# литий-ионные ЯЧЕЙКИ РЭНЕРА



Компания «РЭНЕРА» — интегратор Госкорпорации «Росатом» по системам накопления энергии — лидер рынка накопителей энергии в России. Наряду с развитием собственных продуктов и научно-технических центров, компания наращивает производственные мощности в России для создания широкого спектра решений на базе литий-ионных ячеек собственного производства.

Компания производит самые популярные современные форматы ячеек — Gen4 и VDA<sup>1</sup>, что позволяет применять решения РЭНЕРА в различных видах электротранспорта, стационарных  $CHЭЭ^2$  и  $ИБП^3$ . Такая вариативность обеспечивает не только широкий диапазон мощности, емкости и напряжения батареи, но и оптимальный вес и габариты решений в соответствии с техническими требованиями клиентов.

#### Ячейки Gen4

| Модель                        | 58253172 <b>E</b> 30E | 58253172 <b>P</b> 25B |
|-------------------------------|-----------------------|-----------------------|
| Номинальная ёмкость           | 30 А·ч                | 25 А·ч                |
| Номинальное напряжение        | 3,70 B                |                       |
| Диапазон рабочего напряжения  | 2,7 B ~ 4,2 B         |                       |
| Массовая плотность энергии    | 218 Вт∙ч/кг           | 185 Вт∙ч/кг           |
| Максимальный ток заряда       | 1C (30 A)             | 3C (75 A)             |
| Максимальный ток разряда      | 2C (60 A)             | 5C (125 A)            |
| Пиковый ток разряда, < 10 сек | 3C (90A)              | 7C (150A)             |
| Pecypc (DOD⁴ 80%), не менее   | 3 000                 |                       |
| Macca                         | < 500 Γ               |                       |



Ячейки с индексом «E» в названии модели применяются для высокоёмких решений: продолжительного резервирования питания или увеличенного пробега электромобилей. Ячейки с индексом «Р» в названии применяются для питания высокомощных нагрузок при высоких токах разряда.

#### Ячейки VDA

Обновленный форм-фактор литий-ионных ячеек VDA позволяет расширить диапазон их применения: в батареях низкопольных электромобилей любого типа, системах накопления электроэнергии (СНЭЭ) и источниках бесперебойного питания (ИБП), а также способствует унификации архитектурных решений, повышению универсальности и эффективности аккумуляторных батарей на их основе.

| Модель                          |          | 123100302 E60B-1          |  |
|---------------------------------|----------|---------------------------|--|
| Номинальная ёмкость             |          | 60 А·ч                    |  |
| Номинальное напряжение          |          | 3,70 B                    |  |
| Диапазон рабочего напряжения    |          | 2,7 B ~ 4,2 B             |  |
| Плотность<br>энергии            | объёмная | 598 Вт·ч/л                |  |
|                                 | массовая | 260 Вт∙ч/кг               |  |
| Максимальный ток заряда         |          | 1,5C (90 A)               |  |
| Максимальный ток разряда        |          | 2C (120 A)                |  |
| Диапазон рабочих<br>температур⁵ | Заряд    | -10°C ~ 55°C              |  |
|                                 | Разряд   | -20°C <sup>6</sup> ~ 55°C |  |
| Pecypc (DOD 80%)                |          | 2 000                     |  |
| Macca                           |          | < 850 г                   |  |





<sup>4</sup>DOD (depth of discharge) — глубина разряда.

<sup>&</sup>lt;sup>1</sup>VDA (Verband der Automobilindustrie) — Ассоциация автомобильной индустрии Германии.

<sup>&</sup>lt;sup>2</sup>CHЭЭ — система накопления электроэнергии. <sup>3</sup>ИБП — источник бесперебойного питания.

<sup>&</sup>lt;sup>5</sup>При наличии системы термоменеджмента (TMS).

<sup>&</sup>lt;sup>6</sup>Допустимый кратковременный режим эксплуатации при ограничении токов: заряд -10°C, разряд от -20°C до -30°C.

## Модульность для решения любых задач



Универсальный модуль — основа для всех решений РЭНЕРА. Он позволяет выстраивать различные архитектуры тяговых батарей любого назначения от электромобилей до карьерной техники, а в стационарных системах — обеспечивать оптимальные характеристики системы накопления энергии для нужд энергетических и промышленных предприятий, ЦОДов¹, объектов социальной и критической инфраструктуры и многих других организаций в различных отраслях бизнеса. Вариативность исполнения за счет различных схем соединения ячеек в составе модуля позволяет гибко подобрать параметры батареи в точном соответствии с требованиями заказчика и особенностями решаемой задачи.

### Модуль Gen4

Каждый модуль состоит из 24 ячеек и комплектуется платой BMS<sup>2</sup> нижнего уровня, которая осуществляет контроль параметров ячеек, их балансировку и управление процессом заряда и разряда модуля.

| Модель                       | ME600-050     | MP500-050  |
|------------------------------|---------------|------------|
| Конфигурация                 | 12S2P         |            |
| Номинальная ёмкость          | 60 А∙ч        | 50 А·ч     |
| Номинальная энергия          | 2,66 кВт∙ч    | 2,22 кВт∙ч |
| Номинальное напряжение       | 44,4 B        |            |
| Диапазон рабочего напряжения | 32,4 ~ 50,4 B |            |
| Максимальный ток заряда      | 1C (60 A)     | 3C (150 A) |
| Максимальный ток разряда     | 2C (120 A)    | 5C (250 A) |
| Пиковый ток разряда, <10 сек | 3C (180A)     | 7C (350A)  |
| Macca                        | < 16 KF       |            |





### Модуль VDA<sup>3</sup>

Универсальные модули с ячейками стандарта VDA подходят для размещения в полу или на крыше низкопольного электротранспорта, а также в составе систем накопления электроэнергии (СНЭЭ) и источников бесперебойного питания (ИБП).

| Модель                       | NE600-50      | NE1800-017    |  |
|------------------------------|---------------|---------------|--|
| Конфигурация                 | 12S1P         | 4S3P          |  |
| Номинальная ёмкость          | 60 А·ч        | 180 А·ч       |  |
| Номинальная энергия          | 2,66 кВт·ч    |               |  |
| Номинальное напряжение       | 44,4 B        | 14,8 B        |  |
| Диапазон рабочего напряжения | 32,4 ~ 50,4 B | 10,8 ~ 16,8 B |  |
| Удельная энергоёмкость       | 427 Вт·ч/л    |               |  |
| Массовая плотность энергии   | 216           | 216 Вт∙ч/кг   |  |
| Максимальный ток заряда      | 1,5C (90 A)   | 1,5C (270 A)  |  |
| Максимальный ток разряда     | 2C (120 A)    | 2C (360 A)    |  |
| Macca                        | <             | < 12 кг       |  |





<sup>&</sup>lt;sup>1</sup>ЦОД — центр обработки данных. <sup>2</sup>BMS (battery management system) — система контроля и управления батареей.