计算机组成原理之数字

期末考试

客观题考试试卷:期末考试

总分:20分

限定时间:120分钟

1. 设机器数字长 16 位, 阶码 5 位(含1位阶符), 基值为 2, 尾数 11 位(含1位数符)。 对于两个阶码相等的数按补码浮点加法完成后,由于规格化操作可能出现的最大误差的绝对 值是____.

A. (10000) (2 进制)

B. (01000)(2 进制)

C. (00100)(2 进制)

D. (00010)(2 进制)

2. 补码比较法(Booth 算法)是进行乘法运算的常用方法之一,器乘法运算规则不受乘数 符号的约束,控制线路比较简明,在计算机中普遍采用。其所需的硬件配置如下:

其中 X 存放被乘数的补码, Q 存放乘数的补码, 移位和加控制逻辑受 Q 寄存器末两位乘数 控制。计数器 C 用于控制逐位相乘的次数, GM 为乘法标记。欲计算两个 n 位数的乘法运算 时, A 最少应为 位寄存器。

A. n 位

B. n+1 位 **C.** n+2 位 **D.** n-1 位

3. 补码比较法(Booth 算法)是进行乘法运算的常用方法之一,器乘法运算规则不受乘数 符号的约束,控制线路比较简明,在计算机中普遍采用。其所需的硬件配置如下:

其中X存放被乘数的补码,Q存放乘数的补码,移位和加控制逻辑受Q寄存器末两位乘数控制。计数器C用于控制逐位相乘的次数,GM为乘法标记。欲计算两n位数的乘法运算时,n0最少应为_____位寄存器。

A. n

B. n+1

C. n+2

D. n-1

4. 补码比较法(Booth 算法)是进行乘法运算的常用方法之一,器乘法运算规则不受乘数符号的约束,控制线路比较简明,在计算机中普遍采用。其所需的硬件配置如下:

其中X存放被乘数的补码,Q存放乘数的补码,移位和加控制逻辑受Q寄存器末两位乘数控制。计数器C用于控制逐位相乘的次数,GM为乘法标记。欲计算两个n位数的乘法运算时,X最少应为____位寄存器。

A. n

B. n+1

C. n+2

D. n-1

5. 补码比较法(Booth 算法)是进行乘法运算的常用方法之一,器乘法运算规则不受乘数符号的约束,控制线路比较简明,在计算机中普遍采用。其所需的硬件配置如下:

其中X 存放被乘数的补码,Q 存放乘数的补码,移位和加控制逻辑受Q 寄存器末两位乘数控制。计数器C 用于控制逐位相乘的次数,GM 为乘法标记。欲计算两n 位数的乘法运算时,加法器应为____位的加法器

- **A.** n
- **B.** n+1
- **C.** n+2
- **D.** n-1
- 6. 以下说法错误的是 (多选)
- A. 定点补码一位乘法中被乘数也要右移
- **B.** 被除数和除数在作补码除法时,其符号位不参加运算
- **C.** 原码两位乘法中的乘积符号由两原码的符号位异或 3 操作获得,乘积的数值部分由两补码相乘获得
- **D.** 尾数部分只进行乘法和除法运算
- E. 浮点数的正负由阶码的正负符号决定。
- **7.** 移位运算成为移位操作,对于计算机来说,有很大的使用价值,计算机中机器数的字长往往是固定的,当机器数左移 n 位或右移 n 位时,必然会使其 n 为低位或 n 位高位出现空位,对于有符号数的移位成为算数移位。不同码制机器数算数移位后的空位添补规则如下:

真值	码制	添补代码
正数	原码、补码、反码	0
负数	原 码	0
	补 码	左移添0
	作 15	右移添1
	反 码	1

观察上述空位添补规则,下述对算数移位特点描述正确的是 .

