# SERIES DE TÉRMINOS POSITIVOS



Hasta el momento hemos visto el concepto de serie y como el determinar la sucesión de sumas parciales de la serie nos permite determinar si la serie converge o diverge; sin embargo, no siempre es posible el determinar una expresión algebraica para la n-ésima suma parcial de la serie.

Las series especiales: geométrica, telescópica y armónica, podemos identificarlas y de acuerdo a su tipo determinar si convergen o divergen, pero también no todas las series son especiales, entonces, ¿cómo poder determinar la convergencia de una serie?, y si esta converge ¿cuál es su suma?

Con este tema ampliamos el tipo de series para poder determinar si son convergentes o divergentes, se tomará el caso particular de series de términos positivos ya que las sumas parciales forman sucesiones no decrecientes, y las sucesiones no decrecientes que están acotadas superiormente convergen. Sin embargo, ya no podemos determinar la suma de la serie.

### CRITERIOS DE CONVERGENCIA

PARA LAS SERIES DE TÉRMINOS POSITIVOS, SE DETERMINARÁ LA CONVERGENCIA O DIVERGENCIA DE LA SERIES USANDO LOS CRITERIOS

- CRITERIO DE LA INTEGRAL
- CRITERIO BÁSICO DE COMPARACIÓN
- CRITERIO DE COMPARACIÓN POR LÍMITE
- CRITERIO DE LA RAZÓN O DE COCIENTE
- CRITERIO DE LA RAÍZ

### CRITERIO DE LA INTEGRAL

#### Teorema.

Suponga que f es una función positiva, continua y decreciente en  $[1, \infty)$  y sea  $a_n = f(n)$ ,

entonces la serie infinita  $\sum_{n=1}^{\infty} a_n$  es convergente si y sólo si la integral impropia  $\int_{1}^{\infty} f(x)dx$  es

convergente, esto es:

i) Si 
$$\int_{1}^{\infty} f(x)dx$$
 converge, entonces  $\sum_{n=1}^{\infty} a_n$  converge.

ii) Si 
$$\int_{1}^{\infty} f(x)dx$$
 diverge, entonces  $\sum_{n=1}^{\infty} a_n$  diverge.

### EJEMPLO 1.

## Usar el criterio de la integral para mostrar que la serie armónica $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge.

$$\mathbf{Como} \ a_n = \frac{1}{n} \Rightarrow f(x) = \frac{1}{x}$$

**Condiciones del criterio.** 

**Función positiva** 
$$f(x) = \frac{1}{x}$$
 es positiva para  $x \ge 1$ 

Función continua 
$$f(x) = \frac{1}{x}$$
 no es continua para  $x = 0$ , así  $f(x)$  es continua para  $x \ge 1$ 

### **Función decreciente**

$$f'(x) = -\frac{1}{x^2}$$
 y se tiene que  $-\frac{1}{x^2} < 0$  para toda x, luego  $f'(x) < 0$  y la función es decreciente en particular para  $x \ge 1$ .

#### Calculando la integral impropia

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} dx = \lim_{b \to \infty} \left[ \ln x \right]_{1}^{b} = \lim_{b \to \infty} \left[ \ln b - \ln 1 \right] = \lim_{b \to \infty} \ln b = \infty$$

Así la integral impropia diverge y por el criterio de la integral la serie  $\sum_{n=1}^{\infty} \frac{1}{n}$  diverge.

### EJEMPLO 2.

DETERMINAR SI LA SERIE  $\sum_{n=1}^{\infty} ne^{-n^2}$  CONVERGE O DIVERGE.

$$\mathbf{Como} \quad a_n = ne^{-n^2} \implies f(x) = xe^{-x^2}$$

#### **Función positiva**

 $f(x) = xe^{-x^2}$  es positiva si x > 0 y si  $e^{-x^2} > 0$ , la función exponencial siempre es positiva, su imagen es  $(0,\infty)$ , por lo cual, f es positiva para todo x > 0. En particular  $f(x) = xe^{-x^2}$  es positiva para  $x \ge 1$ .

#### **Función continua**

 $f(x) = xe^{-x^2}$  es continua para todo valor de x, ya que no existe un valor de x para el cual se indetermine, En particular  $f(x) = xe^{-x^2}$  es positiva para  $x \ge 1$ .

#### **Función decreciente**

Calculemos la derivada  $f(x) = x(-2xe^{-x^2}) + e^{-x^2} = e^{-x^2}(-2x^2 + 1)$ 

Tenemos  $e^{-x^2} > 0$  para toda x y  $-2x^2 + 1 < 0$  para  $x \ge 1$ ,

luego  $f(x) = xe^{-x^2}$  es decreciente si  $x \ge 1$ 

#### Calculando la integral impropia

$$\int_{1}^{\infty} xe^{-x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} xe^{-x^{2}} dx$$

#### Calculando la integral

$$\int xe^{-x^2}dx$$
, sea  $u = -x^2$  y  $du = -2xdx \implies \int xe^{-x^2}dx = -\frac{1}{2}\int e^u du = -\frac{1}{2}e^{-x^2}$ 

Así

$$\int_{1}^{\infty} xe^{-x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} xe^{-x^{2}} dx = \lim_{b \to \infty} -\frac{1}{2} e^{-x^{2}} \Big|_{1}^{b} = \lim_{b \to \infty} \left( -\frac{1}{2} e^{-b^{2}} + \frac{1}{2} e^{-(1)^{2}} \right)$$
$$= -\frac{1}{2} e^{-(\infty)^{2}} + \frac{1}{2} e^{-1} = -\frac{1}{2} e^{-\infty} + \frac{1}{2} e^{-1} = 0 + \frac{1}{2} e^{-1} = \frac{1}{2} e^{-1}$$

SERIE 
$$\sum_{n=1}^{\infty} ne^{-n^2}$$
 CONVERGE

### SERIE HIPERARMÓNICA

Teorema: La serie hiperarmónica o serie p, definida como

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

Converge si p > 1 y diverge si  $p \le 1$ .

