

Введение в экономико-математическое моделирование

Лекция 5. Линейные задачи-3

Задача линейного программирования. Методы ее решения. Устойчивость

канд. физ.-матем. наук, доцент Д. В. Чупраков

usr10381@vyatsu.ru

Структура лекции

- 11 Геометрический смысл системы ограничений ЗЛП
 - Выпуклые множества
- Графический метод решения ЗЛП
 - Обоснование графического метода
 - Алгоритм графического метода
 - Пример применения графического метода
 - Виды областей ограничений
- **3** Симплекс-метод решения ЗЛП
 - Обоснование симплекс-метода решения ЗЛП
 - Критерии оптимальности
 - Алгоритм симплекс-метода
 - Поиск оптимального плана
 - Пример решения симплекс-методом
 - Поиск допустимого плана
- 4 Особые случаи симплекс-метода

Геометрический смысл системы ограничений задачи линейного программирования

Выпуклые множества

Определение

Множество
$$\Phi$$
 выпуклое если $A, B \in \Phi \Rightarrow AB \subseteq \Phi$

Свойства

- lacktriangledark Φ выпуклое \Leftrightarrow $C = \alpha A + \beta B \in \Phi$ для любых $A, B \in \Phi$, $\alpha + \beta = 1$.
- $ightharpoonup a_1 x_1 + a_2 x_2 + \ldots + a_n x_n = b$ выпуклое множество
- Пересечение выпуклых множеств выпуклое множество

Теорема

Множество всех планов задачи линейного программирования выпукло.

Теорема об оптимальном значении

Теорема

Целевая функция задачи линейного программирования достигает своего оптимального значения в угловой вершине многоугольника решений.

Графический метод решения задачи линейного программирования

Графический метод

применяется для решения задач линейного программирования, зависящих от двух переменных

Графический метод основан на геометрической интерпретации задачи линейного программирования

- $ightharpoonup F = c_1 x_1 + c_2 x_2$ уравнение прямой при каждом F
- ▶ Ограничение $a_{k1}x_1 + a_{k2}x_2 \leqslant b_k$ уравнение полуплоскости
- Система ограничений выпуклая многоугольная область

$$\begin{cases} a_{11}x + a_{12}y \leqslant b_1 \\ a_{21}x + a_{22}y \leqslant b_2 & x \geqslant 0 \\ \dots & y \geqslant 0 \\ a_{m1}x + a_{m2}y \leqslant b_m \end{cases}$$

Теорема

Значения функции $F = c_1 x + c_2 y$ возрастают в направлении вектора $\vec{n} = (c_1, c_2)$.

Теорема

Значения функции $F = c_1 x + c_2 y$ возрастают в направлении вектора $\vec{n} = (c_1, c_2)$.

Доказательство

- $ightharpoonup I: F = c_1 x_1 + c_2 x_2, \qquad \vec{n} = (c_1, c_2) \perp I$
- ightharpoonup Сдвиг / на вектор $k\vec{n}$:

$$\begin{cases} x' = x + kc_1, \\ y' = y + kc_2, \end{cases} k > 0$$

$$F' = c_1 x' + c_2 y' =$$

Теорема

Значения функции $F = c_1 x + c_2 y$ возрастают в направлении вектора $\vec{n} = (c_1, c_2)$.

Доказательство

- $ightharpoonup I: F = c_1 x_1 + c_2 x_2, \qquad \vec{n} = (c_1, c_2) \perp I$
- ightharpoonup Сдвиг / на вектор $k\vec{n}$:

$$\begin{cases} x' = x + kc_1, \\ y' = y + kc_2, \end{cases} \quad k > 0$$

$$F' = c_1(x + kc_1) + c_2(y + kc_2) = \underbrace{c_1x + c_2y}_{=F} + \underbrace{k(c_1^2 + c_2^2)}_{>0} > F$$

