Harvard-MIT Division of Health Sciences and Technology HST.535: Principles and Practice of Tissue Engineering Instructor: Yongnian Yan

MIT-TH-2005

Scaffold Manufacturing of Tissue Eng.
Using Free Forming Fabrication

Prof. Yongnian Yan

2005.9.14

The Center for Laser Rapid Forming

The Center for Bio-Manufacturing

Dept. of Mech. Eng.

Tsinghua University, Beijing 100084 CHINA

outline

- 1. FFF Technologies, FFF~Scaffold Manufacturing
- 2. Scaffold Manufacturing Technologies
- 3. Non-degradation Scaffold
- 4.BONE Tissue Eng. Scaffolds
- 5. 3-D cell Assembled
- 6. Laser Directed Guided Writing of cell

What's FFF?

Free Forming Fabrication

Definition

FFF The General name of

Making Any Complex

Structure using Assembling

Elements

Driven Directly by CAD Model

Other Names of FFF

- RP--- Rapid Prototyping
- LM---- Layered Manufacturing
- **MIM**--- Material Increase Manufacturing
- DAM--- Discretization Accumutation Manufacturing

Pyramid

- First: Shape the stones into standard types
- Then: Pile the stones up

The globe

 Slice the globe along the latitude, the cross section will be circular rings or concentric rings

Design and Building Process

- Design
 - -The number of stones
 - -The order of pile

```
----- Discretization (Decomposing)
```

- Building
 - -Pile pyramid by stone elements

```
----- Accumulation
```

(Stacking, pile Assembling)

Discretization/accumulation process diagram

Advantages

- Any complex shapes
- No need of special tools
- Least manual intervention
- Automatic forming, net manufacturing

FFF Technologies

- 1. SL Sterolithography
- 2. LOM----Lamilated Object Manufacturing
- 3. FDM Fused Deposition Modeling
- 4. SLS Selected Laser Sintering
- 5. 3DP Three-Dimensional Printer

FDM (MEM) and 3DP are the most important FFF Technologies for Tissue Eng. Scaffold

3.FDM Fused Deposition Modeling

In 1988, *Dr.Scott Crump* proposed FDM process, *Stratasys Co*, developed FDM commercialized systems.

Nozzles:

Wheel Drive Nozzle (Filament Material)

Screw Drive Nozzle

Figure by Tsinghua University, CLRF&CBM

Nozzles:

Piston Drive Nozzle

Multi-material Nozzle

Figure by Tsinghua University, CLRF&CBM

Using FFF, extrusion/jetting nozzles, Make out scaffold

Electro magnetism Piezoelectricity

(a)Extrusion (b)Jetting Forming process of the scaffolds

MEM-300-II (Melted Extrusion Manufacturing) System

Developed by Tsinghua University

Figure by Tsinghua University, CLRF&CBM

- 1. FFF Techuologies,FFF~Scaffold Mnuf.
- 2. Scaffold Manuf. Technologies
- 3. Non-degradation Scaffold
- 4.BONE Tissue Eng. Scaffolds
- 5. 3-D cell Assembled
- 6. Laser Directed Guided Writing(LDGW) of cell

Scaffold has

- * Complex structure
- * Complex material gradient
- * Pore gradient
- * Pore rate

Scaffold characteristics

- Three-dimensional and highly porous with a interconnected pore network for cell growth and flow transport of nutrients and metabolic waste
- Biocompatible and bio absorbable with a controllable degradation and absorption rate to match cell/tissue growth in vitro and /or in vivo

- •Suitable surface chemistry for cell attachment, proliferation, and differentiation
- Mechanical properties to match those of the tissues at the site of implantation
- Be easily processed to form a variety of shapes and sizes

Developed in CLRF, Tsinghua University

Developed in CLRF, Tsinghua University

Figure by Tsinghua University, CLRF&CBM

LDM—Low Temperature Deposition Manufacturing

CAD model

Discretization

Accumulate Phase Droplets Separation

Freezing Environment

Evaporation

Bio-material Forming Platform

Developed in CLRF, Tsinghua University

Figure by Tsinghua University, CLRF&CBM

Developed in CLRF, Tsinghua University

Figure by Tsinghua University, CLRF&CBM

Multi-Nozzleo system of Scaffold form Machine

Figure by Tsinghua University, CLRF&CBM

name	TissForm		
Forming material	Biocompatible materials		
Number and type of nozzles	Screw pump	Electro magnetis m valve	Piezoelectricit y crystal
	2	1	1
NC card	American Del ton company Pmac NC card		
Environment	-30°C—30°C		
Forming space	200*200*200 mm ³		
Scan speed	70 mm/s		

Developed in CLRF, Tsinghua University

Figure by Tsinghua University, CLRF&CBM

Figure by Tsinghua University, CLRF&CBM

Scaffold poly (L-lactic acid) Tricalcium Phosphate

Developed in CLRF, Tsinghua University

Figure by Tsinghua University, CLRF&CBM

Scaffold poly (L-lactic acid) Tricalcium Phosphate

Macro pores structure of PLGA/TCP From Solid-Liquid phase separation

Figure by Tsinghua University, CLRF&CBM

To ensure the desired porosity, it needs to adjust the temperatures of the nozzles and the environment.

Material(1)

(a) PLLA/TCP

(b) PDLLA/TCP

(c) PLGA/TCP

Developed in CLRF, Tsinghua University

Figure by Tsinghua University, CLRF&CBM

Material (2)

- (a)PLGA/Dioxane/water aging for 5 min at 20°C
- (b) PLGA/Dioxane/water aging for 10min at 20°C
- (c) PLGA/Dioxane/water aging for 5min at 30°C

- 1. FFF/Techuologies,FFF/Scaffold Mnuf.
- 2. Scaffold Manuf. Technologies
- 3. Non-degradation Scaffold
- 4.BONE Tissue Eng. Scaffolds
- 5. 3-D cell Assembled
- Laser Directed Guided Writing(LDGW) of cell

Scaffold for Rehabilitating of Microtia

(Undegradable)

