WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

C25D 3/44, 3/56

A₂

(11) Internationale Veröffentlichungsnummer:

WO 00/32847

(43) Internationales

Veröffentlichungsdatum:

8. Juni 2000 (08.06.00)

(21) Internationales Aktenzeichen:

PCT/EP99/09236

(22) Internationales Anmeldedatum:

27. November 1999

MC, NL, PT, SE). (27.11.99)

(30) Prioritätsdaten:

198 55 666.7

1. Dezember 1998 (01.12.98) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): STU-

DIENGESELLSCHAFT KOHLE MBH [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr

(DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): LEHMKUHL, Herbert [DE/DE]; Lohbecker Berg 28, D-45470 Mülheim an der Ruhr (DE). MEHLER, Klaus-Dieter [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr

(DE). REINHOLD, Bertram [DE/DE]; Sebastianstrasse 1a, D-85049 Ingolstadt (DE).

(74) Anwälte: VON KREISLER, Alek usw.; Deichmannhaus am Hauptbahnhof, D-50667 Köln (DE).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu

(81) Bestimmungsstaaten: CA, JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

veröffentlichen nach Erhalt des Berichts.

(54) Title: ALUMINIUM ORGANIC ELECTROLYTES AND METHOD FOR ELECTROLYTIC COATING WITH ALUMINIUM OR ALUMINIUM-MAGNESIUM-ALLOYS

(54) Bezeichnung: ALUMINIUMORGANISCHE ELEKTROLYTE UND VERFAHREN ZUR ELEKTROLYTISCHEN BESCHICH-TUNG MIT ALUMINIUM ODER ALUMINIUM-MAGNESIUM-LEGIERUNGEN

(57) Abstract

The invention relates to aluminium organic electrolytes and to a method for coating electroconductive materials with aluminium or aluminium-magnesium-alloys consisting essentially and preferably of Na[Et3Al-H-AlEt3] in the case of the aluminium coating or of either K[AlEt4] or Na[Et3Al-H-AlEt3] and Na[AlEt4] and trialkylaluminium in the case of the alloy coating. According to the invention, solutions of these electrolytes in liquid aromatic hydrocarbons or mixtures thereof with aliphatic monobasic or polybasic ethers, for example dimethoxiethane, and soluble anodes consisting of aluminium or aluminium and magnesium or an aluminium-magnesium alloy are used.

(57) Zusammenfassung

Aluminiumorganische Elektrolyte und Verfahren zur Beschichtung von elektrisch leitenden Werkstoffen mit Aluminium oder mit Aluminium-Magnesium-Legierung im wesentlichen und bevorzugt bestehend aus Na[Et3Al-H-AlEt3] für Aluminiumbeschichtung bzw. aus entweder K[AlEt₄] oder Na[Et₃Al-H-AlEt₃] sowie Na[AlEt₄] und Trialkylaluminium für Legierungsbeschichtung unter Verwendung von Lösungen dieser Elektrolyte in flüssigen aromatischen Kohlenwasserstoffen oder deren Mischungen mit aliphatischen ein- oder mehrbasischen Ethern, wie beispielsweise Dimethoxiethan und unter Einsatz von löslichen Anoden aus Aluminium bzw. aus Aluminium und Magnesium oder aus Aluminium-Magnesium-Legierung.

Design Armalia Copy

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	
AT	Österreich	FR	Frankreich	LU	Luxeniburg		Slowakei
AU	Australien	GA	Gabun	LV	Lettland	SN	Senegal
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	SZ	Swasiland
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TD	Tschad
BB	Barbados	GH	Ghana	MG		TG	Togo
BE	Belgien	GN .	Guinea	MK	Madagaskar	T.J	Tadschikistan
BF	Burkina Faso	GR	Griechenland	IVIE	Die ehemalige jugoslawische	TM	Turkmenistan
BG	Bulgarien	HU	Ungarn	247	Republik Mazedonien	TR	Türkei
BJ	Benin	IE	Irland	ML	Mali	TT	Trinidad und Tobago
BR	Brasilien	IL.	Israel	MN	Mongolei	UA	Ukraine
BY	Belarus	IS	Island	MR	Mauretanien	UG	Uganda
CA	Kanada	IT	Italien	MW	Malawi	US	Vereinigte Staaten von
CF	Zentralafrikanische Republik	JР	Japan	MX	Mexiko		Amerika
CG	Kongo	KE	Kenia	NE	Niger	UZ	Usbekistan
CH	Schweiz	KG	· · · · · · ·	NL	Niederlande	VN	Vietnam
CI	Côte d'Ivoire	KP	Kirgisistan	NO	Norwegen	YU	Jugoslawien
СМ	Kamerun	KF	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CN	China	170	Koreá	PL	Polen		
CU	Kuba	KR	Republik Korea	PT	Portugal		
cz	Tschechische Republik	KZ	Kasachstan	RO	Rumānien		
DE	Deutschland	LC	St. Lucia	RU	Russische Föderation		
DK	Dänemark	LÍ	Liechtenstein	SD	Sudan		
EE	Estland	LK	Sri Lanka	SE	Schweden		
LC	Estiano	LR	Liberia	SG	Singapur		

WO 00/32847 PCT/EP99/09236

Aluminiumorganische Elektrolyte und Verfahren zur elektrolytischen Beschichtung mit Aluminium oder Aluminium-MagnesiumLegierungen

Die Erfindung betrifft aluminiumorganische Elektrolyte, die zur elektrolytischen Abscheidung von Aluminium oder von Aluminium-Magnesium-Legierungen auf elektrisch leitenden Werkstoffen geeignet sind, sowie ein Verfahren hierzu unter Verwendung löslicher Aluminiumanoden bzw. löslicher Aluminium- und Magnesiumanoden oder einer Anode aus Aluminium-Magnesium-Legierung.

Aluminiumorganische Komplexverbindungen werden seit längerer Zeit zur elektrolytischen Abscheidung von Aluminium verwendet (Dissertation H. Lehmkuhl, TH Aachen 1954, DE-PS 1047450; K. Ziegler, H. Lehmkuhl, Z. anorg. allg. Chemie 283 (1956) 414; DE-PS 1056377; H. Lehmkuhl, Chem. Ing. Tech. 36 (1964) 616; EP-A 0084816; H. Lehmkuhl, K. Mehler und U. Landau in Adv. in elektrochem. Science and Engineering (Ed. H. Gerischer, C. W. Tobias) Vol. 3, Weinheim 1994). Als geeignete Elektrolyte wurden solche Komplexverbindungen des allgemeinen Typs MX 2 AlR₃ vorgeschlagen, die entweder als geschmolzene Salze oder in Form ihrer Lösungen in flüssigen aromatischen Kohlenwasserstoffen eingesetzt werden. MX können entweder Alkalimetall- (Na, K, Rb, Cs) oder Oniumhalogenide, vorzugsweise deren Fluoride sein. R sind Alkylreste mit vorzugsweise einem, zwei oder vier C-Atomen.

Das Interesse an elektrolytischen Beschichtungen von Metallwerkstücken mit Aluminium hat wegen des hervorragenden Korrosionsschutzes durch die Aluminiumschichten und deren ökologischer Unbedenklichkeit stark zugenommen. Deshalb hat die galvanische Beschichtung mit aluminiumorganischen Elektrolyten, die bei nur mäßig erhöhten Temperaturen zwischen 60 und 150 °C und in geschlossenen Systemen arbeiten, große technische Bedeutung.

Seitdem man in den letzten Jahren bestrebt ist, verbrauchs- und gewichtsoptimierte Kraftfahrzeuge zu entwickeln, verlangt ein konsequenter Leichtbau immer stärker den Einsatz von Aluminium oder Magnesium bzw. deren Legierungen miteinander. Die Leichtmetallmaterialien haben jedoch den

PCT/EP99/09236

Nachteil, daß sowohl Aluminium als auch Magnesium in wässrigem Milieu einen hohen Lösungsdruck besitzen. Vor allem bei Kontakt mit Stählen oder konventionell verzinkten Stählen gibt es Kontaktkorrosion. Aus diesem Grunde ist es erforderlich, Befestigungselemente an Magnesium-Applikationen derart zu beschichten, dass einerseits Kontaktkorrosion am Magnesium vermieden, andererseits die Langzeitbeständigkeit der Beschichtung gegeben ist. Die galvanische Beschichtung der Verbindungsschrauben mit Aluminium allein erfüllt diese Aufgabe nur teilweise, da die Korrosionsprodukte des Baustoffs Magnesium alkalisch sind und die Aluminiumoberflächen der Beschichtung angreifen (B. Reinhold, S. G. Klose, J. Kopp, Mat.-wiss. u. Werkstofftech. 29, 1-8 (1998).

