Математический анализ II семестр

Лектор: Кохась Константин Петрович

зима/весна 2024

_scarleteagle

imkochelorov

AberKadaber

Оглавление

1. Неопределенный интеграл	
1.1. Свойства	
2. Определённый интеграл	
2.1. Своиства	J
3. Верхний предел последовательности	7
4. Некоторые приложения определнного интеграла	11
5. Правило Лопиталя	15
5.1. Лемма об ускоренной сходимости	
5.2. Лемма 2	
5.3. Правило Лопиталя	16
6. Приложение определённого интеграла	17
6.1. Аддитивная функция промежутка	
6.2. Плотность аддитивной функции промежутка	
6.3. Аналитические функции	
6.4. Продолжение плотности аддитивной фукнции промежутка	
6.5. Фигуры вращения	
6.6. Интегральные суммы	
7. Неравенства	
7.1. Интегральное неравенство Йенсена	
7.2. Пример (неравенство Коши в интегральной форме):	
7.3. Неравенство Гёльдера для сумм	
7.5. Неравенство Минковского	
-	
8. Конечные ε -сети	
9. Несобственный интеграл	34
10. Признаки сходимости интеграла	37
10.1. Г-функция Эйлера	
10.2. Интеграл Эйлера-Пуассона	
10.3. Абсолютно сходящиеся интегралы	
10.4. Признаки сходимости	
10.5. Интеграл Дирихле10.6. Интегрирование ассимптотических разложений	
•	
11. Ряды	49
12. Сходимость неотрицательных рядов	51

13. Функциональные последовательности и ряды. Равномерная	
сходимость последовательности функций	53
14. Предельный переход под знаком интеграла	
15. Сходимость произвольных рядов	61

1. Неопределённый интеграл

Определение: первообразная

$$F, f: \langle a, b \rangle \to \mathbb{R}$$

$$F$$
 — первообразная f , если $\forall x \in \langle a,b \rangle$ $F'(x) = f(x)$

Теорема: f — непр на $\langle a,b \rangle \Rightarrow \exists$ пер-я f

Доказательство:

Чуть позже.

Теорема: F — пер-я f на $\langle a,b \rangle \Rightarrow$

- $\forall c \in \mathbb{R}$ F + c пер-я f
- G пер-я $f \Rightarrow \exists c \in \mathbb{R} : G F = c$

Доказательство:

•
$$(F+c)'=f$$

•
$$(G-F)' = f - f = 0 \Rightarrow G - F = \text{const}$$

Определение: неопределённый интеграл

Неопределённый интеграл функции f на $\langle a,b \rangle$ — мн-во всех первообразных = $\{F+c,c\in\mathbb{R},f$ - пер-я $\}$

Обозначение: $\int f, \int f(x) \, \mathrm{d}x$

Примеры:

•
$$\int \frac{1}{x+a^2} \, \mathrm{d}x = \ln|x+a^2| + C$$

•
$$\int \frac{1}{x} \, \mathrm{d}x = \ln|x| + C$$

•
$$\int \frac{1}{x^2 + 1} \, \mathrm{d}x = \arctan x$$

•
$$\int \frac{1}{x^2 - 1} \, \mathrm{d}x = \frac{1}{2} \ln \left(\frac{x - 1}{x + 1} \right) \stackrel{\circ}{\sim}$$

•
$$\int \frac{1}{\sqrt{1-x^2} \, \mathrm{d}x} = \arcsin x$$

•
$$\int \frac{1}{\sqrt{1+x^2}} = \ln |x + \sqrt{x^2 + 1}|$$

1.1. Свойства

Пусть f,g имеют пер-е на $\langle a,b \rangle \Rightarrow$

•
$$\int f + g = \int f + \int g$$

•
$$\forall \alpha \in \mathbb{R} \quad \int \alpha f = \alpha \int f$$

• Замена переменной:
$$\varphi:\langle c,d \rangle \to \langle a,b \rangle$$
 дифф $\Rightarrow \int f(\varphi(t)) \varphi' \,\mathrm{d}t = \left(\int f(x) \,\mathrm{d}x\mid_{x=\varphi(t)}\right) = \int f(\varphi(t)) \,\mathrm{d}\varphi(t)$

• Можо читать справа налево:
$$F(\varphi(t)) = h(t) \Rightarrow x = \varphi(t) \Rightarrow t = \varphi^{-1}(x)$$

•
$$\forall \alpha, \beta \in \mathbb{R}, \alpha \neq 0$$
 $\int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta)$

Доказательство:

• Тривиально.

• Тривиально.

•
$$F$$
 — пер-я $f \Rightarrow \int f(\varphi(t)) \varphi'(t) = F(\varphi(t))$

• Частный случай предыдущего пункта.

Пример:
$$\int \frac{\mathrm{d}x}{\sqrt{x^2+16}} = \frac{1}{4} \frac{\mathrm{d}x}{\sqrt{\frac{x^2}{16}+1}} = \frac{1}{4} \int \frac{\mathrm{d}x}{\sqrt{\left(\frac{x}{4}\right)^2+1}} = \frac{1}{1/4} \frac{1}{4} \ln \left| \frac{x}{4} + \sqrt{\frac{x^2}{16}+1} \right|$$

Теорема: f,g дифф на $\langle a,b \rangle, f'g$ имеет пер-ю на $\langle a,b \rangle \Rightarrow g'f$ имеет пер-ю на $\langle a,b \rangle$ и $\int fg'=fg-\int f'g$

Доказательство:

$$\left(fg-\int f'g
ight)'=f'g+fg'-f'g=fg'$$

Пример:

$$\int \sqrt{1-x^2} \, \mathrm{d}x \stackrel{???}{\underset{x=\sin t}{=}} \int \sqrt{1-\sin^2 t} \cos t \, \mathrm{d}t = \int \cos^2 t \, \mathrm{d}t = \int \frac{1}{2} + \frac{\cos 2t}{2} \, \mathrm{d}t = \frac{1}{2}t + \frac{1}{4}\sin 2t = = \frac{1}{2}\arcsin x + \frac{1}{4}\sin(2\arcsin x) = \frac{1}{2}\arcsin x + \frac{1}{4}\sin(2\arcsin x) = \frac{1}{2}\arcsin x + \frac{1}{2}x\sqrt{1-x^2}$$

Если у вас что-то такое в уме - изгоните немедленно!

— КПК

2. Определённый интеграл

Определение: плоская фигура

Плоская фигура — огр. подмн-во \mathbb{R}^2

Определение: множество плоских фигур

 \mathcal{E} = мн-во плоских фигур

Определение: площадь

Площадь — функция $\sigma: \mathcal{E} \to [0, +\infty)$:

- Аддитивность: $A_1, A_2 \in \mathcal{E}$ $A = A_1 \sqcup A_2$ $\sigma A = \sigma A_1 + \sigma A_2$
- Нормировка: $\sigma(\langle a,b\rangle imes \langle c,d\rangle) = (b-a)(d-c)$ (площадь прямоугольника)

Новости (хорошая и странная):

Площади существуют, площадей много.

Замечание:

- σ монотонна: $A, B \in \mathcal{E}, A \subset B \Rightarrow \sigma A \leq \sigma B$
- σ (верт. отрезка) = 0

Определение: ослабленная площадь

Ослабленная площадь $\sigma: \mathcal{E} \to [0, +\infty)$:

- σ монотонна
- Нормировка
- Ослабленная аддитивность: $E \in \mathcal{E} \quad E = E_1 \cup E_2$ (разбиение верт. отрезком) $\Rightarrow \sigma E = \sigma E_1 + \sigma E_2$

Новости (хорошие и странные):

Ослабленные площади существуют, ослабленных площадей много

Пример

$$\sigma_1 E = \inf \left\{ \sum \sigma(P_k) : E \subset \bigcup_{\text{KOH.}} P_k \right\}$$

$$\sigma_2 E = \inf \left\{ \sum \sigma(P_k) : E \subset \bigcup_{\text{cyëth.}} P_k \right\}$$

$$\begin{split} &\sigma_1\Big([0,1]^2\cap(\mathbb{Q}\times\mathbb{Q})\Big)=1\\ &\sigma_2\Big([0,1]^2\cap(\mathbb{Q}\times\mathbb{Q})\Big)=\sigma_2\Big(\bigcup_{k=1}^{+\infty}\{P(x_k)\}\Big), P(x_k)=\Big[x_1^k-\frac{\varepsilon}{\sqrt{2^k}},x_1^k+\frac{\varepsilon}{\sqrt{2^k}}\Big]\times\Big[x_2^k-\frac{\varepsilon}{\sqrt{2^k}},x_2^k+\frac{\varepsilon}{\sqrt{2^k}}\Big]\\ &\Rightarrow\sigma_2\Big([0,1]^2\cap(\mathbb{Q}\times\mathbb{Q})\Big)=0\\ &\sigma_1\text{ if }\sigma_2\text{ paramularizer totalnormy relations for the complexity of the comple$$

 σ_1 и σ_2 различаются только в патологических случаях. Для подграфиков непрерывных ф-ций они дают одно и то же.

Определение: положительная срезка

Положительная срезка $f: f^+ = \max(f, 0)$. Отрицательная срезка $f: f^- = \max(-f, 0)$.

Замечание:

$$\begin{split} f &= f^+ - f^- \\ |f| &= f^+ + f^- \end{split}$$

Определение: подграфик функции

 $f\geq 0$ на $[a,b],E\subset [a,b]$. Подграфик ϕ -ции f на мн-ве E ПГ $(f,E)==\left\{(x,y)\in\mathbb{R}^2:x\in E,0\leq y\leq f(x)
ight\}$

5

Определение: определённый интеграл

Определённый интеграл функции f на $[a,b]\int\limits_a^bf=\sigma(\Pi\Gamma(f^+,[a,b]))-\sigma(\Pi\Gamma(f^-,[a,b]))$

2.1. Свойства

Замечание:

Далее считаем $f \in C([a,b])$

Замечание:

•
$$f \ge 0 \Rightarrow \int_a^b f \ge 0$$

•
$$f \equiv c \int_{a}^{b} f = c(b-a)$$
 \odot

$$\cdot \int_{a}^{b} (-f) = -\int_{a}^{b} f$$

• при
$$a=b$$
 $\int_{a}^{b}=0$

Свойство 1: аддитивность по промежутку

$$\forall c \in [a,b] \int\limits_a^b = \int\limits_a^c f + \int\limits_c^b f$$

Свойство 2. монотонность

$$f,g \in C([a,b]), f \leq g \Rightarrow \int\limits_a^b f \leq \int\limits_a^b g$$

Доказательство:

$$f \leq g \Rightarrow f^+ \leq g^+, f^- \geq g^+$$

Следствие:

$$\begin{split} \Pi\Gamma(f^+,[a,b]) < \Pi\Gamma(g^+[a,b]) \Rightarrow \sigma(\Pi\Gamma(f^+)) \leq \sigma(\Pi\Gamma(g^+)) \\ \sigma(\Pi\Gamma(f^-)) \leq \sigma(\Pi\Gamma(g^-)) \end{split}$$

Свойство 3: $f \in C[a,b] \Rightarrow$

1.
$$\min f \cdot (b-a) \le \int_a^b f(x) \, \mathrm{d}x \le \max f(b-a) \le \max f \cdot (b-a)$$

$$2. \left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|$$

3.
$$\exists c \in [a, b] : \int_{a}^{b} f(x) \, \mathrm{d}x = f(c)(b - a)$$

Доказательство:

2.
$$-|f(x)| \le f(x) \le |f(x)|$$

$$-\int\limits_a^b \lvert f\rvert \leq \int\limits_a^b f \leq \int\limits_a^b \lvert f\rvert$$

3.

Для a = b утверждение тривиально

Если $a \neq b$: $\min f \leq \frac{1}{b-a} \int\limits_a^b f \leq \max f$, далее по теореме о промежуточном значении $\frac{1}{b-a} \int\limits_b^a f$ — значение f в некоторой точке

Определение: интеграл с переменным верхним пределом

$$f\in C([a,b]), \Phi:[a,b] o \mathbb{R}, \Phi(x)=\int\limits_a^\infty f-$$
 интеграл c переменным верхним пределом

Теорема: (Барроу)

$$\Phi$$
 — интеграл с пер. верх. пределом, дифф на $[a,b], \forall x \quad \Phi'(x) = f(x)$

Доказательство:

$$\int\limits_{a}^{y}f-\int\limits_{a}^{x}f=\left(\int\limits_{a}^{x}f+\int\limits_{x}^{y}f\right)-\int\limits_{a}^{x}f$$

$$y > x : \lim_{y \to x+0} \frac{\Phi(y) - \Phi(x)}{y - x} = \lim_{y \to x+0} \frac{1}{y - x} \int_{x}^{y} f = \lim_{y \to x+0} f(c) = f(x)$$

x > y: аналогично

Пример:

$$\left(\int\limits_{x^2}^{x^3} e^{-t^2} \, \mathrm{d}t\right)_{x}' = \left(\int\limits_{a}^{x^3} - \int\limits_{a}^{x^2}\right)_{x}' = \left(\Phi(x^3) - \Phi(x^2)\right)' = e^{-x^6} \cdot 3x^2 - e^{-x^4} \cdot 2x$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{\sin x}^{\ln x} \sqrt{s^4 + 2s} \, \mathrm{d}s \right)$$

$$\int_{\operatorname{tg} x} \sin n^2 \, \mathrm{d}n$$

$$\int_{x^2} e^{t^2} \, \mathrm{d}t$$

Теорема: (формула Ньютона-Лейбница)

$$f \in C([a,b]), F$$
 — пер-я $f \Rightarrow \int\limits_a^b f(x) \, \mathrm{d}x = F(b) - F(a)$

Доказательство:

$$\Phi = F + C$$

$$\int\limits_a^b f=\Phi(b)-\Phi(a)=(F(b)+C)-(F(a)+C)=F(b)-F(a)$$
 Согласование: $a>b\Rightarrow\int\limits_a^b f=-\int\limits_b^a f$

До Ньютона не было законов Ньютона

КПК

3. Верхний предел последовательности

Определение: частичный предел последовательности $(x_n)\subset\mathbb{R}.$ Если $\exists a,\exists n_k:x_{n_k}\to a,$ то a- частичный предел последовательности (x_n)

Пример:

$$\begin{aligned} \bullet & \ x_n = {(-1)}^n \\ & \ n_k : 2, 4, 6, \ldots \Rightarrow x_{n_k} \to 1 \\ & \ n_k = 1, 3, 5, \ldots \Rightarrow x_{n_k} \to -1 \end{aligned}$$

Определение: верхний предел / нижний предел

$$(x_n)\subset\mathbb{R},\quad y_n=\sup\bigl(x_n,x_{n+1},\ldots\bigr),\quad z_n=\inf\bigl(x_n,x_{n+1},\ldots\bigr)\Rightarrow z_n\leq x_n\leq y_n,\quad y_{n+1}\geq y_n,\quad z_{n+1}\leq z_n$$

Верхний предел
$$\overline{\lim_{n \to +\infty}} \, x_n = \limsup_{n \to +\inf} x_n = \lim_{n \to +\infty} y_n$$

Нижний предел
$$\lim_{n \to +\infty} x_n = \liminf_{n \to +\inf} x_n = \lim_{n \to +\infty} z_n$$

Теорема:

- $\underline{\lim} x_n \leq \overline{\lim} x_n$
- $\bullet \ \, \forall n \quad x_n \leq \tilde{x}_n \Rightarrow \overline{\lim} \, x_n \leq \overline{\lim} \, \tilde{x}_n, \underline{\lim} \, x_n \leq \underline{\lim} \, \tilde{x}_n$
- $\lambda \geq 0$ $\overline{\lim} \lambda x_n = \lambda \overline{\lim} x_n, \underline{\lim} \lambda x_n = \lambda \underline{\lim} x_n \ (\lambda = 0 \Rightarrow \underline{\lim} \lambda x_n = \overline{\lim} \lambda x_n = 0)$
- $\bullet \ \overline{\lim}(-x_n) = -(\underline{\lim}\, x_n), \underline{\lim}(-x_n) = -\Big(\overline{\lim}\, x_n\Big)$
- $\begin{array}{l} \bullet \ \overline{\lim}(x_n+\tilde{x}_n) \leq \overline{\lim}\,x_n + \overline{\lim}\,\tilde{x}_n \\ \underline{\lim}(x_n+\tilde{x}_n) \geq \underline{\lim}\,x_n + \underline{\lim}\,\tilde{x}_n \end{array}$

$$\begin{split} &(x_n) \\ &y_n = \sup(x_n, x_{n+1}, \ldots) \\ &z_n = \inf(x_n, x_{n+1}, \ldots) \\ &z_n \leq x_n \leq y_n \\ &\overline{\lim} \, x_n \stackrel{\text{def}}{=} \lim y_n \in \overline{\mathbb{R}} \\ &\underline{\lim} \, x_n = \lim z_n \\ &\overline{\lim} (x_n + \tilde{x}_n) \leq \overline{\lim} \, x_n + \overline{\lim} \, \tilde{x}_n \\ &\sup(x_n + \tilde{x}_n, x_n + \tilde{x}_{n+1}, \ldots) \leq \underline{\sup(x_n, x_{n+1}, \ldots)} + \underline{\sup(\tilde{x}_n, \tilde{x}_{n+1}, \ldots)} \\ &\underbrace{}_{\tilde{y}_n} \end{split}$$

•
$$t_n \to l \in \mathbb{R} \Rightarrow \overline{\lim}(x_n + t_n) = \overline{\lim} x_n + l$$

Доказательство:

По опр. предела
$$\forall \varepsilon > 0 \quad \exists N_0 : \forall k > N_0 \quad l - \varepsilon < t_k < l + \varepsilon$$
 $x_k + l - \varepsilon < x_k + t_k < x_k + l + \varepsilon$
$$\limsup_{\substack{\text{sup } \underline{\text{no }} k \geq N > N_0 \\ \Rightarrow \overline{\lim} x_n + l - \varepsilon \leq \overline{\lim} (x_n + t_n) \leq \overline{\lim} x_n + l + \varepsilon}$$
 $\varepsilon \to 0 \Rightarrow \overline{\lim} (x_n + t_n) = \overline{\lim} x_n + l$

$$\bullet \ t_n \to l > 0, l \in \mathbb{R} \quad \overline{\lim}(x_n t_n) = \overline{\lim} \, x_n \cdot l$$

Без доказательства

Теорема: (Техническое описание верхнего предела)

 (x_n) — вещ. последовательность \Rightarrow

•
$$\overline{\lim} x_n = +\infty \Leftrightarrow x_n$$
 не огр сверху

•
$$\overline{\lim} x_n = -\infty \Leftrightarrow x_n \to -\infty$$

•
$$\overline{\lim} x_n = l \in \mathbb{R} \Leftrightarrow$$

$$\bullet \ \forall \varepsilon > 0 \quad \exists N : \forall n > N \quad x_n < l + \varepsilon$$

▶
$$\forall \varepsilon > 0 \quad \exists (n_i) : \forall i \quad x_{n_i} > l - \varepsilon$$
 (т.е. существует бесконечно много n)

Доказательство:

• Очевидно:

$$\Rightarrow: y_n \to +\infty \quad \forall k \quad \exists y_n > k+1 \text{ t.e. } \sup(x_n, x_{n+1}, \ldots) > k+1 \text{ (t.e. } \forall k \quad \exists x_i > k) \\ \Leftarrow: x_n \text{ he orp cBepxy} \Rightarrow y_n \equiv +\infty$$

• Очевидно: $x_n \leq y_n$

$$\Rightarrow : y_n \to -\infty \Rightarrow x_n \to -\infty \\ \Leftarrow : \forall \mathbf{E} < 0 \quad \exists N : \forall k > N \quad x_k < \mathbf{E} \Rightarrow y_{N+1} \leq \mathbf{E}$$

• **⇒**:

$$\bullet \ y_n \to l, x_n \leq y_n \Rightarrow \forall \varepsilon > 0 \quad \exists N : \forall n > N \quad x_n \leq y_n < l - \varepsilon$$

$$y_n$$
 убывает, $y_n o l \Rightarrow l \leq y_n \quad \forall n$ $\forall \varepsilon > 0 \quad \forall n \quad y_n = \sup(x_n, x_{n+1}, \ldots)$ $\exists x_n \mid k > n: l-\varepsilon < x_n$

$$\exists x_k, k \geq n : l - \varepsilon < x_k$$

Берём n=1, находим $k=k_1$

Берём $n>k_1$, находим $k=k_2$

Берём $n>k_2$, находим $k=k_3$

И т.д.

