CLAIMS

What is claimed is:

A process for the preparation of a compound of
 formula (I):

or a pharmaceutically acceptable salt form thereof; wherein:

r is an integer from 0 to 4;

 \mathbb{R}^1 is independently selected at each occurrence from the group consisting of:

15 H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₆ cycloalkyl, C₄-C₁₂ cycloalkylalkyl, -NR¹C_R1d, -OR^{1e}, and -SR^{1e}.

R^{1c} and R^{1d} are independently selected at each occurrence from the group consisting of:

H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl,

C3-C6 cycloalkyl and C4-C12 cycloalkylalkyl;

alternatively, R^{1c} and R^{1d} are taken together to form a heterocyclic ring selected from the group consisting of:

piperidine, pyrrolidine, piperazine, N-methylpiperazine,

25 morpholine and thiomorpholine, each heterocyclic ring optionally substituted with 1-3 C1-C4 alkyl groups;

R^{1e} is independently selected at each occurrence from the group consisting of:

H, C1-C10 alkyl, C3-C6 cycloalkyl, and C4-C6

30 cycloalkylalkyl;

20

 \mathbb{R}^2 is selected from the group consisting of:

H, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C4-C10 cycloalkylalkyl, C1-C4 hydroxyalkyl, C1-C4 haloalkyl, and C1-C4 alkyl substituted with 0-5 R^{2a} ;

 R^{2a} is independently selected at each occurrence from the group consisting of:

H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_3 - C_6 cycloalkyl, C_4 - C_{12} cycloalkylalkyl, halo, CN,

C1-C4 haloalkyl, -OR2e, and -SR2e; and

 \mathbb{R}^{2e} is independently selected at each occurrence from the group consisting of:

H, C₁-C₁₀ alkyl, C₃-C₆ cycloalkyl, and C₄-C₆ cycloalkylalkyl;

10

5

the process comprising the steps of:

(1) contacting a compound of formula (II):

15

with a halogenating agent to form a compound of formula (III):

20

wherein X is a halogen derived from the halogenating agent;

25

(2) contacting the compound of formula (III) with a strong base followed by addition of an alkylborate to form a compound of formula (IV):

(3) contacting the compound of formula (IV) with a compound of formula (V):

$$\mathbb{R}^2$$

5

wherein Y is a second halogen;

in the presence of a catalyst and a weak base to form a compound 10 of formula (VI):

(VI); and

(4) contacting the compound of formula (VI) with an isomerization base to form a compound of formula (I), or a pharmaceutically acceptable salt form thereof; wherein the compound of formula (V) is prepared by contacting a compound of formula (VII):

20

- 25 with a second halogenating agent to give a compound of formula (V).
 - 2. A process for the preparation of a compound of formula (I):

$$R^2$$

or a pharmaceutically acceptable salt form thereof;

5 wherein:

10

15

20

r is an integer from 0 to 4;

 \mathbb{R}^1 is independently selected at each occurrence from the group consisting of:

H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, -NR^{1c}R^{1d}, -OR^{1e}, and -SR^{1e};

R^{1c} and R^{1d} are independently selected at each occurrence from the group consisting of:

H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl,

C3-C6 cycloalkyl and C4-C12 cycloalkylalkyl;

alternatively, R^{1c} and R^{1d} are taken together to form a heterocyclic ring selected from the group consisting of:

piperidine, pyrrolidine, piperazine, N-methylpiperazine,

morpholine and thiomorpholine, each heterocyclic ring optionally substituted with 1-3 C1-C4 alkyl groups;

 R^{1e} is independently selected at each occurrence from the group consisting of:

H, C1-C10 alkyl, C3-C6 cycloalkyl, and C4-C6 cycloalkylalkyl;

25 \mathbb{R}^2 is selected from the group consisting of:

H, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 haloalkyl, and C_1 - C_4 alkyl substituted with 0-5 R^{2a} ;

 \mathbb{R}^{2a} is independently selected at each occurrence from the group 30 consisting of:

H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_3 - C_6 cycloalkyl, C_4 - C_{12} cycloalkylalkyl, halo, C_N ,

C1-C4 haloalkyl, -OR2e, and -SR2e; and

 R^{2e} is independently selected at each occurrence from the

group consisting of:

H, C₁-C₁₀ alkyl, C₃-C₆ cycloalkyl, and C₄-C₆ cycloalkylalkyl;

- 5 the process comprising the steps of:
 - (1) contacting a compound of formula (II):

10

with a halogenating agent to form a compound of formula (III):

15

wherein X is a halogen derived from the halogenating agent;

(2) contacting the compound of formula (III) with 20 a strong base followed by addition of an alkylborate to form a compound of formula (IV):

