[PSZT] PZ.U17 - Marketing bankowy

Adrian Brodzik

Jakub Górka

27 stycznia 2020

Zadanie

Porównać algorytmy regresji logistycznej i XGBoost.

Teza

Efektywność regresji logistycznej i XGBoost jest równa dla problemu ustalenia potencjalnych klientów lokat bankowych pewnej portugalskiej instytucji finansowej.

Analiza danych

 $m \acute{Z}r\acute{o}d\acute{e}donych$: https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

Plik danych: bank-additional-full.csv Opis danych: bank-additional-names.txt

Zbiór danych wykorzystywanych w projekcie pochodzi z kampanii marketingowej lokaty terminowej prowadzonej przez portugalską instytucję finansową. Owa kampania oparta była o kontakt telefoniczny. Każdy rekord przedstawia jednego klienta, z podziałem na poszczególne atrybuty.

Atrybuty wejściowe przedstawiają szczegóły danego klienta umożliwiające dokładniejszą klasyfikację, natomiast atrybutem wyjściowym jest informacja o decyzji przystąpieniu do lokaty terminowej. Podział względem poszczególnych atrybutów, pozwala stwierdzić iż dominującą grupą wiekową są osoby w wieku 31-40, niestety nie wiemy nic o podziale na płeć poszczególnych osób. Kolejną obserwacją jest większościowy udział osób po ślubie. Dominującym zawodem wśród klientów były osoby administracji publicznej. Pod

względem wykształcenia osoby które najczęściej decydowały się na lokatę były osobami, które uzyskały wykształcenie podstawowe oraz uniwersyteckie. Atrybut *duration* nie jest uwzględniany w analizie i nie jest używany w doświadczeniu tworzenia modelu predykcyjnego ze względu na niewiedzę zakończenia trwającej rozmowy.

Opis atrybutów

Atrybut	typ	Opis
age	Int	
job	Kategoryjny	Rodzaj zawodu: 'admin.','blue- collar','entrepreneur','housemaid','management','retired','self- employed','services','student','technician','unemployed','unknown'
marital	Kategoryjny	Stan cywilny: 'divorced','married','single','unknown'; uwaga: jako 'divorced' również oznaczona osobę owdowiałą
education	Kategoryjny	Poziom wykształcenia: 'basic.4y','basic.6y','basic.9y','high.school','illiterate','professional.course','university.degree','unknown'
default	Kategoryjny	Ma nieuiszczone należności: 'no','yes','unknown'
housing	Kategoryjny	Ma kredyt hipoteczny: 'no','yes','unknown'
loan	Kategoryjny	Ma kredyty inny: 'no','yes','unknown'
contact	Kategoryjny	Rodzaj kontaktu: 'cellular','telephone'
month	Kategoryjny	Miesiąc w którym wystąpił ostatni kontakt: 'jan', 'feb', 'mar',, 'nov', 'dec'
day_of_week	Kategoryjny	Dzień tygodnia ostatniego kontaktu : 'mon','tue','wed','thu','fri'
duration	Int	Długość trwania ostatniej rozmowy.
campaign	Int	Liczba prób kontaktu z klientem.
pdays	Int	Liczba dni, które upłynęły od ostatniego kontaktu z klientem w poprzedniej kampanii. 999 oznacza, że próba kontaktu z klientem nie wystąpiła.
previous	Int	Liczba kontaktów wykonana przed obecną kampania do danego klienta
poutcome	Kategoryjny	Wynik poprzedniej kampanii marketingowej
emp.var.rate	Float	Wskaźnik zatrudnienia
cons.price.idx	Float	Wskaźnik cen towarów i usług konsumpcyjnych
cons.conf.idx	Float	Wskaźnik ufności konsumenckiej
euribor3m	Float	Referencyjna wysokość oprocentowania- 3-miesięczna
nr.employed	Float	Liczba pracowników
у	Binarny	Czy klient założył lokatę: 'yes','no'.

