교육생 "VALUE UP" 프로젝트 공모 개요

프로젝트 제목	장애인 / 노인 요양원 폭력, 낙상 실태 조사 및 폭력, 낙상 감지 모델 개발
프로젝트 목적	요양원 내부에 발생 할 수 있는 폭력상황 및 낙상 사고를 감지 하여 안전사고에 있어 빠른 상황 인식 및 대처를 할 수 있는 시스템을 제안한다. 기존 요양원 내 근무자들의 빠른 상황 인식 및 대처에 있어 한계가 있었고, 복지사들의 장애인/노인학대 사건이 다수 발생 했었다. 이를 해결하기 위해 올 해 6월 22일, 노인 요양원 cctv 설치 의무화와 발 맞춰, cctv에 적용 가능한 인공지능 모델을 구축하여 빠른 상황 인식을 할 수 있도록 도와, 업무효율성 증진 및 지속적인 폭행감지로 노인인권 제고를 할 수 있는 딥러닝 기반 시스템을 제안한다.
주요 성과 (성능/효과/ 가치 등)	문제점: CCTV 가 존재 하더라도 지속적으로 폭력 사건이 일어나고 있는 상황주 사건들을 확인해 보면 한 번 큰 사건이 일어나서 이슈화가 되는 것이 아닌지속적, 반복적으로 폭행이 이루어지다 결국 사망하는 경우까지 이르게 됨기대효과: 우리가 구축한 모델을 사용한다면 실시간 폭행 반응 감지로 즉각적인 효과를 볼 수 있으며, 복지사의 장애인/노인학대 뿐 아니라 요양사 및 복지사 분들도 기관 내 싸움을 감지하고 폭력적인 상황들을 방지할 수 있다.
성과 활용 방안	- 요양원 내 장애인 및 노인들의 낙상 및 상호 간 폭행 방지 - 요양보호사의 폭행 방지 - 실시간 위험 상황 감지를 통한 요양보호사들의 업무 효율 증진 - 요양원 이외의 어린이 집과 같은 보호시설에도 적용 가능
기타(자유 의견)	- 요양시설뿐만 아니라 어린이집 등 사회적 약자를 위한 모든 시설에 시스템 도입을 통해 각종 위험 요소를 실시간 감지 및 대응 가능 - CCTV 가 있는 모든 곳에 실시간 적용 가능하고, 적용시 폭행 및 위험 상황을 즉각적으로 반응하며 대응가능 할 것으로 보임 - 요양원 내의 학대와 폭력 사건들은 단순히 요양원 내부의 문제만이 아닌 사회 문제로 전체 국민에게 인식시킬 필요가 있으며, 사회의 폭력을 제대로 막으려면 이러한 즉각 반응 모델을 통한 적극적인 대응이 시급함.

미래산업 인재육성 컨퍼런스 운영사무국 귀하

2023 미래산업 인재육성 컨페런스

장애인 / 노인 요양원 폭력, 낙상 실태 조사 및 폭력, 낙상 감지 모델 개발

: Violence, fall Detection Model based on CNN+LSTM / YOLOv5

KT_AIVLE : AI_TRACK

이기환 김철우 이영진

: Violence, fall Detection Model based on cnn+lstm / yolov5

1 프로젝트 개요

- 1. 요약
- 2. 프로젝트 동기

2

세부 수행 내용

- 1. 수행 프로세스
 - 데이터 수집 및 전처리
- 2. 폭력, 낙상 감지 모델 개발
 - CNN+LSTM 기반 모델
 - YOLOv5 기반 모델

3

수행 성과

- 1. 폭력, 낙상 감지 영상
 - CNN+LSTM 기반
 - YOLOv5 기반
- 2. **한계점**
- 3. **활용 방안 & 기대 효과**

