Lecture 10: February 18, 2015 cs 573: Probabilistic Reasoning Professor Nevatia
Spring 2015

Review

- Assignment #3 due Monday Feb 25
- Exam 1: Monday, March 2
 - Material covered: up to and including Feb 25
 - Closed book, closed notes
 - Will discuss more in Feb 23 class
- Last lecture:
 - Sum-Product Variable Elimination Algorithm
 - Applies to arbitrary directed and undirected graphs
 - Induced graph => Cluster graphs and clique trees
- Today's objective
 - Clique-tree construction
 - Inference on clique trees

Inference using Clique Trees

- Variable elimination algorithm provides distribution of one variable at a time. We can re-run multiple times to get distribution of all variables but much of the computation would be repeated.
- Working with *clique trees* will allow us to get distribution of all variables efficiently
- Topics:
 - How to convert original Bayesian/Markov networks to clique trees?
 - Inference algorithms for clique trees
 - Generalization to cluster (clique) graphs

Cluster Graph and Clique Tree

- Cluster Graph
 - Graph over a set of factors Φ , X is set of nodes
 - A *node* in this graph is a "cluster" (subset of) variables, say C_i
 - Family preserving: Each factor ϕ must be associated with some cluster, say \mathbf{C}_i , called $\alpha(\phi)$. scope $[\phi] \subseteq \mathbf{C}_i$
 - Each *edge* between two nodes, say C_i and C_j , is associated with a set of nodes, called a *sepset*, $S_{i,j}$, $S_{i,j} \subseteq C_i \cap C_j$.
- Clique Tree (also called a junction tree): cluster graph that is a tree with Running Intersection Property
 - Let T be a cluster tree over set of factors Φ
 - Let V_T be vertices of T and let ε_T be the edges
 - If X is in C_i and also in C_j then X is also in every cluster in the path between C_i and C_j .
 - Implies $S_{i,j} = C_i \cap C_j$.

Constructing a Clique Tree

- How to convert a BN/MN into a clique tree?
- Basic technique is to convert graphs to chordal graphs that are Imaps of original graphs
- Two methods to do this:
 - Use the *induced* graph generated by VE algorithm
 - If graph is not MN, convert to MN, triangulate to make a chordal graph and then infer a clique tree
- The tree is designed to maintain the original joint distribution
 - How to assign potentials to the nodes and factors in the generated tree?

Clique Tree from VE Induced Graph

- Induced graph:
 - Let $I_{\Phi, \prec}$ be the induced graph, \prec is the elimination ordering
 - Two variables are connected in $I_{\Phi,\prec}$ if they both appear in a common factor.
- Each factor in $I_{\Phi,\prec}$, say ψ_i , corresponds to a cluster of variables, say C_i .
- Each such cluster becomes a node in the cluster graph
- Undirected edge between two clusters C_i and C_j if a message (τ_i) is passed between them (directly) to construct ψ_i .
- Can be shown easily that the resulting graph is a tree
 - Each message (τ_i) is used only once
- Can be shown that the resulting tree satisfies the running intersection property; hence it is a clique (junction) tree

Theorems Associated with VE Clique Trees

- Note: material distributed across chapters 4, 9, 10 (10.1, 10.4)
- Thm 9.6 shows that the induced graph generated by VE is necessarily chordal
- Thm 4.12 shows that a chordal graph can be always represented as a clique tree (and maintains the joint distribution)
- Thm 10.1: Tree generated by VE satisfies the running intersection property
- Thm 10.2: Tree satisfies the running intersection property *if and only if* $S_{i,j}$ separates variables on " C_i side" of the tree from the " C_i side".
- Eliminate cliques that are a subset of another clique (i.e. maintain only the maximal cliques); running intersection property maintained.
- Examples: Figures 9.11, 10.1, 10.9

Cluster Graph from VE Steps (Fig 10.1)

Step	Variable eliminated	Factors used	Variables involved	New factor
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C,D	$\tau_1(D)$
2	D	$\phi_G(G,I,D), au_1(D)$	G, I, D	$ au_2(G,I)$
3	I	$\phi_I(I), \phi_S(S,I), \tau_2(G,I)$	G, S, I	$ au_3(G,S)$
4	H	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$
5	G	$\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$	G, J, L, S	$ au_5(J,L,S)$
6	S	$\tau_5(J,L,S), \phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$

Table 9.1 A run of variable elimination for the query P(J)

Simplify the Cluster Tree

Eliminate cliques that are not maximal (results in a chain for this example)

Another Example (Different Graph): Fig 10.9

Steps of VE not provided; suggest students practice on their own

Not a chain this time

Potentials in a Clique Tree

- What potentials to associate with each clique?
- Any factor that is a function of some or all variables in a clique node can be associated with this node
- Note: multiple choices for assignment of the factors to cliques may exist, *e.g.* P(I) could be in 2nd or 3rd cliques; either choice works (but one factor may be used in one clique only).
- Assign *initial potentials* to cliques by multiplying all the initial factors assigned to each clique.
- It should be clear that multiplication of all clique potentials yields the original distribution (same factor product)

