

AARHUS SCHOOL OF ENGINEERING

SUNDHEDSTEKNOLOGI 3. SEMESTERPROJEKT

Dokumentation

Gruppe 3

Helle Randeris (studienr.)

Rune Rask (studienr.)

Joakim Lindhardt (studienr.)

Finja Ralfs (studienr.)

Lars Holst (studienr.)

Signe S. Vaaben (201310503)

Vejleder

Titel

Navn

Universitet

Gruppe medlemmer	
CStuderende (studienr.)	Dato
Studerende (studienr.)	Dato
Studerende (studienr.)	Dato
Studerende (studienr.)	Dato
Studerende (studienr.)	Dato
Vejleder	
	 Dato

Forkortelser

Forkortelse	Forklaring	
ВТ	blodtryk	
UC	Use case	
BDD	Block Definition Diagram	
IBD	Internal Block Definition	
SD	Sekvensdiagram	
DAQ	Digital to Analog Converter	
GUI	Graphical User Interface (brugergrænseflade)	
SW	Software	
HW	Hardware	
KS	Kravspecifikation	

Indholdsfortegnelse

Forkor	telser		iii
Kapite	l 1 Kı	Travspecifikation	1
1.1	System	mbeskrivelse	 . 1
1.2	Funkti	ionelle krav	 . 2
	1.2.1	Aktør-kontekstdiagram	 . 2
	1.2.2	Aktørbeskrivelse	 . 3
	1.2.3	Use case-diagram	 . 3
	1.2.4	Use cases	 . 5
1.3	Ikke-fu	unktionelle krav	 . 12
	1.3.1	FURPS+	 . 12
Kapite	l 2 Sy	ystemarkitektur	15
2.1	Hardw	vare	 . 15
	2.1.1	BDD	
	2.1.2	IBD	 . 17
2.2	Softwa	are	 . 18
	2.2.1	Domænemodel	 . 18
	2.2.2	Klassediagram	
	2.2.3	Sekvensdiagram	 . 22
Kapite	l 3 De	esign	27
3.1	Design	nproces (GUI)	 . 27
3.2	Hardw	vare	 . 28
3.3	Softwa	are	 . 30
Kapite	l 4 Pr	roduktet	31
Kapite	l 5 Ac	ccepttest	33
5.1	Funkti	ionelle krav	 . 34
	5.1.1	Accepttest af use cases	 . 34
5.2	Ikke-fu	unktionelle krav	 . 44
Bilag			47
Bila	g 1: San	marbejdsaftale	 . 48
Bila	g 2: Tid	dsplan	 . 50
Bila	g 3: Har	ardware versioner	 . 52
Bila	g 4: Soft	ftware versioner	 . 53
Bila	g 5: Log	gbog	 . 54
	_	ødereferater	 . 55
D;10	~ 7. Dot	stasheat NL 6000 DAO	56

Version	Dato	Ansvarlig	Beskrivelse
0.1	9/9-15	Alle	Oprettelse af dokument
1.0	21/9-15	LB, JL, HR, RR, SV	Tilføjelse af use case " $Log\ ind$ ", samt amårettelser efter møde med vejleder
1.1	23/9-15	Alle	Rettelser af " $Log\ ind$ " use case, samt rettelser af andet i KS
2.0	28/9-15	Alle	Tilføjer ny use case, " $Kalibrer\ systemet$ ", og tilretter " $Log\ ind$ " use case
2.1	29/9 - 15	Alle	
3.0	7/10-15	Alle	Tilrettelser efter review med gr. 4
4.0	4/11-15	Alle	Gennemgang med ændringer efter rettelser fra vejledere

Formål

Formålet med en kravspecifikation er, at beskrive systemets funktionelle og ikke-funktionelle krav til kunden. Kravspecifikationen er kontrakten mellem virksomhed og kunde.

1.1 Systembeskrivelse

Dette program skal opfylde de obligatoriske krav, opstillet af IHA:

- \bullet Programmet skal programmeres i C#
- Programmet skal kunne kalibrere blodtrykssignalet og foretage en nulpunktsjustering
- Blodtrykket skal vises kontinuert på en graf i GUI, hvor der ses systolisk og diastolisk tryk
- Målingerne skal kunne gemmes som tekstfil eller i database

• Systemet skal kunne filtrere blodtrykket i selve programmet via et digitalt filter, dette skal kunne slås til og fra.

Ud fra projektets vision, beskrevet i projektformuleringen, skal der udvikles et system til måling af blodtryk. Systemet skal kunne bruges på computere, der forudsættes at have adgang til måleudstyret, og samtidig overholder de opstillede krav.

Systemet skal kunne tilsluttes et væskefyldt kateter og vise en blodtrykskurve på en computerskærm.

Systemet skal indeholde et elektronisk kredsløb, som forstærker signalet fra trykstransduceren og filtrerer det med et indbygget analogt filter.

Systemet skal indeholde et program, som kan vise blodtrykket som funktion af tiden. Dette foregår ved, at målingerne indlæses fra blodtryksmåleren, omdannes til et digitalt signal vha. DAQ, indlæses i et C#-program og vises grafisk.

1.2 Funktionelle krav

1.2.1 Aktør-kontekstdiagram

Der er udarbejdet et aktør-kontekst diagram med tilhørende aktørbeskrivelser, hvor de forskellige aktører i systemet er angivet og beskrevet.

Figur 1.1: Aktør-kontekstdiagram

1.2.2 Aktørbeskrivelse

Aktørnavn	Type	Beskrivelse
Sundhedsfagligt personale	Primær	Aktøren starter, foretager og afslutter målingen. Aktøren skal have relevans i henhold til en operationsstue samt have kendskab til proceduerne herved
Tekniker	Primær	Kalibrerer systemet
Transducer	Sekundær	Transduceren omsætter tryk til et analogt elektrisk signal
Database	Sekundær	Måledataene gemmes i databasen.

Tabel 1.2: Aktørbeskrivelse

1.2.3 Use case-diagram

Der er ud fra de overordnede, definerede krav til projektet, udviklet et use case-diagram. Diagrammet viser aktørerne i systemet, samt de fire scenarier der er valgt at fokusere på i dette system.

