Programació Lineal Demostracions

F.-Javier Heredia http://gnom.upc.edu/heredia

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

Programació lineal

1. Introducció i propietats geomètriques.

- Proposició 1: propietats políedres (imm.).
- Proposició 2: prop. conjunts convexos (ex.9)
- Teorema 1: existència de pts. extrems (omesa).
- Teorema 2: optimalitat dels punts extrems.
- Proposició 3: propietats poliedre estàndard P_e.
- Proposició 4: transformació $P \rightarrow P_e$. (ex. 10)
- Teorema 2: condició A rang complet (ex.11).
- Teorema 3 : correspondència pts extrems-SBF

2. L'algorisme del símplex primal.

- Proposició 5: factibilitat de les DB , P_e no deg. (imm.).
- Teorema 4: $y = x + \theta^* d$ solució bàsica factible.
- Proposició 6: propietats direccions de descens (imm.).
- Teorema 5 : condicions d'optimalitat de SBF.
- Teorema 6: convergència de l'ASP, cas P_e no deg. (imm.).
- Proposició 7 : conseqüències de la degeneració (imm.).
- Teorema 7: convergència de l'ASP, cas P_e degenerat (omesa).
- Proposició 8,9 : Fase I (iimediats; ex. 46).

3. Dualitat.

- Proposició 10: Relaxació Lagrangiana (imm.)
- Proposició 11: Simetria dual (imm.)
- Teorema 8: Equivalència duals f.est. (ex. 55)
- Teorema 9: Ta. feble de dualitat.
- Teorema 10: Ta fort de dualitat.
- Teorema 11: folga complementària.
- Proposició 12: SBF del poliedre dual.
- Teorema 12: convergència de l'ASD (imm.).

Dualitat i problema de flux màxim-tall mínim:

- Teorema 13: relació capacitat tall S flux s-t.
- <u>Teorema 14: dual del problema de flux</u>
 <u>màxim.</u>
- <u>Teorema 15: relacions talls solucions</u> factibles duals.
- Teorema 16: max-flow min-cut theorem

Prop. 2: propietats conjunts convexos (1/3)

Proposició 2: propietats conjunts convexos.

i. La intersecció de conjunts convexos és convexa.

Demo:

- Sigui S_i , $i \in \mathcal{I}$ conjunts convexos, $x, y \in \bigcap_{i \in \mathcal{I}} S_i$ i $\lambda \in [0,1]$.
- $\forall i \in \mathcal{I}, S_i$ és convex i conté x i $y \Rightarrow \lambda x + (1 \lambda)y \in S_i, \forall i \in \mathcal{I} \Rightarrow \bigcap_{i \in \mathcal{I}} S_i$ conv. \blacksquare
 - ii. Tot políedre és un conjunt convex.

Demo:

• Sigui $x, y \in P = \{x \in \mathbb{R}^n | Ax \ge b\}$ i $w = \lambda x + (1 - \lambda)y$. Llavors:

$$Aw = \lambda Ax + (1 - \lambda)Ay \ge \lambda b + (1 - \lambda)b = b \Rightarrow w \in P \Rightarrow P \text{ convex } \blacksquare$$

Prop. 2: propietats conjunts convexos (2/3)

iii. La combinació convexa d'un nombre finit d'elements d'un conjunt convex pertany al conjunt convex.

Demo:

- Per inducció:
 - Cert per $x^1, x^2 \in \mathcal{S}$, convex. Suposem que es satisfà per $x^1, ..., x^k \in \mathcal{S}$ (1) i demostrem que es satisfà per $x^1, ..., x^k, x^{k+1} \in \mathcal{S}$.
 - Sigui $\lambda_1, ..., \lambda_{k+1} \ge 0, \sum_i \lambda_i = 1$. Assumint que $\lambda_{k+1} \ne 1$ tenim:

$$\sum_{i=1}^{k+1} \lambda_i x^i = \lambda_{k+1} x^{k+1} + (1 - \lambda_{k+1}) \sum_{i=1}^k \frac{\lambda_i}{(1 - \lambda_{k+1})} x^i$$

- Els coeficients $\tilde{\lambda}_i$ son ≥ 0 i $\sum_i \tilde{\lambda}_i = 1 \stackrel{(1)}{\Rightarrow} \tilde{x} = \sum_{i=1}^k \tilde{\lambda}_i x^i \in \mathcal{S}$
- \mathcal{S} convex $\Rightarrow \lambda_{k+1} x^{k+1} + (1 \lambda_{k+1}) \tilde{x} = \sum_{i=1}^{k+1} \lambda_i x^i \in \mathcal{S}$

Prop. 2: propietats conjunts convexos (3/3)

iv. L'embolcall convex d'un conjunt finit de vectors és un conjunt convex.

Demo:

• Sigui: $S = CH(x^1, ..., x^k)$ i $y, z \in S$

$$- y = \sum_{i=1}^k \alpha_i x^i \in \mathcal{S} ; \alpha_i \ge 0, \sum_{i=1}^k \alpha_i = 1$$

$$- z = \sum_{i=1}^k \beta_i x^i \in \mathcal{S} ; \beta_i \ge 0, \sum_{i=1}^k \beta_i = 1$$

• Sigui $\lambda \in [0,1]$. Llavors:

$$\lambda y + (1+\lambda)z = \lambda \sum_{i=1}^k \beta_i x^i + (1-\lambda) \sum_{i=1}^k \beta_i x^i = \sum_{i=1}^k \overline{(\lambda \alpha_i + (1-\lambda)\beta_i)} \, x^i$$

Els coeficients δ_i satisfan $\delta_i \geq 0$ i $\sum_i \delta_i = 1 \Rightarrow \lambda y + (1 + \lambda)z \in \mathcal{S} \Rightarrow \mathcal{S}$ convex \blacksquare

Teorema 2: optimalitat dels pts. extrems (1/2)

Teorema 2 (Ta 2.7 B&T): optimalitat dels punts extrems

"Sigui(PL) $\min_{x \in \mathbb{R}^n} \{c'x | x \in P\}$, P políedre. Suposem que P conté algun punt extrem i que existeix una solució òptima. Llavors existeix una solució òptima que és un pt. extrem de P."

Demo:

- El conjunt Q ≠ Ø de solucions òptimes de (PL) és un políedre que conté un punt extrem:
 - Sigui v el valor òptim de la funció objectiu. Llavors

$$Q = \{x \in \mathbb{R}^n \mid Ax \ge b, c'x = v\}$$

és un políedre.

• $Q \subset P$ $P \text{ no conté cap línia} \Rightarrow Q \text{ no conté cap línia} \Rightarrow Q \text{ té punts extrems}.$

Teorema 2: optimalitat dels pts. extrems (1/2)

Demo (cont):

- 2. Sigui x^* un punt extrem de Q. Demostrarem, per reducció a l'absurd, que x^* és punt extrem de P:
 - Si x^* **no** és pt. extrem de P llavors:

$$\exists y, z \in P, y \neq x^*, z \neq x^* \text{ i } \lambda \in [0,1] \text{ t.q.: } x^* = \lambda y + (1 - \lambda)z$$

Aleshores:

$$c'x^* = \lambda \overset{\geq v}{\widetilde{c''y}} + (1 - \lambda) \overset{\geq v}{\widetilde{c''z}} = v \Rightarrow c'y = c'z = c'x^* \Rightarrow y, z \in \mathbb{Q} \Rightarrow x^*$$
no és pt. extrem de Q : contradicció.

• Llavors, existeix un vector x^* , pt. extrem del conjunt solució Q, que és punt extrem de P

Proposició 3 : propietats P_e

Proposició 3 : propietats poliedre estàndard P_e .

- i. P_e és un políedre.
- ii. Tot políedre $P = \{x \in \mathbb{R}^n | Ax \ge b\}$ es pot expressar com a políedre en forma estàndard.
- iii. Tot P_e no buit té algun punt extrem.

Demo:

i.
$$Ax = b, x \ge 0 \to \begin{bmatrix} A \\ -A \\ I \end{bmatrix} x \ge \begin{bmatrix} b \\ -b \\ 0 \end{bmatrix}$$

ii.
$$Ax \ge b \xrightarrow{u,v \ge 0} \overbrace{[A \quad -A \quad -I]}^{x=u-v} \underbrace{\begin{bmatrix} u \\ v \\ w \end{bmatrix}} = A_e x_e = b, x_e \ge 0$$

iii. Tot P_e **no buit** té algun punt extrem, doncs no conté cap línia, ja que $P_e \subset \{x \in \mathbb{R}^n | x \ge 0\}$.

Teorema 3: equivalència punts extrems – SBF (1/2)

Teorema 3 (Ta. 2.3 B&T) : equivalència pts extrems-SBF

"Sigui P_e un políedre no buit en forma estàndard de rang complet, i sigui $x^* \in P_e$. Llavors: x^* és un punt extrem $\Leftrightarrow x^*$ és una solució bàsica factible."

Demo: (pt. extrem \Rightarrow SBF)

- 1. Sigui $x = [x_1, x_2, ..., x_r, 0, ..., 0]'$ punt extrem de $P_e \Rightarrow Ax = b \Rightarrow \sum_{i=1}^r A_i x_i = b$ (1)
- 2. Els vectors A_i i = 1, 2, ..., r son linealment independents (per red. l'absurd) :
 - Considerem que x és punt extrem i $\exists \alpha_i \neq 0 : \sum_{i=1}^r \alpha_i A_i = 0$ (2)
 - ❖ Considerant (1), (2) i θ > 0 tenim:

$$\sum_{i=1}^{r} A_i(x_i + \theta \alpha_i) = b \text{ i } \sum_{i=1}^{r} A_i(x_i - \theta \alpha_i) = b \quad (3)$$

