

FCC Test Report

FCC ID : 2ACDL-C600

Equipment : Canary Flex Home Security Device

Model No. : CAN600

Brand Name : Canary

Applicant : Canary Connect, Inc.

Address : 606 West 28th Street, 7th Floor New York NY

10001, USA

Standard : 47 CFR FCC Part 15.407

Received Date : Aug. 18, 2016

Tested Date : Aug. 22 ~ Sep. 20, 2016

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Felix Sung / Serior Engineer Along Chew Assistant Manage

TAF

Testing Laboratory
2732

Report No.: FR681802AN Page: 1 of 84

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	9
1.5	Testing Applied Standards	10
1.6	Measurement Uncertainty	10
2	TEST CONFIGURATION	11
2.1	Testing Condition	11
2.2	The Worst Test Modes and Channel Details	
3	TRANSMITTER TEST RESULTS	13
3.1	Conducted Emissions	13
3.2	Emission Bandwidth	18
3.3	RF Output Power	
3.4	Peak Power Spectral Density	23
3.5	Transmitter Radiated and Band Edge Emissions	27
3.6	Frequency Stability	82
4	TEST LABORATORY INFORMATION	84

Release Record

Report No.	Version	Description	Issued Date
FR681802AN	Rev. 01	Initial issue	Oct. 12, 2016
FR681802AN	Rev. 02	Updated test results of Band Edge Emissions	Nov. 14, 2016

Report No.: FR681802AN Page: 3 of 84

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.792MHz 43.88 (Margin -12.12dB) - QP	Pass
15.407(b) 15.209	Radiated Emissions	[dBuV/m at 3m]: 400.00MHz 44.46 (Margin -1.54dB) - QP	Pass
15.407(a)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(e)	6dB bandwidth	Meet the requirement of limit	Pass
15.407(a)	RF Output Power	Max Power [dBm]: 5150-5250MHz: 12.86 5725-5850MHz: 10.25	Pass
15.407(a)	Peak Power Spectral Density	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR681802AN Page: 4 of 84

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS
5150-5250	а	5180-5240	36-48 [4]	1	6-54 Mbps
5150-5250	n (HT20)	5180-5240	36-48 [4]	1	MCS 0-7
5150-5250	n (HT40)	5190-5230	38-46 [2]	1	MCS 0-7

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

RF General Information					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS
5725-5850	а	5745-5825	149-165 [5]	1	6-54 Mbps
5725-5850	n (HT20)	5745-5825	149-165 [5]	1	MCS 0-7
5725-5850	n (HT40)	5755-5795	151-159 [2]	1	MCS 0-7

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.2 Antenna Details

Ant. No.	Operating Frequencies (MHz) /		encies (MHz) / Ar	ntenna Gain (dBi)	
Ant. No.	Туре	Connector	2400~2483.5	5150~5250	5725~5850
1	PIFA	UFL	3.4	1.5	3

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	Power by 5Vdc adapter & 2 x 3.63Vdc batteries in parallel connection
-------------------	--

Report No.: FR681802AN Page: 5 of 84

1.1.4 Accessories

	Accessories				
No.	Equipment	Description			
1	Adapter	Brand: canary Model: CAN100USAPT I/P: 100-240Vac, 50/60Hz, 0.3A O/P: 5Vdc, 2000mA Manufacturer: Vanze			
2	Adapter	Brand: canary Model: CAN100USAPT I/P: 100-240Vac, 50/60Hz, 0.35A O/P: 5Vdc, 2000mA Manufacturer: T&W			
3	Li-ion Rechargeable Battery (x2)	Brand: Sunwoda Model: SUN-INTE-16 Rating: 3.63Vdc, 3350mAh			
4	USB cable (black) For charging use	2.41m shielded without core.			
5	USB cable (white) For charging use	2.41m shielded without core.			

