DISCIPLINE: MATHÉMATIQUES

NIVEAU Tle C-D

SITUATION D'ÉVALUATION

Contexte:

En visite dans une librairie, Julien ,
un élève de la classe terminal D a acheté un livre de mathématiques. Sur la couverture de cet ouvrage on trouve les informations ci après:

- Dans espace rapporté à un repère orthonormé direct: $(O; \vec{i}, \vec{j}, \vec{k})$, A(3;2;-1), H(1;-1;3), B(-6;1;1), C(4;-3;3) et D(-1;-5;-1)
- $I = \int_{e}^{\alpha} x(1 \ln x) dx$ et $J = \int_{e}^{\alpha} x(1 \ln x)^{2} dx$, α est un réel positif.
- (C_g) et (C_f) désignent les courbes respectives des fonctions numériques g et f dans le plan muni d'un repère orthonormal $(0; \vec{u}, \vec{v})$ unité graphique 2cm

$$f(x) = x - 1 + (x^2 + 2)e^{-x}$$

Une fois à la maison, Julien se préoccupe des liens qui existent entre certaines des indications de la couverture.

<u>Tâche</u>: Tu es invité(e)s à répondre aux préoccupations de Julien en résolvant les trois problèmes suivants.

Problème 1

- 1. Calcule la longueur AH
- 2. Détermine une équation cartésienne du plan (\mathcal{P}_1) passant par H et perpendiculaire à (AH).
- 3. Démontre que les points B, C et D appartiennent au plan (\mathcal{P}_1)
- 4. Calcul les coordonnées du vecteur $\overrightarrow{BC} \Lambda \overrightarrow{BD}$
- 5. Démontre que l'aire du triangle BCD est égale $5\sqrt{29}$
- 6. (a) Calcul l'aire du triangle ABC

- (b) Démontre que le volume du tétraèdre ABCD est égal à $\frac{143}{3}$
- (c) Calcul la distance du point D au plan ABC
- (d) Calcule I par une intégration par partie et J par une double intégration par partie puis la limite de I et J lorsque α tend vers 0

Problème 2

Sur la quatrième de couverture il est marqué que les points d'affixes z_1 , z_2 , z_3 et z_4 sont racines du polynôme complexe défini par

$$P(z) = z^4 - 4(1-i)z^3 + 12iz^2 - 8(1-i)z + 20$$

7. Détermine les nombres complexes a et b tels que

$$\forall z \in \mathbb{C}$$
 $P(z) = (z^2 + 2i)(z^2 + az + b)$

- 8. Résous dans \mathbb{C} l'équation P(z) = 0
- 9. Détermine z_1, z_2, z_3 et z_4 tels que $Re(z_1) = Re(z_3), Im(z_1) < 0$ et $Im(z_2) = Im(z_4)$, $Re(z_2) < 0$
- 10. On donne points A, B, C et D d'affixes respectives 1 i; -1 + i; 1 + 3i; et 3 + i dans le plan complexe P rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$.
- 11. Place les points A, B, C et D dans le plan P.
- 12. Démontre que le quadrilatère ABCD est un carré puis détermine en radians $mes(\overrightarrow{BD},\overrightarrow{BC})$
- 13. Donne une équation cartésienne du cercle (C) circonscrit à ce carré.
- 14. Soit E le point du plan tel que OE = 2OC et $mes(\overrightarrow{OC}, \overrightarrow{OE}) = \frac{\pi}{6}$
 - (a) Donne sous forme algébrique l'affixe du point E

<u>Problème 3</u> <u>Partie A</u>

Julien considère la fonction numérique g de la variable réelle x définie par

$$g(x) = 1 - (x^2 - 2x + 2)e^{-x}$$

- 15. Étudie les limites de g en $-\infty$ et en $+\infty$
- 16. Dresse le tableau de variation de g.
- 17. Démontre que la courbe (C_g) coupe une fois l'axe des abscisses dans \mathbb{R} en $x = \alpha$ tel que $0, 35 \le \alpha \le 0, 36$

Partie B

- 18. Calcule les limites de f en $-\infty$ et en $+\infty$
- 19. Calcule f'(x) sur le domaine de dérivabilité de f
- 20. Déduis en t'aidant de la partie A , le sens de variations de f puis dresse son tableau de variation.
- 21. Démontre que

$$f(\alpha) = \alpha(1 + 2e^{-\alpha})$$

- 22. Détermine un encadrement de $f(\alpha)$ d'amplitude 4×10^{-2}
- 23. Démontre que la droite (Δ) d'équation y = x 1 est asymptôte à (C_f) au voisinage de $+\infty$ et préciser la position relative de (C_f) par rapport à (Δ)
- 24. Donne une équation de la tangente (T) à (\mathcal{C}_f) au point d'abscisse 0
- 25. Trace (\mathcal{C}_f) , (Δ) et (T) sur la même figure.
- 26. (a) Détermine les réels a, b et c tels que la fonction P définie sur $\mathbb R$ par

$$P(x) = (ax^2 + bx + c)e^{-x}$$

soit une primitive sur \mathbb{R} de la fonction $p: x \mapsto (x^2 + 2)e^{-x}$

- (b) Calcule en fonction de α l'aire \mathcal{A} en cm^2 de la partie du plan limitée par (\mathcal{C}_f) , (Δ) et les droites d'équations $x = -\alpha$ et x = 0
- (c) Justifie que $A = 4e^{2\alpha} + 8e^{\alpha} 16$
- 27. Démontre que pour tout x élément de [1;2],

$$1 \le f(x) \le 2$$

28. Démontre que pour tout x élément de [1; 2]

$$0 \le f'(x) \le \frac{3}{4}$$

- 29. Démontre que l'equation f(x) = x admet une unique solution β dans [1; 2]
- 30. Démontre que $\forall x \in [1; 2], \qquad \mid f(x) \beta \mid \leq \frac{3}{4} \mid x \beta \mid$