Ελατήριο Εργο Ελατηρίου

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Σε κάθε περίπτωση το ελατήριο από θέση x_1 μεταβαίνει σε θέση x_2 και η ενέργεια του ελατηρίου μεταβάλλεται από $U(x_1)$ σε $U(x_2)$. Η μεταβολή της ενέργειας του ελατηρίου είναι:

$$\Delta U = U(x_2) - U(x_1) = \frac{1}{2}kx_2^2 - \frac{1}{2}kx_1^2 = \frac{1}{2}k(x_2^2 - x_1^2)$$

Αν $|x_2|>|x_1|$ τότε το ελατήριο αύξησε την ενέργεια του ($\Delta U>0$), συνεπώς καταναλώθηκε έργο από εξωτερική δύναμη και άρα το έργο της δύναμης αυτής είναι αρνητικό.

$$W = -\Delta U = -\frac{1}{2}k(x_2^2 - x_1^2) = \frac{1}{2}k(x_1^2 - x_2^2)$$

Λόλας (10^o ΓΕΛ) Ελατήριο

Αν $|x_2|<|x_1|$ τότε το ελατήριο έχασε ενέργεια ($\Delta U<0$) και άρα προσφέρει έργο στο περιβάλλον, το οποίο π.χ. για εξωτερικό σώμα είναι θετικό.

$$W = -\Delta U = -\frac{1}{2}k(x_1^2 - x_2^2) = \frac{1}{2}k(x_2^2 - x_1^2)$$

Από Αρχή Διατήρησης Ενέργειας:

$$\begin{split} \mathbf{E} &= \mathbf{K} + U \\ \Delta \mathbf{E} &= 0 \\ \Delta \mathbf{K} + \Delta U &= 0 \\ \Delta \mathbf{K} &= -\Delta U \\ W &= -\Delta U \end{split}$$