Resoluções de 1ª prova de Teoria dos Grafos e Computabilidade

Resoluções elaboradas pelo aluno Luca Ferrari Azalim, com base nas provas do professor Zenilton Patrocínio Imagens retiradas das provas do professor Zenilton Patrocínio

- **1.** Considerando um grafo não direcionado simples G = (V, E) com 10 vértices e 5 componentes, responda:
- a) É possível que este grafo tenha 4 arestas?
- b) É possível que a soma de graus de todos os vértices seja igual a 10?
- c) É possível que a soma de graus de todos os vértices seja maior que 100?

Resolução:

- a) Não é possível que o grafo G tenha 4 arestas, porque o número mínimo de arestas em um grafo simples não direcionado é dado por n-k, onde n é o número de vértices e k é o número de componentes. Neste caso, o número mínimo de arestas é 5.
- **b)** Sim, é possível que a soma de graus de todos os vértices do grafo *G* seja 10, porque a soma de graus de todos os vértices de um grafo simples não direcionado é sempre igual ao dobro do número de arestas (lema do aperto de mão), que, neste caso, é no mínimo 10.
- **c)** Não. O número máximo de arestas de um grafo simples não direcionado é dado por $\frac{(n-k)\times(n-k+1)}{2}$, que, neste caso, é 15. Já a soma de graus de todos os vértices de um grafo simples não direcionado é dada pelo dobro do número de arestas. Portanto, no máximo, a soma de graus dos vértices de G seria 30.
- **2.** Determine a classificação de cada aresta do seguinte grafo considerando uma busca em profundidade iniciada a partir do vértice **a** e observando a estrutura de adjacência representada ao lado.

Estrutura de Adjacência:

a → b

b + c. h

 $c \rightarrow d$

d → 6

e + c. f

f -> -

 $g \rightarrow d$, 1

h → a, c

	а	b	С	d	е	f	g	h
TD	1	2	3	4	5	6	10	13
тт	16	15	12	9	8	7	11	14
Pai		а	b	С	d	е	С	b

Vértice não explorado
Vértice marcado
Vértice explorado
Aresta não explorada
Aresta de árvore
Aresta de retorno
Aresta de avanço
Aresta de cruzamento

3. Determine se os seguintes grafos são ou não isomorfos, justificando sua resposta:

Resolução:

Perguntas básicas (mas não suficientes) a serem feitas para verificar se os grafos são isomorfos:

P: Os dois grafos possuem a mesma quantidade de vértices?

R: Sim, ambos possuem 8 vértices.

P: Os dois grafos possuem a mesma quantidade de arestas?

R: Sim, ambos possuem 14 arestas.

P: Os dois grafos possuem a mesma quantidade de componentes?

R: Sim, ambos possuem um único componente.

P: Os dois grafos possuem a mesma sequência ordenada de graus de entrada e saída?

R: Sim, como mostram os dados abaixo.

Grafo G_2					
v	$d^-(v)$	$d^+(v)$			
а	1	2			
b	2	2			
С	2	1			
d	2	2			
е	2	1			
f	2	2			
g	1	2			
h	2	2			

Grafo G_3					
v	$d^-(v)$	$d^+(v)$			
1	2	1			
2	2	2			
3	1	2			
4	2	2			
5	1	2			
6	2	2			
7	2	1			
8	2	2			

Sequência ordenada de graus de entrada de ${\it G}_{2}$	1, 1, 2, 2, 2, 2, 2
Sequência ordenada de graus de saída de ${\it G}_{2}$	1, 1, 2, 2, 2, 2, 2
Sequência ordenada de graus de entrada de ${\it G}_{_{3}}$	1, 1, 2, 2, 2, 2, 2
Sequência ordenada de graus de saída de ${\it G}_{_3}$	1, 1, 2, 2, 2, 2, 2

Mesmo que a resposta tenha sido sim para todas as perguntas acima, ainda não é possível afirmar que os dois grafos são isomorfos. Porém, analisando a topologia dos grafos, é possível perceber que há equivalência entre todas as arestas e suas direções.

