### Rozvrhovanie – 2.časť

- Operatívny manažment výrobného procesu
  - Plánovanie vs. rozvrhovanie
- Rozvrhovanie hlavné a doplnkové charakteristiky, typy úloh
  - Rozvrh, optimálny rozvrh, používané kriteriálne funkcie
  - Príklad úlohy rozvrhovania a tvorby rozvrhu (Ganttov diagram)
- Typy rozvrhovacích úloh a ich riešenie
  - 1. Rozvrhovanie na paralelných strojoch/procesoroch
    - A. Rozvrhovanie na jednom stroji/procesore
      - i. S povoleným prerušením úloh
      - ii. Bez prerušenia úloh
    - B. Rozvrhovanie na viacerých strojoch/procesoroch
  - 2. Rozvrhovanie na špecializovaných (dedikovaných) strojoch
    - A. Open shop
    - B. Flow shop
    - C. Job shop

#### Typy rozvrhovacích úloh

#### 1. Paralelné procesory (stroje)

- A. Rozvrhovanie **na jednom procesore** (jednostupňová výroba) s prerušením, alebo bez prerušenia
- B. Rozvrhovanie na viacerých procesoroch (viacstupňová výroba)

#### 2. Špecializované (dedikované) procesory (stroje)

- úlohy sa rozdeľujú do skupín, tzv. zákaziek:  $J_k = [T_{1,k}, \ldots, T_{nk,k}]$
- $\mathsf{--}$  každá úloha v rámci zákazky  $J_k$  beží na inom stroji
- Rozlišujeme 3 základné typy týchto úloh –
   A) open shop, B) flow shop a C) job shop
   (podrobnosti budú vysvetlené na budúcej prednáške)

### 1. Rozvrhovanie na paralelných procesoroch (strojoch)

## A. Rozvrhovanie na jednom stroji/procesore – s prerušením

- JACKSONOV ALGORITMUS:
  - Máme n úloh, rôzne  $r_i$  a  $d_i$ . Potom algoritmus pre nájdenie optimálneho rozvrhu v zmysle kritéria  $L_{max}$  funguje takto:
- 1. Vždy aktivuj úlohu s najskoršou dobou ukončenia ( $d_i$ ) spomedzi všetkých, ktoré sú aktuálne pripravené.
- 2. Akonáhle začne byť úloha  $T_i$  pripravená a procesor je obsadený úlohou  $T_j$ , pozastav úlohu  $T_j$  v prospech úlohy  $T_i$  práve vtedy, ak čas ukončenia i-tej úlohy je skorší ako čas ukončenia j-tej úlohy, inak ponechaj bežať úlohu  $T_i$ .

### Príklad – jednostupňová výroba

| Úloha | $t_i$ | ri | $d_i$ |
|-------|-------|----|-------|
| Α     | 6     | 4  | 32    |
| В     | 8     | 0  | 27    |
| С     | 4     | 9  | 22    |
| D     | 5     | 15 | 43    |
| Е     | 8     | 20 | 38    |
| F     | 8     | 21 | 36    |



*t* (čas)

### Príklad – jednostupňová výroba

| Úloha | $t_i$ | $r_i$ | $d_i$ |
|-------|-------|-------|-------|
| Α     | 6     | 4     | 32    |
| В     | 8     | 0     | 27    |
| С     | 4     | 9     | 22    |
| D     | 5     | 15    | 43    |
| Е     | 8     | 20    | 38    |
| F     | 8     | 21    | 36    |



 Vypočítajte rôzne typy kriteriálnych funkcií pre výsledný rozvrh (typu C, F, L, T)

$$c_i(R) = [ , , , , , , , ]$$
 $l_i(R) = [ , , , , , , , ]$ 
 $t_i(R) = [ , , , , , , ]$ 
 $f_i(R) = [ , , , , , , ]$ 
 $C_{max}(R) = [ , , , , , , ]$ 

