

Masterarbeit

Effiziente Berechnung von K_5 -Minoren in Graphen

Julian Sauer
3. September 2019

Betreuer:

Prof. Dr. Petra Mutzel Prof. Dr. Jens Schmidt

Fakultät für Informatik
Algorithm Engineering (LS 11)
Technische Universität Dortmund
http://ls11-www.cs.tu-dortmund.de

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung	1
	1.1	Motivation und Hintergrund	1
	1.2	Aufbau der Arbeit	1
2	Defi	initionen	3
3	Alg	orithmus von Kezdy und McGuinness	9
	3.1	Behandlung von $K_{3,3}$ -Minoren	9
	3.2	Sequenzieller Algorithmus zum Finden von K_5 -Minoren	17
4	Waş	gner Struktur	19
5	Imp	blementierung	21
6	Exp	perimentelle Analyse	23
7	Zusammenfassung und Ausblick 25		
A	Wei	tere Informationen	27
Αl	bbild	ungsverzeichnis	30
\mathbf{A}	lgorit	thmenverzeichnis	31
Sy	mbo	lverzeichnis	33
Li	terat	urverzeichnis	35
${f Ei}$	dessi	tattliche Versicherung	35

Einleitung

- 1.1 Motivation und Hintergrund
- 1.2 Aufbau der Arbeit

Definitionen

Vorab werden einige Definitionen und Notationen festgelegt, die im Verlauf der Arbeit verwendet werden. Der Algorithmus arbeitet mit einem ungerichteten Graph G = (V, E) ohne Mehrfachkanten, wobei E die Menge der Kanten und V die Knotenmenge sei.

Eine Kante $e \in E$, die zwei Knoten u und v verbindet, wird durch e = (u, v) angegeben. Ein Pfad P(u, v) verbindet zwei Knoten u und v über eine Folge von Knoten, die adjazent zueinander sind. Bei der Kontraktion einer Kante e = (u, v) wird diese mit ihren beiden Endpunkten aus dem Graph entfernt und einen neuen Knoten w ersetzt. Die Nachbarknoten von w werden auf die Menge der adjazenten Knoten von u und v gesetzt. In Abbildung 2.1 ist das Vorgehen skizziert. Analog kann, wie in Abbil-

Abbildung 2.1: Die Kante, die u und v in G verbindet, wird kontrahiert, sodass sie in H durch den neuen Knoten w ersetzt wird.

dung 2.2 gezeigt, ein Pfad kontrahiert werden, wobei der neu eingefügte Knoten w Kanten zu der Menge der adjazenten Knoten aller Knoten des Pfades besitzt.

Abbildung 2.2: Der Pfad von p_1 bis p_4 wird kontrahiert. Der neue Knoten w in H enthält alle Nachbarn der Pfadknoten in G.

Ein Minor H eines Graphen G bezeichnet einen Graph, der isomorph zu G ist, nachdem eine beliebige Menge an Operationen von Kantenkontraktionen, Kantenentfernungen und Knotenentfernungen durchgeführt wurde. Ein Beispiel dazu findet sich in Abbildung 2.3. Jeder Graph ist sein eigener Minor, genauso ist jeder Teilgraph ein gültiger Minor. Dass H ein Minor von G ist, wird dargestellt durch $H \prec_M G$. Das Branch-Set eines Knotens w aus einem Minor von G bezeichnet die Menge an Knoten, die durch Kontraktionen zu w verschmolzen wurden. In

Abbildung 2.3 besteht beispielsweise das Branch-Set

von g aus $\{a, b, c\}$, zu f in H_2 gehört die Knotenmenge $\{f\}$ in G. Für die Knotenmenge $U \in V$ bezeichnet $G \setminus U$ den Teilgraph, der entsteht, wenn alle Knoten aus U mit ihren inzidenten Kanten aus G entfernt werden. Ein Homöomorph eines Graphen G enthält alle Knoten und Kanten aus G, zusätzlich können aber Kanten als gegenteilige Operation zur Kontraktion unterteilt werden. Für eine Kante e = (u, v) bedeute das, dass e entfernt wird, dafür ein neuer Knoten w und zwei neue Kanten (u, w) und (w, v) eingefügt werden.

Abbildung 2.3: Ein Graph G mit seinen Minoren H_1 und H_2 . Um H_1 zu erhalten, wurde in G die Kante (d, e) und anschließend der Knoten d entfernt. Für H_2 wurden außerdem der Pfad P(a, c) kontrahiert.

