Package 'PhosMap'

November 30, 2022

Type Package

Title A Comprehensive R Package For Analyzing Quantitative Phosphoproteomics Data

Version 1.0.0

Author Dongdong Zhan [aut, cre], Mengsha Tong [aut, cre]

Maintainer Dongdong Zhan <ecnuzdd@163.com>

Description PhosMap is a comprehensive R package for analyzing quantitative phosphoproteomics data. Modules in PhosMap were classified into two major categories: (1) data preprocessing and (2) data analysis and presentation. For the data obtained by the two search engines, MaxQuant and Firmiana(Mascot), we perform different preprocessing on the data according to its characteristics. For MaxQuant, the complete preprocessing including quality control, filtering, and normalization is included in the R package. For Firmiana(Mascot), an intact data preprocessing procedure of phosphoproteomics data covered three main steps: merging input files after quality control, mapping phosphorylation sites (p-sites) to the corresponding protein sequence and data normalization. PhosMap incorporated six analysis modules, including dimension reduction analysis, differential expression analysis, time course analysis, kinase activity prediction to find activated/deactivated kinases, motif enrichment analysis and survival analysis.

License GPL (>= 2) Encoding UTF-8 LazyData FALSE RoxygenNote 7.2.0 Date 2022-11-29 biocViews Proteomi

biocViews Proteomics, DifferentialExpression, DataRepresentation, Visualization, Clustering, Normalization, QualityControl, TimeCourse

Depends R (>= 4.0)

Imports graphics, grDevices, stats, utils, stringr, ggseqlogo, samr, limma, e1071, ClueR, Rtsne, glmnet, yaml, impute, RCurl, uwot

Suggests knitr, rmarkdown, pheatmap

VignetteBuilder knitr **NeedsCompilation** no

R topics documented:

.nalysis_	_deps_	anova																		- (

malysis_deps_limma	 4
nalysis_deps_sam	5
heck_mea_input	 6
compute_kses	 7
construct_pwm	 8
extract_psites_score	9
fore_seq_to_motif	 10
ormatted_output_mef_results	 11
generate_psites_score_file	 11
get_aligned_seq_for_mea	 12
get_colors_for_discrete_value	 13
get_combined_data_frame	 14
get_df_with_AAs_i	 15
get_file_info_from_dir	 17
get_file_suffix	 17
get_filtered_df	 18
get_foreground_df_to_motifs	 18
ret_foreground_seq_to_motifs	 19
get_global_background_df	20
ret_ka_by_mean_or_mlr	21
get_ksea_regulons_info	22
get_ksea_result_list	23
 get_kses	24
get_list_with_filtered_sites	25
get_merged_phospho_df	26
get_modification_index	27
get_motif_analysis_summary	28
get_motifs_list	
ret_normalized_data_FOT5	
get_normalized_data_of_psites	
get_substrate_expr_df	
get_summary_from_ksea	
get_summary_with_unique_sites	
get_unique_AAs_i_df	
teep_psites_with_max_in_topX	
oad_data_with_ftp	
oad_data_with_http	
nea_based_on_background	38
nerge_profiling_file_from_Firmiana	39
notif_data_frame_to_sequence	40
norm_based_on_proteomics_maxquant	41
orm_maxquant	42
normalize_nopair_ctrl_by_col	43
normalize_nopair_noctrl_by_colmed	44
normalize_phos_data_to_profiling	45
normalize_to_Pair	46
olot_seqlogo	47
pre_process_filter_psites	48
c_maxquant	49
each_motif_pattern	50
risualization_deps_with_scatter	51
risualization_tucps_with_scatter	
100011101101 10111 1010101 1 1 1 1 1 1	

analysis_deps_anova 3

visualization_with_simple_pca												 	53
visualization_with_simple_tsne												 	54
visualization_with_umap												 	55
write_csv_pep_seq_conf												 	56

analysis_deps_anova

Differential expression analysis using ANOVA

Description

Differential expression analysis using ANOVA

Usage

```
analysis_deps_anova(
  expr_data_frame,
  group,
  log2_label = FALSE,
  return_padjust = TRUE,
  adjust_method = "BH"
)
```

Arguments

expr_data_frame

A data frame containing ID and quantification values.

group A factor representing experimental groups.

log2_label A boolean value for representing whether the value is logarithmic or not, the

default is FALSE.

return_padjust A boolean value for representing whether or not the p value is adjusted, the

default is TRUE.

adjust_method Method used to adjust the p-values for multiple testing. See p.adjust for the

complete list of options, the default is "BH".

Value

A data frame containing ID, log2(FC) and p value.

Author(s)

Dongdong Zhan and Mengsha Tong

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/analysis_deps_anova.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "analysis_deps_anova.RData")
load("analysis_deps_anova.RData")</pre>
```

```
anova_result <- analysis_deps_anova(
  expr_data_frame, group, log2_label = FALSE,
  return_padjust = TRUE, adjust_method = 'BH'
)
head(anova_result)
}</pre>
```

analysis_deps_limma

Differential expression analysis using limma.

Description

Differential expression analysis using limma.

Usage

```
analysis_deps_limma(
  expr_data_frame,
  group,
  comparison_factor,
  log2_label = FALSE,
  adjust_method = "BH"
)
```

Arguments

expr_data_frame

A data frame containing ID and quantification values.

group A factor for representing experimental groups.

comparison_factor

A vector for comparison groups.

log2_label A boolean value for representing whether the value is logarithmic or not, the

default is FALSE.

adjust_method Method used to adjust the p-values for multiple testing. See p.adjust for the

complete list of options, the default is "BH"

Value

A list containing results from limma analysis.

Author(s)

Dongdong Zhan and Mengsha Tong

References

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression \ analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43(7), e47.

analysis_deps_sam 5

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp\_url <- "ftp://111.198.139.72:4000/pub/PhosMap\_datasets/function\_demo\_data/analysis\_deps\_limma.RData" - "function\_demo\_data/analysis\_deps\_limma.RData" - "function\_demo\_data/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/analysis\_deps\_limma.RData/an
load_data <- load_data_with_ftp(ftp_url, 'RData')</pre>
writeBin(load_data, "analysis_deps_limma.RData")
load("analysis_deps_limma.RData")
limma_results_df <- analysis_deps_limma(</pre>
           expr_data_frame, group, group_levels,
           log2_label = FALSE, adjust_method = 'none'
head(limma_results_df)
}
```

analysis_deps_sam

Differential expression analysis using SAM

Description

Differential expression analysis using SAM

Usage

```
analysis_deps_sam(
 expr_data_frame,
  group,
 log2_label = FALSE,
 nperms = 100,
 rand = NULL,
 minFDR = 0.05,
  samr_plot = TRUE
```

Arguments

expr_data_frame

A data frame containing ID and quantification values.

group A factor representing experimental groups.

log2_label A boolean value for representing whether the value is logarithmic or not, the

default is FALSE.

Number of permutations used to estimate false discovery rates. nperms

if specified, the random number generator will be put in a reproducible state. rand

minFDR A numeric value for filtering significant genes, the default is 0.05.

A boolean value for representing whether samr graph is plotted or not. samr_plot

Value

A list containing results from sam analysis.