1. 프로젝트 개요

: Violence, fall Detection Model based on CNN+LSTM/ YOLOv5

- 1) 요약
- 2) 프로젝트 동기

프로젝트 개요

요약

: Violence, fall Detection Model based on cnn+lstm / yolov5

프로젝트 목적

이미지 데이터를 활용하여 낙상 및 폭력상황을 감지 가능한 모델 개발 후 응용방안 제안

데이터 수집 및 전처리

데이터 수집

- 공개된 폭력 영상 클립 수집
- 연구용 낙상 영상 클립 수집
- · 오픈소스 폭력-낙상 데이터셋 이용

데이터 전처리

- 이미지 resizing
- CNN LSTM 모델: 시퀀스 변환
- YOLOv5: Data Augmentation

모델링

<YOLOv5>

CNN - LSTM

- 프레임 시퀀스의 맥락을 고려한 모 델링 의도
- 각 상황 별 30프레임 맥락 학습

YOLOv5

- 발생된 상황과 위치 탐지를 의도
- 실시간 객체탐지 모델
- 강건한 모델을 위해 데이터 증강

응용 방안 및 기대 효과

응용방안

- 학습 된 모델을 CCTV에 탑재
- 인지되는 상황, 시스템을 통해 전파 및 기록

기대효과

- 낙상사고 빠른 대처 가능
- 노인인권침해, 지속적인 감시 가능

프로젝트 동기

: Violence, fall Detection Model based on cnn+lstm / yolov5

문제상황 (1)

돌봄 수요는 많으나 실제 현장에 있는 돌봄 인력은 부족한 상태

인력 실태

- 고령화에 따라 돌봄 수요는 점차 증가 중에 있음
- § 돌봄 인력은 계속 줄어드는 추세
- § 인력부족 원인
 - § 요양시설 근로자에 대한 처우
 - § 요양시설 근로자에 대한 폭언 폭력
 - § 자격증 취득 난이도는 쉬우나 실무 경험x
 - § 강도 높은 3교대 근무
 - 사회적 인식 등

프로젝트 동기

: Violence, fall Detection Model based on cnn+lstm / yolov5

문제상황 (2)

낙상은 노인에게 치명적인 사고

낙상 위험 수술 후 뒤척임도 근육 소실되기 시작 낙상으로 엉덩이나 혈액과 체액이 고관절 뼈 골절 어렵고 가만히 (주당 10~20%감소, 팔다리로 가지 않아 누워있어야 함 한달 50%감소) 몸통으로 모이게 됨 • 심장으로 돌아오는 혈액량이 많아져 심장에 과부하 → 심박수 빨라지고 심부전 • 몸통에 체액이 많으면 호흡근육이 제대로 움직일 수 없음 → 기침을 힘 있게 하지 못함 → 가레 배출 어려움 → 폐렴 · 침대에 바로 누워 뒤척일 수 없음 → 피부 욕창·염증 감염 • 수분 배설이 안됨 → 요로결석과 요로감염 * 네가지 모두 급격히 일어나 패혈증으로 절반이 두 달 만에 사망 낙상은 노인에게 굉장히 큰 부상 낙상 방치 사고사례도 존재 또한 인력부족으로 인해, 낙상 인지를 못한 후 그대로 방치 될 가능성도 존재

프로젝트 동기

: Violence, fall Detection Model based on cnn+lstm / yolov5

문제상황 (3)

노인인권유린(학대) 등 다수 사례가 발생 했었음

노인 인권침해 관련 사례

[단독]"왜 약 안 먹어" 70대 폭행한 요양보호사...노인의 눈물

[노인의 눈물]①학대 매년 1000건 이상 급증...방치된 '사각지대'

(서울=뉴스1) 원태성 기자 | 2023-04-28 05:20 송고 | 2023-04-28 08:42 최종수정

■ 등 다수 사례 존재

노인인권 침해 실태

- § 보호시설에서 노인인권 침해하는 사례도 존재
- § 인원유린 원인
 - § 노인은 누군가의 도움이 필요한 대상이기 때문에 쉽게 학대사실을 이야기 하지 못함
 - § 과도한 근무로 인한 스트레스
 - § 인지기능이 떨어진 노인들에게 제대로 된 요양서비스 를 제공해 주지 않음
 - § 사회 구조적 원인
 - § 근무조건
 - § 빈번한 직원교체

