

Sentiment Analysis

감정사전 & 감정점수 만들기

김형준 Analytic Director / (주) 퀀트랩 / kim@mindscale.kr

오늘의 목표

- 감정 사전 만들기
- 감정 점수 만들기
- 상관관계 이해하기
- 회귀분석 이해하기
- 모형평가 이해하기

왜 감정분석을 하는가?

설문지의 단점

- 1) 조사 비용 발생
- 2) 미리 정해진 문항만 측정 가능
- 3) 사회적 바람직성 등 편향 발생

감정분석

텍스트에서 감정 단어를 추출하여 점수화

- 1) 기계 학습 (Machine Learning)
- 2) 단어 사전 기반

사전 기반 분석

장점

- 사용하기 간편

단점

- 주제에 따라 사전이 달라 짐
- 동음이의어 처리 힘듦 e.g) bank

기계학습 기반 분석

장점

- 높은 정확도

단점

- Over-fitting 해결
- 많은 데이터 필요
- 예) 나이브 베이즈 / 최대 엔트로피 / 서포트벡터머신 /

랜덤 포레스트 / 토픽 모델

감정 분석 예시

감정 분석 예시

사전 지식

감정분석: 문장에 사용된 단어로 감정을 예측

예: "이 영화는 좀 길지만 재미있고 신난다"

- 길다 -> 부정
- 재미있다 -> 긍정
- 신나다 -> 긍정

예측 분석

예측분석

선형회귀분석

SVM

RandomForest

Deep Learning

회귀분석(선형(직선) 모형)

예시

- 키가 1cm 증가할 때마다 몸무게가 1kg 증가
- 월 소득이 100만원 증가할 때마다 몸무게가 1kg 감소
- 부정단어가 1개 증가할 때 마다 평점 1점 감점
- 긍정단어가 1개 증가할 때 마다 평점 1점 증가

상관관계

[1] 1

[1] 0.4885042

상관관계

x가 증가(혹은 감소)할때 y가 선형적으로 증가(혹은 감소)하는 정도

scale

키가 만약 cm라면, 키가 1cm 증가하면 몸무게는 1kg증가 키가 만약 mm라면, 키가 1mm 증가하면 몸무게는 0.1kg 증가

-> 표준화해야 한다

상관관계 및 회귀분석

ESTIMATE STD. ERROR T VALUE PR(>|T|)

(Intercept)	-8.29	11.74	-0.71	0.49
heights	0.49	0.07	7.56	0.00

cor(weights, heights)

[1] 0.8194181

키가 1cm 증가하면 몸무게는 .49kg 증가

X가 2개라면?

[1] 0.8194181

[1] 0.09818667

다중회귀분석

	ESTIMATE	STD. ERROR	T VALUE	PR(> T)
(Intercept)	-27.49	12.81	-2.15	0.04
iq	0.15	0.06	2.68	0.01
heights	0.52	0.06	8.72	0.00

회귀분석의 문제

- 변수가 많아지면 과적합(overfitting)이 발생
- 회귀계수가 극단적으로 커지거나 작아짐
- 예측력이 떨어짐
- 과적합을 막아주는 방법이 필요

Over-fitting

Over-fitting

Over-fitting을 피하는 방법들

- Penality of Model Complexity (MSE 보정)
- Regulization (Lasso, Ridge, Elastic Net)
- Bayesian
- Drop Out, Bagging, Feature Bagging

과적합을 막는 법

- 라쏘(lasso): 작은 회귀계수를 0으로 만듦
- 릿지(ridge): 전반적으로 회귀계수를 줄여줌
- 엘라스틱넷(elastic net): 라쏘 + 릿지
- 감정분석에서 라쏘를 쓰면 감정 단어만 추출됨

Lasso Vs Ridge

Lasso Vs Ridge

Over-fitting

예측력

MSE(Mean of Square Error)

$$MSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

정확도(Accracy)

		실제 라벨		
		긍정 문서	부정 문서	
모형이 예측한 라벨	긍정 문서	True	False	
		Positive	Positive	
	부정 문서	False	True	
		Negatives	Negatives	

정확도 = (TP + TN) / (TP + FP + TN + FN)

