Laminated Composite Plate Optimization by Genetic Algorithm

Zhang Huiyao¹ · Atsushi Yokoyama ^{1,*}

Received: date / Accepted: date

Abstract Failure analysis of laminated composite plates under different mechanical loads for different stacking sequences, fiber orientation, and composite material system is studied in this paper. An optimum composite material and laminate layup is studied for a targeted strength ratio which makes a compromise between weight and cost through genetic algorithm.

Keywords Genetic Algorithm · Laminates · Stacking Sequence · Hybrid Composites

1 Introduction

Composites material offer improved strength, stiffness, fatigue, and corrosion resistance, etc over conventional materials, which is widely used in automotive, aerospace, and ship building industry. However, the high cost of fabrication of composites is a critical drawback for its application, for example, the graphite/epoxy composite part may cost as much as \$650 to \$900 per kilogram. The mechanical performance of a composite is affected by a wide range of factors, fiber length, fiber orientation, fiber shape, and the matrix etc.

Genetic algorithms(GAs) simulate the process of natural evolutionary includes selection, crossover ,and mutation according to Darwin's principal of "survival of the fittest".

According to T Back [?], the selection mechanism is one of the primary means of controlling the GA's convergence rate and its likelihood of finding global optima.

Four evaluation criteria are used. The first is normalized cost per genetic search,

 C_n

cost is determinted by the following formula.

$$C_n = N_g P/R$$

where P is population size, R is Apparent reliability.

Zhang Huiyao

Room 203, Bulding 3, Kyoto Institue of Technology Matsugasaki, Sakyo-ku, Kyoto, 606-8585, JAPAN E-mail: zhanghy 1012@gmail.com

S. Author

second address

2 Zhang Huiyao

2 Failure Theores

For orthoropic materials with three planes of symmetry,

$$F_1\sigma_1 + F_2\sigma_2 + F_{11}\sigma_1^2 + F_{22}\sigma_2^2 + F_{66}\sigma_6^2 + 2F_2F_2 = 1$$
 (1)

3 Objective Function

Given the safety factor, The objective function is minimum the weight of the laminate.

$$obj = min(weight)$$

Substituting Eq. 19 for R into Eq. 5, we obtain

$$(F_{11}\sigma_1^2 + F_{22}\sigma_2^2 + F_{66}\sigma_6^2 + 2F_{12}\sigma_1\sigma_2)R^2 + (F_1\sigma_1 + F_2\sigma_2)R - 1 = 0$$

4 Stress-Strain Relationship for a Lamina

Fig. 1: Lamina

The local and global stresses in an angle lamina are related to each other through the angle of lamina θ

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix} = [T] \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix}$$
 (2)

$$[T] = \begin{bmatrix} c^2 & s^2 & 2sc \\ s^2 & c^2 & -2sc \\ -sc & sc & c^2 - s^2 \end{bmatrix}$$
(3)

$$\begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} \bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} \\ \bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\ \bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{bmatrix}$$
(4)

$$\bar{Q}_{11} = Q_{11}c^4 + Q_{22}s^4 + 2(Q_{12} + 2Q_{66})s^2c^2
\bar{Q}_{12} = (Q_{11} + Q_{22} - 4Q_{66})s^2c^2 + Q_{12}(c^4 + s^2)
\bar{Q}_{22} = Q_{11}s^4 + Q_{22}c^4 + 2(Q_{12} + 2Q_{66})s^2c^2$$
(5)

$$\bar{Q}_{16} = (Q_{11} - Q_{12} - 2Q_{66}) c^3 s - (Q_{22} - Q_{12} - 2Q_{66}) s^3 c
\bar{Q}_{26} = (Q_{11} - Q_{12} - 2Q_{66}) c s^3 - (Q_{22} - Q_{12} - 2Q_{66}) c^3 s
\bar{Q}_{66} = (Q_{11} + Q_{22} - 2Q_{12} - 2Q_{66}) s^2 c^2 + Q_{66} (s^4 + c^4)$$
(6)

5 Stress-Strain Relationship for a Laminate

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \gamma \end{bmatrix}$$
 (7)

Where Q_{ij} are the stiffnesses of the lamina that are related to the compliance matrix compnents and elastic constants by

$$Q_{11} = \frac{E_1}{1 - \mu_{12}\mu_{21}}$$

$$Q_{22} = \frac{E_2}{1 - \mu_{12}\mu_{21}}$$

$$Q_{66} = G_{12}$$

$$Q_{12} = \frac{\mu_{21}E_2}{1 - \mu_{12}\mu_{21}}$$
(8)

