« »

02.03.01

__.___. 2017 -_____.,..-.., _____.,4,/

1.		,,			20							
1 2			,		20							
	• •	,		_								
	20											
4. :												
1												
2	1											
3	2											
4	3											
5	4											
6												
-												
_												
	20											
		, ,										
·	20											
)									
	,											

46., 17.

, , , .

, - .

- , .

, .

, . . .

,

Оглавление

		•			•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	5
1.				•		•	•					•		•		•			•		•		•		6
2.				•		•	•					•		•		•			•		•		•		ç
3.	$\mathcal{M}(\epsilon,t)$							•			•	•	•	•	•	•				•					13
	3.1.							•			•	•	•	•	•	•				•					13
	3.2.			•								•	•	•		•							•		19
4.				•			•					•		•		•		•	•				•		24
																									28

, ,
$$\Psi(\mathbf{r},t)$$
:

$$\left[i\hbar\frac{\partial}{\partial t} + \frac{\hbar^2}{2m}\nabla^2 - U(r) - V(\mathbf{r}, t)\right]\Psi(\mathbf{r}, t) = 0,$$
(1)

$$U(r)$$
 - , $V(\mathbf{r},t) = |e|(\mathbf{F}(t) \cdot \mathbf{r})$ - (e m) , $\mathbf{F}(t)$.[?] - $U(r)$, - $\Psi_0(\mathbf{r},t)$ $E_0 = -\hbar^2 \kappa^2/(2m)$.

$$r$$
, $U(r)$ $\Psi(\mathbf{r},t)$, $E = \mathcal{E}(F,\omega) + n\hbar\omega$, $\mathcal{E}(F,\omega) -$ (.. $\mathbf{F}(t)$ Ψ_0), $\hbar\omega -$, ω .[?] $\Psi(\mathbf{r},t)$ $r \to \infty$ $G(\mathbf{r},t;\mathbf{r}',t')$ $\mathbf{F}(t)$:

$$\Psi(\mathbf{r},t) = -\frac{2\pi\hbar^2}{m\kappa} \int_{-\infty}^{t} e^{-i\epsilon t'/\hbar} G(\mathbf{r},t;0,t') f(t') dt', \qquad (2)$$

$$f(t)$$
 - , $\Psi(\mathbf{r},t)$ $r \to 0$, ϵ - $\Psi(\mathbf{r},t)$, E_0 .[?] $G(\mathbf{r},t;\mathbf{r}',t')$

$$\left[i\hbar\frac{\partial}{\partial t} + \frac{\hbar^2}{2m}\nabla^2 - V(\mathbf{r}, t)\right]G(\mathbf{r}, t; \mathbf{r}', t') = \delta(\mathbf{r} - \mathbf{r}')\delta(t - t'),\tag{3}$$

•

$$G(\mathbf{r}, t; \mathbf{r}', t') = -\theta(t - t') \frac{i}{\hbar} \left[\frac{m}{2\pi i \hbar (t - t')} \right]^{3/2} e^{iS(\mathbf{r}, t; \mathbf{r}', t')/\hbar}, \tag{4}$$

 $\theta(x)$ - , S - $\mathbf{F}(t)$:

$$S(\mathbf{r}, t; \mathbf{r}', t') = \frac{m}{2(t - t')} \left(\mathbf{r} - \mathbf{r}' - \frac{e}{mc} \int_{t'}^{t} \mathbf{A}(\tau) d\tau \right)^{2}$$
$$-\frac{e^{2}}{2mc^{2}} \int_{t'}^{t} \mathbf{A}^{2}(\tau) d\tau - \frac{e}{c} [\mathbf{r} \mathbf{A}(t) - \mathbf{r}' \mathbf{A}(t')]. \tag{5}$$

(5)
$$\mathbf{A}(t) - \mathbf{F}(t) = -\frac{1}{c} \frac{\partial \mathbf{A}(t)}{\partial t}$$
. (6)