감정분석

Data

아마존 모바일 폰 리뷰 중에서 2,000개만

긍정평 1000개, 부정평 1000개

5. 예제 데이터 불러오기

```
mobile <- read.csv('mobile2014.csv', stringsAsFactors = F)</pre>
dim(mobile)
## [1] 2000
names(mobile)
## [1] "X" "Title" "Author" "ReviewID" "Texts"
                                                                "YMD"
## [7] "Sentiment"
table(mobile$Sentiment)
##
##
     0 1
## 1000 1000
                                                                                 26/76
```

6. DocumentTermMatrix 만들기

```
library(tm)

corpus <- Corpus(VectorSource(mobile$Texts))

## 제거할 단어 목록 확인
stopwords()
```

```
##
     [1] "i"
                                                     "myself"
                        "me"
                                       "my"
                                                                    "we"
##
     [6] "our"
                                       "ourselves"
                                                     "you"
                        "ours"
                                                                    "your"
##
    [11] "yours"
                        "yourself"
                                       "yourselves"
                                                     "he"
                                                                    "him"
##
    [16] "his"
                        "himself"
                                       "she"
                                                     "her"
                                                                   "hers"
##
                        "it"
                                                     "itself"
                                                                    "they"
    [21] "herself"
                                       "its"
##
                                                     "themselves"
    [26] "them"
                        "their"
                                       "theirs"
                                                                   "what"
##
    [31] "which"
                                       "whom"
                                                     "this"
                                                                    "that"
                        "who"
##
                        "those"
                                                     "is"
                                                                    "are"
    [36] "these"
                                       "am"
##
    [41] "was"
                                                     "been"
                                                                    "being"
                        "were"
                                       "be"
##
    [46] "have"
                        "has"
                                       "had"
                                                     "having"
                                                                    "do"
##
    [51] "does"
                        "did"
                                       "doing"
                                                     "would"
                                                                    "should"
                                                                                             27/76
```

6. DocumentTermMatrix 만들기

```
## Warning in weighting(x): empty document(s): 1948
```

dtm

```
## <<DocumentTermMatrix (documents: 2000, terms: 8446)>>
## Non-/sparse entries: 46461/16845539
## Sparsity : 100%
## Maximal term length: 132
## Weighting : term frequency - inverse document frequency (normalized) (tf-idf)
```

```
library(glmnet)
```

```
X <- as.matrix(dtm)
Y <- mobile$Sentiment</pre>
```

```
res.lm <- glmnet(X, Y, family = "binomial", lambda = 0)</pre>
```

```
coef.lm <- coef(res.lm)[,1]
pos.lm <- coef.lm[coef.lm > 0]
neg.lm <- coef.lm[coef.lm < 0]
pos.lm <- sort(pos.lm, decreasing = T)
neg.lm <- sort(neg.lm, decreasing = F)</pre>
```

pos.lm[1:20]

##	aboutbattery	absorption	accustomed	accommodate	allthe	
##	1085.0779	971.8079	742.7851	736.4887	680.7802	
##	anywhereno	allconclusion	afterthought	beautifully	agt	
##	673.7496	658.7255	501.8829	491.0924	438.5957	
##	accidentially	blog	alongside	anymorei	acclaimed	
##	370.4009	359.6093	346.5438	279.9606	254.9961	
##	amps	advocate	brightnesscall	accelerometer	accurate	
##	253.5091	229.8871	202.4650	197.5923	197.3163	

```
neg.lm[1:20]
```

```
##
                accomplish
       adverse
                               apology
                                            boasts
                                                       applaud
                                                                   artists
##
     -337.1834
                -330.4808
                             -298.6760
                                         -256.1969
                                                     -253.5539
                                                                 -217.8384
##
     addresses
                     ainol
                               amazoni
                                                                    blocks
                                                       arrange
                                          accesses
##
     -216.7636
                 -213.2872
                             -202.4802
                                         -191.3860
                                                     -181.3013
                                                                 -179.3567
##
     averaging comparisons
                             adddelete
                                                                  admitted
                                            annoys
                                                          aarp
##
     -177.2297
                -176.4454
                             -173.5037
                                        -168.7699
                                                     -167.4885
                                                                 -163.6020
##
                amazonit
           aka
##
     -156.0933
                -154.2843
```

plot(res.lasso)


```
plot(res.lasso$glmnet.fit, xvar = "lambda")
```



```
options(scipen = 100)
coef.lasso <- coef(res.lasso, s = "lambda.min")[,1]
pos.lasso <- coef.lasso[coef.lasso > 0]
neg.lasso <- coef.lasso[coef.lasso < 0]
pos.lasso <- sort(pos.lasso, decreasing = T)
neg.lasso <- sort(neg.lasso, decreasing = F)</pre>
```

pos.lasso[1:20]

