Notation

The following notation is used throughout this work.

- a a scalar (real, integer, or word/token)
- \tilde{a} a vector, nominally a column vector
- A a matrix
- \mathcal{A} a sequence, including a dataset or a sequence of words
- $ilde{x}_{[i]}$ the ith element of the vector $ilde{x}$ $X_{[i,j]}$ the row i and column j element X $X_{[:,i]}$ the ith column vector of the matrix X $X_{[i,:]}$ the ith row vector of the matrix X
- $w^{(t)}$ a scalar tth element of some sequence W^{f} a matrix disambiguated by the name f
- $[A\ B]$ the horizontal concatenation of A and B [A;B] the vertical concatenation of A and B
- P(...) A probability (estimated or ground truth)

Words are treated as integers

We consistently notate words, as if they were scalar integer values. writing for example $w^{(1)}$ as to be the first word in a sequence. Which is then used an an index: $C_{\left[:,w^{(i)}\right]}$ is it's corresponding word vector, from the embedding matrix C.

Superscripts are never exponents

Just to reiterate, we use $x^{(t)}$ not to represent $\prod_{i=1}^{i=t} x$, but as a variable name for a sequence element. The only exponential that occurs in this work is the natural exponential, which we write $\exp x$.

Readers may be more familiar with subscripts being used to allow more variable names e.g. x_t . However, we use this for indexing: that would be the tth element of x.

In the case of recurrent neural networks, we often will want to reference both the i element of the tth timestep variable: $x^{(t)}$. This is thus unambiguously written written $x_{[i]}^{(t)}$.