

数学基础、递推方程的求解

施朱鸣 2023年3月3日

Table of Contents

▶ 数学基础

▶ 递推方程的求解方法

函数及其阶的估计

请将下列 5 个关于 n 的函数 n^2 , $(\sqrt{2})^{\lg n}$, $(\lg n)!$, $2^{\sqrt{2\lg n}}$, $\lg^2 n$ 按渐近的界由大 到小排序, 使得 $g_1 = \Omega\left(g_2\right)$, $g_2 = \Omega\left(g_3\right)$, ..., $g_4 = \Omega\left(g_5\right)$ 。

直观感受函数增长

(a) 所有函数

(b) $(\sqrt{2})^{\lg n}, 2^{\sqrt{2 \lg n}}, \lg^2 n$

函数及其阶的估计

$$n^2=2^{2\lg n}$$

$$\sqrt{2}^{\lg n}=2^{(\lg n)/2}$$
 $(\lg n)!=\Omega\left(\left(rac{\lg n}{e}
ight)^{\lg n}
ight),\;$ 根据 Stirling 公式
$$\lg^2 n=2^{2\lg\lg n}$$
 由 $\left(rac{\lg n}{e}
ight)^{\lg n}=\Omega\left(4^{\lg n}
ight), \qquad$ 得 $(\lg n)!=\Omega\left(n^2
ight);$

函数及其阶的估计

Figure: $(\lg n)!/n^2 \to 0$

从大到小排序 $(\lg n)!, n^2, \sqrt{2}^{\lg n}, 2^{\sqrt{2 \lg n}}, \lg^2 n$

Table of Contents

▶ 数学基础

▶ 递推方程的求解方法

主定理

设 a____, b____ 为常数, f(n) 为函数, T(n) 为_____, 且

$$T(n) = aT(n/b) + f(n)$$

则有以下结果

- _____
- •
- •

生成函数

已知递归方程 $a_n = 5a_{n-1} - 6a_{n-2}$, $a_0 = 1$, $a_1 = -2$, 使用生成函数求解 a_n 的递归方程。

生成函数

设
$$f(x) = \sum_{n \ge 0} a_n x^n$$
 则 $f - 5xf + 6x^2 f = (a_1 - 5a_0) x + a_0 = -7x + 1$

$$f = \frac{-7x + 1}{6x^2 - 5x + 1} = \frac{-7x + 1}{(2x - 1)(3x - 1)} = \frac{5}{1 - 2x} - \frac{4}{1 - 3x}$$

$$= 5 \sum_{n \ge 0} (2x)^n - 4 \sum_{n \ge 0} (3x)^n = \sum_{n \ge 0} (5 \times 2^n - 4 \times 3^n) x^n$$

故

$$a_n = 5 \times 2^n - 4 \times 3^n$$

数学基础、递推方程的求解

Thank you for listening! Any questions?