MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, a tanári gyakorlatnak megfelelően jelölve a hibákat és a hiányokat.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a **javító által adott pontszám** a mellette levő téglalapba kerül.
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.
- 5. Az ábrán kívül a **ceruzával írt részeket** a javító tanár nem értékelheti.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon!
- 2. A pontozási útmutató pontjai tovább **bonthatók**, hacsak az útmutató másképp nem rendelkezik. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg.
- 5. Ha a megoldási útmutatóban **zárójelben szerepel** egy megjegyzés vagy mértékegység, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 6. Egy feladatra adott **többféle megoldási próbálkozás** közül csak egy, a vizsgázó által megjelölt változat értékelhető.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 9. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek az értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1. a)		
(Az egyenlet jobb oldalát azonosság alkalmazásával alakítva:) $2 \sin x - 2 \sin^2 x = 1 - \sin^2 x$.	1 pont	
(Nullára rendezve:) $\sin^2 x - 2\sin x + 1 = 0$,	1 pont	
Innen $\sin x = 1$,	1 pont	
$x = \frac{\pi}{2} + 2k\pi$, ahol $k \in \mathbb{Z}$.	1 pont	Ez a pont nem jár, ha a vizsgázó fokban, vegyesen, periódus nélkül vagy rossz periódussal adja meg a megoldást, vagy lehagyja a $k \in \mathbb{Z}$ feltételt.
Ellenőrzés (behelyettesítéssel vagy ekvivalenciára hivatkozással).	1 pont	
Összesen:	5 pont	

1. b)		
A logaritmusfüggvény értelmezése miatt $x > 0$.	1 pont	Ez a pont akkor is jár, ha a vizsgázó behelyettesí- téssel ellenőrzi a megol- dás helyességét.
Mivel $25^{\lg x} = (5^{\lg x})^2$, ezért az egyenlet	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
$(5^{\lg x})^2 - 4 \cdot 5^{\lg x} - 5 = 0 \text{ alakban is irható.}$	1 pont	
(Az $5^{\lg x}$ -re nézve másodfokú egyenlet megoldásai:) $5^{\lg x} = -1$ és $5^{\lg x} = 5$.	1 pont	
(Mivel $5^{\lg x} > 0$, ezért) $5^{\lg x} = -1$ nem lehetséges.	1 pont	
Ha $5^{\lg x} = 5$, akkor $x = 10$,	1 pont	
ami valóban megoldása az egyenletnek (ellenőrzés behelyettesítéssel vagy ekvivalenciára hivatkozással).	1 pont	
Összesen:	7 pont	

2. a)		
Az egy fordulattal lefestett falfelület nagysága a (festő)henger palástjának területével egyenlő.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
$P = 2 \cdot 2 \cdot 20 \cdot \pi = 80\pi \ (\approx 251,3 \text{ cm}^2)$	1 pont	Más, ésszerű és helyes kerekítéssel kapott rész- eredmények is elfogadha- tók.
$40 \text{ m}^2 = 400\ 000 \text{ cm}^2,$	1 pont*	
tehát a teljes falfelület befestéséhez kb. $\frac{400000}{251,3} \approx 1592$ fordulatra van szükség a festőhengerrel.	1 pont*	
Ennyi fordulattal kb. $1592 \cdot 3 = 4776$ ml (≈ 4.8 liter) festéket viszünk fel a falra.	1 pont*	
4 liter festék megvásárlása tehát nem elegendő.	1 pont	
Összesen:	6 pont	

A *-gal jelölt 3 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

4 liter = 4000 ml festék kb. $\frac{4000}{3} \approx 1333$ fordulatra elegendő.	1 pont	
Ennyi fordulattal kb. $1333 \cdot 251,3 \approx 335\ 000\ \text{cm}^2 =$	1 pont	
= 33,5 m ² felületet tudunk befesteni.	1 pont	

2. b)		
$4 \text{ liter} = (4 \text{ dm}^3 =) 4000 \text{ cm}^3$	1 pont	
r = 8 cm	1 pont	
$4000 \text{ cm}^3 = 8^2 \cdot \pi \cdot m$	1 pont	
Ebből $m = \frac{4000}{64\pi} \approx 19.9 \text{ (cm)}.$	1 pont	
A festék tehát kb. 20 cm magasan állna a vödörben.	1 pont	
Összesen:	5 pont	

írásbeli vizsga 1412 4 / 15 2014. október 14.