- 낙상사고는 빠른 상황대처가 필수
- 노인에 대한 폭행은 감시 감독이 필요한 일
- 낙상사고와 노인 학대를 감지 할 수 있는 AI모델을 구축하여 요양시설 업무 효율성과 노인인권을 제고한다

2. 세부 수행 내용

: Violence, fall Detection Model based on CNN+LSTM/ YOLOv5

- 1) 수행 프로세스
 - 데이터 수집 및 전처리
- 2) 폭력, 낙상 감지 모델 개발
 - CNN+LSTM 기반 모델
 - YOLOv5 기반 모델

수행 프로세스 - 데이터 수집 및 전처리

: Violence, fall Detection Model based on cnn+lstm / yolov5

- 데이터 수집 및 전처리
- 목표 산출물 : 장애인 / 노인 요양원 폭력 및 낙상 탐지 모델

데이터 수집

- 공개된 폭력 영상 클립 수집
- 연구용 낙상 영상 클립 수집
- 오픈소스 폭력-낙상 데이터셋 이용

낙상 이미지 데이터 10000개 낙상 동영상 데이터 215개

폭행 이미지 데이터 4000개 폭행 동영상 데이터 173개

수행 프로세스 - 데이터 수집 및 전처리

: Violence, fall Detection Model based on cnn+lstm / yolov5

- 데이터 수집 및 전처리
- 레이블을 사용하여 데이터 시각화

- 데이터 집합 전처리

```
1 IMAGE_HEIGHT , IMAGE_WIDTH = 80, 80
2
3 SEQUENCE_LENGTH = 30
4
5 DATASET_DIR = '/content/drive/MyDrive/공모전/복지관_폭력/dataset'
6
7 CLASSES_LIST = ["normal", "fall", "fight"]
```

- 데이터 세트에서 각 비디오 프레임의 크기를 조정할 높이와 너비를 지정
- 모델에 1초 당 하나의 시퀀스로 공급할 비디오의 프레임 수를 지정
- 데이터 셋 위치 명시
- 탐지에 쓰일 클래스 이름 명시
- ❖ 이미지 높이, 너비, 시퀀스 길이를 늘리면 더 나은 결과를 얻을 수 있지만, 시퀀스 길이를 늘리면 특정 지점까지만 효과가 있고 값을 늘리면 계산 비용이 부담

수행 프로세스 - 데이터 수집 및 전처리

: Violence, fall Detection Model based on cnn+lstm / yolov5

- 데이터 수집 및 전처리
- 1) frame_extraction() 함수 구축 (동영상의 프레임 추출, 크기 조정 및 정규화를 위한 함수)

def frame extraction():

5)

- 각 프레임 별 <u>cv2.resize()</u> 함수를 이용하 여 프레임을 이미지 높이(IMAGE_HEIGHT)와 너비 (IMAGE_WIDTH)에 맞게 리사이즈 작업
- 리사이즈한 프레임을 0과1 사이로 정규화

(6) 정규화한 프레임을 ①에서 생성한 <u>frames_list</u>에 추가 후 반환

수행 프로세스 - 데이터 수집 및 전처리

: Violence, fall Detection Model based on cnn+lstm / yolov5

2) create_dataset() 함수 구축

CLASSES_LIST(normal, fight, fall)에 지정된 클래스를 이용하여 각 모든 비디오 파일에 대해 frame_extraction() 함수를 호출 => 나온 결과물에 대해 프레임(features), 클래스 인덱스(labels), 비디오 파일 경로(video_files_paths)를 반환

(2) CLASSES_LIST에 있는 클래스 각각에 대해 class_index(반복문 인덱스), class name(클래스 이름)을 받는 반복문 실행

def create_dataset():

labels = 1

video files paths = []

 ①
 구출할 프레임을 담을 변을 하나씩 가격하는

 빈 리스트 생성 features = []

- ④ 가져온 각 파일에 대하여 앞 장 1)에서 구축한 frame_extraction() 함수를 이용해 비디오의 프레임 추출
- ⑤ Features, Labels, video_files_paths를 이전에 생성한 빈 리스트에 담고, 각 클래스 별 np.array 형태로 변환 후 반환
 - 1 # Create the dataset.
 2 features, labels, video_files_paths = create_dataset()

