PUNTEROS A ESTRUCTURAS Y FUNCIONES

INTRODUCCIÓN DE ESTRUCTURAS Y PUNTEROS USO DE MACROS (BÁSICAS) - EJEMPLOS CALLBACKS

Repaso de estructuras.

- Es un tipo de dato creado por el usuario
- Sirve para agrupar los datos de distintos tipos dentro de una única variable
- Ejemplo: deseamos crear una función que realice la inicialización de un puerto de un microcontrolador. Además deseamos realizar algun tipo de acción que debe ser introducida por otro programador.
- Un puerto en estas condiciones, tiene tres parámetros
 - Número de puerto
 - Estado del puerto
 - acción a ejecutar

```
Generamos
La estructura
```

```
typedef struct {
  uint8_t port;
  uint8_t state;
  /// ¿Acción a ejecutar?
}led_t
```

PUNTEROS A FUNCIONES

- Se utilizan cuando se desconoce la acción a realizar.
- Por ejemplo pueden utilizarse dentro de ISR o IRQ.
- Cada función tiene un espacio asignado de memoria.
- Este puntero en lugar de apuntar una variable apunta al inicio de la función.

Sintaxis de C para definir un puntero a función:

<tipo de dato> (*nombre)(tipo1 var1, ..,tipoN varN)

- Por ejemplo:
 - Int (*función)(int,int): Este puntero puede apuntar a cualquier función de este tipo

¿Acción a ejecutar por parte del puerto?

- Definimos un campo de tipo puntero a función.
- La estructura queda de la siguiente forma:

```
typedef void (*callback_fn)(uint16_t a);
typedef struct {
   uint8_t port;
   uint8_t state;
   callback_fn fn;
} led_t;
```

PUNTEROS A ESTRUCTURAS

- EL PUNTERO APUNTA A UNA VARIABLE DEL TIPO CREADAS POR EL USUARIO
- La sintaxis es identica a la de los punteros ya vista, solo se cambia el tipo de dato.
- Para acceder a un campo utilizando un puntero a la estructura se utiliza el operador " ->"
- Lo utilizamos para apuntar la estructura anterior
- Creamos tres funciones: inicializar la estructura, cambiar el estado y que realize la ejecución al cambiar el estado.

Veremos todos estos conceptos con un ejemplo

OFF-TOPIC

- IRQ o INTERRUPCIONES MEDIANTE TIMERS
- VEREMOS EL uC Atmega328P
- POSEE TRES TIMERS
- Dentro de la Hoja de datos (datasheet se denominan TIMERO-TIMER 1 y TIMER 2). Haremos uso del TIMER2.

ARDUINO – UNO ATMEGA328p

CADA TIMER POSEE CUATRO MODOS

CTC

MODO FAST PWM

MODO PHASE CORRECT

NORMAL

FUNCIONAMIENTO MODO CTC

Figure 17-5. CTC Mode, Timing Diagram

Ejemplo:

F_{clk_I/O}=16 Mhz N = 1,8,32,64,128,256,1024 OCRnX = 8 BITS (0 A 255)

si N=8, OCRnx=9

Focnx = 100 Khz

CONFIGURACIÓN TIMER 2

17.11.1 TCCR2A - Timer/Counter Control Register A

Bit	7	6	5	4	3	2	1	0	
(0xB0)	COM2A1	COM2A0	COM2B1	COM2B0	-	-	WGM21	WGM20	TCCR2A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

17.11.2 TCCR2B - Timer/Counter Control Register B

Bit	7	6	5	4	3	2	1	0	
(0xB1)	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20	TCCR2B
Read/Write	W	W	R	R	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

17.11.4 OCR2A - Output Compare Register A

Bit	7	6	5	4	3	2	1	0	
(0xB3)				OCR2	A[7:0]				OCR2A
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-0.0
Initial Value	0	0	0	0	0	0	0	0	

17.11.6 TIMSK2 - Timer/Counter2 Interrupt Mask Register

Bit	7	6	5	4	3	2	1	0	
(0x70)	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2	TIMSK2
Read/Write	R	R	R	R	R	R/W	RW	R/W	
Initial Value	0	0	0	0	0	0	0	0	

CONFIGURACIÓN TIMER 2

Table 17-9. Clock Select Bit Description

CS22	CS21	CS20	Description
0	0	0	No clock source (Timer/Counter stopp
0	0	1	clk _{T2S} /(no prescaling)
0	1	0	clk _{T2S} /8 (from prescaler)
0	1	1	clk _{T2S} /32 (from prescaler)
1	0	0	clk _{T2S} /64 (from prescaler)
1	0	1	clk _{T2S} /128 (from prescaler)
1	1	0	clk _{T2S} /256 (from prescaler)
1	1	1	clk _{T2S} /1024 (from prescaler)

Table 17-8. Waveform Generation Mode Bit Description

Mode	WGM2	WGM1	WGM0	Timer/Counter Mode of Operation	ТОР	Update of OCRx at	TOV Flag Set on ⁽¹⁾⁽²⁾
0	0	0	0	Normal	0xFF	Immediate	MAX
1	0	0	1	PWM, phase correct	0xFF	TOP	воттом
2	0	1	0	СТС	OCRA	Immediate	MAX
3	0	1	1	Fast PWM	0xFF	ВОТТОМ	MAX
4	1	0	0	Reserved	-	-	-
5	1	0	1	PWM, phase correct	OCRA	TOP	BOTTOM
6	1	1	0	Reserved	-	-	-
7	1	1	1	Fast PWM	OCRA	воттом	TOP

¿Cada cuanto se ejecuta la IRQ?

