集合的基数

离散数学

马晓星

南京大学・计算机科学与技术系

- 集合的大小与等势关系
- 不可数集与Cantor定理
- 优势关系与Bernstein定理
- 基数作为自然数的扩展

- 集合A的大小, 称为基数(Cardinality),
 - 记作 |A|, 或者 card A.
 - "数得清"的我们就数元素个数
 - "数不清"的咋办?
 - "常识"不一定靠谱

Hilbert's Grand Hotel

啊?客满啦?

没关系, 我让现在住在 k 号房间 的客人移到 k+1 号. 你就住进第 1号房间吧!

再来一百个、一千个客人? 再来"无限"个?

"整体多于部分"不一定成立.

野人的智慧

大足野人生了一堆儿女,他想知道是女儿多还是儿子多。但他只会数到3...

康托尔老先生的两个集合里都有许多的元素,他想知道哪个大。但他只会数自然数...

等势关系

- 等势(Equipotent): 如果存在从集合A到B的双射,则称集合A与B等势.
 - 记为: A≈B. 不等势记 A≉B.
 - 等势的集合被认为"一样大",即|A|=|B|, 否则|A|≠|B|.
 - 意味着: A, B中的元素可以"一一对应".
 - 要证明A≈B,只要找出一个从A到B的双射。
- 等势概念是对"靠数数判断大小一致"的推广
 - 集合A"数得清"意味着存在自然数n, 使得 A≈ n

有限集与无限集

- 称S是有限集, 若存在自然数*n*与之等势. 否则称其 为**无限集**或无穷集.
- S是无限集 iff 存在S的真子集S'使得S与S'等势
 - ⇒ S一定包含一个与自然数集合等势的子集M={ $a_0,a_1,a_2,...$ } 令S'=S-{ a_0 },可以定义 f:S→S'如下: 对于任意 a_i ∈M, $f(a_i) = a_i$ +1; 对于任意 x∈S-M, f(x) = x. 显然这是双射,即S与其真子集S'等势。
 - ← 若S是有限集, 令|S|=n, 则对S的任意真子集S', 若|S'|=m, 必有m<n, 因此从S'到S的任一单射不可能是满射。

可数集

- 一个集合称为**可数的**(countable, 也称可列的), 如果 它与自然数集N的某个子集等势.
 - 换言之, 存在它到N的一个单射.
 - 与自然数集N等势的集合称为可数无限集.
 - 可数集要么是有限集,要么是可数无限集.
 - 直观上说,集合的元素可以按确定的顺序线性排列,所谓"确定的"顺序是指对序列中任一元素,可以说出它"前"、"后"元素是什么。

可数集

• 整数集(包括负数)与自然数集等势:

$$0, -1, 1, -2, 2, -3, 3, -4, \dots$$

$$0, 1, 2, 3, 4, 5, 6, 7, \dots$$

$$g(n) = \begin{cases} 2n & n >= 0 \\ -2n-1 & n < 0 \end{cases}$$

这个技巧可以很容易地推广,用以证明有限个可数集的并集仍然是可数的.但是无限个可数集的并集呢?

• 所有的自然数对构成的集合可数:

$$l(m,n) = \frac{1}{2} \sum_{i=1}^{m+n} i + (m+1) = \frac{(m+n)(m+n+1)}{2} + (m+1)$$

- (0,1)与整个实数集等势
 - 双射:

$$f:(0,1)\to \mathbf{R}: f(x)=tan(\pi x-\frac{\pi}{2})$$

还有很多 sigmoid functions, 例如

$$S(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

证明无限集等势的例子

- 对任意不相等的实数a,b(a < b), [0,1]与[a,b]等势
 - 双射:

$$f:[0,1] \to [a,b]: f(x) = (b-a)x + a$$

(这实际上意味着:任意长的线段与任意短的线段等势)

这实际上意味看且线上的点与性意有限维空间的点"一样多"!

那么,是否所有无限集合都等势?

