Host-to-Host-Kommunikation im Rahmen der Netzwerkprogrammierung

R. Grünert S. Klobe 10. Juni 2021

Zur erfolgreichen Kommunikation zwischen zwei Hosts mit z. B. echotcp bzw. daytimetcp über das Internet bedarf es mehrerer Konfigurationsschritte. Die notwendigen Schritte werden in diesem Dokument erklärt. Hier eine Zusammenfassung:

- Vor Beginn der Einstellungen sollte ein fester Port für den Serversocket im jeweiligen Serverprogramm angelegt werden. In unserem Fall ist dies der Port 44203.
- Damit der Server über das Internet erreichbar ist (also vom Client-Programm innerhalb eines anderen Netzwerkes), wird eine öffentliche IPv4-Adresse benötigt.
- Am Gateway des Servernetzwerkes muss mittels Portweiterleitung der eingehende Traffic des Clients auf z.B. Port 44203 an den Server-Host weitergeleitet werden.
- Die Firewall des Server-Hosts muss für den Serverport geöffnet sein.
- Bei Verwendung einer virtuellen Maschine muss dort ebenfalls der Port weitergeleitet werden.

Zusätzlich kann das freie Programm Wireshark dabei helfen, Kommunikationsprobleme zu identifizieren.

Abb. 1 zeigt eine vereinfachte Darstellung der Situation.

Abbildung 1: Stark vereinfachte Darstellung der Netztopologie

1 IPv4 Adresszuweisung

Da im Modul ENP die Netzwerkkommunikation auf Schicht 3 über IPv4 gelehrt wird, benötigt zumindest der Server-Host eine solche öffentliche Adresse.

Da man heutzutage bei den meisten Providern mit *Dual Stack Lite* angebunden wird und daher nur eine IPv6-Adresse erhält, ist in diesem Fall eine Anfrage beim Provider nötig, um eine IPv4 Adresse zugewiesen zu bekommen. Im Falle unseres Providers (Vodafone) erfolgte dies durch einen einfachen Anruf.

Gelingt keine IPv4-Zuweisung, bleiben nur Ausweichmöglichkeiten, wie z.B. die VPN-Verbindung beider Netzwerke.

Mithilfe einer Website zur Ermittlung der eigenen öffentlichen IP-Adresse kann im vorher-nachher-Vergleich die Zuweisung überprüft werden ¹.

2 Port-Forwarding

Aus Sicht des inside-global Netzwerkes gibt es noch keine Möglichkeit, um den Server von anderen Hosts im Heimnetzwerk zu unterscheiden. Der Router sollte daher so konfiguriert werden, dass er den Traffic, der an den Port des Servers gerichtet ist auch an den Server weiterleitet (Port-Forwarding).

2.1 Ermittlung der Router-IP-Adresse

Über das Webinterface des Routers kann man das Port-Forwarding einstellen. Um die lokale IP-Adresse des Routers zum Erreichen des Webinterfaces herauszufinden, gibt es betriebssystemabhängig verschiedene Möglichkeiten.

Router-IP unter Windows Über den CMD-Befehl ipconfig findet man unter dem Eintrag "Default Gateway"bzw "Standardgateway"die gewünschte Routeradresse (Abb. 2).

Router-IP unter Linux Unter Linux kann man den Befehl ip r oder ip route nutzen, um die Routeradresse herauszufinden.

2.2 Aufruf des Webinterfaces

Über die oben ermittelte IP-Adresse kann man im Browser das Webinterface des Routers aufrufen. Das Passwort findet man i.d.R. auf dem Router selbst.

2.3 Einstellung des Port-Forwardings

Die genaue Einstellung des Port-Forwardings unterscheidet sich natürlich je nach Gerät, im allgemeinen müssen dann aber nur ein Port(bereich) und eine gewünschte Ziel-IP-Adresse angegeben werden. Ein Beispiel ist in Abb. 4 zu sehen.

