

PSI Percepción y Sistemas Inteligentes

Autocorrelation

#### ■ Introducción

- Mide el parecido que existe entre dos señales, como una función del retardo de tiempo aplicada a una de ellas.
- **Operación matemática**, muy parecida a la *convolución*, <sub>Convolution</sub> realizada entre dos secuencias. f
- Tipos:
  - Cross Correlación
  - Auto Correlación





Cross-correlation



http://en.wikipedia.org/wiki/File:Comparison\_convolution\_correlation.svgacultad de Ingeniería
Escuela de Ingeniería Eléctrica y Electrónica

Percepción y Sistemas Inteligentes

#### ■ Introducción ....

- Se aplica en distintas áreas de la ingeniería y la ciencia:
  - Reconocimiento de patrones,
  - Criptoanálisis,
  - Geología,
  - Análisis de partículas,
  - Aplicaciones radar/sonar
  - Comunicaciones digitales,











Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

# ■ Ejemplo Ilustrativo 1: Aplicación radar/ sonar

- Sea x(n) las muestras de una señal emitida y y(n) las muestras de la señal recibida.
- Si existe un blanco en el espacio explorado por el radar/sonar:
  - y(n) es una versión retardada de x(n), atenuada y con ruido aditivo w(n)

$$y(n) = \alpha x(n-D) + w(n)$$

donde: α es el factor de atenuación

D es el retardo de ida y vuelta.









Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica



## Ejemplo 1 .....

- **Problema:** determinar a partir de las secuencias x(n), y(n):
  - a) Si existe un blanco.
  - b) El retardo de tiempo D
  - c) La distancia al blanco.

#### **Solución:**

- Comparación visual prácticamente imposible debido al ruido.
- La correlación es un método para extraer la información solicitada.







## ■ Ejemplo Ilustrativo 2. Comunicaciones Digitales

- Sea  $x_0(n) \equiv "0"$  lógico y  $x_1(n) \equiv "1"$  lógico dos secuencias para  $0 \le n \le L 1$ .
  - L, indica el número de muestras en cada secuencia.
- La señal recibida por el receptor puede representarse como:



donde, w(n) es el ruido aditivo y otras interferencias propias de los sistemas de comunicación.





#### Percepción y Sistemas Inteligentes

## **■ Ejemplo Ilustrativo 2.**

### Comunicaciones Digitales

**Problema**: determinar si la señal contenida en y(n) es  $x_0(n)$  ó  $x_1(n)$ .

#### **Solución:**

- El receptor conoce las secuencias para el "0" y para el "1"
- Compara con la señal recibida para determinar a cuál de las dos se asemeja más.
- La comparación puede realizarse mediante la correlación.





"received" lags "sent by 0.13 seconds





#### **■ Definición:**

■ La **correlación cruzada** de dos secuencias reales de energías finitas x(n) e y(n) se **define** como la secuencia :

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n)y(n-l)$$
  $\delta$   $r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n+l)y(n)$   $l = 0, \pm 1, \pm 2, ...$ 

Donde:

l parámetro de desplazamiento en el tiempo,

xy subíndices que indican las señales que han sido correlacionadas.

El orden indica cual secuencia ha sido retardada con respecto a la otra.





#### **■** Definición ...

■ Al invertir los papeles de x(n) e y(n), se invierte el orden de los subíndices en la definición de la correlación:

$$r_{yx}(l) = \sum_{n=-\infty}^{\infty} y(n)x(n-l)$$
  $\delta$   $r_{yx}(l) = \sum_{n=-\infty}^{\infty} y(n+l)x(n)$   $l = 0, \pm 1, \pm 2,...$ 

#### Ejemplo

- Código de Matlab (CrossCorrelation.m)
- Visualización http://www.youtube.com/watch?v=Ma0YONjMZLI



#### **■** Definición ...

■ Comparando  $r_{xy}(l)$  y  $r_{yx}(l)$  se concluye que,

$$r_{xy}(l) = r_{yx}(-l)$$

por lo tanto,  $r_{xy}$  (l) es simplemente la **versión reflejada** de  $r_{yx}(l)$  respecto a l=0.

■ Lo anterior significa que  $r_{xy}(l)$  y  $r_{yx}(l)$  proporcionan la **misma** información con respecto a la similitud entre x(n) e y(n).



