Lycée Berthollet MPSI² 2023-24

Exercices sur les séries

Exercice 1 Déterminer la nature des séries de termes généraux :

1.
$$\ln\left(1+\frac{1}{n}\right)$$

$$2. \ \frac{2n}{n+2^n}$$

$$3. \ \frac{1}{\sqrt{n(n+1)}}$$

4.
$$\frac{(-1)^n}{n^{\alpha}}$$
 $(\alpha \in \mathbb{R})$

5.
$$\sin\left(\frac{1}{n^2}\right)$$

6.
$$\sin\left(\frac{(-1)^n}{n}\right)$$

7.
$$\frac{n!}{n^n}$$

8.
$$\frac{1}{\sqrt{n}}\sin\left(\frac{\pi}{n}\right)$$

9.
$$\frac{\sqrt{n}\sin n}{n^2}$$

10.
$$\frac{n^{pn}}{(pn)!} (p \in \mathbb{N} \setminus \{0\})$$

11.
$$\left(n\sin\frac{1}{n}\right)^{n^{\alpha}} (\alpha \in \mathbb{R})$$

12.
$$\left(\frac{n+a}{n+b}\right)^{n^2} (a>0, b>0)$$

13.
$$\ln\left(1+\frac{(-1)^n}{n^\alpha}\right) \ (\alpha \in \mathbb{R}_+^*)$$

Exercice 2 En admettant que la série harmonique alternée converge vers $\ln 2$, donner un n tel que la somme partielle $\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}$ soit une valeur approchée de $\ln 2$ à 10^{-3} près.

Exercice 3 Déterminer un équivalent de $u_n = \sqrt{\ln(n+1)} - \sqrt{\ln(n)}$ lorsque n tend vers $+\infty$ et en déduire la nature de $\sum \frac{1}{n\sqrt{\ln(n)}}$.

Exercice 4 Montrer que $\sum_{n\geq 3} \frac{2n-1}{n(n^2-4)}$ converge et calculer sa somme en utilisant une décomposition en éléments simples du type

$$\frac{2n-1}{n(n^2-4)} = \frac{\alpha}{n} + \frac{\beta}{n-2} + \frac{\gamma}{n+2}.$$

Exercice 5 Déterminer suivant les valeurs de $\alpha \in \mathbb{R}$ la nature de $\sum (\sqrt{n+1} - \sqrt{n})^{\alpha}$.

Exercice 6 Soit p un entier supérieur ou égal à 2. Montrer que la série

$$\sum_{n\geq p} \frac{1}{n(n-1)\cdots(n-p+1)}$$

converge et calculer sa somme.

Exercice 7 Soient $\sum u_n$ et $\sum v_n$ deux séries à termes strictement positifs telles que $\left(\forall n \in \mathbb{N}, \frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}\right)$. Que dire si $\sum v_n$ converge? si $\sum u_n$ diverge?

Exercice 8 Soit $\sum u_n$ une série à termes positifs convergente.

- 1. Montrer que la série de terme général $v_n = \sqrt{u_n u_{n+1}}$ est convergente.
- 2. La réciproque est-elle vraie?

Exercice 9 ** Pour $n \ge 2$, on note dp(n) le nombre de facteurs premiers dans la décomposition de n comptés avec multiplicité (par exemple dp(12) = 3). Déterminer la nature de la série $\sum_{n \ge 2} \frac{1}{n \cdot dp(n)}.$