# **AUTO**

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 39 compute nodes are available.

Program started at Mon Aug 14 23:02:36 2017

Program finished at Tue Aug 15 02:26:11 2017 [Runtime:0000:03:23:35]



## **Options**

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 2110111697

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

\* = migration free to vary, Thetas are on diagonal

1

d = row population split off column population, D = split and then migration

Population

1 Romanshorn 0 \*

Order of parameters:

1  $\Theta_1$  <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy:

Bayesian inference

-Population size estimation: Exponential Distribution

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Metropolis sampling
Divergence Metropolis sampling
Divergence Spread Metropolis sampling
Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Prior Minimum MeanMaximum Delta Bins UpdateFreq
1 Theta -11 Uniform 0.000000 0.050 0.100 0.010 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings:

Long chain

Number of chains1Recorded steps [a]50000Increment (record every x step [b]200Number of concurrent chains (replicates) [c]2

Visited (sampled) parameter values [a\*b\*c] 20000000

Number of discard trees per chain (burn-in) 10000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

1000000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: infile.0.7

Haplotyping is turned on:

Output file: outfile\_0.7\_0.8

Posterior distribution raw histogram file: bayesfile

Raw data from the MCMC run: bayesallfile\_0.7\_0.8

Print data: No

Print genealogies [only some for some data type]:

# Data summary

Data file: infile.0.7
Datatype: Sequence data
Number of loci: 100

| N/III | tatio | ٦nm       | $\alpha$ | ΣI: |
|-------|-------|-----------|----------|-----|
| iviu  | ιαιις | /I II I I | out      | 7I. |

| Mutation | model:  |               |                          |  |
|----------|---------|---------------|--------------------------|--|
| Locus S  | ublocus | Mutationmodel | Mutationmodel parameters |  |
| 1        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 2        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 3        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 4        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 5        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 6        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 7        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 8        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 9        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 10       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 11       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 12       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 13       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 14       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 15       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 16       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 17       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 18       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 19       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 20       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 21       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 22       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 23       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 24       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 25       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 26       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 27       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 28       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 29       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 30       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 31       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 32       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 33       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 34       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |

| 35 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
|----|---|--------------|-------------------|
| 36 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 37 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 38 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 39 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 40 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 41 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 42 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 43 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 44 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 45 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 46 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 47 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 48 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 49 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 50 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 51 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 52 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 53 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 54 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 55 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 56 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 57 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 58 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 59 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 60 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 61 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 62 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 63 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 64 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 65 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 66 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 67 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 68 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 69 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 70 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 71 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 72 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 73 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 74 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 75 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 76 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 77 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 78 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 79 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
|    |   |              |                   |

|           |       |              |                   | AUTO 5 |
|-----------|-------|--------------|-------------------|--------|
| 80        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 81        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 82        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 83        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 84        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 85        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 86        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 87        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 88        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 89        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 90        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 91        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 92        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 93        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 94        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 95        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 96        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 97        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 98        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 99        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 100       | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
|           |       |              |                   |        |
| Sites per | locus |              |                   |        |
| Locus     |       | Sites        |                   |        |
| 1         | 1     | 0000         |                   |        |

| Locus | Sites |
|-------|-------|
| 1     | 10000 |
| 2     | 10000 |
| 3     | 10000 |
| 4     | 10000 |
| 5     | 10000 |
| 6     | 10000 |
| 7     | 10000 |
| 8     | 10000 |
| 9     | 10000 |
| 10    | 10000 |
| 11    | 10000 |
| 12    | 10000 |
| 13    | 10000 |
| 14    | 10000 |
| 15    | 10000 |
| 16    | 10000 |
| 17    | 10000 |
| 18    | 10000 |
| 19    | 10000 |
| 20    | 10000 |

| 21 10000 |  |
|----------|--|
| 22 10000 |  |
| 23 10000 |  |
| 24 10000 |  |
| 25 10000 |  |
| 26 10000 |  |
| 27 10000 |  |
| 28 10000 |  |
| 29 10000 |  |
| 30 10000 |  |
| 31 10000 |  |
| 32 10000 |  |
| 33 10000 |  |
| 34 10000 |  |
| 35 10000 |  |
| 36 10000 |  |
| 37 10000 |  |
| 38 10000 |  |
| 39 10000 |  |
| 40 10000 |  |
| 41 10000 |  |
| 42 10000 |  |
| 43 10000 |  |
| 44 10000 |  |
| 45 10000 |  |
| 46 10000 |  |
| 47 10000 |  |
| 48 10000 |  |
| 49 10000 |  |
| 50 10000 |  |
| 51 10000 |  |
| 52 10000 |  |
| 53 10000 |  |
| 54 10000 |  |
| 55 10000 |  |
| 56 10000 |  |
| 57 10000 |  |
| 58 10000 |  |
| 59 10000 |  |
| 60 10000 |  |
| 61 10000 |  |
| 62 10000 |  |
| 63 10000 |  |
| 64 10000 |  |
| 65 10000 |  |

