ECE 250 SYLLABUS FALL 2018

WEEKS 1 & 2 - SINGLE RANDOM VARIABLES

Definition of a Random Variable

Discrete Random Variables

Cumulative Distribution Function & Probability Mass Function

Some important Discrete Random Variables

Binary; Binomial; Poisson

Continuous Random Variables

Cumulative Distribution Function and Probability Density Function

Some Important Continuous Random Variables

Uniform; Exponential; Gaussian; Cauchy

Expected Value & Moments of a Random Variable

Mean

Variance

Higher Moments

Characteristic Function

Properties of Characteristic Functions

Characteristic Function MAY be determined by Moments

Moments from a Characteristic Function

A Useful Inequality

Chebyshev Inequality

Functions of a random variable

Expected value of a function of a random variable

WEEKS 2, 3, & 4 - MULTIPLE RANDOM VARIABLES

PAIRS OF RANDOM VARIABLES

Joint Distribution, Probability Mass Function and Probability Density Marginal Distribution, Probability Mass Function and Probability Density Independence

Conditional Probability and Conditional Expectation

Bayes Theorem

Total Probability

Expected Value and Joint Moments of Pairs of Random Variables

Correlation

Covariance

Correlation coefficient

Schwarz Inequality

Joint Characteristic Function

Properties of Joint Characteristic Function

Joint Characteristic Function MAY be Determined by Joint Moments

Joint Moments from a Joint Characteristic Function

Sum of two Random Variables

Probability Mass Function and Probability Density of Sum

Independent Random Variables

Convolution of Probability Mass Function and Probability Density

Product of Individual Characteristic Functions

Jointly Gaussian Variables

Independent Gaussian Variables Central Limit Theorem

FAMILIES OF RANDOM VARIABLES

WEEKS 5, 6, & 7 - RANDOM PROCESSES

Definition of a Random Process

Examples of Random Processes

Discrete Time Process - Sequence of Independent Random Variables

Continuous Time Process - Random Sinusoid

Characterization of Random Processes

Finite Dimensional: Probability Mass Functions

Distributions

Densities

Characteristic Functions

Second Order Random Processes

Mean and Auto Correlation Function

Properties of Random Processes

Stationary Random Processes

Strict Sense Stationarity

Wide Sense Stationarity (WSS)

Independent Increment Processes

Some Important random processes

Gaussian Process

Poisson Process

Random Telegraph Signal

Shot Noise Process

Narrow Band Gaussian Process

Sinusoid + Narrow Band Gaussian Process

Weeks 8, 9 & 10 ANALYSIS AND PROCESSING OF SECOND ORDER RANDOM PROCESSES

Power Spectral Density for Wide Sense Stationary (WSS) Processes

Discrete Time - Sequence of Independent Variables Example

Continuous Time - Random Sinusoid Example

White Noise Process

Response of Linear Systems to Random Process Inputs

Relationship Between Input and Output Mean and Correlation Function

General Case

Wide Sense Stationary Case

Relationship Between Input and Output Power Spectral Density (WSS Case)

Some Applications

Minimum Mean Square Error Estimation/Prediction

Matched Filter