Math 417: Abstract Algebra

Lanxiao Hermite Bai December 12, 2016

Contents

1	Algebraic Themes	4
	1.1 Symmetry	. 4
	1.2 Multiplication Table	
	1.3 Symmetries and Matrices	. 5
	1.4 Permutations	. 5
	1.5 Divisibility in the Integers	
	1.6 Modular Arithmetic	. 9
	1.7 Polynomials	
	1.8 Counting	
	1.9 Groups	
	1.10 Rings and Fields	
	1.11 An application to cryptology	
2	Basic Theory of Groups	19
	2.1 First Results	
	2.2 Subgroup and Cyclic Groups	. 20
	2.3 The Dihedral Groups	. 22
	2.4 Homomorphisms and Isomorphisms	. 23
	2.4.1 The Kernel of a Homomorphism	
	2.4.2 Parity of Permutations	. 24
	2.5 Cosets and Lagranges Theorem	. 24
	2.5.1 Properties of Cosets	. 25
	2.6 Equivalence Relations and Set Partitions	. 26
	2.6.1 Equivalence Relations and Surjective Maps	. 27
	2.6.2 Conjugacy	. 27
	2.7 Quotient Groups and Homomorphism Theorems	. 28
	2.7.1 Homomorphism Theorems	. 28
3	Products of Groups	30
	3.1 Direct Products	. 30
	3.2 Semidirect Products	
	3.3 Vector Spaces	
	3.3.1 Quotients and homomorphism theorems	
	3.4 Finitely Generated Abelian Groups	
4	Group Actions	34

Math 417		Note	Lanxiao Bai				
4.	1 Group	Actions and counting		•			36
4.5	2 Group	Automorphisms					36
4.3	3 Sylow	Theorem		•			36
5 R	ing						37
5.	1 Basics	3					37
5.5	2 Homo	morphism and Ideal					37
	5.2.1	Ideals generated by sets					38
5.3	3 Quotie	ent Ring					39
		Four Isomorphism Theorem for Ring					

1 Algebraic Themes

1.1 Symmetry

Definition 1.1.1 (Symmetry) A **symmetry** is an undetectable motion. An object is symmetric if it has symmetries.

1.2 Multiplication Table

Example of Multiplication Table Example of rectangle

	$\mid e \mid$	r	r^2	r^3	$\mid a \mid$	b	c	$\mid d \mid$
\overline{e}	e	r	r^2	r^3	a	b	c	d
r	r	r^2	r^3	e	d	c	a	b
r^2	r^2	r^3	e	r	b	a	d	c
r^3	r^3	e	r	r^2	c	d	b	a
\overline{a}	a	c	b	d	e	r^2	r	r^3
b	b	d	a	c	r^2	e	r^3	r
\overline{c}	c	b	d	a	r^3	r	e	r^2
d	d	a	c	b	r	r^3	r^2	e

Table 1: Table of Multiplication for Rectangle

Property of Symmetry

1. The product of symmetries is independent of how they are associated,

$$s(tu) = (st)u$$

2. The *nonmotion e* compose with any other symmetry (in either order) is the second symmetry,

$$eu = ue = u$$

3. For each symmetry there is an inverse, such that the composition of the symmetry with its inverse (in either order) is the *nonmotion* e,

$$uu^{-1} = u^{-1}u = e$$

1.3 Symmetries and Matrices

Definition 1.3.1 (Isometry) A transformation $\tau : R \to R$ is called an **isometry** if for all points $\mathbf{a}, \mathbf{b} \in R$, we have $d(\tau(\mathbf{a}), \tau(\mathbf{b})) = d(\mathbf{a}, \mathbf{b})$, where d demotes the usual Euclidean distance function.

Proposition 1.3.1 Let R denote a polygon or a polyhedron in three-dimensional space, locate with its centroid at the origin of coordinates. Then every symmetry if R is the restriction to R of a linear isometry of \mathbb{R}^3 .

1.4 Permutations

Definition 1.4.1 (Permutation) The symmetries of a configuration of identical objects are called **permutations**. There are n! permutations for n objects. The set of all the permutations is denoted by $Sym(X) = S_n$.

qq

- 1. The multiplication of permutation is associative.
- 2. There is an identity permutation e, which leaves each object in its original position.
- 3. For each permutation σ , there is an inverse permutation σ^{-1} .

Definition 1.4.2 (Cycle) A permutation that permutes several numbers cyclically and leave all other. numbers fixed is call a **cycle**.

Definition 1.4.3 (Disjoint) Two cycles are **disjoint** if each leaves the fixed numbers moved by each other.

Definition 1.4.4 (Order) A permutation π is said to have **order** k if k^{th} power of π is the identity and no lower power of π is the identity. A **k-cycle** has **order** k.

Theorem 1.4.1 Every permutation of a finite set can be written uniquely as a product of disjoint cycles.

1.5 Divisibility in the Integers

Definition 1.5.1 (Integer) We denote the set of *integers* $\{0, \pm 1, \pm 2, \ldots\}$ by \mathbb{Z} .

Definition 1.5.2 (Natural Number) We denote the set of natural numbers $\{1, 2, 3, ...\}$ by \mathbb{N} .

Proposition 1.5.1: Addition and Multiplication

- 1. Addition on \mathbb{Z} is commutative and associative.
- 2. 0 is an identity element for addition; $\forall a \in \mathbb{Z}, 0+a=a$.
- 3. Every element a of \mathbb{Z} has an additive inverse -a that a + (-a) = 0.
- 4. Multiplication on \mathbb{Z} is commutative and associative.
- 5. 1 is is an identity element for multiplication; $\forall a \in \mathbb{Z}, 1a = a$.
- 6. The distribute law holds; a(b+c) = ab + ac.
- 7. N is closed under addition and multiplication.
- 8. The product of non-zero integers is non-zero.

Definition 1.5.3 (Divisibility) We say that an interger a divides b, (or that b is divisible by a), if there is an interger q such that aq = b; we write a|b for "a divides b"

Proposition 1.5.2 Properties of Divisibility:

Let a, b, c, u, and v denote integers.

- 1. If uv = 1, then u = v = 1 or u = v = -1.
- 2. If a|b and b|a, then $a = \pm b$.
- 3. Divisibility is transitive; if a|b, b|c, then a|c.
- 4. If a|b and a|c, then a|(sb+tc), where s and t are integers.

Definition 1.5.4 (Prime) A natural number is **prime** if it is greater than 1 and not divisible by any natural number other than 1 and itself.

Proposition 1.5.3 Any natural number other than 1 can be written as a product of prime numbers.

Theorem 1.5.1 There are infinitely many prime numbers.

Proposition 1.5.4 Given integers a and b, with $d \ge 1$, there exist unique integers q and r^1 such a = qd + r and $0 \le r < d$.

Definition 1.5.5 (Greatest Common Divisor) A natural number d is the greatest common divisor of nonzero integers m and n if

- 1. d|m and d|n;
- 2. whenever $x \in \mathbb{N}$ divides m and n, then x also divides d.

Proposition 1.5.5 For integers m and n, let

$$I(m,n) = \{am + bn : a, b \in \mathbb{Z}\}. \tag{1}$$

- 1. For $x, y \in I(m, n)$, $x + y \in I(m, n)$ and $-x \in I(m, n)$.
- 2. $\forall x \in \mathbb{Z}, xI(m,n) \subseteq I(m,n)$
- 3. If $b \in \mathbb{Z}$ divides m and n, then b divides all elements of I(m, n).

Lemma 1.5.1 Let m and n be nonzero integers. If a natural number d is a common divisor of m and n and an element of I(m, n), then d is the greatest common divisor of m and n.

Proposition 1.5.6 *Let* $m, n, n_1, ..., n_k, ..., q_1, q_2, ..., q_k \in \mathbb{Z}$

$$m = q_1 n + n_1 \tag{2}$$

$$n = q_2 n_1 + n_2 (3)$$

¹The q is called **quotient** and the r is called **remainder**.

...

$$n_{k-2} = q_k n_{k-1} + n_k (4)$$

...

$$n_{r-1} = q_{r+1}n_r (5)$$

The natural number n_r is the greatest common divisor of m and n, and furthermore $n_r \in I(m, n)$.

Corollary 1.5.1 *Let* m *and* n *be nonzero integers, and write* d = g.c.d.(m, n)

- 1. d is the least element of $\mathbb{N} \cap I(m, n)$.
- 2. $I(m,n) = \mathbb{Z}d$, the set of all integer multiples of d.

