SISTEMI INTERATION

RAPPRESENTAZIONE DIGITALE DELLE INFORMAZIONI

Informazione oggi

- Informatica: disciplina che studia l'elaborazione automatica di informazioni.
- Elaboratore: sistema per l'elaborazione automatica delle informazioni.
- Programmabilita': un elaboratore e' programmabile se e' in grado di svolgere compiti diversi in base ad un programma
- Codifica: Ogni informazione può (a meno di un'approssimazione) essere rappresentata come una sequenza finita di simboli (Es: 0 e 1)

Automazione

- Per automatico si intende tutto ciò che compie un compito prestabilito senza l'intervento umano.
- Un qualche processo viene automatizzato quando il numero di volte che esso deve essere eseguito è sufficientemente grande da rendere conveniente la progettazione e la costruzione di un sistema automatico che lo risolva.

Alcuni esempi

Problema originale (non ripetitivo)	Problema sistematico e ripetitivo	
Soluzione manuale	Soluzione automatica	
Determinare il diametro di una pallina	Classificare un insieme di palline in base al diametro	
Calibro	Griglie forate	
Scrivere una lettera	Riprodurre un testo in migliaia di copie	
Carta e penna	Stampa tipografica	
Regolare il traffico in caso di emergenza	Regolare il traffico ad ogni incrocio	
Vigile urbano	Semaforo	
Riempire un contenitore d'acqua	Riempire ripetutamente un contenitore con la stessa quantità d'acqua	
Rubinetto manuale	Rubinetto a galleggiante	

BIT (Binary Digit)

- Letteralmente la parola bit significa cifra binaria
- In generale un bit e' una unita' che puo' assumere un valore tra due possibili (normalmente si parla di 0 e 1)
- La rappresentazione fisica di un bit richiede un qualsiasi dispositivo in grado di trovarsi in uno di due possibili stati
- Interruttore (accesso/spento)
- Un condensatore (carico/scarico)
- Una bandiera (alzata/abbassata)
- Una particella magnetica (Nord/Sud)
- Una lampadina

Codifica

- Anche i calcolatori più potente hanno una un limite, mentre gli insiemi di informazioni possono essere limitati o illimitati
- La codifica e' l'operazione che consente trasformare le informazioni in dati numerici che calcolatori elettronici possono leggere ed elaborare dati.
- Un bit puo' assumere solo due valori (0 e 1)
- Per rappresentare insiemi costituiti da piu' di due stati/simboli si usano serie di bit
- Una stringa di bit e' costituita da un certo numero di bit (normalmente 8 o multipli di 8) ed e' comunemente detta parola (word)

SISTEMI INTERRITIUI

- Con n bit si possono rappresentare 2ⁿ valori diversi e quindi si possono rappresentare 2ⁿ informazioni diverse
- La lunghezza della parola, quindi, definisce quante informazioni possono essere codificate

Codifica del testo

- Un testo e' una sequenza di caratteri alfabetici, separatori e caratteri speciali
- Ad ogni carattere e'associata una diversa configurazione di bit.
- Esempio: 21 lettere dell'alfabeto + 10 numeri
- + 10 punteggiatura = 41 simboli
 - 2⁵ = 32 combinazioni
 - 2⁶ = 64 combinazioni → ok

Possiamo usare una codifica a 6 bit.

Esempio codifica testo a 6 bit

- 000000 = a
- 000001 = b
- 000010 = c
- 000011 = d
- 000100 = e
- 000101 = f
- 000110 = g
- 000111 = h

Un testo e'rappresentato dalla sequenza di byte associati ai caratteri che lo compongono, nell'ordine in cui essi compaiono

Standard ASCII

(American Standard Code for Information Interchange)

- La codifica ASCII prevede l'utilizzo di 128 caratteri diversi
- Ogni carattere e' associato ad una diversa configurazione di 7 bit
- La codifica ASCII estesa prevede 256 simboli e 8 bit (1byte) per ogni carattere
- Quindi un testo di 1000 caratteri richiede 1Kbyte per essere rappresentato

Standard Unicode

- Lo standard ISO10646/Unicode si basa su una codifica a 32 bit che consente oltre due miliardi di possibili caratteri
- UTF usa 7 bit per carattere per codificare i primi 127 caratteri corrispondenti all'ASCII standard, e attiva l'ottavo bit solo quando serve la codifica Unicode.

