

Electric Vehicle Routing: Subpath-Based Decomposition

Sean Lo <u>seanlo@mit.edu</u>
MIT Operations Research Center,
Cambridge, MA

Alexandre Jacquillat <u>alexjacq@mit.edu</u> MIT Sloan School of Management, Cambridge, MA

International Symposium on Mathematical Programming Montreal 23 July 2024

Background and motivation

Biden administration plan seeks elimination of transportation emissions

A 40-ton Mercedes-Benz e-truck just drove 1,000 km with only one stop to charge

calls for a transition to electric vehicles and more walkable neighborhoods by 2050

Michelle Lewis | Oct 5 2023 - 10:48 am PT | 👨 66 Comments

LOGISTICS REPORT

California's Electric-Truck Drive Draws Startups Building Charging Networks

aggressive emissions-slashing mandate means thousands of arging sites are needed in the coming years

Paul Berger Follow

y 29, 2023 7:00 am ET

Biden administration plan calls for \$5 billion network of electric-vehicle chargers along interstates

Grants included in the infrastructure law will help states build a charging network designed to reach highways in almost every corner of the country

By Ian Duncan

Updated February 10, 2022 at 1:46 p.m. EST | Published February 10, 2022 at 5:00 a.m. ES

New routing algorithms for electrified logistics

Electric Vehicle Routing Problem

Overview of literature

VRP: models and variants

VRP with Time Windows,
 Capacitated VRP

routing (discrete)
$$\rightarrow$$
 time, load (continuous)

Electric VRP

• EVRP-Het: **new**

VRP: approaches

- Metaheuristics
 - Large-scale neighborhood search
 - Genetic algorithms
- Exact methods
 - Column generation
 - Path-based label-setting
 - Branch-and-price-and-cut

Challenges

Challenges

Contributions

Results + Impact

- 2-10x speedup
- 8% cost improvement over heuristics
- 5-20% charging cost saved (heterogenous charging costs)

Semi-infinite set-partitioning model

$$\begin{aligned} & \min \quad & \sum_{p \in \mathcal{P}} c^p z^p \\ & \text{s.t.} \quad & \sum_{p \in \mathcal{P}} \mathbbm{1} \left(n_{\text{start}}^p = j \right) z^p = v_j^{\text{start}} \quad \forall \text{ depots } j \\ & \sum_{p \in \mathcal{P}} \mathbbm{1} \left(n_{\text{start}}^p = j \right) z^p \geq v_j^{\text{end}} \quad \forall \text{ depots } j \\ & \sum_{p \in \mathcal{P}} \gamma_i^p z^p = 1 \qquad \qquad \forall \text{ customers } i \\ & z^p \in \mathbb{Z}_{\geq 0} \qquad \qquad \forall \ p \in \mathcal{P} \end{aligned}$$

- Set-partitioning formulation with path-based variables z^p
- Infinitely many variables
 - Discrete routing and timing decisions
 - Continuous charging decisions

Column generation

Two-level label-setting in the pricing problem

Pricing problem in CG

- Finding paths of negative reduced cost via DP
 - Resource-Constrained Shortest Path Problem (RCSPP)^[1]

Extend partial paths along edges

Prune "dominated" paths using domination criteria

$$p_1$$
 dominates p_2 if $D(p_1) \leq D(p_2)^{[2]}$; $D(p) = \left(\bar{c}(p), \ t(p), \ -b(p)\right)$ reduced time (negative of) cost charge

Key idea: two-level label-setting

Level 1: Generate **subpaths** *s*

• Label-setting, with domination criteria:

$$D(s) = \left(\overline{c}(s), \ t(s), \ b(s)\right)$$

Level 2: Extend **paths** *p* along subpaths *s*

$$D(p) = \left(\overline{c}(p), \ t(p), \ -b(p)\right)$$

- WLOG, the charging decision between subpaths is the minimum possible
- Reduced cost of path =
 r.c. of subpaths + cost of charging

Heterogenous charging costs

Two-level label-setting: determining charging times

Two-level label-setting: determining charging times

2L-LS: extra resources

- 2L-LS decouples charging and routing decisions
- In stitching subpaths to paths, rebalance charging actions dynamically (DP)

2L-LS: extra resources

- 2L-LS decouples charging and routing decisions
- In stitching subpaths to paths, rebalance charging actions dynamically (DP)
- Extra resources in 2nd level representing "rebalancing opportunities":

$$D(p) = \left(\overline{c}(p), \ t(p), \ -b(p), \\ -Z_1(p), -Z_2(p), -Z_3(p), -Z_4(p), \dots\right)$$

