

IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Currently Amended): A white color organic electroluminescence device comprising:

a cathode;

an anode; and

one or more organic thin film layers sandwiched between the two electrodes and including comprising at least a light emitting layer[,]]

wherein the light emitting layer has a laminate comprising a bluish color light emitting layer and a yellow-to-reddish color light emitting layer; and

wherein the light emitting layer comprises an asymmetric compound comprising containing a condensed ring,

wherein the asymmetric compound comprising a condensed ring comprises a compound of formulae (I)-(IX) below:

formula (I):

wherein Ar¹ and Ar² each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, provided that Ar¹ and Ar² do not have the same structure, and

R¹ to R⁸ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group;

formula (II):

wherein Ar represents a substituted or unsubstituted fused aromatic ring residue having 10 to 50 nuclear carbon atoms,

Ar' represents hydrogen or a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms,

X represents a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50

nuclear atoms, a substituted or unsubstituted alkoxy carbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group,
and

a, b, and c each represent an integer of 0 to 4, and n represents an integer of 1 to 3;

formula (III):

wherein A¹ and A² each independently represent a substituted or unsubstituted fused aromatic ring residue having 10 to 20 nuclear carbon atoms,

Ar¹ and Ar² each independently represent a hydrogen atom, or a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, and

R¹ to R¹⁰ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a

cyno group, a nitro group, or a hydroxyl group, provided that no symmetrical group binds to each of 9-position and 10-position of central anthracene;

formula (IV):

(IV)

wherein $Ar^{1'}$ and $Ar^{2'}$ each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, and

R^1 to R^{10} each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group, provided that no symmetrical group binds to each of 9-position and 10-position of central anthracene;

formula (V):

(V)

wherein Ar³ and Ar⁴ each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, provided that Ar³ and Ar⁴ do not have the same structure, and

R¹¹ to R¹⁸ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxy carbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group;

formula (VI):

(VI)

wherein Ar⁵ represents a substituted or unsubstituted fused aromatic ring residue having 10 to 50 nuclear carbon atoms,

Ar⁶ represents a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms,

X¹ and X² each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group, and

d represents an integer of 0 to 8, e represents an integer of 0 to 4, and n¹ represents an integer of 1 to 3;

formula (VII):

(VII)

wherein Ar⁷ and Ar⁸ each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms,

X³, X⁴, and X⁵ each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group, and

f and g each represent an integer of 0 to 4, h represents an integer of 0 to 8, and n² represents an integer of 1 to 3, provided that no symmetrical group binds to each of 1-position and 6-position of central pyrene;

formula (VIII):

(VIII)

wherein A³ and A⁴ each independently represent a substituted or unsubstituted fused aromatic ring residue having 10 to 20 nuclear carbon atoms;

Ar⁹ and Ar¹⁰ each independently represent a hydrogen atom, or a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, and

R¹¹ to R²⁰ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxy carbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group, provided that no symmetrical group binds to each of 1-position and 6-position of central pyrene;

formula (IX):

(IX)

wherein Ar¹¹ and Ar¹² each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms,

X⁶ and X⁷ each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted

arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxy carbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group,

L represents a substituted or unsubstituted arylene group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted divalent aromatic heterocyclic group having 3 to 50 nuclear atoms; and

i and j each represent an integer of 0 to 8, and n³ and n⁴ each represent an integer of 1 to 3.

Claim 2 (Currently Amended): [[A]] The white color organic electroluminescence device according to claim 1, wherein the light emitting layer consists of the bluish color light emitting layer and the yellow-to-reddish color light emitting layer.

Claim 3 (Currently Amended): [[A]] The white color organic electroluminescence device according to claim 1, wherein the bluish color light emitting layer comprises a bluish color host material and a bluish color dopant, and the bluish color host material comprises an asymmetric compound containing comprising a condensed ring.

Claim 4 (Currently Amended): [[A]] The white color organic electroluminescence device according to claim 1, wherein the asymmetric compound comprising containing a condensed ring comprises the an-asymmetric anthracene-based compound represented by the following general formula (I):

(I)

wherein Ar¹ and Ar² each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, provided that Ar¹ and Ar² do not have the same structure; and

R¹ to R⁸ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group.

Claim 5 (Currently Amended): [[A]] The white color organic electroluminescence device according to claim 1, wherein the asymmetric compound comprising containing a

condensed ring comprises the an-asymmetric anthracene-based compound represented by any one of the following general formulae (II) to (IV):

(II)

wherein Ar represents a substituted or unsubstituted fused aromatic ring residue having 10 to 50 nuclear carbon atoms;

Ar' represents a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, ~~and the number of Ar's may be two or more;~~

X represents a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group; and

a, b, and c each represent an integer of 0 to 4, and n represents an integer of 1 to 3;

(III)

wherein A¹ and A² each independently represent a substituted or unsubstituted fused aromatic ring residue having 10 to 20 nuclear carbon atoms;

Ar¹ and Ar² each independently represent a hydrogen atom, or a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, ~~and each of the number of Ar¹'s and the number of Ar²'s may be two or more~~; and

R¹ to R¹⁰ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group, ~~and each of the number of R⁹'s and the number of R¹⁰'s may be two or more~~, provided that no symmetrical group binds to each of 9-position and 10-position of central anthracene;

(IV)

wherein Ar¹ and Ar² each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, ~~and each of the number of Ar¹'s and the number of Ar²'s may be two or more~~; and

R¹ to R¹⁰ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxy carbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group, ~~and each of the number of R⁹'s and the number of R¹⁰'s may be two or more~~, provided that no symmetrical group binds to each of 9-position and 10-position of central anthracene.