#### DEMOSTRACIÓN.

Usemos el criterio de la integral para demostrarlo.

Sea p un número real positivo y  $f(x) = \frac{1}{x^p} = x^{-p}$ , veamos que cumple con las condiciones del criterio

Positiva,  $f(x) = \frac{1}{x^p} = x^{-p}$  es positiva siempre que  $x \ge 1$ 

Continua,  $f(x) = \frac{1}{x^p} = x^{-p}$  no es continua si x = 0, luego es continua para  $x \ge 1$ 

Decreciente, calculemos la derivada  $f'(x) = -px^{-p-1} = -\frac{p}{x^{p+1}}$ , si  $x \ge 1$  entonces f'(x) < 0 y

al función  $f(x) = \frac{1}{x^p} = x^{-p}$  es decreciente para  $x \ge 1$ 

#### **CALCULANDO LA INTEGRAL IMPROPIA**

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} dx = \lim_{b \to \infty} \frac{x^{-p+1}}{-p+1} \Big|_{1}^{b} = \lim_{b \to \infty} \frac{b^{-p+1}}{-p+1} - \frac{1^{-p+1}}{-p+1} = \lim_{b \to \infty} \frac{b^{-p+1}}{-p+1} - \frac{1}{-p+1}$$

$$= \frac{1}{-p+1} \left( \left( \lim_{b \to \infty} b^{-p+1} \right) - 1 \right)$$

#### **Determinemos**

$$\lim_{b\to\infty} b^{-p+1}$$

$$\lim_{b \to \infty} b^{-p+1} = \infty^{-p+1}$$

El resultado depende del signo del exponente, veámoslo por casos.

Si 
$$-p+1>0 \Rightarrow -p>-1 \Rightarrow p<1$$
,

para este caso  $\lim_{b\to\infty} b^{-p+1} = \infty^{-p+1} = (\infty)^{niimeropositivo} = \infty$ 

y la integral impropia  $\int_{1}^{\infty} \frac{1}{x^p} dx$  diverge.

Así por el criterio de la integral, la serie diverge.

 $Si - p + 1 < 0 \implies -p < -1 \implies p > 1$ ,

para este caso  $\lim_{b\to\infty} b^{-p+1} = \infty^{-p+1} = (\infty)^{n\'umeronegativo}$ , es conveniente que los exponentes sean

siempre positivos, así se tiene

$$\lim_{b \to \infty} b^{-p+1} = \lim_{b \to \infty} \frac{1}{b^{-(-p+1)}} = \frac{1}{\left(\infty\right)^{-(n\'{u}meronegativo})} = \frac{1}{\left(\infty\right)^{n\'{u}meropositivo}} = \frac{1}{\infty} = 0$$

Y por tanto, 
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \frac{1}{1-p} \left( \left( \lim_{b \to \infty} b^{1-p} \right) - 1 \right) = \frac{1}{1-p} \left( 0 - 1 \right) = -\frac{1}{1-p} = \frac{1}{p-1},$$

la integral impropia converge, así por el criterio de la integral se concluye que la serie  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  converge.

Nos falta analizar qué pasa si  $-p+1=0 \Rightarrow p=1$  y al serie  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  es  $\sum_{n=1}^{\infty} \frac{1}{n}$ , es decir la serie armónica y ya demostramos que diverge.

Por lo tanto la serie hiperarmónica o serie p  $\sum_{n=1}^{\infty} \frac{1}{n^p}$ , converge si p > 1 y diverge si  $p \le 1$ .

### EJEMPLO 3.

#### **DETERMINAR SI LAS SERIES DADAS CONVERGEN O DIVERGEN**

$$\mathbf{AJ} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

La serie  $\sum_{n=1}^{\infty} \frac{1}{n^2}$  es una serie hiperarmónica con p=2, como p>1, se concluye que la serie es convergente.

#### **DETERMINAR SI LAS SERIES DADAS CONVERGEN O DIVERGEN**

$$\mathbf{B} \mathbf{J} \sum_{n=1}^{\infty} \frac{5}{\sqrt{n}}$$

La serie  $\sum_{n=1}^{\infty} \frac{5}{\sqrt{n}}$  se puede representar como  $5\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = 5\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$  la cual es una serie

hiperarmónica con  $p = \frac{1}{2}$  y como p < 1, se concluye que la serie es divergente.

### CRITERIO BÁSICO DE COMPARACIÓN

Sean  $\sum a_n$  y  $\sum b_n$  dos series de términos positivos.

- a) Si  $\sum b_n$  converge y  $a_n \le b_n$  para todo entero positivo n, entonces  $\sum a_n$  es convergente.
- b) Si  $\sum b_n$  diverge y  $a_n \ge b_n$  para todo entero positivo n, entonces  $\sum a_n$  es divergente.

Observación.

Al aplicar el Criterio Básico de Comparación, se debe de tener presente las series especiales, cuya convergencia o divergencia se pueda determinar fácilmente. Se puede tener series geométricas, las cuales convergen si |r| < 1 y divergen en otro caso, las series hiperarmónicas, las cuales convergen si |r| < 1 y divergen en otro caso, y las series cuyo límite de su n-ésimo término sea diferente de cero ya que estas divergen, esto último aplicando el criterio del n-ésimo termino para la divergencia.

### EJEMPLO 4.

DETERMINAR SI LA SERIE  $\sum_{n=1}^{\infty} \frac{1}{3+5^n}$  CONVERGE O DIVERGE.

El término general de la serie es  $a_n = \frac{1}{3+5^n}$ 

Tenemos que determinar la expresión del término general de la sucesión  $b_{n}$ 

Sabemos que

$$3+5^n > 5^n \Rightarrow \frac{1}{3+5^n} < \frac{1}{5^n}$$

Así 
$$b_n = \frac{1}{5^n}$$
 y  $a_n < b_n$ 

Determinemos si la serie  $\sum b_n$  converge y diverge, para poder aplicar el criterio básico de comparación.

