Database Management Systems

Lecture 9
Evaluating Relational Operators
Query Optimization

- running example schema
 - Students (SID: integer, SName: string, Age: integer)
 - Courses (CID: integer, CName: string, Description: string)
 - Exams (SID: integer, CID: integer, EDate: date, Grade: integer, FacultyMember: string)
 - Students
 - every record has 50 bytes
 - there are 80 records / page
 - 500 pages of Students tuples
 - Courses
 - every record has 50 bytes
 - there are 80 records / page
 - 100 pages of Courses tuples

- Exams
 - every record has 40 bytes
 - there are 100 records / page
 - 1000 pages of Exams tuples

<u>Hash Join</u> - equality join, one join column: $E \otimes_{i=j} S$

<u>phases</u>: partitioning (building phase) & probing (matching phase)

- partitioning phase:
 - there are B pages available in the buffer:
 - use one page as the input buffer page
 - and the remaining B-1 pages as output buffer pages
 - choose a hash function h that distributes tuples uniformly to one of B-1 partitions
 - hash E and S on the join column (the ith column of E, the jth column of S)
 with the same hash function h

- hash E on the join column with hash function h (similarly for S):
 - for each tuple e in E, compute $h(e_i)$ (e_i : the value of the i^{th} column in tuple e)
 - add tuple e to the output buffer page that it is hashed to by h (buffer page $h(e_i)$)
 - when an output buffer page fills up, flush the page to disk

- partitioning phase => partitions of E (E_1 , E_2 , etc) and S (S_1 , S_2 , etc) on disk
- <u>partition</u> = collection of tuples that have the same hash value
- tuples in partition E_1 can only join with tuples in partition S_1 (they cannot join with tuples in partitions S_2 or S_3 , for instance, since these tuples have a different hash value)

so to compute the join, we need to scan E and S only once (provided any

partition of E fits in main memory)

when reading in a partition E_k of E_k we must scan only the corresponding partition S_k of S to find matching tuples (compare tuples e in E_k with tuples s in S_k to test the join condition value of i^{th} column in E = value of i^{th} column in S)

- probing phase:
 - read in a partition of the smaller relation (e.g., E) and scan the corresponding partition of S for matching tuples
 - use one page as the input buffer for S, one page as the output buffer,
 and the remaining pages to read in partitions of E

- probing phase:
 - in practice, to reduce CPU costs, an in-memory hash table is built, using a different function h2, for the E partition

- probing phase:
 - in practice, to reduce CPU costs, an in-memory hash table is built, using a different function *h2*, for the E partition
- consider a partition E_x of E
- build in-memory hash table for E_x using hash function h2 (the function is applied to the join column of E)
- for each tuple s in partition S_x , find matching tuples in the hash table using the hash value $h2(s_i)$

- result tuples <e, s> are written to output buffer
- once partitions E_x and S_x are processed, the hash table is emptied (to prepare for the next partition)

- <u>cost</u>:
 - partitioning:
 - both E and S are read and written once => cost: 2*(M+N) I/Os
 - probing:
 - scan each partition once => cost: M+N I/Os
 - => total cost: 3*(M+N) I/Os
 - assumption: each partition fits into memory during probing
 - 3*(1000 + 500) = 4500 I/Os
- * E M pages, p_E records / page * * 1000 pages * * 100 records / page*

 * S N pages, p_S records / page * * 500 pages * * 80 records / page *

- partition overflow an E partition does not fit in memory during probing: apply hash join technique recursively:
 - divide E, S into subpartitions
 - join subpartitions pairwise
 - if subpartitions don't fit in memory, apply hash join technique recursively