3. a)		
Ha a bolti eladásokból származó idei árbevétel b (Ft), akkor az internetes eladásokból származó árbevétel jelenleg $0.7b$ (Ft). ($b > 0$)	1 pont	
Ha a bevételek egyenlősége x év múlva következik be, akkor $1.04^x \cdot 0.7b = 0.98^x \cdot b$,	1 pont	
amiből (a pozitív <i>b</i> -vel való osztás után) $1,04^x \cdot 0,7 = 0.98^x$.	1 pont	
(Mindkét oldal tízes alapú logaritmusát véve és a logaritmus azonosságait felhasználva:) $x \lg 1,04 + \lg 0,7 = x \lg 0,98$	2 pont	$0.7 = \left(\frac{0.98}{1.04}\right)^x \approx 0.9423^x$
Ebből $x = \frac{\lg 0.7}{\lg 0.98 - \lg 1.04} \ (\approx 6).$	1 pont	$x \approx \log_{0.9423} 0.7 \ (\approx 6)$
A két forrásból származó árbevétel 6 év múlva lesz (körülbelül) egyenlő.	1 pont	
Ellenőrzés a szöveg alapján (a bolti árbevétel $1,04^6 \cdot 0,7b \approx 0,886b$, az internetes árbevétel pedig $0,98^6b \approx 0,886b$ lesz 6 év múlva).	1 pont	
Összesen:	8 pont	

Megjegyzés: Ha a vizsgázó évről évre (ésszerű kerekítésekkel) helyesen felírja a bolti és az internetes árbevételt, és ez alapján jó választ ad, akkor teljes pontszámot kapjon.

3. b)		
Annak a valószínűsége, hogy egy vevő reklamál: $\frac{1}{80}$,	1	
annak a valószínűsége, hogy nem reklamál: $\frac{79}{80}$.	1 pont	
$P(\text{legfeljebb 2 reklamál}) = P(\text{senki nem reklamál}) + P(1 reklamál}) + P(2 reklamál}) =$	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
$ = \left(\frac{79}{80}\right)^{100} + \left(\frac{100}{1}\right)\left(\frac{1}{80}\right)\left(\frac{79}{80}\right)^{99} + \left(\frac{100}{2}\right)\left(\frac{1}{80}\right)^{2}\left(\frac{79}{80}\right)^{98} \approx $	3 pont	Az összeg mindhárom tagjáért 1-1 pont jár.
$(\approx 0.2843 + 0.3598 + 0.2255) \approx 0.87$	1 pont	A százalékban megadott helyes válasz is elfogad- ható.
Összesen:	6 pont	

írásbeli vizsga 1412 5 / 15 2014. október 14.

4. a)		
$3x^2 - x^3 = x^2 \cdot (3 - x) \ .$	1 pont	
Az x^2 tényező pozitív, mert $x \neq 0$.	1 pont	
A $3-x$ tényező is pozitív, mert $x < 3$,	1 pont	
így a két tényező szorzata is pozitív, ha $x \in]0;3[$.	1 pont	
Összesen:	4 pont	

Megjegyzés: Ha a vizsgázó indoklás nélkül vázolja a görbét, és bizonyításként az ábrára hivatkozik, akkor legfeljebb 2 pontot kaphat.

4. b)		
(A megadott görbe az $f(x) = 3x^2 - x^3$, $x \in \mathbf{R}$ függvény grafikonja.) Ekkor $f'(x) = 6x - 3x^2$,	1 pont	
f'(3) = -9,	1 pont	
f(3) = 0.	1 pont	
Az érintő meredeksége tehát –9 (és átmegy a (3; 0) ponton).	1 pont	
Az érintő egyenlete: $y = -9x + 27$.	1 pont	
Összesen:	5 pont	

4. c)		
Az $y = 3x^2 - x^3$ egyenletű görbének az $x = 0$ és az $x = 3$ helyen van közös pontja az x tengellyel.	1 pont	$y = 3 x^{2} - x^{3}$
(Tudjuk, hogy ha $x \in [0;3]$, akkor $y \ge 0$, ezért) a kérdezett terület $T = \int_{0}^{3} f(x)dx$.	1 pont	
$\int_{0}^{3} (3x^{2} - x^{3}) dx = \left[x^{3} - \frac{x^{4}}{4} \right]_{0}^{3} =$	2 pont	
$= \left(27 - \frac{81}{4}\right) - (0 - 0) = 6,75.$	1 pont	
Összesen:	5 pont	

írásbeli vizsga 1412 6 / 15 2014. október 14.

