Chapitre

Champ électrique et magnétique

5. Champ vectoriel

Pour chaque position de l'espace, $\overrightarrow{r}(=\overrightarrow{OM})$, on se donne un vecteur $\overrightarrow{u}(\overrightarrow{r},t)$. Il est appelé champ vectoriel.

Si le champ ne dépend pas du temps, il est constant. S'il ne dépend pas de l'espace, il est uniforme

Exemples

Champ de Pesanteur produit par une masse ${\cal M}$:

$$\overrightarrow{F_g} = -\frac{GmM}{r^2} = m\overrightarrow{g}$$
 avec $\overrightarrow{g} = -\frac{GM}{r^2}.$

5.1. Champ électrique

C'est un champ vectoriel crée par une particule chargée ou bien une distribution de particules chargées.

Il s'écrit $\overrightarrow{E}(\overrightarrow{r'},t)$ et s'exprime en $V\cdot m^{-1}$.

Théorème 1.1 : Force électrique

Une particule de charge q plongée dans le champ \overrightarrow{E} est soumise à une force $\overrightarrow{F_e}=q\times\overrightarrow{E}$.

Exemples

Le champ produit par une seule particule chargée de charge q_0 vaut $\frac{1}{4\pi\varepsilon_0}\frac{q_0q}{r^2}\overrightarrow{e_r}=q imes\frac{q_0}{4\pi\varepsilon_0r^2}=q imes\overrightarrow{E}.$

Champ entre les plaques d'un condensateur : $\overrightarrow{E} = \frac{V_a - V_b}{d} \overrightarrow{e_{ab}}$. Dans le cas où les charges qui créent le champ sont immobiles dans le référentiel d'étude, on parle de champ électrostatique.

5.1. Champ magnétique

C'est aussi un champ vectoriel qui caractérise les éffets magnétiques du courant électrique ou de matérieux magnétiques par essence \vec{i} . Il est noté $\vec{B}(\vec{r},t)$ et s'exprime en Teslas, noté T. Le champ de la Terre est $47\mu T$.

Théorème 1.2 : Force de Laplace

La force produite par le champ vaut : $\overrightarrow{F_B} = q \overrightarrow{v} \wedge \overrightarrow{B}$

Elle est nulle si la particule est au repos ou si \overrightarrow{v} et \overrightarrow{B} sont colinéaires ${}^{\mathbb{Q}}$.

5.1. Force magnétique + électrique

Théorème 1.3 : Force de Lorenz

La force vaut $q\overrightarrow{E}+q\overrightarrow{v}\wedge\overrightarrow{B}$

5.1. Ordre de grandeurs

Faut-il prendre en compte la force de gravitation dans l'étude de la trajectoire d'une particule chargé soumise à un champ électrique et magnétique?

Exemple: Mouvement d'un électron avec

- une vitesse de 1km/s (vitesse faible)
- B = 10^{-4} T
- E = 100 $V \cdot m^{-1}$

ODG des forces :

Info

aimants permanent, noyau de la Terre, fil parcouru par un champ électrique, Soleil

Astuce

En effet, le produit vectoriel est alors nul et la force aussi **MÉCANIQUE** & Champ électrique et magnétique , Mouvement d'une particule chargée dans un champ électrique constant

•
$$F_q = mg = 10^{-30} \times 10 = 10^{-29} N$$

•
$$F_e = |q|E = 10^{-19} \times 100 = 10^{-17}$$
?

•
$$F_b = |qV|B = 10^{-19} \times 1000 \times 10^{-4} = 10^{-20}$$

Le rapport entre F_G et F_e donne $10^{-12} << 1$, tout comme celui entre F_G et F_b . On peut donc négliger la force de gravitation

5. Mouvement d'une particule chargée dans un champ électrique constant

On considère une particule de charge q initialement à l'origine avec une vitesse initiale $\overrightarrow{v_0}=V_0\overrightarrow{e_x}$, plongée dans un champ électrique uniforme et constant.

Schéma 2.1

Le mouvement est dans le plan (Oxy) car pas de force selon z ni de vitesse initiale.

Force : $\overrightarrow{F_e} = q\overrightarrow{E}$

On applique le PFD : $\overrightarrow{a}m = q\overrightarrow{E}$. Donc le mouvement est uniformément accéléré.

