Symétrie de jauge non-commutative et diffusions pseudo-unitaires

Nicolas Gilliers

Sorbonne Université, Laboratoire de Probabilités, Statistique et Modélisation (LPSM)

Première partie l

Champs d'holonomies non commutatifs

Champs de Yang-Mills et champ maître

Holonomie

- \circ Σ plan ou variété riemannienne, P un G-fibré principal,
- $\circ P = \Sigma \times G$, $w \in \Lambda^1(P, \mathfrak{g})$ une connexion.
- $\circ m \in \Sigma$, $\gamma \in \mathsf{Loops}(m)$
- \circ Transport parallèle : $/\!/(\gamma,\omega):P_{\it m} o P_{\it m}$

$$\omega(\dot{q}_t) = 0, \; q_t \in P_{\gamma_t}, \; /\!/(\gamma,\omega)(q_0) = q_1$$

$$egin{aligned} q_t &= (\gamma_t, h_t) \ \operatorname{Hol}^\omega(\gamma) &= h_1 h_0^{-1} \in \mathcal{G} \ rac{d}{dt} h_t(x) &= -\omega_{\gamma_t}(\dot{\gamma}_t) (h_t(x)) \end{aligned}$$

- Kobayashi-Nomizu
- Bleecker

boucle → élément du groupe

Que serait une connexion aléatoire?

- \circ L'espace affine de toutes les connexions sur le fibré P : espace des configurations de la théorie de Yang Mills,
- \circ Quantifier \rightarrow choisir une amplitude pour chacune de ces configurations.

$$\mu^{\mathsf{YM}}(\mathsf{d}\omega) = \exp\left(S^{\mathsf{YM}}(\omega)\right)\mathsf{d}\omega = \exp\left(\int_{\Sigma}\|\Omega^{\omega}\|_{m}^{2}dm\right)\mathsf{d}\omega$$

Que serait une connexion aléatoire?

- \circ L'espace affine de toutes les connexions sur le fibré P : espace des configurations de la théorie de Yang Mills,
- \circ Quantifier \to choisir une amplitude pour chacune de ces configurations.

$$\mu^{\mathsf{YM}}(\mathsf{d}\omega) = \exp\left(\mathcal{S}^{\mathsf{YM}}(\omega)\right)\mathsf{d}\omega = \exp\left(\int_{\Sigma}\|\Omega^{\omega}\|_{m}^{2}dm\right)\mathsf{d}\omega$$

Courbure de
$$\omega \ : \ \Omega^\omega = \mathsf{d}\omega + \frac{1}{2}[\omega \wedge \omega] \in \Lambda^2(P,\mathfrak{g})$$
 $\in \Lambda^2(\Sigma,\mathsf{ad}(P))$

$\circ \Sigma = plan$

- \circ Le processus $\left(\operatorname{Hol}(\gamma_t)\right)_{t>0}$ est un mouvement brownien sur le groupe, invariant par conjugaison.
- \circ Si $\overset{\circ}{\ell_1} \cap \overset{\circ}{\ell_2} = \varnothing$, Hol (ℓ_1) est indépendant de Hol (ℓ_2) .

Champ maître généralisé

Un champ d'holonomie, avec G pour groupe de structure, est une collection h_{ℓ} de variables aléatoires à valeurs dans G.

- $\circ \; \textit{Multiplicativit\'e} : \textit{h}_{\ell_1 \ell_2} = \textit{h}_{\ell_1} \textit{h}_{\ell_2}$
- o Invariance de jauge : Pour tout $g \in G$, $gh_{\ell}g^{-1} \stackrel{d}{=} h_{\ell}$
- o Invariance par homeomorphismes préservant l'aire :

$$h_{\ell} \stackrel{d}{=} h_{\phi(\ell)}$$
 si ϕ préserve l'aire.

 Les holonomies associées à des boucles délimitant des domaines disjoints sont indépendantes.

Champ maître généralisé

 $\langle\!\langle$ Processus de Lévy indicé par des boucles $\rangle\!\rangle$

Un champ d'holonomie, avec G pour groupe de structure, est une collection h_{ℓ} de variables aléatoires à valeurs dans G.

- $\circ \; \textit{Multiplicativit\'e} : \textit{h}_{\ell_1 \ell_2} = \textit{h}_{\ell_1} \textit{h}_{\ell_2}$
- o *Invariance de jauge* : Pour tout $g \in G$, $gh_{\ell}g^{-1} \stackrel{d}{=} h_{\ell}$
- o Invariance par homeomorphismes préservant l'aire :

$$h_{\ell} \stackrel{d}{=} h_{\phi(\ell)}$$
 si ϕ préserve l'aire.

 Les holonomies associées à des boucles délimitant des domaines disjoints sont indépendantes.

H Processus de Lévy quantique

$$H_{\ell}(f) = f(h_{\ell}), \quad H_{\ell_1,\ldots,\ell_n}(f) = f(h_{\ell_1},\ldots,h_{\ell_n})$$

$$H_{\ell}(f) = f(h_{\ell}), \quad H_{\ell_1,\ldots,\ell_n}(f) = f(h_{\ell_1},\ldots,h_{\ell_n})$$

o H_{ℓ} est un homomorphisme de $\mathcal{F}(G)$ dans un espace de variable aléatoires scalaires.

$$H_{\ell}(f) = f(h_{\ell}), \quad H_{\ell_1,\ldots,\ell_n}(f) = f(h_{\ell_1},\ldots,h_{\ell_n})$$

- o H_{ℓ} est un homomorphisme de $\mathcal{F}(G)$ dans un espace de variable aléatoires scalaires.
- $\quad \circ \ \, \mathsf{Multiplicativit\'e}: f(h_{\ell_1\ell_2}) = f(h_{\ell_1}h_{\ell_2}), \quad H_{\ell_1\ell_2} = H_{\ell_1} \times H_{\ell_2}$

$$H_{\ell}(f) = f(h_{\ell}), \quad H_{\ell_1,\ldots,\ell_n}(f) = f(h_{\ell_1},\ldots,h_{\ell_n})$$

