Nice 0100f!

You may want to use fewer line breaks

ID: **3592**

Math A4900

Proof portfolio draft, Round 1 October 4, 2020

Statement: $D_{2n} = \langle s, r \mid s^2 = 1, r^n = 1, rs = sr^{-1} \rangle$. Show that if $s_1 = s$ and $s_2 = sr$, then those together with the relations

$$s_1^2 = 1$$
, $s_2^2 = 1$, and $(s_1 s_2)^n = 1$

Problem: 1D

2

No. stars:

forms and alternative presentation of D_{2n} .

- Proof. We need to show that the relations and generators of the two presentations imply one
- 6 another.
- Lets us first show that $s_1s_2 \in D_{2n}$ by writing s_1 and s_2 in terms of r,s and their inverses.
- 8 $s_1 = s$ and $s_1 s_2 = s^2 r = r$
- Second we must show that the relations held by s_1 s_2 imply those by held in D_{2n} between r and s.

10
$$r^n = (s_1 s_2)^n = 1$$

11
$$s^2 = s_1^2 = 1$$

Note that since $s_1^2 = s_2^2 = 1$ then $s_1 = s_1^{-1}$ and $s_2 = s_2^{-1}$

Thus,
$$rs = (s_1 \ s_2)(s_1) = s_1(s_2^{-1}s_1^{-1}) = s_1(s_1s_2)^{-1} = sr^{-1}$$
.

- Now let us show that r, s are in the group generated by $s_1 s_2$. This has already been done in the
- question prompt. Thus, $s_1 = s$ and $s_2 = sr$.
- We must show that the relations held by r, s imply those held in the group generated by s_1 s_2 .

17
$$s_1^2 = (s)^2 = 1$$

18
$$s_2^2 = (sr)^2 = (sr)(sr) = s(rs)r = s(sr^{-1})r = s^2(r^{-1}r) = 1$$

19
$$(s_1s_2)^n = (s(sr))^n = (s^2r)^n = (r)^n$$

We have shown that that both presentations imply one another and thus,

$$G = \langle s_1, s_2 \mid s_1^2 = s_2^2 = (s_1 s_2)^n = 1 \rangle.$$

1 is an alternative presentation of D_{2n} .

2

-

	Points Possible					
complete	0	1	2	3	4	5
mathematically valid	0	1	2	3	4	5
readable/fluent	0	1	2	3	4	5
Total:	(out of 15)					

5

Not sure on convention here, but you may want 1 proct environment instead of 2.

Statement: (1) Prove that if H and K are subgroups of a group G, then so is $H \cap K$. (2)On the other hand, prove $H \cup K$ is a subgroup if and only if $H \subseteq K$ or $K \subseteq H$.

Problem: 2A

No. stars: 2

- *Proof.* (1) By definition all subgroups must contain the identity element. Thus, $H \cap K$ must at
- least be the trivial group. Thus, it is non-empty. Further, since $H \cap K$ are non-empty we can apply the subgroup criterion. Since H is a subgroup then any $x, y \in H$ implies xy^{-1} . Similarly,
- since K is a subgroup then any $x, y \in K$ implies xy^{-1} . Hence for $x, y \in H \cap K$ we can imply that

5 $xy^{-1} \in H \cap K$. Remarks which to State that $xy \in H \cap K$ 6 Thus, $H \cap K$ is a subgroup. $\Rightarrow xy \in H \setminus K$ and $H \setminus K \vdash G \Rightarrow xy$

Proof. (2) \Rightarrow Assume by contradiction that $H \cup K$ is a subgroup, but $H \nsubseteq K$ and $K \nsubseteq H$. Then

either H and K are disjoint or intersect for certain values.

If H and K are disjoint, then the identity element for $H \cup K$ is not unique. Hence, $H \cup K$ is not a Frateresting approach! , an he HUK st. LEK

If they intersect on certain values, then there exists an $h \notin K$. Let us label this element h'. Similarly, there exists a $k \notin H$. Lets us label this element k'. Since $H \cup K$ is a subgroup then

 $H \cup K$ is closed and $hk \in H \cup K$. Consider $h'k' \in H \cup K$. Then either $h'k' \in H$ or $h'k' \in K$. Take

 $h'k' \in H$, since $k' \notin H$ this is a contradiction. Take $h'k' \in K$, since $h' \notin K$ this is a contradiction.

Thus, if $H \cup K$ is a subgroup, then $H \subseteq K$ or $K \subseteq H$.

 \Leftarrow Assume $H \subseteq K$, then $H \cup K = K$. Assume further that $K \subseteq H$, then $H \cup K = H$. Since for

each respective case $H \cup K = K$ or $H \cup K = H$, and H and K are subgroups, then $H \cup K$ is a

subgroup.

19

1001 soil

20

21

	Points Possible						
complete	0	1	2	3	4	5	
mathematically valid	0	1	2	3	4	5	
readable/fluent	0	1	2	3	4	5	
Total:	(out of 15)						

Statement: Let G act on a set A. Prove that the relation \sim on A defined by

Problem: 3B

 $a \sim b$ when $a = g \cdot b$ for some $g \in G$ is an equivalence relation.

No. stars:

- *Proof.* Assume $a \sim b$ defined by $a = g \cdot b$. We want to show that $a \sim b$ is reflexive, symmetric and
- transitive.
- Reflexive: $a = 1 \cdot a = a$, since $1 \in G$. Thus, $a \sim b$ is symmetric. Since $a \sim b = a$
- Symmetric: We want to show that $a=g\cdot b$ implies $b=g\cdot a$. Let $b=g\cdot a$ since $b=g\cdot a$. Notice that $a=g\cdot b$ implies $ab^{-1}=g$. Since $ab^{-1}=g$, then $(ab^{-1})^{-1}\in G$ and thus $ba^{-1}\in G$. So so the Consequently, then $ba^{-1}=g$, which further implies $b=g\cdot a$. Thus, $a\sim b$ is symmetric.
 - Transitive: We want to show that if $a = g \cdot b$ and $b = g \cdot c$, then $a = g \cdot c$.
- 8 Notice that $a = g \cdot b$ implies $ab^{-1} = g$ and $b = g \cdot c$ implies $bc^{-1} = g$. Let us multiply $ab^{-1}bc^{-1}$
- Since $ab^{-1}bc^{-1} \in G$, then $ab^{-1}bc^{-1} = g$. Take note that $g = ab^{-1}bc^{-1} = a(b^{-1}b)c^{-1} = ac^{-1}$.
- Finally, we have that $g = ac^{-1}$ which further implies that $g \cdot c = a$. Thus, $a \sim b$ is transitive.
- Because $a \sim b$ is reflexive, symmetric and transitive $a \sim b$ is an equivalence relation.

	Points Possible						
complete	0	1	2	3	4	5	
mathematically valid	0	1	2	3	4	5	
readable/fluent	0	1	2	3	4	5	
Total:	(out of 15)						

Statement: Prove that the order of an element in S_n equals the least common multiple of the lengths of the cycles in its cycle decomposition.

Problem: 1ENo. stars: 3

Proof. Assume that an element τ in S_n can be written as the product of disjoint cycles, that is,

suppose $\tau = \sigma_1 \sigma_2 \dots \sigma_n$. Define i as well Make sure to define With this assumption we can write, $\tau^i = (\sigma_1 \sigma_2 \dots \sigma_n)^i = 1$, where $1 \le n < m - 1$. \bowtie Mefore 1

Because these disjoint cycles are commutative we have $\tau^i = \sigma_1^i \sigma_2^i ... \sigma_n^i = 1$. This implies further

that that $\sigma_1^i = \sigma_2^i = \dots = \sigma_n^i = 1$. Which further implies the orders of the cycles are equal, and less

than m; where m is the order of S_n . Let us denote the cycle orders as m_n for all n. Thus we have

that $m_1 + m_2 + \dots + m_n = m$. This implies that there exists and integer p such that $p \times m_n = m$.

Therefore m is the least common multiple of the cycle lengths $m_1, m_2, ..., m_n$.

the 1cm of W11 W57 ... 1 WV 5

Really nice job overall on these proofs!

	Points Possible					
complete	0	1	2	3	4	5
mathematically valid	0	1	2	3	4	5
readable/fluent	0	1	2	3	4	5
Total:	(out of 15)					