Задача А. Компоненты связности

Имя входного файла: components1.in Имя выходного файла: components1.out

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Дан неориентированный невзвешенный граф. Необходимо посчитать количество его компонент связности.

Формат входных данных

В первой строке входного файла содержится одно натуральное число N ($N \leq 100$) — количество вершин в графе. Далее в N строках по N чисел — матрица смежности графа: в i-й строке на j-м месте стоит «1», если вершины i и j соединены ребром, и «0», если ребра между ними нет. На главной диагонали матрицы стоят нули. Матрица симметрична относительно главной диагонали.

Формат выходных данных

Вывести одно целое число — искомое количество компонент связности графа.

Пример

components1.in	components1.out
6	3
0 1 1 0 0 0	
1 0 1 0 0 0	
1 1 0 0 0 0	
0 0 0 0 1 0	
0 0 0 1 0 0	
0 0 0 0 0 0	

Задача В. Лесопосадки

Имя входного файла: baobab.in
Имя выходного файла: baobab.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Дан неориентированный невзвешенный граф. Необходимо определить, является ли он деревом.

Формат входных данных

В первой строке входного файла содержится одно натуральное число N ($N \leq 100$) — количество вершин в графе. Далее в N строках по N чисел — матрица смежности графа: в i-ой строке на j-ом месте стоит 1, если вершины i и j соединены ребром, и 0, если ребра между ними нет. На главной диагонали матрицы стоят нули. Матрица симметрична относительно главной диагонали.

Формат выходных данных

Вывести «YES», если граф является деревом, «NO» иначе.

Примеры

· p · · · · · · p · · ·	
baobab.in	baobab.out
6	NO
0 1 1 0 0 0	
1 0 1 0 0 0	
1 1 0 0 0 0	
0 0 0 0 1 0	
0 0 0 1 0 0	
0 0 0 0 0	
3	YES
0 1 0	
1 0 1	
0 1 0	

Задача С. Долой списывание!

Имя входного файла: bipartite.in
Имя выходного файла: bipartite.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Во время контрольной работы профессор заметил, что некоторые студенты обмениваются записками. Сначала он хотел поставить им всем двойки, но в тот день профессор был добрым, а потому решил разделить студентов на две группы: списывающих и дающих списывать, и поставить двойки только первым.

У профессора записаны все пары студентов, обменявшихся записками. Требуется определить, сможет ли он разделить студентов на две группы так, чтобы любой обмен записками осуществлялся от студента одной группы студенту другой группы.

Формат входных данных

В первой строке входного файла записаны два числа N и M — количество сту- порядке. дентов и количество пар студентов, обменивающихся записками ($1 \le N \le 100$, $0\leqslant M\leqslant rac{N(N-1)}{2})$. Далее в M строках расположены описания пар студентов: два числа, соответствующие номерам студентов, обменивающихся записками (нумерация студентов идёт с 1). Каждая пара студентов перечислена не более одного раза.

Формат выходных данных

еобходимо вывести ответ на задачу профессора. Если возможно разделить студентов на две группы — выведите YES, иначе выведите NO.

Примеры

bipartite.in	bipartite.out
3 2	YES
1 2	
2 3	
3 3	NO
1 2	
2 3	
1 3	

Задача D. Компоненты связности - 2

Имя входного файла: components2.in Имя выходного файла: components2.out

Ограничение по времени: 3 секунды Ограничение по памяти: 64 мегабайта

Дан неориентированный невзвешенный граф. Необходимо посчитать количество его компонент связности и вывести их.

Формат входных данных

Во входном файле записано два числа N и M (0 < $N \leq 100\,000$), $0 \leq M \leq 100\,000$ $100\,000$). В следующих M строках записаны по два числа i и j $(1 \le i, j \le N)$, которые означают, что вершины i и j соединены ребром.

Формат выходных данных

В первой строчке выходного файла выведите количество компонент связности. Далее выведите сами компоненты связности в следующем формате: в первой строке количество вершин в компоненте, во второй — сами вершины в произвольном

Пример

components2.in	components2.out
6 4	3
3 1	3
1 2	1 2 3
5 4	2
2 3	4 5
	1
	6
1	

Задача Е. Поиск цикла

Имя входного файла: cycle.in Имя выходного файла: cycle.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дан ориентированный невзвешенный граф без кратных рёбер. Необходимо определить, есть ли в нём цикл.

Формат входных данных

В первой строке входного файла находятся два натуральных числа N и M $(1 \leqslant N \leqslant 100\,000,\ M \leqslant 100\,000)$ — количества вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин.

Формат выходных данных

Если в графе нет цикла, то вывести «NO». Иначе в первой строке выведите слово «YES», во второй строке выведите количество вершин в цикле, в третьей строке выведите через пробел вершины, входящие в цикл, в порядке их следования.

Примеры

cycle.out
YES
2
1 2
NO

Берендеевы Поляны Параллель С.ру - день 10, 8 августа 2012

Задача F. TopSort

Имя входного файла: topsort.in
Имя выходного файла: topsort.out
Ограничение по времени: 3 секунды
Ограничение по памяти: 64 мегабайта

Дан ориентированный невзвешенный граф. Необходимо его топологически отсортировать.

Формат входных данных

В первой строке входного файла даны два натуральных числа N и M ($1\leqslant N\leqslant 10^5, 1\leqslant M\leqslant 10^5$) — количество вершин и рёбер в графе соответственно. Далее в M строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Формат выходных данных

Вывести любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, требуется вывести -1.

Примеры

topsort.in	topsort.out
6 6	4 6 3 1 2 5
1 2	
3 2	
4 2	
2 5	
6 5	
4 6	
3 3	-1
1 2	
2 3	
3 1	