Figur 1.2: Use case diagram

1.2.4 Use cases

Ud fra use case-diagrammet, er der udarbejdet en fully-dressed use case til hvert scenarie. Disse indgår herunder.

Use case 1 - Log in	d	
Navn		Log ind
Scenarie		Hovedscenarie
Use case ID		UC1
Primær aktør		Sundhedsfagligt personale
Sekundær aktør(er)		Database
Initialisere		Sundhedsfagligt personale trykker på "Log ind"-knap
Mål		Sundhedsfagligt personale er logget ind og klar til at foretage måling
Forudsætninger		Systemet er operationelt
Resultat		Sundhedsfagligt personale er succesfuldt logget ind i systemet
Hovedforløb	1.	Sundhedsfagligt personale indtaster ID
	2.	Sundhedsfagligt personale indtaster tilhørende password
	3.	Sundhedsfagligt personale trykker på "Log ind"-knappen [3a. Fejl i indtastede ID eller password]
Undtagelser	3a.	[Fejl i indtastede ID eller password]
	1.	Systemet gør opmærksom på fejl, og lader bruger indtaste password og ID igen
	2.	Sundhedsfagligt personale trykker på "OK" -knappen

Tabel 1.3: Fully dressed Use case 1

Use case 2 - Hent patientdata			
Navn	Hent patientdata		
Scenarie	Hovedscenarie		
Use case ID	UC2		
Primær aktør	Sundhedsfagligt personale		
Sekundær aktør(er)	Database		
Initialisere	Efter UC1 er kørt succesfuldt		
Mål	At indhente patientens personlige oplysninger og vise patientens CPR-nummer på GUI'en		
Forudsætninger	UC1 er kørt succesfuldt		
Resultat	Patientens personlige oplysninger er hentet og CPR-nummeret vises i GUI'en		
Hovedforløb 1	. Sundhedsfagligt personale indtaster patientens CPR-nummer		
2	2. Sundhedsfagligt personale trykker på knap- pen "Hent patientoplysninger" [2a. Det indtastede CPR-nummer er ikke gyl- digt]		
3	3. Patientens CPR-nummer vises i GUI'en		
Undtagelser 2a	a. [Det indtastede CPR nummer er ikke gyldigt]		
1	. Systemet gør bruger opmærksom på fejl, og beder om ny indtastning af CPR nummer		

Tabel 1.4: Fully dressed Use case 2

Use Case 3 - Nulpunktsjuster		
Navn		Nulpunktsjuster
Scenarie		Hovedscenarie
Use case ID		UC3
Primær aktør		Tekniker
Sekundær aktør(er)		Transducer
Initialisere		Systemet
Mål		At nulpunktsjustere systemet i forhold til det aktuelle tryk samt at blodtryksmålingen starter og vises grafisk
Forudsætninger		UC1 og UC2 er kørt succesfuldt
Resultat		Systemet er nulpunktsjusteret i forhold til det aktuelle tryk og blodtryksmålingen starter og vises grafisk
Hovedforløb	1.	Sundhedsfagligt personale trykker på "Nulpunktsjustering" -knappen
	2.	Nulpunktsjustering foretages
	3.	Blodtrykket vises i GUI'en [3a. Blodtryk for højt eller lavt]
Undtagelser	3a.	[Blodtryk for højt eller lavt]
	1.	UC4 startes

 $Tabel \ 1.5: Fully \ dressed \ Use \ case \ 3$

Use Case 4 - Alarmer		
Navn		Alarmer
Scenarie		Hovedscenarie
Use case ID		UC4
Primær aktør		Sundhedsfagligt personale
Sekundær aktør(er)		
Initialisere		UC3 undtagelse 3a
Mål		At alarmere sundhedsfagligt personale om for højt eller lavt blodtryk
Forudsætninger		UC1, UC2 og UC3 er kørt succesfuldt
Resultat		Sundhedsfagligt personale er alarmeret om for højt eller lavt blodtryk
Hovedforløb	1.	Systemet alarmerer sundhedsfagligt personale med lyd
	2.	Sundhedsfagligt personale har nu mulighed for at slå systemets alarm på " $Lydl \phi s$ " -tilstand i en periode på tre minutter
	3.	Alarmen stopper ved normalisering af blodtrykket

 $Tabel \ 1.6: Fully \ dressed \ Use \ case \ 3$

Use Case 5 - Filtrer signal			
Navn		Filtrer signal	
Scenarie		Hovedscenarie	
Use case ID		UC5	
Primær aktør		Sundhedsfagligt personale	
Sekundær aktør(er)			
Initialisere		Sundhedsfagligt personale	
Mål		At filtrering af signalet er slået til/fra	
Forudsætning		UC2 er kørt succesfuldt	
Resultat		Filtreringen af signaet er slået til/fra	
Hovedforløb	1.	Sundhedsfagligt personale trykker på " Fra " - knappen	
	2.	Sundhedsfagligt personale trykker på " Til " - knappen	

Tabel 1.7: Fully dressed Use case 5

Use Case 6 - Gem data				
Navn		Gem data		
Scenarie		Hovedscenarie		
Use case ID		UC6		
Primær aktør		Sundhedsfagligt personale		
Sekundær aktør(er)		Database, tekniker		
Initialisere		Sundhedsfagligt personale		
Mål		At gemme måledataene i en database		
Forudsætninger		UC2 og UC3 er gennemført		
Resultat		Måledata er gemt korrekt i databasen		
Hovedforløb	1.	Sundhedsfagligt personale trykker på " $Gem\ data$ " - knappen		
	2.	Måledata gemmes i databasen [2a. <i>Måledata kan ikke gemmes</i>]		
	3.	Systemet giver beskeden: "Data gemt"		
Undtagelser	2a.	[Måledata kan ikke gemmes]		
	1.	Der kommer en pop-up meddelelse " $Data\ er\ ikke\ gemt$ - $tekniker\ er\ tilkaldt$ "		
	2.	Sundhedsfagligt personale trykker " OK "		

Tabel 1.8: Fully dressed Use case 6

Use Case 7 - Kalibrer system		
Navn		Kalibrer system
Scenarie		Hovedscenarie
Use case ID		UC7
Primær aktør		Tekniker
Sekundær aktør(er)		
Initialisere		Systemet
Mål		At justere systemet i forhold til kalibrering
Forudsætninger		Tekniker er tilkaldt
Resultat		Systemet er justeret
Hovedforløb	1.	Tekniker påtrykker systemet tre kendte tryk
	2.	Tekniker aflæser responserne på GUI
	3.	Tekniker noterer afvigelserne fra de kendte tryk [3a. Der er ingen afvigelser]
	4.	Tekniker justerer afvigelsen i systemets software
	5.	UC5 startes forfra
Undtagelser	3a.	[Der er ingen afvigelse]
	1.	UC5 afsluttes

 $Tabel \ 1.9: Fully \ dressed \ Use \ case \ 7$

1.3 Ikke-funktionelle krav

Ikke-funktionelle krav beskrevet ved FURPS+ med MoSCoW.