6 check_mea_input

Author(s)

Dongdong Zhan and Mengsha Tong

References

R. Tibshirani, G. Chu, T. Hastie and Balasubramanian Narasimhan (2010). samr: SAM: Significance Analysis of Microarrays.\Rpackage version 1.28. https://CRAN.R-project.org/package=samr

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/analysis_deps_sam.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "analysis_deps_sam.RData")
load("analysis_deps_sam.RData")

sam_results_list <- analysis_deps_sam(
    expr_data_frame, group, log2_label = FALSE,
    nperms = 100, rand = NULL, minFDR = 0.05, samr_plot = TRUE
)
head(sam_results_list)
}</pre>
```

check_mea_input

Check input for motif enrichment analysis (mea)

Description

Check input for motif enrichment analysis (mea)

Usage

```
check_mea_input(foreground, background, center)
```

Arguments

foreground A vector for AA sequences with fixed length as foreground input.

A vector for AA sequences with fixed length as background input.

center A character for center of k-mer.

Value

A list passing check steps

Author(s)

Dongdong Zhan and Mengsha Tong

compute_kses 7

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/check_mea_input.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "check_mea_input.RData")
load("check_mea_input.RData")

check_result_list <- check_mea_input(
    foreground[1:100],
    background[1:100],
    center
)
head(check_result_list)
}</pre>
```

compute_kses

computing kinase-substrate enrichment score

Description

computing kinase-substrate enrichment score

Usage

```
compute_kses(
  substate_vector,
  regulons_of_kinase,
  substrates_of_kinase_in_exp_count
)
```

Arguments

Value

A numeric or NA for enrichment_score.

Author(s)

Dongdong Zhan and Mengsha Tong

8 construct_pwm

References

Hernandez-Armenta C et al. Benchmarking substrate-based kinase activity inference using phosphoproteomic data[J]. Bioinformatics, 2017, 33(12): 1845-1851.

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://l11.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/compute_kses.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "compute_kses.RData")
load("compute_kses.RData")

stochastic_enrichment_score_i <- compute_kses(
    substate_vector,
    regulons_of_kinase_i,
    substrates_of_kinase_in_exp_count
)
head(stochastic_enrichment_score_i)
}</pre>
```

construct_pwm

Construct position weight matrix

Description

Construct position weight matrix

Usage

```
construct_pwm(sequences, width, frequency_flag = TRUE)
```

Arguments

sequences A vector for aligned sequences with fixed length.

width A numeric for specific k-mer.

frequency_flag A boolean for showing real frequency or frequency probability, the default is

TRUE for showing real frequency.

Value

A position weight matrix.

Author(s)

Dongdong Zhan and Mengsha Tong

References

Wagih O, Sugiyama N, Ishihama Y, et al. Uncovering phosphorylation-based specificities through functional interaction networks[J]. Molecular & Cellular Proteomics, 2016, 15(1): 236-245.

extract_psites_score 9

Examples

```
## Not run:
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/construct_pwm.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "construct_pwm.RData")
load("construct_pwm.RData")

foreground_pwm <- construct_pwm(
    foreground_sequence,
    width,
    frequency_flag = TRUE
)
head(foreground_pwm)

## End(Not run)</pre>
```

Description

Extract the confidence probability of phosphorylation sites (psites) from mascot xml. One file containing experiment codes and one folder containing mascot xml as input, the another folder is required as output. Python is required and the corresponding xml package is also required.

Usage

```
extract_psites_score(
  phosphorylation_exp_design_info_file_path,
  mascot_xml_dir,
  mascot_txt_dir
)
```

Arguments

Value

A series of output file saved in the mascot_txt_dir

10 fore_seq_to_motif

Examples

```
## Not run:
extract_psites_score(
   phosphorylation_exp_design_info_file_path,
   mascot_xml_dir,
   mascot_txt_dir
)
## End(Not run)
```

fore_seq_to_motif

Convert the list that consists of motifs and the corresponding sequences to data frame.

Description

Convert the list that consists of motifs and the corresponding sequences to data frame.

Usage

```
fore_seq_to_motif(foreground_sequences_mapped_to_motifs)
```

Arguments

foreground_sequences_mapped_to_motifs

A list that consists of motifs and the corresponding sequences.

Value

A data frame that consist of aligned sequences and the corresponding motifs.

Author(s)

Dongdong Zhan and Mengsha Tong

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/fore_seq_to_motif.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "fore_seq_to_motif.RData")
load("fore_seq_to_motif.RData")

df <- fore_seq_to_motif(
   foreground_sequences_mapped_to_motifs
)
head(df)
}</pre>
```

```
formatted_output_mef_results
```

Output formatted sequences in foreground that are mapped to specific motifs.

Description

Output formatted sequences in foreground that are mapped to specific motifs.

Usage

```
formatted_output_mef_results(foreground_sequences_mapped_to_motifs)
```

Arguments

foreground_sequences_mapped_to_motifs

A list that consists of motifs and their corresponding aligned sequences from foreground.

Value

A data frame that motifs and their corresponding aligned sequences from foreground.

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## Not run:
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/formatted_output_mef_results.
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "formatted_output_mef_results.RData")
load("formatted_output_mef_results.RData")

formatted_output_df <- formatted_output_mef_results(
    foreground_sequences_mapped_to_motifs)
) head(formatted_output_df)

## End(Not run)</pre>
```

```
generate_psites_score_file
```

Generate peptide identification files with psites scores.

Description

Based on mascot txt files with psites and peptide identification files downloaded from Firmiana, the file with phosphorylation modifications is generated.

Usage

```
generate_psites_score_file(
  mascot_txt_dir,
  firmiana_peptide_dir,
  psites_score_dir
)
```

Arguments

```
{\tt mascot\_txt\_dir} \ \ A \ folder \ containing \ identification \ xml \ files \ with \ psites \ scores \ as \ input. \\ {\tt firmiana\_peptide\_dir}
```

 $\label{thm:containing} A \ folder \ containing \ identification \ txt \ files \ downloaded \ from \ Firmiana \ as \ input. \\ psites_score_dir$

A folder used for saving files of peptide identification files with psites scores

Value

A series of output files saved in the psites_score_dir

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## Not run:
generate_psites_score_file(mascot_txt_dir, firmiana_peptide_dir, psites_score_dir)
## End(Not run)
```

```
get_aligned_seq_for_mea
```

Taking S/T/Y as the center, align sequence to fasta library by the specific length.

Description

Taking S/T/Y as the center, align sequence to fasta library by the specific length.

Usage

```
get_aligned_seq_for_mea(
   ID,
   Sequence,
   AA_in_protein,
   fixed_length,
   species = "human",
   fasta_type = "refseq"
)
```

Arguments

ID A vector for gi number of proteins.Sequence A vector for sequence of peptides.

AA_in_protein A vector for the locations of S/T/Y in sequence of proteins.

fixed_length Length of aligned sequence, the default is 15.

species A string for the library of species, the options are human, mouse and rattus, the

default is human.

fasta_type, A string for fasta source, the options are refseq and uniprot, the default is refseq

Value

A data frame containing ID, Sequence, AA_in_protein, aligned_seq.

Author(s)

Dongdong Zhan and Mengsha Tong

References

Hadley Wickham (2018). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.3.0.\ https://CRAN.R-project.org/package=stringr.

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_aligned_seq_for_mea.RData
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "get_aligned_seq_for_mea.RData")
load("get_aligned_seq_for_mea.RData")

foreground_df <- get_aligned_seq_for_mea(
    ID[1:100], Sequence[1:100], AA_in_protein[1:100],
    fixed_length, species = 'human',
    fasta_type = 'refseq'
)
head(foreground_df)
}</pre>
```

```
get_colors_for_discrete_value
```

Generate custom colors from discrete values for heatmaps.

Description

Generate custom colors from discrete values for heatmaps.

Usage

```
get_colors_for_discrete_value(color_intervals_list, value_intervals_list)
```

Arguments

Value

A vectors containing color distributions.

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
value_intervals_list <- list(</pre>
seq(-4, -2, 0.2),
seq(-2, -1, 0.2),
seq(-1, 1, 0.2),
seq(1, 2, 0.2),
seq(2, 4, 0.2)
)
color_intervals_list <- list(</pre>
  c('blue', '#33CCFF'),
  c('#33CCFF', 'green'),
  c('green', 'white', '#FF6600'),
  c('#FF6600', 'red'),
  c('red', 'firebrick')
colors <- get_colors_for_discrete_value(</pre>
  color_intervals_list,
  value_intervals_list
head(colors)
```

```
get_combined_data_frame
```

Get a data frame mapped ID to Gene Symbol.

