1. Operacje na macierzach

1 Zadania

W segmencie głównym programu są zdefiniowane tablice tablic (tablice "dwuwymiarowe") A[SIZE] [SIZE], B[SIZE] [SIZE], C[SIZE] [SIZE], do których dane są wczytywane w main(). Funkcje, których definicje należy uzupełnić, wykonują obliczenia korzystając z tych tablic. Rozmiarów tych tablic nie należy zmieniać.

1.1 Mnożenie macierzy

Szablon programu należy uzupełnić o definicję funkcji matrix_product(), która oblicza iloczyn macierzy A i B i zapisuje go w macierzy AB.

• Wejście

1 liczba wierszy i liczba kolumn macierzy A, liczba kolumn macierzy B elementy macierzy A elementy macierzy B

• Wyjście elementy macierzy AB

• Przykład:

Wejście:

```
1
2 3 2
1 2 3
10 20 30
11 23
1 1.5
-2 0
Wyjście:
```

7.0000 26.0000 70.0000 260.0000

1.2 Triangularyzacja macierzy i obliczanie wyznacznika - wersja uproszczona (bez zamiany wierszy)

Szablon programu należy uzupełnić o definicję funkcji gauss_simplified(), która przekształca macierz kwadratową A do postaci trójkątnej górnej metodą Gaussa i zwraca wartość wyznacznika. W przypadku, gdy element na przekątnej głównej jest równy zeru, triangularyzacja nie jest kończona, a wyznacznik = NAN.

Funkcja może zmienić wartości elementów tablicy A.

• Wejście

2

liczba wierszy/kolumn macierzy ${\tt A}$ elementy macierzy ${\tt A}$

• Wyjście

wyznacznik macierzy

• Przykład:

Wejście:

2

4

1 1 0 3

2 1 -1 1

3 -1 -1 2

-1 2 3 -1

Wyjście:

39.0000

1.3 Rozwiązywanie układu równań liniowych metodą Gaussa - wersja z rozszerzaną macierzą współczynników

Szablon programu należy uzupełnić o definicję funkcji gauss(), która przekształca macierz kwadratową A do postaci trójkątnej górnej metodą Gaussa i zwraca wartość wyznacznika. Wiersze macierzy są zamieniane tak, aby wartość bezwzględna elementu głównego była największa. Zamiana wierszy nie jest realizowana poprzez przepisanie wierszy w tablicy, lecz z zastosowaniem wektora permutacji indeksów wierszy. W przypadku, gdy po zamianie wierszy element na przekątnej głównej jest mniejszy od eps, triangularyzacja nie jest kończona, a wyznacznik przyjmuje wartość 0.

Jeżeli argumenty funkcji ${\tt b}$ i ${\tt x}$ oraz wyznacznik nie są zerowe, funkcja rozwiązuje układ równań i rozwiązanie zapisuje w tablicy ${\tt x}$.

Funkcja może zmienić wartości elementów tablicy A.

Poprawność funkcji można sprawdzić korzystając z funkcji matrix_vec_product().

• Wejście

3 liczba wierszy/kolumn macierzy ${\tt A}$ elementy macierzy ${\tt A}$ elementy wektora ${\tt b}$

• Wyjście

wyznacznik macierzy elementy wektora \mathbf{x}

• Przykład:

Wejście:

```
3
4
1 -1 2 -1
2 -2 3 -3
1 1 1 0
1 -1 4 3
-8 -20 -2 4
Wyjście:
```

4.0000 -7.0000 3.0000 2.0000 2.0000

1.4 Odwracanie macierzy kwadratowej metodą Gaussa - Jordana

Szablon programu należy uzupełnić o definicję funkcji matrix_inv(), która wyznacza macierz B - odwrotną do nieosobliwej macierzy A. Należy zastosować metodę Gaussa - Jordana z rozszerzaniem macierzy A o macierz jednostkową. Wiersze macierzy rozszerzonej są zamieniane analogicznie jak w zadaniu 3. Funkcja zwraca wyznacznik macierzy A. W przypadku, gdy po zamianie wierszy element na przekątnej głównej jest mniejszy od eps, to algorytm odwracania nie jest kończony, a wyznacznik przyjmuje wartość 0.

Funkcja może zmienić wartości elementów tablicy A.

Poprawność funkcji można sprawdzić korzystając z funkcji matrix_product.

• Wejście

4 liczba wierszy i macierzy ${\tt A}$ elementy macierzy ${\tt A}$

• Wyjście

wyznacznik macierzy elementy macierzy odwrotnej B

• Przykład:

Wejście:

Wyjście:

```
-9.000
-0.2222 0.5556 -0.1111
0.4444 -0.1111 0.2222
-0.3333 0.3333 0.3333
```