CS229: Problem Set #1

 $Andrew\ Ng$

0130

1.

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} - \frac{1}{m} \sum_{i=1}^m y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)} \log(1 - h_{\theta}(x^{(i)})))$$
$$= -\frac{1}{m} \sum_{i=1}^m [y^{(i)} \frac{1}{h_{\theta}(x^{(i)})} - (1 - y^{(i)}) \frac{1}{1 - h_{\theta}(x^{(i)})}] \frac{\partial}{\partial \theta_j} h_{\theta}(x^{(i)})$$

Then we calculate:

$$\frac{\partial}{\partial \theta_{i}} h_{\theta}(x^{(i)}) = \frac{\partial}{\partial \theta_{i}} g(\theta^{T} x^{(i)}) = g(\theta^{T} x^{(i)}) (1 - g(\theta^{T} x^{(i)})) x_{j}^{(i)} = h_{\theta}(x^{(i)}) (1 - h_{\theta}(x^{(i)})) x_{j}^{(i)}$$

And we can further simplify the above equation:

$$\frac{\partial}{\partial \theta_j} J(\theta) = -\frac{1}{m} \sum_{i=1}^m [(y^{(i)} - h_{\theta}(x^{(i)})) - (1 - y^{(i)}) h_{\theta}(x^{(i)})] x_j^{(i)}$$
$$= -\frac{1}{m} \sum_{i=1}^m (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$$

Then we can get second-order derivative:

$$H_{ij} = \frac{\partial^2}{\partial \theta_i \partial \theta_j} J(\theta) = \frac{1}{m} \sum_{k=1}^m x_j \frac{\partial}{\partial \theta_i} h_{\theta}(x^{(k)})$$
$$= \frac{1}{m} \sum_{k=1}^m x_i^{(k)} x_j^{(k)} h_{\theta}(x^{(k)}) (1 - h_{\theta}(x^{(k)}))$$

for each vector z, consider the quadratic form of Hessian matrix:

$$z^{T}Hz = \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i}H_{ij}z_{j} = \frac{1}{m} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{m} z_{i}x_{i}^{(k)}z_{j}x_{j}^{(k)}h_{\theta}(x^{(k)})(1 - h_{\theta}(x^{(k)}))$$

$$= \frac{1}{m} \sum_{k=1}^{m} (\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i}x_{i}^{(k)}z_{j}x_{j}^{(k)})h_{\theta}(x^{(k)})(1 - h_{\theta}(x^{(k)}))$$

$$= \frac{1}{m} \sum_{k=1}^{m} (x^{(k)T}z)^{2}h_{\theta}(x^{(k)})(1 - h_{\theta}(x^{(k)})) \ge 0 \Leftrightarrow H \ge 0$$

2. Codes are shown in src director, see src/p01b_logreg.py.

3.

$$\begin{split} P(y=1|x;\phi,\mu_0,\mu_1,\Sigma) &= \frac{P(x|y;\phi,\mu_0,\mu_1,\Sigma)}{P(x|y=1;\phi,\mu_0,\mu_1,\Sigma)P(y=1) + P(x|y=0;\phi,\mu_0,\mu_1,\Sigma)P(y=0)} \\ &= \frac{\exp(-1/2(x-\mu_1)^T\Sigma^{-1}(x-\mu_1))}{\exp(-1/2(x-\mu_1)^T\Sigma^{-1}(x-\mu_1))\phi + \exp(-1/2(x-\mu_0)^T\Sigma^{-1}(x-\mu_0))(1-\phi)} \\ &= \frac{1}{1 + ((1-\phi)/\phi)\exp(-1/2(x-\mu_0)^T\Sigma^{-1}(x-\mu_0) + 1/2(x-\mu_1)^T\Sigma^{-1}(x-\mu_1))} \end{split}$$

then we calculate the portion of the denominator inside the exponential term using the fact that: (1) Σ is symmetric (2) if A is symmetric, then $(A^{-1})^T = (A^T)^{-1}$.

$$1/2((x - \mu_1)^T \Sigma^{-1}(x - \mu_1) - (x - \mu_0)^T \Sigma^{-1}(x - \mu_0))$$

= $(\mu_0 - \mu_1)^T \Sigma^{-1} x + 1/2(\mu_0^T \Sigma^{-1} \mu_0 - \mu_1^T \Sigma^{-1} \mu_1)$

and this allow us to simplify the first equation and prove that the decision boundary is linear:

$$P(y = 1 | x; \phi, \mu_0, \mu_1, \Sigma) = \frac{1}{1 + \exp(-(\theta^T x + \theta_0))}$$
$$\theta = \Sigma^{-1}(\mu_0 - \mu_1)$$
$$\theta_0 = 1/2(\mu_0^T \Sigma^{-1} \mu_0 - \mu_1^T \Sigma^{-1} \mu_1) + \log(1 - \phi) - \log \phi$$

Problem 2

1.

$$\begin{split} p(y;\lambda) &= \frac{e^{-\lambda}\lambda^y}{y!} = \exp(\log(\frac{e^{-\lambda}\lambda^y}{y!})) \\ &= \exp(-\lambda + y\log\lambda - \log y!) = \frac{1}{y!}(\log\lambda y - \lambda) \\ &\Rightarrow b(y) = \frac{1}{y!}, \ \eta = \log\lambda, \ T(y) = y, \ \alpha(\eta) = \lambda = e^{\eta} \end{split}$$

2. Let canonical response function represented as g, then we have:

$$\lambda = q(\eta) = e^{\eta}$$

then we know $g = \exp$.

