Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/003302

International filing date: 30 March 2005 (30.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/558,131

Filing date: 01 April 2004 (01.04.2004)

Date of receipt at the International Bureau: 15 June 2005 (15.06.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

2 5 MEI 2005

<u>TO AM TO WHOM THUSE; PRESIDATS SHAM COMES</u>

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

May 02, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE UNDER 35 USC 111.

APPLICATION NUMBER: 60/558,131

FILING DATE: April 01, 2004

By Authority of the

COMMISSIONER OF PATENTS AND TRADEMARKS

N. WOODSON

Certifying Officer

PROVISIONAL APPLICATION COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION under 35 USC 111(b).

1.	INVENTOR(s)	APPLICANT(s)	
Last Name	First Name	Middle Initial	Residence
SIEVERNICH	Bernd		Bertholf-Becht Str. 18a, 67454 Hassloch, Germany
BRIX	Horst-Dieter .		Mozartstr. 88n, 76829 Landau, Germany
MALEFYT	Tim		5 Cherry Canyon Drive, Stroudsburg, PA 183600, USA

- 2. TITLE OF THE INVENTION: SYNERGISTICALLY ACTING HERBICIDAL MIXTURES
- 3. CORRESPONDENCE ADDRESS:

Keil & Weinkauf 1350 Connecticut Ave., N.W. Washington, D.C. 20036 (202) 659-0100; (202) 659-0105-fax

- 4. ENCLOSED APPLICATION PARTS:
 - [X] Specification

22 pages

Drawings

__ sheets

[X] Claims

10 claims

- 5. METHOD OF PAYMENT
 - [X] A check in the amount of \$\frac{\$160.00}{}\$ is attached to cover the required Provisional filing
 - [X] The commissioner is hereby authorized to charge any deficiency in fees to Deposit Account 11.0345.
- 6. The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.
 - [X] No

Yes, the name of the U.S. Government agency and the Government contract number are:

Respectfully submitted, KEIL & WEINKAUF

Herbert B. Keil

1350 Connecticut Ave., N.W. Washington, D.C. 20036

(202)659-0100

HBK/sb

Reg. No. 18,967

Synergistically acting herbicidal mixtures

Description

- 5 The present invention relates to a synergistic herbicidal mixture comprising
 - a compound selected from the group consisting of imidazolinones, sulfonylureas and sulfonamides, including their respective isomers as well as their respective environmentally compatible salts or esters or amides or other derivatives;

10 and

15

B) at least one herbicidal compound of the group of chloro acetamides, oxyacetamides and tetrazolinones including their respective isomers as well as their respective environmentally compatible salts or esters or amides or other derivatives

and, if desired,

- 20 C) at least one herbicidal compound selected from the group consisting of clomazone, quinmerac, atrazin, dichlormid, benoxacor, LAB-145138, MG-191, MON-13900, cyometrinil, oxabetrinil, fluxofenim, flurazole, naphtalicacidanhydride, fenchlorim, fenchlorazol, mefenpyr, cloquintocet (including its hydrate(s)), 1-ethyl-4-hydroxy-3-(1H-tetrazol-5-yl)-1H-quinolin-2-one, 4-carboxymethyl-chroman-4-carboxylic acid, N-(2-methoxy-benzoyl)-4-(3-methyl-ureido)-benzenesulfonamide, (3-oxo-isothiochroman-4-ylidenemethoxy)-acetic acid methyl ester including their respective isomers as well as their respective environmentally compatible salts or esters or amides or other derivatives.
- The invention furthermore relates to herbicidal compositions comprising a herbicidally active amount of a synergistic herbicidal mixture as defined above and at least one liquid and/or solid carrier and, if desired, at least one further additive.
- Moreover, the invention relates to a method of controlling undesirable vegetation by using above defined synergistic herbicidal mixture.
 - In crop protection products, it is always desirable to increase the specific activity and/or selectivity of an active ingredient and the reliability of action.
- However, the activity and/or the selectivity of herbicides depends on a large number of factors e.g. type of the herbicide, amount of the herbicide, formulation of the herbicide, the type of weed, the combination of crop and weed, climate, soil. etc.

In many cases herbicides have an effect against a broad spectrum of weeds, however do not fight a certain type of other weeds, which is also present in the crop cultures to be protected.

5

Sometimes these obstacles can be overcome by using just bigger amounts of herbicide, however this is economically disadvantageous and may also reduce the selectivity of the herbicide, in other words may lead to damage of the crop to be protected.

10 It is a general desire in the application of agrochemicals to reduce their amount on one side and to broaden their ability to fight different weeds - which grow in certain crop cultures - without damaging the crop cultures on the other side.

This desire may be satisfied by combination of different herbicides having a different activity profile versus undesired weeds.

However, because of the huge number of herbicide active ingredients known in the art and the many factors which influence the activity and selectivity of herbicides it is virtually impossible to create the approriate mixture just by doing some mixture experiments.

20 ments.

Therefore it is always a challenge to find an appropriate herbicide or herbicide mixture which fights a certain group of weeds in a certain crop culture.

WO 00/08938 A1 (now EP 1 104 241 B1, Bayer CropScience) describes the use of herbicide combinations for fighting weeds in herbicide resistent oilseed rape. Certain herbicidal compositions as such are also described. Respective herbicides are to be selected from four different groups and are to be combined with herbicides to be selected from five other groups. The gist of WO 00/08938 A1 is the combination of glyphosate or glufosinate with other co herbicides.

The herbicide combinations of the instant application as well as their use as described in the instant application are not disclosed in WO 00/08938 A1.