- Triant θ prou petit com per que $(x_i + \theta \alpha_i) > 0$ i $(x_i \theta \alpha_i) > 0$, i = 1, 2, ..., r:
 - $x^1 = [x_1 + \theta \alpha_1, ..., x_r + \theta \alpha_r, 0, ..., 0]', x^2 = [x_1 \theta \alpha_1, ..., x_r \theta \alpha_r, 0, ..., 0]',$
 - $x^1, x^2 \in P_e$: (3) $\Rightarrow Ax^1 = b, Ax^2 = b$; $x^1, x^2 \ge 0$
 - $x = \frac{1}{2}x^1 + \frac{1}{2}x^2 \Rightarrow x$ no és pt. extrem $\Rightarrow A_i, i = 1, 2, ..., r$ lin. independents
- 3. $A_i \in \mathbb{R}^m, i = 1, 2, ..., r$ son linealment independents (: $r \leq m$) \Rightarrow formen una base

Teorema 3: equivalència punts extrems – SBF (2/2)

Demo (cont.) : (SBF⇒ pt. extrem)

- 1. Sigui $x \in P_e$ SBF $\Rightarrow x = [x_1, x_2, ..., x_s, 0, ..., 0]'$ amb $x_i > 0, j = 1, 2, ..., s, s \le m$. (1)
- 2. Llavors $\sum_{i=1}^{s} A_i x_i = b$ i A_i , i = 1, 2, ..., s son linealment independents (doncs x SBF).
- x és un pt. extrem (per reducció l'absurd) :
 - Considerem que x NO és punt extrem. Llavors x es pot expressar com a combinació convexa dels vectors de P_e x^1 i x^2 :

$$x = \lambda x^{1} + (1 - \lambda)x^{2}, x^{1}, x^{2} \in P_{e}, x^{1} \neq x^{2}, 0 < \lambda < 1$$
 (2)

 $* (4) \xrightarrow{A_i \text{ lin. independent}} x_i^1 = x_i^2, i = 1, ..., s \Rightarrow x^1 = x^2 \Rightarrow x \text{ pt. extrem } \square$

Teorema 4: $y = x + \theta^* d$ solució bàsica factible

Teorema 4 (Ta. 3.2 B&T): $y = x + \theta^* d$ és solució bàsica factible.

"Sigui x SBF de P_e no buit, de rang complet, no degenerat, i sigui d DBF sobre x. Llavors:

i. Si
$$d_B \ge 0$$
, $y = x + \theta^* d$ amb $\theta^* = \min_{\{i \mid d_{B(i)} < 0\}} \left\{ -\frac{x_{B(i)}}{d_{B(i)}} \right\}$ és SBF de P_e .

Si $d_B \ge 0$, no existeix cap $\theta > 0$ t.q. $y = x + \theta d$ sigui SBF de P_e ." İİ.

Demo: Per construcció, $y \in P_e$ i té n-m VNB nul·les. Només cal demostrar que la base *B* associada al nou conjunt de variables bàsiques és no singular.

1. Si q i B(p) representen, respectivament, les variables que entren i surten de la base, llavors, $\overline{\mathcal{B}} \coloneqq \{B(1), \dots, B(p-1), q, B(p+1), \dots, B(m)\}$ i la nova base és:

$$\bar{B} = \left[A_{\overline{B}(1)}, \dots, A_{\overline{B}(m)} \right] = \left[A_{B(1)}, \dots, A_{B(p-1)}, A_q, A_{B(p+1)}, \dots, A_{B(m)} \right]$$

Demostrarem que \bar{B} és no singular de dues formes alternatives:

- a. Demostrant que les columnes de \bar{B} són linealment independents.
- Demostrant que existeix la inversa \bar{B}^{-1} .

Teorema 4: $y = x + \theta^* d$ solució bàsica factible

Demo (cont):

- a. Les columnes de \bar{B} son linealment independents: per reducció a l'absurd:
 - Suposem \overline{B} singular. Llavors $\exists \lambda_1, ..., \lambda_m \neq 0$:

$$\sum_{i=1}^m \lambda_i A_{\overline{B}(i)} = 0 \Rightarrow \sum_{i=1}^m \lambda_i B^{-1} A_{\overline{B}(i)} = 0 \Rightarrow B^{-1} A_{\overline{B}(i)} \text{ lin. dependent}$$

- Demostrarem que $B^{-1}A_{\overline{B}(i)}$ són linealment independents :
 - Per $i \neq p$: $B^{-1}A_{\overline{B}(p)} = B^{-1}A_{B(i)} = B^{-1}B_i = e_i$ vectors lin. indep. amb component p-èssima nul·la. (2)
 - Per i=p: $B^{-1}A_{\overline{B}(p)}=B^{-1}A_q=-d_B$, vector amb component p-èssima $d_{B(p)} < 0$ per definició. (3)
 - (2), (3) $\Rightarrow B^{-1}A_{\overline{B}(p)}$ i $B^{-1}A_{\overline{B}(i)}$, $i \neq p$, linealment independents $\Rightarrow \overline{B}$ no singular $\Rightarrow y \text{ SBF} \blacksquare$

