Année : 2025/2026	Série n°3	pc/tech/svt
ouikrim	reciproques,racines niemes	fkih ben salah

Résumé

soit f definie sur I

- 1. montrer que f admet une fonction reciproque f^{-1} definie sur un intervalle J qu'on determinera
 - \blacklozenge f continue sur I
 - lacklarightarrow f strictement monotone sur I
 - \blacklozenge on determine l'intervalle J = f(I)
- 2. montrer que f^{-1} est continue sur J
 - \blacklozenge puisque f est continue sur I alors f^{-1} est continue sur J
- 3. dresser le tableau de variation de f
 - \blacklozenge la monotonie de f^{-1} sur J est la même que celle de f sur I
- $\begin{array}{ll} \text{4. déterminer } f^{-1}(x) \text{ pour } x \in J \\ \blacklozenge soit \ x \in J \quad , \quad y \in I \quad : \quad f^{-1}(x) = y \Leftrightarrow f(y) = x \end{array}$
- 5. tracer la courbe de f^{-1} dans un repère orthonormé
 - \blacklozenge la courbe de f^{-1} est symetrique à la courbe de f par rapport à la droite d'equation y=x

s'entraîner

correction en classe

Exercice 1

soit f definie sur $]-\infty, -2[$ par $f(x) = \frac{x^2 - 1}{r^2 - 4}$

- 1. montrer que f admet une fonction reciproque f^{-1} definie sur un intervalle J qu'on detrminera
- 2. montrer que $\forall x \in J$: $f^{-1}(x) = -\sqrt{\frac{1-4x}{1-x}}$
- 3. montrer que l'equation $f(x) = \sqrt[3]{3}$ admet une solution unique α dans $]-\infty, -2[$ et verifier que : $\frac{-7}{2} < \alpha < -3$
- 4. deduire que $3 < \sqrt{\frac{1 4\sqrt[3]{3}}{1 \sqrt[3]{3}}} < \frac{7}{2}$

Exercice 2

soit $f(x) = \sqrt{x+1} - \sqrt{x-1}$ definie sur $[1, +\infty[$

- 1. montrer que f admet une fonction reciproque f^{-1} definie sur un intervalle J qu'on determinera
- 2. en utilisant la courbe de f ci-dessous tracer la courbe de f^{-1}

3. determiner $f^{-1}(x)$ pour $x \in J$

correction sur la chaine youtube : ouikrimath

Exercice 1

soit f dedfinie sur \mathbb{R}^+ par $f(x) = 1 - x\sqrt[3]{x}$

- 1. montrer que f admet une fonction reciproque f^{-1} definie sur un intervalle J qu'on doit determiner
- 2. determiner $f^{-1}([-15, 0])$
- 3. calculer les limites : $\lim_{x\to 0}\frac{f^{-1}(x)-1}{x}\text{ et }\lim_{x\to -\infty}\frac{f^{-1}(x)-1}{x}$ (on ne demande pas de determiner $f^{-1}(x)$)

Exercice 2

Soit la fonction g définie sur \mathbb{R} par $g(x) = \frac{x - \sqrt{x^2 + 1}}{2\sqrt{x^2 + 1}}$.

- 1. Montrer que $\lim_{x \to -\infty} g(x) = -1$ et que $\lim_{x \to +\infty} g(x) =$
- 2. Montrer que g est continue sur \mathbb{R} .
- 3. Montrer que $\forall x \in \mathbb{R}, \ g'(x) = \frac{1}{2(\sqrt{x^2+1})^3}$.
- 4. Montrer que l'équation g(x) = x admet une solution unique α dans \mathbb{R} et que $\alpha \in]-1,0[$.
- 5. a Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J qu'on déterminera. b - Déterminer $g^{-1}(x)$ pour tout $x \in J$.
- 6. Soit F la fonction définie sur \mathbb{R} par :

$$\begin{cases} F(x) = g\left(\frac{1}{x}\right) & \text{si } x \neq 0, \\ F(0) = -1 \end{cases}$$

 \bullet Étudier la continuité de F en 0.

correction en classe

Exercice 3

soit f definie sur $[1, +\infty[$ par $f(x) = x^2 - 2x\sqrt{x} + x + 2$

- 1. calcular $\lim_{x \to +\infty} f(x)$
- 2. montrer que $\exists a \in [1, +\infty[: a^2 + a = 2a\sqrt{a} + 3$
- 3. montrer que f admet une fonction reciproque f^{-1} definie sur un intervalle J qu'on doit determiner
- 4. a montrer que

$$\forall x \in [2, +\infty[, f^{-1}(x) = \left(\frac{1}{2} + \sqrt{\frac{1}{4} + \sqrt{x - 2}}\right)^2$$

b - deduire la valeur exacte de a

Exercice 3

soit f définie par $f(x) = \frac{1}{2-x} + \frac{1}{1-x}$ sur]1, 2[.