It is an object of the present invention to increase the activity and/or selectivity of herbicides against undesirable harmful plants, in particular in certain crops (e.g. oilseed rape, canola (brassica napus)), without damaging these crops.

We have found that this object is achieved by the mixtures defined at the outset. We have furthermore found herbicidal compositions which comprise these mixtures, and methods of controlling undesirable vegetation.

The mixtures according to the invention show a synergistic effect; the compatibility of the herbicidally active compounds of components A), B) and; if desired C) for certain crop plants is generally retained.

The compounds which are embraced by component A) are the following.

Herbicidal imidazolinones are known e.g. from C.D.S. Tomlin, "The Pesticide Manual", 13th Edition, BCPC (2003), Index 5, 1337-1344 and http://www.hclrss.demon.co.uk/index_cn_frame.html.

The term "Imidazolinones" shall mean herein the compounds as mentioned above, as well as their a) saits, e.g. saits of alkaline or earth alkaline metals or ammonium or organoammonium salts, for instance, sodium, pottasium, ammonium, isopropyl ammonium etc.; b) respective isomers, e.g. stereo isomers such as the respective enantiomers, in particular the respective R-or S-enantiomers (including salts, ester, amides), c) respective esters, e.g. carboxylic acid C1-C8-(branched or non-branched) alkyl esters, such as methylesters, ethylesters, iso propyl esters, d) respective amides, e.g. carboxylic acid amides or carboxylic acid C1-C8-(branched or non-branched) mono or di alkyl amides, such as dimethylamides, diethylamides, di isopropyl amides or e) any 20 other derivative which contains the above imidazolinone structures as structural moiety.

Very suitable Imidazolinones are the R-isomers, e.g. R-imazamethabenz-methyl, Rimazamox, R-imazapic, R-imazapyr, R-imazaquin, R-imazethapyr, in particular Rimazamox. These compounds are known e.g. from US 5,973,154 B (American Cyanamid Company) and US 6,339,158 B1 (American Cyanamid Company).

Sulfonylureas are known from C.D.S. Tomlin, "The Pesticide Manual", 13th Edition, BCPC (2003), Index 5, 1337-1344 and http://www.hclrss.demon.co.uk/index_cn_frame.html

Examples of suitable Sulfonylureas are nicosulfuron, tritosulfuron, mesosulfuron, cyclosulfamuron, rimsulfuron, foramsulfuron.

The term "Sulfonylureas" shall mean herein the compounds as mentioned above, as well as their a) salts, e.g. salts of alkaline or earth alkaline metals or ammonium or organoammonium salts, for instance, sodium, pottasium, ammonium, isopropyl ammonium etc.; b) respective isomers, e.g. stereo isomers such as the respective enantiomers, c) respective esters, e.g. C1-C8-(branched or non-branched) alkyl esters, such as methylesters, ethylesters, iso propyl esters, d) respective amides, e.g. amides or C1-C8-(branched or non-branched) mono or di alkyl amides, such as dimethylamides, diethylamides, di isopropyl amides.

10

15

25

30

35

Very suitable Sulfonylureas are cross spectrum sulfonylureas for example nicosulfuron, mesosulfuron, rimsulfuron or foramsulfuron.

Examples of suitable sulfonamides (also known as "triazolopyrimidines" or "sulfonanilide herbicides") are known from C.D.S. Tomlin, "The Pesticide Manual", 13th Edition, BCPC (2003), Index 5, 1337-1344, WO 02/36596 A (Dow Agrosciences LLC) and http://www.hclrss.demon.co.uk/index_cn_frame.html

The term "Sulfonamides" shall mean herein the compounds as mentioned above as well as their a) salts, e.g. salts of alkaline or earth alkaline metals or ammonium or organoammonium salts, for instance, sodium, pottasium, ammonium, isopropyl ammonium etc.; b) their respective isomers, e.g. stereo isomers such as the respective enantiomers, c) respective esters, e.g. C1-C8-(branched or non-branched) alkyl esters, such as methylesters, ethylesters, iso propyl asters, d) respective amides, e.g. amides or C1-C8-(branched or non-branched) mono or di alkyl amides, such as dimethylamides, diethylamides, di isopropyl amides.

Very suitable Sulfonamides are florasulam, flumetsulam, metosulam, penoxulam, cloransulam-methyl, diclosulam and N-(5,7-dimethoxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl)- 3-pyridinesulfonamide (the latter disclosed in Research Disclosure July 2002, 1230-1231 and WO 02/36596 A (Dow Agrosciences LLC)), in particular florasulam, penoxulam and N-(5,7-dimethoxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl)- 3-pyridinesulfonamide.

25 The compounds which are embraced by component B) are the following.

Chloro acetamides, oxyacetamides and tetrazolinones as described in C.D.S. Tomlin, "The Pesticide Manual", 13th Edition, BCPC (2003), Index 5, 1337-1344 and http://www.hclrss.demon.co.uk/index_cn_frame.html.

The term "Chloro Acetamides" shall mean herein the compounds as such as well as a) their salts, e.g. salts of alkaline or earth alkaline metals or ammonium or organoammonium salts, for instance, sodium, pottasium, ammonium, isopropyl ammonium etc. or b) their respective isomers, e.g. stereo isomers such as the respective enantiomers.

Suitable Chloro Acetamides are metazachlor, metolachlor, "S-metolachlor", acetochlor and dimethenamid and dimethenamid-P.

