Électrocinétique – chapitre 8

Correction du TD d'entraînement

I | Filtre ADSL

Un lutin malin semble avoir chourré votre filtre ADSL. Sale histoire. Heureusement, vous avez les connaissances pour en recréer un! En sachant que les signaux transmis par une ligne téléphonique utilisent une très large gamme de fréquences, divisée en deux parties :

- ♦ les signaux téléphoniques (transmettant la voix) utilisent les fréquences de 0 à 4 kHz;
- ♦ les signaux informatiques (Internet) utilisent les fréquences de 25 kHz à 2 MHz.
- 1) Quel type de filtre faut-il utiliser pour récupérer seulement les signaux téléphoniques? Les signaux informa- tiques? Quelle fréquence de coupure peut-on choisir?

- Réponse -

On isole les signaux téléphoniques avec un filtre passe-bas, et les signaux informatiques avec un filtre passe-haut. La fréquence de coupure doit être à la fois nettement supérieure aux fréquences téléphoniques et nettement plus faible que les fréquences informatiques : on prendra donc $f_0 = 10 \, \mathrm{kHz}$.

Vous réalisez le filtre ci-dessous.

2) Déterminer la nature du filtre grâce à son comportement asymptotique en basses fréquences et en hautes fréquences. En déduire pour quels signaux il peut être utilisé.

– Réponse -

En basses fréquences ($\omega \to 0$), les bobines se comportent comme des fils, soit

En hautes fréquences $(\omega \to \infty)$, les bobines se comportent comme des interrupteurs ouverts, soit

Ainsi, le signal de sortie est non nul pour les hautes fréquences, et négligeable pour les basses fréquences : c'est un filtre passe-haut. Il permettra d'obtenir les signaux informatiques.

3) Montrer que la fonction de transfert de ce filtre peut se mettre sous la forme :

$$\underline{H}(x) = \frac{-x^2}{1 + 3ix - x^2}$$
 avec $x = \frac{\omega}{\omega_0}$

et exprimer ω_0 en fonction de R et L.

– Réponse –

Pour exprimer u_s en fonction de u_e , on peut faire un premier pont diviseur de tension pour exprimer u_s en fonction de u_{AB} du milieu; puis avec une impédance équivalente à l'ensemble des 3 dipôles de droite, on refait un pont diviseur de tension pour avoir u_{AB} en fonction de u_e , et on combine.

On a donc d'abord :

$$\underline{U}_s = \frac{\underline{Z}_L}{\underline{Z}_L + \underline{Z}_R} \underline{U}_{AB} \Leftrightarrow \underline{U}_s = \frac{\mathrm{j}L\omega}{\mathrm{j}L\omega + R} \underline{U}_{AB}$$

On aura donc ensuite:

$$\underline{U}_{AB} = \frac{\underline{Z}_{eq}}{\underline{Z}_{eq} + \underline{Z}_R} \underline{U}_e \Leftrightarrow \underline{U}_{AB} = \frac{1}{1 + \underline{Z}_R \underline{Y}_{eq}} \underline{U}_e$$

On calcule alors \underline{Y}_{eq} :

$$\underline{Y}_{\rm eq} = \frac{1}{\mathrm{j}L\omega} + \frac{1}{R + \mathrm{j}L\omega}$$

Et on combine:

$$\underline{U}_{s} = \frac{\mathrm{j}L\omega}{R + \mathrm{j}L\omega} \times \frac{1}{1 + \underline{Z}_{R}\underline{Y}_{\mathrm{eq}}} \underline{U}_{e} \Leftrightarrow \underline{U}_{s} = \frac{\mathrm{j}L\omega}{R + \mathrm{j}L\omega + R\left(\frac{R + \mathrm{j}L\omega}{\mathrm{j}L\omega} + 1\right)} \times \frac{\mathrm{j}\underline{L}\omega}{\mathrm{j}L\omega} \underline{U}_{e}$$

$$\Leftrightarrow \underline{U}_{s} = \frac{-(L\omega)^{2}}{R^{2} + 3\mathrm{j}RL\omega - (L\omega)^{2}} \underline{U}_{e} \Leftrightarrow \underline{U}_{s} = \frac{R^{2}}{R^{2}} \frac{-\left(\frac{L}{R}\omega\right)^{2}}{1 + 3\mathrm{j}\frac{L}{R}\omega - \left(\frac{L}{R}\omega\right)^{2}} \underline{U}_{e}$$

Ainsi, en divisant par \underline{U}_e pour avoir la fonction de transfert, on a :

$$\underline{\underline{H}} = \frac{-x^2}{1 - x^2 + 3jx} \quad \text{avec} \quad \underline{\omega_0 = \frac{R}{L}}$$

4) Tracer le diagramme de Bode asymptotique (gain et phase) de ce filtre, puis esquisser l'allure de la courbe réelle de gain en la justifiant.

