

电荷半径的局域关系

鲍曼 上海理工大学 2020.1.12

Introduction

$$(\alpha N_{\rm p} + \beta N_{\rm n})$$
 关系

PART

Introduction

Introduction

加入同位旋修正、Z^{1/3}项 和壳修正等 (0.022 fm)

Hartree-Fock-Bogoliubov (HFB) model (0.027 fm)

Relativistic mean-field (RMF) theory

PART

02

in - jp 关系

in-jp关系

(a) <i>d</i>	SR _{1n-1p})	(b) a	SR 1n-2₁)	
	(3)	(1)		(3)	(1)	
	(2)	(4)				
				(2)	(4)	
(c) d	5R _{2n-1p})	(d) d	5R _{2n-2p})	
(3)		(1)		(3)		(1)
(2)		(4)				
				(2)		(4)

N

•
$$\delta R_{\text{1n-1p}} = R(N,Z) + R(N-1,Z-1)$$

- $R(N-1,Z) - R(N,Z-1)$

•
$$\delta R_{\text{1n-2p}} = R(N,Z) + R(N-1,Z-2)$$

- $R(N-1,Z) - R(N,Z-2)$

•
$$\delta R_{2n-1p} = R(N,Z) + R(N-2,Z-1)$$

- $R(N-2,Z) - R(N,Z-1)$

•
$$\delta R_{2n-2p} = R(N,Z) + R(N-2,Z-2)$$

- $R(N-2,Z) - R(N,Z-1)$

- B. H. Sun, Y. Lu, J. P. Peng, C. Y. Liu, and Y. M. Zhao, Phys. Rev. C **90**, 054318 (2014)
- M. Bao, Y. Lu, Y. M. Zhao, and A. Arima, Phys. Rev. C 94, 064315 (2016)

in - jp 关系

	σ_R (fm)	N_R	$\overline{\sigma}_R$ (fm)	N_R
δR_{1n-1p}	0.0084	394	0.0072	650
δR_{1n-2p}	0.013	296	0.0116	551
δR_{2n-1p}	0.0096	427	0.0078	725
δR_{2n-2p}	_	_	0.0088	682
Total	_	_	0.0076	855

- B. H. Sun, Y. Lu, J. P. Peng, C. Y. Liu, and Y. M. Zhao, Phys. Rev. C 90, 054318 (2014)
- M. Bao, Y. Lu, Y. M. Zhao, and A. Arima, Phys. Rev. C 94, 064315 (2016)

in - jp 关系

	σ_R' (fm)	N_R'	$\sigma_R^{\prime\prime}$ (fm)	$N_R^{\prime\prime}$
δR_{1n-1p}	0.0132	302	0.0174	122
δR_{1n-2p}	0.0199	189	0.0261	110
δR_{2n-1p}	0.0221	218	0.0173	85
δR_{2n-2p}	0.0220	163	0.0246	87
Total	0.0225	520	0.0147	134

判断质子晕: 17Ne₇, 25,26P

• M. Bao, Y. Lu, Y. M. Zhao, and A. Arima, Phys. Rev. C 94, 064315 (2016)

in - jp 关系

• M. Bao, Y. Lu, Y. M. Zhao, and A. Arima, Phys. Rev. C 94, 064315 (2016)

$$(\alpha N_{\rm p} + \beta N_{\rm n})$$
 关 缘

上海理工大学

$(\alpha N_{\rm p} + \beta N_{\rm n})$ 关系

$(\alpha N_{\rm p} + \beta N_{\rm n})$ 关系

	σ_R (fm)	N_R
(a)	0.0075	23
(b)	0.0070	52
(c)	0.0036	46
(d)	0.0044	33
(e)	0.0046	54
(f)	0.0037	8
(g)	0.0057	69
(h)	0.0048	48

 $(\alpha N_{\rm p} + \beta N_{\rm n}) \not = \mathscr{A}$

$(\alpha N_{\rm p} + \beta N_{\rm n})$ 关系

	σ_R (fm)	N_R
(a)	0.0073	24
(b)	0.0042	17
(c)	0.0039	28
(d)	0.0045	133
(e)	0.0026	38
(f)	0.0072	47

Z = 96

40

30

$(\alpha N_p + \beta N_n)$ 关系

• Y. M. Zhao, A. Arima, and R. F. Casten, Phys. Rev. C 63, 067302 (2001)

PART

04

 $δR_{\rm nn}$ & $δR_{\rm pp}$ 关 绦

$\delta R_{\rm nn}$ & $\delta R_{\rm pp}$ 关条

• "nonpairing" interaction between the last two protons / neutrons

$$\delta V_{\text{pp}}^{(2)}(Z-1,Z;N)$$

$$= \frac{1}{2} [-B(N,Z) + B(N,Z-1) + B(N,Z-2) - B(N,Z-3)]$$

$$\delta V_{\text{nn}}^{(2)}(N-1,N;Z)$$

$$= \frac{1}{2} [-B(N,Z) + B(N-1,Z) + B(N-2,Z) - B(N-3,Z)]$$

$\delta R_{\rm nn} \otimes \delta R_{\rm pp}$ 关条

 $\delta R_{\rm nn}(N,Z)$

$\delta R_{\rm nn} \& \delta R_{\rm pp}$ 关条

$\delta R_{\rm nn} \otimes \delta R_{\rm pp}$ 关系

Summary

• δR_{1n-1p} 关系误差非常小,大部分偏差小于0.003 fm

• $\delta R_{\rm nn}$ 关系的精度和 $\delta R_{\rm in-jp}$ 相近

• R在部分区域与 $(\alpha N_p + \beta N_n)$ 有良好的线性关系,能体现结构变化

谢谢!