from google.colab import files
uploaded = files.upload()

Choose Files No file chosen

Upload widget is only available when the cell has been executed in the current

browser session. Please rerun this cell to enable.

Saving medical_examination.txt to medical_examination.txt

import pandas as pd

Read the uploaded TXT file as if it's a CSV (assuming it's comma-separated)
df = pd.read_csv('medical_examination.txt', sep=",", engine="python")

Display the first few rows
df.head()

→		id	age	sex	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
	0	0	18393	2	168	62.0	110	80	1	1	0	0	1	0
	1	1	20228	1	156	85.0	140	90	3	1	0	0	1	1
	2	2	18857	1	165	64.0	130	70	3	1	0	0	0	1
	3	3	17623	2	169	82.0	150	100	1	1	0	0	1	1
	4	4	17474	1	156	56.0	100	60	1	1	0	0	0	0

```
# Add an 'overweight' column (1 if BMI > 25, else 0)
df['overweight'] = (df['weight'] / (df['height'] / 100) ** 2 > 25).astype(int)
```

Show a few values to confirm
df[['weight', 'height', 'overweight']].head()

\rightarrow weight height overweight 0 62.0 168 0 1 85.0 156 1 2 64.0 165 3 82.0 169 1 4 56.0 156

```
# Normalize data: 0 = good, 1 = bad
df['cholesterol'] = (df['cholesterol'] > 1).astype(int)
df['gluc'] = (df['gluc'] > 1).astype(int)
# Check the changes
df[['cholesterol', 'gluc']].head()
```

```
₹
        cholesterol gluc
     0
                   0
     1
                   1
                         0
     2
                   1
                         0
     3
                   0
                         0
     4
                   0
                         0
```

```
# Clean the data
df_cleaned = df[
    (df['ap_lo'] <= df['ap_hi']) &
    (df['height'] >= df['height'].quantile(0.025)) &
    (df['height'] <= df['height'].quantile(0.975)) &</pre>
    (df['weight'] >= df['weight'].quantile(0.025)) &
    (df['weight'] <= df['weight'].quantile(0.975))</pre>
1
# Check how many rows remain after cleaning
print("Rows before cleaning:", df.shape[0])
print("Rows after cleaning:", df_cleaned.shape[0])
Rows before cleaning: 70000
    Rows after cleaning: 63259
import seaborn as sns
import matplotlib.pyplot as plt
# First, prepare the data in "long" format
df_cat = pd.melt(
    df,
    id_vars=['cardio'],
    value_vars=['active', 'alco', 'cholesterol', 'gluc', 'overweight', 'smoke']
)
# Group and reformat the data
df_cat = df_cat.groupby(['cardio', 'variable', 'value'])['value'].count().reset_index(name='total')
# Draw the catplot
cat_plot = sns.catplot(
    data=df_cat,
    x='variable',
    v='total',
    hue='value',
    col='cardio',
    kind='bar'
)
# Show the plot
plt.show()
```


-0.0

smoke -

-0.0

0.3

0.2

0.1

-0.0

0.0

0.0

-0.0

- 0.0

alco -	-0.0	-0.0	0.2	0.1	0.1	0.0	0.0	0.0	0.0	0.3			
active -	0.0	-0.0	0.0	-0.0	-0.0	-0.0	0.0	0.0	-0.0	0.0	0.0		
cardio -	0.0	0.2	0.0	-0.0	0.2	0.1	0.3	0.2	0.1	-0.0	-0.0	-0.0	
overweight -	-0.0	0.1	-0.1	-0.1	0.7	0.0	0.2	0.1	0.1	-0.0	0.0	-0.0	0.1