2

Verfahren zur galvanischen Abscheidung von Aluminium-Magnesium-Legierungen auf elektrisch leitenden Werkstoffen sind bekannt: J. H. Connor, W. E. Reed und G. B. Wood, J. Elektrochem. Sc. 104, 38-41 (1957) beschreiben nur kurz, daß sie bei der Elektrolyse von AlBr₃, Li[AlH₄], MgBr₂ (Mg/Al = 0.8) in Diethylether eine gut aussehende Metallschicht mit 93 % Al und 7 % Mg erhalten hätten. J. Eckert und K. Gneupel erhielten aus einem ähnlichen Elektrolyten aus AlCl₃, Li[AlH₄], MgBr₂ in einem Gemisch aus THF, Diethylether und Benzen (Mg/Al = 0.6) Metallabscheidungen mit bis zu 13 % Mg (DDR Patentschrift 244573 A1). Die Leitfähigkeit des Elektrolyten war in der Größenordnung 1 · 10 bis 7 · 10 S · cm 1. In der DDR-Patentschrift 243723 A ist von denselben Autoren eine Elektrolytlösung beschrieben aus Ethylmagnesiumbromid und Triethylaluminium in THF/Toluol 1 : 1, aus der Metallschichten mit max. 10 % Al erhalten wurden.

Typische und zur Abscheidung von Aluminium auch technisch bewährte Elektrolyte auf der Basis aluminiumorganischer Komplexverbindungen vom Typ $M[R_3Al-X-AlR_3]$ (R = Et, iso-Bu; X = F, Cl; M = K, Cs, $N(CH_3)_4$) wurden von A. Mayer, J. Elektrochem. Sci. 137 (1990) und im US-PS 4,778,575 (Priorität 18.10.1988) nach Zugabe von Trialkylaluminium (R = Et, i-Bu) und Dimethyloder Diethylmagnesium zur elektrochemischen Abscheidung von Aluminium-Magnesium-Legierungen und von Magnesium genutzt.

Bei einer technischen Anwendung dieses Verfahrens ergeben sich jedoch folgende Schwierigkeiten, die einen kontinuierlich arbeitenden Beschicktungsprozeß unmöglich machen.

- 1. Magnesiumanoden sind im Gegensatz zu Aluminiumanoden beim Beschichtungsprozeß mit den vorgeschlagenen Elektrolyten nicht auflösbar. Eine kontinuierliche Ergänzung des Mg-Gehaltes ist durch Auflösung der Magnesiumanode bei Verwendung von Fluorid oder allgemein von Halogenid enthaltenden aluminiumorganischen Komplexen als Elektrolyte nicht möglich.
- 2. Nach Angaben des US-Patentes 4,778,575 wird Dialkylmagnesium in etherischer Lösung zur Elektrolytbereitung eingesetzt. Bei einem kontinuierlich arbeitenden Beschichtungsverfahren müßte das Dialkylmagnesium ständig in etherischer Lösung zugeführt werden. Von Diethylether ist jedoch bekannt, daß manche Komplexe z. B. Na[Et₃Al-F-AlEt₃] gespalten werden in Na[Et₃AlF] + Et₃Al · OEt₂ (K. Ziegler, R. Köster, H. Lehmkuhl, K. Reinert, Liebigs Ann. Chem. 629, 33-49 (1960)). Wollte man die Verwendung von Ether als Lösungsmittel für Dialkylmagnesium vermeiden, müßte Dialkylmagnesium zunächst etherfrei gemacht werden, was erheblichen Aufwand und Kosten erfordert, oder es müßte durch Reaktion von Magnesiummetall mit Dialkylquecksilber, einer sehr toxischen Verbindung, in etherfreier Form hergestellt werden.

Der vorliegenden Erfindung lag aus den bereits beschriebenen Gründen die Aufgabe zugrunde, halogenidfreie aluminiumorganische Elektrolyte zu finden, die in optimaler Weise die für eine technische Anwendung zur Abscheidung von Aluminium und Aluminium-Magnesium-Legierungsschichten geforderten Eigenschaften, wie Löslichkeit sowohl von Aluminium- als auch, im Fall von Legierungsschichten, von Magnesiumanoden durch Elektrolyse, möglichst hohes Leitvermögen, homogene Löslichkeit in aromatischen Lösungsmitteln, wie z. B. Toluol zwischen 20 und 105 °C, kathodische Abscheidung dichter Schichten Aluminium-Magnesiumlegierungen von mit wählbaren Mengenverhältnissen beider Komponenten von Al: Mg = 95:5 bis 5:95, in sich vereinigen.

Die Aufgabe wurde von uns gelöst durch Verwendung aluminiumorganischer Elektrolyte, die dadurch gekennzeichnet sind, daß sie entweder (im Falle des Elektrolyttyps I) Alkalitetraalkylaluminium M[AlR $_4$] oder (im Falle des Elektrolyttyps II) Alkalihexaalkylhydridoaluminium und zusätzlich M[AlR $_4$] enthalten sowie Trialkylaluminium AlR $_3$ (R = CH $_3$, C $_2$ H $_5$, C $_3$ H $_7$ oder n – oder iso-C $_4$ H $_9$; M = Li, Na, K, Rb, Cs), während sich Elektrolyte der Zusammensetzung M[R $_3$ Al-H-AlR $_3$] als besonders geeignet für die Herstellung von reinen Aluminiumschichten erwiesen.

Aus Gründen der Optimierung von Löslichkeit, spezifischer Leitfähigkeit und guter Zugänglichkeit sind die Ethylverbindungen ($R = C_2H_5 = Et$) bevorzugt. Ein erfindungsgemäßer Elektrolyt von Typ I wird in 2.5 – 6 mol pro mol Komplexverbindung eines bei 20 °C flüssigen aromatischen Kohlenwasserstoffs, vorzugsweise in Toluol oder einem flüssigen Xylol gelöst. Das Trialkylaluminium ist bevorzugt Triethylaluminium (AIEt_a), Alkalitetraalkylaluminium ist bevorzugt eine Mischung von Kalium- und Natriumtetraethylaluminium. Das Mengenverhältnis ${\sf Komplex: AlEt_3 \ ist \ 1:0.5 \ bis \ 1:3, \ bevorzugt \ 1:2. \ Der \ Anteil \ an \ Na[AlEt_4] }$ beträgt zwischen 0 und 25 mol %, bezogen auf die Gesamtmenge K[AlEt₄] und $Na[AlEt_{a}]$, bevorzugt jedoch zwischen 5 und 20 mol%. Der Zusatz von geringen Mengen Na[AlEt₄] ist deshalb bevorzugt, weil bei Fehlen dieser Komponente die Aluminiumanoden nur noch mit mäßigen bis schlechten Stromausbeuten gelöst werden, z. B. in K[AlEt₄]/3 AlEt₃/6 Toluol nur noch zu ca. 22 %, was bei längerer Dauer der Elektrolyse zu einem Verlust an Triethylaluminium führen würde. Die Elektrolyse wird bei Temperaturen zwischen 80 und 105 °C, bevorzugt zwischen 90 und 100 °C, durchgeführt.

Ein beispielhafter Elektrolyt I ist: 0.8 mol K[AlEt₄] / 0.2 mol Na[AlEt₄] / 2.0 mol AlEt₃ / 3.3 mol Toluol. Aus dieser Elektrolytlösung erfolgt auch bei längerem Stehen bei Raumtemperatur keine Kristallisation, die spezifische Leitfähigkeit bei 95 °C beträgt 13.8 mS·cm⁻¹.

