Ampliació de Matemàtiques QP 2018-2019. Grup 2GM3 Control 1. Integrals dobles i triples. Integrals de línia

1. (3 punts) Considerem el recinte $D = \{(x,y) \in \mathbb{R}^2 \mid y \ge |x|, \ x^2 + (y-1)^2 \le 1\}$ i la funció f(x,y) = xy. Escriu la integral $\iint_D f$ en coordenades cartesianes i en coordenades polars.

 ${f NO}$ s'ha de calcular la integral.

Solució Dibuix del recinte D

Les integrals s'escriuen:

$$\iint_D f(x,y) dx \, dy = \int_0^1 \int_{-y}^y xy \, dx \, dy + \int_1^2 \int_{-\sqrt{2y-y^2}}^{\sqrt{2y-y^2}} xy \, dx \, dy = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \int_0^{2\sin\theta} r^3 \cos\theta \, \sin\theta \, dr \, d\theta$$

2. (3.5 punts) Calcula el volum del sòlid delimitat per $x^2 + y^2 + z^2 = 1$ i $\frac{z^2}{3} = x^2 + y^2$, en el primer octant.

Solució El dibuix representa l'esfera d'equació $x^2 + y^2 + z^2 = 1$ i el con d'equació $\frac{z^2}{3} = x^2 + y^2$.

El sòlid descrit és l'interior a aquestes dues figures, en el primer octant.

Per tant, la projecció del sòlid sobre el pla z=0 és la part del primer quadrant del cercle d'equació $x^2 + y^2 = \frac{1}{4}$. El radi d'aquest cercle és $\frac{1}{2}$ i es troba situat a altura $\frac{\sqrt{3}}{2}$.

El càlcul del volum del sòlid es pot fer en coordenades cilíndriques o en coordenades esfèriques.

 \bullet Coordenades cilíndriques: descrivim la projecció del sòlid sobre z=0 en polars, i afegim l'interval de z entre el con d'equació $z = \sqrt{3}r$ i l'esfera d'equació $r^2 + z^2 = 1$:

$$V = \int_0^{\frac{\pi}{2}} \int_0^{\frac{1}{2}} \int_{\sqrt{3}}^{\sqrt{1-r^2}} r \, dz \, dr \, d\theta$$

• Coordenades esfèriques: l'equació de l'esfera en esfèriques és r=1, i la del con és $\varphi=\frac{\pi}{6}$. Com que només ens interessa la part del primer octant, l'angle θ anirà de 0 a $\frac{\pi}{2}$.

$$V = \int_0^{\frac{\pi}{2}} \int_0^1 \int_0^{\frac{\pi}{6}} r^2 \sin \varphi \, d\varphi \, dr \, d\theta$$

El càlcul és més senzill en coordenades esfèriques:

$$V = \int_0^{\frac{\pi}{2}} \int_0^1 \int_0^{\frac{\pi}{6}} r^2 \sin \varphi \, d\varphi \, dr \, d\theta = \int_0^{\frac{\pi}{2}} d\theta \int_0^1 r^2 \, dr \int_0^{\frac{\pi}{6}} \sin \varphi \, d\varphi = [\theta]_0^{\frac{\pi}{2}} \left[\frac{r^3}{3} \right]_0^1 [-\cos \varphi]_0^{\frac{\pi}{6}} =$$

$$= \frac{\pi}{2} \left(1 - \frac{\sqrt{3}}{2} \right) \frac{1}{3} = \frac{2 - \sqrt{3}}{12} \pi \, u^3$$

- 3. (3.5 punts) Sigui C^+ la vora del recinte del pla limitat per $y = x^2$ i y = x, orientada positivament, i sigui $\vec{F}(x,y) = (x^2 + y, y^2 - x)$.
 - (a) Calcula directament la integral de \vec{F} sobre C^+ .

Solució. Representem la corba C^+ i la regió que limita, D:

Tindrem: $\int_{C^+} \vec{F} \cdot d\vec{\ell} = \int_{\sigma_1} \vec{F} \cdot d\vec{\ell} + \int_{\sigma_2} \vec{F} \cdot d\vec{\ell}.$

Integrem sobre els camins (parametritzacions)

Integrem sobre els camins (parametritzacions):
$$\sigma_1: [0,1] \longrightarrow \mathbb{R}^2 \qquad i \qquad \sigma_2: [0,1] \longrightarrow \mathbb{R}^2$$

$$t \longmapsto (t,t^2) \qquad t \longmapsto (1-t,1-t)$$

Calculem $\vec{F}(\sigma_1)$, σ'_1 , $\vec{F}(\sigma_2)$, σ'_2 :

•
$$\vec{F}(\sigma_1(t)) = (2t^2, t^4 - t)$$

•
$$\sigma'_1(t) = (1, 2t)$$

•
$$\vec{F}(\sigma_1(t)) = (2t^2, t^4 - t)$$

• $\sigma'_1(t) = (1, 2t)$
• $\vec{F}(\sigma_2(t)) = (t^2 - 3t + 2, t^2 - t)$
• $\sigma'_2(t) = (-1, -1)$

•
$$\sigma_2'(t) = (-1, -1)$$

La integral de línia es calcula:

$$\begin{split} \int_{C^+} \vec{F} \cdot d\vec{\ell} &= \int_0^1 \vec{F}(\sigma_1(t)) \cdot \sigma_1'(t) dt + \int_0^1 \vec{F}(\sigma_2(t)) \cdot \sigma_2'(t) dt = \\ &= \int_0^1 (2t^2, t^4 - t) \cdot (1, 2t) dt + \int_0^1 (t^2 - 3t + 2, t^2 - t) \cdot (-1, -1) dt = \int_0^1 2t^5 dt + \int_0^1 (-2t^2 + 4t - 2) dt = \\ &= \left[\frac{t^6}{3} \right]_0^1 + \left[-\frac{2t^3}{3} + 2t^2 - 2t \right]_0^1 = \frac{1}{3} - \frac{2}{3} = \frac{-1}{3} \end{split}$$

(b) Dedueix, a partir del teorema de Green i sense calcular cap més integral, l'àrea del recinte limitat per C.

Segons el teorema de Green,

$$\int_{C^+} \vec{F} \cdot d\vec{\ell} = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy$$

Si
$$\vec{F}(x,y) = (x^2 + y, y^2 - x)$$
, aleshores $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = -2$.

Per tant,

$$\frac{-1}{3} = \int_{C^+} \vec{F} \cdot d\vec{\ell} = \iint_D -2 \, dx \, dy = -2 \cdot A(D) \Rightarrow A(D) = \frac{1}{6} \, u^2$$

(c) Justifica si el camp \vec{F} és o no conservatiu.

Solució. Com que $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \neq 0$, el camp no és conservatiu.