

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 許出願公開番号

特開平11-307121

(43)公開日 平成11年(1999)11月5日

(51)Int.Cl.⁶

識別記号

F I

H 01 M 10/40

H 01 M 10/40

A

// C 07 D 233/54

C 07 D 233/54

審査請求 未請求 請求項の数6 OL (全6頁)

(21)出願番号

特願平10-111795

(22)出願日

平成10年(1998)4月22日

(71)出願人 000005968

三菱化学株式会社

東京都千代田区丸の内二丁目5番2号

(72)発明者 小暮 あさを

茨城県稟敷郡阿見町中央八丁目3番1号

三菱化学株式会社筑波研究所内

(72)発明者 安川 栄起

茨城県稟敷郡阿見町中央八丁目3番1号

三菱化学株式会社筑波研究所内

(72)発明者 森 彰一郎

茨城県稟敷郡阿見町中央八丁目3番1号

三菱化学株式会社筑波研究所内

(74)代理人 弁理士 長谷川 曜司

(54)【発明の名称】 リチウム二次電池用電解液

(57)【要約】

【課題】 難燃性を有し、リチウムサイクル効率、サイクル特性に優れた安全性の高いリチウム二次電池用電解液の提供。

【解決手段】 溶質のリチウム塩を、常温型溶融塩及びこれに対して1~100容量の環状有機化合物を含有する液に溶解したリチウム二次電池用電解液。

1

【特許請求の範囲】

【請求項1】 下記一般式(1)

【化1】

(1)

(式中、R₁ 及びR₃ は、それぞれ独立して、炭素数1～6のアルキル基を表し、R₂ は水素原子または炭素数1～6のアルキル基を表す。) で示される4級イミダゾリウムカチオン又は下記一般式(2)

【化2】

(2)

(式中、R₆ は炭素数1～10のアルキル基を表し、R₄ 及びR₅ は、それぞれ独立して、水素原子または炭素数1～6のアルキル基を表す。) で示される4級ビリジニウムカチオン及びこれらカチオンと結合して常温型溶融塩を形成する能力を有するアニオンからなる常温型溶融塩に、リチウム塩及び該常温型溶融塩に対し1～130容量%の環状有機化合物を配合してなることを特徴とするリチウム二次電池用電解液。

【請求項2】 常温型溶融塩を形成する能力を有するアニオンが、BF₄⁻、PF₆⁻、AlCl₄⁻、(CF₃SO₂)₂N⁻ 及び(CF₃SO₂)₃C⁻ から選ばれることを特徴とする請求項1記載のリチウム二次電池用電解液。

【請求項3】 環状有機化合物が、環状エステル、含硫黄環状化合物及び環状エーテルから選ばれる少なくとも1種であることを特徴とする請求項1又は2記載のリチウム二次電池用電解液。

【請求項4】 環状エステルが、プロピレンカーボネート、エチレンカーボネート及びアーブチロラクトンから選ばれる少なくとも1種であることを特徴とする請求項3記載のリチウム二次電池用電解液。

【請求項5】 含硫黄環状化合物が、プロパンスルトン、スルホラン、エチレンサルファイト及びチオフェノールから選ばれる少なくとも1種であることを特徴とする請求項3記載のリチウム二次電池用電解液。

【請求項6】 環状エーテルが、テトラヒドロフラン、テトラヒドロビラン、ジオキソラン及びジオキサンから選ばれる少なくとも1種であることを特徴とする請求項3記載のリチウム二次電池用電解液。

【発明の詳細な説明】

【0001】

10

【発明の属する技術分野】本発明はリチウム二次電池用電解液に関する。更に詳しくは、難燃性で、リチウムサイクル効率及びサイクル特性に優れたりチウム二次電池用電解液に関する。

