

Computational Approach to School Mathematics

1

G V V Sharma*

CONTENTS

1	line		1		
	1.1	Examples]		
	1.2	Elementary Exercises	2		
	1.3	Section Formula	1		
	1.4	Line Equation	4		
2	Triangle				
	2.1	Construction	6		
	2.2	Construction Exercises	Ç		
	2.3	Triangle Geometry	10		
3	Quadrilateral				
	3.1	Construction Examples	11		
	3.2	Construction Exercises	11		
	3.3	Quadrilateral Geometry	12		
4	Circle		12		
	4.1	Construction Examples	12		
	4.2	Construction Exercises	13		
	4 3	Circle Geometry	13		

Abstract—This book provides a computational approach to school mathematics based on the NCERT textbooks from Class 6-12. Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ncert/codes

1 LINE

1.1 Examples

1. Do the points $\binom{3}{2}$, $\binom{-2}{-3}$, $\binom{2}{3}$ form a triangle? If so, name the type of triangle formed.

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

- 2. Show that the points $\begin{pmatrix} 1 \\ 7 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$, $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} -4 \\ 4 \end{pmatrix}$ are the vertices of a square.
- 3. Verify if $\mathbf{A} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$ are points on a line.
- 4. Find the condition for $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ to be equidistant from the points $\begin{pmatrix} 7 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \end{pmatrix}$.
- 5. Find a point on the y-axis which is equidistant from the points $\mathbf{A} = \begin{pmatrix} 6 \\ 5 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$.
- 6. Draw a line segement of length 7.6 cm and divide it in the ratio 5:8.

Solution: Let the end points of the line be

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 7.6 \\ 0 \end{pmatrix} \tag{1.1.6.1}$$

Then the point C

$$\mathbf{C} = \frac{k\mathbf{A} + \mathbf{B}}{k+1} \tag{1.1.6.2}$$

divides AB in the ration k: 1. For the given problem, $k = \frac{5}{8}$. The following code plots Fig. 1.1.6

codes/line/draw_section.py

- 7. Find a unit vector in the direction of $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$
- 8. Find the direction vector of PQ, where

$$\mathbf{P} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} -1 \\ -2 \\ -4 \end{pmatrix} \tag{1.1.8.1}$$

9. Find the angle between the vectors

$$\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} \tag{1.1.9.1}$$

Fig. 1.1.6

10. Find the projection of the vector

$$\begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix} \tag{1.1.10.1}$$

on the vector

$$\begin{pmatrix} 7 \\ -1 \\ 8 \end{pmatrix} \tag{1.1.10.2}$$

11. Find a unit vector perpendicular to each of the vectors $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$, where

$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}. \tag{1.1.11.1}$$

- 12. Write down a unit vector in the xy-plane, makeing an angle of 30° with the positive direction of the x-axis.
- 13. Find the value of x for which $x \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ is a unit vector.

1.2 Elementary Exercises

1. Find the distance between the following pairs of points

a)

$$\binom{2}{3}, \binom{4}{1}$$
 (1.2.1.1)

b)

$$\begin{pmatrix} -5\\7 \end{pmatrix}, \begin{pmatrix} -1\\3 \end{pmatrix} \tag{1.2.1.2}$$

c)

$$\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} -1 \\ b \end{pmatrix}$$
 (1.2.1.3)

2. Find the distance between the points

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 36 \\ 15 \end{pmatrix} \tag{1.2.2.1}$$

- 3. A town B is located 36km east and 15 km north of the town A. How would you find the distance from town A to town B without actually measuring it?
- 4. Determine if the points

$$\binom{1}{5}, \binom{2}{3}, \binom{-2}{-11}$$
 (1.2.4.1)

are collinear.

5. Check whether

$$\begin{pmatrix} 5 \\ -2 \end{pmatrix}, \begin{pmatrix} 6 \\ 4 \end{pmatrix}, \begin{pmatrix} 7 \\ -2 \end{pmatrix}$$
 (1.2.5.1)

are the vertices of an isosceles triangle.

Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer.

a)

$$\begin{pmatrix} -1\\ -2 \end{pmatrix}, \begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} -1\\ 2 \end{pmatrix}, \begin{pmatrix} -3\\ 0 \end{pmatrix}$$
 (1.2.6.1)

b)

$$\begin{pmatrix} -3\\5 \end{pmatrix}, \begin{pmatrix} 3\\1 \end{pmatrix}, \begin{pmatrix} 0\\3 \end{pmatrix}, \begin{pmatrix} -1\\-4 \end{pmatrix}$$
 (1.2.6.2)

c)

$$\binom{4}{5}, \binom{7}{6},$$
 (1.2.6.3)

$$\binom{4}{3}, \binom{1}{2}$$
 (1.2.6.4)

7. Find the point on the *x*-axis which is equidistant from

$$\begin{pmatrix} 2\\-5 \end{pmatrix}, \begin{pmatrix} -2\\9 \end{pmatrix}, \tag{1.2.7.1}$$

8. Find the values of y for which the distance

between the points

$$\mathbf{P} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} 10 \\ y \end{pmatrix} \tag{1.2.8.1}$$

is 10 units.

9. Find the values of x, y, z such that

$$\begin{pmatrix} x \\ 2 \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ y \\ 1 \end{pmatrix}$$
 (1.2.9.1)

10. If

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \tag{1.2.10.1}$$

verify if

- a) ||a|| = ||b||
- b) $\mathbf{a} = \mathbf{b}$
- 11. Find a vector \mathbf{x} in the direction of $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ such that $||\mathbf{x}|| = 7$.
- 12. Find a unit vector in the direction of $\mathbf{a} + \mathbf{b}$, where

$$\mathbf{a} = \begin{pmatrix} 2 \\ 2 \\ -5 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}. \tag{1.2.12.1}$$

13. Show that each of the given three vectors is a unit vector

$$\frac{1}{7} \begin{pmatrix} 2\\3\\6 \end{pmatrix}, \frac{1}{7} \begin{pmatrix} 3\\-6\\2 \end{pmatrix}, \frac{1}{7} \begin{pmatrix} 6\\2\\-3 \end{pmatrix}. \tag{1.2.13.1}$$

Also, show that they are mutually perpendicular to each other.

14. Find $\|\mathbf{a}\|$ and $\|\mathbf{b}\|$ if

$$(\mathbf{a} + \mathbf{b})^T (\mathbf{a} - \mathbf{b}) = 8 \tag{1.2.14.1}$$

$$\|\mathbf{a}\| = 8 \|\mathbf{b}\|$$
 (1.2.14.2)

15. Evaluate the product

$$(3\mathbf{a} - 5\mathbf{b})^T (2\mathbf{a} + 7\mathbf{b})$$
 (1.2.15.1)

16. Find $\|{\bf a}\|$ and $\|{\bf b}\|$, if

$$\|\mathbf{a}\| = \|\mathbf{b}\|,$$
 (1.2.16.1)

$$\mathbf{a}^T \mathbf{b} = \frac{1}{2} \tag{1.2.16.2}$$

and the angle between \mathbf{a} and \mathbf{b} is 60° .

17. Find x if a is a unit vector such that

$$(\mathbf{x} - \mathbf{a})^T (\mathbf{x} + \mathbf{a}) = 12.$$
 (1.2.17.1)

18. For

$$\mathbf{a} = \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}, \quad (1.2.18.1)$$

 $(\mathbf{a} + \lambda \mathbf{b}) \perp \mathbf{c}$. Find λ .

19. Show that

$$(\|\mathbf{a}\|\,\mathbf{b} + \|\mathbf{b}\|\,\mathbf{a}) \perp (\|\mathbf{a}\|\,\mathbf{b} - \|\mathbf{b}\|\,\mathbf{a}) \quad (1.2.19.1)$$

- 20. If $\mathbf{a}^T \mathbf{a} = 0$ and $\mathbf{ab} = 0$, what can be concluded about the vector \mathbf{b} ?
- 21. If **a**, **b**, **c** are unit vectors such that

$$\mathbf{a} + \mathbf{b} + \mathbf{c} = 0,$$
 (1.2.21.1)

find the value of

$$\mathbf{a}^T \mathbf{b} + \mathbf{b}^T \mathbf{c} + \mathbf{c}^T \mathbf{a}. \tag{1.2.21.2}$$

- 22. If $\mathbf{a} \neq \mathbf{0}$, $\lambda \neq 0$, then $\|\lambda \mathbf{a}\| = 1$ if
 - a) $\lambda = 1$
 - b) $\lambda = -1$
 - c) $||\mathbf{a}|| = |\lambda|$
 - d) $\|\mathbf{a}\| = \frac{1}{|\lambda|}$
- 23. Given

$$\mathbf{a} = \begin{pmatrix} 2\\1\\3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 3\\5\\-2 \end{pmatrix}, \tag{1.2.23.1}$$

find $\|\mathbf{a} \times \mathbf{b}\|$.

24. Find $\mathbf{a} \times \mathbf{b}$ if

$$\mathbf{a} = \begin{pmatrix} 1 \\ -7 \\ 7 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix}. \tag{1.2.24.1}$$

25. Find a unit vector perpendicular to each of the vectors $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$, where

$$\mathbf{a} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}. \tag{1.2.25.1}$$

- 26. If a unit vector **a** makes angles $\frac{\pi}{3}$ with the x-axis and $\frac{\pi}{4}$ with the y-axis and an acute angle θ with the z-axis, find θ and **a**.
- 27. Show that

$$(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) = 2 (\mathbf{a} \times \mathbf{b}) \qquad (1.2.27.1)$$

- 28. If $\mathbf{a}^T \mathbf{b} = 0$ and $\mathbf{a} \times \mathbf{b} = 0$, what can you conclude about \mathbf{a} and \mathbf{b} ?
- 29. If $\|\mathbf{a}\| = 3$, $\|\mathbf{b}\| = \frac{\sqrt{2}}{3}$, then $\mathbf{a} \times \mathbf{b}$ is a unit vector if the angle between \mathbf{a} and \mathbf{b} is

a)
$$\frac{\pi}{6}$$

b)
$$\frac{\pi}{4}$$

d)
$$\frac{\pi}{2}$$

- 30. If $\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, find a unit vector parallel to the vector $2\mathbf{a} - \mathbf{b} + 3\mathbf{c}$.
- 31. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\mathbf{a} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$
- 32. Show that the unit direction vector inclined equally to the coordinate axes is $\begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$
- 33. Let $\mathbf{a} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$. Find a vector **d** such that $\mathbf{d} \perp \mathbf{a}, \mathbf{d} \perp \mathbf{b}$ and $\mathbf{d}^T \mathbf{c} = 15$.
- 34. The scalar product of $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ with a unit vector along the sum of the vectors $\begin{pmatrix} 2\\4\\-5 \end{pmatrix}$ and $\begin{pmatrix} \lambda\\2\\3 \end{pmatrix}$ is unity. Find the value of λ .
- 35. Prove that

$$(\mathbf{a} + \mathbf{b})^T (\mathbf{a} + \mathbf{b}) = \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 \qquad (1.2.35.1)$$

$$\iff \mathbf{a} \perp \mathbf{b}. \qquad (1.2.35.2)$$

- 36. If θ is the angle between two vectors **a** and **b**, then $\mathbf{a}^T \mathbf{b} \ge \text{only when}$
- 37. Let **a** and **b** be two unit vectors and θ be the angle between them. Then $\mathbf{a} + \mathbf{b}$ is a unit vector if

- a) $\theta = \frac{\pi}{4}$ c) $\theta = \frac{\pi}{2}$ b) $\theta = \frac{\pi}{3}$ d) $\theta = \frac{2\pi}{3}$

38. The value of

$$\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}^{T} \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix} \times \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix} + \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}^{T} \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix} \times \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix} \\
+ \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix} \times \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix} \\
+ \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}^{T} \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix} \times \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix} \times \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}$$
(1.2.38.1)

is

a) 0

c) 1

b) -1

- d) 3
- 39. If θ is the angle between any two vectors **a** and **b**, then $\|\mathbf{a}^T \mathbf{b}\| = \|\mathbf{a} \times \mathbf{b}\|$ when θ is equal to
 - a) 0

b) $\frac{\pi}{4}$

- d) π .
- 40. Let $\|\mathbf{a}\| = 3$, $\|\mathbf{b}\| = 4$, $\|\mathbf{c}\| = 5$ such that each vector is perpendicular to the other two. Find $\|\mathbf{a} + \mathbf{b} + \mathbf{c}\|.$
- 41. Given

$$\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0},$$
 (1.2.41.1)

evaluate

$$\mathbf{a}^T \mathbf{b} + \mathbf{b}^T \mathbf{c} + \mathbf{c}^T \mathbf{a}, \qquad (1.2.41.2)$$

given that $\|\mathbf{a}\| = 3$, $\|\mathbf{b}\| = 4$ and $\|\mathbf{c}\| = 2$.