Teorema 4: $y = x + \theta^* d$ solució bàsica factible

Demo (cont):

- b. Existeix la matriu \bar{B}^{-1} :
 - Contruim la matriu $B^{-1}\bar{B}$: $B^{-1}\bar{B} = \begin{bmatrix} e_1 & \cdots & e_m \end{bmatrix}$
 - Premultipliquem $B^{-1}\bar{B}$ per la matriu eta $H = \begin{bmatrix} e_1 & \cdots & \widehat{\eta} \\ e_1 & \cdots & e_m \end{bmatrix}$:

$$H(B^{-1}\bar{B}) = \begin{bmatrix} e_1 & \cdots & \overbrace{H(-d_B)}^p & \cdots & e_m \end{bmatrix}$$

$$\text{amb H}(-d_B) = \begin{bmatrix} -d_{B(1)} - \eta_1 d_{B(p)} \\ \vdots \\ -\eta_p d_{B(p)} \\ \vdots \\ -d_{B(m)} - \eta_m d_{B(p)} \end{bmatrix}. \\ \text{Imposem} \begin{bmatrix} -d_{B(1)} - \eta_1 d_{B(p)} \\ \vdots \\ -\eta_p d_{B(p)} \\ \vdots \\ -d_{B(m)} - \eta_m d_{B(p)} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow$$

$$\Rightarrow \begin{cases} i \neq p: & -d_{B(i)} - \eta_i d_{B(p)} = 0 & \xrightarrow{d_{B(p)} < 0} & \eta_i = -d_{B(i)} / d_{B(p)} \\ i = p: & -\eta_p d_{B(p)} = 1 & \xrightarrow{d_{B(p)} < 0} & \eta_p = -1 / d_{B(p)} \end{cases}$$

Llavors, la inversa de \bar{B} existeix i la seva expressió és $\bar{B}^{-1}=\mathrm{H}B^{-1}$

Teorema 5 : condicions d'optimalitat de SBF (1/2)

Teorema 5 (Ta. 3.1 B&T): condicions d'optimalitat de SBF

"Sigui P_e políedre no buit en forma estàndard, x SBF de P_e i sigui el vector de costos reduïts associat a x : $r' = c'_N - c'_B B^{-1} A_N$. Llavors:

- a) Si $r \ge [0] \Rightarrow x$ és SBF òptima.
- b) Si x és SBF òptima i no degenerada $\Rightarrow r \geq [0]$."

Demo a) : $r \ge [0] \Rightarrow x$ és òptima

1. Sigui $v \in P_e$. Definim d = v - x. Llavors Ad = A(v - x) = b - b = [0] i: $Ad = Bd_R + A_Nd_N = [0] \rightarrow d_R = -B^{-1}A_Nd_N$

2. Calculem ara el valor de la funció objectiu sobre v = x + d:

$$c'v = c'x + c'd = c'x + [c'_B \quad c'_N] \begin{bmatrix} d_B = -B^{-1}A_N d_N \\ d_N \end{bmatrix}$$
$$= c'x + (c'_N - c'_B B^{-1} A_N) d_N \to c'v = c'x + r'd_N$$

3. Atès que $d_N = v_N - \widetilde{x_N} = v_N \ge 0$, si $r \ge [0]$ tenim que $r'd_N \ge [0]$ i:

Teorema 5 : condicions d'optimalitat de SBF (2/2)

Teorema 5 (Ta. 3.1 B&T): condicions d'optimalitat de SBF

"Sigui P_e políedre no buit en forma estàndard, x SBF de P_e i sigui el vector de costos reduïts associat a x : $r' = c_N' - c_B' B^{-1} A_N$. Llavors:

- a) Si $r \ge [0] \Rightarrow x$ és SBF òptima.
- b) Si x és SBF òptima i no degenerada $\Rightarrow r \geq [0]$."

Demo b) : x SBF òptima no degenerada $\Rightarrow r \geq [0]$ (per reducció a l'absurd)

- Suposem x SBF òptima no degenerada i que ∃ $j \in \mathcal{N}$ $t.q.r_j < 0$
- Considerem els vectors $y \in P_e$ que s'obtenen com a $y = x + \theta d$ amb d direcció bàsica factible associada a $d_N = e_j$. Atès que d és DBF i x és SBF **no degenerada** podem asegurar que $\exists \theta > 0 : y = x + \theta d \in P_e$. Llavors:

$$c'y = c'x + \theta r'd_N = c'x + \theta r'e_j = c'x + \widehat{\theta r_j} < c'x$$
 (1)

– Pero (1) implicaria que x no seria òptima (contradicció) $\Rightarrow r \geq [0]$

Teorema 9: Ta feble de dualitat

Teorema 9: Ta. feble de dualitat (Ta. 4.3 B&T, weak duality):

Sigui x solució factible del problema (P), i sigui λ solució factible del problema dual (D) associat. Llavors es satisfà:

$$\lambda' b \leq c' x$$
.