4. Determine os componentes fortemente conexos do seguinte grafo:

Resolução:

// TODO

5. Forneça um algoritmo (passo a passo) para calcular o diâmetro de um grafo. Apresente um exemplo que ilustre cada uma das etapas do método descrito.

Resolução:

Calcular_Diâmetro:

1. diâmetro = 0

- 2. **para** todo vértice de $v \in V(G)$ **faça**
 - a. maior_distancia = Busca_Largura(v)
 - b. diametro = max(maior_distancia, diametro)
- 3. retornar diâmetro

Busca_Largura(raiz):

- 1. fila = []
- 2. distâncias = []
- 3. **para** todo vértice $w \in \Gamma(raiz)$ **faça**
 - a. distâncias[w] = -1
- 4. distâncias[raiz] = 0
- 5. fila.inserir(raiz)
- 6. enquanto not fila.vazia() efetuar
 - a. v = fila.remover()
 - **b.** para todo vértice $w \in \Gamma(v)$ faça
 - i. <u>se</u> distâncias[w] = -1
 - 1. distancias[w] = distancias[v] + 1
 - 2. fila.inserir(w)
- 7. retornar max(distâncias)
- **6.** Considerando um grafo não direcionado simples G = (V, E), indique para cada afirmativa abaixo se ela é verdadeira ou falsa, justificando sua resposta.
- a) O número de vértices com grau ímpar é sempre par.
- b) O número de vértices com grau par é sempre ímpar.
- c) Sempre existe algum vértice com grau par.
- d) Sempre existe algum vértice com grau ímpar.
- e) O número de vértices de grau ímpar é sempre igual ao número de vértices de grau par.

- a) Verdadeiro. O número de vértices com grau ímpar é sempre par porque a soma de todos os graus é sempre par, de acordo com o lema do aperto de mão, que diz que a soma dos graus de todos os vértices é sempre o dobro do número de arestas. Caso o número de vértices com grau ímpar fosse ímpar, a soma dos graus seria ímpar, o que é impossível.
- **b)** Falso. Não há a garantia de que o número de vértices com grau par seja sempre ímpar. Em um grafo circular direcionado de quatro vértices (quadrado), por exemplo, há quatro vértices com grau par.
- c) Falso. Em um grafo linear com dois vértices, por exemplo, não há nenhum vértice com grau par.

- d) Falso. Em um grafo circular não direcionado, por exemplo, todos os vértices têm grau par.
- **e)** Falso. Em um grafo linear com três vértices, por exemplo, há dois vértices com grau ímpar e um vértice com grau par.
- **7.** Considere o seguinte grafo G = (V, E):

- **a)** Determine o intervalo de vida de cada um dos vértices a partir da realização de uma busca em profundidade em que tanto as raízes da busca quanto os sucessores dos vértices são selecionados em ordem lexicográfica.
- **b)** Determine, justificando sua resposta, se o grafo G é conexo ou não. Caso ele seja conexo, estabelecer, também justificando sua resposta:
 - i. se ele é simplesmente conexo, mas não semifortemente conexo; ou
 - ii. se ele é semifortemente conexo, mas não fortemenete conexo; ou
 - iii. se ele é fortemente conexo.
- **c)** Determine os componentes fortemente conexos de *G* utilizando o método Kosaraju, demonstrando o passo a passo.

a) Invervalos de vida:

	а	b	С	d	е	f
Descoberta	1	2	4	3	9	11
Término	8	7	5	6	10	12

- **b)** O grafo G é conexo porque seu grafo subjacente é conexo, ou ainda, porque possui um único componente conexo. Além disso, G é apenas simplesmente conexo, porque "a" não alcança "e" e "e" não alcança "a", o que descarta a possibilidade de G ser semi fortemente conexo ou fortemente conexo.
- c) Abaixo, estão descritos os passos do método Kosaraju aplicado ao grafo G:
- **1º passo:** Executar uma busca em profundidade em *G* e salvar os tempos de término;

	а	b	С	d	е	f
TD	1	2	4	3	9	11
тт	8	7	5	6	10	12
Pai		а	d	b		

 $\mathbf{2}^{\mathbf{o}}$ passo: Construir o grafo G_R (grafo reverso de G);

 ${\bf 3^o}$ passo: Fazer busca em profundidade em ${\it G_{R}}$ em ordem decrescente dos tempos de término.

