aicasas / TitanicSurvivalPredictions

Alexis Casas: Titanic: Machine Learning from Disaster Competition

The competition is simple: use machine learning to create a model that predicts which passengers survived the Titanic shipwreck.

In this challenge, we ask you to build a predictive model that answers the question: "what sorts of people were more likely to survive?" using passenger data (ie name, age, gender, socio-economic class, etc).

```
In [177]: #1. read the data
training_set <- read.csv('train.csv')
test_set <- read.csv('test.csv')</pre>
```

In [178]: #View data

head(training_set)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	<int></int>	<int></int>	<int></int>	<fct></fct>	<fct></fct>	<dbl></dbl>	<int></int>	<int></int>	<fct></fct>	<dbl></dbl>	<fct></fct>	<fct></fct>
1	1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.2500		s
2	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599	71.2833	C85	С
3	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.9250		s
4	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1000	C123	s
5	5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.0500		S
6	6	0	3	Moran, Mr. James	male	NA	0	0	330877	8.4583		Q

```
In [179]: test_set[test_set==""] <- NA
training_set[training_set==""] <- NA</pre>
```

In [180]: #Checking Columns for Missing values: Training Set
library(questionr)
missingvaluestable <- freq.na(training_set)
missingvaluestable</pre>

missing %

Cabin	687	77
Age	177	20
Embarked	2	0
PassengerId	0	0
Survived	0	0
Pclass	0	0
Name	0	0
Sex	0	0
SibSp	0	0
Parch	0	0
Ticket	0	0
Fare	0	0

In [181]: #Checking Columns for Missing values: Test Set missingvaluestable <- freq.na(test_set)</pre>

missingvaluestable

	missing	%
Cabin	327	78
Age	86	21
Fare	1	0
PassengerId	0	0
Pclass	0	0
Name	0	0
Sex	0	0
SibSp	0	0
Parch	0	0
Ticket	0	0
Embarked	0	0

Cabin has about 78% of the data missing. I will delete this column for both sets. Both datasets are missing about 20% of their data in Age. Because Age seems important in predicting who would survive, I would rather not delete this. Will investigate more about this colum before making any decisions

In [182]: head(training_set)#cabin is column 11 head(test_set) #cabin is column 10

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	<int></int>	<int></int>	<int></int>	<fct></fct>	<fct></fct>	<dbl></dbl>	<int></int>	<int></int>	<fct></fct>	<dbl></dbl>	<fct></fct>	<fct></fct>
1	1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.2500	NA	s
2	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599	71.2833	C85	С
3	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.9250	NA	s
4	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1000	C123	S

5	5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.0500	NA	s
6	6	0	3	Moran, Mr. James	male	NA	0	0	330877	8.4583	NA	Q

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	<int></int>	<int></int>	<fct></fct>	<fct></fct>	<dbl></dbl>	<int></int>	<int></int>	<fct></fct>	<dbl></dbl>	<fct></fct>	<fct></fct>
1	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NA	Q
2	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NA	S
3	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NA	Q
4	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NA	S
5	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NA	S
6	897	3	Svensson, Mr. Johan Cervin	male	14.0	0	0	7538	9.2250	NA	S

```
In [183]: training_set <- training_set[,-11]
test_set <- test_set[,-10]</pre>
```

In [184]: par(mfrow=c(1,2))
 hist(training_set\$Age)
 hist(test_set\$Age)

Histogram of training_set\$Age

Histogram of test_set\$Age


```
In [185]: #what is the meadian and mean age?
median(training_set$Age,na.rm = T) #about 28 years old
mean(training_set$Age,na.rm = T)
#Because the data is skewed i will impute based on the median.
```

28

29.6991176470588

```
In [186]: training_set$Age[is.na(training_set$Age)] <- median(training_set$Age,na.rm = T)
test_set$Age[is.na(test_set$Age)] <- median(test_set$Age,na.rm = T)</pre>
```

