Columbia University: CU Later Team Reference Document

Kevin Yang, Innokentiy Kaurov, Eric Yuang Shao

May 21th 2024

Contents Suffix Array and LCP array Aho Corasick Trie **Templates** Li-Chao Segment Tree 15 Kevin's template Persistent Segment Tree 15 Kevin's Template Extended Miscellaneous 16 Geometry 16 Measuring Execution Time Strings Setting Fixed D.P. Precision Manacher's algorithm Common Bugs and General Advice Flows $O(N^2M)$, on unit networks $O(N^{1/2}M)$ MCMF - maximize flow, then minimize its cost. O(Fmn). Graphs Kuhn's algorithm for bipartite matching . . . Hungarian algorithm for Assignment Problem Dijkstra's Algorithm Eulerian Cycle DFS SCC and 2-SAT Finding Bridges HLD on Edges DFS Centroid Decomposition Math Binary exponentiation Matrix Exponentiation: $O(n^3 \log b)$ Extended Euclidean Algorithm Gaussian Elimination Calculating k-th term of a linear recurrence . 10 MIT's FFT/NTT, Polynomial mod/log/exp 10 **Data Structures** 1212 Lazy Propagation SegTree

Templates $vi d4v = \{0, 1, 0, -1\};$ b = p2.x - p1.x;vi $d8x = \{1, 0, -1, 0, 1, 1, -1, -1\};$ c = -a * p1.x - b * p1.y;vi d8y = $\{0, 1, 0, -1, 1, -1, 1, -1\}$; Ken's template mt19937 47 }; #include <bits/stdc++.h> T det(const T& a11, const T& a12, const T& a21, const T& using namespace std; → a22){ #define all(v) (v).begin(), (v).end()Geometry return a11 * a22 - a12 * a21; typedef long long 11: typedef long double ld; template<typename T> 52 #define pb push back • Basic stuff T sq(const T& a){ #define sz(x) (int)(x).size()return a * a; #define fi first template<typename T> #define se second struct TPoint{ template<typename T> #define endl '\n' T x, v; T smul(const TPoint<T>& a, const TPoint<T>& b){ int id: return a.x * b.x + a.y * b.y; static constexpr T eps = static_cast<T>(1e-9); Kevin's template 59 TPoint(): x(0), y(0), id(-1) {} template<typename T> 60 TPoint(const $T\& x_-$, const $T\& y_-$) : $x(x_-)$, $y(y_-)$, // paste Kaurov's Template, minus last line T vmul(const TPoint<T>& a, const TPoint<T>& b){ id(-1) {} return det(a.x, a.y, b.x, b.y); typedef vector<int> vi; TPoint(const T& x_, const T& y_, const int id_) : typedef vector<ll> vll; 63 \rightarrow x(x₋), y(y₋), id(id₋) {} typedef pair<int, int> pii; template<typename T> typedef pair<11, 11> pll; bool parallel(const TLine<T>& 11, const TLine<T>& 12){ TPoint operator + (const TPoint& rhs) const { 10 const char nl = '\n'; return abs(vmul(TPoint<T>(l1.a, l1.b), TPoint<T>(l2.a, return TPoint(x + rhs.x, y + rhs.y); 11 #define form(i, n) for (int i = 0; i < int(n); i++) 12.b))) <= TPoint<T>::eps; 12 ll k, n, m, u, v, w, x, y, z; 67 TPoint operator - (const TPoint& rhs) const { 13 template<typename T> string s, t; 68 return TPoint(x - rhs.x, y - rhs.y); 14 bool equivalent(const TLine<T>& 11, const TLine<T>& 12){ 15 bool multiTest = 1; return parallel(11, 12) && TPoint operator * (const T& rhs) const { 16 void solve(int tt){ abs(det(11.b, 11.c, 12.b, 12.c)) <= TPoint<T>::eps && return TPoint(x * rhs, y * rhs); 17 abs(det(11.a, 11.c, 12.a, 12.c)) <= TPoint<T>::eps; 13 18 14 73 TPoint operator / (const T& rhs) const { 19 int main(){ return TPoint(x / rhs, y / rhs); 20 ios::sync with stdio(0);cin.tie(0);cout.tie(0); Intersection 16 21 cout<<fixed<< setprecision(14);</pre> 17 22 TPoint ort() const { template<typename T> return TPoint(-y, x); 23 TPoint<T> intersection(const TLine<T>& 11, const int t = 1;19 24 \hookrightarrow TLine<T>& 12){ if (multiTest) cin >> t; T abs2() const { 25 return TPoint<T>(forn(ii, t) solve(ii); 21 return x * x + y * y; 26 det(-11.c, 11.b, -12.c, 12.b) / det(11.a, 11.b, 27 28 det(11.a, -11.c, 12.a, -12.c) / det(11.a, 11.b, template<typename T> Kevin's Template Extended \rightarrow 12.a, 12.b) bool operator< (TPoint<T>& A, TPoint<T>& B){ 30); return make_pair(A.x, A.y) < make_pair(B.x, B.y); • to type after the start of the contest 31 32 template<typename T> template<typename T> typedef pair < double, double > pdd; 33 int sign(const T& x){ const ld PI = acosl(-1); bool operator== (TPoint<T>& A, TPoint<T>& B){ 34 if (abs(x) <= TPoint<T>::eps) return 0; return abs(A.x - B.x) <= TPoint<T>::eps && abs(A.y - 11 const $11 \mod 7 = 1e9 + 7$; return x > 0? +1 : -1: B.v) <= TPoint<T>::eps; const $11 \mod 9 = 998244353$; 12 const 11 INF = 2*1024*1024*1023; 36 #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt") template<typename T> • Area struct TLine{ #include <ext/pb ds/assoc container.hpp> #include <ext/pb ds/tree policy.hpp> T a, b, c; template<typename T> TLine(): a(0), b(0), c(0) {} using namespace __gnu_pbds; T area(const vector<TPoint<T>>& pts){ TLine(const T& a_, const T& b_, const T& c_) : a(a_),3 template<class T> using ordered_set = tree<T, null_type4</pre> int n = sz(pts); less<T>, rb_tree_tag, \rightarrow b(b), c(c) {} T ans = 0; TLine(const TPoint<T>& p1, const TPoint<T>& p2){ for (int i = 0; i < n; i++){ tree_order_statistics_node_update>; $vi d4x = \{1, 0, -1, 0\};$ a = p1.y - p2.y;ans += vmul(pts[i], pts[(i + 1) % n]);

```
rotate(pts.begin(), min_element(all(pts)), pts.end());
       return abs(ans) / 2;
                                                                  template<typename T>
                                                                  T dist ps(const TPoint<T>& P. const TPoint<T>& A. const
                                                                                                                                    • in convex poly:
     template<typename T>
                                                                   → TPoint<T>& B){
    T dist_pp(const TPoint<T>& a, const TPoint<T>& b){
                                                                    auto H = projection(P, TLine<T>(A, B));
                                                                                                                                // 0 - Outside, 1 - Exclusively Inside, 2 - On the
      return sqrt(sq(a.x - b.x) + sq(a.y - b.y));
                                                                    if (is_on_seg(H, A, B)) return dist_pp(P, H);
                                                                                                                                 \hookrightarrow Border
                                                                    else return min(dist_pp(P, A), dist_pp(P, B));
13
                                                              43
