Demostraciones Algebra

July 30, 2025

Teorema 1 Sean $A, B \in \mathbb{K}^{m \times n}$ matrices equivalentes por filas, entonces el sistema de ecuaciones Ax = 0 y Bx = 0 tienen exactamente las mismas soluciones.

Prueba: Si $A \sim B \Longrightarrow \exists$ una sucesion de matrices tal que $A = A_0 \to A_1 \to \cdots \to A_n = B$, donde cada A_j se obtiene por medio de una operacion elemental por filas. Por lo tanto basta probar que $A_j x = 0$ y $A_{j+1} x = 0$.

- Caso e_r^c : $a_{r1}x_1 + a_{r2}x_2 + \cdots + a_{rn}x_n = 0 \iff c \cdot a_{r1}x_1 + c \cdot a_{r2}x_2 + \cdots + c \cdot a_{rn}x_n = 0$, per como $c \neq 0 \implies c \cdot (a_{r1}x_1 + a_{r2}x_2 + \cdots + a_{rn}x_n) = 0$, por lo tanto ambos sistemas son iguales.
- Caso $e_{r,s}$: es trivial pues ambas filas r, s ya eran iguales a 0 y lo siguen siendo.
- Caso $e_{r,s}^c$: $(r+c\cdot s) = (a_{r1}+c\cdot a_{s1})x_1 + (a_{r2}+c\cdot a_{s2})x_2 + \cdots + (a_{rn}+c\cdot a_{sn})x_n = 0$ de la misma formas que en el primer caso como las filas r, s son iguales a 0 por lo tanto la nueva fila r tambien lo es.

Teorema 2 Sea $A \in \mathbb{K}^{m \times n}$ con $m < n \Longrightarrow el$ sistema Ax = 0 tiene soluciones no triviales.

Prueba: Sea R la MERF equivalente a $A \Longrightarrow$ los sistemas Ax = 0 y Rx = 0 tienen exactamente las mismas soluciones. Sea r = la cantidad de filas no nulas de $R \Longrightarrow r \le m$ y por lo tanto $r < n \Longrightarrow \text{hay } n - r > 0$ variables libres, por lo tanto hay soluciones no triviales.

Teorema 3 Sea $A \in \mathbb{K}^{n \times n}$. Entonces A es equivalente por filas a las $Id \iff Ax = 0$ tiene unicamente la solucion trivial.

Prueba:

- (\Longrightarrow) : Si $A \sim Id$, estas tienen exactamente las mismas soluciones. Por lo tanto como Idx=0 admite unicamente la solucion trivial queda probado.
- (\iff): Sea R la MERF $\sim A \implies$ el sistema Rx = 0 tiene unicamente la solucion trivial. Sea r =la cantidad de filas no nulas de $R \implies n r = 0$ porque no tienen variables libres. Entonces cada fila i tiene un 1 en la columna k_i por lo tanto R = Id.

Teorema 4 Propiedades de la multiplicación de matrices:

- 1. $A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{n \times p}, C \in \mathbb{K}^{p \times q} \Longrightarrow (AB)C = A(BC)$.
- 2. $A \in \mathbb{K}^{m \times n} \Longrightarrow Id_m A = Id_n A = A$.
- 3. $A, A' \in \mathbb{K}^{m \times n}, B, B' \in \mathbb{K}^{n \times p} \Longrightarrow (A + A')B = AB + A'B \ y \ A(B + B') = AB + AB'.$
- 4. $A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{n \times p}, \lambda \in \mathbb{K} \Longrightarrow \lambda \cdot (AB) = (\lambda A)B = A(\lambda B)$

Teorema 5 Sea e una operacion elemental por filas y sea E = e(Id) la matriz elemental asociada. Entonces para toda $A \in \mathbb{K}^{n \times n}$ se cumple que $e(A) = E \cdot A$.

Prueba: Tenemos que el elemento i, j de e(A) es el mismo que el de la matriz EA para cada operacion elemental, osea $(e(A))_{ij} = (EA)_{ij}$.

• Caso e_r^c :

Sabemos que
$$(e(A))_{ij} = \begin{cases} A_{ij} & \text{si } i \neq r \\ cA_{ij} & \text{si } i = r \end{cases}$$

Veamos $(EA)_{ij} = \sum_{k=1}^{m} E_{ik} A_{kj} \text{ (si } i \neq k \Longrightarrow E_{ik} = 0)$
 $= E_{ii} A_{ij} = \begin{cases} A_{ij} & \text{si } i \neq r \\ cA_{ij} & \text{si } i = r \end{cases}$

• Caso $e_{r,s}$:

$$\begin{aligned} & \text{Sabemos que } (e(A))_{ij} = \begin{cases} A_{ij} \text{ si } i \neq r, s \\ A_{sj} \text{ si } i = r \\ A_{rj} \text{ si } i = s \end{cases} \\ & (EA)_{ij} = \sum_{k=1}^m E_{ik} A_{kj} \text{ , donde } E_{ik} = \begin{cases} 1 \text{ si } i = k \vee i = r, s \vee k = r, s \\ 0 \text{ caso contrario} \end{cases} \\ & \text{Veamos } (EA)_{ij} \text{ en cada caso:} \begin{cases} \text{si } i \neq r, s \Longrightarrow (EA)_{ij} = A_{ij} \\ \text{si } i = r \Longrightarrow (EA)_{ij} = E_{is} A_{sj} = A_{sj} \\ \text{si } i = s \Longrightarrow (EA)_{ij} = E_{ir} A_{rj} = A_{rj} \end{cases}$$

• Caso $e_{r,s}^c$:

Sabemos que
$$e(A)_{ij} = \begin{cases} [within]A_{ij} & \text{si } i \neq r \\ A_{rj} + cA_{sj} & \text{si } i = r \end{cases}$$

$$(EA)_{ij} = \sum_{k=1}^{m} E_{ik}A_{kj} , \text{ donde } E_{ik} = \begin{cases} 1 & \text{si } i = k \\ c & \text{si } i = r \land j = s \\ 0 & \text{caso contrario} \end{cases}$$

 \Box def

Teorema 6 Sean $A, B \in \mathbb{K}^{n \times n}$:

- 1. Si A es inversible $\Longrightarrow A^{-1}$ tambien lo es $y(A^{-1})^{-1} = A$.
- 2. Si A, B son inversibles \Longrightarrow AB es inversible y $(AB)^{-1} = B^{-1}A^{-1}$.

Prueba:

1.
$$A \cdot A^{-1} = A^{-1} \cdot A = Id \Longrightarrow A^{-1}$$
 inversible $v(A^{-1})^{-1}$ es A .

2.
$$(AB) \cdot (B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A(Id)A^{-1} = AA^{-1} = Id.$$

Teorema 7 Toda matriz elemental E es inversible.

Prueba: Sea e la operacion elemental por fila correspondiente a E y sea e' la operacion elemental inversa (sabemos que existe por teorema). Por lo tanto sea E' = e'(Id)

$$\begin{split} Id &= e'(e(Id)) = e'(E) = E'E \\ Id &= e(e'(Id)) = e(E') = EE' \\ &\Longrightarrow E \text{ es inversible y su inversa es } E' \end{split}$$

Teorema 8 Sea $A \in \mathbb{K}^{n \times n}$ entonces son equivalentes:

- 1. A es inversible.
- 2. A es equivalente por filas a la Id.
- 3. A es producto de matrices elementales.