In [187]: par(mfrow=c(1,2))
 hist(training_set\$Age)
 hist(test_set\$Age)

Histogram of training satthas H

Histogram of tast sat\$Aga

In [188]: #checking if missing values are gone
 missingvaluestable <- freq.na(training_set)
 missingvaluestable #two values in embarked column</pre>

	missing	%
Embarked	2	0
PassengerId	0	0
Survived	0	0
Pclass	0	0
Name	0	0
Sex	0	0
Age	0	0
SibSp	0	0
Parch	0	0
Ticket	0	0
Fare	0	0

In [189]: missingvaluestable <- freq.na(test_set)
missingvaluestable #one missing value for fare</pre>

	missing	%
Fare	1	0
PassengerId	0	0
Pclass	0	0
Name	0	0
Sex	0	0
Age	0	0
SibSp	0	0
Parch	0	0
Ticket	0	0
Embarked	0	0

```
In [190]: training_set <- training_set[-which(is.na(training_set$Embarked)),]
test_set <- test_set[-which(is.na(test_set$Fare)),]</pre>
```

In [191]: missingvaluestable <- freq.na(test_set)
missingvaluestable #All Clean!</pre>

	missing	%
PassengerId	0	0
Pclass	0	0
Name	0	0
Sex	0	0
Age	0	0
SibSp	0	0
Parch	0	0
Ticket	0	0
Fare	0	0
Embarked	0	0

Next, I believe that it may be nice to know someone's age group rather than their specific age for future predictions.

test_set\$AgeGroup[test_set\$Age>=40 & test_set\$Age<50] <- 5
test_set\$AgeGroup[test_set\$Age>=50 & test_set\$Age<60] <- 6
test_set\$AgeGroup[test_set\$Age>=60 & test_set\$Age<70] <- 7
test_set\$AgeGroup[test_set\$Age>=70 & test_set\$Age<80] <- 8</pre>

