数据手册

Datasheet

MM32W06xxxB

32 位基于 ARM® Cortex® M0 核心的微控制器

版本: 1.00

目录

1	总介			1
	1.1	概述 .		1
	1.2	产品特	性	1
2	规格	说明		3
	2.1	器件对	比	3
	2.2	概述 .		3
		2.2.1	ARM 的 Cortex-M0 核心并内嵌闪存和 SRAM	3
		2.2.2	内置闪存存储器	4
		2.2.3	内置 SRAM	4
		2.2.4	CRC(循环冗余校验) 计算单元	4
		2.2.5	嵌套的向量式中断控制器 (NVIC)	4
		2.2.6	外部中断/事件控制器 (EXTI)	4
		2.2.7	时钟和启动	4
		2.2.8	自举模式	4
		2.2.9	供电方案	5
		2.2.10	供电监控器	5
		2.2.11	电压调压器	5
		2.2.12	低功耗模式	5
		2.2.13	DMA	5
		2.2.14	RTC(实时时钟)	6
			备份寄存器	
		2.2.16	定时器和看门狗	6
		2.2.17	通用异步收发器 (UART)	8
		2.2.18	I2C 总线	8
		2.2.19	串行外设接口 (SPI)	8
		2.2.20	通用串行总线 (USB)	8
			通用输入输出接口 (GPIO)	
		2.2.22	ADC(模拟/数字转换器)	8
		2.2.23	温度传感器	9
		2.2.24	串行单线 SWD 调试口 (SW-DP)	9
		2.2.25	比较器 (COMP)	9
		2.2.26	蓝牙低功耗广播	9
3	引脚	定义		12
4		器映像		21
5				23
6	电气			26
J	њ. (. 6.1		件	
	0.1	例	T	
		_	典型曲线	
			典室四线 · · · · · · · · · · · · · · · · · · ·	
		0.1.0	. 水水 自由	20

10	修改-	记录		61
9	型号	命名		60
	8.1	封装 Lo	QFP48	56
	封装:			56
			付频天线设计	
			E意事项	
-	7.1		~ 计建议	
7	PCB	设计建	iΫ	54
		6.6.17	比较器特性	53
			温度传感器特性	
			12 位 ADC 特性	
			通信接口	
			TIM 定时器特性	
			NRST 引脚特性	
			M	
			绝对最大值 (电气敏感性)	
		6.6.9	EMC 特性	
		6.6.8	存储器特性	
		6.6.7	控制模块内部可钾源特性	
		6.6.5 6.6.6	外部的钾源特性	
		6.6.4	供电电流特性	
		6.6.3	内嵌复位和电源控制模块特性	
		6.6.2	上电和掉电时的工作条件	
		6.6.1	通用工作条件	
	6.6		件	
	6.5		大额定值	
			女机特性	
	6.3		时机特性	
	6.2		受特性	
		6.1.6	电流消耗测量	
		6.1.5	供电方案	27
		6.1.4	引脚输入电压	26

插图

1	模块框图	10
2	时钟树	11
3	LQFP48 引脚分布	12
4	QFN32 引脚分布	13
5	LQFP48 典型应用电路	23
6	QFN32 典型应用电路	24
7	引脚的负载条件	26
8	引脚输入电压	27
9	供电方案	27
10	电流消耗测量方案	28
11	控制模块使用 2 ~ 24MHz 晶体的典型应用	35
12	射频模块使用 16MHz 晶体的典型应用	35
13	外部低速时钟源的交流时序图	36
14	外部高速时钟源的交流时序图	37
15	使用 32.768KHz 晶体的典型应用	38
16	输入输出交流特性定义	43
17	建议的 NRST 引脚保护	44
18	I2C 总线交流波形和测量电路 ⁽¹⁾	46
19	SPI 时序图-从模式和 CPHA = 0	47
20	SPI 时序图-从模式和 CPHA = 1 ⁽¹⁾	48
21	SPI 时序图-主模式 ⁽¹⁾	49
22	USB 时序: 数据信号上升和下降时间定义	50
23	使用 ADC 典型的连接图	52
24	供电电源和参考电源去藕线路	52
25	供电电源和参考电源去藕线路	54
26	天线的尺寸	55
27	LQFP48, 48 脚低剖面方形扁平封装图	56
28	QFN32, 32 脚方形扁平无引线封装外形封装图	58
29	MM32 型号命名	60

表格

1	产品功能和外设配置	3
2	定时器功能比较	6
3	引脚定义	13
4	PA 端口功能复用 AF0-AF7	18
5	PB 端口功能复用 AF0-AF7	19
6	PC 端口功能复用 AF0-AF7	19
7	PD 端口功能复用 AF0-AF7	19
8	存储器映像	21
9	外部组件列表	23
10	外部组件列表	25
11	RF 一般特性	28
12	射频发射机特性表	28
13	RF 接收机特性	29
14	电压特性	29
15	电流特性	29
16	通用工作条件	30
17	上电和掉电时的工作条件	30
18	内嵌复位和电源控制模块特性	30
19	功耗参数	31
20	停机和待机模式下的典型和最大电流消耗 ⁽¹⁾⁽²⁾	32
21	运行模式下的最大电流消耗,数据处理代码从内部闪存中运行(1)(2)(3)(4)(5)	33
22	睡眠模式下的最大电流消耗,数据处理代码从内部闪存中运行(1)(2)(3)(4)(5)	
23	内置外设的电流消耗 ⁽¹⁾	34
24	高速外部用户时钟特性	34
25	射频模块高速晶体时钟特性	34
26	低速外部用户时钟特性	35
27	HSE 2 ~ 24MHz 振荡器特性 ⁽¹⁾⁽²⁾	36
28	LSE 振荡器特性 (f _{LSE} =32.768KHz) ⁽¹⁾	38
29	HSI 振荡器特性 ⁽¹⁾⁽²⁾	38
30	LSI 振荡器特性 ⁽¹⁾	39
31	控制模块低功耗模式的唤醒时间	39
32	PLL 特性 ⁽¹⁾	39
33	闪存存储器特性	40
34	闪存存储器寿命和数据保存期限 ⁽¹⁾⁽²⁾	40
35	MCU ESD 特性	41
36	I/O 静态特性	41
37	输出电压特性 ⁽¹⁾⁽²⁾	42
38	输入输出交流特性 ⁽¹⁾⁽²⁾	43
39	NRST 引脚特性	43
40	TIMx ⁽¹⁾ 特性	44
41	I2C 接口特性	45
42	SPI 特性 ⁽¹⁾	46

43	USB 直流特性	49
44	ADC 特性	50
45	f _{ADC} =15MHz ⁽¹⁾ 时的最大 R _{AIN}	51
46	ADC 精度 - 局限的测试条件 (1)(2)	51
47	温度传感器特性 ⁽³⁾⁽⁴⁾	53
48	比较器特性	53
49	天线的尺寸	55
50	LQFP48 尺寸说明	57
51	QFN32 尺寸说明	58
52	修改记录	61

总介

总介

1.1 概述

本产品是超低功耗的单模蓝牙芯片,射频采用 2.4GHZ ISM 频段的频率,2MHz 信道间隔,符合蓝牙规范。本产品使用高性能的 ARM® Cortex®-M0 为内核的 32 位微控制器,最高工作频率可达 48MHz,内置高速存储器,丰富的增强型 I/O 端口和外设连接到外部总线。本产品包含 1 个 12 位的 ADC、2 个比较器、1 个 16 位通用定时器、1 个 32 位通用定时器、3 个 16 位基本定时器、1 个 16 位高级定时器。还包含标准的通信接口: 1 个 I2C 接口、1 个 SPI 接口、1 个 USB 接口和 2 个 UART 接口。

本产品产品系列工作电压为 2.3V ~ 3.6V,工作温度范围-40°C ~ +85°C 常规型。多种省电工作模式保证低功耗应用的要求。

本产品提供 LQFP48 和 QFN32 共 2 种封装形式。

根据不同的封装形式,器件中的外设配置不尽相同。

这些丰富的外设配置,使得本产品微控制器适合于多种应用场合:

- 无线键盘、鼠标
- 工业应用:工业遥控、遥测
- 警报系统、门禁系统、数据采集和传输系统

1.2 产品特性

- 内核与系统
 - 32 位 ARM® Cortex®-M0 处理器内核
 - 最高工作频率可达 48MHz
 - 单指令周期 32 位硬件乘法器
- 存储器
 - 高达 64K 字节的闪存程序存储器
 - 高达 8K 字节的 SRAM, 用户可用字节 4K
 - Boot loader 支持片内 Flash、UART 在线用户编程 (IAP)/在线系统编程 (ISP)
- · 单模 BLE 射频收发机
 - 数据包处理引擎
 - GFSK 编码方式
 - 内部电压调节器保证 PSRR
 - 可编程发射功率范围: -28dBm~+4dBm
 - 1Mbps 空中数据传输
 - 射频链路预算: 高达-80dBm
- 时钟、复位和电源管理

- 2.3V~3.6V供电
- 上电/断电复位 (POR/PDR)、可编程电压监测器 (PVD)
- 射频模块外部 16MHz 高速晶体振荡器
- 内嵌经出厂调校的 48MHz 高速振荡器
- 内嵌 40KHz 低速振荡器
- PLL 支持 CPU 最高运行在 48MHz
- 外部 32.768K 低速振荡器
- 低功耗
 - 睡眠、停机和待机模式
 - 支持 RTC 功能和后备寄存器
- 1 个 12 位模数转换器, 1µS 转换时间 (多达 10 个输入通道)
 - 转换范围: 0 ~ V_{DDA}
 - 支持采样时间和分辨率配置
 - 片上温度传感器
 - 片上电压传感器
- 2 个比较器
- 5 通道 DMA 控制器
 - 支持的外设: Timer、UART、I2C、SPI、USB 和 ADC
- 多达 28 个快速 I/O 端口:
 - 所有 I/O 口可以映像到 16 个外部中断
- 调试模式
 - 串行单线调试 (SWD)
- 多达 9 个定时器
 - 1 个 16 位 4 通道高级控制定时器,有 4 通道 PWM 输出,以及死区生成和紧急停止功能
 - 1 个 16 位定时器和 1 个 32 位定时器,有高达 4 个输入捕获/输出比较,可用于 IR 控制解码
 - 2 个 16 位定时器,有 1 个输入捕获/输出比较和 1 个 OCN,死区生成,紧急停止,调制器门电路用于 IR 控制
 - 1 个 16 位定时器,有 1 个输入捕获/输出比较
 - 2 个看门狗定时器 (独立的和窗口型的)
 - 1 系统时间定时器: 24 位自减型计数器
- 多达 5 个通信接口
 - 2 个 UART 接口
 - 1 个 I2C 接口
 - 1 个 SPI 接口
 - 1 个 USB device 接口
- 低成本外围元件 BOM 成本
- 96 位的芯片唯一 ID(UID)
- 采用 LQFP48 和 QFN32 封装

有关完整的本产品的详细信息,请参考本产品数据手册第2.2节。

| 有关 Cortex®-M0 核心的相关信息,请参考《Cortex®-M0 技术参考手册》。

2

规格说明

规格说明

2.1 器件对比

表 1. 产品功能和外设配置

	产品型号	MM22W062NTD	MM20W060DED	
卜围接 口		MM32W062NTB	MM32W062PFB	
闪存	- K 字节	64	64	
SRA	M - K 字节	8	8	
	通用 (16 bit)	1		
定时器	通用 (32 bit)	1		
足明備	基本	3		
	高级	1		
	UART	2		
通讯接口	I2C	1		
地 爪 按 口	SPI	1		
	USB	1		
GPI	O端口数	22	28	
40 P ADO	个数	1		
12 位 ADC	通道数	5	10	
比纳	交器个数	2		
RTC		√		
CPU 频率		48 MHz		
工作电压		2.3V ~	3.6V	
	封装	QFN32	LQFP48	

2.2 概述

2.2.1 ARM 的 Cortex-M0 核心并内嵌闪存和 SRAM

ARM®的 Cortex®-MO 处理器是最新一代的嵌入式 ARM 处理器,它为实现 MCU 的需要提供了低成本的平台、缩减的引脚数目、降低的系统功耗,同时提供卓越的计算性能和先进的中断系统响应。

ARM®的 Cortex®-M0 是 32 位的 RISC 处理器,提供额外的代码效率,在通常 8 和 16 位系统的存储空间上发挥了 ARM 内核的高性能。

本产品拥有内置的 ARM 核心,因此它与所有的 ARM 工具和软件兼容。

2.2.2 内置闪存存储器

最大 64K 字节的内置闪存存储器,用于存放程序和数据。

2.2.3 内置 SRAM

最大 8K 字节的内置 SRAM。

2.2.4 CRC(循环冗余校验) 计算单元

CRC(循环冗余校验) 计算单元使用一个固定的多项式发生器,从一个 32 位的数据字产生一个 CRC 码。在众多的应用中,基于 CRC 的技术被用于验证数据传输或存储的一致性。在 EN/IEC60335-1 标准的范围内,它提供了一种检测闪存存储器错误的手段,CRC 计算单元可以用于实时地计算软件的签名,并与在链接和生成该软件时产生的签名对比。

2.2.5 嵌套的向量式中断控制器 (NVIC)

本产品内置嵌套的向量式中断控制器,能够处理多个可屏蔽中断通道 (不包括 16 个 Cortex™-M0 的中断线) 和 16 个可编程优先级。

- 紧耦合的 NVIC 能够达到低延迟的中断响应处理
- 中断向量入口地址直接进入内核
- 紧耦合的 NVIC 接口
- 允许中断的早期处理
- 处理晚到的较高优先级中断
- 支持中断尾部链接功能
- 自动保存处理器状态
- 中断返回时自动恢复, 无需额外指令开销

该模块以最小的中断延迟提供灵活的中断管理功能。

2.2.6 外部中断/事件控制器 (EXTI)

外部中断/事件控制器包含多个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置它的触发事件 (上升沿或下降沿或双边沿),并能够单独地被屏蔽;有一个挂起寄存器维持所有中断请求的状态。EXTI可以检测到脉冲宽度小于内部 APB2 的时钟周期。所有通用 I/O 口连接到 16 个外部中断线。