 Extracting Data of Class: normal
 Extracting Data of Class: fall
 Extracting Data of Class: fight

return features, labels, vidoe_files_paths

폭력, 낙상 감지 모델 개발 - CNN+LSTM 기반 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

• CNN+ LSTM 기반 모델

CNN

Convolutional neural network

기존 1차원 데이터를 다루는 딥러닝 뉴럴 네트워크(DNN)에서 2차원 형태인 이미지나 영상과 같은 데이터를 처리할 때 발생한 문제점들을 보완한 방법

LSTM

Long Short Term Memory

기존 RNN이 출력과 먼 위치에 있는 정보를 기억할 수 없다는 단점을 보완하여 장/단기 기억을 가능하게 설계한 신경망

폭력, 낙상 감지 모델 개발 - CNN+LSTM 기반 모델

0 • 0 • 0 • 0 • 0 • 0 •

: Violence, fall Detection Model based on cnn+lstm / yolov5

• CNN과 LSTM을 엮어서 모델을 구성한 이유

CNN의 한계

- 1) 임의의 Input 이미지가 어떤 클래스에 포함되는 지 분류하거나
- 2) 동영상을 Input으로 넣었을 때 각 사물이 어떤 범주에 속하는지 탐지하는 <u>단순 Object</u> Detection만 수행

BUT

프로젝트의 최종 목적은 요양사가 장애인 혹은 어르신에게 폭력을 가하 는 <mark>동작을 파악</mark>하거나,

건강 증세로 낙상사고가 발생하는 <mark>이상 동작을 탐</mark> <mark>지</mark>하는 것

폭력, 낙상 감지 모델 개발 - CNN+LSTM 기반 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

- CNN과 LSTM을 엮어서 모델을 구성한 이유
- ※ 이러한 한계점을 어떠한 방식으로 보완할 수 있는가?
- 1) 폭력을 행사하거나 넘어지는 경우에는 동작의 흐름이 존재 (팔을 휘두르거나, 미끄러져 뒤로 넘어지는 듯 한)
- 2) 동영상은 프레임 단위로 분할하여 분석할 수 있음
- 3) 이러한 프레임 단위 맥락 정보를 LSTM에 학습

즉, 동영상을 프레임 단위로 분할하여
CNN으로 이미지 특징을 추출 한 후, 시퀀스 길이
만큼의 맥락을 고려할 수 있게 LSTM을 이용하여
폭행 및 낙상 사고의 움직임을 탐지
: Violence, fall Detection Model based on
CNN+LSTM

폭력, 낙상 감지 모델 개발 - CNN+LSTM 기반 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

• CNN + LSTM 기반 모델

1. CNN + LSTM 모델 구축

- 1) RAM에 한계가 있을 것을 예상하여 이미지 를 80*80으로 변경
- 2) GPU 사용을 위해 Colab Pro로 모델 구축 후 학습 진행
- Human Action Recognition in Videos 모델을
 참고하여 해당 모델 구축하였음

폭력, 낙상 감지 모델 개발 - CNN+LSTM 기반 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

- 1. CNN + LSTM 모델
- 모델의 컴파일 및 훈련 / 모델의 손실 및 정확도 곡선 플롯

• 과적합을 방지한 Early Stopping

학습을 할 때 validation set을 두어 더 이상 avg loss가 줄어들지 않을 때 아래 그림에서 볼 수 있는 Early stopping point에서 조기 종영을 실시

WHY?

CNN+LSTM모델을 학습시킬 때 validation data의 비율을 지정해주어 (validation_spilt=0.2) 조기종영을 하면 학습하는 과정에서 일어날 수 있는 오버 피팅을 방지 가능

+ Loss 값이 줄어들지 않아 학습이 중단되면 여러 개의 weight 파일을 얻을 수 있는 데, weight 파일 중정확도가 가장 높게 나오는 파일을 골라 사용

폭력, 낙상 감지 모델 개발 - CNN+LSTM 기반 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