Claim 6 (Currently Amended): [[A]] The white color organic electroluminescence device according to claim 1, wherein the asymmetric compound comprising containing a

condensed ring comprises the an-asymmetric pyrene-based compound represented by the following general formula (V):

(V)

wherein Ar³ and Ar⁴ each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, provided that Ar³ and Ar⁴ do not have the same structure; and

R¹¹ to R¹⁸ each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group.

Claim 7 (Currently Amended): [[A]] The white color organic electroluminescence device according to claim 1, wherein the asymmetric compound comprising containing a

condensed ring comprises the an-asymmetric pyrene-based compound represented by any one of the following general formulae (VI) to (IX):

(VI)

wherein Ar⁵ represents a substituted or unsubstituted fused aromatic ring residue having 10 to 50 nuclear carbon atoms;

Ar⁶ represents a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, ~~and the number of Ar⁶'s may be two or more;~~

X¹ and X² each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxy carbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group; and

d represents an integer of 0 to 8, e represents an integer of 0 to 4, and n¹ represents an integer of 1 to 3;

(VII)

wherein Ar⁷ and Ar⁸ each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, ~~and each of the number of Ar⁷'s and the number of Ar⁸'s may be two or more;~~

X³, X⁴, and X⁵ each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group; and

f and g each represent an integer of 0 to 4, h represents an integer of 0 to 8, and n² represents an integer of 1 to 3, provided that no symmetrical group binds to each of 1-position and 6-position of central pyrene;

(VIII)

wherein A^3 and A^4 each independently represent a substituted or unsubstituted fused aromatic ring residue having 10 to 20 nuclear carbon atoms;

Ar^9 and Ar^{10} each independently represent a hydrogen atom, or a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, ~~and each of the number of Ar^9 's and the number of Ar^{10} 's may be two or more~~; and

R^{11} to R^{20} each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxy carbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group, ~~and each of the number of R^{19} 's and the number of R^{20} 's may be two or more~~, provided that no symmetrical group binds to each of 1-position and 6-position of central pyrene;

(IX)

wherein Ar¹¹ and Ar¹² each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms;

X⁶ and X⁷ each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxy carbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, or a hydroxyl group;

L represents a substituted or unsubstituted arylene group having 6 to 50 nuclear carbon atoms, or a substituted or unsubstituted divalent aromatic heterocyclic group having 3 to 50 nuclear atoms; and

i and j each represent an integer of 0 to 8, and n³ and n⁴ each represent an integer of 1 to 3.

Claim 8 (Currently Amended): [[A]] The white color organic electroluminescence device according to claim 3, wherein the bluish color dopant comprises at least one compound selected from [[a]] the group consisting of a styrylamine, an amine-substituted styryl compound, a compound containing comprising an amine-substituted fused aromatic ring, and a compound containing comprising a fused aromatic ring, and combinations thereof.

Claim 9 (Currently Amended): [[A]] The white color organic electroluminescence device according to claim 1, comprising the anode, the bluish color light emitting layer, the yellow-to-reddish color light emitting layer, and the cathode in this order, wherein the yellow-to-reddish color light emitting layer comprises contains the a same host material as that of the bluish color light emitting layer and a yellow-to-reddish color dopant.

Claim 10 (Currently Amended): [[A]] The white color organic electroluminescence device according to claim 9, wherein the yellow-to-reddish color dopant comprises a compound having multiple fluoranthene skeletons.

Claim 11 (Currently Amended): [[A]] The white color organic electroluminescence device according to claim 9, wherein the yellow-to-reddish color dopant comprises a compound having a fluorescent peak wavelength of 540 nm to 700 nm.

Claim 12 (Currently Amended): [[A]] The white color organic electroluminescence device according to claim 1, wherein each of the bluish color light emitting layer and the yellow-to-reddish color light emitting layer has a thickness of 5 nm or more.

Claim 13 (New): The white color organic electroluminescence device according to claim 8, wherein the bluish color dopant comprises at least one compound selected from the group consisting of a styrylamine, an amine-substituted styryl compound, a compound comprising an amine-substituted fused aromatic ring, and combinations thereof.

Claim 14 (New): The white color organic electroluminescence device according to claim 8, wherein the bluish color dopant comprises at least one compound selected from the group consisting of a styrylamine, an amine-substituted styryl compound, and combinations thereof.

Claim 15 (New): The white color organic electroluminescence device according to claim 1, further comprising a hole injecting layer.

Claim 16 (New): The white color organic electroluminescence device according to claim 15, wherein the hole injecting layer comprises a compound of formula (X):

Claim 17 (New): The white color organic electroluminescence device according to claim 15, further comprising a hole transporting layer.

Claim 18 (New): The white color organic electroluminescence device according to claim 17, wherein the hole transporting layer comprises a compound of formula (XI):

Claim 19 (New): The white color organic electroluminescence device according to claim 1, further comprising an alq film.

Claim 20 (New): The white color organic electroluminescence device according to claim 20, wherein the alq film comprises tris (8-quinolinol)aluminum.