▶
$$\forall \varepsilon > 0 \quad \exists N: \forall n > N \quad x_n < l + \varepsilon \quad \text{т.e.} \ x_{n+1} < l + \varepsilon, x_{n+2} < l + \varepsilon, \dots \ \Rightarrow \ y_n \leq l + \varepsilon \ \text{по определению}.$$

$$\begin{array}{ll} \mathbf{ F} \ \, \forall \varepsilon > 0 \quad \forall n \quad y_n \geq l - \varepsilon \\ \text{ т.к. } y_n = \sup(x_n, x_{n+1}, \ldots), \exists \text{ б.м. } x_i > l - \varepsilon \\ \Rightarrow \forall n \quad y_n \geq l \end{array}$$

$$\Rightarrow y_n \to l$$

Теорема:

 (x_n) — вещ. последовательность $\Rightarrow \exists \lim x_n \in \overline{\mathbb{R}} \Leftrightarrow \overline{\lim} x_n = \underline{\lim} x_n$ и если оба утв. верны, все 3 предела совпадают

Доказательство:

• \Rightarrow : $\lim x_n=\pm\infty\Rightarrow$ очев.: $\overline{\lim}\,x_n=+\infty$ $(x_n$ не огр сверху \Rightarrow $\overline{\lim}\,x_n=+\infty$) $\underline{\lim}\,x_n=+\infty$ по тех. описанию, п.2

Если $\lim x_n = -\infty$ $\stackrel{\circ}{ }$ Аналогично

Пусть $\lim x_n=l\in\mathbb{R},$ выполняется тех. описание $\Rightarrow \overline{\lim}\,x_n=l$ Аналогично $\underline{\lim}\,x_n=l$

 $\bullet \; \Leftarrow : z_n \leq x_n \leq y_n, z_n \to l, y_n \to l \Rightarrow x_n \to l$

Теорема: (о характеризации верхнего предела как частичного)

 (x_n) — вещ. последовательность \Rightarrow

- $\forall l \in \overline{\mathbb{R}}$ частичный предел $x_n : \varliminf x_n \leq l \leq \varlimsup x_n$
- $\bullet \ \exists n_k: x_{n_k} \underset{k \to \infty}{\to} \overline{\lim} \, x_n, \\ \exists m_j: x_{m_j} \underset{j \to +\infty}{\to} \underline{\lim} \, x_n$

Доказательство:

- $n_k: x_{n_k} \to l$ $z_{n_k} \le x_{n_k} \le y_{n_k}$ $z_{n_k} \to \underline{\lim} x_n, \underline{x_{n_k}} \to l, y_{n_k} \to \underline{\lim} x_n \Rightarrow \underline{\lim} x_n \le l \le \overline{\lim} x_n$ <u>Пр</u>о верхний: $\overline{\lim} x_n = \pm \infty$ очев
- Про верхний: $\lim x_n = \pm \infty$ очев $\lim x_n = l \in \mathbb{R} \Rightarrow \exists n_k : l \frac{1}{k} < x_{n_k} < l + \frac{1}{k}$ (из тех. описания) $l \frac{1}{k} \to l, l + \frac{1}{k} \to l \Rightarrow x_{n_k} \to l$

Пример:

 $x_n = \sin n$

 $\overline{\lim} \sin n = 1$

 $\forall k \quad \sup(\sin k, \sin(k+1), ...) = 1$

Будем блуждать по окружности с шагом n_i .

$$n_0 = 1$$

В какой то момент (на 7-ом шаге) наш шаг пересечет точку 0 и разобьется на 2 дуги - большую и меньшую. Теперь будем делать шаги по 6:

$$n_1 = 6$$

И теперь на каждом шаге мы будем отодвигаться от 0 на величину меньшей из тех двух дуг, которые мы описали раньше:

$$n_1, 2n_1, 3n_1, \dots$$

В какой то момент и она пересечет точку 0, повторим с ней тот же процесс:

 $n_2 = n_1 k$ или $n_1 (k+1)$ (соответственно более короткой половинке дуги, которую делит 0)

$$n_2, 2n_2, \dots$$

 $n_3 = n_2 l$ или $n_2 (l+1)$ (аналогично)

и т.д.

Длина шага: $1, < \frac{1}{2}, < \frac{1}{4}, < \frac{1}{8}, \dots$

 $\frac{1}{2k} < \varepsilon$

Существует б.
много $\sin x_k > 1 - \varepsilon, \sin x_k \leq 1 \forall k \Rightarrow \overline{\lim} \sin n = 1$

4. Некоторые приложения определнного интеграла

$$\begin{split} & f_{\stackrel{.}{b}}g \in C[a,b] \quad \alpha, \beta \in \mathbb{R} \\ & \int\limits_{a} \alpha f + \beta g = \alpha \int\limits_{a} f + \beta \int\limits_{a}^{b} g \end{split}$$

Доказательство:

$$F,G$$
 — первоообр. f и g $lpha F+eta G$ — первообр. $lpha f+eta g$ Обе части = $lpha F+eta G$

Пример:

$$f \in C[a,b]$$
 $I_f = rac{1}{b-a} \int\limits_{-a}^{b} f - \mathrm{cp.}$ арифм. f на $[a,b]$

 $f,g\in C[a,b]$ монотонно возр.

Тогда $I_f \cdot I_g \leq I_{fg}$ (неравенство Чебышёва)

$$\int\limits_{a}^{b}f\cdot\int\limits_{a}^{b}g\leq(b-a)\int\limits_{a}^{b}fg$$

Доказательство:

монот
$$\Rightarrow \forall x, y \quad (f(x) - f(y))(g(x) - g(y)) \ge 0$$

$$f(x)g(x) - f(y)g(y) - f(x)g(y) + f(y)g(y) \geq 0 \sim \int\limits_a^b \dots \,\mathrm{d}y, \frac{1}{b-a}$$

$$f(x)g(x) - I_fg(x) - f(x)I_g + I_{fg} \geq 0 \sim \int\limits_a^b \dots \mathrm{d}x, \frac{1}{b-a}$$

$$I_{fg}-I_f\cdot I_g-I_g\cdot I_f+I_{fg}\geq 0$$
 — удовенное неравенство которое мы хотели $\textcircled{@}$

Теорема: формула интегрирования по частям $f,g\in C^1[a,b]$, Тогда $\int\limits_a^{\circ}fg' \, \left|_a^b - \int\limits_a^{\circ}f'g'\right|$

Доказательство:

$$\int\limits_{a}^{b}fg'+f'g=fg\;\bigg|_{a}^{b}$$

$$\begin{split} H_n &= \frac{1}{n!} \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n \cos(t) \, \mathrm{d}t \\ H_n &= \left[\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^n, \quad f' = -2nt \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \right] = \left(\frac{\pi^2}{4} - t^2\right)^n \frac{\sin(t)}{n!} \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \frac{2n}{n!} \int\limits_{\frac{\pi}{2}}^{\frac{\pi}{2}} t \left(\frac{\pi^2}{4} - t^2\right)^{n-1} = \\ \left[\int\limits_{-\frac{\pi}{4}}^{\frac{\pi}{2}} t \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \right] &= \left(\frac{\pi^2}{4} - t^2\right)^{n-1} + (-2)(n-1) \left(t^2 - \frac{\pi^2}{4}\right) \left(\frac{\pi^2}{4} - t^2\right)^{n-2} - \frac{\pi^2}{4} (n-1) \left(\frac{\pi^2}{4} - t^2\right)^{n-2} \right] = \\ &= \frac{2}{(n-1)!} \left(-t \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t - \frac{\pi^2}{2} (n-1) \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t - \frac{\pi^2}{2} (n-1) \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t - \frac{\pi^2}{2} (n-1) \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t - \frac{\pi^2}{2} (n-1) \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t - \frac{\pi^2}{2} (n-1) \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t - \frac{\pi^2}{2} (n-1) \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t - \frac{\pi^2}{2} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \sin(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \cos(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \sin(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \sin(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \sin(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \sin(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \sin(t) \, \mathrm{d}t + 2(n-1) \int\limits_{\pi}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - t^2\right)^$$

$$1)\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\ldots\right)^{n-2}\cos(t)\,\mathrm{d}t \\ = 2H_{n-1}(4n-4)H_{n-1} - \pi^2H_{n-2} = (4n-2)H_{n-1} - \pi^2H_{n-2}$$

Изначально мы считаем что $n \in \mathbb{N}$. При n > 2 все хорошо, везде интегрировать можно, деления на ноль при сокращении не происходило. При n = 2 тоже все хорошо — в этом можно убедиться при помощи метода присатльного взгляда.

Остается найти H_1 и H_0 : Очевидно, что $H_0=2$.

$$H_1 = 2\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \sin(t) \, \mathrm{d}t = \begin{bmatrix} f = t \Rightarrow f' = 1 \\ g' = \sin(t) \Rightarrow g = -\cos(t) \end{bmatrix} = 2t \cos(t) \, \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + 2\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(t) \, \mathrm{d}t = 0 + 4 = 4$$

Теорема: *Иррациональность* числа π

Число π — иррационально.

Доказательство:

Проверим, что π^2 — иррационально.

Для этого исползьуем то что мы только что сделали:

$$H_n = (4n-2)H_{n-1} - \pi^2 H_{n-2} = (4n-2)((4n-6)H_{n-2} - \pi^2 H_{n-3}) - \pi^2 H_{n-2} = \dots$$

 $H_n=(4n-2)H_{n-1}-\pi^2H_{n-2}=(4n-2)ig((4n-6)H_{n-2}-\pi^2H_{n-3}ig)-\pi^2H_{n-2}=\dots$ Продолжая так действовать мы получим, что: $H_n=...H_0+...H_1=F_n(\pi^2)$ — многочлен от π^2 с целыми коэффициентами, степени не выше n

Теперь предположим противное: пусть π^2 — рациональное, т.е. $\pi^2 = \frac{l}{m}$

Теперь предположим противное: пусть
$$\pi^2$$
 — рациональное, т.е. $\pi^2=\frac{1}{m}$
$$H_n=\frac{1}{n!}\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{\pi^2}{4}-t^2\right)^n\cos(t)\,\mathrm{d}t=F\left(\frac{l}{m}\right)\stackrel{\cdot m^n}{\Rightarrow}0<\frac{m^n}{n!}\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{\pi^2}{4}-t^2\right)^n\cos(t)\,\mathrm{d}t=F_n\left(\frac{l}{m}\right)\cdot m^n\in\mathbb{Z}\Rightarrow$$

$$\frac{m^n}{n!}\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{\pi^2}{4}-t^2\right)^n\cos(t)\,\mathrm{d}t\geq 1-\text{ это не верно, т.к. если помахать руками то }n!\text{ растет слишком бытро.}$$

Формальное доказательство: $\frac{m^n}{n!} \int\limits_{-\frac{\pi}{2}}^2 \left(\frac{\pi^2}{4} - t^2\right)^n \cos(t) \, \mathrm{d}t \le \frac{m^n}{n!} \cdot 10^n \cdot \pi$ — здесь мы воспользовались тем что

$$\left|\int\limits_a^b f\right| \leq \max(|f|)(b-a) \;\; \text{и взяли 10 для большого запаса.}$$

Tenepь видно, что при $n o\infty$ выражение стремиться к 0, поэтому оно не может быть ≥ 1 для любого n.

Теорема: о замене переменной в определенном интеграле

Теорема: о замене переменной в опревеленном интеграле
$$f\in C(\langle a,b\rangle), \quad \varphi:\langle \alpha,\beta\rangle \to \langle a,b\rangle, \quad \varphi\in C^1(\langle \alpha,\beta\rangle), \quad [p,q]\in\langle a,b\rangle$$
 Тогда $\int\limits_p f(\varphi(t))\varphi'(t)\,\mathrm{d}t=\int\limits_{\varphi(p)} f(x)\,\mathrm{d}x$

Доказательство:

F — первообразная f, тогда $F(\varphi(t))$ — первообразная $F(\varphi(t))\varphi'(t)$

Очень сложное слово первообразная - очень тяжело его на 4-ой паре писать

— КПК

Л.Ч.
$$=F(arphi(t)) \mid_{t=p}^{t=q} =F(x) \mid_{x=arphi(p)}^{x=arphi(q)} =$$
 П.Ч.

Очень странная формула:

Во первых нам никто не говорил, что $\varphi([p,q]) = [\varphi(p), \ \varphi(q)]$, она может выходить за пределы этого отрезка.

Пример: $\int\limits_0^{\frac{5\pi}{6}} f(\sin(t))\cos(t)\,\mathrm{d}t = \int\limits_0^{\frac{1}{2}} f(x)\,\mathrm{d}x - \mathrm{здесь}\ \mathrm{пока}\ t\ \mathrm{гуляет}\ \mathrm{or}\ 0\ \mathrm{дo}\ \frac{\varphi}{2},\ \sin(t)\ \mathrm{пробегает}\ \mathrm{or}\ 0\ \mathrm{дo}\ 1, \mathrm{a}$ потом от 1 до $\frac{1}{2}$.

Проверим что мы делали все верно:
$$\int\limits_0^{\frac{5\pi}{6}} f(\sin(t))\cos(t)\,\mathrm{d}t = \int\limits_0^{\frac{\pi}{6}} + \int\limits_{\frac{\pi}{2}}^{\frac{\pi}{2}} + \int\limits_{\frac{\pi}{2}}^{\frac{5\pi}{6}} = \int\limits_0^{\frac{1}{2}} + \int\limits_{\frac{1}{2}}^{\frac{1}{2}} = \int\limits_0^{\frac{1}{2}} f(x)\,\mathrm{d}x$$

Продолжение теоремы: хотим еще уметь делать преобразования в обратную сторону:

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, \mathrm{d}x = [x = \sin(t)] = \int_{2\pi}^{\frac{\pi}{2}} \sqrt{1 - \sin^{2}(t)} \cos(t) \, \mathrm{d}t$$

Теорема: Формула Тейлора с остатком в интегральной форме $\langle a,b\rangle \in R, \quad f \in C^{n+1}(\langle a,b\rangle), \quad x,x_0 \in \langle a,b\rangle$

Тогда
$$f(x)=\sum\limits_{k=0}^nf^{(k)}rac{x_0}{k!}(x-x_0)^k+rac{1}{n!}\int\limits_{x_0}^x(x-t)^nf^{(n+1)}(t)\,\mathrm{d}t$$

Доказательство:

Индукция по n и интегрирование по частям.

База:
$$n=0$$

$$f(x) = f(x_0) + \int\limits_{x_0}^x f'(t) \,\mathrm{d}t$$
 — это формула Ньютона-Лейбница.

Переход

$$\frac{1}{n!} \int_{x_0}^{x} (x-t)^n f^{(n+1)}(t) dt = \begin{bmatrix} f = f^{(n+1)}(t) \Rightarrow f' = f^{(n+1)}(t) \\ g' = (x-t)^n \Rightarrow g = -\frac{(x-t)^{n+1}}{n+1} \end{bmatrix} =$$

$$=-rac{1}{(n+1)!}f^{(n+1)}(x-t)^{n+1}igg|_{t=x_0}^{t=x}-\int\limits_{x_0}^x(x-t)^{n+1}f^{(n+2)}(t)\,\mathrm{d}t$$
— победа, получили ровно то что хотели — в

первом слагаемом после подстановке получиться следующий элемент суммы, интеграл ровно тот котоырй нужен.

"Чтобы обеспечить психическое здоровье на практике, неужели если рассмотреть простецкую фукнцию - целую часть x, неужели ее нельзя проинтегрировать"

Определение: Кусочно-непрерывная фукнкция

f — кусочно-непрерывная фунция на $[a,b]\Leftrightarrow$ существует конечное число точек $x_1,x_2,...,x_n$, таких что: f — непрерывна на $[a,x_1),(x_1,x_2),...,(x_n,b]$, а точки $x_1,...,x_n$ — разрывы первого рода.

Замечание — такая фукнция f — ограничена.

Определение: Почти первообразная

F — почти первообразная некоторой фукнции f на [a,b], если выполняется F'(x) = f(x) — при всех x кроме конечного числа точек и F — непрерывна на [a,b].

Пример:

F(x) = |x|, F — почти первообразная sign(x)

Напоминание:

$$f:[a,b]\to\mathbb{R}$$
— кусочно непрерывная

$$x_0 = a < x_1, x_2 < \ldots < x_{n-1} < b = x_n$$

$$-\forall k \quad f$$
 — непрерывная на (x_{k-1},x_k)

$$\exists$$
 конечный $\lim_{x o x_k - 0} f, \quad \lim_{x o x_{k-1} + 0} f$

$$x o x_k-0$$
 , $x o x_{k-1}+0$. Toгда можно считать, что $\forall k$, $f\in C([x_{k-1},x_k]),$, $\int\limits_a^b f=\sum\limits_{k=1}^n\int\limits_{x_{k-1}}^{x_k} f$

Определение: почти первообразная

$$F$$
 — почти первообразная $f(x)$, если

$$F \in C[a,b]$$
, дифф. всюду кроме кон. числа точек, $F'(x) = f(x) \ \forall x$, где F дифф.

Теорема:

f — кус. непр., F — почти первообр., F — дифференцируема всюду кроме x_i из определения кусочно непрерывной

Тогда:
$$\int\limits_{-\infty}^{b} = F(b) - F(a)$$

Доказательство:

На
$$(x_{k-1}, x_k)$$
 F — первообразная f

Но мы знаем что у f есть полноценная первообразная на $[x_{k-1},x_k]$ и при этом эта первообразная с точностью до константы совпадает с F на (x_{k-1},x_k) .

Обозначим эту первообразную
$$\tilde{F}: \tilde{F} \in C([x_{k-1},x_k])$$
 и $\tilde{F}=F$ на (x_{k-1},x_k)

Мы получили: непрерывную функцию F, а также фунцию \tilde{F} , которая совпадает с нашей на каждом интервале. Получается что эти функции совпадают на все отрезке.

14

$$\int\limits_{a}^{b}f=\sum\limits_{k=1}^{n}\int\limits_{x_{k-1}}^{x_{k}}f=\sum\limits_{k=1}^{n}F(x_{k})-F(x_{k-1})=F(x_{n})-F(x_{0})=F(b)-F(a)$$

Пример: неравенство Чебышева

$$I_f \cdot I_g \leq I_{fg}$$
 $(f,g-$ возр), $I_f = rac{1}{b-a} \int\limits_a^b f$

Утверждение (неравенство Чебышева для сумм):

$$a_1 \leq a_2 \leq \ldots \leq a_n, \ b_1 \leq b_2 \leq \ldots \leq b_n$$

Тогда
$$\left(\frac{1}{n}\sum_{k=1}^n a_k\right) \left(\frac{1}{n}\sum_{k=1}^n b_k\right) \leq \frac{1}{n} \left(\sum_{k=1}^n a_k b_k\right)$$

Доказательство:

$$f(x)=a_{\lceil x\rceil},\quad x\in(0,n]$$

Тогда $\int\limits_0^n f$ — с одной стороны площадь под графиком, но она как раз и есть одна из сумм неравенства

Чебышева

На (k-1,k) $F(x)=x\cdot a_k,\ x\in [k-1,\ k]$ — возникает проблема: в точках a_i происходит разрыв первого рода, а мы хотим чтобы F была непрерывна. Тогда добавим сдвиги на константу:

$$F(x) = \begin{bmatrix} a_1x & x \in [0,1] \\ a_2x + (a_1 - a_2) & x \in [1,2] \\ a_3x + (a_1 + a_2 - 2a_3) & x \in [2,3] \\ \end{bmatrix}$$

Когда мы рассмотрим такие фукнци для f, g, fg мы получим ровно интегральное неравенство Чебышева.

5. Правило Лопиталя

by Иоганн Бернулли

5.1. Лемма об ускоренной сходимости

 $f,g:D\subset\mathbb{R} o\mathbb{R},\;a$ — предельная точка $D,\;a\in\overline{\mathbb{R}}$

Пусть $\exists \ \dot{U}(a) \quad f \neq 0, g \neq 0$

$$\lim_{x \to a} f(x) = 0, \lim_{x \to a} g(x) = 0$$

Тогда
$$\forall (x_k), \; \begin{cases} x_k \to a \\ x_k \in D & \exists (y_k), \; \begin{cases} y_k \to a \\ y_k \in D: & \lim \frac{f(y_k)}{g(y_k)} = 0, \; \lim \frac{g(y_k)}{g(x_k)} = 0 \\ y_k \neq a \end{cases}$$

Доказательство:

В качестве y_k будем брать некоторые элементы (x_n) так, чтобы:

$$\begin{cases} \left| \frac{f(y_k)}{g(x_k)} \right| < \frac{1}{k} \Leftarrow |f(y_k)| < \frac{1}{k} |g(x_k)| \\ -\text{ здесь следование в другую сторону, т.к. например в первой строчке} \\ \left| \frac{g(y_k)}{g(x_k)} \right| < \frac{1}{k} \Leftarrow |g(x_k)| < \frac{1}{k} |g(x_k)| \\ x_k \text{ нам дано, поэтому значение } \frac{1}{k} |g(x_k)| \text{ нам известно, а т.к. } f \text{ стремиться к 0 точно найдется такой номер} \end{cases}$$

 $\hat{x_k}$ нам дано, поэтому значение $\frac{1}{k}|g(x_k)|$ нам известно, а т.к. f стремиться к 0 точно найдется такой номер, начиная с которого f меньше чем это известное нам значение. Обозначим это x_i как y_k . Аналогично во второй строке

5.2. Лемма 2

Аналогичное верно для случая $\lim_{x \to a} f = +\infty, \ \lim_{x \to a} g = +\infty$

$$\forall (x_k), \dots \quad \exists (y_k), \dots : \lim \frac{f(y_k)}{g(x_k)} = 0, \quad \lim \frac{g(y_k)}{g(x_k)} = 0$$

5.3. Правило Лопиталя

$$f, g: (a, b) \to \mathbb{R}, \ a \in \overline{\mathbb{R}},$$

f,g — дифференцируемы на $(a,b),\quad g'\neq 0$ на (a,b)

$$\lim_{x \to a+0} \frac{f}{g} = \left[\frac{0}{0}, \ \frac{\infty}{\infty} \right]$$

Пусть
$$\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A \in \overline{\mathbb{R}}$$

Тогда
$$\exists \lim_{x \to a+0} \frac{f}{g} = A$$

$$g' \neq 0 \Rightarrow g' - \text{сохраняет}$$
 знак (т. Дарбу) $\Rightarrow g - \text{строго}$ монотонно \Rightarrow в окр. точки $a \ g \neq 0$ По Гейне:
$$\begin{cases} x_k \to a \\ x_k \neq a \\ x_k \in (a,b) \end{cases}$$
 строим последовательность y_k из леммы

Теорема Коши:
$$\frac{f(x_k)-f(y_k)}{g(x_k)-g(y_k)} = \frac{f'(\xi_k)}{g'(\xi_k)} \Rightarrow f(x_k)-f(y_k) = \frac{f'(\xi_k)}{g'(\xi_k)}(g(x_k)-g(y_k)) \Rightarrow [\ :g(x_k)]$$

$$\Rightarrow \frac{f(x_k)}{g(x_k)} = \frac{f(y_k)}{g(x_k)} + \frac{f'(\xi_k)}{g'(x_k)} \cdot \left(1 - \frac{g(y_k)}{g(x_k)}\right)$$

