$\underset{\text{B.A.M. 2023}}{\textbf{Geometria}} \ \mathbf{2}$

Indice

1	Teor	ria	
	1.1	Geom	netria Proiettiva
		1.1.1	Introduzione
		1.1.2	Riferimenti proiettivi
		1.1.3	Coordinate Omogenee
		1.1.4	Rappresentazione di Sottospazi
2	Eser	cizi	
	2.1	Geom	netria Proiettiva
2	Note	Δ	

1 Teoria

1.1 Geometria Proiettiva

1.1.1 Introduzione

Dato uno Spazio Vettoriale V su un campo \mathbb{K} . Si denota $\mathbb{P}(V)$ lo spazio proiettivo di V su \mathbb{K} e

$$\mathbb{P}(V) = \frac{V}{\sim}$$

dove la relazione \sim equivale a dire che $v \sim w \Leftrightarrow \exists \lambda \in \mathbb{K}^*$ tale che $v = \lambda w$.

Questa relazione è di equivalenza.

La dimensione del proiettivo si denota con $dim\mathbb{P}(V) = dim_{\mathbb{K}}V - 1$.

C'è una bigezione naturale tra:

$$\mathbb{P}(V) \iff \text{rette di } V$$

$$[v] \longleftrightarrow Span(v)$$

Definizione 1.1. $dim\mathbb{P}(V) = dim_{\mathbb{K}}V - 1$

Inoltre gli spazi proiettivi 1-dimensionali si chiamano rette proiettive, mentre quelli 2-dimensionali piani proiettivi.

Definizione 1.2. Sia $V = \mathbb{K}^{n+1}$, allora si definisce Spazio proiettivo standard di dimensione n come: $\mathbb{P}^n(K)$. Inoltre $dim\mathbb{P}^n(K) = dim\mathbb{K} - 1$

Per esempio $P^1(\mathbb{R}) = \mathbb{P}(\mathbb{R}^2)$ e ha dimensione 1. Si dice **Trasformazione Proiettiva** una funzione

$$f: \mathbb{P}(V) \to \mathbb{P}(W)$$

tale che esiste $\phi: V \to W$ lineare tale che

$$f([v]) = [\phi(v)]$$

cioè ϕ induce f per passaggio al quoziente.

Una trasformazione proiettiva invertibile si dice Isomorfismo Proiettivo.

Una trasformazione proiettiva da $\mathbb{P}(V)$ in sè stesso si chiama **Proiettività** (le proiettività sono isomorfismi proiettivi del proiettivo in sè stesso).

Le proiettività di $\mathbb{P}(V)$ formano un gruppo e si denotano con $\mathbb{PGL}(V)$.

Osservazione 1.3.

$$f: \mathbb{P}(V) \to \mathbb{P}(V)$$

proiettività i punti fissi di f sono in bigezione con le rette di autovettori di $\phi: V \to V$ che induce f. Dato che $f([v]) = [v] \Leftrightarrow [\phi(v)] = [v] \Leftrightarrow \phi(v) = \lambda v$

Corollario 1.4. Sia $f: \mathbb{P}^n(\mathbb{R}) \to \mathbb{P}^n(\mathbb{R})$ una proiettività, con n pari, allora f ammette un punto fisso.

Invece se $f: \mathbb{P}^n(\mathbb{C}) \to \mathbb{P}^n(\mathbb{C})$ una proiettività, allora ammette punto fisso $\forall n \in \mathbb{N}$.

Definizione 1.5. $H \subset \mathbb{P}(V)$ è un **Sottospazio Proiettivo** se $\exists W \subset V$ sottospazio vettoriale tale che $H = \pi(W) \setminus 0$ dove $\pi : V \setminus 0 \to \mathbb{P}(V)$ è la proiezione al quoziente.

Inoltre dimH = dimW - 1.

Proposizione 1.6. Intersezione finita di sottospazi proiettivi è un sottospazio proiettivo.

