4.1 Vectors and Lines

• Definition

- scalar : magnitude

vector: magnitude and direction

Geometrically, a vector \mathbf{v} can be represented by an arrow. We denote the length of \mathbf{v} by $\|\mathbf{v}\|$.

 $\mathbf{0} = \|\mathbf{0}\| : \mathbf{0}$

- Given v, we have the negative -v

- v = w if the same length and the same direction

[2]

Kyu-Hwan Lee

Thm. $\mathbf{u}, \mathbf{v}, \mathbf{w}$; vectors, $k, p \in \mathbf{R}$

Kyu-Hwan Lee

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
,
2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
3. $\exists 0 \text{ s.t. } 0 + \mathbf{u} = \mathbf{u} \text{ for each } \mathbf{u}$.
4. For each $\mathbf{u}, \exists -\mathbf{u} \text{ s.t. } \mathbf{u} + (\mathbf{v} + \mathbf{u}) = \mathbf{0}$.
5. $\mathbf{k}(\mathbf{u} + \mathbf{v}) = \mathbf{k}(\mathbf{u} + \mathbf{v})$, $\mathbf{v} + \mathbf{u} + \mathbf{k}(\mathbf{v} + \mathbf{u}) = \mathbf{k}(\mathbf{u} + \mathbf{v})$, $\mathbf{u} = \mathbf{k}(\mathbf{u} + \mathbf{v})$, $\mathbf{u} = \mathbf{u} + \mathbf{v} = \mathbf{v}$, $\mathbf{u} = \mathbf{v} = \mathbf{v} = \mathbf{v}$, $\mathbf{u} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v}$, $\mathbf{u} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v}$, $\mathbf{u} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v}$, $\mathbf{u} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v} = \mathbf{v}$, $\mathbf{u} = \mathbf{v} = \mathbf{v$

Thm. A, B, C : matrices of the same size, $A, B \in \mathbf{F}$

[6] Linear Algebra

 \mathbf{T} hm, q, q, h continuous functions on D, q, h . \mathbf{T}

1.
$$f+g=g+f$$
,
2. $f+(g+h)=(f+g)+h$
3. $\exists 0 \text{ s.t. } 0+f=f \text{ for each } f$.
4. For each f , $\exists -f \text{ s.t. } f+(-f)=0$.
5. $k(f+g)=kf+kg$, $(k+p)f=kf+pf$
6. $(kp)f=k(pf)$,
 $f=f(x)f=f(x$

Kyu-Hwan Lee

The notion of vector space!

1. The set of matrices of the same size

 Σ . The set of vectors in ${f R}^3$

3. The set of continuous functions on ${\mathbb D}$

··· t

... .g

.no os bns

The theorem says that we can manipulate vectors as if they are variables w.r.t. addition and scalar multiplication.

$$5\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = 5\mathbf{u} + 2\mathbf{v}_1 - \mathbf{v}_3 = 5\mathbf{u} + 2\mathbf{v}_3 = 5\mathbf{u} + 2\mathbf{v}_3 = 5\mathbf{u} + 2\mathbf{v}_3$$

Coordinates

Consider a point P=(x,y,z). Then we obtain a vector ${\bf p}=\overline{OP}$: the position vector. Conversely, a vector ${\bf p}$ determines a unique point P. Thus we identify each point with the corresponding position vector.

$$(zv, yv, xv) = \mathbf{u}v$$

$$(zv, yv, xv) = \mathbf{u}v$$

$$(z + z) = \mathbf{n} + \mathbf{n}$$

Given $\mathbf{u}=(x,y,z)$ and $\mathbf{u}=\mathbf{u}$ have $\mathbf{u}=\mathbf{u}$

səuiJ •

Assume that \mathbf{p}_0 and \mathbf{d} are given. Then \mathbf{p} is the position vector of a point P on the line if and only if

$$\mathbf{A} = \mathbf{b}_0 + t\mathbf{d} \qquad (t \in \mathbf{A}).$$

If $\mathbf{p}=(x,y,z)$, $\mathbf{d}=(a,b,c)$, $\mathbf{p}_0=(x_0,y_0,z_0)$, then we have

$$(\mathbf{H} = x_0 + ta)$$
, $(t \in \mathbf{H})$. $(t \in \mathbf{H})$. $(t \in \mathbf{H})$.