Пример:

$$\lim_{x \to +\infty} \frac{x}{\sqrt{x^2 + 1}} = \lim_{x \to +\infty} \frac{\frac{1}{\frac{x}{\sqrt{x^2 + 1}}}}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{\sqrt{x^2 + 1}}{x} = \textcircled{2}$$

$$0 = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = \lim_{x \to 0} \frac{2 (x \sin \frac{1}{x} - \cos \frac{1}{x})}{\cos x} = \textcircled{2}$$

$$\lim_{x \to 0+} \frac{\ln(x)}{x} = \lim_{x \to +0} \frac{\frac{1}{x}}{1} = \lim_{x \to +0} \frac{1}{x} = +\infty$$

Пример:

$$\int\limits_{0}^{+\infty}e^{-x^{2}}\,\mathrm{d}x=\frac{\sqrt{\pi}}{2}$$
— интеграл Эйлера-Пуассона

$$+\infty$$
 в верхнем пределе означает, что: $\int\limits_0^R e^{-x^2} \,\mathrm{d}x \underset{R \to +\infty}{ o} \frac{\sqrt{\pi}}{2} \iff \frac{\sqrt{\pi}}{2} - \int\limits_0^R e^{-x^2} \underset{R \to +\infty}{ o} 0$

Теперь мы хотим заменить интеграл на эквивалентную фукнцию, то есть найти g(R) :

16

$$1 = \lim_{R \to +\infty} \frac{\frac{\sqrt{\pi}}{2} - \int\limits_0^R e^{-x^2} \,\mathrm{d}x}{g(R)} = \left[\frac{0}{0}\right] \stackrel{\text{Лопиталь}}{=} \lim_{R \to +\infty} \frac{-e^{-R^2}}{g'(R)} = 1$$

I попытка:

$$g(R) = e^{-R^2} \Rightarrow g' = -2Re^{-R^2} \Rightarrow \frac{-e^{-R^2}}{-2Re^{-R^2}} \to 0$$

$$g(R) = \frac{e^{-R^2}}{2R} \Rightarrow \frac{e^{-R^2}}{e^{-R^2} - \underbrace{\frac{e^{-R^2}}{2R}}_{=o\left(e^{-R^2}\right)} \xrightarrow[R \to +\infty]{} 1$$

Победа, мы получили:
$$\int\limits_0^R e^{-x^2} \,\mathrm{d}x = rac{\sqrt{\pi}}{2} - rac{e^{-R^2}}{2R} + o\Big(rac{e^{-R^2}}{R}\Big)$$

6. Приложение определённого интеграла

Общая схема $\langle a,\ b \rangle$ $\mathrm{Segm}(\langle a,\ b \rangle) = \{[p,q]:[p,q] \subset \langle a,b \rangle\} - \mathtt{множество}\ \mathtt{всеx}\ \mathtt{подотрезков}\ \langle a,b \rangle$

представление $[p,q] \in Segm(a,b)$, если (p,q) лежит в заштрихованном треугольнике

6.1. Аддитивная функция промежутка

 $\Phi : \text{Segm } \langle a, b \rangle \to \mathbb{R}$

$$\forall [p,q] \in \text{Segm } \langle a,b \rangle \quad \forall c \in [p,q] \quad \Phi([p,q]) = \Phi([p,c]) + \Phi([c,q])$$

Это похоже на итнетграл, он тоже аддитивен. Поэтмоу попробуем найти некоторую фукнцию f :

$$[p,q]\mapsto \int\limits_{p}^{q}f$$

6.2. Плотность аддитивной функции промежутка

 $\Phi: \text{Segm } \langle a, b \rangle \to \mathbb{R}, \ f: \langle a, b \rangle \to \mathbb{R}$

$$f$$
 — плотность Φ , если $\forall \Delta \in \mathrm{Segm}: \min_{\Delta} f \cdot l_{\Delta} \leq \Phi(\Delta) \leq \max_{\Delta} f \cdot l_{\Delta}$ l_{Δ} — длина отрезка Δ .

Теорема: (о вычислении а. ф. п. по плотности)

$$f:\langle a,b
angle o\mathbb{R},$$
 — непрерывна, $\Phi:\mathrm{Segm}\ \langle a,b
angle o\mathbb{R}$ — а.ф.п, f — плотность Φ

Тогла:

$$\forall [p,q] \in \text{Segm} \quad \Phi([p,q]) = \int\limits_{p}^{q} f(x) dx$$

Доказательство:

Не умаляя общности рассмотрим [a,b]

$$F(x) = \begin{bmatrix} 0, & x = a \\ \Phi([a, x]), & x \in (a, b] \end{bmatrix}$$

Проверим F — первообразная f:

$$\frac{F(x+h)-F(x)}{h} = \frac{\Phi[a,x+h]-\Phi[a,x]}{h} = \underbrace{\frac{\Phi([x,x+h])}{h}}_{\in [\min_h,f,\max_h,f]} = f(x+\Theta h), \ 0 \leq \Theta \leq 1$$

(В последенм равенстве мы воспользовались теоремой о промежутоном значении для непрерывной фунции)

$$F'_+ = \lim_{h \to +0} f(x + \Theta h) = f(x)$$

Аналогично $F'_- = f(x)$

$$\int\limits_{p}^{q}f=F(q)-F(p)=\Phi([p,q])$$

Пример 1.1: площадь подграфика

$$f:\langle a,b
angle o\mathbb{R},$$
 непр., $\Phi:\mathrm{Segm}\ \langle a,b
angle o\mathbb{R}:\ \Phi([p,q])=\sigma(\Pi\Gamma(f,[p,q]))$

Тогда f — плотность, из монотонности площади

$$(q-p)\cdot \min f \leq \sigma(\Pi\Gamma(f,[p,q])) \leq (q-p)\cdot \max f$$

$$\Phi([p,q]) = \sigma(\Pi\Gamma(f,[p,q])) = \int\limits_p^q f$$

Пример 1.2:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

График эллипса

$$\sigma_{\text{\tiny ЭЛЛ}} = \int\limits_{-a}^{a} y^+(x) \, \mathrm{d}x = \begin{bmatrix} x = a \cos t \\ y = b \sin t \end{bmatrix}, \quad t \in [\pi, 0] \end{bmatrix} = -\int\limits_{\pi}^{0} b \sin t \cdot a \sin t \, \mathrm{d}t = ab \int\limits_{0}^{\pi} \sin^2 t \, \mathrm{d}t = ab \frac{\pi}{2}$$

Геометрический способ поиска площади подграфика

Пример 2: площадь криволинейного сектора $\langle a,b \rangle$

 $\Phi:[p,q]\mapsto \sigma(\mathrm{Ceкtop}([p,q],r(\varphi)))$ — аддитивная функция промежутка. Чтобы ее удобно исхать найдем ее плотность:

Проверим, что $\frac{1}{2}r^2(\varphi)$ — плотность а.ф.п. Φ :

$$\tfrac{1}{2}(q-p) \cdot \min_{[p,q]} r^2(\varphi) \leq \Phi[p,q] \leq \tfrac{1}{2}(q-p) \cdot \max_{[p,q]} r^2(\varphi)$$

Криволинейный сектор $([p,q],\min r)\subset$ Сектор $([p,q],r(\varphi))\subset$ Криволинейный сектор $([p,q],\max r)$

Т.е. это была действительтно плотоность а.ф.п $\Phi\Rightarrow\Phi([p,q])=rac{1}{2}\int\limits_{p}^{1}r^{2}(\varphi)\,\mathrm{d}\varphi$

Пример 1: Посчитаем площадь круга

$$\sigma$$
 Круга $=rac{1}{2}\int\limits_{0}^{2\pi}R^{2}darphi=\pi R^{2}$ $\ \odot$

Пример 2:

$$S' = \frac{1}{2} \int_{p}^{q} r^{2}(\varphi) d\varphi = \begin{bmatrix} \varphi = \arctan \frac{y(t)}{x(t)} \\ r = \sqrt{x^{2} + y^{2}} \end{bmatrix} = \frac{1}{2} \int_{t_{p}}^{t_{q}} = (x^{2} + y^{2}) \cdot \frac{1}{1 + \frac{y^{2}(t)}{x^{2}(t)}} \cdot \frac{y'x - x'y}{x^{2}} dt = \frac{1}{2} \int_{t_{p}}^{t_{q}} y'(t)x(t) - x'(t)y(t) dt$$

Подставим в получившуюся формулу уравнение окружности с радиусом R:

$$\begin{cases} x = R \cos t \\ y = R \sin t \end{cases}, \ t \in \left[0, \frac{\pi}{2}\right] \ \Rightarrow \ S = \frac{R^2}{2} \int_{0}^{\frac{\pi}{2}} \cos^2 t + \sin^2 t \, \mathrm{d}t = \frac{\pi R^2}{4}$$

Пример: Изометрическое неравенство

$$G\subset\mathbb{R}^2$$
 G — замкнутая выпуклая фигура. Диаметр $G=\sup(
ho(A,\ B),\ A,\ B\in G)=d\le 1$ Тогда $\sigma(G)\le\pi\left(rac{d}{2}
ight)^2$ (равенство для круга $r=rac{1}{2}$)

Доказательство:

Введем с.к. так чтобы вся наша фигура лежала выше оси O_x а также введем функцию f(x) описывающую "нижнюю" часть нашей фигуры

$$f(x)$$
 — вып., $\forall x_0$ где $\exists f'(x_0) \Rightarrow \exists$ касательная G замк., вып. $\Rightarrow r(\varphi)$ непр.

$$\begin{split} \sigma &= \frac{1}{2} \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^2(\varphi) \,\mathrm{d}\varphi = \frac{1}{2} \int\limits_{0}^{\frac{\pi}{2}} + \int\limits_{-\frac{\pi}{2}}^{0} = \frac{1}{2} \int\limits_{\frac{\pi}{2}}^{\frac{\pi}{2}} r^2(\varphi) \,\mathrm{d}\varphi + \frac{1}{2} \int\limits_{0}^{\frac{\pi}{2}} r^2 \left(\varphi_{\text{HOB}} - \frac{\pi}{2}\right) \,\mathrm{d}\varphi_{\text{HOB}} = \\ &= \frac{1}{2} \int\limits_{0}^{1} r^2(\varphi) + r^2 \left(\varphi - \frac{\pi}{2}\right) \,\mathrm{d}\varphi = \frac{1}{2} \int\limits_{0}^{1} AB^{"2} \,\mathrm{d}\varphi \leq \frac{1}{2} \int\limits_{0}^{1} d^2 \,\mathrm{d}\varphi = \frac{\pi d^2}{4} \end{split}$$

Определение: циклоида — траектория точки на окружности, катящейся по прямой

$$S_{
m ueph} + S_{
m cuh} = S_{
m прям} + S_{
m лепестка} \ S = 2\pi r^2 + \pi r^2 \ S = 3\pi r^2$$

$$\begin{cases} x(\varphi) = r\varphi - r\sin\varphi \\ y(\varphi) = r - r\cos\varphi \end{cases}, \varphi \in [0, 2\pi]$$

$$S = \int_{0}^{2\pi r} y(x) dx = \int_{0}^{2\pi} (r - r\cos\varphi)(r - r\cos\varphi) d\varphi = r^{2} \int_{0}^{2\pi} 1 - 2\cos\varphi + \cos^{2}\varphi d\varphi = 2\pi r^{2} + 0 + \pi r^{2}$$

6.3. Аналитические функции

 $f(x) \in C^{\infty} \Rightarrow$ для нее можно писать формулу Тейлора:

$$f(x) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$e^x = \sum\limits_{n=0}^{+\infty} rac{x^n}{n!}$$
 — всюду сходится с рядом Тейлора

 $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots -$ сходится с рядом Тейлора в точках из [-1,1]

Пример неаналитической функции

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Утверждение: $\forall n \in \mathbb{N} \quad \exists f^{(n)}(0) = 0$

Доказательство:

1)
$$\exists f'(0) \quad$$
 если $\exists \lim_{x \to x_0 + 0} f'(x) = a$, то $f'_+(x_0) = a$

$$\exists \lim_{x \to x_0} \quad f'(x) = a$$
, то $f'(x_0) = a$

$$\lim_{x\to 0}\frac{2}{x^3}e^{-\frac{1}{x^2}}\stackrel{\text{Лопиталь}}{=}\lim\frac{2\left(\frac{1}{x^3}\right)e^{-\frac{1}{x^2}}}{3x^2}=\lim\frac{2}{3}\cdot\frac{e^{-\frac{1}{x^2}}}{x^5}-\text{не повезло}$$

$$=\lim\frac{\frac{2}{x^{3}}}{e^{\frac{1}{x^{3}}}}=\left[\frac{\infty}{\infty}\right]\overset{\text{Лопиталь}}{=}\lim\frac{-\frac{6}{x^{3}}}{-\frac{1}{x^{3}}\cdot e^{\frac{1}{x^{3}}}}=\lim_{x\to 0}\frac{\frac{6}{x}}{e^{\frac{1}{x^{2}}}}\overset{\text{Лопиталь}}{=}\lim\frac{-\frac{6}{x^{2}}}{-\frac{1}{x^{3}}e^{\frac{1}{x^{2}}}}=\lim_{x\to 0}\frac{6x}{e^{\frac{1}{x^{2}}}}=0$$

Следствие: $\forall k \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^k} = 0$

Итак,
$$f'(0)=0,$$
 то есть $f'(x)=egin{cases} \frac{1}{x^3}e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0 & x=0 \end{cases}$

Проверим по индукции по
$$n$$
, что $\forall n \; \exists P_n(x)$ — многочлен: $f^{(n)}(x) = \begin{bmatrix} P_n \left(\frac{1}{x}\right) e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{bmatrix}$

База: n = 0, 1 см. раньше

$$f^{(n+1)} = \begin{bmatrix} \left(P_n'\left(\frac{1}{x}\right)\left(-\frac{1}{x^2}\right) + P_n\left(\frac{1}{x}\right)\cdot\left(\frac{1}{x^3}\right)\right)e^{-\frac{1}{x^2}}, & x \neq 0 \\ ?, & x = 0 \end{bmatrix}$$

$$f^{(n+1)} = \lim_{x \to 0} \left(f^{(n)}(x) \right) = \lim_{x \to 0} P_{n+1} \left(\frac{1}{x} \right) e^{-\frac{1}{x^2}} = 0$$

6.4. Продолжение плотности аддитивной фукнции промежутка

f — плотность аддитивной функции промежутка Φ , если:

 $orall \Delta \in \mathrm{Segm} \quad \min_{\Delta} f \cdot |\Delta| \leq \Phi(\Delta) \leq \max_{\Delta} f \cdot |\Delta| \quad ext{(f непрерывна, 6 ином случае вместо min u max, inf u sup)}$

Теорема: (Напоминание)
$$f$$
 — плотность Φ $(f$ — непр) \Rightarrow $\Phi([p,q]) = \int\limits_{p}^{q} f$

Вот здесь нам повезло, что вот эта функция оказалась аддитивной фукнцией промежутка, и это легко доказалось, но на самом деле обычно все не так просто, поэтому нужен более мощный инструмент

a

Теорема: (обобщ. теорема о плотности)

$$\Phi$$
 – a.φ.π: Segm $(\langle a, b \rangle) \to \mathbb{R}, f \in C[a, b]$

Пусть $\forall \Delta \in \mathrm{Segm}(\langle a,b \rangle) \quad \exists$ функции промежуткака m_Δ, M_Δ :

1.
$$m_{\Delta} \cdot |\Delta| \leq \Phi(\Delta) \leq M_{\Delta} \cdot |\Delta|$$

$$2. \ \forall x \in \Delta \quad m_{\Delta} \leq f(x) \leq M_{\Delta}$$

3.
$$\forall$$
 фикс. $x \in \langle a,b \rangle$ $M_{\Delta} - m_{\Delta} \underset{x \in \Delta}{\underset{|\Delta| \to 0}{\longrightarrow}} 0$

т.е. $\forall \varepsilon > 0 \quad \exists \ \delta > 0 : \forall \Delta \in \operatorname{Segm}\langle a, b \rangle :$

$$|\Delta| < \delta, x \in \Delta \quad M_{\Delta} - m_{\Delta} < \varepsilon$$

Тогда
$$f$$
 — плотность $\Phi\left($ и $\forall \ [p,q]\subset \langle a,b \rangle \quad \Phi([p,q])=\int\limits_p^q f
ight)$

Не умаляя общности рассмотрим отрезок
$$[a,b], \quad F(x) = egin{bmatrix} 0, & x=0 \\ \Phi[a,x], & x>a \end{pmatrix}$$
 тогда ? $F'=f$

Фиксируем x, Пусть h > 0

$$\frac{F(x+h)-F(x)}{h} = \frac{\Phi[x,\,x+h]}{h}, \text{ то есть из (1)} \qquad m_{[x,\,\,x+h]} \leq \frac{F(x+h)-F(x)}{h} \leq M_{[x,\,\,x+h]}$$
 из (2)
$$\qquad m_{[x,\,\,x+h]} \leq \qquad f(x) \qquad \leq M_{[x,\,\,x+h]}$$

Таким образом
$$\left|\frac{F(x+h)-F(x)}{h}-f(x)\right|\leq M_{[x,\;x+h]}-m_{[x,x+h]}\overset{\text{из }(3)}{\underset{h\to 0}{\longrightarrow}}0$$

T. e.
$$\frac{F(x+h)-F(x)}{h} \xrightarrow[h \to 0]{} f(x)$$
, r.e. $F'_+(x) = f(x)$

Аналогично
$$F_-'(x)=f(x)$$

6.5. Фигуры вращения

І тип:

$$f \ge 0$$
, непр. $T([a,b]) - \int (x,y,z) \in \mathbb{R}$

$$T([a,b]) = \{(x,y,z) \in \mathbb{R}^3 :$$

$$x \in [a,b], \ y^2 + z^2 \le f^2(x)\}$$

II тип:

$$\begin{split} U([a,b]) &= \{(x,y,z) \in \mathbb{R}^3: \\ a^2 &\leq x^2 + z^2 \leq b^2, \\ 0 &\leq y \leq f \left(\sqrt{x^2 + z^2} \right) \} \end{split}$$

Нам хочеться считать объемы, поэтому введем а.ф.п.:

$$[a,b] \mapsto \Phi[a,b] = V(T[a,b])$$

$$\Psi[a,b] = V(U[a,b])$$

Теорема:

1)
$$\Phi[a,b] = \pi \int_a^b f^2(x) \, \mathrm{d}x$$

2)
$$\Psi[a,b] = 2\pi \int_{a}^{b} x f(x) \, \mathrm{d}x$$

Доказательство:

1) ИЕЯ (упражнение)

2) ? $2\pi x f(x)$ — плотность Ψ

 $U[a,b]\subset$ Цилиндр над кольцом (с основанием) $a^2\leq x^2+z^2\leq b^2,\;$ высоты $\max_{[a,b]}f$

$$^{\bullet}\ \Psi[a,b] \leq \left(\pi b^2 - \pi a^2\right) \max f = \pi(b+a)(\max f)(b-a) \leq \pi \cdot \max_{x \in [a,\ b]} 2x \cdot \left(\max_{x \in [a,\ b]} f\right) \cdot (b-a)$$

$$\Psi[a,b] \geq \pi \min 2x \cdot (\min f)(b-a)$$

$$M_{[a,\ b]} = \pi \cdot \max_{x \in [a,\ b]} = \pi \cdot \max 2x \cdot \max f$$

$$m_{[a,\ b]} = \pi \cdot \min 2x \cdot \min f$$

Это ровно первый пункт обобщенной теоремы плотности

•
$$m_{[a, b]} \le 2\pi x f(x) \le \pi \cdot \max 2x \cdot \max f(x)$$

Это второй пункт теоремы

$$\bullet \ M-m \underset{\substack{x \in \Delta \\ |\Delta \to 0|}}{\longrightarrow} 0$$

$$\max f \to f(x) \leftarrow \min f$$

$$\max_{t \in \Delta} 2t \to 2x \leftarrow \min 2t$$

Это третий пункт

Получилось что все 3 пункта выполнены \Rightarrow это действительно плотность Ψ

Посчитаем объём бублика:

 $(x-R)^2 + y^2 = r^2$ – это формула которой задается сечение бублика. R – расстояние от центра координат, r – радиус круга сечения.

$$V_{\text{бублика}} = 2 \cdot 2\pi \int\limits_{R-2}^{R+2} x \sqrt{r^2 - (x-R)^2} \, \mathrm{d}x = 4\pi \int\limits_{R-2}^{R+2} (x-R) \sqrt{r^2 - (x-R)^2} \, \mathrm{d}x + 4\pi R \int\limits_{R-2}^{R+2} \sqrt{r^2 - (x-R)^2} \, \mathrm{d}x$$

$$= 0 + 4\pi R \cdot \frac{\pi r^2}{2} = 2\pi R \cdot \pi r^2 = 2\pi^2 R r^2$$

6.6. Интегральные суммы

 $f \in C[a, b]$

Определение: дробление отрезка

Дробление отрезка
$$[a,b]$$
 — набор точек $x_0=a < x_1 < x_2 < \ldots < x_n=b$

Определение: ранг дробления (мелкость)

$$\textit{Ранг дробления} - \max_{1 \leq k \leq n} (x_k - x_{k-1})$$

Определение: оснащение

$$\mbox{\it Оснащение}$$
 — набор точек $\xi_1,...,\xi_n: \forall k \quad \xi_k \in [x_{k-1},x_k]$

Определение: интегральная (риманова) сумма

Интегральная сумма —
$$\sum\limits_{k=1}^n f(\xi_k)(x_k-x_{k-1})$$

Теорема: (об интеграле как о пределе интегральной суммы)

 $f \in C[a, b]$ Тогда

 $\forall \varepsilon > 0 \ \exists \ \delta > 0 : \forall$ дроблени
е $x_0 = a < x_1 < \ldots < x_n = b,$ где ранг дробления < δ

$$\left|\int\limits_a^b f - \sum\limits_{k=1}^n f(x_{k-1})(x_k - x_{k-1})\right| < \varepsilon$$

Доказательство:

Теорема Кантора о равномерной непрерывности: f — непр. на $[a,b] \Rightarrow f$ — равн. непр.