【0002】

【従来の技術】近年、有機溶媒電解液を用いたリチウム電池が高エネルギー密度の電源として広く用いられている。有機溶媒電解液は、高誘電率溶媒としてエチレンカーボネート、プロピレンカーボネート、アーブチロラクトン等、低粘性溶媒として炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル、1, 2-ジメトキシエタン等を混合した溶媒に、リチウム塩を混合したものが用いられている。しかしこの様な有機溶媒は引火性の高い可燃性溶媒であり、電池内部の圧力上昇又は電池の機械的破壊により電解液が漏洩した場合、引火燃焼する危険性がある。

【0003】一方、常温型溶融塩はイオン性液体であつて、広い温度範囲で蒸気圧を有しないことより引火性のないことが知られている (J. Electrochim. Soc., 144, 3881 (1997))。また、この常温型溶融塩をリチウム二次電池用電解液として使用した研究も報告されている (特開平-349365号公報、米国特許第5, 552, 238) が、リチウム効率の低さや、溶融塩とリチウム金属との反応性等の問題により、そのサイクル特性が性能的に十分なもののは未だ得られていない。

【0004】

【発明が解決しようとする課題】本発明の目的は、リチウム二次電池に最適な電解液として、難燃性を有し、リチウムサイクル効率及びサイクル特性に優れ、安全性、信頼性が向上したリチウム二次電池用電解液を提供することにある。

【0005】

【課題を解決するための手段】本発明者等は検討を重ね、常温型溶融塩に特定の有機溶媒を配合することにより、難燃性で、且つ、リチウムサイクル効率、サイクル特性の良好な電解液が得られることを知り本発明を達成した。即ち、本発明の要旨は、下記一般式(1)

【0006】

40 【化3】

(1)

【0007】(式中、R₁ 及びR₃ は、それぞれ独立して、炭素数1～6のアルキル基を表し、R₂ は水素原子または炭素数1～6のアルキル基を表す。) で示される4級イミダゾリウムカチオン又は下記一般式(2)

50 【0008】

【0009】(式中、R₆ は炭素数1～10のアルキル基を表し、R₄ 及びR₅ は、それぞれ独立して、水素原子または炭素数1～6のアルキル基を表す。)で示される4級ビリジニウムカチオン及びこれらカチオンと結合して常温型溶融塩を形成する能力を有するアニオンからなる常温型溶融塩にリチウム塩及び該常温型溶融塩に対し1～130容量%の環状有機化合物を配合してなることを特徴とするリチウム二次電池用電解液に存する。

【0010】

【発明の実施の形態】以下本発明を詳細に説明する。本発明の電解液に使用される常温型溶融塩のカチオン成分は前記一般式(1)又は(2)で示される。一般式

(1) 又は(2)におけるR₁，R₂，R₃，R₄ 及びR₅ がアルキル基の場合、具体的には、メチル、エチル基、i-プロピル基、t-ブチル基、n-ヘキシル基等の炭素数1～6の直鎖又は分岐のアルキル基が挙げられる。R₆ も同様に炭素数1～10の直鎖又は分岐のアルキル基を表す。R₁～R₃ 又はR₄～R₆ は同じアルキル基であっても或いは異なったアルキル基であってもよい。

【0011】一般式(1)で示される4級イミダゾリウムカチオンとして好ましくはR₁，R₂，R₃ の合計炭素数が2～8のものであり、具体的には例えば、1，3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム、1-n-ブチル-3-メチルイミダゾリウム、1，2，3-トリメチルイミダゾリウム、1，2-ジメチル-3-エチルイミダゾリウム、1-ブチル-2，3-ジメチルイミダゾリウム等が挙げられる。また一般式(2)で示される4級ビリジニウムカチオンとしては、好ましくはR₄，R₅，R₆ の合計炭素数が2～10のものであり、具体的には例えば、N-エチルビリジニウム、N-n-ブチルビリジニウム、N-s-ブチルビリジニウム、N-n-プロピルビリジニウム、1-エチル-2-メチルビリジニウム、1-n-ヘキシル-2-メチルビリジニウム、1-n-ブチル-4-メチルビリジニウム、1-n-ブチル-2，4-ジメチルビリジニウム等が挙げられる。これらカチオンと結合して常温型溶融塩を形成する能力を有するアニオンとしては、具体的には、例えば、BF₄⁻，PF₆⁻，AlCl₄⁻，(CF₃SO₂)₂N⁻，(CF₃SO₂)₃C⁻等が挙げられる。

