Q.5 - A localized one photon state

February 18, 2013

The most general one photon state can be written as

$$|\psi\rangle = \sum_{\alpha=1}^{2} \int d^{3}k \,\phi_{\alpha}(k) \,a_{\bar{k},\alpha}^{\dagger} |0\rangle \,; \, \sum_{\alpha} \int d^{3}k \, |\phi_{\alpha}(k)|^{2} = 1$$

To simplify I'll ignore polarization (has no effect in this problem).

I choose to define localization of the photon as localization of the electric field expectation value. Note that since neither E, B, \mathcal{H} commute, defining localization of either of them will give different results. Using the formula from class

$$E \propto i \int d^3k \sqrt{|k|} \left(a_{\bar{k}} e^{i\bar{k}\cdot\bar{r}} - a_{\bar{k}}^{\dagger} e^{-i\bar{k}\cdot\bar{r}} \right)$$

It is easy to see $\langle E \rangle = 0$ - odd number of creation operators. So the interesting value will be $\langle |E|^2 \rangle$

$$\left\langle \left|E\right|^{2}\right\rangle \propto -\left\langle \int d^{3}k\,d^{3}k'\sqrt{\left|k\right|\left|k'\right|}\left(a_{\bar{k}}e^{i\bar{k}\cdot\bar{r}}-a_{\bar{k}}^{\dagger}e^{-i\bar{k}\cdot\bar{r}}\right)\left(a_{\bar{k}'}e^{i\bar{k}'\cdot\bar{r}}-a_{\bar{k}'}^{\dagger}e^{-i\bar{k}'\cdot\bar{r}}\right)\right\rangle$$

Since $|\psi\rangle$ is a one photon state $\left\langle a_{\bar{k}}^2\right\rangle = \left\langle a_{\bar{k}}^{\dagger 2}\right\rangle = 0, \ \forall \bar{k}.$

$$= \left\langle \int d^3k \int d^3k' \sqrt{|k| |k'|} \left(a_{\bar{k}} a_{\bar{k'}}^{\dagger} e^{i\left(\bar{k} - \bar{k'}\right) \cdot \bar{r}} + a_{\bar{k}}^{\dagger} a_{\bar{k'}} e^{-i\left(\bar{k} - \bar{k'}\right) \cdot \bar{r}} \right) \right\rangle$$

$$= \int d^3l \int dl' \int d^3k \int d^3k' \sqrt{|k| \, |k'|} \phi^* \left(\bar{l}\right) \phi \left(\bar{l'}\right) \left\langle 0 \left| a_{\bar{l}} \left(a_{\bar{k}} a_{\bar{k'}}^\dagger e^{i \left(\bar{k} - \bar{k'}\right) \cdot \bar{r}} + a_{\bar{k}}^\dagger a_{\bar{k'}} e^{-i \left(\bar{k} - \bar{k'}\right) \cdot \bar{r}} \right) a_{\bar{l'}}^\dagger \right| 0 \right\rangle$$

Using $\left\langle 0 \left| a_k a_l^{\dagger} \right| 0 \right\rangle = \delta \left(k - l \right), \left\langle 0 \left| a_k^{\dagger} a_l \right| 0 \right\rangle = 0$ we get

$$=\int d^3l\int d^2l'\int d^3k\int d^3k' \sqrt{|k|\,|k'|}\phi^*\left(\bar{l}\right)\phi\left(\bar{l'}\right)\left\{\begin{array}{c} e^{i\left(\bar{k}-\bar{k'}\right)\cdot\bar{r}}\left(\delta\left(\bar{k}-\bar{k'}\right)\delta\left(\bar{l}-\bar{l'}\right)+\delta\left(\bar{k}-\bar{l'}\right)\delta\left(\bar{k'}-\bar{l}\right)\right)\\ +e^{-i\left(\bar{k}-\bar{k'}\right)\cdot\bar{r}}\delta\left(\bar{l'}-\bar{k'}\right)\delta\left(\bar{k}-\bar{l}\right) \end{array}\right\}$$