B. 不论是正数还是负数,算数移位后其符号位均不变 C. 负数在补码表示下,进行算数右移后,符号位会发生变化 **D.** 符号位是否发生变化, 待移位数的真值有关 8. 浮点数采用 机器数形式时,可用全"0"表示机器零。 **A.** 浮点数的阶码用原码表示, 尾数用补码表示 B. 浮点数的阶码用补码表示, 尾数用补码表示 C. 浮点数的阶码用补码表示,尾数用移码表示 **D.** 浮点数的阶码用补码表示, 尾数用原码表示 E. 浮点数的阶码用移码表示, 尾数用补码表示 9. 在计算机中, 乘法运算时一种很重要的运算, 有的机器由硬件乘法器直接完成乘法运算, 有的机器内没有乘法器,但可以按机器做乘法运算的方法,用软件编程实现。分析笔算乘法 过程,会发现,两个数相乘的过程,可视为 和 两种对计算机很容易实现的运算。(教 材 P243) A. 加法和移位 **B.** 加法和取反 C. 取反和移位 D. 移位和求补 **10.** 以下说法正确的是 (多选) **A.** n 位小数的补码一位乘法(Booth 算法),需做 n+1 次运算,第 n+1 次不移位。 **B.** 在定点小数补码一位除法中,为了避免溢出,被除数的绝对值一定要小于除数的绝对值。 C. 补码加减交替法是一种不恢复余数法 **D.** 浮点预算可由阶码运算和尾数运算两个部分联合实现。 E. 阶码部分只进行阶码的加、减操作。 **11.** 在定点运算器中,无论采用双符号位还是单符号位,均需要设置 ,它一般用异或门 来实现。 **A.** 译码电路 **B.** 编码电路 C. 移位电路 D. 溢出判断电路 12. 以下关于小数定点除法的描述正确的是 A. 除数的绝对值应大于 0, 且小于等于被除数的绝对值

B. 除数可以为0

D. 被除数可以为 0

C. 被除数的绝对值应大于 0,且小于等于除数的绝对值

A. 对于正数算数移位后符号不变,对于负数算数移位后符号位取反

13. 原码两位乘与原码	3一位乘一样,符号位的运算和数值部分是分开进行的,参与原码两			
位乘运算的操作数是_	_			
A. 原码	B. 补码			
C. 反码	D. 绝对值的补码			
14. 在定点机中执行算	了术运算时,有时会发生溢出,其主要原因是			
A. 操作数地址过短				
B. 操作数地址过长				
<i>C.</i> 内存容量不足				
D. 运算结果无法表示				
15. 根据补码除法中加	口减交替法运算规则,欲确定商值,必须先比较被除数与除数大小,			
则以下说法中正确的是	:			
A. 当被除数与除数同	号时,做加法,若得到的余数与除数同号则表示"不够减"			
B. 当被除数与除数同一	号时,做减法,若得到的余数与除数同号则表示"够减"			
C. 当被除数与余数异-	号时,做加法,若得到的余数与除数同号则表示"够减"			
D. 当被除数与余数异-	号时,做减法,若得到的余数与除数异号则表示"够减"			
16.在补码定点加减法	运算的溢出判别中,以下说法正确的是(多选)			
A. 对于加法,符号不同	司的两个数相加永不会发生溢出			
B. 对于减法,符号相同	同的两个数相减永不会发生溢出			
<i>C.</i> 对于减法,符号不同	同的两个数相减可能发生溢出			
D. 对于加法,符号相	司的两个数相加必定发生溢出			
17. 在计算机中,对于	正数,其三种机器数移位后符号位均不变,但若右移时最低数位丢1,			
可导致				
A. 运算结果出错	8. 影响运算精度			
<i>C.</i> 无任何影响	D. 无正确答案			
18. 设机器数字长 8 位(含 1 位符号位),若机器数 DAH 为补码,分别对其进行算术左移				
一位和算术右移一位,其结果分别为				
A. B4H, EDH	B. B5H, EDH			
C. B4H, 6DH	D. B5H, 6DH			
19. 已知 A=0.1011,B=-0.0101,则[A+B] _# 为				
A. 1. 1011	B. 0. 1101			
<i>C.</i> 1. 0110	D. 0.0110			