【0012】上記溶融塩に配合して用いられる環状有機化合物としては、環状エステル類、含硫黄環状化合物

10

20

30

40

類、環状エーテル類である。具体的には環状エステル類としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等のアルキレンカーボネート類やケープチロラクトン、オーバレロラクトン等のラクトン類が挙げられる。含硫黄環状化合物としては、プロパンスルトン、スルホラン、エチレンサルファイト、チオフェノール等が挙げられる。

【0013】環状エーテル類としてはフラン、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフラン、2，5-ジメチルテトラヒドロフラン、テトラヒドロビラン、2-メチルテトラヒドロビラン、3-メチルテトラヒドロビラン、フラン、2-メチルフラン、3-メチルフラン、ビラン、2-メチルビラン、3-メチルビラン、1，3-ジオキソラン、4-メチル-1，3-ジオキソラン、1，3-ジオキサン、1，4-ジオキサン等の5～6員環のエーテル類が挙げられる。

【0014】これら環状有機化合物は、常温型溶融塩に対して、1～130容量%の範囲で配合され、好ましくは2～100容量%、特にリチウムサイクル効率と難燃性のバランスの点で好ましいのは3～40容量%である。配合量が少ないと、良好なりチウムサイクル効率、サイクル特性を得ることが難しく、また、配合量が多すぎると引火性を帯びる可能性があり、十分な安全性が得られない。

【0015】本発明の電解液に使用されるリチウム塩としては、LiAlCl₄，LiPF₆，LiBF₄，LiClO₄，LiAsF₆，LiSbF₆，LiCF₃SO₃，LiN(CF₃SO₂)₂，LiN(CF₃CF₂SO₂)₂，LiN(CF₃SO₂)(CF₃(CF₂)₃SO₂)，LiN(CF₃(CF₂)₃SO₂)₂，LiC(CF₃SO₂)₃，などが例示される。電解液中のリチウム塩濃度は0.1～5mol/dm³の濃度範囲で用いることができるが、好ましくは0.2～4mol/dm³の濃度範囲である。

【0016】本発明の電解液を製造する方法は特に限定されるものではなく、常温型溶融塩、リチウム塩、環状有機化合物を任意の順序で混合すればよい。本発明の電解液は、常温型溶融塩と環状有機化合物を組み合わせることにより難燃性を維持するとともに、電解液の粘性を下げ、リチウムカチオンの移動度を上げると同時に、負極活性質として、リチウム金属あるいはリチウム合金等を用いた場合、リチウム金属と該環状有機化合物が反応し、界面にリチウムイオン透過性の保護被膜を形成する効果により、リチウムサイクル効率を上げ、サイクル特性を向上させることができるものと考えられる。

【0017】

【実施例】以下、本発明を実施例により更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に制約されるものではない。なお、電解液の性能は

50

以下の方法で評価した。

【0018】(電解液の自己消火性評価) 幅15mm、長さ300mm、厚さ0.19mmの短冊状のガラス繊維戸紙を、電解液の入ったビーカーに10分以上浸した。ビーカーの縁でガラス繊維戸紙から過剰の電解液を除き、ガラス繊維戸紙の一端をクリップで摘み垂直に吊した。この下端よりライター類などの小ガス炎で約3秒間着火し、火源を取り除いた状態で自己消火性の有無及び消火するまでの時間を測定した。

【0019】(リチウムサイクル効率の測定) リチウム*10

*サイクル効率の測定は乾燥空気雰囲気下、作用極にニッケル板またはアルミ板(有効電極面積: 0.64cm²)、対極にリチウム金属板(有効電極面積: 0.64cm²)を用いたコインセル内に電解液を設置して、充放電装置(北斗電工製HJ-101SM6)を用い、定電流密度(電流密度: 0.2mA/cm²)、電析電気量(0.12C/cm²)条件下で行った。サイクル効率は以下の式により算出した。

