임베디드컴퓨팅

Embedded Computing (0009488)

Introduction

2022년 2학기

정보기술대학 정보통신공학과 김 영 필 ypkim@inu.ac.kr

Contents

- What is embedded system?
- Embedded system classification and examples
- Embedded system pros. and cons.

A typical modern computer

- CPU
 - Intel i5, i7, AMD, ARM,...
- Memory
 - RAM (DDR..)
- Chipset
 - Northbridge, Southbridge, others
- I/O bus
 - IDE, SATA, AMBA,..
- Peripheral devices
 - HDD, SSD, CD-ROM, Printers, monitors, keyboard, mouse, tablet, Wired or wireless NIC,

A modern embedded device: ATmega328p

- ALU (Arithmetic logic unit)
 - arithmetic, logical, bit-functions
 - with 32 general purpose registers
- Memory and storage
 - SRAM
 - Store data fast but small (2KB)
 - · Main memory role
 - Flash memory
 - Slow but large (32KB) and cheap
 - Main storage role
 - EEPROM
 - Slow and small (1KB) but store data permanently (firmware)
- I/O lines
 - Connect to sensors, actuators, etc.

Computer vs. Embedded devices

Computer

- A combination of hardware and software resources which integrate together
- Can be

Embedded devices

- A device part of an integrated system which is formed as an combination of computer hardware and software
- Can operate without human interaction
- Made

Architectures

Computer

- Analog / digital computer
- Hybrid computer
- Harvard architecture
- Von Neumann architecture
- Reduced instruction set computer
- Complex instruction set computer

Embedded device

- Small Scale Embedded System
- Medium Scale Embedded Systems
- Sophisticated or Complex Embedded Systems

Peripherals

Computer

- Keyboard
- Mouse
- Display
- Printer
- Wireless / Ethernet network card
- Hard disk drives
- Solid state drives
- Optical disc drives
- Serial interfaces, USB drives, etc

Embedded device

- Serial Communication Interfaces (SCI)
- Synchronous Serial
 Communication Interface
- Universal Serial Bus (USB)
- Multi Media Cards (SD cards, Compact Flash) etc.

Size

Computer

- Physical
 - Usually bigger in size with larger hardware and input output devices attached to it
- Memory
 - Have larger memory
 requirement due to a lot of storage of data

Embedded device

- Physical
 - Embedded Devices are smaller in size than computers, with limited hardware.

- Memory
 - Need lesser Memory.

A typical computer system

- A computer system consists of
 - Hardware
 - Computing resources:
 CPU, Memory, ...
 - System software (S/W)
 - Managing/Operating computing resources
 - OS, DBMS, Hypervisor
 - Software development
 - Compiler, Linker, Assembler
 - Applications

System?

A set of interrelated parts/components which are designed/developed to perform a common tasks or specific work

Embedded system

Embedded?

- something with anything for a reason, or with another thing.

Embedded Systems?

- An integrated system which is formed as an combination of computer hardware and software
- A which has been developed for some
- Can work independently or attached to a larger system to work on few specific functions.
- Can work without human intervention or with a little human intervention

Application areas of Embedded System

- Mostly present everywhere, and use it in our everyday life unknowingly
- In most of the cases, it is integrated insides the larger systems
- Application areas of Embedded System
 - Home appliances
 - Transportation
 - Health care
 - Business sector & offices
 - Defense sector
 - Aerospace
 - Agricultural Sector

General characteristics of an embedded system

- Performs
- Low Cost
- •
- •
- High Efficiency
- Minimal User interface
- Less
- Highly Stable
- High Reliability
- Use microprocessors or micro controllers

Embedded Programming Languages

- Embedded systems can be programmed using different programming languages
 - Embedded C
 - Embedded C++
 - Embedded Java
 - Embedded Python
- Depends on the developer to use which programming language for the development

Architecture of Embedded systems

Hardware

- Microprocessors (CPU), memory, bus, digital signal processors (DSP)
- Microcontrollers
 - Built into one chip

Software and firmware

- Embedded operating systems, different applications, device drivers..