Der Zusatz von mindestens 0.3-0.5 mol Triethylaluminium ist notwendig, um die Alkalimetallabscheidung bei der Elektrolyse zu vermeiden. Die Zugabe größerer Mengen an AlEt₃ (2-3 mol AlEt₃ pro mol Komplex) wirkt sich sehr positiv auf die Legierungabscheidung aus, die dann erhaltenen Legierungsschichten mit 5-50

WO 00/32847 PCT/EP99/09236

5

Gew.% Mg sind sehr gleichmäßig und seidigglänzend und bei 4-6 µm Schichtdicke bereits weitgehend porenfrei. Erhöht man die Menge von Triethylaluminium pro mol Komplex von 2:1 auf 3:1, muß jedoch, um eine auch bei
Raumtemperatur homogene Lösung zu behalten, dem Elektrolyten weiteres
Lösungsmittel zugefügt werden, und zwar insgesamt auf 5.5-6 mol Toluol pro
mol Komplex. Dadurch verliert der Elektrolyt jedoch an Leitvermögen.

Elektrolyte des Typs II bestehen bevorzugt aus Mischungen von Na[Et3AI-H-Na[AlEt] und AIEt_a. Trotz ungünstiger Eigenschaften von Einzelkomponenten, z. B. relativ hoher Schmelzpunkt von Na[AIEt,] bei 125 °C und geringe Löslichkeit in Toluol bei 20 °C, sind Mischungen der drei Komponenten bei geeignetem Mischungsverhältnis (molares Verhältnis Na[Et2Al-H-AlEt2] zu Na[AlEt4] zwischen 4:1 bis 1:1, bevorzugt 2:1) bei 20 °C in Toluol homogen löslich und haben dann die für eine technische Anwendung zur Abscheidung von Aluminium-Magnesium-Legierungsschichten geforderten Eigenschaften, wie der Löslichkeit sowohl von Aluminium- als auch von Magnesiumanoden durch Elektrolyse, möglichst hohes Leitvermögen, homogene Löslichkeit in aromatischen Lösungsmitteln, wie z. B. in Toluol zwischen 20 und 105 °C, kathodische Abscheidung dichter Schichten von Aluminium- Magnesium-Legierungen und wählbare Mengenverhältnissen beider Komponenten von AI: Mg = 95:5 bis 5:95. Die Anwesenheit von AIEt, sorgt dafür, daß aus Na[AlEt₄] kein Natriummetall (W. Grimme, Dissertation TH Aachen (1960); DBP 1114330 (1959); DBP 1146258 (1961)), sondern Aluminiummetall elektrolytisch abgeschieden wird. Na[AlEt,] löst bei der Elektrolyse sowohl Aluminium- als auch Magnesiumanoden auf (W. Grimme, Dissertation TH Aachen 1960; K. Ziegler, H. Lehmkuhl in Methoden der Organ. Chem. (Houben-Weyl), Bd. 13,1, S. 281 (1970).

Elektrolyte der Zusammensetzung $M[R_3AlH-AlR_3]$, (M=Na, K, Rb, Cs; Alkylrest $R=CH_3, C_2H_5, C_3H_7, C_4H_9$) z. B. $Na[Et_3Al-H-AlEt_3]$ sind als Lösungen in Toluol sehr gut zur elektrolytischen Abscheidung <u>und</u> Auflösung von Aluminium bei 90 - 105 °C geeignet. Bei der Elektrolyse dieser Verbindung und bei Abwesenheit von erfindungsgemäßem $Na[AlEt_4]$ haben wir jedoch gefunden, daß Magnesiumanoden nicht gelöst werden. Die gleichzeitige Verwendung einer Aluminium- und einer Magnesiumanode führte nach Stromdurchgang von 8.7 mF zu

einem Gewichtsverlust von 8.7 mÄq Aluminium, während die Magnesiumanode völlig ungelöst blieb. Dies bedeutet, daß $Na[Et_3Al-H-AlEt_3]$ ohne $Na[AlEt_4]$ -Komponente einen vorzüglichen Elektrolyten zur Abscheidung von reinem Aluminium darstellt. Für die Herstellung von Aluminium-Magnesium-Legierungsbeschichtungen jedoch bewirkt die Kombination beider Na-Komplexe mit Triethylaluminium und Toluol,

- a) daß die Löslichkeit von NaAlEt₄ genügend erhöht und
- b) daß in dieser Elektrolysemischung sowohl Aluminium- als auch Magnesiumanoden gelöst werden.

Der erfindungsgemäße Elektrolyt II ist in 5 - 7 mol pro mol Na[AlEt₄] eines bei 20 °C flüssigen aromatischen Kohlenwasserstoffs, vorzugsweise in Toluol oder einem flüssigen Xylol gelöst. Das Mengenverhältnis Na[Et₃Al-H-AlEt₃] zu Na[AlEt₄] ist bevorzugt 2 : 1, um eine homogene Löslichkeit in 6 mol Toluol pro mol Na[AlEt₄] sicherzustellen und das Molverhältnis Na[AlEt₄] zu AlEt₃ ist bevorzugt 1 : 2, um eine einwandfreie Metallabscheidung durch Elektrolyse zu gewährleisten. Ein beispielhafter Elektrolyt II ist: 1 mol Na[Et₃Al-H-AlEt₃] / 0.5 mol Na[AlEt₄] / 1 mol AlEt₃ / 3 mol Toluol. Aus dieser Elektrolytlösung erfolgt auch bei längerem Stehen bei Raumtemperatur keine Kristallisation, die eine technische Verwendbarkeit des Elektrolyten stören würde. Die spezifische Leitfähigkeit bei 95 °C beträgt 8.12 mS · cm⁻¹.

Die elektrolytische Abscheidung von Aluminium-Magnesium-Legierungsschichten aus den erfindungsgemäßen Elektrolyten wird unter Verwendung einer löslichen Aluminium- und einer ebenfalls löslichen Magnesiumanode oder unter Verwendung einer Anode aus Aluminium-Magnesium-Legierung durchgeführt. Im Fall von zwei Anoden sind diese zur Gewährleistung einer kontinuierlichen Verfahrensweise und zur Steuerung auf eine wählbare und gewünschte Legierungszusammensetzung getrennt geschaltet. Die Elektrolysen werden in Toluollösung zweckmäßig bei 90 - 100 °C durchgeführt. Die anodischen (Al 95-100 %; Mg 93-100 %) und kathodischen Stromausbeuten sind praktisch quantitativ. Da sich eine endliche und damit notwendige Konzentration an Magnesium im Elektrolyten erst im Verlauf einer Elektrolyse aufbaut, muß vor dem Einsatz eines frisch bereiteten Elektrolyten dieser Zustand zunächst hergestellt werden. Dies kann erfolgen

WO 00/32847 PCT/EP99/09236

1. durch kurzzeitige Vorelektrolyse, während der mit ansteigender Magnesiumkonzentration in der Elektrolytlösung der Magnesiumgehalt in der kathodisch abgeschiedenen Schicht zunimmt bis zu dem Zeitpunkt, an dem durch geeignete und gewünschte Wahl der anodischen Teilstromdichten ebenso

7

viel an Aluminium und Magnesium anodisch gelöst wie kathodisch wieder

abgeschieden werden; oder

2. durch Zugabe der Komplexverbindung Mg[AlEt₄]₂, einer farblosen Flüssigkeit (K. Ziegler, E. Holzkamp, Liebigs Ann. Chem. 605 93-97 (1957)), die auch als Lösung in Toluol verwendet werden kann. Nach Zugabe von 0.01 mol Mg[AlEt₄]₂ pro 3.0 mol K[AlEt₄] kann z. B. der Elektrolyt I direkt zur verfahrensgemäßen Beschichtung verwendet werden.

Die elektrolytische Abscheidung aus den erfindungsgemäßen Elektrolyten führt zu Aluminium-Magnesium-Legierungsschichten, die sich in ihren elektrochemischen Eigenschaften deutlich von bislang bekannten Schichtsystemen unterscheiden. Das elektrochemische Verhalten der Legierungsschichten entspricht in der kathodischen Teilreaktion dem Magnesium-Typ, in der anodischen Teilreaktion dem Aluminium-Typ verbunden mit einem ausgeprägtem Passivitätsintervall.

