# The Complete Al Course







### Bivariate Data Analysis





#### Bivariate Data Analysis

- Covariance
- Correlation
- Collinearity
- Multicollinearity
- Variance Inflation Factor
- Homoscedasticity
- Heteroscedasticity



### COVARIANCE



### **COVARIANCE**



Large Positive Covariance



Nearly Zero Covariance



Large Negative Covariance

### COVARIANCE

#learnaiwithramisha



#### Population Covariance Formula

$$Cov(x,y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N}$$

#### Sample Covariance

$$Cov(x,y) = \frac{\sum_{(x_i-\overline{x})(y_i-y)}}{N-1}$$

#### Notations in Covariance Formulas

- x<sub>i</sub> = data value of x
- y<sub>i</sub> = data value of y
- x̄ = mean of x
- ȳ = mean of y
- N = number of data values.



### CORRELATION



$$r_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

#### Where:

- $\mathbf{r}_{xy}$  the correlation coefficient of the linear relationship between the variables x and y
- x<sub>i</sub> the values of the x-variable in a sample
- $\bar{x}$  the mean of the values of the x-variable
- y<sub>i</sub> the values of the y-variable in a sample
- $\bar{y}$  the mean of the values of the y-variable





# MULTI-COLINEAR | TESTING









### MULTI-COLINEAR | TESTING



- An easy way to detect multicollinearity is to calculate correlation coefficients for all pairs of predictor variables.
- ❖ If the correlation coefficient, r, is exactly +1 or -1, this is called perfect multicollinearity.
- ❖ If r is close to or exactly -1 or +1, one of the variables should be removed from the model if at all possible
- Multicollinearity generally occurs when there are high correlations between two or more predictor variables.
- ❖ In other words, one predictor variable can be used to predict the other.
- This creates redundant information, skewing the results in a regression model.
- Examples of correlated predictor variables (also called multicollinear predictors) are: a person's height and weight, age and sales price of a car, or years of education and annual income.





### KINDS OF MULTICOLLINEARIT



#### Structural multicollinearity:

- > This type occurs when we create a model term using other terms.
- In other words, it's a byproduct of the model that we specify rather than being present in the data itself.
- $\triangleright$  For example, if you square term X to model curvature, clearly there is a correlation between X and  $X^2$ .

#### **Data multicollinearity**:

This type of multicollinearity is present in the data itself rather than being an artifact of our model. Observational experiments are more likely to exhibit this kind of multicollinearity.





### Variance Inflation Factor(VIF)



- ❖ A variance inflation factor(VIF)detects multicollinearity in regression analysis.
- Multicollinearity is when there's correlation between predictors (i.e. independent variables) in a model;
- it's presence can adversely affect your regression results.
- ❖ The VIF estimates how much the variance of a regression coefficient is inflated due to multicollinearity in the model.

$$ext{VIF} = rac{1}{1-R_i^2}$$

- 1 = not correlated.
- Between 1 and 5 = moderately correlated.
- Greater than 5 = highly correlated.



# Example: Multicollinearity



#### Model Summary

S R-sq R-sq(adj) R-sq(pred) 0.0705118 56.23% 54.22% 50.48%

#### Coefficients

| Term           | Coef      | SE Coef  | T-Value | P-Value | VIF      |
|----------------|-----------|----------|---------|---------|----------|
| Constant       | 0.155     | 0.132    | 1.18    | 0.243   | Wester 6 |
| %Fat           | 0.00557   | 0.00409  | 1.36    | 0.176   | 14.93    |
| Weight kg      | 0.01447   | 0.00285  | 5.07    | 0.000   | 33.95    |
| Activity       | 0.000022  | 0.000007 | 3.08    | 0.003   | 1.05     |
| %Fat*Weight kg | -0.000214 | 0.000074 | -2.90   | 0.005   | 75.06    |