Definition 1.5.6 (Relatively Prime) Nonzero integers m and n are **relatively prime** if g.c.d.(m,n).

Corollary 1.5.2 Two nonzero integers m and n are relatively prime if and only if there exist integers s and t such that 1 = sm + tn.

Corollary 1.5.3 Suppose that a and b are relatively prime natural numbers, that x is an integer, and that both a and b divide x. Then ab divides x.

Proposition 1.5.7 If p is a prime number and a is any nonzero integer, then either p divides a or p and a are relatively prime.

Proposition 1.5.8 Let p be a prime number, and a and b nonzero integers. If p|ab, then p|a or p|b.

Corollary 1.5.4 Suppose that a prime number $p|a_1a_2...a_r$, which for $r \in [1, r], a_n \neq 0$, then p divides one of the factors.

Theorem 1.5.2 The prime factorization of a natural number is unique.

Definition 1.5.7 Greatest common Divisor of Several Numbers A natural number d is the greatest common divisor of nonzero integers $a_1, a_2, ..., a_n$, if

1. d divides each a_i and

2. whenever $x \in \mathbb{N}$ divides each a_i , then x also divides d.

Lemma 1.5.2 Given nonzero integers $a_1, a_2, ..., a_n (n \le 2)$, there is a natural number d and an n-by-n integer matrix Q such that Q is invertible, Q^-1 also has integer entries, and

$$(d, 0, ..., 0) = (a_1, a_2, ..., a_n)Q$$
(6)

Proposition 1.5.9 The greatest common divisor of nonzero integers $a_1, a_2, ..., a_n$ exists, and is an integer linear combination of $a_1, a_2, ..., a_n$.

Definition 1.5.8 (Relatively Prime) We say that nonzero integers $a_1, ..., a_n$ are **relatively prime** if their greatest common divisor is 1. We say that they are **pairwise relatively prime** if a_i and a_j are relatively prime whenever $i \neq j$.

1.6 Modular Arithmetic

Definition 1.6.1 (Congruence) Given integers a and b, and a natural number n, we say that "a is congruent to b modulo n" and we write $a \equiv b \mod n$ if n | (a - b).

Lemma 1.6.1 Properties of Mod

- 1. $\forall a \in \mathbb{Z}, a \equiv a \mod n(Reflexive)$
- 2. $\forall a, b \in \mathbb{Z}$, if $a \equiv b \mod n$ if and only if $b \equiv a \mod n$. (Symmetric)
- 3. $\forall a, b, c \in \mathbb{Z}$, if $a \equiv b \mod n$ and $b \equiv c \mod n$, then $a \equiv v \mod n$. (Transitive)

Lemma 1.6.2 For $a, b \in \mathbb{Z}$, the following are equivalent:

- $a \equiv b \mod n$.
- $[a] = [b].^2$
- $rem_n(a) = rem_n(b)$.³

²The set a is called the residue class or congruence class of a modulo n.

³Denote by $rem_n(a)$ the unique number r such that $0 \le r < n$ and a - r is divisible by n.

• $[a] \cap [b] \neq \emptyset$

Corollary 1.6.1 There exist exactly n distinct residue classes modulo n, namely [0], [1], ... [n-1]. These classes are mutually disjoint.

Lemma 1.6.3 Let a, a', b, b' be integers with $a \equiv a' \mod n$ and $b \equiv b \mod n$. Then $a + b \equiv a' + b' \mod n$ and $ab \equiv a'b' \mod n$.

Proposition 1.6.1 Properties of Modulo Congruence:

1. Addition on \mathbb{Z}_n is commutative and associative, $\forall [a], [b], [c] \in \mathbb{Z}_n$

$$[a] + [b] = [b] + [a] \tag{7}$$

and,

$$[a] + [b] + [c] = [a] + ([b] + [c])$$
(8)

0 is an identity element for addition, $\forall [a] \in \mathbb{Z}_n$,

$$[0] + [a] = [a] \tag{9}$$

2. Every element [a] of \mathbb{Z}_n has an additive inverse [-a], that

$$[a] + [-a] = [0] \tag{10}$$

3. Muktiplication on \mathbb{Z}_n is commutative and associative; $\forall [a], [b], [c] \in \mathbb{Z}_n$,

$$[a][b] = [b][a] \tag{11}$$

, and

$$[a][b][c] = [a]([b][c])$$
 (12)

4. [1] is an identity for multiplication; $\forall [a] \in \mathbb{Z}_n$,

$$[1][a] = [a][1] \tag{13}$$

5. The distributive law hold; $\forall [a], [b], [z] \in \mathbb{Z}_n$,

$$[a]([b] + [c]) = [a][b] + [a][c]$$
(14)

Proposition 1.6.2 (Chinese Reminder Theorem) Suppose a and b are relatively prime natural numbers, and α and beta are integers. There exists an integer x such that $x \equiv \alpha \mod a$ and $x \equiv \beta \mod b$. Moreover, x is unique up to congruence modulo ab.

1.7 Polynomials

Denotation Denote set of rational numbers by \mathbb{Q} , and denote set of real numbers by \mathbb{R} and denote set of complex numbers by \mathbb{C} .

Addition and Multiplication

$$\left(\sum_{j} a_{j} x^{j}\right) + \left(\sum_{j} b_{j} x^{j}\right) = \sum_{j} (a_{j} + b_{j}) x^{j} \tag{15}$$

and.

$$(\sum_{i} a_{i} x^{i})(\sum_{j} b_{j} x^{j}) = \sum_{i} \sum_{j} (a_{i} b_{j}) x^{i+j}$$
(16)

$$= \sum_{k} (\sum_{i,j:i+j=k} a_i b_j) x^k = \sum_{k} (\sum_{i} a_i b_{k-i}) x^k$$
 (17)

Proposition 1.7.1 Basic Properties:

- 1. Addition in K[x] is commutative and associative; f + g = g + f and $\forall f, g, h \in K[x], f + g + h = f + (g + h)$.
- 2. 0 is an identity element for addition; 0 + f = f.
- 3. Every element f of K[x] has an additive inverse -f; f + (-f) = 0.
- 4. Multiplication in K[x] is commutative and associative; that is, for all $f, g, h \in K[x]$, fg = gf, and f(gh) = (fg)h.
- 5. 1 is an identity for multiplication; $\forall f \in K[x], 1f = f$.
- 6. The distributed law holds; $\forall f, g, h \in K[x], f(g+h) = fg + fh$.

Definition 1.7.1 (Degree) The **degree** of a polynomial $\sum_k a_k x^k$ is the largest k that $a_k \neq 0$. If $p = \sum_j a_j x^j$ is a nonzero polynomial of degree k, denoted deg(p), the **leading coefficient** of p is a_k and leading term of p is $a_k x^k$. A polynomial is said to be **monic** if its leading coefficient is 1.

Proposition 1.7.2 Let $f, g \in K[x]$.

1. deg(fg) = deg(f) + deg(g); in particular, if f and g are both nonzero, then $fg \neq 0$.

2. $deg(f+g) \le \max\{deg(f), deg(g)\}$

Proposition 1.7.3 Let f, g, h, u, v denote polymonials like in K[x].

- 1. If uv = 1, then $u, v \in K$.
- 2. If f|gandg|f, then there is a $k \in K$ such that g = kf.
- 3. Divisibility is transitive
- 4. If f|g and f|h, then $\forall s, t \in K[x], f|(sg+th)$.

Definition 1.7.2 (Irreducible) We say that a polymonial in K[x] is **irreducible** if its degree is positive and it cannot be written as a product of two polynomials each of strictly smaller (positive) degree.

Proposition 1.7.4 Any polynomial in K[x] of positive degree can be written as a product of irrecucible polynomials.

Proposition 1.7.5 K[x] contains infinitely many irreducible polynomials.

Lemma 1.7.1 Let p and d be elements of K[x], with $deg(p) \ge deg(d) \ge 0$. Then there is a monomial $m = bx^k \in K[x]$ and a polynomial $p' \in K[x]$ such that p = md + p', and deg(p') < deg(p).

Proposition 1.7.6 Let $p, d \in K[x]$, with $deg(d) \geq 0$. Then there exist polynomials q and r in K[x] such that p = dq + r and deg(r) < deg(d).