Ein Graph wird als planar bezeichnet, wenn er sich so in der Ebene einbetten lässt, dass sich keine Kanten kreuzen. Ein K_5 (s. Abb. 2.4) ist ein spezieller Graph, der aus fünf Knoten besteht, die alle zueinander adjazent sind. Ein $K_{3,3}$ (s. Abb. 2.5) ist ein vollständig bipartiter Graph mit sechs Knoten. Er lässt sich also in zwei Knotenmengen unterteilen (im Folgenden als rote und blaue Menge bezeichnet), sodass alle Knoten der einen Menge zu allen Knoten der anderen Menge benachbart sind. Nach dem Satz von Kuratowski ist ein Graph planar, wenn er kein K_5 - oder $K_{3,3}$ -Homöomorph als Teilgraph beinhaltet. Eine alternative Formulierung von Wagner

Abbildung 2.4: Der Graph K_5 .

sagt aus, dass ein Graph planar ist, wenn er keinen K_5 -Minor oder $K_{3,3}$ -Minor enthält. [2] Als nächstes wird ein $K_{3,3}$ genauer betrachtet. Sei dessen

Als nächstes wird ein $K_{3,3}$ genauer betrachtet. Sei dessen rote Knotenmenge $R = \{a, b, c\}$ und blaue $B = \{x, y, z\}$ Diese sechs Knoten werden in einem $K_{3,3}$ -Homöomorph H als Branch-Ends genannt und zeichnen sich dadurch aus, dass sie als einzige Knoten in H den Grad 3 haben. Ein Branch-Path in H ist ein Pfad, der zwei Branch-Ends verbindet, beispielsweise P(a, x). Ein Branch-Fan bezieht sich immer auf einen der Branch-Ends und wird z.B. für a als F(a) geschrieben. Bezeichnet werden

Abbildung 2.5: Der Graph $K_{3,3}$.

dadurch alle Pfade, die zu einem anderen Branch-End führen - für a also die Pfade P(a, x), P(a, y) und P(a, z).

Der Graph W bezeichnet einen speziellen Graph, der aus acht Knoten besteht. Seine äußeren Kanten bilden einen Kreis, außerdem sind die Knoten jeweils adjazent zu den gegenüberliegenden. Eine Darstellung findet sich links in Abbildung 2.7. Er enthält einen $K_{3,3}$ als Minor (in der Abbildung rechts angedeutet), jedoch keinen K_5 . Als M wird ein Graph bezeichnet, der einen $K_{3,3}$ als Teilgraph enthält, jedoch einen zusätzlichen Knoten und zwei zusätzliche Kanten enthält. Er ist insofern interessant, als dass er, wie in Abbildung ?? zu sehen, neben einem $K_{3,3}$ -Minor auch einen K_5 -Minor enthält.

Abbildung 2.6: Der Graph W, links in seiner üblichen Darstellung, rechts mit angedeutetem $K_{3,3}$ -Minor.

Abbildung 2.7: Der Graph M sowie ein K_5 -Minor aus M.

Als (i)-Separator wird eine Menge S bestehend aus i Knoten in einem zusammenhängenden Graph G bezeichnet, sodass $G \setminus S$ nicht mehr zusammenhängend ist. Ein (i,j)-Separator ist ein i-Separator, sodass G-S aus mindestens j Zusammenhangskomponenten

besteht. In Abbildung 2.8 wird ein (3,3)-Separator im linken Graph gezeigt. Durch einen Separator können augmentierte Komponenten definiert werden: Sind $C \in V$ die i Knoten, die zu einem (i,j)-Separator in G gehören, wird der Graph durch $G \setminus C$ zunächst in jZusammenhangskomponenten zerlegt. Anschließend werden Kopien der Knoten aus C zu jeder Komponente hinzugefügt. Sie bilden dabei in jeder Zusammenhangskomponente eine Clique. Außerdem besitzen sie Kanten zu Knoten in der Zusammenhangskomponente, falls eine Kante e=(c,z) in G existierte, $c\in C$ und z ein Knoten der Zusammenhangskomponente ist. Jeder der resultierenden Graphen ist eine augmentierte Komponente des Urpsrungsgraphen G und wie in Theorem ?? bewiesen wird, evtl. ein Minor zu G. Als gegenteilige Operation kann eine Cliquen-Summe verwendet werden, um zwei Graphen zu verschmelzen. Dazu müssen zwei Graphen H_1 und H_2 als Teilgraph eine gleich große Clique enthalten. H_1 und H_2 können zu einem Graph zusammengefügt werden, indem je ein Knoten von der Clique in H_1 und in H_2 zu einem zusammengefügt werden. Im resultiernden Graph dürfen außerdem Kanten zwischen den Knoten der Clique entfernt werden. Dadurch ist es möglich, einen Graph G in augmentierte Komponente zu zerlegen und anschließend durch eine Cliquen-Summe wieder G zu erhalten. Dieses Vorgehen wird in Abbildung 2.8 gezeigt, dabei wird der linke Graph rechts in augmentierte Komponenten zerlegt bzw. von rechts nach links werden drei Graphen durch eine Cliquen-Summe zusammengefügt.

