Question	Scheme	Marks
6(a)	$\frac{dy}{dx} = \frac{(x^2+1)2xe^{(x^2+1)} - 2xe^{(x^2+1)}}{(x^2+1)^2}$	M1A1A1
	$\frac{dy}{dx} = \frac{2xe^{(x^2+1)}(x^2+1-1)}{(x^2+1)^2} = \frac{2x^3e^{(x^2+1)}}{(x^2+1)^2}$	M1A1 cso [5]
(b)	When $x = -1$ $\frac{dy}{dx} = \frac{-e^2}{2}$, $y = \frac{e^2}{2}$	B1ft, B1
	$y - \frac{e^2}{2} = -\frac{e^2}{2}(x+1), \Rightarrow y = -\frac{e^2x}{2}$ oe	M1A1ft, A1
		[5]
Total 10 marks		

Question	Notes	Marks	
6(a)	$y = \frac{e^{(x^2 + 1)}}{x^2 + 1}$		
	Using Quotient Rule		
	$\frac{dy}{dx} = \frac{\left(x^2 + 1\right)2xe^{\left(x^2 + 1\right)} - 2xe^{\left(x^2 + 1\right)}}{\left(x^2 + 1\right)^2}$	M1	
	• For an attempt to differentiate both $e^{(x^2+1)}$ and x^2+1		
	Award for either $e^{x^2+1} \Rightarrow 2xe^{x^2+1}$ or $x^2+1 \Rightarrow 2x$ but both must		
	be changed expressions.		
	• Numerator is to have two terms in either order subtracted .		
	• Denominator must be $(x^2 + 1)^2$		
	At least one term fully correct in the numerator	A1	
	Fully correct unsimplified.	A1	
	For an attempt to take out a common factor of either $2x$ or $e^{(x^2+1)}$		
	$\frac{dy}{dx} = \frac{2xe^{(x^2+1)}(x^2+1-1)}{(x^2+1)^2}$	M1	
	$dx = \left(x^2+1\right)^2$		
	OR		
	Multiplies out the first term in the numerator		
	$2x^{3}e^{(x^{2}+1)} + 2xe^{(x^{2}+1)} - 2xe^{(x^{2}+1)}$	[M1]	
	$\frac{1}{\left(x^2+1\right)^2}$		

	Using Product Rule		
	$\frac{dy}{dx} = (x^2 + 1)^{-1} \times 2xe^{x^2 + 1} + (-2x)e^{x^2 + 1} \times (x^2 + 1)^{-2}$	M1	
	• For an attempt to differentiate both $e^{(x^2+1)}$ and $(x^2+1)^{-1}$		
	Award for either		
	$e^{x^2+1} \Rightarrow 2xe^{x^2+1}$ or $(x^2+1)^{-1} \Rightarrow (-2x)(x^2+1)^{-2}$ but both must		
	be changed expressions.		
	 Numerator is to have two terms added At least one term correct 	A1	
	Fully correct unsimplified or simplified	A1	
	For an attempt to take out a common factor of either $2x$ or $e^{(x^2+1)}$ and set a common denominator of $(x^2+1)^2$	M1	
	,		
	For the fully correct expression for the derivative,		
	$\frac{dy}{dx} = \frac{2x^3 e^{(x^2+1)}}{(x^2+1)^2}$	A1	
	NB: Any further simplification [e.g., cancelling $(x^2 + 1)$] following	[5]	
(b)	a correct answer seen, is A0.		
(b)	When $x = -1$, $\frac{dy}{dx} = \frac{-e^2}{2}$ ft their K in their $\frac{dy}{dx}$	B1ft	
	Allow awrt $\frac{dy}{dx} = -3.7$		
	Even allow $\frac{dy}{dx} = \frac{-Ke^2}{4}$		
	When $x = -1$, $y = \frac{e^2}{2}$	B1	
	Allow awrt $y = 3.7$		
	For a correctly used method for the equation of the tangent using		
	their values for $\frac{dy}{dx}$ and y		
	$y - \frac{e^2}{2} = -\frac{e^2}{2}(x+1)$	M1	
	Also allow: $y-3.7 = -3.7(x+1)$		
	If they use $y = mx + c$ they must obtain a value for c for the award		
	of this mark.		
	For the correct equation in any form For a correct simplified equation in any form but this must be in	A1ft	
	For a correct simplified equation in any form but this must be in exact form.	A1	
	$y = -\frac{e^2 x}{2}$ or $2y + e^2 x = 0$	[5]	
	$y = -\frac{1}{2}$ or $2y + e^x = 0$		
	Total 10 marks		