Recap:

Using the LS principle, we tried to find restinctes

(\$0,\$1) of the parameters (Bo, B,).

Specifically, fin LS estimators are:

We found the closed form:

$$\frac{1}{2}x_{1}y_{1}-nxy_{2}$$

$$\frac{1}{2}x_{1}y_{1}-nxy_{2}$$

$$\frac{1}{2}x_{1}^{2}-nx^{2}$$

$$\frac{1}{2}(x_{1}-x_{2})^{2}$$

$$\frac{1}{2}(x_{1}-x_{2})^{2}$$

runden Bo= y-BIX

Proporti	is of	- LS	Ext > :				
	Are	these.	estunctur	s any	good?		
Gaus	s-Ma	nkov (Nevrem	•			
W	rder -	the St	Il mode	l assum	stars, the	LS •	estinatus
争。	, 4 1	B, au	re:				
	i. u	nbiased	R P	, 4 B,	respectivi	ely,	
	Æ	=	E(30)=	= B. L			
		ł	三(克,)	= B1			
2							
	ţ, ti	re LS	estment		PLUE		4
	=	= N bes	H Lines) nulic	isca esil	matrs	11
jours:	m	B, for	r now	Junear	in yi		
	3,=	1 (X)	j-7) (y;	-y) =	и 2 ¥;	Vi-	
		2	(xi-x)2	Chin			
		β ₁) ≤	< Vav	\sim	where	Pi is	i Sone
	Varl	70 1 6	_ \\\\\\			V V =	04.04

How do I know this than is true? SAM Cows on BI Co Now: How can I show E(Bi) = B, ? want to show $E(\hat{B}_1) = E(\frac{2}{2}(x_i-x_j)(y_i-\hat{y})) = B_1$ $SSXY = \sum_{i=1}^{\infty} (x_i - \overline{x})(y_i - \overline{y})$ $SSX = \sum_{i=1}^{n} (x_i + x_i)^2$ emmo. Why? $SSXY = \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y}) = \sum_{i=1}^{n} [(x_i - \overline{x})y_i - (x_i - \overline{x})\overline{y}]$ Z (x-x)y; - Z (x+x) 7 want to show = 0

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} - \frac{1}{2} x_{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} x_{1} -$$

$$= \sum_{i=1}^{N} K_{i} E(\beta_{0}) + E(\beta_{1}X_{1}) + E(\xi_{1})$$

$$= \sum_{i=1}^{N} k_{i} \left[E(\beta_{0}) + E(\beta_{1}X_{1}) + E(\xi_{1}) \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1}^{N} \left[k_{i} \beta_{0} + \beta_{1} k_{1} X_{1} + 0 \right]$$

$$= \sum_{i=1$$

Part 2 of GM Thm: God: If I conside some other linear unland estruct B1 then WS: Var(Bi) & Var(Bi) How can I show this? Var(Bi) = Var(\(\frac{\fin}}{\fint}}}}}}}{\frac{\fin}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}{\frac{\f = Z Var(Kiyi) $= \sum_{i=1}^{3} \kappa_i^2 Var(y_i)$ $= \frac{1}{2} k_i^2 \text{Var}(2i)$ $=\frac{3}{2}\frac{1}{12}\frac{1}$ $\frac{1}{2} |x|^2 = \frac{1}{2} \left(\frac{x_i - x}{ssx} \right)^2 = \frac{1}{2} \left(\frac{x_i - x}{$

Consider other lines unsissed estimators
$$\widetilde{\beta}_{i}$$
:

$$\widetilde{\beta}_{i} = \widetilde{Z}_{i} \left(k_{i} + d_{i} \right) y_{i} = \widetilde{Z}_{i} \widetilde{k}_{i} y_{i} \quad \text{where} \quad \widetilde{k}_{i} = k_{i} + d_{i}$$

$$\widetilde{\beta}_{i} = \widetilde{k}_{i} + k_{i}$$

$$\widetilde{\beta}_{i} = k_{i} + d_{i}$$

Fitted Values: $\hat{y}_1 = \hat{\beta}_0 + \hat{\beta}_1 \times \hat{\beta}_1$ What is the dist of yi Think about it for next time!