

Attention Is All You Need NeurIPS 2017

Authors: Ashish Vaswani (Google Brain) et al.

Presenter: Toon Calders

Introduction

Problem domain:

- Learning Sequence Transduction Models
 - e.g. translation, Q&A
- New model architecture: the transformer
 - *Encoder-decoder* architecture
 - Systematic use of attention mechanism
 - No convolutions nor recurrence
- Good performance on Machine Translation tasks

"Old" Sequence-to-Sequence Models

 Common approach before transformers: Recurrent Neural Network architectures based on LSTMs*

"Old" Sequence-to-Sequence Models

 Common approach before transformers: Recurrent Neural Network architectures based on LSTMs*

* LSTM: Long short term memory

"Old" Sequence – To – Sequence Models

Common techniques:

- Recurrent Neural Networks based on LSTMs
- Convolutional techniques

Disadvantages:

- Long dependencies hard to capture
- Limited possibility for parallellism

Solution for long dependencies:

New Model Proposed in the Paper

Encoder – Decoder structure

- Each layer has an encoding for each token
 - "Enriched" representation in next layer computed on previous layer

- Layers are connected using attention mechanism
 - No convolutional layers, recurrent neural nets, LSTM
 - Hence: Attention is all you need!

Attention Mechanism: Intuition

"Scaled Dot-Product" Attention

- d_{model} dimensional vector
 - Transformed into query, key, value
 - Using learned matrices W_Q, W_K, and W_V

"Scaled Dot-Product" Attention

- d_{model} dimensional vector
 - Transformed into query, key, value
 - Using learned matrices W_O, W_K, and W_V

Self - attention

"Scaled Dot-Product" Attention

• d_{model} – dimensional vector

Transformed into query, key, value

Using learned matrices W_O, W_K, and W_V

We want to compute a new embedding for the first token

Key Value $K_1 \qquad \qquad \bigvee_1 \qquad \qquad \bigvee_1 \qquad \qquad \bigvee_2 \qquad \qquad \bigvee_2 \qquad \qquad \bigvee_3 \qquad \qquad \bigvee_3 \qquad \qquad \bigvee_4 \qquad \qquad \bigvee_4 \qquad \qquad \bigvee_4 \qquad \qquad \bigvee_5 \qquad \bigvee_$

Compare the query of the first token to all keys; compute similarity and take a weighted average

Multi-Headed Attention Concatenate $\mathbf{W}^{\mathbf{Q}}$ WQ Softmax(QK^T/cte) X₁ X₂ X₃ X₄ X₅ \mathbf{W}^{K} Scaled(QK^T)V \mathbf{W}^{V} **Embedding** Wo vectors for the next level **Final transformation** to combine information of the different heads

23

Encoder – Decoder attention

Very similar construction

key, value come from output layer encoder

query from decoder layer

L'attention

Decoder Attention: Masked Self-Attention Again, very similar Key, value, query from decoder layer

Tokens can only attend to previous tokens

When

predicting this

token

Masked Self-Attention

Byte Pair Encoding

- Turn text into numbers
 - fixed (subword-)tokenization scheme
 - Every sequence of characters can be tokenized

Example:

My name is Toon.

→

['My', ' name', ' is', ' To', 'on', '.']

[3666, 1438, 318, 1675, 261, 13]

My name is Toon!

→

['My', 'name', '', 'is', '', 'To', 'on', '!']

[3666, 1438, 220, 318, 220, 1675, 261, 0]

Input Embedding

BPE has 37K tokens

37K dim. 1-hot encoding → lower-dim. representation (trained)

Positional Encoding

- Order of tokens is important:
 - Woman, without her man, is nothing.
 - Woman, without her, man is nothing.
- BPE:
 - [48081, 11, 1231, 607, **582**, **11**, 318, 2147, 13]
 - **•** [48081, 11, 1231, 607, **11**, **582**, 318, 2147, 13]
- Gives the same key-value pairs
 - Is token "Woman" subject of the sentence or not?
 - Position of comma is essential!

