

Before We Go Further ...

- Insertion sort
 - –a in-place algorithm: using a small, constant amount of extra storage space.
 - loop-invariant: the partial correctness won't be altered after the loop has run
 - -worst-case: $O(n^2)$, average-case: $O(n^2)$, best-case: O(n)
- Merge sort:
 - -∈in-place algorithms?? ⇒ Yes and/or No
 - -loop-invariant?? ⇒ Yes
 - -worst-case: $O(n \lg n)$, average-case: $O(n \lg n)$, best-case: $O(n \lg n)$

Divide-and-Conquer (revisited)

- The divide-and-conquer paradigm
 - **Divide** the problem into a number of subproblems.
 - Conquer the subproblems (solve them).
 - Combine the subproblem solutions to derive the solution to the original problem.
- Merge sort: $T(n) = 2T(n/2) + O(n) = O(n \lg n)$.
 - **Divide** the n-element sequence to be sorted into two n/2-element sequence.
 - Conquer: sort the subproblems, recursively using merge sort.
 - **Combine:** merge the resulting two sorted n/2-element sequences.

ECM5605(S20) L02-2

Analyzing Divide-and-Conquer

Recurrence for a divide-and-conquer algorithms

- −a: # of subproblems
- -n/b: size of the subproblems
- -D(n): time to divide the problem of size n into sub-problems
- -C(n): time to combine the subproblem solutions to derive the answer for the problem of size n

ECM5605(S20) L02-3 ECM5605(S20) L02-4

Analyzing Two-way Merge Sort

Merge sort:

-a = 2: two subproblems

-n/b = n/2: each subproblem has size $\approx n/2$

 $-D(n) = \Theta(1)$: compute midpoint of array

 $-C(n) = \Theta(n)$: merging by scanning sorted sub-arrays

Sub-arrays

ECM5605(S20)

Solving Recurrences

- 3 general methods for solving recurrences
 - Substitution: Guess a solution and verify it by induction.
 - Recursion-Tree: Convert the recurrence into a summation by expanding some terms and then bound the summation
 - **Master Theorem:** if the recurrence has the form T(n) = aT(n/b) + f(n)
 - ⇒ most likely there is one formula
- Two simplifications that won't affect
 - ignore floors and ceilings
 - assume base cases are constant, i.e., T(n) = O(1) for small n

Another Example: Binary Search

Binary search on a sorted array:

-Divide: Check middle element.

-Conquer: Search the subarray.

-Combine: Trivial.

■ Recurrence: $T(n) = T(n/2) + O(1) = O(\lg n)$

 $T(n) = \begin{cases} O(1), & \text{if } n \le c \\ T(n/2) + O(1) + O(n), & \text{otherwise} \end{cases}$

-a = 1: search one sub-array

-n/b = n/2: each subproblem has size $\approx n/2$

-D(n) = O(1): compute midpoint of array

-C(n) = O(1): trivial

ECM5605(S20) L02-6

Method 1: Substitution

- The most general methods:
 - 1. Guess the form of the solution
 - 2. Verify by induction
 - 3. Solve the constants
- Example: T(n)=4T(n/2)+n
 - Assume T(1) = O(1)

ECM5605(S20)

- Guess $O(n^3)$ [Prove O and Ω separately]
- Assume $T(k) \le ck^3$ for k < n
- Prove $T(n) \le cn^3$ by induction

Example of Substitution

Basis

$$T(2) = 4T(1)+2 = 6 \le c*2^3 \text{ (pick } c=1\text{)}$$

- Assume $T(k) \le ck^3$ for k < n
- Prove $T(n) \le cn^3$ by induction

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^3 + n$$

$$= cn^3/2 + n$$

$$= cn^3 - (cn^3/2 - n) // desired-residual$$

$$\leq cn^3 // desired_{\square}$$

where the residual $cn^3/2 - n \ge 0$

■ For example, if $c \ge 2$ and $n \ge 1$

ECM5605(S20) L02-9

A Tighter Upper Bound

- Guess $T(n) = 4T(n/2) + n = O(n^2)$
- Assume $T(k) \le ck^2$ for k < n

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^2 + n$$

$$= cn^2 + n = O(n^2) \text{ // true but not proved}$$

$$= cn^2 - (-n) \text{ // no c>0} \Rightarrow \text{ residual>0}$$

$$\nleq cn^2$$

- ⇒ Wrong!! We cannot complete the induction.
- Solution: strengthen the inductive hypothesis