2.2.7 时钟和启动

系统时钟的选择是在启动时进行,复位时内部 48 MHz 振荡器 6 分频被选为默认的 CPU 时钟,随后可以选择外部的、具失效监控的 1~24 MHz 时钟。当检测到外部时钟失效时,它将被隔离,系统将自动地切换到内部的振荡器,如果使能了中断,软件可以接收到相应的中断。同样,在需要时可以采取对 PLL 时钟完全的中断管理 (如当一个间接使用的外部振荡器失效时)。

多个预分频器用于配置 AHB 的频率、高速 APB(APB2 和 APB1) 区域。AHB 和高速 APB 的最高频率是 48MHz。参考图 2的时钟驱动框图。

2.2.8 自举模式

在启动时,通过自举引脚可以选择三种自举模式中的一种:

- 从程序闪存存储器自举
- 从系统存储器自举
- 从内部 SRAM 自举

自举加载程序 (Boot loader) 存放于系统存储器中,可以通过 UART1 对闪存重新编程。

2.2.9 供电方案

V_{DD} = 2.3V ~ 3.6V: V_{DD} 引脚为 I/O 引脚和内部调压器供电。
 V_{DDA} = 2.3V ~ 3.6V: 为 ADC、复位模块、振荡器和 PLL 的模拟部分提供供电。V_{DDA} 和 V_{SSA} 必须分别连接到 V_{DD} 和 V_{SS}。

2.2.10 供申监控器

本产品内部集成了上电复位 (POR)/掉电复位 (PDR) 电路,该电路始终处于工作状态,保证系统供电超过 2.3V 时工作; 当 V_{DD} 低于设定的阈值 ($V_{POR/PDR}$) 时,置器件于复位状态,而不必使用外部复位电路。

器件中还有一个可编程电压监测器 (PVD),它监视 V_{DD}/V_{DDA} 供电并与阈值 V_{PVD} 比较,当 V_{DD} 低于或高于阈值 V_{PVD} 时产生中断,中断处理程序可以发出警告信息或将微控制器转入安全模式。PVD 功能需要通过程序开启。

2.2.11 电压调压器

调压器将外部电压转成内部数字逻辑工作的电压,该调压器在复位后始终处于工作状态。

2.2.12 低功耗模式

产品支持低功耗模式,可以在要求低功耗、短启动时间和多种唤醒事件之间达到最佳的平衡。

睡眠模式

在睡眠模式,只有 CPU 停止,所有外设处于工作状态并可在发生中断/事件时唤醒 CPU。

停机模式

在保持 SRAM 和寄存器内容不丢失的情况下,停机模式可以达到最低的电能消耗。在停机模式下,HSI 的振荡器和 HSE 晶体振荡器被关闭。可以通过任一配置成 EXTI 的信号把微控制器从停机模式中唤醒,EXTI 信号可以是 16 个外部 I/O 口之一、PVD 的输出的唤醒信号。

待机模式

待机模式可实现系统的最低功耗。该模式是在 CPU 深睡眠模式时关闭电压调节器。内部所有的 1.5V 部分的供电区域被断开。PLL、HSI 和 HSE 振荡器也都关闭,可以通过 WKUP引脚的上升沿、NRST 引脚的外部复位、IWDG 复位唤醒或者看门狗定时器唤醒并复位。SRAM 和寄存器的内容将被丢失。只有备份的寄存器和待机电路维持供电。

2.2.13 DMA

灵活的 5 路通用 DMA 可以管理存储器到存储器、设备到存储器和存储器到设备的数据传输; DMA 控制器支持环形缓冲区的管理,避免了控制器传输到达缓冲区结尾时所产生的中断。

每个通道都有专门的硬件 DMA 请求逻辑,同时可以由软件触发每个通道; 传输的长度、传输的源地址和目标地址都可以通过软件单独设置。

DMA 可以用于主要的外设:用 UART、I2C、SPI、ADC、USB 和通用/基本/高级控制定时器 TIMx。

2.2.14 RTC(实时时钟)

实时时钟是一个独立的定时器。RTC 模块拥有一组连续计数的计数器,在相应软件配置下,可提供时钟日历的功能。修改计数器的值可以重新设置系统当前的时间和日期。RTC 模块和时钟配置系统 (RCC_BDCR 寄存器) 处于后备区域,即在系统复位或待机模式唤醒后,RTC 的设置和时间维持不变。

2.2.15 备份寄存器

备份寄存器是20个16位的寄存器,可用来存储用户应用程序数据。

当系统在待机模式下被唤醒, 或系统复位或电源复位时, 他们也不会被复位。

2.2.16 定时器和看门狗

产品包含 1 个高级定时器、2 个通用定时器、3 个基本定时器。以及 2 个看门狗定时器和 1 个系统嘀嗒定时器。

下表比较了高级控制定时器、通用定时器和基本定时器的功能:

表 2. 定时器功能比较

定时器类型	名称	计数器分辨率	计数器类型	预分频系数	DMA 请求生成	捕获/比较通道	互补输出
			递增、递	1 ~ 65536			
高级	TIM1	16 位	减、递	之间的任意	有	4	有
			增/递减	整数			
			递增、递	$1 \sim 2^{32} - 1$			
	TIM2	32 位	减、递	之间的任意	有	4	无
通用			增/递减	整数			
<i>™</i> ,11			递增、递	1 ~ 65536			
	TIM3	16 位	减、递	之间的任意	有	4	无
			增/递减	整数			
				1 ~ 65536			
	TIM14	16 位	递增	之间的任意	有	1	无
基本				整数			
至行	TIM16 /			1 ~ 65536			
	TIM17	16 位	递增	之间的任意	有	1	有
	1 1101 1 7			整数			

高级控制定时器(TIM1)

高级控制定时器是由 16 位计数器、4 个捕获/比较通道以及三相互补 PWM 发生器组成,它具有带死区插入的互补 PWM 输出,还可以被当成完整的通用定时器。四个独立的通道可

以用于:

- 输入捕获
- 输出比较
- 产生 PWM(边缘或中心对齐模式)
- 单脉冲输出

配置为 16 位通用定时器时,它与 TIMx 定时器具有相同的功能。配置为 16 位 PWM 发生器时,它具有全调制能力 (0~100%)。

在调试模式下,计数器可以被冻结,同时 PWM 输出被禁止,从而切断由这些输出所控制的开关。

很多功能都与通用的 TIM 定时器相同,内部结构也相同,因此高级控制定时器可以通过定时器链接功能与 TIM 定时器协同操作,提供同步或事件链接功能。

通用定时器 (TIMx)

产品中,内置了多达 2 个可同步运行的通用定时器 (TIM2、TIM3)。定时器有一个 32 位的自动加载递加/递减计数器、一个 16 位的预分频器和 4 个独立的通道,每个通道都可用于输入捕获、输出比较、PWM 和单脉冲模式输出。

通用定时器 32 位

定时器有一个 32 位的自动加载递加/递减计数器、一个 16 位的预分频器和 4 个独立的通道,每个通道都可用于输入捕获、输出比较、PWM 和单脉冲模式输出。

通用定时器 16位

每个定时器有一个 16 位的自动加载递加/递减计数器、一个 16 位的预分频器和 4 个独立的通道,每个通道都可用于输入捕获、输出比较、PWM 和单脉冲模式输出。

它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。任一通用定时器都能用于产生 PWM 输出。每个定时器都有独立的 DMA 请求机制。

这些定时器还能够处理增量编码器的信号,也能处理 1~4个霍尔传感器的数字输出。每个定时器都 PWM 输出,或作为简单时间基准。

基本定时器

TIM14

该定时器基于一个 16 位自动重载递增计数器和一个 16 位预分频器。具有一个单通道,用于输入捕获/输出比较,PWM 或单脉冲模式输出。在调试模式下,其计数器可被冻结。

TIM16 / TIM17

定时器均基于一个 16 位自动重载递增计数器和一个 16 位预分频器。有一个单通道,用于输入捕获/输出比较,PWM 或单脉冲模式输出。有互补输出,带死区生成和独立 DMA 请求生成功能。在调试模式下,定时器处于关闭状态。

独立看门狗

独立的看门狗是基于一个 12 位的递减计数器和一个 8 位的预分频器,它由一个内部独立的 40KHz 的振荡器提供时钟;因为这个振荡器独立于主时钟,所以它可运行于停机和待机模式。它可以用在系统发生问题时复位整个系统或作为一个自由定时器为应用程序提供超

时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,看门狗被关闭。

窗口看门狗

窗口看门狗内有一个7位的递减计数器,并可以设置成自由运行。它可以被当成看门狗用于在发生问题时复位整个系统。它由主时钟驱动,具有早期预警中断功能;在调试模式下,看门狗被关闭。

系统时基定时器

这个定时器是专用于实时操作系统,也可当成一个标准的递减计数器。它具有下述特性:

- 24 位的递减计数器
- 自动重加载功能
- 当计数器为 0 时能产生一个可屏蔽系统中断
- 可编程时钟源

2.2.17 通用异步收发器 (UART)

UART 接口具有硬件的 CTS 和 RTS 信号管理。支持 LIN 主从功能。兼容 ISO7816 智能卡模式。UART 接口支持输出数据长度可为 5 位、6 位、7 位、8 位、9 位均可配置。

所有 UART 接口都可以使用 DMA 操作。

2.2.18 I2C 总线

I2C 总线接口,能够工作于多主模式或从模式,支持标准和快速模式。

I2C 接口支持 7 位或 10 位寻址。

2.2.19 串行外设接口 (SPI)

SPI 接口,在从或主模式下,可配置成每帧 1~32 位。

所有的 SPI 接口都可以使用 DMA 操作。

2.2.20 通用串行总线 (USB)

产品中内嵌一个兼容全速 USB 的设备控制器, 遵循全速 USB 设备 (12 兆位/秒) 标准,端点可由软件配置。USB 专用的 48MHz 时钟由内部 PLL 或在常温内部时钟 (HSI) 直接产生。

2.2.21 通用输入输出接口 (GPIO)

每个 GPIO 引脚都可以由软件配置成输出 (推挽或开漏)、输入 (带或不带上拉或下拉) 或复用的外设功能端口。多数 GPIO 引脚都与数字或模拟的复用外设共用。所有的 GPIO 引脚都有大电流通过能力。

在需要的情况下,I/O 引脚的外设功能可以通过一个特定的操作锁定,以避免意外的写入I/O 寄存器。

2.2.22 ADC(模拟/数字转换器)

产品内嵌 1 个 12 位的模拟/数字转换器 (ADC), ADC 可用多达 10 个外部通道,可以实现单次、单周期和连续扫描转换。在扫描模式下,自动进行已选定的一组模拟输入上的采集值转换。

ADC 可以使用 DMA 操作。

模拟看门狗功能允许非常精准地监视一路或所有选中的通道,当被监视的信号超出预置的阈值时,将产生中断。

由通用定时器 (TIMx) 和高级控制定时器产生的事件,可以分别内部级联到 ADC 的触发,应用程序能使 ADC 转换与时钟同步。

2.2.23 温度传感器

温度传感器产生一个随温度线性变化的电压。温度传感器在内部被连接到 ADC 的输入通道上,用于将传感器的输出转换到数字数值。

2.2.24 串行单线 SWD 调试口 (SW-DP)

内嵌 ARM 的两线串行调试端口 (SW-DP)。

ARM 的 SW-DP 接口允许通过串行线调试工具连接到单片机。

2.2.25 比较器 (COMP)

产品内嵌 2 个比较器,可独立使用 (适用所有终端上的 I/O 口),也可与定时器结合使用。也可用于多种功能,包括:

- 由模拟信号触发低功耗模式唤醒事件
- 调节模拟信号
- 定时器输出的 PWM 相结合,组成逐周期的电流控制回路
- 轨对轨比较器
- 每个比较器有可选门限
 - 可复用的 I/O 引脚
 - 内部比较电压 CRV 可选择 AVDD 或者内部基准电压的分压电压值
- 可编程迟滞电压
- 可编程的速率和功耗
- 输出端可以重定向到一个 I/O 端口或多个定时器输入端,可以触发以下事件:
 - 捕获事件
 - OCref clr 事件 (逐周期电流控制)
 - 为实现快速 PWM 关断的刹车事件

2.2.26 蓝牙低功耗广播

本芯片集成了蓝牙规范和射频收发器,兼容国际通信联盟无线电通信局定义的无需授权许可的 2.4GHz 的 ISM 频段。

为芯片供电后,射频收发外围只需搭建简单的外围元件即可实现无线收发功能。它提供高达-80dBm 的优秀的射频链路预算。

图 1. 模块框图

图 2. 时钟树

3

引脚定义

引脚定义

图 3. LQFP48 引脚分布

图 4. QFN32 引脚分布

表 3. 引脚定义

引脚编码		引脚名称	-¥⊱∓मो (1)	I/O 电平 ⁽²⁾	主功能	可决处有田山外	附加功能
LQFP48	QFN32	1 分牌名称	类型 (1)	1/0 电平 (2)	土切肥	可选的复用功能	附加切肥
1	-	NC	-	-	NC	-	-
2		PC13	I/O	TC	PC13	TIM2_CH1	
2	-	PCIS	1/0	10	PCI3	TIM2_ETR	-
3		PC14	I/O	TC	PC14	TIM2 CH2	
	-	OSC32_IN	1/0	10	PC14	TIM2_CH2	-
4		PC15	I/O	TC	PC15	TIMO CHO	
4	-	OSC32_OUT	1/0	10	PCIS	TIM2_CH3	-
						I2C1_SDA	
		DDO				TIM1_CH1N	
5	2	PD0	I/O	TC	PD0	UART1_TX	-
		OSC_IN			TIM1_CH2		
						SPI1_MOSI	

