Size-Dependence of Percent Hartree-Fock Exchange in Hybrid DFT Functionals

Joe Hesse-Withbroe, Pomona College

Pomona College Intensive Summer Experience Symposium

Acknowledgments

Co-Collaborators:

- Dr. Lewis Johnson (University of Washington)
- Dr. Bruce Robinson (University of Washington)

Other Thanks:

- Dalton/Robinson Lab (University of Washington)
- Dr. Gordon Stecklein (Pomona College & Efficient Power Conversion) RAISE Project Advisor
- Dr. Malkiat Johal (Pomona College)

• Institutional:

- Pomona College 2020 RAISE Program
 - The R. Nelson Smith '38 and Corwin H. Hansch Fund
- University of Washington Computing Resources
 - Student Technology Fund

Background

BACKGROUND

Methods

Results

Conclusions

Future Work

Background - Moore's Law

- Improvement in electronics performance stagnating
- Power costs climbing

BACKGROUND

Methods

Results

Conclusions

Future Work

Background – Photonics

- Computing with photons, not electrons
- Encode binary information on light wave
 - Split light wave into two waveguides with OEO material
 - Selectively apply voltage to one waveguide changes index of refraction n (Pockels Effect)
 - Recombine two waves
 - Voltage 180° phase shift binary 0
 - No voltage 0° phase shift binary 1

BACKGROUND

Methods

Results

Conclusions

Future Work

Background – Integrating electronics & photonics

- Goal: Chip-scale modulators working at standard voltages
- $V_{\pi}L$: Voltage-length product -- length needed for a 180° phase shift in the period of the light at a given voltage
 - Minimize $V_{\pi}L$ -- Pockels effect: $\Delta n \propto N\beta \langle \cos^3\theta \rangle$
 - Maximize Δn :
 - $\langle cos^3\theta \rangle$ acentric ordering
 - *N* chromophore density
 - β chromophore hyperpolarizability

BACKGROUND

Methods

Results

Conclusions

Future Work

Background – Computational Chemistry

- Computational Chemistry:
 - Calculate approximate solutions to many-electron problems
 - Balance compute time with physical accuracy
 - Predict chromophore properties & effectiveness

Ex: Where do a molecule's electrons reside?

This electron is delocalized along the chain.

YLD124 HOMO calculated using M062X

Computational Chemistry

BACKGROUND

Methods

Results

Conclusions

Future Work

Background – Density Functional Theory

- Density Functional Theory (DFT):
 - Commonly used method in computational chemistry
 - Uses a functional (function of a function) of electron spatial density to calculate electronic structure
 - Many different functionals exist: B3LYP, M062X, etc.
 - Developed in the 70s, popular by the 90s following improvements in accounting for electron exchange & correlation effects

BACKGROUND

Methods

Results

Conclusions

Future Work

Background – Hybrid Functionals

- Hybrid Functionals:
 - Functionals must account for electron exchange and correlation
 - Hybrid functionals incorporate a certain percentage of exact Hartree-Fock exchange energy (%HFX)
 - Percentage of HFX varies
 - B3LYP 20%
 - M062X 54%
 - CAM-B3LYP 20%-65% depending on distance

BACKGROUND

Methods

Results

Conclusions

Future Work

Background – Key Question

 Does the percentage of HFX needed to accurately model charge transfer systems depend on the size of molecule?

Methods

Background METHODS

Conclusions

Future Work

Results

Methods – "Materials"

- Molecule set:
 - 9 molecules organic electro-optic chromophores
 - Electron donor conjugated bridge electron acceptor
 - Same donor and acceptor, vary only in length of bridge
- Functional suite:
 - 9 functionals, mainly derivatives of B3LYP (20% HFX)
 - Vary in percentage of HF exchange

DCD – Smallest chain (0 carbons)

METHODS
Results
Conclusions
Future Work

Methods – Experimental Methods

- Compute electronic structure (ground & first excited/CT state) for each of the 9 molecules using each of the 9 methods
- Plot molecular properties as function of chain length and HFX, search for deviations from linearity

Results

Background
Methods
RESULTS
Conclusions
Future Work

Results – Linear dependency for all %HFX

• Some properties exhibit an approximately-linear relationship to all levels of %HFX.