Description

This is an intermediate file and a dataframe with Gene Symbol exported. Based on a library file consisting of mapping relationships about Gene Symbol, GeneID, RefSeq_Protein_GI, RefSeq_Protein_Accession and Uniprot_Protein_Accession, a new dataframe with Sequence, GI, Modification, Gene Symbol, Area and PSMs,is contructed.

get_df_with_AAs_i

Usage

```
get_combined_data_frame(
  merge_df_with_phospho_peptides,
  species = "human",
  id_type = "RefSeq_Protein_GI"
)
```

Arguments

merge_df_with_phospho_peptides

A dataframe consisting of IDs (Sequence_GI_Psite) and Area values.

species A string, the options are human, mouse and rattus, the default is human.

id_type A string, the options are 'GeneID', 'RefSeq_Protein_GI', 'RefSeq_Protein_Accession'

and 'Uniprot_Protein_Accession', the default is RefSeq_Protein_GI.

Value

A dataframe with Sequence, GI, Modification, Gene Symbol, Area values and PSMs

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
    ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_combined_data_frame.RD.
    load_data <- load_data_with_ftp(ftp_url, 'RData')
    writeBin(load_data, "get_combined_data_frame.RData")
    load("get_combined_data_frame.RData")

    combined_df_with_mapped_gene_symbol <- get_combined_data_frame(
        merge_df_with_phospho_peptides[1:11,], species = 'human',
        id_type = 'RefSeq_Protein_GI'
    )
    head(combined_df_with_mapped_gene_symbol)</pre>
```

get_df_with_AAs_i

Get a data frame of amino acid sequences for proteins.

Description

}

Get a data frame of amino acid sequences for proteins.

16 get_df_with_AAs_i

Usage

```
get_df_with_AAs_i(
   unique_proteins,
   i,
   id_data_only_peptide2gi,
   proteins_in_id_data_only_peptide2gi,
   sequences_in_id_data_only_peptide2gi,
   modification_index_in_protein_seq_list
)
```

Arguments

Value

A data frame with sequences for proteins.

Author(s)

Dongdong Zhan and Mengsha Tong

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://l11.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_df_with_AAs_i.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "get_df_with_AAs_i.RData")
load("get_df_with_AAs_i.RData")

df_with_AAs_i <- get_df_with_AAs_i(unique_proteins, i,
    id_data_only_peptide2gi,
    proteins_in_id_data_only_peptide2gi,
    sequences_in_id_data_only_peptide2gi,
    modification_index_in_protein_seq_list
)
head(df_with_AAs_i)</pre>
```

get_file_info_from_dir 17

```
get_file_info_from_dir
```

Get data lists from files and the corresponding file ids.

Description

Read batch files (.txt or .csv) from a specific directory.

Usage

```
get_file_info_from_dir(specific_dir, experiment_ID)
```

Arguments

Value

A list containing data from files and corresponding file ids

Examples

```
## Not run:
result_list <- get_file_info_from_dir(
    specific_dir,
    experiment_ID
)
## End(Not run)</pre>
```

 ${\tt get_file_suffix}$

Get sufffix of input file.

Description

Get sufffix of input file.

Usage

```
get_file_suffix(file_name)
```

Arguments

file_name

A string for file names.

Value

Return file suffix.

Examples

```
get_file_suffix("myfile.txt")
```

get_filtered_df

Get data frame filtered based on the Mascot and reference files.

Description

Get data frame filtered based on the Mascot and reference files.

Usage

```
get_filtered_df(mascotfileName, refFileName)
```

Arguments

```
mascotfileName a string for mascot names as input.
refFileName a string for reference file names.
```

Value

A filtered data frame

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## Not run:
df <- get_filtered_df(mascotfileName, refFileName)
## End(Not run)</pre>
```

```
get_foreground_df_to_motifs
```

Get filtered foreground data frame that its aligned sequences with specific motif.

Description

Get filtered foreground data frame that its aligned sequences with specific motif.

Usage

```
get_foreground_df_to_motifs(
  foreground_sequences_mapped_to_motifs,
  foreground,
  foreground_df
)
```

Arguments

foreground_sequences_mapped_to_motifs

A list that consists of motifs and its corresponding aligned sequences.

foreground A vector for aligned sequences.

foreground_df A data frame from the initial foreground data frame.

Value

A data frame that its aligned sequences with specific motif.

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

}

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
    ftp_url <- "ftp://l11.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_foreground_df_to_motifs
    load_data <- load_data_with_ftp(ftp_url, 'RData')
    writeBin(load_data, "get_foreground_df_to_motifs.RData")
    load("get_foreground_df_to_motifs.RData")

    foreground_df_mapped_to_motifs <- get_foreground_df_to_motifs(
        foreground_sequences_mapped_to_motifs,
        foreground, foreground_df
    )
    head(foreground_df_mapped_to_motifs)</pre>
```

```
get_foreground_seq_to_motifs
```

Get motifs and their corresponding aligned sequences form from foreground.

Description

Get motifs and their corresponding aligned sequences form from foreground.

Usage

```
get_foreground_seq_to_motifs(motifs_list, foreground)
```

Arguments

motifs_list A list from motif enrichment analysis.

foreground A vector for aligned sequences.

Value

A list containing motifs and the corresponding sequences from foreground.

Author(s)

Dongdong Zhan and Mengsha Tong

References

Hadley Wickham (2018). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.3.0.\ https://CRAN.R-project.org/package=stringr.

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
    ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_foreground_seq_to_motifical_data <- load_data_with_ftp(ftp_url, 'RData')
    writeBin(load_data, "get_foreground_seq_to_motifs.RData")
    load("get_foreground_seq_to_motifs.RData")

    foreground_sequences_mapped_to_motifs <- get_foreground_seq_to_motifs(
        motifs_list,
        foreground
    )
        head(foreground_sequences_mapped_to_motifs)
        require(ggseqlogo)
        ggseqlogo(foreground_sequences_mapped_to_motifs[[15]])
}</pre>
```

```
get_global_background_df
```

Get background data frame (fasta library from Refseq).

Description

Get background data frame (fasta library from Refseq).

Usage

```
get_global_background_df(species = "human", fasta_type = "refseq")
```

Arguments

species A string for that the alignment is based on which kinds of species, the options

are human, mouse and rattus.

fasta_type, A string for fasta source, the options are refseq and uniprot, the default is refseq

Value

A data frame of background

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server.
## It may take a few minutes.
if(FALSE){
    background_df <- get_global_background_df(species = 'human', fasta_type = 'refseq')
    head(background_df)
}</pre>
```

get_ka_by_mean_or_mlr Computing kinase activity using mean value and multiple linear regression (ridge regression) except KSEA

Description

Computing kinase activity using mean value and multiple linear regression (ridge regression) except KSEA

Usage

```
get_ka_by_mean_or_mlr(
  ptypes_data,
  species = "human",
  log2_label = FALSE,
  method = "mean"
)
```

Arguments

 ${\tt ptypes_data} \qquad \text{A data frame of phosphorylation data after normalization.}$

species A string representing the species of imported data, the options are human, mouse

and rat.

log2_label A boolean value representing whether data is logarithmetics, the default is FALSE.

method A string for the method to compute kinase activity, the options are 'mean' and

'mlr' (multiple linear regression), the default is mean.

