Documentation for Estimation of PM_{2.5} in western US: Total and Attributed to Wildfires and Prescribed Fires

C.E. Reid¹, M.M. Maestas¹, E. Considine¹, G. Li¹,
N.H.F. French², M. Billmire², M. Jerrett³

¹University of Colorado Boulder and ²Michigan Technological University and ³University of California, Los Angeles

September 11, 2018

Abstract

The purpose of this document is to provide detailed information about the estimation of $PM_{2.5}$ (total and attributed to prescribed fires and wildfires) that our work could be reproduced. Figure 1 shows the study area of interest.

Contents

1	Ideas	s, To Do, Resources, etc	3
2		5 Surface Paper Notes Papers published in Atmospheric Environment - use as style example	4
3	-	rs to cite/discuss in Introduction and/or Discussion Notes on Papers	4
4		attribution paper text written for the COPD paper that is better suited here	5
5	5.1	Sources for Machine Learning PM2.5 Monitor data from US EPA AQS Air Data Query Tool	
	5.3	EPA PM2.5 Plots	15
	5.6	Fire Cache Smoke Monitor (DRI) Plots	23
	5.8 5.9	PM _{2.5} Monitor data from Uintah Basin	25 27
	5.10	Utah Department of Environmental Quality	28

	5.11 Utah DEQ Plots	29
	5.12 MODIS AOD	30
	5.13 GASP-West AOD	
	5.14 MERRA-2	
	5.15 MAIAC	
	5.16 MODIS Thermal Anomalies/Fire Daily L3 Global 1km (MOD14 and MYD14)	36
	5.17 Landsat-derived burned area essential climate variable (BAECV) fire activity data .	37
	5.18 MODIS/Terra and Aqua Burned Area Monthly L3 Global 500 m SIN Grid V006	
	(MCD64A1)	38
	5.19 Visible Infrared Imaging Radiometer Suite (VIIRS) (VNP14IMGTDL_NRT)	39
	5.20 Classified land cover information from the Landsat-derived NLCD 2011	40
	5.21 MODIS Snow Cover Daily L3 Global 500m Grid, Version 6 (MOD10A1 and	
	MYD10A1)	
	5.22 Elevation	
	5.23 Meteorological Data	43
6	North American Mesoscale, Analysis	44
7	GFS	44
	7.1 Dust Storms	45
8	Data Sources for CAMx Modeling of Source-Attributed Air Quality Modeling	46
9	CAMx Modeling	47
10	Compiling Data	48
	10.1 Processing PM2.5 data	48
	10.1.1 Notes about very high data points	49
	10.2 Compare 88101 to 88502 PM2.5	50
11	Machine Learning Methods	51
12	Machine Learning Results	52
D۵	oforoncos	53

1 Ideas, To Do, Resources, etc

Consider using the work of Westerling et al for a comprehensive fire history (up through 2012) http://science.sciencemag.org/content/313/5789/940, http://www.pnas.org/content/108/32/13165, http://rstb.royalsocietypublishing.org/content/371/1696/20150178 Westerling (2016b,a) Also look into the fire histories referenced in Westerling Westerling (2016b,a): http://fam.nwcg.gov/fam-web/weatherfirecd/fire_files.htm and http://fam.nwcg.gov/fam-web/kcfast/mnmenu.htm See also http://www.nifc.gov

look into the Fire and Smoke Model Evaluation Experiment (FASMEE) http://www.fasmee.net

Look at Kollanus et al. (2016) again for references for PM2.5 paper, especially the introduction. Consider using NAAPS in our study.

read?

read?

look up Global Fire Emissions Database (GFED3) - maybe it would be useful for our study as an input to the machine learning? see Liu et al. (2016)

see? for potential data sources for ML project

emissions vary by temperature <code>https://cires.colorado.edu/news/wildfire-temperatures-key-better-understand and https://www.atmos-chem-phys.net/18/9263/2018/</code>

read Monitoring Trends in Burn Severity MTBS, 2014. Data Access: Fire Level Geospatial Data. US Department of Agriculture, Forest Service and US Department of Interior, Geological Survey. http://mtbs.gov/data/individualfiredata.html/.

Idea: look at ambulance calls and PM2.5, similar to what Salimi et al. (2016) did in Australia. read?

Database of planned/proposed prescribed burns: WRAP's Fire Emissions Tracking System: http://wrapfets.org/index.cfm

See Di et al., 2016 and Johnston et al., 2012, Rappold et al., 2014 in ? - combine modelled and monitored/satelite data to estimate PM2.5

See page 11 of? for discussion of discrepancies related to burned area estimates

http://www.ptep-online.com/ctan/symbols-a4.pdf

US National Atlas http://nationalmap.gov/small_scale/atlasftp.html

Thought: Using DigitalGlobe for fire data compared to NASA: would have higher spatial resolution, but not consistently viewing all areas (no cost to CU people)

Look up Openair R package

Papers/resources to look into: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1293

https://www.fs.fed.us/psw/publications/4451/psw_2009_4451-001.pdf

https://labcit.ligo.caltech.edu/~ethrane/Resources/UNIX/

https://community.tableau.com/thread/141548

According to ?, GEOS-Chem "can be classified according to emission source", that implies that we could tag the emissions as wildfire vs prescribed fire vs urban. Would there be any advantages of this model over CAMx?

could analyze data with NAAQS and WHO PM2.5 standards

projection/datum info: https://gis.stackexchange.com/questions/664/whats-the-difference-between-a-projecthttp://resources.esri.com/help/9.3/arcgisengine/dotnet/89b720a5-7339-44b0-8b58-0f5bf2843393.htm http://grindgis.com/blog/wgs84-vs-nad83

Monitoring Trends in Burn Severity (MTBS) MTBS, 2016: Data Access: Fire Level Geospatial Data. USDA Forest Service/U.S. Geological Survey, accessed 8 October 2016, https://mtbs.gov/direct-download. Eidenshink, J., B. Schwind, K. Brewer, Z.-L. Zhu, B. Quayle, and S. Howard, 2007: A project for monitoring trends in burn severity. Fire Ecol., 3, 3–21, https://doi.org/10.4996/fireecology.0301003.

Idea: Maybe instead of just distance to closest fire, we should follow the example of [Baek2016] and do distributed lags with concentric circles with information about fires in each concentric circle... also, instead of just distance to fire, maybe we could come up with a variable that is something like [distance*size of fire] since both are important.

Fire stats/records: https://www.nifc.gov/fireInfo/fireInfo_statistics.html

See ? for description of fire perimeter data that perhaps we could use (CA only)

See ? for info about MTBS and Active Fire Mapping Program and NWS smoke products. See also Lassman et al ? cited therein.

Read these papers cited in ?: Yao and Henderson, 2014; Henderson et al 2011; Liu et al 2015; Gan et al 2017; and look at their sources of PM2.5 data to see if we could add any of those to our project.

2 PM2.5 Surface Paper Notes

Discussion of trends in anthro PM2.5: ?

2.1 Papers published in Atmospheric Environment - use as style example

Need to go through these papers

- Brokamp et al. (2017) (partially done, done through intro)
- Sampson et al. (2013)
- Anyenda et al. (2016)
- Torvela et al. (2014)
- Whiteman et al. (2014)

Put in Brokamp et al. (2017); Larsen et al. (2017)

3 Papers to cite/discuss in Introduction and/or Discussion

Westerling (2016b,a)

try to find English version http://80.24.165.149/webproduccion/PDFs/15CAP03.PDF For fire identification, consider using NOAA's Hazard Mapping System and BlueSky

3.1 Notes on Papers

See J. et al. (2016) for statistics about wildfires in western US, e.g., % started by humans, number of fires, etc.

4 Fire attribution paper

revisit?

include? - does a good job of summarizing the debate about more vs less prescribed burns sources of fire data?,?

will need to compare our work to?

include Westerling (2016b,a) and Abatzoglou and Williams (2016)

See ? for an alternative method of attributing PM2.5 to wildfire smoke (instead of CAMx)

See Le et al 2014?

See Huff et al?

4.1 text written for the COPD paper that is better suited here

Larsen et al., 2017 Larsen et al. (2017) found that, on average, ground-level PM_{2.5} concentrations increased by 2.9 μ g·m⁻³ (2.8, 3.0) when there was a visible wildfire smoke plume overhead (from satellite imagery), as well as a 2.6 ppb (2.5-2.7) increase in O₃. Satellite data provides a wealth of data and can provide information about air quality where monitors are not present. However, satellite imagery inherently comes with a substantial uncertainty in that satellite data describes the entire atmospheric column and not specifically just air pollution at the ground level, where people are breathing.