Definition 1.7.3 (Great Common Divisor of Polynomials) A polynomial $f \in K[x]$ is a greatest common divisor of nonzero polynomials $p, q \in K[x]$ if

- 1. f|p and f|q in K[x] and
- 2. whenever $g \in K[x]$ divides p and q, then g also divides f.

Proposition 1.7.7 For polynomials $f, g \in K[x]$, let

$$I(f,g) = af + bg : a, b \in K[x]$$

$$\tag{18}$$

1. $\forall p, q \in I(f,g), p+q \in I(f,g) \text{ and } -p \in I(f,g)$

- 2. $\forall p \in K[x], pI(f,g) \subseteq I(f,g)$.
- 3. If $p \in K[x]$ divides f and g, then p divides all elements in I(f,g).

Theorem 1.7.1 ANy two nonzero polynomials $f, g \in K[x]$ have a greatest common divisor $\in I(f, g)$.

Definition 1.7.4 (Relatively Prime) Two polynomials $f, g \in K[x]$ are relatively prime if g.c.d.(f,g) = 1.

Proposition 1.7.8 Two polynomials $f, g \in K[x]$ are relatively prime if and only if $1 \in I(f, g)$.

Proposition 1.7.9 Properties of irreducible polynomial

- 1. Let p be an irreducible polynomial in K[x] and $f, g \in K[x]$ nonzero polynomials. If p|fg, then p|f or p|g.
- 2. Suppose that irreducible polynomial $p \in K[x]$ divides a product $f_1 f_2 ... f_s$ of nonzero polynomials. Then p divides one of the factors.

Theorem 1.7.2 The factorization of a polynomial in K[x] into irreducible factors is essentially unique.

Proposition 1.7.10 Let $p \in K[x]$ and $a \in K$. Then there is a polynomial q such that p(x) = q(x)(x-a) + p(a). Consequently, p(a) = 0 if and only if (x-a)|p.

Definition 1.7.5 (Root) An element $\alpha \in K$ is a **root** of a polynomial $p \in K[x]$ if $p(\alpha) = 0$. The **multiplication of the root** α is k if $x - \alpha$ appears exactly k times in the irreducible pfactorization of p.

Corollary 1.7.1 A polynomial $p \in K[x]$ of degree n has at most n roots in K, counting with multiplicities.

1.8 Counting

Proposition 1.8.1 A set with n elements has 2^n subsets.

Proof:

$$N = \sum_{i=0}^{n} \binom{n}{i} = 2^n$$

Proposition 1.8.2 Let n be a natural number and let k be an integer in [0,n]. Let $\binom{n}{k}$ denote the number of the number of k-element subsets of a set with n elements. Then

$$\begin{pmatrix} n \\ k \end{pmatrix} = \frac{n!}{k!(n-k)!} \tag{19}$$

If k < 0 or k > n,

$$\begin{pmatrix} n \\ k \end{pmatrix} = 0 \tag{20}$$

and,

$$\left(\begin{array}{c} 0\\0 \end{array}\right) = 1\tag{21}$$

$$\begin{pmatrix} 0 \\ k \end{pmatrix} = 0 \tag{22}$$

if $k \neq 0$

Lemma 1.8.1 *Let* n *be a natural number and* $k \in \mathbb{Z}$.

- 1. $\binom{n}{k}$ is a nonnegative integer.
- $2. \binom{n}{k} = \binom{n}{n-k}.$
- $3. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$

Proposition 1.8.3 (Binomial Theorem) Let x and y be numbers. For $n \geq 0$, we have

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$
 (23)

Corollary 1.8.1 Basic Properties:

1.

$$2^n = \sum_{k=0}^n \binom{n}{k} \tag{24}$$

2.

$$0 = \sum_{k=0}^{n} (-1)^k \begin{pmatrix} n \\ k \end{pmatrix} \tag{25}$$

3.

$$2^{n-1} = \sum_{k=0,k \text{ odd}}^{n} \binom{n}{k} = \sum_{k=0,k \text{ even}}^{n} \binom{n}{k}$$
 (26)

Lemma 1.8.2 Let p be a prime number.

- 1. If 0 < k < p, then $\begin{pmatrix} p \\ k \end{pmatrix}$ is divisible by p.
- 2. $\forall a, b \in \mathbb{Z}, (a+b)^p \equiv a^p + b^p \mod p$.

Proposition 1.8.4.

- 1. Let $n \geq 2$ be a natural number. An element $[a] \in \mathbb{Z}_n$ has a multiplicative inverse if and only if a is relatively prime to n.
- 2. If p is a prime, then every nonzero element of \mathbb{Z}_p is invertible.

Proposition 1.8.5 (Fermat's Little Theorem) Let p be a prime number.

- 1. $\forall a \in \mathbb{Z}, a^p \equiv a \mod p$.
- 2. If $p \nmid a, a^{p-1} \equiv 1 \mod p$.

Definition 1.8.1 (Characteristic Function of X) Let U be any set, for a subset $X \subseteq U$, the **characteristic function** of X is the function $\mathbf{1}_X : U \to 0, 1$ defined by

$$\mathbf{1}_{X}(u) = \begin{cases} 1 & \text{if } u \in X \\ 0 & \text{if } u \notin X \end{cases}$$
 (27)

Denotation Denote The relative complement of a subset $X \subseteq U$ by X'.

Proposition 1.8.6 Let $A_1, A_2, ..., A_n \subseteq U$, then

1.

$$\mathbf{1}_{A'_{1} \cap A'_{2} \cap \dots \cap A'_{n}} = 1 - \sum_{i} \mathbf{1}_{A_{i}} + \sum_{i < j} \mathbf{1}_{A_{i} \cap A_{j}} - \sum_{i < j < k} \mathbf{1}_{A_{i} \cap A_{j} \cap A_{k}} + \dots + (-1)^{n} \mathbf{1}_{A_{1} \cap \dots \cap A_{n}}$$
(28)

2.

$$\mathbf{1}_{A_1 \cup A_2 \cup \dots \cup A_n} = \sum_{i} \mathbf{1}_{A_i} - \sum_{i < j} \mathbf{1}_{A_i \cap A_j} + \sum_{i < j < k} \mathbf{1}_{A_i \cap A_j \cap A_k} - \dots + (-1)^n \mathbf{1}_{A_1 \cap \dots \cap A_n}$$
(29)

Corollary 1.8.2 Suppose that U is a finite set and that $A_1, A-2, ..., A_n$ are subsets of U. Then

1.

$$|A'_1 \cap A'_2 \cap \dots \cap A'_n| = |U| - \sum_i |A_i| + \sum_{i < j} |A_i \cap A_j| - \sum_{i < j < k} |A_i \cap A_j \cap A_k| + \dots + (-1)^n |A_1 \cap \dots A_n|$$
(30)

2.

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i} |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \dots + (-1)^n |A_1 \cap \dots A_n|$$
(31)

Definition 1.8.2 (Cardinality) For each natural number n, $\varphi(n)$ is defined to be the cardinality of the set of natural numbers k < n such that k is relatively prime to n.

Lemma 1.8.3 Let $k, n \in \mathbb{N}$, with k|n. The number of natural numbers $j \leq n$ such that k|j is n/k.

Corollary 1.8.3 If p is a prime, then $\forall k \geq 1$, $\varphi(p^k) = p^{k-1}(p-1)$.

Proposition 1.8.7 Let n be a natural number with prime factorization $n = p_1^{k_1} ... p_s^{k_s}$. Then,

1.

$$\varphi(n) = n \prod_{i=1}^{s} \left(1 - \frac{1}{p_i}\right) \tag{32}$$

2.

$$\varphi(n) = \prod_{i=1}^{s} \varphi(p_i^{k_i}) \tag{33}$$

Corollary 1.8.4 If m, n are relatively prime, then $\varphi(mn) = \varphi(m)\varphi(n)$.

Theorem 1.8.1 (Euler's Theorem) Fix a natural number n. If $a \in \mathbb{Z}$ is relatively prime to n, then

$$a^{\varphi(n)} \equiv 1 \mod n. \tag{34}$$

1.9 Groups

Operation An operation or a product on a set G is a function from $G \times G$ to G.

Definition 1.9.1 (Group) A **group** is a nonempty set G with a product, denoted by juxtaposition, satisfying:

- 1. Associativity: The product is associative: $\forall a, b, c \in G, (ab)c = a(bc)$.
- 2. Identity element: There is an identity element $e \in G, a \in G, ea = ae = a$.
- 3. Inserse element: For each $a \in G$, there is $a^{-1} \in G$, $aa^{-1} = a^{-1}a = e$.
- 4. Closure: For any $a, b \in G$, $ab \in G$.

