ICTS Graduate Course PHY-404.5: Physics of Compact Objects Tutorials

P. Ajith* and Shasvath Kapadia†

International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India. (Dated: January 16, 2021)

Assignment 1: Stellar Structure

1. Assuming the equations of hydrostatic, radiative and thermal equilibria, derive the following equations describing the structure of homologous stars.

$$\frac{dp}{dm} = -\frac{m}{x^4}, \quad \frac{dx}{dm} = \frac{t^b}{x^2 p^a}, \quad \frac{dt}{dm} = -\frac{p^{an}l}{x^4 t^{3+s+bn}}, \quad \frac{dl}{dm} = A p^{a\lambda} t^{\nu-b\lambda}, \tag{0.1}$$

where the dimensionless quantities p, x, t and l are defined in terms of the central pressure P_c , central temperature T_c and the scaling variables M, R and L.

$$P = P_c p, T = T_c t, r = Rx, L_r := L(r) = Ll, M_r := M(r) = Mm,$$
 (0.2)

and assuming the following power-law approximations for the density ρ , opacity κ and energy density density ϵ :

$$\rho = \rho_0 P^a T^{-b}, \quad \kappa = \kappa_0 \rho^n T^{-s}, \quad \epsilon = \epsilon_0 \rho^{\lambda} T^{\nu}. \tag{0.3}$$

The scaling variables M, R and L are defined by the following conditions

$$\frac{GM^2}{4\pi R^4 P_c} = 1, \quad \frac{M}{4\pi R^3 \rho_0} \frac{T_c^b}{P_c^a} = 1, \quad \frac{3\kappa_0 \rho_0^n}{64\pi^2 ac} \frac{P_c^{an} ML}{T_c^{4+s+bn} R^4} = 1, \tag{0.4}$$

while A is given by

$$A = \frac{3\kappa_0 \epsilon_0 \rho_0^{n+\lambda}}{16\pi Gac} \frac{P_c^{a(n+\lambda)+1}}{T_c^{4+s+b(n+\lambda)-\nu}}.$$
(0.5)

- 2. Numerically solve the set of equations Eq. (0.1) assuming the boundary conditions: p(0) = t(0) = 1, x(0) = l(0) = 0 and the following power-law indices:
 - Ideal gas equation of state: $a = b = 1, \rho_0 = \mu/\mathcal{R}$ where $\mu \simeq 0.5X^{-0.57}$ is the mean molecular weight, $\mathcal{R} = 8.3 \times 10^7$ ergs/mol/K is the gas constant and X is the mass fraction of hydrogen (assume $X \simeq 0.75$).
 - Electron scattering opacity: n = s = 0, $\kappa_0 = 0.2(1 + X)$ cm²/g.
 - Energy generation by p p chain: $\lambda = 1, \nu = 4, \epsilon_0 \sim 10^{-30} \text{X}^2 \text{ ergs cm}^3 \text{ g}^{-2} \text{ s}^{-1} \text{ K}^{-4}$.

You can start by solving the dimensionless equations Eq.(0.1) by setting $A = A_0$, some constant. (Numerical experimentation shows that p(m) goes to zero only for the choice $A_0 \le 0.55$). Plot p(m), x(m), l(m) and t(m). Identify the value of m at which the p(m) goes to zero, denoted by m_* ; i.e. $p(m_*) = 0$. Physically we require that t(m) should go to zero at the same value of m; i.e., $t(m_*) = 0$. This is satisfied only for a specific value of A, say A_* . Using $A = A_*$, re-plot p(m), x(m), l(m) and t(m). These relations are independent of the mass of the star.

- 3. Setting $A = A_{\star}$ in Eq.(0.5), we can express P_c fully in terms of T_c . This allows us to express R, T_c and L in terms of M using Eqs.(0.4). Now, the only free parameter is $M := M_{\star}/m_{\star}$, where M_{\star} is the actual mass of 4the star. Now plot the stellar structure quantities M(r), $\rho(r)$, P(r) and L(r) for a star of mass $M_{\star} = 1M_{\odot}$ in terms of the physical radial coordinate r/R_{\odot} .
- 4. Repeat the calculation using stars of different masses. Plot the radius r_{\star} , central temperature T_c , and surface luminosity L_{\star} of the stars as a function of their masses.

^{*}Electronic address: ajith@icts.res.in

[†]Electronic address: shasvath.kapadia.res.in