Statistical Methods for Data Science: A Starter Kit

Yinan Yu

yinan@chalmers.se/yinan.yu@asymptotic.ai

Statistical Data Type (l1)

Categorical data: labels or tags

- Nominal: unordered labels, e.g. species of ducks
- Ordinal: ordered labels, e.g. {"duckling", "teen duck", "adult duck"}

Numerical data:

- Discrete (interval): countable, e.g. integers; numbers of ducks
- Continuous (ratio): uncountable, e.g. real values; weights of ducks

Data Container (l1)

Array (tensor):

- Scalar, vector, matrix, higher order array
- Same numerical data type
- Python library: numpy

Table:

- Described by columns and rows
- Mixed data types
- Python library: pandas

Descriptive Statistics: numerical data (11)

Data set (a sample): numerical data x_1, \dots, x_N Centrality:

- sample mean: $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$
- median: sort x_i and median is the value in the middle
- mode (discrete values): the most frequent value in a sample

Dispersion:

- min, max, range: min $\{x_i\}$, max $\{x_i\}$, max $\{x_i\}$ $\min\{x_i\}$
- quantiles/percentiles: given $p \in (0,1)$, q is a pquantile of the data if $p \times 100\%$ of the data are smaller than q

- sample variance: $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i \bar{x})^2$
- \bullet sample standard deviation: s

Dependence: given a data set with two paired values:

$$\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}$$

• covariance:

$$cov(x,y) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x}) (y_i - \bar{y})$$

• correlation: measures how close data is to a linear relationship

$$corr(x,y) = \frac{cov(x,y)}{\sigma_x \sigma_y}, -1 \le corr(x,y) \le 1$$

Descriptive Statistics: categorical data (11)

Data set (a sample): categorical data x_1, \dots, x_N

- Count/frequency
- Transformed into numerical, discrete data

Visualization: numerical data (l1)

- Distribution:
 - Histogram/normalized histogram
 - Kernel density estimator
 - Box plot
- Dependence (two variables):
 - Scatter plot
 - − Heat map for covariance/correlation

 ■

Visualization: categorical data (11)

- Distribution
 - Bar chart
 - Pie chart

- Dependence
 - Mosaic plot

Probability distribution (12)

- Experiment: an action that leads to one outcome
- Sample space: the set of all possible outcomes from an experiment
- Event: a subset of the sample space
- Random variable (discrete/continuous): assigning a numerical value to each outcome of the experiment; denoted by capital letters, e.g. X
- Probability distribution: the probability of the occurrence of any event in the sample space; can be described by P(event)/PDF/PMF/CDF
 - -P(event): the probability of an event occurring
 - PDF f(x): the probability density function for continuous random variables: $\int_{-\infty}^{+\infty} f(x)dx = 1$
 - PMF f(x): the probability mass function for discrete random variables; $\sum_{x=-\infty}^{+\infty} f(x) = 1$
 - CDF F(x): the cumulative density function; $F(x) = P(X \le x)$
- Quantile function Q: the inverse CDF, i.e.

$$F_X(Q(p)) = p$$
 and $Q(F_X(q)) = q$

- Conditional probability
- Independent and identically distributed (i.i.d.) random variables

Examples (12)

Discrete/continuous, PMF/PDF, parameters, typical use cases (statistical data type, example scenarios)

• Bernoulli distribution

• Categorical distribution

• Binomial distribution (18)

• Discrete uniform

• Gaussian distribution

Properties of Gaussian distributions (16)

- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ be a Gaussian random variable, then the following random variables are also Gaussian
 - Scaling: $tX \sim \mathcal{N}(t\mu_X, t^2\sigma_X^2), t \neq 0$ is a constant
 - Translation: $X + c \sim \mathcal{N}(\mu_X + c, \sigma_X^2)$, c is a constant
 - $-tX + c \sim \mathcal{N}(t\mu_X + c, t^2\sigma_X^2)$
- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ be two independent Gaussian random variables, then the following random variables are also Gaussian

$$-X + Y \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

$$-X - Y \sim \mathcal{N}(\mu_X - \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

Bayes' rule (14, 15)

• Parameter estimation:

$$f_{\Theta|data}(\theta \mid data) = \underbrace{\frac{f_{data|\Theta}(data \mid \theta)}{f_{data}(data)}}^{\text{likelihood}} \underbrace{f_{\Theta}(\theta)}_{f_{O}(\theta)}$$

where $f(\cdot)$ is the PDF/PMF

• Multinomial naive Bayes classifier:

$$P(Y = y \mid X = x) = \underbrace{\frac{P(X = x \mid Y = y)}{P(X = x)}}^{\text{likelihood}} \underbrace{\frac{P(Y = y)}{P(Y = y)}}^{\text{prior}}$$

• Gaussian naive Bayes classifier/Gaussian mixture models:

$$P(Y = y \mid X = x) = \underbrace{\frac{\text{likelihood}}{f_{X|Y=y}(x \mid Y = y)} \underbrace{P(Y = y)}_{P(Y = y)}}_{f_X(x)}$$

Q-Q plot (l3)

- Use cases:
 - Compare a data distribution to a theoretical distribution (one sample test)
 - Compare two data distributions (two sample test)
- Steps:
 - Choose a set of m probabilities $p_1, \dots, p_m \in [0, 1]$ (make sure they spread evenly between 0 and 1)
 - For $i = 1, 2, \dots, m$:
 - * Compute the quantile q_i^1 of the first distribution at p_i
 - * Compute the quantile q_i^2 of the second distribution at p_i
 - * Make a scatter plot of the pair (q_i^1, q_i^2)
- Interpretation
 - Case 1: if the two distributions are identical, the points in the Q-Q plot should follow a 45° straight line y=x
 - Case 2: if the two distributions are linearly related, the points in the Q-Q plot follow a straight line that is not necessarily y = x
 - Case 3: if the two distributions are from different families of distributions, the points in the Q-Q plot are not lying on a straight line.

Mathematical Modeling (13)

$$y = g(x; \theta \mid h)$$

- 1. What do we want to predict, i.e. what is the target y?
- 2. What are the variables x?
- 3. What is the mathematical function g that relates variables x to the target y?
- 4. Are there any hyperparameters h in the function g? How do we choose them?
- 5. What are the unknown parameters θ in g? How do we estimate them from data?

Parameter estimation (14)

- Maximum likelihood estimation: frequentist approach θ is deterministic (constant)
- Maximum A Posteriori estimation: Bayesian approach θ is probabilistic (random)

Maximum Likelihood Estimation (14)

Given a model $y = g(x; \mathcal{O} \mid h)$, where \mathcal{O} is a set of parameters

- a) Describe the experiments
- b) Describe the data generated from the experiments
- c) Describe the random variables (typically with i.i.d. assumption)
- d) Choose a parameter of interest $\theta \in \mathcal{O}$
- e) Choose the maximum likelihood estimation as the estimation method: Given data x_1, \dots, x_N and assume i.i.d. random variables X_i with PDF/PMF $f(x_i)$,

$$L(\theta \mid x_1, \cdots, x_N) = \prod_{i=1}^{N} f(x_i; \theta)$$

f) Compute $\hat{\theta}_{MLE}$ by maximizing the likelihood function:

$$\hat{\theta}_{MLE} = \arg \max_{\theta} L(\theta \mid x_1, \dots, x_N)$$
$$= \arg \max_{\theta} \prod_{i=1}^{N} f(x_i; \theta)$$

or equivalently, minimizing the **negative log likelihood function**:

$$\hat{\theta}_{MLE} = \arg\min_{\theta} - \sum_{i=1}^{N} \log(f(x_i; \theta))$$

- Simple case, e.g. i.i.d. Gaussian, find the closed-form solution by:
 - * Taking the partial derivative with respect to the parameter
 - * Setting the derivative to zero
 - * Solving for the parameter
- In general, the estimate needs to be found by iterative methods, e.g. gradient descent

Maximum A Posteriori Estimation (14)

