Test Procedure

Test Procedure		

Table of Contents

1. Initial test set up		
2. TST001 Verify whether board is booting properly after powered up		2
2.1. Procedure		2
2.2. Expected result		2
3. TST002 Verify whether board is rebooting properly after Reset Button pressed		3
3.1. Procedure		
3.2. Expected result		3
4. TST003 Verify the consistency of booting when power cycle a Device multiple times		4
4.1. Procedure		
4.2. Expected result		
5. TST004 Check release version		
5.1. Procedure		
5.2. Expected result		
6. TST005 Check the U-boot software version		
6.1. Procedure		
6.2. Expected result		
7. TST006 Check the Kernel version		
7.1. procedure		
7.2. Expected result		
8. TST007 Verify the total RAM size		
8.1. Procedure		
8.2. Expected result		
9. TST008 Verify the available RAM space size		
9.1. Procedure		
9.2. Expected result		
10. TST009 Verify the total Storage size		
10.1. Procedure		
10.2. Expected result		
11. TST010 Verify the Available Storage size		
11.1. Procedure		
11.2. Expected result	1	13
12. TST011 Verify the SOC Name and number of core	1	14
12.1. Procedure	1	14
12.2. Expected result	1	14
13. TST012 Verify the architecture of SOC	1	15
13.1. Procedure	1	15
13.2. Expected result	1	15
14. TST013 Verify whether Ethernet ports are detected		
14.1. preconditions		
14.2. Procedure		
14.3. Expected result		
15. TST014 Verify LAN Ethernet port is getting ip address when it is connected to LAN		
15.1. preconditions		
15.2. Procedure		
15.3. Expected result		
16. TST015 Verify the GPIO pins are populated in sysfs		
16.1. Preconditions		
16.2. Procedure		
16.3. Expected result		
17. TST016 Verify whether UART ports are Detected		
17.1. Preconditions	2	<u>۷</u> ۷

	17.2. Procedure	20
	17.3. Expected result	20
18.	TST017 Verify whether \$(n) UART ports are detected	22
	18.1. Precondition	
	18.2. Procedure	
	18.3. Expected result	
19	TST018 Verify whether \$(n) I ² C ports are detected	
1 .	19.1. Precondition	
	19.2. Procedure	
	19.3. Expected result	
20		
20.	TST019 Verify Scanning of slave devices in I ² C buses	
	20.1. Precondition	
	20.2. Procedure	
	20.3. Expected result	
21.	TST020 Verify whether \$(n) SPI ports are detected	
	21.1. Precondition	
	21.2. Procedure	
	21.3. Expected result	
22.	TST021 Verify whether \$(n) USB ports are detected	27
	22.1. Precondition	. 27
	22.2. Procedure	27
	22.3. Expected result	27
23.	TST022 Verify whether USB slave device is detected	28
	23.1. Precondition	
	23.2. Procedure	
	23.3. Expected result	
24	TST023 Verify Audio ports are detected	
_ ''	24.1. Precondition	
	24.2. Procedure	
	24.3. Expected result	
25	TST024 Verify whether Board enter into uboot prompt properly when press any key	
25.	25.1. Precondition	
	25.2. Procedure	
~ ~	25.3. Expected result	
26.	TST025 Check the board SOC in u-boot	_
	26.1. Precondition	
	26.2. Procedure	
	26.3. Expected result	
27.	TST026 Check the CPU model in u-boot	
	27.1. Precondition	
	27.2. Procedure	32
	27.3. Expected result	32
28.	TST027 Check the board name in u-boot	. 33
	28.1. Precondition	. 33
	28.2. Procedure	33
	28.3. Expected result	
29.	TST028 Check the U-boot version	
	29.1. Precondition	
	29.2. Procedure	
	29.3. Expected result	
3 ∪	TST029 Verify whether kernel log is displayed using dmesg	
JU.	30.1. Precondition	
	30.2 Procedure	. 35 35
	N/ / 1 N / CUU C	77

	30.3. Expected result	35
31.	TST030 Verify whether Kernel data structure is accessible using sysfs	36
	31.1. Precondition	
	31.2. Procedure	
	31.3. Expected result	36
32.	TST031 Verify whether board shell is accessible	
	32.1. Precondition	
	32.2. Procedure	
33	TST032 Check whether Rootfs have basic commands for testing	
<i>JJ</i> .	33.1. Precondition	
	33.2. Procedure	
	33.3. Expected result	
3/1	TST033 Verify MMC_1 8 pins working as SD Card boot	
J 4 .	34.1. precondition	
	34.2. procedure	
	34.3. Expected Result	
25	TST034 Verify ETH_0 8 pins working as 10/100/1000M Ethernet(RGMII0)	
<i>5</i> 5.		
	35.1. Precondition	
	35.2. Procedure	
26	35.3. Expected Result	
36.	TST035 verify AMBE Codec 4 MHz clock on boot up	
	36.1. preconditions	
	36.2. procedure	
27	36.3. Expected result	
3/.	TST036 verify the PHY MDIO.	
	37.1. preconditions	
	37.2. procedure	
20	37.3. Expected result	
38.	TST037 verify the TLV CODEC test.	
	38.1. preconditions	
	38.2. procedure	
	38.3. Expected result	
39.	TST038 verify RP Message test.	
	39.1. preconditions	
	39.2. procedure	
	39.3. Expected result	
40.	TST039 verify IPC Big Data test.	
	40.1. preconditions	
	40.2. procedure	
	40.3. Expected Result	
41.	TST040 Verify u-boot log on UART-3/ttyS2.	
	41.1. preconditions	
	41.2. procedure	
	41.3. Expected result	
42.	TST041 verify Linux log on UART-3/ttyS2.	51
	42.1. preconditions	51
	42.2. procedure	51
	42.3. Expected result	
43.	TST042 Verify Loopback test on UART-2/ttys1	52
	43.1. preconditions	52
	43.2. procedure	
	43.3. Expected result	52
44	TST043 Verify Loopback test on UART-4/ttys3	53

