WORKSHEET-1.
1. Important operations
AUB = &x XEA OV XEB }
$A \cap B = \langle x x \in A \text{ and } x \in B3$
$A \setminus B = \{ \pi \pi \in A \text{ and } \pi \notin B \}.$
$A \times B = \mathcal{L}(n, y) \mid x \in A, y \in B \mathcal{L}$
$A \oplus B = (A \setminus B) \cup (B \setminus A)$
Some questions that could be
asked are
$A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$?
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
A = A
e) $A \oplus (BUC) = (A \oplus B) U (A \oplus C)$?
d) $A \oplus (B \cdot C) = (A \oplus B) \cdot (A \oplus C)$?
e) Yes, A = AUB if BCA.
f) A = B y elements of A are same
as elements of B.
$A = B$ if and only if $A \subseteq B$ and
$B \subset A$.
Proof (a) Let A = B Then clearly
$A \subseteq B$ and $B \subseteq A$.
(b) Now conversely suppose BEA & A 5
we show that $A = B$.
Let z EA., given that A S B,
ZEB. Similarly JEB, yEA
A = B

g). Is Ax(CUB) = (Axc)U (AXB) Let We use (f) Let LHS = E, RHS = F We show that E & F and F & E. Let (x,y) E E = Ax(CUB) This means XEA, yECUB. y GC then (2,y) E AXC whereas y E B then (x,y) E A XB (a,y) EAXC or AXB \Rightarrow $(x,y) \in (A \times C) \cup (A \times B) = F$ This shows EEF. Conversely Let (x, 2) E F So (21,2) EAXC or AXB. If (a, z) EAXC then (x,z) EAX (CUB) = E Thus FSE. (b) Counter ex. $A = \xi_{1,2,3}$ $B = \{3,43 \ C = \xi_{a3}\}$ A-B = &1,23 BUC = &3,4,a3 A \ (BUC) = \(\xi\), 23 (A \ B)UC = \(\xi\), 2, a3. SO A (BUC) + (AB)UC. f(AUB) = f(A)Uf(B) 92

Let $x \in f(A \cup B)$ ie $x = f(y)$, where
yEAUB. Since y is in the union
ut is in A or B, It y & A.
then n-f(y) Ef(A)
ie f(AUD) If y & is in B
then $n = f(y) \in f(B)$
\Rightarrow $x \in f(A)$ or $f(B)$
$\Rightarrow x \in f(A) \cup f(B)$
Thus $f(AUB) \subset f(A)Uf(B) - (i)$.
We observe that 'y C C D, then
$f(c) \subseteq f(D)$
Now, A S A UB B S A UB
f(A) S f (AUB)
$f(B) \leq f(A \cup B)$
\Rightarrow $f(A) \cup f(B) \subseteq f(A \cup B) - (\hat{i})$
From (i) 2(ii) f(A) Uf (B) = f(A UB).
Note that in to 3rd worksheet
we asked if same holds for pre-image
$\det f: X \to Y. A \subseteq Y.$
Then $f^{-1}(A) = \{x \mid f(x) \in A^3\}$.
$X = \sqrt{2}$ $A = \sqrt{2}, 3$
$f^{-1}(A) = \{ b, c, d \}$
$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = 0$
$f^{-1}(313) = \{a\}$
We can talk of pre-image even
without inverse.

We can ask if $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$. $Q_2(2)$. Is f(ADB) = f(A)Df(B). Again note that ANBSA, AABSB so f(AnB) C f(A) $f(A \cap B) \leq f(B)$ ⇒ f(ANB) ⊆ f(A) Nf(B) - always. Consider f: Z > Z 2 2 x2 A = \(\{ -1, 0 \} \) B = \(\(0, 1 \) \\ $A \cap B = \{0\}, \quad f(A) = f(B) = \{0,1\}$ f(ANB) = {0} f(A) Nf(B) = {0,1}. so $f(A \cap B) \neq f(A) \cap f(B)$ If we restrict the same function to

f: {0,1,2...3} > 2 we will find that f(ANB) = f(A) Nf(B) , we need to be careful about sperifying domain & codomain. Q 2 (3) Can we say f(A-B) - f(A) \f(Again look at previous example $A \setminus B = \{-1\}$ $f(A \setminus B) = \{1\}$ $f(A) = f(B) = \{0,13. f(A) \setminus f(B) = \emptyset$ this happening because f is not

Can we say. $f\left(f^{-1}(B)\right) = B$ ie. Image of pre-mage of B is 3. Look at example on page 4. $f(A) = \{0, 13, = B$ $f^{-1}(f(A)) = \{-1, 0, 13\}$ Here A C f (f (A)). f (f-1(B)) = B - in this case. Can you prove it? Q3 (2) Let X=Y=Z f: X \to X \frac{9}{2} \times X. Let f and g be 1-1 functions

Claim $g \circ f$ is 1-1.

Suppose not then $f : \mathcal{H}_1 \& \mathcal{H}_2$ $\mathcal{H}_1 \neq \mathcal{H}_2$ but $g(f(\mathcal{H}_1)) = g(f(\mathcal{H}_2))$ This means 2 = g (y,) = g (y 2) Surie g is 1-1 => y, = y_2. But fib 1-1 3 1, - 12

