5. Logarithm

FORMULAS

- 1. $\log_a(m*n) = \log_a m + \log_a n$
- 2. $log_a(m/n) = log_a m + log_a n$
- 3. $log_a m^n = nlog_a m$
- 4. $log_a a=1$
- 5. $log_a 1=0$; $log_a 10=1$; $log_a 100=2$

- 6. Change of base: $log_b m * log_a b = log_a m$
- 7. $\sqrt{x} = x^{1/2}$; $\sqrt[3]{} = x^{1/3}$; $\sqrt[4]{x} = x^{1/4}$

- 1. Express the following relations in the logarithmic forms: (i) $3^4 = 81$ (ii) $5^0 = 1$ (iii) $\sqrt[5]{32} = 2$ (iv) $5^{-3} = \frac{1}{125}$ (v) $a^b = c$ [ans.:(i) $\log_3 81 = 4$ (ii) $\log_5 1 = 0$ (iii) $\log_5 1 = 0$ $_{32}2 = \frac{1}{5}$ (iv) $\log_{5}\frac{1}{125} = -3$ (v) $\log_{a}c = b$]
- 2. Express the following logarithmic forms in the exponential forms: (i) $log_264 = 6$ $(ii)log_3\frac{1}{81} = -4$ $(iii)log_a1 = 0$ $(iv)log_{25}\left(\frac{1}{125}\right) = -\frac{3}{2}$ $(v)log_QP = R$ [ans.: $(i)2^6 = 64$ $(ii)3^{-4} = \frac{1}{81}$ $(iii)a^0 = 1$ $(iv)(25)^{-\frac{3}{2}} = \frac{1}{125}$ $(v)Q^R = P$]
- 3. Find the value of x: $(i)x = log_2 128$ $(ii)log_x 81 = 4$ $(iii)log_5 x =$ $-3 (iv)log_{x}243 = 10$ $(v)log_{\sqrt{7}}49 = x \ (vi)log_{10}(7x - 5) = 2 \ (vii)x = log_{10}(0.0001)(viii)log_{\sqrt{x}}0.25 = 0$ 4 [ans.:(i)7 (ii)3 (iii) $\frac{1}{125}$ (iv) $\sqrt{3}$ (v)4 (vi)15 (vii) - 4 (viii) $\frac{1}{2}$]
- **4.** Find the logarithms of : (i)625 to the base 5 (ii)343 to the base $\sqrt{7}$ (iii) 0.1 is the base $9\sqrt{3}$ (iv) 1728 to the base $2\sqrt{3}$ (v) 2401 to the base $\sqrt[3]{7}$ $(vi)2^{-8}$ to the base (vii)81 to the base $\sqrt[3]{9}$ (viii) $\sqrt{5}$ to the base 0.008 (ix) 1728 to the base $2\sqrt{3}$ (ii) 6 (iii) -4/5 (vi) 6 (v)12 (vi) -40.000001 to the base 0.01. [ans.: (i) 4 (vii) 6 (viii) -1/6 ix) 6, (x) 3]
- 5. Find the base when: (i) 3 is the logarithm of 343 (ii)4 is the logarithm of 144 (iii) $-\frac{1}{3}$ is the logarithm of $\frac{1}{3}$ (vi) -1 is the logarithm of $\frac{1}{a}$ [ans.: (i) 7 (ii) $2\sqrt{3}$ (iii) 27 (iv) a]
- 6. Find the simplest values of : (i) $log_3 5 \times log_{25} 27$ (ii) $log_8 27$ if $log_2 3 = a$ (iii) $log_{2\sqrt{2}}x$ if $log_{\sqrt{2}}x = a$ [ans.: (i) $\frac{3}{2}$ (ii) a (iii) $\frac{a}{2}$]
- 7. Prove that, log(1+2+3) = log 1 + log 2 + log 3 [CU(H)'97]
- 8. Express M in terms of N: (i) $\frac{1}{2}log_3M + 3log_3N = 1$ (ii) $log_{10}N = 3 2log_{10}M$ [ans.: (i) $M = \frac{9}{N^6}$ (ii) $M = \sqrt{\frac{1000}{N}}$]

