Lecture 11 Database normalization

Subject Lecturer: Kevin K.F. YUEN, PhD.

Acknowledgement: Slides were offered from Prof. Ken Yiu.

Slides content modified from Database Systems Concepts

Some parts might be revised and indicated.

Outline

Motivation

 Concepts: functional dependency, closure, cover

Properties of normalization

Normal forms: BCNF vs. 3NF

First Normal Form

An attribute is atomic if it cannot be divided into parts
Examples of non-atomic attributes

- Set of names, composite attributes
- Course code (CS101) that can be divided into "CS" and "101"
 - → programmer may extract "CS" to find the department
 - → bad idea: encode data in program rather than in DBMS
- Drawback of non-atomic attributes
 - Complicated to store them
 - Redundant storage of data → may cause data inconsistency
- In this lecture, we assume all attributes are atomic, i.e., each relation schema is in **first normal form**

Example Application: University Information Management System

- What if we use one (large) table only?
- Problem: redundant information

		staff name staff salary		y de	ept. location	dept. budget	
200	ID	name	salary	dept_name	building	budget	
	22222	Einstein	95000	Physics	Watson	70000	
	12121	Wu	90000	Finance	Painter	120000	
	32343	El Said	60000	History	Painter	50000	
	45565	Katz	75000	Comp. Sci.	Taylor	100000	
	98345	Kim	80000	Elec. Eng.	Taylor	85000	
	76766	Crick	72000	Biology	Watson	90000	L
	10101	Srinivasan	65000	Comp. Sci.	Taylor	100000	
	58583	Califieri	62000	History	Painter	50000	
	83821	Brandt	92000	Comp. Sci.	Taylor	100000	
	15151	Mozart	40000	Music	Packard	80000	
	33456	Gold	87000	Physics	Watson	70000	
	76543	Singh	80000	Finance	Painter	120000	

What if we use many (small) tables?

Example of Lossless-Join Decomposition

No information lost

• E.g., decompose R = (A, B, C) into $R_1 = (A, B)$ and $R_2 = (B, C)$

 $\Pi_{A,B}(r)$ $A \mid B$ $B \mid C$ $x \mid 1$ $y \mid 2$ $1 \mid A$ $2 \mid B$

decompose

 $\prod_{A,B}(r)\bowtie\prod_{B,C}(r)$

A	В	C
X	1	A
y	2	В

How to design a good schema?

- \bullet **Decide** whether a particular relation R is in "good" form
 - ♦ E.g., BCNF, 3NF
- If a relation R is not in "good" form, decompose it into a set of relations $\{R_1, R_2, ..., R_n\}$ such that
 - each relation is in good form
 - the decomposition is a lossless-join decomposition
- Our theory is based functional dependencies

Outline

Motivation

 Concepts: functional dependency, closure, cover

Properties of normalization

Normal forms: BCNF vs. 3NF

Functional dependency: $\alpha \rightarrow \beta$ generalize the concept of key

- \bullet $\alpha \to \beta$ is like a rule: the values of attributes in α determines uniquely the values of attributes in β
- \bullet Example: consider this instance of relation r(A,B)
 - $A \rightarrow B$ doesn't hold on r
 - $*B \rightarrow A \text{ holds on } r$

* Definition: Given a relation schema R, the functional dependency $\alpha \to \beta$ holds on R means that:

for any legal relation r(R), whenever any two tuples t_1 and t_2 of r agree on attributes in α , they also agree on attributes in β . That is,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

Express the concept of key by $\alpha \rightarrow \beta$

- \bullet *K* is a superkey for relation schema *R* if and only if $K \to R$
- \bullet K is a candidate key for R if and only if
 - * $K \rightarrow R$, and
 - \diamond there exists no $\alpha \subset K$ such that $\alpha \to R$
- Functional dependencies allow us to express constraints that cannot be expressed using superkeys.