In [194]: #Next I will examine the structure and encode variables.
str(training_set)
str(test_set)

```
'data.frame': 889 obs. of 12 variables:
$ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
$ Survived : int 0 1 1 1 0 0 0 0 1 1 ...
$ Pclass : int 3 1 3 1 3 3 1 3 3 2 ...
$ Name
           : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 191 358 277 16 559 520 629 417
581 ...
            : Factor w/ 2 levels "female", "male": 2 1 1 1 2 2 2 2 1 1 ...
$ Sex
$ Age
           : num 22 38 26 35 35 28 54 2 27 14 ...
           : int 1 1 0 1 0 0 0 3 0 1 ...
$ SibSp
$ Parch
           : int 0 0 0 0 0 0 0 1 2 0 ...
            : Factor w/ 681 levels "110152","110413",..: 524 597 670 50 473 276 86 396 345 133 .
$ Ticket
             : num 7.25 71.28 7.92 53.1 8.05 ...
$ Fare
$ Embarked : Factor w/ 4 levels "", "C", "Q", "S": 4 2 4 4 4 3 4 4 4 2 ...
$ AgeGroup : num 3 4 3 4 4 3 6 1 3 2 ...
               417 obs. of 11 variables:
'data.frame':
```

```
$ PassengerId: int 892 893 894 895 896 897 898 899 900 901 ...
          $ Pclass
                      : int 3 3 2 3 3 3 3 2 3 3 ...
                       : Factor w/ 418 levels "Abbott, Master. Eugene Joseph",..: 210 409 273 414 182 370 8
          $ Name
         5 58 5 104 ...
          $ Sex
                     : Factor w/ 2 levels "female", "male": 2 1 2 2 1 2 1 2 1 2 ...
                      : num 34.5 47 62 27 22 14 30 26 18 21 ...
                      : int 0 1 0 0 1 0 0 1 0 2 ...
          $ SibSp
          $ Parch
                      : int 0 0 0 0 1 0 0 1 0 0 ...
                       : Factor w/ 363 levels "110469","110489",..: 153 222 74 148 139 262 159 85 101 270 .
          $ Ticket
          $ Fare
                      : num 7.83 7 9.69 8.66 12.29 ...
          $ Embarked : Factor w/ 3 levels "C", "Q", "S": 2 3 2 3 3 3 2 3 1 3 ...
          $ AgeGroup : num 4 5 7 3 3 2 4 3 2 3 ...
In [195]: #First off we want to delete, name and ticket
          training_set <- training_set[,-c(4,9)]
          test_set <- test_set[,-c(3,8)]</pre>
In [196]: str(training_set)
          str(test set)
         'data.frame': 889 obs. of 10 variables:
          $ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
          $ Survived : int 0 1 1 1 0 0 0 0 1 1 ...
                      : int 3 1 3 1 3 3 1 3 3 2 ...
          $ Pclass
          $ Sex
                      : Factor w/ 2 levels "female", "male": 2 1 1 1 2 2 2 2 1 1 ...
          $ Age
                      : num 22 38 26 35 35 28 54 2 27 14 ...
                     : int 1 1 0 1 0 0 0 3 0 1 ...
          $ SibSp
          $ Parch
                      : int 0 0 0 0 0 0 0 1 2 0 ...
                      : num 7.25 71.28 7.92 53.1 8.05 ...
          $ Embarked : Factor w/ 4 levels "", "C", "Q", "S": 4 2 4 4 4 3 4 4 4 2 ...
          $ AgeGroup : num 3 4 3 4 4 3 6 1 3 2 ...
         'data.frame': 417 obs. of 9 variables:
          $ PassengerId: int 892 893 894 895 896 897 898 899 900 901 ...
          $ Pclass : int 3 3 2 3 3 3 2 3 3 ...
                       : Factor w/ 2 levels "female", "male": 2 1 2 2 1 2 1 2 1 2 ...
          $ Sex
          $ Age
                      : num 34.5 47 62 27 22 14 30 26 18 21 ...
          $ SibSp
                      : int 0 1 0 0 1 0 0 1 0 2 ...
                      : int 0 0 0 0 1 0 0 1 0 0 ...
          $ Parch
                      : num 7.83 7 9.69 8.66 12.29 ...
          $ Fare
          $ Embarked
                      : Factor w/ 3 levels "C", "Q", "S": 2 3 2 3 3 3 2 3 1 3 ...
          $ AgeGroup : num 4 5 7 3 3 2 4 3 2 3 ...
In [197]: #Next, encoding of categorical variables
          training set$Sex <- factor(training set$Sex, levels=c('male','female'),1:2) #for Sex
          training_set$Embarked <- factor(training_set$Embarked, levels=c('S','C','Q'),1:3) #for Embarked
          test_set$Sex <- factor(test_set$Sex, levels=c('male','female'),1:2) #for Sex</pre>
          test_set$Embarked <- factor(test_set$Embarked, levels=c('S','C','Q'),1:3) #for Embarked
In [198]: str(training set)
          str(test_set)
          head(test set)
                         889 obs. of 10 variables:
         'data.frame':
          $ PassengerId: int  1 2 3 4 5 6 7 8 9 10 ...
          $ Survived : int
                              0 1 1 1 0 0 0 0 1 1 ...
                       : int 3 1 3 1 3 3 1 3 3 2 ..
          $ Pclass
                      : Factor w/ 2 levels "1", "2": 1 2 2 2 1 1 1 1 2 2 ...
          $ Sex
          $ Age
                      : num 22 38 26 35 35 28 54 2 27 14 ...
                      : int 1 1 0 1 0 0 0 3 0 1 ...
          $ SibSp
          $ Parch
                      : int 0 0 0 0 0 0 0 1 2 0 ...
                       : num 7.25 71.28 7.92 53.1 8.05 ...
          $ Embarked : Factor w/ 3 levels "1","2","3": 1 2 1 1 1 3 1 1 1 2 ...
          $ AgeGroup : num 3 4 3 4 4 3 6 1 3 2 ...
         'data.frame': 417 obs. of 9 variables:
          $ PassengerId: int 892 893 894 895 896 897 898 899 900 901 ...
                      : int 3 3 2 3 3 3 3 2 3 3 ...
          $ Pclass
                       : Factor w/ 2 levels "1", "2": 1 2 1 1 2 1 2 1 2 1 ...
          $ Sex
                       : num 34.5 47 62 27 22 14 30 26 18 21 ...
          $ Age
```

```
$ SibSp : int 0 1 0 0 1 0 0 1 0 2 ...
$ Parch : int 0 0 0 0 1 0 0 1 0 0 ...
$ Fare : num 7.83 7 9.69 8.66 12.29 ...
$ Embarked : Factor w/ 3 levels "1","2","3": 3 1 3 1 1 1 3 1 2 1 ...
$ AgeGroup : num 4 5 7 3 3 2 4 3 2 3 ...
```

