ANÁLISE DE DADOS EXPLORATÓRIA

ADE (ANÁLISE DE DADOS EXPLORATÓRIA)

Tem objetivo de realizar análise preliminar do banco de dados por meio de gráficos, tabelas, medidas de posição e de dispersão

Extrair conhecimento dos dados

Bancos de dados

• Dados podem ter variáveis de diferentes tipos

	M5		▼ (n)	f _x							
	Α	В	С	D	Е	F	G	Н		J	K
1	Código do Cliente	Sexo	Estado Civil	Estado de Residência	Possui Cartão de Crédito	Idade	Rendimento Total	Salário	Limite de Crédito Imediato	Valor Total do Patrimônio	Limite do Cheque Especial
2	1	F	viúvo	RJ	sim	81	6800	6800	380	299109	2000
3	2	F	viúvo	RJ	sim	35	5000	5000	1000	120000	1000
4	3	F	viúvo	RJ	sim	39	6320	6320	1550	100000	1640
5	4	F	divorciado	RJ	não	70	10736	5214	400	100000	500
6	5	F	casado	SP	não	54	6000	6000	1790	171745	3600
7	6	М	solteiro	SP	sim	64	15000	15000	3000	561138	10000
8	7	М	casado	SP	não	69	37000	22000	1000	2593588	4000
9	8	F	casado	SP	não	68	10527	4027	3000	350000	5000
10	9	М	casado	SP	não	30	8000	8000	3000	200000	3350
11	10	М	casado	RJ	não	72	7825	7825	3000	120000	3000
12	11	F	casado	SP	não	73	7890	7000	3000	17939	5000
12	10	_	divorsiada	וח	200	70	1200	1200	2000	E07000	1000

Tipos de variáveis

Variáveis numéricas (ou quantitativas)

Discretos:

- Número de filhos
- Número de dias para pagamento
- Número de clientes
- Número de unidades vendidas

Contínuas:

- Salário
- Temperatura
- Faturamento
- Cotação do dólar

Variáveis categóricas (ou qualitativas)

Ordinal:

- Escolaridade
- Tamanho
- o Risco

Nominal:

- Sexo
- Estado brasileiro

Dependendo do tipo de variável, analisamos de diferentes maneiras

Analisando variáveis categóricas

- Tabela de frequência absoluta
- Tabela de frequência relativa

Categoria	Frequência Absoluta	Frequência relativa		
Castanhos	10	0,50		
Pretos	7	0,35		
Azuis	2	0,10		
Verdes	1	0,05		
Total	20	1.00		

Analisando variáveis numéricas

- Medidas de posição e suas definições
 - Média
 - Soma de todos elementos dividido pelo número de elementos
 - Moda
 - Valor que mais se repete
 - Mediana
 - Valor central
 - Deve-se ordenar a base de dados para obter a mediana

Analisando variáveis numéricas

Quartil

 Informa limiares que contém 25%, 50% e 75% dos valores

Boxplot

- Sumariza distribuição da variável
- Valores discrepantes (outliers)
 - Valores que se destacam da maioria

VISUALIZAÇÃO DE DADOS

Visualização de dados

- Dados são complexos de serem compreendidos
 - Possuem muitas dimensões
 - Podem não ter relações óbvia entre si
- Ferramentas de visualizações de dados auxiliam no seu entendimento

Visualização de dados é parte arte, parte ciência

- ✓ O desafio de comunicar informações através de gráficos é comum ao dia a dia na maior parte das empresas
- ✓ O maior desafio é passar informação de maneira clara e sem distorções para o público-alvo

Entender o contexto

Escolher um visual efetivo

Eliminar ruídos

Focar atenção

Contar uma história

Não existe certo ou errado em visualização de dados, mas existem algumas boas práticas

É comum encontrarmos gráficos como esse

 Aparentemente, n\u00e30 parece ter nenhum 250.00 problema

Você identifica algo de errado?

É comum encontrarmos gráficos como esse

- Alguns pontos de atenção:
 - Redundância no eixo y (rótulo + grid)
 - o O que significam as cores?
 - Qual mensagem estou tentando transmitir?

Agora os mesmos dados com outra visualização

Algumas melhorias:

- Gráfico de linhas são mais apropriados que barras para mostrar evolução temporal
- Além disso, elas destacam a diferença de crescimento entre tickets processados e recebidos
- A linha em maio destaca a diferença entre os 2 grupos
- Gráfico se torna auto explicativo

Outro exemplo que pode ser melhorado

- Para exercitar o que pode ser melhorado, podemos nos perguntar:
 - O que eu mudaria nesse gráfico?
 - O que está faltando?
 - Qual mensagem dessa visualização?

