Please check the examination details belo	ow before ente	ring your candidate	information
Candidate surname		Other names	
Centre Number Candidate Nu	ımber		
Pearson Edexcel Inter	nation	al Advan	ced Level
Time 1 hour 30 minutes	Paper reference	WMA	12/01
Mathematics			0
International Advanced Su	ıbsidiary	y/Advanced	d Level
Pure Mathematics P2	•		
You must have:			Total Marks
Mathematical Formulae and Statistica	i iabies (Ye	ilow), calculator	

Candidates may use any calculator permitted by Pearson regulations.

Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Figure 1

Figure 1 shows a sketch of part of the curve with equation y = f(x)

The table below shows some corresponding values of x and y for this curve.

The values of y are given to 3 decimal places.

x	-1	-0.5	0	0.5	1
y	2.287	4.470	6.719	7.291	2.834

Using the trapezium rule with all the values of y in the given table,

(a) obtain an estimate for

$$\int_{-1}^{1} f(x) dx$$

giving your answer to 2 decimal places.

(3)

(b) Use your answer to part (a) to estimate

(i)
$$\int_{-1}^{1} (f(x)-2) dx$$

(ii) $\int_{1}^{3} f(x-2) dx$

(ii)
$$\int_{1}^{3} f(x-2) dx$$

(3)

Question 1 continued	
	0 4 4 6 7
(Total for	Question 1 is 6 marks)

2. In this question you must show all stages of your working.

Solutions based entirely on calculator technology are not acceptable.

Figure 2

A brick is in the shape of a cuboid with width x cm, length 3x cm and height h cm, as shown in Figure 2.

The volume of the brick is 972 cm³

(a) Show that the surface area of the brick, $S \text{cm}^2$, is given by

$$S = 6x^2 + \frac{2592}{x}$$

(3)

(b) Find
$$\frac{dS}{dx}$$

(1)

(c) Hence find the value of x for which S is stationary.

(2)

(d) Find $\frac{d^2S}{dx^2}$ and hence show that the value of x found in part (c) gives the minimum value of S.

(2)

(e) Hence find the minimum surface area of the brick.

(1)

Question 2 continued

Question 2 continued	

Question 2 continued	
(Tot	al for Question 2 is 9 marks)

- 3. $f(x) = \left(2 + \frac{kx}{8}\right)^7$ where k is a non-zero constant
 - (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of f(x). Give each term in simplest form.

(4)

Given that, in the binomial expansion of f(x), the coefficients of x, x^2 and x^3 are the first 3 terms of an arithmetic progression,

(b) find, using algebra, the possible values of k.

(Solutions relying entirely on calculator technology are not acceptable.)

(3)

Question 3 continued	
(To	tal for Question 3 is 7 mayles)
(10	tal for Question 3 is 7 marks)

4. (i) Using the laws of logarithms, solve

$$\log_3(4x) + 2 = \log_3(5x + 7)$$
(3)

(ii) Given that

$$\sum_{r=1}^{2} \log_{a}(y^{r}) = \sum_{r=1}^{2} (\log_{a} y)^{r} \qquad y > 1, a > 1, y \neq a$$

find y in terms of a, giving your answer in simplest form.

(3)

_			
_		 	
_		 	

Question 4 continued	
(Total for Orestian	4 is 6 mayles)
(Total for Question	4 is v marks)

$$f(x) = x^3 + (p+3)x^2 - x + q$$

where p and q are constants and p > 0

Given that (x - 3) is a factor of f(x)

(a) show that

$$9p + q = -51$$

(2)

Given also that when f(x) is divided by (x + p) the remainder is 9

(b) show that

$$3p^2 + p + q - 9 = 0$$

(2)

(c) Hence find the value of p and the value of q.

(3)

(d) Hence find a quadratic expression g(x) such that

$$f(x) = (x - 3)g(x)$$

(2)

Question 5 continued

Question 5 continued

Question 5 continued	
	Fotal for Operation 5 is 0 margins
	Total for Question 5 is 9 marks)

6. The circle C has equation

$$x^2 + y^2 + 8x - 4y = 0$$

- (a) Find
 - (i) the coordinates of the centre of C,
 - (ii) the exact radius of C.

(3)

The point P lies on C.

Given that the tangent to C at P has equation x + 2y + 10 = 0

(b) find the coordinates of P

(4)

(c) Find the equation of the normal to C at P, giving your answer in the form y = mx + c where m and c are integers to be found.

(3)

Question 6 continued

Question 6 continued

Question 6 continued	
(Tot	cal for Question 6 is 10 marks)

7.	A geometric sequence has first term a and common ratio r , where $r > 0$	
	Given that	
	• the 3rd term is 20	
	• the 5th term is 12.8	
	(a) show that $r = 0.8$	
		(1)
	(b) Hence find the value of a.	(2)
	Given that the sum of the first n terms of this sequence is greater than 156	(2)
	(c) find the smallest possible value of n .	
	(Solutions based entirely on graphical or numerical methods are not acceptable.	
		(4)

Question 7 continued	
(lotal f	or Question 7 is 7 marks)

8. In this question you must show all stages of your working.

Solutions based entirely on calculator technology are not acceptable.

(i) Solve, for
$$-\frac{\pi}{2} < x < \pi$$
, the equation

$$5\sin(3x+0.1)+2=0$$

giving your answers, in radians, to 2 decimal places.

(4)

(ii) Solve, for $0 < \theta < 360^{\circ}$, the equation

$$2 \tan \theta \sin \theta = 5 + \cos \theta$$

giving your answers, in degrees, to one decimal place.

(5)

Question 8 continued

Question 8 continued

Question 8 continued	
(Т	otal for Question 8 is 9 marks)
	·

9. In this question you must show all stages of your working.

Solutions based entirely on calculator technology are not acceptable.

Figure 3

Figure 3 shows

- the curve C with equation $y = x^2 4x + 5$
- the line l with equation y = 2

The curve C intersects the y-axis at the point D.

(a) Write down the coordinates of D.

(1)

The curve C intersects the line l at the points E and F, as shown in Figure 3.

(b) Find the x coordinate of E and the x coordinate of F.

(2)

Shown shaded in Figure 3 is

- the region R_1 which is bounded by C, l and the y-axis
- the region R_2 which is bounded by C and the line segments EF and DF

Given that $\frac{\text{area of } R_1}{\text{area of } R_2} = k$, where k is a constant,

(c) use algebraic integration to find the exact value of k, giving your answer as a simplified fraction.

(5)

Question 9 continued

Question 9 continued

Question 9 continued	
	(Total for Question 9 is 8 marks)

10. A student was asked to prove by exhaustion that

if n is an integer then $2n^2 + n + 1$ is **not** divisible by 3

The start of the student's proof is shown in the box below.

Consider the case when n = 3k

$$2n^2 + n + 1 = 18k^2 + 3k + 1 = 3(6k^2 + k) + 1$$

which is not divisible by 3

Complete	this	proof.
----------	------	--------

(4)

Question 10 continued

Question 10 continued	
	(Total for Question 10 is 4 marks)
	TOTAL FOR PAPER IS 75 MARKS