Равномерно непрерывно означает: $\forall \varepsilon>0 \quad \exists \ \delta>0: \forall x, \ \overline{x}: |x-\overline{x}|<\delta \quad |f(x)-f(\overline{x})|<\frac{\varepsilon}{b-a}$

$$\left|\int\limits_a^b f - \sum\limits_{k=1}^n \ldots \right| \stackrel{(*)}{=} \left| \sum\limits_{k=1}^n \int\limits_{x_{k-1}}^{x_k} \left(f(x) - f(x_{k-1}) \right) \mathrm{d}x \right| \leq \sum |\ldots| \leq \sum\limits_{k=1}^n \int\limits_{x_{k-1}}^{x_k} |f(x) - f(x_{k-1})| \, \mathrm{d}x < \sum \int\limits_{x_{k-1}}^{x_k} \frac{\varepsilon}{b-a} \, \mathrm{d}x = \sum \sum\limits_{k=1}^n \frac{\varepsilon}{b-a} |b-a| = \varepsilon$$

24

(*): здесь интеграл разбился по аддитивности на $\sum_{k=1}^n \int\limits_{x_{k-1}} f(x),\;\;$ а каждый элемент суммы представили в виде $\sum_{k=1}^n \int\limits_{x_{k-1}}^{x_k} f(x_{k-1}),\;\;$ так как у нас каждый элемент суммы — прямоугольник с основанием x_k-x_{k-1} и высотой $f(x_{k-1}).$

Замечание: в общем случае можно взять не конец отрезка, а некоторую точку ξ_k на нем и все будет работь.

Определение: модуль непрерывности

$$f:[a,b]\to\mathbb{R}$$

$$\omega(\delta)\coloneqq \sup_{\substack{x,f\in[a,b]\\|x-t|<\delta}} \lvert f(x)-f(t)\rvert - \text{модуль непрерывности}$$

Т. Кантора: $\omega(\delta)\underset{\delta \to 0}{\to} 0$ [для непр. f]

Т. Лагранжа: f — дифф на $[a,\ b]$ — $M = \max |f'|$ — Тогда $\omega(\delta) \leq M \cdot \delta$

Предыдущая теорема: если ранг дробления $<\delta$, то $\left|\int\limits_a^b f - \sum\limits_{k=1}^n f(x_{k-1})(x_k-x_{k-1})\right| \leq \omega(\delta)\cdot (b-a)$

Если хотим в терминах теоремы Лагранжа: $f \in C^1 \quad M = \max |f'| \quad \left| \int -\sum \right| \leq M \delta(b-a)$

Сделаем равномерное дробление отрезка [a,b] Посмотрим на сколько отличается интеграл от суммы.

Он отличается ровно на площадь красных треугольничков.

Сместим все треугольнички в последний столбец и оценим их площадь площадью прямоугольника — победа.

Теорема: (об интегральной сумме центральных прямоугольников)

$$\begin{split} f \in C^2[a,\ b] \quad & a = x_0 < x_1 < x_2 < \ldots < x_n = b \\ \delta = \max(x_k,\ x_{k-1}),\ \xi_k = \frac{x_{k-1} + x_k}{2} \\ \text{Тогда} \left| \int\limits_a^b f - \sum\limits_{k=1}^n f(\xi_k)(x_k - x_{k-1}) \right| \leq \frac{\delta^2}{8} \int\limits_a^b |f''| \end{split}$$

Доказательство:

Упражнение (зная доказательств следующей теоремы)

Теорема: (формула трапеций)

$$f \in C^2[a, b]$$
 $a = x_0 < x_1 < \dots < x_n = b$ $\delta = \max(x_k - x_{k-1})$

Тогда
$$\left|\int\limits_a^f -\sum\limits_{k=1}^n \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1})\right| \leq \frac{\delta^2}{8} \int\limits_a^b |f''|$$

Доказательство:

Хотим интегрировать по частям: $\int\limits_{\alpha}^{\beta}u'v=uv\Big|_{\alpha}^{\beta}-\int\limits_{\alpha}^{\beta}v'u$

$$\int_{x_{k-1}}^{x_k} f = \int_{x_{k-1}}^{x_k} f(x) \, \mathrm{d}x =$$

$$\begin{bmatrix} v = f & v = f' \\ u' = 1 & u = x - \xi_k \end{bmatrix} = f(x)(x - \xi_k) \Big|_{(x = x_{k-1})}^{(x = x_k)} - \int\limits_{x_{k-1}}^{x_k} f'(x)(x - \xi_k) \, \mathrm{d}x = (f(x_k) + f(x_{k-1})) \frac{x_k - x_{k-1}}{2} + \frac{x_k - x_{k-1}}{$$

$$+\frac{1}{2}\int\limits_{x_{k-1}}^{x_k}f'(-2(x-\xi_k))\,\mathrm{d}x = \begin{bmatrix} v=f' & f'=f'' \\ u'=-2(x-\xi_k) & u=(x-x_{k-1})(x_k-x) \end{bmatrix} = \begin{bmatrix} v=f' & f'=f'' \\ u'=-2(x-\xi_k) & u=(x-x_{k-1})(x_k-x) \end{bmatrix}$$

$$=\frac{f(x_k)+f(x_{k-1})}{2}(x_k-x_{k-1})+\frac{1}{2}\left(u\cdot f'\Big|_{x=\,x_{k-1}}^{x=\,x_k}\,-\int\limits_{x_{k-1}}^{x_k}\,f''\cdot u(x)\,\mathrm{d}x\right), \quad \text{где} \quad u(x)=(x-x_{k-1})(x_k-x)$$

Суммируем эти формулы по k = 1, 2, ..., n

$$\int\limits_a^b f = \sum\limits_{k=1}^n \mathrm{тра} \mathrm{\pi} - \tfrac{1}{2} \int\limits_a^b f''(x) u(x) \, \mathrm{d} x$$

$$\left|\int\limits_a^b f - \sum \operatorname{Tpan}\right| = \frac{1}{2} \left|\int\limits_a^b f''(x) u(x) \, \mathrm{d}x\right| \leq \frac{1}{2} \int\limits_a^b |f''| u(x) \, \mathrm{d}x \overset{(*)}{\leq} \frac{\delta^2}{8} \int\limits_a^b |f''| u(x) \, \mathrm{d}x \overset{(*)}{\leq}$$

(*) Здесь мы заменили u(x) на ее максимальное значение. Заметим что u(x) выглядит как набор парабол ветвями вниз, которые проходят через точки x_i , при этом расстояние между $x_i \leq \delta \Rightarrow \max(u) = \frac{\delta^2}{4}$

Подсказка для центральных прямоугольников:

$$\left[a,b\right]=\left[0,n\right],x_{k}=k$$

6.7. Простейший случай формулы Эйлера-Маклорена

$$\begin{split} & \underset{n}{m}, \ n \in \mathbb{Z} \quad f \in C^2[m, \ n] \quad \text{Тогда} \\ & \int\limits_{m} f(x) dx = \sum\limits_{i=m}^{n} f(i) - \frac{1}{2} \int\limits_{m} f''(x) \cdot \{x\} (1 - \{x\}) dx \\ & \exists \text{то очевидно, A} \Gamma \text{A. Это формула трапеции} \\ & \sum\limits_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \\ & \text{Дробим } [m, \ n] \text{ на единичные отрезки} \\ & \psi(x) = (x - x_{k-1}) (x_k - x) \\ & \frac{\delta^2}{8} \int \dots \quad \frac{1}{2} f(m) + f(m+1) + \dots + f(n-1) + \frac{1}{2} f(n) \\ & - \frac{\delta^2}{2} \int\limits_{n} |f''| \quad \int f'' \cdot \psi(x) \end{split}$$

Пример 1:
$$f(x)=x^p,\; p>-1$$

$$1^p+2^p+...+n^p=\frac{n^p}{2}+\frac{1}{2}+\int\limits_1^n x^pdx+\frac{1}{2}\int\limits_1^n {(x^p)}''\{x\}(10\{x\})dx$$

7. Неравенства

7.1. Интегральное неравенство Йенсена

Теорема:

$$\left.\begin{array}{l} f-\text{ выпуклая, непр. на }\langle A,B\rangle\\ \varphi:[a,b]\to\langle A,B\rangle-\text{ непрерывная}\\ \lambda:[a,b]\to[0,+\infty)-\text{ непр. } \text{ и}\int\limits_a^b\lambda=1 \right\} \Rightarrow f\left(\int\limits_a^b\lambda(t)\varphi(t)\,\mathrm{d}t\right) \leq \int\limits_a^b\lambda(t)f(\varphi(t))\,\mathrm{d}t$$

Доказательство:

Пусть $m = \min \varphi, M = \max \varphi$

$$c = \int\limits_a^b \lambda(t) \varphi(t) \, \mathrm{d}t \leq M \int\limits_a^b \lambda(t) \, \mathrm{d}t = M, \quad \text{аналогично } c \geq m$$

$$\text{Если } \varphi = \mathrm{const} \Rightarrow \begin{cases} f \left(\int\limits_a^b \lambda(t) \cdot \mathrm{const} \, \mathrm{d}t \right) = f \left(\mathrm{const} \cdot \int\limits_a^b f(t) \, \mathrm{d}t \right) = f(\mathrm{const}) \\ \int\limits_a^b \lambda(t) f(\mathrm{const}) \, \mathrm{d}t = f(\mathrm{const}) \cdot \int\limits_a^b \lambda(t) \, \mathrm{d}t = f(\mathrm{const}) \end{cases}$$

В таком случае неравенство очевидно выполняется: $f(\text{const}) \leq f(\text{const})$

В противном случае: $\varphi \neq \text{const} \Rightarrow m < c < M$

Берём в точке $c \in \langle A, B \rangle$ опорную прямую к графику: $y = \alpha x + \beta$ (*)

$$f(c) = \alpha c + \beta = \alpha \int_{a}^{b} \lambda(t) \varphi(t) \, \mathrm{d}t + \beta \underbrace{\left(\int_{a}^{b} \lambda(t) \, \mathrm{d}t\right)}_{=1} = \int_{a}^{b} \lambda(t) (\alpha \varphi(t) + \beta) \, \mathrm{d}t \underbrace{\leq}_{\text{выпуклости}}_{=1} \int_{a}^{b} \lambda(t) f(\varphi(t)) \, \mathrm{d}t$$

Комментарий по (*): мы не хотим, чтобы опорная прямая была вертикальной, поэтому мы берём c не на конце отрезка. Можно это записать так: $c=\int\limits_a^b\lambda(t)\varphi(t)\,\mathrm{d}t < M\int\limits_a^b\lambda(t)\,\mathrm{d}t$ вместо нестрогого неравенства.

30

7.2. Пример (неравенство Коши в интегральной форме):

Напоминание (обычное неравенство Коши): $\sqrt[n]{a_1...a_n} \leq \frac{a_1+...+a_n}{n}$

Теперь интегральная форма:
$$f \in C[a,b], \ f>0 \Rightarrow \exp\Biggl(rac{1}{b-a}\int\limits_a^b \ln f \,\mathrm{d}x\Biggr) \leq rac{1}{b-a}\int\limits_a^b f(x) \,\mathrm{d}x$$

В качестве упражнения можно доказать при помощи интегральных сумм

Доказательство при помощи неравенства Йенсена:

 $f^* \leftrightarrow \exp - 3$ десь f^* на самом деле тот f который был в формулировке неравенства Йенсена, но во избежании коллизии обозначений с тем f который введен в этой теореме немного его переименуем.

$$\lambda \leftrightarrow \frac{1}{b-a}$$
$$\varphi \leftrightarrow \ln$$

Если исползьовать эти фукнци то наше неравенство ровно сведется к неравенство Йенсена.

7.3. Неравенство Гёльдера для сумм

Теорема:

$$p>1,\ q>1,\ rac{1}{p}+rac{1}{q}=1,\ a_i,b_i>0\ orall i=1...n$$
 Тогда $\sum_{i=1}^n a_i b_i \leq \left(\sum a_i^p
ight)^rac{1}{p} \left(\sum b_i^q
ight)^rac{1}{q}$

Доказательство:

$$f(x)=x^p$$
 — вып. на $[0,+\infty)$ $f''=p(p-1)x^{p-2}\geq 0$

Нер-во Йенсена для этой фукнции: $(\sum \alpha_i x_i)^p \stackrel{(1)}{\leq} \sum \alpha_i x_i^p$, где $\sum \alpha_i = 1$

В качестве α_i возьмем $\alpha_i = \frac{b_i^q}{\sum b_i^q}$ — подходит под нужное нам условие

В качестве x_i возьмем $x_i = a_i b_i^{-\frac{1}{p-1}} (\sum b_i^q)$

Найдем a_ix_i чтобы подставить его в Л.Ч. (1): $\alpha_ix_i=a_ib_i^{q-\frac{1}{p-1}}=a_ib_i$

Найдем $\alpha_i x_i^p$ чтобы подставить его в П.Ч. (1): $\alpha_i x_i^p = \frac{b_i^q}{\sum b_i^q} a_i^p b_i^{-\frac{p}{p-1}} (\sum b_i^q)^p = a_i^p (\sum b_i^q)^{p-1}$

Подставляем то что мы только что получили в (1): $(\sum a_i b_i)^p \leq (\sum a_i^p) (\sum b_i^q)^{p-1}$

Возводим предыдущее равенство в степень $\frac{1}{p}: (\sum a_i b_i) \leq (\sum a_i^p)^{\frac{1}{p}} (\sum b_i^q)^{\frac{p-1}{p}=\frac{1}{q}}$

Наблюдение 1: неравенство работает для нулевых слагаемых т.к нулевые множители не влияют на сумму слева и не уменьшают сумму справа

Наблюдение 2:

$$\begin{array}{l} a_i,b_i \in \mathbb{R} \\ |\sum a_ib_i| \leq \sum |a_ib_i| \leq \left(\sum |a_i|^p\right)^{\frac{1}{p}} \left(\sum |b_i|^q\right)^{\frac{1}{q}} \end{array}$$

Замечание для нер-ва Йенсена:

 $f(\sum lpha_i x_i) \leq \sum lpha_i f(x_i), f$ — строго выпукла, $lpha_i
eq 0$. Равенство достигается при $x_1 = x_2 = \ldots = x_n$

Идя по док-ву нер-ва Гёльдера, заметим, что если нет нулей, то $f(x)=x^p$ — строго выпукла на $(0,+\infty)$. Равенство достигается тогда, когда:

$$\forall i \qquad \begin{vmatrix} a_i b_i^{-\frac{1}{p-1}} = \lambda \\ a_i^p b_i^{-\frac{p}{p-1}} = \lambda^p = \lambda_0 \end{vmatrix} \Rightarrow a_i^p = \lambda_0 b_i^q \Rightarrow \left(a_1^p...a_m^p\right) \uparrow \uparrow \left(b_1^q...b_n^q\right) -$$
эта запись означает что вектора

пропорциональны дург другу

7.4. Интегральное нер-во Гёльдера

$$p>1,\ q>1,\ \frac{1}{p}+\frac{1}{q}=1,\ f,g\in C[a,b]\Rightarrow \left|\int\limits_a^bfg\right|\leq \left(\int\limits_a^b|f|^p\right)^{\frac{1}{p}}\left(\int\limits_a^b|g|^q\right)^{\frac{1}{q}}$$

Доказательство:

[a,b] дробим на n равных частей: $x_k = a + k \cdot \frac{b-a}{n} = a + k \Delta x_k$

Дискретное неравенство Гёльдера:

$$\begin{split} a_k &= f(x_k)(\Delta x_k)^{\frac{1}{p}} \\ b_k &= g(x_k)(\Delta x_k)^{\frac{1}{q}} \\ a_k b_k &= f(x_k)g(x_k)\Delta x_k \\ \sum &|f(x_k)g(x_k)|\Delta x_k \leq \left(\sum |f(x_k)|^p \Delta x_k\right)^{\frac{1}{p}} \left(\sum |g(x_k)|^q \Delta x_k\right)^{\frac{1}{q}} \end{split}$$

Свертка интегральных сумм в интеграл: $n \to +\infty: \int\limits_a^b |f(x)g(x)| \,\mathrm{d}x \le \left(\int\limits_a^b |f|^p\right)^{\frac{1}{p}} \left(\int\limits_a^b |g|^q\right)^{\frac{1}{q}}$

Из-за предельного перехода равенство найти не получится 🙁

Неравенство Гёльдера, случай n=2:

$$\sum a_i b_i \leq \left(\sum a_i^2\right)^{\frac{1}{2}}\!\!\left(\sum b_i^2\right)^{\frac{1}{2}}-$$
нер-во Коши-Буняковского

$$\begin{array}{l} p \to 1, q \to +\infty: \\ \sum a_i b_i \leq \sum a_i \lim_{q \to +\infty} \left(\sum b_i^q\right)^{\frac{1}{q}} = \sum a_i \max(b_i) \end{array}$$

7.5. Неравенство Минковского

Теорема:

$$\begin{split} p &\geq 1, \ a_i, b_i \in \mathbb{R} \\ \text{Тогда} \left(\sum_{i=1}^n \left| a_i + b_i \right|^p \right)^{\frac{1}{p}} &\leq \left(\sum \left| a_i \right|^p \right)^{\frac{1}{p}} + \left(\sum \left| b_i \right|^p \right)^{\frac{1}{p}} \\ p &= 1 - \text{очев} \end{split}$$

Смысл неравенства: елси p>1, тогда мы можем задать норму в $\mathbb{R}^n:\left(a_1...a_n\right)\mapsto\left(\sum\left|a_i\right|^p\right)^{\frac{1}{p}}$

Доказательство:

$$\sum a_{i} |a_{i} + b_{i}|^{p-1} \le \left(\sum a_{i}^{p}\right)^{\frac{1}{p}} \left(\sum |a_{i} + b_{i}|^{q(p-1)=p}\right)^{\frac{1}{q}}$$
$$\sum b_{i} |a_{i} + b_{i}|^{p-1} \le \left(\sum b_{i}^{p}\right)^{\frac{1}{p}} \left(\sum |a_{i} + b_{i}|^{p}\right)^{\frac{1}{q}}$$

Просуммируем два полученых неравенства:

$$\sum (a_i + b_i) |a_i + b_i|^{p-1} = \left(\sum (a_i + b_i)^p\right)^1 \le \left(\left(\sum |a_i|^p\right)^{\frac{1}{p}} + \left(\sum |b_i|^p\right)^{\frac{1}{p}}\right) \left(\sum |a_i + b_i|^p\right)^{\frac{1}{q}}$$

$$\left(\sum (a_i + b_i)^p\right)^{\frac{1}{p}} \le \dots$$

Теорема: (инт. н-во Минковского)

$$f,g\in C[a,b],p\geq 1$$
. Тогда $\left(\int\limits_a^b|f+g|^p
ight)^{rac{1}{p}}\leq \left(\int\limits_a^b|f|^p
ight)^{rac{1}{p}}+\left(\int\limits_a^b|g|^p
ight)^{rac{1}{p}}$

Смысл интегрального н-ва Минковского: $f \mapsto \left(\int\limits_a^b |f|^p\right)^{\frac{1}{p}}$ — норма

Доказательство:

Вариант 1. Переписать дискр. доказательство.

Вариант 2. Интегральные суммы

В н-ве Гёльдера в предельном переходе $(\sum b_i^q)^{\frac{1}{p}} \to \max |b_i|$ $(b_1,...,b_n) \mapsto \max |b_i|$ — норма

8. Конечные ε -сети

Определение: ε -сеть

$$(x, \rho) - M\Pi, D \subset X$$

Мн-во $N\subset X$ называется arepsilon-сетью для $D\quad \forall x\in D\quad \exists\ n\in N: \rho(x,n)<arepsilon$

Определение: сверхограниченность

D — сверхограниченно, если $\forall \varepsilon > 0$ в $X = \exists$ конечная ε -сеть N для мн-ва D

Лемма:

D — сверхограниченно в $X \Leftrightarrow D$ — сверхограниченно в D

Доказательство:

⇐: тривиально

 \Rightarrow : Берём конечную $\frac{\varepsilon}{2}$ -сеть в X

 $\forall n \in N$ рассмотрим шар $B\left(n, \frac{\varepsilon}{2}\right)$. Отметим в каждом шаре точку d_n — конечное число.

Тогда $\{d_n\} - \varepsilon$ -сеть, лежащая в D.

Лемма:

Сверхограниченность сохраняется при равномерно непрерывных отображениях.

Т.е. $D\subset X$ — сверхогр., $f:X\to Y$ — равн. непр. ($\forall \varepsilon>0 \quad \exists \delta>0: \forall x_1,x_2: \rho(x_1,x_2)<\delta\Rightarrow \rho(f(x_1),f(x_2))<\varepsilon$)

Тогда f(D) — св.огр. в Y, т.к. $f(\delta\text{-сеть}) = \varepsilon\text{-сеть}$

Вопрос из зала: почему не получиться так, что ограниченное всегда является свехрограниченным?

