3

LEZIONE

Processi stocastici

I processi stocastici costituiscono la base formale per lo studio dei segnali aleatori che si incontrano nella pratica.

3.1 Definizione

Come abbiamo visto, una v.c. \mathbf{x} è una legge di associazione tra uscite sperimentali di un esperimento e numeri reali

$$s_i \to \mathbf{x}(s_i)$$

Un processo stocastico $\mathbf{x}(t)$ è invece una legge di associazione tra uscite sperimentali e funzioni del tempo

$$s_i \to \mathbf{x}(t, s_i)$$

Un processo stocastico è pertanto una famiglia di curve funzioni del tempo che dipendono dal parametro s_i , uscita dell'esperimento.

Per indicare un processo si scrive $\mathbf{x}(t)$ (o $\mathbf{y}(t)$, $\mathbf{z}(t)$ ecc.), omettendo l'indicazione delle uscite sperimentali.

É importante notare che la notazione $\mathbf{x}(t)$ può avere una quadruplice interpretazione.

- 1) è una famiglia di curve funzioni del tempo t, una per ogni uscita s_i ;
- 2) può essere una singola funzione del tempo t se si fissa s_i ("funzione campione" del processo), equivale cioè a $\mathbf{x}(t, s_i)$;
- 3) se si fissa t e si lascia s_i variabile, $\mathbf{x}(t)$ diventa una variabile casuale (confronta con la definizione di v.c.);
- 4) se si fissa sia t che s_i , $\mathbf{x}(t)$ è un numero.

Esempi:

1) La quota del pavimento nella legge del moto delle particelle di polvere in una stanza;

2) La tensione prodotta da un generatore che ha ampiezza casuale \mathbf{r} e fase casuale φ

$$\mathbf{x}(t) = \mathbf{r} \cos(\omega t + \varphi)$$

dove \mathbf{r} e φ sono variabili casuali.

Negli esempi precedenti di processi stocastici (segnali aleatori) è da sottolineare una differenza importante: nel primo caso non è possibile dare una espressione analitica delle funzioni campione, mentre nel secondo caso, per la presenza esplicita delle v.c., è possibile dare un'espressione analitica delle funzioni campione.

3.2 Statistiche di x(t)

Un processo $\mathbf{x}(t)$ può essere visto, come detto, come un'infinità non numerabile di variabili casuali, una per ogni t.

Dato un t, $\mathbf{x}(t)$ è una v.c. con distribuzione

$$F_{\mathbf{x}}(x;t) = \mathbf{P}\{\mathbf{x}(t) \le x\}$$

Questa funzione dipende da t e uguaglia la probabilità di quell'evento costituito da tutte quelle uscite sperimentali s_i tali che, al t dato, le funzioni campione $\mathbf{x}(t,s_i)$ del processo non superano il numero reale x.

La funzione $F_{\mathbf{x}}(x;t)$ si chiama distribuzione del 1º ordine del processo $\mathbf{x}(t)$.

La corrispondente densità di probabilità del 1º ordine di $\mathbf{x}(t)$ è

$$f_{\mathbf{x}}(x;t) = \frac{\partial F_{\mathbf{x}}(x;t)}{\partial x}$$

in cui il segno di derivata parziale è dovuto alla presenza dell'altra variabile (parametro) t, che deve restare fisso.

É di particolare importanza sottolineare che in un processo $\mathbf{x}(t)$, fissando due istanti di osservazione t_1 e t_2 , si ottengono due variabili casuali $\mathbf{x}_1 = \mathbf{x}(t_1)$ e

 $\mathbf{x}_2 = \mathbf{x}(t_2)$, la cui descrizione statistica deve avvenire tramite la funzione di densità di probabilità $congiunta \ f_{\mathbf{x}_1\mathbf{x}_2}(x_1,x_2)$, che si preferisce indicare così:

Ovviamente $F_{\mathbf{x}}(x_1, x_2; t_1, t_2)$ ha il consueto significato corrispondente.

La $f_{\mathbf{x}}(x_1, x_2; t_1, t_2)$ si chiama densità di probabilità del 2º ordine del processo $\mathbf{x}(t)$ (analogamente per $F_{\mathbf{x}}(x_1, x_2; t_1, t_2)$).

La densità del 1º ordine è marginale rispetto a quelle del 2º ordine:

$$f_{\mathbf{x}}(x_1; t_1) = \int_{-\infty}^{+\infty} f_{\mathbf{x}}(x_1, x_2; t_1, t_2) dx_2$$
$$f_{\mathbf{x}}(x_2; t_2) = \int_{-\infty}^{+\infty} f_{\mathbf{x}}(x_1, x_2; t_1, t_2) dx_1$$

come già illustrato in precedenza per due v.c.

3.2.1 Una relazione importante tra due v.c.

Supponiamo di considerare due v.c. $\mathbf{x}(t_1)$ e $\mathbf{x}(t_2)$. Chiamiamole \mathbf{x} ed \mathbf{y} per semplicità. Si può dimostrare che esiste una relazione fra le densità di probabilità, simile a

$$P(\mathcal{A} \mid \mathcal{M}) \stackrel{\triangle}{=} \frac{P(\mathcal{A}\mathcal{M})}{P(\mathcal{M})}$$

La relazione formalmente analoga è la seguente

$$f_{\mathbf{y}}(y \mid \mathbf{x} = x) = \frac{f_{\mathbf{x}\mathbf{y}}(x, y)}{f_{\mathbf{x}}(x)}$$

dove con $f_{\mathbf{y}}(y \mid \mathbf{x} = x)$ si è inteso $f_{\mathbf{y}}(y \mid \mathbf{x} = x) \stackrel{\triangle}{=} \lim_{\Delta x \to 0} f_{\mathbf{y}}(y \mid x < \mathbf{x} \le x + \Delta x)$.

