Analyse numérique avec python

Yehor Korotenko

February 13, 2025

Contents

T	Equ	uations Differentielles 2				
	1.1	Modèles discrètes	2			
		1.1.1 Modèle de croissance géomètrique	2			
	1.2	Modèles continues	3			
		1.2.1 Modèle de Malthus	3			
		1.2.2 Modèle Verhulst	4			
	1.3	Modèle de croissance logistique	5			
	1.4	Notion de champ de vecteurs associée à une EDO	5			
		1.4.1 Généralités et définitions	5			
		1.4.2 Dessins de champs de vecteurs	8			
		1.4.3 Recherche de solution approchée de modèles sous python	8			
	1.5	Modèle de prédateur prose (lotka-voltena (1931))	9			
2	$\operatorname{Int}\epsilon$	erpolation polynomiale 1	LC			
	2.1	Rappels sur les nuts numériques				
		Vitesse (ordre) de convergence				
		valeur ajoutée par itérations	11			
		2.1.1 Valeur ajoutée par l'itération	11			
		2.1.2 Obtenir numériquement la vitesse de convergence	12			
	2.2		13			
			13			
			13			
			14			
	2.3	<u>. </u>	16			
			16			
		• •	16			
			17			
	2.4	1	17			
			17			
			18			
			20			

Chapter 1

Équations Différentielles

1.1 Modèles discrètes

On diésigne par N(t) la population d'individus à l'instant t. Équation du modèle discret:

$$\underbrace{N(t + \Delta t) - N(t)}_{\text{variation de la population}} = \underbrace{n}_{\text{nombre de naissances}} - \underbrace{m}_{\text{nombre de décès}} + \underbrace{i}_{\text{immigration}} - \underbrace{e}_{\text{immigration}}$$

1.1.1 Modèle de croissance géomètrique

- hypothèse:
 - solde migration nul: i.e i e = 0
 - nombre de croissance proportionnel à la taille de la population $\underbrace{n = \lambda \Delta t N(t)}_{\text{taux de natalité}}$
 - -Idem pour le mobre de décès: $\underline{m = \mu \Delta t N(t)}_{\rm taux~de~mortalit\'e}$
- Modèle: On pose $N_n = N(t_n)$ la taille de la population à l'instant t_n .

$$N_{n+1} - N_n = \lambda \Delta t N_n - \mu \delta t N_n$$

on pose $r = \lambda - \mu$

$$N_{n+1} = (1 + r\Delta t)N_n, \qquad n = 0$$
(1.1)

- Solution: $N_n = (1 + r\Delta t)^n N_0, \quad n \in \mathbb{N}$
- <u>Visualisation</u>: Δt fixé

(a) Natalité supérieure à la mortalité

- (b) Natalité égale à la mortalité
- (c) Natalité inférieure à la mortalité

Property. .

• Lorsque $t \to 0$, la population semble tendre vers une courbe $N(t) = N_0 e^{rt}$, solution de $\begin{cases} N'(t) = rN(t) \\ N(0) = N_0 \end{cases}$

• Si r > 0, la population croît indéfiniment

• Si r < 0, il y a extinction de l'éspèce.

Inconvenients:

1. Une croissance infinie n'est pas réaliste

2. Pour être rigoureux, on devrait écrire $E(rN_n)$ i.e partie entière.

1.2 Modèles continues

Motivation: L'observation qui prend Δt proche de 0 aura beaucoup plus d'information.

Remark 1.1. Le modèle de croissance géomètrique

$$\begin{split} N(t + \Delta t) - N(t) &= \lambda \Delta t N(t) - \mu \Delta t N(t) \\ \Rightarrow & \frac{N(t + \Delta t) - N(t)}{\Delta t} = \lambda N(t) - \mu N(t) \end{split}$$

en faisant $\Delta t \to 0$

$$N'(t) = \lambda N(t) - \mu N(t)$$

D'où l'équation des modèles continues:

$$\underbrace{N'(t)}_{\text{vitesse de variation}} = \underbrace{n(t)}_{\text{vitesse de naissance}} - \underbrace{m(t)}_{\text{vitesse de décès}} + \underbrace{i(t)}_{\text{vitesse d'immigration}} - \underbrace{e(t)}_{\text{vitesse d'émigration}}$$

1.2.1 Modèle de Malthus

• hypothèse:

- solde migration nul: i(t) - e(t) = 0

- vitesse de naissance proportionnel à la population à l'instant t: $n(t) = \lambda N(t)$

- vitesse de décès: $m(t) = \mu N(t)$

• Modèle: $\begin{cases} N'(t) = (\lambda - \mu)N(t) \\ N(0) = N_0 \end{cases}$

• Solution: $N(t) = N_0 e^{(\lambda - \mu)t}$

Property. – Il peut être si comme limite du modèle de croissance géomètrique.

– Lorsque $r = \lambda - \mu > 0$ croissance est proportionnel.

– Lorsque $r = \lambda - \mu = 0$ la population n'évolue pas.

- Lorsque $r = \lambda - \mu < 0$ la population tend vers 0.

• <u>Inconvenients</u>:

- croissance exponentielle pas réaliste. Il faut prendre en compte:

* la limitation des ressources

* l'interaction avec l'environnement

1.2.2 Modèle Verhulst

Corrige le modèle de Malthus en prennant en compte la limitation de ressources.

