The unhealthy causal salad: causal inference, DAGs and propensity scores

M. T. Liuzza L. Sità

Handzone - 27 marzo 2025

Causal salad

Say No to the Causal Salad!

I tre criteri dell'inferenza causale

- Covariazione
- Precedenza temporale
- Esclusione di cause alternative

Think before you regress: Directed Acyclic Graphs (DAG)

Introdotti da Judea Pearl, i **Directed Acyclic Graphs (DAG)** aiutano a ragionare sulla causalità

- Directed: le connessioni hanno frecce direzionali
- Acyclic: le cause non possono tornare indietro su se stesse
- Graphs: nodi e connessioni
 - I nodi possono essere genitori (parents) di un altro nodo figlio (child) se sono immediatamente antecedenti al nodo
 - Sono antenati (ancestors) se causano i genitori, oppure discendenti (descendants) se seguono causalmente i figli.

DAG e Structural Causal Models

- ► I DAG sono una rappresentazione grafica intuitiva di Structural Causal Models (SCM).
- Negli SCM abbiamo variabili:
 - esogene (U), che non possono essere discendenti perché non spieghiamo da cosa siano causate
 - endogene (V),
- Nei DAG la freccia è usata quando si ipotizza una relazione causale ad es. da X a Y (X ->Y).
 - La elazione bidirezionale (X <-> Y), equivale alla presenza du una variable non osservata - o latente - che causa entrambe (X <- U -> Y).
- Nei DAG possiamo rappresentare l'effetto di un insieme di variabili, chiamate exposures su altre variabili che chiameremo outcomes

DAG e ragionamento causale 1

- Chains (X -> Z -> Y)
- ► Forks (X <- Z -> Y)
- **▶** *Colliders* (X -> Z <- Y)

DAG e ragionamento causale 2

- Nelle chains e nelle forks, controllare per Z blocca il percorso (path) introducendo un'indipendenza condizionata tra X e Y: $X \perp Y \mid Z$
- Nei collider, controllare per Z apre il percorso (path) introducendo una dipendenza condizionata tra X e Y: $X \not\perp \mid Z$
- La *d-separation* di due variabili si ha quando, attraverso una covariata, si blocca ogni percorso (*path*) tra loro. Viceversa, si ha la *d-connection*.
 - Questi concetti sono importanti per DAG con più variabili. Ad esempio, controllare per un discendente di un collisore rischia di creare una *d*-connection tra variabili che prima erano *d*-separated.

Struttura dei DAG

Variabili confondenti

Vanno sempre controllate

Variabili mediatrici 1

- vanno controllate se ci interessa l'effetto diretto
- non vanno controllate se ci interessa l'effetto totale

Esempio: Simpson's paradox sui dati di Berkley del 1979

Variabili mediatrici 2

- vanno controllate se ci interessa l'effetto diretto
- non vanno controllate se ci interessa l'effetto totale

Collider

- Quando una variabile è causata da due variabili tra loro non correlate, si crea un collider bias che crea una dipendenza condizionata tra le variabili.
- Detto anche Berkson's paradox, si osserva spesso quando si introducono bias di selezione

Collider con i DAG

Riicapitoliamo: in possibili bias nella stima

Figure 1. Simple causal models that illustrate the effects of covariate selection on the estimation of the effect of interest $(X \to Y)$. In (a), (b), and (c), controlling for Z reduces or eliminates the indirect (mediated) effect of X on Y. In (d), (e), and (f), controlling for Z removes estimation bias by de-confounding the $X \to Y$ effect. In (g), (h), and (i), controlling for Z adds estimation bias to the $X \to Y$ effect.

Figure 1: Del Giudice e Gangestead, 2021, SM

Un esempio: scegliere un gruppo di controllo

- Studio su donne con iperplasia surrenale congenita (CAH) e sociosessualità promiscua
 - Per qulai variabili appaiare i controlli? Primi candidati: età, livello di istruzione, orientamento politico, religiosità, status relazionale...ma ha senso questa insalata causale?

Andare su DAGitty.net

https://dagitty.net/dags.html?id=EP9fXebg

DAG con ggdag() 1

```
dag1<-dagify(Y~X,</pre>
             exposure = "X",
             outcome = "Y",
             labels = c("X"="fattore di rischio",
                         "Y"="outcome"))
dag1<-ggdag(dag1, use_labels = "label", text = TRUE)</pre>
```

DAG con ggdag (1)

DAG con ggdag (2)

DAG con ggdag (3)

DAG con ggdag (3)

DAG con ggdag (4)

Influenza dello status vaccinale sull'adesione alle misure di prevenzione contro la diffusione del COVID-19 controllando l'effetto di possibili confounder

DAG con ggdag (5)

Effetto del **fumo** sul **decadimento cognitivo** controllando per **stile di vita e fattori economico-sociali**

Studi quasi sperimentali (1)

Disegno quasi sperimentale: ricreare una condizione che si avvicini il più possibile alla randomizzazione

Possibile tramite metodi di aggiustamento delle variabili confondenti

- 1. aggiustamento additivo
- 2. tecniche di bilanciamento (es. basate sul propensity score)

Studi quasi sperimentali (2)

1) Aggiustamento additivo

Addizione delle covariate all'interno, ad esempio, di un modello di regressione lineare

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} \ldots + \beta_k X_{ki} + \epsilon_i$$

Studi quasi sperimentali (3)

2) Tecniche basate sul propensity score

Il propensity score

- esprime la probabilità che ogni individuo ha di ricevere il trattamento, sulla base del profilo di covariate che presenta
- > si basa sull'assunto di ignorabilità forte
- viene prima stimato e poi applicato al modello dello studio