实数集合不可数

- (0,1)不是可数集 //注意:(0,1)与实数集合等势
 - "对角线"证明法 假设(0,1)中的元素可以线性排列:

```
0.b_{11}b_{12}b_{13}b_{14}... 0.b_{21}b_{22}b_{23}b_{24}... 实数集合的基数记为 |\mathbf{R}|=\mathfrak{c} 0.b_{31}b_{32}b_{33}b_{34}... (mathematical fraktur c) 0.b_{41}b_{42}b_{43}b_{44}... :
```

则可构造 $0.b_1b_2b_3b_4...(b_i\neq b_{ii})$, 它不在这个序列中.

● 任何集合与其幂集不等势, 即: A≠ρ(A)

证明要点:

设 g 是从A到 ρ (A)的函数, 构造集合 $B=\{x\in A\mid x\notin g(x)\}$,则 $B\in \rho(A)$, 但不可能存在 $x\in A$,能满足 g(x)=B,因为, 如果有这样的 x_0 ,则 $x_0\in B \leftrightarrow x_0\notin B$ 。 因此,g 不可能是满射.

右例: $f: \mathbb{N} \rightarrow \rho(\mathbb{N})$; T={ $n \in \mathbb{N} \mid n \notin f(\mathbb{N})$ } 是一个对角线证明.

 $T = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, \dots\}$

- 可计算函数 简单地说就是存在一个计算机程序可以计算这个函数
- 函数集合 $\mathbf{N}^{\mathbf{N}} = \{f|f: \mathbf{N} \to \mathbf{N}\}$ 就不可数.
 - 可用对角线证明法.
- 但是不同的程序的个数是可数的.
 - 长度有限的string的个数是可数的.

既然有不等势的无限集合,如何比较其相对"大小"?

优势关系

- 如果存在从集合A到集合B的单射,则称"集合B 优势于集合A",记为 |A|≤|B| 或 A≤•B
- 如果集合B优势于集合A,且B与A不等势,则称 "集合B真优势于集合A",记为 $|A| \le |B|$ 或A \prec •B
- 实数集真优势于自然数集
- 对任意集合A,A的幂集真优势于集合A

集合优势关系的性质

- 根据单射的性质, 可以得到
 - 对于任意集合A, 有|A| = |A|

(自反性)

- 显然.
- 若|A| = |B| 且 |B| = |C|, 则 |A| = |C|

(传递性)

- 单射的复合仍然是单射.
- 若|A|≤|B| 且 |B|≤|A|, 则 |A| = |B|

(反对称性)

• 这个需要仔细证明: Bernstein定理

Cantor-Schröder-Bernstein Theorem

定理: 若 |A|≤|B| 且 |B|≤|A|, 那么 |A|=|B|.

证明要点:可设 $f:A \rightarrow B$ 和 $g:B \rightarrow A$ 为单射,我们将构造双射 $h:A \rightarrow B$. 考虑反复应用这两个函数,及其逆(部分函数)所得的链

$$\cdots \to f^{-1}(g^{-1}(x)) \to g^{-1}(x) \to x \to f(x) \to g(f(x)) \to \cdots$$

该链条往右无限延伸. 但我们考虑往左的各种情况:

- (1) 链条进入循环;
- (2) 链条无限延伸不循环;
- (3) 链条停在A中, 即到达某个x但 $g^{-1}(x)$ 无定义;
- (4) 链条停在B中.

同时,请注意,每个A或B中的元素都在唯一的链条中.

续上页

构造h: h(x) = f(x) 如果x在(1),(2),(3)种的链中, 否则 $h(x) = g^{-1}(x)$.

注意, 在第(4)种情况下, 是 $g^{-1}(x)$ 有定义的, 否则是第(3)种情况.

现证明h是双射:

h(x)是**单射**: 假设 $h(x_1) = h(x_2)$. 注意此时 x_1 和 x_2 必在同一个链条中.

若在(1),(2),(3)种的链中,则 $f(x_1) = h(x_1) = h(x_2) = f(x_2)$

又f是单射, $x_1 = x_2$

若在第(4)种链中,则 $h(x_1) = g^{-1}(x_1), h(x_2) = g^{-1}(x_2)$ 即

$$x_1 = g(h(x_1)) = g(h(x_2)) = x_2$$

h(x)是**满射**: 对于任意的 $y \in B$, 考虑包含y的链条.

若y在(1),(2),(3)种的链中,则必有某个x使得f(x)=y,

又x和y在同一个链条中, 有h(x) = f(x) = y

若在第(4)种链中,则h(g(y))=y.

