Feuille d'exercice n° 11 : Groupes, anneaux, corps

Exercice 1 () — Un peu de sudoku — Montrer qu'il existe une seule table possible pour un groupe d'ordre 3 (c'est-à-dire à trois éléments). Est-ce vrai pour 4 ?

Exercice 2 ($^{\circ}$) Soit G un groupe, H et K deux sous-groupes de G.

- 1. Montrer que $H \cap K$ est un sous-groupe de G.
- 2. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

Exercice 3 ($^{\circ}$) Soient G_1 et G_2 deux groupes, dont la loi est notée multiplicativement. On considère l'ensemble produit $G_1 \times G_2$ sur lequel on considère la loi interne \otimes suivante :

$$\forall ((x_1, x_2), (y_1, y_2)) \in (G_1 \times G_2)^2 \quad (x_1, x_2) \otimes (y_1, y_2) = (x_1 y_1, x_2 y_2)$$

Montrer que $(G_1 \times G_2, \otimes)$ est un groupe. Quel est son neutre?

Exercice 4 (\mathfrak{D}) Montrer que les sous-groupes de \mathbb{Z} sont exactement tous les $n\mathbb{Z}$, $n \in \mathbb{N}$.

Exercice 5 Quel est le plus petit sous-groupe de $(\mathbb{R}, +)$ (resp. de (\mathbb{R}^*, \times)) contenant 1 ? Contenant 2 ?

Exercice 6 On considère A et B deux sous-groupes de (G, *) et on note :

$$A*B = \{x \in G/\exists a \in A, \exists b \in B \text{ tq } x = a*b\}$$

Montrer que A*B est un sous-groupe de (G,*) si et seulement si : A*B=B*A (pour le sens direct, on commencera par montrer $B*A\subset A*B$).

Exercice 7 (\mathfrak{D}) Soit G un sous-groupe de $(\mathbb{R},+)$ non réduit à $\{0\}$. On pose $\alpha = \inf (\mathbb{R}_+^* \cap G)$

- 1. Montrer que si $\alpha > 0$, alors $G = \alpha \mathbb{Z}$ (où $\alpha \mathbb{Z}$ désigne $\{ k\alpha \mid k \in \mathbb{Z} \}$).
- 2. Montrer que si $\alpha=0$, alors G est dense dans \mathbb{R} , c'est-à-dire que pour tout réel x et tout $\varepsilon>0$, il existe $y\in G$ vérifiant $|x-y|\leqslant \varepsilon$.

Exercice 8 Décrire tous les morphismes de groupes de $(\mathbb{Z}, +)$ dans $(\mathbb{Z}, +)$. Déterminer ceux qui sont injectifs et ceux qui sont surjectifs.

Exercice 9 Soit G un groupe noté multiplicativement.

Pour $a \in G$, on note τ_a l'application de G vers G définie par $\tau_a(x) = axa^{-1}$.

- 1. Montrer que τ_a est un endomorphisme du groupe (G, \times) .
- 2. Vérifier que $\forall a, b \in G, \tau_a \circ \tau_b = \tau_{ab}$
- 3. Montrer que τ_a est bijective et déterminer son application réciproque.
- 4. En déduire que $\mathcal{T} = \{\tau_a \mid a \in G\}$ muni du produit de composition est un groupe.

Exercice 10 Soit A un anneau de Boole (c'est-à-dire que $\forall x \in A, x^2 = x$)

- 1. Calculer $(x+x)^2$ et en déduire : $\forall x \in A, x+x=0$.
- 2. Calculer $(x+y)^2$ et en déduire que A est commutatif.

Exercice 11 Soit $(A, +, \times)$ un anneau. On dit que $x \in A$ est nilpotent s'il existe $n \in \mathbb{N}$ tel que $x^n = 0$.

- 1. Deux identités universelles : soient x et $y \in A$ tels que xy = yx, et soit $n \in \mathbb{N}$.
 - a) Montrer la formule du binôme de Newton : $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$.
 - b) Montrer que : $x^n y^n = (x y) \sum_{k=0}^{n-1} x^k y^{n-1-k}$.
- 2. a) Montrer que si x est nilpotent alors 1-x est inversible.
 - b) Montrer que si x et y sont nilpotents et commutent, alors xy et x + y sont nilpotents.
- 3. Un corps admet-il des éléments nilpotents non-nuls?

Exercice 12 Soit $(A, +, \times)$ un anneau commutatif. Soit a un élément de A. On appelle racine carrée de a dans A, tout élément x de A tel que $x^2 = a$.

- 1. Montrer que si A est intègre, alors tout élément de A admet au maximum 2 racines carrées.
- 2. Prenons maintenant $(A, +, \times) = (\mathcal{F}(\mathbb{R}), +, \times)$. Soit $f : x \to 1$. Montrer que f admet une infinité de racines carrées.

