EECS 495: Randomized Algorithms Multi-armed Bandits

Lecture 13

Reading: none

Multi-armed bandits (Robbins '52):

- Slot machine with multiple levers
- levers give rewards according to distribution
- want to maximize sum of rewards
- no initial knowledge about payoffs

Problem: Tradoff between

- exploit lever with high expected payoff
- *explore* to get more info about expected payoffs of other levers

Example: Keyword Allocations

- n advertisers with CPC v_1, \ldots, v_n and CTR p_1, \ldots, p_n
- $\bullet\,$ one slot per keyword
- \bullet CTRs unknown, fixed over time
- which ad to show?

Problem:

- \bullet *n* arms
- reward $X_i \in [0, 1]$ of arm i
- X_i random variable with mean μ_i

Goal: Given finite horizon T, seek policy to minimize regret:

$$\max_{X_i} \left(T \times \mu_{i^*} - E[\sum_{t=1}^T R_t] \right)$$

where i^* is arm with highest μ_i .

Claim: There is a policy that obtains regret $O(\sqrt{nT \log T})$ (and hence per-turn regret vanishes for large T).

Question: Easy policies?

Algorithm: Play all arms for a while, then play best one.

- Play each arm for $T^{2/3}$ steps
- Choose arm with max sample are and play for remaining $T nT^{2/3}$ steps

Claim: $O(nT^{2/3}\sqrt{\log T})$ regret.

Claim: (Chernoff-Hoeffding's inequality). Let X_1, \ldots, X_k be k independent draws from a distribution on [0,1] with mean μ . Let $\hat{\mu} = \frac{1}{k} \sum_{i=1}^{k} X_i$ be sample average. Then:

$$\Pr[\hat{\mu} - \mu > \epsilon] \le 2e^{-2k\epsilon^2}$$

and

$$\Pr[\hat{\mu} + \mu < \epsilon] < 2e^{-2k\epsilon^2}.$$

Proof: (of regret bound):

• $\hat{\mu}_i$ = sample ave of arm i. by hoeffding with $k = T^{2/3}$:

$$\Pr[|\mu_i - \hat{\mu}_i| > \frac{\sqrt{\log T}}{T^{1/3}}] \le \frac{2}{T^2}$$

• Assume $n \ll T$. by union bound:

$$\Pr[\exists i : |\mu_i - \hat{\mu}_i| > \frac{\sqrt{\log T}}{T^{1/3}}] \le \frac{2}{T}$$

• W/prob. $1 - \frac{2}{T}$, chosen arm i has $\mu_i \geq F$ or each arm $i \neq i^*$, $E(Q_i) \leq \frac{4 \log T}{\Delta_i^2} + 2$: $\mu_{i^*} - \frac{2\sqrt{\log T}}{T^{1/3}}$, so regret at most

$$nT^{2/3} + T \times \frac{2\sqrt{\log T}}{T^{1/3}} + \frac{2}{T} \times T$$

where

- first term is regret due to initial explore
- second term regret due to slightly sub-opt arm played at most T times
- third term regret due to arm subopt by 1

Idea: Treating all arms equal wastes time. Play arm with highest upper confidence interval. Either

- also has higher mean, or
- narrow confidence interval

either way, we're happy.

Def: If $\hat{\mu}_i$ is sample ave and t_i is number of times played arm i, then the index Φ_i of i is $\hat{\mu_i} + \sqrt{\frac{\log T}{t_i}}$.

Algorithm: Index policy

- Play arm with highest index
- Update index

Claim: $O(\sqrt{nT \log T})$ regret.

Proof: Let

• i* be arm with highest mean,

- $\Delta_i = \mu_{i^*} \mu_i$ be per-turn regret for play-
- Q_i be exp. # times i is played in T steps.

• $\Pr[\Phi_{i^*} < \mu_{i^*}] \leq 1/T$ no matter how long we play it.

If i^* played continously, at each step t,

$$\Pr[\Phi_{i^*}(t) < \mu_{i^*}] = \Pr[\mu_{i^*} - \hat{\mu_{i^*}}(t) > \sqrt{\frac{\log T}{t}}] \le \frac{1}{T^2}$$

by Hoeffding. Dips below μ_{i^*} with prob. at most $\frac{1}{T}$ by union bound over steps.

• $\Pr[\Phi_i > \mu_i] \leq 1/T$ after enough trials. If i played for $t_i = \frac{4 \log T}{\Delta_i^2}$ steps (index is $\hat{\mu}_i + \Delta_i/2$), then

$$\Pr[\Phi_i > \mu_i] = \Pr[\hat{\mu}_i - \mu_i > \Delta_i/2] \le 1/T$$

by Hoeffding.

If neither event happens, play i at most t_i times, else w.p. at most 2/T, play arm at most T times.

Regret is:

$$\sum_{i} \Delta_{i} E[Q_{i}] \approx \sum_{i} \left(\frac{4 \log T}{\Delta_{i}}\right)$$

Define

- Arms with large regret $\Delta_i > \sqrt{\frac{4n \log T}{T}}$ incur total regret at most $n \frac{4 \log T}{\Delta_i} =$ $2\sqrt{nT\log T}$
- Arms with small regret $\Delta_i \leq \sqrt{\frac{4n \log T}{T}}$ incur total regret at most $T \max_i \Delta_i =$ $2\sqrt{nT\log T}$.

Lower bound:

Claim: Any bandit policy incurs regret $\Omega(\sqrt{nT})$.

Proof: n-1 arms with mean 1/2; one arm with mean $1/2 + \epsilon$ for $\epsilon = O(\sqrt{n/2})$. With t samples, variance becomes $\sqrt{1/t}$, so need O(T/n) samples to decide if arm is good one with constant prob. Not enough samples to resolve all arms, so with constant probability fail and incur regret $\epsilon T = \Omega(\sqrt{nT})$.