	44.1. preconditions		
	44.2. procedure	5	53
	44.3. Expected result	5	53
45.	TST044 Verify AMBE CODEC reset pin toggling	5	54
	45.1. preconditions		
	45.2. procedure		
	45.3. Expected result		
46.	TST045 Verify USB Webcam test	5	55
	46.1. preconditions		
	46.2. procedure		
	46.3. 1.Record Camera using GStreamer CLI		
	46.4. 2.Record Camera using OpenCV in Python		
	46.5. 3.Record Camera using OpenCV in C++		
	46.6. Expected result		
47.	TST046 Verify SPI Loopback test.		
	47.1. preconditions		
	47.2. procedure		
	47.3. Expected result		
48	TST047 Verify eMMC Boot test.		
	48.1. preconditions		
	48.2. procedure		
	48.3. eMMC Flashing instructions		
	48.4. Boot from SD card		
	48.5. Create partitions on eMMC		
	48.6. Create EXT4 file system type for rootfs		
	48.7. Mount the eMMC partitions		
	48.8. Copy Rootfs and U-Boot to mount points		
	48.9. Create a test file	6	รก
	48.10. Boot from eMMC		
	48.11. Expected result		
10	TST048 Verify Loopback test on UART-n/ttyS(n-1)		
49.	49.1. preconditions		
	49.2. procedure		
	49.3. Expected result		
50	TST049 Verify GPIO(port_pin) toggling		
50.			
	50.1. preconditions		
	50.2. procedure		
г1	50.3. Expected result		
51.	TST050 Verify GPIO PIN toggling		
	51.1. preconditions		
	51.2. Procedure		
	51.3. Expected result		
52.	TST051 Verify AMBE GPIO PIN toggling		
	52.1. preconditions		
	52.2. procedure		
	52.3 Expected result	6	55

Chapter 1. Initial test set up

- AM572X-BEL-MMRFIC board
- SD card with image

Chapter 2. TST001 Verify whether board is booting properly after powered up

2.1. Procedure

- Provide power supply to phytec carrier board and press power button for booting
- Check whether it is booting correctly or struck anywhere

2.2. Expected result

· Board should be booted successfully

Chapter 3. TST002 Verify whether board is rebooting properly after Reset Button pressed

3.1. Procedure

- · Press the Reset Button when Board is in Running
- Check whether it is rebooting properly or struck anywhere

3.2. Expected result

· Board should be rebooted successfully

Chapter 4. TST003 Verify the consistency of booting when power cycle a Device multiple times

4.1. Procedure

- Plug the power cable and press the power button check the board is booting properly
- Unplug and plug the power button for multiple times and check the board is properly booting

4.2. Expected result

• The board should boot successfully for multiple times also

Chapter 5. TST004 Check release version

5.1. Procedure

• We can check the release version by using the below command

\$ cat /etc/os-release.

5.2. Expected result

ID="arago"
NAME="Arago"
VERSION="2019.11"
VERSION_ID="2019.11"
PRETTY_NAME="Arago 2019.11"

Chapter 6. TST005 Check the U-boot software version

6.1. Procedure

• After booting the board at the initial stage of the boot log we can check the version of U-Boot

6.2. Expected result

U-Boot 2019.01-gdf704de-BSP-Yocto-TISDK-AM57xx-PD20.1.2-dirty (xxx)

Note

xxx is the build date and time.

Chapter 7. TST006 Check the Kernel version

7.1. procedure

• After completion of booting process we can check kernel version

\$ uname -r

7.2. Expected result

• Kernel version should be displayed

Chapter 8. TST007 Verify the total RAM size

8.1. Procedure

• We can Check ram size by using command

\$ cat /proc/meminfo

	MemTotal:	1847828	kB
	MemFree:	1614256	
	MemAvailable:	1741080	
ı	Buffers:	12792	
ı	Cached:	133992	
ı			kВ
ı	SwapCached:		
ı	Active:	46652	
ı	Inactive:	117928	
ı	Active(anon):	19176	
ı	<pre>Inactive(anon):</pre>	9028	
ı	Active(file):	27476	
ı		108900	kΒ
ı	Unevictable:	0	kΒ
ı	Mlocked:	Θ	kΒ
	HighTotal:	1291264	kB
	HighFree:	1131312	kB
	LowTotal:	556564	kB
	LowFree:	482944	kB
	SwapTotal:		kB
	SwapFree:		kB
	Dirty:		kB
	Writeback:		kB
	AnonPages:	17832	
	Mapped:	26532	
	Shmem:	10400	
	Slab:	38532	
	SReclaimable:		
		15020	
	SUnreclaim:	23512	
	KernelStack:	1072	
	PageTables:	1224	
	NFS_Unstable:		kB
	Bounce:		kB
	WritebackTmp:		kB
	CommitLimit:	923912	
	Committed_AS:	202984	
	VmallocTotal:	245760	
	VmallocUsed:	0	kB
	VmallocChunk:	0	kB
	Percpu:	312	kB
	CmaTotal:	188416	kB

CmaFree: 175148 kB

Chapter 9. TST008 Verify the available RAM space size

9.1. Procedure

• we can check the available RAM size by using the command

\$ cat /proc/meminfo

	MemTotal:	1847828	kB
	MemFree:	1614256	
	MemAvailable:	1741080	
1	Buffers:	12792	
ı	Cached:	133992	
ı	SwapCached:		kB
ı	Active:	46652	
ı	Inactive:	117928	
ı	Active(anon):	19176	
ı	Inactive(anon):	9028	
ı	Active(file):	27476	
ı	Inactive(file):		
ı	Unevictable:		kВ
	Mlocked:		kВ
	HighTotal:	1291264	
	HighFree:	1131312	
	LowTotal:	556564	
	LowFree:	482944	
			kВ
	SwapTotal:		
	SwapFree:		kB
	Dirty:		kB
	Writeback:		kB
	AnonPages:	17832	
	Mapped:	26532	
	Shmem:	10400	
	Slab:	38532	
	SReclaimable:	15020	
	SUnreclaim:	23512	
	KernelStack:	1072	
	PageTables:	1224	
	NFS_Unstable:		kB
	Bounce:		kB
	WritebackTmp:		kB
	CommitLimit:	923912	
	Committed_AS:	202984	
	VmallocTotal:	245760	
	VmallocUsed:		kB
	VmallocChunk:	0	kB
	Percpu:	312	kB
	CmaTotal:	188416	kB

CmaFree: 175148 kB

Chapter 10. TST009 Verify the total Storage size

10.1. Procedure

• we can check the total storage size by using the below command

\$ df -h

Filesystem	Size	Used	Available	Use% Mounted on
/dev/root	7.2G	6.7G	107.4M	98% /
devtmpfs	809.3M	4.0K	809.3M	0% /dev
tmpfs	902.3M	8.0K	902.3M	0% /dev/shm
tmpfs	902.3M	9.5M	892.7M	1% /run
tmpfs	902.3M	0	902.3M	0% /sys/fs/cgroup
tmpfs	902.3M	608.0K	901.7M	0% /tmp
tmpfs	16.0M	0	16.0M	0% /media/ram
tmpfs	50.0M	16.0K	50.0M	0% /var/volatile
/dev/mmcblk0p1	4.0M	770.0K	3.2M	19% /run/media/mmcblk0p1
/dev/mmcblk1p2	2.2G	1.8G	209.9M	90% /run/media/mmcblk1p2
tmpfs	180.4M	Θ	180.4M	0% /run/user/0

Chapter 11. TST010 Verify the Available Storage size

11.1. Procedure

• we can check the available storage size by using the below command

\$ df -h

Filesystem	Size	Used	Available	Use% Mounted on
/dev/root	7.2G	6.7G	107.4M	98% /
devtmpfs	809.3M	4.0K	809.3M	0% /dev
tmpfs	902.3M	8.0K	902.3M	0% /dev/shm
tmpfs	902.3M	9.5M	892.7M	1% /run
tmpfs	902.3M	0	902.3M	0% /sys/fs/cgroup
tmpfs	902.3M	608.0K	901.7M	0% /tmp
tmpfs	16.0M	0	16.0M	0% /media/ram
tmpfs	50.0M	16.0K	50.0M	0% /var/volatile
/dev/mmcblk0p1	4.0M	770.0K	3.2M	19% /run/media/mmcblk0p1
/dev/mmcblk1p2	2.2G	1.8G	209.9M	90% /run/media/mmcblk1p2
tmpfs	180.4M	0	180.4M	0% /run/user/0

Chapter 12. TST011 Verify the SOC Name and number of core

12.1. Procedure

• By using the below command we can check the SOC name and number of core

\$ cat /proc/cpuinfo

12.2. Expected result

processor

model name : ARMv7 Processor rev 2 (v7l)

BogoMIPS : 12.29

Features : half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt vfpd3

CPU implementer: 0x41 CPU architecture: 7 CPU variant : 0x2 CPU part : 0xc0f CPU revision : 2

processor : 1
model name : ARMv7 Processor rev 2 (v7l)

BogoMIPS : 12.29

Features : half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt vfpd3

CPU implementer : 0x41 CPU architecture: 7 CPU variant : 0x2 CPU part : 0xc : 0xc0f

CPU revision : 2
Hardware : Generic DRA74X (Flattened Device Tree)
Revision : 0000

: 0b01400e64fa0922 Serial

Chapter 13. TST012 Verify the architecture of SOC

13.1. Procedure

• we can find the architecture of SOC by using the below command

\$ uname -m

13.2. Expected result

armv7l

Chapter 14. TST013 Verify whether Ethernet ports are detected

14.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- · Ethernet ports is to be enabled

14.2. Procedure

• Connecting ethernet port and pc through ethernet cable we can find whether ethernet ports are detected by using the below commands

```
$ ethtool eth0
```

or

\$ ethtool eth1

```
Settings for eth1:
      Supported ports: [ TP MII ]
      Supported link modes:
                               10baseT/Half 10baseT/Full
                               100baseT/Half 100baseT/Full
                               1000baseT/Half 1000baseT/Full
      Supported pause frame use: Symmetric Receive-only
      Supports auto-negotiation: Yes
      Supported FEC modes: Not reported
      Advertised link modes: 10baseT/Half 10baseT/Full
                               100baseT/Half 100baseT/Full
                               1000baseT/Half 1000baseT/Full
      Advertised pause frame use: No
      Advertised auto-negotiation: Yes
      Advertised FEC modes: Not reported
      Link partner advertised link modes:
                                            10baseT/Half 10baseT/Full
                                            100baseT/Half 100baseT/Full
                                            1000baseT/Full
      Link partner advertised pause frame use: No
      Link partner advertised auto-negotiation: Yes
      Link partner advertised FEC modes: Not reported
      Speed: 1000Mb/s
      Duplex: Full
      Port: MII
      PHYAD: 2
      Transceiver: internal
      Auto-negotiation: on
      Supports Wake-on: d
      Wake-on: d
      Current message level: 0x00000000 (0)
```

Link detected: yes

Settings for eth0:

Supported ports: [TP MII]

Supported link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full 1000baseT/Half 1000baseT/Full

Supported pause frame use: Symmetric Receive-only

Supports auto-negotiation: Yes Supported FEC modes: Not reported

Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full 1000baseT/Half 1000baseT/Full

Advertised pause frame use: No Advertised auto-negotiation: Yes Advertised FEC modes: Not reported

Speed: 10Mb/s
Duplex: Half
Port: MII
PHYAD: 1

Transceiver: internal Auto-negotiation: on Supports Wake-on: d

Wake-on: d

Current message level: 0x00000000 (0)

Link detected: no

Chapter 15. TST014 Verify LAN Ethernet port is getting ip address when it is connected to LAN

15.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- Ethernet ports is to be enabled

15.2. Procedure

 Connect ethernet port in phytec board and check whether the port is getting ip address from WAN by using the command

\$ ifconfig

```
eth0
         Link encap:Ethernet HWaddr 50:51:A9:92:C8:92
         inet addr:10.42.0.27 Bcast:10.42.0.255 Mask:255.255.25.0
         inet6 addr: fe80::5251:a9ff:fe92:c892/64 Scope:Link
        UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
        RX packets:163 errors:0 dropped:0 overruns:0 frame:0
        TX packets:148 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
        RX bytes:37147 (36.2 KiB) TX bytes:26487 (25.8 KiB)
        Interrupt:98
eth1
         Link encap: Ethernet HWaddr 50:51:A9:92:C8:93
         inet6 addr: fe80::5251:a9ff:fe92:c893/64 Scope:Link
        UP BROADCAST MULTICAST MTU:1500 Metric:1
        RX packets:32 errors:0 dropped:0 overruns:0 frame:0
        TX packets:69 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
        RX bytes:7737 (7.5 KiB) TX bytes:11460 (11.1 KiB)
lo
         Link encap:Local Loopback
         inet addr:127.0.0.1 Mask:255.0.0.0
         inet6 addr: ::1/128 Scope:Host
        UP LOOPBACK RUNNING MTU:65536 Metric:1
        RX packets:2 errors:0 dropped:0 overruns:0 frame:0
        TX packets:2 errors:0 dropped:0 overruns:0 carrier:0
        collisions:0 txqueuelen:1000
        RX bytes:140 (140.0 B) TX bytes:140 (140.0 B)
```

Chapter 16. TST015 Verify the GPIO pins are populated in sysfs

16.1. Preconditions

- AM572X-BEL-MMRFIC board
- SD card
- GPIO pins is to be enabled

16.2. Procedure

• Go to /sys/bus and check whether the GPIO pins are enabled.

