

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

KE 2013	UZUPEŁNIA ZDAJĄCY		Miejsce	
graficzny © CKE	KOD	PESEL	Miejsce na naklejkę z kodem	
Układ g			dysleksja	

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 24 strony (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem □ i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 5. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

5 MAJA 2015

Godzina rozpoczęcia: 9:00

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1 **1**P-152

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. *(1 pkt)*

Cena pewnego towaru wraz z 7-procentowym podatkiem VAT jest równa 34 347 zł. Cena tego samego towaru wraz z 23-procentowym podatkiem VAT będzie równa

- **A.** 37 236 zł
- 39 842,52 zł В.
- **C.** 39 483 zł
- **D.** 42 246,81 zł

Zadanie 2. (1 pkt)

Najmniejszą liczbą całkowitą dodatnią spełniającą nierówność $|x+4,5| \ge 6$ jest

- \mathbf{A} . x=1
- **B.** x = 2
- **C.** x = 3
- **D.** x = 6

Zadanie 3. (1 pkt)

Liczba $2^{\frac{4}{3}} \cdot \sqrt[3]{2^5}$ jest równa

- **A.** $2^{\frac{20}{3}}$
- В. 2
- C. $2^{\frac{4}{5}}$
- **D.** 2^3

Zadanie 4. (1 pkt)

Liczba 2 log₅ 10 – log₅ 4 jest równa

A. 2

- $B. \log_5 96$
- $C. 2\log_5 6$
- **D.** 5

Zadanie 5. (1 pkt)

Zbiór wszystkich liczb rzeczywistych spełniających nierówność $\frac{3}{5} - \frac{2x}{3} \ge \frac{x}{6}$ jest przedziałem

A.
$$\left\langle \frac{9}{15}, +\infty \right\rangle$$
 B. $\left(-\infty, \frac{18}{25} \right)$ **C.** $\left\langle \frac{1}{30}, +\infty \right\rangle$ **D.** $\left(-\infty, \frac{9}{5} \right)$

B.
$$\left(-\infty, \frac{18}{25}\right)$$

C.
$$\left\langle \frac{1}{30}, +\infty \right\rangle$$

D.
$$\left(-\infty, \frac{9}{5}\right)$$

Zadanie 6. (1 pkt)

Dziedziną funkcji f określonej wzorem $f(x) = \frac{x+4}{x^2-4x}$ może być zbiór

A. wszystkich liczb rzeczywistych różnych od 0 i od 4.

B. wszystkich liczb rzeczywistych różnych od –4 i od 4.

C. wszystkich liczb rzeczywistych różnych od –4 i od 0.

D. wszystkich liczb rzeczywistych.

Zadanie 7. (1 pkt)

Rozwiązaniem równania $\frac{2x-4}{3-x} = \frac{4}{3}$ jest liczba

$$\mathbf{A.} \quad x = 0$$

B.
$$x = \frac{12}{5}$$
 C. $x = 2$

C.
$$x = 2$$

D.
$$x = \frac{25}{11}$$

Zadanie 8. (1 pkt)

Miejscem zerowym funkcji liniowej określonej wzorem $f(x) = -\frac{2}{3}x + 4$ jest

A. 0

B. 6

C. 4

D. -6

Zadanie 9. (1 pkt)

 $M = \left(\frac{1}{2}, 3\right)$ wykresu należy do funkcji liniowej określonej wzorem

f(x) = (3-2a)x + 2. Wtedy

A. $a = -\frac{1}{2}$ **B.** a = 2 **C.** $a = \frac{1}{2}$

D. a = -2

Zadanie 10. *(1 pkt)*

Na rysunku przedstawiono fragment prostej o równaniu y = ax + b.

Współczynnik kierunkowy tej prostej jest równy

A. $a = -\frac{3}{2}$

B. $a = -\frac{2}{3}$ **C.** $a = -\frac{2}{5}$ **D.** $a = -\frac{3}{5}$

Zadanie 11. *(1 pkt)*

W ciągu arytmetycznym (a_n) określonym dla $n \ge 1$ dane są $a_1 = -4$ i r = 2. Którym wyrazem tego ciągu jest liczba 156?

