclyl ring having from 5 through 10 contiguous members;

 R_1 is selected from the group consisting of haloalkyl and haloalkoxymethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(A)Q wherein A is Formula (II) and Q is Formula (III);

 R_2 is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, and heteroaryl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(Ap)Qp;

 R_3 is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl with the provisos that ${\rm (CHR_3)_n}$ - ${\rm N(Ap)Qp}$ has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than

10 R₂;

15

5

Y is selected from the group consisting of a covalent single bond, $(CH_2)_q \text{ wherein q is an integer selected from 1 and 2, and } (CH_2)_j \text{-O-}(CH_2)_k$ wherein j and k are integers independently selected from 0 and 1;

Z is selected from the group consisting of covalent single bond, $(CH_2)_q$ wherein q is an integer selected from 1 and 2, and $(CH_2)_j$ -O- $(CH_2)_k$ wherein j and k are integers independently selected from 0 and 1;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido, halo, haloalkyl, and alkyl;

10

15

20

25

30

 $R_5, R_6, R_7, R_{10}, R_{11}$, and R_{12} are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, Nheteroarylamino-N-alkylamino, heteroarylaminoalkyl.haloalkylthio. alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, arylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonvlalkyl, haloalkylsulfinvlalkyl, haloalkylsulfonvlalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, heteroaralkyl, arylalkenyl,

10

15

25

heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl;

 R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , R_7 and R_8 , R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the provisos that no more than one of the group consisting of spacer pairs R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , and R_7 and R_8 , is used at the same time and that no more than one of the group consisting of spacer pairs R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} is used at the same time.

22. The compound as recited in Claim 21 or a pharmaceutically acceptablesalt thereof, wherein;

 D_1 , D_2 , J_1 , J_2 and K_1 are each carbon with the proviso that at least one of D_3 , D_4 , J_3 , J_4 and K_2 is selected from the group consisting of O, S, and N, wherein D_3 , D_4 , J_3 , J_4 and K_2 are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that no more

10

than one of D_3 , D_4 , J_3 , J_4 and K_2 is a covalent bond, no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is O, no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is S, one of D_3 , D_4 , J_3 , J_4 and K_2 must be a covalent bond when two of D_3 , D_4 , J_3 , J_4 and K_2 are O and S, and no more than four of D_3 , D_4 , J_3 , J_4 and K_2 are N;

D₁, D₂, J₁, J₂ and K₁ are independently selected from the group consisting of C, O, S, N and covalent bond with the provisos that D₃, D₄, J₃, J₄ and K₂ are each carbon and at least one of D₁, D₂, J₁, J₂ and K₁ is selected from the group consisting of O, S, and N wherein, when D₁, D₂, J₁, J₂ and K₁ are selected from the group consisting of C, O, S, covalent bond, and N, no more than one of D₁, D₂, J₁, J₂ and K₁ is a covalent bond, no more than one of D₁, D₂, J₁, J₂ and K₁ is O, no more than one of D₁, D₂, J₁, J₂ and K₁ is S, one of D₁, D₂, J₁, J₂ and K₁ must be a covalent bond when two of D₁, D₂, J₁, J₂ and K₁ are O and S, and no more than four of D₁, D₂, J₁, J₂ and K₁ are N; n is the integer 1;

15 X is oxy;

 R_{16} is taken together with R_4 , R_8 , R_9 , or R_{13} to form a spacer selected from the group consisting of a covalent single bond, CH_2 , $CH(CH_3)$, CF_2 , C(O), C(S), and SO_2 ;

 R_1 is selected from the group consisting of trifluoromethyl, 1,1,2,2tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl,
chlorodifluoromethyl, and pentafluoroethyl with the proviso that R_1 has a

10

15

higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n-N(A)Q \text{ wherein A is Formula (II) and Q is Formula (III)};$

 R_2 is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, vinyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, and 2,2,3,3,3-pentafluoropropyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(A)Q;

 R_3 is selected from the group consisting of hydrido, methyl, ethyl, vinyl, phenyl, 4-trifluoromethylphenyl, , trifluoromethyl, trifluoromethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the provisos that $(CHR_3)_n$ -N(A)Q has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is selected from the group consisting of covalent single bond, oxy, methyleneoxy, methylene, and ethylene;

Z is selected from the group consisting of covalent single bond, oxy, methyleneoxy, methylene, and ethylene;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and fluoro;

R₅ and R₁₀ are independently selected from the group consisting of 4aminophenoxy, benzyl, benzyl, benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 4-bromo-2-nitrophenoxy, 3-bromobenzyloxy, 5 4-bromobenzyloxy, 4-bromophenoxy, 5-bromopyrid-2-yloxy, 4-butoxyphenoxy, chloro, 3-chlorobenzyl, 2-chlorophenoxy, 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 3-chloro-4-fluorobenzyl, 3-chloro-4-fluorophenyl, 3-chloro-2-fluorobenzyloxy, 3-chlorobenzyloxy, 10 4-chlorobenzyloxy, 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy, 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-vloxy, 2-cyanopyrid-3-yloxy, 4-cyanophenoxy, cyclobutoxy, cyclobutyl, 15 cyclohexoxy, cyclohexylmethoxy, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropyl, cyclopropylmethoxy, cyclopropoxy, 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl, 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy, 3.4-difluorophenoxy, 2.3-difluorobenzyloxy, 2.4-difluorobenzyloxy, 20 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy, 3,4-difluorophenyl, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethoxyphenoxy, 3-dimethylaminophenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzyl, 3,4-dimethylbenzyloxy, 25 3,5-dimethylbenzyloxy, 2,2-dimethylpropoxy, 1,3-dioxan-2-yl, 1,4-dioxan-2-yl, 1,3-dioxolan-2-yl, ethoxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, fluoro, 4-fluoro-3-methylbenzyl, 4-fluoro-3-methylphenyl, 4-fluoro-3-methylbenzoyl, 4-fluorobenzyloxy.

- 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
- 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
- 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-2-trifluoromethylbenzyloxy,
- 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
- 5 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
 - 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 - 4-fluoropyrid-2-yloxy, 2-furyl, 3-furyl, heptafluoropyopyl,
 - 1,1,1,3,3,3-hexafluoropropyl, 2-hydroxy-3,3,3-trifluoropropoxy,
 - 3-iodobenzyloxy, isobutyl, isobutylamino, isobutoxy, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, isopropyl, 4-isopropylbenzyloxy,
 - 3-isopropylphenoxy, 4-isopropylphenoxy, isopropylthio,
 - 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl,
 - 5-isothiazolyl, 3-methoxybenzyl, 4-methoxycarbonylbutoxy,
 - 3-methoxycarbonylprop-2-enyloxy, 4-methoxyphenyl,
- 15 3-methoxyphenylamino, 4-methoxyphenylamino, 3-methylbenzyloxy,
 - 4-methylbenzyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
 - 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
 - 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
 - 3-nitrophenyl, 4-nitrophenylthio, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl,
- pentafluoroethyl, pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl,
 - 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy,
 - phenylamino, 1-phenylethoxy, phenylsulfonyl, 4-propanoylphenoxy,
 - propoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl, sec-butyl,
 - 4-sec-butylphenoxy, tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy,
- 25 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-vl.
 - 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl,
 - thiophen-2-yl, 2,3,5-trifluorobenzyloxy, 2,2,2-trifluoroethoxy,
 - 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 - 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
- 30 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl,

- 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
- 2,4-bis-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
- 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
- 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
- 5 3-trifluoromethylphenyl, 3-trifluoromethylthiobenzyloxy,
 - 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy,
 - 2,3,4-trifluorophenyl, 2,3,5-trifluorophenoxy, 3,4,5-trimethylphenoxy,
 - 3-difluoromethoxyphenoxy, 3-pentafluoroethylphenoxy,
 - 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 3-trifluoromethylthiophenoxy, and trifluoromethylthio:

 $\rm R_6$ and $\rm R_{11}$ are independently selected from the group consisting of chloro, fluoro, hydrido, difluoromethoxy, trifluoromethyl, trifluoromethoxy, pentafluoroethyl, and 1,1,2,2-tetrafluoroethoxy;

R₇ and R₁₂ are independently selected from the group consisting of
 hydrido, fluoro, and trifluoromethyl.

