Минобрнауки России

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой Борисов Дмитрий Николаевич Кафедра информационных систем

03.05.2023

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.07 Проектирование цифровых систем

1. Код и наименование направления подготовки/специальности:

09.03.02 Информационные системы и технологии

2. Профиль подготовки/специализация:

Информационные системы и сетевые технологии

3. Квалификация (степень) выпускника:

Бакалавриат

4. Форма обучения:

Очная

5. Кафедра, отвечающая за реализацию дисциплины:

Кафедра информационных систем

6. Составители программы:

Малыхин Андрей Юрьевич, ст.преп., факультет компьютерных наук, кафедра информационных систем

- 7. Рекомендована: НМС ФКН 03.05.2023, протокол № 7
- 8. Учебный год:

2026-2027

9. Цели и задачи учебной дисциплины:

получение студентами компетенций в области проектирования средств вычислительной техники и информационно-управляющих систем с помощью систем автоматизированного проектирования. Ставится задача на лекциях познакомить студентов с методологией современного проектирования цифровых систем. На лабораторных занятиях теоретический материал лекций закрепляется созданием проектов цифровых устройств в САПР (KiCad, OrCAD, Proteus), изучаются этапы проектирования, виды проектов и способы алгоритмических описаний аппаратуры на VHDL.

10. Место учебной дисциплины в структуре ООП:

Входные знания: «Архитектура ЭВМ», «Электроника».

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников) и индикаторами их достижения:

Код и название компетенции	Код и название индикатора компетенции	Знания, умения, навыки
ПК-3 Способен выполнять работы по созданию (модификации) и сопровождению информационных систем	ПК-3.1 Знает языки и методы программирования, инструменты и методики тестирования разрабатываемых ИС	знать: основы VHDL; иметь представление о методах проектирования цифровых систем
ПК-3 Способен выполнять работы по созданию (модификации) и сопровождению информационных систем	ПК-3.2 Знает устройство и функционирование современных ИС, протоколы, интерфейсы и форматы обмена данными	знать: иметь представление о методах проектирования цифровых систем; иметь представление об анализе требований к системе и техническом и рабочем проектирование как на языке VHDL, так и в схематике, с использованием дискретных компонентов;
ПК-3 Способен выполнять работы по созданию (модификации) и сопровождению информационных систем	ПК-3.3 Обеспечивает разработку и тестирование ИС на базе типовой ИС в сответствии с требованиями	уметь: проводить анализ требований к системе и проводить техническое и рабочее проектирование как на языке VHDL, так и в схематике; разрабатывать ЦС, как средство реализации или компонент ИС; владеть: способностью выбирать и оценивать способ реализации ЦС в рамках поставленной задачи.
ПК-3 Способен выполнять работы по созданию (модификации) и сопровождению информационных систем	ПК-3.6 Разрабатывает и реализует алгоритмы обмена данными между ИС и существующими системами	уметь: использовать технологии разработки цифровых систем от технического задания до файлов инструментов; владеть: САПР цифровых систем; методикой и технологиями функционального и временного моделирования цифровых систем;
ПК-4 Способен проводить анализ требований к программному обеспечению, выполнять работы по проектированию программного обеспечения	ПК-4.3 Определяет первоначальные требования заказчика к ИС и возможности их реализации в типовой ИС	уметь: проводить анализ требований к системе и возможности их реализации в схематике, HDL или микпропрограммы для MCU/MPU

12. Объем дисциплины в зачетных единицах/час:

Форма промежуточной аттестации:

Зачет с оценкой, Контрольная работа

13. Трудоемкость по видам учебной работы

Вид учебной работы	Семестр 8	Всего
Аудиторные занятия	72	72
Лекционные занятия	36	36
Практические занятия		0
Лабораторные занятия	36	36
Самостоятельная работа	36	36
Курсовая работа		0
Промежуточная аттестация	0	0
Часы на контроль		0
Всего	108	108

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
1	Цифровые системы (ЦС).	Цифровые системы (ЦС). Последовательность разработки ЦС. Уровни разработки ЦС	ЭУМК «Проектирование цифровых систем», https://edu.vsu.ru/course/view.php?id=2994

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
2	Системы автоматизированного проектирования (САПР) ЦС. Программное обеспечение САПР.	Системы автоматизированного проектирования ЦС. Программное обеспечение OrCAD, состав. Полный цикл разработки в OrCAD. Виды проектов. Системы условных обозначений компонентов. Базы данных конструкторского, технологического и схемотехнического проектирования. Лабораторное задание: типовой проект ЦС (задание N1): разработка принципиальной электрической схемы ЦС заданной булевыми уравнениями, проверка работы устройства (функциональное моделирование), знакомство с основными этапами проектирования печатной платы.	ЭУМК «Проектирование цифровых систем», https://edu.vsu.ru/course/view.php?id=2994