• CNN + LSTM 기반 모델

2. ConvLSTM 모델 구축

- 1) LSTM과 마찬가지로 순환층이지만 내부 행렬 곱셈이 컨볼루션 연산과 교환
- 2) 결과적으로 ConvLSTM 셀을 통과하는 데이터 는 특징이 있는 1D 벡터가 아닌 입력 차원(이 경우 3D)을 유지

폭력, 낙상 감지 모델 개발 - CNN+LSTM 기반 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

1. ConvLSTM 모델

- 모델의 컴파일 및 훈련 / 모델의 손실 및 정확도 곡선 플롯

폭력, 낙상 감지 모델 개발 - CNN+LSTM 기반 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

1. ConvLSTM 모델

- Test set 에 대한 classification report (0 : fall, 1 : fight, 2: normal)

	precision	recall	f1-score	support
0	0.81	0.94	0.87	49
1	1.00	0.98	0.99	50
2	0.91	0.75	0.82	40
accuracy			0.90	139
macro avg	0.91	0.89	0.89	139
weighted avg	0.91	0.90	0.90	139

- Normal class의 recall : 0.75

모델이 normal이라고 예측 했을 때 실제 normal인 비율 평상 행동을 구분하는 것이 다른 class에 비해 다소 떨어짐 -> 데이터의 분산을 넓혀 최대한 많은 각도와 맥락으로 학습시켜야 함

폭력, 낙상 감지 모델 개발 - YOLOv5 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

• YOLO 모델

YOLO

You Only Look Once

YOLO는 이미지 전체에 대해서 하나의 신경 망(a single neural network)이 한 번의 계산 만으로 bounding box와 클래스 확률(class probability)을 예측하는 모델

YOLO 구조

Figure 1: The YOLO Detection System. Processing images with YOLO is simple and straightforward. Our system (1) resizes the input image to 448×448 , (2) runs a single convolutional network on the image, and (3) thresholds the resulting detections by the model's confidence.

폭력, 낙상 감지 모델 개발 - YOLOv5 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

• YOLO 모델 사용 이유

기존 객체 인식 모델들의 한계

- 구조가 복잡하고 느리다.
- YOLO 이전 객체 검출 모델 중 가장 성능이 좋은 모델인 Fast R-CNN는 주변 정보까지 처리하지 못하기에 background error가 높다.

YOLO 장점

- 단일 신경망 구조이기 때문에 구성이 단순하 며, 빠르다.
- 이미지 전체를 처리하기 때문에 background error가 적다.
- 훈련 단계에서 보지 못한 새로운 이미지에 대해서도 검출 정확도가 높다.

폭력, 낙상 감지 모델 개발 - YOLOv5 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

• 학습 이미지 구조

Fight Image

Object Detection

■ 기존 클래스를 구별한 이미지(JPG)에 바운딩 박스 정보가 담긴 텍스트 파일(txt)과 결합하여 detection을 시켜줌

🥘 24_161-Fight-Street-Photos---Free_jpg.rf.9dc6adba743f53e5ceef9d827da8c261 - Windows 메모장

파일(F) 편집(E) 서식(O) 보기(V) 도움말(H)

1 0.5204326923076923 0.515625 0.4795673076923077 0.39783653846153844

1 0.6382211538461539 0.5504807692307693 0.1658653846153846 0.38100961538461536

바운딩 박스

폭력, 낙상 감지 모델 개발 - YOLOv5 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

YOLO 작동 방식

- 1. input image 위에 가로 및 세로로 각각 S개의 격자를 그림(1).
- 2. 각 격자는 bounding box와 bounding box에 대한 신뢰도 점수를 예측함(3).
- 3. class probability까지 예측(2)
- 4. NMS를 통해 최종 detection을 결정(4)

폭력, 낙상 감지 모델 개발 - YOLOv5 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

· YOLO 작동 방식

NMS (Non-Maximum Suppression)

- object detection algorithm은 object가 존재하는 위치 주변에 여러 개의 score가 높은 bounding box를 그림.
- object detector가 예측한 bounding box 중에서 정확한 bounding box를 선택.
- NMS 과정을 통해 object별로 하나 의 클래스를 가리키는 bounding box 가 남음.