Survey Results

E podemos sugerir melhoria do destaque do sucesso do piloto

- Agora sabemos do que se trata esse gráfico
- Se referem a pesquisas realizadas antes e depois de um programa piloto de estímulo à ciência
- As cores foram utilizadas pra enfatizar os resultados positivos
- Textos de apoio são essenciais pra passar uma mensagem coesa

Based on survey of 100 students conducted before and after pilot program (100% response rate on both surveys).

Tá ok, então como passar uma boa mensagem com dataviz?

- Uma boa visualização deve ter como companhia uma boa história
- Ou seja, cada elemento deve ter uma razão de existir
- Alguns guias:
 Menos é mais

Cuidado com redundância, excesso de cores e de informações

Quem é a audiência?

Provavelmente o nível de detalhe para um diretor executivo e para um time técnico será diferente

Saiba sua mensagem

Sua visualização deve ter um significado e como os gráficos transmitem a mensagem

ALÉM DISSO, PODEMOS EVITAR ALGUNS TIPOS DE GRÁFICOS

Humanos são naturalmente ruins em interpretar áreas

 Olhe o gráfico ao lado e tente ordenar as partes por tamanho

Não está convencido?

 Agora compare os 3 gráficos e tente entender a evolução dos valores entre eles

E se trocarmos por um gráfico de barras?

• Agora compará-los ficou mais fácil, né?!

Gráficos de barras permitem comparação direta de alturas

No entanto, ainda podemos melhorá-lo

Rótulos de dados e linhas de fundo são redundantes. Podemos escolher um só

É possível usar cores pra destacar o dado mais importante

Outra opção é usar um gráfico de barras empilhadas

Ou o treemap pra enxergarmos proporções

OK, E SOBRE CORES?

Vamos conceitualizar os tipos de cores/paletas e a finalidade de cada uso

Qual a natureza dos seus dados?

• Paletas sequenciais:

- Dados ordenados que progridem
- Apenas um dos extremos merece destaque
- Usar em casos: quanto maior, melhor

Qual a natureza dos seus dados?

• Paletas divergentes:

- Os 2 extremos merece destaque com mesma ênfase
- Usar em casos: ruim x bom

Qual a natureza dos seus dados?

• Paletas qualitativas:

- Não induz ordem nem grandeza
- Distinção de atributos
- Usar em casos: n diferentes grupos

Qual a finalidade do gráfico?

• Distinguir grupos:

- Usar paletas qualitativas
- o Cuidado com a quantidade
- Grupos podem ter cores temáticas

Qual a finalidade do gráfico?

Representar valores:

- o Usar paletas sequenciais e divergentes
- Escolher tonalidade de acordo com a intenção do gráfico (ex: azul = bom e vermelho = ruim)
- Legenda pode ser contínua ou em classes

Qual a finalidade do gráfico?

• Ferramenta para destacar:

- Usar paletas qualitativas sobre cores neutras
- Usar cor destaque sobre transparência ou cores neutras

DICAS PRA GUARDAR NO S2

- Avalie se é melhor colocar o foco na escala de cor ou num dos eixos
- Se houver muitos grupos, evite a legenda de cor

- Mantenha a consistência na escolha das cores para as variáveis e grupos
- Menos é mais, lembra? Destaque o que é importante e faça outro gráfico para mostrar o contexto geral, se necessário

- Cores intuitivas ajudam na interpretação e associação
- Não use paletas com gradiente para representar grupos

Seja inclusivo!

- Lembre-se que o coleguinha pode ser daltônico
 - 8% dos homens e 0,5% das mulheres são daltônicos

Famous Color Blind People

Bill Clinton

Christopher Nolan

Keanu Reeves

Meat Loaf

Paul Newman

Prince William

Dê preferência por paletas *colorblind safe*!

• Evite estas combinações de cores

Vermelho & verde Verde & marrom Verde & azul Azul & cinza Azul & roxo Verde & cinza Verde & preto

Um exemplo de paleta segura é "viridis"

Sem daltonismo

heat ggplot default brewer blues brewer yellow-green-blue viridis magma

Com daltonismo

Visualizando quantidades

- Barras são a maneira mais comum de representar quantidades
- A direita estão as melhores formas quando existe uma classe

 E essas são mais comuns quando há mais de uma classe

Visualizando distribuições

 Histogramas e gráficos de densidade são mais intuitivos pra visualizar distribuições

Visualizando proporções

- Gráficos de barras empilhadas enfatizam partes de um tudo
- Gráficos de barras facilitam a comparação entre partes individuais
- Quando proporções são dadas de acordo com múltiplos agrupamentos, podemos usar gráficos de mosaicos, treemap e conjunto de paralelos

Visualizando incerteza

- Barras de erro indicam a variação esperada de alguma estimativa ou medição
- Para enfatizar a incerteza, podemos avaliar a distribuição das probabilidades
- Para gráficos de linha, o equivalente à barra de erro é o intervalo de confiança

Existem diversas ferramentas de visualizações disponíveis