Isomorphic Groups G and H is said to be **isomorphic** if there is a biject map $\varphi: H \to G$ between them that makes the multiplication table match up, namely, $\forall g_1, g_2 \in G$, $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$.⁴

⁴Denote as $H \cong G$

Subgroup If $G \subseteq H$, G is said to be the **subgroup** of H.

Homomorphism A map $f: H \to G$ is said to be **homomorphism** if f take products to products, identity to identity, and inverses to inverses, $f(a \cdot b) = f(a) \cdot f(b)$.

Lemma 1.9.1 The set $\Phi(n)$ of elements in \mathbb{Z}_n prossessing a multiplicative inverse forms a group (of cardinality $\varphi(n)$) under multiplication, with identity element [1].

1.10 Rings and Fields

Definition 1.10.1 A **ring** is a nonempty set R with two operations: addition, donated by + and multiplication, donated by juxtaposition that satisfy:

- 1. Under addition, R is an Abelian group.⁵
- 2. Multiplication is associative.
- 3. Multiplication distributes over addition: $\forall a, b, c \in R, a(b+c) = ab + ac$ and (b+c)a = ba + ca

Subring If $G \subseteq H$, G is said to be the **subring** of H.

Proposition 1.10.1 (Chinese Remainder Theorem) Let a and b be relatively prime natural numbers, each then there is an isomorphism of rings

$$\mathbb{Z}_{ab} \cong \mathbb{Z}_a \oplus \mathbb{Z}_b \tag{35}$$

defined by $[x]_{ab} \mapsto ([x]_a, [x]_b)$.

Definition 1.10.2 A *field* is a commutative ring with multiplicative identity element $1 \neq 0$ which every nonzero element is a unit.⁷

⁵Abelian group is a group that holds communitative law; For $a, b \in R$, ab = ba.

⁶If multiplication is commutative, the ring is called a **commutative ring**.

⁷Unit in ring means the multiplicationally invertible elements

1.11 An application to cryptology

Lemma 1.11.1 For all integers a and h, if $h \equiv 1 \mod m$, then $a^h \equiv a \mod n$.

Lemma 1.11.2 $\forall a \in \mathbb{Z}$, if $b \equiv a^r \mod n$, then $b^s \equiv a \mod n$.

2 Basic Theory of Groups

2.1 First Results

Proposition 2.1.1 (Uniqueness of the identity) Let G be a group and suppose e and e' are both identity elements in G, then e = e'.

Proposition 2.1.2 (Uniqueness of the inverse) Let G be a group and $h, g \in G$. If hg = e, then $h = g^{-1}$, and if gh = e, then $h = g^{-1}$.

Corollary 2.1.1 Let $g \in G$, then $g = (g^{-1})^{-1}$.

Proposition 2.1.3 Let G be a group and $a, b \in G$. Then $(ab)^{-1} = b^{-1}a^{-1}$.

Proposition 2.1.4 Let G be a group and $a \in G$, The map $L_a : G \to G$ defined by $L_a(x) = ax$ is a bijection. Similarly $R_a(x) = xa$ is a bijection.

Corollary 2.1.2 Let G be a group and $a, b \in G$. The equation ax = b has a unique solution x in G, and likewise the equation xa = b has a unique solution in G.

Corollary 2.1.3 (Cancellation) Suppose $a, x, y \in G$. If ax = ay, then x = y. If xa = ya, then x = y.

Corollary 2.1.4 If G is a finite group, each row and each column of the multiplication table of G contains each element of G exactly once.

Definition 2.1.1 (Order) The **order** of a group is its size or cardinality, denote by |G|.

Definition 2.1.2 (Isomorphic) We say that two groups G and H are **isomorphic** if there is a bijection $\varphi : G \to H$ such that for all $g_1, g_2 \in G$, $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$. The map is called an **isomorphism**.

Definition 2.1.3 (Abelian) A A group G is called **abelian (or commutative)** if for all elements $a, b \in G$, the products in the two orders are equal: ab = ba.

Proposition 2.1.5 Properties of isomorphism:

- 1. Up to isomorphism, \mathbb{Z}_1 is the unique group of order 1.
- 2. Up to isomorphism, \mathbb{Z}_2 is the unique group of order 2.
- 3. Up to isomorphism, \mathbb{Z}_3 is the unique group of order 3.
- 4. Up to isomorphism, there are exactly two groups of order 4, namely \mathbb{Z}_4 , and the group of rotational symmetries of the rectangular card.
- 5. Up to isomorphism, \mathbb{Z}_5 is the unique group of order 5.
- 6. All groups of order no more than 5 are abelian.
- 7. There are at least two nonisomorphic groups of order 6, one abelian and one nonabelian.

Proposition 2.1.6 (General associative law) Let M be a set with an associative operation, $M \times M \to M$, denoted by juxtaposition. FOr every $n \ge 1$, there is a unique product $M^n \to M$,

$$(a_1, a_2, ..., a_n) \mapsto a_1 a_2 ... a_n,$$

such that

- 1. The product of one element is that element (a) = a.
- 2. The product of two elements agrees with the given operation (ab) = ab
- 3. $a_1 a_2 ... a_n = (a_1 ... a_k)(a_{k+1} ... a_n)$.

2.2 Subgroup and Cyclic Groups

Definition 2.2.1 (Subgroup) A nonempty subset H of a group G is called a subgroup if H is itself a group with the group operation inherited from G. We write $H \leq G$ to indicate that H is a subgroup of G.

Proposition 2.2.1 Let G be a group and let H_1, H_2, \dots, H_n be subgroups of G. Then $H_1 \cap H_2 \cap \dots \cap H_n$ is a subgroup of G. More generally, if $\{H_\alpha\}$ is any collection of subgroups, then $\cap_{\alpha} H_{\alpha}$ is a subgroup.

Proposition 2.2.2 Let a be an element of a group G. The subgroup $\langle a \rangle$ generated by a is $\{a^k : k \in \mathbb{Z}\}^8$

Definition 2.2.2 (Cyclic Group) Let a be an element of a group G. The set $\langle a \rangle = \{a^k : k \in \mathbb{Z}\}$ of powers of a is called the cyclic subgroup generated by a. If there is an element $a \in G$ such that $\langle a \rangle = G$, we say that G is a cyclic group. We say that a is a generator of the cyclic group.

Definition 2.2.3 (Order) The order of the cyclic subgroup generated by a is called the order of a. We denote the order of a by o(a).

Proposition 2.2.3 If G is a cyclic group and $g \in G$, o(g) = |G|/g.c.d(g, |G|)

Proof In \mathbb{Z}_n , $g \in \mathbb{Z}_n$, $kg \equiv 0 \mod n \Leftrightarrow kg = ln = lcm(g, n)$. Since $g.c.d(g, n) \cdot l.c.m(g, n) = gn$, o(g) = n = |G|/g.c.d(g, |G|).

Proposition 2.2.4 If the order of a is finite, then it is the least positive integer n such that $a^n = e$. Furthermore, $\langle a \rangle = \{a^k : 0 \le k < o(a)\}$.

Proposition 2.2.5 Let H be a subgroup of \mathbb{Z} . Then either H=0, or there is a unique $d \in \mathbb{N}$ such that $H=\langle d \rangle = d\mathbb{Z}$.

Proposition 2.2.6 *If* $d \in \mathbb{N}$, then $d\mathbb{Z} \cong \mathbb{Z}$.

Proposition 2.2.7 If $a, b \in \mathbb{N}$, then $a\mathbb{Z} \subseteq b\mathbb{Z}$ if and only if b|a.

Corollary 2.2.1 Every subgroup of \mathbb{Z} other than 0 is isomorphic to \mathbb{Z} .

Lemma 2.2.1 Let $n \geq 2$ and let d be a positive divisor of n. The cyclic subgroup $\langle [d] \rangle$ generated by [d] in \mathbb{Z}_n has cardinality $|\langle [d] \rangle| = n/d$

Proposition 2.2.8 *Let* H *be a subgroup of* \mathbb{Z}_n .

1. Either H = [0], or there is a d > 0 such that $H = \langle [d] \rangle$.

⁸For any group G and any subset $S \subseteq G$, there is a smallest subgroup of G that contains S, which is called the subgroup generated by S.