- 23. The compound as recited in Claim 21 or a pharmaceutically acceptable salt thereof, wherein:
- D₁, D₂, J₁, J₂ and K₁ are each carbon with the proviso that at least one of D₃, D₄, J₃, J₄ and K₂ is selected from the group consisting of O, S, and N, wherein D₃, D₄, J₃, J₄ and K₂ are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that no more than one of D₃, D₄, J₃, J₄ and K₂ is a covalent bond, no more than one of D₃, D₄, J₃, J₄ and K₂ is O, no more than one of D₃, D₄, J₃, J₄ and K₂ is S, one of

 D_3 , D_4 , J_3 , J_4 and K_2 must be a covalent bond when two of D_3 , D_4 , J_3 , J_4 and K_2 are O and S, and no more than four of D_3 , D_4 , J_3 , J_4 and K_2 are N;

 D_1 , D_2 , J_1 , J_2 and K_1 are selected from the group consisting of C, O, S, N and covalent bond with the provisos that D_3 , D_4 , J_3 , J_4 and K_2 are each carbon and at least one of D_1 , D_2 , J_1 , J_2 and K_1 is selected from the group consisting of O, S, and N wherein, when D_1 , D_2 , J_1 , J_2 and K_1 are selected from the group consisting of C, O, S, covalent bond, and N, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is a covalent bond, no more than one of D_1 , D_2 , J_1 , J_2 and J_1 is O, no more than one of J_2 , J_3 , J_4 and J_5 and J_5 and J_5 are selected from the group consisting of C, O, S, covalent bond, and N, no more than one of J_1 , J_2 , J_3 , J_4 , J_5 ,

10 J₁, J₂ and K₁ must be a covalent bond when two of D₁, D₂, J₁, J₂ and K₁ are
O and S, and no more than four of D₁, D₂, J₁, J₂ and K₁ are N;

n is an integer selected from 1 and 2;

X is oxy;

R₁ is selected from the group consisting of haloalkyl and

haloalkoxymethyl with the proviso that R₁ has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R₂ and (CHR₃)_n-N(A)Q wherein A is Formula (II) and Q is Formula (III);

10

R₁₆ is hydrido;

 R_2 is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(A)Q;

 R_3 is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl with the provisos that $(CHR_3)_n$ -N(A)Q has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is selected from the group consisting of a covalent single bond, oxy and C1-C2 alkylene;

Z is a covalent single bond;

 ${\bf R_4}, {\bf R_8}, {\bf R_9},$ and ${\bf R_{13}}$ are independently selected from the group consisting of hydrido and halo;

15 R₄, R₅, R₆, R₇, R₁₀, R₁₁, and R₁₂ are independently selected from the group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl,

heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl.

5 24. The compound as recited in Claim 23 and pharmaceutically acceptable salts, wherein;

n is the integer 1;

X is oxy;

10 R₁₆ is hydrido;

 $\rm R_1$ is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that $\rm R_1$ has a higher Cahn-Ingold-Prelog stereochemical system ranking than both $\rm R_2$ and

15 (CHR₃)_n-N(A)Q wherein A is Formula (II) and Q is Formula (III);

 R_2 is selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, vinyl, phenyl, 4-trifluoromethylphenyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, and

2,2,3,3,3-pentafluoropropyl with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(A)Q;

 R_3 is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, methyl, ethyl, vinyl, trifluoromethyl, trifluoromethyl, trifluoromethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the provisos that $(CHR_3)_n$ -N(A)Q has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is selected from the group consisting of a single covalent bond, 10 methylene, ethylene, and oxy;

Z is covalent single bond;

 ${\rm R_4,R_8,R_9,} \ {\rm and} \ {\rm R_{13}} \ {\rm are \ independently \ selected \ from \ the \ group}$ consisting of hydrido and fluoro;

R₅ and R₁₀ are independently selected from the group consisting of 4
aminophenoxy, benzoyl, benzyl, benzyloxy, 5-bromo-2-fluorophenoxy,

4-bromo-3-fluorophenoxy, 4-bromo-2-nitrophenoxy, 3-bromobenzyloxy,

4-bromobenzyloxy, 4-bromophenoxy, 5-bromopyrid-2-yloxy,

4-butoxyphenoxy, chloro, 3-chlorobenzyl, 2-chlorophenoxy,

4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 3-chloro-4-fluorobenzyloxy,

4-chloro-4-fluorophenyl, 3-chloro-2-fluorobenzyloxy, 3-chlorobenzyloxy,

4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy,

3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy,

4-chloro-3-fluorophenoxy, 4-chlorophenoxy,

4-chloro-3-fluorophenoxy, 4-chlorophenoxy,

- 2-cyanopyrid-3-yloxy, 4-cyanophenoxy, cyclobutoxy, cyclobutyl, cyclohexoxy, cyclohexylmethoxy, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropyl, cyclopropylmethoxy, cyclopropoxy,
- 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl,
- 5 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy,
 - 3,4-difluorophenoxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy,
 - 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy,
 - 3,4-difluorophenyl, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy,
 - 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
- 10 3,5-dimethoxyphenoxy, 3-dimethylaminophenoxy, 3,5-dimethylphenoxy,
 - 3,4-dimethylphenoxy, 3,4-dimethylbenzyl, 3,4-dimethylbenzyloxy,
 - 3,5-dimethylbenzyloxy, 2,2-dimethylpropoxy, 1,3-dioxan-2-yl,
 - 1,4-dioxan-2-yl, 1,3-dioxolan-2-yl, ethoxy, 4-ethoxyphenoxy,
 - 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
- 3-ethyl-5-methylphenoxy, fluoro, 4-fluoro-3-methylbenzyl,
 - 4-fluoro-3-methylphenyl, 4-fluoro-3-methylbenzoyl, 4-fluorobenzyloxy,
 - 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
 - 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
 - $3-fluoro-5-trifluoromethylbenzyloxy,\, 4-fluoro-2-trifluoromethylbenzyloxy,\\$
- 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
 - 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 - 4-fluoropyrid-2-yloxy, 2-furyl, 3-furyl, heptafluoropropyl,
 - 1,1,1,3,3,3-hexafluoropropyl, 2-hydroxy-3,3,3-trifluoropropoxy,
- 25 3-iodobenzyloxy, isobutyl, isobutylamino, isobutoxy, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, isopropyl, 4-isopropylbenzyloxy,
 - 3-isopropylphenoxy, 4-isopropylphenoxy, isopropylthio,
 - 4-isopropyl-3-methylphenoxy, 3-isothiazolyl, 4-isothiazolyl,
 - 5-isothiazolyl, 3-methoxybenzyl, 4-methoxycarbonylbutoxy,
- 30 3-methoxycarbonylprop-2-enyloxy, 4-methoxyphenyl,

- 3-methoxyphenylamino, 4-methoxyphenylamino, 3-methylbenzyloxy,
- 4-methylbenzyloxy, 3-methylphenoxy, 3-methyl-4-methylthiophenoxy,
- 4-methylphenoxy, 1-methylpropoxy, 2-methylpyrid-5-yloxy,
- 4-methylthiophenoxy, 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy,
- 3-nitrophenyl, 4-nitrophenylthio, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, pentafluoroethyl, pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy, phenylamino, 1-phenylethoxy, phenylsulfonyl, 4-propanoylphenoxy,
- propoxy, 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl, *sec*-butyl,

 4-*sec*-butylphenoxy, *tert*-butoxy, 3-*tert*-butylphenoxy, 4-*tert*-butylphenoxy,

 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl,
 - 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,3,5-trifluorobenzyloxy, 2,2,2-trifluoroethoxy,
 - 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
- 15 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl,
 - 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
 - 2,4-bis-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
 - ${\it 3-trifluoromethylbenzyl}, {\it 3,5-bis-trifluoromethylbenzyloxy},$
- 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 3-trifluoromethylthiobenzyloxy,
 - 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy,
 - 2,3,4-trifluorophenyl, 2,3,5-trifluorophenoxy, 3,4,5-trimethylphenoxy,
 - 3-difluoromethoxyphenoxy, 3-pentafluoroethylphenoxy,
- 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 3-trifluoromethylthiophenoxy, and trifluoromethylthio;

 ${
m R}_6$ and ${
m R}_{11}$ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, trifluoromethyl, and trifluoromethoxy;

 $\rm R_7$ and $\rm R_{12}$ are independently selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

5 25. The compound as recited in Claim 24 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

X is oxy;

10 R_1 is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(A)Q wherein A is Formula (II) and Q is Formula (III);

15

R₁₆ is hydrido;

 R_2 is selected from the group consisting of hydrido, methyl, ethyl, phenyl, 4-trifluoromethylphenyl, trifluoromethoxymethyl,

15

1,1,2,2-tetrafluoroethoxymethyl, difluoromethyl, and 2,2,3,3,3pentafluoropropyl with the proviso that R2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(A)Q;

 R_3 is selected from the group consisting of hydrido, phenyl, 4-trifluoromethylphenyl, methyl, trifluoromethyl, difluoromethyl, and chlorodifluoromethyl with the provisos that $(CHR_3)_n$ -N(A)Q has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R2;

Y is methylene;

10 Z is covalent single bond;

> $R_{\rm a},\,R_{\rm g},\,R_{\rm q},$ and $R_{\rm 13}$ are independently selected from the group consisting of hydrido and fluoro;

 $\rm R_5$ and $\rm R_{10}$ are independently selected from the group consisting of benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy,

- 3-bromobenzyloxy, 4-bromophenoxy, 4-butoxyphenoxy, 3-chlorobenzyloxy, 2-chlorophenoxy, 4-chloro-3-ethylphenoxy,
 - 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy,
 - 4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy,
 - 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy,
- 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy, 20 cyclobutoxy, cyclobutyl, cyclohexylmethoxy, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropylmethoxy, 2,3-dichlorophenoxy,
 - 2,4-dichlorophenoxy, 2,4-dichlorophenyl, 3,5-dichlorophenyl,
 - 3,5-dichlorobenzyl, 3,4-dichlorophenoxy, 3,4-difluorophenoxy,
- 25 2,3-difluorobenzyloxy, 3,5-difluorobenzyloxy, difluoromethoxy,
 - 3,5-difluorophenoxy, 3,4-difluorophenyl, 2,3-difluorophenoxy,

- 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethoxyphenoxy,
- 3-dimethylaminophenoxy, 3,4-dimethylbenzyloxy, 3,5-dimethylbenzyloxy,
- 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 1,3-dioxolan-2-yl,
- 3-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
- 5 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylbenzyl, 4-fluorobenzyloxy,
 - 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy, 3-fluorophenoxy,
 - 3-fluoro-2-nitrophenoxy, 2-fluoro-3-trifluoromethylbenzyloxy,
 - 3-fluoro-5-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy,
 - 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy,
- 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy, 2-furyl, 3-furyl, heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl,
 - 2-hydroxy-3,3,3-trifluoropropoxy, isobutoxy, isobutyl, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, 3-isopropylbenzyloxy,
 - 3-isopropylphenoxy, isopropylthio, 4-isopropyl-3-methylphenoxy,
- 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-methoxybenzyl,
 - 4-methoxyphenylamino, 3-methylbenzyloxy, 4-methylbenxyloxy,
 - 3-methylphenoxy, 3-methyl-4-methylthiophenoxy, 4-methylphenoxy,
 - 1-methylpropoxy, 2-methylpyrid-5-yloxy, 4-methylthiophenoxy,
 - 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy, 3-nitrophenyl, 2-oxazolyl,
- 4-oxazolyl, 5-oxazolyl, pentafluoroethyl, pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl, 1,1,2,2,3-pentafluoropropyl, phenoxy, phenylamino, 1-phenylethoxy, 4-propylphenoxy,
 - 4-propoxyphenoxy, thiophen-3-yl,tert -butoxy, 3-tert -butylphenoxy,
 - 4-tert -butylphenoxy, 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl,
- 25 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,2,2-trifluoroethoxy, 2,2,2-trifluoroethyl,
 - 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 - 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 4-trifluoromethoxyphenoxy, 3-trifluoromethoxyphenoxy, trifluoromethyl,
- 30 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,

- 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
- 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
- 3-trifluoromethylphenyl, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
- 3,4,5-trimethylphenoxy, 3-difluoromethoxyphenoxy,
- 5 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy,
 - 3-trifluoromethylthiophenoxy, 3-trifluoromethylthiobenzyloxy, and trifluoromethylthio;

 $\rm R_6$ and $\rm R_{11}$ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, and trifluoromethyl;

 ${
m R}_7$ and ${
m R}_{12}$ are independently selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

26. The compound as recited in Claim 23 or a pharmaceutically acceptable salt, wherein;

 $\boldsymbol{D}_1, \boldsymbol{D}_2, \boldsymbol{J}_1, \boldsymbol{J}_2$ and \boldsymbol{K}_1 are each carbon;

 D_3 , D_4 , J_3 , J_4 and K_2 are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is a covalent bond, no more than one of D_3 ,

D₄, J₃, J₄ and K₂ is O, no more than one of D₃, D₄, J₃, J₄ and K₂ is S, one of D₃, D₄, J₃, J₄ and K₂ must be a covalent bond when two of D₃, D₄, J₃, J₄ and K₂ are O and S, no more than four of D₃, D₄, J₃, J₄ and K₂ are N, and one of D₃, D₄, J₃, J₄ and K₂ is selected from the group consisting of O, S, and N;

X is oxy;

R₁₆ is hydrido;

 R_1 is haloalkyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(A)Q wherein A is Formula (II) and Q is Formula (III);

 R_2 is selected from the group consisting of hydrido, alkyl, aryl, haloalkyl, and haloalkoxy with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(A)Q;

 R_3 is selected from the group consisting of hydrido, alkyl, and haloalkyl with the provisos that $(CHR_3)_n$ -N(A)Q has a lower Cahn-Ingold-Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is a C1-C2 alkylene;

2 is covalent single bond;

R₁₄ is hydrido;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and halo;

 $R_5, R_6, R_7, R_{10}, R_{11}, \text{ and } R_{12} \text{ are independently selected from the} \\$ group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, and heteroaryloxyalkyl.}

27. The compound as recited in Claim 23 or a pharmaceutically acceptable salt, wherein;

 D_3 , D_4 , J_3 , J_4 and K_2 are each carbon;

D₁, D₂, J₁, J₂ and K₁ are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that no more than one of D₁, D₂, J₁, J₂ and K₁ is a covalent bond, no more than one of D₁, D₂, J₁, J₂ and K₁ is O, no more than one of D₁, D₂, J₁, J₂ and K₁ is S, one of D₁, D₂, J₁, J₂ and K₁ must be a covalent bond when two of D₁, D₂, J₁, J₂ and K₁ are O and S, no more than four of D₁, D₂, J₁, J₂ and K₁ are N, and one of D₁, D₂, J₁, J₂ and K₁ is selected from the group consisting of O, S, and N;

20

5

n is the integer 1;

X is oxy;

R₁₆ is hydrido;

 R_1 is haloalkyl with the proviso that R_1 has a higher Cahn-Ingold-Prelog stereochemical system ranking than both R_2 and $(CHR_3)_n$ -N(A)Q wherein A is Formula (II) and Q is Formula (III);

 R_2 is selected from the group consisting of hydrido, alkyl, aryl, haloalkyl, and haloalkoxy with the proviso that R_2 has a lower Cahn-Ingold-Prelog system ranking than both R_1 and $(CHR_3)_n$ -N(A)Q;

 $\rm R_3$ is selected from the group consisting of hydrido, alkyl, and haloalkyl with the provisos that $\rm (CHR_3)_n\text{-N(A)Q}$ has a lower Cahn-Ingold-

Prelog stereochemical system ranking than R_1 and a higher Cahn-Ingold-Prelog stereochemical system ranking than R_2 ;

Y is a C1-C2 alkylene;

Z is covalent single bond;

R₁₄ is hydrido;

15 R₄, R₈, R₉, and R₁₃ are independently selected from the group consisting of hydrido and halo; R_5 , R_6 , R_7 , R_{10} , R_{11} , and R_{12} are independently selected from the group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, and heteroaryloxyalkyl.

28. The compound as recited in any one of Claims 26 or 27 or a pharmaceutically acceptable salt thereof, wherein;

10

15

5

n is the integer 1;

X is oxy;

 \mathbf{R}_{1} is selected from the group consisting of trifluoromethyl and pentafluoroethyl and chlorodifluoromethyl;

R₁₆ is hydrido;

R₂ is hydrido;

 R_3 is selected from the group consisting of hydrido,

methyl, trifluoromethyl, and difluoromethyl;

Y is methylene;

Z is a covalent single bond;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and fluoro;

R₅ is selected from the group consisting of 5-bromo-2-fluorophenoxy,
4-chloro-3-ethylphenoxy, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy, 3difluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy,
3-ethylphenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylphenoxy,

4-fluorophenoxy, 3-isopropylphenoxy, 3-methylphenoxy, 3-pentafluoroethylphenoxy, 3-tert -butylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy), 3-trifluoromethoxybenzyloxy,3-trifluoromethoxyphenoxy,

5 3-trifluoromethylbenzyloxy, and 3-trifluoromethylthiophenoxy;

 R_{10} is selected from the group consisting of cyclopentyl, 1,1,2,2-tetrafluoroethoxy, 2-furyl, 1,1-bis-trifluoromethyl-1-hydroxymethyl, isobutyl, isopropoxy, pentafluoroethyl, trifluoromethoxy, trifluoromethyl, and trifluoromethylthio;

 R_6 and R_{11} are independently selected from the group consisting of fluoro and hydrido;

 $\rm R_7$ and $\rm R_{12}$ are independently selected from the group consisting of hydrido and fluoro.

