Projeto HPC

Modelo Simples de Átomos de Argônio Interagindo

Amanda Rodrigues de Souza

9 de julho de 2017

- ► Problema de N-corpos
- Método que simula o movimento de átomos e moléculas.
- Utilizada para estudar Propriedades Termodinâmicas Macroscópicas
- Dinâmica Molecular Clássica: Despreza efeitos quânticos

Modelo Físico-Matemático-Computacional que utiliza simulação de dinâmica molecular, usando o potencial de Lennard-Jones, para a realização de cálculos de interações intermoleculares de Argônio.

Dados de Entrada

- ▶ Número de Partículas = NCell³
- ► Densidade = 0.8
- ► Número de passos = 15000
- ► Raio de Corte = 3

Paralelização Código


```
!$omp parallel do private(iatm,jatm,dx,dy,dz,r2,fr2,fr6,fpr), &
!Somp & shared(natm.x.y.z.rcut2.dcell).reduction(+:epot.virial.fx.fy.fz) &
!Somp & schedule(runtime)
  do iatm = 1.natm-1
     do iatm = iatm+1.natm
        dx = x(iatm) - x(jatm)
        dv = v(iatm) - v(jatm)
        dz = z(iatm) - z(jatm)
        ! sign(x,v) == fornece valor positivo de x se v >= 0 e negativo se v < 0
        if (abs(dx) > 0.5d0*dcell) dx = dx - sign(dcell,dx)
        if (abs(dy) > 0.5d0*dcell) dy = dy - sign(dcell, dy)
        if (abs(dz) > 0.5d0*dcell) dz = dz - sign(dcell,dz)
        r2 = dx*dx + dv*dv + dz*dz
        if (r2 < Rcut2) then
           fr2 = sigma2 / r2
           fr6 = fr2 * fr2 * fr2
           fpr = 48.d0 * eps * fr6 * (fr6 - 0.5d0) / r2
                                                                  ! f/r
           fx(iatm) = fx(iatm) + fpr * dx; fx(jatm) = fx(jatm) - fpr * dx
           fy(iatm) = fy(iatm) + fpr * dy; fy(jatm) = fy(jatm) - fpr * dy
           fz(iatm) = fz(iatm) + fpr * dz; fz(jatm) = fz(jatm) - fpr * dz
           Epot = Epot + 4.d0 * eps * fr6 * (fr6 - 1.d0)
           virial = virial + fpr * r2
        end if
     end do
  end do
!$omp end parallel do
```

Paralelização


```
#!/bin/bash
#PBS -S /bin/bash
## nodes = gtde de nos reguisitada
## ppn = atde de cores por no
#PBS -l nodes=1:ppn=4
## walltime = gtde de horas necessaria
#PBS -1 walltime=300:00:00
## Nome do job . Aparece na saida do comando 'gstat' .
## E recomendado, mas nao necesssario, que o nome do job
## o mesmo que o nome do arquivo de input
#PBS -N parncell22
## informacoes do job no arquivo de saida
ostat -an -u SUSER
cat $PBS NODEFILE
**********************************
#----- Inicio do trabalho
**********************************
cd SPBS O WORKDIR
export OMP NUM THREADS=SPBS NP
export OMP SCHEDULE="quided"
export GFORTRAN UNBUFFERED ALL=1
time ./paralelo.x > saida.out
```

Temperatura

Resultados Energia Cinética

Fixando a quantidade de partículas em 8000 (Ncell = 20) Variando a quantidade de Threads

► Tempo Serial: 12399.980 s

Threads	Tempo (s)	Speed Up	Eficiência
2	10768.084	1.151	0.57
4	6667.5508	1.86	0.46
6	4500.7158	2.75	0.46
8	3747.9751	3.30	0.41
10	3004.6240	4.12	0.41
12	2669.3921	4.64	0.39

Fixando a quantidade de partículas em 10648 (Ncell = 22) Variando a quantidade de Threads

► Tempo Serial : 21427.531 s

Threads	Tempo (s)	Speed Up	Eficiência
2	20406.447	1.050	0.52
4	12807.204	1.67	0.42
6	8914.4863	2.40	0.40
8	6951.1240	3.08	0.38
10	5715.6191	3.74	0.37
12	4882.2021	4.38	0.36

Fixando a quantidade de partículas em 27000 (Ncell = 30) Variando a quantidade de Threads

► Tempo Serial: 132265.39 s

Threads	Tempo (s)	Speed Up	Eficiência
2	112341.51	1.18	0.59
4	67432.813	1.96	0.49
6	48707.168	2.71	0.45
8	37718.859	3.50	0.44
10	32733.824	4.04	0.40
12	27977.684	4.73	0.39

Tempos

Fixando o Número de Threads e Variando a quantidade de Partículas

Tempo Total				
Ncell	4 Threads	8 Threads		
18	3808.6370	2074.9089		
19	5106.2930	2840.9121		
20	7076.8130	3747.9751		
21	9299.8525	5259.4458		
22	12165.881	6951.1240		
24	19627.355	10875.045		
26	31445.627	16844.027		
28	46942.113	25119.445		
30	67432.813	37718.859		

Tempos

Bibliografia

- ► MARTINI: Short Course On Molecular Dynamics Simulation: Lecture 6: Neighbor Lists
- ► RAPAPORT, D.C: The Art of Molecular Dynamics Simulation
- ► FRENKEL, D., SMIT, B.: Understanding Molecular Simulation

