# Approximate system identification: Misfit versus latency

Ivan Markovsky

University of Southampton

### Linear or nonlinear, deterministic or stochastic?

• From simple to complex:

linear — linear — nonlinear — nonlinear deterministic — stochastic — deterministic — stochastic

- Exact linear system identification computationally involves solution of a linear system of equations (*i.e.*, easy).
- Maximum likelihood estimation of a linear stochastic system is a nonconvex optimization problem (i.e., difficult).

Evaluating the likelihood is least norm problem (i.e., easy).

 For nonlinear stochastic systems, both the parameter optimization and the likelihood evaluating are difficult.

$$\frac{\mathrm{d}}{\mathrm{d}t}x(t) = f(x(t), \mathbf{e}(t)), x(0) = x_0, y(t) = g(x(t), \mathbf{e}(t))$$



#### In this talk ...

- linear systems
- initially deterministic
- · eventually stochastic
- deterministic approximation vs stochastic estimation
   two sides of the same coin

# Least squares ← Latency

Consider a linear static model  $Ax \approx b$ 

A, b are given measurements, x is a model parameter

Least squares approximation:

minimize<sub>e,x</sub> 
$$||e||_2^2$$
 subject to  $Ax = b + e$ 

Interpretation: e is unobserved latent variable

$$L((A,b),x) := \left(\min_{e} \|e\|_{2}^{2} \text{ s.t. } Ax = b + e\right) = \|Ax - b\|_{2}^{2}$$

Least squares approximation  $\iff$  latency minimization  $\min \operatorname{imize}_{x} L((A,b),x)$ 

# Geometric interpretation of latency

• 
$$L((A,b),x) = ||Ax - b||_2^2 =: ||e||_2^2$$
  
 $Ax = b + e =: \hat{b} \iff [A \ \hat{b}] \begin{bmatrix} x \\ -1 \end{bmatrix} = 0$   
 $\iff [a_i \ \hat{b}_i] \begin{bmatrix} x \\ -1 \end{bmatrix} = 0$ , for  $i = 1,...,m$   
( $a_i$  is the  $i$ th row of  $A$ )

- $(a_i, \hat{b}_i)$ , for all i, lie on the subspace  $\perp$  to (x, -1)
- "data point"  $(a_i, b_i) = (a_i, \hat{b}_i) + (0, e_i)$
- The approximation error  $(0, e_i)$  is the vertical distance from  $(a_i, b_i)$  to the subspace
- $L((A,b),x) = \sum_{i=1}^{m} e_i^2$  sum of the squared vertical distances

# Total least squares ← Misfit

#### Total least squares:

minimize<sub>$$\Delta A, \Delta b, x$$</sub>  $\| [\Delta A \ \Delta b] \|_{\mathbf{F}}^2$  subject to  $(A + \Delta A)x = b + \Delta b$ 

Interpretation:  $\Delta A$ ,  $\Delta B$  are data corrections

$$M((A,b),x) := \min_{\Delta A, \Delta b} \| [\Delta A \quad \Delta b] \|_{F}^{2} \text{ s.t. } (A + \Delta A)x = b + \Delta b$$
$$= \frac{\|Ax - b\|_{2}^{2}}{1 + \|x\|_{2}^{2}}$$

Total least squares approximation  $\iff$  misfit minimization minimize<sub>x</sub> M((A,b),x)

# Geometric interpretation of latency



# Geometric interpretation of misfit

• 
$$M((A,b),x) := \min_{\Delta A,\Delta b} \| [\Delta A \ \Delta b] \|_{\mathrm{F}}^2 \text{ s.t. } (A + \Delta A)x = b + \Delta b$$

$$\underbrace{(A + \Delta A)}_{\widehat{A}} x = \underbrace{b + \Delta b}_{\widehat{b}} \iff \begin{bmatrix} \widehat{A} & \widehat{b} \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix} = 0$$

$$\iff \begin{bmatrix} \widehat{a}_{i} & \widehat{b}_{i} \end{bmatrix} \begin{bmatrix} x \\ -1 \end{bmatrix} = 0, \text{ for } i = 1, \dots, m$$

- $(\widehat{a}_i,\widehat{b}_i)$ , for all i, lie on the subspace  $\perp$  to (x,-1)
- "data point"  $(a_i, b_i) = (\widehat{a}_i, \widehat{b}_i) + (\Delta a_i, \Delta b_i)$
- $(\Delta a_i, \Delta b_i)$  is the orth. distance from  $(a_i, b_i)$  to the subspace
- $M((A,b),x) = \sum_{i=1}^{m} \left\| \begin{bmatrix} \Delta a_i \\ \Delta b_i \end{bmatrix} \right\|_2^2$  sum of squared orth. distances

#### **Notes**

Latency approach — correct the model in order to match the data

Misfit approach — correct the data in order to match the model

exact fit 
$$\iff$$
 misfit = latency = 0

Both approaches reduce the approximate modelling problem to exact modelling problems.

