

Language: Albanian

Day: 1

E mërkurë, 7 korrik 2010

**Problem 1.** Gjeni të gjitha funksionet  $f: \mathbb{R} \to \mathbb{R}$  të tilla që barazimi

$$f(\lfloor x \rfloor y) = f(x) \lfloor f(y) \rfloor$$

të jetë i vërtetë për të gjitha  $x, y \in \mathbb{R}$ . (Me  $\lfloor z \rfloor$  shënohet numri më i madh i plotë që është më i vogël ose i barabartë me z.)

**Problem 2.** Le të jetë I qendra e rrethit brendashkruar trekëndëshit ABC dhe  $\Gamma$  rrethi jashtëshkruar atij trekëndëshi. Drejtëza AI pret përsëri rrethin  $\Gamma$  në pikën D. Le të jenë E një pikë në harkun  $\widehat{BDC}$  dhe F një pikë në brinjën BC të tilla që

$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$

Së fundi, le të jetë G mesi i segmentit IF. Provoni që drejtëzat DG dhe EI priten në një pikë të rrethit  $\Gamma$ .

**Problem 3.** Le të jetë  $\mathbb{N}$  bashkësia e numrave të plotë pozitivë. Gjeni të gjitha funksionet  $g \colon \mathbb{N} \to \mathbb{N}$  të tilla që numri

$$(g(m)+n)(m+g(n))$$

të jetë katror i plotë për të gjitha  $m, n \in \mathbb{N}$ .

Language: Albanian

Koha: 4 orë dhe 30 minuta Çdo problem vlerësohet me 7 pikë



Language: Albanian

Day: 2

E enjte, 8 korrik 2010

**Problem 4.** Le të jetë P një pikë brenda trekëndëshit ABC. Drejtëzat AP, BP dhe CP presin rrethin  $\Gamma$  jashtëshkruar trekëndëshit ABC përkatësisht në pikat K, L dhe M. Tangjentja ndaj rrethit  $\Gamma$  e hequr në pikën C pret drejtëzën AB në pikën S. Supozojmë që SC = SP. Provoni që MK = ML.

**Problem 5.** Në secilën prej gjashtë kutive  $B_1, B_2, B_3, B_4, B_5, B_6$  fillimisht ka vetëm nga një monedhë. Lejohen vetëm dy tipe veprimesh:

- Tipi 1: Merret një kuti joboshe  $B_j$  me  $1 \le j \le 5$ . Largohet një monedhë nga  $B_j$  dhe shtohen dy monedha tek  $B_{j+1}$ .
- Tipi 2: Merret një kuti joboshe  $B_k$  me  $1 \le k \le 4$ . Largohet një monedhë nga  $B_k$  dhe këmbehen përmbajtjet e kutive (ndoshta boshe)  $B_{k+1}$  and  $B_{k+2}$ .

Tregoni nëse ekziston një varg i fundmë veprimesh të tilla, i cili si rezultat jep kutitë  $B_1, B_2, B_3, B_4, B_5$  boshe, ndërsa kutia  $B_6$  përmban pikërisht  $2010^{2010^{2010}}$  monedha. (Shënojmë që  $a^{b^c}=a^{(b^c)}$ .)

**Problem 6.** Le të jetë  $a_1, a_2, a_3, \ldots$  një varg numrash realë pozitivë. Supozojmë që për ndonjë numër të plotë pozitivs, kemi

$$a_n = \max\{a_k + a_{n-k} \mid 1 \le k \le n - 1\}$$

për të gjitha n > s. Provoni që ekzistojnë numrat e plotë pozitivë  $\ell$  dhe N, me  $\ell \leq s$  të tillë që  $a_n = a_\ell + a_{n-\ell}$  për të gjitha  $n \geq N$ .

Language: Albanian

Koha: 4 orë dhe 30 minuta Çdo problem vlerësohet me 7 pikë