

Modelagem de Sistemas

Elton Morais

Objetivos

- Compreender como os modelos gráficos podem ser utilizados para representar sistema de software e por que são necessários vários tipos de modelos para representar totalmente um sistema;
- Apresentar as perspectivas fundamentais da modelagem de sistemas: contexto, interação, estrutura e comportamento;
- Conhecer os tipos principais de diagramas da UML e como podem ser usados em modelagem de sistemas;
- Entender a engenharia dirigida por modelos, na qual um sistema executável é gerado automaticamente a partir de modelos estruturais e comportamentais;

- A modelagem de sistemas é um processo de desenvolvimento de modelos abstratos de um sistema;
- Cada modelo apresenta uma visão ou perspectiva diferente desse sistema;
- A modelagem pode ser representada por um tipo de **notação gráfica** baseada nos tipos de diagrama em UML (*Unified Modeling Language*), assim como em modelos formais (matemáticos);
- Os modelos são utilizados durante o processo de engenharia de requisitos, para derivar os requisitos; durante o processo de projeto, para descrever o sistema aos engenheiros; e depois da implementação, para documentar a estrutura e operação do sistema;

- É possível desenvolver modelos tanto de sistema existente quanto do sistema a ser desenvolvido:
 - Modelos do sistema existente são utilizados durante a engenharia de requisitos;
 - Modelos do novo sistema são utilizados durante a análise de requisitos para ajudar a explicar para outros stakeholders os requisitos propostos;
- Um modelo não é uma representação completa do sistema;

- É possível desenvolver modelos diferentes para representar o sistema a partir de perspectivas distintas:
 - Uma perspectiva externa, na qual se modela o contexto ou o ambiente do sistema;
 - Uma perspectiva de interação, na qual são modeladas as interações entre um sistema e um ambiente ou entre os componentes de um sistema;
 - Uma perspectiva **estrutural**, na qual se modela a organização de um sistema ou a estrutura dos dados processados por ele;
 - Uma perspectiva comportamental, na qual são modelados o comportamento dinâmico do sistema e o modo como ele responde aos eventos;

- Os modelos gráficos podem ser usados de três modos diferentes:
 - Como forma de estimular e focar a discussão sobre um sistema existente ou proposto;
 - Como forma de documentar um sistema existente;
 - Como uma descrição detalhada do sistema que pode ser usada para gerar a implementação deste;
- A UML, linguagem padrão para modelagem orientada a objetos, possui 13 tipos de diagramas;
- Cinco tipos de diagramas podem representar os fundamentos de um sistema;

- Os cinco tipos de diagramas de UML:
 - Diagramas de **atividades**, que mostram as atividades envolvidas em um processo ou no processamento de dados;
 - Diagramas de caso de uso, que mostram a as interações entre um sistema e seu ambiente;
 - Diagramas de **sequência**, que mostram as interações entre os atores e o sistema e entre os componentes do sistema;
 - Diagramas de **classes**, que mostram as classes de objetos no sistema e as associações entre elas;
 - Diagramas de **máquinas de estados**, que mostram como o sistema reage a eventos internos e externos;

Modelos de Contexto

Modelos de Contexto

- No estágio inicial da especificação de um sistema, deve-se decidir sobre seus limites, o que faz e o que não faz parte do sistema;
- Essas decisões devem ser tomadas o quanto antes para limitar os custos e o tempo necessário para compreender os requisitos e o projeto;
- A definição de limites pode ser mais flexibilizada, quando há uma substituição de sistema já existente, assim como pode acompanhar as configurações necessárias do ambiente;
- Não está isenta de juízo de valor. Preocupações sociais e organizacionais podem significar que a posição de um limite do sistema pode ser determinada por fatores não técnicos;

Modelos de Contexto

- Normalmente, os **modelos de contexto** mostram que o ambiente inclui vários outros sistemas automatizados, mas não mostram os tipos de relações entre os sistemas no ambiente;
- Por isso, os modelos de contexto simples são usados junto com outros, como os de processos de negócio, como *diagramas de atividades* da UML;

