Calcul 1 MATH1400 **Introduction**

Franz Girardin

19 janvier 2024

Fonction exponentielle

 \triangleright **Domaine**: \mathbb{R}

▶ Continuité : Continue sur **dom**

 \triangleright **Croissance** 0 < b as e < 1: Stric. \bot

Croissance b a s e > 1 : Stric. ↑

ightharpoonup Ordonnée O. : $e^0 = 1$

 \triangleright **Signe**: $\forall x \in \mathbb{R}, e^x > 0$

 $\triangleright e^x : x \longrightarrow \infty + : \lim_{x \to +\infty} e^x = \infty$

 $\triangleright e^x : x \longrightarrow \infty - : \lim_{x \to \infty} e^x = 0$

Propriétés exponentielles

$$e^{x+y} = e^x e^y | e^{xy} = (e^x)^y$$

 $(e^x)' = e^x | (a^x)' = a^x \log_e a$

Fonction exponentielle

 \triangleright **Domaine**: $]0, \infty[$

Continuité : Continue sur **dom**

 \triangleright Croissance 0 < b as e < 1: Stric. \downarrow

 \triangleright **Croissance** base > 1: Stric. \uparrow

 \triangleright Abscisse O_•: $\log_a(1) = 0$

 \triangleright Signe: $\forall x > AO, \log_a x > 0; \ \forall x, 0 <$ $x < AO, \log_a x < 0$

 $\triangleright e^x: x \longrightarrow \infty +: \lim_{x \to +\infty} \log_a x = \infty$

 $\triangleright e^x : x \longrightarrow \infty - : \lim_{x \to a} \log_a x =$

$$\log(x+y) = \log x + \log y \left| \log x^y = y \log x \right|$$
$$\log_a x = \frac{\log_a x}{\log_a x} \left| (\log x)' = \frac{1}{x} \right|$$

Optimisation

 \triangleright **Maximum**: point $x \in$ **dom**: $\forall y \in$ $f, y \neq x, f(x) \geq f(y)$

 \triangleright **Minimum**: point $x \in$ **dom**: $\forall y \in$ $f, y \neq x, f(x) \leq f(y)$

Point d'inflexion : \uparrow − \downarrow ou \downarrow − \uparrow

▶ **Potentiel max ou min** : f'(x) = 0 ou f'(x)

Test de la dérivé première Soit f(x), on 0.1 Test de la dérivé seconde peut considérer f'(x) pour déduire des **informations** propres à f.

TABLE 1 – Test de la dérivé première pour une fonction hypothétique

	-∞		-2		1		10
f'		+		+	∌	-	
f	-∞	1	inflex.	1	max	/	0

Exemple 1 Interpréter un tableau de test de dérivé première

1. Comportement à la frontière Appliquer une limite aux deux frontières de la fonction, dans ce cas-ci $x \rightarrow -\infty$ et $x \rightarrow 10$. On a:

$$\lim_{x\to\infty^+} f(x) = \infty \text{ et } \lim_{x\to10} f(x) = 0$$

2. Calculer f'. Trouver x tels que :

1 f'(x) = 0

2 f'(x) n'existe pas

Dans le contexte de l'exemple, on a trouvé la valeur -2, qui correspond au moment ou f'(x) = 0. Et la valeur 1 correspond au moment ou la dérivé n'existe pas.

3. Trouver le signe f' sur chacun des intervales entre nos points d'intérêts pour déterminer le comportement de la fonction.

Entre $-\infty$ et -2, la dérivé est positive; la fonction est donc croissante sur cet interval.

Entre −2 et 1, la dérivé est positive; la fonction est donc croissante sur cet interval.

Entre 1 et 10, la dérivé est négative; la fonction est donc décroissante sur cet interval.

Noter que pour déterminer le signe de la dérivé, il suffit d'évaluer f'(x) à n'importe quel endroit dans l'interval (e.g. f'(1) pour l'intervale $de - \infty \grave{a} - 2$

Concept. 1 Test de la dérivé se-

Si et seulement si on obtient un point d'intérêt ou la dérivée première est nulle, on peut trouver les

maximums et minimums locaux, grâce au test de la dérivé seconde

Définition Maximum et minimum local

Soit f'(x) = 0 et f''(x) < 0, on a un maximum local en x.

Soit f'(x) = 0 et f''(x) > 0, on a un **minimum local** en x.

Fonctions sinus et cosinus

TABLE 1.1 – Propriétés des fonctions sinus et cosinus

Propriété	Descritpion		
Domaine	\mathbb{R}		
Continuité	Continue sur leur domaine		
Croissance	Toutes deux 2π périodiques.		

