avito.tech

Москва — 2022

Как мы в Авито увеличили эффективность привлечения за счет предиктивной классификации

Ирина Гутман

Старший аналитик, маркетинг

Ирина Гутман

Старший аналитик, маркетинг

Аналитик маркетинга в Авито лидирую направление оценки привлечения B2B продавцов.

- Выстроила фреймворк оценки для
 В2В перформанс маркетинга в Авито практически с нуля.
- Оцениваю инициативы маркетинга, помогаю искать узкие места воронки
- Менторю студентов Академии Аналитиков Авито.

О чем сегодня поговорим

01.

Оптимизация кампаний: как работает 02.

Построение предиктивной модели и классификация

03.

Тестирование модели

категория

Оптимизация кампаний

Разбираемся, как вообще работает оптимизация рекламных кампаний, которую мы хотим улучшить

Целевые события

Целевое событие - событие, совершаемое привлеченными пользователями в продукте, которое передается в рекламный кабинет. Используется для привлечения пользователей, похожих по ряду признаков на совершающих целевое событие.

Примеры

- Заход на нужную страницу
- Совершение покупки
- Совершение покупки новым пользователем
- Любое сложное событие, которое мы считаем нужным
 Пример: заход на страницу такого пользователя, который в будущем совершит много покупок

Какие шаги проходим и что учитываем

Основная мысль модели

- Предсказываем на данных о действиях пользователя за первые п дней после перехода с платной рекламы его ценность в будущем за длительный период
- ▶ Передаем для таких, кого мы считаем "хорошими" по такому предсказанию, искусственное событие для оптимизации
- Со временем привлекаем все более крутых пользователей, за счет постоянного дообучения модели

3 дня

Действия пользователя на площадке

Целевая метрика

Собираем данные

Фичи за первые n дней

Действия покупателя

- N of searches
- N of favourites
- N of contacts

Действия продавца

- N of listings
- N of payments
- N of editing

Активность на площадке

- N of days online
- N of categories of interest

Целевая переменная

ΣLTV - {кол-во контактов с продавцом} * {ценность контакта} за 90 дней с момента перехода по рекламной кампании.

Выделяем "плохих" и "хороших" по порогу: 0 if < порог LTV, 1 if >= порог LTV

Исследуем данные

 Некоторые фичи могут быть скоррелированы, поэтому их лучше сразу исключать из модели.

Так, например, число поисков и число просмотров карточки товара довольно сильно коррелируют. Один из этих факторов можно исключить.

Исследуем данные

 Число дней, за которые мы собираем фичи, напрямую влияет на качество модели. Чем больше n - тем больше данных у модели для обучения и тем выше F-score при прочих равных.

НО: чем быстрее мы передадим данные - тем лучше будет работать оптимизация кампаний

Число дней, n	2	5	7
F-score	0,61	0,73	0,89

$$F_{score} = 2\frac{P * R}{P + R};$$

P-Precision

R - Recall

Исследуем данные

- ▶ Главная фича кол-во контактов в первые дни. Но добавление дополнительных фичей значимо увеличивает качество модели. (F-score ~0,52 vs F-score ~0,75 при прочих равных)
- Распределение LTV такое, что много тех, кто не делает ничего и есть длинный хвост тех, кто делает много. Это приводит к тому, что порог LTV = 0 дает высокий F-score, при этом чем больше порог LTV тем хуже F-score при прочих равных.

НО: для целей оптимизации мы хотим порог отличный от 0.

Порог LTV	0	50	1000
F-score	0,73	0,61	0,24

Сравниваем модели

Проверяем разные модели классификации

Model	Catboost model	Logistic Regression	Random Forests
F-score	0,61	0,57	0,58

 Используем модернизированный F-score для определения лучших параметров модели, потому что верим, что для оптимизации точность слегка важнее полноты

$$F_{score} = 2 \frac{aP * bR}{aP + bR}; \quad a = 1, b = 0.9$$

Итоговый выбор

Наша модель должна иметь хорошее качество и удовлетворять целям оптимизации

Модель	Порог LTV	Число дней	F-score, modified
Catboost	50	2	0,65
Catboost	0	7	0,91
Catboost	1000	1	0,24

Выбираем вариант № 1: жертвуем качеством, но в разумных пределах

Итоговый выбор

Почему именно такие значения?

 Ищем оптимальную точку, где размен эффективности на величину порога был бы оптимальным.

категория

Тестируем!

Как протестировать влияние одного черного ящика на другой?

АБ тест

- Если уже есть кампания выключаем предварительно в ней тестовые регионы
- В тестовых регионах заводим через инструмент АБ тестирования рекламной площадки тестовую и контрольную кампании
- Даем время на обучение + нужное для теста время, держим одинаковые уровни расходов

Результаты

+22%

ROI

ROI - метрика эффективности, получаемая путем деления полученного на потраченное

-12%

CAC

САС - метрика стоимости привлечения, получаемая путем деления потраченного, на число привлеченных пользователей

+60%

New Users Share

Доля новых пользователей в общем числе пользователей, приводимых кампанией

Итого

Где применять

Везде, где можно передать в рекламную систему конверсии server-to-server

Когда будет наиболее полезно

- Есть долгие циклы продаж
- В продукте присутствуют товары с циклом продажи разной длины
- Продукт предназначен для длительного использования, а не разовой покупки

avito.tech

Москва — 2020

Спасибо за внимание!