La serie  $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{5^n} = \sum_{n=1}^{\infty} \left(\frac{1}{5}\right)^n$ , es una serie geométrica con  $r = \frac{1}{5}$ , como  $\left|\frac{1}{5}\right| < 1$ , la serie converge.

Por lo tanto 
$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{5^n}$$
 converge y  $a_n = \frac{1}{3+5^n} < \frac{1}{5^n} = b_n$ , esto es  $a_n < b_n$ .

Por el criterio básico de comparación, la serie  $\sum_{n=1}^{\infty} \frac{1}{3+5^n}$  converge.

### EJEMPLO 5.

DETERMINAR SI LA SERIE  $\sum_{n=2}^{\infty} \frac{3}{\sqrt{n}-1}$  CONVERGE O DIVERGE.

El término general de la serie es 
$$a_n = \frac{3}{\sqrt{n}-1}$$

Tenemos que determinar la expresión del término general de la sucesión bn

Sabemos que

$$\sqrt{n-1} < \sqrt{n} \Rightarrow \frac{1}{\sqrt{n-1}} > \frac{1}{\sqrt{n}} \Rightarrow \frac{3}{\sqrt{n-1}} > \frac{3}{\sqrt{n}} > \frac{1}{\sqrt{n}}$$

Así 
$$a_n = \frac{3}{\sqrt{n-1}}$$
 y  $b_n = \frac{1}{\sqrt{n}}$ .

La serie  $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ , esta es una serie hiperarmónica con  $p = \frac{1}{2} < 1$  y la serie diverge.

Por lo tanto, la serie 
$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 diverge y  $a_n = \frac{3}{\sqrt{n-1}} > \frac{1}{\sqrt{n}} = b_n$ , esto es  $a_n > b_n$ .

Por el criterio básico de comparación concluimos que la serie  $\sum_{n=2}^{\infty} \frac{3}{\sqrt{n}-1}$  diverge.

### EJEMPLO 6.

DETERMINAR SI LA SERIE  $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}+1}$  CONVERGE O DIVERGE.

El término general de la serie es 
$$a_n = \frac{1}{\sqrt{n+1}}$$

Tenemos que determinar la expresión del término general de la sucesión  $b_{n}$ 

Sabemos que

$$\sqrt{n} + 1 > \sqrt{n} \Rightarrow \frac{1}{\sqrt{n} + 1} < \frac{1}{\sqrt{n}}$$

Así 
$$a_n = \frac{1}{\sqrt{n}+1}$$
 y  $b_n = \frac{1}{\sqrt{n}}$ .

La serie  $\sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$ , es una serie hiperarmónica con  $p = \frac{1}{2} < 1$  y la serie diverge.

Por lo tanto, la serie  $\sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$  diverge y  $a_n = \frac{1}{\sqrt{n+1}} < \frac{1}{\sqrt{n}} = b_n$ , esto es  $a_n < b_n$ .

El criterio básico de comparación no nos permite concluir si la serie converge o diverge. Ya que no se cumplen ambas condiciones, el criterio dice que  $\sum b_n$  diverge y  $a_n \ge b_n$ .

Hay que usar otro criterio y hasta el momento solo conocemos el Criterio de la Integral

Sea  $f(x) = \frac{1}{\sqrt{x+1}}$ . f es una función positiva y continua para toda  $x \ge 0$ , en consecuencia también para toda  $x \ge 2$ .

La derivada de la función es  $f'(x) = -\frac{1}{2\sqrt{x}(\sqrt{x}+1)}$  la cual es negativa para todo  $x \ge 0$ , por

lo cual es decreciente para toda  $x \ge 2$ .

#### Calculando la integral impropia

$$\int_{2}^{\infty} \frac{dx}{\sqrt{x+1}} = \lim_{b \to \infty} \int_{2}^{b} \frac{dx}{\sqrt{x+1}}$$

Calculando 
$$\int \frac{dx}{\sqrt{x+1}}$$

Sea 
$$u = \sqrt{x} \Rightarrow du = \frac{1}{2\sqrt{x}} dx \Rightarrow dx = 2\sqrt{x} du = 2u du$$

$$\int \frac{dx}{\sqrt{x}+1} = \int \frac{2udu}{u+1}$$
Tomando  $v = u+1 \implies dv = du$  y  $u = v-1$ 

$$\int \frac{dx}{\sqrt{x}+1} = \int \frac{2udu}{u+1} = 2\int \frac{v-1}{v} dv = 2\int dv - 2\int \frac{dv}{v}$$

$$= 2v - 2\ln v = 2(u+1) - 2\ln(u+1)$$

$$= 2(\sqrt{x}+1) - 2\ln(\sqrt{x}+1)$$

#### **RESOLVIENDO LA INTEGRAL IMPROPIA**

$$\lim_{b \to \infty} \int_{2}^{b} \frac{dx}{\sqrt{x} + 1} = \lim_{b \to \infty} \left( 2\left(\sqrt{x} + 1\right) - 2\ln\left(\sqrt{x} + 1\right) \Big|_{2}^{b} \right)$$

$$= \lim_{b \to \infty} \left( \left[ 2\left(\sqrt{b} + 1\right) - 2\ln\left(\sqrt{b} + 1\right) \right] - \left[ 2(2) - 2\ln 2 \right] \right)$$

$$= \left( \lim_{b \to \infty} 2\left(\sqrt{b} + 1\right) - 2\ln\left(\sqrt{b} + 1\right) \right) - 4 + 2\ln 2$$

Calculemos el límite

$$\lim_{b\to\infty} 2\left(\sqrt{b}+1\right) - 2\ln\left(\sqrt{b}+1\right) = \infty - \infty$$
, forma indeterminada

#### Resolviendo el límite

$$\lim_{b \to \infty} 2\left(\sqrt{b} + 1\right) - 2\ln\left(\sqrt{b} + 1\right) = 2\lim_{b \to \infty} \left(\sqrt{b} + 1\right) - \ln\left(\sqrt{b} + 1\right)$$

usando el hecho de que el logaritmo natural y la exponencial son funciones inversas, esto es  $a=\ln e^a$ 