폭력, 낙상 감지 모델 개발 - YOLOv5 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

• 이미지 학습 결과

낙상 탐지 성능 우수

폭력 탐지 성능 우수

낙상 탐지는 우수하나 폭력적인 상황들도 낙상으로 탐지하는 경우가 많음

폭력, 낙상 감지 모델 개발 - YOLOv5 모델

: Violence, fall Detection Model based on cnn+lstm / yolov5

• 이미지 학습 결과

폭력 감지 모델

class	mAP50	MAP50-95
all	0.793	0.435
1 <i>\</i>	0.012	0.420
IoneViolence	0.813	0.438
Violence	0.775	0.431
Ē	낙상 감지 모델	
class	mAP50	MAP50-95
fall	0.879	0.537

3. 수행 성과

: Violence, fall Detection Model based on cnn+lstm / yolov5

- 1) 폭력, 낙상 감지 영상
 - cnn+lstm 기반
 - yolov5 기반
- 2) **한계점**
- 3) 활용 방안 & 기대 효과

폭력, 낙상 감지 영상 - cnn+lstm 기반

: Violence, fall Detection Model based on cnn+lstm / yolov5

• CNN+LSTM 모델 : 폭력 감지 영상 (좌측 상단에 클래스를 구별할 수 있게 실시간 표시)

Link: https://drive.google.com/file/d/1sK2M8WZ4rEvPTxLSp_RArtlkgERlmO-D/view?usp=share_link

폭력, 낙상 감지 영상 - cnn+lstm 기반

: Violence, fall Detection Model based on cnn+lstm / yolov5

• CNN+LSTM 모델 : 폭력 감지 영상 (좌측 상단에 클래스를 구별할 수 있게 실시간 표시)

Link: https://drive.google.com/file/d/184naJsli4l82BZoUsyyTRzGGRHJLTzl0/view?usp=share_link

폭력, 낙상 감지 영상 - cnn+lstm 기반

: Violence, fall Detection Model based on cnn+lstm / yolov5

• CNN+LSTM 모델: 낙상 감지 영상 (좌측 상단에 클래스를 구별할 수 있게 실시간 표시)

Link: https://drive.google.com/file/d/1FeHbv64WIV5GBEmevaFl76naiqq_GU2K/view?usp=share_link

폭력, 낙상 감지 영상 - YOLOv5 기반

: Violence, fall Detection Model based on cnn+lstm / yolov5

YOLOV5 모델 : 낙상 감지 영상
 낙상 감지 모델

폭력, 낙상 감지 모델

Link1: https://drive.google.com/file/d/1k0UpZ8ZMPDR6eyxyIfvRVQbGWNIcQRIU/view?usp=share_link

Link2: https://drive.google.com/file/d/1ieG2S264bgoJSb RSxDCdesaQg4n7hn7/view?usp=share_link

폭력, 낙상 감지 영상 - YOLOv5 기반

: Violence, fall Detection Model based on cnn+lstm / yolov5

YOLOV5 모델 : 폭력 감지 영상
 폭력 감지 모델

폭력, 낙상 감지 모델

Link1: https://drive.google.com/file/d/14QJ1fkZiLDwInkEL4adkNN0pAnnUVujA/view?usp=share_link

Link2: https://drive.google.com/file/d/1101bfczjNomC2QjmLGAG1Q5fop7Ouv-y/view?usp=share_link

한계점

: Violence, fall Detection Model based on cnn+lstm / yolov5

CNN + LSTM 모델

Validation data와 관련한 성능은 좋았지만, 학습 데이터와 비교적 다른 외부 뉴스 데이터 나 기타 영상에 대해서는 싸움과 낙상을 혼동 하는 경우가 다수 있음

하지만 이는 모델 구조의 한계라기 보다는 더상세한 데이터들을 수집하고 이를 학습 시킨다면, 모델의 일반화 성능을 올리고 두 클래스(fight, fall)의 차이를 명확하게 할 수 있을 것으로 생각됨

YOLO 모델

낙상 데이터로만 학습한 낙상 감지 모델은 낙상 에 대한 객체 인식을 잘 하였다.

