Analytic equivalence relations with \aleph_1 -many classes: A computability theoretic approach.

Antonio Montalbán

U.C. Berkeley

Sendai Logic School January 2016 Sendai, Japan

We consider equivalence relations over the reals $(\mathbb{R}=2^{\mathbb{N}})$.

We consider equivalence relations over the reals $(\mathbb{R}=2^{\mathbb{N}})$.

A relation is analytic (or Σ^1_1) if it is analytic as a subset of \mathbb{R}^2 , i.e., is the projection of a Borel subset of \mathbb{R}^3 .

We consider equivalence relations over the reals $(\mathbb{R}=2^{\mathbb{N}})$.

A relation is analytic (or Σ_1^1) if it is analytic as a subset of \mathbb{R}^2 , i.e., is the projection of a Borel subset of \mathbb{R}^3 .

Theorem: [Burgess 78]

The number of classes of a $\mathbf{\Sigma}^1_1$ equivalence relation on $\mathbb R$ is either

- countable,
- ullet \aleph_1 , or
- perfectly many.

We consider equivalence relations over the reals $(\mathbb{R}=2^{\mathbb{N}})$.

A relation is analytic (or Σ_1^1) if it is analytic as a subset of \mathbb{R}^2 , i.e., is the projection of a Borel subset of \mathbb{R}^3 .

Theorem: [Burgess 78]

The number of classes of a Σ^1_1 equivalence relation on $\mathbb R$ is either

- countable,
- \bullet \aleph_1 , or
- perfectly many.

A *perfect set* is a closed set where every point is an accumulation point.

E has perfectly many classes if there is a perfect set of non-E-equivalent reals.

We consider equivalence relations over the reals $(\mathbb{R}=2^{\mathbb{N}})$.

A relation is analytic (or Σ_1^1) if it is analytic as a subset of \mathbb{R}^2 , i.e., is the projection of a Borel subset of \mathbb{R}^3 .

Theorem: [Burgess 78]

The number of classes of a Σ^1_1 equivalence relation on $\mathbb R$ is either

- countable,
- \bullet \aleph_1 , or
- perfectly many.

A *perfect set* is a closed set where every point is an accumulation point.

E has perfectly many classes if there is a perfect set of non-E-equivalent reals.

Note that under $\neg CH$, the three cases are disjoint.

We consider equivalence relations over the reals $(\mathbb{R}=2^{\mathbb{N}})$.

A relation is analytic (or Σ_1^1) if it is analytic as a subset of \mathbb{R}^2 , i.e., is the projection of a Borel subset of \mathbb{R}^3 .

Theorem: [Burgess 78]

The number of classes of a Σ^1_1 equivalence relation on $\mathbb R$ is either

- countable,
- \bullet \aleph_1 , or
- perfectly many.

A *perfect set* is a closed set where every point is an accumulation point.

E has perfectly many classes if there is a perfect set of non-E-equivalent reals.

Note that under $\neg CH$, the three cases are disjoint.

Table of Contents

• Equivalence relations satisfying hyperarithmetic-is-recursive.

Martin's conjecture for analytic equivalence relations.

Selfective-reducibility on a cone.

Table of Contents

• Equivalence relations satisfying hyperarithmetic-is-recursive.

Martin's conjecture for analytic equivalence relations.

Selfective-reducibility on a cone.

Spector's Theorem

Theorem ([Spector 55])

Every hyperarithmetic well-ordering is isomorphic to a computable one.

Remark:

Here, a linear ordering is coded as a subset $\leq_H \subseteq \mathbb{N}^2$ such that $(\mathbb{N}; \leq_H)$ is a linear ordering.

Spector's Theorem

Theorem ([Spector 55])

Every hyperarithmetic well-ordering is isomorphic to a computable one.

Remark:

Here, a linear ordering is coded as a subset $\leq_H \subseteq \mathbb{N}^2$ such that $(\mathbb{N}; \leq_H)$ is a linear ordering.

$$\text{for } f\colon \mathbb{R} \to \mathbb{R} \quad \frac{\mathsf{Borel}}{\mathsf{continuous}} = \frac{\mathsf{hyperarithmetic}}{\mathsf{computable}} \quad \mathsf{for } f\colon \mathbb{N} \to \mathbb{N}$$

$$\text{for } f\colon \mathbb{R} \to \mathbb{R} \quad \frac{\mathsf{Borel}}{\mathsf{continuous}} = \frac{\mathsf{hyperarithmetic}}{\mathsf{computable}} \quad \mathsf{for } f\colon \mathbb{N} \to \mathbb{N}$$

Notation: ω_1^{CK} denotes the least non-computable ordinal.

$$\text{for } f \colon \mathbb{R} \to \mathbb{R} \quad \frac{\mathsf{Borel}}{\mathsf{continuous}} = \frac{\mathsf{hyperarithmetic}}{\mathsf{computable}} \quad \mathsf{for } f \colon \mathbb{N} \to \mathbb{N}$$

Notation: ω_1^X denotes the least non-X-computable ordinal.

for
$$f: \mathbb{R} \to \mathbb{R}$$
 $\frac{\mathsf{Borel}}{\mathsf{continuous}} = \frac{\mathsf{hyperarithmetic}}{\mathsf{computable}}$ for $f: \mathbb{N} \to \mathbb{N}$

Notation: ω_1^X denotes the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \mathbb{N}$, the following are equivalent:

for
$$f: \mathbb{R} \to \mathbb{R}$$
 $\frac{\mathsf{Borel}}{\mathsf{continuous}} = \frac{\mathsf{hyperarithmetic}}{\mathsf{computable}}$ for $f: \mathbb{N} \to \mathbb{N}$

Notation: ω_1^X denotes the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \mathbb{N}$, the following are equivalent:

•
$$X$$
 is $\Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1$.

for
$$f: \mathbb{R} \to \mathbb{R}$$
 $\frac{\mathsf{Borel}}{\mathsf{continuous}} = \frac{\mathsf{hyperarithmetic}}{\mathsf{computable}}$ for $f: \mathbb{N} \to \mathbb{N}$

Notation: ω_1^X denotes the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \mathbb{N}$, the following are equivalent:

- $\bullet \ X \text{ is } \Delta^1_1 = \Sigma^1_1 \cap \Pi^1_1.$
- X is computable in $0^{(\alpha)}$ for some $\alpha < \omega_1^{CK}$. $(0^{(\alpha)} = \alpha$ th Turing jump of 0.)