Chapter 17. TST016 Verify whether UART ports are Detected

17.1. Preconditions

- AM572X-BEL-MMRFIC board
- SD card
- · UART Image is to be flashed

17.2. Procedure

- Go to /sys/class/ and check whether UART is detecting or not.
- ls /sys/class/tty/tty*

ttysc: dev	power	subsystem	uevent
ttysd: dev	power	subsystem	uevent
ttyse: dev	power	subsystem	uevent
ttysf: dev	power	subsystem	uevent

Chapter 18. TST017 Verify whether \$(n) UART ports are detected

18.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

18.2. Procedure

• Check the UART ports are detected using below command

\$ ls /dev/ttyS*

18.3. Expected result

• Number of UART ports detected should be 7

/dev/ttyS0 /dev/ttyS1 /dev/ttyS2 /dev/ttyS3 /dev/ttyS4 /dev/ttyS5 /dev/ttyS6 /de

Chapter 19. TST018 Verify whether \$(n) I²C ports are detected

19.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

19.2. Procedure

• Check the I²C ports are detected using below command

\$ ls /dev/i2c-*

19.3. Expected result

• Number of I²C ports detected should be 5

/dev/i2c-0 /dev/i2c-2 /dev/i2c-3

Chapter 20. TST019 Verify Scanning of slave devices in I²C buses

20.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

20.2. Procedure

- Run i2cdetect command to scan the slave devices connected to i2c bus
- You will need to specify <busno> as the i2c port number

```
$ i2cdetect -y <busno>
```

20.3. Expected result

• It should output a table of the currently detected I²C devices

Chapter 21. TST020 Verify whether \$(n) SPI ports are detected

21.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

21.2. Procedure

• Check the SPI ports are detected using below command

\$ ls /dev/spi*

21.3. Expected result

• Number of SPI ports detected should be 2

/dev/spidev1.0
/dev/spidev1.1

Chapter 22. TST021 Verify whether \$(n) USB ports are detected

22.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

22.2. Procedure

• Check the USB ports are detected using below command

\$ lsusb

22.3. Expected result

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Chapter 23. TST022 Verify whether USB slave device is detected

23.1. Precondition

- AM572X-BEL-MMRFIC board
- · SD card with image
- Pendrive

23.2. Procedure

- · Connect the pendrive in USB port 1 of board
- Check the dmesg log to verify whether pendrive is detected in USB port 1

23.3. Expected result

• Pendrive should be detected in USB port 1

```
root@am572x-bel-mmrfic:~# [ 3975.978165] usb 2-1: new SuperSpeed Gen 1 USB device numbe
[ 3976.009065] usb 2-1: New USB device found, idVendor=0781, idProduct=5581, bcdDevice=
[ 3976.017285] usb 2-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[ 3976.025121] usb 2-1: Product: Ultra
[ 3976.028976] usb 2-1: Manufacturer: SanDisk
[ 3976.033093] usb 2-1: SerialNumber: 4C531003560526109191
[ 3976.129677] usb-storage 2-1:1.0: USB Mass Storage device detected
[ 3976.136532] scsi host1: usb-storage 2-1:1.0
[ 3976.142295] usbcore: registered new interface driver usb-storage
[ 3976.152572] usbcore: registered new interface driver uas
[ 3977.199035] scsi 1:0:0:0: Direct-Access
                                               SanDisk Ultra
                                                                         1.00 PQ: 0 ANS
[ 3977.226311] sd 1:0:0:0: [sda] 30464000 512-byte logical blocks: (15.6 GB/14.5 GiB)
[ 3977.234966] sd 1:0:0:0: [sda] Write Protect is off
[ 3977.240174] sd 1:0:0:0: [sda] Write cache: disabled, read cache: enabled, doesn't su
[ 3977.255074] sda: sda1
[ 3977.259567] sd 1:0:0:0: [sda] Attached SCSI removable disk
[ 3991.098360] usb 2-1: USB disconnect, device number 2
[ 3991.268280] FAT-fs (sda1): unable to read boot sector to mark fs as dirty
```

Chapter 24. TST023 Verify Audio ports are detected

24.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

24.2. Procedure

· Check the list of audio port detected using below command

\$ aplay -l

24.3. Expected result

· List of audio ports should be detected

```
aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: phyCOREAM57xxRD [phyCORE-AM57xx-RDK], device 0: davinci-mcasp.0-tlv32]
  Subdevices: 1/1
  Subdevice #0: subdevice #0
```

Chapter 25. TST024 Verify whether Board enter into uboot prompt properly when press any key

25.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

25.2. Procedure

- Power up the board
- While booting the board, check the autoboot count is 5 seconds in boot log
- Then press enter key go to u-boot prompt

25.3. Expected result

· Board should be entered into uboot prompt

```
U-Boot 2019.01-gdf704de-BSP-Yocto-TISDK-AM57xx-PD20.1.2-dirty (xxx)

CPU : DRA752-GP ES2.0

Model: MMRFIC phyCORE-AM572x Carrier Board
Board: AM572X-BEL-MMRFIC

DRAM: 2 GiB

MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1

Loading Environment from FAT... *** Warning - bad CRC, using default environment

Loading Environment from MMC... *** Warning - bad CRC, using default environment

PHYTEC: unknown board name. Defaulting to am572x_bel_mmrfic, a MINIMAL AM5716 configural Warning: fastboot.board_rev: unknown board revision

Net:

Warning: ethernet@484848000 using MAC address from ROM eth0: ethernet@484848000

Hit any key to stop autoboot: 0

=>
```


Note

xxx is the build date and time.

Chapter 26. TST025 Check the board SOC in u-boot

26.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

26.2. Procedure

· Check the board soc using below command

\$ print board_soc

26.3. Expected result

• Board SOC should be am572x

=> print board_soc
board soc=am572x

Chapter 27. TST026 Check the CPU model in u-boot

27.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

27.2. Procedure

• Check the CPU model using below command

\$ print cpu

27.3. Expected result

CPU model should be armv7

Chapter 28. TST027 Check the board name in u-boot

28.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

28.2. Procedure

· Check the board name using below command

\$ print board_name

28.3. Expected result

• Board name should be am572x_bel_mmrfic

=> print board_name
board name=am572x bel mmrfic

Chapter 29. TST028 Check the U-boot version

29.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

29.2. Procedure

• After power on the board hit any key to stop at U-boot prompt and then check the U-boot using below command

=> print ver

29.3. Expected result

=> print ver ver=U-Boot 2019.01-gdf704de-BSP-Yocto-TISDK-AM57xx-PD20.1.2-dirty (xxx)

Note

xxx is the build date and time.

