Paper Review - TFHM : A Traffic Feature Hiding Scheme Based on Generative Adversarial Networks

Fernando Nakayama

Research Advisor: Dr. Michele Nogueira Lima

Center for Computational Security sCience (CCSC)

Belo Horizonte – Brazil March 10, 2023

Selected Paper

TFHM: A Traffic Feature Hiding Scheme Based on Generative Adversarial Networks

1st Yaya Huang

Cyberspace Institute of Advanced Technology Guangzhou University Guangzhou 510006, China 2112006111@e.gzhu.edu.cn

2nd Yixing Chen

Cyberspace Institute of Advanced Technology
Guangzhou University
Guangzhou 510006, China
2112006074@e.gzhu.edu.cn

3rd Yuqiang Zhang

Cyberspace Institute of Advanced Technology

Guangzhou University

Guangzhou 510006, China

2112006277@e.gzhu.edu.cn

4th Jincai Zou

Cyberspace Institute of Advanced Technology

Guangzhou University

Guangzhou 510006, China
2112006304@e.gzhu.edu.cn

5th Zhihan Tan Cyberspace Institute of Advanced Technology Guangzhou University

Guangzhou 510006, China 2112006199@e.gzhu.edu.cn

6th Ning Hu[†] Peng Cheng Laboratory Shenzhen 518000, China hun@pcl.ac.cn

TFHM: A Traffic Feature Hiding Scheme Based on Generative Adversarial Networks

Problem

- Privacy leakage (encrypted traffic)
- Difficult to implement traffic features hiding mechanisms

TFHM: A Traffic Feature Hiding Scheme Based on Generative Adversarial Networks

Motivation

- Current defense schemes lack dynamics
- Most schemes lose defense ability

Contribution

• A dynamic traffic feature hiding technology for traffic analysis (TFHM)

TFHM: A Traffic Feature Hiding Scheme Based on Generative Adversarial Networks

Background

- Adversarial Examples (AML)
- Generative Adversarial Networks (GANs)

GAN

- Generative modeling
- Unsupervised learning
- Based on minimax game-theory
- Generate or output new examples

Generative Adversarial Network (GAN) - Explained

Supervised (Discriminative)

Unsupervised (Generative)

Overview of GAN Structure

Overview of GAN Structure

Brundage, Miles, et al. "The malicious use of artificial intelligence: Forecasting, prevention, and mitigation." arXiv preprint arXiv:1802.07228 (2018).

Generator model structure

Seq2Seq model

3 layer (Embedding, encoder, decoder)

Discriminator model structure

Multilayer fully connected network

SIGMOD classification

Model solution

Minimax game-theory

Algorithm 1 Traffic feature hiding based on GAN

Input: Traffic features from the training set, where is one flow feature including packet sizes sequence and IPDs sequence.

Output: A trained traffic feature generator.

- 1: function TRAINALGORITHM
- Intialize a generator G with parameters and a discriminator D with parameters, maximum number of iterations MAXEPOCH.
- 3: Current iteration number, $epoch \leftarrow 1$.
- 4: while epoch < MAXEPOCH do
- 5: **for** $i = 0 \rightarrow step$ **do**
- $x \leftarrow$ a batch of m training samples from.
- : $z \leftarrow a$ batch of m generated samples from random noise
- 8: $z^{'} \leftarrow$ sample data generated by the generation model based on seq-2-seq
- 9: Update the generator with Adam algorithm by descending the generator's loss:
- 10: $J_G = -E_m[D_\omega G_\theta(z))]$
- 11: Use the discriminator network to distinguish the generated samples and real samples.
- 12: Update the discriminator with Adam algorithm by descending the discriminator's loss:

13:
$$J_D = E_m[D_\omega G_\theta(z)) - D_\omega(x) + \lambda(||)]$$

- 14: end for
- 5: end while
- 16: return
- 17: end function

Threat model and dataset

DeepCorr
 Inter-packet delay
 Packet size

https://github.com/SPIN-UMass/DeepCorr

Requirements

tensorflow tqdm pickle numpy

ACCURACY OF ATTACKS WITH WITHOUT TFHM

ATTACKS	Acc with TFHM	Acc without TFHM	
Naive Bayes	0.593	0.911	
Decision Tree	0.612	0.936	
SVM	0.569	0.895	
DeepCorr	0.749	0.951	

DEFENSE MODEL COMPARISON

Model Name	DeepCorr	Full-Connection Networks	TFHM
Accuracy	0.951	0.843	0.749

Limitations

- Limited features contribute to attackers
- Discriminator optimization
- Hybrid models

Generative Adversarial Networks Framework

Generative Adversarial Networks (GAN) Possibilities

- Deep-learning-based unsupervised framework
- Generated data similar to real data
 - Full datasets
 - Balance existing datasets

- Difficult to train
- Unfeasible for real-time or near-real-time applications
- New threats probably require new models
- Does not tackle the threats identification problem

Problems regarding the Project

fern and on a kayama @ufpr.br