Die Legierungsschichten weisen bei Raumtemperatur in einer 5 %-igen wässrigen NaCl-Lösung mit einem pH-Wert von 9,0 ein Ruhestrompotential von etwa -1380 bis -1500 mV vs. S.C.E. bei Mg-Einbauraten von 5 bis 50 Gew.-% auf. Aufgrund der Schicht-Passivität (Ausbildung intermetallischer Phasen) wird die kathodische Teilreaktion im Kontakt mit elektronegativeren Metallen, wie Magnesium, zusätzlich gehemmt. Das Potential der kathodischen Teilreaktion wird dadurch gegenüber dem Ruhepotential zu noch negativeren Potentialwerten verschoben. Dies hat zur Folge, dass die verbleibende Potentialdifferenz zwischen der kathodischen Teilreaktion der Legierungsschicht (bei pH 9 Sauerstoffreduktion) und der anodischen Teilreaktion des Magnesiums stark verringert wird. Die AlMg-Legierungsschichten ermöglichen folglich eine weitgehende Adaption an das Ruhestrompotential der Magnesium-Legierung AZ91hp, das bei ca. -1680 mV vs. S.C.E. liegt, Kontaktkorrosion am Magnesium

wird stark reduziert. Daher eignen sich die Legierungsschichten für die Beschichtung von Stahl-Befestigungselementen in Kontakt mit Magnesium. Das Anwendungspotential betrifft hier insbesondere Anwendungen der Automobilindustrie im Getriebe-, Motoren- und Karrosseriebereich.

Die entwickelten Legierungsschichten, die aus nicht-wässrigen Elektrolyten abgeschieden werden, eignen sich außerdem als qualitativ hochwertige Oberflächenbeschichtung für hochvergütete Stahlteile deren Zugfestigkeit > 1000 MPa liegt und die nicht mit konventionellen galvanischen Verfahren - aufgrund der Gefahr von Wasserstoffversprödung - beschichtetet werden können. Somit ergibt sich ein potentielles Anwendungsfeld für die Beschichtung von Vergütungs- und Federstählen mit alkalibeständigen sowie Aluminium- bzw. Magnesium-verträglichen Überzügen.

Beispiele:

Von den nachfolgenden Beispielen beziehen sich 1 bis 9 auf den Elektrolyten I, 10 bis 14 auf den Elektrolyten II, Beispiele 15 und 16 auf die reine Aluminiumabscheidung. In Beispiel 17 wurde ein Rb[Al(Et)₄]-Elektrolyt eingesetzt.

Beispiel 1

189.5 g (1.14 mol) Na[AlEt₄] wurden mit 216.8 g (2.35 mol) Toluol auf 130 °C Badtemperatur erhitzt. Zu der in der Hitze entstehenden klaren, farblosen Lösung gibt man in kleinen Portionen 85 g (1.14 mol) getrocknetes KCl. Nach der Zugabe der Gesamtmenge rührt man 6 h nach, läßt auf Raumtemperatur abkühlen und trennt die Suspension durch Filtrieren durch eine Glasfaserhülse, man wäscht mit 105 ml (91.0 g; 1.0 mol) Toluol nach. Das Gesamtfiltrat enthält K: Na im molaren Verhältnis von 0.79: 0.21. Andere K: Na-Verhältnisse von z. B. 0.90: 0.10 wurden durch Mischen der reinen Komponenten K[AlEt₄] und Na[AlEt₄] eingestellt.

Beispiel 2

Ein Elektrolyt der Zusammensetzung M[AlEt $_4$]/3 AlEt $_3$ /6 Toluol (M = 2Q mol% Na, 80 mol% K) wurde mit zwischen Al-Anode und Mg-Anode befindlicher rotierender runder Cu-Kathode bei 91-95 °C elektrolysiert. Die Stromdichten wurden bezüglich der Al-Anode auf 0.4 A \cdot dm $^{-2}$ und für die Mg-Anode auf 0.2 A \cdot dm $^{-2}$ reguliert, die Strommenge betrug 3.5 mF.

Nach Durchgang dieser Strommenge hatten sich 2,19 m Äquivalente Al und 1,17 mÄ Mg gelöst; die anodische Stromausbeute bezogen auf Al war 95.6, bezogen auf Mg 96.7 %. Die Kathodenschicht war gleichmäßig, silberglänzend und enthielt 72.4 % Al und 27.6 % Mg, die kathodische Schicht wog 34.3 mg und war ca. 12 μ m dick.

Bei langzeitiger Verwendung des Elektrolyten für zahlreiche Beschichtungsversuche bei 90-95 °C kann die Toluolmenge durch Verdampfung allmählich abnehmen, sinkt sie unter 5 mol Toluol pro mol $M[AlEt_4]$ wird die Lösung inhomogen, und es scheidet sich etwas $AlEt_3$ in Form öliger Tröpfchen aus. In diesem Fall muß die Toluolmenge auf 6 mol Toluol pro mol $M[AlEt_4]$ ergänzt werden.

Beispiel 3

Ein Elektrolyt der Zusammensetzung 0.79 mol K[AlEt $_4$]/0.21 mol Na[AlEt $_4$]/0.3 mol AlEt $_3$ /2.5 mol Toluol wurde zwischen Aluminium- und Magnesiumanode und einer Kupferkathode bei 90-95 °C elektrolysiert. Die Kathodenstromdichte betrug 1 A · dm 2 die Strommenge war 8.65 mF. Danach hatten sich 2.77 mÄq Al und 4,76 mÄq Mg gelöst, was einer anodischen Stromausbeute von 87 % entspricht. Die Kathodenschicht war gleichmäßig und glänzend. Sie enthielt 71.0 Gew.% und 29.0 Gew.% Mg.

Beispiel 4

Der Elektrolyt von Beispiel 3 wurde nach Austausch der Kathode gegen ein neues Kupferblech erneut bei 90-95 °C elektrolysiert. Die Kathoden-Stromdichte betrug 0.9 A • dm⁻². Nach Durchgang von 6.53 mF wurde der Versuch abgebrochen. Die Kathodenschicht war gleichmäßig und silberglänzend. Sie enthielt 54.9 Gew.% Al und 45.1 Gew.% Mg.

Beispiel 5

Der Elektrolyt der Beispiele 3 und 4 wurde viermal hintereinander unter Einsatz von nur einer Magnesiumanode elektrolysiert. Die Beschaffenheit der Kathodenschicht und der Al- und Mg-Gehalt des Elektrolyten sind in Tabelle 1 dargestellt. Tabelle 1

Versuchs- Nr.	Kathodenschicht Aussehen	Gehalt in Gew.% I Al	Mg	Elektrolyt Gehalt in mA	λt/g Mg
1	gleichmäßig, hellgrau	76.20	23.80		<u> </u>
2	gleichmäßig, an den Kanten rauher werdend	53.00	47.00	2.93	0.040
3	grau, an den Kanten rauh	29.95	70.05	2.80	0.058
4	grau, rauh an den Kanten dendritisch	4.60	95.40	2.85	0.070

Beispiel 6

Ein Elektrolyt der Zusammensetzung K[AlEt $_4$]/AlEt $_3$ /4 Toluol mit einer spezifischen Leitfähigkeit von 17.3 mS cm $^{-1}$ wurde zwischen einer aus Aluminium-Blech und Magnesium-Blech bestehenden Anode und einer aus TiAl $_6$ V $_4$ -bestehenden Kathode bei 90-95 °C elektrolysiert. Die kathodische Stromdichte war 0.4 A · dm $^{-2}$, nach Durchgang von 5.59 mF waren 4.53 mÄq Magnesium und 1.02 mÄq Aluminium (= 99.3 % anodische Stromausbeute) in Lösung gegangen, die Kathodenschicht war sehr gleichmäßig und silberhell sowie haftfest auf TiAl $_6$ V $_4$ und bestand zu 75 Gew.% aus Al und zu 25 Gew.% aus Mg.

Beispiel 7

Ein Elektrolyt der Zusammensetzung 0.8 mol $K[AlEt_4]/0.2$ mol $Na[AlEt_4]/0.2$ mol Na[AlEt

WO 00/32847 PCT/EP99/09236

11

kathodischer Stromdichte von $0.8~A \cdot dm^{-2}$ und einer Strommenge von 2.89~mF elektrolysiert. Kathodische und anodische Stromausbeuten waren mit 99.5~% quantitativ. Die ca. $9~\mu m$ dicke Legierungsschicht war gleichmäßig , silbern glänzend und auf dem Grundmaterial gut haftend.

