Содержание

1. Теорема Больцано-Вейерштрасса и критерий Коши сходимости ловой последовательности	
1.1. Теорема Больцано-Вейерштрасса	
1.2. Критерий Коши	
2. Ограниченность функции, непрерывной на отрезке, достиж	ение
точных верхней и нижней граней	
2.1. Ограниченность функции, непрерывной на отрезке	
2.2. Достижение точных верхних и нижних граней	
3. Теорема о промежуточных значениях непрерывной функции	
4. Теоремы о среднем Ролля, Лагранжа и Коши для дифферентемых функций.	
4.1. Теорема Ролля	
4.2. Теоремы Лагранжа и Коши	
5. Формула Тейлора с остаточным членом в форме Пеано	
Лагранжа	
5.1. Член в форме Лагранжа	
5.2. Член в форме Пеано	11
6. Исследование функций одной переменной при помощи перв	ой и
второй производных на монотонность, локальные экстремумы, вы	іпук-
лость. Необходимые условия, достаточные условия	
6.1. Необходимые и достаточные условия монотонности функции	
6.2. Достаточные условия локальных экстремумов	
6.3. Необходимые и достаточные условия выпуклости	
7. Теорема о равномерной непрерывности функции, непрерывно	
компакте	
8. Достаточные условия дифференцируемости функции нескол	
переменных	
9. Теорема о неявной функции, заданной одним уравнением	16
10. Экстремумы функций многих переменных. Необходимые	-
вия, достаточные условия.	
10.1. Необходимые условия	
10.2. Достаточные условия	
11. Свойства интеграла с переменным верхним пределом (непреность, дифференцируемость). Формула Ньютона-Лейбница	_
11.1. Свойства интеграла с переменным верхним пределом	
11.2. Формула Ньютона-Лейбница	
12. Равномерная сходимость функциональных последовательно	
и рядов. Непрерывность, интегрируемость и дифференцируемость	
мы функционального ряда.	
12.1. Непрерывность суммы функционального ряда	22
12.2. Интегрируемость суммы функционального ряда	
12.3. Дифференцируемость суммы функционального ряда	25

13. Степенные ряды. Радиус сходимости. Бесконечная дифференци-
руемость суммы степенного ряда. Ряд Тейлора 26
13.1. Бесконечная дифференцируемость суммы степенного ряда
13.2. Ряд Тейлора
14. Теорема об ограниченной сходимости для интеграла Лебега 28
15. Дифференциальные формы на открытых подмножествах евкли-
дова пространства, оператор внешнего дифференцирования d и его неза-
висимость от криволинейной замены координат 29
15.1. Дифференциальные формы, оператор внешнего дифференцирования . 29
15.2. Независимость внешнего дифференцирования от замены координат 33
16. Интегрирование дифференциальной формы с компактным носи-
телем. Зависимость интеграла от замены координат 34
17. Общая формула Стокса 35
18. Достаточные условия равномерной сходимости тригонометриче-
ского ряда Фурье в точке
19. Достаточные условия равномерной сходимости тригонометриче-
ского ряда Фурье
ского ряда Фурве
20. Неревность преобразования Фурье абсолютно интегрируемой
функции. Преобразование Фурье производной и производная преобра-
зования Фурье
20.1. Непрерывность преобразования Фурье абсолютно интегрируемой функ-
ции
20.2. Преобразование Фурье производной и производная преобразования Фу-
рье
21. Прямые и плоскости в пространстве. Формулы расстояния от точ-
ки до прямой и плоскости, между прямыми в пространстве. Углы между
прямыми и плоскостями
21.1. Прямые и плоскости в пространстве
21.2. Формулы расстояния от точки до прямой и плоскости, между прямыми в
пространстве
21.3. Углы между прямыми и плоскостями
22. Кривые второго порядка, их геометрические свойства 47
22.1. Эллипс
22.2. Гипербола
22.3. Парабола
-
23. Общее решение системы линейных алгебраических уравнений.
Теорема Кронекера-Капелли 50
23.1. Общее решение системы линейных алгебраических уравнений 51
23.2. Теорема Кронекера-Капелли
24. Дифференцируемость функции комплексного переменного.
Условия Коши-Римана. Интегральная теорема Коши 56
24.1. Дифференцируемость функции комплексного переменного. Условия Ко-

ши-Римана
24.2. Интегральная теорема Коши
25. Интегральная формула Коши. Разложение функции регулярной
в окрестности точки в ряд Тейлора 59
25.1. Интегральная формула Коши 59
25.2. Разложение функции регулярной в окрестности точки в ряд Тейлора. 59
26. Разложение функции регулярной в кольце в ряд Лорана. Изоли-
20. I dolloweline dylikdin berylinphon b kolibde b pad flopalia. Hoolin
рованные особые точки однозначного характера
рованные особые точки однозначного характера
рованные особые точки однозначного характера

ГОС по матану

Disclaymer: доверять этому конспекту или нет выбирайте сами

Экзамен - это тропа

Коновалов Сергей Петрович

1. Теорема Больцано-Вейерштрасса и критерий Коши сходимости числовой последовательности

1.1. Теорема Больцано-Вейерштрасса

Определение 1.1.1: Если $E \subset \mathbb{R}$ – ограниченное сверху (снизу) множество, то $M(m) \in \mathbb{R}$ такое, что

 $\forall x \in E : x < M(x > m)$

называется **верхней (нижней) гранью** множества E.

Определение 1.1.2: Наименьшая из верхних граней множества E называется **точной верхней гранью**: $\sup E$.

Наибольшая из нижних граней множества E называется **точной нижней гранью**: $\inf E$.

Теорема 1.1.1 (О существовании точной верхней (нижней) грани): Любое ограниченное сверху (снизу) непустое множество $E \subset \mathbb{R}$ имеет точную верхнюю (нижнюю) грань.

Доказательство: Пусть B – множество верхних граней множества E. Введём обозначение $A := \mathbb{R} \setminus B$.

Тогда если произвольное число a меньше какого-то $x \in E$, то оно точно не верхняя грань $E \Rightarrow a \in A$.

Заметим также свойство множества B:

$$\forall b \in B : \forall x > b : x \in B$$

Тогда по одной из аксиом действительных чисел

$$\exists c \in R : \forall a \in A : \forall b \in B : \ a \le c \le b$$

Пусть $\sup E := c$. Проверим свойства точной верхней грани:

 $1. \ c$ является верхней гранью

От противного. Пусть $c \notin B$, тогда $\exists x \in B : x > c$, причём $c < \frac{x+c}{2} < x$. Но тогда заметим, что $\frac{x+c}{2} \in A$, что противоречит выбору c как числа больше либо равного любого элемента A

 $2.\ c$ является наименьшей из верхних граней

От противного. Пусть $\exists M \in B: M < c$. Но тогда $M < \frac{M+c}{2} < c$, причём $\frac{M+c}{2} \in B$, что противоречит выбору c как числа меньше либо равного любого элемента B.

Теорема 1.1.2 (Вейерштрасса): Каждая ограниченная сверху (снизу) неубывающая (невозрастающая) последовательность сходится, причём её предел равен точной верхней (нижней) грани.

Доказательство: $\left\{x_n\right\}_{n=1}^{\infty}$ ограничена сверху $\Rightarrow \exists \sup\left\{x_n\right\}_{n=1}^{\infty}=l$ Отсюда:

- $1. \ \forall n \in \mathbb{N} : x_n \leq l < l + \varepsilon$
- 2. $\forall \varepsilon > 0: \exists N \in \mathbb{N}: l-\varepsilon < x_N$ (по определению супремума)

Заметим, что получилось в точности определение предела.

Теорема 1.1.3 (Принцип Кантора вложенных отрезков): Всякая последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$, то есть

$$\forall n \in \mathbb{N}: [a_n,b_n] \supset [a_{n+1},b_{n+1}]$$

имеет непустое пересечение, то есть

$$\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$$

Доказательство: Из вложенности очевидно следует

$$\forall n \in \mathbb{N} : a_{n+1} \ge a_n, \ b_{n+1} \le b_n$$

Тогда заметим, что

$$\forall n \in \mathbb{N}: a_n \leq b_1, b_n \geq a_1$$

Тогда по теореме Вейерштрасса:

$$\lim_{n\to\infty} a_n = \sup \left\{ a_n \right\}_{n=1}^{\infty} = a$$

$$\lim_{n\to\infty}b_n=\inf\left\{b_n\right\}_{n=1}^\infty=b$$

А значит отрезок [a,b] (возможно вырожденный) включён в пересечение всех отрезков. \square

Теорема 1.1.4 (Больцано-Вейерштрасса): Из каждой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Доказательство: Пусть $\left\{x_n\right\}_{n=1}^{\infty}$ — рассматриваемая ограниченная последовательность, то есть

 $\exists a_1,b_1 \in \mathbb{R} : \forall n \in \mathbb{N}: \ a_1 \leq x_n \leq b_1 \\ \text{Заметим, что один из отрезков } \left[a_1,\frac{a_1+b_1}{2}\right], \left[\frac{a_1+b_1}{2},b_1\right] \text{ содержит бесконечно много элементов последовательности.}$

Пусть $[a_2,b_2]$ – тот из отрезков, который содержит бесконечно много элементов.

Продолжая данный трюк счётное количество раз получим последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$. Также заметим, что данные отрезки стягиваются:

$$0 < b_n - a_n = \tfrac{b_1 - a_1}{2^n}$$

Тогда по принципу Кантора:

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = \{c\}$$

 $\bigcap_{n=1}^\infty [a_n,b_n]=\{c\}$ Осталось построить подпоследовательность, будем брать $x_{n_k}\in [a_k,b_k],$ причём так, чтобы $n_k > n_{k-1}$. Очевидно, $n_1 = 1$. Существование предела также очевидно:

$$0 \le \left| c - x_{n_k} \right| \le b_k - a_k = \frac{b_1 - a_1}{2^k} \underset{k \to \infty}{\longrightarrow} 0$$

1.2. Критерий Коши

Определение 1.2.1: Последовательность $\left\{x_{n}\right\}_{n=1}^{\infty}$ называется фундаментальной, если

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \ \left| x_{n+p} - x_n \right| < \varepsilon$$

Теорема 1.2.1 (Критерий Коши сходимости числовой последовательности): Числовая последовательность сходится ⇔ она фундаментальна.

$$\exists l \in \mathbb{R} : \forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : |x_n - l| < \frac{\varepsilon}{2}$$

Тогда по неравенству треугольника в условиях предела:

$$|x_{n+p} - x_n| = |x_{n+p} - l + l - x_n| \le |x_{n+p} - l| + |x_n - l| < \varepsilon$$

 $|x_{n+p}-x_n|=|x_{n+p}-l+l-x_n|\leq |x_{n+p}-l|+|x_n-l|<arepsilon$ \Leftarrow Вначале докажем, что из фундаментальности следует ограниченность:

$$\varepsilon\coloneqq 1:\exists N\in\mathbb{N}:\forall n>N:\forall p\in\mathbb{N}:\ \left|x_{n+p}-x_{n}\right|<1$$

Тогда заметим, что

$$\forall n \in \mathbb{N} : \min(x_1, ..., x_N, x_{N+1} + 1) \le x_n \le \max(x_1, ..., x_N, x_{N+1} + 1)$$

 $\forall n \in \mathbb{N}: \min(x_1,...,x_N,x_{N+1}+1) \leq x_n \leq \max(x_1,...,x_N,x_{N+1}+1)$ Тогда из ограниченной последовательности $\{x_n\}_{n=1}^\infty$ по теореме Больца-

но-Вейерштрасса достанем сходящуюся подпоследовательность:
$$\exists \left\{ x_{n_k} \right\}_{k=1}^{\infty} : \exists l : \forall \varepsilon > 0 : \exists K(\varepsilon) \in \mathbb{N} : \forall k > K(\varepsilon) : \ \left| x_{n_k} - l \right| < \frac{\varepsilon}{2}$$

Также по определению фундаментальности:

$$\forall \varepsilon > 0: \exists N(\varepsilon) \in \mathbb{N}: \forall n > N(\varepsilon): \forall p \in \mathbb{N}: \ \left|x_{n+p} - x_n\right| < \varepsilon$$

Объединим эти два условия и получим требуемое:

$$\forall \varepsilon > 0: \exists N_0 = \max \left(N(\varepsilon), n_{K(\varepsilon)+1}\right): \forall n > N_0:$$

$$|x_n-l| = \left|x_n - x_{n_{K(\varepsilon)+1}} + x_{n_{K(\varepsilon)+1}} - l\right| \leq \left|x_n - x_{n_{K(\varepsilon)+1}}\right| + \left|x_{n_{K(\varepsilon)+1}} - l\right| < \varepsilon$$

6

2. Ограниченность функции, непрерывной на отрезке, достижение точных верхней и нижней граней

2.1. Ограниченность функции, непрерывной на отрезке

Определение 2.1.1: Пусть f определена в некоторой окрестности $U_{\delta_0}(x_0)$, где $x_0 \in \mathbb{R}$. Если $\lim_{x \to x_0} f(x) = f(x_0)$, то функция называется **непрерывной** в точке x_0 .

Определение 2.1.2: f называется непрерывной на множестве $X \subset \mathbb{R}$, если

$$\forall x_0 \in X: \forall \varepsilon > 0: \exists \delta > 0: \forall x \in X, |x - x_0| < \delta: \ |f(x) - f(x_0)| < \varepsilon$$

Теорема 2.1.1 (Первая теорема Вейшерштрасса о непрерывной на отрезке функции): Если f непрерывна на [a,b], то f ограничена на [a,b].

Доказательство: От противного, пусть f неограничена сверху. Тогда $\sup_{x \in [a,b]} f(x) = +\infty$

То есть

$$\forall n \in \mathbb{N} : \exists x_n \in [a, b] : f(x_n) > n$$

 $\forall n\in\mathbb{N}:\exists x_n\in[a,b]:\ f(x_n)>n$ Причём $\forall n\in\mathbb{N}:a\leq x_n\leq b,$ то есть $\left\{x_n\right\}_{n=1}^\infty$ — ограниченная, тогда по

теореме Больцано-Вейерштрасса
$$\exists \left\{ x_{n_k} \right\}_{k=1}^{\infty} : \ \lim_{k \to \infty} x_{n_k} = x_0 \Rightarrow \lim_{k \to \infty} f \Big(x_{n_k} \Big) = f(x_0)$$
 Однако из $f(x_n) > n$ следует, что $f(x_0) = \infty$. Противоречие. \square

2.2. Достижение точных верхних и нижних граней

Теорема 2.2.1 (Вторая теорема Вейерштрасса о непрерывных на отрезке функциях): Если f непрерывна на [a,b], то

$$\exists x', x'' \in [a,b]: \ f(x') = \sup_{x \in [a,b]} f(x); \quad f(x'') = \inf_{x \in [a,b]} f(x)$$

Доказательство: Пусть $M = \sup_{x \in [a,b]} f(x)$. Тогда по определению супремума

$$\forall \varepsilon > 0 : \exists x \in [a, b] : M - \varepsilon < f(x) \le M$$

$$\exists \{x_n\}_{n=1}^{\infty} \subset [a,b] : \forall n \in \mathbb{N} : M - \frac{1}{n} < f(x_n) \leq M$$

$$\forall \varepsilon>0:\exists x\in[a,b]:\ M-\varepsilon< f(x)\leq M$$
 В том числе для $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}=\left\{\frac{1}{n}\right\}_{n=1}^{\infty}:\ \exists \left\{x_{n}\right\}_{n=1}^{\infty}\subset[a,b]:\forall n\in\mathbb{N}:\ M-\frac{1}{n}< f(x_{n})\leq M$ Тогда по теореме Больцано-Вейерштрасса:
$$\exists \left\{x_{nk}\right\}_{k=1}^{\infty}:\ \lim_{k\to\infty}x_{n_{k}}=x_{0}\Rightarrow\lim_{k\to\infty}f\left(x_{n_{k}}\right)=f(x_{0})=M$$

Последнее равенство было получено устремлением $k \to \infty$ в неравенстве $M - \frac{1}{n_k} < f(x_{n_k}) \le M$.

Таким образом, M действительно достижим функцией f в точке x_0 . Для инфимума аналогично.

3. Теорема о промежуточных значениях непрерывной функции

Теорема 3.1 (Больцано-Коши о промежуточных значениях): Пусть f непрерывна на [a,b]. Тогда

$$\forall x_1, x_2 \in [a,b] : c \coloneqq f(x_1) < d \coloneqq f(x_2) : \ \forall e \in (c,d) : \exists \gamma \in [a,b] : f(\gamma) = e$$

Доказательство: Рассмотрим частный случай c < e = 0 < d.

Построим последовательность отрезков $\{[a_n,b_n]\}_{n=1}^{\infty},$ где $[a_1,b_1]=\{x_1,x_2\}$ (мы не знаем в каком порядке идут иксы).

- Заметим, что $f(a_1) \cdot f(b_1) < 0$. Рассмотрим $f\left(\frac{a_1+b_1}{2}\right)$. Какие могут быть случаи? Если $f\left(\frac{a_1+b_1}{2}\right) = 0$, то мы победили и останавливаемся. Если $f\left(\frac{a_1+b_1}{2}\right) > 0$, то $a_2 := a_1, b_2 := \frac{a_1+b_1}{2}$. Если $f\left(\frac{a_1+b_1}{2}\right) < 0$, то $a_2 := \frac{a_1+b_1}{2}$, $b_2 := b_1$.

Либо после конечного числа шагов мы найдём требуемую точку, либо построим последовательность стягивающихся отрезков:

$$b_n-a_n=rac{|x_2-x_1|}{2^{n-1}}$$
 Тогда по принципу Кантора $\{\gamma\}=igcap_{n=1}^\infty[a_n,b_n]$, причём $\lim_{n o\infty}a_n=\lim_{n o\infty}b_n=\gamma\in[a,b]$

Тогда в силу непрерывности f:

$$f(\gamma) = \lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n)$$

Заметим, что после кажой итерации алгоритма изначальное свойство сохраняется:

$$f(a_n)\cdot f(b_n)<0$$

Совершив предельный переход в неравенстве, получим

$$f^2(\gamma) \leq 0$$

Из чего следует $f(\gamma) = 0$.

В общем случае рассматривается вспомогательная функция F(x) =f(x) - e.

4. Теоремы о среднем Ролля, Лагранжа и Коши для дифференцируемых функций.

4.1. Теорема Ролля

Определение 4.1.1: Пусть f определена в некоторой δ_0 окрестности точки x_0 . Если

$$\exists \delta \in (0,\delta_0): \forall x \in U_{\delta(x_0)}: \ f(x) \leq f(x_0)$$

то x_0 – точка локального максимума.

Также аналогично вводятся определения локального минимума, а также строгие экстремумы, в которых неравенство строгое.

Теорема 4.1.1 (Ферма о необходимом условии локального экстремума): Если x_0 – точка локального экстремума функции y=f(x), дифференцируемой в x_0 , то $f'(x_0) = 0$.

Доказательство: БОО x_0 – точка локального максимума.

$$\lim_{\Delta x \to +0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \le 0; \quad \lim_{\Delta x \to -0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \ge 0$$

Заметим, что тогда $\lim_{\Delta x \to +0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \leq 0; \quad \lim_{\Delta x \to -0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \geq 0$ А при существовании производной оба этих предела совпадают, поэтому производной в x_0 остаётся лишь быть равной нулю.

Теорема 4.1.2 (Ролля): Если f непрерывна на [a,b], дифференцируема на (a, b), причём f(a) = f(b), то

$$\exists c \in (a,b) : f'(c) = 0$$

Доказательство: Заметим, что если $f \equiv \text{const}$, то утверждение тривиально. Иначе, f непрерывна на $[a, b] \Rightarrow$

$$\exists m < M: \ m = \min_{x \in [a,b]} f(x); \quad M = \max_{x \in [a,b]} f(x)$$

Заметим, что либо $m \neq f(a)$, либо $M \neq f(a)$.

Это значит, что существует локальный минимум или максимум в некоторой точке $c \in (a,b)$, а по теореме Ферма мы знаем, что f'(c) = 0.