Chapter 30. TST029 Verify whether kernel log is displayed using dmesg

30.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

30.2. Procedure

· Check the kernel log is displayed in dmesg

\$ dmesg

30.3. Expected result

Kernel log should be shown in dmesg command output

Chapter 31. TST030 Verify whether Kernel data structure is accessible using sysfs

31.1. Precondition

- AM572X-BEL-MMRFIC board
- · SD card with image

31.2. Procedure

• check kernel data structure is accessible by getting current kernel log level from sysfs

\$ cat /proc/sys/kernel/printk

31.3. Expected result

· Kernel data should be accessible using sysfs

7 4 1 7

Chapter 32. TST031 Verify whether board shell is accessible

32.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

32.2. Procedure

- Power up the board
- · After Board booted up, login the board
- Run sh command and check whether shell is accessible

\$ sh

root@am572x-bel-mmrfic:~# ls /bin/sh
/bin/sh
root@am572x-bel-mmrfic:~# echo \$SHELL
/bin/sh

Chapter 33. TST032 Check whether Rootfs have basic commands for testing

33.1. Precondition

- AM572X-BEL-MMRFIC board
- SD card with image

33.2. Procedure

- · Power up and login the board
- Run below commands and check whether commands are available in board

```
* dmesg
* i2cdetect -V
* aplay --version
* spidev_test -v
* ls /dev/ttyS*
* dmesg | grep <name>
```

33.3. Expected result

· All mentioned Basic commands should be available in board

Chapter 34. TST033 Verify MMC_1 8 pins working as SD Card boot

34.1. precondition

- AM572X-BEL-MMRFIC board
- SD card with image

34.2. procedure

- Insert image flashed SD card into card slot
- · Power up the board

34.3. Expected Result

· Board Should boot, and we should get the linux promptÂ

Chapter 35. TST034 Verify ETH_0 8 pins working as 10/100/1000M Ethernet(RGMII0)

35.1. Precondition

- AM572X-BEL-MMRFIC board
- · SD card with image

35.2. Procedure

- set the speed(10/100/1000M) and other properties using ethtool
- · connect the live ethernet cable to the connector
- Check the configured parameters using ethtool

```
root@am572x-bel-mmrfic:~# ethtool eth0
Settings for eth0:
        Supported ports: [ TP MII ]
        Supported link modes:
                                10baseT/Half 10baseT/Full
                                100baseT/Half 100baseT/Full
                                1000baseT/Half 1000baseT/Full
        Supported pause frame use: Symmetric Receive-only
        Supports auto-negotiation: Yes
        Supported FEC modes: Not reported
        Advertised link modes: 100baseT/Full
        Advertised pause frame use: No
        Advertised auto-negotiation: Yes
        Advertised FEC modes: Not reported
        Link partner advertised link modes: 10baseT/Half 10baseT/Full
                                             100baseT/Half 100baseT/Full
        Link partner advertised pause frame use: No
        Link partner advertised auto-negotiation: Yes
        Link partner advertised FEC modes: Not reported
        Speed: 100Mb/s
        Duplex: Full
        Port: MII
        PHYAD: 1
        Transceiver: internal
        Auto-negotiation: on
        Supports Wake-on: d
        Wake-on: d
        Current message level: 0x00000000 (0)
        Link detected: yes
root@am572x-bel-mmrfic:~# ethtool -s eth0 speed 1000 duplex full autoneg on
```

```
root@am572x-bel-mmrfic:~# ethtool eth0
Settings for eth0:
        Supported ports: [ TP MII ]
        Supported link modes:
                                10baseT/Half 10baseT/Full
                                100baseT/Half 100baseT/Full
                                1000baseT/Half 1000baseT/Full
        Supported pause frame use: Symmetric Receive-only
        Supports auto-negotiation: Yes
        Supported FEC modes: Not reported
        Advertised link modes: 1000baseT/Full
        Advertised pause frame use: No
        Advertised auto-negotiation: Yes
        Advertised FEC modes: Not reported
        Link partner advertised link modes:
                                             10baseT/Half 10baseT/Full
                                             100baseT/Half 100baseT/Full
                                             1000baseT/Full
        Link partner advertised pause frame use: No
        Link partner advertised auto-negotiation: Yes
        Link partner advertised FEC modes: Not reported
        Speed: 1000Mb/s
        Duplex: Full
        Port: MII
        PHYAD: 1
        Transceiver: internal
        Auto-negotiation: on
        Supports Wake-on: d
        Wake-on: d
        Current message level: 0x00000000 (0)
        Link detected: yes
```

Chapter 36. TST035 verify AMBE Codec 4 MHz clock on boot up

36.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- Digital Oscilloscope

36.2. procedure

- · Boot up the board.
- check the resistor R51 with DSO Probe.

36.3. Expected result

• 4MHZ waveform on DSO.

Chapter 37. TST036 verify the PHY MDIO.

37.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- · Ethernet Driver

37.2. procedure

- · Boot into linux.
- · Connect ethernet cable.
- Configure eth0 speed to 100Mbps/1000Mbps using ethtool
 - ethtool -s eth speed <100/1000> duplex full autoneg on

```
root@am572x-bel-mmrfic:/sys/class/leds# ethtool -s eth0 speed 100 duplex half autoneg o
root@am572x-bel-mmrfic:/sys/class/leds# ethtool eth0
Settings for eth0:
        Supported ports: [ TP MII ]
        Supported link modes:
                                10baseT/Half 10baseT/Full
                                100baseT/Half 100baseT/Full
                                1000baseT/Half 1000baseT/Full
        Supported pause frame use: Symmetric Receive-only
        Supports auto-negotiation: Yes
        Supported FEC modes: Not reported
        Advertised link modes: 100baseT/Half
        Advertised pause frame use: No
        Advertised auto-negotiation: Yes
        Advertised FEC modes: Not reported
        Link partner advertised link modes: 10baseT/Half 10baseT/Full
                                             100baseT/Half 100baseT/Full
        Link partner advertised pause frame use: No
        Link partner advertised auto-negotiation: Yes
        Link partner advertised FEC modes: Not reported
        Speed: 100Mb/s
        Duplex: Half
        Port: MII
        PHYAD: 1
        Transceiver: internal
        Auto-negotiation: on
        Supports Wake-on: d
        Wake-on: d
        Current message level: 0x00000000 (0)
        Link detected: yes
```

Chapter 38. TST037 verify the TLV CODEC test.

