The Career Atlas: Mathematical Notation

Cao Bittencourt

^aB. Sc. in Economics from EPGE (FGV), RJ, Brazil. ^bStatistician at Atlas Career Guide Inc., FL, USA.

1. Basic Definitions

1.1. Skill Sets

The i-th professional attribute, or competency, of a person k is defined as:

$$a_i^k \in [0, 100],$$
 (1)

where the interval [0, 100] determines the bounds for every competency.¹

The skill set, or career profile, of a person k is defined as the vector of their m attributes:

$$\boldsymbol{a_k} = (a_1^k, \dots, a_m^k). \tag{2}$$

A skill set matrix, or career profile matrix, is the collection of all n skill sets in the economy:

$$\mathbf{A} = \begin{bmatrix} a_1^1 & \dots & a_m^1 \\ \vdots & \ddots & \vdots \\ a_1^n & \dots & a_m^n \end{bmatrix} . \tag{3}$$

1.2. Skill Set Normalization

Normalization by the scale bounds is defined by the tilde operator:

$$\tilde{a}_i^k = \frac{a_i^k - 0}{100 - 0} = \frac{a_i^k}{100} \in [0, 1]; \tag{4}$$

$$\tilde{\boldsymbol{a}}_{\boldsymbol{k}} = (\tilde{a}_1^k, \dots, \tilde{a}_m^k); \tag{5}$$

$$\tilde{\mathbf{A}} = \begin{bmatrix} \tilde{a}_1^1 & \dots & \tilde{a}_m^1 \\ \vdots & \ddots & \vdots \\ \tilde{a}_1^n & \dots & \tilde{a}_m^n \end{bmatrix}. \tag{6}$$

 $^{^{1}}$ More generally, these could be defined as $a_{\rm lb}$ (the lower bound) and $a_{\rm ub}$ (the upper bound). Here, the interval [0, 100] is used because of its ease of interpretation.

Normalization by a skill set's highest attribute is defined by the hat operator:

$$\hat{a}_i^k = \frac{a_i^k}{\max a_j^k} \in [0, 1]; \tag{7}$$

$$\hat{\boldsymbol{a}}_{\boldsymbol{k}} = (\hat{a}_1^k, \dots, \hat{a}_m^k); \tag{8}$$

$$\hat{\mathbf{a}}_{k} = (\hat{a}_{1}^{k}, \dots, \hat{a}_{m}^{k}); \tag{8}$$

$$\hat{\mathbf{A}} = \begin{bmatrix} \hat{a}_{1}^{1} & \dots & \hat{a}_{m}^{1} \\ \vdots & \ddots & \vdots \\ \hat{a}_{1}^{n} & \dots & \hat{a}_{m}^{n} \end{bmatrix}. \tag{9}$$