1.3.1 FURPS+

MoSCoW er angivet i en parantes med enten M, S, C eller W.

Functionality

- 1. (M) Programmet skal programmeres i C#, Visual Studio
- 2. (S) Systemet bør kunne angive pulsen via en lyd ved hvert hjerteslag ved Hz
- 3. (M) Blodtrykket skal kunne gemmes i en database og skal indeholde
 - a) Patient-CPR, ansvarligt sundhedspersonale, ansvarlig organisation, dato
 - b) Rådata, samplerate (Hz), interval (s), data format, måleformat, starttid, antal målinger
- 4. (M) Blodtrykket skal måles indenfor 10 mmHg præcision
- 5. (M) Forstærkeren skal kunne forstærke det elektriske signalet
- 6. (M) Lavpasfilteret skal kunne filtrere støj fra det elektriske signal **Usability**
- 7. (M) Programmet skal indeholde en "Log ind" -knap
- 8. (M) Programmet skal indeholde en "Hent patientoplysninger" -knap
- 9. (M) Programmet skal indeholde en "Nulpunktsjustering" -knap
- 10. (M) Programmet skal indeholde en "Lydløs" -knap
- 11. (M) Programmet skal indeholde en "Gem data" -knap
- 12. (M) Programmet skal indeholde en "Til" -radiobutton
- 13. (M) Programmet skal indeholde en "Fra" -radiobutton
- 14. (M) Programmet skal indeholde en "OK" -knap i pop-up vinduet Reliability
- 15. (S) Systemet bør kunne køre fejlfrit i et år
- 16. (S) Systemet bør have en "mean time to restore"på højst 24 timer Systemet får herved en tilgængelighed beregnet ved

$$Availability = \frac{MTBF}{MTBF + MTTR} = \frac{365}{365 + 1} = 0,997 = 99,7\%$$

MTBF = "mean time between failure"

MTTR = "mean time to restore"

Performance

17. (M) Systemet skal kontinuert vise en grafisk afbildning af blodtrykket, hvor tryk er op af y-aksen og tiden er på x-aksen i intervallet af 6 sekunder

Supportability

- 18. (S) Softwaren bør være opbygget af trelagsmodellen
 - + Test conditions

Version	Dato	Ansvarlig	Beskrivelse
0.1	4/11-15	Alle	Tilføjelse af arkitektur
Tekst	Tekst	Tekst	Tekst
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.

Formål

Til beskrivelse af systemarkitekturen og det detaljerede design for produktet, er der benyttet SysML. SysML anvendes her, da blodtryksmålesystemet både indeholder software og hardware. Et af de vigtigste argumenter for brug af SysML er, at de fastlagte standarder i sproget medfører en bedre formidling af systemet, hvilket giver et større overblik.

2.1Hardware

Hardware-delen består af et elektronisk kredsløb, som forstærker signalet fra tryktransduceren og filtrerer det med et indbygget analogt filter.

Til at skabe overblik over blodtryksmålesystemets hardware er der uarbejdet en figur, der viser hele det overordnet system.

Figur 2.1: Blodtryksmålersystemet

Denne illustrerer, at der ind i transduceren kommer tryk og ud kommer et støjfyldt signal. Dette signal bliver ved forstærkeren forstærket og heraf et forstærket støjfyldt signal. Igennem filtret bliver støjen filtreret fra. Det filtrerede signal føres igennem DAQ'en, som omdanner det til et digitalt signal, som anvendes i computerens softwareprogram.

Til at præcisere komponenterne i blodtryksmålesystemets hardware, er der valgt at lave strukturdiagrammer. Her er der anvendt blokdefinitionsdiagram (BDD) og et internt blokdiagram (IBD).

2.1.1 BDD

BDD'et er anvendt til, at dokumentere nedbrydningen af systemet og forholdene mellem blokkene.

Figur 2.2: BDD

Blokbeskrivelser:

- Transducer: En tryktransducer, som konverterer et tryk til et analogt elektrisk signal
- Forstærker: Signalet forstærkes således at hele forsyningsspændingen udnyttes
- Filter: Et 2. ordens lavpasfilter fjerner højfrekvent støj
- DAQ: A/D konverter omsætter den analoge indgangsspænding til et digitalt signal
- Computer: Enheden som indeholder softwareprogrammet til visning af blodtryk

2.1. Hardware ASE

2.1.2 IBD

IBD'et er anvendt til, at dokumentere den interne struktur i blokkene.

Figur 2.3: IBD

Signalbeskrivelse

Forbindelse	Signaltype	Funktionalitet
Transducer - forstærker	Støjfyldt signal	Elektrisk analogt signal med støj i enheden volt
Forstærker - filter	Forstærket støjfyldt signal	Elektrisk ana- logt forstærket støjfyldt signal i enheden volt
Filter - DAQ	Forstærket filtreret signal	Elektrisk analogt forstærket filtreret signal i enheden volt
DAQ - computer	Digitalsignal	Elektrisk digitalt signal med data via USB
Batterier - transducer, forstærker, filter	Forsyningsspænding	Positiv og negativ 9V

2.2 Software

Brugergrænsefladen i software-delen består af to forskellige GUI'er, en til at logge ind og en til diagnostik. Programmet indeholder en række klasser indeholdende funktionaliteten beskrevet i UC's samt databaser til opbevaring af data. Softwaren er opbygget af trelagsmodellen.