4.2. Теоремы Лагранжа и Коши

Теорема 4.2.1 (Обобщённая теорема о среднем): Если f, g непрерывны на [a,b], дифференцируемы на (a,b), то

$$\exists c \in (a,b): (f(b)-f(a))g'(c) = (g(b)-g(a))f'(c)$$

Доказательство: Рассмотрим

$$h(x) = (f(b) - f(a))g(x) - (g(b) - g(a))f(x)$$

Заметим, что h всё ещё непрерывна на отрезке и дифференцируема на интервале, причём

$$h(b) = (f(b) - f(a))g(b) - (g(b) - g(a))f(b) = g(a)f(b) - f(a)g(b) = h(a)$$

Теорема 4.2.2 (Лагранжа о среднем): Если f непрерывна на $[a,b]$, дифференцируема на (a,b) , то $\exists c \in (a,b): \ \frac{f(b)-f(a)}{b-a} = f'(c)$
Доказательство: В обобщённой теореме о среднем возьмём $g(x)=x$. \square
Теорема 4.2.3 (Коши о среднем): Если f,g непрерывны на $[a,b]$, дифференцируемы на (a,b) и $\forall x \in (a,b): g'(x) \neq 0$, то $\exists c \in (a,b): \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$
Доказательство: Очевидная интерпретация обобщённой теоремы о среднем. Необходимо уточнить лишь, почему $g(b) - g(a) \neq 0$, чтобы мы смогли поделить на него. Если бы $g(b) = g(a)$, то по теореме Ролля $\exists c: g'(c) = 0$, что противоречит с условием текущей теоремы. □ 5. Формула Тейлора с остаточным членом в форме Пеано или Лагранжа
5.1. Член в форме Лагранжа
Лемма 5.1.1 : Если f n раз дифференцируема в точке x_0 , то $\exists !$ многочлен степени $\leq n$ такой, что $f(x_0) = P_n(f,x_0); f'(x_0) = P'(f,x_0);; f^{(n)}(x_0) = P_n^{(n)}(f,x_0)$ Этот многочлен имеет вид $P_{n(f,x)} = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$

То есть h удовлетворяет всем условиям теоремы Ролля. Требуемое дока-

зано.

Доказательство: Очевидно проверяем каждую производную

Лемма 5.1.2 (Об отношении): Если φ, ψ (n+1) раз дифференцируемы в $U_{\delta}(x_0)$, причём

$$\forall k=\overline{0,\,\mathbf{n}}:\ \varphi^{(k)}(x_0)=\psi^{(k)}(x_0)=0$$

но

$$\forall k = \overline{0, \mathbf{n}} : \forall x \in \dot{U}_{\delta}(x_0) : \ \psi^{(k)}(x) \neq 0$$

TO

$$\forall x \in U_\delta(x_0): \exists \xi \in (x_0,x): \ \frac{\varphi(x)}{\psi(x)} = \frac{\varphi^{(n+1)}(\xi)}{\psi^{(n+1)}(\xi)}$$

Доказательство: Заметим, что φ, ψ удовлетворяют условиям теоремы Коши

$$\exists \xi_1 \in (x_0, x): \ \frac{\varphi(x) - \underbrace{\varphi(x_0)}_0}{\psi(x) - \underbrace{\psi(x_0)}_0} = \frac{\varphi'(\xi_1)}{\psi'(\xi_1)} = \frac{\varphi'(\xi_1) - \underbrace{\varphi'(x_0)}_0}{\psi'(\xi_1) - \underbrace{\psi'(x_0)}_0} = \frac{\varphi''(\xi_2)}{\psi''(\xi_2)} = \dots = \frac{\varphi^{(n+1)}(\xi_{n+1})}{\psi^{(n+1)}(\xi_{n+1})}$$

Теорема 5.1.1 (Формула Тейлора с остаточным членом в форме Лагранжа):

Если
$$f$$
 $(n+1)$ раз дифференцируема в $U_{\delta}(x_0), \delta>0$, то $\forall x\in \dot{U}_{\delta}(x_0): \exists \xi\in (x_0,x): \ f(x)-P_n(f,x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$

Доказательство: Сведём к предыдущей лемме об отношении:

$$\varphi(x) := f(x) - P_n(f, x); \quad \psi(x) := (x - x_0)^{n+1}$$

Все требуемые свойства проверяются очевидно.

5.2. Член в форме Пеано

Теорема 5.2.1 (Формула Тейлора с остаточным членом в форме Пеано): Если f n раз дифференцируема в точке x_0 , то

$$f(x) - P_n(f, x) = o((x - x_0)^n), x \to x_0$$

где $P_{n(f,x)}$ – многочлен Тейлора степени n функции f относительно x_0 .

Доказательство: По определению, если f n раз дифференцируема в точке, то она n-1 раз дифференцируема в окрестности.

Снова используем лемму об отношении, но для случая n-1:

$$\varphi(x)\coloneqq f(x)-P_{n(f,x)};\quad \psi(x)=\left(x-x_0\right)^n$$

Получим, что

$$\exists \xi \in (x_0,x): \ \frac{f(x) - P_{n(f,x)}}{\left(x - x_0\right)^n} = \frac{f^{(n-1)}(\xi) - P_n^{(n-1)}(f,\xi)}{n!(\xi - x_0)}$$

Получим, что
$$\exists \xi \in (x_0,x): \ \frac{f(x) - P_{n(f,x)}}{(x-x_0)^n} = \frac{f^{(n-1)}(\xi) - P_n^{(n-1)}(f,\xi)}{n!(\xi-x_0)}$$
 Заметим, что при $x \to x_0 \Rightarrow \xi \to x_0$:
$$\lim_{x \to x_0} \frac{f(x) - P_{n(f,x)}}{(x-x_0)^n} = \lim_{\xi \to x_0} \frac{f^{(n-1)}(\xi) - P_n^{(n-1)}(f,\xi)}{n!(\xi-x_0)} = \frac{1}{n!} (f(x_0) - P_n(f,x_0))^{(n)} = 0$$

- 6. Исследование функций одной переменной при помощи первой и второй производных на монотонность, локальные экстремумы, выпуклость. Необходимые условия, достаточные условия.
- 6.1. Необходимые и достаточные условия монотонности функции

```
Теорема 6.1.1: Пусть f дифференцируема на (a,b). Тогда 1. \forall x \in (a,b): f'(x) \geq 0 \Leftrightarrow f — неубывающая на (a,b) 2. \forall x \in (a,b): f'(x) \leq 0 \Leftrightarrow f — невозрастающая на (a,b) 3. \forall x \in (a,b): f'(x) > 0 \Rightarrow f — возрастающая на (a,b) 4. \forall x \in (a,b): f'(x) < 0 \Rightarrow f — убывающая на (a,b)
```

Доказательство:

- 1. $f'(x) \geq 0 \Rightarrow$ По теореме Лагранжа: $\forall x_1, x_2 : a < x_1 < x_2 < b : \exists \xi \in (x_1, x_2) : f(x_2) f(x_1) = f'(\xi)(x_2 x_1) \geq 0$ То есть для произвольных $x_1 < x_2 : f(x_1) \leq f(x_2)$. Обратно, пусть f(x) неубывающая. Тогда $\forall x_0 \in (a,b) : \forall \Delta x : \mathrm{sign} \ (f(x_0 + \Delta x) f(x_0)) = \mathrm{sign} \ \Delta x$ Ну и тогда при $|\Delta x| < \min(x_0 a, b x_0)$: $\frac{f(x_0 + \Delta x) f(x_0)}{\Delta x} \geq 0$
 - Совершим предельный переход в неравенстве и получим требуемое.
- 2. Аналогично предыдущему пункту
- 3. Контрпримером для \Leftarrow является $f(x) = x^3$ в точке 0
- 4. Контримером для \Leftarrow является $f(x) = -x^3$ в точке 0

6.2. Достаточные условия локальных экстремумов

Теорема 6.2.1 (Первое достаточное условие экстремума функции): Пусть f непрерывна в $U_{\delta_0}(x_0)$ и дифференцируема в $\dot{U}_{\delta_0}(x_0), \delta_0 > 0$:

1. Если $\exists \delta > 0: \forall x \in (x_0 - \delta, x_0): f'(x) > 0$ и $\forall x \in (x_0, x_0 + \delta): f'(x) < 0$, то x_0 — точка строгого локального максимума f2. Если $\exists \delta > 0: \forall x \in (x_0 - \delta, x_0): f'(x) < 0$ и $\forall x \in (x_0, x_0 + \delta): f'(x) > 0$, то x_0 — точка строгого локального минимума f

Доказательство: По сути просто заменили в определении локального экстремума монотонность на достаточное условие знакопостоянности производной из предыдущей теоремы. □

Теорема 6.2.2 (Второе достаточное условие локального экстремума): Если f n раз дифференцируема в точке $x_0, f^{(n)}(x_0) \neq 0, \forall k = \overline{1, \text{ n-1}}: f^{(k)}(x_0) = 0,$ то

- 1. Если n чётно, то f имеет в точке x_0 локальный минимум при $f^{(n)}(x_0)>0$ и локальный максимум при $f^{(n)}(x_0)<0$.
- 2. Если n нечётное, то f не имеет локального экстремума в точке x_0 .

Доказательство:

1. Воспользуемся разложением в Тейлора с остаточным членом в форме Пеано (учитывая факт нулевых производных):

$$f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n), x \to x_0$$
 Так как n чётно, то $n = 2m$:
$$\frac{f(x) - f(x_0)}{(x - x_0)^{2m}} = \frac{f^{(n)}(x_0)}{n!} + o(1), x \to x_0$$

 $\frac{(x-x_0)^{2m}}{(x-x_0)^{2m}} = \frac{-n!}{n!} + O(1), x \to x_0$ Левая часть в некоторой окрестности точки x_0 имеет тот же знак, что

и правая. Тогда в силу чётной степени в знаменателе левой части получаем, что разность $f(x) - f(x_0)$ одного знака с n-ой производной.

2. Рассмотрим $f(x) = x^3$.

6.3. Необходимые и достаточные условия выпуклости

Определение 6.3.1: f называется выпуклой (вниз) (вогнутой вверх) на (a,b), если её график лежит не выше хорды, стягивающей любые две точки этого графика над (a,b).

f называется выпуклой (вверх) (вогнутой вниз) на (a,b), если её график лежит не ниже хорды, стягивающей любые две точки этого графика над (a,b).

Теорема 6.3.1: Пусть f дважды дифференцируема на (a,b):

- 1. f выпукла вниз на $(a,b) \Leftrightarrow \forall x \in (a,b) : f''(x) \geq 0$.
- 2. f выпукла вверх на $(a,b) \Leftrightarrow \forall x \in (a,b): f''(x) \leq 0$
- 3. f строго выпукла вниз на $(a,b) \Leftrightarrow \forall x \in (a,b): f''(x) > 0$.
- 4. f строго выпукла вверх на $(a,b) \Leftrightarrow \forall x \in (a,b): f''(x) < 0$

Доказательство:

1. ← Рассмотрим эквивалентное определение выпуклости:

$$\begin{split} \forall x_0, x_1 : a < x_0 < x_1 < b : \forall t \in [0,1]: \\ x_t \coloneqq tx_0 + (1-t)x_1: \ f(x_t) \leq tf(x_0) + (1-t)f(x_1) \end{split}$$

Разложим f в формулу Тейлора с остаточным членом в форме Лагранжа с центром в точке x_t :

$$\begin{split} \exists \xi_1 \in (x_0, x_t) : f(x_0) = f(x_t) + f'(x_t)(x_0 - x_t) + \frac{f''(\xi_1)}{2!}(x_0 - x_t)^2 \\ \exists \xi_2 \in (x_1, x_t) : f(x_1) = f(x_t) + f'(x_t)(x_1 - x_t) + \frac{f''(\xi_2)}{2!}(x_1 - x_t)^2 \end{split}$$

Из-за знакопостоянности второй производной из этих равенств следуют следующие неравенства:

$$f(x_0) \ge f(x_t) + f'(x_t)(x_0 - x_t)$$

$$f(x_1) \ge f(x_t) + f'(x_t)(x_1 - x_t)$$

Умножим первое на t, второе на 1-t и сложим их:

$$tf(x_0)+(1-t)f(x_1)\geq f(x_t)+\underbrace{f'(x_t)(tx_0+(1-t)x_1-x_t)}^0$$
 \Rightarrow Рассмотрим произвольную точку $x_0\in(a,b)$ и достаточно малую

окрестность $\delta \coloneqq \min(x_0 - a, b - x_0)$. Тогда

$$\forall u \in (-\delta, \delta): x_0 = \frac{1}{2}(x_0 - u) + \frac{1}{2}(x_0 + u): \ f(x_0) \leq \frac{1}{2}f(x_0 - u) + \frac{1}{2}f(x_0 + u)$$
 Применим формулу Тейлора с остаточным членом в форме Пеано:
$$f(x_0 \pm u) = f(x_0) \pm f'(x_0)u + \frac{f''(x_0)}{2}u^2 + o(u^2), u \to 0$$

$$f(x_0 \pm u) = f(x_0) \pm f'(x_0)u + \frac{f''(x_0)}{2}u^2 + o(u^2), u \to 0$$

В прошлой строчке мы записали сразу два равенства благодаря \pm , да-

$$\frac{1}{2}f(x_0 - u) + \frac{1}{2}f(x_0 + u) = f(x_0) + \frac{f''(x_0)}{2}u^2 + o(u^2), u \to 0$$

вайте умножим каждое на $\frac{1}{2}$ и сложим их: $\frac{1}{2}f(x_0-u)+\frac{1}{2}f(x_0+u)=f(x_0)+\frac{f''(x_0)}{2}u^2+o(u^2), u\to 0$ Тогда при достаточно малых $u\frac{f''(x_0)}{2}u^2$ обязано будет стать такого же знака, как и $\frac{1}{2}f(x_0-u)+\frac{1}{2}f(x_0+u)-f(x_0)\geq 0$

- 2. Аналогично
- 3. \Leftarrow аналогично только со строгими неравенствами, а \Rightarrow вообще говоря не верно, например, для $f(x) = x^4$
- 4. \Leftarrow аналогично только со строгими неравенствами, а \Rightarrow вообще говоря не верно, например, для $f(x) = -x^4$

7. Теорема о равномерной непрерывности функции, непрерывной на компакте

Определение 7.1: Компактным множеством в метрическом пространстве X называется такое множество K, что из любого его открытого покрытия можно выделить конечное подпокрытие.

Определение 7.2: Функция $f: X \to \mathbb{R}$, где X – метрическое пространство, называется равномерно непрерывной на множестве $X' \subset X$, если

$$\forall \varepsilon > 0: \exists \delta > 0: \forall x_1, x_2 \in X': \rho(x_1, x_2) < \delta: |f(x_1) - f(x_2)| < \varepsilon$$

Теорема 7.1 (Кантора о равномерной непрерывности): Если $f: K \to \mathbb{R}$ непрерывна на компактном множестве $K \subset \mathbb{R}^n$, то она равномерно непрерывна на K.

Доказательство: От противного, выпишем отрицание равномерной непрерывности:

$$\exists \varepsilon > 0: \forall \delta > 0: \exists x_1, x_2 \in K: \|x_1 - x_2\| < \delta: \ |f(x_1) - f(x_2)| \geq \varepsilon$$

 $\exists \varepsilon > 0: \forall \delta > 0: \exists x_1, x_2 \in K: \|x_1 - x_2\| < \delta: \ |f(x_1) - f(x_2)| \geq \varepsilon$ Выбирая $\delta \coloneqq 1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{m}, ...$ построим последовательность пар из отрицания непрерывности: $\left\{\left(x_{1,m}, x_{2,m}\right)\right\}_{m=1}^{\infty} \subset K^2.$

Причём

$$\forall m \in \mathbb{N} : ||x_{1,m} - x_{2,m}|| < \frac{1}{m} : |f(x_{1,m}) - f(x_{2,m})| \ge \varepsilon$$

 $\forall m \in \mathbb{N}: \|x_{1,m}-x_{2,m}\|<rac{1}{m}: |f(x_{1,m})-f(x_{2,m})|\geq arepsilon$ По одному из определений компактности выделим из последовательности пар подпоследовательность, у которой сходятся первые координаты: $\exists \left\{\left(x_{1,m_k},x_{2,m_k}\right)\right\}_{k=1}^\infty : \lim_{k\to\infty} x_{1,m_k} = x_0 \in K$

$$\exists \left\{ \left(x_{1,m_k}, x_{2,m_k} \right) \right\}_{k=1}^{\infty} : \lim_{k \to \infty} x_{1,m_k} = x_0 \in K$$

Причём заметим, что (комбинируем то, как мы строили последовательность пар и сходимости первых координат подпоследовательности):

$$\forall \varepsilon > 0 : \exists K \in \mathbb{N} : \forall k > 0 : \left\| x_{2, m_k} - x_0 \right\| \le$$

$$\left\|x_{1,m_k}-x_0\right\|+\left\|x_{1,m_k}-x_{2,m_k}\right\|<2\varepsilon$$

То есть

$$\begin{split} \lim_{k \to \infty} x_{1,m_k} &= \lim_{k \to \infty} x_{2,m_k} = x_0 \overset{\text{непрерывность } f}{\Rightarrow} \\ \lim_{k \to \infty} \Bigl(f\Bigl(x_{1,m_k}\Bigr) - f\Bigl(x_{2,m_k}\Bigr) \Bigr) &= 0 \end{split}$$

Противоречие!

8. Достаточные условия дифференцируемости функции нескольких переменных

Определение 8.1: Пусть f определена в некоторой окрестности $x_0 \in \mathbb{R}^n$. **Полным приращением** f в точке x_0 называется

$$\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0) = f\big(x_{0,1} + \Delta x_1, ..., x_{0,n} + \Delta x_n\big) - f\big(x_{0,1}, ..., x_{0,n}\big)$$
 f называется **дифференцируемой** в x_0 , если

$$\Delta f(x_0) = (A, \Delta x) + o(\|\Delta x\|), \Delta x \to 0$$

где $A \in \mathbb{R}^n$ называется **градиентом**: grad $f(x_0) = A$

Определение 8.2: Дифференциалом дифференцируемой в x_0 функции f назовём выражение $(A, \Delta x)$ из определения дифференцируемости.

Определение 8.3: **Частной производной** в точке x_0 называется предел (если он существует):

$$\frac{\partial f}{\partial x_i}(x_0) = \lim_{\Delta x \to 0} \frac{f(x_{0,1},\dots,x_{0,j} + \Delta x,\dots,x_{0,n}) - f(x_{0,1},\dots,x_{0,j},\dots,x_{0,n})}{\Delta x}$$

Теорема 8.1 (Необходимое условие дифференцируемости): Если f дифференцируема в точке $x_0 \in \mathbb{R}$, то существуют частные производные $\forall j=\overline{1,n},$ причём

grad
$$f(x) = \left(\frac{\partial f}{\partial x_1}(x_0), ..., \frac{\partial f}{\partial x_n}(x_0)\right)$$

Доказательство: Сразу следует из определения - есть предел по всем многомерным приращениям, а значит и по однокоординатным в том числе. □

Теорема 8.2 (Достаточное условие дифференцируемости): Если f определена в некоторой окрестности точки x_0 , вместе со своими частными производными, причём они непрерывны в x_0 , то f дифференцируема в x_0 .

 $\begin{subarray}{ll} \mathcal{A}оказательство: Воспользуемся <math>n$ раз «умным нулём», каждый из которых будет снимать приращение по одной из координат:

$$\begin{split} f(x_{0,1} + \Delta x_1, ..., x_{0,n} + \Delta x_n) - f(x_{0,1} + \Delta x_1, ..., x_{0,n-1} + \Delta x_{n-1}, x_{0,n}) + \\ f(x_{0,1} + \Delta x_1, ..., x_{0,n-1} + \Delta x_{n-1}, x_{0,n}) - f(x_{0,1} + \Delta x_1, ..., x_{0,n-1}, x_{0,n}) + \\ + ... + \\ f(x_{0,1} + \Delta x_1, x_{0,2}, ..., x_{0,n}) - f(x_{0,1}, ..., x_{0,n}) = \\ \frac{\partial f}{\partial x_n} (x_{0,1} + \Delta x_1, ..., x_{0,n-1} + \Delta x_{n-1}, \xi_n) \Delta x_n + \\ \frac{\partial f}{\partial x_{n-1}} (x_{0,1} + \Delta x_1, ..., x_{0,n-2} + \Delta x_{n-2}, \xi_{n-1}, x_{0,n}) \Delta x_{n-1} + \\ + ... + \\ + \frac{\partial f}{\partial x_1} (\xi_1, x_{0,2}, ..., x_{0,n}) \Delta x_1 = \\ \sum_{i=1}^n \frac{\partial f}{\partial x_i} (x_0) \Delta x_i + o(\|\Delta x\|), \Delta x \to 0 \end{split}$$

9. Теорема о неявной функции, заданной одним уравнением

Определение 9.1: Кубом радиуса δ вокруг точки $x_0 \in \mathbb{R}^n$ назовём $K_{\delta,x_0} = \bigvee_{k=1}^n \left(x_0^k - \delta, x_0^k + \delta\right)$

где под × подразумевается декартово произведение.

Теорема 9.1: Пусть $F(x,y) = F(x_1,...,x_n,y)$ дифференцируема в окрестно-

сти точки $(x_0,y_0)=(x_0^1,...,x_0^n,y_0).$ Её производная $\frac{\partial F}{\partial y}$ непрерывна в этой окрестности, причём $F(x_0,y_0)=$ $0, \tfrac{\partial F}{\partial y}(x_0, y_0) \neq 0.$

Тогда для любого достаточно малого $\varepsilon>0$ найдётся $\delta>0$: $\forall x\in K_{\delta,x_0}:\exists !y=\varphi(x):\forall (x,y)\in K_{\delta,x_0} imes (y_0-\varepsilon,y_0+\varepsilon):$ $F(x,y) = 0 \Leftrightarrow y = \varphi(x) \land \exists \varphi'(x_0)$

 $\mathcal{\ \ \, }$ Доказательство: БОО будем считать, что $\frac{\partial F}{\partial y}(x_0,y_0)>0.$

По непрерывности частной производной, \exists окрестность точки (x_0,y_0) , в которой $\frac{\partial F}{\partial y}(x,y) > 0.$

Tогда из непрерывности F по y и знакоопределённости производной следует

$$\exists \varepsilon_0 : \forall \varepsilon \in (0, \varepsilon_0) : F(x_0, y_0 + \varepsilon) > 0 \land F(x_0, y_0 - \varepsilon) < 0$$

Расширяем территорию дальше, из непрерывности F по x следут

$$\exists \delta > 0: \forall x \in K_{\delta, x_0}: F(x, y_0 + \varepsilon) > 0 \land F(x, y_0 - \varepsilon) < 0$$

Из теоремы о промежуточных значениях непрерывной функции берём существование, а из знакоопределённости производной единственность:

$$\exists ! \varphi(x) \in (y_0 - \varepsilon, y_0 + \varepsilon) : F(x, \varphi(x)) = 0$$

3аметим, что arphi непрерывна по построению в (x_0,y_0) : мы брали x из 2δ окрестности точки x_0 , а значение лежало в 2ε окрестности точки y_0 .

Теперь докажем дифференцируемость φ , для этого распишем дифференцируемость F:

$$F(x,y) - \underbrace{F(x_0,y_0)}_{0} = \sum_{k=1}^{n} \frac{\partial F}{\partial x_k}(x_0,y_0) \cdot \left(x_k - x_0^k\right) + \frac{\partial F}{\partial y}(x_0,y_0) \cdot (y - y_0) + \underbrace{\frac{\partial F}{\partial y}(x_0,y_0)}_{0} = \underbrace{\frac{\partial F}{\partial x_k}(x_0,y_0)}_{0} \cdot \underbrace{\frac{\partial F$$

$$\alpha(x,y)$$

где $\alpha = o(\|(x,y) - (x_0,y_0)\|), (x,y) \to (x_0,y_0).$

Воспользуемся умножением на «умную единицу»:
$$\alpha(x,y) = \sum_{i=1}^n \frac{\alpha(x,y)\cdot \left(x_i-x_0^i\right)^2}{\left\|(x,y)-(x_0,y_0)\right\|_2^2} + \frac{\alpha(x,y)\cdot \left(y-y_0\right)^2}{\left\|(x,y)-(x_0,y_0)\right\|_2^2}$$

Введём новые обозначения:
$$\alpha_i(x,y)\coloneqq \frac{\alpha(x,y)\cdot(x_i-x_0^i)}{\|(x,y)-(x_0,y_0)\|_2^2};\quad \beta(x,y)\coloneqq \frac{\alpha(x,y)\cdot(y-y_0)}{\|(x,y)-(x_0,y_0)\|_2^2}$$

Тогда

$$\begin{split} F(x,y) &= \textstyle\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,y_0) + \alpha_k(x,y)\Bigr) \bigl(x_k - x_0^k\bigr) + \\ & \Bigl(\frac{\partial F}{\partial y}(x_0,y_0) + \beta(x,y)\Bigr) (y-y_0) \end{split}$$

Подставляя $y = \varphi(x)$ в выражение выше, будем использовать новые обозначения:

$$\tilde{\alpha}_k(x) \coloneqq \alpha_k(x, \varphi(x)); \quad \tilde{\beta}(x) \coloneqq \beta(x, \varphi(x))$$

$$\underbrace{F(x,\varphi(x))}_0 = \textstyle\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)\Bigr)\bigl(x_k - x_0^k\bigr) + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)\Bigr)\bigl(x_k - x_0^k\bigr) + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)\Bigr)\bigl(x_k - x_0^k\bigr) + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)\Bigr)\bigl(x_k - x_0^k\bigr) + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)\Bigr)\bigl(x_k - x_0^k\bigr) + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)\Bigr)\bigl(x_k - x_0^k\bigr) + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)\Bigr)\bigl(x_k - x_0^k\bigr) + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)\Bigr)\bigl(x_k - x_0^k\bigr) + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)\Bigr)\bigl(x_k - x_0^k\bigr) + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)\Bigr)\bigl(x_k - x_0^k\bigr) + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)\Bigr)\bigl(x_k - x_0^k\bigr) + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0)\Bigr)\bigl(x_k - x_0^k\bigr) + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0)\Bigr)\bigl(x_k - x_0^k\bigr)\bigr(x_k - x_0^k\bigr)} + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0)\Bigr)\bigl(x_k - x_0^k\bigr)\bigr)} + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0)\Bigr)\bigl(x_k - x_0^k\bigr)\bigr(x_k - x_0^k\bigr)} + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0)\Bigr)\bigr(x_k - x_0^k\bigr)} + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0)\Bigr)\bigr(x_k - x_0^k\bigr)} + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0)\Bigr)\bigr(x_k - x_0^k\bigr)} + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0)\Bigr)\bigr(x_k - x_0^k\bigr)} + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x_0)\Bigr)\bigr(x_k - x_0^k\bigr)} + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0))\Bigr)\bigr(x_k - x_0^k\bigr)} + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0))\Bigr)} + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0))\Bigr)} + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)\Bigr)} + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0))\Bigr)} + \underbrace{\sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)\Bigr)} + \underbrace{\sum$$

$$\Big(\tfrac{\partial F}{\partial y}(x_0,\varphi(x_0)) + \tilde{\beta}(x)\Big)(\varphi(x) - \varphi(x_0))$$

Выразим приращение φ :

$$\begin{array}{l} \varphi(x)-\varphi(x_0)=-\sum_{k=1}^n \left(\frac{\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0))}{\frac{\partial F}{\partial y}(x_0,\varphi(x_0))}+\gamma_k(x)\right)\!\left(x_k-x_0^k\right) \end{array}$$

где

$$\gamma_k(x) := -\frac{\frac{\partial F}{\partial x_k}(x_0, \varphi(x_0))}{\frac{\partial F}{\partial y}(x_0, \varphi(x_0))} + \frac{\frac{\partial F}{\partial x_k}(x_0, \varphi(x_0)) + \tilde{\alpha}_k(x_0)}{\frac{\partial F}{\partial y}(x_0, \varphi(x_0)) + \tilde{\beta}(x_0)}$$

где
$$\gamma_k(x) := -\frac{\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0))}{\frac{\partial F}{\partial y}(x_0,\varphi(x_0))} + \frac{\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)}{\frac{\partial F}{\partial y}(x_0,\varphi(x_0)) + \tilde{\beta}(x)}$$
 Остаётся заметить, что $\tilde{\alpha}_k(x) \underset{x \to x_0}{\to} 0$; $\tilde{\beta}(x) \underset{x \to x_0}{\to} 0$, а это значит, что
$$\varphi(x) - \varphi(x_0) = \sum_{k=1}^n A_k \big(x_k - x_0^k \big) + \gamma(x); \quad \gamma(x) = o(\|x - x_0\|), x \to x_0$$
 Что и является требуемой дифференцируемостью φ в x_0 .

10. Экстремумы функций многих переменных. Необходимые условия, достаточные условия.

10.1. Необходимые условия

Определение 10.1.1: Точка $x_0 \in \mathbb{R}^n$ называется точкой локального мак**симума** функции f(x), если

$$\exists \delta > 0: \forall x \in U_\delta(x_0): \ f(x) \leq f(x_0)$$

Определение 10.1.2: Точка $x_0 \in \mathbb{R}^n$ называется точкой локального ми**нимума** функции f(x), если

$$\exists \delta > 0: \forall x \in U_\delta(x_0): \ f(x) \geq f(x_0)$$

Определение 10.1.3: Точка $x_0 \in \mathbb{R}^n$ называется точкой строгого локаль**ного максимума** функции f(x), если

$$\exists \delta > 0 : \forall x \in U_{\delta}(x_0) : \ f(x) < f(x_0)$$

Определение 10.1.4: Точка $x_0 \in \mathbb{R}^n$ называется точкой строгого локаль**ного минимума** функции f(x), если

$$\exists \delta>0: \forall x\in U_\delta(x_0):\ f(x)>f(x_0)$$

Теорема 10.1.1 (Необходимые условия локального экстремума): Если x_0 – точка локального экстремума функции f(x), дифференцируемой в окрестности точки x_0 , то $\mathrm{d}f(x) \equiv 0$.

$$\psi(x_k)=fig(x_0^1,...,x_0^{k-1},x_k,x_0^{k+1},...,x_0^nig),$$
 где $x_0=(x_0^1,...,x_0^n)$

 \mathcal{A} оказательство: Рассмотрим для каждого $k=\overline{1,\,\mathbf{n}}$: $\psi(x_k)=f\Big(x_0^1,...,x_0^{k-1},x_k,x_0^{k+1},...,x_0^n\Big),\;\;$ где $x_0=(x_0^1,...,x_0^n)$ Тогда заметим, что ψ дифференцируема в окрестности $x_0^k,\;$ применяя теорему о необходимом условии экстремума функции одного переменного, получим

$$\psi' \big(x_0^k \big) = 0 \Rightarrow \frac{\partial f}{\partial x_k} (x_0) = 0$$

В силу произвольности k и того, что дифференциал – это вектор частных производных, получим требуемое.

10.2. Достаточные условия

Определение 10.2.1: Если f дифференцируема в окрестности точки x_0 и $\mathrm{d}f(x_0)\equiv 0$, то x_0 называется **стационарной точкой** функции f.

Теорема 10.2.1 (Достаточные условия локального экстремума): Если x_0 – стационарная точка функции f, дважды дифференцируемой в точке x_0 , то

- 1. Если $d^2 f(x_0)$ положительно определённая квадратичная форма, то x_0 точка строгого локального минимума функции f
- 2. Если $d^2 f(x_0)$ отрицательно определённая квадратичная форма, то x_0 точка строгого локального максимума функции f
- 3. Если $d^2 f(x_0)$ неопределённая квадратичная форма, то x_0 не является точкой локального экстремума

Доказательство:

1. По формуле Тейлора с остаточным членом в форме Пеано:

$$f(x) = f(x_0) + df(x_0) + \frac{1}{2}d^2f(x_0) + o(\rho^2), \rho \to 0$$

где
$$\mathrm{d}x_k = x_k - x_0^k, k = \overline{1,\mathrm{n}}; \quad \rho = \sqrt{\sum_{k=1}^n \left(x_k - x_0^k\right)^2} = \left\|\mathrm{d}x\right\|_2$$
 Тогда (в условиях $\mathrm{d}f(x_0) \equiv 0$ и $\xi_k \coloneqq \frac{\mathrm{d}x_k}{\left\|\mathrm{d}x\right\|}$) :
$$f(x) - f(x_0) = \frac{1}{2}d^2f(x_0) + o(\rho^2) =$$

$$\underbrace{\frac{1}{2}\rho^2 \left(\underbrace{\sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) \xi_i \xi_j}_{F(\xi_1,\dots,\xi_n)} + o(1),\right)}_{\rho \to 0} \rho \to 0$$

В следствие нормировки, очевидно, $\sum_{i=1}^{n} \xi_i^2 = 1$.

Таким образом, минимум введённого функционала F на сфере (компактной в \mathbb{R}^n) будет достигаться:

$$\min_{\xi_1^2+...+\xi_n^2=1}F(\xi_1,...,\xi_n)=:C>0$$
 Таким образом, для достаточно маленьких ρ :

$$f(x) - f(x_0) \ge \tfrac{C}{4}\rho^2 > 0$$

- 2. Аналогично
- 3. Вводим $F(\xi_1,...,\xi_n)$ аналогично предыдущим пунктам, из-за того что $\mathrm{d}^2 f$ – неопределённая, то

$$\exists \xi_1(x_1), \xi_2(x_2): \ F\big(\xi_1^1,...,\xi_1^n\big)>0 \land F\big(\xi_2^1,...,\xi_2^n\big)<0$$
 Тогда при достаточно малых ρ : sign $(f(x_1)-f(x_0))=$ sign $F(\xi_1)>0;$ sign $(f(x_2)-f(x_0))=$ sign $F(\xi_2)<0$ Что и требовалось.

11. Свойства интеграла с переменным верхним пределом (непрерывность, дифференцируемость). Формула Ньютона-Лейбница.

11.1. Свойства интеграла с переменным верхним пределом

Определение 11.1.1: **Разбиением** P отрезка [a,b] называется конечное множество точек отрезка [a,b]:

$$P: a = x_0 < x_1 < \ldots < x_n = b; \quad \Delta x_k \coloneqq x_k - x_{k-1}; k = \overline{1, \, \mathbf{n}}$$

Определение 11.1.2: Диаметром разбиения P называется $\Delta(P) = \max\nolimits_{1 \leq i \leq n} \Delta x_i$

Определение 11.1.3: **Верхней суммой Дарбу** разбиения P функции fназывается

$$U(P,f) = \sum_{k=1}^n \sup_{x \in [x_{k-1},x_k]} f(x) \cdot \Delta x_k$$

Определение 11.1.4: **Нижней суммой Дарбу** разбиения P функции fназывается

$$U(P,f) = \sum_{k=1}^n \inf_{x \in [x_{k-1},x_k]} f(x) \cdot \Delta x_k$$

Определение 11.1.5: Функция f называется интегрируемой по Риману на [a,b] $(f \in \mathcal{R}[a,b])$, если

$$\forall \varepsilon > 0: \exists P: \ U(P,f) - L(P,f) < \varepsilon$$

Определение 11.1.6: Интегралом Римана интегрируемой по Риману на [a,b] функции f называется $\int_a^b f(x) \, \mathrm{d}x = \inf_P U(P,f) = \sup_P L(P,f)$

$$\int_a^b f(x) \, \mathrm{d}x = \inf_P U(P, f) = \sup_P L(P, f)$$

Теорема 11.1.1 (Основные свойства интеграла Римана):

1. (Линейность) Если $f_1, f_2 \in \mathcal{R}[a,b]$, то $f_1 + f_2 \in \mathcal{R}[a,b]$, причём $\int_a^b (f_1 + f_2)(x) \, \mathrm{d}x = \int f_1(x) \, \mathrm{d}x + \int f_2(x) \, \mathrm{d}x$ Кроме того, $\forall c \in \mathbb{R}$ выполняется, что $cf_1 \in \mathcal{R}[a,b]$, причём $\int_a^b cf_1(x) \, \mathrm{d}x = c \int_a^b f_1(x) \, \mathrm{d}x$

- 2. (Монотонность) Если $f_1, f_2 \in \mathcal{R}[a,b]$ и $\forall x \in [a,b]: f_1(x) \leq f_2(x)$, то $\int_a^b f_1(x) \, \mathrm{d}x \leq \int_a^b f_2(x) \, \mathrm{d}x$
- 3. (Аддитивность):

 $f \in \mathcal{R}[a,b] \Leftrightarrow \forall c \in (a,b): \ f \in \mathcal{R}[a,c] \land f \in \mathcal{R}[c,b]$ Причём $\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x$ 4. (Оценка) Если $f \in \mathcal{R}[a,b]$ и $\forall x \in [a,b]: \ |f(x)| \leq M$, то $\left|\int_a^b f(x) \, \mathrm{d}x\right| \leq M(b-a)$

Определение 11.1.7: Пусть $\forall b' \in (a,b): f \in \mathcal{R}[a,b']$. Тогда $F(b') = \int_a^{b'} f(x) \, \mathrm{d}x$ называется **интегралом с переменным верхним пределом**.

Будем считать, что F(a)=0, а для $\alpha>\beta$: $\int_{\alpha}^{\beta}f(x)\,\mathrm{d}x=-\int_{\beta}^{\alpha}f(x)\,\mathrm{d}x$

Теорема 11.1.2 (Основные свойства интеграла с переменным верхним пределом): Если $f \in \mathcal{R}[a,b]$, то интеграл с перменным верхним пределом F(x)непрерывен на [a,b].

Если, кроме того, f непрерывна в $x_0 \in [a,b]$, то F(x) дифференцируема в x_0 , причём $F'(x_0) = f(x_0)$.

Доказательство: Непрерывность следует из комбинирования свойств аддитивности и оценки:

$$\begin{aligned} \forall x_1, x_2 \in [a,b] : x_1 < x_2 \wedge x_2 - x_1 < \frac{\varepsilon}{M} : \ |F(x_2) - F(x_1)| &= \left| \int_{x_1}^{x_2} f(x) \, \mathrm{d}x \right| \leq \\ & \int_{x_1}^{x_2} |f(x)| \, \mathrm{d}x \leq M(x_2 - x_1) < \varepsilon \end{aligned}$$

В условиях непрерывности f, докажем, что производная интеграла действительно равна $f(x_0)$:

$$\left|\frac{F(x) - F(x_0)}{x - x_0} - f(x_0)\right| = \left|\frac{1}{x - x_0} \int_{x_0}^x (f(t) - f(x_0)) \, \mathrm{d}t\right| \leq \sup_{t \in [x_0, x]} |f(t) - f(x_0)|$$

Благодаря непрерывности f мы знаем, что при $x \to x_0$ сможем оценить итоговый супремум сверху ε .

11.2. Формула Ньютона-Лейбница

Определение 11.2.1: **Первообразной** функции f на [a,b] называется такая дифференцируемая на [a,b] функция F, что $\forall t \in [a,b]: F'(t) = f(t)$

Определение 11.2.2: Интегральной суммой $S\!\left(P,f,\left\{t_i\right\}_{i=1}^n\right)$ называется где $P: a=x_0 < ... < x_n=b, \forall i=\overline{1,\,\mathbf{n}}: t_i \in [x_{i-1},x_i].$

Теорема 11.2.1 (Интеграл как предел интегральных сумм): $f \in \mathcal{R}[a,b] \Leftrightarrow \exists \lim_{\Delta(P) \to 0} S\!\left(P,f,\left\{t_i\right\}_{i=1}^n\right)$ При этом $\int_a^b f(x) \,\mathrm{d}x = \lim_{\Delta(P) \to 0} S\!\left(P,f,\left\{t_i\right\}_{i=1}^n\right)$

Теорема 11.2.2 (Основная теорема интегрального исчисления): Если $f \in \mathcal{R}[a,b]$ имеет первообразную F на [a,b], то $\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a) = F(x)|_a^b$

Доказательство: Для любого разбиения P: $F(b) - F(a) \stackrel{\text{телескопическая сумма}}{=} \sum_{k=1}^n (F(x_k) - F(x_{k-1})) \stackrel{\text{теорема Лагранжа}}{=} \sum_{k=1}^n F'(\xi_k) \Delta x_k = \sum_{k=1}^n f(\xi_k) \Delta x_k$

Устремляя $\Delta(P) \to 0$ получим, что F(b) - F(a) равно требуемому интегралу по эквивалентному определению. \Box

- 12. Равномерная сходимость функциональных последовательностей и рядов. Непрерывность, интегрируемость и дифференцируемость суммы функционального ряда.
- 12.1. Непрерывность суммы функционального ряда

Определение 12.1.1: Функциональная последовательность $\left\{f_n\right\}_{n=1}^\infty$ сходится равномерно на E к функции f(x) $(f_n \rightrightarrows f)$, если $\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall x \in E: |f_n(x) - f(x)| < \varepsilon$

Определение 12.1.2: Функциональная последовательность $\{f_n\}_{n=1}^{\infty}$ схо**дится поточечно** на E к функции f(x), если

$$\forall x \in E : \forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : |f_n(x) - f(x)| < \varepsilon$$

Теорема 12.1.1 (Критерий Коши равномерной сходимости функциональной последовательности):

$$f_n \underset{E}{\Longrightarrow} f \Leftrightarrow \forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \forall x \in E: \ \left|f_{n+p}(x) - f_n(x)\right| < \varepsilon$$

Определение 12.1.3: Фукнциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ равномерно сходится на E, если равномерно сходится на E функциональная последовательность $S_n(x) = \sum_{k=1}^n f_k(x)$

Теорема 12.1.2 (Критерий Коши равномерной сходимости функциональных рядов):

$$\sum_{n=1}^{\infty} f_n$$
 равномерно сходится на $E \Leftrightarrow$

$$\textstyle \forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \forall x \in E: \ \left| \sum_{k=n}^{n+p} f_k(x) \right| < \varepsilon$$

Теорема 12.1.3 (Предельный переход в равномерно сходящихся последовательностях): Если $\{f_n\}_{n=1}^\infty$ равномерно сходится к f на множестве E метрического пространства, x_0 – предельная точка E, причём

$$\forall n \in \mathbb{N} : \operatorname{lim}_{x \to x_0, x \in E} f_n(x) = a_n$$

Тогда

$$\lim\nolimits_{x\to x_0,x\in E}f(x)=\lim\nolimits_{n\to\infty}a_n$$

То есть оба предела существуют и равны.