Determine la correlación cruzada entre:

$$x(n) = \{0, 2, -1, 3, 7, \underline{1}, 2, -3, 0\}$$
  
 $y(n) = \{0, 1, -1, 2, -2, \underline{4}, 1, -2, 5, 0\}$ 

Solución. Aplicando la definición,

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n)y(n-l)$$
  $l = 0, \pm 1, \pm 2,...$ 

Se tiene:

$$r_{xy}(l) = \{10, -9, 19, 36, -14, 33, 0, \underline{7}, 13, -18, 16, -7, 5, -3\}$$

Qué indica el valor máximo, el mínimo y el cero?









Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica



PSI Percepción y Sistemas Inteligentes

#### **■** Ejemplo 2.

Encontrar la cross-correlación  $r_{xy}(l)$  entre:

$$x(n) = u(n) y y(n) = 2^n u(-n)$$

#### **■** Solución

Utilizando la definición  $r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n) y(n-l)$ 

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} u(n) \ 2^{n-l}u(-(n-l))$$

■ Debido a que  $u(n) = 0 \quad \forall n < 0 \quad y \quad u(n) = 1 \quad \forall n \ge 0$ 

$$r_{xy}(l) = \sum_{n=0}^{\infty} 2^{n-l} u(-(n-l))$$





■ Solución ...

$$r_{xy}(l) = \sum_{n=0}^{\infty} 2^{n-l} u(-(n-l))$$

- Reemplazando variable m = -(n l)
  - $n = 0 \rightarrow m = l$
  - $n = \infty \rightarrow m = -\infty$
  - n = l m
- Se obtiene:

$$r_{xy}(l) = \sum_{m=1}^{-\infty} 2^{-m} u(m)$$





#### ■ Solución ...

- Se realiza la evaluación de  $r_{xy}(l)$  para l < 0 y  $l \ge 0$
- Para l < 0
  - Se tiene que m < 0
  - el escalón siempre es cero u(m) = 0
  - Por lo tanto,

$$r_{xy}(l)_{l<0} = \sum_{m=l}^{-\infty} 2^{-m} u(m) = 0$$



#### ■ Solución ...

■ Para  $l \ge 0$ 

$$r_{xy}(l)_{l\geq 0} = \sum_{m=l}^{-\infty} 2^{-m} u(m)$$

Se descompone la sumatoria en dos:

$$r_{xy}(l)_{l\geq 0} = \sum_{m=-1}^{-\infty} 2^{-m} u(m) + \sum_{m=0}^{l} 2^{-m} u(m)$$

• En la primera parte, dado que u(m) = 0

$$\sum_{m=-1}^{-\infty} 2^{-m} \ u(m) = 0$$





#### ■ Solución ...

■ Para  $l \ge 0$  ....

$$r_{xy}(l)_{l\geq 0} = 0 + \sum_{m=0}^{l} 2^{-m} u(m)$$

■ Dado que u(m) = 1 para los valores de l, se llega a:

$$r_{xy}(l)_{l\geq 0} = \sum_{m=0}^{l} \left(\frac{1}{2}\right)^m$$

■ De la serie  $\sum_{k=0}^{L} a^k = \frac{1-a^{L+1}}{1-a} \quad \forall \ a \neq 1$   $r_{xy}(l)_{l\geq 0} = \frac{1-(1/2)^{l+1}}{1-1/2} = (1/2)^{-1} - (1/2)^{l}$ 





- Solución ...
  - Finalmente,

$$r_{xy}(l) = \begin{cases} 2 - (2)^{-l} & l \ge 0 \\ 0 & l < 0 \end{cases}$$



PSI Percepción y Sistemas Inteligentes

#### **■** Ejemplo 3.

Encontrar la cross-correlación  $r_{xy}(l)$  entre:

$$x(n) = u(n) y y(n) = 2^n u(-n)$$

Pero utilizando la definición

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n+l) y(n)$$

#### **■** Solución

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} u(n+l) \ 2^n u(-n)$$





■ Solución...