A. 81.

B. 80.

C. 76.

D. 77.

Zadanie 12. *(1 pkt)*

W rosnącym ciągu geometrycznym (a_n) , określonym dla $n \ge 1$, spełniony jest warunek $a_4 = 3a_1$. Iloraz q tego ciągu jest równy

A. $q = \frac{1}{2}$

B. $q = \frac{1}{\sqrt[3]{3}}$ **C.** $q = \sqrt[3]{3}$ **D.** q = 3

Zadanie 13. *(1 pkt)*

Drabinę o długości 4 metrów oparto o pionowy mur, a jej podstawę umieszczono w odległości 1,30 m od tego muru (zobacz rysunek).

Kat α , pod jakim ustawiono drabinę, spełnia warunek

- **A.** $0^{\circ} < \alpha < 30^{\circ}$
- **B.** $30^{\circ} < \alpha < 45^{\circ}$ **C.** $45^{\circ} < \alpha < 60^{\circ}$ **D.** $60^{\circ} < \alpha < 90^{\circ}$

Zadanie 14. (1 pkt)

Kąt α jest ostry i $\sin \alpha = \frac{2}{5}$. Wówczas $\cos \alpha$ jest równy

- **B.** $\frac{\sqrt{21}}{4}$
- C. $\frac{3}{5}$
- **D.** $\frac{\sqrt{21}}{5}$

Zadanie 15. *(1 pkt)*

W trójkącie równoramiennym ABC spełnione są warunki: |AC| = |BC|, $| < CAB | = 50^{\circ}$. Odcinek BD jest dwusieczną kąta ABC, a odcinek BE jest wysokością opuszczoną z wierzchołka B na bok AC. Miara kąta EBD jest równa

- **A.** 10°
- **B.** 12,5°
- C. 13,5°
- **D.** 15°

Zadanie 16. (1 pkt)

Przedstawione na rysunku trójkąty są podobne.

Wówczas

A.
$$a = 13, b = 17$$

B.
$$a = 10$$
, $b = 18$ **C.** $a = 9$, $b = 19$ **D.** $a = 11$, $b = 13$

C.
$$a = 9$$
, $b = 19$

D.
$$a = 11, b = 13$$

Zadanie 17. (1 pkt)

Proste o równaniach: $y = 2mx - m^2 - 1$ oraz $y = 4m^2x + m^2 + 1$ są prostopadłe dla

A.
$$m = -\frac{1}{2}$$

B.
$$m = \frac{1}{2}$$
 C. $m = 1$

C.
$$m=1$$

D.
$$m = 2$$

Zadanie 18. (1 pkt)

Dane są punkty M = (3, -5) oraz N = (-1, 7). Prosta przechodząca przez te punkty ma równanie

A.
$$y = -3x + 4$$

B.
$$y = 3x - 4$$

A.
$$y = -3x + 4$$
 B. $y = 3x - 4$ **C.** $y = -\frac{1}{3}x + 4$ **D.** $y = 3x + 4$

D.
$$y = 3x + 4$$

Zadanie 19. (1 pkt)

Dane są punkty: P = (-2, -2), Q = (3, 3). Odległość punktu P od punktu Q jest równa

C.
$$5\sqrt{2}$$

D.
$$2\sqrt{5}$$

Zadanie 20. (1 pkt)

Punkt K = (-4, 4) jest końcem odcinka KL, punkt L leży na osi Ox, a środek S tego odcinka leży na osi Oy. Wynika stąd, że

A.
$$S = (0, 2)$$

A.
$$S = (0, 2)$$
 B. $S = (-2, 0)$ **C.** $S = (4, 0)$ **D.** $S = (0, 4)$

C.
$$S = (4, 0)$$

D.
$$S = (0, 4)$$

Zadanie 21. (1 pkt)

Okrąg przedstawiony na rysunku ma środek w punkcie O = (3,1) i przechodzi przez punkty S = (0,4) i T = (0,-2). Okrąg ten jest opisany przez równanie

A.
$$(x+3)^2 + (y+1)^2 = 18$$

B.
$$(x-3)^2 + (y+1)^2 = 18$$

C.
$$(x-3)^2 + (y-1)^2 = 18$$

D.
$$(x+3)^2 + (y-1)^2 = 18$$

Zadanie 22. (1 pkt)

Przekątna ściany sześcianu ma długość 2. Pole powierzchni całkowitej tego sześcianu jest równe

