Генерация всех подмножеств

$$A = \{a_1, a_2, \dots a_n\}$$
 — множество элементов

$$B = \{b_1, b_2, ..., b_n\}$$
 — булев вектор, описывающий подмножество $b_i = 1$, если $a_i \in$ подмножеству и = 0 иначе

$$x = (b_n b_{n-1} ... b_1)_2$$
 — число $\in [0..2^n - 1]$

Алгоритм 1 (перебора всех подмножеств) :

$$for x := 0 to 2^n - 1 do$$
 $begin$
 $b = двоичная запись(x);$
 $DoSmth(b);$
 $end;$

Рассмотренный порядок перебора - лексикографический 000, 001, 010, 011, 100, 101, 110, 111

Алгоритм 2 (эффективный, лексикографический порядок)

 $B = (b_1, b_2, ..., b_n, b_{n+1})$ — массив

for
$$i := 1$$
 to $n + 1$ do $B[i] := 0$;
while $B[n + 1] = 0$ do

begin

$$DoSmth(B[n],...,B[1]); - 2^n \approx 3$$

$$j := 1;$$

$$while $B[j] = 1$ do begin
$$B[j] = 0; j := j + 1$$
 end;
$$2 + 4 + 8 + ... + 2^n = 2^{n+1} - 2 \sim \Theta(2^n)$$$$

соседние вектора отличаются ровно в 1 разряде.

Пусть $G(n) = G_0, ..., G_{2^n-1}$ — код Грея длины n

Пример: 000, 001, 011, 010, 110, 111, 101, 100

 G_0,G_1,\ldots – двоичные вектора $T_n = t_1, t_2, ..., t_{2^n-1},$ где t_i — номер изменяемого разряда (считая справа налево) при переходе от \boldsymbol{G}_{i-1} к \boldsymbol{G}_i

Коды Грея - это упорядоченная последовательность двоичных векторов, в которой

Двоично — отраженный код грея :
$$G(1) = 0,1$$
 Если $G(n) = G_0, G_1, \dots, G_{2^n-1}$

 $T_1 = 1$ $T_{n+1} = T_n, (n+1), T_n$

 $T_{2} = 1,2,1,3,1,2,1$

To $G(n+1) = 0G_0, 0G_1, ..., 0G_{2^n-1}, 1G_{2^n-1}, ..., 1G_1, 1G_0$

Пример
$$n = 3$$

$$G(1) = 0.1 \quad G(2) = 00,01,11,10$$

$$G(3) = 000,001,011,010,110,111,101,100$$

Далее будем говорить о генерации посл— ти T_n , т.к. по ней однозначно строится код Грея Рассмотрим стек А

Начальное заполнение: n + 1, n, n - 1, ..., 2, 1

добавим в стек числа $(a_k - 1), (a_k - 2), \dots, 1$

 $b_0^{k+1} = \begin{cases} b_1^k, \text{если извлекли 1} \\ b_0^{k+1} = \begin{cases} b_1^k, \text{если извлекли 1} \end{cases}$

значно строится код Грея отрим стек
$$A$$

Пусть на шаге k на вершине стека лежит если $a_k > 1$, то после извлечения

Рассмотрим массив
$$B = (b_0, b_1, ..., b_n)$$
 B^k — состояние массива на шаге k

 b_i^k = элементу стека A, лежащего под числом j (если j есть в A) $b_{j}^{k} = j + 1$, если j нет в A

 $b_0^k = a_k$

$$j+1$$
, если $j=1$ и извлекли 1 b_j^k , если $j>1$ и извлекли 1 b_j^k , если $j>1$ извлеченного числа и извлекли не 1 $j+1$, если $j=1$ извлеченному числу и извлекли не 1

$$b_{j+1}^k$$
, если $j=$ (извлеченное $-$ 1) и извлекли не 1 $j+1=b_j^k$, если $j<$ (извлеченное $-$ 1) и извлекли не 1 Алгоритм 3 (эффективный, коды Грея) $for\ i:=0\ to\ n\ do\ b[i]:=i+1$

x := 0while x < n + 1 do

begin

end

 $x \coloneqq b[0];$ ChangeBit(x);b[0] := 1; $b[x-1] \coloneqq b[x];$

 $b[x] \coloneqq x + 1;$