Osservazione 1.7. Per ogni sottoinsime $F \subset \mathbb{P}(V)$ è ben definito il più piccolo sottospazio di $\mathbb{P}(V)$ che contiene Fm che viene denotato con L(F)

$$L(F) = \cap S$$

con S sottospazio di $\mathbb{P}(V)$ che contiene F.

invece, come nel caso vettoriale l'unione di sottospazi non è sempre un sottospazio, si considererà allora il sottospazio generato come:

$$L(S_1, S_2) = L(S_1 \cup S_2)$$

Proposizione 1.8. consideriamo: $S_1 = \mathbb{P}(H_1) = \pi(H_1 \setminus 0)$ e $S_2 = \mathbb{P}(H_2) = \pi(H_2 \setminus 0)$ $H_i \subset V$ sottospazi vettoriali allora:

$$L(S_1, S_2) = \mathbb{P}(H_1 + H_2) = \pi((H_1 + H_2) \setminus 0)$$

Teorema 1.9 (Formula di Grassman Proiettiva). Siano $S_1, S_2 \in \mathbb{P}(V)$ sottospazi. Allora

$$dimL(S_1, S_2) = dimS_1 + dimS_2 - dimS_1 \cap S_2$$

Corollario 1.10. S_1, S_2 come sopra, se $dim S_1 + dim S_2 \ge dim \mathbb{P}(V) \Rightarrow S_1 \cap S_2 \ne \emptyset$

Corollario 1.11. due rette in un piano proiettivo si incontrano sempre.

1.1.2 Riferimenti proiettivi

Definizione 1.12. $P_1, ..., P_k \in \mathbb{P}(V)$ si dicondo *indipendenti* se presi $v_i \in V$ tali che $[v_i] = P - 1 \quad \forall i$ si ha che i vettori $v_1, ..., v_k$ sono linearmente indipendenti in V.

Osservazione 1.13. La definizione di riferimento proiettivo è ben posta

Definizione 1.14. $P_1, ..., P_k \in \mathbb{P}(V)$ sono in *posizione generale* se qualsiasi sottoinsieme di $P_1, ..., P_k$ sostituito da h punti con $h \leq n + 1$, è indipendente.

Per esempio se $dim\mathbb{P}(V) = 2$, $P_1, ..., P_k$ sono in posizione generale se e solo se sono a tre a tre non allineati.

Definizione 1.15. Un riferimento proiettivo di $\mathbb{P}(V)$ con $dim\mathbb{P}(V) = n$, è una (n+2)-upla $\mathcal{R} = (P_0, P_1, ..., P_{n+1})$ di punti di $\mathbb{P}(V)$ in posizione generale. P_{n+1} si chiama punto unità di \mathcal{R} , mentre $P_0, ..., P_n$ si chiamano punti fondamentali.

Definizione 1.16. Se \mathcal{R} è un riferimento proiettivo di $\mathbb{P}(V)$, una base normalizzata associata ad \mathcal{R} è una base di V, $(v_0, ..., v_n)$ tale che $[v_i] = P_1 \quad \forall 0 \leq i \leq n$ e $P_{n+1} = [v_0, ..., v_n]$

<u>Teorema</u> 1.17. Sia \mathcal{R} un riferimento proiettivo di $\mathbb{P}(V)$ allora esiste una base normalizzata $(v_0, ..., v_n)$ di V rispetto a \mathcal{R} .

Inoltre se $(v'_0, ...v'_n)$ è una seconda base normalizzata di V rispetto a \mathcal{R} allora: $\exists \lambda \in \mathbb{K}*$ tale che $v'_i = \lambda v_i \quad \forall 0 \leq i \leq n$ (cioè la base normalizzata esiste ed è unica a meno di riscalamento simultaneo).