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
3	Многослойные печатные платы (МПП). Проектирование МПП.	Характеристики и этапы изготовления печатных плат. Многослойные печатные платы (МПП). Проектирование МПП. Лабораторное задание: индивидуальный проект (задание N2): разработка принципиальной электрической схемы, согласно индивидуальному заданию с использование микросхем заданной серии, функциональное моделирование устройства, создание печатной платы для заданных корпусов ИС.	ЭУМК «Проектирование цифровых систем», https://edu.vsu.ru/course/view.php?id=2994
4	Единая система конструкторской документации.	Единая система конструкторской документации: основные термины, стандарты, относящиеся к цифровым системам, средствам вычислительной техники, электронным приборам.	ЭУМК «Проектирование цифровых систем», https://edu.vsu.ru/course/view.php?id=2994

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
5	Микропроцессорные ЦС.	Микропроцессорные ЦС. Схематика типичного окружения микропроцессора. Системные шины. Лабораторное задание: Разработка устройства (задание N3 с функционалом, определенным индивидуальным проектом студента – заданием N2) для шины PCI: ввод проекта, функциональное моделирование, разработка печатной платы для заданных корпусов ИС.	ЭУМК «Проектирование цифровых систем», https://edu.vsu.ru/course/view.php?id=2994
6	HDL языки. VHDL.	НDL-языки. Основные части описания ЦС на VHDL. Описание интерфейса ЦС в VHDL. Описание поведения ЦС на VHDL. Процессы. Системы автоматизации проектирования ПЛИС.	ЭУМК «Проектирование цифровых систем», https://edu.vsu.ru/course/view.php?id=2994
1	Цифровые системы (ЦС). (лаб.)	Проектирование схемы на основе ДНФ∏-описания	ЭУМК «Проектирование цифровых систем», https://edu.vsu.ru/course/view.php?id=2994
2	Системы автоматизированного проектирования (САПР) ЦС. Программное обеспечение САПР. (лаб.)	Знакомство с KiCAD EDA. Прохождение всех этапов проектирования ЦС в KiCAD.	ЭУМК «Проектирование цифровых систем», https://edu.vsu.ru/course/view.php?id=2994

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК
3	Многослойные печатные платы (МПП). Проектирование МПП. (лаб.)	Создание и трассировка проекта печатной платы.	ЭУМК «Проектирование цифровых систем», https://edu.vsu.ru/course/view.php?id=2994
5	Микропроцессорные ЦС. (лаб.)	Знакомство с контроллерами Atmel AVR, средой с интегрированной средой разработки Arduino IDE.	ЭУМК «Проектирование цифровых систем», https://edu.vsu.ru/course/view.php?id=2994
6	HDL языки. VHDL. (лаб.)	Логическое моделирование на VHDL. Включение иерархического блока в проект ЦС с описанием на VHDL.	ЭУМК «Проектирование цифровых систем», https://edu.vsu.ru/course/view.php?id=2994

13.2. Темы (разделы) дисциплины и виды занятий

№ п/п	Наименование темы (раздела)	Лекционные занятия	Практические занятия	Лабораторные занятия	Самостоятельная работа	Всего
1	Цифровые системы (ЦС).	1				1
2	Системы автоматизированного проектирования (САПР) ЦС. Программное обеспечение САПР.	4		4	8	16
3	Многослойные печатные платы (МПП). Проектирование МПП.	4		4	8	16
4	Единая система конструкторской документации.	3		2	2	7
5	Микропроцессорные ЦС.	12		12	8	32

№ п/п	Наименование темы (раздела)	Лекционные занятия	Практические занятия	Лабораторные занятия	Самостоятельная работа	Всего
6	HDL языки. VHDL.	12		14	10	36
		36	0	36	36	108

14. Методические указания для обучающихся по освоению дисциплины

Дисциплина требует работы с файлами-презентациями лекций и соответствующими главами рекомендованной основной литературы, а также, обязательного выполнения всех лабораторных заданий в компьютерном классе. Самостоятельная подготовка к лабораторным занятиям не требуется, т.к. необходимые рекомендации даются в аудитории, где выполняются лабораторные работы. Самостоятельная работа проводится в компьютерных классах ФКН с использованием методических материалов расположенных на учебно-методическом сервере ФКН "\\fs.cs.vsu.ru\Library" и на сервере Moodle BГУ moodle.vsu.ru и выполнением задач конфигурирования виртуализированной ИС. Во время самостоятельной работы студенты используют электронно-библиотечные системы, доступные на портале Зональной Библиотеки ВГУ по адресу www.lib.vsu.ru. Часть заданий может быть выполнена вне аудиторий на домашнем компьютере, после копирования методических указаний и необходимого ПО с учебнометодического сервера ФКН.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