Identité. 1 Cosinus pair et sinus im-

$$cos(-x) = cos(x)$$
 et $sin(-x) = -sin(x)$

Identité. 2 Règle de dérivation de la fonction cosinus

$$\frac{d}{dx}\cos(x) = -\sin(x)$$

Identité. 3 Règle de dérivation de la fonction sinus

$$\frac{d}{dx}\sin(x) = -\cos(x)$$

Identité. 4

$$\cos^2(x) + \sin^2(x) = 1$$

Identité. 5

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$ $\sin(a+b) = -\sin a \cos b +$ $\cos a \sin b$

Limites des fonctions

2.1 LIMITE

Définition

 $\lim f(x)$ Converge vers L si f(x) est aussi proche que l'on veut de L **lorsque** $x \rightarrow a$

2.2 LIMITE À DROITE ET À GAUCHE

Définition

Soit $fD \to \mathbb{R}$

La limite à droite est la limite lorsque x s'approche de a, venant de la **droite** :

$$\lim_{x \to a^+} f(x) \Longrightarrow x \in D \text{ et } x > a$$

La limite à droite est la limite lorsque x s'approche de a, venant de la gauche:

$$\lim_{x \to a^+} f(x) \Longrightarrow x \in D \text{ et } x < a$$

Lorsque les deux limites sont équivalente, la limite existe:

$$\lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$$

$$\lim_{x \to a} = L$$

Si aucun x < a:

$$\lim_{x \to a^{+}} f(x) = L$$

$$\lim_{x \to a} f(x) = L$$

Si aucun x > a:

$$\lim_{x \to a^{-}} f(x) = L$$

$$\lim_{x \to a} f(x) = L$$

Définition Divergence d'une fonc-

 $\lim f(x)$ diverge si la limite ne converge vers aucun $L \in \mathbb{R}$ Cas particulier si

- $1 \quad \lim f(x) = L$
- $\lim_{x \to a^+} f(x) = M$
- 3 $L \neq M$

alors, $\lim_{x\to a} f(x)$ diverge.

2.3 Propriétés des limites

Concept. 2 Addition, soustraction et multiplication de limite

Supposon que $\lim f(x) = L$ et $\lim_{x \to \infty} g(x) \mid L, M \in \mathbb{R}$

- $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M$
- $\lim_{x \to a} (f(x) g(x)) = \lim_{x \to a} f(x) \lim_{x \to a} g(x) = L M$
- $\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x)$ $\lim_{x \to a} g(x) = LM$
- $\lim_{x \to a} \left(c f(x) \right) = c \lim_{x \to a} f(x)$
- $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x)}{\lim_{x \to a} g(x)} =$ $\frac{L}{M}$ si $M \neq 0$

Concept. 3 Comportement asymptotique et c > 0

Soit
$$\frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)} \mid \lim_{x\to a} f(x) = c \neq 0, \pm \infty \text{ si } c > 0, \text{ on a}$$

Concept. 4 Comportement asymptotique et c < 0

Soit
$$\frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \mid \lim_{x \to a} f(x) = c \neq 0, \pm \infty$$
 si c < 0, on a

2.4 Continuité

Concept. 5 Fonction continue

 $f: D \to \mathbb{R}$ est continue en $a \in D$ si $\lim f(x) = f(a)$. Autrement dit, une fonction est continue sur sont domaine si pour chaque élément $a \in$ D, la limite lorsque $x \rightarrow a$ est égale à f(a). Et donc, la limite à gauche et à droite est approche la même valeur f(a)

Identité. 6 Conséquence de la continuité de deux fonctions

Si f et g sont continues en a, alors

- 1. f + g et fg sont continues en
- 2. $\frac{f}{g}$ est fg continues en a si $g(a) \neq 0$
- **3.** $f \circ g$ et fg sont continues en a si $f \circ g$ est définie près de a

2.5 Dérivée

Définition La dérivée d'une fonc-

Soit $f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h}$ Si cette limite existe, on dit que on dit qu'il s'agit de la dérivée de la fonction f au point a. Géométriquement, la valeur vers laquelle converge f'(a)correspond à la pente de la droite tengente en a.