Description	引脚编码		可吸力が	₩ ₩(1)	ルの 中型 (2)	→ rl. Ab	可选品与电子的	IXI-hn Th 台브	
PD1	LQFP48	QFN32	1	突型 (1)	I/O 电平 ⁽²⁾	土切耶	可选的复用切能	附加切能	
B							TIM1_BKIN		
FD1							I2C1_SCL		
10			DD1				TIM1_CH1		
TIMI_CH2 SPII_MISO SPII_SCK	6	3		I/O	TC	PD1	UART1_RX	-	
SPI1_SCK			030_001				TIM1_CH2		
7							SPI1_MISO		
8							SPI1_SCK		
9 8 VDDA S - VDDA	7	4	nRST	I/O	TC	nRST	-	-	
10	8	-	VSSA	S	-	VSSA	-	-	
10	9	8	VDDA	S	-	VDDA	-	-	
10							UART2_CTS		
10 9 WKUP 10 TC PA0 UART1_RX COMP2_INP[0] COMP1_OUT COMP1_INM[2] COMP1_OUT COMP1_INM[2] COMP1_INM[2] COMP1_INM[2] COMP1_INM[2] COMP1_INM[2] COMP1_INM[2] COMP1_INP[1] COMP1_INP[1] COMP1_INP[1] COMP1_INP[1] COMP1_INP[1] COMP1_INP[1] COMP1_INP[2] COMP1_INP[2] COMP1_INP[2] COMP1_INP[2] COMP1_INP[2] COMP1_INP[2] COMP1_INP[2] COMP1_INP[2] COMP1_INP[3] COMP1_INM[0] COMP1_INM[0]							TIM2_CH1	ADC1_VIN[0]	
WKUP	10	0	PA0	1/0	TO	DAO	TIM2_ETR	COMP1_INP[0]	
COMP1_OUT	10	9	WKUP	1/0	10	PAU	UART1_RX	COMP2_INP[0]	
11							TIM14_CH1	COMP1_INM[2]	
11							COMP1_OUT		
11				I/O	TC		UART2_RTS		
TIM1_CH2 UART1_TX UART2_TX ADC1_VIN[2] TIM2_CH3 COMP2_INP[1] 12 10 PA2 I/O TC PA2 TIM2_CH3 COMP2_INP[2] TIM1_CH2N COMP2_INP[2] COMP2_OUT COMP2_INM[2] UART2_RX ADC1_VIN[3] TIM1_CH3 COMP1_INP[3] TIM1_CH3 COMP1_INP[3] TIM1_CH3 COMP2_INP[3] SPI1_NSS SPI1_SCK ADC1_VIN[4] 14 12 PA4 I/O TC PA4 TIM1_CH3N COMP1_INM[0] TIM1_CH3N COMP1_INM[0] TIM1_CH3N COMP1_INM[0] TIM1_CH3N COMP1_INM[0] TIM1_CH3N COMP1_INM[0] TIM1_BKIN SPI1_SCK SPI1_NSS ADC1_VIN[5] SPI1_NSS ADC1_VIN[6] TIM2_CH1 COMP1_INM[1] TIM2_ETR COMP1_INM[1]	44		DA.4			DA4	TIM2_CH2		
12 10 PA2 I/O TC PA2 UART2_TX ADC1_VIN[2] TIM2_CH3 COMP1_INP[2] TIM1_CH2N COMP2_INP[2] COMP2_OUT COMP2_INM[2] UART2_RX ADC1_VIN[3] ADC1_VIN[3] ADC1_VIN[3] ADC1_VIN[3] ADC1_VIN[3] ADC1_VIN[3] TIM1_CH3 COMP1_INP[3] COMP2_INP[3] SPI1_NSS SPI1_SCK ADC1_VIN[4] ADC1_VIN[6] ADC1_VIN[6	11	-	PA1			PAT	TIM1_CH2		
12 10 PA2 1/0 TC PA2 TIM2_CH3 COMP1_INP[2] COMP2_INP[2] COMP2_INP[2] COMP2_INM[2] COMP2_INM[2] COMP2_INM[2] COMP2_INM[2] COMP2_INM[2] COMP2_INM[2] COMP1_INP[3] COMP1_INP[3] COMP1_INP[3] COMP1_INP[3] COMP1_INP[3] COMP1_INP[3] COMP1_INP[3] COMP1_INM[3] COMP1							UART1_TX	COMP2_INP[1]	
12 10 PA2 I/O TC PA2 TIM1_CH2N COMP2_INP[2] COMP2_OUT COMP2_INP[2] COMP2_OUT COMP2_INM[2] UART2_RX ADC1_VIN[3] UART2_RX ADC1_VIN[3] TIM1_CH3 COMP1_INP[3] TIM1_CH3 COMP2_INP[3] SPI1_NSS SPI1_NSS SPI1_NSS SPI1_SCK ADC1_VIN[4] TIM1_CH3N COMP1_INM[0] TIM14_CH1 COMP2_INM[0] TIM14_CH1 COMP2_INM[0] TIM1_BKIN SPI1_SCK SPI1_NSS ADC1_VIN[5] SPI1_NSS ADC1_VIN[5] TIM1_EXTRACTION TO TO PA5 TIM2_CH1 COMP1_INM[1] TIM2_ETR COMP2_INM[1]							UART2_TX	ADC1_VIN[2]	
TIM1_CH2N	40	10	DAG	1/0		DAG	TIM2_CH3	COMP1_INP[2]	
13	12		10	PA2	1/0	10	PAZ	TIM1_CH2N	COMP2_INP[2]
13 11 PA3 I/O TC PA3 TIM2_CH4 COMP1_INP[3] TIM1_CH3 COMP2_INP[3] SPI1_NSS SPI1_SCK ADC1_VIN[4] TIM1_CH3N COMP1_INM[0] TIM14_CH1 COMP2_INM[0] TIM1_BKIN SPI1_SCK SPI1_SCK SPI1_SCK SPI1_SCK SPI1_NSS ADC1_VIN[5] TIM2_ETR COMP2_INM[1]							COMP2_OUT	COMP2_INM[2]	
TIM1_CH3 COMP2_INP[3] SPI1_NSS SPI1_SCK ADC1_VIN[4] TIM1_CH3N COMP1_INM[0] TIM1_CH3N COMP1_INM[0] TIM1_BKIN SPI1_SCK SPI1_SCK SPI1_SCK SPI1_NSS ADC1_VIN[5] TIM2_ETR COMP2_INM[1]							UART2_RX	ADC1_VIN[3]	
SPI1_NSS SPI1_SCK ADC1_VIN[4]	13	11	PA3	I/O	TC	PA3	TIM2_CH4	COMP1_INP[3]	
14 12 PA4 I/O TC PA4 TIM1_CH3N COMP1_INM[0] TIM14_CH1 COMP2_INM[0] TIM1_BKIN SPI1_SCK SPI1_SCK SPI1_SCK SPI1_NSS ADC1_VIN[5] TIM2_CH1 COMP1_INM[1] TIM2_ETR COMP2_INM[1]							TIM1_CH3	COMP2_INP[3]	
14 12 PA4 I/O TC PA4 TIM1_CH3N COMP1_INM[0] TIM14_CH1 COMP2_INM[0] TIM1_BKIN SPI1_SCK SPI1_NSS ADC1_VIN[5] TIM2_CH1 COMP1_INM[1] TIM2_ETR COMP2_INM[1]							SPI1_NSS		
TIM14_CH1							SPI1_SCK	ADC1_VIN[4]	
TIM1_BKIN SPI1_SCK SPI1_NSS ADC1_VIN[5] TIM2_CH1 COMP1_INM[1] TIM2_ETR COMP2_INM[1]	14	12	PA4	I/O	TC	PA4	TIM1_CH3N	COMP1_INM[0]	
SPI1_SCK SPI1_SCK SPI1_NSS ADC1_VIN[5]							TIM14_CH1	COMP2_INM[0]	
15 13 PA5 I/O TC PA5 SPI1_NSS ADC1_VIN[5] TIM2_CH1 COMP1_INM[1] TIM2_ETR COMP2_INM[1]							TIM1_BKIN		
15 13 PA5 I/O TC PA5 TIM2_CH1 COMP1_INM[1] TIM2_ETR COMP2_INM[1]	-						SPI1_SCK		
15 13 PA5 I/O TC PA5 TIM2_CH1 COMP1_INM[1] TIM2_ETR COMP2_INM[1]							SPI1_NSS	ADC1_VIN[5]	
TIM2_ETR COMP2_INM[1]	15	13	PA5	I/O	TC	PA5	TIM2_CH1		
							TIM2_ETR		
							TIM1_CH3N		

Table	引脚编码		न। भग <i>दे</i> अन	्रा (1) विकास	uo 中亚 (2)		可收处有田屯的	以升加工十分		
16	LQFP48	QFN32	引脚名称	类型 ⁽¹⁾	I/O 电平 ⁽²⁾	主功能	可选的复用功能	PI3 7/H-5/J FIE		
16							SPI1_MISO			
16								TIM3_CH1		
TIM16_CH3 TIM1_CH3 COMP1_OUT	16		DA 6	1/0	TC	DAG	TIM1_BKIN	ADC1 VINIGI		
17	10	_	PAO	1/0	10	FAU	TIM16_CH1	ADC I_VIN[0]		
17							TIM1_CH3			
17							COMP1_OUT			
17							SPI1_MOSI			
17							TIM3_CH2			
17 - PA7							TIM1_CH1N			
18	17		DA 7	1/0	TC	DA 7	TIM1_CH3N	ADC4 \/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
TIM1_CH2N COMP2_OUT	17	-	PA7	1/0	10	PA/	TIM14_CH1	ADC I_VIN[7]		
Timage							TIM17_CH1			
18							TIM1_CH2N			
18							COMP2_OUT			
18							TIM3_CH3			
TIM1_CH1N TIM1_CH3 TIM1_CH1 TIM3_CH4 TIM1_CH3N TIM1_CH3N TIM1_CH3N TIM1_CH3N TIM1_CH3N TIM1_CH3N TIM1_CH2N TIM1_CH3N TIM1_CH2 TIM1_CH1N 20 17 VDD S - VDD 21 25 RF_VDD1V2 S - RF_VDD1V2 22 - IRQ S - IRQ 23 - NC S - NC 24 - RF_XO O - RF_XO 25 - RF_XI I - RF_XI 26 - RF_VDD S - RF_VDD 27 - RF_VSS S - RF_VSS 28 6 ANTP - ANTP 29 5 VSS S - VSS 30 - RF_VDD S - RF_VDD	40		DDG		TC	PB0	TIM1_CH2N	ADC1_VIN[8]		
19	18	-	- PBU	1/0			TIM1_CH1N			
19							TIM1_CH3			
PB1							TIM14_CH1			
19 - PB1 I/O TC PB1 TIM1_CH2N TIM2_CH3 TIM1_CH2N TIM1_CH2N TIM1_CH1N ADC1_VIN[9] 20 17 VDD S - VDD - - 21 25 RF_VDD1V2 S - RF_VDD1V2 - - 22 - IRQ S - IRQ - - 23 - NC S - NC - - 24 - RF_XO O - RF_XO - - 25 - RF_XI I - RF_XI - - 26 - RF_VDD S - RF_VDD - - 27 - RF_VSS S - RF_VSS - - 28 6 ANTP - - ANTP - - 29 5 VSS S - RF_VDD - - 30 - RF_VDD S - RF_VDD - -		-	-					TIM3_CH4		
TIM2_CH3 TIM1_CH2 TIM1_CH1N 20 17 VDD S - VDD 21 25 RF_VDD1V2 S - RF_VDD1V2 22 - IRQ S - IRQ 23 - NC S - NC 24 - RF_XO O - RF_XO 25 - RF_XI I - RF_XI 26 - RF_VDD S - RF_VDD 27 - RF_VSS S - RF_VSS 28 6 ANTP - ANTP 29 5 VSS S - RF_VDD 30 - RF_VDD S - RF_VDD									TIM1_CH3N	
TIM1_CH2 TIM1_CH1N 20 17 VDD S - VDD 21 25 RF_VDD1V2 S - RF_VDD1V2 22 - IRQ S - IRQ 23 - NC S - NC 24 - RF_XO O - RF_XO 25 - RF_XI I - RF_XI 26 - RF_VDD S - RF_VDD 27 - RF_VSS S - RF_VSS 28 6 ANTP - ANTP 29 5 VSS S - RF_VDD 30 - RF_VDD S - RF_VDD	19			- PB1	I/O	TC	PB1	TIM1_CH2N	ADC1_VIN[9]	
TIM1_CH1N								TIM2_CH3		
20 17 VDD S - VDD - - - 21 25 RF_VDD1V2 S - RF_VDD1V2 - <td></td> <td></td> <td></td> <td></td> <td rowspan="2"></td> <td rowspan="2"></td> <td>TIM1_CH2</td> <td></td>							TIM1_CH2			
21 25 RF_VDD1V2 S - RF_VDD1V2 - - 22 - IRQ S - IRQ - - 23 - NC S - NC - - 24 - RF_XO O - RF_XO - - 25 - RF_XI I - RF_XI - - 26 - RF_VDD S - RF_VDD - - 27 - RF_VSS S - RF_VSS - - 28 6 ANTP - - ANTP - - 29 5 VSS S - RF_VDD - - 30 - RF_VDD S - RF_VDD - -							TIM1_CH1N			
22 - IRQ S - IRQ - - 23 - NC S - NC - - 24 - RF_XO O - RF_XO - - - 25 - RF_XI I - RF_XI - - - 26 - RF_VDD S - RF_VDD - - - 27 - RF_VSS S - RF_VSS - - - 28 6 ANTP - - ANTP - - - 29 5 VSS S - VSS - - - 30 - RF_VDD S - RF_VDD - - -	20	17	VDD	S	-	VDD	-	-		
23 - NC S - NC -	21	25	RF_VDD1V2	S	-	RF_VDD1V2	-	-		
24 - RF_XO 0 - RF_XO - - 25 - RF_XI I - RF_XI - - 26 - RF_VDD S - RF_VDD - - 27 - RF_VSS S - RF_VSS - - 28 6 ANTP - - ANTP - - 29 5 VSS S - VSS - - - 30 - RF_VDD S - RF_VDD - - -	22	-	IRQ	S	-	IRQ	-	-		
25 - RF_XI I - RF_XI - - 26 - RF_VDD S - RF_VDD - - 27 - RF_VSS S - RF_VSS - - 28 6 ANTP - - ANTP - - 29 5 VSS S - VSS - - 30 - RF_VDD S - RF_VDD - -	23	-	NC	S	-	NC	-	-		
26 - RF_VDD S - RF_VDD - - 27 - RF_VSS S - RF_VSS - - 28 6 ANTP - - ANTP - - 29 5 VSS S - VSS - - 30 - RF_VDD S - RF_VDD - -	24	-	RF_XO	0	-	RF_XO	-	-		
27 - RF_VSS S - RF_VSS - - 28 6 ANTP - - ANTP - - 29 5 VSS S - VSS - - 30 - RF_VDD S - RF_VDD - -	25	-	RF_XI	I	-	RF_XI	-	-		
28 6 ANTP - - ANTP - - 29 5 VSS S - VSS - - 30 - RF_VDD S - RF_VDD - -	26	-	RF_VDD	S	-	RF_VDD	-	-		
29 5 VSS S - VSS - <td>27</td> <td>-</td> <td>RF_VSS</td> <td>S</td> <td>-</td> <td>RF_VSS</td> <td>-</td> <td>-</td>	27	-	RF_VSS	S	-	RF_VSS	-	-		
30 - RF_VDD S - RF_VDD	28	6	ANTP	-	-	ANTP	-	-		
	29	5	VSS	S	-	VSS	-	-		
31 - RF_VDD S - RF_VDD	30	-	RF_VDD	S	-	RF_VDD	-	-		
	31	-	RF_VDD	S	-	RF_VDD	-	-		

