		-	TEP. 1100	ļ	ļ.	İ						1			İ		
			B.Tech. DE	GRI			VIIN. Semes		ION	, MAY	Y 201	9		·			-
		-			100	uur)CILIC:	SECI									
	-		- COMPUT														
lote:		(For the cana	lidates admitted	ı auri	ıng u	ie acc	шет	c ye	ar 20	113 - 20)14 an	a 201	4 2	013)			
(i)	P	art - A should	d be answered i	in ON	/IR sl	heet v	vithin	firs	t 45 i	minutes	and (OMR	sheet	shou	ld be	hano	ded
			igilator at the e														
(ii)	110	art - B and Pa	art - C should l	oe an:	swer	ed in	answe	er bo	okle	t.							
ime:	Three	e Hours											M	ſax.]	Marl	cs: 1	00
			PΔ	DТ	_ A	<i>(</i> 20 s	< 1 =	20	Mar	le)							
			A. 21				. L Qu			ECO J							
														-			
, l.			m is usually i	n		_•	(D)	11. <i>1</i>	1.1	1	_11						
	` '	Assembly I				-	. ,			ne levo il langi		guage	•				
	(U)	High-level	language				(D)	IN	atura	n rang	uage						
2.	The	small extrer	nely fast, RA	M's	are o	calle	d as										
		Cache						Н	eaps								
	` '	Accumulat	ors				(D)		acks		•						
	` .				,	-											
3.			truction is sto	red i	n	<u> </u>											
	(A)						(B)										
	(C)	Registers					(D)	M	DR								
Α	In c	ace of zero	address instru	ction	n me	thod	the o	mer	ands	are ct	ored i	n					
7.		Registers	address msd d	CLIOI	1 1110	uiou				nulator			'				
	` '	Push down	stack				` '		ache	10110101			-				
	(-)						(-)										
5.	The	addressing 1	mode, where	you (direc	tly s	pecif	y th	e op	erand	value	is					
	` '	Immediate					` '		irect								
	(C)	Definite					(D)	Re	elativ	ve					-		
,	701	-3 C. 11			. 11		11 .	1									
0.		-	ed by the strir	ig oi	aigi	its is					٠						
	` '	Significant Mantissa	,						etern Kpon	ninant							
	(4)	iviaiii155a					(1)	152	rhon	CIII		÷					
7.	In II	EEE 32-bit r	epresentation	s, the	e ma	ntiss	a of t	the 1	fract	ion is	said to	occi	иру _		bi	its.	
	(A)			-			(B)										
	(C)	20					(D)	16	ĵ.						-		
8.	The	32 bit repres	sentation of tl	he de	ecim	al nu	mber	· is (calle	d as					•		
		Double-pre								-precis			-				
	` '	Extended f					• /		_	icant						-	
Δ	•			1 2-			` /		_								
9.		10001111	1101 and 1011	ı is			(B)	10	101	010							
		a n v s 1 s 1 1 1 1 1															

Note:

Time

	(C)	Accumulators	(D)	Stacks
3.	(A)	decoder instruction is stored in IR Registers	(B) (D)	PC MDR
4.	(A)	nse of, zero address instruction method Registers Push down stack	(B)	perands are stored in Accumulators Cache
5.	(A)	addressing mode, where you directly sp Immediate Definite	(B)	the operand value is Direct Relative
6.	(A)	sign followed by the string of digits is of Significant Mantissa	(B)	l as Determinant Exponent
7.	In II (A) (C)		a of tl (B) (D)	23
8.	(A)	32 bit representation of the decimal num Double-precision Extended format	(B)	is called as Single-precision Significant
	(A)	product of 1101 and 1011 is 10001111 11110000	` '	10101010 11001100
of 3				

10.	The method used to reduce the maximum (A) Fast multiplication (C) Quick multiplication	numbers of summands by half is (B) Bit-pair recoding (D) Floating point
11.	The disadvantage of DRAM over SRAM (A) Lower data storage capacities (C) The cells are not static	is/ are (B) Higher heat descipation
12.	The DMA controller has registers. (A) 4 (C) 2	(B) 3 (D) 1
13.	A is used to restore the contents of (A) Sense amplifier (C) Restorer	of the cells. (B) Refresh counter (D) Counter
14.	To get the row address of the required dat (A) CAS (C) CS	a is enables. (B) RAS (D) Sense/ write
15.	What does the RUN signal do? (A) It causes the termination of a signal	(B) It causes a particular signal to perform it operation
	(C) It causes a particular signal to end	÷
16.		ds are generated by (B) System programs (D) Assembly programs
17.	The time taken to transfer a word of data to (A) Access time (C) Memory latency	(a) Cycle time (b) Threshold time
18.	The effectiveness of the cache memory is (A) Locality of reference (C) Memory size	
19.	The DMA transfer are performed by a cont(A) Device interface (C) Data controller	trol circuit called as (B) DMA controllers (D) Over looker
20.	The centralized bus arbitration is similar to (A) Priority (C) Single	(B) Parallel (D) Daisy chain
	•	× 4 = 20 Marks) FIVE Questions
21.	Differentiate RISC and CISC.	

Page 2 of 3

Discuss about basic functional units and give their functions.

- Multiply -13 and +23 using bit pair recoding.
- List down the steps involved in restoring and non-restoring division. 24.
- 25. Explain the role of cache memory.
- 26. Draw the diagram of internal organization of memory chips.
- 27. Illustrate the use of DMA controller in a computer systems.

PART – C (
$$5 \times 12 = 60$$
 Marks)
Answer ALL Questions

28. a. Illustrate the various addressing modes of instructions using suitable diagram.

- b. Explain in detail about software performance.
- 29. a. Explain carrysave addition of summands with example.

- b. Perform multiplication on -15 and -8 using Booth recoding and bit pair recoding.
- 30. a. Explain various types of hazards in pipelining using example.

- b. Describe hardwired control in detail with necessary diagram.
- 31. a. Write a detailed notes on cache memory.

- b. Briefly explain virtual memory and its management.
- 32. a. Illustrate bus arbitration in DMA.

(OR)

b. Describe the working principle of USB.

23MA4CS1008

Page 3 of 3