Poisson and Binary Regression

Janne Pitkäniemi

Finnish Cancer Registry

Tampere university

Statistical Practice in Epidemiology (2024, Lyon)

Elapse of time and Epidemiology

Epidemiology deals with the occurence of event (disease) in populations observed over time

- concepts of risk and rate are used to measure the frequency with which the event (disease) cases occur
- **risk** is defined as $\frac{D}{N}$, where D is the number of people who developed the disease during pre-specified follow-up from 0 to t and N is the number of disease-free population at the beginning of follow-up and
- rate is defined as $\frac{D}{Y}$, where Y is the amount of person-time at risk observed when following disease free subjects from 0 to t.
- ► Note: risk increases with t but rate can vary depending on the length of the follow-up period.
- Virtually all prospective follow-up studies include loss to follow-up censoring and risk must be estimated using appropriate methods described in this course.

Points to be covered

- ▶ Incidence rates, rate ratios and rate differences from follow-up studies can be computed by fitting Poisson regression models.
- ► Risk ratios and differences can be computed from binary data by fitting Logistic regression models.
- Both models are special instances of Generalized linear models.
- ► There are various ways to do these tasks in R.

The Estonian Biobank cohort: survival among the elderly

Follow-up of 60 random individuals aged 75-103 at recruitment, until death (•) or censoring (o) in April 2014 (linkage with the Estonian Causes of Death Registry). (time-scale: calendar time).

The Estonian Biobank cohort: survival among the elderly

Follow-up time for 60 random individuals aged 75-103 at recruitment (time-scale: time in study).

Events, dates and risk time

- ► Mortality as the outcome:
 - d: indicator for status at exit:
 - 1: death observed
 - 0: censored alive

Dates:

```
doe = date of Entry to follow-up,

dox = date of eXit, end of follow-up.
```

► Follow-up time (years) computed as:

$$y = (dox - doe)/365.25$$

Crude overall rate computed by hand and model

```
Total no. cases, person-years & rate (/1000 y): 
> D <- sum( d ); Y <- sum(y) ; R <- D/(Y/1000) 
> round( c(D=D, Y=Y, R=R), 2)
D Y R
884.00 11678.24 75.70
```

R-implementation of the rate estimation with Poisson regression:

```
A model with offset term A model with poisreg—family (Epi package) > m1 <- glm(D \sim 1, family=poisson, offset=log(Y)) > glm(cbind(D, Y) \sim 1, family=poisreg) > coef(m1) Coefficients: (Intercept) (Intercept) -2.581
```

From the coefficient we get estimate of the rate exp(-2.581) * 1000 = 75.70

Constant hazard — Poisson model

Let $Y \sim exp(\lambda)$, then $f(y; \lambda) = \lambda e^{-\lambda y} I(y > 0)$ Constant rate model: $\lambda(y) = \frac{f(y; \lambda)}{S(y; \lambda)} = \lambda$ and observed data $\{(y_i, \delta_i); i = 1, ..., n\}$.

The likelihood
$$L(\lambda) = \prod_{i=1}^{n} \lambda^{\delta_i} e^{-\lambda y_i}$$
 and $log(L) = \sum_{i=1}^{n} [\delta_i log(\lambda) - \lambda y_i]$
Solving the *score equations*:

$$\frac{\partial \log L(\lambda)}{\partial \lambda} = \sum_{i} \left[\frac{\delta_i}{\lambda} - y_i \right] = \frac{D}{\lambda} - Y = 0$$
 and $D - \lambda Y = 0$

 \rightarrow maximum likelihood estimator (MLE) of λ :

$$\widehat{\lambda} = \frac{D}{Y} = \frac{\text{number of cases}}{\text{total person-time}} = \text{ empirical rate!}$$

offset term — Poisson model

- Previous model without offset: Intercept 6.784=log(884)
- ➤ We should use an offset if we suspect that the underlying **population sizes** (**person-years**) **differ** for each of the observed counts For example varying person-years by sex,age,treatment group,...
- We need a term in the model that "scales" the likelihood, but does not depend on model parameters (include a term with reg. coef. fixed to 1) – offset term is log(y)
- This is all taken care of by family=poisreg recommend to use

$$log(\frac{\mu}{y}) = \beta_0 + \beta_1 x_1$$

$$log(\mu) = 1 \times log(y) + \beta_0 + \beta_1 x_1$$

Comparing rates: The Thorotrast Study

- Cohort of seriously ill patients in Denmark on whom angiography of brain was performed.
- Exposure: contrast medium used in angiography,
 - 1. thor = thorotrast (with 232 Th), used 1935-50
 - 2. ctrl = other medium (?), used 1946-63
- Outcome of interest: death

```
doe = date of Entry to follow-up,
dox = date of eXit, end of follow-up.
```

data(thoro) in the Epi package.

