

Unit 8

——Latches and Flip-Flops

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

8.0 时序电路的特点

- 时序电路的特点
- 双稳态触发器的特点

1. 时序电路的特点

组合逻辑电路的特点

- □ 它是一种无记忆电路──输入信号消失,则 输出信号也会立即消失
- □ 电路输出端的状态完全由输入端的状态决定

- ❖ 有时需要将参与运算的数据和运算结果保存起来——在组合逻辑电路的输出端添加具有记忆功能的部件
- ❖ 锁存器和触发器就是构成存储电路的基本 单元。

1. 时序电路的特点

数字逻辑电路由两部分组成——

构成		定义	结构	电路框图	逻辑函数表达式
数字逻辑电路	组合逻辑 电路	电路的输出── ■ 仅与当前时刻的输入有关 Z _m = f _m (x ₁ ,, x _n)	不包含存 储元件	X ₁ : 组合电路 : ス _m	只有一组: Z _m = f _m (x ₁ ,, x _n)
	时序逻辑 电路	 电路的输出与以下均有关: ■ 当前时刻的输入 ■ 电路过去(上一个时刻)的工作状态 Z_m = f_m (x₁,, x_n, y₁,, y_s) 	包含存储元件	X1 Xn 组合电路 Z1 Zm F储电路 Fr	有三组: 输出方程, 驱动方程, 状态方程: $Z_m = f_m (x_1,,x_n, y_1,,y_r)$ $Y_r = g_r (x_1,,x_n,y_1,,y_s)$ $Y_s^{n+1} = q_s (x_1,,x_n,Y_1^n,,Y_s^n)$

■ 锁存器(Latche)和触发器(flip-flop)是构成存储电路的基本元件

■ 两个重要概念—— 现态(原态):存储电路当前时刻的状态 Q_n

次态(新态):存储电路下一时刻的状态 Q_{n+1}

2. 双稳态触发器的特点

触发器/锁存器的特性(双稳态)

每个锁存器(触 发器)可以存放<mark>1</mark> 位二进制数

- 1. 有两个互补的输出端 Q 和 Q'
- 2. 有两个稳定的状态: 0态, 1态
- 3. 在外界信号的刺激下,可以从一个稳定状态转变到另一个稳定状态。
- 4. 没有(或无效的)外界信号刺激,维持当前状态不变。

触发器: 有时钟输入端,并且只在时钟信号到来时,才发生状态转换

锁存器:没有时钟输入端