폭력 데이터로만 학습한 폭력 감지 모델도 성능이 우수하였다. 하지만 낙상 데이터와 폭력 데이터를 모두 활용해 훈련 시킨 폭력, 낙상 감지모델은 낙상에 대한 객체 인식만 잘 하였고 폭력에 대한 객체 인식은 잘 하지 못하였음. 낙상과폭력이 확실히 구분되는 데이터의 부제와 낙상,폭력 데이터 불균형이 원인으로 생각됨.

학습 데이터의 부족은 곧 완전하지 않은 모델(Incomplete Model)로 이어질 수 밖에 없다고 생각함 구축한 두 모델 모두 클래스를 명확히 구분할 수 있고, 균형 있는 데이터를 다수

수집하여 학습 시킨다면 더욱 최적의 모델이 나올 것으로 생각됨

활용 방안 & 기대 효과

0000

• 0 0 0

• 0 0 0

• 0 0 0 •

: Violence, fall Detection Model based on cnn+lstm / yolov5

• 아동 학대

- 보건 복지부에 따르면 아동 학대 피해 경험률은 지속적으로 매년 증가하고 있는 것으로 파악 됨
- 어린이집 아동 폭행과 관련하여 과거부터 기사가 계속해서 나오고 있지만, 현재까지도 급격한 감소세는 없는 상황

활용 방안 & 기대 효과

0 0 0 00 0 0 0

: Violence, fall Detection Model based on cnn+lstm / yolov5

• 아동 학대

- 어린이집은 아이들이 뛰어 놀기 때문에 대부분의 행동을 폭력으로 감지하여 어려움
 이 존재
- 단순 사람<->사람 간의 폭행 데이터가 아닌, 어른->아이 의 일방적인 폭행 데이터 이용한다면 이러한 한계점을 극복할 수 있을 것으로 생각됨
- 차후 AI_HUB 데이터 센터에 존재하는 '주거 및 공용 공간 내 이상행동 영상 데이터'
 중 관련한 데이터만 수집하여 아동학대 탐지 모델을 구축해 볼 예정
- 기대 효과로는 어린이집 및 사회에서 일어나는 아동 폭행 또한 효율적으로 탐지하여 예방할 수 있으며, 이는 조금이나마 사회적 후생의 증대로 이어질 수 있을 것으로 기대됨

symptom	전조 현상
SY01	아이가 서성거림
SY02	아이가 고개를 숙이고 있음
SY03	아이가 절뚝거림
SY04	성인과 아이가 무관심한 상 태로 걸어감
SY07	아이가 벽(기둥, 문 등)에 기 대어 있음
SY08	성인의 무관심함과 아이가 성인의 몸(팔, 발, 옷 등)을 잡 아당김
SY09	성인이 아이에게 삿대질함
action	의심 행동
action	의심 행동 아동 방임
A01	아동 방임
A01 A02	아동 방임 성인이 아이를 밀침
A01 A02 A03	아동 방임 성인이 아이를 밀침 성인이 아이를 발로 위협
A01 A02 A03 A04	아동 방임 성인이 아이를 밀침 성인이 아이를 발로 위협 성인이 아이를 손으로 위협

활용 방안 & 기대 효과

• 0 0 0

• 0 0 0 •

: Violence, fall Detection Model based on cnn+lstm / yolov5

활용 방안	기대 효과
장애인 복지시설, 어린이집 CCTV	업무 효율 증가

장애인 복지시설, 어린이집 등 cctv가 설치 된 곳에 모델을 적용함으로써 실시간 폭력, 넘어짐 사고를 탐지할 수 있음.

(6월22일부터 시행되는 요양원 CCTV 설치 의무화)

이러한 시스템이 요양사, 어린이집 교사, 돌 봄이들과 결합시 업무 효율 증가 효과를 볼 수 있으며 아동, 장애인 학대를 효율적으 로 탐지하여 예방할 수 있음

감사합니다

장애인 / 노인 요양원 폭력, 낙상 실태 조사 및 폭력, 낙상 감지 모델 개발

: Violence, fall Detection Model based on CNN+LSTM / YOLOv5

KT_AIVLE : AI_TRACK

이기환 김철우 이영진