- 42. Let $\alpha = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}, \beta = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$. Find β_1, β_2 such that $\beta_1 \parallel \alpha$ and $\beta_2 \perp \alpha$.
- 43. Find a unit vector that makes an angle of $90^{\circ}, 60^{\circ}$ and 30° with the positive x, y and z axis respectively.
- 44. Find a unit vector in the direction of $\begin{bmatrix} -1 \\ -2 \end{bmatrix}$.
- 45. Find a unit vector in the direction of the line passing through $\begin{pmatrix} -2\\4\\5 \end{pmatrix}$ and 1
 - 2 3.
- 46. Find a unit vector that makes an angle of 90°, 135° and 45° with the positive x, y and z axis respectively.

- 47. Show that the lines with direction vectors $\begin{pmatrix} 12 \\ -3 \\ -4 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 12 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -4 \\ 12 \end{pmatrix}$ are mutually perpendicular.
- 48. Show that the line through the points $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}$ is parallel to the line through the points $\begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 5 \\ 6 \end{pmatrix}$.
- 49. Show that the line through the points $\begin{pmatrix} 4 \\ 7 \\ 8 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$ is parallel to the line through the points $\begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$.

1.3 Section Formula

1. Find the coordinates of the point which divides the join of

$$\begin{pmatrix} -1\\7 \end{pmatrix}, = \begin{pmatrix} 4\\-3 \end{pmatrix} \tag{1.3.1.1}$$

in the ratio 2:3.

- 2. Find the coordinates of the points of trisection of the line segment joining $\begin{pmatrix} 4 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ -3 \end{pmatrix}$.
- 3. Find the ratio in which the line segment joining the points $\begin{pmatrix} -3 \\ 10 \end{pmatrix}$ and $\begin{pmatrix} 6 \\ -8 \end{pmatrix}$ is divided by $\begin{pmatrix} -1 \\ 6 \end{pmatrix}$.
- 4. Find the ratio in which the line segment joining $\mathbf{A} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -4 \\ 5 \end{pmatrix}$ is divided by the x-axis. Also find the coordinates of the point of division,
- 5. If $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 4 \\ y \end{pmatrix}$, $\begin{pmatrix} x \\ 6 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$ are the vertices of a parallelogram taken in order, find x and y.
- 6. If $\mathbf{A} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$ respectively, find the coordinates of \mathbf{P} such that $AP = \frac{3}{7}AB$ and \mathbf{P} lies on the line segment AB.

- 7. Find the coordinates of the points which divide the line segment joining $\mathbf{A} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 \\ 8 \end{pmatrix}$ into four equal parts.
- 8. Find the value of k if the points $\mathbf{A} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 4 \\ k \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}$ are collinear.
- 9. In each of the following, find the value of *k* for which the points are collinear
 - a) $\begin{pmatrix} 7 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 5 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 3 \\ k \end{pmatrix}$ b) $\begin{pmatrix} 8 \\ 1 \end{pmatrix}$, $\begin{pmatrix} k \\ -4 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -5 \end{pmatrix}$
- 10. Find a condition on **x** such that the points $\mathbf{x}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 0 \end{pmatrix}$ are collinear.
- 11. If

$$\mathbf{P} = 3\mathbf{a} - 2\mathbf{b} \tag{1.3.11.1}$$

$$\mathbf{Q} = \mathbf{a} + \mathbf{b} \tag{1.3.11.2}$$

find \mathbf{R} , which divides PQ

- a) internally,
- b) externally.
- 12. Show that the points $\mathbf{A} = \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 \\ 6 \\ 3 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 3 \\ 10 \\ -1 \end{pmatrix}$ are collinear.
- 13. Show that the points $\mathbf{A} = \begin{pmatrix} 1 \\ -2 \\ 8 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 5 \\ 0 \\ -2 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 11 \\ 3 \\ 7 \end{pmatrix}$ are collinear, and find the ratio in

which **B** divides AC.

14. Find **R** which divides the line joining the points

$$\mathbf{P} = 2\mathbf{a} + \mathbf{b} \tag{1.3.14.1}$$

$$\mathbf{Q} = \mathbf{a} - \mathbf{b} \tag{1.3.14.2}$$

externally in the ratio 1:2.

15. Show that $\mathbf{A} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$ and $\mathbf{D} = \begin{pmatrix} 1 \\ -6 \\ 1 \end{pmatrix}$, are collinear.

16. Show that
$$\mathbf{A} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 3 \\ 8 \\ -11 \end{pmatrix}$ are collinear.

17. Show that
$$\mathbf{A} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 5 \\ 8 \\ 7 \end{pmatrix}$ are collinear.

1.4 Line Equation

1. Determine the ratio in which the line

$$(2 \quad 1) - 4 = 0 \tag{1.4.1.1}$$

divides the line segment joining the points $\mathbf{A} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 3 \\ 7 \end{pmatrix}$ 2. Find the equation of a line through the point

- 2. Find the equation of a line through the poir $\begin{pmatrix} 5 \\ 2 \\ -4 \end{pmatrix}$ and parallel to the vector $\begin{pmatrix} 3 \\ 2 \\ -8 \end{pmatrix}$.
- 3. Find the equation of a line passing through the points $\begin{pmatrix} -1\\0\\2 \end{pmatrix}$ and $\begin{pmatrix} 3\\4\\6 \end{pmatrix}$.
- 4. If

$$\frac{x+3}{2} = \frac{y-5}{4} = \frac{z+6}{2},$$
 (1.4.4.1)

find the equation of the line.

