PRODIGY: Enabling In-context Learning Over Graphs

Qian Huang¹*

qhwang@cs.stanford.edu

Hongyu Ren1*

hyren@cs.stanford.edu

Peng Chen¹

Gregor Kržmanc²

Daniel Zeng¹

pengc@stanford.edu

gregor.krzmanc@ijs.si

dzeng@cs.stanford.edu

Percy Liang¹

pliang@cs.stanford.edu

Jure Leskovec1

jure@cs.stanford.edu

¹Stanford University
² University of Ljubljana

Conference: NeurIPS 2023

Year: 2023

Different Learning Paradigms

Few-shot Prompting

In-context Learning Over Graphs

Thanks -> merci Wall -> mur

hello->?

What is In-context learning over graphs?

Few-shot Prompting over text

In-context Learning Over Graphs :Link Prediction Example

Thanks -> merci Wall -> mur

hello->?

different tasks

Few-shot Prompting over text

different graphs

Few-shot Prompting over graph (for link classification)

But, how to achieve this? Two Challenges:

- 1.How to formulate and represent node-, edge- and graph-level tasks over graphs with a unified task representation that allows the model to solve diverse tasks without the need for retraining or parameter tuning.
- 2. How to design model architecture and **pretraining** objectives that enable models to achieve in-context learning capability across diverse tasks and diverse graphs in the unified task representation.

Prompt Graph

Prompt Graph is a unified representation of few-shot prompts over graph for diverse tasks

•••• input nodes (head)

Step1:Data Graph - Link Prediction

Data Graph contextualizes each input x in the graph G (e.g. by subgraph extraction)

Step1:Data Graph - Node Classification

Data Graph contextualizes each input x in the graph G (e.g. by subgraph extraction)

Step1:Data Graph - Graph Classification

Data Graph contextualizes each input x in the graph G (e.g. by subgraph extraction)

Step2:Task Graph

Task Graph

interconnects inputs and labels across examples to form context for queries

Step2:Task Graph

How to use PromptGraph for in-context learning?

●●●● input nodes (head)

▲▲▲▲ input nodes (tail)

■■■■ data nodes

♦♦ label nodes

In-context learning over graph

inductive **link prediction** over hierarchical graph

Pretraining to Enable In-context Learning

framework:

model architecture over prompt graph

in-context pretraining objectives

1.Data graph Message Passing

2. Task graph Message Passing

In-context Pretraining Objectives

Two stages:

1.node dropping2.node feature masking

Self-supervised Task Example: Neighbor Matching

Idea: the task is to classify which neighborhood a node is in, where each neighborhood is defined by other nodes in it.

Multi-task: $(\mathcal{G}_{\mathtt{pretrain}}, \mathcal{S}_{\mathtt{MT}}, \mathcal{Q}_{\mathtt{MT}}) \sim \mathtt{MT}_{k,m}(\mathcal{G}_{\mathtt{pretrain}}, f)$

In-context Learning Results

Paper category classification:pretrain on MAG->in-context learning on Arxiv

Classes	NoPretrain	Contrastive	PG-NM	PG-MT	PRODIGY	Finetune
3	33.16 ± 0.30	65.08 ± 0.34	72.50 ± 0.35	65.64 ± 0.33	$\textbf{73.09} \pm \textbf{0.36}$	65.42 ± 5.53
5	18.33 ± 0.21	51.63 ± 0.29	61.21 ± 0.28	51.97 ± 0.27	$\textbf{61.52} \pm \textbf{0.28}$	53.49 ± 4.61
10	9.19 ± 0.11	36.78 ± 0.19	46.12 ± 0.19	37.23 ± 0.20	$\textbf{46.74} \pm \textbf{0.20}$	30.22 ± 3.77
20	4.72 ± 0.06	25.18 ± 0.11	33.71 ± 0.12	25.91 ± 0.12	$\textbf{34.41} \pm \textbf{0.12}$	17.68 ± 1.15
40	$2.62 \pm {\scriptstyle 0.02}$	17.02 ± 0.07	23.69 ± 0.06	17.19 ± 0.08	$\textbf{25.13} \pm \textbf{0.07}$	8.04 ± 3.00

Result1:PRODIGY improves performance in all cases,up to 48% over Contrastive.

Result2:PRODIGY can induce strong in-context learning with very different self-supervised pretraining tasks.

Pretraining has no idea about classifying paper categorie!

In-context Learning Results

KG Completion:pretrain on Wiki KG->in-context learning on ConceptNet,FB 15K-237,NELL

Classes	NoPretrain	Contrastive	PG-NM	PG-MT	PRODIGY	Finetune
4	30.4 ± 0.63	44.01 ± 0.61	$46.94 \pm \scriptstyle{0.61}$	$51.78 \pm \scriptstyle{0.63}$	$\textbf{53.97} \pm \textbf{0.63}$	53.85 ± 9.29
5 10 20 40	$33.54 \pm 0.61 \\ 20.0 \pm 0.35 \\ 9.2 \pm 0.18 \\ 2.5 \pm 0.08$	81.35 ± 0.58 70.88 ± 0.48 59.8 ± 0.35 49.39 ± 0.23	80.35 ± 0.57 71.68 ± 0.45 59.9 ± 0.35 46.82 ± 0.21	$\frac{89.15 \pm 0.46}{82.26 \pm 0.40}$ $\frac{73.47 \pm 0.32}{58.34 \pm 0.22}$	$\begin{array}{c} \textbf{88.02} \pm \textbf{0.48} \\ \textbf{81.1} \pm \textbf{0.39} \\ \textbf{72.04} \pm \textbf{0.33} \\ \textbf{59.58} \pm \textbf{0.22} \end{array}$	82.01 ± 12.83 71.97 ± 6.16 64.01 ± 4.66 57.27 ± 3.33
5 10 20 40	$ \begin{vmatrix} 20.95 \pm 0.00 \\ 11.0 \pm 0.26 \\ 5.34 \pm 0.13 \\ 2.5 \pm 0.06 \end{vmatrix} $	83.38 ± 0.5 74.54 ± 0.46 65.68 ± 0.34 56.7 ± 0.23	82.39 ± 0.53 75.14 ± 0.43 65.68 ± 0.34 54.91 ± 0.22	85.26 ± 0.48 78.15 ± 0.41 68.38 ± 0.33 51.24 ± 0.25	$88.09 \pm 0.43 \\ 82.47 \pm 0.39 \\ 74.72 \pm 0.31 \\ 60.04 \pm 0.23$	87.27 ± 3.35 87.22 ± 12.75 71.90 ± 5.90 66.19 ± 8.46 55.06 ± 4.19

Performance Scaling with More Shots

ConceptNet -4 way

Pretraining with only 3 shots=> model can learn from context from much more than 3 shots

Data Scaling

Hard and diverse pretraining tasks generation pipeline allows the model to keep scaling with more training data