Доказательство: Воспользуемся критерием Коши равномерной сходимости:

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : \forall p \in \mathbb{N} : \forall x \in E : \ \left| f_{n+p}(x) - f_n(x) \right| < \varepsilon$$

Совершим предельный переход $x \to x_0$:

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \ \left|a_{n+p} - a_n\right| \leq \varepsilon$$

 $\forall \varepsilon>0: \exists N\in\mathbb{N}: \forall n>N: \forall p\in\mathbb{N}: \left|a_{n+p}-a_{n}\right|\leq \varepsilon$ То есть числовая последовательность $\left\{a_{n}\right\}_{n=1}^{\infty}$ имеет какой-то предел a,теперь нужно установить, что он равен пределу предельной функции:

$$|f(x) - a| = |f(x) - f_n(x)| + |f_n(x) - a_n| + |a_n - a|$$

Стоит упомянуть про кванторы:

- Берём номер N больший N_1 для равномерного предела функций и N_2 для числового предела $a_n \underset{n \to \infty}{\rightarrow} a$
- δ -окрестность x_0 меньшую требуемой для фиксированного $f_N(x) \underset{x \to x_0}{\longrightarrow} a_N$

Следствие 12.1.3.1: Если $f_n(x)$ непрерывна на $E, f_n \rightrightarrows f$ на E, то f непрерывна на E.

Теорема 12.1.4 (Предельный переход в функциональных рядах): Если $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на $E,\ x_0$ – предельная точка $E,\ \forall n\in\mathbb{N}$: $\lim_{x \to x_0, x \in E} f_n(x) = a_n, \text{ To } \sum_{n=1}^{\infty}$ $_{n=1}^{\infty} a_n = \lim_{x \to x_0, x \in E} \sum_{n=1}^{\infty} f_n(x)$

Доказательство: Доказывается очевидно применением предыдущей теоремы для последовательности частичных сумм.

12.2. Интегрируемость суммы функционального ряда

Теорема 12.2.1 (Интегрирование равномерно сходящейся функциональной последовательности): Если $\forall n \in \mathbb{N}: f_n$ интегрируема по Риману на [a,b] и $f_n \rightrightarrows f$ на [a,b], то f интегрируема по Риману на [a,b] и $\int_a^b f(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x$

Доказательство: Воспользуемся тем, что каждый элемент функциональной последовательности интегрируем:

$$\forall n \in \mathbb{N} : \forall \varepsilon > 0 : \exists P : U(P, f_n) - L(P, f_n) < \frac{\varepsilon}{3(h-a)}$$

Далее определение равномерной сходимости:

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall x \in [a,b]: \ |f_n(x) - f(x)| < \tfrac{\varepsilon}{3(b-a)}$$

Итак, оценим верхнюю сумму Дарбу предела:
$$U(P,f)=\sum_{k=1}^n\sup_{x\in[x_{k-1},x_k]}f(x)\Delta x_k\leq$$

$$\textstyle \sum_{k=1}^n \Bigl(\sup_{x \in [x_{k-1},x_k]} f_n(x) + \frac{\varepsilon}{3(b-a)}\Bigr) \Delta x_k = U(P,f_n) + \frac{\varepsilon}{3}$$

Аналогично для нижней:

$$L(P,f) \geq L(P,f_n) - \tfrac{\varepsilon}{3}$$

Таким образом,

$$U(P,f) - L(P,f) \le U(P,f_n) - L(P,f_n) + \frac{2\varepsilon}{3} < \varepsilon$$

 $U(P,f)-L(P,f)\leq U(P,f_n)-L(P,f_n)+rac{2arepsilon}{3}<arepsilon$ Мы доказали интегрируемость f, осталось доказать, что интеграл равен тому, что надо:

$$\left| \int_a^b f_n(x) \, \mathrm{d}x - \int_a^b f(x) \, \mathrm{d}x \right| \leq \int_a^b |f_n(x) - f(x)| \, \mathrm{d}x \leq \tfrac{\varepsilon}{3(b-a)} \cdot (b-a) < \varepsilon$$

Теорема 12.2.2 (Интегрирование функциональных рядов): Если $f_n \in \mathcal{R}[a,b], \sum_{n=1}^\infty f_n(x)$ равномерно сходится на [a,b], то $\sum_{n=1}^\infty f_n(x) \in \mathcal{R}[a,b]$ и $\int_a^b \sum_{n=1}^\infty f_n(x) \, \mathrm{d}x = \sum_{n=1}^\infty \int_a^b f_n(x) \, \mathrm{d}x$

Доказательство: Доказывается очевидно применением предыдущей теоремы для последовательности частичных сумм.

12.3. Дифференцируемость суммы функционального ряда

Теорема 12.3.1 (Дифференцирование функциональных последовательностей): Если

- 1. f_n дифференцируемы на (a,b)
- 2. $f'_n \rightrightarrows$ на (a,b)
- 3. $\exists x_0 \in (a,b): f_n(x_0) \to 0$

To

- 1. $f_n \rightrightarrows f$ на (a,b)
- 2. f дифференцируема на (a,b)
- 3. $f_n' \to f'$ на (a,b)

Доказательство: Используем равномерную сходимость производных:

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \forall x \in (a,b): \ \left|f'_{n+p}(x) - f'_{n}(x)\right| < \frac{\varepsilon}{2(b-a)}$$

А также сходимость самих функций в точке x_0 :

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \ \left| f_{n+p}(x_0) - f_n(x_0) \right| < \frac{\varepsilon}{2}$$

Применим теорему Лагранжа для непрерывных f_n между произвольной точкой x и фиксированной x_0 :

$$\exists \xi \in \{x, x_0\} : \ \left| \left(f_{n+p}(x) - f_n(x) \right) - \left(f_{n+p}(x_0) - f_n(x_0) \right) \right| = \left| f_{n+p}'(\xi) - f_n'(\xi) \right| |x - x_0|$$

Тогда мы можем доказать фундаментальность самой последовательнсоти:

$$\begin{split} \left|f_{n+p}(x)-f_n(x)\right| \leq \left|f_{n+p}(x_0)-f_n(x_0)\right| + \left|f'_{n+p}(\xi)-f'_n(\xi)\right| |x-x_0| < \\ \frac{\varepsilon}{2} + \frac{\varepsilon}{2(b-a)}|x-x_0| < \varepsilon \end{split}$$

Значит по критерию Коши $f_n \rightrightarrows f$ на (a,b).

Остаётся доказать дифференцируемость f в произвольной точке $x \in$

$$\varphi_n(t) := \frac{f_n(t) - f_n(x)}{t - x}; \quad \varphi(t) := \frac{f(t) - f(x)}{t - x}$$

$$(a,b)$$
, для этого введём вспомогательные функции:
$$\varphi_n(t) \coloneqq \frac{f_n(t) - f_n(x)}{t - x}; \quad \varphi(t) \coloneqq \frac{f(t) - f(x)}{t - x}$$
 Докажем фундаментальность $\{\varphi_n\}_{n=1}^{\infty}$:
$$\left| \varphi_{n+p}(t) - \varphi_n(t) \right| = \frac{\left| (f_{n+p}(t) - f_n(t)) - (f_{n+p}(x) - f_n(x)) \right|}{t - x} \stackrel{\text{теорема Лагранжа}}{=}$$

$$\left|f_{n+p}'(\xi) - f_n'(\xi)\right| < \frac{\varepsilon}{2(b-a)}$$

Получили, что $\varphi_n \rightrightarrows \varphi$ на $A := (a, b) \setminus \{x\}$.

Заметим, что x – предельная точка A, тогда применим теорему о непрерывном поточечном пределе:

$$\lim\nolimits_{n\to\infty}f'_n(x)=\lim\nolimits_{n\to\infty}\lim\nolimits_{t\to x,t\in A}\varphi_n(t)=\lim\nolimits_{t\to x,t\in A}\varphi(t)=f'(x)$$

Заметим, что этими равенствами мы доказываем как существование, так и равенство пределов.

13. Степенные ряды. Радиус сходимости. Бесконечная дифференцируемость суммы степенного ряда. Ряд Тейлора.

13.1. Бесконечная дифференцируемость суммы степенного ряда

Определение 13.1.1: Ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$, где $\{c_n\}_{n=0}^{\infty} \subset \mathbb{C}$ называется степенным рядом с центром в точке z_0 и коэффициентами $\{c_n\}_{n=0}^{\infty}$.

Радиусом сходимости степенного Определение 13.1.2: ряда Определение $\sum_{n=0}^{\infty}c_n(z-z_0)^n$ называется $R=rac{1}{\overline{\lim}_{n o\infty}\sqrt[n]{|c_n|}}; \quad 0\leq R\leq +\infty$

$$R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|}}; \quad 0 \le R \le +\infty$$

Теорема 13.1.1 (Коши-Адамара): Если $R \in [0, +\infty]$ – радиус сходимости ряда $\sum_{n=0}^{\infty} c_n (z-z_0)^n$, то 1. $\forall z, |z-z_0| < R$ ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ сходится, притом абсолютно 2. $\forall z, |z-z_0| > R$ ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ расходится

Доказательство:

1. Пусть $|z - z_0| =: r < R$.

Возьмём произвольный $\rho \in (r,R) \Rightarrow \frac{1}{R} < \frac{1}{\rho} < \frac{1}{r}$. По определению верхнего предела:

$$\exists N \in \mathbb{N} : \forall n > N : \sqrt[n]{|c_n|} < \frac{1}{\rho}$$

Тогда:

$$\exists N \in \mathbb{N}: \, \forall n > N: \, \left| c_n (z-z_0)^n \right| \leq \left(\tfrac{r}{\rho} \right)^n; \quad \tfrac{r}{\rho} < 1$$

По теореме Вейерштрасса мы можем ограничить рассматриваемый ряд сходящимя числовым (геометрическая прогрессия) и всё доказано.

2. Пусть $|z-z_0| > R$, то есть $\frac{1}{|z-z_0|} < \frac{1}{R}$. Значит по плотности действительных чисел:

$$\exists \varepsilon > 0: \ \tfrac{1}{|z-z_0|} \leq \tfrac{1}{R} - \varepsilon \Rightarrow |z-z_0| \geq \tfrac{1}{\frac{1}{R} - \varepsilon}$$

По определению верхнего предела:

$$\exists \{n_k\}_{k=1}^{\infty} : \forall k \in \mathbb{N} : \sqrt[n_k]{\left|a_{n_k}\right|} > \frac{1}{R} - \varepsilon \Rightarrow$$

$$\left|a_{n_k}z^{n_k}\right| \geq \left(\tfrac{1}{R} - \varepsilon\right)^{n_k} \cdot \left(\tfrac{1}{\frac{1}{R} - \varepsilon}\right)^{n_k} \geq 1$$

Получили, что не выполнено необходимое условие сходимости ряда.

Теорема 13.1.2 (Равномерная сходимость степенного ряда): Если ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ имеет радиус сходимости R>0, то он сходится равномерно в любом круге $|z - z_0| \le R$, где 0 < r < R

Доказательство: $|z-z_0|=r < R \Rightarrow$ по теореме Коши-Ада $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ сходится абсолютно, то есть $\sum_{n=0}^{\infty} |c_n| r^n$ Тогда для любого z из рассматриваемого круга справедлива оценка Коши-Адамара

$$\left|c_n(z-z_0)^n\right| \le |c_n|r^n$$

А значит по теореме Вейерштрасса имеется равномерная сходимость.

Теорема 13.1.3 (Почленное дифференцирование и интегрирование степенных рядов): Пусть $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$, где $|x-x_0| < R, R > 0$. Тогда

$$f^{(k)}(x) = \sum_{n=k}^{\infty} a_n n(n-1)...(n-k+1)(x-x_0)^{n-k}$$

1. f(x) бесконечно дифференцируема $\forall x, |x-x_0| < R$, причём $f^{(k)}(x) = \sum_{n=k}^{\infty} a_n n(n-1)...(n-k+1)(x-x_0)^{n-k}$ 2. f(x) интегрируема по Риману $\forall x, |x-x_0| < R$ на отрезке с концами x_0, x, x_0 причём

$$\int_{x_0}^{x} f(t) dt = \sum_{n=0}^{\infty} a_n \frac{(x - x_0)^{n+1}}{n+1}$$

- 3. Все степенные ряды, упомянутые в пунктах 1, 2 имеют радиус сходимости
- 4. $\forall n \in \mathbb{N} \cup \{0\}: \ a_n = \frac{f^{(n)}(x_0)}{n!}$

 Доказательство: Если мы возьмём $x:|x-x_0|=r < R,$ то на отрезке $[x_0,x]$ ряд для f(x) сходится равеномерно, а значит мы можем его почленно интегрировать по теореме об интегрировании равномерно сходящихся функциональных рядов.

Радиус сходимости дифференцированного (и, вообще говоря, интегрированного) ряда не меняется, так как $\lim_{n\to\infty} \sqrt[n]{n} = 1$. А значит он также равномерно сходится на $[x_0, x]$, поэтому мы можем применить теорему о дифференцировании функционального ряда.

Заметим, что $f^{(k)}(x_0) = k! \cdot a_k$, что и требовалось.

13.2. Ряд Тейлора

Определение 13.2.1: Если f бесконечно дифференцируема в точке x_0 , то ряд

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

 $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ называется её **рядом Тейлора** с центром в точке x_0 .

Если $x_0 = 0$, то ряд Тейлора называется **рядом Маклорена**.

Теорема 13.2.1 (Достаточное условие представимости функции рядом Тейлора): Если f бесконечно дифференцируема на $(x_0 - h, x_0 + h)$, причём $\exists M: \forall n \in \mathbb{N}: \forall x \in (x_0-h,x_0+h): \ \left|f^{(n)}(x)\right| \leq M$

То f(x) представима своим рядом Тейлора в точке x_0 при всех $x \in (x_0 (h, x_0 + h)$

Доказательство: По теореме о формуле Тейлора с остаточным членом в форме Лагранжа:

$$f(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}; \quad \xi \in (x_0,x)$$

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \right| \le M \frac{|x - x_0|^{n+1}}{(n+1)!} \underset{n \to \infty}{\to} 0$$

Следовательно $\left|f(x)-\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k\right|\leq M\frac{|x-x_0|^{n+1}}{(n+1)!}\underset{n\to\infty}{\to}0$ Почему $\lim_{n\to\infty}\frac{x^n}{n!}=0$? Заметим, что n-ый элемент разложения экспоненты (имеющий бесконечный радиус сходимости, поэтому для неё априори он существует) в ряд Маклорена – это $\frac{x^n}{n!}$, а по необходимому условию сходимости ряда, он стремится к 0 равномерно.

14. Теорема об ограниченной сходимости для интеграла Лебега

Определение 14.1: Пусть f – ограниченная измеримая функция, определённая на измеримом по Лебегу множестве E. И Q – разбиение области значений функции f.

Тогда **интегральной суммой Лебега** назовём
$$S\big(Q,f,\left\{t_i\right\}_{i=1}^n\big) = \sum_{i=1}^N f(t_i)\mu(E_i)$$
 где $E_i = \{x \in E \mid f(x) \in [y_{i-1},y_i)\}$

Теорема 14.1 (Критерий/определение интеграла Лебега для ограниченных функций): Если f – ограниченная измеримая на измеримом по Лебегу множестве $E \subset \mathbb{R}^n$, то она интегрируема по Лебегу на E, причём

$$\int_E f \,\mathrm{d}\mu(x) = \lim_{\Delta(Q) \to 0} S\!\left(Q, f, \left\{t_i\right\}_{i=1}^n\right)$$

Определение 14.2: Назовём **срезкой** неотрицательной функции f для $N \in$ \mathbb{N} :

$$f_{[N]}(x) = \begin{cases} f(x), f(x) \le N \\ N, f(x) > N \end{cases}$$

Теорема 14.2 (Критерий/определение интеграла Лебега для измеримых неотрицательных функций): Если f – измеримая неотрицательная функция, определённая на измеримом множестве E конечной меры, то

$$\lim_{N\to\infty} \int_E f_{[N]} \,\mathrm{d}\mu(x) = f_E f(x) \,\mathrm{d}\mu(x)$$

Теорема 14.3 (Лебега о предельном переходе под знаком интеграла): Пусть

- $\{f_n\}_{n,n=1}^\infty$ измеримые на множестве $E\subset\mathbb{R}^n$ конечной меры
- $f_m \stackrel{\text{n.H.}}{\to} f$ на E
- $\forall n \in \mathbb{N}: \ |f_n(x)| \leq F(x)$ при почти всех $x \in E$, где F произвольная суммируемая функция на E

Тогда f суммируема на E, причём

$$\int_{E} f \, \mathrm{d}\mu(x) = \lim_{n \to \infty} \int_{E} f_n \, \mathrm{d}\mu(x)$$

Доказательство: Совершив предельный переход $n \to \infty$ мы можем утверждать, что $|f(x)| \le F(x)$ при почти всех $x \in E$ – значит f суммируемая на E.

Осталось доказать равенство интеграла и предела интегралов.

Как мы знаем, из сходимости почти всюду следует сходимость по мере:

$$\forall \varepsilon > 0: \lim\nolimits_{n \to \infty} \mu(E_m(\varepsilon) \coloneqq \{x \in E \mid \|f_m - f\| \ge \varepsilon\}) = 0$$

Другими словами

$$\forall \varepsilon > 0 : \forall \delta > 0 : \exists M \in \mathbb{N} : \forall m > M : \mu(E_m(\varepsilon)) < \delta$$

Оценим разность интеграла и предела интегралов:

$$\begin{split} \left| \int_{E} (f - f_m) \, \mathrm{d}\mu(x) \right| &\leq \int_{E_m} |f_m - f| \, \mathrm{d}\mu(x) + \int_{E \setminus E_m} |f_m - f| \, \mathrm{d}\mu(x) \leq \\ &2 \int_{E_m} F \, \mathrm{d}\mu(x) + \varepsilon \mu(E \setminus E_m) < \varepsilon(\mu(E) + 2) \end{split}$$

Что и требовалось.

15. Дифференциальные формы на открытых подмножествах евклидова пространства, оператор внешнего дифференцирования d и его независимость от криволинейной замены координат

15.1. Дифференциальные формы, оператор внешнего дифференцирования

В этом и других билетов, связанных с дифференциальными формами введём понятия $E = \mathbb{R}^n$ – евклидово пространство.

 E^* — сопряжённое к нему, ака пространство линейных функционалов ака линейных форм ака ковекторов.

Если мы будем употреблять $p \in \mathbb{N},$ то мы имеем ввиду количество векторов $x_1,...,x_p \in E$

Если мы будем употреблять $q \in \mathbb{N}$, то мы имеем ввиду количество ковекторов $y^1,...,y^q \in E^*$

Обратите внимание на индексы, это важно.

Определение 15.1.1: Полилинейной формой валентности (p,q) называется функция $U: E^p \times (E^*)^q \to \mathbb{R}$, линейная по каждому из аргументов.

Утверждение 15.1.1: Полилинейная форму однозначно определяется значениями на базисных элементах E и E^* , то есть числами

лями на базисных элементах
$$E$$
 и E , то есть числами
$$\omega_{\pmb i}^{\pmb j} := \omega_{i_1,...,i_p}^{j_1,...,j_q} = U\big(e_{i_1},...,e_{i_p},e^{j_1},...,e^{j_q}\big)$$
 где $\{e_i\}_{i=1}^n$ — базис E , а $\{e^j\}_{j=1}^q$ — двойственный базис E^* .

Доказательство: Очевидно из линейности.

Определение 15.1.2: Набор чисел $\left\{\omega_{i}^{j} \mid i \in \left(\overline{1,\,\mathbf{n}}\right)^{p}, j \in \left(\overline{1,\,\mathbf{n}}\right)^{q}\right\}$ (то есть мы рассматриваем значения на всех комбинациях базисных векторов и ковекторов) называется **тензором**

Утверждение 15.1.2: Множество полилинейных форм валентности (p,q) образует **линейное пространство** Ω_p^q .

Определение 15.1.3: Тензорным произведением форм $U\in\Omega^{q_1}_{p_1}; V\in\Omega^{q_2}_{p_2}$ называется форма $U\otimes V\in\Omega^{q_1+q_2}_{p_1+p_2},$ задаваемая формулой.

$$\begin{split} \forall \pmb{x} \in E^{p_1+p_2} : \forall \pmb{y} \in E^{q_1+q_2} : \\ U \otimes V\Big(x_1,...,x_{p_1},x_{p_1+1},...,x_{p_1+p_2},y^1,...,y^{q_1},y^{q_1+1},...,y^{q_1+q_2}\Big) = \\ U\Big(x_1,...,x_{p_1},y^1,...,y^{q_1}\Big) \cdot V\Big(x_{p_1+1},...,x_{p_1+p_2},y^{q_1+1},...,y^{q_1+q_2}\Big) \end{split}$$

Определение 15.1.4: $W \in \Omega^0_p$ называется **симметрической**, если она не изменяется при любой перестановке её аргументов.

