Going Cross-Lingual: Computational Methods for Multilingual Text Analysis

Hauke Licht and Fabienne Lind

Gesis Training Course Cologne 6-8.12.2023

Contents (smaller changes possible)

Day	Morning Session	Afternoon Session	
1	Intro & Overview about applications, problems, and solutions, validation	Corpus and Input Selection	
2	Obtaining Measures: machine translation and supervised classifications	Multilingual supervised classification and measurement validation	
3	Multilingual topic modeling with BERTopic and input on tokenization and pre-processing	Individual consultations on your projects	

Workshop repository

https://github.com/fabiennelind/Going-Cross-Lingual_Course

Today

09:30 - 11:00	Machine translation
11:00 - 11:15	Coffee break
11:15 - 12:30	Multilingual transformers for supervised text classification (input and guided exercise)
12:30 - 13:30	Lunch break
13:30 - 15:00	Valid outputs in multilingual & multi-context scenarios (input and guided exercise)
15:00 - 15:15	Coffee break
15:15 - 16:30	Individual practice with with own/prepared data

One-on-one slot assignment

for Friday afternoon

Slot assignments

you can change your slot if you find someone to switch

(initial assignments based on randomization)

Tamer Farag	13:30	13:52 FABIENNE	
Johannes Breuer	13:52	14:15 FABIENNE	
Robin Rentrop	14:15	14:37 FABIENNE	
Luis Sattelmayer	14:37	15:00 FABIENNE	
Jasmin Rath	15:00	15:23 FABIENNE	
Joshua Cova	15:23	15:45 FABIENNE	
Lucienne Engelhardt	15:45	16:08 FABIENNE	
Silvia Porciuleanu	13:30	13:52 HAUKE	
Malo Jan	13:52	14:15 HAUKE	
David Schweizer	14:15	14:37 HAUKE	
Lea Kaftan	14:37	15:00 HAUKE	
Christina	15:00	15:23 HAUKE	
Gammy (Patcharin Sae-heng)	15:23	15:45 HAUKE	
Lewin Schmitt	15:45	16:08 HAUKE	
Thanh Nguyen	16:08	16:31 HAUKE	

Machine translation

transferring multilingual corpora to a "common" denominator language

History

until recently, **machine translation** (MT) has been the default in multilingual quantitative text analysis

- several methods papers evaluate its reliability and validity for bag-of-words analysis (e.g., Lucas et al., 2015; de Vries et al., 2018, Mate et al., 2023) and embedding-based analysis (e.g., Mate et al., 2023)
- lots of applications in substantive comparative research

How it works (note: all illustrations by Lena voita)

MT is a **sequence-to-sequence** NLP task: we want to transfer

- a sequence of words in one language (the source) into
- a sequence of words in another language (the target)

The state-of-the-art is training a **decoder- encoder** neural network for this

- using many sentence pairs
- covering many languages

The **encoder** is an embedding model

- it inputs the source sentence
- it represents it with an embedding (numeric vector)

The **decoder** is a generative model

- it generates the output sentence conditional on the input embedding
- with the "correct" target sentence as a cue

Text generation is recursive

Text generation is recursive

Text generation is recursive

At training time, text is generated recursively

At inference time (i.e., prediction), "optimal" translation is found via beam search

Several pol/comm sci papers have evaluated NMT for bag-of-words analysis

Reference	Task	Domain	Translation service	Source language(s)	Target lang.
Lucas et al. (2015)	Topic modeling (STM)	Citizen-produced social media	Google Translate	Arabic, Chinese	English
Vries et al. (2018)	Topic modeling (LDA)	Parliamentary speech	Expert translations, Google Translate	Danish, French, German, Spanish, Polish	English
Reber (2019)	Topic modeling (LDA)	Web pages of (I)NGOs	$\begin{array}{c} \text{Google Translate,} \\ \text{DeepL} \end{array}$	German	English
Windsor et al. (2019)	Dictionary analysis (LWIC)	UN plenary speeches	Google Translate	English, French, German, Russian, Chinese, Arabic	English
Düpont and Rachuj (2021)	Textual similarity	Party manifestos	Google Translate	12 languages a	English
Courtney et al. (2020)	Supervised classification	News article paragraphs	Google Translate	German, Spanish	English
Lind et al. (2021)	Supervised classification	News articles	Google Translate	German, Hungarian, Polish, Romanian, Spanish, Swedish	English
Licht (2023)	Supervised classification	Party manifestos	M2M (Fan et al. 2021)	12 languages b	English