# Example: Multicollinearity



#### Model Summary

S R-sq R-sq(adj) R-sq(pred) 0.0705118 56.23% 54.22% 50.48%

#### Coefficients

| Term            | Coef      | SE Coef  | T-Value | P-Value | VIF               |
|-----------------|-----------|----------|---------|---------|-------------------|
| Constant        | 0.82161   | 0.00973  | 84.40   | 0.000   |                   |
| %Fat S          | -0.00598  | 0.00193  | -3.10   | 0.003   | 3.32              |
| Weight S        | 0.00835   | 0.00107  | 7.83    | 0.000   | 4.75              |
| Activity S      | 0.000022  | 0.000007 | 3.08    | 0.003   | TO RECOVER CHOICE |
| %Fat S*Weight S | -0.000214 | 0.000074 | -2.90   | 0.005   | 1.99              |







- The assumption of homoscedasticity (meaning "same variance") is central to linear regression models.
- ❖ Homoscedasticity describes a situation in which the error term (that is, the "noise" or random disturbance in the relationship between the independent variables and the dependent variable) is the same across all values of the independent variables.













Heteroscedasticity (the violation of homoscedasticity) is present when the size of the error term differs across values of an independent variable.

The impact of violating the assumption of homoscedasticity is a matter of degree, increasing as heteroscedasticity increases.

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$













Homoscedasticity



Random Cloud (No Discernible Pattern)

Heteroscedasticity



Bow Tie Shape (Pattern)

Heteroscedasticity



Fan Shape (Pattern)

Heteroscedasticity



Copyright 2014. Laerd Statistics.

Heteroscedasticity



Homoscedasticity







### Measure of spread | Z-Score



#### **Comparing Values from Different Data Sets**

Two students, John and Ali, from different high schools, wanted to find out who had the highest GPA when compared to his school. Which student had the highest GPA when compared to his school?

| Student | GPA  | School mean GPA | School standard deviation |
|---------|------|-----------------|---------------------------|
| John    | 2.85 | 3.0             | 0.7                       |
| Ali     | 77   | 80              | 10                        |

For John, 
$$z=\#ofSTDEVs=rac{2.85-3.0}{0.7}=-0.21$$

For Ali, 
$$z=\#ofSTDEVs=rac{77-80}{10}=-0.3$$





### Measure of spread | Z-Score



#### **Comparing Values from Different Data Sets**

For John, 
$$z=\#ofSTDEVs=rac{2.85-3.0}{0.7}=-0.21$$
 For Ali,  $z=\#ofSTDEVs=rac{77-80}{10}=-0.3$ 

John has the better GPA when compared to his school because his GPA is 0.21 standard deviations **below** his school's mean while Ali's GPA is 0.3 standard deviations **below** his school's mean.

John's z-score of –0.21 is higher than Ali's z-score of –0.3. For GPA, higher values are better, so we conclude that John has the better GPA when compared to his school.





T-Test: how significant the similarity between groups

T-Test: To find similarity between two groups based on Mean.

Paired T-Test: Independent Sample Unpaired T-Test:
Dependent
Sample





T-Test: To find similarity between two groups based on Mean.

#### What is T-Test?

The t test tells you how significant the differences between groups are; In other words it lets you know if those differences (measured in means/averages) could have happened by chance.

#### Example:

- ✓ Let's say you have a cold and you try a naturopathic remedy. Your cold lasts a couple of days.
- ✓ The next time you have a cold, you buy an over-the-counter pharmaceutical and the cold lasts a week.

#learnaiwithramisha

- ✓ You survey your friends and they all tell you that their colds were of a shorter duration (an average of 3 days) when they took the homeopathic remedy.
- ✓ What you *really* want to know is, are these results repeatable?

At test can tell you by comparing the means of the two groups and letting you know the probability of those results happening by chance.





T-Test: To find similarity between two groups based on Mean.

### Interpret the T-Test Value

- ❖A large t-score tells you that the groups are different.
- A small t-score tells you that the groups are similar.





T-Test: To find similarity between two groups based on Mean.

#### For example,

- > p value of 5% is 0.05.
- > Low p-values are good; They indicate your data did not occur by chance.
- For example, a p-value of .01 means there is only a 1% probability that the results from an experiment happened by chance.
- > In most cases, a p-value of 0.05 (5%) is accepted to mean the data is valid.