Abbildung 2.8: Der linke Graph wird in drei augmentierte Komponenten durch den (3,3)-Separator $C = \{c_1, c_2, c_3\}$ geteilt. Alle Z_i und Z_i' stellen Teilgraphen dar, die zur Übersicht zu einem Knoten zusammengefügt wurden. Die drei rechten Graphen können durch die Cliquen-Summe der Cliquen $\{c_1', c_2', c_3'\}$ sowie $\{c_1'', c_2'', c_3''\}$ und $\{c_1''', c_2''', c_3'''\}$ den rechten Graph erzeugen. Während der Cliquen-Summen Operation dürfen die Kanten, die die Knoten in den Cliquen verbinden, gelöscht werden.

Algorithmus von Kezdy und McGuinness

Da die Arbeit auf dem sequenziellen Algorithmus von Kezdy und McGuinness, den sie in [1] vorstellen, beruht, wird er im Folgenden erklärt. Als Eingabe wird ein ungerichteter Graph ohne Mehrfachkanten erwartet, ausgegeben wird, ob ein K_5 -Minor enthalten ist oder nicht. Für den Fall, dass einer gefunden wurde, kann zusätzlich ausgegeben werden, welche Knoten den Minor formen. Die Laufzeit liegt in $\mathcal{O}(n^2)$.

Planaritätstests können bereits in linearer Laufzeit entscheiden, ob ein Graph einen K_5 - oder $K_{3,3}$ -Minor enthält. Es muss folglich der Fall behandelt werden, in dem der Test stoppt, weil er einen $K_{3,3}$ -Minor gefunden hat. Denn es kann nicht garantiert werden, ob zusätzlich ein K_5 -Minor enthalten ist. Als Lösung testet der Algoritmus von Kezdy und McGuinness, ob drei der Knoten eines gefundenen $K_{3,3}$ -Minor einen (3,3)-Separator bilden und teilt den Graph in augmentierte Komponenten auf. Anschließend kann der Planaritätstest auf die einzelnen Komponenten rekursiv angewendet werden.

3.1 Behandlung von $K_{3,3}$ -Minoren

Um das zentrale Theorem aus [1], welches den $K_{3,3}$ -Minor untersucht, zu erklären, wird zunächst die Gültigkeit augmentierter Komponenten behandelt:

3.1.1 Theorem. Für $k \geq 3$: Sei G ein k-zusammenhängender Graph und C ein k-Separator in G. Alle durch C definierten augmentierten Komponenten sind Minoren von G genau dann, wenn es entweder mindestens k Komponenten sind oder mindestens zwei der Komponenten jeweils aus mehr als einem Knoten bestehen.

Beweis. Seien $c_1, c_2, ..., c_k$ die Knoten von C und $Z = \{Z_1, Z_2, ..., Z_k\}$ beziehungsweise $Z = \{Z_1, Z_2, ..., Z_{k-1}\}$ die Zusammenhangskomponenten, die durch $G \setminus C$ entstehen. Die zugehörigen augmentierten Komponenten seien $A_1, A_2, ..., A_k$ bzw. $A_1, A_2, ..., A_{k-1}$. Be-

trachtet wird eine beliebige dieser augmentierten Komponenten A_i . Der Definition der augmentierten Komponenten nach finden sich bereits alle Knoten von A_i in G wieder. Weiterhin enthält G mindestens alle Kanten in $A_i \setminus C$ sowie die verbindenden Kanten zwischen A_i und C. Jedoch bilden in A_i die Knoten von C eine Clique, es existieren also ggf. Kanten zwichen den Knoten von C in A_i , die es nicht in G gibt Es bleibt zu zeigen, dass die Kanten, die für diese Clique in A_i nötig sind, durch Kantenkontraktionen in G erzeugt werden können. Dadurch, dass G k-zusammenhängend ist, besitzt jede Zusammenhangskomponente von $G \setminus C$ Kanten zu $c_1, c_2, ..., c_k$. Würde eine Kante zu einem Knoten c_j mit $1 \le j \le k$ fehlen, wäre ein k-1-Separator bestehend aus $C \setminus c_j$ möglich, was im Widerspruch zu dem k-Zusammenhang stehen würde. Das Theorem unterscheided nun zwei Fälle, um die fehlenden Kanten bereitstellen zu können:

- 1. Es existieren k Zusammenhangskomponenten. Wird A_i betrachtet, kommen die Knoten in $Z \setminus Z_i$ in Frage, um durch Kantenkontraktionen die fehlenden Kanten für die Clique von C in A_i zu erzeugen. Um die Kanten von C in A_i in G zu erzeugen, kann zunächst der Pfad, der c_1 mit Z_1 verbindet, kontrahiert werden. Anschließend ist c_1 mit allen Knoten in C verbunden. Dies kann analog für alle Knoten in C und den entsprechenden Zusammenhangskomponenten durchgeführt werden außer für c_i , da A_i der gesuchte Minor ist. Allerdings ist c_i aufgrund des k-Zusammenhangs mit allen anderen Zusammenhangskomponenten verbunden und nach den beschriebenen Kontraktionen bildet C eine Clique.
- 2. Es existieren k-1 Komponenten, aber mindestens zwei bestehen aus mehr als einem Knoten. Analog zum vorherigen Fall können die Pfade zwischen den Knoten von C und den Zusammenhangskomponenten A kontrahiert werden. Es fehlt jedoch ein Pfad, da eine Zusammenhangskomponente weniger vorliegt. Es gibt mindestens eine Zusammenhangskomponente aus $Z \setminus Z_i$, die aus zwei oder mehr Knoten besteht. Da der Graph k-zusammenhängend ist, sind mindestens zwei dieser Knoten mit allen in C verbunden, sodass sie durch Kontraktionen mit zwei unterschiedlichen Knoten aus C genutzt werden könnenm um die gesuchte Clique zu erzeugen.

Abbildung 3.1: Gegenbeispiel zu Theorem 3.1.1 für k = 3 mit $C = \{a, d, f\}$ in W, wodurch die k - 1 Komponenten A_1 und A_2 entstehen, von denen nur eine aus mehr als einem Knoten besteht. Die Komponente A_1 ist zwar ein gültiger Minor, da sie etwa durch die Kontraktionen der Kanten (a,b), (a,h), (f,g) und (c,d) aus W erzeugt werden kann. A_2 dagegen kann nicht durch Kontraktionen aus W erzeugt werden - wird beispielsweise die Kante (d,e) in W kontrahiert, fehlt die Kante (a,f) in A_2 . Analog kann e mit keiner seiner inzidenten Kanten kontrahiert werden, um einen zu A_2 isomorphen Graph zu erhalten.

Als nächstes stellen Kezdy und McGuinness fest, dass im Fall eines (3,3)-Separators der Graph in augmentierte Komponenten zerlegt werden kann:

3.1.2 Theorem. Sei G ein 3-zusammenhängender Graph mit einem (3,3)-Separator C. G hat einen K_5 -Minor genau dann, wenn eine der durch C definierten augmentierten Komponenten einen K_5 -Minor enthält.

Beweis. Zunächst kann festgestellt werden, dass falls eine der augmentierten Komponenten einen K_5 -Minor enthält, dieser laut Theorem 3.1.1 auch ein Minor von G ist. Es bleibt zu zeigen, dass sich ein K_5 -Minor nicht auf zwei augmentierte Komponenten er-

streckt, sondern sich ausschließlich in einer befindet. Angenommen es gilt $K_5 \prec_M G$ und zwei der Branch-Sets, die den K_5 -Minor bilden, befinden sich jeweils vollständig in unterschiedlichen Zusammenhangskomponenten. In diesem Fall wäre C ein 3-Separator in dem gefundenen Minor, was im Widerspruch zu dem 4-Zusammenhang des K_5 steht.

Das zentrale Theorem ist darauf zurückzuführen, dass jeder Graph ohne K_5 -Minor durch Cliquen-Summen von Teilgraphen, die planar oder isomorph zu W sind, gebildet werden kann. [4]

- **3.1.3 Theorem.** Sei G ein 3-zusammenhängender Graph, der ein $K_{3,3}$ -Homöomorph S enthält, dessen Branch-Ends in die rote Knotenmenge $R = \{a, b, c\}$ und blaue $B = \{x, y, z\}$ unterteilt sind. Eine der folgenden Bedingungen trifft auf G zu:
 - 1. G enthält einen K₅-Minor.
 - 2. G ist isomorph zu W.
 - 3. $\{a,b,c\}$ bilden einen 3-Separator, sodass $\{x,y,z\}$ in separaten Komponenten liegen.
 - 4. $\{x, y, z\}$ bilden einen 3-Separator, sodass $\{a, b, c\}$ in separaten Komponenten liegen.

Durch die Theoreme 3.1.1 und 3.1.2 wurde gezeigt, dass der Graph in den Fällen 3 und 4 in augmentierte Komponenten zerlegt und darauf der Planaritätstest ausgeführt werden kann. Anschließend stellen die Autoren einige Lemmata auf, mit denen untersucht wird, ob S einen K_5 -Minor enthält - also ob Bedingung 1 zutrifft.

3.1.4 Lemma. Sei G ein 3-zusammenhängender Graph und S ein $K_{3,3}$ -Homöomorph in G. Enthält G drei Pfade von einem Knoten $w \in G \setminus S$ zu drei Knoten in S, die nicht alle im selben Branch-Fan liegen, enthält G einen K_5 -Minor.

