

СОЮЗ СОВЕТСКИХ СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК

(19) SU (1) 1766485 A1

(SI)5 B 01 J 19/18; B 01 F 7/30

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

BCECOMSHAR NATENTAO-TEMPOGONAN EMERIMOTEMA

к авторскому свидетельству

(21) 4889506/26

(22) 10.12.90

(46) 07.10.92, Бюл. № 37

(71) Дзержинский научно-исследовательский и конструкторский институт химического машиностроения

(72) Ю.А.Смирнов, О.В.Колесников, В.М.Майоров, Л.А.Финкельштейн, Т.Л.Пастухова, В.И.Чирков и Ю.П.Евдокимов (56) 1.Авторское свидетельство СССР

№ 1230669, кл. В 01 J 19/18, 1984. 2. Авторское свидетельство СССР

2. Авторское свидетельство СССР № 1465104, кл. В 01 J 19/18, 1987.

(54) PEAKTOP

(57) Использование: обработка смесей сухих и увлажненных порошкообразных материалов. Сущность изобретения: реактор имеет сферический корпус 1, внутри которого размещено колесо со скребками 5, установленное на цапфе, закрепленной под углом на приводном валу 7. Колесо 2 снабжено конусным ободом 3, сужающимся к стенке корпуса 1; и установлено с пересечением оси вала 7. 4 з.п. ф-лы, 5 ил.

(III) SU (III) 1766485 A

Изобретение относится к технике для приготовления паст, пластизолей, смесей. сухих и увлажненных порошкообразных материалов с термической и химической обработкой полупродукта и может быть использовано в химической, пищевой и других отраслях промышленности.

Известен реактор для обработки сыпучих увлажненных материалов (а.с.СССР № 1230669, кл. <u>В</u> 01 J 19/18), включающий сферический корпус, внутри которого размещей перемешивающий орган в виде колеса, установленного с возможностью свободного вращения вокруг цапфы, закрепленной на приводном валу; по ободу 15 колеса дискретно установлены скребки. При вращении вала колесо за счет разности сил сопротивления, действующих на колесо в нижней и верхней части корпуса, получает вращательный момент вокруг цапфы. В ре- 20 зультате скребки совершают трехмерное движение по поверхности корпуса и очищают его от налипающей обрабатываемой сре-

Недостатком известного реактора явля- 25 ется неэффективное действие при обработке сильно увлажненных порошков, паст и пластизолей. Такие среды могут налипать на обод колеса и другие его элементы, что приводит к нарастанию на перемешиваю- 30 установлена дополнительная мешалка, щем органе кома обрабатываемой среды, который затрудняет ротацию колеса вокруг цапфы и образует вместе с армирующими: его элементами колеса своеобразную лопасть, вращающуюся только вокруг оси при- 35 водного вала. При этом возрастает нагрузка на привод вала, снижается эффективность перемешивания, скребки очищают поверхность корпуса в дискретных участках.

Известен реактор (а.с. СССР № 40 1465104, кл. В 01 J 19/18) - прототип, имеющий сферический корпус, перемешиваю-🚧 : щий орган в виде колеса, установленного на цапфе, закрепленного на приводном валу, соосную цапфе шестерню на колесе, находящуюся в зацеплении с неподвижной шестерней, соосной валу. Благодаря зубчатому зацеплению шестерен колесо при вращении вала совершает принудительное вращение вокруг цапфы и таким образом происходит трехмерное движение колеса. которое не зависит от физических свойств обрабатываемой в реакторе среды и уровня заполнения корпуса.

Недостатком известного реактора явля- 55 ется невысокая надежность, т.к. зубчатка шестерен, которые находятся по крайней мере на уровне заполнения корпуса рабочей средой, может быстро изнашиваться изза контакта с твердыми частицами

обрабатываемой среды, более того при попадании в зацепление твердых частиц, соизмеримых с размерами зубьев шестерен. шестерни могут заклиниваться, что приводит к остановкам реактора для ремонта....

Цель изобретения - повышение эффективности и надежности реактора.

Указанная цель достигается тем, что в реакторе, включающем сферический корпус, внутри которого размещен перемешивающий орган в виде колеса со скребками, установленного на цапфе, закрепленной под углом на приводном валу, колесо снабжено конусным ободом для подсоединения скребков, сужающимся в наружном направлении и расположено в двух полусферах корпуса относительно оси вала.