【0020】

【数1】

$$\text{サイクル効率} (\%) = \frac{\text{溶解に要した電気量}}{\text{電析に要した電気量}} \times 100$$

【0021】(充放電容量の測定) 実施例及び比較例の電解液を使用してコイン型のリチウム二次電池(直径20mm、厚さ1.6mm)を作成し、充放電容量を測定した。作成したコイン型電池は、図1にその断面図を示す様に、正極端子を兼ねたステンレス製ケース1、負極端子を兼ねたステンレス製封口板2とがガスケット3で絶縁シールされている。正極4は正極活性物質としてのリチウムコバルト複合酸化物(LiCoO₂)に、導電剤としてのアセチレンブラックと、結着剤としてのフッ素樹脂とを、重量比90:5:5の比率で混合し、これを溶剤(N-メチルピロリドン)に分散させてスラリーとした後、正極集電体としてのアルミニウム箔に塗布し、乾燥した後、直径12.5mmの正極を作製した。負極5は直径16mm、厚さ1.0mmのリチウム金属箔を用い、電解液に浸されたセバレーター6とから構成されている。電池の理論容量は4.2Vから2.5Vまでの電圧範囲で142Ah/kgである。

【0022】実施例1~11

常温型融融塩である1-エチル-3-メチルイミダゾリウムテトラフルオロボレート(以下、EMIBF₄と略記する)75容量部に、表-1に示す環状有機化合物25容量部を添加、混合し、これに、LiBF₄を濃度が1mol/dm³となる様に溶解して電解液を調製し、リチウムサイクル効率を測定した。結果を表-1に示した。

【0023】実施例12

常温型融融塩として、N-n-ブチルピリジニウムテトラフルオロボレート(以下、BPF₄と略記する)75容量部を用い、25容量部のアーブチロラクトン及び濃度1mol/dm³となる量のLiBF₄を添加、溶解して電解液を調製し、リチウムサイクル効率の測定を行った。結果を表-1に示した。

【0024】実施例13

常温型融融塩として、1-エチル-3-メチルイミダゾリウムテトラクロロアルミニウム(EMIACl₄と略記する)75容量部を用い、25容量部のアーブチロラクトン及び濃度0.4mol/dm³のLiAlCl₄※50

*4を溶解した電解液を調製し、リチウムサイクル効率の測定を行った。結果を表-1に示した。

【0025】比較例1

環状有機化合物を使用しなかった他は実施例1と同様の電解液を調製し、リチウムサイクル効率の測定を行った。結果を表-1に示した。

【0026】比較例2

環状有機化合物を使用しなかった他は実施例12と同様の電解液を調製し、リチウムサイクル効率の測定を行った。結果を表-1に示した。

【0027】比較例3

環状有機化合物を使用しなかった他は実施例13と同様の電解液を調製し、リチウムサイクル効率の測定を行った。結果を表-1に示した。

【0028】実施例14

常温型融融塩として、EMIBF₄95容量部と5容量部のアーブチロラクトンを添加し、濃度2.8mol/dm³のLiBF₄を溶解した電解液についてコイン型セルによる充放電容量の測定を行った。結果を表-1及び図2に示した。

【0029】比較例4

環状有機化合物を使用しなかった他は実施例14と同様の電解液を調製し、コイン型セルによる充放電容量の測定を行った。結果を表-1及び図2に示した。

【0030】実施例15

常温型融融塩として、EMIBF₄を用い、25容量部のプロピレンカーボネートを添加し、濃度2.8mol/dm³のLiBF₄を溶解した電解液について自己消火性評価を行った。結果を表-2に示した。

【0031】実施例16

環状有機化合物としてアーブチロラクトンを用いた他は実施例15と同様の電解液を調製し、自己消火性評価を行った。結果を表-2に示した。

【0032】実施例17

環状有機化合物にエチレンサルファイトを用いた他は実施例15と同様の電解液を調製し、自己消火性評価を行った。結果を表-2に示した。

【0033】実施例18

常温型溶融塩として、EMIBF₄ 75容量部を用い、25容量部のエチレンカーボネートを添加し、濃度1m o l / d m³ のLiPF₆ を溶解した電解液について自己消火性評価を行った。結果を表-2に示した。