For at skabe et overblik over sammenhængen mellem UC's og softwaren i systemet, er der udviklet en applikationsmodel. Applikationsmodellen indeholder en domænemodel over hele systemet, et klassediagram for hver enkelt UC, et sekvensdiagram over hele systemet, et sekvensdiagram for hver UC og et opdateret klassediagram med metoder. Ved at opdele de forskellige dele i softwaren samt at oprette klasser efter den ønskede funktionalitet i UC's, opnås en sammenhænge og overskuelighed over systemet som helhed.

2.2.1 Domænemodel

Domænemodellen er udviklet vha. navneordsanalyse i de fem UC's. Domænemodellen giver et overblik over hvilken funktionalitet der - ud fra UC's - er relevant. Funktionaliteterne er opdelt i kasser, der senere bliver til klasser i softwaren.

Figur~2.4:~Domæne model~blod tryksmåler system

2.2. Software ASE

2.2.2 Klassediagram

Klassediagrammerne for hver enkelt UC viser sammenhængen mellem de forskellige instanser i den enkelte UC.

Boundary-klasser er den akutuelle UC's aktører.

Controller-klassen indeholder UC'ens funktionalitet og udfører UC'en ved at interagere med boundary-klasserne og domain-klasserne. Controller-klassen er opkaldt efter den aktuelle UC's navn.

Domain-klassen repræsenterer systemets domæne og hukommelse.

Klassediagram UC1

I klassediagrammet for UC1 logger sundhedsfagligt personale ind vha. brugergrænsefladen - de er begge to boundary-klasser. Brugergrænsefladen sender besked til controller-klassen "Log ind". Log ind-data hentes - via controlleren - i Log ind databasen og sendes tilbage til brugergrænsefladen via controlleren, hvorved sundhedsfagligt personale logges ind.

Figur 2.5: Applikationsmodel UC1

Klassediagram UC2

I klassediagrammet for UC2 er sundhedsfagligt personale og brugergrænsefladen boundary-klasser. "Hent patientoplysninger"er UC'ens controller-klasse. Patientoplysningerne hentes fra Patient databasen - en boundary-klasse - og sendes tilbage igennem controller-klassen til brugergrænsefladen.

Figur 2.6: Applikationsmodel UC2

Klassediagram UC3

I klassediagrammet for UC3 er sundhedsfagligt personale og brugergrænsefladen boundary-klasser. "Nulpunktsjuster" er UC'ens controller-klasse, som udfører UC'en vha. domain-klassen "Nulpunktsjustering". Nulpunktsjusteringen sendes tilbage til brugergrænsefladen fra domain-klassen, igennem controller-klassen.

Figur 2.7: Applikationsmodel UC3

Klassediagram UC4

I klassediagrammet for UC4 er brugergræsnefladen boundary-klasse. "Alarmer" er UC'ens controller-klasse, som sender besked omkring alarmering til domain-klassen "Alarm" Domain-klassen alarmerer, og sender alarmen til brugergrænsefladen via controller-klassen.

Figur 2.8: Applikationsmodel UC4

Klassediagram UC5

Klassediagrammet for UC4 viser, at sundhedsfagligt personale og brugergrænsefladen er boundary-klasser. "Filtrer signal" er UC'ens controller-klasse som får besked fra brugergrænsefladen om at filtrere signalet - og sender filtreringen tilbage til brugergrænsefladen.

Figur 2.9: Applikationsmodel UC5

2.2. Software

Klassediagram UC6

I klassediagrammet for UC5 er sundhedsfagligt personale og brugergrænsefladen boundary-klasser. "Gem måling" er UC'ens controller-klasse, som får besked fra brugergrænsefladen om at gemme den akutelle måling. Denne information sendes videre til domain-klassen "Patientdata" som sender besked tilbage til brugergrænsefladen, igennem controller-klassen om, at data er gemt.

Figur 2.10: Applikationsmodel UC6

Klassediagram UC7

I klassediagrammet for UC6 ses det, at tekniker og brugergrænsefladen er boundary-klasser. Teknikeren kalibrerer systemet i controller-klassen, som justerer brugergrænsefladen i forhold til kalibreringen.

Figur 2.11: Applikationsmodel UC7

2.2.3 Sekvensdiagram

Controlleren i sekvensdiagrammerne er logiklaget, hvor domainklasserne er klasser tilkoblet logiklaget.

Sekvensdiagram UC1

Sekvensdiagrammet for UC1 viser, at sundhedsfagligt personale indtaster Log ind data i brugergrænsefladen. Disse behandles - vha. metoden TjekLogInd() - i controlleren Log Ind. Dataen hentes i databasen - vha. getLogIndData() - Log Ind data og sendes tilbage til controlleren og tjekkes heri. Er oplysningerne korrekte, vises Diagnostik-GUI'en. Der er en alternativ rute, hvor de indtastede oplysninger er forkerte. Dette vises i LogInd-GUI'en, og bruger indtaster oplysningerne forfra.

Figur 2.12: Sekvensdiagram UC1

Sekvensdiagram UC2

I diagrammet for UC2 ses det, at sundhedsfagligt personale indtaster patientens CPR i brugergrænsefladen. Patienten tjekkes i controlleren vha. TjekCPR(). Data hentes fra Patient data - vha. getPatientdata() - og sendes tilbage til controlleren, som tjekker disse. Den alternative rute består i, at det indtastede CPR er forkert. I det tilfælde, sendes en besked til brugeren herom, og der kan ske en ny indtastning.

2.2. Software ASE

Figur 2.13: Sekvensdiagram UC2

Sekvensdiagram UC3

Diagrammet for UC3 viser at sundhedsfagligt personale, igennem brugergrænsefladen, beder om at få systemet nulpunktsjusteret. Nulpunktjusteringen sendes som besked fra brugergrænsefladen til controlleren via metoden NulpunktsJuster(). Denne metode sendes videre til Nulpunktsjustering-klassen, som sender en besked, igennem controlleren, til brugergrænsefladen om, at blodtryksmålingen skal vises i brugergrænsefladen.

