Conjugate Gradient and GMRES

Hamad El Kahza

October 30, 2020

1 Conjugate Gradient recall:

Conjugate Gradient method aims to minimize the following quadratic function:

$$f(x) = \frac{1}{2}x^T A x - b^T x + c \tag{3}$$

Conjugate Direction method

To find the new x term in the search process, CD uses the following expression.

$$x_{[i+1]} = x_{[i]} + \alpha_{[i]} d_{[i]}. \tag{29}$$

In order to find the value of $\alpha_{[i]}$, we choose $e_{[i+1]}$ to be orthogonal to $d_{[i]}$, so that we need never step in the direction of $d_{[i]}$ again. Therefore:

$$\alpha_{[i]} = -\frac{d_{[i]}^T A e_{[i]}}{d_{[i]}^T A d_{[i]}}$$

$$= -\frac{d_{[i]}^T r_{[i]}}{d_{[i]}^T A d_{[i]}}.$$
(31)

$$= -\frac{d_{[i]}^T r_{[i]}}{d_{[i]}^T A d_{[i]}}. (32)$$

We therefore need to generate a set of A-orthogonal search directions $d_{[i]}$. A simple way to generate them is conjugate Gram-Schmidt process.

1.2**Gram-Schmidt Conjugation**

Suppose we have a set of n linearly independent vectors $\mu_0, \mu_1, \dots, \mu_{n-1}$: set $d_{[0]} = \mu_0$ and for i > 0, set

$$d_{[i]} = \mu_i + \sum_{k=0}^{i-1} \beta_{ik} d_{[k]}, \tag{1}$$

where the β_{ik} are defined for i > k:

$$\beta_{ik} = -\frac{\mu_i^T A d_{[k]}}{d_{[k]}^T A d_{[k]}}$$

The limitation of using Gram-Schmidt conjugation in the method of Conjugate Directions is that:

- all the old search vectors must be kept in memory to construct each new one
- $\mathcal{O}(n^3)$ operations are required to generate the full set

1.3 Specific type of conjugate Direction

- The conjugate gradient is a specific type of the CD algorithm
- In each iteration, the new conjugate direction is a linear combination of the current gradient and the previous conjugate direction.

The CG algorithm takes the following form:

$$\begin{split} d_{[0]} &= r_{[0]} = b - Ax_{[0]} \\ \alpha_{[i]} &= \frac{r_{[i]}^T r_{[i]}}{d_{[i]}^T A d_{[i]}} \\ x_{[i+1]} &= x_{[i]} + \alpha_{[i]} d_{[i]}, \\ r_{[i+1]} &= r_{[i]} - \alpha_{[i]} A d_{[i]}, \\ \beta_{[i+1]} &= \frac{r_{[i+1]}^T r_{[i+1]}}{r_{[i]}^T r_{[i]}}, \\ d_{[i+1]} &= r_{[i+1]} + \beta_{[i+1]} d_{[i]} \quad \text{(set i = i+1, go back to compute new step } \alpha) \end{split}$$

2 Convergence of Conjugate Gradient Method

The conjugate gradient method in n iterations.

However, the calculation of the residual gradually loses accouracy and therefore the search direction vectors lose the A orthogonality.

Krylov subspaces such as this have another pleasing property. For a fixed i, the error term has the form

$$e_{[i]} = \left(I + \sum_{j=1}^{i} \psi_j A^j\right) e_{[0]}.$$

where the coefficients ψ_i are related to the values α_i and β_i .

$$e_{[i]} = P_i(A)e_{[0]},$$

The error term can therefore be expressed as a sum of orthogonal eigenvectors.

Note: the energy norm is defined as $||e||_A = (e^T A e)^{1/2}$

$$e_{[i]} = \sum_{j} \xi_{j} P_{i}(\lambda_{j}) v_{j}$$

$$Ae_{[i]} = \sum_{j} \xi_{j} P_{i}(\lambda_{j}) \lambda_{j} v_{j}$$

$$\|e_{[i]}\|_{A}^{2} = \sum_{j} \xi_{j}^{2} \left[P_{i}(\lambda_{j})\right]^{2} \lambda_{j}.$$

Remark: CG aims to find that polynomial that minimizes this error in A norm expression. However, the convergence is as good as the worst eigenvector.

