1	
2	

WHAT	TS	CT.A	TMED	TQ.
<u> </u>	10	CLL		II.

1	1. An isolated polypeptide comprising a mutant peptide sequence,
2	wherein the mutant peptide sequence encodes an O-linked glycosylation site that does not
3	exist in a wild-type polypeptide corresponding to the isolated polypeptide.
1	2. The polypeptide of claim 1, wherein the polypeptide is a G-CSF
2	polypeptide.
1	3. The polypeptide of claim 2, wherein the G-CSF polypeptide comprises
2	a mutant peptide sequence with the formula of M ¹ X _n TPLGP or M ¹ B _o PZ _m X _n TPLGP, and
3	wherein
4	the superscript denotes the position of the amino acid in the wild-type G-CSF
5	amino acid sequence (SEQ ID NO:3), the subscripts n and m are integers selected from 0 to
6	3, and
7	at least one of X and B is Thr or Ser, and
8	when more than one of X and B is Thr or Ser, the identity of these moieties is
9	independently selected, and
10	Z is selected from glutamate, or any uncharged amino acid.
1	4. The mutant G-CSF polypeptide of claim 3, wherein the mutant peptide
2	sequence is selected from the sequences consisting of MVTPLGP, MQTPLGP,
3	MIATPLGP), MATPLGP, MPTQGAMPLGP, MVQTPLGP, MQSTPLGP,
4	MGQTPLGP, MAPTSSSPLGP, and MAPTPLGPA.
1	5. The polypeptide of claim 2, wherein the G-CSF polypeptide comprises
2	a mutant peptide sequence with the formula of M ¹ TPX _n B _o O _r P
3	wherein
4	the superscript denotes the position of the amino acid in SEQ ID NO:3, and
5	the subscripts n, o, and r are integers selected from 0 to 3, and
6	at least one of X, B and O is Thr or Ser, and
7	when more than one of X, B and O is Thr or Ser, the identity of these moieties
Q	is independently selected

1	6. The polypeptide of claim 5, wherein the mutant peptide sequence is
2	selected from the sequences consisting of: MTPTLGP, MTPTQLGP, MTPTSLGP,
3	MTPTQGP, MTPTSSP, M¹TPQTP, M¹TPTGP, M¹TPLTP, M¹TPNTGP, MTPLGP (G-
4	CSF mut #4), M ¹ TPVTP, M ¹ TPMVTP, and MT ¹ P ² TQGL ³ G ⁴ P ⁵ A ⁶ S ⁷ .
1	7. The polypeptide of claim 2, wherein the G-CSF polypeptide comprises
2	a mutant peptide sequence with the formula of LGX ⁵³ B ₀ LGI
3	wherein
4	the superscript denotes the position of the amino acid in the wild type G-CSF
5	amino acid sequence (SEQ ID NO: 3), and
6	X is histidine, serine, arginine, glutamic acid or tyrosine, and
7	B is either threonine or serine, and
8	o is an integer from 0 to 3.
1	8. The polypeptide of claim 7, wherein the mutant peptide sequence is
2	selected from the sequences consisting of: LGHTLGI, LGSSLGI, LGYSLGI, LGESLGI,
3	and LGSTLGI.
1	9. The polypeptide of claim 2, wherein the G-CSF polypeptide comprises
2	a mutant peptide sequence with the formula of $P^{129}Z_mJ_qO_rX_nPT$
3	wherein
4	the superscript denotes the position of the amino acid in the wild type G-CSF
5	amino acid sequence (SEQ ID NO. 3),
6	Z, J, O and X are independently selected from Thr or Ser, and
7	m, q, r, and n are integers independently selected from 0 to 3
1	10. The polypeptide of claim 9, wherein the mutant peptide sequence is
2	selected from the sequences consisting of: P ¹²⁹ ATQPT, P ¹²⁹ TLGPT, P ¹²⁹ TQGPT,
3	P^{129} TSSPT, P^{129} TQGAPT, P^{129} NTGPT, PALQPTQT, P^{129} ALTPT, P^{129} MVTPT,
4	P ¹²⁹ ASSTPT, P ¹²⁹ TTQP, P ¹²⁹ NTLP, P ¹²⁹ TLQP, MAP ¹²⁹ ATQPTQGAM, and
5	MP ¹²⁹ ATTQPTQGAM.
ĺ	11. The polypeptide of claim 2, wherein the G-CSF polypeptide comprises
2	a mutant peptide sequence with the formula of PZ _m U _s J _q P ⁶¹ O _r X _n B _o C
3	wherein