The transformation of the equation*sof the off-axis coordinates to the principal axis of the material stress tensor as

$$[T] = \begin{bmatrix} \cos^2 \theta & \sin^2 \theta & 2\sin 2\theta \\ \sin^2 \theta & \cos^2 \theta & -2\sin 2\theta \\ -\frac{1}{2}\sin 2\theta & \frac{1}{2}\sin 2\theta & \cos 2\theta \end{bmatrix}$$
(9)

$$\begin{bmatrix} N_x \\ N_y \\ N_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{11} & B_{12} & B_{16} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} k_x \\ k_y \\ k_{xy} \end{bmatrix}$$
(10)

$$\begin{bmatrix} M_x \\ M_y \\ M_{xy} \end{bmatrix} = \begin{bmatrix} B_{11} \ B_{12} \ B_{16} \\ B_{12} \ B_{22} \ B_{26} \\ B_{16} \ B_{26} \ B_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix} + \begin{bmatrix} D_{11} \ D_{12} \ D_{16} \\ D_{11} \ D_{12} \ D_{16} \\ D_{16} \ D_{26} \ D_{66} \end{bmatrix} \begin{bmatrix} k_x \\ k_y \\ k_{xy} \end{bmatrix}$$

where

$$A_{ij} = \sum_{k=1}^{n} (\overline{Q_{ij}})_k (h_k - h_{k-1})$$

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{n} (\overline{Q_{ij}})_k (h_k - h_{k-1})$$

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{n} (\overline{Q_{ij}})_k (h_k - h_{k-1})$$
(11)

The [A], [B], and [D] matrices are called the extensional, coupling, and bending stiffness matrices.

$$H_1 = \frac{1}{(\sigma_1^T)_{ult}} - \frac{1}{(\sigma_1^C)_{ult}}$$
 (12)

4 Zhang Huiyao

$$H_{11} = \frac{1}{\left(\sigma_1^T\right)_{ult} \left(\sigma_1^C\right)_{ult}} \tag{13}$$

$$H_2 = \frac{1}{\left(\sigma_2^T\right)_{ult}} - \frac{1}{\left(\sigma_2^C\right)_{ult}} \tag{14}$$

$$H_{22} = \frac{1}{\left(\sigma_2^T\right)_{ult} \left(\sigma_2^C\right)_{ult}}$$
 (15)

$$H_{66} = \frac{1}{\left(\tau_{12}\right)_{ult}^2} \tag{16}$$

$$H_{12} = -\frac{1}{2} \sqrt{\frac{1}{(\sigma_{l}^{T})_{ult} (\sigma_{l}^{C})_{ult} (\sigma_{2}^{C})_{ult} (\sigma_{2}^{C})_{ult}}}$$
(17)

where R is the strength ratio, σ_{ia} is allowable stress, σ_i is the stress under loading substituting Eq. 19 for σ into Eq. 5, we obtain

$$F_{1}\sigma_{1(a)} + F_{2}\sigma_{2(a)} + F_{11}\sigma_{1(a)}^{2} + F_{22}\sigma_{2(a)}^{2}$$

+ $F_{66}\sigma_{6(a)}^{2} + 2F_{12}\sigma_{1(a)}\sigma_{2(a)} = 1$

For orthoropic materials with three planes of symmetry,

$$(F_{11}\sigma_1^2 + F_{22}\sigma_2^2 + F_{66}\sigma_6^2 + 2F_{12}\sigma_1\sigma_2)R^2 + (F_1\sigma_1 + F_2\sigma_2)R - 1 = 0$$

5.1 Solution by a genetic algorithm

as required. Don't forget to give each section and subsection a unique label).

6 Results and Discussion

Table 1: Typical Properties of a Unidirectional Lamina(SI System of Units)

			` ,	
Property	Symbol	Unit	Glass/Epoxy	Graphite/Epoxy
Fiber volume fraction	V_f		0.45	0.70
Longitudinal elastic modulus	$\vec{E_1}$	GPa	38.6	181
Traverse elastic modulus	E_2	GPa	8.27	10.3
Major Poisson's ratio	v_{12}		0.26	0.28
Shear modulus	G_{12}	GPa	4.14	7.17
Ultimate longitudinal tensile strength	$(\sigma_1^T)_{ult}$	MPa	1062	1500
Ultimate longitudinal compressive strength	$(\sigma_1^C)_{ult}$	MPa	610	1500
Ultimate transverse tensile strength	$(\sigma_2^T)_{ult}$	MPa	31	40
Ultimate transverse compressive strength	$(\sigma_2^{\overline{C}})_{ult}$	MPa	118	246
Ultimate in-plane shear strength	$(au_{12})_{ult}$	MPa	72	68

Table 2: Comparative study of different composite materials for a defined strength ratio