- o H_{ℓ} est un homomorphisme de $\mathcal{F}(G)$ dans un espace de variable aléatoires scalaires.
- Multiplicativité : $f(h_{\ell_1\ell_2}) = f(h_{\ell_1}h_{\ell_2}), \quad H_{\ell_1\ell_2} = H_{\ell_1} \times H_{\ell_2}$
- o Invariance de jauge :

$$f(Zh_{\ell_1}Z^{-1},\ldots,Zh_{\ell_n}Z^{-1}) \stackrel{(d)}{=} f(h_{\ell_1},\ldots,h_{\ell_n})$$
$$(\tau_Z \otimes \mathbb{E}) \circ (\mathrm{id}_{\mathcal{F}(G)} \sqcup \mathsf{H}_{\ell_1,\ldots,\ell_1})) \circ \Omega_c^n = \mathbb{E} \circ \mathsf{H}_{\ell_1,\ldots,\ell_n}.$$

$$H_{\ell}(f) = f(h_{\ell}), \quad H_{\ell_1,\ldots,\ell_n}(f) = f(h_{\ell_1},\ldots,h_{\ell_n})$$

- o H_{ℓ} est un homomorphisme de $\mathcal{F}(G)$ dans un espace de variable aléatoires scalaires.
- Multiplicativité : $f(h_{\ell_1\ell_2}) = f(h_{\ell_1}h_{\ell_2}), \quad H_{\ell_1\ell_2} = H_{\ell_1} \times H_{\ell_2}$
- o Invariance de jauge :

$$f(Zh_{\ell_1}Z^{-1},\ldots,Zh_{\ell_n}Z^{-1}) \stackrel{(d)}{=} f(h_{\ell_1},\ldots,h_{\ell_n})$$
$$(\tau_Z \otimes \mathbb{E}) \circ (\mathrm{id}_{\mathcal{F}(G)} \sqcup \mathsf{H}_{\ell_1,\ldots,\ell_1})) \circ \Omega_c^n = \mathbb{E} \circ \mathsf{H}_{\ell_1,\ldots,\ell_n}.$$

$$H_{\ell}(f) = f(h_{\ell}), \quad H_{\ell_1,\ldots,\ell_n}(f) = f(h_{\ell_1},\ldots,h_{\ell_n})$$

- o H_{ℓ} est un homomorphisme de $\mathcal{F}(G)$ dans un espace de variable aléatoires scalaires.
- $\quad \quad \circ \quad \mathsf{Multiplicativit\'e} : f(h_{\ell_1\ell_2}) = f(h_{\ell_1}h_{\ell_2}), \quad H_{\ell_1\ell_2} = H_{\ell_1} \times H_{\ell_2}$
- Invariance de jauge :

$$f(Zh_{\ell_1}Z^{-1},\ldots,Zh_{\ell_n}Z^{-1}) \stackrel{(d)}{=} f(h_{\ell_1},\ldots,h_{\ell_n})$$
$$(\tau_Z \otimes \mathbb{E}) \circ (\mathrm{id}_{\mathcal{F}(G)} \sqcup \mathsf{H}_{\ell_1,\ldots,\ell_1})) \circ \Omega_c^n = \mathbb{E} \circ \mathsf{H}_{\ell_1,\ldots,\ell_n}.$$

o Indépendance : Si ℓ_1 and ℓ_2 englobent des domaines disjoints, alors $H_{\ell_1} \mbox{ et } H_{\ell_2} \mbox{ sont indépendants}.$

$$H_{\ell}(f) = f(h_{\ell}), \quad H_{\ell_1,\ldots,\ell_n}(f) = f(h_{\ell_1},\ldots,h_{\ell_n})$$

- o H_{ℓ} est un homomorphisme de $\overline{\mathcal{F}(G)}$ dans un espace de variable aléatoires scalaires.
- $\quad \quad \circ \quad \mathsf{Multiplicativit\'e} : f(h_{\ell_1\ell_2}) = f(h_{\ell_1}h_{\ell_2}), \quad H_{\ell_1\ell_2} = H_{\ell_1} \times H_{\ell_2}$
- Invariance de jauge :

$$f(Zh_{\ell_1}Z^{-1},\ldots,Zh_{\ell_n}Z^{-1}) \stackrel{(d)}{=} f(h_{\ell_1},\ldots,h_{\ell_n})$$
$$(\tau_Z \otimes \mathbb{E}) \circ (\mathrm{id}_{\mathcal{F}(G)} \sqcup \mathsf{H}_{\ell_1,\ldots,\ell_1})) \circ \Omega_c^n = \mathbb{E} \circ \mathsf{H}_{\ell_1,\ldots,\ell_n}.$$

- o Indépendance : Si ℓ_1 and ℓ_2 englobent des domaines disjoints, alors $\mathsf{H}_{\ell_1} \ \text{et} \ \mathsf{H}_{\ell_2} \ \text{sont indépendants}.$
- o Invariance par homéomorphismes préservant l'aire

$$\mathbb{E} \circ \mathsf{H}_{\ell_1,...,\ell_n} = \mathbb{E} \circ \mathsf{H}_{\phi(\ell_1),...,\phi(\ell_n)}.$$

Symétrie de jauge et algèbres de Zhang

Algèbres de Zhang versus algèbres de Hopf

Algèbres de Zhang versus algèbres de Hopf

Catégories algébriques

Dans quel univers vivent les symétries?

Une catégorie algébrique ${\mathcal C}$ possède un objet initial k :

Pour tout $A \in \mathcal{C}$, $\exists ! \quad \eta : k \to A$.

et un co-produit satisfaisant à la propriété universelle :

Catégories algébriques

Dans quel univers vivent les symétries?

Une catégorie algébrique $\mathcal C$ possède un objet initial k:

Pour tout $A \in \mathcal{C}$, $\exists ! \quad \eta : k \to A$.

et un co-produit satisfaisant à la propriété universelle :

- Set munie de l'union disjointe, $k = \emptyset$,
- ComAlg munie du produit tensoriel, $k = \mathbb{C}$,
- Alg munie du produit libre d'algèbre, $k = \mathbb{C}$.

Quelle est la structure algébrique des symétries?

Quelle est la structure algébrique des symétries?

Une algèbre de Zhang de C est un quadruplet (H, Δ, ϵ, S) avec

1. H est un objet de C,

Quelle est la structure algébrique des symétries?

- 1. H est un objet de C,
- 2. (Coproduit) $\Delta: H \to H \sqcup H$, $(\Delta \sqcup \mathrm{id}_H) \circ \Delta = (\mathrm{id}_H \sqcup \Delta) \circ \Delta$

Quelle est la structure algébrique des symétries?

- 1. H est un objet de C,
- 2. (Coproduit) $\Delta: H \to H \sqcup H$, $(\Delta \sqcup \mathrm{id}_H) \circ \Delta = (\mathrm{id}_H \sqcup \Delta) \circ \Delta$
- 3. (Counité) $\epsilon: H \to k$, $(\epsilon \stackrel{.}{\sqcup} \mathrm{id}_H) \circ \Delta = \mathrm{id}_H = (\mathrm{id}_H \stackrel{.}{\sqcup} \epsilon) \circ \Delta$

Quelle est la structure algébrique des symétries?

- 1. H est un objet de C,
- 2. (Coproduit) $\Delta: H \to H \sqcup H$, $(\Delta \sqcup \mathrm{id}_H) \circ \Delta = (\mathrm{id}_H \sqcup \Delta) \circ \Delta$
- 3. (Counité) $\epsilon: H \to k$, $(\epsilon \stackrel{.}{\sqcup} \mathrm{id}_H) \circ \Delta = \mathrm{id}_H = (\mathrm{id}_H \stackrel{.}{\sqcup} \epsilon) \circ \Delta$
- 4. (Antipode) $S: H \to H$, $(S \stackrel{.}{\sqcup} id_H) \circ \Delta = \eta \circ \epsilon = (id_H \stackrel{.}{\sqcup} S) \circ \Delta$,

Quelle est la structure algébrique des symétries?

Une algèbre de Zhang de C est un quadruplet (H, Δ, ϵ, S) avec

- 1. H est un objet de C,
- 2. (Coproduit) $\Delta: H \to H \sqcup H$, $(\Delta \sqcup \mathrm{id}_H) \circ \Delta = (\mathrm{id}_H \sqcup \Delta) \circ \Delta$
- 3. (Counité) $\epsilon: H \to k$, $(\epsilon \dot{\sqcup} id_H) \circ \Delta = id_H = (id_H \dot{\sqcup} \epsilon) \circ \Delta$
- 4. (Antipode) $S: H \to H$, $(S \dot{\sqcup} id_H) \circ \Delta = \eta \circ \epsilon = (id_H \dot{\sqcup} S) \circ \Delta$,
- ∘ L'algèbre des fonctions sur un groupe, dans ComAlg*

$$f_1f_2(g) = f_1(g)f_2(g), \ \Delta(f)(g_1,g_2) = f(g_1g_2), \ S(f)(g) = f(g^{-1}).$$

o Les groupes duaux $\mathcal{O}\langle n\rangle$ de Voiculescu, dans Alg^* ,

$$\mathcal{O}\langle n \rangle = \langle u_{ij}, u_{ij}^{\star}, 1 \leq i, j \leq n \mid \sum_{k=1}^{n} u_{ik} u_{jk}^{\star} = \delta_{ij}, \sum_{k=1}^{n} u_{ik}^{\star} u_{kj} = \delta_{ij} \rangle$$

$$\Delta(u_{ij}) = u_{ik} u_{ki}, \ S(u_{ij}) = u_{ii}^{\star}.$$

Calcul graphique à la Hopf

Calcul graphique à la Hopf

Calcul graphique à la Hopf

Calcul graphique à la Hopf

$$\Delta =$$
 $\mu =$
 $S =$
 $\varepsilon =$
 $\eta =$
 $=$

 $\alpha \times \beta = (\alpha \perp \beta) \circ \Delta$ est un morphisme de la catégorie

 $\rangle\rangle\rangle \ \alpha \times \beta = (\alpha \ \dot{\Box} \ \beta) \circ \Delta$ est un morphisme de la catégorie $\langle\langle\langle \ \rangle\rangle\rangle$

$$\rangle\rangle\rangle\ \alpha\times\beta=\left(\alpha\mathrel{\dot\sqcup}\beta\right)\circ\Delta\ \text{est un morphisme de la catégorie}\langle\langle\langle$$

 $(\mathsf{Hom}_\mathcal{C}(H,A),\times)$ est un groupe.

$$\rangle\rangle\rangle\ \alpha\times\beta=\left(\alpha\ \dot{\sqcup}\ \beta\right)\circ\Delta\ \text{est un morphisme de la catégorie}\langle\langle\langle$$

$$(\mathsf{Hom}_\mathcal{C}(H,A),\times)$$
 est un groupe.

$$X \to \alpha, XY \to \alpha \times \beta, X^{-1} \to \alpha \circ S$$

$$\rangle\rangle\rangle \ \alpha \times \beta = \left(\alpha \ \dot{\sqcup} \ \beta\right) \circ \Delta \ \text{est un morphisme de la catégorie} \langle\langle\langle$$

$$(\mathsf{Hom}_\mathcal{C}(H,A),\times)$$
 est un groupe.

$$X \to \alpha, \ XY \to \alpha \times \beta, \ X^{-1} \to \alpha \circ S$$

J. Zhang

Pour tout foncteur $F: \mathcal{C} \to \mathcal{G}\mathit{rp}$, il existe une algèbre de Zhang tel que

$$F(\cdot) = \operatorname{\mathsf{Hom}}_{\mathcal{C}}(H, \cdot)$$

J. Zhang, 1991

Soit (\mathcal{C}, \sqcup, k) une catégorie algébrique. Un comodule (M, ρ) sur une algèbre de Zhang $(H, \Delta, \varepsilon, S)$ est la donnée :

- \circ Un objet de la catégorie ${\mathcal C}$
- Un morphisme $\rho \in \operatorname{Hom}_{\mathcal{C}}(M, M \sqcup H)$,

$$(\rho \sqcup \mathrm{id}_H) \circ \rho = (\mathrm{id}_M \mathrel{\dot\sqcup} \Delta) \circ \rho, \quad (\mathrm{id}_M \mathrel{\dot\sqcup} \varepsilon) \circ \rho = \mathrm{id}_M.$$

Soit (\mathcal{C}, \sqcup, k) une catégorie algébrique. Un comodule (M, ρ) sur une algèbre de Zhang $(H, \Delta, \varepsilon, S)$ est la donnée :

- \circ Un objet de la catégorie ${\mathcal C}$
- ∘ Un morphisme $\rho \in \operatorname{Hom}_{\mathcal{C}}(M, M \sqcup H)$,

$$(\rho \sqcup \mathrm{id}_H) \circ \rho = (\mathrm{id}_M \mathrel{\dot{\sqcup}} \Delta) \circ \rho, \quad (\mathrm{id}_M \mathrel{\dot{\sqcup}} \varepsilon) \circ \rho = \mathrm{id}_M.$$

Proposition (G.2019)

La catégorie ICoModC(H) est une catégorie algébrique.

