Introductory Course on Non-smooth Optimisation

Lecture 05 - Peaceman-Rachford, Douglas-Rachford splitting

Jingwei Liang

Department of Applied Mathematics and Theoretical Physics

Table of contents

- 1 Problem
- 2 Peaceman-Rachford splitting
- 3 Douglas-Rachford splitting
- 4 Sum of more than two operators
- 5 Spingarn's method of partial inverses
- 6 Acceleration
- 7 Numerical experiments

Sum of two operators

Problem

Find
$$x \in \mathbb{R}^n$$
 such that $0 \in A(x) + B(x)$.

Assumptions

- $A, B : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ are maximal monotone.
- the resolvents of A, B are simple, i.e. easy to compute.
- $\operatorname{zer}(A + B) \neq \emptyset$.

Outline

- 1 Problem
- 2 Peaceman-Rachford splitting
- 3 Douglas-Rachford splitting
- 4 Sum of more than two operators
- 5 Spingarn's method of partial inverse
- 6 Acceleration
- 7 Numerical experiment

Peaceman-Rachford splitting

Peaceman-Rachford splitting

Let $z_0 \in \mathbb{R}^n$, $\gamma > 0$:

$$\begin{split} x_k &= \mathfrak{J}_{\gamma B}(z_k), \\ y_k &= \mathfrak{J}_{\gamma A}(2x_k - z_k), \\ z_{k+1} &= z_k + 2(y_k - x_k). \end{split}$$

- dates back to 1950s for solving numerical PDEs.
- the resolvents of A, B are evaluated separately.

How to derive

■ given $x^* \in \text{zer}(A + B)$, there exists $z^* \in \mathbb{R}^n$ such that

$$\begin{cases} z^{\star} - x^{\star} \in \gamma A(x^{\star}) \\ x^{\star} - z^{\star} \in \gamma B(x^{\star}) \end{cases} \implies \begin{cases} z^{\star} \in x^{\star} + \gamma A(x^{\star}), \\ 2x^{\star} - z^{\star} \in x^{\star} + \gamma B(x^{\star}). \end{cases}$$

apply the resolvent

$$\begin{cases} x^* = \mathcal{J}_{\gamma A}(z^*), \\ x^* = \mathcal{J}_{\gamma B}(2x^* - z^*). \end{cases}$$

equivalent formulation

$$\begin{cases} x^* = \mathcal{J}_{\gamma A}(z^*), \\ z^* = z^* + 2(\mathcal{J}_{\gamma B}(2x^* - z^*) - x^*). \end{cases}$$

fixed-point iteration

$$\begin{cases} x_k = \mathcal{J}_{\gamma A}(z_k), \\ z_{k+1} = z_k + 2(\mathcal{J}_{\gamma B}(2x_k - z_k) - x_k). \end{cases}$$

Fixed-point characterisartion

Fixed-point formulation Recall reflection operator $\Re_{\gamma A} = 2 \Im_{\gamma A} - \operatorname{Id}$.

$$y_k = \mathcal{J}_{\gamma A}(2x_k - z_k) = \mathcal{J}_{\gamma A} \circ (2\mathcal{J}_{\gamma B} - \operatorname{Id})(z_k).$$

 \blacksquare For z_k ,

$$\begin{split} z_{k+1} &= z_k + 2(y_k - x_k) \\ &= z_k + 2\big(\mathcal{J}_{\gamma A} \circ (2\mathcal{J}_{\gamma B} - \operatorname{Id})(z_k) - \mathcal{J}_{\gamma B}(z_k)\big) \\ &= 2\mathcal{J}_{\gamma A} \circ (2\mathcal{J}_{\gamma B} - \operatorname{Id})(z_k) - (2\mathcal{J}_{\gamma B} - \operatorname{Id})(z_k) \\ &= (2\mathcal{J}_{\gamma A} - \operatorname{Id}) \circ (2\mathcal{J}_{\gamma B} - \operatorname{Id})(z_k). \end{split}$$

Property

- $\mathcal{R}_{\gamma A} = 2\mathcal{J}_{\gamma A} \mathrm{Id}, \mathcal{R}_{\gamma B} = 2\mathcal{J}_{\gamma B} \mathrm{Id}$ are non-expansive.
- $\mathcal{T}_{PR} = \mathcal{R}_{\gamma A} \circ \mathcal{R}_{\gamma B}$ is non-expansive.