for
$$f: \mathbb{R} \to \mathbb{R}$$
 $\frac{\mathsf{Borel}}{\mathsf{continuous}} = \frac{\mathsf{hyperarithmetic}}{\mathsf{computable}}$ for $f: \mathbb{N} \to \mathbb{N}$

Notation: ω_1^X denotes the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X\subseteq\mathbb{N}$, the following are equivalent:

- $\bullet \ X \text{ is } \Delta^1_1 = \Sigma^1_1 \cap \Pi^1_1.$
- X is computable in $0^{(\alpha)}$ for some $\alpha < \omega_1^{CK}$. $(0^{(\alpha)} = \alpha \text{th Turing jump of 0.})$
- $X \in L(\omega_1^{CK})$.

for
$$f: \mathbb{R} \to \mathbb{R}$$
 $\frac{\mathsf{Borel}}{\mathsf{continuous}} = \frac{\mathsf{hyperarithmetic}}{\mathsf{computable}}$ for $f: \mathbb{N} \to \mathbb{N}$

Notation: ω_1^X denotes the least non-X-computable ordinal.

Proposition: [Suslin-Kleene, Ash] For a set $X \subseteq \mathbb{N}$, the following are equivalent:

- $\bullet \ X \text{ is } \Delta^1_1 = \Sigma^1_1 \cap \Pi^1_1.$
- X is computable in $0^{(\alpha)}$ for some $\alpha < \omega_1^{CK}$. $(0^{(\alpha)} = \alpha \text{th Turing jump of 0.})$
- $X \in L(\omega_1^{CK})$.
- $X=\{n\in\mathbb{N}: \varphi(n)\}$, where φ is a computable infinitary formula. (these are $L_{\omega_1,\omega}$ formulas where disjunctions and conjunctions are computable)

Theorem: [Spector 1955] Every hyperarithmetic well ordering is isomorphic to a computable one.

Our main result

Definition:

- Given linear orderings \mathcal{A} and \mathcal{B} , we say that \mathcal{A} embeds in \mathcal{B} if there is a strictly increasing map $f: \mathcal{A} \hookrightarrow \mathcal{B}$. We write $\mathcal{A} \preccurlyeq \mathcal{B}$.
- \mathcal{A} and \mathcal{B} are equimorphic if $\mathcal{A} \preccurlyeq \mathcal{B}$ and $\mathcal{B} \preccurlyeq \mathcal{A}$. We write $\mathcal{A} \sim \mathcal{B}$.

Example:

$$\omega + \omega^* + \omega + \omega^* + \cdots \quad \sim \quad \omega^* + \omega + \omega^* + \omega + \cdots$$

Observation: If α is an ordinal and $\mathcal{L} \sim \alpha$, then \mathcal{L} is isomorphic to α .

Theorem: Every hyperarithmetic linear ordering is equimorphic to a recursive one.

A generalization to Linear orderigns

Theorem [M. 04] Every hyperarithmetic linear ordering is bi-embeddable with a computable one.

A generalization to Linear orderigns

Theorem [M. 04] Every hyperarithmetic linear ordering is bi-embeddable with a computable one.

Obs: This theorem generalizes Spector's theorem:

If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

A generalization to Linear orderigns

Theorem [M. 04] Every hyperarithmetic linear ordering is bi-embeddable with a computable one.

Obs: This theorem generalizes Spector's theorem:

If an ordinal is bi-embeddable with a linear ordering, it is isomorphic.

The proof uses Laver's theorem on the well-quasi-orderness of linear orderings to analyze their structure under embeddability.

Another similar behavior

Theorem [Greenberg–M. 05] Every hyperarithmetic torsion abelian group is bi-embeddable with a computable one.

Another similar behavior

Theorem [Greenberg–M. 05] Every hyperarithmetic torsion abelian group is bi-embeddable with a computable one.

The proof uses Ulm invariants, and bi-embeddability invariants defined by [Barwise, Eklof 71]. It also uses that hyperarithmetic groups have Ulm rank $\leq \omega_1^{CK}$.

Definition

An equivalence relation E on $2^{\mathbb{N}}$ satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Definition

An equivalence relation E on $2^{\mathbb{N}}$ satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Examples:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;

Definition

An equivalence relation E on $2^{\mathbb{N}}$ satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Examples:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- $\bullet \ \ X \equiv Y \iff \omega_1^X = \omega_1^Y. \tag{recall: } \omega_1^X \text{ is the least non-X-computable ordinal})$

Definition

An equivalence relation E on $2^{\mathbb{N}}$ satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Examples:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- $X \equiv Y \iff \omega_1^X = \omega_1^Y$. (recall: ω_1^X is the least non-X-computable ordinal)
- Any *E* where every real is *E*-equivalent to a computable one (*hyp-is-rec trivially*).

Definition

An equivalence relation E on $2^{\mathbb{N}}$ satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Examples:

- · isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- $X \equiv Y \iff \omega_1^X = \omega_1^Y.$ (recall: ω_1^X is the least non-X-computable ordinal)
- Any E where every real is E-equivalent to a computable one (hyp-is-rec trivially).

Question: [M. 05] What makes an equivalence relation satisfy hyperarithmetic-is-recursive?

Definition

An equivalence relation E on $2^{\mathbb{N}}$ satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Examples:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups:
- $X \equiv Y \iff \omega_1^X = \omega_1^Y$. (recall: ω_1^X is the least non-X-computable ordinal)
- Any E where every real is E-equivalent to a computable one (hyp-is-rec trivially).
- isomorphism on models of a *counterexample to Vaught's conjecture* (relativized);

Question: [M. 05] What makes an equivalence relation satisfy hyperarithmetic-is-recursive?

Conjecture: [Vaught 61]

The number of countable models of a theory T is either countable or 2^{\aleph_0} .

Conjecture: [Vaught 61]

The number of countable models of a theory T is either countable or 2^{\aleph_0} .

Theorem [M.] (ZFC+PD) Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- Mod(T) is linearly ordered by Muchnik reducibility on a cone.
- T satisfies hyperarithmetic-is-recursive on a cone.

Conjecture: [Vaught 61]

The number of countable models of a theory T is either countable or 2^{\aleph_0} .

Theorem [M.] (ZFC+PD) Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- Mod(T) is linearly ordered by Muchnik reducibility on a cone.
- T satisfies hyperarithmetic-is-recursive on a cone.