Prueba:

- [1 \Longrightarrow 2] Sea R la MERF $\sim A \Longrightarrow$ existen matrices elementales E_1, \ldots, E_k talque $R = E_k \cdots E_2 E_1 A$. Como las matrices elementales E_j y A son inversibles $\Longrightarrow R$ tambien lo es $\Longrightarrow R$ no tiene filas nulas por lo tanto R = Id.
- $[2 \Longrightarrow 3]$ Si $A \sim Id \Longrightarrow Id \sim A \Longrightarrow$ existen P productos de matrices elementales talque $A = P \cdot Id = E_1 E_2 \cdots E_k \cdot Id$.
- $[3 \Longrightarrow 1]$ Supongamos $A = E_1 \cdots E_k$ donde E_j es una matriz elemental. Como cada E_j es inversible y el producto de matrices inversibles tambien lo es \Longrightarrow A es inversible.

Teorema 9 Sean $A, B \in \mathbb{K}^{m \times n}$. Entonces B es equivalente por filas a $A \iff \exists P$ matriz inversible $m \times m$ talque $B = P \cdot A$

Prueba:

- (\Longrightarrow): Si $B \sim A$ sabemos que $B = E_k E_{k-1} \cdots E_1$ y como cada E_i es inversible el producto de matrices inversibles tambien lo es.
- (\iff) : Sea P inversible talque B=PA como P es producto de matrices elementales $\implies B=E_k\cdots E_1A \implies B$ se obtiene de A haciendo operaciones elementales $\implies B\sim A$.

Teorema 10 Sea $A \in \mathbb{K}^{n \times n}$. Entonces son equivalentes:

- 1. A es inversible.
- 2. El sistema Ax = 0 tiene una unica solucion (la trivial).
- 3. $\forall b \in \mathbb{K}^{n \times 1}$ el sistema no-homogeneo Ax = b tiene una unica solucion.

Prueba:

- [1 \iff 2] Sabemos que A es inversible \iff $A \sim Id \iff$ el sistema Ax = 0 tiene como unica solucion la trivial.
- $[1 \Longrightarrow 3]$ Sea $b \in \mathbb{K}^{n \times 1}$, como A es inversible $\Longrightarrow \exists A^{-1}$. Por lo tanto sea $x_0 = A^{-1}b \in \mathbb{K}^{n \times 1}$ $\Longrightarrow Ax_0 = A(A^{-1}b) = b$. Veamos que es unica, para eso supongamos que existe otra solucion $x_1 \Longrightarrow Ax_1 = b \Longrightarrow Ax_1 = b = Ax_0$ ahora multiplicamos por la inversa $\Longrightarrow A^{-1}Ax_0 = A^{-1}Ax_1 \Longrightarrow x_0 = x_1$
- $[3 \Longrightarrow 2]$ Como tiene solucion para todo b tomo b=0 por lo tanto, obviamente, tiene una unica solucion por hipotesis.

Teorema 11 Si $W \subseteq V$ y $W \neq \emptyset$. Entonces W es un \mathbb{K} -subespacio vectorial de $V \iff \forall v, w \in W$ y $\forall c \in \mathbb{K}$ el vector $[c \cdot v + w] \in W$

Prueba:

- (\Longrightarrow) : Si W es un subespacio vectorial y $c \in \mathbb{K}$, $v, w \in W \Longrightarrow c \cdot v \in W \Longrightarrow c \cdot v + w \in W$
- (\Leftarrow): Supongamos que $\forall v, w \in W$ y $\forall c \in \mathbb{K} : c \cdot v + w \in W$ veamos contiene al $\vec{0}$, que es cerrado para la suma y el producto por escalar.
 - 1. Como $W \neq \emptyset \implies \exists w \in W \implies (-1) \cdot w + (1) \cdot w \in W \implies \vec{0} \in W$.
 - 2. Tomamos c=1 por lo tanto $(1) \cdot v + w = v + w \in W$ por lo tanto la suma esta bien definida.
 - 3. Como $\vec{0} \in W$ tomamos $w = \vec{0}$ por lo tanto $c \cdot v + \vec{0} = c \cdot v \in W$ entonces el producto esta bien definido.

Teorema 12 Sea V un \mathbb{K} -espacio vectorial. Entonces la interseccion de subespacios de V es un subespacio vectorial de V.

Prueba:

Sea $\{W_i\}_{i\in I}$, donde W_i es un subespacio vectorial de V. Entonces sea $W=\bigcap_{i\in I}W_i$.

Para ver que W es un subespacio veamos que si $v, w \in W$, $c \in \mathbb{K} \Longrightarrow c \cdot v + w \in W$. Si $v, w \in W \Longrightarrow v, w \in W_i$ para todo $i \in I$ y como todo W_i es un subespacio $\Longrightarrow c \cdot v + w \in W_i$ $\Longrightarrow c \cdot v + w \in W$.

Teorema 13 Sea V un \mathbb{K} -espacio vectorial y sean $v_1, \ldots, v_k \in V$. Entonces $W = \{c_1v_1 + \cdots + c_kv_k | c_i \in \mathbb{K}\}$ = Conjunto de todas la combinaciones lineales, es un subespacio vectorial de V.

Prueba: Tomemos $v, w \in W$, $c \in \mathbb{K}$ veamos $c \cdot v + w \in W$.

Sean
$$v = c_1v_1 + \dots + c_kv_k$$
 y $w = d_1v_1 + \dots + d_kv_k \Longrightarrow$
 $c \cdot v + w = (c \cdot c_1v_1 + \dots + c \cdot c_kv_k) + (d_1v_1 + \dots + d_kv_k)$
 $= (c \cdot c_1 + d_1)v_1 + \dots + (c \cdot c_k + d_k)v_k$
 $\Longrightarrow c \cdot v + w$ es una combinacion lineal, por lo tanto $\in W$

Teorema 14 Sea V un \mathbb{K} -espacio vectorial de dimension finita y W subespacio de V. Todo subconjunto L.I. de W es finito y se puede completar a una base.

Prueba: Si $S_0 \subseteq W$ es L.I. $\Longrightarrow S_0$ es un conjunto L.I de V y si dim(V) = n, sabemos que $|S_0| \le n$, osea es finito. Queremos extenderlo a una base de la siguiente forma:

• Si S_0 genera W ya es una base.

• Si S_0 no genera $W \Longrightarrow \exists w_1 \in W$ talque $w_1 \notin \langle S_0 \rangle$, vimos que si agregamos algo que no esta en el espacio generado este conjunto sigue siendo L.I. Repetimos este paso hasta algun $S_k = S_0 \cup w_1 \cup \cdots \cup w_k$ talque $\langle S_k \rangle = W$. Como este conjunto es por definicion L.I. y genera este es una base.

Teorema 15 Sea V un \mathbb{K} -espacio vectorial, sea $S = \{v_1, \dots, v_m\}$ un conjunto de generadores de V. Entonces existe $B \subseteq S$ que es una base de V.

Prueba: Vamos a definir inductivamente subconjuntos $G_j \subseteq S$ (j = 1, ..., m) que sean L.I.

• (j = 1):

$$G_1 = \begin{cases} \{v_1\} & si \quad v_1 \neq 0 \\ \emptyset & si \quad v_1 = 0 \end{cases} \implies G_1 \text{ es L.I.}$$

• (j=2):

$$G_2 = \begin{cases} G_1 \cup v_2 & si \quad v_2 \notin \langle G_1 \rangle \\ G_1 & si \quad v_2 \in \langle G_1 \rangle \end{cases} \implies G_2 \text{ es L.I. en cualquier caso}$$

• (j+1):

$$G_{j+1} = \begin{cases} G_j \cup v_{j+1} & si \quad v_{j+1} \notin \langle G_j \rangle \\ G_j & si \quad v_{j+1} \in \langle G_j \rangle \end{cases} \implies \text{en ambos casos } G_{j+1} \text{ es L.I.}$$

$$\Longrightarrow G_m$$
 es L.I. y $\langle G_m \rangle = \{v_1, \dots, v_m\} = V \Longrightarrow \mathcal{B} = G_m \subseteq S$ y la dimension de $V = |G_m|$. \square

Teorema 16 Sean W_1, W_2 dos subespacios de V:

- 1. $W_1 + W_2$ es un subespacio de V.
- 2. $W_1 + W_2$ es el menor subespacio (respecto a la inclusion) que contiene a $W_1 + W_2$.
- 3. Si $\{v_i\}_{i\in I}$ es un conjunto de generadores de W_1 y $\{w_j\}_{j\in J}$ es un conjunto de generadores de $W_2 \Longrightarrow \{v_i\}_{i\in I} \cup \{w_j\}_{j\in J}$ es un conjunto de generadores de $W_1 + W_2$.

Prueba:

1. $W_1 + W_2 \neq \emptyset$ pues $\vec{0} \in W_1$ y $\vec{0} \in W_2 \Longrightarrow \vec{0} = \vec{0} + \vec{0} \in W_1 + W_2$. Sean $v_1, v_2 \in W_1 + W_2$ queremos ver que $c \cdot v_1 + v_2 \in W_1 + W_2$.

$$\begin{aligned} v_1 &= x_1 + y_1 \ , \ v_2 = x_2 + y_2 \ \text{con} \ x_1, x_2 \in W_1 \subseteq V \ \text{y} \ y_1, y_2 \in W_2 \subseteq V \\ &\Longrightarrow c \cdot v_1 + v_2 = c \cdot (x_1 + y_1) + (x_2 + y_2) = (cx_1 + x_2) \in W_1 + (cy_1 + y_2) \in W_2 \\ &\Longrightarrow c \cdot v_1 + v_2 \in W_1 + W_2 \end{aligned}$$

2. $W_1 \subseteq W_1 + W_2$ pues si $w_1 \in W_1 \Longrightarrow w_1 + \vec{0} \in W_1 + W_2$ y del mismo modo con W_2 . Por lo tanto $W_1 \cup W_2 \subseteq W_1 + W_2$, basta ver que es el menor subespacio que lo contiene. Sea U un subespacio de V talque $W_1 \cup W_2 \subseteq U$, queremos ver que $W_1 + W_2 \subseteq U$. Sea $v \in W_1 + W_2 \Longrightarrow v = x + y$ con $x \in W_1 \subseteq U$, $y \in W_2 \subseteq U$ osea $v \in U \Longrightarrow W_1 + W_2 \subseteq U$.

3. $\{v_i\}_{i\in I}$ genera W_1 , $\{w_i\}_{i\in J}$ genera $W_2 \Longrightarrow S = \{v_i\}_{i\in I} \cup \{w_i\}_{i\in J}$ genera $W_1 + W_2$.

Sea
$$v \in W_1 + W_2 \Longrightarrow v = x + y \text{ con } x \in W_1, y \in W_2$$

 $\Longrightarrow x = \sum_{i \in I} \alpha_i v_i , y = \sum_{j \in J} \beta_j w_j \quad (\text{ con } \alpha_i, \beta_j \in \mathbb{K})$
 $\Longrightarrow v = x + y = \sum_{i \in I} \alpha_i v_i + \sum_{j \in J} \beta_j w_j$

Por lo tanto v es combinacion lineal de elementos de S

Teorema 17 Sea V un \mathbb{K} -espacio vectorial, sean W_1, W_2 subespacios de V y de dimension finita.

Entonces $W_1 + W_2$ es un subespacio $y \dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$

Prueba: $W_1 \cap W_2$ es un subespacio de W_1 (y de W_2) por lo tanto es de dimension finita. Sea $\{u_1, \ldots, u_k\}$ base de $W_1 \cap W_2 \Longrightarrow \{u_1, \ldots, u_k\}$ es L.I. en $W_1 \Longrightarrow$ se puede extender a una base de W_1 , analogamente con W_2 .

Osea existen $\{v_1,\ldots,v_n\}\subseteq W_1$ tales que $\{u_1,\ldots,u_k,v_1,\ldots,v_n\}$ es una base de W_1 . De la misma forma existen $\{w_1,\ldots,w_m\}\subseteq W_2$ tales que $\{u_1,\ldots,u_k,w_1,\ldots,w_m\}$ es base.

 $\Longrightarrow W_1 + W_2$ es generado por $\mathcal{B} = \{u_1, \dots, u_k, v_1, \dots, v_n, w_1, \dots, w_m\}$ es $\mathcal{B}_1 \cup \mathcal{B}_2$. Veamos que este conjunto es L.I.

Si
$$\sum_{i=1}^{k} a_i u_i + \sum_{i=1}^{n} b_i v_i + \sum_{i=1}^{m} c_i w_i = 0$$

$$\Longrightarrow \sum_{i=1}^{k} a_i u_i + \sum_{i=1}^{n} b_i v_i = -\sum_{i=1}^{m} c_i w_i \in W_1 \cap W_2$$
Como
$$\{u_1, \dots, u_k\} \text{ es base de } W_1 \cap W_2 \Longrightarrow -\sum_{i=1}^{m} c_i w_i = \sum_{i=1}^{k} d_i u_i$$
Reemplazando
$$\sum_{i=1}^{k} a_i u_i + \sum_{i=1}^{n} b_i v_i + \sum_{i=1}^{k} (-d_i) u_i = 0$$

$$\sum_{i=1}^{k} (a_i - d_i) u_i + \sum_{i=1}^{n} b_i v_i = 0$$

Como $\{u_1, \ldots, u_k, v_1, \ldots, v_n\}$ es base de W_1 el conjunto es $L.I. \implies a_i = d_i$ y $b_i = 0, \forall i$. Volviendo a la sumatoria con este resultado sabemos que:

$$\sum_{i=1}^{k} a_i u_i + \sum_{i=1}^{m} c_i w_i = 0$$

Como $\{u_1, \ldots, u_k, w_1, \ldots, w_m\}$ es base de W_2 el conjunto es L.I. \Longrightarrow todos los escalares son 0. Osea $\beta = \{u_1, \ldots, u_k, v_1, \ldots, v_n, w_1, \ldots, w_m\}$ es L.I. y por lo tanto es base de $W_1 + W_2$

$$\implies \dim(W_1 + W_2) < \infty \text{ y } \dim(W_1 + W_2) = k + n + m$$
$$\dim(W_1) = k + n \text{ , } \dim(W_2) = k + m \text{ , } \dim(W_1 \cap W_2) = k$$
$$\implies \dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$

Proposicion 17.1 Si $V = W_1 \oplus W_2 \Longrightarrow para\ cada\ v \in V : \exists\ unicos\ elementos\ x \in W_1, y \in W_2$ tales que v = x + y.

