

Week8

Teacher: 廖裕評 Yu-Ping Liao

TA: 陳大荃 Da-chuan Chen, 陳恩妮 En-ni Chen

Class Rules

- 1. No drink besides water.
- 2. Bring a laptop and breadboard if needed.
- 3. Ask us TAs to sign and borrow development boards. Do not sign or ask others to sign for you without TAs' permission.
- 4. Arriving 10 minutes after the bell rings will be regarded as absent.
- 5. If you damage any borrowed equipment, you have to pay for it.

Homework Rules

- 1. Includes: A. Class content, B. Class exercise, C. Homework (screenshot or video)
- 2. Editing software: MS PowerPoint
- 3. File format: PDF
- 4. Filename: "date_group_studentID_name.pdf", like "0916_第1組_11028XXX_陳OO.pdf"
- 5. The homework deadline is 23:59 of the day before the next class. If you are late, then your grade will be deducted.

Contact

If you encounter any problems with this class, please get in touch with us with the following E-mails:

- 1. Teacher, Prof. Yu-Ping Liao 廖裕評: lyp@cycu.org.tw
- 2. TA, Da-chuan Chen 陳大荃: <u>dachuan516@gmail.com</u>
- 3. TA, En-ni Chen 陳恩妮: anna7125867@gmail.com

Or visit 篤信 Lab353 for further questions.

Outline of the Week

- 1. Step to merge.
- 2. PWM_Buzzer Project.
- 3. ADC Project.
- 4. Merge both project.
- 5. Homework 8-1.
- 6. Homework 8-2.

Steps

- 1. Confirm that the respective projects can be executed.
- 2. Understand the functions that will be used in the projects.
- 3. Decide which project is being merged into which project.
- 4. Edit code in main to implement functionality.
- 5. Add the required functions and files.

Launch project

Functions

- Buzzer_Fun1():Bee 4 times, 3 kHz, active 50 ms, inactive 50 ms
- Buzzer_Fun2():Bee 2 times, 800 Hz, active 1000 ms, inactive 500 ms
- Buzzer_PlayTable():Bee 1 times, gBee_Scale[i] Hz, active 250 ms, inactive 250 ms

main.c

buzzer_pwm.c

- Buzzer_Init(0):Initialization Setting
- Buzzer_Start()
- Buzzer_IsFinish()

ht32_board_config.h

```
ht32_board_config.h
 main.c
            ht32f5xxxx_01_it.c
                                                   buzzer_pwm.c
112
     #endif
113
114 - #if defined (USE HT32F52352 SK)
115
        #define HTCFG BUZZER GPIOX
                                                            A
                HTCFG BUZZER GPION
116
                                                            10
                 HTCFG BUZZER IPN
117
                                                            MCTM0
                 HTCFG BUZZER CHN
118
```


Launch project

Functions & File

- ADC_Configuration():
- ADC_Cmd(): Enable ADC
- ADC_SoftwareStartConvCmd(): Software trigger to start ADC conversion

main.c

ht32_board_config.h

```
ht32f5xxxx_01_it.c
                          ht32_board_config.h
 main.c
 34
 35
      /* Settings
                                                                      67 = #if defined(USE HT32F52352 SK)
 37 Fif (LIBCFG NO ADC)
                                                                              #define HTCFG VR GPIOX
        #error "This example code does not apply to the chip yo=
                                                                              #define HTCFG VR GPION
 39
      #endif
                                                                              #define HTCFG VR ADC CHN
                                                                      70
 40
        #define HTCFG ADC IPN
                                                                            #endif
                                                           ADC0
189
                                                                            HTCFG VR GPIOX)
190
    #define HTCFG VR GPIO ID
                                                     STRCAT2 (GPIO P,
                                                                            HTCFG VR GPION)
     #define HTCFG VR AFIO PIN
                                                     STRCAT2 (AFIO PIN ,
191
    #define HTCFG VR ADC CH
                                                                            HTCFG VR ADC CHN)
192
                                                     STRCAT2 (ADC CH ,
193
    #define HTCFG ADC PORT
                                                                          HTCFG ADC IPN)
                                                     STRCAT2 (HT ,
194
    #define HTCFG ADC AFIO MODE
                                                     STRCAT2 (AFIO FUN , HTCFG ADC IPN)
195
196
    #define HTCFG ADC CKCU ADCPRE
                                                     STRCAT2 (CKCU ADCPRE , HTCFG ADC IPN)
    #define HTCFG ADC IRQn
                                                     STRCAT2 (HTCFG ADC IPN, IRQn)
197
198
199
   #if defined(USE HT32F65240 DVB) || defined(USE HT32F65240 SK)
      #define HTCFG ADC IRQHandler
                                                     STRCAT2 (HTCFG ADC IPN, IRQHandler)
200
201
    #else
      #define HTCFG ADC IRQHandler
                                                     ADC IRQHandler
202
203
    #endif
204
205
206 = #ifdef __cplusplus
207
208
     #endif
209
     #endif
```

ht32f5xxxx_01_it.c

```
ht32f5xxxx_01_it.c
                             ht32_board_config.h
114 -
115
                 This function handles ADC interrupt.
116
      * @retval None
117
118
     void HTCFG ADC IRQHandler(void)
119 🗆
120
       extern vu32 gPotentiometerLevel;
121
       extern volatile bool gADC SingleEndOfConversion;
122
123
       ADC ClearIntPendingBit(HTCFG ADC PORT, ADC FLAG SINGLE EOC);
124
       gPotentiometerLevel = (HTCFG ADC PORT->DR[0] & 0x0FFF);
       gADC SingleEndOfConversion = TRUE;
125
126
```


ADC Project & PWM_Buzzer Project

main.c

```
void ADC Configuration(void)
 { /* Enable peripheral clock
   CKCU PeripClockConfig TypeDef CKCUClock = {{ 0 }};
   CKCUClock.Bit.AFIO = 1;
   CKCUClock.Bit.HTCPG_ADC_IPN = 1;
   CKCU PeripClockConfig(CKCUClock, ENABLE);
  /* Configure AFIO mode as ADC function
 AFIO_GPxConfig(HTCFG_VR_GPIO_ID, HTCFG_VR_AFIO_PIN, HTCFG_ADC_AFIO_MODE);
 [ /* ADC related settings
   /* CK_ADC frequency is set to (CK_AHB / 64)
   CKCU_SetADCnPrescaler(HTCFG_ADC_CKCU_ADCPRE, CKCU_ADCPRE_DIV64);
   /* Continuous mode, sequence length = 1
   ADC_RegularGroupConfig(HTCPG_ADC_PORT, CONTINUOUS_MODE, 1, 0);
   /* ADC conversion time = (Sampling time + Latency) / CK_ADC = (1.5 + ADST + 12.5) / CK_ADC
   /* Set ADST = 0, sampling time = 1.5 + ADST
   #if (LIBCFG ADC SAMPLE TIME BY CH)
     // The sampling time is set by the last parameter of the function "ADC RegularChannelConfig()".
   ADC_SamplingTimeConfig(HTCFG_ADC_PORT, 0);
   /* Set ADC conversion sequence as channel n
                                                                                                          41
   ADC_RegularChannelConfig(HTCFG_ADC_PORT, HTCFG_VR_ADC_CH, 0, 0);
   /* Set software trigger as ADC trigger source
                                                                                                          4/
   ADC_RegularTrigConfig(HTCPG_ADC_PORT, ADC_TRIG_SOFTWARE);
 /* Enable ADC single end of conversion interrupt
 ADC_IntConfig(HTCFG_ADC_PORT, ADC_INT_SINGLE_EOC, ENABLE);
 /* Enable the ADC interrupts
 NVIC_EnableIRQ (HTCFG_ADC_IRQn);
```

```
int main (void)
  RETARGET Configuration();
 ADC Configuration();
  /* Enable ADC
 ADC_Cmd(HTCFG_ADC_PORT, ENABLE);
  /* Software trigger to start ADC conversion
 ADC SoftwareStartConvCmd(HTCFG ADC PORT, ENABLE);
  while (1)
```