This is the equation of the line through ${f p}_0$ parallel to ${f d}$.

• Planes

Later ... we need the notion of inner product and cross product of vectors.

noisnamid bns saseqsdu2 1.2

ullet 2npsbaces of ${f E}_u$

vector = point in
$$\mathbf{R}^3 \leftrightarrow (x,y,z)$$
 coordinates

$$(a_1, a_2, \dots, a_n) \leftrightarrow (a_1, a_2, \dots, a_n)$$

$$\{ oldsymbol{A} : b \mid (a_1, a_2, \dots, a_n) \mid a_i \in oldsymbol{A} \} \ \equiv \begin{cases} oldsymbol{A} & \{a_1, a_2, \dots, a_n\} \mid a_i \in oldsymbol{A} \end{cases}$$

$$\left\{ \mathbf{O} \ni i b | (a_1, a_2, \dots, a_n) | a_i \in \mathbf{C} \right\} = \left\{ \mathbf{O} \mid \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \right\} \cong \left\{ \mathbf{O} \mid \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \right\}$$

$$\mathbf{F}^n = \mathbf{R}^n$$
 or \mathbf{C}^n The n -tuples in \mathbf{F}^n will be called vectors.

Kyu-Hwan Lee

• 2npsbsces

A subset U of ${\bf F}^n$ is called a subspace if it satisfies the following conditions.

1. If $X,Y\in U$, then $X+Y\in U$. So $Y\in F$.

.gЗ

U **E**u

2. $\{0\}$: the zero subspace

 $\{\mathbf{b}_t\}$: ${}^n\mathbf{H}$ ni nigino əht hguorht ənil \mathbf{e} . $\{\mathbf{b}_t\}$

If $t_1\mathbf{d}$ and $t_2\mathbf{d}$ on the line, then $t_1\mathbf{d} + t_2\mathbf{d} = (t_1 + t_2)\mathbf{d}$ and $r(t_1\mathbf{d}) = (rt_1)\mathbf{d}$.

4. Let A be an $n \times m$ matrix. We define

bne
$$\{O = XA|^n \mathbf{A} \ni X\} = A$$
nə $A = A$ ll un

$$\mathsf{F}^n \mathsf{F} = \{ Y \in \mathbf{F}^m | Y = AX \text{ for some } X \in \mathbf{F}^n \}.$$

If $X_1,X_2\in \ker A$, then $A(X_1+X_2)=AX_1+AX_2=0$ and $A(rX_1)=r(AX_1)=O$. If $Y_1,Y_2\in imA$, then $\exists X_1,X_2\in A$. So, $A(rX_1)=r(AX_1)=O$. If $A(rX_1)=r(AX_1)=r(AX_1)=r$. So, $A(rX_1)=r(AX_1)=r$.

*'*G

$$\{1 = {}^{2}\psi + {}^{2}x|^{2}\mathbf{H} \ni (\psi, x)\} = U$$

We have
$$(1,0),(0,1)\in U$$
, but $(1,0)+(0,1)=(1,1)\notin U$. Thus U is not a subspace of \mathbf{R}^2 .

e Spanning sets

Def. Assume that $X_1, X_2, \cdots, X_k \in \mathbf{F}^n$. An expression

$$a_1X_1 + a_2X_2 + \cdots + a_kX_k$$

is called a linear combination of X_1,X_2,\cdots,X_k ($a_i\in \mathbf{F}$). The span of X_1,X_2,\cdots,X_k is the set of all linear combinations of X_1,X_2,\cdots,X_k .

$$\{\mathbf{T} \ni {}_{i}n|_{\mathcal{A}}X_{\mathcal{A}}n + \dots + {}_{2}X_{2}n + {}_{1}X_{1}n\} = \{{}_{\mathcal{A}}X_{1}, \dots, {}_{2}X_{1}X_{1}n\} = \{{}_{\mathcal{A}}X_{1}, \dots, {}_{2}X_{1}X_{2}\}$$

Thm. Assume that $X_1,X_2,\cdots,X_k\in \mathbf{F}^n$. I. The $span\{X_1,X_2,\cdots,X_k\}$ is a subspace of \mathbf{F}^n .

