STA305/1004 - Class 11

February 13, 2017

► ANOVA table

- ► ANOVA table
- ► ANOVA identity

- ► ANOVA table
- ► ANOVA identity
- ▶ Degrees of freedom and ANOVA table

- ► ANOVA table
- ► ANOVA identity
- ▶ Degrees of freedom and ANOVA table
- ► Geometry of ANOVA

- ► ANOVA table
- ► ANOVA identity
- ▶ Degrees of freedom and ANOVA table
- Geometry of ANOVA
- ▶ Two estimates of the population variance

- ► ANOVA table
- ► ANOVA identity
- ▶ Degrees of freedom and ANOVA table
- Geometry of ANOVA
- ▶ Two estimates of the population variance
- ▶ Mean squares \(\cdot \wedge \)

- ► ANOVA table
- ► ANOVA identity
- Degrees of freedom and ANOVA table
- Geometry of ANOVA
- ▶ Two estimates of the population variance
- ► Mean squares wed
- ▶ F statistic wຝ.

- ► ANOVA table
- ► ANOVA identity
- Degrees of freedom and ANOVA table
- ► Geometry of ANOVA
- ▶ Two estimates of the population variance
- ► Mean squares wed.
- ► F statistic Wed,
- ► Assumptions \(\mathbb{W} \alpha \cdot \)

Comparing more than two treatments

If interest is in designing an experiment to compare more than two treatments then the previous designs will need to modified.

A clinical trial comparing three drugs A, B, C to reduce duration of intubation for patients on mechanical ventilation.

What are the null and alternative hypotheses in these two scenarios?

Comparing more than two treatments

If interest is in designing an experiment to compare more than two treatments then the previous designs will need to modified.

- A clinical trial comparing three drugs A, B, C to reduce duration of intubation for patients on mechanical ventilation.
- Coagulation time of blood samples for animals receiving four different diets A, B, C, D.

What are the null and alternative hypotheses in these two scenarios?

Design a Study where

▶ 24 animals were randomized to four treatments with 6 animals in each group.

, Transment Group									
Animal	1	2	3	4					
·									
2									
3	1								
4									
٤									

- 24 animals were randomized to four treatments with 6 animals in each group.
- ► How many possible treatment assignments?

Multinomial Coefficient.

$$\begin{pmatrix}
24 \\
6.6.6.6
\end{pmatrix} = \frac{241}{6!6!6!6!} \approx 10^{12}$$
Different from the two Sample design!

▶ The data for coagulation times for blood samples drawn from 24 animals receiving four different diets A, B, C, and D are shown below.

Coagulation time from 24 animals randomly allocated to four diets

Do the boxplots show evidence of a difference between diets?

▶ An idea due to Fisher is to compare the variation in mean coagulation times between the diets to the variation of coagulation times within a diet. These two measures of variation are often summarized in an analysis of variance (ANOVA) table.

- ▶ An idea due to Fisher is to compare the variation in mean coagulation times between the diets to the variation of coagulation times within a diet. These two measures of variation are often summarized in an analysis of variance (ANOVA) table.
- Fisher introduced the method in his 1925 book "Statistical Methods for Research Workers".

- ▶ An idea due to Fisher is to compare the variation in mean coagulation times between the diets to the variation of coagulation times within a diet. These two measures of variation are often summarized in an analysis of variance (ANOVA) table.
- Fisher introduced the method in his 1925 book "Statistical Methods for Research Workers".
- The statistical procedure enables experimenters to answer several questions at once.

- An idea due to Fisher is to compare the variation in mean coagulation times between the diets to the variation of coagulation times within a diet. These two measures of variation are often summarized in an analysis of variance (ANOVA) table.
- Fisher introduced the method in his 1925 book "Statistical Methods for Research Workers".
- The statistical procedure enables experimenters to answer several questions at once.
- The prevailing method at the time was to test one factor at a time in an experiment.

▶ The between treatments variation and within treatment variation are two components of the total variation in the response.

$$y_{ij}-ar{y}_{\cdot\cdot\cdot}=\underbrace{\left(y_{i\cdot}-ar{y}_{\cdot\cdot}
ight)}_{ ext{treatment deviation}}+\underbrace{\left(y_{ij}-ar{y}_{i\cdot}
ight)}_{ ext{residual deviation}}$$
 $y_{i\cdot}=\sum_{j=1}^{n}y_{ij}, \qquad ar{y}_{i\cdot}=y_{i\cdot}/n,$
 $y_{\cdot\cdot}=\sum_{j=1}^{a}\sum_{j=1}^{n}y_{ij}, \qquad ar{y}_{\cdot\cdot}=y_{\cdot\cdot}/N,$

- The between treatments variation and within treatment variation are two components of the total variation in the response.
- In the coagulation study data we can break up each observation's deviation from the grand mean into two components: treatment deviations; and residuals within treatment deviations.