Given a model $y = g(x; \mathcal{O} \mid h)$, where \mathcal{O} is a set of parameters

- a) Describe the experiments
- b) Describe the data generated from the experiments
- c) Describe the random variables (typically with i.i.d. assumption)
- d) Choose a parameter of interest $\theta \in \mathcal{O}$
- e) Choose the maximum a posteriori estimation as the estimation method
 - $-\theta$ is assumed to be drawn from a random distribution
 - Choose a prior distribution for θ along with the hyperparameters: $f_{\Theta}(\theta)$
 - * Prior might be known by the problem setup
 - * If prior unknown, conjugate priors are typically chosen for various reasons
 - Find the likelihood function: $f_{X|\Theta}(\boldsymbol{x} \mid \theta)$ (same as in MLE)
 - Express the posterior distribution in terms of the prior and the likelihood function

$$f_{\Theta|X}(\boldsymbol{\theta} \mid \boldsymbol{x}) = \frac{f_{X|\Theta}(\boldsymbol{x} \mid \boldsymbol{\theta})f_{\Theta}(\boldsymbol{\theta})}{f_{X}(\boldsymbol{x})}$$

f) Compute $\hat{\theta}_{MAP}$ by maximizing the posterior function (or equivalently, minimizing the negative log posterior function without the normalization constant). The optimal solution can be found by a closed-form expression or using iterative techniques.

Standardization (l6)

Standardization: let X be a random variable that follows any probability distribution with mean μ and standard deviation σ . The standardization of X is

$$Y = \frac{X - \mu}{\sigma}$$

Central limit theorem (16)

Given an i.i.d. sample X_1, X_2, \dots, X_N from **ANY probability distribution** with finite mean μ and variance σ^2 (most distributions satisfy this!), when the sample size N is sufficiently large, the **sample mean** approximately follows a Gaussian distribution with mean μ and variance $\frac{\sigma^2}{N}$, i.e.

$$\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$$

Confidence interval (16)

- Data: x_1, \dots, x_N
- Random variable: X_1, \dots, X_N with i.i.d. assumption
- Parameter of interest: θ , e.g. the mean μ
- Estimate: $\hat{\theta}$, e.g. the sample mean \bar{x}
- Confidence interval for a given confidence level 1α (e.g. 95%)
 - Definition:

confidence interval = $(\hat{\theta} - \mathbf{margin} \ \mathbf{of} \ \mathbf{error}, \ \hat{\theta} + \mathbf{margin} \ \mathbf{of} \ \mathbf{error})$

where

margin of error = critical value × standard error of $\hat{\theta}$

- Calculation:

Distribution of X_i	Scenario	θ	$\hat{ heta}$ (sampling distribution)	Critical value	Standard error	Confidence interval	Note
i.i.d. Gaussian	σ known	mean	sample mean \bar{x}	$z_{\alpha/2}$	$\frac{\sigma}{\sqrt{N}}$	$\left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{N}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right)$	exact
	σ unknown		(Gaussian distribution)	$t_{lpha/2}$	$\frac{s}{\sqrt{N}}$	$\left(\bar{x} - t_{\alpha/2} \frac{s}{\sqrt{N}}, \bar{x} + t_{\alpha/2} \frac{s}{\sqrt{N}}\right)$	exact
i.i.d.	σ known		sample mean \bar{x}	$z_{\alpha/2}$	$\frac{\sigma}{\sqrt{N}}$	$\left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{N}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right)$	approximate
	σ unknown		(approximately Gaussian under CLT)	$t_{lpha/2}$	$\frac{s}{\sqrt{N}}$	$\left(\bar{x} - t_{\alpha/2} \frac{s}{\sqrt{N}}, \bar{x} + t_{\alpha/2} \frac{s}{\sqrt{N}}\right)$	for large N
i.i.d.	-	any	MLE (asymptotically Gaussian)	$z_{lpha/2}$	$\frac{1}{\sqrt{NI_N(\hat{ heta})}}$	$\left(\hat{\theta} - z_{\alpha/2} \frac{1}{\sqrt{NI_N(\hat{\theta})}}, \hat{\theta} + z_{\alpha/2} \frac{1}{\sqrt{NI_N(\hat{\theta})}}\right)$	asymptotic
i.i.d.	-	any	any statistic (any distribution)	bootstrap the error quantile		$\left(\hat{\theta} - \epsilon_{1-\alpha/2}, \hat{\theta} - \epsilon_{\alpha/2}\right)$	approximate

where σ is the standard deviation of the X_i and s the sample standard deviation

Machine learning: classification

Multinomial naive Bayes classifier (15)