Figur 2.14: Sekvensdiagram UC3

Sekvensdiagram UC4

I diagrammet beder controlleren ved hjælp af metoden Alarm() om at Alarm-klassen skal tjekke op på om alarmfunktionen skal slås til eller fra. Efter metoden Alarm() er kørt gives der besked tilbage til controlleren og videre til brugergrænseflade, hvor man ville kunne se

om amarmen er slået til eller fra. Efterfølgende kan der forekomme en alternativ funktion, hvor brugeren ved hjælp af lydløsknappen på brugergrænsefladen kan slå lydløs funktionen til. Når brugeren har trykket på knappen, starter controlleren metoden Lydløs(), som sender videre besked om at blive kørt i Alarm-klassen. Der sendes en returbesked tilbage til gennem controlleren og videre til brugergrænsefladen.

I sekvensdiagrammet over UC4 ses det, at det er controlleren der sætter alarmen igang så snart blodtryksværdierne er udenfor de angivne grænseværdier.

Figur 2.15: Sekvensdiagram UC4

Sekvensdiagram UC5

Sundhedsfagligt personale trykker på til/fra-knappen i brugergrænsefladen. Metoden Filtrer() i controllerklassen giver besked om at Filtrer() skal kørers i Domainklassen "Filter". Der gives efterfølgende besked til controllerklassen og videre til brugergrænsefladen, hvor der kan ses ved hjælp af en radiobutton om filteret er slået til eller fra.

Figur 2.16: Sekvensdiagram UC5

2.2. Software

Sekvensdiagram UC6

Sundhedsfagligt personale trykker på gem knap i brugergrænsefladen. Dette aktiverer metoden GemBlodtryksdata() i controlleren, som giver videre besked til at køre den i boundaryklassen "Patient Data (DB)". Hvis der sker en fejl under gemmeprocessen og målingen dermed ikke bliver gemt, vil et alternativt handlingsforløb indtræde. "Patient data (DB) " vil i dette tilfælde give en returbesked til controlleren og videre til brugergrænsefladen, som meddeler til det sundhedsfaglige personale at målingen ikke er gemt. Herefter vil det sundhedsfaglige personale kunne prøve igen. Er målingen gemt, vil der blive givet besked til controlleren fra "Patient data (DB)", som videre vil give besked til brugergrænsefalden.

Figur 2.17: Sekvensdiagram UC6

Sekvensdiagram UC7

I diagrammet ses det at teknikeren starter med at påtrykke et kendt tryk i controlleren. Dette vil starte metoden Kalibrer() i Domainklassen "Kalibrer". "Kalibrer" giver besked om afvigelser til controlleren. I tilfælde at der ikke er nogen afvigelser gives der besked om dette og teknikeren fortager ikke nogen ændringer. Ved afvigelser justere teknikeren det ved hjælp af "Kalibrer"-klassen og der gives direkte besked tilbage til brugergrænsefladen om ændringerne.

Figur 2.18: Sekvensdiagram UC7

Version	Dato	Ansvarlig	Beskrivelse
0.1	6/11-15	SV	Tilføjelse af arkitektur
0.2	11/11-15	SV	Tilføjelse af design
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.

Formål I dette kapitel er design af SW og HW illustreret med figurer og forklaret.

3.1 Designproces (GUI)

I udvikling af projektets brugergrænseflader er der brugt generelle principper om gode brugergrænseflader, MMI. Det er specielt prioriteret at brugeren skal være i kontrol, og at brugerens sprog skal være det gennemgående, da sproget gerne skal ligge til brugerens logik og ikke udviklerens. Brugergrænsefladen er udviklet med sigende knapper, radiobuttons, labels og tekstbokse.

Efter et besøg på dagkirurgisk afsnit på Aarhus Universitets Hospital, Skejby, er brugergrænsefladen forsøgt udviklet således at den passer til brug på en operationsstue. Ideelt set skulle der være to forskellige skærme, og dermed to forskellige brugergrænseflader - én til indtastning af brugeroplysninger og patientdata, og én til diastolisk,- systolisk- og pulsmåling. Brugergrænsefladen med patientoplysninger er til anæstesisygeplejerske/læge hvor brugergrænsefladen indeholdende målinger er til kirurgen. Kirurgens brugergrænseflade skal være simpel og indeholde så få oplysninger som muligt. Denne skal også have en alarmeringsfunktion, som kan sættes på lydløs i eksempelvis tre minutter. Anæstesisygeplejerskens brugergrænseflade skal indeholde mange (nødvendige) informationer om patienten, og skal derfor opbygges så dette er overskueligt.

Ud fra den erfarede viden på Dagkirurgisk Afsnit, er det besluttet at sammensmelte de to omtalte skærme, men dog udvikle to forskellige brugergrænseflader. Den første brugergrænseflade indeholder bruger log ind, og en fejlmelding hvis de indtastede data er forkerte. Den anden brugergrænseflade indeholder patientdata samt målingen med de nødvendige informationer og funktioner. For at brugergrænsefladerne skal kunne udgøres for de to skærme på operationstuen, er disse gjort overskuelige og selvsigende.

ST3PRJ3 Gruppe X 3. Design

Feedback to user

Feedback til brugeren skal gives for, at bruger kan se om en evnetuel kommando er forstået. Hvis ikke der er noget feedback efter en given kommando, ved brugeren ikke, om kommandoen er forstået eller accepteret - og tror dermed, at der er fejl i systemet. En sådan feedback skal have kort reponstid og/eller et *arbejder*-symbol som viser at systemet bearbejder kommandoen.

Feedback til brugeren er implementeret således, at der eksempelvis kommer en pop-up meddelelse ved forkert log ind. Når bruger logger ind, skifter brugergrænsefladen hurtigt, så brugeren ved, at handlingen er accepteret.

Never interrupt the user

Brugeren skal aldrig forstyrres unødvendigt. Eksempelvis pop-up vinduer, som bruger ikke selv har bedt om, er forstyrrende. De forstyrrende elementer flytter brugers fokus, sætter bruger ud af kontrol og bryder brugers koncentration. Dog kan advarsler være vigtige, og dem af helt vigtig karakter, kan være nødvendig som pop-up. Advarsler af mindre vigtig karakter, kan opstå som pop-up ikoner i et hjørne - uden brug af lyde, pop-up eller andet - så bruger kan reagere når hen ikke længere er fuldt optaget.

