Оглавление

	Случайный вектор	
0.2	Неравенство Маркова	2
0.3	Неравенство Чебышева	2
0.4	Закон больших чисел	3
0.5	Центральная предельная теорема	5
	Теорема Муавра-Лапласа	
	повые распределения	8
1.1	Распределение Парето	8
1.1	Распределение Парето 1.1.1 Определение 0.000 <t< td=""><td></td></t<>	
1.1	Распределение Парето 1.1.1 Определение 1.1.2 Плотность 1.1.2 Плотность	8
1.1	1.1.1 Определение	8
1.1	1.1.1 Определение	8 8 8

0.1 Случайный вектор

определение. Пусть случайный опыт $G \sim \langle \Omega, \mathcal{F}, P \rangle$. Случайным вектором $\vec{\xi}$ размерности n, наблюдаемым в опыте G, называется упорядоченный набор случайных величин, наблюдаемых в данном опыте.

Можно доказать эквивалентность следующего определения:

определение. Пусть случайный опыт $G \sim \langle \Omega, \mathcal{F}, P \rangle$. Случайным вектором $\vec{\xi}$ размерности n, наблюдаемым в опыте G, называется функция $\vec{\xi} : \Omega \to \mathbb{R}^n$, такая, что $\vec{\xi}$ ($\mathcal{F}, \mathcal{B}_{\mathbb{R}^n}$)-измерима, т. е. $\forall (B \in \mathcal{B}_{\mathbb{R}^n})[\vec{\xi}^{-1}(B) \in \mathcal{F}]$.

определение. Пусть случайный вектор $\vec{\xi}$ наблюдается в случайном опыте $G \sim \langle \Omega, \mathcal{F}, P \rangle$. Распределением случайного вектора $\vec{\xi}$ называется функция $P_{\vec{\xi}}: \mathcal{B}_{\mathbb{R}^n} \to [0;1]$, определяемая равенством

$$P_{\vec{\xi}}(B) = P(\vec{\xi}^{-1}(B))$$

Можно доказать, что $P_{\vec{\xi}}$ — вероятностная мера на $(\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n})$. Этот факт даёт возможность перейти к выборочному вероятностному пространству

(аналогично тому, как это было сделано для случайной величины):

$$\langle \Omega, \mathcal{F}, P \rangle \xrightarrow{\vec{\xi}} \left\langle \mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n}, P_{\vec{\xi}} \right\rangle$$

и рассматривать в нём непосредственно заданный случайный вектор $\vec{\eta}(\vec{x}) = \vec{x}$. Легко видеть, что в таком случае $\forall (B \in \mathcal{B}_{\mathbb{R}^n}) \left[P_{\vec{\eta}}(B) = P_{\vec{\xi}}(B) \right]$.

0.2 Неравенство Маркова

Пусть
$$\xi \in L_1(\Omega, \mathcal{F}, P)$$
 и $P\{\xi \geqslant 0\} = 1, T > 0$. Тогда
$$P\{\xi \geqslant T\} \leqslant \frac{M\xi}{T} \tag{1}$$

Доказательство.

$$M\xi = \int_{-\infty}^{\infty} x dF_{\xi}(x) =$$

$$(\text{т. к. } \xi \text{ неотрицательна почти наверное})$$

$$= \int_{\{x\geqslant T\}} x dF_{\xi}(x) + \int_{\{0\leqslant x < T\}} x dF_{\xi}(x) \geqslant$$

$$(\text{т. к. } F_{\xi} \text{ - неубывающая})$$

$$\geqslant \int_{\{x\geqslant T\}} x dF_{\xi}(x) \geqslant \int_{\{x\geqslant T\}} T dF_{\xi}(x) = T \int_{\{x\geqslant T\}} dF_{\xi}(x) =$$

$$= T \left(\lim_{x\to +\infty} F_{\xi}(x) - F_{\xi}(T-)\right) = TP\{\xi \geqslant T\}$$

Доказано.

0.3 Неравенство Чебышева

Пусть $\xi \in l_2(\Omega, \mathcal{F}, P), \varepsilon > 0$. Тогда

$$P\{|\xi - M\xi| \geqslant \varepsilon\} \leqslant \frac{D\xi}{\varepsilon^2} \tag{2}$$

Доказательство.

$$P\{|\xi-M\xi|\geqslant\varepsilon\}=P\{|\xi-M\xi|^2\geqslant\varepsilon^2\}=$$
 (положив в неравенстве Маркова (1) $T=\varepsilon^2$)
$$=\frac{M\left((\xi-M\xi)^2\right)}{\varepsilon^2}=\frac{D\xi}{\varepsilon^2}$$

Доказано.

