JFTT Zadanie(PDF 1)

Bartłomiej Puchała

November 2023

1 Treść zadania

Niech G bedzie gramatyka generujaca poprawnie zbudowane formuły rachunku zdań ze zmiennymi zdaniowymi p i q. Symbolami terminalnymi G sa $p, q, (,), \neg$ i \Rightarrow , a produkcjami

$$S \to \neg S | (S \Rightarrow S) | p | q$$

Znajdź gramtyke w postaci normalnej Chomsky'ego generujaca ten sam jezyk. Dla uzyskanej gramatyki w postaci normalnej Chomsky'ego znajdź równoważna gramatyke w postaci normalnej Greibach.

2 Znalezienie gramatyki w postaci normalnej Chomsky'ego

W Gramatyce bezkontekstowej G=(N,T,P,S) postać normalna Chomsky'ego to postać gramtyki bezkontekstowej, w której wszystkie produkcje sa postaci $A\to BC$ lub $A\to a$, gdzie $A,B,C\in N$ (zbioru nieterminali), $a\in T$ (zbiór terminali). Z treści zadania można zauważyć, że w postaci zgodnej z postacia Chomsky'ego znajduja sie tylko 2 ostatnie produkcje. Należy wiec rozbić pozostałe produkcje.

Symbole terminalne zastepuje symbolami nieterminalnymi

- 1. $S \to X_{\neg}S$
- 2. $S \to X(SX \Rightarrow SX)$
- 3. $X_{\neg} \rightarrow \neg$
- 4. $X_{\ell} \rightarrow \ell$
- $5. X_1 \rightarrow)$
- 6. $X_{\Rightarrow} \rightarrow \Rightarrow$

Produkcja $S \to X_\neg S$ spełnia teraz postać normalna Chomsky'ego, ale produkcja $S \to X_(SX_\Rightarrow SX)$ nadal jej nie spełnia, dlatego potrzebne jest kolejne rozbicie.

Wprowadzam kolejne produkcje:

1.
$$Y_1 \to X_(S)$$

$$2. Y_2 \rightarrow Y_3 X_1$$

3.
$$Y_3 \to X_{\Rightarrow} S$$

Końcowa gramtyka prezentuje sie nastepujaco:

1.
$$S \to X_{\neg}S$$

$$2. S \rightarrow Y_1Y_2$$

3.
$$Y_1 \to X_1S$$

4.
$$Y_2 \rightarrow Y_3 X_1$$

5.
$$Y_3 \to X_{\Rightarrow} S$$

6.
$$X_{\neg} \rightarrow \neg$$

7.
$$X_{\ell} \rightarrow \ell$$

8.
$$X_1 \rightarrow$$

9.
$$X_{\Rightarrow} \rightarrow \Rightarrow$$

10.
$$S \rightarrow p$$

11.
$$S \rightarrow q$$

Tak zdefiniowana gramatyka znajduje sie w postaci Chomsky'ego.

3 Równoważna gramatyka w postaci Greibach

W Postaci Greibach produkcje sa postaci $A \to aB$, gdzie a to terminal, a B to ciag nieterminali. Produkcjami, które spełniaja te postać z treści zadania sa:

1.
$$S \rightarrow p$$

$$2. \ S \to q$$

3.
$$S \rightarrow \neg S$$

Jedyna produkcja, która należy przekształcić i która ma zła postać, jest produkcja:

$$S \to (S \Rightarrow S)$$

W tym celu należy ja zastapić i wprowadzić odpowiednio nastepujace nieterminale:

1. $S \rightarrow (SXSY)$

Wprowadzamy nastepujace nieterminale:

- 2. $X \rightarrow \Rightarrow$
- $3. Y \rightarrow)$

Ostatecznie wszystkie nasze produkcje wygladaja nastepujaco:

- 1. $S \rightarrow \neg S \mid (SXSY \mid p \mid q)$
- 2. $X \rightarrow \Rightarrow$
- $3. Y \rightarrow)$

Tak zdefiniowana gramatyka znajduje sie w postaci normalnej Greibach, z każdej produkcji możemy wyprowadzić dany terminal oraz ciag nieterminali.