Задание 5

Параллельный алгоритм умножения матрицы на вектор Отчёт

Савельев К.М.

2022

1. Постановка задачи

Разработать параллельную программу с использованием технологии MPI, реализующую алгоритм умножения плотной матрицы на вектор Ab=c. На вход программе подаются имена бинарных файлов с матрицей A, вектором b и выходного файла с вектором c.

2. Формат коммандной строки

mpirun -np <кол-во mpi-процессов> ./out <имя файла с матрицей A> <имя файла с вектором b> <имя выходного файла для вектора с>

3. Спецификация системы

Исследование проводилось на системе *Polus*;

Процессор: POWER8NVL; Число процессоров: 160;

Число вычислительных ядер: 8.

4. Результаты выполнения

Предполагается, что размерность матрицы A кратна числу MPI-процессов. Во всех экспериментах размерности матрицы A и вектора b равны 16384.

Для каждого количества MPI-процессов было проведено по 3 эксперимента. В таблице 1 представлены усреднённое время работы программы и ускорение. На рисунке 1 представлены графики зависимости времени работы программы и ускорения от количества MPI-процессов.

Таблица 1 — Таблица зависимости времени работы программы ускорения от количества MPI-процессов.

Число МРІ-процессов	Время работы(с)	Ускорение
1	2.09	1.00
2	1.06	1.98
4	0.54	3.89
8	0.29	7.22
16	0.20	10.33

Рисунок 1 — График зависимости времени работы программы и ускорения от количества MPI-процессов.