0.4 Закон больших чисел

идеология. Обычно случайная величина «размазана» по числовой оси. Если случайные величины складывать, то «размазанность» будет «расползаться». Но оказывается, что при определённых условиях среднее арифметическое величин «расползаться» не будет.

Теорема 0.4.1. Пусть $\{\xi_k\}_{k=1}^{\infty}$ — последовательность стохастически независимых интегрируемых с квадратом случайных величин, дисперсия которых ограничена в совокупности, т. е.

$$orall (k\in\mathbb{N}) \left[\xi_k\in L_2(\Omega,\mathcal{F},P)
ight]$$
 $\exists (C>0) orall (k\in\mathbb{N}) \left[D\xi_k\leqslant C
ight]$ Обозначим $ar{\xi}_n:=rac{1}{n}\sum_{k=1}^n \xi_k, \ ar{\mu}_n:=rac{1}{n}\sum_{k=1}^n M\xi_k$ Тогда $orall (arepsilon>0) \left[P(|ar{\xi}_n-ar{\mu}_n|\geqslantarepsilon)
ight. \longrightarrow 0
ight]$

Доказательство.

$$P\{|\bar{\xi}_n - \bar{\mu}_n| \geqslant \varepsilon\} =$$

$$(\text{T. K. } \bar{\mu}_n = M\bar{\xi}_n)$$

$$= P\{|\bar{\xi}_n - M\bar{\xi}_n| \geqslant \varepsilon\} \leqslant$$

(применяем неравенство Чебышева (2))

$$\leqslant \frac{D\bar{\xi}_n}{\varepsilon^2} = \frac{D\left(\frac{1}{n}\sum_{k=1}^n \xi_k\right)}{\varepsilon^2} = \frac{\frac{1}{n^2}D\left(\sum_{k=1}^n \xi_k\right)}{\varepsilon^2} =$$

(в силу стохастической независимости дисперсия аддитивна)

$$= \frac{\frac{1}{n^2} \left(\sum_{k=1}^n D\xi_k \right)}{\varepsilon^2} \leqslant \frac{\frac{1}{n^2} \left(\sum_{k=1}^n C \right)}{\varepsilon^2} = \frac{nC}{n^2 \varepsilon^2} = \frac{C}{n \varepsilon^2} \xrightarrow[n \to \infty]{} 0$$

Доказано.

определение. Пусть $\{\xi_k\}_{k=1}^{\infty}$ — последовательность случайных величин, наблюдаемых в опыте $G \sim \langle \Omega, \mathcal{F}, P \rangle$, ξ — также случайная величина, наблюдаемая в этом опыте. Говорят, что ξ_k сходится по вероятности к ξ и пишут:

$$\xi_k \xrightarrow[n \to \infty]{P} \xi$$

если

$$\forall (\varepsilon > 0) \left[P\{ |\xi_n - \xi| \geqslant \varepsilon \} \xrightarrow[n \to \infty]{} 0 \right]$$

Сформулируем теперь следствие из закона больших чисел — в случае, когда мы имеем дело с последовательностью одинаково распределённых случайных величин.

Следствие 0.4.1.1. Рассмотрим последовательность одинаково распределённых интегрируемых с квадратом случайных величин $\{\xi_k\}_{k=1}^{\infty}$, наблюдаемых в случайном опыте $G \sim \langle \Omega, \mathcal{F}, P \rangle$. Обозначим $M\xi_k = \mu$, $D\xi_k = \sigma^2$. Тогда $\bar{\xi}_n \xrightarrow{P} \mu$.

Рассмотрим теперь схему Бернулли.

Следствие 0.4.1.2. (теорема Бернулли) Частота появления события при неограниченном увеличении количества независимых повторений одного

и того же опыта по вероятности сходится к вероятности данного события. Переформулируем строго.

Пусть к $G \sim \langle \Omega, \mathcal{F}, P \rangle$ применена схема Бернулли с вероятностью успеха p и количеством повторений n. Обозначим через ν_n количество успехов в n опытах. Тогда $\frac{\nu_n}{n} \xrightarrow[n \to \infty]{P} p$.

доказательство. Пусть случайная величина ξ_k равна 1, если в k-м опыте произошёл успех, и 0 в противном случае. Очевидно, что ξ_k стохастически независимы и распределены одинаково. Заметим, что $\nu_n = \sum_{k=1}^n \xi_k$. Более того, $\bar{\xi}_n = \frac{\nu_n}{n}$, $M\xi_k = p$. Применив следствие 1 из закона больших чисел, получим требуемое. Доказано.

