General Topology Math Notes

Leon Lee

November 5, 2024

Contents

1	Intr	to to Topology	3
	1.1	Why Topology?	3
	1.2	Topological Spaces and Examples	3
		1.2.2 Examples of Topological Spaces	3
		1.2.5 Examples of Metric Spaces	4
		1.2.6 Topologies on Metric spaces	4
	1.3	Closed sets, Closure, Interior, and Boundary	7
		1.3.2 Examples of open and closed sets	7
		1.3.4 Topological proof that there are infinitely many primes (Furstenberg)	7
	1.4	Closure and stuff	8
	1.5	Hausdorff Spaces	9
2	Continuity 10		
	2.1	Continuity	10
		2.1.2 Why take f^{-1}	10
	2.2	Homeomorphisms	11
3	The	e Clark Barwick Era	13
	3.1	More top	13
		3.1.1 Something weird	13
		3.1.4 Topologising the above thing	13
	3.2	Week 4 Lecture 1	13
	3.3	Week 4 Lecture 2	14
	3.4	Connectedness	15
	0.1	3.4.3	15
4	Hor	notopy Theory	16
_		Homotopies	16

1 Intro to Topology

1.1 Why Topology?

Topology can appear where we least expect it...

- Algebraic Number Theory Next to Euclidean topology, can define other topologies on \mathbb{Q} (related to how often primes divide a number). Extends to Adeles, Langlands programme, etc
- Arithmetic Progressions in the Integers An arithmetic progression of length k is a set $\{a, a+d, \ldots, a+(k-1)d\}$ Finding subsets of $\mathbb N$ that contain arbitrarily long APs:
 - $-2\mathbb{N} \text{ or } \mathbb{N}$
 - Primes (Green-Tao Theorem, 2007). Green-Tao theorem relies on Szemeredi's Theorem: Any dense enough subset of N contains arbitrarily long APs

Furstenburg's idea: Get from
$$A \subseteq \mathbb{N}$$
 to $(a_i \in \{0,1\}^{\mathbb{N}})$ with $a_i \begin{cases} 1 & i \in A \\ 0 & \text{else} \end{cases}$

Use topological dynamics to study this: A topological dynamical system is a triple of X cpt, $T: X \to X$ continuous, and a probability measure μ preserved by T (what)

1.2 Topological Spaces and Examples

Definition 1.2.1: Topological Space

A **topological space** is a pair (X, \mathcal{T}) , where X is a nonempty set, and \mathcal{T} is a collection of subsets of X which satisfies:

- 1. $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$
- 2. if $U_{\lambda} \in \mathcal{T}$ for each $\lambda \in A$ (where A is some indexing set), then $\bigcup_{\lambda \in A} U_{\lambda} \in \mathcal{T}$
- 3. If $U_1, U_2 \in \mathcal{T}$, then $U_1 \cap U_2 \in \mathcal{T}$

1.2.2 Examples of Topological Spaces

- 1. \mathbb{R}^n with the Euclidean Topology induced by the Euclidean Metric
- 2. For any set X, $\mathcal{T} = \mathcal{P}(X)$ (discrete topology)
- 3. For any set X, $\mathcal{T} = \{\emptyset, X\}$ (indiscrete topology)
- 4. $X = \{0, 1, 2\}$ with $\mathcal{T} = \{\emptyset, X, \{0\}, \{0, 1\}, \{0, 2\}\}$
- 5. $X = \mathbb{R}$ and U open (aka, in \mathcal{T}) if $R \setminus U$ is finite or $U = \emptyset$

Proof for 5:

- 1. $\emptyset \in \mathcal{T}$, \emptyset is finite $\implies X \in \mathcal{T}$
- 2. Intersections of finite sets are finite
- 3. Unions of finite sets are finite

Definition 1.2.3: Neighbourhood of a point

A **neighbourhood** of a point $x \in X$ is a subset $N \subseteq X$ s.t. $x \in U \subseteq N$ for some open subset $U \subseteq X$

Definition 1.2.4: Metric Space

A **metric space** (X, d) is a nonempty set X together with a function

$$d: X \times X \to \mathbb{R}$$

with the following properties:

- 1. $d(x,y) \ge 0$ for all $x,y \in X$ and d(x,y) = 0 iff x = y
- 2. d(x,y) = d(y,x) for all $x, y \in X$
- 3. $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in X$

