$$m_e = 9.1 * 10^{-31}$$

 $q_e = -1.6 * 10^{-19}$

$$q_e = -1.6 * 10^{-19}$$

$$K = 9 * 10^9$$

$$\varepsilon_0 = 8,85 * 10^{-12}$$

$$\mu_0 = 4\pi * 10^{-7}$$

1 Campo conservativo y potencial
$$\int_A^B \vec{E} \ d\vec{l} = -\int \vec{\nabla} \ V d\vec{l}$$

- **2** Flujo del campo \vec{E} sobre la superficie $S \emptyset = \int \vec{E} \ d\vec{s}$ **2** Ley de Coulomb: $\overrightarrow{F_{12}} = K \frac{q_1 * q_2}{r^2} \widehat{u_{12}} = -\overrightarrow{F_{21}} \qquad \overrightarrow{F_{12}} = \text{Fuerza que ejerce } q_1 \text{ sobre } q_2$
- $\varepsilon_0 = 8.85*10^{-12}$ Campo eléctrico: $\overrightarrow{E_{q1p}} = K \frac{q_1}{r^2} \widehat{u_{q_1p}}$ $\overrightarrow{F_{12}} = q_2 \overrightarrow{E_{q1}}$
 - **2** Energía potencial electroestática: $\vec{F} = -\vec{\nabla} U \rightarrow U = -\int \vec{F} d\vec{r} = K \frac{q_1 * q_2}{r} K \frac{q_1 * q_2}{r}$
 - Potencial electroestático: $\vec{E} = -\vec{\nabla} \ V \to V = -\int \vec{E} \ d\vec{r} = K \frac{q_1}{r} + C \ \text{y} \ U = q_2 * V$
 - Distribuciones continuas de carga: Densidad de carga $\rho = \frac{Q}{V}$, $\sigma = \frac{Q}{S}$, $\lambda = \frac{Q}{V}$
 - Teorema de Gauss: flujo a través de una superficie cerrada $\oint \vec{E} \ d\vec{s} = 4\pi K \ Q_{int}$
 - **2** Calculo de \vec{E} creado por hilo ∞ por Gauss $E = \frac{2k\lambda}{R}$
 - Plano ∞ de carga σ cte: $E = \frac{\sigma}{2\varepsilon_0}$
 - **2** Potencial electroestático creado por distribuciones continuas de carga: $V = -\int \vec{E} \ d\vec{r}$
 - **2** Potencial creado por un anillo de carga en su eje $V = \frac{K}{\sqrt{\chi^2 + u^2}} * q_T$
 - Potencial creado por un plano ∞ de carga $V=-\frac{\sigma}{2\varepsilon_0}x+\frac{\sigma}{2\varepsilon_0}x_0$
 - **2** Problemas de energías recordar: $U_{ei} + U_{ci} = U_{ef} + U_{cf}$

2 MRUV =
$$r = r_o + v_o t + \frac{1}{2} a t^2$$
 y $F = m * a \rightarrow a = \frac{F}{m}$

- **3** Aislante: $E_{int} \ll E_{ext}$ $E_{int} = \frac{E_{ext}}{\kappa}$ $\kappa = permitividad\ del\ medio$

3
$$E_T = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0} = \frac{\sigma}{\varepsilon_0}$$
 $V = \frac{\sigma}{\varepsilon_0}$

Condensadores: Almacenan energía eléctrica. Condensadores de placas paralelas $E_T = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0} = \frac{\sigma}{\varepsilon_0} \qquad V = \frac{\sigma}{\varepsilon_0} d$ Capacidad: $C = \frac{Q}{\Delta V} = \frac{\sigma A}{\sigma d/\varepsilon_0} = \frac{\varepsilon_0 A}{d} \rightarrow \text{Solo depende de geometría. Faradio, F}$

3
$$U = \int V dq = \int \frac{q}{c} dq = \frac{q^2}{2c} = \frac{1}{2c} q^2 = \frac{1}{2} Q V = \frac{1}{2} C V^2$$

- **3** Condensador conectado por cables a una batería. $\Delta V_{bat} = \Delta V_c$

- Condensadores con dieléctrico, entre sus placas $E_d=E_{int}=rac{E_0}{\kappa},\ V_d=E_d*d,\ C_d=\kappa C_0$
- 4 Corrientes eléctricas estacionarias: CC

$$I = \frac{c}{S} = \frac{Q}{t}$$
 Amperio, A; $R = \frac{V}{I}$ Resistencia Ω ; $R = \rho \frac{L}{S}$; $P = RI^2 = \frac{V^2}{R} = VI$ Wattios W

- 4 Asociación de resistencias en un circuito
 - En serie: I es común $\rightarrow V = \sum V_i = I * \sum R_i$ $R_{eq} = \sum R_i$
 - o En paralelo: V es común $\rightarrow I = \sum I_i = V(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2})$ $R_{eq} = (\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2})^{-1}$
- 4 Leyes de Kirchoff
 - Ley de los nodos: Los nodos no acumulan carga. $\sum I_{entrante} = \sum I_{saliente}$
 - Ley del bucle cerrado: En un circuito la ΔV de un bucle cerrado = 0

- $\circ \quad \tau = \mathit{RC} \text{ tiempo de carga del condensador } Q = 0\text{,}63Q_f$
- $\qquad \text{Descarga: En } t=0, Q=Q_o \rightarrow Q(t)=Q_o e^{-t/RC}; \ I=\frac{Q_o}{RC} e^{t/RC}$
- Régimen estacionario. Corriente no depende del tiempo I=0

B Creado x un dl de cable con I. Ley de Biot-Savart $d\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{dl \, x \, \hat{r}}{r^2}$

 $\mu = 10^{-6}$

Misma V

 C_3

 $C_T = C_3 + C_{1.2}$

 $C_i = \kappa_i * C_0$

Dirección de \vec{B}

Hacia afuera •

Hacia dentro x

En CC

Si $t \to 0$

C = cable L = abierto

Si $t \to \infty$

C = abierto

L = cable

5 *B* creado x cable finito $B = \frac{\mu_0}{4\pi} \frac{I}{R} (sen \theta_2 - sen \theta_1)$

5 *B* creado x cable infinito $B = \frac{\mu_0}{4\pi} \frac{2I}{R} = \frac{\mu_0 I}{2\pi R}$

B creado x espira circular en su centro $B = \frac{\mu_0 I}{2B}$

B creado x espira en su eje $B = \frac{\mu_0}{2\pi} \frac{\pi R^2 I}{\sqrt{(R^2 + d^2)^3}}$

B creado por un toroide $B = \mu_0 \frac{NI}{2\pi R}$

Fuerza que siente una carga $\vec{F} = q\vec{v} \times \vec{B}; \ |\vec{F}| = q|\vec{v}||\vec{B}|sen \theta$

B "giran" partículas, regla de la mano derecha.

5 Ciclotrón:
$$F_c = F_B \rightarrow m \frac{v^2}{r} = qvB \ sen \ \alpha \rightarrow r = \frac{mv}{qB} \ T = \frac{2\pi r}{v} = \frac{2\pi m}{qB}$$

Fuerza sobre un cable recto de longitud l en un B uniforme $F=\int_{\Gamma}\ I\ d\vec{l}\ x\ \vec{B}$

Fuerza sobre un cable recto ∞ : F = IBL

7 Ley de Faraday
$$\Delta V = -\frac{d\phi_m}{dt}$$
 fem (fuerza electromotriz). Se opone al cambio $I = \frac{fem}{R}$

Generador de corriente (Bobina que gira en un B con una ω) $\varepsilon = BA\omega sen(\omega t + \varphi_o)$

Transformador $\Delta V_1 \rightarrow \Delta V_2$ sin pérdida de energía $\Delta V_2 = \frac{N_2}{N_1} \Delta V_1$

7 Coeficiente de inducción $M_{12}=\frac{dI_2/dt}{\varepsilon_1}\rightarrow \varepsilon_1=-M_{12}\frac{dI_2}{dt}=-\frac{\phi_{12}}{dt}$; $M_{12}=\frac{\phi_{12}}{I_2}$ H(Henrios)

7 Coeficiente de autoinducción $L=\frac{\phi_m}{I}=\frac{\mu_o n I N \pi R^2}{I}=\mu_o n^2 l \pi r^2$

Inductores en circuitos eléctricos (Circuito RL) $V-IR-\Delta V_L=0$

• Si en
$$I_0 = 0$$
 $I(t) = \frac{V}{R}(1 - e^{-\frac{R}{L}t})$ Tiempo característico $\tau = \frac{L}{R}$

 $\circ \quad \text{Si en } I_0 \neq 0 \quad I(t) = I_0 e^{-\frac{R}{L}t}$

• Energía almacenada $U_m = \frac{1}{2}LI^2$, Potencia $Pot = \frac{dU_m}{dt}$

6 Circuitos de corriente alterna
$$V=V_{max}cos(\omega t)$$
 $\omega=\frac{\theta}{t}$ $T=\frac{2\pi}{\omega}\omega\to rad/s$ A frecuencias altas: $\chi_c=0$; $\chi_L=\infty$ A frecuencias bajas: $\chi_c=0$ A frecuencias bajas:

6 Valor medio
$$< V > = 0$$
 Valor eficaz $\rightarrow V_{eff} = \sqrt{<\left(V(t)\right)^2} > = \sqrt{\frac{V_{max}^2}{2}} = \frac{V_{max}}{\sqrt{2}}$

Resistencias $V_{R eff} = I_{eff}R$ no desfase

Condensadores
$$V_{c\ eff} = I_{eff}\chi_c \to \chi_c = \frac{1}{\omega c}$$
 (Capacitancia) V adelantada a I 90° $\chi_c = \infty; \chi_L = 0$

Bobinas $V_{L\,eff}=I_{eff}\chi_L \rightarrow \chi_L=\omega L$ (Reactancia)

Las bobinas y condensadores no disipan potencias $U_{Total} = \frac{1}{2}QV_c + \frac{1}{2}LI^2 = cte$

LCR con generador

$$V_{0} = V_{R} + V_{c} + V_{L}$$

$$V_{0} = V_{R} + V_{c} + V_{L}$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff \neq V_{R} = ff + V_{C} = ff + V_{L} = ff$$

$$V_{0} = ff + V_{C} = ff + V_{C} = ff + V_{C} = ff + V_{C} = ff$$

$$V_{0} = ff + V_{C} = ff + V_{C$$

- Horario

+ Antihorario