

Types of Dara Structures

- a Primitive and Non-Primitive Data structure
- b Static and Dynamic Data structure.
- c Persistent and ephrneral Dara structure

Non-Primitive Further Divided into two Types.

i). Unear Data Structure

· クラフラ つ つ つ つ つ つ つ つ つ つ つ つ

ii). Non-Linear Data Structure.

Persistent further Divided into three types.

- i) Partialy Persistent.
- ii) Fully Persistent.
- iii). Confluently Persistent.

Data structure Operations:

The following four operations play a major role.

- (1). Traversing: Accessing each record exactly once so that certain items in the record may be processed.
- (2). Searching: Finding the location of the record with a given key value.
- (3). Inserting: Adding a new record to the structure.
- (4) Deleting: Removing a record from the structure.
- (5). Merging: Combining the records in two different sorted files into a single sorted file.
- (6). Sorting: Arranging the record in some logical order Example: Alphabetically according to some

Searching Algorithms:

using to locate specific data among collection of data.

Types of search algorithms with the complexity

1). Linear Search:

A linear search or sequential search is a method for finding an element within a list. It is sequentially checks each element of the list until a match is found or the whole list has been searched.

2). Binary Search:

しししししししししししししししんしんしんしんしんしんしん

In Binary search approach the element is always searched in the middle of a portion of an array.

Binary search can be implemented only on a stored list of Items.

If the element are not sorted already, we need to sort them first.

A stack is a list of elements in which an elements may be inserted or deleted only at one end called the Top of the stack.

Push > Insert elements into stack Delete elements from stack + POP

QUEUES

A Queve is a linear list of elements in Which deletions can take place only at one end called front and insertions can take place only at the other end called the year.

TREES

Trees are non-linear data structure where data are stored or data containing a hierarchical relationship b/w elements.

A binary tree + is defined as a finite set of elements called nodes.

Traversing Bloary Trees

There are three ways of traversing a binary tree T with root R.

Preorder

- 1). Process the root R
- 2). Traverse the left subtree of Rin Preorder
- 3). Traverse the Right subtree in preorder

Inorder

- 1). Traverse left substree
- 2). Process the root R
- 3). Traverse Right substree

Postorder

- 1). Traverse left substree.
- 2). Traverse Right substrel.
- 3). Process the root R.

GRAPH

Graph is a collection of two set v and E where,

 $V \longrightarrow Vertites / Nodes$ $E \longrightarrow Edges$

Graph is a mathematical structures that represent pair-wise relationship between objects where nodes are connected with edges.

Vertex Is nothing but the data element which is also known as Nodes

Edge > Edge is a connection link between

Representation of the graph

- A Adjacency Marrix
- B Adjacency List

ししししししししししししししししんとくとくとくとくとくとく