Занятие 2.

Тема: Кинематика материальной точки.

- 1. Точка движется в плоскости xy по закону: $x = \alpha t$, $y = at(1-\alpha t)$, где α и a положительные постоянные, t время. Найти: а) уравнение траектории точки y(x), изобразить ее график; б) модуль скорости v и модуль ускорения v точки в зависимости от времени; в) момент v, в которой вектор скорости составляет угол v с вектором ускорения. (Ответ: v (Ответ: v (v) = v0 (v0) = v1 (v1) = v2 (v3) = v3.
- 2. Радиус-вектор точки А относительно начала координат меняется со временем t по закону $\vec{r} = at\vec{e}_x bt^2\vec{e}_y$, а и b положительные постоянные. Найти: 1) уравнение траектории точки y(x), изобразить ее график; 2) зависимость от времени векторов скорости \vec{v} , ускорения \vec{w} и модулей этих величин; 3) зависимость от времени угла α между векторами \vec{v} и \vec{w} ; средний вектор скорости за первые t секунд движения и модуль этого вектора.
- **3.** Тело бросили с поверхности Земли под углом α к горизонту с начальной скоростью v_0 . Пренебрегая сопротивлением воздуха найти: а) время движения τ ; б) максимальную высоту подъема h и горизонтальную дальность полета L, при каком значении угла α_0 они будут равны; в) уравнение траектории y(x), где x и y- перемещения тела по вертикали и горизонтали соответственно; г) полное, тангенциальное и нормальное ускорение в начале и середине траектории; д) радиус кривизны R начала и вершины траектории.
- **4**. Ось x на рис. служит границей между участком, поросшим травой, и участком, покрытым рыхлым песком. Пешеходу нужно попасть из пункта A в пункт B. По траве пешеход может идти со скорость v_1 =5,00 км/ч, по песку со скоростью v_2 =3,00 км/ч. Чтобы совершить переход за самое короткое время, пешеход выбирает ломанный путь AOB. При каком соотношении между синусами углов α_1 и α_2 время движения пешехода из A в B будет минимальным?

- **5.** Пушка и цель находятся на одном уровне на расстоянии 5,10 км друг от друга. Через сколько времени снаряд с начальной скоростью 240 м/с достигнет цели в отсутствие сопротивления воздуха? (Ответ: $t = 24 \,\mathrm{c}$)
- **6.** Тело брошено под углом $\alpha = 60^{\circ}$ к горизонту с начальной скоростью $v_0 = 20$ м/с. Найти: а) максимальную высоту подъема и горизонтальную дальность полета; б) под каким углом β_1 к горизонту движется тело через $\tau_1 = 1,5$ с после начала движения? Через $\tau_1 = 2,5$ с? в) через сколько времени τ_0 и на какой высоте h тело будет двигаться под углом $\beta_2 = 45^{\circ}$ к горизонту?

(**Ответ:** a)
$$H = 15 \text{ M}$$
, б) $\lg \beta_1 = \frac{v_0 \sin \alpha - g \tau_1}{v_0 \cos \alpha}$, $\beta_1 = 13,5^{\circ}$; в) $\tau_0 = \frac{v_0 (\sin \alpha - \cos \alpha)}{g} = 0,74 \text{ c}$)

- **7.** Снаряд, выпущенный из орудия под углом $\alpha=30^\circ$ к горизонту, дважды был на одной и той же высоте h спустя время $t_1=10$ с и $t_2=50$ с после выстрела. Определить начальную скорость \mathbf{v}_0 и высоту h. (Ответ: $\mathbf{v}_0=\frac{2(t_1+t_2)}{2\sin\alpha}=600\,\mathrm{m/c};\ h=2500\,\mathrm{m})$
- **8.** Над колодцем глубиной $h=10\,\mathrm{m}$ бросают вертикально вверх камень с начальной скоростью $\mathbf{v}_0=14\,\mathrm{m/c}.$ Через сколько времени камень достигнет дна колодца? (**Ответ:** $t=\frac{\mathbf{v}_0}{g}+\sqrt{\frac{2h}{g}+\frac{\mathbf{v}_0^2}{g^2}}$)

1

- **9.** Точка движется в плоскости xy по закону $x = a \sin \omega t$, $y = at(1-\cos \omega t)$, где ω и a положительные постоянные, t время. Найти: а) путь S, проходимый точкой за время τ ; б) угол между векторами скорости и ускорения точки. (**Ответ:** $S = a\omega \tau$; $\alpha = \pi/2$)
- **10.** Точка движется, замедляясь, по прямой с ускорением, модуль которого зависит от ее скорости v по закону $w = a\sqrt{v}$, где a положительная постоянная. В начальный момент скорость точки равна v_0 . Какой путь она пройдет до остановки? За какое время этот путь будет пройден?
- 11. Зависимость модуля скорости тела от пройденного пути имеет вид $v(s) = v_0 bs$. Найти: а) зависимость пути s от времени t; δ) зависимость модуля скорости v от времени t.
- **12.** Из пушки выпустили последовательно два снаряда со скоростью $v_0 = 250\,\text{м/c}$: первый под углом $\alpha_1 = 60^0\,$ к горизонту, второй под углом $\alpha_2 = 45^0\,$ (азимут один и тот же). Пренебрегая сопротивлением воздуха, найти интервал времени между выстрелами, при котором снаряды столкнутся друг с другом. (**Ответ:** $\Delta t = \frac{2\,\mathrm{v_0}\sin(\alpha_1 \alpha_2)}{g(\cos\alpha_2 + \cos\alpha_1)}$)
- **13.** Вертикально вверх с начальной скоростью 20 м/с брошен камень. Через 1 секунду после этого брошен вертикально вверх другой камень с такой же скоростью. На какой высоте встретятся камни?
- **14**. Тело бросили горизонтально с некоторой высоты h со скоростью 10 м/с. Дальность полета тела равны высоте h. Определить высоту h.
- **15**. Уравнение движения тела дано в виде $x = 15t + 0.4t^2$ (м). Определить начальную скорость и ускорение движения тела, а также координату и скорость тела через 5 с после начала движения
- **16**. Камень падает с высоты H=1000 м. Какой путь s пройдет камень за последнюю секунду своего падения?
- 17. Вертикально падающая дождевая капля в момент, когда она достигает поверхности земли, имеет скорость 15 м/с. Одна из капель падает в колодец глубиной 10 м. Сколько времени нужно для того, чтобы человек, стоящий на земле, услышал удар капли о поверхность воды, если скорость звука в воздухе 340 м/с? (~0,6 с)