得分	教师签名	批改日期

课程编号_____1800450001______

深圳大学实验报告

课程名称:	大学物理实验(二)					
实验名称:	于	涉法测力	热膨胀	系数_		
学 院:	计算机	L与软件	学院			
指导教师 <u>:</u>		高阳				
报告人:		组号 :		19		_
学号202	0281061	实验地	点	211	-	
实验时间:	2021	年	12	_月_	1	_日
提交时间.						

1

一、实验目的

- 1. 了解迈克尔逊干涉仪的基本原理。
- 2. 采用干涉法测量试件的线性热膨胀系数。

二、实验原理

(一) 热膨胀系数

光学仪器常常需要在高温或低温的条件下使用。当光学仪器在不同温度下使用时,其光学元件材料的热学性质,包括热膨胀系数和折射率温度系数,会直接影响它的光学性质。线性热膨胀系数为固体物质的温度改变 1° C时,单位长度的伸长量。

在实际的测量当中,通常测得的是固体材料在室温 T_1 下的长度 L_1 及其在温度 T_1 至 T_2 之间的伸长量 ΔL_{21} 就可以得到热膨胀系数,这样得到的线性热膨胀系数时平均线性热膨胀系数:

热膨胀系数 β 的定义:

$$\alpha \approx \frac{dL}{L \times dT} = \frac{L_2 - L_1}{L_1(T_2 - T_1)} = \frac{\Delta L_{21}}{L_1(T_2 - T_1)}$$

(二)迈克尔逊干涉仪 光路情况:

分束镜将入射光分成两束,一束反射至反射镜 M1,另一束投射至反射镜 M2,在观测者看来,等效于在前方有两个光源 S1 和 S2。

- S1和 S2时相关光源,在屏形成干涉条纹。
- (三)等倾干涉条纹
- 1. 特征
- ①倾角相同的地方构成内疏外密同心圆环
- ② $K = 2dcos\theta/\lambda$, θ 越小, 级数越大
- ③在中心附近, $cos\theta\sim1$,d每改变 $\lambda/2$,条纹就冒出或消失一个

$$\Delta d = N \frac{\lambda}{2}$$

④若平面镜不严格垂直,干涉将兼有等厚和等倾成分,条纹是弯曲的

2. 图像

光程和d及 θ 有关,在d不变时, θ 相同地方形成同一级条纹,所以叫等倾干涉。

(四)干涉法测量线膨胀系数

动镜(反射镜 3)的位移量 ΔL 与干涉条纹变化的级数N成正比,即:

$$\Delta L = N \lambda/2$$

将式(2)带入式(1)得:

$$\alpha = \frac{N\lambda/2}{L_1(T_2 - T_1)}$$

(3)

(2)

三、实验仪器:

迈克尔逊干涉仪

四、实验内容:

- 1. 光路调节
- ①调节反射镜 1、反射镜 2, 使从分束镜过来的入射光斑和从反射镜 3 反射的光斑重合(图 2、图 3);
- ②将扩束镜放置在激光器出口(图 4),仔细调节,毛玻璃屏上将出现干涉条纹(图 5),通过微调反射镜 1 将干涉环调节到毛玻璃屏中便于观察

2. 干涉法测量试件的线性热膨胀系数。

方法①: 记录初始温度 T1,每升高 5℃干涉条纹变化数 N,直至升高到 60 $\,$ ℃;从而根据测得的数据,计算试件的线胀系数。

方法②: 记录初始温度 T1,之后干涉环变化数 N 每达到 50,记录当时的温度 T2,T3,T4, \cdots T8,从而根据测得的数据,计算试件的线胀系数。

注意:

- 1. 反射镜 3(动镜)上粘结的石英玻璃管不能承受较大的扭力和拉力。
- 2、加热炉温度不可设置太高,以免冷却时间过长。
- 3、眼睛不可直视激光束。
- 4、反射镜和分束镜均为易碎器件,注意安全。

组号: ___19___; 姓名____吴艇

温力	度	T_2	T_3	T_4	T_5	T_6	T_7	T_8
$(T_1$	_ =)							
干剂	涉环变化							
数1	N							
试亻	件伸长量							
(nm	1)							