MVP - Previsão de Evasão de Alunos (Versão Modular)

```
In [1]: import sys
    import os
    sys.path.append(os.path.abspath(os.path.join(os.getcwd(), 'src')))

In [2]: from simulacao_dados import simular_dados
    from modelagem import preparar_dados, treinar_modelo, obter_importancias
    from intervencoes import aplicar_nivel_risco, aplicar_intervencoes, analisar_impact
    import seaborn as sns
    import matplotlib.pyplot as plt
```

1. Simulação de Dados

```
In [3]: df = simular_dados(n=500)
    df.head()
```

Out[3]:		idade	sexo	curso	turno	semestre_atual	nota_média	frequência	tra
	0	55	Masculino	Engenharia	Matutino	9	5.30	74.02	
	1	45	Feminino	Direito	Vespertino	4	8.45	81.38	
	2	31	Feminino	Administração	Vespertino	2	5.03	66.96	
	3	59	Masculino	Administração	Vespertino	7	4.51	81.45	
	4	24	Masculino	Enfermagem	Noturno	6	7.52	84.07	
	4 (_							•

2. Treinamento do Modelo

```
In [4]: X_train, X_test, y_train, y_test = preparar_dados(df)
model = treinar_modelo(X_train, y_train)
importancias = obter_importancias(model, X_train)
importancias.head()
```

ut[4]:		feature	importance
	5	nota_média	0.422742
	8	atraso_pagamento	0.320173
	6	frequência	0.110704
	0	idade	0.034751
	7	trancamentos	0.029374

3. Importância das Variáveis

```
In [5]: sns.barplot(x='importance', y='feature', data=importancias.head(10))
    plt.title('Top 10 Variáveis Mais Importantes')
    plt.show()
```


4. Cálculo de Risco

Name: count, dtype: int64

5. Simulação de Intervenção

```
In [7]: df_interv = aplicar_intervencoes(df)
   X_train_new, X_test_new, _, _ = preparar_dados(df_interv)
   novos_riscos, _ = aplicar_nivel_risco(model, X_test_new)
```

6. Análise de Impacto e ROI

```
impacto = analisar_impacto(riscos, novos_riscos)
roi = calcular_roi(len(riscos), impacto, custo_intervencao=1000)

print(f"Impacto médio: {impacto:.2%}")
print(f"ROI estimado: {roi:.2%}")
```

Impacto médio: 10.40%
ROI estimado: 56.00%