

Fragmentation with Numerical Example - Part I

Complete Course on Computer Networks - Part II

Functions of Transport layer

End – End Connectively

Flow Control

Error Control

Segmentation

Multiplexing and Demultiplexing

Congestion Control

Segmentation means to divide something into pieces. When data arrives at the transport layer from the upper layers, it is taken then divided into segments. That is why data at this layer is called segments rather than data.

Functions of Transport layer

End – End Connectively

Flow Control

Error Control

Segmentation

Multiplexing and Demultiplexing

Congestion Control

Transport layer gathers chunks of data it receives from different sockets and encapsulate them with transport headers. Passing these resulting segments to the network layer is called multiplexing.

The reverse process which is delivering data to the correct socket by the transport layer is called demultiplexing. We will see about this in further lectures.

Functions of Transport layer

End – End Connectively

Flow Control

Error Control

Segmentation

Multiplexing and Demultiplexing

Congestion Control

What is congestion?

A state occurring in network layer when the message traffic is so heavy that it slows down network response time.

Transport Layer has various algorithms to control this, We will see that in the coming lectures.

Computer Networks

How all Layers Work Together

Network of G + N/w & You.

Message

Transport Layer

Network Layer

Datalink Layer

Physical Layer

Ma

Ir

Mr

Mr

Computer Networks

Session Layer

Authentication and Authorisation

Checkpointing

Synchronisation

Dialog control

Authentication and Authorization

Checkpointing

Synchronisation

Dialog control

Authentication is the process of recognizing a user's identity. It is the mechanism of associating an incoming request with a set of identifying credentials. The credentials provided are compared to those on a file in a database of the authorized user's information on a local operating system or within an authentication server.

Authorization is is the process of granting or denying access to a network resource which allows the user access to various resources based on the user's identity.

Authentication and Authorisation

Checkpointing

Synchronisation

Dialog control

Authentication and Authorisation

Checkpointing

Synchronisation

Dialog control

Authentication and Authorisation

Checkpointing

Synchronisation

Dialog control

Video conferencing - Only one person must speak at once

Computer Networks

Presentation Layer and GATE 2014 question

Data Translation

Encryption and Decryption

Data compression

Data Translation

Encryption and Decryption

Data compression

Data Translation

Encryption and Decryption

Data compression

Encryption & Decryption

Data Translation

Encryption and Decryption

Data compression

GATE 2014

An IP machine Q has a path to another IP machine H via three IP routers R1, R2, and R3.

Q-R1-R2-R3-H

Hacts as an HTTP server, and Q connects to H via HTTP and downloads a file. Session layer encryption is used, with DES as the shared key encryption protocol. Consider the following four pieces of information:

- [I1] The URL of the file downloaded by Q
- [I2] The TCP port numbers at Q and H
- [13] The IP addresses of Q and H
- [14] The link layer addresses of Q and H

Which of I1, I2, I3, and I4 can an intruder learn through sniffing at R2 alone?

- A) Only I1 and I2
- B) Only I1
- C) Only I2 and I3
- D) Only I3 and I4

GATE 2014

An IP machine Q has a path to another IP machine H via three IP routers R1, R2, and R3.

Q-R1-R2-R3-H

Hacts as an HTTP server, and Q connects to H via HTTP and downloads a file. Session layer encryption is used, with DES as the shared key encryption protocol. Consider the following four pieces of information:

- [I1] The URL of the file downloaded by Q
- [12] The TCP port numbers at Q and H
- [13] The IP addresses of Q and H
- [14] The link layer addresses of Q and H

Which of I1, I2, I3, and I4 can an intruder learn through sniffing at R2 alone?

- A) Only I1 and I2
- B) Only I1
- C) Only I2 and I3
- D) Only I3 and I4

Answer:

An Intruder can't learn [I1] through sniffing at R2 because URLs and Download are functioned at Application layer of OSI Model.

An Intruder can learn [I2] through sniffing at R2 because Port Numbers are encapsulated in the payload field of IP Datagram.

An Intruder can learn [I3] through sniffing at R2 because IP Addresses and Routers are functioned at network layer of OSI Model.

An Intruder can't learn [I4] through sniffing at R2 because it is related to Data Link Layer of OSI Model.