 \bullet <u>Idée</u>: limiter la croissance à un seuil K appelé capacité biotique

Figure 1.2: Modèle de Malthus

Figure 1.3: Modèle de Verhulst

- hypothèse: Sole de migration nul
 - -taux de natalité fonction afiine décroissante de la population $\lambda \approx \lambda(1-\frac{N(t)}{K})$
 - -taux de mortalité fonction affine croissante de la population $\mu \approx -\mu(1-\frac{N(t)}{K})$

• Modèle:
$$\begin{cases} N'(t) = rN(t)(1 - \frac{N(t)}{K}) \\ N(0) = N_0 \end{cases}$$

- Solutions: $N(t) = \frac{K}{1 + (\frac{K}{N_0} 1)e^{-rt}}$ t > 0
- <u>Visualisation</u>:

Figure 1.4: Verhulst solution

Property. Si r > 0, on a:

- si $N_0 = 0$ $N_0 = K$ on a: $N(t) = N_0 \,\forall t > 0$
- $\sin 0 < N_0 < K, N$ croissante
- si $N_0 > K$, N décroissante
- $-\ N$ possède une limite si $N_0>0$

$$\lim_{t \to \infty} N(t) = K$$

1.3 Modèle de croissance logistique

C'est un modèle discrét

- <u>hypothèse</u>: i.e = 0 n-m est une fonction affine de la population, i.e $n-m=r\Delta t N(t)(1-\frac{N(t)}{K})$
- Modèle: On suppose $\Delta t = 1$: On pose $N_n = N(t_n)$

On a:
$$\begin{cases} N_{n+1} - N_n = r N_n (1 - \frac{N_n}{K}) \\ N_0 \text{ donné} \end{cases}$$

Property. (À vérifier numeriquement)

- si r < 2, la suite converge vers K
- $\sin 2 < r < 2.449$, la suite converge vers un cycle
- si 2.449 < r < 2.57, la suite est encore un cycle mais plus complèxe
- $-\sin r > 2.57$, la suite devient chaotique

1.4 Notion de champ de vecteurs associée à une EDO

1.4.1 Généralités et définitions

Les modèles continus de la dynamique de populations sont des problèmes de Cauchy pour les EDO.

(EDO)
$$\begin{cases} y'(x) = f(t, y(t)) & t \in]0, \pi[\\ y(0) = y_0 & \end{cases}$$

Оù

$$y:[0,\pi]\longrightarrow \mathbb{R}$$

 $t\longmapsto y(t).$

$$f:]0, \pi[\times \mathbb{R} \longrightarrow \mathbb{R}$$

 $(t, x) \longmapsto f(t, x).$

- Si l'on sait résoudre analytiquement l'EDO (i.e donner l'expression de $t\mapsto y(y)$) alors c'est terminé car il suffit d'étudier la fonction $t\mapsto y(t)$
- Si l'on ne sait pas détérminer la solution analytique, on peut:
 - 1. s'assurer de **l'éxistence** et **l'unicité** de la solution et de sa **stabilité** vis à vis des données du problème.
 - 2. Puis analyser les propriétés qualitatives de cette solution pour simple analyse de f(t,x)

C'est ici qu'intervient les champs de vecteurs.

Illustations.

1. Prenons le modèle de Malthus

$$\begin{cases} N'(t) = rN(t), & t \in]0, \pi[\\ N(0) = N_0 \end{cases}$$

On sait que $N(t) = N_0 e^{rt}$

2. Voici ce que fait python pour traiter N.

Figure 1.5: Ce que fait python

- 3. Traitons les vecteurs tangents à la courbe $t \mapsto N(t)$ aux points t_n , n = 0
- 4. Si l'on connaît les valeurs minimals et maximales de la solutions on peut avoir l'allure de la solution.

Figure 1.6: Une courbe sur des champs de vecteurs

Analysons ce que represente le vecteurs tangent:

- pour une courbe y = g(x)
- python et tout autre logiciel procède ainsi

Figure 1.7: Ce que represente vecteur

Le vecteur tangent à la courbe:

$$\vec{v} = (1, g'(x)) = (1, \frac{dy}{dx}) = (1, \frac{\frac{dy}{dt}}{\frac{dy}{dt}})$$

$$= \frac{1}{\frac{dy}{dt}} (\frac{dx}{dt}, \frac{dy}{dt}) = \frac{1}{\dot{x}(t)} \underbrace{(\dot{x}(t), \dot{y}(t))}_{\text{vecteur tangent}}$$

$$\vec{v} = (\dot{x}(t), \dot{y}(t))$$

Càd \vec{v} est le vecteur vitesse au points M(x(t),y(t)) a la courbe parametrée $t\mapsto \begin{cases} x(t)=t\\ y(t)=g(t) \end{cases}$. On a le résultat.

