Assignment #: 1

Thejesh Venkata Arumalla and Sai Shashank Gaddam

September 16, 2022

1. P1 - Atleast one is true

We need to add a new clause which is disjunction of all propositions

 $P_1 \vee P_2 \vee P_3....P_n$

Code execution -

I ran the below commands in ubuntu

• Compiling: g++ p1.cpp -o p1.out

• Enter inputs in p1Input.txt

• Execute: ./p1.out

• Output will be in p1Output.dimacs

• Test it by running: picosat p1Output.dimacs

2. P2 - Atmost one is true

Notations

- Let the clauses of the given CNF ϕ be $C_1, C_2...C_m$, there are m clauses.
- Let the propositions of the given CNF be ϕ be $P_1, P_2, ... P_n$, there are n propositions.
- If the output is a tautology, then I am representing it as $P_1 \vee \neg P_1$
- If the output is a unsatisfiable, then I am representing it as $P_1 \wedge \neg P_1$

Logic

- We have *n* iterations once for each proposition. In each iteration we generate a literal or a constant bool(i.e. 0 or 1).
 - In the i^{th} iteration we set all propositions except P_i to be false i.e. $P_j = 0 \quad \forall j! = i$ and compute a value which is either 1 or 0 or P_i or $\neg P_i$. This is similar to unit substitutions.
 - Basically the above encodes the statement where all propositions except P_i are false, P_i can either be 1 or 0, satisfying the atmost 1 constraint.
- Finally after all iterations we do a disjunction (V) of all the outputs of the above iterations. So final output has only one clause.
- The size of the final output will be O(number of distinct propositions) as in each iteration we atmost get one literal and add it to our clause
- The run time is $O((\text{size of }\phi) \times \text{number of distinct propositions})$

Code execution -

• Compiling: g++ p2.cpp -o p2.out

• Enter inputs in p2Input.txt

• Execute: ./p2.out

• Output will be in p2Output.dimacs

Example test cases -

• Input: $P1 \lor P2 \lor P3 \implies \text{Output: } P1 \lor P2 \lor P3$

• Input: $P1 \land P2 \implies$ Output: unsatisfiable as both needs to be one

• Input: $P1 \lor \neg P1 \implies$ Output: tautology as it always true

3. **P3 - Atmost K**

Notations used in code -

- Let N be the number of propositions, K be the constraint.
- S[i][j] where $i \in [1, N]$ and $j \in [1, K]$ are the additional propositions we introduced in addition to the existing propositions

Logic -

We try to encode the logic as a circuit

I used the research paper by Sinz: https://www.carstensinz.de/papers/CP-2005.pdf It basically introduces new propositions and reduce the overall size of the CNF.

In the paper the author constructs the following circuit

3

The circuit is reduced to a CNF using Tseitin Transformations

$$\begin{array}{ll} (\neg x_1 \vee s_{1,1}) \\ (\neg s_{1,j}) & \text{for } 1 < j \leq k \\ (\neg x_i \vee s_{i,1}) \\ (\neg s_{i-1,1} \vee s_{i,1}) \\ (\neg x_i \vee \neg s_{i-1,j-1} \vee s_{i,j}) \\ (\neg s_{i-1,j} \vee s_{i,j}) \\ (\neg x_i \vee \neg s_{i-1,k}) \\ (\neg x_n \vee \neg s_{n-1,k}) \end{array} \right\} \quad \text{for } 1 < j \leq k$$

The proof is not shared by the author, I tried my best to prove it in the below pdf, Proof:

https://drive.google.com/file/d/1wof9ZK8ozgYWhQqGJr80H5PbMe0NjQkg/view?usp=sharing Code execution -

- Compiling: g++ p3.cpp -o p3.out
- Enter inputs in p3Input.txt
 - The first line in the input is K
 - Then from the next line, we have CNF in dimacs format
- Execute: ./p3.out
- Output will be in p3Output.dimacs

References

- Main formula https://www.carstensinz.de/papers/CP-2005.pdf
- Tseitin Transform, used to derive the formula in the above research paper: https://people.cs.umass.edu/~marius/class/h250/lec2.pdf

4. P4 - Subgraph isomorphism

Notations used in code -

- Let the graphs be H and G
- Let H_n , G_n denote the number of vertices in H and G
- Let H_m , G_m denote the number of edges in H and G.
- Our proposition variables are $X_{i,j}$ where it gets the value 1 if there is a mapping between i^{th} node in H with j^{th} node in G.