Conjecture: [Vaught 61]

The number of countable models of a theory T is either countable or 2^{\aleph_0} .

Theorem [M.] (ZFC+PD) Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- Mod(T) is linearly ordered by Muchnik reducibility on a cone.
- T satisfies hyperarithmetic-is-recursive on a cone.

Def: A class of structures $\mathbb K$ satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic structure in $\mathbb K$ has a computable copy,

Theorem from yesterday

Conjecture: [Vaught 61]

The number of countable models of a theory T is either countable or 2^{\aleph_0} .

Theorem [M.] (ZFC+PD) Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- Mod(T) is linearly ordered by Muchnik reducibility on a cone.
- T satisfies hyperarithmetic-is-recursive on a cone.

Def: A class of structures $\mathbb K$ satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic structure in $\mathbb K$ has a computable copy, or equivalently, if the isomorphism relation on $\mathbb K$ satisfies hyp-is-rec.

Theorem from yesterday

Conjecture: [Vaught 61]

The number of countable models of a theory T is either countable or 2^{\aleph_0} .

Theorem [M.] (ZFC+PD) Let T be a theory with uncountably many countable models. The following are equivalent:

- T is a counterexample to Vaught's conjecture.
- Mod(T) is linearly ordered by Muchnik reducibility on a cone.
- T satisfies hyperarithmetic-is-recursive on a cone.

Def: A class of structures $\mathbb K$ satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic structure in $\mathbb K$ has a computable copy, or equivalently, if the isomorphism relation on $\mathbb K$ satisfies hyp-is-rec.

Theorem from yesterday

Conjecture: [Vaught 61]

The number of countable models of a theory T is either countable or 2^{\aleph_0} .

Theorem [M.] (ZFC+PD) Let T be a theory with uncountably many countable models. The following are equivalent:

- *T* is a counterexample to Vaught's conjecture.
- Mod(T) is linearly ordered by Muchnik reducibility on a cone.
- T satisfies hyperarithmetic-is-recursive on a cone.

Def: A class of structures $\mathbb K$ satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic structure in $\mathbb K$ has a computable copy, or equivalently, if the isomorphism relation on $\mathbb K$ satisfies hyp-is-rec.

Def: \mathbb{K} satisfies *hyperarithmetic-is-recursive on a cone* if, $(\exists Y)(\forall X \geq_T Y)$, every X-hyperarithmetic $A \in \mathbb{K}$ has X-computable copy.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \geq_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \geq_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$. Def: $A \subseteq 2^{\mathbb{N}}$ is *degree invariant* if $X \equiv_{\mathcal{T}} Y \& X \in A \implies Y \in A$.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \geq_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$. Def: $A \subseteq 2^{\mathbb{N}}$ is *degree invariant* if $X \equiv_{\mathcal{T}} Y \& X \in A \implies Y \in A$.

Theorem [Martin] (PD) Every Turing-degree-invariant projective set $A \subseteq 2^{\mathbb{N}}$ either contains a cone, or is disjoint from a cone.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \geq_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$. Def: $A \subseteq 2^{\mathbb{N}}$ is *degree invariant* if $X \equiv_{\mathcal{T}} Y \& X \in A \implies Y \in A$.

Theorem [Martin] (PD) Every Turing-degree-invariant projective set $A\subseteq 2^{\mathbb{N}}$ either contains a cone, or is disjoint from a cone.

Def: $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if A contains a cone.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \geq_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$. Def: $A \subseteq 2^{\mathbb{N}}$ is *degree invariant* if $X \equiv_{\mathcal{T}} Y \& X \in A \implies Y \in A$.

Theorem [Martin] (PD) Every Turing-degree-invariant projective set $A\subseteq 2^{\mathbb{N}}$ either contains a cone, or is disjoint from a cone.

Def: $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if A contains a cone.

Def: \mathbb{K} satisfies *hyperarithmetic-is-recursive on a cone* if, $(\exists Y)(\forall X \geq_T Y)$, every X-hyperarithmetic $A \in \mathbb{K}$ has X-computable copy.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \geq_T Y\}$ for some $Y \in 2^{\mathbb{N}}$. Def: $A \subseteq 2^{\mathbb{N}}$ is degree invariant if $X \equiv_T Y \& X \in A \implies Y \in A$.

Theorem [Martin] (PD) Every Turing-degree-invariant projective set $A \subseteq 2^{\mathbb{N}}$ either contains a cone, or is disjoint from a cone.

Def: $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if A contains a cone.

Def: K satisfies hyperarithmetic-is-recursive on a cone if,

 $(\exists Y)(\forall X \geq_T Y)$, every X-hyperarithmetic $\mathcal{A} \in \mathbb{K}$ has X-computable copy.

Obs: Since, in computability theory, almost all proofs relativize:

For "natural" classes of structures K,

 \mathbb{K} satisfies hyperarithmetic-is-recursive \iff it does on a cone.

Definition

An equivalence relation E on $2^{\mathbb{N}}$ satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Definition

An equivalence relation E on $2^{\mathbb{N}}$ satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Question: What makes an equivalence relation satisfy hyperarithmetic-is-recursive?

Definition

An equivalence relation E on $2^{\mathbb{N}}$ satisfies *hyperarithmetic-is-recursive* if every hyperarithmetic real is E-equivalent to a computable one.

Question: What makes an equivalence relation satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples that behave differently inside and outside the hyperarithmetic sets.

Definition

An equivalence relation E on $2^{\mathbb{N}}$ satisfies hyperarithmetic-is-recursive on a cone if $(\exists Y)(\forall X >_T Y)$ every X-hyp real is E-equivalent to an X-computable one.

Question: What makes an equivalence relation

satisfy hyperarithmetic-is-recursive?

Obs: There are odd examples that behave differently

inside and outside the hyperarithmetic sets.

Question: What makes an equivalence relation satisfy hyperarithmetic-is-recursive on a cone?

A sufficient condition for hyp-is-rec.

Def: For $\mathfrak{K} \subseteq 2^{\omega}$, $(\mathfrak{K}, \equiv, r)$ is a ranked equivalence relation if \equiv is an equivalence relation on \mathfrak{K} , and $r \colon \mathfrak{K}/\equiv \to \omega_1$.

Def: $(\mathfrak{K}, \equiv, r)$ is *scattered* if $r^{-1}(\alpha)$ contains countably many equivalence classes for each $\alpha \in \omega_1$.

