Listing of Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1-36 (Canceled)

- 37. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising the steps:
- (a) adjusting the pH of a composition comprising a liposome-entrapped first compound, so that the pH is made acidic, said first compound having the formula

$$R_1$$
—Pt R_2

where R₁ is diaminocycloalkyl and R₂ and R₃ independently have the formula

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms; and

- (b) after a predetermined time, adjusting the acidic pH of the composition of step (a) to a pH greater than 7.
- 38. (Previously Presented): The liposomal antitumor composition of claim 37 where the adjusting of step (a) comprises adding an acidic solution.
- 39. (Previously Presented): The liposomal antitumor composition of claim 38 wherein said acidic solution comprises sodium chloride.
- 40. (Previously Presented): The liposomal antitumor composition of claim 38 wherein said acidic solution is an aqueous solution.

- 41. (Previously Presented): The liposomal antitumor composition of claim 38 where the acidic solution is an acidic saline solution.
- 42. (Previously Presented): The liposomal antitumor composition of claim 37 wherein said adjusted pH of step (a) is in the range of 2 to 6.5.
- 43. (Previously Presented): The liposomal antitumor composition of claim 37 where the adjusting of step (b) comprises adding a buffer solution to the composition of step (a).
- 44. (Previously Presented): The liposomal antitumor composition of claim 37 wherein the method further comprises before said adjusting of step (a), the step of entrapping said first compound in said liposome.
- 45. (Previously Presented): The liposomal antitumor composition of claim 44 wherein said entrapping is done in the presence of sodium chloride or chloroform.
- 46. (Previously Presented): The liposomal antitumor composition of claim 45 wherein said adjusting of step (a) comprises reconstituting a lyophilized composition containing the liposome-entrapped first compound using an acidic solution.
- 47. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising the steps:
- (a) adjusting the pH of a composition comprising a liposome-entrapped first compound, so that the pH is made acidic, said first compound having the formula

$$R_1$$
—Pt R_3

where R₁ is diaminocycloalkyl and R₂ and R₃ independently have the formula

where R_4 , R_5 and R_6 are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, said platinum complex having the formula

$$R_1$$
— P_t — X_2

where R₁ is as defined above and X is halogen; and

- (b) after a predetermined time, adjusting the acidic pH of the composition of step (a) to a pH greater than 7.
- 48. (Previously Presented): The liposomal antitumor composition of claim 47 where the adjusting of step (a) comprises adding an acidic solution.
- 49. (Previously Presented): The liposomal antitumor composition of claim 48 wherein said acidic solution comprises sodium chloride.
- 50. (Previously Presented): The liposomal antitumor composition of claim 48 wherein said acidic solution is an aqueous solution.
- 51. (Previously Presented): The liposomal antitumor composition of claim 48 where the acidic solution is an acidic saline solution.
- 52. (Previously Presented): The liposomal antitumor composition of claim 47 wherein said adjusted pH of step (a) is in the range of 2 to 6.5.
- 53. (Previously Presented): The liposomal antitumor composition of claim 47 where the adjusting of step (b) comprises adding a buffer solution to the composition of step (a).
- 54. (Previously Presented): The liposomal antitumor composition of claim 47 wherein the method further comprises before said adjusting of step (a), the step of entrapping said first compound in said liposome.
- 55. (Previously Presented): The liposomal antitumor composition of claim 54 wherein said entrapping is done in the presence of sodium chloride or chloroform.

- 56. (Previously Presented): The liposomal antitumor composition of claim 47 wherein said adjusting of step (a) comprises reconstituting a lyophilized composition containing the liposome-entrapped first compound using an acidic solution.
- 57. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising comprising the steps:
- (a) adjusting the pH of a composition containing a liposome-entrapped first compound in the presence of sodium chloride, so that the pH is made acidic, said first compound having the formula

where DACH is 1,2-diaminocyclohexane and R₂ and R₃ independently have the formula

$$---$$
0 $--$

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, said platinum complex having the formula

where DACH is as defined above; and

- (b) after a predetermined time, adjusting the acidic pH of the composition of step (a) to a pH greater than 7.
- 58. (Previously Presented): The liposomal antitumor composition of claim 57 where the adjusting of step (a) comprises adding an acidic solution.
- 59. (Previously Presented): The liposomal antitumor composition of claim 58 wherein said acidic solution comprises sodium chloride.
- 60. (Previously Presented): The liposomal antitumor composition of claim 58 wherein said acidic solution is an aqueous solution.