Proposition (G. 2019)

Une algèbre de Zhang est un comodule à gauche sur elle-même, pour la coaction :

$$\Omega_c = (\iota_1 \mathrel{\dot\sqcup} \iota_2 \mathrel{\dot\sqcup} \iota_1) \circ (\mathrm{id}_{H \sqcup H} \sqcup S) \circ (\Delta \sqcup \mathrm{id}_H) \circ \Delta.$$

Proposition (G. 2019)

Une algèbre de Zhang est un comodule à gauche sur elle-même, pour la coaction :

$$\Omega_c = (\iota_1 \mathrel{\dot\sqcup} \iota_2 \mathrel{\dot\sqcup} \iota_1) \circ (\mathrm{id}_{H \sqcup H} \sqcup S) \circ (\Delta \sqcup \mathrm{id}_H) \circ \Delta.$$

L'action par conjugaison sur l'algèbre des fonctions sur un groupe,

$$\Omega_c(f)(h,g) = f(hgh^{-1}), \ f \in \mathcal{F}(G), \ g,h \in G.$$

sur le groupe dual de Voiculescu $\mathcal{O}\langle n\rangle$:

$$\Omega_c(u_{ij}) = \sum_{k, n=1}^n u_{ik}|_1 u_{kq}|_2 u_{kq}^{\star}|_1$$

Indépendance catégorique et structures monoïdales

Indépendance classique et diagammes commutatifs

X, Y deux variables aléatoires, indépendantes si et seulement si :

$$(L^{\infty}(S,\mathcal{S}),\tau_{X}) \xrightarrow{j_{X}} (L^{\infty}(\Omega,\mathcal{F}),\mathbb{E}) \leftarrow \downarrow_{j_{Y}} (L^{\infty}(T,\mathcal{T}),\tau_{Y})$$

avec:

$$j_X: L^{\infty}(S,S) \rightarrow L(\Omega,\mathcal{F},\mathbb{P})$$

 $f \mapsto f(X)$,
 $\tau_X = \mathbb{E} \circ j_X$.

Indépendance classique et diagrammes commutatifs

X, Y deux variables aléatoires, indépendantes si et seulement si :

$$(L^{\infty}(S,S),\tau_{X}) \xrightarrow{\iota} (L^{\infty}(S,S),\tau_{X}) \otimes (L^{\infty}(T,T),\tau_{Y}) \xleftarrow{\iota} (L^{\infty}(T,T),\tau_{Y})$$

avec:

$$j_X: L^{\infty}(S,S) \rightarrow L(\Omega, \mathcal{F}, \mathbb{P})$$

 $f \mapsto f(X)$,
 $\tau_X = \mathbb{E} \circ j_X$.

Indépendance classique et diagammes commutatifs

X, Y deux variables aléatoires, indépendantes si et seulement si :

$$(L^{\infty}(S,S),\tau_{X}) \xrightarrow{\iota} (L^{\infty}(S,S),\tau_{X}) \otimes (L^{\infty}(T,T),\tau_{Y}) \xleftarrow{\iota} (L^{\infty}(T,T),\tau_{Y})$$

avec:

$$j_X: L^{\infty}(S,S) \rightarrow L(\Omega, \mathcal{F}, \mathbb{P})$$

 $f \mapsto f(X)$,
 $\tau_X = \mathbb{E} \circ j_X$.

Structures monoidales

- o produit tensoriel d'espaces vectoriels, $V, W \in Vect$,
- \circ produit tensoriel d'algèbres unitaires commutatives, $A,B\in\mathsf{ComAlg}$

$$a_1 \otimes b_1 \cdot a_2 \otimes b_2 = a_1 a_2 \otimes b_1 b_2$$

o produit tensoriel d'algèbres unitaires (non-commutatives).

Structures monoidales

- o produit tensoriel d'espaces vectoriels, $V, W \in Vect$,
- o produit tensoriel d'algèbres unitaires commutatives, $A, B \in \mathsf{ComAlg}$

$$a_1 \otimes b_1 \cdot a_2 \otimes b_2 = a_1 a_2 \otimes b_1 b_2$$

produit tensoriel d'algèbres unitaires (non-commutatives).

...associatif:

$$\alpha_{A,B,C}: A \otimes (B \otimes C) \stackrel{\cong}{\rightarrow} (A \otimes B) \otimes C,$$

 \otimes est ...

• ...a un objet unité $E \in \mathrm{Obj}(\mathcal{C})$:

$$\ell_A: E \otimes A \stackrel{\cong}{\to} A, \ r_A: A \otimes E \stackrel{\cong}{\to} A$$

o f n'est pas unique

- o f n'est pas unique
- $\circ (f_1, f_2)$ indépendant $\implies (f_2, f_1)$ independant

- o f n'est pas unique
- $\circ (f_1, f_2)$ indépendant $\Longrightarrow (f_2, f_1)$ independant
- o On ne définit pas (f_1, \ldots, f_n) independant'.

Champs d'holonomies non commutatifs

 $\mathcal{C} = \mathrm{Alg}^{\star}$, (Prob, \otimes). H une algèbre de Zhang dans Alg^{\star}

```
\mathcal{C}=\mathrm{Alg}^{\star}, (\mathsf{Prob}, \otimes).

H une algèbre de Zhang dans \mathsf{Alg}^{\star}

Un processus de Lévy est une famille j_s: H \to \mathcal{A} de morphismes de \mathsf{Alg}^{\star}.
```

Les accroissements $j_{s,t} = \left(\left(j_s \circ S \right) \mathrel{\dot\sqcup} j_t \right) \circ \Delta$ vérifient

$$\mathcal{C}=\mathrm{Alg}^{\star}$$
, (Prob, \otimes).
 H une algèbre de Zhang dans Alg^{\star}
Un processus de Lévy est une famille $j_s:H\to\mathcal{A}$ de morphismes de Alg^{\star} .