	а	b	С	d	е	f
TD	5	7	8	9	3	1
тт	6	12	11	10	4	2
Pai			b	С		

Portanto, os componentes fortemente conexos de *G* são:

8. Determine quais dos seguintes grafos são isomorfos entre si, justificando sua resposta.

Por meio das quatro perguntas básicas, podemos descartar o grafo V, por possuir um número de arestas e uma sequência de graus diferente dos demais:

Grafo	Número de componentes	Número de vértices	Número de arestas	Sequência de graus
1	1	5	6	2, 2, 2, 3, 3
II	1	5	6	2, 2, 2, 3, 3
Ш	1	5	6	2, 2, 2, 3, 3
IV	1	5	6	2, 2, 2, 3, 3
V	1	5	7	2, 2, 3, 3, 3

Por fim, analisando a topologia dos grafos, é possível identificar que I, II e III são isomorfos, por possuírem correspondência entre todas as arestas.

- **9.** Considerando um grafo não direcionado simples G = (V, E) com 13 vértices e 6 componentes, responda e justifique as seguintes questões:
- a) É possível que esse grafo possua 06 arestas?
- b) É possível que a soma de graus de todos os vértices seja igual a 14?
- c) É possível que a soma de graus de todos os vértices seja maior que 56?

- a) Não é possível que G possua 6 arestas, porque o número mínimo de arestas de um grafo simples não direcionado é dado por n-k, onde n é igual ao número de vértices e k é igual ao número de componentes. No caso do grafo G, não é possível haver menos de 7 arestas.
- **b)** Sim, é possível que a soma de graus de todos os vértices de G seja 13, porque o número mínimo de arestas de G é 7, e a soma dos graus de todos os vértices é sempre o dobro do número de arestas.
- **c)** Não é possível que a soma de graus de todos os vértices de G seja maior que 56, porque o número máximo de arestas de G, dado por $\frac{(n-k)\times(n-k+1)}{2}$, é 28, o que faz com que a soma de todos os graus de G, dada pelo dobro do número de arestas, seja no máximo 56.
- **10.** Considere o grafo G = (V, E) representado pela matriz de adjacência a seguir.

	a	b	c	d	e	f
a	0	0	0	1	0	0
b	1	0	1	0	0	0
c	0	0	0	0	0	1
d	0	1	0	0	0	0
e	0	1	1	1	0	0
f	0	0	1	0	0	0

- a) Determine o fecho transitivo direto e o fecho transitivo inverso de cada um dos vértices;
- b) Determine a base e a antibase de G.

Vértice	Fecho transitivo direto	Fecho transitivo inverso
а	a, b, c, d, f	a, b, d, e
b	a, b, c, d, f	a, b, d, e
С	c, f	a, b, c, d, e, f
d	a, b, c, d, f	a, b, d, e
е	a, b, c, d, e, f	е
f	c, f	a, b, c, d, e, f

Base: e

Antibase: c ou f

11. Considere o grafo G = (V, E) representado pela matriz de incidência a seguir.

			0					0		0
b	+1	-1	0	0	0	0	0	0	0	0
с	0	0	+1	-1	0	0	-1	0	0	0
			0						0	0
e	0	+1	-1	0	0	0	0	-1	0	0
f	0	0	0	0	0	+1	+1	0	-1	+1
g	0	0	0	0	0	0	0	+1	+1	-1

- a) Determine o <u>intervalo de vida de cada um dos vértices</u> e a <u>classificação de cada aresta</u> a partir da realização de uma **busca em profundidade** em que tanto as raízes da busca quanto os sucessores dos vértices são selecionados em **ordem lexicográfica**;
- **b)** Determine, justificando sua resposta, se o grafo G é conexo ou não. Caso ele seja conexo, estabelecer, também justificando sua resposta:
 - i. se ele é simplesmente conexo, mas não semi fortemente conexo; ou
 - ii. se ele é semi fortemente conexo, mas não fortemente conexo; ou
 - iii. se ele é fortemente conexo.
- c) Determine os componentes fortemente conexos de G utilizando o método de Kosaraju.

a)

- b) O grafo G é conexo, porque seu grafo subjacente é conexo, ou ainda, porque possui apenas um componente. Além disso, G é semi fortemente conexo, mas não fortemente conexo, porque o vértice \underline{a} e \underline{d} não são mutuamente alcançáveis.
- c) Passo a passo do método Kosaraju:
- 1º passo: Executar uma busca em profundidade em G e salvar os tempos de término (feito na letra a);
- **2º passo:** Construir o grafo G_R (grafo reverso de G);

 ${f 3^o}$ passo: Fazer busca em profundidade em ${\cal G}_{_{\!R}}$ em ordem decrescente dos tempos de término;

Portanto, os componentes fortemente conexos são: {a, b, c, e}, {g, f} e {d}

12. Indique qual dos seguintes grafos não é isomorfo a nenhum dos demais:

- **a)** $G_1 = (\{1, 2, 3, 4, 5\}, \{\{1, 3\}, \{2, 4\}, \{1, 2\}, \{2, 3\}, \{3, 5\}, \{4, 5\}\})$
- **b)** $G_2 = (\{1, 2, 3, 4, 5\}, \{\{1, 2\}, \{1, 2\}, \{2, 3\}, \{3, 4\}, \{3, 4\}, \{4, 5\}\})$
- **c)** $G_3 = (\{1, 2, 3, 4, 5\}, \{\{4, 5\}, \{1, 3\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{4, 5\}\})$
- **d)** $G_4 = (\{1, 2, 3, 4, 5\}, \{\{1, 2\}, \{2, 3\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{4, 5\}\})$

e) $G_5 = (\{1, 2, 3, 4, 5\}, \{\{4, 5\}, \{1, 3\}, \{1, 3\}, \{2, 3\}, \{2, 5\}, \{4, 5\}\})$

Resolução:

Todos os grafos apresentados possuem o mesmo número de vértices, arestas e componentes. Porém, é possível perceber que apenas o grafo G_1 não possui nenhum par de vértices com arestas paralelas. Portanto, G_1 não é isomorfo aos demais.

13. Forneça um algoritmo (passo a passo) para determinar se um grafo conexo é bipartido. Apresente um exemplo que ilustre cada uma das etapas do método descrito.

// TODO

- **14.** Considerando um grafo não direcionado simples G = (V, E) com 15 vértices e 7 componentes, responda e justifique as seguintes questões:
- a) É possível que esse grafo possua 07 arestas?
- b) É possível que a soma de graus de todos os vértices seja igual a 16?
- c) É possível que a soma de graus de todos os vértices seja maior que 40?

- a) Não, porque o número mínimo de arestas em um grafo não direcionado simples é dado por n-k, onde n é igual ao número de vértices e k é igual ao número de componentes. Portanto, G não pode ter menos de 8 arestas.
- **b)** Sim, porque o número mínimo de arestas de G é 8, e a soma de graus de todos os vértices de um grafo é igual ao dobro do número de arestas. Portanto, no mínimo, a soma de graus de todos os vértices de G é 16.
- c) Sim, porque o número máximo de arestas de G é 36, e a soma de graus de todos os vértices de um grafo é igual ao dobro do número de arestas. Portanto, no máximo, a soma de graus de todos os vértices de G é 72.
- **15.** Considere o grafo G = (V, E) representado pela matriz de adjacência a seguir.

	a	b	c	d	e	f
a	0	0	0	1	0	0
b	1	0	1	0	0	0
С	0	0	0	0	0	1
d	0	1	0	0	0	0
e	0	1	1	1	0	0
\mathbf{f}	0	0	1	0	0	0