Tabulating rates: thorotrast vs. control

Tabulating cases, person-years & rates by group

```
> stat.table( contrast,
            list (N = count(),
+
                 D = sum(d).
                 Y = sum(y).
               rate = ratio(d,y,1000) )
               Ν
                  D Y
contrast
                                   rate
 ctrl
             1236 797.00 30517.56 26.12
 thor
              807 748.00 19243.85 38.87
```

Rate ratio estimation with Poisson regression

- Include contrast as the explanatory variable (factor).
- ▶ Insert person years in units that you want rates in

```
> m2 <- glm( cbind(d,y/1000) \sim contrast,family = poisreg(link="log") ) > round( summary(m2)$coef, 4)[, 1:2] 
 Estimate Std. Error (Intercept) 3.2626 0.0354 contrast thor 0.3977 0.0509
```

Rate ratio and CI? Call function ci.exp() in Epi

Rates in groups with Poisson regression

- Include contrast as the explanatory variable (factor).
- ► Remove the intercept (-1)
- Insert person-years in units that you want rates in

```
> m3 <- glm( cbind(d,y/1000) ~ factor(contrast)-1,family = poisreg)</pre>
> round( summary(m3)$coef, 4)[, 1:2]
            Estimate Std. Error
contrast ctrl 3.2626 0.0354
contrast thor 3.6602 0.0366
> round( ci.exp( m3 ), 3 )
            exp(Est.) 2.5% 97.5%
contrast ctrl 26.116 24.364 27.994
contrast thor 38.870 36.181 41.757
```

Rate difference estimation with Poisson regression

► The approach with d/y enables additive rate models too:

Binary data: Treatment success Y/N

85 diabetes-patients with foot-wounds:

- ► Dalterapin (Dal)
- ► Placebo (PI)

Treatment/Placebo given to diabetes patients, the design is prospective and outcome is measured better(Y)/worse(N). Is the probability of outcome more than 15% – yes, then use the risk difference or risk ratio (RR)

	Treatment group		
	Dalterapin	Placebo	
Better	29	20	
Worse	14	22	
Total	43	42	

$$\hat{p}_{\mathsf{Dal}} = \frac{29}{43} = 67\%$$
 $\hat{p}_{\mathsf{Pl}} = \frac{20}{42} = 47\%$

Binary data: Crosstabulation analysis of 2x2 table

```
> library(Epi)
> dlt <- rbind(c(29.14), c(20.22))
> colnames( dlt ) <- c("Better", "Worse")</pre>
> rownames( dlt ) <- c("Dal","Pl")</pre>
> kable(twoby2( dlt ),"latex")
2 by 2 table analysis:
   Better Worse P(Better) 95% conf. interval
      29 14
                  0.6744 0.5226 0.7967
Dal
P1
      20 22
                  0.4762 0.3316 0.6249
                            95% conf. interval
          Relative Risk: 1.4163 0.9694 2.0692
       Sample Odds Ratio: 2.2786 0.9456 5.4907
Conditional MLE Odds Ratio: 2.2560 0.8675 6.0405
   Probability difference: 0.1982 -0.0110 0.3850
          Exact P-value: 0.0808
```

Asymptotic P-value: 0.0665

Binary regression – estimation of odds ratio

For grouped binary data, the response is a two-column matrix with columns (successes, failures).

```
> library(Epi)
> library(xtable)
> dlt <- data.frame(rbind( c(29,14),c(20,22) ))
> colnames( dlt ) <- c("Better","Worse")
> dlt$trt <- c(1,0)
> b2<-glm(cbind(Better,Worse)~trt,
+ family=binomial(link="logit"),
+ data=dlt)
> xtable(round( ci.exp( b2 ), digits=6 ))
```

	exp(Est.)	2.5%	97.5%
(Intercept)	0.91	0.50	1.67
trt	2.28	0.95	5.49

- The default parameters in logistic regression are **odds** (the intercept: 20/22 = 0.9090) and the **odds-ratio** ((29/14)/(20/22) = 2.28).
- This is **NOT** what you want, because odds ratio is biased estimate of the risk ratio. (recall if p>10% $\frac{p}{1-p} \not\approx p$)

Binary regression - Estimation of risk ratio (Relative risk)

```
> library(Epi)
> library(xtable)
> dlt <- data.frame(rbind(c(29,14),c(20,22)))
> colnames( dlt ) <- c("Better", "Worse")</pre>
> dlt\$trt <- c(1.0)
> b2<-glm(cbind(Better, Worse)~trt,
            family=binomial(link="log"),
            data=dlt)
+
> xtable(round( ci.exp( b2 ), digits=6 ))
                            exp(Est.) 2.5% 97.5%
                                0.48 0.35 0.65
                 (Intercept)
                                1.42
                                      0.97
                                           2.07
                        trt
```

Diabetics with Dalterapin treatment are 1.4 times likely to get better than those treated with placebo

Binary regression - Estimation of risk difference

```
> library(Epi)
> library(xtable)
> dlt <- data.frame(rbind(c(29,14),c(20,22)))
> colnames( dlt ) <- c("Better", "Worse")</pre>
> dlt\$trt <- c(1.0)
> b2<-glm(cbind(Better, Worse)~trt,
            family=binomial(link="identity"),
            data=dlt)
+
> xtable(round( ci.exp( b2,Exp=F ), digits=6 ))
                            Estimate 2.5% 97.5%
                                0.48 0.33 0.63
                 (Intercept)
```

trt

Twenty percent more of the Diabetics with Dalterapin treatment are getting better compared to Diabetics treated with placebo

0.20 -0.01 0.40

Conclusion: What did we learn?

- ▶ Rates, their ratio and difference can be analysed by Poisson regression
- ▶ In Poisson models the response can be either:
 - case indicator d with offset = log(y), or
 - case and person-years cbind(d,y) with poisreg-family (Epi-package)
- Both may be fitted on either grouped data, or individual records.
- ▶ Binary outcome can be modeled with binary regression.