Кроме того, цапфа выполнена в виде втулки со скошенным горизонтально нижним торцем, в верхней части которой установлена съемная обойма подшипников оси колеса, при этом втулка и обойма закрыты заглушкой, а в крышке корпуса напротив заглушки расположен монтажный люк, в нижней части втулки установлена центрирующая ось колеса винтовая насадка. А также скребки выполнены в форме конических зубчатых коронок, основания которых соединены с ободом, а в корпусе сросно с валом

Наличие конусного обода для подсоединения скребков, сужающимся в наружном направлении позволяет снизить площадь давления рабочей среды на обод колеса в направлении вращения вала, тем самым уменьшить уплотнение пристенного слоя при перемешивании порошкообразной среды, что снижает нагрузку на привод и облегчает действие скребков, при этом такая форма обода позволяет увеличить его поверхность и за счет этого, вследствие трения среды, увеличить осевую циркуляцию среды.

Расположение колеса с конусным ободом в двух полусферах корпуса относительно оси вала позволяет организовать вращение колеса вокруг оси цапфы независимо от физических свойств рабочей среды и уровня заполнения корпуса без дополнительных передаточных механизмов, т.к. элементы перемешивающего органа располагаются с противоположных сторон от оси вала и несимметрично относительно ее, что не допускает уравновешивания сил сопротивления, действующих на элементы перемешивающего органа в плоскости колеса при вращении вала.

Выполнение цапфы в виде втулки, закрытой сверху заглушкой, позволяет создать во втулке воздушную подушку, невытесняемую обрабатываемой в корпусе средой, что при установке в верхней части втулки обоймы подшипников оси колеса способствует защите подшипников от воздействия среды.

Горизонтально скошенный нижний торец втулки позволяет уменьшить площадь втулки, взаимодействующую с перемешиваемой средой при уровне заполнения корпуса выше торца втулки и тем самым снизить нагрузку на привод.

Съемная обойма подшипников, монтажный люк напротив заглушки в крышке корпуса позволяют производить ремонт, замену подшипников без разборки реактора 15 и перемешивающего устройства и входа персонала в корпус.

Установка в нижней части втулки центрирующей ось колеса винтовой насадки позволяет, во-первых, предохранить перемешивающий орган от смещения по корпусу при демонтаже и монтаже обоймы подшипников, во-вторых, за счет винтовой формы счищать с оси вала налипающую и поднимающуюся по оси вследствие её вращения с колесом пленку перемешивающей среды.

Выполнение скребков в форме конических зубчатых коронок, основаниями упруго связанными с ободом, позволяет уменьшить длину круговой рабочей поверхности скребков и благодаря просветам между зубчами коронки предотвратить набивку перемешиваемой среды под рабочую поверхность скребков и затирание среды на корпусе. Коническая форма коронок обеспечивает повышенную упругость зубцов, что способствует плотному прилеганию рабочих кромок скребков к поверхности корпуса в случае неровностей на последней и соответственно лучшей очистке корпуса.

Установка в корпусе соосно с валом дополнительной быстроходной мешалки с собственным приводом позволяет интенсифицировать гомогенизацию обрабатываемой среды за счет совместного воздействия 45 мещалки и элементов колеса.

В располагаемых источниках информации не обнаружены технические решения содержащие признаки сходные с отличительными признаками заявленного реше- 50 ния.

На фиг.1 показан полусферический реактор; на фиг.2 – вид А на фиг.1; на фиг.3 – узел I на фиг.1; на фиг.4 – узел II на фиг.1; на фиг.5 – реактор со сферическим корпусом.

