Teoria da Computação Linguagens Regulares (Parte 1) Estados inacessíveis e inúteis

Prof. Jefferson Magalhães de Morais

Estados inacessíveis e inúteis

- Nem todos os estados de um AF contribuem para a definição da linguagem
- Estados inacessíveis: não podem ser alcançados a partir do estado inicial
- Estados inúteis: não levam a nenhum dos estados finais
- **Exemplo**: q_1 é um estado inacessível e q_2 um estado inútil

 A eliminação desses estados não modifica a linguagem reconhecida pelo AF

Estados inacessíveis

- Seja $M=(Q_1,\Sigma,\delta_1,q_{10},F_1)$ um autômato qualquer. Um estado $q_{1i}\in Q_1$ é dito "inacessível" quando não existir caminho que conduza o autômato do seu estado inicial q_{10} até o estado q_{1i} . $\therefore \nexists \alpha \in \Sigma^* \mid \delta(q_{10},\alpha)=q_{1i}$
- Algoritmo de eliminação de estados inacessíveis, v2:
 "Obtenção de um AF sem estados inacessíveis equivalentes a outro com estados inacessíveis"
 - Entrada: AF $M=(Q_1,\Sigma,\delta_1,q_{10},F_1)$
 - Saída: AF $N=(Q_2,\Sigma,\delta_2,q_{20},F_2)$ sem estados inacessíveis e L(M)=L(N)
 - Método:
 - ① Considere o estado inicial de M e marque-o como "acessível"
 - 2 Para cada estado contido nesta linha, marcá-lo, na linha correspondente, como "acessível". Marque o estado corrente como "considerado"
 - Sescolher outro estado marcado como "acessível", mas que não esteja marcado como "considerado". Repetir os passo (2) e (3) enquanto possível
 - N define-se a partir de M eliminando-se todos os estados

Seja
$$M=(Q,\Sigma,\delta,q_0,F)$$

$\overline{}$								
	δ	а	b	C	d	e	f	g
\rightarrow	q_0	q_0	q_4	q_3				
	q_1	q_4			q_1			
<u>←</u>	q_2		q_4			q_1		
	q_3					q_4		
	q_4				q_3		q_5	
←	q_5			q_0				q_5

	δ	а	b	c	d	e	f	g	Acessível	Considerado
\rightarrow	q_0	q_0	q_4	q_3					✓	
	q_1	q_4			q_1					
←	q_2		q_4			q_1				
	q_3					q_4				
	q_4				q_3		q_5			
←	q_5			q_0				q_5		

	δ	а	b	c	d	e	f	g	Acessível	Considerado
\rightarrow	q_0	q_0	q_4	q_3					✓	✓
	q_1	q_4			q_1					
\leftarrow	$ q_2 $		q_4			q_1				
	q_3					q_4			✓	
	q_4				q_3		q_5		✓	
\leftarrow	q_5			q_0				q_5		
	•	•								
	δ	а	b	С	d	e	f	g	Acessível	Considerado
	δ q_0	a q_0	b	c q ₃	d	e	f	g	Acessível	Considerado
<u></u> →					d q_1	e	f	g		
→ ←	q_0	q_0				e	f	g		
	q_0 q_1	q_0	q_4				f	g		
	q_0 q_1 q_2	q_0	q_4			q_1	<i>f</i>	g	√	√

	δ	а	b	c	d	e	f	g	Acessível	Considerado
\rightarrow	q_0	q_0	q_4	q_3					✓	√
	q_1	q_4			q_1					
←	q_2		q_4			q_1				
	q_3					q_4			✓	✓
	q_4				q_3		q_5		✓	✓
←	q_5			q_0				q_5	✓	
	δ	а	b	c	d	e	f	g	Acessível	Considerado
<u></u> →	δ q_0	q_0	b	c q_3	d	e	f	g	Acessível	Considerado
\rightarrow					<i>d</i>	e	f	g		
→ ←	q_0	q_0				<i>e q</i> ₁	f	g		
	q_0 q_1	q_0	q_4				f	g		
	q_0 q_1 q_2	q_0	q_4			q_1	<i>f</i>	g	√	√

Autômato equivalente eliminando os estados inacessíveis

	δ	а	b	С	d	e	f	g
\longrightarrow	q_0	q_0	q_4	q_3				
	q_3					q_4		
	q_4				q_3		q_5	
←	q_5			q_0				q_5