— Réponse -

Pour $x \gg 1$, les termes en x^2 l'emportent sur les autres termes au numérateur et au dénominateur, et la fonction de transfert devient $\underline{H} \underset{x \to \infty}{\sim} 1$, donc $\boxed{G_{\text{dB}} = 0}$ et $\boxed{\varphi = 0}$ (réel positif).

I. Filtre ADSL

Pour $x \ll 1$, les termes en x sont négligeables devant 1 au dénominateur, et on garde le numérateur : la fonction de transfert devient donc $\underline{H} \sim -x^2$, donc $G_{\mathrm{dB}} \sim 40 \log(x)$ (pente de $40 \, \mathrm{dB/d\acute{e}cade}$).

Pour la phase, c'est moins évident, on pourrait avoir $\varphi = \pm \pi$ puisque c'est un réel négatif. Il faut étudier le domaine d'existence $\forall x$:

$$\arg(\underline{H}(x)) = \arg(-x^{2}) - \arg(1 - x^{2} + 3jx)$$

$$= \arg(-x^{2}) + \arg\left((1 - x^{2} - 3jx)\frac{j}{j}\right)$$

$$= \arg(-x^{2}) + \arg(3x + j(1 - x^{2})) - \arg(j)$$

$$= \frac{\arg(-x^{2})}{\pm \pi} + \arg(3x + j(1 - x^{2})) - \arg(j)$$

$$= \frac{\arg(\underline{z}_{1})}{\pm \pi} = \arg(\underline{z}_{1}) - \arg(\underline{z}_{2})$$

Ainsi, pour que l'angle s'exprime entre $]-\pi;\pi[$, on a forcément $\arg(-x^2)=+\pi,$ soit $\overline{\varphi=\pi}$.

Pour x = 1, on trouve $\underline{H}(1) = \mathrm{j}/3$ donc $G_{\mathrm{dB}}(1) = 20 \log(1/3) = -9.5 \,\mathrm{dB}$, et $\varphi(1) = \pi/2$ (imaginaire pur).

Il n'y a pas de pic de résonance car le facteur de qualité Q est plus petit que $1/\sqrt{2}$.

La fréquence de coupure est $f_0 = \frac{\omega_0}{2\pi} = \frac{R}{2\pi L}$; on doit donc prendre

Filtre de Colpitts

On considère le quadripôle suivant, où C est une capacité, R une résistance et L une inductance. Il est utilisé en régime sinusoïdal forcé de pulsation ω , en sortie « ouverte » (rien n'est branché aux bornes de sortie).

1) Étudier qualitativement le comportement de ce quadripôle en hautes et basses fréquences. De quel type de filtre s'agit-il?

- Réponse -

En basses fréquences ($\omega \to 0$), les condensateurs se comportent comme des interrupteurs ouverts, la bobine comme un fil : la tension u_s est donc nulle. En hautes fréquences $(\omega \to \infty)$, les condensateurs se comportent comme des fils, la bobine comme un interrupteur ouvert : la tension u_s est donc nulle.

Comme la tension est nulle aux extrêmes, c'est un **passe-bande**. Si elle était égale à la tension d'entrée aux extrêmes, ça serait un coupe-bande.

2) Déterminer la fonction de transfert $\underline{\underline{H}}(\mathrm{j}\omega)=\frac{\underline{u_s}}{\underline{u_e}}$ et la mettre sous l'une des formes équivalentes :

$$\underline{H}(j\omega) = \frac{A}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} = \frac{j\frac{A}{Q}\frac{\omega}{\omega_0}}{1 - \frac{\omega^2}{\omega_0^2} + \frac{j}{Q}\frac{\omega}{\omega_0}}$$

En introduisant des constantes A, w_0 et Q dont on précisera les expressions en fonction de R, L et C.

— Réponse –

On effectue deux diviseurs de tension successifs : un pour déterminer u_s en fonction de u_L , puis avec une impédance équivalente des trois dipôles de droite, on détermine u_L en fonction de u_e et on combine. C'est le même fonctionnement que pour l'exercice sur l'ADSL, question 3.