⇒ subtract a low-order term

ECM5605(S20) L02-10

Strengthened Inductive Hypothesis

- Guess $T(n) = 4T(n/2) + n = O(n^2) = c_1 \times n^2 c_2 \times n$
- Basis

$$-T(2) = 4T(1)+2 = 6 \le c_1 \times 2^2 - c_2 \times 2$$

-pick c_1 =4 and c_2 =3

■ Assume $T(k) \le c_1 k^2 - c_2 k$ for k < n

$$T(n) = 4T(n/2) + n$$

$$\leq 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n) // pick c_2 > 1$$

$$\leq c_1n^2 - c_2n \square$$

Method 2: Recursion Tree

 Visualize the costs (time) of recursive execution in the algorithm

- Can be unreliable because using ellipses(...)
- Follows human being's intuition and good for generating guess for the substitution method.

ECM5605(S20) L02-11 ECM5605(S20) L02-12

An Example of Recursion Trees

ECM5605(S20) L02-13

Method 3: Master Theorem

The master theorem applies to the recurrences of the form:

$$T(n) = aT(n/b) + f(n)$$

where
 $a \ge 1$, $b > 1$ and
 $f(n)$ is asymptotically positive

■ Bound T(n) by comparing f(n) with n^{log_ba}
-three cases: >, = and <

Iterative Expression

■ Example T(n) = 4T(n/2) + n

$$T(n) = 4T(n/2) + n$$

= 4(4T(n/4) + n/2) + n

// remember algb = blga

ECM5605(S20) L02-14

Compare f(n) with $O(n^{\log_b a})$

- If $f(n) = O(n^{\log_n a \epsilon})$ for some constant $\epsilon > 0$
 - -f(n) grows polynomially slower than $n^{\log_{\mathbf{b}} \mathbf{a}}$ (by a n^{ε} factor)

then the solution: $T(n) = O(n^{\log_b a})$

■ (Case 2)

ECM5605(S20)

If $f(n) = O(n^{\log_{h} a} \times (\lg n)^k)$ for some constant $k \ge 0$ -f(n) and $n^{\log_{h} a}$ grow at the same rate. then the solution: $T(n) = O(n^{\log_{h} a} \times (\lg n)^{k+1})$

L02-15

Compare f(n) with $O(n^{\log_b a})$ (cont'd)

• (Case 3)

If $f(n) = O(n^{\log n})$ for some constant $\epsilon > 0$ -f(n) grows polynomially faster than $n^{\log_b a}$ (by a n^{ϵ} factor)

and f(n) satisfies the regularity condition: $af(n/b) \le cf(n)$ for some constant c<1—then the solution: T(n) = O(f(n))

ECM5605(S20) L02-17

Proof of Master Theorem (1/3)

Assume T(1) = C,

$$T(n) = ca^{m} + ca^{m-1}b^{k} + ca^{m-2}b^{2k} + \dots + cb^{mk}$$

$$= c \sum_{i=0}^{m} a^{m-i} b^{ik} = c a^{m} \sum_{i=0}^{m} (\frac{b^{k}}{a})^{i}$$

(case1) if
$$a > b^k \left(\frac{b^k}{a} < 1\right)$$
,
 $T(n) = O(a^m)$
 $\therefore m = \log_b n$, $a^m = a^{\log_b n} = n^{\log_b a}$
 $\therefore T(n) = O(a^m) = O(n^{\log_b a})$