**Así** 
$$\sqrt{b} + 1 = \ln e^{\sqrt{b} + 1}$$

$$=2\lim_{b\to\infty}\ln e^{\left(\sqrt{b}+1\right)}-\ln\left(\sqrt{b}+1\right)=2\lim_{b\to\infty}\ln\left(\frac{e^{\left(\sqrt{b}+1\right)}}{\sqrt{b}+1}\right)=2\ln\lim_{b\to\infty}\left(\frac{e^{\left(\sqrt{b}+1\right)}}{\sqrt{b}+1}\right)=2\ln\left(\frac{e^{\left(\sqrt{b}+1\right)}}{\sqrt{b}+1}\right)=2\ln\left(\frac{e^{\left(\sqrt{b}+1\right)}}{\sqrt{b}+1}\right)$$

$$\lim_{b \to \infty} \left( \frac{e^{\left(\sqrt{b} + 1\right)}}{\sqrt{b} + 1} \right) = \frac{\infty}{\infty}$$

#### Aplicando la Regla de L'Hospital

$$\lim_{b \to \infty} \left( \frac{e^{\left(\sqrt{b} + 1\right)}}{\sqrt{b} + 1} \right) = \lim_{b \to \infty} \frac{\frac{1}{2\sqrt{b}} e^{\left(\sqrt{b} + 1\right)}}{\frac{1}{2\sqrt{b}}} = \lim_{b \to \infty} e^{\left(\sqrt{b} + 1\right)} = e^{\infty} = \infty$$

#### Luego

$$=2\int_{2}^{\infty} \frac{dx}{\sqrt{x}+1} = 2\ln\lim_{b\to\infty} \left(\frac{e^{\left(\sqrt{b}+1\right)}}{\sqrt{b}+1}\right) = 2\ln\left(\infty\right) = \infty$$

La integral impropia diverge y en consecuencia la serie  $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}+1}$  diverge.

### EJEMPLO 7.

DETERMINAR SI LA SERIE  $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2+1}}$  CONVERGE O DIVERGE.

El término general de la serie es  $a_n = \frac{1}{\sqrt[3]{n^2 + 1}}$ 

Tenemos que determinar la expresión del término general de la sucesión b<sub>n</sub>

Sabemos que

$$n^2 + 1 > n^2 \Rightarrow \sqrt[3]{n^2 + 1} > \sqrt[3]{n^2} \Rightarrow \frac{1}{\sqrt[3]{n^2 + 1}} < \frac{1}{\sqrt[3]{n^2}}$$

Así 
$$a_n = \frac{1}{\sqrt[3]{n^2 + 1}}$$
 y  $b_n = \frac{1}{\sqrt[3]{n^2}}$ .

La serie 
$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}} = \sum_{n=1}^{\infty} \frac{1}{\frac{2}{n^3}}$$
, es una serie hiperarmónica con  $p = \frac{2}{3} < 1$  y la serie

diverge.

Por lo tanto, la serie 
$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}}$$
 diverge y  $a_n = \frac{1}{\sqrt[3]{n^2+1}} < \frac{1}{\sqrt[3]{n^2}} = b_n$ , esto es  $a_n < b_n$ .

El criterio básico de comparación no nos permite concluir si la serie converge o diverge. Ya que no se cumplen ambas condiciones, el criterio dice que  $\sum b_n$  diverge y  $a_n \ge b_n$ .

Hay que usar otro criterio y hasta el momento solo conocemos el Criterio de la Integral, pero veamos el criterio siguiente para aplicarlo posteriormente.

### CRITERIO DE COMPARACIÓN POR LÍMITE

Supongamos que  $a_n > 0$  y  $b_n > 0$   $\forall n \ge N$  entero.

- 1) Si  $\lim_{t\to\infty} \frac{a_n}{b_n} = c > 0 \Rightarrow \sum a_n \ y \sum b_n$  convergen o divergen ambas.
- 2) Si  $\lim_{t\to\infty} \frac{a_n}{b_n} = 0$  y si  $\sum b_n$  converge entonces  $\sum a_n$  converge.
- 3) Si  $\lim_{t\to\infty} \frac{a_n}{b_n} = \infty$  y si  $\sum b_n$  diverge entonces  $\sum a_n$  diverge.

### EJEMPLO 8.

DETERMINAR SI LA SERIE  $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2+1}}$  CONVERGE O DIVERGE.

Esta es la misma serie que la del ejemplo 7, en donde encontramos que  $b_n = \frac{1}{\sqrt[3]{n^2}}$ , sin embargo al usar el criterio básico de comparación no obtuvimos un resultado.

Usemos el criterio de comparación por límite con  $a_n = \frac{1}{\sqrt[3]{n^2 + 1}}$  y  $b_n = \frac{1}{\sqrt[3]{n^2}}$ 

**CALCULANDO EL LÍMITE** 

$$\lim_{n \to \infty} \frac{\frac{1}{\sqrt[3]{n^2 + 1}}}{\frac{1}{\sqrt[3]{n^2}}} = \lim_{n \to \infty} \frac{\sqrt[3]{n^2}}{\sqrt[3]{n^2 + 1}} = \lim_{n \to \infty} \sqrt[3]{\frac{n^2}{n^2 + 1}} = \sqrt[3]{\lim_{n \to \infty} \frac{n^2}{n^2 + 1}}$$

$$= \sqrt[3]{\lim_{n \to \infty} \frac{\frac{n^2}{n^2}}{\frac{n^2+1}{n^2}}} = \sqrt[3]{\lim_{n \to \infty} \frac{1}{1+\frac{1}{n^2}}} = \sqrt[3]{\frac{1}{1+\frac{1}{(\infty)^2}}} = \sqrt[3]{\frac{1}{1+0}} = 1 > 0$$

Como el límite es mayor que cero el Criterio de Comparación por Límite nos dice que las dos series  $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2+1}}$  y  $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}}$  convergen o divergen.

