B

B

B

A

A

A

Множество целиком определяется элементами, из которых оно состоит. Если элемент a принадлежит множеству A, пишут $a \in A$ (если не принадлежит, пишут $a \notin A$). Множество иногда записывают, перечисляя в фигурных скобках через запятую его элементы, например, $\{2,5\}$ — множество, состоящее из элементов 2 и 5. Для многих множеств есть стандартные обозначения, например, \mathbb{N} — множество натуральных чисел, \mathbb{Z} — множество целых чисел, \mathbb{Q} — множество рациональных чисел, \mathbb{R} — множество действительных чисел. Множество можно также задавать, описав свойства его элементов: например, $\{x \mid x \in \mathbb{Z}, x \text{ делится на } 2\}$ — множество чётных чисел.

Определение 1. Множество A называется *подмножеством* множества B, если каждый элемент множества A содержится в множестве B. Обозначение: $A \subseteq B$ (или $B \supseteq A$).

Задача 1. Какие из множеств $\{1,2\}$, $\{\{1,2\},3\}$, $\{3,2,1\}$, $\{\{2,1\}\}$ являются подмножествами других?

Определение 2. Множество, не содержащее ни одного элемента, называется *пустым*. Обозначение: Ø.

Число элементов в конечном множестве A обозначается |A| (или #A). Например, $|\varnothing| = 0$, $|\{6,9\}| = 2$.

Задача 2. а) Сколько подмножеств у множества из n элементов? **6**) Пусть в множестве A всего n элементов, а в его подмножестве B всего k элементов. Сколько существует множеств C, для которых $B \subseteq C \subseteq A$?

Задача 3. Совпадают ли множество целых чисел, делящихся и на 3 и на 5, но не делящихся на 15, и множество прямоугольных треугольников с длиной гипотенузы 6 см и площадью 10 см^2 ? Определение 3. Объединение множеств A и B состоит из всех таких x, которые принадлежат хотя бы одному из множеств A и B (то есть $x \in A$ или $x \in B$). Обозначение: $A \cup B$.

Пересечение множеств A и B состоит из всех таких x, что $x \in A$ и $x \in B$. Обозначение: $A \cap B$. Разность множеств A и B состоит из всех таких x, что $x \in A$ и $x \notin B$. Обозначение: $A \setminus B$. На рисунке справа объединение, пересечение и разность показаны с помощью *кругов* Эйлера. Задача 4. Пусть $A = \{2k+1 \mid k \in \mathbb{Z}\}$, $B = \{3k \mid k \in \mathbb{Z}\}$. Найдите $A \cap B$ и $B \setminus A$.

Чтобы доказать, что два множества X и Y равны, достаточно проверить, что каждый элемент множества X принадлежит множеству Y, и наоборот.

Задача 5. Верно ли, что для любых множеств A, B и C

a) $A \setminus (A \setminus B) = A \cap B$; 6) $A \cap B = A \Leftrightarrow A \subseteq B$; B) $A \setminus B = C \Leftrightarrow A = B \cup C$?

Задача 6. Докажите для любых множеств A, B и C:

a) $A \cap (B \cap C) = (A \cap B) \cap C$; 6) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$; B) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Задача 7. Посмотрите на диаграммы Эйлера-Венна ниже и запишите, каким множествам соответствуют заштрихованные области. Для записи используйте символы \cup , \cap , \setminus и скобки.

Задача 8. Полуплоскость— это множество точек плоскости, лежащих по одну сторону от некой прямой (в том числе и на самой этой прямой). Какой многоугольник (с внутренностью) на рисунке нельзя представить в виде пересечения нескольких полуплоскостей?

Задача 9*. а) Можно ли записать пересечение двух множеств, используя только разность и объединение? **б)** Можно ли записать разность двух множеств, используя только объединение и пересечение?

Формула включений-исключений

Задача 10. а) В НИИ 67 человек. Из них 47 знают английский, 35 — немецкий, и 23 — оба языка. Сколько человек не знают ни английского, ни немецкого? б) Пусть еще польский знают 20 человек, английский и польский — 12, немецкий и польский — 11, все три языка — 5. Сколько человек не знают ни одного из этих языков? Задача 11. В комнате площади 6 уложены три ковра площади 3 каждый (форма комнаты и ковров произвольная). Докажите, что какие-то два из этих трёх ковров перекрываются по площади, не меньшей 1.

Задача 12. Пусть множества A_1, \ldots, A_n конечны. Докажите, что **a)** $|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$.

6) $|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|.$

в)* (Формула включений-исключений) Выведите аналогичную формулу для $|A_1 \cup A_2 \cup \cdots \cup A_n|$. (Сравните с задачей 7, когда есть n языков, и для каждого набора языков известно, сколько человек знают все эти языки.)

Задача 13. В ряду $1+\ldots+1$ из 105 единиц изменили знак на противоположный перед каждой третьей единицей, затем — перед каждой пятой, а затем — перед каждой седьмой. Найдите значение полученного выражения.

Задача 14*. а) На полке стоят 10 книг. Сколькими способами их можно переставить так, чтобы ни одна книга не осталась на месте? б) А если на месте должны остаться ровно 3 книги?

1	2 a	2 6	3	4	5 a	5 6	5 B	6 a	6 6	6 B	7	8	9 a	9 6	10 a	10 б	11	12 a	12 б	12 B	13	14 a	14 б