Homework 8

Due: Wednesday, 3. Nov. 2021

Exercise 1. Let $(C, \mathcal{C}of_C, \mathcal{F}ib_C, \mathcal{W}_C)$ be a model category, and $f: X \to Y$ a morphism in C. Fix fibrant-cofibrant replacements

$$X \overset{p_X}{\longleftarrow} QX \overset{i_X}{\longleftarrow} RQX$$

$$Y \stackrel{p_Y}{\longleftarrow} QY \stackrel{i_Y}{\longleftarrow} RQY$$

Complete the argument shown in class to show that morphisms $RQf: RQX \to RQY$ making the

$$X \overset{p_X}{\sim} QX \overset{i_X}{\sim} RQX$$

$$f \downarrow \qquad Qf \downarrow \qquad \downarrow RQf$$

$$Y \overset{p_Y}{\sim} QY \overset{i_Y}{\sim} RQY$$

commute are unique up to homotopy. More precisely, show that the equivalence class [RQf] only depends on f.

Exercise 2. Let $(C, \operatorname{Cof}_C, \operatorname{\mathcal{F}ib}_C, \mathcal{W}_C)$ and $(D, \operatorname{Cof}_D, \operatorname{\mathcal{F}ib}_D, \mathcal{W}_D)$ be model categories. Let $F: C \to D$ be a functor which preserves cofibrations and trivial cofibrations, i.e. such that $F(\operatorname{Cof}_C) \subset \operatorname{Cof}_D$, and $F(\operatorname{Cof}_C \cap \mathcal{W}_C) \subset \operatorname{Cof}_D \cap \mathcal{W}_D$. Show that if $f: X \to Y$ is a weak equivalence between cofibrant objects in C, then $F(f) \in \mathcal{W}_D$.

Exercise 3. Let $(C, \mathcal{C}of_C, \mathcal{F}ib_C, \mathcal{W}_C)$ be a model category, and let $X \in C$ be an object. Denote by $C_{/X}$ the slice category. Show that there is a model category structure on $C_{/X}$ whose fibrations, cofibrations, and weak equivalences are inherited from C.