Consider the schema:

```
inst_dept (ID, name, salary, dept_name, building, budget )
```

We expect these functional dependencies to hold:

and $ID \rightarrow building$

but would not expect the following to hold:

$$dept_name \rightarrow salary$$

Use of Functional Dependencies

- We use functional dependencies to:
 - * **test a relation** r to see if it is legal under a given set \mathcal{F} of functional dependencies
 - If yes, then we say that:

r satisfies ${\cal F}$

- specify constraints on the set of legal relations
 - We say that \mathcal{F} holds on R if all legal relations on R satisfy \mathcal{F}
- Note: we ignore a functional dependency if it cannot hold on all legal instances
 - E.g., an instance of instructor may satisfy, by chance,

 $name \rightarrow ID$

but we should **ignore** this functional dependency

Functional Dependencies (Cont.)

- A functional dependency is trivial if it is satisfied by all instances of a relation

 - Example:
 - ID, $name \rightarrow ID$
 - \bullet name \rightarrow name

Closure of Functional Dependencies

Armstrong's axioms

- \bullet if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- \bullet if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- \bullet if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$ (transitivity)

(augmentation)

Example:

 \bullet given $A \to B$ and $B \to C$, we obtain: $A \rightarrow C$

- The **closure** of \mathcal{F} , denoted by \mathcal{F}^+
 - \diamond The set of all functional dependencies implied by a set \mathcal{F} of functional dependencies
 - We compute \mathcal{F}^+ by repeatedly applying Armstrong's axioms

Example

$$R = (A, B, C, G, H, I)$$

$$\mathcal{F} = \{ A \to B \\ A \to C \\ CG \to H \\ CG \to I \\ B \to H \}$$

<mark>F+ c</mark>ontains:

- $A \rightarrow H$
 - \bullet by transitivity from $A \to B$ and $B \to H$
- $AG \rightarrow I$
 - by augmenting $A \to C$ with G, to get $AG \to CG$ and then transitivity with $CG \to I$
- \bullet $CG \rightarrow HI$
 - ♦ by augmenting $CG \rightarrow I$ to infer $CG \rightarrow CGI$, and augmenting of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity
- \diamond ... \rightarrow ...

We have a systematic way to compute \mathcal{F}^+ (see page 18)

until you cannot find a new functional dependency

Closure of Functional Dependencies (Cont.)

- Additional short-cut rules:
 - ♦ If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds (union)
 - ⋄ If α → β γ holds, then α → β holds and α → γ holds (decomposition)
 - ⋄ If α → β holds and γ β → δ holds, then α γ → δ holds (pseudotransitivity)

The above rules can be derived from Armstrong's axioms

Attribute Set Closure

- \bullet Let α be a set of attributes
- * The *closure* of α under \mathcal{F} (denoted by α^+) is the set of attributes that are determined by α under \mathcal{F}
- Algorithm to compute α^+ :

```
result := \alpha

while (result has changed) do

for each \beta \rightarrow \gamma in \mathcal{F} do

if \beta \subseteq result then

result := result \cup \gamma
```


Example on α^+

R = (A, B, C, G, H, I)

$$\mathcal{F} = \{A \to B \\ A \to C \\ CG \to H \\ CG \to I \\ B \to H\}$$

 $(A \rightarrow C \text{ and } A \rightarrow B)$

- \diamond $(AG)^+$
 - 1. It contains AG
 - 2. It contains *ABCG*
 - 3. It contains ABCGH $(CG \rightarrow H)$
 - 4. It contains ABCGHI $(CG \rightarrow I)$

Therefore, $(AG)^+ = ABCGHI$

- \bullet Is AG a candidate key?
 - Is AG a super key?
 - \Box Does (AG)⁺ contain R?
 - Is any subset of AG a superkey?
 - \Box Does (A)+ contain R?
 - \Box Does (G)+ contain R?

The above figure is for reference only. In general, it can be complicated visualize \mathcal{F} by using a figure.

Uses of Attribute Closure

- \bullet How to test if α is a superkey?
 - \diamond Compute α^+ , then check if α^+ contains all attributes of R
- How to test if a functional dependency $\alpha \rightarrow \beta$ holds?
 - \diamond (in other words, we want to check whether $\alpha \to \beta$ is in \mathcal{F}^+)
 - \diamond Compute α^+ by using attribute closure, and then check if α^+ contains β
- How to compute \mathcal{F}^+ (i.e., the closure of \mathcal{F})?
 - ♦ for each γ ⊆ R
 find the closure γ⁺
 for each S ⊆ γ⁺
 output a functional dependency γ → S

Example on finding all candidate keys

$$R = (A, B, C, G, H, I)$$

$$\mathcal{F} = \{A \to B \\ A \to C \\ CG \to H \\ CG \to I \\ B \to H\}$$

- Size-3 attribute sets except supersets of candidate keys
 - $(ABC)^{+}=ABCH$
 - *(ABG)*⁺
 - $(ABH)^+ = ABCH$
 - $(ABI)^+ = ABCHI$
 - $(ACH)^{+}=ABCH$
 - *****

Size-2 attribute sets

Size-1 attribute sets

- $A^{+}=ABCH$
- $B^{+}=BH$
- \diamond $C^+ = C$
- \diamond $G^+=G$
- \bullet $H^+=H$
- \diamond $I^{+}=I$

 $\rightarrow \otimes (AC)^{+} = ABCH$

- $\Rightarrow (AG)^+ = ABCGHI$
 - Candidate key!
 - $(AH)^+ = ABCH$
 - $(AI)^{+}=ABCHI$
 - $(BC)^+=BCH$

Example on finding \mathcal{F}^+ (the closure of \mathcal{F})

$$R = (A, B, C, G, H, I)$$

$$\mathcal{F} = \{A \to B \\ A \to C \\ CG \to H \\ CG \to I \\ B \to H\}$$

Size-3 attribute sets

- \wedge ABC \rightarrow ABCH
 - *• ABC* → ...
 - **•**
- \diamond ABG \rightarrow ABCGHI
 - *****
- \diamond ABH \rightarrow ABCH
 - *****
- \diamond ABI \rightarrow ABCHI
 -
- \diamond ACH \rightarrow ABCH
 -
-

Size-1 attribute sets

- \diamond $A \rightarrow ABCH$
 - $\bullet A \rightarrow ABC$
 - $\bullet A \rightarrow ABH$
 - $\bullet A \rightarrow ACH$
 - $\bullet A \rightarrow BCH$
 - $A \rightarrow AB$
 - $A \rightarrow AC$
 - *****

Size-2 attribute sets

- \wedge $AB \rightarrow ABCH$
 - *AB*→...
 - **•**
- \wedge AC \rightarrow ABCH
 - *****
- $AG \rightarrow ABCGHI$
 - *****
- **•**

Canonical Cover

- A set of functional dependencies may have redundant dependencies that can be inferred from the others
 - \bullet Example #1: $A \to C$ is redundant in:

$$\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$$

Example #2: parts of a functional dependency redundant

E.g., RHS:
$$\{A \to B, B \to C, A \to CD\}$$
 can be simplified to $\{A \to B, B \to C, A \to D\}$

E.g., LHS:
$$\{A \to B, B \to C, AC \to D\}$$
 can be simplified to $\{A \to B, B \to C, A \to D\}$

- \bullet A canonical cover of \mathcal{F} is a "minimal" set of functional dependencies equivalent to \mathcal{F}
 - no redundant (parts of) dependencies

Testing if an Attribute is Extraneous

- \bullet Consider a functional dependency $α \to β$ in a given set \mathcal{F} of functional dependencies
- \bullet To test if attribute A is extraneous in α
 - $lue{}$ compute $(\alpha A)^+$ using dependencies in \mathcal{F}
 - \Box if $(\alpha A)^+$ contains β , then A is extraneous in α
- Example: Given $\mathcal{F} = \{A \to C, AB \to C\}$
 - \bullet Is B is extraneous in $AB \to C$?