CEZIOA

Una analoga relazione è

$$f_{\mathbf{x}}(x \mid \mathbf{y} = y) = \frac{f_{\mathbf{x}\mathbf{y}}(x, y)}{f_{\mathbf{y}}(y)}$$

Si noti che se $\mathbf x$ e $\mathbf y$ sono indipendenti, allora $f_{\mathbf x\mathbf y}(x,y)=f_{\mathbf x}(x)f_{\mathbf y}(y)$ e quindi

$$f_{\mathbf{x}}(x \mid \mathbf{y} = y) = f_{\mathbf{x}}(x)$$

$$f_{\mathbf{y}}(y \mid \mathbf{x} = x) = f_{\mathbf{y}}(y)$$

Uguagliando $f_{xy}(x, y)$ dalle due relazioni si trova

$$f_{\mathbf{x}}(x \mid \mathbf{y} = y) = \frac{f_{\mathbf{y}}(y \mid \mathbf{x} = x) f_{\mathbf{x}}(x)}{f_{\mathbf{y}}(y)}$$

III FORMULA DI BAYES

e inoltre da

$$f_{\mathbf{y}}(y) = \int_{-\infty}^{+\infty} f_{\mathbf{x}\mathbf{y}}(x, y) dx$$

si trova

$$f_{\mathbf{y}}(y) = \int_{-\infty}^{+\infty} f_{\mathbf{y}}(x \mid \mathbf{x} = x) f_{\mathbf{x}}(x) dx$$

TEOREMA DELLE PROBABILITÀ TOTALI

Analogamente per $f_{\mathbf{x}}(x)$.

Esempi di processi:

a) Il processo sia così definito:

$$\{\text{testa}\} \to \mathbf{x}(t) = t$$

$$\{\text{croce}\} \to \mathbf{x}(t) = 2t$$

Esso è costituito da due sole funzioni campione.

Fissato $t=t_1$, si ottiene una variabile casuale discreta che può assumere due valori t_1 e $2t_1$.

La $f_{\mathbf{x}}(x;t)$ è impulsiva ed è uguale a

$$f_{\mathbf{x}}(x;t) = \frac{1}{2}\delta(x-t) + \frac{1}{2}\delta(x-2t).$$

Si noti che l'asse delle ascisse è x mentre variando t_1 varia la forma della $f_{\mathbf{x}}(x;t)$ (si spostano le δ).

b) Il processo sia definito da un impulso rettangolare (durata T, ampiezza unitaria) traslato di una quantità aleatoria (variabile casuale) ϵ .

con ϵ uniformente distribuita tra $-\frac{\Delta}{2}$ e $+\frac{\Delta}{2}$ (con $\Delta < \frac{T}{2}$)

Le funzioni-campione corrispondenti alle posizioni estreme sono

La $f_{\mathbf{x}}(x;t)$ è

$$f_{\mathbf{x}}(x;t) = \begin{cases} \delta(x) & |t| > \frac{T+\Delta}{2} \\ \delta(x-1) & |t| \leq \frac{T-\Delta}{2} \\ p\delta(x) + q\delta(x-1) & \frac{T-\Delta}{2} < |t| \leq \frac{T-\Delta}{2} \end{cases}$$

dove q = 1 - p e p va calcolata.

Calcoliamo quindi $p = P\{\mathbf{x}(t) = 0\}$ al t dato.

All'istante $t < \frac{T}{2}$ la funzione-campione vale 0 se avviene l'evento

$$\{-\frac{\Delta}{2} < \epsilon < t - \frac{T}{2}\}.$$

Si ottiene

$$p = \frac{\left(t - \frac{T}{2}\right) - \left(-\frac{\Delta}{2}\right)}{\Delta} = \frac{t - \frac{T - \Delta}{2}}{\Delta} \qquad \text{per } \frac{T - \Delta}{2} < t < \frac{T}{2}$$

Scegliamo ora un altro t

All'istante $t > \frac{T}{2}$ la funzione-campione vale 0 se avviene l'evento

$$\{-\frac{\Delta}{2} < \epsilon < t - \frac{T}{2}\}.$$

Quindi si ottiene

$$p = \frac{\left(t - \frac{T}{2}\right) - \left(-\frac{\Delta}{2}\right)}{\Delta} = \frac{t - \frac{T - \Delta}{2}}{\Delta} \qquad \text{per } \frac{T}{2} < t < \frac{T + \Delta}{2}$$

In conclusione, la $f_{\mathbf{x}}(x;t)$ si presenta così

3.3 Valor medio di un processo

Il valor medio di un processo $\mathbf{x}(t)$ è il valor medio della generica variabile casuale $\mathbf{x}(t)$, ottenuta pensando di fissare l'istante t. Il risultato può venire dipendente dall'istante t fissato, e quindi il valor medio $E\{\mathbf{x}(t)\}$ sarà in generale funzione del tempo.

