Vishay Siliconix

P-Channel 8 V (D-S) MOSFET

DESCRIPTION

The attached SPICE model describes the typical electrical characteristics of the p-channel vertical DMOS. The sub-circuit model is extracted and optimized over the -55 $^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$ temperature ranges under the pulsed 0 V to 5 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Sub-circuit Model)
- Level 3 MOS
- Apply for both Linear and Switching Application
- Accurate over the -55 °C to +125 °C Temperature Range
- · Model the Gate Charge

SUBCIRCUIT MODEL SCHEMATIC

Note

• This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer to the appropriate datasheet of the same number for guaranteed specification limits.

www.vishay.com

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)					
PARAMETER	SYMBOL	TEST CONDITIONS	SIMULATED DATA	MEASURED DATA	UNIT
Static					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	0.5	-	٧
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -5.3 \text{ A}$	0.024	0.025	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -4.8 \text{ A}$	0.028	0.030	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -4 \text{ V}, I_D = -5.3 \text{ A}$	19	20	S
Diode Forward Voltage	V_{SD}	I _S = -4.2 A	-0.72	-0.80	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz	1480	1485	pF
Output Capacitance	Coss		481	480	
Reverse Transfer Capacitance	C _{rss}		438	435	
Total Gate Charge	Qg	$V_{DS} = -4 \text{ V}, V_{GS} = -4.5 \text{ V}, I_D = -5.3 \text{ A}$	17	19.3	- nC
		$V_{DS} = -4 \text{ V}, V_{GS} = -2.5 \text{ V}, I_D = -5.3 \text{ A}$	11	11.8	
Gate-Source Charge	Q _{gs}		1.7	1.7	
Gate-Drain Charge	Q _{gd}		6.2	6.2	

Notes

- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.

www.vishay.com

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA ($T_J = 25~^{\circ}\text{C}$, unless otherwise noted)

Note

Dots and squares represent measured data.
Copyright: Vishay Intertechnology, Inc.