MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 3 - DECEMBER 2010 SOLUTION KEY**

Team Round

A) Let $m \angle A = \theta$. Then $m \angle B = 2\theta$ and $m \angle C = 180 - 3\theta$.

Using the law of Cosines, $a^2 = 10^2 + 12^2 - 2(10)(12)\cos\theta = 244 - 240\cos\theta$ (#1).

Using the law of Sines,

Since $\sin \theta \neq 0$, we have $\frac{1}{a} = \frac{\cos \theta}{6} = \frac{3 - 4\sin^2 \theta}{10}$ (#2).

Method #1: Substituting $\cos \theta = \frac{6}{a}$, we have $a^2 = 244 - 240 \left(\frac{6}{a} \right) \implies a^3 - 244a + 1440 = 0$

As the smallest side, a < 10. Since $a = 7 \rightarrow +75$ and $a = 9 \rightarrow -27$, we try a = 8 and hit paydirt!

Method #2: Using the last two ratios in #2, $5\cos\theta = 3(3-4\sin^2\theta) = 3(4\cos^2\theta - 1)$

$$12\cos^2\theta - 5\cos\theta - 3 = (4\cos\theta - 3)(3\cos\theta + 1) = 0 \implies \cos\theta = +\frac{3}{4}$$

 $(\cos \theta = -\frac{1}{3} \text{ would imply } \theta \text{ was obtuse which is impossible for the smallest angle in } \Delta ABC.)$

Substituting in #1,
$$a^2 = 244 - 240(3/4) = 244 - 180 = 64 \implies a = 8$$
.

Alternate Solution (Norm Swanson)

Requisite Notions (using diagram at right) - proved on the next page

Angle Bisector Theorem #1:
$$\frac{AD}{CD} = \frac{AB}{CB}$$

Angle Bisector Theorem #2:
$$BD^2 = (AB)(BC) - (AD)(DC)$$

Using angle bisector theorem #1,
$$AD = BD = \frac{30}{x+5}$$
.

Using angle bisector theorem #2, substituting for BD and AD,

$$\frac{900}{(x+5)^2} = 5x - \frac{180x}{(x+5)^2}$$

$$\Rightarrow x(x+5)^2 - 36x = 180 \Rightarrow x^3 + 10x^2 - 11x = 180$$

The left side of this equation factors to x(x-1)(x+11); the right side factors as $2^2 \cdot 3^2 \cdot 5$.

By inspection 4(3)15) = 180, so x = 4 and a = BC = 8. Also the cubic $x^3 + 10x^2 - 11x = 180$ factors as (x - 4)(x + 5)(x + 9), so again x = 4.

В

 2θ

180-3 θ