Proof of Master Theorem (1/3)

$$T(n) = aT\binom{n}{b} + cn^{k}, a, b, c, k \in \mathbb{R}$$

$$Let \ a = b^{m},$$

$$T(n) = aT\binom{n}{b} + cn^{k}$$

$$= a(aT\binom{n}{b^{2}} + c(n^{k})^{k}) + cn^{k}$$

$$= a\left(a\left(aT\binom{n}{b^{3}}\right) + c\binom{n}{b^{2}}^{k}\right) + c\binom{n}{b}^{k} + cn^{k}$$

$$= a\left(a\left(\cdots T\binom{n}{b^{m}}\right) + c\binom{n}{b^{m-1}}^{k}\right) + \cdots\right) + cn^{k},$$

$$when \ {}^{n}/_{b^{m}} = 1 \Rightarrow n = b^{m}$$

ECM5605(S20) L02-18

Proof of Master Theorem (3/3)

ECM5605(S20)

(case2) if
$$a = b^k \left(\frac{b^k}{a} = 1\right)$$
, (case3) if $a < b^k \left(\frac{b^k}{a} > 1\right)$,

$$let F = \left(\frac{b^k}{a}\right),$$

$$m = \log_b n$$

$$T(n)$$

$$= O\left(a^m \cdot \frac{F^{m+1} - 1}{F - 1}\right)$$

$$= O(a^m \cdot F^m) = O(b^{km})$$

$$= O\left((b^m)^k\right) = O(n^k)$$

ECM5605(S20) L02-19

L02-20

Examples of Using Master Theorem

■ (Ex 1)
$$T(n)=4T(n/2)+n$$

 $-a=4$, $b=2 \Rightarrow n^{\log_b a}=n^2$ and $f(n)=n$
 $-\text{apply to case 1: } f(n)=O(n^{2-\epsilon}) \text{ for } \epsilon=1$
 $-\therefore T(n)=O(n^2)$

■ (Ex 2)
$$T(n)=4T(n/2)+n^2$$

 $-a=4$, $b=2 \Rightarrow n^{\log b} = n^2$ and $f(n)=n^2$
 $-apply to case 2: f(n)=O(n^2 \lg^0 n)$ for $k=0$
 $-:T(n)=O(n^2 \lg n)$

ECM5605(S20) L02-21

Summary (Part 1)

- Three recurrence solving methods
 - 1. Substitution
 - 2. Recursion Tree
 - 3. Master Theorem
- Little quiz:
 - Hint: let *m*=lgn
 - Answer: $T(n) = O(\lg n \lg \lg n)$
- Up next
 - Heap sort and quick sort

Examples of Using Master Theorem (cont'd)

• (Ex 3)
$$T(n)=3T(n/4)+n\lg n$$

 $-a=3$, $b=4 \Rightarrow n^{\log_b a}=n^{0.79}$ and $f(n)=n\lg n$

$$f(n)$$
= O($n^{0.79+\epsilon}$) for some ϵ

-Check regularity condition

$$3(n/4) \times \lg(n/4) \le cn \lg n$$
 for $c=3/4$

$$-:T(n) = O(n \lg n)$$

- (Ex 4) $T(n)=4T(n/2)+n^2/\lg n$
 - -Master theorem does not apply but recursion tree does \Rightarrow T(n)= O(n²lglgn)

ECM5605(S20) L02-22

Binary Heaps

- A binary heap is a "complete" binary tree, usually represented as an array:
 - Parent(i) { return $\lceil i/2 \rceil$ -1; } - LeftChild(i) { return 2*i+1; } - RightChild(i) { return 2*i+2; }

ECM5605(S20)

Max-Heap Property

- Heaps need to satisfy the max-heap property:
 A[Parent(i)] ≥ A[i] for all nodes i > 1
 - In other words, the value of a node is at most the value of its parent
 - The largest value is thus stored at the root (A[0])
- Because the heap is a binary tree, the height of any node is at most (lgn)

ECM5605(S20) L02-25

Max-Heapify() Idea

- Max-Heapify(): maintain max-heap property
 - -Given: a node i in the heap with children l and r
 - -Given: two subtrees rooted at l and r, assumed to be heaps
 - Action: let the value of the parent node "float down" so subtree at i satisfies the heap property
 - If A[i] < A[l] or A[i] < A[r], swap A[i] with the largest of A[l] and A[r]
 - Recursive walk on that subtree
 - -Running time: O(h), h = height of heap = $O(\lg n)$