【0034】実施例19

EMIBF₄ 50容量部、エチレンサルファイト50容量部を用いた他は実施例17と同様の電解液を調製し、自己消火性評価を行った。結果を表-2に示した。

【0035】実施例20

常温型溶融塩として、BPBF₄ を用いた他は実施例17と同様の電解液を調製し、自己消火性評価を行った。結果を表-2に示した。

*結果を表-2に示した。

【0036】比較例5

有機溶媒電解液の例としてプロピレンカーボネートに、濃度1m o l / d m³ のLiBF₄ を溶解した電解液について自己消火性評価を行った。結果を表-2に示した。

【0037】比較例6

EBIBF₄ 40容量部、エチレンサルファイト60容量部を用いた他は実施例17と同様の電解液を調製し、自己消火性評価を行った。結果を表-2に示した。

【0038】

【表1】

表 - 1

	溶融塩	環状有機化合物	組成比(体積比)		リチウム塩濃度 [mol/dm ³]	リチウムサイクル効率* [%]		
	X	Y	X	Y	LiBF ₄	LiAlCl ₄	Ni電極	A1電極
実施例1	EMIBF ₄	エチレンカーボネート	75	25	1		41	70
実施例2	EMIBF ₄	プロピレンカーボネート	75	25	1		33	71
実施例3	EMIBF ₄	γ-ブチロラクトン	75	25	1		47	85
実施例4	EMIBF ₄	トリエチロフラン	75	25	1		22	65
実施例5	EMIBF ₄	トリエチルオキシア	75	25	1		21	
実施例6	EMIBF ₄	1,4-オキサン	75	25	1		18	
実施例7	EMIBF ₄	1,3-オキサン	75	25	1		18	62
実施例8	EMIBF ₄	1,3-プロパンスルфон	75	25	1		30	
実施例9	EMIBF ₄	メタラン	75	25	1		18	
実施例10	EMIBF ₄	エチレンカーファイト	75	25	1		48	70
実施例11	EMIBF ₄	オクセノール	75	25	1		58	
実施例12	BPBF ₄	γ-ブチロラクトン	75	25	1		35	
実施例13	EMIAICl ₄	γ-ブチロラクトン	75	25		0.4	28	
実施例14	EMIBF ₄	γ-ブチロラクトン	95	5	2.8			77
比較例1	EMIBF ₄		100	0	1		9	41
比較例2	BPBF ₄		100	0	1		8	
比較例3	EMIAICl ₄		100	0		0.4	10	
比較例4	EMIBF ₄		100	0	2.8		10	53

リチウムサイクル効率* : 5~20サイクルの平均効率を示す

【0039】

※※【表2】

表 - 2

	溶融塩	環状有機化合物	組成比(体積比)		リチウム塩	濃度 [mol/dm ³]	自己消火性	消火までの時間
	X	Y	X	Y				
実施例15	EMIBF ₄	プロピレンカーボネート	75	25	LiBF ₄	2.8	あり	79秒
実施例16	EMIBF ₄	γ-ブチロラクトン	75	25	LiBF ₄	2.8	あり	61秒
実施例17	EMIBF ₄	エチレンカーファイト	75	25	LiBF ₄	2.8	あり	1秒以内
実施例18	EMIBF ₄	エチレンカーボネート	75	25	LiPF ₆	1	あり	47秒
実施例19	EMIBF ₄	エチレンカーファイト	50	50	LiBF ₄	2.8	あり	3秒以内
実施例20	BPBF ₄	エチレンカーファイト	75	25	LiBF ₄	2.8	あり	1秒以内
比較例5		プロピレンカーボネート	0	100	LiBF ₄	1	なし	
比較例6	EMIBF ₄	エチレンカーファイト	40	60	LiBF ₄	2.8	なし	