Codifica

- Una codifica esatta a n bit è possibile solo quando l'insieme delle informazioni da codificare è finito e di dimensione inferiore o uguale al massimo del valore che posso rappresentare con una parola di una determinata lunghezza
- I calcolatori sono oggetti finiti che elaborano e memorizzano un numero finito di bit.
- Se l'insieme da codificare ha una contiene un numero di informazioni maggiore di 2ⁿ se ne puo' dare solo una rappresentazione approssimata o parziale. Questa limitazione avviene in due modi:
- Operazioni di limitazione
- Operazioni di partizionamento

Numeri interi

- I numeri interi sono un insieme discreto illimitato.
- Per poter essere codificati devono essere limitati.
- Sottoinsieme simmetrico rispetto allo 0.
- Si usa 1 bit per rappresentare il segno e i restanti a = n-1 per rappresentare il modulo.
- Il massimo numero rappresentabile è (in modulo) 2^a-1.
- Se il risultato di un'operazione eccede il modulo 2^a-1 non può essere codificato e il calcolatore restituisce un messaggio di overflow.

Numeri reali

- I numeri reali sono un insieme continuo e illimitato.
- Per poterli rappresentare occorre limitarli (in modo simmetrico rispetto allo 0) e partizionarli.
- Rappresentazione in virgola fissa: Degli n bit della parola, 1 rappresenta il segno, a rappresentano le cifre prima della virgola e b le cifre dopo la virgola.
 - Il massimo numero rappresentabile è $(2^{n-1}-1)/2^b$
 - L'accuratezza assoluta è 2^{-b}
- Rappresentazione in virgola mobile: (Floating point) espressa nella forma → s0.M B^{seE}

Rappresentazione delle immagini

- Le immagini sono informazioni continue in tre dimensioni: due spaziali ed una colorimetrica.
- Per codificarle occorre operare tre discretizzazioni.
 - Due discretizzazioni spaziali riducono l'immagine ad una matrice di punti colorati, detti pixel.
 - La terza discretizzazione limita l'insieme di colori che ogni pixel può assumere.

Esempio: Livelli di grigio

- La codifica associa un unico codice ad un intervallo di livelli di grigio
- Tutti i livelli di grigio all'interno dell'intervallo vengono codificati allo stesso modo comportando una perdita di informazione
- Il livello di grigio originale non può essere ricostruito in maniera esatta dal codice binario

Esempio: Dimensione

Un'immagine di 100X100 pixel a 256 colori richiede 10000 byte (10 Kb) per essere rappresentata.

Immagini bitmap

IMMAGINI A 256 COLORI

- La codifica è composta da due elementi distinti:
 - Una tabella di colori (palette) in cui vengono definiti fino ad un massimo di 256 colori
 - I punti (pixel) di cui è composta l'immagine il cui colore è definito da un byte (8 bit) che indica quale colore usare tra quelli definiti nella tabella.

IMMAGINI A 256 COLORI

Tabella dei colori (palette) composta da 256 colori numerati da 0 a 255. Ogni colore viene definito per il suo contenuto di Rosso, Verde e Blu.

IMMAGINI A 256 COLORI

Il colore del pixel è definito dal numero **00100010** (34 decimale) che rappresenta l'indice della palette.

Ogni colore viene definito nella palette specificando i livelli dei tre colori fondamentali.

Indice	Rosso	Verde	Blu
00100010	10011110	10111101	11011110

IMMAGINI RGB

Nelle immagini a 24 bit tre byte definiscono i livelli dei colori fondamentali.

Rosso Verde Blu

10011110 | 10111101 | 11011110

Il colore del pixel è definito direttamente da 2 o più byte che ne specificano la composizione in termini di Red, Green, Blue.

Nelle immagini a 16 bit si usano 5 bit per definire i livelli dei colori fondamentali.

Rosso	Verde	Blu
10011	10111	11011

Nelle immagini a 32 bit tre byte definiscono i livelli dei colori fondamentali

il quarto il livello di trasparenza (alpha) del pixel.

Rosso Verde Blu Alpha

10011110 10111101 110111110

Immagini vettoriali

- La grafica vettoriale scompone in gruppi logici di componenti (linee, cerchi, rettangoli, ecc.)
- Le forme vengono memorizzate in termini di coordinate e colori dei vari elementi geometrici che le compongono
- Durante la visualizzazione, coordinate e colori vengono utilizzati per ricreare l'immagine
- La grafica vettoriale e' comunemente usata nei disegni, disegni animati e nella grafica lineare in generale

Esempio: Oggetti lineari

Immagine = x0,y0,x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,rosso

Esempio: immagini vettoriali

Codifica di un filmato video

Filmato di 10 minuti a 25 frame al secondo, con risoluzione di 100x100 pixel a 256 colori: dimensione complessiva di 600x25x100x100x8 = 1.2Gbit.