Letting $\Lambda(A)$ be the set of eigenvalues of A, we have

$$||e_{[i]}||_A^2 \le \min_{P_i} \max_{\lambda \in \Lambda(A)} [P_i(\lambda)]^2 \sum_j \xi_j^2 \lambda_j$$

$$= \min_{P_i} \max_{\lambda \in \Lambda(A)} [P_i(\lambda)]^2 ||e_{[0]}||_A^2.$$
(50)

2.1 Chebyshev polynomial

The Chebyshev polynomial is expressed as follows:

$$T_i(\omega) = \frac{1}{2} \left[(\omega + \sqrt{\omega^2 - 1})^i + (\omega - \sqrt{\omega^2 - 1})^i \right].$$

This method minimizes the error norm expression over the range $[\lambda_{min}, \lambda_{max}]$ by choosing:

$$P_i(\lambda) = \frac{T_i \left(\frac{\lambda_{max} + \lambda_{min} - 2\lambda}{\lambda_{max} - \lambda_{min}} \right)}{T_i \left(\frac{\lambda_{max} + \lambda_{min}}{\lambda_{max} - \lambda_{min}} \right)}.$$

We enforce thew condition $P_i(0) = 1$

$$||e_{[i]}||_{A} \leq T_{i} \left(\frac{\lambda_{max} + \lambda_{min}}{\lambda_{max} - \lambda_{min}}\right)^{-1} ||e_{[0]}||_{A}$$

$$= T_{i} \left(\frac{\kappa + 1}{\kappa - 1}\right)^{-1} ||e_{[0]}||_{A}$$

$$= 2 \left[\left(\frac{\sqrt{\kappa} + 1}{\sqrt{\kappa} - 1}\right)^{i} + \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{i} \right]^{-1} ||e_{[0]}||_{A}.$$
(51)

The second addend inside the square brackets converges to zero as i grows, so it is more common to express the convergence of CG with the weaker inequality

$$\|e_{[i]}\|_A \le 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^i \|e_{[0]}\|_A.$$
 (52)

the maximum number of iterations CG requires is

$$i \le \left\lceil \frac{1}{2} \sqrt{\kappa} \ln \left(\frac{2}{\epsilon} \right) \right\rceil.$$

CG has a time complexity of $\mathcal{O}(m\sqrt{\kappa})$. Both algorithms have a space complexity of $\mathcal{O}(m)$.

2.2 Preconditioning:

Preconditioning is usually beneficial in reducing the condition number of the Matrix we aim to solve for. We can solve Ax = b indirectly by solving

$$M^{-1}Ax = M^{-1}b. (53)$$

- If $\kappa(M^{-1}A) \ll \kappa(A)$, or if the eigenvalues of $M^{-1}A$ are better clustered than those of A, we can iteratively solve the equation above more quickly than the original problem.
- However, $M^{-1}A$ is not generally symmetric nor definite, even if M and A are.
- We can find a matrix E that satsifies the property $EE^T = M$
- The matrices $M^{-1}A$ and $E^{-1}M^{-1}E^{-T}$ have the same eigenvalues.

The system can be transformed into the problem

$$(E^{-1}AE^{-T})\hat{x} = E^{-1}b, \qquad \hat{x} = E^{T}x,$$

We obtain our transformed Preconditioned Conjugate Gradient Method:

$$\begin{split} \widehat{d}_{[0]} &= \widehat{r}_{[0]} = E^{-1}b - E^{-1}AE^{-T}\widehat{x}_{[0]}, \\ \alpha_{[i]} &= \frac{\widehat{r}_{[i]}^T\widehat{r}_{[i]}}{\widehat{d}_{[i]}^TE^{-1}AE^{-T}\widehat{d}_{[i]}}, \\ \widehat{x}_{[i+1]} &= \widehat{x}_{[i]} + \alpha_{[i]}\widehat{d}_{[i]}, \\ \widehat{r}_{[i+1]} &= \widehat{r}_{[i]} - \alpha_{[i]}E^{-1}AE^{-T}\widehat{d}_{[i]}, \\ \beta_{[i+1]} &= \frac{\widehat{r}_{[i+1]}^T\widehat{r}_{[i+1]}}{\widehat{r}_{[i]}^T\widehat{r}_{[i]}}, \\ \widehat{d}_{[i+1]} &= \widehat{r}_{[i+1]} + \beta_{[i+1]}\widehat{d}_{[i]}. \end{split}$$

Constraints:

- E must be computed \rightarrow not desirable
- Setting $\hat{r}_{[i]} = E^{-1}r_{[i]}$ and $\hat{d}_{[i]} = E^Td_{[i]}$, and using the identities $\hat{x}_{[i]} = E^Tx_{[i]}$ and $E^{-T}E^{-1} = M^{-1}$ we obtain the untransformed preconditioned CG

Untransformed preconditioned CG

$$\begin{split} r_{[0]} &= b - Ax_{[0]}, \\ d_{[0]} &= M^{-1}r_{[0]}, \\ \alpha_{[i]} &= \frac{r_{[i]}^T M^{-1}r_{[i]}}{d_{[i]}^T Ad_{[i]}}, \\ x_{[i+1]} &= x_{[i]} + \alpha_{[i]}d_{[i]}, \\ r_{[i+1]} &= r_{[i]} - \alpha_{[i]}Ad_{[i]}, \\ \beta_{[i+1]} &= \frac{r_{[i+1]}^T M^{-1}r_{[i+1]}}{r_{[i]}^T M^{-1}r_{[i]}}, \\ d_{[i+1]} &= M^{-1}r_{[i+1]} + \beta_{[i+1]}d_{[i]}. \end{split}$$

3 GMRES

The Arnoldi iteration is used to solve systems. The algorithm for this matter is called GMRES.