1.1.5 Channel List

For Frequency band 5150-5250 MHz				
802.1	l a / HT20	HT40		
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
36	5180	38	5190	
40	5200	46	5230	
44	5220			
48	5240			

For Frequency band 5725~5850 MHz				
802.11	a / HT20	Н	Γ40	
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
149	5745	151	5755	
153	5765	159	5795	
157	5785			
161	5805			
165	5825			

Report No.: FR681802AN Page: 6 of 84

1.1.6 Test Tool and Duty Cycle

Test Tool	Console			
	Mode	Duty cycle (%)	Duty factor (dB)	
Duty Cycle and Duty Footor	11a	99.65%	0.02	
Duty Cycle and Duty Factor	HT20	99.63%	0.02	
	HT40	98.37%	0.07	

1.1.7 Power Setting

	For Frequency band 5150-5250 MHz				
Modulation Mode	Test Frequency (MHz)	Power Set			
11a	5180	55			
11a	5200	55			
11a	5240	55			
HT20	5180	55			
HT20	5200	55			
HT20	5240	55			
HT40	5190	55			
HT40	5230	55			

	For Frequency band 5725~5850 MHz								
Modulation Mode	Test Frequency (MHz)	Power Set							
11a	5745	46							
11a	5785	46							
11a	5825	46							
HT20	5745	46							
HT20	5785	46							
HT20	5825	46							
HT40	5755	46							
HT40	5795	46							

Report No.: FR681802AN Page: 7 of 84

1.2 Local Support Equipment List

Support Equipment List								
No.	Equipment	Brand	Model	FCC ID	Signal cable / Length (m)			
1	Notebook	DELL	Latitude E6430	DoC				

1.3 Test Setup Chart

Note: The support notebook was disconnected from EUT and removed from test table when EUT is set to transmit continuously.

Report No.: FR681802AN Page: 8 of 84

1.4 The Equipment List

Test Item	Conducted Emission									
Test Site	Conduction room 1 /	Conduction room 1 / (CO01-WS)								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until					
EMC Receiver	R&S	ESCS 30	100169	Oct. 21, 2015	Oct. 20, 2016					
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 13, 2015	Nov. 12, 2016					
RF Cable-CON	EMC	EMCCFD300-BM-BM-6000	50821	Dec. 21, 2015	Dec. 20, 2016					
Measurement Software	AUDIX	e3	6.120210k	NA	NA					
Note: Calibration Interval of instruments listed above is one year.										

Test Item	Radiated Emission	Radiated Emission								
Test Site	966 chamber1 / (03Ch	966 chamber1 / (03CH01-WS)								
Instrument	Manufacturer Model No. Serial No. Calibration Date Calibration I									
Spectrum Analyzer	R&S	FSV40	101498	Dec. 13, 2015	Dec. 12, 2016					
Receiver	R&S	ESR3	101658	Nov. 04, 2015	Nov. 03, 2016					
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Aug. 04, 2016	Aug. 03, 2017					
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 16, 2015	Dec. 15, 2016					
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 04, 2015	Nov. 03, 2016					
Preamplifier	EMC	EMC02325	980225	Aug. 05, 2016	Aug. 04, 2017					
Preamplifier	Agilent	83017A	MY39501308	Oct. 02, 2015	Oct. 01, 2016					
Preamplifier	EMC	EMC184045B	980192	Sep. 01, 2015	Aug. 31, 2016					
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 10, 2015	Dec. 09, 2016					
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 10, 2015	Dec. 09, 2016					
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 10, 2015	Dec. 09, 2016					
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 10, 2015	Dec. 09, 2016					
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 10, 2015	Dec. 09, 2016					
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 16, 2015	Nov. 15, 2016					
Measurement Software	AUDIX	e3	6.120210g	NA	NA					
Note: Calibration Inter	val of instruments listed	d above is one year.								

