Submonoid Membership in n-dimensional lamplighter groups and S-unit equations

Ruiwen Dong¹

Magdalen College, University of Oxford

ICALP 2025

¹partially supported by ERC Advanced Grant 101097307.

Submonoid Membership in n-dimensional

lamplighter groups and S-unit equations

Let G be an infinite group (e.g. a matrix group).

Let G be an infinite group (e.g. a matrix group).

Definition (Subgroup Membership Problem)

Input: A finite set $S \subset G$, an element $t \in G$. **Question:** Does t belong to the group $\langle S \rangle_{\text{group}}$?

Let G be an infinite group (e.g. a matrix group).

Definition (Subgroup Membership Problem)

Input: A finite set $S \subset G$, an element $t \in G$.

Question: Does t belong to the group $\langle S \rangle_{\text{group}}$?

Definition (Submonoid Membership Problem)

Input: A finite set $S \subset G$, an element $t \in G$.

Question: Does t belong to the monoid $\langle S \rangle_{\text{monoid}}$?

Let G be an infinite group (e.g. a matrix group).

Definition (Subgroup Membership Problem)

Input: A finite set $S \subset G$, an element $t \in G$. **Question:** Does t belong to the group $\langle S \rangle_{\text{group}}$?

Definition (Submonoid Membership Problem)

Input: A finite set $S \subset G$, an element $t \in G$.

Question: Does t belong to the monoid $\langle S \rangle_{\text{monoid}}$?

Definition (Rational Subset Membership Problem)

Input: A rational subset $R \subseteq G$ and an element $t \in G$.

Question: Does t belong to the set R?

rational subset = set defined by a rational expression in G= set recognized by a finite state automaton over G

Example of a rational subset: $\{g_1\}^*\{g_2\}^* = \{g_1^n g_2^m \mid n, m \in \mathbb{N}\}.$

Example of a rational subset: $\{g_1\}^*\{g_2\}^* = \{g_1^n g_2^m \mid n, m \in \mathbb{N}\}.$

Example of a rational subset: $\{g_1\}^*\{g_2\}^* = \{g_1^n g_2^m \mid n, m \in \mathbb{N}\}.$

Fin. gen. submonoids are rational subsets:

Example of a rational subset: $\{g_1\}^*\{g_2\}^* = \{g_1^n g_2^m \mid n, m \in \mathbb{N}\}.$

Fin. gen. submonoids are rational subsets: $\langle g_1, g_2 \rangle_{\text{monoid}} = \{g_1, g_2\}^*$.

Example of a rational subset: $\{g_1\}^*\{g_2\}^* = \{g_1^n g_2^m \mid n, m \in \mathbb{N}\}.$

Fin. gen. submonoids are rational subsets: $\langle g_1, g_2 \rangle_{\text{monoid}} = \{g_1, g_2\}^*$.

Example of a rational subset: $\{g_1\}^*\{g_2\}^* = \{g_1^n g_2^m \mid n, m \in \mathbb{N}\}.$

Fin. gen. submonoids are rational subsets: $\langle g_1, g_2 \rangle_{\text{monoid}} = \{g_1, g_2\}^*$.

Fin. gen. subgroups are submonoids:

Example of a rational subset: $\{g_1\}^*\{g_2\}^* = \{g_1^n g_2^m \mid n, m \in \mathbb{N}\}.$

Fin. gen. submonoids are rational subsets: $\langle g_1, g_2 \rangle_{\text{monoid}} = \{g_1, g_2\}^*$.

Fin. gen. subgroups are submonoids: $\langle g_1,g_2 \rangle_{\text{group}} = \langle g_1,g_2,g_1^{-1},g_2^{-1} \rangle_{\text{monoid}}$

Example of a rational subset: $\{g_1\}^*\{g_2\}^* = \{g_1^n g_2^m \mid n, m \in \mathbb{N}\}.$

Fin. gen. submonoids are rational subsets: $\langle g_1, g_2 \rangle_{\text{monoid}} = \{g_1, g_2\}^*$.

