How to find the boundary of a Metaball?

Metaball strength function: $M(x,y) = \sum_n \left(\frac{r_n^2}{(x-x_n^c)^2 + (y-y_n^c)^2} \right)$

Where n: Control Ball Count

 (x_n^c, y_n^c) : Center of n^{th} Control Ball

 r_n^c : Radius of n^{th} Control Ball

Definition:

- Given a threshold t, all points (x, y) that $M(x, y) \ge t$ belong to Metaball.
- All points (x, y) that M(x, y) = t produce the boundary of the Metaball.

Overall Algorithm:

- 1. For any one of Uncovered Control Ball C_n , repeat steps 2~4.
- 2. Find the first boundary point $B_1(x_1^b, y_1^b)$
 - a. Set $B_1(x_1^b, y_1^b) = (x_n^c + r_n^c, y_n^c)$
 - b. Calculate $M(x_1^b, y_1^b)$
 - c. Move $B_1(x_1^b, y_1^b)$ according to ∇_1^b to make $M(x_1^b, y_1^b) = t$, where $\nabla_1^b = \nabla M(x_1^b, y_1^b)$ is the gradient of M(x, y) at point B_1 . PS. Refer to **Algorithm A** for detail.
- 3. Find next boundary point $B_2(x_2^b, y_2^b)$
 - a. At the direction vertical to ∇_1^b , find the boundary point $B_2(x_2^b, y_2^b)$ that: $\|B_1B_2\|=E$, where $\|B_1B_2\|$ is the distance between these two points.
 - b. Move $B_2(x_2^b, y_2^b)$ according to ∇_2^b to make $M(x_2^b, y_2^b) = t$, where $\nabla_2^b = \nabla M(x_2^b, y_2^b)$ is the gradient of M(x, y) at point B_2 . PS. Refer to **Algorithm A** for detail.
- 4. Repeat step 3 to find the next boundary points B_3 , B_4 , ... B_m , until:

$$||B_m B_1|| \leq E$$

then
$$\{B_1, B_2, B_3, \dots, B_m, B_1\}$$
 is a close Metaball boundary

5. If there are any Control Balls not covered in this boundary, repeat steps 1~4

Algorithm A: of moving a point to find the best boundary point

- 1. For a point $P(x_p, y_p)$ on B, find $M(x_p, y_p)$ and $\nabla M(x_p, y_p)$, where $\nabla M(x_p, y_p)$ is the Gradient of M(x, y) at point $P(x_p, y_p)$.
- 2. Set movement direction $\rho = \begin{cases} -\nabla M(x_p, y_p) & \text{of } M(x_p, y_p) \\ \nabla M(x_p, y_p) & \text{of } M(x_p, y_p) \end{cases}$, when $M(x_p, y_p) > t$
- 3. Calculate $P'(x_p', y_p')$ according to ρ , where $\overrightarrow{PP'} = \rho$ and $\|PP'\| = D$ where D is the movement coefficient *PS. Refer to* **Movement of Boundary Point** section for detail
- 4. Recalculate $M(x_p', y_p')$ and $\nabla M(x_p', y_p')$, then set P = P'
- 5. If $[M(x_p, y_p) t] \times [M(x_p', y_p') t] < 0$, then set D = D/2
- 6. Repeat step 2~5 until $M(x_p, y_p) = t$

Gradient of Metaball function:

$$\begin{split} \nabla M(x,y) &= \left(\frac{\partial}{\partial x} M(x,y), \frac{\partial}{\partial y} M(x,y)\right) \\ &= \frac{\partial}{\partial x} \left[\sum_{n} \left(\frac{r_{n}^{2}}{(x-x_{n})^{2}+(y-y_{n})^{2}}\right) \right] \\ &= \sum_{n} \left[\frac{\partial}{\partial x} \left(\frac{r_{n}^{2}}{(x-x_{n})^{2}+(y-y_{n})^{2}}\right) \right] \\ &= \sum_{n} \left[\frac{\partial}{\partial x} \left(\frac{r_{n}^{2}}{(x-x_{n})^{2}+(y-y_{n})^{2}}\right) \right] \\ &= \sum_{n} \left[\frac{\left(\frac{\partial}{\partial x} r_{n}^{2}\right) ((x-x_{n})^{2}+(y-y_{n})^{2}) - (r_{n}^{2}) \left(\frac{\partial}{\partial x} ((x-x_{n})^{2}+(y-y_{n})^{2})\right) \right] \\ &= \sum_{n} \left[\frac{-(r_{n}^{2}) \left(\frac{\partial}{\partial x} (x-x_{n})^{2}+\frac{\partial}{\partial x} (y-y_{n})^{2}\right)}{((x-x_{n})^{2}+(y-y_{n})^{2})^{2}} \right] \\ &= \sum_{n} \left[\frac{-(r_{n}^{2}) (2x+2x_{n})}{((x-x_{n})^{2}+(y-y_{n})^{2})^{2}} \right] \\ &= \sum_{n} \left[\frac{-2X_{n}r_{n}^{2}}{((X_{n})^{2}+(Y_{n})^{2})^{2}}\right], where \left\{ X_{n} = x-x_{n} \\ Y_{n} = y-y_{n} \right. \\ &= \sum_{n} \left[\frac{-2r_{n}r_{n}^{2}}{((x-x_{n})^{2}+(y-y_{n})^{2})}\right] \\ &= \cdots \\ &= \sum_{n} \left[\frac{-2r_{n}r_{n}^{2}}{((x-x_{n})^{2}+(y-y_{n})^{2})^{2}}\right], where \left\{ X_{n} = x-x_{n} \\ Y_{n} = y-y_{n} \right. \end{split}$$

4

$$\begin{split} \nabla M(x,y) &= \left(\frac{\partial}{\partial x} M(x,y), \frac{\partial}{\partial y} M(x,y)\right) \\ &= \left(\sum_{n} \left[\frac{-2X_n r_n^2}{((X_n)^2 + (Y_n)^2)^2}\right], \sum_{n} \left[\frac{-2Y_n r_n^2}{((X_n)^2 + (Y_n)^2)^2}\right]\right) \\ where &\begin{cases} X_n = x - x_n \\ Y_n = y - y_n \end{cases} \end{split}$$

Movement of Boundary Point:

In step 3 and 4: Move control point $\,{\it C}_n\,$ to $\,{\it C}_n{}'\,$ along the direction,

where
$$\overline{\overline{C_nC_n'}} = \overline{\left(c_x^n,c_y^n\right)\left(c_x^{n\prime},c_y^{n\prime}\right)} = \sqrt{(c_x^n-c_x^{n\prime})^2 + \left(c_y^n-c_y^{n\prime}\right)^2} = D$$

Assume that moving direction is (∇_x^c, ∇_y^c) , then $C_n' = (c_x^{n\prime}, c_y^{n\prime}) = (c_x^n + \mu \nabla_x^c, c_y^n + \mu \nabla_x^c)$

$$\Rightarrow \sqrt{(c_x^n - c_x^{n\prime})^2 + \left(c_y^n - c_y^{n\prime}\right)^2} = \sqrt{(\mu \nabla_x^c)^2 + (\mu \nabla_x^c)^2} = D$$

$$\Rightarrow \mu = \sqrt{\frac{D^2}{(\nabla_x^c)^2 + (\nabla_x^c)^2}} = \frac{D}{\sqrt{(\nabla_x^c)^2 + (\nabla_x^c)^2}}$$