| 66      | 10000                  |                |             |            |  |
|---------|------------------------|----------------|-------------|------------|--|
| 67      | 10000                  |                |             |            |  |
| 68      | 10000                  |                |             |            |  |
| 69      | 10000                  |                |             |            |  |
| 70      | 10000                  |                |             |            |  |
| 71      | 10000                  |                |             |            |  |
| 72      | 10000                  |                |             |            |  |
| 73      | 10000                  |                |             |            |  |
| 74      | 10000                  |                |             |            |  |
| 75      | 10000                  |                |             |            |  |
| 76      | 10000                  |                |             |            |  |
| 77      | 10000                  |                |             |            |  |
| 78      | 10000                  |                |             |            |  |
| 79      | 10000                  |                |             |            |  |
| 80      | 10000                  |                |             |            |  |
| 81      | 10000                  |                |             |            |  |
| 82      | 10000                  |                |             |            |  |
| 83      | 10000                  |                |             |            |  |
| 84      | 10000                  |                |             |            |  |
| 85      | 10000                  |                |             |            |  |
| 86      | 10000                  |                |             |            |  |
| 87      | 10000                  |                |             |            |  |
| 88      | 10000                  |                |             |            |  |
| 89      | 10000                  |                |             |            |  |
| 90      | 10000                  |                |             |            |  |
| 91      | 10000                  |                |             |            |  |
| 92      | 10000                  |                |             |            |  |
| 93      | 10000                  |                |             |            |  |
| 94      | 10000                  |                |             |            |  |
| 95      | 10000                  |                |             |            |  |
| 96      | 10000                  |                |             |            |  |
| 97      | 10000                  |                |             |            |  |
| 98      | 10000                  |                |             |            |  |
| 99      | 10000                  |                |             |            |  |
| 100     | 10000                  |                |             |            |  |
|         |                        |                |             |            |  |
|         | e variation and probab |                |             |            |  |
| Locus S | Sublocus Region type   | Rate of change | Probability | Patch size |  |
| 1       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 2       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 3       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 4       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 5       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 6       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
|         |                        |                |             |            |  |

| 7         1         1         1.000         1.000         1.000           8         1         1         1.000         1.000         1.000           9         1         1         1.000         1.000         1.000           10         1         1         1.000         1.000         1.000           11         1         1         1.000         1.000         1.000           12         1         1         1.000         1.000         1.000           13         1         1         1.000         1.000         1.000           14         1         1         1.000         1.000         1.000           15         1         1         1.000         1.000         1.000           16         1         1         1.000         1.000         1.000           17         1         1         1.000         1.000         1.000           18         1         1         1.000         1.000         1.000           20         1         1         1.000         1.000         1.000           21         1         1         1.000         1.000         1.000 <th></th> |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 9       1       1       1.000       1.000       1.000         10       1       1       1.000       1.000       1.000         11       1       1       1.000       1.000       1.000         12       1       1       1.000       1.000       1.000         13       1       1       1.000       1.000       1.000         14       1       1       1.000       1.000       1.000         15       1       1       1.000       1.000       1.000         16       1       1       1.000       1.000       1.000         17       1       1       1.000       1.000       1.000         18       1       1       1.000       1.000       1.000         19       1       1       1.000       1.000       1.000         20       1       1       1.000       1.000       1.000         21       1       1       1.000       1.000       1.000                                                                                                                                                                                                                                              |  |
| 10       1       1       1.000       1.000       1.000         11       1       1       1.000       1.000       1.000         12       1       1       1.000       1.000       1.000         13       1       1       1.000       1.000       1.000         14       1       1       1.000       1.000       1.000         15       1       1       1.000       1.000       1.000         16       1       1       1.000       1.000       1.000         17       1       1       1.000       1.000       1.000         18       1       1       1.000       1.000       1.000         19       1       1       1.000       1.000       1.000         20       1       1       1.000       1.000       1.000         21       1       1       1.000       1.000       1.000                                                                                                                                                                                                                                                                                                            |  |
| 11       1       1       1.000       1.000       1.000         12       1       1       1.000       1.000       1.000         13       1       1       1.000       1.000       1.000         14       1       1       1.000       1.000       1.000         15       1       1       1.000       1.000       1.000         16       1       1       1.000       1.000       1.000         17       1       1       1.000       1.000       1.000         18       1       1       1.000       1.000       1.000         19       1       1       1.000       1.000       1.000         20       1       1       1.000       1.000       1.000         21       1       1       1.000       1.000       1.000                                                                                                                                                                                                                                                                                                                                                                           |  |
| 12       1       1       1.000       1.000       1.000         13       1       1       1.000       1.000       1.000         14       1       1       1.000       1.000       1.000         15       1       1       1.000       1.000       1.000         16       1       1       1.000       1.000       1.000         17       1       1       1.000       1.000       1.000         18       1       1       1.000       1.000       1.000         19       1       1       1.000       1.000       1.000         20       1       1       1.000       1.000       1.000         21       1       1       1.000       1.000       1.000                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 13       1       1       1.000       1.000       1.000         14       1       1       1.000       1.000       1.000         15       1       1       1.000       1.000       1.000         16       1       1       1.000       1.000       1.000         17       1       1       1.000       1.000       1.000         18       1       1       1.000       1.000       1.000         19       1       1       1.000       1.000       1.000         20       1       1       1.000       1.000       1.000         21       1       1       1.000       1.000       1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 14       1       1       1.000       1.000       1.000         15       1       1       1.000       1.000       1.000         16       1       1       1.000       1.000       1.000         17       1       1       1.000       1.000       1.000         18       1       1       1.000       1.000       1.000         19       1       1       1.000       1.000       1.000         20       1       1       1.000       1.000       1.000         21       1       1       1.000       1.000       1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 15       1       1       1.000       1.000       1.000         16       1       1       1.000       1.000       1.000         17       1       1       1.000       1.000       1.000         18       1       1       1.000       1.000       1.000         19       1       1       1.000       1.000       1.000         20       1       1       1.000       1.000       1.000         21       1       1       1.000       1.000       1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 16       1       1       1.000       1.000       1.000         17       1       1       1.000       1.000       1.000         18       1       1       1.000       1.000       1.000         19       1       1       1.000       1.000       1.000         20       1       1       1.000       1.000       1.000         21       1       1       1.000       1.000       1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 17       1       1       1.000       1.000       1.000         18       1       1       1.000       1.000       1.000         19       1       1       1.000       1.000       1.000         20       1       1       1.000       1.000       1.000         21       1       1       1.000       1.000       1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 18       1       1       1.000       1.000       1.000         19       1       1       1.000       1.000       1.000         20       1       1       1.000       1.000       1.000         21       1       1       1.000       1.000       1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 19       1       1       1.000       1.000       1.000         20       1       1       1.000       1.000       1.000         21       1       1       1.000       1.000       1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 20       1       1       1.000       1.000       1.000         21       1       1       1.000       1.000       1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 21 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 22 4 4 4 4 000 4 000 4 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 22 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 23 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 24 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 25 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 26 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 27 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 28 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 29 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 30 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 31 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 32 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 33 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 34 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 35 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 36 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 37 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 38 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 39 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 40 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 41 1 1 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 42 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 43 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 44 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 45 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 46 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 47 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 48 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 49 1 1 1.000 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 50 1 1 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 51 1 1 1.000 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