NB: Cannot guarantee convergence in general.

Convergence

■ Uniform monotonicity: $\phi: \mathbb{R}_+ \to [0, +\infty]$ is increasing and vanishes only at 0

$$\langle \mathbf{u} - \mathbf{v}, \mathbf{x} - \mathbf{y} \rangle \ge \phi(\|\mathbf{x} - \mathbf{y}\|), \ (\mathbf{x}, \mathbf{u}), (\mathbf{y}, \mathbf{v}) \in \operatorname{gra}(B).$$

■ If B is uniformly monotone, then $\operatorname{zer}(A+B)=\{x^{\star}\}$ and $\operatorname{fix}(\mathcal{T}_{PR})\neq\emptyset$. Moreover

$$\langle \mathbf{x} - \mathbf{y}, \, \mathcal{J}_{\gamma B}(\mathbf{x}) - \mathcal{J}_{\gamma B}(\mathbf{y}) \rangle \ge \|\mathcal{J}_{\gamma B}(\mathbf{x}) - \mathcal{J}_{\gamma B}(\mathbf{y})\|^2 + \gamma \phi(\|\mathcal{J}_{\gamma B}(\mathbf{x}) - \mathcal{J}_{\gamma B}(\mathbf{y})\|).$$

■ Let $z^* \in \text{fix}(\mathcal{T}_{PR})$, then $x^* = \mathcal{J}_{\gamma A}(z^*)$, and

$$\begin{split} \|z_{k+1} - z^{\star}\|^2 &= \|\mathcal{R}_{\gamma A} \mathcal{R}_{\gamma B}(z_k) - \mathcal{R}_{\gamma A} \mathcal{R}_{\gamma B}(z^{\star})\|^2 \\ &\leq \|(2\mathcal{J}_{\gamma B} - Id)(z_k) - (2\mathcal{J}_{\gamma B} - Id)(z^{\star})\|^2 \\ &= \|z_k - z^{\star}\|^2 - 4\langle z_k - z^{\star}, \, \mathcal{J}_{\gamma B}(z_k) - \mathcal{J}_{\gamma B}(z^{\star})\rangle + 4\|\mathcal{J}_{\gamma B}(z_k) - \mathcal{J}_{\gamma B}(z^{\star})\|^2 \\ &\leq \|z_k - z^{\star}\|^2 - 4\gamma\phi(\|\mathcal{J}_{\gamma B}(z_k) - \mathcal{J}_{\gamma B}(z^{\star})\|). \end{split}$$

 \bullet $\phi(\|z_k - z^*\|) \rightarrow 0$ and $\|z_k - z^*\| \rightarrow 0$.

Outline

- 1 Problem
- 2 Peaceman-Rachford splitting
- 3 Douglas-Rachford splitting
- 4 Sum of more than two operator
- 5 Spingarn's method of partial inverse
- 6 Acceleration
- 7 Numerical experiment

Douglas-Rachford splitting

To overcome the drawback of Peaceman–Rachford splitting.