II. Filtre de Colpitts 5

On a ainsi en premier lieu

$$\underline{U}_s = \frac{\underline{Z}_{3C}}{\underline{Z}_{3C} + \underline{Z}_C} \underline{U}_{AB} \Leftrightarrow \underline{U}_s = \frac{1/\mathrm{j}3C\omega}{1/\mathrm{j}3C\omega + 1/\mathrm{j}C\omega} \underline{U}_{AB} \Leftrightarrow \underline{U}_s = \frac{1}{1+3} \underline{U}_{AB} \Leftrightarrow \underline{U}_s = \frac{\underline{U}_{AB}}{4}$$

On aura donc ensuite:

$$\underline{U}_{AB} = \underline{\underline{Z}_{\mathrm{eq}}} + \underline{Z}_{R} \underline{U}_{e} \Leftrightarrow \boxed{\underline{U}_{AB} = \frac{1}{1 + \underline{Z}_{R} \underline{Y}_{\mathrm{eq}}} \underline{U}_{e}}$$

On calcule alors \underline{Y}_{eq} de l'association en parallèle de L et C en série avec 3C. Attention à l'association en série de capacités :

$$Z_{C+3C} = \frac{1}{j3C\omega} + \frac{1}{jC\omega} \times \frac{3}{3} = \frac{4}{j3C\omega}$$

$$\underline{Y}_{eq} = \underline{Y}_L + \underline{Y}_{C+3C} \Leftrightarrow \boxed{\underline{Y}_{eq} = \frac{1}{jL\omega} + j3C\omega/4}$$

Et on combine:

$$\underline{U}_s = \frac{1}{4} \frac{1}{1 + R\left(\frac{1}{jL\omega} + \frac{j3C\omega}{4}\right)} \underline{U}_e \Leftrightarrow \underline{U}_s = \frac{1}{4} \frac{1}{1 + j\left(-\frac{R}{L\omega} + \frac{3RC\omega}{4}\right)} \underline{U}_e$$

Ainsi, en divisant par \underline{U}_e pour avoir la fonction de transfert, on a :

$$\underline{H} = \frac{1/4}{1 + j\left(\frac{3RC\omega}{4} - \frac{R}{L\omega}\right)} \Leftrightarrow \boxed{\underline{H} = \frac{A}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}} \quad \text{avec} \quad \boxed{A = \frac{1}{4}}$$

Reste à trouver Q et ω_0 . Pour cela, on identifie membre à membre :

$$\frac{Q}{\omega_0} = \frac{3RC}{4} \quad (1) \quad \text{et} \quad Q\omega_0 = \frac{R}{L} \quad (2)$$

$$\Leftrightarrow \boxed{Q = \frac{R\sqrt{3C}}{2\sqrt{L}}} \quad \text{et} \quad \boxed{\omega_0 = \frac{2}{\sqrt{3LC}}}$$

où l'on obtient Q et ω_0 en multipliant les équations (1) et (2) d'une part puis en en prenant la racine carrée, et en divisant (2) par (1) en en prenant la racine carrée, respectivement.

Le diagramme de Bode de ce quadripôle pour Q=6 est donné ci-dessous.

3) Justifier l'allure des parties rectilignes du diagramme. Déduire du diagramme la valeur de la fréquence d'accord $f_0 = \omega_0/2\pi$ ainsi que des fréquences de coupure.

– Réponse -

Les parties rectilignes du diagramme correspondent aux limites asymptotiques du gain en décibels, c'est-à-dire pour $\omega \ll \omega_0$ et $\omega \gg \omega_0$. En effet,

$$\underbrace{H}_{\omega\ll\omega_0} \stackrel{\sim}{\text{j}} \frac{A}{Q} \frac{\omega}{\omega_0} \quad \text{et} \quad \underbrace{H}_{\omega\gg\omega_0} - \text{j} \frac{A}{Q} \frac{\omega_0}{\omega}$$

$$\Leftrightarrow G_{\text{dB}} \stackrel{\sim}{\underset{\omega\ll\omega_0}{\sim}} 20 \log \frac{A}{Q} + 20 \log \frac{\omega}{\omega_0} \quad \text{et} \quad G_{\text{dB}} \stackrel{\sim}{\underset{\omega\gg\omega_0}{\sim}} 20 \log \frac{A}{Q} - 20 \log \frac{\omega}{\omega_0}$$

$$\Leftrightarrow \varphi \stackrel{\sim}{\underset{\omega\ll\omega_0}{\sim}} \frac{\pi}{2} \quad \text{et} \quad \varphi \stackrel{\sim}{\underset{\omega\gg\omega_0}{\sim}} -\frac{\pi}{2}$$