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} u(n+l) \ 2^n u(-n)$$

Descomponiendo la suma, se llega a:

$$r_{xy}(l) = \sum_{n=-1}^{-\infty} u(n+l) \ 2^n u(-n) + \sum_{n=0}^{0} u(n+l) \ 2^n u(-n) + \sum_{n=1}^{\infty} u(n+l) \ 2^n u(-n)$$

$$r_{xy}(l) = r_{xy}(l)_{n<0} + r_{xy}(l)_{n=0} + r_{xy}(l)_{n>0}$$





#### ■ Solución...

■ El tercer sumando es cero debido a que siempre u(-n) = 0

$$r_{xy}(l)_{n>0} = \sum_{n=1}^{\infty} u(n+l) \ 2^n u(-n) = 0$$

■ El segundo sumando, solo incluye un término,

$$r_{xy}(l)_{n=0} = \sum_{n=0}^{0} u(n+l) \ 2^{n}u(-n) = u(0+l) \ 2^{0}u(-0) = u(l)$$





#### ■ Solución...

■ El *primer* sumando

$$r_{xy}(l)_{n<0} = \sum_{n=-1}^{-\infty} u(n+l) \ 2^n u(-n)$$

■ Se reduce debido a que u(-n) = 1 para n < 0,

$$r_{xy}(l) = \sum_{n=-1}^{\infty} u(n+l) \ 2^n$$

- Haciendo m = 1 + n + l,
  - n = m 1 l , n + l = m 1
  - $n = -1 \Rightarrow m = l$
  - $n = -\infty \Rightarrow m = -\infty$





#### ■ Solución...

Haciendo cambio de índice

$$r_{xy}(l)_{n<0} = \sum_{m=l}^{-\infty} u(m-1) 2^{m-1-l}$$

Reorganizando,

$$r_{xy}(l)_{n<0} = 2^{-(l+1)} \sum_{m=l}^{-\infty} 2^m \ u(m-1)$$

■ Al evaluar para l < 0, se tiene que u(m-1) = 0, luego:

$$r_{xy}(l)_{n<0, l<0} = 2^{-(l+1)} \sum_{m=l}^{-\infty} 2^m u(m-1) = 0$$





#### ■ Solución...

■ Al evaluar para  $l \ge 0$ ,

$$r_{xy}(l)_{n<0,l\geq 0} = 2^{-(l+1)} \sum_{m=l}^{-\infty} 2^m \ u(m-1)$$

Se obtiene,

$$r_{xy}(l)_{n<0,l\geq 0} = 2^{-(l+1)} \left[ \sum_{m=0}^{-\infty} 2^m \ u(m-1) + \sum_{m=1}^{l} 2^m \ u(m-1) \right]$$

■ Puesto que la primera sumatoria es cero debido a que u(m-1) = 0, se obtiene,

$$r_{xy}(l)_{n<0,l\geq 0} = 2^{-(l+1)} \sum_{m=1}^{l} 2^m$$





■ Solución...

$$r_{xy}(l)_{n<0,l\geq 0} = 2^{-(l+1)} \sum_{m=1}^{l} 2^m$$

Con base en la serie de potencia

$$\sum_{k=1}^{L} a^{k} = \frac{a - a^{L+1}}{1 - a} \quad \forall \ a \neq 1$$

Se llega a:

$$r_{xy}(l)_{n<0, l\geq 0} = 2^{-(l+1)} \quad \frac{2-2^{l+1}}{1-2} = 1-2^{-l}$$





#### ■ Solución...

La respuesta final se obtiene sumando los componentes

$$r_{xy}(l) = r_{xy}(l)_{n<0} + r_{xy}(l)_{n=0} + r_{xy}(l)_{n>0}$$

■ De donde se obtiene:

$$r_{xy}(l) = \begin{cases} 1 - (2)^{-l} + u(l) + 0 & l \ge 0 \\ 0 & l < 0 \end{cases}$$

La cual es equivalente a la del ejercicio anterior:

$$r_{xy}(l) = \begin{cases} 2 - (2)^{-l} & l \ge 0 \\ 0 & l < 0 \end{cases}$$







## Autocorrelación



#### **■** Definición

■ La **Auto Correlación** se define como la secuencia obtenida al aplicar la correlación cruzada a una misma secuencia x(n):

$$r_{xx}(l) = \sum_{n=-\infty}^{\infty} x(n) x(n-l), \qquad l = 0, \pm 1, \pm 2, ...$$

ó

$$r_{xx}(l) = \sum_{n=-\infty}^{\infty} x(n+l) x(n), \qquad l = 0, \pm 1, \pm 2, ...$$

Donde

l es el parámetro de desplazamiento en el tiempo,xx subíndices de las señales a correlacionar



## **Auto Correlación**



**Ejemplo 1.** Determine la autocorrelación de la secuencia,

$$x(n) = \{ 0, 2, -1, 3, 7, 1, 2, -3, 0 \}$$



Solución. Aplicando la definición,

$$r_{xx}(l) = \{0, -6, 7, -9, -2, 13, 19, \underline{77}, 19, 13, -2, -9, 7, -6, 0\}$$







