

Contents lists available at SciVerse ScienceDirect

# Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa



# An analogue of Bridges and Mena's theorem for local fields and a local-global principle

# Roi Krakovski

Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

#### ARTICLE INFO

Article history:

Received 2 April 2012 Accepted 31 July 2012

Available online 7 September 2012 Submitted by R.A. Brualdi

Keywords: p-adic numbers Character sums Abelian groups Minimal polynomials Local-global principle

#### ABSTRACT

Let G be an abelian group of finite order n, K a field and  $R \subseteq K$  a ring. Let  $D = \sum_{g \in G} a_g g \in R[G]$  such that  $\chi(D) \in R$  for every character  $\chi: G \to K(\xi_n)$  (where  $\chi(D) = \sum_{g \in G} a_g \chi(g)$  and  $\xi_n$  is a primitive nth root of unity). What does D look like? The case where  $K = \mathbb{Q}$  and  $R = \mathbb{Z}$  was settled by Bridges and Mena. Here we obtain a complete characterization for the case where K is a finite extension of the field  $\mathbb{Q}_p$  and K is its valuation ring under the condition that K does not divide K.

As an application we obtain the following local-global principle for  $\mathbb{Z}/q_1q_2\mathbb{Z}$  (where  $q_1$  and  $q_2$  are distinct primes): If  $D\in\mathbb{Z}[\mathbb{Z}/q_1q_2\mathbb{Z}]$ , then  $\chi(D)\in\mathbb{Z}$  for every character  $\chi:\mathbb{Z}/q_1q_2\mathbb{Z}\to\mathbb{C}^\times$  if and only if  $\psi(D)\in\mathbb{Z}_p$  for every prime p and every character  $\psi:\mathbb{Z}/q_1q_2\mathbb{Z}\to\mathbb{Q}_p(\xi_n)$ .

© 2012 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let *G* be a finite group. Define an equivalence relation  $\sim$  on the elements of *G* by  $x \sim y$  if and only if  $\langle x \rangle = \langle y \rangle$  (that is, *x* and *y* are equivalent if and only if they generate the exact same subgroup of *G*). The following was proved by Bridges and Mena [1].

**Theorem 1.1.** Let G be a finite abelian group and let  $D \in \mathbb{Z}[G]$ . Then  $\chi(D) \in \mathbb{Z}[G]$  for every character  $\chi: G \to \mathbb{C}^{\times}$  if and only if equivalent elements  $\chi \sim g$  of G have equal coefficients in D (that is, D is constant on equivalence classes of G w.r.t.  $\sim$ ).

In this paper we obtain an analogue to Theorem 1.1 for local fields and their valuation rings (Theorem 1.2). We then establish a connection between Theorem 1.1 (which concerns with cyclotomic fields) and Theorem 1.2 (which concerns with local fields) for a certain type of cyclic groups.

E-mail address: roikr@cs.bgu.ac.il

We need several definitions in order to present the main results of this paper. Let K be a finite extension of the field  $\mathbb{Q}_p$  of p-adic numbers. Let  $\pi \in K$  be an element of K of maximal absolute value strictly smaller than 1. Let

$$A_K := \{x \in K \mid |x| \le 1\}$$

be the valuation ring of K with maximal ideal

$$M_K := \pi A_K = \{x \in K \mid |x| < 1\}$$

The residue field  $k := A_K/M_K$  is finite, hence a finite extension of  $\mathbb{F}_p \cong \mathbb{Z}_p/p\mathbb{Z}_p$ . If  $d = [k : \mathbb{F}_p]$ , then  $k \cong \mathbb{F}_q$ , where  $q = |k| = |\mathbb{F}_p|^d = p^d$ . (For more details on finite extensions of  $\mathbb{Q}_p$  the reader is referred to the excellent book by Robert [2].)

Let  $q, n \in \mathbb{N}^*$  such that (q, n) = 1 and consider the group  $(\mathbb{Z}/n\mathbb{Z})^{\times}$  (the multiplicative group modulo n). We denote by  $\langle q \rangle_n \leqslant (\mathbb{Z}/n\mathbb{Z})^{\times}$  the subgroup of  $(\mathbb{Z}/n\mathbb{Z})^{\times}$  generated by q and write ord<sub>n</sub>(q) for the order of q in  $(\mathbb{Z}/n\mathbb{Z})^{\times}$ .