II.

5. a)		
Az egyes játékosok sikeres dobásainak száma rendre 1, 0, 6, 2, 3, 2 és 8.	2 pont	Egy hiba esetén 1 pont, több hiba esetén 0 pont jár.
A csapat dobási kísérleteinek száma a mérkőzésen 50,	1 pont	
a sikeres dobások száma 22 volt.	1 pont	
A csapat dobószázaléka 44.	1 pont	
Összesen:	5 pont	

(5. b)		
A két új játékos csatlakozása előtt a csapat tagjainak száma x , a tagok magasságának átlaga pedig y cm volt ($x \in \mathbb{N}$, $y > 0$).	1 pont	
(Az első új játékos belépése előtt a csapattagok magasságának összege xy volt, az új játékos belépése után $xy + 195$ lett, tehát) $\frac{xy + 195}{x + 1} = y + 0.5$.	2 pont	
Az előzőhöz hasonló gondolatmenettel kapjuk, hogy a második új játékos belépését követően $\frac{xy+195+202}{x+2} = y+1,5.$	2 pont	
Az egyenletek rendezése után a $0.5x + y = 194.5$ $1.5x + 2y = 394$ egyenletrendszerhez jutunk.	2 pont	
x = 10 és $y = 189,5$.	2 pont	
A csapat tagjainak száma 10, az átlagos magasságuk pedig 189,5 cm volt.	1 pont	
Ellenőrzés a szöveg alapján. (Az első játékos csatlakozása után a csapat "összmagassága" 2090 cm lett, az átlagos magasság pedig $\frac{2090}{11}$ = 190 cm. A második játékos csatlakozása után az "összmagasság" 2292 cm, az átlagos magasság pedig $\frac{2292}{12}$ = 191 cm lett.)	1 pont	
Összesen:	11 pont	

6. a) első megoldás		
Egy megfelelő szakasz két végpontja lehet egyetlen megadott egyenesen vagy két megadott egyenesen.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
Egy egyenesen 4 megfelelő szakasz jelölhető ki, a három egyenesen összesen 12 szakasz.	1 pont	
Egy adott egyenes bármelyik megadott öt pontjához 10-féleképpen választható ki egy másik egyenes egy megadott pontja.	1 pont	
Ha ezeket a szakaszokat mind megrajzoljuk, akkor összesen 3.5.10 (= 150) szakaszt húzunk meg.	1 pont	
Ekkor azonban mindegyik szakaszt kétszer rajzoltuk volna meg, ezért a szakaszok száma valójában $\frac{3 \cdot 5 \cdot 10}{2} \ (= 75).$	1 pont	
Összesen tehát (12 + 75 =) 87 szakasz van, amely a megadott feltételeknek megfelel.	1 pont	Ez a pont nem jár, ha a vizsgázó a kettő közül csak egy esetet vizsgált.
Összesen:	6 pont	

6. a) második megoldás		
A megadott 15 pont összesen $\binom{15}{2}$ szakaszt határoz	2 pont	
meg.		
Egy-egy megadott egyenesen a nem megfelelő sza- kaszok száma 6,	2 pont	
tehát összesen 18 nem megfelelő szakasz van.	1 pont	
A megfelelő szakaszok száma $\binom{15}{2}$ – 18 = 87.	1 pont	
Összesen:	6 pont	

írásbeli vizsga 1412 8 / 15 2014. október 14.

