

1000

Figure 1 Conventional Noise Feedback Coding

Figure 1A Noise Feedback Coding Using Composite Short-Term and Long-Term Predictors and Composite Short-Term and Long-Term Filter

2000

Figure 2 An alternative form of conventional Noise Feedback Coding

Figure 2A Noise Feedback Coding Using Composite Predictor and
Composite Noise Filter

3000

Figure 3 Noise Feedback Coding with short-term and long-term prediction but only short-term noise spectral shaping

Figure 4 Nested two-stage Noise Feedback Coding structure with short-term and long-term prediction and short-term and long-term noise spectral shaping

5000

Figure 5 An alternative nested two-stage Noise Feedback Coding structure with short-term and long-term prediction and short-term and long-term noise spectral shaping

FIG. 5A

Figure 6 Another alternative nested two-stage Noise Feedback Coding structure with short-term and long-term prediction and short-term and long-term noise spectral shaping

0003-56.vsd/23

FIG. 6A

FIG. 6B

Figure 7 Encoder of a nested two-stage noise feedback codec (TSNFC)

Figure 8 Decoder corresponding to the TSNFC encoder in Fig. 7

Figure 9 Short-term predictive analysis and quantization (block 10)

Figure 10 LSP quantizer (block 16)

Figure 11 Long-term predictive analysis and quantization (block 20)

Figure 12 Prediction residual quantizer (block 30)

FIG. 13A

FIG. 13B

The portion of the codec structure that is used in prediction residual VQ codebook search of the two-stage noise feedback codec of Fig. 5.

FIG. 13C

FIG. 13D

FIG. 13E

1400

5028a

1402

ZERO-INPUT
Response Filter
Structure $qzi(n)$

1306

Predictor
Logic $d(n)$

Restorer

ZERO-STATE
Response Filter
Structure

1404

1414

1400

1412

Preferred
Codevector
Selector

1410

Error Energy
Calculator $qzs(n)$

FIG. 14A

FIG. 14B

1402a

Filter structure during the calculation of the zero-input response of $q(n)$ of Fig. 13C.

FIG. 14C

FIG. 14D

000000000000000000000000

FIG. 14E

FIG. 15A

Filter structure during the calculation of the zero-state response of $q(n)$ in Fig. 13C.

FIG. 15B

A filter structure equivalent to the structure in Fig. 15A.

FIG. 16A

FIG. 16B

FIG. 17

FIG. 18

Computer System 1900

FIG. 19