

Variabilidade

Felipe Figueiredo

Variabilidade

Incertezas de dados numéricos

Felipe Figueiredo

Medidas Sumárias

- Medidas sumárias resumem a informação contida nos dados em um pequeno conjunto de números.
- Medidas sumárias de populações se chamam parâmetros, e são representadas por letras gregas (μ , σ^2 , σ , etc).
- Medidas sumárias de amostras se chamam estatísticas e são representadas por letras comuns (\bar{x} , s^2 , s, etc).
- Geralmente trabalhamos com estatísticas descritivas.

Sumário

Variabilidade

Felipe Figueiredo

10

Variabilidade

Felipe Figueiredo

Medidas Sumárias

Variabilidade Felipe Figueiredo

Tipos de medidas sumárias

Os dois principais tipos de medidas sumárias utilizadas na literatura são:

- Medidas de Tendência Central
- Medidas de Variabilidade (ou Dispersão)

Variabilidade em Medições

Variabilidade Felipe Figueiredo

Figura: Variabilidade da medição de uma esfera metálica de 1000g. Balança A, "imprecisão" de 50g, balança B, "imprecisão" de 100g (Fonte: Reis, Reis, 2002)

Fontes comuns de variabilidade

Variabilidade Felipe Figueiredo

- Imprecisão ou erro experimental
- Variabilidade biológica
- "Mancadas" experimentais

Conceito de Erro na Estatística

No contexto acadêmico, **erro** não tem o mesmo significado do cotidiano.

Erro se refere a todas as fontes de variabilidade acima.

Outro nome comum é dispersão (scatter).

INTO

Variabilidade Felipe Figueiredo

Exemplo

100 estudantes de [insira aqui um curso da área da saúde] trabalharam em pares, e mediram a pressão sistólica de seu parceiro(a).

Ao final do exercício, a turma obteve 100 valores de pressão sistólica.

Pergunta

Como "entender" essa listagem de 100 números?

O histograma

Quantas barras?

Variabilidade

Felipe Figueiredo

Média

Variabilidade

Felipe Figueiredo

Exemplo

Foram observados os seguintes níveis de colesterol de uma amostra de pacientes. Qual é o nível médio de colesterol nestes pacientes?

 $\bar{x} = \frac{990}{6} = 165$

$$x_1 = 142$$

$$x_2 = 144$$

$$x_3 = 176$$

$$x_4 = 203$$

$$x_5 = 134$$

$$x_6 = 191$$

Percentis e a Mediana

Variabilidade

Felipe Figueiredo

Definition

A mediana é o dado que ocupa o percentil de 50% dados (posição central).

- Para se calcular a mediana, deve-se ordenar os dados.
- Encontrar o valor do meio se *n* for ímpar.
- Encontrar a média dos dois valores do meio se n for par.

Mediana

Variabilidade Felipe Figueiredo

Exemplo

Conforme no exemplo anterior

$$x_5 = 134$$

$$x_1 = 142$$

$$x_2 = 144$$

 $x_3 = 176$

$$x_6 = 191$$

$$x_4 = 203$$

$$M_d = \frac{144 + 176}{2} = 160$$

$$x_4 = 203$$

Qual é a diferença?

Variabilidade Felipe Figueiredo

O que acontece com a média, na presença de um valor extremo (muito grande, ou muito pequeno em relação aos outros)?

Exemplo

O que acontece se você digitar 20 ao invés de 203?

Comparação entre as Medidas Centrais

Variabilidade Felipe Figueiredo

Example

Considere o seguinte dataset

$$\{1, 1, 2, 4, 7\}$$

- N = 5
- As medidas descritivas centrais para estes dados são:

$$\bullet \ \mu = \frac{1+1+2+4+7}{5} = \frac{15}{5} = 3$$

M_d = 2

Comparação entre as Medidas Centrais

Variabilidade

Felipe
Figueiredo

Example

Considere agora este outro dataset

$$\{1, 1, 2, 4, 32\}$$

- N = 5
- As medidas descritivas centrais para estes dados são:

• $M_d = 2$

O boxplot

- "Caixa e bigodes"
- A caixa representa os percentis de 25% e 75%
- Barra interna que representa a mediana (percentil 50%)
- Barras verticais indicam a amplitude dos dados
 - Mínimo e Máximo
 - Regras para "a maioria"

"Regras para a maioria"

Variabilidade

INTO

Variabilidade

- Felipe Figueiredo
- Uma maneira de entender a variabilidade do dataset é analisar os desvios em relação à média.
- Cada desvio é a diferença entre o valor do dado e a média.

Figura: Boxplots para dois grupos de dados (Fonte: Reis, Reis, 2002)

Desvios em relação à média

Variabilidade

Felipe Figueiredo

Mas os desvios...

- 1 são tão numerosos quanto os dados
- 2 têm sinal (direção do desvio)
- SEMPRE têm soma nula, portanto o desvio médio é sempre 0

Pense...

Uma fórmula que dá o mesmo resultado para qualquer dataset... serve para resumir seus dados?

