2- القوة والحركات المستقيمة

كان أرسطو (384 . 322 ق.م) يعتقد أن الحركة تتطلب وجود قوة حتى تتم بسرعة ثابتة:" إن الجسم المتحرك يتوقف عندما تتوقف القوة المؤثرة عليه عن دفعه".

بقي هذا التصور سائدا ، حتى جاء غاليلي (1642 . 1564) ، فهو أول من صرح بأن حركة جسم صلب على مستوي أفقي أملس (غير خشن) لا تحتاج إلى قوة حتى تستمر إلى ما لا نهاية (مادام المستوي الأفقي يسمح لها بذلك) .

ثم جاء نيوتن في القرن الثامن عشر (1727.1642)، ومعه ظهر أول قانون في الميكانيك والذي يعتبر اللبنة الأولى في بناء " الميكانيك الكلاسيكي".

القانون الأول لنيوتن:

" يحافظ كل جسم على سكونه أو حركته المستقيمة المنتظمة إذا لم تتدخل قوة لتغيير حالته الحركية". سنحاول في هذا الوحدة فهم دور القوة في حركة جسم صلب ، حيث يكون بصقة عامة في تأثير متبادل مع أجسام أخرى تؤثر على حركته

أو على توازنه.

إسحاق نيوتن (1662 Issac Newton). عالم رياضي وفيزيائي إنجليزي. هو مؤسس الميكانيك الكلاسيكي، والذي يطلق عليه في كثير من الأحيان ميكانيك نيوتن.

أعماله الرئيسية كانت تتمحور حول طبيعة الضوء الأبيض التجاذب الكوني.

$ec{\Delta V}$ العلاقة بين قوة $ec{F}$ والتغير في السرعة $ec{V}$. 1

تجربة1:

يقذف متحرك محمول ذاتيا،على طاولة هوائية أفقية. تترك إحدى نقاط الجسم (مركز عطالته)الآثار المبينة في التسجيل المرفق، والتي تمثل مساره، خلال مجالات زمنية متعاقبة ومساوية لـ Δt = 80.04 نلاحظ أن مختلف النقاط تقع على استقامة واحدة ومتساوية

الأبعاد فيما بينها: الحركة مستقيمة منتظمة.

$$\begin{matrix} \bullet \\ G_0 \end{matrix} \quad \begin{matrix} \bullet \\ G_1 \end{matrix} \quad \begin{matrix} \bullet \\ G_2 \end{matrix} \quad \begin{matrix} \bullet \\ G_3 \end{matrix} \quad \begin{matrix} \bullet \\ G_4 \end{matrix} \quad \begin{matrix} \bullet \\ G_5 \end{matrix} \quad \begin{matrix} \bullet \\ G_6 \end{matrix} \quad \begin{matrix} \bullet \\ G_7 \end{matrix} \quad \begin{matrix} \bullet \\ G_8 \end{matrix} \\ \begin{matrix} \bullet \\ G_7 \end{matrix} \quad \begin{matrix} \bullet \\ G_8 \end{matrix}$$

. نحسب سرعة مركز العطالة G:

=
$$0.25 \frac{0.02}{0.08} = \frac{G_0 G_2}{2\Delta t}$$
 $V_{G1} = m.s^{-1}$

نلاحظ أن شعاع السرعة ثابت، و التغير في شعاع السرعة معدوم في كل لحظة. $\overrightarrow{V} = \overrightarrow{O}$.

القوتان اللتان يخضع لهما الجسم المتحرك هما:

. قوة الثقل \overrightarrow{P} (قوة بعدية تمثل جذب الأرض للجسم).

. قوة رد فعل الطاولة \overrightarrow{R} (قوة تلامسية شاقولية تمثل فعل الهواء المدفوع والذي يعادل قوة الثقل).

جهة الحركة

طاولة هوائية

الاستنتاج:

$$\vec{P} + \vec{R} = \vec{0}$$

أي أن الجسم ينزلق على الطاولة دون احتكاكات بفضل الوسادة الهوائية.

القنون الأول لنيوتن:

"يحافظ كل جسم على سكونه أو حركته المستقيمة المنتظمة إذا لم تتدخّل قوة لتغيير حالته الحركية".

إن الحالة التي تكون فيها حركة مركز عطالة جملة مستقيمة منتظمة ، نادرة عمليا. سنرى في الفقرات الموالية، كيف أنه إذا كانت حركة جسم ليست مستقيمة منتظمة فإنّه بالضرورة خاضع لقوى غير متعادلة.

تجربة2: حالة حركة مستقيمة متسارعة.

أثناء حركة الجسم S ، تترك إحدى نقاطه (مركز عطالته) الآثار المبينة في التسجيل المرفق ، والتي تمثل مساره. سندرس التغير في سرعة مركز عطالته أثناء هذه الحركة.