4	the superscript denotes the position of the amino acid in the wild type G-CSF
5	amino acid sequence (SEQ ID NO. 3),
6	at least one of Z, J, O, and U is selected from threonine or serine, and
7	when more than one of Z, J, O and U is threonine or serine, each is
8	independently selected, and
9	m, s, q, r, n, and o are integers independently selected from 0 to 3.
1	12. The polypeptide of claim 11, wherein the mutant peptide sequence is
2	selected from the sequences consisting of: P ⁶¹ TSSC, P ⁶¹ TSSAC, LGIPTA P ⁶¹ LSSC,
3	LGIPTQ P ⁶¹ LSSC, LGIPTQG P ⁶¹ LSSC, LGIPQT P ⁶¹ LSSC, LGIPTS P ⁶¹ LSSC, LGIPTS
4	P ⁶¹ LSSC, LGIPTQP ⁶¹ LSSC, LGTPWAP ⁶¹ LSSC, LGTPFA P ⁶¹ LSSC, P ⁶¹ FTP, and
5	SLGAP ⁵⁸ TAP ⁶¹ LSS.
1	13. The polypeptide of claim 2, wherein the G-CSF polypeptide comprises
2	a mutant peptide sequence with the formula of $\mathcal{O}_a G_p J_q O_r P^{175} X_n B_o Z_m U_s \Psi_t$
3	wherein
4	the superscript denotes the position of the amino acid in the wild type G-CSF
5	amino acid sequence (SEQ ID NO. 3),
6	at least one of Z, U, O, J, G, Ø, B and X is threonine or serine, and when more
7	than one of Z, U, O, J, G, Ø, B and X are threonine or serine, they are
8	independently selected; Ø is optionally R, and G is optionally H; the symbol Ψ
9	represents any uncharged amino acid residue or glutamate and
10	a, p, q, r, n, o, m, s, and t are integers independently selected from 0 to 3
1	14. The polypeptide of claim 13, wherein the mutant peptide sequence is
2	selected from the sequences consisting of: RHLAQTP ¹⁷⁵ , RHLAGQTP ¹⁷⁵ ,
3	QP ¹⁷⁵ TQGAMP, RHLAQTP ¹⁷⁵ AM, QP ¹⁷⁵ TSSAP, QP ¹⁷⁵ TSSAP, QP ¹⁷⁵ TQGAMP,
4	QP ¹⁷⁵ TQGAM, QP ¹⁷⁵ TQGA, QP ¹⁷⁵ TVM, QP ¹⁷⁵ NTGP, and QP ¹⁷⁵ QTLP.
1	15. The polypeptide of claim 2, comprises a mutant peptide sequence
2	selected from the sequences P ¹³³ TQTAMP ¹³⁹ , P ¹³³ TQGTMP, P ¹³³ TQGTNP,
3	P ¹³³ TQGTLP, and PALQP ¹³³ TQTAMPA.
1	16. The polypeptide of claim 1, wherein the polypeptide is an hGH
2	polypeptide.

i	17. The polypeptide of claim 16, wherein the mutant peptide sequence
2	comprises a sequence selected from: M¹APTSSPTIPL¹SR9 and DGSP¹³³NTGQIFK¹⁴0
1	18. The polypeptide of claim 15, wherein the hGH polypeptide comprises
2	a mutant peptide sequence with a formula of P133JXBOZUK140QTYS, and
3	wherein
4	the superscript denotes the position of the amino acid in the wild type hGH
5	amino acid sequence (SEQ ID NO: 20), and
6	J is selected from threonine and arginine;
7	X is selected from alanine, glutamine, isoleucine, and threonine;
8	B is selected from glycine, alanine, leucine, valine, asparagine, glutamine, and
9	threonine;
10	O is selected from tyrosine, serine, alanine, and threonine;
11	Z is selected from isoleucine and methionine; and
12	U is selcted from phenylalanine and proline.
1	19. The polypeptide of claim 18, wherein the mutant peptide sequence is
2	selected from the group consisting of PTTGQIFK, PTTAQIFK, PTTLQIFK,
3	PTTLYVFK, PTTVQIFK, PTTVSIFK, PTTNQIFK, PTTQQIFK, PTATQIFK,
4	PTQGQIFK, PTQGAIFK, PTQGAMFK, PTIGQIFK, PTINQIFK, PTINTIFK,
5	PTILQIFK, PTIVQIFK, PTIQQIFK, PTIAQIFK, P133TTTQIFK140QTYS, and
6	$P^{133}TQGAMPK^{140}QTYS.$
1	20. The polypeptide of claim 15, wherein the hGH polypeptide comprises
2	a mutant peptide sequence with a formula of P133RTGQIPTQBYS
3	wherein
4	the superscript denotes the position of the amino acid in the wild type hGH
5	amino acid sequence (SEQ ID NO:20), and
6	B is selected from alanine and threonine.
1	21. The polypeptide of claim 20, wherein the mutant peptide sequence is
2	selected from the group consisting of PRTGQIPTQTYS and PRTGQIPTQAYS.
1	22. The polypeptide of claim 16, wherein the hGH polypeptide comprises
2	a mutant peptide sequence with a formula of L128XTBOP133UTG

3	wherein
4	superscripts denote the position of the amino acid in the wild-type hGH amino
5	acid sequence; and wherein
6	X is selected from glutamic acid, valine and alanine;
7	B is selcted from glutamine, glutamic acid, and glycine;
8	O is selcted from serine and threonine; and
9	U is selected from arginine, serine, alanine and leucine
1	23. The mutant hGH polypeptide of claim 22, wherein the mutant peptide
2	sequence is selected from the group consisting of: LETQSP ¹³³ RTG, LETQSP ¹³³ STG,
3	LETQSP ¹³³ ATG, LETQSP ¹³³ LTG, LETETP ¹³³ R, LETETP ¹³³ A, LVTQSP ¹³³ RTG,
4	LVTETP ¹³³ RTG, LVTETP ¹³³ ATG, and LATGSP ¹³³ RTG.
1	24. The polypeptide of claim 16, wherein the hGH polypeptide comprises
2	a mutant peptide sequence with a formula of M¹BPTX _n Z _m OPLSRL
3	wherein
4	wherein the superscript denotes the position of the amino acid in the wild type
5	hGH amino acid sequence (SEQ ID NO:19); and
6	B is selected from phenylalanine, valine and alanine or a combination thereof;
7	X is selected from glutamate, valine and proline
8	Z is threonine;
9	O is selected from leucine and isoleucine; and
10	when X is proline, Z is threonine; and
11	wherein
12	n and m are integers selected from 0 and 2.
1	25. The polypeptide of claim 24, wherein the mutant peptide sequence is
2	selected from the group consisting of M¹FPTE IPLSRL, M¹FPTV LPLSRL, and
3	M ¹ APTPTIPLSRL.
1	26. The polypeptide of claim 24, wherein the mutant peptide sequence <u>is</u>
2	M¹VTPTIPLSRL, wherein the superscript 1, denotes the first position amino acid in the
3	wild type hGH amino acid sequence (SEQ ID NO:19)
1	27. The polypeptide of claim 15, wherein the mutant peptide sequence is
2	selected from the group consisting of: LEDGSPTTGQIFKQTYS,

3	LEDGSPITAQIFKQIYS, LEDGSPIATQIFKQIYS, LEDGSPIQGAMFKQIYS,
4	LEDGSPTQGAIFKQTYS, LEDGSPTQGQIFKQTYS, LEDGSPTTLYVFKQTYS,
5	LEDGSPTINTIFKQTYS, LEDGSPTTVSIFKQTYS, LEDGSPRTGQIPTQTYS,
6	LEDGSPRTGQIPTQAYS, LEDGSPTTLQIFKQTYS, LETETPRTGQIFKQTYS,
7	LVTETPRTGQIFKQTYS, LETQSPRTGQIFKQTYS, LVTQSPRTGQIFKQTYS,
8	LVTETPATGQIFKQTYS, LEDGSPTQGAMPKQTYS, and LEDGSPTTTQIFKQTYS
1	28. The polypeptide of claim 1, wherein the polypeptide is an IFN alpha
2	polypeptide.
1	29. The polypeptide of claim 28, wherein wherein the INF alpha
2	polypeptide has a peptide sequence comprising a mutant amino acid sequence, and the
3	peptide sequence corresponds to a region of INF alpha 2 having a sequence as shown in
4	SEQ NO:22, and wherein the mutant amino acid sequence contains a mutation to a
5	threonine or serine amino acid at a position corresponding to T ¹⁰⁶ of INF alpha 2.
1	30. The polypeptide of claim 29, wherein the IFN alpha polypeptide is
2	selected from the group consisting of IFN alpha, IFN alpha 4, IFN alpha 5, IFN alpha 6,
3	IFN alpha 7, IFN alpha 8, IFN alpha 10, IFN alpha 14, IFN alpha 16, IFN alpha 17, and
4	IFN alpha 21.
1	31. The polypeptide of claim 30, wherein the IFN alpha polypeptide is an
2	IFN alpha polypeptide comprising a mutant amino acid sequence selected from the group
3	consisting of:
4	99CVMQEERVTETPLMNADSIL118, 99CVMQEEGVTETPLMNADSIL118,
5	and 99CVMQGVGVTETPLMNADSIL118.
1	32. The polypeptide of claim 30, wherein the IFN alpha polypeptide is an
2	IFN alpha 4 polypeptide comprising a mutant amino acid sequence selected from the
3	group consisting of:
4	⁹⁹ CVIQEVGVTETPLMNVDSIL ¹¹⁸ , and ⁹⁹ CVIQGVGVTETPLMKEDSIL ¹¹⁸
1	33. The polypeptide of claim 30, wherein the IFN alpha polypeptide is an
2	IFN alpha 5 polypeptide comprising a mutant amino acid sequence selected from the
3	group consisting of:

4	"CMMQEVGVTDTPLMNVDSIL", "CMMQEVGVTETPLMNVDSIL"
5	and 99CMMQGVGVTDTPLMNVDSIL118.
1	34. The polypeptide of claim 30, wherein the IFN alpha polypeptide is an
2	IFN alpha 6 polypeptide comprising a mutant amino acid sequence selected from the
3	group consisting of:
4	99CVMQEVWVTGTPLMNEDSIL118, 99CVMQEVGVTGTPLMNEDSIL118,
5	and 99CVMQGVGVTETPLMNEDSIL118.
1	35. The polypeptide of claim 30, wherein the IFN alpha polypeptide is an
2	IFN alpha 7 polypeptide comprising a mutant amino acid sequence selected from the
3	group consisting of:
4	⁹⁹ CVIQEVGVTETPLMNEDFIL ¹¹⁸ , and ⁹⁹ CVIQGVGVTETPLMNEDFIL ¹¹⁸ .
1	36. The polypeptide of claim 30, wherein the IFN alpha polypeptide is an
2	IFN alpha 8 polypeptide comprising a mutant amino acid sequence selected from the
3	group consisting of:
4	⁹⁹ CVMQEVGVTESPLMYEDSIL ¹¹⁸ , and ⁹⁹ CVMQGVGVTESPLMYEDSIL ¹¹⁸ .
1	37. The polypeptide of claim 30, wherein the IFN alpha polypeptide is an
2	IFN alpha 10 polypeptide comprising a mutant amino acid sequence selected from the
3	group consisting of:
4	99CVIQEVGVTETPLMNEDSIL ¹¹⁸ , and 99CVIQGVGVTETPLMNEDSIL ¹¹⁸ .
1	38. The polypeptide of claim 30, wherein the IFN alpha polypeptide is an
2	IFN alpha 14 polypeptide comprising a mutant amino acid sequence selected from the
3	group consisting of:
4	99CVIQEVGVTETPLMNEDSIL ¹¹⁸ , and 99CVIQGVGVTETPLMNEDSIL ¹¹⁸ .
1	39. The polypeptide of claim 30, wherein the IFN alpha polypeptide is an
2	IFN alpha 16 polypeptide comprising a mutant amino acid sequence selected from the
3	group consisting of:
4	99CVTQEVGVTEIPLMNEDSIL118, 99CVTQEVGVTETPLMNEDSIL118, and
5	99CVTQGVGVTETPLMNEDSIL ¹¹⁸ .

Ţ	40. The polypeptide of claim 30, wherein the IFN alpha polypeptide is an
2	IFN alpha 17 polypeptide comprising a mutant amino acid sequence selected from the
3	group consisting of:
4	99CVIQEVGMTETPLMNEDSIL118, 99CVIQEVGVTETPLMNEDSIL118, and
5	99CVIQGVGMTETPLMNEDSIL ¹¹⁸ .
1	41. The polypeptide of claim 30, wherein the IFN alpha polypeptide is an
2	IFN alpha 21 polypeptide comprising a mutant amino acid sequence selected from the
3	group consisting of:
4	99CVIQEVGVTETPLMNVDSIL118, and 99CVIQGVGVTETPLMNVDSIL118
1	42. An isolated nucleic acid encoding the polypeptide of claim 1.
1	43. An expression cassette comprising the nucleic acid of claim 42.
1	44. A cell comprising the nucleic acid of claim 42.
1	45. The polypeptide of claim 1, having a formula selected from:
	viv viv
	AA—O—GalNAc—X ; and AA—O—GalNAc—X
	AA—O—GailNAC—X ; and AA—O—GailNAC—X
2	<i>₩</i>
3	wherein AA is an amino acid a side chain that comprises a hydroxyl moiety
4	that is within the mutant peptide sequence; and X a modifying group or a saccharyl moiety.
1	46. The polypeptide according to claim 45, wherein X comprises a group
2	selected from sialyl, galactosyl and Gal-Sia moieties, wherein at least one of said sialyl,
3	galactosyl and Gal-Sia comprises a modifying group.
l	47. The polypeptide according to claim 45, wherein X comprises the

