Sakshi Shah

■ sshah37@ncsu.edu **↓** +1 (919)-559-7653 **Q** Raleigh NC 27606 **m** www.linkedin.com/in/sakshi-5hah

EDUCATION

Master of Science in Mechanical Engineering

North Carolina State University || CGPA 4/4

Aug 2023 – May 2025

Raleigh, United States

Relevant Courses: Vibrations, Design of Electromechanical Systems, Industrial Automation, Optimization, Advanced Dynamics

Bachelor of Technology (B.Tech.) in Mechanical Engineering

Aug 2017 – Jun 2021

MKSSS's Cummins College of Engineering for Women || CGPA 8.5/10

Pune, Maharashtra, India

Relevant Courses: Engineering Mathematics, Rigid Body Dynamics, Automation and Control Engineering, Avionics,

Numerical Methods

SKILLS

Modelling and Analysis: SOLIDWORKS | AutoCAD | Autodesk Inventor | ANSYS (Mechanical, Electronics) | Creo

Planning and Manufacturing: SAP PLM | Excel VBA | Power Apps | PreForm | UltiMaker Cura | Sheet Metal

Programming: MATLAB | Simulink | Python | Connected Components Workbench | ROS | PostgreSQL

PROJECTS

Visual Servo Control Using a 7-Link Kinova Gen 3 Robot Arm

Jan 2025 – May 2025

- Developed a **closed-loop control** system to track dynamic objects in **real-time** using an **eye-in-hand** camera, leveraging **Simulink**, **ROS**, and **OpenCV**. Integrated **forward and inverse kinematics** to compute real-time joint trajectories and incorporated dynamic modeling for accurate motion prediction.
- **Designed** and **fabricated** custom **End-of-Arm Tooling (EOAT)** in SolidWorks to stabilize the ultrasound probe and support a monocular camera.
- Implemented real-time **image processing** and **control algorithms (PID, MPC)** using **MATLAB** and **GStreamer**, reducing system latency and enhancing tracking precision.

System Integration and Control of an Autonomous Conveyor System

Sep 2024 – Dec 2024

- Developed a **Flask/PostgreSQL** web application enabling remote access via **Modbus TCP/IP** and **MQTT**, for a **Micro800 PLC**-based color sorting system.
- **Integrated sensors and actuators**, reducing manual intervention by 50%.

2-Pole Electro-Permanent Magnet Clamp for Workpiece Holding

Sep 2024 – Nov 2024

- **Optimized** the design of an Electro-Permanent Magnetic Clamp using Magnetic Circuit Analysis (MCA) and Finite Element Method Magnetics (FEMM), **achieving a vertical reluctance force of 1460.1 lbf.**
- Validated FEMM data through 3D analysis in Ansys Electronics Desktop, ensuring accurate force calculations and identifying potential saturation effects within the EPMC design.

PROFESSIONAL EXPERIENCE

Research Assistant

Tioga Cardiovascular

Jan 2025 – May 2025

Neuromuscular Controls and Rehabilitation Lab, North Carolina State University

Raleigh, United States

- **Designed mechanical linkages in SOLIDWORKS** to enable lateral movement in a wearable exoskeleton.
- **Prototyped and 3D printed components** using Ultimaker for rapid iteration and testing.
- **Selected and integrated motors** to achieve smooth, precise actuation and enhanced user control.

Process Development Intern

May 2024 – Aug 2024

Los Gatos, United States

- **Supported process development and R&D** to optimize manufacturing of the Luna TMVR product.

- Designed SLA-printed fixtures in SolidWorks and PreForm to improve vibration damping and validate the delivery system, incorporating Design for Manufacturing (DFM) principles.
- **Created detailed engineering drawings with GD&T** and authored controlled documents for testing and quality inspections. Participated in design reviews to ensure cross-functional alignment.

Associate Engineer

Aug 2021 – Jun 2023 | Pune, India

Eaton

- **Managed 250+ customer orders** and streamlined the Engineering-to-Order (**ETO**) process, improving efficiency by **34%** using Continuous Improvement (**DMAIC Six Sigma** Certified) and automation tools (Python, VBA, Power Apps).
- Executed Engineering Change Requests (ECRs) and Sustaining Engineering projects, reducing labor hours and part variations by 96% through drawing revisions, BOM standardization in SAP PLM, and improved documentation for medium-voltage regulators.
- Realized \$100K in cost savings through Design for Assembly (DFA) and Value Engineering (VAVE) initiatives.