The function d is called the metric. Point 3 is called the *triangle inequality*

For any $x \in X$ and any positive real number r the **open ball** in X with centre x and radius r is defined by

$$B(x,r) = \{ y \in X | d(x,y) < r \}$$

We declare a subset U of X to be open in the metric topology given by d iff for each $a \in U$ there is an r > 0 such that $B(a, r) \subseteq U$

If (X, \mathcal{T}) is a topological space, and if X admits a metric whose metric topology is precisely \mathcal{T} we say that (X, \mathcal{T}) is **metrisable**. Thus the euclidean spaces with their usual topologies are metrisable

1.2.5 Examples of Metric Spaces

- 1. Any set X with $d(x,y) = \begin{cases} 0, & x = y \\ 1, & \text{else} \end{cases}$
- 2. \mathbb{R}^n with $d(x,y) = |x y| = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$
- 3. C([0,1]) with $d(f,g) = \max_{t \in [0,1]} |f(t) g(t)|$
- 4. C([0,1]) with $d(f,g) = \sqrt{\int_0^n |f(t) g(t)|^2 dt}$

1.2.6 Topologies on Metric spaces

We want to define a topology on (X,d). For this, we want open balls to be open in the topology

Definition 1.2.7: Base

For a set X, a basis \mathcal{B} is a collection of subsets such that

- 1. $\bigcup_{B \in \mathcal{B}} B = X$
- 2. $B_1 \cap B_2 \in \mathcal{B}$ for all $B_1, B_2 \in \mathcal{B}$

The topology generated by \mathcal{B} is

$$\mathcal{T} := \{ \bigcup_{i \in I} B_i, I \text{ index set, } B_i \in \mathcal{B} \}$$

Note: This is a topology because

$$(\cup_{i\in I}B_i)\cap(\cup_{j\in J}B_j)=\bigcup_{i\in I, j\in J}\underbrace{B_i\cap B_j}_{\in\mathcal{B}}\in\sqcup$$

Definition 1.2.8: Metric Topology

Let
$$\mathcal{B} = \{\bigcap_{i=1}^{n} Br_1(x_1), n \in \mathbb{N}, r_i > 0, x_i \in X, \forall i\}$$

The metric topology is the topology generated by this basis

Observation A set U is open in the metric topology $\iff \forall x \in U, \exists r > 0 \text{ s.t. } Br(x) \subseteq U$

- \Leftarrow : For each $x \in U$, let r_x s.t. $B_{r_x}(x) \subseteq U$. Then $U = \bigcup_{x \subseteq U} B_{r_x}(x)$ is open
- \Longrightarrow : Let $x \in U$ be given. Knwo that $x \in B_{r_1}(x_1) \cup \cdots \cup B_{r_n}(x_n)$ for some n, r_1, x_1 . For each i, there is $\delta_i > 0$ s.t. $B_{\delta_i}(x) \leq B_{r_1}(x_1)$.

huh?

Theorem 1.2.9: random ms prop

If X carries metrics d, \tilde{d} such that $ad(x, y) \leq \tilde{d}(x, y) \leq Ad(x, y)$ for some a, A > 0, then the induced topologies agree

Definition 1.2.10: Subspace Topology

Let (X, \mathcal{T}) be a topological space, and let $A \subseteq X$ be any subset. Then the **subspace** topology on A consists of all sets of the form $U \cap A$ where $U \in \mathcal{T}$

Example: $(-1,1) \subseteq \mathbb{R}$ with euclidean topology. The subspace topology is

$$\{(-1,1)\cap U,\,U\subseteq\mathbb{R}\text{ open}\}$$

(-1,1) is closed in the subspace topology

Theorem 1.2.11: Topology Lemmas

- **1.3** If (X, \mathcal{T}) is a topological space and U_1, \ldots, U_n are open sets, then the intersection $\bigcap_{i=1}^n u_i$ is also open
- 1.6 In order to show that a set $U \subseteq X$ is open, it is enough to show that for every $x \in U$ there is an open set V with $x \in V \subseteq U$
- 1.6 A subset U of \mathbb{R}^n is open for the usual topology iff for each $a \in U$ there exists an r > 0 s.t.