5 Data Sources for Machine Learning

For the creation of the spatiotemporal daily exposure surface via machine learning, a large number of data sets will be collected as discussed below. The dependent variable will be daily 24-hour $PM_{2.5}$ from monitoring data.

Figure 1: Map of 11-state study area.

All PM2.5 Monitor Locations

All PM2.5 Observation Locations

Figure 2: Map of locations of PM2.5 observations for entire study period, 2008 to 2014.

Figure 3: Map of locations of PM2.5 observations during 2008.

PM2.5 Observation Locations, 2009

Figure 4: Map of locations of PM2.5 observations during 2009.

Figure 5: Map of locations of PM2.5 observations during 2010.

PM2.5 Observation Locations, 2011

Figure 6: Map of locations of PM2.5 observations during 2011.

Figure 7: Map of locations of PM2.5 observations during 2012.

PM2.5 Observation Locations, 2013

Figure 8: Map of locations of PM2.5 observations during 2013.

Figure 9: Map of locations of PM2.5 observations during 2014.

5.1 PM2.5 Monitor data from US EPA AQS Air Data Query Tool

Data Source

Contact

Can email the Air Quality Analysis Group (U.S. EPA Office of Air Quality Planning and Standards) on their website at https://www.epa.gov/outdoor-air-quality-data/forms/contact-us-about-outdoor-air-quality-data/for-air-q

Citation/Link

United States Environmental Protection Agency. *Pre-Generated Data Files: Daily Summary Files, PM2.5 FRM/FEM Mass* (88101) and PM2.5 non FRM/FEM Mass (88502), 2008-2014. https://aqs.epa.gov/aqsweb/airdata/download_files.html#Daily

- Data (local)
- Geographic Extent
- Temporal Extent 2008 through 2014
- Acknowledgment

Download spreadsheet listing all AQS monitors with datums (https://aqs.epa.gov/aqsweb/airdata/aqs_monitors.zip) from "Monitor Listing" at https://aqs.epa.gov/aqsweb/airdata/download_files. html#Meta. The file name is aqs_monitors.csv in the AQS_Daily_Summaries folder in the S3 data.

Brief Description

We will download PM_{2.5} data from both the US EPA AQS Air Data Query Tool (US EPA, 2017c) and the IMPROVE monitors that capture air quality information in more rural areas (US EPA, 2017e) for the 11-state region (Figure 1) including any of the following parameter codes: 88101, 88500, 88502, 81104 (US EPA, 2017a,d,f).

Notes

File Format

Data Filtering and Processing

Final Variable(s)

Methods

- 1.
- 2.

Quality Control

Script Names

1.

Data File Names

- 1. daily_88101_2008.csv
- 2. daily_88101_2009.csv
- 3. daily_88101_2010.csv
- 4. daily_88101_2011.csv
- 5. daily_88101_2012.csv

- 6. daily_88101_2013.csv
- 7. daily_88101_2014.csv
- 8. daily_88502_2008.csv
- 9. daily_88502_2009.csv
- 10. daily_88502_2010.csv
- 11. daily_88502_2011.csv
- 12. daily_88502_2012.csv
- 13. daily_88502_2013.csv
- 14. daily_88502_2014.csv

Figure 10: Map of 88101 and 88502 $PM_{2.5}$ Monitors.

EPA PM2.5 Time Series

Figure 11: EPA PM2.5 time series.

5.2 EPA PM2.5 Plots

5.3 PM_{2.5} data from the Federal Land Manager Environmental Database

Data Source

- Contact Tom Moore directed us to the website
- Citation/Link http://views.cira.colostate.edu/fed/DataWizard/Default.aspx
- Download Date March 15, 2018
- Data (local) PM_{2.5} data from the Federal Land Manager Environmental Database
- Geographic Extent Nationwide
- Temporal Extent January 1, 2008 December 31, 2014
- Acknowledgment

Brief Description

We will download PM_{2.5} data from both the US EPA AQS Air Data Query Tool (US EPA, 2017c) and the IMPROVE monitors that capture air quality information in more rural areas (US EPA, 2017e) for the 11-state region (Figure 1) including any of the following parameter codes: 88101, 88500, 88502, 81104 (US EPA, 2017a,d,f).

Downloading IMPROVE Aerosol, RHR II (New Equation) data (one parameter at at time):

- 1. Reports: Raw data
- 2. Datasets: "IMPROVE Aerosol, RHR II (New Equation)"
- 3. Sites: select all
- 4. Parameters:
 - (a) Mass, PM2.5 (Fine): Code MF, Type PM2.5, Units ug/m3 LC AQS ID 88101
 - (b) Mass, PM2.5 Reconstructed (Fine): Code RCFM, Type PM2.5 Units ug/m3 LC, AQS ID 88401
- 5. Select Dates: By Years and Months: 2008-2014; select all months
- 6. Aggregations: Non-aggregated
- 7. Fields: Select All
- 8. Options: Text File; Generate one file containing all the data; Comma delimited, Standard ("wide" format); Data & Metadata, Display Column Headers, Don't Display Section Titles, String Quotes: Double Quotes, Missing Values (blank); Date Format: 3/14/2002; Display Results: In a separate browser window; Show Report Log
- 9. Submit

Repeat the downloading steps above, except replace step #2 with these Datasets and parameters:

- 1. IMPROVE Aerosol, RHR III (DRAFT Preliminary Most Impaired Days dataset)
 - (a) Mass, PM2.5 (Fine) is listed twice, download one at a time referred to as 'first param' and 'second param' in file names

Notes

Data sets in this database that don't work for this project:

- 1. "SEARCH FRM" is only available 1998-2005
- 2. "SEARCH Best Estimate" is only available 1998-2005

2018-05-29; http://views.cira.colostate.edu/fed/User/Feedback.aspx "Hello Federal Land Manager Environmental Database,

I have downloaded several files from http://views.cira.colostate.edu/fed/DataWizard/Default.aspx for my research. How can I determine which datum (e.g., WGS84, NAD83, etc.) is associated with the latitude and longitude data in those files?

Thank you, Melissa May Maestas, PhD Research Associate (Post-Doctoral) University of Colorado Boulder e: Melissa.Maestas@Colorado.edu"

Auto-reply: "Thanks for your feedback! Your message has been sent to the project team and will be directed to the appropriate person. At least one team member will personally read your message. For those questions or comments that require a direct response, we will try to respond as quickly as possible. Reported errors will be logged immediately and addressed according to severity, ease of identification, and ease of resolution. Comments and suggestions regarding features, improvements, and content will be logged, prioritized, and addressed in upcoming development cycles. We greatly appreciate your comments and questions. We are striving to provide you with quality data products and the best web site experience possible, and your comments are greatly valued as we seek to improve and expand our web site. Your participation is a key component in the success and usefulness of the website. "

File Formats

csv

Data Filtering and Processing Final Variable(s) Methods

1.

2.

Quality Control Script Names

1.

Original Data File Names

- 1. Federal Land Manager_IMPROVE_RHR_II_88101_20183151757452922Mvw0s.csv
- 2. Federal_Land_Manager_IMPROVE_RHR_II_88401_20185113533660420xLwJ.csv
- 3. Federal_Land_Manager_RHR_III_88101_first_param_201851152033932P22My0.csv
- 4. Federal_Land_Manager_RHR_III_second_param_2018511545575622rOMxr.csv

Processed/Cleaned Data File Names

- $1. \ Federal_Land_Manager_IMPROVE_RHR_II_88101_20183151757452922Mvw0s_top_removed.csv$
- $2. \ Federal_Land_Manager_IMPROVE_RHR_II_88401_20185113533660420xLwJ_top_removed.csv$
- $3. \ Federal_Land_Manager_RHR_III_88101_first_param_201851152033932P22My0_top_removed.csv$
- 4. Federal_Land_Manager_RHR_III_second_param_2018511545575622rOMxr_top_removed.csv

5.4 PM_{2.5} data from the Fire Cache Smoke Monitor Archive

Data Source

- Contact Josh Walston at 775-673-7624; Amber Ortega directed us to the website and Scott Landis suggested that a good person to contact about the page would be Mike Broughton from the US Forest Service (michaelbroughton@fs.fed.us)
- Citation/Link https://wrcc.dri.edu/cgi-bin/smoke.pl
- Data (local) PM_{2.5} data from the Fire Cache Smoke Monitor Archive
- Geographic Extent
- Temporal Extent
- Acknowledgment

Brief Description

Notes

Several of the files were password protected, so we contacted Josh and they were able to unlock most of them. As of March 20, 2018, only "Smoke NCFS E-BAM # 3 is still password protected. (Need to try calling Josh again.) Here are some comments that the system administrator passed along to us (via Josh): the data does not get quality controlled, so we should do our own qa/qc. The monitors/data were designed for the fire community to see data in real time, not for research purposes. If we want to speak with the people who ran the monitors, we should contact Josh and the director can probably put us in contact.