Prueba: Como $V = W_1 + W_2$ sabemos que existen $w_1 \in W_1, w_2 \in W_2$ tales que $v = w_1 = w_2$. Si ademas $v = u_1 + u_2 \Longrightarrow \vec{0} = v - v = (w_1 + w_2) - (u_1 + u_2) = (w_1 - u_1) + (w_2 - u_2) \Longrightarrow w_1 - u_1 = w_2 - u_2 \in W_1 \cap W_2 = \{0\}$ (pues es suma directa) $\Longrightarrow w_1 = u_1, w_2 = u_2$.

Teorema 18 Sean W_1, W_2 subespacios vectoriales de V y sean $\mathcal{B}_1, \mathcal{B}_2$ bases de W_1 y W_2 . Entonces son equivalentes:

- 1. $V = W_1 \oplus W_2$.
- 2. $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ es una base de V.

Prueba:

• $[1 \Longrightarrow 2]$: Asumimos que $V = W_1 \oplus W_2 \Longrightarrow \mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ es un conjunto de generadores de $W_1 + W_2$ bastar ver que es L.I. Sabemos que $dim(V) = dim(W_1 \oplus W_2) = dim(W_1) + dim(W_2) - dim(\{0\})$

$$\sum_{i \in I} a_i v_i + \sum_{j \in J} b_j w_j = 0 \Longrightarrow \sum_{\substack{i \in I \\ \in W_1}} a_i v_i = -\sum_{\substack{j \in J \\ \in W_2}} b_j w_j \Longrightarrow W_1 \cap W_2 = \{0\}$$

$$\sum_{i \in I} a_i v_i = \vec{0} , \sum_{j \in J} b_j w_j = \vec{0}$$

 $\implies a_i = 0, b_j = 0 \ \forall i \in I, \forall j \in J$ pues ambos v_i, w_j son base y por lo tanto son L.I.

• $[2 \Longrightarrow 1]$: Asumimos que $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ base de $V \Longrightarrow V = W_1 + W_2$ pues sabemos que:

$$v = \sum_{i \in I} a_i v_i + \sum_{j \in J} b_j w_j$$

Necesitamos ver que $W_1 \cap W_2 = \{0\}$ para ver que la suma es directa. Sea $v \in W_1 \cap W_2$:

$$\implies v = \sum_{i \in I} a_i v_i = \sum_{j \in J} b_j w_j$$

$$\implies 0 = \sum_{i \in I} a_i v_i - \sum_{j \in J} b_j w_j$$

(como ambos conjuntos son L.I. esto solo pasa si $a_i = 0 \ \forall i \in I, b_j = 0 \ \forall j \in J$) $\Longrightarrow v = 0 \Longrightarrow W_1 \cap W_2 = \{0\}$

Definicion 1 Dados V, W espacio vectoriales sobre \mathbb{K} .

Una transformacion lineal de V en W es una funcion, $T: V \to W$ que satisface:

•
$$T(v+w) = T(v) + T(w) \quad \forall v, w \in V$$

•
$$T(c \cdot v) = c \cdot T(v) \quad \forall v \in V, \forall c \in \mathbb{K}$$

De esas propiedades se deducen las siguientes:

$$\bullet \ T(\vec{0}_V) = \vec{0}_W$$

•
$$T(-v) = -T(v) \quad \forall v \in V$$

Teorema 19 Sean V, W \mathbb{K} -espacio vectorial, $T: V \to W$ una T.L.

1. Si
$$U \subseteq V$$
 es un subespacio de $V \Longrightarrow T(U)$ es un subespacio de W .

2. Si
$$Z \subseteq W$$
 es un subespacio de $W \Longrightarrow T^{-1}(Z) = \{v \in V \mid T(w) \in Z\}$

Prueba:

1. Sea
$$T(U) = \{w \in W \mid \exists v \in U \text{ con } T(v) = w\} \neq \emptyset$$
, veamos que $T(U)$ es subespacio: Como $\vec{0} \in U$ (por ser subespacio) y $T(\vec{0}) = 0 \Longrightarrow \vec{0} \in T(U)$ Sean $w_1, w_2 \in T(U) :\Longrightarrow \exists v_1, v_2 \in U$ tales que $w_1 = T(v_1), w_2 = T(v_2)$ $\Longrightarrow c \cdot w_1 + w_2 = cT(v_1) + T(V_2) = T(c \cdot v_1 + v_2)$ Como $c \cdot v_1 + v_2 \in U \Longrightarrow c \cdot w_1 + w_2 \in T(U)$

2. $\vec{0} \in T^{-1}(Z)$ pues $T(0) = \vec{0} \in Z$ por lo tanto $T^{-1}(Z) \neq \emptyset$. Sean $v_1, v_2 \in T^{-1}(Z), c \in \mathbb{K}$ veamos que $c \cdot v_1 + v_2 \in T^{-1}(Z)$:

$$T(c \cdot v_1 + v_2) = cT(v_1) + T(v_2) \in defZ$$

$$\Longrightarrow c \cdot v_1 + v_2 \in T^{-1}(Z)$$

Teorema 20 Sean $V, W \mathbb{K}-espacio$ vectoriales, sea $T: V \to W$ transformacion lineal. Entonces:

- 1. Nu(T) es un subespacio de V.
- 2. Im(T) es un subespacio de W.

Prueba:

1.

$$Nu(T) \neq \emptyset$$
, pues $\vec{0} \in Nu(T)$ porque $T(\vec{0}) = \vec{0}$
Sean $v_1, v_2 \in Nu(T)$, $c \in \mathbb{K}$
 $\Longrightarrow T(cv_1 + v_2) = cT(v_1) + T(v_2) = \vec{0} \Longrightarrow c \cdot v_1 + v_2 \in Nu(T)$

2.

$$\begin{split} ℑ(T) \subseteq W, Im(T) \neq \emptyset \ \text{ pues } \vec{0} \in Im(T) \ , \ \vec{0} \in T(\vec{0}) \\ &\operatorname{Sean } w_1, w_2 \in Im(T) \ , c \in \mathbb{K} \\ &\Longrightarrow \exists v_1, v_2 \in V \ \text{tales que } T(cv_1 + v_2) = cT(v_1) + T(v_2) = c \cdot w_1 + w_2 \in Im(T) \end{split}$$

Teorema 21 Sean $V, W \mathbb{K}$ -espacio vectoriales, sea $T: V \to W$ transformacion lineal. (con $dim(V) < \infty$) Entonces:

$$dim(V) = dim(Im(T)) + dim(Nu(T))$$

Prueba: Sea $\{v_1,\ldots,v_k\}$ base de $Nu(T)\subseteq V$. Como el conjunto es L.I. podemos completarlo a una base de V. Sean $\{v_{k+1},\ldots,v_n\}\subseteq V$ tal que $\{v_1,\ldots,v_k,v_{k+1},\ldots,v_n\}$ es una base de V. Probemos $\{T(v_{k+1}),\ldots,T(v_n)\}$ es base de Im(T):

Sea
$$w \in Im(T) \Longrightarrow \exists v \in V$$
 tal que $w = T(v) \Longrightarrow v = \sum_{j=1}^{n} c_j v_j$

$$T(v) = \sum_{j=1}^{n} c_j T(v_j) = \sum_{j=k+1}^{n} c_j T(v_j) \quad \text{(porque } T(v_j) = 0 \text{ si } j \leq k\text{)}$$

$$\Longrightarrow w \text{ es combinacion lineal de } \{T(v_{k+1}), \dots, T(v_n)\}$$

