Datum:		Třída: A4
25.1.2024	SPŠ CHOMUTOV	
Číslo úlohy:	MĚŘENÍ NA A/Č PŘEVODNÍKU	Jméno:
12.	S VYUŽITÍM LOGICKÉHO	Zdeněk Levický
	ANALYZÁTORU	

Zadání:

Ověřte činnost převodníku f/U. Změřte převodní charakteristiku převodníku kmitočtu na napětí a určete její konstantu a nelinearitu.

Schéma zapojení:

Tabulka použitých přístrojů:

NÁZEV	OZNAČENÍ	PARAMETRY	EV. ČÍSLO
Zdroj	U	TSZ 75 (15 V, 5 V)	LE4 1043
Generátor	G	RIGOL DG4062	LE 5074
Multimetr	ČV	GDM-8342	LE 5137
Převodník f/U	-		LE2 2336
Logický analyzátor	-	TEKTRONIX	LE2 5002
Sonda	-	TEKTRONIX	
Potenciometr	P1	-	EL 1303

Postup:

- Zapojení jsme dle schématu
- Určili jsme váhu nejmenšího napěťového kroku
- Doplnili jsme výstupní kódy ve skriptech
- Nastavili jsme logický analyzátor dle manuálu
- Na generátoru jsme nastavili frekvence 8-16 kHz (postup po 2 kHz) a při každé z nastavených frekvencí jsme na logickém analyzátoru zjišťovali
 - <u>CDP:</u> celková doba převodu (vzestupná hrana S, sestupná hrana ST)
 - <u>VDP:</u> vlastní doba převodu (sestupná hrana S, sestupná hrana ST)
 - <u>DPD:</u> doba platnosti dat (sestupná hrana ST, vzestupná hrana S)
- Výsledná data jsme zpracovali
- Vypočítali jsme integrální a diferenciální nelinearitu
- Výsledky jsme zpracovali.

Tabulky naměřených hodnot:

Výstupní kód
11111111
11000000
10000000
01000000
00000001
0000000

f [kHz]	DPD [μs]	VDP [μs]	CDP [µs]
6	55,0	28,0	111,0
8	34,0	28,0	91,0
10	22,0	28,0	78,0
12	13,4	28,2	69,8
14	7,6	28,4	64,0
16	3,0	28,4	59,6

Krok (Xn)	U [mV]	INLx [mV]	DVLx [mV]
00000001	38,90	19,40	19,40
00000010	82,33	23,83	4,43
00000011	116,10	18,60	-5,23
00000100	154,30	17,80	-0,80
00000101	194,10	18,60	0,80

Použité výpočty:

Napěťový krok:
$$q = \frac{rozsah}{2^n} = \frac{10}{2^8} = 39 \ mV$$

Frekvence:
$$f = \frac{1-0.5}{VDP+DPD} = \frac{1-0.5}{28+10} = 13.02 \text{ kHz}$$

Integrální nelinearita:
$$DNLj = (x_j - x_{j-1}) - q$$

$$DNLj = (82,33 - 38,9) - 39 = 4,43$$

Derivační nelinearita:

$$INLj = x_j - (j + 0.5) * q$$

 $INLj = 38.9 - (0 + 0.5) * 39 = 19.4$

Grafy:

Doba platnosti dat:

Vlastní doba přenosu:

Celková doba přenosu:

Ověření doby platnosti dat dle vypočtené frekvence:

Závěr:

Měření proběhlo v pořádku. Všechny hodnoty a grafy vyšly dle teoretických předpokladů.