Update 2018-05-2018: sent email to Josh requesting the "Smoke NCFS E-BAM # 3" data with flags and with the other formatting settings we used on the other files. Also asked how to determine which datum is assoiciated with the latitude/longitude data.

These monitors were not included because the website indicated that it did not have data during our study period (January 1, 2008 - December 31, 2014):

- 1. Smoke E-BAM 418
- 2. Smoke E-BAM 591
- 3. Smoke E-BAM 592
- 4. Smoke E-BAM 882
- 5. Smoke E-BAM 969
- 6. Smoke USFS R2-922
- 7. Smoke USFS R2-923
- 8. Smoke USFS R2-924
- 9. Smoke USFS R8-34
- 10. Smoke USFS R8-35
- 11. Smoke USFS R8-55
- 12. Smoke USFS R8-56
- 13. Smoke USFS 3015
- 14. Smoke USFS 3016
- 15. Smoke USFS R9-3017
- 16. Smoke USFS R9-3018
- 17. RSF Smoke Monitor 1
- 18. Lolo NF Smoke Monitor #1
- 19. Lolo NF Smoke Monitor #2

File Formats

.csv

Data Filtering and Processing

Final Variable(s)

Methods

- 1.
- 2.

Quality Control

Script Names

1.

Original Data File Names

- 1. Fire_Cache_Smoke_DRI_Cache-NCFS-EBAM#3-with-flags.csv
- 2. Fire_Cache_Smoke_DRI_FWS_Smoke_N1.csv
- 3. Fire Cache Smoke DRI Smoke N11.csv
- 4. Fire_Cache_Smoke_DRI_Smoke_N13.csv
- 5. Fire_Cache_Smoke_DRI_Smoke_N15.csv
- 6. Fire_Cache_Smoke_DRI_Smoke_N16.csv
- 7. Fire_Cache_Smoke_DRI_Smoke_N17.csv
- 8. Fire_Cache_Smoke_DRI_Smoke_N19.csv
- 9. Fire_Cache_Smoke_DRI_Smoke_N20.csv
- 10. Fire_Cache_Smoke_DRI_Smoke_N21.csv
- 11. Fire Cache Smoke DRI Smoke N22.csv
- 12. Fire Cache Smoke DRI Smoke N23.csv
- 13. Fire_Cache_Smoke_DRI_Smoke_N24.csv
- 14. Fire_Cache_Smoke_DRI_Smoke_N25.csv
- 15. Fire_Cache_Smoke_DRI_Smoke_N65.csv
- 16. Fire_Cache_Smoke_DRI_Smoke_N66.csv
- 17. Fire_Cache_Smoke_DRI_Smoke_N67.csv
- 18. Fire_Cache_Smoke_DRI_Smoke_N68.csv
- 19. Fire_Cache_Smoke_DRI_Smoke_N69.csv
- 20. Fire Cache Smoke DRI Smoke N84.csv
- 21. Fire_Cache_Smoke_DRI_Smoke_N86.csv
- 22. Fire_Cache_Smoke_DRI_Smoke_N215.csv
- 23. Fire_Cache_Smoke_DRI_Smoke_N216.csv
- 24. Fire_Cache_Smoke_DRI_Smoke_N217.csv
- 25. Fire_Cache_Smoke_DRI_Smoke_E_BAM_52.csv
- 26. Fire_Cache_Smoke_DRI_Smoke_E_BAM_65.csv
- 27. Fire_Cache_Smoke_DRI_Smoke_E-BAM_231.csv
- 28. Fire_Cache_Smoke_DRI_Smoke_E-BAM_840.csv
- 29. Fire_Cache_Smoke_DRI_Smoke_E-BAM_866.csv
- 30. Fire Cache Smoke DRI Smoke E-BAM 925.csv
- 31. Fire_Cache_Smoke_DRI_Smoke_NCFS_E-BAM_N1.csv

- 32. Fire Cache Smoke DRI Smoke NCFS E-BAM N2.csv
- 33. Fire_Cache_Smoke_DRI_Smoke_USFS_R1-39.csv
- 34. Fire_Cache_Smoke_DRI_Smoke_USFS_R1-52.csv
- 35. Fire_Cache_Smoke_DRI_Smoke_USFS_R1-53.csv
- 36. Fire_Cache_Smoke_DRI_Smoke_USFS_R1-306.csv
- 37. Fire_Cache_Smoke_DRI_Smoke_USFS_R1-307.csv
- 38. Fire_Cache_Smoke_DRI_Smoke_USFS_R2-69.csv
- 39. Fire_Cache_Smoke_DRI_Smoke_USFS_R2-78.csv
- 40. Fire_Cache_Smoke_DRI_Smoke_USFS_R2-264.csv
- 41. Fire Cache Smoke DRI Smoke USFS R2-265.csv
- 42. Fire_Cache_Smoke_DRI_Smoke_USFS_R3-28.csv
- 43. Fire_Cache_Smoke_DRI_Smoke_USFS_R3-86.csv
- 44. Fire Cache Smoke DRI Smoke USFS R5-39.csv
- 45. Fire_Cache_Smoke_DRI_Smoke_USFS_R5-49.csv
- 46. Fire_Cache_Smoke_DRI_Smoke_USFS_R8-33.csv
- 47. Fire_Cache_Smoke_DRI_Smoke_USFS_R9-15.csv
- 48. Fire_Cache_Smoke_DRI_Smoke_USFS_R9-16.csv
- 49. Fire_Cache_Smoke_DRI_Smoke_USFS_R9-17.csv
- 50. Fire_Cache_Smoke_DRI_Smoke_USFS_R9-60.csv
- 51. Fire_Cache_Smoke_DRI_Smoke_NPS_Yosemite_01_California.csv

Processed/Cleaned Data File Names

1.

2.

Download instructions

- 1. https://wrcc.dri.edu/cgi-bin/smoke.pl
- 2. Hover over the appropriate drop-down menu and click on the monitor you want to download e.g., "Cache Monitors" then "Smoke #11"
- 3. On the left-side menu, click on "Data Details"
- 4. Set the starting date: January 1, 2008 (or as far back as it goes if it doesn't go back to 2008)
- 5. Set the ending date: December 31, 2014 (or the last date possible if it ends before 2014)
- 6. Elements (ignore default is to include all elements)
- 7. Options
- 8. Excel (.xls) (It had html code in the file if I chose other options.)
- 9. Data Source: Original
- 10. Represent missing data as: -9999.
- 11. Include data flags: Yes
- 12. Date format: MM/DD/YYYY hh:mm
- 13. Time format: LST 0-23
- 14. Table Header: Column header short descriptions
- 15. Field Delimiter: comma (,)
- 16. Select the Units: Metric
- 17. Leave Sub interval windows set to: January 01, December 31, Hours: 00 and 24
- 18. Submit Info

Fire Cache Smoke Monitor (DRI) Time Series

Figure 12: Fire Cache Smoke Monitor (DRI) time series.

- 19. Open in excel
- 20. Save as: Fire_Cache_Smoke_DRI_*.csv Where * is the monitor name with spaces replaced with underscore and # symbols replaced with the letter N, e.g., the file name for monitor "Smoke #11" is "Fire_Cache_Smoke_DRI_Smoke_N11.csv"
- 21. Upload file to S3 bucket: https://732215511434.signin.aws.amazon.com/console
- 22. Click on S3
- 23. Earthlab-reid-group
- 24. Fire_Cache_Smoke_DRI (folder)
- 25. Check the following:
- 26. The name of the monitor is in cell A1
- 27. The header is spread across rows 2-4
- 28. There are 34 columns of data (goes through columns "AH" in excel)
- 29. Concentration in the 11th ("K") columns
- 30. List the file names in the overleaf documentation (PM25_Fire_Cache_Smoke_Monitor_Archive.tex)

5.5 Fire Cache Smoke Monitor (DRI) Plots

Fire Cache Smoke Monitor (DRI) Time Series, < 1000 ug/m3

Figure 13: Fire Cache Smoke Monitor (DRI) time series without data above 1000 ug/m3 so that the majority of data can be seen.