- Todos os sistemas envolvem interação de algum tipo:
 - interação de usuário envolve suas entradas e saídas;
 - Interação entre o software que está desenvolvido e outros sistemas em seu ambiente;
 - Interação entre componentes;
- Modelagem de interação:
 - Modelagem de caso de uso;
 - Diagramas de sequência;

- A modelagem de casos de uso foi desenvolvida por Ivar Jacobson (1990);
- Um caso de uso pode ser considerado uma descrição simples do que o usuário espera de um sistema nessa interação;
- Cada caso de uso representa uma tarefa discreta que envolve a interação externa com um sistema;
- Os diagramas de caso de uso proporcionam uma visão geral simples de uma interação;
- Informações adicionais podem ser acrescentadas, para completar mais detalhes, através de descrição textual simples, uma tabela estruturada ou um diagrama de sequência;

Sistema Mentcare: Transferir dados	
Atores	Recepcionista, Sistema de registro dos pacientes (SRP)
Descrição	Um recepcionista pode transferir os dados do sistema Mentcare para um banco de dados geral de registro dos pacientes que é mantido pela autoridade de saúde. As informações transferidas podem ser pessoais atualizadas (endereço, número de telefone etc.) ou um resumo do diagnóstico e tratamento do paciente
Dados	Informações pessoais do paciente, resumo do tratamento.
Estímulo	Comando do usuário emitido pelo recepcionista.
Resposta	Confirmação de que o SRP foi atualizado.
Comentários	O recepcionista deve ter permissões adequadas para acessar as informações do paciente e o SRP.

Casos de uso envolvendo o papel 'Recepcionista'.

- Os diagramas de sequência são utilizados principalmente para modelar as interações entre atores e objetos em um sistema e as interações entre os próprios objetos;
- Os objetos e atores envolvidos são apresentados no topo do diagrama;
- As setas indicam interações entre os objetos;
- O retângulo nas linhas tracejadas indica a linha da vida do objeto em questão;
- As anotações nas sets indicam as chamadas feitas aos objetos, seus parâmetros e os valores de retorno;

Diagrama de sequência para 'Visualizar informações do paciente'.

Modelos Estruturais

Modelos Estruturais

- Os modelos estruturais de software exibem a organização de um sistema em termos dos componentes que constituem esse sistema e suas relações;
- Podem ser estáticos mostrando a organização do projeto, ou dinâmicos mostrando a organização do sistema em execução;
- O diagrama de classes pode ser utilizado para modelar estrutura estática das classes;
- O diagrama de classes é utilizado para mostrar as classes em um sistema e as associações entre elas;
- Objetos representam alguma coisa no mundo real;

Consulta

- medico : int
- data : int
- hora : int
- clinica : int
- motivo : int
- medicacao : int
- + novo(): void
- + prescrever(): void
- + transrever(): void

Modelos Estruturais

- A generalização é uma técnica para lidar com a complexidade;
- A generalização é exibida como uma seta apontando para a classe mais geral acima;
- Os atributos e operações associados às classes de nível mais alto também estão associados às classes de nível mais baixo;
- Agregação representa um objeto (o todo) é composto de outros (as partes);

- A **engenharia dirigida por modelos** (*Model-driven engineerring*, MDE) é uma abordagem para desenvolvimento na qual os **modelos**, e não os programas, são as saídas principais do processo de desenvolvimento;
- A engenharia dirigida por modelos eleva o nível de abstração na engenharia de software de modo que os engenheiros não precisam se preocupar com detalhes de linguagem de programação ou com as especificações das plataformas de execução;
- A MDE foi desenvolvida a partir da ideia de arquitetura dirigida por modelos (Model-driven architecture, MDA);
- A MDA se concentra nos estágios de projeto e de implementação, enquanto a MDE se relaciona com todos os aspectos do processo de engenharia de software;