Estados inúteis

- Apesar deles poderem ser alcançados a partir do inicial do autômato, não conduzem a nenhum de seus estados finais
- Algoritmo de eliminação de estados inúteis, v2: "Método prático para obtenção de um autômato sem estados inúteis equivalente a outro com estados inúteis, porém sem estados inacessíveis"
 - Entrada: AF $M = (Q_1, \Sigma, \delta_1, q_{10}, F_1)$
 - Saída: AF $N=(Q_2,\Sigma,\delta_2,q_{20},F_2)$ sem estados inúteis e L(M)=L(N)
 - Método:
 - Considere as linhas contendo os estados finais de M, marque-as como úteis
 - 2 Selecione um estado marcado como "útil", mas ainda não marcado como "considerado". Identifique quais estados transitam para o estado selecionado, marque-os como úteis. Marque o estado corrente como "considerado"
 - 3 Repita o passo (2) enquanto possível
 - N define-se a partir de M eliminando-se todos os estados inúteis e todas as transições que deles partem ou a eles

Considere o autômato finito e sua notação tabular

	δ	а	b	с	Útil	Considerado
\rightarrow	q_0	q_3	q_2	q_1		
	q_1			q_2		
	q_2			q_1		
	q_3			q_4		
←	q_4			q_4	✓	

	δ	а	b	c	Útil	Considerado
\rightarrow	q_0	q_3	q_2	q_1		
	q_1			q_2		
	q_2			q_1		
	q_3			q_4	√	
←	q_4			q_4	√	√

	δ	а	b	c	Útil	Considerado
\rightarrow	q_0	q_3	q_2	q_1	√	
	q_1			q_2		
	q_2			q_1		
	q_3			q_4	✓	✓
←	a1			a,	./	

	δ	а	b	С	Útil	Considerado
\rightarrow	q_0	q_3	q_2	q_1	✓	✓
	q_1			q_2		
	q_2			q_1		
	q_3			q_4	✓	✓
←	q_4			q_4	✓	✓

Perguntas

- Dado um autômato finito qualquer, será possível obter uma versão determinística, isenta de transições em vazio e estados inacessíveis ou inúteis, aplicando-se uma só vez cada um dos algoritmos já vistos nas aulas?
- Em caso afirmativo, qual a sequência que eles devem ser aplicados?
 - Análises para as respostas
 - Eliminação de transições em vazio
 - Pode introduzir n\u00e3o-determinismo
 - Pode fazer surgir estados inacessíveis ou inúteis
 - Eliminação de não-determinismos
 - Pode fazer surgir estados inacessíveis ou inúteis
 - Não introduz transições em vazio
 - Eliminação de estados inacessíveis ou inúteis
 - Não faz surgir não-determinismos
 - Não introduz transições em vazio

Respostas

- A resposta para as questões inicialmente propostas é "sim" e a ordem de aplicação dos algoritmos é
 - 1 Eliminação de transições em vazio, se houver
 - 2 Eliminação dos não-determinismos restantes, caso haja algum
 - 3 Eliminação de estados inacessíveis e inúteis, caso existam
- Qualquer outra ordem poderá implicar na necessidade de se aplicar um mesmo algoritmo mais de uma vez
- Não-determinismos e transições em vazio não contribuem em nada para aumentar o poder dos autômatos finitos

Considere o autômato a seguir que apresenta transição em vazio e não-determinismo (consequência das transições em vazio existentes). Obter o autômato equivalente sem transições em vazio e determinístico

Eliminando transições em vazio para q_1

	δ	а	b	с	d	e	ε
\rightarrow	q_0		$\{q_1,q_2\}$		$\{q_1, q_3\}$		
	q_1	q_3			q_1		q_4
	q_2		q_2		q_3		
	q_3	q_4		q_3			
←	q_4		q_2			q_4	q_0

	δ	а	b	c	d	e	ε
\rightarrow	q_0		$\{q_1, q_2\}$		$\{q_1,q_3\}$		
←	q_1	q_3	q_2		q_1	q_4	q_0
	q_2		q_2		q_3		
	q_3	q_4		q_3			
←	q_4		q_2			q_4	q_0