	Passengerld	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	AgeGroup
	<int></int>	<int></int>	<fct></fct>	<dbl></dbl>	<int></int>	<int></int>	<dbl></dbl>	<fct></fct>	<dbl></dbl>
1	892	3	1	34.5	0	0	7.8292	3	4
2	893	3	2	47.0	1	0	7.0000	1	5
3	894	2	1	62.0	0	0	9.6875	3	7
4	895	3	1	27.0	0	0	8.6625	1	3
5	896	3	2	22.0	1	1	12.2875	1	3
6	897	3	1	14.0	0	0	9.2250	1	2

```
In [199]: #deleting age since we have age group
           training_age <- training_set$Age</pre>
           test_age <- test_set$Age</pre>
           training_set <- training_set[,-5]</pre>
          test_set <- test_set[,-4]</pre>
In [200]: #The response variable is Survived since it is the dependent variable we are trying to predict in
           our model
           #Fitting Logistic onto the training set (glm- generalied linear models)
           classifier <- glm(formula = Survived ~ .,</pre>
                             family = binomial,
                             data = training_set[,-1])
In [201]: #Finding out the probability of prediction
           prob_predictions = predict(classifier, type='response', test_set[,-1]) #test without passenger id
          y_predict <- ifelse(prob_predictions>=0.5,1,0)
          y_predict #scorecard of the predictions
          1
```

Λ

```
311
           0
         378
           0
          379
           0
          380
           1
          381
           0
          382
           1
          383
           0
          384
           0
          385
           1
          386
           0
          387
           1
          388
           0
          389
           0
          390
           0
          391
           0
          392
           1
          393
           1
          394
           1
          395
           1
          396
           1
          397
           1
          398
           0
          399
           1
          400
           0
          401
           0
          402
           0
In [202]: summary(classifier)
          glm(formula = Survived ~ ., family = binomial, data = training_set[,
              -1])
          Deviance Residuals:
              Min
                        1Q Median
                                           3Q
                                                   Max
```

```
-2.3499 -0.6709 -0.4569 0.6726 2.5427
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.414036 0.378946 1.093
                                        0.2746
          -0.854969 0.133033 -6.427 1.3e-10 ***
Pclass
           2.722762 0.198198 13.738 < 2e-16 ***
Sex2
SibSp
          -0.237855 0.101562 -2.342
                                       0.0192 *
Parch
          -0.073129 0.114325 -0.640
                                        0.5224
           0.002393 0.002366 1.011
0.458376 0.230079 1.992
                                        0.3120
Fare
Embarked2
                                        0.0463 *
          0.263279 0.322801 0.816
                                        0.4147
Embarked3
AgeGroup -0.018856 0.034097 -0.553 0.5803
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 1182.82 on 888 degrees of freedom
Residual deviance: 811.66 on 880 degrees of freedom
AIC: 829.66
Number of Fisher Scoring iterations: 5
```

It seems like ther eis a strong correlation between Pclass, Sex factor 2, Sibsp, and Embarked factor 2.