Определение 15.1.5: $W \in \Omega_p^0$ называется антисимметрической (кососимметрической), если при любой перестановке пары её аргументов она меняет знак.

Введём линейное пространство антисимметрических форм:

$$\Lambda_p \coloneqq \left\{ W \in \Omega^0_p \mid W - \text{антисимметрическая} \right\}$$

Определение 15.1.6: Пусть $\pi_p = (i_1,...,i_p)$ – перестановка индексов $\{1,...,p\}$. Тогда $\forall W \in \Omega^0_p: \forall x \in E^p: \left(\pi_p W\right)\!\left(x_1,...,x_p\right) \coloneqq W\!\left(x_{i_1},...,x_{i_p}\right)$

Определение 15.1.7: Симметризацией формы $W \in \Omega^0_p$ называется форма

sym
$$W := \frac{1}{p!} \sum_{\pi_p \in S_p} \pi_p W$$

Определение 15.1.8: Антисимметризацией формы $W\in\Omega^0_p$ называется форма

asym
$$W\coloneqq \frac{1}{p!}\sum_{\pi_p\in S_p}\operatorname{sgn}\,\pi_p\cdot\pi_pW$$

Определение 15.1.9: Если $U\in\Lambda_p, V\in\Lambda_q$, то их внешним произведением называется

$$U \wedge V := \frac{(p+q)!}{p!q!}$$
 asym $(U \otimes V)$

Теорема 15.1.1 (Основные свойства внешнего произведения):

- 1. Линейность
 - $(\alpha_1 U_1 + \alpha_2 U_2) \wedge V = \alpha_1 (U_1 \wedge V) + \alpha_2 (U_2 \wedge V)$
 - $\bullet \ \ U \wedge (\alpha_1 V_1 + \alpha_2 V_2) = \alpha_1 (U \wedge V_1) + \alpha_2 (U \wedge V_2)$
- 2. Ассоциативность
 - $(U \land V) \land W = U \land (V \land W)$
- 3. Антикоммутативность
 - $\bullet \ \forall U \in \Lambda_p : \forall V \in \Lambda_q : \ U \wedge V = (-1)^{pq} (V \wedge U)$

Утверждение 15.1.3: Базисом в пространстве Λ_p является система $\left\{f^{i_1}\wedge...\wedge f^{i_p}\mid 1\leq i_1<...< i_p\leq n\right\}$ где $\left\{f_i\right\}_{i=1}^n$ – базис в $E^*=\Lambda_1$. (Принято брать базис проекторов)

Определение 15.1.10: p-формой (дифференциальной формой валентности (степени) p) на множестве $U\subset E$ называется отображение $\Omega:U\to \Lambda_n.$

В силу линейности пространства Λ_p , нам достаточно задать поведение получаемой формы лишь на базисе, поэтому

$$\forall x \in U: \ \Omega(x) \coloneqq \sum_{1 \leq i_1 < \ldots < i_p \leq n} \omega_{i_1,\ldots,i_p}(x) f^{i_1} \wedge \ldots \wedge f^{i_p}$$

Таким образом, дифференциальная форма однозначно задаётся наобором действительнозначных функций

$$\left\{ \omega_{i_1,\ldots,i_n} \mid 1 \leq i_1 < \ldots < i_p \leq n \right\}$$

Определение 15.1.11: Внешнее дифференцирование p-формы определяется как (p+1)-форма

$$d\Omega: U \to \Lambda_{p+1}$$

По правилу

$$\forall x \in U : d\Omega(x) := (p+1) \text{ asym } (\Omega'(x))$$

где под производной подразумевается производная по Фреше.

Стоит заметить, что, формально $\Omega': U \to U \to \Lambda_p$, однако мы считаем, что $U \to \Lambda_p \subset \Omega^0_{p+1}$ (Действительно, линейно по p+1 вектору получаем число).

Также стоит упомянуть, что для любого базиса $(e_1,...,e_n)$ из E и двойственного к нему базиса $(e^1,...,e^n)$ существует соглащение, что

$$\forall i = \overline{1, \, \mathbf{n}}: \ e^i = \mathrm{d} e_i$$

Которое не лишено смысла, ведь e_i – это 0-форма. А e^i – это функционал, то есть 1-форма.

Теорема 15.1.2 (Основные свойства операции внешнего дифференцирования):

- 1. $d(\Omega \wedge \Pi) = (d\Omega \wedge \Pi) + (-1)^p (\Omega \wedge d\Pi)$, где Ωp -форма, а Πq -форма.
- 2. $d(d\Omega) = 0$

Доказательство:

1. Для простоты считаем, что форма – одночлен, по линейности всё очевидно доказывается для произвольной формы.

Фиксируем базис, в котором

$$\Omega(x) = \omega(x) \, \mathrm{d} x^{i_1} \wedge \ldots \wedge \mathrm{d} x^{i_p}; \quad \Pi(x) = \pi(x) \, \mathrm{d} x^{j_1} \wedge \ldots \wedge \mathrm{d} x^{j_q}$$

Тогда

$$\begin{split} \mathrm{d}(\Omega \wedge \Pi) &= \mathrm{d}\big(\omega(x)\pi(x)\,\mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} \wedge \mathrm{d}x^{j_1} \wedge \ldots \wedge \mathrm{d}x^{j_q}\big) = \\ \mathrm{d}(\omega(x)\pi(x)) \wedge \mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} \wedge \mathrm{d}x^{j_1} \wedge \ldots \wedge \mathrm{d}x^{j_q} = \\ \pi(x) \sum_{i=1}^n \frac{\partial \omega}{\partial x_i}(x)\,\mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} \wedge \mathrm{d}x^{j_1} \wedge \ldots \wedge \mathrm{d}x^{j_q} + \\ \omega(x) \sum_{i=1}^n \frac{\partial \pi}{\partial x_i}(x)\,\mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} \wedge \mathrm{d}x^{j_1} \wedge \ldots \wedge \mathrm{d}x^{j_q} = \\ d\Omega \wedge \Pi(x) + (-1)^p (\Omega \wedge \mathrm{d}\Pi) \end{split}$$

В последнем переходе мы воспользовались свойством антикоммутативности внешнего произведения для перестановки всех $\mathrm{d} x^{j_{\cdots}}$ перед всеми $\mathrm{d} x^{i_{\cdots}}$, остальное свернули по определению

2. Распишем двойной дифференциал:

$$\mathrm{d}(\mathrm{d}\Omega) = \mathrm{d}\left(\sum_{j,\forall k:j\neq i_k} \frac{\partial \omega}{\partial x_j} \, \mathrm{d}x^j \wedge \mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p}\right) =$$

$$\sum_{l,l\neq j,\forall k:l\neq l_k} \sum_{j,\forall k:j\neq i_k} \frac{\partial^2 \omega}{\partial x_l \partial x_j} \, \mathrm{d}x^l \wedge \mathrm{d}x^j \wedge \mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} =$$

$$\sum_{j,l,j< l,\forall k:j\neq i_k \wedge l\neq i_k} \left(\frac{\partial^2 \omega}{\partial x_l \partial x_j} - \frac{\partial^2 \omega}{\partial x_j \partial x_l}\right) \mathrm{d}x^l \wedge \mathrm{d}x^j \wedge \mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} = 0$$

15.2. Независимость внешнего дифференцирования от замены координат

Определение 15.2.1: Пусть

- Ω дифференциальная p-форма в области $U \subset \mathbb{R}^n$
- $\varphi: V \to U$ диффеоморфизм области $V \subset \mathbb{R}^n$ на U

Тогда $\varphi^*\Omega$ – дифференциальная p-форма в области V, определяемая как $\forall \boldsymbol{b} \in \mathbb{R}^n: (\varphi^*\Omega)(y)(\boldsymbol{b}) \coloneqq \Omega(\varphi(y))(\varphi'(y)b_1,...,\varphi'(y)b_n)$

Утверждение 15.2.1 (Правило подсчёта): Мы можем выразить форму после замены координат через упомянутое выше базисное представление:

$$(\varphi^*\Omega)(y) = \sum_{1 \leq i_1 < \ldots < i_p \leq n} \omega_{i_1,\ldots,i_p}(\varphi(y)) \,\mathrm{d}\varphi^{i_1}(y) \wedge \ldots \wedge \mathrm{d}\varphi^{i_p}(y)$$

Доказательство: Заметим, что для произвольного вектора $b \in \mathbb{R}^n$ верно $\mathrm{d}\varphi^i(y)(b) = \sum_{l=1}^n \frac{\partial \varphi^i}{\partial y^l}(y) \, \mathrm{d}f^l(b) = \sum_{l=1}^n \frac{\partial \varphi^i}{\partial y^l}(y) b^l = (\varphi'(y)b)^i = \mathrm{d}f^i(\varphi'(y)b)$ Не забывайте, что в качестве $\mathrm{d}f^i$ мы берём проекцию на i-ую координату. Что и требовалось.

Лемма 15.2.1 (Независимость внешнего дифференцирования от замены координат):

$$\varphi^*(\mathrm{d}\Omega)=\mathrm{d}(\varphi^*\Omega)$$

Доказательство: БОО считаем, что Ω – это одночлен, для многочленов обобщается очевидно по линейности.

Зафиксируем $\Omega = \omega(x) \wedge dx^{i_1} \wedge ... \wedge dx^{i_p}$

Тогда по свойствам внешнего дифференцирования:

$$d\Omega = d\omega(x) \wedge dx^{i_1} \wedge \dots \wedge dx^{i_p}$$

Тогда по правилу подсчёта

$$\varphi^*(\mathrm{d}\Omega) = \mathrm{d}\omega(\varphi(y)) \wedge \mathrm{d}\varphi^{i_1}(y) \wedge \ldots \wedge \mathrm{d}\varphi^{i_p}(y)$$

С другой стороны, по определению замены координат

$$\varphi^*(\Omega) = \omega(\varphi(y)) \,\mathrm{d}\varphi^{i_1}(y) \wedge \dots \wedge \mathrm{d}\varphi^{i_p}(y)$$

Применим оба свойства внешнего дифференцирования (двойной дифференциал нулевой и псевдодистрибутивность):

$$d(\varphi^*\Omega) = d\omega(\varphi(y)) \wedge d\varphi^{i_1}(y) \wedge \dots \wedge d\varphi^{i_p}(y)$$

16. Интегрирование дифференциальной формы с компактным носителем. Зависимость интеграла от замены координат.

Из Утверждение 15.1.3 Пространство Λ_n одномерно. Иными словами, если $(f^1,...,f^n)$ – базис E^* , то

$$\{cf^1 \wedge \dots \wedge f^n \mid c \in \mathbb{R}\} = \Lambda_n$$

 $\{cf^1\wedge...\wedge f^n\mid c\in\mathbb{R}\}=\Lambda_n$ Тогда если $(e^1_0,...,e^n_0)$ — ортонормированный базис в E^* сопряжённый к $(e_1^0,...,e_n^0)$ – ортонормированному базису в E^* .

Введём форму **ориентированного объёма**
$$V_{e^0}=e^1_0\wedge...\wedge e^n_0\stackrel{\text{соглашение}}{=} \mathrm{d} e^0_1\wedge...\mathrm{d} e^0_n$$

Возьмём произвольный базис $(e_1^0,...,e_n^*)$ в E, связанный с исходным матрицей перехода T:

$$\forall j: e_i = t_i^i e_i^0$$

Рассмотрим действие:

$$V_{e_0}(e_1,...,e_n) = \det^0_1 \wedge ... \det^0_n(e_1,...,e_n) = \det \left(\det^0_i \left(e_j \right) \right)_{i,j=1}^n = \det T$$

Причём ∀ базиса форма ориентированного объёма на нём самом равна 1:

$$V_{e_0} = \det T \cdot V_e$$

 $V_{e_0} = \det T \cdot V_e$ В начале определим интеграл от форм из Λ_n .

Определение 16.1: Интегралом от формы $\Omega(x)=\alpha(x)V_{e_0}$ по области $D\subset$ E называется

$$\int_{D} \Omega = \int_{D} \alpha(x) \, \mathrm{d}\mu(x)$$

Определение 16.2: Если Ω – гладкая n-1 форма, заданная на замыкании куба $K \subset \mathbb{R}$, то

$$\int_{\partial K}\Omega\coloneqq\int_K\mathrm{d}\Omega$$

Определение 16.3: Клеткой называется диффеоморфный образ куба

Определение 16.4: Для формы Ω и диффеоморфизма $\varphi:U\to V,\,M\subset U$ – клетки, $K\subset V$ – куба:

$$\int_M \Omega = \int_K \varphi^* \Omega$$

17. Общая формула Стокса

Определение 17.1: Границей клетки $M=\varphi(K)$ называется $\partial M:=\varphi(\partial K)$

Теорема 17.1 (Теорема Стокса для клетки): Если Ω – гладкая m-1 форма, заданная в окрестности m-мерной клетки, то

$$\int_{\partial M} \Omega = \int_{M} \mathrm{d}\Omega$$

Доказательство: Используя Теорему Стокса для куба (ака определение интеграла по формам меньших размерностей) и свойство инвариантности внешнего дифференцирования от замены координат:

$$\int_{\partial M} \Omega = \int_{\partial K} \varphi^* \Omega = \int_K \mathrm{d}(\varphi^* \Omega) = \int_K \varphi^* (\mathrm{d}\Omega) = \int_M \mathrm{d}\Omega$$

18. Достаточные условия равномерной сходимости тригонометрического ряда Фурье в точке

В доказательствах некоторых теорем этого конспекта используется интересный трюк: если у нас есть цепочка равенств a=b, то мы с лёгкостью сможем продолжить её, написав $a=b=\frac{a+b}{2}$. Если вы понимаете, что в доказательстве теоремы с интегралами происходит какая-то дичь, то вспоминайте этот трюк!

Определение 18.1:

$$L_{2\pi} \coloneqq \{ f \in L_1[-\pi,\pi] \ | \ f-2\pi \ \text{периодическая} \}$$

Определение 18.2: Ядром Дирихле $D_n(u)$ называется выражение $D_n(u)=\frac{1}{2}+\sum_{k=1}^n\cos(ku)=\frac{\sin((n+\frac{1}{2})u)}{2\sin(\frac{u}{2})}$

Определение 18.3: Пусть $f \in L_{2\pi}$, тогда частичной суммой тригонометрического ряда Фурье называется $S_n(f,x) \coloneqq \tfrac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))$

$$S_n(f,x) := \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))$$

где

$$a_k \coloneqq \tfrac{1}{\pi} \int_{-\pi}^\pi f(t) \cos(kt) \,\mathrm{d}\mu(t); \quad b_k = \tfrac{1}{\pi} \int_{-\pi}^\pi f(t) \sin(kt) \,\mathrm{d}\mu(t)$$

Лемма 18.1 (О представлении частичной суммы): Если $f \in L_{2\pi}$, то n-я частичная сумма тригонометрического ряда Фурье может быть представлена

$$S_n(f,x) = \frac{1}{\pi} \int_{-\pi}^\pi f(t) D_n(x-t) \,\mathrm{d}\mu(t) = \frac{1}{\pi} \int_{-\pi}^\pi f(x+u) D_n(u) \,\mathrm{d}\mu(u)$$

Теорема 18.1 (Теорема Римана об осцилляции): Если $f \in L_1(I)$, где I – конечный или бесконечный промежуток, то

$$\lim_{\lambda \to \infty} \int_I f(x) \cos(\lambda x) \, \mathrm{d}\mu(x) = \lim_{\lambda \to \infty} \int_I f(x) \sin(\lambda x) \, \mathrm{d}\mu(x) = 0$$

Теорема 18.2 (Признак Дини): Если
$$f\in L_{2\pi}$$
 и $\varphi_{x_0}\in L_1(0,\delta), \delta>0$, где
$$\varphi_{x_0}(t):=\frac{f(x_0+t)+f(x_0-t)-2S(x_0)}{t}$$

то тригонометрический ряд Фурье функции f(x) сходится к $S(x_0)$

Доказательство: Рассмотрим разность $S_n(f,x_0) - S(x_0)$, пользуясь леммой

о представлении, можем записать её как
$$S_n(f,x_0)-S(x_0)\stackrel{\text{трюк}}{=} \tfrac{1}{\pi} \int_0^\pi (f(x+u)+f(x-u)-2S(x_0))D_n(u)\,\mathrm{d}\mu(u)$$

В данном переходе мы воспользовались сразу несколькими фактами:

- Подынтегральная функция чётная относительно u
- Интеграл по $[-\pi,\pi]$ от ядра Дирихле равен π
- \bullet Если заменить в представлении частичной суммы t на -t, то ничего не изменится.

Продолжим цепочку преобразований, раскрыв в формуле ядра Дирихле

$$\sin\left(\left(n + \frac{1}{2}\right)t\right) = \sin(nt)\cos\left(\frac{t}{2}\right) + \cos(nt)\sin\left(\frac{t}{2}\right)$$

А также добавим и вычтем интеграл
$$\frac{1}{\pi} \int_0^\delta \frac{f(x+t)+f(x-t)-2S(x_0)}{t} \sin(nt) \,\mathrm{d}\mu(t)$$

Итак, приступим

$$\begin{split} S_n(f,x_0) - S(x_0) = \\ \frac{1}{\pi} \int_0^\delta \frac{f(x+t) + f(x-t) - 2S(x_0)}{t} \sin(nt) \, \mathrm{d}\mu(t) + \\ \frac{1}{\pi} \int_0^\pi (f(x+t) + f(x-t) - 2S(x_0)) \frac{\cos(nt)}{2} \, \mathrm{d}\mu(t) + \\ \frac{1}{\pi} \int_\delta^\pi (f(x+t) + f(x-t) - 2S(x_0)) \frac{\sin(nt)\cos(\frac{t}{2})}{2\sin(\frac{t}{2})} \, \mathrm{d}\mu(t) + \\ \frac{1}{\pi} \int_0^\delta (f(x+t) + f(x-t) - 2S(x_0)) \sin(nt) \left(\frac{\cos(\frac{t}{2})}{2\sin(\frac{t}{2})} - \frac{1}{t}\right) \mathrm{d}\mu(t) \end{split}$$

 По условию φ_{x_0} сумирумая, значит по теореме Римана об осцилляции первое слагаемое стремится к нулю.

 $f(x+t) + f(x-t) - 2S(x_0)$ суммируема как сумма суммируемых и константы, значит по теореме Римана об осцилляции второе слагаемое стремится к нулю.

В третьем слагаемом $(f(x+t)+f(x-t)-2S(x_0))\frac{\cos(\frac{t}{2})}{2\sin(\frac{t}{2})}\in L_1[\delta,\pi]$, так как мы отделились от нуля и по теореме Римана об осцилляции третье слагаемое стремится к нулю.

Для четвёртого слагаемого рассмотрим разность:
$$\frac{\cos(\frac{t}{2})}{2\sin(\frac{t}{2})} - \frac{1}{t} \overset{t \to 0}{\sim} \frac{1 - \frac{t^2}{8}}{2\left(\frac{t}{2} - \frac{t^3}{48}\right)}) - \frac{1}{t} = \frac{t - \frac{t^3}{8} - t + \frac{t^3}{24}}{t^2} = 0$$

Значит мы умножили суммируемую функцию $f(x+t)+f(x-t)-2S(x_0)$

на другую, имеющую устранимый разрыв в нуле, а значит
$$(f(x+t)+f(x-t)-2S(x_0))\left(\frac{\cos(\frac{t}{2})}{2\sin(\frac{t}{2})}-\frac{1}{t}\right)\in L_1[0,\delta]$$

И опять применяем теоремы об осцилляции

Определение 18.4: Будем говорить, что функция f удовлетворяет **усло**вию Гёльдера порядка $\alpha \in (0,1]$ в точке x_0 , если существуют конечные односторонние пределы $f(x_0 \pm 0)$ и константы $C > 0, \delta > 0$ такие, что

$$\forall t, 0 < t < \delta: \ |f(x_0 + t) - f(x_0 + 0)| \leq Ct^{\alpha} \wedge |f(x_0 - t) - f(x_0 - 0)| \leq Ct^{\alpha}$$

Теорема 18.3 (Признак Липшица): Если $f \in L_{2\pi}$ удовлетворяет условию Гёльдера порядка α в точке x_0 , то тригонометрический ряд Фурье функции f(x) сходится в точке x_0 к $\frac{f(x_0+0)+f(x_0-0)}{2}$

Доказательство: По условию теоремы,

$$S(x_0) = \frac{f(x_0+0)+f(x_0-0)}{2}$$

 $S(x_0) = rac{f(x_0+0)+f(x_0-0)}{2}$ Значит функция $arphi_{x_0}$ из признака Дини будет иметь вид

$$\varphi_{x_0}(t) = \frac{f(x_0+t) - f(x_0+0) + (f(x_0-t) - f(x_0-0))}{t}$$

 ${
m To}$ что arphi измерима – очевидно. Осталось доказать ограниченность инте-

$$\begin{split} \left| \int_0^\delta \varphi_{x_0}(t) \, \mathrm{d}\mu(t) \right| & \leq \int_0^\delta \frac{|f(x_0+t) - f(x_0+0)|}{t} \, \mathrm{d}\mu(t) + \int_0^\delta \frac{|f(x_0-t) - f(x_0-0)|}{t} \, \mathrm{d}\mu(t) \leq \\ & 2C \int_0^\delta t^{\alpha-1} \, \mathrm{d}\mu(t) = 2C \frac{\delta^\alpha}{\alpha} \end{split}$$

Значит мы можем применить признак Дини и всё доказано.