La sua definizione analitica è la seguente

$$\eta(t) = E\{\mathbf{x}(t)\} \stackrel{\triangle}{=} \int_{-\infty}^{+\infty} x f_{\mathbf{x}}(x;t) dx$$

Esempi:

Un caso estremo di processo stocastico è un segnale deterministico $\mathbf{x}(t) = h(t)$.

In questo caso ogni uscita sperimentale porta associata la stessa funzione campione h(t).

La densità di probabilità del 1º ordine è una delta di Dirac di area 1 situata nel punto x=h(t), per ogni t.

Un secondo esempio può essere quello di un processo le cui funzioni-campione sono analiticamente esprimibili, ma diverse

$$\mathbf{x}(t) = \mathbf{r}\cos(\omega + \varphi)$$
 (N.B. solo \mathbf{r} è v.c. in questo esempio)

Se **r** ha densità del 1º ordine $f_{\mathbf{r}}(r)$ nota, allora la densità $f_{\mathbf{x}}(x;t)$ di $\mathbf{x}(t)$, qualunque sia t, si troverebbe con uno dei due metodi visti in precedenza (della funzione di distribuzione o del teorema fondamentale).

Per il calcolo del valor medio si può procedere nel modo seguente. Fissato t, la trasformazione è del tipo

$$y = ar$$

dove $\mathbf{y} = \mathbf{x}(t)$, e $a = \cos(\omega t + \varphi)$ è un numero.

Quindi, dalla relazione

$$y = g(r) = ar$$

e dal teorema del valor medio per le v.c. (vedi pag. 69) si ha:

$$E\{\mathbf{y}\} = E\{g(\mathbf{r})\} = \int_{-\infty}^{+\infty} g(r) f_{\mathbf{r}}(r) dr = \int_{-\infty}^{+\infty} \cos(\omega t + \varphi) r f_{\mathbf{r}}(r) dr$$
$$= \cos(\omega t + \varphi) \int_{-\infty}^{+\infty} r f_{\mathbf{r}}(r) dr = \cos(\omega t + \varphi) E\{\mathbf{r}\}$$

Dal risultato

$$E\{\mathbf{x}(t)\} = \cos(\omega t + \varphi)E\{\mathbf{r}\}\$$

si vede che la dipendenza dal tempo è dovuta al coefficiente di $E\{\mathbf{r}\}$ e se $E\{\mathbf{r}\}=0$ il valor medio di $\mathbf{x}(t)$ è anch'esso nullo, indipendentemente dal coefficiente.

Se il processo $\mathbf{x}(t)$ non ha realizzazioni esprimibili analiticamente, bisogna conoscere $f_{\mathbf{x}}(x;t)$ per trovare $\eta(t)$.

Se $f_{\mathbf{x}}(x;t)$ non dipende dal tempo (può succedere)

$$f_{\mathbf{x}}(x;t) = f_{\mathbf{x}}(x)$$
 CASO IMPORTANTE

il valor medio del processo è costante anch'esso

$$\eta(t) = \eta$$

3.4 Autocorrelazione di un processo

Per introdurre il concetto di autocorrelazione bisogna richiamare quanto detto riguardo le variabili casuali funzioni di altre due variabili casuali (vedi pag. 75)

$$\mathbf{z} = g(\mathbf{x}, \mathbf{y})$$

Per trovare la funzione di distribuzione $F_{\mathbf{z}}(z)$ in questo caso

$$F_{\mathbf{z}}(z) \stackrel{\triangle}{=} \mathbf{P}\{\mathbf{z} \le z\} = \mathbf{P}\{g(\mathbf{x}, \mathbf{y}) \le z\}$$

bisogna conoscere la $F_{\mathbf{x}\mathbf{y}}(x,y)$, poiché è tramite questa che si può esprimere la probabilità che la coppia di v.c. \mathbf{x} e \mathbf{y} cadono nella regione del piano (x,y) che soddisfa la condizione

$$g(x,y) \le z$$

espressa nell'ultimo evento scritto sopra.

Trovata $F_{\mathbf{z}}(z)$, si determina $f_{\mathbf{z}}(z)$ derivando e $E\{\mathbf{z}\} \stackrel{\triangle}{=} \int_{-\infty}^{+\infty} z f_{\mathbf{z}}(z) \, dz$ come al solito. Anche in questo caso, però, esiste un teorema simile a quello per il caso $\mathbf{y} = g(\mathbf{x})$ (vedi pag. 69), che consente di ottenere $E\{\mathbf{z}\}$ come segue

$$E\{\mathbf{z}\} = E\{g(\mathbf{x}, \mathbf{y})\} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f_{\mathbf{x}\mathbf{y}}(x, y) dxdy$$

Per esempio, $\mathbf{z} = \mathbf{x} + \mathbf{y}$ ha per valor medio $E\{\mathbf{z}\} = \iint (x+y) f_{\mathbf{x}\mathbf{y}}(x,y) dx dy = E\{\mathbf{x}\} + E\{\mathbf{y}\}$ per la linearità del valor medio.

Fatta questa premessa, si definisce funzione di autocorrelazione di un processo $\mathbf{x}(t)$ la seguente quantità

$$R_{\mathbf{x}}(t_1, t_2) \stackrel{\triangle}{=} E\{\mathbf{x}(t_1)\mathbf{x}(t_2)\}$$
 AUTOCORRELAZIONE

cioè il valor medio del prodotto delle due v.c. $\mathbf{x}(t_1)$ e $\mathbf{x}(t_2)$. Al variare di t_1 e t_2 , $R_{\mathbf{x}}(t_1,t_2)$ è una superficie (funzione reale di due variabili reali).

