### ML PREPROCESSING: CATEGORICAL ENCODING

**Matthew Hall** 

#### ONE HOT ENCODING

- When we want categorical variables in our regression / classification problems, we need to somehow represent them as integers
- However, we simply cannot label them all 1,2,3,4...
  as that would imply an incremental relationship
- To get around this, we often "One Hot" Encode The Categorical Variables

#### ONE HOT ENCODING EXAMPLE

 We Have A Column of North – South – East – West

 We Want To Account For This Effect in our Regression

 We Can Code For This Like On The Right:

| region | region_North | region_South | region_East | region_West |
|--------|--------------|--------------|-------------|-------------|
| North  | 1            | 0            | 0           | 0           |
| North  | 1            | 0            | 0           | 0           |
| North  | 1            | 0            | 0           | 0           |
| South  | 0            | 1            | 0           | 0           |
| South  | 0            | 1            | 0           | 0           |
| East   | 0            | 0            | 1           | 0           |
| East   | 0            | 0            | 1           | 0           |
| East   | 0            | 0            | 1           | 0           |
| West   | 0            | 0            | 0           | 1           |
| West   | 0            | 0            | 0           | 1           |

#### **WORD OF CAUTION:**

 As it is on the right, we have collinearity, because region\_West can be perfectly predicted from the first 3 columns

 Excel, and Some OLS Regressions, Cannot Solve This Problem!

| region | region_North | region_South | region_East | region_West |
|--------|--------------|--------------|-------------|-------------|
| North  | 1            | 0            | 0           | 0           |
| North  | 1            | 0            | 0           | 0           |
| North  | 1            | 0            | 0           | 0           |
| South  | 0            | 1            | 0           | 0           |
| South  | 0            | 1            | 0           | 0           |
| East   | 0            | 0            | 1           | 0           |
| East   | 0            | 0            | 1           | 0           |
| East   | 0            | 0            | 1           | 0           |
| West   | 0            | 0            | 0           | 1           |
| West   | 0            | 0            | 0           | 1           |

#### FIXING THE COLINEARITY

 We Can Drop The Last Column to Fix This!

• region\_West is simply all zeroes for the three other coefficients!

| region | region_North | region_South | region_East |
|--------|--------------|--------------|-------------|
| North  | 1            | 0            | 0           |
| North  | 1            | 0            | 0           |
| North  | 1            | 0            | 0           |
| South  | 0            | 1            | 0           |
| South  | 0            | 1            | 0           |
| East   | 0            | 0            | 1           |
| East   | 0            | 0            | 1           |
| East   | 0            | 0            | 1           |
| West   | 0            | 0            | 0           |
| West   | 0            | 0            | 0           |

#### **BINARY ENCODING**

 If We Only Have Two Labels in a Column, We Binary Encode The Column.

- 0 and 1, with Each Corresponding to a Category
- Yes / No, True / False are Prime Candidates For Binary Encoding

#### BINARY ENCODING EXAMPLE

 0 Usually Corresponds to False, and 1 True!

This One Is Really Easy!

| is_customer | is_customer |
|-------------|-------------|
| Yes         | 1           |
| Yes         | 1           |
| No          | 0           |
| No          | 0           |
| Yes         | 1           |
| Yes         | 1           |
| Yes         | 1           |
| No          | 0           |
| No          | 0           |

## COLINEARITY & MODEL ROBUSTNESS

- Earlier, We Dropped Off The First / Last Column To Prevent Collinearity From Appearing in the Model
- However, What Happens When We Want To Predict a Categorical Factor That Hasn't Been Encoded?
  - We Could Do All Zeroes, But That Would Correspond to the Dropped Off Category
  - If We Encode All Categories, All Zeroes Will Correspond to Unknowns in the Model

# FIXING THE CONTRADICTION

- We Can Use a Model Like Ridge Which Can Handle Colinear Variables
  - However, We Lose Interpretation on The Coefficients
  - It's Still Usable for Predictions!
- We Can Encode Unknowns as the Same as the Dropped Off Category
  - Introduces some bias, but if the unknowns are rare, this should be fine!
- There's No Magical Solution, However, We Don't Want Our Models to Break!

#### WHY IN PYTHON

- We Can Use SKLearn to Process This In The Backend, And Not Directly Encode Everything
- Prevent Highly Tedious Work in Excel Imagine Encoding 80 Factors to Be Zero-One!
- And What Happens If It's Subject to Variability?

#### **ASSOCIATED NOTEBOOK**

· mod10-preprocessing-categorical-encoding.ipynb

Let's Get Into It!

