from google.colab import files
uploaded = files.upload()

Choose files No file chosen

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to

Saving CarPrice Assignment.csv to CarPrice Assignment.csv

import pandas as pd

df = pd.read_csv('CarPrice_Assignment.csv')
df.head()

→		car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	 en
	0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	
	1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6	
	2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	
	3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	
	4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	

5 rows × 26 columns

df = pd.read_csv('CarPrice_Assignment.csv')
df.head()

₹	ca	ar_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase	 en
	0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	front	88.6	
	1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	front	88.6	
	2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	94.5	
	3	4	2	audi 100 ls	gas	std	four	sedan	fwd	front	99.8	
	4	5	2	audi 100ls	gas	std	four	sedan	4wd	front	99.4	

5 rows × 26 columns

```
#Data Cleaning
df.drop(['car_ID'], axis=1, inplace=True)

df['CarCompany'] = df['CarName'].apply(lambda x: x.split(' ')[0].lower())

df.drop(['CarName'], axis=1, inplace=True)

df['CarCompany'] = df['CarCompany'].replace({
    'vw': 'volkswagen',
    'vokswagen': 'volkswagen',
    'porcshce': 'porsche',
    'toyouta': 'toyota',
    'maxda': 'mazda',
    'Nissan': 'nissan'
})
```

df[['CarCompany']].drop_duplicates().sort_values(by='CarCompany')

JO/2U2.	3, 10:10	S	
₹	→ CarCompany		
	0	alfa-romero	
	3	audi	
	10	bmw	
	67	buick	
	18	chevrolet	
	21	dodge	
	30	honda	
	43	isuzu	
	47	jaguar	
	50	mazda	
	75	mercury	
	76	mitsubishi	
	89	nissan	
	107	peugeot	
	118	plymouth	
	125	porsche	
	130	renault	
	132	saab	
	138	subaru	
	150	toyota	
	182	volkswagen	
	194	volvo	
-		plotlib.pyp born as sns	
nume	ric_df	= df.selec	t_dtypes(include=['number'])
sns. plt.	heatma	"Heatmap of	2, 8)) f.corr(), annot=True, cmap='coolwarm Numeric Feature Correlations")

df.drop(['carlength', 'carwidth', 'curbweight', 'highwaympg'], axis=1, inplace=True)
df.columns

df = pd.get_dummies(df, drop_first=True)

df.head()

symboling	wheelbase	carheight	enginesize	boreratio	stroke	compressionratio	horsepower	peakrpm	citympg		Car
3	88.6	48.8	130	3.47	2.68	9.0	111	5000	21		
3	88.6	48.8	130	3.47	2.68	9.0	111	5000	21		
1	94.5	52.4	152	2.68	3.47	9.0	154	5000	19		
2	99.8	54.3	109	3.19	3.40	10.0	102	5500	24		
2	99.4	54.3	136	3.19	3.40	8.0	115	5500	18		
	3 3 1 2	3 88.6 3 88.6 1 94.5 2 99.8	3 88.6 48.8 3 88.6 48.8 1 94.5 52.4 2 99.8 54.3	3 88.6 48.8 130 3 88.6 48.8 130 1 94.5 52.4 152 2 99.8 54.3 109	3 88.6 48.8 130 3.47 3 88.6 48.8 130 3.47 1 94.5 52.4 152 2.68 2 99.8 54.3 109 3.19	3 88.6 48.8 130 3.47 2.68 3 88.6 48.8 130 3.47 2.68 1 94.5 52.4 152 2.68 3.47 2 99.8 54.3 109 3.19 3.40	3 88.6 48.8 130 3.47 2.68 9.0 3 88.6 48.8 130 3.47 2.68 9.0 1 94.5 52.4 152 2.68 3.47 9.0 2 99.8 54.3 109 3.19 3.40 10.0	3 88.6 48.8 130 3.47 2.68 9.0 111 3 88.6 48.8 130 3.47 2.68 9.0 111 1 94.5 52.4 152 2.68 3.47 9.0 154 2 99.8 54.3 109 3.19 3.40 10.0 102	3 88.6 48.8 130 3.47 2.68 9.0 111 5000 3 88.6 48.8 130 3.47 2.68 9.0 111 5000 1 94.5 52.4 152 2.68 3.47 9.0 154 5000 2 99.8 54.3 109 3.19 3.40 10.0 10.2 5500	3 88.6 48.8 130 3.47 2.68 9.0 111 5000 21 3 88.6 48.8 130 3.47 2.68 9.0 111 5000 21 1 94.5 52.4 152 2.68 3.47 9.0 154 5000 19 2 99.8 54.3 109 3.19 3.40 10.0 102 5500 24	3 88.6 48.8 130 3.47 2.68 9.0 111 5000 21 1 94.5 52.4 152 2.68 3.47 9.0 154 5000 19 2 99.8 54.3 109 3.19 3.40 10.0 102 5500 24

from sklearn.model_selection import train_test_split

```
X = df.drop('price', axis=1)
y = df['price']
```

5 rows × 61 columns

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, random_state=100)

 $X_{\text{train.shape}}$, $X_{\text{test.shape}}$, $y_{\text{train.shape}}$, $y_{\text{test.shape}}$

```
→ ((143, 60), (62, 60), (143,), (62,))
```

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

 $X_{train_scaled} = pd.DataFrame(scaler.fit_transform(X_train), columns=X_train.columns) \\ X_{test_scaled} = pd.DataFrame(scaler.transform(X_test), columns=X_test.columns)$

X_train_scaled.head()

₹		symboling	wheelbase	carheight	enginesize	boreratio	stroke	compressionratio	horsepower	peakrpm	citympg	 Са
	0	0.6	0.244828	0.265487	0.139623	0.230159	0.525253	0.15000	0.083333	0.551020	0.500000	
	1	1.0	0.272414	0.212389	0.339623	1.000000	0.464646	0.15625	0.395833	0.551020	0.166667	
	2	0.6	0.272414	0.424779	0.139623	0.444444	0.449495	0.15000	0.266667	1.000000	0.361111	
	3	1.0	0.068966	0.088496	0.260377	0.626984	0.247475	0.12500	0.262500	0.346939	0.222222	
	4	0.2	0.610345	0.858407	0.260377	0.746032	0.484848	0.03125	0.475000	0.387755	0.111111	

5 rows × 60 columns

from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import RFE

lm = LinearRegression()

rfe = RFE(estimator=lm, n_features_to_select=15)

rfe = rfe.fit(X_train_scaled, y_train)

selected_cols = X_train_scaled.columns[rfe.support_]
selected_cols

X_train_rfe = X_train_scaled[selected_cols]

y_train = y_train.reset_index(drop=True)

import statsmodels.api as sm

cylindernumber_two

X_train_sm = sm.add_constant(X_train_rfe)

model = sm.OLS(y_train, X_train_sm).fit()

print(model.summary())

	OLS R	egress	ion R	esults			
Dep. Variable:	p	====== rice	===== R-sq	uared:		0.920	
Model:		0LS	Adj.	R-squared:		0.911	
Method:	Least Squ	ares	F-st	atistic:		105.2	
Date:	Sat, 21 Jun	2025	Prob	(F-statistic):		4.83e-63	
Time:	09:2	5:23	Log-	Likelihood:		-1303.4	
No. Observations:		143	AIC:			2637.	
Df Residuals:		128	BIC:			2681.	
Df Model:		14					
Covariance Type:	nonro	bust					
	coef	std	err	t	P> t	[0.025	0.975
const	-2681 . 9757	1522	 .550	-1.762	0.081	-5694.601	330.649
wheelbase	9345.5364	1728	. 433	5.407	0.000	5925.536	1.28e+04
enginesize	6.605e+04	5717	. 693	11.552	0.000	5.47e+04	7.74e+04
boreratio	-1.224e+04	2243	. 488	-5.457	0.000	-1.67e+04	-7804.384
stroke	-1.063e+04	1935	.359	-5.494	0.000	-1.45e+04	-6803.369
enginelocation_rear	6332.9278	2917	.617	2.171	0.032	559.924	1.21e+04
enginetype_rotor	1.103e+04	1354	.568	8.145	0.000	8353.331	1.37e+04
cylindernumber_five	8604.9276	1291	905	6.661	0.000	6048.672	1.12e+04
cylindernumber_four	8165.8463	1618	.410	5.046	0.000	4963.545	1.14e+04
<pre>cylindernumber_three</pre>	1.4e+04	3068	.240	4.562	0.000	7927.684	2.01e+04
cylindernumber_twelve	e -2.092e+04	3955	.073	-5.288	0.000	-2.87e+04	-1.31e+0

1.103e+04

1354.568

8.145

8353.331

1.37e+04

0.000

CarCompany_bmw CarCompany_peugeot CarCompany_porsche CarCompany_saab	8500.8200	1091.750	7.786	0.000	6340.606	1.07e+04
	-2178.9655	1119.054	-1.947	0.054	-4393.206	35.275
	1.04e+04	1843.467	5.644	0.000	6756.984	1.41e+04
	3941.6876	1391.261	2.833	0.005	1188.840	6694.535
Omnibus: Prob(Omnibus): Skew: Kurtosis:	20.5 0.6 0.7 4.5	000 Jarqui 780 Prob(.			1.912 29.137 4.71e-07 1.64e+17	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 1.25e-32. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

X_train_rfe = X_train_rfe.drop('CarCompany_peugeot', axis=1)

X_train_sm = sm.add_constant(X_train_rfe)
model = sm.OLS(y_train, X_train_sm).fit()
print(model.summary())

OLS Regression Results

===========											
Dep. Variable:	price	R-squared:	0.918								
Model:	0LS	Adj. R-squared:	0.909								
Method:	Least Squares	F-statistic:	110.6								
Date:	Sat, 21 Jun 2025	<pre>Prob (F-statistic):</pre>	2.87e-63								
Time:	09:27:14	Log-Likelihood:	-1305.5								
No. Observations:	143	AIC:	2639.								
Df Residuals:	129	BIC:	2681.								
Df Model:	13										
Covariance Type:	nonrobust										

	coef	std err	t	P> t	[0.025	0.975]
const	-1807.3445	1470.437	-1.229	0.221	-4716.641	1101.952
wheelbase	7423.9684	1434.279	5.176	0.000	4586.212	1.03e+04
enginesize	6.581e+04	5777.814	11.389	0.000	5.44e+04	7.72e+04
boreratio	-1.202e+04	2264.580	-5.306	0.000	-1.65e+04	-7536.458
stroke	-1.025e+04	1946.119	-5.267	0.000	-1.41e+04	-6400.546
enginelocation_rear	5662.5883	2928.413	1.934	0.055	-131.349	1.15e+04
enginetype_rotor	1.073e+04	1359.969	7.889	0.000	8037.985	1.34e+04
cylindernumber_five	8680.7402	1305.215	6.651	0.000	6098.340	1.13e+04
cylindernumber_four	7561.7451	1605.488	4.710	0.000	4385.248	1.07e+04
cylindernumber_three	1.304e+04	3061.069	4.260	0.000	6983.628	1.91e+04
cylindernumber_twelve	-2.079e+04	3997.090	-5.201	0.000	-2.87e+04	-1.29e+04
cylindernumber_two	1.073e+04	1359.969	7.889	0.000	8037.985	1.34e+04
CarCompany_bmw	8612.3999	1101.978	7.815	0.000	6432.110	1.08e+04
CarCompany_porsche	1.019e+04	1859.922	5.478	0.000	6508.483	1.39e+04
CarCompany_saab	4230.7827	1398.202	3.026	0.003	1464.405	6997.161
Omnihus:	22	726 Durhir	======== n_Watson:		1 013	

Omnibus:	22.726	Durbin-Watson:	1.913
Prob(Omnibus):	0.000	Jarque-Bera (JB):	35.142
Skew:	0.808	Prob(JB):	2.34e-08
Kurtosis:	4.813	Cond. No.	1.39e+17

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 1.75e-32. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

y_train_pred = model.predict(X_train_sm)
residuals = y_train - y_train_pred
import seaborn as sns

import matplotlib.pyplot as plt
sns.histplot(residuals, kde=True)
plt.title("Residuals Distribution")
plt.xlabel("Error")
plt.ylabel("Frequency")
plt.show()

