Universidad Tecnologica Nacional Facultad Regional Buenos Aires

Dispositivos electrónicos Unidad N°2: Juntura PN y Diodo

Autores:

• Albanesi, Tomas Agustin

Docentes:

- Ing. Zuazquita, Ricardo
- \bullet Ing. Oreglia, Eduardo

May 14, 2023

Contents

1	Teo	ría	
	1.1	Determinacion de capacidad de juntura	
2	Resumen de fórmulas		
	2.1	Potencial de contacto ψ_0	
	2.2	Ancho de juntura l	
	2.3	Ancho de juntura Zona P l_p y Zona N l_n	
	2.4	Campo electrico maximo E_0	
	2.5	Capacidad de juntura C_j	
	2.6	Corriente de diodo I	
	2.7	Resistencia estatica R_E	
	2.8	Resistencia dinamica r_d	
	2.9	Rendimiento de emision γ	
	2.10	Corriente de saturación inversa I_s	
3	Ejercicios		
	J	Eiercicio 2.1	

1 Teoría

1.1 Determinacion de capacidad de juntura

Si se aplica una tension V a una juntura y se provoca una variacion dV, las cargas almacenadas en la zona de transicion de la juntura varian en dQ. Esto implica un efecto capactivo del diodo.

Se define como la capacidad de transicion, o de carga espacial, o simplemente de juntura a la capacidad que presenta la juntura en esas condiciones y se lo simboliza con C_j .

Su definicion es la siguiente:

$$C_j = \frac{dQ}{d(\psi_0 - V)} = -\frac{dQ}{dV} \tag{1}$$

Puedo multiplicar y dividir por un diferencial de longitud:

$$C_j = -\frac{dQ}{dV} = -\frac{dQ}{dl} \cdot \frac{dl}{dV} \tag{2}$$

Como ya se tiene la expresion de la longitud de la juntura l se la puede derivar respecto de la tension, y se obtiene la siguiente ecuacion:

$$\frac{dl}{dV} = -\frac{1}{2} \cdot \left[\frac{2 \cdot \epsilon}{q_e} \right] \tag{3}$$

2 Resumen de fórmulas

2.1 Potencial de contacto ψ_0

En una juntura PN el potencial de contacto viene dado por la siguiente ecuación:

$$\psi_0 = \frac{k \cdot T}{q_e} \cdot \ln\left(\frac{N_A \cdot N_D}{n_i^2(T)}\right) \tag{4}$$

2.2 Ancho de juntura l

En una juntura PN el ancho de la juntura se determina con la siguiente ecuacion:

$$l = \sqrt{\frac{2 \cdot \epsilon_r \cdot \epsilon_0}{q_e} \cdot (\psi_0 - V_D) \cdot \left(\frac{N_A + N_D}{N_A \cdot N_D}\right)}$$
 (5)

2.3 Ancho de juntura Zona P l_p y Zona N l_n

En una juntura PN el ancho de la juntura de la zona N se determina con la siguiente ecuacion:

$$l_n = l \cdot \frac{N_A}{N_A + N_D} \tag{6}$$

Para determinar el ancho de la otra zona:

$$l_p = l - l_n \tag{7}$$

2.4 Campo electrico maximo E_0

En una juntura PN el campo electrico se determina con la siguiente ecuacion:

$$E_0 = E_{max} = -2 \cdot \frac{\psi_0 - V_D}{l} \tag{8}$$

2.5 Capacidad de juntura C_i

En una juntura PN la capacidad de juntura se determina con la siguiente ecuacion:

$$C_j = \frac{\epsilon_r \cdot \epsilon_0 \cdot A}{l} \tag{9}$$

Y la capacidad de juntura por unidad de area, o capacidad de juntura específica se determina de la siguiente forma:

$$\frac{C_j}{A} = C_j' = \frac{\epsilon_r \cdot \epsilon_0}{l} \tag{10}$$

2.6 Corriente de diodo I

La corriente del diodo esta determinada por la siguiente ecuacion:

$$I = I_s \cdot \left(e^{\frac{q \cdot V}{k \cdot T}} - 1 \right) \tag{11}$$

Si se define $V_T = \frac{k \cdot T}{q}$:

$$I = I_s \cdot \left(e^{\frac{V}{V_T}} - 1 \right) \tag{12}$$

2.7 Resistencia estatica R_E

La resistencia estatica del diodo esta determinada por la siguiente ecuacion:

$$R_E = \frac{V_{D_Q}}{I_{D_Q}} \tag{13}$$

2.8 Resistencia dinamica r_d

La resistencia dinamica del diodo esta determinada por la siguiente ecuacion:

$$r_d = \frac{V_T}{I_{D_Q}} = \frac{V_T}{I_s \cdot e^{\frac{V}{V_T}}} \tag{14}$$

2.9 Rendimiento de emision γ

El rendimiento de emision esta determinado por la siguiente ecuacion:

$$\gamma_p = \frac{J_p(0)}{J_p(0) + J_n(0)} \tag{15}$$

$$\gamma_n = \frac{J_n(0)}{J_p(0) + J_n(0)} \tag{16}$$

$$\gamma_n = 1 - \gamma_p \tag{17}$$

Recordando que:

$$J_p(0) = \frac{q \cdot D_p}{L_p} \cdot p_{n_o} \cdot \left(e^{\frac{V}{V_T}} - 1\right) = \frac{q \cdot D_p}{L_p} \cdot \frac{n_i^2}{N_D} \cdot \left(e^{\frac{V}{V_T}} - 1\right) \tag{18}$$

$$J_n(0) = \frac{q \cdot D_n}{L_n} \cdot n_{p_o} \cdot \left(e^{\frac{V}{V_T}} - 1\right) = \frac{q \cdot D_n}{L_n} \cdot \frac{n_i^2}{N_A} \cdot \left(e^{\frac{V}{V_T}} - 1\right) \tag{19}$$

2.10 Corriente de saturación inversa I_s

La corriente de saturacion inversa esta determinada por la siguiente ecuacion:

$$I_s = q \cdot A \cdot \left(\frac{D_p \cdot p_{n_0}}{L_p} + \frac{D_n \cdot n_{p_0}}{L_n}\right) \tag{20}$$

3 Ejercicios

3.1 Ejercicio 2.1

Para una juntura abrupta idealizada de Si a T=300K, en equilibrio térmico, con $N_A=1\cdot 10^{14}cm^{-3}$ y $N_D=5\cdot 10^{13}cm^{-3}$, calcular:

- a) El potencial de contacto.
- b) El ancho l de la juntura en la zona de carga espacial.
- c) Las longitudes l_n y l_p .
- d) El campo eléctrico máximo E_{max} .
- e) La capacidad específica de juntura $C_{J_0}^{\prime}.$
- a) La ecuación que permite calcular el potencial de contacto es la siguiente:

$$\psi_0 = \frac{k \cdot T}{q_e} \cdot \ln\left(\frac{N_A \cdot N_D}{n_i^2(T)}\right) \tag{21}$$

Reemplazando los valores del problema:

$$\psi_0 = \frac{1.38 \cdot 10^{-23} \frac{J}{K} \cdot 300K}{1.6 \cdot 10^{-19} C} \cdot ln \left(\frac{1 \cdot 10^{14} cm^{-3} \cdot 5 \cdot 10^{13} cm^{-3}}{(1.5 \cdot 10^{10} cm^{-3})^2} \right)$$
(22)

$$\psi_0 \approx 0.459V \approx 459mV \tag{23}$$

b) La ecuación que permite calcular el ancho de juntura es la siguiente: