Laboratórna úloha č. 7

Meranie koeficientu dĺžkovej rozťažnosti

Úloha: Určiť koeficient dĺžkovej rozťažnosti Edelmanovým dilatometrom.

Teoretický úvod

Podobne ako plyny menia svoj objem s teplotou pri stálom tlaku, aj tuhé telesá menia s teplotou svoj objem, resp. dĺžkové rozmery. Experimenty ukazujú, že dĺžkové rozmery tuhých látok v pomerne širokom intervale teplôt sa menia s teplotou lineárne, podobne ako objem ideálneho plynu. To znamená, že napríklad dĺžka ℓ tyče, ako funkcia termodynamickej teploty T, sa vyjadruje vzťahom

$$\ell = \ell_0 + k(T - T_0) \tag{1}$$

v ktorom ℓ_0 predstavuje dĺžku tyče pri teplote $T=T_0$. Ak za T_0 zvolíme teplotu topenia ľadu pri normálnom tlaku, potom $t=T-T_0$ predstavuje Celziovu teplotu. Vtedy vzťah (1) môžeme prepísať do tvaru

$$\ell = \ell_0 \left(1 + \frac{k}{\ell_0} t \right) = \ell_0 \left(1 + \alpha t \right) \tag{2}$$

v ktorom $\alpha = k/l_0$ predstavuje *koeficient teplotnej rozťažnosti*. Zo vzťahu vyplýva, že koeficient môžeme definovať aj nasledovne:

$$\alpha = \frac{1}{\ell_0} \frac{\mathrm{d}\,\ell}{\mathrm{d}\,t} \tag{3}$$

čo môžeme prečítať ako prírastok dĺžky pri vzraste teploty o jeden stupeň, prepočítaný na jednotku dĺžky, teda v SI na jeden meter.

Pri väčších rozdieloch teploty však zisťujeme, že dĺžkové rozmery telies závisia od teploty zložitejším spôsobom. Potom sa experimentálnymi závislosťami prekladajú polynómy vyšších stupňov, napríklad

$$\ell = \ell_0 \left(1 + at + bt^2 \right)$$

Koeficient dĺžkovej rozťažnosti vtedy závisí od teploty:

$$\alpha = \frac{1}{\ell_0} \frac{\mathrm{d}\,\ell}{\mathrm{d}\,t} = a + 2bt$$

Metóda merania

Na meranie dĺžkovej rozťažnosti tuhých látok sa používa Edelmanov dilatometer. Schéma takéhoto zariadenia je na obr. 1. Meraná tyč je umiestnená na dvoch valčekoch v olejovom kúpeli. O konce tyče sa opierajú dve rovnoramenné páky P_1 a P_2 , ktorých osi sú upevnené na vodorovnom ráme R. Polohu páky P_1 (t.j. jedného konca tyče) nastavíme skrutkou S. Poloha páky P_2 (t.j. poloha druhého konca tyče) sa prenáša na dotykový mikrometer M. Na mikrometri priamo odčítame zmenu dĺžky tyče pri zvýšení jej teploty.

Prístroje a pomôcky

Edelmanov dilatometer, meraná tyč, dva digitálne teplomery, prívod s vypínačom na vyhrievanie špirály dilatometra.

Postup pri meraní

Na dotykovom mikrometri M pomocou skrutky S nastavíme nulovú hodnotu. Na teplomeroch, ktoré sú ponorené v olejovom kúpeli pri obidvoch koncoch meranej tyče, odčítame začiatočné teploty. Potom pripojíme vyhrievacie zariadenie na sieť a teplotu kúpeľa postupne zvyšujeme. Aby sa teplota tyče zhodovala s údajmi na teplomeroch, vždy keď teplota stúpne o 3 – 4 stupne, vypneme prívod prúdu a po ustálení (minimálne 1 minúta) odčítame údaje na teplomeroch a súčasne údaj na mikrometri, predstavujúci predĺženie tyče. Za teplotu tyče považujeme aritmetický priemer údajov z dvoch teplomerov. Údaje zapisujeme do tabuľky. Teplota olejového kúpeľa nemá prekročiť 75°C.

Namerané hodnoty vynesieme do grafu ako závislosť predĺženia tyče od teploty. Vynesenými bodmi preložíme priamku a z jej smernice určíme koeficient rozťažnosti.

Otázky

- 1. Ak chceme správne určiť koeficient rozťažnosti, musíme vynášať na graf celú dĺžku tyče, alebo stačí vynášať len jej predĺženie?
- 2. Ako určíme zo smernice vynesenej priamky koeficient rozťažnosti?
- 3. Je znalosť pôvodnej dĺžky tyče potrebná pri správnom určení koeficienta rozťažnosti?
- 4. Zostali by predĺženia tyče rovnaké, keby sa dĺžka tyče zdvojnásobila?
- 5. Predlžovala by sa tyč s rastúcou teplotu aj v stave bez tiaže?

Protokol laboratórnej úlohy č. 7

Meranie koeficientu dĺžkovej rozťažnosti
Opis metódy merania
Vzťahy ktoré sa používajú pri meraní
Schéma
Prístroje a pomôcky

Záznam merania a výsledky

Tabuľka 1

$\ell_0 =$					
i	<i>t</i> ₁ (°C)	<i>t</i> ₂ (°C)	$(t_1 + t_2)/2$	$\Delta\ell$ (mm)	
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Pôvodná dĺžka tyče $\ell_{\rm o} =$

Smernica priamky k =

Koeficient determinovanosti $\mathcal{R}^2 =$

Koeficient dĺžkovej rozťažnosti $\alpha =$

Prílohy

• Graf závislosti predĺženia tyče od teploty

Slovné zhodnotenie výsledkov:

Dátum odovzdania protokolu:

Podpis študenta:

Podpis učiteľa: