INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CURSO TÉCNICO SUBSEQUENTE EM ELETRÔNICA TRABALHO DE CONCLUSÃO DE CURSO

PROJETO

por

Harlen Araújo de Senae Henrique Cirilo Costa

orientado pelo

Prof. Dr. Cícero Alisson dos Santos

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CURSO TÉCNICO SUBSEQUENTE EM ELETRÔNICA TRABALHO DE CONCLUSÃO DE CURSO

PROJETO

por

Harllen Araújo de Senae Henrique Cirilo Costa

orientado pelo

Prof. Dr. Cícero Alisson dos Santos

Trabalho de conclusão de curso apresentado ao IFPB.

SUMÁRIO

Ι	Pre	liminares	4
	I.1	Amplificadores Operacionais	4
II	Res	umo do projeto	5
	II.1	Sobre o projeto	5
	II.2	Um tour pelos estágios	6
		II.2.1 A entrada desbalanceada	6
		II.2.2 A entrada balanceada	6
		II.2.3 O estágio de ganho	6

INTRODUÇÃO

Capítulo I

PRELIMINARES

I.1 Amplificadores Operacionais

Capítulo II

RESUMO DO PROJETO

II.1 Sobre o projeto

A proposta do projeto é inovadora. Seu objetivo é criar um amplificador de áudio com baixa distorção¹ e de baixo custo, dispondo de uma tecnologia já bem consolidada na eletônica, a saber, O amplificador operacional (AmpOp). Para este fim, usou-se vários NE5532. Cada um consiste dum AmpOp dual, precisamente um dual in-line package (DIP) com dois amplificadores operacionais embutidos. O autor do projeto justifica a escolha deste CI devido à sua baixa distorção, à sua baixa impedância² de saída e à uma notável performance de ruído. A fim de suplantar o desafio técnico de se alimentar um alto-falante de 8Ω com uma boa potência, faz-se o uso duma ponte (bridge). Conectam-se dois amplificadores em cascata (série), resultando num aumento de duas vezes a tensão e, consequentemente quadruplicando a potência do sinal, sobrepujando o limiar de potência dum único amplificador. Um outro fator preponderante é o limite da corrente de saída de cada AmpOp, estipulado para evitar sua sobrecarga interna. Segundo o próprio autor do projeto, o NE5532 consegue acionar uma carga de $500\,\Omega^3$ até o limiar da tensão de saída do AmpOp. Entretanto, é recomendável usar cargas mais "leves", isto é, cargas com resistências maiores. O projeto foi dimensionado para alimentar um alto-falante de 8Ω , caso o de 4Ω seja requerido, serão necessários duas vezes mais AmpOps, para fornecer o dobro de corrente demandada pela carga de 4Ω e, o mesmo se aplica ao modo de operação $bridged^4$. O sistema foi desenvolvido de maneira modular, para abarcar os modos single-ended⁵ e bridged. Ademais, devido à sua modularidade é possível construir um amplificador estéreo⁶ com apenas com três PCIs. É sabido que inerentemente os AmpOps possuem proteção contra sobrecarga. Não obstante, relés de saída são usados para evitar o on-off muting causador dos efeitos indesejados ao se ligar um sistema de áudio, e.g. os estalos (pops), e para evitar falhas DC, i.e., evitar que o sistema forneça DC ao alto-falante evitando assim, sua sobrecarga e consequentemente sua degeneração.

 $[\]mathbf{1}$ Embora intuitivo é necessário precisar tecnicamente o que é distorção em áudio.

²Outro conceito a ser precisado.

³Creio que este parâmetro é dependente do fabricante.

 $^{^4}$ Neste modo, a carga, a saber, o alto-falante, receberá duas tensões invertidas em fase, isto por sua vez resultará na duplicação da tensão de saída e *a fortiori* na quadruplicação da potência.

⁵A carga será conectada ao GND e a tensão de saída.

 $^{^{\}mathbf{6}}$ Precipuamente, a configuração estéreo é constituida de dois canais um esquerdo (\mathbf{L} eft) e um direito (\mathbf{R} ight).

II.2 Um tour pelos estágios

II.2.1 A ENTRADA DESBALANCEADA

Este estágio consiste de um filtro RF, neste caso um filtro passa-baixas, pois a tensão de saída é

(II.1)
$$\left| \frac{R_2 \| C_1}{R_1 + R_2 \| C_1} \right| \cdot V_{\text{in}}$$

em que $V_{\rm in}$ é a tensão de entrada. Esta entrada é chamada de desbalanceada, pode ser conectada diretamente ao estágio de ganho—tratado na próxima subseção—através de um jumper em JP1. Ela está mais sucetível à interferência eletromagnética radio frequency (RF), por exemplo proveniente do uso cabos longos.

II.2.2 A ENTRADA BALANCEADA

Aqui está a novidade, o design é constituído de vários AmpOps. Em comparação, um estágio convencional construído com quatro resistores de $10\,\mathrm{k}\Omega$ e um único AmpOp 5532 tem um ruído ainda maior que uma entrada desbalanceada simples, além disso, o ruído é ainda pior que a maioria dos amplificadores de potência. O amplificador em questão soluciona este problema parcialmente, usando um amplificador estágio balanceado duplo (dual balanced stage amplifier) compreendendo aos AmpOps IC5A e IC5B, que cancela parcialmente ruído não correlacionado—ruído aleatório sem relação à defasagem dos dois—, dando uma redução de ruído de 3 dB, melhorando assim o CMRR. Ele também usa resistores de valores muito menores, a saber, 8 Ω se comparado com os usados ordinariamente, viz. $10\,\mathrm{k}\Omega$, engendrando assim um ruído Jonhson os usados ordinariamente, viz. porque o amplificador é controlado pelos buffers, que permitem que a impedância de entrada serem mais altas que o usual, evitando a sobrecarga aos equipamentos externos, melhorando ainda mais o CMRR. O ruído de saída é de menos de $-112\,\mathrm{dBu}$, uma melhora de 8 dB sobre a tecnologia convencional.

II.2.3 O ESTÁGIO DE GANHO

⁷Definir este conceito

⁸O ruído Jonhson, é um ruído inerente aos condutores elétricos em equilíbrio térmico, associado a agitação térmica dos elétrons e indiferente à diferença de potencial no condutor.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] MALVINO, Albert Paul. **Eletrônica**: Volume 1. 1ª ed. São Paulo: McGraw-Hill Education, 1987.