| 52 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|----|---|---|-------|-------|-------|--|
| 53 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 54 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 55 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 56 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 57 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 58 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 59 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 60 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 61 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 62 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 63 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 64 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 65 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 66 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 67 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 68 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 69 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 70 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 71 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 72 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 73 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 74 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 75 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 76 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 77 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 78 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 79 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 80 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 81 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 82 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 83 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 84 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 85 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 86 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 87 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 88 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 89 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 90 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 91 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 92 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 93 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 94 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 95 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 96 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|    |   |   |       |       |       |  |

| 97           | 1        | 1 | 1.000 | 1.000 | 1.000 |                |
|--------------|----------|---|-------|-------|-------|----------------|
| 98           | 1        | 1 | 1.000 | 1.000 | 1.000 |                |
| 99           | 1        | 1 | 1.000 | 1.000 | 1.000 |                |
| 100          | 1        | 1 | 1.000 | 1.000 | 1.000 |                |
| Populatio    |          | ' | 1.000 | 1.000 | Locus | Gene copies    |
| 1 Romans     |          |   |       |       | 1     | 10             |
| 1 IXOIIIaiis | SHOTTI_U |   |       |       | 2     | 10             |
|              |          |   |       |       | 3     | 10             |
|              |          |   |       |       |       |                |
|              |          |   |       |       | 4     | 10             |
|              |          |   |       |       | 5     | 10             |
|              |          |   |       |       | 6     | 10             |
|              |          |   |       |       | 7     | 10             |
|              |          |   |       |       | 8     | 10             |
|              |          |   |       |       | 9     | 10             |
|              |          |   |       |       | 10    | 10             |
|              |          |   |       |       | 11    | 10             |
|              |          |   |       |       | 12    | 10             |
|              |          |   |       |       | 13    | 10             |
|              |          |   |       |       | 14    | 10             |
|              |          |   |       |       | 15    | 10             |
|              |          |   |       |       | 16    | 10             |
|              |          |   |       |       | 17    | 10             |
|              |          |   |       |       | 18    | 10             |
|              |          |   |       |       | 19    | 10             |
|              |          |   |       |       | 20    | 10             |
|              |          |   |       |       | 21    | 10             |
|              |          |   |       |       | 22    | 10             |
|              |          |   |       |       | 23    | 10             |
|              |          |   |       |       | 24    | 10             |
|              |          |   |       |       | 25    | 10             |
|              |          |   |       |       | 26    | 10             |
|              |          |   |       |       | 27    | 10             |
|              |          |   |       |       | 28    | 10             |
|              |          |   |       |       | 29    | 10             |
|              |          |   |       |       | 30    | 10             |
|              |          |   |       |       | 31    | 10             |
|              |          |   |       |       | 32    | 10             |
|              |          |   |       |       | 33    | 10             |
|              |          |   |       |       | 34    | 10             |
|              |          |   |       |       | 35    | 10             |
|              |          |   |       |       | 36    | 10             |
|              |          |   |       |       | 37    | 10             |
|              |          |   |       |       | 38    | 10             |
|              |          |   |       |       | 39    | 10             |
|              |          |   |       |       | 40    | 10             |
|              |          |   |       |       |       | · <del>·</del> |

| 4 | 1         | 10 |
|---|-----------|----|
| 4 | 2         | 10 |
| 4 | 3         | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           |    |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   | 9         | 10 |
|   | 0         | 10 |
|   | <b>′1</b> | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
|   |           | 10 |
| 8 | 5         | 10 |
|   |           |    |

|                          | 86                   | 10 |  |
|--------------------------|----------------------|----|--|
|                          | 87                   | 10 |  |
|                          | 88                   | 10 |  |
|                          | 89                   | 10 |  |
|                          | 90                   | 10 |  |
|                          | 91                   | 10 |  |
|                          | 92                   | 10 |  |
|                          | 93                   | 10 |  |
|                          | 94                   | 10 |  |
|                          | 95                   | 10 |  |
|                          | 96                   | 10 |  |
|                          | 97                   | 10 |  |
|                          | 98                   | 10 |  |
|                          | 99                   | 10 |  |
|                          |                      |    |  |
| Total of all and letters | 100                  | 10 |  |
| Total of all populations | 1                    | 10 |  |
|                          | 2                    | 10 |  |
|                          | 3                    | 10 |  |
|                          | 4                    | 10 |  |
|                          | 5                    | 10 |  |
|                          | 6                    | 10 |  |
|                          | 7                    | 10 |  |
|                          | 8                    | 10 |  |
|                          | 9                    | 10 |  |
|                          | 10                   | 10 |  |
|                          | 11                   | 10 |  |
|                          | 12                   | 10 |  |
|                          | 13                   | 10 |  |
|                          | 14                   | 10 |  |
|                          | 15                   | 10 |  |
|                          | 16                   | 10 |  |
|                          | 17                   | 10 |  |
|                          | 18                   | 10 |  |
|                          | 19                   | 10 |  |
|                          | 20                   | 10 |  |
|                          | 21                   | 10 |  |
|                          | 22                   | 10 |  |
|                          | 23                   | 10 |  |
|                          | 24                   | 10 |  |
|                          | 2 <del>4</del><br>25 |    |  |
|                          |                      | 10 |  |
|                          | 26                   | 10 |  |
|                          | 27                   | 10 |  |
|                          | 28                   | 10 |  |
|                          | 29                   | 10 |  |
|                          | 30                   | 10 |  |
|                          |                      |    |  |

