Computability Theory

Fall 2020

Lecture 3: Context-Free Languages and Pushdown Automata

Lecturer: Renjie Yang

3.1 Grammar

Sample English grammar rules: sentence \rightarrow subject predicate subject \rightarrow article adjective noun predicate rightarrow verb object

Example The big dog chased the cat.

Definition 3.1 A grammar is a 4-tuple $\{N, T, R, S\}$ consists of:

- A finite set N of grammar symbols called non-terminals;
- A finite set T of symbols called terminals, such that $N \cap T = \phi$;
- A finite set R of grammar rules of the form $\gamma \to \delta$ where γ and δ are strings over the symbol set $N \cup T$ with the following restrictions:
 - $-\gamma$ is not the empty string;
 - There is at least one production with S alone on the left hand side;
 - Each non-terminal must appear on the left hand side of some grammar rule;
- A non-terminal symbol S called start symbol.

Example Let $\Sigma = \{a, b, c\}$, S is the start symbol. The following rules is a grammar for Σ^* :

- $S \to \epsilon$
- $S \rightarrow aS$
- $S \to bS$
- $S \to Sc$

Example Languages and their corresponding grammar:

$$\begin{cases} a^n | n \in \mathbb{N} \rbrace & S \to aS | \epsilon \\ \{a^n b^n | n \in \mathbb{N} \rbrace & S \to aS b | \epsilon \\ \{(ab)^n | n \in \mathbb{N} \rbrace & S \to abS | \epsilon \end{cases}$$

Note A grammar is called a regular grammar if each of its grammar rule takes one of the following forms where the uppercase letters are non-terminals and w is a non-empty string of terminals:

- $\bullet \ S \to \epsilon$
- \bullet $S \to w$
- \bullet $S \to T$

• $S \rightarrow wT$

Note A regular language can be written by FSM, regular expression, or regular grammar. For example,

 a^*b

$$S \to aS; S \to b$$

and the following FSM

all express the same language $\{b, ab, aab, aaab, \dots\}$

3.2 Context-Free Grammar

Definition 3.2 A context-free grammar is a 4-tuple (V, Σ, R, S) , where

- 1. V is a finite set called the variables;
- 2. Σ is a finite set, disjoint from V, called the terminals;
- 3. R is a finite set of rules, with each rule being a variable and a string of variables and terminals;
- 4. $S \in V$ is the start variable.

Definition 3.3 If u, v and w are strings of variables and terminals, and $A \to w$ is a rule of the grammar, we say that uAv yields uwv, written $uAv \Rightarrow uwv$. Say that u derives v, written $u \stackrel{*}{\Rightarrow} v$, if u = v or if a sequence u_1, u_2, \ldots, u_k) exists for $k \ge 0$ and

$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_k \Rightarrow u.$$

The language of the grammar is $\{w \in \Sigma^* | S \stackrel{*}{\Rightarrow} w\}$.

Definition 3.4 A context-free language is a language generated by a context-free grammar.

Example $S \to (S)|SS|\epsilon$

Example
$$\{0^n1^n|\ n\geq 0\}$$
: $S\to\epsilon|0S1$

Example $L = \{w | w \in \{0, 1\}^*\}$ and the number of 0's equals the number of 1's.

 $S \to 0A|1B|\epsilon$

$$A \rightarrow 1S|0AA$$

$$B \rightarrow 0S|1BB$$

$$S \to SAB|\epsilon$$

$$A \to 0S1|\epsilon$$

$$B \to 1S0|\epsilon$$

Definition 3.5 If a grammar generates the same string in several different ways, we say that the string is derived ambiguously in that grammar. If a grammar generates some string ambiguously, we say that the grammar is ambiguously.

Example $S \to S + S|S \times S|a$

Theorem 3.6 Every regular language is context-free.

Proof: Given a DFA for the regular language, we can construct a context-free grammar that generates the same language through the following steps:

- make a variable for each state;
- make the variable for the starting state the starting variable;
- make a rule for each edge;
- Add an epsilon rule for each accept state.

Definition 3.7 A context-free grammar is in Chomsky normal form if every rule is of the form

$$\begin{array}{c} A \to BC \\ A \to a \end{array}$$

where a is any terminal and A, B, and C are any variables, except that B and C may not be the start variable. In addition, we permit the rule $S \to \epsilon$, where S is the start variable.

Theorem 3.8 Any context-free language is generated by a context-free grammar in Chomsky normal form.