 $r \to 0 \ \Psi(\mathbf{r},t)$:

$$\Psi(\mathbf{r},t) \simeq \left(\frac{1}{r} + B(\epsilon)\right) f(t)e^{-i\epsilon t/\hbar},$$
 (7)

$$B(\epsilon)$$
 $U(r)$., $B=-\kappa=-\sqrt{2m|E_0|}/\hbar=\mathrm{const.}$ (2) (7), $f(t)$,

$$f_n = \frac{1}{\mathcal{T}} \int_{-\tau}^{\tau} f(t)e^{in\omega_{\tau}t}dt, \quad \omega_{\tau} = \frac{2\pi}{\mathcal{T}},$$
 (8)

 \mathcal{T} – ().[?] f_n :

$$\sum_{n=-\infty}^{\infty} \mathcal{R}(\epsilon + n\hbar\omega_{\tau}) f_n e^{-in\omega_{\tau}t} = \sum_{m=-\infty}^{\infty} e^{-im\omega_{\tau}t} f_m \mathcal{M}(\epsilon + m\hbar\omega_{\tau}, t), \qquad (9)$$

$$\mathcal{R}(E) = B(E) - i\sqrt{2mE}/\hbar,\tag{10}$$

$$\mathcal{M}(\epsilon, t) = \sqrt{\frac{m}{2\pi i\hbar}} \int_{0}^{\infty} \frac{e^{i\epsilon\tau/\hbar}}{\tau^{3/2}} [e^{iS(t, t-\tau)/\hbar} - 1] d\tau. \tag{11}$$

(9) -
$$\mathcal{M}$$
., (11), $\mathcal{M}(\epsilon, t)$., $|e| = m = \hbar = 1$.

 $\mathbf{F}(t) = \mathbf{e}_z \, F(t) \quad : \quad$

$$S(t,t') = -\frac{1}{2} \int_{t'}^{t} [\alpha(\epsilon,t,t')]^2 d\epsilon, \qquad (12)$$

$$\alpha(\epsilon, t, t') = A(\epsilon) - \frac{1}{(t - t')} \int_{t'}^{t} A(\tau) d\tau, \tag{13}$$

$$A(t) = -\int_{-\infty}^{t} F(\tau)d\tau.$$
 (14)

F(t) A(t) (1)

$$\lambda$$

$$I(\lambda) = \int_{C} \phi(t)e^{\lambda f(z)}dz,$$
(15)

, -

$$I(\lambda) = \int_{a}^{b} \phi(t)e^{\lambda f(t)}dt. \tag{16}$$

.

,
$$f(t)$$
 (a,b) . λ , , λ .

:

:

$$I(\lambda) = \int_{0}^{a} \phi(t)e^{-\lambda t^{\alpha}}dt \quad (0 < a \le \infty, \alpha > 0),$$

 $\phi(t) |t| < 2h$

$$\phi(t) = t^{\beta}(c_0 + c_1t + \dots + c_nt^n + \dots), \ \beta > -1,$$

 $\int_0^a |\phi(t)| e^{-\lambda_0 t^{\alpha}} dt \le M \quad \lambda_0.$

$$I(\lambda) \sim \sum_{n=0}^{\infty} \frac{c_n}{\alpha} \Gamma\left(\frac{\beta+n+1}{\alpha}\right) \lambda^{-\frac{\beta+n+1}{\alpha}},$$
 (17)

 Γ - - .

(16).

1. (16)
$$\lambda = \lambda_0, \dots$$

$$\int_{a}^{b} |\phi(t)| e^{\lambda_0 f(t)} dt \le M,$$

$$f(t)$$
 t_0 $(,b)$, $|t-t_0| < \delta$ $f(t)$

$$f(t) = f(t_0) + a_2(t - t_0)^2 + \dots + a_n(t - t_0)^n + \dots$$
 $(a_2 < 0),$

h > 0, $f(t_0)f(t) > h$. $t = \psi(\tau)$ $\tau = 0$ $f(t_0)f(t) = \tau^2$,

$$\phi[\psi(\tau)]\psi'(\tau) = \sum_{n=0}^{\infty} c_n \tau^n.$$
(18)

(16)

$$I(\lambda) = \int_{a}^{b} \phi(t)e^{\lambda f(t)}dt \sim e^{\lambda}f(t_0)\sqrt{\frac{\pi}{\lambda}}\sum_{n=0}^{\infty} \frac{c_2n}{\lambda^n} \frac{(2n)!}{4^n n!}.$$

, f(t) (a,b).