Para determinar la convergencia de la serie 
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2+1}}$$
, hay que determinar la convergencia de la serie  $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{2}{3}}}$ 

Esta es una serie hiperarmónica o serie p con p<1 y diverge.

Luego con por el Criterio de Comparación por Límite, la serie  $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2+1}}$  diverge.

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2+1}}$$
 diverge

## EJEMPLO 9.

DETERMINAR SI LA SERIE  $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n+1}}$  CONVERGE O DIVERGE.

Esta es la misma serie que la del ejemplo 6, en donde encontramos que  $a_n=\frac{1}{\sqrt{n}+1}$ , sin embargo al usar el criterio básico de comparación no obtuvimos un resultado y lo resolvimos con el criterio de la integral.

Usemos el criterio de comparación por límite con  $a_n = \frac{1}{\sqrt{n}+1}$  y  $b_n = \frac{1}{\sqrt{n}}$ 

**CALCULANDO EL LÍMITE** 

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{\sqrt{n} + 1}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n} + 1} = \lim_{n \to \infty} \frac{\frac{\sqrt{n}}{\sqrt{n}}}{\frac{\sqrt{n} + 1}{\sqrt{n}}} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{\sqrt{n}}} = \frac{1}{1 + \frac{1}{\sqrt{\infty}}} = 1 > 0$$

Como el límite es mayor que cero el Criterio de Comparación por Límite nos dice que las dos

series 
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}+1}$$
 y  $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$  convergen o divergen.

la serie 
$$\sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$$

Para determinar la convergencia de la serie 
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}+1}$$
, hay que determinar la convergencia de

Esta es una serie hiperarmónica o serie p con p<1 y diverge.

Luego con por el Criterio de Comparación por Límite, la serie  $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}+1}$  diverge.

$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}+1}$$
 diverge.

Estos dos últimos ejemplos ya habíamos intentado resolverlos por el criterio básico de comparación y esto hizo posible que tuviéramos la serie  $\sum_{n=1}^{\infty}b_n$  pero no siempre tenemos que iniciar aplicando este criterio.

Una forma de obtener la expresión para la serie  $\sum_{n=1}^{\infty}b_n$  es usando los términos mayores del numerador y de denominador de la función dada en el término general de  $\sum_{n=1}^{\infty}a_n$ 

## EJEMPLO 10.

DETERMINAR SI LA SERIE 
$$\sum_{n=1}^{\infty} \frac{3n^2 + 5n}{2^n (n^2 + 1)}$$
 CONVERGE O DIVERGE.

Para determinar b<sub>n</sub> tomamos los términos mayores del numerador y del denominador de

$$a_n = \frac{3n^2 + 5n}{2^n \left(n^2 + 1\right)}$$

**Así** 
$$b_n = \frac{3n^2}{2^n n^2} = \frac{3}{2^n}$$

**Usemos el Criterio de Comparación por Límite.** 

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{3n^2 + 5n}{2^n (n^2 + 1)}}{\frac{3}{2^n}} = \lim_{n \to \infty} \frac{\left(3n^2 + 5n\right)2^n}{3 \cdot 2^n (n^2 + 1)} = \lim_{n \to \infty} \frac{\left(3n^2 + 5n\right)}{3(n^2 + 1)} = \lim_{n \to \infty} \frac{\frac{3n^2 + 5n}{n^2}}{3\left(\frac{n^2 + 1}{n^2}\right)}$$

$$= \lim_{n \to \infty} \frac{\frac{3n^2 + 5n}{n^2}}{3\left(\frac{n^2 + 1}{n^2}\right)} = \lim_{n \to \infty} \frac{3 + \frac{5}{n}}{3\left(1 + \frac{1}{n^2}\right)} = \frac{3 + \frac{5}{\infty}}{3\left(1 + \frac{1}{(\infty)^2}\right)} = \frac{3}{3(1)} = 1 > 0$$

Como el límite es mayor que cero, las dos series  $\sum_{n=1}^{\infty} \frac{3n^2 + 5n}{2^n (n^2 + 1)}$  y  $\sum_{n=1}^{\infty} \frac{3}{2^n}$  convergen o divergen.

Determinemos si la serie  $\sum_{n=1}^{\infty} \frac{3}{2^n}$  converge o diverge.

La serie  $\sum_{n=1}^{\infty} \frac{3}{2^n} = 3\sum_{n=1}^{\infty} \frac{1}{2^n} = 3\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$  es geométrica con  $r = \frac{1}{2}$  y  $|r| = \left|\frac{1}{2}\right| < 1$  por lo que la serie converge.

Luego la serie  $\sum_{n=1}^{\infty} \frac{3n^2 + 5n}{2^n \left(n^2 + 1\right)}$  converge.

## CRITERIO DE LA RAZÓN O DEL COCIENTE

Sea  $\sum_{n=1}^{\infty} a_n$  una serie de términos positivos tal que

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$$

#### Entonces:

- i) Si L < 1, la serie converge.
- ii) Si L > 1, la serie diverge.
- iii) Si L=1, el criterio no determina convergencia o divergencia, hay que usar otro criterio.

## EJEMPLO 11.

DETERMINAR SI LA SERIE 
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$$
 CONVERGE O DIVERGE.