Demo:

- Per a tot i $x \in \mathbb{R}^n$ i $\lambda \in \mathbb{R}^m$ definim: $\begin{cases} u_j = \lambda_j \left(a_j' x b_j \right) & j = 1, 2, \dots, m \\ v_i = (c_i \lambda' A_i) x_i & i = 1, 2, \dots, n \end{cases}$
- Si x i λ son factibles \Rightarrow $\begin{cases} \text{Si } a_j'x \neq b_j, \text{ els signes de } \lambda_j \text{ i } \left(a_j'x b_j\right) \\ \text{Si } \lambda'A_i \neq c_i, \text{ els signes de } x_i \text{ i } \left(c_i \lambda'A_i\right) \end{cases}$ coincideixen \Rightarrow $\Rightarrow u_i \geq 0, v_i \geq 0 \ \forall i, j$.
- Llavors : $\begin{cases} \sum_{j} u_{j} = \lambda' A x \lambda' b \\ \sum_{i} v_{i} = c' x \lambda' A x \end{cases} \Rightarrow \sum_{j} u_{j} + \sum_{i} v_{i} = c' x \lambda' b \stackrel{u \geq 0, v \geq 0}{\overset{}{\succeq}} \quad 0 \Rightarrow \lambda' b \leq c' x \blacksquare$
- Comentari: si (P) en forma estàndard, demo trivial: $\forall x, \lambda$ factibles: $\lambda'b = \lambda'Ax \le c'x$

Teorema 10: Ta fort de dualitat

Teorema 10: Ta. fort de dualitat (von Neumann 1947, Ta. Minimax):

"Si un problema de programació lineal (P) té solució òptima, el seu dual (D) també en té, i els valors respectius de la funció objectiu coincideixen."

Demo:

- 1. Sigui (P) en forma estàndard de rang complet amb sol. òptima. Sigui B base òptima obtinguda per l'ASP amb regla de Bland. Llavors $r \ge 0$.
- 2. Es demostrarà que $\lambda' = c_B' B^{-1}$ és (a) una solució factible (D) i (b) que és òptima:
 - a) $x_B = B^{-1}b$ solució òptima $(P) \Rightarrow r' = c_N' c_B'B^{-1}A_N \ge 0 \Rightarrow c_B'B^{-1}A_N \le c_N'$. Llavors:

$$\lambda' A = c_B' B^{-1} [B \quad A_N] = [c_B' \quad c_B' B^{-1} A_N] \le [c_B' \quad c_N'] = c' \Rightarrow$$
$$\Rightarrow \lambda' = c_B' B^{-1} \text{ factible } (D)$$

- b) $\lambda' b = c_B' B^{-1} b = c_B' x_B \Rightarrow \lambda' = c_B' B^{-1}$ òptima (D).
- 3. Si (P) és un problema general el podem transformar a un problema $(P)_e$ estàndard amb $\operatorname{rang}(A) = m$. Llavors en virtut del Ta. 7 i dels apartats (1)-(2) anteriors tenim que

$$z_{(P)}^* = z_{(P)_{\rho}}^* \stackrel{(1,2)}{=} z_{(D)_{\rho}}^* \stackrel{Ta.7}{=} z_{(D)}^*$$

Teorema 11: Ta folga complementària

Teorema 10: Ta. de folga complementària :

Siguin x i λ solucions factibles de (P) i (D) respectivament.

Els vectors x i λ són solucions òptimes si i només si satisfan les condicions de folga complementària (*CFC*):

$$(CFC)\begin{cases} \lambda_j (a'_j x - b_j) = 0 & j = 1, 2, ..., m \\ (c_i - \lambda' A_i) x_i = 0 & i = 1, 2, ..., n \end{cases}$$

Demo:

 \implies Si x i λ factibles, de la demostració del Ta. feble de dualitat sabem que:

i.
$$u_j = \lambda_j (a'_j x - b_j) \ge 0$$
 , $v_i = (c_i - \lambda' A_i) x_i \ge 0$ $\forall i, j$

ii.
$$c'x - \lambda b = \sum_{j} u_j + \sum_{i} v_i$$

Pel Ta. fort de dualitat sabem que si x i λ òptimes llavors $c'x = \lambda'b \Rightarrow$

$$u_j = v_i = 0 \ \forall i, j$$

$$\sqsubseteq$$
 Si $u_j = v_i = 0 \ \forall i, j \stackrel{\text{ii}}{\Rightarrow} c'x - \lambda'b = 0 \stackrel{\textit{Cor.9,iii}}{\Longrightarrow} x, \lambda \ \text{optimes}$.

