Cognome		
Nome		Non scrivere qui
MATRICOLA		
Laurea	CIV AMB GEST INF ELN TLC MEC	1 2 3 4 5 6

Università degli Studi di Parma

DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA

Esame di Analisi Matematica 2 — Soluzioni

A.A. 2015-2016 — Parma, 20 Luglio 2016

Compilate l'intestazione in alto a sinistra e scrivete cognome e nome in stampatello anche su ogni altro foglio. Il tempo massimo per svolgere la prova è di tre ore. Al momento della consegna, inserite tutti i fogli dentro a questo

Esercizio 1. Sia $E = \{(x,y) \in \mathbb{R}^2 : y^2 < x < \sqrt{y^2 + 6}\}$. Allora,

- (a) E non è connesso.
- (b) $(\sqrt{7}, 1) \in E$.
- (c) $(3, -\sqrt{3}) \in \partial E$.

Soluzione. L'insieme E è connesso essendo semplice rispetto all'asse y e, per $x = \sqrt{7}$ e y = 1, risulta $x=1<7=y^2$. La risposta corretta deve quindi essere (c) e infatti il bordo di E è l'insieme

$$\partial E = \left\{ (x,y) \in \mathbb{R}^2 : \ x = y^2 \text{ per } 0 \le y \le \sqrt{3} \right\} \cup \left\{ (x,y) \in \mathbb{R}^2 : \ x = \sqrt{y^2 + 6} \text{ per } 0 \le y \le \sqrt{3} \right\}.$$

L'equazione del piano tangente al grafico di $f(x,y) = \frac{xe^y}{x+y^2}$ nel punto di coordinate Esercizio 2. (-2,1) è

(a)
$$z = ey - e$$

(a)
$$z = ey - e$$
. (b) $z = ex + 6ey - 2e$.

(c)
$$z = ey + e$$
.

Soluzione. L'equazione del piano tangente al grafico di f in (x_0, y_0) è

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

Si ha f(-2,1) = 2e e

$$f_x(-2,1) = \frac{y^2 e^y}{(x+y^2)^2} \Big|_{x=-2 \text{ e } y=1} = e;$$
 $f_y(-2,1) = -\frac{(x-y)^2 e^y}{(x+y^2)^2} \Big|_{x=-2 \text{ e } y=1} = 6e;$

da cui segue z = 2e + e(x+2) + 6e(y-1). La risposta corretta è quindi (b).

Esercizio 3. La funzione $x(t) = 2te^{-t}$ risolve solo due delle seguenti equazioni differenziali e non risolve la terza: quale? Indicate l'equazione che non è risolta da x(t).

(a)
$$x''(t) + 2x'(t) + x(t) = 0$$

(a)
$$x''(t) + 2x'(t) + x(t) = 0$$
. (b) $x'''(t) + 2x''(t) + x'(t) = 0$. (c) $x'(t) - x(t) = 2e^{-t}$.

(c)
$$x'(t) - x(t) = 2e^{-t}$$

Soluzione. Calcolando le derivate x'(t) e x''(t) di x(t) risulta

$$x''(t) + 2x'(t) + x(t) = 0, t \in \mathbb{R},$$

cosicché x(t) è soluzione dell'equazione (a) e quindi anche di (b). La risposta corretta (quella che individua l'equazione che non è risolta da x(t)) deve quindi essere (c) e infatti risulta

$$x'(t) - x(t) = -4te^{-t} + 2e^{-t}, t \in \mathbb{R}.$$

Esercizio 4. Sia

$$\Gamma = \{(x, y, z) : (x - 1)^2 + y^2 = 4 \text{ e } z = x^2 + y^2\}.$$

- (a) Descrivete Γ e provate che è una 1-superficie (curva) regolare in \mathbb{R}^3 .
- (b) Determinate i punti di Γ a distanza minima e massima dall'origine O=(0,0,0).
- (c) Provate che Γ giace su un piano e trovatene una parametrizzazione.

Soluzione. (a) L'insieme Γ è l'insieme di \mathbb{R}^3 che si ottiene intersecando la superficie del cilindro retto di raggio r=2 avente asse parallelo all'asse z passante per il punto del piano z=0 di coordinate (1,0) con il paraboloide di equazione $z=x^2+y^2$ avente vertice nell'origine e per asse la semiretta dei punti dell'asse z con $z\geq 0$.