Реактор включает корпус 1. перемешивающий орган в виде колеса 2. на коническом ободе 3 которого установлены с

помощью упругих кронштейнов 4 скребки 5, зубчатой коронкой 6 опирающиеся на поверхность корпуса 1. Колесо 2 расположено в двух полусферах корпуса 1 относительно оси вала 7. Привод вала 7 на чертежах не показан. Под валом 7 в корпусе 1 установлена дополнительная быстроходная мешалка 8 с собственным приводом (на чертежах не показан). На валу 7 закреплена цапфа 9. втулка 10 которой сверху закрыта заглушкой 11. Нижний торец 12 втулки 10 горизонтально скошен относительно оси втулки 10 в горизонтальной плоскости. В верхней части втулки 10 под заглушкой 11 установлена съемная обойма 13 с шарикоподшипниками 14 под ось 15 колеса 2. Обоима 13 имеет буртик 16, за который ее можно при снятой заглушке 11 вытащить через монтажный люк 17 из корпуса 1 для ревизии подшипников 14 и ремонта. В нижней части втулки 10 может быть установлена центрирующая ось 15 винтовая насадка 18, предохраняющая колесо 2 от смещения при демонтаже обоймы 13. Люк 17 для обеспечения доступа к верхней части цапфы 9 и демонтажа обоймы 13 расположен на пересечении оси цапфы 9 и крышки 18 корпуса 1. Ось 15 соединена с ободом 3 с помощью спиц 19. Штуцер 20 служит для загрузки компонентов обрабатываемой в корпусе 1 среды. Штуцер 21 для выгрузки. Штуцера 22 и 23 для подачи и отвода теплоносителя в рубашку 24.

При работе реактора принудительное вращение вала 7 приводит к авторотации колеса 2 вокруг оси цапфы 9 за счет взаимодействия скребков 5 с поверхностью корпуса 1 и элементов колеса 2 со скребками 5 с перемешиваемой средой. Благодаря пересечению плоскостью колеса 2 в корпусе 1 осевой линии вала 7 и несимметричному расположению колеса 2 относительно оси вала 7 силы сопротивления, действующие на элементы колеса 2 и скребки 5 в плоскости колеса 2 неуравновешены независимо физических свойств перемешиваемой среды и уровня ее загрузки в корпус, что обеспечивает авторотацию колеса 2. Конический обод 3 сужающийся в наружном направлении отжимает перемешиваемый материал из области стенки корпуса, в результате этого действия кронштейны 4 скребков 5 подвержены меньшим деформирующим нагрузкам. Скребки 5 вращаясь с ободом 3 вокруг оси цапфы и вокруг оси вала 7 совершают трехмерное движение и производят очистку всей поверхностей кс, пуса 1, контактирующую с перемешиваемой средой. Подпружиненные кронштейном 4 скребки 5 упругими зубцами коронок 6 плотно прижаты к очищаемой поверхности. Благодаря авторотации колеса 2 процесс комообразования на элементах колеса 2 при перемешивании сильноувлажненных порошков неустойчив, налипающая на элементы колеса 2 среда не образует сплошной зависшей массы, т.к. лобовые и тыльные части колеса 2 постоянно меняются местами, что приводит к сбросу налипающей мас-

Газовая подушка в заглушенной сверху 10 втулке 10 при высоком уровне обрабатываемой в корпусе 1 жидкой среды препятствует сжимаясь контакту подшилниковой обоймы 13 со средой. Винтовая насадка 18 в нижней части втулки счищает с оси 15 15 накручивающуюся при авторотации колеса 2 липкую пленку среды и препятствует подыему ее к обойме 13. При остановке реактора для ревизии подшипников обоймы 13 обойма 13 вытаскивается из втулки 10 через люк 17. При этом насадка 18 центрирует ось 15 и предохраняет колесо 2 от смещения по поверхности корпуса 1, что обеспечивает монтаж отревизированной обоймы через

Быстроходная мешалка 8 за счет высокой скорости вращения способствует разрушению комков в перемешиваемой среде, образующихся из слипшихся частиц твердой фазы среды. Это действие мешалки 8 усиливается при прохождении вблизи мешалки 8 спиц 19 колеса 2, т.к. комки попадая в зазор между спицей 19 и краем мешалки 8 заклиниваются и под совместным воздействием спиц 19 и мешалки 8 разрушаются.

Благодаря тому, что обод колеса расположен в двух полусферах корпуса относительно оси вала повышается эффективность перемещивания среды и очистки корпуса в условиях обработки в реакторе материалов 40 с разнообразными физико-химическими свойствами и независимо от уровня заполнения корпуса. Коническая форма обода колеса снижает мощность перемешивания и повышает эффективность перемешивания 45 среды и очистки корпуса. Организация защиты подшипников от контакта с обрабатываемой средой путем создания воздушной подушки во втулке цапфы и установки винтовой насадки повышает надежность реак- 50 с валом быстроходной мешалкой.