Les accroissements $j_{s,t} = ((j_s \circ S) \sqcup j_t) \circ \Delta$ vérifient • Pour tout triplet de temps u < s < t, $j_{u,s} \times j_{s,t} = j_{u,t}$, $j_{s,s} = \varepsilon$,

< □ ▷ < □ ▷ < Ē ▷ 〈Ē ▷ 〈Ē ▷ · Ē · ♡ 역 ♡ 26/E/

$$\mathcal{C} = \mathrm{Alg}^{\star}$$
, (Prob, \otimes).
 H une algèbre de Zhang dans Alg^{\star}
Un processus de Lévy est une famille $j_s : H \to \mathcal{A}$ de morphismes de Alg^{\star} .

Les accroissements $j_{s,t} = ((j_s \circ S) \sqcup j_t) \circ \Delta$ vérifient

- o Pour tout triplet de temps u < s < t, $j_{u,s} \times j_{s,t} = j_{u,t}$, $j_{s,s} = \varepsilon$,
- ∘ Pour tout $(s_1 < t_1 \le s_2 < t_2 ... \le s_p < t_p)$,

$$\tau \circ \left(j_{s_{1,1}} \mathrel{\dot\sqcup} \cdots \mathrel{\dot\sqcup} j_{s_{p},t_{p}}\right) = \tau \circ j_{s_{1},t_{1}} \otimes \cdots \otimes \tau \circ j_{s_{p},t_{p}}$$

$$\mathcal{C} = \mathrm{Alg}^{\star}$$
, (Prob, \otimes).

H une algèbre de Zhang dans Alg^*

Un processus de Lévy est une famille $j_s: H \to \mathcal{A}$ de morphismes de Alg^{\star} .

Les accroissements $j_{s,t} = \left((j_s \circ S) \mathrel{\dot\sqcup} j_t \right) \circ \Delta$ vérifient

- Pour tout triplet de temps u < s < t, $j_{u,s} \times j_{s,t} = j_{u,t}$, $j_{s,s} = \varepsilon$,
- \circ Pour tout $(s_1 < t_1 \le s_2 < t_2 \dots \le s_p < t_p)$,

$$\tau \circ (j_{s_1,1} \stackrel{.}{\sqcup} \cdots \stackrel{.}{\sqcup} j_{s_p,t_p}) = \tau \circ j_{s_1,t_1} \otimes \cdots \otimes \tau \circ j_{s_p,t_p}$$

$$\circ \ \tau \circ j_{s,t} = \tau \circ j_{t-s}$$

Champ d'holonomies

- $\circ \mathsf{H}_{\ell}, \ell \in \mathsf{Loops}_0(\mathbb{R}^2), \; \mathsf{H}_{\ell} \in \mathsf{Hom}_{\mathrm{Alg}^{\star}}(H, (\mathcal{A}, \tau))$
- $\circ \ \mathsf{H}_{\ell_{\mathbf{1}}\ell_{\mathbf{2}}} = \mathsf{H}_{\ell_{\mathbf{1}}} \times \mathsf{H}_{\ell_{\mathbf{2}}}$
- o Invariance de jauge :

$$((\phi_H \otimes \tau) \circ (\mathrm{id}_H \sqcup \mathsf{H}_{\ell_1,\ldots,\ell_1})) \circ \Omega_c^n = \tau \circ \mathsf{H}_{\ell_1,\ldots,\ell_n}.$$

 \circ Si (ℓ_1,\ldots,ℓ_n) et (ℓ'_1,\ldots,ℓ'_n) sont deux familles de boucles contenues dans des domaines disjoints,

$$\mathsf{H}_{\ell_1,\dots,\ell_n}$$
 et $\mathsf{H}_{\ell'_1,\dots,\ell'_m}$ sont \otimes -independant.

o Invariance par homéomorphismes préservant l'aire :

$$\tau \circ \mathsf{H}_{\ell_1} \dot\sqcup \ldots \dot\sqcup \mathsf{H}_{\ell_n} = \tau \circ \mathsf{H}_{\phi(\ell_1)} \dot\sqcup \ldots \dot\sqcup \mathsf{H}_{\phi(\ell_n)}.$$

Théorème (G.2019)

A tout processus de Lévy quantique sur une une algèbre de Zhang (un groupe dual) vérifiant deux propriétés techniques, on peut associer un champ d'holonomies planaire.

Théorème (G.2019)

A tout processus de Lévy quantique sur une une algèbre de Zhang (un groupe dual) vérifiant deux propriétés techniques, on peut associer un champ d'holonomies planaire.

Extension à des boucles rectifiables.

Deuxième partie II

Distribution de blocs extraits de grandes matrice aléatoires

$$\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}.$$

$$\mathbb{U}(N, \mathbb{K}) = \{ M \in \mathcal{M}_N(\mathbb{K}), MM^* = M^*M = I_N \},$$

$$\mathfrak{u}(N, \mathbb{K}) = \{ H \in \mathcal{M}_N(\mathbb{K}) : H^* + H = 0 \}.$$

$$\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}.$$

$$\mathbb{U}(N, \mathbb{K}) = \{ M \in \mathcal{M}_N(\mathbb{K}), MM^* = M^*M = I_N \},$$

$$\mathfrak{u}(N, \mathbb{K}) = \{ H \in \mathcal{M}_N(\mathbb{K}) : H^* + H = 0 \}.$$

 $\mathbb{K}=\mathbb{R} \text{ groupe orthogonal } \mid \mathbb{K}=\mathbb{C} \text{ groupe unitaire}$ $\mathbb{K}=\mathbb{H} \text{ groupe symplectique compact}.$

$$\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}.$$

$$\mathbb{U}(N,\mathbb{K}) = \{ M \in \mathcal{M}_N(\mathbb{K}), MM^* = M^*M = I_N \},$$

$$\mathfrak{u}(N,\mathbb{K}) = \{ H \in \mathcal{M}_N(\mathbb{K}) : H^* + H = 0 \}.$$

