MUHAMMAD SYAFIQQUR RAMADHAN

Introduction

The study of exoplanets—planets outside our solar system—has rapidly evolved over the past few decades, thanks to major advances in observational astronomy. This report summarizes Chien-Hsiu Lee's review paper, highlighting the historical milestones, current understanding, and future directions of exoplanet research, along with the strengths and limitations of various detection techniques.

Historical Milestones in Exoplanet Discovery

- 1992: The first confirmed exoplanets were discovered around a pulsar using pulsar timing.
- 1995: The radial velocity method led to the detection of 51 Pegasi b, a Jupiter-like planet orbiting a Sun-like star.
- 1999: The transit method became prominent when HD 209458b was observed to pass in front of its star, allowing atmospheric analysis via transmission spectroscopy.
- 2003: The first planetary microlensing event was observed.
- **2008**: Direct imaging captured photons from multiple exoplanets in the HR 8799 system using adaptive optics (AO) and coronagraphs.

Detection Methods and Their Contributions

- Radial Velocity (RV): Measures the Doppler shift in a star's spectrum due to gravitational tug from a planet. Requires high-precision spectrographs like HARPS. Limitations include mass-inclination degeneracy.
- **Transit Photometry**: Detects dimming of a star's light as a planet crosses in front. Highly successful with space telescopes like *Kepler*, especially for atmospheric studies. Sensitive to small planets but limited by viewing angle.
- **Microlensing**: Utilizes gravitational lensing effects when a planet-hosting star passes in front of a background star. It allows detection of low-mass and distant planets, even in other galaxies, but the signals are non-repetitive.
- **Direct Imaging**: Captures light from exoplanets directly using AO and coronagraphs. Allows atmospheric characterization but is limited to large, young, and widely separated planets.

Current Understanding of Exoplanetary Systems

With over 3,000 confirmed exoplanets, researchers now perform **statistical analyses** to study planet formation and evolution.

- Mass and Radius Estimates: Combining transit and RV data helps determine planetary density and composition. Studies reveal two distinct populations: super-Earths (~1.3 Earth radii) and sub-Neptunes (~2.4 Earth radii), with a gap suggesting atmospheric loss mechanisms.
- **Atmospheric Studies**: Transmission spectroscopy reveals diverse atmospheric types even among hot Jupiters—ranging from clear to hazy/cloudy—using Hubble and Spitzer data.

• **Orbital Distances and Habitability**: Earlier detections were biased toward "hot Jupiters", but newer observations reveal more planets in the habitable zone. About 30 such exoplanets have been identified by *Kepler*.

• Formation Theories:

- o Core Accretion: Small particles build up into massive planets; supported by a correlation between host star metallicity and giant planet occurrence.
- o **Disk Instability**: Direct gravitational collapse in the protoplanetary disk; possibly explains massive, wide-orbit planets.
- **Migration and Dynamics**: Some exoplanets may not reside where they formed. Planet-planet scattering and disk interactions likely explain highly eccentric or widely separated orbits.

Future Directions

Upcoming missions and instruments will expand the exoplanet catalog and improve characterization:

- **Next-Gen Instruments**: ESPRESSO and CODEX aim for RV precision down to cm/s to detect Earth analogs.
- **Space Missions**: TESS, PLATO, ARIEL, and WFIRST will continue Kepler's legacy with improved sensitivity and atmospheric probing capabilities.
- Microlensing Campaigns: Projects like OGLE, MOA, and future PRIME will enhance detection of Earth-mass and free-floating planets.
- **Direct Imaging Advances**: Tools like Gemini Planet Imager (GPI) and Subaru's SCExAO will improve contrast and resolution for imaging distant worlds.

Conclusion

The field of exoplanet research has moved from mere detection to detailed characterization, unveiling a wide variety of planetary systems. Each detection method offers unique insights, and future missions promise to address long-standing questions about planet formation, migration, and the possibility of life beyond Earth.