3.1 Minimization of the residual in \mathcal{K}_n

We try to solve for $x_* = A^{-1}b$.

The idea of the algorithm is at the iteration n, We approximate x_* by the vector $x_n \in \mathcal{K}_n$ which minimizes the norm of the residual $r_n = b - Ax_n$.

The vector $x \in \mathcal{K}_n$ is written as

$$x = c_0 b + c_1 A b + \dots + c_{n-1} A^{n-1} b = q(A)b$$
,

where $q(z) = \sum_{i=0}^{n-1} c_i z^i$. The residual is therefore written as $r_n = b - Ax_n = p_n(A)b$, where $p_n \in P_n$, where P_n is the set of polynomials p of degree larger or equal to p as for p(0) = 1. We choose $p_n \in P_n$ as per $p_n(z) = 1 - zq(z)$.

• x belongs to K_m is equivalent to $x = K_m c$

Other methods to write this expression

$$\min ||r_n||$$

$$||b - Ax_n||$$

$$||AK_nc - b||$$

$$||p_n(A)b||$$

$$||AQ_ny - b||$$

The last line is immediate recalling the subspace underlying the columns K_n is similar to the space underlying the columns of Q.

We therefore solve a linear system $m \times n$. We use the Arnoldi iteration $AQ_n = Q_{n+1}H_n$ to reduce the size.

Algorithm 1 Algorithm ARNOLDI

```
Data: ||q_1||=1

Result: Krylov subspace
begin

q_k \leftarrow Aq_{k-1}

for j=1,2,3,\ldots,k-1 do

h_{j,k-1} \leftarrow q_j^T q_k

q_k = q_k - q_j^T h_{j,k-1} q_j

h_{k,k-1} \leftarrow ||q_k||

q_k = q_k/h_{k,k-1}

end

return q_k
end
```

- 1. We start with an arbitrary vector q_1 with a norm equal to 1, so we may obtain an orthonormal basis
- 2. We apply matrix A to q_{k-1} to obtain the next iterate q_k
- 3. We iterate over $j \to k-1$ to find the h vector which defines the length of the projection onto q
- 4. q_k is assigned the value q_k minus the legth of the projection
- 5. set $h_{k,k-1}$ to the norm of q_k
- 6. normalize q_k to $||q_k||$

The problem to resolve is therefore

$$||Q_{n+1}\tilde{H}_ny - b||_{=}$$
minimum.

As the two vectors in the norm are in the space of the columns of Q_{n+1} , multiplying the left side by Q_{n+1}^* does not change this norm. We can also minimize this norm $\|\tilde{H}_n y - Q_{n+1}^* b\|$. We therefore write the final form to solve the least square problem GMRES GMRES:

$$\|\tilde{H}_n y - \|b\|_{e1}\|_{=\min}$$
minimum.

At n^{th} iteration, we resolve the problem to find y, and subsequently $x_n = Q_n y$. This new problem has a dimension of $(n+1) \times n$.

3.2 Algorithm gmres

Algorithm 2 Algorithm GMRES

3.3 gmres and the polynomial approximation

The iterate is written as

$$x_n = q_n(A)b\,,$$

The residual is $r_n = b - Ax_n$ est $r_n = (I - Aq_n(A))b$. Therefore, we can say

$$r_n = b - Aq_n(A)b = p_n(A)b$$

For a certain polynomial $p_n \in P_n$ as for $p_n(z) = 1 - zq(z)$. GMRES chooses the coefficients of the polynomial p_n to minimize the norm residual and resolve the next approximation problem.

[Approximation of GMRES] Find $p_n \in P_n$ as for $||p_n(A)b||$ is minimum.

3.4 Convergence of gmres

The algorithm converges monotonically:

$$||r_{n+1}|| < ||r_n||, \quad ||p_{n+1}(A)b|| < ||p_n(A)b||.$$

- It can be seen for $||r_n||$ is the smallest possible for \mathcal{K}_n ,
- For enlarging the subspace to \mathcal{K}_{n+1} , The optimal solution at the new subspace can only minimize the residual
- In exact arithmetic, the algorithm must converge at most at m'th iterate $||r_n||=0$

The convergence criteria deduces to:

$$||r_n||_= ||p_n(A)b||_\le ||p_n(A)||_||b||,$$

Therefore the rate of convergence can be written as:

$$\frac{||r_n||}{||b||} \le \inf_{p_n \in P_n} ||p_n(A)||$$