On a donc:

$$\begin{cases} m\ddot{x} = 0 \\ m\ddot{y} = qE \end{cases} \Rightarrow \begin{cases} \ddot{x} = 0 \\ \ddot{y} = \frac{qE}{m} \end{cases}$$

On intègre ensuite une première fois pour obtenir la vitesse :

$$\begin{cases} \dot{x} = k \\ \dot{y} = qEt + D \end{cases} \Rightarrow \begin{cases} \dot{x}(t=0) = V_0 = k \Rightarrow k = V_0 \\ \dot{y} - t = 0 \end{cases} = 0 = D \Rightarrow D = 0$$

Puis une deuxième fois pour obtenir le mouvement :

$$\begin{cases} x = V_0 t + C' \\ y = \frac{qE}{m} \frac{t^2}{2} + D' \end{cases} \Rightarrow \begin{cases} x(0) = 0 = C' \\ y(0) = 0 = D' \end{cases}$$

On obtient une trajectoire parabolique en trouvant l'équation cartésienne : $y=\frac{qE}{m}\frac{x^2}{2V_c^2}$

Le champ peut accélérer les particules.

Si \overrightarrow{E} est colinéaire $\overrightarrow{V_0}$, le mouvement est rectiligne.

Exemple : Accélérateur de particule linéaire. Longueur : 3.2 km pour des accélérations de l'odre de 6. GeV

5. Mouvement d'une particule dans un champ magnétique constant

Nom

On appelle ça le mouvement cyclotron.

la force liée au champ magnétique $F_b=q\overrightarrow{B}\wedge\overrightarrow{B}$. Elle est orthogonale à \overrightarrow{v} et à \overrightarrow{B} . Si elle uniquement soumise à \overrightarrow{B} .

5.3. Analyse préliminaire

On a : $m\overrightarrow{a} = q\overrightarrow{v} \wedge \overrightarrow{B}$.

Donc $\overrightarrow{a} \perp \overrightarrow{v}$ et le mouvement est uniforme. Donc $||\overrightarrow{v}|| = Cst$

Donc $\overrightarrow{a} \perp \overrightarrow{B}$ Donc $\overrightarrow{a} \cdot \overrightarrow{B} = 0 \iff \frac{d\overrightarrow{v}}{dt} \cdot \overrightarrow{B} = 0$ mais B est constant, donc on a : $\frac{d}{dt}(\overrightarrow{v} \cdot \overrightarrow{B})$ puis $\frac{d}{dt}(||\overrightarrow{v}||||\overrightarrow{B}|| \times \cos(\alpha)) = 0$ puis $\frac{d}{dt}\cos\alpha = 0$ i donc α est constant. Donc l'angle entre \overrightarrow{B} et \overrightarrow{v} reste constant au cours du mouvement.

Exemple : Si $\overrightarrow{V_0} \perp \overrightarrow{B}$, le mouvement est dans le plan (Oxy). Car la vitesse est toujours orthogonale à \overrightarrow{B} .

i Info Car $||\overrightarrow{v}||$ et $||\overrightarrow{B}||$ sont constants

5.3. Etude du mouvement

On applique le PFD

Exemple : Mouvement d'une particule dans un champ : $\overrightarrow{B}=B\overrightarrow{e_z}$ avec uniquement la force magnétique.

On a :
$$m\overrightarrow{a} = q\overrightarrow{v} \wedge \overrightarrow{B}$$
.

On fait le produit vectoriel pour trouver que

$$\begin{cases} \ddot{x} &= qB\dot{y} \\ \ddot{y} &= -qB\dot{x} \Rightarrow \begin{cases} \dot{v_x} &= qB\dot{v_y} \\ \dot{v_y} &= -qB\dot{v_x} \end{cases}$$

Ce sont des EOD couplées

Découplage des EQD

On introduit la grandeur complexe $\underline{V}=V_x+iV_y$. Dans ce cas, $\dot{\underline{V}}=\dot{V_x}+i\dot{V_y}$.

On calcule $(i) + i \times (ii)$. Donc on obtient :

$$\begin{split} m\dot{v_x} + im\dot{v_y} &= qBV_y - iqBV_x \\ m(\dot{V_x} + i\dot{V_y}) &= qBV_y - iqBV_x \\ m(\underline{V}) &= qBV_y - iqBV_x \\ m(\underline{V}) &= -i^2qBV_y - iqBV_x \\ m(\underline{V}) &= -iqB(iV_y + V_x) \\ m(\dot{\underline{V}}) &= -iqB(\underline{V}) \\ m(\dot{\underline{V}}) + iqB(\underline{V}) &= 0 \end{split}$$

On obtient une EQD du premier ordre linéaire à coeff constant en \underline{V} . On résout et on aura $V_x = Re(\underline{V})$ et $V_y = Im(\underline{V})$.