Proposició 12: SBF del poliedre dual

Proposició 12: SBF del políedre dual.

La solució dual y associada a una SBFD de $(P)_e$ és una SBF del políedre dual D_e amb matriu bàsica $B_D = \begin{bmatrix} B' & 0 \\ A_{N}' & I_{n-m} \end{bmatrix}$.

Demo:

$$\mathbf{y}' = [\boldsymbol{\lambda}' \quad \boldsymbol{r}'_{N} \quad \mathbf{0}] \text{ factible } (\boldsymbol{D}) : y \in P_{D} = \left\{ y \in \mathbb{R}^{n+m} \mid [A' \quad \boldsymbol{I}_{n}] \begin{bmatrix} \boldsymbol{\lambda} \\ \boldsymbol{r} \end{bmatrix} = \boldsymbol{c}, \boldsymbol{r} \geq \boldsymbol{0} \right\}$$

$$\begin{bmatrix} \mathbf{A'} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{\lambda} \\ \boldsymbol{r} \end{bmatrix} = \boldsymbol{c} : \begin{bmatrix} B' & 0 & I_m \\ A'_N & I_{n-m} & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{\lambda} \\ r_N \\ 0 \end{bmatrix} = \begin{bmatrix} c_B \\ c_N \end{bmatrix} \Rightarrow \begin{cases} B' \boldsymbol{\lambda} = c_B \Rightarrow \boxed{\boldsymbol{\lambda'} = c'_B B^{-1}} \\ \boxed{r'_N = c'_N - \boldsymbol{\lambda'} A_N} \end{bmatrix}$$

$$r \ge \mathbf{0}$$
: $r = \begin{bmatrix} r_N \ge [0] \\ r_B = [0] \end{bmatrix} \ge 0$

n+m constriccions actives lin. independents sobre $[\lambda' \quad r_N' \quad 0]$:

$$\underbrace{\begin{bmatrix} B' & 0 \\ A_{N}' & I_{n-m} \end{bmatrix}}_{B_{D} \text{ no sing.}} \underbrace{\begin{bmatrix} y_{B} \\ r_{N} \end{bmatrix}}_{y_{B}} = \begin{bmatrix} c_{B} \\ c_{N} \end{bmatrix} \quad (n \text{ cons. act.}) \begin{cases} B' & 0 & 0 \\ A'_{N} & I_{n-m} & 0 \\ 0 & 0 & I_{m} \end{bmatrix}}_{\text{lin. indep.}} \begin{bmatrix} \lambda \\ r_{N} \\ r_{B} \end{bmatrix} = \begin{bmatrix} c_{B} \\ c_{N} \\ 0 \end{bmatrix} \blacksquare$$

$$r_{B} = [0] \qquad (m \text{ cons. act.})$$

Teorema 13: relació capacitat tall S – flux S - t.

Teorema 13: relació capacitat tall S – flux S - t.

Per a tot flux factible [x' f] i tall S del (PFM) es satisfà:

a)
$$f = \sum_{\{(i,j)\in\mathcal{A}|i\in\mathcal{S},j\in\bar{\mathcal{S}}\}} x_{ij} - \sum_{\{(i,j)\in\mathcal{A}|i\in\bar{\mathcal{S}},j\in\mathcal{S}\}} x_{ij}$$

b) $f \leq u(S)$.

Demo:

El flux net que travessa qualsevol tall S en sentit $S \to \overline{S}$ és:

$$f(\mathcal{S}) = \sum_{\{(i,j) \in \mathcal{A}: i \in \mathcal{S}, j \in \bar{\mathcal{S}}\}} x_{ij} - \sum_{\{(i,j) \in \mathcal{A}: i \in \bar{\mathcal{S}}, j \in \mathcal{S}\}} x_{ij} \stackrel{0 \le x_{ij} \le u_{ij}}{\le} \sum_{\{(i,j) \in \mathcal{A}: i \in \mathcal{S}, j \in \bar{\mathcal{S}}\}} u_{ij} = u(\mathcal{S})$$

Per les equacions de balanç podem assegurar que $f = f(S) \Rightarrow f \leq u(S)$.

Teorema 14: dual del problema de flux màxim

Teorema 14: dual del problema de flux màxim.