5.6 California State Air Quality and Meteorological Information System (AQMIS)

Data Source

- Contact Denise Odenwalder, Denise.Odenwalder@arb.ca.gov
- Citation/Link To AQMIS: https://www.arb.ca.gov/aqmis2/aqmis2.php
- Data (local)
- Geographic Extent Whole state of California, wherever there are monitors
- **Temporal Extent** 2008-2014, daily averages
- **Acknowledgment** California Air Resources Board was very helpful in gathering and sending us this data.

Brief Description

- PM2.5 measurements at all monitoring stations in CA
- Some entries are 24-hour measurements while others are the average of hourly measurements
- One entry per 3 days

Notes

Reached out to aqmis@arb.ca.gov after determining that there was data being collected in CA that is not published on the EPA AQS website. They emailed us within a week, with a file of the data we requested.

File Formats

xlsx spreadsheet

Data Filtering and Processing

Final Variable(s)

Methods

1.

2.

Quality Control

Script Names

1.

Original Data File Names

1.

2.

Processed/Cleaned Data File Names

1.

2.

CARB Time Series

Figure 14: CARB time series.

5.7 CARB Plots

5.8 PM_{2.5} Monitor data from Uintah Basin

Data Source

- Contact Seth Lyman
- Citation/Link seth.lyman@usu.edu
- Data (local) PM_{2.5} measurements from 10 sites in Uintah Basin, Utah
- Geographic Extent Uintah Basin, Utah
- Temporal Extent October 2009 March 2017
- **Acknowledgment** PM_{2.5} data from the Uintah Basin were provided by Seth Lyman at Utah State University.

Brief Description

 $PM_{2.5}$ data were provided by Seth Lyman at Utah State University via email on January 16, 2018. The .xlsx file has $PM_{2.5}$ data from 10 stations during 2009-2017. The .png file has the longitude and latitude of each site.

Notes

Additional information from Seth's email:

"I've attached most of the PM2.5 observations that have ever been collected in the Uintah Basin. What are in the Excel file are 24-hr average data. Data from Roosevelt, Vernal, Ouray, Red Wash, Myton, and Rangely are from the EPA AQS database.

Data from Horsepool are from a BAM 1020 monitor that we operate every winter. Data in Ft. Duchesne and Randlett are 24-hr filter samples that were analyzed gravimetrically. Data from Rabbit Mountain are from a BAM 1020, and data through mid-2013 are in the AQS database.

I have hourly data from Horsepool and Rabbit Mountain if you'd rather have that.

Site locations are given in the list of monitoring stations for the Basin below."

The .png file is easier to read in some programs than others, e.g., it looks fine in "Paint," but not "Photos."

File Formats

Excel and png

Data Filtering and Processing

FinalPM2.5_multiyear_thruwint2017_sheet1.csv is the first sheet of FinalPM2.5_multiyear_thruwint2017.xlsz converted to .csv, and the second row of the header was merged into the first (24hr avg PM2.5).

FinalPM2.5_multiyear_thruwint2017_GISsheet.csv is the third sheet of FinalPM2.5_multiyear_thruwint2017.converted to .csv and gives the latitude and longitude of each site. This sheet originally did not have location information from the Rangely site, so this was filled in by hand with the numbers form UintahBasinSiteLocations.png.

Final Variable(s)

Methods

1.

2.

Quality Control Script Names

1.

Original Data File Names

- 1. FinalPM2.5_multiyear_thruwint2017.xlsx
- 2. UintahBasinSiteLocations.png

Processed/Cleaned Data File Names

- 1. FinalPM2.5_multiyear_thruwint2017_sheet1.csv
- 2. UintahBasinSiteLocations.png

5.9 PM_{2.5} data from PCAPS in the Salt Lake Valley

Data Source

- Contact Dr. Geoff Silcox in Chemical Engineering at the University of Utah (geoff@chemeng.utah.edu)
- Citation/Link Publication: https://www.sciencedirect.com/science/article/pii/S1352231011011204 (Data was received from Dr. Silcox via email on February 6, 2018.)
- Data (local) PM_{2.5} data from the Persistent Cold Air Pool Study (PCAPS)
- Geographic Extent Salt Lake Valley
- Temporal Extent January February, 2011
- Acknowledgment Dr. Geoff Silcox

Brief Description

Notes

File Formats

.xlsx

Data Filtering and Processing

PCAPS_Site_Locations.csv is the same data as Table 1 of final_publication.pdf, and has the site locations and elevation.

Final Variable(s)

Methods

1.

2.

Quality Control

Script Names

1.

Original Data File Names

- 1. final_publication.pdf (Publication of paper)
- 2. MiniVol_data.xlsx

Processed/Cleaned Data File Names

- 1. MiniVol_data.csv
- 2. PCAPS_Site_Locations.csv

5.10 Utah Department of Environmental Quality

Data Source

- Contact
- Citation/Link http://www.airmonitoring.utah.gov/dataarchive/archpm25.htm
- Data (local)
- Geographic Extent Varies...
- Temporal Extent Hourly Value CSVs
- Acknowledgment

Brief Description

PM2.5 data from all monitoring stations in Utah

Notes

There was a lot of overlap with the EPA AQS data, so we took data only from the PM2.5 stations not reported by the EPA. This ended up being one or more of three stations (NP, HC, and RS) for 2009, 2010, 2012, and 2013.

 $In formation \ about \ the \ monitoring \ stations: \ http://www.airmonitoring.utah.gov/network/Counties. \ http://www.airmonitoring.utah.gov/network/Counties.$

Meta information about monitors obtained from http://www.airmonitoring.utah.gov/dataarchive/2016DailyMaxPM25.pdf

File Formats

Data Filtering and Processing

Final Variable(s)

Methods

1.

2.

Quality Control

Script Names

1.

Original Data File Names

1.

2.

Processed/Cleaned Data File Names

1.

2.

Utah DEQ Time Series

Figure 15: Utah DEQ time series.

5.11 Utah DEQ Plots

5.12 MODIS AOD

Data Source

- Contact
- Citation/Link
- Data (local)
- Geographic Extent
- Temporal Extent
- Acknowledgment

Brief Description

We will use AOD estimates from the Deep Blue retrieval algorithm for AOD from the MODIS instrument on the NASA Terra and Aqua satellites (MOD04_L2 and MYD04_L2) (Sayer et al., 2013). The MODIS product is available twice daily at a 10 km spatial resolution for cloud-free scenes and is available longer than our 2008-2014 study period (NASA LAADS DAAC, 2017a,b).

AOD products use cloud filtering algorithms that often remove pixels in the center of the smoke plumes because they are assumed to be clouds due to high reflectivity (Kondragunta and Seybold, 2009). Given that these can be in the middle of smoke plumes, often the locations most heavily impacted by smoke have missing data for a key variable, AOD. In our previous work in summer in California when rain clouds are incredibly rare, we could be confident that missing values not along the coast were not clouds. However, for this larger study region and time period, this will be a bigger challenge. We will attempt to isolate smoke plumes from true clouds using satellite imagery and smoke plume polygons from NOAA's Hazard Mapping System Fire Smoke Product (NOAA OSPO, 2017). We will then estimate missing values within validated smoke plumes, but not within clouds, using radial basis functions as was done in our previous work (Reid et al., 2015). Radial basis functions are exact interpolation functions that will return observed AOD values where they exist but can interpolate higher values than nearby observations in missing locations, which is needed since the missing values were removed due to their high reflectivity (Reid et al., 2015).

Notes

File Format

.hdf

Data Filtering and Processing Final Variable(s)

Methods

1. Step 1: Download the MODIS AOD data sets from both Terra and Aqua sensors:

Using the NASA EarthData online search tool, search for the 'MOD04' (Terra) data set. Set temporal extent by drawing polygon and set spatial extent by adjusting the appropriate filter on the web interface. Select the collection and proceed to download data. For data download options, specify "Stage for Delivery" through the "FTPPull" distribution option. Specify the email address for orders to be sent to. Orders will be sent to your email with instructions on how to connect to the FTP server and pull the ordered data into your local workspace through the command line. Because the amount of data being requested is large, the orders will come through several separate emails. Repeat this step for the 'MYD04'

(Aqua) data set. All of the raw downloaded data from this step will be in .hdf file format.

2. Step 2: Set up file system for data processing:

Create a directory locally named 'collected_data'. In this directory, make two child directories named "MOD04_terra" and "MYD04_aqua". Follow instructions in email to download data through FTP into the appropriate MODIS directory ('MOD04_terra' or 'MYD04_aqua') depending on whether the order is from the Terra or Aqua sensor.

3. Step 3: Extract lat, long, and aod values from .hdf files and save into .csv files

Run script 'modis_aod_create_csv_file.py'. This script will take all the .hdf files that you have downloaded and store the lat, long and aod value for non-null pixels from the 'Deep_Blue_Aerosol_Opt SDS. A .csv file will be created for each corresponding .hdf file.

4. Step 4: Create .shp file for each .csv file

Run 'modis_aod_convert_csv_to_shapefile.py'. This script will read in the .csv files and convert them to .shp files using multiprocessing, which speeds up the process.

5. Step 5: Project .shp files to US Albers Equal Area Conic

Run 'modis_aod_project_to_albers.py'. This script will reproject the .shp files to be US Albers Equal Area Conic (ESRI:102003).

6. Step 6: Combine .shp files for same date and convert to raster with 10km resolution

Run 'modis_aod_create_daily_averages.py'. This will combine all .shp files from the same date and then produce a raster for each with a 10km resolution. Then, the interpolated grids are clipped to the 11 western states (our study area) with a 100km buffer.

7. Step 7: Extract MODIS AOD value at EPA monitor locations

Using ExtractValuesToPoints tool in ArcGIS.

Quality Control

Script Names

- 1. modis_aod_create_csv_file.py
- 2. modis_aod_convert_csv_to_shapefile.py
- 3. modis_aod_project_to_albers.py
- 4. modis_aod_create_daily_averages.py

Data File Names

1. western_states_merge.shp

5.13 GASP-West AOD

Data Source

- Contact
- Citation/Link
- Data (local)
- Geographic Extent
- Temporal Extent
- Acknowledgment

Brief Description

We will use AOD estimates from the Geostationary Operational Environmental Satellite West (GOES-West) Aerosol Smoke Product (GASP-West AOD). The GASP product is available at a 4 km resolution at nadir with retrievals every 30 minutes during daylight hours and is available from 2006 onward (NOAA NCEI, 2017).

AOD products use cloud filtering algorithms that often remove pixels in the center of the smoke plumes because they are assumed to be clouds due to high reflectivity (Kondragunta and Seybold, 2009). Given that these can be in the middle of smoke plumes, often the locations most heavily impacted by smoke have missing data for a key variable, AOD. In our previous work in summer in California when rain clouds are incredibly rare, we could be confident that missing values not along the coast were not clouds. However, for this larger study region and time period, this will be a bigger challenge. We will attempt to isolate smoke plumes from true clouds using satellite imagery and smoke plume polygons from NOAA's Hazard Mapping System Fire Smoke Product (NOAA OSPO, 2017). We will then estimate missing values within validated smoke plumes, but not within clouds, using radial basis functions as was done in our previous work (Reid et al., 2015). Radial basis functions are exact interpolation functions that will return observed AOD values where they exist but can interpolate higher values than nearby observations in missing locations, which is needed since the missing values were removed due to their high reflectivity (Reid et al., 2015).

Notes

websites: https://www.ncdc.noaa.gov/data-access/satellite-data/satellite-data-access-datasets https://www.ncdc.noaa.gov/data-access/satellite-data/satellite-data-access-datasets

Order form for data: https://www.ncdc.noaa.gov/has/has.dsselect

https://www.ncdc.noaa.gov/doclib/index.php?choice=dsi&searchstring=3635&submitted=1&submitted=Search

File Format
Data Filtering and Processing
Final Variable(s)
Methods

1. Download Data

Navigate to NCEI's Archive Information Request System (AIRS). Scroll down and click on 'Satellite' to expand menu. Click on 'Goes Products' to expand menu. Click on 'Order Data'. Select GOES-West for satellite ID, GASP-AOD-GZ for data type, and appropriate start and end date. Select "Yes" for Submit Batch. Enter email address and submit order. You

will get emails later on with FTP links to your data. Run 'Generic_FTP_download_to_S3.py' on an EC2 instance passing in the FTP url as the argument. This will download the data and upload it to S3 (and then delete it off the EC2 instance).

Quality Control

Script Names

1. Generic_FTP_download_to_S3.py

Data File Names

1.

5.14 MERRA-2

Data Source

- Contact
- Citation/Link
- Data (local)
- Geographic Extent
- Temporal Extent
- Acknowledgment

Brief Description

Notes

File Formats

Data Filtering and Processing

Final Variable(s)

Methods

1.

2.

Quality Control

Script Names

1.

Original Data File Names

1.

2.

Processed/Cleaned Data File Names

1.

2.

5.15 MAIAC

Data Source

- Contact
- Citation/Link
- Data (local)
- Geographic Extent
- Temporal Extent
- Acknowledgment

Brief Description

Notes

File Format

Data Filtering and Processing

Final Variable(s)

Methods

1.

Quality Control

Script Names

1. Contacted NASA DeepBlue team via email and was given the FTP site for their research data output. Public data set not yet available. But should be in several months under the name 'MCD19'.

Data File Names

1. n/a

5.16 MODIS Thermal Anomalies/Fire Daily L3 Global 1km (MOD14 and MYD14)

Data Source

- Contact
- · Citation/Link
- Data (local)
- Geographic Extent
- Temporal Extent
- Acknowledgment

Brief Description

We will collect data about fire detection locations, size, and fire radiative power from the MODIS Thermal Anomalies/Fire Daily L3 Global 1km (MOD14 and MYD14) (Giglio et al., 2006; Hawbaker et al., 2017). Using GIS techniques, we will create daily clusters of fire points and use these to calculate: (1) the distance to the nearest fire cluster by day and (2) the sum of Fire Radiative Power (FRP) of the nearest clusters of fires by day as it is likely that smoke levels are higher closer to fires. The MODIS product spans longer than our study period (2008-2014) at daily temporal resolution and has a spatial resolution of 1 km.

Notes

File Format

.hdf

Data Filtering and Processing

Final Variable(s)

Methods

Run script 'MODIS_FTP_download.py' and pass two arguments: the first is the data set
name and the second is the local directory path to save files to (i.e. "MOD14" "C:/Users/User/MOD14_Down
Update: 'MODIS_FTP_download.py' is obsolete because NASA LAADS decomissioned
their FTP site in favor of HTTPS. So, a new all-purpose script will need to be written to do
this download that does HTTPS retrievals instead.

Quality Control

Script Names

1. MODIS_FTP_Download.py

Data File Names

1. n/a

5.17 Landsat-derived burned area essential climate variable (BAECV) fire activity data

Data Source

- Contact
- · Citation/Link
- Data (local)
- Geographic Extent
- Temporal Extent
- Acknowledgment

Brief Description

We will collect data about fire detection locations, size, and fire radiative power from the Landsat-derived burned area essential climate variable (BAECV) fire activity data, (LP DAAC, 2017). Using GIS techniques, we will create daily clusters of fire points and use these to calculate: (1) the distance to the nearest fire cluster by day and (2) the sum of Fire Radiative Power (FRP) of the nearest clusters of fires by day as it is likely that smoke levels are higher closer to fires. The BAECV can detect fires larger than 4 km² and provides an estimate of the date of the fire and is available from 1984-2015.

Notes

File Format

.shp

Data Filtering and Processing

Final Variable(s)

Methods

1. BAECV data set already downloaded by EarthLab fire group. Navigate to the 'earthlab-ls-fire' S3 bucket, then the v1.1 subdirectory. Here you will find yearly .tar.gz files. Have not spent time decompressing files and exploring data yet but my guess is that within each yearly file, we will find more detailed, daily burn data.

Quality Control

Script Names

1. n/a

Data File Names

1. n/a

5.18 MODIS/Terra and Aqua Burned Area Monthly L3 Global 500 m SIN Grid V006 (MCD64A1)

Data Source

- Contact
- · Citation/Link
- Data (local)
- Geographic Extent
- Temporal Extent
- Acknowledgment

Brief Description

We will collect data about fire detection locations, size, and fire radiative power from MODIS/Terra and Aqua Burned Area Monthly L3 Global 500 m SIN Grid V006 (MCD64A1) (Schroeder et al., 2014). Using GIS techniques, we will create daily clusters of fire points and use these to calculate: (1) the distance to the nearest fire cluster by day and (2) the sum of Fire Radiative Power (FRP) of the nearest clusters of fires by day as it is likely that smoke levels are higher closer to fires.