Now lets try and make some real predictions:

wilce.csv(submission_i									
	Passengerld	Survived							
	<int></int>	<dbl></dbl>							
1	892	0							
2	893	1							
3	894	0							
4	895	0							
5	896	1							
6	897	0							
7	898	1							
8	899	0							
9	900	1							
10	901	0							
11	902	0							
12	903	0							
13	904	1							
14	905	0							
15	906	1							
16	907	1							

17	908	0
18	909	0
19	910	1
20	911	1
21	912	0
22	913	0
23	914	1
24	915	1
25	916	1
26	917	0
27	918	1
28	919	0
29	920	0
30	921	0
3	:.	
389	1280	0
390	1281	0
391	1282	0
392	1283	1
393	1284	0
394	1285	0
395	1286	0
396	1287	1
397	1288	0
398	1289	1
399	1290	0
400	1291	0
401	1292	1
402	1293	0
403	1294	1
404	1295	0
405	1296	0
406	1297	0
407	1298	0
408	1299	1
409	1300	1
410	1301	1
411	1302	1
412	1303	1
413	1304	1
414	1305	0
415	1306	1

	416	1307	0
	417	1308	0
	418	1309	0

In [204]: library(dplyr)
survived_training <- filter(training_set, Survived == 1)</pre>

In [205]: #Lets take a look at a scorecard of individuals who did survive. What criteria was in place. #Common Themes:

#Sex=2 (Female)

 $\# Age \ Group <=4 \ (people \ under \ the \ age \ of \ 40)$

#PClass:

#It looks like if they are in class 3 and dtraveling with no SibSp they can survive, #if they are any other class and travelining with SibSp they also will head(survived_training)

	Passengerld	Survived	Pclass	Sex	SibSp	Parch	Fare	Embarked	AgeGroup
	<int></int>	<int></int>	<int></int>	<fct></fct>	<int></int>	<int></int>	<dbl></dbl>	<fct></fct>	<dbl></dbl>
1	2	1	1	2	1	0	71.2833	2	4
2	3	1	3	2	0	0	7.9250	1	3
3	4	1	1	2	1	0	53.1000	1	4
4	9	1	3	2	0	2	11.1333	1	3
5	10	1	2	2	1	0	30.0708	2	2
6	11	1	3	2	1	1	16.7000	1	1

In [216]: #Lets try and predict who will surve for females with an AgeGroup<5
 test2 <- filter(test_set, AgeGroup <= 4)
 test2 <- filter(test2, Sex==2)</pre>

In [218]: #My guess is that the model will predict survived for females who are in an AgeGroup<=4.
prob_predictions = predict(classifier, type='response', test2[,-1])
y_predict <- ifelse(prob_predictions>=0.5,1,0)
y_predict #Looks like the model does predict this survived for most of these cases.