Ответ: рассмотрим нормированное пространство последовательностей $L = \left\{ (x_1, x_2, ...), |\overline{x}| = \sum_{i=1}^{+\infty} |x_i| \right\}$

 $D=(e_1,e_2,\ldots)\subset \overline{Big(ec{0},1ig)}$ — ограниченное множество.

$$e_k = \left(\underbrace{0,...,0}_{(k-1)},1,0,\ldots\right)$$

 $ho(e_k,e_j)=\|e_k-e_j\|=2$ — но это говорит нам о том что D не сверхограниченно

Лемма:

$$D-$$
 сверхогр. \Rightarrow замыкание D тоже
$$D\subset \bigcup_N B(n,\varepsilon)\Rightarrow \overline{D}\subset \bigcup_N B(n,2\varepsilon)\Rightarrow N-2\varepsilon\text{-сеть для }\overline{D}$$

Лемма:

D — сверхогр. $\Leftrightarrow \forall$ посл. точек из D содержит фундоментальную подпоследовательность

Напоминание (фундаментальная посл-ть): x_n — фунд. $\Leftrightarrow \forall \varepsilon > 0 \quad \exists N: \forall m,k > N \quad \rho(x_n,x_k) < \varepsilon$

Доказательство:

 $\Rightarrow : \varepsilon \coloneqq 1.$ Строим конечную 1-сеть $N_1 \bigcup_{a \in N_1} B(a,1) \supset D$

 $a \in N_1$

 $\exists a_1 \in N_1$: в $B(a_1,1)$ сод. беск. много членов последовательности $x_n.$

Берём все эти бесконечно много x_n и объединяем в подпоследовательность $\left(x_n^{(1)}\right)$, возьмём любой её член и обозначим x_{n_1}

Теперь $\varepsilon \coloneqq \frac{1}{2}$, строим конечную $\frac{1}{2}$ -сеть N_2

$$\bigcup_{a \in N} B\left(a, \frac{1}{2}\right) \supset D$$

 $a\in N_2$ $\exists a_2\in N_2$: в $B\left(a_2,\frac12\right)$ содержит бесконечно много элементов из $x_n^{(1)}$ Берём эти элементы и обозначем $\left(x_n^{(2)}\right)$, возьмём член $x_{n_2}(n_2>n_1)$

:
$$\left(x_{n_i}
ight)-$$
 фундаментальная

 $\Leftarrow \varepsilon$:. Нет ε -сети?

Какая то x_1 , другая $x_2 \notin B(x_1, \varepsilon)$ и $x_3 \notin B(x_1, \varepsilon) \cup B(x_2, \varepsilon)$

Таким образом построим посл-ть: $\forall x_k, x_m \quad \rho(x_k, x_m) \geq \varepsilon$

У посл-ти (x_n) нет фунд. подпосл. Противоречие в определении для обсуждаемого ε .

X- сверхогр. \Rightarrow в X имеется счётное всюду плотное подмножество Q. (т.е. X- сепарабельное)

Доказательство:

$$Q = \bigcup_{n=1}^{+\infty} \left(\frac{1}{n}\text{-ceть}\right)$$

Теорема:

 (X, ρ) — МП. Эквивалентны:

- 1. X компактно
- 2. X полно и сверхограниченно

Доказательство:

Замечание: в МП комп. ⇔ секв. комп.

$$(1) \Rightarrow (2)$$
:

X- неполно $\Rightarrow \exists$ фундаментальная последовательнсоть, не имеющая предела $\Rightarrow \forall$ подпоследовательности верно, что она тоже не имеет предела \Rightarrow это противоречит секвинциальной компактности

X- не сверхограничено \Rightarrow по лемме 4 \exists последовательность, у которой \nexists фунд. подпосл. \Rightarrow у этой последовательности нет сходящейся подпоследовательности \Rightarrow противоречит секвинциальной компомпактности

$$(2) \Rightarrow (1)$$
:

X — сверхограниченно $\Rightarrow \forall$ последовательность точек из $X = \exists$ фундаментальная подпоследовательнсоть \forall последовательность точек из X имеет схододящейся подпоследовательности, т.е. это секвинциальная компактность.

9. Несобственный интеграл

Определение: несобственный интеграл

$$f: [a, b) \to \mathbb{R} \quad (-\infty < a < b \le +\infty)$$

f — **допустима**, если $\forall A: a \leq A < b$ f — кусочно-непрерывна на [a,A]

$$\Phi(A) = \int\limits_a^A f(x) \, \mathrm{d}x$$
, где $A \in [a,b)$

Если $\exists \lim_{A \to b = 0} \Phi(A) \in \overline{\mathbb{R}}$, то величина называется несобственным интегралом $\int f(x) \, \mathrm{d}x$

Если $ot \exists \lim_{A \to b-0} \Phi(A) \in \overline{\mathbb{R}}$, то несобств. инт. не существует.

Если $\lim \Phi(A) \in \mathbb{R}$, то интеграл сходится.

Если $\lim \Phi(A) = \{\pm \infty\}$ или не сущ., то интеграл расходится.

Пример:

1.
$$\int_{1}^{+\infty} \frac{1}{x} \, \mathrm{d}x$$

$$\int\limits_{-x}^{A} \mathrm{d}x = \ln A \underset{A \to +\infty}{\to} +\infty - \mathrm{pacxoдитьcg}$$

2.
$$\int\limits_0^1 \frac{1}{x} \,\mathrm{d}x = \lim_{A \to +0} \int\limits_A^1 \frac{1}{x} \,\mathrm{d}x = -\ln A \underset{A \to +0}{\to} +\infty - \text{расходиться}$$

3.
$$\int\limits_{1}^{+\infty}\frac{\mathrm{d}x}{x^2}=\lim_{A\to+\infty}\frac{-1}{x}\left|_{1}^{A}=\lim_{A\to+\infty}-\frac{1}{A}+1\to 1-\mathrm{сходиться}\right|$$

4.
$$\int\limits_{1}^{+\infty} \sin x \, \mathrm{d}x = \lim_{A \to +\infty} \int\limits_{1}^{A} \sin x = \lim_{A \to +\infty} -\cos A + \cos 1 - \text{не существует}$$

Замечание:

1.
$$f \in C[a,b]: \int\limits_{-b}^{\to b} f = \int\limits_{-b}^{b} f$$
 — очевидно

1.
$$f \in C[a,b]: \int\limits_a^{\to b} f = \int\limits_a^b f$$
 — очевидно
2. Теперь можно находить $\int\limits_a^{+\infty}$ (стрелочка не нужна, потому что нет путаницы)

3. Стрелочка не меняет значения для собственных интегралов, а несобственность и так понятна

$$\int_{a}^{b} f = F \Big|_{a}^{b} = \lim_{A \to b \to 0} F(A) - F(a)$$

Свойства:

1. Критерий Больцано-Коши

Напоминание для фунций:

$$\exists \ \mathrm{кон.} \lim_{x \to a} f(x) \Leftrightarrow \forall \varepsilon > 0 \quad \exists \delta > 0 : \forall x_1 : |x_1 - a| < \delta, \forall x_2 : |x_2 - a| < \delta : |f(x_1) - f(x_2)| < \varepsilon = 0$$

Для интегралов:

Сходимость
$$\int\limits_a^{\to b} f \Leftrightarrow \forall \varepsilon > 0 \quad \exists \Delta \in [a,b): \forall A,B > \Delta \quad \left| \int\limits_A^B f \right| < \varepsilon$$

Отрицание:
$$\exists \; \varepsilon > 0 : \forall \Delta \in [a,b) \quad \exists A,B > \Delta : \left| \int\limits_{-\infty}^{B} \right| \geq \varepsilon,$$

т.е. если
$$\exists \ arepsilon \ \exists \ (a_n), (b_n) o b - 0 \quad \left| \int\limits_{a_n}^{b_n} f \right| \geq arepsilon \Rightarrow \int\limits_{a}^{ o b}$$
 расходится

Пример:

$$\int\limits_{1}^{+\infty}\sin x\,\mathrm{d}x-\mathrm{расходитс}\mathfrak{g}$$

$$A_n = 2\pi n, B_n = 2\pi n + \pi : \int_{A_n}^{B_n} \sin x = 2 \ge \varepsilon = 2$$

2. Аддитивность по промежутку

$$\forall c \in (a,b)\text{, пусть } \exists \int\limits_{a}^{\rightarrow b} f \Rightarrow \int\limits_{a}^{\rightarrow b} f = \int\limits_{a}^{c} f + \int\limits_{c}^{\rightarrow b} f$$

Доказательство:

Очевидно. Берём A: c < A < b

$$\int_{a}^{A} f = \int_{a}^{c} + \int_{c}^{A}, \quad A \to b - 0$$

$$C$$
оглашение. f — допустимая для $\int\limits_0^{\to +\infty} \int\limits_{\to -\infty}^0 f = \int\limits_{-\infty}^{+\infty} f + \int\limits_{-\infty}^0 f = \int\limits_{2024}^{+\infty} f + \int\limits_{-\infty}^{2024} f$, если сложение

корректно (не случается ситуации $+\infty-\infty$)

Общее соглашение. $f:\mathbb{R} \to \mathbb{R}$ непрерывна, кроме a_1,a_2,a_3

$$\begin{array}{l} b_1 < a_1 < b_2 < a_2 < b_3 < a_3 < b_4 \\ +\infty \int\limits_{-\infty}^{+\infty} f = \int\limits_{-\infty}^{b_1} + \int\limits_{b_1}^{\to a_1} + \int\limits_{\to a_1}^{b_2} + \int\limits_{\to a_2}^{\to a_2} \int\limits_{b_3}^{b_3} + \int\limits_{\to a_3}^{\to a_3} \int\limits_{b_4}^{b_4} + \int\limits_{\to a_1}^{+\infty} + \int\limits_{b_2}^{+\infty} + \int\limits_{\to a_2}^{+\infty} + \int\limits_{b_3}^{+\infty} + \int\limits_{\to a_3}^{+\infty} + \int\limits_{b_4}^{+\infty} + \int\limits_{\to a_3}^{+\infty} + \int\limits_{\to a_3}^{$$

Пример:

$$\int\limits_{-1}^{1} rac{1}{x} \, \mathrm{d}x$$
 $>\!\!\!=\!\!\!0$, т.к. он расходится (возникает выражение $-\infty+\infty$)

Можно сделать небольшой трюк: $\int\limits_{-1}^1=\lim_{\varepsilon\to 0}\int\limits_{[-1,1]\backslash[-\varepsilon,\varepsilon]}\frac{1}{x}\,\mathrm{d}x=0,$ но это достатоно опасно так что не стоит так делать.

Следствие:

$$a < A < b, \int\limits_a^{\rightarrow b} f$$
 сходится, тогда $\int\limits_A^{\rightarrow b} f \underset{A \rightarrow b = 0}{\longrightarrow} 0$

Доказательство:

$$\int_{a}^{\rightarrow b} f = \int_{a}^{A} f + \int_{A}^{\rightarrow b} f$$

$$\int_{f}^{b} f$$

3. f,g — допустимые на $[a,b),\int\limits_a^{\to b}f,\int\limits_a^{\to b}g$ сходятся, $\lambda\in\mathbb{R}$

Тогда
$$\lambda f, f \pm g$$
 — допустимы и $\int\limits_a^{\to b} \lambda f = \lambda \int\limits_a^{\to b} f, \quad \int\limits_a^{\to b} f + g = \int\limits_a^{\to b} f + \int\limits_a^{\to b} g$

Доказательство:

Упражнение читателю.

4.
$$f,g-$$
 допустимы, $\int\limits_a^{\to b}f,\int\limits_a^{\to b}g$ сущ., $f\leq g$ Тогда $\int\limits_a^{\to b}f\leq \int\limits_a^{\to b}g$

Доказательство:

При
$$a < A < b$$
 $\int\limits_a^A f \le \int\limits_a^A g, \quad A o b - 0$

5. Интегрирование по частям:

$$f,g$$
 — дифф, f',g' — допустимы. Тогда*
$$\int\limits_a^{ o b} fg' = fg \Big|_a^{ o b} - \int\limits_a^{ o b} f'g$$

Доказательство:

$$\int\limits_{a}^{A}fg'=fg\left|_{a}^{A}-\int\limits_{a}^{A}f'g,\quad A
ightarrow b-0$$

*: если \exists 2 выражения со стрелочками, то \exists и третий и имеет место "="

6. Замена переменной:

$$arphi: [lpha,eta) o \langle A,B
angle, \ arphi \in C^1$$
 $arphi(eta-0) \in \overline{\mathbb{R}}, f \in C(\langle a,b
angle)$ Тогда: $\int\limits_{lpha}^{
ho eta} (f \circ arphi) arphi' = \int\limits_{arphi(lpha)}^{
ho arphi(eta-0)} f$

Доказательство:

$$f \in C[a,b] \quad \lim_{A \to b-0} \int_{a}^{A} f = \lim_{A \to b-0} \left(\int_{a}^{b} f - \int_{A}^{b} f \right) = \int_{a}^{b} f$$

$$\left| \int_{A}^{b} f \right| \leq \max|f| \cdot (b-A) \to 0$$

10. Признаки сходимости интеграла

Наблюдение.

$$f-$$
 допустима на $[a,b), f\geq 0, \Phi(A)=\int\limits_a^A f$
$$\int\limits_a^b f-$$
 сходится $\Leftrightarrow \Phi-$ огр. (очевидно: $\Phi\nearrow$) В этом случае $\lim_{A\to b-0}\Phi(A)=\sup_{[a,b)}\Phi$

Теорема: признак сравнения

$$f, g$$
 — допустимые на $[a, b), f, g \ge 0$

1. $f \leq g$ на [a, b]. Тогда:

• Если
$$\int\limits_a^b f$$
 расходится, то $\int\limits_a^b g$ расходится

Если
$$\int\limits_{a}^{b}g$$
 сходится, то $\int\limits_{a}^{b}f$ сходится

2.
$$\lim_{x\to b-0}\frac{f(x)}{g(x)}=l$$

$$l\in (0,+\infty):\int f,\int g \mbox{ сходятся одновременно, расходятся тоже}$$

•
$$l=0:\int\limits_a^b f$$
 расходится $\Rightarrow\int\limits_a^b g$ расходится; $\int\limits_a^b g$ сх $\Rightarrow\int\limits_a^b f$ сходиться

•
$$l=+\infty:\int g$$
 расходится $\Rightarrow \int f$ расходится; $\int f \operatorname{cx} \Rightarrow \int g$ сходиться

Доказательство:

1.
$$f \leq g \quad \Phi(A) = \int\limits_a^A f, \Psi(A) = \int\limits_a^A g, \quad \Phi \leq \Psi$$

$$\int\limits_a^b f \text{ расходиться} \Rightarrow \Phi \text{ неограничена} \Rightarrow \Psi \text{ неограничена} \Rightarrow \int\limits_a^b g \text{ расходиться}$$

$$\int\limits_a^b g$$
сходиться $\Rightarrow \Psi$ ограничена $\Rightarrow \Phi$ ограничена $\Rightarrow \int\limits_a^b f$ сходиться

2. Сходимость
$$\int\limits_a^b f$$
 или при $c\in(a,b)$ сходимостьсть $\int\limits_c^b f$ — одно и то же

•
$$l\in (0,+\infty):\exists\ c\in (a,b):$$
 при $x\in (c,b)$ $\frac{l}{2}<\frac{f(x)}{g(x)}<\frac{3}{2}l$

$$\int\limits_a^b f \ \text{сходиться} \Rightarrow \int\limits_c^b f \ \text{сходиться, на} \ (c,b) \quad \tfrac{l}{2} g(x) < f(x) \Rightarrow \int\limits_c^b \tfrac{l}{2} g \ \text{сходиться} \Rightarrow \int\limits_c^b g \ \text{сходиться}$$

$$\int\limits_a^b g \ \text{сходиться} \Rightarrow \int\limits_c^b g \ \text{сходиться}, \ f < \tfrac{3}{2} g \Rightarrow \int\limits_c^b \tfrac{3}{2} g \ \text{сходиться} \Rightarrow \int\limits_a^b f \ \text{сходиться}$$

•
$$l=0$$
 для $\varepsilon=1$ $\exists \ c: \forall x \in (c,b)$ $\frac{f(x)}{g(x)} < 1$, т.е. $f < g$ и результат слеюует из 1 части признака для $\mathrm{E}=1$ $\exists \ c: \forall x \in (c,b)$ $\frac{f(x)}{g(x)} > 1$

Примеры:

$$\int_{a}^{+\infty} \frac{1}{x^{p}} dx = \begin{bmatrix} \frac{1}{1-p} x^{1-p} \Big|_{a}^{+\infty}, & p \neq 1 \\ \ln x \Big|_{a}^{+\infty}, & p = 1 \end{bmatrix} = \begin{bmatrix} \text{кон}, & p > 1 \\ +\infty, & p \leq 1 \end{bmatrix}$$

$$\int_{-\frac{1}{x^p}}^{1} \mathrm{d}x = \begin{bmatrix} \text{кон} \,, & p < 1 \\ +\infty, & p \ge 1 \end{bmatrix}$$

$$2. \int_{0}^{+\infty} \frac{\cos^2 x}{x^2 + 1} \, \mathrm{d}x$$

$$\frac{\cos^2 x}{x^2+1} \leq \frac{1}{x^2+1} \Rightarrow$$
 проверим $\int\limits_0^{+\infty} \frac{1}{x^2+1} \, \mathrm{d}x = \arctan x \, \bigg|_0^{+\infty} = \frac{\pi}{2} -$ он сходиться \Rightarrow изначальный сходиться

3.
$$\int_{10}^{+\infty} \frac{\arctan x}{\sqrt{x \ln x}} \cos \frac{1}{x} dx$$

Попробуем заменить f на эквивалентную: $f \underset{x \to +\infty}{\sim} \frac{c}{\sqrt{x \ln x}}$

$$\int_{10}^{+\infty} \frac{c}{\sqrt{x} \ln x} \, \mathrm{d}x$$

$$\begin{cases} \int\limits_{10}^{+\infty} \frac{1}{\sqrt{x}} = +\infty, \ \int\limits_{10}^{+\infty} \frac{1}{x} = +\infty \\ \lim\limits_{x \to +\infty} \frac{\ln(x)}{\sqrt{x}} = 0 \\ \frac{1}{\sqrt{x}} > \frac{1}{\sqrt{x} \ln x} > \frac{1}{x} \end{cases} \Rightarrow \int\limits_{10}^{+\infty} \frac{c}{\sqrt{x} \ln x} \, \mathrm{d}x - \text{расхдится}$$

4.
$$\int_{10}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha} (\ln x)^{\beta}}$$

1.
$$\alpha>1:\alpha=1+2a,\ a>0$$

$$\frac{1}{x^{1+2a}(\ln x)^{\beta}} = \frac{1}{x^{1+a}} \cdot \frac{1}{x^{a}(\ln x)^{\beta}}$$

$$\textcircled{} \lim_{x \to +\infty} x^a (\ln x)^{\beta} = +\infty \Rightarrow$$
 при больших $x: \left(\exists \ c: \forall x > c: \ \dfrac{1}{x^a (\ln x)^{\beta}} < 1 \right)$ — но это надо доказать

Докажем что предел
$$+\infty$$
 при помощи правила Лопиталя: $\lim_{x\to +\infty}\frac{x^a}{(\ln x)^{-\beta}}=\left(\lim\left(\frac{x^{\frac{a}{-\beta}}}{\ln x}\right)\right)^{-\beta}=+\infty$

Предел в скобках тоже найдем при помощи правила Лопиталя: $\lim \frac{x^{\gamma}}{\ln x} = \lim \frac{\gamma x^{\gamma-1}}{\frac{1}{x}} = \lim \gamma x^{\gamma} = +\infty$

$$\int\limits_{10}^{+\infty} \to \int\limits_{c}^{+\infty} \frac{1}{x^{1+a}} \cdot \underbrace{\frac{1}{x^a(\ln x)^\beta}}_{<1} < \int\limits_{c}^{+\infty} \frac{1}{x^{1+a}} - \text{сходистся} \Rightarrow \text{при } \alpha > 1 \text{ интеграл начальный сходиться.}$$

Название только что примененного приёма: удавить логарифма)

2.
$$\alpha < 1 : \alpha = 1 - 2a, a > 0$$

$$\frac{1}{x^{1-a}} \cdot \frac{1}{x^{-a}(\ln x)^{\beta}}$$

$$\lim_{x \to +\infty} \frac{x^a}{(\ln x)^{\beta}} = \dots = +\infty$$

При
$$x>c: \frac{1}{x^{-a}(\ln x)^{\beta}}>1\Rightarrow \frac{1}{x^{1-a}}\cdot \frac{1}{x^{-a\ln x}}>\frac{1}{x^{1-a}}\Rightarrow$$
 интеграл расходиться

3.
$$\alpha = 1$$
:

$$\int\limits_{10}^{+\infty}\frac{\mathrm{d}x}{x(\ln x)^{\beta}}\stackrel{=}{=}\int\limits_{y=\ln x}^{+\infty}\int\limits_{10}^{+\infty}\frac{\mathrm{d}y}{y^{\beta}}$$
— это эталонный случай: $\beta\leq 1$ — расходится, $\beta>1$ — сходится

10.1. Г-функция Эйлера

$$\Gamma(t) = \int\limits_0^{+\infty} x^{t-1} e^{-x} \, \mathrm{d}x, t > 0$$

1. При t>0 интеграл сходится: $\int\limits_0^1 x^{t-1}e^{-x}\,\mathrm{d}x$, т.к. $x^{t-1}e^{-x} \underset{x\to +0}{\sim} x^{t-1}$ — эталонный случай (сходиться)

$$x^{t-1}e^{-x} dx = \int_{1}^{+\infty} e^{-\frac{x}{2}} \cdot e^{-\frac{x}{2}} \cdot x^{t-1}$$

то, что выделеная часть стремиться к 0, означает, что $\exists \ c: \forall x>c \quad e^{-\frac{x}{2}}x^{t-1}<1$

Получается, что $e^{-\frac{x}{2}} \cdot \underbrace{e^{-\frac{x}{2}} x^{t-1}}_{<1} < e^{-\frac{x}{2}}$ и нам необходимо проверить сходимость следующего интеграла:

$$\int\limits_{c}^{+\infty}e^{-\frac{x}{2}}\,\mathrm{d}x=-2e^{-\frac{x}{2}}\left|_{c}^{+\infty}-\text{сходиться, значит и изначальный сходиться.}\right|$$

2. Γ — выпукла на $(0, +\infty) \Rightarrow \Gamma$ — непрерывна

Для начала покажем, что подынтегральная фукнция выпукла: $t\mapsto f_{x(t)}=x^{t-1}e^{-x}$ Для этого возьмем две производные:

$$f'(t) = x^{t-1} \ln x e^{-x}$$

$$f''(t) = x^{t-1} \ln^2 x e^{-x} \ge 0$$
 — значит действительно выпукла.