38.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card

38.2. procedure

- · Boot into linux.
- Play the test file aplay.

38.3. Expected result

root@am572x-bel-mmrfic:/sys/class/leds# aplay /usr/share/sounds/alsa/Noise.wav
Playing WAVE '/usr/share/sounds/alsa/Noise.wav' : Signed 16 bit Little Endian, Rate 480

Chapter 39. TST038 verify RP Message test.

39.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- DSP Firmware

39.2. procedure

- · Boot the board to Linux.
- Load the firmware to DSP Engines and IPU Engines.
- Execute the below commands.

```
# DSP 1
$ ln -sf /home/root/dsp-binaries/rpmsg/server_dsp1.xe66 /lib/firmware/dra7-dsp1-fw.xe66
$ echo 40800000.dsp > /sys/bus/platform/drivers/omap-rproc/unbind
$ echo 40800000.dsp > /sys/bus/platform/drivers/omap-rproc/bind
$ cd /root/dsp-binaries/rpmsg
$ ./app host DSP1
# DSP 2
$ ln -sf /home/root/dsp-binaries/rpmsg/server dsp1.xe66 /lib/firmware/dra7-dsp2-fw.xe66
$ echo 41000000.dsp > /sys/bus/platform/drivers/omap-rproc/unbind
$ echo 41000000.dsp > /sys/bus/platform/drivers/omap-rproc/bind
$ cd /root/dsp-binaries/rpmsg
$ ./app_host DSP2
# IPU 1
$ ln -sf /home/root/dsp-binaries/rpmsg/server_ipu1.xem4 /lib/firmware/dra7-ipu1-fw.xem4
$ echo 58820000.ipu > /sys/bus/platform/drivers/omap-rproc/unbind
$ echo 58820000.ipu > /sys/bus/platform/drivers/omap-rproc/bin
$ cd /root/dsp-binaries/rpmsg
$./app host IPU1
# IPU 2
$ ln -sf /home/root/dsp-binaries/rpmsg/server ipu1.xem4 /lib/firmware/dra7-ipu2-fw.xem4
$ echo 55020000.ipu > /sys/bus/platform/drivers/omap-rproc/unbind
$ echo 55020000.ipu > /sys/bus/platform/drivers/omap-rproc/bin
$ cd /root/dsp-binaries/rpmsg
```

39.3. Expected result

\$./app_host IPU2

root@am572x-bel-mmrfic:~/dsp-binaries/rpmsg# ./app host DSP1

```
--> main:
--> Main main:
--> App create:
App create: Host is ready
<-- App create:
--> App exec:
App exec: sending message 1
App_exec: sending message 2
App exec: sending message 3
App exec: message received, sending message 4
App_exec: message received, sending message 15
App exec: message received
App exec: message received
App_exec: message received
<-- App exec: 0
--> App delete:
<-- App delete:
<-- Main main:
<-- main:
root@am572x-bel-mmrfic:~/dsp-binaries/rpmsg# ./app host DSP2
--> main:
--> Main main:
--> App create:
App_create: Host is ready
<-- App create:
--> App exec:
App exec: sending message 1
App exec: sending message 2
App exec: sending message 3
App_exec: message received, sending message 4
App exec: message received, sending message 15
App exec: message received
App exec: message received
App exec: message received
<-- App exec: 0
--> App delete:
<-- App delete:
<-- Main main:
<-- main:
root@am572x-bel-mmrfic:~/dsp-binaries/rpmsg# ./app host IPU1
--> main:
--> Main main:
--> App create:
App create: Host is ready
<-- App create:
--> App exec:
```

```
App exec: sending message 1
App exec: sending message 2
App exec: sending message 3
App exec: message received, sending message 4
App_exec: message received, sending message 15
App exec: message received
App exec: message received
App exec: message received
<-- App exec: 0
--> App delete:
<-- App_delete:
<-- Main main:
<-- main:
root@am572x-bel-mmrfic:~/dsp-binaries/rpmsg# ./app host IPU2
--> main:
--> Main main:
--> App create:
App create: Host is ready
<-- App_create:
--> App exec:
App_exec: sending message 1
App exec: sending message 2
App exec: sending message 3
App_exec: message received, sending message 4
App_exec: message received, sending message 15
App exec: message received
App exec: message received
App_exec: message received
<-- App exec: 0
--> App delete:
<-- App delete:
<-- Main main:
<-- main:
```

Chapter 40. TST039 verify IPC Big Data test.

40.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- DSP binary

40.2. procedure

- · Boot the board to Linux.
- · Load the firmware to DSP.
- Execute the below commands.

```
# DSP 1
$ ln -sf /home/root/dsp1-bigdata/server_dsp.xe66 /lib/firmware/dra7-dsp1-fw.xe66
$ echo 40800000.dsp > /sys/bus/platform/drivers/omap-rproc/unbind
$ echo 40800000.dsp > /sys/bus/platform/drivers/omap-rproc/bind
$ cd /root/dsp1-bigdata
$ ./app_host DSP1

# DSP 2
$ ln -sf /home/root/dsp1-bigdata/server_dsp.xe66 /lib/firmware/dra7-dsp2-fw.xe66
$ echo 41000000.dsp > /sys/bus/platform/drivers/omap-rproc/unbind
$ echo 41000000.dsp > /sys/bus/platform/drivers/omap-rproc/bind
$ cd /root/dsp1-bigdata
$ ./app_host DSP2
```

```
$ ./app_host DSP1
--> main:
--> Main main:
--> App_create:
App create: Host is ready
<-- App_create:
--> App_exec:
CMEM init success
CMEM allocPool success: Allocated buffer 0xaa50e000
SharedRegion setup success
HeapMem setup success
HeapMem create success
App exec: sending message 1
App exec: sending message 2
App_exec: sending message 3
App exec: message received: 16
```

```
App exec: Data check clean
<-- App exec: 0
--> App delete:
<-- App delete:
<-- Main main:
Host: Test Passed
<-- main:
$ ./app_host DSP2
--> main:
--> Main main:
--> App_create:
App create: Host is ready
<-- App create:
--> App_exec:
CMEM init success
CMEM_allocPool success: Allocated buffer 0xaa50e000
SharedRegion setup success
HeapMem setup success
HeapMem create success
App exec: sending message 1
App exec: sending message 2
App exec: sending message 3
App exec: message received: 16
App_exec: Data check clean
<-- App exec: 0
--> App delete:
<-- App_delete:
<-- Main main:
Host: Test Passed
<-- main:
```

Chapter 41. TST040 Verify u-boot log on UART-3/ttyS2.