2. If W is a subspace containing X_1, X_2, \cdots, X_k , then

$$M \supset \{AX, \dots, 2X, 1\}$$
 and $M \supset \{AX, \dots, AB\}$

Proof. 1. Let
$$U=span\{X_1,X_2,\dots,\chi_k\}$$
. If

$$U \ni {}_{\mathcal{A}}X_{\mathcal{A}}1 + \cdots + {}_{\mathcal{I}}X_{\mathcal{I}}1 = Z , {}_{\mathcal{A}}X_{\mathcal{A}}s + \cdots + {}_{\mathcal{I}}X_{\mathcal{I}}s = X$$

then
$$Y+Z=(s_1+t_1)X_1+\cdots+(s_k+t_k)X_k\in U$$
 and $rY=rs_1X_1+\cdots+rs_kX_k\in U$. \square

The spans traillest smallest subspace $\{A_X,\dots,A_{k}\}$ is the smallest subspace on tailing X_1,\dots,X_k , then $\{A_X,\dots,A_k\}$ is a set of $\{A_X,\dots,A_k\}$ is a

is a spanned by the X_i, X_i, X_j is a spanned by the X_i, X_j, \dots, X_k is a spanned set of U, and U be spanned by the X_i of X_i is a

Eg. Kecall

 ${f Thm.}$ Given AX=O, every solution is a linear combination of the basic solutions.

Equivalently, the kerA is the span of the basic solutions.

Assume $A = \begin{bmatrix} C_1 & C_2 & \cdots & C_n \end{bmatrix}$: $m \times n$ matrix. Then

$$.\{nO_1, \dots, c_2, \dots, c_n\}.$$

Proof. For $X \in \mathbf{F}^{n}$,

$$AX = \begin{bmatrix} C_1 & C_2 & \cdots & C_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 C_1 + x_2 C_2 + \cdots + x_n C_n$$

$$im A = \{AX | X \in \mathbf{F}^n\} = \{x_1 C_1 + x_2 C_2 + \dots + x_n C_n\}$$

$$= span\{C_1, C_2, \dots, C_n\}$$

• Judependence

Def.
$$\{X_1,X_2,\dots,X_k\}$$
 : linearly independent if t_1X_1 $+$ t_1X_2 $+$ t_2X_2 $+$ t_2X_2 $+$ t_3X_4 $+$ t_4X_4 $+$ t_5X_5 $+$ t_5X_5 $+$ t_5X_5 $+$ t_5X_5 $+$ t_5X_5 $+$ t_5X_5

Thm. If $\{X_1,X_2,\cdots,X_k\}$ is linearly independent, X es a solution of the X_i , X_i , X

Proof.

$$r_1X_1s+\cdots+r_kX_k=s_1X_1+\cdots+t_kX_k$$

$$0=s_1X_1+\cdots+s_kX_k$$

$$0=s_1X_1+\cdots+s_kX_k$$
 Thus we have $r_i=s_i$ for all i .

[23]

Linear Algebra

.gЗ

Eg.
$$X_{1}, X_{2}, X_{1} + X_{2}$$

$$(_{2}X + _{1}X)_{2} = _{2}X_{2} + _{1}X_{2}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \varepsilon \\ 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} s + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} u$$

$$\begin{bmatrix} \varepsilon \\ 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} \varepsilon \\ 1 \\$$

Kyu-Hwan Lee

$$\begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} * x + \begin{bmatrix} 2 \\ 2 \\ 1 \\ 1 \end{bmatrix} * x + \begin{bmatrix} 2 \\ 2 \\ 1 \\ 1 \end{bmatrix} * x + \begin{bmatrix} 2 \\ 1 \\ 1 \\ 2 \end{bmatrix} * x + \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} * x + \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} * x + \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} * x + \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} * x + \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} * x + \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} * x + \begin{bmatrix} 3 \\ 4 \end{bmatrix} *$$