Serial No. 10/750,382 Docket No. 8449-320-999

- 61. (Previously Presented): The liposomal antitumor composition of claim 58 where the acidic solution is an acidic saline solution.
- 62. (Previously Presented): The liposomal antitumor composition of claim 57 wherein said adjusted pH of step (a) is in the range of 2 to 6.5.
- 63. (Previously Presented): The liposomal antitumor composition of claim 57 where the adjusting of step (b) comprises adding a buffer solution to the composition of step (a).
- 64. (Previously Presented): The liposomal antitumor composition of claim 57 wherein the method further comprises before said adjusting of step (a), the step of entrapping said first compound in said liposome.
- 65. (Previously Presented): The liposomal antitumor composition of claim 64 wherein said entrapping is done in the presence of sodium chloride or chloroform.
- 66. (Previously Presented): The liposomal antitumor composition of claim 57 wherein said adjusting of step (a) comprises reconstituting a lyophilized composition containing the liposome-entrapped first compound using an acidic solution.
- 67. (Previously Presented): A method for treating cancer, the method comprising administering to a mammal in need thereof the liposomal antitumor composition of any one of claims 37, 47 or 57.
- 68. (Previously Presented): The method of claim 67, wherein said mammal is a human.
- 69. (Previously Presented): The method of claim 67, wherein said mammal has a cancer that is ovarian cancer, testicular cancer, lung cancer, cancer of the head or neck, esophageal cancer, bladder cancer, a sarcoma, a lymphoma or a mesothelioma.

- 70. (Previously Presented): A pharmaceutical composition comprising an amount of the liposomal antitumor composition of any one of claims 37, 47 or 57 effective to treat cancer and a pharmaceutically acceptable carrier or diluent.
- 71. (Currently Amended): The liposomal antitumor composition of any one of claims 1, 37, 47 or 57, wherein said liposome is the product of a process comprising mixing chloroform solutions of lipids.
- 72. (Previously Presented): A liposomal antitumor composition, comprising a platinum complex having the formula

intercalated between the bilayers of a liposome, where DACH is diaminocyclohexane, and where the liposome comprises dioleyl phosphatidyl glycerol and is the product of a process comprising mixing chloroform solutions of lipids.

73. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising adjusting the pH of a composition containing a liposome-entrapped first compound, so that the pH is made acidic, said first compound having the formula

$$R_1$$
—Pt R_2

where R₁ is diaminocycloalkyl and R₂ and R₃ independently have the formula

$$\begin{array}{c|c}
O & R_4 \\
\hline
 & C & R_5 \\
\hline
 & R_6
\end{array}$$

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, and where said liposome comprises dioleyl phosphatidyl glycerol and is the product of a process comprising mixing chloroform solutions of lipids.

74. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising adjusting the pH of a composition containing a liposome-entrapped first compound, so that the pH is made acidic, said first compound having the formula

$$R_1$$
—Pt R_3

where R₁ is diaminocycloalkyl and R₂ and R₃ independently have the formula

$$----$$
0 $---$ C $---$ R₅

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, said platinum complex having the formula

$$R_1$$
— P_t — X_2

where R₁ is as defined above and X is halogen, and where said liposome comprises dioleyl phosphatidyl glycerol and is the product of a process comprising mixing chloroform solutions of lipids.

75. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising adjusting the pH of a composition containing a liposome-entrapped first compound in the presence of sodium chloride, so that the pH is made acidic, said first compound having the formula

where DACH is 1,2-diaminocyclohexane and R₂ and R₃ independently have the formula

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, said platinum complex having the formula

where DACH is as defined above, and where said liposome comprises dioleyl phosphatidyl glycerol and is the product of a process comprising mixing chloroform solutions of lipids.

76. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising entrapping a first compound in a liposome comprising an acidic phospholipid that is dioleyl phosphatidyl glycerol, said liposome being the product of a process comprising mixing chloroform solutions of lipids, to produce a liposomal composition, said first compound having the formula

$$R_1$$
—Pt R_2

where R₁ is diaminocycloalkyl and R₂ and R₃ independently have the formula

$$---$$
0 $--$

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms.

77. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising entrapping a first compound in a liposome comprising an acidic phospholipid that is dioleyl phosphatidyl glycerol, said liposome being the product of a process comprising mixing chloroform

solutions of lipids, to produce a liposomal composition, said first compound having the formula

$$R_1$$
—Pt R_2

where R₁ is diaminocycloalkyl and R₂ and R₃ independently have the formula

$$---$$
0 $---$ C $---$ R₅

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, said platinum complex having the formula

$$R_1$$
— P_t — X_2

where R₁ is as defined above and X is halogen.

78. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising entrapping a first compound in a liposome comprising an acidic phospholipid is dioleyl phosphatidyl glycerol, said liposome being the product of a process comprising mixing chloroform solutions of lipids, to produce a liposomal composition, said first compound having the formula

where DACH is 1,2-diaminocyclohexane and R₂ and R₃ independently have the formula

$$---0$$

$$C$$

$$R_4$$

$$C$$

$$C$$

$$R_5$$

$$R_6$$

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, said platinum complex having the formula

where DACH is as defined above.

79. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising entrapping a first compound in a liposome comprising an acidic phospholipid that is dioleyl phosphatidyl glycerol, wherein said entrapping is done in the presence of sodium chloride or chloroform, to produce a liposomal composition, said first compound having the formula

$$R_1$$
— Pt
 R_3

where R₁ is diaminocycloalkyl and R₂ and R₃ independently have the formula

$$--- C$$
 $-- C$ $-- R_5$ R_6

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms.

80. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising entrapping a first compound in a liposome comprising an acidic phospholipid that is dioleyl phosphatidyl glycerol, wherein said entrapping is done in the presence of sodium chloride or chloroform, to produce a liposomal composition, said first compound having the formula

$$R_1$$
—Pt R_3

where R₁ is diaminocycloalkyl and R₂ and R₃ independently have the formula

$$---$$
O $-$ C $-$ C $-$ R₅

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, said platinum complex having the formula

$$R_1$$
— P_t — X_2

where R₁ is as defined above and X is halogen.

81. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising entrapping a first compound in a liposome comprising an acidic phospholipid is dioleyl phosphatidyl glycerol, wherein said entrapping is done in the presence of sodium chloride or chloroform, to produce a liposomal composition, said first compound having the formula

where DACH is 1,2-diaminocyclohexane and R₂ and R₃ independently have the formula

$$---$$
O $-$ C $-$ C $-$ R₅

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, said platinum complex having the formula

where DACH is as defined above.

82. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising adjusting the pH of a composition containing a liposome-entrapped first compound, so that the pH is made acidic, said first compound having the formula

$$R_1$$
—Pt R_3

where R₁ is diaminocycloalkyl and R₂ and R₃ independently have the formula

$$---$$
O $--$ C $--$ C $--$ R₅

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, where said liposome comprises dioleyl phosphatidyl glycerol, and where 20% of said first compound is transformed into said platinum complex.

83. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising adjusting the pH of a composition containing a liposome-entrapped first compound, so that the pH is made acidic, said first compound having the formula

$$R_1$$
—Pt R_2

where R₁ is diaminocycloalkyl and R₂ and R₃ independently have the formula

$$---$$
O $--$ C $---$ R₅

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, said platinum complex having the formula

$$R_1$$
— P_t — X_2

Serial No. 10/750,382 Docket No. 8449-320-999

where R_1 is as defined above and X is halogen, where said liposome comprises dioleyl phosphatidyl glycerol, and where 20% of said first compound is transformed into said platinum complex.

84. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising adjusting the pH of a composition containing a liposome-entrapped first compound in the presence of sodium chloride, so that the pH is made acidic, said first compound having the formula

where DACH is 1,2-diaminocyclohexane and R₂ and R₃ independently have the formula

$$---$$
0 $--$

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, said platinum complex having the formula

where DACH is as defined above, where said liposome comprises dioleyl phosphatidyl glycerol, and where 20% of said first compound is transformed into said platinum complex.

85. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising entrapping a first compound in a liposome comprising an acidic phospholipid that is dioleyl phosphatidyl glycerol to produce a liposomal composition, said first compound having the formula

$$R_1$$
—Pt R_2

where R₁ is diaminocycloalkyl and R₂ and R₃ independently have the formula

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, and where 20% of said first compound is transformed into said platinum complex.

86. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising entrapping a first compound in a liposome comprising an acidic phospholipid that is dioleyl phosphatidyl glycerol to produce a liposomal composition, said first compound having the formula

$$R_1$$
—Pt R_3

where R₁ is diaminocycloalkyl and R₂ and R₃ independently have the formula

where R₄, R₅ and R₆ are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, said platinum complex having the formula

$$R_1$$
— P_t — X_2

where R_1 is as defined above and X is halogen, and where 20% of said first compound is transformed into said platinum complex.

87. (Previously Presented): A liposomal antitumor composition comprising a platinum complex, the composition formed by a method, the method comprising entrapping a first compound in a liposome comprising an acidic phospholipid is dioleyl phosphatidyl glycerol to produce a liposomal composition, said first compound having the formula

where DACH is 1,2-diaminocyclohexane and R₂ and R₃ independently have the formula

$$----$$
O $---$ C $---$ C $---$ R₅

where R_4 , R_5 and R_6 are each independently hydrocarbon moieties having from 1 to about 10 carbon atoms, said platinum complex having the formula

where DACH is as defined above, and where 20% of said first compound is transformed into said platinum complex.

- 88. (Previously Presented): The liposomal antitumor composition of claim 57 wherein in step (a), greater than 80% of said first compound is transformed into said platinum complex.
- 89. (Previously Presented): The liposomal antitumor composition of any one of claims 82-87 wherein 50% of said first compound is transformed into said platinum complex.
- 90. (Previously Presented): The liposomal antitumor composition of any one of claims 82-87 wherein 90% of said first compound is transformed into said platinum complex.