2. (16) $\lambda = \lambda_0$ (1) f(t) t = a, $(f'(a) \neq 0)$, h > 0, f(a) - f(t) > ha. $t = \psi(t)$ $\tau = 0$ $f(a) - f(t) = \tau$, (18).

$$I(\lambda) = \int_{a}^{b} \phi(t)e^{\lambda f(t)}dt \sim \frac{e^{f(a)}}{\lambda} \sum_{n=0}^{\infty} \frac{n!c_n}{\lambda^n}.$$
 (19)

 λ

$$I(\lambda) = \int_{C} \phi(t)e^{\lambda f(z)}dz$$

$$C, |e^{\lambda f(z)}| = e^{\lambda \operatorname{Re} f(z)}, \dots \operatorname{Re} f(z)$$
 , $\operatorname{Re} f(z)$, $\widetilde{C}, ,$

.[?]

$$, z = +iy,$$

$$u = \operatorname{Re} f(z),$$

$$S(y,u)$$
, $S(y,u)$, $f'(z)=0$, (y,z) .

$$\widetilde{C}$$
, $\operatorname{Re} f(z)$, $f(z)$, , $\operatorname{Im} f(z) = \operatorname{const.}$

,
$$\widetilde{C}$$
 z_0 , $\operatorname{Re} f(z)$ \widetilde{C} . , $f'(z_0) = 0$, $\operatorname{Im} f(z) = \operatorname{const}$, $\operatorname{Re} f(z)$, .

, z_0 , $\operatorname{Re} f(z)$ u=0 \widetilde{C} $0, \ldots \frac{\partial}{\partial s} \operatorname{Re} f(z) = 0$, $\operatorname{Im} f(z) = \operatorname{const} \widetilde{C}$, $\frac{\partial}{\partial s} \operatorname{Im} f(z) \equiv 0$,

$$f'(z_0) = \frac{\partial}{\partial s} \operatorname{Re} f(z) + i \frac{\partial}{\partial s} \operatorname{Im} f(z) = 0.$$

$$(15) \quad \widetilde{C}, \quad z_0 \quad \operatorname{Im} f(z) = \operatorname{const} (. \, \ref{const}).$$

$$\vdots \quad \widetilde{C} \operatorname{arg} e^{f(z)} = \operatorname{Im} f(z) = \operatorname{const}, \quad (15) \quad , \quad (16). \, \cite{C} \end{cases}$$

$$1 \, 2.$$

, \widetilde{C} , z_0 , $f'(z_0) = 0$, $f''(z_0) \neq 0$, z_0 Im f(z) = const, \widetilde{C} Re $f(z) < \text{Re } f(z_0) - h \ (h > 0)$., (15) λ ., 1. z = z(t) \widetilde{C} ;

$$I(\lambda) = \int_{C} \phi(z)e^{\lambda f(z)}dz = e^{\lambda i \operatorname{Im} f[z(t)]} \int_{a}^{b} \phi[z(t)]e^{\lambda \operatorname{Re} f[z(t)]}z'dt. \tag{20}$$
16, , [?]:

$$I(\lambda) = \int_{a}^{b} \phi(t)e^{\lambda f(t)}dt \sim \frac{e^{f(a)}}{\lambda} \sum_{n=0}^{\infty} \frac{n!c_n}{\lambda^n}.$$

. $\phi[z(t)]z' = \widetilde{\phi}(t)$, $\operatorname{Re} f[z(t)] = \widetilde{f}(t)$ (19):

$$\int_{a}^{b} \widetilde{\phi}(t)e^{\lambda \widetilde{f}(t)}dt \sim e^{\lambda \widetilde{f}(t_0)} \sqrt{\frac{\pi}{\lambda}} \widetilde{c_0}, \tag{21}$$

 \widetilde{c}_0 - $\widetilde{\phi}[\widetilde{\psi}(\tau)]\widetilde{\psi}'(\tau)$.

