CIS 571 - Assignment 4

Ali Hassani

November 24, 2021

Question 1

- 1. True
- 2. False
- 3. False
- 4. False; X_1 is conditionally independent of X_2
- 5. True

Question 2

Initial factors: P(A), P(B|A), P(C|B), P(D|B), P(E|C,D).

P(A)P(B|A) = P(A, B)

A	B	P(A, B)
0	0	0.08
0	1	0.12
1	0	0.16
1	1	0.64

P(C|B)P(D|B) = P(C, D|B)

C	D	B	P(C, D B)
0	0	0	0.48
1	0	0	0.32
0	1	0	0.12
1	1	0	0.08
0	0	1	0.36
1	0	1	0.24
0	1	1	0.24
1	1	1	0.16

P(A, B, C, D) = P(A, B)P(C, D|B)

\boldsymbol{A}	В	C	D	P(A, B, C, D)
0	0	0	0	0.0384
0	0	0	1	0.0096
0	0	1	0	0.0256
0	0	1	1	0.0064
0	1	0	0	0.0432
0	1	0	1	0.0288
0	1	1	0	0.0288
0	1	1	1	0.0192
1	0	0	0	0.0768
1	0	0	1	0.0192
1	0	1	0	0.0512
1	0	1	1	0.0128
1	1	0	0	0.2304
1	1	0	1	0.1536
1	1	1	0	0.1536
1	1	1	1	0.1024

P(A, B, C, D)P(E|C, D) = P(A, B, C, D, E)

A	В	С	D	E	P(A, B, C, D, E)
0	0	0	0	0	0.00768
0	0	0	0	1	0.03072
0	0	0	1	0	0.00768
0	0	0	1	1	0.00192
0	0	1	0	0	0.01536
0	0	1	0	1	0.01024
0	0	1	1	0	0.00512
0	0	1	1	1	0.00128
0	1	0	0	0	0.00864
0	1	0	0	1	0.03456
0	1	0	1	0	0.02304
0	1	0	1	1	0.00576
0	1	1	0	0	0.01728
0	1	1	0	1	0.01152
0	1	1	1	0	0.01536
0	1	1	1	1	0.00384
1	0	0	0	0	0.01536
1	0	0	0	1	0.06144
1	0	0	1	0	0.01536
1	0	0	1	1	0.00384
1	0	1	0	0	0.03072
1	0	1	0	1	0.02048
1	0	1	1	0	0.01024
1	0	1	1	1	0.00256
1	1	0	0	0	0.04608
1	1	0	0	1	0.18432
1	1	0	1	0	0.12288
1	1	0	1	1	0.03072
1	1	1	0	0	0.09216
1	1	1	0	1	0.06144
1	1	1	1	0	0.08192
1	1	1	1	1	0.02048

2.1 P(B = 1|E = 1)?

Eliminating E = 0, normalizing, and filtering out B = 1 instances:

\boldsymbol{A}	B	C	D	E	P(A, B, C, D E = 1)
0	0	0	0	1	0.06332
0	0	0	1	1	0.00396
0	0	1	0	1	0.02111
0	0	1	1	1	0.00264
0	1	0	0	1	0.07124
0	1	0	1	1	0.01187
0	1	1	0	1	0.02375
0	1	1	1	1	0.00792
1	0	0	0	1	0.12665
1	0	0	1	1	0.00792
1	0	1	0	1	0.04222
1	0	1	1	1	0.00528
1	1	0	0	1	0.37995
1	1	0	1	1	0.06332
1	1	1	0	1	0.12665
1	1	1	1	1	0.04222

Therefore, P(B = 1|E = 1) = 0.07124 + 0.01187 + 0.02375 + 0.00792 + 0.37995 + 0.06332 + 0.12665 + 0.04222 =**0.7269**.

2.2 P(A = 1|C = 0, E = 0)?

Eliminating instances other than where E=0 and C=0, normalizing, and filtering out A=1 instances:

\boldsymbol{A}	В	C	D	E	P(A, B, D C = 0, E = 0)
0	0	0	0	0	0.03113
0	0	0	1	0	0.03113
0	1	0	0	0	0.03502
0	1	0	1	0	0.09339
1	0	0	0	0	0.06226
1	0	0	1	0	0.06226
1	1	0	0	0	0.18677
1	1	0	1	0	0.49805

Therefore, P(A = 1 | C = 0, E = 0) = 0.06226 + 0.06226 + 0.18677 + 0.49805 =**0.80934**.

Question 3

3.1 Rejection Sampling

A is sampled first, and the random value is $0.320 \ge 0.2$, which leads to the sample A = 1. *B* is sampled next, given that A = 1, and the random value is 0.037 < 0.2 therefore B = 0. This is **inconsistent** with the observation B = 1, therefore it will be rejected.

A: 1, **B: 0** C: none D: none E: none **Rejected**

Next round, A is sampled with the random value of $0.303 \ge 0.2$ which leads to A = 1. Afterwards, B is sampled with the random value of $0.318 \ge 0.2$ which leads to B = 1. Next, C is sampled with the random value of 0.032 < 0.6, which leads to C = 0. D is sampled with the random value of $0.969 \ge 0.6$, which leads to D = 1. Finally, E is sampled with the random value of 0.018 < 0.8, which leads to E = 0. This is **inconsistent** with the observation E = 1, therefore it will be rejected.

A: 1, B: 1 C: 0 D: 1 E: 0 Rejected

Not enough random samples exist for another round.

3.2 Likelihood Weighting

A is sampled first, and the random value is $0.249 \ge 0.2$, which leads to the sample A = 1, no change in weight: w = 1.

B is observed to be 1, weight changes: $w = w \cdot P(B = 1|A = 1) = 1 \cdot 0.8 = 0.8$.

Next, C is sampled with the random value of 0.052 < 0.6, which leads to C = 0, no change in weight: w = 0.8.

D is sampled with the random value of 0.299 < 0.6, which leads to D = 0, no change in weight: w = 0.8.

Finally, *E* is observed to be 1, weight changes: $w = w \cdot P(E = 1 | C = 0, D = 0) = 0.8 \cdot 0.8 = 0.64$.

A: 1, B: 1 C: 0 D: 0 E: 1 Weight: 0.64.

3.3 Gibbs Sampling

Current sample: A: 1, B: 0 C: 1 D: 1 E: 1

3.3.1 Non-evidence variable *B* is chosen. What would be the values after re-sampling? P(B|A=1, C=1, D=1, E=1):

With a random variable of 0.320 < 0.889, B is assigned 0.

A: 1, B: 0 C: 1 D: 1 E: 1

3.3.2 Non-evidence variable *D* is chosen. What would be the values after re-sampling?

P(D|A = 1, B = 0, C = 1, E = 1): With a random variable of 0.037 < 0.889, D is assigned 0.

A: 1, B: 0 C: 1 D: 0 E: 1

Question 4

4.1 Coins

The problem can be formulated as the following Bayes Net: where variable *C* (Coin) can take

any of the values 1, 2, 3, and 4 with a probability of 0.25 each, and each variable F_i (Flip # i) can take either H or T, given the following probabilities:

C	F_i	$P(F_i C)$	$P(F_i, C)$
1	Н	0.5	0.125
1	T	0.5	0.125
2	Η	0.25	0.0625
2	T	0.75	0.1875
3	Η	0.75	0.1875
3	T	0.25	0.0625
4	Η	0.625	0.15625
4	T	0.375	0.09375

Therefore, for each F_i , $P(C|F_i)$:

C	F_i	$P(C F_i)$
1	Н	0.23529
2	Η	0.11765
3	Η	0.35294
4	Η	0.29412
1	T	0.26667
2	T	0.40
3	T	0.13333
4	T	0.20

Therefore, the probability that coin # 2 was chosen given that the outcome is HTHTH is:

$$P(C = 2|F_1 = H, F2 = T, F_3 = H, F_4 = T, F_5 = H) = \frac{P(C = 2|F_1 = H)P(C = 2|F_2 = T)P(C = 2|F_3 = H)P(C = 2|F_4 = T)P(C = 2|F_5 = H)}{\sum_{c \in 1,2,3,4} P(C = c|F_1 = H, F2 = T, F_3 = H, F_4 = T, F_5 = H)}$$

$$= \frac{0.11765 \cdot 0.4 \cdot 0.11765 \cdot 0.4 \cdot 0.11765}{0.0029861817852862025}$$

$$= 0.08725.$$

4.2

Since X and Y are independent variables, for any given values x and y in the domain, P(X =x, Y = y) = P(X = x)P(Y = y).

10.

$$P(Y = 2) = \sum_{x} P(X = x, Y = 2) = 0.25 + P(X = 1, Y = 2)$$

$$P(Y = 3) = \sum_{x} P(X = x, Y = 3) = 0.125 + P(X = 1, Y = 3)$$

$$P(Y = 4) = \sum_{x} P(X = x, Y = 4) = 0.5 + P(X = 1, Y = 4)$$

Therefore:

$$\sum_{y} P(Y = y) = 1$$

$$= P(Y = 1) + 0.875 + P(X = 1, Y = 2) + P(X = 1, Y = 3) + P(X = 1, Y = 4) \quad (4.2)$$

$$\implies P(Y = 1) + P(X = 1, Y = 2) + P(X = 1, Y = 3) + P(X = 1, Y = 4) = 0.125 \quad (4.3)$$

$$\implies P(Y = 1) + P(X = 1)[P(Y = 2) + P(Y = 3) + P(Y = 4)] = 0.125 \quad (4.4)$$

$$\implies P(Y = 1) + 0.1[P(Y = 2) + P(Y = 3) + P(Y = 4)] = 0.125 \quad (4.5)$$

$$\implies 10P(Y = 1) + P(Y = 2) + P(Y = 3) + P(Y = 4) = 1.25 \quad (4.6)$$

$$\implies 9P(Y = 1) = 0.25 \quad (4.7)$$

$$\implies P(Y = 1) = \frac{1}{36} \quad (4.8)$$

(4.8)

Therefore, $P(X = 1, Y = 1) = P(X = 1)P(Y = 1) = \frac{1}{10} \frac{1}{36} = 1/360$.

11.

$$\frac{P(X = 2, Y = 2)}{P(X = 2, Y = 3)} = \frac{P(Y = 2)}{P(Y = 3)} = \frac{20}{10}$$

$$\implies 0.5P(Y = 2) = P(Y = 3)$$

$$\frac{P(X = 2, Y = 2)}{P(X = 2, Y = 4)} = \frac{P(Y = 2)}{P(Y = 4)} = \frac{5}{10}$$

$$\implies 2P(Y = 2) = P(Y = 3)$$

$$\sum_{Y} P(Y = Y)$$

$$= \frac{1}{36} + 3.5P(Y = 2) = 1$$

$$\implies 3.5P(Y = 2) = \frac{35}{36}$$

$$\implies \frac{35}{10}P(Y = 2) = \frac{35}{36}$$

$$\implies P(Y = 2) = \frac{10}{36}$$

Therefore, $P(X = 1, Y = 2) = P(X = 1)P(Y = 2) = \frac{1}{10} \frac{10}{36} = 1/36$.

12.

$$\frac{P(X = 2, Y = 3)}{P(X = 2, Y = 4)} = \frac{P(Y = 3)}{P(Y = 4)} = \frac{5}{20}$$

$$\implies 4P(Y = 3) = P(Y = 4)$$

$$\sum_{y} P(Y = y)$$

$$= \frac{1}{36} + \frac{10}{36} + 5P(Y = 3) = 1$$

$$\implies 5P(Y = 3) = \frac{25}{36}$$

$$\implies P(Y = 4) = \frac{5}{36}$$

$$\implies P(Y = 4) = \frac{20}{36}$$

Therefore, $P(X = 1, Y = 3) = P(X = 1)P(Y = 3) = \frac{1}{10} \frac{5}{36} = 5/360$.

13. $P(Y = 4) = \frac{20}{36}$, therefore:

$$P(X = 1, Y = 4) = P(X = 1)P(Y = 4) = \frac{1}{10} \frac{20}{36} = 1/18.$$

14.

$$\frac{P(X = 2, Y = 2)}{P(X = 3, Y = 2)} = \frac{P(X = 2)}{P(X = 3)} = \frac{15}{10}$$

$$\Rightarrow \frac{2}{3}P(X = 2) = P(X = 3)$$

$$\frac{P(X = 2, Y = 2)}{P(X = 4, Y = 2)} = \frac{P(X = 2)}{P(X = 4)} = \frac{12}{10}$$

$$\Rightarrow \frac{5}{6}P(X = 2) = P(X = 3)$$

$$\sum_{x} P(X = x) = P(X = 1) + P(X = 2) + \frac{2}{3}P(X = 2) + \frac{5}{6}P(X = 2)$$

$$= \frac{1}{10} + \frac{15}{6}P(X = 2) = 1$$

$$\Rightarrow \frac{15}{6}P(X = 2) = \frac{9}{10}$$

$$\Rightarrow \frac{75}{30}P(X = 2) = \frac{27}{30}$$

$$\Rightarrow P(X = 2) = \frac{27}{75} = 9/25$$

Therefore, $P(X = 2, Y = 1) = P(X = 2)P(Y = 1) = \frac{9}{25} \frac{1}{36} = 1/100$.

15.

$$\frac{P(X = 3, Y = 2)}{P(X = 4, Y = 2)} = \frac{P(X = 3)}{P(X = 4)} = \frac{12}{15}$$

$$\implies \frac{5}{4}P(X = 3) = P(X = 4)$$

$$\sum_{x} P(X = x) = P(X = 1) + P(X = 2) + P(X = 3) + \frac{5}{4}P(X = 3)$$

$$= \frac{1}{10} + \frac{9}{25} + \frac{9}{4}P(X = 3) = 1$$

$$= \frac{10}{100} + \frac{36}{100} + \frac{9}{4}P(X = 3) = 1$$

$$= \frac{23}{50} + \frac{9}{4}P(X = 3) = 1$$

$$\implies \frac{9}{4}P(X = 3) = \frac{27}{50}$$

$$\implies P(X = 3) = \frac{12}{50} = \frac{6}{25}$$

$$\implies P(X = 4) = \frac{3}{10}$$

Therefore, $P(X = 3, Y = 1) = P(X = 3)P(Y = 1) = \frac{6}{25} \frac{1}{36} = 1/150$.

16. $P(X = 4) = \frac{3}{10}$, therefore:

$$P(X = 4, Y = 1) = P(X = 4)P(Y = 1) = \frac{3}{10} \frac{1}{36} = 1/120.$$