ECM5605(S20) L02-26

Max-Heapify() Example

ECM5605(S20)

- 1) i=1 ⇒ l=3 & r= 4 ⇒largest=3 ⇒swap A[1] and A[3] & call Max-Heapify(A,3)
- 2) i=3 ⇒ l=7 & r= 8 ⇒largest=8 ⇒swap A[3] and A[8] & call Max-Heapify(A,8)

L02-27

Build-Max-Heap() Idea

- Use Max-Heapify() in a bottom-up manner to convert A into a heap
 - -Fact: for array of length n, all elements in range $A[\lfloor n/2 \rfloor ... n]$ are heaps (*Why?*)
 - -Therefore,
 - \Rightarrow Walk backwards through the array from n/2-1 to 0, calling **Max-Heapify()** on each node.
 - \Rightarrow Order of processing guarantees that the children of node i are heaps when i is processed

ECM5605(S20) L02-28

Build-Max-Heap() Example

Build-Max-Heap(A)

1 heap-size[A] ← length[A]

2 for i ← length[A]/2 downto 1

3 do Max-Heapify(A,i)

Analyzing Build-Max-Heap()

- Each call to **Max-Heapify()** takes O(lgn) time
- There are O(n) such calls (precisely, $\lfloor n/2 \rfloor$)
- Thus the running time is O(nlgn)
 - − Is this a correct asymptotic upper bound?
 - −Is this an asymptotically tight bound?
- A tighter bound is O(n)
 - -How can this be? Is there a flaw in the above reasoning?

ECM5605(S20) L02-30

Analyzing Build-Max-Heap(): Tight

- To **Max-Heapify()** a subtree takes O(h) time where h is the height of the subtree
 - $-h = O(\lg m)$, m = # nodes in subtree
 - The height of most subtrees is small
- Fact: an n-element heap has at most $\lceil n/2^{h+1} \rceil$ nodes of height $h \Rightarrow why$??
 - -n=10, $h=2 \Rightarrow \text{at most } \lceil n/2^{h+1} \rceil = 2$
- The textbook uses this fact to prove that **Build-Max-Heap()** takes O(n) time

Tight Bound on Build-Max-Heap()

Ex: For a complete binary tree with 15 nodes

-Level 0
$$\equiv$$
 height 3 \Rightarrow node# = 1 = $\lceil 15/2^{3+1} \rceil$

-Level 1 ≡ height 2
$$\Rightarrow$$
 node# = 2 = $\lceil 15/2^{2+1} \rceil$

-Level 2 ≡ height 1
$$\Rightarrow$$
 node# = 4 = $\lceil 15/2^{1+1} \rceil$

-Level 3 ≡ height 0
$$\Rightarrow$$
 node# = 8 = $\lceil 15/2^{0+1} \rceil$

By induction height *h* includes nodes.

$$T(n) = \sum_{h=0}^{\lfloor \lg n \rfloor} \lceil n/_{2^{h+1}} \rceil O(h)$$

$$= O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \lceil h/_{2^{h}} \rceil\right) \left(\because \sum_{k=0}^{\infty} k x^{k} = x/_{(1-x)^{2}}, \forall |x|\right)$$

$$< 1 = O\left(\frac{1/2}{(1-1/2)^2}\right) = O(2n) = O(n)$$

ECM5605(S20)

Heapsort

- Given Build-Max-Heap(), an in-place sorting algorithm is easily constructed:
 - -Maximum element is at A[1]: O(1)
 - –Discard by swapping with element at A[n]–Decrement heap size[A]:
 - -A[n] now contains correct value
 - Restore heap property at A[1] by calling Max-Heapify()
 - -Repeat, always swapping A[1] for A[heap_size(A)]