Напишем определение выпуклосьи: $\forall t_1, t_2 \ \forall \alpha \in (0,1) \quad f_{x(\alpha t_1 + (1-\alpha t_2))} \leq \alpha f(t_1) + (1-\alpha) f_x(t_2)$

Интегрируем это неравенство по $x:\int\limits_0^{+\infty}f_x(\alpha t_1+(1-\alpha)t_2)\,\mathrm{d}x\leq \alpha\int\limits_0^{+\infty}f_x(t_1)\,\mathrm{d}x+(1-\alpha)\int\limits_0^{+\infty}f_x(t_2)\,\mathrm{d}x$

Для понимания происходящего: последнее слагаемое имеет такой вид: $(1-\alpha)\int\limits_0^{+\infty}x^{t_2-1}e^{-x}\,\mathrm{d}x$

Итого мы получили, что $\Gamma(\alpha t_1+(1-\alpha)t_2)\leq \alpha\Gamma(t_1)+(1-\alpha)\Gamma(t_2)$, а это как раз занчит что Γ выпуклая $\Rightarrow \Gamma$ — непрерывна

3. 1.
$$\Gamma(t+1) = \int_{0}^{+\infty} x_{f \ g'}^{t} dx = x^{t} \left(-e^{-x}\right) \Big|_{x=0}^{x=+\infty} + t \int_{0}^{+\infty} x^{t-1} e^{-x} dx = t \cdot \Gamma(t)$$

2.
$$\Gamma(1) = \int_{0}^{+\infty} e^{-x} = -e^{-x} \Big|_{0}^{+\infty} = 1$$

3.
$$\Gamma(n+1) = n!, n \in \mathbb{N}$$

$$\Gamma(t+1) = t\Gamma(t) \Rightarrow \Gamma(t) = \frac{\Gamma(t+1)}{t} \underset{t \to 0}{\sim} \frac{1}{t}$$

4.
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

10.2. Интеграл Эйлера-Пуассона

$$\begin{split} I &= \int\limits_0^{+\infty} e^{-x^2} \,\mathrm{d}x = \tfrac{1}{2} \sqrt{\pi} \\ &\int\limits_0^{+\infty} e^{-x^2} \,\mathrm{d}x \underset{x=\sqrt{y}}{=} \int\limits_0^{+\infty} \tfrac{1}{2\sqrt{y}} \,\mathrm{d}y = \tfrac{1}{2} \Gamma \big(\tfrac{1}{2} \big) \end{split}$$

Доказательство:

 $1-x^2 \leq e^{-x^2} \leq rac{1}{1+x^2} \quad orall x \in \mathbb{R}$ — левая часть это выпуклость в прямом её виде, правая часть: $1+x^2 \leq e^{x^2}$ тоже выпуклость.

$$\int\limits_{0}^{1} \left(1-x^{2}\right)^{n} \leq \int\limits_{0}^{1} e^{-nx^{2}} \leq \int\limits_{0}^{+\infty} e^{-nx^{2}} \leq \int\limits_{0}^{+\infty} \frac{1}{\left(1+x^{2}\right)^{n}} \, \mathrm{d}x$$

Здесь в качестве w использовался интеграл из формулы Валлиса:

Формула Валлиса:
$$w_n = \int\limits_0^{\frac{\pi}{2}} \sin^n x = \begin{bmatrix} \frac{(n-1)!!}{n!!} \frac{\pi}{2}, & \text{четн} \\ \frac{(n-1)!!}{n!!} & , & \text{нечет} \end{bmatrix}$$
 В частности: $\frac{(2k)!!}{(2k-1)!!} \cdot \frac{1}{\sqrt{k}} \to \sqrt{\pi}$

Итого мы получили:
$$w_{2n+1} \leq \frac{1}{\sqrt{n}} I \leq w_{2n-2}$$

$$\frac{(2n)!!}{(2n+1)!!}\sqrt{n} \le I \le \frac{(2n-3)!!}{(2n-2)!!} \frac{\pi}{2}\sqrt{n} = \frac{1}{\frac{(2n-2)!!}{(2n-3)!!} \frac{1}{\sqrt{n-1}}} \cdot \frac{\frac{\pi}{2}}{\frac{\sqrt{n-1}}{\sqrt{n}}} \to \frac{\sqrt{\pi}}{2}$$

$$\frac{(2n)!!}{(2n-1)!!\sqrt{n}}\frac{n}{2n+1}\to\sqrt{\pi}$$

10.3. Абсолютно сходящиеся интегралы

Определение: абсолютно сходящийся интеграл f — допустимая на [a,b)

$$\int\limits_a^b f \text{ абсолютно сходится} \Leftrightarrow \begin{cases} \int\limits_a^b f - \text{сходится} \\ \int\limits_a^b |f| - \text{сходится} \end{cases}$$

Теорема:

f— допустимая на $\left[a,b\right) .$ Тогда эквивалентны:

1.
$$\int\limits_a^b f$$
 — абсолютно сходиться

2.
$$\int_{a}^{b} |f| - \operatorname{сходится}$$

3.
$$\int\limits_a^b f_+, \int\limits_a^b f_-$$
 оба сходятся

Доказательство:

$$2\Rightarrow 3$$
: $0\leq f_{+}\leq |f|$

$$3 \Rightarrow 1: \int_{a}^{b} f = \int_{a}^{b} f_{+} - \int_{a}^{b} f_{-}, \quad \int_{a}^{b} |f| = \int_{a}^{b} f_{+} + \int_{a}^{b} f_{-}$$

Замецание

$$\int\limits_{-b}^{b}f\operatorname{cxодится} \not \Rightarrow f \underset{x \to b-0}{\longrightarrow} 0$$

Пример:

$$\sum_{n=1}^{+\infty} \frac{1}{2^n} = 1$$

Можно подобрать ширину так, чтобы высота n-го треугольника = n!, площадь $= \frac{1}{2^n}$ и получиться кусочно непрерывная функция, у которой сходящийся интеграл, но которая при этом не стремиться к 0 и даже не ограничена.

42

Продолжаем абсолютно сходящиеся интегралы

Пример:

$$\int\limits_{1}^{+\infty} \frac{\sin x}{x^{p}} \, \mathrm{d}x, \quad p \in \mathbb{R}$$
— изучим абсолютную сходимость

$$1. \left| \frac{\sin x}{x^p} \right| \leq \frac{1}{x^p} \quad \Rightarrow \quad \text{при } p > 1$$
 сходится абсолютно

2. При
$$p<0$$

$$\int\limits_{2\pi n}^{2\pi n+\pi}\frac{\sin x}{x^p}\geq \left(2\pi n\right)^{-p}\int\limits_{2\pi n}^{2\pi n+\pi}\sin x\geq 2(2\pi n)^{-p} \text{ расходится (в т.ч. абс. расх.)}$$

3. При
$$p=0$$
 тоже расходится: $\left|\int\limits_{A^n}^{B_n}\sin x\right|>\frac{1}{1000},\quad A_n=2\pi n, B_n=2\pi n+\pi, A_n, B_n\to +\infty$

$$4.\int\limits_{1}^{+\infty}rac{|\sin x|}{x^{p}}\,\mathrm{d}x,\quad p\in(0,1]pprox\int\limits_{1}^{+\infty}rac{10^{-6}}{x^{p}}\,\mathrm{d}x$$
 расходится

$$\int\limits_{\pi n}^{2\pi n}\frac{|\sin x|}{x^p}\geq\int\limits_{\pi n}^{2\pi n}\frac{|\sin x|}{x}\,\mathrm{d}x\geq\frac{1}{\pi n}\int\limits_{\pi n}^{2\pi n}|\sin x|\,\mathrm{d}x=\frac{2}{\pi}-\text{ нет абс сходимости}$$

$$\int_{2\pi n}^{2\pi n+\pi} \frac{1}{x^p} \sin x + \int_{2\pi n+\pi}^{2\pi n+2\pi} \frac{1}{x^p} \sin x$$

$$y = x - \pi$$

$$\int\limits_{2\pi n}^{2\pi n+\pi}\int\limits_{x^p}^{\frac{\sin x}{x^p}}-\int\limits_{2\pi n}^{2\pi n+\pi}\int\limits_{(y+\pi)^p}^{\frac{\sin y}{(y+\pi)^p}}\sin x$$

$$\int\limits_{2\pi n}^{2\pi n+\pi} \sin x \Big(\frac{1}{x^p} - \frac{1}{(x+\pi)^p} \Big)$$

$$\int\limits_{1}^{+\infty} \frac{\sin x}{x^{p}} = \left[f = \frac{1}{x^{p}} \ g' = \sin x \right] = -\frac{\cos x}{x^{p}} \, \bigg|_{1}^{+\infty} - p \int\limits_{1}^{+\infty} \frac{\cos x}{x^{p+1}}$$

$$\int\limits_{1}^{+\infty} \frac{|\sin x|}{x^{p}} \geq \int\limits_{\mathfrak{T}}^{+\infty} \frac{\sin^{2}x}{x^{p}} = \int\limits_{1}^{+\infty} \frac{1-\cos 2x}{2x^{p}} dx = \int\limits_{\underline{1}}^{+\infty} \frac{1}{2x^{p}} - \int\limits_{\underline{1}}^{+\infty} \frac{\cos 2x}{2x^{p}}$$

10.4. Признаки сходимости

Теорема: (признак Дирихле)

f,g — допустимы на [a,b)

Пусть:

1. первообразная
$$f$$
 ограничена: $\exists C: \forall B \in (a,b) \quad \left| \int\limits_a^B f \right| \leq C$

2.
$$g(x)$$
 — монотонная, $g \in C^1([a,b]), \quad g(x) \underset{x \to b = 0}{\longrightarrow} 0$

Тогда
$$\int\limits_a^{ o b} fg -$$
 сходится

Доказательство:

Обозначим
$$F(B) = \int\limits_{-B}^{B} f$$
 — первообразная.

$$\int\limits_{a}^{b}fg=F(x)g(x)\Big|_{a}^{\rightarrow b}-\int\limits_{a}^{\rightarrow b}F(x)g'(x)\,\mathrm{d}x$$

$$\mathrm{a6c.\ cx.:}\int\limits_{a}^{\rightarrow b}|F(x)|\cdot|g'(x)|\,\mathrm{d}x\leq$$

$$\leq C\int\limits_{a}^{\rightarrow b}|g'|\,\mathrm{d}x=\pm C\int\limits_{a}^{\rightarrow b}g'\,\mathrm{d}x=$$

$$=\pm g(x)\Big|^{\rightarrow b}$$

Тут в оценке у второго интеграла мы воспользовались тем что, g(x) — монотонная, поэтому g'(x) всегда одного знака и модуль может раскрыться только двумя способами.

Теорема: (признак Абеля)

f,g — допустимые на $\left[a,b\right)$

Пусть:

1.
$$\int\limits_{a}^{\rightarrow b}f$$
 — сходится

2. $g \in C^1([a,b]), g(x)$ монотонна, ограничена

Тогда
$$\int\limits_{a}^{\rightarrow b}fg$$
 сходится.

Доказательство:

Пусть
$$\lim_{x \to b-0} g(x) = \alpha \in \mathbb{R}$$

$$\int\limits_{a}^{\to b}fg=\int\limits_{\rm cx\ no\ n.1}^{\to b}f\alpha+\int\limits_{\rm cx\ no\ Дирихле}^{\to b}f(g-\alpha)$$

Пример:

$$\int\limits_{1}^{+\infty} \frac{\sin x}{x^{p}}: \quad f=\sin x \quad F=\cos x-\text{orp.} \quad g=\frac{1}{x^{p}}, \ p>0 \Rightarrow \text{монот,} \to 0 \longrightarrow \text{сх по Дирихле}$$

$$\int\limits_{10}^{+\infty}\sin(x^3-x)\,\mathrm{d}x:\quad \underbrace{f=(3x^2-1)\sin(x^3-x),}_{F=-\cos(x^3-x)-\text{ огр.}},\quad \underbrace{g=\frac{1}{3x^2-1}}_{\text{монот, }\to 0}\Rightarrow\text{ сходится}$$

10.5. Интеграл Дирихле

$$\int\limits_{0}^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}$$

Для начала покажем, что: $\cos x + \cos 2x + ... + \cos nx = \frac{\sin\left(\pi + \frac{1}{2}\right)x}{2\sin\frac{x}{2}} - \frac{1}{2}$

Напоминание из тригонометрии: $\cos(\alpha)\sin(\beta)=\frac{1}{2}(\sin(\alpha+\beta)-\sin(\alpha-\beta))$

$$2\sin\frac{x}{2}\cos kx = \sin\left(k + \frac{1}{2}\right)x - \sin\left(\left(k - \frac{1}{2}\right)x\right)$$

Получается телескопическая сумма, и после сокращения всего получисться верное равенство.

Теперь проинтегрируем обе части :
$$0=\int\limits_0^\pi \cos x+...+\cos nx=\int\limits_0^\pi \frac{\sin \left(n+\frac{1}{2}\right)x}{2\sin \frac{x}{2}}\,\mathrm{d}x-\frac{\pi}{2}$$

Переносим
$$\frac{\pi}{2}$$
 в другую сторону:
$$\int\limits_0^\pi \frac{\sin(n+\frac{1}{2})x}{2\sin\frac{x}{2}}\,\mathrm{d}x = \frac{\pi}{2}$$

Проверим, что
$$\int\limits_0^\pi \frac{\sin \left(n+\frac{1}{2}\right)x}{2\sin \frac{x}{2}} - \int\limits_0^\pi \frac{\sin \left(n+\frac{1}{2}\right)x}{x} \underset{n \to +\infty}{\longrightarrow} 0$$

Если это выполняется, то
$$\int\limits_0^\pi \frac{\left(\sin n + \frac{1}{2}\right)x}{x} \to \frac{\pi}{2} = \int\limits_0^{(n + \frac{1}{2})\pi} \frac{\sin y}{y} \,\mathrm{d}y \to \int\limits_0^{+\infty} \frac{\sin y}{y}$$

Утверждение. Функция $f(x)=\frac{1}{2\sin\frac{x}{2}}-\frac{1}{x}$ (пусть f(0)=0) чтобы была непрерывность на \mathbb{R}) $f'=\frac{-\cos\frac{x}{2}}{2^2\cdot\sin^2\frac{x}{2}}+\frac{1}{x^2},\quad x\neq 0$

$$\lim_{x \to 0} f' = \lim_{x \to 0} \frac{4 \sin^2 \frac{x}{2} - x^2 \cos \frac{x}{2}}{4x^2 \sin^2 \frac{x}{2}} = \lim_{x \to 0} \frac{4 \left(\frac{x}{2} - \frac{x^3}{48} + o(x^3)\right)^2 - x^2 \left(1 - \frac{x^2}{8} + o(x^2)\right)}{x^4} = -\frac{1}{12} + \frac{1}{8} \quad \bigcirc$$

$$\int\limits_0^\pi \sin\left(n+\frac{1}{2}\right)x\cdot f(x)\,\mathrm{d}x = \underbrace{-\frac{\cos\left(n+\frac{1}{2}\right)x}{n+\frac{1}{2}}\cdot f(x)\Big|_0^\pi}_{=0} + \underbrace{\frac{1}{n+\frac{1}{2}}\int\limits_0^\pi \cos\left(n+\frac{1}{2}\right)x\underbrace{f'(x)}_{\text{Henp}}\,\mathrm{d}x}_{\text{n}\to+\infty} 0$$

10.6. Интегрирование ассимптотических разложений

Напоминание:

$$\varphi_k:(a,b)\to\mathbb{R}$$

$$\underline{x\to a} \quad \forall k \quad \varphi_{k+1}=o(\varphi_k), \ \text{тогда} \ \text{при} \ x\to a \quad \{\varphi_k\}$$
 — шкала асимпт. разложения

$$\forall n \ f = c_0 \varphi_0(x) + c_1 \varphi_1(x) + \dots + c_n \varphi_n(x) + o(\varphi_n)$$

Пример — формула Тейлора:
$$f(x) = \sum\limits_{k=0}^n rac{f^{(k)}(a)}{k!} (x-a)^k + oig((x-a)^nig)$$

$$f \sim \sum_{k=0}^{+\infty} c_k \varphi_k(x)$$

$$g \sim \sum_{k=0}^{+\infty} c_k \varphi_k(x)$$

$$\forall n \quad f - g = o(\varphi_n), n \to +\infty$$

Лемма: (об интегрировании асимптотических равенств)

$$f,g\in C([a,b)),\quad g\geq 0,\int^{\infty}\!\!g$$
 pacx

$$F(x) = \int_{-\infty}^{x} f,$$
 $G(x) = \int_{-\infty}^{a} g$

Тогда при x o b - 0 из соотношений

$$f = O(g), \quad f = o(g), \quad f \sim g$$

следует
$$F = O(G), \ F = o(G), F \ \sim G$$

Доказательство:

1.
$$F = O(G)$$
:

$$\exists M \ \exists x_0 \ \text{при} \ x \in [x_0,b) \quad |f(x)| \leq Mg(x)$$

Чего мы хотим? Мы хотим похожее неравенство на интегралы: $\int\limits_{a}^{x}f\leq\mu\cdot\int\limits_{a}^{x}g$

Пусть
$$\int\limits_a^{x_0} |f| \, \mathrm{d}x = c_1.$$
 Возьмём $x_1: x_0 < x_1 < b$ $\int\limits_{x_0}^{x_1} g = \alpha > 0$

При
$$x>x_1$$

$$\left|\int\limits_a^x f\right|\leq \int\limits_a^x |f|=\int\limits_a^{x_0}+\int\limits_{x_0}^x\leq c_1+M\cdot\int\limits_{x_0}^x g=\frac{c_1}{\alpha}\int\limits_{x_0}^{x_1}g+M\int\limits_{x_0}^x g\leq \left(\frac{c_1}{\alpha}+M\right)\int\limits_{x_0}^x g\leq \left(\frac{c_1}{\alpha}+M\right)\int\limits_a^x g$$

2.
$$F = o(G)$$
:

$$\forall \varepsilon>0 \quad \exists x_0: |x_0|<\frac{\varepsilon}{2}g(x)$$

Хотим:
$$\forall \varepsilon>0 \quad \exists x_0: \left|\int\limits_{x_0}^x f\right| \leq \frac{\varepsilon}{2}\int\limits_{x_0}^x g$$

$$\exists x_1>x_0 \quad$$
 для $\mathbf{c}\coloneqq\int\limits_a^{x_0}f$ при $x>x_1\quad \left|c+\int\limits_{x_1}^x\right|\leq \varepsilon\int\limits_{x_0}^xg$

$$\left| \int_{x_1}^x f \right| < \frac{\varepsilon}{2} \int_{x_1}^x g$$

$$\int\limits_{a}^{B}\underset{B\rightarrow b-0}{\longrightarrow}+\infty$$

$$c < \frac{\varepsilon}{2} \int_{x_0}^x g$$

$$\left|\int\limits_a^{x_0}f\right|\leq\varepsilon\int\limits_{x_0}^xg\leq\varepsilon\int\limits_a^xg\text{ при }x>x_1$$

3.
$$f \sim g$$

$$\lim_{x o b - 0} rac{F(x)}{G(x)} = \left[rac{\infty}{\infty}
ight] \stackrel{ ext{ Ioniutajd}}{=} \lim_{x o b - 0} rac{f(x)}{g(x)} = 1$$

Лемма

1. $\varphi_n \in C([a,b]) \ \varphi_n \geq 0$ — шкала асимптотического разложения при $x \to b-0$

Пусть
$$\forall n \quad \Phi_n(x) = \int\limits_{-\infty}^{-\infty} \varphi_n(x) \, \mathrm{d}x -$$
сходится, тогда Φ_n — тоже шкала

2.
$$f \in C([a,b]) \quad F(x) = \int\limits_{-b}^{x} f - \text{сходится}$$

Пусть
$$f(x) \sim \sum c_n \varphi_n(\overset{x}{x})$$

Тогда
$$F \sim \sum c_n \Phi_n$$

Доказательство:

$$^{1.} \ \ \text{Проверим, что} \ \Phi_{n+1} = o(\Phi_n): \quad \lim_{x \to b-0} \frac{\Phi_{n+1}(x)}{\Phi_n(x)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{\text{Лопиталь}}{=} \lim_{x \to b-0} \frac{-\varphi_{n+1}}{-\varphi_n} = 0$$

2.
$$f(x) = \sum_{k=1}^{n} c_k \varphi_k(x) + o(\varphi_n)$$

$$\lim \frac{F(x) - \sum\limits_{k=1}^n c_k \Phi_k}{\Phi_n} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{\text{\text{Iofilitaris}}}{=} \lim \frac{f(x) - \sum c_k \varphi_k(x)}{\varphi_n(x)} = 0$$

Пример:
$$\arctan x \sim x \to +\infty$$
?