 $:\widetilde{\phi}(t_0)=\phi(z_0)z'(t_0),\quad,\ f[z(t)]=\mathrm{Re}f[z(t)]+i\mathrm{Im}f[z(t)]=\widetilde{f}(t)+\mathrm{const}$ $\widetilde{C},$

$$\widetilde{f}''(t_0) = \frac{d^2}{dt^2} f[z(t)] \mid_{t=t_0} = f''(z_0) z'^2(t_0),$$

$$f'[z(t)]z''(t) = 0 \ t = t_0. \quad , \quad z'(t_0) = ke^{i\theta}, \qquad \widetilde{f}'' = -|f''(z_0)|k^2. ,$$

$$\widetilde{c}_0 = \widetilde{\phi}(t_0) \sqrt{-\frac{2}{\widetilde{f}''(z_0)}} = \phi(z_0) e^{i\theta} \sqrt{\frac{2}{|f''(z_0)|}}.$$

(21), (20),

$$I(\lambda) \sim e^{\lambda f(z_0)} \sqrt{\frac{2\pi}{|f''(z_0)|}} \phi(z_0) e^{i\theta} \frac{1}{\sqrt{\lambda}}.$$

$$(22)$$

$$, z_0 - , \operatorname{Re} f(z) . - \widetilde{C} , \operatorname{Re} f(z) , (22) .$$

$$, z_0, z_0, z_0.$$

$$, \phi(z) f(z), , \lambda \to \infty$$

$$\mathcal{M}(\epsilon, t) (11) \lambda :$$

$$\lambda = \frac{1}{2\mathcal{T}} \int_{-\mathcal{T}/2}^{\mathcal{T}/2} A^2(\tau) d\tau. \tag{23}$$

3. $\mathcal{M}(\epsilon,t)$

3.1.

(11) .
$$\frac{1}{(t-t')^{3/2}} \ , \ , \ t \to t' \ , \ . \ , \ , \qquad , \qquad \lambda \gg 1, \ \lambda \ \ (23).$$
 $S(t',t)$ t :

(2),
$$S |t - t'| \gg 1$$
. $t = t'$, , $(t \to t') S$

$$S(\tau,t) \sim \frac{1}{24} \left(\frac{d}{dt} A(t)\right)^2 (t'-t)^3 + \frac{1}{24} \frac{d}{dt} A(t) \cdot \frac{d^2}{dt^2} A(t) (t'-t)^4 + \dots$$

$$S(t',t) \sim \frac{1}{24} \left(\dot{A}(t)\right)^2 (t'-t)^3.$$
 (24)

 $S \mathcal{M} t - t' = \tau,$

$$\mathcal{M}_{\tau=0} = \frac{1}{\sqrt{2\pi i}} \int_{0}^{\infty} \frac{e^{i\epsilon\tau}}{\tau^{3/2}} \left(e^{-i\frac{\dot{A}(t)^{2}}{24}\tau^{3}} - 1 \right) d\tau =$$

$$= \frac{1}{\sqrt{2\pi i}} \int_{0}^{\infty} e^{i\epsilon\tau} \tau^{3/2} d\tau \cdot \left(-i\frac{\dot{A}(t)^{2}}{24} \right)$$

,
$$\mathcal{M}_{\tau=0}$$
, (-1),

3
$$\mathcal{M}_{\tau=0}$$
.

, , .
$$(t \approx 0)$$
 $S(t',t)$, $\mathcal{M}_{\tau=0}(\epsilon,t)$, $(... t=(10,\infty)$ $\mathcal{M}_{\tau=0}(\epsilon,t)=0).$

:

$$\mathcal{M} \sim \int_{-\infty}^{t} \frac{1}{(t-t')^{3/2}} e^{i[\epsilon(t-t')+S(t,t')]} dt'.$$

$$t - t' = \tau,$$

$$\mathcal{M} \sim \int_{0}^{\infty} \frac{1}{\tau^{3/2}} e^{i[\epsilon \tau + S(t, t - \tau)]} d\tau.$$

$$f(t,\tau) = \epsilon \tau + S(t,t-\tau) \ \phi(\tau) = \frac{1}{\tau^{3/2}},$$
 :

$$M \sim \int_{0}^{\infty} \phi(\tau) e^{if(t,\tau)} d\tau.$$

, (15).