- 9. Prove that, (i) $a^{\log_a x} = x$ (ii) $x^{2\log_x a} = a^2$ (iii) $x^{\log_a y} = y^{\log_a x}$ (iv) $log_a m \times log_b n = log_a n \times log_b m$ (v) $log_2 3 \times log_3 2 = 1$ (vi) $log_a b \times log_b c \times log_b c = 1$ $log_c a = 1$ [CU(H)'93] (vii) $(log x)^2 - (log y)^2 = log(xy) log\left(\frac{x}{y}\right)$ (viii) $a^{log} a^2$ $\times b^{\log_b} 2^y \times c^{\log_c} 2^z = \sqrt{xyz}$.
- 10. Find the values of : (i) $log_3 \sqrt[4]{729\sqrt[3]{9^{-1} \cdot (27)^{-4/3}}}$ (ii) $log_3 log_2 log_{\sqrt{3}} 81$
 - (iii) $log_{\sqrt{2}}16 + log_{\sqrt{3}}9$ (iv) $log_ab \times log_bc \times log_cd \times log_da$ (v) $\frac{log\sqrt{27} + log8 log\sqrt{1000}}{log1.2}$
 - (vi) $log_3 4 \times log_4 5 \times log_5 6 \times log_6 7 \times log_7 3$ (vii) $log_6 \sqrt{6\sqrt{6\sqrt{6}...\infty}}$ (viii) $\log_{5}\sqrt{5\sqrt{5\sqrt{5}...}}$
 - [ans.: (i)1 (ii)1 (iii)2 (iv)1 (v) 3/2 (vi)1 (vii)1 (viii)1]
- 11. Prove that, (i) $log^2 + 16 log \frac{16}{15} + 12 log \frac{25}{24} + 7 log \frac{81}{80} = 1$
 - (ii) $7 \log \frac{10}{9} 2 \log \frac{25}{24} + 3 \log \frac{81}{80} = log 2$ (iii) $7 \log \frac{16}{15} + 5 \log \frac{25}{24} + 3 \log \frac{81}{80} = \log 2$ (iv) $\log \frac{75}{16} 2 \log \frac{5}{9} + \log \frac{32}{243} = log 2$ (v) $7 \log \frac{10}{9} + 3 \log \frac{81}{80} = 2 \log \frac{25}{24} + \log 2$.

 - (vi) $7\log_{\frac{10}{9}}^{\frac{10}{9}} + 3\log_{\frac{80}{9}}^{\frac{81}{9}} = 2\log_{\frac{25}{24}}^{\frac{25}{9}} + \log_2.$ (vii) $x^{\log y \log z} \times y^{\log z \log x} \times z^{\log x \log y} = 1$
 - $(\text{viii}) \frac{1}{\log_{xy}(xyz)} + \frac{1}{\log_{yz}(xyz)} + \frac{1}{\log_{zx}(xyz)} = 2 \qquad \text{(ix) } \log_{b^3} a \times \log_{c^3} b \times \log_{a^3} c = \frac{1}{27}$
 - (x) $\log a + \log a^2 + \log a^3 + \dots + \log a^n = \frac{n(n+1)}{2} \log a$
 - (xi) $log_a x \times log_b y \times log_c z = log_b x \times log_c y \times log_a z$
 - (xii) $log_{\frac{1}{y}}x \times log_{\frac{1}{z}}y \times log_{\frac{1}{z}}z = -1$ (xiii) $log_{x^2}x \times log_{y^2}y \times log_{z^2}z = \frac{1}{8}$
 - $(xiv) \log_b a \times \log_c b \times \log_d c = \log_d a. \qquad (xv) \log_2 \log_2 \log_2 16 = 1. \qquad (xvi) \log_2 10 \log_8 125$
- 12.(a) If $log_{30}2 = .3010$, find the value of log_825 . [ans.: 1.548]
 - (b) If $log_{30}3 = a$ and $log_{30}5 = b$, find the value of $log_{30}8$. [ans.: 3(1- a-b)]
 - (c) If $\log_{10} 2 = 0.30103$ find the value of $\log_5 32$. [ans.:2.15(approx.)
- 13.(i) If $a^2 + b^2 = 7ab$ show that, $\log \left[\frac{1}{2}(a+b) \right] = \frac{1}{2}(\log a + \log b)$
 - (ii) If $\log \frac{x+y}{5} = \frac{1}{2} (\log x + \log y)$ show that, $\frac{x}{y} + \frac{y}{x} = 23$.
 - (iii) If a^{3-x} . $b^{5x} = a^{5+x}$. b^{3x} show that, $x \log \left(\frac{a}{b}\right) = \log a$
 - (iv) If $a^4 + b^4 = 14a^2b^2$ show that, $log_e(a^2 + b^2) = log_e a + log_e b + 2log_e 2$

14.(a) If
$$\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$$
 prove that, $xyz = 1$

(b) If
$$\frac{\log x}{b-c} = \frac{\log y}{c-a} = \frac{\log z}{a-b}$$
 prove that, (i) $x^a y^b z^c = 1$ (ii) $x^{b+c} \cdot y^{c+a} \cdot z^{a+b} = 1$

(iii) If
$$\frac{\log x}{ry - qz} = \frac{\log y}{pz - rx} = \frac{\log z}{qx - py}$$
 prove that, $x^p y^q z^r = 1$

15. If
$$\log 2 = 0.3010$$
, $\log 3 = 0.4771$, $\log 7 = 08451$, find the value of (i) $\log 45$ (ii) $\log 84$ (iv) $\log 294$ (v) $\log 21.6$