- memory requirements objective: partition in E fits into main memory (S similarly)
 - B buffer pages; need one input buffer => maximum number of partitions: B-1
 - size of largest partition: B-2 (need one input buffer for S, one output buffer)
 - assume uniformly sized partitions => size of each E partition: M/(B-1)
 - => M/(B-1) < B-2 => we need approximately B > \sqrt{M}
 - if an in-memory hash table is used to speed up tuple matching => need
 a little more memory (because the hash table for a collection of tuples
 will be a little larger than the collection itself)

general join conditions

- <u>equalities</u> over several attributes
 - E.SID = S.SID AND E.attrE = S.attrS
 - index nested loops join
 - Exams inner relation:
 - build index on Exams with search key <SID, attrE> (if not already created)
 - can also use index on SID or index on attrE
 - Students inner relation (similar)
 - sort-merge join
 - sort Exams on <SID, attrE>, sort Students on <SID, attrS>
 - hash join
 - partition Exams on <SID, attrE>, partition Students on <SID, attrS>
 - other join algorithms
 - essentially unaffected

general join conditions

- inequality comparison
 - E.attrE < S.attrS
 - index nested loops join
 - B+ tree index required
 - sort-merge join
 - not applied
 - hash join
 - not applied
 - other join algorithms
 - essentially unaffected

- * no join algorithm is uniformly superior to others
- choice of a good algorithm depends on:
 - size(s) of:
 - joined relations
 - buffer pool
 - available access methods

Q:

```
SELECT *
FROM Exams E
WHERE E.FacultyMember = 'Ionescu'
```

- use information in the selection condition to reduce the number of retrieved tuples
- e.g., |Q| = 4 (result set has 4 tuples), there's a B+ tree index on FacultyMember
 - it's expensive to scan E (1000 I/Os) to evaluate the query
 - should use the index instead
- selection algorithms based on the following techniques:
 - iteration, indexing

- simple selections
 - $\sigma_{E.attr\ op\ val}(E)$
- no index on attr, data not sorted on attr
 - must scan E and test the condition for each tuple
 - access path: file scan
 - => cost: M I/Os = 1000 I/Os
- no index, sorted data (E physically sorted on attr)
 - binary search to locate 1st tuple that satisfies condition and
 - scan E starting at this position until condition is no longer satisfied
 - access method: sorted file scan

Review lecture notes on *Relational Algebra, Indexes, DB – Physical Structure (Databases* course)

- simple selections
 - $\sigma_{E.attr\ op\ val}(E)$
- no index, sorted data (E physically sorted on attr)=> cost:
 - binary search: O(log₂M)
 - scan cost: varies from 0 to M
 - binary search on E
 - $\log_2 1000 \approx 10 \text{ I/Os}$

- simple selections
 - $\sigma_{E.attr\ op\ val}(E)$
- B+ tree index on attr
 - * search tree to find 1st index entry pointing to a qualifying E tuple
 - cost: typically 2, 3 I/Os
 - * scan leaf pages to retrieve all qualifying entries
 - cost: depends on the number of qualifying entries
 - * for each qualifying entry retrieve corresponding tuple in E
 - cost: depends on the number of tuples and the nature of the index (clustered / unclustered)

- simple selections
 - $\sigma_{E.attr\ op\ val}(E)$
- B+ tree index on attr
 - assumption
 - indexes use a2 or a3
 - a1-based index => data entry contains the data record => the cost of retrieving records = the cost of retrieving the data entries!
 - access path: B+ tree index
 - clustered index:
 - best access path when op is not equality
 - good access path when op is equality

- simple selections: $\sigma_{E.attr\ op\ val}(E)$
- B+ tree index on attr

```
Q
SELECT *
FROM Exams E
WHERE E.FacultyMember < 'C%'
```

- names uniformly distributed with respect to 1st letter
- \Rightarrow |Q| \approx 10,000 tuples = 100 pages
- clustered B+ tree index on FacultyMember
- => cost of retrieving tuples: ≈ 100 I/Os (a few I/Os to get from root to leaf)
- non-clustered B+ tree index on FacultyMember
- => cost of retrieving tuples: up to 1 I/O per tuple (worst case) => up to 10.000 I/Os
- * E M pages, p_E records / page * * 1000 pages * * 100 records / page *

- simple selections: $\sigma_{E.attr\ op\ val}(E)$
- B+ tree index on attr

```
SELECT *
FROM Exams E
WHERE E.FacultyMemger < 'C%'
```

- non-clustered B+ tree index on FacultyMember
 - refinement sort rids in qualifying data entries by page-id
 => a page containing qualifying tuples is retrieved only once
 - cost of retrieving tuples: number of pages containing qualifying tuples (but such tuples are probably stored on more than 100 pages)
- range selections
 - non-clustered indexes can be expensive
 - could be less costly to scan the relation (in our example: 1000 I/Os)