Studi quasi sperimentali (4)

2) Tecniche basate sul propensity score: stima

Stima del propensity score può avvenire in più modi (parametrici e non parametrici)

Un esempio di metodo parametrico è la **regressione logistica multipla**

$$\pi_i = Pr(Y=1|X=x_i) = \lambda(\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} \ldots + \beta_k X_{ki})$$

Studi quasi sperimentali (5)

2) Tecniche basate sul propensity score: applicazione Un possibile metodo di applicazione è l'*inverse probability of treatment weights* (**IPTW**)

Ad ogni individuo si associa un peso:

- $lackbox{ peso dato agli individi trattati } IPTW=1/
 ho_i$
- \blacktriangleright peso dato agli individui di controllo $IPTW=1/(1-\rho_i)$

Studio d'esempio (1)

Studio riguardo l'effetto del fumo di sigaretta sul decadimento cognitivo

- X = essere fumatore alla baseline
- Y = differenza nei punteggi di fluenza verbale nel corso di 10 anni
- ightharpoonup confounder = variabili suggerite dall'APA + ... ?

Dati ottenuti dal database europeo SHARE relativi a soggetti italiani

- ightharpoonup campione N = 33'525
- individui maschili N = 14'675
- individui femminili N= 18'850

Studio d'esempio (2)

I modelli di regressione che intendiamo confrontare sono corretti

- 1. con aggiustamento additivo delle covariate
- con aggiustamento additivo delle covariate + aggiustamento tramite propensity score (applicando il metodo IPTW)

Studio d'esempio (3)

Rispettivamente, i risultati dei due modelli riportano che

- l'effetto del fumo sul decadimento cognitivo non è significativo
- 2. l'effetto del fumo sul decadimento cognitivo è significativo

Possibile spiegazione della differenza nel **bias di selezione**: i fumatori tendono ad evitare le survey

Studio d'esempio (4)

Applicazione della correzione tramite propensity score:

- miglior riduzione di bias rispetto all'aggiustamento additivo da solo
- risultati in linea con la letteratura

Limiti dello studio (e dell'utilizzo di tecniche di aggiustamento in generale):

assunto di ignorabilità forte

Take-home messages

Evitare causal salads

Thinking before regressing: riportare anche i DAG!

Per una miglior causal inference

- aggiustamento additivo con campioni grandi
- tecniche di bilanciamento con campioni piccoli e tante covariate

Bibliografia

Del Giudice, M., & Gangestad, S. W. (2021). A traveler's guide to the multiverse: Promises, pitfalls, and a framework for the evaluation of analytic decisions. *Advances in Methods and Practices in Psychological Science, 4,* 1-15.

Harder, V. S., Stuart, E. A., & Anthony, J. C. (2010). Propensity score techniques and the assessment of measured covariate balance to test causal associations in psychological research. *Psychological methods*, *15*(3), 234.

Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical causal models for observational data. Advances in methods and practices in psychological science, 1(1), 27-42.

Sità, L., Caserotti, M., Zamparini, M., Lotto, L., de Girolamo, G., & Girardi, P. (2024). Impact of COVID-19 vaccination on preventive behavior: The importance of confounder adjustment in observational studies. *PloS one*, *19*(11), e0313117.

Appendice (1)

Confronto dell'aggiustamento additivo con e senza correzione tramite propensity score

```
## Analisi binomiale senza propensity score
fit1 full <-glm(difference_in_fluency_bin~smoking+drinking
           +physical inactivity+age+gender+isced+marital status
           +number of children+economic status+home+job status
           +health status+gali+number of chronic diseases+bmi
           +mobility+depression scale, data=db sel1,
            family=binomial) # modello di regressione logistica
# stepAIC backward: dal modello con tutte le variabili indicate,
# deseleziono quelle che non hanno un effetto sul decadimento della fluency
fit1_final<-stepAIC(fit1_full,direction = "backward")</pre>
t1<-tbl regression(fit1 final,exponentiate = TRUE)
## Analisi binomiale con propensity score
# Stima del PS tramite metodo IPTW
mod_ps_smoking<-glm(I(smoking=="Yes")~physical_inactivity+drinking+age
                    +gender+isced+marital_status+number_of_children
                    +economic status+home+job status+health status
                    +gali+number of chronic diseases+bmi+mobility
                    +depression_scale,data=db_sel1,family=binomial)
mod ps smoking %>% tbl regression(exponentiate = TRUE)
```

Appendice (2)

Confronto dell'aggiustamento additivo con e senza correzione tramite propensity score

```
# Stima delle probabilità
ps_smo<-predict(mod_ps_smoking,type="response")
# Calcolo dei pesi
db sel1$pesi_smo<-0
db sel1$pesi smo[db sel1$smoking=="Yes"] <-1/ps smo[db sel1$smoking=="Yes"]
db_sel1$pesi_smo[db_sel1$smoking=="No"] <-1/(1-ps_smo[db_sel1$smoking=="No"])
# Modello binomiale corretto con i pesi del PS
mod_fluency_ps_smo<-glm(difference_in_fluency_bin~smoking+drinking
            +physical inactivity+age+gender+isced+marital status
            +number_of_children+economic_status+home+job_status+health_status
            +gali+number_of_chronic_diseases+bmi+mobility+depression_scale,
            data=db sel1,family=binomial,weights = pesi smo)
t2<-tbl regression(mod fluency ps smo, exponentiate = TRUE)
```