Value

A data frame that consists of kinase, psite, substrate, counting byond ratio_cutoff and corresponding original value.

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## Not run:
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_ka_by_mean_or_mlr.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "get_ka_by_mean_or_mlr.RData")
load("get_ka_by_mean_or_mlr.RData")

kinase_activity_df <- get_ka_by_mean_or_mlr(
    cluster_df,
    species = 'human',
    log2_label = TRUE,
    method = 'mean'
)
head(kinase_activity_df)

## End(Not run)</pre>
```

get_ksea_regulons_info

Get informational data frame by combining results from all experiments

Description

Get informational data frame by combining results from all experiments

Usage

```
get_ksea_regulons_info(
   ksea_regulons,
   ksea_trans_list,
   ksea_x_list,
   ptypes_data_ratio_colnames
)
```

Arguments

ksea_trans_list

```
ksea_regulons A kinase vector from all experiments.
```

A list that consits of regulation direction of kinase from each experiment by ksea.

ksea_x_list A list that consits of sepecific information from each experiment by ksea, like regulation direction, p value and activity etc..

ptypes_data_ratio_colnames

A vector that consists of column names from experiments.

Value

A data frame containing sepecific information of all experiments from ksea results, like regulation direction, pvalue and activity etc..

get_ksea_result_list 23

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## Not run:
ftp_url <- "ftp://l111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_ksea_regulons_info.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "get_ksea_regulons_info.RData")
load("get_ksea_regulons_info.RData")

ksea_regulons_activity_df <- get_ksea_regulons_info(
    ksea_regulons,
    ksea_trans_list,
    ksea_activity_list,
    ptypes_data_ratio_colnames
)
ksea_regulons_activity_df

## End(Not run)</pre>
```

get_ksea_result_list Kinase activity analysis based on known and predicted kinasesubstrate relationships

Description

Kinase activity analysis based on known and predicted kinase-substrate relationships

Usage

```
get_ksea_result_list(
  ptypes_data_ratio_in_single_exp,
  ID,
  kinase_substrate_regulation_relationship,
  ksea_activity_i_pvalue = 0.05
)
```

Arguments

A cutoff used for filtering significant activities computed from KSEA.

Value

A list containing results from ksea.

24 get_kses

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_ksea_result_list.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "get_ksea_result_list.RData")
load("get_ksea_result_list.RData")

ksea_result_list_i <- get_ksea_result_list(
    ptypes_data_ratio_in_single_exp, ID,
    kinase_substrate_regulation_relationship,
    ksea_activity_i_pvalue = 0.05
)
head(ksea_result_list_i)
}</pre>
```

get_kses

computing kinase-substrate enrichment significance (pvalue)

Description

computing kinase-substrate enrichment significance (pvalue)

Usage

```
get_kses(substate_vector, regulons_of_kinase, trial = 1000)
```

Arguments

```
substate_vector

a vector for substrates with values identified in current experiments.

regulons_of_kinase

a vector for substrates of a specific kinase, which identified in current experiments.

trial

a numeric for the number of random samples, the default is 1000.
```

Value

A list for expected enrichment scores and its significance

Author(s)

Dongdong Zhan and Mengsha Tong

References

Hernandez-Armenta C et al. Benchmarking substrate-based kinase activity inference using phosphoproteomic data[J]. Bioinformatics, 2017, 33(12): 1845-1851.

Examples

```
## Not run:
ftp_url <- "ftp://l11.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_kses.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "get_kses.RData")
load("get_kses.RData")

ksea_result_i_l <- get_kses(
   ptypes_data_ratio_in_single_exp_desc,
   regulons_i_l,
   1000
)
head(ksea_result_i_l)

## End(Not run)</pre>
```

get_list_with_filtered_sites

Filter phosphorylation sites.

Description

Filter phosphorylation sites by extracting all peptides with ion score>=20 and FDR<0.01 from Firmiana and having psites scores.

Usage

```
get_list_with_filtered_sites(
  peptide_id,
  files,
  files_site_score,
  qc,
  min_score,
  min_FDR
)
```

Arguments

peptide_id A vector containing experiment ids as input.

files A data list containing peptides identification from Firmiana as input.

files_site_score

A data list containing psites scores extracted from mascot xml. The default is

NULL, which represents no QC file.

qc A boolean value representing whether it has QC files. The default is True.

min_score A numeric for the minimum score of credible peptides, the default is 20 for

Mascot ion score.

min_FDR A numeric for the minimum FDR of credible peptides, the default is 0.01.

Value

A list containing peptides dataframe with area values and psm, IDs with mergered sequences, gi and sites, new peptides dataframe combined previous peptides dataframe and IDs.

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## Not run:
result_list_with_filtered_sites <- get_list_with_filted_sites(
  peptide.id,
  files,
  files_site_score
)
## End(Not run)</pre>
```

get_merged_phospho_df Get merged data frame with phospho-peptides.

Description

Get merged data frame with phospho-peptides.

Usage

```
get_merged_phospho_df(
  peptide_id,
  peptide_df_with_area_psm_list,
  ID_of_seq_gi_site_list,
  ID_DF_list
)
```

Arguments

Value

a merged data frame with phospho-peptides.

get_modification_index 27

```
get_modification_index
```

Get indexes of modifications in protein sequences.

Description

Get indexes of modifications in protein sequences.

Usage

```
get_modification_index(id_data_only_peptide2gi, fasta_data)
```

Arguments

Value

A vector for indexes of modifications in protein sequences.

Author(s)

Dongdong Zhan and Mengsha Tong

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_modification_index.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "get_modification_index.RData")
load("get_modification_index.RData")

modification_index_in_protein_seq_list <- get_modification_index(
    id_data_only_peptide2gi[1:100, ],
    fasta_data
)
head(modification_index_in_protein_seq_list)</pre>
```

```
get_motif_analysis_summary
```

Get summary results of motif analysis for specific input

Description

Get summary results of motif analysis for specific input

Usage

```
get_motif_analysis_summary(
  foreground,
  background,
  center = "S",
  min_sequence_count = 1,
  min_pvalue = 0.01
)
```

Arguments

foreground A vector for AA sequences with fixed length as foreground input.

A vector for AA sequences with fixed length as background input.

A character for center of k-mer.

min_sequence_count

A numeric for the minimum sequence number assigned to a motif.

min_pvalue A numeric for the minimum pvalue for found motif.

Value

A list for summary result of motif analysis

Author(s)

Dongdong Zhan and Mengsha Tong

References

Omar Wagih (2014). rmotifx: An iterative statistical approach to the discovery of biological sequence motifs. R package version 1.0.

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
   ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_motif_analysis_summary
   load_data <- load_data_with_ftp(ftp_url, 'RData')
   writeBin(load_data, "get_motif_analysis_summary.RData")
   load("get_motif_analysis_summary.RData")

motifs <- get_motif_analysis_summary(
   foreground[1:100], background[1:100],</pre>
```

get_motifs_list 29

```
center = center,
  min_sequence_count = 1,
  min_pvalue = motifx_pvalue
)
head(motifs)
}
```

get_motifs_list

Motif enrichment using rmotifx.

Description

Motif enrichment using rmotifx.

Usage

```
get_motifs_list(foreground, background, center_vector, motifx_pvalue)
```

Arguments

foreground A vector for aligned sequences as the foreground input.

A vector for aligned sequences as the background input.

center_vector A vector for aligned centers.

motifx_pvalue A numeric value for selecting motifs that meets the minimum cutoff.

Value

A list for results of motif enrichment.