Notes

File Format

.hdf

Data Filtering and Processing

Final Variable(s)

Methods

Run script 'MODIS_FTP_download.py' and pass two arguments: the first is the data set
name and the second is the local directory path to save files to (i.e. "MCD64A1" "C:/Users/User/MCD64A1_
Update: 'MODIS_FTP_download.py' is obsolete because NASA LAADS decomissioned
their FTP site in favor of HTTPS. So, a new all-purpose script will need to be written to do
this download that does HTTPS retrievals instead.

Quality Control

Script Names

1. MODIS_FTP_Download.py

Data File Names

5.19 Visible Infrared Imaging Radiometer Suite (VIIRS) (VNP14IMGTDL_NRT)

Data Source

- Contact
- · Citation/Link
- Data (local)
- Geographic Extent
- Temporal Extent
- Acknowledgment

Brief Description

We will collect data about fire detection locations, size, and fire radiative power from the Visible Infrared Imaging Radiometer Suite (VIIRS) (VNP14IMGTDL_NRT) (Schroeder et al., 2014). Using GIS techniques, we will create daily clusters of fire points and use these to calculate: (1) the distance to the nearest fire cluster by day and (2) the sum of Fire Radiative Power (FRP) of the nearest clusters of fires by day as it is likely that smoke levels are higher closer to fires. The MODIS product spans longer than our study period (2008-2014) at daily temporal resolution and has a spatial resolution of 1 km. VIIRS was launched in 2011 and has 12 h temporal resolution with 750 m resolution. The BAECV can detect fires larger than 4 km² and provides an estimate of the date of the fire and is available from 1984-2015.

Notes

File Format

.csv

Data Filtering and Processing

Final Variable(s)

Methods

Go to the NASA EarthData Fire Information for Resource Management System (FIRMS) online tool and navigate to the Archive section. Click 'Create New Request' and specify spatial and temporal resolution. Also choose 'VIIRS' from Fire Data Source. Choose 'csv' as file type and enter email address. Wait for email, which will contain a .zip file with the data.

Quality Control Script Names

1. n/a

Data File Names

1. fire_archive_V1_2770.csv

5.20 Classified land cover information from the Landsat-derived NLCD 2011

Data Source

- Contact
- · Citation/Link
- Data (local)
- Geographic Extent
- Temporal Extent
- Acknowledgment

Brief Description

Classified land cover information from the Landsat-derived NLCD 2011 (Homer et al., 2017) will be used to calculate estimates of the percentage of urban development (codes 22, 23, and 24), agriculture (codes 81 and 82), and vegetated area other than agricultural land (codes 21, 41, 42, 43, 52, and 71) within buffer radii of 100 m, 250 m, 500 m, and 1000 m around each monitor. The buffer distance that is most highly correlated with PM_{2.5} will be entered into each model. NLCD 2011 has a spatial resolution of 30 m and uses circa 2011 Landsat satellite data.

Notes

File Format

.shp

Data Filtering and Processing

Final Variable(s)

Methods

1. Go to the NLCD Download Page and click 'NLCD 2006 Land Cover (2011 Edition)'. This will begin the download process. Once finished, save and unzip the file.

Quality Control

Script Names

1. n/a

Data File Names

5.21 MODIS Snow Cover Daily L3 Global 500m Grid, Version 6 (MOD10A1 and MYD10A1)

Data Source

- Contact
- · Citation/Link
- Data (local)
- Geographic Extent
- Temporal Extent
- Acknowledgment

Brief Description

We will use snow cover data from the MODIS Snow Cover Daily L3 Global 500m Grid, Version 6 (MOD10A1 and MYD10A1) (Hall and Riggs, 2016) because snow coverage is a known contributor to wintertime PM_{2.5} concentrations in mountain valleys (Whiteman et al., 2014). Daily MOD10A1 and MYD10A1 data are available since 2002 and have 500 m spatial resolution.

Notes

File Format

Data Filtering and Processing

Final Variable(s)

Methods

1. Step 1: Download the MODIS AOD data sets from both Terra and Aqua sensors:

Using the NASA EarthData online search tool, search for the 'MOD10A1' (Terra) data set. Set temporal extent by drawing polygon and set spatial extent by adjusting the appropriate filter on the web interface. Select the collection and proceed to download data. For data download options, specify "Stage for Delivery" through the "FTPPull" distribution option. Specify the email address for orders to be sent to. Orders will be sent to your email with instructions on how to connect to the FTP server and pull the ordered data into your local workspace through the command line. Because the amount of data being requested is large, the orders will come through several separate emails. Repeat this step for the 'MYD10A1' (Aqua) data set. All of the raw downloaded data from this step will be in .hdf file format.

Quality Control Script Names

1.

Data File Names

5.22 Elevation

Data Source

- Contact
- Citation/Link
- Data (local)
- Geographic Extent
- Temporal Extent
- Acknowledgment

Brief Description

Elevation can influence PM_{2.5} concentrations; for example, PM_{2.5} can accumulate in mountain valleys during persistent cold air pools (commonly referred to as inversions) during winter (Whiteman et al., 2014). We will get elevation data from the 3D Elevation Program, which has resolution of 1/3 arc-second. This resolution is approximately 10 m north/south and varies east/west with latitude (USGS, 2017).

Notes

File Format

Data Filtering and Processing

Final Variable(s)

Methods

1. Step 1: Download Data for Study Area

Navigate to the 3D Elevation Program (3DEP) The National Map Viewer. Only the "1/3 arc-second DEM" filter should be selected. The file format should be ArcGrid. Click "Find Products". Click "results" for the Elevation Products (3DEP). Add all results to cart. Click "View Cart". Click "Export Items to CSV". Save downloaded CSV. Run script "NED_bulk_download.py". Pass the location of the CSV file as the first argument and the desired save path as the second argument.

Quality Control

Script Names

1. NED bulk download.py

Data File Names

1. NED_bulk_download_file_list.csv

5.23 Meteorological Data

Data Source

North American Mesoscale, Analysis (NAM)

- Contact
- **Citation/Link** https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-meso-https://nomads.ncdc.noaa.gov/data/namanl/
- Geographic Extent North America
- Temporal Extent Available March, 2004 2018
- Acknowledgment

Brief Description

We will obtain meteorological data from the North American Mesoscale, Analysis (NAM) because it includes all of the standard meteorological variables, including planetary boundary layer height, which has proved to be an important variable for converting AOD to PM_{2.5} (Liu et al., 2005). We will calculate 24-hour averages from 6-hourly data for temperature, relative humidity, sea livel pressure, surface pressure, planetary boundary layer height, dew point temperature, precipitation, snow coverage, and the U and V components of wind speed. NAM has 12 km resolution and is available 2004 onward.

Notes

File Format

Prior to 2018, the files are in *.grb ("grib1") format, while 2018 data is in *.grb2 ("grib2") format.

.grb.tar Resources about this file type:

- rNOMADS is an R package for accessing grb* files. It is mostly geared for grib2 files. https://cran.r-project.org/web/packages/rNOMADS/rNOMADS.pdf
- Explanation of what grib files are: http://www.cpc.ncep.noaa.gov/products/wesley/reading_grib.html,
- wgrib program information: http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

If the resources above are insufficient for accessing the grb files, consider using GrADS: http://www.cpc.ncep.noaa.gov/products/wesley/links_grads.html

Data Filtering and Processing

- 1. download .grb.tar files (requested from Chi-Fan Shih, who sent a link that was good for about 2 weeks)
- 2. untar files. The files came as yyyy.grb.tar where yyyy are years 2008-2014. To un-tar the files, open GitBash, and type: tar -xvf 2008.grb.tar This will create a folder called 2008 with many .grb files. Repeat for the other years. See also https://labcit.ligo.caltech.edu/~ethrane/Resources/UNIX/
- 3. use the earthlab/r-reidgroup docker image, which has wgrib and wgrib2 installed on it.

- 4. use rNOMADS R package. It looks like the rNOMADS R package can read .grb files https://cran.r-project.org/web/packages/rNOMADS/rNOMADS.pdf. rNOMADS calls external routines called wgrib2 http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/ and wgrib http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html.
- 5. ftp://ftp.cpc.ncep.noaa.gov/wd51we/wgrib/readme
- 6. Octet code info: http://www.nco.ncep.noaa.gov/pmb/docs/on388/section1.html
- 7. https://rda.ucar.edu/docs/formats/grib/gribdoc/pds.html

Final Variable(s)

Methods

1.

2.

Quality Control

Script Names

1.

Data File Names

1.