 $\mathbb{K} = \mathbb{R} \text{ groupe orthogonal } \mid \mathbb{K} = \mathbb{C} \text{ groupe unitaire}$ $\mathbb{K} = \mathbb{H} \text{ groupe symplectique compact.}$

$$egin{aligned} \langle X,Y
angle_N &\propto rac{N}{2}\mathcal{R}e(\mathsf{Tr}(X^*Y)), \ X,Y \in \mathfrak{u}\left(N,\mathbb{K}
ight) \ K(t) &= \sum B_k(t)H_N^k, \quad \left(H_N^k, \ k \geq 1
ight), \ \langle \ , \
angle_N ext{-BON}. \end{aligned}$$

$$\mathsf{d}\mathsf{U}_N^\mathbb{K}(t) = \mathsf{U}_N^\mathbb{K}(t) \mathsf{d} K(t) + rac{c_{\mathfrak{u}_N(\mathbb{K})}}{2} \mathsf{U}_N^\mathbb{K}(t) \mathsf{d} \mathsf{t}$$

$$\mathsf{d}\mathsf{U}_N^\mathbb{K}(t) = \mathsf{U}_N^\mathbb{K}(t)\mathsf{d}K(t) + rac{c_{\mathfrak{u}_N(\mathbb{K})}}{2}\mathsf{U}_N^\mathbb{K}(t)\mathsf{d}\mathsf{t}$$

Quand N tend vers l'infini, $U_N^{\mathbb{K}}$ converge vers un mouvement brownien libre.

Biane, 1997, Raines

Extractions carrées d'une matrice unitaire brownienne.

Un entier $n \ge 1$ fixé, nombre de blocs extraits. N = nd.

$$\begin{array}{cccc} \mathbb{U}_{n,d}^{\mathbb{K}}(t): & \mathcal{O}\langle n \rangle & \to & \mathcal{M}_d(\mathbb{K}) \\ & u_{ij} & \mapsto & \mathsf{U}_N^{\mathbb{K}}(i,j)(t) \end{array}$$

Ulrich, 2014, 1407.0212; Ulrich, Cébron, 2015, 1505.08083

- browniens semi-circulaires libres sur la diagonale,
- o browniens circulaires libres hors diagonale.

$$W_{ii}(t) = w_i(t), W_{ij}(t) = \frac{1}{\sqrt{2}} \left(w_{ij}^1(t) + i w_{ij}^2(t) \right), W_{ji}(t) = (W_{ij}(t))^*,$$

- o browniens semi-circulaires libres sur la diagonale,
- o browniens circulaires libres hors diagonale.

$$\mathsf{W}_{ii}(t) = w_i(t), \, \mathsf{W}_{ij}(t) = \frac{1}{\sqrt{2}} \left(w_{ij}^1(t) + \mathsf{i} w_{ij}^2(t) \right), \, \mathsf{W}_{ji}(t) = (\mathsf{W}_{ij}(t))^*,$$

o Equation différentielle stochastique libre :

- browniens semi-circulaires libres sur la diagonale,
- o browniens circulaires libres hors diagonale.

$$\mathsf{W}_{ii}(t) = \mathsf{w}_i(t), \, \mathsf{W}_{ij}(t) = \frac{1}{\sqrt{2}} \left(\mathsf{w}_{ij}^1(t) + \mathsf{i} \mathsf{w}_{ij}^2(t) \right), \, \mathsf{W}_{ji}(t) = (\mathsf{W}_{ij}(t))^\star,$$

o Equation différentielle stochastique libre :

$$\mathsf{d}\mathsf{U}^{\langle n\rangle}(t)(i,j) = \frac{\mathsf{i}}{\sqrt{n}} \sum_{k=1}^n (\mathsf{d}\mathsf{W}_t(i,k)) \mathsf{U}^{\langle n\rangle}(t)(k,j) - \frac{1}{2} \mathsf{U}^{\langle n\rangle}(t)(i,j) \mathsf{d}t$$

- o browniens semi-circulaires libres sur la diagonale,
- o browniens circulaires libres hors diagonale.

$$\mathsf{W}_{ii}(t) = w_i(t), \, \mathsf{W}_{ij}(t) = \frac{1}{\sqrt{2}} \left(w_{ij}^1(t) + \mathsf{i} w_{ij}^2(t) \right), \, \mathsf{W}_{ji}(t) = (\mathsf{W}_{ij}(t))^*,$$

o Equation différentielle stochastique libre :

$$\mathsf{d}\mathsf{U}^{\langle n\rangle}(t)(i,j) = \frac{\mathsf{i}}{\sqrt{n}} \sum_{k=1}^n (\mathsf{d}\mathsf{W}_t(i,k)) \mathsf{U}^{\langle n\rangle}(t)(k,j) - \frac{1}{2} \mathsf{U}^{\langle n\rangle}(t)(i,j) \mathsf{d}t$$

Biane, Speicher, Stoch. calc. with respect to free Brownian motion...

 $\bigcup_{n,d}^{\mathbb{K}} \xrightarrow{(\mathsf{d.n.c})} \mathsf{U}^{\langle n \rangle}.$

$$\mathsf{U}_{n,d}^{\mathbb{K}} \stackrel{(\mathsf{d.n.c})}{\longrightarrow} \mathsf{U}^{\langle n \rangle}.$$

$$\mathbb{E}\left[\frac{1}{d}\mathsf{Tr}\big(\mathsf{U}_{n,d}^{\mathbb{K}}(w)\big)\right]\underset{d\to+\infty}{\longrightarrow}\tau(\mathsf{U}^{\langle n\rangle}(w)),\ w\in\mathcal{O}\langle n\rangle.$$

$$\mathsf{U}_{n,d}^{\mathbb{K}} \stackrel{(\mathsf{d.n.c})}{\longrightarrow} \mathsf{U}^{\langle n \rangle}.$$

$$\mathbb{E}\left[\frac{1}{d}\mathsf{Tr}\big(\mathsf{U}_{n,d}^{\mathbb{K}}(w)\big)\right]\underset{d\to+\infty}{\longrightarrow}\tau(\mathsf{U}^{\langle n\rangle}(w)),\ w\in\mathcal{O}\langle n\rangle.$$