Алгоритм графического метода

- 1. Построить область ограничений
- 2. Построить опорную прямую $I: F = c_1 x + c_2 y$ при F = 0
- 3. Построить вектор $\vec{n} = (c_1, c_2)$
- 4. Прямую / в область ограничений!
- 5. Двигать І, пока она не выйдет из области ограничений
 - **для max**: по вектору *п*
 - ightharpoonup для min: против вектора \vec{n}
- 6. Найти координаты последней угловой точки *P* пересечения прямой с областью ограничений
- 7. Найти значение F в точке P

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 \quad x \geqslant 0 \\ x \leqslant 5 \quad y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$
1. Построение $x + 3y \leqslant 21$

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

1. Построение $x + 3y \leq 21$

Построение границы: x + 3y = 21 $x \mid 0 \mid 6$

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

1. Построение $x + 3y \leq 21$

Построение границы: x + 3y = 21 $x \mid 0 \mid 6$

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

1. Построение $x + 3y \leqslant 21$

■ Построение границы:

$$\begin{array}{c|c} x + 3y = 21 \\ \hline x & 0 & 6 \\ \hline y & 7 & 5 \end{array}$$

Выбор полуплоскости:С(1, 2) ← AB

$$C(1,2) \notin AB$$

1+3·2 = 7 \leq 21

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

1. Построение $x + 3y \leq 21$

ightharpoonup Построение границы: x + 3y = 21

$$\begin{array}{c|c|c} x & 0 & 6 \\ \hline y & 7 & 5 \end{array}$$

Выбор полуплоскости:C(1, 2) ∉ AB

$$1 + 3 \cdot 2 = 7 \le 21$$

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

- 1. Построение $x + 3y \leq 21$
- 2. Построение $3x + 2y \le 21$
- 3. Построение $x \leq 5$

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

- 1. Построение $x + 3y \leq 21$
- 2. Построение $3x + 2y \le 21$
- 3. Построение $x \leq 5$

$$\begin{cases} x + 3y \le 21 \\ 3x + 2y \le 21 & x \ge 0 \\ x \le 5 & y \ge 0 \\ 3x + 5y \ge 15 \end{cases}$$
$$F = x + 2y \rightarrow max$$

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$
$$F = x + 2y \rightarrow max$$

$$F = 0 \quad x + 2y = 0$$

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

$$F = x + 2y \rightarrow max$$

$$F = 0 \quad x + 2y = 0$$

$$\vec{n} = (1, 2)$$

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

$$F = x + 2y \rightarrow max$$

- $F = 0 \quad x + 2y = 0$
- $\vec{n} = (1, 2)$
- Перемещение прямой

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

$$F = x + 2y \rightarrow max$$

$$F = 0 \quad x + 2y = 0$$

$$\vec{n} = (1, 2)$$

Перемещение прямой

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

$$F = x + 2y \rightarrow max$$

- $F = 0 \quad x + 2y = 0$
- $\vec{n} = (1, 2)$
- Перемещение прямой

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

$$F = x + 2y \rightarrow max$$

- $F = 0 \quad x + 2y = 0$
- $\vec{n} = (1, 2)$
- Перемещение прямой

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

$$F = x + 2y \rightarrow max$$

- $F = 0 \quad x + 2y = 0$
- $\vec{n} = (1, 2)$
- Перемещение прямой

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

$$F = x + 2y \rightarrow max$$

- $F = 0 \quad x + 2y = 0$
- $\vec{n} = (1, 2)$
- Перемещение прямой

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

$$F = x + 2y \rightarrow max$$

$$F = 0 \quad x + 2y = 0$$

$$\vec{n} = (1, 2)$$

Перемещение прямой

$$P_{\text{max}} : \begin{cases} x + 3y = 21 \\ 3x + 2y = 21 \end{cases}$$

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

$$F = x + 2y \rightarrow max$$

$$F = 0 \quad x + 2y = 0$$

$$\vec{n} = (1, 2)$$

Перемещение прямой

$$P_{\text{max}} : \begin{cases} x + 3y = 21 \\ 3x + 2y = 21 \end{cases}$$

 $P_{\text{max}}(3,6)$

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

$$F = x + 2y \rightarrow max$$

$$F = 0 \quad x + 2y = 0$$

$$\vec{n} = (1, 2)$$

$$P_{\text{max}} : \begin{cases} x + 3y = 21 \\ 3x + 2y = 21 \end{cases}$$

- $P_{\text{max}}(3,6)$
- $F_{\text{max}} = F(3, 6) = 15$

- Математическая модель:
 - Система ограничений:

$$\begin{cases} x + 3y \leqslant 21 \\ 3x + 2y \leqslant 21 & x \geqslant 0 \\ x \leqslant 5 & y \geqslant 0 \\ 3x + 5y \geqslant 15 \end{cases}$$