#### **Usando el Criterio de la Razón**

$$a_n = \frac{(2n)!}{n!n!}$$
 y  $a_{n+1} = \frac{(2(n+1))!}{(n+1)!(n+1)!}$ 

$$\lim_{n \to \infty} \frac{\frac{(2(n+1))!}{(n+1)!(n+1)!}}{\frac{(2n)!}{n!n!}} = \lim_{n \to \infty} \frac{(2(n+1))!n!n!}{(2n)!(n+1)!(n+1)!} = \lim_{n \to \infty} \frac{(2n+2)!n!n!}{(2n)!(n+1)!(n+1)!}$$

Usando la definición del factorial

$$= \lim_{n \to \infty} \frac{(2n+2)(2n+1)(2n)!n!n!}{(2n)!(n+1)n!(n+1)n!} = \lim_{n \to \infty} \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \lim_{n \to \infty} \frac{\left(\frac{2n+2}{n}\right)\left(\frac{2n+1}{n}\right)}{\left(\frac{n+1}{n}\right)\left(\frac{n+1}{n}\right)}$$

$$= \lim_{n \to \infty} \frac{\left(2 + \frac{2}{n}\right)\left(2 + \frac{1}{n}\right)}{\left(1 + \frac{1}{n}\right)\left(1 + \frac{1}{n}\right)} = \frac{\left(2 + \frac{2}{\infty}\right)\left(2 + \frac{1}{\infty}\right)}{\left(1 + \frac{1}{\infty}\right)\left(1 + \frac{1}{\infty}\right)} = \frac{(2)(2)}{(1)(1)} = 4 > 1$$

Por el criterio, la serie diverge.

# CRITERIO DE LA RAÍZ

Sea  $\sum_{n=1}^{\infty} a_n$  una serie de términos positivos tal que

$$\lim_{n\to\infty} \sqrt[n]{a_n} = L$$

#### Entonces:

- i) Si L < 1, la serie converge.
- ii) Si L > 1, la serie diverge.
- iii) Si L=1, el criterio no determina convergencia o divergencia, hay que usar otro criterio.

# EJEMPLO 12. DETERMINAR SI LA SERIE $\sum_{n=1}^{\infty} \frac{2^{3n+1}}{n^n}$ Converge o diverge.

$$\sum_{n=1}^{\infty} \frac{2^{3n+1}}{n^n}$$

#### **Usando el Criterio de la Raíz**

$$a_n = \frac{2^{3n+1}}{n^n}$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{2^{3n+1}}{n^n}} = \lim_{n \to \infty} \frac{\sqrt[n]{2^{3n+1}}}{\sqrt[n]{n^n}} = \lim_{n \to \infty} \frac{\left(2^{3n+1}\right)^{\frac{1}{n}}}{n} = \lim_{n \to \infty} \frac{2^{3+\frac{1}{n}}}{n} = \lim_{n \to \infty} \frac{2^3 \cdot 2^{\frac{1}{n}}}{n}$$

$$= 8 \lim_{n \to \infty} \frac{2^{\frac{1}{n}}}{n} = 8 \left( \frac{2^{\frac{1}{\infty}}}{\infty} \right) = 8 \left( \frac{2^{0}}{\infty} \right) = 8 \left( 0 \right) = 0 < 1$$

Por lo que la serie converge.

## EJEMPLO 13.

DETERMINAR SI LA SERIE  $\sum_{n=1}^{\infty} \frac{\ln n}{n^{\frac{3}{2}}}$  CONVERGE O DIVERGE.

$$\sum_{n=1}^{\infty} \frac{\ln n}{n^{\frac{3}{2}}}$$

#### Primero usemos el Criterio de la Raíz

$$a_n = \frac{\ln n}{n^{\frac{3}{2}}}$$

$$\lim_{n \to \infty} \sqrt{\frac{\ln n}{\frac{3}{n^2}}} = \lim_{n \to \infty} \frac{\sqrt[n]{\ln n}}{\sqrt[n]{\frac{3}{n^2}}} = \lim_{n \to \infty} \frac{\sqrt[n]{\ln n}}{\left(\sqrt[n]{n}\right)^{\frac{3}{2}}} = \frac{\lim_{n \to \infty} \sqrt[n]{\ln n}}{\lim_{n \to \infty} \left(\sqrt[n]{n}\right)^{\frac{3}{2}}}$$

## Calculemos cada uno de los límites, para que sea válido el procedimiento ambos limites deben de existir.

$$\lim_{n\to\infty} \sqrt[n]{\ln n} = \lim_{n\to\infty} (\ln n)^{\frac{1}{n}} = (\ln \infty)^{\frac{1}{\infty}} = (\infty)^0, \text{ esta es una forma indeterminada de potencia}$$

Resolviéndola 
$$\lim_{n\to\infty} \frac{1}{n} \ln(\ln n) = \lim_{n\to\infty} \frac{\ln(\ln n)}{n} = \frac{\ln(\ln \infty)}{\infty} = \frac{\infty}{\infty}$$

Aplicando la regla de L'Hospital

$$\lim_{n \to \infty} \frac{\ln(\ln n)}{n} = \lim_{n \to \infty} \frac{\frac{1}{\ln n} \left(\frac{1}{n}\right)}{1} = \lim_{n \to \infty} \frac{1}{n \ln n} = \frac{1}{\infty} = 0$$
Luego  $\lim_{n \to \infty} \sqrt[n]{\ln n} = e^0 = 1$ 

Calculando el otro limite  $\lim_{n\to\infty} \left(\sqrt[n]{n}\right)^{\frac{3}{2}} = \left(\lim_{n\to\infty} \sqrt[n]{n}\right)^{\frac{3}{2}} = 1$ . Debido al límite importante

$$\lim_{n\to\infty} \sqrt[n]{n} = 1,$$

Luego
$$\lim_{n \to \infty} \sqrt[n]{\frac{\ln n}{n^{\frac{3}{2}}}} = \frac{\lim_{n \to \infty} \sqrt[n]{\ln n}}{\lim_{n \to \infty} \left(\sqrt[n]{n}\right)^{\frac{3}{2}}} = \frac{1}{1} = 1, \text{ luego no se puede determinar si la serie converge o diverge}$$

con este criterio hay que usar otro.