$$|x - a| < r \implies x \in U$$

The collection of open sets thus defined is called the **usual topology on** \mathbb{R}^n . Note

that open balls are open sets under this definition

Definition 1.2.12: Topology Small Definitions

•

1.3 Closed sets, Closure, Interior, and Boundary

Definition 1.3.1: Closed Subsets

Let (X, \mathcal{T}) be a topological space. A subset $A \subseteq X$ is **closed** iff its complement $X \setminus A = A^C := \{x \in X \ x \notin A\}$ is open in X

Note: A set being "closed" has no connection with "not being open"

1.3.2 Examples of open and closed sets

- A set that is neither open nor closed: $[0,1) \subseteq \mathbb{R}$ under Euclidean topology
- A set that is both closed and open: \emptyset or X

Theorem 1.3.3

Let (X, \mathcal{T}) be a topological space. Then

- 1. \emptyset and X are closed.
- 2. The union of finitely many closed sets is a closed set
- 3. The intersection of any collection of closed sets is a closed set

 $\bigcup_{i \in I} A_i$ is not necessarily closed.

$$A_n = \left[-2 + \frac{1}{n}, 2 - \frac{1}{n}\right] \text{ in } \mathbb{R}, \bigcup_{i=1}^n A_i = (-2, 2)$$

1.3.4 Topological proof that there are infinitely many primes (Furstenberg)

Proof. Look at \mathbb{Z} with

$$\mathcal{B} := \{ S(a,b), \ a \neq 0, \ b \in \mathbb{Z} \} \quad \text{ and } \quad S(a,b) = \{ an + b, \ n \in \mathbb{Z} \}$$

Let the open sets be the one generated by this basis. We can show

- 1. S(a,b) is both open and closed.
- 2. All open sets are infinite.

1.
$$S(a,b) = \mathbb{Z} \setminus \bigcup_{i=1}^{a-1} S(a,b-1)$$

2. Clear

Thus:

$$\underbrace{\mathbb{Z}\backslash\{-1,1\}}_{\text{not closed}} = \bigcup_{p \text{ primes}} \underbrace{\widetilde{S(p,0)}}_{\text{closed}}$$

If there were only finitely many primes, right hand side would be closed

1.4 Closure and stuff

Definition 1.4.1: Closure, Interior, Boundary

Let (X, \mathcal{T}) be a topological space.

1. The **closure** of a subset $A \subseteq X$ is the smallest closed set such that $A \subseteq \overline{A}$.

$$\overline{A} := \bigcap_{\substack{C \subseteq X \text{closed} \\ A \subseteq C}} C$$

2. The (open) **interior** of a subset $A \subseteq X$ is the biggest open set U contained in A

$$\operatorname{int} A = A^{\circ} := \bigcap_{\substack{U \subseteq X \text{ open} \\ U \subseteq A}} C$$

3. The **boundary** or **frontier** of a subset $A \subseteq X$ is

$$\partial A := \overline{A} \backslash A^{\circ}$$

4. A subset A of X is **dense** in X iff $\overline{A} = X$

E.g.: $\mathbb{Q} \subseteq \mathbb{R}$ with the Euclidean topology

Theorem 1.4.2: Closure and Interior of Complement

Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Then

1. The closure of the complement is the complement of the interior:

$$\overline{X \backslash A} = X \backslash (A^{\circ})$$

2. the interior of the complement is the complement of the closure:

$$(X\backslash A)^{\circ} = X\backslash \overline{A}$$

Definition 1.4.3: Limits in Topological spaces

A sequence (x_n) converges to $x \in X$ if $\forall U$ open with $x \in U$, $\exists N$ s.t. $x_n \in U$ for all $n \geq N$

Definition 1.4.4: Limit Set

 \overline{A} can be thought as the set of limits. Formally define the **Limit Set** as

$$A' = \{x \in X : \forall U \subseteq X, x \in U, \text{ open } \exists a \in A, \text{ s.t. } a \in U\}$$

But, limits in general are much worse behaved in topological spaces, e.g. no unique limit point **Example**: a topological space X and a sequence (x_n) which does not have a unique limit (i.e. $\exists x \neq y \text{ s.t. } x_n \to x \text{ and } x_n \to y \text{ in the sense defined}$): Nontrivial X with the indiscrete topology $\{\emptyset, X\}$

8

1.5 Hausdorff Spaces

Problem: Non-unique limits are nasty:(

Definition 1.5.1: Hausdorff Space

A topological space (X, \mathcal{T}) is **Hausdorff** if for each $x, y \in X$ with $x \neq y$ there exist disjoint open sets U and V s.t. $x \in U$ and $y \in V$

This space has unique limits!