Целевая функция

$$F = x + 2y \rightarrow max$$

- Результат исследования модели:
 - Оптимальный план:

$$x = 3, y = 6$$

Целевая функция достигает оптимального значения:

$$F_{\rm max} = 15$$

Ограниченная область

Неограниченная область

Возможен неограниченный оптимум — ситуация, когда для любого допустимого плана существует другой допустимый план, которому соответствует лучшее значение целевой функции

На практике:

скорее всего, при построении модели пропущено ограничение

Вырожденная область

Пустая область

Система ограничений несовместна

На практике:

допущена ошибка при моделировании

Симплекс-метод решения задачи линейного программирования

Симплекс

Простейший п-мерный многогранник

- трецгольник двумерный симплекс
- ▶ тетраэдр трёхмерный симплекс

Обоснование симплекс-метода

Каноническая форма

$$F = d + c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \to \max$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1, & x_1 \geqslant 0, \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2, & x_2 \geqslant 0, \\ & \cdots & \cdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m, & x_n \geqslant 0 \end{cases}$$

- Система ограничений система линейных цравнений.
- В каждом решении $X = (x_1, x_2, \dots, x_n)$ какие-то k переменных зависимы, а остальные n k свободны.
- ▶ Множество решений этой системы выпуклое.
- Оптимальный план является угловой точкой области ограничений!

Симплекс-таблица

Каноническая форма

$$c_1x_1 + c_2x_2 + \ldots + c_nx_n = -d + F \to \max$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2, \\ & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m, \end{cases}$$

Симплекс-таблица

Базис	x_1	x_2	 x _n	Ь	
x_{i_1}	a ₁₁	a ₁₂	 a_{1n}	b_1	
X_{i_2}	a ₂₁	a ₂₂	 a_{2n}	b_2	
X_{i_m}	a _{m1}	a_{m2}	 a_{mn}	b_m	
F	<i>c</i> ₁	<i>c</i> ₂	 Cn	-d	

Вид угловых точек области ограничений

Теорема

Решение $X = (x_1, x_2, \dots, x_n)$ системы ограничений канонической задачи линейного программирования является угловой точкой тогда и только тогда, когда все её свободные переменные этого решения равны нулю.

Вид угловых точек области ограничений

Теорема

Решение $X = (x_1, x_2, \dots, x_n)$ системы ограничений канонической задачи линейного программирования является угловой точкой тогда и только тогда, когда все её свободные переменные этого решения равны нулю.

Угловые вершины — это опорные решения системы ограничений.

Они могут быть найдены методом Гаусса—Жордана.

Идея симплекс-метода

- $ightharpoonup x_{i_1}, x_{i_2}, \ldots, x_{i_k}$ основные
- $ightharpoonup x_{i_{k+1}}, x_{i_{k+2}}, \ldots, x_{i_n}$ свободные (равны НУЛЮ)

$$F - \delta = \gamma_1 x_{i_{k+1}} + \gamma_2 x_{i_{k+2}} + \dots + \gamma_{n-k} x_{i_n} \to \max$$

$$\begin{cases} x_{i_1} = \beta_1 + \alpha_{11} x_{i_{k+1}} + \dots + \alpha_{1,(n-k)} x_{i_n}, \\ x_{i_2} = \beta_2 + \alpha_{21} x_{i_{k+1}} + \dots + \alpha_{2,(n-k)} x_{i_n}, \\ \dots \\ x_{i_k} = \beta_k + \alpha_{k1} x_{i_{k+1}} + \dots + \alpha_{k,(n-k)} x_{i_n}, \end{cases}$$

Идея!