Logic -

- Every vertex in H must be mapped to atleast one vertex in G.
 - For every *i* ∈ [1.. H_n] add a clause $(X_{i,1}, X_{i,2}, X_{i,3}, ..., X_{i,G_n})$
- No two vertices in H can be mapped to same vertex in G.
 - For every two vertices $i, j \in [1..H_n]$ graph H and every vertex $k \in [1, 2..G_n]$ graph G add a clause

i.e
$$X_{i,k}$$
 & $X_{j,k}$ can't be true $\implies \neg(X_{i,k} \& X_{j,k}) \implies \neg X_{i,k} \lor \neg X_{j,k}$

- A vertex in H can't be mapped to more than one vertex in G.
 - For every two vertices $k1, k2 \in [1..G_n]$ graph G and every vertex $i \in [1, 2..H_n]$ graph H add a clause

i.e
$$X_{i,k1}$$
 & $X_{i,k2}$ can't be true $\implies \neg(X_{i,k1}$ & $X_{i,k2})$ $\implies \neg X_{i,k1} \lor \neg X_{i,k2}$

• Every edge in H should be mapped to some edge in G \Longrightarrow Every edge in H should **not be mapped to any non edge in G**.

Code execution -

- Compiling: g++ p4.cpp -o p4.out
- Enter graph inputs in graphH.txt for graph H and graphG.txt for graph G
- Execute: ./p4.out
- Output will be in p4Output.dimacs

References-https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/toran/fin.pdf

5. **P5 - Graph partitioning**

Notation -

- There are N vertices and M edges
- Let there be 2 partitions P_0 and P_1
- Let $X_{i,0}$ denote the proposition where it gets the value 1 if the vertex i is in partition P_0 .
- Let $X_{i,1}$ denote the proposition where it gets the value 1 if the vertex i is in partition P_1 .
- We introduce new propositions, one for each edge $[Z_1, Z_2, ... Z_{|E|}]$ where Z_i is 1 if both the vertexes of that edge is across partitions, i.e $Z_k \iff ((\neg X_{i,0} \& X_{j,0}) \lor (X_{i,0} \& \neg X_{j,0}))$

Using sympy module in python to find the CNF of the above formula

```
>>>
>>> to_cnf( (Z >> ( ( A & Not(B) ) | ( Not(A) & B ) )) & (( ( A & Not(B) ) | ( Not(A) & B ) ) >> Z),True )
(A |_B | ~Z) & (A | Z | ~B) & (B | Z | ~A) & (~A | ~B | ~Z)
```

Logic -

- A node can't be in two partitions
- A node should be present in atleast one partition
- The partitions should be equal in size, i.e $\sum_{i=1}^{N} X_{i,0} = \frac{N}{2}$
 - We can modify the atmost K solution
 - * There should be atmost K true propositions **AND** There should be atleast K true propositions
 - * The statement : "There should be atleast K true propositions" is equivalent to "There should be atmost (N-K) false propositions"

* Therefore - There should be atmost K true propositions **AND** There should be atmost (N-K) false propositions

• The number of edges accross partions should be less than or equal to K

- i.e
$$\sum_{i=1}^{|E|} Z_i <= K$$

- we can use the atmost K solution to solve this.

Code execution -

• Compiling: g++ p5.cpp -o p5.out

• Enter graph inputs in graph.txt

- The first line contains the integer K

- The next line contains N,M where N is number of nodes, it must be a multiple of 2, M is the number of edges

- Each of the next M lines contain the edges in the form "x y"

• Execute: ./p5.out

• Output will be in p5Output.dimacs

Test Case used -

The below graph will be unsatisfiable for K=1,2,3 but satisfiable for K>3

