أكتب خوارزمية عمل لوحة تحكم للربوت

مكونات الدائرة

- Arduino UNO .1
 - 2. بطارية 4.5٧
- 6 Servo Motor .3
 - Bread board .4

نحتاج لبطارية خارجية لأن اردوينو لا يستطيع إعطاء الطاقة ل 6 سيرفو موتور ومن أجل تخفيف الضغط على Arduino uno

أشرح بشكل مبسط معادلات ومصفوفات تحليل الحركة

نحتاج هذا الجدول لكي نستطيع استخدام المعادلات والمصفوفات لتحريك الذراع

Table 1: The DH p	arameters of the	DFROBOT
-------------------	------------------	---------

Joint	Link	a _{i-1} min	α _{i-1} degree	d _i mm	θi degree
0-1	1	0	0	45	θ_1
1-2	2	0	90	0	θ_2
2-3	3	90	0	0	θ_3
3-4	4	90	0-90	0	θ_4
4-5	5	0	-90	30	θ ₅
5-6	6	0	0	0	gripper

FORWARD KINEMATICS

نقوم بتطبيق قيم الجدول في هذه المصفوفة لكل رابط ثم نضرب جميع المصفوفات لحساب المتغيرات في المحاور x y z

$$\mathbf{Ai} = \begin{bmatrix} C\theta \mathbf{i} & -S\theta \mathbf{i} C\alpha \mathbf{i} & S\theta \mathbf{i} S\alpha \mathbf{i} & a \mathbf{i} C\theta \mathbf{i} \\ S\theta \mathbf{i} & C\theta \mathbf{i} C\alpha \mathbf{i} & -C\theta \mathbf{i} S\alpha \mathbf{i} & a \mathbf{i} S\theta \mathbf{i} \\ 0 & S\alpha \mathbf{i} & C\alpha \mathbf{i} & d \mathbf{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

وتعويضها في هذه القيم

$$\begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

INVERSE KINEMATICS

وبنفس الطريقة نستخدمها هنا لكن نضرب المصفوفات في مقلوب المصفوفة الأولى لحساب الزواية الستة

$$A_1^{-1} * \begin{bmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = A_1^{-1} * A_1^0 * A_2^1 * A_3^2 * A_4^3 * A_5^4 * A_6^5$$