The Effect of Expected Income on Individual Migration Decisions (Kennan & Walker, 2011)

Vasily Rusanov

November 4, 2019

Motivation

- ▶ Most current models "describe patterns in the data"
- Can we build a model that allows for return migration and can be estimated?
- ► The main contribution is methodological, no insights about how migration decisions are made.
- Smart discritization allows for tractable likelihood function...
 - ... but they still have to assume that some distributions have supports of 3 points, otherwise it blows up.

Features of the model

- ► Many locations: allows for non-trivial reverse migration
- Migration is search. Workers move to find out the wage in a location (only choice).
- Partial equilibrium: wages don't adjust to flows

- Wage $w_{ij}(a) = \mu_j + v_{ij} + G(X_i, a, t) + \eta_i + \varepsilon_{ij}(a)$
 - $ightharpoonup \mu_j$ is average wage in j, estimated outside from US Census for each age
 - v_{ij} is the "match quality" that is learned once and forever, does not change. Prospects at unvisited locations are random.
 - ightharpoonup G(a, x, t) is time effect and the effects of observables
 - \triangleright η_i is individual fixed effect
 - $ightharpoonup arepsilon_{ij}(a)$ should be simply $arepsilon_{ijt}$ (they just emphasize it's a different draw every year).

- $\qquad \qquad \mathbf{u}_h(\mathbf{x},j) = \alpha_0 \mathbf{w} \left(\ell^0, \omega \right) + \sum_{k=1}^K \alpha_k Y_k \left(\ell^0 \right) + \alpha^H \mathbb{1} \left(\ell^0 = h \right) + \xi \left(\ell^0, \omega \right) \Delta_\tau(\mathbf{x},j)$
 - $\ell = (\ell^0, \ell^1, \ell^2, \ell^3, ..., \ell^{M-1})$ reflects all previously visited locations. History is limited to M periods
 - $x = (\ell, \omega, a)$ is state vector: visited locations, wage and utility info obtained there, age.
 - $w(\ell^0, \omega)$ is wage in the current location, given the wage and utility information ω .
 - $\triangleright \sum_{k=1}^K \alpha_k Y_k$ is the "amenity values" at current location
 - $ightharpoonup \alpha^H$ is the premium for being in "home" location
 - $\xi(\ell^0)$ is (individual?) location match
 - $ightharpoonup \Delta_{\tau}(x,j)$ is moving cost

November 4, 2019

Moving costs

- $\qquad \qquad \boldsymbol{\Delta}_{\tau}(\boldsymbol{x},j) = \left(\gamma_{0\tau} + \gamma_{1}D\left(\ell^{0},j\right) \gamma_{2}\mathbb{1}_{j \in \mathbb{A}\left(\ell^{0}\right)}\right. \\ \left. \gamma_{3}\mathbb{1}_{j = \ell^{1}} + \gamma_{4}\boldsymbol{a} \gamma_{5}\boldsymbol{n}_{j}\right)\mathbb{1}_{j \neq \ell^{0}}$
 - $ightharpoonup \gamma_{0\tau}$ is heterogenous, indexed by au
 - $ightharpoonup \gamma_1$ for distance, γ_2 for adjacency, γ_3 for returning to prev. location
 - $ightharpoonup \gamma_4$ for age
 - $ightharpoonup \gamma_5$ for the population size in destination

Value function

Workers choose destination j

$$V(x,\zeta) = \max_{j} (u(x,j) + \zeta_j + \beta \sum_{x'} p(x'|x,j) E_{\zeta} V(x',\zeta))$$

▶ If ζ_i ~ Type I EV, then

$$p(x,j) = \exp(\bar{\gamma} + u(x,j) + \beta \sum_{x'} p(x'|x,j) E_{\zeta} V(x',\zeta) - E_{\zeta} V(x,\zeta))$$

Transition probabilities

Workers can stay, return, or move to new location:

$$p\left(x'|x,j\right) = \begin{cases} 1, & \text{if } j = \ell^0, \tilde{x}' = \tilde{x}, a' = a+1\\ 1, & \text{if } j = \ell^1, \tilde{x}' = \left(\ell^1, \ell^0, x_v^1, x_v^0, x_\xi^1, x_\xi^0\right), a' = a+1\\ \frac{1}{n^2}, & \text{if } j \notin \left\{\ell^0, \ell^1\right\}, \tilde{x}' = \left(j, \ell^0, s_v, x_v^0, s_\xi, x_\xi^0\right)\\ & (1,1) \leq (s_v, s_\xi) \leq (n_v, n_\xi), a' = a+1\\ 0, & \text{otherwise.} \end{cases}$$

Why $\frac{1}{n^2}$? Because the support for v_{ij} and for ξ for have $n_v = n_{\xi} = n$ points.

November 4, 2019

- ▶ NLSY79, 432 people, aged 20+, 4274 person-years
- ▶ 124 Interstate moves (only 2.9% of total person years)
- Locations are States, Home state is state of residence at age 20
- $\blacktriangleright \mu_i$ from 1990 US Census (self-reported)

- They have to assume only one past wage is remembered, otherwise state space is too big
 - A very disappointing assumption, what kind of learning is it then?
- ightharpoonup Distribution of match effect v_{ij} is discritized, assumed symmetric and mean-zero
- ▶ n = 3, so $v_{ij} \in \{-\tau_v; 0, \tau_v\}$. τ_v is estimated
- "The location match component of preferences [ξ] is handled in similar way"
- ▶ n = 7 for the person fixed effect η_i
- ▶ n = 4 for $\sigma_{\varepsilon}(i)$, individual level variance for the Worker i wage, $\varepsilon(i) \sim N(0, \sigma_{\varepsilon}(i))$

- They have to assume only one past wage is remembered, otherwise state space is too big
 - What kind of learning is it then?
- Distribution of match effect v_{ij} is discritized, assumed symmetric and mean-zero
- $ightharpoonup n_{v}=3$, so $v_{ij}\in\{-\tau_{v};0,\tau_{v}\}.\ au_{v}$ is estimated
- "The location match component of preferences [ξ] is handled in similar way"
- $ightharpoonup n_{\eta} = 7$ for the person fixed effect η_i
- ▶ $n_{\varepsilon} = 4$ for $\sigma_{\varepsilon}(i)$, individual level variance for the Worker i wage, $\varepsilon(i) \sim N(0, \sigma_{\varepsilon}(i))$

- Everything is discritized at quartiles, so all possible realizations of $\omega^i = \{\omega^i_{\varepsilon}, \omega^i_n, \omega^i_{\varepsilon}, \omega^i_v(1), ... \omega^i_v(N_i)\}$ are equally likely.
- ▶ Ind. likelihood for wage is (recall $\varepsilon(i) \sim N(0, \sigma_{\varepsilon}(i))$:

$$\psi_{it}\left(\omega_{i},\theta_{\tau}\right) = \frac{1}{\sigma_{\varepsilon}\left(\omega_{\varepsilon}^{i}\right)}\phi\left(\frac{w_{it}-\mu_{\ell}^{0}(i,t)-G\left(X_{i},a_{it},\theta_{\tau}\right)-v\left(\omega_{v}^{i}\left(\kappa_{it}^{0}\right)\right)-\eta\left(\omega_{\eta}^{i}\right)}{\sigma_{\varepsilon}\left(\omega_{\varepsilon}^{i}\right)}\right)$$

► Prob of indiv. history is

$$L_{i}\left(\theta_{\tau}\right)\frac{1}{n_{\eta}n_{\varepsilon}n_{\xi}\left(n_{v}\right)^{N_{i}}}\times\sum_{\omega^{i}\in\Omega\left(N_{i}\right)}\left(\prod_{t=1}^{T_{i}}\psi_{it}\left(\omega^{i},\theta_{\tau}\right)\lambda_{it}\left(\omega^{i},\theta_{\tau}\right)\right)$$

$$\lambda_{it}\left(\omega^{i},\theta_{\tau}\right) = \rho_{h(i)}\left(\ell(i,t),\omega_{v}^{i}(\kappa_{it}^{0}),\omega_{v}^{i}(\kappa_{it}^{1}),\omega_{\xi}^{i}\left(\kappa_{it}^{0}\right),\omega_{\xi}^{i}(\kappa_{it}^{1}),a_{it},\ell^{0}(i,t+1),\theta_{\tau}\right)$$

Utility and cost								
Disutility of moving (γ_0)	4.790	0.565	4.514	0.523	4.864	0.601	4.851	0.604
Distance (γ_1) (1000 miles)	0.265	0.182	0.280	0.178	0.311	0.187	0.270	0.184
Adjacent location (γ_2)	0.808	0.214	0.787	0.211	0.773	0.220	0.804	0.216
Home premium (α^H)	0.331	0.041	0.267	0.031	0.332	0.047	0.337	0.045
Previous location (γ_3)	2.757	0.356	2.544	0.300	3.082	0.449	2.818	0.416
Age (γ_4)	0.055	0.020	0.062	0.019	0.060	0.020	0.054	0.020
Population (γ_5) (millions)	0.653	0.179	0.653	0.178	0.635	0.177	0.652	0.179
Stayer probability	0.510	0.078	0.520	0.079	0.495	0.087	0.508	0.082
Cooling (α_1) (1000 degree-days)	0.055	0.019	0.036	0.019	0.048	0.018	0.056	0.019
Income (α_0)	0.312	0.100	_		_		0.297	0.116
Location match preference (τ_{ε})	-		-		0.168	0.049	0.070	0.099
Wages								
Wage intercept	-5.165	0.244	-5.175	0.246	-5.175	0.246	-5.168	0.244
Time trend	-0.035	0.008	-0.033	0.008	-0.033	0.008	-0.035	0.008
Age effect (linear)	7.865	0.354	7.876	0.356	7.877	0.356	7.870	0.355
Age effect (quadratic)	-2.364	0.129	-2.381	0.130	-2.381	0.130	-2.367	0.129
Ability (AFQT)	0.014	0.065	0.015	0.066	0.014	0.066	0.014	0.065
Interaction (Age, AFQT)	0.147	0.040	0.152	0.040	0.152	0.040	0.147	0.040
Transient s.d. 1	0.217	0.007	0.218	0.007	0.218	0.007	0.217	0.007
Transient s.d. 2	0.375	0.015	0.375	0.015	0.375	0.015	0.375	0.015
Transient s.d. 3	0.546	0.017	0.547	0.017	0.547	0.017	0.546	0.017
Transient s.d. 4	1.306	0.028	1.307	0.028	1.307	0.028	1.306	0.028
Fixed effect 1	0.113	0.035	0.112	0.035	0.112	0.035	0.113	0.035
Fixed effect 2	0.298	0.035	0.296	0.035	0.296	0.035	0.298	0.035
Fixed effect 3	0.936	0.017	0.934	0.017	0.934	0.017	0.936	0.017
Wage match (τ_v)	0.384	0.017	0.387	0.018	0.387	0.018	0.384	0.018
Log likelihood	-4,214.880		-4,221.426		-4,218.800		-4,214.834	
Exclude income: $\chi^2(1)$			1	3.09		7.93		
Exclude match preference: $\chi^2(1)$		0.09		5.25				

 $\label{table III} \mbox{Wage Parameter Estimates (in 2010 dollars)}$

	AFQT Percentile							
	25	50	75					
Average wages								
Age 20 in 1979	25,827	27,522	29,21	16				
Age 20 in 1989	18,472	20,166	21,86	51				
Age 30 in 1989	40,360	42,850	45,340					
	Low	Middle		High				
Location match	-8,366	0		8,366				
Fixed effect support	-20,411 $-6,498$ $-2,454$	0	2,454 6,498	20,411				
State means	Low (WV) Rank 5 (OK)	Median (MO)	Rank 45 (RI)	High (MD)				
	12,698 14,530	16,978	19,276	22,229				