L3 HAX606X

OPTIMISATION CONVEXE

TP 5

Optimisation sous contraintes

Exercice 1 On considère le problème de la minimisation de la fonction

$$f:(x,y)\mapsto x+y^2,$$

sous la contrainte

$$x^3 - y^2 = 0.$$

- 1. Programmer la résolution du système pour résoudre le problème.
- **2.** Tracer les lignes de niveau de la fonction, de la contrainte et placer les solutions obtenues au $1 \text{ sur } [-2, 2]^2$.

Exercice 2 On note le convexe fermé non vide de \mathbb{R}^2 suivant :

$$K = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1 \text{ et } x + y \ge 1\}$$

Résoudre le problème min $x^2 - y$ sur K.

- 1. En utilisant l'algorithme d'Uzawa.
- 2. En utilisant l'algorithme du gradient projeté et en représentant les itérés successifs en partant du point (1,1). Il faudra définir au préalable la projection sur l'ensemble K que l'on pourra calculer avec la fonction scipy.optimize.minimize.