Analyzing the PIMA Indians dataset

The context

Pima Indians are a group of Native Americans living in an area consisting of what is now central and southern Arizona. They have the highest prevalence of type 2 diabetes in

This is determined by genetic and environmental factors. 34% of men and 47 % of woman have diabetes.

the world.

The dataset¹

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old.

Variables

- preg: Number of times pregnant
- plas: Plasma glucose concentration at 2 hours in an oral glucose tolerance test
- pres: Diastolic blood pressure (mm Hg)
- skin: Triceps skin fold thickness (mm)
- insu: 2-Hour serum insulin (mu U/ml)
- mass: Body mass index (weight in kg/(height in m)^2)
- pedi: Diabetes pedigree function
- age: Age (years)
- class: Class variable (0 = no diabetes or 1 = diabetes)

Exploratory data analysis

	Data types	Is null?	zeros count			preg	plas	pres	skin	insu	mass	pedi	age	class
preg	int64	0	111		count	768.00	768.00	768.00	768.00	768.00	768.00	768.00	768.00	768.00
plas	int64	0	5		mean	3.85	120.89	69.11	20.54	79.80	31.99	0.47	33.24	0.35
pres	int64	0	35	_	std	3.37	31.97	19.36	15.95	115.24	7.88	0.33	11.76	0.48
skin	int64	0	227	┩	min	0.00	0.00	0.00	0.00	0.00	0.00	0.08	21.00	0.00
insu	int64	0	374		25%	1.00	99.00	62.00	0.00	0.00	27.30	0.24	24.00	0.00
mass	float64	0	11		50%	3.00	117.00	72.00	23.00	30.50	32.00	0.37	29.00	0.00
pedi	float64	0	0		75%	6.00	140.25	80.00	32.00	127.25	36.60	0.63	41.00	1.00
age	int64	0	0		max	17.00	199.00	122.00	99.00	846.00	67.10	2.42	81.00	1.00
class	int64	0	500											

Observations

- Funny number: 17 times pregnant
- Value range between the observations is high
- Big jump between 75% and max for preg, skin and insu -> outlier? BMI of 67 realistic?
- No systolic blood pressure -> why?

Reflection

- If there is an article about the data read it?
- Look at the data and the metadata diligently with domain knowledge, like units of measures etc.
- Coming up with a clear interpretation from the descriptive statistics / viz is not always that straight forward

Correlations highlights: Bivariate regression and the impact of the zeros

- preg age: 0.54
- class plas: 0.47
- skin insu: 0.44
- skin mass: 0.39

But...

w/o Zeros 60 with Zeros 븀 20 with Zeros: .39 w/o Zeros: .63 20 40 60

Observations

- · Corr between age and number of pregnancies makes sense
- Plasma glucose might be a good discrimator
- Zeros have a big impact on the extent of association between the variables

Reflection

- What is a weak, moderate, high correlation?
- Be aware of how you deal with missing values and outliers and how this might affect the conclusions you draw

Hypothesis testing

Class counts: Without diabetes / with diabetes: n = 500 / n= 268

Kernel density plots

Do central tendencies differ?

	Mann Whitney with Zeros	Mann Whitney w/o Zeros	T-Test with Zeros	T-Test w/o Zeros
preg	p < .05	p < .05	p < .05	p < .05
plas	p < .05	p < .05	p < .05	p < .05
pres	p < .05	p < .05	p > .05	p < .05
skin	p < .05	p < .05	p < .05	p < .05
insu	p < .05	p < .05	p < .05	p < .05
mass	p < .05	p < .05	p < .05	p < .05
pedi	p < .05	p < .05	p < .05	p < .05
age	p < .05	p < .05	p < .05	p < .05

Observations

- Blood pressure and BMI seem to be normally distributed, but they are not
- Diabetes cases are associated with greater levels of plasma glucose and BMI
- · Visually all attributes seem not to discriminate a lot, but the differences are statistically significant

Reflection

- Defining which test to use on a given data set might be challenging random sample?
- Even small numbers, e.g. 35 zeros for blood pressure can make a "big" difference
- Be diligent check requirements for the test
- Manipulating sizes and layout in matplotlib is rather cumbersome

¹ Smith, J. W.. et. al (1988). Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of the Symposium on Computer Applications and Medical Care (pp. 261–265). IEEE Computer Society Press.