

Цифровая обработка сигналов и изображений

Модуляция сигнала

Перцев Дмитрий

April 24, 2025

Белорусский государственный университет информатики и радиоэлектроники

- ▶ Гармонический детерминированный сигнал
- Модуляция
- Амплитудная модуляция
- Угловая модуляция
- Линейная частотная модуляция
- Манипуляция

Гармонический детерминированный сигнал

1 Гармонический детерминированный сигнал

• Гармонический сигнал задается уравнением:

$$s(t) = A \cdot \sin(2\pi f t + \phi)$$

- где
 - А амплитуда колебания
 - f частота сигнала
 - ϕ начальная фаза
- Комплексная запись такого сигнала:

$$s = A \cdot e^{j(2\pi f t + \phi)}$$

$$j=\sqrt{-1}$$
 - комплексная единица

Гармонический детерминированный сигнал

1 Гармонический детерминированный сигнал

- Гармонический детерминированный сигнал
- ▶ Модуляция
- Амплитудная модуляция
- Угловая модуляция
- Линейная частотная модуляция
- Манипуляция

- модуляцией называется процесс изменения одного или нескольких параметров сигнала
- для цифровых сигналов модуляция дискретными колебаниями иногда называется манипуляция
 - модулируемый сигнал называется "несущим" (на частоте этого сигнала передается модулируемое сообщение)
 - о как правило, низкочастотный
 - информационный сигнал называется модулирующим
 - о как правило, высокочастотный
- передача электромагнитного поля в пространстве выполняется с помощью антенн, размер которых зависит от длины волны λ
 - низкочастотные информационные сигналы во многих случаях просто физически невозможно передать от источника к получателю (требуются антенны огромных размеров)
 - в связи с этим применяются методы модуляции высокочастотных несущих колебаний

Использование модуляции позволяет:

- согласовать параметры сигнала с параметрами линии;
- повысить помехоустойчивость сигналов;
- увеличить дальность передачи сигналов;
- организовать многоканальные системы передачи.

При модуляции на вход модулятора подаются сигналы:

- u(t) модулирующий, данный сигнал является информационным и низкочастотным (его частоту обозначают W или F);
- S(t) модулируемый (несущий), данный сигнал является неинформационным и высокочастотным (его частота обозначается w_0 или f_0);
- $S_{res}(t)$ модулированный сигнал, данный сигнал является информационным и высокочастотным.

Модуляция

2 Модуляция

В качестве несущего сигнала может использоваться:

- гармоническое колебание, при этом модуляция называется аналоговой или непрерывной;
- периодическая последовательность импульсов, при этом модуляция называется импульсной;
- постоянный ток, при этом модуляция называется шумоподобной.

- Гармонический детерминированный сигнал
- Модуляция
- ▶ Амплитудная модуляция
- Угловая модуляция
- Линейная частотная модуляция
- Манипуляция

Амплитудная модуляция

3 Амплитудная модуляция

• Формула простейшего гармонического АМ-сигнала:

$$s(t) = A_c \cdot (1 + m \cdot cos(\omega_m t + \phi)) \ cdotcos(\omega_c t)$$

- где
 - $-A_c$ амплитуда несущего колебания
 - ω_c частота несущего сигнала
 - ω_m частота модулирующего (информационного) сигнала
 - ϕ начальная фаза модулирующего сигнала
 - *m* коэффициент модуляции
- в примере боковые полосы представляют собой синусоидальные сигналы и их частоты равны $\omega_c + \omega_m$ и $\omega_c \omega_m$
- спектр АМ-сигнала всегда симметричен относительно центральной (несущей) частоты

Амплитудная модуляция (изменение несущей частоты f_c)

Амплитудная модуляция (изменение частоты модулирующего колебания f_s)

Амплитудная модуляция (изменение коэффициента модуляции m)

- Амплитуда центральной гармоники равна амплитуде несущего колебания: $A_{\rm c} = A_0$
- ullet Амплитуда боковых составляющих равна $A_m=rac{A_0\cdot m}{2}$

Амплитудная модуляция (изменение коэффициента модуляции m)

Амплитудная модуляция: разновидности

- сигналы с подавленной несущей (балансная модуляция) относятся к классу
 АМ-сигналов, и позволяют производить передачу сообщений более экономно в плане энергетических спектральных характеристик
- модуляция с одной боковой полосой (single-sideband modulation, SSB), нашедшая применение в профессиональной и любительской радиосвязи
 - модуляция с верхней боковой полосой (upper sideband, USB)
 - модуляция с нижней боковой полосой (lower sideband, LSB)

- ▶ Гармонический детерминированный сигнал
- Модуляция
- Амплитудная модуляция
- Угловая модуляция
- Линейная частотная модуляция
- Манипуляция

Угловая модуляция

4 Угловая модуляция

- понимается модуляция по фазе или по частоте (математически можно представить, что изменяется "угол" тригонометрической функции)
- делятся на
 - частотно-модулированные (ЧМ) сигналы
 - о информационный сигнал управляет частотой несущего колебания
 - фазо-модулированные (ФМ) сигналы
 - о значение угла фазы изменяется пропорционально информационному сообщению
- применяются в музыкальных синтезаторах, в телевещании для передачи звука и сигнала цветности, для качественной передачи звуковых сообщений (например, радиовещание в УКВ диапазоне)
- высокое качество в сравнении с АМ-сигналами достигается за счет лучшего использования частотного диапазона передаваемого сообщения (в полосе сигнала укладывается больше информации, чем в сигналах с АМ-модуляцией)
- менее подвержено серьёзному влиянию окружающей среды при передаче, поскольку информация содержится не в амплитуде

