California State University, Northridge
College of Engineering & Computer Science
Electrical and Computer Engineering
Department

ECE 443L Digital Electronics Laboratory
Report 10

CMOS based Comparator Circuit Design,
Simulation and Experimental Test as well as
Analysis

By Evan Thomas, Haroutun Haroutunian,
Clayton Lawton



Professor: Sequare Daniel-Berhe

## Abstract:

Lab 4 exposes students of Comparators and their functionalities in everyday electronics. A comparator is simply a device which compares 2 input voltages or currents and outputs indicating which signal was larger. Comparators are largely utilized in Analog-to-digital converters, which are found in almost every advanced electronic.

## Key Terms:

Comparator, ADC, converter

## <u>Simulation and Experimental</u> Result:



Figure 4.1: Case 1 EVAN Comparator Schematic @ 25kHz and 50kHz



| Trace Color | Trace name |         |         | 11-12 | TI(Cursori) - IZ(Cursorz) |                  | 0.000   |         |         |
|-------------|------------|---------|---------|-------|---------------------------|------------------|---------|---------|---------|
|             | X Values   | 0.000   | 0.000   | 0.000 | Y1 - Y1(Cursor1)          | Y2 - Y2(Cursor2) | Max Y   | Min Y   | Avg Y   |
|             | V(M4:d)    | 17.385m | 17.385m | 0.000 | 0.000                     | 0.000            | 17.385m | 17.385m | 17.385m |
|             | V(V4:+)    | 2.5000  | 2.5000  | 0.000 | 2.4826                    | 2.4826           | 2.5000  | 2.5000  | 2.5000  |
|             | V(V3:+)    | 2.5000  | 2.5000  | 0.000 | 2.4826                    | 2.4826           | 2.5000  | 2.5000  | 2.5000  |

Figure 4.2: Case 1 EVAN Comparator Waveform and Cursor @ 25kHz and 50kHz



Figure 4.3: Case 1 EVAN Comparator Circuit Result @ 1kHz and 2kHz



Figure 4.4: Case 1 CLAYTON Comparator Schematic @ 25kHz and 50kHz



Figure 4.5: Case 1 CLAYTON Comparator Waveform @ 25kHz and 50kHz



Figure 4.6: Case 2 HAROUTUN Comparator Schematic @ 20kHz and 40kHz



Figure 4.9: Case 3 EVAN Comparator Waveform @ 50kHz and 4V



Figure 4.7: Case 2 HAROUTUN Comparator Waveform @  $20\,\mathrm{kHz}$  and  $40\,\mathrm{kHz}$ 



Figure 4.8: Case 3 EVAN Comparator Schematic @  $50\,\mathrm{kHz}$  and  $4\,\mathrm{V}$ 



Figure 4.10: Case 3 EVAN Comparator Circuit Output @ 1kHz and 3.92V



Figure 4.11: Case 3 CLAYTON Comparator Schematic @  $50\,\mathrm{kHz}$  and  $4\,\mathrm{V}$ 



Figure 4.12: Case 3 CLAYTON Comparator Waveform @  $50\,\mathrm{kHz}$  and  $4\,\mathrm{V}$ 



Figure 4.13: Case 4 HAROUTUN Comparator Schematic @  $40\,\mathrm{kHz}$  and  $4\,\mathrm{V}$ 



Figure 4.14: Case 4 HAROUTUN Comparator Waveform @ 40kHz and 4V



Figure 4.15: Case 5 EVAN Comparator Waveform @ 25kHz and 50kHz



Figure 4.16: Case 5 EVAN Comparator Waveform @ 25kHz and 50kHz



Figure 4.17: Case 5 EVAN Comparator Circuit Output @ 2kHz and 996Hz



Figure 4.18: Case 5 CLAYTON Comparator Schematic @ 25kHz and 50kHz



Figure 4.19: Case 5 CLAYTON Comparator Waveform @ 25kHz and 50kHz



Figure 4.20: Case 6 HAROUTUN Comparator Schematic @  $40\,\mathrm{kHz}$  and  $4\,\mathrm{V}$ 



Figure 4.21: Case 6 HAROUTUN Comparator Waveform @  $40\,\mathrm{kHz}$  and  $4\,\mathrm{V}$ 

## Conclusion:

Students not only constructed a comparator on the advanced software PSpice but recreated the circuit on a breadboard. As seen in figure 4.17, the comparator functions properly, indicating which input signal was higher. Comparators are found in almost every electronics which allows engineers to produce circuits based upon the comparative result of 2 signals.