### Propiedades

Algunas se obtienen analizando la **combinación lineal** de **dos secuencias** de energía finita x(n) e y(n):

$$s(n) = a x(n) + b y(n - l)$$

- Donde: a y b constantes y l desplazamiento temporal.
- La energía de la señal combinada está dada por:

• 
$$E_S = \sum_{n=-\infty}^{\infty} s^2(n) = \sum_{n=\infty}^{-\infty} [a x(n) + b y(n-l)]^2$$

• 
$$E_S = a^2 \sum_{n=-\infty}^{\infty} x^2(n) + 2ab \sum_{n=-\infty}^{\infty} x(n)y(n-l) + b^2 \sum_{n=-\infty}^{\infty} y^2(n-l)$$

• Recordando que  $r_{xx}(0) = E_x$  y  $r_{yy}(0) = E_y$ 





■ Suponiendo que  $b\neq 0$  y dividiendo por  $b^2$ , se llega a:

$$r_{xx}(0)\left(\frac{a}{b}\right)^2 + 2\left(\frac{a}{b}\right)r_{xy}(l) + r_{yy}(0) \ge 0$$

■ Considerando esta expresión una ecuación cuadrática de coeficientes r (l) de la forma:

$$Az^2 + Bz + C = 0$$
;  $con A = r_{xx}(0)$ ,  $B = 2r_{xy}(l)$ ;  $C = r_{yy}(0)$ 

Con discriminante de la solución no positivo:

$$B^2 - 4AC \le 0 \rightarrow 4[r_{xy}(l)]^2 - 4r_{xx}(0)r_{yy}(0) \le 0$$

■ de donde, se establece el límite:  $r_{xy}(l) \le \sqrt{r_{xx}(0) r_{yy}(0)}$ 





#### Por lo tanto:

- Cross-relación:
  - Límite de los valores:  $\left| r_{xy}(l) \right| \le \sqrt{r_{xx}(0)r_{yy}(0)} = \sqrt{E_x E_y}$
  - Las energías de las señales constituyen la cota superior.
- Para la autocorrelación:
  - Límite de los valores:  $|r_{xx}(l)| \le r_{xx}(0) = E_x$
  - Alcanza su máximo para el retardo cero.



#### **■** Conclusiones

- El **escalado** carece de importancia en la correlación.
- La *normalización* genera secuencias en el rango [-1, 1]:

$$\rho r_{xx}(l) = \frac{r_{xx}(l)}{r_{xx}(0)} \qquad \rho r_{xy}(l) = \frac{r_{xy}(l)}{\sqrt{r_{xx}(0)r_{yy}(0)}}$$

La correlación satisface la propiedad:

$$r_{xy}(l) = r_{yx}(-l)$$
  $y$   $r_{xx}(l) = r_{xx}(-l)$ 

es decir, es una función par, y es suficiente calcular r(l) para  $l \ge 0$ .



## Ejemplo



Problema: Calcular la autocorrelación de la señal:

$$x(n) = a^n u(n), \qquad 0 < a < 1$$

- **Solución**. Dado que x(n) es de duración infinita, su autocorrelación también es de duración infinita. **Se distinguen dos casos**:
  - $l \ge 0$

$$r_{xx}(l) = \sum_{n=0}^{\infty} x(n)x(n-l) = \sum_{n=l}^{\infty} a^n a^{n-l} = a^{-l} \sum_{n=l}^{\infty} (a^2)^n \Rightarrow r_{xx}(l) = \frac{1}{1-a^2} a^l$$

Recordar que: 
$$\sum_{k=l}^{\infty} A^k = \sum_{k=0}^{\infty} A^k - \sum_{k=0}^{l-1} A^k$$
  
donde,  $\sum_{k=0}^{l-1} A^k = \frac{1-A^l}{1-A}$ ,  $\sum_{k=0}^{\infty} A^k = \frac{1}{1-A} \quad \forall |A| < 1$ 



## Ejemplo...



Percepción y Sistemas Inteligentes

- Solución. ...
  - $ightharpoonup l \leq 0$

$$r_{xx}(l) = \sum_{n=0}^{\infty} x(n)x(n-l) = a^{-l} \sum_{n=0}^{\infty} (a^2)^n \implies r_{xx}(l) = \frac{1}{1-a^2} a^{-l}$$

► Correlación Total: Puesto que l es negativo,  $a^{-l} = a^{|l|}$ , las dos expresiones obtenidas se pueden combinar en una sola:

$$r_{xx}(l) = \frac{1}{1 - a^2} a^{|l|}$$
 ,  $\rho_{xx}(l) = \frac{r_{xx}(l)}{r_{xx}(0)} = a^{|l|}$  ,  $-\infty < l < \infty$ 



## Ejemplo...

■ Solución. ...