1 8

https://github.com/aicasas/TitanicSurvivalPredictions/blob/master/TitanicPredictions.ipynb

```
104
           1
          105
           1
          106
           1
          107
           0
          108
           1
          109
           1
          110
           1
          111
           1
          112
           1
          113
           1
          114
           1
          115
          116
           1
          117
           1
          118
           1
          119
           1
          120
           1
          121
           1
          122
           1
In [233]: #What about women of any age in first class?
           test2 <- filter(test_set, Pclass==1)</pre>
           test2 <- filter(test2, Sex==2)
           prob_predictions = predict(classifier, type='response', test2[,-1])
          y_predict <- ifelse(prob_predictions>=0.5,1,0)
          y_predict #Women of any age survived
           1
          2
          3
           1
          4
           1
          5
          6
           1
         7
```

```
38
           1
          39
           1
          40
           1
          41
           1
          42
           1
          43
           1
          44
           1
          45
           1
          46
           1
          47
           1
          48
           1
          49
           1
          50
           1
In [219]: #What about for men in that age group?
           test3 <- filter(test_set, AgeGroup <= 4)</pre>
           test3 <- filter(test3, Sex==1)</pre>
In [220]: prob_predictions = predict(classifier, type='response', test3[,-1])
           y_predict <- ifelse(prob_predictions>=0.5,1,0)
           y_predict #yes, they are most likely not to survive!
           0
          2
           0
          3
           0
          4
           0
          5
           0
          6
           0
          7
           0
          8
           0
          9
           0
          10
           1
          11
           0
          12
           0
          13
```

```
194
           0
          195
           0
          196
           0
          197
           0
          198
           0
          199
           0
          200
           0
          201
           0
          202
           0
          203
           0
         204
           0
          205
           0
          206
           0
          207
           0
          208
           0
          209
           0
          210
           0
         211
           0
         212
           0
         213
           0
          214
           0
In [221]: #What about old men?
           test4 <- filter(test_set, AgeGroup > 4)
           test4 <- filter(test3, Sex==1)
          prob_predictions = predict(classifier, type='response', test4[,-1])
          y_predict <- ifelse(prob_predictions>=0.5,1,0)
          y_predict #Sorry men
           0
          2
           0
          3
           0
          4
           0
          5
           0
          6
```

```
101
           0
          188
           0
          189
           0
          190
           0
          191
           0
          192
           0
          193
           0
          194
           0
          195
           0
          196
           0
          197
           0
          198
           0
          199
           0
          200
           0
          201
           0
          202
           0
          203
           0
          204
           0
          205
           0
          206
           0
          207
           0
          208
           0
          209
           0
          210
           0
          211
           0
          212
           0
          213
           0
          214
           0
In [226]: #What about first class men?
           test5 <- filter(test_set, Pclass==1)</pre>
           test5 <- filter(test5, Sex==1)
```

prob_predictions = predict(classifier, type='response', test5[,-1])

```
y_predict <- ifelse(prob_predictions>=0.5,1,0)
y_predict
1
 0
2
 0
3
 1
4
 0
5
 0
6
 0
7
 0
8
 0
9
 0
10
 0
11
 1
12
 1
13
 1
14
 0
15
 0
16
 1
17
 1
18
 0
19
 1
20
 0
21
 0
22
 0
23
 0
24
 1
25
 0
26
 0
27
 0
28
 1
29
```

```
1
          30
           1
          31
           0
          32
           0
          33
           0
          34
           0
          35
           0
          36
           0
          37
           1
          38
           0
          39
           1
          40
           0
          41
           0
          42
           0
          43
           0
          44
           0
          45
           0
          46
           1
          47
           0
          48
           1
          49
           1
          50
           0
          51
           0
          52
           0
          53
           0
          54
           0
          55
           0
          56
           0
          57
           1
In [229]: #What about first class men and traveling with more than one Parchild?
           test5 <- filter(test_set, Pclass==1)</pre>
```

```
test5 <- filter(test5, Sex==1)
          test5 <- filter(test5, Parch>1)
          prob_predictions = predict(classifier, type='response', test5[,-1])
          y_predict <- ifelse(prob_predictions>=0.5,1,0)
          y_predict #the model predicts about half of these will survive
          0
         2
          1
         3
          1
          0
In [231]: #What about first class men and traveling with more than one SibSp?
          test5 <- filter(test_set, Pclass==1)</pre>
          test5 <- filter(test5, Sex==1)
          test5 <- filter(test5, SibSp>1)
          prob_predictions = predict(classifier, type='response', test5[,-1])
          y_predict <- ifelse(prob_predictions>=0.5,1,0)
          y_predict #the model predicts SibSp is not more important for men than Parchild
         1:0
```

Logistic Regression Conclusions:

The most important factors in determining who survived were:

Sex (Females were most likely)

Parchild, or SibSp: Whether or not the individual was traveling with others

Class: First class passengers were most likely to survive

Here are some senarios and the likeliness of survival:

Women of any age & in first class were very likely to survive.

Women under 40 years old had 100% survival rate.

Older men were very likely not to survive

Men traveling in first class with a parent or child had a 50% chance of survival