Theory:

domination for paths and subpaths

A closer look at domination^[1]

Rigorous and generalizable framework for domination criteria

Key results

Theorem 1: Two-level label-setting finds negative reduced-cost paths, or certifies that none exists

Proof idea:

• Use properties 1 2 3 arising from domination criteria

Theorem 2: With two-level label-setting, CG converges **finitely** to LP optimum of EVRP

Proof idea:

• Infinitely many paths, but **finitely** many <u>subpath sequences</u> (sequences of subpaths, w/ routing but w/o charging decisions)

Accelerations:

Incorporating *ng*-relaxations and subset-row cuts

The ng-route relaxation^[1]

ng-route relaxation: intermediate between no and full elementarity

- Each customer i has a neighborhood N_i $(i \in N_i)$
- Each partial path has forward ng-set $\Pi(p)$: "nodes p cannot visit next"

$$\Pi(p) = \left\{ \left. n_r \, \middle| \, n_r \in \bigcap_{\rho = r+1}^m N_{n_\rho}, \, \, r \in \{0, \cdots, m-1\} \right. \right\} \cup \{n_m\}$$

• Domination criteria uses *ng*-sets:

$$D(p) = \left(\bar{c}(p), \ t(p), \ -b(p), \ \left\{\mathbbm{1} \left(i \in \Pi(p)\right)\right\}_i\right)$$

ng-routes in two-level label-setting

• 1st level (subpaths):

Also include <u>backward ng-set</u>^[1]:

"nodes which appear in all <u>previous</u> ng-neighborhoods"

• Require this property:

• $p \oplus s$ feasible $\Leftrightarrow \Pi(p) \cap \Pi^{-1}(s) = \{ \mathcal{F} \}$

• 2nd level (paths):
Only uses forward *ng*-set

Domination properties for subpaths and paths

Design of domination criteria for variants

Subset-row cuts in 2L-LS

- Subset-row cuts^[1]:
 - At most $\lfloor n/k \rfloor$ routes visiting at least k out of n customers^[1]

 (Chvatal-Gomory cut of rank 1): $\sum_{p \in \mathcal{P}} \sum_{i \in S} \gamma_i^p z^p = |S| \Longrightarrow \sum_{p \in \mathcal{P}} \left\lfloor \frac{1}{k} \sum_{i \in S} \gamma_i^p \right\rfloor z^p \le \left\lfloor \frac{|S|}{k} \right\rfloor$
 - Track resource $\sum_{i \in S} \gamma_i^p \pmod{k}$ for each subset S in label-setting
- Limited-memory subset-row cuts (lm-SRCs)[2]
 - Only track $\sum_{i \in S} \gamma_i^p \pmod{k}$ inside a memory set M (zero it out when p steps outside M)
 - Not symmetric requires forward/backward trackers $\vec{\alpha}(p)$, $\vec{\alpha}(p)$

Domination **properties** for subpaths and paths

Design of domination **criteria** for variants

Accelerations:

incorporating ng-relaxations...

- Additional resources from bidirectional LS
- Higher-dimensional domination

...and subset-row cuts

- Forward and backward cut quantities $\overrightarrow{\alpha_q}$, $\overleftarrow{\alpha_q}$ for cut q
- Weaker domination comparison for reduced costs

Results + Impact

- 2-10x speedup
- 8% cost improvement over heuristics
- 5-20% charging cost saved (heterogenous charging costs)

Results, practical impact

Result 1: 2L-LS is faster than LS

- Significant speedups against path-based benchmark
- Stronger improvement with:
 - Higher customer density
 ≈ longer subpaths
 - Longer time horizon
 ≈ more subpaths per path

% time reduction vs. path-based benchmark

Result 2: Scalability

- Baseline column generation algorithm is fast and weak
- Iteratively tightening *ng*-relaxations gives the LP relaxation w/ elementary paths (and good solution quality)
- Cuts further narrow the gap, but take a long time

Result 3: Practical benefits

- a Jointly optimizing charging and routing decisions, v.s. route-then-charge heuristic
- b Using EVRP-Het algorithm instead of EVRP-Hom, with heterogenous charging costs

% cost reduction

% reduction in charging costs

Benefits from large-scale optimization algorithms to support emerging vehicle technologies and operating models toward sustainable logistics

Contributions

Results + Impact

- 2-10x speedup
- 8% cost improvement over heuristics
- 5-20% charging cost saved (heterogenous charging costs)

Additional slides