41.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card

41.2. procedure

- Connect UART3 to Serial Terminal.
- · Power on the Board.
- Press Enter Key on bootup.

41.3. Expected result

• U-Boot log should be shown as below.

Note

xxx is the build date and time.

Chapter 42. TST041 verify Linux log on UART-3/ttyS2.

42.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card

42.2. procedure

- Connect UART4 to Serial Terminal/PC.
- Power on the Board.

42.3. Expected result

• Linux boot log should be shown in Serial Terminal.

Chapter 43. TST042 Verify Loopback test on UART-2/ttys1

43.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- · Loopback setup

43.2. procedure

1.Connect(Loopback) Carrier Board MB Connector PIN#133(RX) & PIN#134(TX)

2.Run the test as below

3.TX and RX data should be same

```
root@am572x-bel-mmrfic:~# uart_test /dev/ttyS1
Writting Data....
Device Reading ....
mmrfhello
Loopback Test Success
```

Chapter 44. TST043 Verify Loopback test on UART-4/ttys3

44.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- Loopback setup

44.2. procedure

1.Connect(Loopback) Carrier Board MB Connector PIN#(RX) & PIN#(TX) 2.Run the test as below 3.TX and RX data should be same

```
root@am572x-bel-mmrfic:~# uart_test /dev/ttyS3
Writting Data....
Device Reading ....
mmrfhello
Loopback Test Success
```

Chapter 45. TST044 Verify AMBE CODEC reset pin toggling

45.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- Digital Oscilloscope

45.2. procedure

- Export GIO6_13(MBC 42)
- Set direction to out.
- set a number to value file.

```
$ cd /sys/class/gpio
$ echo 173 > export
$ cd gpio173
$ echo out > direction
$ echo 1 > value
$ echo 0 > value
```

45.3. Expected result

• MBC PIN#42 should toggle as per the value written.

Chapter 46. TST045 Verify USB Webcam test

46.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- · Digital Oscilloscope

46.2. procedure

- Connect the USB webcam to the USB port.
- We can record the stream using the following three methods 1.gstreamer pipeline 2.Python script 3.cpp code

46.3. 1. Record Camera using GStreamer CLI

• The following gstreamer pipeline can be used to record camera data to a file.

46.4. 2.Record Camera using OpenCV in Python

• This example Python script saves the camera feed into a file.

46.4.1. Step 1: Save the file

Save the below Python code on the target's filesystem as opencv_save.py.

```
import cv2
def save_feed_to_file(path, fps, codec):
   # open camera
    cam = cv2.VideoCapture(1)
    width = cam.get(cv2.CAP PROP FRAME WIDTH) # float
    # Get current height of frame
    height = cam.get(cv2.CAP PROP FRAME HEIGHT) # float
    # setup video writer object
    codec = cv2.VideoWriter fourcc(*codec)
    out = cv2.VideoWriter(path, codec, fps, (int(width), int(height)))
    while (cam.isOpened()):
        # read a frame
        ret, frame = cam.read()
        # write frame using video writer
        out.write(frame)
def main():
    save feed to file("test.avi", 60, "MJPG")
```

```
if __name__ == "__main__":
    main()
```

46.4.2. Step 2: Run the script

• Use the below command to run the script.

```
target# python3 <path-to-file>/opencv_save.py
```

• NOTE: To stop saving the feed press ctrl+c.

46.5. 3.Record Camera using OpenCV in C++

• This cpp example code saves the camera feed as a file.

46.5.1. Step 1: Save the file

• Save the below file on target's filesystem as **opency save.cpp**.

```
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/videoio.hpp>
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
using namespace std;
using namespace cv;
int main(int argc, char *argv[])
{
        Mat frame;
        VideoCapture cap(1);
        int width = cap.get(cv::CAP PROP FRAME WIDTH);
        int length = cap.get(cv::CAP_PROP_FRAME_HEIGHT);
        int fps = cap.get(cv::CAP PROP FPS);
        Size sizeFrame(width, length);
        if (!cap.isOpened()) {
                cerr << "Error in opening feed\n";</pre>
                return -1;
        }
        //Video Codec, create video writer object
        int codec = VideoWriter::fourcc('M', 'J', 'P', 'G');
        VideoWriter writer("./feed_save.avi", codec, fps, sizeFrame);
        if (!writer.isOpened()) {
                cerr << "Error in opening writer\n";</pre>
                return -1;
        }
        while (1) {
```

46.5.2. Step 2: Compile the source

• Use the below command to compile.

```
target# arm-linux-gnueabihf-g++ <path-to-file>/opencv_save.cpp \
    -I/usr/include/opencv4 -L/usr/local/libc -lopencv_videoio \
    -lopencv_imgproc -lopencv_highgui -lopencv_core -o opencv_save
```

46.5.3. Step 3: Run the executable

• Run the exacutable as shown below.

```
target# ./opencv_save
```

• NOTE: To stop saving the feed press ctrl+c.

46.6. Expected result

• All three of the methods described above save the camera feed as a file into the webcam.

Chapter 47. TST046 Verify SPI Loopback test.

47.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- Loopback setup

47.2. procedure

1.Download and Build the spidev-test as below(https://github.com/rm-hull/spidev-test)

```
$ git clone https://github.com/rm-hull/spidev-test
$ cd spidev-test
$ gcc spidev_test.c -o spidev_test
$ ./spidev_test /dev/spidev{1.0/1.1}
```

2.Connect(Loopback) Carrier Board MB Connector PIN#39(MOSI) & PIN#40(MISO) 3.Run the test as below 4.TX and RX data should be same

Chapter 48. TST047 Verify eMMC Boot test.

