Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 9. Robust Watermarking

Lecturer: Jin HUANG

2015

Valumetric Scaling

$$c * 1.2$$

QIM is not Robust

Error Illustration

Valumetric scaling on the E_LATTICE/D_LATTICE system.

Reason

$$z_{lc}(s) = (s\mathbf{c_w}) \cdot \mathbf{w_r}$$
$$= s(\mathbf{c_w}) \cdot \mathbf{w_r}$$
$$= s \cdot z_{lc}.$$

Possible solution?

$$z_{nc}(s) = \frac{s\mathbf{c_w}}{\|s\mathbf{c_w}\|} \cdot \mathbf{w_r}$$
$$= \frac{\mathbf{c_w}}{\|\mathbf{c_w}\|} \cdot \mathbf{w_r}$$
$$= \cos(\theta(\mathbf{c_w}, \mathbf{w_r})).$$

Linear Correlation

E_FIXED_LC/D_LC.

Correlation Coefficients

z_{nc} with Dirty Paper

Angle QIM (Ourique et al. ICASSP 2005.):

Snap work to the closest "grid angle".

2-Dimensional Case

- \bullet Choosing two bases $\mathbf{X}_1,\mathbf{X}_2.$
- Get coordinates x_1, x_2 .
- Evaluate the length and angle:

$$r = \sqrt{x_1^2 + x_2^2}, \quad \theta = \arctan(x_2/x_2).$$

Angle QIM:

$$\theta^{Q} = Q_{m,\Delta}(\theta) = \left[\frac{\theta + m\Delta}{2\Delta}\right] 2\Delta + m\Delta.$$

Restore:

$$x_1' = r\cos(\theta^Q), \quad x_2' = r\sin(\theta^Q).$$

L-Dimensional Case

- L bases: $\mathbf{X}_i, i = 1, \dots, L$.
- L coordinates: $\mathbf{x}_i, i = 1, \dots, L$.
- \bullet L-1 angles: $\mathbf{x}_i, i=1,\cdots,L-1$.

$$\theta_1 = \arctan(x_2/x_1)$$

$$\theta_i = \arctan\frac{x_{i+1}}{\sqrt{\sum_{k=1}^i x_k^2}}, i = 2, \dots L - 1.$$

Restore:

$$x'_{1} = r \prod_{k=1}^{L-1} \cos \theta_{k}^{Q}$$

$$x'_{i} = r \sin \theta_{i-1}^{Q} \prod_{k=i}^{L-1} \cos \theta_{k}^{Q}, i = 2, \dots, L.$$

Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 10. Watermark Security

Lecturer: Jin HUANG

2015

Ambiguity Attacks with Blind Detection

I am the True Owner!

The owner hold \mathbf{c}_o privately, and distribute $\mathbf{c}_d = \mathbf{c}_o + \mathbf{w_r}.$

If other people claim the ownership with c_d .

- $\ \ \, \mathbf{c_d}$ containing $\mathbf{w_r}.$
- \bullet AND ONLY the owner has a copy c_o without $w_r.$

Example

Ownership

		$\mathbf{c_o}$	$\mathbf{c_d}$	$\mathbf{c_f}$
	$\mathbf{w_r}$	-0.016	0.973	0.971
	Wf	0.968	0.970	0.005

$w_{\rm f}$ and $c_{\rm f}$

ullet w_f: large z_{lc} for c_o and c_d

$$\mathbf{c_o} \cdot \mathbf{w_f}, \quad (\mathbf{c_o} + \mathbf{w_r}) \cdot \mathbf{w_f}.$$

0 c_f:

small $c_f \cdot w_f$, large $c_o \cdot w_f$.

- Idea:
 - $\bullet \ \ \mathbf{w_f} \ \text{has high correlation with } \mathbf{c_o} \text{:} \ \mathbf{w_f} \cdot \mathbf{c_o} = 1.$
 - $\quad \ \ \mathbf{c_f} = \mathbf{c_o} \mathbf{w_f}.$

A Naive Solution

- \bullet Directly using $c_{\mathbf{d}}$ as $w_{\mathbf{f}}$
 - ullet $\mathbf{c}_{\mathbf{f}}$ has poor fidelity
- \bullet Find a noisy $\mathbf{w_f}$ but has high z_{lc} to $\mathbf{c_o}.$

A Better Solution

Using the Fourier transformation F:

Project to Fourier bases:

$$c_d^1 = Fc_d$$
.

• Scaling $\tilde{\mathbf{c}}_{\mathbf{d}}$ by a random diagonal matrix D into a random vector:

$$\mathbf{c}_{\mathbf{d}}^2 = D\mathbf{c}_{\mathbf{d}}^1$$
.

Reconstruct it back:

$$\mathbf{w_f} = F^T \mathbf{c_d^2}$$
.

Check

$$\begin{aligned} \mathbf{w_f} \cdot \mathbf{c_o} &= (F^T D F)(\mathbf{c_d}) \cdot \mathbf{c_o} \\ &= \mathbf{c_o}^T (F^T D F) \mathbf{c_d} \\ &= (D^{1/2} F \mathbf{c_o})^T (D^{1/2} F(\mathbf{c_o} + \mathbf{w_r}) \\ &= \mathbf{c'_o} \cdot \mathbf{c'_o} + \mathbf{c'_o} \cdot \mathbf{w'_r} \\ &\approx \mathbf{c'_o} \cdot \mathbf{c'_o}. \end{aligned}$$

High correlation!

Illustration

More like noisy image, but not enough.

A Refinement

Add noise before applying Fourier transformation.

$$\mathbf{w_f} = (F^T D F)(\mathbf{c_d} + \mathbf{n}).$$

Check:

$$\begin{aligned} \mathbf{w_f} \cdot \mathbf{c_o} &= (F^T D F) (\mathbf{c_d} + \mathbf{n}) \cdot \mathbf{c_o} \\ &= (D^{1/2} F \mathbf{c_o})^T (D^{1/2} F (\mathbf{c_d} + \mathbf{n})) \\ &\approx \mathbf{c_o'} \cdot \mathbf{c_o'} + \mathbf{c_o'} \cdot \mathbf{n'} \\ &\approx \mathbf{c_o'} \cdot \mathbf{c_o'} \end{aligned}$$

Illustration

A noisy image, but high correlation to c_o .

$\mathbf{c_f}$

$$\mathbf{c_f} = \mathbf{c_d} - 0.995 \mathbf{w_f}.$$
 Ownership

	$\mathbf{c_o}$	$\mathbf{c_d}$	$\mathbf{c_f}$
$\mathbf{w_r}$	-0.016	0.973	0.971
$\mathbf{w_f}$	0.968	0.970	0.005

Countering Ambiguity Attacks

Make the reference pattern dependent on $\mathbf{c}_{\mathbf{o}}$.

 \bullet No $\mathbf{c}_o,$ no reference pattern.

Using the md5 of the \mathbf{c}_{o} as the seed of pseudo-noise generator.

- Adding a constraint: $\mathbf{w_r} = PN(md5(\mathbf{w_c}))$.
- \bullet Difficult to find a $\mathbf{w}_{\mathbf{f}}$
 - $\ \, \mathbf{w_f} \cdot \mathbf{c_o} \text{ is high,} \\$
 - $\quad \text{ \bullet AND } \mathbf{w_f} = \text{PN}(\text{md5}(\mathbf{w_f})).$