Fin. gen. subgroups are submonoids: $\langle g_1,g_2\rangle_{\text{group}}=\langle g_1,g_2,g_1^{-1},g_2^{-1}\rangle_{\text{monoid}}$

$$g_1^{-1} g_1$$
 $g_2^{-1} g_2$

Example of a rational subset: $\{g_1\}^*\{g_2\}^* = \{g_1^n g_2^m \mid n, m \in \mathbb{N}\}.$

Fin. gen. submonoids are rational subsets: $\langle g_1, g_2 \rangle_{\text{monoid}} = \{g_1, g_2\}^*$.

Fin. gen. subgroups are submonoids: $\langle g_1,g_2\rangle_{\text{group}}=\langle g_1,g_2,g_1^{-1},g_2^{-1}\rangle_{\text{monoid}}$

$$g_1^{-1}$$
 g_1 g_2 g_2^{-1} g_2

 ${\sf Subgroup\ Membership} < {\sf Submonoid\ Membership} < {\sf Rational\ Subset\ Mshp}.$

Example of a rational subset: $\{g_1\}^*\{g_2\}^* = \{g_1^n g_2^m \mid n, m \in \mathbb{N}\}.$

Fin. gen. submonoids are rational subsets: $\langle g_1, g_2 \rangle_{\text{monoid}} = \{g_1, g_2\}^*$.

Fin. gen. subgroups are submonoids: $\langle g_1,g_2\rangle_{\text{group}}=\langle g_1,g_2,g_1^{-1},g_2^{-1}\rangle_{\text{monoid}}$

$$g_1^{-1}$$
 g_1 g_2^{-1} g_2^{-1} g_2^{-1} g_2^{-1}

Subgroup Membership < Submonoid Membership < Rational Subset Mshp.

Decidability depends on the group G.

▶ All three problems are decidable in \mathbb{Z}^d and the free group F_2 . (Benois '69)

Example of a rational subset: $\{g_1\}^*\{g_2\}^* = \{g_1^n g_2^m \mid n, m \in \mathbb{N}\}.$

Fin. gen. submonoids are rational subsets: $\langle g_1, g_2 \rangle_{\text{monoid}} = \{g_1, g_2\}^*$.

Fin. gen. subgroups are submonoids: $\langle g_1,g_2\rangle_{\text{group}}=\langle g_1,g_2,g_1^{-1},g_2^{-1}\rangle_{\text{monoid}}$

Subgroup Membership < Submonoid Membership < Rational Subset Mshp.

Decidability depends on the group G.

- ▶ All three problems are decidable in \mathbb{Z}^d and the free group F_2 . (Benois '69)
- ▶ All three problems are undecidable in $F_2 \times F_2$. (Mikhailova '66)

$$G \geq_{\text{finite index}} H, \qquad (G = H \cup g_1 H \cup \cdots \cup g_k H)$$

$$G \geq_{\mathsf{finite\ index}} H, \qquad (G = H \cup g_1 H \cup \dots \cup g_k H)$$
 $\uparrow \qquad \qquad \mathsf{decidable\ Sub___\ Membership}$

$$\begin{array}{lll} G & \geq_{\mathsf{finite\ index}} & H, & \qquad & \left(G = H \cup g_1 H \cup \dots \cup g_k H\right) \\ \uparrow & & \uparrow & \\ ? & & \mathsf{decidable\ Sub} & & \mathsf{Membership} \end{array}$$

$$G$$
 $\geq_{\text{finite index}} H$, $(G = H \cup g_1 H \cup \cdots \cup g_k H)$
 \uparrow \uparrow decidable Sub_____ Membership

Theorem (folklore, Gilman 1987?, Stallings 1983?)

Let H be a finite index subgroup of G. Then **Subgroup Membership** is decidable in G if and only if it is decidable in H.

$$G$$
 $\geq_{\text{finite index}} H$, $(G = H \cup g_1 H \cup \cdots \cup g_k H)$
 \uparrow decidable Sub_____ Membership

Theorem (folklore, Gilman 1987?, Stallings 1983?)

Let H be a finite index subgroup of G. Then Subgroup Membership is decidable in G if and only if it is decidable in H.

