Lecture 2. Sorting algorithms.

Algorithms and Data Structures
Ivan Solomatin
MIPT 2020

Outline

- Sorting problem statement
- Quadratic $O(N^2)$ sorting algorithms
 - Selection sort
 - Insertion sort
 - Bubble sort
- Linearithmic $O(N \log N)$ sorting algorithms
 - Merge sort
 - Quick sort
 - Heap sort (later)
- Greedy algorithms

Problem statement

Given sequence of objects (let's suppose they're integer numbers for simplicity).

$$x_0, x_1, \dots, x_{N-1}: x_i \in X$$
 (1)

Also given binary relation \leq (transitive, reflexive) on X.

Task is to reorder elements:

$$x_{i_0}, x_{i_1}, \dots, x_{i_{N-1}}$$
 (2)
 $x_{i_0} \le x_{i_1} \le \dots \le x_{i_{N-1}}$ (3)

Sequence of source indices used to reorder elements construct a permutation:

$$\pi = (i_0, i_1, ... i_{N-1})$$

In other words, the task is to find a permutation that will satisfy (3).

Problem statement

Example

Problem statement

Example

Quadratic $O(N^2)$ sorting algorithms

- Selection sort
- Insertion sort
- Bubble sort

Selection sort

- 1. Let's find minimum value in range [i, N): $x_{i_{min}}$.
- 2. We know the place $x_{i_{min}}$ should take in sorted array: i-th.
- 3. Let's swap $x_{i_{min}}$ with value on it's desired place.
- 4. Now, let's sort the rest array (x[i + 1:]) using the same approach (i += 1) and go to 1.).

Selection sort

Implementation

```
N = len(x)
for i in range(N - 1):
    i_min = i
    for j in range(i + 1, N):
        if x[j] < x[i_min]:
            i_min = j
        x[i], x[i_min] = x[i_min], x[i]</pre>
```

Complexity: $N - 1 + N - 2 + ... + 1 = N(N - 1)/2 = O(N^2)$

Quadratic $O(N^2)$ sorting algorithms

- Selection sort
- Insertion sort
- Bubble sort

This sorting algorithm works similar to the way you sort playing cards in your hands:

0	1	2	3	4	5	6	7
4	2	5	6	3	1	7	8

This sorting algorithm works similar to the way you sort playing cards in your hands:

0	1	2	3	4	5	6	7
4	2	5	6	3	1	7	8

This sorting algorithm works similar to the way you sort playing cards in your hands:

0	1	2	3	4	5	6	7
2	4	5	6	3	1	7	8

This sorting algorithm works similar to the way you sort playing cards in your hands:

0	1	2	3	4	5	6	7
2	4	5	6	3	1	7	8

This sorting algorithm works similar to the way you sort playing cards in your hands:

		2					
2	3	4	5	6	1	7	8

This sorting algorithm works similar to the way you sort playing cards in your hands:

0	1	2	3	4	5	6	7
2	3	4	5	6	1	7	8

This sorting algorithm works similar to the way you sort playing cards in your hands:

	1	_		_	_		
1	2	3	4	5	6	7	8

Implementation

```
N = len(x)
for i in range(1, N):
    key = x[i]
    j = i - 1
    while j \ge 0 and key \langle x[j]:
        x[j + 1] = x[j]
        j -= 1
    x[j + 1] = key
```

Quadratic $O(N^2)$ sorting algorithms

- Selection sort
- Insertion sort
- Bubble sort

- 1. Let's iterate over $j \in [0, N i)$ and for each j, check if it's more then next value (j + 1), swap j and j + 1 elements.
- 2. After loop 1., maximum element will go right (float like a bubble).
- 3. Let's increase i and sort the rest of the array: x[:N-i].

- 1. Let's iterate over $j \in [0, N i)$ and for each j, check if it's more then next value (j + 1), swap j and j + 1 elements.
- 2. After loop 1., maximum element will go right (float like a bubble).
- 3. Let's increase i and sort the rest of the array: x[:N-i].

- 1. Let's iterate over $j \in [0, N i)$ and for each j, check if it's more then next value (j + 1), swap j and j + 1 elements.
- 2. After loop 1., maximum element will go right (float like a bubble).
- 3. Let's increase i and sort the rest of the array: x[:N-i].

- 1. Let's iterate over $j \in [0, N i)$ and for each j, check if it's more then next value (j + 1), swap j and j + 1 elements.
- 2. After loop 1., maximum element will go right (float like a bubble).
- 3. Let's increase i and sort the rest of the array: x[:N-i].

- 1. Let's iterate over $j \in [0, N i)$ and for each j, check if it's more then next value (j + 1), swap j and j + 1 elements.
- 2. After loop 1., maximum element will go right (float like a bubble).
- 3. Let's increase i and sort the rest of the array: x[:N-i].

