Ampliación de Matemáticas Variable Compleja (1)

Plano Complejo

• Cambio de coordenadas cartesianas a polares:

$$a+bi
ightarrow egin{cases}
ho = \sqrt{a^2+b^2} \ heta = rctan(b/a) \end{cases}$$

• Cambio inverso:

$$ho \cdot e^{i heta}
ightarrow egin{cases} a =
ho \cos(heta) \ b =
ho \sin(heta) \end{cases}$$

• Argumentos de un complejo

$$arg(z) = \{\theta + 2k\pi, k \in \mathbb{Z}\}\$$

donde θ está definido como antes

• Argumento principal

$$Arg(z) = arg(z) \cap (-\pi, \pi)$$

donde θ está definido como antes

• Logaritmos de un complejo

$$\log(z) = \ln(|z|) + i \arg(z)$$

donde arg(z) denota todos los argumentos posibles

• Logaritmo principal

$$Log(z) = ln(|z|) + iArg(z)$$

Nota: ni el argumento principal ni el logaritmo principal están definidos en la siguiente región:

No definidos en esta región

Funciones de variable compleja

$$f(z) = f(x + iy) = u(x, y) + iv(x, y)$$

• Condiciones de Cauchy-Riemann:

$$egin{cases} u_x(x,y) = v_y(x,y) \ u_y(x,y) = -v_x(x,y) \end{cases}$$

- f es **derivable** en z_0 si:
 - \cdot Satisface Cauchy-Riemann en z_0
 - u_x, u_y, v_x, v_y son continuas en z_0
- f es **analítica** en z_0 si existe un entorno alrededor de z_0 en el que f es derivable en todos los puntos.
- Una función $h:\mathbb{R}^2 o\mathbb{R}$ es $\mathbf{armónica}$ si: $abla h^2=0$
- **Teorema**: Si f es analítica en z_0 , entonces u y v son armónicas en z_0 .
- Teorema: Si A es simplemente conexo, y u es una función armónica, existe v (armónica conjugada) tal que f=u+iv es analítica en A
- Cálculo práctico de la armónica conjugada:
- Resolvemos $v_y = u_x$ integrando respecto a y, de donde v queda definida salvo una función de x.
- Resolvemos $v_x = -u_y$ integrando respecto a x, y aplicamos condiciones iniciales si nos dan.