Beweis. Seien t, u, v die drei Endpunkte der Pfade in S. Mindestens einer von ihnen ist ein innerer Knoten, da sonst alle im selben Branch-Fan liegen würden. Sei o. B. d. A. t ein solcher innerer Knoten auf dem Pfad P(a, x). Folglich können u und v nicht beide in F(a) oder F(x) liegen, sonst lägen alle drei im gleichen Branch-Fan.

- 1. u und v sind nicht im gleichen Branch-Fan wie t. Dann müssen u und v ebenfalls innere Knoten sein, im Beispiel auf den Pfaden P(y,b) bzw. P(z,c). Es kann ein M-Minor durch folgende Kontraktionen erzeugt werden: u mit einem der roten und v mit einem der blauen Knoten (analog u mit blau und v mit rot) sowie P(w,t).
- 2. u oder v liegen auf P(a,x). Sei o. B. d. A. $u \in P(a,x)$. Da t ebenfalls in diesem Pfad liegt, gilt $\{t,u\} \in F(a) \cup F(x)$, sodass v nicht in diesen beiden Branch-Fans liegen kann. Es können t und v getauscht werden, sodass eine Reduktion auf Fall 1 erreicht wird.

3. Entweder u oder v liegen im gleichen Branch-Fan wie t. Sei o.B.d.A. $u \in F(x) \setminus P(a,x)$, im Beispiel auf dem Pfad P(b,x). Es gilt $\{t,u\} \in F(x)$, weshalb v in einem anderen Branch Fan sein muss. Da alle roten Knoten in F(x) liegen, gilt konkreter $v \in (F(y) \cup F(z)) \setminus \{a,b,c\}$ Es können P(b,u) kontrahiert werden sowie je nach Fall entweder P(v,y) oder P(v,z). Wird P(w,t) ebenfalls kontrahiert, entsteht erneut ein M-Minor.

 ${\bf Abbildung~3.2:~Beispiel~zum~ersten~Fall~von~Lemma~3.1.4.}$

Abbildung 3.3: Beispiel zum zweiten Fall von Lemma 3.1.4.

Abbildung 3.4: Beispiel zum dritten Fall von Lemma 3.1.4.

3.1.5 Lemma. Sei G ein 3-zusammenhängender Graph und S ein K_{3,3}-Homöomorph in G. Betrachtet wird ein Pfad außerhalb von S, der zwei Knoten in einem roten Branch-Fan verbindet, welche jedoch nicht beide auf dem gleichen Pfad in S liegen. Analog dazu wird ein Pfad außerhalb von S gesucht, der zwei Knoten in einem blauen Branch-Fan verbindet, ohne dass diese beide auf dem gleichen Pfad in S liegen. Existieren diese beiden Pfade in G, dann enthält G einen K₅-Minor.

Beweis. Sei P_1 der Pfad, der zwei Knoten in einem roten Branch-Fan verbindet und P_2 der, der zwei in einem blauen Branch-Fan verbindet. O. B. d. A. hat P_1 Endpunkte in F(a) und P_2 in F(x). Da laut Bedingung die Endpunkte nicht in einem einzelnen Pfad von S liegen, kann a kein Endpunkt von P_1 und x kein Endpunkt von P_2 sein. Es ergeben sich zwei Fälle:

- 1. Die beiden Pfade haben keine gemeinsamen Knoten. Da P_1 beide Endpunkte in F(a) hat, liegen diese beiden Endpunkte in zwei unterschiedlichen blauen Branch-Fans. Entsprechend sind die Endpunkte von P_2 in unterschiedlichen roten Branch-Fans. Werden die Endpunkte von P_1 je mit den beiden blauen und die von P_2 mit den beiden roten Knoten von S kontrahiert, entsteht ein K_5 -Minor. Abbildung 3.5 skizziert den Fall beispielhaft.
- 2. Die beiden Pfade haben einen gemeinsamen Knoten w. Liegt dieser gemeinsame Knoten außerhalb von S, kann Lemma 3.1.4 angewendet werden, da die Endpunkte der Pfade nicht alle im gleichen Branch-Fan liegen. Liegt w innerhalb von S, ist er ein Endpunkt von P_1 und P_2 und muss auf dem Pfad P(a,x) liegen, da dieser der einzige gemeinsame Pfad ist, siehe links in 3.6. Sei $P_1 = P(w,u)$ und $P_2 = P(w,v)$. Da u nicht in F(x) liegt und v nicht in F(a), gibt es einen Pfad von u zu einem

blauen Knoten und von v zu einem roten Knoten, die sich nicht kreuzen und daher kontrahiert werden können. Durch die Kontraktion dieser beiden Pfade entsteht, wie in Abbildung 3.6 rechts zu sehen, ein M-Minor.

