Grammaires: TD2

December 4, 2020

Feuille 2 – exercice 1

Question 1 : Montrer que les grammaires suivantes sont ambiguës et proposer des grammaires équivalentes non ambiguës :

- lacktriangledown $S \rightarrow aSaS$ $S \rightarrow \varepsilon$
- $oldsymbol{2} S
 ightarrow aSb \qquad S
 ightarrow aS \qquad S
 ightarrow arepsilon$

Question 2 : Donner une grammaire non ambiguë pour le langage $\{a^nb^p \mid 2p \ge n \ge p \ge 0\}.$

Feuille 2 – exercice 1

Question 1 : Montrer que les grammaires suivantes sont ambiguës et proposer des grammaires équivalentes non ambiguës :

- lacktriangledown $S \rightarrow aSaS$ $S \rightarrow \varepsilon$
- $oldsymbol{2} S
 ightarrow aSb \qquad S
 ightarrow aS \qquad S
 ightarrow arepsilon$

Question 2 : Donner une grammaire non ambiguë pour le langage $\{a^nb^p \mid 2p \ge n \ge p \ge 0\}.$

Rappels:

- pour montrer l'ambiguïté on montre 2 arbres de dérivation différents pour un même mot
- contrairement aux langages réguliers il n'y a pas d'algorithme d'élimination de l'ambiguïté (d'ailleurs certains langages sont intrinséquement ambigus)
- pour montrer la non-ambiguïté d'une grammaire on a vu des conditions suffisantes
- ⇒ Il faut donc re-exprimer le langage par une grammaire non ambiguë

< 2 / 16 >

Montrer que les grammaires suivantes sont ambiguës et proposer des grammaires équivalentes non ambiguës :

lacktriangledown S o arepsilon S o arepsilon

Montrer que les grammaires suivantes sont ambiguës et proposer des grammaires équivalentes non ambiguës :

- lacktriangledown S o aSaS
- $S \rightarrow \varepsilon$
- Ambiguïté : un mot avec deux arbres de dérivation

Montrer que les grammaires suivantes sont ambiguës et proposer des grammaires équivalentes non ambiguës :

- lacktriangledown S o aSaS
- $S \rightarrow \varepsilon$
- Ambiguïté : un mot avec deux arbres de dérivation

Montrer que les grammaires suivantes sont ambiguës et proposer des grammaires équivalentes non ambiguës :

- - Ambiguïté : un mot avec deux arbres de dérivation

Grammaire équivalente non-ambiguë :
 C'est un langage régulier ((aa)*) donc on y arrive

Montrer que les grammaires suivantes sont ambiguës et proposer des grammaires équivalentes non ambiguës :

- lacktriangle S o aSaS
 - Ambiguïté : un mot avec deux arbres de dérivation

- Grammaire équivalente non-ambiguë : C'est un langage régulier ((aa)*) donc on y arrive

- $S \rightarrow aX \mid \varepsilon \qquad X \rightarrow aS \qquad \text{ou}: S \rightarrow aaS \mid \varepsilon$

Montrer que les grammaires suivantes sont ambiguës et proposer des grammaires équivalentes non ambiguës :

2 $S \rightarrow aSb$ $S \rightarrow aS$ $S \rightarrow \varepsilon$

Montrer que les grammaires suivantes sont ambiguës et proposer des grammaires équivalentes non ambiguës :

- $oldsymbol{2} S
 ightarrow aSb \qquad S
 ightarrow aS \qquad S
 ightarrow arepsilon$

Ambiguïté :

Montrer que les grammaires suivantes sont ambiguës et proposer des grammaires équivalentes non ambiguës :

- $m{2} \; m{S} \; o \; m{aSb} \qquad \quad m{S} \; o \; m{aS} \qquad \quad m{S} \; o \; m{arepsilon}$
 - Ambiguïté :

• Grammaire équivalente non-ambiguë :

$$S o aS \mid A \qquad A o aAb \mid arepsilon$$
 ou bien : $S o aSb \mid A \qquad A o aA \mid arepsilon$

Question 2: Donner une grammaire non ambiguë pour le langage $L = \{a^n b^p \mid 2p \ge n \ge p \ge 0\}.$

Question 2: Donner une grammaire non ambiguë pour le langage $L = \{a^n b^p \mid 2p \ge n \ge p \ge 0\}.$

• Grammaire ambiguë:

Question 2: Donner une grammaire non ambiguë pour le langage $L = \{a^n b^p \mid 2p \ge n \ge p \ge 0\}.$

• Grammaire ambiguë:

$$S
ightarrow aaSb \mid aSb \mid arepsilon$$

Question 2: Donner une grammaire non ambiguë pour le langage $L = \{a^n b^p \mid 2p \ge n \ge p \ge 0\}.$

• Grammaire ambiguë:

$$S \rightarrow aaSb \mid aSb \mid \varepsilon$$

Grammaire non ambiguë :

Question 2: Donner une grammaire non ambiguë pour le langage $L = \{a^n b^p \mid 2p \ge n \ge p \ge 0\}.$

• Grammaire ambiguë:

$$S \rightarrow aaSb \mid aSb \mid arepsilon$$

• Grammaire non ambiguë:

Idée :
$$L = \{a^{2r}a^qb^qb^r \mid q \ge 0, r \ge 0\}$$

$$S \rightarrow aaSb \mid X \qquad X \rightarrow aXb \mid \varepsilon$$

Question 2 : Donner une grammaire non ambiguë pour le langage $L = \{a^n b^p \mid 2p \ge n \ge p \ge 0\}.$

Grammaire ambiguë :

$$S \rightarrow aaSb \mid aSb \mid arepsilon$$

Grammaire non ambiguë :

Idée :
$$L = \{a^{2r}a^qb^qb^r \mid q \ge 0, r \ge 0\}$$

$$S \rightarrow aaSb \mid X \qquad X \rightarrow aXb \mid \varepsilon$$

$$X
ightarrow aXb \mid$$

Idée :
$$L = \{a^r a^{2q} b^q b^r \mid q \ge 0, r \ge 0\}$$

$$S \rightarrow aSb \mid X$$

$$S \rightarrow aSb \mid X \qquad X \rightarrow aaXb \mid \varepsilon$$

Condition suffisante pour qu'une grammaire ne soit pas ambiguë

Une condition suffisante pour qu'une grammaire G ne soit pas ambiguë est que les deux propositions ci-dessous soient vérifiées :

Condition 1:

pour tout couple de règles $(A \to \alpha, A \to \beta)$ de G tel que $\alpha \neq \beta$, $L(\alpha) \cap L(\beta) = \emptyset$;

Condition 2:

pour toute règle de la forme $A \to X_1 X_2 ... X_n$, où $X_i \in V_T \cup V_N$, $\forall w \in V_T^*$ tel que $X_1 X_2 ... X_n \Longrightarrow^* w$, $\exists ! (w_1, w_2, ... w_n)$ tel que $w_i \in V_T^*$, $w = w_1 w_2 ... w_n$ et $\forall i, X_i \Longrightarrow^* w_i$.

Feuille 2 – exercice 3 : Preuve sur les grammaires

On définit deux langages L_1 et L_2 sur le vocabulaire $V = \{a, b\}$.

Soit $P_1(w)$ la propriété $|w|_a = |w|_b$ et $P_2(w)$ la propriété $\forall u \in Prefixe(w) |u|_a \ge |u|_b$

Rappel: La notation $|w|_x$ représente le nombre d'occurrences du symbole x dans w et u est un préfixe de w si et seulement il existe un mot v dans V^* tel que uv = w.

Définition de L₁ par compréhension :

$$L_1 = \{ w \in V^* : P_1(w) \land P_2(w) \}$$

• Définition de L_2 par grammaire : $L_2 = L(S)$ avec

$$S \rightarrow \varepsilon$$
 $S \rightarrow SS$ $S \rightarrow aSb$

 $\begin{array}{lcl} P_{1}(w) & : & |w|_{a} = |w|_{b} \\ P_{2}(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_{a} \geq |u|_{b} \\ L_{1} & = & \{w \in \{a,b\}^{*} : P_{1}(w) \ \land \ P_{2}(w)\} \\ L_{2} & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}$

 $\begin{array}{lcl} P_1(w) & : & |w|_a = |w|_b \\ P_2(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_a \geq |u|_b \\ L_1 & = & \{w \in \{a,b\}^* : P_1(w) \ \land \ P_2(w)\} \\ L_2 & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}$

Question 1 : Justifier en quoi le mot *abaabb* appartient à la fois à L_1 et L_2 .

• $(P_1) |abaabb|_a = 3 = |abaabb|_b$.

```
\begin{array}{lcl} P_1(w) & : & |w|_a = |w|_b \\ P_2(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_a \geq |u|_b \\ L_1 & = & \{w \in \{a,b\}^* : P_1(w) \ \land \ P_2(w)\} \\ L_2 & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}
```

Question 1 : Justifier en quoi le mot *abaabb* appartient à la fois à L_1 et L_2 .

(P₁) |abaabb|_a = 3 = |abaabb|_b.
 (P₂) Ses sept préfixes ont au moins autant de a que de b. Donc abaabb ∈ L₁.

```
P_1(w) : |w|_a = |w|_b
P_2(w) : \forall u \in Prefixe(w) |u|_a \ge |u|_b
    L_1 = \{ w \in \{a, b\}^* : P_1(w) \land P_2(w) \}
    L_2 = L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb
```

Question 1: Justifier en quoi le mot abaabb appartient à la fois à L_1 et L_2 .

- $(P_1) |abaabb|_a = 3 = |abaabb|_b$. (P_2) Ses sept préfixes ont au moins autant de *a* que de *b*. Donc *abaabb* $\in L_1$.
- S

< 8/16 >

$$\begin{array}{lcl} P_1(w) & : & |w|_a = |w|_b \\ P_2(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_a \geq |u|_b \\ L_1 & = & \{w \in \{a,b\}^* : P_1(w) \ \land \ P_2(w)\} \\ L_2 & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}$$

- (P₁) |abaabb|_a = 3 = |abaabb|_b.
 (P₂) Ses sept préfixes ont au moins autant de a que de b. Donc abaabb ∈ L₁.
- $S \implies_{S \to SS} SS$

$$\begin{array}{lcl} P_{1}(w) & : & |w|_{a} = |w|_{b} \\ P_{2}(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_{a} \geq |u|_{b} \\ L_{1} & = & \{w \in \{a,b\}^{*} : P_{1}(w) \ \land \ P_{2}(w)\} \\ L_{2} & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}$$

- (P₁) |abaabb|_a = 3 = |abaabb|_b.
 (P₂) Ses sept préfixes ont au moins autant de a que de b. Donc abaabb ∈ L₁.
- ullet $S \Longrightarrow_{S o SS} SS \Longrightarrow_{S o aSb} aSbS$

$$\begin{array}{lcl} P_{1}(w) & : & |w|_{a} = |w|_{b} \\ P_{2}(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_{a} \geq |u|_{b} \\ L_{1} & = & \{w \in \{a,b\}^{*} : P_{1}(w) \ \land \ P_{2}(w)\} \\ L_{2} & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}$$

- (P₁) |abaabb|_a = 3 = |abaabb|_b.
 (P₂) Ses sept préfixes ont au moins autant de a que de b. Donc abaabb ∈ L₁.

$$\begin{array}{lcl} P_{1}(w) & : & |w|_{a} = |w|_{b} \\ P_{2}(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_{a} \geq |u|_{b} \\ L_{1} & = & \{w \in \{a,b\}^{*} : P_{1}(w) \ \land \ P_{2}(w)\} \\ L_{2} & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}$$

- (P₁) |abaabb|_a = 3 = |abaabb|_b.
 (P₂) Ses sept préfixes ont au moins autant de a que de b. Donc abaabb ∈ L₁.

$$\begin{array}{lcl} P_{1}(w) & : & |w|_{a} = |w|_{b} \\ P_{2}(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_{a} \geq |u|_{b} \\ L_{1} & = & \{w \in \{a,b\}^{*} : P_{1}(w) \ \land \ P_{2}(w)\} \\ L_{2} & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}$$

- (P₁) |abaabb|_a = 3 = |abaabb|_b.
 (P₂) Ses sept préfixes ont au moins autant de a que de b. Donc abaabb ∈ L₁.
- $egin{array}{lll} \bullet & S & \Longrightarrow & SS & \Longrightarrow & aSbS \ & \Longrightarrow & abS & \Longrightarrow & abaSb \ & \Longrightarrow & abaaSbb \ & \Longrightarrow & abaaSbb \end{array}$

$$\begin{array}{lcl} P_{1}(w) & : & |w|_{a} = |w|_{b} \\ P_{2}(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_{a} \geq |u|_{b} \\ L_{1} & = & \{w \in \{a,b\}^{*} : P_{1}(w) \ \land \ P_{2}(w)\} \\ L_{2} & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}$$

- (P₁) |abaabb|_a = 3 = |abaabb|_b.
 (P₂) Ses sept préfixes ont au moins autant de a que de b. Donc abaabb ∈ L₁.

 $P_1(w)$: $|w|_a = |w|_b$ $P_2(w)$: $\forall u \in Prefixe(w) |u|_a \ge |u|_b$ $L_1 = \{w \in \{a,b\}^* : P_1(w) \land P_2(w)\}$ $L_2 = L(S)$. $S \rightarrow \varepsilon$ $S \rightarrow SS$ $S \rightarrow aSb$

Question 1 : Justifier en quoi le mot *abaabb* appartient à la fois à L_1 et L_2 .

(P₁) |abaabb|_a = 3 = |abaabb|_b.
 (P₂) Ses sept préfixes ont au moins autant de a que de b. Donc abaabb ∈ L₁.


```
\begin{array}{lll} P_1(w) & : & |w|_a = |w|_b \\ P_2(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_a \geq |u|_b \\ L_1 & = & \{w \in \{a,b\}^* : P_1(w) \land P_2(w)\} \\ L_2 & = & L(S), & S \rightarrow \varepsilon & S \rightarrow SS & S \rightarrow aSb \end{array}
```

Question 2 : On veut montrer que $L_2 \subseteq L_1$. On rappelle que ceci revient à montrer que tout mot dérivable à partir de S vérifie les propriétés P_1 et P_2 .

- o ajouter une règle de grammaire qui violerait la propriété P_2 .
- ② en considérant la grammaire initiale prouvez $L_2 \subseteq L_1$.

```
\begin{array}{lll} P_1(w) & : & |w|_a = |w|_b \\ P_2(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_a \geq |u|_b \\ L_1 & = & \{w \in \{a,b\}^* : P_1(w) \ \land \ P_2(w)\} \\ L_2 & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}
```

Question 2 : On veut montrer que $L_2 \subseteq L_1$. On rappelle que ceci revient à montrer que tout mot dérivable à partir de S vérifie les propriétés P_1 et P_2 .

- ajouter une règle de grammaire qui violerait la propriété P_2 .
- ② en considérant la grammaire initiale prouvez $L_2 \subseteq L_1$.

Correction:

Plusieurs possibilités :

 $\begin{array}{lll} P_1(w) & : & |w|_a = |w|_b \\ P_2(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_a \geq |u|_b \\ L_1 & = & \{w \in \{a,b\}^* : P_1(w) \ \land \ P_2(w)\} \\ L_2 & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}$

Question 2 : On veut montrer que $L_2 \subseteq L_1$. On rappelle que ceci revient à montrer que tout mot dérivable à partir de S vérifie les propriétés P_1 et P_2 .

- o ajouter une règle de grammaire qui violerait la propriété P_2 .
- ② en considérant la grammaire initiale prouvez $L_2 \subseteq L_1$.

- Plusieurs possibilités :
 - $S \rightarrow b$

```
\begin{array}{lll} P_1(w) & : & |w|_a = |w|_b \\ P_2(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_a \geq |u|_b \\ L_1 & = & \{w \in \{a,b\}^* : P_1(w) \ \land \ P_2(w)\} \\ L_2 & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}
```

Question 2 : On veut montrer que $L_2 \subseteq L_1$. On rappelle que ceci revient à montrer que tout mot dérivable à partir de S vérifie les propriétés P_1 et P_2 .

- ajouter une règle de grammaire qui violerait la propriété P_2 .
- ② en considérant la grammaire initiale prouvez $L_2 \subseteq L_1$.

- Plusieurs possibilités :
 - $S \rightarrow b$ permet de produire b qui viole à la fois P_1 et P_2 ;

```
\begin{array}{lll} P_1(w) & : & |w|_a = |w|_b \\ P_2(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_a \geq |u|_b \\ L_1 & = & \{w \in \{a,b\}^* : P_1(w) \ \land \ P_2(w)\} \\ L_2 & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}
```

Question 2 : On veut montrer que $L_2 \subseteq L_1$. On rappelle que ceci revient à montrer que tout mot dérivable à partir de S vérifie les propriétés P_1 et P_2 .

- ajouter une règle de grammaire qui violerait la propriété P_2 .
- ② en considérant la grammaire initiale prouvez $L_2 \subseteq L_1$.

