Matrix Theory Lecture Notes from September 2, 2025

taken by Joel Sleeba

Warm Up

Let $A, B \in M_n(\mathbb{C})$, and A be an invertible matrix. Consider the function $F : \mathbb{R} \to M_n(\mathbb{C}) := t \to A + tB$. We are interested in

Clearly F is continuous. Observe that F(0)=A is invertible. We claim that F(t) is invertible for all t in some neighborhood $B_{\varepsilon}(0)$ of 0. Notice that $F(t)=A+tB=A(I_n+tA^{-1}B)$. Since A is invertible it is enough if we show that $I_n+tA^{-1}B$ is invertible for some $t\in B_{\varepsilon}(0)$.

Let $\|\cdot\|$ be the operator norm on $M_n(\mathbb{C})$. Let $|t|<\frac{1}{\|A^{-1}B\|}$. We claim that

$$(I_n + tA^{-1}B)^{-1} = \sum_{i=0}^{\infty} (-tA^{-1}B)^i$$

if the infinite sum is well defined. By the triangle inequality we see that

$$\left\| \sum_{i=1}^{\infty} (-tA^{-1}B)^n \right\| \le \sum_{i=1}^{\infty} \|tA^{-1}B\|^n = \sum_{i=1}^{\infty} (|t|\|A^{-1}B\|)^n < \infty$$

where the last inequality is because of the convergence of the geometric series. Hence the infinite sum makes sense. Moreover

$$(I_n + tA^{-1}B)\left(\sum_{i=1}^n (-tA^{-1}B)^i\right) = I_n + (-tA^{-1}B)^{n+1}$$

and as $n \to \infty$, the tail $(-tA^{-1}B)^{n+1}$ converges to $\bf 0$ by the convergence of the geometric series above. Thus we get that F(t) is invertible in the interval of radius $\frac{1}{\|A^{-1}B\|}$ of 0.

Let $G:B_{\varepsilon}(0)\to M_n(\mathbb{C}):=t\to F(t)^{-1}$, where $\varepsilon=\frac{1}{\|A^{-1}B\|}$. We are interested in the differentiability of G in $B_{\varepsilon}(0)$. Then we can linearly approximate G(t) about t=0 as G(0)+tG'(0). Clearly $G(0)=A^{-1}$. Now to show that G is differentiable, observe that if X,Y are invertible, then $X^{-1}-Y^{-1}=-Y^{-1}(X-Y)X^{-1}$. Then

$$\frac{G(t+h) - G(t)}{h} = \frac{-G(t)[F(t+h) - F(t)]G(t+h)}{h} = \frac{-G(t)hBG(t+h)}{h} = -G(t)BG(t+h)$$

and thus

$$G'(t) = \lim_{h \to 0} \frac{G(t+h) - G(t)}{h} = -G(t)BG(t)$$

is well defined in $B_{\varepsilon}(0)$. Hence G is differentiable everywhere in $B_{\varepsilon}(0)$ and $G'(0) = -A^{-1}BA^{-1}$ gives that

$$H(t) = A - tA^{-1}BA^{-1}$$

is a linear approximation for $G(t) = F(t)^{-1}$.

1.7 Conditions for Diagonalizability

Now we look for some more conditions for diagonalizability.

1.7.23 Theorem. Let $A \in M_n(\mathbb{C})$, with its characteristic polynomial $p_A(t) = \prod_{j=1}^n (t - \lambda_j)$, and $\lambda_i \neq \lambda_j$ for $j \neq k$, then A is diagonalizable.

Proof. We'll show that there's a linearly independent set of n eigenvectors. Then by what we've proved in the last lecture, we'll be done. Let $\{x_1, x_2, \ldots, x_n\}$ be such that $x_j \in \mathbb{C}^n$ with $Ax_j = \lambda_j x_j$. If $\{x_1, x_2, \ldots, x_n\}$ were linearly dependent, then there is a linear combination

$$\alpha_1 x_{j_1} + \alpha_2 x_{j_2} + \ldots + \alpha_s x_{j_s} = 0$$

with $s \le n$, and all $\alpha_j \ne 0$. Let r be smallest such $s \le n$, and assume with possible renumbering that $j_i = i$. Then applying A to the linear combination gives us

$$A(\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n) = \alpha_1 \lambda_1 x_1 + \alpha_2 \lambda_2 x_2 + \ldots + \alpha_n \lambda_n x_n = 0$$

multiplying the previous equation with λ_r and then subtracting gives us

$$0 = (\alpha_1 \lambda_1 x_1 + \alpha_2 \lambda_2 x_2 + \dots + \alpha_n \lambda_n x_n) - (\alpha_1 \lambda_r x_1 + \alpha_2 \lambda_r x_2 + \dots + \alpha_r \lambda_r x_r)$$

$$= \alpha_1 (\lambda_1 - \lambda_r) x_1 + \alpha_2 (\lambda_2 - \lambda_r) x_2 + \dots + \alpha_{r-1} (\lambda_{r-1} - \lambda_r) x_{r-1} + \alpha_r (\lambda_r - \lambda_r) x_r$$

$$= \alpha_1 (\lambda_1 - \lambda_r) x_1 + \alpha_2 (\lambda_2 - \lambda_r) x_2 + \dots + \alpha_{r-1} (\lambda_{r-1} - \lambda_r) x_{r-1}$$

which contradicts the minimality of r.