При дифференцировании:

$$\frac{1}{x^2+1}\sim \frac{1}{x^2}$$

$$\frac{\pi}{2} - \arctan x = \int_{x}^{+\infty} \frac{\mathrm{d}t}{t^2 + 1} \sim \int_{x}^{+\infty} \frac{\mathrm{d}t}{t^2} = \frac{1}{x}$$

$$\arctan x = \frac{\pi}{2} - \frac{1}{x} + o\left(\frac{1}{x}\right)$$

II способ:

$$rac{1}{x^2+1}=rac{1}{x^2}\cdotrac{1}{1+rac{1}{x^2}}=rac{1}{x^2}-rac{1}{x^4}+rac{1}{x^6}-rac{1}{x^8}+\ldots-$$
ряд Тейлора

Проинтегрируем и получим: $\frac{\pi}{2} - \arctan x = \frac{1}{x} - \frac{1}{3x^3} + \frac{1}{5x^5} - \dots$

11. Ряды

 $\left(a_{k}
ight)$ — вещественная последовательность

$$a_1 + a_2 + a_3 + \dots -$$
ряд

$$\sum\limits_{k=1}^{+\infty}a_k$$
— ряд в другой записи

$$\forall n \,\, S_n = a_1 + a_2 + \ldots + a_n$$
 — частичная сумма ряда

Рассмотрим предел:

$$\lim_{n\to=\infty} S_n$$

Если предел существует и равен $S \in \overline{\mathbb{R}}$, то S- сумма ряда

- $S \in \mathbb{R}$: ряд сходится
- $S \in \{-\infty; +\infty\}$: ряд расходится

Если предел не существует, то ряд расходится

Замечание:

$$S_n - S_{n-1} = a_n$$

Примеры рядов:

 $1 \cdot \,$ Ряд, состоящий из нулей: $\sum\limits_{k=1}^{+\infty} 0 = 0 - \text{сходится } \, \mathbf{k} \, \, 0$

Ряд, состоящий из единиц: $\sum\limits_{k=1}^{+\infty}1=+\infty-$ расходится

Ряд, состоящий из чередующихся единиц и минус единиц: $\sum_{k=0}^{+\infty} (-1)^k$ — расходится

 $^{2\cdot}$ Геометрическая последовательность: $\sum\limits_{k=0}^{+\infty}q^{k}=\frac{1}{1-q}\quad |q|<1$

$$S_n=1+q+q^2+\ldots+q^n=\frac{q^{n+1}-1}{q-1}\underset{n\to+\infty}{\longrightarrow}\frac{1}{1-q}$$

3. $1 + \frac{1}{1!} + \frac{1}{2!} + \dots = e$

 $\sum\limits_{k=0}^{+\infty}\frac{1}{k!}x^k=e^x$ — чтобы это доказать распишем формулу Тейлора для e^x в $x_0=0$:

$$e^{x} = \sum_{k=0}^{n} \frac{1}{k!} x^{k} + \underbrace{\frac{e^{c}}{(n+1)!} x^{n+1}}_{\to 0}$$

4. $\sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}}, \quad \alpha > 0$

$$\sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}} = \frac{1}{1-\alpha} \left(\frac{1}{n^{\alpha-1}} - 1 \right) + \frac{1}{2} \cdot \frac{1}{n^{\alpha}} + \frac{1}{2} + \underbrace{O(\max(1,\ldots))}_{=O(1)}$$

При $\alpha \leq 1$ ряд расходится

При $\alpha > 1$ ряд сходится

Определение: *n*-й остаток ряда

$$\sum\limits_{k=n}^{+\infty}-n$$
-й остаток ряда

Соглашение:

$$\sum a_k$$
 — будем называть рядом A $\sum b_k$ — будем называть рядом B

Свойства:

•
$$\sum a_k$$
, $\sum b_k$, $c_n = a_n + b_n \Rightarrow \sum c_k = \sum a_k + \sum b_k$

- $\sum a_k$ сходится, $\lambda \in \mathbb{R}$ Тогда $\sum\limits_{k=1}^n \lambda a_k$ сходится, $\sum \lambda a_k = \lambda \sum a_k$
- • $\sum a_k$ cx \Rightarrow любой остаток тоже сходится
 - Если k-й остаток ряда сходится \Rightarrow сам ряд сходится
 - $r_n = \sum\limits_{l=-\infty}^{+\infty} a_n,\;\;$ ряд сходится $\Leftrightarrow r_n \to 0$

Доказательство:

а) (m-й ост.) n > m

$$\textstyle\sum\limits_{k=1}^{n}a_{k}=\sum\limits_{k=1}^{m}a_{k}+\sum\limits_{k=m+1}^{n}a_{k}$$

$$\sum_{k=1}^{+\infty} a_k = \sum_{k=1}^m a_k + \sum_{k=m+1}^{+\infty} a_k$$

б) Очевидно

$$\mathbf{B})\Rightarrow:\sum_{k=1}^{+\infty}a_{k}=S_{m}\atop \underset{k=1}{\overset{+\infty}{\rightarrow}}a_{k}}+r_{m+1}\underset{\rightarrow 0}{\overset{+\infty}{\rightarrow}}$$

⇐: тривиально

нано Теорема: (о граблях):

Доказательство:

Пример:

$$\sum a_n -$$
 сходится, тогда $a_n o 0$
$$a_n = S_n - S_{n-1} \underset{n o +\infty}{\longrightarrow} 0$$

$$a_n = S_n - S_{n-1} \xrightarrow[n \to +\infty]{} 0$$

50

 $\alpha \in (0,\pi): \sum \sin n\alpha - {\rm pacx},$ т.к.

 $\sin n\alpha \underset{n\to+\infty}{\leftrightarrow} 0$

Грабли:

$$\sum rac{1}{n}, \quad rac{1}{n} o 0$$
 Значит, эээ..., ничего, показалось.

Критерий Больцано-Коши:

ряд сходится $\Leftrightarrow \forall \varepsilon > 0 \quad \exists N: \forall n > N \quad \forall m \in \mathbb{N} \quad \left| S_n - S_{n+m} \right| < \varepsilon$

$$|a_{n+1} + a_{n+2} + \dots + a_{n+m}| < \varepsilon$$

ряд расходится $\Leftrightarrow \exists \varepsilon > 0: \forall N \quad \exists n > N, \exists m: \left|a_{n+1} + a_{n+2} + \ldots + a_{n+m}\right| \geq \varepsilon$

Пример:

$$\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+n} \geq n \cdot \frac{1}{2n} = \frac{1}{2}$$

$$\sum_{k=1}^{n} \frac{1}{n+k} = \sum_{k=1}^{n} \frac{1}{n} \cdot \frac{1}{1+\frac{k}{n}} \to \int_{0}^{1} \frac{1}{1+x} \, \mathrm{d}x = \ln(1+x) \, \Big|_{0}^{1} = \ln 2$$

Здесь мы воспользовались суммами Риманна: $\sum \frac{1}{n} f\left(\frac{k}{n}\right) o \int f(x) \, \mathrm{d}x$

12. Сходимость неотрицательных рядов

Лемма:

 $a_n \geq 0$. Тогда $\sum a_n - \operatorname{сходится} \Leftrightarrow S_n^{(a)} - \operatorname{ограничена}$

Доказательство:

$$S_n^{(a)} = \sum\limits_{k=1}^n a_k$$
 — возрастает

 $S_n^{(a)} = \sum\limits_{k=1}^n a_k$ — возрастает S_n — ограничена и монотонна $\Rightarrow \exists$ кон $\lim S_n$ \exists кон $\lim S_n \Rightarrow S_n$ — ограничена.

Теорема: (признак сравнения)

$$\forall a_k, \forall b_k, \quad a_k, b_k \geq 0$$

1. $\forall n \quad a_n \leq b_n$ (или даже $\forall k > 0 : \forall n \quad a_n \leq kb_n$)

Тогда
$$\begin{cases} \sum b_k \, \operatorname{cx} \Rightarrow \sum a_k \, \operatorname{cx} \\ \sum a_k \, \operatorname{pacx} \Rightarrow \sum b_k \, \operatorname{pacx} \end{cases} \ (*)$$

2. Пусть
$$\lim_{n\to+\infty} \frac{a_n}{b_n} = l \in [0,+\infty)$$

•
$$0 < l < \infty$$
 $\sum a_k \operatorname{cx} \Leftrightarrow \sum b_k \operatorname{cx}$

•
$$l = 0$$
 выполняется (*)

•
$$l = +\infty$$

$$\begin{cases} \sum a_k \ \operatorname{cx} \Rightarrow \sum b_k \ \operatorname{cx} \\ \sum b_k \ \operatorname{pacx} \Rightarrow \sum a_k \ \operatorname{pacx} \end{cases}$$

3. Пусть начиная с некоторого места $(\exists N_0 \quad \forall n > N_0) \; \frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ Тогда выполняется (*)

Доказательство:

1.
$$S_n^{(a)} \leq S_n^{(b)}$$
 при всех $n \quad \left(S_n^{(a)} \leq k S_n^{(b)}\right)$

•
$$\sum b_n \operatorname{cx} \Rightarrow S_n^{(b)} \operatorname{orp} \Rightarrow S_n^{(a)} \operatorname{orp} \Rightarrow \sum a_n \operatorname{cx}$$

•
$$\sum a_n$$
 расх $\Rightarrow S_n^{(a)}$ — не огр $\Rightarrow S_n^{(b)}$ — не огр $\Rightarrow \sum b_n$ — расх

Замечание: Можно быдо бы в условии $a_n \leq b_n$ начиная с некоторого места Соглашение: фразу "начиная с некоторого места" будем обозначать абривеатурой НСНМ

2.
$$l \in (0, +\infty)$$
:

• Для
$$\varepsilon=\frac{l}{2}$$
 $\exists N: \forall n>N:$ $0<\frac{l}{2}<\frac{a_n}{b_n}<\frac{3}{2}l \Leftrightarrow a_n<\frac{3}{2}lb_n,\ b_n<\frac{2}{l}la_n$

Теперь использую первое утверждение мы получаем что $\sum a_k \mathrel{\mathrm{cx}} \Leftrightarrow \sum b_k \mathrel{\mathrm{cx}}$

•
$$l=+\infty$$
:

$$\exists N: \forall n>N \quad \frac{a_n}{b_n}>1 \Rightarrow a_n>b_n$$
 — здесь опять используем первое утверждение и победа

•
$$l = 0$$
:

$$\exists N: \forall n>N \quad \frac{a_n}{b_n}<1$$
— аналогично предыдущему пункту

3. Пишем неравенства при $n=N_0+1, n+1, ..., n+k-1$:

$$\left. \begin{array}{l} \frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n} \\ \frac{a_{n+2}}{a_{n+1}} \leq \frac{b_{n+2}}{b_{n+1}} \\ \dots \\ \frac{a_{n+k}}{a_{n+k-1}} \leq \frac{b_{n+k}}{b_{n+k-1}} \end{array} \right\} \overset{\text{перемножаем}}{\Rightarrow} \quad \frac{a_{n+k}}{a_n} \leq \frac{b_{n+k}}{b_n} \Rightarrow a_{n+k} \leq \frac{a_n}{b_n} b_{n+k} - \text{выполено замечание к I пункту}$$

Пример:

Эталонные ряды:

$$\sum \frac{1}{n^{\alpha}} \begin{cases} \alpha > 1 & \text{cx} \\ \alpha \le 1 & \text{pacx} \end{cases}$$

$$\sum q^{n} \begin{cases} 0 < q > 1 & \text{cx} \\ q \ge 1 & \text{pacx} \end{cases}$$

• Исследуем $\sum\limits_{k=1}^{+\infty} k^{2024} e^{-k}$

Попробуем доказать, что $k^{2024}e^{-k}<rac{1}{k^2}$ при больших k

То есть нужно проверить (после домножения на k^2): $\frac{k^{2026}}{e^k} < 1$?

$$\lim \frac{k^{2026}}{e^k} = \left(\lim \frac{k}{\frac{k}{e^{2026}}}\right)^{2026} \overset{\text{Лопиталь}}{=} \left(\lim \frac{1}{e^{\frac{k}{2026}}} 2026\right)^{2026} = 0 \Rightarrow \text{HCHM то что мы пытались доказать верно.}$$

Теперь исползьуем первый пункт предыдущей теоремы и первый эталонный ряд — победа

•
$$\sum_{k=1}^{+\infty} e^{-\sqrt{k}}$$

Перепишем эталоны:

$$\sum e^{-\alpha \ln k}, \sum e^{k \ln q}$$

НСНМ $e^{-\sqrt{k}}<\frac{1}{k^2}\Leftrightarrow e^{\frac{\to-\infty}{-\sqrt{k}+2\ln k}}<1$. Числитель стремится к бесконечности, т.к. $\lim\frac{\sqrt{k}}{\ln k}=+\infty$

Используем то же что и в предыдущем пункте — победа

Теорема: (признак Коши)

$$\sum a_n, \ a_n \ge 0, \quad K_n := \sqrt[n]{a_n}$$

light:

1.

$$\exists~q<1~~K_n\leq q~$$
 НСНМ, тогда $\sum a_n$ сх

2.
$$K_n \geq 1$$
 для беск. мн-ва n , тогда $\sum a_n$ расх

pro

$$K := \overline{\lim} K_n = \overline{\lim} \sqrt[n]{a_n}$$

1.
$$K > 1$$
 $\sum a_n$ pacx

$$2. K < 1 \sum a - n \operatorname{cx}$$

Замечание: Для рядов $\sum \frac{1}{n}, \sum \frac{1}{n^2}$ $K = \lim \sqrt[n]{\frac{1}{n}} = 1$, но при этом первый ряд расходится, а второй сходится \Rightarrow при K = 1 признак не работает

Доказательство:

1. 1.
$$K_n \leq q \Rightarrow \sqrt[n]{a_n} \leq q \Rightarrow a_n \leq q^n$$
 а значит $\sum_{(q < 1)} q^n \cos \Rightarrow \sum a_n \cos a_n$

2.
$$K_n \geq 1$$
 $a_n \geq 1$ для беск мн-ва номеров $\Rightarrow a_n \not\rightarrow 0 \Rightarrow$ расходится

2. 1.
$$K>1$$
 $\overline{\lim}\,K_n>1\Rightarrow\exists$ беск много $n:K_n>1$ (техн. описание верхнего предела) $\Rightarrow\sum a_n$ расх

52

2.
$$K<1$$
 $\exists N_0: \forall n>N_0$ $K_n\leq q$, где $q\in (k,1)$ — тоже техн. описание верхнего предела.

Пример:

$$\sum k^{2024}e^{-k}$$

$$\sqrt[k]{k^{2024}e^{-k}} = k^{\frac{2024}{k}} \frac{1}{e} = \underbrace{e^{\frac{2024}{k} \ln k}}_{\to 1} \frac{1}{e} \to \frac{1}{e} < 1$$

Теорема: (признак Д'Аламбера)

$$\textstyle\sum a_n, a_n > 0 \quad D_n \coloneqq \frac{a_{n+1}}{a_n}$$

light:

1. $\exists \ q < 1 \quad D_n \leq q \;\; \mbox{HCHM.}$ Тогда $\sum a_n \; \mbox{cx}$

2. $D_n \geq 1$ НСНМ. Тогда $\sum a_n$ расх

рго: Пусть $\exists \lim_{n \to +\infty} D_n = D$

1. $D < 1 \quad \sum a_n \operatorname{cx}$

2. D > 1 $\sum a_n$ pacx

Замечание: $\sum \frac{1}{n}$, $\sum \frac{1}{n^2}$ D=1

Доказательство:

1. 1. HCHM $\frac{a_{n+1}}{a_n} \leq q \quad a_{n+1} \leq q a_n$

$$\left.\begin{array}{l} a_{n+1} \leq q a_n \\ a_{n+2} \leq q a_{n+1} \\ \vdots \\ a_{n+k} \leq q a_{n+k-1} \end{array}\right\} \Rightarrow a_{n+k} \leq q^k a_n \Rightarrow \sum_{k=1}^{+\infty} a_{n+k} - \text{сходится}$$

2. НСНМ $a_{n+1} \ge a_n$, т.е. $a_n \to 0$ — расходится

2. 1. D<1 — HCHM $D_n \leq q < 1 \Rightarrow \sum a_n$
сх — первый пункт light

2. D>1 — HCHM $D_n\geq 1\Rightarrow \sum a_n$ расх — второй пункт light

Пример:

• $\sum k^{2024}e^{-k}$

$$\lim \frac{(k+1)^{2024}e^{-(k+1)}}{k^{2024}e^{-k}} = \frac{1}{e} < 1$$

• $\sum e^{-\sqrt{k}}$

 $e^{-\frac{1}{\sqrt{k}}} \rightarrow 1$

13. Функциональные последовательности и ряды. Равномерная сходимость последовательности функций

Определение: поточечная сходимость

$$f_n, f_0: E \subset X \longrightarrow \mathbb{R}$$

Последовательность f_n сходится поточечно на E к f_0

$$f_n \underset{n \to +\infty}{\longrightarrow} f_0$$
 на $E \Leftrightarrow \forall x \in E \quad \lim_{n \to +\infty} f_n(x) = f_0(x)$

$$\forall x \in E \quad \forall \varepsilon > 0 \quad \exists N : \forall n > N \quad |f_n(x) - f_0(x)| < \varepsilon$$

Пример:

1.
$$f_n: [0, +\infty) \longrightarrow \mathbb{R}, \quad f_n(x) = \frac{x^n}{n}$$

Если
$$E \subset (0,1]$$
 $f_n(x) \to f_0(x) \equiv 0$ на мн-ве E

Если же $E\cap (1,+\infty) \neq \varnothing \Rightarrow$ поточечной сходимости нет т.к. значения $f_n \underset{n.x\to +\infty}{\longrightarrow} +\infty$

2.
$$f_n(x) = \frac{n^{\alpha}x}{1+n^2x^2}$$
, $0 < \alpha < 2, x \in [0,1]$

при
$$x \in [0,1]$$
 $f_n(x) \rightarrow f_0(x) \equiv 0$

$$\textcircled{2} \max f_n = ? \quad f_n' = n^{\alpha} \frac{1 + n^2 x^2 - x n^2 2x}{(1 + n^2 x^2)^2} = 0 \Rightarrow n^2 x^2 = 1 \Rightarrow x = \frac{1}{n}$$

$$\max f_n = f_n\left(\frac{1}{n}\right) = \frac{n^{\alpha} \frac{1}{n}}{1+1} = \frac{n^{\alpha-1}}{2} \xrightarrow[n \to +\infty]{\alpha > 1} + \infty$$

Итого мы получили последовательность фукнций которая поточечно сходиться к тождественному 0, но при этом при $n \to +\infty$ её максимальное значение $\to +\infty$.

Почему она поточечно сходитсья?

С точки зрения графика джля каждой точки будем ждать когда n станет настолько большим, что этот "гребень" окажется сильно левее нее, а значение соответственно в нашей точке будет стремится к 0.