El dual del problema de flux màxim associat al graf $G = (\mathcal{N}, \mathcal{A})$ amb $|\mathcal{N}| = m$ nodes, $|\mathcal{A}| = n$ arcs, capacitats u i nodes font s i pou t és:

$$(D_{FM}) \begin{cases} \min_{\pi \in \mathbb{R}^m, \mu \in \mathbb{R}^n} & \mu' u \\ \text{s.a.:} & \pi_i - \pi_j + \mu_{ij} \ge 0 \quad (i, j) \in \mathcal{A} \\ & \pi_t - \pi_s \ge 1 \\ & \mu_{ij} \ge 0 \qquad (i, j) \in \mathcal{A} \end{cases}$$

Demo: expressem el problema primal en forma matricial:

$$(FM) \begin{cases} \max & f \\ \text{s.a.:} & Ax + ef = 0 \\ & x \le u \\ & x, f \ge 0 \end{cases} \to (FM) \begin{cases} \max & [0 \ 1] \begin{bmatrix} x \\ f \end{bmatrix} \\ \text{s.a.:} & [A \ e] \begin{bmatrix} x \\ f \end{bmatrix} = [0] \to \pi \in \mathbb{R}^m \\ & [I \ 0] \begin{bmatrix} x \\ f \end{bmatrix} \le u \to \mu \in \mathbb{R}^n \end{cases}$$

$$(D_{FM}) \begin{cases} \min & [\pi' \quad \mu'] \begin{bmatrix} 0 \\ u \end{bmatrix} \\ \text{s.a.:} & [\pi' \quad \mu'] \begin{bmatrix} A \\ I \end{bmatrix} \geq [0] \rightarrow \\ [\pi' \quad \mu'] \begin{bmatrix} e \\ 0 \end{bmatrix} \geq 1 \end{cases} (D_{FM}) \begin{cases} \min & \mu'u \\ \text{s.a.:} & \pi_i - \pi_j + \mu_{ij} \geq 0 \quad (i,j) \in \mathcal{A} \\ & \pi_t - \pi_s \geq 1 \\ & \mu_{ij} \geq 0 \qquad (i,j) \in \mathcal{A} \end{cases}. \blacksquare$$

Teorema 15: relació talls - solucions factibles duals (1/2).

Teorema 15: relacions talls – solucions factibles duals

a) Per a tot tall S, els vectors $\pi(S)$, $\mu(S)$ definits per:

$$\pi_i(\mathcal{S}) = \begin{cases} \alpha & i \in \mathcal{S} \\ \alpha + 1 & i \in \bar{\mathcal{S}} \end{cases}, \qquad \mu_{ij}(\mathcal{S}) = \begin{cases} 1 & i \in \mathcal{S}, j \in \bar{\mathcal{S}} \\ 0 & \text{altrament} \end{cases}, \qquad \alpha \in \mathbb{R}$$

son una solució factible del problema dual amb $\mu(S)'u = u(S)$.

b)
$$\mathcal{U} = \bigcup_{\mathcal{S}} \begin{bmatrix} \pi(\mathcal{S}) \\ \mu(\mathcal{S}) \end{bmatrix} \subset P_D$$
 (no tota solució factible dual té associat un tall).

Demo: a)

$$\bullet \quad \text{El problema dual \'es: } (D_{FM}) \begin{cases} \min\limits_{\pi \in \mathbb{R}^m, \mu \in \mathbb{R}^n} & \mu'u \\ \text{s.a.:} & \pi_i - \pi_j + \mu_{ij} \geq 0 \quad (i,j) \in \mathcal{A} \quad (1) \\ & \pi_t - \pi_s \geq 1 \\ & \mu_{ij} \geq 0 \quad \quad (i,j) \in \mathcal{A} \end{cases}$$

• (2): $\pi_s = \alpha$, $\pi_t = \alpha + 1 \Rightarrow \pi_t - \pi_s = 1 \ge 1$.

$$(1): \begin{cases} i \in \mathcal{S}, j \in \bar{\mathcal{S}} : & \pi_{i} - \pi_{j} + \mu_{ij} = & \alpha - \alpha - 1 + 1 = 0 \ge 0 \\ i \in \mathcal{S}, j \in \mathcal{S} : & \pi_{i} - \pi_{j} + \mu_{ij} = & \alpha - \alpha + 0 = 0 \ge 0 \\ i \in \bar{\mathcal{S}}, j \in \mathcal{S} : & \pi_{i} - \pi_{j} + \mu_{ij} = & \alpha + 1 - \alpha + 0 = 1 \ge 0 \\ i \in \bar{\mathcal{S}}, j \in \bar{\mathcal{S}} : & \pi_{i} - \pi_{j} + \mu_{ij} = & (\alpha + 1) - (\alpha + 1) + 0 \ge 0 \end{cases}$$

• El valor de la funció dual: $\mu'u = \sum_{(i,j)\in\mathcal{A}} \mu_{ij} u_{ij} = \sum_{\{(i,j)\in\mathcal{A}: i\in\mathcal{S}, j\in\bar{\mathcal{S}}\}} u_{ij} = u(\mathcal{S}).$

Teorema 15: relació talls - solucions factibles duals (2/2).

