北京大学数学科学学院期中考试试题

2015-2016 学年第二学期

考试科目:	常微分方程	考试时间:	2016 年 4 月25日
姓 名:		学号:	

本试题共6_ 道大题,满分_100_ 分

- 1. (30 分) 计算下列各题
 - (1) 求解初值问题: $y' = y^2 1, y(0) = 1$.
 - (2) 求微分方程 $y' = \sqrt{1-y^2}$ 满足初值 y(0) = 0 存在区间为整个数轴的解。
 - (3) 求微分方程 $y'^2 2xy' + 2y = 0$ 的所有解。
- 2. (20分)
 - (1) 设 k 是给定常数,c 是变动的参数,求曲线族 $\Gamma_k(c): y = 6kc + (x + 3k + 2c)^2$ 关于参数 c 变动时的包络 Γ_k .
 - (2) 把(1) 中的 k 看作参数, 求曲线族 Γ_k 当 k 变动时的包络 Σ_1 .
 - (3) 设 c 是给定常数,k 是变动的参数,求曲线族 $\Gamma_c(k): y = 6kc + (x + 3k + 2c)^2$ 关于参数 k 变动时的包络 Γ_c .
 - (4) 把(3) 中的 c 看作参数,求曲线族 Γ_c 当 c 变动时的包络 Σ_2 .
- 3. (15 分) 叙述并证明微分方程的 Picard 存在唯一性定理。
- 4. (15 分) 试讨论微分方程

$$\frac{dy}{dx} = (x^2 + y^2 + 1)\sin y, \ y(x_0) = y_0$$

解的存在性、唯一性、解的有界性以及解的存在区间。

- 5. (10 分)设 $y = \phi(x)$ 是 \mathbb{R} 上的充分光滑函数,试给出一个以此函数为奇解的微分方程。
- 6. (10 分)设 f(x,y) 和 F(x,y) 均为定义在平面开区域 Ω 上的连续可微函数,且对任意的 $(x,y) \in \Omega$,有 f(x,y) < F(x,y). 设微分方程 y' = f(x,y) 和 y' = F(x,y) 的同一初值问题 $y(x_0) = y_0$

的右行解分别为 $y=\varphi^+(x)$ 和 $y=\Phi^+(x)$, 其中 $(x_0,y_0)\in\Omega$ 。记 $d(x)=\Phi^+(x)-\varphi^+(x)$. 试讨论 d(x) 在 $x\geq x_0$ 上的单调性。

(编辑: 伏贵荣 2017 年 2 月)