

Tarea 3 Irrealismo Solar

Profesores: Nancy Hitschfeld e Iván Sipirán **Auxiliares:** Julieta Coloma y Vicente González

1 Introducción

Para la tarea 1 hicieron una versión simplificada del sistema solar, ahora deberán usar sus nuevos conocimientos para implementar un sistema solar realista. Van a configurar un mundo que se pueda visualizar mediante diversas cámaras. Como muestran las figuras (referencias, no representan una entrega completamente correcta):

Figura 1: Sistema solar general

Figura 3: Vista de Mercurio

Figura 2: Vista de La Tierra

Figura 4: Vista de Saturno

Para facilitar el desarrollo de la tarea se les será entregado un template para que empiecen la tarea y dos carpetas: Una con todos los modelos y texturas necesarias y la otra que corresponde a la librería que son libres de usar para hacer la tarea.

2 Requisitos

Los requisitos de la tarea son los siguientes:

Texturas (2pts)

1. Debe crear una función create_sphere(definition) que cree la geometría de una esfera con radio 1 centrada en el origen, la función debe retornar un Model correctamente construido, puede ver la función create rings(definition) como referencia.

Metodología sugerida:

Guíese por las coordenadas esféricas para discretizar las coordenadas con respecto a θ y φ . Note que el primero es proporcional al movimiento «vertical» de la esfera y el segundo al movimiento «horizontal». Con esto puede definir las coordenadas de texturas $(u(\varphi), v(\theta))$, recuerde que $u, v \in (0,1)$.

- 2. Use la clase Texture para inicializar cada planeta con su textura correspondiente, estas se encuentra en la carpeta de assets.
- 3. Modifique el shader acorde para que acepte las coordenadas de texturas, recuerde que los nombres de los uniform y atributos deben corresponderse con lo que esta en el grafo de escena.

IMPORTANTE

Dentro de la carpeta assets esta el archivo wolrd.obj que incluye los vértices y coordenadas de texturas de una esfera. Usted puede usarla para verificar su solución.

NO PUEDE HACER USO DE ESTA EN SU ENTREGA FINAL.

Grafo de escena (3pts)

1. Toda su escena principal debe estar en el grafo de escena, para ello DEBE usar la clase SceneGraph dentro de scene_graph.py en la librería.

- 2. La escena se compone por lo siguiente:
 - El Sol, el cual debe ser el más grande de todos.
 - Mercurio, el más cercano a El Sol y el planeta más pequeño del sistema.
 - Venus, el segundo más cercano a El Sol.
 - La Tierra, la tercera más cercana a El Sol.
 - La Luna, que se encuentra rotando entorno a La Tierra.
 - Marte, el cuarto más cercano a El Sol
 - Júpiter, el cual es el planeta más grande y el quinto más cercano a El Sol
 - Saturno, el cual es el sexto más cercano a El Sol y tiene un anillo que lo rodea.
 - Urano, el séptimo más cercano a El Sol
 - · Neptuno, el planeta más lejano a El Sol
- 3. Adicionalmente debe **animar** estos planetas, dándole su característica traslación y rotación, por simplicidad, puede asumir que la velocidad de traslación es proporcional al radio de esta y la de la rotación es proporcional al tamaño del planeta. También asuma que las órbitas son circulares y que todos los movimientos ocurren en el plano *XY*.
- 4. Sin embargo, a su auxiliar no le agrada tanto realismo, así que le gustaría alterar un poco la escena:
 - Mercurio y Venus deben tener órbitas irregulares, aumentando y disminuyendo periódicamente el radio de sus órbitas.
 - En Marte debe existir una nave que se mueva de manera errática sobre su superficie a una altura constante con respecto al planeta.
 - Neptuno y Urano deben orbitar entre ellos con respecto a un centro común de manera similar a un sistema binario. Y este centro común órbita con respecto a El Sol.

Figura 6: Sistema Binario

• El Sol debe pulsar, aumentando y disminuyendo su tamaño lentamente.

Estas reglas tiene prioridad por sobre las expuestas en 2 y 3

Cámara (1pts)

- 1. Su simulación contendrá diversas cámaras que deben intercambiarse dependiendo de la tecla pulsada por el usuario.
- 2. Las cámaras son:

- Una cámara con proyección ortográfica que este orbitando (OrbitCamera) y centrada en el Sol, se debe poder ver la gran mayoría de planetas con esta. Esta es la cámara por defecto y se debe poder activar presionando el espacio del teclado.
- Una cámara con proyección de perspectiva que este orbitando centrada en los siguientes cuerpos:
 - ▶ La Tierra, con la tecla T.
 - Saturno, con la tecla S.
 - El centro entre Neptuno y Urano, con la tecla U.

La cámara debe estar a una distancia apropiada para poder apreciar el planeta y sus peculiaridades.

 Una cámara con proyección de perspectiva libre (FreeCamera) cuya posición coincida siempre con la de la nave en Marte, pero que este a una ligera altura mayor. Se debe poder activar con la tecla M.

Metodología sugerida

Identifique cuales cámaras son únicas o distintas y cuales son simplemente las mismas pero con parámetros distintos. En base a eso puede:

- Cambiar la camara del grafo de escena si es de distinto tipo.
- Cambiar los parámetros (posicion, focus, etc) de la que ya esta activa.

Para pasar entre distintas cámaras

- 3. Para todas las cámaras se debe poder explorar la escena usando el mouse (cambiando el yaw, pitch, theta o phi).
- 4. Puede usar las cámaras que existen en camera.py de la librería, modificándolas directamente o usando herencia.

3 Entregable

Debe subir a U-Cursos su tarea en un zip que contenga su programa y todos los archivos necesarios para correr su tarea. Si su tarea no puede ser ejecutada por el ayudante no podrá ser evaluada.

4 Consideraciones

Debe tener en cuenta lo siguiente:

- El plazo de entrega es inamovible.
- El trabajo es individual.
- No está permitido el plagio del trabajo de sus compañerxs.
- Si está permitido reutilizar cualquier código visto en auxiliares u en otras tareas.

5 Bono

Se recibirá un bono de hasta 0.1 puntos en el promedio final de tareas a quien agregue uno o mas detalles que mejoren la apariencia de sus objetos. Algunos ejemplos de ello son:

· Añadir un cinturón de asteroides.

Facultad de Ciencias Físicas y Matemáticas Departamento de Ciencias de la Computación CC3501 — Modelación y Computación Gráfica para Ingenieros

- Poder controlar la nave en Marte.
- Tener ejes de rotación realistas (distinto de X, Y o Z)
- Añadir la atmósfera a la Tierra.
- Animar las texturas del Sol.
- Añadir más cámaras distintas a las actuales.
- Agregar planetas que muestren modelos o mecánicas interesantes (puede jugar Outer Wilds en busca de insipiración).
- Etc.

Es necesario documentar el trabajo realizado para acceder a este bono y debe estar claramente señalado en los comentarios dónde se realizan los cambios que son parte del mismo. **Recuerden que el criterio del bono queda a juicio del cuerpo docente.**