16.If
$$\log_{10}2 = 0.30103$$
, $\log_{10}3 = 0.47712$ and $\log_{10}7 = 0.84510$, find the values of (i) $\log_{10}45$ and (ii) $\log_{10}105$. [ans.: (i) $\log_{10}45 = 1.65321$ and (ii) $\log_{10}105 = 2.02119$]

17. If
$$x = log_a(bc)$$
, $y = log_b(ca)$ and $z = log_c(ab)$ show that,

(i)
$$\frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = 1$$
 (ii) $x + y + z + 2 = xyz$

18. If
$$x = log_{2a}a$$
, $y = log_{3a}2a$ and $z = log_{4a}3a$, show that, $xyz + 1 = 2yz$.

19. If
$$log_p x = a$$
 and $log_q x = b$, prove that, $log_{\frac{p}{a}} x = \frac{ab}{(b-a)}$.

20.If
$$\log(x^2y^3) = a$$
 and $\log\left(\frac{x}{y}\right) = b$, find $\log x$ and $\log y$ in terms of a and b. [ans.: $\log_x = \frac{a+3b}{5}$ and $\log_y = \frac{a-2b}{5}$]

21. If
$$x = \frac{e^y - e^{-y}}{e^y + e^{-y}}$$
 show that, $y = \frac{1}{2} \log_e \frac{1+x}{1-x}$.

22. If
$$log_a b = 10$$
 and $log_{6a}(32b) = 5$, find the value of a. [ans.: 3]

23. Solve: (i)
$$\log_{10} x - \log_{10} \sqrt{x} = \frac{2}{\log_{10} x}$$
 (ii) $\log_2 \log_2 \log_2 x = 1$ (iii) $\log_8 x + \log_4 x + \log_2 x = 11$ (iv) $\log_2 x + \log_4 x + \log_{16} x = \frac{21}{4}$ [ans.: (i) 100 or, 1/100 (ii) 16 (iii) 64 (iv)8]

24. If a, b, c, are three consecutive positive integers, show that, log(1+ac)=2logb

- 1. Proved that the $log_2log_2log_216 = 1$ [2012,'14]
- 2. if $x = \log_a bc$, $y = \log_b ca$, $z = \log_c ab$ than prove that $\frac{1}{x-1} + \frac{1}{v+1} + \frac{1}{z+1} = 1$. [1999,2013]

3. Solve:
$$\log_2 x + \log_4 x + \log_{16} x = \frac{21}{4}$$
. [ans.: $x = 23 = 8$.] [2013,'14]

4. Find the value of
$$log_3log_2log_2256$$
. [2013]

5. If
$$a^2+b^2=23ab$$
, then prove that $\log\left\{\frac{1}{5}(a+b)\right\} = \frac{1}{2}(\log a + \log b)$. [2013]

6. If
$$x=1+\log_a bc$$
, $y=1+\log_b ca$, $z=1+\log_c ab$ than prove that $xyz=xy+yz+zx$. [2014]

7. If If
$$\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$$
 prove that, $x^2y^2z^2 = 1$. [2014]

8. Show that
$$7 \log \frac{16}{15} + 5 \log \frac{25}{24} + 3 \log \frac{81}{80} = \log 2$$
. [2015]

9. Find the value of $\log_{6}\sqrt{6\sqrt{6\sqrt{6} \dots^{\circ}}}$. [2015]

10. If $\frac{\log x}{b-c} = \frac{\log y}{c-a} = \frac{\log z}{a-b}$ prove that, x^{b+c} . $y^{c+a} . z^{a+b} = 1$ [2015]

11. Prove that $log_b a. log_c b. log_a c = 1$. [2015]

12.If $a^2+b^2=23ab$, then prove that $\log \frac{a+b}{2} = \frac{1}{2}(\log a + \log b)$. [2016]

13.Find the value of log₃log₂log₂²⁵⁶. [ans.:1] [2016]

14. If $\frac{\log x}{1} = \frac{\log y}{2} = \frac{\log z}{3}$, prove that x, y, z are in GP. [2016]

15.If $a^2+b^2=27ab$, then prove that $\log \frac{a-b}{5} = \frac{1}{2}(\log a + \log b)$. [2016]

16. Prove that $\log_3\left(\sqrt[3]{\sqrt[3]{3 \dots \infty}}\right) = 1$. [2017]

17.If $\log\left(\frac{a+b}{3}\right) = \frac{1}{2}(\log a + \log b)$, show that $\frac{a}{b} + \frac{b}{a} = 7$. [2017]

18. If $x = log_a(bc)$, $y = log_b(ca)$ and $z = log_c(ab)$ show that, $\frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = 1$. [2017]

19. Solve for x if $\log_x 2 + \log_x 4 + \log_x 8 = 6$. [2017]

AMIT EDUCATION