2022 年 9 月 29 日 泛函分析 强基数学 002 吴天阳 2204210460

第三次作业

题目 1. 在度量空间 l^2 中,证明: $A = \{\xi = \{x_n\} \in l^2 : n|x_n| \le 1\}$ 是 l^2 中的紧集.

证明. 只需证明 A 是自列紧集,设 $\{\xi_n\} \subset A$ 是 Cauchy 列,则 $\rho(\xi_n, \xi_m) \to 0$, $(n, m \to \infty)$,于是 $\sum_{i=1}^{\infty} |x_i^{(n)} - x_i^{(m)}|^2 \to 0$,所以 $\forall i \ge 1$, $\{x_i^{(n)}\}$ 为 $\mathbb R$ 中的 Cauchy 列,于是 $\exists x_i$ 使得 $\lim_{n \to \infty} x_i^{(n)} = x_i$.

令 $\xi = \{x_1, x_2, \cdots\}$,则 $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$,有 $\sum_{i=1}^{\infty} |x_i^{(n_0)} - x_i|^2 < \varepsilon^2$,则 $|x_i^{(n_0)} - x_i| < \varepsilon$. 又由于 $\xi_{n_0} \in A$,则 $\exists N \geqslant [\frac{1}{\varepsilon}] + 1$ 使得 $\forall k \geqslant N$ 有 $|x_k^{(n_0)}| \leqslant \frac{1}{N} < \varepsilon$,于是

$$|x_i| \le |x_i - x_i^{(n_0)}| + |x_i^{(n_0)}| < 2\varepsilon$$

则 $\lim_{n\to\infty} \xi_n = \xi \in A$, 所以 A 是自列紧集, 故 A 是紧集.

题目 2. 用闭区间套定理证明压缩映射原理.

证明. 设度量空间为 (X, ρ) , T 为 X 上的压缩映射. 下面证明集列 $A_n = \{x \in X : \rho(x, Tx) < \frac{1}{n}\}$ 是单调递减直径趋于 0 的非空闭集列.

单调递减: $\forall x \in A_{n+1}$,则 $\rho(x, Tx) < \frac{1}{n+1} < \frac{1}{n}$,故 $x \in A_n$. 非空: 设 $x_0 \in A_n$ 且 $\rho(x_0, Tx_0) = C$,记 $x_1 = Tx_0, \dots, x_{n+1} = Tx_n$,则

$$\rho(x_n, Tx_n) \leqslant \alpha \rho(Tx_{n-1}, T^2x_{n-1}) \leqslant \dots \leqslant \alpha^n \rho(x_0, Tx_0) = \alpha^n C \to 0, \ (n \to \infty)$$

则 $A_n \neq \emptyset$.

闭集: $\forall m \in \mathbb{N}$,只需证 A_m 的对极限封闭,设 $\{x_n\} \subset A_m$ 收敛于 $x \in X$, $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n \geqslant N$ 有

$$\rho(x, Tx) \leqslant \rho(x, x_n) + \rho(x_n, Tx_n) + \rho(Tx_n, Tx) \leqslant (\alpha + 1)\varepsilon + \frac{1}{m}$$

由 ε 的任意性可知 $x \in A_m$, 所以 A_m 是闭集.

直径趋于 0: $\forall x, y \in A_n$, 则

$$\rho(x,y) \leqslant \rho(x,Tx) + \rho(Tx,Ty) + \rho(Ty,y) \leqslant \frac{2}{(1-\alpha)n} \to 0, \quad (n \to \infty)$$

所以 $\lim_{n\to\infty} \dim A_n = 0$.

综上, $\{A_n\}$ 是直径趋于零的非空闭子集套,所以存在唯一的 $x_0\in\bigcap_{i=1}^\infty A_i$,则 $\rho(x_0,Tx_0)=0$,压缩映射原理得证.