Def: $(\mathfrak{K}, \equiv, r)$ is *projective* if \mathfrak{K} and \equiv are projective and r has a projective presentation $2^{\omega} \to 2^{\omega}$.

Theorem ([M.] (ZFC+PD))

Let (\mathfrak{K},\equiv,r) be scattered projective ranked equivalence relation such that $\forall Z\in\mathfrak{K},\ r(Z)<\omega_1^Z$.

For every X on a cone, (i.e. $\exists Y \forall X \geq_T Y$,) every equivalence class with an X-hyperarithmetic member has an X-computable member.

Lemma: [Martin] (ZFC+PD) If $f: 2^{\omega} \to \omega_1$ is projective and $f(X) < \omega_1^X$, then f is constant on a cone.

Theorem ([M.] (ZFC +
$$(0^{\sharp} \text{ exists}) + \neg CH)$$

Let E be a Σ^1_1 -equivalence relation on $2^{\mathbb{N}}$. The following are equivalent

Theorem ([M.] (ZFC + $(0^{\sharp} \text{ exists}) + \neg CH)$

Let E be a Σ^1_1 -equivalence relation on $2^{\mathbb{N}}$. The following are equivalent

• E satisfies hyperarithmetic-is-recursive on a cone non-trivially.

Theorem ([M.] (ZFC + $(0^{\sharp} \text{ exists}) + \neg CH)$

Let E be a Σ^1_1 -equivalence relation on $2^{\mathbb{N}}$. The following are equivalent

- E satisfies hyperarithmetic-is-recursive on a cone non-trivially.
- **2** E has \aleph_1 many equivalence classes.

Theorem ([M.] (ZFC +
$$(0^{\sharp} \text{ exists}) + \neg CH)$$

Let E be a Σ^1_1 -equivalence relation on $2^{\mathbb{N}}$. The following are equivalent

- E satisfies hyperarithmetic-is-recursive on a cone non-trivially.
- ② E has ℵ₁ many equivalence classes.

This theorem applies to all the examples mentioned before. Examples:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- isomorphism on models of a counterexample to Vaught's conjecture;
- $X \equiv Y \iff \omega_1^X = \omega_1^Y$.

Theorem ([M.] (ZFC +
$$(0^{\sharp} \text{ exists}) + \neg CH)$$

Let E be a Σ^1_1 -equivalence relation on $2^{\mathbb{N}}$. The following are equivalent

- E satisfies hyperarithmetic-is-recursive on a cone non-trivially.
- ② E has ℵ₁ many equivalence classes.

This theorem applies to all the examples mentioned before. Examples:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- isomorphism on models of a counterexample to Vaught's conjecture;
- $X \equiv Y \iff \omega_1^X = \omega_1^Y$.

In all the natural examples, the base of the cone is 0, which doesn't follow from the Theorem.

Def: $S \subseteq 2^{\mathbb{N}}$ is cofinal (in the Turing degrees) if $\forall Y \exists X \geq_T Y \ (X \in S)$.

Def: $S \subseteq 2^{\mathbb{N}}$ is cofinal (in the Turing degrees) if $\forall Y \exists X \geq_T Y \ (X \in S)$.

Theorem [M.] (ZF) Let E be a Σ_1^1 -equivalence relation on $2^{\mathbb{N}}$. The following are equivalent:

Def: $S \subseteq 2^{\mathbb{N}}$ is cofinal (in the Turing degrees) if $\forall Y \exists X \geq_T Y \ (X \in S)$.

Theorem [M.] (ZF) Let E be a Σ_1^1 -equivalence relation on $2^{\mathbb{N}}$. The following are equivalent:

• E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.

Def: $S \subseteq 2^{\mathbb{N}}$ is cofinal (in the Turing degrees) if $\forall Y \exists X \geq_T Y \ (X \in S)$.

Theorem [M.] (ZF) Let E be a Σ_1^1 -equivalence relation on $2^{\mathbb{N}}$. The following are equivalent:

- E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.
- 2 E does not have perfectly many equivalence classes.

Def: $S \subseteq 2^{\mathbb{N}}$ is cofinal (in the Turing degrees) if $\forall Y \exists X \geq_T Y \ (X \in S)$.

Theorem [M.] (ZF) Let E be a Σ_1^1 -equivalence relation on $2^{\mathbb{N}}$. The following are equivalent:

- **1** E satisfies hyperarithmetic-is-recursive relative to a cofinal set of oracles.
- 2 E does not have perfectly many equivalence classes.

Theorem [M.] (ZF) The following are equivalent:

- $\hbox{ {\bf \bullet} Every Σ_1^1-equivalence relation without perfectly many classes } \\ \hbox{ satisfies hyperarithmetic-is-recursive on a cone.}$
- ② 0[‡] exists.

Table of Contents

• Equivalence relations satisfying hyperarithmetic-is-recursive.

Martin's conjecture for analytic equivalence relations.

Self-based Effective-reducibility on a cone.

Table of Contents

• Equivalence relations satisfying hyperarithmetic-is-recursive.

Martin's conjecture for analytic equivalence relations.

Selfective-reducibility on a cone.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \geq_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$.

Def: $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if A contains a cone.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \geq_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$.

Def: $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if A contains a cone.

Def: $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is degree invariant if $X \equiv_T Y \Longrightarrow f(X) \equiv_T f(Y)$.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \geq_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$.

Def: $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if A contains a cone.

Def: $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is degree invariant if $X \equiv_T Y \Longrightarrow f(X) \equiv_T f(Y)$.

Martin's conjecture: Every Borel, degree-invariant function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is either **constant**, the **identity**, or an **iterate of the Turing jump**,

on a cone.

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \geq_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$.

Def: $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if A contains a cone.

Def: $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is degree invariant if $X \equiv_T Y \Longrightarrow f(X) \equiv_T f(Y)$.

Martin's conjecture: Every Borel, degree-invariant function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is either **constant**, the **identity**, or an **iterate of the Turing jump**,

on a cone.

Theorem ([Steel 82], [Slaman, Steel 88])

Martin's conjecture is true for all uniformly degree invariant functions,

Def: A *cone* is a set of the form $\{X \in 2^{\mathbb{N}} : X \geq_{\mathcal{T}} Y\}$ for some $Y \in 2^{\mathbb{N}}$.

Def: $A \subseteq 2^{\mathbb{N}}$ has Martin measure 1 if A contains a cone.

