Programming Languages

0. Imperative Programming and Hoare Logic Exercises

Shin-Cheng Mu

March, 2021

Guarded Command Language Basics

- 1. Which of the following Hoare triples hold?
 - (a) $\{x = 7\}$ skip $\{odd x\}$;
 - (b) $\{x > 60\}x := x \times 2\{x > 100\};$
 - (c) $\{x > 40\}x := x \times 2\{x > 100\};$
 - (d) $\{true\}$ if $x \leqslant y \rightarrow y := y x \mid x \geqslant y \rightarrow x := x y$ fi $\{x \geqslant 0 \land y \geqslant 0\}$;
 - (e) $\{even \ x \land even \ y\}$ if $x \leqslant y \rightarrow y := y x \mid x \geqslant y \rightarrow x := x y$ fi $\{even \ x \land even \ y\}$.
- 2. Is it always true that $\{true\}\ x := E\ \{x = E\}$? If you think the answer is yes, explain why. If your answer is no, give a counter example.
- 3. Verify:

$$\{x = X \land y = Y\}$$

$$x := x \neq y$$

$$y := x \neq y$$

$$x := x \neq y$$

$$\{x = Y \land y = X\}$$

where x and y are boolean and $(\not\equiv)$ is the "not equal" or "exclusive or" operator. In fact, the code above works for any (\otimes) that satisfies the properties that for all a, b, and c:

associative :
$$a \otimes (b \otimes c) = (a \otimes b) \otimes c$$
,
unipotent : $a \otimes a = 1$,

where 1 is the unit of (\otimes), that is, 1 \otimes *b* = *b* = *b* \otimes 1.

4. Verify the following program:

var
$$r, b : Int$$

 $\{0 \le r < 2 \times b\}$
if $b \le r \rightarrow r := r - b$
 $\mid r < b \rightarrow skip$
fi
 $\{0 \le r < b\}$

5. Verify:

var
$$x, y : Int$$

{ True}
 $x, y := x \times x, y \times y$
if $x \ge y \to x := x - y$
 $y \ge x \to y := y - x$
fi
{ $x \ge 0 \land y \ge 0$ }.

6. Verify:

```
var a, b : Bool

{True}

if \neg a \lor b \rightarrow a := \neg a

\mid a \lor \neg b \rightarrow b := \neg b

fi

{a \lor b}.
```

Weakest Precondition

- 7. Given below is a list of statements and predicates. What are the weakest precondition for the predicates to be true after the statement?
 - (a) $x := x \times 2, x > 100$;
 - (b) $x := x \times 2$, even x;
 - (c) $x := x \times 2, x > 100 \land even x$;
 - (d) $x := x \times 2$, odd x.
 - (e) skip, odd x.
- 8. Prove that $(wp \ S \ Q_0 \lor wp \ S \ Q_1) \Rightarrow wp \ S \ (Q_0 \lor Q_1)$.
- 9. Recall the definition of Hoare triple in terms of wp:

$$\{P\} S \{Q\} = P \Rightarrow wp S Q$$
.

Prove that

1.
$$(\{P\} S \{Q\} \land (P_0 \Rightarrow P)) \Rightarrow \{P_0\} S \{Q\}.$$

2. $\{P\} S \{Q\} \land \{P\} S \{R\} \equiv \{P\} S \{Q \land R\}.$

10. Recall the weakest precondition of if:

$$wp ext{ (if } B_0 \rightarrow S_0 \vee B_1 \rightarrow S_1 ext{ fi) } Q = (B_0 \Rightarrow wp S_0 Q) \wedge (B_1 \Rightarrow wp S_1 Q) \wedge (B_0 \vee B_1) .$$

Prove that

$$\{P\} \text{ if } B_0 \to S_0 \lor B_1 \to S_1 \text{ fi } \{Q\} \equiv \\ \{P \land B_0\} S \{Q\} \land \{P \land B_1\} S \{Q\} \land (P \Rightarrow (B_0 \lor B_1)) .$$

Note: having proved so shows that the way we annotate if is correct:

$$\{P\}$$
if $B_0 o \{P \wedge B_0\} S_0 \{Q\}$
 $\mid B_1 o \{P \wedge B_1\} S_1 \{Q\}$
fi
 $\{Q\}$.

- 11. Recall that *wp S Q* stands for "the weakest precondition for program *S* to terminate in a state satisfying *Q*". What programs *S*, if any, satisfy each of the following conditions?
 - 1. wp S True = True.
 - 2. wp S True = False.
 - 3. wp S False = True.
 - 4. wp S False = False.