

Data Storytelling

2) Choose an appropriate visual display

Prof. Dr. Jan Kirenz HdM Stuttgart

6 Lessons in data storytelling

- 1. Understand the context
- 2. Choose an appropriate visual display
- 3. Eliminate clutter
- 4. Focus attention where you want it
- 5. Think like a designer
- 6. Tell a story

Simple text

Table

Heat map

HEAT MAP

PICK OUT BIG
DIFFERENCES IN
COLOR INTENSITY,
but smaller ones
don't stand out

Can work well when beginning to explore data and deciding where to dig further

Bar charts

BAR CHARTS

Great for categorical data

Easy for our eyes comparing heights to a consistent baseline

Rule: Must have a zero baseline. No exceptions!

Scatter plot

Line

LINE

Rule: The lines that
connect the dots have
to make sense! Most effective
with continuous data,
often time

Slope graph

Waterfall

Square area

Improving plots
(mainly with Excel and
Python + Plotly)

Download

CSV

Forum Pricing Dash

Dash Cloud

Star 10,248

Python > Getting Started with Plotly

Suggest an edit to this page

Getting Started with Plotly in Python

Getting Started with Plotly for Python.

THIS PAGE IN ANOTHER LANGUAGE

MATLAB®

New to Plotly?

https://plotly.com/python/basic-charts/

We'll start with basic tables and explore how visualizing data in graphs helps us more quickly see what's going on - as well as how different visuals cause us to identify new things and make varying design choices when graphing our data.

All resources (exercises & solutions)

Data and solutions for all exercises

Download

Download

Excel : ↓

Google : ↓

CSV : <u>↓</u>

Example 2.1

... we start with Excel

Solution 2.1

Download

Excel:

Breakdown of new clients by tier

New client tier share

Tier	# of Accounts	% Accounts	Revenue (\$M)	% Revenue
Α	77	7.08%	\$4.68	25%
A+	19	1.75%	\$3.93	21%
В	338	31.07%	\$5.98	32%
С	425	39.06%	\$2.81	15%
D	24	2.21%	\$0.37	2%

Slightly improved table

New client tier share

Tier	# of Accounts	% Accounts	Revenue (\$M)	% Revenue
A+	19	2%	\$3.9	21%
Α	77	7%	\$4.7	25%
В	338	31%	\$6.0	32%
С	425	39%	\$2.8	15%
D	24	2%	\$0.4	2%
All other	205	19%	\$0.9	5%
TOTAL	1,088	100%	\$18.7	100%

Table with heatmapping

New client tier share

TIER	ACCOUNTS		REVENUE	
HER	#	% OF TOT	\$M	% OF TOT
A+	19	2%	\$3.9	21%
Α	77	7%	\$4.7	25%
В	338	31%	\$6.0	32%
С	425	39%	\$2.8	15%
D	24	2%	\$0.4	2%
All other	205	19%	\$0.9	5%
TOTAL	1,088	100%	\$18.7	100%

Table with embedded bars

New client tier share

TIER	ACCOUNTS		REVENUE	
HER	#	% OF TOT	\$M	% OF TOT
A+	19	I	\$3.9	
Α	77		\$4.7	
В	338	427	\$6.0	
С	425		\$2.8	
D	24		\$0.4	
All other	205		\$0.9	
TOTAL	1,088	100%	\$18.7	100%

Not so easy to read ...

New client tier share

% of Total Accounts

% of Total Revenue

Two horizontal bar charts

New client tier share

Horizontal dual series bar chart

New client tier share

Vertical bar chart

New client tier share

% OF TOTAL ACCOUNTS vs. REVENUE

With some lines

New client tier share

Take away the bars

New client tier share

A slope graph

New client tier share

Download

Excel : •

Google : ↓↓

Make CSV: 🛂

Example 2.2

Solution 2.2

Download

Excel : 🕹

Python : 🛂

Simple table

Meals served over time

Campaign Year	Meals Served
2010	40,139
2011	127,020
2012	168,193
2013	153,115
2014	202,102
2015	232,897
2016	277,912
2017	205,350
2018	233,389
2019	232,797

Table with heatmapping

Meals served over time

Campaign Year	Meals Served
2010	40,139
2011	127,020
2012	168,193
2013	153,115
2014	202,102
2015	232,897
2016	277,912
2017	205,350
2018	233,389
2019	232,797

Bar chart

Meals served over time

Line graph

Meals served over time

OF MEALS SERVED

Example 2.3, 24

Let's draw this data

Some options

Basic bars

Demand vs capacity over time

DEMAND | CAPACITY

Line graph

Demand vs capacity over time

Overlapping bars

Demand vs capacity over time

DEMAND | CAPACITY

Stacked bar charts

Demand vs capacity over time

CAPACITY | UNMET DEMAND

Dot plot

Demand vs capacity over time

Graph the difference

Unmet demand over time

Example 2.5

Attrition over time

Year	Attrition Rate
2019	9.1%
2018	8.2%
2017	4.5%
2016	12.3%
2015	5.6%
2014	15.1%
2013	7.0%
2012	1.0%
2011	2.0%
2010	9.7%
AVG	7.5%

QUESTION 1:

How many **different ways** can you come up with to show this data? Draw or create in the tool of your choice.

QUESTION 2:

How would you **show** the **average** in the various views you've created?

QUESTION 3:

Which of the visuals you've created do you **like best** and why?

Dot plot

Attrition rate over time

Line graph

Attrition rate over time

Line graph with shaded area depicting average

Attrition rate over time

Area graph

Attrition rate over time

Area graph

Attrition rate over time

Example 2.6

Weather forecast

QUESTION 1:

What temperature would you estimate: **Sunday**?

QUESTION 2:

What temperature might you estimate: **Wednesday**?

QUESTION 3:

What other observations can you make from this data?

Take a closer look the baseline

Compare the two graphs. Bar charts must have a zero baseline!

Example 2.7

Bank index

QUESTION 1:

What **questions** do you have about this data?

QUESTION 2:

If you were designing the graph, what **changes** would you make?

How would you **visualize** this data?

Optimized graph

BRANCH SATISFACTION

Financial Savings below industry for first time in 5 years

Example 2.8

What's confusing in this graph?

Alternative view

2019 quarterly view

BILLIONS

All resources (exercises & solutions)

Data and solutions for all exercises

Download

