YMÜ 215 Mantık Devreleri

Dr. Öğr. Üyesi Feyza Altunbey Özbay

İçerik

- Temel Mantık İşlemleri
- Toplayıcı Devreleri

Hatırlatma

DEĞİL (NOT) Kapısı

DEĞİL işlemi bir mantık değerini tersine dönüştürür.

Α	F
0	1
1	0

$$Q = A' = \bar{A}$$

Hatırlatma

VE (AND) Kapısı

Α	В	F=A.B
0	0	0
0	1	0
1	0	0
1	1	1

$$Q = A.B$$

Hatırlatma

VEYA (OR) Kapısı

Α	В	F=A+B
0	0	0
0	1	1
1	0	1
1	1	1

$$Q = A + B$$

Temel Mantık İşlemleri

• VEDEĞİL (NAND) Kapısı

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

$$Q = \overline{A.B}$$

Çıkış Denklemi

• VEYADEĞİL (NOR) Kapısı

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

$$Q = \overline{A + B}$$

Temel Mantık İşlemleri

• ÖZEL VEYA (EXOR) Kapısı

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

$$Q = A \oplus B$$

Çıkış Denklemi

• ÖZEL VEYA DEĞİL (EXNOR) Kapısı

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	1

$$Q = \overline{A \oplus B}$$

• Örnek 1:

• Örnek 2:

• Örnek 3:

$$Q = \overline{\bar{A} + (A.B)}$$

• Örnek 4:

$$Q = (A.B) + (\overline{B}.C)$$

• Örnek 5:

• Örnek 6:

Toplayıcı (Adder) Devreleri

- Toplayıcı devreleri, ikilik (binary) sayı sisteminde toplama işlemi gerçekleştiren dijital elektronik devreleridir.
- En basit toplama işlemi dört olası temel işlemi içerir.

```
0 + 0 = 0,

0 + 1 = 1,

1 + 0 = 1,

1 + 1 = 10, (Elde 1, Toplam = 0)
```

- İlk üç işlemde tek basamaklı bir sayı elde edilirken, son işlemde ikinci basamak ortaya çıkar ve ikinci basamak 'elde biti' (Carry Bit) olarak isimlendirilir.
- İki biti toplayan devreler 'yarım toplayıcı' olarak, elde değerini temsil eden biti üçüncü bit olarak değerlendirilen ve üç bitin toplamını yapan devreler ise 'tam toplayıcı' olarak isimlendirilir.
- Tam toplayıcıyı oluşturmak için iki tane yarım toplayıcı kullanılır.

Toplayıcı (Adder) Devreleri

- Yarım Toplayıcı (Half Adder)
- Girişine uygulanan iki biti toplayıp, sonucu toplam (Sum) ve elde (Carry) şeklinde veren toplayıcı devresi, 'yarım toplayıcı' olarak isimlendirilir.
- Yarım toplayıcı devresi, doğruluk tablosundan elde edilen fonksiyonların lojik devresinin çizilmesi ile oluşturulur.
- Oluşan devrede, 'Toplam' ve 'Elde' değerlerini temsil eden iki çıkış bulunur.

Yarım Toplayıcı (Half Adder)

GİRİ	GİRİŞLER		LAR
Α	В	S	C ₀
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Yarım toplayıcı çıkışlarındaki sadeleştirilmiş fonksiyonlar, $S = \overline{AB} + A\overline{B}$ ve C = AB şeklinde elde edilir.
- Girişlerin A ve B, çıkışların S ve C değişkenleri ile ifade edildiği yarım toplayıcı devresi, bir 'ÖZEL-VEYA' (EXOR) ve bir 'VE' kapısıyla oluşturulabilir.

Tam Toplayıcı (Full Adder)

- Bir bitlik üç adet sayının toplamını gerçekleştiren ve sonucunu S ve Co olmak üzere iki çıkış hattında gösteren devre 'Tam Toplayıcı' olarak isimlendirilir.
- Girişlerden ikisi toplanacak bitleri gösterirken, üçüncü giriş bir önceki düşük değerlikli basamaktan gelen eldeyi (Carry) ifade etmek için kullanılır.
- Tam toplayıcı devresi tasarlamak için doğruluk tablosundan faydalanılabilir.

Tam Toplayıcı (Full Adder)

Tam toplayıcı çıkışlarındaki sadeleştirilmiş fonksiyonlar,

$$S = \overline{A}B\overline{C} + A\overline{B}\overline{C} + \overline{A}\overline{B}C + ABC$$

$$C_0 = AB + BC + AC$$

G	GİRİŞLER		ÇIKIŞ	LAR
С	Α	В	S	Co
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

• şeklinde ifade edilir. Bu ifade matematiksel olarak (A+B)+C olarak gösterilebilir.

Tam Toplayıcı (Full Adder)

- Tasarım sonucunda doğrudan lojik devre çizilebileceği gibi tam toplama işlemi, iki adet yarım toplayıcı ve bir 'VEYA' kapısı kullanılarak gerçekleştirilebilir.
- Bu şekilde gerçekleştirilen devrenin S çıkışı; ilk yarım toplayıcının S çıkışı ile elde girişi C'nin ÖZEL-VEYA'ya uygulanmasının sonucu elde edilir.

