Homework 1. Solutions

1 Show that vectors $\{\mathbf{a}_1, \mathbf{a}_2 \dots, \mathbf{a}_m\}$ in vector space V are linearly dependent if at least one of these vectors is equal to zero.

WLOG suppose that $\mathbf{a}_1 = 0$. Then

$$\lambda \mathbf{a}_1 + 0 \cdot \mathbf{a}_2 + \ldots + 0 \cdot \mathbf{a}_n = 0$$

where λ is an arbitrary real number. We see that there exists a linear combinations of vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ which is equal to zero and one of the coefficients $\{\lambda, 0, \dots, 0\}$ could be equal to non-zero. Hence vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ are linearly dependent.

2 Show that any three vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ in \mathbf{R}^2 are linearly dependent. We will show it straightforwardly here.

Let three vectors

$$\mathbf{x}_1 = (a^1, a^2)$$

 $\mathbf{x}_2 = (b^1, b^2)$
 $\mathbf{x}_3 = (c^1, c^2)$

be linearly independent. If vector $\mathbf{x}_1 = (a_1, a_2) = 0$ then nothing to prove. (See exercise 1). Let $\mathbf{x}_1 \neq 0$. WLOG suppose $a_1 \neq 0$. Consider

$$\mathbf{x}_2' = \mathbf{x}_2 - \frac{b_1}{a_1} \mathbf{x}_1 = (b^1, b^2) - \frac{b_1}{a_1} (a_1, a_2) = (0, b_2')$$

$$\mathbf{x}_3' = \mathbf{x}_3 - \frac{c_1}{a_1} \mathbf{x}_1 = (c^1, c^2) - \frac{c_1}{a_1} (a_1, a_2) = (0, c_2')$$

We see that vectors $\mathbf{x}_2', \mathbf{x}_3'$ are proportional—i.e. they are linearly dependent: there exist $\mu_2 \neq 0$ or $\mu_3 \neq 0$ such that $\mu_2 \mathbf{x}_2' + \mu_3 \mathbf{x}_3' = 0$ E.g. we can take $\mu_2 = c_2', \ \mu_3 = -b_2'$ if $c_2' \neq 0$ or $b_2' \neq 0$ (if $c_2' = b_2' \neq 0$ then we can take coefficients μ_1, μ_2 any real numbers.) We have:

$$0 = \mu_2 \mathbf{x}_2' + \mu_3 \mathbf{x}_3' = \mu_2 \left(\mathbf{x}_3 - \frac{c_1}{a_1} \mathbf{x}_1 \right) + \mu_3 \left(\mathbf{x}_3 - \frac{c_1}{a_1} \mathbf{x}_1 \right) = \mu_2 \mathbf{x}_2 + \mu_3 \mathbf{x}_3 - \left(\frac{\mu_2 b_1}{a_1} + \frac{\mu_3 c_1}{a_1} \right) \mathbf{x}_1 = 0,$$

where $\mu_2 \neq 0$ or $\mu_3 \neq 0$. Hence vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ are linearly dependent *.

(Compare with the solution of general statement in the next exercise.)

3 Let 3 vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ in vector space V can be expressed as a linear combination of 2 vectors $\{\mathbf{a}, \mathbf{b}\}$ of this vector space, i.e. 3 vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ belong to the span of 2 vectors $\{\mathbf{a}, \mathbf{b}\}$. Prove that three vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ are linearly dependent.

Let

$$\begin{cases}
\mathbf{x}_1 = \lambda_1 \mathbf{a} + \mu_1 \mathbf{b} \\
\mathbf{x}_2 = \lambda_2 \mathbf{a} + \mu_2 \mathbf{b} \\
\mathbf{x}_3 = \lambda_3 \mathbf{a} + \mu_3 \mathbf{b}
\end{cases} \tag{1}$$

If one of vectors is equal to zero then nothing to prove (See previous exercise).