Beispiel 8

Der Elektrolyt von Beispiel 7 wurde unter Rühren mit dem bifunktionellen Ether Dimethoxiethan bis zu einem Verhältnis von AlEt₃ zu DME = 1 : 0,86 versetzt. Nach Erwärmen auf 95-98 °C wurde zwischen 2 Anoden aus einer Aluminium-Magnesium-Legierung mit 25 Gew.-% Mg und 75 Gew.-% Al und einer rotierenden zylindrischen Schraube aus 8.8-Stahl mit einer kathodischen Stromdichte von 0,8 A · dm⁻² und einer Strommenge von 2,99 mF elektrolysiert. Die anodische Stromausbeute betrug 98,8 %. Die ca. 10 μm dicke Legierungsschicht war sehr gleichmäßig, matt silbern und auf dem Grundmaterial gut haftend.

Beispiel 9

Beispiel 7 wurde zehnmal nach jedesmaligem Austausch der Kathoden gegen eine unbeschichtete Schraube bei 98 - 100 °C wiederholt. Die jeweiligen Dicken der Kathodenschicht wurden von 9 bis 13 μ m variiert. Die anodische Stromausbeute betrug über die zehn Versuche 99.5 %.

Beispiel 10

39.8 mol Na[Et₃Al-H-AlEt₃] und 39.8 mol Na[AlEt₄] und 78.6 mol Toluol werden bei 100 °C gerührt, aus der klaren, viskosen Lösung fallen beim Abkühlen auf Raumtemperatur feine Kristalle aus. Durch Zugabe weiterer 39.8 mol Na[Et₃Al-H-AlEt₃] und 78.6 mol Toluol und Erwärmen auf 100 °C entsteht eine klare Lösung, die spezifische Leitfähigkeit bei 95 °C beträgt 21.8 mS · cm⁻¹. Nach Zugabe von 39.5 mol Toluol entsteht eine Lösung mit spezifischer Leitfähigkeit von 19.1 mS · cm⁻¹ bei 95 °C, beim Erkalten auf Raumtemperatur fallen noch einige Kristalle aus. Daher werden nochmals 39.5 mol Toluol zugegeben, aus der jetzt erhaltenen Lösung erfolgt beim Abkühlen keine Kristallisation mehr. Die spezifische Leitfähigkeit beträgt bei bei 95 °C 18.0 mS · cm⁻¹. Eine Probeelektrolyse zwischen Al- und Mg-Anode und einer Stahlkathode ergab nur

eine graue, rauhe und teilweise dendritische Kathodenschicht. Dem Elektrolyten

wurden noch 79.8 mol AlEt $_3$ zugefügt, die spezifische Leitfähigkeit betrug 8.12 mS \cdot cm $^{-1}$ für den jetzt erhaltenen Elektrolyten der Zusammensetzung 1 Na[Et $_3$ Al-H-AlEt $_3$] / 0.5 Na[AlEt $_4$] / 1 AlEt $_3$ / 3 Toluol.

Beispiel 11

Der im Verlauf von Beispiel 10 erhaltene Elektrolyt wurde bei 93-98 °C zwischen Al- und Mg-Anode und einer langsam rotierenden zylindrischen Kathode aus Vergütungsstahl (8.8) elektrolysiert. Die anodische Stromdichte war an jeder Anode je 0.3 A · dm⁻². Nach Durchgang von 1.6 mF an jeder Anode war die anodische Stromausbeute quantitativ, die kathodisch abgeschiedene Schicht war einheitlich und mattsilbern.

Beispiel 12

Der Elektrolyt des Beispiels 11 wurde nach Austausch der Kathode gegen eine neue, ebenfalls aus Vergütungsstahl, bei 95 - 104 °C elektrolysiert. Die anodischen Stromdichten wurden auf 0.45 A \cdot dm $^{-2}$ für Aluminium- und 0.15 A \cdot dm $^{-2}$ für Magnesium eingestellt. Die anodischen Stromausbeuten betrugen 90 %, die Kathodenschicht war gleichmäßig und silberglänzend; laut Analyse enthielt die Schicht 71.8 % Al und 28.2 % Mg, die Schichtdicke betrug 13 μ m.

Beispiel 13

Der Elektrolyt des Beispiels 12 wurde nach Austausch der Anoden aus Al und Mg gegen zwei Legierungsanoden der Zusammensetzung 75 Gew.-% Al und 25 Gew.-% Mg und nach Einsatz einer neuen cylindrischen Kathode aus Vergütungsstahl 8.8 bei 93 °C elektrolysiert. Während der Elektrolyse rotierte die Kathode langsam zwischen beiden Anoden, die kathodische Stromdichte betrug 0.8 A · dm⁻². Die Kathodenschicht war nach Durchgang von 3.5 mF 12 μm dick und war gleichmäßig und mattsilbern.

Beispiel 14

Beispiel 13 wurde dreimal nach Austausch der Kathode gegen eine unbeschichtete bei 92 - 100 °C wiederholt. Die jeweiligen Schichtdicken wurden zwischen 10 und 15 μ m variiert. Die anodische Stromausbeute betrug über die 4 Versuche für die Legierungsanoden 98.9 %.

Beispiel 15: Al-Abscheidung aus Na[Et₃Al-H-AlEt₃]

0.405 mol Na[(Et₃) AlH] wurden bei 90 °C aufgeschmolzen und mit 0.405 mol AlEt₃ versetzt. Die ursprünglich etwas milchige Schmelze klarte dabei auf. Nach Abkühlen auf 20 °C lag eine farblose Flüssigkeit vor, die mit 0.81 mol Toluol verdünnt wurde. Die spezifische Leitfähigkeit dieser Lösung betrug bei 100 °C 22.9 mS • cm⁻¹. Eine Probeelektrolyse bei 90-95 °C zwischen einer Al-Anode und einer TiAl₆V₄-Kathode bei einer anodischen Stromdichte von 0.7 A • dm² ergab nach Durchgang von 8.7 mF eine silbrige, seidige Kathodenschicht aus Aluminium mit quantitativer Stromausbeute. Die Stromausbeute an der Aluminiumanode betrug 96.6 %.

Beispiel 16: Al-Abscheidung aus K[Et₃AlH-AlEt₃]

Mit der bei der Herstellung und Umkristallisation von K[Et₃Al-H-AlEt₃] (Fp 138°C) anfallenden Mutterlauge der Zusammensetzung 1 mol K[Et₃Al-H-AlEt₃] / 8 Toluol mit der spezifischen Leitfähigkeit von 5,2 mS·cm⁻¹ wurde bei 94-96 °C zwischen einer Al-Anode und einer Cu-Kathode bei einer Stromdichte zwischen 0,6 A · dm⁻² bis 1,0 A · dm⁻² eine Probeelektrolyse durchgeführt. Nach Durchgang von 7,73 mF lag eine gleichmäßige, silbergraue Kathodenschicht vor. Die Stromausbeute an der Kathode betrug 100,0 %, die an der Anode 99,6 %.