6 North American Mesoscale, Analysis

 $1.\ https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-forecast-dataset$

7 GFS

- 1. https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
- 2. 0.5 degree resolution, which is about 55 km

7.1 Dust Storms

Data Source

- Contact
- · Citation/Link
- Data (local)
- Geographic Extent
- Temporal Extent
- Acknowledgment

Brief Description

Dust storm records will be included in the machine learning algorithm because they can be a significant indicator of airborne particulate matter from sources other than fires. Dust storm records are available from 1993-2017. The spatial resolution varies, but includes either forecast zone or county (US National Weather Service, 2017b,c,a).

Notes

File Format

Data Filtering and Processing

Final Variable(s)

Methods

1.

2.

Quality Control

Script Names

1.

Data File Names

8 Data Sources for CAMx Modeling of Source-Attributed Air Quality Modeling

For meteorological inputs, the CAMx modeling will use archived daily 27-km Advanced Research Weather Research and Forecasting (WRF-ARW) grids available via NOAA Real-time Environmental Applications and Display sYstem (READY) servers for the entire study area and time period (Wang et al., 2007; Rolph et al., 2017). For the study years 2008-2012 and 2014, we will use fire emissions datasets prepared by the Western Regional Air Partnership (WRAP) and the National Emissions Inventory (NEI) (US EPA, 2017b) based on aggregated source-tagged fire occurrence data sources, the FCCS (Ottmar et al., 2007), and Consume (Prichard et al., 2009) modeling. For the study year 2013, we will prepare a fire emissions dataset using the same aggregated source-tagged fire occurrence data sources and FCCS/Consume modeling framework in the NASA-funded Wildland Fire Emissions Information System (WFEIS) (MTRI, 2017) developed by Co-I's French and Billmire (French et al., 2014). Fire occurrence datasets include MODIS (MOD14/MYD14 and MCD64A1) and VIIRS (VNP14IMGTDL_NRT) fire data products (Giglio et al., 2006; LP DAAC, 2017; Schroeder et al., 2014). For non-fire emissions during the entire study period, we will use the dataset prepared by WRAP for year 2008.

Look into using spot forecasts to help distinguish between wild and prescribed fires: http://www.weather.gov/spot/monitor/

9 CAMx Modeling

10 Compiling Data

10.1 Processing PM2.5 data

These are the scripts that process and compile the PM2.5 data:

- 1. Script1_Install_Pkgs.R » install packages
- 2. <u>Define_directories.R</u> » clears all variables and defines directories. Needs to be ran between each of the following scripts. (Want to automate this eventually.)
- 3. <u>Create_ML_Input_File.R</u> » compiles the various PM2.5 data sources into a single data frame. The only eliminations of data are geographic, to remove states that are neither in our study area nor adjacent to it.
 - (a) For DRI data, put in flags for voltage data outside the range 11-17 V. (These thresholds are somewhat arbitrary, but it was noticed that when the voltage was outside this range, the PM_{2.5} concentrations were often absurdly high, e.g., greater than 24,000 ug/m3.
- 4. <u>Clean_ML_Input_File.R</u> » cleans the data. The following is a list of the quality cuts made on the data:clean data, e.g., negative concentrations
 - (a) negative and NA concentrations (this includes removing all data for a monitor on a given day if any of the hourly observations were negative)
 - (b) For the hourly data, remove monitor-days that do not have at least 18/24 observations
 - (c) For DRI data, remove data with voltage flags (which includes flags that came with the data and flags that were put in because the battery voltage was outside the range 11-17 V.
 - (d) June 6, 2014 24-hr average PM_{2.5} concentration from monitor "Smoke NCFS E-BAM #1" (Fire_Cache_Smoke_DRI_Smoke_NCFS_E_BAM_N1.csv) is 24,203 ug/m3. There's nothing apparent wrong with the hourly data, however, this is the only day of data that made it through the other quality checks from this data file. This suggests that this monitor is suspect, and will be removed.
 - (e) Remove data points with lat/lon outside this box: (50,-126) to (25,-93)
 - (f) **To Do** make cuts on air flow in DRI data at least get rid of negative air flow and think about tighter thresholds
 - (g) To Do think about making cuts on any unrealistic air temperatures for DRI data
 - (h) **To Do** why are some of the Site_Num values not integers?
 - (i) **To Do** why is there a longitude value of -349?
 - (i) To Do need to convert missing values that have a -9999 etc to NA value
 - (k) **To Do** figure out why some latitudes have a negative value
 - (1) **To Do** figure out why PM2.5 Lon has value of 0 sometimes
 - (m) **To Do** merge "24-HR BLK AVG" and "24 HOUR" data together in Sample Duration variable
 - (n) **To Do** figure out why Observation percent has a max value of 200%
 - (o) **To Do** figure out why PM2.5 Obs has a max value of 349000 ug/m3 and remove it
 - (p) **To Do** remove unrealistic PM2.5 data values
 - (q) **To Do** figure out if max AQI value of 546 is reasonable
 - (r) **To Do** remove data from after 2014
 - (s) **To Do** Some DRI files looked like they had hour 20:00 data shifted a couple of columns look into this and fix it.

- (t) **To Do** look over summary() output and plots of every variable and determine if any other cuts are necessary
- 5. <u>write_shp.py</u> given listing of all PM2.5 monitor locations (in different datums), write each datum into a different shapefile
- 6. <u>reproject_shp.py</u> project all shapefiles into US Equal Area Albers (ESRI 102003); save coordinates
- 7. <u>reproject_shp_2.py</u> transform all original shapefiles into NAD83 datum (ESRI 4269); save coordinates
- 8. merge_shp.py merge all the shapefiles into one
- 9. <u>join_coordinates.py</u> combine the geographic coordinates and projection coordinates and write to one CSV
- 10. Merge_reprojections_ML_Input_File.R » script to take the reprojected location info and put it into the data frame with the daily PM_{2.5} data.
- 11. <u>DeDuplicate_ML_Input_File_v2.R</u> » composite replicate data in process. Calls these functions:
 - (a) Combine_true_replicates_R_function.R
 - (b) fill_in_aves_coloc_unique_PC_POC_MN_function.R
 - i. concatinate_within_column_function.R
 - (c) set_data_types_by_column_R_function.R
- 12. <u>Plot_ML_Input_File.R</u> » create plots, maps, and statistical summary needs to be changed to take input from De-duplicate code instead of file from Create_ML_Input_File.R
- 13. to be written » merge with satelite and other data

10.1.1 Notes about very high data points

June 15, 2012 24-hr average $PM_{2.5}$ concentration from monitor "Smoke #22" (Fire_Cache_Smoke_DRI_Smok is 5,638 ug/m3 - can't find any reason, so far, to remove this data point, though it's very odd that the concentrations were low single-digits except for two hours which were extremely high (123,000 and 1000 ug/m3).

88101 and 88502 Time Series

Figure 16: Time series of 88101 and 88502 PM2.5 data.

10.2 Compare 88101 to 88502 PM2.5

11 Machine Learning Methods

setting aside a portion of the PM2.5 data set and then doing 10-fold cross validation on the rest of the data

12 Machine Learning Results

[Currently, results below are derived from the example data/code from Colleen.]