Null Hypothesis: The mean is not same for both sample and population

Alternate Hypothesis: The Mean is same for both sample and population

Significance Level: 5%







### Note: General procedure for Hypothesis tests

- 1. From the problem context, identify the parameter of interest.
- 2. State the null hypothesis, Ho.
- 3. Specify an appropriate alternative hypothesis, H<sub>1</sub>
- 4. Choose a significance level α.
- 5. Determine an appropriate test statistic.
- 6. State the rejection region for the statistic.
- Compute any necessary sample quantities, substitute these into the equation for the test statistic, and compute the value.
- 8. Conclusion: Decide whether or not Ho should be rejected and report that in the problem context.















```
Note 2: (i) For two-tailed test:

If |z| < 1.96 accept H<sub>o</sub> at 5% level of significance.

If |z| > 1.96 reject H<sub>o</sub> at 5% level of significance.

If |z| < 2.58 accept H<sub>o</sub> at 1% level of significance.

If |z| > 2.58 reject H<sub>o</sub> at 1% level of significance.

(ii) For single-tailed test: (Right or left)

If |z| < 1.645 accept H<sub>o</sub> at 5% level of significance.

If |z| > 1.645 reject H<sub>o</sub> at 5% level of significance.

If |z| < 2.33 accept H<sub>o</sub> at 1% level of significance.

If |z| > 2.33 reject H<sub>o</sub> at 1% level of significance.
```





















Test whether the average sales is the same in the 2 states at 1% level. Solution:

[A.U. M/J 2013]

Given:  $\bar{x}_1 = 2500$ ,  $s_1 = 400$ ,  $n_1 = 400$   $\bar{x}_2 = 2200$ ,  $s_2 = 550$ ,  $n_2 = 400$ 1. The parameter of interest is  $\mu_1$  and  $\mu_2$ , difference of mean

2.  $H_0: \mu_1 = \mu_2$  [No significant difference between state A and State B]

3.  $H_1: \mu_1 \neq \mu_2$ 4.  $\alpha = 0.01$ 5. The test statistic is  $Z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ 

6. Reject H<sub>0</sub> if 
$$|Z| > 2.58$$
 at 1% level.

7. Computation:
$$Z = \frac{2500 - 2200}{\sqrt{\frac{(400)^2}{400} + \frac{(550)^2}{400}}} = \frac{300}{\sqrt{400 + 756.25}}$$

$$= \frac{300}{34.003} = 8.82$$
Conclusion:
Here  $|Z| = 8.82 > 2.58$  So we reject H<sub>0</sub>:  $\mu_1 = \mu_2$  at 1% level of significance.

Hence the average sales within two states differ significantly.



### **ANAVO**



#### **Analysis of Variance**

One-Way Classification

→ One Independent Variable

Two-Way Classification

Two Independent Variable



### One Way Classification



One-Way Classification →One Independent Variable

### Working Procedure [One-way classification CRD] 1. Ho: There is no significant difference between the treatments. 2. H1: There is significant difference between the treatments. Step 1: Find N, the number of observations Step 2: Find T, the total value of all observations Step 3: Find $\frac{T^2}{N}$ , the correction factor Step 4: Calculate the total sum of squares. $TSS = \sum X_1^2 + \sum X_2^2 + ... - \frac{T^2}{N}$ Step 5 : Calculate the column sum of squares SSC = $\frac{(\Sigma X_1)^2}{N_1} + \frac{(\Sigma X_2)^2}{N_1} + \frac{(\Sigma X_3)^2}{N_1} + \dots - \frac{T^2}{N}$ Here N<sub>1</sub> is the number of elements in each column. SSE = TSS - SSC Step 6: Prepare the ANOVA table to calculate F-ratio. Step 7: Find the table value. Step 8 : Conclusion :