- Prediction y: categorical data $y \in \{1, \dots, C\}$
- Variables x_i , $i = 1, \dots, n$: categorical data $x_i \in V$, where V is the vocabulary $V = \{w_1, \dots, w_K\}$ given K unique categories
 - Assumptions:
 - * x_i 's are independent **NAIVE!**
 - * x_i follows a categorical distribution

Note: here n is the size of the input data, e.g. the length of a document

• Model g:

$$\hat{y} = g(x_1, \dots, x_n) = \underset{c \in \{1, \dots, C\}}{\arg \max} P(c) \prod_{i=1}^n P(x_i \mid c)$$

where P(c) is the prior and $\prod_{i=1}^{n} P(x_i \mid c)$ is the likelihood under the assumptions

- Hyperparameters h: smoothing factor α , e.g. $\alpha = 1$
- Parameters θ : P(c), V (if not given) and $P(w_i \mid c)$ for all $w_i \in V$
- Parameter estimation (training): given the vocabulary $V = \{w_k\}_{k=1}^K$ and a training data set $\{(b_1, y_1), \dots, (b_N, y_N)\}$, where each b_j contains a list of words. Let $N_c = count(y_j = c)$.
 - Likelihood $P(w_i \mid c)$ for each w_i :

$$P(w_i \mid c) = \frac{count(\forall w_i \in b_j \ for \ y_j = c) + \alpha}{count(\forall \ words \in \ class \ c) + \alpha K}$$

- Prior P(c):

$$P(c) = \frac{N_c}{N}$$

Gaussian naive Bayes classifier (15)

- Prediction y: categorical data $y \in \{1, \dots, C\}$
- Variables x_i , $i = 1, \dots, d$: continuous numerical data $x_i \in \mathbb{R}$
 - Assumption:
 - * x_i 's are independent **NAIVE!**
 - * x_i follows a Gaussian distribution
- Model g:

$$\hat{y} = g(x_1, \dots, x_d)$$

$$= \underset{c \in \{1, \dots, C\}}{\arg \max} P(c) \prod_{i=1}^d f_i(x_i \mid y = c)$$

where P(c) is the prior and $\prod_{i=1}^{d} f_i(x_i \mid y=c)$ is the likelihood under the assumptions with $f_i(x_i \mid y=c) = \frac{1}{\sqrt{2\pi\sigma_{c,i}^2}} e^{-\frac{(x_i-\mu_{c,i})^2}{2\sigma_{c,i}^2}}$

- Parameters θ : P(c), $\mu_{c,i}$, $\sigma_{c,i}$ in $f_i(x_i \mid y = c)$ for all c and i
- Parameter estimation (training): given a training data set $\{(\boldsymbol{x}_1,y_1),\cdots,(\boldsymbol{x}_N,y_N)\}$, where each $\boldsymbol{x}_j=[x_1^j,\cdots,x_d^j]$ is a vector containing all the features for one data point. Let $N_c=count(y_i=c)$.
 - $-\mu_{c,i}, \sigma_{c,i}$ in the likelihood $f_i(x_i \mid y=c)$ for all variable i and all classes c:

$$\hat{\mu}_{c,i} = \frac{1}{N_c} \sum_{t=1}^{N_c} x_i^t$$

$$\hat{\sigma}_{c,i} = \sqrt{\frac{1}{N_c - 1} \sum_{t=1}^{N_c} (x_i^t - \hat{\mu}_{c,i})^2}$$

for all $t \in \text{class c}$

- Prior P(c):

$$P(c) = \frac{N_c}{N}$$