CPSC 5031 Algorithms HW #6 (10 pts)

II. Binomial coefficient (7 points)

a. Solve the recurrence relation for computing the binomial coefficients (seen below).

$$C(n,0) = C(n,n) = 1.$$
 Algorithm $Binomial(n,k)$

//Computes $C(n,k)$ by the dynamic programming algorithm //Input: A pair of nonnegative integers $n \geq k \geq 0$

//Output: The value of $C(n,k)$

for $i \leftarrow 0$ to n do

for $j \leftarrow 0$ to $\min(i,k)$ do

if $j = 0$ or $j = i$
 $C[i,j] \leftarrow 1$

else $C[i,j] \leftarrow C[i-1,j-1] + C[i-1,j]$

return $C[n,k]$

C(n,k) = C(n-1,k-1) + C(n-1,k) for n > k > 0,

Hint: Think about the "shape" of a table that records values for binomial coefficient, that has n+1 rows and k+1 columns.

b. The time and space efficiency for part a) is $\Theta(nk)$. Rewrite the Binomial (n, k) function with $\Theta(n)$ space efficiency.

III. Exercises 8.2 #1a,b (3 points)

a. Apply the bottom-up dynamic programming algorithm to the following instance of the knapsack problem:

item	weight	value		
1	3	\$25		como citar W — 6
2	2	\$20		
3	1	\$15	,	capacity $W = 6$.
4	4	\$40		
5	5	\$50		

b. What is the maximal value? Which items make up the optimal subset?

Note(s):

- Use C++ or Java for those problems that require algorithm design.
- All problems may be found in the Levitin textbook.

Submission:

- Deadline: Monday, 5/22/2023, 11:59pm
- Submit your solutions on Canvas under HW #6