Udział poszczególnych grup wiekowych z podziałem na decyzję o założeniu lokaty

AGE	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	91-100
DECISION = 'yes	57	1067	1597	837	668	212	143	54	5
DECISION = 'no'	83	6176	14788	9403	5602	276	160	55	5

Udział osób w poszczególnym stanie cywilnym

MARITAL	divorced	married	single	unknown
DECISION = 'yes'	476	2532	1620	12
DECISION = 'no'	4136	22396	9948	68

Udział poszczególnych zawodów

JOB	admin.	blue-	entrepr	house maid	manage ment	retired	self- employe	services	student		unemplo ved	unknow
DECISION = 'yes'						434		323	275	730	144	37
DECISION = 'no'	9070	8616	1332	954	2596	1286	1272	3646	600	6013	870	293

Podział klientów ze względu na poziom wykształcenia

EDUCATION	basic.4y	basic.6y	basic.9y	high.school	illiterate	professional.course	university.degree	unknown
DECISION = 'yes'	428	188	473	1031	4	595	1670	251
DECISION = 'no'	3748	2104	5572	8484	14	4648	10498	1480

Podział liczby poszczególnych decyzji na miesiące

MONTH	mar	apr	may	jun	jul	aug	sep	oct	nov	dec
DECISION = 'yes'	276	539	886	559	649	655	256	315	416	89
DECISION = 'no'	270	2093	12883	4759	6525	5523	314	403	3685	93

Podział liczbę kontaktów

CAMPAIGN	1	2	3	4	5	6	7	8	9	10	other
DECISION = 'yes'	2300	1211	574	249	120	75	38	17	17	12	27
DECISION = 'no'	15342	9359	4767	2402	1479	904	591	383	266	213	842

Eksperyment

Dane są ładowane z pliku bank-additional-full.csv do pamięci za pomocą modułu pandas.

Wartości kolumny celu y są mapowane na 0 dla wartości no, albo 1 dla wartości yes. Następnie wartości kolumn kategorycznych są jednoznacznie mapowane na liczby całkowite dodatnie. Gdyby model był zapisany i uruchomiony na nowych danych, to wartości danych powinny być dokładnie tak zakodowane, jak podczas procesu uczenia się modelu. Natomiast dane, które nigdy wcześniej się nie pojawiły, są kodowane na wartość wyrażenia __UNKNOWN__. Na koniec usuwane są kolumny niepotrzebne (w zależności od wykonywanego eksperymentu).

Do podziału danych wykorzystany jest proces k-krotnej walidacji z modułu scikit-learn. Ponadto dane są rozłożone równomiernie ze względu na wartość kolumny celu y (ang. stratified k-fold).

W każdej z k iteracji generowane są dwa zbiory danych: treningowy oraz walidacyjny. Zbiór treningowy służy do uczenia modelu LogisticRegression z modułu scikit-learn albo XGBRegressor z modułu XGBoost. Zbiór walidacyjny służy do oceny nauczonego modelu, np. za pomocą roc_auc_score z modułu scikit-learn. ROC-AUC określa w jakim stopniu nauczony model jest w stanie rozpoznać daną klasę.

Hiperparametry

Do automatycznego strojenia parametrów wykorzystano moduł hyperopt, a w szczególności estymator jądrowy gęstości (ang. Tree-structured Parzen Estimator).

Dla regresji logistycznej przeszukano następujące parametry:

- tol tolerancja błędu, aby doszło do wczesnego zatrzymania
- C odwrotność siły regularyzacji
- fit intercept czy powinna być dodana stała, np. bias
- class_weight wagi klas
- solver algorytm optymalizacyjny
- max iter maksymalna liczba iteracji

Dla XGBoost przeszukano następujące parametry:

- n estimators liczba drzew
- max_depth maksymalna głębokość drzew
- learning rate współczynnik nauczania
- booster algorytm wzmocnienia gradientowego
- tree method algorytm konstruowania drzew
- gamma minimalna redukcja błędu potrzebna, aby doszło do podziału liścia
- subsample współczynnik instancji treningowej
- colsample bytree współczynnik kolumn podczas budowania drzewa
- colsample_bylevel współczynnik kolumn dla każdego poziomu w drzewie
- colsample bynode współczynnik kolumn do podziału
- reg_alpha regularyzacja L1
- reg_lambda regularyzacja L2
- scale pos weight równoważenie dodatnich i ujemnych wag

Wyniki

Rysunek 1: Najważniejsze kolumny wg XGBoost (bez duration)

Rysunek 2: **Najważniejsze kolumny wg XGBoost** (bez duration, nr.employed)

seed	regresja logistyczna	XGBoost				
seed	ROC AUC (%)	ROC AUC (%)				
42	78.60	80.54				
64	78.63	80.50				
100	78.69	80.70				
123	78.65	80.47				
234	78.63	80.48				
345	78.63	80.65				
456	78.59	80.53				
567	78.56	80.53				
678	78.69	80.60				
789	78.69	80.60				

Tablica 1: Wyniki (bez kolumny duration)

seed	regresja logistyczna ROC AUC (%)	XGBoost ROC AUC (%)
42	93.23	95.07
64	93.24	95.00
100	93.24	95.07
123	93.23	95.06
234	93.23	95.05
345	93.21	95.03
456	93.24	95.05
567	93.23	94.99
678	93.23	95.01
789	93.23	95.09

Tablica 2: Wyniki (wszystkie kolumny)

Rysunek 3: **Regresja logistyczna i k-krotna walidacja.** Wyższa ocena świadczy o efektywniejszej klasyfikacji.

Rysunek 4: **XGBoost i k-krotna walidacja.** Wyższa ocena świadczy o efektywniejszej klasyfikacji.

Dyskusja

W przypadku użycia wszystkich kolumn oba algorytmy otrzymały wyższe wyniki. Stało się tak, ponieważ kolumna duration ma duży wpływ na kolumnę docelową y. W pozostałych testach nie użyto duration.

Usunięcie kolumny nr.employed nie wpłynęło negatywnie na efektywność modeli mimo tego, że była to najważniejsza kolumna według XGBoost. Najważniejszą kolumną stała się wówczas poutcome, tzn. obecny wynik głównie zależy od wyniku poprzedniej rozmowy z klientem. Ponadto ważne są kolumny dotyczące koniunktury rynku, np. euribor3m.

Wyższa wartość k w procesie k-krotnej walidacji nie oznacza, że klasyfikator będzie efektywniejszy. Zbiór treningowy jest proporcjonalnie większy, ale zbiór walidacyjny jest proporcjonalnie mniejszy. Ciężko jest wykryć przeuczenie modelu, mając zbyt mały zbiór walidacyjny.

Wnioski

Teza została potwierdzona w granicy błędu 2% - 3% ROC AUC. Regresja logistyczna i XGBoost są skutecznymi algorytmami do klasyfikacji obiektów z zadanej przestrzeni i detekcji nieliniowych relacji między nimi.

XGBoost osiągnął lepszy wynik, ale jego złożoność i czas obliczeniowy był znacznie gorszy w porównaniu do prostszego algorytmu regresji logistycznej. Model regresji logistycznej, który właściwie jest uogólnionym modelem liniowym, jest prostszy w konstrukcji i zrozumieniu niż losowo generowane drzewa decyzyjne XGBoost. Dlatego też większość instytucji finansowych preferuje, albo nawet musi, używać tych prostszych modeli.

XGBoost i podobne biblioteki wzmocnień gradientowych mają szerokie zastosowanie w bardziej skomplikowanych problemach, w szczególności konkursach sztucznej inteligencji, gdzie oprócz strojenia parametrów, konieczna jest inżyniera danych.

Literatura

- [1] Josh Starmer. Statquest: Logistic regression, 2018.
- [2] Saishruthi Swaminathan. Logistic regression detailed overview, 2018.
- [3] Wai. An example of hyperparameter optimization on xgboost, lightgbm and catboost using hyperopt, 2019.