引脚编码		可明点场	₩ . ## (1)	10 中華(2)		可选的复用协能	附加功能		
LQFP48	QFN32	引脚名称	类型 ⁽¹⁾	I/O 电平 ⁽²⁾	主功能	可选的复用功能	913 704 457 865		
						UART1_CTS			
						TIM1_CH4			
						TIM1_CH3			
32	21	PA11	I/O	TC	PA11	CAN1_RX	-		
						I2C1_SCL			
						TIM1_BKIN			
						COMP1_OUT			
						UART1_RTS			
						TIM1_ETR			
						TIM1_CH3N			
33	22	PA12	I/O	TC	PA12	CAN1_TX	-		
						I2C1_SDA			
						TIM1_CH2			
						COMP2_OUT			
34	23	PA13	I/O	TC	PA13	SWDIO	_		
	20	17(10	""	10	17(10	UART1_TX	_		
35	_	PD2	I/O	TC	PD2	I2C1_SCL	_		
	_		1 02	1/0	10		SPI1_NSS		
						I2C1_SDA			
36	-	-	PD3	I/O	TC	PD3	SPI1_SCK	-	
						SPI1_MISO			
	24 PA14							SWDCLK	
37		24 PA14	I/O	TC	PA14	UART2_TX	-		
					UART1_RX				
						SPI1_NSS			
						UART2_RX			
38	_	PA15	I/O	TC	PA15	TIM2_CH1	_		
30	_	1 7 13	1/0	10	1713	TIM2_ETR	-		
						TIM1_CH1N			
						TIM1_CH3N			
						SPI1_SCK			
						TIM2_CH2			
39	26	26 PB3	I/O	TC	PB3	TIM1_CH1	-		
						TIM1_CH2N			
						TIM1_CH3			

引脚编码		可删分粉	引脚名称 类型 (1)	I/O 电平 ⁽²⁾	主功能	可选的有用功能	附加功能	
LQFP48	QFN32	引脚名称	英型 (1)		王切郎	可选的复用功能	附加切配	
						SPI1_MISO		
				TC		TIM3_CH1		
40	27	PB4	I/O		PB4	TIM1_CH2		
40	21	F D4	1/0	10	FD4	TIM17_BKIN	-	
						TIM1_CH3N		
						TIM1_CH2N		
						SPI1_MOSI		
						TIM3_CH2		
41	28	PB5	I/O	TC	PB5	TIM16_BKIN	-	
						TIM1_CH1		
						TIM1_CH2		
						UART1_TX		
						I2C1_SCL		
42	20	DDe	1/0	тс	PB6	TIM16_CH1N		
42	29	PB6	I/O		PBO	TIM1_CH2N	-	
						TIM1_CH2		
						TIM1_CH1N		
						UART1_RX		
	30					I2C1_SDA		
43		PB7	I/O	TC	PB7	TIM17_CH1N	-	
							TIM1_CH3	
							TIM1_CH1	
44	31	воото	I	-	воото	-	-	
						UART1_RX		
						I2C1_SCL		
45	31	PB8	I/O	тс	PB8	TIM16_CH1	-	
45	31	PB8	1/0	10	PBO	TIM1_CH1		
						CAN1_RX		
						TIM3_CH2		
						UART1_TX		
46		DDO	1/0	TC	DDO	I2C1_SDA		
46	-	PB9	I/O	TC	PB9	TIM17_CH1	-	
						TIM3_CH3		
47	7	VSS	S	-	VSS	-	-	
48	-	VDD	S	-	VDD	-	-	
-	1	RF_OSC_IN	I	-	RF_OSC_IN	-	-	

—————— 引脚	编码	ai nin 6 th	<u>अंद्र क</u> ा (1)	10 4 A (3)	ملاء المحادث		771 to -st. Ab
LQFP48	QFN32	引脚名称	类型 ⁽¹⁾	I/O 电平 ⁽²⁾	主功能	可选的复用功能	附加功能
-	14	PB10	I/O	тс	PB10	I2C1_SCL TIM2_CH3	-
-	15	PB11	I/O	TC	PB11	I2C1_SDA TIM2_CH4	-
-	16	VSS	I/O	тс	VSS	I2C1_SDA TIM2_CH4	-
-	18	PA8 RF_IRQ	I/O	TC	PA8	MCO TIM1_CH1 TIM1_CH2 TIM1_CH3	-
-	19	PA9	I/O	TC	PA9	UART1_TX TIM1_CH2 UART1_RX I2C1_SCL MCO TIM1_CH1N	-
-	20	PA10	I/O	TC	PA10	TIM17_BKIN UART1_RX TIM1_CH3 UART1_TX I2C1_SDA TIM1_CH1 TIM16_CH1	-
-	32	RF_OSC_OUT	0	-	RF_OSC_OUT	-	-

- 1. I= 输入, O= 输出, S= 电源, HiZ = 高阻
- 2. TC: 标准 IO, 输入信号不超过 VDD 电压

表 4. PA 端口功能复用 AF0-AF7

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0	-	UART2_CTS	TIM2_CH1 TIM2_ETR	-	UART1_RX	-	TIM14_CH1	COMP1_OUT
PA1	-	UART2_RTS	TIM2_CH2	TIM1_CH2	UART1_TX	-	-	-
PA2	-	UART2_TX	TIM2_CH3	TIM1_CH2N	-	-	-	COMP2_OUT
PA3	-	UART2_RX	TIM2_CH4	TIM1_CH3	-	-	-	-
PA4	SPI1_NSS	SPI1_SCK	-	TIM1_CH3N	TIM14_CH1	TIM1_BKIN	-	-
PA5	SPI1_SCK	SPI1_NSS	TIM2_CH1 TIM2_ETR	-	-	-	TIM1_CH3N	-

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA6	SPI1 MISO	TIM3_CH1	TIM1_BKIN			TIM16 CH1	TIM1 CH3	COMP1 OUT
FAU	SFII_IVIISO	TIIVI3_CITI	TIIVIT_DIXIIN	-	-	TIIVITO_CITT	TIMIT_CITS	COMP I_OO I
PA7	SPI1_MOSI	TIM3_CH2	TIM1_CH1N	TIM1_CH3N	TIM14_CH1	TIM17_CH1	TIM1_CH2N	COMP2_OUT
PA8	MCO	-	TIM1_CH1	-	-	-	TIM1_CH2	TIM1_CH3
PA9	-	UART1_TX	TIM1_CH2	UART1_RX	I2C1_SCL	MCO	TIM1_CH1N	-
PA10	TIM17_BKIN	UART1_RX	TIM1_CH3	UART1_TX	I2C1_SDA	TIM1_CH1	TIM16_CH1	-
PA11	-	UART1_CTS	TIM1_CH4	TIM1_CH3	CAN1_RX	I2C1_SCL	TIM1_BKIN	COMP1_OUT
PA12	-	UART1_RTS	TIM1_ETR	TIM1_CH3N	CAN1_TX	I2C1_SDA	TIM1_CH2	COMP2_OUT
PA13	SWDIO	-	-	UART1_TX	-	-	-	-
PA14	SWDCLK	UART2_TX	-	UART1_RX	-	-	-	-
PA15	SPI1_NSS	UART2_RX	TIM2_CH1 TIM2_ETR	-	-	-	TIM1_CH1N	TIM1_CH3N

表 5. PB 端口功能复用 AF0-AF7

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB0	-	TIM3_CH3	TIM1_CH2N	TIM1_CH1N	TIM1_CH3	-	-	-
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	TIM1_CH2N	TIM2_CH3	TIM1_CH2	TIM1_CH1N	-
PB3	SPI1_SCK	-	TIM2_CH2	-	TIM1_CH1	-	TIM1_CH2N	TIM1_CH3
PB4	SPI1_MISO	TIM3_CH1	-	-	TIM1_CH2	TIM17_BKIN	TIM1_CH3N	TIM1_CH2N
PB5	SPI1_MOSI	TIM3_CH2	TIM16_BKIN	-	-	-	TIM1_CH1	TIM1_CH2
PB6	UART1_TX	I2C1_SCL	TIM16_CH1N	-	TIM1_CH2N	-	TIM1_CH2	TIM1_CH1N
PB7	UART1_RX	I2C1_SDA	TIM17_CH1N	-	-	-	TIM1_CH3	TIM1_CH1
PB8	UART1_RX	I2C1_SCL	TIM16_CH1	TIM1_CH1	CAN1_RX	-	TIM3_CH2	-
PB9	UART1_TX	I2C1_SDA	TIM17_CH1	-	CAN1_TX	-	TIM3_CH3	-
PB10	-	I2C1_SCL	TIM2_CH3	-	-	-	-	-
PB11	-	I2C1_SDA	TIM2_CH4	-	-	-	-	-

表 6. PC 端口功能复用 AF0-AF7

Pin	AF0	A E 4	AEO	A E 2	AF4	AF5	AEG	A E 7
Name		AF1	AF2	AF3	AF4	AF5	AF6	AF7
PC13							TIM2_CH1	
PCIS	-	-	-	-	-	-	TIM2_ETR	-
PC14	-	-	-	-	-	-	TIM2_CH2	-
PC15	-	-	-	-	-	-	TIM2_CH3	-

表 7. PD 端口功能复用 AF0-AF7

Pin	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Name		All	Al Z	ζ.	Al-4	Al 3	AI 0	Al /
PD0	-	I2C1_SDA	TIM1_CH1N	UART1_TX	TIM1_CH2	SPI1_MOSI	SPI1_MOSI	-

Pin	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Name		AFI	AF2	AF3	AF4	AFS	AFO	AF1
PD1	TIM1_BKIN	I2C1_SCL	TIM1_CH1	UART1_RX	TIM1_CH2	SPI1_MISO	SPI1_SCK	-
PD2	-	I2C1_SCL	-	-	-	SPI1_NSS	SPI1_NSS	-
PD3	-	I2C1_SDA	-	-	-	SPI1_SCK	SPI1_MISO	ı

4

存储器映像

存储器映像

表 8. 存储器映像

总线	编址范围	大小	外设	备注
	0,0000,0000,0000,5555	CALCD	主闪存存储器,系统存储器或是	
	0x0000 0000 -0x0000 FFFF	64 KB	SRAM 有赖于 BOOT 的配置	
	0x0001 0000 -0x07FF FFFF	~ 128 MB	Reserved	
	0x0800 0000 -0x0800 FFFF	64 KB	Main Flash memory	
	0x0801 0000 -0x1FFD FFFF	~ 383 MB	Reserved	
Flash	0x1FFE 0000 -0x1FFE 01FF	0.5 KB	Reserved	
	0x1FFE 0200 -0x1FFE 0FFF	3 KB	Reserved	
	0x1FFE 1000 -0x1FFE 1BFF	3 KB	Reserved	
	0x1FFE 1C00 -0x1FFF F3FF	~ 256 MB	Reserved	
	0x1FFF F400 -0x1FFF F7FF	1 KB	System memory	
	0x1FFF F800 -0x1FFF F80F	16 B	Option bytes	
	0x1FFF F810 -0x1FFF FFFF	~2 KB	Reserved	
CDAM	0x2000 0000 -0x2000 1FFF	8 KB	SRAM	
SRAM	0x2000 2000 -0x2FFF FFFF	~ 255 MB	Reserved	
	0x4000 0000 -0x4000 03FF	1 KB	TIM2	
	0x4000 0400 -0x4000 07FF	1 KB	TIM3	
	0x4000 0800 -0x4000 0BFF	8 KB	Reserved	
	0x4000 2800 -0x4000 2BFF	1 KB	RTC/BKP	
	0x4000 2C00 -0x4000 2FFF	1 KB	WWDG	
	0x4000 3000 -0x4000 33FF	1 KB	IWDG	
	0x4000 3400 -0x4000 37FF	1 KB	Reserved	
APB1	0x4000 3800 -0x4000 3BFF	1 KB	Reserved	
	0x4000 4000 -0x4000 43FF	1 KB	Reserved	
	0x4000 4400 -0x4000 47FF	1 KB	UART2	
	0x4000 4800 -0x4000 4BFF	3 KB	Reserved	
	0x4000 5400 -0x4000 57FF	1 KB	I2C1	
	0x4000 5800 -0x4000 5BFF	1 KB	Reserved	
	0x4000 5C00 -0x4000 5FFF	1 KB	USB	
	0x4000 6000 -0x4000 63FF	1 KB	Reserved	