Proposition 1.2.

```
(y obtient solution de l'EDO y'(t) = f(t, y(t)))

$\psi$ (vecteur vitesse de la courbe parametrée t \mapsto (x(t), y(t)) au point M(t_0) = (t_0, y(t_0)) si le vecteur (1, f(t_0, y(t_0))))
```

Proposition 1.3.

$$V:\mathbb{R}^2\longrightarrow\mathbb{R}^2$$

$$(t,y)\longmapsto V((t,y)).$$
 (si le champ de vecteur associé à l'EDO $y'(t)=f(t,y(t)))\Leftrightarrow V(t,y)=(1,f(t,y))$

1.4.2 Dessins de champs de vecteurs

Principe:

À chaque points $P = (p_x, p_y)$ on trace le vecteur $\varepsilon V(P)$ où ε est une constance positive choisi pour écrire les vecteurs trop longs.

Avec python on écrit $quiver(P_x, P_y, V_x, V_y, angles='xy')$ RQ 1: Cette fonction est vectorielle, i.e P_x, P_y, V_x, V_y , sont des numpy array de taille n. RQ 2: On peut ajouter un paramètre pour controles la longeur des vecteurs:

plt.quiver
$$(P_x, P_y, V_x, V_y, angles='xy', sacle=1)$$

Par conséquent, il faut normaliser les vecteurs (i.e le champ de vecteur)

Example 1.4. Champ de vecteur du modèle de Verhulst:

```
def f(t, y):
    return r * y * (1 - y/k)
```

la grille:

```
lt = np.linspace(tmin, tmax, N+1)
ly = np.linspace(ymin, ymax, M+1)
T, Y = np.meshgrid(lx, ly)
```

Construire les vecteurs:

```
Y = 1 + 0 * T
V = f(T, Y)
norm = np.sqrt(U*U + V*V)
U = U/norm
V = V/norm
```

On place les points:

```
plt.scatter(T, Y, marker='+', alpha = 0.5)
```

On place les vecteurs

```
plt.quiver(T, Y, U, V, angles='xy', scale=N)
```

1.4.3 Recherche de solution approchée de modèles sous python

On cherche une solution approchée de

$$\begin{cases} y'(t) = f(t, y(t)) & t \in]t_0, t_0 + T[\\ y(t_0) = y_0 \end{cases}$$

avec python. Pour cela il suffit de dire **en quels points** on veut cette solution. On se donne:

- une liste des instants $[t_0, t_1, \ldots, t_N]$
- t_0, y_0
- Puis, on appelle la fonction <u>odeint</u> du module scipy.integrate de python.
- On obtient une liste $[y_0, y_1, \ldots, y_N]$

Example 1.5. Cas du modèle du Verhulst

• EDO:

```
def f(t, y):
return \ldots
```

• Instants

```
t0, tf = a, b
N = 100
t = np.linspace(t0, tf, N)
```

• On appelle odeint

```
from scipy.integrate import odeint
yapp = odeint(f, t, y), rtol=None, atol=None, tfloat=False)
plt.plot(t, yapp, \ldots)
```

1.5 Modèle de prédateur prose (lotka-voltena (1931))

H(t): population de sardins P(t): pupulation de reguins

$$\frac{H'(t)}{H(t)} = \text{taux de variation de sardins} = \underbrace{a}_{\text{taux de croissance}} - \underbrace{bP(t)}_{\text{taux de mortalit\'e}}$$

$$\frac{P'(t)}{P(t)} = \text{taux d'arriv\'e des requetes} = \underbrace{-c}_{\text{taux de d\'ec\`es}} + \underbrace{dH(t)}_{\text{taux de croissance}}$$

D'où le modèle:

$$\begin{cases} H'(t) = H(t)(a - bP(t)) & t > 0 \\ P'(t) = P(t)(-c + dH(t)) \\ H(0) = H_0, & P(0) = P_0 \end{cases}$$

Si l'on désigne par $p \ge 0$ la proportion des requêtes en sardines pêchés

$$\begin{cases} H'(t) = H(t)(a - p - bP(t)) & t > 0 \\ P'(t) = P(t)(-c - p - dH(t)) \\ H(0) = H_0 \\ P(0) = P_0 \end{cases}$$

Chapter 2

Interpolation polynomiale

On va essayer de construire des polynôms qui passent par un ensemble (nuages) de points donnés. Si ces points sont les valeurs d'une fonction, on amerait:

- savoir si le polynôme construit est d'autant plus proche de la fonction que le nombre de point est grand. C'est-à-dre, est-ce que nute des "erreurs" tend vers zero lorsque le nombre de points tend vers l'infini.
- Si oui, comment quantifier cette convergence? C'est-à-dire, quelle est la vitesse (ordre) de cette convergence.

Figure 2.1: evolution-de-population-en-annee

- 1. Approche 1: approximation linéaire.
 - Polynôme de degré 1
- 2. Approche 2:
 - $\bullet\,$ polynôme de degré $2\,$
 - approximation quadratique
- 3. Approche 3: prise en compre d'Historique

2.1 Rappels sur les nuts numériques Vitesse (ordre) de convergence valeur ajoutée par itérations

Definition 2.1. Soit $(x_n)_n \subset \mathbb{R}^n$ une suite qui converge vers $x^* \in \mathbb{R}^n$, pour une norme $\| \| \|$ de \mathbb{R}^n

- Si $k_1 = \lim_{x \to \infty} \frac{\|x_{n+1} x^*\|}{\|x_n x^*\|}$ existe et $k_1 \in]-1,1[\setminus \{0\}]$. On dit que la suite convere <u>linéairement</u> vers x^* ou que la convergence est d'ordre 1.
- Si $k_1 = 0$, $k_2 = \lim_{n \to \infty} \frac{\|x_{n+1} x^*\|}{\|x_n x^*\|^2}$ existe et non nul. On dit que la suite coverge <u>quadratiquement</u> vers x^* , ou que la convergence est <u>d'ordre 2</u>.
- Si $k_q = \lim_{n \to \infty} \frac{\|x_{n+1} x^*\|}{\|x_n x^*\|^q}$ existe et $\neq 0$ la convergence est <u>d'ordre q</u>. La constante K_q est appelée constante asymptotique d'erreur.