0.5 Центральная предельная теорема

Закон больших чисел и следствия из него позволяют судить о поведении среднего арифметического последовательности одинаково распределённых случайных величин, т. е. сумма величин (обратите внимание, «сдвинутых» на матожидание) делится на n, благодаря чему и стабилизируется. Возникает закономерный вопрос: а что будет, если делить не на первую степень n, а на небольшую положительную? Ответ для случая степени, равной $\frac{1}{2}$, и даёт центральная предельная теорема.

Теорема 0.5.1. Пусть $\{\xi_k\}_{k=1}^{\infty}$ — последовательность одинаково распределённых интегрируемых с квадратом случайных величин, наблюдаемых в опыте $G \sim \langle \Omega, \mathcal{F}, P \rangle$. Пусть $\xi \sim N(0,1)$. Обозначим $\mu = M\xi_k$, $\sigma^2 = D\xi_k$ $(\sigma > 0)$. Проведём теперь над каждой ξ_k манипуляцию, состоящую из уже знакомого нам сдвига на матожидание и новой операции - «нормирования» дисперсией:

$$\xi_k^0 = \frac{\xi_k - \mu}{\sigma}$$

(Рекомендуем, кстати, читателю убедиться, что $\|\xi_k^0\|_{L_2(\Omega,\mathcal{F},P)}=1.$) Тогда

$$\bar{\xi}_n = \frac{\sum\limits_{k=1}^n \xi_k^0}{\sqrt{n}} \xrightarrow[n \to \infty]{\text{слабо}} \xi, \text{ т.е.}$$

$$P\{\bar{\xi}_n < x\} \xrightarrow[n \to \infty]{} \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dx$$

доказательство. В доказательстве будем использовать переход к характеристическим функциям и тот факт, что характеристическая функция суммы равна произведению характеристических функций.

Сначала заметим, что $\dot{\varphi}_{\xi_k^0}=iM\xi_k^0=0,\,\ddot{\varphi}_{\xi_k^0}=i^2D\xi_k^0=-1.$

$$\begin{split} \varphi_{\bar{\xi}_n}(t) &= \varphi_{\frac{1}{\sqrt{n}} \sum_{k=1}^n \xi_k^0}(t) = \varphi_{\sum_{k=1}^n \xi_k^0}\left(\frac{t}{\sqrt{n}}\right) = \\ &= \prod_{k=1}^n \varphi_{\xi_k^0}\left(\frac{t}{\sqrt{n}}\right) = \left(\varphi_{\xi_k^0}\left(\frac{t}{\sqrt{n}}\right)\right)^n = \end{split}$$

(применяем формулу Тейлора с остаточным членом в форме Пеано)

$$= \left(\varphi_{\xi_k^0}(0) + \dot{\varphi}_{\xi_k^0}(0)\frac{t}{\sqrt{n}} + \ddot{\varphi}_{\xi_k^0}(0)\frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)^n =$$

$$= \left(1 + 0 \cdot \frac{t}{\sqrt{n}} - 1 \cdot \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)^n =$$

$$= \left(1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)^n \xrightarrow{\text{второй замечательный предел}} e^{-\frac{t^2}{2}} = \varphi_{\xi}(t)$$

Итак, $\varphi_{\bar{\xi}_n}(t) \xrightarrow[n \to \infty]{} \varphi_{\xi}(t)$, следовательно,

$$\bar{\xi}_n = \sum_{k=1} n \frac{\xi_k - \mu}{\sigma \sqrt{n}} \xrightarrow[n \to \infty]{} \xi$$

Доказано.

0.6 Теорема Муавра-Лапласа

Особо рассмотрим частный случай центральной предельной теоремы для биномиального распределения.

Теорема 0.6.1. Пусть $\{\xi_k\}_{k=1}^{\infty}$ — последовательность одинаково биномиально с параметрами (1,p) распределённых случайных величин, наблюдаемых в опыте $G \sim \langle \Omega, \mathcal{F}, P \rangle$. Тогда

$$\frac{\sum\limits_{k=1}^{n} \xi_k - np}{\sqrt{np(1-p)}} \xrightarrow[n \to \infty]{\text{слабо}} \xi \sim N(0,1)$$

Для доказательства этой теоремы достаточно вспомнить числовые характеристики биномиального распределения.

Глава 1

Типовые распределения

1.1 Распределение Парето

1.1.1 Определение

определение. Говорят, что случайная величина ξ имеет распределение Парето с параметрами $x_0 > 0$ и $\alpha > 0$ и пишут $\xi \sim Par(x_0, \alpha)$, если

$$F_{\xi}(x) = P\{\xi < x\} = \left(1 - \left(\frac{x_0}{x}\right)^{\alpha}\right) \cdot \mathbb{I}_{[x_0; +\infty)}(x)$$

Легко видеть, что функция распределения непрерывна.

