Dimensionality reduction techniques

Sanzhar Askaruly (San)

Ulsan National Institute of Science and Technology Ph.D. Candidate in Biomedical Engineering

CodeSeoul MLA December 10, 2022

Overview

What we'll cover today:

- Motivation
- 2 Background mathematics
 - Sample mean
 - Standard deviation
 - Variance
- 3 Examples
 - Iris dataset
- 4 Experiments
- **5** Summary
 - Conclusion
 - Practicum

Motivation

• Relationships between data

Population vs sample

Population vs sample

Population mean

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N} \tag{1}$$

N is number of items in the population

Sample mean

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n} \qquad (2)$$

n is number of items in the sample

Let's take a look on two samples:

Here, $\bar{A}=\bar{B}=35.$ Unfortunately, mean doesn't tell us a lot except for a middle point.

For our two sets, $A=[10\ 20\ 40\ 70]$ and $B=[30\ 33\ 37\ 40]$, we would be more interested in the *spread* of the data. So, how do we calculate it?

Standard deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{(n-1)}}$$
 (3)

In plain English, it is the "average distance from the mean of the data set to a point."

Set 1:
$$A=[10\ 20\ 40\ 70]$$
, and $\bar{A}=35$

Let's calculate standard deviation:

\overline{A}	$(A - \bar{A})$	$(A-\bar{A})^2$
10	-25	625
20	-15	225
40	5	25
70	35	1,225
Total		2,100
Divided by (n-1)		700
Square root		26.4575

Set 2:
$$B = [30 \ 33 \ 37 \ 40]$$
, and $\bar{B} = 35$

Let's calculate standard deviation:

B	$(B-\bar{B})$	$(B-\bar{B})^2$
30	-5	25
33	-2	4
37	2	4
40	5	25
Total		58
Divided by (n-1)		19.333
Square root		4.397

Variance

Similar to standard deviation So, how do we calculate it?

Standard deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{(n-1)}} \tag{4}$$

In plain English, it is the "average distance from the mean of the data set to a point."

Iris flower dataset

Iris flower dataset

Iris flower dataset

Adagrad

Conclusion

22 / 24

Practicum

Thank you for your attention!

- Workshop contents: https://github.com/CodeSeoul/machine-learning/tree/master/ 221210-pca
- Follow-up QA? http://discord.com/users/tuttelikz

References

- Ning Qian. "On the momentum term in gradient descent learning algorithms". In: *Neural networks* 12.1 (1999), pp. 145–151.
- John Duchi, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online learning and stochastic optimization.". In: *Journal of machine learning research* 12.7 (2011).
- Sebastian Ruder. "An overview of gradient descent optimization algorithms". In: arXiv preprint arXiv:1609.04747 (2016).
- Mykola Novik. torch-optimizer collection of optimization algorithms for PyTorch. Version 1.0.1. Jan. 2020.