$$y_{ij} - \bar{y}_{..} = \underbrace{(y_{i.} - \bar{y}_{..})}_{\text{treatment deviation}} + \underbrace{(y_{ij} - \bar{y}_{i.})}_{\text{residual deviation}}$$

$$y_{i\cdot} = \sum_{i-1}^n y_{ij}, \qquad \bar{y}_{i\cdot} = y_{i\cdot}/n,$$

$$y_{\cdot \cdot} = \sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}, \quad \bar{y}_{\cdot \cdot} = y_{\cdot \cdot}/N,$$

- The between treatments variation and within treatment variation are two components of the total variation in the response.
- In the coagulation study data we can break up each observation's deviation from the grand mean into two components: treatment deviations; and residuals within treatment deviations.
- Let y_{ij} be the jth (j = 1,, 6) observation taken under treatment i = 1, 2, 3, 4.

$$y_{ij} - \bar{y}_{\cdot \cdot} = \underbrace{(y_{i\cdot} - \bar{y}_{\cdot \cdot})}_{\text{treatment deviation}} + \underbrace{(y_{ij} - \bar{y}_{i\cdot})}_{\text{residual deviation}}$$

$$y_{i\cdot} = \sum_{j=1}^{n} y_{ij}, \qquad \bar{y}_{i\cdot} = y_{i\cdot}/n,$$

$$y_{\cdot \cdot} = \sum_{j=1}^{n} \sum_{j=1}^{n} y_{ij}, \qquad \bar{y}_{\cdot \cdot} = y_{\cdot \cdot}/N,$$

In blood Coag Study a=4.

▶ Let y_{ij} be the jth observation taken under treatment i = 1, ..., a.

$$E(y_{ij}) = \mu_i = \mu + \tau_i,$$

and $Var(y_{ij}) = \sigma^2$ and the observations are mutually independent.

▶ Let y_{ij} be the jth observation taken under treatment i = 1, ..., a.

$$E(y_{ij}) = \mu_i = \mu + \tau_i,$$

and $Var(y_{ij}) = \sigma^2$ and the observations are mutually independent.

▶ The parameter τ_i is the *ith* treatment effect.

$$\gamma_i = \mu_i - \mu$$

Let y_{ij} be the *jth* observation taken under treatment i = 1, ..., a.

$$E(y_{ij}) = \mu_i = \mu + \tau_i,$$

and $Var(y_{ij}) = \sigma^2$ and the observations are mutually independent.

- ▶ The parameter τ_i is the *ith* treatment effect.
- \blacktriangleright The parameter μ is the overall mean.

We are interested in testing if the a treatment means are equal.

$$H_0: \mu_1 = \cdots = \mu_a$$
 vs. $H_1: \mu_i \neq \mu_j, i \neq j$.

There will be *n* observations under the *ith* treatment.

$$y_{i\cdot} = \sum_{j=1}^{n} y_{ij}, \qquad \bar{y}_{i\cdot} = y_{i\cdot}/n,$$

$$y_{\cdot \cdot} = \sum_{i=1}^{a} \sum_{j=1}^{n} y_{ij}, \quad \bar{y}_{\cdot \cdot} = y_{\cdot \cdot}/N,$$

where N=an is the total number of observations. The "dot" subscript notation means sum over the subscript that it replaces.

The ANOVA identity

The total sum of squares $SS_T = \sum_{i=1}^a \sum_{j=1}^n (y_{ij} - \bar{y}_{..})^2$ can be written as

$$\sum_{i=1}^{a}\sum_{j=1}^{n}\left[\left(\bar{y}_{i\cdot}-\bar{y}_{\cdot\cdot}\right)+\left(y_{ij}-\bar{y}_{i\cdot}\right)\right]^{2}$$
 by adding and subtracting $\bar{y}_{i\cdot}$ to $SS_{T\cdot}$.
$$\sum_{i=1}^{a}\sum_{j=1}^{n}\left(\bar{y}_{i\cdot}-\bar{y}_{\cdot\cdot}\right)^{2}+\lambda\left(\bar{y}_{i\cdot}-\bar{y}_{\cdot\cdot}\right)^{2}$$
 It can be shown that
$$SS_{T}=\sum_{i=1}^{a}\sum_{j=1}^{n}\left(y_{ij}-\bar{y}_{\cdot\cdot}\right)^{2}=\sum_{i=1}^{a}\sum_{j=1}^{n}\left(y_{i\cdot}-\bar{y}_{\cdot\cdot}\right)^{2}+\sum_{i=1}^{a}\sum_{j=1}^{n}\left(y_{ij}-\bar{y}_{i\cdot}\right)^{2}$$
 Sum of Squares Due to Treatment
$$=SS_{Treat}+SS_{E}.$$
 Sum of Squares Due to Error
$$=SS_{Treat}+SS_{E}.$$

The ANOVA identity

This is sometimes called the analysis of variance identity. It shows how the total sum of squares can be split into two sum of squares: one part that is due to differences between treatments; and one part due to differences within treatments.