Metazachlor herein shall mean 2-Chloro-(2',6'-dimethyl-N-pyrazol-1-yl-methyl)acetamid in all of his crystal modifications, in particular the monoclinic Metazachlor which is described in EP 0 411 408 A (BASF Aktiengesellschaft).

35

30

20

BASF AG GUXVA CBB6

31-MAR-2004 16:37

Metolachlor herein shall mean the racemic mixture of the compound CAS RN [51218-45-2] and the compound S-metolachlor and any mixture of S-isomer of metolachlor (CAS RN [67392-12-9]) and R-isomer of metolachlor (CAS RN [178961-20-1].

- Dimethenamid herein shall mean the compounds listed in C.D.S. Tomlin, "The Pesticide Manual", 13th Edition, BCPC (2003), Index 5, 1337-1344 and http://www.hclrss.demon.co.uk/index_cn_frame.html, in particular the S-isomer (dimethenamid-P).
- For clarity sake the terms Metazachlor, Metolachlor, Acetochlor and Dimetenamid shall include herein the compounds as mentioned above as well as their salts, e.g. salts of alkaline or earth alkaline metals or ammonium or organoammonium salts, for instance, sodium, pottasium, magnesium, ammonium, isopropyl ammonium etc.
- 15 A preferred component B) is Metazachlor, in particular monoclinic Metazachlor.

Further componets C) may be selected from the group consisting of clomazone, quinmerac, atrazine (see C.D.S. Tomlin, "The Pesticide Manual", 13th Edition, BCPC (2003), Index 5, 1337-1344 and http://www.hclrss.demon.co.uk/index_cn_frame.html) and the following compounds which usually function as "safeners", dichlormid, benoxacor, LAB-145138, MG-191, MON-13900, cyometrinil, oxabetrinil, fluxofenim, flurazole, naphtalicacidanhydride, fenchlorim, fenchlorazol, cloquintocet (including its esters and hydrate(s)), as described in "Herbizide [Herbicides]", Hock, Fedtke, Schmidt, 1st edition, Thieme 1995 (s. "Dichlormid" p.263, "Benoxacor" p.263, "LAB-145138" p.263, "MG-191" p.263, "MON-13900" p.263, "Cyometrinil" p.265, "Oxabetrinil" 25 p.265, "Fluxofenim" p.265, "Flurazole" p.265, "Naphtalicacidanhydride" p.265, "Fenchlorim" p.266, "Fenchlorazol" p.266 Isoxadifen, "Cloquintocet" p.266], or C.D.S. Tomlin, "The Pesticide Manual", 13th Edition, BCPC (2003), Index 5, 1337-1344 and http://www.hclrss.demon.co.uk/index_cn_frame.html e.g. mefenpyr-diethyl, isoxadifen, 1-ethyl-4-hydroxy-3-(1H-tetrazol-5-yl)-1H-quinolin-2-one, 4-carboxymethyl-chroman-4-30 carboxylic acid, N-(2-methoxy-benzoyl)-4-(3-methyl-ureido)-benzenesulfonamide, (3oxo-isothiochroman-4-ylidenemethoxy)-acetic acid methyl ester, all of these including their respective isomers as well as their respective environmentally compatible salts or esters or amides or other derivatives.

Preferred other components C) are clomazone, quinmerac, atrazin and the safeners cloquintocet (including its esters and hydrate(s)).

Preferred herbicidal mixtures or combinations according to the invention are the following

(M1) Imazamox + Metazachlor (monoclinic or triclinic or any mixture of those)

- (M1-1) R-Imazamox + Metazachlor which contains at least 90 weight-% of the monoclinic form
- (M1-2) R-Imazamox + Metazachlor (monoclinic or triclinic or any mixture of those)
- 5 (M2) Imazamox + Metolachlor (racemic, S-isomer, or any mixture of R- and S-isomer) (M2-1) R-Imazamox + Metolachlor (racemic, S-isomer, or any mixture of R- and S-isomer)
 - (M3) Imazamox + Dimethenamid (racemic or S-isomer)
- 10 (M3-1) R-Imazamox + Dimethenamid (in particular the S-isomer)
 - (M4) Imazamox + Metazachlor (monoclinic or triclinic or any mixture of those) + clomazone
- (M4-1) R-Imazamox + Metazachlor which contains at least 90 weight-% of the monoclinic form + clomazone
 - (M5) Imazamox + Metazachlor (monoclinic or triclinic or any mixture of those) + quinmerac
- (M5-1) R-Imazamox + Metazachlor which contains at least 90 weight-% of the monoclinic form + quinmerac
 - (M6) Imazamox + Metolachlor (including S-Metolachlor) + atrazin
 - (M7) Imazamox + Flufenazet

25

35

40

(M8) Imazamocx + Fentrazamide

Particular preferred herbicidal mixtures according to the invention are the following:

30 M1, M1-1, M1-2, M4 and M4-1, M5 and M5-1, M6, M7 and M8.

The present invention also extends to herbicidal compositions which comprise a herbicidally active amount of a synergistic herbicidal mixture (comprising components A), B) and, if desired, C) as described above), at least one liquid and/or solid carrier and, if desired, at least one further additive, for example a surfactant, adjuvant or others.

The herbicidal compositions and synergistic herbicidal mixtures according to the invention can effect very good control of broad-leaved weeds and grass weeds in many crops for example maize, cereals (for example wheat), brassica napus (canola, oilseed rape), sunflower, legumes, sugar cane, and soya without damaging the crop plants, an effect observed especially even at low rates of application.

Taking into consideration the variety of application method in question, the herbicidal compositions and synergistic herbicidal mixtures according to the invention can additionally be employed in a further number of crop plants for eliminating undesirable plants.

5

15

The herbicidal compositions and synergistic herbicidal mixtures according to the invention can preferably be used in crops which tolerate and/or are resistant to the action of ALS herbicides, preferably those ALS herbicides according to the invention. The resistance and or tolerance to said herbicides may be achieved by conventional breeding 10 and/or by genetic engineering methods.

Crops which are tolerant to herbicides (e.g. tolerant to imidazolinone herbicides) are known for example from EP 0 154 204 A (MGI Pharma Inc.). Such crops are for example marketed by BASF under the trade name CLEARFIELD. Examples for such crops are maize, brassica napus (canola, oilseed rape), sunflower, rice, lentils and wheat.

Most preferable herbicide tolerant or herbicide resistant crops according to the invention is oilseed rape, canola (brassica napus).

The herbicidal mixtures or compositions according to the invention, for example the 20 mixtures containing Imidazolinones as sole component A), preferably the mixtures of Imidazolinones and Chloro Acetamides, very preferably mixtures or compositions comprising Imazamox and Metazachlor or Imazamox and at least one other herbicide of the groups B) and/or C) (for example those as disclosed under M1, M1-1, M1-2, M2, M2-1, M3, M3-1, M4, M4-1, M5 and M5-1, M6, M7 and M8) and in particular mixtures 25 of Imazamox and Chloro Acetamides (for example those as disclosed under M1, M1-1, M1-2, M2, M2-1, M3, M3-1, M4, M4-1, M5 and M5-1) are very suitable for fighting or controlling a broad spectrum of grasses and broadleaf weeds which are accompanying in general the abovementioned crops, e.g. in particular brassica napus (oil seed rape, canola). 30

Very preferably the weeds in ALS-herbicide resistant or tolerant brassica napus (oilseed rape, canola) are fighted by the herbicidal mixtures or compositions according to the invention - for example the mixtures containing imidazolinones as sole component A), preferably the mixtures of Imidazolinones and Chloro Acetamides, very preferably mixtures of Imazamox and Chloro Acetamides (for example those as disclosed under M1, M1-1, M1-2, M2, M2-1, M3, M3-1, M4, M4-1, M5, M5-1 above) and in particular those mixtures or compositions comprising Imazamox and Metazachlor. Those weeds include but are not limited to the following plant species:

Copy provided by USPTO from the IFW Image Database on 04/27/2005

40

Alopecurus myosuroides; Apera spica-venti; Avena spec.; Brassica spec.; Capsella bursa-pastoris; Galium aparine; Lamium spec.; Raphanus spec.; Sinapis spec.; Sisymbrium officinale; Stellaria media; Thlaspi arvense.

Veronica spec.

5

Very suitable ALS resistant or tolerant crop / to be controlled weed / herbicide mixture (composition) combinations are the following. Controlled weeds include but are not limited to the listed plant species.

10	ALS tolerant crop	Herbicide Mixture	Weed (Latin name)
	Canola	Imazamox+Metazachlor	Agropyron repens - Geranium pussilum Sinapis alba Sisymbrium officinale
15 20	Canola	Imazamox+Metazachlor +quinmerac	Agropyron repens Galium aparine Geranium pussilum Sinapis alba Sisymbrium officinale
25	Canola	Imazamox+Metazachlor +clomazone	Agropyron repens Galium aparine Geranium pussilum Sinapis alba Sisymbrium officinale
30	Corn, sunflower	Imazamox+(Dimethenamid or Dimethenamid-p)	Echinochloa spec. Setaria spec. Digitaria spec.
35	Com	Imazamox+(Dimethenamid or Dimethenamid-p)+atrazin	Echinochloa spec. Setaria spec. Digitaria spec Chenopodium spec.
40	Corn, sunflower	Imazamox+(Metolachlor or S-Metolachlor)	Polygonum spec Echinochloa spec. Setaria spec. Digitaria spec Chenopodium spec.

Copy provided by USPTO from the IFW Image Database on 04/27/2005

5.10/27

Polygonum spec.

Com

Imazamox+(Metolachlor or

Echinochloa spec.

S-Metolachlor)+atrazin

Setaria spec.

5

Digitaria spec

Chenopodium spec.

Polygonum spec

Wheat

Imazamox+Flufenacet

Alopecurus spec.

10

Apera spec.

Galium spec.

Rice

Imazamox+Fentrazamide

Oryza rupifogon

Echinochloa spec.

15

The mixtures according to the invention, or the herbicidal compositions comprising them, can be employed, for example, in the form of directly sprayable aqueous solutions, powders, suspensions, also highly-concentrated aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, materials for spreading or granules, by means of spraying, atomizing, dusting, spreading or pouring.

The use forms depend on the intended purposes; in any case, they should guarantee the finest possible distribution of the active ingredients according to the invention.

Suitable inert additives (auxiliaries) are mineral oil fractions of medium to high boiling point such as kerosene and diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. paraffins, tetrahydronaphthalene, alkylated naphthalenes and their derivatives, alkylated benzenes and their derivatives, alcohols such as methanol, ethanol, propanol, butanol and cyclohexanol, ketones such as cyclohexanone, strongly polar solvents, such as Nemethylpyrrolidone and water.

Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water. To prepare emulsions, pastes or oil dispersions, the substances, as such or dissolved in an oil or solvent, can be homogenized in water by means of wetting agent, tackifier, dispersant or emulsifier. However, it is also possible to prepare concentrates composed of active substance, wetting agent, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil, and these concentrates are suitable for dilution with water.