1.1.2 Плотность

$$f_{\xi}(x) = \alpha \frac{x_0^{\alpha}}{x^{\alpha+1}} \cdot \mathbb{I}_{[x_0; +\infty)}(x)$$

1.1.3 Математическое ожидание

Математическое ожидание, а, следовательно, и другие моменты, могут существовать или не существовать в зависимости от значения α . Попробуем найти матожидание:

$$M\xi = \int_{-\infty}^{+\infty} x f_{\xi}(x) dx = \int_{-\infty}^{+\infty} x \alpha \frac{x_0^{\alpha}}{x^{\alpha+1}} \cdot \mathbb{I}_{[x_0; +\infty)}(x) dx = \int_{x_0}^{+\infty} x \alpha \frac{x_0^{\alpha}}{x^{\alpha+1}} dx =$$

$$= \int_{x_0}^{+\infty} \alpha \frac{x_0^{\alpha}}{x^{\alpha}} dx = \alpha x_0^{\alpha} \int_{x_0}^{+\infty} \frac{1}{x^{\alpha}} dx \quad (1.1)$$

Последний интеграл, как мы знаем из курса математического анализа, сходится при $\alpha > 1$. Следовательно, при $\alpha > 1$ из формулы (1.1) имеем

$$M\xi = \alpha x_0^{\alpha} \int_{x_0}^{+\infty} \frac{1}{x^{\alpha}} dx = \alpha x_0^{\alpha} \left(\frac{1}{1 - \alpha} \frac{1}{x^{\alpha - 1}} \right) \Big|_{x = x_0}^{x = +\infty} dx =$$

$$= \alpha x_0^{\alpha} \left(0 - \frac{1}{1 - \alpha} \cdot \frac{1}{x_0^{\alpha - 1}} \right) = \alpha x_0^{\alpha} \frac{1}{\alpha - 1} \cdot \frac{1}{x_0^{\alpha - 1}} =$$

$$= \frac{\alpha x_0^{\alpha}}{(\alpha - 1)x_0^{\alpha - 1}} = \frac{\alpha x_0}{\alpha - 1} \quad (1.2)$$

1.1.4 Прочие моменты

Как известно, начальный момент существует или не существует одновременно с центральным. Для начального момента порядка k рассуждениями, аналогичными (1.1), имеем

$$M(\xi^k) = \alpha x_0^{\alpha} \int_{x_0}^{+\infty} \frac{1}{x^{\alpha - k + 1}} dx \tag{1.3}$$

А такой интеграл сходится при $\alpha - k + 1 > 1$, т.е. при $\alpha > k$. Следовательно, у распределения Парето с параметрами x_0 и α существуют k-ые центральный и начальный моменты тогда и только тогда, когда $\alpha > k$.

1.1.5 Дисперсия

Вооружившись формулами (1.2) и (1.3), посчитаем дисперсию этого распределения при $\alpha > 2$:

$$D\xi = M(\xi^{2}) - (M\xi)^{2} = \alpha x_{0}^{\alpha} \int_{x_{0}}^{+\infty} \frac{1}{x^{\alpha - 1}} dx - \left(\frac{\alpha x_{0}}{\alpha - 1}\right)^{2} =$$

$$= \alpha x_{0}^{\alpha} \frac{1}{\alpha - 2} \cdot \frac{1}{x_{0}^{\alpha - 2}} - \frac{\alpha^{2} x_{0}^{2}}{(\alpha - 1)^{2}} = \frac{\alpha x_{0}^{2}}{\alpha - 2} - \frac{\alpha^{2} x_{0}^{2}}{(\alpha - 1)^{2}} =$$

$$= \alpha x_{0}^{2} \left(\frac{1}{\alpha - 2} - \frac{\alpha}{(\alpha - 1)^{2}}\right) =$$

$$= \alpha x_{0}^{2} \left(\frac{(\alpha - 1)^{2}}{(\alpha - 2)(\alpha - 1)^{2}} - \frac{\alpha^{2} - 2\alpha}{(\alpha - 2)(\alpha - 1)^{2}}\right) =$$

$$= \alpha x_{0}^{2} \left(\frac{\alpha^{2} - 2\alpha + 1}{(\alpha - 2)(\alpha - 1)^{2}} - \frac{\alpha^{2} - 2\alpha}{(\alpha - 2)(\alpha - 1)^{2}}\right) = \frac{\alpha x_{0}^{2}}{(\alpha - 2)(\alpha - 1)^{2}}$$
(1.4)