Test Item	RF Conducted	.F Conducted									
Test Site	(TH01-WS)										
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until						
Spectrum Analyzer	R&S	FSV40	101063	Feb. 17, 2016	Feb. 16, 2017						
Power Meter	Anritsu	ML2495A	1218007	Oct. 14, 2015	Oct. 13, 2016						
Power Sensor	Anritsu	MA2411B	1207367	Oct. 14, 2015	Oct. 13, 2016						
AC POWER SOURCE	APC	AFC-500W	F312060012	Oct. 26, 2015	Oct. 25, 2016						
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA						
Note: Calibration Inte	rval of instruments liste	d above is one year.	•	•							

Report No.: FR681802AN Page: 9 of 84

1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407 ANSI C63.10-2013

FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r03

FCC KDB 412172 D01 Determining ERP and EIRP v01r01

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty							
Parameters	Uncertainty						
Bandwidth	±34.134 Hz						
Conducted power	±0.808 dB						
Frequency error	±34.134 Hz						
Power density	±0.463 dB						
Conducted emission	±2.670 dB						
AC conducted emission	±2.90 dB						
Radiated emission ≤ 1GHz	±3.66 dB						
Radiated emission > 1GHz	±5.63 dB						
Time	±0.1%						
Temperature	±0.6 °C						

Report No.: FR681802AN Page: 10 of 84

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	24°C / 59%	Howard Huang
Radiated Emissions	03CH01-WS	22-24°C / 60-62%	Vincent Yeh Kevin Lee
RF Conducted	TH01-WS	24°C / 65%	Alex Huang

FCC site registration No.: 181692IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

For Frequency band 5150-5250 MHz									
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration					
Conducted Emissions	HT40	5230	MCS 0						
Radiated Emissions ≤1GHz	HT40	5230	MCS 0						
	11a	5180 / 5200 / 5240	6 Mbps						
RF Output Power	HT20	5180 / 5200 / 5240	MCS 0						
	HT40	5190 / 5230	MCS 0						
Radiated Emissions >1GHz	11a	5180 / 5200 / 5240	6 Mbps						
Emission Bandwidth	HT20	5180 / 5200 / 5240	MCS 0						
Peak Power Spectral Density	HT40	5190 / 5230	MCS 0						
Frequency Stability	Un-modulation	5200							

NOTE:

Report No.: FR681802AN Page: 11 of 84

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

^{2.} Adapter Vanze and T&W had been covered during the pretest. The worst adapter is Vanze, therefore the following test results came out from this.

For Frequency band 5725-5850 MHz									
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration					
Conducted Emissions	HT40	5795	MCS 0						
Radiated Emissions ≤1GHz	HT40	5795	MCS 0						
	11a	5745 / 5785 / 5825	6 Mbps						
RF Output Power	HT20	5745 / 5785 / 5825	MCS 0						
	HT40	5755 / 5795	MCS 0						
Radiated Emissions >1GHz	11a	5745 / 5785 / 5825	6 Mbps						
Emission Bandwidth	HT20	5745 / 5785 / 5825	MCS 0						
6dB bandwidth Peak Power Spectral Density	HT40	5755 / 5795	MCS 0						
Frequency Stability	Un-modulation	5785							

Note:

- The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.
- 2) Adapter Vanze and T&W had been covered during the pretest. The worst adapter is Vanze, therefore the following test results came out from this.

Report No.: FR681802AN Page: 12 of 84

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit								
Frequency Emission (MHz)	z) Quasi-Peak Average							
0.15-0.5	66 - 56 *	56 - 46 *						
0.5-5	56	46						
5-30	60	50						
Note 1: * Decreases with the logarith	m of the frequency.	-						

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR681802AN Page: 13 of 84

3.1.4 Test Result of Conducted Emissions

Report No.: FR681802AN Page: 14 of 84

Report No.: FR681802AN Page: 15 of 84

Report No.: FR681802AN Page: 16 of 84

Report No.: FR681802AN Page: 17 of 84

3.2 Emission Bandwidth

3.2.1 Limit of Emission bandwidth

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.2.2 Test Procedures

26dB Bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Occupied Bandwidth

- 1. Set RBW = 1 % to 5 % of the OBW
- 2. Set VBW ≥ 3 RBW
- 3. Sample detection and single sweep mode shall be used
- 4. Use the 99 % power bandwidth function of the instrument

6dB Bandwidth

- 1. Set RBW = 100kHz, VBW = 300kHz
- 2. Detector = Peak, Trace mode = max hold.
- 3. Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

3.2.3 Test Setup

Report No.: FR681802AN Page: 18 of 84

3.2.4 Test Result of Emission Bandwidth

	For Frequency band 5150-5250 MHz											
	Emission Bandwidth											
Mode	N	Freq.	2	26dB Band	width (MHz)		99% Bandv	vidth (MHz)	1		
Wode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3		
11a	1	5180	19.71				16.53					
11a	1	5200	19.25				16.58					
11a	1	5240	19.25				16.56					
HT20	1	5180	19.42				17.53					
HT20	1	5200	21.39				17.54					
HT20	1	5240	19.42				17.54					
HT40	1	5190	45.10				36.24					
HT40	1	5230	41.51				36.30					

Report No.: FR681802AN Page: 19 of 84

	For Frequency band 5725-5850 MHz										
	Emission Bandwidth										
			О	BW Band	width (MH	z)		6dB B	andwidth	(MHz)	
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	6dB BW Limit (MHz)
11a	1	5745	16.53				15.13				0.5
11a	1	5785	16.53				14.38				0.5
11a	1	5825	16.53				15.36			-	0.5
HT20	1	5745	17.53				15.07				0.5
HT20	1	5785	17.53				15.07				0.5
HT20	1	5825	17.52				15.13				0.5
HT40	1	5755	36.27				35.13				0.5
HT40	1	5795	36.27				35.13				0.5

Report No.: FR681802AN Page: 20 of 84

3.3 RF Output Power

3.3.1 Limit of RF Output Power

	Frequency band 5150-5250 MHz					
Оре	erating Mode	Limit				
	Outdoor access point	Conducted Power: 1 W The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm)				
	Indoor access point	Conducted Power: 1 W				
	Fixed point-to-point access points	Conducted Power: 1 W				
\boxtimes	Mobile and portable client devices	Conducted Power: 250 mW				

Fred	quency Band (MHz)	Limit			
	5250 ~ 5350	250mW or 11dBm+10 log B			
	5470 ~ 5725	250mW or 11dBm+10 log B			
	5725 ~ 5850	1 W			
Note	Note: "B" is the 26dB emission bandwidth in MHz.				

3.3.2 Test Procedures

Method PM-G (Measurement using a gated RF average power meter)

Measurements may is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.3.3 Test Setup

Report No.: FR681802AN Page: 21 of 84

3.3.4 Test Result of Maximum Conducted Output Power

	For Frequency band 5150-5250 MHz								
N4 . 1 .		- (1411)	Conducted Power (dBm)				Total	Total	Limit
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)
11a	1	5180	12.68				18.535	12.68	24.00
11a	1	5200	12.69				18.578	12.69	24.00
11a	1	5240	12.62				18.281	12.62	24.00
HT20	1	5180	12.53				17.906	12.53	24.00
HT20	1	5200	12.44				17.539	12.44	24.00
HT20	1	5240	12.58				18.113	12.58	24.00
HT40	1	5190	12.81				19.099	12.81	24.00
HT40	1	5230	12.86				19.320	12.86	24.00

	For Frequency band 5725-5850 MHz								
			Conducted Power (dBm)				Total	Total	Limit
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)
11a	1	5745	10.16				10.375	10.16	30.00
11a	1	5785	10.05				10.116	10.05	30.00
11a	1	5825	10.01				10.023	10.01	30.00
HT20	1	5745	10.12				10.280	10.12	30.00
HT20	1	5785	10.06				10.139	10.06	30.00
HT20	1	5825	10.02				10.046	10.02	30.00
HT40	1	5755	10.12				10.280	10.12	30.00
HT40	1	5795	10.25				10.593	10.25	30.00