Percepción y Sistemas Inteligentes

► Gráficamente









Cálculo de la autocorrelación de x(n)=a<sup>2</sup>



## Correlación V.S. Convolución



#### Observación

- Las **similitudes** entre el cálculo de la *cross-correlación* y la *convolución* de dos secuencias **son evidentes**.
- La **convolución** de x(n) con y(-n) es igual a la **correlación** cruzada  $r_{xy}(l)$ ; esto es,

$$r_{xy}(l) = x(l) * y(-l)$$

Cuando y(n)=x(n), se obtiene la *auto-correlación* como,

$$r_{xx}(l) = x(l) * x(-l)$$





### **■** Ejemplo

- Realizar un programa en Matlab para calcular y graficar la correlación entre dos señales.
- Probar el programa para los siguientes casos:

• 
$$x(n) = \{\underline{1} \ 2 \ 3 \ 4 \ 5 \ 4 \ 3 \ 2 \ 1\}, \ y(n) = \{\underline{-1} \ -2 \ -3 \ -4 \ -5 \ -$$



#### ■ Solución a,b

(Prueba1correlacion.m)

```
clc; clear all; close all;
% Señales a correlacionar
x=[1 2 3 4 5 4 3 2 1];
nx=0:length(x)-1;
Ex=sum(x.^2); %Energía de x(n)=rxx(0)
v=-1*[1 2 3 4 5 4 3 2 1];
%y = [1 \ 2 \ 3 \ 4 \ 5 \ -5 \ -4 \ -3 \ -2 \ -1];
ny=0:length(y)-1;
Ey=sum(y.^2); %Energía de y(n)=ryy(0)
% Calcular Correlación
N=\max(length(x), length(y));
r = xcorr(x, y);
l=(-N+1):(N-1); % rango de valores de l
ro=r/sqrt(Ex*Ey); %Normalizar la correlación
% Graficación
subplot(2,2,1); stem(nx,x); title('x(n)'); xlabel('n'); grid on;
subplot(2,2,2); stem(ny,y); title('y(n)'); xlabel('n'); grid on;
[rmax,lmax]=max(ro);
subplot(2,2,3:4); stem(1,ro); title(['ro(1), lmax= 'num2str(lmax-N)]);
xlabel('l');grid on;
```





### ■ Solución a,b

■ (Prueba1correlacion.m)









#### ■ Solución c

(Prueba2correlacion.m)

```
clc; clear all; close all;
% Señal y(n)
y=0.1*[1 2 3 4 5 4 3 2 1];
Ly=length(y);
Ey=sum(y.^2); %Energía de y(n)=ryy(0)
% Generación de señal x(n)
A1=3.0; A2=2.0; % Amplitudes de las cosenoidales
F1=30; F2=60; % Frecuencias de las cosenoidales
Fs=600; % Frecuencia de muestreo
NT=Fs/min(F1,F2); %Periodo de la señal seno
n=0:5*NT-1; %Instantes de tiempo a calcular
xx=A1*sin(2*pi*F1*n/Fs)+A2*cos((2*pi*F2*n/Fs));
Lx = length(xx);
%Ubicación aleatoria
ind = randi(Lx, 1, 1);
while (ind<Ly || ind> (Lx-Ly))
    ind = randi(Lx, 1, 1);
end
```





#### ■ Solución c

#### (Prueba2correlacion.m)

```
x=xx; %copiar señal
%Adicionar señal
x (ind: ind+Ly-1) = x (ind: ind+Ly-1) + y;
Ex=sum(x.^2); %Energía de x(n)=rxx(0)
% Calcular Correlación
N=\max(length(x), length(y));
l=(-N+1):(N-1); % Intervalo de l
r = xcorr(x, y);
ro=r/sqrt(Ex*Ey); % Normalizar correlación
subplot(2,2,1); stem(n,xx); title('xx(n)'); xlabel('n'); grid on;
subplot(2,2,2); stem(n,x); title(['x(n) con Adición desde n=' num2str(ind-1)]);
xlabel('n');grid on;
subplot(2,2,3); stem(y); title('y(n)'); xlabel('n'); grid on;
[rmax,lmax]=max(ro);
subplot(2,2,4); stem(1, ro); title(['ro(1), lmax=' num2str(lmax-N)]);
xlabel('l');grid on;
```