Sulla base di quanto detto sopra si ha anche

$$R_{\mathbf{x}}(t_1, t_2) \stackrel{\triangle}{=} E\{\mathbf{x}(t_1)\mathbf{x}(t_2)\} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_1 x_2 f_{\mathbf{x}}(x_1, x_2; t_1 t_2) dx_1 dx_2$$

Il valore di $R_{\mathbf{x}}(t_1, t_2)$ sulla diagonale $t_1 = t_2$ del piano (t_1, t_2) di definizione è detto potenza media di $\mathbf{x}(t)$

$$R_{\mathbf{x}}(t,t) = E\{\mathbf{x}^2(t)\} = P_{\mathbf{x}}(t)$$

 $P_{\mathbf{x}}(t)$ è il valor medio del processo potenza istantanea normalizzata $\mathbf{x}^{2}(t)$.

 $E\{\mathbf{x}^2(t)\}$ si chiama anche valore quadratico medio del processo $\mathbf{x}(t)$.

Si definisce anche l'autocovarianza di $\mathbf{x}(t)$

$$C(t_1, t_2) = R(t_1, t_2) - \eta(t_1)\eta(t_2)$$
 AUTOCOVARIANZA

per $t = t_1 = t_2$, C(t, t) è la varianza di $\mathbf{x}(t)$.

Esempi:

• L'autocorrelazione del processo "estremo" $\mathbf{x}(t) = h(t)$ è

$$R_{\mathbf{x}}(t_1, t_2) = E\{\mathbf{x}(t_1)\mathbf{x}(t_2)\} = h(t_1)h(t_2)$$

• Per il processo $\mathbf{x}(t) = \mathbf{r}\cos(\omega t + \varphi)$ si ha

$$R_{\mathbf{x}}(t_1, t_2) = E\{\mathbf{x}(t_1)\mathbf{x}(t_2)\} = E\{\mathbf{r}(\cos\omega t_1 + \varphi)\mathbf{r}(\cos\omega t_2 + \varphi)\}$$

$$= E\{\mathbf{r}^2[\cos(\omega t_1 + \varphi)][\cos(\omega t_2 + \varphi)]\}$$

$$= \cos(\omega t_1 + \varphi)\cos(\omega t_2 + \varphi)E\{\mathbf{r}^2\}$$

con $E\{\mathbf{r}^2\}$ è il valore quadratico medio di \mathbf{r} , noto se è nota $f_{\mathbf{r}}(r)$

• Supponiamo che il processo $\mathbf{x}(t)$ abbia

$$\eta(t) = 3$$
 $R(t_1, t_2) = 9 + 4e^{-0.2(|t_1 - t_2|)}$

Quanto è la media e la varianza di $\mathbf{x}(5)$ e di $\mathbf{x}(8)$?

Ponendo $\mathbf{z} = \mathbf{x}(5)$ e $\mathbf{w} = \mathbf{x}(8)$ si ha

$$\begin{split} E\{\mathbf{z}\} &= 3 \qquad \text{e anche } E\{\mathbf{w}\} = 3 \\ E\{\mathbf{z}^2\} &= E\{\mathbf{x}^2(5)\} = E\{\mathbf{x}(5)\mathbf{x}(5)\} = R_{\mathbf{x}}(5,5) = 9 + 4e^{-0.2(|0|)} = 13 \\ E\{\mathbf{w}^2\} &= E\{\mathbf{x}^2(8)\} = E\{\mathbf{x}(8)\mathbf{x}(8)\} = R_{\mathbf{x}}(8,8) = 9 + 4e^{-0.2(|0|)} = 13 \end{split}$$

La autocovarianza di
$$\mathbf{x}(t)$$
 per $t_1 = 5$ e $t_2 = 8$ vale $C(5,8) = R(5,8) - \eta(5)\eta(8) = 9 + 4e^{-0.2(|5-8|)} - 3 \cdot 3 = 4e^{-0.6} = 2.195$

• Per il processo $\mathbf{x}(t) = \mathbf{r} \cos(\omega t + \varphi)$ si ha ($\mathbf{r} \in \varphi$ sono indipendenti)

$$E\{\mathbf{x}(t_1)\mathbf{x}(t_2)\} = E\{\mathbf{r}(\cos\omega t_1 + \varphi)\mathbf{r}(\cos\omega t_2 + \varphi)\}$$
$$= E\{\mathbf{r}^2[\cos(\omega t_1 + \varphi)\cos(\omega t_2 + \varphi)]\}$$

Si noti che possiamo definire $\mathbf{y} = g(\mathbf{r}) = \mathbf{r}^2$ e $\mathbf{z} = h(\varphi) = [\cos(\omega t_1 + \varphi)\cos(\omega t_2 + \varphi)]$. Poiché \mathbf{r} e φ sono indipendenti, lo sono anche \mathbf{y} e \mathbf{z} in quanto funzioni individuali di \mathbf{r} e φ .