Report No.: FR681802AN Page: 22 of 84

3.4 Peak Power Spectral Density

3.4.1 Limit of Peak Power Spectral Density

	Frequency band 5150-5250 MHz					
Оре	erating Mode	Limit				
	Outdoor access point	17 dBm / MHz				
	Indoor access point	17 dBm / MHz				
	Fixed point-to-point access points	17 dBm / MHz				
\boxtimes	Mobile and portable client devices	11 dBm / MHz				

Free	quency Band (MHz)	Limit
	5250 ~ 5350	11 dBm / MHz
	5470 ~ 5725	11 dBm / MHz
	5725 ~ 5850	30 dBm / 500 kHz

Report No.: FR681802AN Page: 23 of 84

3.4.2 Test Procedures

For 5150 ~ 5250 MHz

- Method SA-1
 - 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Use the peak marker function to determine the maximum amplitude level.
- - 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
 - 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add 10 log(1/x), where x is the duty cycle.

For 5725 ~ 5850 MHz

- Method SA-1
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Use the peak marker function to determine the maximum amplitude level.
- Method SA-2 Alternative
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Detector = RMS.
 - 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add 10 log(1/x), where x is the duty cycle.

3.4.3 Test Setup

Report No.: FR681802AN Page: 24 of 84

3.4.4 Test Result of Peak Power Spectral Density

	For Frequency band 5150-5250 MHz							
Co	ondition			Peak Power Spectral Density (dBm/MHz)				
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/MHz)	Duty Factor (dB)	PPSD with D.F (dBm/MHz)	PPSD Limit (dBm/MHz)		
11a	1	5180	0.50	0.00	0.50	11		
11a	1	5200	0.40	0.00	0.40	11		
11a	1	5240	0.11	0.00	0.11	11		
HT20	1	5180	0.02	0.00	0.02	11		
HT20	1	5200	0.32	0.00	0.32	11		
HT20	1	5240	-0.14	0.00	-0.14	11		
HT40	1	5190	-2.54	0.00	-2.54	11		
HT40	1	5230	-2.67	0.00	-2.67	11		

Report No.: FR681802AN Page: 25 of 84

For Frequency band 5725-5850 MHz								
Co	ondition		F	Peak Power Spectral Density (dBm/500kHz)				
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/500kHz)	Duty Factor (dB)	PPSD with D.F (dBm/500kHz)	PPSD Limit (dBm/500kHz)		
11a	1	5745	-3.76	0.00	-3.76	30.00		
11a	1	5785	-3.94	0.00	-3.94	30.00		
11a	1	5825	-4.10	0.00	-4.10	30.00		
HT20	1	5745	-3.93	0.00	-3.93	30.00		
HT20	1	5785	-4.36	0.00	-4.36	30.00		
HT20	1	5825	-4.27	0.00	-4.27	30.00		
HT40	1	5755	-6.61	0.00	-6.61	30.00		
HT40	1	5795	-6.85	0.00	-6.85	30.00		

Report No.: FR681802AN Page: 26 of 84

3.5 Transmitter Radiated and Band Edge Emissions

3.5.1 Limit of Transmitter Radiated and Band Edge Emissions

Restricted Band Emissions Limit							
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)				
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300				
0.490~1.705	24000/F(kHz)	33.8 - 23	30				
1.705~30.0	30	29	30				
30~88	100	40	3				
88~216	150	43.5	3				
216~960	200	46	3				
Above 960	500	54	3				

