Exam	No:		

GANPAT UNIVERSITY

B. TECH SEM-VII (Computer Engineering) **SECOND INTERNAL EXAMINATION - OCT 2024** 2CEIT701: Compiler Design

TIME: 1 Hour

TOTAL MARKS: 20

Instructions:

- 1) Figures to the right indicate full marks.
- 2) Be precise and to the point in your answer.
- 3) Assume suitable data, if necessary.
- 4) The text just below marks indicates the Course Outcomes Numbers, (CO) followed by the bloom's taxonomy level of the question, i.e., R: Remembering, U: Understanding, A: Applying, N: Analyzing, E: Evaluating, C: Creating.

Q.1 Consider the following grammar:

[5] **2C**

 $E \rightarrow x \mid \#EA@ \mid ab$ $A \rightarrow *EB \mid By \mid \varepsilon$ $B \rightarrow \%EAz \mid b \mid \varepsilon$

Perform:

- 1. Construct M-Table for LL (1)
- 2. Parse the string "#x*x%xbyz@\$" (Show stack steps)

Answer:

NT	First	Follow
Е	{x,#,a}	{\$,@,*,y,%,z,b}
Α	{*, ε,y,%,b}	{@,z}
В	{%,b, ε}	{y,@,z}

NT	а	b	х	у	Z	#	@	*	%	\$
E	E→ab		E→x			E→#EA@				
Α		$A \rightarrow By$		$A \rightarrow By$	$A \to \varepsilon$		$A \to \varepsilon$	$A \rightarrow *EB$	$A \rightarrow By$	
В		$B \rightarrow b$		$B \to \varepsilon$	$B \to \varepsilon$		$B \to \varepsilon$		$B \rightarrow \%EAz$	

Stack	Input	Action
\$	#x*x%xbyz@\$	Push E into Stack
\$E	#x*x%xbyz@\$	E→#EA@
\$@AE#	#x*x%xbyz@\$	Pop #
\$@AE	x*x%xbyz@\$	E→x
\$@Ax	x*x%xbyz@\$	Pop x
\$@A	*x%xbyz@\$	$A \to *EB$
\$@BE*	*x%xbyz@\$	Pop *
\$@BE	x%xbyz@\$	E→x
\$@Bx	x%xbyz@\$	Pop x
\$@B	%xbyz@\$	$B \rightarrow \%EAz$
\$@zAE%	%xbyz@\$	Pop %

\$@zAE	xbyz@\$	E→x
\$@zAx	xbyz@\$	Pop x
\$@zA	byz@\$	A →By
\$@zyB	byz@\$	$B \rightarrow b$
\$@zyb	byz@\$	Pop b
\$@zy	yz@\$	Pop y
\$@z	z@\$	Pop z
\$@	@\$	Pop @
\$	\$	Accept

Q.2 Consider the following SDT:

 $S \rightarrow A \qquad \{ S.val = A.val \}$ $A \rightarrow B \qquad \{ A.val = B.val * B.val \}$ $A \rightarrow A + B \qquad \{ A.val = 2*A.val - B.val \}$ $B \rightarrow C \qquad \{ B.val = C.val \}$ $B \rightarrow B * C \qquad \{ B.val = B.val + C.val \}$ $C \rightarrow (A) \qquad \{ C.val = A.val \}$ $C \rightarrow digit \qquad \{ C.val = digit.lval \}$

Perform following for string (3+5) * (4+6):

- 1. Draw Annotated Parse Tree
- 2. Evaluate the given string
- 3. Check the given SDT is L-attributed SDT or S- attributed SDT. (Justify your answer)

[5]

3A

Answer: S-attributted ADT

$$\begin{array}{ccc} Z & \to & QQ \\ Q & \to & qQ \mid p \end{array}$$

Action

q

 s_{36}

 s_{36}

 s_{36} r_3

 r_2

р

 S_{47}

 I_0

 I_1

\$

Accept

 r_3 r_1

 r_2

GoTo

Q

2

5

89

[5] **2C**

Z

1

Answer:

- 1. $Z \rightarrow QQ$
- LALR(1) $Q \rightarrow qQ$ 2.
- 3. $Q \rightarrow p$

By combining, $I_4 \& I_7$, $I_3 \& I_6$, $I_8 \& I_9$

	I_2	S ₄₇	
I_5 $Z \rightarrow QQ \cdot, \$$	I ₃₆	S ₄₇	
$I_1 \xrightarrow{Z' \to Z', \$} I_2 Q$	I ₄₇	r_3	
	I_5		
Z $Z \rightarrow Q \cdot Q, \$$ $Q \rightarrow Q, \$$	I ₈₉	r_2	
$I_{0} \xrightarrow{Z' \to \cdot Z, \$} Q \xrightarrow{Q \to \cdot p, \$} p \xrightarrow{Q \to p \cdot , p q } Q \xrightarrow{p \cdot \cdot p, \$} p$	$ \downarrow^{I_{47}} $ $ \downarrow^{I_{47}} $) I ₈₉	•

Q.4 Consider the following grammar:

$$P \rightarrow Q = R$$

 $R \rightarrow S \mid R * S$
 $S \rightarrow Q \mid a \mid (R)$
 $Q \rightarrow b$

Perform:

- 1. Construct SLR (1) parsing table.
- 2. Perform String Parsing "b=a*b\$". (Show stack steps)

Answer:

NT	Follow	$I_5 \xrightarrow{P \to Q = R} R \xrightarrow{*} R $
Р	{\$}	$R \to R \cdot * S$ $S \to Q$
R	{\$,*,)}	$S \rightarrow (R)$
S	{\$,*,)}	$R \qquad S \stackrel{1_6}{R} \rightarrow S \qquad Q \rightarrow b \qquad R \rightarrow R$
Q	{\$,*,),=}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$P \rightarrow Q = R$ $R \rightarrow S$ $R \rightarrow R * S$ $S \rightarrow Q$

Ctataa	Action								GoTo			
States	=	*	а	b	()	\$	Р	R	S	Q	
I ₀				s_3				1			2	
I_1							Accept					
I_2	s_4											
I_3	r_7	r_7				r_7	r_7					
<i>I</i> ₄			s ₈	s_3	S ₉				5	6	7	
<i>I</i> ₅		S ₁₀					r_1					
<i>I</i> ₆		r_2				r_2	r_2					
<i>I</i> ₇		r_4				r_4	r_4					
<i>I</i> ₈		r_5				r_5	r_5					
<i>I</i> ₉			S ₈	S ₃	S9				11	6	7	
I ₁₀			S ₈	s_3	S9					13	7	
I ₁₁		S ₁₀				S ₁₂						
I ₁₂		r_6				r_6	r_6					
I ₁₃		r_3				r_3	r_3					

Stack Content	Input	Action
\$ <i>I</i> ₀	b=a*b\$	s_3
I_0bI_3	=a*b\$	$r_7(Q \rightarrow b)$
I_0QI_2	=a*b\$	<i>S</i> ₄
$\$I_0 \mathbf{Q}I_2 = I_4$	a*b\$	s_8
$\$I_0\mathbf{Q}I_2=I_4\mathbf{a}I_8$	*b\$	$r_5(S \rightarrow a)$
$I_0QI_2=I_4SI_6$	*b\$	$r_2(R \rightarrow S)$
$\$I_0 \mathbf{Q}I_2 = I_4 \mathbf{R}I_5$	*b\$	s_{10}
$\$I_0 \mathbf{Q}I_2 = I_4 \mathbf{R}I_5 * I_{10}$	b\$	s_3
$\$I_0 \mathbf{Q}I_2 = I_4 \mathbf{R}I_5 * I_{10}bI_3$	\$	$r_7(Q \rightarrow b)$
$\$I_0 \mathbf{Q}I_2 = I_4 \mathbf{R}I_5 * I_{10} \mathbf{Q}I_7$	\$	$r_4(S \rightarrow Q)$
$I_0QI_2=I_4RI_5*I_{10}SI_{13}$	\$	$r_3(R \rightarrow R^*S)$
$I_0QI_2=I_4RI_5$	\$	$r_1(P \rightarrow Q=R)$
I_0PI_1	\$	Accept

-----END OF PAPER-----