Pertanto

$$f_{\mathbf{yz}}(y,z) = f_{\mathbf{y}}(y)f_{\mathbf{z}}(z)$$

e quindi

$$E\{\mathbf{yz}\} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y \, z f_{\mathbf{yz}}(y, z) \, dy dz = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y \, z f_{\mathbf{y}}(y) f_{\mathbf{z}}(z) \, dy dz$$

$$= \int_{-\infty}^{+\infty} y f_{\mathbf{y}}(y) \, dy \int_{-\infty}^{+\infty} z f_{\mathbf{z}}(z) \, dz = E\{\mathbf{y}\} E\{\mathbf{z}\}$$

$$= \int_{-\infty}^{+\infty} r^2 f_{\mathbf{r}}(r) \, dr \int_{-\infty}^{+\infty} [\cos(\omega t_1 + \varphi) \cos(\omega t_2 + \varphi)] f_{\boldsymbol{\varphi}}(\varphi) \, d\varphi$$

Quando due v.c. sono *indipendenti*, il valor medio del prodotto è sempre uguale al prodotto dei valor medi

$$E\{yz\} = E\{y\}E\{z\}$$
 IMPORTANTE, V.C. INDIPENDENTI

Nell'esempio in esame si ha quindi, proseguendo i calcoli

$$\begin{split} E\{\mathbf{x}(t_1)\mathbf{x}(t_2)\} &= E\{\mathbf{r}^2\}E\{\cos(\omega t_1 + \varphi)\cos(\omega t_2 + \varphi)\} \\ &= \frac{1}{2}E\{\mathbf{r}^2\}E\{[\cos(\omega (t_1 - t_2)] + \cos[\omega (t_1 + t_2) + 2\varphi]\} \\ &= \frac{1}{2}E\{\mathbf{r}^2\}\cos\omega (t_1 - t_2) + \frac{1}{2}E\{\mathbf{r}^2\}E\{\cos[\omega t_1 + \omega t_2 + 2\varphi]\} \end{split}$$

Se φ è uniformemente distribuito tra 0 e 2π si ha

$$E\{\cos[\omega t_1 + \omega t_2 + 2\varphi]\} = \int_0^{2\pi} \cos[(\omega t_1 + \omega t_2 + 2\varphi)] \frac{1}{2\pi} d\varphi = 0$$

e si conclude

$$R_{\mathbf{x}}(t_1, t_2) = E\{\mathbf{x}(t_1\mathbf{x}(t_2))\} = \frac{1}{2}E\{\mathbf{r}^2\}\cos[\omega(t_1 - t_2)]$$

3.5 Coefficiente di correlazione di un processo

É definito come segue

$$r_{\mathbf{x}}(t_1, t_2) \stackrel{\triangle}{=} \frac{C_{\mathbf{x}}(t_1, t_2)}{\sqrt{C_{\mathbf{x}}(t_1, t_1)C_{\mathbf{x}}(t_2, t_2)}}$$

Si noti che $C_{\mathbf{x}}(t_1, t_1)$ è la varianza di $\mathbf{x}(t_1)$, mentre $C_{\mathbf{x}}(t_2, t_2)$ è la varianza di $\mathbf{x}(t_2)$. Si può dimostrare che $|r_{\mathbf{x}}(t_1, t_2)| \leq 1$ cioè è compreso tra -1 e +1. Inoltre $r_{\mathbf{x}}(t, t) = 1$ sempre.

3.6 Cross-correlazione di due processi

É definita come

$$R_{\mathbf{x}\mathbf{y}}(t_1, t_2) \stackrel{\triangle}{=} E\{\mathbf{x}(t_1)\mathbf{y}(t_2)\}$$
 (processi reali)

Si definisce inoltre la cross-varianza

$$C_{\mathbf{x}\mathbf{y}}(t_1, t_2) \stackrel{\triangle}{=} R_{\mathbf{x}\mathbf{y}}(t_1, t_2) - \eta_{\mathbf{x}}(t_1)\eta_{\mathbf{y}}(t_2)$$

Se $C_{xy}(t_1, t_2) = 0$ per ogni t_1 e t_2 , i processi sono detti incorrelati.

3.7 Processi stazionari

Un processo stocastico $\mathbf{x}(t)$ è detto stazionario in senso stretto (SSS) se le sue proprietà statistiche sono invarianti a traslazioni dell'asse dei tempi. Ciò significa che il processo $\mathbf{x}(t)$ e l'altro $\mathbf{x}(t-t_0)$ hanno le stesse statistiche per ogni t_0

$$f_{\mathbf{x}}(x;t) = f_{\mathbf{x}}(x;t-t_0)$$

$$f_{\mathbf{x}}(x_1, x_2; t_1, t_2) = f_{\mathbf{x}}(x_1, x_2; t_1 - t_0, t_2 - t_0)$$

$$\vdots = \vdots$$

$$f_{\mathbf{x}}(x_1 \dots x_n; t_1 \dots t_n) = f_{\mathbf{x}}(x_1, \dots, x_n; t_1 - t_0, \dots, t_n - t_0)$$

Dalle prime due relazioni segue che

$$f_{\mathbf{x}}(x;t) = f_{\mathbf{x}}(x)$$
 indipendente da t
$$f_{\mathbf{x}}(x_1,x_2;t_1,t_2) = f_{\mathbf{x}}(x_1,x_2;t_1-t_2)$$
 dipendente dalla differenza $au = t_1-t_2$

Un processo stocastico $\mathbf{x}(t)$ si dice stazionario in senso lato (SSL) se la sua media è costante

$$E\{\mathbf{x}(t)\} = \eta$$
 STAZ.

e la sua autocorrelazione dipende solo da $au=t_1-t_2$

SENSO

$$R_{\mathbf{x}}(t_1, t_2) = E\{\mathbf{x}(t_1)\mathbf{x}(t_2)\} = E\{\mathbf{x}(t)\mathbf{x}(t+\tau)\} = R_{\mathbf{x}}(\tau)$$
 LATO

Si noti che in questo caso

$$P_{\mathbf{x}}(t) = E\{\mathbf{x}^{2}(t)\} = R_{\mathbf{x}}(0) = P_{\mathbf{x}}$$

è costante indipendente da t.

