Notes on the book: Apostol, Modular Functions and Dirichlet Series in Number Theory, 2nd edition

Meng-Gen Tsai plover@gmail.com

July 24, 2021

Contents

Chapter 1: Elliptic functions	2
Exercise 1.11	2
Exercise 1.12	3
Exercise 1.14. (Lambert series)	3
Exercise 1.15	6

Chapter 1: Elliptic functions

Exercise 1.11.

If $k \geq 2$ and $\tau \in H$ prove that the Eisenstein series

$$G_{2k}(\tau) = \sum_{(m,n)\neq(0,0)} (m+n\tau)^{-2k}$$

has the Fourier expansion

$$G_{2k}(\tau) = 2\zeta(2k) + \frac{2(2\pi i)^{2k}}{(2k-1)!} \sum_{n=1}^{\infty} \sigma_{2k-1}(n)e^{2\pi i n \tau}.$$

Proof.

(1) Let $q = e^{2\pi i \tau}$. Similar to Lemma 1.3 on page 19, we have

$$(2k-1)! \sum_{m=-\infty}^{+\infty} \frac{1}{(\tau+m)^{2k}} = (2\pi i)^{2k} \sum_{r=1}^{\infty} r^{2k-1} q^r.$$

(2) Similar to Theorem 1.18, we have

$$G_{2k}(\tau) = \sum_{\substack{(m,n) \neq (0,0) \\ m \neq 0(n=0)}} (m+n\tau)^{-2k}$$

$$= \sum_{\substack{m=-\infty \\ m \neq 0(n=0)}}^{+\infty} m^{-2k} + \sum_{n=1}^{\infty} \sum_{m=-\infty}^{+\infty} ((m+n\tau)^{-2k} + (m-n\tau)^{-2k})$$

$$= 2\zeta(2k) + 2\sum_{n=1}^{\infty} \sum_{m=-\infty}^{+\infty} (m+n\tau)^{-2k}$$

$$= 2\zeta(2k) + 2\sum_{n=1}^{\infty} \frac{(2\pi i)^{2k}}{(2k-1)!} \sum_{r=1}^{\infty} r^{2k-1} q^{nr}$$

$$= 2\zeta(2k) + \frac{2(2\pi i)^{2k}}{(2k-1)!} \sum_{n=1}^{\infty} \underbrace{\int_{d|n}^{2k-1} q^{n}}_{=\sigma_{2k-1}(n)}$$

In the last double sum we collect together those terms for which nr is constant.

Exercise 1.12.

Refer to Exercise 1.11. If $\tau \in H$ prove that

$$G_{2k}\left(-\frac{1}{\tau}\right) = \tau^{2k}G_{2k}(\tau)$$

and deduce that

$$G_{2k}\left(\frac{i}{2}\right) = (-4)^k G_{2k}(2i) \qquad \text{for all } k \ge 2,$$

$$G_{2k}(i) = 0 \qquad \text{if } k \text{ is odd},$$

$$G_{2k}\left(e^{\frac{2\pi i}{3}}\right) = 0 \qquad \text{if } k \not\equiv 0 \pmod{3}.$$

Proof.

(1)

$$G_{2k}\left(-\frac{1}{\tau}\right) = \sum_{(m,n)\neq(0,0)} \left(m - \frac{n}{\tau}\right)^{-2k}$$
$$= \tau^{2k} \sum_{(m,n)\neq(0,0)} (\tau m - n)^{-2k}$$
$$= \tau^{2k} G_{2k}(\tau).$$

- (2) Let $\tau = 2i$. We have $G_{2k}(\frac{i}{2}) = (-4)^k G_{2k}(2i)$.
- (3) Let $\tau = i$. We have $G_{2k}(i) = (-1)^k G_{2k}(i)$. Hence $G_{2k}(i) = 0$ if k is odd.
- (4) Let $\tau=e^{\frac{\pi i}{3}}$. We have $G_{2k}(e^{\frac{2\pi i}{3}})=e^{\frac{2k\pi i}{3}}G_{2k}(e^{\frac{\pi i}{3}}).$ Since

$$e^{\frac{2\pi i}{3}} = -1 + e^{\frac{\pi i}{3}}$$

and each Eisenstein series is a periodic function of τ of period 1, we have $G_{2k}(e^{\frac{2\pi i}{3}})=G_{2k}(e^{\frac{\pi i}{3}})$. So $G_{2k}(e^{\frac{2\pi i}{3}})=e^{\frac{2k\pi i}{3}}G_{2k}(e^{\frac{2\pi i}{3}})$. Therefore $G_{2k}(e^{\frac{2\pi i}{3}})=0$ if $k\not\equiv 0\pmod 3$.