Def: $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is degree invariant if $X \equiv_T Y \Longrightarrow f(X) \equiv_T f(Y)$.

Martin's conjecture: Every Borel, degree-invariant function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is either **constant**, the **identity**, or an **iterate of the Turing jump**,

on a cone.

Theorem ([Steel 82], [Slaman, Steel 88])

Martin's conjecture is true for all uniformly degree invariant functions, and all order-preserving functions.

Def: An equivalence relation \sim is *degree invariant* if $X \equiv_T Y \Longrightarrow X \sim Y$.

Def: An equivalence relation \sim is *degree invariant* if $X \equiv_T Y \Longrightarrow X \sim Y$.

Example: $X \sim Y \iff \omega_1^X = \omega_1^Y$.

Def: An equivalence relation \sim is *degree invariant* if $X \equiv_T Y \Longrightarrow X \sim Y$. Example: $X \sim Y \iff \omega_1^X = \omega_1^Y$.

Theorem [M.](PD+ \neg CH) Let \sim be a degree-invariant, Σ_1^1 equivalence relation.

Def: An equivalence relation \sim is *degree invariant* if $X \equiv_T Y \Longrightarrow X \sim Y$. Example: $X \sim Y \iff \omega_1^X = \omega_1^Y$.

Theorem [M.](PD+ \neg CH) Let \sim be a degree-invariant, Σ_1^1 equivalence relation. If \sim has \aleph_1 many classes and isn't trivial on any cone, then

Def: An equivalence relation \sim is *degree invariant* if $X \equiv_T Y \Longrightarrow X \sim Y$. Example: $X \sim Y \iff \omega_1^X = \omega_1^Y$.

Theorem [M.](PD+¬CH) Let \sim be a degree-invariant, Σ_1^1 equivalence relation. If \sim has \aleph_1 many classes and isn't trivial on any cone, then $X \sim Y \iff \omega_1^X = \omega_1^Y$,

for every X, Y on some cone.

Martin's conjecture for analytic equivalence relations

Def: An equivalence relation \sim is *degree invariant* if $X \equiv_T Y \Longrightarrow X \sim Y$. Example: $X \sim Y \iff \omega_1^X = \omega_1^Y$.

Theorem [M.](PD+¬CH) Let \sim be a degree-invariant, Σ_1^1 equivalence relation. If \sim has \aleph_1 many classes and isn't trivial on any cone, then $X \sim Y \iff \omega_1^X = \omega_1^Y,$

for every X, Y on some cone.

A re-statement:

Theorem [M.](PD) Let \sim be a degree-invariant, $\mathbf{\Sigma}_1^1$ equivalence relation.

Martin's conjecture for analytic equivalence relations

Def: An equivalence relation \sim is *degree invariant* if $X \equiv_T Y \Longrightarrow X \sim Y$. Example: $X \sim Y \iff \omega_1^X = \omega_1^Y$.

Theorem [M.](PD+¬CH) Let \sim be a degree-invariant, Σ_1^1 equivalence relation. If \sim has \aleph_1 many classes and isn't trivial on any cone, then $X \sim Y \iff \omega_1^X = \omega_1^Y$,

for every X, Y on some cone.

A re-statement:

Theorem [M.](PD) Let \sim be a degree-invariant, Σ_1^1 equivalence relation. Exactly one of the following holds:

- $oldsymbol{0}$ \sim has perfectly many classes on every cone.
- **3** $X \sim Y \iff \omega_1^X = \omega_1^Y$ for every X, Y on some cone.

Table of Contents

• Equivalence relations satisfying hyperarithmetic-is-recursive.

Martin's conjecture for analytic equivalence relations.

Self-based Effective-reducibility on a cone.

Table of Contents

• Equivalence relations satisfying hyperarithmetic-is-recursive.

Martin's conjecture for analytic equivalence relations.

Self-Bernard Effective-reducibility on a cone.

Def: Given equivalence relations E and F on \mathbb{N} , we say that E effectively reduces to F ($E \leq_{eff} F$), if there is a computable $f: \mathbb{N} \to \mathbb{N}$ s.t. $(\forall n, m)$ $n \in m \iff f(n) \in F(m)$.

Def: Given equivalence relations E and F on \mathbb{N} , we say that E hyperarithmetically reduces to F ($E \leq_{hyp} F$), if there is a hyperarithmetic $f: \mathbb{N} \to \mathbb{N}$ s.t. $(\forall n, m)$ $n \to m \iff f(n) \to f(m)$.

Def: Given equivalence relations E and F on \mathbb{N} , we say that E hyperarithmetically reduces to F ($E \leq_{hyp} F$), if there is a hyperarithmetic $f: \mathbb{N} \to \mathbb{N}$ s.t. $(\forall n, m)$ $n \to F$ $m \iff f(n) \to f(m)$.

H. Frieman and Stanley [89] had introduced the Borel version of this reduction.

S. Friedman and Fokina started to study this reduction in the context of isomorphism relations.

Def: Given equivalence relations E and F on \mathbb{N} , we say that E hyperarithmetically reduces to F ($E \leq_{hyp} F$), if there is a hyperarithmetic $f: \mathbb{N} \to \mathbb{N}$ s.t. $(\forall n, m)$ $n \to m \iff f(n) \to f(m)$.

- S. Friedman and Fokina started to study this reduction in the context of isomorphism relations.
- H. Frieman and Stanley [89] had introduced the Borel version of this reduction.

Def: The *Isomorphism problem of* \mathbb{K} is:

$$\emph{I}_{\mathbb{R}}(\mathbb{K}) = \{\langle \mathcal{A}, \mathcal{B} \rangle : \mathcal{A}, \mathcal{B} \in \mathbb{K}, \mathcal{A} \cong \mathcal{B}\}$$

Def: Given equivalence relations E and F on \mathbb{N} , we say that E hyperarithmetically reduces to F ($E \leq_{hyp} F$), if there is a hyperarithmetic $f: \mathbb{N} \to \mathbb{N}$ s.t. $(\forall n, m)$ $n \to m \iff f(n) \to f(m)$.