Compute
$$(AB - B)^+ = A^+$$

$$=AC$$

♦ Yes, because the above result contains C

Testing if an Attribute is Extraneous

- \bullet Consider a functional dependency $α \to β$ in a given set \mathcal{F} of functional dependencies
- \bullet To test if attribute $B \in \beta$ is extraneous in β

- compute α^+ using only dependencies in $\mathcal{F}' = (\mathcal{F} \{\alpha \to \beta\}) \cup \{\alpha \to (\beta B)\}$
- \Box if α^+ contains B, then B is extraneous in β
- Example: Given $\mathcal{F} = \{A \to C, AB \to CD\}$
 - ♦ Is C extraneous in $AB \to CD$?

 Use only dependencies in $\mathcal{F}' = \{A \to C, AB \to D\}$ Compute $(AB)^+ = ABCD$
 - \diamond Yes, because the above result contains C

Canonical Cover

- ightharpoonup A canonical cover for ${\mathcal F}$ is a set of dependencies ${\mathcal F_c}$ such that
 - \ast \mathcal{F} implies all dependencies in \mathcal{F}_c , and
 - \bullet \mathcal{F}_c implies all dependencies in \mathcal{F} , and
 - \bullet No functional dependency in \mathcal{F}_c contains an extraneous attribute, and
 - \bullet Each left side of functional dependency in \mathcal{F}_c is unique
- \bullet To compute a canonical cover for \mathcal{F} :

repeat

Use the union rule to replace any dependencies in ${\mathcal F}$

$$\alpha_1 \rightarrow \beta_1$$
 and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1 \beta_2$

Find a functional dependency $\alpha \rightarrow \beta$ with an extraneous attribute either in α or in β

If an extraneous attribute is found, delete it from $\alpha \to \beta$ until $\mathcal F$ does not change

Example

* R = (A, B, C) $\mathcal{F} = \{A \to BC, B \to C \}$ $A \to B, AB \to C\}$

- \bullet Combine $A \to BC$ and $A \to B$ into $A \to BC$
 - \bullet \mathcal{F} becomes $\{A \to BC, B \to C, AB \to C\}$ now
- A is extraneous in $AB \rightarrow C$
 - \diamond Check if the result of deleting A from $AB \to C$ is implied by other dependencies
 - Yes: in fact, $B \rightarrow C$ is already present!
 - \bullet \mathcal{F} becomes $\{A \to BC, B \to C\}$ now
- \diamond C is extraneous in $A \to BC$
 - \bullet Check if $A \to C$ is implied by $A \to B$ and other dependencies
 - Yes: using transitivity on $A \rightarrow B$ and $B \rightarrow C$
 - ⋄ Can use attribute closure of *A* in more complex cases
- \bullet The **canonical cover** is: $\{A \to B, B \to C\}$

Outline

Motivation

 Concepts: functional dependency, closure, cover

Properties of normalization

Normal forms: BCNF vs. 3NF

Property 1: Lossless-join Decomposition

For the case of $R = (R_1, R_2)$, we require that for all possible relations r on schema R:

$$r = \prod_{RI}(r) \bowtie \prod_{R2}(r)$$

A decomposition of R into R_1 and R_2 is lossless join if at least one of the following dependencies is in F^+ :

$$R_1 \cap R_2 \rightarrow R_1$$

$$R_1 \cap R_2 \rightarrow R_1$$
 or $R_1 \cap R_2 \rightarrow R_2$

Example

$$R = (A, B, C), \qquad \mathcal{F} = \{A \rightarrow B, B \rightarrow C\}$$

- Decompose into $R_1 = (A, B), R_2 = (B, C)$
 - \diamond Lossless because: $R_1 \cap R_2 = \{B\}$ and $B \to BC$
- Decompose into $R_1 = (A, B)$, $R_2 = (A, C)$
 - ♦ Lossless because: $R_1 \cap R_2 = \{A\}$ and $A \rightarrow AB$

Property 2: Dependency Preservation

- Let \mathcal{F}_i be the set of dependencies \mathcal{F} + that include only attributes in R_i
- A decomposition is dependency preserving if

$$(\mathcal{F}_1 \cup \mathcal{F}_2 \cup ... \cup \mathcal{F}_n)^+ = \mathcal{F}^+$$