Douglas-Rachford splitting

Let $z_0 \in \mathbb{R}^n$, $\gamma > 0$, $\lambda \in]0, 2[$:

$$\begin{aligned} x_k &= \mathcal{J}_{\gamma B}(z_k), \\ y_k &= \mathcal{J}_{\gamma A}(2x_k - z_k), \\ z_{k+1} &= z_k + \lambda (y_k - x_k). \end{aligned}$$

How to derive

■ given $x^* \in \text{zer}(A + B)$, there exists $z^* \in \mathbb{R}^n$ such that

$$\begin{cases} z^{\star} - x^{\star} \in \gamma A(x^{\star}) \\ x^{\star} - z^{\star} \in \gamma B(x^{\star}) \end{cases} \implies \begin{cases} z^{\star} \in x^{\star} + \gamma A(x^{\star}), \\ 2x^{\star} - z^{\star} \in x^{\star} + \gamma B(x^{\star}). \end{cases}$$

apply the resolvent

$$\begin{cases} x^* = \mathcal{J}_{\gamma A}(z^*), \\ x^* = \mathcal{J}_{\gamma B}(2x^* - z^*). \end{cases}$$

equivalent formulation

$$\begin{cases} \textbf{x}^{\star} = \textbf{J}_{\gamma A}(\textbf{z}^{\star}), \\ \textbf{z}^{\star} = \textbf{z}^{\star} + \big(\textbf{J}_{\gamma B}(\textbf{2}\textbf{x}^{\star} - \textbf{z}^{\star}) - \textbf{x}^{\star}\big). \end{cases}$$

fixed-point iteration

$$\begin{cases} x_k = \mathbb{J}_{\gamma A}(z_k), \\ z_{k+1} = z_k + \big(\mathbb{J}_{\gamma B}(2x_k - z_k) - x_k\big). \end{cases}$$

Fixed-point formulation Same as PR, $y_k = \mathcal{J}_{\gamma A} \circ \mathcal{R}_{\gamma B}(z_k)$

$$\begin{split} z_{k+1} &= (1-\lambda)z_k + \lambda \big(z_k + (y_k - x_k)\big) \\ &= (1-\lambda)z_k + \lambda \big(\tfrac{1}{2}z_k + \tfrac{1}{2}(z_k + 2(y_k - x_k))\big) \\ &= (1-\lambda)z_k + \lambda \tfrac{1}{2}(Id + \mathcal{R}_{\gamma A} \circ \mathcal{R}_{\gamma B})(z_k). \end{split}$$

Property

- $\mathcal{T}_{DR} = \frac{1}{2}(Id + \mathcal{R}_{\gamma A} \circ \mathcal{R}_{\gamma B})$ is firmly non-expansive.
- $\mathcal{T}_{DR}^{\lambda}=(1-\lambda)\mathrm{Id}+\lambda\mathcal{T}_{DR}$ is $\frac{\lambda}{2}$ -averaged non-expansive.
- Peaceman-Rachford is the limiting case of Douglas-Rachford, $\lambda = 2$.

NB: guaranteed convergence if $\lambda(2 - \lambda) > 0$.

■ Let \mathcal{X} , \mathcal{Y} be two subspaces

$$\mathcal{X} = \{x : ax = 0\}, \ \mathcal{Y} = \{x : bx = 0\}$$

and assume

$$1 \le p \stackrel{\text{def}}{=} \dim(\mathcal{X}) \le q \stackrel{\text{def}}{=} \dim(\mathcal{Y}) \le n-1.$$

■ Projection onto subspace

$$\mathcal{P}_{\mathcal{X}}(x) = x - a^{\mathsf{T}} (aa^{\mathsf{T}})^{-1} ax.$$

Define diagonal matrices

$$c = \operatorname{diag}(\cos(\theta_1), \cdots, \cos(\theta_p)),$$

$$s = \operatorname{diag}(\sin(\theta_1), \cdots, \sin(\theta_p)).$$

• Suppose p + q < n, then there exists orthogonal matrix U such that

$$\mathcal{P}_{\mathcal{X}} = U \begin{bmatrix} Id_{p} & 0 & 0 & 0 \\ 0 & O_{p} & 0 & 0 \\ \hline 0 & 0 & O_{q-p} & 0 \\ 0 & 0 & 0 & O_{n-p-q} \end{bmatrix} U^{*}$$

and

$$\mathcal{P}_{\mathcal{Y}} = U \begin{bmatrix} c^2 & cs & 0 & 0 \\ cs & c^2 & 0 & 0 \\ \hline 0 & 0 & Id_{q-p} & 0 \\ 0 & 0 & 0 & 0_{n-p-q} \end{bmatrix} U^*.$$