тора. Применение съемной подшинниковой обоймы и обеспечение возможности ее съема без разборки корпуса способствует удобству обслуживания реактора. Срез нижнего торца втулки в горизонтальной плоскости снижает металлоемкость и энергоемкость (за счет уменьшения сопротивления вращению приводного вала) реактора. Выполнение скребков в форме конических зубчатых коронок повышает эффективность очистки корпуса и снижает энергоемкость привода. Установка быстроходной мешалки интенсифицирует гомогенизацию перемешиваемой среды, т.е. повышает эффективность реактора. В целом предлагаемое устройство реактора способствует повышению его эффективности и надежности.

Формула изобретения

1. Реактор для обработки смесей сухих и увлажненных порошкообразных материалов, содержащий сферический корпус, внутри которого размещен перемешивающий орган в виде колеса, установленного на цапфе, закрепленной под углом на приводном валу, и имеющего обод со скребками. отличающийся тем, что, с целью повышения эффективности работы и надежности реактора, обод колеса выполнен коническим, сужающимся к стенке корпуса. при этом колесо установлено с пересеченией оси вала.

2. Реактор по п.1, отличающий ся тем, что цапфа выполнена в виде втулки со скошенным в горизонтальной плоскости нижним торцом, в верхней части которой установлена съемная обойма подшипников оси колеса, при этом втулка и обойма закрыты заглушкой, а в крышке корпуса выполнен люк для монтажа обоймы.

3. Реактор по п.2, отличающийся тем, что втулка снабжена установленной в ее нижней части винтовой насадкой центрирующей ось колеса.

4. Реактор по п. 1, отличающийся тем, что скребки выполнены в форме конических зубчатых коронок, основания которых соединены с ободом.

5. Реактор по п.1, отличаю щийся тем, что он снабжен установленной соосно

Редактор С.Кулакова

Составитель Ю.Смирнов Техред М.Моргентал

Корректор Т.Палий

Заказ 3498

аз 3498 Тираж Подписное ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035. Москва. Ж-35. Раушская наб., 4/5

Производственно-издательский комбинат Патент г.Ужгород ул. Гагарина 101

DERWENT- ACC-NO:	1993-319035
DERWENT- WEEK:	199340
COPYRIGHT :	2005 DERWENT INFORMATION LTD
TITLE:	Reactor for pastes - has wheel with conical rim, pivot case with inclined lower-end face, demountable bearing race, helical packing, end-cap, and race removal hatch

INVENTOR: KOLESNIKOV, O V; MAIOROV, V M; SMIRNOV YU, A

PATENT-ASSIGNEE: DZERZ CHEM EQUIP RES DES INST[DZCHR]

PRIORITY-DATA: 1990SU-4889506 (December 10, 1990)

APPLICATION-DATA:	
PUB-NO APPL-DESCRIPTOR	APPL-NO APPL-DATE
SU 1766485A1 N/A	1990SU-4889506 December 10, 1990

INT-CL (IPC): B01F007/30, B01J019/18

ABSTRACTED-PUB-NO: SU 1766485A

BASIC-ABSTRACT:

This reactor has a conical wheel rim converging to the wall of the reactor housing. The wheel is set up with an axle crossing of the axis of the main reactor shaft. There is a pivot in the form of a casing with a lower end-face inclined to the horizontal plane, in the upper part of which is a demountable bearing race of wheel axle. Casing and race are closed off with an end-cap and on the cover of the reactor housing is a hatch for mounting race. Casing has a helical packing centred along axle. There are scrapers made as conical toothed bits, the bases of which are united to the rim. Coaxial with the main shaft there is a high speed mixer.

USE/ADVANTAGE - May be used in the chemical, food and other branches to prepare: pastes, plastisol and mixts. of dry and moist powdery materials from the thermal and chemical treatment of intermediate prods.. The aim is to increase reactor effectiveness and reliability. Bul.37/7.10.92

GHOSENDWG.0/5

DRAWING:

TITLE-TERMS: REACTOR PASTE WHEEL CONICAL RIM PIVOT CASE INCLINE LOWER
END FACE DEMOUNT BEARING RACE HELICAL PACK END CAP RACE
REMOVE HATCH

DERWENT-CLASS: 104

CPI-CODES: J04-X;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1993-142035

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.