- 20. 以下关于算数移位和逻辑移位的描述正确的是 (多选)
- A. 逻辑右移时,低位丢失,高位添1
- B. 算数左移时,符号位丢失,低位添1
- C. 有符号数的移位称为算术移位
- **D.** 无符号数的移位称为逻辑移位
- E. 逻辑左移时,高位丢失,低位添0
- 21. 下列描述不同码制机器数算数移位后的空位添补规则正确的是: (多选)
- A. 正数的原码、补码、反码移位后的空位用 0 添补
- B. 负数的原码移位后的空位用 0 添补
- C. 负数的补码左移后的空位用 0 添补
- D. 负数的补码右移后的空位用 1 添补
- E. 负数的反码移位后的空位用 1 添补
- **22.** 在利用加减交替法做原码乘法时,若 Ri 为余数, y*除数的绝对值,则下列叙述正确的是:
- A. 当余数 Ri>0, 商上"0", 做 2Ri-y*的运算
- **B.** 当余数 Ri<0, 商上"0",做 2Ri-y*的运算
- C. 当余数 Ri>0, 商上"1",做 2Ri-y*的运算
- D. 当余数 Ri<0, 商上"1",做 2Ri+y*的运算
- 23. 两个 n(n%2=0)位数,进行原码两位乘,需要的移位次数和做多的加法次数为:
- **A.** n/2, n/2
- **B.** n/2, n/2+1
- C. n/2+1,n/2
- **D.** n/2+1, n/2+1
- 24. 下列对原码一位乘和原码两位乘中移位运算叙述正确的是:
- A. 原码一位乘中为逻辑右移,原码两位乘中为逻辑右移
- **B.** 原码一位乘中为算数右移,原码两位乘中为算数右移
- C. 原码一位乘中为算数右移,原码两位乘中为逻辑右移
- D. 原码一位乘中为逻辑右移,原码两位乘中为算数右移
- 25. 下列对定点运算中的除法运算叙述正确的是: (多选)
- A. 除法中的移位为逻辑右移
- **B.** 补码除法中符号位和数值部分是一起参加运算的
- C. 原码除法中商符和商值的运算分开进行
- D. 小数的除法的商必须为小数,整数除法的商必须为整数

E. 计算机中的除法运算可用加(减)法和移位操作实现,根据机器数的不同,又可分为原 码除法和补码除法

26. 设机器数字长为 8 位(含1位符号位)若 A=-26,分别用原码、反码和补码表示并右 移三位后所对应的真值分别为:

A. -3, -3, -3

B. -3, -3, -4

C. -4, -3, -3 D. -4, -4, -3

27. 下列对算数移位和逻辑移位叙述错误的是:

- A. 寄存器内容为 10110010 时,逻辑右移为 01011001,算数右移为 11011001
- B. 有符号数的移位成为算数移位,无符号数的移位成为逻辑移位
- C. 逻辑左移时,高位移丢,低位填0。逻辑右移时,低位移丢,高位填0
- **P.** 寄存器内容为 01010011 时,逻辑左移为 10100110, 算数左移为 00100110
- 28. 在定点计算机中两个 n 位数进行原码一位乘,需要的移位次数和最多的加法次数为: (多选)

A. n,n **B.** P248,例 6.17 **C.** n+1,n

D. n,n+1 **E.** n+1,n+1

29. 己知[x]补=0.1101, [y]补=0.1011,则[x×y]补为:

A. 0.1000100

B. 0.1001111

C. 0.1000101

D. 0.1000111

30. 已知 x=-0.1011,y=0.1101,则[x/y]原为:

A. 1.1101

B. 0.1101

C. 1.1001

D. 1.0101

31. 计算机中的数均存放在___中。

A. 寄存器

B. 主存

C. 累加器

D. 无正确答案

32. 通常浮点数被表示成 $N=S\times r^{\hat{}}$ 的形式,其中。

A. S 为阶码, j 为尾数, r 是基数

B. S 为尾数, r 为阶码, j 为基数

C. S 为尾数, j 为阶码, r 是基数

D. S 为尾符, j 为阶符, r 是基数

33. 为了提高浮点数的表示精度,其尾数必须为规格化数,如果不是规格化数,就要通过 修改阶码并同时左移或右移尾数的办法使其变为规格化数。0.00110101×4^10 规格化后的数 为___。

A. 0.01101010×4^{1}

B. 0.11010100×4^1

C. 0.11010100×4^10

 $\mathbf{p}. \ 0.01101010 \times 4^{10}$

34. 下列对源码、补码和反码叙述正确的是:

A. 当真值为负时,原码、补码和反码的表示形式均相同,即符号位用"1"表示,数值部分和真值部分相同。

- **B.** 当真值为正时,原码和补码的表示形式不同,但其符号位都用"0"表示。
- **C.** 三种机器数的最高位均为符号位。符号位和数值部分之间可用"."(对于小数)和","(对于整数)隔开。
- D. 全部正确。
- **35.** 设机器数字长为8位(其中1位为符号位)对于整数,当其分别表示无符号数、原码、补码和反码时,对于其可以表示的真值范围正确的是:
- **A.** 无符号数: 0,1,2, ..., 255
- **B.** 原码: -128, -127, -126, ..., 127
- C. 补码: -128, -127, ..., 127,128
- **D.** 反码: -128, -127, -126, ..., 127
- **36.** 设 x 为真值, x*为绝对值, 说明[-x*]补=[-x]补在什么时候成立
- A. 任何时候都不成立
- **B.** 任何时候都成立
- C. 当 x 为负数时成立
- D. 当 x 为正数时成立
- 37. 浮点数在机器中的形式如下所示,采用这种数据格式的机器称为浮点机

下列叙述正确的是: (多选)

- A. Sf 代表浮点数的符号
- B. 位数 n 反映了浮点数的精度
- C. 位数 m 反映了浮点数的表示范围

- **D.** if 和 m 共同决定小数点的实际位数
- E. if 表示小数点的实际位置
- 38. 下列关于定点数和浮点数的叙述正确的是: (多选)
- A. 当浮点机和定点机中数的位数相同时,浮点数的表示范围比定点数的范围大的多。
- B. 当浮点数为规格化数时, 其相对精度远比定点数高。
- C. 浮点数运算要分阶码部分和尾数部分,而且运算结果都要求规格化,故浮点运算步骤比 定点运算步骤多,运算速度比定点运算的低,运算线路比定点运算的复杂。
- **D.** 在溢出的判断方法上,浮点数是对规格化数的阶码进行判断,而定点数是对数值本身进 行判断。
- E. 浮点数在数的表示范围、数的精度和溢出处理方面均优于定点数。
- F. 定点数在运算规则、运算速度及硬件成本方面优于浮点数。
- 39. 以下各类表示法中,无论表示正数还是负数,___的数值位永远都是其真值的绝对值。
- A. 移码
- **B.** 反码
- **C.** 补码
- **D**. 原码
- 40. 以下各类表示法中,引入 的概念是为了消除减法操作。
- A. 移码
- **B.** 反码
- **C.** 补码
- **D.** 原码
- 41. 将一个十进制数-129 表示成补码时,至少应采用___位二进制代码表示。
- **A.** 6 位.
- **B.** 7 位.
- *C.* 8 位 *D.* 9 位
- 42. 在计算机运行过程中,当浮点数发生溢出时,通常情况下计算机仍可以继续运行是
- **A.** 下溢

B. 上溢

C. 都可以

- D. 都不可以
- 43. 在计算机中,小数点的表示方法有 (多选)
- **A.** 变长表示
- **B.** 定点表示
- **C.** 浮点表示
- D. 定长表示
- 44. 原码是机器数中最简单的一种形式,符号位为0表示整数,符号位为1表示负数,数 值位即是真值的绝对值, 故原码表示又称为带符号位的绝对值表示。以下给出了四种整数编 码的定义,其中是整数原码定义的为。

$$[x]_{\frac{1}{2}} = \begin{cases} 0, & x & 2^{n} > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge 2^{n} \pmod{2^{n+1}} \end{cases}$$

x 为真值 n 为整数的位数

$$[x]_{\frac{1}{2}} = \begin{cases} 0, & x & 2^n > x \ge 0 \\ (2^{n+1} - 1) + x & 0 \ge x > -2^n \pmod{2^{n+1} - 1} \end{cases}$$

$$x 为 真值 \qquad n 为 整 数 的 位 数$$

$$[x]_{\text{X}} = \begin{cases} 0, & x & 2^n > x \ge 0 \\ 2^n - x & 0 \ge x > 2^n \end{cases}$$