Example 2.2. 1. $x_n = (0.2)^n$

- On a $\lim_{n\to\infty} x_n = 0$. La convergence vers $x^* = 0$.
- $\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|} = \lim_{n\to\infty} \frac{(0.2)^{n+1}}{(0.2)^n} = 0.2 \in]-1,1[\setminus\{0\}]$

D'où

- x_n converge à <u>l'ordre 1</u>
- Sa constante asymptotique est $k_1 = 0.2$
- 2. $I_n = (0.2)^{2^n}$. On a $\lim_{n \to \infty} I_n = 0$ On a:

$$I_{n+1} = (0.2)^{2^{n+1}} = (0.2)^{2^{n} \cdot 2}$$
$$= ((0.2)^{2^{n}})^{2}$$
$$= (I_{n})^{2}$$

D'où $\lim_{n\to\infty}\frac{I_{n+1}}{(I_n)^2}=\lim_{n\to\infty}\frac{(I_n)^2}{(I_n)^2}=1$ D'où

- convergence d'ordre 2
- de constante $k_2 = 1$

En pratique, on ne dispose pas de K_q

Definition 2.3.

La convergence est au moins d'ordre q si et seulement si on a (deuxieme partie d'équation)

2.1.1 Valeur ajoutée par l'itération

Il est question de comparer 2 suites qui ont la même vitesse de convergence.

Remark 2.4. Si $|x_n - x^*| = 4 \cdot 10^{-8} = 0.\underbrace{0000000}_{\text{7 chiffres}} 4$. On dira que x_n et x^* ont 7 chiffres exactes apres la

virgule.

$$\log_{10}|x_n - x^*| = \log_{10} 4 - 8\log_{10}(10)$$
$$\frac{\log|x_n - x^*|}{\log 10} = \frac{\log 4}{\log 10} - 8$$

i.e $d_n = -\log_{10}|x_n - x^*|$ mesure de nombre de chiffres décimales entre x_n et x^* qui coincident.

$$\lim_{n \to \infty} \frac{\|x_{n+1} - x^*\|}{\|x_n - x^*\|^q} = K_q \Rightarrow K_q \approx \frac{\|x_{n+1} - x^*\|}{\|x_n - x^*\|^q}$$

$$d_{n+1} + \frac{\log_{10} K_q}{1-q} \approx q(d_n + \frac{\log_{10} K_q}{1-q})$$

Donc, le nombre de chiffres significatives est multiplié par qu

Proposition 2.6. Si x_n converge à l'ordre 1 vers x^* de constante asymptotique K_1 , alors le nombre d'itérations nécessaires pour gagner un chiffre exacte est la partié enitère de $-\frac{1}{\log_{10} K_1}$

Proof. Soit m le nombre d'itérations pour gegner un chiffre. Comme $d_{n+1} - d_n = -\log_{10} K_1$, en partant de d_n , après m itérations on aura

$$d_{n+m} - d_n = -m\log_{10}K_1$$

D'où on aura gagné 1 chiffre si $d_{n+m} - d_n = 1$, i.e

$$1 = -m \log_{10} K_1 \Rightarrow m = \left(-\frac{1}{\log_{10} K_1}\right)$$

2.1.2 Obtenir numériquement la vitesse de convergence

On cherche qtq: $\lim_{n\to\infty}\frac{\|x_{n+1}-x^*\|}{\|x_n-x^*\|^q}=K_q\in\mathbb{R}^*$

Remark 2.7.

$$\frac{\|x_{n+1} - x^*\|}{\|x_n - x^*\|^q} \approx K_q \Rightarrow$$

$$\underbrace{\log \|x_{n+1} - x^*\|}_{V} - \underbrace{q \log \|x_n - x^*\|}_{V} = \log K_q$$

i.e Y = aX + b. Conclusion: pour détérminer q:

- raiter la courbe $\log ||x_n x^*|| \mapsto \log ||x_{n+1} x^*||$
- Détérminer q comme la parte de la droite passant par le maximum de points.

$$x_n = x_0, x_1, \dots, x_N$$

$$x_n - x^* = x_0 - x^*, x_1 - x^*, \dots, x_N - x^*$$

$$x_{n+1} - x^* = x_1 - x^*, x_2 - x^*, \dots, x_{N+1} - x^*$$

En python:

```
xn = np.array([x0, ..., xN])
e = np.log(np.abs(xn - x^*))
```

```
a ex = e[0:-1] #de premier a avant dernier
ey = e[1:] #de deuxieme au dernier

plt.scatter(ex, ey, label="miage")
a,b = np.polyfit(ex, ey, 1)
plt.plot(ex, b + a * ex, label=f"$x \mapsto {b:32f} + {a:32f}x$")
```

2.2 Interpolation: définition-motivation-exemples

2.2.1 Définition

Definition 2.8. Soient $(x_i, y_i)_{i=\{1,\dots,N\}}$ un nuage de points (exemple un ensemble discret de point du graphe d'une fonction). Interpoler ce nuage de points correspond à chercher un polynôme de degré N-1, qui passe par chacun de ces points.