Угловая модуляция

4 Угловая модуляция

• формула сигнала с модуляцией гармоническим колебанием:

$$s(t) = A_c \cdot cos(2\pi f_c t + \frac{A_m f_\delta}{f_m} sin(2\pi f_s t))$$

- где
 - A_c амплитуда несущего колебания
 - A_m амплитуда модулирующего колебания
 - f_c частота несущего сигнала
 - $-f_m$ частота модулирующего (информационного) сигнала
 - f_δ девиация частоты
- отношение девиации частоты к частоте модулирующего колебания называют индексом частотной модуляции
- модулирующая частота низкочастотная относительно частоты несущей

Угловая модуляция (в зависимости от значения девиации частоты f_δ)

4 Угловая модуляция

Угловая модуляция (модулирующий и частотно-модулированный сигналы)

4 Угловая модуляция

 чем больше девиация по частоте, тем шире спектр сигнала с угловой модуляцией

- Гармонический детерминированный сигнал
- Модуляция
- Амплитудная модуляция
- Угловая модуляция
- ▶ Линейная частотная модуляция
- Манипуляция

5 Линейная частотная модуляция

- это класс сигналов с частотной модуляцией, при которой частота несущего сигнала изменяется по линейному закону
- в задачах радиолокации часто требуется получить заданную разрешающую способность по дальности (минимальное расстояние между двумя целями, при которой дальность до каждой из целей определяется раздельно)
 - эта величина обратно пропорциональна ширине спектра сигнала
 - следовательно необходимо увеличивать ширину спектра для уменьшения значения разрешающей способности
 - уменьшения длительности сигнала (минус уменьшение энергии сигнала и дальности обнаружения)

5 Линейная частотная модуляция

• функция изменения частоты линейна:

$$f(t) = f_0 + kt$$

- где
 - $-\ f_0 = (F_{max} + F_{min})/2$ центральное значение несущей частоты.
 - $-k=(F_{max}-F_{min})/T_c$ коэффициент модуляции
 - T_c длительность сигнала
- база сигнала, которая характеризуется произведением ширины спектра и длительности импульса сигнала:

$$\beta = \delta f \cdot \tau$$

• $\beta >> 1$ - спектр стремится к прямоугольному виду, а фазовый спектр имеет квадратичную зависимость от частоты

5 Линейная частотная модуляция

• пример функции ЛЧМ:

$$s(t) = A\cos(2\pi f_0 t + \pi \beta t^2)$$

- где
 - A амплитуда сигнала
 - $-\ f_0$ начальное значение частоты
 - β коэффициент ЛЧМ-модуляции

5 Линейная частотная модуляция

- Гармонический детерминированный сигна.
- Модуляция
- Амплитудная модуляция
- Угловая модуляция
- Линейная частотная модуляция
- ▶ Манипуляция

Манипуляция

- при низкочастотной модуляции (baseband modulation) эти сигналы имеют вид импульсов заданной формы
- для полосовой модуляции (bandpass modulation) импульсы заданной формы модулируют синусоиду, называемую несущей (carrier frequency)
- виды манипуляций:
 - амплитудная (и квадратурная амплитудная) манипуляция (АМн и КАМ)
 - o amplitude-shift keying, ASK преобразование сигнала, при котором скачкообразно меняется амплитуда несущего колебания
 - квадратурная амплитудная манипуляция высоких порядков (Quadrature amplitude modulation, QAM)
 - частотная манипуляция (ЧМн, Frequency-shift keying, FSK)
 - преобразование сигнала, при котором скачкообразно меняется частота несущего сигнала в зависимости от значения цифрового сообщения
 - фазовая манипуляция (ФМн, Phase-shift keying, PSK)
 - процесс преобразования сигнала, при котором скачкообразно изменяется фаза несущего колебания
 - о существует большой класс сигналов с фазовой манипуляцией: двоичная (BPSK, QPSK,

- QAM-модуляция
- изменяется амплитуда и фаза сигнала, позволяет увеличить количество передаваемой информации
- сигнальное созвездие (constellation diagram) все возможные значения комплексной амплитуды манипулированного сигнала в виде точек на комплексной плоскости
 - в идеале прямоугольные, но на практике используются более гладкие импульсы в связи с тем, что для обеспечения строго прямоугольных модулирующих импульсов требуется недопустимо широкая полоса спектра сигнала

- для обеспечения высокой скорости передачи и качественного уровня достоверности приёма использование сигналов только с амплитудной модуляцией - недостаточно
 - на практике сигналы с модуляцией по нескольким параметрам (например, с амплитудно-фазовой манипуляцией)
 - о путём комбинирования методов амплитудной и фазовой манипуляции
 - о позволяет увеличить количество передаваемых бит в одном символе
 - позволяет повысить помехоустойчивость по сравнению с использованием только АМн или ФМн колебаний

Амплитудная манипуляция

Частотная манипуляция

- изменяемый параметр частота (амплитуда и начальная фаза остаются неизменными)
- логическим уровням '0' и '1' ставятся в соответствие два значения частоты
 - выбирают из условия ортогональности на интервале длительности сигнала T

Фазовая манипуляция

- · BPSK, Binary phase-shift keying
- изменяемый параметр фаза
- логическая '1' нулевая начальная фаза
- логический 'O' противоположное значение π (для двухбитовой фазовой манипуляции)

Цифровая обработка сигналов и изображений

Thank you for listening! Any questions?