EAIiIB	Ewa Stachów		Rok	Grupa	Zespół
Informatyka	Weronika Olcha		II	3	6
Pracownia	Temat:				Nr ćwiczenia:
FIZYCZNA				1 CWICZCIIIa.	
WFiIS AGH	Wahadło fizyczne				1
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
14.10.2016	19.10.2016				

Ćwiczenie nr 1: Wahadło fizyczne

1 Cel ćwiczenia

Opis ruchu drgającego, a w szczególności drgań wahadła fizycznego. Wyznaczenie momentów bezwładności brył sztywnych.

2 Wstęp teoretyczny

Moment bezwładności punktu materialnego o masie m obracającego się wokół osi O w odległości r definiujemy jako:

$$I = mr^2$$

Bryłę sztywną można traktować jako ciągły zbiór punktów materialnych o różnych odległościach od osi obrotu. Wobec powyższego moment bezwładności wyraża się następująco:

$$I = \int r^2 dm$$

Wahadło fizyczne jest to bryła sztywna o masie m zawieszona w punkcie O różnym od środka ciężkości. Wahadło odchylone od pionu o kąt θ , a następnie puszczone swobodnie będzie wykonywać pod wpływem momentu siły ciężkości drgania zwane ruchem wahadłowym. Moment tej siły dla wychylenia θ jest równy $mgasin\theta$. Ruch ten opisuje II zasada dynamiki dla ruchu obrotowego, zgodnie z którą iloczyn momentu bezwładności I i przyspieszenia kątowego ε jest równy działającemu momentowi siły, czyli:

$$\varepsilon = \frac{d^2\theta}{dt^2} \Rightarrow I_o \frac{d^2\theta}{dt^2} = -mga\sin\theta$$

Siła $mgsin\theta$ jest zawsze skierowana przeciwnie do kierunku wychylenia – stąd znak minus we wzorze. Jeżeli rozpatrujemy ruch dla małych kątów wychylenia, to sinus kąta można zastąpić samym kątem w mierze łukowej, ponieważ $sin\theta \approx \theta$. Zatem powyższe równanie przyjmuje postać:

$$\frac{d^2\theta}{dt^2} + \frac{mga\theta}{I_o} = 0,$$

jest to równanie ruchu harmonicznego z okresem:

$$T = 2\pi \sqrt{\frac{I_o}{mga}}$$

Twierdzenie Steinera mówi, że jeśli znamy moment bezwładności I_S danego ciała względem pewnej osi przechodzącej przez środek masy tego ciała, to aby obliczyć moment bezwładności I_0 względem dowolnej innej osi równoległej do niej, należy do momentu I_S dodać iloczyn masy ciała i kwadratu odległości a między tymi osiami:

$$I_0 = I_S + ma^2$$

3 Układ pomiarowy

- Statyw, na którym zawiesza się badaną bryłę
- Badane bryły: pręt, pierścień
- Metalowy przymiar milimetrowy
- Suwmiarka
- Waga elektroniczna
- Sekundomierz

Rysunek 1: Pręt i pierścień używane w ćwiczeniu.

4 Wykonanie ćwiczenia

Na początku ustalamy masę oraz określamy długości pręta i pierścienia, tak jak pokazano na Rysunku 1 (małe długości mierzymy suwmiarką). Umieszczamy pręt na statywie, wprowadzamy go w ruch drgający o amplitudzie nieprzekraczającej trzech stopni i mierzymy czas trzydziestu drgań. Pomiar ten powtarzamy dziesięciokrotnie. Analogicznie postępujemy z pierścieniem.

5 Opracowanie wyników pomiarów

	wartość	niepewność
m[g]	663	0,1
l[mm]	750	1
b[mm]	100	1
a[mm]	275	1

Tablica 2: Pomiar masy i długości pierścienia.

	wartość	niepewność
m[g]	1360	0,1
$D_W[mm]$	255,6	0,1
$D_Z[mm]$	280,4	0,1
$R_W[mm]$	127,8	0,1
$R_Z[mm]$	140,2	0,1
e[mm]	7,6	0,1
a[mm]	132,6	0,1

Tablica 3: Pomiar okresu drgań dla pręta.

