Proyecto de Redes de Datos

Interconexión de sucursales con enrutamiento dinámico

Integrantes:

Christopher Roberto Villon Loor

Adrian Enrique Toledo Arcos

Jordan Stuart Sanchez Cevallos

Diseño de la red

1. Topología

La red se organiza bajo una estrella, en la cual el router de la sede central es el nodo principal y cada sucursal se conecta directamente a él a través de un enlace WAN dedicado.

En este caso, la topología física y lógica son equivalentes, ya que no existen rutas alternativas entre sucursales ni dispositivos adicionales que modifiquen la estructura lógica.

Topología física:

Topologia logica:

2. Tabla de direccionamiento IP

Para el diseño de la red se establecieron criterios de direccionamiento diferentes para las LANs y los enlaces WAN, buscando optimizar el uso de direcciones y facilitar la administración:

Selección de direcciones privadas (RFC 1918)

Se utilizaron dos bloques distintos para separar lógicamente los segmentos:

- 192.168.0.0/16 → reservado para las LANs de cada sucursal.
- 10.0.0.0/8 → reservado para los enlaces WAN punto a punto.

Esto permite distinguir de inmediato, por el primer octeto, si una dirección pertenece a una LAN o a un enlace WAN.

Máscaras elegidas según necesidades

- En las LANs de sucursales se asignó una máscara /24 (255.255.255.0), que ofrece 254 direcciones útiles.
- En los enlaces WAN se asignó una máscara /30 (255.255.255.252), que permite exactamente 2 direcciones útiles.

Como se obtuvieron las direcciones de cada subred

Para las las LANs, se tomo el bloque **192.168.0.0/16** y fue asignado a una subred /24 por sucursal, aumentando el tercer octeto:

- Sucursal A → 192.168.1.0/24
- Sucursal B → **192.168.2.0/24**
- Sucursal C → 192.168.3.0/24
- Sucursal D → **192.168.4.0/24**

Para las WANs, se tomó el bloque 10.0.0.0/8 y se dividió en subredes de /30.

- WAN Central ↔ Sucursal B → 10.0.0.4/30
- WAN Central ↔ Sucursal C → 10.0.0.8/30
- WAN Central ↔ Sucursal D → 10.0.0.12/30

Red / Enlace	Dirección de red	Máscara	Router Central	Router Sucursal	Hosts LAN disponibles
LAN Sucursal A	192.168.1. 0	/24 (255.255.255.0)	_	192.168.1. 1	192.168.1.2 -254
LAN Sucursal B	192.168.2. 0	/24	_	192.168.2. 1	192.168.2.2 -254

LAN Sucursal C	192.168.3. 0	/24	_	192.168.3. 1	192.168.3.2 -254
LAN Sucursal D	192.168.4. 0	/24	-	192.168.4. 1	192.168.4.2 -254
Servidor	192.168.0. 0	/24	192.168. 0.1	-	192.168.0.2 -254
WAN Central – Sucursal A	10.0.0.0	/30 (255.255.255.25 2)	10.0.0.1	10.0.0.2	_
WAN Central – Sucursal B	10.0.0.4	/30	10.0.0.5	10.0.0.6	_
WAN Central – Sucursal C	10.0.0.8	/30	10.0.0.9	10.0.0.10	_
WAN Central – Sucursal D	10.0.0.12	/30	10.0.0.1	10.0.0.14	_

Se usó el protocolo de enrutamiento RIP por las siguientes razones:

- RIP es uno de los protocolos de enrutamiento más sencillos de implementar, lo que lo hace ideal para redes con topología básica como la propuesta (sede central + 4 sucursales).
- Requiere menos comandos de configuración comparado con EIGRP u OSPF, reduciendo la complejidad para el ámbito académico
- RIP maneja bien redes con hasta 15 saltos, y en esta topología no se alcanza este límite.

 Aunque RIP genera más tráfico periódico que OSPF, en una red pequeña como la simulada este impacto es mínimo y se compensa con menor uso de la CPU/memoria de los routers, mayor facilidad para diagnosticar problemas.

Configuraciones relevantes

Configuración	Comandos CLI	Descripción
Configurar Interfaz WAN	interface Serial0/0/0 ip address 10.0.0.2 255.255.255.252 no shutdown	Asigna la IP WAN según la tabla. El router de sucursal es DTE, no necesita <i>clock rate</i> .
Configurar Interfaz LAN	interface GigabitEthernet0/0 ip address 192.168.1.1 255.255.255.0 no shutdown	Configura la IP de la LAN de la sucursal.
Enrutamiento dinámico (RIP)	router rip version 2 network 10.0.0.0 network 192.168.1.0 no auto-summary	Anuncia las redes conectadas mediante RIP v2.
Enrutamiento dinámico (EIGRP)	router eigrp 1 network 10.0.0.0 0.0.0.3 network 192.168.1.0 0.0.0.255 no auto-summary	Alternativa usando EIGRP en un mismo AS.

Servidor DHCP	ip dhcp pool SUCURSAL-A network 192.168.1.0 255.255.255.0 default-router 192.168.1.1 dns-server [IP Servidor DNS]	Crea un pool DHCP para asignar IPs automáticas en la sucursal.
Guardar	copy running-config	Guarda la configuración en la
configuración	startup-config	NVRAM.

