

1.

A point P moves on xy -plane such that $PS + PS' = 4$, where $S(K, 0)$	0) and $S'(-K, 0)$, then which of the following is not true about the locus of P ?
(1) Ellipse if $K \in (-2, 2)$	(2) Line segment if $K=\pm 2$

- (3) Empty if $K \in (-\infty, -2) \cup (2, \infty)$
- The equation $\left|\sqrt{x^2+(y-1)^2}-\sqrt{x^2+(y+1)^2}\right|=K$ will represent a hyperbola for -
- (1) $K \in (0, 2)$ (2) $K \in (0, 1)$
- (4) $K \in (0, \infty)$ (3) $K \in (1, \infty)$ If a directrix of a hyperbola centered at the origin and passing through the point $(4, -2\sqrt{3})$ is $5x = 4\sqrt{5}$ and its eccentricity is e, then:
- (1) $4e^4 + 8e^2 35 = 0$ though we mathematically mathematically mathematically mathematical $(2) \ 4e^4 - 24e^2 + 35 = 0$ $(3) \ 4e^4 - 24e^2 + 27 = 0$
- The ellipse $E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_2 passing through the point (0,4)
- circumscribes the rectangle R. The length (in units) of the major axis of ellipse E_2 is A hyperbola having the transverse axis of length 1 unit is confocal with the ellipse $3x^2 + 4y^2 = 12$. The square of length of conjugate axis of hyperbola is ____
- 6. If the eccentricity and length of latus rectum of a hyperbola are $\frac{\sqrt{13}}{3}$ and $\frac{10}{3}$ units respectively, then find the length of the transverse axis.
- Let LL' be the latus rectum through the focus of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and A be the farther vertex. If $\Delta ALL'$ is equilateral, then the eccentricity of the hyperbola is (axes are coordinate axes)
 - (2) $\sqrt{3} + 1$ (1) $\sqrt{3}$ (3) $\frac{\sqrt{3}+1}{\sqrt{2}}$
- (1) 4 + S'P(2) S'P - 1
- A chord is drawn passing through P(2, 2) on the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ such that it intersects the ellipse at points A and B. Then the maximum value of $PA \cdot PB$
- is equal to $(1) \frac{61}{4}$ mathongo /// math
- 10. If $(a \sec \theta, b \tan \theta)$ & $(a \sec \phi, b \tan \phi)$ be the coordinates of the ends of a focal chord passing through (ae, 0) of $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, then $\tan \frac{\theta}{2} \tan \frac{\phi}{2}$ equals to
- $(1) \frac{e-1}{e+1}$ $(3) \frac{1+e}{1-e}$