- Plusieurs possibilités :
 - $S \rightarrow b$ permet de produire b qui viole à la fois P_1 et P_2 ;
 - ullet $S \rightarrow ba$

```
\begin{array}{lcl} P_1(w) & : & |w|_a = |w|_b \\ P_2(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_a \geq |u|_b \\ L_1 & = & \{w \in \{a,b\}^* : P_1(w) \ \land \ P_2(w)\} \\ L_2 & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow \textit{SS} \qquad S \rightarrow \textit{aSb} \end{array}
```

Question 2 : On veut montrer que $L_2 \subseteq L_1$. On rappelle que ceci revient à montrer que tout mot dérivable à partir de S vérifie les propriétés P_1 et P_2 .

- ajouter une règle de grammaire qui violerait la propriété P_2 .
- ② en considérant la grammaire initiale prouvez $L_2 \subseteq L_1$.

- Plusieurs possibilités :
 - $S \rightarrow b$ permet de produire b qui viole à la fois P_1 et P_2 ;
 - $S \rightarrow ba$ permet de produire ba qui satisfait P_1 mais pas P_2 ;

Feuille 2 – exercice 3 – question 2

```
\begin{array}{lcl} P_1(w) & : & |w|_a = |w|_b \\ P_2(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_a \geq |u|_b \\ L_1 & = & \{w \in \{a,b\}^* : P_1(w) \ \land \ P_2(w)\} \\ L_2 & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}
```

Question 2 : On veut montrer que $L_2 \subseteq L_1$. On rappelle que ceci revient à montrer que tout mot dérivable à partir de S vérifie les propriétés P_1 et P_2 .

- o ajouter une règle de grammaire qui violerait la propriété P_2 .
- ② en considérant la grammaire initiale prouvez $L_2 \subseteq L_1$.

Correction:

- Plusieurs possibilités :
 - $S \rightarrow b$ permet de produire b qui viole à la fois P_1 et P_2 ;
 - $S \rightarrow ba$ permet de produire ba qui satisfait P_1 mais pas P_2 ;
 - $S \rightarrow a$

< 9/16 >

Feuille 2 – exercice 3 – question 2

```
\begin{array}{lll} P_1(w) & : & |w|_a = |w|_b \\ P_2(w) & : & \forall u \in \textit{Prefixe}(w) \ |u|_a \geq |u|_b \\ L_1 & = & \{w \in \{a,b\}^* : P_1(w) \ \land \ P_2(w)\} \\ L_2 & = & L(S), \qquad S \rightarrow \varepsilon \qquad S \rightarrow SS \qquad S \rightarrow aSb \end{array}
```

Question 2 : On veut montrer que $L_2 \subseteq L_1$. On rappelle que ceci revient à montrer que tout mot dérivable à partir de S vérifie les propriétés P_1 et P_2 .

- ajouter une règle de grammaire qui violerait la propriété P_2 .
- ② en considérant la grammaire initiale prouvez $L_2 \subseteq L_1$.

Correction:

- Plusieurs possibilités :
 - $S \rightarrow b$ permet de produire b qui viole à la fois P_1 et P_2 ;
 - $S \rightarrow ba$ permet de produire ba qui satisfait P_1 mais pas P_2 ;
 - $S \rightarrow a$ permet de produire a qui satisfait P_2 mais pas P_1 .

Rappel: preuve de correction

 $L(G) \subseteq L$: le but est de montrer que tout mot w produit par la grammaire ($S \Longrightarrow^* w$) vérifie P (est tel que P(w) est vrai).

- La preuve se fait par induction sur la longueur des dérivations : $S \Longrightarrow^n w$
- Demande généralement de caractériser les langages intermédiaires L(A) associés à chaque non-terminal :

$$L_A = \{w \mid w \in V_T^* \wedge P_A(w)\}$$

On va donc prouver pour tout n > 0:

$$\forall A \in V_N, \forall w \in V_T * : (A \Longrightarrow^n w) \Rightarrow P_A(w)$$

Avec l'hypothèse d'induction pour tout k < n:

$$\forall A \in V_N, \forall w \in V_T * : (A \Longrightarrow^k w) \Rightarrow P_A(w)$$

Il faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2

Il faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w \in V_T^*$, donc $S \Longrightarrow^n w$ (n > 0)

Il faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w \in V_T^*$, donc $S \Longrightarrow^n w \ (n > 0) : S \Longrightarrow \alpha \Longrightarrow^{n-1} w \ (S \to \alpha \in R)$

Il faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w \in V_T^*$, donc $S \Longrightarrow^n w \ (n > 0) : S \Longrightarrow \alpha \Longrightarrow^{n-1} w \ (S \to \alpha \in R)$ On procède donc par induction sur n > 0 (longueur de la dérivation)

0 n=1 Une possibilité :

Il faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w \in V_T^*$, donc $S \Longrightarrow^n w (n > 0) : S \Longrightarrow \alpha \Longrightarrow^{n-1} w (S \to \alpha \in R)$ On procède donc par induction sur n > 0 (longueur de la dérivation)

1 Ine possibilité : $S \Longrightarrow \varepsilon (= w)$

Il faut montrer : si $S\Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w\in V_T^*$, donc $S\Longrightarrow^n w$ (n>0) : $S\Longrightarrow\alpha\Longrightarrow^{n-1} w$ $(S\to\alpha\in R)$ On procède donc par induction sur n>0 (longueur de la dérivation)

• n = 1 Une possibilité : $S \Longrightarrow \varepsilon \ (= w)$ ε satisfait P_1 et P_2 (il est son seul préfixe), OK

II faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w \in V_T^*$, donc $S \Longrightarrow^n w \ (n > 0) : S \Longrightarrow \alpha \Longrightarrow^{n-1} w \ (S \to \alpha \in R)$ On procède donc par induction sur n > 0 (longueur de la dérivation)