19. Достаточные условия равномерной сходимости тригонометрического ряда Фурье

Утверждение 19.1: Анализ доказательства признака Дини (Теорема 18.2) показывает, что критерием сходимости тригонометрического ряда Фурье функции $f\in L_{2\pi}$ к $S(x_0)$ в точке x_0 является равенство $\lim_{n\to\infty}\int_0^\delta \varphi_{x_0}(t)\sin(nt)\,\mathrm{d}\mu(t)=0$

Лемма 19.1: Пусть $f \in L_{2\pi}, g$ – измеримая, 2π -периодическая, ограниченная функция. Тогда коэффициенты Фурье функции $\chi(t) = f(x+t)g(t)$ стремятся к нулю при $n \to \infty$ равномерно по x.

Теорема 19.1 (Признак Жордана): Если $f \in L_{2\pi}$ и является функцией ограниченной вариации на [a,b], то тригонометрический ряд Фурье f сходится к $f(x_0)$ в каждой точке $x_0 \in [a,b]$ непрерывности f(x) и к $\frac{f(x_0+0)+f(x_0-0)}{2}$ в каждой точке разрыва $x_0 \in [a, b]$.

Если, кроме того, $f \in C[a,b]$, то тригонометрический ряд Фурье функции f сходится к ней равномерно на любом отрезке $[a',b'] \subset (a,b)$.

виде $f = f_1 - f_2$, где f_1, f_2 – неубывающие. Значит нам достаточно доказать утверждения для неубывающих функций.

$$\lim_{n\to\infty} \int_0^\delta \varphi_{x_0}(t) \sin(nt) \, \mathrm{d}\mu(t) = 0$$

По (Утверждение 19.1) нам надо доказать лишь $\lim_{n\to\infty}\int_0^\delta \varphi_{x_0}(t)\sin(nt)\,\mathrm{d}\mu(t)=0$ Раскроем φ_{x_0} и $S(x_0)$ и будем доказывать лишь для $\lim_{n\to\infty}\int_0^\delta \frac{f(x_0+t)-f(x_0+0)}{t}\sin(nt)\,\mathrm{d}\mu(t)=0$

А для слагаемого с минусами аналогично.

По определению правостороннего предела:

$$\forall \varepsilon > 0: \exists \delta_1, 0 < \delta_1 < \delta: \ 0 \le f(x_0 + \delta_1) - f(x_0 + 0) < \varepsilon$$

Перейдём к интегралу Римана, так как f монотонна и используем теорему о среднем для него:

$$\exists \delta_2, 0 < \delta_2 < \delta_1: \int_0^{\delta_1} \frac{f(x_0 + t) - f(x_0 + 0)}{t} \sin(nt) dt =$$

$$(f(x_0+\delta_1)-f(x_0+0))\int_{\delta_1}^{\delta_2}rac{\sin(nt)}{t}\,\mathrm{d}t$$

 Но мы знаем, что $\int_0^{+\infty} \frac{\sin(t)}{t} \, \mathrm{d}t$ сходится, поэтому интеграл с переменным верхним пределом ограничен:

$$\exists C > 0: \left| \int_0^u \frac{\sin(t)}{t} \, \mathrm{d}t \right| \le C$$

Но теперь рассмотрим:
$$\forall A>0: \ \left| \int_0^A \frac{\sin(nt)}{t} \,\mathrm{d}t \right| \stackrel{nt=:u}{=} \left| \int_0^{nA} \frac{\sin(u)}{u} \,\mathrm{d}u \right| \leq C$$
 Используя эту оценку, получим, что

Используя эту оценку, получим, что
$$\left|\int_0^{\delta_1} \frac{f(x_0+t)-f(x_0+0)}{t} \sin(nt) \,\mathrm{d}t\right| \leq 2\varepsilon C$$

Таким образом, разобьём исходный интеграл от 0 до δ на сумму интегралов от 0 до δ_1 и от δ_1 до δ .

Получим, что предел интеграла действительно равен нулю, применим признак Дини и получим первую часть утверждения теоремы.

Перейдём к доказательству равномерной сходимости.

Вспомним, как мы расписывали разность $S_n(f,x_0) - S(x_0)$ на четыре слагаемых в доказательстве признака Дини (Теорема 18.2).

Применим к каждому из трёх последних слагаемых вспомогательную лемму (Лемма 19.1) и сведём доказательство к тому, чтобы доказать равномерность предела первого слагаемого (который мы уже рассматривали в текущем доказательстве).

Это сделать несложно, заметим, что если f непрерывна на [a',b'], то она равномерно непрерывна на нём, а значит мы можем найти δ_1 из текущего доказательства независимо от x_0 .

Также независимо от x_0 мы ограничиваем интеграл от $\frac{\sin(nx)}{x}$, поэтому второе утвеждение текущец теоремы доказано.

20. Неревность преобразования Фурье абсолютно интегрируемой функции. Преобразование Фурье производной и производная преобразования Фурье.

20.1. Непрерывность преобразования Фурье абсолютно интегрируемой функции

Определение 20.1.1: Преобразование Фурье функции $f\in L_1(\mathbb{R})$ называется

$$F[f] \coloneqq \hat{f}(\lambda) \coloneqq rac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) e^{-i\lambda t} \, \mathrm{d}\mu(t)$$

Теорема 20.1.1 (Непрерывность интеграла, зависящего от параметра): Пусть

- $A \subset \mathbb{R}^n$; $E \subset \mathbb{R}^m$; $\alpha_0 \in A$
- Функция $f(x,\alpha)$ сумируема при всех $\alpha \in A$, как функция от $x \in E$.
- Функция $f(x,\alpha)$ при почти всех $x \in E$ является непрерывной в α_0 .
- При почти всех $x \in E$ и для всех $\alpha \in A$ справедлива оценка $|f(x,\alpha)| \le$ $\varphi(x)$, где $\varphi(x)$ некоторая суммируемая на E функция.

Тогда

$$F(\alpha) = \int_{F} f(x, \alpha) d\mu(x)$$

является непрерывной в α_0 .

Теорема 20.1.2 (Дифференцируемость интеграла, зависящего от параметра): Пусть

- $E \subset \mathbb{R}^n, \alpha \in \mathbb{R}^n$
- $f(x,\alpha)$ вместе с $\frac{\partial f}{\partial \alpha}(x,\alpha)$ суммируема на E при всех $\alpha \in U(\alpha_0)$ При всех $\alpha \in (\alpha_0)$: $\left|\frac{\partial f}{\partial \alpha}(x,\alpha)\right| \leq \varphi(x)$, где φ суммируема на E

Тогда

$$F'(\alpha_0) = \int_E \frac{\partial f}{\partial \alpha}(x, \alpha_0) \,\mathrm{d}\mu(x)$$

Теорема 20.1.3: Если $f\in L_1(\mathbb{R}),$ то $\hat{f}(\lambda)$ непрерывна на \mathbb{R} и $\lim_{\lambda\to\infty}\hat{f}(\lambda)=0$

Доказательство: Распишем комплексную экспоненту в сумму тригонометрических функций и сведём к теореме об осцилляции, утверждение о нулевом пределе доказано.

Почему преобразование Фурье непрерывно? Хотим применить теорему о непрерывности интеграла, зависящего от предела. Для этого оценим подыинтегральную функцию:

$$|f(t,\lambda)| = \left|f(t)e^{-i\lambda t}\right| \leq |f(t)| \in L_1(\mathbb{R})$$

От λ рассматриваемая функция непрерывна из-за непрерывности экспоненты. Суммируемость следует из той же оценки сверху.

Значит применяем теорему о непрерывности интеграла, зависящего от параметра.

20.2. Преобразование Фурье производной и производная преобразования Фурье.

Теорема 20.2.1 (Преобразование Фурье производной): Если $\forall [a,b] \subset \mathbb{R}$: $f \in L_1([a,b])$ и $f, f' \in L_1(\mathbb{R})$, то $\forall \lambda \in \mathbb{R} : \widehat{f}'(\lambda) = (i\lambda)\,\widehat{f}(\lambda)$

$$f(x) = f(0) + \int_0^x f'(t) d\mu(t), x > 0$$

 $f(x)=f(0)+\int_0^x f'(t)\,\mathrm{d}\mu(t), x>0$ Устремляя $x\to+\infty$ увидим, что правая часть имеет предел, а значит и левая тоже:

$$\exists \lim_{x \to +\infty} f(x), f \in L_1(\mathbb{R}) \Rightarrow f(+\infty) = 0$$

Аналогично получим, что $f(-\infty) = 0$.

Тогда рассмотрим следующее преобразование Фурье:
$$\widehat{f}'(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f'(t) e^{-i\lambda t} \, \mathrm{d}\mu(t) =$$

$$\frac{1}{\sqrt{2\pi}} f(t) e^{-i\lambda t}|_{-\infty}^{+\infty} - \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) \left(e^{-i\lambda t}\right)_t' \, \mathrm{d}\mu(t) = (i\lambda) \widehat{f}(\lambda)$$

Теорема 20.2.2 (Производная преобразования Фурье): Если $f(t), tf(t) \in$ $L_1(\mathbb{R})$, то преобразование Фурье $\widetilde{f}(\lambda)$ дифференцируемо, причём $(\hat{f})'(\lambda) = -\widehat{itf(t)}(\lambda)$

Доказательство: Нам нужно лишь доказать, что мы имеем право продифференцировать интеграл, зависящий от параметра: $\left(\widehat{f}\right)'(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) \left(e^{-i\lambda t}\right)'_{\lambda} \mathrm{d}\mu(t) = -\widehat{itf(t)}(\lambda)$ Для этого оценим выражение: $\left|f(t) \left(e^{-i\lambda t}\right)\right| = \left|-itf(t)e^{-i\lambda t}\right| \leq |tf(t)| \in L_1(\mathbb{R})$

$$\left(\widehat{f}\right)'(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) \left(e^{-i\lambda t}\right)'_{\lambda} \mathrm{d}\mu(t) = -\widehat{itf(t)}(\lambda)$$

$$\left|f(t)\left(e^{-i\lambda t}\right)\right| = \left|-itf(t)e^{-i\lambda t}\right| \leq |tf(t)| \in L_1(\mathbb{R})$$

Значит мы имеем право применить теорему о дифференцировании интеграла с параметром.

21. Прямые и плоскости в пространстве. Формулы расстояния от точки до прямой и плоскости, между прямыми в пространстве. Углы между прямыми и плоскостями.

21.1. Прямые и плоскости в пространстве

Определение 21.1.1: **Линейной комбинацией** элементов $v_1,...,v_n$ (для которых определены сложение и умножение на числа) с коэффициентами $\alpha_1,...,\alpha_n \in \mathbb{R}$ называется следующая величина:

$$\sum_{i=1}^n \alpha_i v_i = \alpha_1 v_1 + \ldots + \alpha_n v_n$$

Определение 21.1.2: **Направленным отрезком** называется отрезок, концы которого упорядочены.

Обозначение \overline{AB} .

Направленные отрезки называются равными, если они сонаправлены и равны.

Определение 21.1.3: Вектором называется элемент векторного пространетва класс эквивалентности направленных отрезков.

Формульно, если \overline{AB} – представитель класса v, то $\overline{AB} \in v$, но в дальнейшем это будет обозначаться как $\overline{AB} = v$.

Определение 21.1.4: Ниже перечислены обозначения множеств векторов и точек:

- V_0 нулевое пространство, состоящее только из нулевого вектора ${f 0}$
- V_1, P_1 множества всех векторов и всех точек на прямой
- V_2, P_2 множества всех векторов и всех точек на плоскости
- V_3, P_3 множества всех векторов и всех точек в пространстве

Определение 21.1.5: Система $(v_1,...,v_2)$ векторов из V_n называется линейно независимой, если для любых $\alpha_1,...,\alpha_n\in\mathbb{R}$ выполнено следующее условие:

$$\sum_{i=1}^n \alpha_i \boldsymbol{v_i} = \boldsymbol{0} \Leftrightarrow \alpha_1 = \ldots = \alpha_n = 0$$

Определение 21.1.6: Система $(v_1,...,v_n)$ векторов из V_n называется линейно зависимой, если существует её нетривиальная линейная комбинация, равная $\mathbf{0}$.

Определение 21.1.7: **Базисом** в V_n называется линейно независимая система векторов, через которую выражаются все векторы V_n .

Определение 21.1.8: Пусть e — базис в $V_n, v = \alpha e \in V_n$. Столбец коэффициентов α называется координатным столбцом вектора v в базисе e.

Обозначение $\boldsymbol{v} \leftrightarrow \alpha$.

Определение 21.1.9: Скалярным произведением ненулевых векторов $a,b \in V_n$ называется следующая величина:

$$(\boldsymbol{a}, \boldsymbol{b}) = |\boldsymbol{a}| |\boldsymbol{b}| \cos(\angle(\boldsymbol{a}, \boldsymbol{b}))$$

Определение 21.1.10: Векторы $a,b \in V_n$ называются перпендикулярными (ортогональными), если (a,b)=0.

Обозначение $a \perp b$.

Определение 21.1.11: Пусть $a, b \in V_n, b \neq 0$, от точки $O \in P_n$ отложны направленные отрезки $\overline{OA} = a; \overline{OB} = b$.

Проекцией вектора a на вектор b называется такой класс эквивалентности, представителем которого является вектор $\overline{OA'}$, где A' – ортогональная проекция точки A на прямую OB.

Обозначение $pr_h a$

Утверждение 21.1.1: Для любых $a,b \in V_n, b \neq 0$ выполнено следующее равенство:

$$\mathrm{pr}_{m{b}}m{a}=rac{(m{a},m{b})}{(m{a},m{a})}m{b}$$

Определение 21.1.12: Базис в V_n называется:

- Ортогональным, если его векторы попарно ортогональны
- **Ортонормированным**, если он ортогонален и все его векторы имеют длину 1.

Определение 21.1.13: Декартовой системой координат в P_n называется набор (O,e), где $O\in P_n$ – начало системы координат, e – базис в V_n .

Точка $A \in P_n$ имеет координатный столбец α в данной системе координат, если $\overline{OA} \underset{e}{\longleftrightarrow} \alpha$.

Обозначение $A \underset{(O,e)}{\leftrightarrow} \alpha$.

Декартова система координат называется прямоугольной, если базис e ортонормированный.

Определение 21.1.14: Направляющим вектором прямой $l \subset P_3$ называется вектор $a \in V_3, a \neq 0$, представителем которого является направленный отрезок, лежащий в l.

Определение 21.1.15: Пусть $a, b \in V_3$.

Векторным произведением векторов a, b называется единственный вектор c := [a, b] такой, что выполнены следующие условия:

- 1. $c \perp a \land c \perp b$
- 2. $|c| = S(\boldsymbol{a}, \boldsymbol{b})$, где $S(\boldsymbol{a}, \boldsymbol{b})$ площадь паралелограма, натянутого на вектора $\boldsymbol{a}, \boldsymbol{b}$

$$\det \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} > 0$$

Альтернативное обозначание $a \times b$

Определение 21.1.16: Пусть $l \subset P_3$ – прямая, с направляющим вектором $a \in V_3, M \in l$ и в декартовой системе координат (O,e) в P_3 выполнены соотношения $a \leftrightarrow \alpha, M \leftrightarrow \binom{x_0}{y_0}_{z_0}, r_0 \coloneqq \overline{OM}$. Тогда

• Векторно-параметрическим уравнением прямой называется следующее семейство уравнений:

$$r = r_0 + ta, t \in \mathbb{R}$$

• Параметрическим уравнением прямой называется следующее семейство систем:

$$\begin{cases} x = x_0 + t\alpha_1 \\ y = y_0 + t\alpha_2; & t \in \mathbb{R} \\ z = z_0 + t\alpha_3 \end{cases}$$

• Каноническим уравнением прямой называется следующая система уравнений:

$$\frac{x-x_0}{\alpha_1} = \frac{y-y_0}{\alpha_2} = \frac{z-z_0}{\alpha_3}$$

Определение 21.1.17: Пусть $l \subset P_3$ – прямая с напрвляющим вектором a, и пусть $M \in l, r_0 := \overline{OM}$. Векторным уравнением прямой называется следующее уравнение:

$$[r-r_0,a]=0$$

Определение 21.1.18: Пусть $\nu \subset P_3$ – плоскость, $a,b \in V_3$ – не сонаправленные векторы, представители которых лежат в ν , $M \in l$ и в декартовой системе координат (O,e) в P_3 выполнены соотношения $a \leftrightarrow \alpha, b \leftrightarrow e$ (O,e)

$$egin{pmatrix} x_0 \ y_0 \ z_0 \end{pmatrix}, oldsymbol{r_0} \coloneqq \overline{OM}.$$
 Тогда

• Векторно-параметрическим уравнением плоскости называется следующее семейство уравнений:

$$\boldsymbol{r} = \boldsymbol{r_0} + t\boldsymbol{a} + s\boldsymbol{b}; \quad t,s \in \mathbb{R}$$

• **Параметрическим** уравнением плоскости называется следующее семейство систем:

$$\begin{cases} x = x_0 + t\alpha_1 + s\beta_1 \\ y = y_0 + t\alpha_2 + s\beta_2; \quad s, t \in \mathbb{R} \\ z = z_0 + t\alpha_3 + s\beta_3 \end{cases}$$

Определение 21.1.19: Пусть $A, B, C, D \in \mathbb{R}; A^2 + B^2 + C^2 \neq 0$. **Общим** уравнением плоскости называется следующее уравнение:

$$Ax + By + Cz + D = 0$$

Определение 21.1.20: Вектором нормали плоскости $\nu \subset P_3$ называется вектор $n \in V_3, n \neq 0$, представителем которого является направленный отрезок, ортогональный каждой прямой из плоскости ν .

Определение 21.1.21: Пусть $\nu \subset P_3$ – плоскость с вектором нормали $n \in V_3$ и пусть $M \in \nu, r_0 \coloneqq \overline{OM}$.

Нормальным уравнением плоскости называется следующее уравнение:

$$(\boldsymbol{r} - \boldsymbol{r_0}, \boldsymbol{n}) = 0$$

21.2. Формулы расстояния от точки до прямой и плоскости, между прямыми в пространстве

Утверждение 21.2.1 (Расстояние от точки до прямой): Пусть прямая $l \subset P_3$ задана векторно-параметрическим уравнением $r = r_0 + at, A \in P_3, r_A := \overline{OA}$.

Тогда расстояние ρ от точки A до прямой l равно следующей величине: $\rho = \frac{|[r_A - r_0, a]|}{|a|}$

Доказательство: Искомое расстояние ρ является длиной высоты параллелограмма, построенного на векторах a и $r_A - r_0$, проведённой к стороне, образованной вектором a и имеющей длину a, из чего и следует требуемое.

Утверждение 21.2.2 (Расстояние от точки до плоскости): Пусть в прямоугольной декартовой системе координат (O,e) в P_3 плоскость ν задана уравнением $Ax+By+Cz+D=0, M\in P_3, M\underset{(O,e)}{\leftrightarrow}\begin{pmatrix}x_0\\y_0\\z_0\end{pmatrix}.$

Тогда расстояние ho от точки M до плоскости u равно следующей величине:

$$\rho = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

 $extit{Доказательство}\colon$ Пусть $m{n}\in V_3, m{n} \stackrel{\leftrightarrow}{\leftarrow} egin{pmatrix} A \ B \ C \end{pmatrix}$ — вектор нормали плоскости $u, r_0 \coloneqq \overline{OM}, \text{ и пусть } X \in \nu, r \coloneqq \overline{OX}. \text{ Тогда}$ $\rho = |\operatorname{pr}_{\boldsymbol{n}}(r_0 - r)| = \left| \frac{(r_0 - r, n)}{|n|^2} n \right| = \frac{|(r_0 - r, n)|}{|n|} = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$

Утверждение 21.2.3 (Расстояние между прямыми в плоскости): Пусть скрещивающиеся прямые $l_1, l_2 \subset P_3$ заданы уравнениями ${m r} = {m r_1} + {m a_1} t, {m r} =$ $r_2 + a_2 t$.

Тогда расстояние ρ между ними равно следующей величине: $\rho = \frac{|([a_1,a_2],r_1-r_2)|}{|[a_1,a_2]|}$

Доказательство: Искомое расстояние ρ является длиной высоты параллелепипеда, построенного на векторах a_1, a_2 и $r_1 - r_2$, проведённой к грани, образованной векторами a_1, a_2 и имеющей площадь $|a_1||a_2|\sin\angle(a_1, a_2)$, из чего и следует требуемое.

21.3. Углы между прямыми и плоскостями

Утверждение 21.3.1 (Углы между прямыми): Пусть прямые $l_1, l_2 \subset P_3$ имеют направляющие вектора a_1, a_2 .

Тогда угол φ между ними удовлетворяет следующему равенству: $\cos \varphi = \frac{|(a_1,a_2)|}{|a_1||a_2|}$

$$\cos \varphi = \frac{|(\boldsymbol{a_1}, \boldsymbol{a_2})|}{|\boldsymbol{a_1}||\boldsymbol{a_2}|}$$

Доказательство: Углом между прямыми по определению является угол φ равный меньшему из углов α и $\pi - \alpha$, где α – угол между их направляющими векторами, поэтому в числителе именно модуль скалярного произведения.

Дальнейшие рассуждения очевидны из определения скалярного произведения.

Утверждение 21.3.2 (Углы между плоскостями): Пусть в прямоугольной декартовой системе координат (O,e) в P_3 плоскости ν_1,ν_2 заданы уравнениями $A_1x + B_1y + C_1z + D_1 = 0; A_2x + B_2y + C_2z + D_2 = 0.$

Тогда угол
$$\varphi$$
 между ними удовлетворяет равнеству:
$$\cos\varphi = \frac{|A_1A_2 + B_1B_2 + C_1C_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2}\sqrt{A_2^2 + B_2^2 + C_2^2}}$$

$$\mathcal{A}$$
оказательство: Пусть $\boldsymbol{n_1}, \boldsymbol{n_2} \in V_3; \boldsymbol{n_1} \overset{\leftrightarrow}{\underset{e}{\leftarrow}} \begin{pmatrix} A_1 \\ B_1 \\ C_1 \end{pmatrix}; \boldsymbol{n_2} \overset{\leftrightarrow}{\underset{e}{\leftarrow}} \begin{pmatrix} A_2 \\ B_2 \\ C_2 \end{pmatrix}$ — нормальные векторы плоскостей $\boldsymbol{\nu_1}, \boldsymbol{\nu_2}, \boldsymbol{\alpha} \coloneqq \angle(\boldsymbol{n_1}, \boldsymbol{n_2}).$

Тогда угол φ равен меньшему из углов α и $\pi - \alpha$. В каждом из случае выполнено следующее:

$$\cos \varphi = |\cos \alpha| = \frac{|(n_1, n_2)|}{|n_1||n_2|} = \frac{|A_1 A_2 + B_1 B_2 + C_1 c_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$$

22. Кривые второго порядка, их геометрические свойства

Определение 22.1: Пусть $A, B, C, D, E, F \in \mathbb{R}, A^2 + B^2 + C^2 \neq 0$.

Кривой второго порядка называется алгебраическая кривая, которая в некоторой прямоугольной декартовой системе координат в P_2 задаётся следующим уравнением:

$$Ax^2+2Bxy+Cy^2+2Dx+2Ey+F=0$$

22.1. Эллипс

Определение 22.1.1: Эллипсом называется кривая второго порядка, которая в канонической системе координат (O,e) задаётся следующим уравнением:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a \ge b > 0$$

- $rac{x^2}{a^2}+rac{y^2}{b^2}=1, a\geq b>0$ Вершинами эллипса называются точки с координатами $inom{\pm a}{0},inom{0}{\pm b}$ в системе (O,e). Число |a| называется **длиной большой полуоси** эллипса, число |b| – **длиной малой полуоси** эллипса.
- Фокусным расстоянием эллипса называется величина $c\coloneqq\sqrt{a^2-b^2}.$ Фокусами эллипса называются точки $F_1, F_2 \in P_2$ такие, что $F_1 \underset{(Q,e)}{\longleftrightarrow}$ $\binom{c}{0}; F_2 \underset{(O,e)}{\leftrightarrow} \binom{-c}{0}$
- Эксцентриситетом эллипса называется величина $\varepsilon \coloneqq \frac{c}{a} = \frac{\sqrt{a^2 b^2}}{a}$
- **Директрисами** эллипса называются прямые $d_1, d_2,$ задаваемые в системе (O,e) уравнениями $x=\pm \frac{a}{\varepsilon}$

Теорема 22.1.1: Пусть эллипс задан в каноническая системе координат $(O, \varepsilon); A \in P_2; A \underset{(O, e)}{\leftrightarrow} \binom{x}{y}$. Тогда

Aлежит на эллипсе $\Leftrightarrow AF_1 = |a - \varepsilon x| \Leftrightarrow AF_2 = |a + \varepsilon x|$

Доказательство: Будем доказывать первую эквивалентность, вторая аналогично. Для этого заметим, что выполнены следующие равенства:

$$AF_1^2 - |a - \varepsilon x|^2 = (x - c)^2 + y^2 - |a - \varepsilon x|^2 = b^2 \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1\right)$$
 Значит, $AF_1 = |a - \varepsilon x| \Leftrightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Leftrightarrow A$ лежит на эллипсе.

Теорема 22.1.2: Пусть эллипс задан в канонической системе координат (O,e). Тогда он является геометрическим местом точек $A\in P_2; A \underset{(O,e)}{\longleftrightarrow} \binom{x}{y}$, таких, что выполнены следующие равенства: $\frac{AF_1}{\rho(A,d_1)} = \frac{AF_2}{\rho(A,d_2)} = \varepsilon$

$$\frac{AF_1}{\rho(A,d_1)} = \frac{AF_2}{\rho(A,d_2)} = \varepsilon$$

Доказательство: Докажем равенство эксцентриситету лишь первого отношения, для второого аналогично.

Заметим, что выполнены следующие равенства:

$$\rho(A,d_1)=\big|x-\tfrac{a}{\varepsilon}\big|=\tfrac{1}{\varepsilon}|a-\varepsilon x|$$
 Значит, A лежит на эллипсе $\Leftrightarrow |a-\varepsilon x|=AF_1 \Leftrightarrow \varepsilon \rho(A,d_1)=AF_1$

Теорема 22.1.3: Пусть эллипс задан в канонической системе координат (O,e). Тогда он является геометрическим местом точек $A\in P_2; A\underset{(O,e)}{\longleftrightarrow} \binom{x}{y},$ таких, что выполнено равенство

$$AF_1 + AF_2 = 2a$$

Доказательство: \Rightarrow Пусть A лежит на эллипсе, тогда

$$AF_1 = a - \varepsilon x; AF_2 = a + \varepsilon x \Rightarrow AF_1 + AF_2 = 2a$$

 $AF_1=a-\varepsilon x; AF_2=a+\varepsilon x\Rightarrow AF_1+AF_2=2a$ \Leftarrow Зафиксируем произвольное число $x_0\in\mathbb{R}$ и заметим, что при движении точки $X\in P_2; X\underset{(O,e)}{\leftrightarrow}\binom{x_0}{0}$ вдоль прямой $x=x_0$ вверх или вниз величина

 $XF_1 + XF_2$ строго возрастает. Рассмотрим возможные случаи:

- 1. Если $|x_0| < a$, то таких точек, что $XF_1 + XF_2 = 2a$, на прямой $x = x_0$ две.
- 2. Если $|x_0|=a$, то такая точка, что $XF_1+XF_2=2a$, на прямой $x=x_0$ одна.
- 3. Если $|x_0|>0$, то таких точек, что $XF_1+XF_2=2a$, на прямой $x=x_0$ нет.

Полученное число точек совпадает с множеством точек эллипса.

22.2. Гипербола

Определение 22.2.1: Гиперболой называется кривая второго порядка, которая в канонической системе координат (O,e) задаётся следующим уравнением:

 $rac{x^2}{a^2} - rac{y^2}{b^2} = 1; \quad a,b>0$ • Вершинами гиперболы называются точки с координатами $inom{\pm a}{0}, inom{0}{\pm b}$ в системе (O, e).

Число |a| называется **длиной действительной полуоси** гиперболы, число |b| – **длиной мнимой полуоси** гиперболы.

- **Фокусным расстоянием** гиперболы называется величина $c := \sqrt{a^2 + b^2}$. $oldsymbol{\Phi}$ окусами гиперболы называются точки $F_1,F_2\in P_2$ такие, что $F_1 \underset{(O,e)}{\leftrightarrow} \binom{c}{0}; F_2 \underset{(O,e)}{\leftrightarrow} \binom{-c}{0}$
- **Эксцентриситетом** гиперболы называется величина $\varepsilon \coloneqq \frac{c}{a} = \frac{\sqrt{a^2 + b^2}}{a}$ Директрисами гиперболы называются прямые d_1, d_2 , задаваемые в системе (O,e) уравнениями $x=\pm \frac{a}{\varepsilon}$

Теорема 22.2.1: Пусть гипербола задана в канонической системе координат $(O,e);A\in P_2;A\underset{(O,e)}{\longleftrightarrow}\binom{x}{y}.$ Тогда

Aлежит на гиперболе $\Leftrightarrow AF_1 = |a - \varepsilon x| \Leftrightarrow AF_2 = |a + \varepsilon x|$

Доказательство: Будем доказывать первую эквивалентность, вторая аналогично. Для этого заметим, что выполнены следующие равенства:

$$AF_1^2 - |a - \varepsilon x|^2 = (x - c)^2 + y^2 - |a - \varepsilon x|^2 = b^2 \left(\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1\right)$$
 Значит, $AF_1 = |a - \varepsilon x| \Leftrightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Leftrightarrow A$ лежит на гиперболе.

Теорема 22.2.2: Пусть гипербола задана в канонической системе координат (O,e). Тогда она является геометрическим местом точек $A \in P_2; A \underset{(O,e)}{\longleftrightarrow} \binom{x}{y},$ таких, что выполнены следующие равенства: $\frac{AF_1}{\rho(A,d_1)} = \frac{AF_2}{\rho(A,d_2)} = \varepsilon$

$$\frac{AF_1}{\rho(A,d_1)} = \frac{AF_2}{\rho(A,d_2)} = \varepsilon$$

Доказательство: Докажем равенство эксцентриситету лишь первого отношения, для второого аналогично.

Заметим, что выполнены следующие равенства:

$$\rho(A,d_1)=\big|x-\tfrac{a}{\varepsilon}\big|=\tfrac{1}{\varepsilon}|a-\varepsilon x|$$
 Значит, A лежит на эллипсе $\Leftrightarrow |a-\varepsilon x|=AF_1\Leftrightarrow \varepsilon \rho(A,d_1)=AF_1$

Теорема 22.2.3: Пусть гипербола задана в канонической системе координат (O,e). Тогда он является геометрическим местом точек $A \in P_2$; $A \underset{(O,e)}{\leftrightarrow} \binom{x}{y}$, таких, что выполнено равенство

$$|AF_1 - AF_2| = 2a$$

Доказательство: \Rightarrow БОО пусть A лежит на правой ветви гиперболы. Тогда $AF_1=\varepsilon x-a\wedge AF_2=a+\varepsilon x\Rightarrow |AF_1-AF_2|=2a$

 \Leftarrow Зафиксируем произвольное число $x_0 \in \mathbb{R}$ и заметим, что при движении точки $X \in P_2; X \underset{(O,e)}{\leftrightarrow} \binom{x_0}{0}$ вдоль прямой $x = x_0$ вверх или вниз величина $|XF_1 - XF_2|$ строго убывает. Рассмотрим возможные случаи:

- 1. Если $|x_0| < a$, то таких точек, что $XF_1 + XF_2 = 2a$, на прямой $x = x_0$ нет.
- 2. Если $|x_0|=a$, то такая точка, что $XF_1+XF_2=2a$, на прямой $x=x_0$ одна.
- 3. Если $|x_0| > 0$, то таких точек, что $XF_1 + XF_2 = 2a$, на прямой $x = x_0$ две.

Полученное число точек совпадает с множеством точек эллипса.

22.3. Парабола

Определение 22.3.1: **Параболой** называется кривая второго порядка, которая в канонической системе координат (O,e) задаётся следующим уравнением:

$$y^2 = 2px; \quad p > 0$$

- **Вершиной** параболы называется точка с координатами $\binom{0}{0}$ в системе (O,e)
- Фокусом параболы называется точка F такая, что $F \overset{p}{\longleftrightarrow} \left(\begin{smallmatrix} p \\ 2 \\ 0 \end{smallmatrix} \right)$
- Эксцентриситетом параболы называется величина $\varepsilon \coloneqq 1$
- Директрисой параболы называется прямая d, задаваемая в системе (O,e) уравнением $x=-\frac{p}{2}$

Теорема 22.3.1: Пусть парабола задана в канонической системе координат $(O,e);A\in P_2;A\underset{(O,e)}{\longleftrightarrow}\binom{x}{y}.$ Тогда

$$A$$
 лежит на параболе $\Leftrightarrow AF =
ho(A,d)$

Доказательство: Заметим, что выполнены следующие равенства: $AF^2 - \rho^2(A,d) = \left(x - \frac{p}{2}\right)^2 + y^2 - \left(x + \frac{p}{2}\right)^2 = y^2 - 2px$ Значит $AF = \rho(A,d) = \left|x + \frac{p}{2}\right| \Leftrightarrow y^2 = 2px \Leftrightarrow A$ лежит на параболе

23. Общее решение системы линейных алгебраических уравнений. Теорема Кронекера-Капелли.

23.1. Общее решение системы линейных алгебраических уравнений

Определение 23.1.1: **Группой** называется множество G с определённой на нём бинарной операцией умножения $\cdot: G \times G \to G$, удовлетворяющей следующим условиям:

• (Ассоциативность)

$$\forall a, b, c \in G : (ab)c = a(bc)$$

• (Существование нейтрального элемента)

$$\exists e \in G : \forall a \in G : ae = ea = a$$

• (Существование нейтрального элемента)

$$\forall a \in G : \exists a^{-1} \in G : aa^{-1} = a^{-1}a = e$$

Определение 23.1.2: Группа (G,\cdot) называется **абелевой**, если умножение в ней коммутативно, то есть

$$\forall a, b \in G: ab = ba$$

Определение 23.1.3: **Кольцом** называется множество R с определёнными на нём бинарными операциями сложения $+: R \times R \to R$ и умножения $\cdot: R \times R \to R$, удовлетворяющая следующим условиям:

- (R,+) абелева группа, нейтральный элемент в которой обозначается через 0.
- (Ассоциативность умножения)

$$\forall a, b, c \in R : (ab)c = a(bc)$$

• (Дистрибутивность умножения относительно сложения)

$$\forall a, b, c \in R: \ a(b+c) = ab + ac \land (a+b)c = ac + bc$$

• (Существование нейтрального элемента относительно умножения)

$$\exists 1 \in R : \forall a \in R : \ a1 = 1a = a$$

Определение 23.1.4: Кольцо (R,+) называется **коммутативным**, если умножение в нём коммутативно, то есть

$$\forall a, b \in R : ab = ba$$

Определение 23.1.5: Пусть $(R, +, \cdot)$ – кольцо.

Элемент $a \in R$ называется **обратимым**, если

$$\exists a^{-1} \in R: \ aa^{-1} = a^{-1}a = 1$$

Группой обратимых элементов кольца $(R, +, \cdot)$ называется множество R^* его обратимых элементов.

Определение 23.1.6: **Полем** называется такое коммутативное кольцо $(\mathbb{F}, +, \cdot)$, для которого выполнено равенство $\mathbb{F}^* = \mathbb{F} \setminus \{0\}$.

Определение 23.1.7: Линейным пространством, или векторным пространством над полем $\mathbb F$ называется абелева группа (V,+), на которой определено умножение на элементы поля $\cdot : \mathbb F \times V \to V$, удовлетворяющее следующим условиям:

- $\forall \alpha, \beta \in \mathbb{F} : \forall v \in V : (\alpha + \beta)v = \alpha v + \beta v$
- $\forall \alpha \in \mathbb{F} : \forall u, v \in V : \alpha(u+v) = \alpha u + \alpha v$
- $\forall \alpha, \beta \in \mathbb{F} : \forall v \in V : (\alpha \beta)v = \alpha(\beta v)$
- $\forall v \in V : 1v = v$

Элементы поля $\mathbb F$ называются **скалярами**, элементы группы V – **векторами**.

Определение 23.1.8: Пусть $A = (a_{ij}) \in M_{k \times n}(\mathbb{F}); b = (b_i) \in \mathbb{F}^n$.

Системой линейных уравнений Ax = b называется следующая система:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ \ldots \\ a_{k1}x_1 + a_{k2}x_2 + \ldots + a_{kn}x_n = b_k \end{cases}$$

Матрица A называется матрицей системы, матрица $(A \mid b)$ – расширенной матрицей системы

Определение 23.1.9: Система линейных уравнений Ax = b называется:

- Однородной, если b=0
- Совместной, если множество её решений непусто

Определение 23.1.10: Фундаментальной системой решений однородной системы Ax = 0 называется базис пространства её решений.

Матрица, образованная столбцами фундаментальной системы решений, называется фундаментальной матрицей системы и обозначается через Φ .

Утверждение 23.1.1: Множество решений однородной системы Ax=0 является линейным пространством.

Доказательство: Все требования линейного пространства очевидны.

Утверждение 23.1.2: Пусть Ax = b – совместная система, $x_0 \in \mathbb{F}^n$ – решение системы, V – пространство решений однородной системы Ax=0.

Тогда множество решений системы Ax = b имеет вид

$$x_0 + V = \{x_0 + v \mid v \in V\}$$

Доказательство: Пусть U – множество решений системы Ax = b.

- Если $v \in V$, то $A(x_0 + v) = Ax_0 + Av = b \Rightarrow x_0 + v \in U$.
- Если $u \in U$, то $A(u x_0) = 0 \Rightarrow u x_0 \in V$

Таким образом, $U = x_0 + V$

23.2. Теорема Кронекера-Капелли

Определение 23.2.1: Системы Ax = b и A'x = b' называются **эквивалент**ными, если множества их решений совпадают.

Определение 23.2.2: Элементарными преобразованиями строк матрицы $A \in M_{n \times k}(\mathbb{F})$ называются следующие операции:

- Прибавление к i-й строке j-й строки, умноженной на скаляр $\alpha \in \mathbb{F}; \quad i, j \in$ $\overline{1,n}$; $i \neq j$
- Умножение i-й строки на скаляр $\lambda \in \mathbb{F}^*; i = \overline{1, n}$
- Перестановка i-й и j-й строк местами; $i, j \in \overline{1, n}; i \neq j$

Определение 23.2.3: Элементарными матрицами порядка $n \in \mathbb{N}$ называются матрицы, умножение слева на которые приводит к осуществлению соответствующего элементарного преобразования строк над матрицей с n стро-

- $\begin{array}{ll} \bullet & D_{ij}(\alpha)\coloneqq E+\alpha E_{i,j}; \quad i,j\in\overline{1,\mathbf{n}}; i\neq j\\ \bullet & T_{i(\lambda)}\coloneqq E+(\lambda-1)E_{ii}; \quad i\in\overline{1,\mathbf{n}} \end{array}$
- $P_{ij} \coloneqq E \left(E_{ii} + E_{jj}\right) + \left(E_{ij} + E_{ji}\right)$

Определение 23.2.4: Матрица $A \in M_n(\mathbb{F})$ называется **обратимой**, если существует матрица $A^{-1} \in M_n(\mathbb{F})$ такая, что $AA^{-1} = A^{-1}A = E$.

Утверждение 23.2.1: Элементарные матрицы любого порядка n обратимы

Доказательство: Предъявим обратные матрицы в явном виде:

- $(D_{ij}(\alpha))^{-1} = D_{ji}(-\alpha)$ $(T_i(\lambda))^{-1} = T_i(\lambda^{-1})$

$$\bullet \ \left(P_{ij}\right)^{-1} = P_{ij}$$

Утверждение 23.2.2: Элементарные преобразования строк расширенной матрицы переводят её в эквивалентную.

Определение 23.2.5: **Главным элементом** строки называется её первый ненулевой элемент.

Определение 23.2.6: Матрица $A \in M_{n \times k}(\mathbb{F})$ имеет ступенчатый вид, если номера главных элементов её строк строго возрастают.

При этом если в матрице есть нулевые строки, то они расположены внизу матрицы.

Теорема 23.2.1 (Метод Гаусса): Любую матрицу $A \in M_{n \times k}(\mathbb{F})$ элементарными преобразованиями можно привести к ступенчатому виду

Доказательство: Предъявим алгоритм:

- 1. Если A = 0, то она уже имеет ступенчатый вид, завершаем процедуру.
- 2. Пусть $j \in \overline{1, k}$ наименьший номер ненулевого столбца. Переставим строки так, чтобы a_{1j} стал ненулевым.
- 3. Для всех $i\in \overline{\frac{2}{2}, n}$ к i-й строке прибавим первую, умноженную на $-a_{ij}(a_{1j})^{-1}$. Тогда все элементы $a_{2j},...,a_{nj}$ станут нулевыми
- 4. Пусть матрица была приведена к виду A'. Если она ступенчатая, то останавливаемся. Если она не ступенчатая, то начинаем заново для подматрицы B расположенной на пересечении строк с номерами $\overline{2,n}$ и столбцом с номерами $(\overline{j+1,k})$. Дальнейшие преобразования не изменят элементов за пределами этой подматрицы.