##	news	sharpness	section im	plementation	amoled	
##	38.577474	19.924116	17.276675	14.786139	14.263770	
##	youve	autofocus	great	whatsapp	monster	
##	11.408438	10.652642	9.939520	9.620485	8.232943	
##	love responsiveness		swiping	kitkat	eyes	
##	7.835211	6.849303	6.713517	6.351620	5.576048	
##	pro	pair	fits	perfect	easy	
##	5.325080	5.165146	4.919954	4.671299	4.651886	

neg.lasso[1:20]

```
##
                               promising consistently
      addresses
                     pushed
                                                       repeatedly
##
     -9.274913
                  -8.947030
                               -7.709165
                                            -6.557389
                                                        -5.723836
##
        return
                 versions
                                               wakes
                                                            utter
                                   money
##
     -5.028760
                  -4.801251
                               -4.104239
                                            -4.060679
                                                        -3.854104
##
         elses
                       back
                                     zip
                                            contacted
                                                         swindled
##
     -3.561807
                  -3.413399
                               -3.284574
                                            -3.154823
                                                        -3.122682
##
         sucks
                       july
                              horrible
                                                 slow
                                                         received
##
     -3.117836
                  -3.014597
                               -2.965226
                                            -2.871529
                                                        -2.654189
```

plot(res.ridge)


```
plot(res.ridge$glmnet.fit, xvar = "lambda")
```



```
coef.ridge <- coef(res.ridge, s = "lambda.min")[,1]
pos.ridge <- coef.ridge[coef.ridge > 0]
neg.ridge <- coef.ridge[coef.ridge < 0]
pos.ridge <- sort(pos.ridge, decreasing = T)
neg.ridge <- sort(neg.ridge, decreasing = F)</pre>
```

```
pos.ridge[1:20]
```

```
##
                                yourselfi
     anywhereno brightnessto
                                                  wifiq
                                                             whistle
##
       2.739847
                    2.738926
                                 2.738648
                                               2.738635
                                                            2.738580
##
      waistband commentsapps
                                 vertical
                                             thatbottom
                                                              copied
##
       2.738508
                    2.738440
                                 2.738419
                                               2.738313
                                                            2.738093
##
      speedcons
                   spacealso
                                 smallest
                                                 cutter
                                                            sleeping
##
       2.738082
                    2.737937
                                 2.737801
                                               2.737719
                                                            2.737640
##
     screenvery
                   detailing
                                   puffin
                                                 doable
                                                           phonetips
##
       2.737409
                    2.737377
                                  2.737238
                                               2.737078
                                                            2.737075
```

```
neg.ridge[1:20]
```

```
##
                                                     engage discontinuing
        slowness
                      limiting
                                       groove
##
       -1.500915
                     -1.500909
                                    -1.500890
                                                  -1.500862
                                                                 -1.500859
##
         apology
                                  disgruntled
                                                explanation
                                                              hypothesize
                        carpet
##
       -1.449195
                     -1.448927
                                    -1.448633
                                                  -1.448471
                                                                 -1.448232
##
       whomever
                       voltage
                                          toi
                                                    jumping
                                                                     scuff
##
       -1.448227
                     -1.448198
                                    -1.448162
                                                  -1.448128
                                                                 -1.448125
##
     returnclaim
                       loosely
                                  refurbishes
                                                    reflect
                                                                    paused
##
       -1.448084
                     -1.448064
                                    -1.448048
                                                  -1.448016
                                                                 -1.447995
```

plot(res.elastic)


```
plot(res.elastic$glmnet.fit, xvar = "lambda")
```



```
coef.elastic <- coef(res.elastic, s = "lambda.min")[,1]
pos.elastic <- coef.elastic[coef.elastic > 0]
neg.elastic <- coef.elastic[coef.elastic < 0]
pos.elastic <- sort(pos.elastic, decreasing = T)
neg.elastic <- sort(neg.elastic, decreasing = F)</pre>
```

pos.elastic[1:20]