40

35

Suitable surfactants are the alkali metal, alkaline earth metal and ammonium salts of aromatic sulfonic acids, e.g. ligno-, phenol-, naphthalene- and dibutylnaphthalenesulfo-

nic acid, and of fatty acids, of alkyl- and alkylaryl sulfonates, of alkyl sulfates, lauryl ether sulfates and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols, and of fatty alcohol glycol ether, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of naphthalene, or of the naphthalene-sulfonic acids, with phenol and formaldehyde, polyoxyethylene octylphenyl ether, ethoxylated isooctyl-, octyl- or nonylphenol, alkylphenyl and tributylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol/ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers or polyoxypropylene alkyl ethers, lauryl alcohol polyglycol ether acetate, sorbitol esters, lignin-sulfite waste liquors or methylcellulose.

Powders, materials for spreading and dusts can be prepared by mixing or concomitantly grinding the synergistic herbicidal mixture or the individual active ingredients with a solid carrier.

15

- Granules, e.g. coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active ingredients to solid carriers. Solid carriers are mineral earths such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic material, fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas and products of vegetable origin such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders or other solid carriers.
- The concentrations of the mixtures according to the invention in the ready-to-use products can be varied within wide ranges. In general, the formulations comprise from 0.01 to 95% by weight, preferably 0.5 to 90% by weight, of the mixture according to the invention.
- The components A) and B) and, if desired, C) can be formulated jointly, but also separately, and/or applied to the plants, their environment and/or seeds jointly or separately. It is preferable to apply the active ingredients simultaneously. However, it is also possible to apply them separately.
- Moreover, it may be advantageous to apply the herbicidal compositions and synergistic herbicidal mixtures according to the invention, jointly or separately, with additional other crop protection agents, for example with pesticides or agents for controlling phytopathogenic fungi or bacteria. Also of interest is the miscibility with mineral salt solutions which are employed for treating nutritional and trace element deficiencies. Non-phytotoxic oils and oil concentrates can also be added.

The mixtures according to the invention and the herbicidal compositions can be applied pre- or post-emergence. It is advantageous to apply the mixtures according to the invention post emergent when the crop has in general 1 to 6 leaves.

If the active ingredients are less well tolerated by certain crop plants, application techniques may be used in which the herbicidal compositions are sprayed, with the aid of the spray apparatus, in such a way that they come into as little contact, if any, with the leaves of the sensitive crop plants while reaching the leaves of undesirable plants which grow underneath, or the bare soil (post-directed, lay-by).

In the case of a post-emergence treatment of the plants, the herbicidal mixtures or compositions according to the invention are preferably applied by foliar application. Application may be effected, for example, by usual spraying techniques with water as the carrier, using amounts of spray mixture of approx.15 to 1000 l/ha. The mixtures or compositions may also be applied by the so-called "low-volume" and "ultra-low-volume" methods, or in the form of so-called granules.

As a rule, the synergistic herbicidal mixtures comprise components A), B) and, if desired, C) in such weight ratios that the synergistic effect takes place.

The ratios of component A) and B) in the mixture in general range from 1:0.001 to 1:500, preferably from 1:0.01 to 1:100, particularly preferably from 1:0.1 to 1:50. The ratios of components A) and C) in the mixture in general range from 1:0.002 to 1:800, preferably from 1:0.003 to 1:160, particularly preferably from 1:0.02 to 1:160.

The rate of application of pure synergistic herbicidal mixture, i.e. without formulation auxiliaries, amounts in general to 0.1 to 5000 g/ha, preferably 1 to 3000 g/ha, in particular 5 to 2500 g/ha, of active substance (a.s.), depending on the intended aim, the season, the target plants and growth stage.

The cumulated rate (sum of the amounts of all active ingredients of the respective group A)) of application of the component(s) A) is usually 5 to 75 g/ha of active substance (a.s.).

The rate of application of the Imidazolinones is usually 0.1 to 200 g/ha, as a rule 1 to 150 g/ha, preferably 5 to 100 g/ha, of active substance (a.s.).

Copy provided by USPTO from the IFW Image Database on 04/27/2005

In particular the rate of application of Imazamox is usually 0.1 to 200 g/ha, as a rule, 1 to 100 g/ha, preferably 2 to 100 g/ha, of active substance (a.s.).

40

10

15

20

25

The rate of application of the Sulfonylureas or Sulfonamides is usually 0.1 to 200 g/ha, as a rule 1 to 100 g/ha, preferably 2 to 100 g/ha, of active substance (a.s.).

The rate of application of component B) is usually 0.1 to 5000 g/ha, as a rule 1 to 4000 g/ha, preferably 5 to 3000 g/ha, of active substance (a.s.)

In particular the rate of application of Chloro Acetamide - e.g. Metazachlor, Meto-lachlor, Dimethenamid - is usually 50 to 5000 g/ha, as a rule 75 to 3000 g/ha, preferably 100 to 2000 g/ha, of active substance (a.s.).

10

The preferred application rates of the active ingredients of the optional component C) are compiled in the following table.

Active ingredient C	Rate of application (g/ha)
Dichlormid	100-600
Benoxacor	10-200
LAB 145138	50-500
MG-191	200-1000
MON-13900 (Furilazole)	10-300
Naphtalicacidanhydride	300-1000
Fenchlorim	20-500
Fenchlorazol	5-100
Mefenpyr-diethyl	5-100
Isoxadifen-ethyl	1-100
Cloquintocet-mexyl	1-50
AD 67	50-500
R 29148	50-500

15

20

The herbicidal compositions and synergistic herbicidal mixtures according to the invention are very useful to control a broad spectrum of grass and broadleaf weeds.

