NTIN090 — Základy složitosti a vyčíslitelnosti 5. cvičení

Petr Kučera

15. prosince 2022

1. Ukažte, že tyto problémy Klika, Nezávislá množina a Vrcholové pokrytí jsou na sebe vzájemně polynomiálně převoditelné.

Problém 1: Klika

Instance: Graf G = (V, E) a přirozené číslo $k \ge 0$.

Otázka: Obsahuje *G* jako podgraf úplný graf (kliku) s alespoň *k* vrcholy?

Problém 2: Nezávislá množina

Instance: Graf G = (V, E) a přirozené číslo k.

Otázka: Existuje v grafu *G* nezávislá množina velikosti alespoň *k*? Tj. existuje

množina vrcholů $S \subseteq V$, pro kterou platí, že $|S| \ge k$ a žádné dva

vrcholy v S nejsou spojeny hranou?

Problém 3: Vrcholové pokrytí

Instance: Graf G = (V,E) a přirozené číslo $k \ge 0$.

Otázka: Existuje množina vrcholů $S \subseteq V$ velikosti nejvýš k, která obsahuje

alespoň jeden vrchol z každé hrany (tj. pokrývá hrany G)?

2. Ukažte, že následující problém je NP-úplný (například převodem z problému Vrcholového роккуті, nezapomeňte zdůvodnit, že tento problém patří do NP).

Problém 4: Pokrytí orientovaných cyklů

Instance: Orientovaný graf G = (V, E) a přirozené číslo k.

Otázka: Existuje množina vrcholů $S \subseteq V$ velikosti nejvýš k, která obsahuje

alespoň jeden vrchol z každého orientovaného cyklu v G?

3. Definujme problém Hamiltonovská kružnice následovně:

Problém 5: Hamiltonovská kružnice (HK)

Instance: Neorientovaný graf G = (V, E).

Otázka: Existuje v grafu *G* hamiltonovská kružnice, tj. kružnice procházející

všemi vrcholy?

ZSV, 5. cvičení 15. prosince 2022

O tomto problému je známo, že je NP-úplný. Ukažte s pomocí problému Намігтоноvské кružnice, že následující problémy jsou NP-úplné:

Problém 6: Orientovaná Hamiltonovská kružnice (OHK)

Instance: Orientovaný graf G = (V, E).

Otázka: Existuje v grafu *G* hamiltonovská kružnice, tj. kružnice procházející

všemi vrcholy?

Problém 7: Hamiltonovská cesta z s do t (HC(s,t))

Instance: Neorientovaný graf G = (V, E) a vrcholy s a t.

Otázka: Existuje v grafu *G* hamiltonovská cesta z vrcholu *s* do vrcholu *t*? Tj.

existuje v grafu G cesta z vrcholu s do t, která prochází každým

vrcholem grafu G právě jednou?

Problém 8: Hamiltonovská cesta (HC)

Instance: Neorientovaný graf G = (V, E).

Otázka: Existuje v grafu *G* hamiltonovská cesta? Tj. existuje v grafu *G* cesta,

která prochází každým vrcholem grafu G právě jednou?

4. Ukažte, že problém HK je polynomiálně převoditelný na problém SAT.

Problém 9: Splnitelnost (SAT)

Instance: Formule φ v KNF

Otázka: Je formule φ splnitelná?

5. Ukažte, že problém HK je polynomiálně převoditelný na problém Овснодміно святијісіно.

Problém 10: Obchodní cestující (OC, Traveling salesperson)

Instance: Množina měst $C = \{c_1, \dots, c_n\}$, hodnoty $d(c_i, c_j) \in \mathbb{N}$ přiřazující každé

dvojici měst vzdálenost a přirozené číslo D.

Otázka: Existuje permutace měst $c_{\pi(1)}, c_{\pi(2)}, \dots, c_{\pi(n)}$, pro kterou platí, že

$$\left(\sum_{i=1}^{n-1} d(c_{\pi(i)}, c_{\pi(i+1)})\right) + d(c_{\pi(n)}, c_{\pi(1)}) \le D?$$

6. Ukažte, že následující problémy jsou NP-těžké. K důkazu můžete použít převodu z některého z následujících problémů: Splnitelnost, Klika, Nezávislá množina nebo Vrcholové pokrytí.

Problém 11: Celočíselné programování (IP)

Instance: Matice nad celými čísly A typu $m \times n$ a vektor celých čísel b délky m.

Otázka: Existuje celočíselný vektor x délky n, pro který platí $Ax \ge b$?

ZSV, 5. cvičení 15. prosince 2022

Problém 12: Binární celočíselné programování (BIP)

Instance: Matice nad celými čísly A typu $m \times n$ a vektor celých čísel b délky m.

Otázka: Existuje vektor $x \in \{0,1\}^n$, pro který platí $Ax \ge b$?

Ukažte, že problém Binárního celočíselného programování patří do NP a je tedy NP-úplný. Rozmyslete si, proč není tak snadné zdůvodnit, že i problém celočíselného programování bez omezení hodnot patří do třídy NP (byť to platí).

Domácí úkoly

7. (10 bodů) Ukažte, že problém Vrcholové рокrytí je polynomiálně převoditelný na problém Dominující мnožina

Problém 13: Dominující množina

Instance: Graf G = (V, E) a přirozené číslo k.

Otázka: Existuje v G množina vrcholů $S \subseteq V$ velikosti nejvýš k, pro kterou

platí, že každý vrchol $v \in V \setminus S$ má souseda v S?

8. (20 bodů) Problém Loupežníci definujeme následujícím způsobem:

Problém 14: Loupežníci

Instance: Množina prvků A a s každým prvkem $a \in A$ asociovaná cena (váha,

velikost, ...) $s(a) \in \mathbb{N}$.

Otázka: Lze rozdělit prvky z *A* na dvě části s toutéž celkovou cenou? Přesněji,

existuje množina $A' \subseteq A$ taková, že

$$\sum_{a \in A'} s(a) = \sum_{a \in A \setminus A'} s(a)?$$

(a) (10 bodů) Ukažte, že problém Loupežníci je polynomiálně převoditelný na problém Ватон

Problém 15: Ватон

Instance: Množina předmětů A, pro každý předmět a přirozené číslo s(a)

udávající jeho velikost a přirozené číslo v(a) udávající jeho cenu,

přirozená čísla B a K.

Otázka: Existuje množina předmětů A', pro kterou platí, že $\sum_{a \in A'} s(a) \leq B$

a $\sum_{a \in A'} v(a) \ge K$?

(b) (10 bodů) Ukažte, že problém Loupežníci je polynomiálně převoditelný na problém Rozvr-HOVÁNÍ. ZSV, 5. cvičení 15. prosince 2022

Problém 16: Rozvrhování

Počet procesorů m, množina úloh U, pro každou úlohu uInstance:

přirozené číslo d(u) a přirozené číslo D.

Otázka:

Existuje rozdělení množiny předmětů U na m po dvou disjunktních podmnožin U_1,\ldots,U_m tak, aby pro každou z nich, tedy pro každé $1 \leq i \leq m$ platilo, že $\sum_{u \in U_i} d(u) \leq D$?