Skriftlig eksamen på Økonomistudiet Sommeren 2018

MATEMATIK A

Onsdag den 15. august 2018

2 timers skriftlig prøve uden hjælpemidler

Dette sæt omfatter 2 sider med 3 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet for at blive registeret som syg.

I den forbindelse skal du udfylde en blanket.

Derefter afleverer du en blank besvarelse i systemet og forlader eksamen.

Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitets Økonomiske Institut

1. årsprøve 2018 S-1A rx

Skriftlig eksamen i Matematik A Onsdag den 15. august 2018

2 sider med 3 opgaver.

Løsningstid: 2 timer.

Ingen hjælpemidler må medbringes ved eksamen.

Opgave 1. Partielle afledede.

Lad $\Omega \subseteq \mathbf{R}^2$ være en åben mængde, og lad $f:\Omega \to \mathbf{R}$ være en given funktion. Lad endvidere punktet $(a,b)\in \Omega$ være fast valgt.

(1) Forklar, hvad det vil sige, at de partielle afledede

$$\frac{\partial f}{\partial x}(a,b)$$
 og $\frac{\partial f}{\partial y}(a,b)$

eksisterer.

(2) Bestem de partielle afledede efter x og y for følgende funktioner, der alle er defineret på \mathbf{R}^2 :

$$f_1(x,y) = x^3 + \sin y, \ f_2(x,y) = xy^2 + \ln(1+y^2), \ f_3(x,y) = e^{xy} + 3y.$$

(3) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(0,0)$$
 og $\frac{\partial f}{\partial y}(0,0)$

i punktet (0,0) for den funktion $f: \mathbf{R}^2 \to \mathbf{R}$, der har forskriften

$$\begin{cases} 2x + 3y + 1 & \text{for } x > 0 \text{ og } y > 0 \\ x + y^2 & \text{ellers} \end{cases}$$

Er funktionen f differentiabel i punktet (0,0)?

Opgave 2. For x > 0 betragter vi den uendelige række

$$\sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{2x}} \right)^n.$$

(1) Bestem mængden

$$C = \left\{ x \in \mathbf{R}_+ \mid \sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{2x}} \right)^n \text{ er konvergent} \right\}.$$

(2) Bestem en forskrift for sumfunktionen $f: C \to \mathbf{R}$, idet udtrykket

$$\forall x \in C : f(x) = \sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{2x}}\right)^n$$

er gældende.

(3) Bestem den afledede f' og elasticiteten f^{ϵ} for sumfunktionen f.

Opgave 3. Vi betragter funktionen $f: \mathbf{R}^2 \to \mathbf{R}$, som er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = e^{xy} + x^2 + y^2.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

for funktionen fi et vilkårligt punkt $(x,y)\in\mathbf{R}^2.$

- (2) Vis, at punktet (0,0) er et stationært punkt for funktionen f, og bestem Hessematricen H(x,y) for f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.
- (3) Afgør, om det stationære punkt (0,0) er et maksimums-, et minimumseller et sadelpunkt for f.
- (4) Bestem en ligning for tangentplanen til grafen for f gennem punktet (0, 1, f(0, 1)).