$$L(R) =$$
 $T_{max}(R) =$ 
 $T(R) =$ 
 $n_T(R) =$ 

 $L_{max}(R) =$ 

## A. Rozvrhovanie na jednom stroji/procesore – bez prerušenia (1)

- Zložitejšia úloha ako v prípade s prerušením, nakoľko ide o permutačnú úlohu (n! možných rozvrhov), ktorú až na špeciálne prípady nemožno riešiť v polynomiálnom čase.
- Niektoré špeciálne prípady:
- 1. Úlohy  $T_i$  (i = 1, ..., n),  $r_i = 0$  (pre všetky i = 1, ..., n), bez zadaných  $d_i$ , bez precedencií, bez priorít
  - Z hľadiska kriteriálnej funkcie  $C_{max}$  sú všetky rozvrhy rovnako dobré, takže ľubovoľné usporiadanie úloh je optimálne.
  - Z hľadiska kriteriálnej funkcie C je optimálne usporiadanie úloh podľa neklesajúcej postupnosti ich dĺžok trvania, tj.:  $t_{(1)} \le t_{(2)} \le \ldots \le t_{(n)}$  čiže od najkratšej úlohy po najdlhšiu.

### A. Rozvrhovanie na jednom stroji/procesore – bez prerušenia (2)

- 2. Presne ako v predchádzajúcom prípade, ale s prioritami  $w_i$ 
  - Z hľadiska kriteriálnej funkcie  $C_w$  je optimálne usporiadanie úloh podľa nerastúcej postupnosti ich priorít, tj.:  $w_{(1)} \ge w_{(2)} \ge \dots \ge w_{(n)}$  čiže od najvyššej priority po najnižšiu
- 3. Úlohy  $T_i$  (i = 1, ..., n),  $r_i = 0$  (pre všetky i = 1, ..., n), ale rôzne  $d_i$ , bez precedencií, bez priorít
  - Z hľadiska kriteriálnej funkcie  $L_{max}$  existuje viacero heuristík, napr. Moorov algoritmus vychádza z neklesajúcej postupnosti požadovaných časov ukončenia úloh, t.j.  $d_{(I)} \le d_{(2)} \le ... \le d_{(n)}$

## A. Rozvrhovanie na jednom stroji/procesore – bez prerušenia (3)

 Všetky ostatné úlohy vedú na permutačné rozvrhy a je možné ich riešiť napríklad metódou vetvenia a medzí, ktorá sa snaží efektívne prehľadať nasledujúci priestor prehľadávania:



n! listových uzlov

### B. Rozvrhovanie na viacerých paralelných procesoroch

- Úlohy sa najprv **usporiadajú podľa zvolenej heuristiky** a potom sa priraďujú zaradom vždy na ten procesor, ktorý sa najskôr uvoľní. Pritom sa používajú rôzne heuristiky, napr.:
  - LPT (Longest Processing Time) vyber úlohu s najdlhším trvaním ( $t_i$ )
  - SPT (Shortest Processing Time) vyber úlohu s najkratším trvaním ( $t_i$ )
  - EST (Earliest Starting Time) vyber úlohu s najskorším časom začiatku ( $r_i$ )
  - LST (Latest Starting Time) vyber úlohu s najneskorším časom začiatku ( $r_i$ )
  - **EFT** (Earliest Finishing Time) ... s najskorším časom ukončenia  $(d_i)$
  - LFT (Latest Finishing Time) ... s najneskorším časom ukončenia ( $d_i$ )
  - MWR (Most Work Remaining) vyber úlohu s najdlhšou zvyškovou prácou (súčet trvaní úloh, ktoré ešte musia byť vykonané za vybranou úlohou) možno uplatniť ak sú zadané precedencie, resp. usporiadanie v zákazkách

# Príklad algoritmu s použitím heuristiky LPT

begin

vytvor usporiadaný zoznam úloh

Pri inej heuristike stačí zmeniť tento riadok (spôsob usporiadania)

```
pri LPT od najdlhšej po najkratšiu, t.j.: t_1 \ge t_2 \ge ... \ge t
for j = 1 to m S_i = 0; % pre každý procesor inicializuj čas jeho dostupnosti na 0
           % počítadlo úloh j nastav na 1 (poradové číslo úlohy v zozname)
          % opakuj kým nespracuješ všetky úlohy v zozname
     urči také k, že S_k = \min\{S_i\} % vyber prvý voľný procesor
                         1 \le i \le m
     S_k := S_k + t_i; % prirad úlohu T_i (v poradí j-ta v zozname) na procesor k
     j := j + 1; % zvýš počítadlo úloh j o 1 (posun na nasledujúcu úlohu)
                % ak už boli spracované všetky úlohy v zozname, ukonči cyklus
  until j = n;
end;
```