总线	编址范围	大小	外设	备注
	0x4000 6400 -0x4000 67FF	1 KB	Reserved	
	0x4000 6800 -0x4000 6BFF	1 KB	Reserved	
APB1	0x4000 6C00 -0x4000 6FFF	1 KB	CSR	
	0x4000 7000 -0x4000 73FF	1 KB	PWR	
	0x4000 7400 -0x4000 FFFF	35 KB	Reserved	
	0x4001 0000 -0x4001 03FF	1 KB	SYSCFG	
	0x4001 0400 -0x4001 07FF	1 KB	EXTI	
	0x4001 0800 -0x4001 23FF	7 KB	Reserved	
	0x4001 2400 -0x4001 27FF	1 KB	ADC1	
	0x4001 2800 -0x4001 2BFF	1 KB	Reserved	
	0x4001 2C00 -0x4001 2FFF	1 KB	TIM1	
APB2	0x4001 3000 -0x4001 33FF	1 KB	SPI1	
	0x4001 3400 -0x4001 37FF	1 KB	DBGMCU	
	0x4001 3800 -0x4001 3BFF	1 KB	UART1	
	0x4001 3C00 -0x4001 3FFF	1 KB	COMP	
	0x4001 4000 -0x4001 43FF	1 KB	TIM14	
	0x4001 4400 -0x4001 47FF	1 KB	TIM16	
	0x4001 4800 -0x4001 4BFF	1 KB	TIM17	
	0x4001 4C00 -0x4001 7FFF	13 KB	Reserved	
	0x4002 0000 -0x4002 03FF	1 KB	DMA	
	0x4002 0400 -0x4002 0FFF	3 KB	Reserved	
	0x4002 1000 -0x4002 13FF	1 KB	RCC	
	0x4002 1400 -0x4002 1FFF	3 KB	Reserved	
	0x4002 2000 -0x4002 23FF	1 KB	Flash Interface	
	0x4002 2400 -0x4002 2FFF	3 KB	Reserved	
	0x4002 3000 -0x4002 33FF	1 KB	CRC	
AHB	0x4002 3400 -0x4002 FFFF	47 KB	Reserved	
	0x4003 0000 -0x4003 03FF	1 KB	Reserved	
	0x4003 0400 -0x47FF FFFF	~ 127 MB	Reserved	
	0x4800 0000 -0x4800 03FF	1 KB	GPIOA	
	0x4800 0400 -0x4800 07FF	1 KB	GPIOB	
	0x4800 0800 -0x4800 0BFF	1 KB	GPIOC	
	0x4800 0C00 -0x4800 0FFF	1 KB	GPIOD	
	0x4800 1000 -0x5FFF FFFF	~ 384 MB	Reserved	

5

典型应用电路

典型应用电路

图 5. LQFP48 典型应用电路

表 9. 外部组件列表

R34、C14	复位电路
C25	退耦电容
R39	启动选择电阻
R43	放大器负反馈电阻

R45	时钟阻抗匹配电阻
X2	主振荡器电阻
C19、C21	晶体加载电容
C26	内部稳压器退耦电容
C27、C28	晶体加载电容
X3	射频时钟晶体
C23、C29、L1	RF 匹配电容
R48、R49	USB 阻抗匹配电阻

图 6. QFN32 典型应用电路

注:此典型应用电路采用射频模块和控制模块共用一个晶振方案,假如客户使用控制模块内部时钟,则无需添加 C1,且 Pin2 可做 GPIO 使用。

表 10. 外部组件列表

退耦滤波电容
晶振加载电容
共用时钟电容
1.2V 数字调节器退耦电容
RF 匹配网络电容器
复位电路
启动方式选择电阻
16MHz 晶振(为射频模块和控制模块提供
时钟来源)
2.4G 射频天线

6 电气特性

电气特性

6.1 测试条件

除非特别说明,所有电压都以 V_{SS} 为基准。

6.1.1 典型数值

除非特别说明,典型数据是基于 $T_A=25^{\circ}C$ 和 $V_{DD}=3.3V$ 。这些数据仅用于设计指导而未经测试。

6.1.2 典型曲线

除非特别说明, 典型曲线仅用于设计指导而未经测试。

6.1.3 负载电容

测量引脚参数时的负载条件示于下图。

图 7. 引脚的负载条件

6.1.4 引脚输入电压

引脚上输入电压的测量方式示于下图。

图 8. 引脚输入电压

6.1.5 供电方案

供电设计方案示于下图。

图 9. 供电方案

6.1.6 电流消耗测量

引脚上电流消耗的测量方式示于下图。

图 10. 电流消耗测量方案

6.2 RF 一般特性

表 11. RF 一般特性

标注	参数	测试条件	最小值	典型值	最大值	単位
FREQ	频率变化	$V_{DD} = 3.0V, T_A = 25^{\circ}C$	2400		2483.5	MHz
FC	信道间隔	$V_{DD} = 3.0V, T_A = 25^{\circ}C$		2		MHz
RFch	RF 通道中心	$V_{DD} = 3.0V, T_A = 25^{\circ}C$	2402		2480	MHz

6.3 RF 发射机特性

表 12. 射频发射机特性表

	7,233 1/013 IE 12					
标注	参数	测试条件	最小值	典型值	最大值	单位
MOD	调制方式	GFSK				
ВТ	带宽			0.5		
M _{index}	调制指数		0.45	0.5	0.55	
DR	空气传输指数			1		Mbps
P _{max}	最大传输功率				+4	dBm
P _{BW1M}	6dB 带宽调制载波 (1Mbps)		500			KHz
P _{SPUR}	杂散发射				-41	dBm
CF _{dev}	中心频率偏移				±150	KHz
Freq _{drift}	频率漂移				±50	KHz
IFreq _{drift}	初始载波频率漂移				±20	KHz

6.4 RF 接收机特性

表 13. RF 接收机特性

标注	参数	测试条件	最小值	典型值	最大值	单位
RX _{SENS}	接收灵敏度	BER < 0.1%		-80		dBm

6.5 绝对最大额定值

加在器件上的载荷如果超过"绝对组最大额定值"列表 (表 14、表 15) 中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

表 14. 电压特性

符号	描述	最小值	最大值	单位
V _{DD} - V _{SS}	外部主供电电压 (包含 V _{DDA} 和 V _{SS}) ⁽¹⁾	-0.3	4.0	V
V _{IN}	在其他引脚上的输入电压(2)	V _{SS} - 0.3	V _{DD} + 0.3	

- 1. 所有的电源 (V_{DD}, V_{DDA}) 和地 (V_{SS}, V_{SSA}) 引脚必须始终连接到外部允许范围内的供电系统上
- 2. 必须始终遵循 V_{IN} 的最大值。有关允许的最大注入电流值的信息,请参见下表。

表 15. 电流特性

符号	描述	最大值	単位
I _{VDD}	经过 V _{DD} / V _{DDA} 电源线的总电流 (供应电流) ⁽¹⁾	120	
I _{VSS}	I _{vss} 经过 V _{ss} 地线的总电流 (流出电流) ⁽¹⁾		
	任意 I/O 和控制引脚上的输出灌电流	25	
I _{IO}	任意 I/O 和控制引脚上的输出电流	-25	mA
(2)(3)	nRST 引脚的注入电流	±5	
$I_{INJ(PIN)}^{(2)(3)}$	HSE 的 OSC_IN 引脚的注入电流	±5	
I _{INJ(PIN)} (4)	I _{INJ(PIN)} ⁽⁴⁾ 其他引脚的注入电流 ⁽⁴⁾		

- 1. 所有的电源 (V_{DD}, V_{DDA}) 和地 (V_{SS}, V_{SSA}) 引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 $V_{IN} > V_{DD}$ 时,有一个正向注入电流,当 $V_{IN} < V_{SS}$ 时,有一个反向注入电流。
- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当几个 I/O 口同时有注入电流时, $\Sigma I_{\text{INJ(PIN)}}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件所有 I/O 端口上 $\Sigma I_{\text{INJ(PIN)}}$ 最大值的特性。

6.6 工作条件

6.6.1 通用工作条件

表 16. 通用工作条件

符号	参数	条件	最小值	最大值	単位
f _{HCLK}	内部 AHB 时钟频率		0	48MHz	
f _{PCLK1}	内部 APB1 时钟频率		0	f _{HCLK}	MHz
f _{PCLK2}	内部 APB2 时钟频率		0	f _{HCLK}	
V_{DD}	标准工作电压		2.3	3.6	V
P _D	T _A =85°C ⁽¹⁾				mW
T _A	T _A	最大功率耗散	-40	85	
		低功率耗散 ⁽²⁾	-40	105	°C
T _J	结温范围		-40	105	°C

- 1. 建议使用相同的电源为 V_{DD} 和 V_{DDA} 供电。
- 2. 如果 T_A 较低,只要 T_J 不超过 T_{Jmax} (参见节 6.1),则允许更高的 P_D 数值。

6.6.2 上电和掉电时的工作条件

下表中给出的参数是在一般的工作条件下测试得出。

表 17. 上电和掉电时的工作条件

符号	参数	条件	最小值	最大值	单位	
4	V _{VDD} 上升速率	T - 25°C	1	∞	μS/V	
t_{VDD}	V _{VDD} 下降速率	T _A = 25°C	500	∞	μο/ν	

6.6.3 内嵌复位和电源控制模块特性

下表中给出的参数是依据表 16列出的环境温度下和 VDD 供电电压下测试得出。

表 18. 内嵌复位和电源控制模块特性

符号	参数	条件	最小值	典型值	最大值	单位
		PLS[3: 0]=0000(上升沿)		1.8		V
		PLS[3: 0]=0000(下降沿)		1.7		V
		PLS[3: 0]=0001(上升沿)		2.1		V
	可编程的电压检测器的电平选择	PLS[3: 0]=0001(下降沿)		2.0		V
		PLS[3: 0]=0010(上升沿)		2.4		V
V_{PVD}		PLS[3: 0]=0010(下降沿)		2.3		V
1 40		PLS[3: 0]=0011(上升沿)		2.7		V
		PLS[3: 0]=0011(下降沿)		2.6		V
		PLS[3: 0]=0100(上升沿)		3.0		V
		PLS[3: 0]=0100(下降沿)		2.9		V
		PLS[3: 0]=0101(上升沿)		3.3		V
		PLS[3: 0]=0101(下降沿)		3.2		V

符号	参数	条件	最小值	典型值	最大值	单位
		PLS[3: 0]=0110(上升沿)		3.6		V
		PLS[3: 0]=0110(下降沿)		3.5		V
		PLS[3: 0]=0111(上升沿)		3.9		V
		PLS[3: 0]=0111(下降沿)		3.8		V
V_{PVD}	可编程的电压检 测器的电平选择	PLS[3: 0]=1000(上升沿)		4.2		V
• 600		PLS[3: 0]=1000(下降沿)		4.1		V
		PLS[3: 0]=1001(上升沿)		4.5		V
		PLS[3: 0]=1001(下降沿)		4.4		V
		PLS[3: 0]=1010(上升沿)		4.8		V
		PLS[3: 0]=1010(下降沿)		4.7		V
V _{POR/PDR}	上电/掉电复位阈值	翻转点		1.65		V
T _{RSTTEMPO}	复位持续时间			2.7		ms

1. 由设计保证,不在生产中测试。

注: 复位持续时间的测量方法为从上电到用户应用代码读取第一条指令的时刻。

6.6.4 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的位置以及执行的代码等。

电流消耗的测量方法说明,详见图 10。

本节中给出的所有运行模式下的电流消耗测量值,都是在执行一套精简的代码。

最大电流消耗

微控制器处于下列条件:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上—V_{DD} 或 V_{SS}(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到 f_{HCLK} 的频率 (0 ~ 24 MHz 时为 0 个等待周期, 24 ~ 48 MHz 时为 1 个等待周期)。
- 指令预取功能开启。当开启外设时: $f_{PCLK1} = f_{PCLK2} = f_{HCLK}$ 。

注: 指令预取功能必须在设置时钟和总线分频之前设置。

表 19. 功耗参数

外部提供 3.3V 的直流电压 测试条件 标注 参数 最小值 典型值 最大值 单位 MCU @ STANDBY mode, 3.5 RF block @ STANDBY mode Supply I uA MCU @ STOP mode, Current 5.8 RF block @ STANDBY mode

36

	外部提供 3.3V 的直流电压								
标注	参数	测试条件		最小值	典型值	最大值	单位		
		MCU @ STOP mo	MCU @ STOP mode,				uA		
		RF block @ STOP		53.8		uA			
		MCU @ SLEEP mode,			14.8	15.3	mA		
	Supply	RF block @ STOP mode			14.0	10.5	IIIA		
I	Current	MCU @ ACTIVE mode,			28		mA		
		RF block @ RX mode			20		IIIA		
			-3dBm		28				
		MCU @ ACTIVE,	0dBm		30		mA		

+3dBm

1. TX, RX 所测功耗参数为使用 HSI 为时钟源,且配置为 f_{HCLK} = 48MHZ, f_{APB1} = $f_{HCLK}/2$, $f_{APB2} = f_{HCLK}$, 基于 $T_A = 25$ °C 和 $V_{DD} = 3.3$ V 所测得的值。

表 20. 停机和待机模式下的典型和最大电流消耗 (1)(2)

RF block @ TX mode

符号	参数	条件		单位		
	少 数	宋件	-40°C	25°C	85°C	平 位
	停机模式下的供应电流	PWR->CR[0] 设置为 1	1.5	5.2	55.9	
I_{DD}	待机模式下的供应电流	LSI 和 RTC 处于开启状态	1.3	1.6	6.0	μА
	1770候八千时跃丛电机	IWDG 处于开启状态	0.5	0.5	5.1	

- 1. 由综合评估得出,不在生产中测试。IO 状态为模拟输入。
- 2. 最大值是在供电电压为 3.3V 时测试得到。

典型的电流消耗

MCU 处于下述条件下:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上—V_{DD} 或 V_{SS}(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到 f_{HCLK} 的频率 (0 ~ 24 MHz 时为 0 个等待周期, 24 ~ 48 MHz 时为 1 个等待周期
- 指令预取功能开启。当开启外设时: f_{PCLK1} = f_{PCLK2} = f_{HCLK}。

注: 指令预取功能必须在设置时钟和总线分频之前设置。

符号	参数	条件	fuore	1	使能所有外设		关闭所有外设			│ │ 単位
4年	参 数		本件	f _{HCLK}	-40°C	25°C	85°C	-40°C	25°C	85°C
		运行模式	48MHz	15.70	16.00	16.30	8.37	8.07	8.24	
	运行		24MHz	9.50	9.70	9.91	5.29	4.95	5.09	
	模式		8MHz	5.19	5.30	5.42	3.10	2.67	2.75	
I _{DD}	下的	内部	4MHz	4.13	4.22	4.32	2.58	2.13	2.21	mA
.00	供应	时钟 並	2MHz	3.62	3.69	3.78	2.32	1.86	1.93	
	电流		1MHz	3.36	3.43	3.51	2.21	1.73	1.79	
	□1/11		500K	3.23	3.29	3.38	2.14	1.67	1.73	
			125K	3.13	3.20	3.28	2.09	1.62	1.68	

