Jan Graffelman^{1,2}

¹Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona. Spain

> ²Department of Biostatistics University of Washington Seattle, WA, USA

26th Summer Institute in Statistical Genetics (SISG 2021)

Introduction

Examples

Contents

- Introduction
- 2 Log-ratio transformation
- Plotting compositional data
- 4 Log-ratio principal component analysis
- 5 Examples

What is compositional data?

- Compositional data consists of variables that are parts of some whole.
- Typical examples are proportions, percentages, concentrations.
- The data vectors are constrained and reside in a simplex.
- Compositions provide information about the relative values of the parts.
- Aitchison (1986) proposed the log-ratio approach to deal with compositional data.

Examples

Compositional data

Compositional data arise in many contexts:

- Mineral composition of rocks (geology)
- Time or budget expenditure (economy)
- Bacterial composition of the gut (microbiology)
- Allele frequencies and genotype frequencies (genetics)
- ...

Introduction

Compositional data and spurious correlations

full composition						
	Α	В	С	D	Е	
s1	0.07	0.20	0.13	0.33	0.27	
s2	0.00	0.20	0.13	0.07	0.60	
s3	0.13	0.53	0.07	0.20	0.07	

s1	0.07	0.20	0.13	0.33	0.2
s2	0.00	0.20	0.13	0.07	0.6
s3	0.13	0.53	0.07	0.20	0.0

	А	В	C	D
s1	0.09	0.27	0.18	0.45
s2	0.00	0.50	0.33	0.17
s3	0.14	0.57	0.07	0.21

subcomposition

	counts					
	Α	_	С	_		
s1	10	30	20	50	40	
s2	0	30	20	10	90	
s3	20	80	10	30	10	

counts

			R		
	Α	В	С	D	Е
Α	1.00	0.87	-0.87	0.50	-0.99
В	0.87	1.00	-1.00	0.00	-0.79
C	-0.87	-1.00	1.00	-0.00	0.79
D	0.50	0.00	-0.00	1.00	-0.62
E	-0.99	-0.79	0.79	-0.62	1.00

R					
Α	В	С	D		
1.00	0.07	-1.00	0.31		
0.07	1.00	-0.14	-0.93		
-1.00	-0.14	1.00	-0.24		
0.31	-0.93	-0.24	1.00		
	1.00 0.07 -1.00	A B 1.00 0.07 0.07 1.00 -1.00 -0.14			

- Correlations can be spurious due to the existence of a linear constraint
- Ordinary PCA of the data will display a spurious correlation structure

Principles of Compositional Data Analysis (CoDA)

Principles:

Introduction

- Scale invariance
- Permutation invariance
- Subcompositional coherence

Typical CoDA approach:

- In order to satisfy these principles, we use a log-ratio transformation of the data.
- Analyse the data by applying the classical statistical methods to the log-ratio transformed data.

Examples

Some notation

A composition of D parts

$$\mathbf{x}=(x_1,x_2,\ldots,x_D)$$

The sample space is the simplex

$$S^{D} = \{ \mathbf{x} = (x_1, x_2, \dots, x_D) | x_i > 0, i = 1, 2, \dots, D; \sum_{i=1}^{D} x_i = \kappa \}$$

The closure operation C to the constant $\kappa > 0$ (usually 1)

$$C(x) = \left(\frac{\kappa x_1}{\sum_{i=1}^{D} x_i}, \frac{\kappa x_2}{\sum_{i=1}^{D} x_i}, \dots, \frac{\kappa x_D}{\sum_{i=1}^{D} x_i}\right)$$

Log-ratio transformations

Additive log-ratio transformation (alr; ratios of two parts)

$$alr(\mathbf{x}) = \left[\ln \left(\frac{x_1}{x_D} \right), \ln \left(\frac{x_2}{x_D} \right), \cdots, \ln \left(\frac{x_{D-1}}{x_D} \right) \right],$$

Centred log-ratio transformation (clr; ratios of one part against all)

$$clr(\mathbf{x}) = \left[ln\left(\frac{x_1}{g_m(\mathbf{x})}\right), ln\left(\frac{x_2}{g_m(\mathbf{x})}\right), \cdots, ln\left(\frac{x_D}{g_m(\mathbf{x})}\right) \right],$$

 Isometric log-ratio transformation (ilr; ratios of geometric means of subcompositions)

$$ilr(\mathbf{x}) = \left[ln \left(\frac{g_m(\mathbf{x}_a)}{g_m(\mathbf{x}_b)} \right), \cdots, ln \left(\frac{g_m(\mathbf{x}_c)}{g_m(\mathbf{x}_d)} \right) \right],$$

• $g_m(x)$ is the geometric mean of the components of the composition x

$$g_m(\mathbf{x}) = \left(\prod_{i=1}^D x_i\right)^{1/D} \quad \ln\left(g_m(\mathbf{x})\right) = \frac{1}{D} \sum_{i=1}^D \ln\left(x_i\right) \quad g_m(\mathbf{x}) = e^{\overline{y}} \quad y_i = \ln\left(x_i\right)$$

Visualizing 3 part compositions: ternary diagram

How to read a ternary diagram?