<u>Teorema</u> 1.18. Siano $f, g : \mathbb{P}(V) \to \mathbb{P}(W)$ due trasformazioni proeittive, e siano $\phi, \psi : V \to W$ lineari tali che inducono rispettivamente $f \in g$, sia inoltre \mathcal{R} un riferimento proiettivo di $\mathbb{P}(V)$. Sono equivalenti:

- 1) $\exists \lambda \in \mathbb{K} * \text{ tale che } \phi = \lambda \psi \text{ (come applicationi lineari)}$
- 2) f = g
- $3) f(P) = g(P) \forall P \in \mathcal{R}$

Corollario 1.19. Il gruppo delle proiettività $\mathbb{PGL}(V)$ è isomorfo a: $\frac{GL(V)}{N}$, dove $N \triangleleft GL(V)$ e $N = \{\lambda \cdot Id_V \mid \lambda \in \mathbb{K}*\}$.

<u>Teorema</u> 1.20 (fondamentale delle trasformazioni proeittive). Siano $\mathbb{P}(V)$ e $\mathbb{P}(W)$ due spazi proiettivi, con $dim\mathbb{P}(V) = dim\mathbb{P}(W) = n$, e $\mathcal{R}, \mathcal{R}'$ due riferimenti proiettivi di $\mathbb{P}(V)$ e $\mathbb{P}(W)$ rispettivamente.

Allora $\exists!$ trasformazione proiettiva $f: \mathbb{P}(V) \to \mathbb{P}(W)$ che manda ordinatamente \mathcal{R} in \mathcal{R} .

1.1.3 Coordinate Omogenee

Definizione 1.21. Si dice che il punto $[(x_0, ..., x_n)]$ di $\mathbb{P}^n(\mathbb{K})$ ha coordinate omogenee (rispeto al riferimento standard) $[x_0, ..., x_n]$ oppure $[x_0 : ... : x_n]$. Il riferimento standard di $\mathbb{P}^n(\mathbb{K})$ è il riferimento "indotto" dalla base standard, cioè $P_i = [0, ..., 1, ..., 0]$ (l'1 alla i-esima posizione), cioè $P_{n+1} = [1, 1..., 1]$

Osservazione 1.22. Le coordinate omogenee di un punto sono ben definite a meo di riscallamento simultaneo.

In generale se $\mathbb{P}(V)$ è una spazio proiettivo di dimensione n, e \mathcal{R} è un riferimento proiettivo $\mathcal{R} = (P_0, ..., P_{n+1})$. Sono fatti equivalenti:

1) So che \exists ! $f: \mathbb{P}(V) \to \mathbb{P}^n(\mathbb{K})$ che porta il riferimento \mathcal{R} nel riferimento standard di $\mathbb{P}^n(\mathbb{K})$ (f è un isomorfismo proiettivo per motivi dimensionali). e quindi le coordinate omogenee di un punto $P \in \mathbb{P}(V)$ sono $f(P) \in \mathbb{P}^n(\mathbb{K})$. 2) Sia $(v_0, ..., v_n)$ una base normalizzata di V rispetto a \mathcal{R} . Dato $P \in \mathbb{P}(V)$, se P = [v] con $v \in V$ posso scrivere in modo unico

$$v = a_0 v_0 + \ldots + a_n v_n$$

e dico che le coordinate di P rispetto a \mathcal{R} sono $[a_0, ..., a_n]$.

Osservazione 1.23. Se $f:\mathbb{P}(V)$ e $\mathbb{P}(W)$ è una trasformazione proiettiva, \mathcal{R} , \mathcal{R}' sono riferimenti proiettivi di $\mathbb{P}(V)$ e $\mathbb{P}(W)$ rispettivamente, e \mathbb{B} , \mathbb{B}' sono basi normalizzate rispettive di V e W, se $f = [\phi]$, dove $\phi : V \to W$, posso considerare la matrice $M \in M(m+1, n+1)$, con n ed m rispettivamente le dimensioni di $\mathbb{P}(V)$ e $\mathbb{P}(W)$, che rappresenta ϕ rispetto a \mathbb{B} e \mathbb{B}' . Allora M rappresenta la trasformazione proiettiva f, nel senso che:

$$[f(P)]_{\mathcal{R}'} = M \cdot [P]_{\mathcal{R}}$$

Notare che la matrice M associata a f è unica a meno di moltiplicazione per uno scalare non nullo.