:

$$M_0(\epsilon, t) \simeq \sqrt{\frac{1}{2\pi i}} \sum_{t_0} e^{f(t, t_0)} \sqrt{-\frac{2}{\frac{\partial f(t, \tau)}{\partial \tau}|_{\tau = t_0}}} \phi(t_0),$$

$$t_0 - f'(t) = 0.$$

$$f''(t)$$
 .

 $(t_0), \quad \tau$

$$f(t,\tau) = \epsilon \tau + S(t,t-\tau),$$

$$\frac{\partial f(t,\tau)}{\partial \tau} = \epsilon + \frac{\partial S'(t,t-\tau)}{\partial \tau},$$

$$\frac{\partial f(t,\tau)}{\partial \tau} = 0 \Rightarrow \frac{\partial S'(t,t-\tau)}{\partial \tau} = -\epsilon.$$
(25)

S

$$S(t, t - \tau) = -\frac{1}{2m} \int_{t-\tau}^{t} \alpha(\epsilon, t, t - \tau)^{2} d\epsilon$$

 $S(t,\tau) \ \tau$

$$\frac{\partial S(t,t-\tau)}{\partial \tau} = -\frac{1}{2m}\alpha(t-\tau,t,t-\tau)^2.$$

$$t_0 = t-\tau \quad , \quad \frac{\partial S(t,t-\tau)}{\partial \tau} = -\epsilon \text{ (25)}, \qquad :$$

$$\alpha^2(t_0, t, t_0) = 2\epsilon m. \tag{26}$$

$$\frac{\partial^2 f(t,\tau)}{\partial \tau^2}$$
:

$$\frac{\partial^2 f(t,\tau)}{\partial \tau^2} = -\frac{1}{2} \left[\alpha(t-\tau,t,t-\tau)^2 \right]' =$$
$$= -\alpha(t_0,t,t_0)\alpha(t_0,t,t_0)'.$$

 α :

$$\alpha(t_0, t, t_0) = \frac{|e|}{c} \left[A_{\tau}(t_0) - \frac{1}{(t - t_0)} \int_{t_0}^t A(\tau) d\tau \right].$$

, $f''(t,\tau)$

$$\frac{\partial^2 f(t,\tau)}{\partial \tau^2} = |e|\alpha(t_0,t,t_0) \times \left[F(t_0) - \frac{1}{(t-t_0)^2} \int_{t_0}^t A(\tau) d\tau + A(t_0) \frac{1}{t-t_0} \right].$$

 $D = f''(t, t_0)$

$$\widetilde{S} = \epsilon \tau + S(t, t - \tau) = \epsilon(t - t_0) + S(t, t_0).$$

,:

$$M_0(\epsilon, t) \simeq \sum_{t_0} \frac{e^{i\tilde{S}(t, t_0)}}{\sqrt{D}(t - t_0)^{3/2}}.$$
 (27)

, t.

(26). , ϵ , (9) \mathcal{M} , , , ...

$$\mathcal{M}(\epsilon + m\omega_{\tau}, t).$$

 ϵ , (11) $\epsilon + m\omega_{\tau}$. $\epsilon > 0$.

2:

$$\alpha(t', t, t') - \sqrt{2\epsilon} = 0,$$

$$\alpha(t', t, t') + \sqrt{2\epsilon} = 0.$$

$$(t')$$
 (t_0) .

$$\alpha(t', t, t')$$
 $t' = [-20..20]$ $t = 0$ (. 4):

$$\begin{cases} \operatorname{Re} \alpha(x+iy,t,x+iy) = 2\epsilon \\ \operatorname{Im} \alpha(x+iy,t,x+iy) = 0 \end{cases}$$

 ϵ - . , . . , . . , . . .

(.5)
$$\alpha(t', t, t')$$
 $t' = [-20..20]$ $t = 20$

, .
$$\epsilon = 0.6 \, (\, .4)$$
 , $t >> 0$. ϵ , . . [?]

3.2.

(11)
$$, -\infty., , (14), (??).,$$

$$|e^{-\frac{t_b^2}{\alpha^2}}| < \epsilon,$$

 $[-\infty;0]$, , t_b , . (14)

$$A(t) = -c \int_{t_b}^{t} F(\tau) d\tau.$$

. ω_i , .

$$\int_{x_1}^{x_2} f(x)dx = \sum_{j=1}^{N} \omega_j f(x_j).$$

, . , , (14) ,, , , , . GNU GSL.