于是h是双射, |A|=|B|.

• 证明实数集的两个子集(0,1)和[0,1]等势。 直接找双射不太容易

关键是如何安排在[0,1]中但不在(0,1)中的0和1。

想象那个"宇宙旅馆"。我们可以取(0,1)的一个与自然数集合 等势的子集(一定有) $\{a_1,a_2,a_3,...\}$,"腾出"前两个位置安排0和1

想象那个"手宙旅馆"。我们可以取(0,1)的一个与自然效果合等势的子集(一定有)
$$\{a_1,a_2,a_3,...\}$$
,"腾出"前两个位置安排 0 和1
$$x=0$$

$$x=1$$

$$\frac{1}{2^n}$$

$$x=1$$

$$x=1$$

证明实数集的两个子集(0,1)和[0,1]等势。分别找两个一对一的映射往往比找一个双射容易

$$f:(0,1) \to [0,1]: f(x) = x$$

$$g:[0,1] \to (0,1): g(x) = \frac{1}{2} + \frac{x}{4}$$
 注意: $g([0,1]) = [\frac{1}{2}, \frac{3}{4}]$

实数集与ρ(N)等势

- $[0,1)\approx\{0,1\}^{\mathbf{N}}$ 从而 $\mathbf{R}\approx\rho(\mathbf{N})$
 - [0,1)中的数唯一地表示为0.b₁b₂b₃b₄...
 不容许连续无数个1,比如1/2=0.1000...(不用0.0111...)
 - $f: [0,1) \rightarrow \{0,1\}^{\mathbf{N}}$ $f(0.b_1b_2b_3b_4...) = b_{1,}b_{2,}b_{3,}b_4...$ 是一个单射.
 - $g:\{0,1\}^{\mathbb{N}} \to [0,1)$ $g(b_1, b_2, b_3, b_4...) = 0$. $b_1b_2b_3b_4...$ 是一个单射 // 0. $b_1b_2b_3b_4...$ 看作10进制
 - 根据Bernstein定理,得证

回顾: 冯·诺伊曼的自然数

• 自然数集合 N:

$$0 = \emptyset$$

$$1 = S(0) = S(\emptyset) = \emptyset \cup \{\emptyset\} = \{\emptyset\} = \{0\}$$

$$2 = S(1) = S(\{0\}) = \{0\} \cup \{\{0\}\} = \{0, \{0\}\} = \{0, 1\}$$

$$3 = S(2) = S(\{0, 1\}) = \{0, 1\} \cup \{\{0, 1\}\} = \{0, 1, \{0, 1\}\} = \{0, 1, 2\}$$
...

$$0, 1, 2, 3, \dots$$
 $\omega, \omega+1, \omega+2, \omega+3, \dots$ $2 \omega, \omega+1, \omega+2, \omega+3, \dots$ 自然数的序数扩展

序数

 $0, 1, 2, 3, \dots$ $\omega, \omega+1, \omega+2, \omega+3, \dots$ $2 \omega, \omega+1, \omega+2, \omega+3, \dots$

自然数的序数扩展(ordinal numbers)

基数作为自然数的扩展

- 上面的超穷序数不能用作基数
 - 例如, 0, 1, 2, 3, ... ω , ω +1, ω +2, ω +3, ... 2ω , 2ω +1, 2ω +2, 2ω +3, ... 显然还是可数的 (换个排队的方法即可)
- Cantor 引入 κ_α来标记越来越大的超穷基数(cardinal numbers)
 (这里α是序数)
 - 0, 1, 2, 3, ... 是有限集合的基数
 - ℵ₀是可数集合的基数
 - №1是下一个更大的基数 (所有可数序数的集合的基数, 因而不可数)
 - X₂

连续统假设

• 不存在一个集合, 其基数处于 \aleph_0 和c之间 $\aleph_0 < |A| < c$???

其中 c 是实数集的基数.

有趣的事实: 在ZFC下这既不能证实也不能被证伪.

如果我们承认它,则 $\aleph_1 = \mathfrak{c} = 2^{\aleph_0}$.

小结

• 无限集比大小的工具: 等势与优势

• 有限集、无限集、可数集、不可数集

• Cantor定理, Bernstein定理

• 基数与序数在超穷情况下不一致