DS4 : Électricité

Durée : 2h. Les calculatrices sont interdites. Le devoir est probablement trop long pour être terminé, faites-en le maximum.

Exercice 1: Résistances équivalentes

1. $R_{eq} = \frac{21}{8}R$

2. $R_{eq} = \frac{26}{11}R$

3. $R_{eq} = \frac{5}{7}R$

Exercice 2 : DIAGRAMME DE BODE (TD6)

1. Il s'agit d'un filtre passe-bande car $|\underline{H}(\omega \to 0)| = 0$ et $|\underline{H}(\omega \to \infty)| = 0$

2. On calcule $G_{\mathrm{dB}}(\omega) = 20\log\left(|\underline{\mathrm{H}}(\omega)|\right) = -10\log\left(1+Q^2\left(\frac{\omega}{\omega_0}-\frac{\omega_0}{\omega}\right)^2\right)$

3. — Lorsque $\omega \to 0$, $G_{\rm dB}(\omega) \simeq -20\log(Q\omega_0) + 20\log(\omega)$, ce qui correspond à une pente de 20dB/décade

— Lorsque $\omega \to \infty$, $G_{\rm dB}(\omega) \simeq -20 \log(Q/\omega_0) - 20 \log(\omega)$, ce qui correspond à une pente de -20dB/décade.

- On a également $G_{dB}(\omega = \omega_0) = 0$

4.

5. Diagramme de Bode tracé avec Q=1 :

6. On cherche ω_1 et ω_2 telles que $G(\omega_1) = G(\omega_2) = \frac{1}{\sqrt{2}}$. On trouve que $\omega_2 - \omega_1 = \Delta \omega = \frac{\omega_0}{O}$ (fait dans le cours)

Exercice 3: DIPÔLE INCONNU

- 1. On trouve graphiquement $U_m = 5 \text{ V}$ et $V_m = 3.5 \text{ V}$.
- 2. La période du signal est $T=6.3\times 10^{-2}\,\mathrm{s}$ et donc la pulsation est $\omega=\frac{2\pi}{T}=100\,\mathrm{rad/s}.$
- 3. La tension v augmente avant la tension u donc elle est en avance et φ est positif.
- 4. Graphiquement on trouve $\Delta t=0.8\times 10^{-2}\,\rm s$ et le déphasage est $\varphi=2\pi\frac{0.8}{6.3}\simeq0.8\,\rm rad.$
- 5. La loi d'Ohm donne directement u = Ri.
- 6. Aux bornes du dipôle D on a $\underline{v}=\underline{Zi}$. En utilisant l'expression de \underline{i} de la question précédente, on obtient : $\underline{Z}=R\frac{\underline{v}}{u}$.
- 7. La question précédente donne directement $|\underline{Z}| = R \frac{|\underline{v}|}{|\underline{u}|} = R \frac{V_m}{U_m} = 70 \ \Omega$. Et $\arg(\underline{Z}) = \arg(R) + \arg(\underline{v}) \arg(\underline{u}) = \arg(\underline{v}) \arg(\underline{u}) = \varphi$.
- 8. On a $X=Z\cos\varphi=48.8\,\Omega$ et $Y=Z\sin\varphi=50.2\,\Omega$. Pour fabriquer ce dipôle on peut utiliser une résistance de $48.8\,\Omega$ en série avec une bobine d'inductance L telle que $L\omega=50.2\,\Omega$ soit $L\simeq0.5\,\mathrm{H}$ (C'est une grosse bobine!).

Exercice 4 : CIRCUIT RLC SÉRIE

I - Réponse à un échelon de tension

1. Pour t < 0 on est en régime permanent, la bobine se comporte comme un fil donc $u_L(0^-) = 0$ et le condensateur se comporte comme un interrupteur ouvert donc $i(0^-) = 0$. On en déduit que $u_R(0^-) = Ri(0^-) = 0$ et donc la loi des mailles donne $u_C(0^-) = 0$.

- 2. La continuité de l'intensité qui traverse la bobine impose $i(0^+)=i(0^-)=0$ donc $u_R(0^+)=0$ et la continuité de la tension aux bornes du condensateur impose $u_C(0^+)=u_C(0^-)=0$. La loi des mailles donne enfin $u_L(0^+)=E$.
- 3. On applique la loi des mailles : $E=u_R+u_C+u_L$, la loi d'Ohm : $u_R=Ri$, du condensateur : $i=C\frac{\mathrm{d}\,u_C}{\mathrm{d}\,t}$ et de la bobine $u_L=L\frac{\mathrm{d}\,i}{\mathrm{d}\,t}$. En combinant les trois (en partant de la loi de la bobine) on obtient l'équation différentielle :

$$\frac{\mathrm{d}^2 u_L}{\mathrm{d} t^2} + \frac{R}{L} \frac{\mathrm{d} u_L}{\mathrm{d} t} + \frac{1}{LC} u_L = 0$$

- 4. La pulsation propre du circuit est $\omega_0=\frac{1}{\sqrt{LC}}$ et le facteur de qualité est $Q=\frac{1}{R}\sqrt{\frac{L}{C}}$.
- 5. D'après le graphique on trouve $E \simeq 4\,\mathrm{V}$, $\omega_0 = 2\pi f \simeq 10^5\,\mathrm{rad/s}$ et $Q \simeq 10$. On donne ci-dessous l'évolution de la tension $u_L(t)$ pour t>0. Déterminer à partir de ce graphique une estimation des valeurs numériques de E, ω_0 et Q.
- 6. On a $\omega_0^2 \simeq 10^{10}\,\mathrm{s}^{-2} = \frac{1}{LC}$. On peut donc par exemple prendre $L=0.1\,\mathrm{mH}$ et $C=1\,\mathrm{\mu F}$. Dans ces conditions on a $R=\frac{1}{Q}\sqrt{\frac{L}{C}}=\frac{1}{10}\sqrt{\frac{0.1}{1\times 10^{-3}}}=1\,\Omega$.

II - Régime sinusoïdal forcé

- 7. $\underline{e}(t) = Ee^{j(\omega t + \varphi)}$.
- 8. On a un pont diviseur de tension formé par l'impédance Z_L en série avec Z_C et Z_R . On a donc

$$\underline{u}_{L} = \underline{e} \frac{Z_{L}}{Z_{L} + Z_{R} + Z_{C}} = \underline{e} \frac{jL\omega}{jL\omega + \frac{1}{jC\omega} + R}$$

Avec les expressions de ω_0 et Q données on trouve bien :

$$\underline{u}_{L} = \underline{\mathbf{e}} \frac{jQ\frac{\omega}{\omega_{0}}}{1 + jQ\left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)}$$

9. On a:

$$U(\omega) = |\underline{u}_L| = E \frac{Q \frac{\omega}{\omega_0}}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}}$$

On a $U(\omega_0) = QE$

- 10. Lorsque le facteur de qualité est grand, on a $U(\omega_0)>E$ il se produit un phénomène de résonance
- 11. Le déphasage est $\varphi = \arg(\underline{u}_L) \arg(\underline{e})$ soit :

$$\varphi = \arg \left(\frac{jQ\frac{\omega}{\omega_0}}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} \right) = \frac{\pi}{2} - \arctan\left(Q\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right)$$

Lorsque $\omega = \omega_0, \varphi = \frac{\pi}{2}$.