Let G be an abelian group of order  $n \in \mathbb{N}^*$  and let q be a prime power such that (q, n) = 1. Define a relation  $\sim_q$  on the elements of G by  $x \sim_q y$  if and only if  $y = x^j$ , for some  $j \in \langle q \rangle_n$ . The relation  $\sim_q$  is an equivalence relation. (This is no longer true if (q, n) > 1.)

We may view  $\sim_q$  as a refinement of  $\sim$  in the following sense: thanks to the assumption that  $(q,n)=1,x\sim_q y$  always implies that  $x\sim y$ ; the converse implication is often false. In general, if  $\mathcal{C}(x)$  (resp.,  $\mathcal{C}_q(x)$ ) is the equivalence class of an element x of G w.r.t.  $\sim$  (resp.,  $\sim_q$ ), then  $\mathcal{C}(x)=\mathcal{C}_q(x)$  if and only if q is a generator of  $(\mathbb{Z}/|\langle x\rangle|\mathbb{Z})^{\times}$ .

We can now state our main result.

**Theorem 1.2.** Let G be an abelian group of order  $n \in \mathbb{N}^*$  and let p be a prime with (p, n) = 1. Let K be a finite extension of  $\mathbb{Q}_p$  and let  $A_K$ ,  $M_K$  and k be as defined above. Let  $D \in A_K[G]$  and set q := |k|. Then  $\chi(D) \in A_K$  for every character  $\chi: G \to K(\xi_n)$  (where  $\xi_n$  is a primitive nth root of unity) if and only if equivalent elements  $x \sim_q y$  of G have equal coefficients in D (that is, D is constant on equivalence classes of G w.r.t.  $\sim_q$ ).

By combining Theorems 1.1 and 1.2 we obtain the following local-global principle for characters sums for a certain type of cyclic groups (see Section 4).

**Theorem 1.3.** Let  $q_1$  and  $q_2$  be distinct primes and let  $G = \langle a_1 \rangle \times \langle a_2 \rangle$  be a cyclic group of order  $n = q_1q_2$  with  $|\langle a_i \rangle| = q_i$  (i = 1, 2). Let  $D \in \mathbb{Z}[G]$ . Then  $\chi(D) \in \mathbb{Z}$  for every character  $\chi: G \to \mathbb{C}^\times$  if and only if  $\psi(D) \in \mathbb{Z}_p$  for every prime p and every character  $\psi: G \to \mathbb{Q}_p(\xi_n)$  (where  $\xi_n$  is a primitive p in the primitive p is a primitive p in the primitive p in the

# 2. Auxiliary results

To facilitate the proof of Theorem 1.2 we require several lemmas concerning irreducibility of polynomials over finite fields and over valuation rings of finite extensions of  $\mathbb{Q}_p$ . We start with the following fundamental result for which we provide a short proof.

**Lemma 2.1.** Let  $\mathbb{F}_q$  be a finite field with q elements (where q is a power of a prime p). Fix  $n \in \mathbb{N}^*$  and write  $n = p^r m$ , where (p, m) = 1. Set  $d := \operatorname{ord}_m(q)$ . Let  $\xi_n$  be a root of the nth cyclotomic polynomial  $\Phi_n(X)$  in a splitting field of  $X^n - 1$  over  $\mathbb{F}_q$ . Then the following holds:

(i) In  $\mathbb{F}_q[X]$ ,  $\Phi_n(X)$  decomposes as

$$\Phi_n(X) = (P_1(X))^{p^r} (P_2(X))^{p^r} \cdots (P_{\frac{\varphi(m)}{d}}(X))^{p^r}$$

where each  $P_i(X)$  is monic, irreducible over  $\mathbb{F}_q$  and of degree d, and  $P_1(X), \ldots, P_{\frac{\varphi(m)}{d}}(X)$  are pairwise distinct.