Beispiel 17

a) Darstellung von Rb[Al(Et),]

33,65g (0,203mol) Na[Al(Et)₄] wurden mit 37,3g (0,405mol) Toluol auf 90°C Badtemperatur erhitzt. Zu der Suspension gibt man in 2 Portionen 24,4g (0,202mol) trockenes RbCl. Nach Zugabe rührt man bei 90°C 14h nach. Die schwachgelb bis orange gefärbte Lösung läßt man auf 70°C abkühlen und trennt die Suspension durch Filtrieren durch eine Glasfaserhülse, man wäscht mit ca. 30g Toluol nach. Das Filtrat ist eine klare, schwach rostrot gefärbte Lösung und enthält Rb: Na im molaren Verhältnis 0,93: 0,07. Die Analysen entsprechen einer Zusammensetzung von M[Al(Et)₄] mit 3,63Toluol (M= Rb + Na). Die spezifische Leitfähigkeit beträgt bei 95°C 12,9mS·cm⁻¹.

b) Beispiel eines Rb[Al(Et)₄] -Elektrolyten mit Al(Et)₃ in Toluol

Ein Elektrolyt der Zusammensetzung M[Al(Et)₄] / 2,17Al(Et)₃ / 4Toluol (M = 93mol%Rb, 7mol%Na) und einer spezifischen Leitfähigkeit von 8,7mS·cm¹ bei 95°C wurde mit zwischen zwei AlMg25-Legierungsanoden befindlicher rotierender Stahlschraube (8.8) als Kathode bei 90-95°C elektrolysiert. Die Stromdichte wurde bezüglich der Stahlkathode auf 0.8A·dm² eingestellt. Die Strommenge betrug in insgesamt 6 Einsätzen zwischen 3,5 und 6,0 mF. Die Kathodenschichten waren anfänglich gleichmäßig, hellmatt, allmählich jedoch gleichmäßig seidig silberglänzend und betrugen zwischen 30mg und 50mg. Die berechneten Schichtdicken lagen zwischen 12 bis 20mm. Die anodische Stromausbeute betrug über 6 Versuche 100%. Die anfängliche Zusammensetzung der Schicht mit einem frischen Elektrolyten lag bei 90.96%Al

und 9,04%Mg. Im Verlauf der weiteren Einsätze konditionierte sich das System

c) Beispiel eines $Rb[Al(Et)_4]$ -Elektrolyten mit $Al(n-C_3H_7)_3$ in Toluol

bis zu einer Schichtzusammensetzung von 75,02%Al und 24,98%Mg.

Ein Elektrolyt der Zusammensetzung M[Al(Et)₄] / 1,98Al(n-C₃H₇]₃ / 4,24Toluol (M = 93mol% Rb, 7mol% Na) und einer spezifischen Leitfähigkeit von 4,6mS·cm¹ bei 95°C wurde mit zwischen zwei AlMg25-Legierungsanoden befindlicher rotierender Stahlschraube (8.8) als Kathode bei 90-95°C elektrolysiert. Die Stromdichte wurde bezüglich der Stahlkathode zwischen 0,2 bis 0,6A·dm² eingestellt. Die Strommenge betrug zwischen 3,5 und 7,0mF. Die Kathodenschichten waren in allen Stromdichtebereichen optisch ungleichmäßig, dunkel und matt und betrugen zwischen 27 und 52mg, die berechneten Schichtdicken lagen zwischen 12 und 23μm. Die anodische Stromausbeute betrug über 5 Versuche 98,0%.

Patentansprüche

 Elektrolyt zur elektrolytischen Abscheidung von Aluminium-Magnesium-Legierungen, dadurch gekennzeichnet, daß er eine aluminiumorganische Mischung enthält, die im wesentlichen

entweder aus

Alkalitetraalkylaluminium M[AIR]

oder aus

Alkalihexaalkylhydridoaluminium $M[AIR_3-H-AIR_3]$ und Alkalitetraalkylaluminium $M[AIR_4]$,

und aus

Trialkylaluminium AIR3 besteht,

wobei

M = Li, Na, K, Rb oder Cs und,

R, R' = CH_3 , C_2H_5 , C_3H_7 , n – oder iso- C_4H_9 , wobei R und R' gleich oder verschieden sind.

 Elektrolyt nach Anspruch 1, wobei die aluminiumorganische Mischung eine ethylaluminiumorganische Mischung ist, die im wesentlichen entweder aus K[AlEt₄] (A) und Na[AlEt₄] (B), mit einem molaren Verhältnis B:A im Bereich 0 ≤ B:A ≤ 1:3

oder aus

 $Na[Et_3Al-H-AlEt_3]$ (C) und $Na[AlEt_4]$ (D), mit einem molaren Verhältnis D:C im Bereich 1:4 \leq D:C \leq 1:1

und aus

Trialkylaluminium (E) besteht.

- 3. Elektrolyt nach Ansprüchen 1-2, wobei als Trialkylaluminium Triethylaluminium AlEt₃ eingesetzt wird.
- Elektrolyt nach Ansprüchen 2-3 ohne Na[Et₃Al-H-AlEt₃]- Komponente, wobei das molare Verhältnis von A:B zwischen 9:1 und 3:1 und das molare Verhältnis von (A + B): E zwischen 1:0.5 und 1:3 beträgt

- 5. Elektrolyt nach Anspruch 4, wobei das molare Verhältnis A:B 4:1 beträgt.
- 6. Elektrolyt nach Ansprüchen 2-3 ohne K[AlEt₄]-Komponente, wobei das molare Verhältnis von D:C 1:2 und von D:E 1:2 bis 1:1 beträgt.
- Elektrolyt nach Ansprüchen 1 3, dadurch gekennzeichnet, daß die aluminiumorganische Mischung in einem bei 20 °C flüssigen aromatischen Kohlenwasserstoff gelöst ist.
- 8. Elektrolyt nach Ansprüchen 4, 5 und 7, dadurch gekennzeichnet, daß die aluminiumorganische Mischung in 2-6 mol Toluol, bezogen auf eingesetzte Gesamtmenge von Na[AlEt₄] und K[AlEt₄], gelöst ist.
- Elektrolyt nach Ansprüchen 2, 3, 6 und 7, wobei die aluminiumorganische Mischung in 5-7 mol Tolubl, bezogen auf eingesetztes Na[AlEt₄], gelöst ist.
- 10. Elektrolyt nach Ansprüchen 1-3 und 7, dadurch gekennzeichnet, daß die aluminiumorganischen Komponenten in einer Mischung eines flüssigen aromatischen Kohlenwasserstoffs mit einem aliphatischen ein- zwei- oder mehrbasischen Ether R"OR" (R" = R" = Alkyl; oder R" = Alkyl, R" = CH₂OR") gelöst werden und das Molverhältnis AIR₃: ROR' zwischen 0.5 und 1.0 beträgt.
- 11. Elektrolyt nach Anspruch 10, dadurch gekennzeichnet, daß der aliphatische Ether Dimethoxiethan CH₃OCH₂CH₂OCH₃, der aromatische Kohlenwasserstoff Toluol ist und das Molverhältnis Triethylaluminium: Dimethoxiethan 0.8 bis 0.9 beträgt.
- 12. Verfahren zur elektrolytischen Abscheidung von Aluminium-Magnesium-Legierungen auf elektrisch leitenden Werkstoffen, dadurch gekennzeichnet, daß ein Elektrolyt nach Ansprüchen 1 bis 11 und als Anoden Aluminiumund Magnesiumanoden oder Aluminium-Magnesium-Legierungsanoden eingesetzt werden, wobei die Zusammensetzung der Anodenlegierung der gewünschten Legierungsbeschichtung entspricht.

- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß das Verfahren in einem Temperaturbereich von 80-105 °C ausgeführt wird.
- 14. Verfahren nach Ansprüchen 12-13, wobei eine Legierungsbeschichtung mit einem Aluminium/Magnesiumverhältnis zwischen 95:5 und 5:95 erzeugt wird.
- 15. Verfahren nach Ansprüchen 12 bis 14, wobei die für den angestrebten Magnesiumgehalt der Legierungsbeschichtung notwendige Magnesium-Konzentration im Elektrolyten durch Vorelektrolyse oder durch einmalige Zugabe von Mg[AlEt₄]₂ zu Beginn der Elektrolyse eingestellt wird.
- 16. Verfahren zur elektrolytischen Abscheidung von Aluminium, dadurch gekennzeichnet, daß als Elektrolyt M[R₃Al-H-AlR₃] eingesetzt wird, wobei M = Na, K, Li, Rb oder Cs und Alkylrest R = C₂H₅, C₃H₇, n- oder iso-C₄H₉ ist..
- 17. Verfahren nach Anspruch 16, wobei M = Na und $R = C_2H_5$ ist.
- Verfahren nach Anspruch 16-17, wobei der Elektrolyt in einem bei 20 °C flüssigen Kohlenwasserstoff gelöst ist.
- 19. Verfahren nach Anspruch 18, wobei der Kohlenwasserstoff Toluol ist.
- 20. Verfahren nach Ansprüchen 17 bis 19, dadurch gekennzeichnet, daß das Verfahren im Temperaturbereich von 20 °C bis 105 °C ausgeführt wird.
- 21. Verfahren nach Anspruch 20 in einem Temperaturbereich zwischen 90 °C und 100 °C.
- 22. Verfahren nach Anspruch 12 zur Reduzierung oder Vermeidung von Kontaktkorrosion an Magnesium-Bauteilen, dadurch gekennzeichnet, dass Mg-Einbauraten von 5...50 Gew.-% innerhalb der Legierungsschicht zur Ausbildung der intermetallischen Phasen führen.