If (X, d) is a metric space then it is automatically Hausdorff, so any metrisable space is Hausdorff. The trivial topology on a set with more than one element is not Hausdorff. Not every Hausdorff space is metrisable

Non-Hausdorff spaces are a lot more annoying to work with - for example you can have multiple limits in non-Hausdorff spaces

Theorem 1.5.2: Open sets on \mathbb{R} with Euclidean Topology

• A set U is open iff there are open intervals I_j s.t.

$$U = \bigcup_{j=1}^{\infty} I_j$$

• A set A is closed iff there are F_j (union of two closed intervals) s.t.

$$A = \bigcap_{j=1}^{\infty} F_j$$

Definition 1.5.3: Convergence of Hausdorff Spaces

A sequence (x_n) of members of a topological space X converges to $x \in X$ if for every open set U containing x, there exists an N such that $n \geq N \implies x_n \in U$

Theorem 1.5.4: Haussdorf Convergence Uniqueness

Suppose (X, \mathcal{T}) is Hausdorff. Then a sequence (x_n) can converge to at most one limit.

Being Hausdorff is what's called a *topological property*, which means whether it is true in a particular case depends only on the open sets of the space in question.

In contrast, the property of *completeness* of a metric space is not a topological property as there exist sets upon which one can put two distinct metrics, one complete and one not, yet for which the metric topologies coincide

9

Definition 1.5.5: Cauchy Sequences

Let (X, d) be a metric space

- 1. A Cauchy Sequence is a sequence (x_n) with each $x_n \in X$ with the property that for each $\epsilon > 0$, there exists an N s.t. $m, n \geq N \implies d(x_m, x_n) < \epsilon$
- 2. (X,d) is **complete** if every Cauchy Sequence converges

Caveat: In general, this does not have to converge to an $x \in X$

Example: \mathbb{Q} with the Euclidean metric.

Definition 1.5.6: Complete Space

A metric space is called **complete** if all Cauchy sequences converge to a point in the space

Definition 1.5.7: Closure in Metric Spaces

Let (X, d) be a complete metric space and $A \subseteq X$. A point x is in the **closure** of $A \iff \exists x_i \to x \text{ with } x \in A$

2 Continuity

2.1 Continuity

Definition 2.1.1: Continuity

Let $(X, \mathcal{T}), (Y, \tilde{\mathcal{T}})$ be topological spaces and $f: X \to Y$. f is **continuous** if for all $U \in \tilde{\mathcal{T}}$, $f^{-1}(U) \in \mathcal{T}$

Equivalently:

- $U \subseteq Y$ open $\implies f^{-1}(U)$ open
- $A \subseteq Y$ closed $\implies f^{-1}(A)$ closed

2.1.2 Why take f^{-1}

Properties: For U, V sets in Y,

•
$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(U)$$

•
$$f^{-1}(U^C) = f^{-1}(U)^C$$

•
$$f^{-1}(U \cup U) = f^{-1}(U) \cup f^{-1}(U)$$

Example: \mathbb{R} with Euclidean Topology

Proof. "Proof" that [-1,1] is open:

Take [-1,1] with the subspace topology $\mathcal{T} := \{[-1,1] \cap U, U \subseteq \mathbb{R} \text{ open}\}$

Embedding $i: [-1,1] \to \mathbb{R}, x \mapsto x$ is continuous

[-1,1] open in subspace topology

 $i \text{ cont } \implies i([-1,1]) \text{ is open}$ this is actually wrong! U open $\implies f(U)$ open

But
$$i([-1,1]) = [-1,1] \subseteq \mathbb{R}$$

Definition 2.1.3: Formal Definition of Continuity

Let (X, d), (Y, d) be metric spaces with the metric topology. $f: X \to Y$ is continuous as above iff $\forall x \in X, \forall \epsilon > 0, \exists \delta > 0$ s.t.

$$d(x,y) < \delta \implies d(f(x),f(y)) < \epsilon$$

 $Proof. \implies \mathbf{Direction}$

Recall: U open in metric topology if $\forall x \in U, \exists r > 0 \text{ s.t. } B_r(x) \subseteq U$, where $B_r(x) = \{y \in X : d(x,y) < r\}$

 \implies Let $x \in X$ be given, $\epsilon > 0$. Let $y = f(x) \in Y$, $U = B_{\epsilon}(y) = \{y' \in Y : \tilde{d}(y, y') < \epsilon\}$.

