Quantum states and mode decomposition (Notes)

YILUN LIN

June 2025

Overview

These notes summarize how quantum states in quantum field theory are represented in Fock space, how field operators are mode-expanded, and how arbitrary states are expanded in the momentum eigenbasis.

1 Fock Space and Quantum States

Core idea: Fock space organizes states with varying particle number.

• Vacuum state $|0\rangle$: defined by

$$a_{\mathbf{p}}|0\rangle = 0, \quad \forall \, \mathbf{p}.$$
 (1.1)

Physical meaning: The vacuum contains no particles in any momentum mode.

• *n*-particle momentum eigenstate:

$$|\mathbf{p}_1, \dots, \mathbf{p}_n\rangle = a_{\mathbf{p}_1}^{\dagger} \cdots a_{\mathbf{p}_n}^{\dagger} |0\rangle,$$
 (1.2)

satisfying

$$\hat{P}^{\mu} | \mathbf{p}_1, \dots, \mathbf{p}_n \rangle = \left(\sum_i p_i^{\mu} \right) | \mathbf{p}_1, \dots, \mathbf{p}_n \rangle. \tag{1.3}$$

Physical meaning: Each excitation adds a particle with momentum p_i , total four-momentum is sum of individual momenta.

2 Field Operator and Mode Decomposition

Core idea: The field operator creates or annihilates quanta at spacetime points, expanded in momentum modes.

For a free real scalar field $\hat{\phi}(x)$ in the Heisenberg picture:

$$\hat{\phi}(t, \mathbf{x}) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left[a_{\mathbf{p}} e^{-i(E_{\mathbf{p}}t - \mathbf{p} \cdot \mathbf{x})} + a_{\mathbf{p}}^{\dagger} e^{+i(E_{\mathbf{p}}t - \mathbf{p} \cdot \mathbf{x})} \right]. \tag{2.1}$$

$$[a_{\mathbf{p}}, a_{\mathbf{p}'}^{\dagger}] = (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{p}').$$
 (2.2)

Physical meaning: Each Fourier mode behaves as an independent harmonic oscillator; the field operator sums over these to create or annihilate particles at (t, \mathbf{x}) .

3 Expansion of an Arbitrary State

Core idea: Any state in Fock space can be viewed as a superposition of n-particle momentum eigenstates.

$$|\Psi\rangle = \sum_{n=0}^{\infty} \frac{1}{n!} \int \prod_{i=1}^{n} \frac{d^3 p_i}{(2\pi)^3} \Psi_n(\mathbf{p}_1, \dots, \mathbf{p}_n) \ a_{\mathbf{p}_1}^{\dagger} \cdots a_{\mathbf{p}_n}^{\dagger} |0\rangle.$$
 (3.1)

Coefficient functions:

$$\Psi_n(\mathbf{p}_1, \dots, \mathbf{p}_n) = \langle 0 \mid a_{\mathbf{p}_n} \cdots a_{\mathbf{p}_n} \mid \Psi \rangle. \tag{3.2}$$

Physical significance: $\Psi_n(\{\mathbf{p}_i\})$ is the *n*-particle wavefunction in momentum space, encoding the amplitude for finding particles with those momenta.

4 Computing the Coefficient Functions

Core idea: Projecting the state onto basis states extracts the coefficient wavefunctions.

Example: One-Particle States

$$|\Psi\rangle = \int \frac{d^3 p'}{(2\pi)^3} f(\mathbf{p'}) a_{\mathbf{p'}}^{\dagger} |0\rangle.$$
 (4.1)

Project:

$$\Psi_1(\mathbf{p}) = \langle 0 \mid a_{\mathbf{p}} \mid \Psi \rangle = \int \frac{d^3 p'}{(2\pi)^3} f(\mathbf{p'}) \langle 0 \mid a_{\mathbf{p}} a_{\mathbf{p'}}^{\dagger} \mid 0 \rangle = f(\mathbf{p}). \tag{4.2}$$

Physical significance: The function $f(\mathbf{p})$ chosen in the state construction directly becomes the momentum-space wavefunction.

5 Position-Space Wavefunction

Core idea: Field operators can create localized excitations, giving positionspace amplitudes.

Definition

$$\hat{\psi}^{\dagger}(\mathbf{x}) = \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_{\mathbf{p}}}} a_{\mathbf{p}}^{\dagger} e^{-i\mathbf{p}\cdot\mathbf{x}}.$$
 (5.1)

Position eigenstate:

$$|\mathbf{x}\rangle = \hat{\psi}^{\dagger}(\mathbf{x})|0\rangle, \quad \langle \mathbf{x} \mid \mathbf{y}\rangle = \delta^{(3)}(\mathbf{x} - \mathbf{y}).$$
 (5.2)

N-particle position wavefunction:

$$\Psi(\mathbf{x}_1, \dots, \mathbf{x}_n) = \langle 0 \mid \hat{\psi}(\mathbf{x}_1) \cdots \hat{\psi}(\mathbf{x}_n) \mid \Psi \rangle. \tag{5.3}$$

Physical meaning: $\Psi(\{\mathbf{x}_i\})$ encodes the joint probability amplitude for finding particles at spatial points.

6 Practical Steps

Core idea: Workflow for translating abstract states to usable wavefunctions.

- 1. Choose a basis (momentum, angular momentum, position, or other physical quantities) according to symmetry or measurement.
- 2. Apply corresponding annihilation or field operators to project $|\Psi\rangle$.
- 3. Extract coefficient functions (wavefunctions or wavefunctionals).

4.	Use these in	n integrals	to compute	physical	observables or	correlation
	functions.					