表 21. 运行模式下的最大电流消耗,数据处理代码从内部闪存中运行 (1)(2)(3)(4)(5)

- 1. 所有 I/O 引脚都处于输入模式, V_{DD} 或 V_{SS} 上为静态值 (无负载);
- 2. 所有的外设都处于禁止状态,有明确说明时除外
- 3. FLASH 访问时间符合用户手册配置
- 4. 在供电电压为 3.3V 时测试得到
- 5. HCLK 频率小于 8MHz 时,系统时钟为 HSI 分频得到

表 22. 睡眠模式下的最大电流消耗,数据处理代码从内部闪存中运行 (1)(2)(3)(4)(5)

符号	参数	条件		1	使能所有外设		=	关闭所有外边	足	单位
শু ক	少 数	XN IT	f _{HCLK}	-40°C	25°C	85°C	-40°C	25°C	85°C	一一一
			48MHz	12.10	12.30	12.50	4.72	4.33	4.42	
	运行		24MHz	7.64	7.79	7.94	3.46	3.04	3.11	
	模式		8MHz	4.58	4.66	4.77	2.48	2.03	2.09	
I _{DD}		下的 时钟 供应 电流	4MHz	3.83	3.90	4.00	2.28	1.82	1.87	mA
יטטי			2MHz	3.47	3.53	3.62	2.17	1.71	1.76	11.5
			1MHz	3.28	3.35	3.43	2.11	1.65	1.71	
	吐 机		500K	3.19	3.26	3.34	2.10	1.63	1.68	
			125K	3.13	3.19	3.27	2.08	1.61	1.66	

- 1. 所有 I/O 引脚都处于输入模式, V_{DD} 或 V_{SS} 上为静态值 (无负载);
- 2. 所有的外设都处于禁止状态,有明确说明时除外
- 3. FLASH 访问时间符合用户手册配置
- 4. 在供电电压为 3.3V 时测试得到
- 5. HCLK 频率小于 8MHz 时,系统时钟为 HSI 分频得到

内置外设电流消耗

内置外设的电流消耗列于表 23, MCU 的工作条件如下:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上—V_{DD} 或 V_{SS}(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 给出的数值是通过测量电流消耗计算得出
 - 关闭所有外设的时钟
 - 只开启一个外设的时钟

• 环境温度和 V_{DD} 供电电压条件列于表 16。

表 23. 内置外设的电流消耗 (1)

内』	置外设	25 °C 时的典 型功耗	単位	内置外设		25 ℃ 时的典 型功耗	单位
	GPIOD	0.12			TIM14	0.35	
	GPIOC	0.13		APB2	TIM16	0.38	
AHB	GPIOB	0.12	mA		TIM17	0.43	
7 (11)	GPIOA	0.15		APB1	WWDG	0.09	mA
	CRC	0.20			SPI2	1.03	
	DMA	0.36			UART2	0.77	
	DBG	0.04			I2C1	1.19	
	ADC1	0.28			TIM2	0.97	
APB2	TIM1	1.28			TIM3	0.70	
/ (I DZ	SPI1	0.97			PWR	0.23	
	COMP	0.20			CRS	0.13	
	SYSCFG	0.09					
APB2	UART1	0.78	mA	APB1	USB	3.32	mA

1. f_{HCLK} = 96MHz, HSI 作为 PLL 时钟源。

6.6.5 外部时钟源特性

来自外部振荡源产生的高速外部用户时钟

下表中给出的特性参数是使用一个高速的外部时钟源测得,环境温度和供电电压符合通用工作条件。

表 24. 高速外部用户时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{HSE_ext}	用户外部时钟频率 ⁽¹⁾			8	32	MHz
V_{HSEH}	OSC_IN 输入引脚高电平电压		0.7V _{DD}		V_{DD}	V
V_{HSEL}	OSC_IN 输入引脚低电平电压		V _{SS}		0.3V _{DD}	V
$t_{\text{w}(\text{HSE})}$	OSC_IN 高或低的时间 ⁽¹⁾		15			ns
$C_{\text{in}(\text{HSE})}$	OSC_IN 输入容抗 (1)			5		pF
$DuCy_{(HSE)}$	占空比			50		%

表 25. 射频模块高速晶体时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{NOM}	标称频率			16		MHz
V_{TOL}	频率公差	负载电容、温度			±50	ppm
ESR	等效串联				100	Ω
PD	驱动水平				20	mA

1. 由设计保证,不在生产中测试。

图 11. 控制模块使用 2~24MHz 晶体的典型应用

图 12. 射频模块使用 16MHz 晶体的典型应用

来自外部振荡源产生的低速外部用户时钟

下表中给出的特性参数是使用一个低速的外部时钟源测得,环境温度和供电电压符合通用工作条件。

表 26. 低速外部用户时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{LSE_ext}	用户外部时钟频率 (1)		16	32.768	1000	KHz
V _{LSEH}	OSC_IN 输入引脚高电平电压		0.7V _{DD}		V_{DD}	V
V_{LSEL}	OSC_IN 输入引脚低电平电压		V _{SS}		0.3V _{DD}	V
$t_{\text{w}(\text{LSE})}$	OSC_IN 高或低的时间 ⁽¹⁾		450			ns
$t_{\text{r}(\text{LSE})}$	OSC_IN 上升的时间 ⁽¹⁾				50	ns
$t_{f(LSE)}$	OSC_IN 下降的时间 ⁽¹⁾				50	ns
$C_{\text{in}(LSE)}$	OSC_IN 输入容抗 (1)				10	pF
$DuCy_{(LSE)}$	占空比			50		%
lμ	OSC_IN 输入漏电流	$V_{SS} \le V_{IN} \le V_{DD}$	-1		1	μΑ

1. 由设计保证,不在生产中测试。

图 13. 外部低速时钟源的交流时序图

使用一个晶体/陶瓷谐振器产生的高速外部时钟

高速外部时钟 (HSE) 可以使用一个 2~24MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数 (频率、封装、精度等),请咨询相应的生产厂商。

表 27. HSE 2 \sim 24MHz 振荡器特性 $^{(1)(2)}$

符号	参数	条件	最小值	典型值	最大值	单位
·	任英思婚安	2.0V <vdd<3.6v< td=""><td>2</td><td>8</td><td>12</td><td>MHz</td></vdd<3.6v<>	2	8	12	MHz
f _{OSC_IN}	振荡器频率	3.0V <vdd<3.6v< td=""><td>12</td><td>16</td><td>24</td><td>IVITZ</td></vdd<3.6v<>	12	16	24	IVITZ
R_{F}	反馈电阻 ⁽⁴⁾			510		kΩ
		f _{OSC_IN} = 24M			60	
	支持晶体串行阻抗 (C _{L1} C _{L2} ⁽³⁾ 为 16pF)	V _{DD} = 3.0V			00	
ESR		f _{OSC_IN} = 12M			150	Ω
	(0[10[2 // 10]1]	V _{DD} = 2.0V			150	l
		f _{OSC_IN} = 24M				
	HOE 顶杂点流	V _{DD} = 2.0V		1.5		m ^
l ₂	HSE 驱动电流	ESR=30 Ω		1.5		mA
		C _{L1} C _{L2} ⁽³⁾ 为 20pF				
g _m	振荡器的跨导	启动		9		mA/V
t _{SU(HSE)} (5)	启动时间	V _{DD} 是稳定的		3		ms

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。

- 3. 对于 C_{L1} 和 C_{L2} ,建议使用高质量的、为高频应用而设计的 (典型值为)5pF ~ 25pF 之间的资介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。在选择 C_{L1} 和 C_{L2} 时,PCB 和 MCU 引脚的容抗应该考虑在内 (可以粗略地把引脚与 PCB 板的电容按 10pF 估计)。
- **4**. 相对较低的 R_F 电阻值,能够可以为避免在潮湿环境下使用时所产生的问题提供保护,这种环境下产生的泄漏和偏置条件都发生了变化。但是,如果 MCU 是应用在恶劣的潮湿条件时,设计时需要把这个参数考虑进去。
- 5. t_{SU(HSE)} 是启动时间,是从软件使能 HSE 开始测量,直至得到稳定的 8MHz 振荡这段时间。这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商的不同而变化较大。

图 14. 外部高速时钟源的交流时序图

注: 1. 外部高速时钟源的交流时序图表示控制模块和射频模块共用一个 16MHz 的晶体/陶 瓷谐振器,16MHz 的晶体/陶瓷谐振器主要为射频模块提供高速时钟,同时也串联一个 100nF 电容为控制模块提供高速时钟。

2. 用户如果使用控制模块内部时钟源, 16MHz 的晶体/陶瓷谐振器单独为射频模块提供时钟。

使用一个晶体/陶瓷谐振器产生的低速外部时钟

低速外部时钟 (LSE) 可以使用一个 32.768KHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数 (频率、封装、精度等),请咨询相应的生产厂商。(译注: 这里提到的晶体谐振器就是我们通常说的无源晶振) 注意: 对于 C_{L1} 和 C_{L2} ,建议使用高质量的 $5pF \sim 15pF$ 之间的瓷介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。负载电容 C_{L} 由下式计算: $C_{L} = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$,其中 C_{stray} 是引脚的电容和 PCB 板或 PCB 相关的电容,它的典型值是介于 $2pF \sim 7pF$ 之间。警告: 为了避

免超出 C_{L1} 和 C_{L2} 的最大值 (15pF),强烈建议使用负载电容 CL ≤ 7pF 的谐振器,不能使用负载电容为 12.5pF 的谐振器。例如:如果选择了一个负载电容 CL = 6pF 的谐振器并且 $C_{stray} = 2pF$,则 $C_{L1} = C_{L2} = 8pF$ 。

表 28. LSE 振荡器特性 (f_{LSE}=32.768KHz)⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
g _m	振荡器的跨导			78		μA/V
$t_{\text{SU(HSE)}}^{(2)}$	启动时间	$R_S = 30k\Omega$		3		S

- 1. 由综合评估得出,不在生产中测试。
- 2. t_{SU(HSE)} 是启动时间,是从软件使能 HSE 开始测量,直至得到稳定的 8MHz 振荡这段时间。这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商的不同而变化较大。

图 15. 使用 32.768KHz 晶体的典型应用

6.6.6 控制模块内部时钟源特性

下表中给出的特性参数是使用环境温度和供电电压符合通用工作条件测量得到。

高速内部 (HSI) 振荡器

表 29. HSI 振荡器特性 (1)(2)

符号	参数	条件	最小值	典型值	最大值	单位
f _{HSI}	频率			48		MHz
ACC _{HSI}	HSI 振荡器的精度	T _A = 25	-1		1	%
$t_{\text{SU}(\text{HSI})}$	HSI 振荡器启动时间			12	16	μs
$I_{\rm DD(HSI)}$	HSI 振荡器功耗			328		μA

- 1. V_{DD} = 3.3V, 除非特别说明。
- 2. 由设计保证,不在生产中测试。

低速内部 (LSI) 振荡器

表 30. LSI 振荡器特性 (1)

符号	参数	条件	最小值	典型值	最大值	单位
f _{LSI} (2)	频率			40		KHz
t _{SU(LSI)} (2)	LSI 振荡器启动时间				85	μs
I _{DD(LSI)} (3)	LSI 振荡器功耗			1	1.4	μA

- 1. V_{DD} = 3.3V 除非特别说明。
- 2. 由综合评估得出,不在生产中测试。
- 3. 由设计保证,不在生产中测试。

从低功耗模式唤醒的时间

下表列出的唤醒时间是在内部时钟 HSI 的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- 停机或待机模式: 时钟源是振荡器
- 睡眠模式: 时钟源是进入睡眠模式时所使用的时钟

所有的时间是使用环境温度和供电电压符合通用工作条件测量得到。

表 31. 控制模块低功耗模式的唤醒时间

符号	参数	条件	最大值	单位
t _{WUSLEEP} (1)	从睡眠模式唤醒	HSI 为系统时钟	2.7	μs
4 (1)	从停机模式唤醒		<i>E E</i>	
t _{WUSTOP} (1)	(调压器处于运行状态)	HSI 为系统时钟 5.5		μs
. (1)	从停机模式唤醒	UCI为至统时抽	7.7	
t _{WUSTOP} (1)	(调压器处于低功耗状态)	HSI 为系统时钟	7.7	μs
t _{WUSTDBY} (1)	从待机模式唤醒	PWR->CR[15:14]=0x00	498	μs
t _{WUSTDBY} (1)	从待机模式唤醒	PWR->CR[15:14]=0x01	430	μs
t _{WUSTDBY} (1)	从待机模式唤醒	PWR->CR[15:14]=0x02	390	μs
t _{WUSTDBY} (1)	从待机模式唤醒	PWR->CR[15:14]=0x03	318	μs

1. 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

6.6.7 PLL 特性

下表列出的参数是使用环境温度和供电电压符合通用工作条件测量得到。

表 32. PLL 特性 ⁽¹⁾

符号	参数	最小值	典型值	最大值	单位
f _{PLL_IN}	PLL 输入时钟 ⁽²⁾	4		24	MHz
f _{PLL_IN}	PLL 输入时钟占空比	40		60	%
f _{PLL_OUT}	PLL 倍频输出时钟	40		200	MHz
t _{LOCK}	PLL 锁相时间			100	μs

1. 由设计保证,不在生产中测试。

2. 需要注意使用正确的倍频系数,从而根据 PLL 输入时钟频率使得 f_{PLL_OUT} 处于允许范围内。

6.6.8 存储器特性

闪存存储器

表 33. 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
t _{prog}	8 位的编程时间		6		7.5	μs
t _{ERASE}	页擦除时间		4		5	ms
t _{ME}	整片擦除时间		20		40	ms
		读模式		4		mA
I_{DD}	供电电流	写模式			7	mA
		擦除模式			2	mA
V_{prog}	编程电压			1.5		V

表 34. 闪存存储器寿命和数据保存期限 (1)(2)