Pour $\omega = \omega_0$, on trouve simplement $\underline{H} = A$ donc $G_{dB}(\omega_0) = -12 \, dB$ et $\varphi = 0$. La fréquence de résonance (ou fréquence d'accord) correspond au pic du diagramme de BODE (ou à l'intersection des asymptotes du gain en décibels) d'une part, ou correspond à la fréquence pour laquelle la phase est nulle : on lit simplement $f_0 = 1 \, \text{kHz}$.

On trouve les fréquences de coupure en trouvant les fréquences f_1 et f_2 telles que $G_{dB} = G_{max} - 3 dB$, soit $G_{dB} = -15 dB$: on lit approximativement $f_1 = 950 \, \text{Hz}$ et $f_2 = 1050 \, \text{Hz}$.

**

Filtre de BUTTERWORTH d'ordre 3

On veut réaliser un filtre de BUTTERWORTH d'ordre 3, dont le module H de sa fonction de transfert harmonique en tension \underline{H} s'exprime :

$$H = |\underline{H}| = \sqrt{\frac{1}{1 + \left(\frac{\omega}{\omega_0}\right)^6}} = \sqrt{\frac{1}{1 + x^6}} \quad \text{avec} \quad x = \frac{\omega}{\omega_0}$$

1) Montrer qu'une fonction de transfert $\underline{H} = \frac{1}{1 + 2jx + 2(jx)^2 + (jx)^3}$ correspond bien à un filtre de BUTTERWORTH d'ordre 3.

– Réponse –

Il suffit pour cette question de développer les puissances sur les j, de calculer le module et de développer :

$$\underline{H} = (1 + 2jx - 2x^2 - jx^3)^{-1} \Leftrightarrow |\underline{H}| = ((1 - 2x^2)^2 + (2x - x^3)^2)^{-1/2}$$

$$\Leftrightarrow |\underline{H}| = (1 - 4x^2 + 4x^4 + 4x^2 - 4x^4 + x^6)^{-1/2} = (1 + x^6)^{-1/2}$$

ce qui correspond bien à un filtre de BUTTERWORTH d'ordre 3.

Pour étudier le diagramme de Bode asymptotique, on définit d'abord le gain en décibels : $G_{\mathrm{dB}} = 20 \log(|\underline{H}|) = 20 \log\left(\left(1+x^6\right)^{-1/2}\right) = -10 \log(1+x^6).$ Ensuite, on étudie son comportement asymptotique pour $x \ll 1$ et $x \gg 1$: on trouve

$$G_{\mathrm{dB}} \underset{x \ll 1}{\sim} 0$$
 et $G_{\mathrm{dB}} \underset{x \gg 1}{\sim} -60 \log(x)$

d'où le diagramme de BODE asymptotique ci-contre. Par rapport à de l'ordre $1 \quad (-20 \, \mathrm{dB/d\acute{e}cade})$ ou de l'ordre $2 \quad (-40 \, \mathrm{dB/d\acute{e}cade})$, l'atténuation des hautes fréquences est encore plus prononcé : une fréquence 10 fois supérieure à f_0 serait atténuée d'un facteur 1000 au lieu d'un facteur 10.

3) On considère le quadripôle ci-dessous :

Calculer en fonction de R et ω_0 , les valeurs de L_1 , L_2 et C pour que ce filtre soit un filtre de BUTTERWORTH d'ordre 3.

– Réponse -

Ici encore, on utilise deux ponts diviseurs de tension successifs : on calcule u_s en fonction de u_{AB} , puis u_{AB} en fonction de u_e après avoir déterminé l'impédance équivalente de l'ensemble des dipôles de droite.