15 29. A compound having the formula:

$$R_{1}$$
 R_{2}
 R_{3}
 R_{1}
 R_{2}
 R_{3}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}

or a pharmaceutically acceptable salt thereof, wherein:

n is an integer selected from 1 and 2;

 \boldsymbol{R}_1 is selected from the group consisting of haloalkyl and haloalkoxyalkyl;

5 R₁₆ is hydrido;

R₂ is hydrido;

R₃ is hydrido;

Y is selected from the group consisting of a covalent single bond and C1-C2 alkylene;

Z is selected from the group consisting of a covalent single bond and C1-C2 alkylene;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and halo;

R₅, R₆, R₇, R₁₀, R₁₁, and R₁₂ are independently selected from the group consisting of perhaloaryloxy, N-aryl-N-alkylamino, heterocyclylalkoxy, heterocyclylthio, hydroxyalkoxy, carboxamidoalkoxy, alkoxycarbonylalkoxy, alkoxycarbonylalkenyloxy, aralkanoylalkoxy, aralkenoyl, N-arylcarboxamidoalkoxy, cycloalkylcarbonyl, cyanoalkoxy, heterocyclylcarbonyl, hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl.

25 heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl. 30. The compound as recited in Claim 29 or a pharmaceutically acceptable salt thereof wherein:

5

10

n is the integer 1;

R₁₆ is hydrido;

 R_1 is selected from the group consisting of trifluoromethyl, 1,1,2,2-tetrafluoroethoxymethyl, trifluoromethoxymethyl, difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

R2 is hydrido;

R₃ is hydrido;

Y is selected from the group consisting of methylene, and ethylene;

Z is is selected from the group consisting of covalent single bond and

15 methylene;

 ${\bf R_4}, {\bf R_8}, {\bf R_9},$ and ${\bf R_{13}}$ are independently selected from the group consisting of hydrido and fluoro;

R₅ and R₁₀ are independently selected from the group consisting of
4-aminophenoxy, benzoyl, benzyl, benzyloxy, 5-bromo-2-fluorophenoxy,
4-bromo-3-fluorophenoxy, 4-bromo-2-nitrophenoxy, 3-bromobenzyloxy,
4-bromobenzyloxy, 4-bromophenoxy, 5-bromopyrid-2-yloxy,
4-butoxyphenoxy, chloro, 3-chlorobenzyl, 2-chlorophenoxy,
4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 3-chloro-4-fluorobenzyloxy,
3-chloro-4-fluorophenoxy, 4-chloro-3-methylphenoxy, 2-chloro-4-fluorophenoxy,
4-chloro-2-fluorophenoxy, 4-chlorophenoxy, 3-chloro-4-ethylphenoxy,
3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy,

- 4-chloro-3-fluorophenoxy, 4-chlorophenylamino, 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 4-cyanophenoxy, cyclobutoxy, cyclobutyl, cyclohexoxy, cyclohexylmethoxy, cyclopentyl, cyclopentyl, cyclopropyl, cyclopropylmethoxy, cyclopropxy,
- 5 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl, 3,5-dichlorophenyl, 3,5-dichlorobenzyl, 3,4-dichlorophenoxy, 3,4-difluorophenoxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy,
 - $3, 4-{\rm difluor ophenyl}, \, 3, 5-{\rm difluor obenzyloxy}, \, 4-{\rm difluor omethoxy benzyloxy}, \,$
- 10 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
 - $3, 5-dimethoxy phenoxy, \, 3-dimethyl amin ophenoxy, \, 3, 5-dimethyl phenoxy, \, 3, 5-dimethyl p$
 - $3,\!4\!-\!dimethyl phenoxy,\,3,\!4\!-\!dimethyl benzyl,\,3,\!4\!-\!dimethyl benzyloxy,$
 - $3, 5-dimethyl benzyloxy, \, 2, 2-dimethyl propoxy, \, 1, 3-dioxan-2-yl,$
 - 1,4-dioxan-2-yl, 1,3-dioxolan-2-yl, ethoxy, 4-ethoxyphenoxy,
- 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylaminophenoxy,
 - 3-ethyl-5-methylphenoxy, fluoro, 4-fluoro-3-methylbenzyl,
 - 4-fluoro-3-methylphenyl, 4-fluoro-3-methylbenzoyl, 4-fluorobenzyloxy,
 - 2-fluoro-3-methylphenoxy, 3-fluoro-4-methylphenoxy,
 - 3-fluorophenoxy, 3-fluoro-2-nitrophenoxy,
- 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy,
 4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy,
 - 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,
 - 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 - 4-fluoropyrid-2-yloxy, 2-furyl, 3-furyl, heptafluoropropyl, 1,1,1,3,3,3-
- hexafluoropropyl, 2-hydroxy-3,3,3-trifluoropropoxy, 3-iodobenzyloxy, isobutyl, isobutylamino, isobutoxy, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, isopropoxy, isopropyl, 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy, isopropylthio, 4-isopropyl-3-methylphenoxy,
 - 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-methoxybenzyl,
- 30 4-methoxycarbonylbutoxy, 3-methoxycarbonylprop-2-enyloxy,

- 4-methoxyphenyl, 3-methoxyphenylamino, 4-methoxyphenylamino,
- 3-methylbenzyloxy, 4-methylbenzyloxy, 3-methylphenoxy,
- 3-methyl-4-methylthiophenoxy, 4-methylphenoxy, 1-methylpropoxy,
- 2-methylpyrid-5-yloxy, 4-methylthiophenoxy, 2-naphthyloxy,
- 5 2-nitrophenoxy, 4-nitrophenoxy, 3-nitrophenyl, 4-nitrophenylthio, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, pentafluoroethyl, pentafluoroethylthio, 2,2,3,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl,
 - 1,1,2,2,3-pentafluoropropyl, phenoxy, phenylamino, 1-phenylethoxy, phenylsulfonyl, 4-propanoylphenoxy, propoxy, 4-propylphenoxy,
- 4-propoxyphenoxy, thiophen-3-yl, sec-butyl, 4-sec-butylphenoxy,
 tert -butoxy, 3-tert -butylphenoxy, 4-tert -butylphenoxy,
 1,1,2,2-tetrafluoroethoxy, tetrahydrofuran-2-yl,
 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl, thiazol-4-yl, thiazol-5-yl,
 thiophen-2-yl, 2,3,5-trifluorobenzyloxy, 2,2,2-trifluoroethoxy,
- 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy, trifluoromethyl, 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy.
 - 2,4-bis-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
- 20 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
 - 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 3-trifluoromethylthiobenzyloxy,
 - 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy,
 - 2,3,4-trifluorophenyl, 2,3,5-trifluorophenoxy, 3,4,5-trimethylphenoxy,
- 3-difluoromethoxyphenoxy, 3-pentafluoroethylphenoxy,
 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 3-trifluoromethylthiophenoxy, and trifluoromethylthio;

 R_6 and R_{11} are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, trifluoromethyl, and trifluoromethoxy;

 ${
m R}_7$ and ${
m R}_{12}$ are independently selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

5 31. The compound as recited in Claim 30 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

R₁ is selected from the group consisting of trifluoromethyl,

difluoromethyl, chlorodifluoromethyl, and pentafluoroethyl;

R₁₆ is hydrido;

R2 is hydrido;

R₃ is hydrido;

Y is methylene;

15 Z is covalent single bond;

 $\rm R_4, R_8, R_9$, and $\rm R_{13}$ are independently selected from the group consisting of hydrido and fluoro;

R₅ and R₁₀ are independently selected from the group consisting of benzyloxy, 5-bromo-2-fluorophenoxy, 4-bromo-3-fluorophenoxy, 3-chlorobenzyloxy, 3-bromobenzyloxy, 4-bromophenoxy, 4-butoxyphenoxy, 3-chlorobenzyloxy, 2-chloro-4-fluorophenoxy, 4-chloro-2-fluorophenoxy, 4-chloro-3-methylphenoxy, 3-chloro-4-ethylphenoxy, 3-chloro-4-methylphenoxy, 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy, 3-chloro-4-fluorophenoxy, 4-chloro-3-fluorophenoxy,