№ п/п	Источник
1	Топильский, В.Б. Схемотехника аналого-цифровых преобразователей: учебное издание / В.Б. Топильский Москва: Техносфера, 2014 290 с.: ил., схем., табл — Университетская библиотека онлайн: электронно-библиотечная система. — Режим доступа: https://biblioclub.ru/index.php?page=book&id=273796
2	Бибило, П.Н. Применение диаграмм двоичного выбора при синтезе логических схем : монография / П.Н. Бибило Минск : Белорусская наука, 2014 232 с. : ил., табл., схем. — Университетская библиотека онлайн : электронно-библиотечная система. — Режим доступа : https://biblioclub.ru/index.php?page=book&id=330476

б) дополнительная литература:

№ п/п	Источник
1	Кузовкин, В.А. Электроника. Электрофизические основы, микросхемотехника, приборы и устройства: Учебник / В.А. Кузовкин Москва: Логос, 2011 328 с. — Университетская библиотека онлайн: электронно-библиотечная система. — Режим доступа: https://biblioclub.ru/index.php?page=book&id=89796

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник
1	Библиотека ВГУ, http://www.lib.vsu.ru
2	Сервер учебно-методических материалов ФКН, \\fs.cs.vsu.ru\Library
3	Сервер Moodle ВГУ, http://moodle.vsu.ru

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ П/Г	Источник			
1	Сервер учебно-методических материалов ФКН, \\fs.cs.vsu.ru\Library			
2	ЭУМК «Проектирование цифровых систем», https://edu.vsu.ru/course/view.php?id=299			

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

- 1. Технологии виртуализации: Среда виртуализации Microsoft Virtual PC Среда виртуализации Oracle/Sun Virtual Box
- 2. Электронно-библиотечная система «Университетская библиотека online», http://biblioclub.ru
- 3. Образовательный портал Moodle (сервер Moodle ВГУ)
- 4. Серверные и клиентские ОС Microsoft.
- 5. ΠΟ EDA KiCAD

18. Материально-техническое обеспечение дисциплины:

- 1. Лекционная аудитория, оснащенная видеопроектором.
- 2. Компьютерный класс для проведения лабораторных занятий, оснащенный программным обеспечением KiCad, OrCAD или Proteus.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Разделы дисциплины (модули)	Код компетенции	Код индикатора	Оценочные средства для текущей аттестации
1	1	ПК-3	ПК-3.1	Лабораторные работы, тесты
2	2	ПК-3	ПК-3.2	Лабораторные работы, тесты
3	3	ПК-3	ПК-3.3	Лабораторные работы, тесты
4	4	ПК-3	ПК-3.6	Лабораторные работы, тесты
5	5,6	ПК-4	ПК-4.3	Лабораторные работы, тесты

Промежуточная аттестация

Форма контроля - Зачет с оценкой, Контрольная работа

Оценочные средства для промежуточной аттестации

Лабораторные задания. Письменная контрольная работа.

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Перечень практических заданий:

- 1 Проектирование схемы на основе ДНФ-описания
- 2 Знакомство с KiCAD EDA. Прохождение всех этапов проектирования ЦС в KiCAD.
- 3 Создание и трассировка проекта печатной платы.
- 4 Знакомство с контроллерами Atmel AVR, средой с интегрированной средой разработки Arduino IDE. Индивидуальный проект на отладочной плате с Atmel AVR.
- 5 Логическое моделирование на VHDL. Включение иерархического блока в проект ЦС с описанием на VHDL.

Приведённые ниже задания рекомендуется использовать при проведении диагностических работ для оценки остаточных знаний по дисциплине

Компетенция ПК-3

Задания закрытого типа

- 1. Как называется программа логического моделирования входящая в пакет OrCAD?
 - a) OrCAD Model
 - 6) OrCAD Simulate
 - в) OrCAD PSpice
- 2. Какая из перечисленных технологий изготовления печатных плат не существует?
 - а) Субтрактивная технология
 - б) Аддитивная технология
 - в) Мультипликативная технология
 - г) Комбинированный позитивный метод
- 3. Какой вид логики не существует?
 - а) резисторно-транзисторная логика
 - б) диодно-транзисторная логика
 - в) транзисторно-транзисторная логика
 - г) резисторно-конденсаторная логика
 - д) эмиттерно-связанная логика
- 4. Какой вид модуляции используется в микроконтроллерах для организации аналогового вывода?