5. Find the angle between the pair of lines given by

$$\mathbf{x} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \tag{1.4.5.1}$$

$$x = \begin{pmatrix} 5 \\ -2 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix}$$
 (1.4.5.2)

6. Find the angle between the pair of lines

$$\frac{x+3}{3} = \frac{y-1}{5} = \frac{z+3}{4}, \frac{x+1}{1} = \frac{y-4}{1} = \frac{z-5}{2}$$
(1.4.6.1)

7. Find the shortest distance between the lines

$$L_1: \quad \boldsymbol{x} = \begin{pmatrix} 1\\1\\0 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2\\-1\\1 \end{pmatrix} \tag{1.4.7.1}$$

$$L_2: \quad \mathbf{x} = \begin{pmatrix} 2\\1\\-1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3\\-5\\2 \end{pmatrix}$$
 (1.4.7.2)

8. Find the distance between the lines

$$L_1: \quad \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix} \tag{1.4.8.1}$$

$$L_2: \quad \mathbf{x} = \begin{pmatrix} 3 \\ 3 \\ -5 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix} \tag{1.4.8.2}$$

9. Find the equation of a line which passes through the point $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and is parallel to the vector $\begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$.

- 10. Find the equaion off the line that passes through $\begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$ and is in the direction $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.
- 11. Find the equation of the line which passes through the point $\begin{pmatrix} -2\\4\\-5 \end{pmatrix}$ and parallel to the line given by

$$\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}.$$
 (1.4.11.1)

12. Find the equation of the line given by

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}.$$
 (1.4.12.1)

- 13. Find the equation of the line passing through the origin and the point $\begin{pmatrix} 5 \\ -2 \\ 3 \end{pmatrix}$.
- 14. Find the equation of the line passing through the points $\begin{pmatrix} 3 \\ -2 \\ -5 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix}$.
- 15. Find the angle between the following pair of lines:

a)

$$L_1: \quad \mathbf{x} = \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} + \lambda_1 \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix} \qquad (1.4.15.1)$$

$$L_2: \quad \mathbf{x} = \begin{pmatrix} 7 \\ -6 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 (1.4.15.2)

b)

$$L_1: \quad \mathbf{x} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \qquad (1.4.15.3)$$

$$L_2: \quad \mathbf{x} = \begin{pmatrix} 2 \\ -1 \\ -56 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ -5 \\ -4 \end{pmatrix} \quad (1.4.15.4)$$

16. Find the angle between the following pair of lines

a)

$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}, \frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$$
(1.4.16.1)

b)

$$\frac{x}{2} = \frac{y}{2} = \frac{z}{1}, \frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$$
(1.4.16.2)

17. Find the values of p so that the lines

$$\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}, \frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$$
(1.4.17.1)

are at right angles.

18. Show that the lines

$$\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}, \frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 (1.4.18.1)

are perpendicular to each other.

19. Find the shortest distance between the lines

$$L_1: \quad \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \tag{1.4.19.1}$$

$$L_2: \quad \mathbf{x} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$
 (1.4.19.2)

20. Find the shortest distance between the lines

$$\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}, \frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$$
(1.4.20.1)

21. Find the shortest distance between the lines

$$L_1: \quad \mathbf{x} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1\\-3\\2 \end{pmatrix}$$
 (1.4.21.1)

$$L_2: \quad \mathbf{x} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$
 (1.4.21.2)

22. Find the shortest distance between the lines

$$L_1: \quad \mathbf{x} = \begin{pmatrix} 1 - t \\ t - 2 \\ 3 - 2t \end{pmatrix} \tag{1.4.22.1}$$

$$L_2: \quad \mathbf{x} = \begin{pmatrix} s+1\\2s-1\\-2s-1 \end{pmatrix} \tag{1.4.22.2}$$

2 Triangle

2.1 Construction

1. Draw $\triangle ABC$ where $\angle B = 90^{\circ}$, a = 4 and b = 3. **Solution:** The vertices of $\triangle ABC$ are

$$\mathbf{A} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \tag{2.1.1.1}$$

The following code plots Fig. 2.1.1

codes/triangle/rt triangle.py

Fig. 2.1.1

2. Construct a triangle of sides a = 4, b = 5 and c = 6.

Solution: Let the vertices of $\triangle ABC$ be

$$\mathbf{A} = \begin{pmatrix} p \\ q \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$
 (2.1.2.1)

$$\mathbf{A}^T \stackrel{\triangle}{=} \begin{pmatrix} p & q \end{pmatrix} \tag{2.1.2.2}$$

$$\|\mathbf{A}\|^2 = \mathbf{A}^T \mathbf{A} = \begin{pmatrix} p & q \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix}$$
 (2.1.2.3)

$$= p \times p + q \times q = p^2 + q^2$$
 (2.1.2.4)

Then

$$AB \stackrel{\triangle}{=} ||\mathbf{A} - \mathbf{B}||^2 = ||\mathbf{A}||^2 = c^2 \quad \therefore \mathbf{B} = \mathbf{0}$$
(2.1.2.5)

$$BC = \|\mathbf{C} - \mathbf{B}\|^2 = \|\mathbf{C}\|^2 = a^2$$
 (2.1.2.6)

$$AC = ||\mathbf{A} - \mathbf{C}||^2 = b^2 \tag{2.1.2.7}$$

From (2.1.2.7),

$$b^{2} = \|\mathbf{A} - \mathbf{C}\|^{2} = \|\mathbf{A} - \mathbf{C}\|^{T} \|\mathbf{A} - \mathbf{C}\| \quad (2.1.2.8)$$

$$= \mathbf{A}^{T} \mathbf{A} + \mathbf{C}^{T} \mathbf{C} - \mathbf{A}^{T} \mathbf{C} - \mathbf{C}^{T} \mathbf{A} \quad (2.1.2.9)$$

$$= \|\mathbf{A}\|^{2} + \|\mathbf{C}\|^{2} - 2\mathbf{A}^{T} \mathbf{C} \quad (\because \mathbf{A}^{T} \mathbf{C} = \mathbf{C}^{T} \mathbf{A})$$

$$(2.1.2.10)$$

$$= a^{2} + c^{2} - 2ap \quad (2.1.2.11)$$

yielding

$$p = \frac{a^2 + c^2 - b^2}{2a} \tag{2.1.2.12}$$

From (2.1.2.5),

$$\|\mathbf{A}\|^2 = c^2 = p^2 + q^2$$
 (2.1.2.13)

$$\implies q = \pm \sqrt{c^2 - p^2} \tag{2.1.2.14}$$

The following code plots Fig. 2.1.2

codes/triangle/draw triangle.py

3. Construct a triangle of sides a = 5, b = 6 and c = 7. Construct a similar triangle whose sides are $\frac{7}{5}$ times the corresponding sides of the first triangle.