符号	参数	条件	最小值	典型值	最大值	单位
NEND	寿命 (擦写		20			千次
INCIND	次数)		20			1 ()
t _{RET}	数据保存期限	T _A = 25°C	100			年

1. 由综合评估得出,不在生产中测试。

6.6.9 EMC 特性

敏感性测试是在产品的综合评估时抽样进行测试的。

设计可靠的软件以避免噪声的问题

在器件级进行 EMC 的评估和优化,是在典型的应用环境中进行的。应该注意的是,好的 EMC 性能与用户应用和具体的软件密切相关。

因此,建议用户对软件实行 EMC 优化,并进行与 EMC 有关的认证测试。

软件建议

软件的流程中必须包含程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏 (控制寄存器等……)

认证前的试验

很多常见的失效 (意外的复位和程序计数器被破坏),可以通过人工地在 NRST 上引入一个低电平或在晶振引脚上引入一个持续 1 秒的低电平而重现。

在进行 ESD 测试时,可以把超出应用要求的电压直接施加在芯片上,当检测到意外动作的地方,软件部分需要加强以防止发生不可恢复的错误。

6.6.10 绝对最大值 (电气敏感性)

基于三个不同的测试 (ESD, LU),使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

静电放电 (ESD)

静电放电 (一个正的脉冲然后间隔一秒钟后一个负的脉冲) 施加到所有样品的所有引脚上,样品的大小与芯片上供电引脚数目相关 (3 片 x (n + 1) 供电引脚)。这个测试符合 JEDEC JS-001-2017/JS-002-2018 标准。

静态栓锁

为了评估栓锁性能,需要在6个样品上进行2个互补的静态栓锁测试:

- 为每个电源引脚,提供超过极限的供电电压。
- 在每个输入、输出和可配置的 I/O 引脚上注入电流。

这个测试符合 EIA/JESD78E 集成电路栓锁标准。

表 35. MCU ESD 特性

符号	参数	条件	最大值	单位	
$V_{ESD(HBM)}$	静电放电电压 (人体模型)	T _A = 25°C,符合 JEDEC	±8000	V	
		JS-001-2017	±8000		
V	静电放电电压 (充电设备模型)	T _A = 25°C,符合 JEDEC	±2000	V	
$V_{ESD(CDM)}$	財电风电电压 (凡电及错侠至)	JS-002-2018	±2000		
I _{LU}	静态栓锁类 (Latch-up current)	T _A = 25°C,符合 JESD78E	±100	mA	

6.6.11 I/O 端口特性

通用输入/输出特性

除非特别说明,下表列出的参数是按照表 14的条件测量得到。所有的 I/O 端口都是兼容 CMOS。

表 36. I/O 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL}	输入低电平电压	V _{DD} = 3.3V	-0.3		0.8	V
V _{IH}	输入高电平电压	V _{DD} = 3.3V	2.3		3.6	V
V _{hys}	I/O 脚施密特触发器电压迟滞 ⁽¹⁾	V _{DD} = 3.3V	0.1V _{DD}			V
I _{Ikg}	输入漏电流 ⁽²⁾	V _{DD} = 3.3V			1	μΑ
R _{PU}	弱上拉等效电阻 ⁽³⁾	3.3V V _{IN} =V _{SS}	22		100	kΩ
R _{PD}	弱下拉等效电阻 ⁽³⁾	3.3V V _{IN} =V _{SS}	20		50	kΩ
C _{IO}	I/O 引脚的电容	3.3V			10	pF

1. 施密特触发器开关电平的迟滞电压。由综合评估得出,不在生产中测试。

- 2. 如果在相邻引脚有反向电流倒灌,则漏电流可能高于最大值。
- 3. 上拉和下拉电阻是 MOS 电阻。

输出驱动电流

GPIO(通用输入/输出端口) 可以吸收或输出多达 ±20mA 电流。

在用户应用中, I/O 脚的数目必须保证驱动电流不能超过6.5节给出的绝对最大额定值:

- 所有 I/O 端口从 V_{DD} 上获取的电流总和,加上 MCU 在 V_{DD} 上获取的最大运行电流,不能超过绝对最大额定值 I_{VDD} 。
- 所有 I/O 端口吸收并从 V_{SS} 上流出的电流总和,加上 MCU 在 V_{SS} 上流出的最大运行电流,不能超过绝对最大额定值 I_{VSS} 。

输出电压

除非特别说明,下表列出的参数是使用环境温度和 V_{DD} 供电电压符合表 16的条件测量得到。所有的 I/O 端口都是兼容 CMOS 的。

表 37. 输出电压特性 (1)(2)

MODEx[1: 0] 的配置	符号	参数	条件	典型值	单位
	V _{OL}	输出低电平	I _{IO} =8mA,	0.4	
	t _{OH}	输出高电平	V _{DD} =3.3V	V _{DD} -0.4	
11	V _{OL}	输出低电平	I _{IO} =20mA,	0.3*V _{DD}	
	t _{OH}	输出高电平	V _{DD} =3.3V	0.6*V _{DD}	
	V _{OL}	输出低电平	I _{IO} =6mA,	0.4	
	t _{OH}	输出高电平	V _{DD} =3.3V	V _{DD} -0.4	
	V _{OL}	输出低电平	I _{IO} =8mA,	0.4	
	t _{OH}	输出高电平	V _{DD} =3.3V	V _{DD} -0.4	
10	V _{OL}	输出低电平	I _{IO} =20mA,	0.2*V _{DD}	V
10	t _{OH}	输出高电平	V _{DD} =3.3V	0.8*V _{DD}	
	V _{OL}	输出低电平	I _{IO} =6mA,	0.4	
	t _{OH}	输出高电平	V _{DD} =3.3V	V _{DD} -0.4	
	V _{OL}	输出低电平	I _{IO} =8mA,	0.4	
	t _{OH}	输出高电平	V _{DD} =3.3V	V _{DD} -0.4	
01	V _{OL}	输出低电平	I _{IO} =20mA,	0.2*V _{DD}	
	t _{OH}	输出高电平	V _{DD} =3.3V	0.8*V _{DD}	
	V_{OL}	输出低电平	I _{IO} =6mA,	0.4	
	t _{OH}	输出高电平	V _{DD} =3.3V	V _{DD} -0.4	

1. 由综合评估得出,不在生产中测试。

输入输出交流特性

输入输出交流特性的定义和数值分别在图 16和表 38给出。

除非特别说明,表 38列出的参数是使用环境温度和供电电压符合表 14的条件测量得到。

主 20	ねる)	输出交流特性	(1)(2)
オマ・バハ	祖田 八		(' / (- /

MODEx[1: 0] 的配置	符号	参数	条件	典型值	单位
11	$t_{f(IO)out}$	输出下降时间		7.20	
11	$t_{r(IO)out}$	输出上升时间		7.20	
10	$t_{f(IO)out}$	输出下降时间	C _L =50pF,	4.40	ns
10	$t_{r(IO)out}$	输出上升时间	V _{DD} =3.3V	4.40	113
01	$t_{f(IO)out}$	输出下降时间		3.73	
	$t_{r(IO)out}$	输出上升时间		3.73	

- 1. I/O 端口的速度可以通过 MODEx[1: 0] 配置。参见本芯片参考手册中有关 GPIO 端口配置寄存器的说明。
- 2. 由设计保证,不在生产中测试。

图 16. 输入输出交流特性定义

6.6.12 NRST 引脚特性

NRST 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻,R_{PU}。

除非特别说明,下表列出的参数是使用环境温度和 V_{DD} 供电电压符合表 16的条件测量得到。

表 39. NRST 引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL(NRST)} ⁽¹⁾	NRST 输入低电平电压		-0.3		0.8	V
$V_{IH(NRST)}^{(1)}$	NRST 输入高电平电压		2.3		3.6	V
$V_{\text{hys}(\text{NRST})}$	NRST 施密特触发器电压迟 滞		0.1*V _{DD}			V
R_{PU}	弱上拉等效电阻 ⁽²⁾	V _{IN} = V _{SS}	22		100	kΩ

符号	参数	条件	最小值	典型值	最大值	単位
$V_{F(NRST)}^{(1)}$	NRST 输入滤波脉冲				1000	ns
V _{NF(NRST)} ⁽¹⁾	NRST 输入非滤波脉冲		4000			ns

- 1. 由设计保证,不在生产中测试。
- 2. 上拉电阻是 MOS 电阻。

图 17. 建议的 NRST 引脚保护

- 1. 复位网络是为了防止寄生复位。
- 2. 用户必须保证 NRST 引脚的电位能够低于表 39中列出的最大 $V_{\rm IL(NRST)}$ 以下,否则 MCU 不能得到复位。

6.6.13 TIM 定时器特性

下表列出的参数由设计保证。

有关输入输出复用功能引脚 (输出比较、输入捕获、外部时钟、PWM 输出) 的特性详情,参见小节 6.6.11。

表 4	ΛТ	INAV(1)	4.4.4.4.
<i>7</i> ▽ 4	() I	IIVIX \	,	4+T+

符号	参数	条件	最小值	最大值	单位
$t_{res(TIM)}$	定时器分辨时间		1		t _{TIMxCLK}
$t_{res(TIM)}$	定时器分辨时间	f _{TIMxCLK} =96MHz	10.4		ns
£	CH1 至 CH4 的定时器外部时		0	f _{TIMxCLK/2}	MHz
f_{EXT}	钟频率	f _{TIMxCLK} =96MHz	0	48	IVITZ
Res _{TIM}	定时器分辨率			16	位
	当选择了内部时钟时,16位		1	65536	t _{TIMxCLK}
tcounter	计数器时钟周期	f _{TIMxCLK} 96MHz	0.0104	682.6	μ\$

符号	参数	条件	最小值	最大值	单位
t _{MAX_COUNT}	最大可能的计数			65536 ×65536	t _{TIMxCLK}
		f _{TIMxCLK} 96MHz		44.7	S

1. TIMx 是一个通用的名称。

6.6.14 通信接口

I2C

除非特别说明,表 41列出的参数是使用环境温度, f_{PCLK1} 频率和 V_{DD} 供电电压符合表 16的条件测量得到。

I2C 接口符合标准 I2C 通信协议,但有如下限制: SDA 和 SCL 不是'真'的引脚,当配置为开漏输出时,在引出脚和 V_{DD} 之间的 PMOS 管被关闭,但仍然存在。

I2C 接口特性列于表 41, 有关输入输出复用功能引脚 (SDA 和 SCL) 的特性详情,参见小节 6.6.11。

表 41. I2C 接口特性

符号	<u>خم بين .</u>	标准I	2C ⁽¹⁾	快速 I2C (1)(2)		36 t).
	参数	最小值	最大值	最小值	最大值	单位
$t_{w(SCLL)}$	SCL 时钟低时间	8*t _{PCLK}		8*t _{PCLK}		μS
t _{w(SCLH)}	SCL 时钟高时间	6*t _{PCLK}		6*t _{PCLK}		μS
$t_{\text{su}(\text{SDA})}$	SDA 建立时间	2*t _{PCLK}		2*t _{PCLK}		ns
$t_{h(SDA)}$	SDA 数据保持时间	0(3)		0 ⁽⁴⁾	875 ⁽³⁾	ns
$t_{r(SDA)} t_{r(SDL)}$	SDA 和 SCL 上升时间		1000		300	ns
$t_{f(SDA)} t_{f(SDL)}$	SDA 和 SCL 下降时间		300		300	ns
t _{h(STA)}	开始条件保持时间	8*t _{PCLK}		8*t _{PCLK}		μS
t _{su(STA)}	重复的开始条件建立时间	6*t _{PCLK}		6*t _{PCLK}		μS
$t_{su(STO)}$	停止条件建立时间	6*t _{PCLK}		6*t _{PCLK}		μS
$t_{w(\text{STO:STA})}$	停止条件至开始条件的时	F+1		F*1		_
	间 (总线空闲)	5*t _{PCLK}		5*t _{PCLK}		μS
C _b	每条总线的容性负载	4.7		1.2		pF

- 1. 由设计保证,不在生产中测试。
- 2. 为达到标准模式 I2C 的最大频率, f_{PCLK1} 必须大于 3MHz。为达到快速模式 I2C 的最大频率, f_{PCLK1} 必须大于 12MHz。
- 3. 如果不要求拉长 SCL 信号的低电平时间,则只需满足开始条件的最大保持时间。
- 4. 为了跨越 SCL 下降沿未定义的区域,在 MCU 内部必须保证 SDA 信号上至少 300nS 的保持时间。

图 18. I2C 总线交流波形和测量电路 (1)

1. 测量点设置于 CMOS 电平: 0.3V_{DD} 和 0.7V_{DD}。

SPI 接口特性

除非特别说明,表 42列出的参数是使用环境温度, f_{PCLKx} 频率和 V_{DD} 供电电压符合表 16的条件测量得到。

有关输入输出复用功能引脚 (NSS、SCK、MOSI、MISO) 的特性详情,参见小节 6.6.11。

表 42. SPI 特性⁽¹⁾

符号	参数	条件	最小值	最大值	单位	
f _{SCK} 1/t _{c(SCK)}	SPI 时钟频率	主模式		24	MHz	
$f_{SCK}1/t_{c(SCK)}$	SPI 时钟频率	从模式		12	MHz	
$t_{\text{r}(\text{SCK})}$	SPI 时钟上升和下降时间	负载电容: C= 15pF		6	ns	
$t_{f(SCK)}$	SPI 时钟上升和下降时间	负载电容: C= 15pF		6	ns	
$t_{\text{su}(\text{NSS})}{}^{(2)}$	NSS 建立时间	从模式	1T _{PCLK}		ns	
$t_{\text{h(NSS)}}^{}}{}^{(2)}$	NSS 保持时间	从模式	2T _{PCLK}		ns	
$t_{w(SCKH)}^{(2)}$	SCK 高的时间		t _{c(SCK)/2} - 6	t _{c(SCK)/2} - 6	ns	
$t_{w(\text{SCKL})}^{(2)}$	SCK 低的时间		t _{c(SCK)/2} - 6	t _{c(SCK)/2} - 6	ns	
4 (2)	*** +D +A \ 7 + + A	主模式,f _{PCLK} = 48MHz,	12		200	
t _{su(MI)} (2)	数据输入建立时间	预分频系数 = 2 高速模式	12		ns	