а) широтно-импульсная б) амплитудно-импульсная в) частотно-импульсная 5. Какой из перечисленных шин не существует? a) XT б) ISA в) EISA г) ESA д) PCI 6. Единая система обозначения технологических документов изложена в: а) ЕСПД б) ЕСКД в) ЕСТД Задания с кратким ответом 1. Какой материал используется в качестве диэлектрика в печатных платах? 2. Как называется светочувствительный материал, используемый в производстве печатных плат для получения рисунка на текстолите? 3. Как расшифровывается аббревиатура ПЛИС? 4. Чем отличаются синхронные системные шины от асинхронных? 5. Как называется шина, по которой последовательно передаются адреса и данные?

Задание с развёрнутым ответом

1. Перечислите уровни разработки цифровой системы. Поясните, что означает каждый из уровней.

Ответ:

Уровни разработки ЦС:

- 1) Уровень системы
- 2) Уровень компонентов
- 3) Уровень регистров
- 4) Уровень логики (вентилей)
- 5) Уровень цепей

Критерии оценивания:

- 0 баллов не перечислены уровни разработки ЦС.
- 1 балл перечислены некоторые уровни разработки ЦС
- 2 балла перечислены все уровни разработки ЦС, но не ко всем есть пояснения
- 3 балла перечислены все уровни разработки цифровой системы. Пояснено, что означает каждый из уровней.

Компетенция ПК-4

Задания закрытого типа

- 1. Что делает триггер при отсутствии входных сигналов?
 - а) Сбрасывается в 0
 - б) Меняется по падающему фронту
 - в) Сохраняет свое предыдущее состояние
 - г) Устанавливается в 1
- 2. Демультиплексор предназначен для:
 - а) Передачи сигнала с одного из входов на выход
 - б) Хранения
 - в) Преобразования кода в сигнал
 - г) Передачи сигнала с входа на один из выходов
- 3. Мультиплексор предназначен для:
 - а) Преобразования сигнала в код
 - б) Хранения
 - в) Преобразования кода в сигнал
 - г) Запоминания кодов
- 4. Шина RS-232 является:
 - а) Последовательной
 - б) Параллельной
- 5. Шина РСІ мультиплексированной:
 - а) Является
 - б) Не является
- 6. Как называется редактор печатных плат с автотрассировщиком, входящиий в пакет OrCAD? a) OrCAD Layout

- 6) OrCAD Simulate
- в) OrCAD PSpice

Задания с кратким ответом

- 1. Как называется набор микросхем, спроектированных для совместной работы с целью выполнения набора заданных функций?
- 2. Что, кроме микропроцессора, входит в состав микроконтроллера?
- 3. Что называется встраиваемой системой?
- 4. В каких двух основных частях реализуется описание системы на VHDL?
- 5. Может ли одному интерфейсу системы соответствовать несколько архитектур?

Задание с развёрнутым ответом

1. Перечислите этапы разработки цифровых систем.

Ответ:

- 1. Постановка задачи
- 2. Анализ требований
- 3. Разработка
- 4. Моделирование
- 5. Создание прототипа
- 6. Тестирование прототипа

Критерии оценивания:

- 0 баллов не перечислены уровни разработки ЦС.
- 1 балл перечислены 1-4 этапа разработки ЦС
- 2 балла перечислены 4-5 этапов разработки ЦС
- 3 балла перечислены 6 этапов разработки ЦС.

20.2 Промежуточная аттестация

Перечень заданий для контрольных работ:

- 1 Последовательность разработки ЦС, уровни разработки
- 2 CAD/CAM/CAE/PDM. Технологии проектирования
- 3 Состав систем автоматизированного проектирования (на примере САПР OrCAD). Виды проектов, цикл проектирования. Виды библиотек САПР ЦС, условные обозначения, основные спецификации логических ИС
- 4 Характеристики и этапы изготовления печатных плат (ПП).

- 5 Начало проекта OrCAD, состав проекта OrCAD, основные этапы проектирования и верификации схематики. Проектирование ЦС на VHDL.
- 6 Последовательность и содержание этапов проектирования ПП.
- 7 Схематика типичного окружения микропроцессора.
- 8 Системные шины.
- 9 HDL-языки. Основные части описания ЦС на VHDL.
- 10 Описание поведения ЦС на VHDL. Процессы.
- 11 Программируемые интегральные схемы. ПЛИС/FPGA.
- 12 CALS. Виртуальное производство. Единая система конструкторской документации (ЕСКД) и цифровые системы.