Prof. Me. Napoleão Póvoa Ribeiro Filho

- Durante as décadas de 1980 e 1990, com o aumento da capacidade de armazenamento e processamento dos computadores, os bancos de dados passaram a acumular enormes quantidades de informações.
- No entanto, transformar esses dados em conhecimento ainda era um desafio.

O termo surgiu nos anos 90 para descrever a união de estatística e ciência da computação (machine learning e bancos de dados), aplicada a grandes volumes de dados em ciência, engenharia e negócios.

- "Processo de descoberta automática de informações úteis em grandes depósitos de dados" [Tan et. al., 2006].
- "Data mining is the application of specific algorithms for extracting patterns from data" [Fayyad et. al., 1996]
- O processo, n\u00e3o trivial, de extrair informa\u00e7\u00e3o impl\u00edcita, potencialmente \u00edtil e previamente desconhecida de dados.

KDD (Knowledge Discovery from Data)

 KDD é um processo que compreende os passos comuns desde a coleta de dados em um banco de dados até a obtenção de padrões úteis e previamente desconhecidos.

ETAPAS DO KDD

- Seleção dos dados
- Pré-processamento dos dados
- Transformação dos dados
- Mineração dos dados
- Interpretação/Avaliação/Apresentação

SELEÇÃO DOS DADOS

 Nesta etapa, são escolhidos quais dados serão analisados, garantindo que sejam relevantes para o problema a ser resolvido.

 Exemplo: O e-commerce decide usar informações das compras realizadas nos últimos 12 meses, incluindo dados de clientes, produtos adquiridos, valores gastos e datas das transações.

PRÉ-PROCESSAMENTO E LIMPEZA DOS DADOS

- Consiste em corrigir erros, remover valores inconsistentes e tratar dados ausentes para evitar distorções na análise.
- Exemplo: O e-commerce encontra clientes cadastrados mais de uma vez com e-mails diferentes e valores nulos na idade dos clientes. Ele remove duplicatas e preenche valores ausentes com a média de idade dos clientes ativos.

PRÉ-PROCESSAMENTO E LIMPEZA DOS DADOS

 Os dados são organizados e convertidos para um formato adequado, podendo incluir normalização, agregação e criação de novas variáveis.

 Exemplo: A empresa cria uma nova variável chamada "Frequência de Compra" para classificar clientes em três grupos: compra frequente, esporádica ou apenas em promoções.

- São aplicados algoritmos para identificar padrões, tendências ou relações nos dados, utilizando técnicas como agrupamento, classificação ou regras de associação.
- Exemplo: O e-commerce usa um algoritmo de clusterização (agrupamento) e descobre que clientes que compram acima de R\$ 500 por mês têm maior fidelidade, enquanto os que compram apenas em promoções raramente retornam.

INTERPRETAÇÃO E AVALIAÇÃO DOS RESULTADOS

 Os padrões encontrados são analisados e validados para garantir sua utilidade na tomada de decisões.

 Exemplo: A equipe percebe que clientes frequentes valorizam benefícios exclusivos e decide criar um programa de fidelidade, oferecendo descontos progressivos conforme o número de compras realizadas.

O QUE PODE SER MINERADO

- Diferentes tipos de padrões podem ser descobertos desde que:
 - Possua um volume da dados minimamente significativo
 - Seja passível de se questionar algo
 - Não seja trivial

O QUE PODE SER MINERADO

- Os principais tipos de conhecimento extraído incluem:
 - Padrões de associação
 - Padrões sequenciais
 - Classificação
 - Agrupamento (clustering)
 - Deteção de anomalias
 - Mineração de regras de decisão
 - Mineração de dados textuais e Web Mining

PADRÕES DE ASSOCIAÇÃO

 Identificam relações entre itens em um conjunto de dados, como regras do tipo "se X ocorre, então Y também ocorre frequentemente".

 Exemplo: Em um supermercado, descobre-se que clientes que compram p\(\tilde{a}\) tamb\(\text{em}\) costumam comprar manteiga (Regra: se comprar p\(\tilde{a}\), h\(\text{a}\) 80% de chance de comprar manteiga).

PADRÕES SEQUENCIAIS

 Detectam padrões de eventos que ocorrem em sequência ao longo do tempo.

 Exemplo: Em um e-commerce, identifica-se que clientes que compram um smartphone geralmente compram um fone de ouvido algumas semanas depois.

CLASSIFICAÇÃO

 Atribui categorias a novos dados com base em padrões aprendidos de dados históricos.

 Exemplo: Um banco pode classificar clientes como "baixo risco" ou "alto risco" de inadimplência ao analisar histórico de crédito e comportamento de pagamento.

AGRUPAMENTO

 Agrupa dados semelhantes sem que categorias pré-definidas existam, revelando padrões ocultos.

 Exemplo: Um aplicativo de streaming descobre grupos de usuários com gostos musicais parecidos e sugere playlists personalizadas.

DETECÇÃO DE ANOMALIAS

 Identifica eventos ou padrões que fogem do comportamento normal dos dados.

 Exemplo: Um sistema antifraude percebe que um cartão de crédito usado sempre no Brasil foi utilizado na China sem aviso prévio, possivelmente indicando fraude.

MINERAÇÃO DE REGRAS DE DECISÃO

 Extrai regras lógicas para tomada de decisão com base em variáveis do conjunto de dados.

 Exemplo: Um hospital pode extrair regras que ajudam a prever se um paciente tem alto risco de diabetes com base em idade, IMC e histórico familiar.

MINERAÇÃO DE DADOS TEXTUAIS

 Extrai conhecimento de textos e páginas da web para análise de sentimentos, recomendações ou segmentação de conteúdo.

 Exemplo: Empresas analisam avaliações de produtos para identificar sentimentos positivos ou negativos em comentários de clientes.