2. If d is the smallest of positive integers s such that $H = \langle [s] \rangle$, then d|H| = n.

Corollary 2.2.2 Fix a natural number $n \geq 2$.

- 1. Any subgroup of \mathbb{Z}_n is cyclic.
- 2. Any subgroup of \mathbb{Z}_n has cardinality dividing n.

Corollary 2.2.3 Fix a natural number $n \geq 2$.

- 1. For any positive divisor q of n, there is a unique subgroup of \mathbb{Z}_n of cardinality q, namely $\langle [n/q] \rangle$.
- 2. For any two subgroups H and H' of \mathbb{Z}_n , we have $H \subseteq H' \Leftrightarrow |H|$ divides |H'|.

Proposition 2.2.9 Every subgroup of a cyclic group is cyclic.

Proposition 2.2.10 Let a be an element of finite order n in a group. Then $\langle a^k \rangle = \langle a \rangle$, if and only if k is relatively prime to n. The number of generators of $\langle a \rangle$ is $\varphi(n)$.

Proposition 2.2.11 Let a be an element of finite order n in a group. For each positive integer q dividing n, $\langle a \rangle$ has a unique subgroup of order q.

Proposition 2.2.12 Let a be an element of finite order n in a group. For each nonzero integer s, as has order n = g.c.d.(n, s).

2.3 The Dihedral Groups

Definition 2.3.1 (Dihedral Group) Group consists of n rotational symmetries and n reflection symmetries is a **dihedral group**, denoted by D_n .

Proposition 2.3.1 $D_n = \langle r, a | r^n = e, a^2 = e, ra = ar^{-1} \rangle$

Properties:

- 1. $jr_t = r_{-t}j$ and $j_t = r_{2t}j = jr_{-2t}$.
- 2. All products in D can be computed using these relations.
- 3. The symmetry group D of the disk consists of the rotations r_t for $t \in \mathbb{R}$ and the flips $j_t = r_{2t}j$. Writing $N = r_t : t \in \mathbb{R}$, we have $D = N \cup Nj$.
- 4. The subgroup N of D satisfies $aNa^{-1} = N$ for all $a \in D$.

2.4 Homomorphisms and Isomorphisms

Definition 2.4.1 (Homomorphism) A map between groups $\varphi : G \to H$ is called a **homomorphism** if it preserves group multiplication, $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$ for all $g_1, g_2 \in G$. And An endomorphism of G is a homomorphism $\varphi : G \to G$.

Proposition 2.4.1 *If* $\varphi : G \to H$ *and* $\psi : H \to K$ *are both group hom, then* $\varphi \circ \psi : H \to K$ *is a group hom.*

Proposition 2.4.2 If $\varphi: G \to H$ be a homomorphism of groups.

- $\varphi(e_G) = e_H$
- $\bullet \ \forall g \in G, \varphi(g^{-1}) = (\varphi(g))^{-1}$

Proposition 2.4.3 Let $\varphi: G \to H$ be a homomorphism of groups.

- 1. For each subgroup $A \subseteq G$, $\varphi(A) \subseteq H$. (Image of A)
- 2. For each subgroup $B \subseteq G$,

$$\varphi^{-1}(B) = g \in G : \varphi(g) \in B$$

is a subgroup of G. (Inverse image of B)

2.4.1 The Kernel of a Homomorphism

Definition 2.4.2 (Normal) A subgroup N of a group G is said to be **normal** if $\forall g \in G$, $gNg^{-1} = N$. Here gNg^{-1} means $gng^{-1} : n \in N$.

Corollary 2.4.1

$$A_n \triangleleft S_n$$

Proposition 2.4.4 If a subgroup N of a group G is its **normal subgroup**, then $\forall g \in G$, gN = Ng.

Proposition 2.4.5 Any subgroup of Abelian group is normal.

Definition 2.4.3 (Kernel) Let $\varphi : G \to H$ be a homomorphism of groups. The **kernel** of the homomorphism φ , denoted $ker(\varphi)$, is $\varphi^-1(e_H) = \{g \in G : \varphi(g) = e_H\}$.

 $^{^{9}}gng^{-1}$ is called conjugate if n by g

¹⁰Denote as $N \leq G$

 $^{^{11}}e_H$ is the identity of group H.

e.g.1
$$\varphi: \mathbb{Z} \to \mathbb{Z}_2$$
, $\ker(\varphi) = \{a \in \mathbb{Z} | [a] = [0] \}$

e.g.2 det :
$$GL(\alpha, \mathbb{R}) \to \mathbb{R}^*$$

$$\ker(\det) = \operatorname{SL}(\alpha, \mathbb{R})$$

Proposition 2.4.6 A homomorphism $\varphi: G \to H$ is injective if and only if $ker(\varphi) = e_G$.

Proposition 2.4.7 Let $\varphi: G \to H$ be a homomorphism of groups. Then $ker(\varphi)$ is a normal subgroup of G.

2.4.2 Parity of Permutations

Definition 2.4.4 (Sign, Parity) The homomorphism ϵ is called the **sign** (or **parity**) homomorphism. A permutation π is said to be even if $\epsilon(\pi) = 1$, that is, if π is in the kernel of the sign homomorphism. Otherwise, π is said to be odd. The subgroup of even permutations (that is, the kernel of ϵ) is generally denoted A_n . This subgroup is also referred to as the alternating group.¹²

Proposition 2.4.8 A permutation π is even if and only if π can be written as a product of an even number of 2-cycles.

Corollary 2.4.2 The set of odd permutations in S_n is $(12)A_n$, where A_n denotes the subgroup of even permutations.

Corollary 2.4.3 A k-cycle is even if k is odd and odd if k is even.

2.5 Cosets and Lagranges Theorem

Definition 2.5.1 (Coset) Let H be subgroup of a group G. A subset of the form gH, where $g \in G$, is called a left coset of H in G. A subset of the form Hg, where $g \in G$, is called a right coset of H in G.

$$\frac{12(a_1a_2\cdots a_{l-1}a_l)}{12(a_1a_2\cdots a_{l-1}a_l)} = \prod_{i=0}^{l-2} (a_1a_{l-i})$$

2.5.1 Properties of Cosets

Proposition 2.5.1 Let H be a subgroup of a group G, and let a and b be elements of G. The following conditions are equivalent:

- 1. $a \in bH$.
- 2. $b \in aH$
- 3. aH = bH.
- 4. $b^{-1}a \in H$.
- 5. $a^{-1}b \in H$.

Proposition 2.5.2 Let H be a subgroup of a group G.

- 1. Let a and b be elements of G. Either aH = bH or $aH \cap bH = \emptyset$.
- 2. Each left coset aH is nonempty and the union of left cosets is G.
- 3. All cosets have the same size. 13

Theorem 2.5.1 (Lagrange's Theorem) Let G be a finite group and H a subgroup. Then |H| divides |G| and $\frac{|G|}{|H|}$ is the number of left cosets of H in G.

Definition 2.5.2 (Index) For a subgroup H of a group G, the index of H in G is the number of left cosets of H in G. The index is denoted [G:H].

Corollary 2.5.1 Let p be a prime number and suppose G is a group of order p. Then:

- 1. G has no subgroups other than G and e.
- 2. G is cyclic, and in fact, for any nonidentity element $a \in G$, $G = \langle a \rangle$.
- 3. Every homomorphism from G into another group is either trivial (i.e., every element of G is sent to the identity) or injective.

Corollary 2.5.2 Let G be any finite group, and let a 2 G. Then the order o(a) divides the order of G.

¹³Coset is a partition of G

Proposition 2.5.3 Suppose $K \subseteq H \subseteq G$ are subgroups, then

$$[G:K] = [G:H][H:K].$$

Definition 2.5.3 (Center) For any group G, the **center** Z(G) of G is the set of elements that commute with all elements of G,

$$Z(G) = \{ a \in G : ag = ga, \forall g \in G \}$$

2.6 Equivalence Relations and Set Partitions

Definition 2.6.1 (Equivalence) An equivalence relation \sim on a set X is a binary relation with the properties:

- 1. Reflexivity: For each $x \in X, x \sim x$.
- 2. Symmetry: For $x, y \in X, x \sim y \Leftrightarrow y \sim x$.
- 3. Transitivity: For $x, y, z \in X$, if $x \sim y$ and $y \sim z$, then $x \sim z$.

Definition 2.6.2 (Partition) A partition of a set X is a collection of mutually disjoint nonempty subsets whose union is X.

Definition 2.6.3 (Equivalence class) If \sim is an equivalence relation on X, then for each $x \in X$, the **equivalence class** of x os the set

$$[x] = \{y \in X : x \sim y\}$$

Proposition 2.6.1 Let \sim be an equivalence relation on X. For $x, y \in X$, $x \sim y$ if, and only if [x] = [y].

Corollary 2.6.1 Let \sim be an equivalence relation on X. Either $[x] \cap [y] = \emptyset$ or [x] = [y].

Proposition 2.6.2 Let X be any set. There is a one to one correspondence between equivalence relations on X and set partitions of X.

2.6.1 Equivalence Relations and Surjective Maps

Proposition 2.6.3 Let \sim be an equivalence relation on X. Then there exists a set Y and a surjective map $\pi: X \to Y$ such that \sim is equal to the equivalence relation \sim_{π} .

Definition 2.6.4 (Similar) Two surjective maps $f: X \to Y$ and $f': X \to Y'$ are similar if there exists a bijection $s: Y \to Y'$ such that $f' = s \circ f$.

Figure 1: Similar two surjective maps

Proposition 2.6.4 Two surjective maps $f: X \to Y$ and $f': X \to Y'$ determine the same equivalence relation X if and only if f and f' are similar.

Definition 2.6.5 (Canonical projection) The set of left cosets of H in G is denoted G/H. The surjective map $\pi: G \to G/H$ defined by $\pi(a) = aH$ is called the **canonical projection** or **quotient map** of G onto G/H.

Proposition 2.6.5 The fibers of the canonical projection $\pi: G \to G/H$ are the left cosets of H in G. The equivalence relation \sim_{π} on G determined by π is the equivalence relation \sim_{H} .

2.6.2 Conjugacy

Definition 2.6.6 (Conjugate) Let a and b be elements of a group G. We say that b is conjugate to a if there is a $g \in G$ such that $b = gag^{-1}$.

Definition 2.6.7 (Conjugacy classes) The equivalence classes for conjugacy are called conjugacy classes.

2.7 Quotient Groups and Homomorphism Theorems

Theorem 2.7.1 Let N be a normal subgroup of a group G. The set of cosets G/N has a unique product that makes G=N a group and that makes the quotient map $\pi: G \to G/N$ a group homomorphism, $ker(\pi) = N$.

Proposition 2.7.1 *Let* $a, b, c \in G$ *and* $N \subseteq G$, *we have:*

- Closure: aNbN = abN
- Associativity: aN(bNcN) = aNbNcN
- Identity: aN(N) = (N)aN = aN
- Inverse: $(a^{-1}N)(aN) = (aN)(a^{-1}N) = N$

2.7.1 Homomorphism Theorems

Theorem 2.7.2 (Homomorphism theorem) Let $\varphi: G \to \bar{G}$ be a surjective homomorphism with kernel N. Let $\pi: G \to G/N$ be the quotient homomorphism. There is a group isomorphism $\tilde{\varphi}: G/N \to \bar{G}$ satisfying $\tilde{\varphi} \circ \pi = \varphi$.

$$G/Ker(\phi) \cong \phi(G)$$

Theorem 2.7.3 (Correspondence Theorem) Let $\varphi: G \to \bar{G}$ be a homomorphism of G and \bar{G} , and let N denote the kernel of φ .

- 1. The map $\bar{B} \mapsto \varphi^{-1}(\bar{B})$ is a bijection between subgroups of \bar{G} and subgroups of G containing N.
- 2. Under this bijection, normal subgroups of \bar{G} correspond to normal subgroups of G.

Proposition 2.7.2 (Third Isomorphism Theorem) Let $\varphi: G \to \bar{G}$ be a surjective homomorphism with kernel N. Let \bar{K} be a normal subgroup of \bar{G} and let $K = \varphi^{-1}(\bar{K})$. Then $G = K \cong \bar{G} = \bar{K}$. Equivalently, $G/K \cong (G/N)(K/N)$.

Theorem 2.7.4 (Factorization Theorem) Let $\varphi: G \to \bar{G}$ be a surjective homomorphism of groups with kernel K. Let $N \subseteq K$ be a subgroup that is normal in G, and let $\pi: G \to G/N$ denote the quotient map. Then there is a surjective homomorphism $\tilde{\varphi}: G/N \to G$ such that $\tilde{\varphi} \circ \pi = \varphi$. The kernel of $\tilde{\varphi}$ is $K/N \subseteq G/N$.

Corollary 2.7.1 Let $N \subseteq K \subseteq G$ be subgroups with both N and K normal in G. Then $xN \mapsto xK$ defines a homomorphism of G/N onto G/K with kernel K/N.

Theorem 2.7.5 (Second Isomorphism Theorem(Diamond)) Let φ : $G \to \overline{G}$ be a surjective homomorphism with kernel N. Let A be a subgroup of G. Then

- 1. $\varphi^{-1}(\varphi(A)) = AN = \{an : a \in A \text{ and } n \in N\},\$
- 2. AN is a subgroup of G containing N.
- 3. $AN/N \cong \varphi(A) \cong A/(A \cap N)$.

Figure 2: Diamond Isomorphism Theorem

Corollary 2.7.2

$$gcd(m,n)\mathbb{Z}/n\mathbb{Z} \cong m\mathbb{Z}/lcm(m,n)\mathbb{Z}$$

Proposition 2.7.3 (Fourth Isomorphism Theorem(Lattice)) Let φ : $G \to H$ be a surjective group homomorphism, $N \ker(\varphi)$ we have

1. There is a bijection

 $\{subgroups\ of\ G\ containing\ N\} \leftrightarrow \{subgroups\ of\ H \cong G/N\}$

2. Normalness is preserved by this bijection

Proposition 2.7.4 If $H \subseteq G$ and |G|/|H| = 2, $H \subseteq G$.

3 Products of Groups

3.1 Direct Products

Definition 3.1.1 (Direct Product) $A \times B$, with this group structure, is called the direct product of A and B.

Proposition 3.1.1 *Properties:*

- 1. Suppose M and N are normal subgroups of G, and $M \cap N = \{e\}$. Then for all $m \in M$ and $n \in N$, mn = nm.
- 2. $MN = \{mn : m \in M, n \in N\}$ is a subgroup and $(m, n) \mapsto mn$ is an isomorphism of $M \times N$ onto MN.
- 3. If MN = G, then $G \cong M \times N$.

Definition 3.1.2 (Direct Product) $A_1 \times A_2 \times \cdots \times A_n$, with the coordinate-by-coordinate multiplication, is called the **direct product** of $A_1, A_2, ..., A_n$.

Proposition 3.1.2 Suppose $N_1, N_2, ..., N_r$ are normal subgroups of a group G such that for all i,

$$N_i \cap (N_1...N_{i-1}N_{i+1}...N_r) = e.$$

Then $N_1N_2...N_r$ is a subgroup of G and $(n_1, n_2, ..., n_r) \mapsto n_1n_2...n_r$ is a subgroup of $P = N_1 \times N_2 \times \cdots \times N_n$ onto $N_1N_2...N_r$. In particular, if $N_1N_2...N_r = G$, then $G \cong N_1 \times N_2 \times \cdots \times N_n$.

Corollary 3.1.1 Let $N_1, N_2, ..., N_r$ be normal subgroups of a group G such that $N_1N_2 \cdots N_r = G$. Then G is the **internal direct product** of $N_1, N_2, ..., N_r$ if and only if whenever $x_i \in N_i$ for $1 \le i \le r$ and $x_1x_2 \cdots x_r = e$, then $x_1 = x_2 = \cdots = x_r = e$.

Definition 3.1.3 (Direct Sum) The **direct sum** of several rings $R_1, R_2, ..., R_n$ is the Cartesian product $R_1 \times R_2 \times \cdots \times R_n$, endowed with the coordinate-by-coordinate operations

$$(r_1, r_2, ..., r_n) + (r'_1, r'_2, ..., r'_s) = (r_1 + r'_1, r_2 + r'_2, ..., r_n + r'_n)$$

and

$$(r_1, r_2, ..., r_n)(r'_1, r'_2, ..., r'_s) = (r_1 r'_1, r_2 r'_2, ..., r_n r'_n).$$

The direct sum of $R_1, R_2, ..., R_n$ is denoted $R_1 \oplus R_2 \oplus ... \oplus R_n$.

