DSE 2151 DATA ANALYTICS ANSWER SCHEME

Type: MCQ

Q1. 2. variable	A variable called 'Grade in exam' with values coded as : A+, A, B, C is a (0.5)
	L. Ordinal
	2. ratio
	3. continuous
	1. Dichotomous
	study is conducted, when it is impossible, on either logistical or ethical to conduct a controlled experiment. (0.5)
	L. An Experimental
	2. An Observational
;	3. A double blinded
	l. Current
Q3. The	best fit graph for a single categorical variable is (0.5)
	L. Histogram 2. Box Plot 3. Scatter Plot 4. Bar chart
	For the following set of values: 3,4,7,2,3,7,4,2,4,7,4, The Q3 value is (0.5) 1. 4 2. 7 3. 3
	4. 26is a measure that quantifies the lack of symmetry in a data distribution. (0.5)
	Kurtosis
;	2. Mean
	S. Skewness
4	l. Median
	ember of the Data Analytics project who has specific knowledge of the subject or business is called a (0.5)
	Consumer
:	2. IT Expert
	3. Subject Matter Expert
4	I. Supplier

0.7	
Q7. (0.5)	is the process where an estimate is calculated for some variable that is unknown.
	1. Prediction
	2. Summarization
	3. Exploration
	4. Association
	the frequency distribution is approximately normal, approximately 95% of all observations fall standard deviations of the mean. (0.5)
1.	One
2.	Two Two
3.	Three
4.	Four
Q9. Wh	nat is the objective of a hypothesis test? (0.5)
	1. To make some assumptions about the population.
	2. To determine if change in one variable directly causes a change in another variable.
	3. To generalize our sample data to suitable situations or population.
	4. To determine if change in one variable indirectly causes a change in another variable.
Q10. A variable	variable called 'Color of Car' with values coded as : 5-Black, 4-Brown, 3-Grey is ae (0.5)
	1. Continuous
	2. Ordinal
	3. Discrete
	4. Dichotomous
Type: D	DES
	low does a data analyst identify noisy data? What strategy can be adopted to treat the

i. noisy numeric data

To treat noisy numeric data, Strategies include

- Ignore tuples if they are less
- detect noisy data using methods like IQR or Std Dev, replace with mean/median etc.
- ii. inconsistent categoric data. (2)
 - use meta data to replace with mode

- Use another attribute to find nominal label
- • Ignore the tuple

Scheme - Mention of atleast 1 strategy for each sub division (1 mark)

Q12. Perform the chi-square test fro the following data and provide an inference on whether the two variables (Gender and Choice of Pet) are associated to each other w.r.t to model acceptance or rejection. For degrees of freedom of 2 and confidence level of 95%, the critical chi-square value is 5.991.

	dog	cat	bird	total	
men	207	282	241	730	
wome	n 234	242	232	708	
total	441	524	473	1438	row total

The expected values table : $\frac{row \ total \ * \ column \ total}{grand \ total}$ [0.5 marks]

	dog	cat	bird	total
men	223.87343533	266.00834492	240.11821975	730
women	217.12656467	257.99165508	232.88178025	708
total	441	524	473	1438

Chi-square tab	le: (Observed_s	value – Calculated_value) ² Calculated_value	[0.5 marks]
observed	(o) calculated (c)	(o-c)^2 / c	
207	223.87343533	1.2717579435607573	
282	266.00834492	0.9613722161954465	
241	240.11821975	0.003238139990850831	
234	217.12656467	1.3112758457617977	
242	257.99165508	0.991245364156322	
232	232.88178025	0.0033387601600580606	
Total		4.542228269825232	

 $critical\ value\ of\ \chi^2\ >=\ calculated\ value\ of\ \chi^2$

[0.5 marks]

Defining Null Hypothesis and Alternative hypothesis

[0.5 marks]

Q13. Consider the following data set CARS:

Names	Cylinders	Displace ment	Horse- power	Weight	Acceleration	Model Year	Country of Origin	MP G
Chevrolet Chevelle	8	307	130	3504	12	1970	1	18
Plymouth Duster	6	198	95	2833	15.5	1978	1	20
Chevrolet Vega (SW)	4	140	72	2408	19	1971	1	22
Fiat 124B	4	88	76	2065	14.5	1971	2	30
Datsun 1200	4	72	69	1613	18	1975	3	35
Buick Skylark 320	8	350	165	3693	11.5	1972	1	15
Ford Maverick	6	200	85	2587	16	1975	1	21
Volkswage n 1131	4	97	46	1835	20.5	1970	2	19
Toyota Corolla	4	71	65	1773	19	1973	3	31
Ford Torino	8	302	140	3449	10.5	1970	1	17

Considering the dataset describing CARS, Answer the following:

i. Create a summary table, grouping by cylinders and display count of cars, average MPG.

0.5 Mark

Cylinders	Count of Cars	Avg MPG
4	5	27.4
6	2	20.5

8	3	16.67

ii. Create a contingency table to tabulate the Country of Origin and Number of Cylinders.

0.5 mark

Country	Number of Cylinders	Number of Cylinders	Number of Cylinders	Total
Origin	4	6	8	
1	1	2	3	6
2	2	0	0	2
3	2	0	0	2
Totals	5	2	3	10

- iii. Find the correlation between Horse power and Weight and comment on the relationship between the variables.
- iv. Visualize the relationship between Horse power and Weight using a scatter plot.

0.5 mark for calculation of Mean 94.3, 2576, Std Deviation 38.17, 77.84

1 mark For correct computation of numerator, Correlation Cofficient 0.939

0.5 mark for inference(strong positive correlation) & scatter plot

<mark>. (3)</mark>

Q14. Consider a data set with the values 250,370, 420, 605, 1100. Perform Data transformation on each of the above values with the :

i. Mean Normalization method

ii. Min-max normalization method by setting min = 1 and max = 10

iii. decimal scaling method

1 mark each. (3)