Treść zadań

Zadanie 1

Zbudować sumator dwóch liczb 2-bitowych. Wynik ma być zapisany na 3 bitach.

Zadanie 2

Zbudować sumator dwóch liczb 3-bitowych w systemie U2. Wynikiem ma być liczba 4-bitowa w systemie U2. Wykorzystać gotowy sumator liczb 4 bitowych.

Zadanie 3

e U2. Wyr owych. Wykryć owych. Zbudować sumator dwóch liczb 4-bitowych w systemie U2. Wynikiem ma być liczba 4-bitowa w systemie U2. Wykorzystać gotowy sumator liczb 4 bitowych. Wykryć przepełnienie (ang. overflow).

Zadanie 1

b_0 a_0	0	1
0	0	1
1	1	0

$$S_0 = a_0 \oplus b_0$$

 S_0

$\begin{array}{c} b_0 \\ a_0 \end{array}$	0	1
0	0	0
1	0	1

$$C_1 = a_0 b_0 = \overline{a_0 b_0} = \overline{a_0} + \overline{b_0}$$

$$S_1 = a_1 \oplus b_1 \oplus c_1 = (a_1 \oplus b_1) \oplus c_1$$

 C_1

 S_1

$$\begin{array}{ccc} c_1 \\ a_1b_1 & 0 & 1 \end{array}$$

$$S_1 = a_1 \oplus b_1 \oplus c_1 = (a_1 \oplus b_1) \oplus c_1$$

$$\begin{array}{cccc}
c_1 \\
a_1b_1 & 0 & 1
\end{array}$$

$$C_{2} = a_{1}b_{1} + a_{1}c_{1} + b_{1}c_{1} = \overline{a_{1}b_{1} + a_{1}c_{1} + b_{1}c_{1}}$$

$$= \overline{a_{1}b_{1}}\overline{a_{1}c_{1}}\overline{b_{1}c_{1}}$$

$$= \overline{a_{1}b_{1}}\overline{a_{1}c_{1}}\overline{b_{1}c_{1}}1$$

$$S_{2} = c_{2}$$

 C_2

Schemat układu:

SI-SPIRINOIDARINA INC.

confinite confinite still.

Zadanie 2
W tabelach **pogrubiono** bity znaku.

Na trzech bitach w zapisie dopełnieniowym można zapisać liczby całkowite w przedziale [-4,3].

Liczba w systemie dziesiętnym	Liczba w U2
-4	1 00
-3	1 01
-2	1 10
-1	1 11
0	0 00
1	0 01
2	0 10
3	011

Suma dwóch takich liczb będzie należała do przedziału [-8, 6].

Liczba w systemie dziesiętnym	Liczba w U2
-8	1000
-7	1001
-6	1 010
-5	1 011
-4	1 100
-3	1 101
-2	1 110
-1	1 111
0	0 000
1	0 001
2	0 010
3	0 011
4	0 100
5	0 101
6	0 110

Zgodnie z teorią arytmetyki systemów cyfrowych sumator liczb w naturalnym kodzie binarnym będzie poprawnie dodawał również, dla liczb w zapisie dopełnieniowym. Jednakże, sumator, który należy użyć w zadaniu dodaje liczby 4-bitowe, a nie 3-bitowe. Sumator będzie działał poprawnie, jeżeli poda mu się na wejście liczby 4-bitowe. Można to zrobić w prosty sposób przepisując bit znaku na pozycję najbardziej znaczącego bita.

Liczba w systemie dziesiętnym	Liczba w U2 na 3 bitach	Liczba w U2 na 4 bitach
-4	100	1 100
-3	1 01	1 101
-2	1 10	1 110
-1	1 11	1 111
0	0 00	0 000
1	0 01	0 001
2	0 10	0 010
3	0 11	0 011

$$a_3 = a_2$$

$$b_3 = b_2$$

Schemat układu:

Zadanie 3

Jeżeli sumowane są dwie liczby 4-bitowe w U2 i na 4 bitach zapisywany jest wynik, może dojść do przepełnienia (ang. overflow), co skutkuje błędnym wynikiem. Wystąpi ono wtedy, gdy do zapisania wyniku nie wystarczą 4 bity na niego przeznaczone. Przepełnienie można za każdym razem wykryć za pomocą prostego warunku:

Jeżeli dodawane są dwie liczby dodatnie, a suma jest ujemna lub dodawane są dwie liczby ujemne, a suma jest dodatnia, to sygnalizować przepełnienie.

a₃ – bit znaku pierwszego składnika

b₃ – bit znaku drugiego składnika

s₃ – bit znaku sumy

$$P = \overline{a_3}\overline{b_3}s_3 + a_3b_3\overline{s_3} = \overline{\overline{a_3}\overline{b_3}s_3 + a_3b_3\overline{s_3}} = \overline{\overline{a_3}\overline{b_3}s_3} \overline{a_3b_3\overline{s_3}} = \overline{\overline{a_3}b_3s_31} \overline{a_3b_3\overline{s_3}1}$$

Schemat układu:

Wnioski

Podczas laboratorium zbudowaliśmy, uruchomiliśmy i przetestowaliśmy wszystkie opisane układy. Działały poprawnie. System U2 umożliwia optymalne zapisywanie liczb ujemnych i dodatnich oraz uniknięcie problemów związanych z istnieniem dwóch reprezentacji zera. Sumatora stworzonego do dodawania liczb dodatnich w naturalnym kodzie binarnym można bez problemu użyć do sumowania .a of yeznych.

a wyniku. W poinformować o a poinformować zarówno dodatnich, jak i ujemnych liczb w zapisie dopełnieniowym. Dzięki jednolitym operacjom dodawania i odejmowania, system U2 upraszcza projektowanie układów arytmetycznych. Należy