Desvios em relação à média

Variabilidade Felipe Figueiredo

Exemplo

• N = 5

 \bullet $\bar{x}=3$

 $\{1, 2, 3, 4, 5\}$

- $\mathbf{0} \ D_1 = 1 3 = -2$
- $Q D_2 = 2 3 = -1$
- **3** $D_3 = 3 3 = 0$
- $\mathbf{0} \ D_4 = 4 3 = 1$
- **6** $D_5 = 5 3 = 2$

Soma dos desvios

Variabilidade

Felipe Figueiredo

Exemplo

Somando tudo:

$$\sum D = D_1 + D_2 + D_3 + D_4 + D_5 =$$

$$(-2) + (-1) + 0 + 1 + 2 = 0$$

Pense...

Uma fórmula que dá o mesmo resultado para qualquer dataset... serve para resumir seus dados?

Desvios absolutos

Variabilidade

Felipe Figueiredo

Tomando-se o módulo dos desvios temos:

Definition

Desvio médio absoluto (MAD) é a média dos desvios absolutos

- É uma medida de dispersão robusta (pouco influenciada por outliers)
- Módulo não tem boas propriedades matemáticas (analíticas e algébricas).
- Pouco usado para inferência (apesar da robustez)

Como proceder?

Variabilidade

Felipe Figueiredo

- Como extrair alguma informação útil (e sumária!) dos desvios?
- Problema: sinais

Pergunta

Como tirar os sinais dos desvios?

Desvio médio absoluto (MAD)

Variabilidade Felipe Figueiredo

Exemplo

$$\{1,2,3,4,5\}, \bar{x}=3$$

$$|D_1| = |1 - 3| = 2$$

$$|D_2| = |2-3| = 1$$

$$|D_3| = |3-3| = 0$$

$$|D_4| = |4-3| = 1$$

6
$$|D_5| = |5 - 3| = 2$$

$$MAD = \frac{\sum |D_i|}{5} = \frac{6}{5} = 1.2$$

Uma proposta "melhor"

Variabilidade

Felipe Figueiredo

- Uma outra maneira de eliminar os sinais é elevar ao quadrado cada desvio.
- Preserva boas propriedades matemáticas
- Calculando a média dos quadrados dos desvios (desvios quadráticos) temos ...

Variabilidade

Felipe Figueiredo

Definition

Variância

A variância é a média dos desvios quadráticos.

Variância populacional

$$\sigma^2 = \frac{\sum (x_j - \mu)^2}{N}$$

Variância amostral

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

- Conveniente do ponto de vista matemático (boas propriedades algébricas e analíticas).
- Unidade quadrática, pouco intuitiva para interpretação de resultados.

Variância

Variabilidade

Felipe Figueiredo

Exemplo

$$\{1, 2, 3, 4, 5\}, \bar{x} = 3$$

$$D_1^2 = (1-3)^2 = (-2)^2 = 4$$

$$2 D_2^2 = (2-3)^2 = (-1)^2 = 1$$

3
$$D_3^2 = (3-3)^2 = 0^2 = 0$$

4 $D_4^2 = (4-3)^2 = 1^2 = 1$

$$s^2 = \frac{\sum D_i^2}{4} = 2.5$$

$$D_5^2 = (5-3)^2 = 2^2 = 4$$

Definition

Desvio Padrão

Variabilidade Felipe Figueiredo

O desvio padrão é a raiz quadrada da variância.

Desvio padrão populacional

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

Desvio padrão amostral

$$s = \sqrt{s^2} = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

Desvio Padrão

Variabilidade

- Felipe Figueiredo
- É a medida mais usada, por estar na mesma escala (unidade) dos dados.
- Boas propriedades matemáticas
- Boas propriedades como estimador (Inferência)

Desvio Padrão

Variabilidade

Felipe Figueiredo

Example

$$\{1,2,3,4,5\}, \bar{x}=3$$

$$s^2 = 2.5$$

$$s = \sqrt{s^2} = \sqrt{2.5} = 1.58$$

N ou N-1?

Variabilidade

Felipe Figueiredo

Fórmula com N

Usada apenas para cálculos com dados de toda a população.

Fórmula com N-1

Usada para cálculos com dados de uma amostra.

Pense...

Você tem acesso a toda a população, ou apenas a uma amostra?

Interpretação do DP

Variabilidade Felipe Figueiredo

"Um pouco mais da metade" dos valores está a 1 DP da média (considerando amdos os lados)

"Quase todos" os dados estão a 2 DP da média (considerando ambos os lados)

Cenas dos próximos capítulos

Leitura pós-aula e exercícios selecionados

Variabilidade

Felipe Figueiredo

Leitura obrigatória

Capítulo 3.

Pular as seções:

- Calculando o DP numa calculadora
- Coeficiente de Variação (CV)
- Exercício 1
- Exercício 2
- Exercício 3 (R: 34.64503)
- Exercício 4 (R: 219.4131)
- Exercício 5