48.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- Loopback setup

48.2. procedure

48.3. eMMC Flashing instructions

48.4. Boot from SD card

- Download tisdk-rootfs-image-am572x-bel-mmrfic.tar , u-boot.img and MLO
- available in the release folder on workdrive.
- Create a bootable SD card and boot the board.
- Copy the images downloaded from the release folder to the SD card's rootfs

48.5. Create partitions on eMMC

· Run the following command:

target# fdisk /dev/mmcblk1

- The above command displays the fdisk prompt.
- Type the below commands in fdisk prompt to create the partition.
- the explanation is mentioned in the comments following the command:

```
command:: o
                       # Create a DOS partition
command:: n
                       # Add a new partition for boot
                       # Make it as primary partition
command:: p
                      # Create partition number 1
command:: 1
command:: 2048
                       # Allocate size of first sector
command:: +2M
                       # Allocate size of last sector
command:: t
                       # Change parition type
Hex code (type L to list all codes): c # Select partition type as W95 FAT32 (LBA)
               # Turns on bootable flag on parition 1
command:: a
command:: n
                       # Add a new partition for rootfs
command:: 2
                       # Create partition number 2
command:: <enter>
command:: <enter>
                       # Allocate default size for first sector
                       # Allocate default size for last sector
                       # Write table to disk and exit
command:: w
```

- · Create file system type using mkfs
- Create VFAT file system type for Boot partition

```
target# mkfs.vfat /dev/mmcblk1p1
```

48.6. Create EXT4 file system type for rootfs

target# mkfs.ext4 -b 4096 /dev/mmcblk1p2

48.7. Mount the eMMC partitions

```
target# mkdir -p /mnt/uboot/
target# mount /dev/mmcblklp1 /mnt/uboot
target# mkdir -p /mnt/rootfs
target# mount /dev/mmcblklp2 /mnt/rootfs
```

48.8. Copy Rootfs and U-Boot to mount points

```
target# cp </path/to/MLO> </path/to/u-boot.img> /mnt/uboot
target# tar -xvf /path/to/tisdk-rootfs-image-am572x-bel-mmrfic.tar -C /mnt/rootfs
```

48.9. Create a test file

- The file eMMC is created in the root directory of rootfs.
- This is to test whether the board has booted from eMMC and the flashing procedure was successful.

target# touch /mnt/rootfs/eMMC

48.10. Boot from eMMC

- Follow the below step to boot from eMMC:
 - 1. Power OFF the board
 - 2. Unmount the SD card from board
 - 3. Power ON the board
 - 4. Check for the eMMC file in root directory of file system

48.11. Expected result

• Board should boot from eMMC without SD Card.

Chapter 49. TST048 Verify Loopback test on UART-n/ttyS(n-1)

49.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- Loopback setup

49.2. procedure

1.Connect(Loopback) Carrier Board MB Connector UART-n/ttyS(n-1) PIN#(RX) & PIN#(TX) 2.Run the test as below 3.TX and RX data should be same

```
root@am572x-bel-mmrfic:~# uart_test /dev/ttyS(n-1)
Writting Data....
Device Reading ....
mmrfhello
Loopback Test Success
```

Chapter 50. TST049 Verify GPIO(port_pin) toggling

50.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- · Digital Oscilloscope

50.2. procedure

- formula: N = (port-1)x32+pin
- Export GIO(N)(MBC X)
- · Set direction to out.
- set a number to value file.

```
$ cd /sys/class/gpio
$ echo N > export
$ cd gpio(N)
$ echo out > direction
$ echo 1 > value
$ echo 0 > value
```

```
MBC PIN#X should toggle as per the value written.
MBC PIN#X
                         GPIO(port pin) N=(port-1)x32 + pin
4 pin of MB connector
                        GPI08 9
                        GPI02 24
5 pin of MB connector
                                       56
11 pin of MB connector GPIO8_0
                                      224
12 pin of MB connector GPI08 1
                                      225
25 pin of MB connector GPIO2_0
                                      32
26 pin of MB connector GPIO2_1
                                      33
29 pin of MB connector GPI02 3
                                      35
30 pin of MB connector GPIO2_4
                                      36
32 pin of MB connector GPIO2_5
                                      37
33 pin of MB connector GPI02 6
                                      38
34 pin of MB connector GPI02 7
                                      39
35 pin of MB connector GPIO2_8
                                      40
36 pin of MB connector GPI02 19
                                      51
37 pin of MB connector GPI02 20
                                      52
43 pin of MB connector GPIO2_21
                                       53
44 pin of MB connector GPIO2 23
                                      55
                                      226
68 pin of MB connector GPI08 2
69 pin of MB connector GPIO8_3
                                       227
                                      228
70 pin of MB connector GPI08 4
71 pin of MB connector GPI08 5
                                      229
79 pin of MB connector GPI08 6
                                       230
```

95 pin of MB connector 96 pin of MB connector 105 pin of MB connector 106 pin of MB connector	GPI08_8 GPI02_28 GPI02_25	2312326057
107 pin of MB connector 110 pin of MB connector 127 pin of MB connector 131 pin of MB connector	GPI02_26 GPI02_27	61 58 59 63

Chapter 51. TST050 Verify GPIO PIN toggling

51.1. preconditions

- AM572X-BEL-MMRFIC board
- SD card
- · Digital Oscilloscope

51.2. Procedure

```
· Pins to toggle
```

- GPIO6 8(U18#5)
- GPIO6_9(U18#7)
- GPIO1_2(R75)
- GPIO3_31(JP3#7)
- Formula to find GPIO number: N = (port-1)x32+pin
- Run this script with GPIO number as argument.
- Script: sysfs.sh

51.3. Expected result

• Script output:

```
root@am572x-bel-mmrfic:~# pwd
/home/root
root@am572x-bel-mmrfic:~# chmod +x sysfs.sh
root@am572x-bel-mmrfic:~# ./sysfs.sh 168
root@am572x-bel-mmrfic:~# ./sysfs.sh 168
root@am572x-bel-mmrfic:~# echo 168 > /sys/class/gpio/unexport
```

• MBC PIN/Register should toggle as per the value written.

Chapter 52. TST051 Verify AMBE GPIO PIN toggling

52.1. preconditions

- AM572X-BEL-MMRFIC board
- eMMC / NFS
- Digital Oscilloscope

52.2. procedure

- N = (port-1)x32+pin
- Export GIO(N)
- Set direction to out.
- set a number to value file.

```
$ cd /sys/class/gpio
$ echo N > export
$ cd gpio(N)
$ echo out > direction
$ echo 1 > value
$ echo 0 > value
```

52.3. Expected result

• AMBE PIN should toggle as per the value written.

AM5728 PIN NAME	-	GPIO_ADDRESS	-	Sysfs number	-	IC pin number
A13 -B00T0	-	GPI06_4	-	164	-	32
B16 -B00T1	-	GPI06_7	-	167	-	33
AC10 -Reset	-	GPI06_13	-	173	-	42
E14 -ENC	-	GPI04_18	-	114	-	44
D11 -DEC	-	GPI04_19	-	115	-	45