Abbildung 3.5: Beispiel zum ersten Fall von Lemma 3.1.5. Links ist S mit zwei zusätzlichen Pfaden aus G abgebildet. P_1 hat beide Endpunkte in F(a) sowie den blauen Branch-Fans F(x) und F(y), mit denen die Endpunkte kontrahiert werden. P_2 hat seine Endpunkte in den roten Branch-Fans F(b) und F(c), mit denen sie kontrahiert werden. In der Mitte ist der dadurch entstehende Minor abgebildet und rechts wird davon ein K_5 -Minor gezeigt.

Abbildung 3.6: Beispiel zum zweiten Fall von Lemma 3.1.5. Rechts ist der enthaltene M-Minor abgebildet.

3.1.6 Lemma. Sei G ein 3-zusammenhängender Graph und S ein $K_{3,3}$ -Homöomorph in G. Betrachtet wird ein Pfad außerhalb von S, der zwei innere Knoten paralleler Pfade in S verbindet sowie ein Pfad außerhalb von S, dessen Endpunkte nicht beide im gleichen Pfad von S liegen. Bestehen die Endpunkte der beiden Pfade aus mindestens drei unterschiedlichen Knoten in S, enthält G einen K_5 -Minor.

3.1.7 Lemma. Sei G ein 3-zusammenhängender Graph und S ein $K_{3,3}$ -Homöomorph in G mit den roten Knoten $R = \{a, b, c\}$ und den blauen Knoten $B = \{x, y, z\}$. Bilden weder R, noch B einen (3,3)-Separator, enthält G einen K_5 -Minor.

Beweis. Falls R und B keinen (3,3)-Separator bilden, ist sowohl der Graph $G \setminus R$ als auch $G \setminus B$ zusammenhängend. Sei P_1 ein Pfad, der zwei blaue Branch-Fans in $G \setminus R$ und P_2 einer, der zwei rote Branch-Fans in $G \setminus B$ verbindet. Beide liegen außerhalb von S. Die Endpunkte von P_1 seien u_1 und v_1 , die von P_2 seien u_2 und v_2 . u_1 und v_1 besitzen jeweils einen Pfad in S zu einem der roten Knoten. Foglich gibt es einen dritten roten Knoten, der keinen solchen Pfad besitzt - u_2 wird so gewählt, dass er in dem Branch-Fan dieses Knotens liegt. Demnach sind u_1 , v_1 und u_2 unterschiedliche Knoten. Anschließend kann je nach vorliegendem Fall die Aussage auf eines der vorherigen Lemmata reduziert werden:

- 1. P_1 oder P_2 verbindet zwei parallele Pfade in S. In dem Fall kann Lemma 3.1.6 angewendet werden und G enthält einen K_5 -Minor.
- 2. Die Endpunkte von P_1 liegen in einem einzelnen roten Branch-Fan analog liegen die von P_2 in einem blauen. Nach Lemma 3.1.5 enthält G einen K_5 -Minor.

3.1.8 Lemma. Sei G ein 3-zusammenhängender Graph mit einem W-Homöomorph. Ist G nicht isomorph zu W, enthält G einen K₅-Minor.

Als nächstes folgt der Beweis zu 3.1.3.

Beweis. Gezeigt wird, dass falls S keinen (3,3)-Separator bildet, G entweder einen K_5 -Minor enthält oder isomorph zu W ist. Falls kein K_5 -Minor enthalten ist, gilt nach Lemma 3.1.7, dass $G \setminus R$ oder $G \setminus B$ nicht zusammenhängend ist. Demnach ist B ein 3-Separator, der den Graph teilt, aber die Knoten aus R liegen nicht alle in unterschiedlichen Zusammenhangskomponenten. Deshalb muss es außerhalb von S mindestens einen Pfad P_1 geben, der zwei der roten Knoten in G-B verbindet. Analog gibt es einen Pfad P_2 , der zwei blaue Knoten in G-R verbindet. Da P_1 zwei rote Branch-Fans verbindet, liegen seine Endpunkte in zwei verschiedenen Pfaden von S. Gleiches gilt für die Endpunkte von P_2 . Liegen die Endpunkte von P_1 beide in einem einzelnen blauen Branch-Fan und die von P_2 in einem einzelnen roten, dann enthält G laut Lemma 3.1.5 einen K_5 -Minor. Liegen die Endpunkte von P_1 in parallelen Pfaden von S, enthält G laut Lemma 3.1.6 einen K_5 -Minor, da die Endpunkte von P_2 nicht auf einem Pfad von S liegen (analog falls P_2 auf parallelen Pfaden liegt). Übrig bleibt die Möglichkeit, dass die Endpunkte der beiden Pfade paarweise identisch sind, siehe rechts in Abbildung 2.7. Dann ist G ein Homöomorph zu W und enthält laut Lemma 3.1.3 keinen K_5 -Minor bei Isomorphie zu W.

