1

10-13

Correlation - linear

attention - non-linear

10-14

a,... an is the attention value of the query q wet keys k. The value a gives the value by which qi and ki are close to each other

Given;

a single querty  $q_i \in \mathbb{R}^d$ N key-value pairs  $R_i \in \mathbb{R}^d$ ,  $V_i \in \mathbb{R}^{dv}$   $| \leq i \leq N$ Let  $V_i = [N_i] \in \mathbb{R}^{dv}$ ,  $V_i = [V_i ... V_i] \in \mathbb{R}^{dv \times N}$ 

Steps. Calculate Similarities  $a_i = S(y_g, k_i)$  between y and  $k_i$ 

- · Softmax normalization  $\alpha_i = \frac{e^{\alpha_i}}{\sum_{i=1}^{N} \alpha_i} > 0 \quad \sum_{i=1}^{N} \alpha_i = 1$
- · Convex connection of  $\underline{\vee}_i$ :

  attention  $(\underline{q}, \underline{K}, \underline{\vee}) = \underbrace{\underline{\mathcal{E}}}_{i=1} \underline{\vee}_i \underline{\vee}_i \underline{\mathcal{E}}_R \underline{\wedge}_v$

People mainly used Scaled dot product

-1 ( Cosine similarity ()

Assuming s(q, k) = k Tq/Jd,

attention  $(9, 5, 7) = 7 \cdot \text{Softmax}(5) \in \mathbb{R}^{dv}$  $d_{v} \times N$   $\underbrace{N \times d}_{N \times 1} \times 1$ 

 $d_{\vee} \times 1$ 

10 - 16 <u>K</u> ∈ R<sup>d</sup>×N

¥ ∈ Rdv×N

softmax (g, k, y) = y . softmax (k a ta)

dv xN

Nxd dx M

Nx M

10 - 17

## 10.2.2 Transformer in Natural Language Processing (NLP)

NP: deals with sequence of words

seg 2 seg model: exploit the relationship between different words in an input sequence

input sequence - seq 2 seq foutput sequence

- · translation
- · Speech recognition, speech synthesis

How to calculate with text?

-> word embedding translate words to numbers

10 - 19

10 - 20

10 - 21

10 - 22

10 - 23

## 10.2.3 Transformer in Computer Vision

Apply self-attention to images

At which level?

(a) at input pixel level:

too many pixels , not efficient

(b) at input patch level:



10 - 25

(c) at the feature level



10 - 26