> Il existe un champ d'holonomie associé à $U^{(n)}$.

$$\mathsf{U}_{n,d}^{\mathbb{K}} \stackrel{(\mathsf{d.n.c})}{\longrightarrow} \mathsf{U}^{\langle n \rangle}.$$

$$\mathbb{E}\left[\frac{1}{d}\mathsf{Tr}\big(\mathsf{U}_{n,d}^{\mathbb{K}}(w)\big)\right]\underset{d\to+\infty}{\longrightarrow}\tau(\mathsf{U}^{\langle n\rangle}(w)),\ w\in\mathcal{O}\langle n\rangle.$$

- **>** Il existe un champ d'holonomie associé à $U^{\langle n \rangle}$.
- Convergence de matrices avec entrées dans une algèbre de Clifford, diffusion sur le groupe Spin.

Extraction de blocs rectangulaires d'un mouvement brownien unitaire

Probabilité amalgamée

$$egin{aligned} &= \mathsf{U}_N^\mathbb{K}(t)(i,j) \in \mathcal{M}_{N,N}(\mathbb{K}) \ &= \mathsf{U}_{d_n}^\mathbb{K}(t)(u_{ij}) \ & ext{avec} \ u_{ij} = p_i u p_j \end{aligned}$$

Probabilité amalgamée

$$= \mathsf{U}_N^{\mathbb{K}}(t)(i,j) \in \mathcal{M}_{N,N}(\mathbb{K})$$

 $= \mathsf{U}_{d_n}^{\mathbb{K}}(t)(u_{ij})$
avec $u_{ij} = p_i u p_j$

$$\mathcal{RO}\langle n \rangle = \langle u, p_i, 1 \le i \le n$$
$$\mid p_i^2 = p_i, p_i p_j = 0, i \ne j \rangle$$

Probabilité amalgamée

$$egin{aligned} &= \mathsf{U}_N^\mathbb{K}(t)(i,j) \in \mathcal{M}_{N,N}(\mathbb{K}) \ &= \mathsf{U}_{d_n}^\mathbb{K}(t)(u_{ij}) \ & ext{avec} \ u_{ij} = p_i u p_j \end{aligned}$$

$$\mathcal{RO}\langle n \rangle = \langle u, p_i, 1 \le i \le n$$
$$\mid p_i^2 = p_i, p_i p_j = 0, i \ne j \rangle$$

$$\sum_{i} \mathbb{E}\left[\frac{1}{d_{i}} \mathsf{Tr}\big(p_{i} \mathsf{U}_{d_{N}}^{\mathbb{K}}(t)(w) p_{i}\big)\right] p_{i}$$

Théorème (G. 2019)

Pour tout entier N, on choisit une partition d_N de N en n parts. On suppose que la limite de chaque ratio

$$\frac{d_N(i)}{N}$$

existe et est non nulle. Alors, quand N tend vers l'infini, le processus $U_{d_N}^{\mathbb{K}}$ converge, vers un processus de Lévy libre avec amalgamation.

Théorème (G. 2019)

Pour tout entier N, on choisit une partition d_N de N en n parts. On suppose que la limite de chaque ratio

$$\frac{d_N(i)}{N}$$

existe et est non nulle. Alors, quand N tend vers l'infini, le processus $U_{d_N}^{\mathbb{K}}$ converge, vers un processus de Lévy libre avec amalgamation.

Théorème (G. 2019)

Pour tout entier N, on choisit une partition d_N de N en n parts. On suppose que la limite de chaque ratio

$$\frac{d_N(i)}{N}$$

existe et est non nulle. Alors, quand N tend vers l'infini, le processus $U_{d_N}^{\mathbb{K}}$ converge, vers un processus de Lévy libre avec amalgamation.

> Il existe un champ d'holonomie associé au processus limite.

Théorème (G. 2019)

Pour tout entier N, on choisit une partition d_N de N en n parts. On suppose que la limite de chaque ratio

$$\frac{d_N(i)}{N}$$

existe et est non nulle. Alors, quand N tend vers l'infini, le processus $U_{d_N}^{\mathbb{K}}$ converge, vers un processus de Lévy libre avec amalgamation.

- > Il existe un champ d'holonomie associé au processus limite.
- Une réalisation du processus limite.
- La limite de l'un des ratios est nulle?

Convergence en grande dimension de diffusions pseudo-unitaires

 \circ Matrices pseudo-unitaires : $\{U \in \mathcal{M}_N(\mathbb{K}) : U^\star I_{p,q}U = I_{p,q}\}.$

$$I_{p,q} = \begin{bmatrix} I_p & 0 \\ 0 & -I_q \end{bmatrix}$$

∘ Matrices pseudo-unitaires : $\{U \in \mathcal{M}_N(\mathbb{K}) : U^*I_{p,q}U = I_{p,q}\}.$

$$I_{p,q} = \begin{bmatrix} I_p & 0 \\ 0 & -I_q \end{bmatrix}$$

o signature =
$$(p,q)$$
, signature normalisée = $\left(\frac{p}{p+q},\frac{q}{p+q}\right)$

$$x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_{p+q}^2$$

∘ Matrices pseudo-unitaires : $\{U \in \mathcal{M}_N(\mathbb{K}) : U^*I_{p,q}U = I_{p,q}\}.$

$$I_{p,q} = \begin{bmatrix} I_p & 0 \\ 0 & -I_q \end{bmatrix}$$

o signature = (p,q), signature normalisée = $\left(\frac{p}{p+q},\frac{q}{p+q}\right)$

$$x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2$$

- \circ Pas de choix canonique pour un produit scalaire sur $\mathfrak{u}(p,q,\mathbb{K})$!
 - 1. Choisir une base,
 - 2. Choisir un sous-groupe compact maximal,
 - 3. Introduire des paramètres.

