Lineær algebra: Lineære afbildninger. Standardmatricer

Martin Raussen

Institut for Matematiske Fag Aalborg Universitet

2011

Lineære afbildninger

En afbildning $T: \mathbf{R}^n \to \mathbf{R}^m$ fra definitionsmængden \mathbf{R}^n ind i dispositionsmængden \mathbf{R}^m "spiser" n-vektorer og "afleverer" m-vektorer.

Definition

En afbildning kaldes lineær, hvis den opfylder

- $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for alle $\mathbf{u}, \mathbf{v} \in \mathbf{R}^n$;
- $T(c\mathbf{u}) = cT(\mathbf{u})$ for alle $c \in \mathbf{R}$, $\mathbf{u} \in \mathbf{R}^n$;

dvs., hvis T bevarer linearkombinationer.

En lineær afbildning opfylder altid: $T(\mathbf{0}) = \mathbf{0}$.

- Geometri: Lineære afbildnigner
 - overfører rette linjer i rette linjer, parallelogrammer i parallelogrammer
 - bevarer proportioner langs med linjer

Matrix gange vektor som lineær afbildning

Lineære afbildninger og matricer

- Givet en $(m \times n)$ -matriks A. Så er afbildningen $T : \mathbf{R}^n \to \mathbf{R}^m$ givet ved $T(\mathbf{x}) = A\mathbf{x}$ en lineær afbildning.
- Enhver lineær afbildning $T : \mathbf{R}^n \to \mathbf{R}^m$ kan på entydig vis beskrives som matrixafbildning $T(\mathbf{x}) = A\mathbf{x}$ for en passende $(m \times n)$ -matriks A.

Geometriske (mod-)eksempler

- Rotation (Drejning) i plan og rum
- Dilation (zoom, strækning), kontraktion i plan og rum
- Projektion fra rum til plan, fra plan til linje

Modeksempel:

Translation (parallelforskydning)

Standardmatrix for en lineær afbildning **Opskrift**

- Standard enhedsvektorer $\mathbf{e}_i = [0, \dots, 0, 1, 0, \dots, 0] \in \mathbf{R}^n$ med et enkelt 1-tal i position i generaliserer vektorerne $i = e_1, j = e_2 \text{ og } k = e_3.$
- Enhver vektor er linearkombination af standard enhedsvektorer:

$$\mathbf{x} = (x_1, \dots, x_n) = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n.$$

• Til en lineær afbildning $T: \mathbb{R}^n \to \mathbb{R}^m$ svarer en (standard) matrix A som opfylder $T(\mathbf{x}) = A\mathbf{x}$ for alle vektorer $\mathbf{x} \in \mathbf{R}^m$. A er en $(m \times n)$ -matrix.

Opskrift

$$A = [T(\mathbf{e}_1), \ldots, T(\mathbf{e}_n)]$$
:

As søjler = billeder $T(\mathbf{e}_i)$ af standard enhedsvektorerne \mathbf{e}_i under T.

Hvorfor?
$$\mathbf{x} = (x_1, \dots, x_n) = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n \Rightarrow$$

 $T(\mathbf{x}) = T(x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n) = x_1 T(\mathbf{e}_1) + \dots + x_n T(\mathbf{e}_n) = A\mathbf{x}.$

Simple lineære afbildninger og deres matrix repræsentationer

Geometriske lineære transformationer

- Refleksion i planen (i en akse eller en vinkelhalverende; mere generelt i en linie gennem Origo)
- Refleksion i rummet (i en koordinatplan; mere generelt i en plan gennem Origo)
- Drejning om Origo i planen
- Drejning om en akse gennem Origo i rummet (senere)
- Kontraktion, dilation, herunder identitetsafbildning
- Vridning^a
- (Dobbelt retvinklet) Projektion

aeng.: shear

Surjektiv/ injektiv/ bijektiv Billedmængde og nulrum

Givet en afbildning $T: \mathbf{R}^n \to \mathbf{R}^m$ og en vilkårlig vektor $\mathbf{y} \in \mathbf{R}^m$. Hvor mange vektorer $\mathbf{x} \in \mathbf{R}^n$ "rammer" \mathbf{y} , opfylder $T(\mathbf{x}) = \mathbf{y}$?

Definition

Afbildningen T kaldes

surjektiv (på, onto): der er mindst en x med T(x) = y;

injektiv (one-to-one): der er højst en x med T(x) = y;

bijektiv: der er præcist en \mathbf{x} med $T(\mathbf{x}) = \mathbf{y}$.

Billedmængde og nulrum

$$\label{eq:billedmangde} \begin{array}{l} \textbf{b} \in \mathbf{R}^m | \exists \mathbf{x} \in \mathbf{R}^n : T(\mathbf{x}) = \mathbf{b} \} \subseteq \mathbf{R}^m \\ \text{nulrum Null}(T) = \{\mathbf{x} \in \mathbf{R}^n | T(\mathbf{x}) = \mathbf{0} \} \subseteq \mathbf{R}^n \\ \end{array}$$

T injektiv \Leftrightarrow Null T indeholder kun vektoren **0**.

Kriterier for surjektivitet/ injektivitet/ bijektivitet

```
Hvilke egenskaber har Ts standard matrix A når den lineære afbildning T: \mathbf{R}^n \to \mathbf{R}^m er surjektiv/ injektiv/ bijektiv? surjektiv A\mathbf{x} = \mathbf{b} har mindst en løsning As søjler udspænder \mathbf{R}^m \Leftrightarrow \operatorname{rang} A = m. injektiv A\mathbf{x} = \mathbf{b} har højst en løsning As søjler er lineært uafhængige \Leftrightarrow \operatorname{rang} A = n. bijektiv A\mathbf{x} = \mathbf{b} har netop en løsning \operatorname{rang} A = n = m.
```

Sammensætning og inversion af linære afbildninger

Definition

- Givet lineære afbildninger $T: \mathbf{R}^n \to \mathbf{R}^m$ og $U: \mathbf{R}^m \to \mathbf{R}^m$. Deres sammensætning er den lineære(!) afbildning $U \circ T: \mathbf{R}^n \to \mathbf{R}^p$ givet ved $(U \circ T)(\mathbf{x}) = U(T(\mathbf{x})), \ \mathbf{x} \in \mathbf{R}^n$.
- Givet en bijektiv lineær afbildning T: Rⁿ → Rⁿ. Den har en invers lineær(!) afbildning givet ved
 T(x) = y ⇔ T⁻¹(y) = x.

Standardmatricer for sammensætning og inverse

• Sammensætning svarer til matrixmultiplikation:

$$T = T_A$$
, $U = T_B \Rightarrow U \circ T = T_{BA}$.

• Inversion af bijektive lineære afbildninger svarer til inversion af matricer: $(T_A)^{-1} = T_{A^{-1}}$.