- Configuración RIP del Router Matriz

```
MATRIZ#show running-config | section router rip
router rip
network 10.0.0.0
network 192.168.0.0
no auto-summary
MATRIZ#
```

- Configuración RIP para Routers de Sucursales

```
SucursalB#show running-config | section router rip
router rip
network 10.0.0.0
network 192.168.2.0
no auto-summary
SucursalB#
```

Configuración DHCP para Routers de Sucursales

```
SucursalB#show running-config | section dhcp
ip dhcp pool SucursalB
network 192.168.2.0 255.255.255.0
default-router 192.168.2.1
dns-server 192.168.0.100
```

Pruebas de conectividad

- Pruebas de pings

PC0 (SucursalA) hacia PC6 (SucursalD)

PC3 (SucursalB) hacia PC5 (SucursalC)

- Traceroute documentado

Traceroute desde la PC0 (Sucursal A) hasta la PC4 (Sucursal C)

```
C:\>tracert 192.168.3.2
Tracing route to 192.168.3.2 over a maximum of 30 hops:
                0 ms
                          0 ms
                                    192.168.1.1
      0 ms
      28 ms
                12 ms
                          30 ms
                                    10.0.0.1
      42 ms
                45 ms
                          44 ms
                                    10.0.0.10
                15 ms
      12 ms
                          0 ms
                                    192.168.3.2
Trace complete.
```

Traceroute desde la PC7 (Sucursal D) hasta la PC3 (Sucursal B)

```
_ _
PC7
  Physical
           Config
                   Desktop
                           Programming
                                         Attributes
  Command Prompt
                                                                                               Х
  Cisco Packet Tracer PC Command Line 1.0
  C:\>tracert 192.168.2.2
  Tracing route to 192.168.2.2 over a maximum of 30 hops:
         0 ms
                   0 ms
                             0 ms
                                       192.168.4.1
         4 ms
                   0 ms
                             2 ms
                                       10.0.0.13
         8 ms
                             4 ms
     3
                   5 ms
                                       10.0.0.6
         1 ms
                   0 ms
                             0 ms
                                       192.168.2.2
   Trace complete.
```

- Tabla de enrutamiento

- DHCP configurado

```
₹ PC6
                                                                 _ _
 Physical
        Config
              Desktop Programming
                                Attributes
                                                                         Х
  Command Prompt
  Cisco Packet Tracer PC Command Line 1.0
  C:\>ipconfig /all
  FastEthernet0 Connection: (default port)
    Connection-specific DNS Suffix..:
    Physical Address..... 00E0.A333.D52D
    Link-local IPv6 Address..... FE80::2E0:A3FF:FE33:D52D
    IPv6 Address....:
    IPv4 Address..... 192.168.4.3
    Subnet Mask..... 255.255.255.0
    Default Gateway.....
                                192.168.4.1
    DHCP Servers...... 192.168.4.1
    DHCPv6 IAID....:
    DHCPv6 Client DUID.....: 00-01-00-01-36-70-5C-C2-00-E0-A3-33-D5-2D
    DNS Servers.....
                                192.168.0.100
  Bluetooth Connection:
    Connection-specific DNS Suffix..:
    Physical Address...... 0006.2A8B.1CA4
    Link-local IPv6 Address....:::
    IPv6 Address.....::::
    IPv4 Address..... 0.0.0.0
    Subnet Mask..... 0.0.0.0
    Default Gateway....:
                               0.0.0.0
    DHCP Servers.....
                              : 0.0.0.0
    DHCPv6 IAID.....
    DHCPv6 Client DUID.....: 00-01-00-01-36-70-5C-C2-00-E0-A3-33-D5-2D
    DNS Servers.....
                               192.168.0.100
```

Consulta DNS

Demostración de consulta hacia servidordns.com desde el cliente PC4.

Análisis comparativo (enrutamiento dinámico vs estático)

1. Facilidad de Configuración

- Enrutamiento Estático:
 - Ventaja: Simple de configurar en redes pequeñas, ya que las rutas se definen manualmente.
 - Desventaja: En redes grandes, la configuración manual de cada ruta es tediosa y propensa a errores.
- Enrutamiento Dinámico:
 - Ventaja: Automatizado; los routers intercambian información de rutas mediante protocolos (e.g., OSPF, EIGRP, BGP). Ideal para redes extensas.
 - Desventaja: Requiere conocimientos avanzados para configurar y ajustar protocolos correctamente.

2. Mantenimiento

- Enrutamiento Estático:
 - Ventaja: No consume recursos de red para intercambiar información de rutas.
 - Desventaja: Cualquier cambio (e.g., nueva subred o enlace caído) requiere actualización manual, lo que es ineficiente en redes dinámicas.
- Enrutamiento Dinámico:
 - Ventaja: Se adapta automáticamente a cambios en la topología (ej: caída de un enlace).

 Desventaja: Consume ancho de banda y recursos computacionales para mantener tablas de enrutamiento actualizadas.

3. Adaptabilidad ante Fallas

• Enrutamiento Estático:

- Desventaja: No reacciona ante fallas. Si una ruta estática falla, el tráfico no se redirige a menos que se configure una ruta alternativa manualmente.
- Uso típico: En redes pequeñas o para rutas críticas donde se desea control total.

• Enrutamiento Dinámico:

- Ventaja: Detecta fallas y recalcula rutas automáticamente (ej: OSPF reconoce enlaces caídos y ajusta las rutas en segundos).
- Uso típico: En redes grandes o con redundancia, donde la disponibilidad es crítica.