3.

$$\log p(y|\lambda) = -\lambda + y \log \lambda - \log y! \Rightarrow \log p(y^{(i)}|x^{(i)};\theta)$$
$$= -e^{\theta^T x} + y^{(i)}\theta^T x^{(i)} - \log y^{(i)}!$$

and we can calculate the derivative of $\log p(y^{(i)}|x^{(i)};\theta)$ with respect to θ_j :

$$\frac{\partial}{\partial \theta_j} \log p(y^{(i)}|x^{(i)};\theta) = -e^{(\theta^T x)} x_j^{(i)} + y^{(i)} x_j^{(i)}$$

we then get the gradient ascent update rules as follows:

$$\theta_j := \theta + \alpha \frac{\partial}{\partial \theta_j} \log p(y^{(i)}|x^{(i)}; \theta) = \theta_j + \alpha (y^{(i)} - e^{\theta^T x}) x_j^{(i)}$$

In fact, the member in GLM has similar stochastic gradient ascent update rules:

$$\theta_j := \theta_j + \alpha(y^{(i)} - h_\theta(x^{(i)}))x_j^{(i)} = \theta_j + \alpha(y^{(i)} - \mathbb{E}(y^{(i)}|x^{(i)};\theta))x_j^{(i)}$$

since $\mathbb{E}(y|x;\theta) = \exp(\theta^T x)$, we get the same answer.

4. Codes are shown in src directory, see src/p03d_poisson.py.

1. From the property of the probability space we get:

$$\int_{\Omega} p(y;\eta) dy = 1 = \frac{1}{\exp(\alpha(\eta))} \int_{\Omega} b(y) \exp(\eta y) dy$$

which is equivalent to:

$$\exp(\alpha(\eta)) = \int_{\Omega} b(y) \exp(\eta y) dy$$

apply the partial derivatives to both sides, we have:

$$\frac{\partial}{\partial \eta} \exp(\alpha(\eta)) = \exp(\alpha(\eta)) \frac{\partial}{\partial \eta} \alpha(\eta) = \frac{\partial}{\partial \eta} \int_{\Omega} b(y) \exp(\eta y) dy = \int_{\Omega} b(y) \exp(\eta y) y dy$$

after some algebraic manipulation, we get:

$$\frac{\partial}{\partial \eta}\alpha(\eta) = \int_{\Omega} b(y)y \exp(\eta y - \alpha(\eta))dy = \mathbb{E}[Y|X;\theta]$$

2.

$$\begin{split} \frac{\partial^2}{\partial \eta^2} \alpha(\eta) &= \frac{\partial}{\partial \eta} (\frac{\partial}{\partial \eta} \alpha(\eta)) = \frac{1}{\exp(\alpha(\eta))} \int_{\Omega} b(y) y^2 \exp(\eta y) dy - \frac{1}{\exp(\alpha(\eta))} \frac{\partial}{\partial \eta} \alpha(\eta) \int_{\Omega} b(y) y \exp(\eta y) dy \\ &= \mathbb{E}[Y^2 | X; \theta] - \mathbb{E}[Y | X; \theta]^2 = \mathrm{Var}[Y | X; \theta] \end{split}$$

3. We can formulate the loss function as follows:

$$l(\theta) = -\log J(\theta) = -\log P(Y|X;\theta)$$

where $J(\theta)$ is the likelihood function. In order to get the hessian of the loss function, we first calculate the first-order derivative of the loss function:

$$\frac{\partial}{\partial \theta_j} l(\theta) = \frac{-1}{p(y;\eta)} \frac{\partial}{\partial \eta} p(y;\eta) \frac{\partial}{\partial \theta_j} \eta = \frac{-x_j}{p(y;\eta)} \frac{\partial}{\partial \eta} p(y;\eta)$$

then we calculate the second-order derivative of the loss function:

$$\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} l(\theta) = \frac{x_{j}}{p(y;\eta)^{2}} \frac{\partial}{\partial \eta} p(y;\eta) \frac{\partial}{\partial \theta_{i}} \eta \frac{\partial}{\partial \eta} p(y;\eta) - \frac{x_{j}}{p(y;\eta)} \frac{\partial^{2}}{\partial \eta^{2}} p(y;\eta) \frac{\partial}{\partial \theta_{i}} \eta$$

$$= \frac{x_{i}x_{j}}{p(y;\eta)^{2}} \left(\frac{\partial}{\partial \eta} p(y;\eta)\right)^{2} - \frac{x_{i}x_{j}}{p(y;\eta)} \frac{\partial^{2}}{\partial \eta^{2}} p(y;\eta)$$

by calculating the first-order and second-order derivatives of $p(y; \eta)$, we have:

$$\frac{\partial}{\partial \eta} p(y; \eta) = b(y) \exp(\eta y - \alpha(\eta)) (y - \frac{\partial}{\partial \eta} \alpha(\eta)) = p(y; \eta) (y - \frac{\partial}{\partial \eta} \alpha(\eta))$$
$$\frac{\partial^2}{\partial \eta^2} p(y; \eta) = p(y; \eta) (y - \frac{\partial}{\partial \eta} \alpha(\eta))^2 - p(y; \eta) \frac{\partial^2}{\partial \eta^2} \alpha(\eta)$$

then we can further simplify the second-order derivative of the loss function by some algebraic manipulation, and the result is:

$$\frac{\partial^2}{\partial \theta_i \theta_j} l(\theta) = x_i x_j \text{Var}[Y|X;\theta]$$

consider the quadratic form of the hessian matrix, we have:

$$z^T H z = \operatorname{Var}[Y|X;\theta] \sum_i \sum_j x_i x_j z_i z_j = \operatorname{Var}[Y|X;\theta](z^T x) \ge 0, \forall z \in \mathbb{R}^n$$