Author(s)

Dongdong Zhan and Mengsha Tong

References

Omar Wagih (2014). rmotifx: An iterative statistical approach to the discovery of biological sequence motifs. R package version 1.0.

Examples

}

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
   ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_motifs_list.RData"
        load_data <- load_data_with_ftp(ftp_url, 'RData')
        writeBin(load_data, "get_motifs_list.RData")
        load("get_motifs_list.RData")

motifs_list <- get_motifs_list(foreground[1:100], background[1:100], center_vector, motifx_pvalue)
        head(motifs_list)</pre>
```

```
get_normalized_data_FOT5
```

Normailization on basis of sum

Description

Normailization on basis of sum

Usage

```
get_normalized_data_FOT5(data_frame, experiment_code_file_path)
```

Arguments

```
data_frame A data frame containing IDs and values merged from multi-experiments as input.
```

experiment_code_file_path

A file path of storing experiment codes as input. The experiment codes are required to keep pace with column names of Values.

Value

A data frame after normalization

Author(s)

Dongdong Zhan and Mengsha Tong

```
get_normalized_data_of_psites
```

To normalize data and filter data only including phosphorylation sites.

Description

To normalize data and filter data only including phosphorylation sites.

Usage

```
get_normalized_data_of_psites(
  data_frame,
  experiment_code_file_path,
  topN = NA,
  mod_types = c("S", "T", "Y")
)
```

Arguments

Value

A list including data frame after filtering or normalization (x 1e5).

 $topN = NA, mod_types = c('S', 'T', 'Y')$

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url1 <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_normalized_data_of_psite
ftp_url2 <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/phosphorylation_exp_design_i
load_data1 <- load_data_with_ftp(ftp_url1, 'Rdata')
writeBin(load_data1, "get_normalized_data_of_psites.RData")
load("get_normalized_data_of_psites.RData")

load_data2 <- load_data_with_ftp(ftp_url2, 'downloadtxt')
writeBin(load_data2, "phosphorylation_exp_design_info.txt")
phosphorylation_exp_design_info_file_path <- "./phosphorylation_exp_design_info.txt"

phospho_data_filtering_STY_and_normalization_list <- get_normalized_data_of_psites(
    summary_df_of_unique_proteins_with_sites,
    phosphorylation_exp_design_info_file_path,</pre>
```

```
)
head(phospho_data_filtering_STY_and_normalization_list)
}
```

Description

Get a data frame only containing kinase inferred by KSEA

Usage

```
get_substrate_expr_df(
   ID,
   kinase_substrate_regulation_relationship,
   ksea_regulons,
   ptypes_data_ratio,
   ratio_cutoff = 3
)
```

Arguments

Value

A data frame that consists of kinase, psite, substrate, counting byond ratio_cutoff and corresponding original value.

Author(s)

Dongdong Zhan and Mengsha Tong

```
## Not run:
ftp_url <- "ftp://l11.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_substrate_expr_df.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "get_substrate_expr_df.RData")
load("get_substrate_expr_df.RData")
kinase_site_substrate_original_ratio_df <- get_substrate_expr_df(</pre>
```

```
ID,
  kinase_substrate_regulation_relationship,
  ksea_regulons,
  ptypes_data_ratio,
  ratio_cutoff = 3
)
head(kinase_site_substrate_original_ratio_df)
## End(Not run)
```

Description

Get a data frame only containing inforantion of kinase inferred by KSEA

Usage

```
get_summary_from_ksea(
  ptypes_data,
  species = "human",
  log2_label = TRUE,
  ratio_cutoff = 3
)
```

Arguments

ptypes_data A data frame of phosphorylation data after normalization.

species A string representing the species of imported data, the options are human, mouse

and rat.

log2_label A boolean value representing whether data is logarithmetics, the default is FALSE.

ratio_cutoff A cutoff that depicts quantification changes at phosphorylation level relative to

profiling level, the default is 3.

Value

A data frame that consists of kinase, psite, substrate, counting byond ratio_cutoff and corresponding original value.

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
   ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_summary_from_ksea.RData
   load_data <- load_data_with_ftp(ftp_url, 'RData')
   writeBin(load_data, "get_summary_from_ksea.RData")
   load("get_summary_from_ksea.RData")

summary_df_list_from_ksea_cluster <- get_summary_from_ksea(
   cluster_df, species = 'human',
   log2_label = FALSE, ratio_cutoff = 3
   )
   head(summary_df_list_from_ksea_cluster)</pre>
```

```
get_summary_with_unique_sites
```

Assign psites to protein sequence.

Description

}

Construct the data frame with unique phosphorylation site for each protein sequence and eliminate redundancy.

Usage

```
get_summary_with_unique_sites(
  combined_df_with_mapped_gene_symbol,
  species = "human",
  fasta_type = "refseq"
)
```

Arguments

```
combined_df_with_mapped_gene_symbol
```

A dataframe with Sequence, ID, Modification, Gene Symbol, Area and PSMs as input.

species A string, the options are human, mouse and rattus, the default is human.

fasta_type, A string for fasta source, the options are refseq and uniprot, the default is refseq

Value

A dataframe that all redundant psites are assigned to protein sequence.

Author(s)

Dongdong Zhan and Mengsha Tong

get_unique_AAs_i_df 35

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_summary_with_unique_sites!
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "get_summary_with_unique_sites.RData")
load("get_summary_with_unique_sites.RData")

summary_df_of_unique_proteins_with_sites <- get_summary_with_unique_sites(
    combined_df_with_mapped_gene_symbol[1:100, ],
    species = 'human',
    fasta_type = 'refseq'
)
head(summary_df_of_unique_proteins_with_sites)
}</pre>
```

get_unique_AAs_i_df Get data frame without redundancy.

Description

Get data frame without redundancy.

Usage

```
get_unique_AAs_i_df(df_with_AAs_i)
```

Arguments

df_with_AAs_i a data frame for peptides of the ith protein.

Value

A data frame with sites in unique protein.

Author(s)

Dongdong Zhan and Mengsha Tong

```
## Not run:
ftp_url <- "ftp://l11.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/get_unique_AAs_i_df.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "get_unique_AAs_i_df.RData")
load("get_unique_AAs_i_df.RData")
summary_df_of_unique_protein_with_sites <- get_unique_AAs_i_df(df_with_AAs_i)
head(summary_df_of_unique_protein_with_sites)
## End(Not run)</pre>
```

```
keep_psites_with_max_in_topX
```

Keep psites whose row maximum is top N (percentage).

Description

Compute row maximum each psites, sort row maximum in decreasing order and keep top N (percentage).

Usage

```
keep_psites_with_max_in_topX(phospho_data, percent_of_kept_sites = 3/4)
```

Arguments

```
phospho_data A data frame of phospho-data.

percent_of_kept_sites

A numeric value representing a cutoff used for filter psites. The default is 3/4.
```

Value

A data frame meeting specific cutoff.

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

End(Not run)

load_data_with_ftp 37

load_data_with_ftp

Load datasets from URL (ftp://111.198.139.72:4000/pub/PhosMap_datasets)

Description

Some datasets with larger size need to be loaded for mapping ID or protein sequence when using PhosMap. These datasets could be ragarded as library and uploaded to ftp://111.198.139.72:4000/pub/PhosMap_datasets in advance. When first performing functions depending on these datasets, PhosMap will get them from specific URL and save them into local disk.

Usage

```
load_data_with_ftp(ftp_link, data_type)
```

Arguments

ftp_link A string for URL of datasets.

data_type A string for type of datasets (txt, csv, RData).