| 31 10          |  |
|----------------|--|
| 32 10          |  |
| 33 10          |  |
| 34 10          |  |
| 35 10          |  |
| 36 10          |  |
| 37 10          |  |
| 38 10          |  |
| 39 10          |  |
| 40 10          |  |
| 41 10          |  |
| 42 10          |  |
| 43 10          |  |
| 44 10          |  |
| 45 10          |  |
| 46 10          |  |
| 47 10          |  |
| 48 10          |  |
| 49 10          |  |
| 50 10          |  |
| 51 10          |  |
| 52 10          |  |
| 53 10          |  |
| 54 10          |  |
| 55 10          |  |
| 56 10          |  |
| 57 10          |  |
| 58 10          |  |
| 59 10          |  |
| 60 10          |  |
| 61 10          |  |
| 62 10          |  |
| 63 10          |  |
| 64 10          |  |
| 65 10          |  |
| 66 10          |  |
| 67 10          |  |
| 68 10          |  |
| 69 10          |  |
| 70 10          |  |
| 71 10          |  |
| 72 10          |  |
| 73 10          |  |
| 73 10          |  |
| 74 40          |  |
| 74 10<br>75 10 |  |

|     | A010 1- |
|-----|---------|
| 76  | 10      |
| 77  | 10      |
| 78  | 10      |
| 79  | 10      |
| 80  | 10      |
| 81  | 10      |
| 82  | 10      |
| 83  | 10      |
| 84  | 10      |
| 85  | 10      |
| 86  | 10      |
| 87  | 10      |
| 88  | 10      |
| 89  | 10      |
| 90  | 10      |
| 91  | 10      |
| 92  | 10      |
| 93  | 10      |
| 94  | 10      |
| 95  | 10      |
| 96  | 10      |
| 97  | 10      |
| 98  | 10      |
| 99  | 10      |
| 100 | 10      |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |
|     |         |

# Bayesian Analysis: Posterior distribution table

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 1     | $\Theta_1$ | 0.00273 | 0.00447 | 0.00630 | 0.00880 | 0.01307 | 0.00883 | 0.01051 |
| 2     | $\Theta_1$ | 0.00747 | 0.01373 | 0.01870 | 0.02420 | 0.04267 | 0.02357 | 0.02989 |
| 3     | $\Theta_1$ | 0.00000 | 0.00207 | 0.00377 | 0.00580 | 0.01233 | 0.00477 | 0.00543 |
| 4     | $\Theta_1$ | 0.00293 | 0.00333 | 0.00670 | 0.01193 | 0.01273 | 0.00810 | 0.00894 |
| 5     | $\Theta_1$ | 0.00027 | 0.00267 | 0.00430 | 0.00613 | 0.01140 | 0.00503 | 0.00548 |
| 6     | $\Theta_1$ | 0.00120 | 0.00387 | 0.00577 | 0.00807 | 0.01500 | 0.00683 | 0.00746 |
| 7     | $\Theta_1$ | 0.00240 | 0.00433 | 0.01043 | 0.02247 | 0.03367 | 0.01350 | 0.01589 |
| 8     | $\Theta_1$ | 0.00027 | 0.00167 | 0.00217 | 0.00260 | 0.00387 | 0.00250 | 0.00241 |
| 9     | $\Theta_1$ | 0.00040 | 0.00267 | 0.00430 | 0.00600 | 0.01093 | 0.00497 | 0.00533 |
| 10    | $\Theta_1$ | 0.00327 | 0.00607 | 0.00763 | 0.00940 | 0.01473 | 0.00917 | 0.01005 |
| 11    | $\Theta_1$ | 0.00000 | 0.00107 | 0.00230 | 0.00333 | 0.00587 | 0.00257 | 0.00256 |
| 12    | $\Theta_1$ | 0.00100 | 0.00420 | 0.00617 | 0.00867 | 0.01820 | 0.00737 | 0.00803 |
| 13    | $\Theta_1$ | 0.00113 | 0.00387 | 0.00583 | 0.00820 | 0.01540 | 0.00697 | 0.00760 |
| 14    | $\Theta_1$ | 0.00060 | 0.00307 | 0.00477 | 0.00680 | 0.01253 | 0.00563 | 0.00613 |
| 15    | $\Theta_1$ | 0.00000 | 0.00113 | 0.00250 | 0.00373 | 0.00760 | 0.00297 | 0.00317 |
| 16    | $\Theta_1$ | 0.00000 | 0.00200 | 0.00343 | 0.00493 | 0.00873 | 0.00397 | 0.00420 |
| 17    | $\Theta_1$ | 0.00040 | 0.00040 | 0.00243 | 0.00433 | 0.00433 | 0.00277 | 0.00277 |
| 18    | $\Theta_1$ | 0.00093 | 0.00580 | 0.00870 | 0.01240 | 0.03120 | 0.01057 | 0.01175 |

| 19 | $\Theta_1$ | 0.00080 | 0.00347 | 0.00530 | 0.00753 | 0.01413 | 0.00630 | 0.00688 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 20 | $\Theta_1$ | 0.00133 | 0.00380 | 0.00590 | 0.00847 | 0.01473 | 0.00717 | 0.00786 |
| 21 | $\Theta_1$ | 0.00040 | 0.00287 | 0.00463 | 0.00667 | 0.01260 | 0.00550 | 0.00603 |
| 22 | $\Theta_1$ | 0.00233 | 0.00620 | 0.00690 | 0.00760 | 0.01540 | 0.00837 | 0.00920 |
| 23 | $\Theta_1$ | 0.00127 | 0.00247 | 0.00410 | 0.00600 | 0.00800 | 0.00490 | 0.00532 |
| 24 | $\Theta_1$ | 0.00100 | 0.00387 | 0.00590 | 0.00853 | 0.01633 | 0.00723 | 0.00793 |
| 25 | $\Theta_1$ | 0.00280 | 0.00500 | 0.00677 | 0.00907 | 0.01413 | 0.00890 | 0.01019 |
| 26 | $\Theta_1$ | 0.00360 | 0.00633 | 0.01017 | 0.01533 | 0.02507 | 0.01357 | 0.01622 |
| 27 | $\Theta_1$ | 0.00387 | 0.01100 | 0.01317 | 0.01587 | 0.03907 | 0.01663 | 0.01898 |
| 28 | $\Theta_1$ | 0.00100 | 0.00387 | 0.00603 | 0.00873 | 0.01700 | 0.00737 | 0.00817 |
| 29 | $\Theta_1$ | 0.00007 | 0.00240 | 0.00397 | 0.00573 | 0.01047 | 0.00463 | 0.00501 |
| 30 | $\Theta_1$ | 0.00380 | 0.00380 | 0.00823 | 0.01580 | 0.01580 | 0.01003 | 0.01110 |
| 31 | $\Theta_1$ | 0.00020 | 0.00260 | 0.00423 | 0.00613 | 0.01140 | 0.00503 | 0.00543 |
| 32 | $\Theta_1$ | 0.00080 | 0.00373 | 0.00597 | 0.00893 | 0.01793 | 0.00757 | 0.00845 |
| 33 | $\Theta_1$ | 0.00013 | 0.00233 | 0.00390 | 0.00553 | 0.01020 | 0.00450 | 0.00487 |
| 34 | $\Theta_1$ | 0.00300 | 0.00647 | 0.00783 | 0.00933 | 0.01620 | 0.00957 | 0.01060 |
| 35 | $\Theta_1$ | 0.00000 | 0.00120 | 0.00243 | 0.00360 | 0.00640 | 0.00277 | 0.00283 |
| 36 | $\Theta_1$ | 0.00060 | 0.00307 | 0.00477 | 0.00680 | 0.01267 | 0.00563 | 0.00614 |
| 37 | $\Theta_1$ | 0.00000 | 0.00173 | 0.00317 | 0.00460 | 0.00873 | 0.00370 | 0.00393 |
| 38 | $\Theta_1$ | 0.00393 | 0.00927 | 0.00963 | 0.00993 | 0.02027 | 0.01217 | 0.01379 |
| 39 | $\Theta_1$ | 0.00047 | 0.00300 | 0.00477 | 0.00707 | 0.01347 | 0.00583 | 0.00642 |
| 40 | $\Theta_1$ | 0.00067 | 0.00320 | 0.00497 | 0.00707 | 0.01327 | 0.00590 | 0.00641 |
| 41 | $\Theta_1$ | 0.00467 | 0.00527 | 0.01270 | 0.03053 | 0.03367 | 0.01657 | 0.01933 |

| _ocus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 42    | $\Theta_1$ | 0.00293 | 0.00467 | 0.01143 | 0.02440 | 0.03280 | 0.01410 | 0.01579 |
| 43    | $\Theta_1$ | 0.01093 | 0.02313 | 0.03217 | 0.04340 | 0.04980 | 0.03070 | 0.04407 |
| 44    | $\Theta_1$ | 0.00000 | 0.00187 | 0.00330 | 0.00473 | 0.00847 | 0.00377 | 0.00401 |
| 45    | $\Theta_1$ | 0.00000 | 0.00213 | 0.00363 | 0.00527 | 0.00940 | 0.00423 | 0.00452 |
| 46    | $\Theta_1$ | 0.00147 | 0.00433 | 0.00643 | 0.00900 | 0.01680 | 0.00763 | 0.00836 |
| 47    | $\Theta_1$ | 0.00107 | 0.00333 | 0.00517 | 0.00740 | 0.01240 | 0.00617 | 0.00673 |
| 48    | $\Theta_1$ | 0.00000 | 0.00140 | 0.00297 | 0.00447 | 0.00960 | 0.00363 | 0.00405 |
| 49    | $\Theta_1$ | 0.00413 | 0.00653 | 0.00890 | 0.01180 | 0.01720 | 0.01083 | 0.01198 |
| 50    | $\Theta_1$ | 0.00000 | 0.00100 | 0.00217 | 0.00320 | 0.00567 | 0.00243 | 0.00241 |
| 51    | $\Theta_1$ | 0.00127 | 0.00427 | 0.00650 | 0.00927 | 0.01773 | 0.00783 | 0.00864 |
| 52    | $\Theta_1$ | 0.00000 | 0.00140 | 0.00270 | 0.00393 | 0.00713 | 0.00310 | 0.00322 |
| 53    | $\Theta_1$ | 0.00153 | 0.00280 | 0.00443 | 0.00627 | 0.00833 | 0.00517 | 0.00557 |
| 54    | $\Theta_1$ | 0.00007 | 0.00227 | 0.00377 | 0.00540 | 0.00973 | 0.00437 | 0.00468 |
| 55    | $\Theta_1$ | 0.00000 | 0.00153 | 0.00290 | 0.00413 | 0.00740 | 0.00330 | 0.00343 |
| 56    | $\Theta_1$ | 0.00013 | 0.00253 | 0.00430 | 0.00660 | 0.01327 | 0.00543 | 0.00609 |
| 57    | $\Theta_1$ | 0.00060 | 0.00313 | 0.00497 | 0.00707 | 0.01327 | 0.00590 | 0.00644 |
| 58    | $\Theta_1$ | 0.00000 | 0.00187 | 0.00330 | 0.00473 | 0.00840 | 0.00377 | 0.00401 |
| 59    | $\Theta_1$ | 0.00320 | 0.00407 | 0.00703 | 0.01147 | 0.01367 | 0.00917 | 0.01044 |
| 60    | $\Theta_1$ | 0.00000 | 0.00087 | 0.00197 | 0.00293 | 0.00533 | 0.00230 | 0.00221 |
| 61    | $\Theta_1$ | 0.00013 | 0.00233 | 0.00390 | 0.00547 | 0.00987 | 0.00443 | 0.00478 |

