PHY302: Quantum mechanics Tutorial-3

Instructor: Dr. Manabendra Nath Bera

11 September 2020

Problem 1: The Hamiltonian operator for a two-state system is given by

$$H = a(|1\rangle\langle 1| - |2\rangle\langle 2| + |1\rangle\langle 2| + |2\rangle\langle 1|),$$

where a is a number with the dimension of energy. Find the energy eigenvalues and the corresponding energy eigenkets (as linear combinations of $|1\rangle$ and $|2\rangle$).

Problem 2: A two-state system is characterized by the Hamiltonian

$$H = H_{11} |1\rangle \langle 1| + H_{22} |2\rangle \langle 2| + H_{12} [|1\rangle \langle 2| + |2\rangle \langle 1|],$$

where H_{11} , H_{22} , and H_{12} are real numbers with the dimension of energy, and $|1\rangle$, and $|2\rangle$ are eigenkets of some observable ($\neq H$). Find the energy eigenkets and the corresponding energy eigenvalues. Make sure that your answer makes good sense for $H_{12} = 0$. (You need not solve this problem from scratch. The following fact may be used without proof:

$$\mathbf{S} \cdot \mathbf{n} | \mathbf{n}; + \rangle = \frac{\hbar}{2} | \mathbf{n}; + \rangle,$$

with given by

$$|\mathbf{n};+\rangle = \cos\frac{\beta}{2}\left|+\right\rangle + e^{i\alpha}\sin\frac{\beta}{2}\left|-\right\rangle,$$

where β and α are the polar and azimuthal angles, respectively, that characterize ${\bf n}.$

Problem 3: A spin $\frac{1}{2}$ system is known to be in an eigenstate of $\mathbf{S} \cdot \mathbf{n}$ with eigenvalue $\frac{\hbar}{2}$, where \mathbf{n} is a unit vector lying in the xz-plane that makes an angle γ with the positive z-axis.

- (a). Suppose S_x is measured. What is the probability of getting $+\frac{\hbar}{2}$?
- (b). Evaluate the dispersion in S_x , that is,

$$\langle (S_x - \langle S_x \rangle)^2 \rangle$$
.

(For your own peace of mind, check your answers for the special cases $\gamma=0,\frac{\pi}{2}$ and $\pi.$

Problem 4: A certain observable in quantum mechanics has a 3×3 matrix representation as follows:

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

a. Find the normalized eigenvectors of this observable and the corresponding eigenvalues. Is there any degeneracy?

b. Give a physical example where all this is relevant.

Problem 5: Let A and B be observables. Suppose the simultaneous eigenkets of A and B $\{|a',b'\rangle\}$ form a *complete* orthonormal set of base kets. Can we always conclude that

$$[A,B] = 0?$$

If your answer is yes, prove the assertion. If your answer is no, give a counterexample.

Problem 6: Two Hermitian operators anticommute:

$$\{A,B\} = AB + BA = 0.$$

Is it possible to have a simultaneous (that is, common) eigenket of A and B? Prove or illustrate your assertion.