ht32_board_config.h

```
/* Settings -----
#if (LIBCFG NO ADC)
 #error "This example code does not apply to the chip you selected."
#endif
  #define HTCFG ADC IPN
                                                  ADC0
#if defined(USE HT32XXXXXX DVB)
  /* !!! NOTICE !!!
     This example requires external component on the expansion board but the development board can not use
     with it directly. The extra jumper/wired connections may required to use this example.
#endif
                                                           #define HTCFG VR GPIO ID
                                                                                                             STRCAT2 (GPIO P,
                                                                                                                                    HTCFG VR GPIOX)
#if defined(USE HT32F50030 SK)
                                                                                                                                    HTCFG VR GPION)
                                                           #define HTCFG VR AFIO PIN
                                                                                                             STRCAT2 (AFIO PIN ,
  #define HTCFG BUZZER GPIOX
                                                           #define HTCFG VR ADC CH
                                                                                                             STRCAT2 (ADC CH ,
                                                                                                                                     HTCFG VR ADC CHN)
  #define HTCFG BUZZER GPION
 #define HTCFG BUZZER IPN
                                                           #define HTCFG ADC PORT
                                                                                                            STRCAT2 (AFIO_FUN_,
                                                                                                             STRCAT2 (HT ,
                                                                                                                                    HTCFG ADC IPN)
  #define HTCFG BUZZER CHN
                                                           #define HTCFG ADC AFIO MODE
                                                                                                                                    HTCFG ADC IPN)
#endif
                                                           #define HTCFG ADC CKCU ADCPRE
                                                                                                             STRCAT2 (CKCU ADCPRE , HTCFG ADC IPN)
                                                           #define HTCFG ADC IRQn
                                                                                                             STRCAT2 (HTCFG ADC IPN, IRQn)
#if defined(USE HT32F52352 SK)
  #define HTCFG BUZZER GPIOX
  #define HTCFG BUZZER GPION
                                                           #if defined(USE HT32F65240 DVB) || defined(USE HT32F65240 SK)
                                                            #define HTCFG ADC IRQHandler
                                                                                                             STRCAT2 (HTCFG ADC IPN, IRQHandler)
  #define HTCFG BUZZER IPN
                                                  MCTM0
                                                           #else
  #define HTCFG BUZZER CHN
                                                             #define HTCFG_ADC_IRQHandler
                                                                                                            ADC IRQHandler
  #define HTCFG VR GPIOX
  #define HTCFG VR GPION
                                                           #endif
  #define HTCFG VR ADC CHN
                                                          #ifdef cplusplus
                                                           #endif
#endif
```

#endif

ht32f5xxxx_01_it.c

```
void HTCFG_ADC_IRQHandler(void)
{
   extern vu32 gPotentiometerLevel;
   extern volatile bool gADC_SingleEndOfConversion;

ADC_ClearIntPendingBit(HTCFG_ADC_PORT, ADC_FLAG_SINGLE_EOC);
   gPotentiometerLevel = (HTCFG_ADC_PORT->DR[0] & 0x0FFF);
   gADC_SingleEndOfConversion = TRUE;
}
```


Use a variable resistor to control the buzzer.

- Objective: Change the behavior of buzzer when gPotentiometerLevel>2000.
- Hint:
- 1. First, ensure that both projects are working.
- 2. Add the required functions and files.
- 3. Use A6 for ADC, A10 for Buzzer.

☆ PS. Please record.

Scaled Frequency Table

高音	Do	Do#	Re	Re#	Mi	Fa	Fa#	So	So#	La	La#	Si
頻率	1048	1108	1176	1244	1320	1396	1480	1568	1660	1760	1856	1976
中音	Do	Do#	Re	Re#	Mi	Fa	Fa#	So	So#	La	La#	Si
頻率	524	554	588	622	660	698	740	784	830	880	928	988
低音	Do	Do#	Re	Re#	Mi	Fa	Fa#	So	So#	La	La#	Si
頻率	262	277	294	311	330	349	370	392	415	440	464	494

```
46
                                                                                                    159
                                   47 /* Global variables -----
                                                                                                    160
                                   48 volatile bool gADC SingleEndOfConversion;
         Start
                                   49 vu32 gPotentiometerLevel;
                                                                                                    161
                                                                                                             * @brief Buzz function.
                                   50 = typedef struct{
                                                                                                    162
                                                                                                            * @retval None
                                       ul6 freq[36]; // 12 * 3 octaves
                                        u8 octave;
     Initial setting
                                   53
                                       u8 note:
                                                                                                    164 - void Buzz(u8 uBeepTimes, ul6 uFreq, ul6 uActive ms, ul6 uInactive ms) {
                                        u8 table_size;
                                   54
                                                                                                            Buzzer Start (uBeepTimes, uFreq, uActive ms, uInactive ms);
                                   55
                                        ul6 active ms;
                                   56
                                        ul6 inactive ms;
                                                                                                    166
                                                                                                            while (Buzzer IsFinish() == FALSE);
                                   57
                                        u8 repeat;
                                                                                                    167
                                   58
                                        ul6 max level;
                                                                                                    168
                                   59
                                        ul6 min level;
     ADC convert
                                        ul6 level step;
          end
                                   61 } freq table;
                                                                                                    170

    Obrief Get frequency table.

                                   62 - ul6 gFreqs[] = {
                                                                                                    171
                                                                                                            * @retval None
                                          262, 277, 294, 311, 330, 349, 370, 392, 415, 440, 464, 494,
                                          524, 554, 588, 622, 660, 698, 740, 784, 830, 880, 932, 988,
                                                                                                            *************************
                                                                                                    172
         YES
                                         1048, 1108, 1176, 1244, 1320, 1396, 1480, 1568, 1660, 1760, 1856, 19
                                                                                                         void get freq table(freq table* table){
                                   66 L}; // 12 * 3 octaves
                                   67 u8 octave = 3;
                                                                                                            table->octave = octave;
                                   68 u8 note = 12;
                                                                                                    175
                                                                                                             table->note = note:
         print
                                   69 ul6 active ms = 50;
                                                                                                    176
                                                                                                             table->table size = octave * note;
                                   70 ul6 inactive ms = 0;
  PotentiometerLevel
                                   71 u8 repeat = 1;
                                                                                                    177
                                                                                                             table->active ms = active ms;
                                   72 ul6 max level = 0x0FFF;
                                                                                                    178
                                                                                                             table->inactive ms = inactive ms;
                                   73 ul6 min level = 0x0000;
                                                                                                    179
                                                                                                             table->repeat = repeat;
                                   74 u8 i = 0;
    calculate index
                                   75 u8 index = 0;
                                                                                                    180
                                                                                                             table->max level = max level;
                                   76 freq table table;
                                                                                                             table->min level = min level;
                                   77
                                      /* Private function prototypes -----
                                                                                                             table->level step = (max level - min level) / (table->octave * table->note);
                                   79 void Buzz(u8 uBeepTimes, ul6 uFreq, ul6 uActive ms, ul6 uInactive ms);
                                                                                                            for (i=0; i<table->table size; i++) {
                                      void ADC Configuration(void);
                                                                                                               table->freg[i] = gFregs[i];
                                      void get freq table(freq table* table);
index>=table.table size
                                   82 void print freq table(freq table* table);
                                                                                                    185
                                   83
                                                                                                    186
                                                                                                            printf("Table data is ready.\n\r");
                            NO
                                                                                                    187
                                                                                                    188
                                                                                                             * @brief Print frequency table.
        index=
                                                                                                             * @retval None
                                   * Gretval None
   table.table size-1
                               89 int main (void)
                                                                                                    193 

void print freq table(freq table* table) {
                               90 □ {
                               91
                                   RETARGET Configuration();
                                                                                                            printf("freq: ");
                               92
                                   ADC Configuration();
                                                                                                            for (i=0; i<table->table size; i++) {
                                                                                                    195
                                   ADC Cmd (HTCFG ADC PORT, ENABLE);
                                   ADC SoftwareStartConvCmd(HTCFG ADC PORT, ENABLE);
                                                                                                    196
                                                                                                              printf("%d ", table->freq[i]);
                                   get freq table(&table);
 print table.freg[index]
                                   print freq table(&table);
                                                                                                    197
                                    Buzzer Init(0);
                                                                                                    198
                                                                                                            printf("\n\r");
                                    while (1)
                               99
                                                                                                    199
                                                                                                            printf("octave: %d\n\r", table->octave);
                               100
                                     if (gADC SingleEndOfConversion)
                                                                                                    200
                                                                                                            printf("note: %d\n\r", table->note);
                               101
                               102
                                       //printf("\rPotentiometer level is %04f", (float)gPotentiometerLevel*0.0008058608);
                                                                                                    201
                                                                                                            printf("active ms: %d\n\r", table->active ms);
                               103
                                       printf("\rPotentiometer level is %04f ", (float)gPotentiometerLevel);
                               104
                                                                                                    202
                                                                                                            printf("inactive ms: %d\n\r", table->inactive ms);
     buzzer sound
                              105
                                                                                                    203
                                                                                                            printf("repeat: %d\n\r", table->repeat);
                              106
                              107
                                                                                                    204
                                                                                                            printf("max level: %d\n\r", table->max level);
                              108
                                                                                                    205
                                                                                                            printf("min_level: %d\n\r", table->min_level);
                              109
                              110
                                       printf("\r
                                                                             "); // clear the line
                                                                                                    206
                                                                                                            printf("level step: %d\n\r", table->level step);
                              111
                               112
                                                                                                    207
                              113
                                                                                                    208
                              114
```

Use a variable resistor to control the buzzer.

- Objective: Make buzzer play all the note in P26 with the control of variable resistor.
- Hint:
- 1. Modify main.c as shown in P27.
- 2. Finish the code in while loop and execute it.
- 3. Use A6 for ADC, A10 for Buzzer.

☆ PS. Please record.

Class Dismissed