Devoir maison 10.

À rendre le lundi 29 avril 2024

On considère E l'espace des fonctions de classe C^{∞} de \mathbb{R} dans \mathbb{R} , et les éléments de E suivants :

$$f_1: x \mapsto \sin(x) \; ; \; f_2: x \mapsto x \sin(x) \; ; \; f_3: x \mapsto \cos(x) \; ; \; f_4: x \mapsto x \cos(x).$$

On pose également $F = \text{Vect}(f_1, f_2, f_3, f_4)$.

- 1°) Montrer que la famille $\mathcal{B} = (f_1, f_2, f_3, f_4)$ est une base de F. Que peut-on en déduire pour F?
- 2°) Pour $f \in F$, on pose d(f) = f'.
 - a) Soit $f \in F$ et $x \in \mathbb{R}$. Doit-on écrire d(f)(x) ou d(f(x))?
 - b) Montrer que $d \in \mathcal{L}(F)$, et préciser la matrice D de d dans la base \mathcal{B} .
- 3°) a) Montrer que D est inversible et préciser son inverse.
 - b) Application : Soit $g: x \mapsto 2x \sin x 3x \cos x$. Justifier l'existence et l'unicité d'une primitive f de g qui soit aussi élément de F. Déterminer cette primitive f.
- **4°)** a) Déterminer la matrice de $h = d^2 + id_F$ dans la base \mathcal{B} .
 - **b)** Déterminer une base de Im(h).
 - c) En déduire, presque sans calculs, que Ker(h) = Im(h).
 - d) Sans calcul matriciel, montrer que $(D^2 + I_4)^2 = 0$.
 - e) Retrouver que D est inversible et expliciter son inverse en fonction de D.
- 5°) On pose $V = \text{Vect}(I_4, D^2)$.
 - a) Montrer que V est un espace vectoriel et préciser sa dimension.
 - b) Montrer que V est stable par multiplication.
 - c) Soit A ∈ V ; A s'écrit donc A = αI₄ + βD² où (α, β) ∈ ℝ².
 Montrer que A et inversible si et seulement si α ≠ β.
 Remarque : On réfléchira bien à la méthode la plus efficace pour répondre à la question.
 - d) Soit $A \in V$. On suppose A inversible. On pose $\varphi: V \to V$ $M \mapsto AM$

Montrer que φ est un automorphisme de V.

En déduire : $A^{-1} \in V$.