Falta ver que el conjunto es L.I.:

$$\implies b_{k+1}T(v_{k+1}) + \dots + b_nT(v_n) = T(\underbrace{b_{k+1}v_{k+1} + \dots + b_nv_n}_{v_0}) = 0$$

$$\implies v_0 \in Nu(T) \implies v_0 = \sum_{j=k+1}^n b_jv_j = \sum_{j=1}^k c_iv_i \text{ pues } \{v_1, \dots, v_k\} \text{ es base de } Nu(T)$$

$$\implies \sum_{j=k+1}^n b_jv_j + \sum_{j=1}^k (-c_i)v_i = 0$$

Como la segunda parte es $L.I. \implies b_j = 0$, $\forall j = \{k+1, \cdots, n\}$. Con esto probamos que $\{T(v_{k+1}), \ldots, T(v_n)\}$ es L.I. y como genera es base de Im(T). Por lo tanto dim(Im(T)) = n - k, ademas sabiamos que dim(Nu(T)) = k

$$\implies dim(Nu(T)) + dim(Im(T)) = k + (n - k) = n = dim(V)$$

Definicion 2

- $El\ Rango\ Fila\ (A) = dim(espacio\ fila\ de\ A)$
- El Rango Columna $(A) = dim(espacio\ columna\ de\ A)$

Teorema 22 Sea $A \in \mathbb{K}^{m \times n}$ Entonces: Rango fila de A = Rango columna de A

Prueba: Sea $T: \mathbb{K}^n \to \mathbb{K}^m$ la T.L. definida por $T(x) = A \cdot x$, $Nu(T) = \{x \in \mathbb{K}^n : Ax = 0\}$. Sabemos que A se puede reducir a una MERF R.

$$\Longrightarrow$$
 espacio fila de A = espacio fila de R
 $\Longrightarrow dim(\text{espacio fila de A}) = k \text{ (cantidad de filas no nulas)}$
 $\Longrightarrow dim(Nu(T)) = n - k$, Rango Fila (A) = k
 $\Longrightarrow dim(\mathbb{K}^n) = n = dim(Nu(T)) + \text{Rango Fila (A)}$

Por otra parte $T: \mathbb{K}^n \to \mathbb{K}^m$, $x \to Ax$ entonces Im(T) es generada por las columnas de A:

$$\mathbb{K}^m \Longrightarrow Ax = \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \cdots a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ \vdots \\ a_{m2} \end{pmatrix} + \dots + x_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

$$T(e_j) = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix} \text{ siendo } e_j \text{ el vector canonico que devuelve la columna } j$$

$$\Longrightarrow \{e_1,e_2,\ldots,e_{n-1},e_n\}$$
es base de $\mathbb{K}^n \Longrightarrow \{T(e_1),\ldots,T(e_n)\}$ genera $Im(T)$

$$\Longrightarrow dim(Im(T)\,)\,=dim({\rm espacio~columna~de~A})\,={\rm Rango~Columna~(A)}$$

Ahora el teorema dice que $dim(\mathbb{K}^n) = dim(Nu(T)) + \text{Rango Columna (A)}$. Pero antes vimos que $dim(\mathbb{K}^n) = dim(Nu(T)) + \text{Rango Columna (A)} \Longrightarrow \underline{\text{Rango Fila (A)= Rango Columna (A)}}$

Proposicion 22.1 Sean V, W \mathbb{K} -espacio vectoriales, sea $T: V \to W$ transformacion lineal. Entonces:

- T es inyectiva $\iff Nu(T) = \{0\} \iff nulidad(T) = 0$
- T es sobreyectiva $\iff Im(T) = W \iff rango(T) = dim(W)$

Teorema 23 Sean V, W $\mathbb{K}-espacio$ vectoriales, sea $T: V \to W$ transformacion lineal. Entonces:

- 1. Si T es inyectiva $y \{v_1, \ldots, v_n\}$ es L.I. en $V \Longrightarrow \{T(v_1), \ldots, T(v_n)\}$ es L.I. en W.
- 2. Si T es sobreyectiva y $\{v_1, \ldots, v_n\}$ genera $V \Longrightarrow \{T(v_1), \ldots, T(v_n)\}$ genera W.
- 3. En general si $\{v_1, \ldots, v_n\}$ genera $V \Longrightarrow \{T(v_1), \ldots, T(v_n)\}$ genera Im(T).

Prueba:

- 1. Sean $c_1, \ldots, c_r \in \mathbb{K}$ tales que $c_1T(v_1) + \cdots + c_rT(v_r) = 0$ (como T es lineal) $\Longrightarrow T(c_1v_1 + \cdots + c_rv_r) = 0 \Longrightarrow [c_1v_1 + \cdots + c_rv_r] \in Nu(T) = \{0\}$ (por ser inyectiva) $\Longrightarrow c_1v_1 + \cdots + c_rv_r = 0 \Longrightarrow c_1 = 0, \cdots, c_r = 0.$
- 2. Caso particular de (3) donde Im(T) = W.
- 3. Sea $w \in Im(T) \implies \exists v \in V \text{ talque } w = T(v) \text{ , como } \{v_1, \dots, v_s\} \text{ genera } V$

$$\implies v = c_1 v_1 + \dots + c_s v_s \quad (\text{con } c_i \in \mathbb{K})$$

$$\implies w = T(v) = T(c_1 v_1 + \dots + c_s v_s) = c_1 T(v_1) + \dots + c_s T(v_s)$$

$$\implies w \in \langle \{T(v_1), \dots, T(v_s)\} \rangle \quad (\text{esta en el espacio generado})$$

$$\implies Im(T) \subseteq \langle \{T(v_1), \dots, T(v_s)\} \rangle \subseteq Im(T)$$

$$\implies Im(T) = \langle \{T(v_1), \dots, T(v_s)\} \rangle$$

Teorema 24 Sean $V, W \mathbb{K}$ -espacio vectoriales, sea $T: V \to W$ transformacion lineal. (talque $dim(V) = dim(W) < \infty$). Entonces son equivalentes:

- 1. T es un isomorfismo.
- 2. T es inyectiva.
- 3. T es sobreyectiva.
- 4. Si $\{v_1, \dots, v_n\}$ es una base de $V \Longrightarrow \{T(v_1), \dots, T(v_n)\}$ es una base de W.