### One Way Classification





One-Way Classification → One Independent Variable

| Step 4 : TS                                       | 2057                                 | $\frac{0^2}{N_2} + \frac{(\Sigma Y_2)}{N_2}$ | $x_{3}^{2} + \Sigma X_{4}^{4} - X_{3}^{2}$ $x_{3}^{2} + \Sigma X_{4}^{4} - X_{3}^{2}$ $x_{3}^{2} + (\Sigma Y_{3}) - X_{2}^{2}$ $x_{4}^{2} + (\Sigma Y_{3}) - X_{2}^{2}$ $x_{4}^{2} + X_{4}^{2} - X_{4}^{2}$ $x_{5}^{2} + X_{4}^{2} - X_{4}^{2}$ | $\frac{r^2}{r} - \frac{T^2}{N}$                  | K a cach row            |
|---------------------------------------------------|--------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|
|                                                   |                                      | 5 + 256 + 65                                 | $\frac{51)^2}{4} - 1008.3$ $0.25 - 1008.3$                                                                                                                                                                                                      |                                                  |                         |
|                                                   | = 305.7                              | - 80.2 = 2                                   | 25.50                                                                                                                                                                                                                                           |                                                  |                         |
| Step 6 : Al                                       | = 305.7                              |                                              | Mean square                                                                                                                                                                                                                                     | Variance<br>ratio                                | Table value at 5% level |
| Step 6 : Al                                       | = 305.7<br>NOVA                      | - 80.2 = 2                                   | Mean                                                                                                                                                                                                                                            | ratio                                            | value at                |
| Step 6 : All<br>Source of<br>variation<br>between | = 305.7<br>NOVA<br>Sum of<br>squares | d.f.                                         | Mean square $MSR = \frac{SSR}{r-1}$ $= \frac{80.2}{2}$                                                                                                                                                                                          | $F_{H} = \frac{MSR}{MSE}$ $= \frac{40.1}{20.06}$ | value at<br>5% level    |



# One Way Classification





of the four brands of Lamps. [A.U Tvli M/J M

Ho: There is no significant difference between the four brands H1: There is a significant difference between the four brands.

Subtract 1600 and then divided by 10 we get

| X <sub>1</sub> | X <sub>2</sub><br>B | X <sub>3</sub> | X <sub>4</sub><br>D | Total | X <sub>1</sub> <sup>2</sup> | X22 | X <sub>3</sub> <sup>3</sup> |
|----------------|---------------------|----------------|---------------------|-------|-----------------------------|-----|-----------------------------|
| 10             | -2                  | -14            | -9 .                | -24   | 1                           | 4   | 196                         |
| 1.             | 4                   | -5,            | -8.                 | -8    | 1                           | 16  | 25                          |
| 5              | 4                   | 0              | -7.                 | 2     | 25                          | 16  | 0                           |
| 8              | 10                  | 2              | -3 -                | 17    | 64                          | 100 | 4                           |
| 10             | 15                  | 4              | 0 -                 | 29    | 100                         | 225 | 16                          |
| 12             | -                   | 6,             | 8 -                 | 26    | 144                         | -   | 36                          |
| 20             | -                   | 14,            | 144                 | 34    | 400                         | -   | 196                         |
| -              | -                   | 22             | -                   | 22    |                             | -   | 484                         |
| 57             | 31                  | 29             | -19                 | 98    | 735                         | 361 | 957                         |

One-Way Classification →One Independent Variable

Step 7 : Conclusion : Cal 
$$F_c$$
 < Table  $F_c$    
  $\therefore$  So we accept  $H_0$ 

| Error                  |                            |                               | = 150.75                                                  | = 2.21                   |                                 |
|------------------------|----------------------------|-------------------------------|-----------------------------------------------------------|--------------------------|---------------------------------|
| Between<br>columns     | SSC<br>= 452.25            | C - 1<br>= 4 - 1<br>= 3       | $MSC = \frac{SSC}{C-1}$ $= \frac{452.25}{3}$              | $= \frac{150.75}{68.11}$ | F <sub>C</sub> (3,22)<br>= 3.05 |
| Source of<br>Variation | Sum of squares             | d.f.                          | Mean<br>squre                                             | Variance<br>Ratio        | Table<br>value 5%<br>level      |
| tep 6 : AN             |                            | 51 - 452.25                   | = 1498.36                                                 |                          |                                 |
| SS                     | SE = TSS -                 | - SSC                         |                                                           |                          |                                 |
|                        |                            |                               | 105.13 + 60.1                                             |                          | = 452.25                        |
|                        | $=\frac{3249}{7}$          | $+\frac{961}{5}+\frac{84}{8}$ | $\frac{1}{6} + \frac{361}{6} - 36$                        | 9.39                     |                                 |
|                        | $=\frac{(37)^{4}}{7}$      | + (31) +                      | $\frac{(29)^2}{8} + \frac{(-19)^2}{6}$                    | - 369.39                 |                                 |
|                        |                            |                               | elements in                                               |                          | ctive columns                   |
|                        |                            |                               |                                                           | -                        | 12.41                           |
| tep 5 : SS             | $C = \frac{(\Sigma X)}{N}$ | $+\frac{(\Sigma X)^2}{2}$     | $(\frac{(\Sigma X_3)^2}{1} + \frac{(\Sigma X_3)^2}{N_1})$ | $(\Sigma X_4)^2$         | ) <sup>2</sup> T <sup>2</sup>   |
|                        | = 1950.                    |                               |                                                           | 307.33                   |                                 |
|                        |                            |                               | 57 + 267 -                                                |                          |                                 |
| Step 4 : TS            | $SS = \Sigma X_1^2$        | + Σ X <sub>2</sub> +          | $\Sigma X_3^2 + \Sigma$                                   | $X_d^2 = \frac{T^2}{}$   |                                 |
| Step 3 : C.            | $F = \frac{T^*}{N}$        | $=\frac{9604}{26}=$           | 369,39                                                    |                          |                                 |
| step 2 : T             | = 98                       |                               |                                                           |                          | 2.15                            |







Two-Way Classification

Two Independent Variable





# Two-Way Classification Two Independent Variable

Step 1: N = 25  
Step 2: T = 8  
Step 3: 
$$\frac{T^2}{N} = \frac{6^4}{25} = 2.56$$
  
Step 4: TSS =  $\sum X_1^2 + \sum X_2^2 + \sum X_3^2 + \sum X_4^2 + \sum X_5^2 - \frac{T^2}{N}$   
= 190 + 31 + 139 + 12 + 102 - 2.56  
= 474 - 2.56 = 471.44  
Step 5: SSC =  $\frac{(\sum X_1)^2}{N_1} + \frac{(\sum X_2)^2}{N_1} + \frac{(\sum X_3)^2}{N_1} + \frac{(\sum X_4)^2}{N_1} + \frac{(\sum X_5)^2}{N_1} + \frac{(\sum X_5)^2}{N_1} = \frac{T^2}{N}$   
[N<sub>1</sub> = Number of elements in each column  
=  $\frac{(30)^2}{5} + \frac{(11)^2}{5} + \frac{(23)^2}{5} + \frac{(4)^2}{5} + \frac{(22)^2}{5} - \frac{64}{25}$   
= 410 - 2.56 = 407.44  
Step 6: SSR =  $\frac{(\sum Y_1)^2}{N_2} + \frac{(\sum Y_2)^2}{N_2} + \frac{(\sum Y_3)^2}{N_2} + \frac{(\sum Y_4)^2}{N_2} + \frac{(\sum Y_5)^2}{N_2} + \frac{T^2}{N_2}$   
[N<sub>2</sub> = Number of elements in each row elements elements in each row elements eleme