c. x 为真值 n 为整数的位数

$$[x]_{{}^{\pm}{}_{444}} = 2^{n} + x (2^{n} > x \ge -2^{n})$$

x 为真值, n 为 整数的位数

45. 机器数采用补码时,就能找到一个与负数等价的正数来代替该负数,就可以吧减法操作用加法代替。以下给出了四种整数编码的定义,其中是**整数补码**定义的为。

$$[x]_{x=0} = \begin{cases} 0, & x > x \geq 0 \\ 2^n - x & 0 \geq x > 2^n \end{cases}$$

x 为真值 n 为整数的位数

$$[x]_{\frac{1}{2}} = \begin{cases} 0, & x & 2^n > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge 2^n \pmod{2^{n+1}} \end{cases}$$

B. x 为真值 n 为整数的位数

$$[x]_{\frac{1}{2}} = \begin{cases} 0, & x & 2^n > x \ge 0 \\ (2^{n+1} - 1) + x & 0 \ge x > -2^n \pmod{2^{n+1} - 1} \end{cases}$$
 c. $x \to a$ 为真值 $n \to a$ 为整数的位数

$$[x]_{x_{4}} = 2^{n} + x (2^{n} > x \ge -2^{n})$$

x 为真值, n 为 整数的位数

46. 当真值用补码表示时,由于符号位和数值部分一起编码,与习惯上的表示法不同,因此人们很难从补码的形式上直接判断其真值的大小,而采用移码编码时从代码本身就可以看出真值的实际大小。以下给出了四种整数编码的定义,其中是**整数移码**定义的为___

$$[x]_{x_{444}} = 2^{n} + x (2^{n} > x \ge -2^{n})$$

 x 为真值, n 为 整数的位数

$$[x]_{x} = \begin{cases} 0, & x < 2^n > x \ge 0 \\ 2^n - x & 0 \ge x > 2^n \end{cases}$$

x 为真值 n 为整数的位数

$$[x]_{\frac{1}{2}} = \begin{cases} 0, & x & 2^n > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge 2^n \pmod{2^{n+1}} \end{cases}$$

C. x 为真值 n 为整数的位数

$$N_1=2^{j_1}\times S_1, N_2=2^{j_2}\times S_s$$
. 47. 已知两个正浮点数,

N1 < N2.

A. S1<S2

B. J1<J2

C. S1和S2均为规格化数, 目J1<J2

D. S1 和 S2 均为规格化数, 且 J1>J2

$$[x]_{\dot{x}\dot{b}} = 1,1110$$

48. 设 x 为整数,

, 对应的真值是

- **A**. -0
- **B.** -1
- **C.** −15

- **D.** -2
- **E.** +0
- 49. 假设浮点数的表示形式如下图

并且 m=4,n=10,用非规格化形式表示时,下列叙述正确的是:

- **A.** 可以表示的最大负数为 $-2^{(-16)} \times 2^{(-10)}$
- **B.**可以表示的最小负数为 -2^15×(1-2^(-10))
- **C.** 可以表示的最小正数为 $2^{(-15)} \times 2^{(-9)}$
- **D.** 可以表示的最大正数为 $2^{(-15)} \times 2^{(-9)}$
- **50.** 已知 X=0.a1a2a3a4a5a6(ai 为 0 或 1),则当 X>1/2 时,ai 应取何值?
- **A.** a1=1,a2-a6 任意

B. a1-a6 至少有一个为 1

C. a1=1,a2-a6 至少有一个为 1

- **D.** a1-a6 任意
- **51.** 在计算机中,小数点保存在____
- A. 存储单元的最高位

B. 存储单元的最低位

C. 存储单元的次高位

- **D**. 不保存
- **52.** 在计算机中,所谓的机器字长一般是指
- **A.** 存储器的位数

B. 寄存器的位数

C. 运算器的位数

- D. 总线的带宽
- **53**. 当八位寄存器中的二进制数为 11111111 时,若其为补码则对应的真值是
- **A.** -1
 - **B.** +1
- **54.** 在小数定点机中,以下说法正确的是
- A. 三种机器码都能表示-1
- B. 三种机器码都不能表示-1

- **C.** 只有补码能表示-1 **D.** 只有原码能表示-1

55. 以下各类表示法中,"零"只有一种表示形式的是 (多选)