- 1. montrer que f admet une fonction réciproque f^{-1} définie sur un intervalle J qu'on déterminera.
- 2. determiner $f^{-1}(0)$
- 3. montrer que : $\forall x \in [1, 2], (2x - 3)(f(x))(f^{-1}(x) - 2) < 0$
- 4. montrer que:

$$\forall x > 0 \;, \frac{3x - 2 - \sqrt{x^2 + 4}}{2x} < 1$$

$$\forall x < 0, \frac{3x - 2 - \sqrt{x^2 + 4}}{2x} > 2$$

5. déterminer $f^{-1}(x)$ pour tout $x \in J$.

Exercice 4

soit la fonction f definie sur $]-1, +\infty[$ par $f(x) = \frac{1-x^3}{1+x^3}$

- 1. determiner $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to (-1)^+} f(x)$
- 2. montrer que f admet une fonction reciproque f^{-1} definie sur un intervalle Jqu'on doit determiner
- 3. determiner $f^{-1}(x)$ pour $x \in J$

Exercice 58 (questions indépendantes)

- 1. Calculer les limites : $\bullet \lim_{x \to 2} \frac{\sqrt[3]{2x 3} \sqrt{x 1}}{x\sqrt{x 1} 2}$ $\bullet \lim_{x \to -\infty} \frac{\sqrt{-x} \sqrt[3]{x^2 + x}}{\sqrt[4]{x x^3}}$ $\bullet \lim_{x \to 1^-} \frac{x^3 x}{\sqrt[3]{x^2 x^3}}$
- 2. Montrer que $\sqrt[3]{\sqrt{5}+2} \sqrt[3]{\sqrt{5}-2} = 1$
- 3. Résoudre dans \mathbb{R} :

$$\bullet \sqrt{x+1} - \sqrt[3]{x} = 1$$

correction sur la chaine youtube: ouikrimath

Exercice 5(questions indépendantes)

- 1. a Montrer que $\forall x \in \mathbb{R}$: $x^{5} + x^{3} - 2 = (x - 1)(x^{2}(x^{2} + x) + 2(x^{2} + x + 1))$
 - b Étudier le signe de $x\sqrt[3]{x^2+x}-2$
- 2. resoudre dans \mathbb{R} l'equation : $\sqrt[3]{x} 5\sqrt[6]{x} + 6 = 0$
- 3. simplifier $\frac{\sqrt[5]{8} \cdot \sqrt[6]{32} \cdot \sqrt[3]{\sqrt{2}}}{\sqrt[3]{\sqrt[5]{2}}}$

Exercice 6

soit la fonction f definie par $f(x) = \sqrt[3]{9-x} - \sqrt[3]{x}$

- 1. determiner le domaine de définition de f
- 2. soient x et y dans D_f tels que x < y. montrer que f(x) > f(y) et deduire la monotonie de f dans D_f
- 3. montrer que f admet une fonction reciproque f^{-1} definie sur un intervalle J qu'on determinera.
- 4. montrer que l'equation $f^{-1}(x) + \frac{1}{x} = 1$ admet une solution unique α dans]1,2[
- 5. a montrer que $\lim_{x \to 1} \frac{\sqrt[3]{9-x} \sqrt[3]{x} 1}{x-1} = -\frac{5}{12}$ b deduire $\lim_{x \to 1} \frac{f^{-1}(x) 1}{x-1}$

Exercice 7

soit la fonction g definie sur \mathbb{R} par $g(x) = \frac{8}{9}x^3 - 3$

- 1. montrer que g admet une fonction reciproque g^{-1} definie sur \mathbb{R} .
- 2. dresser le tableau de variation de g^{-1}

1. soit la fonction ϕ definie sur \mathbb{R} par:

$$\phi(x) = 8x^3 + 9x - 27$$

- montrer que la courbe C_{ϕ} coupe l'axe (ox) en un unique point d'abcsisse α dans \mathbb{R}
- 2. deduire le tableau de signe de ϕ .
- 3. calculer $g(\alpha)$
- 4. resoudre l'inequation $x + g(x) \ge 0$