Exercise 1.14. (Lambert series)

A series of the form $\sum_{n=1}^{\infty} f(n) \frac{x^n}{1-x^n}$ is called a **Lambert series**. Assuming absolute convergence, prove that

$$\sum_{n=1}^{\infty} f(n) \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} F(n) x^n,$$

where

$$F(n) = \sum_{d|n} f(d).$$

Apply this result to obtain the following formulas, valid for |x| < 1.

(a)
$$\sum_{n=1}^{\infty} \frac{\mu(n)x^n}{1-x^n} = x.$$

(b)
$$\sum_{n=1}^{\infty} \frac{\varphi(n)x^n}{1 - x^n} = \frac{x}{(1 - x)^2}.$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^{\alpha} x^n}{1 - x^n} = \sum_{n=1}^{\infty} \sigma_{\alpha}(n) x^n.$$

(d)
$$\sum_{n=1}^{\infty} \frac{\lambda(n)x^n}{1-x^n} = \sum_{n=1}^{\infty} x^{n^2}.$$

(e) Use the result in (c) to express $g_2(\tau)$ and $g_3(\tau)$ in terms of Lambert series in $x = e^{2\pi i \tau}$.

Note. In (a), $\mu(n)$ is the Möbius function; In (b), $\varphi(n)$ is Euler's totient; and in (d), $\lambda(n)$ is Liouville's function.

Proof. Similar to the proof of Exercise 1.11.

$$\begin{split} \sum_{n=1}^{\infty} f(n) \frac{x^n}{1 - x^n} &= \sum_{n=1}^{\infty} f(n) \sum_{r=1}^{\infty} x^{rn} \\ &= \sum_{n=1}^{\infty} \sum_{r=1}^{\infty} f(n) x^{rn} \\ &= \sum_{n=1}^{\infty} \underbrace{\left(\sum_{d \mid n} f(d)\right)}_{=F(n)} x^n. \end{split}$$

Proof of (a). Theorem 2.1 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory shows that

$$F(n) := \sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n > 1. \end{cases}$$

Hence

$$\sum_{n=1}^{\infty} \mu(n) \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} F(n) x^n = x.$$

Proof of (b). Theorem 2.2 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory shows that $F(n) := \sum_{d|n} \varphi(d) = n$. Hence

$$\sum_{n=1}^{\infty} \varphi(n) \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} F(n) x^n = \sum_{n=1}^{\infty} n x^n = \frac{x}{(1 - x)^2}.$$

Proof of (c). Since

$$F(n) := \sum_{d|n} d^{\alpha} = \sigma_{\alpha}(n),$$

we have

$$\sum_{n=1}^{\infty} n^{\alpha} \frac{x^n}{1-x^n} = \sum_{n=1}^{\infty} F(n) x^n = \sum_{n=1}^{\infty} \sigma_{\alpha}(n) x^n.$$

Proof of (d). Theorem 2.19 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory shows that

$$F(n) := \sum_{d|n} \lambda(d) = \begin{cases} 1 & \text{if } n \text{ is a square,} \\ 0 & \text{otherwise.} \end{cases}$$

Hence

$$\sum_{n=1}^{\infty}\lambda(n)\frac{x^n}{1-x^n}=\sum_{n=1}^{\infty}F(n)x^n=\sum_{n=1}^{\infty}x^{n^2}.$$

Proof of (e).

(1) Let $q = x = e^{2\pi i \tau}$.

$$g_2(\tau) = \frac{4\pi^4}{3} \left\{ 1 + 240 \sum_{k=1}^{\infty} \sigma_3(k) q^k \right\}$$
 (Theorem 1.18)
$$= \frac{4\pi^4}{3} \left\{ 1 + 240 \sum_{k=1}^{\infty} \frac{k^3 q^k}{1 - q^k} \right\}$$
 ((c)).

(2) Similarly,

$$g_3(\tau) = \frac{8\pi^6}{27} \left\{ 1 - 504 \sum_{k=1}^{\infty} \sigma_5(k) q^k \right\}$$
 (Theorem 1.18)
$$= \frac{8\pi^6}{27} \left\{ 1 - 504 \sum_{k=1}^{\infty} \frac{k^5 q^k}{1 - q^k} \right\}$$
 ((c)).

Exercise 1.15.

Let

$$G(x) = \sum_{n=1}^{\infty} \frac{n^5 x^n}{1 - x^n},$$

and let

$$F(x) = \sum_{\substack{n=1\\ (n \text{ odd})}}^{\infty} \frac{n^5 x^n}{1 + x^n}.$$

- (a) Prove that $F(x) = G(x) 34G(x^2) + 64(x^4)$.
- (b) Prove that

$$\sum_{\substack{n=1\\(n\ odd)}}^{\infty} \frac{n^5}{1 + e^{n\pi}} = \frac{31}{504}.$$

(c) Use Theorem 12.17 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory to prove the more general result

$$\sum_{\substack{n=1\\ (n \text{ odd})}}^{\infty} \frac{n^{4k+1}}{1+e^{n\pi}} = \frac{2^{4k+1}-1}{8k+4} B_{4k+2}.$$

Proof of (a).