H. Frieman and Stanley [89] had introduced the Borel version of this reduction.

Def: The *Isomorphism problem of* \mathbb{K} is:

$$I_{\mathbb{R}}(\mathbb{K}) = \{ \langle \mathcal{A}, \mathcal{B} \rangle : \mathcal{A}, \mathcal{B} \in \mathbb{K}, \mathcal{A} \cong \mathcal{B} \} \subseteq \mathbb{R}^2.$$

S. Friedman and Fokina started to study this reduction in the context of isomorphism relations.

Def: Given equivalence relations E and F on \mathbb{N} , we say that E hyperarithmetically reduces to F ($E \leq_{hyp} F$), if there is a hyperarithmetic $f: \mathbb{N} \to \mathbb{N}$ s.t. $(\forall n, m)$ $n \to m \iff f(n) \to f(m)$.

- S. Friedman and Fokina started to study this reduction in the context of isomorphism relations.
- H. Frieman and Stanley [89] had introduced the Borel version of this reduction.

Def: The *Isomorphism problem of* \mathbb{K} is:

$$\begin{split} & \textit{I}_{\mathbb{R}}(\mathbb{K}) = \{ \langle \mathcal{A}, \mathcal{B} \rangle : \mathcal{A}, \mathcal{B} \in \mathbb{K}, \mathcal{A} \cong \mathcal{B} \} \subseteq \mathbb{R}^2. \\ & \textit{I}_{\mathbb{N}}(\mathbb{K}) = \{ \langle e_0, e_1 \rangle : \mathcal{A}_{e_0}, \mathcal{A}_{e_1} \in \mathbb{K}, \mathcal{A}_{e_0} \cong \mathcal{A}_{e_1} \} \end{split}$$

Def: Given equivalence relations E and F on \mathbb{N} , we say that E hyperarithmetically reduces to F ($E \leq_{hyp} F$), if there is a hyperarithmetic $f: \mathbb{N} \to \mathbb{N}$ s.t. $(\forall n, m)$ $n \to m \iff f(n) \to f(m)$.

- S. Friedman and Fokina started to study this reduction in the context of isomorphism relations.
- H. Frieman and Stanley [89] had introduced the Borel version of this reduction.

Def: The *Isomorphism problem of* \mathbb{K} is:

$$\begin{split} &I_{\mathbb{R}}(\mathbb{K}) = \{ \langle \mathcal{A}, \mathcal{B} \rangle : \mathcal{A}, \mathcal{B} \in \mathbb{K}, \mathcal{A} \cong \mathcal{B} \} \subseteq \mathbb{R}^2. \\ &I_{\mathbb{N}}(\mathbb{K}) = \{ \langle e_0, e_1 \rangle : \mathcal{A}_{e_0}, \mathcal{A}_{e_1} \in \mathbb{K}, \mathcal{A}_{e_0} \cong \mathcal{A}_{e_1} \} \subseteq \mathbb{N}^2. \end{split}$$

Notaion: Let A_e be the structure coded by the eth Turing machine.

Def: Given equivalence relations E and F on \mathbb{N} , we say that E hyperarithmetically reduces to F ($E \leq_{hyp} F$), if there is a hyperarithmetic $f: \mathbb{N} \to \mathbb{N}$ s.t. $(\forall n, m)$ $n \to m \iff f(n) \to f(m)$.

- S. Friedman and Fokina started to study this reduction in the context of isomorphism relations.
- H. Frieman and Stanley [89] had introduced the Borel version of this reduction.

Def: The *Isomorphism problem of* \mathbb{K} is:

$$\begin{split} & \mathit{I}_{\mathbb{R}}(\mathbb{K}) = \{ \langle \mathcal{A}, \mathcal{B} \rangle : \mathcal{A}, \mathcal{B} \in \mathbb{K}, \mathcal{A} \cong \mathcal{B} \} \subseteq \mathbb{R}^2. \\ & \mathit{I}_{\mathbb{N}}(\mathbb{K}) = \{ \langle e_0, e_1 \rangle : \mathcal{A}_{e_0}, \mathcal{A}_{e_1} \in \mathbb{K}, \mathcal{A}_{e_0} \cong \mathcal{A}_{e_1} \} \subseteq \mathbb{N}^2. \end{split}$$

Notaion: Let A_e be the structure coded by the eth Turing machine.

Def: \mathbb{K} is *on top* if for any Σ^1_1 equivalence relation E on \mathbb{N} , $E \leq_{\text{eff}} I_{\mathbb{N}}(\mathbb{K})$.

Theorem ([Fokina, Friedman, Harizanov, Knight, McCoy, M.])

The following classes of structures are on top (under \leq_{eff}):

- trees,
- p-groups,
- torsion-free abelian groups.

Theorem ([Fokina, Friedman, Harizanov, Knight, McCoy, M.])

The following classes of structures are on top (under \leq_{eff}):

- trees,
- p-groups,
- torsion-free abelian groups.

Thm: [H. Friedman, Stanley 89] In contrasts, under Borel reducibility on the reals, we have:

Theorem ([Fokina, Friedman, Harizanov, Knight, McCoy, M.])

The following classes of structures are on top (under \leq_{eff}):

- trees,
- p-groups,
- torsion-free abelian groups.

Thm: [H. Friedman, Stanley 89]

In contrasts, under Borel reducibility on the reals, we have:

• No isomorphism problem is on top for all Σ_1^1 -equivalence relations:

21 / 27

Theorem ([Fokina, Friedman, Harizanov, Knight, McCoy, M.])

The following classes of structures are on top (under \leq_{eff}):

- trees,
- p-groups,
- torsion-free abelian groups.

Thm: [H. Friedman, Stanley 89]

In contrasts, under Borel reducibility on the reals, we have:

• No isomorphism problem is on top for all Σ_1^1 -equivalence relations: On top under Borel reducibility means among isomorphism problems.

Theorem ([Fokina, Friedman, Harizanov, Knight, McCoy, M.])

The following classes of structures are on top (under \leq_{eff}):

- trees,
- p-groups,
- torsion-free abelian groups.

Thm: [H. Friedman, Stanley 89]

In contrasts, under Borel reducibility on the reals, we have:

- No isomorphism problem is on top for all Σ_1^1 -equivalence relations: On top under Borel reducibility means among isomorphism problems.
- *p*-groups are not on top even among isomorphism problems.

Theorem ([Fokina, Friedman, Harizanov, Knight, McCoy, M.])

The following classes of structures are on top (under \leq_{eff}):

- trees,
- p-groups,
- torsion-free abelian groups.

Thm: [H. Friedman, Stanley 89]

In contrasts, under Borel reducibility on the reals, we have:

- No isomorphism problem is on top for all Σ_1^1 -equivalence relations: On top under Borel reducibility means among isomorphism problems.
- *p*-groups are not on top even among isomorphism problems.
- it is open whether torsion-free abelian groups are on top.