 $f \text{ cont } \implies f^{-1}(U) \text{ is open. } x \in f^{-1}(U) \implies \exists \delta > 0 \text{ s.t. } B_{\delta}(x) \subseteq f^{-1}(U)$

 $\implies \forall x' \in X \text{ s.t. } d(x,x') < \delta, \ x' \in B_{\delta}(x) \subseteq f^{-1}(U).$

 $\implies f(x') \in B_{\delta}(f(x)) \implies \tilde{d}(f(x), f(x')) < \epsilon$

 \iff Direction

Let U be open in Y. WTS: $f^{-1}(U)$ is open.

So it is enough to show for all $x \in f^{-1}(U)$, $\exists \delta > 0$ s.t. $B_{\delta}(x) \subseteq f^{-1}(U)$.

Let x be given, $y := f(x) \in U$. U open $\implies \exists \epsilon > 0$ s.t. $B_{\epsilon}(y) \subseteq U$.

By assumption $\exists \delta > 0 \text{ s.t.}$

$$d(x', x) < \delta \implies \tilde{d}(f(x'), f(x)) < \epsilon$$

But,
$$\{y': d(y', f(x)) < \epsilon\} \subseteq U$$
 by choice of ϵ .
 $\implies B_{\delta}(x) \subseteq f^{-1}(U)$

2.2 Homeomorphisms

Definition 2.2.1: Homeomorphism

Let $(X, \mathcal{T}), (Y, \tilde{\mathcal{T}})$ be topological spaces. A function $f: X \to Y$ is a **homeomorphism** (or **bi-continuous**) if f is bijective, f is continuous, and $f^{-1}Y \to X$ is continuous

A "Great goal of Topology": Understand topological spaces up to homeomorphisms. Say that a property of a topological space is a **topological invariant** if it is preserved by homeomorphism. Example: Being Hausdorff

Example 2.2.2: Examples of Homeomorphisms

- (X, \mathcal{T}) topological space, id : $X \to X$, $x \mapsto x$
- $X = \mathbb{R}^n$, $A : \mathbb{R}^n \to \mathbb{R}^n$ Linear + Invertible
- Example which is **not** a homeomorphism:

$$f: \underbrace{\mathbb{R}}_{\text{metric topology}} \to \underbrace{\mathbb{R}}_{\text{indiscrete topology}}, x \mapsto x$$

Problem: f^{-1} is not continuous

Definition 2.2.3: Another continuity definition

Let $(X,d),(Y,\tilde{d})$ be metric spaces with the metric topology. $f:X\to Y$ is continuous iff

$$\forall x \in X, \forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall y \in X, d(x,y) < \delta \implies \tilde{d}(f(x),f(y)) < \epsilon$$

Observe: $\forall y \in X$ is equivalent to

$$B_{\delta}(x) \subseteq f^{-1}(\tilde{B}_{\epsilon}(f(x)))$$

Why? Let A, B be things which can be true for $y \in X$. i.e.

 $A \implies B$ is equivalent to $\{y : A \text{ true } \subseteq \{y : B \text{ true}\}\}$

Then:
$$B_{\delta}(x) = \{y, \underbrace{d(x,y) < \delta}_{A}\}, f^{-1}(\tilde{B}_{\epsilon}(f(x))) = \{y \in X : \underbrace{\tilde{d}(f(x), f(y)) < \epsilon}_{B}\}$$

WTS: U open $\iff \forall x \in U, \exists r > 0 \text{ s.t. } B_{\delta}(x) \subseteq U$

 \implies "Let x, ϵ be given, WTS that $\exists \delta$ s.t. $B_{\delta}(x) \subseteq f^{-1}(\tilde{B}_{\epsilon}f(x))$

Example: f cont + bijective but not a homeomorphism:

in
discrete topology: only
$$\emptyset$$
 and X are open

$$f: \underbrace{X} \to \underbrace{X} \text{ identity}$$
 discrete topology - every set is open

Lemma 2.2.4: Homeomorphism-condition

For a set X with topologies \mathcal{T} , $\tilde{\mathcal{T}}$. The identity map $(X,\mathcal{T}) \to (X,\tilde{\mathcal{T}}), x \mapsto x$ is

- continuous $\iff \tilde{\mathcal{T}} \subseteq T$
- a homeo $\iff \tilde{\mathcal{T}} = \mathcal{T}$