符号	参数	条件 最小值		最大值	单位
t _{su(SI)} (2)	数据输入建立时间	从模式	5		ns
4 (2)		主模式,f _{PCLK} = 48MHz,	0		ns
$t_{h(MI)}^{}(2)}$	数据输入保持时间	预分频系数 = 2 高速模式	U		115
t _{h(SI)} (2)		从模式	6		ns
+ (2)(1)		从模式 (使能边沿之后)		34	
$t_{v(SO)}^{(2)(1)}$		非高速模式		34	
+ (2)	数据输出有效时间	从模式 (使能边沿之后)		13	ns
$t_{h(SO)}^{\;(2)}$		高速模式		13	
t _{h(MO)} (2)	数据输出有效时间	主模式 (使能边沿之后)	-0.6	2	ns

- 1. 由综合评估得出,不在生产中测试。
- 2. 最小值表示驱动输出的最小时间,最大值表示正确获得数据的最大时间。
- 3. 最小值表示关闭输出的最小时间,最大值表示把数据线置于高阻态的最大时间。

图 19. SPI 时序图-从模式和 CPHA = 0

图 20. SPI 时序图-从模式和 CPHA = $\mathbf{1}^{(1)}$

1. 测量点设置于 CMOS 电平: 0.3V_{DD} 和 0.7V_{DD}。

图 21. SPI 时序图-主模式 (1)

1. 测量点设置于 CMOS 电平: $0.3V_{DD}$ 和 $0.7V_{DD}$ 。

USB 特性

表 43. USB 直流特性

符号	参数	条件		最大值 (1)	单位		
	输入电平						
V_{DD}	USB 操作电压 ⁽²⁾		3.0(3)	3.6			
$V_{DI}^{(4)}$	差分输入灵敏度	I(USBDP, USBDM)	0.2		V		
V _{CM} ⁽⁴⁾	差分共模范围	包含 V _{DI} 范围	0.8	2.5	V		
$V_{SE}^{(4)}$	单端接收器阀值		1.3	2			
		输出电平					
V _{OL}	静态输出低电平	1.5kΩ的 R _L 接至 3.6V ⁽⁵⁾		0.3	V		
V _{OH}	静态输出高电平	15kΩ的 R _L 接至 V _{SS} (5)	2.8	3.6	V		

- 1. 所有的电压测量都是以设备端地线为准。
- 2. 为了与 USB 2.0 全速电气规范兼容,USBDP(D+) 引脚内部已经内置一个 1.5 k Ω 电阻

接至 V_{DD},外部无需再外接。

- 3. 本产品的正确 USB 功能可以在 $2.7 \, \text{V}$ 得到保证,而不是在 $2.7 \, \text{V} \sim 3.6 \, \text{V}$ 电压范围下降级的电气特性。
- 4. 由综合评估保证,不在生产中测试。
- 5. RL 是连接到 USB 驱动器上的负载。

图 22. USB 时序:数据信号上升和下降时间定义

6.6.15 12 位 ADC 特性

除非特别说明,下表的参数是使用符合表 16的条件的环境温度、 f_{PCLK2} 频率和 V_{DDA} 供电电压测量得到。

表 44. ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DDA}	供电电压		2.5	3.3	3.6	V
$f_{ADC}^{(1)(3)}$	ADC 时钟频率				16	MHz
$f_{S}^{(1)(3)}$	采样速率				1	MHz
f _{TRIG} ⁽¹⁾	外部触发频率	f _{ADC} = 15MHz			937.5	KHz
f _{TRIG} ⁽¹⁾	外部触发频率				16	1/f _{ADC}
$V_{AIN}^{(2)}$	转换电压范围 (3)		0		V_{DD}	V
$R_{AIN}^{(1)}$	外部输入阻抗		参	见公式 1 和表 45	5	$\mathbf{k}\Omega$
R _{ADC} ⁽¹⁾	采样开关电阻				1.5	kΩ
C _{ADC} ⁽¹⁾	内部采样和保持电 容				10	pF
ts ⁽¹⁾	立谷中口	f _{ADC} = 16MHz	0.156		15.031	μs
ls ⁽¹⁾	采样时间		2.5		240.5	1/f _{ADC}
+ (1)	总的转换时间	f _{ADC} = 16MHz	1		15.8125	μS
$t_{conv}^{(1)}$	(包括采样时间)		15 ~ 253 (采样 t _{s+}) 逐步逼	近 12.5	1/f _{ADC}

- 1. 由综合评估保证,不在生产中测试。
- 2. 由设计保证,不在生产中测试。
- 3. 在该系列产品中,V_{REF+} 在内部连接到 V_{DDA},V_{REF-} 在内部连接到 V_{SSA}。

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times In(2^{N+2})} - R_{ADC}$$

上述公式 (公式 1) 用于决定最大的外部阻抗,使得误差可以小于 1/4 LSB。其中 N = 12(表示 12 位分辨率)。

表 45. f _{ADC} =15MHz ⁽¹⁾ 时	的最大 RAIN
--	----------

	t _S (μ S)	最大 R _{AIN} (kΩ)
2.5	0.156	0.1
8.5	0.531	4.0
14.5	0.906	7.8
29.5	1.844	17.5
42.5	2.656	25.9
56.5	3.531	34.9
72.5	4.531	45.2
240.5	15.031	153.4

1. 由设计保证,不在生产中测试。

表 46. ADC 精度 - 局限的测试条件 (1)(2)

符号	参数	测试条件	典型值	最大值	单位	
Resoluion	分辨率		12		BIT	
ET	综合误差		3.4/-2.3			
EO	偏移误差	$f_{PCLK2} = 24MHz,$	-2.5			
EG	增益误差	f_{ADC} = 12MHz, R_{AIN} < 0.1K Ω ,	3.7		LSB	
ED	微分线性误差	$V_{DDA} = 3.3V, T_A = 25^{\circ}C$	1/-1			
EL	积分线性误差		1.8/-3			

- 1. ADC 精度与反向注入电流的关系: 需要避免在任何标准的模拟输入引脚上注入反向电流,因为这样会显著地降低另一个模拟输入引脚上正在进行的转换精度。建议在可能产生反向注入电流的标准模拟引脚上,(引脚与地之间)增加一个肖特基二极管。如果正向的注入电流,只要处于小节 6.6.12中给出的 I_{INJ(PIN)} 和 ΣI_{INJ(PIN)} 范围之内,就不会影响 ADC 精度。
- 2. 由综合评估保证,不在生产中测试。
- ET = 总未调整误差:实际和理想传输曲线间的最大偏离。
- EO = 偏移误差:第一次实际转换和第一次理想转换间的偏离。
- EG = 增益误差: 最后一次理想转换和最后一次实际转换间的偏离。
- ED = 微分线性误差: 实际步进和理想值间的最大偏离。
- EL = 积分线性误差: 任何实际转换和端点相关线间的最大偏离。

图 23. 使用 ADC 典型的连接图

- 1. 有关 R_{AIN}、R_{ADC} 和 C_{ADC} 的数值,参见表 46。
- 2. C_{parasitic} 表示 PCB(与焊接和 PCB 布局质量相关) 与焊盘上的寄生电容 (大约 **7pF**)。较大的 C_{parasitic} 数值将降低转换的精度,解决的办法是减小 **f**_{ADC}。

PCB 设计建议

电源的去藕必须按照下图连接。图中的 10 nF 电容必须是瓷介电容,它们应该尽可能地靠近 MCU 芯片。

图 24. 供电电源和参考电源去藕线路

6.6.16 温度传感器特性

表 47. 温度传感器特性 ⁽³⁾⁽⁴⁾

符号	参数	最小值	典型值	最大值	单位
T _L ⁽¹⁾	V _{SENSE} 相对于温度的线性度		±5		°C
Avg_Slope ⁽¹⁾	平均斜率	4.571	4.801	5.984	mV/°C
V ₂₅ ⁽¹⁾	在 25 °C 时的 ADC 采样值		offset ⁽⁵⁾		
t _{start} (2)	建立时间			10	μS
$T_{S_temp}^{(2)}$	当读取温度时,ADC 采样时间	10			μS

- 1. 由综合评估保证,不在生产中测试。
- 2. 由设计保证,不在生产中测试。
- 3. 最短的采样时间可以由应用程序通过多次循环决定。
- 4. $V_{DD} = 3.3V_{\odot}$
- 5. 温度公式: TS_adc = 25 + (value * V_{DDA} offset * 3300)/(4096 * Avg_Slope), offset 记录于 0x1FFFF7F6 低 12 位中, value 是 ADC 的转换结果数据。

6.6.17 比较器特性

表 48. 比较器特性

符号	参数	寄存器配置	最小值	典型值	最大值	单位
HYST	迟滞	00		0		mV
HYST	迟滞	01		15		mV
HYST	迟滞	10		30		mV
HYST	迟滞	11		90		mV
OFFSET	失调电压	00	0.091	0.213	0.358	mV
OFFSET	失调电压	01	3.23	7.51	12.08	mV
OFFSET	失调电压	10	9.79	15	20.8	mV
OFFSET	失调电压	11	34.25	47.4	62.22	mV
DELAY ⁽¹⁾	传播延时	00		80		ns
DELAY ⁽¹⁾	传播延时	01		51		ns
DELAY ⁽¹⁾	传播延时	10		26		ns
DELAY ⁽¹⁾	传播延时	11		9		ns
$I_q^{(2)}$	工作电流均值	00		4.5		μА
$I_q^{(2)}$	工作电流均值	01		4.4		μА
$I_q^{(2)}$	工作电流均值	10		4.4		μА
$I_q^{(2)}$	工作电流均值	11		4.4		μА

- 1. 输出翻转 50% 与输入翻转的时间差。
- 2. 总消耗电流均值,工作电流。

7

PCB 设计建议

PCB 设计建议

7.1 电源设计建议

电源的去藕必须按照下图连接。图中的 10nF 电容必须是瓷介电容,它们应该尽可能地靠近 MCU 芯片。

图 25. 供电电源和参考电源去藕线路

7.2 PCB 注意事项

蓝牙工作在 2.4G 无线频段,应尽量避免各种因素对无线收发的影响,注意以下几点:

- 包围蓝牙模块的产品外壳避免使用金属,当使用部分金属外壳时,应尽量让模块天线部分远离金属部分。
- 产品内部金属连接线或者金属螺钉,应尽量远离模块天线部分。
- 模块天线部分应靠载板 PCB 四围放置,不允许放置于板中,且天线下方载板铣空,与天线平行的方向,不允许铺铜或走线。直接把天线部分直接露出载板,也是比较好的选择。
- 模块下方尽量铺大片 GND, 走线尽量往外围延伸。
- 建议在基板上的模块贴装位置使用绝缘材料进行隔离,例如在该位置放一个整块的丝印 (TopOverLay)。
- 电源电源线、地线的布线直接关系到产品的性能,把噪声干扰降到最低。布线时要尽量加宽地线、电源线宽度,地线>电源线>信号线,通常信号线宽0.2~0.3mm,电源线宽1.2~2.5mm,用大面积铜层做地线用,在PCB上把没有用的空间都铺成地。
- 电源加两个去耦滤波电容: 如果使用 LDO 供电,分别取值 1uF 和 0.1uF 用来滤波; 如果使用纽扣电池供电,分别取值 10uF 和 10uF 用来稳压。
- 芯片 ANT 到天线之间的走线不能太长,线宽要考虑阻抗匹配要求。

7.3 2.4G 射频天线设计

小型天线尺寸可能会因为性能的影响而导致产生比较大的变化。因此,强烈建议做一个准确的参考设计以达到最佳性能。绘制 PCB 天线时,可参考下图给出的尺寸来绘制天线。

图 26. 天线的尺寸

表 49. 天线的尺寸

	典型值 (mm)
L1	3.94
L2	2.70
L3	5.00
L4	2.64
L5	2.00
L6	4.90
W1	0.90
W2	0.50
D1	0.50
D2	0.30
D3	0.30
D4	0.50
D5	1.40
D6	1.70

8

封装特性

封装特性

8.1 封装 LQFP48

图 27. LQFP48, 48 脚低剖面方形扁平封装图

- 1. 图不是按照比例绘制。
- 2. 尺寸单位为毫米。

表 50. LQFP48 尺寸说明

标号	毫米			
	最小值	典型值	最大值	
Α	-	-	1.60	
A1	0.05	-	0.15	
A2	1.35	1.40	1.45	
A3	0.59	0.64	0.69	
b	0.18	-	0.27	
b1	0.17	0.20	0.23	
С	0.13	-	0.18	
c1	0.117	0.127	0.137	
D	8.80	9.00	9.20	
D1	6.90	7.00	7.10	
E	8.80	9.00	9.20	
E1	6.90	7.00	7.10	
е	0.40	0.50	0.60	
Н	8.14	8.17	8.20	
L	0.50	-	0.70	
L1	1.00REF			
R1	0.08	-	-	
R2	0.08	-	0.20	
S	0.20	-	-	
θ	0 °	3.5 °	7 °	
θ 1	11 °	12 °	13 °	
θ2	11 °	12 °	13 °	

8.2 封装 QFN32

图 28. QFN32, 32 脚方形扁平无引线封装外形封装图

- 1. 图不是按照比例绘制。
- 2. 尺寸单位为毫米。

表 51. QFN32 尺寸说明

标号	毫米				
₩ 5	最小值 典型值		最大值		
А	0.7	0.75	0.80		
A1	0.00	0.02	0.05		
A2	0.50	0.55	0.60		
A3	0.20REF				
b	0.20	0.25	0.30		
D	4.90	5.00	5.10		
E	4.90	5.00	5.10		
D2	3.40	3.50	3.60		

—————————————————————————————————————	毫米				
标号 	最小值	典型值	最大值		
E2	3.40	3.50	3.60		
е		0.5			
H	0.30REF				
K	0.35REF				
L	0.35	0.40	0.45		
R	0.09				
c1		0.08			
c2		0.08			
N	引脚数目 = 32				

9

型号命名

型号命名

图 29. MM32 型号命名

10

修改记录

修改记录

表 52. 修改记录

日期	版本	内容
2020/07/02	Rev 1.00	正式版