ВОССТАНОВЛЕНИЕ ПЛОТНОСТИ ВЕРОЯТНОСТИ ОТКАЗОВ ПОДЪЕМНЫХ УСТАНОВОК ПРИ РЕМОНТЕ СКВАЖИН

А. С. Кузнецов, О. Ф. Данилов

(Сургутский институт нефти и газа, филиал ТюмГНГУ; Тюменский государственный нефтегазовый университет)

Ключевые слова: **noòъeмная установка, плотность вероятности отказа** Keyword: **hoisting unit, failure probability density**

Для описания неизвестной функции плотности распределения наработок на отказ широко используются параметрические и непараметрические модели.

Параметрические модели (нормальный закон распределения, экспоненциальный, Вейбулла и другие) наиболее часто используются на практике. Для закона распределения Вейбулла плотность распределения записывается

$$f(t) = \frac{b}{t_0} \cdot \left(\frac{t}{t_0}\right)^{b-1} \cdot e^{-\left(\frac{t}{t_0}\right)^b} , \qquad (1)$$

где b — параметр формы, оказывающий влияние на форму кривых распределения; t_0 — параметр масштаба, характеризующий растянутость кривых распределения вдоль оси t.

Для восстановления неизвестной функции плотности распределения в рамках теории непараметрической статистики используется ряд методов и алгоритмов [1]. В качестве непараметрических моделей часто рассматриваются непараметрические оценки Розенблата—Парзена, в которых используется сглаженная эмпирическая функция распределения [1,2]:

$$F_N(y) = \frac{1}{N} \sum_{i=1}^{N} G\left(\frac{y - x_1}{h}\right),\tag{2}$$

где G(t) — монотонно неубывающая функция от 0 до 1 своего аргумента, симметричная относительно нуля; h — параметр «размытости».

Плотность распределения этой функции:

$$f_N(y) = F_N'(y) = \frac{1}{N \cdot h} \sum_{i=1}^N G_i' \left(\frac{y - x_1}{h} \right) = \frac{1}{N \cdot h} \sum_{i=1}^N K_i \left(\frac{y - x_1}{h} \right), \tag{3}$$

где K(t) = G'(t) – плотность распределения G(t) , или ядерная функция.

Восстановление функции плотности распределения данным методом заключается в выборе ядерной функции и определении значения параметра размытости. Качество восстановления функции плотности распределения в значительной степени зависит от величины параметра размытости, оптимальную величину которого можно определить по максимальному значению информационного функционала [2]:

$$J_{N1} = \max_{h_N} \left\{ \frac{1}{N} \sum_{i=1}^{N} \ln \left[\frac{1}{(N-1)h} \sum_{j \neq i}^{N-1} \frac{1}{\sqrt{2 \cdot \pi}} \exp \left(-\frac{\left(\frac{x_i - x_j}{h}\right)^2}{2} \right) \right] \right\}.$$
 (3)

При использовании ядерной функции в виде нормального распределения оптимальное значение параметра размытости задается следующим выражением:

$$h = \sigma \cdot N^{-\frac{1}{5}}. \tag{4}$$

Восстановление плотности вероятности отказов различными методами проведено при оценке эксплуатационной надежности шасси подъемной установки КВ-210В. Наработки на отказ шасси установки приведены в табл.1.

Таблица 1
Наработки на отказ шасси подъемной установки КВ-210В, моточас

216	228	321	568	705	754	770	839	945
1002	1018	1036	1136	1358	1417	1508	1548	1727
1803	1934	1959	1978	2016	2018	2022	2074	2146
2210	2450	2452	2466	2619	2662	2667	3180	3215
3233	3311	3554	3980	4290	4656	4992	-	_

Обработка наработок на отказ позволила выдвинуть гипотезу о принадлежности эмпирических данных параметрическому теоретическому закону распределения Вейбулла. Приведены гистограмма количества отказов в интервалах наработки и теоретическая кривая распределения Вейбулла (рис.1).

Рис.1.
Гистограмма
плотности
вероятности
отказов шасси
подъемной
установки
КВ-210В

Результаты проверки адекватности эмпирических данных теоретическому закону распределения приведены в табл. 2.

1 аолии Проверка адекватности наработок на отказ шасси теоретическому закону распределения Вейбулла

Интервалы	n_i	n_i^{\prime}	$(n_i - n_i^{/})^2$	$(n_i - n_i^{\prime})^2 / n_i^{\prime}$	χ^2	$P(\chi^2)$
216 - 898	8	7,8	0,04	0,005128		
898 - 1580	9	10	1	0,1		
1580 - 2262	11	9	4	0,444444		
2262 - 2945	6	7	1	0,142857		
2945 - 3627	5	4,8	0,04	0,008333	0,772	0,85
3627 - 4992	4	3,5	0,25	0,071429		

С вероятностью P=0,85 можно утверждать, что эмпирические данные могут быть описаны теоретическим законом распределения. Плотность вероятности отказа шасси установки может быть представлена зависимостью:

$$f(t) = \frac{1,77}{2270} \cdot \left(\frac{t}{2270}\right)^{0.77} \cdot e^{-\left(\frac{t}{2270}\right)^{1.77}}.$$
 (5)

Квантили наработок на отказ, соответствующие 5% и 90% вероятности отказа соответственно, составляют 505 и 3780 м·ч:

$$K_{V5} = \int_{\min}^{495} f(t)dt = 0.05$$
 $K_{V90} = \int_{\min}^{3780} f(t)dt = 0.90$. (6)

Используя методику и программы Mathkad [2], выполнены расчеты по восстановлению плотности распределения наработок на отказ шасси подъемной установки непараметрическим методом. В качестве ядерной функции использовалось нормальное распределение. Оптимальное значение параметра размытости, заданное формулой (4), и определенное по максимальному значению информационного функционала (3), составило h=520.

Расчеты, выполненные при различных значениях параметра размытости – h, приведены на рис. 2.

Рис. 2. Плотности вероятностей отказов шасси КВ-210 В при различных параметрах размытости h

Приведены значения наработок на отказ, соответствующие 5% и 90% квантилям вероятности отказа для функции плотности вероятности, полученной с использованием непараметрической статистики при различных значениях параметра размытости и для параметрического закона распределения Вейбулла (табл.3).

Наработки, соответствующие вероятности 5% и 90% отказов шасси при различных параметрах размытости (h)

Таблица 3

рия ототиотием	h, м. ч	K _V	5%	K _V 90%		
Вид статистики		Наработка, м.∙ч	Отклонение, %	Наработка, м.∙ч	Отклонение, %	
	169	500	1	3800	0,5	
Horrana varnavia aviag aranyanya	316	495	0	3960	4,7	
Непараметрическая статистика	433	500	1	4140	9,52	
	523	505	2	4300	13,7	
Параметрическая Вейбулла	$e=1,77$ $t_0=2270$	495	0	3780	0	

Здесь же приведены отклонения 5% и 90% квантилей вероятностей отказов относительно данных, полученных по закону распределения Вейбулла (см. табл.3). Из приведенных данных следует, что отличия в квантилях 5% вероятности отказов не превышают 2% для всех значений параметра размытости – h.

Отклонения же квантилей на хвостах распределения (90% вероятности отказов) более значительные и зависят от параметра размытости.

Проведенные исследования показали, что для оценки показателей надежности при восстановлении плотности распределений наработок на отказ подъемных установок методами параметрической и непараметрической статистики наблюдаются незначительные отклонения в области квантилей наработок, соответствующих вероятности отказа 0,05-0,10. Поэтому для реализации разработанных методик [3,4], повышения эффективности использования подъемных установок при выполнении ремонта скважин, где используются квантили наработок, соответствующие вероятностям отказов 0,05-0,10, при описании плотностей распределений могут быть использованы методы параметрической и непараметрической статистики.

В практических приложениях часто необходимы оценки плотности на хвостах распределений, например, при решении задач прогнозирования ресурса или расчета прочностной надежности изделий. В этих областях отличия в квантилях распределений при описании плотности распределений методами параметрической и непараметрической статистики значительны. Авторы [1] отмечают, что применять следует те методы, которые в конкретной ситуации дают наилучший результат. Параметрические и непараметрические методы не являются взаимоисключающими, а с развитием математического аппарата граница между ними начинает размываться.

Список литературы

- 1. Лемешко Б. Ю. Постовалов С. Н., Французов А. В. Исследование распределений статистики типа Колмогорова при использовании ядерных оценок // Материалы Международной НТК "Информатика и проблемы телекоммуникаций". Новосибирск, 2001. 82 с.
- 2. Сызранцев В. Н. Расчет прочностной надежности изделий на основе методов непараметрической статистики / В. Н. Сызранцев, Я. П. Невелев, С. Л. Голофаст. Новосибирск: Наука, 2008. 218 с.
- 3. Кузнецов А. С. Методика определения нормативов технического обслуживания подъемных установок, используемых при капитальном ремонте скважин / А.С. Кузнецов // Известия вузов. Нефть и газ. -2008. №4. С.105-109.
- Кузнецов А. С. Методика определения оптимального количества подъемных установок, обслуживающих бригады ремонта скважин / А. С. Кузнецов // Известия вузов. Нефть и газ. - 2008. - №5.- С.104-108.

Сведения об авторах

Кузнецов А.С., к.т.н., заведующий кафедрой «Машины и технологическое оборудование», Сургутский институт нефти и газа, филиал ТюмГНГУ; тел.: 8(3462)354166

Данилов О. Ф., д.т.н., профессор, заведующий кафедрой «АТХ», Тюменский государственный нефтегазовый университет, тел.: (3452) 25-69-84, e-mail: nauka@tsogu.ru

Kuznetsov A.S., Candidate of Technical Sciences, Head of Department "Machines and processing facilities", Surgut Institute of Oil and Gas, phone: 8(3462)354166

Danilov O.F., PhD, professor, Head of Department «ATH», Tyumen State Oil and gas University, phone: (3452) 25-69-84, e-mail: nauka@tsogu.ru