Tidyverse Problem Set

MA615

September 29, 2019

The purpose of this problem set is to provide data contexts in which to exercise the capabilitiues of the tidyverse. While some questons require specific answers, other parts of the problems have been written to be purposely ambiguous, requiring you to think through the presentation details of your answer.

HOLD THE PRESSES!

As I was preparing to post these problems yesterday, I noticed that tidyr had been updata in the last few weeks. I was looking for more exercises on gather() and spread() – which are always difficult to master. And I found that they have been superceded!! Why do I love working with R as the tidyversie is on a path of continuous improvement? Because the improvements come from developers who write things like this:

For some time, it's been obvious that there is something fundamentally wrong with the design of spread() and gather(). Many people don't find the names intuitive and find it hard to remember which direction corresponds to spreading and which to gathering. It also seems surprisingly hard to remember the arguments to these functions, meaning that many people (including me!) have to consult the documentation every time. Hadley Wickham, Pivot Vingette

So... before you do anymore tidyverse exercises, Read this tidyr 1.0.0.

Then go to the tidyr cran page and to the examples and exercise in the new vignettes.

In your solutions to the problems below, if you need to use table reshaping functions from TidyR, be sure that you use pivot_longer(), and pivot_wider().

Problem 1

Load the gapminder data from the gapminder package.

How many continents are included in the data set?

[1] 5

How many countrys are included? How many countries per continent?

[1] 142

```
## # A tibble: 5 x 2
##
     continent `n_distinct(country)`
##
     <fct>
                                 <int>
## 1 Africa
                                    52
## 2 Americas
                                    25
## 3 Asia
                                    33
## 4 Europe
                                    30
                                     2
## 5 Oceania
```

Using the gapminder data, produce a report showing the continents in the dataset, total population per continent, and GDP per capita. Be sure that the table is properly labeled and suitable for inclusion in a printed report.

Since simply add up all GDP per capita is meaningless, I first add an addition column "total GDP" to the table which mutiply gdpPercap and pop , then make the aggregate, and finally devided by total population.

Continent	Total Population	total GDP	GDP per Capita	
Africa	929539692	2.380486e + 12	2560.93	

Continent	Total Population	total GDP	GDP per Capita
Americas	898871184	1.941809e + 13	21602.75
Asia	3811953827	2.070795e+13	5432.37
Europe	586098529	$1.479550e{+13}$	25244.05
Oceania	24549947	$8.073141e{+11}$	32884.56

Produce a well-labeled table that summarizes GDP per capita for the countries in each continent, contrasting the years 1952 and 2007.

I selected some countries for the table since the original one is way too long, see gdpPercapTable fot the full information.

Country	Continent	1952 GDP	2007 GDP
Algeria	Africa	2449.0	6223.4
Angola	Africa	3520.6	4797.2
Benin	Africa	1062.8	1441.3
Argentina	Americas	5911.3	12779.4
Bolivia	Americas	2677.3	3822.1
Brazil	Americas	2108.9	9065.8
Bahrain	Asia	9867.1	29796.0
Bangladesh	Asia	684.2	1391.3
Cambodia	Asia	368.5	1713.8
Albania	Europe	1601.1	5937.0
Austria	Europe	6137.1	36126.5
Belgium	Europe	8343.1	33692.6
Australia	Oceania	10039.6	34435.4
New Zealand	Oceania	10556.6	25185.0

Product a plot that summarizes the same data as the table. There should be two plots per continent. long, see gdpPercapTable fot the full information.

Which countries in the dataset have had periods of negative population growth?

##	# /	A tibble: 27 x 2	
##		country	`n_distinct(year)`
##		<fct></fct>	<int></int>
##	1	Afghanistan	1
##	2	${\tt Bosnia} \ {\tt and} \ {\tt Herzegovina}$	2
##	3	Bulgaria	4
##	4	Cambodia	1
##	5	Croatia	1
##	6	Czech Republic	3
##	7	Equatorial Guinea	1
##	8	Germany	2
##	9	Guinea-Bissau	1
##	10	Hungary	5
##	#	with 17 more rows	

Illustrate your answer with a table or plot.