HVORDAN ER DET IMPLEMENTERET?

The user should be in control

Brugeren skal lave kommandoerne og systemer skal adlyde disse, og ikke omvendt. Dette kan eksempelvis være en dialogbox på computer med knapperne "OK" til at acceptere, "Cancel" hvis bruger fortryder og "Help" hvis bruger har brug for hjælp.

HVORDAN ER DET IMPLEMENTERET?

Speak the users language

Design should reflect the user's logic, not the constructor's logic

The design of a button should reflect its importance

3.2 Hardware

Lavpasfilter

Der benyttes et lavpasfilter for at undgå aliasering. Dette kaldes derfor for et antialiseringsfilter. I dette projekt arbejdes med et aktivt 2. ordens lavpasfilter, som består af et pasbånd og et stopbånd.

3.2. Hardware ASE

Figur 3.1: Gain respons lavpas

Pasbåndet lader lave frekvenser passere igennem med ingen eller uvæsentlig dæmpning, og stopbåndet dæmper høje frekvenser væsentligt. Kurvens udvikling ses på bodeplot med frekvensen i rad/s ud af x-aksen og forstærkning i dB op ad y-aksen.

Knækfrekvensen er overgangen mellem pas- og stopbånd. Med andre ord så er knækfrekvensen, hvor indgangssignalet er dæmpet med 3 dB.

I projektet designes filtret med en knækfrekvens på 50 Hz. Operationsforstærkeren er af typen OP27. Kondensatoren C2 er givet til 680 nF og endvidere R1 = R2.

Figur 3.2: Unity 2. ordens sallen-key lavpas konfiguration

Til at bestemme komponentværdier er der taget udgangspunkt i knækfrekvensen:

$$f_c = \frac{1}{2\pi\sqrt{C1 \cdot C2 \cdot R1 \cdot R2}} = \frac{1}{2\pi\sqrt{C1 \cdot C2 \cdot R^2}}$$

Herudfra bestemmes R1 og R2:

$$solve(50 = \frac{1}{2\pi\sqrt{10^{-6} \cdot (680 \cdot 10^{-9}) \cdot R^2}}, R)$$

$$R = 3860 \ \Omega \approx 3.9 \ k\Omega$$

C1 bestemmes til 1 μF Overføringsfunktionen:

$$T_v(s) = \frac{\frac{1}{R1 \cdot C1 \cdot R2 \cdot C2}}{s^2 + s(\frac{1}{R2 \cdot C1} + \frac{1}{R1 \cdot C1}) + \frac{1}{R1 \cdot C1 \cdot R2 \cdot C2}}$$

$$T_v(s) = \frac{\frac{1}{(3900(1\cdot10^{-6})\cdot3900(680\cdot10^{-9}))}}{\left(s^2 + \left(s\left(\frac{1}{3900(1\cdot10^{-6})} + \frac{1}{3900(1\cdot10^{-6})}\right)\right) + \frac{1}{(3900(1\cdot10^{-6})\cdot3900(680\cdot10^{-9}))}\right)}$$

ST3PRJ3 Gruppe X 3. Design

$$T_v(s) = \frac{1}{\frac{25857}{2500000000}s^2 + \frac{663}{125000}s + 1}$$

$$T_v(s) = \frac{96685,6170476}{s^2 + 512,820512821 \cdot s + 96685,6170476}$$

Optegner bodeplot vha. værktøj i Maple:

$$sys := TransferFunction(\frac{96685,6170476}{s^2 + 512,82 \cdot s + 96685,6170476}):$$

Figur 3.3: Bodeplot lavpasfilter

Bodeplottet bekræfter, at det er et lavpas filter. Der aflæses en knækfrekvens ved -3db til $269~{\rm rad/s}\approx 42,\!81{\rm Hz}$. Den beregnede knækfrekvens er blevet beregnet til 49,48 Hz. (Evt udregning i bilag) Dette er en relativ lille afvigelse.

Forstærker

3.3 Software

Trelagsmodellen

Softwaren er opbygget af trelagsmodellen.

Produktet 4

Version	Dato	Ansvarlig	Beskrivelse
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.

Formål

Formålet med dokumentet.

Accepttest 5

Version	Dato	Ansvarlig	Beskrivelse
0.1	30/9-15	HR, JL, LB og SV	Første udkast til accepttest
1.0	8/10-15	Alle	Rettelser efter review
2.0	4/11	HR, SV	Tilrettelser efter rettelser fra vejledere

Formål

Formålet med dokumentet.

5.1 Funktionelle krav

5.1.1 Accepttest af use cases

Use case 1

Use case under test	UC1: Log ind		
Scenarie	Hovedscenarie		
Forudsætning	Systemet er operationelt		
Handling	Forventet resultat	Resultat	Godkendt
1. Indtast ID "Bruger1"	Det indtastede ID vises på Log ind-GUI		
2. Indtast tilhørende password "1234"	Det indtastede password vises i GUI		
3. Tryk på "Log ind" -knappen	Der bliver logget ind		

Tabel 5.2: Accepttest of Use Case 1.

Use case 1 - undtagelse pkt. 3a

Use case under test	UC1: Log ind		
Scenarie	Undtagelse 3.a		
Forudsætning	Systemet er operationelt		
Handling	Forventet resultat	Resultat	Godkendt

5.1. Funktionelle krav ASE

Tabel 5.3: Accepttest of Use Case 1 - undtagelse.