This usually leads to cleaner fields and higher purity of the harvested commodity as well as to higher yields of the respective crop, in particular brassica napus (oilseed rape, canola).

In particular brassica napus (oilseed rape, canola) seeds coming from fields treated with the herbicidal compositions and synergistic herbicidal mixtures according to the invention usually have higher seed purity. Based on current knowledge this may be due to the removal of unwanted brassica species.

5

A further advantage of the instant invention is the general reduction of tillage in the respective fields which - based on current knowledge - usually leads to less loss of soil by e.g. wind.

10

15

25

Examples

The mixtures according to the invention were applied pre- or post-emergence (foliar treatment). The herbicidal compounds of component A), B) and, if desired, of component C) were applied in the formulation in which they are present as commercially available product, e.g. Beyond or PULSAR 40 which is a Trademark of BASF and which is a liquid formulation containing imazamox as active ingredient; Raptor which is a trademark of BASF and which is imazamox formulated as 70 % WG or as liquid formulation; Butisan S which is a trademark of BASF and which is 500 g/l metazachlor 20 formulated as SC; Outlook which is a dimethenamid P containing formulation.

The herbicidally active compounds of components A), B) were applied in succession or jointly, in the latter case in some cases as a tank mix and in some cases as a readymix, in the form of emulsions, aqueous solutions or suspensions, the vehicle being water (200 - 400 l/ha). In the case of the field trials, application was effected with the aid of a mobile plot sprayer.

The test period is specified in the respective tables.

- Damage by the herbicidal compositions was evaluated with reference to a scale of 0% 30 to 100% in comparison with untreated control plots. 0 means no damage and 100 means complete destruction of the plants (cf. numbers in the column "Control" in the following tables).
- The following examples will demonstrate the action of the herbicidal compositions 35 which can be used according to the invention, without excluding the possibility of other uses.
- In these examples, the value E at which only an additive effect of the individual active ingredients is to be expected was calculated by the method of S. R. Colby (Calculating 40 synergistic and antagonistic responses of herbicide combinations, Weeds 15, 20 pp (1967)).

This was done using the formula

where

10

X = Percentage of the herbicidal action of component A) at an application rate of a;

Y = Percentage of the herbicidal action of component B) at an application rate of b;

E = expected herbicidal action of component A) + B) at rates of application a + b (in %).

If the value observed exceeds the value E calculated in accordance with Colby's formula, then synergism is present. 15

For example the values in the columns "Control" in the following tables all show synergismn.

The herbicidal mixtures according to the invention exert a greater herbicidal action than 20 would have been expected according to Colby on the basis of the observed effects of the individual components when used alone.

Further abbrevations in the following tables and their meaning:

25

active ingredient (e.g. imazamox) a.l.

Growth Stage (according to "Compendium of Growth Stage GS

Identification Keys for Mono- and Dicotyledonous Plants -

Extended BBCH scale, 2nd Edition 1997 (ISBN 3-9520749-3-4)

evaluation after specified days after treatment 30 eval.

days after treatment

DAT number of trials

Ground Cover [% of ground]

GC "no" n

"yes" 35

digits underneath of product name means rate of a.i. applied [g of pure ai/ha].

15

Selectivity and herbicidal activity of Imazamox combinations pre-(H / 2001 / 102 / VTH / 008, 011, 014 - Mobile Trial Unit, Germany) emergence in oilseed rape

California on Cynomical Efficiency (CVI 109) Gliss Elospan Aviation (CVI 109) Elospan Elospan Francis (CVI 109) Fig. 780-20 Fig. 780-30 Elospan Elospa	99,25 - y 99,35 y 99,42 - y 99,27 y 99,42 - y	97,28 y 97,6 n 97,88 y 99,56 n 99,81 y 99,89 y 97,2 n 98,88 n 99,28 y 99,65 y 99,46 y 99,68 y 99,68 y	99,32 n 99,48 n 99,58 y 89,66 y 91,07 y 95,3 y 85,6 y 93,35 y 85,6 y 99,49 n 99,75 y 99,61 y 99,61 y 99,61 y 99,61 y 99,66 y 98,8 n 98,94 y
GC 20-30-40-90 (1.6-00-0)		2 32 40 47 82 96 99 97 99 6 56 81 89 93 99 99 100 100 100 100 100 100 100 100 1	2 7 32 48 58 69 99 99 99 100 7 32 48 58 69 93 53 92 94 97 1 53 63 68 90 55 97 99 99 3 45 67 75 90 99 100 99 100 4 37 73 87 92 97 100 100 100 2 33 40 47 87 98 99 97 100 2 33 40 47 87 98 1 Eval: 7-19 DAT
rate in galifhair.	sapio		Lamium amplexicaule Matricaria inodora Sinapis alba Sisymbrium officinale Stellaria media Thiaspi arvense Veronica triphyllos

BASE AG GUXYA COOF

31-MAR-2004 16:40

Butisan = 500 g/l metazachlor, SC Raptor = 70 % imazamox, WG

3. Eval.: 202-206 DAT 2. Eval.: 67-69 DAT

Selectivity and herbicidal activity of Imazamox combinations at spiking in oilseed rape (H / 2001 / 103 / VTH / 017, 018, 021 - Mobile Trial Unit, Germany)

