PHYS 225 Fundamentals of Physics: Mechanics

Prof. Meng (Stephanie) Shen Fall 2024

Lecture 4: Motion along a straight line

Learning goals

- Practice on displacements, velocity and acceleration

Demo di - 0

Simulation demo

More 1D motion examples When a is opports to to Slow 5 down

Example 1 Given:
$$t = 0.5$$
, $t = 5.4.8$, $t = 33 \text{ m s}^{-1}$, $t = -1.4 \text{ m s}^{-1}$

• At time t_0 =0s, a race car had an initial speed of 33 m/s in the positive x direction, and t=5.4 s later its speed was 74 m/s in the opposite direction. Please find the average acceleration.

Step1:
$$a = \frac{v_{-}v_{0}}{2t}$$

Seep2: $= \frac{-74m5'_{-}-33m5'}{5.45} \approx 19.8 \text{ m/s}^{-2}$

Plug in #'s

Chapter 2.4. 1D motion with constant acceleration

- Assume the simplified condition that:
 - \vec{a} is a constant

Relations between \vec{x} , \vec{v} , and \vec{a}

- Conditions:
 - Acceleration \vec{a} is a constant

The first 2 kinematic equations for constant \vec{a}

(and
$$t_0 = 0$$
)
$$\frac{v}{x} = v_0 + at$$
$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

Clicker question 1-

 $\rightarrow N_i$

• A Tesla Cybertruck is traveling at an initial velocity of 30 m s⁻¹ to the east. It slows down at a constant acceleration of 10 m s⁻² to the west. How long does it take for it to stop? (Axis defined in figure.)

10 s.

3 s.

Unknown

It will never stop.

Step 0: Given. V. = 30 m 5 -1 a = -10 m 5 -2

Example 2

Given: $V_o = 5ms^{-1}$, $\alpha = 5ms^{-2}$

Soal: XX

 A Tesla Cybertruck speeds up from 5 m s⁻¹ to the east at a constant acceleration of 5 m s⁻² to the east. Please find its displacement in 6 s. (Axis defined in figure.)

Stop 1:
$$\Delta X = \overline{U}_0 t + \frac{1}{2} \overline{\Omega}_1 t^2$$

Axis

Axis

 $Ax = \overline{U}_0 t + \frac{1}{2} \overline{\Omega}_1 t^2$

Axis

$$Ax = Cost$$

$$Ax =$$

The 4 kinematic equations for constant \vec{a}

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

Eliminate
$$\vec{a}$$
: $x = x_0 + \frac{1}{2} \left(v_0 + v \right) t$

Eliminate
$$t$$
: $v^2 = v_0^2 + 2a(x - x_0)$

The 4 kinematic equations

- Why do we need 4 equations to describe constant acceleration?
- We don't!... but additional equations may be useful to solve certain problems.

If a is a constant:
$$v = v_0 + at$$

$$(andt_0 = 0)$$

$$x = x_0 + v_0t + \frac{1}{2}at^2$$
 Eliminate \vec{a} :
$$x = x_0 + \frac{1}{2}(v_0 + v)t$$
 Eliminate t :
$$v^2 = v_0^2 + 2a(x - x_0)$$

Clicker question 3

 A Tesla Cybertruck is traveling at an initial velocity of 30 m s⁻¹ to the east. It slows down at a constant acceleration of 10 m s⁻² to the west. How far does it travel before it stops? Which equation to use?

https://www.caranddriver.com/tesl a/cybertruck

v = 0

$$v = v_0 + at$$

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$x = x_0 + \frac{1}{2}(v_0 + v)t$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

Example 3

• A Tesla Cybertruck is traveling at a velocity of 30 m s⁻¹ to the east. It slows down at a constant acceleration of 10 m s⁻² to the west. How far does it travel before it stops?

https://www.caranddriver.com/tesla/cybertruck