MINIMAX THEOREM AND LINEAR PROGRAMMING

1. SION'S MINIMAX THEOREM

Definition 1.1. Let *X* be a topological space and let $f: X \to \mathbb{R}$ be a function. Then *f* is *lower-semicontinuous* if for every $r \in \mathbb{R}$ the set

$$\{x \in X \mid f(x) \le r\}$$

is closed. We say that f is *upper-semicontinuous* if -f is lower-semicontinuous.

Definition 1.2. Let X be a convex subset of a linear space over \mathbb{R} and let $f: X \to \mathbb{R}$ be a function. Then f is *quasiconvex* if for every $x_1, x_2 \in X$ and $t \in [0,1]$ we have

$$f(tx_1 + (1-t)x_2) \le \max\{f(x_1), f(x_2)\}$$

We say that f is *quasiconcave* if -f is quasiconvex.

Proposition 1.3. Let X be a convex subset of a linear space over \mathbb{R} . Suppose that $f: X \to \mathbb{R}$ is a function. Then the following are equivalent.

- **(1)** *f is quasiconvex.*
- **(2)** For every $r \in \mathbb{R}$ the set $\{x \in X \mid f(x) \le r\}$ is convex.

Proof. We prove (1) \Rightarrow (2). Pick $r \in \mathbb{R}$, $x_1, x_2 \in X$ and assume that $f(x_1), f(x_2)$ are both less or equal to r. Then

$$f(tx_1 + (1-t)x_2) \le \max\{f(x_1), f(x_2)\} \le r$$

for every $t \in [0,1]$ by (1). Thus the set $\{x \in X \mid f(x) \le r\}$ contains line segment joining x_1 with x_2 and hence it is convex. This is (2).

We prove (2) \Rightarrow (1). Pick $x_1, x_2 \in X$ and $t \in [0,1]$. Let $r = \max\{f(x_1), f(x_2)\}$. Then by (2) we deduce that the set $\{x \in X \mid f(x) \le r\}$ is convex. Hence $f(tx_1 + (1-t)x_2) \le r$. This shows (1).

Theorem 1.4 (Sion's theorem). Let X be a convex, compact subset of a topological vector space over \mathbb{R} and let Y be a convex subset of a topological vector space over \mathbb{R} . Suppose that $f: X \times Y \to \mathbb{R}$ is a function such that the following assertions hold.

- **(1)** f_x is lower-semicontinuous and quasiconvex for every x in X.
- (2) f_y is upper-semicontinuous and quasiconcave for every y in Y.

Then we have

$$\sup_{x \in X} \inf_{y \in Y} f(x, y) = \inf_{y \in Y} \sup_{x \in X} f(x, y)$$

The proof relies on series of lemmas.

Lemma 1.4.1. Let X be a compact topological space and let $f_1, f_2 : X \to \mathbb{R}$ be upper-semicontinuous functions. Suppose that

$$\{x \in X \mid f_1(x) \ge r\} \cap \{x \in X \mid f_2(x) \ge r\} = \emptyset$$

for some $r \in \mathbb{R}$ *. Then there exists* s < r *such that*

$$\left\{x \in X \mid f_1(x) \ge s\right\} \cap \left\{x \in X \mid f_2(x) \ge s\right\} = \emptyset$$

Proof of the lemma. Pick an increasing sequence $\{s_n\}_{n\in\mathbb{N}}$ of real numbers convergent to r. Define

$$F_n = \{x \in X \mid f_1(x) \ge s_n\} \cap \{x \in X \mid f_2(x) \ge s_n\}$$

for every $n \in \mathbb{N}$. Since f_1 and f_2 are upper-semicontinuous, we derive that the family of sets $\{F_n\}_{n\in\mathbb{N}}$ consists of closed sets. Moreover, this family is nonincreasing. If $F_n \neq \emptyset$ for all $n \in \mathbb{N}$, then $\{F_n\}_{n\in\mathbb{N}}$ admits finite intersection property. Hence by compactness of X there exists x in X such that

$$x \in \bigcap_{n \in \mathbb{N}} F_n = \left\{ x \in X \mid \forall_{n \in \mathbb{N}} f_1(x) \ge s_n \text{ and } \forall_{n \in \mathbb{N}} f_2(x) \ge s_n \right\} =$$
$$= \left\{ x \in X \mid f_1(x) \ge r \right\} \cap \left\{ x \in X \mid f_2(x) \ge r \right\}$$

This is contradiction. Thus $F_{n_0} = \emptyset$ for some $n_0 \in \mathbb{N}$ and hence for $s = s_{n_0}$ we have

$$\{x \in X \mid f_1(x) \ge s\} \cap \{x \in X \mid f_2(x) \ge s\} = \emptyset$$

Thus the assertion is proved.

Lemma 1.4.2. Let X be a convex, compact subset of a topological vector space over \mathbb{R} and let Y be a convex subset of a topological vector space over \mathbb{R} . Suppose that $f: X \times Y \to \mathbb{R}$ is a function such that the following assertions hold.

- **(1)** f_x is lower-semicontinuous and quasiconvex for every x in X.
- **(2)** f_y is upper-semicontinuous and quasiconcave for every y in Y.

For every $y \in Y$ and $r \in \mathbb{R}$ we denote

$$L_{r,y} = \left\{ x \in X \mid f_y(x) \ge r \right\}$$

If every set in the family $\{L_{r,y}\}_{y\in Y}$ is nonempty, then any two sets in this family have nonempty intersection

Proof of the lemma. Suppose conversely that $L_{r,y_1} \cap L_{r,y_2} = \emptyset$ for some $y_1, y_2 \in Y$. Then by Lemma 1.4.1 (f_y are upper-semicontinuous for all y so it can be applied) we derive that there exists s < r such that $L_{s,y_1} \cap L_{s,y_2} = \emptyset$. Note that $L_{r,y} \subseteq L_{s,y}$ for all $y \in Y$ and hence $\{L_{s,y}\}_{y \in Y}$ consists of nonempty sets. Let $[y_1, y_2]$ be an interval joining y_1 and y_2 in Y. Pick now $y \in [y_1, y_2]$. If $x \in L_{s,y}$, then

$$s \ge f_y(x) = f_x(y) \le \max\{f_x(y_1), f_x(y_2)\} = \max\{f_{y_1}(x), f_{y_2}(x)\}$$

by the fact that f_x is quasiconvex. This implies that $x \in L_{s,y_1} \cup L_{s,y_2}$. Thus $L_{s,y} \subseteq L_{s,y_1} \cup L_{s,y_2}$. Since f_y is quasiconcave, we derive that $L_{s,y}$ is convex and hence connected. Sets L_{s,y_1}, L_{s,y_2} are closed (f_y is upper-semicontinous for each g_y) and disjoint. Therefore, we have either $f_{s,y} \subseteq f_{s,y_1}$ or $f_{s,y} \subseteq f_{s,y_2}$ for every $f_{s,y_2} \subseteq f_{s,y_2}$. Now we define

$$F_i = \{ y \in [y_1, y_2] \mid L_{s,y} \subseteq L_{s,y_i} \}$$

for i = 1, 2. Then we have $[y_1, y_2] = F_1 \cup F_2$ and $F_1 \cap F_2 = \emptyset$. Next since $L_{r,y} \subseteq L_{s,y}$ for every $y \in Y$, we deduce that

$$F_i = \left\{ y \in \left[y_1, y_2 \right] \middle| L_{r,y} \subseteq L_{s,y_i} \right\}$$

for i = 1,2. Fix now i = 1,2. Consider a sequence $\{z_n\}_{n \in \mathbb{N}}$ of elements in F_i convergent to some $z \in [y_1, y_2]$. Pick $x \in L_{r,z}$. Since f_x is lower-semicontinous, we derive that

$$\liminf_{n\to+\infty} f_{z_n}(x) = \liminf_{n\to+\infty} f_x(z_n) \ge f_x(z) = f_z(x) \ge r$$