# Geometric interpretation of misfit



# Regression ↔ Latency

## Regression model:

$$Ax = b + \varepsilon$$
, where  $\varepsilon \sim N(0, \sigma^2 I)$ 

Maximum likelihood estimator ↔ latency minimization

# Errors-in-variables regression ← Misfit

#### Errors-in-variables (EIV) regression model:

$$(A + \delta A)x = b + \delta b$$
, where  $\text{vec}([\delta A \ \delta b]) \sim N(0, \sigma^2 I)$ 

Maximum likelihood estimator ← misfit minimization

# Stochastic estimation vs deterministic approximation

#### Deterministic point of view

- w<sub>d</sub> can be generated by a nonlinear time-varying system
- The issue is how to best approximate  $w_d$  by  $\widehat{\mathscr{B}} \in \mathscr{M}$

#### Stochastic point of view

- the data  $w_d$  is generated by an EIV or ARMAX model  $\overline{\mathscr{B}}$
- The issue is how to best estimate  $\overline{\mathscr{B}} \in \mathscr{M}$

An identification method can be given deterministic as well as stochastic interpretation.

# System identification: $w_d \mapsto \widehat{\mathscr{B}} \in \mathscr{M}$

#### **Notation**

- $\mathbf{w_d} = (\mathbf{u_d}, \mathbf{v_d})$  given data (e.g., a vector time series)
- $\widehat{\mathscr{B}}$  to be found model for  $w_d$  (e.g., an LTI system)
- *M* model class (e.g., bounded complexity LTI systems)

#### System identification

- defines a mapping  $w_d \mapsto \mathscr{B}$
- derives effective algorithms that realize the mapping, and
- develops efficient software that implements the algorithms

# Misfit vs latency

Two approaches to describe the model–data mismatch:

• Latency: augment  $\mathscr B$  with latent variable e

$$L(w_d, \mathscr{B}_{ext}) := \min_{e} \|e\|^2$$
 subject to  $(e, w_d) \in \mathscr{B}_{ext}$ 

Misfit: project w<sub>d</sub> on B

$$M(w_{\mathsf{d}},\mathscr{B}) := \min_{\widehat{w}} \|w_{\mathsf{d}} - \widehat{w}\|^2 \quad \text{subject to} \quad \widehat{w} \in \mathscr{B}$$

Computing misfit and latency are smoothing problems.

There are efficient algorithms in the state space (Kalman filter) and polynomial (Cholesky factorization of Toeplitz matrix) settings.

# Statistical interpretation of misfit and latency

 $\begin{array}{ccc} \text{misfit} & \leftrightarrow & \text{errors-in-variables (EIV) model} \\ \text{latency} & \leftrightarrow & & \text{ARMAX model} \end{array}$ 

EIV model:  $\widetilde{w} = (\widetilde{u}, \widetilde{y})$  — measurement errors



ARMAX model: e — process noise

Assumptions:  $\widetilde{w}$ , e — zero mean, stationary, white, ergodic, Gaussian, processes,  $e \perp u$ 

#### **Conclusions**

# Identification problems

Latency minimization (PEM): given  $w_d \in (\mathbb{R}^w)^T$  and  $n \in \mathbb{N}$ , find

$$\widehat{\mathscr{B}}_{\text{ext}}^* := \arg\min_{\widehat{\mathscr{B}}_{\text{ext}},e} \|e\|^2 \text{ s.t. } (e,\widehat{w}) \in \widehat{\mathscr{B}}_{\text{ext}} \text{ and } \text{order}(\widehat{\mathscr{B}}) \leq n$$

Misfit minimization (GTLS): given  $w_d \in (\mathbb{R}^w)^T$  and  $n \in \mathbb{N}$ , find

$$\widehat{\mathscr{B}}^* := \underset{\widehat{\mathscr{B}},\widehat{w}}{\mathsf{arg\,min}} \| w_\mathsf{d} - \widehat{w} \|^2 \text{ s.t. } \widehat{w} \in \widehat{\mathscr{B}} \text{ and } \mathsf{order}(\widehat{\mathscr{B}}) \le \mathsf{n}$$

#### Notes:

- nonconvex optimization problems
- solution methods based on local optimization methods
- initial approximation obtained from subspace methods



trajectory generated by a

linear deterministic system

$$\frac{d}{dt}x(t) = Ax(t), y(t) = Cx(t)$$

of order (dim. of x) = 16



# Thank you