# Correlación de Señales Periódicas



#### **■** Definición:

▶ Sean x(n) e y(n) dos **señales de potencia.** Su correlación cruzada y autocorrelación se definen como:

$$r_{xy}(l) = \lim_{M \to \infty} \frac{1}{2M + 1} \sum_{n = -M}^{M} x(n) y(n - l) \quad y \quad r_{xx}(l) = \lim_{M \to \infty} \frac{1}{2M + 1} \sum_{n = -M}^{M} x(n) x(n - l)$$

- ▶ Si x(n) e y(n) son dos secuencias **periódicas** de periodo **N**:
  - los promedios sobre un **intervalo infinito** son iguales a los promedios sobre **un periodo.**

## Correlación de Señales Periódicas



#### **■** Definición...

► Las expresiones anteriores se reducen a:

$$r_{xy}(l) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) y(n-l) \quad y \quad r_{xx}(l) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) x(n-l)$$

donde, el factor 1/N puede considerarse un factor de escala.

- ▶ Lo que permite calcular la correlación con un solo periodo.
- ► Esta característica es de gran utilidad práctica.

# Correlación Señales Periódicas



### Aplicación Práctica

- La correlación se emplea para determinar periodicidades en señales físicas afectadas por interferencias aleatorias.
- Considérese la secuencia y(n) = x(n) + w(n), donde :
  - x(n) secuencia periódica de periodo desconocido N
  - w(n) interferencia aditiva aleatoria
- Supóngase que se observan M muestras de y(n),
  - donde  $0 \le n \le M 1$  y M >> N.
- Por razones prácticas se supone que y(n) = 0 para n < 0 y  $n \ge M$ .



# Correlación Señales Periódicas



### ■ Aplicación Práctica...

■ Con las condiciones anteriores, la autocorrelación de y(n), normalizada en 1/M, queda determinada por:

$$r_{yy}(l) = \frac{1}{M} \sum_{n=0}^{M-1} y(n) y(n-l) = \frac{1}{M} \sum_{n=0}^{M-1} [x(n) + w(n)] [x(n-l) + w(n-l)]$$

$$r_{yy}(l) = \frac{1}{M} \sum_{n=0}^{M-1} x(n)x(n-l) + \frac{1}{M} \sum_{n=0}^{M-1} \left[ x(n)w(n-l) + w(n)x(n-l) \right] + \frac{1}{M} \sum_{n=0}^{M-1} w(n)w(n-l)$$

$$r_{yy}(l) = r_{xx}(l) + r_{xw}(l) + r_{wx}(l) + r_{ww}(l)$$



# Correlación de Señales Periódicas



$$r_{yy}(l) = r_{xx}(l) + r_{xw}(l) + r_{wx}(l) + r_{ww}(l)$$

- $\mathbf{r}_{\mathbf{x} \mathbf{x}} (l)$ 
  - La **autocorrelación** de x(n) es **periódica** puesto que x(n) es periódica, y presentará picos en l=0, N, 2N,...
  - La **amplitud** de los picos de la autocorrelación **disminuye** a medida que l tiende a M. Por lo tanto hay que evitar calcular  $r_{x x}(l)$  para valores l > M/2.
- $\mathbf{r}_{xw}(l) \mathbf{y} \mathbf{r}_{wx}(l)$ 
  - La **correlación** entre x(n) y w(n) debe ser **muy pequeña** puesto que las dos señales **no están relacionadas** en absoluto.



# Correlación de Señales Periódicas



$$r_{yy}(l) = r_{xx}(l) + r_{xw}(l) + r_{wx}(l) + r_{ww}(l)$$

- $\mathbf{r}_{ww}(l)$ 
  - La **autocorrelación** de w(n) presentará un pico en l=0, pero dada su naturaleza aleatoria se supone que  $\mathbf{r}_{ww}(l)$  tenderá rápidamente **hacia cero**.

#### **■** Conclusión:

- ▶ Se espera que sólo  $\mathbf{r}_{xx}(l)$  presente picos considerables para l > 0.
- Es posible detectar señales periódicas x(n) inmersas en la interferencia w(n) e identificar su periodo.

