SCSI1013: Discrete Structure (2015/2016- Semester 1)

Assignment 1.2 (Due 21/11/2024)

- 1. R defined by a R b if and only if a b is an even integer from $A = \{3, 6, 9,12\}$ to $B = \{2,3,4,5,6\}$
 - i) Write the ordered pair of the relation.
 - ii) Draw the digraph of the relation.
 - iii) List the domain and range of R
- 2. Determine whether the relation on set $D = \{1,3,8,10,15\}$ is equivalent relations where $x, y \in D, xRy$ if and only if y-x is a multiple of 7(Including negative).
- 3. Given the digraph of relation *R* as in Figure 1.

- i) What is matric of the relation, $M_{\it R}$ that represent diagraph in Figure 1.
- ii) List in-degrees and out-degrees of all vertices.
- iii) Is it the relation of R is an partial order? Check all variance Justify for answer
- 4. Let $X = \{-2, 0, 2\}$ and $Y = \{-4, 0, 4\}$. For each $x \in X$, define functions $v: X \to Y$ and $w: X \to Y$ by: $v(x) = 4 x^2$ w(x) = 2x

Determine if v and w are one-to-one, onto Y, and/or bijection.

5. Let f dan g be functions from the positive integers to the positive integers defined by the equations,

$$f(x) = 7x - 2,$$
 $g(x) = \frac{2}{3}x$

- i) Find the inverse of g(x).
- ii) Find the compositions (gogof)(x)
- 6. As a lead computer scientist in a chemical industry plant, you are assigned to design and develop algorithms that simulate chemical reaction processes. Two chemicals A and B are combined to produce a third chemical C. The initial temperature F₀, of chemical A, is 5.0 Fahrenheit and the initial temperature F₁ for chemical B is 4.5. When chemicals A and B are combined to produce chemical C, the increment in each minute t = 0,1,2,3 ..., which chemical C warms up to room temperature is a recurrence sequence, with F₀ and F₁ as initial conditions. For t ≥ 2, this recurrence sequence is found by summing the previous element of the sequence (t-1), with one-fifth of the previous two elements of the sequence (t-2). From the above given information,
 - i) Find the recurrence relation of chemical C that models the warming to room temperature.
 - ii) Using the recurrence relation obtained in (a), list down the sequence from F_0 , F_1 , F_2 , ... F_5 .
- 7. Write a recursive algorithm to find the n term of the sequence defined by $w_0 = 5$, $w_1 = 7$ and $w_n = 2w_{n-1} + w_{n-2}$ for $n \ge 2$. Trace the algorithm for n = 4.