- **A.** 原码
- **B.** 反码
- C. 移码 D. 补码

56. 以下关于机器数和真值的说法正确的是 。 (多选)

- A. 把符号"数字化"的数称为真值。
- B. 把符号"数字化"的数称为机器数
- C. 把带"+"或"-"符号的数称为机器数。
- D. 把带"+"或"-"符号的数称为真值。
- E. 无正确答案

27. 引入补码的概念是为了消除减法运算,但是根据补码的定义,在形成补码的过程中又 出现了减法,反码通常用来作为由原码求补码或者由补码求原码的中间过渡。以下给出了四 种整数编码的定义,其中是整数反码定义的为。

$$[x]_{\frac{1}{2}} = \begin{cases} 0, & 2^{n} > x \ge 0 \\ (2^{n+1} - 1) + x & 0 \ge x > -2^{n} \pmod{2^{n+1} - 1} \end{cases}$$

$$x \rightarrow \text{为真值} \qquad n \rightarrow \text{整数的位数}$$

$$[x]_{\frac{1}{2}} = \begin{cases} 0, & x > 2^n > x \ge 0 \\ 2^n - x & 0 > x > 2^n \end{cases}$$

x 为真值 n 为整数的位数 B.

$$[x]_{\frac{1}{2}} = \begin{cases} 0, & 2^{n} > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge 2^{n} \pmod{2^{n+1}} \end{cases}$$

C. x 为真值 n 为整数的位数

$$[x]_{x_{444}} = 2^{n} + x (2^{n} > x \ge -2^{n})$$

x 为真值, n 为 整数的位数

58. 下列数中最小的数为____。

- **A.** (1A)十六 **B.** (40)八 **C.** (21)十 **D.** (01010101)二

59. 设 x 为整数,	$[x]_{\cancel{\mathbb{N}}} = 1,1$	1110 ,对应的真值是
A. -15	B. -1	C. -0
D. +0	E. -2	
60 . 设 x 为整数,	x 的真值为 25, 以	以下选项与 x 相等的有。
A. 补码二进制串为	71,11001 的数	

- B. 反码二进制串为 1,00110 的数
- C. 补码二进制串为 0,11001 的数
- D. .反码二进制串为 O, 11001 的数
- E. 原码二进制串为 0,11001 的数
- F. 原码二进制串为 1,11001 的数
- **61.** 4 片 74181 和 1 片 74182 相配合,具有如下 种进位传递功能
- A. 组(小组)内并行进位,组(小组)间并行进位
- **B.** 串行进位
- C. 组(小组)内并行进位,组(小组)间串行进位
- **D.** 组内串行进位,组间并行进位
- 62. 浮点数加减法运算有如下几个步骤: 对阶,尾数求和,规格化,舍入,溢出判断。下 列描述中,其中讲述的是"对阶"步骤目的的是

(多选)

- A. 将对阶后的两尾数按定点加减运算规则求和(差)
- B. 为提高精度,要考虑尾数右移丢失的数值位
- *C.* 使两数的小数点位置对齐
- D. 为增加有效数字的位数,提高运算精度,必须将求和(差)后的尾数规格化
- E. 判断结果是否溢出
- 63. 浮点数加减法运算有如下几个步骤: 对阶,尾数求和,规格化,舍入,溢出判断。下 列描述中,其中讲述的是"规格化"步骤目的的是。
- **A.** 使两数的小数点位置对齐
- 8. 为提高精度,要考虑尾数右移丢失的数值位
- *C.* 将对阶后的两尾数按定点加减运算规则求和(差)
- D. 为增加有效数字的位数,提高运算精度,必须将求和(差)后的尾数规格化
- E. 判断结果是否溢出