Будем перемещаться в соседние угловые точки, переводя переменные из основных в свободные.

Метод оптимизации плана

Целевая функция:

$$F = \delta + \gamma_1 x_{i_{k+1}} + \gamma_2 x_{i_{k+2}} + \ldots + \gamma_{n-k} x_{i_n}$$

$$\parallel \qquad \parallel \qquad \parallel$$

$$0 \qquad 0 \qquad 0$$

- ightharpoonup Если $ho_t > 0$, то перевод $ho_{i_{k+t}}$ в основные переменные цвеличит F,
- ightharpoonup Если $\gamma_t < 0$, то перевод $x_{i_{k+t}}$ в основные переменные уменьшит F

Критерии оптимальности плана

Критерии максимальности плана

Допустимый план максимален тогда, и только тогда, когда целевая функция, выраженная через свободные переменные, не содержит переменных с положительными коэффициентами.

Критерии минимальности плана

Допустимый план минимален тогда, и только тогда, когда целевая функция, выраженная через свободные переменные, не содержит переменных с отрицательными коэффициентами.

Алгоритм симплекс-метода

Этап оптимизации допустимого плана (шаг 2)

Выбор разрешающего элемента

Для решения задачи нахождения максимума:

- В основные переменные переводится переменная x_j , входящая в запись целевой функции с наибольшим положительным коэффициентом.
- В столбце *j* элемент *a_{ij}* является разрешающим, если на нем достигается минимум отношения элементов столбца *b* к положительным элементам столбца *j*.

Задача о планировании производства

- На предприятии, в состав которого входят
 4 производственных цеха, изготовляются два изделия.
- Нормы времени, необходимого для изготовления единицы изделия №1 и №2 в соответствующих цехах, и производственные мощности цехов приведем в таблице:

Цех	Норма	Производ.	
	Изд. №1	Изд. №2	мощности
I	2	3	12
Ш	1	2	8
III	4	0	16
IV	0	4	12

Прибыль от продажи единицы изделия № 1 составляет 2 тыс. ед, а единицы изделия № 2 составляет 3 тыс. ед.

Чстановить производственный план, при котором обеспечивается максимальная прибыль

Математическая модель

$$\begin{cases} 2x_1 + 3x_2 \leqslant 12 \\ x_1 + 2x_2 \leqslant 8 & x_1 \geqslant 0 \\ 4x_1 \leqslant 16 & x_2 \geqslant 0 \\ 4x_2 \leqslant 12 \end{cases}$$

$$F = 2x_1 + 3x_2 \rightarrow \max$$

Математическая модель в канонической форме

$$\begin{cases} 2x_1 + 3x_2 + x_3 = 12 \\ x_1 + 2x_2 + x_4 = 8 & x_i \ge 0, \\ 4x_1 + x_5 = 16 & i = \overline{1, 6} \\ 4x_2 + x_6 = 12 \end{cases}$$

$$F - 0 = 2x_1 + 3x_2 \rightarrow \max$$

Симплекс-таблица:

Базис	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	Ь	
X3	2	3	1	0	0	0	12	
<i>x</i> ₄	1	2	0	1	0	0	8	
<i>X</i> 5	4	0	0	0	1	0	16	
<i>x</i> ₆	0	4	0	0	0	1	12	
F	2	3	0	0	0	0	-0	

Допустимый план

Базис	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	Ь	
X3	2	3	1	0	0	0	12	
<i>x</i> ₄	1	2	0	1	0	0	8	
<i>X</i> ₅	4	0	0	0	1	0	16	
<i>x</i> ₆	0	4	0	0	0	1	12	
F	2	3	0	0	0	0	-0	

$$\begin{cases} x_3 = 12 - 2x_1 - 3x_2 \\ x_4 = 8 - x_1 - 2x_2 \\ x_5 = 16 - 4x_1 \\ x_6 = 12 - 4x_2 \end{cases} \quad x_i \ge 0,$$

$$F - 0 = 2x_1 + 3x_2$$

- ▶ Основные: x₃, x₄, x₅, x₆
- ightharpoonup Свободные: $x_1 = 0$, $x_2 = 0$
- ightharpoonup Допустимый план: $X_0 = (0, 0, 12, 8, 16, 12)$

Паси ис свящися си!