Value

A dataframe

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## Not run:
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/profiling_exp_design_info.txt
load_data <- load_data_with_ftp(ftp_url, 'txt')
head(load_data)
## End(Not run)</pre>
```

load_data_with_http

Load datasets from URL (https://github.com/ecnuzdd/PhosMap_datasets)

Description

Some datasets with larger size need to be loaded for mapping ID or protein sequence when using PhosMap. These datasets could be ragarded as library and uploaded to https://github.com/ecnuzdd/PhosMap_datasets in advance. When first perfoming functions depending on these datasets, PhosMap will get them from specific URL and save them into local disk.

```
load_data_with_http(http_link, data_type)
```

http_link A string for URL of datasets.

data_type A string for type of datasets (txt of csv).

Value

A dataframe

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## Not run:
http_link <- url('https://raw.githubusercontent.com/ecnuzdd/PhosMap_datasets/master/function_demo_data/prof
data_type <- 'txt'
load_data <- load_data_with_http(
    http_link, data_type
)
head(load_data)
## End(Not run)</pre>
```

mea_based_on_background

Motif enrichment based on global background (fasta library from Refseq).

Description

Motif enrichment based on global background (fasta library from Refseq).

Usage

```
mea_based_on_background(foreground, AA_in_protein, background, motifx_pvalue)
```

Arguments

foreground A vector for aligned sequence of foreground.

 $\label{eq:AA_in_protein} A \ \ \text{vector for the location of S/T/Y in sequence of protein.}$

background A vector for aligned sequence of background.

motifx_pvalue A numeric value for selecting motifs that meets the minimum cutoff.

Value

A list containing motifs and the corresponding sequences

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
    ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/mea_based_on_background.RData')
    load_data <- load_data_with_ftp(ftp_url, 'RData')
    writeBin(load_data, "mea_based_on_background.RData")
    load("mea_based_on_background.RData")

motifs_list <- mea_based_on_background(
    foreground[1:100],
    AA_in_protein[1:100],
    background[1:1000],
    motifx_pvalue
    )
}</pre>
```

```
merge_profiling_file_from_Firmiana

Merge profiling files downloaded from Firmiana.
```

Description

Filter data based on US (Unique and Ionscore > 20) peptide counts then merge profiling files.

Usage

```
merge_profiling_file_from_Firmiana(
  firmiana_gene_dir,
  US_cutoff = 1,
  experiment_gene_file_path
)
```

Arguments

Value

A merged data frame after filtering (US_cutoff) and replacing NAs to zeros.

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## Not run:
merged_df <- merge_profiling_file_from_Firmiana(firmiana_gene_dir, US_cutoff = 1)
## End(Not run)</pre>
```

```
motif_data_frame_to_sequence
```

Convert data frame of motif to the sequence pattern

Description

Convert data frame of motif to the sequence pattern

Usage

```
motif_data_frame_to_sequence(motif_data_frame, center, width)
```

Arguments

motif_data_frame

A data frame with two columns including amino acid and index on sequence

with fixed length.

center A character for center of k-mer.
width A numeric for specific k-mer.

Value

A string for motif pattern

Author(s)

Dongdong Zhan and Mengsha Tong

```
## Not run:
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/motif_data_frame_to_sequence.
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "motif_data_frame_to_sequence.RData")
load("motif_data_frame_to_sequence.RData")

motif_pattern <- motif_data_frame_to_sequence(
    motif_coordinate_data_frame,
        center, width
)
head(motif_pattern)

## End(Not run)</pre>
```

```
norm_based_on_proteomics_maxquant
```

Normalizaiton for phosphoproteomics data from MaxQuant based on proteomics data

Description

Normalizaiton for phosphoproteomics data from MaxQuant based on proteomics data

Usage

```
norm_based_on_proteomics_maxquant(
   summary_phos_norm,
   proteomics_data,
   experiment_code_file_path,
   proteomics_experiment_file_path,
   intensity_type = "Intensity",
   min_unique_peptide = 1,
   max_na_num = 2,
   norm_method = "global",
   impute_method = "minimum/10"
)
```

Arguments

```
summary_phos_norm
                  A data frame containing information required for all analysis.
proteomics_data
                  A data frame of proteinGroups.txt.
experiment_code_file_path
                  Experiment code file path for phosphoproteomics.
proteomics_experiment_file_path
                  Experiment code file path for proteomics.
intensity_type Intensity type. The default is 'Intensity' and the options are 'iBAQ' and 'LFQ.intensity',depending
                  on proteinGroups.txt.
min_unique_peptide
                  Threshold for MaxQuant unique peptide[proteinGroups.txt]. The default is 1.
                  Threshold for the number of missing values[proteinGroups.txt]. The default is
max_na_num
                  2.
                  Normalization method[proteinGroups.txt]. The default is 'global' and the op-
norm_method
                  tions are 'global' and 'median'.
                  Imputation method[proteinGroups.txt]. The default is 'minimum/10',the op-
impute_method
                  tions are '0', 'minimum' and 'minimum/10'.
```

Value

A result list. Elements are a data frame containing information required for all analysis and a preprocessed proteomics data. 42 norm_maxquant

Examples

```
## Read phosphoproteomics data
## Not run:
rawdata <- read.csv("Phospho (STY)Sites.txt",header=T,sep='\t')

## Quality control for phosphoproteomics data
qc_results <- qc_maxquant(rawdata, "./experiment_code_file.txt", min_score = 40, min_loc_prob = 0.75, max_na_r
qc_result <- qc_results[[1]]
qc_result_for_motifanalysis <- qc_results[[2]]

## Normalizaiton, imputation and filtering
summary_phos_norm <- norm_maxquant(qc_result, qc_result_for_motifanalysis, norm_method = "global", impute_met
## Read proteomics data
proteomics_data <- read.csv("./proteinGroups.txt", sep = "\t")

results <- norm_based_on_proteomics(summary_phos_norm, proteomics_data, "./phosphorylation_exp_design_info.tsummary_phos_norm_based_on_pro <- results[[1]]
pro_norm <- results[[2]]

## End(Not run)</pre>
```

Normalization, imputation and filtering for phosphoproteomics data

Description

norm_maxquant

Normalization, imputation and filtering for phosphoproteomics data from MaxQuant.

from MaxQuant.

Usage

```
norm_maxquant(
  qc_result,
  qc_result_for_motifanalysis,
  norm_method = "global",
  impute_method = "minimum/10",
  percent_of_kept_sites = 3/4
)
```

Arguments

```
qc_result A data frame containing quality control result.

qc_result_for_motifanalysis

A data frame containing information required for motif analysis.

norm_method Normalization method. The default is 'global' and the options are 'global' and 'median'.

impute_method Imputation method. The default is 'minimum/10' and the options are '0', 'minimum' and 'minimum/10'.

percent_of_kept_sites

A numeric value representing a cutoff used for filter psites. The default is 3/4.
```

Value

A data frame containing information required for all analysis.

Examples

```
## Not run:
rawdata <- read.csv("Phospho (STY)Sites.txt",header=T,sep='\t')

## Quality control for phosphoproteomics data
qc_results <- qc_maxquant(rawdata, "./experiment_code_file.txt", min_score = 40, min_loc_prob = 0.75, max_na_r
qc_result <- qc_results[[1]]
qc_result_for_motifanalysis <- qc_results[[2]]

summary_phos_norm <- norm_maxquant(qc_result, qc_result_for_motifanalysis, norm_method = "global", impute_met
## End(Not run)</pre>
```

```
normalize_nopair_ctrl_by_col
```

For data without pairs but with control, normalize them to the control.

Description

For data without pairs but with control, normalize them to the control.

Usage

```
normalize_nopair_ctrl_by_col(data_frame, experiment_design_file, control_label)
```

Arguments

Value

A data frame after normalization.