Therefore, the inequality s < r implies that there exists $n \in \mathbb{N}$ such that $f_{z_n}(x) \ge s$. Hence $x \in L_{s,z_n}$. The point z_n is contained in F_i and hence $x \in L_{s,z_n} \subseteq L_{s,y_i}$. Thus $\emptyset = L_{s,y_i} \cap L_{r,z} \subseteq L_{s,y_i} \cap L_{s,z}$. Thus $L_{s,z} \subseteq L_{s,y_i}$ and $z \in F_i$. We deduce that set F_i is closed in $[y_1,y_2]$. Note that we obtain

$$[y_1,y_2] = F_1 \cup F_2, \varnothing = F_1 \cap F_2$$

for some closed subsets F_1 , F_2 of $[y_1, y_2]$. This is a contradiction with connectedness.

Let \mathcal{F} be a class of all functions $f: X \times Y \to \mathbb{R}$ such that the following assertions hold.

- (1) X is a convex, compact subset of a topological vector space over \mathbb{R} and Y is a convex subset of a topological vector space over \mathbb{R} .
- (2) f_x is lower-semicontinuous and quasiconvex for every x in X.
- (3) f_y is upper-semicontinuous and quasiconcave for every y in Y.

For every $f: X \times Y \to \mathbb{R}$ and $r \in \mathbb{R}$ we denote by $\mathcal{L}_{f,r}$ the family of sets

$$L_{f,ry} = \left\{ x \in X \,\middle|\, f_y(x) \ge r \right\}$$

parametrized by $y \in Y$.

Lemma 1.4.3. For every $f \in \mathcal{F}$ the following assertion holds. If for some $r \in \mathbb{R}$ the family $\mathcal{L}_{f,r}$ consists of nonempty sets, then it has finite intersection property.

Proof of the lemma. Suppose that $y_1, ..., y_m$ are points in Y. We want to show that

$$\bigcap_{i=1}^{m} L_{f,r,y_i} \neq \emptyset$$

The case m=1 holds by assumption so we may assume that $m \geq 2$. Consider $X' = L_{f,r,y_m}$. This is a convex, compact and nonempty subset of a topological vector space over \mathbb{R} . Next let $f': X' \times Y \to \mathbb{R}$ be the restriction of f. Then $f' \in \mathcal{F}$. In addition

$$L_{f',r,y} = X' \cap L_{f,r,y} = L_{f,r,y_m} \cap L_{f,r,y}$$

and by Lemma 1.4.2 this is nonempty set. So it suffices to prove that

$$\bigcap_{i=1}^{m-1} L_{f',r,y_i} \neq \emptyset$$

Hence the proof goes on induction on m.

Proof of the theorem. We always have

$$\sup_{x \in X} \inf_{y \in Y} f(x, y) \le \inf_{y \in Y} \sup_{x \in X} f(x, y)$$

Next pick $r \in \mathbb{R}$ such that

$$r < \inf_{y \in Y} \sup_{x \in X} f(x, y)$$

Then $\mathcal{L}_{f,r}$ consists of nonempty and compact subsets of X. By Lemma 1.4.3 we deduce that $\mathcal{L}_{f,r}$ admits finite intersection property. Hence there exists x in X such that

$$r \le f(x, y)$$

for every $y \in Y$. This implies that

$$r \le \inf_{y \in Y} f(x, y) \le \sup_{x \in X} \inf_{y \in Y} f(x, y)$$

This shows that

$$\sup_{x \in X} \inf_{y \in Y} f(x, y) \le \inf_{y \in Y} \sup_{x \in X} f(x, y)$$

2. Convex and concave functions

Definition 2.1. Let X be a convex subset of a linear space over \mathbb{R} and let $f: X \to \mathbb{R}$ be a function. Then f is *convex* if for every $x_1, x_2 \in X$ and $t \in [0,1]$ we have

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

We say that f is *concave* if -f is convex.

Fact 2.2. *Every convex function is quasiconvex.*

Proof. We left the proof to the reader.