- 23. Verfahren nach Anspruch 12 zur Vermeidung H_2 -induzierter Spannungsrißkorrosion, wobei als elektrisch leitende Werkstoffe hochfeste Stahlteile mit einer Zugfestigkeit > 1000 MPa eingesetzt werden.
- 24. Verfahren nach Anspruch 22, wobei es sich bei den Magnesium-Bauteilen um Bauteile der Automobilindustrie im Getriebe- Motoren- und Karrosseriebereich handelt.

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7: (11) Internationale Veröffentlichungsnummer: WO 00/32847 **A3** C25D 3/44, 3/56 (43) Internationales Veröffentlichungsdatum: 8. Juni 2000 (08.06.00) (21) Internationales Aktenzeichen: PCT/EP99/09236 (81) Bestimmungsstaaten: CA, JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, (22) Internationales Anmeldedatum: 27. November 1999 MC, NL, PT, SE). (27.11.99)Veröffentlicht (30) Prioritätsdaten: Mit internationalem Recherchenbericht. 198 55 666.7 1. Dezember 1998 (01.12.98) DE (88) Veröffentlichungsdatum des internationalen Recherchenbe-16. November 2000 (16.11.00) (71) Anmelder (für alle Bestimmungsstaaten ausser US): STU-DIENGESELLSCHAFT KOHLE MBH [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (DE). (72) Erfinder; und (75) Erfinder/Anmelder (nur für US): LEHMKUHL, Herbert [DE/DE]; Lohbecker Berg 28, D-45470 Mülheim an der Ruhr (DE). MEHLER, Klaus-Dieter [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (DE). REINHOLD, Bertram [DE/DE]; Sebastianstrasse 1a, D-85049 Ingolstadt (DE). (74) Anwälte: VON KREISLER, Alek usw.; Deichmannhaus am Hauptbahnhof, D-50667 Köln (DE).

- (54) Title: ALUMINIUM ORGANIC ELECTROLYTES AND METHOD FOR ELECTROLYTIC COATING WITH ALUMINIUM OR ALUMINIUM-MAGNESIUM-ALLOYS
- (54) Bezeichnung: ALUMINIUMORGANISCHE ELEKTROLYTE UND VERFAHREN ZUR ELEKTROLYTISCHEN BESCHICHTUNG MIT ALUMINIUM ODER ALUMINIUM-MAGNESIUM-LEGIERUNGEN

(57) Abstract

The invention relates to aluminium organic electrolytes and to a method for coating electroconductive materials with aluminium or aluminium-magnesium-alloys consisting essentially and preferably of Na[Et₃Al-H-AlEt₃] in the case of the aluminium coating or of either K[AlEt₄] or Na[Et₃Al-H-AlEt₃] and Na[AlEt₄] and trialkylaluminium in the case of the alloy coating. According to the invention, solutions of these electrolytes in liquid aromatic hydrocarbons or mixtures thereof with aliphatic monobasic or polybasic ethers, for example dimethoxiethane, and soluble anodes consisting of aluminium or aluminium and magnesium or an aluminium-magnesium alloy are used.

(57) Zusammenfassung

Aluminium-ganische Elektrolyte und Verfahren zur Beschichtung von elektrisch leitenden Werkstoffen mit Aluminium oder mit Aluminium-Magnesium-Legierung im wesentlichen und bevorzugt bestehend aus Na[Et₃Al-H-AlEt₃] für Aluminiumbeschichtung bzw. aus entweder K[AlEt₄] oder Na[Et₃Al-H-AlEt₃] sowie Na[AlEt₄] und Trialkylaluminium für Legierungsbeschichtung unter Verwendung von Lösungen dieser Elektrolyte in flüssigen aromatischen Kohlenwasserstoffen oder deren Mischungen mit aliphatischen ein- oder mehrbasischen Ethern, wie beispielsweise Dimethoxiethan und unter Einsatz von löslichen Anoden aus Aluminium bzw. aus Aluminium und Magnesium oder aus Aluminium-Magnesium-Legierung.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL AM AT AU AZ BA BB BE BF BG BJ BR CC CG CH CI CM CN CU CZ DE DK EE	Albanien Armenien Österreich Australien Aserbaidschan Bosnien-Herzegowina Barbados Belgien Burkina Faso Bulgarien Benin Brasilien Belarus Kanada Zentralafrikanische Republik Kongo Schweiz Côte d'Ivoire Kamerun China Kuba Tschechische Republik Deutschland Dänemark Estland	ES FI FR GA GB GE GH GN GR HU IE IL IS IT JP KE KG KP LC LI LK LR	Spanien Finnland Frankreich Gabun Vereinigtes Königreich Georgien Ghana Guinea Griechenland Ungarn Irland Israel Island Italien Japan Kenia Kirgisistan Demokratische Volksrepublik Korea Republik Korea Kasachstan St. Lucia Liechtenstein Sri Lanka Liberia	LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE SG	Lesotho Litauen Luxemburg Lettland Monaco Republik Moldau Madagaskar Die ehemalige jugoslawische Republik Mazedonien Mali Mongolei Mauretanien Malawi Mexiko Niger Niederlande Norwegen Neuseeland Polen Portugal Rumānien Russische Föderation Sudan Schweden Singapur	SI SK SN SZ TD TG TJ TM TR TT UA UG US VN YU ZW	Slowenien Slowakei Senegal Swasiland Tschad Togo Tadschikistan Turkmenistan Türkei Trinidad und Tobago Ukraine Uganda Vereinigte Staaten von Amerika Usbekistan Vietnam Jugoslawien Zimbabwe
--	---	---	---	---	---	--	--

INTERNATIONAL SEARCH REPORT

Intel Shall Application No PCT/EP 99/09236

A. CLASS IPC 7	CLASSIFICATION OF SUBJECT MATTER C 7 C25D3/44 C25D3/56								
According t	o International Patent Classification (IPC) or to both national classif	Section and IDC							
	DS SEARCHED								
Minimum do IPC 7	linimum documentation searched (classification system followed by classification symbols) PC 7 C25D								
Documenta	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
	ata base consulted during the international search (name of data t)						
EPO-In	EPO-Internal, WPI Data, PAJ, INSPEC, CHEM ABS Data								
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT								
Category °	Citation of document, with indication, where appropriate, of the r	elevant passages	Relevant to claim No.						
Α	K. ZIEGLER UND H. LEHMKUHL: "Di elektrolytische abscheidung von aus organischen Komplexverbindun Z. ANORG. ALLG. CHEMIE, vol. 283, 1956, pages 414-424, X cited in the application page 416, line 10 - line 18	Aluminium ngen"	1						
A	F. HEIN ET AL.: "Ueber das salz Verhalten der Alkalialkyle in Metallalkylen als Lösungsmitteln Z. ANORG. ALLG. CHEM., vol. 141, page 161 XP000933867 page 172, line 19	_	1						
X Furth	er documents are listed in the continuation of box C.	Patent family members are listed	n annex.						
° Special cat	egones of cited documents :	T° later document published after the inter	mational filing date						
"E" earlier de filing de "L" documer which is citation "O" documer other m	*T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention street to understand the principle or theory underlying the invention street to understand the principle or theory underlying the invention street to understand the principle or theory underlying the invention street to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.		the application but cory underlying the laimed invention be considered to cument is taken alone aimed invention entive step when the re other such docu-is to a person skilled						
	ctual completion of the international search	"&" document member of the same patent f Date of mailing of the international sea							
22	2 August 2000	04/09/2000	іся тероп						
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Authorized officer Zech, N									

INTERNATIONAL SEARCH REPORT

Inter onal Application No PCT/EP 99/09236

	······································	PC1/EP 99/09236
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	ID.
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.
Α	US 2 849 349 A (K. ZIEGLER AND H. LEHMKUHL, MULHEIM AN DER RUHR, GERMANY) 26 August 1958 (1958-08-26) claims 1,3,6-8,19-23 example 4	1,7,10, 12,13,16
A	US 3 672 965 A (HARWOOD WILLIAM H) 27 June 1972 (1972-06-27) column 1, line 63 - line 67 column 3, paragraph 2 claims 1,3,4	1,7,12,
A	US 4 778 575 A (MAYER ANTON) 18 October 1988 (1988-10-18) cited in the application examples claims 1,3,5	1-4,7,8
A	EP 0 402 760 A (STUDIENGESELLSCHAFT KOHLE MBH) 19 December 1990 (1990-12-19) page 3, line 24 - line 54 page 6, line 9 - line 13 claims 1,4,6-10	1-3, 10-13
A	GB 1 421 320 A (SIEMENS AG) 14 January 1976 (1976-01-14) page 2, line 100 -page 3, line 1 page 3, line 38 - line 71	1,7,16, 18,19
	·	
-		

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte onal Application No PCT/EP 99/09236

Patent document cited in search repor	t	Publication date		atent family member(s)	Publication date
US 2849349	A	26-08-1958	BE CH DE FR GB	540052 A 350112 A 1047450 B 1134858 A 813446 A	18-04-1957
US 3672965	Α	27-06-1972	DE FR	2131672 A 2096567 A	05-01-1972 18-02-1972
US 4778575	Α	18-10-1988	NONE		
EP 0402760	A	19-12-1990	DE AT CA DE DK ES IE JP JP US	3919068 A 103017 T 2018130 A 69007341 D 69007341 T 402760 T 2050303 T 65262 B 2918635 B 3031493 A 5007991 A	13-12-1990 15-04-1994 10-12-1990 21-04-1994 21-07-1994 24-05-1994 16-05-1994 18-10-1995 12-07-1999 12-02-1991 16-04-1991
GB 1421320	A	14-01-1976	DE AR BE CH FR IT LU NL SE ZA	2338063 A 203204 A 818025 A 606501 A 2238776 A 1017373 B 70598 A 7407398 A 7409517 A 7404224 A	03-04-1975 22-08-1975 18-11-1974 31-10-1978 21-02-1975 20-07-1977 28-11-1974 28-01-1975 27-01-1975 30-07-1975

INTERNATIONALER RECHERCHENBERICHT

Inter males Aktenzeichen PCT/EP 99/09236

A. KLASSII IPK 7	. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES PK 7 C25D3/44 C25D3/56								
••••									
Nach der Int	vach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK								
B. RECHER	ECHERCHIERTE GEBIETE								
Recherchier	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbol C25D	e)							
1									
Recherchier	Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen								
	·								
Während de	er internationalen Recherche konsultierte elektronische Datenbank (Na	ame der Datenbank und evtl. verwendete S	Suchbegnffe)						
EPO-In	ternal, WPI Data, PAJ, INSPEC, CHEM	ABS Data							
	SENTLICH ANGESEHENE UNTERLAGEN	- day - Bataraht kampandan Tailo	Betr. Anspruch Nr.						
Kategone ³	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	e der in Betracht kommenden Teile	Detr. Arispider W.						
A	K. ZIEGLER UND H. LEHMKUHL: "Die		1						
	elektrolytische abscheidung von A								
	<pre>aus organischen Komplexverbindung Z. ANORG. ALLG. CHEMIE,</pre>	en							
	Bd. 283, 1956, Seiten 414-424, XP	002144986							
	in der Anmeldung erwähnt Seite 416, Zeile 10 - Zeile 18								
	F. HEIN ET AL.: "Ueber das salza	rtigo	1						
A	Verhalten der Alkalialkyle in	icige	•						
	Metallalkylen als Lösungsmitteln"								
	Z. ANORG. ALLG. CHEM., Bd. 141, Seite 161 XP000933867								
	Seite 172, Zeile 19								
		./							
	tere Veröffentlichungen sind der Fortsetzung von Feld C zu nehmen	X Siehe Anhang Patentfamilie							
		"T" Spätere Veröffentlichung, die nach dem oder dem Prioritätsdatum veröffentlicht	tworden ist und mit der						
abern	aber nicht als besonders bedeutsam anzusehen ist Anmeldung nicht kollidiert, sondem nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegen								
Anmel	idedatum veröffentlicht worden ist ntlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-	Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeukann allein aufgrund dieser Veröffentlich	itung; die beanspruchte Erfindung chung nicht als neu oder auf						
schein ander	nen zu lassen, oder durch die das Veröffentlichungsdatum einer en im Recherchenbericht genannten Veröffentlichung belegt werden	erfinderischer Tätigkeit beruhend betra "Y" Veröffentlichung von besonderer Bedeu	ichtet werden itung; die beanspruchte Erfindung						
ausge	ausgeführt) kann nicht als auf erfindenscher Tatigkeit berunend betrachtet werden, werm die Veröffentlichung mit einer oder mehreren anderen								
eine 8	*O* Veröffentlichung, die sich auf eine mundliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht diese Verbindung für einen Fachmann naheliegend ist								
dem b	eanspruchten Prioritätsdatum veröffentlicht worden ist Abschlusses der internationalen Recherche	*&" Veröffentlichung, die Mitglied derselben Absendedatum des internationalen Re							
	2. August 2000	04/09/2000							
Name und f	Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2	Bevollmächtigter Bediensteter							
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.	Zech, N							
1	Fax: (+31-70) 340-3016	, 200, 11							

2

INTERNATIONALER RECHERCHENBERICHT

Inter phases Aktenzeichen
PCT/EP 99/09236

		PCT/EP 9	9/09236
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategone	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Teile	Betr. Anspruch Nr.
Α	US 2 849 349 A (K. ZIEGLER AND H. LEHMKUHL, MULHEIM AN DER RUHR, GERMANY) 26. August 1958 (1958-08-26) Ansprüche 1,3,6-8,19-23 Beispiel 4		1,7,10, 12,13,16
A	US 3 672 965 A (HARWOOD WILLIAM H) 27. Juni 1972 (1972-06-27) Spalte 1, Zeile 63 - Zeile 67 Spalte 3, Absatz 2 Ansprüche 1,3,4		1,7,12,
A	US 4 778 575 A (MAYER ANTON) 18. Oktober 1988 (1988-10-18) in der Anmeldung erwähnt Beispiele Ansprüche 1,3,5		1-4,7,8
A	EP 0 402 760 A (STUDIENGESELLSCHAFT KOHLE MBH) 19. Dezember 1990 (1990-12-19) Seite 3, Zeile 24 - Zeile 54 Seite 6, Zeile 9 - Zeile 13 Ansprüche 1,4,6-10		1-3, 10-13
A	GB 1 421 320 A (SIEMENS AG) 14. Januar 1976 (1976-01-14) Seite 2, Zeile 100 -Seite 3, Zeile 1 Seite 3, Zeile 38 - Zeile 71		1,7,16, 18,19
-			
		·	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inter nales Aktenzeichen
PCT/EP 99/09236

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 2849349 A	26-08-1958	BE 540052 A CH 350112 A DE 1047450 B FR 1134858 A GB 813446 A	18-04-1957
US 3672965 A	27-06-1972	DE 2131672 A FR 2096567 A	05-01-1972 18-02-1972
US 4778575 A	18-10-1988	KEINE	
EP 0402760 A	19-12-1990	DE 3919068 A AT 103017 T CA 2018130 A DE 69007341 D DE 69007341 T DK 402760 T ES 2050303 T IE 65262 B JP 2918635 B JP 3031493 A US 5007991 A	13-12-1990 15-04-1994 10-12-1990 21-04-1994 21-07-1994 24-05-1994 16-05-1994 18-10-1995 12-07-1999 12-02-1991 16-04-1991
GB 1421320 A	14-01-1976	DE 2338063 A AR 203204 A BE 818025 A CH 606501 A FR 2238776 A IT 1017373 B LU 70598 A NL 7407398 A SE 7409517 A ZA 7404224 A	03-04-1975 22-08-1975 18-11-1974 31-10-1978 21-02-1975 20-07-1977 28-11-1974 28-01-1975 27-01-1975 30-07-1975

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
D BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)