■ For the composition

$$\mathcal{P}_{\mathcal{X}} \circ \mathcal{P}_{\mathcal{Y}} = U \begin{bmatrix} c^2 & cs & 0 & 0 \\ 0 & 0_p & 0 & 0 \\ \hline 0 & 0 & 0_{q-p} & 0 \\ 0 & 0 & 0 & 0_{n-p-q} \end{bmatrix} U^*$$

and

$$\mathcal{P}_{\mathcal{X}^{\perp}} \circ \mathcal{P}_{\mathcal{Y}^{\perp}} = U \begin{bmatrix} 0_{p} & 0 & 0 & 0 \\ -cs & c^{2} & 0 & 0 \\ \hline 0 & 0 & 0_{q-p} & 0 \\ 0 & 0 & 0 & Id_{n-p-q} \end{bmatrix} U^{*}.$$

■ Fixed-point operator

$$\begin{split} \mathcal{T}_{\mathrm{DR}} &= \mathcal{P}_{\mathcal{X}} \circ \mathcal{P}_{\mathcal{Y}} + \mathcal{P}_{\mathcal{X}^{\perp}} \circ \mathcal{P}_{\mathcal{Y}^{\perp}} \\ &= U \begin{bmatrix} c^2 & cs & 0 & 0 \\ -cs & c^2 & 0 & 0 \\ \hline 0 & 0 & 0_{q-p} & 0 \\ 0 & 0 & 0 & \mathrm{Id}_{n-p-q} \end{bmatrix} U^*. \end{split}$$

Consider relaxation

$$\begin{split} \mathcal{T}_{\mathrm{DR}}^{\lambda} &= (1-\lambda) \mathrm{Id} + \lambda \mathcal{T}_{\mathrm{DR}} \\ &= U \begin{bmatrix} \mathrm{Id}_{p} - \lambda s^{2} & \lambda cs & 0 & 0 \\ -\lambda cs & \mathrm{Id}_{p} - \lambda s^{2} & 0 & 0 \\ \hline 0 & 0 & (1-\lambda) \mathrm{Id}_{q-p} & 0 \\ 0 & 0 & 0 & \mathrm{Id}_{n-p-q} \end{bmatrix} U^{*}. \end{split}$$

Eigenvalues

$$\sigma(\mathcal{T}_{\mathtt{DR}}^{\lambda}) = \begin{cases} \{1 - \lambda \sin^2(\theta_i) \pm \mathrm{i}\lambda \cos(\theta_i) \sin(\theta_i) | i = 1, ..., p\} \cup \{1\} : q = p, \\ \{1 - \lambda \sin^2(\theta_i) \pm \mathrm{i}\lambda \cos(\theta_i) \sin(\theta_i) | i = 1, ..., p\} \cup \{1\} \cup \{1 - \lambda\} : q > p. \end{cases}$$

Complex eigenvalues

$$|1 - \lambda \sin^2(\theta_i) \pm i\lambda \cos(\theta_i) \sin(\theta_i)| = \sqrt{\lambda (2 - \lambda) \cos^2(\theta_i) + (1 - \lambda)^2}$$

and

$$1 \geq \sqrt{\lambda(2-\lambda)\mathrm{cos}^2(\theta_i) + (1-\lambda)^2} \geq |1-\lambda|.$$