Use case 2

Use case under test	UC2: Mål blodtryk		
Scenarie	Hovedscenarie		
Prækondition	UC1 er succesfuldt kørt. VPN forbindel- se skal være oprettet, når der testes på IHA.		
Handling	Forventet resultat	Resultat	Godkendt
1. Indtast CPR-nummer "1212923434"	Det indtastede CPR- nummer vises i "Di- agnostik" GUI		
2. Tryk på " <i>Hent</i> patientoplysninger" - knappen	_		
3. Nulpunktsjustering foretages	Nulpunktsjustering vises 4. Se efter måling på graf	_	

Tabel 5.4: Accepttest af Use case 2

5.1. Funktionelle krav ASE

Use case 2 - undtagelse pkt. 2a

Use case under test	UC2: Mål blodtryk		
Scenarie	Undtagelse 2.a		
Prækondition	UC1 er succesfuldt kørt. VPN forbindel- se skal være oprettet, når der testes på IHA.		
Handling	Forventet resultat	Resultat	Godkendt
1. Tryk på "Hent patientoplysninger" - knappen	v		

Tabel 5.5: Accepttest af Use case 2 - undtagelse 2.a

Use case 2 - undtagelse pkt. 3a

Use case under test	UC2: Mål blodtryk		
Scenarie	Undtagelse 3.a		
Prækondition	UC1 er succesfuldt kørt. VPN forbindel- se skal være oprettet, når der testes på IHA.		
Handling	Forventet resultat	Resultat	Godkendt
1. Tryk på " <i>Ny</i> nulpunktsjustering" -knappen	v v		

Tabel 5.6: Accepttest af Use case 2 - undtagelse 3.a

5.1. Funktionelle krav ASE

Use case 2 - undtagelse pkt. 4a

Use case under test	UC2: Mål blodtryk		
Scenarie	Undtagelse 4.a		
Prækondition	UC1 er succesfuldt kørt. VPN forbindel- se skal være oprettet, når der testes på IHA.		
Handling	Forventet resultat	Resultat	$\operatorname{Godkendt}$
1a. Konstruer højt diastolisk tryk (>140)	"Diagnostik"GUI får et rødt skær og der alarmeres med lyd		
1b. Konstruer lavt diastolisk tryk ($<$ 100)	"Diagnostik"GUI får et rødt skær og der alarmeres med lyd		
1c. Konstruer højt systolisk tryk (>90)	"Diagnostik"GUI får et rødt skær og der alarmeres med lyd		
1d. Konstruer lavt systolisk tryk ($<$ 60)	"Diagnostik"GUI får et rødt skær og der alarmeres med lyd		
2. Tryk på "Lydløs"	Lyden forsvinder i tre minutter		
3. Normaliser blod- trykket	Alarmen stopper, alarmlyden forsvin- der og brugergræn- sefladen får et grønt skær		

Tabel 5.7: Accepttest af Use case 2 - undtagelse 4.a

Use case 3

Use case under test	UC3: Filtrer signal		
Scenarie	Hovedscenarie UC2 er kørt succesfuldt		
Prækondition			
Handling	Forventet resultat	Resultat	$\operatorname{Godkendt}$
1. Tryk på "Fra" - radiobutton	Systemet slår filteret fra, og viser dette i radiobutton på GUI		
2. Tryk på " Til " - radiobutton	Systemet slår filteret til, og viser dette i radiobutton		

Tabel 5.8: Accepttest af Use case 3

Use case 3 - undtagelse pkt. 2a

Use case under test	UC3: Gem data	
Scenarie	Undtagelse 2a	
Prækondition	UC1 og UC2 er gennemført	
Handling	Forventet resultat	Godkendt
Handling 1. Tryk på "Gem data" -knappen	Forventet resultat Sysetemet giver beskeden "Data ikke gemt - tekniker er tilkaldt"	Godkendt

Tabel 5.9: Accepttest of Use case 3 - undtagelse 2.a

5.1. Funktionelle krav ASE

Use case 4

Use case under test	UC4: Gem data		
Scenarie	Hovedscenarie UC2 er gennemført.		
Forudsætning			
Handling	Forventet resultat	Resultat	Godkendt
1. Tryk på " $Gem\ da-ta$ " -knappen	Systemet giver beskeden "Data gemt"		
2. Tjek i databasen, om de korrekte data er gemt	De korrekte data er gemt i databasen		
3. Systemet giver beskeden "Data gemt"	Pop-up meddelelsen om at data er gemt kommer frem		

Tabel 5.10: Accepttest af Use case 4

Use case 5

Use case under test	UC5: Kalibrer system				
Scenarie	Hovedscenarie				
Forudsætning	Tekniker er tilkaldt				
Handling	Forventet resultat	Resultat	Godkendt		
1. Påtryk systemet tre kendte tryk	Reponserne aflæses på GUI				
2. Noter afvigelserne på de kendte tryk	Afvigelserne noteres				
3. Juster systemets software i forhold til kalibreringen	Justering foretages				

Tabel 5.11: Accepttest of Use case 4

5.1. Funktionelle krav ASE

Use case 5 - undtagelse 3a

Use case under test	UC5: Kalibrer system					
Scenarie	Undtagelse 3a.					
Forudsætning	Tekniker er tilkaldt					
Handling	Forventet resultat Resultat Godkendt					
1. Påtryk systemet tre kendte tryk	Reponserne aflæses på GUI					
2. Noter afvigelserne på de kendte tryk	Ingen afvigelser fore- findes					
3. UC5 afsluttes	UC5 afsluttes					

Tabel 5.12: Accepttest af Use case 5 - undtagelse pkt. 3a

5.2 Ikke-funktionelle krav

Krav	Krav	Test	Forventet	Resultat	Godkendt
nr.					
1	Programmet skal programmeres i C#, Visual Studio	Åbn programmet	Det ses i programmet om det er programmeret i C#		
2	Systemet bør kunne angive pulsen via en lyd ved hvert pulsslag ved Hz	Pulsen indlæses i systemet, og frekvensen måles	Pulsen angives af en lyd med Hz		
3	Blodtrykket skal kunne gemmes i database	Det tjekkes, om det korrekte data er gemt i en database	Det korrekte data er gemt i databasen		
4	Blodtrykket skal måles inden for 10 mmHg præcision	Det tjekkes at systemet måler blodtrykket inden for den angivne værdi	Blodtrykket er målt inden for 10 mmHg præcision		
5	Forstærkeren skal kunne forstærke det elektriske signal	Et signal sendes igennem forstærkeren	Signalet forstærkes		
6	Lavpasfilteret skal kunne filtrere støj fra det elektriske signal	Et signal sendes igennem lavpasfilteret	Signalet filtreres og støjen fjernes		
7	Programmet skal indeholde en "Log ind" -knap	Det ses i Log ind-GUI, om programmet indeholder en "Log ind" -knap	Programmet indeholder en "Log ind" -knap		