Die Ziel-IP-Adresse ist die lokale Adresse des Hosts auf dem das Serverprogramm läuft. Man findet sie unter Windows ebenfalls über den ipconfig -Befehl und unter Linux z.B. über ip a. Da die Adresszuweisung meist standardmäßig über DHCP stattfindet, sollte darauf geachtet werden, dass sich

¹z. B. mit https://www.whatismyip.com/

die beim Port-Forwarding angegebene Adresse ändern und daher eine Neukonfiguration notwendig sein kann.

Abbildung 2: CMD-Ausgabe des ipconfig-Befehls unter Windows

zamza@omega:~ ip r default via 192.168.178.1 dev enp3s0 proto dhcp metric 100

Abbildung 3: Ausgabe des ipconfig-Befehls unter Linux

Abbildung 4: Beispiel für Port-Forwarding Ansicht eines Vodafone-Routers

3 Firewall

Dem Paket steht nun noch die Firewall des Serverhosts im Weg. Diese blockiert i.d.R. den einkommenden Traffic, der an den Port des Serverprogramms gerichtet ist. Je nach Betriebssystem geschieht das Öffnen des Ports unterschiedlich. Hier wird sich allerdings auf Windows beschränkt, da dies der Regelfall für ENP-Teilnehmer*innen ist. Ein Tutorial für das Öffnen von Ports unter Ubuntu findet man z.B. hier.

3.1 Portregeln unter Windows

Über Systemsteuerung \rightarrow System und Sicherheit \rightarrow Windows Defender Firewall \rightarrow Erweiterte Einstellungen gelangt man zu den Portregeln. Mit einem Rechtsklick auf Eingehende Regeln und danach auf Neue Regel kann man den Port des Servers freigeben. Abb. 5 bis 6 zeigen eine Beispielkonfiguration für den Serverport 44203.

Abbildung 5

Abbildung 6

4 Virtualbox

Da Teilnehmer*innen des Moduls ENP meist eine virtuelle Maschine (Oracle VirtualBox) auf Windows nutzen, um unter Linux zu arbeiten, benötigt man in diesem Fall zusätzliche Konfigurationen unter VirtualBox.

Als erstes sollte sichergestellt sein, dass VirtualBox von der Windows-Firewall ins Netzwerk gelassen wird. Dies kann ebenfalls über Systemsteuerung

— System und Sicherheit — Windows Defender Firewall geprüft werden. Alternativ kann man auch in der virtuellen Maschine testen, ob man z.B. mit einem Browser eine Website aufrufen kann.

Weiterhin muss auch hier eine Portweiterleitung eingerichtet werden.

4.1 Port-Forwarding

Die Weiterleitungseinstellungen erreicht man über den Netzwerk-Tab unter den Einstellungen der Virtuellen Maschine. Eine Beispielkonfiguration ist in Abb. 7 zu sehen.

Abbildung 7: Einstellung der Portweiterleitung unter VirtualBox

Hinweis: Möglicherweise bedarf es einem Neustart von Windows oder VirtualBox.

5 Test

Nach den oben beschriebenen Schritten kann der erste Test gestartet werden. Es wird angenommen, dass das Clientprogramm (cli) so geschrieben ist, dass man über die Aufrufargumente IP-Adresse und Port des Servers angeben kann. Der Aufruf für unser Beispiel funktioniert dann z.B. so: cli 172.217.14.195 44203.

An Client- und Serverprogramm sollten keine weiteren Modifikationen notwendig sein. Der Listen-Socket des Servers sollte am einfachsten mit der Adresse des Macros INADDR_ANY gebunden werden.

6 Troubleshooting

Mithilfe des Programmes Wireshark kann der Netzwerkverkehr der Netzwerkschnittstellen sowohl beim Client als auch beim Server in Echtzeit überwacht werden. Mit dem Filterbefehl tcp.port == 44203 können nur die relevanten Pakete angezeigt werden. Bei Verbindungsaufbau sowie Datenübertragung (z.B. Senden der Zeichenkette bei echotcp) erscheinen dann dort die zugehörigen Pakete.

Abb. 8 sowie Abb. 9 zeigen Wireshark-Traces aus Client- und Serversicht, bei denen die Firewall des Server-Hosts den Client- Traffic nicht hindurchlässt. Der Client schickt dann kontinuierliche Anfragen zum Verbindungsaufbau (SYN).

Ist das Port-Forwarding am Router nicht korrekt konfiguriert, zeigt der Trace des Server-Hosts (Abb. 9) keine Pakete an.

1	¶ tep.port == 44203										
1	lo.	Time	Source	Destination	Protocol	Length Info					
Г		10.363975703	192.168.178.38	31.16.164.59	TCP	74 44324 - 44203 [SYN] Seg=0 Win=64240 Len=0 MSS=1460 SACK PERM=1 TSval=2082676633 TSecr=0 WS=128					
ı			192.168.178.38	31.16.164.59		74 [TCP Retransmission] 44324 - 44203 [SYN] Seq-0 Win-64240 Len-0 MSS-1460 SACK PERM-1 TSval-2082677647 TSecr-0 WS-128					
1			192.168.178.38	31.16.164.59		74 [TCP Retransmission] 44324 → 44203 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1 TSval=2082679695 TSecr=0 WS=128					
			192.168.178.38			74 [TCP Retransmission] 44324 → 44203 [SYN] Seg=0 Win=64240 Len=0 MSS=1460 SACK PERM=1 TSval=2082683727 TSecr=0 WS=128					
_	061	25 777076000	102 160 170 20	21 16 164 50		74 [TCD Determination] 44224 44202 [CVM] Com.D. Win. 64240 Lon.D. MCC. 1460 CACK DEDM.1 Tour. 2002602047 TCom.D. MC. 120					

Abbildung 8: Wireshark Trace am Clientrechner bei Firewall-Problemen

tcp.por	p.port 4(0)							
No.	Time	Source	Destination	Protocol Length	Info			
_ 55	98.565756	88.130.152.87	192.168.0.28	TCP	74 17013 → 44203 [SYN] Seq=0 Win=64240 Len=0 MSS=1412 SACK_PERM=1 TSval=2920405483 TSecr=0 WS=128			
L 55					74 [TCP Retransmission] 17013 → 44203 [SYN] Seq=0 Win=64240 Len=0 MSS=1412 SACK_PERM=1 TSval=292040			
57	104.8445	88.130.152.87	192.168.0.28	TCP	74 17015 → 44203 [SYN] Seq=0 Win=64240 Len=0 MSS=1412 SACK_PERM=1 TSval=2920411763 TSecr=0 WS=128			
58					74 [TCP Retransmission] 17015 → 44203 [SYN] Seq=0 Win=64240 Len=0 MSS=1412 SACK_PERM=1 TSval=292041			
59					74 [TCP Retransmission] 17015 → 44203 [SYN] Seq=0 Win=64240 Len=0 MSS=1412 SACK_PERM=1 TSval=292041			
73	143.0075	88.130.152.87	192.168.0.28	TCP	74 17020 → 44203 [SYN] Seq=0 Win=64240 Len=0 MSS=1412 SACK_PERM=1 TSval=2920449924 TSecr=0 WS=128			
74	144.0264	88.130.152.87	192.168.0.28	TCP	74 [TCP Retransmission] 17020 → 44203 [SYN] Seq=0 Win=64240 Len=0 MSS=1412 SACK_PERM=1 TSval=292045			
74					74 [TCP Retransmission] 17020 → 44203 [SYN] Seq=0 Win=64240 Len=0 MSS=1412 SACK_PERM=1 TSval=292045			

Abbildung 9: Wireshark Trace am Serverrechner bei Firewall-Problemen

Für den Fall, dass die Portfreigabe-Einstellungen unter Windows keine Wirkung haben, kann auch die gesamte Firewall deaktiviert werden (Abb. 10).

Abbildung 10

7 Verbesserungen / Hinweise

Unsere Testumgebung bestand aus einem Host mit nativem Linux (Client) und einem Host mit Linux unter VM auf Windows (Server). Die anderen Kombinationen, sprich Linux-Client/Windows-Server, Linux-Client/Linux-Server, sowie Windows-Client/ Windows-Server, wurden daher noch nicht getestet. Möglicherweise sind unter diesen Bedingungen weitere Einstellungen notwendig (z.B. an der Firewall auf dem Clientrechner).