2.6 FORMULE

Concept. 6 Règles de dérivations pour des fonctions courantes

- $\mathbf{1.}(c)' = 1$, c une constante **2.** $(x^r)' = r x^{r-1}, \forall r \in \mathbb{R}$
- **3.** $(a^x)' = a^x \ln(a)$ **4.** $(e^x)' = e^x$ **5.** $(\ln(x))' = \frac{1}{x}$ **6.** $(\log_a(x))' =$

$$\frac{1}{x \ln(a)}$$

7.
$$(\sin x)' = \cos x$$
 8. $(\cos x)' = -\sin x$ **9.** $(\tan x)' = -\sec^2 x$

10.
$$(\arctan x)'$$
 = $\frac{1}{x^2+1}$
11. $(\arcsin x)'$ = $\frac{1}{x\sqrt{x^2-1}}$
11. $(\arcsin x)'$ = $-\frac{1}{x\sqrt{1-x^2}}$

11.
$$(\arcsin x)' = \frac{1}{x\sqrt{1-x^2}}$$

11.
$$(\arcsin x)' = -\frac{1}{x\sqrt{1-x^2}}$$

2.7 Propriétés d'addition et de mul-TIPLICATION

Concept. 7 Propriétés de la dérivée

Soit $f,g: I \to \mathbb{R}$ deux fonctions dérivables

 $\mathbf{1.}(cf(x))' = cf'(x)$, ou c est une constante.

2.
$$(f(x) + g(x))' = c f'(x) + g'(x)$$

3. f'(x) = 0 si et seulement si fest une constante.

2.8 Règles de différenciation

Concept. 8 Règles de calcul

1. Produit :
$$(f(x)g(x))'$$
 = $f'(x)g(x) + f(x)g'(x)$

1. Quotient:
$$\left(\frac{f(x)}{g(x)}\right)'$$

$$\frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

1. Dérivation en chaîne : (f(g(x)))' =f'(g(x))g'(x)

LES FORMES INDÉTERMINÉES

Toute expression représenté par une des formes suivantes est dite indétermi-

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $\infty - \infty$ 1°, $0 \times \infty$, ∞^0 , 0^0

Ces formes indéterminées peuvent être simplifiées en utilisant différentes tech-

- Manipulations algébriques facorisation, multipliucation par le conjugué, simplification
- Règle de l'Hôpital
- Utilisation du logarithme

Intégration

3.1 Définition d'une intégrale

Concept. 9 Intégrale et théorème fondamental du calcul

Soit $f: [a,b] \to \mathbb{R}$ une fonction continue, l'intégrale de a à b de f est noté:

$$\int_{a}^{b} f(x)dx$$

3.2 Propriétés de l'intégrale

Concept. 10

Soit $f:[a,b] \to \mathbb{R}$ Alors,

1.
$$\int_a^a f(x)dx = 0 \text{ et } \int_b^a f(x)dx = -\int_a^b f(x)dx$$

- **2. Si** a < c < b, alors $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$
- $\mathbf{3.} \int_a^b c f(x) dx = c \int_a^b f(x) dx$
- $4. \int_a^b (f(x) + g(x)) dx$ $\int_a^b f(x)dx + \int_a^b g(x)dx$

Définition

Soit $f:[a,b] \to \mathbb{R}$ continue,

1. Si on pose
$$F'(x) = \int_a^b f(t)dt$$
, alors $F'(x) =$

$$\frac{d}{dx} \int_{a}^{b} f(t)dt = f(x)$$

2. Soit *F* telle que F'(x) = f(x), Alors $\int_{a}^{b} f(x) dx$

$$\int_{a}^{b} \frac{d}{dt} f(t) dt f(b) - f(a)$$

3.3 TROUVER L'AIRE SOUS LA COURBE

Techniques de bases

4.1 POLYNÔME

Définition

Un polynôme a la forme p(x) = $a_0 + a_1 x + \cdots + a_n x^n$ et la puissance d'un polynôme est l'exposant le plus elevé de l'expression.

Note:

Lorsque le degré du numérateur est plus grand ou égal au degré du dénominateur, on peut effectuer une division polynomiale pour simplifier une expression:

$$\frac{x^{-1}}{x^2+1} = 1 - \frac{2}{x^2+1}$$

Concept. 11 Complétion du carré

Soit un polynôme $p = ax^2 + bx + c$, on peut compléter le carré en considérant :

$$h = \left(\frac{b}{2}\right)^{2}$$

$$p(x) = a\left(x^{2} + \frac{b}{a}x - \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c$$

$$p(x) = a\left(x^2 + \frac{b}{a}x - \frac{b^2}{4a}\right) + \frac{b^2}{4a} + c$$
$$p(x) = a\left(x - \frac{b}{2}\right)^2 + \frac{b^2}{4a} + c$$