Supervised Learning

Amir Hosein Hadian

Outline

Decision tree

Random Forest

Model evaluation

- How are decision trees used for classification?

- Why are decision tree classifiers so popular?

Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of data partition, D. Input:

- Data partition, *D*, which is a set of training tuples and their associated class labels; attribute_list, the set of candidate attributes;
- Attribute_selection_method, a procedure to determine the splitting criterion that "best"
- partitions the data tuples into individual classes. This criterion consists of a splitting_attribute and, possibly, either a split-point or splitting subset.

Output: A decision tree.

Method:

- create a node N; if tuples in D are all of the same class, C, then
- (3)return N as a leaf node labeled with the class C;
- **if** *attribute_list* is empty **then**
- (5)return N as a leaf node labeled with the majority class in D; // majority voting
- apply Attribute_selection_method(D, attribute_list) to find the "best" splitting_criterion;
- label node *N* with *splitting_criterion*;
- (8) **if** *splitting_attribute* is discrete-valued **and**
- multiway splits allowed then // not restricted to binary trees
- (9) $attribute_list \leftarrow attribute_list - splitting_attribute$; // remove splitting_attribute
- (10) **for each** outcome *j* of *splitting_criterion*
- // partition the tuples and grow subtrees for each partition
- let D_i be the set of data tuples in D satisfying outcome j; // a partition
- (11)
- if D_i is empty then (12)

(15) return N;

- (13)
- attach a leaf labeled with the majority class in *D* to node *N*; (14)**else** attach the node returned by **Generate_decision_tree**(D_i , attribute_list) to node N_i ;
 - endfor

Information Gain

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i), \qquad Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j).$$

$$Gain(A) = Info(D) - Info_A(D)$$
.

Class-Labeled Training Tuples from the *AllElectronics* Customer Database

RID	age	income	student	$credit_rating$	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	$middle_aged$	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	$middle_aged$	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	$middle_aged$	medium	no	excellent	yes
13	$middle_aged$	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$Info(D) = -\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right) = 0.940$$

 $Info_{age}(D) = \frac{5}{14} \times \left(-\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5} \right) + \frac{4}{14} \times \left(-\frac{4}{4} \log_2 \frac{4}{4} \right)$

$$= 0.694$$

$$Gain(age) = Info(D) - Info_{age}(D) = 0.940 - 0.694 = 0.246$$

 $+\frac{5}{14} \times \left(-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}\right)$

Gain(income) = 0.029

Gain(student) = 0.151

 $Gain(credit_rating) = 0.048$

fair

fair

excellent

excellent

yes

yes

yes

yes

high

high

medium

low

no

yes

no

yes

 $SplitInfo_A(D) = -\sum_{j=1}^{r} \frac{|D_j|}{|D|} \times \log_2 \left(\frac{|D_j|}{|D|}\right).$

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo_{A}(D)}.$$

$$SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2\left(\frac{4}{14}\right) - \frac{6}{14} \times \log_2\left(\frac{6}{14}\right) - \frac{4}{14} \times \log_2\left(\frac{4}{14}\right)$$

$$Gain(income) = 0.029.$$

GainRatio(income) = 0.029/1.557 = 0.019.

= 1.557.

Gini Index

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2,$$

$$Gini_A(D) = \frac{|D_1|}{|D|}Gini(D_1) + \frac{|D_2|}{|D|}Gini(D_2).$$

$$\Delta Gini(A) = Gini(D) - Gini_A(D).$$

$$Gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459.$$

$$Gini_{income \in \{low, medium\}}(D)$$

$$= \frac{10}{14}Gini(D_1) + \frac{4}{14}Gini(D_2)$$

$$= \frac{10}{14} \left(1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2 \right)$$

= 0.443 $= Gini_{income} \in \{high\}(D).$

Bagging

Algorithm: Bagging. The bagging algorithm—create an ensemble of classification models for a learning scheme where each model gives an equally weighted prediction.

Input:

- \blacksquare D, a set of d training tuples;
- \blacksquare *k*, the number of models in the ensemble;
- a classification learning scheme (decision tree algorithm, naïve Bayesian, etc.).

Output: The ensemble—a composite model, M*.

Method:

- (1) **for** i = 1 to k **do** // create k models:
- (2) create bootstrap sample, D_i , by sampling D with replacement;
- (3) use D_i and the learning scheme to derive a model, M_i ;
- (4) endfor

To use the ensemble to classify a tuple, X:

let each of the k models classify X and return the majority vote;

ACTUAL VALUES

PREDICTED VALUES Positive (CAT) Negative (DOG) TRUE POSITIVE **FALSE NEGATIVE** Positive (CAT) 6 TYPE II ERROR **FALSE POSITIVE** TRUE NEGATIVE Negative (DOG) 2 11

PREDICTED VALUES

PREDICTED VALUES

Total Predicted positive

0.75

6 + 2

Precision =

TP + FP

PREDICTED VALUES

Recall =
$$\frac{TP}{TP + FN}$$
 = $\frac{Predictions Actually Positive}{Total Actual positive}$ = $\frac{6}{6 + 1}$ = 0.85

F1-Score = 2*
$$\frac{\text{(Recall*Precision)}}{\text{(Recall + Precision)}} = 2* $\frac{(0.85*0.75)}{(0.85+0.75)} = 0.79$$$