Recall: For E and F equivalence relation on \mathbb{N} , $E \leq_{\mathit{eff}} F \iff \exists \; \mathsf{computable} \; f \colon \mathbb{N} \to \mathbb{N} \; (n \; E \; m \leftrightarrow f(n) \; F \; f(m)).$

Recall: For E and F equivalence relation on \mathbb{N} , $E \leq_{\mathit{eff}} F \iff \exists \mathsf{computable} \ f \colon \mathbb{N} \to \mathbb{N} \ (n \ E \ m \leftrightarrow f(n) \ F \ f(m)).$

Def: For an equivalence relation E on \mathbb{R} , define $E_{\mathbb{N}} \subseteq \mathbb{N}^2$ by $i E_{\mathbb{N}} j \iff W_i E W_j$, where W_e is the eth-c.e. set.

Recall: For
$$E$$
 and F equivalence relation on \mathbb{N} ,
$$E \leq_{\mathit{eff}} F \iff \exists \; \mathsf{computable} \; f \colon \mathbb{N} \to \mathbb{N} \; (n \; E \; m \leftrightarrow f(n) \; F \; f(m)).$$

Def: For an equivalence relation E on \mathbb{R} , define $E_{\mathbb{N}} \subseteq \mathbb{N}^2$ by $i E_{\mathbb{N}} j \iff W_i E W_j$,

where W_e is the eth-c.e. set.

Def: For
$$E, F \subseteq \mathbb{R}^2$$
, E effectively reduces to F $(E \leq_{\mathit{eff}} F)$ if $E_{\mathbb{N}} \leq_{\mathit{eff}} F_{\mathbb{N}}$.

Recall: For
$$E$$
 and F equivalence relation on \mathbb{N} ,
$$E \leq_{\mathit{eff}} F \iff \exists \; \mathsf{computable} \; f \colon \mathbb{N} \to \mathbb{N} \; (n \; E \; m \leftrightarrow f(n) \; F \; f(m)).$$

Def: For an equivalence relation E on \mathbb{R} , define $E_{\mathbb{N},X}\subseteq\mathbb{N}^2$ by i $E_{\mathbb{N}}$ j \iff W_i^X E W_j^X , where W_e^X is the eth-c.e. set relative to X.

Def: For
$$E, F \subseteq \mathbb{R}^2$$
, E effectively reduces to F $(E \leq_{\mathsf{eff}} F)$ if $E_{\mathbb{N}} \leq_{\mathsf{eff}} F_{\mathbb{N}}$.

Recall: For E and F equivalence relation on \mathbb{N} , $E \leq_{\mathit{eff}} F \iff \exists \text{ computable } f \colon \mathbb{N} \to \mathbb{N} \text{ (} n \ E \ m \leftrightarrow f(n) \ F \ f(m)\text{)}.$

Def: For an equivalence relation E on \mathbb{R} , define $E_{\mathbb{N},X}\subseteq\mathbb{N}^2$ by i $E_{\mathbb{N}}$ j \iff W_i^X E W_j^X , where W_e^X is the eth-c.e. set relative to X.

Def: For $E, F \subseteq \mathbb{R}^2$, E effectively reduces to F on a cone $(E \leq_{eff}^{cone} F)$ if $E_{\mathbb{N},X} \leq_{eff} F_{\mathbb{N},X}$ for every X on a cone.

Recall: For E and F equivalence relation on \mathbb{N} , $E \leq_{\mathit{eff}} F \iff \exists \; \mathsf{computable} \; f \colon \mathbb{N} \to \mathbb{N} \; (n \; E \; m \leftrightarrow f(n) \; F \; f(m)).$

Def: For an equivalence relation E on \mathbb{R} , define $E_{\mathbb{N},X}\subseteq\mathbb{N}^2$ by i $E_{\mathbb{N}}$ j \iff W_i^X E W_j^X , where W_e^X is the eth-c.e. set relative to X.

Def: For $E, F \subseteq \mathbb{R}^2$, E effectively reduces to F on a cone $(E \leq_{eff}^{cone} F)$ if $E_{\mathbb{N},X} \leq_{eff} F_{\mathbb{N},X}$ for every X on a cone.

Def: $F \subseteq \mathbb{R}^2$ is on top for effective reducibility if $E \leq_{eff}^{cone} F$ for all Σ_1^1 equivalence relations E on \mathbb{R} .

Let E and F be analytic equivalence relations on \mathbb{R} .

Let E and F be analytic equivalence relations on \mathbb{R} .

Theorem

If E is Borel reducible to F, then $E \leq_{hvp}^{cone} F$.

Let E and F be analytic equivalence relations on \mathbb{R} .

Theorem

If E is Borel reducible to F, then $E \leq_{hyp}^{cone} F$.

Theorem

E is a Borel equivalence relation if and only if $E \leq_{hyp}^{cone} id_{\mathbb{R}}$.

Let E and F be analytic equivalence relations on \mathbb{R} .

Theorem

If E is Borel reducible to F, then $E \leq_{hyn}^{cone} F$.

Theorem

E is a Borel equivalence relation if and only if $E \leq_{hvp}^{cone} id_{\mathbb{R}}$.

Theorem ([M 13])

The following are equivalent:

- E is on top for effective reducibility on a cone.
- E is on top for hyperarithmetic reducibility on a cone.

Let E and F be analytic equivalence relations on \mathbb{R} .

Theorem

If E is Borel reducible to F, then $E \leq_{h/n}^{cone} F$.

Theorem

E is a Borel equivalence relation if and only if $E \leq_{hvp}^{cone} id_{\mathbb{R}}$.

Theorem ([M 13])

The following are equivalent:

- E is on top for effective reducibility on a cone.
- E is on top for hyperarithmetic reducibility on a cone.

Def: E is intermediate if it is neither Borel, nor on top on a cone.

Def: E is intermediate if it is neither Borel, nor on top on a cone.

Def: E is intermediate if it is neither Borel, nor on top on a cone.

Example: The following equivalence relations are intermediate:

- isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- $X \equiv Y \iff \omega_1^X = \omega_1^Y$.

Def: E is *intermediate* if it is neither Borel, nor on top on a cone.

Example: The following equivalence relations are intermediate:

- · isomorphism on well-orderings;
- bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- $X \equiv Y \iff \omega_1^X = \omega_1^Y$.

