L7 Locally presentable & Accessible categories

In the previous lecture we sow sketcher a categorical godget useful to extended stuff. So, that was a becture about syntox.

this lecture will be about (their) senantics. We will introduce the nation of accessible cetagenies.

	Syntox	Sementics	
Sporter	Mixed Skutch	Acusable	
	Limit skitch	Locally presentable certagory	

So, in a nutshell, accessible estayorises will be an extremely broad closs of cote gorin (enything amount to the by a sketch) while boully bresented the orman own will be a more restricted class, still welling a vert majority of reasonable cetegories (of some kind of algebraic flavour).

We will focus on be. pron for time reason, the lecture has two monn parts

Definition of accemble/pres category Representation theorem

First encounter with fle

small offict organist and orthograph

Generators In the theory of accumint cetyporion the notion of guerator is quite important. Det A generator / superator / superating set / generating set). is a set of objects with the following property: Given two maps of: K -> K' thre exist a map $q \xrightarrow{J} k \xrightarrow{j} k'$

that does not make them equal. Equivolatly the fucker

. 11 k (,, -) is forthful.

· N(i): L --- Set got is fortiful

Exorgles Zenrt-r Category Md(R) Treviously in the cours we mentioned the notion of denge generator. Hot is charly a stronger nation. Not all generators one the some (!) Det 4 generator is strong if it distinguishes isomorphism alones. I.e. given a power subobject $y = \frac{1}{x}$ Ane is a mosp that does not feetor though the rubayhor. Equivelently · Il K(g,-) is faithful + consentive . N(i) is forthful + consentine If I has equalities a right adjust is faithful + conservative iff it is conservative. All the poor exergles one strong but top.

[3]

Recop . Implications of generators. Dence => strong => \$ Rum It is comuch easier to ship that counting is a generator. Density is a very Lord they to dech. Ramo (Ishall) g is the is demon iff N(i) is fully faithful deme | fully feithful conseret to forthful struy forthful. [Smll shjeets] In a coteyory some shjeets have an "abstract cordinality", which is collad "present otherty ronk". we elresoy sox to Lisa of Tini-Less. Def the object is (1-prentity) if its home further K(g1-) peur 7-directed whints-Prop In Set, X is 7-pres iff cord(x) < 2Exosph Simler for groups and observed streff In top? alge knows top ?

[4

We have already met this nation in the lecture about varieties. Do you remember?

From 7-pros shouts are Isad mon 1-small adimts.

Acussimily

Det A category is 1-accessible if it has 7-directed colimnts and a dense generator made of 4 presentable objects.

It is badly 4-presentable if it is 7-accessible and complete.

Excuples Set, ok. Set, ok.

Frp? Mod(R)? Top? It's lord to say-How & I test of the generator is demse?!

them A cotegory is I - ownhe It it her I - der coloris
and a cotegory is I - ownhe It it has generated under
I - directed coloris-

Run ok, this is much better Grp, Mod R are easy to cleck- top? Colombs in top are less triviel...

then A category is be I-presentable if it is ecomplete and has a strong generator mode of I-pres objects.

Ren top in not.

"Representation theorem." Port 2 them Chaider the inclusion from (k) is k where K is a -accombe. Hum the function is fully toithful & present A-directed climbs. Question What is the image? We will only anserver in the presentable case. Hm If K is le pres the N(i) has a left adjoint. So it is reflective in Psh(Pray (K)) Moverer N(i) lands in Lex (Pren(k)), Set)-K - Psh(Pron(K)) Count (Pres (K°), Set) K ~ Cont (Pren (K)) for ell locally 7- pren category-Ah... now I see some lint sketch enterry the proture...

For the vert of the lecture we follow closely LPAC 1.C. per 27-36.

Rem 1.33(7) &(8) are very important but there is a bed type in the book!!