

Maximum Marks: 30

Programme code: 01

Programme: B. Tech Computer Engineering
Name of the Constituent College:
K. J. Somaiya College of Engineering

Semester: July 2023-October 2023
Examination: In-Semester Examination

Class: SY

Class: SY

Name of the department:
COMP

Name of the department:

Course Code: 116U01C301

Name of the Course: Integral Transform and Vector Calculus

Question No.		Max. Marks
Q.1	Attempt any THREE of the following	
(11)	Find the Laplace transform of $f(t) = t e^{t} \sin 2t \cos t$	06
(6)	Evaluate $\int_0^\infty \frac{\cos 6t - \cos 4t}{t} dt$ using Laplace transforms.	06
	Find the inverse Laplace transforms of $\left(\frac{1}{(s-2)(s+2)^2}\right)$	06
(d)	Find the inverse Laplace transforms of $log_s \left(1 + \frac{1}{s^2}\right)$	06
Q.2	Attempt any ONE of the questions set (a) or (b)	
(a)	(i) Write the Fourier series of $f(x)$ in the interval $0 \le x \le 2\pi$ and formula for Fourier constants a_0 , a_n and b_n .	01
	(ii) For $f(x) = \left(\frac{\pi - x}{2}\right)^2$, $0 \le x \le 2\pi$ obtain Fourier constants a_0 , a_n and b_n	05
	(iii) Write the Fourier series of $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in the interval $0 \le x \le 2\pi$	01
	(iv) Deduce $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$ from Fourier series	01
(v) Deduce $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$ from Fourier series	01
(1	ví) Deduce $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$	01
(4	(ii) By using Parseval's identity prove that $\frac{\pi^4}{90} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{4^4} + \cdots$	02

	(i) Define Even function. Examine for $f(x) = x^2, -\pi \le x \le \pi$	01
	(ii) Write the Fourier series of even function $f(x)$ in the interval $-\pi \le x \le \pi$	01
1	and formula for Fourier constants a_0 , a_n and b_n .	
	(iii) For $f(x) = x^2$, $-\pi \le x \le \pi$ obtain Fourier constants a_0 , a_n and b_n .	04
	(iv) Write the Fourier series of $f(x) = x^2$ in the interval $-\pi \le x \le \pi$	01
	(v) Deduce $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$ from Fourier series	01
	(vi) Deduce $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$ from Fourier series	01
	(vii) Deduce $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$	01
	(viii) By using Parseval's identity prove that $\frac{\pi^4}{90} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{2^4} + \frac{1}{4^4} + \cdots$	02