[52]

$$\begin{bmatrix} \xi - \\ 1 \\ 1 - \end{bmatrix}, \begin{bmatrix} I \\ 2 \\ I - \end{bmatrix}, \begin{bmatrix} I \\ 2 \\ I - \end{bmatrix}, \begin{bmatrix} I \\ 2 \\ I - \end{bmatrix}$$

$$\begin{bmatrix} I - \\ 2 \\ 2 \\ 2 - I \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} I - \\ 2 \\ 2 \\ 2 - I \end{bmatrix}$$

$$\begin{bmatrix} I - \\ 2 \\ 2 \\ 1 - I \end{bmatrix}$$

Eg.
$$\{X, X\} : \text{indep.} \Rightarrow \{2X, X + 3Y, X - 5Y\}$$
 indep.

$$O = (X\delta - X)s + (X\delta + X\Delta)\eta$$

$$O = Y(s\delta - \tau \delta) + X(s + \tau \delta)$$
$$0 = s = \tau \qquad 0 = s\delta - \tau \delta \quad (0 = s + \tau \delta)$$

Thm. TFAE

. A is invertible.

2. The columns of A are linearly independent.

3. The columns of A span ${\bf F}^n$.

4. The rows of A are linearly independent.

5. The rows of A span \mathbf{F}^n .

6. inA = Ami .3

O = A 19 3 .7

Proof.

$$AX = \begin{bmatrix} C_1 & C_2 & \cdots & C_n \end{bmatrix} \begin{bmatrix} x^2 \\ x^2 \end{bmatrix} = x_1 C_1 + x_2 C_2 + \cdots + x_n C_n$$

$$O=AX=O\Leftrightarrow x_1C_1+x_2C_2+\cdots+x_nC_n=O$$

$$O=AY=O$$
 has only the trivial solution. $\Leftrightarrow AX=O$

$$AX = B \Leftrightarrow x_1C_1 + x_2C_2 + \dots + x_nC_n = B$$

$$\mathfrak{Z}\Leftrightarrow AX=B$$
 has a solution for every $B\in \mathbf{F}^n$

$$\square$$
 -sldityəvni si ${}^T \! A \Leftrightarrow$ -sldityəvni si A

$$\begin{bmatrix} 1 & 2 & 2 & 3 & 1 \\ 8 & 8 & 2 & 2 & 2 \\ 2 & 0 & 1 & 2 & 3 & 1 \\ 2 & 0 & 1 & 2 & 3 & 1 \\ 2 & 8 & 8 & 2 & 0 \\ 2 & 8 & 8 & 2 & 0 \\ 2 & 0 & 0 & 4 \end{bmatrix} = A$$

.g∃

[30] Linear Algebra

• Dimension

m=3 nəht U to səsed Thm. If $\{X_1,X_2,\cdots,X_k\}$ and $\{X_1,X_2,\cdots,X_k\}$ are two

.ìad

 $U \min = U$ to noisnamib and = U to sized e ni syotosy to yadmun ant

Eg. For \mathbb{F}^{n} ,

$$E_1 = egin{bmatrix} 0 \ 1 \ 0 \ \end{bmatrix}$$
 , $E_2 = egin{bmatrix} 0 \ 1 \ 0 \ \end{bmatrix}$, \cdots , $E_n = egin{bmatrix} 1 \ 0 \ 0 \ \end{bmatrix}$;

The standard basis of Fig.

then $\{AX_1,AX_2,\cdots,AX_n\}$ is also a basis of \mathbf{F}^n Lg. If $\{X_1,X_2,\cdots,X_n\}$ is a basis of \mathbb{F}^n and A is invertible,

Kyu-Hwan Lee

Eg. Consider AX = O. Recall that kerA=the span of the basic solutions are linearly independent. The basic solutions form a basis for kerA.

Eg. Subspaces of ${f R}^3$.

I. If $\dim U = 3$, then $U = \mathbf{R}^3$.

. O Aguornt ənelq \mathbf{e} si U nəht , $L = U \min \mathcal{H}$. S

3. If $\dim U = 1$, then U is a line through O.

A(O) = U nəht A(O) = U mib A(O) = U

Thm. Assume that $\dim U = m = \lim that$ smuzsA .mdT

in either case, B is a basis of U.