Introduction to Lean

Jesse Vogel

Leiden University

19 September, 2022

What is Lean?

■ Interactive Theorem Prover (ITP)

Mathlib

Alternatives: Coq, Agda, Isabelle, HOL, Mizar, Metamath, ...

Type theory

Type theory	Set theory
types	sets
terms	elements
x:T	$x \in T$

Axiom (Product types)

Given types A and B, we can construct the *product type*

$$\prod_{\alpha \in A} B \qquad (\text{Lean} \quad \Pi \text{ (a : A), B})$$

also written as

$$A \to B$$
 (Lean $A \to B$)

Axiom (Function application)

Given a term $f:A\to B$ and a term a:A, there exists a term

$$f(a):B$$
 (Lean f a)

Note:
$$f:A\to B\to C$$
 means $f:A\to (B\to C)$, so $f(a)(b)$ is denoted 'f a b'

Axiom (Function abstraction)

Given types A and B, we can construct terms of $A \rightarrow B$ using λ -abstraction.

Example λ (x : Nat), x * x + 3 is a term of Nat \rightarrow Nat

Axiom (Dependent product types)

Given a type A and term $t: A \to \mathsf{Type}$, we can construct the dependent product

$$\prod_{\mathbf{A}} t(a) \qquad (\mathbf{Lean} \quad \Pi \ (\mathbf{a} \, : \, \mathbf{A}) \, , \, \, \mathbf{t} \, \, \mathbf{a})$$

Axiom (Conversion rules)

renaming variables

Example '
$$\lambda$$
 (x : Nat), x + 1' \rightsquigarrow ' λ (y : Nat), y + 1'

unfold lambdas

Example '(
$$\lambda$$
 (x : Nat), x + 1) 7' \rightsquigarrow '7 + 1'

notion of extensionality

Example '
$$\lambda$$
 (x : Nat), f x' \rightsquigarrow 'f'

etc.

Logic in type theory

Curry-Howard correspondence:

logical propositions are types,
whose terms are proofs of that proposition

a proposition is true if and only if it is non-empty

Type theory
$type\ P$
$term\ p:P$
$P \times Q$
P+Q
P o Q
П-type
Σ -type
unit type
empty type
$P o exttt{false}$

Definition. A monoid consists of the following data:

- lacksquare a type M
- $lacksquare a \operatorname{map} m: M o M o M$
- \blacksquare a term e:M
- a proof (i.e. term) of $\forall (a b c : M), m(m(a,b),c) = m(a,m(b,c))$
- ullet a *proof* (i.e. term) of \forall $(a:M), m(a,e) = a \land m(e,a) = a$

Axiom (Propositional extensionality)

Any two proofs of the same proposition are equal

$$\forall (P : \mathtt{Prop}) (pq : P), p = q$$

inductive Weekday

| monday : Weekday

| tuesday : Weekday

| wednesday : Weekday

| thursday : Weekday

| friday : Weekday

| saturday : Weekday

| sunday : Weekday

```
inductive Int.
| of nat : Nat \rightarrow Int -- of nat n
inductive Sum (A B : Type)
| inl : A → Sum
                              -- i.n.l. a
| inr : B → Sum
                              -- inr b
inductive Product (A B : Type)
| mk : A \rightarrow B \rightarrow Product  -- mk \ a \ b
inductive Sigma (A : Type) (t : A → Type)
| mk : \Pi (a : A), (t a \rightarrow Sigma)
```


| succ : Nat → Nat -- succ n

Axiom (Recursion)

```
Nat.rec: \Pi \ (t : Nat \rightarrow Sort*), \ t(0) \rightarrow (\ \Pi \ (n : Nat), \ t(n) \rightarrow t(succ(n)) \rightarrow \Pi \ (n : Nat), \ t(n)
```

inductive Nat | zero : Nat

| succ : Nat → Nat

```
Axiom (Recursion) (for t equal to P : Nat → Prop)
```

$$P(0) \rightarrow (\forall (n : Nat), P(n) \rightarrow P(succ(n)) \rightarrow \forall (n : Nat), P(n)$$

Principle of induction

Let P(n) be a proposition for every natural number n. If P(0) holds, and for all $n \in \mathbb{N}$ we have $P(n) \Rightarrow P(\mathsf{succ}(n))$, then P(n) holds for all $n \in \mathbb{N}$.

Lean demo

16/16