### Príklad (1)

Majme 3 paralelné procesory, na ktorých je potrebné rozvrhnúť 7 úloh s takýmito dĺžkami trvania:  $t_1$ =5,  $t_2$ =5,  $t_3$ =4,  $t_4$ =4,  $t_5$ =3,  $t_6$ =3,  $t_7$ =3, pričom  $r_i$ =0  $\forall i$ =1..7 Pri tvorbe rozvrhu **použite heuristiku LPT**.



#### Vzdialenosť LPT rozvrhov od optima

 Ale optimálny rozvrh v zmysle kritéria C<sub>max</sub> je nasledovný:



• Dá sa dokázať, že rozvrh vygenerovaný podľa LPT nie je voči optimálnemu rozvrhu podľa  $C_{\max}$  horší ako:

$$Q_{LPT} = \frac{4}{3} - \frac{1}{3m}$$
 (*m* je počet strojov)  
t.j. pre  $m = 3$ :  $Q_{LPT} = \frac{4}{3} - \frac{1}{9} = \frac{12 - 1}{9} = \frac{11}{9}$ 

### Príklad (2)





Hodnoty kriteriálnych funkcií pre rozvrh podľa LPT  $(R_1)$ :

$$c_i(R) = [ \quad , \quad , \quad , \quad , \quad , \quad ] \qquad c_i(R) = [ \quad , \quad , \quad , \quad , \quad , \quad ]$$
 
$$C_{max}(R) = \qquad \qquad C_{max}(R) = \qquad \qquad C(R)$$

$$C_{max}(R) =$$
 $C(R) =$ 
 $\bar{C} =$ 

Hodnoty kriteriálnych funkcií pre optimálny rozvrh  $(R_2)$ :

$$c_i(R) = [ , , , , , , ]$$
 $C_{max}(R) = [$ 
 $C(R) =$ 

#### Príklad (2) – riešenie





Hodnoty kriteriálnych funkcií pre rozvrh podľa LPT ( $R_1$ ):

$$c_i(R_I) = [5, 5, 4, 8, 8, 8, 11]$$

$$C_{max}(R_1) = 11$$

$$C(R_1) = 49$$

$$\bar{C}(R_1) = 7$$

Hodnoty kriteriálnych funkcií pre optimálny rozvrh ( $R_2$ ):

$$c_i(R_2) = [5, 5, 9, 9, 3, 6, 9]$$

$$C_{max}(R_2) = 9$$

$$C(R_2) = 46$$

$$\bar{C}(R_2) = 6.8$$

#### Príklad (3)

Pre rovnako zadané úlohy:  $t_1$ =5,  $t_2$ =5,  $t_3$ =4,  $t_4$ =4,  $t_5$ =3,  $t_6$ =3,  $t_7$ =3, pričom  $r_i$ =0  $\forall i$ =1..7 zostrojte **rozvrh podľa heuristiky SPT** a porovnajte ho podľa zvolených kriteriálnych funkcií s LPT rozvrhom.



### Úloha zo 6. prednášky

- 1. Definujte si vlastnú úlohu rozvrhovania na jednom procesore, pričom je prípustné prerušenie úloh. Zadajte si 7 úloh s nasledovnými údajmi pre všetky úlohy:
  - rôzne časy trvania úloh  $t_i$  (dĺžka úlohy),
  - rôzne (aj nenulové) časy pripravenosti do výroby  $r_i$  (release time),
  - rôzne časy kedy by mali byť úlohy hotové  $d_i$  (due date),
- 2. Zostrojte pre Vami zadanú úlohu rozvrh vo forme Ganttovho diagramu podľa Jacksonovho algoritmu.
- 3. Pre zostavený rozvrh vypočítajte hodnoty nasledovných kriteriálnych funkcií: C,  $C_{max}$ , L,  $L_{max}$ , F,  $F_{max}$ , T,  $T_{max}$ ,  $n_T$

Termín vypracovania: 9.4.2024