- (ii)  $\mathbb{F}_q(\xi_n)$  is the splitting field of any such  $P_i(X)$  and  $|\mathbb{F}_q(\xi_n):\mathbb{F}_q|=d$ .
- (iii) For i = 0, ..., d-1, the map  $\sigma_i : \mathbb{F}_q(\xi_n) \to \mathbb{F}_q(\xi_n)$  defined by  $x \mapsto x^{q^i}$  is a field automorphism of  $\mathbb{F}_q(\xi_n)$  fixing  $\mathbb{F}_q$ .
- (iv) If  $P_i(X) = \prod_{j=1}^d (X \alpha_j)$  (where each  $\alpha_j$  is primitive nth root in a splitting field of  $\Phi_n(X)$  over  $\mathbb{F}_q$ ), then for any symmetric polynomial  $Q(X_1, \ldots, X_d)$  in variables  $X_1, \ldots, X_d$ ,  $Q(\alpha_1, \ldots, \alpha_d) \in \mathbb{F}_q$ . In particular,  $\alpha_1 + \alpha_2 + \cdots + \alpha_d \in \mathbb{F}_q$ .

**Proof.** Suppose first that r=0 (i.e., (p,n)=1 and m=n). Then  $\Phi_n(X)$  is not divisible by the square of a non-constant polynomial in  $\mathbb{F}_q[X]$  (since  $X^n-1$  is separable over a field of characteristic co-prime to n). Hence, it suffices to show that every irreducible factor of  $\Phi_n(X)$  over  $\mathbb{F}_q[X]$  is monic and of degree d. Let P(X) be an irreducible factor of  $\Phi_n(X)$  over  $\mathbb{F}_q$  and suppose it is of degree  $s\in\mathbb{N}^*$ . Let  $\xi$  be a root of P(X) (which is, by definition, a primitive nth root of unity). Let  $K=\mathbb{F}_q(\xi)$  (note that  $K\cong \mathbb{F}_q[X]/(P(X))$ ). Then,  $|K|=q^s$  and  $\xi^{q^s-1}=1$ . Hence,  $q^s-1\equiv 0\pmod n$ , so s is a multiple of d and  $s\geqslant d$ .

Since  $\xi^n = 1$  and  $q^d \equiv 1 \pmod n$  (by definition), we have  $\xi^{q^d} = \xi$ . Consider the polynomial  $Q(X) = X^{q^d} - X$  and let K' be the splitting field of Q(X) over  $\mathbb{F}_q$ . Since  $\xi \in K'$ , it follows that K is a subfield of K' and so  $q^s \leq q^d$  and  $d \geq s$ . Hence, d = s, as required.

If  $r \geqslant 1$ , then in  $\mathbb{F}_q[X]$ , we have  $X^n - 1 = X^{p^r m} - 1 = (X^m - 1)^{p^r}$  (since  $\mathbb{F}_q$  is of characteristic p). Now  $X^m - 1$  decomposes in  $\mathbb{F}_q[X]$  as above. This proves (i).

Items (ii)–(iv) follows in a straightforward manner by Item (i). □

We need the following well-known version of Hensel's Lemma.

**Theorem 2.2.** Let K be a finite extension of  $\mathbb{Q}_p$  and let  $A_k$ ,  $M_k$  and k be as defined in Section 1. Let  $F(X) \in A_k[X]$  be a monic polynomial of degree n. Let  $f_1(X), f_2(X) \in k[X]$  be distinct monic irreducible polynomials of respective degrees r and n-r ( $0 \le r \le n$ ) such that  $\overline{f}(X) = f_1(X)f_2(X)$  (where for a polynomial  $P(X) \in A_k[X]$ ,  $\overline{P}(X)$  is the polynomial obtained from P(X) by reducing its coefficients modulo  $M_k$ ). Then there exist unique monic irreducible polynomials  $F_1(X)$ ,  $F_2(X) \in A_k[X]$  of respective degrees r and n-r such that  $F(X) = F_1(X)F_2(X)$  and  $\overline{F_i}(X) = f_i(X)$  (for i=1,2).

