The Limit Definition of Derivative

Suppose the distance a train has traveled is a function of time y = f(x).

average velocity over
$$[x,x+h]$$
 = $\begin{pmatrix} \text{average} \\ \text{rate of} \\ \text{change} \\ \text{over} \\ [x,x+h] \end{pmatrix}$ = $\begin{pmatrix} \text{slope of} \\ \text{secant} \\ \text{secant} \\ \text{between} \\ x,x+h \end{pmatrix}$ = $\begin{pmatrix} \Delta y \\ \Delta x \end{pmatrix}$ = $\begin{pmatrix} y_2 - y_1 \\ x_2 - x_1 \end{pmatrix}$ = $\begin{pmatrix} \text{definition of difference} \\ \text{quotient} \end{pmatrix}$

velocity at
$$x$$
 = $\frac{\text{rate of change}}{\text{at } x}$ = $\frac{\text{slope of tangent}}{\text{at } x}$ = $\lim_{h \to \infty}$ = definition of derivative $f'(x)$

The Limit Definition of Derivative

Suppose the distance a train has traveled is a function of time y = f(x).

average velocity over
$$[x, x+h]$$
 = $\begin{cases} \text{average rate of change over} \\ \text{over} \\ [x, x+h] \end{cases}$ = $\begin{cases} \text{slope of secant between a slope of secant between a solution of difference of a solution of a solution of secant between a solution of a so$

velocity at
$$x$$
 = $\frac{\text{rate of change}}{\text{at } x}$ = $\frac{\text{slope of tangent}}{\text{at } x}$ = $\lim_{h \to \infty}$ = definition of derivative $f'(x)$