Figure 2.2: L'exemple visuel de la définition

Questions:

- 1. Comment le construire?
- 2. $P_{N-1} \in \mathbb{R}_{N-1}[X]$
- 3. $P_{N-1}(x_i) = y_i$

2.2.2 Motivations

- La solution d'un problème est fournie par une formule représentative: Noyau de la chaleur (i.e convolution) est un cherche la solution en un nombre de points.
 - On approche alors la fonction par un polynôme: i.e chercher le polynôme de degré "bas" proche de la fonction
- La solution d'un problème n'est connue qu'à table des valeurs en un nombre fini de points et on souhaite l'évaluer partout.
 - l'intérpolation
- On peut utiliser l'intérpolation dans
 - l'intégration numérique
 - la résolution numérique des EDO
 - la visualisation scientifique

2.2.3 exemples d'intérpolation

Theorem 2.10. Polynôme intérpolateur de degré 1. Soient (x_1, y_1) , (x_2, y_2) 2 points distincts de \mathbb{R}^2

• Il existe une unique droite passant par les 2 points.

$$(x,y) \in \mathcal{D} \Leftrightarrow (x-x_1)(y_2-y_1) - (y-y_1)(x_2-x_1) = 0$$

• Si de plus, $x_1 \neq x_2$, il existe un unique polynôme de degré 1 (i.e $P_1 \in \mathbb{R}_1[X]$) tq:

$$(x,y) \in \mathcal{D} \Leftrightarrow y = P(x) \text{ avec } P_1 = \frac{(x-x_1)y_1 - (x-x_2)y_2}{x_2 - x_1}$$

Proof.

$$\begin{split} M \begin{pmatrix} x \\ y \end{pmatrix} &\in \mathcal{D} \Leftrightarrow M \vec{M}_1 / M_1 \vec{M}_2 \\ &\Leftrightarrow \det(M \vec{M}_1, M_1 \vec{M}_2) = 0 \\ &\Leftrightarrow \begin{vmatrix} x - x_1 & x_2 - x_1 \\ y - y_1 & y_2 - y_1 \end{vmatrix} = 0 \\ &\Leftrightarrow (x - x_1)(y_2 - y_1) - (y - y_1)(x_2 - x_1) = 0 \end{split}$$

• Si $x_1 \neq x_2$

$$M \in \mathcal{D} \Leftrightarrow y - y_1 = \frac{(x - x_1)(y_2 - y_1)}{x_2 - x_1}$$

 $\Leftrightarrow y = P_1(X)$

Remark 2.11. On a l'écriture équivalente de P_1 :

 $P_1 \frac{x_0 y_1 - x_1 y_2}{x_2 - x_1} + X \frac{y_2 - y_1}{x_2 - x_1} \equiv a_0 + a_1 X$

C'est l'écriture dans la base (1, X) de $\mathbb{R}_1[X]$

 $P_1 = \underbrace{\frac{x - x_2}{x_1 - x_2}}_{l_1} y_1 + \underbrace{\frac{x - x_1}{x_2 - x_1}}_{l_2} y_2$

C'est l'écriture dans la base (l_1, l_2) de $\mathbb{R}_1[X]$

RQ:

$$l_1(x_1) = 1$$
 $l_1(x_2) = 0$ $l_2(x_1) = 0$ $l_2(x_2) = 1$

(base de lagrange)

 $P_1 = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$

C'est l'écriture dans la base $(1, x - x_1)$ de $\mathbb{R}_1[X]$ (base de newton)

Example 2.12. Méthode de calcul employle

Chercher le polynôme interpolateur de lagrange aux points $(x_1, y_1), (x_2, y_2), (x_3, y_3)$

• Méthode 1: $x_1 \neq x_2 \neq x_3$

 P_2 est un polynôme de degré2

$$P_2 = a_0 + a_1 x + a_2 x^2$$

Lemma 2.13.

$$P_2(x_1) = y_1$$
, $P_2(x_2) = y_2$ i.e $a_0 + a_1x_1 + a_2x_1^2 = y_1$

$$\underbrace{\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{bmatrix}}_{M} \underbrace{\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}}_{=\underbrace{\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}}}_{=\underbrace{\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}}_{=\underbrace{\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}}}_{???} \Rightarrow \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \underbrace{M^{-1}}_{???} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Remark 2.14. Par 2 points

$$M = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \end{bmatrix}$$
 et $M^{-1} = \frac{1}{x_2 - x_1} \begin{bmatrix} x_2 & -x_1 \\ -1 & 1 \end{bmatrix}$

