

# Mengenal Sistem Cerdas

Sistem cerdas dan Pendukung Keputusan

#### Mengenal Sistem Cerdas

- Apa itu sistem cerdas (intelligent system)?
- Sistem Cerdas dalam Bisnis
- Karakteristik Sistem Cerdas
- Bidang Ilmu Kecerdasan Buatan (AI)
- Paradigma Soft Computing
- Metodologi Sistem Cerdas:
  - Sistem Pakar (Expert System)
  - Sistem Samar (Fuzzy System)
  - Jaringan Syaraf Tiruan (Artificial Neural Networks)
  - Algoritma Genetika (Genetic Algorithms, GA)
  - Penalaran Berbasis Kasus (Case-based reasoning, CBR)
  - Data Mining
  - Agen Cerdas (Intelligent Software Agents)
  - Teknologi Bahasa (Language Technology)

#### Apa itu Sistem Cerdas?

- Kecerdasan? Sulit didefinisikan, namun berkaitan dengan:
  - Penalaran (Reasoning)
  - Pembelajaran (*Learning*)
  - Kemampuan Adaptasi (Adaptivity)
- Sistem yang benar-benar cerdas mampu menyesuaikan (adapts) dirinya dengan perubahan dalam masalah (automatic learning).
- Kecerdasan mesin: "Komputernya" mengikuti proses penyelesaian masalah seperti yang dilakukan manusia
- Sistem cerdas menunjukkan kecerdasan level mesin, penalaran, ada learning, tidak harus selfadapting.

#### Sistem Cerdas dalam Bisnis

- Menggunakan satu/lebih perangkat cerdas, biasanya untuk membantu pengambilan keputusan (DSS)
- Bertujuan untuk:
  - Meningkatkan produktivitas
  - Memperoleh keuntungan kompetitif (daya saing)
- Contoh informasi yang diolah:
  - Pola perilaku pelanggan Sentimen konsumen
  - Tren pasar
- Contoh aplikasi :
  - Layanan Pelanggan (Pemodelan Relasi Pelanggan)
  - Penjadwalan (misal: Operasi tambang)
  - Data mining (klasifikasi, asosiasi)
  - Prediksi pasar keuangan (saham, dll)
  - Kendali kualitas (Quality control)

#### Karakteristik Sistem Cerdas

- Mempunyai satu atau lebih sifat:
  - Mampu mengekstrak dan menyimpan pengetahuan
  - Proses penalaran seperti manusia
  - Pembelajaran dari pengalaman (atau Training)
  - Berurusan dengan ekspresi tidak tepat/teliti dari fakta
  - Menemukan solusi melalui proses mirip evolusi alami
- Tren Terkini? Interaksi yang lebih canggih dengan pengguna melalui:
  - Pemahaman bahasa Alami
  - Pengenalasan dan Sintesis bicara (speech)
  - Analisis citra (image)
- Kebanyakan sistem cerdas saat ini berbasis pada
  - Sistem pakar berbasis aturan
  - Satu /lebih metodologi dalam soft computing.

#### Ilmu Kecerdasan Buatan (AI)

- Tujuan Utama: Pengembangan software agar mesin mampu menyelesaikan masalah melalui penalaran mirip manusia.
- Belajar membangun sistem berdasarkan model representasi pengetahuan dan pemrosesan dalam pikiran manusia
- Termasuk kajian mengenai otak (struktur dan fungsifungsinya).
- Hadir sebagai disiplin ilmu sejak 1956. Awalnya tidak berkembang, karena:
  - Minimnya pemahaman tentang kecerdasan dan fungsi otak
  - Masalah yang akan diselesaikan dianggap kompleks
- Expert systems Cerita sukses AI tahun 1980-an



## Paradigma Soft Computing (SC)

- Atau Computational Intelligence
- Tidak seperti komputasi konvensional, teknik SC:
  - 1. Dapat bertoleransi dengan data masukan yang tidak-tepat/teliti, tidak lengkap atau rusak (corrupt)
  - 2. Memecahkan masalah tanpa langkah-langkah solusi eksplisit
  - 3. Mempelajari solusi melalui observasi dan adaptasi berulang
  - 4. Mampu **menangani informasi yang dinyatakan** dalam terminologi bahasa kurang jelas (**samar**)
  - Sampai pada suatu solusi yang dapat diterima melalui evolusi