(területegység). Kor legfeljebb 8 pontot kaphat.	6. b) első megoldás		
A CNM szabályos háromszög magassága az ABC szabályos háromszög magassága az ABC szabályos háromszög magasságának a harmada ($CG = \frac{1}{3} \cdot CF$): $CG = \left(\frac{1}{3} \cdot 18 \cdot \frac{\sqrt{3}}{2} = \right) 3\sqrt{3} , \qquad 1 \text{ pont}$ $a PQMN \text{ trapéz magassága pedig ennek a kétszerese:} FG = 6\sqrt{3} . \qquad 1 \text{ pont}$ $A PQR \text{ háromszög hasonló az } MNR \text{ háromszöghöz,} \text{mert szögeik páronként egyenlők (csúcsszögek, illetve váltószögek).} \qquad 1 \text{ pont}$ $Ez \text{ a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.}$ $A \text{ két háromszög hasonlóságának aránya 2 : 1,} \qquad 1 \text{ pont}$ $\text{igy a megfelelő oldalaikhoz tartozó magasságaik aránya is ennyi.} \qquad Ez \text{ a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.}}$ $Ezért FR = 4\sqrt{3} \text{ ,} \qquad 1 \text{ pont}$ $\text{és a } PQR \text{ háromszög területe} \left(\frac{12 \cdot 4\sqrt{3}}{2} = \right) 24\sqrt{3}$ $\text{tha a vizsgázó nem a pontos értéket adja meg, akkor legfeljebb 8 pontot kaphat.}}$	Az ábra jelöléseit használjuk. A <i>CNM</i> háromszög egy 6 egység oldalú szabályos háromszög.	2 pont	kaszt: 1 pont,
a $PQMN$ trapéz magassága pedig ennek a kétszerese: $FG = 6\sqrt{3}$. A PQR háromszög hasonló az MNR háromszöghöz, mert szögeik páronként egyenlők (csúcsszögek, illetve váltószögek). A két háromszög hasonlóságának aránya $2:1$, 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.	A CNM szabályos háromszög magassága az ABC szabályos háromszög magasságának a harmada ($CG = \frac{1}{3} \cdot CF$):	1 pont	
$FG = 6\sqrt{3}$.I pontA PQR háromszög hasonló az MNR háromszöghöz, mert szögeik páronként egyenlők (csúcsszögek, illetve váltószögek).Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.A két háromszög hasonlóságának aránya 2 : 1,1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.Í pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.Ezért $FR = 4\sqrt{3}$,1 pontés a PQR háromszög területe $(12 \cdot 4\sqrt{3})$ a pont tos értéket adja meg, akkor legfeljebb 8 pontot kaphat.	$CG = \left(\frac{1}{3} \cdot 18 \cdot \frac{\sqrt{3}}{2} = \right) 3\sqrt{3} ,$	1 pont	
mert szögeik páronként egyenlők (csúcsszögek, illetve váltószögek). A két háromszög hasonlóságának aránya 2 : 1, így a megfelelő oldalaikhoz tartozó magasságaik aránya is ennyi. Ezért $FR = 4\sqrt{3}$, I pont I	~ 1 0 0 1 0	1 pont	
így a megfelelő oldalaikhoz tartozó magasságaik aránya is ennyi. 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. Ezért $FR = 4\sqrt{3}$, 1 pont Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki. 1 pont Ha a vizsgázó nem a pontos értéket adja meg, akkor legfeljebb 8 pontot kaphat.	mert szögeik páronként egyenlők (csúcsszögek, illet-	1 pont	ez a gondolat csak a
rya is ennyi.	A két háromszög hasonlóságának aránya 2 : 1,	1 pont	
és a PQR háromszög területe $\left(\frac{12\cdot 4\sqrt{3}}{2}\right)=24\sqrt{3}$ 1 pont Ha a vizsgázó nem a pontos értéket adja meg, akkor legfeljebb 8 pontot kaphat.	• •	1 pont	ez a gondolat csak a
és a PQR háromszög területe $\left(\frac{12\cdot 4\sqrt{3}}{2}\right)=24\sqrt{3}$ 1 pont Ha a vizsgázó nem a pontos értéket adja meg, akkor legfeljebb 8 pontot kaphat.	Ezért $FR = 4\sqrt{3}$,	1 pont	
	és a PQR háromszög területe $\left(\frac{12 \cdot 4\sqrt{3}}{2}\right) = 24\sqrt{3}$	1 pont	tos értéket adja meg, ak- kor legfeljebb 8 pontot
	Összesen:	10 pont	·····p ·······