Question: [Fokina, Friedman, Harizanov, Knight, McCoy, M.] Are there any nice intermediate classes of structures?

Def: E is *intermediate* if it is neither Borel, nor on top on a cone.

Example: The following equivalence relations are intermediate:

- · isomorphism on well-orderings;
- · bi-embeddability on linear orderings;
- bi-embeddability on torsion abelian groups;
- $X \equiv Y \iff \omega_1^X = \omega_1^Y$.

Question: [Fokina, Friedman, Harizanov, Knight, McCoy, M.] Are there any nice intermediate classes of structures?

A *nice class of structures* \mathbb{K} is one axiomatizable by an $L_{\omega_1,\omega}$ sentence.

One direction of the question.

Theorem ([Knight-M. 12; Becker 12])

If Vaught's conjecture fails, there is an oracle relative to which, there is a theory whose isomorphism problem is intermediate.

One direction of the question.

Theorem ([Knight-M. 12; Becker 12])

If Vaught's conjecture fails, there is an oracle relative to which, there is a theory whose isomorphism problem is intermediate.

Open Question

Are the following equivalent?

- No theory is intermediate for effective reducibility on a cone.
- Vaught's conjecture.

One direction of the question.

Theorem ([Knight-M. 12; Becker 12])

If Vaught's conjecture fails, there is an oracle relative to which, there is a theory whose isomorphism problem is intermediate.

Open Question

Are the following equivalent?

- No theory is intermediate for effective reducibility on a cone.
- Vaught's conjecture.

Obs: The theorem above implies the downward direction.

Let \mathbb{K} be a nice class of structures.

Definition Let $2^{\alpha \circ} = \{ \sigma \in 2^{\alpha} : \{ \xi < \alpha : \sigma(\xi) = 1 \} \text{ is finite } \}.$

Let \mathbb{K} be a nice class of structures.

Definition Let
$$2^{\alpha \circ} = \{ \sigma \in 2^{\alpha} : \{ \xi < \alpha : \sigma(\xi) = 1 \} \text{ is finite } \}.$$

For $g: \omega_1 \to \omega_1$, a g- α -tree for $\mathbb K$

is a map
$$\sigma\mapsto \mathcal{A}_\sigma\colon 2^{\alpha\circ} o\mathbb{K}$$
 such that

$$(\forall \sigma, \tau \in 2^{\alpha \circ}) \ (\forall \xi < \alpha) \ \begin{cases} \sigma \upharpoonright \xi = \tau \upharpoonright \xi & \Rightarrow \mathcal{A}_{\sigma} \equiv_{\xi} \mathcal{A}_{\tau} \\ \sigma \upharpoonright \xi \neq \tau \upharpoonright \xi & \Rightarrow \mathcal{A}_{\sigma} \not\equiv_{g(\xi)} \mathcal{A}_{\tau} \end{cases}$$

Let \mathbb{K} be a nice class of structures.

Definition Let $2^{\alpha \circ} = \{ \sigma \in 2^{\alpha} : \{ \xi < \alpha : \sigma(\xi) = 1 \} \text{ is finite } \}.$

For $g: \omega_1 \to \omega_1$, a g- α -tree for $\mathbb K$

is a map $\sigma\mapsto \mathcal{A}_\sigma\colon 2^{\alpha\circ}\to \mathbb{K}$ such that

$$(\forall \sigma, \tau \in 2^{\alpha \circ}) \ (\forall \xi < \alpha) \ \begin{cases} \sigma \upharpoonright \xi = \tau \upharpoonright \xi & \Rightarrow \mathcal{A}_{\sigma} \equiv_{\xi} \mathcal{A}_{\tau} \\ \sigma \upharpoonright \xi \neq \tau \upharpoonright \xi & \Rightarrow \mathcal{A}_{\sigma} \not\equiv_{g(\xi)} \mathcal{A}_{\tau} \end{cases}$$

Theorem : [M.14] (ZFC+PD) If there exists $g: \omega_1 \to \omega_1$, such that there is a $g-\alpha$ -tree for \mathbb{K} ($\forall \alpha < \omega_1$), then \mathbb{K} is on top on a cone.

Let \mathbb{K} be a nice class of structures.

Definition Let $2^{\alpha \circ} = \{ \sigma \in 2^{\alpha} : \{ \xi < \alpha : \sigma(\xi) = 1 \} \text{ is finite } \}.$

For $g: \omega_1 \to \omega_1$, a g- α -tree for $\mathbb K$

is a map $\sigma\mapsto \mathcal{A}_\sigma\colon 2^{\alpha\circ} o\mathbb{K}$ such that

$$(\forall \sigma, \tau \in 2^{\alpha \circ}) \ (\forall \xi < \alpha) \ \begin{cases} \sigma \upharpoonright \xi = \tau \upharpoonright \xi & \Rightarrow \mathcal{A}_{\sigma} \equiv_{\xi} \mathcal{A}_{\tau} \\ \sigma \upharpoonright \xi \neq \tau \upharpoonright \xi & \Rightarrow \mathcal{A}_{\sigma} \not\equiv_{g(\xi)} \mathcal{A}_{\tau} \end{cases}$$

Theorem : [M.14] (ZFC+PD) If there exists $g:\omega_1\to\omega_1$, such that there is a g- α -tree for \mathbb{K} ($\forall \alpha<\omega_1$), then \mathbb{K} is on top on a cone.

Theorem : [M.14] (ZFC+PD) If $\mathbb K$ is on top, there is a Δ^1_1 $g\colon \omega^{CK}_1\to \omega^{CK}_1$ such that there is a computable g- α -tree for $\mathbb K$ ($\forall \alpha<\omega^{CK}_1$).

The Main results

Theorem ([M. 12] (ZFC+0[#] exists))

Let E be an analytic equivalence relation. The following are equivalent:

- E does not have perfectly many classes.
- E satisfies hyperarithmetic-is-recursive on a cone.
- The classes of E are linearly ordered by Muchnik reducibility.

Theorem [M.] Let \sim be a degree-invariant, Σ_1^1 equivalence relation.

Exactly one of the following holds:

- $\bullet~\sim$ has perfectly many classes on every cone.
- \sim is trivial on a cone (i.e., $X \sim Y$ for all X, Y on some cone).
- $X \sim Y \iff \omega_1^X = \omega_1^Y$ for every X, Y on some cone.

Open question: Are the following equivalent?

- No theory is intermediate for effective reducibility on a cone.
- Vaught's conjecture.