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/normalize_nopair_ctrl_by_col.
load_data <- load_data_with_ftp(ftp_url, 'Rdata')
writeBin(load_data, "normalize_nopair_ctrl_by_col.RData")
load("normalize_nopair_ctrl_by_col.RData")

phospho_data_normalize_by_column <- normalize_nopair_ctrl_by_col(
    phospho_data_normalized,</pre>
```

```
phosphorylation_experiment_design_file,
  control_label
)
head(phospho_data_normalize_by_column)
}
```

```
normalize_nopair_noctrl_by_colmed
```

For data without pairs and control, normalize them to the median.

Description

For data without pairs and control, normalize them to the median.

Usage

```
normalize_nopair_noctrl_by_colmed(data_frame)
```

Arguments

data_frame a data frame as input.

Value

A data frame after normalization.

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/normalize_nopair_noctrl_by_coload_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "normalize_nopair_noctrl_by_colmed.RData")
load("normalize_nopair_noctrl_by_colmed.RData")

phospho_data_normalize_by_column <- normalize_nopair_noctrl_by_colmed(
    phospho_data_normalize_by_column)</pre>
```

```
normalize_phos_data_to_profiling

Normalize phospho-data to profiling
```

Description

Normalize phospho-data to profiling

Usage

```
normalize_phos_data_to_profiling(
  phospho_data_normalized,
  profiling_data_normalized,
  phosphorylation_exp_design_info_file_path,
  profiling_exp_design_info_file_path,
  control_label = NA,
  pair_flag = FALSE
)
```

Arguments

```
phospho_data_normalized
```

A data frame of phospho-data after normalization

profiling_data_normalized

A data frame of profiling after normalization

phosphorylation_exp_design_info_file_path

A file path about phosphorylation experiment design, it has 2 kinds of file configuration as follows: 1. experiment_design_noPair.txt must contain columns of Experiment_Code, Group. 2. experiment_design_Pair.txt must contain columns of Experiment_Code, Group, and Pair. (Pair: 1 -> case, -1 -> control)

profiling_exp_design_info_file_path

A file path about profiling experiment design, it has 2 kinds of file configuration as same as phosphorylation_exp_design_info_file_path.

control_label A string represents label of control group. The default is NA which shows no control group.

pair_flag A boolean value represents whether experiments have pairs. The default is FALSE which shows no pairs.

Value

A data frame which comes from results that phospho-data is normalizated base on the abundance of proteins in the profiling experiments.

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
   ftp_url1 <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/normalize_phos_data_to_profitp_url2 <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/phosphorylation_exp_design</pre>
```

46 normalize_to_Pair

```
ftp_url3 <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/profiling_exp_design_info
   load_data1 <- load_data_with_ftp(ftp_url1, 'Rdata')</pre>
   writeBin(load_data1, "normalize_phos_data_to_profiling.RData")
   load("normalize_phos_data_to_profiling.RData")
   load_data2 <- load_data_with_ftp(ftp_url2, 'downloadtxt')</pre>
   writeBin(load_data2, "phosphorylation_exp_design_info.txt")
   phosphorylation_exp_design_info_file_path <- "./phosphorylation_exp_design_info.txt"</pre>
   load_data3 <- load_data_with_ftp(ftp_url3, 'downloadtxt')</pre>
   writeBin(load_data3, "profiling_exp_design_info.txt")
   profiling_exp_design_info_file_path <- "./profiling_exp_design_info.txt"</pre>
   data_frame_normalization_with_control_no_pair <- normalize_phos_data_to_profiling(</pre>
     phospho_data_topX, profiling_data_normalized,
      phosphorylation_exp_design_info_file_path,
      profiling_exp_design_info_file_path,
     control_label = '0',
     pair_flag = FALSE
   head(data_frame_normalization_with_control_no_pair)
}
```

normalize_to_Pair For data with pairs, normalize them to the sample with flag eaqul to -1.

Description

For data with pairs, normalize them to the sample with flag eaqul to -1.

Usage

```
normalize_to_Pair(data_frame, experiment_design_file)
```

Arguments

Value

A data frame after normalization.

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/normalize_to_Pair.RData"
load_data <- load_data_with_ftp(ftp_url, 'Rdata')</pre>
```

plot_seqlogo 47

```
writeBin(load_data, "normalize_to_Pair.RData")
load("normalize_to_Pair.RData")
phospho_data_normalize_by_column <- normalize_to_Pair(
    phospho_data_normalized,
    pairing_phosphorylation_experiment_design_file
)
head(phospho_data_normalize_by_column)
}</pre>
```

plot_seqlogo

Plot sequence logo based on list that consist of motifs and sequences.

Description

Plot sequence logo based on list that consist of motifs and sequences.

Usage

```
plot_seqlogo(
  base_dir,
  foreground_sequences_mapped_to_motifs,
  plot_min_seqs = 5
)
```

Arguments

plot_min_seqs A numeric value for cutoff, sequences of motifs greater than the cutoff are plotted, the default is 5.

Value

Plot sequence logo based on list that consist of motifs and sequences. The results will be saved in a folder named PhosMap_ggseqlogo in the BASE_DIR parameter specified directory.

Author(s)

Dongdong Zhan and Mengsha Tong

References

(1) Omar Wagih (2017). ggseqlogo: A 'ggplot2' Extension for Drawing Publication-Ready Sequence Logos. R package version 0.1.\https://github.com/omarwagih/ggseqlogo; (2) Hadley Wickham (2018). stringr: Simple, Consistent Wrappers for Common String Operations. \ R package version 1.3.0. https://CRAN.R-project.org/package=stringr

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://l11.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/plot_seqlogo.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "plot_seqlogo.RData")
load("plot_seqlogo.RData")

BASE_DIR = getwd() # current working directory
BASE_DIR = normalizePath(BASE_DIR)
plot_seqlogo(BASE_DIR, foreground_sequences_mapped_to_motifs[1:50], plot_min_seqs = 25)
}</pre>
```

```
pre_process_filter_psites
```

Get peptides data frame passed phosphorylation sites quality control.

Description

Filter phosphorylation sites by extracting all peptides with ion score>=20 and FDR<0.01 from Firmiana and having psites scores. Generate new IDs consisting of sequence, gi, psite. Quantification values containing area and psm.

Usage

```
pre_process_filter_psites(
    firmiana_peptide_dir,
    psites_score_dir,
    phospho_experiment_design_file_path,
    qc,
    min_score = 20,
    min_FDR = 0.01
)
```

Arguments

```
firmiana_peptide_dir
```

A folder containing peptide identification files from Firmiana as input.

psites_score_dir

A folder containing psites scores files extracted from mascot xml as input.

phospho_experiment_design_file_path

A string representing the path of phospho-experiment design file as input.

qc A boolean value representing whether it has QC files. The default is True.

min_score A numeric for the minimum score of credible peptides, the default is 20 for

Mascot ion score.

min_FDR A numeric for the minimum FDR of credible peptides, the default is 0.01.

qc_maxquant 49

Value

A merged data frame containing sequence, gi, psite, area and psm.

Examples

```
## Not run:
merge_df_with_phospho_peptides <- pre_process_filter_psites(
   firmiana_peptide_dir,
   psites_score_dir
)
## End(Not run)</pre>
```

qc_maxquant

Quality control for phosphoproteomics data from MaxQuant.

Description

Quality control for phosphoproteomics data from MaxQuant.

Usage

```
qc_maxquant(
  data_frame,
  experiment_code_file_path,
  min_score = 40,
  min_loc_prob = 0.75,
  max_na_num = 2
)
```

Arguments

Value

A result list. Elements are a data frame containing quality control result and a data frame containing information required for motif analysis.

```
## Not run:
rawdata <- read.csv("Phospho (STY)Sites.txt",header=T,sep='\t')
qc_results <- qc_maxquant(rawdata, "./experiment_code_file.txt", min_score = 40, min_loc_prob = 0.75, max_na_r
qc_result <- qc_results[[1]]
qc_result_for_motifanalysis <- qc_results[[2]]
## End(Not run)</pre>
```

50 seach_motif_pattern

seach_motif_pattern

Convert data frame of motif to the sequence pattern

Description

Convert data frame of motif to the sequence pattern

Usage

```
seach_motif_pattern(
  foreground_sequence,
  background_sequence,
  min_sequence_count = 1,
  min_pvalue = 0.01,
  center = "S",
  width
)
```

Arguments

foreground_sequence

A vector for AA sequences with fixed length as foreground input.

background_sequence

A vector for AA sequences with fixed length as background input.

min_sequence_count

A numeric for the minimum sequence number assigned to a motif.

min_pvalue A numeric for the minimum pvalue for found motif.

center A character for center of k-mer.
width A numeric for specific k-mer.

Value

A list for information summary of searching mortif

Author(s)

Dongdong Zhan and Mengsha Tong

References

Omar Wagih (2014). rmotifx: An iterative statistical approach to the discovery of biological sequence motifs. R package version 1.0.

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/seach_motif_pattern.RData"
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "seach_motif_pattern.RData")</pre>
```

```
load("seach_motif_pattern.RData")
motif_result_loop_i <- seach_motif_pattern(
  loop_foreground[1:100],
  loop_background[1:1000],
  min_sequence_count = min_sequence_count,
  min_pvalue = min_pvalue,
  center = center,
  width = check_result_list$width
)
head(motif_result_loop_i)
}</pre>
```

visualization_deps_with_scatter

Visualize differentially expressed results with scatter

Description

Visualize differentially expressed results with scatter

Usage

```
visualization_deps_with_scatter(
  deps_data,
  minFC = 2,
  minPvalue = 0.05,
  main = "Differentially expressed proteins",
  show_text = FALSE,
  min_up_text = 15,
  min_down_text = 15
)
```

Arguments

deps_data a data frame containing ID, logFC and pvalue. minFC a numeric for the minimum fold change. minPvalue a numeric for the significance cutoff. main an overall title for the plot. a boolean value representing whether or not the text is showed, the default is show_text FALSE. cutoff value for showing up-IDs. Only IDs with lower than min_up_text are min_up_text showed. cutoff value for showing down-IDs. Only IDs with lower than min_down_text min_down_text are showed.

Value

A scatter plot for showing differentially expressed results.

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## Not run:
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/visualization_deps_with_scatt
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "visualization_deps_with_scatter.RData")
load("visualization_deps_with_scatter.RData")

visualization_deps_with_scatter(limma_results_df, minFC = 2,
    minPvalue = 0.05, main = 'Differentially expressed proteins \n with limma',
    show_text = TRUE, min_up_text = 70, min_down_text = 70
)

## End(Not run)</pre>
```

visualization_fuzzycluster

Visualize results from fuzzy clusters with line chart

Description

Visualize results from fuzzy clusters with line chart

Usage

```
visualization_fuzzycluster(
  input_data,
  group,
  group_levels,
  k_cluster,
  iteration = 100,
  mfrow = c(3, 3),
  min_mem = 0.1,
  plot = TRUE
)
```

Arguments

input_data a data frame containing ID and expression profile.

group a factor for representing groups.

group_levels a factor levels for group.

k_cluster number of clusters fuzzy cluster.

iteration a numeric value for interation, the defualt is 100.

mfrow a vector containing 2 elements for controling the subplots in graphic window,

the default is mfrow = c(3,3)

min_mem cutoff value for membership. Only results with greater than min_mem are

showed.

plot a boolean value for deciding whether ploting, the default is TRUE.

Value

A lines chart with fuzzy degree.

Author(s)

Dongdong Zhan and Mengsha Tong

References

(1) David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel and Friedrich Leisch (2017). e1071: Misc Functions of the \ Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-8.https://CRAN.R-project.org/package=e1071 \ (2) Pengyi Yang (2018). ClueR: Cluster Evaluation. R package version 1.4. https://CRAN.R-project.org/package=ClueR

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/visualization_fuzzycluster.RD
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "visualization_fuzzycluster.RData")
load("visualization_fuzzycluster.RData")

fuzzy_clustObj <- visualization_fuzzycluster(
   fuzzy_input_df, group, group_levels,
   k_cluster=9, iteration = 100,
   mfrow = c(3,3), min_mem = 0.1
)
}</pre>
```

```
visualization_with_simple_pca
A simple PCA plot.
```

Description

A simple PCA plot.

```
visualization_with_simple_pca(
  expr_data_frame,
  main = "Simple PCA",
  point_cex = 2,
  point_col = "firebrick",
  point_type = 20,
  text_cex = 1
```

```
expr_data_frame
```

A data frame containing ID and quantification value.

main The main title of plot.

point_cex a numerical value for point size.

point_col a color code or name for point color.

point_type point type, see points.

text_cex a numerical value for text size.

Value

A simple PCA plot.

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## Not run:
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/visualization_with_simple_pca
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "visualization_with_simple_pca.RData")
load("visualization_with_simple_pca.RData")

visualization_with_simple_pca(expr_df, main = 'Simple PCA',
    point_cex = 2, point_col = 'firebrick',
    point_type = 20, text_cex = 1
)

## End(Not run)</pre>
```

 $\label{local_visualization_with_simple_tsne} A \ simple \ \textit{t-SNE plot}.$

Description

A simple t-SNE plot.

```
visualization_with_simple_tsne(
  expr_data_frame,
  group,
  main = "Simple t-SNE",
  perplexity = 10
)
```

```
expr_data_frame
```

A data frame containing ID and quantification value.

group A factor for group information.

main The main title of plot.

perplexity A numerical value for perplexity, the default is 10.

Value

A simple t-SNE plot.

Author(s)

Dongdong Zhan and Mengsha Tong

Examples

```
## The process needs to load data from PhosMap datasets stored into FTP server and perform large computation.
## It may take a few minutes.
if(FALSE){
ftp_url <- "ftp://111.198.139.72:4000/pub/PhosMap_datasets/function_demo_data/visualization_with_simple_tsn
load_data <- load_data_with_ftp(ftp_url, 'RData')
writeBin(load_data, "visualization_with_simple_tsne.RData")
load("visualization_with_simple_tsne.RData")

visualization_with_simple_tsne(
    expr_data_frame,
    group,
    main = 'Simple t-SNE',
    perplexity = 12
)
}</pre>
```

visualization_with_umap

A umap plot.

Description

A umap plot.

```
visualization_with_umap(
  expr_data_frame,
  group,
  main = "UMAP",
  n_neighbors = 10
)
```

expr_data_frame

A data frame containing ID and quantification value.

group A factor for group information.

main The main title of plot.

n_neighbors A numerical value for the size of local neighborhood, the default is 10.

Value

A umap plot.

```
write_csv_pep_seq_conf
```

Write data to specific direction with CSV format.

Description

Write data to specific direction with CSV format.

Usage

```
write_csv_pep_seq_conf(expName, outputName, mascotfileNames, refFileName)
```

Arguments

expName a string for experiment name as input.

outputName a string for experiment name as output.

 ${\tt mascotfileNames}$

a vector for storing mascot file names.

refFileName a string for reference file name.

Value

Write data to specific direction with CSV format.

Author(s)

Dongdong Zhan and Mengsha Tong

```
## Not run:
write_csv_pep_seq_conf(expName,
   outputName, mascot_txt_dir_path_expName_path,
   firmiana_peptide_dir_path_expName_path)
## End(Not run)
```