6. b) második megoldás		
Az ábra jelöléseit használjuk. A CNM háromszög egy 6 egység oldalú szabályos háromszög.	2 pont	Megrajzolja az NM sza- kaszt: 1 pont, NM = 6 egység: 1 pont.
A <i>PQR</i> háromszög hasonló az <i>MNR</i> háromszöghöz, mert szögeik páronként egyenlők (csúcsszögek, illetve váltószögek).	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
A két háromszög hasonlóságának aránya 2 : 1,	1 pont	
ezért $PR = \frac{2}{3}PM$.	1 pont	
A <i>PM</i> szakasz a <i>BMP</i> háromszögből koszinusztétellel kifejezhető: $PM = \sqrt{15^2 + 12^2 - 2 \cdot 15 \cdot 12 \cdot \cos 60^{\circ}} =$	1 pont	
$=\sqrt{189} \ (= 3\sqrt{21}).$	1 pont	
$PR = \left(\frac{2}{3}PM = 2\sqrt{21} = \right)\sqrt{84}$	1 pont	
A PQR háromszög PQ alapjához tartozó FR magasságát Pitagorasztétellel számítva: $FR = \sqrt{84 - 36} = \sqrt{48}$ (= $4\sqrt{3}$).	1 pont*	
A <i>PQR</i> háromszög területe tehát: $\frac{PQ \cdot FR}{2} = 6 \cdot FR = 24\sqrt{3}.$	1 pont*	Ha a vizsgázó nem a pon- tos értéket adja meg, ak- kor legfeljebb 8 pontot kaphat.
Összesen:	10 pont	

Megjegyzés: A *-gal jelölt 2 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

Az RPQ szöget
$$\alpha$$
-val jelölve $\frac{\sin \alpha}{\sin 60^{\circ}} = \frac{BM}{PM} = \frac{12}{3\sqrt{21}}$, vagyis $\sin \alpha = \frac{4}{\sqrt{21}} \cdot \frac{\sqrt{3}}{2} = \frac{2}{\sqrt{7}}$. (1 pont)

Tehát a PQR háromszög területe
$$\frac{PQ \cdot PR \cdot \sin \alpha}{2} = \frac{12 \cdot 2\sqrt{21}}{2} \cdot \frac{2}{\sqrt{7}} = 24\sqrt{3}$$
. (1 pont)

6. b) harmadik megoldás		
Használjuk az ábra jelöléseit! A PFR derékszögű háromszögben $PF=6$ és $FR=PF\cdot \operatorname{tg}\alpha=6\cdot \operatorname{tg}\alpha$,	1 pont	
a PQR háromszög területe pedig $\frac{PQ \cdot FR}{2} = 6 \cdot FR = 36 \cdot \text{tg } \alpha.$	1 pont	
$BMP \Rightarrow = 120^{\circ} - \alpha$ $A P F Q B$	1 pont	
A <i>BMP</i> háromszögben a szinusztétel szerint $\frac{\sin(120^{\circ} - \alpha)}{\sin \alpha} = \frac{PB}{MB} = \frac{15}{12}.$	1 pont	
$\sin(120^\circ - \alpha) = \frac{5}{4}\sin\alpha .$	1 pont	
(A függvénytáblázatban is megtalálható azonosság szerint) $\sin 120^{\circ}\cos\alpha - \cos 120^{\circ}\sin\alpha = \frac{5}{4}\sin\alpha$.	1 pont	
$\frac{\sqrt{3}}{2}\cos\alpha + \frac{1}{2}\sin\alpha = \frac{5}{4}\sin\alpha$	1 pont	
$\frac{\sqrt{3}}{2}\cos\alpha = \frac{3}{4}\sin\alpha$	1 pont	
$\frac{2\sqrt{3}}{3} = \operatorname{tg}\alpha$	1 pont	
A <i>PQR</i> háromszög területe tehát $36 \cdot \text{tg } \alpha = 36 \cdot \frac{2\sqrt{3}}{3} = 24\sqrt{3}$.	1 pont	Ha a vizsgázó nem a pon- tos értéket adja meg, ak- kor legfeljebb 8 pontot kaphat.
Összesen:	10 pont	