B. 为提高精度,要考虑尾数右移丢失的数值位				
C. 将对阶后的两尾数按定点加减运算规则求和(差)				
D. 为增加有效数字的位数,提高运算精度,必须将求和(差)后的尾数规格化				
E. 判断结果是否溢出				
65. 如果采用 0 舍 1 入法进行舍入处理,则 0.01010110011 舍入最后一位后,结果				
为。				
A. 0.0101011001 B. 0.0101011				
C. 0.0101011010 D. 0.0101011100				
66. 浮点数加减法运算有如下几个步骤: 对阶, 尾数求和, 规格化, 舍入, 溢出判断。下				
列描述中,其中讲述的是"尾数求和"步骤目的的是。				
A. 将对阶后的两尾数按定点加减运算规则求和(差)				
B. 为提高精度,要考虑尾数右移丢失的数值位				
<i>C.</i> 使两数的小数点位置对齐				
D. 为增加有效数字的位数,提高运算精度,必须将求和(差)后的尾数规格化				
E. 判断结果是否溢出				
67. 浮点数加减法运算有如下几个步骤: 对阶,尾数求和,规格化,舍入,溢出判断。下				
列描述中,其中讲述的是"溢出判断"步骤目的的是				
A. 将对阶后的两尾数按定点加减运算规则求和(差)				
B. 为提高精度,要考虑尾数右移丢失的数值位				
<i>C.</i> 使两数的小数点位置对齐				
D. 为增加有效数字的位数,提高运算精度,必须将求和(差)后的尾数规格化				
E. 判断结果是否溢出				
68. 在浮点数加减法运算"规格化"这步中,以下哪些尾数是需要进行"左规"运算的?(以				
下各数均为2进制表示)(多选)				
A. 00.1000 B. 01.0101 C. 10.0100				
D. 00.0111 E. 11.1000				
69. 在浮点数加减法运算"对阶"这步中,对阶的原则是				
A. 大阶向小阶看齐				

64. 浮点数加减法运算有如下几个步骤: 对阶,尾数求和,规格化,舍入,溢出判断。下

列描述中,其中讲述的是"舍入"步骤目的的是____。

A. 使两数的小数点位置对齐

- B. 小阶向大阶看齐
- C. 使两阶码最高位都为1
- D. 阶码用补码表示时,对阶到两数阶码最高位都为 1;阶码用原码表示时,对阶到两数阶码 最高位为 0
- 70. 单重分组跳跃进位就是将 n 位全加器分成若干小组, 小组内的进位同时产生, 小组与 小组之间采用串行进位。如下图所示:

其中 Ci 表示的是第 i 位产生的进位, di 表示只与本地进位有关的运算结果, ti 表示与 低位有关的运算。以下各选项列出的各位,是在同一时刻产生进位的是。 (多选)

- A. C15~CO
- **B.** C0~C3
- **C.** C11~C8
- **D.** C3,C7,C11,C15
- 71. 浮点加减运算过程的步骤包含下列中的 。(多选)
- **A.** 对阶
- **B.** 尾数求和
- *C.* 规格化

- **D.** 舍入 **E.** 溢出判断
- **72.** 已知两浮点数 x=0.1101*2^(10),y=0.1011*2^(01),则 x+y=。
- **A.** 0.1001*2^(11)

B. 0.0101*2^(10)

C. 0.1010*2^(11)

- **D.** 0.1001*2^(10)
- 73. 下列叙述中正确的是 。(多选)
- A. 定点补码运算时, 其符号位不参加运算
- **B.** 浮点运算可由阶码运算和尾数运算两部分组成
- C. 浮点数的正负由阶码的正负符号决定
- D. 尾数部件只进行乘除运算
- E. 阶码部件在乘除运算时只进行加、减操作
- 74. 早期的硬件乘法器设计中,通常采用加和移位相结合的方法,具体算法是 ,但需要 有 控制。
- **A.** 串行加法和串行移位 触发器