## **Apliquemos el Criterio de la Razón.**

$$a_n = \frac{\ln n}{\frac{3}{n^2}}$$
 y  $a_{n+1} = \frac{\ln (n+1)}{(n+1)^{\frac{3}{2}}}$ 

$$\lim_{n \to \infty} \frac{\frac{\ln(n+1)}{\frac{3}{2}}}{\frac{\ln n}{\frac{3}{2}}} = \lim_{n \to \infty} \frac{\frac{\frac{3}{2} \ln(n+1)}{n^{\frac{3}{2} \ln n}} = \lim_{n \to \infty} \frac{\frac{\frac{3}{2}}{n^{\frac{3}{2}}} \lim_{n \to \infty} \frac{\ln(n+1)}{\ln n}}{(n+1)^{\frac{3}{2} \ln n}} = \lim_{n \to \infty} \frac{\frac{1}{n^{\frac{3}{2}}} \lim_{n \to \infty} \frac{\ln(n+1)}{\ln n}}{(n+1)^{\frac{3}{2}} \lim_{n \to \infty} \frac{\ln(n+1)}{\ln n}}$$

Calculemos cada uno de los límites, para que el procedimiento sea válido ambos deben de existir.

$$\lim_{n \to \infty} \frac{n^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^{\frac{3}{2}} = \left(\lim_{n \to \infty} \frac{n}{n+1}\right)^{\frac{3}{2}} = \left(\lim_{n \to \infty} \frac{\frac{n}{n}}{\frac{n+1}{n}}\right)^{\frac{3}{2}} = \left(\lim_{n \to \infty} \frac{1}{1+\frac{1}{n}}\right)^{\frac{3}{2}} = 1$$

$$\lim_{n\to\infty} \frac{\ln(n+1)}{\ln n} = \frac{\infty}{\infty}$$
, aplicando la Regla de L'Hospital

$$\lim_{n \to \infty} \frac{\ln(n+1)}{\ln n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1+\frac{1}{n}} = \frac{1}{1+\frac{1}{\infty}} = 1$$

Luego 
$$\lim_{n\to\infty} \frac{\frac{\ln(n+1)}{\frac{3}{2}}}{\frac{\ln n}{n^{\frac{3}{2}}}} = \lim_{n\to\infty} \frac{\frac{\frac{3}{2}}{n^{\frac{3}{2}}}}{(n+1)^{\frac{3}{2}}} \lim_{n\to\infty} \frac{\ln(n+1)}{\ln n} = (1)(1) = 1$$
Luego no se puede determinar si la serie converge o diverge co

Luego no se puede determinar si la serie converge o diverge con este criterio hay que usar otro.

## **Usemos el Criterio Básico de Comparación.**

Tenemos 
$$a_n = \frac{\ln n}{\frac{3}{n^2}}$$
, determinemos bn

## Podemos comparar el logaritmo natural con cualquier potencia de n, en particular comparémosla con n, así

$$\ln n < n$$

$$\frac{\ln n}{\frac{3}{2}} < \frac{n}{n^2} = \frac{1}{n^2}$$
Así  $a_n = \frac{\ln n}{\frac{3}{2}}$  y  $b_n = \frac{1}{\frac{1}{n^2}}$ 

$$\frac{\ln n}{\frac{3}{n^2}} < \frac{1}{n^2}$$

La serie  $\sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ , es una serie hiperarmónica con  $p = \frac{1}{2} < 1$  y la serie diverge.

Por lo tanto, la serie  $\sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{n^{\frac{1}{2}}}$  diverge y  $a_n = \frac{\ln n}{\frac{3}{2}} < \frac{1}{n^{\frac{1}{2}}} = b_n$ , esto es  $a_n < b_n$ .

El criterio básico de comparación no nos permite concluir si la serie converge o diverge. Ya que no se cumplen ambas condiciones, el criterio dice que  $\sum b_n$  diverge y  $a_n \ge b_n$ .

**Usemos el Criterio de Comparación por Límite.** 

Tenemos que 
$$a_n = \frac{\ln n}{\frac{3}{n^2}}$$
 y  $b_n = \frac{1}{\frac{1}{n^2}}$ 

#### Calculando el límite

$$\lim_{n \to \infty} \frac{\frac{\ln n}{\frac{3}{2}}}{\frac{1}{n^{\frac{1}{2}}}} = \lim_{n \to \infty} \frac{n^{\frac{1}{2}} \ln n}{\frac{3}{n^{\frac{3}{2}}}} = \lim_{n \to \infty} \frac{\ln n}{n} = \frac{\infty}{\infty}$$

Aplicando la Regla de L'Hospital

$$\lim_{n\to\infty} \frac{\ln n}{n} = \lim_{n\to\infty} \frac{\frac{1}{n}}{1} = \lim_{n\to\infty} \frac{1}{n} = \frac{1}{\infty} = 0, \text{ así } \lim_{n\to\infty} \frac{a_n}{b_n} = 0 \text{ y la serie } \sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{n^{\frac{1}{2}}} \text{ diverge, por lo}$$

cual el criterio no determina si la serie converge o diverge hay que usar otro criterio.

#### **Usemos el Criterio de la Integral.**

Tenemos 
$$a_n = \frac{\ln n}{n^{\frac{3}{2}}}$$
, luego  $f(x) = \frac{\ln x}{x^{\frac{3}{2}}}$ 

#### **Veamos si cumple las condiciones**

Positiva, sabemos  $\ln x \ge 0$  si  $x \ge 1$  y  $x^{\frac{3}{2}} > 0$  si x > 0, luego la función es positiva si  $x \ge 1$ 

Continua, la función  $f(x) = \frac{\ln x}{x^{\frac{3}{2}}}$ , no es continua en x = 0 y su dominio es  $(0.\infty)$ , luego la

función es continua si  $x \ge 1$ 

Decreciente, calculemos la derivada

$$f'(x) = \frac{x^{\frac{3}{2}} \left(\frac{1}{x}\right) - \ln x \left(\frac{3}{2}x^{\frac{1}{2}}\right)}{\left(x^{\frac{3}{2}}\right)^{2}} = \frac{x^{\frac{1}{2}} \left(x \left(\frac{1}{x}\right) - \frac{3}{2}\ln x\right)}{x^{3}} = \frac{x^{\frac{1}{2}} \left(1 - \frac{3}{2}\ln x\right)}{x^{3}}$$

Veamos bajo qué condiciones la derivada es negativa,

El denominador  $x^3$  es positivo si  $x \ge 1$ ,  $x^{\frac{1}{2}}$  es positiva si  $x \ge 1$ 

Y el factor  $1 - \frac{3}{2} \ln x$  es negativo si

$$1 - \frac{3}{2} \ln x < 0 \implies -\frac{3}{2} \ln x < -1 \implies \frac{3}{2} \ln x > 1 \implies \ln x > \frac{2}{3} \approx 0.66666 \text{ por lo que podemos}$$

decir que f es decreciente si  $x \ge 2$ .