7. a)		
(Az ábra jelölését használva) a téglatest méretei méterben: x , $1-x$, $1-2x$,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
a téglatest térfogata m³-ben: $x(1-x)(1-2x)$ (ahol $0 < x < 0.5$).	1 pont	
Keressük a (V :]0; 0,5[\rightarrow R)		
$V(x) = x(1-x)(1-2x) = 2x^3 - 3x^2 + x$	1 pont	
függvény maximumát.		
$V'(x) = 6x^2 - 6x + 1.$	1 pont	
(A szélsőérték létezésének szükséges feltétele, hogy) $V'(x) = 0$.	1 pont	
A másodfokú egyenlet (valós) megoldásai:		
$\frac{3-\sqrt{3}}{6}$ (\approx 0,211) és $\frac{3+\sqrt{3}}{6}$ (\approx 0,789).	2 pont	
Ez utóbbi nem eleme a V értelmezési tartományának, ezért ez nem jöhet szóba.	1 pont	
A V' függvény a $\frac{3-\sqrt{3}}{6}$ (\approx 0,211) helyen előjelet		Második derivált: V''(x) = 12x - 6 = 6(2x - 1),
vált (pozitívból negatívba megy át), ezért ez a <i>V</i> függvénynek az egyetlen szélsőértékhelye, mégpedig a maximumhelye.	1 pont	ez negatív a V teljes értel- mezési tartományán. Ezért V-nek maximuma van.
A maximális térfogatú doboz méretei (a kért kerekí- téssel): 21, 79 és 58 (cm).	2 pont	Ha a vizsgázó válaszában nem kerekít, vagy rosszul kerekít, akkor ezért 1 pontot veszítsen.
Összesen:	11 pont	

7. b)		
Az ötkarakteres kódban $\binom{5}{2}$ – 4 (= 6) különböző módon lehet a két számjegy helyét kijelölni.	2 pont	A két szám és a három betű helyét hatféleképpen lehet megadni (s = szám, b = betű): sbsbb, sbbsb, sbbbs, bsbsb, bsbbs, bbsbs
A két helyre 10·10 (= 100) különböző módon lehet két számjegyet választani úgy, hogy a sorrendjük is számít,	1 pont	
a másik három helyre pedig 26 ³ (= 17 576) különbö- ző módon három nagybetűt.	1 pont	
A különböző kódok száma tehát (6·100·17 576=) 10 545 600.	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó a két számjegy helyének meghatározásakor nem veszi figyelembe, hogy ezek nem lehetnek egymás mellett, akkor legfeljebb 3 pontot kaphat.

8. a)		
Az I. állítás igaz. Megfelelő konstrukció (lásd az		
alábbi két példát) vagy szöveges indoklás.		
	2 pont	Nem bontható.
A II. állításra ellenpélda az a hétpontú gráf, amelynek		
van egy hatpontú teljes részgráfja és egy izolált pont-	2 pont	
ja.		
A II. állítás tehát hamis.	1 pont	
A n pontú fagráfnak $n-1$ éle van,	1 pont	
ezért a csúcsok és az élek számának összege $2n-1$,	1 nont	
ami páratlan.	1 pont	
A III. állítás tehát hamis.	1 pont	
Összesen:	8 pont	

8. b)		
(Ha az ismeretségek száma rendre a, b, c, d, e és f , akkor $a \cdot b \cdot c \cdot d \cdot e \cdot f = 180 = 2^2 \cdot 3^2 \cdot 5$.	1 pont	
Mivel az ismeretségi gráfban a pontok fokszáma legfeljebb 5 (és $a \ge b \ge c \ge d \ge e \ge f$),	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
ezért a csúcsok fokszámai a következők lehetnek (az ismeretségek számát a névsornak megfelelően rendezve): 5, 3, 3, 2, 2, 1	1 pont	
vagy 5, 4, 3, 3, 1, 1.	1 pont	
A második esethez nem tartozik gráf,	1 pont	
mert nincs olyan gráf, amelyben a páratlan fokszámú csúcsok száma páratlan.	1 pont	Ha a hatpontú egyszerű gráfban van ötödfokú pont és két elsőfokú pont, akkor a gráfban nem le- het negyedfokú pont is.
Két lehetséges ismeretségi gráf van (például azért, mert <i>B</i> -nek és <i>C</i> -nek is van ismerőse <i>D</i> és <i>E</i> között, ezért <i>D</i> és <i>E</i> nem ismerheti egymást, így <i>D</i> az <i>A</i> -n kívül vagy <i>C</i> -t vagy <i>B</i> -t ismerheti):	2 pont	
Összesen:	8 pont	