- $\blacksquare \lim_{k \to +\infty} \mathcal{T}^k_{DR} = \mathcal{T}^\infty_{DR} \text{ and } z_k z^\star = (\mathcal{T}_{DR} \mathcal{T}^\infty_{DR})(z_{k-1} z^\star).$
- Spectral radius, minimises at $\lambda = 1$

$$ho(\mathcal{T}_{\mathsf{DR}} - \mathcal{T}_{\mathsf{DR}}^{\infty}) = \sqrt{\lambda(2-\lambda)\mathrm{cos}^2(\theta_i) + (1-\lambda)^2}.$$

$$lacksquare$$
 $\widetilde{\mathcal{T}_{DR}}=\mathcal{T}_{DR}-\mathcal{T}_{DR}^{\infty}$

$$\begin{split} \|z_k - z^\star\| &= \|\widetilde{\mathcal{T}}_{DR} z_{k-1} - \widetilde{\mathcal{T}}_{DR} z^\star\| = ... = \|\widetilde{\mathcal{T}}_{DR}^{\ k} (z_0 - z^\star)\| \\ &\leq C \big(\rho \big(\widetilde{\mathcal{T}}_{DR}\big)\big)^k \|z_0 - z^\star\|. \end{split}$$

Optimal metric for DR

Optimal metric A invertable operation which makes the Friedrichs angle between \mathcal{X}' and \mathcal{Y} the largest, e.g. $\frac{\pi}{2}$...

Outline

- 1 Problem
- 2 Peaceman-Rachford splitting
- 3 Douglas-Rachford splitting
- 4 Sum of more than two operators
- 5 Spingarn's method of partial inverse
- 6 Acceleration
- 7 Numerical experiment

More than two operators

Problem $s \in \mathbb{N}_+$ and $s \ge 2$

Find
$$x \in \mathbb{R}^n$$
 such that $0 \in \sum_i A_i(x)$.

Assumptions

- for each $i = 1, ..., s, A_i : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ is maximal monotone.
- $zer(\sum_i A_i) \neq \emptyset$.

Product space

■ Let $\mathcal{H} = \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{\text{s times}}$ endowed with the scalar inner-product and norm

$$\forall \textbf{x}, \textbf{y} \in \boldsymbol{\mathcal{H}}, \, \langle \textbf{x}, \textbf{y} \rangle = \sum_{i=1}^{s} \langle \textbf{x}_i, \, \textbf{y}_i \rangle, \, \| \textbf{x} \| = \sqrt{\sum_{i=1}^{s} \lVert \textbf{x}_i \rVert^2}.$$

■ Let

$$\mathcal{S} = \{\mathbf{x} = (\mathbf{x}_i)_i \in \mathcal{H} : \mathbf{x}_1 = \cdots = \mathbf{x}_s\}$$

and its orthogonal complement

$$\boldsymbol{\mathcal{S}}^{\perp} = \{ \boldsymbol{x} = (x_i)_i \in \boldsymbol{\mathcal{H}} : \sum_{i=1}^s x_i = 0 \}.$$

Define A by

$$\textbf{A}(\textbf{x}): \textbf{x} \in \boldsymbol{\mathcal{H}} \rightarrow A_1(x_1) \times \cdots \times A_s(x_s).$$

Lifted problem

Find $\mathbf{x} \in \mathcal{H}$ such that $0 \in \mathbf{A}(\mathbf{x}) + \mathcal{N}_{\mathcal{S}}(\mathbf{x})$.

- the resolvent of **A** is separable, i.e. $\mathcal{J}_{\gamma A} = (\mathcal{J}_{\gamma A_i})_i$.
- define the canonical isometry,

$$C: \mathbb{R}^n \to \mathcal{S}, x \mapsto (x, \dots, x),$$

then
$$\mathcal{P}_{\mathcal{S}}(\mathbf{z}) = \mathbf{C}(\frac{1}{s} \sum_{i=1}^{s} z_i)$$
.