- **1** n = 1 Une possibilité : $S \Longrightarrow \varepsilon (= w)$ ε satisfait P_1 et P_2 (il est son seul préfixe), OK
- n > 1 Deux possibilités :

Il faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w \in V_T^*$, donc $S \Longrightarrow^n w (n > 0)$: $S \Longrightarrow \alpha \Longrightarrow^{n-1} w (S \to \alpha \in R)$ On procède donc par induction sur n > 0 (longueur de la dérivation)

- **1** n = 1 Une possibilité : $S \Longrightarrow \varepsilon (= w)$ ε satisfait P_1 et P_2 (il est son seul préfixe), OK
- n > 1 Deux possibilités :
 - $S \Longrightarrow aSb \Longrightarrow^{n-1} aw_1b (= w)$ avec $S \Longrightarrow^{n-1} w_1$

Il faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w \in V_T^*$, donc $S \Longrightarrow^n w \ (n > 0) : S \Longrightarrow \alpha \Longrightarrow^{n-1} w \ (S \to \alpha \in R)$ On procède donc par induction sur n > 0 (longueur de la dérivation)

- **1** n = 1 Une possibilité : $S \Longrightarrow \varepsilon (= w)$ ε satisfait P_1 et P_2 (il est son seul préfixe), OK
- n > 1 Deux possibilités :
 - $S \Longrightarrow aSb \Longrightarrow^{n-1} aw_1b (= w)$ avec $S \Longrightarrow^{n-1} w_1$
 - $S \Longrightarrow SS \Longrightarrow^{n-1} W_1 W_2 (= W)$ avec $S \Longrightarrow^p w_1$ et $S \Longrightarrow^q w_2$ et p + q = n - 1

Il faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w \in V_T^*$, donc $S \Longrightarrow^n w (n > 0)$: $S \Longrightarrow \alpha \Longrightarrow^{n-1} w (S \to \alpha \in R)$ On procède donc par induction sur n > 0 (longueur de la dérivation)

- **1** n = 1 Une possibilité : $S \Longrightarrow \varepsilon (= w)$ ε satisfait P_1 et P_2 (il est son seul préfixe), OK
- n > 1 Deux possibilités :
 - $S \Longrightarrow aSb \Longrightarrow^{n-1} aw_1b (= w)$ avec $S \Longrightarrow^{n-1} w_1$
 - $S \Longrightarrow SS \Longrightarrow^{n-1} W_1 W_2 (= W)$ avec $S \Longrightarrow^p w_1$ et $S \Longrightarrow^q w_2$ et p + q = n - 1

L'hypothèse d'induction (HI) à utiliser est donc :

$$\forall k < n: S \Longrightarrow^k W \Rightarrow W \in L_1$$

Il faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w \in V_T^*$, donc $S \Longrightarrow^n w \ (n > 0) : S \Longrightarrow \alpha \Longrightarrow^{n-1} w \ (S \to \alpha \in R)$ On procède donc par induction sur n > 0 (longueur de la dérivation)

- **1** n = 1 Une possibilité : $S \Longrightarrow \varepsilon (= w)$ ε satisfait P_1 et P_2 (il est son seul préfixe), OK
- n > 1 Deux possibilités :
 - $S \Longrightarrow aSb \Longrightarrow^{n-1} aw_1b (= w)$ avec $S \Longrightarrow^{n-1} w_1$
 - $S \Longrightarrow SS \Longrightarrow^{n-1} W_1 W_2 (= W)$ avec $S \Longrightarrow^p w_1$ et $S \Longrightarrow^q w_2$ et p + q = n - 1

L'hypothèse d'induction (HI) à utiliser est donc :

$$\forall k < n : S \Longrightarrow^k W \Rightarrow W \in L_1$$

• $S \Longrightarrow aSb \Longrightarrow^{n-1} aw_1b (= w)$ avec $S \Longrightarrow^{n-1} w_1$

Il faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w \in V_T^*$, donc $S \Longrightarrow^n w \ (n > 0) : S \Longrightarrow \alpha \Longrightarrow^{n-1} w \ (S \to \alpha \in R)$ On procède donc par induction sur n > 0 (longueur de la dérivation)

- **1** n = 1 Une possibilité : $S \Longrightarrow \varepsilon (= w)$ ε satisfait P_1 et P_2 (il est son seul préfixe), OK
- n > 1 Deux possibilités :
 - $S \Longrightarrow aSb \Longrightarrow^{n-1} aw_1b (= w)$ avec $S \Longrightarrow^{n-1} w_1$
 - $S \Longrightarrow SS \Longrightarrow^{n-1} W_1 W_2 (= W)$ avec $S \Longrightarrow^p w_1$ et $S \Longrightarrow^q w_2$ et p + q = n - 1

L'hypothèse d'induction (HI) à utiliser est donc :

$$\forall k < n : S \Longrightarrow^k W \Rightarrow W \in L_1$$

• $S \Longrightarrow aSb \Longrightarrow^{n-1} aw_1b (= w) \text{ avec } S \Longrightarrow^{n-1} w_1$ Par HI, $w_1 \in L_1$

Il faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w \in V_T^*$, donc $S \Longrightarrow^n w$ (n > 0) : $S \Longrightarrow \alpha \Longrightarrow^{n-1} w$ $(S \to \alpha \in R)$ On procède donc par induction sur n > 0 (longueur de la dérivation)

- n = 1 Une possibilité : $S \Longrightarrow \varepsilon \ (= w)$ ε satisfait P_1 et P_2 (il est son seul préfixe), OK
- - $S \Longrightarrow aSb \Longrightarrow^{n-1} aw_1b (= w)$ avec $S \Longrightarrow^{n-1} w_1$
 - $S \Longrightarrow SS \Longrightarrow^{n-1} w_1 w_2 (= w)$ avec $S \Longrightarrow^p w_1$ et $S \Longrightarrow^q w_2$ et p+q=n-1