Базис	x_1	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	b		
<i>X</i> 3	2	3	1	0	0	0	12	12/3 = 4 8/2 = 4	$-\frac{3}{4}x_{6}$
<i>X</i> ₄	1	2	0	1	0	0	8	8/2 = 4	$-\frac{1}{2}x_{6}$
<i>X</i> 5								_	_
<i>x</i> ₆	0	4	0	0	0	1	12	12/4 = 3 (min)	: 4
F	2	3	0	0	0	0	-0		$-\frac{3}{4}x_6$

$$\begin{cases} x_3 = 12 - 2x_1 - 3x_2 \geqslant 0 \\ x_4 = 8 - x_1 - 2x_2 \geqslant 0 \\ x_5 = 16 - 4x_1 \geqslant 0 \\ x_6 = 12 - 4x_2 \geqslant 0 \end{cases}$$

Бази	$c \mid x_1$	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	Ь		
<i>X</i> 3	2	3	1	0	0	0	12	12/3 = 4	$-\frac{3}{4}x_6$
<i>X</i> 4	1	2	0	1	0	0	8	8/2 = 4	$-\frac{1}{2}x_{6}$
<i>X</i> 5	4	0	0	0	1	0	16	_	_
<i>x</i> ₆	0	4	0	0	0	1	12	12/4 = 3 (min)	: 4
F	2	3	0	0	0	0	-0		$-\frac{3}{4}x_6$

$$\begin{cases} x_3 = 12 - 2x_1 - 3x_2 \\ x_4 = 8 - x_1 - 2x_2 \\ x_5 = 16 - 4x_1 \\ x_6 = 12 - 4x_2 \end{cases} \begin{cases} 12 - 3x_2 \ge 0 \\ 8 - 2x_2 \ge 0 \\ 16 \ge 0 \\ 12 - 4x_2 \ge 0 \end{cases}$$

Бази	$c \mid x_1$	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	Ь		
<i>X</i> 3	2	3	1	0	0	0	12	12/3 = 4	$-\frac{3}{4}x_6$
<i>X</i> 4	1	2	0	1	0	0	8	8/2 = 4	$-\frac{1}{2}x_{6}$
<i>X</i> 5	4	0	0	0	1	0	16	_	_
<i>x</i> ₆	0	4	0	0	0	1	12	12/4 = 3 (min)	: 4
F	2	3	0	0	0	0	-0		$-\frac{3}{4}x_6$

$$\begin{cases} x_3 = 12 - 2x_1 - 3x_2 \\ x_4 = 8 - x_1 - 2x_2 \\ x_5 = 16 - 4x_1 \\ x_6 = 12 - 4x_2 \end{cases} \begin{cases} 3x_2 \leqslant 12 \\ 2x_2 \leqslant 8 \\ 0 \leqslant 16 \\ 4x_2 \leqslant 12 \end{cases}$$

Базис	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	Ь		
<i>X</i> 3	2	3	1	0	0	0	12	12/3 = 4	$-\frac{3}{4}x_{6}$
<i>X</i> ₄	1	2	0	1	0	0	8	8/2 = 4	$-\frac{1}{2}x_{6}$
<i>X</i> 5	4	0	0	0	1	0	16	_	_
<i>x</i> ₆	0	4	0	0	0	1	12	12/4 = 3 (min)	: 4
F	2	3	0	0	0	0	-0		$-\frac{3}{4}x_6$

$$\begin{cases} x_3 = 12 - 2x_1 - 3x_2 \\ x_4 = 8 - x_1 - 2x_2 \\ x_5 = 16 - 4x_1 \\ x_6 = 12 - 4x_2 \end{cases} \begin{cases} 3x_2 \leqslant 12 \\ 2x_2 \leqslant 8 \\ 0 \leqslant 16 \\ 4x_2 \leqslant 12 \end{cases} \begin{cases} x_2 \leqslant 4 \\ x_2 \leqslant 4 \\ 0 \leqslant 16 \\ x_2 \leqslant 3 \end{cases}$$

$$x_2 = 3 - \frac{1}{4}x_6$$

Новый допустимый план

Б	азис	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	Ь	
	<i>X</i> 3	2	0	1	0	0	-3/4	3	
	<i>X</i> ₄	1	0	0	1	0	-1/2	2	
	<i>X</i> ₅	4	0	0	0	1	0	16	
	<i>x</i> ₂	0	1	0	0	0	1/4	3	
	F	2	0	0	0	0	-3/4	<u>-9</u>	

Основные: x₂, x₃, x₄, x₅

▶ Свободные: *x*₁, *x*₆

ightharpoonup Допустимый план: $X_1 = (0, 3, 3, 2, 16, 0)$

▶ F₁ = 9 (Берем из таблицы с противоположным знаком)

План не оптимален!

Дальнейшая оптимизация

Базис	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	Ь		
<i>X</i> 3	2	0	1	0	0	-3/4	3	3/2 (min)	: 2
<i>X</i> ₄	1	0	0	1	0	-1/2	2	2	$-\frac{1}{2}x_3$
<i>X</i> ₅	4	0	0	0	1	0	16	16/4 = 4	$-2x_3$
<i>x</i> ₂		1				1/4			
F	2	0	0	0	0	-3/4	<u>-9</u>		$-x_3$

			<i>X</i> 3					
<i>x</i> ₁	1	0	1/2	0	0	-3/8	3/2	
<i>x</i> ₄	0	0	1/2 -1/2	1	0	-1/8	1/2	
<i>X</i> 5	0	0	-2	0	1	3/2	10	
<i>X</i> ₂	0	1	_2 0	0	0	1/4	3	
F	0	0	-1	0	0	0	-12	

Положительные коэффициенты в строке F отсутствуют.

План оптимален!!!

Оптимальный план

$$F = 12 - x_3 \to \max$$

$$\begin{cases} x_1 = \frac{3}{2} - \frac{1}{2}x_3 + \frac{3}{8}x_6 \\ x_4 = \frac{1}{2} + \frac{1}{2}x_3 + \frac{1}{8}x_6 \\ x_5 = 10 + 2x_3 - \frac{3}{2}x_6 \\ x_2 = 3 - \frac{1}{4}x_6 \end{cases}$$

- Основные: x₁, x₂, x₄, x₅
- ► Свободные: x_3 , x_6
- ▶ Допустимый план: X₂ = (1.5, 3, 0, 0.5, 10, 0)
- $F_2 = 12$

Возвращаясь к задаче

Максимальная прибыль:

 $F_{\text{max}} = 12$

Оптимальный план:

x₁ = 1.5 — количество изделий №1 x₂ = 3 — количество изделий №2

Неиспользованные мощности:

 $x_3 = 0$ — I yex $x_4 = 0.5$ — II yex $x_5 = 10$ — III yex

 $x_6 = 0$ — IV цех

Этап поиска допустимого плана (шаг 1) Метод искусственного базиса

Понятие искусственного базиса

ЗЛП в канонической форме:

$$F = d + c_1 x_1 + c_2 x_2 + \dots + c_n x_n \to \max$$

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1 \\ & x_1, x_2, \dots, x_n \geqslant 0 \\ & \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m \end{cases}$$

$$x_1, x_2, \dots, x_n \geqslant 0$$

ЗЛП поиска допустимого плана:

$$\xi = y_1 + y_2 + \dots + y_m \to \min$$

$$\begin{cases} y_1 = b_1 - a_{11}x_1 - a_{12}x_2 - \dots - a_{1n}x_n & x_1, x_2, \dots, x_n \geqslant 0 \\ \dots & y_1, y_2, \dots, y_m \geqslant 0 \\ y_m = b_m - a_{m1}x_1 - a_{m2}x_2 - \dots - a_{mn}x_n & b_1, b_2, \dots, b_m \geqslant 0 \end{cases}$$

 $\{y_1, y_2, \dots, y_m\}$ — искусственный базис

Идея метода искусственного базиса

Ясно, что $\xi\geqslant 0$

- $ightharpoonup \xi_{\min} > 0$ система ограничений противоречива
- $\xi_{\min} = 0$, to $y_1 = \ldots = y_m = 0$.
 - ▶ Занулим все переменные $y_1, \dots y_m$ в системе ограничений, соответствующей оптимальному плану $\xi_{\min} = 0$.
 - Получим систему ограничений для некоторого допустимого плана.

Почему?

- 1. Если y_i свободная, то y_i = 0 может быть безопасно удалена из всех правых частей системы ограничений.
- 2. Если $y_i=0$ основная, то уравнение $y_i=0+a'_{i1}x_1+a'_{i2}x_2+\ldots+a'_{in}x_n$ представимо в виде $0=a'_{i1}x_1+a'_{i2}x_2+\ldots+a'_{in}x_n$
- 3. Если некоторый коэффициент $a'_{ij} \neq 0$, то выразим переменную x_i как новую основную переменную.
- 4. Если все $a'_{ii}=0$, то вычеркнем нулевое уравнение.

$$\begin{cases} x_3 = -9 + 3x_1 + x_2 & x_1 \ge 0 \\ x_4 = -8 + x_1 + 2x_2 & x_2 \ge 0 \\ x_5 = -12 + x_1 + 6x_2 & x_2 \ge 0 \end{cases}$$

$$F = x_1 + 2x_2 \rightarrow \max$$

Формирцем искусственный базис:

$$\begin{cases} y_1 = 9 + x_3 - 3x_1 - x_2 \\ y_2 = 8 + x_4 - x_1 - 2x_2 & x_i, y_j \ge 0 \\ y_3 = 12 + x_5 - x_1 - 6x_2 \end{cases}$$

$$\xi = y_1 + y_2 + y_3 =$$

$$= 9 + x_3 - 3x_1 - x_2 + 8 + x_4 - x_1 - 2x_2 + 12 + x_5 - x_1 - 6x_2 =$$

$$= 29 - 5x_1 - 9x_2 + x_3 + x_4 + x_5 \rightarrow min$$

$$\begin{cases} y_1 - x_3 + 3x_1 + x_2 = 9 \\ y_2 - x_4 + x_1 + 2x_2 = 8 \\ y_3 - x_5 + x_1 + 6x_2 = 12 \end{cases} \quad \xi - 29 = -5x_1 - 9x_2 + x_3 + x_4 + x_5 \to \min$$

									Ь		
<i>y</i> ₁	1	0	0	3	1	-1	0	0	9	9/1	$-\frac{1}{6}y_3$
<i>y</i> ₂	0	1	0	1	2	0	-1	0	8	9/1 $8/2 = 4$	$-\frac{1}{3}y_3$
<i>У</i> 3	0	0	1	1	6	0	0	-1	12	12/6 = 2	: 6
ξ	0	0	0	-5	-9	1	1	1	-29		$+\frac{3}{2}y_3$

	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	x_1	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	Ь		
<i>y</i> ₁	1	0	$-\frac{1}{6}$	$\frac{17}{6}$	0	-1	0	$\frac{1}{6}$	7	$\frac{42}{17} = 2\frac{8}{17}$	$\frac{6}{17}$
<i>y</i> 2	0	1	$-\frac{1}{3}$	$\frac{2}{3}$	0	0	-1	$\frac{1}{3}$	4	$\frac{12}{2} = 6$	$-\frac{4}{17}y_1$
<i>X</i> 2	0	0	$\frac{1}{6}$	$\frac{1}{6}$	1	0	0	$-\frac{1}{6}$	2	12	$-\frac{1}{17}y_1$
ξ	0	0	$\frac{3}{2}$	$-\frac{7}{2}$	0	1	1	$\frac{1}{2}$	-11		$+\frac{21}{17}y_1$

	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	b	
<i>x</i> ₁	$\frac{6}{17}$	0	$-\frac{1}{17}$	1	0	$-\frac{6}{17}$	0	$\frac{1}{17}$	$\frac{42}{17}$	
<i>y</i> ₂	$-\frac{4}{17}$	0	$-\frac{5}{17}$	0	0	$\frac{4}{17}$	-1	$\frac{5}{17}$	$\frac{40}{17}$	
<i>x</i> ₂	$-\frac{1}{17}$	0	$\frac{3}{17}$	0	1	$\frac{1}{17}$	0	$-\frac{3}{17}$	$\frac{27}{17}$	
ξ	$\frac{21}{17}$	0	2 <u>2</u> 17	0	0	$-\frac{4}{17}$	1	$-\frac{5}{17}$	$-\frac{40}{17}$	

	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	Ь		
<i>x</i> ₁	$\frac{6}{17}$	0	$-\frac{1}{17}$	1	0	$-\frac{6}{17}$	0	$\frac{1}{17}$	$\frac{42}{17}$	42	$-\frac{1}{5}y_2$
<i>y</i> ₂	$-\frac{4}{17}$	1	$-\frac{5}{17}$	0	0	$\frac{4}{17}$	-1	$\frac{5}{17}$	$\frac{40}{17}$	8	$1.\frac{17}{5}$
<i>x</i> ₂	$-\frac{1}{17}$	0	$\frac{3}{17}$	0	1	$\frac{1}{17}$	0	$-\frac{3}{17}$	$\frac{27}{17}$	_	$+\frac{3}{5}y_2$
ξ	$\frac{21}{17}$	0	22 17	0	0	$-\frac{4}{17}$	1	$-\frac{5}{17}$	$-\frac{40}{17}$		$+y_2$

Получили оптимальное решение задачи поиска допустимого плана

Все переменные искусственного базиса y_1, y_2, y_3 — свободные. Уберем их из системы ограничений:

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	Ь	
<i>x</i> ₁	1	0	$-\frac{2}{5}$	$\frac{1}{5}$	0	2	
<i>X</i> 5	0	0	<u>4</u> ⊂ 5	$-\frac{17}{5}$	1	8	
<i>X</i> 2	0	1	$\frac{1}{5}$	$-\frac{3}{5}$	0	3	
ξ	0	0	0	0	0	0	

$$\begin{cases} x_1 - \frac{2x_3}{5} + \frac{x_4}{5} = 2 \\ x_2 + \frac{x_3}{5} - \frac{3x_4}{5} = 3 \\ \frac{4x_3}{5} - \frac{17x_4}{5} + x_5 = 8 \end{cases} \qquad \textbf{X} = (2,3,0,0,8)$$
— допустимый план

$$F = x_1 + 2x_2 = 5 + x_4 \rightarrow \max$$

ЗЛП готова к оптимизации симплекс-методом

Вырожденное решение задачи линейного программирования

Вырожденное решение ЗЛП

Оптимальный план задачи линенйного программирования в канонической форме называется вырожденным, если значение некоторой основной переменной равно нулю. Такию переменнию также будем называть вырожденной.

При переносе вырожденной переменной в свободные значение целевой функции не меняется. Это может привести к зацикливанию симплекс-метода.

Зацикливания можно избежать, использця правило Бленда:

- 1. В качестве переменной, переводимых в основные, выбирается переменная с наименьшим индексом, имеющая положительный коэффициент в целевой функции.
- 2. Из всех переменных x_i которые можно перевести в свободные выбирается переменная с наименьшим индексом.

К настоящему моменту вы знаете:

- 1. Постановку задачи линейного программирования:
- 2. Графический метод решения ЗЛП:
- 3. Симплекс-метод решения ЗЛП:

Убедитесь, что вы не только знаете, но и умеете применять рассказанные вам методы.

Источники информации

▶ Исследование и оптимизация моделей: Кремер Н. Ш. Исследование операций в экономике. Главы 4, 5 с. 16–28.

На следующей лекции рассмотрим распространенный частный случай задачи линейного программирования — транспортную задачу.