The ANOVA identity

Α	В	C	D
60	65	71	62
63	66	66	60
59	67	68	61
63	63	68	64
62	64	67	63
59	71	68	56
61	66	68	61
64	64	64	64
-3	2	4	-3
	63 59 63 62 59 61 64	60 65 63 66 59 67 63 63 62 64 59 71 61 66 64 64	60 65 71 63 66 66 59 67 68 63 63 68 62 64 67 59 71 68 61 66 68 64 64 64

▶ The decomposition of the first observation $y_{11} = 60$ in diet A is

$$y_{11} - \bar{y}_{\cdot \cdot} = (y_1 - \bar{y}_{\cdot \cdot}) + (y_{11} - \bar{y}_{1 \cdot})$$

$$60 - 64 = (61 - 64) + (60 - 61)$$

$$-4 = -3 + -1$$

The ANOVA identity

	Α	В	С	D
	60	65	71	62
	63	66	66	60
	59	67	68	61
	63	63	68	64
	62	64	67	63
	59	71	68	56
Treatment Average	61	66	68	61
Grand Average	64	64	64	64
Difference	-3	2	4	-3

▶ The decomposition of the first observation $y_{11} = 60$ in diet A is

$$y_{11} - \bar{y}_{\cdot \cdot} = (y_{1\cdot} - \bar{y}_{\cdot \cdot}) + (y_{11} - \bar{y}_{1\cdot})$$

$$60 - 64 = (61 - 64) + (60 - 61)$$

$$-4 = -3 + -1$$

If each observation is decomposed in this manner then there will be three tables of residuals: total residuals; between treatment residuals; and within treatment residuals.

Example - Blood coagulation study (SS_T)

The deviations from the grand average $(y_{ij} - \bar{y}_{..})$ are in the table below:

- A B C D
- -4 1 7 -2
- -1 22-4
- -5 3 4 -3
- -1 -1 4 0
- -2 0 3 -1
- -5 7 4 -8

The total sum of squares is obtained by squaring all the entries in this table and summing: $SS_T = (-4)^2 + (-1)^2 + \cdots + (-8)^2 = 340$.

Example - Blood coagulation study (SS_{Treat})

The between treatment deviations $(y_i - \bar{y}_{\cdot \cdot})$ are in the table below:

- A B C D
- -3 2 4 -3
- -3 2 4 -3
- -3 2 4 -3
- -3 2 4 -3
- -3 2 4 -3
- -3 2 4 -3

The sum of squares due to treatment is obtained by squaring all the entries in this table and summing: $SS_{Treat} = (-3)^2 + (2)^2 + \cdots + (-3)^2 = 228$.

Example - Blood coagulation study (SS_E)

The within treatment deviations $(y_{ij} - \bar{y}_{i.})$ are in the table below:

A B C D
-1 -1 3 1
2 0 -2 -1
-2 1 0 0
2 -3 0 3
1 -2 -1 2
-2 5 0 -5

The sum of squares due to error $(y_{ij} - \bar{y}_{i\cdot})$ is obtained by squaring the entries in this table and summing: $SS_E = (-1)^2 + (2)^2 + \cdots + (-5)^2 = 112$.

$$\underbrace{340}_{SS_T} = \underbrace{228}_{SS_{Treat}} + \underbrace{112}_{SS_E}.$$

Which illustrates the ANOVA identity for the blood coagulation study.

The deviations

▶ SS_{Treat} is called the sum of squares due to treatments (i.e., between treatments), and SS_E is called the sum of squares due to error (i.e., within treatments).

The deviations

- ▶ SS_{Treat} is called the sum of squares due to treatments (i.e., between treatments), and SS_E is called the sum of squares due to error (i.e., within treatments).
- ▶ There are an = N total observations. So SS_T has N-1 degrees of freedom.

The deviations

- ▶ SS_{Treat} is called the sum of squares due to treatments (i.e., between treatments), and SS_E is called the sum of squares due to error (i.e., within treatments).
- ▶ There are an = N total observations. So SS_T has N-1 degrees of freedom.
- ▶ There are a treatment levels so SS_{Treat} has a-1 degrees of freedom.

The deviations

- ▶ SS_{Treat} is called the sum of squares due to treatments (i.e., between treatments), and SS_E is called the sum of squares due to error (i.e., within treatments).
- ▶ There are an = N total observations. So SS_T has N-1 degrees of freedom.
- ▶ There are a treatment levels so SS_{Treat} has a-1 degrees of freedom.
- ▶ Within each treatment there are n replicates with n-1 degrees of freedom. There are a treatments. So, there are a(n-1) = an a = N a degrees of freedom for error

$$N-1 = (\alpha-1) + \alpha(n-1)$$