Docker

 $Akhia^1$

2020年10月5日

 $^{^{1}\}hbox{E-mail:akhialomgir} 362856@gmail.com$

目录

1	基础		3
	1.1	二进制八进制十进制十六进制相互转化	4
		1.1.1 十进制和其他进制的相互转换	4
		1.1.2 二进制八进制十六进制的相互转换	4
		1.1.3 8421BCD 码格雷码余 3 码与十进制之间的转换	4
	1.2	十进制与原码反码补码之间的转换	4
	1.3	校验法	4

Chapter 1

基础

1.1 二进制八进制十进制十六进制相互转化

1.1.1 十进制和其他进制的相互转换

- 1. 其他进制转换为十进制: 各进制数按权展开并相加
- 2. 十进制转换为其他进制:
 - (a) 整数:除以基数取余,直到商为零,逆序
 - (b) 小数: 乘以基数取整, 顺序

1.1.2 二进制八进制十六进制的相互转换

以小数点为界向两侧划分,按基数划分组,不够则补零。

1.1.3 8421BCD 码格雷码余 3 码与十进制之间的转换

- 1. 8421BCD
- 2. G
- 3. 余3

1.2 十进制与原码反码补码之间的转换

符号位 0, 正数反码补码和原码相同。

符号位 1, 负数反码数值取反, 补码在反码最低有效位上加一。

1.3 校验法

- 1. 奇偶校验码: 可以验证传输过程是否产生了错误
- 2. 奇校验: 为二进制添加一位校验码, 使 1 的数量为奇数

- 3. 偶校验: 为二进制添加一位校验码, 使 1 的数量为偶数
- 4. 海明码: 传输过程中错一位概率大,通过海明码可以验证是哪位出错