We deduce,

**Lemma 2.3.** Let K be a finite extension of  $\mathbb{Q}_p$  and let  $A_K$ ,  $M_K$  and k be as defined in Section 1. Set q := |k|. Let  $m \in \mathbb{N}^*$  with (p, m) = 1, and let  $K' := K(\xi_m)$  (where  $\xi_m$  is a primitive mth root of unity). Then the minimal polynomial of  $\xi_m$  over  $A_K$  is  $P_{\xi_m}(X) = \prod_{j \in \langle q \rangle_m} (X - \xi_m^j)$ . In particular,  $\sum_{j \in \langle q \rangle_m} \xi_m^j \in A_K$ .

**Proof.** For the field K', let  $A_{K'}$ ,  $M_{K'}$ , k' be as defined in Section 1. Set  $d := \operatorname{ord}_m(q)$ . Consider the mth cyclotomic polynomial  $\Phi_m(X)$  as a polynomial with coefficient in  $A_{K'}$ . In K'[X],  $\Phi_m(X) = \prod_{1 \le i \le m, (i,m)=1} (X - \xi_m^i)$ .

Let  $\overline{\Phi}_m(X) \in k[X] \subseteq k'[X]$  by obtained from  $\Phi_m(X)$  by reducing its coefficient modulo  $M_{K'}$  and let  $\overline{\xi_m} \in k'$  be obtained from  $\xi_m$  by reducing it modulo  $M_{K'}$ . (Note that  $\xi_m \in A_{K'}$ , so this is well-defined.) By Lemma 2.1, in k[X]

$$\overline{\Phi}_m(X) = \overline{P}_1(X)\overline{P}_2(X)\cdots\overline{P}_{\frac{\varphi(m)}{r}}(X)$$

where each  $\overline{P}_i(X) \in k[X]$  is monic, irreducible over k and of degree d, and  $\overline{P}_1(X), \ldots, \overline{P}_{\frac{\varphi(m)}{d}}(X)$  are pairwise distinct.

By Hensel's Lemma 2.2, there exist unique polynomials  $P_1(X), \ldots, P_{\frac{\varphi(m)}{d}}(X) \in A_K[X] \subseteq A_{K'}[X]$  such that

$$\Phi_m(X) = P_1(X)P_2(X)\cdots P_{\frac{\varphi(m)}{d}}(X)$$

where  $\overline{P}_i(X) \equiv P_i(X) \pmod{M_{K'}}$ , and each  $P_i(X)$  is monic, irreducible over  $A_K$  and of degree d.

Since  $\xi_m$  is a root of  $\Phi_m(X)$ , there exists  $1 \leqslant i \leqslant \frac{\varphi(m)}{d}$  with  $P_i(\xi_m) = 0$  so that  $\overline{P}_i(\overline{\xi_m}) = 0$ . By Lemma 2.1(ii)–(iii),  $\overline{P}_i(X) = \prod_{j \in \langle q \rangle_m} (X - \overline{\xi_m}^j)$ . Hence, the uniqueness of  $P_i(X)$  implies that  $P_i(X) = \prod_{j \in \langle q \rangle_m} (X - \xi_m^j)$ . The first assertion follows (with  $P_{\xi_m}(X) = P_i(X)$ ) since  $P_i(X)$  is irreducible over  $A_K$  and  $P_i(\xi_m) = 0$ .

For the second assertion set  $\alpha := \sum_{j \in \langle q \rangle_m} \xi_m^j$ . By Lemma 2.1(iv),  $\overline{\alpha} \in k[X] = A_K/M_K'$  (where  $\overline{\alpha}$  is the reduction of  $\alpha$  modulo  $M_{K'}$ ). Since K' is unramified over K (because p does not divide m) it follows that  $\alpha \in A_K$  as claimed.  $\square$ 

**Remark**. Consider the settings of Lemma 2.3. Let  $\mu_{(p)}(K) \subseteq K^{\times}$  be the group of roots of unity having order prime to p in K. It is well-known that the order of the cyclic group  $\mu_{(p)}(K)$  is exactly q-1 [2, Chapter 2, Proposition 4.3.2]. This is a special case of Lemma 2.3 (with m=1 and K'=K). Indeed, if  $\xi_n$  is a primitive nth root of unity (with (p,n)=1) then  $\xi_n\in A_K \iff P_{\xi_n}(X)=\sum_{j\in (q)_n}(X-\xi_n^j)=X-\xi_n \iff \operatorname{ord}_n(q)=1$  (this is well-defined since (p,n)=1 so (q,n)=1)  $\iff n|(q-1)$ . So  $\xi_n\in A_K \iff \xi_n$  is a (q-1)th root of unity.