Theorem (Grunschlag 1999)

Let H be a finite index subgroup of G. Then Rational Subset Membership is decidable in G if and only if it is decidable in H.

$$G$$
 $\geq_{\text{finite index}} H$, $(G = H \cup g_1 H \cup \cdots \cup g_k H)$
 \uparrow \uparrow decidable Sub_____ Membership

Theorem (folklore, Gilman 1987?, Stallings 1983?)

Let H be a finite index subgroup of G. Then Subgroup Membership is decidable in G if and only if it is decidable in H.

Open Problem

Is decidability of **Submonoid Membership** stable under taking finite index subgroups?

Theorem (Grunschlag 1999)

Let H be a finite index subgroup of G. Then Rational Subset Membership is decidable in G if and only if it is decidable in H.

Theorem (D. 2025, this talk)

Decidability of **Submonoid Membership** is <u>not</u> stable under taking finite index subgroup.

Theorem (D. 2025, this talk)

Decidability of **Submonoid Membership** is <u>not</u> stable under taking finite index subgroup.

i.e. we construct

$$G \geq_{\mathsf{finite index}} H \qquad \qquad (G = H \cup g_1 H \cup \dots \cup g_k H)$$
 $\uparrow \qquad \qquad \downarrow \mathsf{undecidable} \qquad \qquad \mathsf{decidable}$

Theorem (D. 2025, this talk)

Decidability of **Submonoid Membership** is <u>not</u> stable under taking finite index subgroup.

i.e. we construct

$$G \geq_{\mathsf{finite index}} H \qquad \qquad (G = H \cup g_1 H \cup \dots \cup g_k H)$$
 $\uparrow \qquad \qquad \downarrow \mathsf{undecidable} \qquad \qquad \mathsf{decidable}$

the title of this talk:

Submonoid Membership in n-dimensional lamplighter groups and S-unit equations

Let \mathbb{F}_2 be the finite field $\{0,1\}$ (\approx {off, on} for lamps).

Let \mathbb{F}_2 be the finite field $\{0,1\}$ (\approx {off, on} for lamps).

Definition

The 2-dimensional lamplighter group is defined as a matrix group

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2} & f \\ 0 & 1 \end{pmatrix} \, \middle| \, z_1,z_2 \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm,X_2^\pm]}_{\text{Laurent polynomial over } \mathbb{F}_2} \right\}.$$

Each element is a $\mathbb{Z}^2\text{-grid}$ of lamps, each on \bigcirc or off \blacksquare , along with a person $\ \mathring{\natural}$.

Let \mathbb{F}_2 be the finite field $\{0,1\}$ (\approx {off, on} for lamps).

Definition

The 2-dimensional lamplighter group is defined as a matrix group

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2} & f \\ 0 & 1 \end{pmatrix} \middle| z_1, z_2 \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm, X_2^\pm]}_{\mathsf{Laurent polynomial over } \mathbb{F}_2} \right\}.$$

Each element is a $\mathbb{Z}^2\text{-grid}$ of lamps, each on \bigcirc or off \blacksquare , along with a person $\,\mathring{\xi}\,$.

$$\begin{pmatrix} X_1X_2 & X_1^2 + X_2^2 \\ 0 & 1 \end{pmatrix}$$

Let \mathbb{F}_2 be the finite field $\{0,1\}$ (\approx {off, on} for lamps).

Definition

The 2-dimensional lamplighter group is defined as a matrix group

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2} & f \\ 0 & 1 \end{pmatrix} \middle| z_1, z_2 \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm, X_2^\pm]}_{\mathsf{Laurent polynomial over} \ \mathbb{F}_2} \right\}.$$

Each element is a \mathbb{Z}^2 -grid of lamps, each on \bigcirc or off lacktriangle, along with a person \mathring{x} .

$$\begin{pmatrix} X_1X_2 & X_1^2 + X_2^2 \\ 0 & 1 \end{pmatrix}$$

	1		
	X_2^2		
		X_1X_2	
	1	X_1	X_1^2

Let \mathbb{F}_2 be the finite field $\{0,1\}$ (\approx {off, on} for lamps).