Proof: We prove this theorem by constructing an algorithm that make the transition in the following steps:

- 1. Add a new start variable S_0 and the rule $S_0 \to S$, where S was the original start variable.
- 2. For each of the ϵ rules $A \to \epsilon$, where A is not the start variable, we remove the rule. Then for each occurrence of an A on the right-hand side of a rule, add a new rule with that occurrence deleted.
- 3. For every unit rule $A \to B$, we first remove it, and then whenever a rule $B \to u$ appears, we add the rule $A \to \text{unless}$ this was a unit rule previously removed.
- 4. Finally, replace each rule $A \to u_1 u_2 \cdots u_k$ with the rules $A \to u_1 A_1$, $A_1 \to u_2 A_2$, until $A_{k-2} \to u_{k-1} u_k$. Then replace any terminal u_i in the above rules with the new variable U_i and add the rule $U_i \to u_i$

Example

 $S \to ASA|aB$

 $A \to B|S$

 $B \to b | \epsilon$

Theorem 3.9 Context-free languages are closed under union operation.

Proof: Let L_1 and L_2 be two context-free languages. We can construct a context-free grammar for the union of the two by adding a grammar rule: $S_0 \to S_1|S_2$, where S_1 and S_2 are the start symbol for L_1 and L_2 respectively.

Theorem 3.10 Context-free languages are closed under concatenation operation.

Proof: Let L_1 and L_2 be two context-free languages. We can construct a context-free grammar for the union of the two by adding a grammar rule: $S_0 \to S_1 S_2$, where S_1 and S_2 are the start symbol for L_1 and L_2 respectively.

Example A context-sensitive grammar: $L = \{1^n 2^n 3^n | n \ge 1\}$

 $S \rightarrow 1SBC$

 $S \to \epsilon$

 $CB \to HB$

 $HB \to HC$

 $HC \to BC$

 $1B \rightarrow 12$

 $2B \rightarrow 22$

 $2C \rightarrow 23$

 $3C \rightarrow 33$

Note There could be more than one different grammars for the same language. $S \to aS|aaS|b$

Theorem 3.11 The class of regular languages is closed under the star operation.

Proof: Let $N_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$ recognize A_1 , construct $N = \{Q, \Sigma, \delta, q_0, F\}$ to recognize A_1^* as follows:

- 1. $q = q_0$, a new start state
- 2. $Q = \{q_0\} \cup Q_1$
- 3. $F = \{q_0\} \cup F_1$
- 4. Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\epsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a), & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a), & q \in F_1 \text{ and } a \neq \epsilon \end{cases}$$

$$\delta(q, a) = \begin{cases} \delta_1(q, a), & q \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(q, a) \cup \{q_1\}, & q \in F_1 \text{ and } a = \epsilon \end{cases}$$

$$\{q_1\}, & q = q_0 \text{ and } a \neq \epsilon \end{cases}$$

$$\phi, & q = q_0 \text{ and } a \neq \epsilon$$

3.3 Pushdown Automata

Definition 3.12 A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ, Γ, F are all finite sets:

- 1. Q is the set of states,
- 2. Σ is the input alphabet,
- 3. Γ is the stack alphabet,
- 4. $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \wp(Q \times \Gamma_{\epsilon})$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- 6. $F \subset Q$ is the set of accept states.

Definition 3.13 A pushdown automaton $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts input w if w can be written as $w = w_1 w_2 \cdots w_m$, where each $w_i \in \Sigma_{\epsilon}$ and sequences of states $r_0, r_1, \ldots, r_m \in Q$ and strings $s_0, s_1, \ldots, s_m \in \Gamma^*$ exist that satisfy the following three conditions:

- 1. $r_0 = q_0$ and $s_0 = \epsilon$.
- 2. For i = 0, ..., m 1, we have $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Sigma_{\epsilon}$ and t in Γ^* .
- $3. r_m \in F.$

Example Let M be $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where

$$Q = q_1, q_2, q_3, q_4$$

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{0, \$\}$$

$$F = \{q_1, q_4\}$$

 δ is given by the following table:

Input:	0			1			ε		
Stack:	0	\$	٤	0	\$	ε	0	\$	ε
q_1									$\{(q_2,\$)\}$
q_2			$\{(q_2,\mathtt{0})\}$	$\{(q_3,arepsilon)\}$					
q_3				$\{(q_3,arepsilon)\}$				$\{(q_4,arepsilon)\}$	
q_4									

The machine M can also be described by the following state diagram:

M is a pushdown automaton that recognizes language $\{0^n1^n|\ n\geq 0\}$

Note The stack of a pushdown automata can be non-empty when the computation finishes.

Example aa^*bc

Example All strings over $\{a, b\}$ with the same number of a's and b's.

Example $S \to \epsilon |aSb|aaS$

Theorem 3.14 If a language is context free, then some pushdown automaton recognizes it.

Example Construct a pushdown automaton from the following grammar:

$$S \to aTb|b$$

$$T \to Ta|\epsilon$$