Proposition 3.1.3 *If* $m, n \in \mathbb{N}$, g.c.d(m, n) = 1, then

$$\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$$
.

Proposition 3.1.4 (Chinese Remainder Theorem) Let $n \geq 2$ and let $a_1, ..., a_n$ be pairwise relatively prime natural numbers. Write $a = a_1 a_2 ... a_n$. Then

$$[x]_a \mapsto ([x]_{a_1}, [x]_{a_2}, ..., [x]_{a_n})$$

defines a ring isomorphism

$$\mathbb{Z}_a \cong \mathbb{Z}_{a_1} \oplus \mathbb{Z}_{a_2} \oplus \ldots \oplus \mathbb{Z}_{a_n}$$
.

Proposition 3.1.5 (Chinese Remainder Theorem) Let $n \geq 2$ and let $a_1, a_2, ..., a_n$ be pairwise relatively prime natural numbers. Write $a = a_1 a_2 \cdots a_n$. For any integers $x_1, x_2, ..., x_s$, there exists an integer x such that

$$x \equiv x_i \mod a_i, for \ 1 \le i \le n.$$

Moreover, x is unique up to congruence mod a.

3.2 Semidirect Products

Definition 3.2.1 (Semidirect Product) If we have groups N and A, and we have a homomorphism $\alpha: a \mapsto \alpha_a$ from A into the automorphism group Aut(N) of N, we can build from these data a new group $N \rtimes_{\alpha} A$, called the **semidirect product** of A and N. The semidirect product $N \rtimes_{\alpha} A$ has the following features: It contains (isomorphic copies of) A and N as subgroups, with N normal; the intersection of these subgroups is the identity, and the product of these subgroups is $N \rtimes_{\alpha} A$; and we have the commutation relation $an = \alpha_a(n)a$ for $a \in A$ and $n \in N$.

Proposition 3.2.1 Let N and A be groups, and $\alpha: A \to Aut(N)$ a homomorphism of A into the automorphism group of N. The Cartesian product $N \times A$ is a group under the multiplication $(n,a)(n',a') = (n\alpha_a(n'),aa')$. This group is denoted $N \rtimes_{\alpha} A$. This group is denoted $N \rtimes_{\alpha} A$. $\tilde{N} = \{(n,e): n \in N\}$ and $\tilde{A} = \{(e,a): a \in A\}$ are subgroups of $N \rtimes_{\alpha} A$, with $\tilde{N} \cong N$ and $\tilde{A} \cong A$, and \tilde{N} is normal in $N \rtimes_{\alpha} A$. We have $(e,a)(n,e) = (\alpha_a(n),e) = (\alpha_a(n),a)$ for all $n \in N$ and $a \in A$.

Corollary 3.2.1 Suppose G is a group, N and A are subgroups with N normal, G = NA = AN, and $A \cap N = e$. Then there is a homomorphism $\alpha : A \to Aut(N)$ such that G is isomorphic to the semidirect product $N \rtimes_{\alpha} A$.

3.3 Vector Spaces

Definition 3.3.1 (Vector Space) A vector space V over a field K is an abelian group with a product $K \times V \to V$, $(\alpha, v) \mapsto \alpha v$ satisfying the following conditions:

- 1. $\forall v \in V, 1v = v$.
- 2. $\forall \alpha, \beta \in K, v \in V, (\alpha \beta)v = \alpha(\beta v)$.
- 3. $\forall \alpha \in K, v, w \in V, \alpha(v+w) = \alpha v + \alpha w$.
- 4. $\forall \alpha, \beta \in K, v \in V, (\alpha + \beta)v = \alpha v + \beta v.$

Lemma 3.3.1 Let V be a vector space over the field K, then $\forall \alpha \in K, v \in V$,

- 1. $0v = \alpha 0 = 0$.
- 2. $\alpha(-v) = -(\alpha v) = (-\alpha)v$.
- 3. (-1)v = -v.
- 4. If $\alpha \neq 0$ and $v \neq 0$, then $\alpha v \neq 0$.

Definition 3.3.2 (Linear Transformation) Let V and W be vector spaces over K. A map $T: V \to W$ is called a **linear transformation** or **linear map** if $\forall x, y \in V, T(x+y) = T(x) + T(y)$ and $\forall \alpha \in K$ and $x \in V, T(\alpha x) = \alpha T(x)$. An endomorphism of a vector space V is a linear transformation $T: V \to V$.

Definition 3.3.3 (Subspace) A subspace of a vector space V is a (nonempty) subset that is a vector space with the operations inherited from V.

Proposition 3.3.1 For a nonempty subset of a vector space to be a subspace, it suffices that the subset be closed under addition and under scalar multiplication.

Proposition 3.3.2 Let $T: V \to W$ be a linear map between vector spaces. Then the range of T is a subspace of W and the kernel of T is a subspace of V.

3.3.1 Quotients and homomorphism theorems

Theorem 3.3.1 (Homomorphism theorem for vector spaces) If W is subspace of a vector space V over K, then V/W has the structure of a vector space, and the quotient map $\pi : v \mapsto v + W$ is a surjective linear map from V to V/W with kernel equal to W.

Proposition 3.3.3 (Correspondence theorem for vector spaces) Let $T: V \to \bar{V}$ be a surjective linear map, with kernel N. Then $\bar{M} \mapsto T^{-1}(\bar{M})$ is a bijection between subspaces of V and subspaces of \bar{V} containing N.

Proposition 3.3.4 Let $T:V\to \bar V$ be a surjective linear transformation with kernel N. Let $\bar M$ be a subspace of V and let $M=T^{-1}(barM)$. Then $x+M\mapsto T(x)+\bar M$ defines a linear isomorphism of V/M to $\bar V/\bar M$. Equivalently,

$$(V/N)(M/N) \cong V/M$$
,

as vector spaces.

Proposition 3.3.5 (Factorization Theorem for Vector Spaces) Let V and \bar{V} be vector spaces over a field K, and let $T:V\to \bar{V}$ be a surjective linear map with kernel M. Let $N\subseteq M$ be a vector subspace and let $\pi:V\to V/N$ denote the quotient map. Then there is a surjective homomorphism $\tilde{T}:V/N\to \bar{V}$ such that $\tilde{T}\circ\pi=T$. The kernel is $M/N\subseteq V/N$.

Proposition 3.3.6 (Diamond Isomorphism Theory for Vector Spaces) Let A and N be subgroups of a vector space V. Let π denote the quotient map $\pi: V \to V/N$. Then $\pi^{-1}(\pi(A)) = A + N$ is a subspace of V containing both A and N. Furthermore, $(A + N)/N \cong \pi(A) \cong A/(A \cap N)$.

3.4 Finitely Generated Abelian Groups

Definition 3.4.1 S generates G if $\mathbb{Z}S = G$.

Definition 3.4.2 *G* is **finitely generated** if there is a finite set $S \subseteq G$ so that $\mathbb{Z}S = G$.

Definition 3.4.3 *G* is **finitely generated** if there is $S \subseteq G$ that is finite and $\mathbb{Z}S = G$.

Definition 3.4.4 If S generates G and is linearly independent, say S is a basis of G.

Definition 3.4.5 *If* G *has a basis, then call* G *a free group.*

Proposition 3.4.1 Let G be an abelian group and let x_1, \dots, x_n be distinct nonzero elements of G, the set $B = \{x_1, \dots, x_n\}$ is a basis of G if and only if $G \equiv \mathbb{Z}^n$.

Theorem 3.4.1 (Fundamental Theorem of Finitely Generated Abelian Groups)

Let G be a finitely generated abelian group.

1. G is a direct product of cyclic groups,

$$G \cong \mathbb{Z}_{a_1} \times \mathbb{Z}_{a_2} \times \cdots \times \mathbb{Z}_{a_S} \times \mathbb{Z}^k$$

Definition 3.4.6 Let $g \in G$, if there is $n \neq 0$ so that ng = 0, call g a torsion element.

Proposition 3.4.2 If $x + G_{tor} \in G/G_{tor}$, $G/G_{tor} = 0 + G_{tor}$

4 Group Actions

Definition 4.0.1 An action of a group G on a set X, a group action is a map $G \times X \to X$, denote as $gx_1 = x_2$

- $\bullet \ (g_1g_2) \cdot x = g_1(g_2x)$
- \bullet ex = x
- $\bullet \ x(g_1g_2) = xg_1g_2$
- \bullet xe = x

Definition 4.0.2 Let G act on $X, x \in X$. The orbit of x denoted $G \cdot x$ or $\mathcal{O}(x)$, is the set $\{g \cdot x | g \in G\}$.

