Zadanie 2

Treść

Danych jest n odcinków $I_j = \langle p_j, k_j \rangle$, leżących na osi OX, j=1,...,n. Ułóż algorytm znajdujący zbiór $S \subseteq \{I_1,...,I_n\}$, nieprzecinających się odcinków, o największej mocy.

Algorytm

Niech $I = \{I_1, ..., I_n\}$ będzie zbiorem danych odcinków.

- 1. Sortujemy odcinki z I niemalejąco według ich końców k_j . Niech posortowana lista odcinków to $I'=I'_1,...,I'_n$.
- 2. Inicjalizujemy pusty zbiór wynikowy $S = \emptyset$.
- 3. Jeśli posortowana lista I' nie jest pusta:
 - i. Dodajemy pierwszy odcinek do $S, S = \{I'_1\}$
 - ii. Zapamiętujemy czas zakończenia ostatniego dodanego odcinka: ostatni_koniec = k'_1 , gdzie k'_1 to koniec odcinka I'_1 .
 - iii. Dla każdego kolejnego odcinka I_j (gdzie j=2,...,n):
 - Jeśli początek odcinka I_j' jest nie mniejszy niż ostatni_koniec (tzn. $p_j' \geq$ ostatni_koniec):

$$S = S \cup \left\{ I_j' \right\}$$

$$\texttt{ostatni_koniec} = k_j'$$

4. Zwróć S.

Dowód

Niech ALG = $a_1,...,a_m$ będzie zbiorem odcinków wybranym przez nasz algorytm, posortowanym zgodnie z kolejnością wyboru (a więc również według niemalejących końców k_{a_j}). Niech OPT = $o_1,...,o_k$ będzie dowolnym optymalnym zbiorem nieprzecinających się odcinków, o największej mocy k, również posortowanym według niemalejących końców k_{o_j} .

Chcemy pokazać, że m = k.

Rozpatrzmy następujące przypadki dotyczące relacji między końcami odcinków a_i oraz o_i :

1. $k_{o_i} < k_{a_i}$:

Ten przypadek prowadzi do sprzeczności. Gdyby $k_{o_i} < k_{a_i}$, to algorytm, wybierając odcinek o najwcześniejszym końcu spośród dostępnych (a o_i był dostępny i $p_{o_i} \geq k_{a_{i-1}}$), wybrałby o_i lub inny odcinek kończący się nie później niż o_i , a nie a_i , który kończy się później. Zatem ten przypadek jest niemożliwy. Musi być $k_{a_i} \leq k_{o_i}$. $\mbox{\em 4}$

2. $k_{o_i} = k_{a_i}$:

Jeśli $a_i \neq o_i$ (bo to pierwszy różniący się element), ale $k_{a_i} = k_{o_i}$, możemy skonstruować nowe rozwiązanie OPT' = $\{o_1,...,o_{i-1},a_i,o_{i+1},...,o_k\}$. Rozwiązanie OPT' jest poprawne:

- a_i nie koliduje z o_{i-1} (ponieważ $a_{i-1}=o_{i-1}$ i z definicji algorytmu $p_{a_i}\geq k_{a_{i-1}}$).
- a_i nie koliduje z o_{i+1} (ponieważ $p_{o_{i+1}} > k_{o_i}$, a $k_{o_i} = k_{a_i}$, więc $p_{o_{i+1}} \ge k_{a_i}$). Liczba odcinków w OPT' jest taka sama jak w OPT (czyli k), więc OPT' jest również optymalne. Co więcej, OPT' zgadza się z ALG na co najmniej i pierwszych pozycjach. W tej sytuacji wybór a_i przez algorytm jest co najmniej tak dobry jak wybór o_i .

3. $k_{o_i} > k_{a_i}$:

Podobnie jak w przypadku 3, skonstruujmy OPT' = $(o_1,...,o_{i-1},a_i,o_{i+1},...,o_k)$. Rozwiązanie OPT' jest poprawne:

- a_i nie koliduje z o_{i-1} .
 - > $p_{o_{i+1}}gek_{o_i}$. Ponieważ $k_{o_i}>k_{a_i}$, to tym bardziej $p_{o_{i+1}}>k_{a_i}$ (a więc $p_{o_{i+1}}gek_{a_i}$). Zatem a_i nie koliduje z o_{i+1} .

Liczba odcinków w OPT' wynosi k, więc OPT' jest optymalne. OPT' zgadza się z ALG na co najmniej i pierwszych pozycjach. Wybór a_i (który kończy się wcześniej) jest co najmniej tak samo dobry (a potencjalnie lepszy, bo zostawia więcej miejsca) jak wybór o_i .

W każdym możliwym przypadku, możemy zmodyfikować OPT tak, aby zgadzało się z ALG na itej pozycji, nie tracąc optymalności ani poprawności. Powtarzając ten argument dla kolejnych pozycji j>i, na których ALG i (zmodyfikowane) OPT mogłyby się różnić, możemy krok po kroku przekształcić całe OPT w ALG, nie zmniejszając liczby odcinków. Oznacza to, że liczba odcinków w ALG jest co najmniej tak duża jak w OPT, czyli $m\geq k$. Ponieważ z definicji OPT jest rozwiązaniem optymalnym, $m\leq k$. Łącząc te dwie nierówności, dochodzimy do wniosku, że m=k. Zatem algorytm jest poprawny i zawsze znajduje rozwiązanie o największej mocy