Separate Modalities

Input: Multi-modal sample $x_{(i,j)} \sim D_i$

Output: Modality-specific tokens

$$\left(\begin{array}{c} \text{describe this} \\ \text{j image.} \end{array}\right) = x_{(i,j)} \sim D_i$$

Data Preprocessor

$$T_{\text{prompt}}^{(i,j)} = (|\text{im_start}| \cdot |\text{system} \cdot |\text{vision_start}| \cdot |\text{image_pad}| \cdot ... |\text{describe this image...})$$

$$T_{\text{text}}^{(i,j)} = [t_1^t \dots] \qquad T_{\text{special}}^{(i,j)} = [t_1^s, t_2^s \dots]$$

$$T_{\text{video}}^{(i,j)}, T_{\text{audio}}^{(i,j)}, \dots$$

$$T_{\text{image}}^{(i,j)} = [t_1^i, t_2^i \dots]$$

Calculate Importance Scores

Input: Token set and neuron in FFN

Output: Importance score $IS(u_{l,i})$ of i-th neuron in layer l

Aggregate Importance Scores

Input: Importance scores of each neuron across modality token sets

Output: For each modality, sum ISM over datasets and samples

$$ISM_{\text{text}}^{(i,j)} = \left[IS_t\left(T_{\text{text}}^{(i,j)}, u_{l,n}\right)\right]_{l=1 \sim L, n=1 \sim N}$$

Importance Score Matrix (ISM)

Importance Score
$$IS_t(T^{(i,j)}, u_{l,t})$$

$$ISM_{image}^{(i,j)} = \left[IS_t\left(T_{image}^{(i,j)}, u_{l,n}\right)\right]_{l=1 \sim L, n=1 \sim N}$$

Aggregation Operation

$$ISM_* = \mathbb{E}_{D_i \sim \mathcal{D}}[\mathbb{E}_{x_j \sim D_i} ISM_*^{(i,j)}]$$
where $* \in \{\text{image, text, ...}\}$

Select Modality-Specific Neurons

Input: ISMs and total $L \times N$ neurons in FFN

Output: Select top-K important neurons

Nayer-Uniform Modality-Adaptive Selection

Layer-Adaptive Modality-Uniform Selection

[ISM_{image}, ISM_{text}, ...]