L'hypothèse d'induction (HI) à utiliser est donc :

$$\forall k < n : S \Longrightarrow^k W \Rightarrow W \in L_1$$

- $S \Longrightarrow aSb \Longrightarrow^{n-1} aw_1b \ (=w) \text{ avec } S \Longrightarrow^{n-1} w_1$ Par HI, $w_1 \in L_1$ et donc, pour $w = aw_1b$:

Il faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w \in V_T^*$, donc $S \Longrightarrow^n w$ (n > 0) : $S \Longrightarrow \alpha \Longrightarrow^{n-1} w$ $(S \to \alpha \in R)$ On procède donc par induction sur n > 0 (longueur de la dérivation)

- n = 1 Une possibilité : $S \Longrightarrow \varepsilon \ (= w)$ ε satisfait P_1 et P_2 (il est son seul préfixe), OK
- - $S \Longrightarrow aSb \Longrightarrow^{n-1} aw_1b (= w)$ avec $S \Longrightarrow^{n-1} w_1$
 - $S \Longrightarrow SS \Longrightarrow^{n-1} w_1 w_2 (= w)$ avec $S \Longrightarrow^p w_1$ et $S \Longrightarrow^q w_2$ et p+q=n-1

L'hypothèse d'induction (HI) à utiliser est donc :

$$\forall k < n : S \Longrightarrow^k W \Rightarrow W \in L_1$$

- $S \Longrightarrow aSb \Longrightarrow^{n-1} aw_1b \ (= w) \text{ avec } S \Longrightarrow^{n-1} w_1$ Par HI, $w_1 \in L_1$ et donc, pour $w = aw_1b$:

 - **2** u préfixe de w est, soit ε , soit aw_1b , soit au_1 avec u_1 préfixe de $w_1...$

Il faut montrer : si $S \Longrightarrow^* w$ alors w satisfait P_1 et P_2 $w \in V_T^*$, donc $S \Longrightarrow^n w$ (n > 0) : $S \Longrightarrow \alpha \Longrightarrow^{n-1} w$ $(S \to \alpha \in R)$ On procède donc par induction sur n > 0 (longueur de la dérivation)

- n = 1 Une possibilité : $S \Longrightarrow \varepsilon \ (= w)$ ε satisfait P_1 et P_2 (il est son seul préfixe), OK
- - $S \Longrightarrow aSb \Longrightarrow^{n-1} aw_1b (= w)$ avec $S \Longrightarrow^{n-1} w_1$
 - $S \Longrightarrow SS \Longrightarrow^{n-1} w_1 w_2 (= w)$ avec $S \Longrightarrow^p w_1$ et $S \Longrightarrow^q w_2$ et p+q=n-1

L'hypothèse d'induction (HI) à utiliser est donc :

$$\forall k < n : S \Longrightarrow^k W \Rightarrow W \in L_1$$

- $S \Longrightarrow aSb \Longrightarrow^{n-1} aw_1b \ (=w) \text{ avec } S \Longrightarrow^{n-1} w_1$ Par HI, $w_1 \in L_1$ et donc, pour $w = aw_1b$:

 - 2 u préfixe de w est, soit ε , soit aw_1b , soit au_1 avec u_1 préfixe de $w_1...$ on conclut facilement

• $S \Longrightarrow SS \Longrightarrow^{n-1} w_1 w_2 (= w)$ avec $S \Longrightarrow^p w_1$, $S \Longrightarrow^q w_2$, p+q=n-1 donc p < n, q < n

• $S \Longrightarrow SS \Longrightarrow^{n-1} w_1 w_2 (= w)$ avec $S \Longrightarrow^p w_1, S \Longrightarrow^q w_2,$ p + q = n - 1 donc p < n, q < nPar HI, w_1 et w_2 sont dans L_1

• $S \Longrightarrow SS \Longrightarrow^{n-1} w_1 w_2 (= w)$ avec $S \Longrightarrow^p w_1, S \Longrightarrow^q w_2,$ p + q = n - 1 donc p < n, q < nPar HI, w_1 et w_2 sont dans L_1 et donc, pour $w = w_1 w_2$:

• $S \Longrightarrow SS \Longrightarrow^{n-1} w_1 w_2 (= w)$ avec $S \Longrightarrow^p w_1, S \Longrightarrow^q w_2,$ p + q = n - 1 donc p < n, q < nPar HI, w_1 et w_2 sont dans L_1 et donc, pour $w = w_1 w_2$: $|W|_a = |W_1|_a + |W_2|_a = |W_1|_b + |W_2|_b = |W|_b$

- $S \Longrightarrow SS \Longrightarrow^{n-1} w_1 w_2 (= w)$ avec $S \Longrightarrow^p w_1$, $S \Longrightarrow^q w_2$, p+q=n-1 donc p < n, q < n
 - Par HI, w_1 et w_2 sont dans L_1 et donc, pour $w = w_1 w_2$:

 - 2 pour *u* préfixe de *w* :

• $S \Longrightarrow SS \Longrightarrow^{n-1} w_1 w_2 (= w)$ avec $S \Longrightarrow^p w_1, S \Longrightarrow^q w_2,$ p + q = n - 1 donc p < n, q < n

Par HI, w_1 et w_2 sont dans L_1 et donc, pour $w = w_1 w_2$:

- $|W|_a = |W_1|_a + |W_2|_a = |W_1|_b + |W_2|_b = |W|_b$
- 2 pour *u* préfixe de *w* :
 - si u préfixe de w₁ : OK

- $S \Longrightarrow SS \Longrightarrow^{n-1} w_1 w_2 (= w)$ avec $S \Longrightarrow^p w_1$, $S \Longrightarrow^q w_2$, p+q=n-1 donc p < n, q < n
 - Par HI, w_1 et w_2 sont dans L_1 et donc, pour $w = w_1 w_2$:

 - 2 pour *u* préfixe de *w* :
 - si u préfixe de w₁ : OK
 - si $u = w_1 u_2$ avec u_2 préfixe de w_2 : OK

Feuille 2– exercice 3 – question 3

Question 3 : On veut maintenant montrer que $L_1 \subseteq L_2$. Pour cela on doit montrer que tout mot vérifiant les propriétés P_1 et P_2 peut être dérivé de l'axiome.

