Simon Popecki ME 646 University of New Hampshire

STATIC AND DYNAMIC CHARACTERISTICS OF MEASUREMENT SYSTEMS

Document 1: Selected Derivations and Notes

Static Calibration Part 1: Derivation of the Thermistor Constants

Constant:	Value:
R _o	9647.88 Ω
β	3617.58

Derivation (From: MATLAB Tools for ME 646 - 2017)

$$R = R_o \exp \left[\beta \left(\frac{1}{T} - \frac{1}{T_o}\right)\right] = R_o \exp \left[\frac{-\beta}{T_o}\right] \exp \left[\frac{\beta}{T}\right]$$

$$R = R_o \exp \left[\beta \left(\frac{1}{T} - \frac{1}{T_o}\right)\right] = R_o \exp \left[\frac{-\beta}{T_o}\right] \exp \left[\frac{\beta}{T}\right]$$

$$R = A \exp \left[\beta x\right]$$

$$where A = R_o \exp \left[\frac{-\beta}{T_o}\right] \text{ and } x = \frac{1}{T}$$

$$R = R_o \exp\left[\beta \left(\frac{1}{T} - \frac{1}{T_o}\right)\right]$$

$$\ln R = \ln R_o + \beta \left(\frac{1}{T} - \frac{1}{T_o}\right)$$

$$\ln R = \left(\ln R_o - \frac{\beta}{T_o}\right) + \beta \left(\frac{1}{T}\right)$$

$$\equiv y' = a_o' + a_1 x'$$
where $y' = \ln R$ and $x' = \frac{1}{T}$
and $a_o = \ln R_o - \frac{\beta}{T_o}$ and $a_1 = \beta$

Static Calibration Part 4: Conversion of Thermocouple Voltage to Temperature

The thermocouple was calibrated assuming the values outputted by the thermistor were correct. A least squares regression best fit line was generated from Figure 1 in the published MATLAB document. The slope and y-intercept of the line generated from Figure 1 were used to calculate the temperature of the thermocouple.

$$Temperature = \frac{(Thermocouple\,Voltage) - b}{m}$$
 Where

$$m = 10 \text{ mV/°C}$$
, and $b = 14.8 \text{ mV}$

The sample mean temperature was found to be -0.3156 °C

A bare wire thermocouple was dipped in an ice bath 25 times. The standard deviation of this value was found to be 2.067. The sample size for this operation was 25, *v* was found to be 24.

See pages 3 through 5 in the published MATLAB code for more information.

Dynamic Calibration Part 6: Table Containing Time Constant Calculations and Standard Error of the Mean

Sheath Material	Transition	Method Of Event	Time Constant	S _{yx}
		Start:		
Steel	Boiling Water To	5 σ		12.8
	Icewater			
Steel	Ice Water To	5 σ		17
	Boiling Water			
Aluminum	Boiling Water To	5 σ		15.4
	Ice Water			
Aluminum	Ice Water To	5 σ		16.5
	Boiling Water			
Bare Wire	Boiling Water To	5 σ		16.4
	Ice Water			
Bare Wire	Ice Water To	5 σ		17.4
	Boiling Water			
Steel	Boiling Water To	Max Slope		8.68
	Icewater			
Steel	Ice Water To	Max Slope		17
	Boiling Water			
Aluminum	Boiling Water To	Max Slope		13.1
	Ice Water			
Aluminum	Ice Water To	Max Slope		10.9
	Boiling Water			
Bare Wire	Boiling Water To	Max Slope		16.4
	Ice Water			
Bare Wire	Ice Water To	Max Slope		7.61
	Boiling Water			

Works Cited

Linear least squares (mathematics). (2017, February 21). Retrieved February 25, 2017, from https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)