Multi-Robot/Coordinated SLAM with Particle Filters

R Choroszucha, A Collier, and C Hyman

2015-04-20

Overview

- Multi-Robot SLAM
- Experimental Validation
- Conclusions and Future Work

Single Robot/Multi-Robot SLAM

- Single Robot
 - Very slow to map a large area
 - Increase speed → increase noise/decrease accuracy
 - Not robust: single point of failure
- Multi-Robot SLAM (MRSLAM)
 - SLAM with multiple robots searching the space and communicating with each other
 - May still use slower robots
 - May have robot failure, but still achieve mapping objective

Challenges of MRSLAM

- Often do not know initial poses
 - Need to calculate relative poses
- Complexity
 - Exploration/Coordination, efficiently move with little overlap and to get as much coverage as possible
- Each robot is taking measurements in its own frame
 - How to transform the pose data?
 - How to combine the data?
 - How to create a global map?

Solving MRSLAM

- Most papers solve 1 problem at a time
 - Coordination
 - Map Merging
- Focus: Howard, 2006
 - Answers map merging problem
 - All robots store sensor data for both odometry and measurements
 - Starts with a single robot, stored data integrated transformed data into the map posterior post encounter

MRSLAM Assumptions

- Robots move independently of each other
- Can determine the relative poses of each robot perfectly on an encounter
- Continued communication post encounter
- Robot encounters form a connected graph

[Howard, 2006] Algorithm

- Occupancy Grid FastSLAM
- Store $(u_t, z_t, encounter_t)$ data
- On encounter, replay past data in reverse order
- Post encounter integrate stored information into the map posterior in an acausal update
- Continue communication to integrate future odometry and encounters

[Howard, 2006] Algorithm

Causal/Acausal Updates

The Tests

- Occupancy Grid
 - Custom Map
 - m robots

Validation

Conclusions

- Conclusions:
 - •
- Future work:
 - Decrease
 - Make it work on Albert B data set

Further Reading

- [1] S. Thrun, W. Burgard, and D. Fox "Probabilistic Robotics." MIT press, 2005.
- [2] A. Howard.
 "Multi-robot simultaneous localization and mapping using particle filters."
 The International Journal of Robotics Research, 2006.
- [3] A. Birk, and S. Carpin. "Merging occupancy grid maps from multiple robots." Proceedings of the IEEE, 2006.

Questions...