If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive

Example

- $R = (A, B, C), \qquad \mathcal{F} = \{A \rightarrow B, B \rightarrow C\}$
- Decompose into $R_1 = (A, B)$, $R_2 = (B, C)$

- Dependency preserving
- Decompose into $R_1 = (A, B)$, $R_2 = (A, C)$
 - Not dependency preserving (cannot check $B \to C$ without computing $R_1 \bowtie R_2$)

Goals of Normalization

- If a relation scheme R is not in "good" form, decompose it into $\{R_1, R_2, ..., R_n\}$ such that
 - each relation scheme is in "good" form, and
 - the decomposition is a lossless-join decomposition
 - [preferably] the decomposition should be dependency preserving

Outline

Motivation

 Concepts: functional dependency, closure, cover

Properties of normalization

Normal forms: BCNF vs. 3NF

Boyce-Codd Normal Form (BCNF)

A relation schema R is in **BCNF** with respect to a set \mathcal{F} of functional dependencies if for all functional dependencies in \mathcal{F}^+ of the form

$$\alpha \rightarrow \beta$$

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

- $\bullet \quad \alpha \to \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- \bullet α is a superkey for R

Example schema *not* in BCNF:

instr_dept (<u>ID</u>, name, salary, <u>dept_name</u>, building, budget)

because dept_name→ building, budget holds on instr_dept,
but dept_name is not a superkey

BCNF Decomposition Algorithm

```
result := {R} }
compute \mathcal{F}^+
while (some schema R_i in result is not in BCNF) do
let \alpha \to \beta be a nontrivial functional dependency that
holds on R_i such that \alpha \to R_i is not in \mathcal{F}^+,
and \alpha \cap \beta = \emptyset
result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta)
```

Note: each R_i is in BCNF, and decomposition is lossless-join

Example of BCNF Decomposition

$$R = (A, B, C)$$

$$\mathcal{F} = \{A \to B \\ B \to C\}$$

$$Key = \{A\}$$

- * R is not in BCNF ($B \rightarrow C$ but B is not superkey)
- Decompose R into: $R_1 = (A, B), R_2 = (B, C)$
 - R_1 and R_2 are in BCNF
 - Lossless-join decomposition

Example of BCNF Decomposition

- class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)
- Given functional dependencies:
 - ⋄ course_id→ title, dept_name, credits,
 - \bullet building, room_number \rightarrow capacity
- Find a candidate key: (course_id, sec_id, semester, year)
- BCNF Decomposition:
 - - but course_id is not a superkey
 - ♦ We replace *class* by:
 - course(course_id, title, dept_name, credits)
 - class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)

BCNF Decomposition (Cont.)

- course is in BCNF
 - When the second is a second of the second
- ♦ building, room_number→capacity holds on class-1
 - but {building, room_number} is not a superkey for class-1
 - ♦ We replace *class-1* by:
 - classroom (building, room_number, capacity)
 - section (course_id, sec_id, semester, year, building, room_number, time_slot_id)
- classroom and section are in BCNF

Third Normal Form (3NF)

 \bullet A relation schema *R* is in **3NF** if for all:

$$\alpha \rightarrow \beta \text{ in } \mathcal{F}^{\scriptscriptstyle{+}}$$

at least one of the following holds:

- $\alpha \to \beta$ is trivial (i.e., $\beta \in \alpha$)
- \diamond α is a superkey for R
- ⋄ Each attribute A in β-α is contained in a candidate key for R (**NOTE**: each attribute may be in a different candidate key)
- \diamond A relation is in BCNF \rightarrow it is in 3NF
 - Because BCNF requires one of the first two conditions
- The third condition is a relaxation of BCNF
 - Ensure dependency preservation

