

A Multifactorial Model of T Cell Expansion and Durable Clinical Benefit in Response to a PD-L1 Inhibitor

Mark DM Leiserson^{1,2}, Vasilis Syrgkanis¹, Amy Gilson¹, Miroslav Dudik¹, Sharon Gillett¹, Jennifer Chayes¹, Christian Borgs¹, Dean F Bajorin^{3,4}, Jonathan Rosenberg³, Samuel Funt^{3,4}, Alexandra Snyder^{3,5}, Lester Mackey^{1,*}

¹Microsoft Research; ²Department of Computer Science, University of Maryland, College Park; ³Department of Medicine, Memorial Sloan Kettering Cancer Center;

⁴Department of Medicine, Weill Cornell Medical College; ⁵Adaptive Biotechnologies; *Email: Imackey@microsoft.com

Predicting response to checkpoint inhibitor immunotherapy

Promise of checkpoint inhibitors

- Success in previously untreatable late-stage cancers
- Treatment scales across patients and cancer types

Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade Le *et al*. (Science, 2017)

Biomarkers for response are a priority

- Efficacy
- Adverse effects
- Side effects

Past treatment

Our approach: predicting *molecular* response

Several key challenges

- 1. Integrate molecular and clinical features
- 2. Select appropriate outcome to predict
 - A. Clinical responses are noisy, impacted by confounding factors, and poor proxies for molecular response
- 3. Assess value for new patients from small datasets
 - A. Predictive accuracy
 - B. Feature importance

How to predict the response of immune system post-therapy? Our approach: Predict T cell clones in the tumor (TILs) that expand in the blood

Advantages over predicting standard clinical outcomes (e.g., overall survival or durable clinical benefit)

- More immediate outcome
- Finer-grained measurement

Associate with response

Features of 21 bladder cancers

N=21 patients treated with PD-L1 inhibitor (*atezoliuzmab*)

Clinical	Tumor	Circulating
Prior intravesical Bacillus Calmette–Guérin (BCG)	Missense SNV count (mutation load)	Productive unique TCR count
Age	Expressed missense SNV count	Clonality (TCR)
Albumin < 4	Neoantigen count	Diversity (TCR)
Baseline neutrophil to lymphocyte ratio	Expressed neoantigen count	T cell fraction
Time since last chemotherapy (days)	Clonality (TCR)	Top clone frequency (%)
5-factor score	Diversity (TCR)	
Number of chemotherapy regimens	T cell fraction	

Public dataset from Snyder, et al. (*PLoS Medicine*, 2017)

A multifactorial model of immune response

Approach: Predict number of expanded TIL clones in blood three weeks after treatment as a function of 19 clinical, tumor, and circulating features

Elastic Net: High-dimensional regression procedure designed to reduce overfitting and be robust to irrelevant features (Hastie & Zhou, JRSS B, 2005)

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} ||y - X\beta||_{2}^{2} + \lambda_{1} ||\beta||_{2}^{2} + \lambda_{2} ||\beta||_{1}$$

Cross-validation (CV): Assess prediction accuracy on unseen patients by repeating predictive analysis with each patient withheld

Permutation test: Test whether cross-validation error significantly smaller than error under permuted labeling ("Permutation Tests for Studying Classifier Performance," Ojala & Garriga, JMLR, 2010)

Our code: https://github.com/lrgr/multifactorial-immune-response

Accurate prediction of TIL clone expansion

Predict outcomes

Learned model explains 79% of variance in held-out patients

Clinical, tumor, and circulating feature importance

Clinical, tumor, and circulating features all contribute significantly

- Only 26% of variance explained if all tumor features excluded
- Only 13% of variance explained if all circulating features excluded
- 0% of variance explained if all clinical features excluded

Implications for durable clinical benefit

Sanity-check test of CV error

Cross-validation error significantly worse when labels randomly permuted (1000 permutations)

- Intuition: CV error uninformative if comparable error achieved with wrong (permuted) labels
- Rules out perverse case where CV known to be unreliable (Blum et al., COLT, 1999)

Open questions

- 1. Can more predictive signal be extracted from previously completed studies of immunotherapy benefit?
- 2. What other cancer immunotherapy prediction problems could benefit from multifactorial modeling?
- 3. What value can patients or trial designers derive from accurate TIL expansion prediction?
- 4. What other "non-standard" phenotypes would be of value to predict?