# **Ejemplo**



#### ■ Problema:

Determinar la **periodicidad** de las **manchas solares** (**sunspots**) a partir de la **tabla d**e Wölfer.

#### Introducción

■ En 1825 el farmacéutico alemán Heinrich Samuel Schwabe, descubrió las manchas solares.







#### PEU Percepción y Sistemas Inteligentes

#### Introducción...

Las manchas solares son causadas por disturbios en el campo magnético del Sol que emana hacia la fotosfera (parte visible 'superficie'). de la

#### Video Sol.mpg

(http://sohowww.nascom.nasa.gov/gallery/Movies/sunspots.html)

Los potentes campos magnéticos cerca de las manchas solares producen regiones activas que frecuentemente generan destellos solares y eyecciones coronal conocidas de masa como, "tormentas solares".









#### ■ Introducción...

- Las tormentas solares pueden dirigirse a la Tierra. Estas emiten grandes nubes cargadas de partículas. reconsm.mpg

  (http://sohowww.nascom.nasa.gov/gallery/Movies/animations.html)
  - Las partículas interactúan con el campo magnético terrestre y crean tormentas geomagnéticas
  - Representan riesgos para astronautas y naves espaciales en órbita, así como interferencia en las redes eléctricas y de telecomunicaciones en el tierra.





# Ejemplo

#### ■ Solución

- ▶ Usar la tabla de Wölfer elaborada para 100 años entre 1770 y 1869.
- Seleccionar  $0 \le l \le 20$ , donde cada valor de l corresponde a un año.





| Año  | Manchas | Año  | Manchas | Año  | Manchas | Año  | Manchas |
|------|---------|------|---------|------|---------|------|---------|
| 1770 | 101     | 1795 | 21      | 1820 | 16      | 1845 | 40      |
| 1771 | 82      | 1796 | 16      | 1821 | 7       | 1846 | 62      |
| 1772 | 66      | 1797 | 6       | 1822 | 4       | 1847 | 98      |
| 1773 | 35      | 1798 | 4       | 1823 | 2       | 1848 | 124     |
| 1774 | 31      | 1799 | 7       | 1824 | 8       | 1849 | 96      |
| 1775 | 7       | 1800 | 14      | 1825 | 17      | 1850 | 66      |
| 1776 | 20      | 1801 | 34      | 1826 | 36      | 1851 | 64      |
| 1777 | 92      | 1802 | 45      | 1827 | 50      | 1852 | 54      |
| 1778 | 154     | 1803 | 43      | 1828 | 62      | 1853 | 39      |
| 1779 | 125     | 1804 | 48      | 1829 | 67      | 1854 | 21      |
| 1780 | 85      | 1805 | 42      | 1830 | 71      | 1855 | 7       |
| 1781 | 68      | 1806 | 28      | 1831 | 48      | 1856 | 4       |
| 1782 | 38      | 1807 | 10      | 1832 | 28      | 1857 | 23      |
| 1783 | 23      | 1808 | 8       | 1833 | 8       | 1858 | 55      |
| 1784 | 10      | 1809 | 2       | 1834 | 13      | 1859 | 94      |
| 1785 | 24      | 1810 | 0       | 1835 | 57      | 1860 | 96      |
| 1786 | 83      | 1811 | 1       | 1836 | 122     | 1861 | 77      |
| 1787 | 132     | 1812 | 5       | 1837 | 138     | 1862 | 59      |
| 1788 | 131     | 1813 | 12      | 1838 | 103     | 1863 | 44      |
| 1789 | 118     | 1814 | 14      | 1839 | 86      | 1864 | 47      |
| 1790 | 90      | 1815 | 35      | 1840 | 63      | 1865 | 30      |
| 1791 | 67      | 1816 | 46      | 1841 | 37      | 1866 | 16      |
| 1792 | 60      | 1817 | 41      | 1842 | 24      | 1867 | 7       |
| 1793 | 47      | 1818 | 30      | 1843 | 11      | 1868 | 37      |
| 1794 | 41      | 1819 | 24      | 1844 | 15      | 1869 | 74      |



Facultad de Ingeniería

Escuela de Ingeniería Eléctrica y Electrónica

# Ejemplo ...











Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica



### **■ Ejemplo Matlab**

- Realizar un programa que realice las siguientes actividades:
  - Genere una señal senoidal afectada con ruido gaussiano aleatorio
  - El nivel de ruido debe expresarse como SNR
  - Calcular el periodo de la señal inmersa en ruido mediante la detección de dos picos consecutivos en la correlación.
  - Visualizar la señal sin ruido, con ruido y la autocorrelación.





