Assignment 2

PARIMISETTY HARINADHA (CS19RESCH11004)

Abstract—This document calculate the n^{th} power of given matrix A, using Cayley Hamilton theorem.

Download	all	python	codes	from
https://github.com/cs19resch11004/hari				
Download	all I	Latex-tikz	codes	from
https://github.com/cs19resch11004/hari				

I. PROBLEM

If
$$A = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$$
 then prove that $A^n = \begin{pmatrix} 1 + 2n & -4n \\ n & 1 - 2n \end{pmatrix}$, where n is any positive integer.

II. SOLUTION

Characteristic equation of A is $\lambda^2 - 2\lambda + 1 = 0$. By using Cayley Hamolton theorem, given matrix A is a solution of its own characteristic equation. So $A^2 - 2A + I = 0$.

$$A^2 = 2A - I \tag{1}$$

$$A^3 = 3A - 2I \tag{2}$$

$$A^4 = 4A - 3I \tag{3}$$

$$A^5 = 5A - 4I \tag{4}$$

By the substitution,

$$A^n = nA - (n-1)I \tag{5}$$

1) Proving above equation is true for n=2,

$$A^2 = 2A - I \tag{6}$$

2) Assume it is true for n = k

$$A^k = kA - (k-1)I \tag{7}$$

3) Proving it is true for n = k+1

$$A^{k+1} = A^k A \tag{8}$$

$$= (kA - (k-1)I)A$$
 (9)

$$= kA^2 - (k-1)A \tag{10}$$

$$= k(2A - I) - (k - 1)A \tag{11}$$

$$= (2k - k + 1)A - kI \tag{12}$$

$$= (k+1)A - kI \tag{13}$$

So, $A^n = nA - (n-1)I$ Substituting matrix $A = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$ in the equa-

$$A^{n} = n \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} - (n-1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(14)
$$= \begin{pmatrix} 3n & -4n \\ n & -n \end{pmatrix} - \begin{pmatrix} (n-1) & 0 \\ 0 & (n-1) \end{pmatrix}$$
(15)
$$= \begin{pmatrix} 2n+1 & -4n \\ n & 1-2n \end{pmatrix}$$
(16)

(16)

So,
$$A^n = \begin{pmatrix} 2n+1 & -4n \\ n & 1-2n \end{pmatrix}$$