A. 24

B. $12\sqrt{2}$

C. 12

D. $16\sqrt{2}$

Zadanie 23. (1 pkt)

Kula o promieniu 5 cm i stożek o promieniu podstawy 10 cm mają równe objętości. Wysokość stożka jest równa

A.
$$\frac{25}{\pi}$$
 cm

B. 10 cm

C. $\frac{10}{\pi}$ cm

D. 5 cm

Zadanie 24. (1 pkt)

Średnia arytmetyczna zestawu danych:

jest taka sama jak średnia arytmetyczna zestawu danych:

Wynika stąd, że

A.
$$x = 0$$

B.
$$x = 3$$

C.
$$x = 5$$

D.
$$x = 6$$

Zadanie 25. (1 pkt)

W pewnej klasie stosunek liczby dziewcząt do liczby chłopców jest równy 4:5. Losujemy jedną osobę z tej klasy. Prawdopodobieństwo tego, że będzie to dziewczyna, jest równe

A.
$$\frac{4}{5}$$

B.
$$\frac{4}{9}$$

C.
$$\frac{1}{4}$$

$$\mathbf{D.} \quad \frac{1}{9}$$

Zadanie 26. (2 pkt) Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y prawdziwa jest nierówność $4x^2 - 8xy + 5y^2 \ge 0$.

Zadanie 27. *(2 pkt)*

Rozwiąż nierówność $2x^2 - 4x \ge x - 2$.

	Nr zadania	26.	27.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 28. *(2 pkt)*

Rozwiąż równanie $4x^3 + 4x^2 - x - 1 = 0$.

Zadanie 29. (2 pkt)

Na rysunku przedstawiono wykres funkcji f.

Funkcja h określona jest dla $x \in \langle -3, 5 \rangle$ wzorem h(x) = f(x) + q, gdzie q jest pewną liczbą rzeczywistą. Wiemy, że jednym z miejsc zerowych funkcji h jest liczba $x_0 = -1$.

- a) Wyznacz q.
- b) Podaj wszystkie pozostałe miejsca zerowe funkcji h.

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. *(2 pkt)*

Dany jest skończony ciąg, w którym pierwszy wyraz jest równy 444, a ostatni jest równy 653. Każdy wyraz tego ciągu, począwszy od drugiego, jest o 11 większy od wyrazu bezpośrednio go poprzedzającego. Oblicz sumę wszystkich wyrazów tego ciągu.

Zadanie 31. *(2 pkt)*

Dany jest okrąg o środku w punkcie O. Prosta KL jest styczna do tego okręgu w punkcie L, a środek O tego okręgu leży na odcinku KM (zob. rysunek). Udowodnij, że kąt KML ma miarę 31° .

	Nr zadania	30.	31.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 32. *(4 pkt)*

Wysokość graniastosłupa prawidłowego czworokątnego jest równa 16. Przekątna graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem, którego cosinus jest równy $\frac{3}{5}$. Oblicz pole powierzchni całkowitej tego graniastosłupa.

Odpowiedź:

	Nr zadania	32.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 33. (4 pkt)

Wśród 115 osób przeprowadzono badania ankietowe, związane z zakupami w pewnym kiosku. W poniższej tabeli przedstawiono informacje o tym, ile osób kupiło bilety tramwajowe ulgowe oraz ile osób kupiło bilety tramwajowe normalne.

Rodzaj kupionych	Liczba osób
biletów	
ulgowe	76
normalne	41

Uwaga! 27 osób spośród ankietowanych kupiło oba rodzaje biletów.

Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że osoba losowo wybrana spośród ankietowanych nie kupiła żadnego biletu. Wynik przedstaw w formie nieskracalnego ułamka.

Wypełnia	Nr zadania	33.
	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 34. *(5 pkt)*

Biegacz narciarski Borys wyruszył na trasę biegu o 10 minut później niż inny zawodnik, Adam. Metę zawodów, po przebyciu 15-kilometrowej trasy biegu, obaj zawodnicy pokonali równocześnie. Okazało się, że wartość średniej prędkości na całej trasie w przypadku Borysa była o 4,5 $\frac{km}{h}$ większa niż w przypadku Adama. Oblicz, w jakim czasie Adam pokonał całą

trasę biegu.

	Nr zadania	34.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	