Application 1

Chaîne ouverte – Banc d'essai vibrant★ – Sujet

Présentation

Les vibrations se retrouvent dans tous les systèmes et nuisent à leur durée de vie. On s'intéresse à un banc d'essai permettant d'étudier les conséquences de ces vibrations sur l'usure et la fatigue des pièces mécaniques. La figure ci-après représente un modèle cinématique du dispositif étudié. Une modélisation plane a été retenue. Le bâti vibrant est modélisé par un solide S_1 , de masse m_1 en liaison glissière parfaite avec un support S_0 , fixe par rapport à un repère \mathcal{R}_0 supposé galiléen.

Le solide S_1 est rappelé par un ressort de longueur libre l_0 et de raideur k. Une masse ponctuelle m_2 excentrée, placée en P, tourne sur un rayon r et est entraînée à vitesse constante Ω . Elle modélise le balourd du rotor d'un moteur S_2 .

Un pendule simple de longueur L, porte à son extrémité D une masse concentrée m_3 , l'ensemble constitue le solide S_3 , en liaison pivot parfaite d'axe $\left(C, \overrightarrow{z_0}\right)$ avec S_1 .

Les masses autres que m_1 , m_2 et m_3 sont négligées.

Objectif

Déterminer les conditions géométriques permettant de supprimer les vibrations.

Question 1 Réaliser le graphe d'analyse du système.

Question 2 Préciser les théorèmes à utiliser permettant de déterminer deux équations différentielles liant x, θ et leurs dérivées et les paramètres cinétiques et cinématiques utiles.

Question 3 Déterminer ces deux équations. On souhaite supprimer les vibrations du bâti vibrant. On recherche alors une solution du système d'équations différentielles déterminé précédemment autour de la position d'équilibre $(x_0, \theta_0) = (0, 0)$ en supposant que x, θ , \dot{x} , $\dot{\theta}$ sont des petites variations de position ou de vitesse autour de cette position d'équilibre.

Question 4 Proposer une linéarisation, à l'ordre 1, des deux équations différentielles précédentes.

On s'intéresse uniquement au régime d'oscillations forcées. On cherche donc des solutions de la forme $x(t) = A\cos(\Omega t)$ et $\theta(t) = B\cos(\Omega t)$.

Question 5 Déterminer le système d'équations permettant de calculer *A* et *B*.

Question 6 Indiquer la condition que doit vérifier la longueur L afin d'assurer x(t) = 0 en régime forcé.

Éléments de correction

- 1. $(m_1 + m_2 + m_3)\ddot{x} + kx + m_3L\ddot{\theta}\cos\theta m_3L\dot{\theta}^2\sin\theta = m_2r\Omega^2\cos(\Omega t)$ et $\ddot{x}\cos\theta + L\ddot{\theta} + g\sin\theta = 0$.
- 2. $(m_1 + m_2 + m_3)\ddot{x} + kx + m_3L\ddot{\theta} = m_2r\Omega^2\cos(\Omega t)$ et $\ddot{x} + L\ddot{\theta} + g\theta = 0$.

3.
$$A = \frac{m_2 r \Omega^2 (-L\Omega^2 + g)}{[-(m_1 + m_2 + m_3) \Omega^2 + k] (-L\Omega^2 + g) - m_3 L\Omega^4}$$
 et $B =$

Pôle Chateaubriand - Joliot Curie

$$\frac{m_2r\Omega^2}{\left[-\left(m_1+m_2+m_3\right)\Omega^2+k\right]\left(-L\Omega^2+g\right)-m_3L\Omega^4}.$$
 4. $L=\frac{g}{\Omega^2}.$