3.2 Sequenzieller Algorithmus zum Finden von K_5 -Minoren

Da die Theoreme größtenteils auf 3-zusammenhängenden Graphen arbeiten, muss der Eingabegraph ggf. zunächst angepasst werden, bevor der Planaritätstests angewendet werden kann. Ist der Graph 1-zusammenhängend, gibt es einen Knoten, der einen (1, j)-Separator für j > 2 bildet. Genauso müssen zwei Knoten existieren, die einen (2, j)-Separator bilden, falls der Graph 2-zusammenhängend ist. In beiden Fällen kann der Separator benutzt werden, um den Graph in j augmentierte Komponenten zu zerlegen. Anschließend kann der 3-Zusammenhang der einzelnen Komponenten rekursiv geprüft werden. Sind die Komponenten alle 3-zusammenhängend, kann auf jede ein Planaritätstest angewendet werden. Kezdy und McGuinness verwenden den Williamson-Algoritmus, [5] welcher in Linearzeit für einen Graph einen K_5 - bzw. $K_{3,3}$ -Homöomorph ausgibt oder feststellt, dass der Graph planar ist. In der Implementierung wird stattdessen der etwas neuere Planaritätstest von Boyer und Myrvold [3] verwendet, der bereits in OGDFexistiert. Ergibt der Planaritätstest, dass eine Komponente planar ist, wird sie nicht weiter beachtet. Enthält sie einen K_5 -Minor, kann der Algorithmus stoppen und diesen ausgeben. Wird ein $K_{3,3}$ -Minor gefunden, wird geprüft, welcher der vier Fälle aus Theorem 3.1.3 zutrifft. Bei Isomorphie zu W wird die Komponente nicht weiter beachtet. Ist der $K_{3,3}$ -Minor ein (3,3)-Separator in der untersuchten Komponente, kann sie in weitere augmentierte Komponenten zerlegt und der Algorithmus rekursiv darauf angewendet werden. Andernfalls müssen genügend Pfade in der Komponente existieren, sodass der $K_{3,3}$ -Minor auch einen K_5 -Minor bildet und der Algorithmus ihn ausgeben und anhalten kann. Diese Schritte werden solange wiederholt, bis alle augmentierten Komponenten planar, isomorph zu W sind oder ein K_5 -Minor gefunden wurde.

```
1
   find_k5(g):
     if u = find_1_separator(g) != null:
2
       for component in augmented_components(g, (u)):
3
          if k5 = find_k5(a) != null:
4
            return k5
5
       return null
6
7
     if (u, v) = find_2_separator(g) != null:
       for component in augmented_components(g, (u, v)):
8
9
          if k5 = find_k5(a) != null:
            return k5
10
11
       return null
12
     homeomorph = boyer_myrvold(g)
13
14
     if homeomorph.is_planar():
       return null
15
16
     if homeomorph.is_k5:
17
       return homeomorph
     if homeomorph.is_k33:
18
       if is_isomorphic_to_w(homeomorph):
19
20
          return null
21
       ((a, b, c), (x, y, z)) = homeomorph
22
       if component_count(g - (a, b, c)) >= 3:
23
24
          for component in augmented_components(g, (a, b, c)):
25
            if k5 = find_k5(a) != null:
26
              return k5
27
          return null
28
       if component_count(g - (x, y, z)) >= 3:
29
          for component in augmented_components(g, (x, y, z)):
30
            if k5 = find_k5(a) != null:
              return k5
31
32
         return null
33
       return construct_k5_from_k33(g, homeomorph)
34
```

Listing 3.1: Algorithmus von Kezdy und McGuinness als Pseudo Code.