Solution: The sides of the similar triangle are $\frac{7}{5}a, \frac{7}{5}b$ and $\frac{7}{5}c$.

4. Construct an isosceles triangle whose base is a = 8 cm and altitude AD = h = 4 cm

Fig. 2.1.2

Solution: Using Baudhayana's theorem,

$$b = c = \sqrt{h^2 + \left(\frac{a}{2}\right)^2}$$
 (2.1.4.1)

5. In $\triangle ABC$, given that a+b+c=11, $\angle B=45^\circ$ and $\angle C=45^\circ$, find a,b,c and sketch the triangle. **Solution:** From the given information,

$$a + b + c = 11$$
 (2.1.5.1)

$$b = c$$
 (: $B = C = 45^{\circ}$) (2.1.5.2)

$$a^2 = b^2 + c^2$$
 (:: $A = 90^\circ$) (2.1.5.3)

From (2.1.5.1) and (2.1.5.2),

$$a + 2b = 11$$
 (2.1.5.4)

From (2.1.5.2) and (2.1.5.3),

$$a^2 = 2b^2 \implies a - b\sqrt{2} = 0$$
 (2.1.5.5)

(2.1.5.4) and (2.1.5.5) can be summarized as the matrix equation

$$\begin{pmatrix} 1 & 2 \\ 1 & -\sqrt{2} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 11 \\ 0 \end{pmatrix}$$
 (2.1.5.6)

which can be solved using Cramer's rule as

$$a = \frac{\begin{vmatrix} 11 & 2\\ 0 & -\sqrt{2} \end{vmatrix}}{\begin{vmatrix} 1 & 2\\ 1 & -\sqrt{2} \end{vmatrix}} = \frac{11 \times (-\sqrt{2}) - 2 \times 0}{1 \times (-\sqrt{2}) - 2 \times 1}$$
(2.1.5.7)

$$=\frac{11\sqrt{2}}{2+\sqrt{2}}\tag{2.1.5.8}$$

$$b = \frac{\begin{vmatrix} 1 & 11 \\ 1 & 0 \end{vmatrix}}{\begin{vmatrix} 1 & 2 \\ 1 & -\sqrt{2} \end{vmatrix}} = \frac{11}{2 + \sqrt{2}}$$
 (2.1.5.9)

by expanding the determinants. The following code may be used to compute a, b and c.

codes/triangle/triangle det.py

6. Repeat Problem 2.1.5 using a single matrix equation.

Solution: The equations

$$a + 2b = 11 \tag{2.1.6.1}$$

$$a - b\sqrt{2} = 0 (2.1.6.2)$$

$$b - c = 0 (2.1.6.3)$$

can be expressed as a single matrix equation

$$\begin{pmatrix} 1 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 11 \\ 0 \\ 0 \end{pmatrix}$$
 (2.1.6.4)

and can be solved using Cramer's rule as

$$a = \frac{\begin{vmatrix} 11 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{vmatrix}}{\begin{vmatrix} 0 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{vmatrix}}$$
(2.1.6.5)

$$b = \frac{\begin{vmatrix} 0 & 11 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{vmatrix}}{\begin{vmatrix} 0 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{vmatrix}}$$
 (2.1.6.6)

$$c = \frac{\begin{vmatrix} 0 & 2 & 11 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & 0 \end{vmatrix}}{\begin{vmatrix} 0 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{vmatrix}}$$
(2.1.6.7)

The determinant

$$\begin{vmatrix} 0 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{vmatrix} = 0 \times \begin{vmatrix} -\sqrt{2} & 0 \\ 1 & -1 \end{vmatrix}$$
$$-2 \times \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} + 0 \times \begin{vmatrix} 1 & -\sqrt{2} \\ 0 & 1 \end{vmatrix} \quad (2.1.6.8)$$

The determinant can also be expressed as

$$\begin{vmatrix} 0 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{vmatrix} = 0 \times \begin{vmatrix} -\sqrt{2} & 0 \\ 1 & -1 \end{vmatrix}$$
$$-1 \times \begin{vmatrix} 2 & 0 \\ 1 & -1 \end{vmatrix} + 0 \times \begin{vmatrix} 2 & 0 \\ -\sqrt{2} & 0 \end{vmatrix} \quad (2.1.6.9)$$

The determinants of larger matrices can be expressed similarly.

7. Draw $\triangle ABC$ with a=6, c=5 and $\angle B=60^{\circ}$. **Solution:** In Fig. (2.1.7), $AD \perp BC$.

$$\cos C = \frac{y}{b},$$
 (2.1.7.1)

$$\cos B = \frac{x}{b},$$
 (2.1.7.2)

Thus,

$$a = x + y = b \cos C + c \cos B,$$
 (2.1.7.3)

$$b = c\cos A + a\cos C \qquad (2.1.7.4)$$

$$c = b\cos A + a\cos B \qquad (2.1.7.5)$$

The above equations can be expressed in matrix form as

$$\begin{pmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{pmatrix} \begin{pmatrix} \cos A \\ \cos B \\ \cos C \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (2.1.7.6)

Using Cramer's rule and determinants,

$$\cos A = \frac{\begin{vmatrix} a & c & b \\ b & 0 & a \\ c & a & 0 \end{vmatrix}}{\begin{vmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{vmatrix}} = \frac{ab^2 + ac^2 - a^3}{abc + abc} \quad (2.1.7.7)$$
$$= \frac{b^2 + c^2 - a^2}{2bc} \quad (2.1.7.8)$$

From (2.1.7.8)

$$b^2 = c^2 + a^2 - 2ca\cos B \tag{2.1.7.9}$$

which is computed by the following code

Fig. 2.1.7: The cosine formula

8. Draw $\triangle ABC$ with a = 7, $\angle B = 45^{\circ}$ and $\angle A = 105^{\circ}$.

Solution: In Fig. (2.1.7),

$$\sin B = \frac{h}{c} \tag{2.1.8.1}$$

$$\sin C = \frac{h}{h} \tag{2.1.8.2}$$

which can be used to show that

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \tag{2.1.8.3}$$

Thus,

$$c = \frac{a \sin C}{\sin A} \tag{2.1.8.4}$$

where

$$C = 180 - A - B \tag{2.1.8.5}$$

9. Draw $\triangle ABC$ if AB = 3, AC = 5 and $\angle C = 30^{\circ}$. **Solution:** From (2.1.7.9),

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} \tag{2.1.9.1}$$

which can be expressed as

$$a^2 - 2ab\cos C + b^2 - c^2 = 0.$$
 (2.1.9.2)

$$(a - b\cos C)^2 = a^2 + b^2\cos^2 C - 2ab\cos C,$$
(2.1.9.3)

(2.1.9.2) can be expressed as

$$(a - b\cos C)^2 - b^2\cos^2 C + b^2 - c^2 = 0$$
(2.1.9.4)

$$\implies (a - b\cos C)^2 = b^2 (1 - \cos^2 C) - c^2$$
(2.1.9.5)

or,
$$a = b \cos C \pm \sqrt{b^2 (1 - \cos^2 C) - c^2}$$
(2.1.9.6)

Choose the value(s) for which a > 0.