25

(3) contacting the compound of formula (IV) with a compound of formula (V):

wherein Y is a second halogen;

5 in the presence of a catalyst and a weak base to form a compound of formula (VI):

$$\mathbb{R}^2$$
 $(\mathbb{R}^1)_r$
 $(\mathbb{V}\mathbb{I})_r$ and

10

(4) contacting the compound of formula (VI) with an isomerization base to form a compound of formula (I), or a pharmaceutically acceptable salt form thereof;

wherein the compound of formula (V) is prepared by contacting a compound of formula (VII):

- 20 with a halogenating agent in an organic acid to form a compound of formula (V).
- 3. The process of Claim 2, wherein R² is methyl, the halogenating agent is N-iodosuccinimide, and the organic acid is triflouroacetic acid.
 - 4. A process for the preparation of a compound of formula
 (I):

or a pharmaceutically acceptable salt form thereof;

5 wherein:

15

20

30

r is an integer from 0 to 4;

R¹ is independently selected at each occurrence from the group consisting of:

H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, -NR^{1C}R^{1d}, -OR^{1e}, and -SR^{1e};

R^{1c} and R^{1d} are independently selected at each occurrence from the group consisting of:

H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl,

C3-C6 cycloalkyl and C4-C12 cycloalkylalkyl;

alternatively, R^{1c} and R^{1d} are taken together to form a heterocyclic ring selected from the group consisting of:

piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine and thiomorpholine, each heterocyclic ring optionally substituted with 1-3 C1-C4 alkyl groups;

R^{1e} is selected from the group consisting of: H, C₁-C₁₀ alkyl, C₃-C₆ cycloalkyl, and C₄-C₆ cycloalkylalkyl;

R² is selected from the group consisting of:

25 H, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C4-C10 cycloalkylalkyl, C1-C4 hydroxyalkyl, C1-C4 haloalkyl, and C1-C4 alkyl substituted with 0-5 R^{2a};

 \mathbb{R}^{2a} is independently selected at each occurrence from the group consisting of:

H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₆ cycloalkyl, C₄-C₁₂ cycloalkylalkyl, halo, CN, C₁-C₄ haloalkyl, -OR^{2e}, and -SR^{2e}; and

 \mathbb{R}^{2e} is independently selected at each occurrence from the group consisting of:

H, C1-C10 alkyl, C3-C6 cycloalkyl, and C4-C6 cycloalkylalkyl;

the process comprising the steps of:

. 5

(1) contacting a compound of formula (IV):

$$B(OH)_2$$

$$(IV)$$

10

with a compound of formula (V):

$$R^2$$

15

wherein Y is a halogen;

in the presence of a catalyst and a weak base to give a compound of formula (VI):

$$\mathbb{R}^2$$
 $(\mathbb{R}^1)_{r}$
 $(\mathbb{V}I)$; and

- (2) contacting the compound of formula (VI) with an isomerization base to give a compound of formula (I), or a pharmaceutically acceptable salt form thereof.
- 5. The process of Claim 4, wherein: r is an integer from 0-3;

Y is iodine;

R¹ is independently selected at each occurrence from the group consisting of:

H, methyl and methoxy; and

- 5 \mathbb{R}^2 is methyl.
 - 6. The process of Claim 4, wherein: in step 1, the weak base is sodium bicarbonate or a phosphate buffer with pH of about 7 to about 10,

the catalyst is tetrakis(triphenylphosphine)palladium(0) or [1,1'-Bis(diphenylphosphino)ferrocene] palladium (II) chloride; and

in step 2, the isomerization base is selected from the group consisting of:

lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide, lithium tert-butoxide, sodium tert-butoxide, and potassium tert-butoxide.

- 7. The process of Claim 4, wherein: the weak base is sodium bicarbonate, the catalyst is [1,1'-Bis(diphenylphosphino)ferrocene] palladium (II) chloride, and the isomerization base is sodium methoxide.
 - 8. A process for the preparation of a compound of formula (VI):

30

20

25

or a pharmaceutically acceptable salt form thereof; wherein:

r is an integer from 0 to 4;

5

10

15

35

R¹ is independently selected at each occurrence from the group consisting of:

H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₆ cycloalkyl, C₄-C₁₂ cycloalkylalkyl, $-NR^{1}C_{R}^{1}d$, $-OR^{1}e$, and $-SR^{1}e$.