Esempio:

Supponiamo che $\mathbf{x}(t)$ sia un processo stazionario in senso lato con autocorrelazione

$$R_{\mathbf{x}}(\tau) = Ae^{-\alpha|\tau|}$$

Determinare il valore quadratico medio della v.c.

$$x(8) - x(5)$$

Si ha

$$E\{[\mathbf{x}(8) - \mathbf{x}(5)]^2\} = E\{\mathbf{x}^2(8)\} + E\{\mathbf{x}^2(5)\} - 2E\{\mathbf{x}(8)\mathbf{x}(5)\}$$
$$= R_{\mathbf{x}}(0) + R_{\mathbf{x}}(0) - 2R_{\mathbf{x}}(3) = 2A - 2Ae^{-3\alpha}$$

Osservazione:

Poiché $E\{\mathbf{x}^2(t)\}$ è la potenza media di $\mathbf{x}(t)$, si può anche dire in generale che $E\{[\mathbf{x}(t+\tau)-\mathbf{x}(t)]^2\}$ è la potenza media di $\mathbf{y}(t)=\mathbf{x}(t+\tau)-\mathbf{x}(t)$, con τ parametro fissato.

L'esempio precedente ha mostrato che

$$P_{\mathbf{y}}(t) = 2[R_{\mathbf{x}}(0) - R_{\mathbf{x}}(\tau)]$$

è costante anch'essa se $\mathbf{x}(t)$ è stazionario in senso lato.

É evidente dal confronto delle due definizioni che se un processo è stazionario in senso stretto lo è anche in senso lato.

Infatti
$$\eta(t) = \int_{-\infty}^{+\infty} x f_{\mathbf{x}}(x;t) dx = \eta.$$

Analogamente per $R_{\mathbf{x}}(t,\tau) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_1 x_2 f_{\mathbf{x}}(x_1,x_2;\tau) dx_1 dx_2 = R_{\mathbf{x}}(\tau).$

I processi SSS sono un sottoinsieme di quelli SSL.

3.7.1 Proprietà dell'autocorrelazione di processi stazionari

• È una funzione pari, cioè $R_{\mathbf{x}}(-\tau) = R_{\mathbf{x}}(\tau)$. Infatti $R_{\mathbf{x}}(\tau) = E\{\mathbf{x}(t)\mathbf{x}(t+\tau)\}$ e ponendo $t_1 = t + \tau$ si ottiene

$$R_{\mathbf{x}}(\tau) = E\{\mathbf{x}(t_1 - \tau)\mathbf{x}(t_1)\} = E\{\mathbf{x}(t_1)\mathbf{x}(t_1 - \tau)\} = R_{\mathbf{x}}(-\tau).$$

- $R_{\mathbf{x}}(0) \geq 0$ in quanto $R_{\mathbf{x}}(0) = E\{\mathbf{x}^2(t)\}.$
- $|R_{\mathbf{x}}(\tau)| \leq R_{\mathbf{x}}(0)$, cioè è massima nell'origine. Infatti dal momento che $[\mathbf{x}(t+\tau) \pm \mathbf{x}(t)]^2 \geq 0$, lo sarà anche il suo valor medio:

$$E\{[\mathbf{x}(t+\tau) \pm \mathbf{x}(t)]^2\} = E\{\mathbf{x}^2(t+\tau) + \mathbf{x}^2(t) \pm 2\mathbf{x}(t+\tau)\mathbf{x}(t)\}$$

$$= E\{\mathbf{x}^2(t+\tau)\} + E\{\mathbf{x}^2(t)\} \pm 2R_{\mathbf{x}}(\tau)$$

$$= 2R_{\mathbf{x}}(0) \pm 2R_{\mathbf{x}}(\tau) \ge 0$$
come detto!

Segue

$$R_{\mathbf{x}}(0) \geq \pm R_{\mathbf{x}}(\tau).$$

ullet Se è continua nell'origine, è continua $\forall \, au$

Esempi:

Alla luce di quanto detto:

permessa

non permessa

3.8 Ergodicitá

Definizione

Un processo stazionario $\mathbf{x}(t)$ è detto *ergodico in senso stretto* se (con probabilità 1) tutte le sue statistiche possono essere determinate da una singola realizzazione $\mathbf{x}(t, s_i)$ del processo.

Poiché i vari parametri statistici vengono in questo caso espressi come medie temporali, spesso l'ergodicità è definita come segue:

" $\mathbf{x}(t)$ è ergodico se le medie temporali eguagliano le medie statistiche".