$$=\int d^{3}l\int d^{3}k\left|k\right|\left|\phi\left(\bar{l}\right)\right|^{2}+\int d^{3}l\int d^{3}k\sqrt{\left|k\right|\left|l\right|}\phi^{*}\left(\bar{l}\right)\phi\left(\bar{k}\right)e^{i\left(\bar{k}-\bar{l}\right)\cdot\bar{r}}+\int d^{3}l\int d^{3}k\sqrt{\left|k\right|\left|l\right|}\phi^{*}\left(\bar{k}\right)\phi\left(\bar{l}\right)e^{-i\left(\bar{k}-\bar{l}\right)\cdot\bar{r}}$$

$$=\int d^3l\int d^3k\left|k\right|\left|\phi\left(\bar{l}\right)\right|^2+2\int d^3l\int d^3k\sqrt{\left|k\right|\left|l\right|}\phi^*\left(\bar{l}\right)\phi\left(\bar{k}\right)e^{i\left(\bar{k}-\bar{l}\right)\cdot\bar{r}}$$

The first term is related to the vacuum energy (and has no spatial dependance) so can be ignored. We want to get from the second term $\delta\left(r-r_0\right)$. First do so for $r_0=0$. Guess $\phi\left(\bar{k}\right)\propto\frac{1}{\sqrt{|k|}}e^{-\sigma^2k^2}$.

Normalization factor

$$1 = \frac{\pi \mathcal{N}^2}{\sigma^2} \Rightarrow \mathcal{N} = \frac{\sigma}{\sqrt{\pi}}$$

Now insert our guess to the second term

$$\left\langle \left| E\left(r \right) \right|^{2} \right\rangle \propto E_{0} + \frac{\sigma^{2}}{\pi} \int d^{3}l e^{-\sigma^{2}l^{2}} e^{-i\bar{l}\cdot\bar{r}} \int d^{3}k e^{-\sigma^{2}k^{2}} e^{i\bar{k}\cdot\bar{r}}$$

$$\int d^{3}k \, e^{-\sigma^{2}k^{2}} e^{i\bar{k}\cdot\bar{r}} = \prod_{i} \int dk_{i} e^{-\sigma^{2}k_{i}^{2}} e^{ik_{i}r_{i}} = e \left\{ -\frac{r^{2}}{4\sigma^{2}} \right\} \prod_{i} \int dk_{i} e \left\{ -\sigma^{2} \left(k_{i} - i\frac{r_{i}}{2\sigma^{2}} \right)^{2} \right\} = \frac{\pi^{3/2}}{\sigma^{3}} e \left\{ -\frac{r^{2}}{4\sigma^{2}} \right\}$$

$$\int d^3 l \, e^{-\sigma^2 l^2} e^{-i\bar{l}\cdot\bar{r}} = \frac{\pi^{3/2}}{\sigma^3} e^{-i\bar{l}\cdot\bar{r}} = \frac{\pi^{3/2}}{4\sigma^2}$$

So finally we get

$$\left\langle \left| E\left(r\right) \right|^{2} \right\rangle - E_{0} \propto \frac{1}{\sigma^{4}} e \left\{ -\frac{r^{2}}{2\sigma^{2}} \right\} \underset{\sigma \to 0}{\longrightarrow} \delta\left(r\right)$$

By choosing ϕ as we did we got a localized electric field.

It is easy now to develop our state in time using our knowledge of the time evolution of the creation operator $a_k^{\dagger}(t) = a_k^{\dagger}(0) e^{-i\omega t}$, $\omega = c |k|$.

$$|\psi(t)\rangle = \int d^3k \,\phi(k) \,a_{\bar{k}}^{\dagger}(0) \,e^{-i\omega t} \,|0\rangle$$

As for the relevant electric field, we expect it to isotropically expand because it was vary well localized \Rightarrow the momentum is unknown

In order to understand the evolution of this expectation value in time we can consider the problem in the Heisenberg picture. As an operator E^2 satisfies the maxwell equations \Longrightarrow satisfies wave equation. If the initial condition was a delta function, the evolution would be as an isotropical spherical wave.

We can always add a phase to ϕ . To make the field move we can choose

$$\phi\left(\bar{k}\right) \to e^{i\bar{k}\cdot\bar{r}_{0}}\phi\left(\bar{k}\right) \Rightarrow \left\langle \left|E\left(r\right)\right|^{2}\right\rangle - E_{0} \propto e^{\left\{-\frac{\left(\bar{r} - \bar{r}_{0}\right)^{2}}{4\sigma^{2}}\right\}}$$