##	news	amoled	sharpness	intrusive	implementation	
##	27.487451	10.570031	10.333007	9.966970	8.992294	
##	great	youve	love	kitkat	eyes	
##	6.975481	6.270957	5.106715	4.591255	4.382721	
##	whatsapp	perfect	easy	fits	remote	
##	4.193411	3.499910	3.440100	3.432532	3.380695	
##	pro	impressed	windows	fast	loves	
##	3.188608	3.149368	3.116624	3.035995	2.988360	

neg.elastic[1:20]

```
##
        pushed
                  addresses
                                   wakes
                                              return
                                                        promising
##
     -7.409465
                  -4.587790
                               -4.123647
                                           -4.070836
                                                        -3.998956
    repeatedly consistently
##
                                                        contacted
                                                back
                                  money
##
     -3.940290
                  -3.238517
                               -3.099030
                                            -2.986000
                                                        -2.903110
##
         sucks
                      utter
                              versions
                                            horrible
                                                             told
##
     -2.556260
                 -2.391758
                               -2.374289
                                           -2.330850
                                                        -2.312851
##
        refund
                       slow
                                 wouldnt
                                           terrible
                                                         received
##
     -2.273095
                  -2.250336
                               -2.126634
                                           -2.101997
                                                        -2.027309
```

14. 감정사전을 이용한 감정분석

library(tm.plugin.sentiment)

```
senti.lm <- polarity(dtm, names(pos.lm), names(neg.lm))
senti.lasso <- polarity(dtm, names(pos.lasso), names(neg.lasso))
senti.ridge <- polarity(dtm, names(pos.ridge), names(neg.ridge))
senti.elastic <- polarity(dtm, names(pos.elastic), names(neg.elastic))</pre>
```

14. 감정사전을 이용한 감정분석

```
senti.lm <- polarity(dtm, names(pos.lm), names(neg.lm))
senti.lasso <- polarity(dtm, names(pos.lasso), names(neg.lasso))
senti.ridge <- polarity(dtm, names(pos.ridge), names(neg.ridge))
senti.elastic <- polarity(dtm, names(pos.elastic), names(neg.elastic))</pre>
```

```
senti.lm.b <- ifelse(senti.lm > 0, 1, 0)
senti.lasso.b <- ifelse(senti.lasso > 0, 1, 0)
senti.ridge.b <- ifelse(senti.ridge > 0, 1, 0)
senti.elastic.b <- ifelse(senti.elastic > 0, 1, 0)
```

library(caret)

confusionMatrix(senti.lm.b, mobile\$Sentiment)

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
##
   0 962 535
##
     1 38 464
##
##
                Accuracy: 0.7134
##
                  95% CI: (0.693, 0.7331)
##
      No Information Rate: 0.5003
##
      P-Value [Acc > NIR] : < 0.0000000000000022
##
##
                   Kappa : 0.4266
##
   Mcnemar's Test P-Value : < 0.0000000000000022
##
##
             Sensitivity: 0.9620
                                                                             55/76
##
             Specificity: 0.4645
```

confusionMatrix(senti.lasso.b, mobile\$Sentiment)

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
##
   0 978 47
##
     1 18 952
##
##
                Accuracy: 0.9674
##
                  95% CI: (0.9587, 0.9748)
##
     No Information Rate: 0.5008
##
      P-Value [Acc > NIR] : < 0.0000000000000022
##
##
                   Kappa : 0.9348
##
   Mcnemar's Test P-Value: 0.0005147
##
##
             Sensitivity: 0.9819
                                                                             56/76
##
             Specificity: 0.9530
```

confusionMatrix(senti.ridge.b, mobile\$Sentiment)

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
##
  0 984 20
##
    1 16 979
##
##
              Accuracy: 0.982
##
                95% CI: (0.9752, 0.9874)
##
     No Information Rate: 0.5003
##
     ##
##
                Kappa : 0.964
##
   Mcnemar's Test P-Value: 0.6171
##
##
           Sensitivity: 0.9840
                                                                   57/76
##
            Specificity: 0.9800
```

confusionMatrix(senti.elastic.b, mobile\$Sentiment)

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
##
   0 977 61
##
     1 18 934
##
##
                Accuracy: 0.9603
##
                  95% CI: (0.9508, 0.9684)
##
     No Information Rate: 0.5
##
      P-Value [Acc > NIR] : < 0.0000000000000022
##
##
                   Kappa : 0.9206
##
   Mcnemar's Test P-Value: 0.000002297
##
##
             Sensitivity: 0.9819
                                                                             58/76
##
             Specificity: 0.9387
```

```
mobile.test <- read.csv("mobile2014 test.csv", stringsAsFactors = F)</pre>
dim(mobile.test)
## [1] 1000
names(mobile.test)
## [1] "X" "Title" "Author" "ReviewID" "Texts"
                                                                "YMD"
## [7] "Sentiment"
table(mobile.test$Sentiment)
##
##
    0 1
## 500 500
                                                                                 59/76
```

```
## Warning in weighting(x): empty document(s): 883
```

```
## Warning in weighting(x): unreferenced term(s): downloading aah aaps
## abombada aboutbattery aboutprice abroad abruptly absolutamente absulotly
## accelerometer accent accepting accessed accesses accessibility
## accessoriesi accessoriesin accidentially acclaimed acclimating accomplish
## accomplishing accordinglyupgrading accounts accurate accurateif
## accurateremote accustomed ace achieve aclarar acquainted acted action
## activating activitate activity actuall actualmente acurate adapt adapted
```

```
senti.lm.test <- polarity(dtm.test, names(pos.lm), names(neg.lm))
senti.lasso.test <- polarity(dtm.test, names(pos.lasso), names(neg.lasso))
senti.ridge.test <- polarity(dtm.test, names(pos.ridge), names(neg.ridge))
senti.elastic.test <- polarity(dtm.test, names(pos.elastic), names(neg.elastic))</pre>
```

```
senti.lm.b.test <- ifelse(senti.lm.test > 0, 1, 0)
senti.lasso.b.test <- ifelse(senti.lasso.test > 0, 1, 0)
senti.ridge.b.test <- ifelse(senti.ridge.test > 0, 1, 0)
senti.elastic.b.test <- ifelse(senti.elastic.test > 0, 1, 0)
```

confusionMatrix(senti.lm.b.test, mobile.test\$Sentiment)

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
##
   0 445 301
     1 55 198
##
##
##
                Accuracy: 0.6436
##
                  95% CI: (0.6131, 0.6734)
##
      No Information Rate: 0.5005
##
      P-Value [Acc > NIR] : < 0.0000000000000022
##
##
                   Kappa : 0.2869
##
   Mcnemar's Test P-Value : < 0.0000000000000022
##
##
             Sensitivity: 0.8900
                                                                              63/76
##
             Specificity: 0.3968
```

confusionMatrix(senti.lasso.b.test, mobile.test\$Sentiment)

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
##
   0 447 86
     1 45 411
##
##
##
                Accuracy: 0.8675
##
                  95% CI: (0.8448, 0.8881)
##
      No Information Rate: 0.5025
##
      P-Value [Acc > NIR] : < 0.0000000000000022
##
##
                   Kappa : 0.7352
##
   Mcnemar's Test P-Value: 0.0004744
##
##
             Sensitivity: 0.9085
                                                                             64/76
##
             Specificity: 0.8270
```

confusionMatrix(senti.ridge.b.test, mobile.test\$Sentiment)

```
## Confusion Matrix and Statistics
##
   Reference
##
## Prediction 0 1
##
   0 444 85
##
     1 56 414
##
##
                Accuracy: 0.8589
##
                  95% CI: (0.8357, 0.8799)
##
      No Information Rate: 0.5005
##
      P-Value [Acc > NIR] : < 0.0000000000000002
##
##
                   Kappa : 0.7177
##
   Mcnemar's Test P-Value: 0.01837
##
##
             Sensitivity: 0.8880
                                                                             65/76
##
             Specificity: 0.8297
```

confusionMatrix(senti.elastic.b.test, mobile.test\$Sentiment)

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
##
   0 454 82
##
     1 39 416
##
##
                Accuracy: 0.8779
##
                  95% CI: (0.8559, 0.8976)
##
      No Information Rate: 0.5025
##
      P-Value [Acc > NIR] : < 0.0000000000000022
##
##
                   Kappa : 0.7559
##
   Mcnemar's Test P-Value: 0.0001344
##
##
             Sensitivity: 0.9209
                                                                             66/76
##
             Specificity: 0.8353
```

