Homework 5 Linear Algebra Math 524 Stephen Giang

Section 5.A Problem 4: Suppose that $T \in \mathcal{L}(V)$ and $U_1, ..., U_m$ are subspaces of V invariant under T. Prove that $U_1 + ... + U_m$ is invariant under T.

Solution. Let $T \in \mathcal{L}(V)$ and $U_1, ..., U_m$ be subspaces of V invariant under T. Let $u \in U_1 + ... + U_m$ and $u_1 \in U_1, ..., u_m \in U_m$ with $u = u_1 + ... + u_m$

Notice:
$$Tu_1 \in U_1, ..., Tu_m \in U_m$$

 $Tu = Tu_1 + ... + Tu_m \in U_1 + ... + U_m$

Because $Tu \in U_1 + ... + U_m$, this proves that $U_1 + ... + U_m$ is invariant under T.

Section 5.A Problem 8: Define $T \in \mathcal{L}(\mathbb{F}^2)$ by T(w, z) = (z, w). Find all the eigenvalues and eigenvectors of T.

Solution. Let $T \in \mathcal{L}(\mathbb{F}^2)$ with T(w, z) = (z, w).

Notice:
$$Tw=z$$
 $Tz=w$ $Tw=z=\lambda w$ $Tz=w=\lambda z$ Through Substitution: $z=\lambda^2 z$ or $w=\lambda^2 w$ $\lambda^2=1$ $\lambda=\pm 1$

For $\lambda = 1$, we need to find a v_1 such that $Tv_1 = v_1$. For $\lambda = -1$, we need to find a v_2 such that $Tv_2 = -v_2$.

$$T(w,z) = (z,w) = 1(w,z)$$
 $T(w,z) = (z,w) = -1(w,z)$
 $z = w$ $z = -w$

The eigenvector corresponding to $\lambda = 1$ would be a vector whose components would be equal to each other such as (w, w) with $w \in \mathbb{F}$. The eigenvector corresponding to $\lambda = -1$ would be a vector whose components would be opposite to each other such as (w, -w) with $w \in \mathbb{F}$.

П

Section 5.A Problem 10 (a): Define $T \in \mathcal{L}(\mathbb{F}^n)$ by $T(x_1, x_2, ..., x_n) = (x_1, 2x_2, ..., nx_n)$. Find all the eigenvalues and eigenvectors of T.

Solution. Let $T \in \mathcal{L}(\mathbb{F}^n)$ with $T(x_1, x_2, ..., x_n) = (x_1, 2x_2, ..., nx_n)$.

Notice:
$$Tx_j = jx_j$$
 $1 \le j \le n$
 $jx_j = \lambda x_j$
 $j = \lambda$

For $\lambda = j$, we need to find a $(x_1, x_2, ..., x_n)$ such that $T(x_1, x_2, ..., x_n) = j(x_1, x_2, ..., x_n)$

Notice: if we set j = 2: $T(x_1, x_2, ..., x_n) = (x_1, 2x_2, ..., nx_n) = (2x_1, 2x_2, ..., 2x_n)$

So: $x_1 = 2x_1$ $2x_2 = 2x_2$ $nx_n = 2x_n$

 $0 = 2x_1 - x_1 = x_1$ $x_2 = x_2$ $0 = (2 - n)x_n$

So: $x_1 = 0, x_3 = 0, ..., x_n = 0$

Eigenvector for $\lambda = j = 2$: $(0, x_2, 0, ..., 0)$

The eigenvectors that correspond to $\lambda = j$ are $(0, 0, ..., x_i, ..., 0, 0)$ for all $1 \le j \le n$.

Section 5.B Problem 1 (a): Suppose $T \in \mathcal{L}(V)$ and there exists a positive integer n such that $T^n = 0$. Prove that I - T is invertible and that

$$(I-T)^{-1} = I + T + \dots + T^{n-1}$$

Solution. Let $T \in \mathcal{L}(V)$ and there exists a positive integer n such that $T^n = 0$. Notice: A is invertible iff $AA^{-1} = A^{-1}A = I$

$$(I-T)(I+T+...+T^{n-1}) = (I+T+...+T^{n-1}) - (T+T^2+...+T^{n-1}+T^n)$$

= $I-T^n = I-0 = I$

This proves that (I-T) is invertible and its inverse is $(I+T+...+T^{n-1})$

Section 5.B Problem 7: Suppose that $T \in \mathcal{L}(V)$. Prove that 9 is an eigenvalue of T^2 if and only if 3 or -3 is an eigenvalue of T.

