Introduction to Causal Inference and Causal Data Science

Complex longitudinal settings: When traditional methods fail

Bas Penning de Vries

Statin-cancer example revisited

Previous studies implicitly compared long-term statin users versus non-users – doesn't necessarily answer questions like ...

- What would be my 10-year cancer risk if possibly contrary to fact – I would start statin treatment now? And what if I wouldn't?
- What would be my 10-year cancer risk if possibly contrary to fact – I would start statin treatment now and adhered to it?
 And what if I wouldn't start now or in the future?

Inference about time-varying treatments

If treatment/exposure is time-varying, there are many possible causal contrasts ...

Single versus multiple-point interventions

Single-point (baseline) intervention

- Eg: assign/initiate versus withhold drug treatment at baseline
- Individuals are allowed to deviate (intention-to-treat)
- Randomisation at baseline only

Multiple-point (joint) intervention

- Eg: sustained/daily/weekly/monthly drug use versus continuous non-use (*per-protocol*)
- Randomisation at multiple points

Static versus dynamic interventions

Static treatment rule/regime/protocol/...

- ... assigns the same treatment option to everyone
- Eg: assign versus withhold treatment regime at baseline (intention-to-treat)
- Eg: always treat versus never treat (per-protocol)

Dynamic (individualised) treatment rule

- ... assigns treatment based on the then-available information
- Eg: choose dose depending on baseline covariates
- Eg: start when blood marker first drops below threshold
- Eg: stop when toxicity occurs

Single-point Multiple-point Static **Treat** Treat Do not treat **Treat Dynamic** Treat Do not treat Do not treat Treat

Treatment-covariate feedback

Adjust for L_1 if we want to know the effect of always- versus never treatment?

Treatment-covariate feedback

- Traditional methods (multivariable regression modelling) are not suited to deal with time-varying confounding when it is affected by past treatment (treatment-covariate feedback)
- Methods that can handle treatment-covariate feedback and adjusting for time-varying confounding:
 - G-computation
 - Inverse probability weighting (IPW)

IPW for sustained treatments

- Let $Y_1^{a_0}, Y_2^{a_0,a_1}$ be counterfactual Y_1, Y_2 if all A_0, A_1 were a_0, a_1
- Target: $Pr(Y_1^{a_0} = Y_2^{a_0,a_1} = 0)$ survival probability if ...?
- Same assumptions but slightly different form eg, sequential conditional exchangeability:
 - $Y_1^{a_0}, Y_2^{a_0,a_1}$ independent of
 - independent of A_0 given L_0
 - independent of A_1 given L_0 , L_1 , $A_0 = a_0$, $Y_1 = 0$
- Idea: patients who do not deviate from protocol compensate for "similar" patients who do
- Weights are time-varying

Example

- Two time points at which we might intervene, t = 0 (baseline) and t = 1 (e.g., one month after baseline)
- At each time t, there are two options: issuing ($A_t = 1$) or withholding ($A_t = 0$) a one-month drug prescription

Example

Should we condition on ('adjust for') L to identify the effect of 'always treat' ($A_0 = A_1 = 1$) versus 'never treat' ($A_0 = A_1 = 0$)?

• Under a version of the three identifiability conditions (positivity, consistency and exchangeability), we can use IPW to identify the effect of the time-varying treatment, expressed as a contrast between the average counterfactual outcomes under 'treat always' and 'treat never' regimes:

 $E[Y^{1,1}]$ versus $E[Y^{0,0}]$

• IPW for time-varying confounding starts with time-varying propensity scores. For the example with two time points, every individual will have two propensity scores:

- $PS_0 = Pr(A_0 = 1)$
- $PS_1 = Pr(A_1 = 1 \mid A_0, L)$

• What we 'include' in the propensity scores (i.e., wat we 'condition on') depends on the setting – here, we condition on nothing for t = 0, because we're assuming that Y^{a_0,a_1} is (marginally) independent of A_0 (no baseline confounding). For t = 1, we condition on A_0 and L because we're assuming that Y^{a_0,a_1} is independent of A_1 given $A_0 = a_0$ and L (no uncontrolled confounding at t = 1 given A_0 and L).

A_0	L	A ₁	Stratum probability	PS ₀	PS ₁	W
0	0	0	0.20	0.50	?	
0	0	1	0.05	0.50	?	
0	1	0	0.15	0.50	0.40	
0	1	1	0.10	0.50	0.40	
1	0	0	0.03	0.50	0.88	
1	0	1	0.22	0.50	88.0	
1	1	0	0.02	0.50	0.92	
1	1	1	0.23	0.50	0.92	

- The next step is computing the weights. These look much like the weights for time-fixed treatments:
 - $W_0 = 1/PS_0$ if $A_0 = 1$ (treated at t = 0) and $W_0 = 1/(1 PS_0)$ if $A_0 = 0$ (untreated)
 - $W_1 = 1/PS_1$ if $A_1 = 1$ (treated at t = 1) and $W_1 = 1/(1 PS_1)$ if $A_1 = 0$ (untreated)
- The final weights W are obtained by taking the product of these time-varying weights: $W = W_0W_1$

A_0	L	A ₁	Stratum probability	PS ₀	PS ₁	W
0	0	0	0.20	0.50	0.20	2.50
0	0	1	0.05	0.50	0.20	?
0	1	0	0.15	0.50	0.40	3.33
0	1	1	0.10	0.50	0.40	5.00
1	0	0	0.03	0.50	0.88	16.67
1	0	1	0.22	0.50	0.88	2.27
1	1	0	0.02	0.50	0.92	25.00
1	1	1	0.23	0.50	0.92	2.17

• Finally, having computed the weights W, an estimate of the always-versus-never treatment effects is obtained by taking the difference in mean outcome between the always treated $(A_0 = A_1 = 1)$ and never treated $(A_0 = A_1 = 0)$ individuals, weighted by W.

Concluding remarks

- IPW and g-computation, but not traditional methods, are suited to handle time-varying confouding affected by past treatment (feedback)
- As with IPW for time-fixed confounding, default standard error estimators of many software packages are not appropriate for weighted regressions, because the weights are falsely assumed to reflect actual observation frequencies
- IPW can (and need sometimes) be combined with marginal structural modelling (Robins et al., Epidemiology, 2000;11:550-560)