Lp.	liczba okresów k	czas t dla k okresów w $[s]$	okres $T_i = t/k$ w [s]	
1	20 26,47		1,3235	
2	20	26,84	1,342	
3	20	26,68	1,334	
4	20	26,69	1,3345	
5	20	26,78	1,339	
6	20	26,75	1,3375	
7	7 20 26,75 1,3375			
8	8 20 26,87 1,3435			
9	20	26,54	1,327	
10	20	26,78	1,339	
Wartość średnia okresu: $\overline{T}=1,33575$				
Niepewność: $u(T) \approx 0,0020$				

Tablica 4: Pomiar okresu drgań dla pierścienia.

Lp.	liczba okresów k	czas t dla k okresów w $\lfloor s \rfloor$	okres $T_i = t/k$ w [s]
1	20	20,72	1,036
2	20	20,79	1,0395
3	20	20,75	1,0375
4	20	20,72	1,036
5	20	20,69	1,0345
6	20	20,71	1,0355
7	20	20,69	1,0345
8	8 20 20,69 1,0345		
9	20	20,62	1,031
10	20	20,82	1,041
Wartość średnia okresu: $\overline{T} = 1,036s$			
Niepewność: $u(T) \approx 0,00089s$			

5.1 Moment bezwładności I_0 względem rzeczywistej osi obrotu korzystając z wzoru na okres drgań

Wzór na okres drgań wyraża się wzorem:

$$T = 2\pi \sqrt{\frac{I_0}{mga}}$$

Przekształcając odpowiednio powyższe równanie otrzymujemy wzór na moment bezwładności:

$$I_0 = \frac{mgaT^2}{4\pi^2},$$

gdzie m – masa bryły, g – przyspieszenie ziemskie, T – okres drgań, a – odległość środka masy od osi obrotu.

Momement bezdładności I_0 dla pręta:

$$I_0 = \frac{0,663kg \cdot 9,811\frac{m}{s^2} \cdot 0,275m \cdot (1,33575s)^2}{4\pi^2} \approx 0,08084kg \cdot m^2$$

Momement bezdładności I_0 dla pierścienia:

$$I_0 = \frac{1,36kg \cdot 9,811 \frac{m}{s^2} \cdot 0,1326m \cdot (1,036s)^2}{4\pi^2} \approx 0,048096 \ kg \cdot m^2$$

5.2 Moment bezwładności I_S względem osi przechodzącej przez środek masy korzystając z twierdzenia Steinera

Twierdzenie Steinera stosuje się do obliczania momentu bezwładności bryły względem osi przesuniętej równolegle o długość a, gdzie I_S to moment bezwładności względem osi przechodzącej przez środek masy bryły.

$$I_0 = I_S + ma^2$$

$$I_S = I_0 - ma^2$$

Momement bezdładności I_S dla pręta:

$$I_S = 0,080836kg \cdot m^2 - 0,663kg \cdot (0,275m)^2 \approx 0,03070 \ kg \cdot m^2$$

Momement bezdładności I_S dla pierścienia:

$$I_S = 0.048096kg \cdot m^2 - 1.36kg \cdot (0.1326m)^2 \approx 0.02418 kg \cdot m^2$$

5.3 Moment bezwładności względem osi przechodzącej przez środek masy $I_S^{(geom)}$ na podstawie masy i wymiarów geometrycznych

Moment bezwładności większości regularnych brył można zapisać w postaci:

$$I_S^{(geom)} = k \cdot m \cdot l,$$

gdzie m – masa bryły, l – charakterystyczny wymiar bryły (np. długość, promień), k – bezwymiarowy współczynnik zależny tylko od kształtu bryły i wyboru charakterystycznego wymiaru (np. promień czy średnica), a niezależny od wielkości bryły.