2

moiety:

3

4

wherein

D is a member selected from -OH and R¹-L-HN-;

G is a member selected from R^1 -L- and -C(O)(C_1 - C_6)alkyl;

R¹ is a moiety comprising a member selected a moiety comprising a straight-8 chain or branched poly(ethylene glycol) residue; and

L is a linker which is a member selected from a bond, substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl, such that when D is OH, G is R¹-L-, and when G is -C(O)(C₁-C₆)alkyl, D is R¹-L-NH-.

1 48. The polypeptide according to claim 45, wherein X comprises the structure:

3

5

in which L is a substituted or unsubstituted alkyl or substituted or unsubstituted heteroalkyl group; and n is selected from the integers from 0 to about 500.

1 49. The polypeptide according to claim 45, wherein X comprises the structure:

1.

wherein s is selected from the integers from 0 to 20.

- 1 50. A method for making a glycoconjugate of the polypeptide of claim 1, comprising the steps of:
 - (a) recombinantly producing the polypeptide, and
 - (b) enzymatically glycosylating the polypeptide with a modified sugar at said O-linked glycosylation site.
 - 51. A pharmaceutical composition of a granulocyte colony stimulating factor (G-CSF) comprising: an effective amount of the polypeptide of claim 2, wherein said polypeptide is glycoconjugated with a modified sugar.
 - 52. The pharmaceutical composition according to claim 51, wherein said modified sugar is modified with a member selected from poly(ethylene glycol) and methoxy-poly(ethylene glycol) (m-PEG).
 - 53. A pharmaceutical composition of human Growth Hormone (hGH) comprising an effective amount of the polypeptide of claim 16, wherein said polypeptide is glycoconjugated with a modified sugar.
 - 54. The pharmaceutical composition according to claim 53, wherein said modified sugar is modified with a member selected from poly(ethylene glycol) and methoxy-poly(ethylene glycol) (m-PEG).
 - 55. A pharmaceutical composition of a granulocyte macrophage colony stimulating factor (GM-CSF) comprising an effective amount of GM-CSF polypeptide comprising a mutant peptide sequence, wherein the mutant sequence comprises an O-linked glycosylation site that does not exist in a wild-type GM-CSF polypeptide, and wherein said polypeptidepeptide is glycoconjugated with a modified sugar.

1	56. The pharmaceutical composition according to claim 55, wherein said
2	modified sugar is modified with a member selected from poly(ethylene glycol) and
3	methoxy-poly(ethylene glycol) (m-PEG).
1	57. A pharmaceutical composition of an interferon alpha-2b comprising as
2	effective amount of the polypeptide of claim 28, wherein said polypeptide is
3	glycoconjugated with a modified sugar.
1	58. The pharmaceutical composition according to claim 57, wherein said
2	modified sugar is modified with a member selected from poly(ethylene glycol) and
3	methoxy-poly(ethylene glycol) (m-PEG).
1	59. A method of providing G-CSF therapy to a subject in need of said
2	therapy, said method comprising, administering to said subject an effective amount the
3	pharmaceutical composition of claim 51.
1	60. A method of providing granulocyte macrophage colony stimulating
2	factor therapy to a subject in need of said therapy, said method comprising:
3	administering to said subject an effective amount the pharmaceutical
4	composition of claim 55.
1	61. A method of providing interferon therapy to a subject in need of said
2	therapy, said method comprising:
3	administering to said subject an effective amount the pharmaceutical
4	composition of claim 57.
1	62. A method of providing Growth Hormone therapy to a subject in need
2	of said therapy, said method comprising:
3	administering to said subject an effective amount the pharmaceutical
4	composition of claim 53.
1	