Image Enhancement

September 25, 2015

Guillaume Lemaitre

Université de Bourgogne

- ► Use of spatial masks for image processing
- ► Linar and Nonlinear

Different types

- Low-pass filters
- ► High-pass filters
- ► Band-pass filters

- Low-pass filters eliminate or attenuate high frequency component (sharp image details) in the frequency domain, and result in image blurring.
- High-pass filters eliminate and attenuate the low frequency components and result in sharpening edges and other sharp details.
- ► Band-pass filter, remove selected frequency regions between low and high frequencies.

Spatial Filtering Linear filtering

Linear filtering of an image f of size $M \times N$ with a filter mask of size $m \times n$:

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

$$a = (m-1)/2$$
 and $b = (n-1)/2$
for $x = 0, 1, ..., M-1$ and $y = 0, 1, ..., N-1$
Also called convolution (primarily in the frequency do

Also called convolution (primarily in the frequency domain)

Spatial filter Linear filtering

The basic approach is to sum products between the mask coefficients and the intensities of the pixels under the mask at a specific location in the image.

for 3×3 filter:

$$R = w_1 z_1 + w_2 z_2 + ... + w_9 z_9$$

Spatial Filtering Linear filtering

Spatial Filtering Smoothing linear filter

- Replacing the value of every pixel in an image by the average of the gray levels in the neighborhood defined by the filter mask.
- Averaging filter
- Blurring the edges
- ► Two 3 × 3 smoothing (averaging) filter masks. The constant multiplier in front of each mask is equal to the sum of the values of its coefficients, as is required to compute an average.

$\frac{1}{9}$ ×	1	1	1
	1	1	1
	1	1	1

	1	2	1
- ×	2	4	2
	1	2	1

Spatial Filtering Smoothing linear filter

Results of smoothing with square averaging filter masks of sizes $n=3,\ 5,\ 9,\ 15,\ and\ 35,\ respectively.$

Spatial Filtering Smoothing linear filter

(b) Image processed by 15×15 average mask. (c) Result of thresholding

Spatial Filtering Smoothing nonlinear filter

Median filtering also used for noise elimination.

- ► The gray level of each pixel is replaced by the median gray levels in the neighborhood of the pixel instead of the average.
- X-ray image of the circuit board corrupted by salt-and-pepper noise. Noise reduction with 3 × 3 average and median filter, respectively.

Spatial Filtering Sharpening filter

- ▶ To highlight fine detail or to enhance blurred detail.
 - smoothing integration
 - sharpening differentiation

Categories of sharpening filters:

- Derivative operator
- Basic high-pass spatial filter
- ► High-boost filtering

► First-order derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

Second-order derivative

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

- ► First derivative:
 - ► 0 in constant gray segments
 - Non-zero at the onset of steps or ramps
 - Non-zero along ramps
- Second derivative:
 - ▶ 0 in constant gray segments
 - Non-zero at the onset and end of steps or ramps
 - 0 along ramps of constant slope.

- ► First-order derivatives generally produce thicker edges in an image
- Second-order derivatives have a stronger response to fine detail, such as thin lines and isolated points
- First-order derivatives generally have a stronger response to a gray-level step
- Second-order derivatives produce a double response at step changes in gray level
- ► Second-order derivatives have stronger response to a line than to a step and to a point than to a line

Spatial Filtering Sharpening filter - Basic Highpass Spatial filter

► Cross section of frequency domain filter:

► Cross section of spatial domain filter:

Spatial Filtering Sharpening filter - Basic Highpass Spatial filter

► The filter should have positive coefficients near the center and negative in the outer periphery

- ► The sum of the coefficients is 0, indicating that when the filter is passing over regions of almost stable gray levels, the output of the mask is 0 or very small.
- ► Some scaling and/or clipping is involved to compensate for possible negative gray levels after filtering.

- ▶ Isotropic filters, rotation invariant
- Laplacian (linear operator)

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Discrete version:

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

Digital implementation

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4f(x,y)$$

► Two definitions, one is negative of the other

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) & \text{Center of the mask is negative} \\ f(x,y) + \nabla^2 f(x,y) & \text{Center of the mask is positive} \end{cases}$$

► Filtering and recovering the original part:

$$g(x,y) = f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] + 4f(x,y)$$

$$g(x,y) = 5f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] + 4f(x,y)$$

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

Image of the north pole of the moon, laplacian filtered image, laplacian image scaled for display and image enhanced by laplacian, respectively.

Spatial Filtering Sharpening filter - High-boost filter

- ▶ Unsharp masking : $f_s(x,y) = f(x,y) \bar{f}(x,y)$
- ► High-pass filtered image = original low-pass filtered image.
- ► Consider *A* as an amplification factor

$$High-pass = A.original-low-pass(blurred)$$

= $(A-1).original+original-low-pass$
= $(A-1).original+high-pass$

- ► A =1 -> Standard high-pass filter
- ightharpoonup A >1 -> Enhanced image depending on the value of A

0	-1	0	-1	-1	-1
-1	A + 4	-1	-1	A + 8	-1
0	-1	0	-1	-1	-1

Spatial Filtering Gradient filter - first derivative

the most common method of differentiation in image processing

$$\nabla f = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

- ► It is non-isotropic
- Its magnitude (often call the gradient) is rotation invariant

$$\nabla f = |G_x| + |G_y| = [(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial x})^2]^{1/2}$$

Spatial Filtering Gradient filter - first derivative

Different masks use to calculate the gradient of a region of interest with z_5 as a central pixel, Robert cross gradient masks middle row and Sobel filters in the last row.

			z ₁		72	Z;	3					
			Z ₄		Z ₅	Z,	5					
		z ₇			z ₈ z ₉		,					
	-:	-1		-1 0			0			-1		
	0		1		1			0				
1	-2	2 -		1		-1		0	1	1		
)	0		0			-2		0	2			
l	2	1				-1		0	1			

Spatial Filtering Gradient filter - first derivative

- Computation:
- ► Cross differences as used in early development of digital image processing: $G_x = (z_9 z_5)$, $G_y = (z_8 z_6)$
- ► Robert cross gradient:

$$\nabla f \approx [(z_9 - z_5)^2 + (z_8 - z_6)^2]^{1/2}$$

Sobel filter

$$\nabla f \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)| + |(z_3 + 2z_9 + z_6) - (z_1 + 2z_4 + z_7)|$$

Whole body bone scane, laplacian image, sharpened image using the laplacian and sobel filtered image, respectively from right to left and first row to second.