References

- Abatzoglou, J. T. and Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. *Proceedings of the National Academy of Sciences*, 113(42):11770–11775.
- Anyenda, E. O., Higashi, T., Kambayashi, Y., Thao, N. T. T., Michigami, Y., Fujimura, M., Hara, J., Tsujiguchi, H., Kitaoka, M., Asakura, H., Hori, D., Yamada, Y., Hayashi, K., Hayakawa, K., and Nakamura, H. (2016). Exposure to daily ambient particulate polycyclic aromatic hydrocarbons and cough occurrence in adult chronic cough patients: A longitudinal study. *Atmospheric Environment*, 140(Supplement C):34 41.
- Brokamp, C., Jandarov, R., Rao, M. B., LeMasters, G., and Ryan, P. (2017). Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. *Atmospheric Environment*, 151:1–11.
- French, N. H. F., McKenzie, D., Erickson, T., Koziol, B., Billmire, M., Endsley, K. A., Scheinerman, N. K. Y., Jenkins, L., Miller, M. E., Ottmar, R., and Prichard, S. (2014). Modeling Regional-Scale Wildland Fire Emissions with the Wildland Fire Emissions Information System. *Earth Interactions*, 18(16):1–26.
- Giglio, L., Csiszar, I., and Justice, C. O. (2006). Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. *Journal of Geophysical Research: Biogeosciences*, 111(G2). G02016; https://modis.gsfc.nasa.gov/data/dataprod/mod14.php.
- Hall, D. K. and Riggs, G. A. (2016). MODIS/Aqua Snow Cover Daily L3 Global 500m Grid, Version 6. *NASA National Snow and Ice Data Center Distributed Active Archive Center*. http://dx.doi.org/10.5067/MODIS/MYD10A1.006.
- Hawbaker, T. J., Vanderhoof, M. K., Beal, Y.-J., Takacs, J. D., Schmidt, G. L., Falgout, J. T., Williams, B., Fairaux, N. M., Caldwell, M. K., Picotte, J. J., Howard, S. M., Stitt, S., and Dwyer, J. L. (2017). Mapping burned areas using dense time-series of Landsat data. *Remote Sensing of Environment*, 198(Supplement C):504 522.
- Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., Wickham, J., and Megown, K. (2017). Completion of the 2011 National Land Cover Database for the Conterminous United States Representing a Decade of Land Cover Change Information. *Photogrammetric Engineering & Remote Sensing*, 81(5):345 354. https://www.mrlc.gov/nlcd2011.php.
- J., F. E., T., A. J., K., B. J., T., F. J., and A., B. B. (2016). Quantifying the human influence on fire ignition across the western usa. *Ecological Applications*, 26(8):2390–2401.
- Kollanus, V., Tiittanen, P., Niemi, J. V., and Lanki, T. (2016). Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland. *Environ Res*, 151:351–358.

- Kondragunta, S. and Seybold, M. (2009). Revisions to GOES Aerosol and Smoke Product (GASP) Algorithm. http://www.ssd.noaa.gov/PS/FIRE/GASP/gasp.html.
- Larsen, A. E., Reich, B. J., Ruminski, M., and Rappold, A. G. (2017). Impacts of fire smoke plumes on regional air quality, 2006-2013. *Journal of Exposure Science & Environmental Epidemiology*.
- Liu, J. C., Wilson, A., Mickley, L. J., Dominici, F., Ebisu, K., Wang, Y., Sulprizio, M. P., Peng, R. D., Yue, X., Anderson, G. B., and Bell, M. L. (2016). Wildfire-specific Fine Particulate Matter and Risk of Hospital Admissions in Urban and Rural Counties. *Epidemiology*, 28:77–85.
- Liu, Y., Sarnat, J. A., Kilaru, V., Jacob, D. J., and Koutrakis, P. (2005). Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing. *Environ Sci Technol*, 39(9):3269–78.
- LP DAAC (2017, accessed November 12, 2017). MCD64A1: MODIS/Terra and Aqua Burned Area Monthly L3 Global 500 m SIN Grid V006. https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd64a1_v006.
- MTRI (2017 accessed November 7, 2017). Wildland Fire Emissions Information System. http://wfeis.mtri.org/.
- NASA LAADS DAAC (2017, accessed November 2, 2017a). MOD04_L2 MODIS/Terra Aerosol 5-Min L2 Swath 10km. https://ladsweb.modaps.eosdis.nasa.gov/api/v1/productPage/product= MOD04_L2.
- NASA LAADS DAAC (2017, accessed November 2, 2017b). MYD04_L2 MODIS/Aqua Aerosol 5-Min L2 Swath 10km. https://ladsweb.modaps.eosdis.nasa.gov/api/v1/productPage/product=MYD04_L2.
- NOAA NCEI (2017, accessed November 2, 2017). *Satellite Data Access by Datasets*. https://www.ncdc.noaa.gov/data-access/satellite-data/satellite-data-access-datasets.
- NOAA OSPO (2017, accessed November 3, 2017). *Hazard Mapping System Fire and Smoke Product*. http://www.ospo.noaa.gov/Products/land/hms.html.
- Ottmar, R. D., Sandberg, D. V., Riccardi, C. L., and Prichard, S. J. (2007). An overview of the Fuel Characteristic Classification System Quantifying, classifying, and creating fuelbeds for resource planning. *Canadian Journal of Forest Research*, 37(12):2383–2393.
- Prichard, S. J., Ottmar, R. D., and Anderson, G. A. (2009). Consume 3.0 user's guide. *USDA Forest Service Pacific Wildland Fire Sciences Laboratory Rep.*, page 239.
- Reid, C. E., Jerrett, M., Petersen, M. L., Pfister, G. G., Morefield, P. E., Tager, I. B., Raffuse, S. M., and Balmes, J. R. (2015). Spatiotemporal prediction of fine particulate matter during the 2008 northern California wildfires using machine learning. *Environ Sci Technol*, 49(6):3887–96.
- Rolph, G., Stein, A., and Stunder, B. (2017). Real-time Environmental Applications and Display sYstem: READY. *Environmental Modelling & Software*, 95(Supplement C):210 228.

- Salimi, F., Henderson, S. B., Morgan, G. G., Jalaludin, B., and Johnston, F. H. (2016). Ambient particulate matter, landscape fire smoke, and emergency ambulance dispatches in Sydney, Australia. *Environ Int*.
- Sampson, P. D., Richards, M., Szpiro, A. A., Bergen, S., Sheppard, L., Larson, T. V., and Kaufman, J. D. (2013). A regionalized national universal kriging model using partial least squares regression for estimating annual pm2.5 concentrations in epidemiology. *Atmospheric Environment*, 75:383 392.
- Sayer, A. M., Hsu, N. C., Bettenhausen, C., and Jeong, M.-J. (2013). Validation and uncertainty estimates for MODIS Collection 6 "Deep Blue" aerosol data. *Journal of Geophysical Research: Atmospheres*, 118(14):7864–7872.
- Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I. A. (2014). The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. *Remote Sensing of Environment*, 143(Supplement C):85 96.
- Torvela, T., Tissari, J., Sippula, O., Kaivosoja, T., Leskinen, J., Virén, A., Lähde, A., and Jokiniemi, J. (2014). Effect of wood combustion conditions on the morphology of freshly emitted fine particles. *Atmospheric Environment*, 87(Supplement C):65 76.
- US EPA (2017, accessed November 2, 2017a). AQS Memos Technical Note on Reporting PM2.5 Continuous Monitoring and Speciation Data to the Air Quality System (AQS). https://www.epa.gov/aqs/aqs-memos-technical-note-reporting-pm25-continuous-monitoring- and-speciation-data-air-quality.
- US EPA (2017, accessed November 2, 2017c). *Outdoor Air Quality Data Download Daily Data*. https://www.epa.gov/outdoor-air-quality-data/download-daily-data.
- US EPA (2017, accessed November 2, 2017d). *Parameters*. https://aqs.epa.gov/aqsweb/documents/codetables/parameters.html.
- US EPA (2017, accessed November 2, 2017e). *PM 2.5 Visibility (IMPROVE)*. https://www3.epa.gov/ttnamti1/visdata.html.
- US EPA (2017, accessed November 2, 2017f). *Sampling Methods for All Parameters*. https://aqs.epa.gov/aqsweb/documents/codetables/methods_all.html.
- US EPA (2017, accessed October 23, 2017b). *National Emissions Inventory (NEI)*. https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei.
- US National Weather Service (2016, accessed November 2, 2017a). *National Weather Service Instruction 10-1605*. https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf.
- US National Weather Service (2017, accessed November 2, 2017b). *Storm Events Database*. https://www.ncdc.noaa.gov/stormevents/.
- US National Weather Service (2017, accessed November 2, 2017c). *Storm Events Database: Database Details*. https://www.ncdc.noaa.gov/stormevents/details.jsp.

- USGS (2017, accessed November 6, 2017). *About 3DEP Products and Services*. https://nationalmap.gov/3DEP/3dep_prodserv.html.
- Wang, W., Barker, D., Bray, J., Bruyere, C., Duda, M., Dudhia, J., Gill, D., and Michalakes, J. (2007). User's Guide for Advanced Research WRF (ARW) Modeling System Version 3. *Mesoscale and Microscale Meteorology Division–National Center for Atmospheric Research (MMM-NCAR)*.
- Westerling, A. L. (2016a). Correction to 'increasing western us forest wildfire activity: sensitivity to changes in the timing of spring'. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 371(1707).
- Westerling, A. L. (2016b). Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. *Philos Trans R Soc Lond B Biol Sci*, 371(1696). bibtex: westerling_increasing_2016.
- Whiteman, C. D., Hoch, S. W., Horel, J. D., and Charland, A. (2014). Relationship between particulate air pollution and meteorological variables in Utah's Salt Lake Valley. *Atmospheric Environment*, 94(Supplement C):742 753.