Processamento de Linguagem Natural - PLN

Stefane Adna dos Santos

PLN - Relembrando

- Utilizada para o desenvolvimento de sistemas computacionais capazes de entender, interpretar e gerar linguagem natural humana.
- O pré-processamento prepara o texto para a vetorização.

Dataset

- B2W-Reviews01 é um corpus aberto de análises de produtos.
 Contém mais de 130 mil avaliações de clientes de comércio eletrônico, coletadas no site Americanas.com entre janeiro e maio de 2018.
- O B2W-Reviews01 oferece informações ricas sobre o perfil do avaliador, como gênero, idade e localização geográfica.

Dataset

- O corpus também tem duas taxas de revisão diferentes:
 - A taxa de escala usual de 5 pontos, representada por estrelas na maioria dos sites de comércio eletrônico.
 - Uma etiqueta "recomende a um amigo": uma pergunta "sim ou não" que representa a vontade do cliente de recomendar o produto a outra pessoa.

Qual o objetivo do projeto?

Análise

- 1. O gênero dos usuários influência no sentimento das avaliações?
- 2. A idade dos usuários influência na quantidade e no sentimento das avaliações?
- 3. Quais são os produtos com as melhores e piores avaliações?
- 4. Quais categorias de produtos são mais avaliadas?

Limpeza e exploração

- Remover dados duplicados.
- Remover dados nulos.
- Altera o tipo de algumas colunas.
- Transforma os dados de categoria para o tipo numérico.
- Qual coluna utilizar como rótulo dos textos.

Limpeza e exploração

- O que s\u00e3o r\u00f3tulos?
 - Os rótulos (ou "labels" em inglês) são as informações que se deseja prever ou classificar a partir dos dados de treinamento. Em outras palavras, são as respostas ou resultados conhecidos usados para ensinar um modelo de Machine Learning a fazer previsões precisas.

 O gênero dos usuários influência no sentimento das avaliações?

2. A idade dos usuários influência na quantidade e no sentimento das avaliações?

3. Quais são os produtos com as melhores e piores avaliações?

3. Quais são os produtos com as melhores e piores avaliações?

4. Quais categorias são mais avaliadas?

4. Nuvem de Palavras

Pré-processamento textual

Pré-processamento

- Remoção de caracteres especiais, números e pontuações.
- Tokenização e remoção de StopWords.
- Stematização e lematização.
- Necessidade de escolha do melhor pipeline de pré-processamento.

Experimentos

Qualidade de software

- Evitar códigos duplicados.
- Modularização.
- Estruturação do código.
- Continuidade.
- Documentação.
- Inteligibilidade.

Treino e teste

 A principal importância dessa divisão é avaliar o desempenho do modelo em dados que ele nunca viu antes, o que é essencial para avaliar a capacidade do modelo de generalizar para novos dados.

 As métricas de validação são usadas em Machine Learning para avaliar a capacidade de um modelo de fazer previsões precisas e confiáveis.

Texto	Rótulo Real	Rótulo Previsto
Eu amei este produto.	Avaliação positiva	Avaliação positiva
Eu odiei este produto.	Avaliação negativa	Avaliação negativa
Este produto é muito ruim.	Avaliação negativa	Avaliação positiva

- Verdadeiro Positivo (True Positive TP): é quando o modelo classifica corretamente uma amostra positiva como positiva.
- Verdadeiro Negativo (True Negative TN): é quando o modelo classifica corretamente uma amostra negativa como negativa.

- Falso Negativo (False Negative FN): é quando o modelo classifica incorretamente uma amostra positiva como negativa.
- Falso Positivo (False Positive FP): é quando o modelo classifica incorretamente uma amostra negativa como positiva.

		Valor Predito		
		Sim	Não	
Real	Sim	Verdadeiro Positivo (TP)	Falso Negativo (FN)	
	Não	Falso Positivo (FP)	Verdadeiro Negativo (TN)	

Figura: Matriz de confusão

- Acurácia (Accuracy): É a proporção de previsões corretas feitas pelo modelo em relação ao número total de previsões.
- Precisão (Precision): É a proporção de previsões positivas corretas feitas pelo modelo em relação ao número total de previsões positivas.

- Recall ou Sensibilidade (Recall/Sensitivity): É a proporção de previsões positivas corretas feitas pelo modelo em relação ao número total de valores reais positivos.
- **F1 Score**: É a média harmônica entre a precisão e o recall. É uma medida mais balanceada que a acurácia, quando os dados são desbalanceados.