∘ Matrices pseudo-unitaires : $\{U \in \mathcal{M}_N(\mathbb{K}) : U^*I_{p,q}U = I_{p,q}\}.$

$$I_{p,q} = \begin{bmatrix} I_p & 0 \\ 0 & -I_q \end{bmatrix}$$

o signature = (p,q), signature normalisée = $\left(\frac{p}{p+q},\frac{q}{p+q}\right)$

$$x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2$$

- o Pas de choix canonique pour un produit scalaire sur $\mathfrak{u}(p,q,\mathbb{K})$!
 - 1. Choisir une base,
 - 2. Choisir un sous-groupe compact maximal,
 - 3. Introduire des paramètres.
- o Un ensemble de diffusions pseudo-unitaires :

$$\mathsf{d} \mathsf{\Lambda}_{p,q}^{\mathbb{K}}(t) = \mathsf{\Lambda}_{p,q}^{\mathbb{K}}(t) \mathsf{d} \mathsf{W}_{p,q}^{\mathbb{K}}(t) + \frac{1}{2} \mathsf{\Lambda}_{p,q}^{\mathbb{K}}(t) \left(v \alpha_{p,q} + c \beta_{p+q}^{\mathbb{K}} \right) \mathsf{d} t.$$

∘ Matrices pseudo-unitaires : $\{U \in \mathcal{M}_N(\mathbb{K}) : U^*I_{p,q}U = I_{p,q}\}.$

$$I_{p,q} = \begin{bmatrix} I_p & 0 \\ 0 & -I_q \end{bmatrix}$$

o signature = (p,q), signature normalisée = $\left(\frac{p}{p+q},\frac{q}{p+q}\right)$

$$x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2$$

- \circ Pas de choix canonique pour un produit scalaire sur $\mathfrak{u}(p,q,\mathbb{K})$!
 - 1. Choisir une base,
 - 2. Choisir un sous-groupe compact maximal,
 - 3. Introduire des paramètres.
- o Un ensemble de diffusions pseudo-unitaires :

$$\mathsf{d} \mathsf{\Lambda}^{\mathbb{K}}_{p,q}(t) = \mathsf{\Lambda}^{\mathbb{K}}_{p,q}(t) \mathsf{d} \mathsf{W}^{\mathbb{K}}_{p,q}(t) + \frac{1}{2} \mathsf{\Lambda}^{\mathbb{K}}_{p,q}(t) \left(v \alpha_{p,q} + c \beta^{\mathbb{K}}_{p+q} \right) \mathsf{d} t.$$

E Kemp arXiv :1306.6033, arXiv :1903.11015, arXiv :1810.00153

$$\Lambda_{p,p}^{\mathbb{K}}(t) = \begin{array}{|c|c|}\hline V_p^{\mathbb{K}}(o_{++}) & V_p^{\mathbb{K}}(o_{+-}) \\ \hline \\ V_p^{\mathbb{K}}(o_{-+}) & V_p^{\mathbb{K}}(o_{--}) \\ \hline \end{array}$$

Diffusions pseudo-unitaires déployées libres

$$\mathrm{d}\Lambda^{+-}(t) = \Lambda^{+-}(t)\mathrm{d}\mathbb{W}^{+-}(t) \ + rac{1}{2}(v-c)\Lambda^{+-}(t)\mathrm{d}t$$
 $\mathbb{W}^{+-} = egin{bmatrix} s_c^1 & s_c^3 + is_c^4 \ & s_c^2 & s_c^2 \ \end{bmatrix}$

$$\Lambda^{+-}(t) = \begin{array}{c|c} & + + & + - \\ & - + & - - \end{array}$$

$$V: \mathcal{O}\langle -+ \rangle \longrightarrow (\mathcal{A}, \tau)$$

$$V_p^{\mathbb{K}} \stackrel{p \to +\infty}{\longrightarrow} V$$

Si la signature normalisée converge, la distribution de la variable aléatoire $V_{p,q}^{\mathbb{K}}$ converge vers un semi-groupe libre avec amalgamation.

Spectre d'une matrice pseudo-hermitienne gaussienne

 $H \in \mathcal{M}_n(\mathbb{K})$ est une matrice pseudo-hermitienne si :

$$HI_{p,q} + I_{p,q}H^* = 0, \ I_{p,q} = \begin{bmatrix} I_p & 0 \\ 0 & -I_q \end{bmatrix}$$

 $H \in \mathcal{M}_n(\mathbb{K})$ est une matrice pseudo-hermitienne si :

$$HI_{p,q} + I_{p,q}H^{\star} = 0, \ I_{p,q} = \begin{bmatrix} I_p & 0 \\ 0 & -I_q \end{bmatrix}$$

$$H = \begin{bmatrix} X_{p,q}^{++} & \frac{\sqrt{2}}{\sqrt{p+q}} X_{p,q}^{+-} \\ \frac{\sqrt{2}}{\sqrt{p+q}} X_{p,q}^{-+} & X_{p,q}^{--} \end{bmatrix}$$

avec $X_{p,q}^{++} \sim GUE(p)$, $X_{p,q}^{--} \sim GUE(q)$ et $X_{p,q} \sim Ginibre(p+q)$.

 $H \in \mathcal{M}_n(\mathbb{K})$ est une matrice pseudo-hermitienne si :

$$HI_{p,q}+I_{p,q}H^{\star}=0,\ I_{p,q}=\begin{bmatrix}I_{p}&0\\0&-I_{q}\end{bmatrix}$$

$$H = \begin{bmatrix} X_{p,q}^{++} & \frac{\sqrt{2}}{\sqrt{p+q}} X_{p,q}^{+-} \\ \frac{\sqrt{2}}{\sqrt{p+q}} X_{p,q}^{-+} & X_{p,q}^{--} \end{bmatrix}$$

avec $X_{p,q}^{++} \sim GUE(p)$, $X_{p,q}^{--} \sim GUE(q)$ et $X_{p,q} \sim Ginibre(p+q)$.

Mesure spectrale empirique δ_H de H:

$$\delta_H(dzd\bar{z}) = \frac{1}{n} \sum_{\lambda \in \operatorname{Spec}(H)} \delta_{\lambda}(dzd\bar{z}).$$

Bender, PT-Symmetry, 2019

Spectre d'une matrice pseudo-hermitienne gaussienne

Résolvante quaternionique, 🖹 Bordenave, Chafai, 2011

Merci de votre attention!