1.1.4 Rappresentazione di Sottospazi

Rappresentazione cartesiana

Se $S \subseteq \mathbb{P}(V)$ è un sottospazio proiettivo, allora per definizione $S = \mathbb{P}(W)$, dove $W \subseteq V$ è un sottospazio vettoriale di V. Se $n = dim\mathbb{P}(V)$, e k = dimS allora, fissato un riferimento \mathbb{R} di $\mathbb{P}(V)$ euna base normalizzata \mathbb{B} , il sottospazio vettoriale $W \subseteq V$ può essere descritto come luogo di zeri di (n+1) - (k+1) = n - k equazioni lineari omogenee nelle coordinate indotte da \mathbb{B} ,

$$\{f_i = \dots = f_{n-k}\}$$

Tali equazioni descrivo anche S dentro il proiettivo, nel senso che $P \in \mathbb{P}(V)$ sia in S se e solo se $[P]_{\mathcal{R}}$ soddisfa le equazioni $f_i = \ldots = f_{n-k}$

Esempio 1.24. In $\mathbb{P}^2(\mathbb{R})$ posso considerareil sottospazio proiettivo descritto dall'equazione $r: x_0 + x_1 - x_2 = 0$ (una retta proiettiva)

per esempio [1, 1, 2] sta se questa retta, sostituendo ho che effettivamente $\forall \lambda \neq 0 \quad [\lambda, \lambda, 2\lambda] \in r$

Rappresentazioni paramentrica

Si rappresenta $S \subseteq \mathbb{P}(V)$ come immagine di una trasformazione proiettiva. Nel vettoriale, questo corrisponde a scrivereun elemento di W come elemento dello Span di un insieme di vettori. Per esempio

$$\{x_1 - x_2 + x_3\} = Span < \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} >$$

$$v = t_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

 $con t_1, t_2 \in \mathbb{R}$

cioè:
$$v = \begin{pmatrix} t_1 \\ t_1 + t_2 \\ t_2 \end{pmatrix}, \quad t_1, t_2 \in \mathbb{R}$$

Il sottospazio proiettivo associato di $\mathbb{P}^2(\mathbb{R})$ sarà descritto dalla rappresentazione paramentrica:

$$\{[t_1, t_1 + t_2, t_2] \mid t_2 \in t_2 \text{ non entrambi nulli}\}$$

Definizione 1.25. un *iperpiano* W di $\mathbb{P}(V)$ è un sottospazio proiettivo di codimensione 1. (dove $coDimW = dim\mathbb{P}(V) - dimW$)

2 Esercizi

2.1 Geometria Proiettiva

ES.1 Ogni trasformazione proiettiva è iniettiva. Dimostrazione ogni

$$f: \mathbb{P}(V) \to \mathbb{P}(W)$$

è indotta da una

$$\phi: V \to W$$

iniettiva, cioè $f([v]) = [\phi(v)]$. se f non fosse iniettiva esisterebbero $v, w \in \mathbb{P}(V)$ tali che

$$f([v]) = f([w]) \Rightarrow [\phi(v)] = [\phi(w)]$$

che è assurdo per l'iniettività di ϕ

Foglio Esercizi 1

Esercizio 2.1. 1)Si calcola la Cardinalità di $\mathbb{P}^n(\mathbb{F}_q)$ dove \mathbb{F}_q Denota un campo finito con q Elementi.