#### ■ Solución (PeriodicidadCorrelacion.m)

```
clc; clear all; close all;
% Generación de señal x(n) con ruido
A=3.0; F=30; % Amplitud y Frecuencia de la señal
Fs=600; % Frecuencia de muestreo
NT=Fs/F; %Periodo de la señal seno
n=0:5*NT-1; %Instantes de tiempo a calcular
x1=A*sin(2*pi*F*n/Fs);
RSN=rand(1); %Relación señal ruido en dB
x= awqn(x1,RSN, 'measured'); %adicionar ruido blanco
Ex=sum(x.^2); % Energía de x(n)
% Calcular AutoCorrelación
N=length(x); l=(-N+1):(N-1); % Intervalo de l
r=xcorr(x,x);
ro=r/Ex; % Normalizar correlación
% Obtener media señal de correlación y suprimir valores negativos
y=ro(N:2*N-1);
[pks, locs1] = find(y<0);
y(locs1)=0; y=[zeros(1,3) y]; %Inclusión de ceros para detectar primer pico
% Encontrar picos y determinar periodo
[pks,locs] = findpeaks(y, 'SortStr', 'descend');
Nest=locs(2)-locs(1);
```





#### ■ Solución (PeriodicidadCorrelacion.m) ...

```
% Visualizar
stem([0:N-1],y(4:N+3)); figure;

subplot(2,2,1); stem(n,x1);title(['x1(n) Señal sin Ruido. Periodo=' num2str(NT)]);
xlabel('n');grid on;
subplot(2,2,2); stem(n,x);title(['x(n) Señal con Ruido: RSN=' num2str(RSN)] );
xlabel('n');grid on;
subplot(2,2,3:4); stem(l, ro);title(['ro(l), Periodo estimado= ' num2str(Nest)]);
xlabel('l');grid on;
```





#### Solución





Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

# **Ejemplo**



Percepción y Sistemas Inteligentes

#### Observaciones

- ➤ Sólo en 1913, se presentaron menos 311 días sin manchas solares.
- ► En 2009 han caído aún más: Al 31 de marzo no ha habido manchas solares en 78 de los 90 días del año (87 por ciento).









#### Observaciones

- En 2001 ocurrió el último máximo solar y el mínimo en el 2006.
- Se esperaba un máximo de manchas entre el 2012 y 2013.

#### **Sunspot Number Progression**





# Ejemplo ...











http://sohowww.nascom.nasa.gov/data/realtime-images.html





#### **■** Introducción:

Al **aplicar** la señal x(n), con autocorrelación  $r_{xx}(l)$  conocida, a la entrada de un **sistema** con respuesta impulsional h(n), se obtiene:



- ► Se encuentran relaciones entre las correlaciones de x(n), y(n) y h(n) así como con la energía,
- Estas relaciones son de utilidad en el análisis de sistemas LTI.



La cross-correlación  $r_{yx}(l)$  entre la señal de entrada y salida es:

$$r_{yx}(l) = y(l) * x(-l) = h(l) * [x(l) * x(-l)] = h(l) * r_{xx}(l)$$



Lo que indica que se puede considerar a  $r_{yx}$  (*l*) como la salida del sistema LTI cuando la entrada es  $r_{xx}$  (*l*).





La Auto-correlación  $r_{yy}(l)$  de la señal de salida es:

$$r_{yy}(l) = y(l) * y(-l) = [h(l) * x(l)] * [h(-l) * x(-l)] = r_{hh}(l) * r_{xx}(l)$$



La **auto-correlación**  $r_{hh}(l)$  de la repuesta impulsional h(n) **existe si** el sistema es **estable**.





# ■ Correlación – Energía/Potencia

- La **estabilidad** asegura que si la **entrada** es una señal de **energía** (potencia) la **salida** también es una señal de **energía** (potencia).
- ► Evaluando la expresión de **auto-correlación**  $\mathbf{r}_{yy}(l)$  en l=0, se tiene:

$$r_{yy}(0) = E_y = \sum_{k=-\infty}^{\infty} r_{hh}(k) \ r_{xx}(k)$$

la **energía** (potencia) de la **señal de salida** en términos de las **autocorrelaciones** de h(n) y x(n).