| 62 | $\Theta_1$ | 0.00227 | 0.00627 | 0.01070 | 0.01820 | 0.03960 | 0.01450 | 0.01711 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 63 | $\Theta_1$ | 0.00180 | 0.00507 | 0.00757 | 0.01087 | 0.02093 | 0.00930 | 0.01030 |
| 64 | $\Theta_1$ | 0.00000 | 0.00187 | 0.00330 | 0.00473 | 0.00840 | 0.00377 | 0.00401 |
| 65 | $\Theta_1$ | 0.00000 | 0.00200 | 0.00343 | 0.00493 | 0.00873 | 0.00397 | 0.00419 |
| 66 | $\Theta_1$ | 0.00307 | 0.00573 | 0.00723 | 0.00907 | 0.01460 | 0.00917 | 0.01022 |
| 67 | $\Theta_1$ | 0.00000 | 0.00220 | 0.00377 | 0.00540 | 0.01000 | 0.00443 | 0.00476 |
| 68 | $\Theta_1$ | 0.00467 | 0.01193 | 0.01623 | 0.02020 | 0.04267 | 0.01890 | 0.02127 |
| 69 | $\Theta_1$ | 0.00260 | 0.00487 | 0.00597 | 0.00720 | 0.01100 | 0.00710 | 0.00779 |
| 70 | $\Theta_1$ | 0.00000 | 0.00173 | 0.00317 | 0.00453 | 0.00807 | 0.00357 | 0.00379 |
| 71 | $\Theta_1$ | 0.00013 | 0.00247 | 0.00397 | 0.00573 | 0.01040 | 0.00470 | 0.00503 |
| 72 | $\Theta_1$ | 0.00013 | 0.00267 | 0.00450 | 0.00687 | 0.01473 | 0.00577 | 0.00662 |
| 73 | $\Theta_1$ | 0.00000 | 0.00100 | 0.00223 | 0.00327 | 0.00593 | 0.00257 | 0.00253 |
| 74 | $\Theta_1$ | 0.00453 | 0.00453 | 0.00890 | 0.01687 | 0.01687 | 0.01163 | 0.01343 |
| 75 | $\Theta_1$ | 0.00000 | 0.00187 | 0.00323 | 0.00467 | 0.00833 | 0.00377 | 0.00395 |
| 76 | $\Theta_1$ | 0.00000 | 0.00080 | 0.00183 | 0.00280 | 0.00500 | 0.00217 | 0.00203 |
| 77 | $\Theta_1$ | 0.00147 | 0.00353 | 0.00550 | 0.00787 | 0.01267 | 0.00663 | 0.00727 |
| 78 | $\Theta_1$ | 0.00540 | 0.00787 | 0.01070 | 0.01433 | 0.01993 | 0.01290 | 0.01426 |
| 79 | $\Theta_1$ | 0.00020 | 0.00247 | 0.00403 | 0.00580 | 0.01073 | 0.00477 | 0.00512 |
| 80 | $\Theta_1$ | 0.00033 | 0.00273 | 0.00437 | 0.00627 | 0.01173 | 0.00517 | 0.00564 |
| 81 | $\Theta_1$ | 0.00113 | 0.00387 | 0.00570 | 0.00807 | 0.01493 | 0.00677 | 0.00740 |
| 82 | $\Theta_1$ | 0.00053 | 0.00293 | 0.00463 | 0.00653 | 0.01213 | 0.00543 | 0.00591 |
| 83 | $\Theta_1$ | 0.00273 | 0.00620 | 0.00890 | 0.01233 | 0.02300 | 0.01070 | 0.01172 |
| 84 | $\Theta_1$ | 0.00113 | 0.00413 | 0.00630 | 0.00913 | 0.01753 | 0.00770 | 0.00853 |