Momement bezdładności $I_S^{(geom)}$ dla pręta:

$$I_S^{(geom)} = \frac{1}{12}ml^2$$

$$I_S^{(geom)} = \frac{1}{12} \cdot 0,663kg \cdot (0,75m)^2 \approx 0,031078kg \cdot m^2$$

Momement bezdładności ${\cal I}_S^{(geom)}$ dla pierścienia:

$$I_S^{(geom)} = \frac{1}{12}m(R^2 + r^2)$$

$$I_S^{(geom)} = \frac{1}{12} \cdot 1,36kg \cdot ((0,1402m)^2 + (0,1278m)^2) \approx 0,024472kg \cdot m^2$$

5.4 Niepewności mierzonych wielkości

5.4.1 Niepewność pomiaru okresu – niepewność typu A

Wzór na niepewność pomiaru u(T):

$$u(T) = \frac{\sqrt{\frac{\sum (T_i - \overline{T})^2}{n-1}}}{\sqrt{n}} = \sqrt{\frac{\sum (T_i - \overline{T})^2}{n(n-1)}},$$

gdzie n – liczba pomiarów, $\overline{T}=\frac{1}{n}\sum T_{\rm i}$ – średni czas trwania okresu.

Niepewność pomiaru okresu dla pręta:

$$\overline{T} = 1,33575s$$

$$u(T) = \sqrt{\frac{(1,3235s - 1,33575s)^2 + \dots + (1,339s - 1,33575s)^2}{10(10-1)}} \approx 0,0020s$$

Niepewność pomiaru okresu dla pierścienia:

$$\overline{T} = 1,036s$$

$$u(T) = \sqrt{\frac{(1,036s - 1,036s)^2 + \dots + (1,041s - 1,036s)^2}{10(10 - 1)}} \approx 0,00089s$$

5.4.2 Niepewność pomiaru masy

Do określenia masy pręta i pierścienia posłużyła nam waga cyfrowa o dokładności 0,001kg, więcu(m)=1g.

5.4.3 Niepewność pomiaru wymiarów geometrycznych

W pomiarze pręta przyjmujemy niepewność równą działce elementarnej linijki u(l)=1mm, u(a)=1mm, u(b)=1mm. Wszystkie wartości długości związanych z pierścieniem były mierzone za pomocą suwmiarki, której dokładność wynosiła 0,1mm, zatem $u(D_W)=0,1mm$, $u(D_Z)=0,1mm$, $u(R_W)=0,1mm$, $u(R_Z)=0,1mm$, u(e)=0,1mm, u(a)=0,1mm.

5.5 Niepewność złożona momentu bezwładności I_0

Wzór z którego korzystamy:

$$\frac{u(I_o)}{I_0} = \sqrt{\left(\frac{u(m)}{m}\right)^2 + \left(\frac{u(a)}{a}\right)^2 + \left(2\frac{u(T)}{T}\right)^2}$$

Niepewność złożona momentu bezwładności I_0 dla pręta:

$$\frac{u(I_o)}{I_0} = \sqrt{\left(\frac{0,001}{0,663}\right)^2 + \left(\frac{0,001}{0,275}\right)^2 + \left(2\frac{0,0020}{1,33575}\right)^2} \approx 0,0049$$

$$u(I_0) \approx 0,00040 \ kg \cdot m^2$$

Niepewność złożona momentu bezwładności I_0 dla pierścienia:

$$\frac{u(I_o)}{I_0} = \sqrt{\left(\frac{0,001}{1,36}\right)^2 + \left(\frac{0,0001}{0,1326}\right)^2 + \left(2\frac{0,00089}{1,036}\right)^2} \approx 0,0020$$
$$u(I_0) \approx 0,000097 \ kg \cdot m^2$$

5.6 Niepewność złożona momentu bezwładności I_S

Wzór z którego korzystamy:

$$u(I_s) = \sqrt{(u(I_0))^2 + (a^2u(m))^2 + (-2amu(m))^2}$$

Niepewność złożona momentu bezwładności I_S dla pręta:

$$u(I_s) = \sqrt{(0,00040)^2 + (0,275^2 \cdot 0,001)^2 + (-2 \cdot 0,275 \cdot 0,663 \cdot 0,001)^2} kg \cdot m^2$$
$$u(I_s) \approx 0,00055 kg \cdot m^2$$