(1) Consider the general case. Let

$$G(x) = \sum_{n=1}^{\infty} \frac{n^{4k+1} x^n}{1 - x^n},$$

and let

$$F(x) = \sum_{\substack{n=1\\(n \ odd)}}^{\infty} \frac{n^{4k+1}x^n}{1+x^n}.$$

Show that $F(x) = G(x) - (2^{4k+1} + 2)G(x^2) + 2^{4k+2}G(x^4)$.

(2) The identity

$$\sum_{n=1}^{\infty} \frac{x^n}{1+x^n} = \sum_{n=1}^{\infty} \frac{x^n}{1-x^n} - 2\sum_{n=1}^{\infty} \frac{x^{2n}}{1-x^{2n}}$$

is always true. Hence $H(x):=\sum_{n=1}^{\infty}\frac{n^{4k+1}x^n}{1+x^n}=G(x)-2G(x^2)$.

(3) Note that

$$H(x) = \sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{n^{4k+1}x^n}{1+x^n} + \sum_{\substack{n=1\\(n \text{ even})}}^{\infty} \frac{n^{4k+1}x^n}{1+x^n}$$
$$= F(x) + \sum_{n=1}^{\infty} \frac{(2n)^{4k+1}x^{2n}}{1+x^{2n}}$$
$$= F(x) + 2^{4k+1} \sum_{n=1}^{\infty} \frac{n^{4k+1}x^{2n}}{1+x^{2n}}$$
$$= F(x) + 2^{4k+1}H(x^2).$$

Hence

$$F(x) = H(x) - 2^{4k+1}H(x^2)$$

$$= [G(x) - 2G(x^2)] - 2^{4k+1}[G(x^2) - 2G(x^4)]$$

$$= G(x) - (2^{4k+1} + 2)G(x^2) + 2^{4k+2}G(x^4).$$

Proof of (b). Take k = 1 in part (c), we have

$$\sum_{\substack{n=1\\ (n \text{ odd})}}^{\infty} \frac{n^5}{1 + e^{n\pi}} = \frac{31}{12} \cdot \frac{1}{42} = \frac{31}{504}.$$

Proof of (c).

(1) Let $q = e^{2\pi i \tau}$. So

$$G_{4k+2}(\tau) = 2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!} \sum_{n=1}^{\infty} \sigma_{4k+1}(n) q^n \qquad \text{(Exercise 1.11)}$$
$$= 2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!} G(q) \qquad \text{(Exercise 1.14(c))}$$

Hence

$$\begin{split} G_{4k+2}(\tau) &- (2^{4k+1} + 2)G_{4k+2}(2\tau) + 2^{4k+2}G_{4k+2}(4\tau) \\ &= \left[2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!}G(q) \right] \\ &- (2^{4k+1} + 2) \left[2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!}G(q^2) \right] \\ &+ 2^{4k+2} \left[2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!}G(q^4) \right] \\ &= (1 - (2^{4k+1} + 2) + 2^{4k+2}) \cdot 2\zeta(4k+2) \\ &+ \frac{2(2\pi i)^{4k+2}}{(4k+1)!}[G(q) - (2^{4k+1} + 2)G(q^2) + 2^{4k+2}G(q^4)] \\ &= (2^{4k+2} - 2)\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!}F(q). \end{split}$$

(2) By taking $\tau = \frac{i}{2}$, we have

$$F(q) = F(e^{-\pi}) = \sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{n^{4k+1}}{1 + e^{n\pi}}$$

and

$$\begin{split} G_{4k+2}(\tau) &- (2^{4k+1}+2)G_{4k+2}(2\tau) + 2^{4k+2}G_{4k+2}(4\tau) \\ &= G_{4k+2}\left(\frac{i}{2}\right) - (2^{4k+1}+2)G_{4k+2}(i) + 2^{4k+2}G_{4k+2}(2i) \\ &= (-4)^{2k+1}G_{4k+2}(2i) - (2^{4k+1}+2)\cdot 0 + 2^{4k+2}G_{4k+2}(2i) \\ &= 0. \end{split}$$

(Exercise 1.12). Hence

$$0 = (2^{4k+2} - 2)\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!} \sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{n^{4k+1}}{1 + e^{n\pi}}.$$

(3) Theorem 12.17 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory shows that

$$\zeta(4k+2) = (-1)^{2k+1+1} \frac{(2\pi)^{4k+2} B_{4k+2}}{2(4k+2)!} = \frac{(2\pi)^{4k+2} B_{4k+2}}{2(4k+2)!}$$

Hence

$$\sum_{\substack{n=1\\ (n \text{ odd})}}^{\infty} \frac{n^{4k+1}}{1 + e^{n\pi}} = \frac{2^{4k+1} - 1}{8k+4} B_{4k+2}.$$