Longitudinal Model Selection in Applied Research: Tips and Tricks for Matching Model Choice to Theory

Ethan M. McCormick, Ph.D.

Postdoctoral Fellow (Dr. Rogier Kievit)
Donders Institute at the RadboudUMC

@McCormickNeuro ethan.mccormick@radboudumc.nl https://mccormickneuro.github.io/

FIT'NG Together, March 15, 2022

Acknowledgements: A Village

Selecting a Longitudinal Modeling Approach

- Overwhelming number of ways to model repeated measures data
 - Often told "use theory", but not how to do that
- Different frameworks*
 - Mixed-effects & structural equation models
 - A lot of historical baggage
- Need a conceptual decision tree to adjudicate between model choices
 - Access to training in many methods

Longitudinal Primer + Codebook

Longitudinal Modeling in Pre-collected Data

- Matching models to theory is often complicated by the need to use pre-existing data sources
 - Other people have made decisions for you
- But with more datasets becoming publicly available, there may be options in the future

Using large, publicly available data sets to study adolescent development: opportunities and challenges

```
Rogier A. Kievit<sup>2,3</sup>, Ethan M. McCormick<sup>2,3,a</sup>, Delia Fuhrmann<sup>1,4,a</sup>, Marie K. Deserno<sup>5,6,a</sup> and Amy Orben<sup>1,a</sup>
```

Longitudinal Modeling in Pre-collected Data

- Matching models to theory is often complicated by the need to use pre-existing data sources
 - Other people have made decisions for you
- But with more datasets becoming publicly available, there may be options here in the future
- Sometimes we have to work within constraints
 - Occasionally can turn these into a strength
 - Might be able to take intentional subsamples

Matching Models and Theory

- Often, we fit standard models because "that's how they are done" without interrogating the assumptions different model specifications impose
 - Our goal is to peel back those assumptions and ask if they make sense for testing a particular theory
 - Also (hopefully) help make better theories
- But...perfect should not be the enemy of the good
 - Sometimes we must make compromises
 - Important to be transparent about those

Outline for the Rest of the Talk

- 3 use cases
 - Assessment designs and longitudinal model selection
 - Cohort vs accelerated studies
 - Uncovering sensitive periods
 - Linear and nonlinear effects
 - Understanding brain-behavior relationships
 - Exogenous and endogenous predictors
- Conclusions and Next Steps

Assessment designs and longitudinal model selection

Use-Case 1: Assessment Designs

Cohort- vs Accelerated Longitudinal Designs

Use-Case 1: Assessment Designs

- Cohort- vs Accelerated Longitudinal Designs
 - Historically,
 - Cohort designs → SEM methods
 - Accelerated designs → MEM-based methods

Use-Case 1: SEM vs. MEM growth models

Mixed-Effect Data & Model

Linear Model:

$$y_{ti} = \underbrace{\gamma_{00} + \gamma_{10} Time_{ti}}_{fixed\ effects} + \underbrace{u_{0i} + u_{1i} Time_{ti}}_{random\ effects} + r_{ti}$$

- Time is an observed covariate
 - Model treats it like any other covariate
 - Allows for individuallyvarying values

Executive Function Data: Long Format				
id	wave	dlpfc		
1	0	-0.184		
1	1	1.129		
1	2	-0.840		
1	3	0.472		
2	0	0.801		
2	1	1.129		
2	2	0.801		
2	3	1.457		
3	0	0.472		
3	1	1.129		
3	2	0.144		
3	3	0.144		

Use-Case 1: SEM vs. MEM growth models

SEM Data & Model

Linear Model:

$$y_i = \Lambda \eta_i + \varepsilon_i$$

$$\eta_i = \alpha + \zeta_i$$

- Time is hard-coded into the factor-loading matrix
 - Repeated measures are separate variables
 - Need to group variables into time-bins*

Executive Function Data: Wide Format

id	dlpfc1	dlpfc2	dlpfc3	dlpfc4
1	-0.184	1.129	-0.840	0.472
2	0.801	1.129	0.801	1.457
3	0.472	1.129	0.144	0.144
4	0.472	0.472	0.472	0.472
5	-0.840	2.114	2.442	2.442

Use-Case 1: Assessment Designs

- Modern methods
 - Can allow for individually-varying assessment in SEMs with definition variables through Mplus or OpenMx
- But in general, accelerated designs are still modeled primarily with mixed-effects models
- Main theoretical distinction: how much age-variation can you compress before the model is mis-specified?