HOMO linearly dependent on both chain length and HFX. Appropriateness of linear approximation is independent of HFX and molecule size.

Background
Methods
RESULTS
Conclusions
Future Work

Results – Linear dependency for low %HFX

 Some properties exhibit an approximately-linear relationship to low levels of %HFX only

Ground dipole linearly dependent on chain length and HFX below a specific HFX. Appropriateness of linear approximation depends on HFX.

Background
Methods

RESULTS

Conclusions

Future Work

Results – Nonlinear dependencies

• Key determinants of chromophore performance have more complex behaviors.

Appropriateness of linear approximation depends on both HFX <u>and</u> molecular size. Above a certain chain length, linear approximation invalid regardless of HFX.

Background
Methods
RESULTS
Conclusions
Future Work

Results – Nonlinear dependencies

• Key determinants of chromophore performance have more complex behaviors.

Appropriateness of linear approximation depends on both HFX and molecular size.

Background
Methods
RESULTS
Conclusions
Future Work

Results – Nonlinear dependencies

• Key determinants of chromophore performance have more complex behaviors.

Linear approximation inappropriate regardless of molecular size and HFX.

Background

Methods

RESULTS

Conclusions

Future Work

Results – Two State Model

 Two State Model: Estimate of hyperpolarizability using excitation energy and ground, transition, and excited state dipole moments:

state dipole moments:
$$\beta_{TSM} = (\mu_e - \mu_g) (\frac{\mu_{trans}}{E_{trans}})^2 \propto \beta_{zzz}$$

Bredas, J 1994, 'Experimental Demonstration of the Dependence of the First Hyperpolarizability of Donor-Acceptor-Substituted Polyenes on the Ground-State Polarization and Bond Length Alternations', J. Am. Chem. Soc. 116 (6), 2619-2620

Conclusions

Background
Methods
Results
CONCLUSIONS
Future Work

Conclusions

 Nonlinear response of performance-determining parameters to varied HFX suggests size-dependence of percent HFX needed to accurately model OEO chromophores/CT systems.

Background
Methods
Results
CONCLUSIONS
Future Work

Impacts

- Demonstration of size-extensivity of HFX has significant implications for calculations involving charge transfer systems and DFT functional design in general.
 - More accurate modelling of CT systems
 - Improved theory-driven design of organic electro-optic (OEO) chromophores
 - Reduction of systemic error in hybrid DFT calculations
 - Benefits any who regularly use DFT (many!)
 - "... Density functional theory, easily the most heavily cited concept in the physical sciences. Twelve papers on the top-100 list relate to it, including 2 of the top 10." – Nature

Future Work

Background
Methods
Results
Conclusions
FUTURE WORK

Future Work – Multivariate Data Analysis

- Increase complexity of multivariate analysis of key molecular properties
 - Qualitative → Quantitative analysis. Determine extent of size-extensivity.

Background Methods Results

Conclusions

FUTURE WORK

Future Work – Range-separated functionals

- Ex CAM-B3LYP -- %HFX varies from 20-65% depending on distance of interaction
 - Some calculations varying parameters of CAM-B3LYP transfer function complete

Background
Methods
Results
Conclusions
FUTURE WORK

Future Work – Density of States Analysis

- Count participating pi electrons near HOMO upper limit on hyperpolarizability
- Raw → Projected D.o.S., allows for programmatic analysis instead of manual brute-force analysis

Kuzyk, M 2009, 'Using fundamental principles to understand and optimize nonlinear-optical materials', Journal of Materials Chemistry

Questions?