

## **Cortex-M**

# 离线编程器II用户手册

适用产品

本编程器支持芯片型号如下:

| ズモ         | 파니디          | ズガ         | #J 🗆         |
|------------|--------------|------------|--------------|
| 系列         | 型号           | 系列         | 型号           |
|            | HC32M140F8TA |            |              |
| HC32M140   | HC32M140J8TA |            | HC32L150KATA |
| 1103211140 | HC32M140J8UA |            | HC32L150JATA |
|            | HC32M140KATA | —— HC32L15 | HC32L150FAUA |
|            | HC32F146F8TA | 11032113   | HC32L156KATA |
| HC32F146   | HC32F146J8TA |            |              |
| HC32F140   | HC32F146J8UA |            | HC32L156JATA |
|            | HC32F146KATA |            |              |
|            | HC32F003C4UA |            | HC32L110C6UA |
|            | HC32F003C4PA |            | HC32L110C6PA |
| HC32F003   | HC32F003C4PB |            | HC32L110B6PA |
| HC32F005   | HC32F005C6UA | HC32L110   | HC32L110B6YA |
| HC32F003   | HC32F005C6PA |            | HC32L110C4UA |
|            | HC32F005C6PB |            | HC32L110C4PA |
|            | HC32F005D6UA |            | HC32L110B4PA |
|            | HC32L136K8TA |            | HC32F030K8TA |
|            | HC32L136J8TA |            | HC32F030J8TA |
| 11.0331 13 | HC32L130J8TA | 110225020  | HC32F030H8TA |
| HC32L13    | HC32L130J8UA | HC32F030   | HC32F030F8TA |
|            | HC32L130F8UA |            | HC32F030F8UA |
|            | HC32L130E8PA |            | HC32F030E8PA |



|             | HC32F460JEUA |          |                 |
|-------------|--------------|----------|-----------------|
|             | HC32F460JETA |          | HC32F176PATA    |
|             | HC32F460KEUA |          | HC32F176MATA    |
|             | HC32F460KETA |          | HC32F176KATA    |
| HC32F460    | HC32F460PETB | HC32F17  | HC32F176JATA    |
|             | HC32F460PEHB |          | HC32F170LATA    |
|             | HC32F460JCTA |          | HC32F170JATA    |
|             | HC32F460KCTA |          | HC32F170FAUA    |
|             | HC32F460PCTB |          |                 |
|             | HC32F072PATA |          | HC32F120H8TA    |
| 11.022.07   | HC32F072KATA | HC32F120 | HC32F120F8TA    |
| HC32F07     | HC32F072JATA | HC32F12U | HC32F120H6TA    |
|             | HC32F072FAUA |          | HC32F120F6TA    |
|             | HC32F196PCTA |          | HC32L196PCTA    |
|             | HC32F196MCTA |          | HC32L196MCTA    |
| HC32F19     | HC32F196KCTA | HC32L19  | HC32L196KCTA    |
| ПС32Г19     | HC32F196JCTA |          | HC32L196JCTA    |
|             | HC32F190JCTA |          | HC32L190JCTA    |
|             | HC32F190FCUA |          | HC32L190FCUA    |
|             | HC32L072PATA |          | HC32L176PATA    |
|             | HC32L072KATA |          | HC32L176MATA    |
|             | HC32L072JATA |          | HC32L176KATA    |
| HC32L07     | HC32L072FAUA | HC32L17  | HC32L176JATA    |
|             | HC32L073PATA |          | HC32L170JATA    |
|             | HC32L073KATA |          | HC32L170FAUA    |
|             | HC32L073JATA |          | 110321110111011 |
| HC32M120    | HC32M120J6TB |          |                 |
| 11032111120 | HC32M120F6TB |          |                 |



## 目 录

| 1. | 简介             |                                         | 4  |
|----|----------------|-----------------------------------------|----|
|    | 1.1            | 概览                                      | 4  |
|    | 1.2            | 外观及接口                                   | 6  |
|    | 1.2.1          | 离线编程器                                   | 6  |
|    | 1.2.2          | 离线编程器转接板                                | 7  |
|    | 1.3            | 离线编程器功能                                 | 8  |
|    | 1.3.1          | 编程模式                                    | 8  |
|    | 1.3.2          | 按键                                      |    |
|    | 1.3.3          | LED 指示灯                                 |    |
|    | 1.3.4          | XTAL 支持                                 |    |
|    | 1.3.5          | 供电                                      |    |
|    | 1.3.6          | 计数                                      |    |
|    | 1.3.7          | 安全                                      |    |
|    | 1.3.8          | 复位                                      |    |
|    | 1.3.9          | 滚码功能                                    |    |
|    | 1.3.10         | . , , , , , , , , , , , , , , , , , , , |    |
|    | 1.3.11         | * * * *                                 |    |
|    | 1.3.12         | , ,,, ,,,,                              |    |
|    | 1.4            | 带屏版本                                    |    |
|    | 1.4.1          | 界面切换                                    |    |
| _  | 1.4.2          | 图标说明                                    |    |
| 2. |                | 程系统配置软件                                 |    |
|    | 2.1            | 驱动安装                                    |    |
|    | 2.2            | 配置软件介绍                                  |    |
|    | 2.3            | 操作步骤                                    |    |
|    | 2.3.1          | 双击打开 ConfigTool.exe 软件                  |    |
|    | 2.3.2          | 配置目标 MCU 型号<br>配置硬件环境                   |    |
|    | 2.3.3          |                                         |    |
|    | 2.3.4<br>2.3.5 | 设置波特率<br>设置目标文件                         |    |
|    | 2.3.6          | 设直号你文件                                  |    |
|    | 2.3.7          | 设置复位                                    |    |
|    | 2.3.7          | 设置计数功能                                  |    |
|    | 2.3.9          | 加密设置                                    |    |
|    | 2.3.10         |                                         |    |
|    | 2.3.11         |                                         |    |
|    | 2.3.12         |                                         |    |
|    | 2.3.13         |                                         |    |
|    | 2.3.14         |                                         |    |
|    | 2.3.15         |                                         |    |
| 3. | 离线编            | 程器软件及文件更新                               | 31 |
|    | 3.1            | 文件拷贝                                    |    |
|    | 3.2            | 离线编程器主板固件升级                             |    |
| 4. |                | 程                                       |    |
|    |                |                                         |    |
|    |                | 误处理                                     |    |
| 6. | 放本信.           | 息 & 联系方式                                | 36 |



## 1. 简介

### 1.1 概览

CM PGM(Cortex-M Programmer)是为华大半导体(HDSC)的 Cortex-M 系列 MCU 提供的一款离线编程器,支持华大半导体旗下所有的 Cortex-M 系列 MCU 产品。目的是为用户提供一款小巧便携、安全可靠、操作简单的小批量离线编程工具或设计方案,目前提供标准版和带屏版 2 个版本供用户选择。

CM PGM 离线编程系统如图 1 所示,离线编程器由配置软件 ConfigTool.exe 和 PGM 主板组成。



图 1 离线编程系统

配置软件(ConfigTool.exe)生成配置文件、PGM主板代码文件。

USB 接口对 PGM 主板供电,用户通过 USB 向 PGM 拷贝入编程所需文件。

文件拷贝完成后,用户通过 PGM 主板的按键进行编程模式切换及启动编程功能。

离线编程器支持的功能如下:

- 1) 编程模式(UART/SWD)可选择
- 2) LED 灯或 OLED 屏(仅带屏版本支持)指示编程模式及编程状态
- 3) 配置工具包含以下可配置功能:
  - 一 目标芯片外部晶振及内部时钟可配置;
  - 一 计数功能;
  - 一目标芯片供电可选择功能;
  - 一 文件加密功能;
  - 一 目标芯片加密功能;
  - 复位功能(部分系列支持);



- 滚码功能
- 一 片擦除/页擦除配置
- Flash 写保护(部分系列支持)
- USART 全双工/半双工模式配置(部分系列支持)
- 4) 多文件选择及编程状态显示(仅带屏版本支持)
- 5) 自升级
  - 通过按键实现主板固件自我升级。



## 1.2 外观及接口

## 1.2.1 离线编程器

离线编程器外观及功能部件如图 2 所示:



图 2 离线编程器外观

USB 接口采用标准 Type B 接口。

编程接口与目标 MCU 连接,接口分配如下图所示:

#### V21:



图 3 编程接口引脚分配



#### 1.2.2 离线编程器转接板

对于支持 UART 半双工的目标芯片,离线编程器的编程接口要与转接板连接,转接板外观及功能部件如图 4 所示:



图 4 支持半双工编程的转接板

- 1) 转接板接口设定
  - ISP 跳帽接口: 断开连接。
  - ISP 编程接口: 断开连接。
  - 一供电跳帽接口:目标芯片需要离线编程器供电,该接口就连接,否则断开。
  - 一 编程接口: 与目标 MCU 连接,接口分配如图 5 所示:



图 5 转接板编程接口引脚分配

2) 离线编程器与转接板的连接,如图 6 所示:



图 6 离线编程器与转接板的连接



### 1.3 离线编程器功能

### 1.3.1 编程模式

离线编程器支持两种编程模式: UART 编程模式和 SWD 编程模式。LED1 颜色指示当前编程模式,绿灯为 SWD 模式,橙色灯为 UART 模式。带屏版离线编程器同时在显示屏上显示当前编程模式,详情请参考带屏版本图标说明 1.4.2。

• HC32L15/HC32F14/HC32M14/HC32L13/HC32F03/HC32L17/HC32L19/HC32L07/HC32F0 7/HC32F19/HC32F17 系列芯片的接线方法如图 7 所示。



图 7 部分系列连线方法 1

• HC32L110/HC32F003/HC32F005 系列芯片的接线方法如图 8 所示。



图 8 部分系列连线方法 1



• HC32F460 系列芯片的接线方法如图 9 所示。



图 9 部分系列连线方法 2

• HC32F120/HC32M120 系列芯片的接线方法如图 10 所示。



图 10 部分系列连线方法 3



• UART 模式下,不同系列芯片对应的引脚如表 1 所示。

表 1 UART 模式引脚说明

| 芯片引脚芯片型号                                 | RX         | TX        | TOOL0 |
|------------------------------------------|------------|-----------|-------|
| HC32L15                                  | SINO_0     | SOT0_0    | NA    |
| HC32F14<br>HC32M14                       | SIN5_0     | SOT5_0    | NA    |
| HC32L110<br>HC32F003<br>HC32F005①        | P36/ P27   | P35/ P31  | NA    |
| HC32L13<br>HC32F03②                      | PA10/ PA13 | PA09/PA14 | NA    |
| HC32F460                                 | PA14       | PA13      | NA    |
| HC32L17<br>HC32L19<br>HC32F19<br>HC32F17 | PA13       | PA14      | NA    |
| HC32F07<br>HC32L07                       | PA13       | PA14      | NA    |
| HC32F120③                                | P11        | P12       | P40   |
| HC32M120③                                | P74        | P73       | P40   |

#### 注①

- HC32L110/HC32F003/HC32F005 系列所有版本的芯片均支持 P36、P35 接口。支持两种接口的 HC32L110/HC32F003/HC32F005 系列芯片丝印根据封装有所不同: Tssop20 在批次号后空一格加 T, QFN 在 第二排后面空一格加 T。
- 同时 2020 年开始执行的华大新版丝印,字符 T 在 Revision Code 上体现。(详见 PCN20191210-001 封装印章 丝印格式更改。)

#### 注②

- HC32L13/HC32F03 系列所有版本的芯片均支持 PA10、PA09 接口。支持两种接口的
- HC32L13/HC32F03 系列芯片丝印在第二排后面空一格加 T。
- 同时 2020 年开始执行的华大新版丝印,字符 T 在 Revision Code 上体现。(详见 PCN20191210-001 封装印章 丝印格式更改。)

#### 注③ :

- 对于支持 USART 半双工通信模式的 HC32F120/HC32M120 系列芯片, 如果选择了 USART 为半双工通信模式,则可以只接 TOOL0,RX、TX 可以不用连接。



#### 1.3.2 按键

离线编程器两个版本按键定义不同。

#### 1) 标准版:

KEY1 为编程模式按键,短按(约 0.5 秒)KEY1 使 PGM 主板在 UART 模式和 SWD 模式 之间切换。

KEY2 为启动编程按键,短按(约0.5秒)KEY2 启动一次编程功能。

注意:

一 在剩余次数为 0 时和编程器正在编程时,按键均无效。

#### 2) 带屏版:

KEY1 和 KEY2 在每个页面的功能由显示屏对应位置提示。

#### 1.3.3 LED 指示灯

LED1 为编程模式指示灯,显示状态如表 2 所示:

表 2 LED1 状态

| LEDI 颜色 | 当前状态      |
|---------|-----------|
| 绿色      | SWD 编程模式  |
| 橙色      | UART 编程模式 |

LED2 为编程状态指示灯,各种颜色表示状态如表 3 所示:

表 3 LED2 状态

| 绿色  | 红色 | 橙色 | 离线编程器状态          |
|-----|----|----|------------------|
| 快闪① | 灭  | 灭  | 正在编程             |
| 亮   | 灭  | 灭  | 编程成功/空闲          |
| 慢闪② | 灭  | 灭  | 空闲且剩余次数小于50次     |
| 灭   | 快闪 | 灭  | 剩余次数为0           |
| 灭   | 灭  | 亮  | 编程失败             |
| 灭   | 亮  | 慢闪 | 编程失败且剩余次数小于 50 次 |

注①: 快闪,频率约 16Hz 注②: 慢闪,频率 1Hz

#### 1.3.4 XTAL 支持

HC32L15, HC32F14 和 HC32M14 系列目标板可采用不同的外部晶振或者内部 RC 进行编程。 带屏版编程器在编程页面显示当前配置时钟频率,详情请参考带屏版本图标说明 1.4.2。

各系列 MCU 支持 XTAL (外部晶振)设置范围如表 4 所示。



表 4 各系列 XTAL 设置

| HC32L15 | HC32F14<br>HC32M14 | 其它系列 | 说明                                      |
|---------|--------------------|------|-----------------------------------------|
| 0       | 0                  | 0    | 使用目标 MCU 内部 RC                          |
| 4~32    | 4~16               | NA   | 使用目标 MCU 外部晶振,且<br>晶振频率为设置值(单位:<br>MHz) |

#### 1.3.5 供电

目标 MCU 系统可以选择外部供电或者使用 PGM 主板供电。

1) 配置供电功能,即 PGM 主板给目标芯片供电

PGM 主板对目标板可以提供 3.3V, 最大 100mA 的供电。

带屏版编程器在编程页面显示当前供电配置,详情请参考带屏版本图标说明 1.4.2。

2) 未配置供电功能,则需目标芯片系统外部供电 按照 1.3.1 节的编程模式完成硬件连接,再对目标芯片进行供电。

### 1.3.6 计数

限制编程次数可配置功能。可以配置是否使用计数功能,最大可配置次数为4294967294次。当编程器计数功能使能,且次数不足和次数为0时,LED2会有如表3所示相应提示信息。带屏版编程器在显示屏显示当前计数信息,详情请参考带屏版本图标说明1.4.2。

#### 1.3.7 安全

提供文件加密和芯片加密等功能,详细说明如下:

- 1. 文件加密功能(所有系列支持)
  - 使能后,离线编程系统配置软件 ConfigTool.exe 对目标二进制文件进行 AES (128 位、ECB 模式)加密。
- 芯片加密功能(HC32L15/HC32F14/HC32M14/HC32L13/HC32F03/HC32L110/HC32F003/HC32F005/HC32L17/HC32L19/HC32L07/HC32F07/HC32F19/HC32F17 系列支持)
   使目标芯片的 Flash 数据禁止被读出。操作成功后,目标芯片 SWD 接口被禁止无法再次连接,仅能通过 UART 模式再次编程。
- 3. 读保护 1(仅 HC32F460/HC32F120/HC32M120 系列支持) 使目标芯片的 Flash 数据禁止被读出。操作成功后,目标芯片 SWD 接口可再次连接,任何 方式都无法读取 Flash 内数据。但可以通过设置密钥进行解密使芯片退出 Flash 读保护状态。
- 4. 读保护 2 (仅 HC32F460/HC32F120/HC32M120 系列支持)



使目标芯片的 Flash 数据禁止被读出。操作成功后,目标芯片 SWD 接口可再次连接,任何方式都无法读取 Flash 内数据。仅能通过片擦除操作后再次编程。

5. 数据加密功能(仅 HC32F460 系列支持)

防止目标芯片 Flash 数据被物理盗取,可以按扇区使能配置。操作成功后,目标芯片被保护扇区内数据通过物理方式读取的数据为密文数据。

带屏版编程器在编程页面显示当前文件加密及芯片加密配置情况,详情请参考带屏版本图标说明 1.4.2。

#### 1.3.8 复位

可以配置编程成功后,是否对目标 MCU 进行复位。带屏版编程器在编程页面显示当前复位配置情况,详情请参考带屏版本图标说明 1.4.2。

注意:

- UART 模式下的复位功能无效。

#### 1.3.9 滚码功能

提供滚码功能。可以设置初始滚码值,设置滚码步长。带屏版编程器在编程界面显示当前的滚码值,详情请参考带屏版本图标说明 1.4.2。

#### 1.3.10 片擦除/页擦除配置

可以在界面选择编程前进行擦除的方式。选择片擦除时,采用全片擦除方式;选择页擦除时,编程器根据所编程的文件大小擦除相应区域。

注意:

- 如果同时使能滚码功能和页擦除功能,且滚码地址在代码文件地址范围外则滚码所在的页 也有被擦除的风险。

#### 1.3.11 Flash 写保护

HC32L110/HC32F003/HC32F005/HC32L13/HC32F03 系列支持 flash 写保护功能设置。设置并编程成功后,下一次代码运行时所保护区域不能被擦写。

以上 1.3.4 至 1.3.11 为离线编程器的可配置功能,其详细配置方法见 2.3 节详细配置步骤。



## 1.3.12 固件自升级

提供 CM PGM 主板固件升级功能。

如需更新 CM PGM 主板代码,可进入主板代码升级界面实现主板固件的自我更新。带屏板编程器界面会显示升级界面,升级成功后显示界面自动跳转到开机界面。



## 1.4 带屏版本

## 1.4.1 界面切换





## 1.4.2 图标说明

除开机页面,屏幕右上角图标表示编程器状态如表 5 所示。

表 5 带屏版状态图标

| <b>♣</b>         | ""表示未使能下载次数限制功能;<br>数字表示本编程器剩余下载次数。        |
|------------------|--------------------------------------------|
| S <sub>或</sub> □ | "S"表示当前选择 SWD 编程模式;<br>"U"表示当前选择 UART 编程模式 |
| SN:              | ""表示未使能滚码功能;<br>数字表示当前滚码值。                 |

编程页面屏幕左上角图标表示当前选择配置文件的配置信息如表 6 所示。

表 6 带屏版配置信息图标

| 8M<br>等 | 表示选择时钟频率            |
|---------|---------------------|
|         | 表示芯片加密功能使能          |
| 固       | 表示目标二进制文件已进行 AES 加密 |
| Ÿ       | 表示目标板供电功能使能         |
| R       | 表示目标板复位功能使能         |



## 2. 离线编程系统配置软件

## 2.1 驱动安装

运行本软件需要 Microsoft.NET Framework v3.5, 如果没有安装 Framework 3.5 将出现如下错误或者软件无法运行,如图:



图 11 无法运行

请确认"C:\Windows\Microsoft.NET\Framework"是否存在 Framework 3.5,如下图:



图 12 Framework 3.5

如果操作系统未安装,请去 Microsoft 官网进行下载,选择相应的版本进行下载,如下:

#### Microsoft .NFT Framework 3.5



图 13 Framework 3.5 下载



### 2.2 配置软件介绍

本软件根目录为(EXE)HDSC Programmer Config Tool\_VX.X,文件夹内容如图 14 所示。其中 ConfigTool.exe 是可执行文件,Config 文件夹包含本软件的配置文件,PGMFile 文件夹中是 CM PGM 固件,RamCode 文件夹里存放目标芯片的RamCode,User Data 存放该配置软件生成的用户文件。