Colby Elexponicidation offscife. Rudisary Rapidle. Rudisary Rapidle. Rudisary Rapidle. Rudisary Rapidle. Fig. 5yn. Elexponicidation offscife. Syn. Elexponicidation offscife. Syn. Elexponicidation offscife. Syn. Elexponicidation offscife. Syn. Elexponicidation offscife.	99,72 n 99,86 y 99,92 y 97,04 n 98,16 n 99,73 y 99,7 n 99,87 n 99,87 y 99,89 y 99,76 n 99,87 y 99,89 y 99,87 n 99,87 y 99,89 y	
eval h GC 20 30 40 (£4105) 120 130 140 2 3 2 3 2 6 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4. 2 6 86 93 4. 1 6 63 77 4. 1 7 87 4. 3 1 77 87 4. 2 4 89 95	1. Eval.: 6-19 DAT 2. Eval.: 21-25 DAT 3. Eval.: 55-60 DAT 4. Eval.: 185-196 DAT
rate in g a Liha — [CS]	Capsella bursa-pastoris Capsella bursa-pastoris Geranlum pusillum Sisymbrium officinale Stellaria media Veronica hederaefolia Veronica persica	Raptor = 70 % imazamox, WG Buttsan = 500 g/l metazachlor, SC

Z781.2

+49 621 52538

BASE AG GUXVA COB6

31-MAR-2004 16:40

Selectivity and herbicidal activity of Imazamox combinations post-emergence in oilseed rape (H / 2001 / 104 / VTH / 028, 029 - Mobile Trial Unit, Germany)

	. , ,	> > >	
S W u	84,00	92,20	
	>	4 f 8	
	78,00	88,04 82,71 92,96	AT
Software a support	~	E 4	7-8 DAT 22 DAT 48-49 D
ESTABLISHEN OF BYTHING TO THE PARTY OF THE P	2,00	83,36 87,85 91,36	1. Eval.: 7-8 DAT 2. Eval.: 22 DAT 3. Eval.: 48-49 DAT
	96	95 83	
2 6 5 8 5 8 0 0	96: ,06	90.00	
20 130 3 5 0 0 0	88	27.88.49	fate
0 0 0	0	48	inium-au
3 6 7 12 0 0	77 78 84 88	68 77 85 90 55 73 77 87 73 78 87 92	 ыз Ампо
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		68 77 55 73 73 78	:-*{ ↔ = + 5 kg/ha Ammonlum-sulfate
7. 2 15 0 1 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	% \$ 2. 2. 2.
150 ACC 150 AC	11/13 - 4	10/14	* 1 2 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7
12/14	1 1	201	တို
		É e	ijnajla IC zamox, ⁽ metazach
2	Stores	pusillu	um offic a Dash H 70 % Ima 500 g/l 1
ate in g a Lifta		Agropyron repending the state of the state o	Slaymbrium officinale • = + 1 tha Dash HC Raptor = 70 % Imazamox, WG Runkan = 500 g/l metazachlor, SC
N N N N N N N N N N N N N N N N N N N		A MOR	<u> </u>

18
Post emergent control of <u>Setfaria faberi</u> (<u>solo</u> herbicide application)

Product	AI Rate	Control
Name 1 CHECK	(g/ha)	0
2 BEYOND ·	10.0	50
3 BEYOND	20.0	63
4 BEYOND	40.0	85
5 BUTISAN S	188.0	0
6 BUTISAN S	375.0	0
7 BUTISAN S	750.0	0
B OUTLOOK	630.0	. 0
DUAL II MAG- 9 NUM	1070. , 0	0

Post emergent control of Setfaria faberi (10 g/ha imazamox plus x g/ha co herbicide)

Product Name	Al Rate (g/ha)	Control
BEYOND BUTISAN S	f0.0 188.0	94
BEYOND BUTISAN S	10.0 375.0	95
BEYOND BUTISAN S	10.0 750.0	93
BEYOND	10.0 630.0	78
BEYOND DUAL II MAG- NUM	10.0 1070. 0	82

BASF Aktlengesellschaft

20030684

PF 55847 US-Prov.

20

Post emergent control of Setfaria faberi (20 g/ha imazamox plus x g/ha co herbicide)

Product Name	Al Rate (g/ha)	Control
BEYOND BUTISAN S	20.0 188.0	92
BEYOND BUTISAN S	20.0 375.0	98
BEYOND BUTISAN S	20.0 750.0	9 9
BEYOND OUTLOOK	20.0 630.0	98
BEYOND DUAL II MAG- NUM	20.0 1070.0	98

Post emergent control of Setfaria faberi (40 g/ha imazamox plus x g/ha co herbicide)

Product Name	Al Rate (g/ha)	Control
BEYOND BUTISAN S	400 188.0	99
BEYOND BUTISAN S	40.0 375.0	99

אלא מבל בלכשה שי בבליעו

21-

Post emergent control of Avena fatura (herbicide solo application)

		AVEFA
Product Name CHECK	Al Rate (g/ha)	Control 0
BEYOND	10.0	
BEYOND	20.0	30
BEYOND	40.0	38
BUTISAN S	188.0	33
BUTISAN S	375.0	32
BUTISAN S	750.0	30
OUTLOOK	630.0	23
DUAL II MAG- NUM	1070. 0	27

+49 621 52538 S.23727

BASE AG GUXYA CUNG

31-MAR-2004 16:42

Post emergent control of Avene fatura (20 g/ha imazamox plus x g/ha co herbicide)

Product	Al	AVERA
Name	. Rate (g/ha)	Control
BEYOND OUTLOOK	20 0 630.0	57

Post emergent control of Avena fatura (40 g/ha imazamox plus x g/ha co herbicide)