Country	Year	Decrease
Afghanistan	1982	-1998556
Bosnia and Herzegovina	1992	-82964

Country	Year	Decrease
Bosnia and Herzegovina	1997	-649013
Bulgaria	1992	-313452
Bulgaria	1997	-592449
Bulgaria	2002	-404258
Bulgaria	2007	-338941
Cambodia	1977	-471999
Croatia	1997	-49418
Czech Republic	1997	-14995
Czech Republic	2002	-44412
Czech Republic	2007	-27551
Equatorial Guinea	1977	-84928
Germany	1977	-556315
Germany	1987	-616968
Guinea-Bissau	1967	-26533
Hungary	1987	-92795
Hungary	1992	-264056
Hungary	1997	-104000
Hungary	2002	-161371
Hungary	2007	-127205
Ireland	1957	-73936
Ireland	1962	-48220
Kuwait	1992	-473392
Lebanon	1982	-28911
Lesotho	2007	-34123
Liberia	1992	-356440
Montenegro	2007	-35494
Poland	2002	-28981
Poland	2007	-107735
Portugal	1972	-132550
Romania	1997	-234569
Romania	2002	-158121
Romania	2007	-128281
Rwanda	1997	-77620
Serbia	2002	-225035
Slovenia	2002	-115
Slovenia	2007	-2252
Somalia	1992	-822059
South Africa	2007	-435794
Switzerland	1977	-84976
Trinidad and Tobago	1992	-7667
Trinidad and Tobago Trinidad and Tobago	1997	-45568
Trinidad and Tobago	2002	-36269
Trinidad and Tobago	2002	-45224
West Bank and Gaza	1972	-53064
TICSU Dank and Gaza	1014	-00004

Which countries in the dataset have had the highest rate of growth in per capita GDP?

country

Equatorial Guinea Taiwan Korea, Rep. country
Singapore
Botswana
Hong Kong, China
China
Oman
Thailand
Japan

Illustrate your answer with a table or plot.

Country	Growth Rate in $\%$
Equatorial Guinea	3135.54
Taiwan	2279.41
Korea, Rep.	2165.51
Singapore	1936.30
Botswana	1376.65
Hong Kong, China	1200.57
China	1138.39
Oman	1120.64
Thailand	884.22
Japan	884.04

Problem 2

The data for Problem 2 is the Fertility data in the AER package. This data is from the 1980 US Census and is comprised of date on married women aged 21-35 with two or more children. The data report the gender of each woman's first and second child, the woman's race, age, number of weeks worked in 1979, and whether the woman had more than two children.

There are four possible gender combinations for the first two Children. Product a plot the contracts the frequency of these four combinations. Are the frequencies different for women in their 20s and wemen who are older than 29?

Produce a plot that contrasts the frequency of having more than two children by race and ethnicity.

Problem 3

Use the mtcars and mpg datasets.

How many times does the letter "e" occur in mtcars rownames?

[1] 25

How many cars in mtcars have the brand Merc?

[1] 7

How many cars in mpg have the brand ("manufacturer" in mpg) Merc?

[1] 4

Contrast the mileage data for Merc cars as reported in mtcars and mpg. Use tables, plots, and a short explaination.

Model	MPG
Merc 240D	24.4
Merc 230	22.8
Merc 280	19.2
Merc 280C	17.8
Merc 450SE	16.4
Merc 450SL	17.3
$\rm Merc~450SLC$	15.2

Manufacture	Model	year	city MPG	hyw MPG	avg MPG
mercury	mountaineer 4wd	1999	14	17	15.5
mercury	mountaineer 4wd	2008	13	19	16.0
mercury	mountaineer 4wd	2008	13	19	16.0
mercury	mountaineer 4wd	1999	13	17	15.0

One question about this problem is that: Merc in mpg dataset represent "Mercury", while merc in mtcars dataset represent "Mercedes", so how do we contrast cars from two different manufacturer?

From the table we can see that the average MPG of Mercury mountaineer 4wd 1999 has the lowest mpg amoung all cars, while Mercedes 240D has the highest by 24.4

Problem 4

Install the babynames package.

Draw a sample of 500,000 rows from the babynames data

Produce a tabble that displays the five most popular boy names and girl names in the years 1880,1920, 1960, 2000.

year	name	year	name	year	name	year	name
1880	John	1920	Mary	1960	David	2000	Jacob
1880	William	1920	John	1960	Michael	2000	Michael
1880	Mary	1920	William	1960	James	2000	Matthew
1880	James	1920	Robert	1960	John	2000	Joshua
1880	Charles	1920	James	1960	Robert	2000	Emily

What names overlap boys and girls?

```
MaleName = filter(babynames1, sex=='M')
MaleName = unique(MaleName$name)
FemaleName = filter(babynames1, sex == 'F')
FemaleName = unique(FemaleName$name)
overlap = intersect(MaleName, FemaleName)
```

I have found 3072 overlap names in the search, for example: John, William, James, Charles.....

What names were used in the 19th century but have not been used in the 21sth century?

```
baby19th = filter(babynames1, year<1900)
baby19th = unique(baby19th$name)
baby21th = filter(babynames3, year>=2000)
```

```
baby21th = unique(baby21th$name)
newNames = setdiff(baby19th, intersect(baby19th, baby21th))
```

Some examples are Myrtle, Nannie, Bertie....

Produce a chart that shows the relative frequency of the names "Donald", "Hilary", "Hillary", "Joe", "Barrack", over the years 1880 through 2017.