- general selections
 - selections without disjunctions
- C CNF condition without disjunctions
 - evaluation options:
 - 1. use the most selective access path
 - if it's an index I:
 - apply conjuncts in C that match I
 - apply rest of conjuncts to retrieved tuples
 - example
 - c < 100 AND a = 3 AND b = 5
 - can use a B+ tree index on c and check a = 3 AND b = 5 for each retrieved tuple
 - can use a hash index on a and b and check c < 100 for each retrieved tuple

 Sabina S. CS

- general selections selections without disjunctions
 - evaluation options:
 - 2. use several indexes when several conjuncts match indexes using a2 / a3
 - compute sets of rids of candidate tuples using indexes
 - intersect sets of rids, retrieve corresponding tuples
 - apply remaining conjuncts (if any)
 - example: c < 100 AND a = 3 AND b = 5
 - use a B+ tree index on c to obtain rids of records that meet condition $c < 100 \, (R_1)$
 - use a hash index on a to retrieve rids of records that meet condition a = 3 (R_2)
 - compute $R_1 \cap R_2 = R_{int}$
 - retrieve records with rids in R_{int} (R)
 - check b = 5 for each record in R

- general selections
 - selections with disjunctions
- C CNF condition with disjunctions, i.e., some conjunct *J* is a disjunction of terms
 - if some term *T* in *J* requires a file scan, testing *J* by itself requires a file scan
 - example: $a < 100 \lor b = 5$
 - hash index on b, hash index on c
 - => check both terms using a file scan (i.e., best access path: file scan)
 - compare with the example below:
 - $(a < 100 \lor b = 5) \land c = 7$
 - hash index on b, hash index on c
 - => use index on c, apply $a < 100 \lor b = 5$ to each retrieved tuple (i.e., most selective access path: index)

- general selections
 - selections with disjunctions
- C CNF condition with disjunctions
 - every term *T* in a disjunction matches an index
 - => retrieve tuples using indexes, compute union
 - example
 - $a < 100 \lor b = 5$
 - B+ tree indexes on a and b
 - use index on a to retrieve records that meet condition $a < 100 (R_1)$
 - use index on b to retrieve records that meet condition $b = 5 (R_2)$
 - compute $R_1 \cup R_2 = R$
 - if all matching indexes use a2 or a3 => take union of rids, retrieve corresponding tuples

Projection

• $\Pi_{SID, CID}$ (Exams)

```
SELECT DISTINCT E.SID, E.CID FROM Exams E
```

- to implement projection:
 - eliminate:
 - unwanted columns
 - duplicates
- projection algorithms partitioning technique:
 - sorting
 - hashing

- step 1
 - scan E => set of tuples containing only desired attributes (E')
 - cost:
 - scan E: M I/Os
 - write temporary relation E': T I/Os
 - T depends on: number of columns and their sizes, T is O(M)
- step 2
 - sort tuples in E'
 - sort key: all columns
 - cost: O(TlogT) (also O(MlogM))
- <u>step 3</u>
 - scan sorted E', compare adjacent tuples, eliminate duplicates
 - cost: T
- total cost: O(MlogM)

* example

```
SELECT DISTINCT E.SID, E.CID FROM Exams E
```

- scan Exams: 1000 I/Os
- size of tuple in E': 10 bytes
- => cost of writing temporary relation E': 250 I/Os
- available buffer pages: 20
 - E' can be sorted in 2 passes
 - sorting cost: 2 * 2 * 250 = 1000 I/Os
- final scan of E' cost: 250 I/Os
- => total cost: 1000 + 250 + 1000 + 250 = 2500 I/Os
- * E record size = 40 bytes *

- * 1000 pages *
- * 100 records / page*

* example

```
SELECT DISTINCT E.SID, E.CID FROM Exams E
```

- scan Exams: 1000 I/Os
- size of tuple in E': 10 bytes
- => cost of writing temporary relation E': 250 I/Os
- available buffer pages: 257
 - E' can be sorted in 1 pass
 - sorting cost: 2 * 1 * 250 = 500 I/Os
- final scan of E' cost: 250 I/Os
- => total cost: 1000 + 250 + 500 + 250 = 2000 I/Os
- * E record size = 40 bytes *