- 4-chlorophenylamino, 5-chloropyrid-3-yloxy, cyclobutoxy, cyclobutyl, cyclohexylmethoxy, cyclopentoxy, cyclopentyl, cyclopentylcarbonyl, cyclopropylmethoxy, 2,3-dichlorophenoxy, 2,4-dichlorophenoxy, 2,4-dichlorophenyl, 3,5-dichlorophenyl, 3,5-dichlorobenzyl,
- 5 3,4-dichlorophenoxy, 3,4-difluorophenoxy, 2,3-difluorobenzyloxy, 3,5-difluorobenzyloxy, difluoromethoxy, 3,5-difluorophenoxy,
 - 3,4-difluorophenyl, 2,3-difluorophenoxy, 2,4-difluorophenoxy,
 - 2,5-difluorophenoxy, 3,5-dimethoxyphenoxy, 3-dimethylaminophenoxy,
 - 3,4-dimethylbenzyloxy, 3,5-dimethylbenzyloxy, 3,5-dimethylphenoxy,
- 10 3,4-dimethylphenoxy, 1,3-dioxolan-2-yl, 3-ethylbenzyloxy,
 - 3-ethylphenoxy, 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy,
 - 4-fluoro-3-methylbenzyl, 4-fluorobenzyloxy, 2-fluoro-3-methylphenoxy,
 - 3-fluoro-4-methylphenoxy, 3-fluorophenoxy, 3-fluoro-2-nitrophenoxy,
 - 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy,
- 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy, 15
 - 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 - 2-furyl, 3-furyl, heptafluoropropyl, 1,1,1,3,3,3-hexafluoropropyl,
 - 2-hydroxy-3,3,3-trifluoropropoxy, isobutoxy, isobutyl, 3-isoxazolyl,
 - 4-isoxazolyl, 5-isoxazolyl, isopropoxy, 3-isopropylbenzyloxy,
- 20 3-isopropylphenoxy, isopropylthio, 4-isopropyl-3-methylphenoxy,
 - 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-methoxybenzyl,
 - 4-methoxyphenylamino, 3-methylbenzyloxy, 4-methylbenxyloxy,
 - 3-methylphenoxy, 3-methyl-4-methylthiophenoxy, 4-methylphenoxy,
 - 1-methylpropoxy, 2-methylpyrid-5-yloxy, 4-methylthiophenoxy,
- 25 2-naphthyloxy, 2-nitrophenoxy, 4-nitrophenoxy, 3-nitrophenyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, pentafluoroethyl, pentafluoroethylthio,
 - 2,2,3,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl,
 - 1,1,2,2,3-pentafluoropropyl, phenoxy, phenylamino, 1-phenylethoxy,
 - 4-propylphenoxy, 4-propoxyphenoxy, thiophen-3-yl,tert -butoxy,
- 3-tert -butylphenoxy, 4-tert -butylphenoxy, 1,1,2,2-tetrafluoroethoxy, 30 tetrahydrofuran-2-yl, 2-(5,6,7,8-tetrahydronaphthyloxy), thiazol-2-yl,

```
thiazol-4-yl, thiazol-5-yl, thiophen-2-yl, 2,2,2-trifluoroethoxy,
```

- 2,2,2-trifluoroethyl, 3,3,3-trifluoro-2-hydroxypropyl, trifluoromethoxy,
- 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
- 4-trifluoromethoxyphenoxy, 3-trifluoromethoxyphenoxy, trifluoromethyl,
- 5 3-trifluoromethylbenzyloxy, 1,1-bis-trifluoromethyl-1-hydroxymethyl,
 - 3-trifluoromethylbenzyl, 3,5-bis-trifluoromethylbenzyloxy,
 - 4-trifluoromethylphenoxy, 3-trifluoromethylphenoxy,
 - 3-trifluoromethylphenyl, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
 - 3,4,5-trimethylphenoxy, 3-difluoromethoxyphenoxy,
- 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy,
 3-trifluoromethylthiophenoxy, 3-trifluoromethylthiobenzyloxy, and trifluoromethylthio;

 $\rm R_6$ and $\rm R_{11}$ are independently selected from the group consisting of chloro, fluoro, hydrido, pentafluoroethyl, 1,1,2,2-tetrafluoroethoxy, and trifluoromethyl;

 ${
m R}_7$ and ${
m R}_{12}$ are independently selected from the group consisting of hydrido, fluoro, and trifluoromethyl.

32. The compound as recited in Claim 29 or a pharmaceutically acceptablesalt, wherein;

n is the integer 1;

R₁₆ is hydrido;

R₁ is haloalkyl;

25 R₂ is is hydrido;

R₃ is is hydrido;

Y is methylene;

Z is a covalent single bond;

 $\rm R_4, R_8, R_9,$ and $\rm R_{13}$ are independently selected from the group consisting of hydrido and halo;

- Sected from the group consisting of perhaloaryloxy, N-aryl-N-alkylamino, heterocyclylalkoxy, heterocyclylthio, hydroxyalkoxy, aralkanoylalkoxy, aralkenoyl, cycloalkylcarbonyl, cyanoalkoxy, heterocyclylcarbonyl, hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, and heteroaryloxyalkyl.
- 33. The compound as recited in Claim 32 or a pharmaceuticallyacceptable salt, wherein;

n is the integer 1;

R₁₆ is hydrido;

R₁ is haloalkyl;

20 R₂ is is hydrido;

R₃ is is hydrido;

Y is methylene;

Z is a covalent single bond;

R₄, R₈, R₉, and R₁₃ are independently selected from the group

25 consisting of hydrido and halo;

10

R₅ is selected from the group consisting of perhaloaryloxy,

N-aryl-N-alkylamino, heterocyclylalkoxy, heterocyclylthio, hydroxyalkoxy, aralkanoylalkoxy, aralkenoyl, cycloalkylcarbonyl, cyanoalkoxy, heterocyclylcarbonyl, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, and heteroaryloxyalkyl.

 R_{10} is selected from the group consisting of haloalkyl, haloalkoxy, aryl, alkylthio, alkoxy, aralkyl, alkyl, cycloalkoxy, cycloalkylalkoxy, heteroaryl, cycloalkyl, haloalkylthio, and hydroxyhaloalkyl.

 $\rm R_{6}$ and $\rm R_{11}$ are independently selected from the group consisting of hydrido and halo;

 $\rm R_7$ and $\rm R_{12}$ are independently selected from the group consisting of $\rm \ hydrido$ and halo.

34. The compound as recited in Claim 33 or a pharmaceutically acceptable salt thereof, wherein;

```
20 n is the integer 1;
```

R₁ is trifluoromethyl;

R₁₆ is hydrido;

 R_2 is hydrido;

R₃ is hydrido;

25 Y is methylene;

Z is a covalent single bond;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and fluoro;

 ${\rm R}_{\rm 5}$ is selected from the group consisting of 5-bromo-2-fluorophenoxy,

- 4-chloro-3-ethylphenoxy, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy,
- 5 3-diffluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy,
 - 3-ethylphenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylphenoxy,
 - 4-fluorophenoxy, 3-isopropylphenoxy, 3-methylphenoxy,
 - 3-pentafluoroethylphenoxy, 3-tert-butylphenoxy,
 - 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy),
- 10 3-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy,
 - 3-trifluoromethylbenzyloxy, and 3-trifluoromethylthiophenoxy;

 R_{10} is selected from the group consisting of cyclopentyl, 1,1,2,2-tetrafluoroethoxy, 2-furyl, 1,1-bis-trifluoromethyl-1-hydroxymethyl, pentafluoroethyl, trifluoromethoxy, trifluoromethyl, and trifluoromethylthio;

 R_6 and R_{11} are independently selected from the group consisting of fluoro and hydrido;

 $\rm R^{}_7$ and $\rm R^{}_{12}$ are independently selected from the group consisting of hydrido and fluoro.

20 35. The compound as recited in Claim 34 or a pharmaceutically acceptable salt thereof, wherein;

n is the integer 1;

R₁ is trifluoromethyl;

25 R₁₆ is hydrido;

R₂ is hydrido;

15

25

R₃ is hydrido;

Y is methylene;

Z is a covalent single bond;

 $\rm R_4, R_8, R_9$, and $\rm R_{13}$ are independently selected from the group consisting of hydrido and fluoro;

 R_5 is selected from the group consisting of 5-bromo-2-fluorophenoxy,

- 4-chloro-3-ethylphenoxy, 2,3-dichlorophenoxy, 3,4-dichlorophenoxy,
- 3-difluoromethoxyphenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy,
- 3-ethylphenoxy, 3-ethyl-5-methylphenoxy, 4-fluoro-3-methylphenoxy,
- 4-fluorophenoxy, 3-isopropylphenoxy, 3-methylphenoxy,
 - 3-pentafluoroethylphenoxy, 3-tert-butylphenoxy,
 - 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, 2-(5,6,7,8-tetrahydronaphthyloxy),
 - 3-trifluoromethoxybenzyloxy, 3-trifluoromethoxyphenoxy,
 - 3-trifluoromethylbenzyloxy, and 3-trifluoromethylthiophenoxy;

R₁₀ is selected from the group consisting of 1,1,2,2-tetrafluoroethoxy, pentafluoroethyl, and trifluoromethyl;

 $\rm R_6$ and $\rm R_{11}$ are independently selected from the group consisting of fluoro and hydrido;

 $\rm R_7$ and $\rm R_{12}$ are independently selected from the group consisting of $\rm ^{20}$ $\,$ hydrido and fluoro.