Theorem 2.2.5: Mapping prop

• Let $f: X \to Y, g: Y \to Z$ continuous. The map $f \circ g$ is continuous

As
$$(f \circ g)^{-1}(U) = f^{-1}(g^{-1}(U))$$

- If $f: X \to Y$ is constant, then f is continuous
- In particular, f,g homeo $\implies f\circ g$ is a homeo

3 The Clark Barwick Era

Theorem 3.0.1: Clark Barwick Quotes List

"Shadows are harshest when there is only one lamp" - 04/10/24

"If one must choose between rigour and meaning, then I shall unhesitantly choose the latter" - 25/10/24

"Everyone knows what a curve is, until they have learned enough mathematics to have become confused" - F. Klein (29/10/24)

"You become what you give your attention to" - (05/11/24)

3.1 More top

3.1.1 Something weird

$$[0, 2\pi) \to S^1 = \{z \in \mathbb{Z} : ||z|| = 1\}$$

 $[0, 2\pi) \to [0, 1)$ is open, and is also creepy

Not a homeomorphism

Claim: A continuous bijection in which the image of every open set is open is a homeomorphism

Definition 3.1.2: Subspace Topology

For X a topological space, and $T \subseteq X$, $\mathcal{U} \subseteq T$ is open iff $\exists V \subseteq X$ open and $\mathcal{U} = V \cap T$

Definition 3.1.3: Impromptu Set Theory - Products

 ${\mathcal F}$ is a family of sets. We can talk about a product

$$\prod_{x \in \mathcal{F}} X = \{(a_x)_{x \in \mathcal{F}} : a_X \in X\}$$

Example:

$$\mathbb{R}^{\infty} = \prod_{i=1}^{\infty} \mathbb{R} = \{(x_1, x_2, \dots) : x_i \in \mathbb{R}\}$$

$$\prod_{x \in \mathcal{F}} = \{ \phi : \mathcal{F} \implies \bigcup_{x \in \mathcal{F}} X : \phi(X) \in X \}$$

Note: the $\mathcal F$ notation is pretty creepy - Clark

3.1.4 Topologising the above thing

$$\prod_{i \in I} X_i \to X_j$$

3.2 Week 4 Lecture 1

Definition 3.2.1: Quotient Topology

Define X with \sim a relation on X. We have a function

$$g: X \to X/\sim$$
$$x \mapsto [x]$$

 $\mathcal{U} \subseteq X/\sim$ is open iff $g^{-1}(\mathcal{U})\subseteq X$ is open

3.3 Week 4 Lecture 2

Definition 3.3.1: Coarser and Finer

• Coarse: There are more open sets

Definition 3.3.2: Product Topology

The **Product Topology** is the coarsest possible topology such that pr_1 and pr_2 are both continuous

Definition 3.3.3: Quotient Topology

For X a topological space and \sim a relation, define a function $q: X \to X/\sim$ where the quotient top is the finest topology such that q is continuous

Definition 3.3.4: Coarse and Fine Topologies

For X a topological space and Y a set:

- $f: X \to Y$ means there exists a unique finest topology s.t. f is continuous
- $g: Y \to X$ means that there exists a unique coarsest topology s.t. g is continuous

Lemma 3.3.5: Hausdorff Coarseness

 τ_1 is coarser than τ_2 and τ_1 is Hausdorff $\implies \tau_2$ is Hausdorff

3.4 Connectedness

Definition 3.4.1: Path Connected

A space X is **path-connected** if for all $x,y\in X$, there exists $\alpha:[0,1]\xrightarrow{\operatorname{cts}} X$ s.t. $\alpha(0)=x$ and $\alpha(1)=y$

Theorem 3.4.2

If a topological space X is path-connected, then it is also connected

3.4.3

Claim: $\mathbb{R}^n \not\cong \mathbb{R}$ for n > 1

4 Homotopy Theory

4.1 Homotopies

Recall that for X a topological space, it is path connected iff $\forall x,y\in X,\ \exists \gamma:[0,1]\to X$ such that

$$\gamma(0) = x$$
 and $\gamma(1) = y$

Sameness := connectability by a path

Definition 4.1.1: Homotopy

Let $f,g:X\to Y$ be two continuous maps. A **homotopy** between them is a continuous map

$$h: X \times I \to Y$$

such that $\forall x \in X, h(x,0) = f(x)$ and h(x,1) = g(x)