图 14 配置软件目录结构

用户运行完 ConfigTool.exe 后,文件夹 User Data 中可能生成文件如表 7 所示。

表 7 生成文件

| 文件名         | 描述                            |
|-------------|-------------------------------|
| PGMKEY.bin  | 转换后的 PGM 代码文件                 |
| ***. config | 配置文件,包含编程配置信息以及目标 MCU 二进制文件信息 |

双击"ConfigTool.exe"打开软件,软件界面如图 15 所示:



图 15 软件界面

芯片名称:设置目标 MCU 型号。

XTAL: 配置目标 MCU 外部晶振频率或内部高速时钟。



波特率: 配置 PGM 板与目标板的 UART 通信波特率。

计数:设置编程次数功能。

文件加密: 配置目标文件加密功能,如使能加密功能则需要设置密钥。

密钥:输入文件加密的密钥。

芯片加密: 配置目标芯片加密功能。

供电:选择是否让PGM 板对目标板进行供电。

片擦除/页擦除: 编程时 Flash 擦除方式配置。

复位: 选择编程成功后是否让目标 MCU 复位。

目标 Hex 文件:选择需要对目标板进行编程的文件。

MCU 信息:显示当前选择的 MCU 信息。

滚码功能:配置目标芯片滚码功能。

选项字节设置/编程时写选项字节: 特殊字节写功能,目前有某些系列的 Flash 写保护功能。

**带屏版及配置文件名:** 当使用带屏版离线编程器时,需要生成指定文件名的配置文件时的可选择功能。



### 2.3 操作步骤

以下为配置软件操作步骤,其中 2.3.1 至 2.3.5、2.3.15 为必要步骤,2.3.6 至 2.3.14 为可选配置步骤。

## 2.3.1 双击打开 ConfigTool.exe 软件

### 2.3.2 配置目标 MCU 型号

如选择 MCU 型号 HC32L136X8/ HC32L130X8, 右边 MCU 信息栏出现所选 MCU 信息, 如图 16 所示。



图 16 选择芯片型号



### 2.3.3 配置硬件环境

HC32L136X8/ HC32L130X8 系列设置 XTAL 为 0M,与硬件环境无关。 设置目标板是否使用 PGM 主板的供电,此样例选择 PGM 主板供电。



图 17 配置硬件环境



## 2.3.4 设置波特率

设置通信波特率,此样例中设置为1000000。



图 18 波特率设置



### 2.3.5 设置目标文件

选择需要对目标 MCU 编程的文件,目标文件支持的格式有.srec、hex。



图 19 设置目标 Hex 文件

## 2.3.6 设置擦除方式

软件默认选择片擦除方式,如编程时仅需要擦除代码所在区域则选择页擦除方式。



图 20 擦除方式设置



### 2.3.7 设置复位

如果编程成功后需要将目标板复位,则选择复位复选框,此样例使能复位功能。



图 21 复位功能设置

#### 2.3.8 设置计数功能

如需次数限制功能,则选中"计数(Dec)"复选框,并且设置一个小于等于 4294967294 的次数。



图 22 计数功能设置



#### 2.3.9 加密设置

如果需要加密功能,则选中"文件加密"复选框,同时设置密钥。

选择"文件加密"功能后,"芯片加密"自动使能。

#### 注意:

- 一芯片加密后的芯片,如果需要再次编程,必须使用 UART 模式。
- 一 密钥支持长度 1~16 范围内的 ASCII 码字符串。



图 23 加密设置



#### 2.3.10 配置文件名设置

如果使用带屏版的离线编程器,则选择"带屏版"复选框,并且在"配置文件名"文本框中输入需要生成的配置文件名。



图 24 配置文件名设置



#### 2.3.11 设置滚码功能

如果需要设置滚码功能,则选中"滚码功能"复选框,同时设置滚码参数。滚码参数包括滚码地址,滚码初始值,滚码步长,以分号隔开。这里设置的滚码地址为0x00,滚码步长为50,滚码初始值为3。



图 25 配置滚码功能

#### 注意:

- 一 使用滚码功能时,仅限于一个配置文件。
- 滚码参数中地址需为十六进制,步长可以有正负,滚码初始值为无符号数,范围 (0~4294967295)。



#### 2.3.12 编程时写选项字节

如选择 HC32L110/HC32F003/HC32F005/HC32L13/HC32F03 系列芯片,则可以配置 Flash 写保护功能。选择"编程时写选项字节"点击按钮"选项字节设置"设置需要写保护的区域。



图 26 写保护功能设置



#### 2.3.13 数据加密

如选择 HC32F460 系列芯片,则可以配置数据加密功能。选择"数据加密"点击按钮"数据加密设置"设置需要数据加密的区域。



图 27 数据加密



### 2.3.14 设置 USART 半双工或全双工模式

如选择 HC32F120/HC32M120 系列芯片,则可以配置 USART 半双工/全双工通信模式。如需使用 USART 半双工,则选中 "USART 半双工",如需使用 USART 全双工,则选中 "USART 全双工"。



图 28 USART 半双工或全双工模式设置

#### 2.3.15 确定

按照需要配置好各项功能后,点击"确定"按钮。

完成后, User Data 文件夹中会生成用户文件如下。

#### 1) 未设置配置文件名

生成两个文件: PGMKEY.bin

pgm.config

#### 2) 设置了配置文件名

生成两个文件: PGMKEY.bin

xxxx.config



## 3. 离线编程器软件及文件更新

按照 2.3 节步骤生成用户文件后,将生成的配置文件和 PGM 主板代码文件拷贝至离线编程器中,然后更新 PGM。

## 3.1 文件拷贝

通过 USB 连接 PGM 与电脑,在电脑端识别到 U 盘设备后,拷贝文件步骤如下:

- 1) 格式化 U 盘
- 2) 拷贝 PGMKEY.bin 和\*\*\*.config 到 U 盘中,标准版编程器拷贝文件如图 29 所示。带屏版可拷贝多个配置文件到 U 盘中,如图 30 所示。



图 29 标准版拷贝文件



图 30 带屏版拷贝文件

#### 注意:

一 当拷贝多个配置文件到带屏版本离线编程器时,只有无需升级 PGM 固件时,多个配置文件 才均能正常运行。



## 3.2 离线编程器主板固件升级

如果进行以下功能对应操作项中的任意一项操作,则必须对 CM PGM 进行固件升级:

表 8 必须对 CM PGM 进行固件升级的操作

| 功能           | 操作       |
|--------------|----------|
| 文件加密         | 开启       |
| XII ME       | 修改密钥     |
|              | 开启       |
| 计数           | 关闭       |
|              | 修改次数     |
|              | 修改地址     |
| 滚码           | 修改步长     |
|              | 修改起始值    |
| 读保护1         | 开启       |
|              | 修改密钥     |
| 数据加密         | 开启       |
| 27.4H WL III | 修改数据加密范围 |

### PGM 主板固件升级步骤如下:

- 1) 同时按下 KEY1 和 KEY2 按键;
- 2) 给 PGM 上电,标准版编程器的 LED1 和 LED2 均为绿色,带屏版编程器屏幕显示如图 31 所示:



图 31 离线编程器升级界面 1



3) 同时短按 KEY1 和 KEY2 按键, 离线编程器开始升级主板固件, 此时, LED1 灯为绿色常亮, LED2 灯绿色快闪, 带屏版离线编程器屏幕显示如图 32 所示:



图 32 离线编程器升级界面 2

#### 注意:

- 一升级之前应确保离线编程器中已拷贝 PGMKEY.bin 和对应的\*\*\*.config 文件,如遇异常情况,请重复升级步骤。
- 4) 升级成功后直接运行 PGM 代码。带屏版离线编程器屏幕跳转到开机界面,如图 33 所示:



图 33 离线编程器开机界面

升级过程中,LED1 和LED2 灯颜色状态如表 9 所示:

表 9 LED 指示灯状态

| LED1  | LED2 | 当前状态                                 |
|-------|------|--------------------------------------|
| 绿色    | 绿色   | UDISK,进入升级模式                         |
| 绿色    | 灭    | 从 UDISK 状态切换到 Upgrading 状态           |
| 绿色    | 绿色快闪 | Upgrading,开始升级                       |
| 绿色    | 红色快闪 | 升级失败,或无 PGMKEY.bin 文件                |
| 绿色/橙色 | 绿色   | 开机界面,升级成功(LED1 颜色显示当前编程模式,详情如表 2 所示) |



## 4. 操作流程

以对芯片 HC32L15XXX 编程/Flash 读为例, CM PGM 离线编程系统总体使用流程如下:

#### 1) 软件配置

打开配置软件 ConfigTool.exe, 按照 2.3 节的详细步骤配置编程环境生成文件。完成后 User Data 文件夹中生成 PGMKEY.bin 和 \*\*\*.config 文件。

#### 2) 文件拷贝

通过 CM PGM 的 USB 接口与电脑相连接。若电脑未识别 U 盘,请参考 3.2 节步骤使电脑 识别到 U 盘。

#### 3) 准备硬件连接

请参考 1.3.1 章节,连接目标 MCU,如需外部供电则连接外部供电。

#### 4) 切换编程模式

根据表 2 内容或者带屏版显示屏信息查看当前编程模式并选择。

#### 5) 启动编程或 Flash 读。

标准版短按编程键启动编程,根据表 3 内容查看编程状态和编程结果。

带屏版通过菜单选择编程文件或者读 Flash 并且通过菜单提示启动,根据表 3 内容或者屏幕显示查看编程状态和编程结果。

Flash 读的数据保存为 read.bin 文件,需要重新连接编程器后通过 PC 端获取。



## 5. 常见错误处理

离线编程器出现故障时,可参照表 10 方法进行处理,如果仍然无法排除故障,请与代理商或者厂家联系。

表 10 常见错误处理

| 编号 | 错误类型                                  | 原因                                                     | 解决方法                                                                                                                               |
|----|---------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1  | 上电后离线编程器<br>LED1 不亮                   | 硬件损坏                                                   | 建议返厂                                                                                                                               |
| 2  | 上电后 U 盘不显示,<br>LED1 绿色,LED2 不亮        | 离线编程器 bootloader<br>代码损坏                               | 建议返厂                                                                                                                               |
| 3  | 上电后 U 盘不显示,<br>LED1 绿色,LED2 呈红<br>色快闪 | PGM 无固件代码                                              | 按照 3.2 节步骤升级固件代码                                                                                                                   |
| 4  | 同时接下 KEY1,<br>KEY2, 上电后无法识<br>别 U 盘   | bootloader 代码损坏                                        | 建议返厂                                                                                                                               |
| 5  | 无屏版,KEY1 可以切换编程模式,KEY2 无反应            | 无 pgm.config 文件                                        | 拷贝 pgm.config 文件至 U 盘中                                                                                                             |
| 6  | 升级失败                                  | 无 PGMKEY.bin 文件或 PGMKEY.bin 文件损坏                       | 检查 PGMKEY.bin 文件正确性                                                                                                                |
| 7  | 编程失败                                  | <ul><li>硬件连接错误</li><li>配置信息错误</li><li>目标芯片损坏</li></ul> | • 检查接线方式与编程模式是否匹配 • 检查目标芯片与配置信息是否匹配 • 检查晶振是否匹配 • 检查编程次数是否为 0 • 升级当前 config 文件对应的固件代码(PGMKEY.bin) • 同时使能滚码功能和页擦除功能,且滚码地址在代码文件地址范围外。 |
| 8  | 带屏版,屏幕不显示或<br>显示不全                    | 硬件问题                                                   | 建议返厂                                                                                                                               |



## 6. 版本信息 & 联系方式

| 日期        | 版本     | 修改记录  |
|-----------|--------|-------|
| 2020/2/19 | Rev1.0 | 初版发布。 |
|           |        |       |
|           |        |       |



## 如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: http://www.hdsc.com.cn/mcu.htm

通信地址: 上海市浦东新区中科路 1867 号 A 座 10 层

邮编: 201203

