IBMR 2010 Project Part-2

Requirement

- RANSAC
- Projection Mapping / Affine Mapping
- Image Warping

Bonus

- Non-Maximum Suppression
- Bilinear Interpolation
- Linear Blending
- Stitching your own photos

Classes

T

欄位	欄位	方法	
方法	方法		
add() : Matrix (+ 1 多載) at() : double& (+ 1 多載)			
div(): Matrix (+ 1 多載) get(): double (+ 1 多載)			
		欄位	
Matrix() (+ 4 多載)			
mul() : Matrix (+ 1 多載) multiply() : Matrix (+ 1 多載)			
	方法		
operator-() : Matrix (+ 1多載) operator*() : Matrix (+ 1多載)		欄位	欄位
operator/(): Matrix (+ 1 多載) operator+(): Matrix (+ 1 多載)	printMatrix() : void (+ 1 多載)		
sub() : Matrix (+ 1 多載)			

2

欄位

Implement method

Nearest Image Pairs

- **Step 1.** For image1, image2...imageN , get Descriptors from each image and put them into Descriptors container $\ D$. Each Descriptor $\ D_i$ contains the following attributes
 - image: the image index of this descriptor

• col: the center position X in image

• row: the center position Y in image

matrix: descriptor patch

Step 2. Using KNN search to find the most nearest Descriptor pair for each D_i . Each matching pair contains the following attributes

• image1: Descriptor1 image index

Image2: Descriptor2 image index

• Y1: Descriptor1 center Y

X2: Descriptor2 center X

Y2: Descriptor2 center Y

Step 3. Vote the nearest image using a counter matrix $C_{N\times N}$. The value of C_{ij} shows how many matching pairs from image i to image j (where C_{ii} must be zero because image cannot match to itself).

Image	0	1	2	3	4
0	0	4	10	3	49
1	1	0	15	21	2
2	7	15	0	10	26
3	3	19	8	0	3
4	40	3	23	3	0

Step 4. There are at least N-1 connects between two images, and two overlap possibilities for each connect. We could match the 2(N-1) top biggest connects by the following rules.

- a \cdot Select the most biggest C_{ij} and set $C_{ij} = C_{ji} = -1$ mark as checked
- b $\boldsymbol{\cdot}$ Compute projection matrix $\,P_{ij}$ and $P_{ji}\,$ using RANSAC
- c \ If checked connects < 2(N-1), go to step a.

Image	0	1	2	3	4
0	0	4	10	3	-1
1	1	0	15	21	2
2	7	15	0	10	26
3	3	19	8	0	3
4	-1	3	23	3	0

Find max value $\,\mathrm{C}_{04} = 49\,$

Compute projection matrix P_{04} and P_{40}

Image	0	1	2	3	4
0	0	4	10	3	-1
1	1	0	15	21	2
2	7	15	0	10	-1
3	3	19	8	0	3
4	-1	3	-1	3	0

Find max value $C_{24} = 26$

Compute projection matrix P_{24} and P_{42}

Image	0	1	2	3	4
0	0	4	10	3	-1
1	1	0	15	-1	2
2	7	15	0	10	-1
3	3	-1	8	0	3
4	-1	3	-1	3	0

Find max value $C_{13} = 21$

Compute projection matrix P_{13} and P_{31}

Image	0	1	2	3	4
0	0	4	10	3	-1
1	1	0	-1	-1	2
2	7	-1	0	10	-1
3	3	-1	8	0	3
4	-1	3	-1	3	0

Find max value $C_{12} = 15$

Compute projection matrix P_{12} and P_{21}

Project to Global Coordinate

 Once we have the projection matrices connect the two nearest images, we can project all images into a global coordinate (in this example is the coordinate of image 0).

$$P_{gj} = P_{gk} * P_{kj}$$

 \bullet Let image 0 to be the global coordinate. If $\,P_{i0}\,$ and $\,P_{ij}\,$ exist, compute $P_{j0}\,$ and $\,P_{0\,j}\,$ by

$$P_{j0} = P_{ji} * P_{i0}$$
$$P_{0j} = P_{j0}^{-1}$$

Image	0	1	2	3	4
0	0	4	10	3	-1
1	1	0	-1	-1	2
2	7	-1	0	10	-1
3	3	-1	8	0	3
4	-1	3	-1	3	0

Find P_{40} and P_{42} exist Compute P_{20} and P_{02}

Image	0	1	2	3	4
0	0	4	-1	3	-1
1	1	0	-1	-1	2
2	-1	-1	0	10	-1
3	3	-1	8	0	3
4	-1	3	-1	3	0

Find P_{20} and P_{21} exist Compute P_{10} and P_{01}

Image	0	1	2	3	4
0	0	-1	-1	3	-1
1	-1	0	-1	-1	2
2	-1	-1	0	10	-1
3	3	-1	8	0	3
4	-1	3	-1	3	0

Find P_{10} and P_{13} exist Compute P_{30} and P_{03}

Image	0	1	2	3	4
0	0	-1	-1	-1	-1
1	-1	0	-1	-1	2
2	-1	-1	0	10	-1
3	-1	-1	8	0	3
4	-1	3	-1	3	0

Fill complete

Backward Warping

Step 1. Let W_i and H_i as width and height of image i.

The boundary of image i
$$\mathbf{B}_i = \begin{bmatrix} 0 & \mathbf{W}_i & 0 & \mathbf{W}_i \\ 0 & 0 & \mathbf{H}_i & \mathbf{H}_i \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Step 2. Project B_i to image 0 coordinate by P_{0i}

$$B_i' = \frac{P_{0i} * B_i}{s}$$
, where s is the scalerof each point

- **Step 3.** Since we have $B_i'(where \ i=1...N)$, select maxX, maxY, minX, minY. The global boundary is (minX, minY) as left-top bound, and (maxX, maxY) as right-bottom bound.
- **Step 4.** Create a result image R with

width =
$$maxX - minX + 1$$

height = $maxY - minY + 1$

Step 5. For each point in result image, project to every image coordinate by P_{i0} .

$$\begin{bmatrix} su\\sv\\s \end{bmatrix} = P_{i0} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

Step 6. If u and v is in the boundary of I_i , set $R(x,y) = I_i(u,v)$

Bilinear Interpolation

 $R(x,y) = I_i(u,v)$. When u and v are floating numbers, we can use Bilinear Interpolation instead of nearest method to avoid aliasing.

Linear Blending

In Backward Warping step 5 and step 6, R(x,y) could map to multiple images (u_i,v_i) which means R(x,y) is in the overlapped area.

Step 1. Compute each distance D_i from (u_i, v_i) to image i center (X_i, Y_i) . $D_i = \sqrt{(u_i - X_i)^2 (v_i - Y_i)^2}$

Step 2. The value of R(x, y)

$$R(x,y) = \frac{\sum \frac{1}{D_i} (u_i, v_i)}{\sum \frac{1}{D_i}}$$

Projection Mapping

Project image i (x_i, y_i) to image j (u_i, v_i)

$$\begin{bmatrix} su_i \\ sv_i \\ s \end{bmatrix} = P_{ji} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$
$$\begin{cases} su_i = ax_i + by_i + c \\ sv_i = dx_i + ey_i + f \\ s = gx_i + hy_i + i \end{cases}$$

$$solve \begin{cases} ax_{i} + by_{i} + c - (gx_{i} + hy_{i} + i)u_{i} = 0 \\ dx_{i} + ey_{i} + f - (gx_{i} + hy_{i} + i)v_{i} = 0 \end{cases}$$

Let $i = 1, 2, 3 \dots k$, where $k \ge 4$ because of the DOF = 8 solve $A[a \ b \ c \ d \ e \ f \ g \ h \ i]^T = 0$

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -u_1x_1 & -u_1y_1 & -u_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -v_1x_1 & -v_1y_1 & -v_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -u_2x_2 & -u_2y_2 & -u_2 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -v_2x_2 & -v_2y_2 & -v_2 \\ \vdots & \vdots \\ x_k & y_k & 1 & 0 & 0 & 0 & -u_kx_k & -u_ky_k & -u_k \\ 0 & 0 & 0 & x_k & y_k & 1 & -v_kx_k & -v_ky_k & -v_k \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \\ g \\ h \\ i \end{bmatrix} = 0$$

Using SVD get $A = USV^T$, where V is a 9-by-9 matrix

$$P_{ji} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \text{scale} * \begin{bmatrix} V_{19} & V_{29} & V_{39} \\ V_{49} & V_{59} & V_{69} \\ V_{79} & V_{89} & V_{99} \end{bmatrix}$$

RANSAC

Step 1. Get n matching pairs from two nearest image i and j

pair	image i		image j		
1	x_1	y_1	u_1	v_1	
2	x_2	y_2	u_2	v_2	
3	x_3	y_3	u_3	v_3	
4	x_4	y_4	u_4	v_4	
:					
n	x_n	\mathcal{Y}_n	u_n	v_n	

- Step 2. Set the best projection matrix BP = NULL, best supported counter BS = 0, loop L = 0.
- **Step 3.** Random select k matching pairs to solve projection matrix P_{ii}
- **Step 4.** Project all image i points (x_i, y_i) to image j coordinate (x_i', y_i')
- **Step 5.** Set supported counter S=0, and check all projected points (x_i',y_i') . If $|x_i'-u_i| < threshold \ and \ |y_i'-v_i| < threshold$, S++.
- **Step 6.** If S > BS, set $BP = P_{ji}$ and BS = S
- **Step 7.** If L < maxLoop, L++ and go to **Step3**
- **Step 8.** Return the best projection matrix BP

Result

9957513 宋秉一