8	Programmet skal indeholde en "Hent patientoplys- ninger" -knap	Det ses i Diagnostik-GUI, om programmet indeholder en "Hent patientoplysninger" -knap	Programmet indeholder en "Hent patien- toplysninger" -knap
9	Programmet skal indeholde en "Ny nulpunktsju- stering" -knap	Det ses i Diagnostik-GUI, om programmet indeholder en "Ny nulpunkt- sjustering" -knap	Programmet indeholder en "Ny nulpunkt- sjustering" -knap
10	Programmet skal indeholde en " <i>Lydløs</i> " -knap	Det ses i Diagnostik- GUI, om programmet indeholder en "Lydløs" -knap	Programmet indeholder en "Lydløs" -knap
11	Programmet skal indeholde en "Gem data" -knap	Det ses i Gem data-GUI, om programmet indeholder en "Gem data" -knap	Programmet indeholder en "Gem data" -knap
12	Programmet skal indeholde en "Til" -radiobutton	Det ses i Diagnostik- GUI, om programmet indeholder en "Til" -radiobutton	Programmet indeholder en " Til" -radiobutton

13	Programmet	Det ses i	Programmet	
	skal indeholde	Diagnostik-	indeholder en	
	en "Fra"	GUI, om	"Fra"	
	-radiobutton	programmet	-radiobutton	
		indeholder en		
		" <i>Fra</i> "		
		-radiobutton		
14	Systemet bør	Kan ikke		
	kunne køre	testes		
	fejlfrit i et år			
15	Systemet bør	Kan ikke		
	have en	testes		
	MTTR på			
	højst 24 timer			
16	Systemet skal	Det ses på	Diagnostik-	
	kontinuert vise	Diagnostik-	GUI	
	en grafisk	GUI om denne	indeholder en	
	afbildning af	indeholder en	grafisk	
	blodtrykket,	grafisk	afbildning med	
	hvor tryk er	afbildning,	de korrekte	
	op af y-aksen	hvor tryk er	værdier op af	
	og tiden er på	op ad y-aksen	y- og x-aksen	
	x-aksen i	og tid er op ad		
	intervaller af 6	x-aksen		
	sekunder			
17	Softwaren bør	Det ses i	Programmet	
	være opbygget	programmet,	er opbygget af	
	af trelagsmo-	om dette er	trelagsmodel-	
	dellen	opbygget af	len	
		trelagsmodel-		
		len		

 $Tabel\ 5.13:\ Ikke-funktionelle\ krav$

Bilag

ST3PRJ3 Gruppe X Bilag

Bilag 1: Samarbejdsaftale

Faglige aftaler

- Vi forventer at få lavet et projekt, vi kan stå inde for.
- Vi har en ambition om en over middel præstation.

Aftaler om gruppens samarbejde

- Alle gruppemedlemmer er aktivt deltagende.
- Vi overholder indbyrdes aftaler.
- Vi arbejder effektivt og viser respekt for andre gruppemedlemmer.
- Alle aftaler indskrives i en fælles kalender, hvor det er eget ansvar at være opdateret.
- Det er eget ansvar at give besked, hvis man er forhindret i at møde til den aftalte tid.
- Der skal være plads til, at gruppemedlemmerne kan have fritidsinteresser.
- Der vil blive uddelegeret hjemmeopgaver, og disse skal laves til den aftalte tid. Hvis man ikke har haft tiden, skal dette meddeles hurtigst muligt til de resterende i gruppen.
- Vi planlægger arbejdstiden inkl. pause. Ingen sjov og surf i arbejdstiden.
- Vi forventer at kunne mødes mindst en gang om ugen.
- Vi forventer at alle gruppemedlemmer kan deltage i vejledermøderne en gang om ugen.
- Vi forventer, at det respekteres, at et gruppemedlem gerne vil være lidt i baggrunden, hvis personen måtte have en dårlig dag.
- Vi forventer at dette er et forum, hvor vi kan vende problemer mellem gruppemedlemmer åbent og derved ikke sidder med problemerne selv.
- Vi har tillid til, at de personer, der har ansvaret for en opgave, har styr på det.
- Vi er indstillet på at kunne tage imod både ris og ros.
- Der er plads til pauser også individuelle under gruppens arbejde.
- Gruppen fører en fælles logbog, der opdateres efter dagens arbejde.

Sanktioner

• Overholder et medlem ikke samarbejdsaftalen, vil gruppen ved enstemmighed kunne ekskludere gruppemedlemmet.

ST3PRJ3 Gruppe X Bilag

Bilag 2: Tidsplan

Version	Dato	Ansvarlig	Beskrivelse
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.

Bilag 2: Tidsplan ASE

00 4																×	×	ns
_ :									_									i tear
uge 51													×	×	×			*: Opdelt i teams
nge 20										×	×	×	×					
uge 49												×						
uge 48									×			×						Sort: Travl uge
uge 47									×									Sort:
uge 46									×									
uge 45							×	×	×									re uge
uge 44							×		×									Lilla: Lettere uge
uge 43						×												
uge 42																		O)
uge 41						×												Blå: Normal uge
uge 40				×	×	×												Blå: N
nge 39				×		×												
nge 38		×	×	×														eadline
uge 37	×	×	×															Brunrød: Deadline
TIDSPLAN	planlæg projektet	vidensindsamling	projektformulering	ks + at	ks-/at-deadline	systemarkitektur	ret sys.ark.	sys.arkdeadline	hw-/sw-iteration*	produkt-deadline	accepttest	rapportskrivning	komektur	rapport-deadline	off, deadline	forbered fremvis.	fremvisning	Ť

ST3PRJ3 Gruppe X Bilag

Bilag 3: Hardware versioner

Version	Dato	Ansvarlig	Beskrivelse
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.

Bilag 4: Software versioner

Version	Dato	Ansvarlig	Beskrivelse
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.
Tekst	Tekst	Tekst	Tekst.

ST3PRJ3 Gruppe X Bilag

Bilag 5: Logbog

Logbogen findes på vedlagte cd-rom.

Bilag 6: Mødereferater

 ${\rm M} \varnothing {\rm dereferater}$ findes på vedlagte cd-rom.

ST3PRJ3 Gruppe X Bilag

Bilag 7: Datasheet NI-6009 DAQ