Определение 23.2.7: Пусть V — конечномерное линейное пространство, $X \subset V$.

Рангом системы X называется наибольший размер линейно независимой подсистемы в X.

Обозначение – $\operatorname{rk} X$.

Определение **23.2.8**: Пусть $A \in M_{n \times k}(\mathbb{F})$

- Строчным рангом матрицы A называется ранг $\mathrm{rk}_r A$ системы её строк.
- Столбцовым рангом матрицы A называется ранг $\mathrm{rk}_c A$ системы её столбцов.

Теорема 23.2.2: Для любой матрицы $A \in M_{n \times k}(\mathbb{F})$ выполнено следующее равенство:

$$\operatorname{rk}_r A = \operatorname{rk}_c A$$

Определение 23.2.9: **Рангом матрицы** $A \in M_{n \times k}(\mathbb{F})$ называется её строчный или столбцовый ранг.

Обозначение $- \operatorname{rk} A$.

Утверждение 23.2.3: Пусть $A\in M_{n\times k}(\mathbb{F}); B\in M_{k\times M}(\mathbb{F}),$ причём столбцы матрицы A линейно независимы. Тогда

$$\operatorname{rk} AB = \operatorname{rk} B$$

Замечание 23.2.1: В том числе, элементарные преобразования не меняют ранг матрицы.

Утверждение 23.2.4: Ранг ступенчатой матрицы $A \in M_{n \times k}(\mathbb{F})$ равен числу ступеней.

Теорема 23.2.3 (Кронекера-Капелли):

Система
$$Ax = b$$
 совместна \Leftrightarrow rk $A =$ rk $(A \mid b)$

Доказательство: Приведём расширенную матрицу системы $(A \mid b)$ к упрощённому виду $(A' \mid b')$.

Тогда система совместна \Leftrightarrow в $(A' \mid b')$ нет ступеньки, начинающейся в столбце $b' \Leftrightarrow$ у A' и $(A' \mid b')$ одно и то же число ступенек \Leftrightarrow rk A = rk $(A \mid b)$.

24. Дифференцируемость функции комплексного переменного. Условия Коши-Римана. Интегральная теорема Коши.

24.1. Дифференцируемость функции комплексного переменного. Условия Коши-Римана

Замечание 24.1.1: В ТФКП используются следующие станартные оборзначения z - комплексная переменная

$$z=x+iy:x,y\in\mathbb{R}$$
 $f(z)$ - исследуемая функция $f(x+iy)=u(x,y)+iv(x,y):u,v\in\mathbb{R}^2 o\mathbb{R}$

Определение 24.1.1: Функция $f:B_{r(z_0)} \to \mathbb{C}$ называется $\partial u\phi\phi$ еренцируемой в z_0 если

$$\exists A \in \mathbb{C}: f(z) = f(z_0) + A(z-z_0) + o(z-z_0), |z-z_0| \rightarrow 0$$

Теорема 24.1.1: $f:B_{r(z_0)} \to \mathbb{C}$ дифференцируема тогда и только тогда когда

- 1. u(x,y), v(x,y) дифференцируемы в (x_0,y_0)
- 2. Выполняются условия Коши-Римана:

ПОЗНЯЮТСЯ условия Поши-Т имини.
$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$
 При этом $f'(z_0) = \frac{\partial u}{\partial x}(x_0,y_0) + \frac{i(\partial v)}{\partial x}(x_0,y_0)$

Доказательство:

$$(\Longrightarrow)$$

Пусть f дифференцируема. Тогда $\Delta f = A\Delta z + \alpha(\Delta z) = A\Delta z + \alpha_0(\Delta x, \Delta y) + i\alpha_1(\Delta x, \Delta y)$

Обозначим A = a + ib и распишем Δf по координатно.

$$\{\Delta u = a\Delta x - b\Delta y + \alpha_0(\Delta x, \Delta y)\Delta v = b\Delta x + a\Delta y + \alpha_1(\Delta x, \Delta y)\}$$

Из того, что $\alpha(\Delta z) = o(\Delta z)$ следует α_1, α_2 тоже $o(\Delta x, \Delta y)$

Отсюда по определию u, v дифференцируемы. Причем $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = a, -\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = b$ (\Leftarrow)

Пусть u, v дифференцируемы и выполняются УКР, тогда

$$\begin{split} \Delta f &= \Delta u + i \Delta v = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \alpha_0 (\Delta x, \Delta y) + i \left(\frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + \alpha_1 (\Delta x, \Delta y) \right) \\ &= \frac{\partial u}{\partial x} \Delta x - \frac{\partial v}{\partial x} \Delta y + i \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} \right) \alpha_0 (\Delta x, \Delta y) + i \alpha_1 (\Delta x, \Delta y) \\ &= \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right) (\Delta x + i \Delta y) + \alpha_0 (\Delta x, \Delta y) + i \alpha_1 (\Delta x, \Delta y) \end{split}$$

Что и означает дифференцируемость.

24.2. Интегральная теорема Коши

Определение 24.2.1: Пусть γ - кусочно гладкая кривая в D - области. Тогда приращением аргумента функции вдоль кривой $\Delta_{\gamma} f$ называется $Im \int_{\gamma} \frac{f'(z)dz}{f(z)}$

Определение 24.2.2: Пусть γ - кусочно гладкая замкнутая кривая в \mathbb{C} , $a \in$ $C \setminus \gamma$. Тогда инд
ксом a относительно γ называется $J_{\gamma}(a) = \frac{\Delta_{\gamma}(z-a)}{2\pi}$

$$J_{\gamma}(a) = \frac{\Delta_{\gamma}(z-a)}{2\pi}$$

Определение 24.2.3: Пусть γ - кусочно гладкая кривая лежит в области D. Тогда говорят что $\gamma \sim 0 \pmod{D}$ гомологично эквивалентна нулю, если $\forall a \in$ $\mathbb{C} \setminus D \ J_{\gamma(a)} = 0$

Определение 24.2.4: Циклом Г называется формальная линейная комбинация с целыми коэфициентами кусочно-гладких замкнутых кривых. Все определения и теоремы для кривых тривиально переносятся на циклы.

Определение 24.2.5: Пусть γ кусочно гладкая кривая, φ непрерывна на γ . Тогда инегралом Коши называется

$$F_{n(z,\varphi)}=\int_{\gamma}\frac{\varphi(\xi)}{\left(\xi-z\right)^{n}}d\xi$$

Утверждение 24.2.1: Свойства интеграла Коши

- 1. F_n голоморфна в $\mathbb{C} \setminus \gamma$
- 2. $F_{n'}(z,\varphi) = nF_{n+1}(z,\varphi)$

Лемма 24.2.1: Обшая теорема Коши

Пусть D - область в \mathbb{C}, f - голоморфна в D Тогда

1.
$$g(\xi,z) = \begin{cases} \frac{f(\xi) - f(z)}{\xi - z}, \xi \neq z \\ (f'(z)), z = \xi \end{cases}$$

непрерывна в $D \times D$

2. Для любой кусочно гладкой $\gamma \in D$

$$h(z) = \int_{\gamma} g(\xi, z) d\xi$$

голоморфна в D

Теорема 24.2.1: Лиувиля Пусть f голоморфная в \mathbb{C} и $\exists M, m, R \ \forall z \ |z| > R$: $|f(z)| < Mz^m$, тогда f полином степени m. В частности, если f ограничена, то она константа.

Теорема 24.2.2: Интегральная теорема Коши Пусть D - область в \mathbb{C}, f голоморфна в D. Пусть Γ - цикл в D, причем $\Gamma \sim 0 \pmod{D}$, тогда 1. $\forall zD \setminus \Gamma: J_{\Gamma}(z)f(z)\frac{1}{2\pi i} = \int_{\Gamma} \frac{f(\xi)d\xi}{\xi-z}$

 $2. \int_{\Gamma} f(z)dz = 0$

Доказательство: Пусть $G=\{z\in\mathbb{C}\setminus\Gamma\mid J_{\Gamma}(z)=0\}$ оно открытое. Рассмотрим две функции

1. $2\pi i \ \tilde{h}(z) = \int_{\Gamma} \frac{f(\xi) d\xi}{\xi - z}$ Она голоморфна в G как интеграл Коши.

2. $2\pi i\ h(z)=\int_{\Gamma}\Bigl(\frac{f(\xi)-f(z)}{\xi-z}\Bigr)d\xi$ Она голоморфна в D по 2 пункту общей теоремы Коши

Заметим, что $\forall z \in G \cap D: \ h(z) = \tilde{h}(z)$ так как

$$h(z)-\tilde{h}(z)=\frac{1}{2\pi i}\int_{\Gamma}\frac{f(z)}{\xi-z}d\xi=J_{\Gamma(z)}f(z)=0$$

Из того, что $\Gamma \sim 0 \pmod{D}$ следует $\mathbb{C} \setminus D \subset G$ Тогда рассмотрим новую функцию:

$$F(z) = \begin{cases} h(z), z \in D \\ \tilde{h}(z) \\ z \in \mathbb{C} \setminus D \subset G \end{cases}$$

Она голоморфна в каждой из компонент. А так как на границе h и \tilde{h} равны, то голоморфна и в $\mathbb{C}.$

Заметим, что

$$|\tilde{h}(z)| \leq \frac{1}{2\pi} \int_{\Gamma} \frac{\max_{\Gamma} |f| \ |d\xi|}{dist(z,\Gamma)} \underset{dist(z,\Gamma) \to \infty}{\longrightarrow} 0$$

А следовательно по теореме Лиувиля $F(z) \equiv 0$.

Следовательно в $D \setminus \Gamma$ h(z) = 0. То есть

$$\begin{split} \frac{f(z)}{2\pi i} \int_{\Gamma} \frac{d\xi}{\xi - z} &= \int_{\Gamma} \frac{f(\xi) d\xi}{\xi - z} \\ f(z) J_{\Gamma(z)} &= \int_{\Gamma} \frac{f(\xi) d\xi}{\xi - z} \end{split}$$

(1 = > 2)

Применим 1 к $\tilde{f}(z)=(z-a)(f(z)),$ где $a\in\mathbb{C}\setminus\Gamma$ (естественно в области определения f) Тогда

$$0=J_{\Gamma(a)}(a-a)f(a)=J_{\Gamma(a)}\tilde{f}(a)=\int_{\Gamma}\frac{\tilde{f}(\xi)d\xi}{\xi-a}=\int_{\Gamma}f(\xi)d\xi$$

25. Интегральная формула Коши. Разложение функции регулярной в окрестности точки в ряд Тейлора.

25.1. Интегральная формула Коши.

Пункт 1 в интегральной теореме Коши (???)

25.2. Разложение функции регулярной в окрестности точки в ряд Тейлора.

Теорема 25.2.1: Пусть
$$f$$
 - голоморфная в $D,$ $O_{R(a)}\subset D,$ тогда $\forall z\in O_{R(a)}: f(z)=\sum_{n=0}^\infty c_n(z-a)^n,\ c_n=f^{(n)}\frac{a}{n!}$

Доказательство: Возьмем 0 < r < R, тогда f голоморфна в $\overline{O_{r(a)}}$. Тогда по теореме Коши $2\pi i \ f(z) = \int_{\gamma_r} \frac{f(\xi)d\xi}{\xi-z}.$

Распишем

$$\frac{1}{\xi - z} = \frac{1}{(\xi - a) - (z - a)} = \frac{1}{(\xi - a)} \cdot \frac{1}{1 - \frac{z - a}{\xi - a}} \stackrel{(|z - a|)}{=} \stackrel{\leq}{=} \frac{|\xi - a|}{=} \sum^{\infty} \left(\frac{z - a}{\xi - a}\right)^n = \sum^{\infty} \frac{(z - a)^n}{\left(\xi - a\right)^{n+1}} \stackrel{(|z - a|)}{=} \frac{1}{\xi - a} \stackrel{(|z - a|$$

Полученный ряд сходится равномерно, а значит можно почленно интегрировать.

$$2\pi i \ f(z) = \int_{\gamma_r} \frac{f(\xi)}{\xi} = \sum^{\infty} \int \frac{f(\xi)}{(\xi - a)^{n+1}} (z - a)^n = \sum_{n=0}^{\infty} 2\pi i c_n (z - a)^n$$
 Причем по следтвию формулы Коши для круга, $2\pi i \cdot c_n = \frac{f^{(n)}}{n!}$ Ну раз верно для любого $r < R$, то и для R верно.

26. Разложение функции регулярной в кольце в ряд Лорана. Изолированные особые точки однозначного характера.

26.1. Разложение функции регулярной в кольце в ряд Лорана.

Теорема 26.1.1:

Пусть f голоморфна в кольце $K = \{z \in \mathbb{C} \mid r < |z - \underline{a}| < R\}$. Тогда $\forall z \in K: \ f(z) = \sum_{-\infty} (+\infty) c_n (z - a)^n$

где

$$c_n = \frac{1}{2\pi i} \int_{\gamma_\rho} \frac{f(\xi) d\xi}{\left(\xi - a\right)^{n+1}}$$

где γ_ρ положительно определеная окружность радиуса $\rho \in (r,R)$ с центром в а.

Доказательство: Для начала покажем независимость коэфициентов от выбора ρ . Возьмем две окружности радиусов ρ и ρ' . Применим для $\Gamma = \rho - \rho'$ интегральную теорему Коши и получим требуемое.

Рассмотрим r < r' < R' < R. Тогда $\forall z \in K'_{r',R'}$

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)d\xi}{\xi-z} = (2\pi i) \left(\int_{\gamma_{R'}} \frac{f(\xi)d\xi}{\xi-z} - \int_{\gamma_{r'}} \frac{f(\xi)d\xi}{\xi-z} \right) =: f_1 + f_2$$

Заметим, что $f_1=\int_{\gamma_{R'}} \frac{f(\xi)d\xi}{\xi-z}$ голоморфна в $O_{R'}(a)$. А значит раскладывается в ряд Тейлора. $f_1=\sum_0^{+\infty} c_n(z-a)^n$ Вновь раскладываем $\frac{1}{z-\xi}=\sum^\infty \frac{(\xi-a)^n}{(z-a)^{n+1}}$ при $|\frac{\xi-a}{z-a}|<1$

Значит

$$f_2(z) = \sum_{0}^{\infty} \left(z - a\right)^{-n-1} \cdot \left(c_{-n-1} \coloneqq \frac{1}{2\pi i} \int_{\gamma_{r'}} f(\xi) (\xi - a)^n d\xi\right)$$

Итого получили требуемое, не зависящее от r', R'

Определение 26.1.1: Такое представление голоморфной функции называется рядом Лорана

Лемма 26.1.1: *Единсвенность ряда Лорана*

Если $f(z)=\sum_{-\infty}(+\infty)c_n(z-a)^n$ в кольце К, то f голоморфна в этом кольце, причем ряд лорана совпадает с данным. То есть $c_n=\frac{1}{2\pi i}\cdot\int_{\gamma_\rho}\frac{f(\xi)d\xi}{(\xi-a)^{n+1}}$

Проверка равенства коэфициентов. Для n=-1

$$\int_{\gamma_{\rho}} f(z)dz = \sum_{-\infty}^{+\infty} \int_{\gamma_{\rho}} c_n (z-a)^n dz = c_{-1}$$

Для $n \neq -1$ двигаем ряд так чтобы нужный коэфициент встал на -1. \square

26.2. Изолированные особые точки однозначного характера.

Здесь пусть f(z) функция имеющая изолированную особую точку a, тогда:

Определение 26.2.1: а - устранимая особенная точка, если $\exists A \in \mathbb{C}$: $\lim_{z \to a} f(z) = A$

Определение 26.2.2: а - устранимая особенная точка, если $\lim_{z \to a} f(z) = \infty$

Определение 26.2.3: а - существенная особенная точка, если

$$\nexists \lim_{z \to a} f(z)$$

Теорема 26.2.1: а - УОТ \Leftrightarrow f ограничена в какой-то $\dot{O}_{\delta(a)}$

 $\ensuremath{\mathcal{A}\!\mathit{okaзательство}}\colon \ (\Rightarrow)$ очевидно из определения предела.

 (\Leftarrow) Положим $M_{
ho}(f) = \max_{\gamma_o} |f|$ Тогда оценим

$$|c_n| \leq \frac{1}{2\pi} \int_{\gamma_o} \left(|f| \ |d\xi \frac{|}{\rho^{n+1}} \right) \leq \frac{M_{\rho(f)}}{\rho^n}$$

Из ограниченности, можно оценить M_{ρ} как константу. А значит при $n < 0, \rho \to 0: |c_n| \to 0$. Следовательно $|c_n|$. А значит есть только регулярная часть ряда Лорана, а следовательно a - УОТ.

Теорема 26.2.2: а - полюс ⇔ существует лишь конечное число ненулевых членов в главной части ряда Лорана.

Доказательство:

 (\Leftarrow) аккурано посчитаем предел и получим требуемое. (⇒) По условию $\lim_{z\to a}f(z)=\infty\Rightarrow\lim_{z\to a}\frac{1}{f(z)}=0.$ Т.е функция $\frac{1}{f(z)}$ имеет в a УОТ. В силу изолированности $a,\,\frac{1}{f(z)}$ голоморфна в окрестности a, причем от-

В силу изолированности a, $\frac{1}{f(z)}$ голоморфна в окрестности a, причем отлична от 0. А значит из предыдущего доказтельства получим разложение в Тейлора.

$$\frac{1}{f(z)}=(z-a)^mh(z), h(a)\neq 0 \Rightarrow f(z)=\frac{1}{(z-a)^m}\cdot\frac{1}{h(z)}$$
 голоморфная в окрестности \Rightarrow раскладывается в Тейлора

Теорема 26.2.3: Сохоцкого

Если а - СОТ, то
$$\forall A \in \overline{\mathbb{C}} \exists \{z_n\} \to a, f(z_n) \to A$$

 $\ \ \, \mathcal{A}$ оказательство: Для $A=\infty$ очевидно. Если не существует, то ограничена \Rightarrow УОТ.

Если $A \neq \infty$, то рассмотрим $g(z) \coloneqq \frac{1}{f(z) - A}$.

Если A не предельная, то f(z)-A отделена от нуля, а значит g(z) ограничена. Следовательно a - УОТ для g. Причем $g(z)\neq 0$ в области определения.

Тогда заметим, что $f(z) = A + \frac{1}{g(z)}$

Если $g(a) \neq 0$, то a - УОТ для f.

Иначе полюс. Противоречие.

27. Вычеты. Вычисление интегралов по замкнутому контуру при помощи вычетов

Определение 27.1: Пусть f голоморфна в $O_{r(a)}^{\cdot}, a \in \mathbb{C},$ то определим вычет как

$$\operatorname{res}_a f = \frac{1}{2\pi i} \int_{\gamma_\rho} f(z) dz$$

Лемма 27.1: Вычеты определены корректно (не завият от γ)

Доказательство: Пусть $f = \sum_{-\infty}^{+\infty} c_n (z-a)^n, \ z \in \dot{O}_{r(a)},$ то

$$\frac{1}{2\pi i}\int_{\gamma_\rho}f(z)dz=\sum_{-\infty}^{+\infty}c_n\frac{1}{2\pi i}\int_{\gamma_\rho}\left(z-a\right)^n=c_{-1}$$

He зависит от γ

Теорема 27.1: Коши о вычетах (а.к.а Вычисление интегралов по замкнутому контуру с помощью вычетов)

Пусть D ограничена циклом $\Gamma = \gamma_0 - \gamma_1 - \gamma_2 - \dots - \gamma_n$. Пусть A = $\{a_1,a_2,a_3,...,a_N\}\subseteq D.\ f$ голоморфна в $D'\setminus A$ где $D'\supset D.$ Тогда $\frac{1}{2\pi i}\int_{\Gamma}f(z)dz=\sum^N\mathrm{res}_{a_i}f$

ляем и вычитаем из Γ эти круги (δ_i) . В части с минусами получаем новый цикл $\tilde{\Gamma}=\Gamma-\sum \delta_i$, такой что в нем f голоморфна. Проверяем что $\tilde{\Gamma}\sim 0 \Big(\mathrm{mod}\, \tilde{D}\Big)$

- В точках вне D он так и остался 0.
- В новых точках (внутри δ_i) 1-1=0

Следовательно интеграл по $\tilde{\Gamma}$ равен 0, а оставшая часть это $\sum \int_{\delta_i} f dz =$ $2\pi i \sum \operatorname{res}_{a_i} f.$