Codifica di segnali analogici

- · Segnale: Quantita' fisica che varia nel tempo
 - Analogico: tempo-continuo, valore-continuo
 - Digitale: tempo-discreto, valore-discreto
- La codifica digitale di un segnale continuo comporta:
 - Campionamento(discretizzazione nel tempo)
 - Quantizzazione (discretizzazione nel valore)

Esempi di segnali analogici

- a) Velocità del flusso sanguigno nell'arteria cerebrale di un soggetto umano
- b) EMG (contrazione e rilassamento della lingua)
- Angolo di rotazione del ginocchio
- d) ECG
- e) Frequenza cardiaca istantanea in battiti al minuto (100 battiti)

Campionamento e quantizzazione

File finale = 001-010-101-110-110-010-001-010-011-110-111-010-001-100-011-110-101-010-001

Campionamento e quantizzazione

File finale = 001-010-101-110-110-010-001-010-011-110-111-010-001-100-011-110-101-010-001

Codifica del suono

- Il suono è un segnale analogico tempo-continuo
- Un'onda sonora non è altro che una successione di rarefazioni e compressioni di piccole porzioni d'aria

Una descrizione del suono

- Il suono prodotto da un altoparlante e' prodotto dalla vibrazione di una membrana.
- Descrivendo la posizione della membrana nel tempo (e quindi il suo spostamento) a tutti gli effetti descriviamo il suono.

Il suono percepibile dall'orecchio umano viene riprodotto fedelmente se la frequenza di campionamento (il numero di campioni in un secondo) è non inferiore a 30KHz.

Lo standard telefonico prevede un campionamento a 8KHz ed una quantizzazione a 256 livelli (codificati con 8 bit). Quindi per ogni secondo di conversazione servono 64Kbit

Questo tipo di codifica e' comunemente utilizzato nel formato WAVE

Formato MIDI (Musical Instrument Digital Interface)

- Il formato MIDI ha, tra i formati audio, lo stesso ruolo che, tra i formati grafici, ha il formato vettoriale.
- Un file MIDI non è una registrazione sonora
- Contiene comandi che, quando eseguiti, producono dei suoni (mediante un sintetizzatore hardware o software).
- I file MIDI, per questo motivo, sono molto piccoli rispetto ai file audio, ma riproducono un suono "sintetico", non registrato.
- Un file MIDI ha una forma del tipo:
 - Suona la nota x per un tempo t con lo strumento y

Compressione dei dati

- Tecniche di compressione vengono utilizzate ogni qualvolta si deve ridurre la dimensione dei dati su cui si sta lavorando
- Archiviazione (i supporti di memorizzazione sono limitati)
- Trasmissione (la velocia' comunicazione sulla rete o verso certe periferiche puo' rappresentare un fattore importante)

La ridondanza dei dati

- Una codifica e' detta ridondante se utilizza piu' bit del necessario. Es: Codice ASCII a 8 bit
- Se la codifica e' ridondante il valore di alcuni bit diventa prevedibile conoscendo gli altri
- Si dice che il contenuto informativo e' inferiore al 2ⁿ per una codifica ridondante a n bit
- In altri termini, alcuni bit non aggiungono informazione a quanto gia' codificato dai precedenti

L'utilita' della ridondanza

- L'uso di codifiche ridondanti puo' avere due motivazioni: la flessibilità e l'affidabilità.
- La flessibilita': possibilita' di utilizzare la stessa codifica in situazioni diverse. Es: "Millennium Bug"
- L'affidabilita': facilmente comprensibile e non incline ad essere male interpretato anche nel caso in cui il messaggio venga trasmesso in modo solo parziale o corrotto.