 $\mathbf{x}_1 \neq 0$. WLOG suppose that $\lambda_1 \neq 0$. Thus vector **a** can be expressed as a linear combination of vectors \mathbf{x}_1 and **b**:

$$\mathbf{a} = \frac{1}{\lambda_1} \mathbf{x}_1 - \frac{\mu_1}{\lambda_1} \mathbf{b} \tag{2}$$

. (If $\lambda_1 = 0$ then $\mu \neq 0$ and we express the vector b as a linearly combination of vectors \mathbf{x}_1 and \mathbf{a}). Then using the relation (2) we express vector \mathbf{x}_2 as linear combinations of vectors \mathbf{a} and \mathbf{x}_1 :

$$\mathbf{x}_2 = \lambda_2 \left(\frac{1}{\lambda_1} \mathbf{x}_1 - \frac{\mu_1}{\lambda_1} \mathbf{b} \right) + \mu_2 \mathbf{b} = \lambda_2' \mathbf{x}_1 + \mu_2' \mathbf{b}$$
 (3)

^{*} You may say: why so long proof? We know already that dimension of \mathbb{R}^2 is equal to 2 then by definition any three vectors in \mathbb{R}^2 have to be linear dependent. This is proof. yes, but...This "proof" is in fact "circulus vicious" since the proof of the fact that dim $\mathbb{R}^2 = 2$ is founded on the statement of this exercise.

If $\mu'_2 = 0$ then everything is proved: vectors $\mathbf{x}_1, \mathbf{x}_2$ are linearly dependent, hence vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ are linearly dependent too. If $\mu'_2 \neq 0$ we express vector \mathbf{b} via vectors \mathbf{x}_1 and \mathbf{x}_2 :

$$\mathbf{b} = -\frac{1}{\mu_1} \mathbf{x}_2 - \frac{\lambda'}{\mu'} \mathbf{x}_1 \tag{4}$$

and using relations (4) and (2) we express vector \mathbf{x}_3 in (1) as a linear combinations of vectors \mathbf{x}_1 and \mathbf{x}_2 , thus proving that vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ are linearly dependent.

$$\mathbf{x}_3 = \lambda_3 \mathbf{a} + \mu_3 \mathbf{b} = \lambda_3 \left(-\frac{1}{\lambda_1} \mathbf{x}_1 - \frac{\mu_1}{\lambda_1} \mathbf{b} \right) + \mu_3 \left(\frac{1}{\mu_1} \mathbf{x}_2 - \frac{\lambda'}{\mu'} \mathbf{x}_1 \right) =$$

$$\lambda_3 \left(-\frac{1}{\lambda_1} \mathbf{x}_1 - \frac{\mu_1}{\lambda_1} \left(\frac{1}{\mu_1} \mathbf{x}_2 - \frac{\lambda'}{\mu'} \mathbf{x}_1 \right) \right) + \mu_3 \left(\frac{1}{\mu_1} \mathbf{x}_2 - \frac{\lambda'}{\mu'} \mathbf{x}_1 \right) = \lambda_3'' \mathbf{x}_1 + \mu_3'' \mathbf{x}_2$$

Vector \mathbf{x}_3 is a linear combination of vectors $\mathbf{x}_2, \mathbf{x}_3$. Hence vectors $\mathbf{x}_1 y, \mathbf{x}_2, \mathbf{x}_3$ are linearly dependent.

In a similar way one can prove that any m+1 vectors are linearly dependent if they belong to the span of m vectors

- **4** Let $\{a,b\}$ be two vectors in the linear space V such that
- i) these vectors are linearly independent
- ii) for an arbitrary vector $\mathbf{x} \in V$ vectors $\{\mathbf{a}, \mathbf{b}, \mathbf{x}\}$ are linearly dependent.

What is a dimension of the vector space V?

Is an ordered set $\{a, b\}$ a basis in the vector space V?

Recall that the dimension of vector space V is equal to n if there exist n linearly independent vectors and any n+1 vectors are linearly dependent. Show that the dimension of the vector space under consideration is equal to 2.

On one hand there exist two linearly dependent vectors **a** and **b**. This means that dimension of V is greater or equal than 2: $\dim V \geq 2$.

To prove that $\dim V = 2$ it remains to prove that any three vectors are linearly dependent.

