

Université Hassan 2 Faculté des Sciences Aïn Chock de Casablanca Département Mathématiques & Informatique

Examen de Rattrapage Informatique

SMP S4

Date: 26/06/2018

Durée: 1h30

<u>Exercice 1</u> (6 points): Le programme suivant déclare une matrice de taille 3x3 et effectue sur ses éléments plusieurs traitements <u>successifs</u> et <u>liés entre eux</u>.

a. Donnez pour chaque étape du programme les valeurs contenues dans la matrice.

Le Programme	Vale	Valeurs contenues dans la matrice N			e M
<pre>int main() {</pre>					
int M[3][3] = {		1	2	3	
{1, 2, 3},		4	5	6	
{4, 5, 6},					
{7, 8, 9}		7	8	9	
};					
// étape 1					
for(int i = 0; i < 3; i++){		1	1	2	
for(int j = 1; j < 3; j++){		4	1	5	
M[i][j] -=M[i][j-1];			•		
}		7	1	8	
}					
// étape 2		1	4		
for(int i = 0; i < 3; i++){		1	1	1	
M[i][2] -= M[i][0];		4	1	1	
}		7	1	1	
// étape 3					
for(int i = 0; i < 3; i++){					
for(int j = 0; j < i; j++) {		1	4	7	
int Z = M[i][j];		1	1	1	
M[i][j] = M[j][i];			<u>'</u>	1	
M[j][i] = Z;		1	1	1	
}					
}					

```
// étape 4
for(int i = 0; i < 3; i++){
                                                    1
                                                                     0
                                                             0
  for(int j = 0; j < 3; j++) {
     if (i != j)
                                                    0
                                                             1
                                                                     0
           M[i][j] *= 0.01;
                                                                      1
                                                              0
                                                    0
 }
}
// étape 5
for (int i = 0; i < 3; i++) {
                                                           1
                                                    0
  for(int j = 0; j < 3; j++) {
     M[i][j] ^= 1;
                                                            0
 }
                                                    1
                                                             1
                                                                      0
}
}
```

b. Donnez un code permettant de construire deux tableaux **Tp** et **Timp** dans lesquels, on met, respectivement, les valeurs paires et impaires de la matrice **M** (indépendamment des valeurs contenues dans la matrice)

Exercice 2 (4 points)

Soit le programme suivant qui déclare une fonction qui permet d'afficher sur l'écran un triangle-rectangle et qui l'appelle par la suite au sein de la fonction principale. Le programme contient <u>8 erreurs</u>. Donnez dans le tableau ci-dessous le numéro de chaque ligne ainsi que l'instruction corrigée.

```
1
2
3
4
5
6
7
8
9
   #include <studio.h>
   void triangle(char c, int h) {
   for (int i = 0; i < h; i+) {
    for (int j = 0; j =< i; j++) {
      printf("%c", c);
      }
   printf('\n');
10
   }
11
12
13
14
15
16
17
   void main()
   int hauteur ;
   char car;
   printf("Donnez le caractère pour dessiner le triangle : ");
19
   printf("Donnez la hauteur du triangle : ");
20
21
22
23
   scanf("%d", %hauteur);
   void triangle(car, hauteur);
```

Numéro de ligne	Instruction corrigée	
1	stdio.h	
4	i++	
5	j<=i	
8	printf("\n")	
12	main() {	
17	car= getchar()	
20	&hauteur	
22	triangle(car,hauteur)	

Exercice 4 (10 points)

- 1. Donnez une fonction permettant de calculer le factoriel d'un nombre passé en paramètre,
- 2. Donnez une fonction permettant de calculer le nombre d'arrangements de ${\bf k}$ éléments parmi ${\bf n}$. Pour rappel : $A_n^k=\frac{n!}{(n-k)!}$
- 3. Donnez une fonction principale permettant de déclarer deux entiers X et Y et de calculer A_X^Y en utilisant la fonction définie dans la question précédente.

<pre>int factoriel(unsigned int nb) {</pre>
int factorielle(unsigned int n) {
if (n < 2) return 1;
unsigned int result = 1;
for (unsigned int i = 2; i <= n; ++i) {
result *= i;
}
return result:
1 Teturi resuit,
} }
<pre>float arrangement(unsigned int k, unsigned int n) {</pre>
roturn ((floot) (footoriol (n) / footoriol(n k)):
return ((float) (factoriel (n) / factoriel(n-k));
}
<pre>void main(){</pre>
voia main() (
<u> </u>
unsigned int n,k;
printf("entrez la valeur de n");
scanf("%u",&n);
printf("entrez la valeur de k");
scanf("%u",&k);
printf("Arrangement = %f",arrangement(n,k));
}