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

Un-restricted band emissions above 1GHz Limit					
Operating Band	Limit				
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]				
5.725 - 5.850 GHz	15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.				
	15.407(b)(4)(ii) ,compliance with the emission limits in § 15.247(d) Shall be at least 30dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power,. Attenuation below the general limits specified in §15.209(a) is not required. In addition,radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see § 15.205(c))				

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Report No.: FR681802AN Page: 27 of 84

3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR681802AN Page: 28 of 84

3.5.3 Test Setup

Report No.: FR681802AN Page: 29 of 84

3.5.4 Transmitter Radiated Band Edge for 11a

Report No.: FR681802AN Page: 30 of 84

Report No.: FR681802AN Page: 31 of 84

Report No.: FR681802AN Page: 32 of 84

Report No.: FR681802AN Page: 33 of 84

Report No.: FR681802AN Page: 34 of 84

Report No.: FR681802AN Page: 35 of 84

3.5.5 Transmitter Radiated Band Edge for HT20

Report No.: FR681802AN Page: 36 of 84

Report No.: FR681802AN Page: 37 of 84

Report No.: FR681802AN Page: 38 of 84

Report No.: FR681802AN Page: 39 of 84

Report No.: FR681802AN Page: 40 of 84

Report No.: FR681802AN Page: 41 of 84

3.5.6 Transmitter Radiated Band Edge for HT40

Report No.: FR681802AN Page: 42 of 84

Report No.: FR681802AN Page: 43 of 84

Report No.: FR681802AN Page: 44 of 84

Report No.: FR681802AN Page: 45 of 84

3.5.7 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR681802AN Page: 46 of 84

Modulation			HT40)				Test	Free	q. (MHz)	523	0	
Polarization			Verti	cal			•					•		
	90 Le	evel (dBu	ıV/m)											
	00													
	80													
	70				+				\dashv					
	60													
												FCC	CLAS	S-B
	50							- 6						
	40	1		_ 3		4	5							
	30			2 3										
	30													
	20			++										
	10				_				_					
	030	100.	200).	300.	. 40	00. 50 Freque	00.	600). 700	0. 800	0. 9	00.	1000
		_								F+	Remai	ala.	ANT	Turn
		F	req. c	miss lev		LIMIT	Margin		ч ding	Factor	Kemai		ANI High	Table
			MHz			dBuV/n	n dB	dB	_	dB			CM	deg
					_									
	1		18.27				-8.29		.68					
	2 3		19.15 50.19				-13.34		.51	-10.85				
	5 4		50.19	34. 37.		46.00	-11.21 -8.62		.18 .83	-9.39 -6.45				
	5		99.57	38.		46.00			.67	-5.21				
	6		49.92						.10	-2.12				

*Factor includes antenna factor , cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR681802AN Page: 47 of 84

