Introduction

- ➤ An image is a projection of a 3D scene into a 2D projection plane.
- An image can be defined as a 2-D light intensity function f(x, y).
- An digital image f(x,y) is discretized both in spatial coordinates and brightness.
- ➤ It can be considered as a matrix whose row, column indices specify a point in the image and the element value identifies gray level value at that point.
- > These elements are referred to as pixels.

Image Sampling and Quantization

- > Sampling Digitizing coordinate values
- Quantization Digitizing amplitude values

(a) Result of image sampling and quantization

Image Enhancement

- Processing an Image to enhance certain features of the image
- ➤ The result is more suitable than the original image for certain specific applications
- Processing techniques are very much problem oriented. For example, Best technique for enhancement of X-ray image may not be the best for enhancement of microscopic images

Different Enhancement Techniques

- Enhancement techniques fall under two broad categories
- Spatial Domain Technique
 - Work on Image Plane itself
 - > Direct manipulation of pixels in an image
- > Frequency Domain Technique
 - Modify Fourier Transform coefficients of an image
 - Take inverse Fourier Transform of the modified coefficients to obtain the enhanced Image.

Gray level transformations for image enhancement

Expression: s = T(r);

T = transformation that maps pixel value r into pixel value s.

3 types:

- pes:

 Linear: negative and identity
- > Logarithmic: log and inverse-log
- Power: nth power and nth root

Image Negative

Operation: Reversing intensity levels

Application: Enhancing white or gray detail embedded

in dark regions.

Log transformation

Expression: $s = c \log (1+r)$; $c = const, r \ge 0$

Applications: Dynamic Range Compression

Power-Law transforms

Expression: $s = c r^{\gamma}$ Operation: fractional values of y map a narrow range of dark input values into a wider range output values; opposite for y > 1

Power-Law transforms

For γ < 1, produce images that are lighter.

_{a)}Input image _{b)}Output image with $\gamma = 0.1$

Power-Law transforms

For γ > 1, produce images that are darker

_{a)}Input image _{b)}Output image with $\gamma = 2.5$

Contrast stretching

Operation: Locations of points (r1, s1) and (r2, s2) control the shape of the transformation function

Result of Contrast Stretching

Histogram

The histogram of a digital image with gray levels in the range [0, L-1] is a discrete function

$$h(r_k) = (n_k)$$
, $k=0,1,..........L-1$

 r_k = kth gray level and n_k = number of pixels in the image having gray level r_k

normalized histogram: $p(r_k) = (n_k) / n$

Histogram

Histogram

Histogram equalization

s = T(r), $0 \le r \le 1$ Used for enhancing the contrasts in an image

- Through this, the intensities are better distributed on the histogram
- Application: useful in images with backgrounds and foregrounds that are both bright or both dark

Histogram equalization

Spatial filtering

- Filtering operations that are performed directly on the pixels of an image
- ➤ Spatial filtering involves the convolution of an image with a specific kernel operator.
- ➤ The gray level of each pixel is replaced with a new value that is the weighted average of neighboring pixels that fall within the window of the kernel.
- ➤ If the operation performed on the image pixels is linear, then the filter is called linear spatial filter, otherwise it is called non-linear filter.

Mask Processing

Mask Processing techniques

- ➤ Linear smoothing filter
- Median Fitter (nonlinear)

Smoothing Spatial Filters

- > Used for blurring and for noise reduction
- The output (response) is the average of the pixels contained in the neighborhood of the filter mask

Smoothing Spatial Filters

Nonlinear spatial filters Order-Statistics Filters

- ➤ Median filter Replaces the value of a pixel by the median of the gray levels in the neighborhood of that pixel
- ➤ Provide excellent noise-reduction capabilities, with considerably less blurring than linear smoothing filters of similar size.
- ➤ Particularly effective in the presence of salt-and-pepper noise

Median filter

Median filter