Definition 4.0.3 $x \sim y \Leftrightarrow y = g \cdot x \text{ for some } g \in G. \sim \text{ is an equivalent relation.}$

Eg 1. G acts on itself by left multiplication: $g \cdot a = ga$.

Definition 4.0.4 If $G \curvearrowright X$ is one orbit, the action is called transitive.

Eg 2. $G \curvearrowright G/H$ by left transilation $g \cdot (aH) = (ga)H$

Eg 3.1. $H \subseteq G$. H acts on G by right multiplication $g \cdot h = gh$ with orbits are left cosets.

Eg 3.2. H can also act on the left, with orbits to be the right cosets.

Eg 4. G acts on itself by conjugation. $g/cdota = gag^{-1}$ with orbits to be conjugacy classes.

Definition 4.0.5 (Stablizer) Let G acts on X. The stablizer $Stab_G(X) = \{g \in G | gx = x\}$.

Proposition 4.0.1 $Stab_G(X) \subseteq G$

Theorem 4.0.1 Let G acts on X, $x \in X$. There is a natural bijection $\phi: G/Stab_G(x) \to G \cdot X$

Theorem 4.0.2 (Orbit-Stablizer Theorem)

$$|\mathcal{O}(x)| = \frac{|G|}{|Stab(x)|}$$

Definition 4.0.6 (Normalizer) Consider the action of a group G on its subgroups by conjugation. The stabilizer of a subgroup H is called the normalizer of H in G and denoted $N_G(H)$.

Definition 4.0.7 (Centralizer) Consider the action of a group G on its subgroups by conjugation. The stabilizer of an element $g \in G$ is called the centralizer of g in G and denoted $Cent_G(H)$.

4.1 Group Actions and counting

Definition 4.1.1 For $g \in G$, let $Fix(g) = \{x \in X : gx = xg\}$

Proposition 4.1.1 Let a finite group G act on a finite set X. Then the number of orbits of the action is

of orbits =
$$\frac{1}{|G|} \sum_{g \in G} |\text{Fix}(g)|$$

4.2 Group Automorphisms

Definition 4.2.1 If G is a group, then automorphism $\operatorname{Aut}(G) = \{ \varphi : G \to G | \varphi \text{ is isomorphism} \}.$

Definition 4.2.2 Int(G) = $\{c_g|g \in G\}$ for each $g \in G$, $c_g : G \to G$ and $c_g(x) = gxg^{-1}$.

Proposition 4.2.1 $Int(G) \subseteq Aut(G)$

Proposition 4.2.2 If G is abelian, then $Int(G) = \{1\}$

Proposition 4.2.3 $Int(G) \cong G/Z(G)$

Proposition 4.2.4 $Int(G) \subseteq Aut(G)$

Proposition 4.2.5 Aut(\mathbb{Z}) $\cong \mathbb{Z}_2$. If p is a prime, Aut(\mathbb{Z}_p) $= \mathbb{Z}_{p-1}$

4.3 Sylow Theorem

Proposition 4.3.1 Suppose p is a prime, $|G| = p^n$. Then Z(G) contains nonidentity elements.

Corollary 4.3.1 Suppose p is prime and $|G| = p^2$, then $G \cong \mathbb{Z}_{p^2}$ or $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Definition 4.3.1 $|G| = p^n$, then there is a normal subgroup $N \subseteq G$, $\{e\} \subseteq N \subseteq G$, such that all subgroups of N are normal.

Corollary 4.3.2 $|G| = p^n$, p is prime, then there exists subgroups $\{e\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_n = G$ such that $|G_k| = p^k$ and each $G_k \subseteq G$.

Theorem 4.3.1 (Cauchy's Theorem) Suppose p is prime and p||G|, then G has an element of order p.

Definition 4.3.2 G is a finite group, p is prime. If p^n is the largest power of p dividing |G| then a subgroup of size p^n is a **p-Sylow subgroup** of G.

Theorem 4.3.2 (1st Sylow Theorem) If $p^n||G|$ then G has a subgroup of size p^n .

Theorem 4.3.3 (2nd Sylow Theorem) Let P, Q be 2 p-Sylow subgroups. Then P and Q are conjugate subgroups. $(g \in G, gPg^{-1} = Q)$

Corollary 4.3.3 There is exactly 1 p-Sylow subgroup if and only if the subgroup is normal.

Theorem 4.3.4 (3rd Sylow Theorem) If p^n is the order of a p-Sylow subgroup of G, the number of p-Sylow subgroups of G satisfies

- $\# \equiv 1 \mod p$
- # divides $\frac{|G|}{p^n}$

5 Ring

5.1 Basics

Definition 5.1.1 (Ring) A ring with two operations $+, \cdot, if$

- 1. R, + is an abelian group with identity:0 and inverses -a,
- 2. R, · is closed and associative
- 3. $R, +, \cdot$ is distributive.

5.2 Homomorphism and Ideal

Definition 5.2.1 (Ring homomorphism) A ring homomorphism φ : $R \to S$ is a map which preserves addition and multiplication. Let $a, b \in R$, we have:

1.
$$\varphi(a+b) = \varphi(a) + \varphi(b)$$

2.
$$\varphi(ab) = \varphi(a)\varphi(b)$$

 φ is an **isomorphism** if it is also bijection.

Definition 5.2.2 An element of a ring with multiplicative inverse is called a *unit*.

Definition 5.2.3 A left(right) ideal of a ring R, is a subset $I \subseteq R$ that

- 1. $I \subseteq R$
- 2. If $r \in R$, $a \in I$, then $ra \in I(ar \in I)$

14

Proposition 5.2.1 If $\varphi : R \to S$ is a ring homomorphism, then $\operatorname{Ker}(\varphi)$ is a (left and right) ideal of R.

Proposition 5.2.2 If an ideal contains a unit, then it contains the whole ring.

Proposition 5.2.3 If a ring is a field, then its ideal is either $\{0\}$ or the whole ring.

Proposition 5.2.4 • If $\{I_{\alpha}\}$ is ideals of R, then $\bigcap I_{\alpha}$ is an ideal.

• If $I_1 \subseteq I_2 \subseteq \cdots$ are ideals of R, then $\bigcup I_i$ is an ideal.

5.2.1 Ideals generated by sets

Definition 5.2.4 Let $S \subseteq R$ and $S \neq \emptyset$, then the **ideal generated by S** (S), the smallest ideal of R containing S.

If $S = \{a\}$, (S) = (a) is called a **Principal ideal**.

- 1. $I \neq \emptyset$
- 2. If $a, b \in I$, $ar b \in I$

¹⁴Check if $I \subseteq R$ is an ideal:

5.3 Quotient Ring

Proposition 5.3.1 Let I is an ideal of R, $R/I = \{r + I | r \in R\}$ is a ring.

Definition 5.3.1 Say a is a zero-divisor, if $\exists b \text{ that } ab = 0$.

5.3.1 Four Isomorphism Theorem for Ring

Theorem 5.3.1 (First) If $\varphi : R \to S$ surjective ring hom with kernel I, then $R/I \cong S$.

Ex. $ev_0: \mathbb{Z}[x] \to \mathbb{Z} \Rightarrow \mathbb{Z}[x]/(x) = \mathbb{Z}$.

Theorem 5.3.2 (Second) If I is an ideal of R and A is a subring, then $(A+I)/I \cong A/A \cap I$.

Theorem 5.3.3 (Third) If $J \subseteq I$ are ideals of R, then $(R/J)/(I/J) \cong R/I$.

Theorem 5.3.4 (Fourth) Let $I \subseteq R$ be an ideal, then there is one-to-one correspondence $\{ideals\ of\ R/I\} \leftrightarrow \{ideals\ of\ R\ containing\ I\}$

Definition 5.3.2 An ideal M of R is **maximal** if whenever an ideal $M \subseteq I \subseteq R$ then I = M or I = R.

Ex. $2\mathbb{Z}$ is a maximal ideal of \mathbb{Z} .

Proposition 5.3.2 Let R be commutative with multiplicative identity 1. Then M is a max ideal $\Leftrightarrow R/M$ is a field.