Positional Encoding

To maintain position: add position encoding to token

Position-encoded vectors

Positional Encoding

To maintain position: add position encoding to token

• N=6, d_{model} =512, d_{ff} =2048, h=8, d_{k} =64, d_{v} =64

- Input & output embedding: ≈ 19M
 - They are shared
 - Shared vocabulary of 37,000 tokens
 - 512-dimensional representation

• N=6, d_{model} =512, d_{ff} =2048, h=8, d_{k} =64, d_{v} =64

- Attention mechanism: ≈ 6 x 1M
 - 8 heads
 - Each matrix W^Q, W^K, W^V: 512 x 64
 - Matrix W^0 : 512 x 512 = 262,144
- Feed Forward: ≈ 6 x 2.1M
 - (512+1) x 2048 + (2048+1) x 512
- Total: ≈ 18.3M

Output Probabilities

• N=6, d_{model} =512, d_{ff} =2048, h=8, d_{k} =64, d_{v} =64

- Attention mechanism: ≈ 2 x 6 x 1M
 - Encoder decoder attention
 - Masked self-attention
- Feed Forward: ≈ 6 x 2.1M
 - (512+1) x 2048 + (2048+1) x 512
- Total: ≈ 24.6M

• N=6, d_{model} =512, d_{ff} =2048, h=8, d_{k} =64, d_{v} =64

Total:

Input/output embedding: ≈ 19M

Encoder: ≈ 18.3M

Decoder: ≈ 24.6M

■ ≈ 61.9M parameters *

Output Probabilities

Number of Parameters?

Base Model

- N=6, d_{model} =512, d_{ff} =2048, h=8, d_{k} =64, d_{v} =64
- ≈ 65M parameters

Big Model

- N=6, d_{model} =1024, d_{ff} =4096, h=16, d_{k} =64, d_{v} =64
- ≈ 213M parameters

Training Regime

Dataset consists of pairs:

- Text A = $[a_1, a_2, ..., a_n]$
- Text B = $[b_1, b_2, ..., b_m]$

• Input to the network:

• $[a_1, a_2, ..., a_n, <BOS>, b_1, b_2, ..., b_m]$

Attention

you

need

• Expected output:

• $[b_1, b_2, ..., b_m]$

L'attention est

tout

dont

Training Regime

- Objective function: logloss
 - Model output = 1 distribution over tokens per output slot
 - Reward high probabilities for the correct token
- Adam optimizer
- Different regularization techniques were used
 - Dropout, Label smoothing
- Learning rate varied during training
 - First increase, then decrease

- Generate response tokens one by one
 - "autoregression"

- Generate response tokens one by one
 - "autoregression"

- Generate response tokens one by one
 - "autoregression"

- Generate response tokens one by one
 - "autoregression"

Experimental Results

- 2 translation tasks: EN-DE and EN-FR
- BLEU score used to assess quality of result (higher is better)

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	

Conclusion

- New architecture Transformer proposed
 - Based on attention mechanism
 - No recurrent neural nets, convolutions needed
- Experiments show promising behavior
- Translation task:
 - Outperforms state-of-the art in accuracy
 - For lower or comparable training costs
- ... and the rest is history ...

Machine Translation on WMT2014 English-German

Sources

- Vaswani, A. et al. (2017). Attention is all you need. Advances in Neural Information Processing Systems.
- Cho, K. et al. (2014). On the properties of neural machine translation: Encoder—Decoder approaches. In Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation.
- Bahdanau, D. et al. (2015). "Neural machine translation by jointly learning to align and translate." 3rd
 International Conference on Learning Representations
- Papineni, K. et al. (2002). Bleu: a method for automatic evaluation of machine translation.
 In Proceedings of the 40th annual meeting of the Association for Computational Linguistics (pp. 311-318).
- Yang, J. et al. (2024) "Harnessing the power of Ilms in practice: A survey on chatgpt and beyond." ACM Transactions on Knowledge Discovery from Data 18.6: 1-32.
- Raschka, S. (2024). Build a Large Language Model (From Scratch). Simon and Schuster.
- https://www.kaggle.com/datasets/mohamedlotfy50/wmt-2014-english-german
- https://paperswithcode.com/task/machine-translation
- https://jalammar.github.io/illustrated-transformer/

