

Overview of DBMS and Topics

Learning Objectives

- What is
 - A database? Why use them?
 - A database schema? Example?
 - Relational model?
 - Entity-Relationship (ER) model?
- What are the differences (if any) between:
 - Conceptual schema
 - Logical schema
 - Physical schema
 - External schema
 - Views
- What is data independence?

What Is a DBMS?

- Database: Large, structured collection of data.
- A database models data of some real-world enterprise
 - Entities (e.g., students, courses)
 - Relationships (e.g., Lisa Simpson is taking EECS 484)
- DBMS: Database Management System
 - A software package designed to store and manage databases
 - Often (loosely) called a database

Example Problem

Spreadsheets are commonly used to represent structured data. Try figure out the spreadsheet design to capture the following information about students for a Facebook-like system at a University:

- Students: Last Name, First name, Major, Home City
- Friends relationship: Student1, Student2

Old-time Solution: Sorted Student Folders

- Advantages?
- Disadvantages?

Old-time Solution: Sorted Student Folders

- Advantages?
 - cheap, universal, few dependencies
- Disadvantages?
 - Large weight & volume
 - Difficult to share
 - No ad-hoc queries

Other Solution: Flat Files

- Access?
 - using programs in C, Java, Python etc.
- Layout for the student records?

Other Solution: Spreadsheets?

- Maintain all student records in a giant spreadsheet?
- Maintain each student record in a different spreadsheet?

Other Solution: Flat Files

- Problems?
 - Inconvenient access to data
 - Potential data redundancy
 - Integrity problems
 - Atomicity problems (concurrent access issues)
 - Security problems

Why use a DBMS?

- It solves ALL these problems!
 - Data independence
 - Apps need a view of the data, not info about internal representation and storage
 - Efficient storage and access
 - Centralized data administration
 - Data integrity and security
 - Concurrent access, recovery from crashes
 - Reduced application dev time

Who uses a DBMS?

Who uses a DBMS?

- Everyone!
 - Your bank
 - Your university
 - Your coffee shop
 - Your favorite hotel
 - Your favorite website
 - Your phone
 - Your government
- How many databases have you used so far today?

- Data model: a collection of concepts for describing data.
- Schema: a description of a particular collection of data, using a given data model.
- Relational model: the most widely-used model today.
- Entity-Relationship (ER) model: A "semantic" data model, i.e., a higher-level more user-intuitive model
 - A (relational) DBMS understands only the relational model, so we will translate an ER schema to a relational schema

Relational and Other Data Models

DBMS using the

relational DM

('70s-'80s)

- IBM DB2
- Informix
- Oracle
- Sybase
- Microsoft Access
- Tandem
- Teradata
- . . .

Other data models

- Hierarchical (mid '60s-'70s)
 - IBM IMS
- Network ('70s)
 - IDMS, IDS
- Object-oriented (~'90s)
 - ObjectStore
- Object-relational (relational model + object DB concepts)
 - Oracle
- *****

Relational (Data) Model

- The most widely-used model today
 - A collection of relations
 - Relation = set of records, naturally represented as a table with rows and (named, typed) columns
 - Each table row is also called a tuple or record

Students

sid	name	login	age
13	Lisa	Isimp	40
41	Bart	bart	20

Courses

cid	cname	cred.
E-484	EECS484	4
E-584	EECS584	3

Enrolled

sid	cid	grade
41	E-484	Α-
13	E-584	A+

Relational (Data) Model

- Schema = a description of data in terms of a data model
 - Every relational database has a schema
 - Specifies the name of each relation, the name and type of the columns (or fields or attributes)

Students(sid:string, name:string, login:string, age:integer)

Courses(cid:string, cname:string, credits:integer)

Enrolled(sid:string, cid:string, grade:string)

Students

sid	name	login	age
13	Lisa	Isimp	40
41	Bart	bart	20

Courses

cid	cname	cred.
E-484	EECS484	4
E-584	EECS584	3

Enrolled

sid	cid	grade
41	E-484	A-
13	E-584	A+

Entity-Relationship (ER) Model

- A "semantic" data model
 - a higher-level, user-intuitive model
- Entity-Relationship diagram:
 - Entities: Student, Course
 - Relationship: Enrolled_in

Levels of Abstraction

Example

- Logical schema (1):
 - Students(sid:string, name:string, login:string)
 - Courses(cid:string, cname:string, credits:integer)
 - Enrolled(sid:string, cid:string, grade:string)
- Physical schema (1):
 Relations stored as unordered files.

 - Index on first column of Students.
- External Schema or View (≥ 1):
 - Course info(cid:string, cname:string, enrollment:integer)
 - Student Credits Enrolled(sid:string, totalcredits:integer)

Views can be computed from the relations in the logical Schema

Data Independence

- Applications insulated from data format and storage details
- Logical data independence: Protection from changes in logical structure of data
 - External / Logical schema interface
- Physical data independence: Protection from changes in physical structure of data
 - Logical / Physical schema interface

EECS 484

- Which of these are more suitable for storing in a DBMS rather than files in an OS?
 - (a) Grades for students at the university
 - (b) Source code for a program
 - (c) Contents of a textbook

- Let's say UM provides you access to a relational table that gives just your grades in various courses. Does the design of that relation represent:
 - a) An external schema?
 - b) A conceptual schema?
 - c) A physical schema?
 - d) A logical schema?

- The relational table with student grade information is very large and stored on multiple servers for performance. Does the storage scheme represent:
 - a) An external schema?
 - b) A conceptual schema?
 - c) A physical schema?
 - d) A logical schema?

e)

Lots of People use DBMS ...

- DBMS vendors
- DB application programmers
 - E.g. smart webmasters
- Database administrator (DBA)
 - Designs external, logical, & physical schemas
 - Handles security and authorization
 - Data availability, crash recovery
 - Database tuning as needs evolve

DBA must understand how a DBMS works!

Summary

- DBMS used to maintain, query large datasets.
- Benefits include recovery from system crashes, concurrent access, quick application development, data integrity and security.
- Levels of abstraction give data independence.
- DBAs hold responsible jobs and are well-paid! 🤑
- DBMS R&D is one of the most exciting areas in CS.

Please read Chapter 2 (26 pp)