3NF Example

- Relation dept_advisor:
 - ⋄ dept_advisor (s_ID, i_ID, dept_name) $\mathcal{F} = \{s_ID, dept_name \rightarrow i_ID, i_ID \rightarrow dept_name\}$
 - ▼ Two candidate keys: (s_ID, dept_name), and (i_ID, s_ID)
 - R is in 3NF
 - * s_ID , $dept_name \rightarrow i_ID$ s_ID
 - ⋄ *s_ID*, *dept_name* is a superkey
 - $i_ID \rightarrow dept_name$
 - dept_name is contained in a candidate key

3NF Decomposition Algorithm

let \mathcal{F}_c be a canonical cover for \mathcal{F}

$$i := 0$$

for each functional dependency $\alpha \to \beta$ in \mathcal{F}_c do

if no schema R_j , $1 \le j \le i$ contains $\alpha \beta$ then

$$i := i + 1$$

$$R_i := \alpha \beta$$

if no schema R_i , $1 \le j \le i$ contains a candidate key for R then

$$i := i + 1$$

 $R_i :=$ any candidate key for R

/* remove redundant relations */

while (some schema R_j is contained in another schema R_k)

$$R_j := R_i$$

$$i := i-1$$

return $(R_1, R_2, ..., R_i)$

It ensures:

- \bullet each schema R_i is in 3NF
- decomposition is dependency preserving and lossless-join

3NF Decomposition: An Example

Relation schema:

```
cust_banker_branch = (<u>customer_id</u>, <u>employee_id</u>, branch_name, type)
```

- Given functional dependencies:
 - \square customer_id, employee_id \rightarrow branch_name, type
 - \blacksquare employee_id \rightarrow branch_name
 - □ customer_id, branch_name → employee_id
- We first compute a canonical cover
 - branch_name is extraneous in the r.h.s. of the 1st dependency
 - \diamond No other attribute is extraneous, so we get $\mathcal{F}_{\rm C}$ =

```
customer_id, employee_id \rightarrow type
employee_id \rightarrow branch_name
customer_id, branch_name \rightarrow employee_id
```

3NF Decompsition Example (Cont.)

The for loop generates following 3NF schema:

```
(customer_id, employee_id, type)
(employee_id, branch_name)
(customer_id, branch_name, employee_id)
```

- Observe that (customer_id, employee_id, type) contains a candidate key of the original schema, so no further relation schema needs to be added
- At end of for loop, detect and delete schemas, such as
 (<u>employee_id</u>, <u>branch_name</u>), which are subsets of other schemas
 - result will not depend on the order in which FDs are considered
- The resultant simplified 3NF schema is:

```
(customer_id, employee_id, type)
(customer_id, branch_name, employee_id)
```

BCNF vs. 3NF

- We can always decompose a relation into a set of relations that are in 3NF such that:
 - the decomposition is lossless
 - the dependencies are preserved
- We can always decompose a relation into a set of relations that are in BCNF such that:
 - the decomposition is lossless
 - but it may not preserve dependencies

BCNF vs. 3NF

- First, we try to satisfy all requirements:
 - BCNF
 - Lossless join
 - Dependency preservation

- If we cannot achieve this, we accept one of:
 - Lack of dependency preservation, or
 - Redundancy due to the use of 3NF

Appendix: BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is dependency preserving

$$\mathcal{F} = \{J, K, L\}$$

$$\mathcal{F} = \{JK \to L \}$$

$$L \to K \}$$

Two candidate keys = JK and JL

- R is not in BCNF
- Any decomposition of R will fail to preserve

$$JK \to L$$

This implies that testing for $JK \rightarrow L$ requires a join

Appendix: Redundancy in 3NF

- There is some redundancy in this schema
- Example of problems due to redundancy in 3NF

$$R = (J, K, L)$$

 $\mathcal{F} = \{JK \to L, L \to K\}$

J	L	K
j_1	l_1	k_1
j_2	l_1	k_1
j_3	l_1	k_1
null	l_2	k_2

- \triangleright repetition of information (e.g., the relationship l_1, k_1)
 - ▶ (*i_ID*, *dept_name*)
- represent the relationship l_2 , k_2 where there is no corresponding value for J).
 - ➤ (*i_ID*, *dept_nameI*) if there is no separate relation mapping instructors to departments