36. A compound as recited in Claim 29 or a pharmaceutically acceptable salt thereof wherein said compound is selected from the group consisting of:

10

15

20

25

```
(2R)-3-[[3-(3-trifluoromethoxyphenoxy)phenyl][[3-(1,1,2,2-1)]
  tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
                          (2R)-3-[[3-(3-isopropylphenoxy)phenyl][[3-(1,1,2,2-
  tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
                          (2R)-3-[[3-(3-cyclopropylphenoxy)phenyl][[3-(1,1,2,2-
  tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
                         (2R)-3-[[3-(3-(2-furyl)phenoxy)phenyl][[3-(1,1,2,2-
  tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
                         (2R)-3-[[3-(2,3-dichlorophenoxy)phenyl][[3-(1,1,2,2-
  tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
                         (2R)-3-[[3-(4-fluorophenoxy)phenyl][[3-(1,1,2,2-
  tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
                        (2R)-3-[[3-(4-methylphenoxy)phenyl][[3-(1,1,2,2-
 tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
                        (2R)-3-[[3-(2-fluoro-5-bromophenoxy)phenyl][[3-(1,1,2,2-
 tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
                        (2R)-3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[3-(1,1,2,2-4)]
 tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
                        (2R) - 3 - [[3 - [3 - (1,1,2,2 - tetrafluoroethoxy) phenoxy] phenyl] \\ [[3 - (1,1,2,2 - tetrafluoroethoxy) phenoxy] \\ [3 - (1,1,2,2 - tetrafluoroethoxy) phenoxy] \\ [4 - (1,1,2,2 - tetrafluoroethoxy) pheno
 tetrafluoro-ethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
                        (2R)-3-[[3-[3-(pentafluoroethyl)phenoxy]phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl]][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl][[3-(1,1,2,2-)phenyl
tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
                        (2R)-3-[[3-(3,5-dimethylphenoxy)phenyl][[3-(1,1,2,2-
tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
                       (2R)-3-[[3-(3-ethylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)
phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
                      (2R)-3-[[3-(3-t-butylphenoxy)phenyl][[3-(1,1,2,2-
tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
                       (2R)-3-[[3-(3-methylphenoxy)phenyl][[3-(1,1,2,2-
tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
```

10

15

20

25

```
(2R)-3-[[3-(5,6,7,8-tetrahydro-2-naphthoxy)phenyl][[3-(1,1,2,2-
     tetrafluoro-ethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
                                  (2R)-3-[[3-(phenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-
     phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
                                  (2R)-3-[[3-[3-(N,N-dimethylamino)phenoxy]phenyl][[3-(1,1,2,2-
    tetrafluoro-ethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
                                 (2R)-3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-[[3-
    (trifluoromethoxy)-phenyl]methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
                                 (2R) - 3 - [[[3 - (1,1,2,2 - tetrafluoroethoxy)phenyl]methyl][3 - [[3 - (trifluoroethoxy)phenyl]methyl][3 - [[3 
   methyl)-phenyl]methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
                                (2R)-3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-<math>[[3,5-
   dimethylphenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
                                (2R)-3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-[[3-
   (trifluoromethylthio)-phenyl]methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
                                (2R)-3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-[[3,5-
  difluorophenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
                                3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-[cyclohexylmethoxy]-
   phenyl]amino]-1,1,1-trifluoro-2-propanol;
                               3-[[3-(2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy)phenyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2,2-difluoromethoxy-4-pyridyloxy][[3-(1,1,2
 tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
                              (2R)-3-[[3-(2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy)phenyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridyloxy][[3-(1,1,2,2-trifluoromethyl-4-pyridy
 tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
                              (2R)-3-[[3-(3-difluoromethoxyphenoxy)phenyl][[3-(1,1,2,2-
 tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
                              (2R)-3-[[[3-(3-trifluoromethylthio)phenoxy]phenyl][[3-(1,1,2,2-
 tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
                             (2R)-3-[[3-(4-chloro-3-trifluoromethylphenoxy)phenyl][[3-(1,1,2,2-
tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol:
                             (2R)-3-[[3-(3-trifluoromethoxyphenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
```

10

15

20

25

30

```
(2R)-3-[[3-(3-isopropylphenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-cyclopropylphenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-(2-furyl)phenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(2,3-dichlorophenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(4-fluorophenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(4-methylphenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(2-fluoro-5-bromophenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-[3-(1,1,2,2-tetrafluoroethoxy)phenoxy]phenyl][[3-
(pentafluoroethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-[3-(pentafluoroethyl)phenoxy]phenyl][[3-
(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3,5-dimethylphenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-ethylphenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-t-butylphenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-methylphenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(5,6,7,8-tetrahydro-2-naphthoxy)phenyl][[3-
```

(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;

10

15

20

25

```
(2R)-3-[[3-(phenoxy)phenyl][[3-(pentafluoroethyl)phenyl]methyl]
aminol-1,1,1-trifluoro-2-propanol:
       (2R)-3-[[3-[3-(N,N-dimethylamino)phenoxy]phenyl][[3-
(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[3-(pentafluoroethyl)phenyl]methyl][3-[[3-
(trifluoromethoxy)phenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol:
       (2R)-3-[[[3-(pentafluoroethyl)phenyl]methyl][3-[[3-(trifluoromethyl)-
phenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol:
       (2R)-3-[[[3-(pentafluoroethyl)phenyl]methyl][3-[[3,5-
dimethylphenyl]methoxy]-phenyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[3-(pentafluoroethyl)phenyl]methyl][3-[[3-
(trifluoromethylthio)phenyl]-methoxy[phenyl]amino]-1,1,1-trifluoro-2-propanol:
       (2R)-3-[[[3-(pentafluoroethyl)phenyl]methyl][3-[[3,5-
difluorophenyl]methoxy]-phenyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[3-(pentafluoroethyl)phenyl]methyl][3-
[cyclohexylmethoxy]phenyl]-amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(2-difluoromethoxy-4-pyridyloxy)phenyl][[3-
(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(2-trifluoromethyl-4-pyridyloxy)phenyl][[3-
(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-difluoromethoxyphenoxy)phenyl][[3-
(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[3-(3-trifluoromethylthio)phenoxy]phenyl][[3-
(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(4-chloro-3-trifluoromethylphenoxy)phenyl][[3-
(pentafluoroethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-trifluoromethoxyphenoxy)phenyl][[3-
(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-isopropylphenoxy)phenyl][[3-
(heptafluoropropyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
```

```
(2R)-3-[[3-(3-cyclopropylphenoxy)phenyl][[3-
      (heptafluoropropyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(3-(2-furyl)phenoxy)phenyl][[3-
      (heptafluoropropyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
 5
             (2R)-3-[[3-(2,3-dichlorophenoxy)phenyl][[3-
      (heptafluoropropyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(4-fluorophenoxy)phenyl][[3-
      (heptafluoropropyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(4-methylphenoxy)phenyl][[3-
10
      (heptafluoropropyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(2-fluoro-5-bromophenoxy)phenyl][[3-
      (heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[3-
      (heptafluoropropyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol:
15
             (2R)-3-[[3-[3-(1,1,2,2-tetrafluoroethoxy)phenoxy]phenyl][[3-
      (heptafluoropropyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-[3-(pentafluoroethyl)phenoxy]phenyl][[3-
      (heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(3,5-dimethylphenoxy)phenyl][[3-
20
      (heptafluoropropyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(3-ethylphenoxy)phenyl][[3-
      (heptafluoropropyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(3-t-butylphenoxy)phenyl][[3-
      (heptafluoropropyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
25
             (2R)-3-[[3-(3-methylphenoxy)phenyl][[3-
      (heptafluoropropyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(5,6,7,8-tetrahydro-2-naphthoxy)phenyl][[3-
      (heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(phenoxy)phenyl][[3-(heptafluoropropyl)phenyl]methyl]
30
      amino]-1,1,1-trifluoro-2-propanol;
```

