Analysis of Covariance

Section 1

Analysis of covariance

Analysis of covariance

- ANOVA: explanatory variables categorical (divide data into groups)
- traditionally, analysis of covariance has categorical x's plus one numerical x ("covariate") to be adjusted for.
- 1m handles this too.
- Simple example: two treatments (drugs) (a and b), with before and after scores.
- Does knowing before score and/or treatment help to predict after score?
- Is after score different by treatment/before score?

Data

Treatment, before, after:

```
a 5 20
a 10 23
```

a 12 30

a 9 25

a 23 34

a 21 40

a 14 27

a 18 38

a 6 24

a 13 31

b 7 19

b 12 26

b 27 33

b 24 35 b 18 30

b 22 31

b 26 34

b 21 28

b 14 23

b 9 22

Packages

tidyverse and broom:

```
library(tidyverse)
library(broom)
```

Read in data

```
url <- "http://www.utsc.utoronto.ca/~butler/d29/ancova.txt"
prepost <- read_delim(url, " ")
prepost %>% sample_n(9) # randomly chosen rows
```

drug	before	after
a	18	38
a	10	23
b	27	33
b	9	22
b	22	31
a	9	25
b	12	26
b	21	28
b	7	19

Making a plot

```
ggplot(prepost, aes(x = before, y = after, colour = drug)) +
  geom_point()
```


Comments

- As before score goes up, after score goes up.
- Red points (drug A) generally above blue points (drug B), for comparable before score.
- Suggests before score effect and drug effect.

The means

```
prepost %>%
  group_by(drug) %>%
  summarize(
   before_mean = mean(before),
   after_mean = mean(after)
)
```

```
## `summarise()` ungrouping output (override with `.groups` as
```

drug	before_mean	after_mean
а	13.1	29.2
b	18.0	28.1

- Mean "after" score slightly higher for treatment A.
- Mean "before" score much higher for treatment B.

Testing for interaction

```
prepost.1 <- lm(after ~ before * drug, data = prepost)
anova(prepost.1)</pre>
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
before	1	430.92384	430.923838	62.68945	0.0000006
drug	1	115.30596	115.305957	16.77435	0.0008442
before:drug	1	12.33708	12.337080	1.79476	0.1990662
Residuals	16	109.98313	6.873945	NA	NA

Interaction not significant. Will remove later.

Predictions, with interaction included

Make combinations of before score and drug:

```
new <- crossing(
  before = c(5, 15, 25),
  drug = c("a", "b")
)
new</pre>
```

drug
а
b
a
b
a
b

Do predictions:

```
pred <- predict(prepost.1, new)
preds <- bind_cols(new, pred = pred)
preds</pre>
```

before	drug	pred
5	а	21.29948
5	b	18.71739
15	а	31.05321
15	b	25.93478
25	а	40.80693
25	b	33.15217

Making a plot with lines for each drug

```
g <- ggplot(prepost,
  aes(x = before, y = after, colour = drug)) +
  geom_point() + geom_line(data = preds, aes(y = pred))</pre>
```

- Here, final line:
 - joins points by lines for different data set (preds rather than prepost),
 - different y (pred rather than after),
 - but same x (x=before inherited from first aes).
- Last line could (more easily) be

```
geom_smooth(method = "lm", se = F)
```

which would work here, but not for later plot.

The plot

- Lines almost parallel, but not quite.
- Non-parallelism (interaction) not significant:

Taking out interaction

```
prepost.2 <- update(prepost.1, . ~ . - before:drug)
anova(prepost.2)</pre>
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
before	1	430.9238	430.923838	59.88958	0.0000006
drug	1	115.3060	115.305957	16.02516	0.0009209
Residuals	17	122.3202	7.195306	NA	NA

- Take out non-significant interaction.
- before and drug strongly significant.
- Do predictions again and plot them.

Predicted values again (no-interaction model)

```
pred <- predict(prepost.2, new)
preds <- bind_cols(new, pred = pred)
preds</pre>
```

before	drug	pred
5	a	22.49740
5	b	17.34274
15	a	30.77221
15	b	25.61756
25	а	39.04703
25	b	33.89237

Each increase of 10 in before score results in 8.3 in predicted after score, the same for both drugs.

Making a plot, again

```
g <- ggplot(
  prepost,
  aes(x = before, y = after, colour = drug)
) +
  geom_point() +
  geom_line(data = preds, aes(y = pred))</pre>
```

Exactly same as before, but using new predictions.

The no-interaction plot of predicted values

Lines now *parallel*. No-interaction model forces them to have the same slope.

Different look at model output

summary(prepost.2)

- anova(prepost.2) tests for significant effect of before score and of drug, but doesn't help with interpretation.
- summary(prepost.2) views as regression with slopes:

```
##
## Call:
## lm(formula = after ~ before + drug, data = prepost)
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -3.6348 -2.5099 -0.2038 1.8871 4.7453
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
  (Intercept) 18.3600
                        1.5115 12.147 8.35e-10
## before
              0.8275 0.0955 8.665 1.21e-07
                          1.2876 -4.003 0.000921
## drugb
               -5.1547
##
   (Intercept) ***
## hefore
```

Understanding those slopes

tidy(prepost.2)

term	estimate	std.error	statistic	p.value
(Intercept)	18.3599949	1.5115326	12.146608	0.0000000
before	0.8274813	0.0955023	8.664520	0.0000001
drugb	-5.1546584	1.2876524	-4.003144	0.0009209

- before ordinary numerical variable; drug categorical.
- 1m uses first category druga as baseline.
- Intercept is prediction of after score for before score 0 and drug A.
- before slope is predicted change in after score when before score increases by 1 (usual slope)
- Slope for drugb is *change* in predicted after score for being on drug B rather than drug A. Same for *any* before score (no interaction).

Summary

- ANCOVA model: fits different regression line for each group, predicting response from covariate.
- ANCOVA model with interaction between factor and covariate allows different slopes for each line.
- Sometimes those lines can cross over!
- If interaction not significant, take out. Lines then parallel.
- With parallel lines, groups have consistent effect regardless of value of covariate.