REINFORCEMENT LEARNING AGENTS FOR OPTIMAL PORTFOLIO MANAGEMENT

Outline

- Portfolio Optimization
- Reinforcement Learning
- Problem Statement
- Scope
- Aims and Objectives
- Data and Tools

Portfolio Optimization

- Modern Portfolio Theory Markowitz (1952)
 - For a portfolio of multiple assets, maximize expected returns based on a given level of market risk
 - An investment's risk and return characteristics should be evaluated by how the investment affects the overall portfolio's risk and return
 - Conversely, given a desired level of expected return, an investor can construct a portfolio with the lowest possible risk
 - Risk approximated from asset variance and correlation

Reinforcement Learning

- \blacksquare (State) Value: the expected cumulative reward from a state s_t
- Policy: what action to take in a given state.
 - Defined as a mapping from state to actions
- Goal: Learn the policy that maximizes (cumulative) reward
- (Fully observable) Markov Decision Process
 - $P(r_{t_i} s_{t+1} | s_{t_i} a_t)$
 - Markov assumption: "The future is independent of the past, given the present"
 - s_t = environment state

Reinforcement Learning: Categories

- Categorizing RL agents:
 - Value Based/Q Learning (DQN, C51, HER)
 - Policy Based (REINFORCE, DPG, PPO)
 - Actor Critic (DDPG, TD3, SAC)
 - Model Free
 - Model Based (Dreamer, SimPLe)

Reinforcement Learning: DQN

"Playing Atari with Deep Reinforcement Learning" (Deepmind)

- Value based, on policy network
- First implementation to address instability arising from using nonlinear function approximators (eg. NNs) to learn the action-value function.
- 2 breakthroughs:
 - Experience Replay using replay buffer of transitions, $(s_t a_t r_t s_{t+1})$
 - (Separate) Target Network

Reinforcement Learning: DDPG

"Continuous Control with Deep Reinforcement Learning" (Deepmind)

- Actor critic, off policy agent
- Extends the DQN approach to DPG
- Also uses replay buffer
- DQN works well for a high-dimensional discrete observation spaces, but cannot handle continuous high-dimensional action spaces

Problem Statement

■ To build RL agents that dynamically optimize the allocation of wealth towards assets in a portfolio in order to maximize returns for a given level of risk.

Scope

- Overview of RL and its use in finance
- Introducing the portfolio optimization problem
- Literature Review of RL agents used in portfolio management
- Present the DQN and DDPG algorithms with their background, advantages, use cases, etc
- Implementation of the algorithms for portfolio management
- Discussion on results obtained

Aims and Objectives

- Build a deep understanding of Reinforcement Learning, and its components, including the differences b/w value iteration and policy iteration, discrete and continuous action spaces, off-policy and on policy models, etc.
- Understand the use cases and applications of RL especially in finance, and the challenges associated with the task of portfolio optimization.
- Through their implementation, gain experience and understanding on the technical details
 of the DQN and DDPG algorithms and the tools for building RL agents/environments.
- Demonstrate their usefulness at the task of portfolio management and compare performance.

Data and Tools

https://gym.openai.com

https://stanford.edu/cl ass/engr108/portfolio. html

To-do

- Familiarization with the tools
- Basic implementations of DQN and DDPG architectures
- Literature Review