Solution. Let $T \in \mathcal{L}(V)$. Let λ represent the eigenvalue of T.

Let
$$\lambda_1=3$$

$$Tv=3v$$

$$Tv=-3v$$

$$T^2v=T(Tv)=T(3v)=3(3v)=9v$$

$$T^2v=T(Tv)=T(-3v)=-3(-3v)=9v$$

This proves that the eigenvalue of T^2 is 9 when the eigenvalues of T is 3 or -3.

Section 5.B Problem 14: Give an example of an operator whose matrix with respect to some basis contains only 0's on the diagonal, but the operator is invertible

Solution. Let $T \in \mathcal{L}(V)$ and v_1, v_2, v_3 is the basis of V such that $Tv_j = v_1 + v_2 + v_3 - v_j$ for $1 \le j \le 3$

$$\mathcal{M}(T) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad \mathcal{M}^{-1}(T) = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

T proves there exists an operator whose matrix with respect to some basis contains only 0's on the diagonal. Because $\mathcal{M}^{-1}(T)$ exists proves that the matrix is invertible.

Section 5.B Problem 15: Give an example of an operator whose matrix with respect to some basis contains only nonzero numbers on the diagonal, but the operator is not invertible

Solution. Let $T \in \mathcal{L}(V)$ and v_1, v_2 is the basis of V such that for $a \neq 0, b \neq 0 \in \mathbb{F}$, $Tv_j = av_1 + bv_2$ for $j = \{1, 2\}$

$$\mathcal{M}(T) = \begin{pmatrix} a & a \\ b & b \end{pmatrix}$$

Because $\mathcal{M}^{-1}(T)$ does not exist proves that the matrix is not invertible, while having its diagonal consist on nonzero numbers.

Section 5.C Problem 1: Suppose $T \in \mathcal{L}(V)$ is diagonalizable. Prove that $V = \text{null } T \oplus \text{range } T$.

Solution. Let $T \in \mathcal{L}(V)$ be diagonalizable and $v_1, ..., v_n, u_1, ..., u_m$ be a basis of V.

(1) Because T is diagonalizable, each element of the basis of V is an eigenvector, such that $Tv_j = \lambda v_j$ and $Tu_k = 0u_k$.

range T = span
$$(\lambda v_1, ..., \lambda v_n)$$

null T = span $(u_1, ..., u_m)$

(2) Let $w \in \text{null } T \cap \text{ range } T$.

$$w = a_1 v_1 + \dots + a_n v_n$$

= $b_1 u_1 + \dots + b_m u_m$
 $a_1 v_1 + \dots + a_n v_n - (b_1 u_1 + \dots + b_m u_m) = 0$

Because of (1), V = null T + range T. Because $v_1, ..., v_n, u_1, ..., u_m$ is a basis of V, the constants have to be 0, which means w = 0. This proves that null $T \cap \text{ range } T = \{0\}$. Which proves that $V = \text{null } T \oplus \text{ range } T$.

Section 5.C Problem 2: Prove the converse of the statement in the exercise above or give a counterexample to the converse.

Converse: If $V = \text{null } T \oplus \text{ range } T$, then $T \in \mathcal{L}(V)$ is diagonalizable.

Solution. Let $T \in \mathcal{L}(\mathbb{R}^2)$ such that T(w, z) = (-z, w) with $w, z \in \mathbb{R}$.

Notice: null $T = \operatorname{span}((0,0))$ and range $T = \operatorname{span}(-z,w)$, $\mathbb{R}^2 = \operatorname{null} T \oplus \operatorname{range} T$ The eigenvalues of T are, however, $\pm i \notin \mathbb{R}$. Because there does not exist any eigenvalues in \mathbb{R} , T is not diagonalizable. So the converse is false!