Eliminando transições em vazio para q_4

	δ	а	b	c	d	e	ε
\rightarrow	q_0		$\{q_1, q_2\}$		$\{q_1, q_3\}$		
←	q_1	q_3	$\{q_1,q_2\}$		$\{q_1, q_3\}$	q_4	
	q_2		q_2		q_3		
	q_3	q_4		q_3			
←	q_4		q_2			q_4	q_0

	δ	а	b	с	d	e	ε
\rightarrow	q_0		$\{q_1, q_2\}$		$\{q_1, q_3\}$		
←	q_1	q_3	$\{q_1,q_2\}$		$\{q_1, q_3\}$	q_4	
	q_2		q_2		q_3		
	q_3	q_4		q_3			
←	q_4		$\{q_1, q_2\}$		$\{q_1,q_3\}$	q_4	

Eliminando não-determinismos: criando novos estados $q_1\,q_2$, $q_1\,q_3$ e $q_3\,q_4$

	δ	а	b	с	d	e
\rightarrow	q_0		$\{q_1,q_2\}$		$\{q_1, q_3\}$	
←	q_1	q_3	$\{q_1,q_2\}$		$\{q_1, q_3\}$	q_4
	q_2		q_2		q_3	
	q_3	q_4		q_3		
←	q_4		$\{q_1,q_2\}$		$\{q_1, q_3\}$	q_4

	δ	а	b	c	d	e
\rightarrow	q_0		$q_{1}q_{2}$		$q_{1}q_{3}$	
←	q_1	q_3	$q_{1}q_{2}$		$q_{1}q_{3}$	q_4
	q_2		q_2		q_3	
	q_3	q_4		q_3		
←	q_4		$q_{1}q_{2}$		$q_{1}q_{3}$	q_4
<u>←</u>	$q_{1}q_{2}$	q_3	$q_{1}q_{2}$		$q_{1}q_{3}$	q_4
←	$q_{1}q_{3}$	$q_{3}q_{4}$	$q_{1}q_{2}$	q_3	$q_{1}q_{3}$	q_4
←	$q_{3}q_{4}$	q_4	$q_{1}q_{2}$	q_3	$q_{1}q_{3}$	q_4

Versão do autômato sem transições em vazio e não-determinismos (os estados novos foram renomeados)

	δ	а	b	c	d	e
\rightarrow	q_0		q_1q_2		$q_{1}q_{3}$	
←	q_1	q_3	$q_{1}q_{2}$		$q_{1}q_{3}$	q_4
	q_2		q_2		q_3	
	q_3	q_4		q_3		
←	q_4		$q_{1}q_{2}$		$q_{1}q_{3}$	q_4
←	q_1q_2	q_3	$q_{1}q_{2}$		$q_{1}q_{3}$	q_4
←	$q_{1}q_{3}$	$q_{3}q_{4}$	$q_{1}q_{2}$	q_3	$q_{1}q_{3}$	q_4
	q_3q_4	q_4	q_1q_2	q_3	$q_{1}q_{3}$	q_4

	δ	а	b	c	d	e
\rightarrow	q_0		q_5		q_6	
←	q_1	q_3	q_5		q_6	q_4
	q_2		q_2		q_3	
	q_3	q_4		q_3		
←	q_4		q_5		q_6	q_4
←	q_5	q_3	q_5		q_6	q_4
←	q_6	q_7	q_5	q_3	q_6	q_4
	q_7	q_4	q_5	q_3	q_6	q_4

Autômato final obtido pela eliminação de transições em vazio e não-determinismos e estados inacessíveis

	δ	а	b	с	d	e	Acessível	Considerado
\rightarrow	q_0		q_5		q_6		✓	✓
←	q_1	q_3	q_5		q_6	q_4		
	q_2		q_2		q_3			
	q_3	q_4		q_3			✓	✓
←	q_4		q_5		q_6	q_4	✓	✓
←	q_5	q_3	q_5		q_6	q_4	✓	✓
←	q_6	q_7	q_5	q_3	q_6	q_4	✓	✓
←	q_7	q_4	q_5	q_3	q_6	q_4	✓	✓

	δ	а	b	c	d	e
\rightarrow	q_0		q_5		q_6	
	q_3	q_4		q_3		
←	q_4		q_5		q_6	q_4
←	q_5	q_3	q_5		q_6	q_4
←	q_6	q_7	q_5	q_3	q_6	q_4
←	q_7	q_4	q_5	q_3	q_6	q_4