Drug Interaction Potential as a Result of Cytokine Release Syndrome Using a Physiologically Based Pharmacokinetic Model: Case Study of Teclistamab

Marie-Emilie Willemin¹, Shun Xin Wang Lin², Loeckie De Zwart¹, Liviawati S Wu³, Xin Miao², Raluca Verona², Arnob Banerjee², Baolian Liu⁴, Rachel Kobos⁴, Ming Qi², Daniele Ouellet², Jenna D Goldberg⁴, Suzette Girgis²

¹Janssen Research & Development, Beerse, Belgium; ²Janssen Research & Development, Spring House, PA, USA; ³Janssen Research & Development, South San Francisco, CA, USA; ⁴Janssen Research & Development, Raritan, NJ, USA

INTRODUCTION

- The ability of a physiologically based pharmacokinetic (PBPK) model to capture drug-drug interactions (DDIs) was first verified using data from the literature^{1,2}
- Teclistamab is the first off-the-shelf B-cell maturation antigen (BCMA) × CD3 bispecific antibody approved, and is a new standard of care (overall response rate, %63) for patients with heavily pretreated relapsed/refractory multiple myeloma³⁻⁵
- Cytokine release syndrome (CRS) has been associated with teclistamab, with most events being low grade and reported during step-up doses and the initial treatment dose at the recommended phase 2 dose (RP2D)
- Among the different cytokines released during CRS, interleukin 6 (IL-6) is a potent suppressor of cytochrome P450 (CYP450) enzyme activity
- A PBPK model was developed to evaluate the impact of IL-6 following teclistamab (administered at the RP2D in MajesTEC-1) on the exposure to co-administered CYP450 substrates

METHODS

- A PBPK model was developed for IL-6 based on the literature⁶
- DDIs toward different CYP450 substrates (caffeine [CYP1A2], s-warfarin [CYP2C9], omeprazole [CYP2C19], midazolam and cyclosporine [CYP3A4 and CYP3A5], and simvastatin [CYP3A4]) were evaluated where substrates were administered as a single dose when minimum (or maximum for CYP1A2) enzymatic activity was reached
- Inactivation of CYP2C9, CYP2C19, CYP3A4, and CYP3A5, but induction of CYP1A2, has been observed in vitro and in vivo^{1,7}
- Prospective simulations were performed using observed IL-6 profiles from 112 patients following teclistamab administered at the RP2D without or prior to administration of tocilizumab (an anti-IL-6 agent) in MajesTEC-1 as of the March 16, 2022 cut-off
- Observed data were recovered by adjusting the dosing regimens of IL-6, modeled as an intravenous infusion. Two scenarios were envisioned:
- The observed mean serum IL-6 kinetic profile
- The worst-case scenario (in terms of risk of a DDI) corresponding to the IL-6 profile observed in the patient presenting the highest IL-6 maximum concentration (C_{max}) value
- In addition, time to reach maximum change in CYP450 activity due to IL-6 and return to %80 of the baseline enzymatic activity was evaluated, with the start of cycle 1 as reference
- %80 was considered as a reasonable cut-off at which DDI liability would be low

MULTIPLE MYELOMA

RESULTS

Model verification

- Transient peak IL-6 concentration and IL-6 concentration at steady state (50 pg/mL) were successfully predicted
- Observed DDIs from literature with CYP1A2, CYP2C9, CYP2C19, CYP3A4, and CYP3A5 substrates in the presence of steady state concentrations of IL-6 at 50 pg/mL were well predicted, providing confidence in the application of the model to assess IL-6 as a perpetrator of these CYP substrates

Model application to teclistamab RP2D

- The mean IL-6 profile following teclistamab at RP2D (mean C_{max}= 21 pg/mL) was predicted to result in a limited change in exposure of CYP1A2, CYP2C9, CYP2C19, CYP3A4, and CYP3A5 substrates (0.87 ≤ area under the curve [AUC] ratio ≤ 1.20) (**Table**)
- The IL-6 kinetic profile with the highest C_{max} (288 pg/mL) was predicted to result in:
- A mild-to-moderate inhibition on exposure of CYP2C19, CYP3A4, and CYP3A5 substrates (1.90 ≤ AUC ratio ≤2.23) (Table)
- Minimal impact on exposure of CYP1A2 and CYP2C9 substrates (AUC ratio=0.82 and 1.25, respectively) (**Table**)
- For both scenarios, the maximum change in exposure for the studied substrates occurred 3–4 days after the first treatment dose (Figure 1A)
- For the patient with the highest IL-6 C_{max}, return to %80 of the baseline enzymatic activity was observed ~7 days after the first treatment dose (**Figure 1B**)
- The highest AUC ratio (at %80 of enzymatic activity) reached was
 ≤1.47 (CYP2C19), which corresponds to a weak interaction

^aMean C_{max} on cycle 1 day 21=3 pg/mL. ^bHighest C_{max} on cycle 1 day 3=288 pg/mL. ^cNarrow therapeutic index.

TABLE: Simulated change in CYP450 substrate exposure after single dose administration of the CYP450 substrate in presence of IL-6 kinetics profile observed in MajesTEC-1

CYP substrate	With mean IL-6 kinetics profile ^a			With IL-6 kinetics profile of patient presenting highest IL-6 C _{max} b		
	C _{max} ratio, mean	AUC ratio, mean	DDI liability	C _{max} ratio, mean	AUC ratio, mean	DDI liability
Caffeine (CYP1A2)	0.97	0.87	No interaction	0.95	0.82	No interaction
S-warfarin ^c (CYP2C9)	1.00	1.05	No inhibition	1.01	1.25	Weak inhibition
Omeprazole (CYP2C19)	1.10	1.20	No inhibition	1.45	2.23	Moderate inhibition
Midazolam (CYP3A4/CYP3A5)	1.11	1.17	No inhibition	1.46	1.90	Weak inhibition
Simvastatin (CYP3A4)	1.17	1.20	No inhibition	1.86	2.09	Moderate inhibition
Cyclosporine ^c (CYP3A4/CYP3A5)	1.09	1.17	No inhibition	1.35	1.90	Weak inhibition

REFERENCES:

1. Jiang X, et al. AAPS J 2016; 18:767-76. 2. Schmitt C, et al. Clin Pharmacol Ther 2011; 89:735-40. 3. TECVAYLI [summary of product characteristics]. Accessed October 2022, 26. https://www.ema.europa.eu/en/documents/product-information/tecvayli-epar-product-information_en.pdf. 4. TECVAYLI [prescribing information]. Accessed October 2022, 26. https://www.accessdata.fda.gov/drugsatfda_docs/label/761291?2022s000lbl.pdf. 5. Moreau P, et al. N Engl J Med 2022; 387;495-505. 6. Xu Y, et al. CPT Pharmacometrics Syst Pharmacol 2015; 4:507-15. 7. Dickmann LJ, et al. Drug Metab Dispos 2011; 39:1415-22.

Presented at the 64th American Society of Hematology (ASH) Annual Meeting; December 10–2022 ,13; New Orleans, LA, USA.

KEY TAKEAWAY

Interactions between substrates of CYP450 and IL-6 released when teclistamab is given at the RP2D are predicted to have limited clinical significance

CONCLUSIONS

The initial release of IL-6 during CRS following teclistamab treatment at the RP2D has minimal or moderate impact on exposure to CYP substrates

The highest risk of DDI is expected to occur from day 1 of the step-up dosing schedule to 7 days after the first treatment dose and during and after CRS

During this time period, for substrates with a narrow therapeutic index, such as warfarin and cyclosporine:

- Patients should be monitored for signs of toxicity
 Concentrations of these CYP substrates with a
- Concentrations of these CYP substrates with a narrow therapeutic index should be assessed

ACKNOWLEDGMENTS

This study was funded by Janssen Research & Development, LLC. Medical writing support was provided by John Bilbruck, PhD, of Eloquent Scientific Solutions, and funded by Janssen Global Services, LLC.

DISCLOSURES

M-EW is employed by Janssen. SXWL, JDG, and SG were employed by Janssen when this work was done and have stock/other ownership interests in Janssen. LDZ, LSW, XM, RV, and BL are employed by Janssen. AB, RK, and MQ are employed by and have stock/other ownership interests in Janssen. DO is employed by and has stock/other ownership interests in Abbylie

Scan the QR code

https://www.congresshub.com/Oncology/ASH2022/Teclistamab/Willemin

The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.