МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)"

Физтех-школа радиотехники и компьютерных технологий

Отчёт по лабораторной работе № 3.6.1 "Спектральный анализ электрических сигналов"

> Выполнили: Студенты гр. Б01-305 Миннахметов Артур, Киселев Руслан

1 Аннотация

Цель работы: исследование спектра колебаний электрических сигналов.

В данной работе проводится исследование спектров различной формы (последовательности прямоугольных импульсов и цугов, а также амплитудномодулированных гармонических колебаний (АМ-сигналов)). Спектры этих сигналов наблюдаются с помощью спектроанализатора, входящего в состав USB-осциллографа. Проводится проверка нескольких теоретических соотношений.

2 Теоретические сведения

Рассмотрим функцию вида

$$f(x) = \sum_{n=1}^{N} A_n \cos(\omega_n t - \alpha_n),$$

где A_n, ω_n, α_n – постоянные величины. Множество пар (ω_i, A_i) называется спектром f(x) и может быть конечным или бесконечным.

Периодический сигнал может быть представлен в виде ряда Фурье:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (A_n \cos(n\Omega_1 t - \psi_n)),$$

где $a_0/2=const$ — среднее значение функции, A_n — амплитуды членов разложения. Спектр любой периодической функции можно представить в виде набора гармонических колебаний с дискретными частотами $\Omega_1=\frac{1}{T_1},2\Omega_1,\ldots$ и постоянной составляющей с нулевой частотой. Такой спектр называется линейчатым или дискретным.

Непериодический сигнал представим в виде интеграла Фурье. В данной работе исследование таких сигналов не проводится.

Для периодического прямоугольного сигнала $\langle V \rangle = V_0 \frac{\tau}{T}, \ A_n \sim \frac{\sin x}{x}.$ Здесь и далее шириной спектра $\Delta \nu$ называем расстояние от главного максимума до 1-го нуля огибающей. При этом выполнено соотношение неопределённостей:

$$\Delta \nu \tau \simeq 1$$

Рис. 1: Периодическая последовательность импульсов и её спектр

Для последовательности цугов с длительностью τ и периодом T разложение в спектр представлено на рис. 2:

Рис. 2: Периодическая последовательность цугов и её спектр

В случае АМ-колебаний, сигнал определяется формулой:

$$f(t) = A_0 (1 + m \cos \Omega t) \cos \omega_0 t,$$

где m – глубина модуляции. Спектр такого сигнала на рис. 3. Причём амплитуды синусов $\omega_0 \pm \Omega$ равны m/2, а все начальные фазы одинаковы. То есть,

$$\frac{a_{\rm 6ok}}{a_{\rm och}} = \frac{U_{min}^S}{U_{max}^S} = \frac{m}{2}$$

Глубину модуляции можно рассчитать по формуле:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}$$

3 Оборудование и инструментальные погрешности

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье или цифровой USB-осциллограф, подключённый к персональному компьютеру.

Рис. 3: Гармонический амплитудно-модулированный сигнал и его спектр

Рис. 4

Функциональный генератор позволяет сформировать два различных электрических сигнала, которые выводятся на два независимых канала USB-осциллографа.

Инструментальные погрешности считаются малыми.

4 Результаты измерений и обработка данных

4.1 Спектры прямоугольных импульсов

Выполним указанный в инструкциях тест спектра прямоугольных импульсов: Изменяя параметры спектра, такие как частота и ширина сигналов, сохраним четыре различных картины спектра (см. рис. 4-5).

Заметим, что при возрастании τ вдвое, ширина спектра уменьшается в 2 раза и в 2 раза возрастает амплитуда спектра.

При увеличении f=1/T в 2 раза, ширина спектра и $\delta \nu$ – частота 1-й

гармоники – увеличивается во столько же раз.

Зафиксируем частоту в 1 к Γ ц и ширину импульса в 50 мкс и считаем данные о гармониках сигнала. Заполняем таблицу для данных гармоник этих импульсов (см. рис.6)

n	1	2	3	4	5	6	7
Nu_n_exp, Гц	1,0	2,0	3,0	4,0	5,0	6,0	7,0
Nu_n_theor, кГц	1,0	2,0	3,0	4,0	5,0	6,0	7,0
a_n _exp, ед	285	280	276	267	257	245	232
a_n/a_1 _exp	1,000	0,982	0,968	0,937	0,902	0,860	0,814
a_n/a_1 _theor	1,000	0,984	0,963	0,935	0,900	0,858	0,810

Рис. 6: Данные гармоник сигнала

Далее изменяем au и считывем при этом полную ширину спектра сигнала $\Delta
u$

tau, мкс	20	35	50	65	80	95	110
Delta Nu, Гц	33	28	26	21	17	12	7

Рис. 7: Данные о промежутке $\Delta \nu$ при разных au

Далее замеряем расстояния между пиками T и разницу между частотами этих пиков $\delta \nu$

На основании полученных из двух предыдущих пунктов данных строим соответствующие им графики:

4.2 Спектры цугов гармонических колебаний

Переводим генератор в режим гармонических колебаний и также выбираем четыре комбинации значений ν_0 , T и N для изучения. Данные с

Т, мс	0,2	0,8	1,4	2,0	2,6
delta Nu, кГц	10,10	1,25	0,72	0,50	0,38

Рис. 8: Данные разности частот $\delta \nu$

Рис. 9

6,00

осциллографа при этих комбинациях представлены в таблице на рис. 10, а также на снимках экрана на рис. 11-12:

Nu_0, кГц	50	80	50	50
Т, мс	1	1	2	1
N	5	5	5	8
Nu, кГц	49,4	79,2	49,5	49,8
Delta Nu, кГц	9,9	15,4	10,0	5,9
delta Nu, кГц	1,0	1,0	0,5	1,0

Рис. 10: Данные гармонических колебаний

4.3 Спектры АМ-сигналов

Переводим генератор и осциллограф в режим генерации и измерения амплитудно-моделированного сигнала. Сначала выставляем рекомендуемые параметры: $\nu_0 = 50~\text{к}\Gamma$ ц, $\nu_{mod} = 2~\text{к}\Gamma$ ц, глубина модуляции m = 0,5. При помощи режима курсорного измерения в осциллографе измеряем $A_{max} = 1,51~\text{B}$ и $A_{min} = 0,51~\text{B}$. Проверяем справедливость равенства: $m = \frac{A_{max} - A_{min}}{A_{max} + Amin} = 0,5$. После этого снимаем зависимость отношений амплитуд боковых и основных спектральных линий в зависимости от глубины модуляции. Результаты записываем в таблицу, представленную на рис.13, а также строим по ней график, представленный на рис.14.

((a)) $\nu = 50, T = 1, N = 5$

((b)) $\nu = 50, T = 1, N = 8$

Рис. 11

Рис. 12

m	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
а_бок, мВ	0,78	1,24	1,83	2,66	4,00	6,31	10,40	12,90	14,3
а_осн, мВ	56,2	56	55,5	54,6	53,2	50,8	46,4	43,5	41,6
а_бок/а_осн	0,014	0,022	0,033	0,049	0,075	0,124	0,224	0,297	0,344

Рис. 13: Результаты измерений амплитудно-моделированных сигналов

Рис. 14

5 Выводы

Провели исследование нескольких типов периодических сигналов; исследовали их разложение в гармонический спектр, получили картины спектров. Проверили справедливость формул из теоретической части.