Basic H/W components

- Sensors, Analog to Digital Converter (ADC), Memory, Processor, Digital to Analog Converter (DAC), and Actuators etc.

Embedded Product Development Life Cycle

- Four parts and 7 steps
 - Analysis part
 - Step 1. Requirement analysis
 - Step 2. Examine
 - Design part
 - Step 3. Design
 - Implementation part
 - Step 4. Develop
 - Step 5. Test
 - Operational part
 - Step 6. Deploy
 - Step 7. Maintenance

- Desktop computer, workstation or laptop with high-performance, sufficient memory, large storage, and fast communication speed.
- Some programming languages can do interactive debugging
- Processors often have CPU debuggers via JTAG or similar debugging port

Advantages of Embedded System

- Fast in performance.
- Consumes less power
- Small in shape and size
- Scalable and reliable.
- Works on wide variety of sectors and environments
- Improve product quality and enhance performance
- Performs specific tasks without error

Disadvantages of Embedded System

- Difficult to backup of embedded files
- Sometimes complex to develop
- Integration may be a problem
- Offer very limited resources for processing
- Troubleshooting may be difficult
- Maintenance may be a problem

Classification of Embedded system

- Criteria
 - Performance and Functional Requirements
 - Real-time embedded system
 - Standalone embedded system
 - Networked embedded system
 - Mobile embedded system
 - Performance of Micro-controllers
 - Small-scale embedded system
 - Medium-scale embedded system
 - Sophisticated or Complex Embedded Systems

Real-time embedded systems

- Soft real-time
 - Deadline miss produces
 - Examples
 - Video streaming player
 - Internet radio player
- Hard real-time
 - Deadline miss produces
 - Examples
 - Traffic control system
 - Military usage in defense sector
 - Medical usage in health sector

Standalone Embedded systems

- Independent systems which can work by themselves
 - Do not
 - It takes input in digital or analog form and provides the output.
- Examples
 - MP3 players
 - Microwave ovens
 - Calculator

Networked Embedded Systems

- Connected to a via wired or wireless to provide output to the attached device.
 - Communicate with a server through network.
- Examples
 - Home security systems
 - ATM machine
 - Card swipe machine

Mobile Embedded Systems

- Small and easy to use and requires less resources.
- They are the most preferred embedded systems.
- In point of view mobile embedded systems are also best
- Examples
 - MP3 player
 - Smart / Mobile phones
 - Digital Camera

Small Scale Embedded Systems

- Designed using an micro-controller.
- Powered by a battery.
- The processor uses very less/limited resources of memory and processing speed.
- Mainly, not act as an independent system; instead, act as any component of computer system for a small and specific task.

ATmega328P 8-bit AVR® processor https://www.microchip.com/en-us/product/ATmega328P

Medium Scale Embedded Systems

- Designed using an micro-controller.
- Faster than that of small Scale Embedded Systems.
- Integration of hardware and software is complex in these systems.

 Higher level programming languages (e.g. Java, C, C++) and software tools (e.g. compiler, debugger, simulators) are used well

ARM Cortex-M0 and Cortex-M3 microcontroller ICs from NXP and Silicon Labs (Energy Micro) https://en.wikipedia.org/wiki/ARM_Cortex-M

Sophisticated or Complex Embedded Systems

- Designed using multiple micro-controller.
- Developed to perform large scale complex functions.
- Have high hardware and software complexities
 - Configurable processor, programmable logic array, etc.
- Use both hardware and software components to design final systems or hardware products

ARMv8-A Platform with Cortex A57/A53 MPCore big.LITTLE CPU chip https://en.wikipedia.org/wiki/ARM_architecture#ARMv8-A

Embedded system trends

- Some embedded systems can be relatively simple, they are becoming more complex
 - Supplant or offer capabilities beyond human
 - E.g. fast acting drones with integrate sensor data
- Expected to continue growing rapidly, driven in large part by the
 - Recent computing paradigms such as cloud computing, edge computing expands IoT applications
 - E.g. Wearables, drones, smart homes, smart buildings, video surveillance, 3D printers and smart transportation