Определение: равномерная сходимость

$$f, f_n: X \longrightarrow \mathbb{R}, E \subset X$$

 f_n равномерно сх-ся к f на мн-ве E, обозначается: $f_n \underset{n \to +\infty}{\rightrightarrows} f$ на мн-ве E

$$M_n := \sup_{x \in E} |f_n(x) - f(x)| \underset{n \to +\infty}{\longrightarrow} 0$$

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) : \forall n > N \quad \forall x \in E \quad |f_n(x) - f(x)| \leq \varepsilon$$

Замечание: Если $f_n
ightharpoonup f$ на E, то $\forall x \in E \quad f_n(x) o f(x)$, т.е. $f_n o f$ поточечно

Пример:

1.
$$f_n:[0,+\infty)\longrightarrow \mathbb{R}, \quad f_n(x)=\frac{x^n}{n}$$

Мы уже выяснили, что: $E\subset (0,1]$ $\quad f_n(x) o f_0(x) \equiv 0$ на мн-ве E

Проверим, есть ли равномерная сходимость: $f_n \stackrel{?}{\rightrightarrows} f_0 \equiv 0$

$$M_n := \sup_{x \in E} \frac{x^n}{n} \le \frac{1}{n} \to 0 \Rightarrow f_n \rightrightarrows f_0 \equiv 0$$

2.
$$f_n(x) = \frac{n^{\alpha}x}{1+n^2x^2}, \quad 0 < \alpha < 2, x \in [0,1]$$

при
$$x \in [0,1]$$
 $f_n(x) \rightarrow f_0(x) \equiv 0$

Есть ли равномерная сходимость?

$$M_n \coloneqq \sup_{x \in [0,1]} \frac{n^\alpha x}{1 + n^2 x^2} = \frac{n^{\alpha - 1}}{2} \Rightarrow \begin{cases} \alpha \geq 1 \Rightarrow M_n \not\rightarrow 0 & \text{нет равномерной сходимости} \\ \alpha < 1 & \text{есть равномерная сходимость} \end{cases}$$

Замечание: $f_n \rightrightarrows f$ на $E, E_0 \subset E$ Тогда $f_n \rightrightarrows f$ на E_0

Замечание: $\mathcal{F} = \{f : X \longrightarrow \mathbb{R}, f \text{ orp}\}$

- 1. $\rho \geq 0, \rho = 0 \Leftrightarrow f_1 = f_2$ очевидно
- 2. $\rho(f_1, f_2) = \rho(f_2, f_1)$ очевидно
- 3. $\rho(f_1, f_2) \le \rho(f_1, f_3) + \rho(f_2, f_3)$

Доказательство:

Напишем определение sup:

$$\forall \varepsilon > 0 \quad \exists x : \rho(f_1, f_2) - \varepsilon \leq |f_1(x) - f_2(x)| \leq |f_1(x) - f_3(x)| + |f_3(x) - f_2(x)| \leq \rho(f_1, f_2) + \rho(f_3, f_2)$$

Получили ровно то, что хотели: $ho(f_1,f_2) \leq
ho(f_1,f_3) +
ho(f_2,f_3) + arepsilon$

Теорема: (Стокса-Зайделя)

 $f_0,f_n:X\longrightarrow \mathbb{R},X$ — МП, $c\in X,f_n$ непр в точке $c,f_n\rightrightarrows f_0$ на X, тогда f_0 непр в точке c

Доказательство:

$$|f_0(x)-f_0(c)| \leq [\text{берём любое } n] \leq \underbrace{|f_0(x)-f_n(x)|}_{\leqslant \varepsilon \text{ по }(*)} + |f_n(x)-f_n(c)| + \underbrace{|f_n(c)-f_0(c)|}_{\leqslant \varepsilon \text{ по }(*)} \overset{?}{\leq} 3\varepsilon$$

Только что сверху мы дважды написали неравенство треугольника / одно неравенство ломаной, кому как удобнее

$$f_n \rightrightarrows f_0: \forall \varepsilon > 0 \quad \exists N: \forall n > N \quad \sup |f_n(x) - f_0(x)| < \varepsilon \quad (*)$$

Фиксируем любое такое n

$$f_n$$
 непрерывна $\Leftrightarrow \forall \varepsilon > 0 \quad \exists U(c) : \forall x \in U(c) \quad |f_n(x) - f_n(c)| < \varepsilon$

Подставим это в неравенство с? которое мы хотелипрвоерить:

$$\forall arepsilon>0 \quad \exists U(c): \forall x\in U(c) \quad |f_n(x)-f_n(c)|\leq 3arepsilon$$
 – непрерывность f_0 в точке c

Следствие:

$$f_n \in C(X), f_n
ightrightarrows f_0$$
 Тогда $f_0 \in C(X)$

Замечание:

- 1. Теорема верна в топологическом пространстве с тем же доказательством
- 2. Для непрерывности f_0 в точке c достаточно иметь равномерную сходимость: $f_n \rightrightarrows f$ на V(c)

Пример:

$$f_n(x) = x^n \quad x \in (0,1) \quad f_n(x) \to f_0 \equiv 0$$

$$f_n
ightharpoonup f_0$$
? $\sup_{x \in (0,1)} x^n = 1
ightharpoonup 0$, нет равномерной сх-сти

Ho!

$$\sup_{x \in (\alpha,\beta)} |f_n - f_0| = \sup x^n = \beta^n \underset{n \to +\infty}{\longrightarrow} 0$$

т.е. в каждой точке кроме 1 есть равномерная сходимость на ее окрестности

Пример:

Пусть
$$X=K$$
 — компактно, $f_1,f_2\in C(K)$

$$M_n \coloneqq \sup_{x \in X} \lvert f_1(x) - f_2(x)
vert = \max \lvert f_1(x) - f_2(x)
vert -$$
 чебышёвское расст.

Теорема:

$$K$$
 — компакт, для $f_1, f_2 \in C(K)$ — $ho(f_1, f_2) = \max |f_1 - f_2|$ — метрика на $C(K)$. Тогда $C(K)$ — полное МП

Доказательство:

Берём фунд. посл. в C(K) $\ \ (f_n)$

$$\forall \varepsilon > 0 \quad \exists N : \forall n, m > N \quad \max_{x \in K} \lvert f_n(x) - f_m(x) \rvert < \varepsilon$$

Заметим, что $\forall x_0$ посл. $f_n(x_0)$ — фунд. числ. посл. $\Rightarrow \forall x_0 \quad \exists \lim f_n(x_0) = f_0(x_0)$

Итого мы получили: $\exists f_0: f_n \to f_0$ поточечно на X

? Почему $f_0 \in C(K)$ и $f_n \rightrightarrows f_0$?

$$\forall \varepsilon>0 \quad \exists N: \forall n,m>N \quad \forall x\in K \quad |f_n(x)-f_m(x)|<\varepsilon$$
— в силу фундаментальности $f_n(x)$

Устремим в этой формуле m к $+\infty$:

$$f_m(x)\underset{m\to +\infty}{\to} f_0(x)\Rightarrow$$
 при $m\to +\infty$ формула перепишется так :

$$\forall \varepsilon > 0 \quad \exists N : \forall n > N \quad \max_{x \in K} \lvert f_n(x) - f_0(x) \rvert \leq \varepsilon$$

Ну а это как раз и означает, что $ho(f_n,f_0) o 0 \Rightarrow f_n
ightharpoonup f_0$ и тогда $f_0 \in C(K)$ (по т. Стокса-Зайделя)

14. Предельный переход под знаком интеграла

Хотим сформулировать теорему:

Некоторые функции $f_n(x) \rightarrow f_0(x)$

Тогда

$$\int\limits_a^b f_n(x) \to \int\limits_a^b f_0(x)$$

Антипример:

$$f_n(x) = nx^{n-1}(1-x^n) \quad x \in [0,1]$$

$$\lim_{n \to +\infty} f_n(x) = f_0(x) \equiv 0$$

$$\int_{0}^{1} nx^{n-1}(1-x^{n}) dx = [t = x^{n}] = \int_{0}^{1} 1 - t dt = \frac{1}{2}$$

Функции стремятся к 0, но интеграл равен $\frac{1}{2} \Rightarrow$ Желаемой теоремы не существует

$$\lim \left(\int_{a}^{b} f_{n}(x) dx \right) \neq \int_{a}^{b} (\lim f_{n}(x)) dx$$

Теорема: Предельный переход под знаком интеграла

$$f_n, f \in C[a,b], \quad f_n
ightrightarrows f$$
 на $[a,b]$

$$\int\limits_a^b f_n \to \int\limits_a^b f$$

Доказательство:

Тривиально.

$$\left|\int\limits_a^b f_n - \int\limits_a^b f\right| \leq \int\limits_a^b |f_n - f| \,\mathrm{d}x \leq (b-a) \sup_{[a,b]} |f_n - f| \to 0$$

Следствие: (правило Лейбница: дифференцирование интеграла по параметру)

 $f:[a,b]\times [c,d]\to \mathbb{R}$ — непрерывна на $[a,b]\times [c,d]$

$$\forall x,y: \exists f_y'(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

$$\Phi(y) = \int\limits_a^b f(x,y) \,\mathrm{d}x.$$
 Тогда Φ дифференцируема на $[c,d]$:

$$\Phi'(y) = \int_a^b f_y'(x, y) \, \mathrm{d}x$$

Доказательство:

$$\frac{\Phi(y+h) - \Phi(y)}{h} = \int_{a}^{b} \frac{f(x,y+h) - f(x,y)}{h} dx = \int_{a}^{b} f'_{y}(x,y+\theta h) dx$$
$$\theta \in (0,1), \ \theta = \theta(x,y)$$

(В последнем равенстве нами была использована теорема Лагранжа)

Хотим в этой формуле считать $\lim_{h\to 0}$. Будем делать это по Гейне, $h_n\to 0$

Проверим, что $f_y'(x,y+\theta h_n) \underset{n \to +\infty}{\rightrightarrows} f_y'(x,y)$ равномерно по $x \in [a,b]$

T.e.
$$\sup_{x \in [a,b]} \left| f_y'(x,y+\theta h_n) - f_y'(x,y) \right| \underset{n \to +\infty}{\longrightarrow} 0$$

Знаем: f_y' — непрерывно на $[a,b] \times [c,d]$ (компакт) $\Rightarrow f_y'$ — равномерно непрерывно:

$$\forall \varepsilon>0 \ \exists \delta>0 \ \forall_{(x_1,y_1)}^{(x,y)} \ \rho((x,y),(x_1,y_1))<\delta: \left|f_y'(x,y)-f_y'(x_1,y_1)\right|<\varepsilon$$

Используем это чтобы проверить что предел действительно 0:

$$\forall \varepsilon > 0 \text{ [Tekct } (*)] \ \forall n > N \quad \forall x, \forall y \quad \left| f_{y}'(x,y+\theta h_{n}) - f_{y}'(x,y) \right| < \varepsilon$$

$$(*):h_n\to 0\Rightarrow \exists N: \forall n>N \quad |h_n|<\delta$$
— из определения равн. непр.

Это победа, предел действительно 0!

Итак:

$$\lim_{n\to +\infty} \frac{\Phi(y+h) - \Phi(y)}{h_n} = \lim_{n\to +\infty} \int\limits_a^b f_y'(x,y+\theta h_n) \,\mathrm{d}x = \int\limits_a^b f_y'(x,y) \,\mathrm{d}x$$

Хотим предельный переход под знаком производной:

Возьмём функцию, стремящуюся к другой

$$f_n(x) \to f_0(x)$$

Продифференцируем: $f'_n(x) \xrightarrow{?} f_0(x)$

Контрпример:

$$f_n(x) = x + \frac{1}{n}\sin(n^{2024} \cdot x)$$

$$f_{n(x)} \rightrightarrows x$$

$$f'_n \stackrel{?}{\to} 1$$

$$\text{HET: } f_n'(x) = 1 + \underbrace{n^{2023} \cdot \cos \left(n^{2024} x\right)}_{\boxdot}$$

Теорема: (о предельном переходе под знаком производной)

$$f_n \in C^1(\langle a,b \rangle)$$

$$f_n o f_0$$
 на $\langle a,b
angle$

$$f'_n
ightharpoonup \varphi$$
 на $\langle a,b \rangle$

$$f_0 \in C^1(\langle a, b \rangle)$$

$$f_0'=\varphi$$
на $\langle a,b\rangle$

$$\begin{array}{c}
f_n \to f_0 \\
\frac{\mathrm{d}}{\mathrm{d}x} \downarrow & \downarrow \\
f'_n \Longrightarrow \varphi
\end{array}$$

$$\lim_{n\to +\infty}(f_n'(x))=\left(\lim_{n\to +\infty}f_n(x)\right)'$$

Доказательство:

$$x_0,x_1\in\langle a,b
angle,\quad f_n'\rightrightarrows arphi$$
 на $[x_0,x_1]$

$$\int_{x_0}^{x_1} f'_n(x) dx \longrightarrow \int_{n \to +\infty}^{x} \int_{x_0}^{x} \varphi(x) dx$$

$$\parallel$$

$$f_n(x_1) - f_n(x_0) \to f_0(x_1) - f_0(x_0)$$

$$\int\limits_{x_0}^{x_1} \varphi(x) \, \mathrm{d}x = f_0(x_1) - f_0(x_0)$$

— при всех $x_0, x_1 \in \langle a, b \rangle$

По теореме Барроу:

$$\Rightarrow f_0$$
 — первообразная $arphi$; $\qquad f_0' = arphi$

14.1. Признак Раабе

$$a_n > 0$$

1. НСНМ
$$n\left(\frac{a_n}{a_{n+1}}-1\right)\geq r>1\Rightarrow \sum a_n$$
 сходится

2. НСНМ
$$n\left(\frac{a_n}{a_{n+1}}-1\right) \leq 1 \Rightarrow \sum a_n$$
 расходится

Доказательство:

Сравним ряды
$$\sum a_n$$
 и $\sum_{=b}^{\frac{1}{n}}$

$$\frac{a_{n+1}}{a_n} \geq \frac{\frac{1}{n+1}}{\frac{1}{n}} \Leftrightarrow \frac{a_n}{a_{n+1}} \leq \frac{n+1}{n} = 1 + \frac{1}{n} \Leftrightarrow n \left(\frac{a_n}{a_{n+1}} - 1\right) \leq 1 \Rightarrow a_n - \text{большое, } b_n - \text{маленькое,}$$

$$\sum \frac{1}{n} \operatorname{pacx} \Rightarrow \sum a_n \operatorname{pacx}$$

1.

Пусть 1 < s < r. Сравним ряды $\sum a_n$ и $\sum \frac{1}{n^s}$

$$\frac{a_{n+1}}{a_n} \overset{(?)}{\leq} \frac{\frac{1}{(n+1)^s}}{\frac{1}{a_s}} \Leftrightarrow \frac{a_n}{a_{n+1}} \overset{(?)}{\geq} \left(\frac{n+1}{n}\right)^s = \left(1 + \frac{1}{n}\right)^s$$

$$\begin{cases} n\Big(\frac{a_n}{a_{n+1}}-1\Big)\overset{(?)}{\geq} n\Big(1+\frac{1}{n}\Big)^s-1\underset{n\to+\infty}{\longrightarrow} s\\ \text{ НСНМ } n\Big(\frac{a_n}{a_{n+1}}-1\Big)\geq r \end{cases} \Rightarrow \text{неравенство } (?) \text{ выполнено при больших } n$$

т.е. ряд
$$\sum a_n$$
 — "маленький", $\sum rac{1}{n^s}$ — "большой" $(s>1)$

Следствие:

$$a_n > 0: \lim_{n \to +\infty} n \left(\frac{a_n}{a_n + 1} - 1 \right) = r$$

Тогда:

1.
$$r > 1$$
: $\sum a_n - \operatorname{cxoдитcs}$

2. r < 1: $\sum a_n -$ расходится

Упражнение:

Доказать, что:

$$\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^a}$$

1. При a > 1 -сходится

2. При $a \le 1$ — расходится

Теорема: интегральный признак Коши

$$f:[1,+\infty) \to [0,+\infty)$$
 — непр, монот **Тогда:**

$$\sum_{k=1}^{+\infty} f(k), \int\limits_{1}^{+\infty} f(x) \,\mathrm{d}x - \mathrm{cx/pacx}$$
 одновременно

Доказательство:

Основной случай: $f\downarrow, f>0$

Замечание: можно требовать

$$\exists M \quad \forall x > M : f$$
 — монотонна

Следствие из интегрального признака Коши:

$$\frac{d}{dn} \left(\frac{1}{n(\ln n)^a} \right) = -\frac{1}{n^2 (\ln n)^a} - \frac{a}{n^2 (\ln n)^{a+1}}$$

Определение: абсолютная сходимость ряда

 $\sum a_n$ — абсолютно сходидтся, если

$$\sum a_n$$
 сходится и $\sum |a_n|$ сходится

60

Пример:

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots + (-1)^n x^{2n} + \frac{(-1)^{n+1} x^{2n+2}}{1+x^2}$$

Проинтегрируем от 0 до 1:

$$\frac{\pi}{4} = \int_{0}^{1} \frac{1}{1+x^{2}} \, \mathrm{d}x = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{(-1)^{n}}{2n+1} + \int_{0}^{1} \frac{(-1)^{n+1}x^{2n+2}}{1+x^{2}} \, \mathrm{d}x$$

$$\left| \int_{0}^{1} \dots \uparrow \left| \leq \int_{0}^{1} \frac{x^{2n+2}}{1+x^{2}} \, \mathrm{d}x \leq \int_{0}^{1} x^{2n+2} = \frac{1}{2n+3} \right| dx$$

Итог: $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\dots$ (ф-ла Грегори-Лейбница)

При этом абсолютной сходимости нет: $\sum \frac{1}{n}$ — расходится, поэтому $\sum \frac{1}{2k}$ — расходится, а $\sum \frac{1}{2k+1}$ можно почленно оценить снизу $\sum \frac{1}{2k}$, а значит он тоже расходится

Объяснение для идиотов:

Признак Раабе:

$$n \left(rac{rac{1}{2n+1}}{rac{1}{2n+8}} - 1
ight) = rac{2n}{2n+1} \leq 1 - ext{pacxoдится!}$$

"Если вы думаете так, то к вам не придраться, но вы полный идиот"

Теорема:

 \forall ряда $\sum a_n$ экв:

1.
$$\sum a_n$$
 — абс сх

2.
$$\sum |a_n| - \operatorname{cx}$$

3.
$$\sum a_n^+, \sum a_n^- - \operatorname{cx}(a_n^+ = \max(a_n, 0), a_n^- = \max(-a_n, 0))$$

Доказательство:

Упражнение слушателям.

15. Сходимость произвольных рядов

Теорема: (признак Лейбница)

$$c_0 \geq c_1 \geq c_2 \geq c_3 \geq \ldots \geq 0, c_n \rightarrow 0$$

Тогда

$$\sum (-1)^n c_n - \operatorname{cx}$$

Секретное дополнение признака Лейбница: Если ряд сх., то

$$\forall N \quad \left| \sum_{k \geq N} (-1)^k c_k \right| \leq c_N$$

Доказательство сходимости ряда

$$(c_0-c_1)+(c_2-c_3)+(c_4-c_5)+\dots$$

$$\begin{aligned} s_{2n-1} &= (c_0 - c_1) + (c_2 - c_3) + (c_4 - c_5) + \dots \ge 0 \\ s_{2n-1} &= s_{2n-1} + (c_{2n} - c_{2n-1}) \ge s_{2n-1} \end{aligned}$$

$$s_{2n+1} = s_{2n-1} + \underbrace{\left(c_{2n} - c_{2n+1}\right)}_{\geq 0} \geq s_{2n-1}$$

$$(s_{2n-1}) - \text{возрастает}$$

 s_{2n-1} — ограничено (за счет площади):

$$\begin{array}{l} s_{2n-1} = c_0 - (c_1 - c_2) - (c_3 - c_4) - \ldots - (c_{2n-3} - c_{2n-2}) - c_{2n-1} \leq c_0 \end{array}$$

Значит $\exists \lim s_{2n-1}$

$$s_{2n\searrow s} = s_{2n-1\searrow s} + c_{2n\searrow 0}$$

Ряд, для которого не работает признак Лейбница:

$$\sum_{k=2}^{+\infty} \frac{(-1)^k}{\sqrt{k} + (-1)^k}$$

Наш ряд
$$(-1)^k c_k$$
, где $c_k = \frac{1}{\sqrt{k} + (-1)^k} \geq 0$

Монотонность?

$$k = 10^6$$
 $c_k = \frac{1}{1001}$

$$\begin{array}{ll} k = 10^6 & c_k = \frac{1}{1001} \\ k = 10^6 + 1 & c_k \approx \frac{1}{999} \end{array}$$

$$k=10^6+2$$
 $c_k\approx\frac{1}{1001}$

f(x) — монотонности нет

НЕ РАБОТАЕТ

$$\sum rac{{{{\left({ - 1}
ight)}^k}}}{{\sqrt k }} -$$
 сходится по Лейбницу

$$a_k, b_k > 0, \sum a_k, \sum b_k, a_k \sim b_k \Rightarrow \sum a_k, \sum b_k$$
 сх одновр

$$\sum_{k=2}^{+\infty} \frac{(-1)^k}{\sqrt{k} + (-1)^k} - \sum_{k=2}^{+\infty} \frac{(-1)^k}{\sqrt{k}} = \sum_{k=2}^{+\infty} \frac{(-1)^k \left(-(-1)^k \right)}{\sqrt{k} \left(\sqrt{k} + (-1)^k \right)} = \sum \frac{1}{\sqrt{k} \left(\sqrt{k} + (-1)^k \right)}$$

$$\sum \frac{1}{k} - \text{pacx}$$

Признак сравнения протух.

Преобразование Абеля: (суммирование по частям)

$$\sum\limits_{k=1}^{n}a_{k}b_{k}=A_{n}b_{n}+\sum\limits_{k=1}^{n-1}\big(b_{k}-b_{k+1}\big)A_{k}$$

 $A_k = a_1 + a_2 + \ldots + a_k \Leftrightarrow \int f$ — для аналогии с интегралами можно сделать такое сравнение

$$\int fg = F(x)g(x) - \int F(x)g'(x)$$

Признак Дирихле (не про зайцев) и признак Абеля:

Дан $\sum a_k b_k$

$$^{1\cdot}\,$$
 (Дирихле) A_n — огр. посл-ть $\bigg(A_n=\sum\limits_{k=1}^na_n\bigg),$ b_n — монот, $b_n\to 0.$ Тогда $\sum a_nb_n$ сх

2. (Абеля) Ряд
$$\sum a_n$$
сх, b_n — монот, огр. Тогда $\sum a_n b_n$ сходится

Доказательство:

1.
$$A_n - \text{orp}, b_n \to 0 \Rightarrow A_n b_n \to 0, \exists c_A: |A_n| \leq C_A \quad \forall n$$

Применим преобразование Абеля:
$$\sum\limits_{k=1}^{n}a_{k}b_{k}=\underbrace{A_{n}b_{n}}_{1,0}+\sum\limits_{k=1}^{n-1}\bigl(b_{k}-b_{k+1}\bigr)A_{k}$$
 (*)

$$\textstyle \sum_{k=1}^{n-1} \bigl| b_k - b_{k+1} \bigr| \bigl| A_k \bigr| \leq c_A \sum_{k=1}^{n-1} \bigl| b_k - b_{k+1} \bigr| = \pm c_A \sum_{k=1}^{n-1} b_k - b_{k+1} = \pm c_A (b_1 - b_n) \leq 2c_A c_B$$

$$b_n - \text{orp.} \quad \forall n \ |b_n| \leq c_B$$

Значит, $\sum\limits_{k=1}^{+\infty} (b_k-b_{k+1})A_k$ — абс. сходящийся \Rightarrow он сходится \Rightarrow \exists кон $\lim\limits_{n\to+\infty}\sum\limits_{k=1}^{n-1}...\Rightarrow$ в (*) всё сходится

2.
$$\exists$$
 кон $\lim_{n \to +\infty} b_n = \beta$

$$\sum_{k=1}^{n o +\infty} a_k b_k = \sum_{\operatorname{cx}} a_k eta + \sum_{\operatorname{cx}} a_k \left(\overbrace{b_k - eta}^{ o 0} \right)$$
 $\sum a_k \operatorname{cx} \Rightarrow A_k - \operatorname{orp}$

$$\sum a_k \operatorname{cx} \Rightarrow A_k - \operatorname{orp}$$

Загадка.
$$\sum\limits_{k=1}^{+\infty} rac{\sin n}{n} - ?$$