 $s 0.04 = \Delta t$ الزمنية الزمنية

1.75	5cm 2.75	5cm	3.75cm	4.75cm		5.75cm	
$\overset{ullet}{G}_0$	$\overset{ullet}{G}_1$	$\overset{\bullet}{\rm G_2}$	G ₃	3	${\bf \overset{\bullet}{G}_{4}}$		$\overset{ullet}{\mathbf{G}}_{5}$

: G_4 ، G_3 ، G_2 ، G_1 । انقاط في النقاط مركز العطالة في مركز العطالة في النقاط .

$$V_{G1} = \frac{0.045}{0.080} = \frac{G_0 G_2}{2\Delta t} \quad 0.563 \quad \text{m.s}^{-1}$$

$$V_{G2} = \frac{0.0650}{0.080} = \frac{G_1 G_3}{2\Delta t} \quad 0.813 \quad \text{m.s}^{-1}$$

$$V_{G3} = \frac{0.0850}{0.080} = \frac{G_2 G_4}{2\Delta t} \quad 1.063 \quad \text{m.s}^{-1}$$

$$V_{G4} = \frac{0.105}{0.080} = \frac{G_3 G_5}{2\Delta t} \quad 1.313 \quad \text{m.s}^{-1}$$

نلاحظ أن السرعة متزايدة: الحركة متسارعة.

. نمثل أشعة السرعة:

. نحسب التغير في شعاع السرعة:

$$-\vec{V_{G3}} \Delta \vec{V_{G2}} = 1.063 \vec{i} - 0.563 \qquad \vec{i} = 0.500 \ \vec{i}$$
$$-\vec{V_{G4}} \Delta \vec{V_{G3}} = 1.313 \vec{V_{G2}} \ \vec{i} - 0.813 \qquad \vec{i} = 0.500 \ \vec{i}$$

. نلاحظ أن التغير في شعاع السرعة ثابت. نمثل التغير في شعاع السرعة:

1ms⁻¹ 1.75cm 2.75cm 3.75cm 4.75cm 5.75cm $\overrightarrow{G_2} \rightarrow \overrightarrow{A} \overrightarrow{V}_{G2} \xrightarrow{G_3} \overrightarrow{A} \overrightarrow{V}_{G3}$ $\dot{\mathbf{G}}_{4}$

. نلاحظ أن التغير في شعاع السرعة له جهة الحركة.

القوى المؤثرة على الجسم المتحرك :

. قوة الثقل \overrightarrow{P} (قوة بعدية تمثل جذب الأرض للجسم).

. قوة رد فعل الطاولة \overrightarrow{R} (قوة تلامسية شاقولية تمثل فعل الهواء المدفوع والذي يعادل قوة الثقل).

. توتر الخيط \overrightarrow{T} قوة تلامسية يؤثر بها الخيط على الجسم).

مجموع القوي الخارجية المطبقة على الجسم S غيرمعدومة:

 $\vec{P} + \vec{R} + \vec{T} = \vec{T}$

 $\vec{P} + \vec{R} = \vec{0}$ لدينا: $\vec{P} + \vec{R} + \vec{T} = T\vec{i}$ ومنه:

. نلاحظ أن لمجموع القوي نفس منحى وجهة التغير

 $. \vec{V_G}$ للشعاع $ec{V_G}$

- نتىحة :

للحصول على سرعة متزايدة لجسم، يجب التأثير عليه بقوة تبقى منطبقة (أو مماسة) لمسار مركزه ولها نفس جهة حركته.

$$\vec{P} + \vec{R} + \vec{T} = T.\vec{i}$$

تجربة 3: حالة حركة مستقيمة متباطئة.

يقذف جسم محمول ذاتيا، على طاولة هوائية أفقية. تترك إحدى نقاط الجسم (مركز عطالته)الآثار المبينة في التسجيل المرفق، والتي تمثل مساره

$$G_4$$
, G_3 , G_2 , G_1 : with G_3 is a limit of G_4 , G_3 , G_2 , G_3 : G_4 : G_5 is a limit of G_4 : G_5 : G_6

نلاحظ أن السرعة متناقصة: الحركة متباطئة.

 G_1 G_2 G_3 G_4 G_5

. نمثل أشعة السرعة:

. نحسب التغير في شعاع السرعة:

$$-\vec{V_{G3}} \ \Delta \vec{V_{G2}} = = 0.375 \vec{V_{G1}} \ \vec{i} - \vec{i} = -0.375 \vec{i} \ 0.750$$

$$-\vec{V_{G4}} \ \Delta \vec{V_{G3}} = = 0.250 \ \vec{V_{G2}} \ \vec{i} - \vec{i} = -0.250 \ \vec{i} \ 0.500$$
 . i Like it is a single sin

. نمثل التغير في شعاع السرعة:

$$\overrightarrow{i} \quad \overrightarrow{G}_0 \quad \overrightarrow{G}_1 \stackrel{\cancel{\Delta} \overrightarrow{V}_{G2}}{\overleftarrow{G}_2} \stackrel{\cancel{\Delta} \overrightarrow{V}_{G3}}{\overleftarrow{G}_3} \stackrel{\bullet}{G}_4 \stackrel{\bullet}{G}_5$$

. نلاحظ أن التغير في شعاع السرعة معاكس لجهة الحركة.