Definition

The 2-dimensional lamplighter group is defined as a matrix group

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2} & f \\ 0 & 1 \end{pmatrix} \middle| z_1, z_2 \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm, X_2^\pm]}_{\text{Laurent polynomial over } \mathbb{F}_2} \right\}.$$

Each element is a $\mathbb{Z}^2\text{-grid}$ of lamps, each on \bigcirc or off \blacksquare , along with a person $\,\mathring{\xi}\,$.

$$\begin{pmatrix} X_1 X_2 & X_1^2 + X_2^2 \\ 0 & 1 \end{pmatrix}$$

Let \mathbb{F}_2 be the finite field $\{0,1\}$ (\approx {off, on} for lamps).

Definition

The 2-dimensional lamplighter group is defined as a matrix group

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2} & f \\ 0 & 1 \end{pmatrix} \middle| z_1, z_2 \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm, X_2^\pm]}_{\mathsf{Laurent polynomial over} \ \mathbb{F}_2} \right\}.$$

Each element is a \mathbb{Z}^2 -grid of lamps, each on \bigcirc or off lacktriangle, along with a person \mathring{x} .

$$\begin{pmatrix} X_1X_2 & X_1^2 + X_2^2 \\ 0 & 1 \end{pmatrix}$$

Let \mathbb{F}_2 be the finite field $\{0,1\}$ (\approx {off, on} for lamps).

Definition

The 2-dimensional lamplighter group is defined as a matrix group

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2} & f \\ 0 & 1 \end{pmatrix} \middle| z_1, z_2 \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm, X_2^\pm]}_{\text{Laurent polynomial over } \mathbb{F}_2} \right\}.$$

Each element is a $\mathbb{Z}^2\text{-grid}$ of lamps, each on \bigcirc or off \blacksquare , along with a person $\,\mathring{\xi}\,$.

$$\begin{pmatrix} X_1X_2 & X_1^2 + X_2^2 \\ 0 & 1 \end{pmatrix}$$

Multiplication in the 2-dimensional lamplighter group

Multiplication in the 2-dimensional lamplighter group

Multiplication in the 2-dimensional lamplighter group

align the origin of 2nd graph to the person in 1st graph,

Multiplication in the 2-dimensional lamplighter group

$$\begin{pmatrix} X_1X_2 & X_1^2 + X_2^2 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} X_1 & 1 \\ 1 & 1 \end{pmatrix}$$

align the origin of 2nd graph to the person in 1st graph, move the 2nd graph onto the 1st graph,

Multiplication in the 2-dimensional lamplighter group

$$\begin{pmatrix} X_1X_2 & X_1^2 + X_2^2 \\ 1 & 1 \end{pmatrix} \times \begin{pmatrix} X_1 & 1 \\ 1 & 1 \end{pmatrix}$$

align the origin of 2nd graph to the person in 1st graph, move the 2nd graph onto the 1st graph, and do pointwise addition on all lamps.

Multiplication in the 2-dimensional lamplighter group

$$= \begin{pmatrix} X_1^2 X_2 & X_1^2 + X_1 X_2 + X_2^2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} X_1 & 1 \\ 1 & 1 \end{pmatrix}$$

align the origin of 2nd graph to the person in 1st graph, move the 2nd graph onto the 1st graph, and do pointwise addition on all lamps.

 ${f n-dimensional\ lamplighter\ group:}$ replace 2-dimension grid with ${\it n-dimension}$ grid.

n-dimensional lamplighter group: replace 2-dimension grid with *n*-dimension grid.

Theorem (Lohrey, Steinberg and Zetzsche 2015)

Submonoid Membership is decidable in the 1-dimensional lamplighter group.

Theorem (Shafrir 2018)

Submonoid Membership is decidable in the 2-dimensional lamplighter group.

Proof is specific to each dimension.

n-dimensional lamplighter group: replace 2-dimension grid with *n*-dimension grid.

Theorem (Lohrey, Steinberg and Zetzsche 2015)

Submonoid Membership is decidable in the 1-dimensional lamplighter group.

Theorem (Shafrir 2018)

Submonoid Membership is decidable in the 2-dimensional lamplighter group.

Proof is specific to each dimension.

Theorem (This paper)

Submonoid Membership is decidable in the n-dimensional lamplighter group for all n.

n-dimensional lamplighter group: replace 2-dimension grid with *n*-dimension grid.

Theorem (Lohrey, Steinberg and Zetzsche 2015)

Submonoid Membership is decidable in the 1-dimensional lamplighter group.

Theorem (Shafrir 2018)

Submonoid Membership is decidable in the 2-dimensional lamplighter group.

Proof is specific to each dimension.

Theorem (This paper)

Submonoid Membership is decidable in the n-dimensional lamplighter group and its quotients for all n.

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2} & f \\ 0 & 1 \end{pmatrix} \, \middle| \, z_1,z_2 \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm,X_2^\pm]}_{\text{Laurent polynomial over } \mathbb{F}_2} \right\}.$$

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2} & f \\ 0 & 1 \end{pmatrix} \, \middle| \, z_1,z_2 \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm,X_2^\pm]}_{\text{Laurent polynomial over } \mathbb{F}_2} \right\}.$$

Modify the 2-dimensional lamplighter group by <u>"wiring"</u> all lamps in the same column together.

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2} & f \\ 0 & 1 \end{pmatrix} \, \middle| \, z_1,z_2 \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm,X_2^\pm]}_{\text{Laurent polynomial over } \mathbb{F}_2} \right\}.$$

Modify the 2-dimensional lamplighter group by <u>"wiring"</u> all lamps in the same column together.

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2} & f \\ 0 & 1 \end{pmatrix} \middle| z_1, z_2 \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm, X_2^\pm]/\langle X_2 - 1 \rangle}_{\text{ Laurent polynomial over } \mathbb{F}_2, \\ \text{ quotiented by the ideal } \langle X_2 - 1 \rangle}_{} \right\}.$$

Modify the 2-dimensional lamplighter group by "wiring" all lamps in the same column together. (\iff "quotienting" $\mathbb{F}_2[X_1^\pm, X_2^\pm]$ by the ideal $\langle X_2 - 1 \rangle$)

$$\left\{\begin{pmatrix} X_1^{z_1}X_2^{z_2} & f \\ 0 & 1 \end{pmatrix} \middle| \begin{array}{c} z_1,z_2 \in \mathbb{Z}, \underbrace{f \in \mathbb{F}_2[X_1^\pm,X_2^\pm]/\langle X_2-1\rangle}_{\text{Laurent polynomial over } \mathbb{F}_2, \\ \text{quotiented by the ideal } \langle X_2-1\rangle \end{pmatrix}\right\}.$$

Modify the 2-dimensional lamplighter group by "wiring" all lamps in the same column together. (\iff "quotienting" $\mathbb{F}_2[X_1^\pm, \overline{X_2^\pm}]$ by the ideal $\langle X_2 - 1 \rangle$) different "wiring" patterns \approx quotient by different ideals

Theorem (D. 2025)

Submonoid Membership is decidable in the n-dimensional lamplighter group and its quotients for all n.

Theorem (D. 2025)

Submonoid Membership is decidable in the n-dimensional lamplighter group and its quotients for all n.

Let

$$H := (2\text{-dim. lamplighter group}) \times \mathbb{Z}^5,$$

Theorem (D. 2025)

Submonoid Membership is decidable in the n-dimensional lamplighter group and its quotients for all n.

Let

$$H := (2\text{-dim. lamplighter group}) \times \mathbb{Z}^5,$$

Theorem (Lohrey, Steinberg and Zetzsche 2015)

Rational Subset Membership in the 2-dimensional lamplighter group is undecidable.

Theorem (D. 2025)

Submonoid Membership is decidable in the n-dimensional lamplighter group and its quotients for all n.

Let

$$H := (2\text{-dim. lamplighter group}) \times \mathbb{Z}^5,$$

Theorem (Lohrey, Steinberg and Zetzsche 2015)

Rational Subset Membership in the 2-dimensional lamplighter group is undecidable. (Because it can encode the 2-dimensional tiling problem.)

Theorem (D. 2025)

Submonoid Membership is decidable in the n-dimensional lamplighter group and its quotients for all n.

