

AVL Trees:

- Definition, properties and methods (Insert and rotation)
- Balancing Algorithms and Operation examples

Chapter 8: Search Trees (Part 2)

Dr. Sirasit Lochanachit

Types of Trees (Revisited)

B C D B D (6, Z)
E F G H I E F Binary Tree Binary Heap

Types of Binary Trees (Revisited)

4

Binary Search Tree (Revisited)

Binary Search Tree (Revisited)

A binary search tree (BST) is a binary tree that stores an ordered sequence of elements or pairs of keys and values and has the following properties [1]:

- All keys/elements in the *left subtree* are *less* than their *root*.
- All keys/items in the right subtree are greater than or equal to their root.
- o Each subtree itself is a binary search tree.
- The example uses BST for storing a set of integers.

[1] Michael T. Goodrich et al., Data Structures and Algorithms in Python, 2013

- Running time of <u>inserting node</u> is also proportional to the **height of tree** (i.e. $log_2 n$ or n) == O(h).
- A balanced search tree has the same number of nodes in both left and right subtree.
 - Worst-case performance is O(log₂n).
- Inserting keys in sorted order would construct an imbalanced tree.
 - \circ Provides poor performance of O(n).
- Other operations' performances are also limited by the height of the tree.

Balanced Binary Search Tree

- o A child is rotated to be above its parent.
- Several types of binary tree that automatically ensure balance
 - AVL tree
 - Splay tree
 - Red-black tree

AVL Tree

- AVL tree is named after its inventors: G.M. Adelson-Velskii and E.M. Landis.
- AVL tree introduces a **balance factor** for each node in the tree.
 - \circ The height difference between the left and right subtree (H_{left} H_{right})
 - \circ If a subtree is left heavy, then the factor is > 0.
 - If a subtree is right heavy, then the factor is < 0.
 - If the factor is 0, the tree is perfectly balanced.

Balance Factor in AVL Tree

Balance Factor in AVL Tree

10

• AVL tree is considered to be <u>balanced</u> when the balance factor is -1, 0, or 1.

$$\circ$$
 $|H_{left} - H_{right}| \ll 1$

- AVL tree uses trinode restructuring, involving reconfigurations of three nodes.
- When new node is inserted into the tree,
 - o Balance factor of a new leaf is zero.
 - Balance factor of its parent (and possibly every ancestors) has to be updated (+1 or -1 depends on left or right child).

Faculty of Information Technology King Mengkat's leathable of Sechnology Ladinaburg

Balance Factor in AVL Tree

Balancing AVL Tree

Information Technology

Balancing AVL Tree (LoL)

Information Technology

|2 - 1| = 1

|1 - 0| = 1

Balancing AVL Tree (LoL)

Faculty of Information Technology

|0 - 0| = 0|0 - 0| = 0

|3 - 1| = 2

A tree is left-heavy with a balance factor of 2 at the root.

Require a **right rotation**.

Left of Left

Right Rotation

To perform a right rotation (at node 30), do 4 steps below:

- Promote the left child (25) to be the root of the subtree.
- Move the old root (30) to be the right child of the new root.
- If the new root (25) already had a right child (28),
 - o The right child (28) become the left child of the new right child (30).
- Update parents pointers of old root node (if exist).

Balance Factor Condition is $\left|H_{left}-H_{right}\right| \leq 1$

|0 - 0| = 0

Faculty of Information Technology King Mangkat's Institute of Technology Ladenburg

Balancing AVL Tree (LoL)

Balancing AVL Tree (LoL)

where (Y) is a node which is a rotated node

Balance Factor Condition is $|H_{left} - H_{right}| \le 1$

Balancing AVL Tree (LoL)

Balancing AVL Tree (LoL)

where (Y) is a node which is a rotated node

Balancing AVL Tree (LoL)

Faculty of Information Technology

Balancing AVL Tree

Balancing AVL Tree (RoR)

Left Rotation

A tree is right-heavy with a balance factor of 2 at the root.

Require a **left rotation**.

To perform a left rotation (at node 12), do 4 steps below:

- Promote the right child (21) to be the root of the subtree.
- Move the old root (12) to be the left child of the new root.
- If the new root (21) already had a left child (18),
 - o The left child (18) become the right child of the new left child (12).

Update parents pointers of old root node (if exist).

Right of Right

Balance Factor Condition is $|H_{left} - H_{right}| \le 1$

Balancing AVL Tree (RoR)

Balancing AVL Tree (RoR)

Balance Factor Condition is $|H_{left} - H_{right}| \le 1$

where (Y) is a node which is a rotated node

where (Y) is a node which is a rotated node

Balancing AVL Tree (RoR)

Balancing AVL Tree (RoR)

where (Y) is a node which is a rotated node

where (Y) is a node which is a rotated node

Balancing AVL Tree (RoR)

Balancing AVL Tree

30

Left then Right Rotation

Reculty of Information Technology King Mangkar's testake of Technology Ladinatory

Left then Right Rotation

To solve this problem, there are additional Rules:

- If a subtree needs a right rotation,
- Check the balance factor of the left child.
- If the left child is right-heavy, then do left rotation on the left child.
- Then do right rotation on the subtree.

Right then Left Rotation

Faculty of Information Technology
Xing Merglat's Institute of Technology Ladindorny

Balancing AVL Tree

Additional Rules:

- If a subtree needs a left rotation,
- o Check the balance factor of the right child.
- If the right child is left-heavy, then do right rotation on the right child.
- o Then do left rotation on the subtree.

Exercise 1: Rebalance the given AVL tree.

Exercise 2: Rebalance the given AVL tree.

Balance Factor in AVL Tree

Individual Assignment

- AVL tree is considered to be balanced when the balance factor is -1, 0, or 1.
 - \circ $|H_{left} H_{right}| <= 1$
- AVL tree ensure that accessing the node costs only O(log₂n) time.

- Assignment#6: BST and AVL trees
- Due 09.00 am, Tuesday 06/10/2020.
- Submission
 - o Email: sirasit@it.kmitl.ac.th
 - Paper: in classroom next week
- Can be either written by hand or typing.
- Make sure to submit on time!!
 - o Late submission has penalty on the score.
- If unable to submit on time for reasonable reasons, let me know asap.