| Source of<br>Variation | SS              | DF                | MSS                                                           | VR                                                          | Table value at 5% level          |
|------------------------|-----------------|-------------------|---------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|
| Between                | N Description   | r-1<br>=5-1<br>=4 | $MSR = \frac{SSR}{r - 1}$ $\frac{27.44}{4} = 6.86$            | $F_{R} = \frac{MSR}{MSE}$ $= \frac{6.86}{2.28}$ $= 3.01$    | F <sub>B</sub> (4,16)<br>= 3.01  |
| Between<br>columns     | SSC<br>= 407.44 |                   | $MSC = \frac{SSC}{C - 1} = \frac{407.44}{2} = 101.86$         | $F_{c} = \frac{MSC}{MSE}$ $= \frac{101.86}{2.28}$ $= 44.67$ | F <sub>c</sub> (4, 16)<br>= 3.01 |
| Error                  | SSE<br>= 36.56  | N-c-r+1<br>= 16   | $MSE = \frac{SSE}{N - c - r + 1}$ $= \frac{36.56}{16} = 2.28$ |                                                             |                                  |
| Total                  | TSS<br>= 471.44 | 24                |                                                               |                                                             |                                  |

# Two-Way Classification → Two Independent Variable





Two-Way Classification

→ Two Independent Variable

Example:2

The following table gives monthly sales (in thousand rupees) of a certain firm in the three states by its four salesmen.

|        | 74000 | Sale | smen |    |
|--------|-------|------|------|----|
| States | I     | II   | III  | IV |
| A      | 6     | 5    | 3    | 8  |
| В      | 8     | 9    | 6    | 5  |
| C      | 10    | 7    | 8    | 7  |

| the sa         | ales by                       | the in                                               | sales                     |                          |                         | gnifican<br>(ii) the<br>states.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | re is r | to sign                     | ificant                     | n  |
|----------------|-------------------------------|------------------------------------------------------|---------------------------|--------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------|-----------------------------|----|
|                |                               |                                                      |                           |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                             |                             |    |
|                | Signific                      | cant di                                              | fferenc                   |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                             |                             |    |
|                |                               | 1                                                    | -                         | smen                     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                             |                             | -  |
| Sta            | ates                          | I<br>(X <sub>1</sub> )                               | II<br>(X <sub>2</sub> )   | III<br>(X <sub>3</sub> ) | IV<br>(X <sub>4</sub> ) | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $X_1^2$ | X <sub>2</sub> <sup>2</sup> | X <sub>3</sub> <sup>2</sup> | -  |
| Y <sub>1</sub> | A                             | 6                                                    | 5                         | 3                        | 8                       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36      | 25                          | 9                           | -  |
| $Y_2$          | В                             | 8                                                    | 9                         | 6                        | 5                       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64      | 81                          | 36                          | 13 |
| Y <sub>3</sub> | C                             | 10                                                   | 7                         | 8                        | 7                       | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100     | 49                          | 64                          | 1  |
| То             | tal                           | 24                                                   | 21                        | 17                       | 20                      | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200     | 155                         | 109                         | H  |
| 3              | : N =                         |                                                      |                           |                          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                             | 102                         |    |
| ep 2           | $: T = \frac{T^2}{N}$ $: TSS$ | $= 82$ $= \frac{(82)}{12}$ $= \Sigma \Sigma$ $= 200$ | $X_1^2 + \Sigma$ $0 + 15$ | $X_2^2 + 5 + 10$         | $\sum X_3^2 - 9 + 13$   | $+ \sum X_4^2 \times 8 - 560 \times 10^{-10} $ | 0.333   |                             | 667                         |    |





Two-Way Classification

→ Two Independent Variable

$$= \frac{1}{3} [576 + 441 + 289 + 400] - 560.333 = 8.334$$

$$Step 6: SSR = \frac{(\Sigma Y_1)^2}{N_2} + \frac{(\Sigma Y_2)^2}{N_2} + \frac{(\Sigma Y_3)^2}{N_2} - \frac{T^2}{N}$$

$$[N_2 = \text{Number of elements in each row}]$$

$$= \frac{1}{4} [(22)^2 + (28)^2 + (32)^2] - \frac{T^2}{N}$$

$$= 573 - 56.333 = 12.667$$

$$SSE = TSS - SSC - SSR$$

$$= 41.667 - 8.334 - 12.667 = 20.666$$