• Méthode 2:

$$P_2 = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2)$$

$$\begin{split} P_2(x_i) &= y_i \Rightarrow \begin{cases} a_0 &= y_1 \\ a_0 + a_1(x_2 - x_1) &= y_2 \\ a_0 + a_1(x_3 - x_1) + a_2(x_3 - x_1)(x_3 - x_2) &= y_3 \end{cases} \\ &\Rightarrow \begin{cases} a_0 &= y_1 \\ a_1 &= \frac{y_2 - y_1}{x_2 - x_1} \\ a_2 &= \frac{y_3 - y_1 - \frac{y_2 - y_1}{x_2 - x_1}(x_3 - x_1)}{(x_3 - x_1)(x_3 - x_2)} \end{split}$$

Remark 2.15. On a:

$$a_2 = \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_3 - y_2}{x_3 - x_2}}{x_3 - x_1}$$

càd

$$P_3 = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_3 - y_2}{x_3 - x_2}}{x_3 - x_2}(x - x_1)(x - x_2)$$

x_1	$y_1 =: a_3$		
x_2	y_2	$\frac{y_2-y_1}{x_2-x_1} =: a_1$	
x_3	y_3	$\frac{y_3 - y_2}{x_3 - x_2}$	$\frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_3 - y_2}{x_3 - x_2}}{x_3 - x_1} =: a_2$

• <u>Méthode 3</u>:

$$P_3 = \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)}y_1 + \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)}y_2 + \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}y_3 = \sum_{i=1}^{3} \underbrace{\left(\prod_{j=1}^{3} \frac{x - x_j}{x_i - x_j}\right)}_{l_i(x)} y_i$$

Remark 2.16. $(x_1, y_1), (x_2, y_2)$

$$y = \frac{x - x_2}{x_1 - x_2} y_1 + \frac{x - x_1}{x_2 - x_1} y_2$$

2.3 Polynôme interpolateur de lagrange

2.3.1 Définition et propriétés

Theorem 2.17. (existence et utilité)

Soit x_1, \ldots, x_n des réels 2 à 2 distincts et y_1, \ldots, y_n des rééls quelconques: Il existe <u>un unique</u> polynôme $P \in \mathbb{R}_{n-1}[X]$ (i.e de degré n-1) tel que $p(x_i) = y_i, i = 1, \ldots, n$

On dit que P est le polynôme interpolateur de lagrange aux points $(x_1, y_1), \ldots, (x_n, y_n)$

Proof. Soit

$$\Phi: \mathbb{R}_{n-1}[X] \longrightarrow \mathbb{R}^{n-1}$$

$$P \longmapsto \Phi(P) = (P(x_1), \dots, P(x_n)).$$

on a:

- $\bullet~\Phi$ linéaire
- Φ injective

En effet, $\Phi(P) = 0 \Leftrightarrow P(x_i) = 0 \Leftrightarrow P \equiv 0$ car $deg(P) \leq n - 1$. D'où Φ isomorphisme d'espace vectoriel et la surjection assure le résultat.

Definition 2.18. Si f est continue sur $[a,b] \to \mathbb{R}$, $x_1,\ldots,x_n \in [a,b]$ 2 à 2 distincts, alors, l'unique $P \in \mathbb{R}_{n-1}[X]$ tq $P(x_i) = f(x_i)$ $i = 1,\ldots,n$ est appelé <u>polynôme d'interpolation de lagrange</u> de f aux points x_1,\ldots,x_n

2.3.2 Estimation d'erreur

Theorem 2.19. l'erreur

Soient

- $a < b \ f : [a, b] \to \mathbb{R}$ continue
- x_1, \ldots, x_n 2 à 2 distincts de [a, b]
- P polyôme d'interpolation de lagrange de f aux points x_i

Si f est n fois dérivable sur [a, b[, alors, pour tout $a \in [a, b]$, il existe $t \in [a, b[$ tq

$$f(x) - P(x) = \omega_n(x) \frac{f^{(n)}(t)}{n!}$$

```
où \omega_n(x) = (x - x_1) \dots (x - x_n)
```

Corollary 2.20. Si $f^{(n)}$ est bornée par M sur]a,b[, alors $\forall x \in [a,b]$

$$|f(x) - P(x)| \le \frac{M}{n!} |\omega_n(x)| \le \frac{M}{n!} (b - a)^n$$

Proof. à faire

2.3.3 Implémentation avec python

```
from scipy.interpolite import lagrange
    x = np.array([x_1, x_2, x_3])
    y = np.array([y_1, y_2, y_3])
    p = lagrange(x, y)
    print(p) # affiche le polynome
    print(p(3)) # collable
```

2.4 Construction des polynôme d'intérpolation de lagrange

 x_0, \ldots, x_{n-1} 2 à 2 distincts

2.4.1 Interpolation dans la base canonique (Vandermonde)

Construction

$$P = \sum_{i=1}^{n-1} a_i x^i$$

$$P(x_i) = y_i, i = 0, \dots, n-1$$

$$\begin{bmatrix} 1 & x_0 & \dots & x_0^{n-1} \\ 1 & x_1 & \dots & x_1^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n-1} & \dots & x_{n-1}^{n-1} \end{bmatrix} \underbrace{\begin{bmatrix} a_0 \\ \dots \\ a_{n-1} \end{bmatrix}}_{a} = \underbrace{\begin{bmatrix} y_1 \\ \dots \\ y_{n-1} \end{bmatrix}}_{b}$$

Matrice de Vandermonde

- elle pleine
- malconditionnée

```
def VDM_Mat(x):
    x_n = np.reshape(x, (x.size, 1))
    return x_n ** np.arange(x.size)

def VDM_Poly(x, y):
    M = VDM_Mat(x)
    a = np.linalg.solve(M, y)
```