- On vous propose de faire l'analyse par cas suivante :

 (1) w = ε, (2) w = abu, (3) w = uab (4) w = aub.
 Justifier en quoi cette décomposition n'est pas complète, i.e. qu'il existe des mots de L₁ qui ne peuvent être produits comme une combinaison de ces différents cas.
- ② Prouvez $L_1 \subseteq L_2$.

Feuille 2– exercice 3 – question 3

Question 3 : On yeut maintenant montrer que $L_1 \subseteq L_2$. Pour cela on doit montrer que tout mot vérifiant les propriétés P_1 et P_2 peut être dérivé de l'axiome

- On vous propose de faire l'analyse par cas suivante : (1) $w = \varepsilon$, (2) w = abu, (3) w = uab (4) w = aub. Justifier en quoi cette décomposition n'est pas complète, i.e. qu'il existe des mots de L_1 qui ne peuvent être produits comme une combinaison de ces différents cas.
- 2 Prouvez $L_1 \subset L_2$.

Correction:

• Un exemple de mot dans L_1 qui ne serait pas couvert par la décomposition proposée : aabbaabb.

Rappel: preuve de complétude

 $L \subseteq L(G)$: le but est de montrer que tout mot vérifiant P (tout mot w tel que P(w) est vrai) peut être produit par la grammaire $(S \Longrightarrow^* w)$.

- La preuve se fait généralement par induction sur une mesure associée à w (sa longueur, le nombre d'occurrences d'un certain symbole...), l'ordre choisi dépendant du prédicat P.
- On sera généralement amené à montrer qu'on sait produire les éléments des langages intermédiaires L(A), pour tout $A \in V_N$.

On va donc prouver, pour tout $A \in V_N$ et tout $w \in V_{T^*}$:

$$(P_A(w) \land |w| = n) \Rightarrow (A \Longrightarrow^* w)$$

Avec l'hypothèse d'induction, pour tout $A \in V_N$:

$$\forall \alpha . (P_A(\alpha) \land |\alpha| < n) \Rightarrow (A \Longrightarrow^* \alpha)$$

Complétude : Soit $w \in L_1$. Notons n = |w| et supposons que pour tout mot $x \in L_1$ de longueur < n, on a $x \in L_2$.

Complétude : Soit $w \in L_1$. Notons n = |w| et supposons que pour tout mot $x \in L_1$ de longueur < n, on a $x \in L_2$. Montrons que $w \in L_2$ (i.e. $S \Longrightarrow^* w$).

Complétude: Soit $w \in L_1$. Notons n = |w| et supposons que pour tout mot $x \in L_1$ de longueur < n, on a $x \in L_2$.

Montrons que $w \in L_2$ (i.e. $S \Longrightarrow^* w$).

Pour cela distinguons trois cas:

Complétude : Soit $w \in L_1$. Notons n = |w| et supposons que pour tout mot $x \in L_1$ de longueur < n, on a $x \in L_2$.

Montrons que $w \in L_2$ (i.e. $S \Longrightarrow^* w$).

Pour cela distinguons trois cas:

- **1** $w = \varepsilon$ (qui $\in L_1$); La règle $S \to \varepsilon$ assure que $w \in L_2$.
- 2 II existe $(x_1, x_2) \in L_1^2$ tel que $w = x_1 x_2, x_1 \neq \varepsilon$ et $x_2 \neq \varepsilon$.

Complétude : Soit $w \in L_1$. Notons n = |w| et supposons que pour tout mot $x \in L_1$ de longueur < n, on a $x \in L_2$.

Montrons que $w \in L_2$ (i.e. $S \Longrightarrow^* w$).

Pour cela distinguons trois cas:

- **1** $w = \varepsilon$ (qui $\in L_1$); La règle $S \to \varepsilon$ assure que $w \in L_2$.
- 2 Il existe $(x_1, x_2) \in L_1^2$ tel que $w = x_1 x_2, x_1 \neq \varepsilon$ et $x_2 \neq \varepsilon$. On a $|x_1| < n$ et $|x_2| < n$ donc par HI $S \Longrightarrow^* x_1$ et $S \Longrightarrow^* x_2$.

Complétude : Soit $w \in L_1$. Notons n = |w| et supposons que pour tout mot $x \in L_1$ de longueur < n, on a $x \in L_2$.

Montrons que $w \in L_2$ (i.e. $S \Longrightarrow^* w$).

Pour cela distinguons trois cas:

- **1** $w = \varepsilon$ (qui $\in L_1$); La règle $S \to \varepsilon$ assure que $w \in L_2$.
- 2 Il existe $(x_1, x_2) \in L_1^2$ tel que $w = x_1 x_2, x_1 \neq \varepsilon$ et $x_2 \neq \varepsilon$. On a $|x_1| < n$ et $|x_2| < n$ donc par HI $S \Longrightarrow^* x_1$ et $S \Longrightarrow^* x_2$. La règle $S \to SS$ finit de démontrer que $w \in L_2$.

