

Feasibility study for a nanosatellite-based instrument for in-situ measurements of radio noise

Esa Kallio⁽¹⁾, Jakke Mäkelä⁽²⁾, Niko Porjo⁽³⁾, Jaan Praks⁽¹⁾, Antti Kestilä⁽¹⁾, and Tuomas Tikka⁽¹⁾

(1) Aalto University, School of Electrical Engineering, Department of Radio Science and Engineering, PO Box 13000, FI-00076, Espoo, Finland (2) University of Jyväskylä, Department of Computer Science and Information Systems, Jyväskylä, Finland (3) ArcDia International Oy Ltd, Turku, Finland

Acknowlegments:

Hanna Rothkaehl and Tomasz Szewczyk Space Research Centre of the Polish Academy of Sciences, Warszawa, Poland

Contents

Our goal: To measure the radio emission at ~ 0.1-10 MHz at Low Earth Orbit (~500 km) with a cubesat

I Science: Why important, What do we expect to observe?

- Natural sources
- Artificial sources

II Technology: How to measure and when?

- Cubesat
- Radio instrument: wideband and narrowband measurements

Challenge: Noise makes the science and communication difficult

The altitude (~500 km) and frequency range (LF-HF) is the "worst of both worlds":

- <u>Scientific</u> measurements are hindered by manmade noise
- Natural noise makes <u>practical applications</u> such as communications difficult

Why do we want to measure? Interesting area both in science and telecommunication.

A low-budget cubesat enables measurements which would be very expensive otherwise.

Propagation from the ground to the space and vice versa: lonosphere

Complex RF environment

Extremely complex mix of artificial and natural noise

at Low Earth Orbit (LEO: 160 km-2000 km) & LF to HF range

Number of in situ measurements is very limited

Rothkaehl and Klos, 1996

i) Natural emissions: Summary

Sources:

- 1. Galactic background
- 2. Solar storm (Type III)
- 3. Auroral kilometric radiation (AKR)
- 4. Giant magnetized planets
- 5. Lightning (Atmospheric noise)

Known phenomena include AKR, auroral hiss, MF-burst, roar, whistler, saucer, chorus...

[left] Overview flux spectra of the principal sources of noise in the terrestrial environment below 10 MHz, from [Desch 1990]

i) Natural emissions (1/5): galactic noise

Between 100 kHz and 100 MHz, the background intensity is of the order of 10^{-23} to 10^{-20} W/m^2 Hz Ster (= 10^{-10} to 10^{-6} V/m/Hz/ster)

Intensity integrated over the whole sky: 10⁻⁹ to 10⁻⁵ V/m/Hz

Fleishman and Tokarev (1995)

i) Natural emissions (2/5): Solar storms

Measurements at space

Type III radio burst are produced by energetic electrons.

[left] Radio burst seen at CASSINI near Jupiter. From http://www-pw.physics.uiowa.edu/space-audio/typeIII.html
Intensity is relative to the galactic background.

i) Natural emissions (3&4/5): Auroral kilometric radiation and giant planets

Electromagnetic Auroral kilometric radiation (AKR) emission at ~ 100 - 500 kHz is produced by energetic electrons at ~ 3000 - 20000 km

Multiple radio processes observed by WIND/WAVES instrument. [Takahashi 2003b]

i) Natural emissions (5/5): Lightning

Mäkelä and Porjo

1 MHz channels, Piikkiö 060730 at 154422 LT

Several whistler signals as received at Palmer Station, Antarctica.

1 MHz lightning signals recorded at ground at Piikkiö, Finland

Milliseconds from start

ii) Artificial emission

Man-made radio transmission seen by WIND/WAVES instrument at 32 $R_{\rm E}$ Sources could be inferred indirectly.

II Technology

Consept: Cubesat with a radio instrument

Cubesat:

- 1 Unit (10x10x10 cm), ~ 1 kg
- 2 Unit (2 x 10x10x10 cm), ~ 2 kg

Concept:

- Radio instrument for a cubsat build at Aalto University
- Science objectivies
- Educational purposes: How to design, build and operate a spacecraft and its payload

Radio instrument: Science objectives

Two main scientific goals: to generate

- 1. a global map of the <u>artificial</u> RFI level at different locations at Earth
 - Demonstrate the feasibility of identifying individual artificial sources
- 2. local *in-situ* maps of the <u>natural</u> RF environment, especially in the auroral zone and ionosphere
 - => possible a new method for ionospheric sounding via low-cost nanosatellites (e.g. f₀F2 altitude)

Radio instrument: Technical requirements

Two measurement modes:

- Broadband measurement to track the general level of radio-frequency interference
- Narrowband detection to scan individual interference sources
 - 9 kHz bandwidth (to identify/monitor individual artificial terrestrial sources)
 - 3 kHz sampling rate (to identify voice or Morse transmissions)

Hardware and payload:

Must fit in a 1-2 U cubesat => small size

Two possible architectures

- 30x45x55 mm
- 1 m antenna
- mass budget 740 g

- Radio Frequency Analyzer
 (RFA) type of instrument
 - wideband
 - designed for nanosatellites
 - would need further size reduction
 - 2) Based on terrestrial automotive AM radio chip (unproven technology)

Space Research Centre of the Polish Academy of Sciences

Summary

Noisy radio environment due to artificial and natural sources

Problem caused by the noise:

- Man-made noise disturbances scientific measurements
- Natural noise interference practical communication applications

We will to measure RF environment at LEO in the LF to HF range

Measurement concept:

- Low-cost cubesat with a miniature radio instrument
- Planned launch for the cubesat: 2017

Status now: feasibility study is ongoing