BN/MN to Cliques

- If original graph was a directed graph, moralize it and convert to an undirected graph
- Triangulate the graph, *i.e.* make it chordal
 - Finding minimal triangulation (such that the size of the largest clique is the smallest possible) is NP-hard.
 - May use same heuristics as for VE ordering
- Find maximal cliques in the graph
 - NP-hard in general, but not for a triangulated graph
 - Maximum number of cliques is linear, not exponential in number of nodes
 - Start with any clique, add nodes until a max is achieved
 - Find node with maximum cardinality; collect corresponding cliques; repeat for remaining nodes

Cliques to Clique Trees

- Make each maximal clique, create a node in a cluster graph
- Connect edges between nodes having common variables
 - May not result in a tree.
 - Assign weights to edges proportional to the number of shared variables
- Construct a maximal spanning tree (tree spans all nodes and sum of weights of its edges is maximal)
 - Yields the desired clique tree (with running intersect property)
 - Proof is not given in the book (Exercise 10.17).
 - Method used in HUGIN and various commercial packages

Example

Variable Elimination in a Clique Tree

- Task: Compute P(J)
 - Choose a clique containing J as the root of the tree; all choices will give the same result.
 - Choose C₅ as an example
- 1. In C_1 : We eliminate C by performing $\sum_C \psi_1(C,D)$. The resulting factor has scope D. We send it as a message $\delta_{1\to 2}(D)$ to C_2 .
- 2. In C_2 : We define $\beta_2(G, I, D) = \delta_{1\to 2}(D) \cdot \psi_2(G, I, D)$. We then eliminate D to get a factor over G, I. The resulting factor is $\delta_{2\to 3}(G, I)$, which is sent to C_3 .
- 3. In C_3 : We define $\beta_3(G,S,I) = \delta_{2\to 3}(G,I) \cdot \psi_3(G,S,I)$ and eliminate I to get a factor over G,S, which is $\delta_{3\to 5}(G,S)$.
- 4. In C_4 : We eliminate H by performing $\sum_H \psi_4(H,G,J)$ and send out the resulting factor as $\delta_{4\to5}(G,J)$ to C_5 .
- 5. In C_5 : We define $\beta_5(G, J, S, L) = \delta_{3\to 5}(G, S) \cdot \delta_{4\to 5}(G, J) \cdot \psi_5(G, J, S, L)$.

Sum out G,L,S to get P(J)

Fig. 10.3 (a)

• C_5 selected as root; goal is to compute P(G)

Different Root Clique

- Choose C₄ as root (figure (b) has C₃ as root)
 - 1. In C_1 : The computation and message are unchanged.
- 2. In C_2 : The computation and message are unchanged.
- 3. In C_3 : The computation and message are unchanged.
- 4. In C_5 : We define $\beta_5(G, J, S, L) = \delta_{3\to 5}(G, S) \cdot \psi_5(G, J, S, L)$ and eliminate S and L. We send out the resulting factor as $\delta_{5\to 4}(G, J)$ to C_4 .
- 5. In C_4 : We define $\beta_4(H, G, J) = \delta_{5\to 4}(G, S) \cdot \psi_4(H, G, J)$.

Sum out H,G to get P(J)

Clique Tree Message Passing (Upward Pass)

- Let T be a clique tree, with cliques $C_1, C_2...C_k$
- Set of factors Φ , each $\phi \in \Phi$ is assigned to some clique, say α (ϕ)
- Initial potential of C_j is given by $\psi_j(C_j) = \prod_{\alpha(\phi)=j} \phi$
- Note product of ϕ factors => ψ factors
- Let C_r be the root of the clique tree
- Nb_i are *indices* of neighbors of C_i
- $p_r(i)$ the upstream neighbor of i
- Each C_i the sends a message to C_i
- Message from C_i to C_j is given by

$$\delta_{i \to j} = \sum_{C_i - S_{i,j}} \psi_i \cdot \prod_{k \in (Nb_i - \{j\})} \delta_{k \to i}.$$

• Factor at root is denoted by $\beta_r(\mathbf{C}_r)$ then $\beta_r(\mathbf{C}_r) = \sum_{\mathcal{X} - \mathbf{C}_r} \tilde{P}_{\Phi}(\mathcal{X})$.

Algorithm 10.1 Upward pass of variable elimination in clique tree

```
Procedure CTree-SP-Upward (
               // Set of factors
                // Clique tree over \Phi
               // Initial assignment of factors to cliques
                // Some selected root clique
      Initialize-Cliques
      while C_r is not ready
       Let C_i be a ready clique
     \begin{array}{l} \delta_{i \rightarrow p_r(i)}(S_{i,p_r(i)}) \leftarrow \text{SP-Message}(i,p_r(i)) \\ \beta_r \leftarrow \psi_r \cdot \prod_{k \in \text{Nb}_{C_r}} \delta_{k \rightarrow r} \end{array}
      return \beta_r
   Procedure Initialize-Cliques (
      for each clique C_i
        \psi_i(C_i) \leftarrow \prod_{\phi_i : \alpha(\phi_i)=i} \phi_j
   Procedure SP-Message (
              // sending clique
            // receiving clique
\psi(C_i) \leftarrow \psi_i \cdot \prod_{k \in (\mathrm{Nb}_i - \{j\})} \delta_{k \to i}
\tau(S_{i,j}) \leftarrow \sum_{C_i - S_{i,j}} \psi(C_i)
      return \tau(S_{i,i})
```

Correctness

- Shown that the algorithm computes the desired expressions
- Proposition 10.2
 - Assume that X is eliminated when a message is sent from C_i to C_j , then X does not appear anywhere in the tree on the C_i side of (i-j)
 - Follows directly from the running intersection property
- Theorem 10.3:

Notation: $\mathcal{F}_{\prec(i\to j)}$ Set of factors on the \mathbf{C}_i side of the edge; Set of variables on the \mathbf{C}_i side of the edge but not in \mathbf{S}_{ii}

Let $\delta_{i \to j}$ be a message from C_i to C_j . Then:

$$\delta_{i\to j}(S_{i,j}) = \sum_{\mathcal{V}_{\prec(i\to j)}} \prod_{\phi\in\mathcal{F}_{\prec(i\to j)}} \phi.$$

• Corollary 10.1 gives: $\beta_r(C_r) = \sum_{\mathcal{X} - C_r} \tilde{P}_{\Phi}(\mathcal{X}).$

Clique Tree Calibration

- Compute probability of every non-evidence variable
- Run once for each clique, making it the root, cost is $K \times c$ (K is number of cliques, c is cost of one upward pass)
- Example of Fig 10.2, consider roots to be C_5 , C_4 , and C_3
 - Messages from C_1 to C_2 and C_2 to C_3 are same in all three cases but no message is sent from C_4 to C_5 when C_4 is the root (message goes from C_5 to C_4)
 - In general, there may be many common computations, we do not need to repeat them.
- In general, message sent from C_i to C_j does not depend on the root (but some messages may not be sent depending on the root).
 - Two messages associated with each edge so we only need to compute 2(c-1) messages at most, c is the number of cliques.
- Fig 10.5 shows some examples of both upward and downward pass messages

Fig 10.5 (b)

Showing some steps of upward and downward messages

Message Passing

- Ready Clique: clique is ready to transmit a message
- C_i is *ready* to transmit to neighbor C_j when C_i has messages from all its neighbors except C_i .
 - Can then compute $\delta_{i\to j}(S_{i,j})$ by multiplying its *initial* potential with all incoming messages and eliminating the variables not in $S_{i,j}$.
- Scheduling can be systematic: an upward and then a downward pass or be *asynchronous* with each clique sending a message whenever it is ready. Complexity is the same in either case.
- Compute β_i by multiplying incoming messages with initial potential; would be same as computation in upward pass with root at C_i .
- Corollary 10.2: Applying algorithm 10.2 yields

$$\beta_i(C_i) = \sum_{\mathcal{X} - C_i} \tilde{P}_{\Phi}(\mathcal{X}).$$

Clique Tree Calibration Algorithm (10.2)

Algorithm 10.2 Calibration using sum-product message passing in a clique tree

```
Procedure CTree-SP-Calibrate (
\Phi, // Set of factors
T // Clique tree over \Phi)

Initialize-Cliques

while exist i,j such that i is ready to transmit to j

\delta_{i \to j}(S_{i,j}) \leftarrow \text{SP-Message}(i,j)

for each clique i

\beta_i \leftarrow \psi_i \cdot \prod_{k \in \text{Nb}_i} \delta_{k \to i}

return \{\beta_i\}
```

Calibration: Defnitions

• Calibrated pair of adjacent cliques

Two adjacent cliques C_i and C_j are said to be calibrated if

$$\sum_{C_i - S_{i,j}} \beta_i(C_i) = \sum_{C_j - S_{i,j}} \beta_j(C_j).$$

- Tree is calibrated if all adjacent pairs of cliques are calibrated.
 - $-\beta_i(\mathbf{C}_i)$ is called the *clique belief*
- Sepset belief is given by:

$$\mu_{i,j}(\boldsymbol{S}_{i,j}) = \sum_{\boldsymbol{C}_i - \boldsymbol{S}_{i,j}} \beta_i(\boldsymbol{C}_i) = \sum_{\boldsymbol{C}_j - \boldsymbol{S}_{i,j}} \beta_j(\boldsymbol{C}_j).$$

Next Class

• Read sections 10.3, 11.3.1 to 11.3.5