القوى المؤثرة على الجسم المتحرك S:

. قوة رد فعل الطاولة \overrightarrow{R} (قوة تلامسية شاقولية تمثل فعل الهواء المدفوع والذي يعادل قوة الثقل).

على الجسم).

$$\vec{P} + \vec{R} + \vec{T} = \vec{T}$$
 الدينا: $\vec{P} + \vec{R} = \vec{0}$:ديثا:

$$\vec{P} + \vec{R} = \vec{0}$$

$$\vec{P} + \vec{R} + \vec{T} = -T\vec{i}$$
 : each

. $\overrightarrow{V_G}$ نلاحظ أن لمجموع القوى نفس منحى وجهة معاكسة للتغير $\overrightarrow{V_G}$ للشعاع .

نتيجة:

للحصول على سرعة متناقصة لجسم، يجب التأثير عليه بقوة تبقى منطبقة (أو مماسة) لمسار مركزه ولها جهة معاكسة لحركته.

2.2 الخلاصة:

كل قوة F مطبقة على جسم، وغير متعادلة، خلال مجال زمني صغير Δt ، تحدث خلال هذه المدة تغيرا \overrightarrow{V} في شعاع سرعة هذا الجسم.

لكل من القوة \overrightarrow{F} والتغير \overrightarrow{V} في شعاع السرعة نفس المنحى والجهة.

القانون الثاني لنيوتن:

 $\vec{F} = \sum \vec{F}_{ext}$ والسرعة السرعة لمركز عطالة جسم \vec{V}_G متغير، فإن المجموع المركز عطالة جسم يكون غير معدوم.

منحى وجهة هذه المحصلة \overrightarrow{F} هو نفسه منحى وجهة التغير في شعاع السرعة $\overrightarrow{V_G}$ ، لشعاع السرعة $\overrightarrow{V_G}$ بين لحظتين متقاربتين (خلال مجل زمني صغير).

تمرين 01

1 . نريد دراسة حركة كرية تسقط في الهواء في مرجع أرضي (الشكل 1).

أ. كيف تتغير سرعة الكرية خلال الزمن ؟ علل بالاعتماد على الشكل.

ب. باستعمال نموذج قوانين الميكانيك ، ماذا يمكن قوله عن القوى المؤثرة على الكرية ؟

- ج. ما هي القوى المؤثرة على الكرية ؟ مثلها على شكل واضح.
- 2. تترك نفس الكرية لتسقط في مخبار طويل يحتوي على الجليسيرين (glycérine) الشكل 2. وتتم الدراسة في مرجع أرضى.
 - أ. كيف تتغير سرعة الكرية مع الزمن ؟علل بالاعتماد على الشكل (لاحظ وجود مرحلتين).
- ب. باستعمال نموذج قوانين الميكانيك، ماذا يمكن قوله عن القوى المؤثرة على الكرية في المرحلة الثانية؟
 - ج. ما هي للقوى المؤثرة على الكرية ؟ مثلها على شكل واضح.

الحل:

- 1. أ. تزايد قيمة السرعة، لتزايد المسافة المقطوعة من طرف الكرية خلال نفس المدة الزمنية.
 - ب. إذا كانت جملة غير ساكنة، أو حركتها ليست مستقيمة منتظمة، فإن القوى المطبقة عليها غير متعادلة.

إذن : القوى المطبقة على الكرية غير متعادلة لأن سرعتها متغيرة.

ج. القوى المطبقة على الكرية هي:

 $\overrightarrow{F}_{T/B}$. قوة مطبقة من طرف الأرض

 $ec{F}_{A/B}$. قوة مطبقة من طرف الهواء

2 . أ . خلال المرحلة الأولى ، يلاحظ أن سرعة الكرة تزداد ، حيث تقطع مسافات متزايدة خلال نفس المجالات الزمنية. (المدة الزمنية بين صورتين).

خلال المرحلة الثانية، تكون سرعة الكربة ثابتة ، لأن المسافات المقطوعة خلال المجالات الزمنية المتساوبة هي نفسها.

ب . إذا كانت حركة جملة مستقيمة منتظمة، فإن القوى المطبقة عليها متعادلة.

إذن : القوى المطبقة على الكرية متعادلة.

ج. القوى المطبقة على الكرية هي:

 $\vec{F}_{G/B}$: يوى المطبقة على الكرية هي . $\vec{F}_{T/B}$. $\vec{F}_{T/B}$. $\vec{F}_{G/B}$ (la glycérine) . $\vec{F}_{G/B}$. قوة مطبقة من طرف الجليسيرين . $\vec{F}_{T/B}$