Product	Al	XVEFA
Name	Rate (g/ha)	Control
BEYOND BUTISAN S	300 188.0	91
BEYOND BUTISAN S	40.0 375.0	89
BEYOND BUTISAN S	40.0 750.0	95
BEYOND OUTLOOK	40.0 0 30.0	95
BEYOND DUAL II MAG- NUM	40.0 1070. 0	82

Claims

- 1. A synergistic herbicidal mixture comprising
 - a compound selected from the group consisting of imidazolinones, sulfonylureas and sulfonamides, including their respective isomers a swell as their respective environmentally compatible salts or esters or amides or other derivatives;
- 10 and

5

15

B) at least one herbicidal compound of the group of chloro acetamides, oxyacetamides and tetrazolinones including their respective isomers as well as their respective environmentally compatible salts or esters or amides or other derivatives

and, if desired,

- c) at least one herbicidal compound selected from the group consisting of clomazone, quinmerac, atrazin, dichlormid, benoxacor, LAB-145138, MG-191, MON-13900, cyometrinil, oxabetrinil, fluxofenim, flurazole, naphtalicacidanhydride, fenchlorim, fenchlorazol, mefenpyr, cloquintocet (including its hydrate(s)), 1-ethyl-4-hydroxy-3-(1*H*-tetrazol-5-yl)-1*H*-quinolin-2-one, 4-carboxymethyl-chroman-4-carboxylic acid, *N*-(2-methoxy-benzoyl)-4-(3-methyl-ureido)-benzenesulfonamide, (3-oxo-isothiochroman-4-ylidenemethoxy)-acetic acid methyl ester including their respective isomers as well as their respective environmentally compatible salts or esters or amides or other derivatives.
- 30 2. A synergistic herbicidal mixture as claimed in claim 1 in which component B) are chloro acetamides, including their respective isomers as well as their respective environmentally compatible salts or esters or amides or other derivatives.
- A synergistic herbicidal mixture as claimed in claims 1 to 2 in which the chloro
 acetamides, including their respective isomers as well as their respective environmentally compatible salts or esters or amides or other derivatives are selected
 from the group consisting of metazachlor, metolachlor and dimethenamid.
- A synergistic herbicidal mixture as claimed in claims 1 to 3 in which the imidazoli none is imazamox including its respective isomers as well as its respective environmentally compatible salts or esters or amides or other derivatives.

10

20030684

PF 55487 US-Prov.

24

- 5. A synergistic herbicidal mixture as claimed in claims 1 to 4 in which the sulfonyl urea is selected from the group consisting of nicosulfuron, tritosulfuron, mesosulfuron, cyclosulfamuron, rimsulfuron, foramsulfuron including their respective isomers as well as their respective environmentally compatible salts or esters or amides or other derivatives.
- 6. A synergistic herbicidal mixture as claimed in claims 1 to 4 in which the sulfon amide is selected from the group consisting of florasulam, flumetsulam, metosulam, penoxulam, cloransulam-methyl, diclosulam and N-(5,7-dimethoxy[1,2,4]triazolo [1,5-a]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl)-3-pyridlnesulfonamide, including their respective isomers as well as their respective environmentally compatible salts or esters or amides or other derivatives.
- 7. A synergistic herbicidal mixture as claimed in claims 1 to 6 in which the imidazolinone is imazamox including its respective isomers as well as its respective environmentally compatible salts or esters or amides or other derivatives and the chloro acetamides is metazachlor including its respective isomers as well as its respective environmentally compatible salts or esters or amides or other derivatives.
- A herbicidal composition comprising a herbicidally active amount of a synergistic herbicidal mixture as claimed in any of claims 1 to 7, at least one inert liquid and/or solid carrier and, if desired, at least one further additive.
- 25 9. A method of controlling undesired vegetation, which comprises applying a syner-gistic herbicidal mixture as claimed in any of claims 1 to 7 before, during and/or after the emergence of undesired plants simultaneously or in succession.
- 10. A method as claimed in claim 9, wherein the crops are tolerant or resistant
 30 against the synergistic herbicidal mixture.

BEST AVAILABLE COPY

+49 621 52538 5.26/27

BASE AC GUXAR CROSS

31-MAR-2004 16:42

BASF Aktiengesellschaft

20030684

PF 55487 US-Prov.

25

Synergistically acting herbicidal mixtures

Abstract

- 5 A synergistic herbicidal mixture comprising
 - A) a compound selected from the group consisting of imidazolinones, sulfonylureas and sulfonamides, including their respective isomers as well as their respective environmentally compatible salts or esters or amides or other derivatives;

and

 B) at least one herbicidal compound of the group of chloro acetamides, oxyacetamides and tetrazolinones including their respective isomers as well as their respective environmentally compatible salts or esters or amides or other derivatives

and, if desired,

20

25

15

10

- C) at least one herbicidal compound selected from the group consisting of clomazone, quinmerac, atrazin, dlchlormid, benoxacor, LAB-145138, MG-191, MON-13900, cyometrinil, oxabetrinil, fluxofenim, flurazole, naphtalicacidanhydride, fenchlorim, fenchlorazol, mefenpyr, cloquintocet (including its hydrate(s)), 1-ethyl-4-hydroxy-3-(1H-tetrazol-5-yl)-1H-quinolin-2-one, 4-carboxymethyl-chroman-4-carboxylic acid, N-(2-methoxy-benzoyl)-4-(3-methyl-ureido)-benzenesulfonamide, (3-oxo-isothiochroman-4-ylidenemethoxy)-acetic acid methyl ester including their respective isomers as well as their respective environmentally compatible salts or esters
- 30

or amides or other derivatives.