- a) Determine o fecho transitivo direto e o fecho transitivo inverso de cada um dos vértices;
- b) Determine a base e a antibase de G.

a)

Vértice	Fecho transitivo direto	Fecho transitivo reverso
а	a, b, c, d, f	a, b, d, e
b	a, b, c, d, f	a, b, d, e
С	c, f	a, b, c, d, e, f
d	a, b, c, d, f	a, b, d, e
е	a, b, c, d, e, f	е
f	c, f	a, b, c, d, e, f

b)

Base: e

Antibase: c ou f

16. Considere o grafo G a seguir:

- **a)** Determine o <u>intervalo de vida</u> de cada um dos vértices e a <u>classificação de cada aresta</u> a partir da realização de uma **busca em profundidade** em que tanto as raízes da busca quanto os sucessores dos vértices são selecionados em **ordem lexicográfica**;
- **b)** Determine, justificando sua resposta, se o grafo G é conexo ou não. Caso ele seja conexo, estabelecer, também justificando sua resposta:
 - i. se ele é simplesmente conexo, mas não semi fortemente conexo; ou
 - ii. se ele é semi fortemente conexo, mas não fortemente conexo; ou
 - iii. se ele é fortemente conexo.
- c) Determine os componentes fortemente conexos de G utilizando o método de Kosaraju.

	1	2	3	4	5	6	7
TD	1	2	4	12	3	5	6
тт	14	11	9	13	10	8	7
Pai		1	5	1	2	3	6

- **b)** O grafo G é conexo porque seu grafo subjacente é conexo, ou ainda, porque possui apenas um componente. Além disso, o grafo G é semi fortemente conexo, mas não fortemente conexo, porque os vértices 1 e 4 não são mutuamente alcançáveis.
- c) Abaixo, estão descritos os passos do método Kosaraju aplicado ao grafo G:
- 1º passo: Executar uma busca em profundidade em G e salvar os tempos de término (feito na letra \underline{a});
- **2º passo:** Construir o grafo G_R (grafo reverso de G);

 ${\bf 3^o}$ passo: Fazer busca em profundidade em ${\it G_{R}}$ em ordem decrescente dos tempos de término;

	1	2	3	4	5	6	7
TD	1	4	2	9	3	11	12
тт	8	5	7	10	6	14	13
Pai		5	1		3		6

Portanto, os componentes fortemente conexos são: {1, 2, 3, 5}, {6, 7} e {4}

17. Indique qual dos seguintes grafos não é isomorfo a nenhum dos demais:

a)
$$G_1 = (\{1, 2, 3, 4, 5\}, \{\{1, 2\}, \{2, 3\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{4, 5\}\})$$

- **b)** $G_2 = (\{1, 2, 3, 4, 5\}, \{\{4, 5\}, \{1, 3\}, \{1, 3\}, \{2, 3\}, \{2, 5\}, \{4, 5\}\})$
- **c)** $G_3 = (\{1, 2, 3, 4, 5\}, \{\{1, 3\}, \{2, 4\}, \{1, 2\}, \{2, 3\}, \{3, 5\}, \{4, 5\}\})$
- **d)** $G_4 = (\{1, 2, 3, 4, 5\}, \{\{1, 2\}, \{1, 2\}, \{2, 3\}, \{3, 4\}, \{3, 4\}, \{4, 5\}\})$
- **e)** $G_5 = (\{1, 2, 3, 4, 5\}, \{\{4, 5\}, \{1, 3\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{4, 5\}\})$

Todos os grafos apresentados possuem o mesmo número de vértices, arestas e componentes. Porém, é possível observar que apenas o grafo G_2 não possui arestas paralelas, portanto, não é isomorfo aos demais.

18. O centro de um grafo é igual ao subconjunto de vértices com excentricidade mínima. Forneça um algoritmo (passo a passo) para determinar o centro de um grafo. Apresente um exemplo que ilustre cada uma das etapas do método descrito.

// TODO