Bubble sort Implementation

```
N = len(x)
for i in range(0, N - 1):
   for j in range(0, N - i - 1):
      if x[j] > x[j + 1]:
      x[j], x[j + 1] = x[j + 1], x[j]
```

Complexity:

$$1 + 2 + ... + N - 1 = N(N-1)/2 = O(N^2)$$

Linearithmic sorting algorithms $O(N \log N)$

- Merge sort
- Quick sort

Divide and conquer paradigm

Merging

Let's suppose, we need to sort array which is a union of two sorted arrays, $\frac{N}{2}$ each. How fast can we sort it?

Merging

Let's suppose, we need to sort array which is a union of two sorted arrays, $\frac{N}{2}$ each. How fast can we sort it?

We create two indices i_1 , i_2 and add minimum of $a[i_1]$, $b[i_2]$ to result array, step-by-step, increasing corresponding index.

Divide

Conquer χ $H \leq \log_2 N$ N

Complexity: $O(N \log N)$

Implementation

```
def merge(x, 1, m, r):
    tmp = []
    i1 = 1
    i2 = m
    while i1 < m or i2 < r:
        if (i2 >= r) or ((i1 < m) and
                          (x[i1] < x[i2])):
            tmp.append(x[i1])
            i1 += 1
        else:
            tmp.append(x[i2])
            i2 += 1
    x[1:r] = tmp
```

Implementation

```
def merge sort(x, l=0, r=None):
    if r is None:
        r = len(x)
    if r - 1 > 1:
        m = (1 + r) // 2
        merge sort(x, 1, m)
        merge sort(x, m, r)
```

Linearithmic sorting algorithms $O(N \log N)$

- Merge sort
- Quick sort

Divide and conquer paradigm

Idea

QSort also uses Divide and Conquer approach, but dividing method is different.

- 1. Select pivot element (any element from array)
- 2. Divide by 3 parts: elements < pivot, == pivot, > pivot
- 3. Recursively sort 1st and 3rd parts.

Partition

Let's denote division into 3 parts with indices i_l , i_r .

Array to be partitioned is in range [l, r).

Division is correct in range [0, i).

$$x < pivot: [l, i_l)$$

$$x == pivot: [i_l, i_r)$$

$$x > pivot: [i_r, i)$$

Unprocessed: [i, r)

$$p_{<}$$
 $p_{=}$
 $p_{=}$
 $p_{>}$
 $p_{>}$
 $p_{>}$
 $p_{>}$
 $p_{>}$
 $p_{>}$

Partition

Adding element to $p_{>}$.

1. Element already stands on it's place.

Partition

Adding element to $p_{=}$.

- 1. Swap $x[i_r]$ and x[i].
- 2. Increase i_r .

QSort

Partition

Adding element to $p_{<}$.

- 1. Swap $x[i_l]$ and x[i].
- 2. If 2-nd part was not empty $(i_l < i_r)$, x[i] is from $p_=$ and we need to return it (as on previous slide). Otherwise, x[i] is from $p_>$, and it stands on it's place
- 3. Increase i_l and i_r .

QSort

Implementation

```
def qsort(x, l=0, r=None):
    if r is None:
        r = len(x)
    if (r - 1) > 1:
        pivot = x[(l + r) // 2]
        il, ir = partition(x, l, r, pivot)
        qsort(x, l, il)
        qsort(x, ir, r)
```

QSort Complexity

Complexity: $O(N \log N)$

QSort Complexity

QSort Complexity

QSort

Implementation

```
import random
def qsort(x, l=0, r=None):
  if r is None:
    r = len(x)
  if (r - 1) > 1:
    pivot = x[random.randint(1, r - 1)]
    il, ir = partition(x, l, r, pivot)
    qsort(x, l, il)
    qsort(x, ir, r)
```

Greedy algorithm

Definition

Greedy algorithm builds up a solution piece by piece, always choosing the next piece that offers the most obvious and immediate benefit.

So on each step it chooses locally optimal solution.

Greedy algorithm

Example

Problem: Ali Baba 1

Ali-baba entered the cave with lot's of treasures. He can hold only *N* items in his hands. You are given list of all items in the cave with their costs. Help Ali Baba take out items with maximum total cost.

Solution:

Let's sort elements in non-increasing cost order and take top N elements.

Proof (informal):

Let's suppose, our solution A is not optimal. That means that exists a better solution B. A and B differs at least by 1 item, but if we replace any item in A with another, total sum will not increase, because our solution contains top-cost items. Contradiction.

Conclusion

 $O(N^2): N \le 1000$

 $O(N\log N): N \le 100000$

Python built-ins

```
import random
x = [random.randint(0, 100000) for i in range(100000)]
y = sorted(x)
x.sort()
```

Visualizers

- http://sorting.at/
- www.youtube.com/user/AlgoRythmics

Thank you for watching!