Evaluation efficace de P algorithme de Horner

Proposition 2.21. Si X est un réel et Q est le polynôme défini par

$$Q(X) = a_0 X^n + a_1 X^{n-1} + \ldots + a_{n-1} X + a_n$$

alors la suite

$$\begin{cases} q_0 = a_0 \\ q_k = q_{k-1}x + a_k, \ k = 1, \dots, n \end{cases}$$

vérfiie $q_n = Q(x)$

Proof. (laissé exo)

$$Q(X) = X^2 + 2X + 1 \equiv (X+2)X + 1$$

```
def Horner(P, xx):
2
      for a in P:
         y = y * xx + a
4
```

```
def IntuP_VDM(x, y, xx):
      a = VDM_Poly(x, y)
2
      yy = Horner(a[::-1], xx)
3
       return yy
```

Interpolation dans la base duale: Formule de lagrange et points barycen-2.4.2trique

Construction

Idée prendre pour base de $\mathbb{R}_{n-1}[X]$ l'image réciproque de la base canonique de \mathbb{R}^{n-1} pour Φ

$$L_{i}(x_{j}) = \begin{cases} 1 \text{ si } i \neq j \\ 0 \text{ sinon} \end{cases}$$

$$L_{i}(x) = \frac{\prod_{\substack{j \neq i \ j = 0}}^{n-1} (x - x_{j})}{\prod_{\substack{j = 0 \ j \neq i}}^{n-1} (x_{i} - x_{j})} = \prod_{\substack{j = 1 \ j \neq i}}^{n-1} \frac{x - x_{j}}{x_{i} - x_{j}}$$

$$P(X) = \sum_{i=0}^{n-1} y_{i} L_{i}(X)$$

Theorem 2.22.

$$f:[a,b]\to\mathbb{R}$$
 x_1,\ldots,x_n
 P

Si f n fois dérivable,

$$\forall x \in [a, b], \exists t \in]a, b[, f(x) - P(x)] = \omega_n(x) \frac{f^{(n)}(t)}{n!}$$

Proof. du théorème (erreur)

Soit x fixé des $[a,b] \setminus \{x_1,\ldots,x_n\}$

$$F(t) = f(t) - P(t) - \frac{f(x) - P(x)}{\omega_n(t)} \omega_n(t)$$

F est n fois dérivable et P annule aux n+1 points x_1,\ldots,x_n,x_n . D'apres le théorème Rolle (généralisé)

$$\exists t \in]a, b[\text{ tq } f^{(n)}(t) = 0$$

Or

$$\underbrace{F^{(n)}(t)}_{=0 \text{ par hyp}} = f^{(n)}(t) - \underbrace{P^{(n)}(t)}_{=0 \text{ car } deg(P) < n} - \frac{f(x) - P(x)}{\omega_n(x)} n!$$

D'où

$$f(x) - P(x) = \omega_N(x) \frac{f^{(n)}(t)}{n!}$$

Par ailleurs, si $x \in \{x_1, \dots, x_n\}, f(x) - P(x) = 0$

$$\omega_n(x) = (x - x_1) \dots (x - x_n)$$

Proof. corollaire

$$|f(x) - P(x)| = |\omega_n(x)| \frac{|f^{(n)}(t)|}{n!}$$

comme $x, x_i \in [a, b]$, on a $|x - x_i| \le b - a$ et $|f^{(n)}(t)| \le M$, on a:

$$|f(x) - P(x)| \le \frac{M}{n!}(b-a)^n$$

Evaluation efficace: formule barycentrique

Proposition 2.23. On a

$$P(x) = \sum_{i=1}^{n} y_i \frac{\omega_n(x)}{(x - x_i)\omega'_n(x_i)}$$
$$= \frac{\sum_{i=1}^{n} \frac{1}{(x - x_i)\omega'_n(x_i)} y_i}{\sum_{i=1}^{n} \frac{1}{(x - x_i)\omega'_n(x_i)}}$$

Proof. Comme

$$\omega_n(x) = \prod_{i=1}^n (x - x_i) \Rightarrow \omega'_n(x) = \sum_{i=1}^n \prod_{j=1}^n (x - x_j)$$

D'où

$$\omega'_n(x_i) = \prod_{j=1}^n \sum_{j \neq i}^n (x_i - x_j) \quad i = 1, \dots, n$$

D'où

$$L_i(x) = \frac{\omega_n(x)}{x - x_i} \frac{1}{\omega'_n(x_i)}$$

 Et

$$\sum_{i=1}^{n} y_i L_i(x) = \sum_{i=1}^{n} \frac{y_i}{(x - x_i)\omega'_n(x)} \omega_n(x)$$
$$= \omega_n(x) \sum_{i=1}^{n} \frac{y_i}{(x - x_i)\omega'_n(x_i)}$$

Or pour $P \equiv 1$ on a $y_i = 1, i = 1, \dots, n$, on a

$$1 = \omega_n(x) \sum_{i=1}^n \frac{1}{(x - x_i)\omega'_n(x)}$$

D'où

$$\omega_n(x) = \left(\sum_{i=1}^n \frac{1}{(x - x_i)\omega_n'(x)}\right)^{-1}$$

Enfin,

$$P(x) = \frac{\sum_{i=1}^{n} \frac{y_i}{(x - x_i)\omega'_n(x)}}{\sum_{i=1}^{n} \frac{1}{(x - x_i)\omega'_n(x)}}$$

Remark 2.24. 1. Attention: si $x = x_i$, i = 1, ..., n

- 2. Exercice: calculer la complexité de cette formule et comparer à la première.
- 3. Ajouter un nouveau point d'interpolation ablige à refaire tous les calculs.

2.4.3 Méthode des différences divisées

Préliminaires: Interpolation de Neville

Lemma 2.25. Considérons n points 2 à 2 distincts x_1, \ldots, x_n et n réels y_1, \ldots, y_n . Pour $1 \le k \le l \le n$, posons P_{x_k, \ldots, x_l} le polynôme d'interpolation aux points

$$(x_k,y_k)\ldots(x_l,y_l)$$

Nous avons

$$P_{x_k,...,x_l}(x) = \frac{(x-x_l)P_{x_l...x_{l-1}}(x) - (x-x_k)P_{x_{k+1}...x_l}(x)}{x_k - x_l}$$

Schématiquement

$$P(x) = \underbrace{x_{k}, \underbrace{x_{k+1}, \dots, x_{l-1}, x_{l}}_{P_{1}}}_{x_{k} - x_{l}} P_{1} + \underbrace{\frac{x - x_{k}}{x_{l} - x_{k}}}_{P_{2}} P_{2}$$

Construction de l'intérpolation de Newton

Definition 2.26. (Polynôme de Newton) Soit $n \ge 1$ entier, x_1, \ldots, x_n n rééls 2 à 2 distincts. Les polynômes de Newton $\omega_0, \ldots, \omega_n$ associés à ces points sont définis par

$$\begin{cases} \omega_0 = 1 \\ \omega_j = (x - x_1) \dots (x - x_j), \quad (1 \le j \le n) \end{cases}$$

Remark 2.27. $\{\omega_j\}_{j=1,\dots,k}$ est une base de $\mathbb{R}_k[x]$

• Ainsi le polynôme d'intérpolation de Lagrange associé aux points $(x_1,y_1)\dots(x_n,y_n)$ s'écrit

$$P = \sum_{k=0}^{n-1} \alpha_k \omega_k$$

où α_k sont solutions de

$$y_i = \sum_{k=0}^{n-1} \alpha_k \omega_k(x_i), \quad i = 1, \dots, n$$

On parle de développement de Newton du polyôme de Lagrange

Definition 2.28. On appelle differences divisées d'ordre j-1 $(1 \le j \le n)$ associées aux points $(x_1, y_1), \ldots, (x_i, y_i)$ les nombres $d_{i,j}$ $(i = j \ a \ n)$ définis par

- $d_{i,1} = y_i$ i = 1, ..., n
- $d_{i,j}=rac{d_{i,j-1}-d_{i-1,j-1}}{x_i-x_{i-j+1}}$ j=2 à $n,\ i=j$ à n

Lorsque $y_i = f(x_i)$ $i = 1, ..., n, d_{i,j}$ est généralement noté $f[x_{j-i+1}, ..., x_{j-1}, x_j]$ et est appelé difference divisé d'ordre j-1 aux i points $x_{j-i+1}, ..., x_j$

Python:

```
def MatriceDifferencesDivisee(x, y):
    n = len(y)
    d = np.zeros((n, n))
    d[:, 0] = 1.0 * y
    for j in range(1, n):
        d[j:n, j] = (d[j:n, j-1] - d[j-1:n, j-1]) / (x[j:n] - x[0:n-j])
    return d
```

Remark 2.29. • Le "stencil" (squelette) est

$$i-1,j-1\\ /\\ i,j-1----i,j$$

- ullet La hauteur de stencil est j
- Le support du stencil est $[x_{i-j}, \ldots, x_i]$

Proposition 2.30. On a $d_{j,j} = \alpha_{j-1}$ pour $j \in [1, ..., n]$, càd:

$$P = \sum_{j=1}^{n} d_{j,j} \omega_{j-1}$$

Ainsi, pour calculer P il suffit de connaître $d_{j,j}$ $j=1,\ldots,n$

Calcul efficace du polynôme

Proposition 2.31. Soit donné x_0, \ldots, x_n dés rééls 2 à 2 distincts. Soit Q le polyôme défini par

$$Q(x) = a_0 + \sum_{i=1}^{n} a_i \prod_{j=1}^{i-1} (x - x_j) \equiv \sum_{i=0}^{n} a_i \omega_i(x)$$

La suite des polynômes Q_0, \ldots, Q_n définies par

$$\begin{cases} Q_n = a_n \\ Q_k = a_k + (x - x_k)Q_k \quad k = n - 1, \dots, 0 \end{cases}$$

vérifie $Q_0 = Q$

```
def HornerNewton(d, x, xx):
    n = len(d)
    yy = 0 * xx + d[n-1]
    for i in range(n-2, -1, -1):
        yy = d[i] + (xx - x[i]) * yy
```

```
def DifferencesDivisees(x, y):
    d = MatriceDifferencesDivisee(x, y)
    a = np.diag(d)
    return a
```