Wagner Struktur

Implementierung

Experimentelle Analyse

Zusammenfassung und Ausblick

Anhang A

Weitere Informationen

Abbildungsverzeichnis

2.1	Die Kante, die u und v in G verbindet, wird kontrahiert, sodass sie in H durch den neuen Knoten w ersetzt wird	3
2.2	Der Pfad von p_1 bis p_4 wird kontrahiert. Der neue Knoten w in H enthält	
	alle Nachbarn der Pfadknoten in G	3
2.3	Ein Graph G mit seinen Minoren H_1 und H_2 . Um H_1 zu erhalten, wurde in G die Kante (d,e) und anschließend der Knoten d entfernt. Für H_2 wurden außerdem der Pfad $P(a,c)$ kontrahiert	4
2.4	Der Graph K_5	4
2.5	Der Graph $K_{3,3}$	4
2.6	Der Graph W , links in seiner üblichen Darstellung, rechts mit angedeutetem	
	$K_{3,3}$ -Minor	5
2.7	Der Graph M sowie ein K_5 -Minor aus M	5
2.8	Der linke Graph wird in drei augmentierte Komponenten durch den $(3,3)$ -	
	Separator $C = \{c_1, c_2, c_3\}$ geteilt. Alle Z_i und Z_i' stellen Teilgraphen dar,	
	die zur Übersicht zu einem Knoten zusammengefügt wurden. Die drei rech-	
	ten Graphen können durch die Cliquen-Summe der Cliquen $\{c_1',c_2',c_3'\}$ sowie $\{c_1'',c_2'',c_3''\}$ und $\{c_1''',c_2''',c_3'''\}$ den rechten Graph erzeugen. Während der	
	Cliquen-Summen Operation dürfen die Kanten, die die Knoten in den Cli-	
	quen verbinden, gelöscht werden	7
3.1	Gegenbeispiel zu Theorem 3.1.1 für $k=3$ mit $C=\{a,d,f\}$ in $W,$ wo-	
	durch die $k-1$ Komponenten A_1 und A_2 entstehen, von denen nur eine aus	
	mehr als einem Knoten besteht. Die Komponente ${\cal A}_1$ ist zwar ein gültiger	
	Minor, da sie etwa durch die Kontraktionen der Kanten $(a,b),(a,h),(f,g)$	
	und (c,d) aus W erzeugt werden kann. A_2 dagegen kann nicht durch Kon-	
	traktionen aus W erzeugt werden - wird beispielsweise die Kante (d,e) in	
	W kontrahiert, fehlt die Kante (a,f) in A_2 . Analog kann e mit keiner seiner	
	inzidenten Kanten kontrahiert werden, um einen zu ${\cal A}_2$ isomorphen Graph	
	zu erhalten	11
3.2	Beispiel zum ersten Fall von Lemma 3.1.4	13

3.3	Beispiel zum zweiten Fall von Lemma 3.1.4	13
3.4	Beispiel zum dritten Fall von Lemma 3.1.4	14
3.5	Beispiel zum ersten Fall von Lemma 3.1.5. Links ist S mit zwei zusätzlichen	
	Pfaden aus G abgebildet. P_1 hat beide Endpunkte in $F(a)$ sowie den blauen	
	Branch-Fans $F(x)$ und $F(y)$, mit denen die Endpunkte kontrahiert werden.	
	P_2 hat seine Endpunkte in den roten Branch-Fans $F(b)$ und $F(c)$, mit denen	
	sie kontrahiert werden. In der Mitte ist der dadurch entstehende Minor	
	abgebildet und rechts wird davon ein K_5 -Minor gezeigt	15
3.6	Beispiel zum zweiten Fall von Lemma 3.1.5. Rechts ist der enthaltene M -	
	Minor abgebildet	15

Algorithmenverzeichnis

${\bf Symbol verzeichnis}$

Literaturverzeichnis

- [1] ANDRÉ E. KÉZDY, PATRICK MCGUINNESS: Sequential and Parallel Algorithms to Find a K₅ Minor. In: Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 27-29 January 1992, Orlando, Florida, USA., Seiten 345-356, 1992.
- [2] DIESTEL, REINHARD: Graph Theory, 4th Edition, Band 173 der Reihe Graduate texts in mathematics. Springer, 2012.
- [3] JOHN M. BOYER, WENDY J. MYRVOLD: On the Cutting Edge: Simplified O(n) Planarity by Edge Addition. J. Graph Algorithms Appl., 8(3):241–273, 2004.
- [4] WAGNER, KLAUS: Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen, 114:570–590, 1937.
- [5] WILLIAMSON, S. G.: Depth-First Search and Kuratowski Subgraphs. J. ACM, 31(4):681–693, 1984.

Eidesstattliche Versicherung

Sauer, Julian	197859
Name, Vorname	Matrnr.
Ich versichere hiermit an Eides statt, dass i	ich die vorliegende Masterarbeit mit dem Titel
Effiziente Berechnung von	on K_5 -Minoren in Graphen
die angegebenen Quellen und Hilfsmittel b	Hilfe erbracht habe. Ich habe keine anderen als benutzt sowie wörtliche und sinngemäße Zitate ner oder ähnlicher Form noch keiner Prüfungs-
Dortmund, den 3. September 2019	
Ort, Datum	Unterschrift
keit kann mit einer Geldbuße von bis zu 50. tungsbehörde für die Verfolgung und Ahne ler/ die Kanzlerin der Technischen Universi	handelt ordnungswidrig. Die Ordnungswidrig- 000,00 € geahndet werden. Zuständige Verwal- dung von Ordnungswidrigkeiten ist der Kanz- ität Dortmund. Im Falle eines mehrfachen oder suches kann der Prüfling zudem exmatrikuliert G-)
Die Abgabe einer falschen Versicherung ar Jahren oder mit Geldstrafe bestraft.	n Eides statt wird mit Freiheitsstrafe bis zu 3
	d gfls. elektronische Vergleichswerkzeuge (wie ung von Ordnungswidrigkeiten in Prüfungsver-
Die oben stehende Belehrung habe ich zur	Kenntnis genommen:
Dortmund, den 3. September 2019	
Ort, Datum	Unterschrift