Let

$$G \geq_{\mathsf{finite\ index}} H \coloneqq \mathsf{(2\text{-}dim.\ lamplighter\ group)} \times \mathbb{Z}^5,$$

$$\uparrow$$
undecidable

Theorem (Lohrey, Steinberg and Zetzsche 2015)

Rational Subset Membership in the 2-dimensional lamplighter group is undecidable. (Because it can encode the 2-dimensional tiling problem.)

Corollary (Shafrir 2024)

H has a finite index overgroup G with undecidable Submonoid Membership.

Theorem (D. 2025)

Submonoid Membership is decidable in the n-dimensional lamplighter group and its quotients for all n.

Let

$$G \geq_{\mathsf{finite\ index}} H \coloneqq \underbrace{\left(\mathsf{2\text{-}dim.\ lamplighter\ group}\right) \times \mathbb{Z}^5}_{\mathsf{quotient\ of\ 7\text{-}dim.\ lamplighter\ group}},$$

Theorem (Lohrey, Steinberg and Zetzsche 2015)

Rational Subset Membership in the 2-dimensional lamplighter group is undecidable. (Because it can encode the 2-dimensional tiling problem.)

Corollary (Shafrir 2024)

H has a finite index overgroup G with undecidable Submonoid Membership.

Theorem (D. 2025)

Submonoid Membership is decidable in the n-dimensional lamplighter group and its quotients for all n.

Let

$$G \geq_{\mathsf{finite index}} H \coloneqq \underbrace{\left(2\mathsf{-dim. lamplighter group}\right) \times \mathbb{Z}^5}_{\mathsf{quotient of 7-dim. lamplighter group}},$$
 undecidable decidable

Theorem (Lohrey, Steinberg and Zetzsche 2015)

Rational Subset Membership in the 2-dimensional lamplighter group is undecidable. (Because it can encode the 2-dimensional tiling problem.)

Corollary (Shafrir 2024)

H has a finite index overgroup G with undecidable Submonoid Membership.

Deciding Submonoid Membership in lamplighter groups

Deciding Submonoid Membership in lamplighter groups

Submonoid Membership in n-dimensional lamplighter groups and S-unit equations

An S-unit equation is a linear equation

$$x_1m_1+\cdots+x_Km_K=m_0,$$

where we look for solutions x_1, \ldots, x_K in a multiplicative subgroup of a field \mathbb{K} .

An S-unit equation is a linear equation

$$x_1m_1+\cdots+x_Km_K=m_0,$$

where we look for solutions x_1, \ldots, x_K in a <u>multiplicative subgroup</u> of a field \mathbb{K} .

Example: solve $x_1 + 3x_2 = 6$, where $x_1, x_2 \in \mathbb{Q}$ are of the form $2^n 3^m$.

An S-unit equation is a linear equation

$$x_1m_1+\cdots+x_Km_K=m_0,$$

where we look for solutions x_1, \ldots, x_K in a <u>multiplicative subgroup</u> of a field \mathbb{K} .

Example: solve $x_1 + 3x_2 = 6$, where $x_1, x_2 \in \mathbb{Q}$ are of the form $2^n 3^m$.

Proposition (D. 2025)

Submonoid Membership in any lamplighter group and its quotient reduces to solving S-unit equations in fields of characteristic 2. (such as $\mathbb{F}_2(X)$)

An S-unit equation is a linear equation

$$x_1m_1+\cdots+x_Km_K=m_0,$$

where we look for solutions x_1, \ldots, x_K in a multiplicative subgroup of a field \mathbb{K} .

Example: solve $x_1 + 3x_2 = 6$, where $x_1, x_2 \in \mathbb{Q}$ are of the form $2^n 3^m$.

Proposition (D. 2025)

Submonoid Membership in any lamplighter group and its quotient reduces to solving S-unit equations in fields of characteristic 2. (such as $\mathbb{F}_2(X)$)

Theorem (Adamczewski and Bell 2012, Derksen and Masser 2012)

The solution set of an S-unit equation over a field of characteristic p>0 is effectively p-automatic.