Crypto Price Trend Prediction

David Pitteloud, Leonard Philippossian

Introduction

- ▶ We trade cryptocurrencies, but we are unsuccessful so far
- ► Can we create a deep learning model that can make decisions for us?

Approach

- Most studies focus on a numeric approach
- ▶ We chose an alternative way for the prediction
- Traders usually make decisions by looking at graphs

A trader

Objectives

- Can a convolutional neural network predict a future price direction by reading charts?
- ▶ We decided to take two approaches to find the best way

Initial dataset

time	open	high	low	close	volume_usd
2014-12-01 06:00:00	300.00	300	300.00	300	6.00000
2014-12-01 07:00:00	370.00	370	370.00	370	13.52555
2014-12-02 06:00:00	377.00	377	377.00	377	3.77000
2014-12-02 11:00:00	377.75	378	377.75	378	1511.93750
2014-12-02 12:00:00	378.00	378	378.00	378	3817.80000
2014-12-02 19:00:00	378.00	378	378.00	378	337.78080

Transformation

- We generated indicators such as moving average and oscillators
- ► We plotted these indicators

First approach

Generated data

- ▶ 2800 images in this format were generated
- They were classified into three different folders
- ► First category: buy, if during the next 12 hours the price increase by more than 2%
- ➤ Second category: sell, if during the next 12 hours the price decrease by more than 2%
- ► Third category: hold, takes all the remaining images.

Model 1

- Six convolutional layers and two dense layers
- ► Tuning parameters: dropout, number of filters, and regularisers (L1 and L2)
- Dynamic learning rate and early stopping

Results

loss	accuracy		
2.905171	0.6806741		

Second approach

➤ The second approach was inspired by existing papers, and we decided to plot a grid representing different prices and indicators information

Model 2

- Two convolutional layers and two dense layers
- Tuning parameters: dropout, number of filters, and regularisers (L1 and L2)
- Dynamic learning rate and early stopping

Results

loss	accuracy
1.415836	0.715035

Conclusion

- Disappointing results, we will not become rich easily
- ► For the first model, we believe that image resolution was too low
- Wrong model construction
- Not enough free data