#### 3. Proof of Theorem 1.2

In this section we prove Theorem 1.2. Let  $K' := K(\xi_n)$  and let  $A_{K'}$ ,  $M_{K'}$ , k' be as defined in Section 1. Since K' is of characteristic zero, the left-regular representation of G is completely reducible. Let  $G^* = \{\chi_1, \ldots, \chi_n\}$  be the set of characters of G (that is, the set of all distinct homomorphisms from G to the multiplicative group of K').

Let F be the  $n \times n$  matrix with rows indexed by the  $\chi_i$ 's and columns indexed by the elements of G defined by  $F_{(\chi_i,x)} := \chi_i(x)$  ( $\chi_i \in G^*, x \in G$ ). By the orthogonality of the characters,  $FF^* = nI_n$  (where  $F^*$  is the matrix obtained from the transpose of F by taking inverses cell-wise). We may now turn to the proof of Theorem 1.2.

**Necessity.** Let  $D \in A_K[G]$  so that  $\chi(D) \in A_K$  for every  $\chi \in G^*$ . Let  $v \in (A_K)^n$  be the coefficients vector of D indexed by the elements of G in a way that is consistent with the indexing of the columns of F. For  $x \in G$ , we denote by  $v_x$  the xth coordinate of v (that is, the coefficient of x in D). By assumption, there exists a vector  $z \in (A_K)^n$  such that

$$Fv = z \tag{1}$$

Fix  $x \in G$  and set  $m := |\langle x \rangle|$  and  $d := \operatorname{ord}_m(q)$  (this is well-defined since (q, n) = 1 so (q, m) = 1). To complete the proof of the necessity part we have to show that x and  $x^{\ell}$  have equal coefficients in D for every  $\ell \in \langle q \rangle_m$ .

By Eq. (1) and using  $F^*$ , we have  $v_x = \frac{1}{n} \sum_{i=1}^n \chi_i(x)^{-1} z_i$  and  $v_{x^\ell} = \frac{1}{n} \sum_{i=1}^n \chi_i(x^\ell)^{-1} z_i = \frac{1}{n} \sum_{i=1}^n \chi_i(x)^{-\ell} z_i$ . Since x is of order m in G, each  $\chi_i(x)$  is an mth root of unity. Since D has coefficients in  $A_K$  we may write:

$$\nu_{X} = \frac{1}{n} \sum_{i=0}^{m-1} \xi_{m}^{i} a_{i} \in A_{K}[\xi]$$
 (2)

where  $\xi_m \in K'$  is a primitive mth root of unity and  $a_i \in A_K$  (i = 0, ..., m - 1).

Consider the group  $\Gamma_m$  of mth roots of unity in K'. Since  $\Gamma_m$  is of order m and  $(\ell, m) = 1$ , the map  $g \mapsto g^{\ell}$  (for  $g \in \Gamma_m$ ) is an automorphism of  $\Gamma_m$ . Hence, using Eq. (2) we see that:

$$v_{\chi\ell} = \frac{1}{n} \sum_{i=0}^{m-1} (\xi_m^{\ell})^i a_i \in A_K[\xi_m]$$
(3)

Set

$$Q(X) := \nu_X - \frac{1}{n} \sum_{i=0}^{m-1} a_i X^i \in A_K[X]$$
(4)

By definition,  $Q(\xi_m) = 0$ .

Let  $P_{\xi_m}(X)$  be the minimal polynomial of  $\xi_m$  over  $A_K$  as obtained in Lemma 2.3. Then  $P_{\xi_m}(X)$  divides Q(X) in  $A_k[X]$ . Hence, for  $i \in \langle q \rangle_m$ ,  $\xi_m^i$  is also a root of Q(X). Since  $\ell \in \langle q \rangle_m$ , it follows that  $Q(\xi_m^\ell) = v_X - \frac{1}{n} \sum_{i=0}^{m-1} (\xi_m^\ell)^i a_i = 0$ . Hence, by Eq. (3),  $v_X = v_{\chi^j}$  as claimed. This completes the proof of the necessity part.