Load	Type of composite	Stacking sequence	Strength ratio	Mass	Cost	Height
	Glass/Epoxy	$[0]_{6s}$	2.103	0.707	12.0	1.980
$N_x = 1e6 \text{ N}$	Graphite/Epoxy	$[0]_{9}$	2.227	0.481	22.5	1.485
	Hybrid composite	$[Gl-E/Gr-E_5]_s$	2.082	0.545	22.0	1.650
Load	Type of composite	Stacking sequence	Strength ratio	Mass	Cost	Height
	Glass/Epoxy	$[0]_{6s}$	2.103	0.707	12.0	1.980
$N_{\rm y} = 1e6~{\rm N}$	Graphite/Epoxy	$[0]_{9}$	2.227	0.481	22.5	1.485
	Hybrid composite	$[Gl$ - E/Gr - $E_5]_s$	2.082	0.545	22.0	1.650
Load	Type of composite	Stacking sequence	Strength ratio	Mass	Cost	Height
	Glass/Epoxy	$[0]_{6s}$	2.103	0.707	12.0	1.980
$N_{xy} = 1e6 \text{ N}$	Graphite/Epoxy	$[0]_{9}$	2.227	0.481	22.5	1.485
Hybrid o	Hybrid composite	$[Gl-E/Gr-E_5]_s$	2.082	0.545	22.0	1.650
Load	Type of composite	Stacking sequence	Strength ratio	Mass	Cost	Height
	Glass/Epoxy	$[0]_{6s}$	2.103	0.707	12.0	1.980
$N_x = N_y = N_{xy} = 1e6 \text{ N}$	Graphite/Epoxy	$[0]_{9}$	2.227	0.481	22.5	1.485
лу == 3 11	Hybrid composite	$[Gl-E/Gr-E_5]_s$	2.082	0.545	22.0	1.650

Table 3: GA-parameters

parameter	value		
population size	20		
encoding method	float encoding		
selection strategy	roulette wheel		
crossover strategy	one-point		
mutation strategy	mass mutation		

7 Concluding Remarks

8 Acknowledgements

This is work was supported by The target function is

$$p = \begin{cases} 1 E\left(x_{new}\right) < E\left(x_{old}\right) \\ \exp\left(-\frac{E\left(x_{new}\right) - E\left(x_{old}\right)}{T}\right) E\left(x_{new}\right) > E\left(x_{old}\right) \end{cases}$$
(18)

$$f(r) = \sin(r)/r + 1$$
 where $r = \sqrt{(x-50)^2 + (y-50)^2} + 2.71828$

we define R is the strength ratio,

$$R = \frac{\sigma_{i(\alpha)}}{\sigma_i} \tag{19}$$

6 Zhang Huiyao

where $\sigma_{i\sigma}$ is allowable stress and σ_i is the stress under loading, R is the ratio of the component of allowable stress and the stress component under stress. substituting $\sigma_{i(\alpha)}$ for σ_i into Eq. 5, we obtain

$$F_{1}\sigma_{1(\alpha)} + F_{2}\sigma_{2(\alpha)} + F_{11}\sigma_{1(\alpha)}^{2} + F_{22}\sigma_{2(\alpha)}^{2} + F_{66}\sigma_{6(\alpha)}^{2} + 2F_{12}\sigma_{1(\alpha)}\sigma_{2(\alpha)} = 1$$
(20)

Substituting $\sigma_{i(\sigma)} = R\sigma_i$ into Eq. 5,we obtain

$$(F_{11}\sigma_1^2 + F_{22}\sigma_2^2 + F_{66}\sigma_6^2 + 2F_{12}\sigma_1\sigma_2)R^2 + (F_1\sigma_1 + F_2\sigma_2)R - 1 = 0$$
(21)

This is a quadric equation about R, the value of (R-1) is the multiples that the stress can be increased. The objective function to be maximized is the strength of the laminate.

$$F = \max(\frac{1}{R(i) - 1})\tag{22}$$

where i is the layer number

Fig. 2: GA Procedure with Share Function

A[9] [8] [1] [3] [2] [11] [6] [5] [4] [10] [7]

References

- Mustafa Akbulut and Fazil O Sonmez. Design optimization of laminated composites using a new variant of simulated annealing. Computers & structures, 89(17-18):1712–1724, 2011.
- Jing-Fen Chen, Evgeny V Morozov, and Krishnakumar Shankar. Simulating progressive failure of composite laminates including in-ply and delamination damage effects. Composites Part A: Applied Science and Manufacturing, 61:185–200, 2014.
- 3. Isaac M Daniel, Ori Ishai, Issac M Daniel, and Ishai Daniel. *Engineering mechanics of composite materials*, volume 3. Oxford university press New York, 1994.
- 4. Ji Genlin. Survey on genetic algorithm [j]. Computer Applications and Software, 2(1):69-73, 2004.
- David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes used in genetic algorithms. In Foundations of genetic algorithms, volume 1, pages 69–93. Elsevier, 1991.
- 6. David E Goldberg and John Henry Holland. Genetic algorithms and machine learning. 1988.
- 7. Seyedali Mirjalili. Genetic algorithm. In Evolutionary algorithms and neural networks, pages 43-55. Springer, 2019.

- 8. Ozden O Ochoa and John J Engblom. Analysis of progressive failure in composites. Composites Science and Technology, 28(2):87-102, 1987.
- 9. JN Reddy and AK Pandey. A first-ply failure analysis of composite laminates. Computers & Structures, 25(3):371–393, 1987.
- 10. Eugene Semenkin and Maria Semenkina. Self-configuring genetic algorithm with modified uniform crossover operator. In
- International Conference in Swarm Intelligence, pages 414–421. Springer, 2012.

 11. U Taetragool, PH Shah, VA Halls, JQ Zheng, and RC Batra. Stacking sequence optimization for maximizing the first failure initiation load followed by progressive failure analysis until the ultimate load. Composite Structures, 180:1007–1021, 2017.