```
X.test <- as.matrix(dtm.test)
senti.lm.test.coef <- predict(res.lm , newx = X.test)
senti.lasso.test.coef <- predict(res.lasso, newx = X.test, s = "lambda.min")
senti.ridge.test.coef <- predict(res.ridge, newx = X.test, s = "lambda.min")
senti.elastic.test.coef <- predict(res.elastic, newx = X.test, s = "lambda.min")</pre>
```

```
senti.lm.b.test.coef <- ifelse(senti.lm.test.coef > 0, 1, 0)
senti.lasso.b.test.coef <- ifelse(senti.lasso.test.coef > 0, 1, 0)
senti.ridge.b.test.coef <- ifelse(senti.ridge.test.coef > 0, 1, 0)
senti.elastic.b.test.coef <- ifelse(senti.elastic.test.coef > 0, 1, 0)
```

confusionMatrix(senti.lm.b.test.coef, mobile.test\$Sentiment)

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
##
  0 363 111
##
    1 137 389
##
##
              Accuracy: 0.752
##
                95% CI: (0.724, 0.7785)
##
     No Information Rate: 0.5
##
     ##
##
                Kappa : 0.504
##
   Mcnemar's Test P-Value: 0.1124
##
##
            Sensitivity: 0.7260
                                                                   69/76
##
            Specificity: 0.7780
```

confusionMatrix(senti.lasso.b.test.coef, mobile.test\$Sentiment)

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
##
  0 459 72
##
    1 41 428
##
##
              Accuracy: 0.887
##
               95% CI: (0.8657, 0.906)
##
     No Information Rate: 0.5
##
     ##
##
                Kappa : 0.774
##
   Mcnemar's Test P-Value: 0.00477
##
##
           Sensitivity: 0.9180
                                                                   70/76
##
           Specificity: 0.8560
```

confusionMatrix(senti.ridge.b.test.coef, mobile.test\$Sentiment)

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
##
  0 417 67
##
    1 83 433
##
##
              Accuracy: 0.85
##
                95% CI: (0.8263, 0.8716)
##
     No Information Rate: 0.5
##
     ##
##
                Kappa : 0.7
##
   Mcnemar's Test P-Value: 0.2207
##
##
           Sensitivity: 0.8340
                                                                   71/76
##
            Specificity: 0.8660
```

confusionMatrix(senti.elastic.b.test.coef, mobile.test\$Sentiment)

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
##
   0 464 68
##
     1 36 432
##
##
                Accuracy: 0.896
##
                  95% CI: (0.8754, 0.9142)
##
     No Information Rate: 0.5
##
      P-Value [Acc > NIR] : < 0.0000000000000022
##
##
                   Kappa : 0.792
##
   Mcnemar's Test P-Value: 0.002367
##
##
             Sensitivity: 0.9280
                                                                             72/76
##
             Specificity: 0.8640
```

```
confusionMatrix(senti.lm.b, mobile$Sentiment)$overall[1]
## Accuracy
## 0.7133567
confusionMatrix(senti.lm.b.test, mobile.test$Sentiment)$overall[1]
## Accuracy
## 0.6436436
confusionMatrix(senti.lm.b.test.coef, mobile.test$Sentiment)$overall[1]
## Accuracy
##
      0.752
```

```
confusionMatrix(senti.lasso.b, mobile$Sentiment)$overall[1]
## Accuracy
## 0.9674185
confusionMatrix(senti.lasso.b.test, mobile.test$Sentiment)$overall[1]
## Accuracy
## 0.867543
confusionMatrix(senti.lasso.b.test.coef, mobile.test$Sentiment)$overall[1]
## Accuracy
##
      0.887
```

```
confusionMatrix(senti.ridge.b, mobile$Sentiment)$overall[1]
## Accuracy
## 0.981991
confusionMatrix(senti.ridge.b.test, mobile.test$Sentiment)$overall[1]
## Accuracy
## 0.8588589
confusionMatrix(senti.ridge.b.test.coef, mobile.test$Sentiment)$overall[1]
## Accuracy
##
       0.85
```

```
confusionMatrix(senti.elastic.b, mobile$Sentiment)$overall[1]
## Accuracy
## 0.9603015
confusionMatrix(senti.elastic.b.test, mobile.test$Sentiment)$overall[1]
## Accuracy
## 0.8779011
confusionMatrix(senti.elastic.b.test.coef, mobile.test$Sentiment)$overall[1]
## Accuracy
##
      0.896
```