

手机/MID/智能家居万能学习红外遥控 IC

概述

ET4207YD 是一款高性能、高集成、低成本的手机/MID 万能学习红外遥控 IC,同时具备强大的红外万能遥控器和红外学习遥控器的功能。手机主片可以通过 GPIO 口与 ET4207YD 进行通信。

ET4207YD 适用场合: 手机(功能机或智能机)或 MID 或智能家居等。

功能特点

- 工作电压范围为 1.8V 到 3.6V
- 内置 5MHz 振荡器,误差小于+/-0.5%
- 静态电流 1.0µA 以下
- 内置 IR_LED 发射驱动管和学习放大电路
- 内置红外放大信号接收模块和红外信号发射模块
- 内置两线串行通讯模块
- 内置看门狗定时器
- 封装 DFN8(3mm×3mm×0.75mm)

应用场合

- 手机
- MID
- 智能家居

管脚排列图

管脚说明(DFN8)

名称	方向	管脚	端口结构	说明
PWMI	I	1	SMIT	红外编码信号接收口
SCK	I	2	SMIT	串行时钟端口
SDA	I/O	3	SMIT/Open-Drain	串行数据端口
PWMO	О	4	CMOS	PWM 输出口,用于红外信号扩展
RMT	I/O	5	Open-Drain	红外发射和学习口
VDD	I/O	6	-	电源
GND	I/O	7	-	地
BUSY	О	8	Open-Drain	芯片状态指示

应用说明

主片可以通过 SCK/SDA/BUSY 端口与 ET4207YD 进行通信,在发射时可将手机中存储的万能数据库(包括电视/机顶盒/DVD/空调等)通过 SCK/SDA/BUSY 端口送到 ET4207YD 进行编码和调制后通过红外管发射出去遥控电器;也可以学习和还原发射市面上几乎所有编码格式的遥控器,可学习的红外载波频率范围可覆盖 0~85KHz,可以支持电视机、机顶盒、空调、DVD、电风扇、投影器等遥控设备的学习。

主片对 ET4207YD 的操控由 APP 软件来完成。APP 软件以及万能遥控数据库由用户进行定制。整机应用指标说明:

- 反应灵敏,遥控速度快捷,按键到电器响应结果小于 0.5 秒。
- 使用普通的红外发光二极管发射距离大于10米。
- 在 0~5cm 距离内可进行稳定可靠的学习,一次性学习成功率大于 95%以上。
- 通过 PWMI 口接收外置红外信号接收放大模块的信号,可以实现远距离学习。
- 通过 PWMO 端口可以外扩红外发射管,实现多角度发射。

典型应用图

典型应用电路如图 2 所示。ET4207YD 的典型应用电路简单可靠,其中,MVDD 为通讯接口电源,可以为 1.8V 或者 2.8V, VDD 为 ET4207YD 供电电源,范围为 2.0V~3.3V。

- 注: (1) R3 和 R4 为上拉电阻,阻值为 $3K\Omega \sim 10K\Omega$ 。
 - (2) BUSY 端口是开漏口, R2 电阻作为上拉电阻用来匹配主芯片和 ET4207YD 的端口电平。
 - (3) R1 为限流电阻,阻值为 0~2.2 Ω。
 - (4) PWMI 和 PWMO 作为红外信号输入和输出的扩展口,可根据实际情况使用。

图 3 为智能家居方案的典型应用图,其中 PWMO 脚为红外码型输出脚,用于外围发射管的控制信号的扩展,可以实现多角度红外控制,PWMI 是红外接收管放大信号输入脚(包括载波信号),用于远距离学习。

- 注: (1) R3 和 R4 为上拉电阻, 阻值为 $3K\Omega \sim 10K\Omega$ 。
 - (2) BUSY 端口是开漏口, R2 电阻作为上拉电阻用来匹配主芯片和 ET4207YD 的端口电平。
 - (3) R1 为限流电阻,阻值为 0~2.2Ω。
 - (4) PWMI 端口连接红外接收放大电路(包括载波)的输出信号。
 - (5) PWMO 作为红外信号输出的扩展口,可以通过外置三极管来增加红外发射管的数量,从而实现多角度控制,R5/R6 电阻对应三极管基极和集电极的限流电阻。

PCB 布局布线注意事项

- ET4207YD 和 IR LED 靠近摆放,适当远离射频 PA 和天线
- VDD 供电走线尽可能短,退耦电容 C1 尽可能靠近 VDD 管脚放置
- VDD 供电走线线宽大于 0.5mm

极限参数

参 数	符号	范 围	单位
提供电压	VDD	-0.3 ~ 4.0	V
贮藏温度	Tstg	-55 ~ 125	${\mathbb C}$
输入电压	VIN	-0.3 ~ VDD+0.3	V
输出电压	VOUT	-0.3 ~ VDD+0.3	V
工作温度	Topr	-20∼+70	$^{\circ}$

电参数

Ta=25 °C, V_{DD} =2.8V

特 性	符号	测试条件	最小值	典型值	最大值	单位
工作电压	V_{DD}		1.8		3.6	V
工作电流	I_{DD}		_	1.5	3.0	mA
待机电流	I_{STOP}	待机模式	_	1.0	1.5	μA
输入高电平	V_{IH}		$0.5V_{DD}$			V
输入低电平	$V_{\rm IL}$				$0.3V_{DD}$	V
内置振荡器频率	Fosc	-20~85℃ V _{DD} =3V	4.9	5	5.1	MHz
RMT 端口驱动电流	I_{OL}	V_{OL} =0.5V VDD=2.8V	-	-	450	mA

串行接口时序参数

符号	参数	最小值	典型值	最大值	单位
F_{SCK}	SCK 时钟频率	0	-	20	KHz
t1	开始信号保持时间	500	-	1	μs
t2	SDA 数据建立时间	5	-	-	μs
t3	SDA 数据保持时间	5	-	1	μs
t4	SCK 时钟高电平宽度	20	-	30000	μs
t5	SCK 时钟低电平宽度	20	-	-	μs
t6	停止信号建立时间	100	-	_	μs
t7	停止信号与开始信号之间的总线空闲时间	100	-	-	μs

封装

DFN8