o di /= 4-3	+ 1n in /: + 19	¼.↓ #.₩ HB			
	去和串行右移				
	去和串行右移 上和中 行力和				
	去和串行左移				
			^4 的十进制数,	在保证数的最大精度条件	牛下
	各取1位外,附				
		C. 6			
		减运算中,対阶	的原则是		
	句小阶码看齐				
B. 小阶码	句大阶码看齐				
C. 被加(咸)数的阶码向	加(减)数的阶	·码看齐		
D. 加(减	数的阶码向被	加(减)数的阶	码看齐		
77. 以下э	:于 74181 芯片扫	描述正确的是	-		
A. 74181 5	能完成4位十岁	性制代码算逻运算	章的部件		
B. 74181 5	只能完成算术运	室算的部件			
C. 74181 5	是只能完成逻辑法	运算的部件			
D. 74181 月	能完成4位二起	进制代码算逻运算	章的部件		
78. 在浮点	(数中, 判断补码	马规格化形式的原	原则是		
A. 尾数的	符号位与最高数值	值位不同			
B. 尾数的:	最高数值位为1	时,数符任意			
<i>C.</i> 尾数的	符号位与最高数位	值位相同			
D. 阶符与	 数符不同				
79. 在対例	和右规的过程中	卜,可能会将尾 数	数的低位丢失,	引起误差,为此可用舍入	.法3
高尾数的精	度,常用的舍》	法有(多选)		
A. 恒置 1	去	B. 1 舍 0 入			
<i>C.</i> 0 舍 1 <i>)</i>	,	D. 恒置 0 法			
80. 下列设	总法错误的是	·°			
A. 并行加	去器中高位的进	位依赖于低位			
B. 补码乘	去器中,被乘数	和乘数的符号都	不参加运算		
<i>C.</i> 在小数	徐法中,为了避	免溢出,要求被	除数的绝对值小	于除数的绝对值	

A. 寄存器	B. 控	制器		
<i>C.</i> 时序电路	D. 组	合逻辑电路		
82. 在浮点机中_	是隐含的。			
A. 基数	B. 数符			
<i>C.</i> 尾数	D. 阶码			
83. 设机器数字长	长 16 位, 阶码 5 位(含	含1位阶符),基值	直为 2, 尾数 11 位(含1位数符)。
对于两个阶码相等	的数按补码浮点加法	完成后,由于规格位	化操作可能出现的最	大误差的绝对
值为。				
A. 2^3	B. 2^4	C. 2^5	D. 2^6	
84. 己知 x=2^(-1	101)*0.0110011, y=2	^(011)* (-0.11100	10),则 x*y=。	
A. 2^(-011)*(-0101	11011)	B. 2^(-011)*(-	-01011111)	
<i>C.</i> 2^(-111)*(-0101	.1011)	D. 2^(-011)*(-01	111011)	
8 <i>5</i> . 在计算机的汽	孚点数加减运算中,规	格化的作用是		
A. 判断结果是否?	溢出			
B. 对齐参与运算	两数的小数点			
C. 减少运算步骤,	提高运算速度			
D. 增加有效数字	的位数,提高运算精度	芝		
E. 计算机中的除剂	法运算可用加(减)法	法和移位操作实现,	根据机器数的不同	,又可分为原
码除法和补码除法	-			
86. 以下关于 AL	U 的描述正确的是	-		
A. ALU 是 CPU 中	的控制器 3			
B. ALU 电路只能完	尼成逻辑运算			
C. ALU 电路只能完	E成算术运算			
D. ALU 电路既能完	完成算术运算又能完成	逻辑运算		
87. 以下关于浮点	点数乘除法运算的描述	错误的是		
A. 乘积的尾数应	为相乘两数的尾数之积			
B. 乘积的阶码应为	为相乘两数的阶码之差	4		
C. 商的阶码为被图	除数的阶码减去除数的	的阶码		
D. 商的尾数为被[除数的尾数除以除数的			
88. 用 8 片 74181	1和2片74182可实现	<u>. </u>		

A. 双重分组跳跃进位链的 32 位 ALU

- B. 双重分组跳跃进位链的 64 位 ALU
- C. 三重分组跳跃进位链的 32 位 ALU
- **D.** 三重分组跳跃进位链的 64 位 ALU
- 89. 以下关于浮点四则运算溢出判断的描述错误的是
- A. 溢出与否可由阶码的符号决定
- **B.** 阶码[j]补=01,XX...X 为上溢
- C. 当阶符为"01"时,不需要作溢出处理
- **D.** 阶码[j]补=10,XX...X 为下溢
- 90. 以下关于快速进位链的描述正确的是___(多选)
- A. 并行进位链又可称为先行进位和跳跃进位
- 8. 串行进位链是指串行加法器中的进位信号采用串行传递
- C. 并行进位链是指串行加法器中的进位信号采用并行传递
- D. 并行进位链通常有单重分组和双重分组两种实现方案