Teorema 15: relacions talls – solucions factibles duals

a) Per a tot tall S, els vectors $\pi(S)$, $\mu(S)$ definits per:

$$\pi_i(\mathcal{S}) = \begin{cases} \alpha & i \in \mathcal{S} \\ \alpha + 1 & i \in \bar{\mathcal{S}} \end{cases}, \qquad \mu_{ij}(\mathcal{S}) = \begin{cases} 1 & i \in \mathcal{S}, j \in \bar{\mathcal{S}} \\ 0 & \text{altrament} \end{cases}, \qquad \alpha \in \mathbb{R}$$

son una solució factible del problema dual amb $\mu(S)'u = u(S)$.

b)
$$\mathcal{U} = \bigcup_{\mathcal{S}} \begin{bmatrix} \pi(\mathcal{S}) \\ \mu(\mathcal{S}) \end{bmatrix} \subset P_D$$
 (no tota solució factible dual té associat un tall).

Demo: b)

• Es construirà una sol. fact. (*D*) que no sigui tall: $\pi_s = \alpha \ge 0$, $\pi_t = \alpha + \beta \ge \alpha + 1$, $\pi_i = 0 \ \forall i \ne s, t$ i els valors de μ indicats:

Teorema 16: max-flow - min-cut

Teorema 16: Max-flow min-cut theorem (Dantzig & Fulkerson 1955)

El valor màxim del flux f és igual al valor mínim de la capacitat de tall u(S).

Demo:

- Pel Ta 13 (o pel Ta feble de dualitat aplicat a (PFM) (PTM)) sabem que : $f \le$ tall S^* tals que $f^* = u(S^*)$
- Sigui x^* , f^* òptim (PFM) i π^* , μ^* òptims (D_{PFM}) . Llavors :

Fact.(D)
$$\begin{cases} \pi_{i}^{*} - \pi_{j}^{*} + \mu_{ij}^{*} \geq 0, \forall (i,j) \in \mathcal{A} & (1) \\ \pi_{t}^{*} - \pi_{s}^{*} \geq 1 & (2), \text{ Ta. folga} \\ x_{ij} \geq 0, \forall (i,j) \in \mathcal{A} & (3) \end{cases}$$

$$comp.\begin{cases} \pi^{*}(Ax^{*} + ef^{*}) = 0 & (4) \\ \mu_{ij}^{*}(x_{ij} - u_{ij}) = \mathbf{0}, \forall (i,j) \in \mathcal{A} & (5) \\ (\pi_{j}^{*} - \pi_{i}^{*} - \mu_{ij}^{*})x_{ij} = \mathbf{0}, \forall (i,j) \in \mathcal{A} & (6) \\ (1 + \pi_{s}^{*} - \pi_{t}^{*})f^{*} = 0 & (7) \end{cases}$$

Teorema 16: max-flow - min-cut

Teorema 16: Max-flow min-cut theorem (Dantzig & Fulkerson 1955)

El valor màxim del flux f és igual al valor mínim de la capacitat de tall u(S).

Demo (cont.):

- π^* factible (D), llavors (2) $\Rightarrow \pi_t^* \geq \pi_s^* + 1 > \pi_s^*$.
- Definim la partició de $\mathcal N$ associada a π^* : $\mathcal S^* = \{k \in \mathcal N | \pi_k^* \le \pi_{\mathcal S}^*\}$. $\mathcal S^*$ és un tall doncs, per definició, $s \in S^*$ i $t \in \overline{S}^*$. Es demostrarà que la capacitat d'aquest tall (sol. factible dual) és igual al flux màxim:
 - $\forall (i,j) \in \mathcal{A} \text{ t.q. } i \in \mathcal{S}^*, j \in \bar{\mathcal{S}}^* :$

Fact. (D)
$$\stackrel{(1)}{\Rightarrow} \mu_{ij}^* \ge \pi_j^* - \pi_i^* \stackrel{\pi_i^* \le \pi_s^* < \pi_j^*}{>} 0 \Rightarrow \mu_{ij}^* > 0 \stackrel{(5)}{\Rightarrow} x_{ij}^* = u_{ij}$$
 (8).

 $\forall (i,j) \in \mathcal{A} \text{ t.q. } i \in \bar{\mathcal{S}}^*, j \in \mathcal{S}^* :$

$$\pi_j^* \le \pi_S^* < \pi_i^* \Rightarrow \left(\overbrace{\pi_j^* - \pi_i^*}^{\le 0} \xrightarrow{\subseteq 0} \right) < 0 \stackrel{(6)}{\Rightarrow} \boxed{x_{ij}^* = 0} (9).$$

$$- f^* \stackrel{\mathbf{Ta.13}}{=} \sum_{\{(i,j) \in \mathcal{A} | i \in \mathcal{S}^*, j \in \bar{\mathcal{S}}^*\}} x_{ij}^* - \sum_{\{(i,j) \in \mathcal{A} | i \in \bar{\mathcal{S}}^*, j \in \mathcal{S}^*\}} x_{ij}^* \stackrel{(8),(9)}{=} \sum_{\{(i,j) \in \mathcal{A} | i \in \mathcal{S}^*, j \in \bar{\mathcal{S}}^*\}} u_{ij}^* = u(\mathcal{S}^*) = u(\mathcal{S}^*)$$