 R^{1c} and R^{1d} are independently selected at each occurrence from the group consisting of:

H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl,

C3-C6 cycloalkyl and C4-C12 cycloalkylalkyl;

alternatively, R^{1c} and R^{1d} are taken together to form a heterocyclic ring selected from the group consisting of:

piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine and thiomorpholine, each heterocyclic ring optionally substituted with 1-3 C1-C4 alkyl groups;

R^{1e} is selected from the group consisting of: H, C1-C10 alkyl, C3-C6 cycloalkyl, and C4-C6 cycloalkylalkyl;

 \mathbb{R}^2 is selected from the group consisting of:

20 H, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C4-C10 cycloalkylalkyl, C1-C4 hydroxyalkyl, C1-C4 haloalkyl, and C1-C4 alkyl substituted with 0-5 R^{2a};

 ${\bf R}^{2a}$ is independently selected at each occurrence from the group consisting of:

25 H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, halo, CN, C1-C4 haloalkyl, -OR^{2e}, and -SR^{2e}; and

 R^{2e} is independently selected at each occurrence from the group consisting of:

30 H, C1-C10 alkyl, C3-C6 cycloalkyl, and C4-C6 cycloalkylalkyl;

the process comprising contacting a compound of formula (IV):

with a compound of formula (V):

$$N-Q$$
 R^2

5

in the presence of [1,1'-Bis(diphenylphosphino)ferrocene] palladium (II) chloride, sodium bicarbonate and a suitable solvent to give a compound of formula (VI).

10

9. The process of Claim 8, wherein: $R^2 \text{ is methyl}; \\$ the suitable solvent is tert-butyl methyl ether; and the compound of formula (IV) is:

15

10. A compound of formula (VI):

20

wherein:

25 r is an integer from 0 to 4; R^1 is independently selected at each occurrence from the group consisting of:

H. C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, -NR^{1C}R^{1d}, -OR^{1e}, and -SR^{1e}:

R^{1c} and R^{1d} are independently selected at each occurrence from the group consisting of:

H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl,

C3-C6 cycloalkyl and C4-C12 cycloalkylalkyl;

alternatively, R^{1c} and R^{1d} are taken together to form a heterocyclic ring selected from the group consisting of:

piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine and thiomorpholine, each heterocyclic ring optionally substituted with 1-3 C1-C4 alkyl groups;

R^{1e} is independently selected at each occurrence from the group consisting of:

H, C₁-C₁₀ alkyl, C₃-C₆ cycloalkyl, and C₄-C₆ cycloalkylalkyl;

 R^2 is selected from the group consisting of:

H, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 haloalkyl, and C_1 - C_4 alkyl substituted with 0-5 R^{2a} ;

 ${\bf R}^{2a}$ is independently selected at each occurrence from the group consisting of:

H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₃-C₆ cycloalkyl, C₄-C₁₂ cycloalkylalkyl, halo, CN,

C1-C4 haloalkyl, -OR^{2e}, and -SR^{2e}; and

 \mathbb{R}^{2e} is independently selected at each occurrence from the group consisting of:

H, C₁-C₁₀ alkyl, C₃-C₆ cycloalkyl, and C₄-C₆ cycloalkylalkyl.

30

25

5

15

20

11. A compound of formula (I):

wherein:

5

15

r is an integer from 0 to 4;

 \mathbb{R}^1 is independently selected at each occurrence from the group consisting of:

H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_3 - C_6 cycloalkyl, C_4 - C_{12} cycloalkylalkyl, $-NR^{1}$ c R^{1} d, $-OR^{1}$ e, and $-C_{10}$ c R^{1} e.

 $\rm R^{1C}$ and $\rm R^{1d}$ are independently selected at each occurrence from the group consisting of:

H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl,

C3-C6 cycloalkyl and C4-C12 cycloalkylalkyl;

alternatively, R^{1c} and R^{1d} are taken together to form a heterocyclic ring selected from the group consisting of:

piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine and thiomorpholine, each heterocyclic ring optionally substituted with 1-3 C1-C4 alkyl groups;

 ${\bf R}^{\mbox{\scriptsize 1e}}$ is independently selected at each occurrence from the group consisting of:

20 H, C1-C10 alkyl, C3-C6 cycloalkyl, and C4-C6 cycloalkylalkyl;

 \mathbb{R}^2 is selected from the group consisting of:

H, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl, C_3 - C_6 cycloalkyl, C_4 - C_{10} cycloalkylalkyl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 haloalkyl, and C_1 - C_4 alkyl substituted with 0-5 R^{2a} ;

R^{2a} is independently selected at each occurrence from the group consisting of:

H, C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_3-C_6 cycloalkyl, C_4-C_{12} cycloalkylalkyl, halo, CN,

 C_1 - C_4 haloalkyl, $-OR^{2e}$, and $-SR^{2e}$; and R^{2e} is independently selected at each occurrence from the group consisting of:

H, C1-C10 alkyl, C3-C6 cycloalkyl, and C4-C6 cycloalkylalkyl.

35

30