                                                                                                                                template<typename T>
     template<typename T>
                                                              44
                                                                                                                                int in_convex_poly(TPoint<T>& p, vector<TPoint<T>>&
     TLine<T> perp_line(const TLine<T>& 1, const TPoint<T>&
                                                                      acw
                                                                                                                                 int n = sz(pts);
      T \text{ na} = -1.b, \text{ nb} = 1.a, \text{ nc} = - \text{ na} * \text{ p.x} - \text{ nb} * \text{ p.y};
                                                                                                                                  if (!n) return 0;
       return TLine<T>(na, nb, nc);
                                                                  template<typename T>
17
                                                                                                                                  if (n <= 2) return is_on_seg(p, pts[0], pts.back());</pre>
                                                                  bool acw(const TPoint<T>& A, const TPoint<T>& B){
   }
                                                                                                                                  int 1 = 1, r = n - 1:
                                                                    T \text{ mul} = \text{vmul}(A, B):
                                                                                                                                  while (r - 1 > 1){
        • Projection
                                                              4
                                                                    return mul > 0 || abs(mul) <= TPoint<T>::eps;
                                                                                                                                    int mid = (1 + r) / 2;
                                                                                                                                    if (acw(pts[mid] - pts[0], p - pts[0])) 1 = mid;
                                                                                                                           10
    template<typename T>
                                                                                                                                    else r = mid:
                                                                                                                           11
    TPoint<T> projection(const TPoint<T>& p, const TLine<T>&
                                                                      • cw
                                                                                                                                  if (!in_triangle(p, pts[0], pts[1], pts[1 + 1]))
                                                                                                                           13
       return intersection(1, perp_line(1, p));
                                                                  template<typename T>

    return 0:

                                                                  bool cw(const TPoint<T>& A, const TPoint<T>& B){
                                                                                                                                 if (is_on_seg(p, pts[l], pts[l + 1]) ||
     template<tvpename T>
                                                                    T \text{ mul} = \text{vmul}(A, B):
                                                                                                                                    is_on_seg(p, pts[0], pts.back()) ||
                                                                                                                           15
                                                                    return mul < 0 || abs(mul) <= TPoint<T>::eps;
     T dist pl(const TPoint<T>& p, const TLine<T>& 1){
                                                                                                                                    is_on_seg(p, pts[0], pts[1])
                                                                                                                           16
       return dist_pp(p, projection(p, 1));
                                                                                                                                 ) return 2:
                                                                                                                                  return 1;
                                                                      • Convex Hull
                                                                                                                           18
     template<typename T>
     struct TRav{
                                                                  template<typename T>
      TLine<T> 1;
11
                                                                                                                                    • in simple poly
                                                                  vector<TPoint<T>> convex_hull(vector<TPoint<T>> pts){
      TPoint<T> start, dirvec;
      TRay() : 1(), start(), dirvec() {}
                                                                    sort(all(pts)):
13
                                                                                                                                // 0 - Outside, 1 - Exclusively Inside, 2 - On the
                                                                    pts.erase(unique(all(pts)), pts.end());
      TRay(const TPoint<T>& p1, const TPoint<T>& p2){
14

→ Border

        1 = TLine < T > (p1, p2);
                                                                    vector<TPoint<T>> up, down;
                                                                                                                                template<typename T>
                                                                    for (auto p : pts){
         start = p1, dirvec = p2 - p1;
16
                                                                                                                                int in_simple_poly(TPoint<T> p, vector<TPoint<T>>& pts){
                                                                      while (sz(up) > 1 \&\& acw(up.end()[-1] -
      }
                                                                                                                                 int n = sz(pts);
                                                                   \rightarrow up.end()[-2], p - up.end()[-2])) up.pop_back();
                                                                                                                                  bool res = 0:
                                                                      while (sz(down) > 1 && cw(down.end()[-1] -
     template<typename T>
19
                                                                                                                                  for (int i = 0; i < n; i++){
                                                                   \rightarrow down.end()[-2], p - down.end()[-2]))
     bool is_on_line(const TPoint<T>& p, const TLine<T>& 1){
                                                                                                                                    auto a = pts[i], b = pts[(i + 1) \% n];
                                                                      down.pop_back();
      return abs(1.a * p.x + 1.b * p.y + 1.c) <=
                                                                                                                                    if (is_on_seg(p, a, b)) return 2;
                                                                      up.pb(p), down.pb(p);
     → TPoint<T>::eps;
                                                                                                                                    if (((a.y > p.y) - (b.y > p.y)) * vmul(b - p, a - p)
    }
                                                              10
22

→ > TPoint<T>::eps){
                                                                    for (int i = sz(up) - 2; i >= 1; i--) down.pb(up[i]);
     template<typename T>
                                                             11
                                                                                                                                      res ^= 1;
     bool is_on_ray(const TPoint<T>& p, const TRay<T>& r){ 12
                                                                    return down;
      if (is_on_line(p, r.l)){
                                                                                                                           12
         return sign(smul(r.dirvec, TPoint<T>(p - r.start)))
                                                                                                                           13
                                                                                                                                  return res;
                                                                      • in triangle
     \Rightarrow != -1:
                                                                                                                           14
      }
27
                                                                  template<typename T>
                                                                                                                                    • minkowski rotate
      else return false;
28
                                                                  bool in triangle(TPoint<T>& P. TPoint<T>& A. TPoint<T>&
                                                                   \rightarrow B, TPoint<T>& C){
                                                                                                                                template<typename T>
     template<typename T>
                                                                    if (is_on_seg(P, A, B) || is_on_seg(P, B, C) ||
                                                                                                                                void minkowski rotate(vector<TPoint<T>>& P){
     bool is on seg(const TPoint<T>& P, const TPoint<T>& A, 3

→ is on seg(P, C, A)) return true:

                                                                                                                                  int pos = 0;

    const TPoint<T>& B){
                                                                    return cw(P - A, B - A) == cw(P - B, C - B) &&
                                                                                                                                  for (int i = 1; i < sz(P); i++){
      return is_on_ray(P, TRay<T>(A, B)) && is_on_ray(P,
                                                                    cw(P - A, B - A) == cw(P - C, A - C):
                                                                                                                                    if (abs(P[i].y - P[pos].y) <= TPoint<T>::eps){
     \rightarrow TRav<T>(B, A)):
                                                                                                                                      if (P[i].x < P[pos].x) pos = i;
                                                                  }
                                                              6
    template<typename T>
                                                                                                                                    else if (P[i].y < P[pos].y) pos = i;</pre>
                                                                      • prep convex poly
    T dist_pr(const TPoint<T>& P, const TRay<T>& R){
      auto H = projection(P, R.1);
                                                                  template<tvpename T>
                                                                                                                                  rotate(P.begin(), P.begin() + pos, P.end());
      return is_on_ray(H, R)? dist_pp(P, H) : dist_pp(P,
                                                                  void prep_convex_poly(vector<TPoint<T>>& pts){
     ⇔ R.start);
```

```
29
 1 // P and Q are strictly convex, points given in
     31
    template<typename T>
    vector<TPoint<T>> minkowski sum(vector<TPoint<T>> P.