10. The solution of a quadratic equation

$$\alpha x^2 + \beta x + \gamma = 0 \tag{2.1.10.1}$$

is given by

$$x = \frac{-\beta \pm \sqrt{\beta^2 - 4\alpha\gamma}}{2\alpha}.$$
 (2.1.10.2)

Verify (2.1.9.6) using (2.1.10.2).

11. $\triangle ABC$ is right angled at **B**. If a = 12 and b+c = 18, find b, c and draw the triangle.

Solution: From Baudhayana's theorem,

$$b^2 = a^2 + c^2 (2.1.11.1)$$

$$\implies (18 - c)^2 = 12^2 + c^2$$
 (2.1.11.2)

which can be simplified to obtain

$$36c - 180 = 0 \tag{2.1.11.3}$$

$$\implies c = 5 \tag{2.1.11.4}$$

and *b*= 13

- 12. Find a simpler solution for Problem 2.1.5 **Solution:** Use cosine formula.
- 13. In $\triangle ABC$, $a = 7, \angle B = 75^{\circ}$ and b + c = 13. Alternatively,

$$a = b\cos C + c\cos B \tag{2.1.13.1}$$

$$b\sin C = c\sin B \tag{2.1.13.2}$$

$$a + b + c = 11$$
 (2.1.13.3)

resulting in the matrix equation

$$\begin{pmatrix} 1 & -\cos C & -\cos B \\ 0 & \sin C & -\sin B \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 11 \end{pmatrix} (2.1.13.4)$$

Solving the equivalent matrix equation gives the desired answer.

2.2 Construction Exercises

- 1. In $\triangle ABC$, a = 8, $\angle B = 45^{\circ}$ and c b = 3.5. Sketch $\triangle ABC$.
- 2. In $\triangle ABC$, a = 6, $\angle B = 60^{\circ}$ and b-c = 2. Sketch $\triangle ABC$.
- 3. Draw $\triangle ABC$, given that a+b+c=11, $\angle B=30^{\circ}$ and $\angle C=90^{\circ}$.
- 4. Construct $\triangle xyz$ where xy = 4.5, yz = 5 and zx = 6.
- 5. Draw an equilateral triangle of side 5.5.
- 6. Draw $\triangle PQR$ with PQ = 4, QR = 3.5 and PR = 4. What type of triangle is this?
- 7. Construct $\triangle ABC$ such that AB = 2.5, BC = 6 and AC = 6.5. Find $\angle B$.
- 8. Construct $\triangle PQR$, given that PQ = 3, QR = 5.5 and $\angle PQR = 60^{\circ}$.
- 9. Construct $\triangle DEF$ such that DE = 5, DF = 3 and $\angle D = 90^{\circ}$.
- 10. Construct an isosceles triangle in which the lengths of the equal sides is 6.5 and the angle between them is 110°.
- 11. Construct $\triangle ABC$ with BC = 7.5, AC = 5 and $\angle C = 60^{\circ}$.
- 12. Construct $\triangle XYZ$ if XY = 6, $\angle X = 30^{\circ}$ and $\angle Y = 100^{\circ}$.
- 13. If AC = 7, $\angle A = 60^{\circ}$ and $\angle B = 50^{\circ}$, can you draw the triangle?

- 14. Construct $\triangle ABC$ given that $\angle A = 60^{\circ}$, $\angle B = 30^{\circ}$ and AB = 5.8.
- 15. Construct $\triangle PQR$ if $PQ = 5, \angle Q = 105^{\circ}$ and $\angle R = 40^{\circ}$.
- 16. Can you construct $\triangle DEF$ such that $EF = 7.2, \angle E = 110^{\circ}$ and $\angle F = 180^{\circ}$?
- 17. Construct $\triangle LMN$ right angled at M such that LN = 5 and MN = 3.
- 18. Construct $\triangle PQR$ right angled at Q such that QR = 8 and PR = 10.
- 19. Construct right angled \triangle whose hypotenuse is 6 and one of the legs is 4.
- 20. Construct an isosceles right angled $\triangle ABC$ right angled at C such AC = 6.
- 21. Construct the triangles in Table 2.2.21.

S.NoTriangle		Given Measurements		
1	△ABC	$\angle A = 85^{\circ}$	$\angle B = 115$	$^{\circ}$ AB = 5
2	△PQR	$\angle Q = 30^{\circ}$	$\angle R = 60^{\circ}$	QR = 4.7
3	∆ABC	$\angle A = 70^{\circ}$	$\angle B = 50^{\circ}$	AC = 3
4	△LMN	$\angle L = 60^{\circ}$	$\angle N = 120^{\circ}$	LM = 5
5	∆ABC	BC = 2	AB = 4	AC = 2
6	△PQR	PQ = 2.5	QR = 4	PR = 3.5
7	$\triangle XYZ$	XY = 3	YZ = 4	XZ = 5
8	△DEF	DE = 4.5	EF = 5.5	DF = 4

TABLE 2.2.21

2.3 Triangle Geometry

- 1. Find the area of a triangle whose vertices are $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} -4 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} -3 \\ -5 \end{pmatrix}$.
- 2. Find the area of a triangle formed by the vertices $\mathbf{A} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 7 \\ -4 \end{pmatrix}$.
- 3. Find the area of a triangle formed by the points $\mathbf{P} = \begin{pmatrix} -1.5 \\ 3 \end{pmatrix}$, $\mathbf{Q} = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$, $\mathbf{R} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$.
- 4. Find the area of the triangle whose vertices are $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$

b)
$$\begin{pmatrix} 3 \\ -5 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 5 \\ 2 \\ 2 \end{pmatrix}$

Find the area of the trial

5. Find the area of the triangle formed by joining the mid points o the sides of a triangle whose vertices are $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$.