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 85    | $\Theta_1$ | 0.00527 | 0.01327 | 0.01697 | 0.02153 | 0.04487 | 0.02097 | 0.02424 |
| 86    | $\Theta_1$ | 0.00833 | 0.01427 | 0.02097 | 0.02833 | 0.04500 | 0.02430 | 0.02875 |
| 87    | $\Theta_1$ | 0.00167 | 0.00487 | 0.00717 | 0.01027 | 0.01973 | 0.00877 | 0.00969 |
| 88    | $\Theta_1$ | 0.00173 | 0.00400 | 0.00617 | 0.00893 | 0.01480 | 0.00757 | 0.00838 |
| 89    | $\Theta_1$ | 0.00040 | 0.00293 | 0.00463 | 0.00673 | 0.01267 | 0.00557 | 0.00608 |
| 90    | $\Theta_1$ | 0.00000 | 0.00120 | 0.00243 | 0.00353 | 0.00620 | 0.00277 | 0.00276 |
| 91    | $\Theta_1$ | 0.00753 | 0.00900 | 0.01477 | 0.02440 | 0.02887 | 0.01930 | 0.02358 |
| 92    | $\Theta_1$ | 0.00207 | 0.00353 | 0.00637 | 0.01053 | 0.01433 | 0.00770 | 0.00848 |
| 93    | $\Theta_1$ | 0.00000 | 0.00193 | 0.00357 | 0.00547 | 0.01140 | 0.00443 | 0.00503 |
| 94    | $\Theta_1$ | 0.00327 | 0.00633 | 0.01070 | 0.01713 | 0.02993 | 0.01417 | 0.01693 |
| 95    | $\Theta_1$ | 0.00047 | 0.00293 | 0.00463 | 0.00660 | 0.01233 | 0.00543 | 0.00593 |
| 96    | $\Theta_1$ | 0.00000 | 0.00080 | 0.00190 | 0.00280 | 0.00507 | 0.00223 | 0.00206 |
| 97    | $\Theta_1$ | 0.00040 | 0.00280 | 0.00443 | 0.00633 | 0.01173 | 0.00523 | 0.00565 |
| 98    | $\Theta_1$ | 0.00067 | 0.00247 | 0.00303 | 0.00367 | 0.00587 | 0.00363 | 0.00390 |
| 99    | $\Theta_1$ | 0.00073 | 0.00347 | 0.00537 | 0.00773 | 0.01467 | 0.00643 | 0.00709 |
| 100   | $\Theta_1$ | 0.00000 | 0.00120 | 0.00243 | 0.00360 | 0.00640 | 0.00283 | 0.00284 |
| All   | $\Theta_1$ | 0.00247 | 0.00373 | 0.00470 | 0.00560 | 0.00680 | 0.00477 | 0.00468 |
|       |            |         |         |         |         |         |         |         |

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

| Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?          |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
| In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli,     |  |  |  |  |
| and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79. |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |

# Bayesian Analysis: Posterior distribution over all loci



### Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:  $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or \ as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the \ support for \ thisModel]$ 

| ocus | TI(1a)    | BTI(1b)   | SS(2)     | HS(3)     |
|------|-----------|-----------|-----------|-----------|
| 1    | -15070.36 | -14780.70 | -14830.24 | -14899.75 |
| 2    | -16291.25 | -15895.00 | -15954.98 | -16007.07 |
| 3    | -16639.48 | -15486.93 | -15376.20 | -15448.41 |
| 4    | -14272.23 | -14036.29 | -14090.63 | -14158.15 |
| 5    | -14085.89 | -13870.51 | -13918.16 | -13992.56 |
| 6    | -14316.39 | -14044.03 | -14089.30 | -14158.10 |
| 7    | -21541.04 | -20391.11 | -20355.66 | -20413.53 |
| 8    | -14017.12 | -13803.38 | -13838.63 | -13925.86 |
| 9    | -14223.12 | -13968.32 | -14013.08 | -14086.59 |
| 10   | -15065.21 | -14588.30 | -14605.14 | -14670.10 |
| 11   | -14005.30 | -13791.77 | -13826.83 | -13913.88 |
| 12   | -14290.10 | -14029.81 | -14078.29 | -14146.38 |
| 13   | -14245.04 | -14014.78 | -14067.75 | -14137.84 |
| 14   | -14308.59 | -14030.18 | -14071.42 | -14143.40 |
| 15   | -21794.62 | -18171.80 | -17611.72 | -17689.76 |
| 16   | -14090.69 | -13870.17 | -13914.56 | -13991.62 |
| 17   | -14099.30 | -13872.18 | -13909.93 | -13993.88 |
| 18   | -14267.87 | -14047.51 | -14106.14 | -14172.78 |
| 19   | -14221.01 | -14006.88 | -14060.76 | -14132.77 |
| 20   | -14638.76 | -14326.08 | -14367.62 | -14435.52 |
| 21   | -14723.34 | -14300.74 | -14317.71 | -14390.10 |
| 22   | -14241.38 | -14007.51 | -14062.64 | -14129.80 |
| 23   | -14148.42 | -13921.30 | -13967.59 | -14047.04 |
| 24   | -14966.86 | -14516.08 | -14534.03 | -14602.04 |
| 25   | -15698.55 | -15069.40 | -15060.82 | -15126.46 |
| 26   | -15564.87 | -15229.24 | -15282.11 | -15344.01 |
| 27   | -15345.87 | -14900.36 | -14933.22 | -14991.20 |
| 28   | -14328.74 | -14076.51 | -14126.75 | -14196.03 |
| 29   | -14150.17 | -13919.60 | -13965.94 | -14041.27 |

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 23:02:36]