ECM5605(S20) L02-33

Analyzing Heapsort

- The call to **Build-Max-Heap()** takes O(n) time
- Each of the *n* 1 calls to **Max-Heapify()** takes O(lgn) time
- Thus the total time taken by HeapSort()

$$T(n)=O(n) + (n-1) O(\lg n)$$

$$=O(n) + O(n \lg n)$$

$$=O(n \lg n)$$

Heapsort Example

Priority Queues

- Heapsort is a nice algorithm, but in practice Quicksort (coming next) usually wins
- But the heap data structure is incredibly useful for implementing priority queues
 - A data structure for maintaining a set S of elements, each with an associated value or key
- What might a priority queue be useful for?
 - -(Maximum-)priority queues: the highest priority element/job/packet should be scheduled first

ECM5605(S20) L02-35 ECM5605(S20) L02-36

Priority Queue Operations

- Supports the operations Insert(), Maximum(), and ExtractMax()
- Insert(S, x) inserts the element x into set S
- Maximum(S) returns the element of S with the maximum key
- ExtractMax(S) removes and returns the element of S with the maximum key
- How could we implement these operations using a heap?

ECM5605(S20) L02-37

Quicksort

- A divide-and-conquer algorithm
 - **Divide**: partition array A[p..r] into two nonempty subarrays A[p..q] and A[q+1..r]⇒ Loop invariant: All elements in $A[p..q] \le$ all elements in A[q+1..r]
 - -Conquer: the subarrays are recursively sorted by calls to Quicksort
 - Combine: Unlike merge sort, no combining step: two subarrays form an already-sorted array
 - ⇒ An in-place algorithm

Quicksort

- Proposed by C.A.R. Hoare in 1962
- (SIAM news) One of the Best of 20th century:
 Editors Name Top 10 Algorithms
- A *in-place* algorithm
- Sorts $O(n \lg n)$ in the average case
- Sorts $O(n^2)$ in the worst case
- So why would people use it instead of merge sort?

ECM5605(S20) L02-38

Quicksort Pseudocode

Quicksort(A, p, r)

```
    1. {
    2. if (p < r)</li>
    3. { // divide A into two subproblems
    4. q ← Partition(A, p, r); // q: key to partition
    5. Quicksort(A, p, q-1); // solve 1st subproblem
    6. Quicksort(A, q+1, r); // solve 2nd subproblem
    7. }
    8. }
```

Initial Call: Quicksort(A,1,length[A]+1)

Partition()

- Clearly, all the action takes place in the Partition() function
 - -Rearranges the subarray in place
 - -End result:
 - ⇒ Two subarrays
 - ⇒ All values in first subarray ≤ all values in second
 - -Returns the index of the "pivot" element separating the two subarrays
- Q: How do you implement this function?

ECM5605(S20) L02-41

Partition() in Words

- **■ Partition**(*A*, *l*, *r*):
 - -Select an element to act as the "pivot (A[k])" (which one?)
 - -Grow two subarrays, A[l..i] and A[j..r]
 - -All elements in A[l..i] ≤ pivot
 - -All elements in A[j..r] ≥ pivot
 - -Increment index i until A[i] ≥ pivot
 - -Decrement index j until A[j] ≤ pivot
 - -Swap A[i] and A[j]
 - –Repeat until i ≥ j
 - −Return *j*

ECM5605(S20)

ECM5605(S20) L02-42

Pseudocode (1) of Partition()

```
Partition(A, l, r)
    x \leftarrow A[k] //k: pivot idx 10
                                             if (i \le j)
    i \leftarrow l and j \leftarrow r
                                                 swap(A[i], A[j])
                                     12 until (i \ge j)
    repeat
                                     13 A[1] \leftarrow A[j]
       repeat
          i \leftarrow i+1
                                     14 A[i] \leftarrow x
       until (A[i] \ge x)
                                     15 return j;
       repeat
          j \leftarrow j-1
9
       until (A[i] \le x)
```

Pseudocode (2) of Partition()

```
Partition(A, l, r) // k = \text{Partition}(A, l, r)

1 x \leftarrow A[r] // x: the rightmost as pivot

2 i \leftarrow l-1

3 for j \leftarrow l to r-1 do

4 if A[j] \leq x then

5 i \leftarrow i+l

6 swap(A[i], A[j])

7 swap(A[i+1], A[r])

8 return i+1

What is the running time of Partition()?

Answer: O(n)
```

