Deep Learning

Exercise 12: RBF Networks

Instructor: Manuel Günther

Email: guenther@ifi.uzh.ch

Office: AND 2.54

Friday, May 28, 2021

Outline

- Radial Basis Function Layer
- MNIST Classification
- Visualization

Outline

Radial Basis Function Layer

Custom Layer in PyTorch

- Derive class from torch.nn.Module
 - \rightarrow Same as for networks
- Call base class constructor

Learnable Parameters

- Create a torch.tensor
- Wrap with torch.nn.Parameter
- Store in your model self
- Some python magic
- Parameter in parameters

Parameter Instantiation

```
class MyLayer(torch.nn.Module):
  def init (self, ...):
    # base class constructor ...
    self.param = torch.nn.Parameter(
         torch.tensor(...))
class MyNetwork(torch.nn.Module):
  def init (self....):
    # base class constructor ...
    self.mylayer = MyLayer(...)
network = MyNetwork(...)
network.parameters()
```

Radial Basis Function Layer

RBF Layer

- ullet Two parameters: ${f W}$ and $ec{\sigma}$
- Distance-based activation

$$a_k = \|\vec{w}_k - \vec{x}\|$$

• Activation function:

$$h_k = \mathcal{N}_{0,\sigma_k}(a_k) = e^{-\frac{a_k^2}{2\sigma_k^2}}$$

- Problem: matrix shapes
 - ightarrow Weight matrix $\mathbf{W} \in \mathbb{R}^{K \times D}$
 - ightarrow Input matrix $\mathbf{X} \in \mathbb{R}^{B imes D}$

Batch Implementation

- ullet Bring ${f X}$ and ${f W}$ to ${\mathbb R}^{B imes K imes D}$
 - $\rightarrow\,$ Logical copies of ${\bf X}$ and ${\bf W}$
- Compute distances:

$$\mathcal{A} = (\mathcal{W} - \mathcal{X})^2 \in \mathbb{R}^{B \times K \times D}$$

$$\rightarrow a_{b,k,d} = (w_{k,d} - x_d^{[b]})^2$$

• Sum over dimension D

$$\rightarrow a_{b,k} = \sum_{d=1}^{D} a_{b,k,d}$$

• $\mathbf{H} = e^{-\frac{\mathbf{A}}{2\vec{\sigma}^2}}$ broadcastable

RBF Layer Initialization

- ullet W and $\vec{\sigma}$ need initialization
- Default initialization inappropriate
- Good values: $\mathbf{W} \sim \mathcal{N}_{0.1}$ and $\vec{\sigma} = \vec{1}$
 - → Better initialization possible
- See module torch.nn.init

RBF Layer Implementation

- Initialization init_ see above
- Processing: forward(self, X)
 - → Receives batch X
 - → Returns batch H

Logical Copies in PyTorch

• Add singular dimension:

```
tensor.unsqueeze(dim=...)
```

Logical (no physical) copies: tensor.expand(B,K,D)

Implementation

```
class RBFLayer(torch.nn.Module):
    def __init__(self):
        # Parameters

def forward(self, X):
    # expand X and W
# compute distance
# compute activation
# Gaussian of distances
```

Outline

MNIST Classification

MNIST Classification

- Dataset and Dataloader
- Classify 10 classes

Task 1: Deep RBF Network

- Convolutional layers
 - → Pooling and Sigmoid/ReLU
 - ightarrow BatchNorm where appropriate
- Fully-connected layer $K^{\text{\tiny (FC)}}=2$
- $\bullet \ \ \mathsf{RBF} \ \mathsf{layer} \ \mathsf{(own)} \ K^{^{(\mathrm{RBF})}} = 100$
- Fully-connected layer O = 10

Task 2: Network Training

- Categorical cross-entropy loss
- Stochastic gradient descent
- Low learning rate $(\eta pprox$ 1e-4)
 - → Despite batch norm!
- Train for 100+ epochs
- Measure validation accuracy
 - \rightarrow Accuracy \sim 10% random guess
 - \rightarrow Accuracy > 90% good
- Save best validation model

Visualization

Task 3: Plot Features

- Test set images
- Deep features **before** RBF
 - → 2-element FC features
- Color according to target
- Scatter plot in 2D space
 - → pyplot.scatter()

Task 4: Plot Centers

- Centers from RBF layer
- Plot into 2D space as +
 - → Change size with variance