El criterio de la integral nos permite determinar si la serie dada converge o diverge en el intervalo  $(2,\infty)$ , pero nos piden determinar el valor de la serie en e intervalo  $(1,\infty)$ , usaremos el criterio de la integral para determinar si la serie converge o diverge en el intervalo que inicia en 2 y a este resultado le sumamos el valor de a serie en 1 que es el que falta de tomar en cuenta.

La serie es 
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^{\frac{3}{2}}} = \frac{\ln 1}{1^{\frac{3}{2}}} + \sum_{n=2}^{\infty} \frac{\ln n}{n^{\frac{3}{2}}} = 0 + \sum_{n=2}^{\infty} \frac{\ln n}{n^{\frac{3}{2}}} = \sum_{n=2}^{\infty} \frac{\ln n}{n^{\frac{3}{2}}}$$

En este caso la serie en el intervalo  $(1,\infty)$  es la misma que en el intervalo  $(2,\infty)$ 

Calculemos la integral impropia

$$\int_{2}^{\infty} \frac{\ln x}{x^{\frac{3}{2}}} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{\ln x}{x^{\frac{3}{2}}} dx$$

Calculemos la integral

$$\int \frac{\ln x}{x^2} dx$$
, resolvámosla por partes, sea  $u = \ln x \implies du = \frac{1}{x} dx$  y

$$v = \int \frac{1}{\frac{3}{x^2}} dx \implies v = \int x^{-\frac{3}{2}} dx = \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} = -\frac{2}{\frac{1}{x^2}}$$

$$\int \frac{\ln x}{x^{\frac{3}{2}}} dx = -\frac{2}{x^{\frac{1}{2}}} \ln x - \int -\frac{2}{x^{\frac{1}{2}}} \left(\frac{1}{x} dx\right) = -\frac{2}{x^{\frac{1}{2}}} \ln x + 2 \int \frac{1}{x^{\frac{3}{2}}} dx = -\frac{2}{x^{\frac{1}{2}}} \ln x + 2 \left(-\frac{2}{x^{\frac{1}{2}}}\right)$$

Así 
$$\int \frac{\ln x}{x^2} dx = -\frac{2}{x^{\frac{1}{2}}} \ln x - \frac{4}{x^{\frac{1}{2}}}$$

$$\int_{2}^{\infty} \frac{\ln x}{x^{\frac{3}{2}}} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{\ln x}{x^{\frac{3}{2}}} dx = \lim_{b \to \infty} -\frac{2}{x^{\frac{1}{2}}} \ln x - \frac{4}{\frac{1}{x^{\frac{1}{2}}}} \bigg|_{2}^{b} = \lim_{b \to \infty} \left( -\frac{2\ln b}{\frac{1}{b^{\frac{1}{2}}}} - \frac{4}{\frac{1}{b^{\frac{1}{2}}}} + \frac{2\ln 2}{(2)^{\frac{1}{2}}} + \frac{4}{(2)^{\frac{1}{2}}} \right)$$

$$\int_{2}^{\infty} \frac{\ln x}{x^{\frac{3}{2}}} dx = \left[ \lim_{b \to \infty} -\frac{2\ln b}{\frac{1}{b^{\frac{1}{2}}}} - \frac{4}{\frac{1}{b^{\frac{1}{2}}}} \right] + \frac{2\ln 2}{(2)^{\frac{1}{2}}} + \frac{4}{(2)^{\frac{1}{2}}}$$

Calculando el limite

$$\lim_{b \to \infty} -\frac{2\ln b}{\frac{1}{b^2}} - \frac{4}{\frac{1}{b^2}} = -2\lim_{b \to \infty} \frac{\ln b}{\frac{1}{b^2}} - 4\lim_{b \to \infty} \frac{1}{\frac{1}{b^2}}$$

 $\lim_{b\to\infty} \frac{\ln b}{\frac{1}{b^2}} = \frac{\infty}{\infty}$ , forma indeterminada aplicamos la Regla de L'Hospital

$$\lim_{b \to \infty} \frac{\ln b}{b^{\frac{1}{2}}} = \lim_{b \to \infty} \frac{\frac{1}{b}}{\frac{1}{2}b^{\frac{1}{2}}} = \lim_{b \to \infty} \frac{\frac{1}{b}}{\frac{1}{2}\frac{1}{b^{\frac{1}{2}}}} = \lim_{b \to \infty} \frac{2b^{\frac{1}{2}}}{b} = \lim_{b \to \infty} \frac{2}{b} = \lim_{b \to \infty} \frac{2}{b^{\frac{1}{2}}} = 0$$

$$\lim_{b \to \infty} \frac{1}{b^{\frac{1}{2}}} = \frac{1}{\infty} = 0$$
, luego

$$\lim_{b \to \infty} -\frac{2\ln b}{b^{\frac{1}{2}}} - \frac{4}{b^{\frac{1}{2}}} = -2(0) - 4(0) = 0$$

$$\int_{2}^{\infty} \frac{\ln x}{x^2} dx = (0) + \frac{2\ln 2}{(2)^{\frac{1}{2}}} + \frac{4}{(2)^{\frac{1}{2}}} = \frac{2\ln 2}{(2)^{\frac{1}{2}}} + \frac{4}{(2)^{\frac{1}{2}}}, \text{ como el resultado es un número real, entonces}$$

la integral converge.

Luego la serie 
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^{\frac{3}{2}}}$$
 converge.