FEDERAL INSTITUTE OF SCIENCE AND TECHNOLOGY (FISAT) DEPARTMENT OF COMPUTER APPLICATIONS MAIN PROJECT

SCRUM BOOK

Name of the Student: ANJALYKRISHNA A S Roll No: 22 Batch: S4 A

Email ID: anjalykrishna522002@gmail.com

Name of the Guide: Ms.Joice T

Name of the Scrum Master: Dr.Rakhi Venugopal

Project Title: CNN-LSTM Based Model for ECG Arrhythmias and Myocardial Infarction Classification

GitHub ID: https://github.com/anjalykrishna522002/Arrthymia

Sprint Release 2

Date: 12-03-25

Description of Work:
In the second Scrum release, I focused on implementing classification using the hybrid CNN-LSTM model for ECG signal analysis. Building upon the foundation established in the first release, I fine-tuned the model for real-time ECG classification, ensuring optimal performance in identifying Fibrillation, Myocardial Infarction, Normal, Block, Supraventricular, Ventricular with high accuracy. enhance usability, I developed a web-based interface that allows users to upload ECG recordings and view classification results instantly. This interface provides a seamless user experience, enabling healthcare professionals to access model predictions conveniently. roughout this sprint, I focused on optimizing model deployment, ensuring smooth integration between the backend (model processing) and frontend (user interface). Furthermore, I conducted rigorous testing and performance evaluation to validate the effectiveness of the web-based system.
Remarks:

Name and Signature of the Guide

Date: 12-03-25

PRODUCT BACKLOG

1. Data Preprocessing & Management

- Collect ECG dataset from Kaggle.
- Preprocess raw ECG images (convert to grayscale, resize to 48×48).
- Normalize image pixel values (scale from 0 to 1).
- Implement dataset splitting (50% training, 50% testing).
- Convert labels to categorical format (one-hot encoding).

2. Model Development (CNN-LSTM Architecture)

- Build CNN layers for spatial feature extraction.
- Add pooling layers (MaxPooling & AveragePooling) to reduce dimensionality.
- Integrate LSTM layer to capture temporal dependencies in ECG signals.
- Add fully connected layers for classification.
- Use Dropout to prevent overfitting.
- Implement Softmax activation for multi-class classification (6 categories)

3. Model Training & Optimization

- Implement ImageDataGenerator for data augmentation.
- Optimize model using Adam optimizer & Categorical Crossentropy.
- Train model for 100 epochs with a batch size of 45.
- Introduce early stopping to avoid unnecessary training.
- Save the trained model as "cnnlstmmodel1.h5".

4. Model Evaluation & Testing

- Load the trained model for inference.
- Perform prediction on test data.
- Compute performance metrics (Accuracy, Precision, Recall, F1-Score, AUC-ROC).
- Generate Confusion Matrix to analyze misclassified cases.

5. Deployment & Real-Time Prediction

- Develop a Flask-based interface for real-time ECG classification.
- Load and preprocess user-uploaded ECG images.
- Predict class probabilities using the trained model.
- Return classification results to the user.

Name and Signature of the Guide

Date: 12-03-25

Name and Signature of the Guide:

Date: 12-03-25

DATABASE & UI DESIGN

User Registration

Column Name	Data Type	Description
it	INT (Primary Key)	Unique user ID (auto-increment).
First_name	VARCHAR(50)	User's first name.
last_name	VARCHAR(50)	User's last name.
house_name	VARIOHAR(100)	House name/address of the user;
place	WARCHAR(100)	Location of the user.
phone	VARCHAR(10)	Use's phone number (10 digits).
esull	VARICHAR(108)	Unique email for authentication.
VSB*NAME	VARCHAR(100)	Unique usemane (usually the email).
passord	WAROHAR(255)	Hashed password for security:
created_at	TIMESTAMP	Stones the registration date and time.

Doctor Registration

Column Name	Data Type	Description
1#	INT (Primary Sey)	Unique doctor ID (auto-increment),
first_name	VARCHAR(50)	Doctor's first name.
last_name	VARCHAR(50)	Doctor's last name.
house_name	WRCHAR(100)	House name/address of the doctor.
place	WACHARITOR	Location of the doctor.
Landwark.	VARCHAR(100)	Landmark near the doctor's location.
department	VARCHAR(100)	Boctor's department/qualification.
phene	WACHAR(10)	Doctor's phone number (10 digits, unique).
emai.l	WACHAR(100)	Unique entail for authentication.
profile_beage	WRCHAR(255)	Path to uploaded profile image.
userrians	VARCHARISON	Unique usemane (usually the email).
passaird	VARCHAR(255)	Hashed pissword for security.
created_at	TIMESTAMP	Stores the registration date and time.

Upload ecg image

Column Name	Data Type	Description
id	INT (Primary Key)	Unique upload ID (auto-increment).
doctor_id	INT (Foreign Key)	Links uploaded file to the respective doctor.
file_name	VARCHAR(255)	Original name of the uploaded ECG fil
file_path	VARCHAR(255)	Path to the stored file on the server.
uploaded_at	TIMESTAMP	Stores the upload timestamp.

view result

Calumn Name	Data Type	Description
ы	INT (Prissary Key)	Unique result ID-(auto-increment).
doctor_td	INT (Foreign Key)	Links result to the respective doctor.
ecg_ling	VARCHAR(255)	Fath to the uploaded ECG image.
plot_image_path	VARCHAR(255)	Faith to the generated graph plot .
classification_result	WARCHAR(SI))	Model's desification result (Normal, Myocardial Infarction, Fibrillation, etc.).
ecg_details	TEXT	Additional details (confidence score, model output, etc.)
date	TIMESTAWP	Stores the date of prediction.

Name and Signature of the Guide:

Date: 12-03-25

Name and Signature of the Guide:

Date: 12-03-25

TESTING AND VALIDATION

1. Unit Testing

Objective: Ensure individual components function correctly in isolation.

Components to Test

- Data Preprocessing:
 - Validate proper handling of missing ECG data and signal normalization.
 - o Ensure segmentation of ECG signals into uniform lengths for consistent input.
- Model Functions (CNN-LSTM):
 - Test CNN's ability to extract spatial ECG features correctly.
 - o Verify LSTM's capability to capture temporal dependencies.
 - Ensure classification outputs (Fibrillation, Myocardial Infarction, Normal, Block, Supraventricular, and Ventricular) align with expected labels.
- Database Functions
 - o Confirm ECG records are correctly stored, retrieved, and deleted.
 - Validate query performance for large datasets.
- Classification Output:
 - o Ensure model predictions match ground truth test cases with high precision.
 - o Validate AUC-ROC, Precision, Recall, and F1-score results.
- Flask API & UI Components:
 - o Test API endpoints for model inference and real-time predictions.
 - o Verify UI elements (buttons, input fields, graphs) for usability and interactivity.

2. Integration Testing

Objective: Ensure different modules work together seamlessly.

Testing Scope

- Data Flow Validation:
 - Test the complete flow from raw ECG data input → preprocessing → model inference
 → prediction output in UI.
- Model Performance on Different ECG Types:
 - Validate classification consistency across Fibrillation, Myocardial Infarction, Normal, Block, Supraventricular, and Ventricular cases.
- Real-Time Classification:
 - Ensure real-time ECG inputs flow correctly to the backend model.
 - Validate the classification updates dynamically in the UI.
- Database & UI Integration (if applicable):
 - o Ensure that classified ECG records are correctly retrieved and displayed.
 - o Validate synchronization between the backend and frontend.

Name and Signature of the Guide:

Date: 12-03-25

TESTING AND VALIDATION

3. System Testing

Objective: Evaluate the overall system functionality, performance, and robustness.

Testing Scope

- Overall Functionality:
 - Ensure users can upload ECG signals, receive classifications, and view history without issues
- Load Testing:
 - o Simulate high ECG signal processing and measure response times.
- Edge Case Testing:
 - o Input ECG signals with missing waveforms or noise and test model robustness.
 - Provide borderline cases (e.g., minor arrhythmic patterns) and check classification accuracy.
- Compatibility Testing:
 - Run tests on different devices (desktop, tablet, mobile) and browsers (Chrome, Edge, Firefox).

4. User Acceptance Testing (UAT)

 $Objective: Collect\ feedback\ on\ model\ accuracy,\ UI\ usability,\ and\ overall\ user\ experience.$

Testing Scope

- Real-World ECG Data Testing:
 - o Validate accuracy with cardiologist-labeled ECG signals.
- UI Feedback:
 - o Gather user feedback on result interpretation, ease of navigation, and response times.
- Overall Satisfaction:
 - Ensure medical professionals find the tool useful and accurate for assisting diagnoses.

Name and Signature of the Guide:

Date: 12-03-25

TESTING AND VALIDATION

5. Validation

Objective: Ensure the system meets functional, performance, security, and usability standards.

Functional Validation

- Classification Accuracy:
 - o Validate Precision, Recall, and F1-score for Myocardial Infarction and Arrhythmias.

Performance Validation

- Response Time:
 - Ensure classification predictions are generated within milliseconds for real-time medical use.
- Concurrent Requests:
 - o Test system performance under multiple simultaneous ECG classification requests.

Security Validation

- Input Sanitization:
 - Prevent unauthorized modifications and ensure secure model interaction.
- Data Privacy:
 - o Ensure sensitive patient data remains protected and is not stored unnecessarily.

Usability Validation

- Cross-Device Responsiveness:
 - o Verify the UI is responsive across different devices (laptops, tablets, mobile phones).
- User Experience Testing:
 - Ensure the Flask-based UI is intuitive and users can easily interpret ECG classification results.

Name and Signature of the Guide:

Date: 12-03-25

DETAILS OF VERSIONS

V2.0 - [07-02-25]

Data Preprocessing & Augmentation

- Preprocessed images:
 - Converted them to grayscale for uniformity.
 - Resized all images to 48×48 for CNN input compatibility.
 - Normalized pixel values (scaling between 0 and 1).
- Implemented data augmentation (rotation, zoom, flipping) to enhance model generalization.
- Split data into training (80%) and testing (20%) sets.

V3.0 – [14-02-25]

Model Development & Training

- Implemented CNN, LSTM, and CNN-LSTM hybrid models for ECG image classification.
- Defined convolutional layers to extract spatial features from ECG images.
- Used LSTM layers in the hybrid model to capture sequential dependencies.
- Trained models using categorical cross-entropy loss and Adam optimizer.

V4.0 - [21-02-25]

Model Evaluation & Performance Analysis

- Evaluated models using accuracy, precision, recall, F1-score, and AUC-ROC.
- Compared CNN, LSTM, and CNN-LSTM models to find the best one.
- Visualized prediction probabilities for better understanding.

V5.0 – [28-02-25]

Web Interface Enhancement & Finalization

- Improved the web interface for better user experience.
- Optimized the ECG image upload and prediction process.
- Ensured real-time result display after image upload.
- Deployed the web application for user access.

Name and Signature of the Guide