Esempio di ridondanza

- Nella lingua italiana l'utilizzo della lettera "q" e' un chiaro esempio di ridondanza
- La lettera "q" e' sempre seguita dalla lettera "υ"
- La parola "quadro" sarebbe comprensibile anche se scritta "q*adro" benche' non corretta
- In generale: tutto cio' che si riesce ad indovinare e' ridondante nel contesto in cui viene utilizzato

Compressione e ridondanza

- Un primo esempio di compressione della lingua italiana e' quello di omettere il carattere "u" tutte le volte che questo e' preceduto dal carattere "q"
- Qualcosa del genere viene comunemente fatto quando si scrive "xche" al posto di "perche" o "ke" al posto di "che".
- In generale, tutte le codifiche ridondanti si prestano ad essere compresse

Tecniche generiche di compressione

- Lossless: tecnica senza perdita di informazione
 - permettono di recuperare interamente l'informazione contenuta nel testo prima della sua compressione
 - Utilizzate nei casi in cui non e' possibile accettare neppure la minima perdita delle informazioni Es: Winzip
- Lossy: tecnica distruttiva con perdita di informazione
 - Non e' possibile ricostruire in maniera esatta i dati di partenza attraverso il processo di decompressione.
 - Utilizzate nella compressione delle immagini, dei filmati e dei suoni >> riduzione della qualità

Compressione Run Length Encoding (RLE)

- Algoritmo di compressione di tipo lossless
- Si basa sul fatto che nei dati da comprimere esistono sequenze, dette run, che si ripetono costantemente
- Una volta individuate le sequenze ripetute, vengono sostituite da un unico simbolo e dal numero delle ripetizioni presenti.

Esempio di compressione (RLE)

- una stringa di bit del tipo "011100001" verrebbe compressa codificandola in "03*14*01" che si legge "0, tre volte 1, quattro volte 0, 1".
- Varianti di RLE si basano sulla diversa lunghezza minima da attribuire ad un run.
- Nell' esempio abbiamo usato run pari a uno
- Possiamo prendere in considerazione gruppi di simboli (run > 1) e trovare quante volte l'intero gruppo viene ripetuto all' interno della stringa.

Compressione a codifica differenziale

- Spesso le informazioni sono costituite da blocchi di dati, ognuno dei quali differisce leggermente dal precedente
 - Es: fotogrammi successivi di un filmato
- In questo caso la compressione differenziale memorizza non il blocco stesso ma le sue differenze rispetto al precedente

Compressione adattativa basata su dizionario

- Il termine dizionario si riferisce all' insieme di elementi di base sui quali viene ricostruito il messaggio compresso.
- I simboli del dizionario rappresentano particolari sequenze di bit e durante la compressione, ad ogni sequenza riconosciuta viene sostituito il simbolo corrispondente.
- Il dizionario viene creato dinamicamente durante il processo di compressione.
- L'algoritmo di compressione Lempel-Ziv si basa su questa tecnica (WinZip)

Compressione delle immagini

- Nella compressione delle immagini si usano sia tecniche di tipo lossy che tecniche di tipo lossless
- GIF, PNG → lossless
- JPEG → lossy
- La compressione di tipo lossy da ottimi risultati per quanto riguarda la dimensione del file prodotto apportando, in alcuni casi, perdite non visibili.
- La compressione di tipo lossless da buoni risultati per immagini a colori piatti (poco efficiente su immagini molto complesse e sfumate)

Formato GIF (Graphic Interchange Format)

- Max 256 colori → profondita' di colore 8 bit.
- Se l'immagine originale contiene un numero più elevato di colori è necessario effettuare una riduzione con conseguente perdita di qualità
- Integra una compressione di tipo LZW (ZIP)
- I colori sono memorizzati in una 'tavolozza', una tabella che associa un numero ad un certo valore di colore.
- Supporta il formato interallacciato
- consente anche di definire un colore come trasparente.

Formato JPEG/JPG (Joint Photographic Expert Group)

- 24 bit = 16,8 milioni di colori.
- Tecnica di compressione basata di una codifica dell' immagine percettiva in cui viene distinta la luminosità dei pixel dal loro colore.
- Per ogni pixel viene codificata la componente della luminosita' mentre il colore viene codificato a blocchi di 4 pixel; (codificando il colore medio dei quattro)
- Per 4 pixel → 6 valori (4 di luminosità e 2 di colore) anziché 12 valori come in 24 bit (RGB)
- E' possibile scegliere il grado di compressione/qualita'
- Il formato JPEG progressivo emula l'interlacciamento

Formato PNG (Portable Network Graphic)

- 8, 16, 24 bit = 256, 65536, 16.8 milioni di colori.
- Non è in grado di raggiungere l'efficienza del formato JPEG per quanto riguarda il fattore di compressione
- Supporta sia l'effetto trasparenza che l'interlacciamento
- Puo' incorporare del testo all'interno dell'immagine (come stringa) utile per classificarla e per fare ricerche sui contenuti