Ci limiteremo qui a indicare cosa deve accadere per parlare di ergodicità

- rispetto al valor medio
- rispetto all'autocorrelazione

3.8.1 Ergodicità rispetto al valor medio

Dato un processo $\mathbf{x}(t)$ stazionario almeno in senso lato di valor medio $\eta_{\mathbf{x}}$, prendiamo la media temporale troncata di ogni funzione campione

$$\mathbf{n}_T = \frac{1}{2T} \int_{-T}^{+T} \mathbf{x}(t, s_i) \, dt$$

 \mathbf{n}_T è variabile casuale. É facile vedere che

$$E\{\mathbf{n}_T\} = \frac{1}{2T} \int_{-T}^{+T} E\{\mathbf{x}(t)\} dt = \eta_{\mathbf{x}} \frac{2T}{2T} = \eta_{\mathbf{x}}$$

La media temporale troncata è una variabile casuale che ha media statistica uguale a quella del processo.

La v.c. \mathbf{n}_T ha una certa varianza intorno a $\eta_{\mathbf{x}}$, tuttavia. Se tale varianza tende a zero quando $T \to \infty$, la media temporale sulle funzioni-campione ha probabilità 1 di essere uguale a $\eta_{\mathbf{x}}$.

Usando la media temporale della realizzazione disponibile, vi è probabilità 1 di ottenere η_x .

3.8.2 Ergodicità rispetto all'autocorrelazione

Formiamo la media

$$\mathbf{R}_T(\lambda) = \frac{1}{2T} \int_{-T}^{+T} \mathbf{x}(t+\lambda) \mathbf{x}(t) dt$$

Si ha evidentemente

$$E\{\mathbf{R}_T(\lambda)\} = R_{\mathbf{x}}(\lambda)$$

La v.c. $\mathbf{R}_T(\lambda)$ ha una varianza diversa da zero. Se σ^2 tende a zero quando $T \to \infty$ si ricade in un discorso simile a quello per il valor medio.

Si possono dare condizioni necessarie e sufficienti sul processo perché ciò accada, che qui non riportiamo.

3.9 Sistemi con segnali di ingresso stocastici

Dato un processo stocastico $\mathbf{x}(t)$, assegniamo secondo una qualche "regola" a ciascuna funzione-campione $\mathbf{x}(t, s_i)$ una nuova funzione $\mathbf{y}(t, s_i)$.

In questo modo, abbiamo creato un nuovo processo ("trasformato" di $\mathbf{x}(t)$)

$$\mathbf{y}(t) = \mathbf{T}[\mathbf{x}(t)]$$
 $\mathbf{T}[\]$ è l'operatore di trasformazione

Il nuovo processo $\mathbf{y}(t)$ può essere considerato come l'uscita di un sistema ("trasformazione" appunto) che abbia come ingresso $\mathbf{x}(t)$.

Il sistema è completamente "specificato" dalla regola (operatore) T[] di corrispondenza tra funzioni-campione dell'ingresso $\mathbf{x}(t)$ e dell'uscita $\mathbf{y}(t)$.

Se ad una specifica funzione del tempo in ingresso corrisponde una ed una sola specifica funzione del tempo in uscita il sistema è *deterministico*.

Questo significa che se due funzioni-campione corrispondenti a diverse uscite sperimentali sono uguali

$$\mathbf{x}(t, s_i) = \mathbf{x}(t, s_j)$$

anche le corrispondenti funzioni-campione in uscita sono uguali

$$\mathbf{y}(t,s_i) = \mathbf{y}(t,s_j)$$

É come dire che il sistema opera solo su t, non su s_i .

Il sistema è detto stocastico se opera su entrambe le variabili t e s_i , cioè anche se

$$\mathbf{x}(t, s_i) = \mathbf{x}(t, s_j)$$
 può aversi $\mathbf{y}(t, s_i) \neq \mathbf{y}(t, s_j)$

poiché $s_i \neq s_i$ determina una diversa risposta del sistema.

Considereremo solo sistemi deterministici. Essi saranno sempre tempoinvarianti e inoltre di due tipi: lineari oppure non lineari e senza memoria.

I sistemi lineari saranno trattati successivamente.

3.10 Sistemi non lineari senza memoria

Un sistema è detto senza memoria se l'uscita è data da

$$\mathbf{y}(t) = g[\mathbf{x}(t)]$$

dove g(x) è una funzione solo di x.

Questo implica che ad un dato istante $t=t_1$ l'uscita $\mathbf{y}(t_1)$ dipende solo dall'ingresso a quell'istante $\mathbf{x}(t_1)$ (e non da altri valori, passati o futuri, dell'ingresso). In definitiva è una trasformazione di variabile casuale.

Da quanto detto, segue che la densità del 1º ordine $f_{\mathbf{y}}(y;t)$ di $\mathbf{y}(t)$ si ricava direttamente da $f_{\mathbf{x}}(x;t)$, con uno dei metodi visti in precedenza per $\mathbf{y}=g(\mathbf{x})$.

Inoltre si trova

$$E\{\mathbf{y}(t)\} = \int_{-\infty}^{+\infty} g(x) f_{\mathbf{x}}(x;t) dx$$

con il teorema per il calcolo diretto del valor medio dell'uscita dalla densità dell'ingresso.

In modo analogo, poiché $\mathbf{y}(t_1) = g[\mathbf{x}(t_1)]$ e $\mathbf{y}(t_2) = g[\mathbf{x}(t_2)]$, la densità del secondo ordine può calcolarsi estendendo la tecnica studiata per la densità del 1º ordine.

