

POLICEd RL: Learning Closed-Loop Robot Control Policies with Provable Satisfaction of Hard Constraints

Introduction

We propose POLICEd RL, a novel RL algorithm to guarantee satisfaction of an affine constraints in closed-loop with a black-box environment.

Key insights:

- make the learned policy affine around the unsafe area,
- use this affine region as a repulsive buffer to keep trajectories safe.

Enforcing constraints in RL

Soft Constraint

Constraint violations are penalized but no guarantees of respect.

Hard Constraint (Ours)

Adheres to constraints by construction, and guarantees no violations.

- HJB reachability
- Control Barrier Functions (CBFs)
- projection on safe set
- all require white-box dynamics

Learning a CBF or a safety-critic, no safety guarantees.

Closed-loop constrained RL

The POLICE algorithm [2]

Bias modification to make a deep neural network affine in a user-provided region.

Classification of purple vs orange with red boundary, forced to be affine by POLICE [2] in **black** square.

Our approach: POLICEd RL

Define a buffer $\mathcal{B} = \{s : Cs \in [d-r, d]\}$ of radius r > 0. Use POLICE [2] to make policy μ_{θ} affine over buffer \mathcal{B} . Estimate how far from affine are dynamics f in \mathcal{B} with ϵ $|Cf(s,a) - C(As + Ba + c)| \le \varepsilon$ for all $s \in \mathcal{B}$ and $a \in \mathcal{A}$.

Theorem: If μ_{θ} is affine over \mathcal{B} and for some affine measure ε , repulsion condition $Cf(v, \mu_{\theta}(v)) \leq -2\varepsilon$ holds at all vertices v of \mathcal{B} , then Cs(t) < d for all $t \geq 0$.

Algorithm

- Calculate buffer radius *r*
- Determine buffer B and its vertices
- Sample transitions (s, a, s') with $s \in \mathcal{B}$ and estimate ε with least-square approximation
- Train μ_{θ} until repulsion condition $Cf(s, \mu_{\theta}(s)) \leq -2\varepsilon$ holds on the vertices of \mathcal{B} Guarantees Cs(t) < d if Cs(0) < d.

2D illustrative example

POLICEd RL learns to reach the target without any constraint violation thanks to its affine buffer.

Stabilizing the MuJoCo inverted pendulum

Reach-avoid with KUKA arm

Target reaching % without

violations (↑)

PPO-Barrier [4]

Conclusion

POLICEd RL provably enforces an affine constraint

■ CPO [1]

- Only requires a black-box model of the environment
- Tractable safety verification at the buffer vertices

Target reaching % (↑)

References

Full text available on ArXiv at https://arxiv.org/pdf/2403.13297

Average % constraint

satisfaction (†)

■ POLICEd RL (ours)

- Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. "Constrained policy optimization." In International Conference on Machine Learning, pages 22 - 31, 2017.
- Randall Balestriero and Yann LeCun. "POLICE: Provably optimal linear constraint enforcement for deep neural networks." In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 1 - 5, 2023.
- Scott Fujimoto, Herke Hoof, and David Meger. "Addressing function approximation error in actor-critic methods." In *International Conference on Machine Learning*, pages 1587 – 1596, 2018
- Yujie Yang, Yuxuan Jiang, Yichen Liu, Jianyu Chen, and Shengbo Eben Li. "Model-free safe reinforcement learning through neural barrier certificate." IEEE Robotics and Automation Letters, pages 1295 - 1302, 2023.