An Introduction to Computational Macroeconomics

Dynamic Programming: Chapter 3

John Stachurski

June - July 2022

Introduction

Summary of this lecture:

- Introduction to partial orders
- Pointwise orders
- Order-preserving maps
- Fixed points and order
- Monotone Markov chains

Order

Order theory needed for optimality and fixed point results

Let P be a nonempty set

A **partial order** on a P is a binary relation \leq on $P \times P$ satisfying, for any p,q,r in P,

$$p \preceq p$$
, $p \preceq q$ and $q \preceq p$ implies $p = q$ and $p \preceq q$ and $q \preceq r$ implies $p \preceq r$

(Reflexivity, antisymmetry, transitivity)

We call (P, \preceq) (or just P) a partially ordered set

Ex.

- 1. Show that the usual order \leqslant on $\mathbb R$ is a partial order on $\mathbb R$
- 2. Given set M, show that \subset is a partial order on $\wp(M)$

A partial order \leq on P is called a **total order** if

either
$$p \leq q$$
 or $q \leq p$ for all $p, q \in P$

Example. \leqslant is a total order on $\mathbb R$

Ex. Prove: \subset is not a total order on $\wp(M)$ when |M| > 1

Pointwise Partial Orders

Given set M and f,g in \mathbb{R}^M , we set

$$f \leqslant g \iff f(x) \leqslant g(x) \text{ for all } x \in M$$

Ex. Show \leqslant is a partial order on \mathbb{R}^M

Similarly, for $n \times k$ matrices $A = (a_{ij})$ and $B = (b_{ij})$,

$$A \leqslant B \iff a_{ij} \leqslant b_{ij} \text{ for all } i,j$$

Ex. Show that \leq is a partial order on $\mathbb{M}^{n \times k} := \text{all } n \times k \text{ matrices}$

Both are called pointwise partial orders

Special case: pointwise order for vectors

Recall
$$[n] := \{1, \ldots, n\}$$

For
$$x=(x_1,\dots,x_n)$$
 and $y=(y_1,\dots,y_n)$ in \mathbb{R}^n , we write
$$x\leqslant y \text{ if } x_i\leqslant y_i \text{ for all } i\in[n]$$

- **Ex.** Prove: for $a,b\in\mathbb{R}^n$ and sequence (x_k) in \mathbb{R}^n , we have $a\leqslant x_k\leqslant b$ for all $k\in\mathbb{N}$ and $x_k\to x$ implies $a\leqslant x\leqslant b$
 - Hint: $x_k \to x$ implies $x_{i,k} \to x_i$ for $i \in [n]$

Special case: pointwise order for vectors

Recall
$$[n] := \{1, \ldots, n\}$$

For
$$x=(x_1,\dots,x_n)$$
 and $y=(y_1,\dots,y_n)$ in \mathbb{R}^n , we write
$$x\leqslant y \text{ if } x_i\leqslant y_i \text{ for all } i\in[n]$$

- **Ex.** Prove: for $a,b\in\mathbb{R}^n$ and sequence (x_k) in \mathbb{R}^n , we have $a\leqslant x_k\leqslant b$ for all $k\in\mathbb{N}$ and $x_k\to x$ implies $a\leqslant x\leqslant b$
 - Hint: $x_k \to x$ implies $x_{i,k} \to x_i$ for $i \in [n]$

Strict inequalities

We write

- $f \ll g$ if f(x) < g(x) for all $x \in M$
- $x \ll y$ if $x_i < y_i$ for all $i \in [n]$
- $A \ll B$ if $a_{ij} < b_{ij}$ for all i, j

These are not partial orders

Ex. Why is $f \ll g$ not a partial order on \mathbb{R}^M ?