• MDE:

- Engenharia de requisitos baseada em modelos;
- Processos de software para desenvolvimento baseado em modelos;
- Teste baseado em modelos;
- A arquitetura dirigida por modelos é uma abordagem focada em modelo para o projeto;
- É possível criar modelos em diferentes níveis de abstração;
- O método de MDA recomenda que três tipos de modelo de sistema abstrato sejam produzidos:
 - Um modelo independente de computação (CIM Computation-independent model);
 - Um modelo independente de plataforma (PIM Platform-independent model);
 - Modelos de plataforma específica (PSM Platform-independent model);

- *Um modelo independente de computação* CIM, modelam as abstrações importantes do domínio utilizadas em um sistema. É possível ter um CIM de segurança da informação, um CIM de registro do paciente etc.;
- *Um modelo independente de plataforma* PIM, modelam a operação do sistema sem fazer referência à sua implementação. É descrito com modelos em UML que mostram a estrutura estática do sistema;
- **Modelos de plataforma específica** PSM, são transformações do modelo independente de plataforma;

- Na prática, a tradução completamente **automática** dos modelos em código raramente é possível;
- Normalmente é necessária a intervenção humana;
- Um problema particularmente difícil para a transformação automatizada dos modelos é a necessidade de ligar os conceitos utilizados nos diferentes CIMs;
- A tradução dos modelos independentes de plataforma para modelos de plataforma específica é um problema mais simples;
- Existem ferramentas que fornecem tradutores de PIMs para plataformas comuns;

- Razões para a MDA não ter se transformado em uma abordagem popular para o desenvolvimento de software:
 - Modelos são uma boa maneira de facilitar as discussões, no entanto, nem sempre as abstrações úteis para as discussões são as corretas para serem implementadas;
 - Para sistemas mais complexos, a implementação não é o problema principal engenharia de quesitos, testes etc. são mais importantes;
 - Os argumentos para a independência de plataforma são válidos somente para sistemas grandes e duradouros, nos quais as plataformas ficam obsoletas durante a vida útil do sistema;
 - A adoção dos métodos ágeis no mesmo período em que a MDA estava sendo desenvolvida;

- Um modelo é visão abstrata de um sistema que ignora deliberadamente alguns detalhes desse sistema. Podem ser desenvolvidos modelos complementares para mostrar o contexto, as interações, a estrutura e o comportamento do sistema.
- Os modelos de contexto mostram como um sistema que está modelado é posicionado em um ambiente com outros sistemas e processos. Eles ajudam a definir os limites do sistema a ser desenvolvimento.

- Os diagramas de casos de uso e os diagramas de sequências são usados para descrever as interações entre usuários e sistemas no sistema que está sendo projetado. Os caso de uso descrevem interações entre um sistema e os atores externos; os diagramas de sequência acrescentam mais informações aos casos de uso, mostrando as interações entre os objetos do sistema;
- Os modelos estruturais mostram a organização e arquitetura do sistema. Os diagramas de classes são utilizados para definir a estrutura estática das classes em um sistema e suas associações;

- Os modelos comportamentais são utilizados para descrever o comportamento dinâmico de um sistema em execução. Esse comportamento pode ser modelado a partir da perspectiva dos dados processados pelo sistema ou pelos eventos que estimulam respostas.
- Os diagramas de atividades podem ser utilizados para modelar o processamento de dados, no qual cada atividade representa um passo de processo;

- Os diagramas de máquina de estados são utilizados para modelar o comportamento de um sistema em resposta a eventos internos ou externos;
- A engenharia dirigia por modelos é uma abordagem para o desenvolvimento de software na qual um sistema é representado como um conjunto de modelos que podem ser transferidos automaticamente para código executável.

Referências Bibliográficas

• SOMMERVILLE, Ian. **Engenharia de software**. 10. ed. São Paulo, SP: Pearson, 2018.