Show first that arbitrary vector $\mathbf{x} \in V$ can be expressed via vectors \mathbf{a}, \mathbf{b} . Indeed vectors $\{\mathbf{a}, \mathbf{b}, \mathbf{x}\}$ are linearly dependent, hence

$$\mu_1 \mathbf{a} + \mu_2 \mathbf{b} + \mu_3 \mathbf{x} = 0$$
, where $\mu_1 \neq 0$, or $\mu_2 \neq 0$ or $\mu_3 \neq 0$

If $\mu_3 = 0$ then $\mu_1 \neq 0$, or $\mu_2 \neq 0$ and $\mu_1 \mathbf{a} + \mu_2 \mathbf{b} = 0$, i.e. vectors \mathbf{a}, \mathbf{b} are linearly dependent. Contradiction. Hence $\mu_3 \neq 0$, that is a vector \mathbf{x} can be expressed as a linear combination of vectors \mathbf{a}, \mathbf{b} , i.e. it belongs to the span of the vectors (\mathbf{a}, \mathbf{b}) .

Let $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ be a set of arbitrary 3 vectors. We just proved that any of these vectors belong to the span of the vectors $\{\mathbf{a}, \mathbf{b}\}$. Hence according to previous exercise these three vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ are linearly dependent. Thus we proved that any three vectors $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ are linearly dependent.

Hence the dimension of the space V is equal to 2.

The vectors $\{\mathbf{a}, \mathbf{b}\}$ are two linearly independent vectors in 2-dimensional vector space V. Hence it is a basis.

- **5** Let $\{e_1, e_2, e_3\}$ be a basis in 3-dimensional vector space V. Show that
- a) all vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are not equal to zero.
- b) an arbitrary vector $\mathbf{a} \in V$ can be expressed as a linear combination of the basis vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ in a unique way, i.e. if

$$\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3 = a^{1'} \mathbf{e}_1 + a^{2'} \mathbf{e}_2 + a^{3'} \mathbf{e}_3 \text{ then } a^1 = a^{1'}, a^2 = a^{2'}, a^3 = a^{3'}.$$
 (5)

a) Suppose one of these vectors is equal to zero: $\mathbf{e}_1 = 0$. Then the vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ are linearly dependent. (See the exercise 1).

b) First prove the uniqueness of expansion (5) then the existence. Let \mathbf{a} be an arbitrary vector in V. Suppose

$$\mathbf{a} = a^1 \mathbf{e}_1 + a^2 \mathbf{e}_2 + a^3 \mathbf{e}_3 = a^{1'} \mathbf{e}_1 + a^{2'} \mathbf{e}_2 + a^{3'} \mathbf{e}_3$$
.

Then

$$0 = \mathbf{a} - \mathbf{a} = (a^1 - a1')\mathbf{e}_1 + (a^2 - a^{2'})\mathbf{e}_2 + (a^3 - a^{3'})\mathbf{e}_3.$$

On the other hand vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ are linearly independent. Hence all coefficients $(a^1 - a^{1'}), (a^2 - a^{2'}), (a^3 - a^{3'})$ are equal to zero:

$$a^{1} - a^{1'} = a^{2} - a^{2'} = a^{3} - a^{3'} = 0$$
, i.e. $a^{1} = a^{1'}, a^{2} = a^{2'}, a^{3} = a^{3'}$.

According to definition of basis 4 vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{a}\}$ are linearly dependent. Hence vector \mathbf{a} can be expressed via the vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$. Indeed there exist coefficients $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ such that

$$\lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + \lambda_3 \mathbf{e}_3 + \lambda_4 \mathbf{a} = 0 \tag{6}$$

and at least one of these coefficients is not equal to zero.

Prove that $\lambda_4 \neq 0$. Suppose $\lambda_4 = 0$. Then it follows from (6) that vectors $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ are linearly dependent. Contradiction. Hence $\lambda_4 \neq 0$ and \mathbf{a} can be expressed via $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$:

$$\mathbf{a} = -\frac{\lambda_1}{\lambda_4} \mathbf{e}_1 - \frac{\lambda_2}{\lambda_4} \mathbf{e}_2 - \frac{\lambda_3}{\lambda_4} \mathbf{e}_3$$

 ${\bf 6}^\dagger$ Show that the ordered set $\{{\bf e}_1,{\bf e}_2,{\bf e}_3,{\bf e}_4,\ldots,{\bf e}_n\}$ of vectors is a basis in ${\bf R}^n$ in the case if

$$\begin{array}{llll} \mathbf{e}_1 &= (1, & 2, & 3, & 4, \dots, & n) \\ \mathbf{e}_2 &= (0, & 1, & 2, & 3, \dots, & n-1) \\ \mathbf{e}_3 &= (0, & 0, & 1, & 2, \dots, & n-2) \\ \dots & & & \\ \mathbf{e}_n &= (0, & 0, & 0, & 0, \dots, & 1) \end{array}$$

If $\sum \lambda_i \mathbf{e}_i = 0$ then one can see that $\lambda_1 = 0$. This implies that $\lambda_2 = 0$ and so on all coefficients λ_i vanish. We proved that these n vectors in n-dimensional space \mathbf{R}^n are linear independent. Hence $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4, \dots, \mathbf{e}_n\}$ is a basis.

