Sabbir Ahmed

1 Background

In this project students will explicitly implement a computational finite-state machine, utilize

rescheduling and resource sharing, and become familiar with the concept of using an on-chip

clock multiplier. Students will leverage the faster clock to implement computations in a serial

fashion. In this project, students will display a circle on the screen, examine analysis reports, and

modify synthesis options.

2 Implementation

Multiple designs were implemented to analyze their effects on resource sharing and timing

constraints.

2.1 Single Cycle Computation Design

The initial design implemented the entire inequality in a single cycle. Since the design em-

phasized on the computation being performed in a single cycle, explicitly generating several

registers to hold the constant state value was unnecessary. An additional state was included

for the synthesizer to consider encoding the FSM. The single-state module successfully gener-

ated the circle on the VGA screen using the formula $(x-x_c)^2+(y-y_c)^2<10000$. The module is

initialized with an asynchronous reset.

2.1.1 Testbench

Figure 1 provides the waveforms generated by sample coordinates (x, y) to the module.

1

Figure 1: Single cycle computation design demonstrating the circle flag (in_circle) activated at (360, 240) and deactivated at (10, 10).

2.1.2 Synthesis

As expected, the design did not meet the timing constraints. Figure 2 provides the summary of the time constraints report, where the constraint TS_uut_CLKO_BUF was not met. Table ?? lists its timing slacks:

Table 1: FSM state encoding generated by the synthesizer for the single cycle design.

Check	Worst Case Slack
SETUP	-6.736 ns
HOLD	1.003 ns

Table 2 provides the macro statistics generated by the synthesizer.

Derived Constraint Report
Review Timing Report for more details on the following derived constraints.
To create a Timing Report, run "trce -v 12 -fastpaths -o design_timing_report design.ncd design.pcf"
or "Run Timing Analysis" from Timing Analyzer (timingan).
Derived Constraints for TS_CLK_50MHZ

+	+	+						+
Constraint		Period Requirement	Actual Period		Timing Errors		Paths Analyzed	
			Direct	Derivative	Direct	Derivative	Direct	Derivative
TS_CLK_50MHZ TS_dcm_uut_CLK0_BUF TS_dcm_uut_CLK2X_BUF		20.000ns 20.000ns 10.000ns	33.472ns	N/A	2	2 0 0	0 114964 689	115653 0 0

1 constraint not met.

Figure 2: Screen capture of the timing constraint report showing failure of TS_uut_CLKO_BUF of the DCM.

The multipliers are used to multiply the two 21-bit squared coordinates. Several adders and subtractors are used in the design to handle pos_v, pos_h and the centers coordinates.

Table 2: Macro statistics generated by the synthesizer for the single cycle design.

# Multipliers	2
11x11-bit multiplier	2
# Adders/Subtractors	4
10-bit adder	1
11-bit subtractor	2
23-bit adder	1
# Counters	2
10-bit up counter	2
# Registers	8
1-bit register	8
# Comparators	1
24-bit comparator less	1

2.1.3 States

Table 3 provides the FSM states encoded by the synthesizer. The automatic-encoding encoded states do not differ from the values assigned to them during initialization because of the small number of states. The states were intentionally assigned with 2-bit values to alert the synthesizer of the FSM.

Table 3: FSM state encoding generated by the synthesizer for the single cycle design.

State	Encoding
00	00
01	01

- 1. **INIT (00):** Serves as a buffer to the computational state. This state serves no other purpose.
- 2. COMPUTE (01): Computes the entire circle inequality.