2) Siano r_0, r_1, r_2 tre rette non concorrenti in un piano proiettivo $\mathbb{P}(V)$ (quindi $dim\mathbb{P}(V) = 2$) su un campo \mathbb{K} si mostri che esiste

$$P \in \mathbb{P}(V) \setminus (r_0 \cup r_1 \cup r_2)$$

Dimostrazione. Punto 1)

È equivalente al chiederci "Quante classe di equivalenza modulo q, Rispetto alla relazione essere sulla stessa retta, ci sono in \mathbb{F}_q^n ". Ovvero in quanti modi posso scegliere un vettore n+1-dimensionale modulo q (escludendo la classe di 0)? Che si traduce in $|\mathbb{P}^n(\mathbb{F}_q)| = \frac{q^{n+1}}{q-1}$

Punto 2)

Essendo nel proiettivo vero che posso identificare i punti con delle rette e viceversa, considero il problema duale: "siano p_1, p_2 e p_3 punti del proiettivo non allineati, mostrare che esiste una retta r" che non passa per tutti e tre" L'argomento quindi adesso diventa banale considerando che lo spazio proiettivo è ottenunto considerando la relazione di equivalenza: "essere sulla stessa retta" ma allora avrei che i tre punti sarebbero anche allineati nello spazio vettoriale base che è assurdo.

Esercizio 2.2 (Es.2). Siano W_1, W_2, W_3 Piani di $\mathbb{P}^4(\mathbb{K})$ tali $W_i \cap W_j$ È un punto per ogni $i \neq j$ E che $W_1 \cap W_2 \cap W_3 = \emptyset$. Si Mostra che esiste un unico piano $W_0 \subseteq \mathbb{P}^3(K)$ tale che i = 1, 2, 3 L'insieme $W_0 \cap W_i$ Sia una retta proiettiva.

Dimostrazione. Visto che i 3 piani W_i Hanno intersezione a due a due non banale, mentre lo è quella di tutti e tre, e che queste intersezioni identificano tre punti: q_{12}, q_{13}, q_{23} che mi rendo conto non essere allineati. Quindi $W_0 = L(q_{12} \cup q_{13} \cup q_{23})$ è un piano proiettivo. Intersecando W_0 Con un qualsiasi W_i Ottengo: (WLOG lo faccio per W_1)

 $W_0 \cap W_1 = L(q_{12} \cap q_{13})$ visto che sto semplicemente escludendo il contributo del terzo punto. Il generato da 2 punti del proiettivo è chiaramente una retta proiettiva.

Esercizio 2.3 (Es.3). [Bozza]

Siano r_1, r_2, r_3 Rette di $\mathbb{P}^4(\mathbb{K})$ a due a due sghembe e non tutte contenute in un iperpiano. Si mostri che esiste un unica retta che interseca sia r_1 Sia r_2 Sia r_3

Dimostrazione. Le tre rette sono sottospazi proeittivi di dimensione 1. Per esempio $r_1 = (\lambda 000)$, $r_2 = (0\mu 00)$ ed $r_1 = (00\delta 0)$ sono indipendenti tra di loro. Se

Esercizio 2.4 (Es.4). Sia $f: \mathbb{P}^1(\mathbb{K}) \to \mathbb{P}^1(\mathbb{K})$ una proiettività diversa dall'identità. Si mostri che $f^2 = id$ Se e solo se esistono punti distinti $P, Q \in \mathbb{P}^1(\mathbb{K})$ tali che $f(P) = Q \to f(Q) = P$

Dimostrazione. \Rightarrow : Se $f^2 = id$ E non essendo la proiettività identica esiste almeno un punto P Tale che $f(P) = Q \neq P$ Ma allora riapplicando f Ottengo: $f(f(P)) = f(Q) \Leftrightarrow P = f(Q) \Leftarrow$: $\exists P,Q \in P^1(K)$ tali che f(P) = Q E f(Q) = P. Essendo che $dim_K \mathbb{P}^1(K) = 1$ È una retta proiettiva, che è generata da L(P,Q). Ma:

$$L(P,Q) = L(f^2(P), f^2(Q)) = L(f(Q), f(P)) = L(P,Q)$$

Ho la tesi. $\hfill\Box$

3 Note

Gli appunti in questo file sono quasi interamente una trascrizione del corso di Frigerio di Geometria 2 Dell'università di Pisa, Anno 2023/2024

https://mathb.in/76468. https://mathb.in/76469. https://mathb.in/76470 https://mathb.in/76496