Vetorização

- Qual a melhor vetorização?
 - o TF-IDF.
 - o Doc2Vec.

Figura: Word2Vec

Vetorização

- Qual a melhor vetorização?
 - Acurácia utilizando LogisticRegression e TFIDF: 90.19%
 - Acurácia utilizando LogisticRegression e Doc2Vec: 85.8%

Vetorização

Figura: TF-IDF

Figura: Doc2Vec

Classificadores

- Qual o melhor classificador?
 - Floresta Aleatória.
 - o Bernoulli
 - o KNN.
 - Regressão Logística.
 - o Bagging Classifier.
- Existem inúmeros classificadores:
 - https://scikit-learn.org/stable/supervised_learning.html

GridSearch

 O Grid Search é uma técnica de busca de hiperparâmetros usada em Machine Learning para encontrar a melhor combinação de valores para os parâmetros de um modelo.

GridSearch

 O Grid Search funciona criando uma grade de valores para cada hiperparâmetro que se deseja ajustar e testando todas as combinações possíveis desses valores para encontrar a combinação que resulta no melhor desempenho do modelo em um conjunto de dados de validação.

Validação cruzada

- A validação cruzada é uma técnica em Machine Learning usada para avaliar a capacidade de um modelo de generalizar para novos dados.
- É uma técnica de validação de modelos que consiste em dividir os dados em vários conjuntos de treinamento e teste, e realizar testes repetidos para verificar a variabilidade do modelo.

Validação cruzada

Figura: K-Fold

Validação cruzada

Classificador	Acurácia	F1Score
Logistic Regression	90.32 ± 0.43	93.65 ± 0.29
BernoulliNB	86.12 ±0.52	90.90 ± 0.36
KNN	75.02 ± 6.00	83.38 ± 7.45
Random Forest	75.31 ± 0.06	85.89 ± 0.03
Bagging Classifier	90.25 ± 0.36	93.61 ± 0.25

Tabela: Resultado da validação cruzada

Pré-processamento

Processamento e texto	Acurácia
review_text + stemização	90.19%
review_text + lematização	90.21%
review_text + lematização + stemização	89.93%
review_title + stemização	88.79%
review_title + lematização	89.05%
review_title + lematização + stemização	88.78%
review_text +review_title + stemização	91.96%
review_text +review_title + lematização	92.49%
review_text +review_title + lematização + stemização	92.17%

Pipeline escolhido

 Os melhores resultados foram obtidos utilizando os algoritmos de lematização, TF-IDF e o classificador de Regressão Logística. Este algoritmos em conjunto obtiveram 92.49% de acurácia nos testes.

Pipeline

 Foram desenvolvidos dois pipelines, sendo uma para treinamento do modelo e outro para predizer um texto utilizando o modelo.

 A reprodutibilidade se refere à capacidade de executar um conjunto de instruções (código) e obter os mesmos resultados toda vez que o código é executado, independentemente da plataforma ou ambiente em que está sendo executado.

 A reprodutibilidade de código é importante porque permite que outras pessoas verifiquem e validem os resultados, tornando a ciência mais transparente e confiável. Também ajuda a evitar problemas comuns, como erros de arredondamento ou variações na execução devido a diferentes versões de bibliotecas.

- Criar requirements.txt
 - o pip freeze > requirements.txt
- Para utilizar este projeto deve-se clonar este repositório e executar o seguinte comando dentro da pasta do projeto:
 - o pip install -r requirements.txt

- Para treinar um novo modelo pode-se executar o comando abaixo:
 - python src/americanas/train.py
- Para realizar a predição de um texto, pode-se executar o comando abaixo:
 - python src/americanas/predict.py --text "este produto é muito bom"

Streamlit

 Streamlit é um framework de código aberto para criar aplicativos da web de dados em Python. Ele permite aos usuários criar aplicativos interativos em questão de minutos com um código Python simples e fácil de entender.

Streamlit

 Com o Streamlit, é possível criar aplicativos interativos para visualização e análise de dados, prototipagem de modelos de aprendizado de máquina, dashboard de monitoramento e muito mais.

Streamlit

Referencias

Github. Análise de Sentimento Americanas. Disponível em:
 https://github.com/stefaneadna/nlp_sentiment_analysis_neoway>. Acesso em 04 de abril de 2023.