- 6. Verify that the median of $\triangle ABC$ with vertices $\mathbf{A} = \begin{pmatrix} 4 \\ -6 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ divides it into two triangles of equal areas.
- 7. The vertices of $\triangle ABC$ are $\mathbf{A} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$. A line is drawn to intersect sides AB and AC at D and E respectively, such that

$$\frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{4} \tag{2.3.7.1}$$

Find

$$\frac{\text{area of }\triangle ADE}{\text{area of }\triangle ABC}.$$
 (2.3.7.2)

- 8. Let $\mathbf{A} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 6 \\ 5 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ be the vertices of $\triangle ABC$.
 - a) The median from **A** meets *BC* at **D**. Find the coordinates of the point **D**.
 - b) Find the coordinates of the point **P** on AD such that AP : PD = 2 : 1.
 - c) Find the coordinates of the points \mathbf{Q} and \mathbf{R} on medians BE and CF respectively such that BQ: QE = 2:1 and CR: RF = 2:1.
- 9. In $\triangle ABC$, Show that the centroid

$$\mathbf{O} = \frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3} \tag{2.3.9.1}$$

10. Show that the points

$$\mathbf{A} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 3 \\ -4 \\ -4 \end{pmatrix} \quad (2.3.10.1)$$

are the vertices of a right angled triangle.

- 11. In $\triangle ABC$, $\mathbf{A} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$. Find
- 12. Show that the vectors $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -4 \\ -4 \end{pmatrix}$ form the vertices of a right angled triangle.
- 13. Find the area of a triangle having the points $\mathbf{A} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, and $\mathbf{C} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ as its vertices.
- 14. Find the area of a triangle with vertices $\mathbf{A} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$, and $\mathbf{C} = \begin{pmatrix} 1 \\ 5 \\ 5 \end{pmatrix}$

- 15. A girl walks 4km west, then she walks 3km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.
- 16. Find the direction vectors of the sides of a triangle with vertices $\mathbf{A} = \begin{pmatrix} 3 \\ 5 \\ -4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$, and $\mathbf{C} = \begin{pmatrix} -5 \\ -5 \\ 2 \end{pmatrix}$

3 QUADRILATERAL

- 3.1 Construction Examples
- 1. Draw ABCD with AB = a = 4.5, BC = b = 5.5, CD = c = 4, <math>AD = d = 6 and AC = e = 7. **Solution:** Fig. 3.1.1 shows a rough sketch of ABCD. Letting

$$\mathbf{C} = \begin{pmatrix} p \\ q \end{pmatrix}, \mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$
 (3.1.1.1)

it is trivial to sketch $\triangle ABC$ from Problem 2.1.2. $\triangle ACD$ is can be obtained by rotating an equivalent triangle with AC on the x-axis by an angle θ with

$$\mathbf{D} = \begin{pmatrix} h \\ k \end{pmatrix}, \mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} e \\ 0 \end{pmatrix}$$
 (3.1.1.2)

and

$$\cos \theta = \frac{a^2 + e^2 - b^2}{2ae}$$
 (3.1.1.3)

$$\sin \theta = \sqrt{1 - \cos^2 \theta} \tag{3.1.1.4}$$

The coordinates of the rotated triangle ACD are

$$\mathbf{D} = \mathbf{P} \begin{pmatrix} h \\ k \end{pmatrix} \tag{3.1.1.5}$$

$$\mathbf{A} = \mathbf{P} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{3.1.1.6}$$

$$\mathbf{C} = \mathbf{P} \begin{pmatrix} e \\ 0 \end{pmatrix} \tag{3.1.1.7}$$

where

$$\mathbf{P} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \tag{3.1.1.8}$$

The following code plots quadrilateral *ABCD* in Fig. 3.1.1

codes/quad/draw_quad.py

Fig. 3.1.1

Fig. 3.1.1

2. Draw the parallelogram MORE with OR = 6, RE = 4.5 and EO = 7.5.

Solution: Diagonals of a parallelogram bisect each other. Opposite sides of a parallelogram are equal and parallel .

3. Construct a kite EASY if AY = 8, EY = 4 and SY = 6.

Solution: The diagonals of a kite are perpendicular to each other.

4. Draw the rhombus BEST with BE = 4.5 and ET = 6.

Solution: Diagonals of a rhombus bisect each other at right angles.

3.2 Construction Exercises

- 1. Construct a quadrilateral ABCD such that AB = 5, $\angle A = 50^{\circ}$, AC = 4, BD = 5 and AD = 6.
- 2. Construct PQRS where PQ = 4, QR = 6, RS = 5, PS = 5.5 and PR = 7.

- 3. Draw JUMP with JU = 3.5, UM = 4, MP = 5, PJ = 4.5 and PU = 6.5
- 4. Construct a quadrilateral ABCD such that BC = 4.5, AC = 5.5, CD = 5, BD = 7 and AD = 5.5.
- 5. Can you construct a quadrilateral PQRS with PQ = 3, RS = 3, PS = 7.5, PR = 8 and SQ = 4?
- 6. Construct LIFT such that LI = 4, IF = 3, TL = 2.5, LF = 4.5, IT = 4.
- 7. Draw GOLD such that OL = 7.5, GL = 6, GD = 6, LD = 5, <math>OD = 10.
- 8. DRAW rhombus BEND such that BN = 5.6, DE = 6.5.
- 9. construct a quadrilateral MIST where MI = 3.5, IS = 6.5, $\angle M = 75^{\circ}$, $\angle I = 105^{\circ}$ and $\angle S = 120^{\circ}$.
- 10. Can you construct the above quadrilateral MIST if $\angle M = 100^{\circ}$ instead of 75°.
- 11. Can you construct the quadrilateral PLAN if PL = 6, LA = 9.5, $\angle P = 75^{\circ}$, $\angle L = 150^{\circ}$ and $\angle A = 140^{\circ}$?
- 12. Construct *MORE* where $MO = 6, OR = 4.5, \angle M = 60^{\circ}, \angle O = 105^{\circ}, \angle R = 105^{\circ}.$
- 13. Construct *PLAN* where *PL* = 4, *LA* = 6.5, $\angle P = 90^{\circ}$, $\angle A = 110^{\circ}$ and $\angle N = 85^{\circ}$.
- 14. Construct parallelogram HEAR where HE = 5, EA = 6, $\angle R = 85^{\circ}$.
- 15. Draw rectangle OKAY with OK = 7 and KA = 5
- 16. Construct ABCd, where AB = 4, BC = 5, Cd = 6.5, $\angle B = 105^{\circ}$ and $\angle C = 80^{\circ}$.
- 17. Construct *DEAR* with DE = 4, EA = 5, AR = 4.5, $\angle E = 60^{\circ}$ and $\angle A = 90^{\circ}$.
- 18. Construct TRUE with $TR = 3.5, RU = 3, UE = 4 \angle R = 75^{\circ}$ and $\angle U = 120^{\circ}$.
- 19. Draw a square of side 4.5.
- 20. Can you construct a rhombus ABCD with AC = 6 and BD = 7?
- 21. Draw a square READ with RE = 5.1.
- 22. Draw a rhombus who diagonals are 5.2 and 6.4.
- 23. Draw a rectangle with adjacent sides 5 and 4.
- 24. Draw a parallelogram OKAY with OK = 5.5 and KA = 4.2.