Niepewność złożona momentu bezwładności I_S dla pierścienia:

$$u(I_s) = \sqrt{(0,000097)^2 + (0,1326^2 \cdot 0,001)^2 + (-2 \cdot 0,1326 \cdot 1,36 \cdot 0,001)^2} kg \cdot m^2$$
$$u(I_s) \approx 0,00037 kg \cdot m^2$$

5.7 Niepewność $u_c(I_S^{(geom)})$

Niepewność $u_c(I_S^{(geom)})$ dla pręta:

$$u(I_s^{geom}) = \sqrt{\left(\frac{l^2}{12} \cdot u(m)\right)^2 + \left(\frac{2lm}{12} \cdot u(l)\right)^2}$$
$$u(I_s^{geom}) = 0,000095 \ kg \cdot m^2$$

Niepewność $u_c(I_S^{(geom)})$ dla pierścienia:

$$u(I_s^{geom}) = \sqrt{\left(\frac{R_z^2 + R_w^2}{2} \cdot u(m)\right)^2 + (mR_z \cdot u(R_z))^2 + (mR_w \cdot u(R_w))^2}$$
$$u(I_s^{geom}) = 0,000058 \ kg \cdot m^2$$

Tablica 5: Wyniki obliczeń momentu bezwładności dla pręta.

	I_0 wyznaczone z okresu drgań $[kg\cdot m^2]$	I_S wyznaczone z twierdzenia Steinera $[kg\cdot m^2]$	I_S wyznaczone z pomiarów geometrycznych $[kg\cdot m^2]$
wartość	0,08084(40)	0,03070(55)	0,031078(95)
niepewność	0,00040	0,00055	0,000095

Tablica 6: Wyniki obliczeń momentu bezwładności dla pierścienia.

	I_0 wyznaczone z okresu drgań $[kg\cdot m^2]$	I_S wyznaczone z twierdzenia Steinera $[kg\cdot m^2]$	I_S wyznaczone z pomiarów geometrycznych $[kg\cdot m^2]$
wartość	0,048096(97)	0,02418(37)	0,024472(58)
niepewność	0,000097	0,00037	0,000058

5.8 Porównanie metod wyznaczenia momentu bezwładności

Na podstawie wartości z tabel 5 i 6 można stwierdzić, że dokładniejsze wartości momentu bezwładności uzyskuje się poprzez pomiary wymiarów geometrycznych, ponieważ niepewności pomiarów są mniejsze.

5.9 Zgodność wyników pomiaru w granicach niepewności rozszerzonej

Aby wyniki były zgodne w granicach niepewności rozszerzonej to $|I_s - I_{geom}| < U(I_s - I_{geom})$.

$$U(I_s - I_{geom}) = k \cdot \sqrt{(u(I_s)^2 + u(I_{geom})^2)},$$

gdzie współczynnik rozszerzalności k=2.

Zgodność wyników pomiaru w granicach niepewności rozszerzonej dla pręta:

$$U(I_s - I_{geom}) \approx 0,0011 \ kg \cdot m^2$$

$$|I_s - I_{geom}| \approx 0,00038 \ kg \cdot m^2$$

Wyniki pomiarów uznajemy za zgodne ze sobą, ponieważ:

$$|I_s - I_{qeom}| < U(I_s - I_{qeom})$$

Zgodność wyników pomiaru w granicach niepewności rozszerzonej dla pierścienia:

$$U(I_s - I_{geom}) \approx 0,00075 \ kg \cdot m^2$$

$$|I_s - I_{geom}| \approx 0,00029 \ kg \cdot m^2$$

Wyniki pomiarów uznajemy za zgodne ze sobą, ponieważ:

$$|I_s - I_{geom}| < U(I_s - I_{geom})$$

6 Wnioski

- Doświadczenie zostało przeprowadzone prawidłowo, wyniki pomiarów mieszczą się w granicach niepewności rozszerzonej zarówno dla pręta, jak i dla pierścienia.
- Dokładniejszym sposobem wyznaczania momentu bezwładności bryły jest skorzystanie z zależności geometrycznych zamiast z twierdzenia Steinera.
- Twierdzenie Steinera pozwala nam obliczyć momenty bezwładności wobec osi których nie możemy wyliczyć doświadczalnie.