

Small world Networks – A Simple Overview

Course: Algorithms

Faculty: Dr. Rajendra Prasath

Small World Network – A Simple Overview

This lecture covers the interesting aspects of small world and scale free networks. We will also look at the practical applications with their limitations.

Dijkstra's Algorithm

- Single Source Shortest Path Algorithm proposed by Dijkstra in 1956 (Originally conceived)
- Basic Idea:
 - Two sets are maintained:
 - one set contains vertices included in shortest path tree and the other set includes vertices not yet included in shortest path tree
 - At every step of the algorithm, we find a vertex which is in the other set (set of not yet included) and has a minimum distance from the source
- Similar to Prim's algorithm for MST

Key Aspect in Bellman-Ford

- Dynamic programming
 - Explore All possible solutions and find the best solution to the given problem
 - Relaxation criteria
 Consider an edge connecting a pair of vertices: (u, v)

```
If (d[u] + c[u,v] < d[v]) then d[v] = d[u] + c[u,v]
```

How many times do we relax all edges?

- (n-1) times (Why?)
- the longest possible path connecting n edges

Floyd – Warshall Algorithm

- For every pair (i, j) of vertices, there are two cases:
 - k is not an intermediate vertex in shortest path: i → j
 We keep the value of dist[i][j] unchanged
 - k is an intermediate vertex in shortest path: i → j
 Update the value of dist[i][j] as follows:

```
if dist[i][j] > dist[i][k] + dist[k][j] then
dist[i][j] = dist[i][k] + dist[k][j]
```

- Choose the minimum and store it in dist[i][j]
- Explore optimal substructure property in the all-pairs shortest path problem

Floyd-Warshall: Fact

We follow the simple relaxation formula:
 M^k[i, j] = min{M^{k-1}[i, k], M^{k-1}[i, k] + M^{k-1}[k, j]}

Code:

```
for (k =1; k <=n; k++) {
    for (i =1; i <=n; i++) {
        for (j =1; j <=n; j++) {
            M[i,j] = min{ M[i,j], M[i,k] + M[k,j]} }
        }
    }
}</pre>
```

Exercise 1

- Compute All Pairs Shortest Paths
- The Final Solution

	A	В	C	D
A	0	3	8	7
В	8	0	2	8
С	5	8	0	1
D	2	8	8	0

Exercise 1

Compute All Pairs Shortest Paths

Exercise 3

Compute All Pairs Shortest Paths

- Type of Mathematical Graph
 - Most nodes are not neighbors of one another
 - but the neighbors of any given node are likely to be neighbors of each other
 - Most nodes can be reached from every other node by a small number of hops or steps

Six Degrees of Separation

11

Small World Net – Examples

Spread of Infectious Disease

- Type of Distributed Dynamic System
- Disease spreads from a small set of initiators to a much larger population
- At time (t = 0), single infective introduced into a healthy population
- After 1 unit of time, infective is "removed
 - (dies or becomes immune), but in that interval can infect (with some probability) each of its neighbors

Small World Net – Examples

Spread of Infectious Disease (contd)

- Three distinct regimes of behavior:
 - Diseases with Low infectious ness (Infects Little population, then dies)
 - Diseases with High infectious ness (Infects Entire population, function of 'L'!!)
 - Diseases with Medium infectious ness
 (Complicated relationship between Structure and Dynamics, not completely characterized

Properties

- High clustering coefficient
- Most pairs of nodes will be connected by at least one short path
- Airline Flight Networks:
 - A small mean-path length
 - Between any two cities, one can likely to take three or fewer flights
 - Why? many flights are routed through hub cities

Metrics

Small-world properties are found in many realworld phenomena:

- Degree Centrality
- Degree Distribution
- Betweenness Centrality
- Closeness
- Motif
- Clustering Coefficient
- Degree distribution
- Assortativity
- Distance Modularity
- Efficiency

Centrality

Finding the most important vertices:

Degree

Finding the number of edges incident on a vertex

Betweenness

The number of the shortest paths that pass

through each vertex

Degree Distribution

The probability distribution of these degrees over the whole network

- Two different degrees (Directed Graphs):
 - · in-degree the number of incoming edges, and
 - out-degree the number of outgoing edges.
- The degree distribution P(k) of a network is defined to be the fraction of nodes in the network with degree k
- If there are n nodes in total in a network and n_k of them have degree k, Then P(k) = n_k/n

Clustering Coefficient

A measure of the degree to which nodes in a graph tend to cluster together

A Few Examples

Small-world properties are found in many realworld phenomena:

- Websites with navigation menus
- Food webs
- Electric power grids
- Metabolite processing networks
- Networks of brain neurons
- Voter networks
- Telephone call graphs and
- Social influence networks
- Cultural networks
- Word co-occurrence networks and so on

22

Help among Yourselves?

- Perspective Students (having CGPA above 8.5 and above)
- Promising Students (having CGPA above 6.5 and less than 8.5)
- Needy Students (having CGPA less than 6.5)
 - Can the above group help these students? (Your work will also be rewarded)
- You may grow a culture of collaborative learning by helping the needy students

23

Assistance

- You may post your questions to me at any time
- You may meet me in person on available time or with an appointment
- TA s would assist you to clear your doubts.
- You may leave me an email any time (email is the best way to reach me faster)

Thanks ...