1 $w = \varepsilon$ OK 2 Il existe $(x_1, x_2) \in L_1^2$ tel que $w = x_1 x_2, x_1 \neq \varepsilon$ et $x_2 \neq \varepsilon$ OK

Il existe $(x_1, x_2) \in L_1^2$ tel que $w = x_1 x_2, x_1 \neq \varepsilon$ et $x_2 \neq \varepsilon$ Sinon

- ② Il existe $(x_1, x_2) \in L_1^2$ tel que $w = x_1 x_2, x_1 \neq \varepsilon$ et $x_2 \neq \varepsilon$ OK
- ③ Sinon : on n'est dans aucun des deux cas précédents, on a donc forcément $\forall x_1 \in Prefixe(w) \setminus \{\varepsilon, w\}, |x_1|_a > |x_1|_b$

- ② Il existe $(x_1, x_2) \in L_1^2$ tel que $w = x_1 x_2, x_1 \neq \varepsilon$ et $x_2 \neq \varepsilon$ OK
- Sinon : on n'est dans aucun des deux cas précédents, on a donc forcément ∀x₁ ∈ Prefixe(w) \ {ε, w}, |x₁|a > |x₁|b sinon un tel x₁ (avec donc |x₁|a = |x₁|b) donnerait la décomposition w = x₁x₂ du second cas.

- ② Il existe $(x_1, x_2) \in L_1^2$ tel que $w = x_1 x_2, x_1 \neq \varepsilon$ et $x_2 \neq \varepsilon$ OK
- Sinon : on n'est dans aucun des deux cas précédents, on a donc forcément $\forall x_1 \in Prefixe(w) \setminus \{\varepsilon, w\}, |x_1|_a > |x_1|_b$ sinon un tel x_1 (avec donc $|x_1|_a = |x_1|_b$) donnerait la décomposition $w = x_1x_2$ du second cas. Du coup, on a forcément w = axb, avec $|x|_a = |x|_b$ (car $|w|_a = |w|_b$)

- ② Il existe $(x_1, x_2) \in L_1^2$ tel que $w = x_1 x_2, x_1 \neq \varepsilon$ et $x_2 \neq \varepsilon$ OK
- Sinon : on n'est dans aucun des deux cas précédents, on a donc forcément $\forall x_1 \in Prefixe(w) \setminus \{\varepsilon, w\}, |x_1|_a > |x_1|_b$ sinon un tel x_1 (avec donc $|x_1|_a = |x_1|_b$) donnerait la décomposition $w = x_1x_2$ du second cas. Du coup, on a forcément w = axb, avec $|x|_a = |x|_b$ (car $|w|_a = |w|_b$) et par ailleurs $\forall u \in Prefixe(x), au \in Prefixe(w) \setminus \{\varepsilon, w\}, donc |au|_a > |au|_b$ et donc $|u|_a \geq |u|_b$.

 $\mathbf{0} \quad \mathbf{W} = \varepsilon$ OK

- 2 Il existe $(x_1, x_2) \in L_1^2$ tel que $w = x_1 x_2, x_1 \neq \varepsilon$ et $x_2 \neq \varepsilon$ OK
- Sinon : on n'est dans aucun des deux cas précédents, on a donc forcément $\forall x_1 \in Prefixe(w) \setminus \{\varepsilon, w\}, |x_1|_a > |x_1|_b$ sinon un tel x_1 (avec donc $|x_1|_a = |x_1|_b$) donnerait la décomposition $w = x_1 x_2$ du second cas. Du coup, on a forcément w = axb, avec $|x|_a = |x|_b$ (car $|w|_a = |w|_b$) et par ailleurs $\forall u \in Prefixe(x), au \in Prefixe(w) \setminus \{\varepsilon, w\}, donc |au|_a > |au|_b et$ donc $|u|_a > |u|_b$.

Par conséquent $x \in L_1$, et donc, par HI, $S \Rightarrow^* x$.

 $\mathbf{0} \quad \mathbf{W} = \varepsilon$ OK

- 2 Il existe $(x_1, x_2) \in L_1^2$ tel que $w = x_1 x_2, x_1 \neq \varepsilon$ et $x_2 \neq \varepsilon$ OK
- Sinon : on n'est dans aucun des deux cas précédents, on a donc forcément $\forall x_1 \in Prefixe(w) \setminus \{\varepsilon, w\}, |x_1|_a > |x_1|_b$ sinon un tel x_1 (avec donc $|x_1|_a = |x_1|_b$) donnerait la décomposition $w = x_1 x_2$ du second cas. Du coup, on a forcément w = axb, avec $|x|_a = |x|_b$ (car $|w|_a = |w|_b$) et par ailleurs $\forall u \in Prefixe(x), au \in Prefixe(w) \setminus \{\varepsilon, w\}, donc |au|_a > |au|_b et$ donc $|u|_a > |u|_b$.

Par conséquent $x \in L_1$, et donc, par HI, $S \Rightarrow^* x$.

La règle $S \to aSb$ finit de démontrer que $w \in L_2$.

② Il existe $(x_1, x_2) \in L_1^2$ tel que $w = x_1 x_2, x_1 \neq \varepsilon$ et $x_2 \neq \varepsilon$ OK

Sinon: on n'est dans aucun des deux cas précédents, on a donc forcément ∀x₁ ∈ Prefixe(w) \ {ε, w}, |x₁|a > |x₁|b sinon un tel x₁ (avec donc |x₁|a = |x₁|b) donnerait la décomposition w = x₁x₂ du second cas.
Du coup, on a forcément w = axb, avec |x|a = |x|b

Du coup, on a forcément w = axb, avec $|x|_a = |x|_b$

(car $|w|_a = |w|_b$) et par ailleurs

 $\forall u \in Prefixe(x), au \in Prefixe(w) \setminus \{\varepsilon, w\}, donc |au|_a > |au|_b et donc |u|_a \ge |u|_b$.

Par conséquent $x \in L_1$, et donc, par HI, $S \Rightarrow^* x$.

La règle $S \to aSb$ finit de démontrer que $w \in L_2$.

On a ainsi prouvé que $L_1 \subseteq L_2$.

On a finalement $L_1 = L_2$.