**Sufficiency.** Suppose that for every  $x \in G$ , D is constant on  $C_q(x)$ . Fix  $\chi \in G^*$  and  $x \in G$ . Set  $m := |\langle x \rangle|$  and  $d := \operatorname{ord}_m(q)$ . It suffices to show that  $\sum_{i \in \langle q \rangle_m} \chi(x^i) \in A_K$ .

Since x is of order m, there exists  $k \in \mathbb{N}^*$  with k|m such that  $\chi(x) = \xi_m^k$  (where  $\xi_m \in K'$  is a primitive mth root of unity). Now,

$$\sum_{i \in \langle q \rangle_m} \chi(x^i) = \sum_{i \in \langle q \rangle_m} (\chi(x))^i = \sum_{i \in \langle q \rangle_m} (\xi_n^k)^i$$

Let  $d' := \operatorname{ord}_{m/k}(q)$ . Then d = cd' for some  $c \in \mathbb{N}^*$ . Hence,

$$\sum_{i \in \langle q \rangle_m} (\xi_m^k)^i = \sum_{i=0}^{c-1} \sum_{j=d'i}^{d'i+d'-1} (\xi_m^k)^{q^j} = \sum_{i=0}^{c-1} \sum_{j=d'i}^{d'i+d'-1} (\xi_m^k)^{q^j \mod(m/k)} \in A_K$$

The last containment follow from Lemma 2.3. This completes the proof.

## 4. Proof of Theorem 1.3

In this section we prove Theorem 1.3. We start with the following lemma (see, e.g., [3]) concerning sums of primitive roots of unity (also known as Ramanujan's sums).

**Lemma 4.1.** Let K be either  $\mathbb{Q}$  or  $\mathbb{Q}_p$ . Let G be an abelian group of order n and let  $D \in 0/1[G]$  be the sum of elements of an equivalence class of G w.r.t.  $\sim$ . Then  $\chi(D) \in \mathbb{Z}$  for every character  $\chi: G \to K(\xi_n)$  (where  $\xi_n$  is a primitive nth root of unity).

Using Lemma 4.1 and Theorem 1.2 we deduce the following:

**Lemma 4.2.** Let  $q_1$  and  $q_2$  be distinct primes and let  $G = \langle a_1 \rangle \times \langle a_2 \rangle$  be a cyclic group of order  $n = q_1 q_2$  with  $|\langle a_i \rangle| = q_i$  (i = 1, 2). Let  $D \in \mathbb{Z}[G]$ . Then  $\chi(D) \in \mathbb{Z}_p$  for every prime p and every character  $\chi: G \to \mathbb{Q}_p(\xi_n)$  if and only if D is constant on equivalence classes w.r.t.  $\sim$ .

**Proof.** If D is constant on equivalence classes then the claim follows by Lemma 4.1 and the assumption that the coefficients of D are in  $\mathbb{Z}$ .

For the converse, suppose that  $\chi(D) \in \mathbb{Z}_p$  for every prime p and every character  $\chi: G \to \mathbb{Q}_p(\xi_n)$ . The proof is by induction on n.

If n=1 the claim holds trivially. Suppose that the claim holds for G' and D' satisfying the assumptions of the theorem where G' is of order < n. Let  $x \in G$  be a generator of (the cyclic group) G.

#### **Claim 1.** *D* is constant on C(x).

**Subproof.** Let  $y \in G$  such that  $y \sim x$ . By definition of  $\sim$ , there exists  $\ell \in \mathbb{N}^*$  with  $(\ell, n) = 1$  and  $y = x^\ell$ . Write  $\ell = \prod_{i=0}^k p_i^{k_i}$ , where  $k \in \mathbb{N}$ ,  $p_0 := 1, p_1, \ldots, p_k$  are pairwise distinct prime divisors of  $\ell$ , and  $k_i \in \mathbb{N}^*$  (for  $i = 0, \ldots, k$ ). For  $i = 0, \ldots, k$ , set  $d_i := \operatorname{ord}_n(p_i)$  and choose  $0 \leqslant \alpha_i \leqslant d_i - 1$  such that  $\ell \equiv \prod_{i=0}^k p_i^{\alpha_i} \pmod{n}$ . For  $i = 0, \ldots, k$ , set  $\beta(i) := \prod_{j=0}^i p_j^{\alpha_j}$ .