On cherche des solutions de la forme $\underline{V} = \underline{C}e^{rt}$

L'équation caractéristique donne $r=\frac{-iqB}{m}$. En posant $\omega_c\stackrel{{\bf X}}{=} \frac{qB}{m}$, $r=-i\omega_c$ et $\underline{V}=\underline{C}e^{-i\omega_ct}$

On utilise les conditions initiales : $\overrightarrow{V_0}=V_0\overrightarrow{e_x}$, donc $\underline{V}(t=0)=V_x(0)+iV_y(0)=V_0$,

d'où
$$\underline{V}(t=0) = \underline{C}e^0 = \underline{C}$$
 et $\underline{C} = V_0$.

Donc
$$\underline{V}(t) = V_0 e^{-i\omega_c t} = V_0(\cos(\omega_c t) - i\sin(\omega_c t).$$

Donc
$$V_x(t) = re(V) = V_0 \cos(\omega_c t)$$
 et $V_y(t) = Im(V) = -V_0 \sin(\omega_c t)$

On remarque que la vitesse reste constante et le mouvement est uniforme car $||\overrightarrow{v}||=\sqrt{v_x^2+v_y^2}=V_0.$

On détermine la trajectoire : on intègre pour obtenir x(t) et y(t).

$$\begin{cases} x = \frac{V_0}{\omega_c} \sin(\omega_c t) + A \\ y = \frac{V_0}{\omega_c} \cos(\omega_c t) + B \end{cases}$$

La particule est initialement en 0, donc A=0 et $B=\frac{-V_0}{\omega_c}.$

On obtient finalement

$$\begin{cases} x = \frac{V_0}{\omega_c} \sin(\omega_c t) \\ y = \frac{V_0}{\omega_c} \cos(\omega_c t) - \frac{V_0}{\omega_c} \end{cases}$$

Difficulté
C'est la pulsation cylotron, en radian/s

MÉCANIQUE & Champ électrique et magnétique, Étude du mouvement

Période de la fonction

Période de x(t): $\sin(w_c(t+T)=w_ct+w_cT)=\sin(w_ct)$. Donc $\omega_cT=2\pi\iff T=\frac{2\pi}{\omega}=\frac{2\pi}{m|q|B}$.

Détermination de l'équation cartésienne

$$\begin{cases} x^2 = (\frac{V_0}{\omega_c})^2 \sin^2(\omega_c t) \\ (y + \frac{V_0}{\omega_c})^2 = (\frac{V_0}{\omega_c})^2 \cos^2(\omega_c t) \end{cases} \Rightarrow \begin{cases} x^2 + (y + \frac{V_0}{\omega_c})^2 = (\frac{V_0}{\omega_c})^2 (\cos^2(\omega_c t) + \sin^2(\omega_c t)) = (\frac{V_0}{\omega_c})^2 \\ (y + \frac{V_0}{\omega_c})^2 = (\frac{V_0}{\omega_c})^2 \cos^2(\omega_c t) \end{cases}$$

On trouve l'équation d'un cercle, de la forme $(x-x_0)^2+(y-y_0)^2=R^2$

C'est donc une trajectoire circulaire de centre o et $-\frac{V_0}{\omega_c}$ et de rayon $\frac{V_0}{|\omega_c|}$ (car ω_c peut être négative.

Représentation de la trajectoire :

5. Applications

5.4. \$pectrométrie de masse

Rappel : champ magnétique \overrightarrow{B} constant.

Un faisceau de particules de même charge q arrive avec une vitesse v_0 initiale dans une enceinte avec \overrightarrow{B} constant.

Seule la masse différencie le rayon de la trajectoire des particules de même charge

5.4. Cyclotron

Accélérateur de particules : 2 enseintes demi-circulaires dans lesquels règne un champ \overrightarrow{B} constant. Entre les 2 enceintes, on met en place un champ électrique \overrightarrow{E}

Dans les enceintes, on a une trajectoire circualire uniforme de rayon $r=\frac{Vm}{|q|B}$ (le rayon augmente avec la vitesse). Entre les enceintes, on a une trajectoire rectiligne accélérée à condition que \overrightarrow{E} soit dans le sens de \overrightarrow{v} .

Temps mis pour faire un demi-tour? Voir période de x(t).

Il faut choisir un champ \overrightarrow{E} correspondant à un courant alternatif de période $2\times T/2=T$. La fréquence est donc $\frac{qB}{2\pi m}$. i

i Info Pour les vitesses v o c, effets relativistes donc $m o \gamma m = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} m$

Dans ce cas, $T_2 = \frac{\pi \gamma m}{|q|B}$