#### Paradigma Soft Computing (SC)

- 4 ciri pertama bersifat umum dalam pemecahan masalah oleh manusia
- Karakteristik ke-5 (evolution) ada di alam
- Metodologi SC yang dominan dalam sistem cerdas adalah:
  - Artificial Neural Networks (ANN)
  - Fuzzy Systems
  - Genetic Algorithms (GA)

#### Sistem Pakar (ES)

 Dirancang untuk menyelesaikan masalah pada suatu domain (bidang), misal: ES untuk mendiagnosa gejala sakit pada pasien

#### Pembuatan:

- Menanyai para pakar di bidang tersebut
- Menyimpan pengetahuan yang diperoleh dalam suatu bentuk yang sesuai bagi penyelesaian masalah, menggunakan penalaran sederhana

#### Penggunaan:

- Pengguna memasukkan query sesuai dengan masalah yang ditetapkan oleh sistem cerdas.
- Query tersebut digunakan untuk pengambilan keputusan berbasiskan pada pengetahuan
- Jawaban diberikan ke pengguna, atau mungkin perlu masukan lebih lanjut.

#### Sistem Pakar (ES)

- Basis pengetahuan biasanya berupa himpunan aturan IF ... THEN ...
- Contoh domain dari aplikasi ES:
  - Perbankan dan keuangan (penilaian kredit, kelangsungan proyek)
  - Pemeliharaan (diagnosa kegagalan mesin)
  - Retail (saran pola membeli yang optimal)
  - Layanan Darurat (konfigurasi peralatan)
  - Hukum (aplikasi hukum dalam scenario kompleks)

#### Arsitektur Sistem Pakar



## Jaringan Syaraf Tiruan (ANN)

- Otak manusia terdiri dari 100 milyar elemen pemrosesan sederhana bernama neuron yang sangat rapat dan saling-terhubung
- ANN didasarkan pada model yang disederhanakan dari neuron dan operasi-operasinya
- ANN belajar dari pengalaman representasi berulang dari masalah contoh dengan solusi-solusinya yang sesuai.
- Setelah pembelajaran, ANN mampu memecahkan masalah, bahkan dengan masukan (input) paling baru
- Fase pembelajaran mungkin melibatkan interfensi manusia (supervised)
- 'Model' penyelesaian masalah yang dikembangkan tetap implisit dan tidak diketahui oleh pengguna
- Sangat sesuai untuk masalah yang tidak mudah disolusikan secara algoritmik, misal: pattern recognition dan decision support.

## Jaringan Syaraf Tiruan (ANN)



## Jaringan Syaraf Tiruan (ANN)

- Model-model dari ANN tergantung pada:
  - Arsitektur
  - Metode Pembelajaran
  - Karakter operasional lain, misal: jenis fungsi aktifasi
- Bekerja baik pada masalah pattern recognition dan klasifikasi
- Kekuatan utama: mampu menangani data yang sebelumnya tidak terlihat, tidak lengkap atau rusak
- Beberapa contoh aplikasi:
  - Deteksi kepadatan di bandara
  - Pengenalan wajah
  - Penilaian resiko keuangan
  - Optimisasi da penjadwalan

#### Algoritma Genetika (GA)

- Termasuk evolutionary computation
- Solusi diperoleh melalui suatu proses :
  - Kelangsungan hidup dari fittest (paling tahan)
  - Keturunan campuran (crossbreeding) dan
  - mutasi
- Suatu populasi dari solusi kandidat diinisiasi (kromosom)
- Generasi baru dari solusi diproduksi dimulai dengan populasi awal, menggunakan operasi genetika tertentu: pemilihan, crossover dan mutasi

#### Algoritma Genetika (GA)

- Generasi berikutnya diproduksi dari populasi saat ini menggunakan
  - crossover (menyambung, menggabung potongan solusi dari induk)
  - mutasi (perubahan acak dalam parameter-parameter yang mendefinisikan solusi)
- Fitness (kemampuan) dari solusi baru dievaluasi menggunakan suatu fungsi fitness.
- Langkah-langkah pembangkitan solusi dan evaluasi berlanjut sampai diperoleh solusi yang dapat diterima.
- GA telah digunakan dalam:
  - Optimisasi portfolio
  - Prediksi kebangkrutan
  - Peramalan keuangan
  - Perancangan mesin jet
  - Penjadwalan