Prueba:

- $[1 \Longrightarrow 2]$: obvio pues es isomorfismo cuando tanto inyectiva como sobreyectiva.
- $[2 \Longrightarrow 3]$: Si T es inyectiva $\Longrightarrow Nu(T) = \{0\} \Longrightarrow nulidad(T) = 0$. Por teorema de las dimensiones sabemos que:

$$n = dim(V) = dim(Nu(T)) + dim(Im(T))$$

 $\implies n = 0 + dim(Im(T)) = dim(W)$
 \implies T sobreyectiva (porque $\forall S \subseteq V : dim(S) = dim(W)$ es el mismo W)

- $[3 \Longrightarrow 1]$: Supongamos T sobreyectiva $\Longrightarrow Im(T) = dim(W)$, nuevamente por el teorema de las dimesiones sabemos que $dim(Nu(T)) = 0 \Longrightarrow Nu(T) = \{0\}$. Por lo tanto T es inyectiva $\Longrightarrow T$ es biyectiva.
- $[1 \Longrightarrow 4]$: Sea $\{v_1, \dots, v_n\}$ una base de $V \Longrightarrow \{v_1, \dots, v_n\}$ es L.I. y como es inyectiva (por ser biyectiva) $\Longrightarrow \{T(v_1), \dots, T(v_n)\}$ tambien es L.I. Ademas $\{v_1, \dots, v_n\}$ genera V y como es sobreyectiva $\Longrightarrow \{T(v_1), \dots, T(v_n)\}$ genera W.
- $[4 \Longrightarrow 2]$: Sea $v_1 \in Nu(T)$, supongamos que $v_1 \neq 0 \Longrightarrow \{v_1\}$ es L.I. por lo tanto se puede extender a una base $\Longrightarrow \exists \{v_1, \cdots, v_n\}$ base de $V \Longrightarrow \{T(v_1), \cdots, T(v_n)\}$ es base de $W \Longrightarrow$ en particular $T(v_1) \neq 0$ (ABSURDO pues $v_1 \in Nu(T)$, osea $T(v_1) = 0$).

Proposicion 24.1 Sean $V, W \mathbb{K}$ -espacio vectoriales de dimension finita. Entonces:

$$\exists T: V \to W \ isomorfismo \iff dim(V) = dim(W)$$

Definicion 3 Sean V, W espacios vectoriales sobre \mathbb{K} . Sean $\mathcal{B} = \{v_1, \dots, v_n\}$ base ordenada de $V y \mathcal{B}' = \{w_1, \dots, w_m\}$ base ordenada de W. Sea $T : V \to W$ T.L.

Supongamos que
$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_i$$
 (cuando $1 \le j \le n$)

Definimos la matriz de T respecto a las bases $\mathcal{B}, \mathcal{B}'$ como:

$$[T]_{\mathcal{B}'}^{\mathcal{B}} = (a_{ij}) \quad (con \ 1 \le i \le m, 1 \le j \le n)$$

Si $V\subseteq W$ y $\mathcal{B}=\mathcal{B}'$ en particular denotaremos $\left[T\right]_{\mathcal{B}}=\left[T\right]_{\mathcal{B}}^{\mathcal{B}'}$

Teorema 25 Sean $V, W \mathbb{K}$ -espacio vectoriales, sea $T: V \to W$ transformacion lineal. Si $\mathcal{B} = \{v_1, \dots, v_n\}, \mathcal{B}' = \{w_1, \dots, w_m\}$ bases ordenadas de V W respectivamente

$$\Longrightarrow \left[T\right]_{\mathcal{B}'}^{\mathcal{B}} \cdot \left[v\right]_{\mathcal{B}} = \left[T(v)\right]_{\mathcal{B}'} \quad \forall v \in V$$

Prueba:

$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_i , [T]_{\mathcal{B}'}^{\mathcal{B}} = (a_{ij})$$

Sea $v \in V \Longrightarrow \exists !$ escalares x_1, \dots, x_n tales que $v = x_1v_1 + \dots + x_nv_n \Longrightarrow [v]_{\mathcal{B}} = (x_1, \dots, x_n)$

$$\implies T(v) = x_1 T(v_1) + \dots + x_n T(v_n) = \sum_{j=1}^n x_j T(v_j)$$

$$= \sum_{j=1}^n \sum_{i=1}^m x_j (a_{ij} w_i) = \sum_{j=1}^n (\sum_{i=1}^m x_j a_{ij}) w_i$$

$$\implies [T(v)]_{B'} = \left(\sum_{i=1}^n a_{1j} x_j, \sum_{i=1}^n a_{2j} x_j, \dots, \sum_{i=1}^n a_{mj} x_j\right) \quad (\star)$$

Por otra parte

$$[T]_{\mathcal{B}'}^{\mathcal{B}} \cdot [v]_{\mathcal{B}'} = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n a_{1j}x_j \\ \vdots \\ \sum_{i=1}^n a_{mj}x_j \end{pmatrix} \quad (\star)$$

Por lo tanto $[T(v)]_{\mathcal{B}'} = [T]_{\mathcal{B}'}^{\mathcal{B}}[v]_{\mathcal{B}'}$ tenemos lo queriamos ver.

Proposicion 25.1 Sea V \mathbb{K} -espacio vectorial de dimension finita. Sean $\mathcal{B}, \mathcal{B}'$ bases de V. Entonces:

$$[v]_{\mathcal{B}'} = [Id]_{\mathcal{B}'}^{\mathcal{B}} \cdot [v]_{\mathcal{B}} \quad \forall v \in V$$

Definicion 4 Sea V \mathbb{K} -espacio vectorial de dimension finita. Sean $\mathcal{B}, \mathcal{B}'$ dos bases ordenadas de V. Denotaremos $P = \begin{bmatrix} Id \end{bmatrix}_{\mathcal{B}'}^{\mathcal{B}}$ como la matriz de cambio de base de \mathcal{B} a \mathcal{B}' .

Teorema 26 Sean V, W, Z espacios vectoriales sobre \mathbb{K} . Sean $T: V \to W, S: W \to Z$ T.L. y sean $\mathcal{B}_V, \mathcal{B}_W, \mathcal{B}_Z$ bases de V, W, Z respectivamente. Entonces:

$$\left[S \circ T\right]_{\mathcal{B}_Z}^{\mathcal{B}_V} = \left[S\right]_{\mathcal{B}_Z}^{\mathcal{B}_W} \cdot \left[T\right]_{\mathcal{B}_W}^{\mathcal{B}_V}$$

Prueba: Sea $v \in V$ arbitrario:

$$\left[T\right]_{\mathcal{B}_{W}}^{\mathcal{B}_{V}}\cdot\left[v\right]_{\mathcal{B}_{V}}=\left[T(v)\right]_{\mathcal{B}_{W}}\Longrightarrow\left[S\right]_{\mathcal{B}_{Z}}^{\mathcal{B}_{W}}\cdot\left[T(v)\right]_{\mathcal{B}_{W}}=\left[S(T(v))\right]_{\mathcal{B}_{Z}}$$

$$\left[S \circ T\right]_{\mathcal{B}_{\mathcal{I}}}^{\mathcal{B}_{V}} \cdot \left[v\right]_{\mathcal{B}_{\mathcal{V}}} = \left[S \circ T(v)\right]_{\mathcal{B}_{\mathcal{I}}}$$

$$\Longrightarrow \big[S(T(v))\big]_{\mathcal{B}_Z} = \big[S\circ T(v)\big]_{\mathcal{B}_Z} \text{ (por definicion de composicion)}$$

Proposicion 26.1 Sea V \mathbb{K} -espacio vectorial, $\mathcal{B} = \{v_1, \cdots, v_n\}$ y sea $T: V \to V$ T.L. Entonces:

1.
$$[S \circ T]_{\mathcal{B}} = [S]_{\mathcal{B}} \cdot [T]_{\mathcal{B}}$$

2. Si
$$I: V \to V$$
 es la identidad $\Longrightarrow [Id]_{\mathcal{B}} = Id$

3. Si
$$T$$
 es inversible $\Longrightarrow [T]_{\mathcal{B}}$ es inversible $y[T^{-1}]_{\mathcal{B}} = [T]_{\mathcal{B}}^{-1}$

Proposicion 26.2 Sea V \mathbb{K} -espacio vectorial de dimension finita, sean $\mathcal{B}, \mathcal{B}'$ dos bases de V.

Entonces si
$$P = \begin{bmatrix} Id \end{bmatrix}_{\mathcal{B}'}^{\mathcal{B}} \Longrightarrow P^{-1} = \begin{bmatrix} Id \end{bmatrix}_{\mathcal{B}}^{\mathcal{B}'}$$

Teorema 27 Sean V, W \mathbb{K} -espacio vectoriales, sea $T: V \to W$ transformacion lineal. Sean $\mathcal{B}_V, \mathcal{B'}_V$ dos bases de V y sean $\mathcal{B}_W, \mathcal{B'}_W$ dos bases de W. Sean $P = \begin{bmatrix} Id \end{bmatrix}_{\mathcal{B}_V}^{\mathcal{B'}_V} (\mathcal{B'}_V \to \mathcal{B}_V)$ y $Q = \begin{bmatrix} Id \end{bmatrix}_{\mathcal{B}_W}^{\mathcal{B'}_W} (\mathcal{B'}_W \to \mathcal{B}_W)$. Entonces:

$$\left[T\right]_{\mathcal{B}'_{W}}^{\mathcal{B}'_{V}} = Q^{-1} \cdot \left[T\right]_{\mathcal{B}_{W}}^{\mathcal{B}_{V}} \cdot P$$

Prueba: Sea $v \in V$ expresado en base \mathcal{B}'_V

$$\left[T\right]_{\mathcal{B}'_{W}}^{\mathcal{B}'_{V}} \cdot \left[v\right]_{\mathcal{B}'_{V}} = \left[T(v)\right]_{\mathcal{B}'_{W}}$$

$$\begin{split} &(Q^{-1}\cdot \left[T\right]_{\mathcal{B}_W}^{\mathcal{B}_V}\cdot P)\cdot \left[v\right]_{\mathcal{B}_V'} = (Q^{-1}\cdot \left[T\right]_{\mathcal{B}_W}^{\mathcal{B}_V})\cdot \left[v\right]_{\mathcal{B}_V} \\ &= Q^{-1}\cdot \left[T(v)\right]_{\mathcal{B}_W} = \left[T(v)\right]_{\mathcal{B}_V'} \end{split}$$

Por lo tanto tenemos lo queriamos ver $[T]_{\mathcal{B}'_W}^{\mathcal{B}'_V} = Q^{-1} \cdot [T]_{\mathcal{B}_W}^{\mathcal{B}_V} \cdot P$

Teorema 28 Sea \mathbb{K} -espacio vectorial, $T:V\to V$ T.L., sean \mathcal{B},\mathcal{B}' base de V. Sea P la matriz de cambio de base de \mathcal{B}' a \mathcal{B} $(P=\begin{bmatrix}Id\end{bmatrix}_{\mathcal{B}}^{\mathcal{B}'})$. Entonces: $\underline{[T]_{\mathcal{B}'}=P^{-1}\cdot[T]_{\mathcal{B}}\cdot P}$

Definicion 5 Dado una matriz $A \in \mathbb{K}^{n \times n}$ dados $1 \le i, j \le n$ definimos la matriz $A(i \mid j)$ como la matriz $(n-1) \times (n-1)$ que se obtiene eliminando la fila i y la columna j de A.

Definicion 6 Sea $n \in \mathbb{N}$, $A \in \mathbb{K}^{n \times n}$ el determinante de A se define de la siguiente forma:

- 1. Si n = 1, $A = (a) \Longrightarrow det(A) = a$
- 2. $Si \ n > 1$ (desarrollamos por la primera columna de A)

$$det(A) = \sum_{i=1}^{n} (-1)^{i+1} \cdot a_{i1} \cdot det(A(i \mid 1))$$

Teorema 29 Si $A \in \mathbb{K}^{n \times n}$ es una matriz triangular $\Longrightarrow det(A) = a_{11} \times a_{22} \cdots \times a_{nn}$ (el producto de la diagonal).

Prueba:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{pmatrix} \Longrightarrow \det(A) = a_{11} \cdot \det(1 \mid 1) + \cdots + 0 \cdot \det(n \mid 1)$$

$$A(1 \mid 1) = \begin{pmatrix} a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn} \end{pmatrix} \Longrightarrow \text{nuevamente la matriz es triangular superior}$$

Por lo tanto $det(A) = a_{11} \times a_{22} \times \cdots \times a_{nn}$.

Proposicion 29.1 Sea $A \in \mathbb{K}^{n \times n}$. Entonces:

- $Si\ A = Id \Longrightarrow det(A) = 1$
- Si A es una MERF \Longrightarrow $det(A) = \begin{cases} 1 & \text{si A no tiene filas nulas} \\ 0 & c.c \end{cases}$

Teorema 30 Sea $A \in \mathbb{K}^{n \times n}$, B = matriz que se obtiene de A por medio de una operacion elemental por filas $(e_j(A) = B)$. Entonces:

- 1. Si $e = e_i^c \Longrightarrow det(B) = c \cdot det(A)$
- 2. Si $e = e_{i,j}^c \Longrightarrow det(B) = det(A)$
- 3. Si $e = e_{i,j} \Longrightarrow det(B) = -det(A)$

Prueba: Veamos la prueba para $A \in \mathbb{K}^{2 \times 2}$:

1.
$$B = \{ a_{11} \ a_{12} \ a_{21} \ ca_{21} \ ca_{22} \} \Longrightarrow det(B) = a_{11} + c(a_{22}) - c(a_{21})a_{12} = c(a_{11}a_{22} - a_{21}a_{12}) = c \cdot det(A)$$

2.
$$B = \begin{cases} a_{11} + ca_{21} & a_{12} + ca_{22} \\ a_{21} & a_{22} \end{cases} \Longrightarrow det(B) = (a_{11} + ca_{21})a_{22} - (a_{12} + ca_{22})a_{21}$$

 $\Longrightarrow det(B) = (a_{11}a_{22} - a_{21}a_{12}) + (c(a_{21} + a_{22}) - c(a_{21} + a_{22})) = det(A)$

3.
$$B = \left\{ \begin{array}{l} a_{21} & a_{22} \\ a_{11} & a_{12} \end{array} \right\} \Longrightarrow det(B) = a_{21}a_{12} - a_{11}a_{22} = -(a_{11}a_{22} - a_{21}a_{12}) = -det(A)$$

П

Teorema 31 Sean $A, B \in \mathbb{K}^{n \times n} \Longrightarrow det(A \cdot B) = det(A) \cdot det(B)$

Proposicion 31.1 Si $A \in \mathbb{K}^{n \times n}$ es inversible $\Longrightarrow det(A) \neq 0$ y $det(A^{-1}) = \frac{1}{det(A)}$

Proposicion 31.2 Sea $A \in \mathbb{K}^{n \times n}$. Sean E_1, \dots, E_r matrices elementales y sea $B = E_r \dots E_1 A$. Entonces $det(B) = det(E_1) \times \dots \times det(E_r) \times det(A)$ y se cumple lo siguiente:

- 1. Si B tiene alguna fila nula $\Longrightarrow det(A) = 0$
- 2. Si B es una MERF sin filas nulas $\Longrightarrow det(A) = \frac{1}{det(E_1) \times \cdots \times E_r}$

Teorema 32 Sea $A \in \mathbb{K}^{n \times n}$. Entonces A es inversible $\iff det(A) \neq 0$

Prueba:

• (\Longrightarrow) : Como A es inversible $\exists A^{-1}$ talque $A \cdot A^{-1} = Id$ y como vimos anteriormente

$$det(Id) = 1 = det(A) \times \underbrace{det(A^{-1})}_{\neq 0}$$

$$\implies det(A) \neq 0$$

• (\iff) : Sea M la MERF $\sim A \Longrightarrow \exists$ matriz inversible E (producto de elementales) talque:

$$A = E \cdot M \Longrightarrow A \text{ inversible} \iff M \text{ inversible}$$

$$\iff M = Id \text{ (no tiene filas nulas)}$$

$$\iff det(M) = 1 \neq 0 \iff det(A) \neq 0$$

Teorema 33 Sea $A \in \mathbb{K}^{n \times n}$ inversible $\Longrightarrow A^{-1} = \frac{1}{\det(A)} \cdot adj(A)$ donde adj(A) es la matriz: $(adj(A))_{ij} = (-1)^{i+j} \cdot \det(A(j \mid i))$

Definicion 7 Sea $T: V \to V$ transformacion lineal y V un \mathbb{K} -espacio vectorial.

- 1. $\lambda \in \mathbb{K}$ se dice autovalor de T si $\exists v \in V, v \neq 0$ tal que $T(v) = \lambda \cdot v$.
- 2. Si λ autovalor, cada vector $v \in V$ que satisface $T(v) = \lambda \cdot v$ se llama autovector de T.
- 3. Sea $W_{\lambda} = \{v \in V : T(v) = \lambda \cdot v\}$ el autoespacio de autovalor λ (o el espacio propio asociado a λ).

Teorema 34 Sea $T: V \to V$ transformacion lineal y V un \mathbb{K} -espacio vectorial. Entonces son equivalentes:

- 1. $\lambda \in \mathbb{K}$ es autovalor de T
- 2. $det(T \lambda \cdot I) = 0$

Prueba: Si λ es autovalor $\Longrightarrow Nu(T-\lambda I) \neq \{0\}$ por lo tanto $T-\lambda I$ no es inversible $\Longrightarrow det(T-\lambda I) = 0$.

Definicion 8 Sean $A, B \in \mathbb{K}^{n \times n}$ se dicen semejantes si $\exists C \in \mathbb{K}^{n \times n}$ inversible: $A = C \cdot B \cdot C^{-1}$ Lo denotaremos $A \sim B$.

Definicion 9 Sea $A \in \mathbb{K}^{n \times n}$. Entonces, los autovalores, autovectores y autoespacios de A coinciden con los de la transformación lineal $T_A : \mathbb{K}^n \to \mathbb{K}^n$ dada por $T_A(x) = Ax$.

Definicion 10 Sea $T: V \to V$ transformacion lineal y V un \mathbb{K} -espacio vectorial.

- T es diagonalizable si $\exists \mathcal{B}$ base de V tal que $[T]_{\mathcal{B}}$ es diagonal.
- $A \in \mathbb{K}^{n \times n}$ es diagonalizable si A es semejante a D ($\exists C$ inversible : $C^{-1}AC = D$).

Teorema 35 $T: V \to V$ es diagonalizable $\iff \exists \mathcal{B}$ base de V formada por autovectores de T:

$$\exists \mathcal{B} = \{v_1, \dots, v_n\} : T(v_i) = \lambda_i v_i$$
, para algun $\lambda_i \in \mathbb{K}$

Prueba:

• $(\Leftarrow): \mathcal{B} = \{v_1, \dots, v_n\}$ base, $T(v_i) = \lambda_i v_i$

$$[T]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} \text{diagonal} \Longrightarrow T \text{ es diagonalizable}$$

• (\Longrightarrow) : Si T es diagonalizable $\Longrightarrow \exists \mathcal{B} = \{v_1, \cdots, v_n\}$ base de V : $[T]_{\mathcal{B}}$ es diagonalizable

$$\Longrightarrow T(v_1) = \lambda_1 v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n = \lambda_1 v_1$$

En general: $T(v_i) = \lambda_i v_i$, donde cada v_j es un autovector

Teorema 36 Sea $T: V \to V$ T.L., sean v_1, \dots, v_r autovectores de T (no nulos) asociados a autovalores distintos $\Longrightarrow \{v_1, \dots, v_r\}$ es L.I.

Prueba: Veamos por induccion, caso $\{v_1\}$ es claramente L.I., supongamos que vale el caso $\{v_1, \dots, v_{r-1}\}$. Basta ver que $\{v_1, \dots, v_r\}$ es L.I. por lo tanto veamos:

$$c_1 v_1 + \dots + c_r v_r = 0 \Longrightarrow c_j = 0 \,\forall j \tag{1}$$

Sabemos que todos los $v_j \neq 0$, ahora aplicando T tenemos:

$$T(c_1v_1 + \dots + c_rv_r) = c_1 \cdot \lambda_1v_1 + \dots + c_r \cdot \lambda_rv_r = 0$$
(2)

Si multiplicamos (1) $\times \lambda_r$ y se lo restamos a (2) obtenemos:

$$c_1 \cdot (\lambda_1 - \lambda_r)v_1 + \dots + c_{r-1} \cdot (\lambda_{r-1} - \lambda_r)v_{r-1} + c_r \cdot (\lambda_r - \lambda_r)v_r = 0 \tag{3}$$

Como sabemos cada v_j esta asociados a un autovalor distintito (3) y por hipotesis sabemos que $\{v_1, \dots, v_{r-1}\}$ es L.I.

$$\Longrightarrow (\lambda_i - \lambda_r) \neq 0, \forall i \leq r - 1 \Longrightarrow c_i = 0, \forall i \leq r - 1$$
 (4)

Si juntamos (1) y (4) tenemos que:

$$\underbrace{c_1}_{0} v_1 + \underbrace{c_2}_{0} v_2 + \dots + \underbrace{c_{r-1}}_{0} v_{r-1} + c_r v_r = 0$$

Por definicion v_r es no nulo $\Longrightarrow c_r = 0$. Por lo tanto $\{v_1, \dots, v_r\}$ es L.I.

Proposicion 36.1 Sea $T: V \to V$ lineal, con dim(V) = n. Entonces si T tiene n autovalores distintos $\Longrightarrow T$ es diagonalizable.

Definicion 11 Si $A \in \mathbb{K}^{n \times n}$ definimos el polinomio característico de A como:

$$P_A = det(xI - A) \in \mathbb{K}[x]$$

 $Si\ T:V \to V$ es lineal, el polinomio característico de T es:

$$P_T = det(xI - T) \in \mathbb{K}[x]$$

Teorema 37 Sea $T: V \to V$ transformacion lineal, V espacio vectorial de dimension finita sobre \mathbb{K} . Sean $\lambda_1, \dots, \lambda_r$ los autovalores (distintos) de T y sea W_j el autoespacio asociado a λ_j ($W_j = Nu(T - \lambda_j I)$). Entonces son equivalentes:

- 1. T es diagonalizable.
- 2. El polinomio característico de T es:

$$P_T(x) = (x - \lambda_1)^{d_1} \times \dots \times (x - \lambda_r)^{d_r}$$
 (con d_j la dimension de W_j)

3. $dim(V) = dim(W_1) + \cdots + dim(W_r)$ (en particular $\mathcal{B} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_r$ es una base de V, cada \mathcal{B}_j es base de los W_j y estos son los autovectores del λ_j)