Dette in generale z e w due v.c. funzioni di x e y tramite

$$\mathbf{z} = g(\mathbf{x}, \mathbf{y})$$

$$\mathbf{w} = h(\mathbf{x}, \mathbf{y})$$

e supponendo di conoscere $F_{\mathbf{x}\mathbf{y}}=(x,y)$, si determina $F_{\mathbf{z}\mathbf{w}}(z,w)$ come segue

$$F_{\mathbf{z}\mathbf{w}}(z, w) = \mathbf{P}\{\mathbf{z} \le z, \mathbf{w} \le w\} = \mathbf{P}\{(\mathbf{x}, \mathbf{y}) \in D_{\mathbf{z}\mathbf{w}}\}\$$

con
$$D_{\mathbf{zw}} = \{(x, y) : g(x, y) \le z, h(x, y) \le w\}.$$

Infine

$$f_{\mathbf{zw}}(z, w) = \frac{\partial^2 F_{\mathbf{zw}}(z, w)}{\partial z \partial w}$$

Nel caso in esame la trasformazione è particolare:

$$\mathbf{y}(t_1) = g[\mathbf{x}(t_1)]$$

$$\mathbf{y}(t_2) = g[\mathbf{x}(t_2)]$$

Abbiamo già visto che per l'autocorrelazione $R_{\mathbf{y}}(t_1,t_2)$ si ha

$$R_{\mathbf{y}}(t_1,t_2) \stackrel{\triangle}{=} E\{\mathbf{y}(t_1)\mathbf{y}(t_2)\} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x_1)g(x_2)f_{\mathbf{x}}(x_1,x_2;t_1,t_2)dx_1dx_2$$

3.11 Stazionarietà dell'uscita

Si può dimostrare che se l'ingresso di un sistema non lineare senza memoria è un processo stocastico stazionario in senso stretto (SSS), tale è anche il processo di uscita.

Se invece l'ingresso è stazionario soltanto in senso lato (SSL), nulla può in generale dirsi riguardo all'uscita.

INGRESSO	USCITA
SSS	SSS
SSL	?

Facciamo adesso tre esempi (rivelatore quadratico, hard-limiter, soppressore intorno a zero) limitandoci ad alcune considerazioni parziali.

Esempi:

Rivelatore quadratico

$$\mathbf{y}(t) = \mathbf{x}^2(t)$$

Determinare $f_{\mathbf{y}}(y;t)$.

É il caso $g(x) = x^2$ come visto in precedenza.

Metodo del teorema fondamentale

Per $y<0 \Rightarrow f_{\mathbf{y}}(y;t)=0$, mentre per y>0 si hanno due radici reali $\pm \sqrt{y}$

$$|g'(x)| = 2\sqrt{y}$$

da cui

$$f_{\mathbf{y}}(y;t) = \frac{1}{2\sqrt{y}} \left[f_{\mathbf{x}}(\sqrt{y};t) + f_{\mathbf{x}}(-\sqrt{y};t) \right]$$

Se $f_{\mathbf{x}}(x;t)$ non dipende dal tempo, anche $f_{\mathbf{y}}(y;t)$ non dipende dal tempo. Inoltre

$$E\{\mathbf{y}(t)\} = E\{\mathbf{x}^2(t)\} = R_{\mathbf{x}}(0)$$

costante perché $\mathbf{x}(t)$ è stazionario.

Hard-limiter

$$g(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$

Troviamo il valor medio dell'uscita.

$$E\{\mathbf{y}(t)\} = \mathbf{1} P\{\mathbf{y}(t) = \mathbf{1}\} + (-1) P\{\mathbf{y}(t) = -1\}$$

$$= P\{\mathbf{x}(t) > 0\} - P\{\mathbf{x}(t) < 0\}$$

$$= \mathbf{1} - F_{\mathbf{x}}(0;t) - F_{\mathbf{x}}(0;t)$$

$$= \mathbf{1} - 2F_{\mathbf{x}}(0;t)$$

Il parametro t sparisce in ingressi stazionari.

Troviamo adesso l'autocorrelazione dell'uscita.

Prendiamo due istanti: $t e(t + \tau)$

$$\mathbf{y}(t)\mathbf{y}(t+\tau) = \begin{cases} 1 & \text{se } \mathbf{x}(t)\mathbf{x}(t+\tau) > 0 \\ -1 & \text{se } \mathbf{x}(t)\mathbf{x}(t+\tau) < 0 \end{cases}$$

Quindi se l'ingresso è stazionario SSS l'uscita lo è almeno SSL

$$R_{\mathbf{y}}(\tau) = \mathbf{P}\{\mathbf{x}(t)\mathbf{x}(t+\tau) > 0\} - \mathbf{P}\{\mathbf{x}(t)\mathbf{x}(t+\tau) < 0\}$$
 \uparrow

massa di prob. sul I e III quadrante massa di prob. sul II e IV quadrante

Soppressore intorno a zero

Il valor medio di $\mathbf{y}(t)$ è

$$E\{\mathbf{y}(t)\} = \int_{-\infty}^{+\infty} f_{\mathbf{y}}(y;t) \, dy$$

$$= \int_{-\infty}^{-c} f_{\mathbf{x}}(y;t) \, dy + 0 \cdot P\{-c \le \mathbf{x}(t) \le c\} + \int_{c}^{+\infty} f_{\mathbf{x}}(y;t) \, dy$$

$$= \int_{-\infty}^{-c} f_{\mathbf{x}}(y;t) \, dy + \int_{c}^{+\infty} f_{\mathbf{x}}(y;t) \, dy$$

Se $\mathbf{x}(t)$ è SSS, il valor medio $E\{\mathbf{y}(t)\}$ è costante.