Lab 4: Properties of Ionic vs Covalent Compounds

Name:		_ Partner(s):	
Date:	Period:		

Purpose:

Use solubility, conductivity, and melting behavior to classify substances as ionic or covalent.

Standards: HS-PS1-1, HS-PS1-2, HS-PS1-3

Materials & Equipment:

- NaCl, CaCl₂, sucrose, paraffin wax, unknown
- Distilled water; 100 mL beakers; stirring rods; conductivity tester/probe
- Hot plate; foil; spatula; tongs; safety gear

Procedure:

- 1. Label samples. Test solubility: add a spatula-tip amount to 10 mL water; stir and record.
- 2. Test conductivity of the solution using a probe/tester; record qualitative level (none/weak/strong).
- 3. Place a small amount of each dry sample on foil and gently heat on a hot plate; note softening/melting (teacher assists).
- 4. Classify each sample as ionic or covalent and justify using your data.

Data & Observations:

Substance	Solubility in Water	Conductivity (aq)	Melting/Softeni ng	Classificatio n	Justification
NaCl					
CaCl ₂					
Sucrose					
Paraffin wax					
Unknown					

Analysis Questions:

- 1. Explain why most ionic compounds conduct in aqueous solution, while most covalent compounds do not.
- 2. Two samples were both soluble but had different conductivity. Explain this difference.
- 3. Your unknown produced mixed results. Propose two follow-up tests to clarify classification.

Conclusion (CER):

- 1. Claim: Classify each substance (including the unknown) as ionic or covalent.
- 2. **Evidence**: Cite your observed solubility, conductivity, and melting/softening behavior.
- 3. **Reasoning**: Explain structure–property links (ions vs molecules, mobile charge carriers, intermolecular forces).
- 4. **Error/Improvement**: Note measurement/technique limits and propose follow-up tests to confirm your classification.

Lab 4: Properties of Ionic vs Covalent Compounds — Rubric

Weights: Only **Analysis & Explanations** (×2) and **Conclusion** (×2) are doubled.

Criterion	1	2	3	4	5
Experimental Technique	Unsafe; frequent errors; mishandles equipment.	Basic technique; corrections needed; some unsafe moments.	Correct technique; minor issues; follows directions.	Careful, consistent technique; minimizes error; appropriate repeats.	Exemplary precision; anticipates pitfalls; models best practices.
Data & Observations	Sparse/incorrect; missing key fields.	Basic records; limited detail; some omissions.	Complete with units/notes; legible tables.	Detailed; compares across properties; anomalies flagged.	Exceptional; justifications embedded; uncertainty acknowledged.
Analysis & Explanations (×2)	Minimal/incorrect; weak links to structure.	Partial reasoning; generic structure–property claims.	Correct reasoning supported by data.	Strong structure–property links; addresses anomalies/errors.	Sophisticated reasoning; mechanism-level explanations; evaluates alternatives.
Conclusion (×2)	No/weak claim; unsupported.	Vague claim; limited evidence.	Clear claim; some evidence cited.	Well-supported claim; multiple data points referenced.	Compelling claim; integrates quantitative /qualitative evidence.
Clarity & Mechanics	Disorganized; frequent grammar/format issues impede understanding.	Partly organized; several errors; hard to follow at times.	Generally clear; minor errors; readable structure.	Well organized; concise; almost no errors; visuals/tables support text.	Polished, professional scientific writing; precise vocabulary; flawless formatting.