

1. The program will determine the Length of the Border X

X can be Identified either Top, Bottom, Left, or Right

SLAB BORDER					
тор	LENGTH				
воттом	LENGTH				
LEFT	LENGTH				
RIGHT	LENGTH				

Example:

S-1

SLAB BORDER						
TOP	LENGTH	55000				
воттом	LENGTH	55000				
LEFT	LENGTH	9500				
RIGHT	LENGTH	9500				

$$L_{Top} = 55000$$

$$L_{Bottom} = 55000$$

$$L_{Left} = 9500$$

$$L_{Right} = 9500$$

2. The program will determine the Longitudinal Length and Transverse Length

$$L_A = \frac{L_{Top} + L_{Bottom}}{2} \ \& \ L_B = \frac{L_{Left} + L_{Right}}{2}$$

Example:

S-1

$$L_A = \frac{L_{Top} + L_{Bottom}}{2} = \frac{55000 + 55000}{2} = 55000$$

$$L_B = \frac{L_{Left} + L_{Right}}{2} = \frac{9500 + 9500}{2} = 9500$$

3. The program will compute the quantity of the reinforcements.

If $L_A \geq L_B$

$$Qty \ of \ L_A = \frac{L_B - 2CC_{SoG}}{Spacing_{LONG}} + 1$$

$$Qty \ of \ L_B = \frac{L_A - 2CC_{SoG}}{Spacing_{TRANS}} + 1$$

$$Qty \ of \ L_A = \frac{L_B - 2CC_{SoG}}{Spacing_{TRANS}} + 1$$

$$Qty \ of \ L_B = \frac{L_A - 2CC_{SoG}}{Spacing_{LONG}} + 1$$

Example:

S-1 $L_A > L_B$

REINFORCEMENTS

	LONGITUDINA	TRANSVERSE	Ε	
DIAMETER	10		10	
SPACING	300	300		
SPLICE TYPE	LAPPED SPLICE	▼	LAPPED SPLICE	▼

$$Qty \ of \ L_A = \frac{L_B - 2CC_{SoG}}{Spacing_{LONG}} + 1 = \frac{9500 - 2(40)}{300} + 1 = 32.4 \rightarrow 33 \ pcs$$

$$Qty \ of \ L_B = \frac{L_A - 2CC_{SoG}}{Spacing_{TRANS}} + 1 = \frac{55000 - 2(40)}{300} + 1 = 184.07 \rightarrow 185 \ pcs$$

- 4. The program will determine the splice length of the slab
 - If the Splice Type is "Lapped Splice" or "Welded Splice (Lap)"

 $S_L = Splice \ Length \ (Tension) \ based \ in \ Parameters$

• If the Splice Type is "Mechanical" or "Welded Splice (Butt)"

$$S_L = 0$$

Example:

 $f'c = 2500 \ psi \rightarrow 17.5$

The program will pick the closest larger f'c. Thus

$$f'c = 20.7$$

S-1

٦
٦
₹

$$S_L @ L_A = 300$$

$$S_L @ L_B = 300$$

5. The program will determine the effective length of each slab.

$$EL_A = L_A - 2CC_{SoG}$$

$$EL_B = L_B - 2CC_{SoG}$$

Example:

S-1

REINFORCEMENTS							
	LONGITUDINAL TRANSVERSE						
DIAMETER	10	10					
SPACING	300		300				
SPLICE TYPE	LAPPED SPLICE	▼	LAPPED SPLICE	▼			

$$EL_A = L_A - 2CC_{SoG} = 55000 - 2(40) = 54920 \ mm \rightarrow 54.92 \ m$$

$$EL_B = L_B - 2CC_{SoG} = 9500 - 2(40) = 9420 \ mm \rightarrow 9.42 \ m$$

- 6. The program will determine the right manufactured reinforcement length and its needed manufactured quantity.
 - If $EL_{(_)} < Largest L_M$

$$Qty_P = \frac{L_M}{EL_{(_)}}$$

If $Qty_P < 1$

$$L_W = 0$$

Else

 $L_W = L_M - (EL_X) \cdot Qty_P(round\ down\ into\ whole\ number)$

$$Qty_{M} = \frac{Qty \ of \ L_{X}}{Qty_{P}(round \ down \ to \ whole \ number)}$$

$$L_E = [Qty_M(round up to whole number) - Qty_M] \cdot L_M$$

And

$$Total\ Wastage = L_E + L_W[Qty_M(round\ down\ to\ whole\ number)]$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

• If $EL_{(_)} > Largest L_M$

$$Qty_M = \frac{EL_X}{L_M - S_L}$$

 $L_B = [Qty_M - Qty_M(round\ down\ into\ whole\ number)](L_M - S_L)$

$$L_E = L_M - L_B$$

And

$$Total\ Wastage = L_E \cdot Qty\ of\ L_X$$

The manufactured bar length that has the smallest total waste will be the chosen manufactured bar length and its corresponding manufactured quantity

$$Qty_{CM} = Qty \ of \ L_X \cdot Qty_M(round \ up \ into \ whole \ number)$$

Example:

S-1

• $Qty \ of \ L_A = 33 \ \& \ EL_A = 54.92 \ m$

$$EL_L = 54.92 \; m > Largest \; L_M = 15.0 \; m$$

L [M]	Qty of L[X]	EL [X]	Splice Length	Qty [SoG]	Qty [l	M]	L [B]	L [E]	Qty [CM]	Total Waste
6					9.64	10	3.620	2.380	330	78.540
7.5					7.63	8	4.520	2.980	264	98.340
9					6.31	7	2.720	6.280	231	207.240
10.5	33	54.92	0.30	1	5.38	6	3.920	6.580	198	217.140
12					4.69	5	8.120	3.880	165	128.040
13.5					4.16	5	2.120	11.380	165	375.540
15					3.74	4	10.820	4.180	132	137.940

$$Qty_{CM} = 330$$
 and $L_{CM} = 6 m$

• $Qty \ of \ L_B = 185 \ \& \ EL_B = 9.42 \ m$

$$EL_L = 9.42 \; m < Largest \; L_M = 15.0 \; m$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				0.64	0	#####	#####	0.000	#DIV/0!	#DIV/0!
7.5				0.80	0	#####	#####	0.000	#DIV/0!	#DIV/0!
9				0.96	0	#####	#####	0.000	#DIV/0!	#DIV/0!
10.5	185	9.42	1	1.11	1	185	185	1.080	0	199.800
12				1.27	1	185	185	2.580	0	477.300
13.5				1.43	1	185	185	4.08	0.00	754.80
15				1.59	1	185	185	5.58	0.00	1921.60

$$Qty_{CM} = 185$$
 and $L_{CM} = 10.5 m$

7. The program will determine the cost of the Program

$$Price_{BR} = \sum Qty_{M}Price_{M}$$

Where:

$Price_{M} = Price \ of \ the \ steel \ reinforcement \ based \ on \ Pricing$

= Sorted through Reinforcement Grade, diameter, and Manufactured Length

Example:

S-1 $L_A > L_B$

Rebar GRADE 40 (Ø10mm) [6m]- P 162.62
Rebar GRADE 40 (Ø10mm) [7.5m]- P 203.28
Rebar GRADE 40 (Ø10mm) [9m]- P 243.94
Rebar GRADE 40 (Ø10mm) [10.5m]- P 284.59
Rebar GRADE 40 (Ø10mm) [12m]- P 325.25

 \bullet L_A

$$Qty_{CM} = 330 \ and \ L_{CM} = 6 \ m$$

$$Price_M =$$
 ₹ 162.62

$$Qty_M Price_M = 330(162.62) =$$
 53664.6

 \bullet L_B

$$Qty_{CM} = 185 \ and \ L_{CM} = 10.5 \ m$$

$$Price_M = 284.59$$

$$Qty_M Price_M = 185(284.59) =$$
 52649.15

Total

$$Price_{BR} = \sum Qty_{M}Price_{M} = 53664.6 + 52649.15 =$$
† 106313.75

8. The program will determine the weight of the slab

If
$$L_A \geq L_B$$

$$W_{SoG} = W_{D(L)} \cdot Qty_{CM(A)} \cdot L_{CM(A)} + W_{D(T)} \cdot Qty_{CM(B)} \cdot L_{CM(B)}$$

If $L_A < L_B$

$$W_{SoG} = W_{D(L)} \cdot Qty_{CM(B)} \cdot L_{CM(B)} + W_{D(T)} \cdot Qty_{CM(A)} \cdot L_{CM(A)}$$

Where:

 $W_{D(X)} = Weight \ based \ on \ closest \ diameter \ in \ Parameter$

Example:

- 1	WEIGHT -					
	BAR SIZE (Diameter)	kg/m				
	6 mm	0.222				
	8 mm	0.395				
	10 mm	0.616				
	12 mm	0.888				
	16 mm	1.597				
	20 mm	2.466				
	25 mm	3.854				
	28 mm	4.833				
	32 mm	6.313				
	36 mm	7.991				
	40 mm	9.864				
	44 mm	11.926				
	50 mm	15.413				
	56 mm	19.318				

S-1 $L_A > L_B$

REINFORCEMENTS							
	LONGITUDINAL TRANSVERSE						
DIAMETER	10		10				
SPACING	300		300				
SPLICE TYPE	LAPPED SPLICE	▼	LAPPED SPLICE ▼				

$$W_{SoG} = W_{D(L)} \cdot Qty_{CM(A)} \cdot L_{M(A)} + W_{D(T)} \cdot Qty_{CM(B)} \cdot L_{CM(B)}$$

$$W_{SoG} = 0.616 \cdot 330 \cdot 6 + 0.616 \cdot 185 \cdot 10.5$$

$$W_{SoG} = 2416.26 \, kg$$

9. The program will determine the labor price of the slab

$$Price_{Labor} = W_{SoG} \cdot L_R$$

Where:

 $L_R = Labor Rate in Footing based in the Pricing$

Example:

CATEGORY: LABOR RATE (REBAR PER KG) - 9 items

FOOTING [KG]- P 17

WALL FOOTING [KG]- P 17

COLUMN [KG]- P 15

STAIRS [KG]- P 15

BEAM [KG]- P 16

FOOTING TIE BEAM [KG]- P 16

SLAB ON GRADE [KG]- P 17

SUSPENDED SLAB [KG]- P 18

WALLS [KG]- P 16

 $Price_{Labor} = W_{SoG} \cdot L_R = 2416.26(17) = \mathbb{P} \, \mathbf{41076.42}$