【0040】

【発明の効果】本発明のリチウム二次電池用電解液は、リチウムサイクル効率、サイクル特性等の電池特性に優れると共に、難燃性を有し、安全性、信頼性が高いなど、本発明は優れた特有の効果を奏する。

★【図面の簡単な説明】

【図1】実施例で製造したコイン型セルの断面図

【図2】実施例14及び比較例4の電解液を用いたコイン型セル電池のサイクル特性を示す図

【図1】

【図2】

WEST

 Generate Collection

L3: Entry 6 of 16

File: DWPI

Nov 5, 1999

DERWENT-ACC-NO: 2000-045424

DERWENT-WEEK: 200010

COPYRIGHT 2003 DERWENT INFORMATION LTD

TITLE: Electrolyte solution for rechargeable lithium batteries - contains room temperature molten salt, lithium salt and organic-cyclo compound

PATENT-ASSIGNEE:

ASSIGNEE	CODE
MITSUBISHI CHEM CORP	MITU

PRIORITY-DATA: 1998JP-0111795 (April 22, 1998)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
JP 11307121 A	November 5, 1999		006	H01M010/40

APPLICATION-DATA:

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
JP 11307121A	April 22, 1998	1998JP-0111795	

INT-CL (IPC): C07 D 233/54; H01 M 10/40

ABSTRACTED-PUB-NO: JP 11307121A

BASIC-ABSTRACT:

A new electrolyte solution for secondary lithium batteries comprises a room temperature molten salt, a lithium salt, and 1-130 vol.% of an organic cyclo cpd. The molten salt consists of a quaternary imidazolium cation of formula (I) or a quaternary pyridinium cation of formula (II) and an anion. In the formulae R₁, R₃ = 1-6 C alkyl gp; R₂, R₄, R₅ = H or 1-6 C alkyl gp; R₆ = 1-10C alkyl gp.

USE - For rechargeable lithium batteries.

ADVANTAGE - The new electrolyte soln. is fire-resistant, providing rechargeable lithium batteries with improved charge-discharge cycle performance. It provides a higher charge-discharge cycle efficiency of metallic lithium anode.

CHOSEN-DRAWING: Dwg.0/2

TITLE-TERMS: ELECTROLYTIC SOLUTION RECHARGE LITHIUM BATTERY CONTAIN ROOM TEMPERATURE MOLTEN SALT LITHIUM SALT ORGANIC CYCLO COMPOUND

DERWENT-CLASS: E13 L03 X16

CPI-CODES: E07-D04A; E07-D09A; L03-E01C;

EPI-CODES: X16-B01F;

CHEMICAL-CODES:

Chemical Indexing M3 *01*

Fragmentation Code

F011 F012 F013 F521 H1 H181 H2 H201 K0 L7
L721 M210 M211 M212 M213 M214 M215 M216 M231 M232
M233 M240 M273 M281 M282 M320 M413 M510 M521 M530
M540 M640 M650 M781 M903 M904 Q454 R021 R043

Markush Compounds

200004-GT401-K 200004-GT401-U

Chemical Indexing M3 *02*

Fragmentation Code

F011 F012 F013 F014 F015 F016 F431 K0 L7 L721
M210 M211 M212 M213 M214 M215 M216 M231 M232 M233
M240 M273 M281 M282 M320 M413 M510 M521 M530 M540
M640 M650 M781 M903 M904 Q454 R021 R043

Markush Compounds

200004-GT402-K 200004-GT402-U

Chemical Indexing M3 *03*

Fragmentation Code

F011 F013 F014 F015 F431 K0 L7 L721 M210 M211
M212 M213 M214 M215 M216 M231 M232 M233 M240 M273
M281 M282 M320 M413 M510 M521 M530 M540 M640 M650
M781 M903 M904 Q454 R021 R043

Markush Compounds

200004-GT403-K 200004-GT403-U

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C2000-017630

Non-CPI Secondary Accession Numbers: N2000-049276