3.3 Quadrilateral Geometry

1. Find the area of a rhombus if its vertices are $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ -1 \end{pmatrix}$ taken in order.

- 2. If $\mathbf{A} = \begin{pmatrix} -5 \\ 7 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -4 \\ -5 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} -1 \\ -6 \end{pmatrix}$, $\mathbf{D} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$, find the area of the quadrilateral *ABCD*.
- 3. Find the area of the quadrilateral whose vertices, taken in order, are $\begin{pmatrix} -4 \\ 2 \end{pmatrix}$, $\begin{pmatrix} -3 \\ -5 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.
- 4. The two opposite vertices of a square are $\binom{--1}{2}$, $\binom{3}{2}$. Find the coordinates of the other two vertices.
- 5. ABCD is a rectangle formed by the points $\mathbf{A} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$, $\mathbf{D} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$. \mathbf{P} , \mathbf{Q} , \mathbf{R} , \mathbf{S} are the mid points of AB, BC, CD, DA respectively. Is the quadrilateral PQRS a
 - a) square?
 - b) rectangle?
 - c) rhombus?
- 6. Find the area of a parallelogram whose adjacent sides are given by the vectors $\begin{pmatrix} 3\\1\\4 \end{pmatrix}$ and

$$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
.

- 7. Find the area of a parallelogram whose adjacent sides are determined by the vectors $\mathbf{a} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 2 \\ -7 \\ 1 \end{pmatrix}$.
- 8. Find the area of a rectangle ABCD with vertices $\mathbf{A} = \begin{pmatrix} -1 \\ \frac{1}{2} \\ 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 \\ \frac{1}{2} \\ 4 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 1 \\ -\frac{1}{2} \\ 4 \end{pmatrix}$, $\mathbf{D} = \begin{pmatrix} -1 \\ -\frac{1}{2} \end{pmatrix}$

 $\begin{pmatrix} -1 \\ -\frac{1}{2} \\ 4 \end{pmatrix}.$

9. The two adjacent sides of a parallelogram are $\begin{pmatrix} 2 \\ -4 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$. Find the unit vector parallel to its diagonal. Also, find its area.

4 Circle

4.1 Construction Examples

1. Draw a circle with centre **B** and radius 6. If **C** be a point 10 units away from its centre, construct the pair of tangents *AC* and *CD* to the circle.

Solution: The tangent is perpendicular to

the radius. From the given information, in $\triangle ABC$, $AC \perp AB$, a = 10 and c = 6.

$$b = \sqrt{a^2 - c^2} \tag{4.1.1.1}$$

The following code plots Fig. 4.1.1

codes/circle/draw_circle_eg.py

Fig. 4.1.1

2. Draw a circle of radius 3. Mark any point **A** on the circle, point **B** inside the circle and point **C** outside the circle.

Solution: For any angle θ , a point on the circle with radius 3 has coordinates

$$3\begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix} \tag{4.1.2.1}$$

4.2 Construction Exercises

- 1. Draw a circle of diameter 6.1
- 2. With the same centre **O**, draw two circles of radii 4 and 2.5
- 3. Draw a circle of radius 3 and any two of its diameters. draw the ends of these diameters. What figure do you get?
- 4. Let **A** and **B** be two circles of equal radii 3 such that each one of them passes through the centre of the other. Let them intersect at **C** and **D**. Is $AB \perp CD$?
- 5. Construct a tangent to a circle of radius 4 units from a point on the concentric circle of radius 6 units.

Solution: Take the centre of both circles to be at the origin.

6. Draw a circle of radius 3 units. Take two points P and O on one of its extended diameter each at a distance of 7 units from its centre. Draw tangents to the circle from these two points **P** and **Q**.

Solution: Take the diameter to be on the *x*axis.

7. Draw a pair of tangents to a circle of radius 5 units which are inclined to each other at an angle of 60°.

Solution: The tangent is perpendicular to the radius.

8. Draw a line segment AB of length 8 units. Taking A as centre, draw a circle of radius 4 units and taking **B** as centre, draw another circle of radius 3 units. Construct tangents to each circle from the centre of the other circle.

Solution: Let

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}. \tag{4.2.2.1}$$

- 9. Let ABC be a right triangle in which a =8, c = 6 and $\angle B = 90^{\circ}$. BD is the perpendicular from **B** on AC (altitude). The circle through **B**, **C**, **D** (circumcircle of $\triangle BCD$) is drawn. Construct the tangents from A to this circle.
- 10. Draw a circle with centre C and radius 3.4. Draw any chord. Construct the perpendicular bisector of the chord and examine if it passes through C

4.3 Circle Geometry

- 1. Find the coordinates of a point A, where AB is the diameter of a circle whose centre is (2, -3)and $\mathbf{B} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$.
- Find the centre of a circle passing through the points \$\begin{pmatrix} 6 \\ -6 \end{pmatrix}, \$\begin{pmatrix} 3 \\ -7 \end{pmatrix}\$ and \$\begin{pmatrix} 3 \\ 3 \end{pmatrix}.
 Find the locus of all the unit vectors in the
- xy-plane.