- * 1000 pages *
- * 100 records / page*

- improvement
 - adapt the sorting algorithm to do projection with duplicate elimination
 - modify pass 0 of External Merge Sort: eliminate unwanted columns
 - read in B pages from E
 - write out (T/M) * B internally sorted pages of E'
 - refinement: write out 2*B internally sorted pages of E' (on average)
 - tuples in runs smaller than input tuples
 - modify merging passes: eliminate duplicates
 - number of result tuples is smaller than number of input tuples

- improvement
 - * example
 - pass 0:
 - scan Exams: 1000 I/Os
 - write out 250 pages:
 - 20 available buffer pages
 - 250 pages => 7 sorted runs about 40 pages long (except the last one, which is about 10 pages long)
 - pass 1:
 - read in all runs cost: 250 I/Os
 - merge runs
 - total cost : 1000 + 250 + 250 = 1500 I/Os

- phases: partitioning & duplicate elimination
- partitioning phase:
 - 1 input buffer page read in the relation one page at a time
 - hash function h distribute tuples uniformly to one of B-1 partitions
 - B-1 output buffer pages one output page / partition

- partitioning phase:
 - read the relation using the input buffer page
 - for each tuple *t*:
 - discard unwanted fields => tuple t'
 - apply hash function h to t'
 - write t' to the output buffer page that it is hashed to by h
 - => B-1 partitions
 - partition:
 - collection of tuples with:
 - common hash value
 - no unwanted fields
 - tuples in different partitions are guaranteed to be distinct

- duplicate elimination phase:
 - process all partitions:
 - read in partition P, one page at a time
 - build in-memory hash table with hash function $h2 \ (\neq h)$ on all fields:
 - if a new tuple hashes to the same value as an existing tuple,
 compare them to check if they are distinct
 - eliminate duplicates
 - write duplicate-free hash table to result file
 - clear in-memory hash table
 - partition overflow
 - apply hash-based projection technique recursively (subpartitions)

- cost
 - partitioning:
 - read E: M I/Os
 - write E': T I/Os
 - duplicate elimination:
 - read in partitions: T I/Os
 - => total cost: M + 2*T I/Os
- Exams:
 - 1000 + 2*250 = 1500 I/Os

Set Operations

- intersection, cross-product
 - special cases of join (join condition for intersection equality on all fields, no join condition for cross-product)
- union, set-difference
 - similar
- union: R U S
 - sorting
 - sort R and S on all attributes
 - scan the sorted relations in parallel; merge them, eliminating duplicates
 - refinement
 - produce sorted runs of R and S, merge runs in parallel

Set Operations

- union: R U S
 - hashing
 - partition R and S with the same hash function h
 - for each S-partition
 - build in-memory hash table (using h2) for the S-partition
 - scan corresponding R-partition, add tuples to hash table, discard duplicates
 - write out hash table
 - clear hash table

Aggregate Operations

- without grouping
 - scan relation
 - maintain running information about scanned tuples
 - COUNT count of values retrieved
 - SUM total of values retrieved
 - AVG <total, count> of values retrieved
 - MIN, MAX smallest / largest value retrieved
- with grouping
 - sort relation on the grouping attributes
 - scan relation to compute aggregate operations for each group
 - improvement: combine sorting with aggregation computation
 - alternative approach based on hashing

Aggregate Operations

- using existing indexes
 - index with a search key that includes all the attributes required by the query
 - work with the data entries in the index (instead of the data records)
 - attribute list in the GROUP BY clause is a prefix of the index search key (tree index)
 - get data entries (and records, if necessary) in the required order (i.e., avoid sorting)

Query Optimization

- optimizer
 - objective
 - given a query Q, find a good evaluation plan for a Q
 - generates alternative plans for Q, estimates their costs, and chooses the one with the least estimated cost
 - uses information from the system catalogs

