## 学界 | 一种新的在线手写体汉字识别的混合参数递 归神经网络

2017-11-10 机器海岸线

## 选自 arXiv

作者: Haiqing Ren, Weiqiang Wang 等

机器海岸线编译

参与: 方建勇

## A New Hybrid-parameter Recurrent Neural Networks for Online Handwritten Chinese Character Recognition

## Haiqing Ren Weiqiang Wang

University of Chinese Academy of Sciences, CAS, Beijing, China Email:renhaiqing14@mails.ucas.ac.cn, wqwang@ucas.ac.cn

论文链接: https://arxiv.org/pdf/1711.02809

摘要:递归神经网络(RNN)适用于处理时间序列。在本文中,我们提出了一个新的特征,并将其应用于在线手写汉字识别。与现有的 RNN 模型相比,所提出的系统涉及三个创新。首先提出了一种新的 RNN 隐层功能,用于更好地学习时态信息能,我们称之为内存池单元(MPU)所提出的 MPU 具有简单的结构。其次,提出了一种新的混合参数 RNN 结构,以提高 RNN 的表达能力能,所提出的混合参数 RNN 在计算时间维度上的迭代时具有参数变化。第三,我们将每层的所有输出作为网络的输出进行调整能,堆叠的隐藏层状态结合了所有的隐藏层状态来提高表达能力。在 IAHCC-UCAS2016 数据集和 CASIA-OLHWDB1.1 数据集上进行实验结果表明,混合参数 RNN 具有更高的识别性能和更高的效率(参数更少,速度更快)。提出的 Mem-Pool 池单元被证明是一个简单的隐层功能,并获得了一个有竞争力的识别结果。



图 1: 用Leap Motion 传感器的悬空手写实例。



(a) In-air handwritten Chi-(b) Handwritten Chinese nese characters characters on touch screen

图 2: HCC 和 IAHCC 的比较 (Ren 等, 2017)。





图 4: 内存池单元。

|     | Method     | Method General RNNs 256 |       | Hybrid-parameter<br>RNNs<br>128 |                     |       | Bidirectional<br>RNNs<br>128 |                     |       | General<br>RNNs<br>128 |
|-----|------------|-------------------------|-------|---------------------------------|---------------------|-------|------------------------------|---------------------|-------|------------------------|
|     |            | Paras                   | Acc.  | Paras                           | speed<br>Sec/sample | Acc.  | Paras                        | speed<br>Sec/sample | Acc.  | Acc.                   |
|     | 2 h_layers | 1.58mil                 | 92.2% | 0.79mil                         | 0.00127             | 92.7% | 0.79mil                      | 0.00143             | 92.7% | 90.6%                  |
| #1. | 3 h_layers | 1.97mil                 | 92.4% | 0.98mil                         | 0.00170             | 92.9% | 0.98mil                      | 0.00202             | 92.8% | 91.4%                  |
|     | 4 h_layers | 2.37mil                 | 92.6% | 1.18mil                         | 0.00220             | 92.9% | 1.18mil                      | 0.00270             | 92.9% | 91.5%                  |
|     | 5 h_layers | 2.76mil                 | 92.6% | 1.38mil                         | 0.00284             | 92.9% | 1.38mil                      | 0.00330             | 92.9% | 91.5%                  |
| #2. | 2 h_layers | 1.55mil                 | 95.6% | 0.77mil                         | 0.00113             | 96.3% | 0.77mil                      | 0.00136             | 96.1% | N/A                    |
|     | 5 h_layers | 2.74mil                 | 95.7% | 1.37mil                         | 0.00231             | 96.5% | 1.37mil                      | 0.00314             | 96.4% | N/A                    |

256,128 denotes the hidden layer size of corresponding RNNs.

h\_layers denotes hidden layers.

#1. and #2. denote experiments carried out on the IAHCC-UCAS2016 dataset and CASIA-OLHWDB1.1 dataset respectively.

表 1: 不同方法的识别准确度。

| Methods    | GRU   | LSTM  | MPU   | MPU&C |
|------------|-------|-------|-------|-------|
| 2 h_layers | 92.2% | 91.6% | 92.5% | 92.5% |
| 3 h_layers | 92.4% | 92.0% | 92.7% | 92.7% |
| 4 h_layers | 92.6% | 92.2% | 92.7% | 92.7% |
| 5 h_layers | 92.6% | 92.2% | 92.8% | 92.8% |

| Methods    | MPU&C | GRU   | LSTM  |
|------------|-------|-------|-------|
| 2 h_layers | 95.9% | 95.6% | 95.3% |
| 5 h_layers | 96.1% | 95.7% | 95.4% |

表3: 不同方法的识别准确度。

| Methods    | with<br>stacked | without<br>stacked | synthesize with<br>weighted matrix |  |
|------------|-----------------|--------------------|------------------------------------|--|
| 2 h_layers | 92.6%           | 92.2%              | 90.2%                              |  |
| 3 h_layers | 92.8%           | 92.4%              | 91.2%                              |  |
| 4 h_layers | 92.8%           | 92.6%              | 91.8%                              |  |
| 5 h_layers | 92.8%           | 92.6%              | 92.0%                              |  |

表4:不同方法的识别准确度。

| Method | Ours Ensemble | Method#1. | Method#2 |
|--------|---------------|-----------|----------|
| Acc.   | 93.7%         | 93.4%     | 91.8%    |

表5: 我们和最先进的方法之间的识别准确性的比较(曲等人,2016)。

本文为机器海岸线编译,转载请联系 fangjianyong@zuaa.zju.edu.cn 获得授权。

×-----