On aura donc en premier lieu

$$\underline{U}_s = \frac{\underline{Z}_R}{\underline{Z}_R + \underline{Z}_{L_2}} \underline{U}_{AB} \Leftrightarrow \boxed{\underline{U}_s = \frac{R}{R + jL_2\omega} \underline{U}_{AB}}$$

Et ensuite, on aura

$$\underline{U}_{AB} = \frac{\underline{Z}_{eq}}{\underline{Z}_{eq} + \underline{Z}_{L_1}} \underline{U}_e \Leftrightarrow \boxed{\underline{U}_{AB} = \frac{1}{1 + \underline{Z}_{L_1} \underline{Y}_{eq}} \underline{U}_e}$$

On calcule alors \underline{Y}_{eq} de l'association en parallèle de C et L_2 en série avec R :

$$Z_{L_2+R} = jL_2\omega + R$$

$$\underline{Y}_{eq} = \underline{Y}_C + \underline{Y}_{L_2+R} \Leftrightarrow \underline{Y}_{eq} = jC\omega + \frac{1}{jL_2\omega + R} \Leftrightarrow \underline{Y}_{eq} = \frac{jC\omega(jL_2\omega + R) + 1}{jL_2\omega + R}$$

$$\Leftrightarrow \boxed{\underline{Y}_{eq} = \frac{1 - L_2C\omega^2 + jRC\omega}{R + jL_2\omega}}$$

Et on combine:

$$\underline{U}_{s} = \frac{R}{R + jL_{2}\omega} \times \frac{1}{1 + jL_{1}\omega \left(\frac{1 - L_{2}C\omega^{2} + jRC\omega}{R + jL_{2}\omega}\right)} \underline{U}_{e}$$

$$\Leftrightarrow \underline{U}_{s} = \frac{R}{R + jL_{2}\omega} \times \frac{1}{1 + \frac{jL_{1}\omega - jL_{1}L_{2}C\omega^{3} + (j\omega)^{2}RCL_{1}}{R + jL_{2}\omega}} \underline{U}_{e}$$

$$\Leftrightarrow \underline{U}_{s} = \frac{R}{R + jL_{2}\omega + jL_{1}\omega - jL_{1}L_{2}C\omega^{3} + (j\omega)^{2}RCL_{1}} \underline{U}_{e}$$

$$\Leftrightarrow \underline{U}_{s} = \frac{1}{1 + j\omega \frac{L_{1} + L_{2}}{R} + (j\omega)^{2}L_{1}C + (j\omega)^{3} \frac{L_{1}L_{2}C}{R}} \underline{U}_{e}$$

en utilisant que $-\mathbf{j}=\mathbf{j}^3$. Ainsi, en divisant par \underline{U}_e pour avoir la fonction de transfert, on a bien

$$\underbrace{\underline{H} = \frac{1}{1 + 2jx + 2(jx)^2 + (jx)^3}}_{\text{avec}} \quad \text{avec} \quad \begin{cases}
\frac{2}{\omega_0} = \frac{L_1 + L_2}{R} \\
\frac{2}{\omega_0^2} = L_1 C \\
\frac{1}{\omega_0^3} = \frac{L_1 L_2 C}{R}
\end{cases} \Leftrightarrow \begin{cases}
L_1 = \frac{3R}{2\omega_0} \\
L_2 = \frac{R}{2\omega_0} \\
C = \frac{4}{3Rw_0}
\end{cases}$$

4) Justifier que l'on puisse réaliser le filtre de BUTTERWORTH d'ordre 3 en associant en cascade un filtre d'ordre 1 et un filtre d'ordre 2, comme sur le circuit suivant :

Préciser la valeur du facteur de qualité du filtre d'ordre 2.

- Réponse -

Pour mettre des filtres en cascade et avoir $\underline{H} = \underline{H_1}\underline{H_2}$, il faut que l'impédance de sortie du filtre 1 soit faible devant l'impédance d'entrée du filtre 2. Dans ce cas, on utilise un filtre d'ordre 1 avec un numérateur constant (donc un passe-bas de la forme $\underline{H_1} = \frac{H_1}{1+\mathrm{j}x}$), et un filtre d'ordre 2 avec un numérateur lui aussi constant : soit un passe-bas soit un passe-bande. Le passe-bande fait intervenir j $Q\left(x-\frac{1}{x}\right)$ au dénominateur, donc il est plus simple d'utiliser une passe-bas d'ordre 2 avec $1+\mathrm{j}/Qx+(\mathrm{j}x)^2$ au dénominateur :

$$\underline{H} = \frac{H_1}{1 + jx} \times \frac{H_2}{1 + \frac{j}{Q}x + (jx)^2} = \frac{H_1 H_2}{1 + jx \left(1 + \frac{1}{Q}\right) + (jx)^2 \left(1 + \frac{1}{Q^2}\right) + (jx)^3}$$

Pour trouver un filtre de BUTTERWORTH d'ordre 3 de cette manière, il faut donc $H_1 = H_2 = 1$ et Q = 1.