- running example schema
 - Students (SID: integer, SName: string, Age: integer)
 - Courses (CID: integer, CName: string, Description: string)
 - Exams (SID: integer, CID: integer, EDate: date, Grade: integer)
 - Students
 - every record has 50 bytes
 - there are 80 records / page
 - 500 pages
 - Courses
 - every record has 40 bytes
 - there are 100 records / page
 - 1 page

- Exams
 - every record has 40 bytes
 - there are 100 records / page
 - 1000 pages

Query Evaluation Plans

```
SELECT S.SName
query
FROM Exams E, Students S
WHERE E.SID = S.SID AND E.CID = 7
AND S.Age > 23
```

$$\pi_{SName}(\sigma_{CID=7 \land Age>23}(Exams \otimes_{SID=SID} Students))$$
 relational algebra expression

Query Evaluation Plans

```
SELECT S.SName
FROM Exams E, Students S
WHERE E.SID = S.SID AND E.CID = 7
AND S.Age > 23
```

$$\pi_{SName}(\sigma_{CID=7 \land Age>23}(Exams \otimes_{SID=SID} Students))$$

- query evaluation plan
 - extended relational algebra tree
 - node annotations
 - relation
 - access method
 - relational operator
 - implementation method

Query Evaluation Plans

```
SELECT S.SName
FROM Exams E, Students S
WHERE E.SID = S.SID AND E.CID = 7
AND S.Age > 23
```

$$\pi_{SName}(\sigma_{CID=7 \land Age>23}(Exams \otimes_{SID=SID} Students))$$

- page-oriented Simpled Nested Loops Join
 - Exams outer relation
- selection, projection applied on-the-fly to each tuple in the join result, i.e., the result of the join (before applying selection and projection) is not stored

Pipelined Evaluation

```
SELECT *
FROM Exams
WHERE EDate > '1-1-2020' AND Grade > 8
T1
```

$$\sigma_{Grade>8}(\sigma_{EDate>'1-1-2020'}(Exams))$$

- index I matches T1
- v1 materialization
 - evaluate *T1*
 - write out result tuples to temporary relation R, i.e., tuples are materialized
 - apply the 2nd selection to R
 - cost: read and write R

Pipelined Evaluation

```
SELECT *
FROM Exams
WHERE EDate > '1-1-2020' AND Grade > 8
T1
```

- v2 pipelined evaluation
 - apply the 2nd selection to each tuple in the result of the 1st selection as it is produced
 - i.e., 2nd selection operator is applied *on-the-fly*
 - saves the cost of writing out / reading in the temporary relation R

- parse Q => collection of query blocks -> passed on to the optimizer
- optimizer:
 - optimize one block at a time
- query block SQL query:
 - without nesting
 - with exactly: one SELECT clause, one FROM clause
 - with at most: one WHERE clause, one GROUP BY clause, one HAVING clause
 - WHERE condition CNF

query Q:

decompose query into a collection of blocks without nesting

- * block optimization
- express query block as a relational algebra expression

```
SELECT S.SID, MIN(E.EDate)
FROM Students S, Exams E, Courses C
WHERE S.SID = E.SID AND E.CID = C.CID AND C.Description = 'Elective' AND
                        S.Age = Reference to nested block
GROUP BY S.SID
HAVING COUNT (*) > 2
\pi_{S.SID, MIN(E.EDate)}
HAVING_{COUNT(*) > 2}
GROUP BY<sub>S,SID</sub>(
\sigma_{S.SID} = E.SID \Lambda E.CID = C.CID \Lambda C.Description = 'Elective' \Lambda S.Age = value from nested block
        Students \times Exams \times Courses ))))
```

- GROUP BY, HAVING operators in the extended algebra used for plans
- argument list of projection can include aggregate operations

- query Q treated as a $\sigma \pi \times$ algebra expression
- the remaining operations in Q are performed on the result of the $\sigma\,\pi\,\times\,$ expression

```
SELECT S.SID, MIN(E.EDate)

FROM Students S, Exams E, Courses C

WHERE S.SID = E.SID AND E.CID = C.CID AND C.Description = 'Elective' AND S.Age = Reference to nested block

GROUP BY S.SID

HAVING COUNT(*) > 2

\pi_{S.SID, E.EDate}(
\sigma_{S.SID = E.SID \land E.CID = C.CID \land C.Description = 'Elective' \land S.Age = value\_from\_nested\_block}(
Students \times Exams \times Courses))
```