Unfortunately this is just a sufficient condition, as in the next example.

1.7.24 Example. Consider the matrix

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Clearly A is diagonalizable. But the characteristic polynomial $p_A(x) = x^2(1-x)$ does not satisfy the conditions of the above theorem.

1.7.25 Definition. If for $A \in M_n(\mathbb{C})$, with characteristic polynomial

$$p_A(t) = (t - \lambda_1)^{m_1} (t - \lambda_2)^{m_2} \dots (t - \lambda_r)^{m_r}$$

then we say that the eigenvalue λ_j has algebraic multiplicity m_j . We call $\operatorname{null}(\lambda_j I - A)$, the geometric multiplicity of λ_j

1.7.26 Lemma. If $A \in M_n$ has eigenvalue λ , and characteristic polynomial $p_A(t) = (t-\lambda)^m q(t)$, with $q(\lambda) = 0$, then $r = nul(\lambda I - A)) \le m$

Proof. Choose a basis $\{x_1, x_2, \dots, x_r\}$ of eigenvectors, spanning $E_{\lambda} = \{x \in \mathbb{C}^n : Ax = \lambda x\}$. Complete it to a basis $\{x_1, x_2, \dots, x_n\}$ of \mathbb{C}^n . Let $S = [x_1, x_2, \dots, x_n]$.

Then $AS = [\lambda x_1, \lambda x_2, \dots \lambda x_r, y_{r+1}, \dots y_n]$ with some vectors y_{r+1}, \dots, y_n . Then

$$S^{-1}AS = \begin{bmatrix} \lambda I_r & 0\\ 0 & C \end{bmatrix}$$

and we get

$$\det(tI - A) = \det(tI - S^{-1}AS)$$
$$= (t - \lambda)^r \det(t - C)$$

Thus we conclude that algebraic multiplicity of λ is at least equal to r.

1.7.27 Remark. By the definition the algebraic multiplicity of a matrix $A \in M_n(\mathbb{C})$ is the number of roots of its characteristic polynomial $p_A(x)$, counted upto multiplicities. But as a consequence of the fundamental theorem of algebra, every polynomial decomposes as linear factors in \mathbb{C} . Thus $p_A(x)$, being a polynomial of degree n, has n roots in \mathbb{C} , forcing its algebraic multiplicity equal to n.

1.7.28 Theorem. The matrix $A \in M_n(\mathbb{C})$ is diagonalizable if and only if the algebraic and geometric multiplicities are equal for each eigenvalue.

Proof. Let λ_i, λ_j be two distinct eigenvalues of A with their eigenspaces E_i, E_j respectively. We claim $E_i \cap E_j = \{\mathbf{0}\}$. If not, there exists $\mathbf{0} \neq x \in E_i \cap E_j$, and $Ax = \lambda_i x = \lambda_j x$. Then since $x \neq \mathbf{0}$, $\mathbf{0} = (\lambda_i - \lambda_j)x$ forces $\lambda_i = \lambda_j$ contradicting our assumption.

Next, we claim that if $\{v_1, v_2, \ldots, v_{r_1}\}$ and $\{u_1, u_2, \ldots, u_{r_2}\}$ form a basis for E_i and E_j respectively, then $\{v_1, v_2, \ldots, v_{r_1}, u_1, u_2, \ldots, u_{r_2}\}$ is linearly independent. If not there will be scalars $\alpha_1, \alpha_2, \ldots, \alpha_{r_1}, \beta_1, \beta_2, \ldots, \beta_{r_2}$, such that

$$\sum_{i=1}^{r_1} \alpha_i v_i + \sum_{j=1}^{r_2} \beta_j u_j = 0$$

Since we know that $E_j \cap E_j = \{\mathbf{0}\}$, this forces

$$\sum_{i=1}^{r_1} \alpha_i v_i = -\sum_{i=1}^{r_2} \beta_j u_j = \mathbf{0}$$

Linear independence of u_1,u_2,\ldots,u_{r_2} , v_1,v_2,\ldots,v_{r_1} forces all $\alpha_i=0=\beta_j$ proving the linear independence of $\{v_1,v_2,\ldots,v_{r_1},u_1,u_2,\ldots,u_{r_2}\}$.

Now by using induction over distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$ of A, we get a basis for $E_1 + E_2 \dots + E_k$ with dimension $r = \sum_{i=1}^k r_i$.

If algebraic and geometric multiplicities equal then r=n, and we have a basis of eigenvectors. Otherwise if r< n, then we do not have such a basis of eigenvectors. And since existence of a basis of eigenvectors characterizes diagonalizability (from previous lecture), our if and only if statement is proved. \Box

In the next lecture, we'll look when multiple matrices can be simultaneously diagonalizable with the same S matrix.