Use-Case 1: Assessment Designs Heuristic Map

Uncovering Sensitive Periods

Use-Case 2: Sensitive Periods

- Sensitive periods
 - A window of development where the organism is differentially- (usually hyper-) sensitive to a particular environmental* input
 - Especially abundant in the peri-natal period
- Main theoretical question: Do we believe that the effects of predictors should be consistent across development?
 - Practical concerns: how to include in our models

Use-Case 2: Modeling Interactions for Sensitive Periods

- Modeling sensitive periods are fundamentally about interactions (e.g., maternal stress and PFC pruning)
 - Main effect: Holding age constant, there is an effect of maternal stress (β_{stress})
 - Interaction: The effect of maternal stress depends (in part) on the age of the offspring ($\beta_{\text{stress x age}}$)

Use-Case 2: Modeling Interactions for Sensitive Periods

- Simple tests for sensitive periods
 - In the prior example, we have a bilinear interaction (β_{stress}) changes linearly over age
 - Quadratic/cubic effects
 - The effect of age itself changes across age in some fashion

Testing Interactions: An Empirical Example

25

Interaction Models

Experience Moderates the Effects of Age on Learning Performance 1.000.950.950.85-

15

Network Modularity

Use-Case 2: Modeling Interactions for Sensitive Periods

- Simple tests for sensitive periods
 - In the prior example, we have a bilinear interaction (β_{stress}) changes linearly over age
 - Quadratic/cubic effects
 - The effect of age itself changes across age in some fashion
 - Generally requires that we pre-specify the sensitive period relationship
 - Can be limiting if the effects are truly nonlinear

Use-Case 2: Nonlinear Interactions for Sensitive Periods

Nonlinear tests for sensitive periods

Weeks Post-Natal

Use-Case 2: Nonlinear Interactions for Sensitive Periods

- Nonlinear tests for sensitive periods
 - Generalized additive models
 - Spline-based approach
 - Allows naturally for nonlinear interactions
 - Fixed versus random effects

- Free-factor loadings
- Including predictors of shape factor

<u>Use-Case 2: Nonlinear Interactions for Sensitive Periods</u>

- Nonlinear tests for sensitive periods
 - Often require many more timepoints to model
 - Can benefit from accelerated designs with a fixed effect
- Differential Coupling
 - Require us to move away from univariate (i.e., singleoutcome models)
 - How do two (or more) constructs travel together through time?

Understanding brain-behavior relationships

Use-Case 3: Brain-Behavior Relationships

- Brain-Behavior Relationships
 - Fundamentally about testing causal explanations for why we see particular developmental trajectories
 - Time-invariant Effects
 - Explain stable between-person differences
 - Time-varying Effects
 - Can explain within-person processes
 - Can be exogenous or endogenous

Use-Case 3: Brain-Behavior Relationships Heuristic Map

Use-Case 3: TVC-Models

- Exogenous Time-varying Covariates
 - Only one causal direction
 - TVC "fixed and known"
 - Typically, a univariate model
 - MEM or SEM will work

TVC does not systematically change

MLM Equation

$$y_{ti} = \gamma_{00} + \gamma_{10} Time_{ti} + \gamma_{20} TVC_{ti} + u_{0i} + u_{1i} Time_{ti} + r_{ti}$$

SEM Diagram

Use-Case 3: Multivariate Models

- Endogenous (Multivariate) Time-varying Effects
 - Reciprocal relationships over time
 - TVC assumed measured with error
 - Real limitations for MEMs
 - SEMs predominate
 - Different functional forms

SEM Diagram

Use-Case 3: Within- and Between-Person Effects

- TICs only explain between-person variance, but TVCs can explain both within- and between variance
 - To separate out these effects, we need to do a little extra work
- MEMs
 - Centering of predictors by extracting the means
- SEMs
 - Structured residuals

Conclusions and Next Steps

Conclusions and Next Steps

- Longitudinal model selection is complex and there are rarely 100% "right" answers
 - We should strive to be better but know that there are inherent limitations
- Understanding model assumptions gives us more reliable estimates of the effects of interes
 - Constrains our conclusions
- "Working out the terms of moral justification unending task."
 - Also works for matching models to theory

Conclusions and Next Steps

- More in-depth exploration of these topics: Preprint
 - Including links to lots of primary sources
- Hands on code applications of these models: Online codebook companion
 - Primarily in R but some (future) resources for Mplus/SAS
- Additional training in advanced topics: Flux Preconference (details to come)

Especial thanks to these lovely people

European Research Council

Radboudumo DONDERS C

National Institute of Mental Health

34

Questions?

@McCormickNeuro

ethan.mccormick@radboudumc.nl

https://mccormickneuro.github.io/

3/15/22