- attributes in GROUP BY, HAVING are added to the argument list of projection
- aggregate expressions in the argument list of projection are replaced by their argument attributes

- * block optimization
- find best plan P for the $\sigma \pi \times$ expression
- evaluate P => result set RS
- sort/hash RS => groups
- apply HAVING to eliminate some groups
- compute aggregate expressions in SELECT for each remaining group

```
\pi_{S.SID, MIN(E.EDate)}(
HAVING_{COUNT(*) > 2}(
GROUP BY_{S.SID}(
\pi_{S.SID, E.EDate}(
\sigma_{S.SID = E.SID \land E.CID = C.CID \land C.Description = 'Elective' \land S.Age = value\_from\_nested\_block(
Students \times Exams \times Courses))))))
```

- * E 1000 pages *
- * S 500 pages *

```
SELECT S.SName
FROM Exams E, Students S
WHERE E.SID = S.SID AND E.CID = 7
AND S.Age > 20
```

- σ , π on-the-fly
- cost of plan very high:
 - 1000 + 1000 * 500 = 501,000 I/Os

- * optimizations
- reduce sizes of the relations to be joined
 - push selections, projections ahead of the join
- alternative plans
 - push selections ahead of joins
- selection
 - file scan
 - write the result to a temporary relation on disk
- join the temporary relations using Sort-Merge Join

- 5 available buffer pages
- cost
 - ullet $\sigma_{ ext{CID=7}}$
 - scan Exams: 1000 I/Os
 - write T1
 - assume exams are (file scan) Exams Students (file scan) uniformly distributed across all courses, i.e., T1 has 10 pages (there are 100 courses)

(scan:

write to

temp T1)

 $\sigma_{ ext{CID=7}}$

 π_{SName}

 \otimes SID=SID

 $\sigma_{\mathsf{Age} \mathsf{>} \mathsf{20}}$

(on-the-fly)

(scan:

write to

temp T2)

(Sort-Merge Join)

- $oldsymbol{\sigma}_{\mathsf{Age} > \mathsf{20}}$
 - scan Students: 500 I/Os
 - write T2
 - assume ages are uniformly distributed over the range 19 to 22,
 i.e., T2 has 250 pages

- 5 available buffer pages
- cost
 - Sort-Merge Join
 - T1 10 pages
 - sort T1: 2 * 2 * 10 = 40 I/Os
 - T2 250 pages
 - sort T2: 2 * 4 * 250 = 2000 I/Os
 - merge sorted T1 and T2
 - 10 + 250 = 260 I/Os
 - π on the fly

=> **total cost**:
$$1000 + 10 + 500 + 250 + 40 + 2000 + 260 = 4060 I/Os selection join$$

(scan:

(file scan)

write to

temp T1)

- 5 available buffer pages
- cost
 - **Block Nested Loops Join**
 - T1 10 pages, T2 250 pages
 - T1 outer relation
 - => scan T1: 10 I/Os
 - [10/3] = 4 T1 blocks
 - => T2 scanned 4 times: 4 * 250 = 1000 I/Os
 - BNLJ cost: 10 + 1000 = 1010 I/Os
 - π on the fly

=> total cost:
$$1000 + 10 + 500 + 250 + 10 + 1000 = 2770 I/Os$$
 selection join

(scan:

- push projections ahead of joins
 - drop unwanted columns while scanning Exams and Students to evaluate selections => T1[SID], T2[SID, SName]
- T1 fits within 3 buffer pages
 - => T2 scanned only once
 - => total cost: about 2000 I/Os

References

- [Ra02] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (3rd Edition), McGraw-Hill, 2002
- [Da03] DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003
- [Ga09] GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book (2nd Edition), Pearson, 2009
- [Ra07] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems, McGraw-Hill,
 http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.
 html
- [Si19] SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S., Database System Concepts (7th Edition), McGraw-Hill, 2019
- [UI11] ULLMAN, J., WIDOM, J., A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html