7 Let $\{e_1, e_2, e_3\}$ be a basis of 3-dimensional vector space V.

Is a set of vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ a basis of V in the case if

- a) $\mathbf{e}'_1 = \mathbf{e}_2$, $\mathbf{e}'_2 = \mathbf{e}_1$, $\mathbf{e}'_3 = \mathbf{e}_3$;
- b) $\mathbf{e}'_1 = \mathbf{e}_1, \ \mathbf{e}'_2 = \mathbf{e}_1 + 3\mathbf{e}_3, \ \mathbf{e}'_3 = \mathbf{e}_3;$
- c) $\mathbf{e}'_1 = \mathbf{e}_1 \mathbf{e}_2$, $\mathbf{e}'_2 = 3\mathbf{e}_1 3\mathbf{e}_2$, $\mathbf{e}'_3 = \mathbf{e}_3$;
- d) $\mathbf{e}_1' = \mathbf{e}_2$, $\mathbf{e}_2' = \mathbf{e}_1$, $\mathbf{e}_3' = \mathbf{e}_1 + \mathbf{e}_2 + \lambda \mathbf{e}_3$ (where λ is an arbitrary coefficient)?

To analyse the cases we use the definition of basis: 3 vectors in 3-dimensional space form a basis if and only if these vectors are linearly independent.

Case a) Vectors $\mathbf{e}_1' = \mathbf{e}_2, \mathbf{e}_2' = \mathbf{e}_1, \mathbf{e}_3' = \mathbf{e}_3$ are linearly independent, since $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a basis. Hence $\{\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'\}$ is a basis too.

Case b) Vectors $\mathbf{e}_1' = \mathbf{e}_1, \mathbf{e}_2' = \mathbf{e}_1 + 3\mathbf{e}_3, \mathbf{e}_3' = \mathbf{e}_3$ are linearly dependent. Indeed

$$\mathbf{e}_{1}' - \mathbf{e}_{2}' + 3\mathbf{e}_{3}' = \mathbf{e}_{1} - (\mathbf{e}_{1} + 3\mathbf{e}_{3}) + 3\mathbf{e}_{3} = 0.$$

Hence it is not a basis.

Case c) First two vectors $\mathbf{e}_1' = \mathbf{e}_1 - \mathbf{e}_2$, $\mathbf{e}_2' = 3\mathbf{e}_1 - 3\mathbf{e}_2$ are already linearly dependent: $\mathbf{e}_1' = 3\mathbf{e}_2'$. Hence these three vectors do not form a basis.

Case d) Check are vectors linearly independent or not. Let $c_1\mathbf{e}_1' + c_2\mathbf{e}_2' + c_3\mathbf{e}_3' = 0$, i.e.

$$c_1\mathbf{e}'_1 + c_2\mathbf{e}'_2 + c_3\mathbf{e}'_3 = c_1\mathbf{e}_2 + c_2\mathbf{e}_1 + c_3(\mathbf{e}_1 + \mathbf{e}_2 + \lambda\mathbf{e}_3) = (c_2 + c_3)\mathbf{e}_1 + (c_1 + c_3)\mathbf{e}_2 + c_3\lambda\mathbf{e}_3 = 0$$
.

I-st case $\lambda \neq 0$. We have $c_2 + c_3 = c_1 + c_3 = \lambda c_3 = 0$. Hence $c_3 = 0$, $c_1 = 0$, $c_2 = 0$. These three vectors are linearly independent. This means that ordered triple $\{\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'\}$ is a basis.

II-nd case $\lambda = 0$. We have $c_2 + c_3 = c_1 + c_3 = 0c_3 = 0$. Hence c_3 can be an arbitrary number and $c_1 = -c_3, c_2 = -c_3$. c_3 These three vectors are linearly dependent. This means that ordered triple $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ is not a basis.