10

15

20

25

```
(2R)-3-[[3-[3-(N,N-dimethylamino)phenoxy]phenyl][[3-
(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[3-(heptafluoropropyl)phenyl]methyl][3-[[3-
(trifluoromethoxy)phenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[3-(heptafluoropropyl)phenyl]methyl][3-[[3-
(trifluoromethyl)phenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[3-(heptafluoropropyl)phenyl]methyl][3-[[3,5-
dimethylphenyl]methoxy]-phenyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[3-(heptafluoropropyl)phenyl]methyl][3-[[3-
(trifluoromethylthio)phenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[3-(heptafluoropropyl)phenyl]methyl][3-[[3,5-
difluorophenyl]methoxy]-phenyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[3-(heptafluoropropyl)phenyl]methyl][3-
[cyclohexylmethoxy]phenyl]-amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(2-difluoromethoxy-4-pyridyloxy)phenyl][[3-
(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(2-trifluoromethyl-4-pyridyloxy)phenyl][[3-
(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-difluoromethoxyphenoxy)phenyl][[3-
(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[3-(3-trifluoromethylthio)phenoxy]phenyl][[3-
(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(4-chloro-3-trifluoromethylphenoxy)phenyl][[3-
(heptafluoropropyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-trifluoromethoxyphenoxy)phenyl][[2-fluoro-5-
(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-isopropylphenoxy)phenyl][[2-fluoro-5-
(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-cyclopropylphenoxy)phenyl][[2-fluoro-5-
(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
```

```
(2R)-3-[[3-(3-(2-furyl)phenoxy)phenyl]][2-fluoro-5-
      (trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
              (2R)-3-[[3-(2,3-dichlorophenoxy)phenyl][[2-fluoro-5-
      (trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
 5
              (2R)-3-[[3-(4-fluorophenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)
      phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol:
             (2R)-3-[[3-(4-methylphenoxy)phenyl][[2-fluoro-5-
      (trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(2-fluoro-5-bromophenoxy)phenyl][[2-fluoro-5-
      (trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
10
             (2R)-3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[2-fluoro-5-
      (trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-[3-(1,1,2,2-tetrafluoroethoxy)phenoxy]phenyl][[2-fluoroethoxy]]
      5-(trifluoro-methyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
15
             (2R)-3-[[3-[3-(pentafluoroethyl)phenoxy]phenyl][[2-fluoro-5-
      (trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(3,5-dimethylphenoxy)phenyl][[2-fluoro-5-
      (trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(3-ethylphenoxy)pheny1][[2-fluoro-5-
20
      (trifluoromethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(3-t-butylphenoxy)phenyl][[2-fluoro-5-
      (trifluoromethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(3-methylphenoxy)phenyl][[2-fluoro-5-
      (trifluoromethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
25
             (2R)-3-[[3-(5,6,7,8-tetrahydro-2-naphthoxy)phenyl][[2-fluoro-5-
      (trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-(phenoxy)phenyl][[2-fluoro-5-
      (trifluoromethyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
             (2R)-3-[[3-[3-(N,N-dimethylamino)phenoxy]phenyl][[2-fluoro-5-
30
      (trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
```

10

15

20

25

```
(2R)-3-[[[2-fluoro-5-(trifluoromethyl)phenyl]methyl][3-[[3-
(trifluoromethoxy)-phenyl]methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[2-fluoro-5-(trifluoromethyl)phenyl]methyl][3-[[3-
(trifluoromethyl)-phenyl]methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[2-fluoro-5-(trifluoromethyl)phenyl]methyl][3-[[3,5-
dimethylphenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[2-fluoro-5-(trifluoromethyl)phenyl]methyl][3-[[3-
(trifluoromethylthio)-phenyl]methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[2-fluoro-5-(trifluoromethyl)phenyl]methyl][3-[[3,5-
difluorophenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[2-fluoro-5-(trifluoromethyl)phenyl]methyl][3-
[cyclohexylmethoxy]-phenyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(2-difluoromethoxy-4-pyridyloxy)phenyl][[2-fluoro-5-
(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(2-trifluoromethyl-4-pyridyloxy)phenyl][[2-fluoro-5-
(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-difluoromethoxyphenoxy)phenyl][[2-fluoro-5-
(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[3-(3-trifluoromethylthio)phenoxy]phenyl][[2-fluoro-5-
(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(4-chloro-3-trifluoromethylphenoxy)phenyl][[2-fluoro-5-
(trifluoro-methyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-trifluoromethoxyphenoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-isopropylphenoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-cyclopropylphenoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-(2-furyl)phenoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
```

10

15

20

25

30

```
(2R)-3-[[3-(2,3-dichlorophenoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(4-fluorophenoxy)phenyl][[2-fluoro-4-(trifluoromethyl)
phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(4-methylphenoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(2-fluoro-5-bromophenoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)-phenyl|methyl|amino|-1,1,1-trifluoro-2-propanol:
       (2R)-3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-[3-(1,1,2,2-tetrafluoroethoxy)phenoxy]phenyl][[2-fluoro-
4-(trifluoro-methyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-[3-(pentafluoroethyl)phenoxylphenyl][[2-fluoro-4-
(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3,5-dimethylphenoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-ethylphenoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-t-butylphenoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(3-methylphenoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(5,6,7,8-tetrahydro-2-naphthoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-(phenoxy)phenyl][[2-fluoro-4-
(trifluoromethyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[3-[3-(N,N-dimethylamino)phenoxy]phenyl][[2-fluoro-4-
(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
       (2R)-3-[[[2-fluoro-4-(trifluoromethyl)phenyl]methyl][3-[[3-
```

(trifluoromethoxy)-phenyl]methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;

- (2R)-3-[[[2-fluoro-4-(trifluoromethyl)phenyl]methyl][3-[[3-(trifluoromethyl)-phenyl]methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
 - (2R)-3-[[[2-fluoro-4-(trifluoromethyl)phenyl]methyl][3-[[3,5-
- dimethylphenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
- 5 (2R)-3-[[[2-fluoro-4-(trifluoromethyl)phenyl]methyl][3-[[3-
 - (trifluoromethylthio)-phenyl]methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
 - (2R)-3-[[[2-fluoro-4-(trifluoromethyl)phenyl]methyl][3-[[3,5-
 - difluorophenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-2-propanol;
 - (2R)-3-[[[2-fluoro-4-(trifluoromethyl)phenyl]methyl][3-
 - [cyclohexylmethoxy]-phenyl]amino]-1,1,1-trifluoro-2-propanol;
 - (2R)-3-[[3-(2-difluoromethoxy-4-pyridyloxy)phenyl][[2-fluoro-4-
 - (trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
 - (2R)-3-[[3-(2-trifluoromethyl-4-pyridyloxy)phenyl][[2-fluoro-4-
 - (trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
 - (2R)-3-[[3-(3-difluoromethoxyphenoxy)pheny1][[2-fluoro-4-
 - (trifluoromethyl)-phenyl] methyl] amino]-1,1,1-trifluoro-2-propanol;
 - (2R)-3-[[[3-(3-trifluoromethylthio)phenoxy]phenyl][[2-fluoro-4-
 - (trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol; and
 - (2R)-3-[[3-(4-chloro-3-trifluoromethylphenoxy)phenyl][[2-fluoro-4-
- 20 (trifluoro-methyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol.
 - 37. A pharmaceutical composition comprising a compound of one of claims 1 through 36 together with a pharmaceutically acceptable carrier.
- 38. A method of treating coronary artery disease or other CETP-mediated disorders in a subject by administering a therapeutically effective amount of a compound of one of claims 1 through 36.
- 39. A method of preventing coronary artery disease or other CETP-mediated
 30 disorders in a subject by administering a therapeutically effective amount of a compound of one of claims 1 through 36.

40. A method of preventing cerebral vascular accident (CVA) in a subject by administering a therapeutically effective amount of a compound of one of claims 1 through 36.