Outline

- 1 Problem
- 2 Peaceman-Rachford splitting
- 3 Douglas-Rachford splitting
- 4 Sum of more than two operators
- 5 Spingarn's method of partial inverses
- 6 Acceleration
- 7 Numerical experiment

DR in product space for $x^* \in \mathcal{S}$, $\exists -v \in \mathcal{S}$ such that

$$-\mathbf{v} \in \mathbf{\mathcal{S}}^{\perp} = \mathfrak{N}_{\mathbf{\mathcal{S}}}(\mathbf{x}^{\star})$$
 and $\mathbf{v} \in \mathbf{A}(\mathbf{x}^{\star})$.

Problem V is a close subspace

Find
$$x \in V$$
 and $v \in V^{\perp}$ such that $v \in A(x)$.

Assumptions

- $A : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is maximal monotone.
- admits at least one solution.

Partial inverse

Partial inverse

Let $A: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be set-valued and $V \subseteq \mathbb{R}^n$ be a closed subspace. The partial inverse of A respect to V is the operator $A_V: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ define by

$$\mathsf{gra}(A_V) = \big\{ \big(\mathbb{P}_V(x) + \mathbb{P}_{V^\perp}(u), \mathbb{P}_{V^\perp}(x) + \mathbb{P}_V(u) \big) : (x,u) \in \mathsf{gra}(A) \big\}.$$

Example Let $A : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$, then $A_{\mathbb{R}^n} = A$ and $A_{\{0\}} = A^{-1}$.

Spingarn's method of partial inverses

An application of Proximal Point Algorithm.

Spingarn

Let
$$x_0 \in V$$
, $u_0 \in V^{\perp}$:

$$y_k = \mathcal{J}_A(x_k + u_k),$$

$$v_k = x_k + u_k - y_k, \quad$$

$$(x_{k+1},u_{k+1})=\big(\mathbb{P}_V(y_k),\mathbb{P}_{V^\perp}(v_k)\big).$$

Fixed-point characterisation

define mapping

$$L:\mathbb{R}^n\oplus\mathbb{R}^n\to\mathbb{R}^n\oplus\mathbb{R}^n:(x,u)\to\big(\mathcal{P}_V(x)+\mathcal{P}_{V^\perp}(u),\mathcal{P}_{V^\perp}(x)+\mathcal{P}_V(u)\big).$$

$$\begin{split} p &= \mathcal{J}_{A_V}(x) \iff (p, x - p) \in \operatorname{gra}(A_V) \\ &\iff L(p, x - p) \in L(\operatorname{gra}(A_V)) = \operatorname{gra}(A) \\ &\iff \left(\mathcal{P}_V(p) + \mathcal{P}_{V^{\perp}}(x - p), \mathcal{P}_V(x - p) + \mathcal{P}_{V^{\perp}}(p)\right) \in \operatorname{gra}(A). \end{split}$$

• let $q = \mathcal{P}_V(p) + \mathcal{P}_{V^{\perp}}(x-p)$

$$p = \mathcal{J}_{A_V}(x) \iff x - q = \mathcal{P}_V(x - p) + \mathcal{P}_{V^{\perp}}p \in A(q)$$
$$\iff q = \mathcal{J}_A(x).$$

■ let $z_k = x_k + u_k$, since $x_k \in V$ and $u_k \in V^{\perp}$

$$\begin{split} \mathcal{P}_{V}(z_{k+1}) + \mathcal{P}_{V^{\perp}}(z_{k} - z_{k+1}) &= x_{k+1} + \mathcal{P}_{V^{\perp}}(u_{k}) - u_{k+1} \\ &= \mathcal{P}_{V}(y_{k}) + \mathcal{P}_{V^{\perp}}(v_{k} - x_{k} + y_{k}) - \mathcal{P}_{V^{\perp}}(v_{k}) \\ &= \mathcal{P}_{V}(y_{k}) + \mathcal{P}_{V^{\perp}}(v_{k}) + \mathcal{P}_{V^{\perp}}(y_{k}) - \mathcal{P}_{V^{\perp}}(v_{k}). \end{split}$$

