Minimum Spanning Tree Problem

Input: A connected undirected graph G = (V, E) with weight function $w : E \to \mathbb{R}$.

For simplicity, assume that all edge weights are distinct. (the algorithms will still work but the analysis is more difficult)

Output: A spanning tree T (a tree that connects all the vertices) of minimum weight:

$$w(T) = \sum_{(u,v) \in T} w(u,v)$$

Example: MST

How do we find the minimum spanning tree of a particular graph?

Useful theorem:

Theorem.

Let T be the MST of G = (V, E), and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to $V \setminus A$. Then, $(u, v) \in T$.

(Proof skipped: see page 626 for additional details)

Remember, "A locally optimal choice is globally optimal" is the hallmark of a **greedy algorithm**.

From this theorem, create a greedy algorithm to compute the MST. Roughly the idea is that we can repeatedly choose the least-weight edge that connects a new vertex to our tree.

Prim's Algorithm

Idea: Maintain $V \setminus A$ as a priority queue Q. Key each vertex in Q with the weight of the least-weight edge connecting it to a vertex in A.

```
1: Q = V
 2: Set key[v] = \infty for all v \in V
 3: Set key[s] = 0 for some arbitrary s \in V
 4: while Q is not empty do
       u = ExtractMin(Q)
 5:
       for each v \in Adj[u] do
 6:
          if v \in Q and w(u, v) < key[v] then
 7:
 8:
              key[v] = w(u, v)
                                   //Decreases key in priority queue Q
              \pi[v] = u
 9:
          end if
10:
       end for
11:
12: end while
```

Prim's Example: (1)

Prim's Example: (2)

Prim's Example: (3)

Prim's Algorithm Runtime

```
1: Q = V
 2: Set key[v] = \infty for all v \in V
 3: Set key[s] = 0 for some arbitrary s \in V
 4: while Q is not empty do
 5:
       u = ExtractMin(Q)
       for each v \in Adj[u] do
 6:
          if v \in Q and w(u, v) < key[v] then
 7:
              key[v] = w(u, v)
                                  //Decreases key in priority queue Q
 8:
              \pi[v] = u
 9:
          end if
10:
11:
       end for
12: end while
```

Q	$T_{EXTRACT-MIN}$	$T_{DECREASE-KEY}$	Total Runtime
array			
binary heap			
Fibonacci heap (not covered)			

Kruskal's Algorithm

Another greedy algorithm for computing a MST is Kruskal's.

Idea: Repeatedly pick edge with smallest weight as long as it does not form a cycle.

- The algorithm creates a set of trees (a forest)
- During the algorithm the added edges merge the trees together, such that in the end only one tree remains