5

10

- 41. A method of preventing or treating dyslipidemia in a subject by administering a therapeutically effective amount of a compound of one of claims 1 through 36.
- 42. A process for the preparation of compounds as recited in any one of claims 1 or 2 having the Formula (IV):

and pharmaceutically acceptable salts thereof, comprising the reaction of an amine of Formula (V):

with an epoxide of Formula (XX-R):

wherein;

5

10

 ${\bf R}_1$ is selected from the group consisting of haloalkyl and haloalkoxymethyl;

 ${
m R}_2$ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaryloxyalkyl, and heteroaryl;

 ${
m R}_3$ is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl;

D and E are independently selected from the group consisting hydrido, A, and Q with the provisos that E and D are other than hydrido at the same time and A and Q are independently selected, when one of E and D is hydrido or when Y and Z are both single covalent bonds, from other than phenyl, 3-methylphenyl, 3-ethylphenyl, 2-methoxy-5-methylphenyl, 2-chlorophenyl, 3-chlorophenyl, and 3-bromophenyl;

15 A is the Formula:

Q is the Formula:

15

 D_1 , D_2 , J_1 , J_2 and K_1 are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is a covalent bond, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is O, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is S, one of D_1 , D_2 , J_1 , J_2 and K_1 must be a covalent bond when two of D_1 , D_2 , J_1 , J_2 and J_1 , J_2 and J_2 , J_1 , J_2 , J_2 , J_2 , J_3 , J_3 , J_4 , J_5 ,

 D_3 , D_4 , J_3 , J_4 and K_2 are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that no more than one is a covalent bond, no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is O, no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is S, no more than two of D_3 , D_4 , J_3 , J_4 and K_2 are O and S, one of D_3 , D_4 , J_3 , J_4 and K_2 must be a covalent bond when two of D_3 , D_4 , J_3 , J_4 and K_2 are O and S, and no more than four of D_3 , D_4 , J_3 , J_4 and K_2 are N;

Y is selected from the group consisting of a covalent single bond, ${\rm (CH_2)}_q \ {\rm wherein} \ q \ {\rm is} \ {\rm an integer} \ {\rm selected} \ {\rm from} \ 1 \ {\rm and} \ 2, \ {\rm and} \ {\rm (CH_2)}_j {\rm -O-(CH_2)}_k$ wherein j and k are integers independently selected from 0 and 1;

10

15

20

25

Z is selected from the group consisting of covalent single bond, $(CH_2)_q$ wherein q is an integer selected from 1 and 2, and $(CH_2)_j$ -O- $(CH_2)_k$ wherein j and k are integers independently selected from 0 and 1;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido, halo, haloalkyl, and alkyl;

 $R_{\rm 5}, R_{\rm 6}, R_{\rm 7}, R_{\rm 10}, R_{\rm 11},$ and $R_{\rm 12}$ are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkyl, aralkyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, Nheteroarylamino-N-alkylamino, heteroarylaminoalkyl.haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, arylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy,

10

15

20

25

cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, heteroaralkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl;

 R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , R_7 and R_8 , R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the provisos that no more than one of the group consisting of spacer pairs R_4 and R_5 , R_5 and R_6 , R_6 and R_7 , and R_7 and R_8 , is used at the same time and that no more than one of the group consisting of spacer pairs R_9 and R_{10} , R_{10} and R_{11} , R_{11} and R_{12} , and R_{12} and R_{13} is used at the same time.

43. A process according to Claim 42 wherein the reaction is carried out at a temperature of from 0 °C to 100 °C.

10

20

25

- 44. A process according to Claim 43 wherein the reaction is carried out at a temperature of from 15 °C to 65 °C.
- 45. A process according to Claim 42 wherein the process further comprises a solvent selected from the group consisting of tetrahydrofuran, dioxane, methylene chloride, and acetonitrile.
- 46. A process according to Claim 42 wherein the process further comprises a transition metal salt catalyst selected from the group consisting of ytterbium, hafnium, scandium, neodynium, gadolium, and zirconium salts.
- 47. A process according to Claim 46 wherein the transition metal salt is selected from the group consisting of ytterbium triflate, hafnium triflate, scandium triflate, neodynium triflate, gadolium triflate, and zirconium triflate.
 - 48. A process according to Claim 42 wherein the oxirane XX-R is selected from the group consisting of 2-trifluoromethyloxirane,
- 2-pentafluoroethyloxirane, 2-(1,1,2,2-tetrafluoroethoxymethyl)oxirane,
 2-(difluorochloromethyl)oxirane, and 2-(trifluoromethoxymethyl)oxirane.
 - 49. A process according to Claim 42 in which the oxirane has the (R)-chiral configuration at the R_1 and R_2 substituted carbon.

50. A process according to Claim 42, wherein;

D₁, D₂, J₁, J₂ and K₁ are each carbon;

 D_3 , D_4 , J_3 , J_4 and K_2 are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that at least one of D_3 , D_4 , J_3 , J_4 and K_2 is selected from the group consisting of O, S, and N, wherein no more than one of D_3 , D_4 , J_3 , J_4 and K_2 is a covalent bond, no

more than one of D₃, D₄, J₃, J₄ and K₂ is O, no more than one of D₃, D₄, J₃, J₄ and K₂ is S, one of D₃, D₄, J₃, J₄ and K₂ must be a covalent bond when two of D_3 , D_4 , J_3 , J_4 and K_2 are O and S, and no more than four of D_3 , D_4 , J_3 , J_4 and K_2 are N.

5

51. A process according to Claim 42 wherein;

 D_3 , D_4 , J_3 , J_4 and K_2 are each carbon;

 $\boldsymbol{D}_1,\,\boldsymbol{D}_2,\,\boldsymbol{J}_1,\,\boldsymbol{J}_2$ and \boldsymbol{K}_1 are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that at least one of $\boldsymbol{D}_1, \boldsymbol{D}_2, \boldsymbol{J}_1, \boldsymbol{J}_2$ and \boldsymbol{K}_1 is selected from the group consisting of O, S, and N, wherein no more than one of D₁, D₂, J₁, J₂ and K₁ is a covalent bond, no more than one of D_1 , D_2 , J_1 , J_2 and K_1 is O, no more than one of D_1 , D_2 , J_1 , J₂ and K₁ is S, one of D₁, D₂, J₁, J₂ and K₁ must be a covalent bond when two of D_1, D_2, J_1, J_2 and K_1 are O and S, and no more than four of D_1, D_2, J_3 J₁, J₂ and K₁ are N.

- 52. A process according to Claim 42 wherein D₁, D₂, J₁, J₂, K₁, D₃, D₄, J₃, J₄ and K₂ are each carbon.
- 53. A process according to Claim 42 wherein;

$$D_1$$
, D_2 , J_1 , J_2 , K_1 , D_3 , D_4 , J_3 , J_4 and K_2 are each carbon

Y is selected from the group consisting of a covalent single bond and $(CH_2)_q$ wherein q is an integer selected from 1 and 2, and $(CH_2)_j$ -O- $(CH_2)_k$ wherein i and k are integers independently selected from 0 and 1;

Z is a covalent single bond;

5

10

15

54. A process according to Claim 42 wherein;

Y is selected from the group consisting of a covalent single bond and C1-C2 alkylene;

Z is a covalent single bond;

 R_4 , R_8 , R_9 , and R_{13} are independently selected from the group consisting of hydrido and halo;

 R_5 , R_6 , R_7 , R_{10} , R_{11} , and R_{12} are independently selected from the group consisting of hydrido, alkyl, halo, haloalkyl, haloalkoxy, aryl, alkylthio, arylamino, arylthio, aroyl, arylsulfonyl, aryloxy, aralkoxy, heteroaryloxy, alkoxy, aralkyl, cycloalkoxy, cycloalkylalkoxy, cycloalkylalkanoyl, heteroaryl, cycloalkyl, haloalkylthio, hydroxyhaloalkyl, heteroaralkoxy, heterocyclyloxy, aralkylaryl, heteroaryloxyalkyl, heteroarylthio, and heteroarylsulfonyl.

- 55. A process according to any of Claims 50 through 54 wherein the reaction is carried out at a temperature of from 0 °C to 100 °C.
 - 56. A process according to Claim 55 wherein the reaction is carried out at a temperature of from 15 °C to 65 °C.

10

15

- 57. A process according to any of Claims 50 through 54 wherein the process further comprises a solvent selected from the group consisting of tetrahydrofuran, dioxane, methylene chloride, and acetonitrile.
- 58. A process according to any of Claims 50 through 54 wherein the process further comprises a transition metal salt catalyst selected from the group consisting of ytterbium, hafnium, scandium, neodynium, gadolium, and zirconium salts.
 - 59. A process according to Claim 58 in which the transition metal salt is selected from the group consisting of ytterbium triflate, hafnium triflate, scandium triflate, neodynium triflate, gadolium triflate, and zirconium triflate.
 - 60. A process according to any of Claims 50 through 54 wherein the oxirane XX-R is selected from the group consisting of 2-trifluoromethyloxirane, 2-pentafluoroethyloxirane, 2-(1,1,2,2-tetrafluoroethoxymethyl)oxirane, 2-(difluorochloromethyl)oxirane, and 2-(trifluoromethoxymethyl)oxirane.
 - 61. A process according to Claim 60 in which the oxirane has the (R)-chiral configuration at the R_1 and R_2 substituted carbon.
 - 62. A process according to any of Claims 50 through 54 wherein the process further comprises a:
 - (a) Temperature of from 0 °C to 100 °C;
 - (b) Non-protic solvent;
 - (c) Transition metal salt selected from the group consisting of ytterbium, hafnium, scandium, neodynium, gadolium, and zirconium salts.
- 25 63. A process according to Claim 62 wherein the reaction is carried out at a temperature of from 15 °C to 65 °C.