 $z_{k+1} = \mathcal{J}_A(z_k).$

Outline

- 1 Problem
- 2 Peaceman-Rachford splitting
- 3 Douglas-Rachford splitting
- 4 Sum of more than two operators
- 5 Spingarn's method of partial inverse
- 6 Acceleration
- 7 Numerical experiment

Inertial DR splitting

An inertial DR splitting

Initial:
$$x_0 \in \mathbb{R}^n$$
, $x_{-1} = x_0$ and $\gamma > 0$;
$$y_k = z_k + a_{0,k}(z_k - z_{k-1}) + a_{1,k}(z_{k-1} - z_{k-2}) + \cdots,$$

$$z_{k+1} = \mathcal{T}_{DR}(y_k)$$

relaxation can be applied.

Outline

- 1 Problem
- 2 Peaceman-Rachford splitting
- 3 Douglas-Rachford splitting
- 4 Sum of more than two operators
- 5 Spingarn's method of partial inverses
- 6 Acceleration
- 7 Numerical experiments

Example: basis pursuit

Basis pursuit

$$\min_{x \in \mathbb{R}^n} \|x\|_1$$

such that Ax = b,

- $A : \mathbb{R}^n \to \mathbb{R}^m$ with m << n.
- $b \in \text{Img}(A)$.

Example: image inpainting

Image inpainting

$$\min_{X \in \mathbb{R}^{n \times n}} \|WX\|_1$$
 such that $\mathcal{P}_{\Omega}(X) = \bar{X}$,

- W: total variation, orthonomal basis, redundant wavelet frame.
- Observation constraint

$$\left(\mathcal{P}_{\Omega}(X)\right)_{i,j} = \begin{cases} \bar{X}_{i,j} : (i,j) \in \Omega, \\ 0 : (i,j) \notin \Omega. \end{cases}$$

Painting reconstruction in museum.

Example: matrix completion

Matrix completion

$$\min_{X \in \mathbb{R}^{n \times n}} \|X\|_*$$
 such that $\mathcal{P}_{\Omega}(X) = \bar{X}$,

Observation constraint

$$\left(\mathcal{P}_{\Omega}(X)\right)_{i,j} = \begin{cases} \bar{X}_{i,j} : (i,j) \in \Omega, \\ 0 : (i,j) \notin \Omega. \end{cases}$$

■ Netflix prize, recommendation system.

Example: variation ineuality

Variation ineuality

Find $x \in \mathbb{R}^n$ such that $\exists u \in A(x), \forall y \in \mathbb{R}^n : \langle x - y, u \rangle + R(x) \leq R(y)$.

- $R \in \Gamma_0$.
- $A : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is maximal monotone.

Example Let $R, J \in \Gamma_0$, and $x^\star \in \text{Argmin}(R+J)$, then $\exists u \in \partial J(x^\star)$ s.t. $-u \in \partial R(x^\star)$ and

$$\langle y - x^{\star}, -u \rangle + R(x^{\star}) \leq R(y)$$

$$\iff \langle x^{\star} - y, \, u \rangle + R(x^{\star}) \leq R(y).$$

Numerical experiment

Reference

- H. H. Bauschke, J. Y. Bello Cruz, T. T. A. Nghia, H. M. Pha, and X. Wang. "Optimal rates of linear convergence of relaxed alternating projections and generalized Douglas-Rachford methods for two subspaces". Numerical Algorithms, 73(1):33-76, 2016.
- H. Bauschke and P. L. Combettes. "Convex Analysis and Monotone Operator Theory in Hilbert Spaces". Springer, 2011.
- J. Liang. "Convergence rates of first-order operator splitting methods". Diss. Normandie Université; GREYC CNRS UMR 6072, 2016.