^a Catalan, Danish, Dutch, Finnish, French, Galician, German, Italian, Norwegian, Portuguese, Spanish, and Swedish

 $[^]b$ same as Düpont and Rachuj (2021) by pooling their and data by Lehmann and Zobel (2018)

topic modeling:

- on average, document-topic and topic-word representations are very similar when comparing LDA topic models fitted to human- and machine-translated (*Google*) topics, respectively (de Vries *et al.*, 2018)
- Reber (2019) also evaluate DeepL and Google and finds similarly encouraging results

dictionary analysis:

- english dictionary applied to machine-translated corpus gives similar measurements as if applied to human-translated documents (Windsor et al., 2019)
- but machine-translating of keywords is not a good idea (experts should check them; see Lind et al., 2019; Proksch et al., 2019)

supervised classification

- language-specific classifiers trained on machine-translated texts (Google) perform as well as classifiers trained on texts in their source languages (holding dataset constant; Courtney *et al.*, 2020)
- Transformers fine-tuned on machine-translated labeled texts perform as well as multilingual Transformers (Mate *et al.*, 2023, Table 3) (but only evaluated for Hungarian)

How to

two options

- commercial services (Google, DeepL, AWS, Microsoft, etc.)
- "free" open-source NMT models:
 - Helsinki NLP's OPUS-MT
 - Facebook Research's M2M
 - some others, see here for example

How to

two options

- commercial services (Google, DeepL, AWS, Microsoft, etc.)
- "free" open-source NMT models:

Discuss: what are these options pros and cons?

Two options – pros and cons

Commercial services

pros:

- high-quality translations often many translation directions (especially Google)
- usability (API, interface available)
- language coverage

cons:

- costs (you pay per character, 1 million characters ~= 20 US Dollars)
- limit replicability
- Replicability (there might be an update to the model) Problematic for sensitivity data

Two options – pros and cons

Open-source models

pros:

- freely available for download and use ⇒ replicable
- transparent: we know what training corpora have been used
- usually good-enough translation quality

cons:

- limited translation directions (problem with "low-resource" languages)
- you need to know how to code (but that's why you're here;)
- need access to a GPU

So, let's code

notebook 'translation_basics.ipynb' in code/ on github

multilingual Transformers and embeddings

transferring multilingual corpora into a common embedding space

The idea: transfer learning (note: all illustrations by Lena voita)

- Training task-specific models is resource-intensive =(
- Train general-purpose models on large text corpora through self-supervision (next slide) ⇒ "fine-tune" (i.e. adapt) for various tasks

Neural networks trained for language modeling (LM) on large (multilingual) text corpora through self-supervision

BFRT: masked I M

GPT: "causal" LM

BERT performs trains for two tasks

- masked LM
- next sentence prediction (NSP)

Note: other models omit NSP

each layer of BERT encoder has three components

- token embeddings
- 2. segment embeddings
- 3. position embeddings

Note: other models dispens with NSP

Attention is all you need!

To create token embeddings that reflect a word's context, the attention mechanism is applied

explore it with **BERTVIZ**

Illustration from paper "What Does BERT Look At?"

Fine-tuning

- 1. take pre-trained Transformer
- 2. add classification layer on top of output embeddings
- 3. take labeled text dataset to train Transformer+classifier through supervised learning ⇒ fine-tuning

Fine-tuning ingredients

- a *label* text dataset:
 - a corpus of texts (e.g., sentences; could be machine-translated)
 - in which each document/text has been assigned to
 - a single label from
 - a fixed set of label classes (e.g., 'positive', 'neutral', 'negative')
- a pre-trained (multilingual) Transformer model you can fine-tune for sequence classification
- the pre-trained tokenizer (comes with the model!)

Political Sci applications

A very selective list of examples

- identify populist campaign messages (Bonkowski et al., 2022)
- measure expressed emotions in parl. speech (Widmann & Wich, <u>2023</u>)
- classify stances on political issues (Bestvater & Monroe, 2023)
- measure parties' anti-elite strategies (Licht et al., <u>2023</u>, multilingual)
- transfer classifications across languages (Ho & Chan, <u>2023</u>)
- categorize the content of social (and other) media (Kroon et al., 2023)

Let's code

notebook 'transformer_finetuning.ipynb' in code/ on github

What are open questions?

Thank you very much