9. a)		
$a_{17} = 91$ és $a_{33} = 11$	1 pont	
Ebből $d = -5$,	1 pont	
majd $a_1 = 171$.	1 pont	
$S_{49} = \frac{[2 \cdot 171 + (49 - 1) \cdot (-5)] \cdot 49}{2} =$	1 pont	
= 2499	1 pont	
Összesen:	5 pont	_

9. b) első megoldás		
Az egyes sorok elején rendre a sorozat 1., 8., 15., 22., 29., 36., illetve 43. tagja áll.	1 pont	
Minden egyes oszlopból csak egy szám választható, ez a kiválasztott szám a saját sorának elején álló számból vagy 0d, vagy 1d, vagy 2d,, vagy 6d hozzáadásával keletkezik, és e hét lehetőség mindegyike pontosan egyszer fordul elő.	1 pont	
Ha tehát összeadjuk a táblázatból kiválasztott hét számot, akkor az összegben megjelenik a sorok ele- jén álló hét szám összege,	1 pont	
továbbá (valamilyen sorrendben) a 0 <i>d</i> , 1 <i>d</i> , 2 <i>d</i> ,, 6 <i>d</i> számok összege (ami 21 <i>d</i> -vel egyenlő) is.	1 pont	
Ezért a hét kiválasztott szám összege $a_1 + a_8 + a_{15} + a_{22} + a_{29} + a_{36} + a_{43} + 21d$,	1 pont	
ami valóban minden kiválasztás esetében ugyanannyi (357).	1 pont	
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó legalább két különböző konkrét kiválasztás esetén megállapítja, hogy az összeg 357, akkor ezért a megállapításáért 1 pontot kapjon.

írásbeli vizsga 1412 14 / 15 2014. október 14.

9. b) második megoldás		
Adjuk össze a sorozat főátlóban álló tagjait! (Ezek összege 357.)	1 pont	
Ha a táblázat két kiválasztott sorában felcseréljük,	1 ,	
hogy melyik sorban melyik oszlopból választottuk ki	1 pont	
a sorozat tagját,		
akkor – ha a két érintett oszlop sorszáma között <i>k</i> a		
különbség – az egyik oszlopban $k \cdot d$ -vel nő, a másik	2 pont	
oszlopban $k \cdot d$ -vel csökken a kiválasztott tag értéke.		
Tehát a sorozat hét kiválasztott tagjának az összege a		
két tag cseréje után ugyanannyi marad, mint amennyi	1 pont	
a csere előtt volt.	1	
Mivel a sorozat főátlóban álló tagjaiból kiindulva,		
két-két tag cserélgetésével bármelyik kiválasztott		
számheteshez eljuthatunk, a tagok összege bármely	1 pont	
hét tag (leírtak szerinti) kiválasztása esetén ugyan-	1	
annyi (357).		
Összesen:	6 pont	

9. c)		
Péter összesen 7! = 5040-féleképpen választhat ki a táblázatból számokat a megadott szabály szerint.	1 pont	
Ha a 91 és a 11 is a kiválasztott számok közt van, akkor az első sorból 5-féleképpen választhat, ezután a másodikból 4-féleképpen, a negyedikből 3-féleképpen, a hatodikból 2-féleképpen, a hetedikből pedig 1-féleképpen.	1 pont	
Ez 5! = 120 lehetőség.	1 pont	
A kérdéses valószínűség így $\frac{120}{5040} \approx$	1 pont	
≈ 0,024.	1 pont	A százalékban megadott helyes válasz is elfogad- ható.
Összesen:	5 pont	