Per provare che Γ è una 1-superficie regolare, consideriamo la funzione $\Phi \in C^{\infty}(\mathbb{R}^3, \mathbb{R}^2)$ di componenti

$$\Phi^{1}(x, y, z) = (x - 1)^{2} + y^{2} - 4$$
 e $\Phi^{2}(x, y, z) = x^{2} + y^{2} - z$

per ogni $(x, y, z) \in \mathbb{R}^3$. Risulta allora $\Gamma = \Phi^{-1}((0, 0))$ e

$$D\Phi(x,y,z) = \begin{pmatrix} 2(x-1) & 2y & 0\\ 2x & 2y & -1 \end{pmatrix}, \qquad (x,y,z) \in \mathbb{R}^3,$$

da cui segue rk $D\Phi(x,y,z) \leq 1$ se e solo se risulta x=1 e y=0. Poiché nessun punto di coordinate (1,0,z) $(z \in \mathbb{R})$ appartiene a Γ , risulta rk $D\Phi(x,y,z)=2$ per ogni $(x,y,z) \in \Gamma$ e questo prova che Γ è una 1-superficie (curva) regolare in \mathbb{R}^3 . Inoltre, Γ è chiuso per costruzione ed è anche limitato poiché risulta

$$\begin{cases} (x-1)^2 + y^2 = 4 \\ z = x^2 + y^2 \end{cases} \implies \begin{cases} (x-1)^2 + y^2 = 4 \\ x \in [-1,3] \\ z = x^2 + y^2 \end{cases} \implies \begin{cases} x^2 + y^2 = 2x + 3 \in [1,9] \\ z = x^2 + y^2 \end{cases} \implies \begin{cases} x^2 + y^2 \in [1,9] \\ z \in [1,9] \end{cases}$$

e da ciò segue $x^2 + y^2 + z^2 \le 90$.

(b) I punti di Γ a distanza minima e massima dall'origine O=(0,0,0) sono i punti di minimo e massimo globale su Γ (se esistono) della funzione

$$d_O(x, y, z) = ||(x, y, z)|| = \sqrt{x^2 + y^2 + z^2}, \quad (x, y, z) \in \mathbb{R}^3.$$

Per studiarne l'esistenza, eliminiamo la radice quadrata considerando la funzione $f \in C^{\infty}(\mathbb{R}^3)$ definita da

$$f(x, z) = [d_O(x, y, z)]^2 = x^2 + y^2 + z^2, \quad (x, y) \in \mathbb{R}^3.$$

Poichè risulta $f(x,y,z) \to +\infty$ per $(x,y,z) \to \infty$, la funzione f assume minimo globale e massimo globale sull'insieme chiuso Γ per il teorema di Weierstrass generalizzato e i punti di minimo e massimo globale di f su Γ sono i punti a distanza minima e massima di Γ dall'origine. Tali punti vanno ricercati tra i punti $(x,y,z) \in \Gamma$ tali che risulti

$$\det \begin{pmatrix} 2x & 2y & 2z \\ 2(x-1) & 2y & 0 \\ 2x & 2y & -1 \end{pmatrix} = -4y(z+1) = 0.$$

Deve allora essere $(x,y,z) \in \Gamma$ con y=0 o z=-1. Poiché non ci sono punti (x,y,z) di Γ con z<0, deve essere y=0. I punti $(x,0,z) \in \Gamma$ sono $P_1=(-1,0,1)$ e $P_2=(3,0,9)$ e da f(-1,0,1)=2 e f(3,0,9)=90 segue che P_1 è il punto di Γ a distanza minima dall'origine mentre P_2 è il punto di Γ a distanza massima dall'origine. Tali distanze sono $\sqrt{2}$ e $\sqrt{90}$ rispettivamente.

(c) Eliminando $x^2 + y^2$ dalle due equazioni che definiscono Γ si ricava che essa giace sul piano di equazione 2x - z = -3 ed una sua parametrizzazione $\gamma \colon [0, 2\pi] \to \mathbb{R}^3$ è data da

$$\gamma(t) = (1 + 2\cos t)e_1 + (2\sin t)e_2 + (5 + 4\cos t)e_3, \qquad t \in [0, 2\pi],$$

con e_1, e_2, e_3 base canonica di \mathbb{R}^3 .

Esercizio 5. Sia

$$K = \left\{ (x, y, z) : x^2 + y^2 + z^2 \ge 1 \text{ e } 0 \le z \le 2 - \sqrt{x^2 + y^2} \right\}.$$

(a) Descrive l'insieme K.

(b) Calcolate
$$I = \int_K z^2 dV_3(x, y, z)$$
.

Soluzione. (a) L'insieme K è il solido di rotazione che si ottiene facendo ruotare attorno all'asse z la figura contenuta nel primo quadrante del piano rz (con $r=\sqrt{x^2+y^2}$) compresa tra l'arco di circonferenza di equazione $r^2+z^2=1$ ($r\geq 0$ e $z\geq 0$) e il segmento di equazione r=2-z con $0\leq r\leq 2$ come illustrato in figura.

In particolare, il segmento z=2-r per $0 \le r \le 2$ non interseca l'arco di circonferenza $r^2+z^2=1$ poiché risulta $2-r \ge 1 \ge \sqrt{1-r^2}$ per $0 \le r \le 1$.

L'insieme K è quindi formato dai punti (x, y, z) che stanno al di fuori della palla di raggio unitario con centro nell'origine, al di sopra del piano z = 0 e sotto la superficie del cono retto con vertice nel punto di coordinate (0, y, 2), angolo al vertice pari a $\pi/4$ e asse coincidente con l'asse z.

(b) L'insieme K è evidentemente compatto ed è misurabile poiché è un solido di rotazione. Inoltre, la funzione

$$f(x,y,z) = z^2, \qquad (x,y,z) \in \mathbb{R}^3,$$

è continua su \mathbb{R}^3 e quindi integrabile su ogni insieme misurabile e compatto.

A meno di insiemi di misura nulla, risulta $K = K_1 \setminus K_2$ dove

$$K_1 = \{(x, y, z) : 0 \le z \le 2 - \sqrt{x^2 + y^2}\};$$
 e $K_2 = \{(x, y, z) : x^2 + y^2 + z^2 \le 1 \text{ e } z \ge 0\}.$

Anche gli insiemi K_1 e K_2 sono solidi di rotazione e sono misurabili e compatti per gli stessi motivi per cui K è tale. Quindi f è integrabile su K_1 e K_2 e possiamo calcolare l'integrale come differenza

$$I = \int_{K} z^{2} dV_{3}(x, y, z) = \int_{K_{1}} z^{2} dV_{3}(x, y, z) - \int_{K_{2}} z^{2} dV_{3}(x, y, z) = I_{1} - I_{2}.$$

Calcoliamo l'integrale di f su ciascun insieme K_i mediante la formula di riduzione per strati. Le proiezioni degli insiemi K_i sull'asse z sono gli intervalli $\pi_z(K_1) = [0,2]$ e $\pi_z(K_2) = [0,1]$ rispettivamente e le corrispondenti sezioni sono i cerchi nel piano xy definiti da

$$(K_1)^z = \{(x,y): \sqrt{x^2 + y^2} \le 2 - z\}, \qquad z \in [0,2],$$

 $(K_2)^z = \{(x,y): \sqrt{x^2 + y^2} \le \sqrt{1 - z^2}\}, \qquad z \in [0,1],$

rispettivamente. Per la formula di riduzione si ha allora

$$I_{1} = \int_{0}^{2} \left(\int_{(K_{1})^{z}} z^{2} dV_{2}(x, y) \right) dz = \int_{0}^{2} \pi z^{2} (2 - z)^{2} dz = \pi \left(\frac{4}{3} z^{3} - z^{4} + \frac{1}{5} z^{5} \right) \Big|_{0}^{2} = \frac{16}{15} \pi;$$

$$I_{2} = \int_{0}^{1} \left(\int_{(K_{1})^{z}} z^{2} dV_{2}(x, y) \right) dz = \int_{0}^{1} \pi z^{2} \left(1 - z^{2} \right) dz = \pi \left(\frac{1}{3} z^{3} - \frac{1}{5} z^{5} \right) \Big|_{0}^{1} = \frac{2}{15} \pi;$$

e quindi risulta

$$I = I_1 - I_2 = \frac{16}{15}\pi - \frac{2}{15}\pi = \frac{14}{15}\pi.$$

Esercizio 6. Determinate la soluzione del problema di Cauchy

$$\begin{cases} x'(t) = \frac{x(t)}{t \log t} + 2t \log t \\ x(e) = e^2. \end{cases}$$

Soluzione. (a) L'equazione proposta è un'equazione differenziale lineare del primo ordine della forma x'(t) = a(t)x(t) + b(t) con coefficienti a(t) e b(t) definiti per t > 0 e $t \neq 1$. Per la scelta della condizione iniziale deve quindi essere $t \in (1, +\infty)$ cosicché, posto

$$A(t) = \int \frac{1}{t \log t} dt = \log(\log t), \qquad t > 1,$$

tutte le soluzioni dell'equazione differenziale proposta sono date da

$$x(t) = e^{\log(\log t)} \int 2t (\log t) e^{-\log(\log t)} dt = \log t \int 2t dt = (t^2 + C) \log t, \quad t > 1,$$

con $C \in \mathbb{R}$ costante arbitraria.

Imponendo che risulti $x(e) = e^2$ si trova $e^2 + C = e^2$ ovvero C = 0. Quindi la soluzione del problema di Cauchy è

$$x(t) = t^2 \log t, \qquad t > 1.$$