SmartBrush: Text and Shape Guided Object Inpainting with Diffusion Model

Shaoan Xie ¹*, Zhifei Zhang², Zhe Lin², Tobias Hinz², Kun Zhang^{1,3}

¹Carnegie Mellon University

²Adobe Research

³Mohamed bin Zayed University of Artificial Intelligence

shaoan@cmu.edu, {zzhang, zlin, thinz}@adobe.com, kunz1@cmu.edu

CVPR 2023

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

- Introduction
- Framework
- Method
- Experiment
- Conclusion

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Introduction

• Introduce a text and shape guided object inpainting diffusion model, which is conditioned on **object masks of different precision**, achieving a new level of control for object inpainting.

• To preserve the image background with coarse input masks, the model is trained to predict a foreground object mask during inpainting for preserving original background surrounding the synthesized object.

• Propose a multi-task training strategy by jointly training object inpainting with text-to-image generation to leverage more training data.

Introduction

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Framework

- Preliminary
- Framework
- Method
- Experiment
- Conclusion

Preliminary- SD Inpainting Training dataset

• Existing inpainting models randomly erase part of the images.

Large masks wide ours with p=0.5

Large masks box ours with p=0.5

Text and Shape Guided Diffusion

• utilize the text and shape information from existing instance or panoptic segmentation datasets.

$$\tilde{x}_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$$

$$x_t = \tilde{x}_t \odot m + x_0 \odot (1 - m),$$

$$m_s = \text{GaussianBlur}(m, k_s, \sigma_s),$$
 (7)

Shape Precision Control

• we can control whether the generated object should align with the input mask by specifying different mask precision indicators *s*

$$\mathcal{L}_{\text{seg-DM}} = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,I)} \left[\|\epsilon - \epsilon_{\theta}(x_t, t, m_s, c, s)\|_2^2 \right]. \tag{8}$$

Background Preservation

• Background in the masked region will be changed if the input masks are coarse

• Also predict an accurate instance mask m from the coarse input version m_s

$$\mathcal{L}_{\text{prediction}} = H(\epsilon_{\theta}(m_s), m), \qquad H(X, Y) = 1 - \frac{2|X \cap Y|}{|X| + |Y|}$$

Training Strategy

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{seg-DM}} + \lambda \mathcal{L}_{\text{prediction}}, \tag{10}$$

- $\lambda = 0.01$
- Jointly training our main task and input mask to cover the entire image.
- Pair the segmentation label or **BLIP caption** to the corresponding mask.
- Model can be built based on pre-trained generation models.

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Text and Shape Guided Inpainting

Table 1. Text-guided object inpainting with bounding box mask.

A	OpenImages			MSCOCO		
82	Local FID ↓	CLIP Score ↑	FID ↓	Local FID ↓	CLIP Score ↑	FID↓
Blended Diffusion [2]	29.16	0.265	11.05	41.43	0.251	12.68
GLIDE [16]	22.45	0.252	9.70	30.72	0.241	9.32
Stable Diffusion [20]	15.28	0.265	9.10	25.61	0.250	12.29
Stable Inpainting [20]	12.57	0.264	7.07	18.13	0.246	8.50
SmartBrush (Ours)	9.71	0.266	6.00	13.22	0.252	8.05

Table 2. Text-guided object inpainting with object layout mask.

	OpenImages			MSCOCO		
	Local FID ↓	CLIP Score ↑	FID ↓	Local FID ↓	CLIP Score ↑	FID↓
Blended Diffusion [2]	21.93	0.261	9.72	26.25	0.244	8.16
GLIDE [16]	21.09	0.250	9.03	24.25	0.235	6.98
Stable Diffusion [20]	12.27	0.263	6.90	17.16	0.246	7.78
Stable Inpainting [20]	10.98	0.261	5.84	15.16	0.243	6.54
SmartBrush (Ours)	7.82	0.263	4.70	9.80	0.249	5.76

Accurate object masks

Bounding box masks

User study

Mask Precision Control

- The Stable Diffusion
 - are not affected by mask
- Stable Inpainting
 - only change the object size with the mask size
 - not follow the mask shape
- SmartBrush
 - strictly follow the mask shape when providing a finer mask
 - roughly following the mask if given a coarser mask.

Background Preservation

Ablation Study

Method	LFID↓	CLIP ↑	FID ↓
Ours	13.22	0.252	8.05
+ Background Preservation	12.26	0.251	7.19
- Mask Precision Cond	15.31	0.252	8.57
- BLIP Prompts	13.52	0.249	10.69
- Multi-Task	15.26	0.250	8.26
Stable Inpainting (SOTA) + Finetune on Our Dataset	18.13 18.34	0.246 0.245	8.50 8.38
- I metane on our bataset	10.54	0.273	0.50

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Conclusion

- In this paper, we propose a novel training method that utilizes the text and shape guidance from the segmentation dataset to address the text misalignment problem.
- Then we further propose to create **different levels of masks** to allow precision control of the generation.
- Encourage the model to make object predictions and utilize **the predicted mask** to avoid unnecessary changes inside the mask.