L02-43

Exchange i and j in Quicksort

ECM5605(S20) L02-45

Exchange i and j in Quicksort

• Case 2: if $A[j] \le x = A[r]$

ECM5605(S20) L02-46

Example of Partition (x=A[r]=4)

L02-47

Analyzing Quicksort

- What will be the worst case for the algorithm?
 Partition is always unbalanced
- What will be the best case for the algorithm?
 Partition is perfectly balance
- Which is more likely?The latter, by far, except...
- Will any particular input elicit the worst case?Yes: already-sorted input

ECM5605(S20) L02-48

Quicksort Runtime Analysis

- A divide-and-conquer algorithm:
 - T(n)=T(q-p+1)+T(r-q)+O(n)
- Two key factors to decide its performance
 - 1. the pivot x picked *during* executing Partition(A,p,r)
 - 2. the position of q obtained *after* Partition(A,p,r)
- Best-case: perfectly balanced splits
 - each partition results in (n/2:n/2) split
 - T(n) = T(n/2) + T(n/2) + O(n) = 2T(n/2) + O(n)
 - ⇒ Look familiar?? Look like Mergesort
 - ∴ $\mathbf{T}(n) = \mathbf{O}(n \lg n)$ can proved by ...

ECM5605(S20) L02-49

Worst-case Analysis of Quicksort

Worst-case: each partition results in 1:(n-1) split in a row

 $= nT(1) + O(\sum_{k=1}^{n} k)$ $= O(n^2)$

ECM5605(S20) L02-50

Visualization of Worst-Case Analysis

Formal Worst-case Analysis

- The *real* upperbound: $O(n^2)$ $\Gamma(n) = \max \Gamma(q-1) + \Gamma(n-q) + O(n)$
- Guess: $T(n) < cn^2 = O(n^2)$

ECM5605(S20)

By substituting:

$$\begin{array}{l} n) \leq \max_{1 \leq k \leq n-1} \left\{ ck^2 + c(n-k-1)^2 \right\} + \mathrm{O}(n) \\ \leq c \times \max_{0 \leq k \leq n-1} k^2 + (n-k-1)^2 + \mathrm{O}(n) \\ \leq c(n-1)^2 + \mathrm{O}(n) \\ \leq cn^2 - c(2n-1) + \mathrm{O}(n) \\ \leq cn^2 = \mathrm{O}(n^2) \end{array}$$

Average-case Analysis of Quicksort

- Intuition: some splits will be close to balanced and others imbalanced
 - Good and bad splits are randomly distributed in the recursion tree
- Observation: asymptotically bad run time happens only when many bad splits happen in a row
 - A bad split followed by a good split results in a good partition after one additional step
 - ∴ still get $T(n) = O(n \lg n)$ with slightly large **const**.

ECM5605(S20) L02-53

Randomized Quicksort

- Expect to get average-case behavior of quicksort on all inputs
 - Randomization!!
- Two approaches
 - 1. Randomly permute input
 - 2. Choose the pivot randomly at each iteration

- EX:

RANDOMIZED-PARTITION(A, l, r)

1 $i \leftarrow \text{RANDOM}(l, r)$ 2 exchange $A[r] \leftrightarrow A[l]$ 3 return PARTITION(A, l, r)

RANDOMIZED-QUICKSORT(A, I, r)

- 1 if *l* < *r* then
- 2 $k \leftarrow RANDOMIZED-PARTITION(A, I, r)$
- 3 RANDOMIZED-QUICKSORT(A, I, k-1)
- 4 RANDOMIZED-QUICKSORT(A, k+1, r)

ECM5605(S20) L02-54

Exercise - Median Sort

Summary (Part 2)

- Heaps and Priority Queues
 - -Definition of Max-Heap Property
 - -Max-Heapify() and Build-Max-Heapify()
 - -Heapsort algorithm and its complexity
- Quicksort
 - -The important properties of Quicksort
 - -Forget the pseudocode, remember the idea
 - -Two key factors to decide its performance
 - -Best-case? Worst-case? Average-case?
- Next lecture ⇒ Linear sorts and order statistics

ECM5605(S20) L02-55 ECM5605(S20) L02-56