		HT40	U				Test	Free	q. (MHz)	579	5	
		Horiz	zontal			•					•		
90 Lev	vel (dBu	V/m)											
90													
80													
70													
60													
											FCC	CLAS	S-B
50					3 4	_	- 6						
40			2 			5							
30-													
20													
10	_												
_													
30	100.	200	0. 30	0.	40				0. 70	0. 80	0. 9	00.	1000
	E	rea F	miccio	ıli	mi+				Factor	Roma	nk	ΔΝΤ	Turn
			level			riai 61				ricina			Table
	- 1	MHz	dBuV/m	dB	uV/m	dB	dE	BuV	dB				deg
	_	98.27	36.46	43	. 50	-7.04	49	9.75	-13.29	Peak			
						-6.75							
						-3.26							
						-1.95				•		100	155
						-5.42 -1.99			-3.99 -2.12			152	151
	80 70 60 50 40 30 20 10 030	80 70 60 50 40 30 20 10 0 30 100.	80 70 60 50 40 30 20 10 0 30 100. 200 Freq. E MHz 98.27 217.12 350.17 400.05 450.34	Freq. Emission level MHz dBuV/m 98.27 36.46 217.12 39.25 350.17 42.74 400.05 44.05 450.34 40.58	80 70 60 50 40 30 20 10 0 30 100. 200. 300. Freq. Emission Li level MHz dBuV/m dB 98.27 36.46 43 217.12 39.25 46 350.17 42.74 46 400.05 44.05 46 450.34 40.58 46	Freq. Emission Limit level MHz dBuV/m dBuV/m 98.27 36.46 43.50 217.12 39.25 46.00 350.17 42.74 46.00 400.05 44.05 46.00 450.34 40.58 46.00	Freq. Emission Limit Margin level MHz dBuV/m dBuV/m dB 98.27 36.46 43.50 -7.04 217.12 39.25 46.00 -6.75 350.17 42.74 46.00 -3.26 400.05 44.05 46.00 -1.95 450.34 40.58 46.00 -5.42	80 70 60 50 40 30 100. 200. 300. 400. 500. Frequency (Freq. Emission Limit Margin Servet MHz dBuV/m dBuV/m dB dE 98.27 36.46 43.50 -7.04 49 217.12 39.25 46.00 -6.75 56 350.17 42.74 46.00 -3.26 49 400.05 44.05 46.00 -1.95 49 450.34 40.58 46.00 -5.42 44	80 70 60 50 40 30 100. 200. 300. 400. 500. 600 Frequency (MHz) Freq. Emission Limit Margin SA level reading MHz dBuV/m dBuV/m dB dBuV 98.27 36.46 43.50 -7.04 49.75 217.12 39.25 46.00 -6.75 50.10 350.17 42.74 46.00 -3.26 49.19 400.05 44.05 46.00 -1.95 49.25 450.34 40.58 46.00 -5.42 44.57	80 70 60 50 40 30 100. 200. 300. 400. 500. 600. 70 Frequency (MHz) Freq. Emission Limit Margin SA Factor level reading MHz dBuV/m dBuV/m dB dBuV dB 98.27 36.46 43.50 -7.04 49.75 -13.29 217.12 39.25 46.00 -6.75 50.10 -10.85 350.17 42.74 46.00 -3.26 49.19 -6.45 400.05 44.05 46.00 -1.95 49.25 -5.20 450.34 40.58 46.00 -5.42 44.57 -3.99	80 70 60 50 40 20 30 100. 200. 300. 400. 500. 600. 700. 80 Frequency (MHz) Freq. Emission Limit Margin SA Factor Rema level reading MHz dBuV/m dBuV/m dB dBuV dB 98.27 36.46 43.50 -7.04 49.75 -13.29 Peak 217.12 39.25 46.00 -6.75 50.10 -10.85 Peak 350.17 42.74 46.00 -3.26 49.19 -6.45 Peak 400.05 44.05 46.00 -1.95 49.25 -5.20 QP 450.34 40.58 46.00 -5.42 44.57 -3.99 Peak	Freq. Emission Limit Margin SA Factor Remark level reading MHz dBuV/m dBuV/m dB dBuV dB 98.27 36.46 43.50 -7.04 49.75 -13.29 Peak 217.12 39.25 46.00 -6.75 50.10 -10.85 Peak 350.17 42.74 46.00 -3.26 49.19 -6.45 Peak 400.05 44.05 46.00 -1.95 49.25 -5.20 QP 450.34 40.58 46.00 -5.42 44.57 -3.99 Peak	Freq. Emission Limit Margin SA Factor Remark ANT level reading High Cm 98.27 36.46 43.50 -7.04 49.75 -13.29 Peak 217.12 39.25 46.00 -6.75 50.10 -10.85 Peak 217.12 39.25 46.00 -3.26 49.19 -6.45 Peak 400.05 44.05 46.00 -1.95 49.25 -5.20 QP 100 450.34 40.58 46.00 -5.42 44.57 -3.99 Peak