GNU GSL - , C .

GSL: C (C++) , , , C. GSL , . , , , C, ,

1.

2.

3.

4.

5.

6.

7.

9. (QUADPACK)

10. ..

, $gsl_integration_qags$, $gsl_root_f solver$, , [?]

, , (14) GSL 10^{-9} , .

, α (13), (12), S(t',t):

$$S(t,t') = \frac{1}{2} \int_{t'}^{t} (A(\epsilon) - A_1(t',t))^2 d\epsilon,$$
 (28)

 $A_1(t',t) = \frac{1}{t'-t} \int_{t'}^t A(\tau) d\tau. \quad \epsilon A_1(t',t) , \quad 1 \quad t',t. \quad , \qquad M.$ () , .

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ix\xi} dx$$

, (DFT).

(DTFT), ., DTFT, . DFT - , DTFT. DTFT. , DFT . , DTFT (). - , DFT DTFT.

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-i2\pi kn/N} = \sum_{n=0}^{N-1} x_n \cdot [\cos(2\pi kn/N) - i \cdot \sin(2\pi kn/N)],$$

DFT (FFT).

(FFT) (DFT) . () . FFT , DFT (). DFT $O(n^2)$, , DFT $O(n\log n)$, n .

, . 1965, 1805. 1994, Gilbert Strang FFT " ". (11)

$$t-t'=\tau$$
,

$$\mathcal{M}(t,\xi) = \int_{0}^{\infty} \frac{e^{i\epsilon\tau}}{\tau^{3/2}} (e^{i[S(t,t-\tau)} - 1)d\tau$$

$$\hat{F}(\xi) = \int_{-\infty}^{\infty} e^{i\xi\tau} F(\tau)d\tau$$
(29)

, , .

FFTW.

FFTW (DFTs).[?]

FFTW (FFT) (). , O(nlogn), .

, (), . , , ($O(n, \log n)$). , (CooleyTukey

FFT), / , Rader Bluestein FFT. - , FFTW , FFTs , (,) .

., "

FFTW (MPI). -.

- ., , , , , FFTW , , , . , , . (29),

$$F(\tau) = \frac{1}{\tau^{3/2}} (e^{i[+S(t,t-\tau)]} - 1),$$

$$\hat{F}(\psi) = \int_{-\infty}^{\infty} e^{i\phi\psi} F(\phi) d\phi.$$

 $\psi = \epsilon, \quad [0, \infty], \ \hat{F}(0)$

$$\hat{F}(\epsilon) = \mathcal{M}(t, \epsilon).$$

$$\mathcal{M}(t,\epsilon) = \frac{(\epsilon - x_1) \cdot (F(x_2) - F(x_1))}{x_2 - x_1} + F(x_1)$$
 (30)

, \mathcal{M} ϵ , , ϵ , ().

, , .

, $0 \infty,$.

(6) FFTW (100 200).

. 6. FFTW

, , 100. , , [0, 350] /.

, , , , , , $(f(x_0) \approx f(x_{end})).$

0 , , .

, , . ϵ , , .[?]

, fftw (. 7)

 $, \ldots, , \epsilon - \ldots (30), \qquad (\epsilon). \quad , , , \ldots$

, , GSL.


```
, , , t=[0,70]. . \mathcal{M}(\epsilon,t)=0 , 10^{-7}=1024=10^{-9} . \alpha, (??) \sqrt{20}, , , \epsilon, F_0=\omega. . (.8):
```


 $, \qquad (t \gg 0) \ , \qquad .$

 ϵ (. 9):

, $(\epsilon = 0.3)$, , 6, $t \approx 11$. (.5), ϵ .

(10, 11 12) , $\epsilon = 0.4, F_0 = 2, \omega = 0.8.$

(11), (.10), $t \approx t_0 (t_0 -)$, $\frac{1}{(t-t')^{3/2}}$., $|t-t_0| \gg 1$, ,

(.12).

(13, 14 15) ,
$$\epsilon = 0.4, F_0 = 2, \omega = 0.8.$$

 \mathcal{M} , , , , $t \approx 0$, $t \approx t_0$. , , 10., , .