## Sistem Samar (FL)

- Logika tradisional bernilai salah satu dari dua:
  - true atau false (benar atau salah)
- Penyelesaian masalah "nyata" harus berurusan dengan proposisi yang tidak sepenuhnya benar atau salah
- Presisi yang tepat mungkin sulit dan berakibat tidak diperoleh solusi yang optimal
- Sistem Fuzzy menangani informasi tidak "pas" dengan memberikan suatu derajat kebenaran – menggunakan logika samar

## Sistem Samar (FL)

- Pengetahuan dapat diekspresikan dalam terminologi bahasa yang samar.
- Fleksibilitas dan kekuatan dari FL sudah banyak digunakan.
  - Penyederhanaan aturan dalam sistem kendali, ada ketidak- tepatan
- Aplikasi dari fuzzy systems:
  - Kendali dari proses fabrikasi (manufacturing)
  - Alat-alat rumah-tangga, seperti AC, mesin cuci & kamera
  - Sering dikombinasikan dengan metodologi cerdas lain, diperoleh sistem hybrid fuzzyexpert, neuro-fuzzy, atau fuzzy-GA.

#### Penalaran Berbasis Kasus (CBR)

- Sistem CBR memecahkan masalah dengan memanfaatkan pengetahuan (knowledge) mengenai masalah serupa yang ditemukan sebelumnya (masa lalu)
- Pengetahuan masa lalu dijadikan sebagai suatu basis kasus (case-base)
- Sistem CBR mencari basis kasus bagi kasus-kasus dengan atribut-atribut yang serupa dengan masalah yang diberikan.
- Solusi diperoleh dengan mensintesis kasus-kasus serupa, dan menyesuaikan untuk memenuhi perbedaan antara masalah yang diberikan dan kasus yang serupa
- Sulit dipraktekkan tetapi sangat tangguh jika berhasil dilakukan

#### Penalaran Berbasis Kasus (CBR)

- Sistem CBR dapat meningkatkan overtime karena belajar dari kesalahan-kesalahan yang dibuat pada masalah masa lalu.
- Contoh aplikasi:
  - Penalaran menurut undang-undang (Legal, hukum)
  - Mediasi perselisihan
  - Data mining
  - Diagnosa kesalahan
  - Penjadwalan

#### Data Mining

- Proses eksplorasi dan analisis data untuk menemukan informasi baru dan bermanfaat
- Volume sangat besar data point-of-sale (POS) dibangkitkan atau ditangkap secara elektronik setiap hari, misal:
  - Data yang dihasilkan oleh bar code scanner
  - Database detail panggilan pelanggan
  - File log web server dalam situs e-commerce.

#### Data Mining

- Dapat mengekstrak informasi perilaku pasar dan pengguna dengan menggali data tersebut
- Informasi ini mungkin:
  - Menyatakan tren & asosiasi perilaku pasar
  - Dapat meningkatkan keunggulan kompetitif/efektifitas pemasaran.
- Teknik-teknik seperti ANN dan decision trees dapat menerapkan data mining pada data besar (data warehouse).
- Ketertarikan bertambah dalam penerapan data mining dalam area seperti kampanye direct target marketing, deteksi penipuan dan pengembangan model untuk membantu prediksi keuangan, juga sistem anti-terorisme

## Agen Cerdas (ISA)

- Program komputer yang menyediakan asisten aktif bagi pengguna sistem informasi
- Membantu pengguna mengatasi information overload
- Mampu belajar dari pengguna juga agen software cerdas lainnya
- Contoh aplikasi:
  - Menghimpun, menyaring & mengelola berita & email
  - Online Shopping
  - Notifikasi Kejadian (event)
  - Penjadwalan Personal
  - Online help desk, interaktif
  - Implementasi Tanggap Cepat

## Agen Software & Hardware





## Teknologi Bahasa (LT)

- Aplikasi pengetahuan bahasa manusia bagi solusi berbasis komputer
- Komunikasi antara manusia dan komputer adalah aspek penting sistem informasi cerdas
- Aplikasi LT:
  - Natural Language Processing (NLP), Knowledge
  - Representation, Speech recognition
  - Optical character recognition (OCR), Handwriting recognition
  - Machine translation, Text summarisation
  - Speech synthesis
- Sistem berbasis LT dapat berupa front-end dari sistem informasi yang berbasis pada perangkat cerdas lainnya

#### Kontak IF 2018

• Anjar: 081958000659

• Rama: 081377879966