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR681802AN Page: 48 of 84

Modulation			HT40			-	Test F	req	ı. (MHz)		5795		
Polarization			Vertica	al		-							
	90 Leve	el (dBuV	//m)										
	00												
	80												
	70												
	60												
											FCC	CLAS	S-B
	50						- 6						
	40	1		3	- 4	5							
	30		2										
	30												
	20												
	10							-					_
	0												
	030	100.	200.	30	0. 4		0. ency (MH	600. lz)	700.	800.	90	0.	1000
		Fr	ea. Em	ission	Limit	Margin	SA		Factor	Remark	Α	NT	Turn
				level			readi					igh	Table
		М	Hz d	BuV/m	dBuV/	m dB	dBu\	/	dB		CI	m	deg
1	L	11	8.37	35.45	43.50	-8.05	45.9	91	-10.46	Peak			
2				32.26		-13.74	43.1		-10.85	Peak			
3				35.58		-10.42	44.9		-9.38	Peak			
4						-8.78	43.6		-6.45	Peak			
5					46.00 46.00		44.1 44.8		-5.20 -2.12	Peak Peak			

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR681802AN Page: 49 of 84

3.5.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR681802AN Page: 50 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 51 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 52 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 53 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 54 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 55 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 56 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 57 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 58 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 59 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 60 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 61 of 84

3.5.9 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 62 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 63 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 64 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 65 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 66 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 67 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 68 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 69 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 70 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 71 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 72 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 73 of 84

3.5.10 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR681802AN Page: 74 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 75 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 76 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 77 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 78 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 79 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 80 of 84

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR681802AN Page: 81 of 84

3.6 Frequency Stability

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

3.6.3 Test Setup

Report No.: FR681802AN Page: 82 of 84

3.6.4 Test Result of Frequency Stability

Frequency: 5200 MHz	Frequency Drift (ppm)				
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes	
T20°CVmax	0.74	0.72	0.94	1.22	
T20°CVmin	1.24	1.37	1.91	1.59	
T50°CVnom	2.05	2.36	2.03	2.17	
T40°CVnom	1.53	1.57	1.63	1.43	
T30°CVnom	3.48	3.17	4.01	3.83	
T20°CVnom	3.03	3.12	2.96	2.89	
T10°CVnom	3.68	4.08	3.66	3.51	
T0°CVnom	2.77	2.79	2.39	2.79	
T-10°CVnom	2.36	2.73	2.24	2.81	
T-20°CVnom	1.56	2.24	1.77	1.77	
T-30°CVnom	1.17	0.88	1.67	1.09	
Vnom [Vac]: 120		Vmax [Vac]: 138	Vmin [Vac]: 1	Vmin [Vac]: 102	
Tnom [°C]: 20		Tmax [°C]: 50	Tmin [°C]: -3	Tmin [°C]: -30	

Frequency: 5785 MHz	Frequency Drift (ppm)				
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes	
T20°CVmax	0.59	0.95	0.67	0.82	
T20°CVmin	0.58	0.86	0.22	1.01	
T50°CVnom	0.02	-0.30	0.10	0.44	
T40°CVnom	0.56	0.96	0.49	0.87	
T30°CVnom	-0.15	-0.44	0.53	0.04	
T20°CVnom	0.20	-0.01	0.57	0.69	
T10°CVnom	0.32	0.22	0.33	0.00	
T0°CVnom	0.64	0.46	0.84	0.49	
T-10°CVnom	0.10	0.74	0.03	-0.24	
T-20°CVnom	0.19	0.05	0.18	0.26	
T-30°CVnom	-0.05	0.26	-0.24	0.14	
Vnom [Vac]: 120	Vr	max [Vac]: 138	Vmin [Vac]:	Vmin [Vac]: 102	
Tnom [°C]: 20	nom [°C]: 20 Tr		Tmin [°C]: -3	Tmin [°C]: -30	

Report No.: FR681802AN Page: 83 of 84

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City,

Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR681802AN Page: 84 of 84