The ternary diagram in genetics: De Finetti diagram

Is there Hardy-Weinberg equilibrium?

Graffelman, J. & Morales-Camarena, J. (2008) Graphical tests for Hardy-Weinberg equilibrium based on the ternary plot. Human Heredity 65(2): 77-84

Plotting four-part compositions

Plotting compositional data

- Three part compositions can be visualised in a ternary diagram
- Four part compositions can be visualised in a tetrahedron
- Larger compositions can be visualised, in an approximate manner, in a compositional biplot
- Even three- and four part compositions are often better shown in a compositional biplot, as this represents them in an unconstrained space.
- Compositional biplots are obtained by log-ratio principal component analysis (LR-PCA).

$$clr(x_i) = \ln\left(\frac{x_i}{g_m(\mathbf{x})}\right) = \ln\left(\frac{x_i}{(\prod x_i)^{1/D}}\right) = \ln(x_i) - \frac{1}{D}\sum_{i=1}^{D}\ln(x_i)$$

In matrix form:

Introduction

$$\mathbf{X}_{I} = \ln{(\mathbf{X})}$$

$$\mathbf{X}_{\mathrm{clr}} = \mathbf{X}_I \mathbf{H}_r$$

$$X_{cclr} = H_c X_{clr} = H_c X_I H_I$$

where

$$H_r = I - \frac{1}{D}11'$$
 $H_c = I - (1/n)11'$.

The log-transformed data is double-centered

Do a standard PCA of the $X = X_{colr}$

Introduction

Singular value decomposition (SVD)

Log-ratio PCA can be performed by the SVD:

$$X_{cclr} = UDV'$$
 with $U'U = I$ and $V'V = I$.

Plotting compositional data

Possible biplot coordinates (row markers **F** and column markers **G**)

- F = UD and G = V (the form biplot)
- F = U and G = VD (the covariance biplot)
- $\mathbf{F} = \mathbf{U}\mathbf{D}^{1/2}$ and $\mathbf{G} = \mathbf{V}\mathbf{D}^{1/2}$ (the symmetric biplot)
- The form biplot will approximate the Aitchison distances between the compositions.
- The Aitchison distance is the Euclidean distance between the clr transformed compositions.

The zero problem

The zero issue:

- Compositional data analysis generally considers the simplex to be open
- Zeros are not admitted

Important questions:

- How many zeros do you have?
- What kind of zeros do you have?
 - Rounding zeros (below detection limit)
 - Count zeros (related to sampling effort)
 - Essential or structural zeros (impossible outcome)

Solutions:

 For rounding or count zeros, impute a reasonable non-zero amount, for structural zeros, stratify.

Compositional biplot interpretation

- The origin represents the geometric mean of the compositions.
- Biplot vectors represent clr transformed parts.
- Links between vectors represent pairwise log-ratios:

$$clr(x_1) - clr(x_2) = \ln\left(\frac{x_1}{g_m(\mathbf{x})}\right) - \ln\left(\frac{x_2}{g_m(\mathbf{x})}\right) = \ln\left(\frac{x_1}{x_2}\right)$$

The link length represents the standard deviation of the corresponding log-ratio.

$$\begin{split} \left\| \left. f_i - f_j \right\|^2 &= f_i' f_i + f_j' f_j - 2 f_i' f_j \\ &= \operatorname{Var} \left(\operatorname{clr}(x_i) \right) + \operatorname{Var} \left(\operatorname{clr}(x_j) \right) - 2 \text{Cov} \left(\operatorname{clr}(x_i), \operatorname{clr}(x_j) \right) \\ &= \operatorname{Var} \left(\ln \left(\frac{x_i}{\operatorname{gm}(\boldsymbol{x})} \right) - \ln \left(\frac{x_j}{\operatorname{gm}(\boldsymbol{x})} \right) \right) = \operatorname{Var} \left(\ln \left(\frac{x_i}{x_j} \right) \right). \end{split}$$

- Close to coincident biplot vectors suggest proportionality of parts.
- Cosines of angles between links represent correlations between log-ratios
- Collinear biplot vectors suggest a one-dimensional pattern for a subcomposition.

Introduction

Experiment

Introduction

- Take repeated samples from bi-allelic genetic variants that are in Hardy-Weinberg equilibrium
- Record the genotype composition
- Do a log-ratio PCA of the compositions obtained

Results

- PC1: log odds of the allele frequency
- PC2: deviation from Hardy-Weinberg equilibrium

Examples

Introduction

Worldwide Y-STR dataset

- Purps, J. et al. (2014) A global analysis of Y-chromosomal haplotype diversity for 23 STR loci. Forensic Science International: Genetics 12: 12–23.
- Data consists of 23 Y-STRs typed for 19,630 males in 129 populations sampled world-wide.
- Samples stemming from Africa, Asia, Europe, Latin and North America.

Example: Allele frequencies of Y-STR DYS448 over 129 populations worldwide

Sample	19	20	21	other
Arg-B	37	31	10	14
Arg-F	30	22	13	6
Arg-M	45	34	12	10
Arg-N	23	14	3	10
Arg-S	25	10	6	9
Aus	108	100	24	27
Bel-A	115	61	12	18
Bel-V	63	32	3	7
Ben	4	7	32	8
Bol-M	19	18	4	3
Bol-N	16	33	5	2
Bos	44	46	6	4
Bra-R	53	28	24	18
Bra-SG	35	28 12	10	4
Bra-SG Bra-SP	55 54	33	24	9
Chi-B	91	33 80	27	48
Chi-B	44	19	6	48 31
Chi-Sh	35	49	6	19
	35 17	49	6 1	19
Chi-So				
Chi-Xi	6	53	4	29
Chi-Xu	53	37	4	51
Chi-Y	31	39	3	28
CoR	75	42	27	22
Cro-C	54	57	8	6
Cro-Z	40	63	10	1
Cze-B	25	45	1	1
Cze-M	13	22	5	2
Den	76	92	10	7
ENG-C	46	24	3	8
ENG-S	66	30	6	12
Wal	85	17	3	13
Zim	3	6	42	4
		- 0	72	

Sample	19	20	21	other
Arg-B	0.40	0.34	0.11	0.15
Arg-F	0.42	0.31	0.18	0.08
Arg-M	0.45	0.34	0.12	0.10
Arg-N	0.46	0.28	0.06	0.20
Arg-S	0.50	0.20	0.12	0.18
Aus	0.42	0.39	0.09	0.10
Bel-A	0.56	0.30	0.06	0.09
Bel-V	0.60	0.30	0.03	0.07
Ben	0.08	0.14	0.63	0.16
Bol-M	0.43	0.41	0.09	0.07
Bol-N	0.29	0.59	0.09	0.04
Bos	0.44	0.46	0.06	0.04
Bra-R	0.43	0.23	0.20	0.15
Bra-SG	0.57	0.20	0.16	0.07
Bra-SP	0.45	0.28	0.20	0.07
Chi-B	0.37	0.33	0.11	0.20
Chi-C	0.44	0.19	0.06	0.31
Chi-Sh	0.32	0.45	0.06	0.17
Chi-So	0.57	0.13	0.03	0.27
Chi-Xi	0.07	0.58	0.04	0.32
Chi-Xu	0.37	0.26	0.03	0.35
Chi-Y	0.31	0.39	0.03	0.28
CoR	0.45	0.25	0.16	0.13
Cro-C	0.43	0.46	0.06	0.05
Cro-Z	0.35	0.55	0.09	0.01
Cze-B	0.35	0.62	0.01	0.01
Cze-M	0.31	0.52	0.12	0.05
Den	0.41	0.50	0.05	0.04
ENG-C	0.57	0.30	0.04	0.10
ENG-S	0.58	0.26	0.05	0.11
:	:			
:				
Wal	0.72	0.14	0.03	0.11
Zim	0.05	0.11	0.76	0.07

Purps, J. et al. (2014) A global analysis of Y-chromosomal haplotype diversity for 23 STR loci. Forensic Science International: Genetics 12: 12-23.

LR-PCA biplot of allele frequencies

References:

Introduction

- Aitchison, J. (1986) The statistical analysis of compositional data. Chapman & Hall.
- Aitchison, J. (1983) Principal component analysis of compositional data. Biometrika 70(1) pp. 57-65.
- Pawlowsky-Glahn, V., Egozcue, J.J. & Tolosana-Delgado, R. (2015) Modeling and Analysis of Compositional Data, Chichester, United Kingdom, John Wiley & Sons.