Since  $x = x^{\ell} = x^{\ell \pmod{n}}$ , to complete the proof of the claim we have to show that x and  $x^{\ell \pmod{n}}$  have equal coefficients in D. To that goal we show that if  $0 \leqslant i \leqslant k$ , then x and  $x^{\beta(i)}$  have equal coefficients in D.

We proceed by induction on i. If i=0 (and then  $\ell=1$ ) this holds trivially. Suppose then that for every  $1\leqslant i< k$ , x and  $x^{\beta(i)}$  have equal coefficients in D. By assumption,  $\chi(D)\in\mathbb{Z}_{p_{i+1}}$  for every character  $\chi:G\to\mathbb{Q}_{p_{i+1}}(\xi_n)$ . By Theorem 1.2, D is constant on equivalence classes w.r.t.  $\sim_{p_{i+1}}$ , and hence  $x^{\beta(i)}$  and  $x^{\beta(i)p_{i+1}^{\alpha(i)}}$  have equal coefficients in D. Hence, x and  $x^{\beta(i+1)}$  have equal coefficients in D. This proves Claim 1.

Now fix a prime p and a character  $\chi:G\to \mathbb{Q}_p(\xi_n)$ . Set  $G_i:=\langle a_i\rangle\leqslant G$  (i=1,2). By Claim 1,  $D=\gamma\mathcal{C}(x)+D_1+D_2$ , where the  $\gamma\in\mathbb{Z}$  and  $D_i\in\mathbb{Z}[G_i]$  (i=1,2). (Note that G has exactly four equivalence classes of sizes  $(q_1-1)(q_2-1), q_1-1, q_2-1$  and 1.) By Lemma 4.1,  $\chi(\mathcal{C}(x))\in\mathbb{Z}$ . Hence.

$$\chi(D) - \gamma \chi(\mathcal{C}(x)) = \chi(D_1) + \chi(D_2) \in \mathbb{Z}$$
(5)

For i=1,2,  $\chi(D_i)\in \mathbb{Q}(\xi_{q_i})$  since the restriction of  $\chi$  to  $G_i$  takes values in  $\mathbb{Q}(\xi_{q_i})\subset \mathbb{Q}_p(\xi_n)$ . Now from the right-hand side of Eq. (5), the fact that  $\mathbb{Q}(\xi_{q_1})\cap \mathbb{Q}(\xi_{q_2})=\mathbb{Q}$  and since  $\chi(D_i)$  is an algebraic integer, it follows that  $\chi(D_i)\in \mathbb{Z}$ .

It is well-known that every character  $\psi: G_i \to \mathbb{Q}_p(\xi_n)$  is the restriction to  $G_i$  of some character  $\chi: G \to \mathbb{Q}_p(\xi_n)$   $(1 \leqslant i \leqslant 2)$ . Since p and  $\chi$  were arbitrary, we conclude that  $\psi(D_i) \in \mathbb{Z}$  for every prime p and every character  $\psi: G_i \to \mathbb{Q}_p(\xi_n)$ . Since  $q_i < n$ , by induction,  $D_i$  is constant on equivalence classes w.r.t. to  $\sim$ . Hence, D is constant on equivalence classes w.r.t.  $\sim$ .  $\square$ 

**Proof of Theorem 1.3.** The proof follows by Theorem 1.1 and Lemma 4.2.

## Acknowledgement

The author would like to thank the anonymous referee for pointing out a gap in the proof of Lemma 2.3 and for many comments and suggestions that significantly improved the presentation of the paper.

## References

- [1] W. Bridges, R. Mena, Rational g-matrices with rational eigenvalues, Journal of Combinatorial Theory, Series A 32 (2) (1982) 264–280.
- [2] A.M. Robert, A course in p-adic analysis, Springer, New York, NY, 2000.
- [3] W. So, Integral circulant graphs, Discrete Mathematics 306 (1) (2006) 153–158.