| 30 | -14269.95 | -14044.95 | -14102.50 | -14168.84 |
|----|-----------|-----------|-----------|-----------|
| 31 | -14194.94 | -13956.66 | -14002.78 | -14077.11 |
| 32 | -14700.06 | -14428.11 | -14479.51 | -14546.80 |
| 33 | -14091.62 | -13869.71 | -13916.67 | -13992.19 |
| 34 | -14235.97 | -14020.98 | -14075.78 | -14145.85 |
| 35 | -14005.29 | -13794.26 | -13832.19 | -13917.30 |
| 36 | -14146.14 | -13920.24 | -13970.44 | -14042.34 |
| 37 | -14033.09 | -13824.19 | -13868.87 | -13949.53 |
| 38 | -15367.21 | -14845.65 | -14860.89 | -14921.51 |
| 39 | -14754.50 | -14353.70 | -14377.15 | -14448.49 |
| 40 | -14138.23 | -13919.47 | -13923.72 | -14041.30 |
| 41 | -16593.01 | -15925.07 | -13865.39 | -15985.63 |
| 42 | -15024.18 | -14722.31 | -13866.79 | -14839.28 |
| 43 | -16383.83 | -15981.22 | -14111.89 | -16093.22 |
| 44 | -14096.33 | -13888.04 | -13871.56 | -14014.87 |
| 45 | -14134.72 | -13898.37 | -13942.49 | -14018.58 |
| 46 | -14378.24 | -14099.54 | -13927.08 | -14213.55 |
| 47 | -14312.28 | -14041.90 | -13925.22 | -14156.40 |
| 48 | -16054.29 | -15637.96 | -13842.87 | -15742.92 |
| 49 | -14333.36 | -14118.03 | -14085.18 | -14242.56 |
| 50 | -13988.69 | -13780.91 | -13816.11 | -13904.39 |
| 51 | -14201.28 | -13984.44 | -14040.50 | -14107.83 |
| 52 | -14015.22 | -13806.29 | -13844.71 | -13929.66 |
| 53 | -14150.34 | -13913.88 | -13961.66 | -14034.61 |
| 54 | -14127.07 | -13893.90 | -13938.84 | -14013.63 |
| 55 | -14028.09 | -13814.11 | -13853.42 | -13936.40 |
| 56 | -15343.68 | -14677.19 | -14073.02 | -14722.49 |
| 57 | -14135.63 | -13915.00 | -13966.49 | -14037.93 |
| 58 | -14071.51 | -13855.22 | -13899.13 | -13977.06 |
| 59 | -14961.11 | -14605.46 | -14068.37 | -14711.10 |
| 60 | -13975.42 | -13768.53 | -13802.97 | -13892.05 |
| 61 | -14139.84 | -13899.54 | -13943.54 | -14018.15 |
| 62 | -15002.47 | -14693.00 | -14746.78 | -14807.28 |
| 63 | -14700.76 | -14381.97 | -14082.24 | -14490.67 |
| 64 | -14078.26 | -13857.36 | -13900.42 | -13979.02 |
| 65 | -14071.90 | -13854.21 | -13899.41 | -13976.11 |
| 66 | -15574.92 | -14933.85 | -14070.44 | -14987.86 |
| 67 | -14071.72 | -13856.55 | -13902.42 | -13978.75 |
| 68 | -14921.54 | -14582.11 | -14141.10 | -14689.72 |
| 69 | -14197.52 | -13964.18 | -14015.61 | -14084.68 |
| 70 | -14073.70 | -13851.09 | -13894.99 | -13973.86 |
| 71 | -14321.57 | -14041.32 | -14079.39 | -14153.39 |
| 72 | -22721.86 | -18785.76 | -14830.34 | -18251.24 |
| 73 | -13987.00 | -13780.27 | -13817.15 | -13905.20 |
| 74 | -18656.05 | -17205.60 | -14933.07 | -17129.97 |
|    |           |           |           |           |

| 75  | -14058.44   | -13842.48   | -13887.21   | -13964.11   |
|-----|-------------|-------------|-------------|-------------|
| 76  | -13988.41   | -13778.14   | -13811.67   | -13900.62   |
| 77  | -14245.26   | -14027.75   | -14082.08   | -14152.31   |
| 78  | -14551.72   | -14270.49   | -14325.38   | -14386.05   |
| 79  | -14112.85   | -13886.49   | -13933.27   | -14007.81   |
| 80  | -14103.30   | -13884.39   | -13833.43   | -14007.17   |
| 81  | -14316.92   | -14095.57   | -13861.72   | -14221.47   |
| 82  | -14278.96   | -14059.97   | -13949.57   | -14185.12   |
| 83  | -14400.82   | -14133.78   | -13951.60   | -14250.34   |
| 84  | -14232.47   | -14002.30   | -13871.51   | -14124.98   |
| 85  | -15072.87   | -14807.14   | -13983.38   | -14930.48   |
| 86  | -15545.19   | -15085.28   | -13928.30   | -15175.70   |
| 87  | -14728.90   | -14374.93   | -14154.11   | -14478.14   |
| 88  | -14540.26   | -14220.11   | -14047.79   | -14327.03   |
| 89  | -14093.61   | -13879.20   | -13930.02   | -14003.03   |
| 90  | -14028.49   | -13807.92   | -13846.48   | -13929.48   |
| 91  | -16959.37   | -16461.92   | -13841.47   | -16560.83   |
| 92  | -14323.69   | -14061.06   | -14091.22   | -14179.29   |
| 93  | -21992.13   | -19483.11   | -15673.05   | -19229.82   |
| 94  | -15196.70   | -14889.92   | -13920.62   | -15012.44   |
| 95  | -14237.06   | -13978.10   | -14023.41   | -14094.74   |
| 96  | -13982.02   | -13770.27   | -13802.42   | -13891.79   |
| 97  | -14110.22   | -13889.37   | -13939.01   | -14010.97   |
| 98  | -14508.81   | -14144.17   | -13901.31   | -14242.98   |
| 99  | -14175.66   | -13950.81   | -13905.53   | -14076.27   |
| 100 | -14006.17   | -13796.35   | -13831.30   | -13917.48   |
| All | -1487021.26 | -1446354.65 | -1421850.84 | -1455712.66 |

- (1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures (1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!
- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 185.000243]

#### Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets. In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods,

Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

# Acceptance ratios for all parameters and the genealogies

| Parameter              | Accepted changes                            | Ratio              |
|------------------------|---------------------------------------------|--------------------|
| $\Theta_1$ Genealogies | 249499909/399975724<br>281963474/1600024276 | 0.62379<br>0.17622 |

# MCMC-Autocorrelation and Effective MCMC Sample Size

| Parameter   | Autocorrelation | Effective Sampe Size |
|-------------|-----------------|----------------------|
| $\Theta_1$  | 0.14986         | 20829814.67          |
| Genealogies | 0.10066         | 22229257.33          |

# Average temperatures during the run

# Chain Temperatures 1 0.00000 2 0.00000

Adaptive heating often fails, if the average temperatures are very close together

try to rerun using static heating! If you want to compare models using marginal

likelihoods then you MUST use static heating

3

4

0.00000

0.00000

#### Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

| gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.                                                                                                                                                                                                                                              |
| No warning was recorded during the run                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |