Worksheet W2Mon: Cauchy-Riemann Equations

Problem 1. Suppose $u, v : \mathbb{R} \to \mathbb{R}$ are functions and $f : \mathbb{C} \to \mathbb{C}$ is defined by f(x + iy) = u(x) + iv(y). If f is entire, show that f(z) = az + b for some $a, b \in \mathbb{C}$.

Problem 2. Find all functions $v : \mathbb{C} \to \mathbb{R}$ such that the function $f : \mathbb{C} \to \mathbb{C}$ defined by

$$f(x + iy) = (2x^2 + x + 1 - 2y^2) + iv(x + iy)$$

is entire. Then, for each such v, find a formula for f(z) directly in terms of z (ie, not in terms of x = Re(z) and y = Im(z)).

Problem 3. Show that there exists no function $v : \mathbb{C} \to \mathbb{R}$ such that $f(x + iy) = (x^2 + y^2) + iv(x + iy)$ is holomorphic.

Problem 4. Let G be a region and $\bar{G} = \{z \in \mathbb{C} : \bar{z} \in G\}$. Suppose $f : G \to \mathbb{C}$ is holomorphic and define $g : \bar{G} \to \mathbb{C}$ by

$$g(z) = \overline{f(\bar{z})}$$
.

Show that g is holomorphic. Do this using the definition of the derivative, and then do it again using the Cauchy-Riemann equations.

Problem 5. Suppose G is a region and $f: G \to \mathbb{C}$ is a holomorphic function. Show that f must be constant under each of the following assumptions.

- (a) f is real-valued.
- (b) \bar{f} is holomorphic.
- (c) $f(G) \subseteq C[0,1] \setminus \{1\}.$

Possible hints. Parts (b) and (c) can be derived from (a).

Problem 6. Suppose G is a region and $f: G \to \mathbb{C}$ is analytic. Show that, if |f(z)| = 1 for all $z \in G$, then f is constant on G. *Possible hints*. Set u = Re f and v = Im f. Show that $u^2 + v^2 = 1$. Differentiate this equation with respect to x and y, and then use the Cauchy-Riemann equations to get two equations whose "unknowns" are the two partials of u. Then use some linear algebra to solve these equations!