МАТЕМАТИЧЕСКИЙ АНАЛИЗ КОНТРОЛЬНАЯ РАБОТА № 1

Демо-вариант

1. Исследуйте на абсолютную и условную сходимость следующие ряды:
 (i)
$$\sum_{n=1}^{\infty} \frac{(n+4)^3}{n!}$$
; (ii) $\sum_{n=1}^{\infty} \frac{(n+a)^n}{n^{n+a}}$; (iii) $\sum_{n=1}^{\infty} e^{-n^a}$; (iv) $\sum_{n=10}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}+(-1)^n}$; (v) $\sum_{n=1}^{\infty} \left(\sin\frac{(-1)^n}{\sqrt{n}}+\frac{(-1)^{n+1}}{\sqrt{n+1}}\right)$; (vi) $\sum_{n=1}^{\infty} \frac{(-1)^{n^2}(2n+1)!!}{(2n+2)!!}$.

- 2. Найдите такие C и α , что $\sum_{n=N+1}^{\infty} \frac{1}{\sqrt{n^5}} \sim C \cdot N^{-\alpha} \ (N \to \infty)$. Ответ обоснуйте.
- 3. Найдите все действительные значения параметра p, при которых ряд

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^p + (-1)^n}$$

сходится условно.

4. Исследуйте на сходимость

(i)
$$\prod_{n=1}^{\infty} e^{cn^c}$$
; (ii) $\prod_{n=1}^{\infty} \sqrt{\cos \frac{1}{n}}$.

5. Исследуйте на равномерную сходимость

(i)
$$\sum_{n=1}^{\infty} \frac{nx}{1+n^7x^2} \text{ Ha } \mathbb{R};$$

(ii)
$$\sum_{n=1}^{\infty} \frac{nx}{1+n^7x^9}$$
 на \mathbb{R}

$$\frac{n=1}{n=1} \text{ 1+h } x$$
(ii) $\sum_{n=1}^{\infty} \frac{nx}{1+n^7 x^9}$ на \mathbb{R} ;
(iii) $\sum_{n=1}^{\infty} \frac{x \cos(nx)}{\sqrt{n+8}}$ на $(0,1)$;

(iv)
$$\sum_{n=1}^{\infty} \frac{\cos nx}{\sqrt[3]{n^8+x^4}}$$
 Ha $(0; \frac{\pi}{8});$

(v)
$$\sum_{n=1}^{\infty} \frac{\cos nx}{\sqrt[3]{n+x^4}}$$
 Ha $(0; \frac{\pi}{8});$

(vi)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{\sqrt[3]{n+x^4}}$$
 Ha $(0; \frac{\pi}{8})$.

- 6. Найдите радиус сходимости степенного ряда (i) $\sum_{n=0}^{\infty} 2^n x^n$; (ii) $\sum_{n=0}^{\infty} 2^n x^{n^2}$.
- 7. Разложите в ряд по степеням x функцию $\operatorname{arcctg} x$. Найдите множество x, на котором сумма полученного ряда равна $\operatorname{arcctg} x$.
- 8. Найдите $f^{(2016)}(0)$, если $f(x) = (2x+1) \ln \sqrt{1+3x}$
- 9. Вычислите сумму ряда

$$\sum_{n=1}^{\infty} \frac{n(n-1)}{2^n}.$$