Pointwise partial order \leq on \mathbb{R}^2 :

Figure: Pointwise we have $x \leqslant y$ and $x \ll y$ but not $z \leqslant y$

Ex. Prove: If *B* is $m \times k$ and $B \geqslant 0$, then

$$|Bx| \leq B|x|$$
 for all $k \times 1$ column vectors x

<u>Proof</u>: Fix $B \in \mathbb{M}^{m \times k}$ with $b_{ij} \geqslant 0$ for all i, j

Fix $i \in [m]$ and $x \in \mathbb{R}^k$

By the triangle inequality, we have $|\sum_j b_{ij} x_j| \leqslant \sum_j b_{ij} |x_j|$

Stacking these inequalities yields

$$|Bx| \leqslant B|x|$$

Ex. Prove: If B is $m \times k$ and $B \geqslant 0$, then

$$|Bx| \leq B|x|$$
 for all $k \times 1$ column vectors x

<u>Proof</u>: Fix $B \in \mathbb{M}^{m \times k}$ with $b_{ij} \geqslant 0$ for all i, j

Fix $i \in [m]$ and $x \in \mathbb{R}^k$

By the triangle inequality, we have $|\sum_j b_{ij} x_j| \leqslant \sum_j b_{ij} |x_j|$

Stacking these inequalities yields

$$|Bx| \leqslant B|x|$$

Lemma. Given a finite set D and f,g in \mathbb{R}^D , we have

$$|\max_{z \in D} f(z) - \max_{z \in D} g(z)| \leqslant \max_{z \in D} |f(z) - g(z)|$$

Proof: Fixing $f, g \in \mathbb{R}^D$, we have

$$f = f - g + g \le |f - g| + g$$
 (pointwise)

$$\therefore \max f \leqslant \max(|f - g| + g) \leqslant \max|f - g| + \max g$$

$$\therefore \max f - \max g \leqslant \max |f - g|$$

Reversing the roles of f and g proves the claim

Let (P, \preceq) and (Q, \preceq) be partially ordered sets

 $T \colon P \to Q$ is called **order-preserving** if

$$p, p' \in P \text{ and } p \leq p' \implies Tp \leq Tp'$$

Special case $(Q, \unlhd) = (\mathbb{R}, \leqslant)$: we call $h \in \mathbb{R}^P$

- increasing if $p \leq p'$ implies $h(p) \leqslant h(p')$ and
- decreasing if $p \leq p'$ implies $h(p) \geqslant h(p')$

Symbol $i\mathbb{R}^P$ denotes all increasing functions in \mathbb{R}^P

Example. Let \leq denote the pointwise partial order on \mathbb{R}^n

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be defined by Tx = Ax + b

If $A\geqslant 0$, then T is order preserving on \mathbb{R}^n

Proof: Fix $x \leq y$

Then
$$y - x \geqslant 0$$

$$A(y-x) \geqslant 0$$

$$\therefore Ax \leqslant Ay$$

$$\therefore Tx \leqslant Ty$$

Standard definitions:

Suppose
$$h \colon P \to Q$$
 with $P,Q \subset \mathbb{R}$

We call h

• strictly increasing if

$$x < y$$
 implies $h(x) < h(y)$

and

strictly decreasing if

$$x < y$$
 implies $h(x) > h(y)$

Parametric Monotonicity

Let (P, \preceq) be a partially ordered set

Given two self-maps S and T on a set P, we set

$$S \leq T \iff Sp \leq Tp \text{ for every } p \in P$$

We say that T dominates S on P

Ex. Show that \leq is a partial order on

$$S_P := P^P := \text{ set of all self-maps on } P$$

Proof of antisymmetry of \leq on S_P :

Let (P, \preceq) and $S, T \in S_P$ be as defined above

Suppose $S \leq T$ and $T \leq S$

Fix any $p \in P$

We have $Sp \leq Tp$ and $Tp \leq Sp$

Since \leq is antisymmetric on P, we have Sp = Tp

Since p was arbitrary, S = T

Hence \leq is antisymmetric on S_P

Example. If $(\preceq, P) = (\leqslant, \mathbb{R})$, then \leqslant is the pointwise partial order over functions

Example. Let $P = \mathbb{R}^n_+$ with the pointwise order on vectors

Let

- Sx = Ax + b and
- Tx = Bx + b

Ex. Show that $A \leq B$ implies that T dominates S on P

Proof: Fix $x \in P$

Since $A \leq B$ and $x \geq 0$, we have $Ax \leq Bx$

Hence $Sx \leq Tx$

Since x was arbitrary, we see that T dominates S on P

Example. Let $P = \mathbb{R}^n_+$ with the pointwise order on vectors

Let

- Sx = Ax + b and
- Tx = Bx + b

Ex. Show that $A \leq B$ implies that T dominates S on P

Proof: Fix $x \in P$

Since $A \leq B$ and $x \geq 0$, we have $Ax \leq Bx$

Hence $Sx \leqslant Tx$

Since x was arbitrary, we see that T dominates S on P

Conjecture: If $S \leq T$, then the fixed points of T will be larger

This is <u>not</u> true in general...

Conjecture: If $S \leq T$, then the fixed points of T will be larger

This is <u>not</u> true in general...

Sometimes true:

And sometimes false:

One difference: in the first case, T is globally stable

This leads us to our next result

Proposition. Let S and T be self-maps on $M \subset \mathbb{R}^n$

Let \leq be the pointwise partial order over vectors

lf

- 1. T dominates S on M and
- 2. T is order-preserving and globally stable on M,

then the unique fixed point of T dominates any fixed point of S

Proof: Assume the conditions

Let

- u_T be the unique fixed point of T and
- u_S be any fixed point of S

Since $S \leqslant T$, we have $u_S = Su_S \leqslant Tu_S$

Applying T to both sides of $u_S \leqslant Tu_S$ gives $Tu_S \leqslant T^2u_S$

But then $u_S \leqslant T^2 u_S$

Continuing in this fashion yields $u_S \leqslant T^k u_S$ for all $k \in \mathbb{N}$

Since \leq is preserved under limits and T is globally stable,

$$u_S \leqslant \lim_k T^k u_S = u_T$$

Example. Recall that, in the job search model,

$$h^* = c + \beta \sum_{w'} \max \left\{ \frac{w'}{1 - \beta'}, h^* \right\} \varphi(w')$$

We found h^* as the fixed point of $g\colon \mathbb{R}_+ \to \mathbb{R}_+$ defined by

$$g(h) = c + \beta \sum_{w'} \max \left\{ \frac{w'}{1 - \beta'}, h \right\} \varphi(w')$$

In the exercise, you showed that g is a contraction map on \mathbb{R}_+

Ex. Prove that the optimal continuation value h^* is increasing in β

Proof: Fix $\beta_1 \leqslant \beta_2$ and let

- $h_i^* :=$ fixed point corresponding to β_i
- $g_i :=$ fixed point map corresponding to β_i

Since $\beta_1 \leqslant \beta_2$, we have $g_1(h) \leqslant g_2(h)$ for all $h \in \mathbb{R}_+$

In addition,

- 1. g_2 is a contraction (so globally stable) and
- 2. g₂ is increasing

Hence $h_1^* \leqslant h_2^*$

Ex. Prove that the optimal continuation value h^* is increasing in β

Proof: Fix $\beta_1 \leqslant \beta_2$ and let

- $h_i^* := \mathsf{fixed} \; \mathsf{point} \; \mathsf{corresponding} \; \mathsf{to} \; \beta_i$
- $g_i :=$ fixed point map corresponding to β_i

Since $\beta_1 \leqslant \beta_2$, we have $g_1(h) \leqslant g_2(h)$ for all $h \in \mathbb{R}_+$

In addition,

- 1. g_2 is a contraction (so globally stable) and
- 2. g_2 is increasing

Hence $h_1^* \leqslant h_2^*$