    vector<TPoint<T>> Q){
      minkowski_rotate(P);
      minkowski_rotate(Q);
                                                            36
      P.pb(P[0]);
                                                            37
      Q.pb(Q[0]);
      vector<TPoint<T>> ans;
      int i = 0, j = 0;
      while (i < sz(P) - 1 || j < sz(Q) - 1){
10
        ans.pb(P[i] + Q[i]);
        T curmul:
12
        if (i == sz(P) - 1) curmul = -1:
13
        else if (j == sz(Q) - 1) curmul = +1;
        else curmul = vmul(P[i + 1] - P[i], O[i + 1] -
        if (abs(curmul) < TPoint<T>::eps || curmul > 0) i++6
16
        if (abs(curmul) < TPoint<T>::eps || curmul < 0) j++?
17
18
      return ans:
19
20
    using Point = TPoint<ll>; using Line = TLine<ll>; using<sup>1</sup>

    Ray = TRay<11>; const ld PI = acos(-1);

                                                            13
                                                           14
                                                            15
    Strings
                                                            16
                                                           17
    vector<int> prefix function(string s){
                                                            18
      int n = sz(s);
                                                            19
      vector<int> pi(n);
                                                            20
      for (int i = 1; i < n; i++){
        int k = pi[i - 1];
        while (k > 0 \&\& s[i] != s[k]){
          k = pi[k - 1];
        pi[i] = k + (s[i] == s[k]);
10
      return pi;
11
12
     vector<int> kmp(string s, string k){
      string st = k + "#" + s:
      vector<int> res;
15
      auto pi = pf(st);
      for (int i = 0; i < sz(st); i++){
17
        if (pi[i] == sz(k)){
18
          res.pb(i - 2 * sz(k));
19
                                                            9
20
21
                                                            10
      return res;
22
                                                            11
23
                                                           12
    vector<int> z_function(string s){
                                                            13
      int n = sz(s):
                                                            14
25
      vector<int> z(n);
                                                            15
      int 1 = 0, r = 0;
                                                            16
```

• minkowski sum

```
for (int i = 1; i < n; i++){
                                                       17
    if (r >= i) z[i] = min(z[i-1], r-i+1);
                                                        18
    while (i + z[i] < n \&\& s[z[i]] == s[i + z[i]])
                                                       19
      z[i]++;
                                                       20
                                                       21
    if (i + z[i] - 1 > r){
                                                       22
      1 = i, r = i + z[i] - 1;
                                                       23
                                                       24
 }
  return z;
                                                       26
                                                       27
                                                        29
Manacher's algorithm
                                                        30
string longest_palindrome(string& s) {
  // init "abc" -> "^$a#b#c$"
                                                        33
  vector<char> t{'^', '#'};
  for (char c : s) t.push_back(c), t.push_back('#');
  t.push back('$'):
  // manacher
  int n = t.size(), r = 0, c = 0;
  vector<int> p(n, 0):
  for (int i = 1; i < n - 1; i++) {
    if (i < r + c) p[i] = min(p[2 * c - i], r + c - i);
    while (t[i + p[i] + 1] == t[i - p[i] - 1]) p[i] ++;
    if (i + p[i] > r + c) r = p[i], c = i;
 }
    // s[i] \rightarrow p[2 * i + 2] (even), p[2 * i + 2] (odd) \frac{1}{45}
  // output answer
  int index = 0:
  for (int i = 0; i < n; i++)
    if (p[index] < p[i]) index = i;</pre>
  return s.substr((index - p[index]) / 2, p[index]);
                                                       50
                                                       51
Flows
                                                        52
O(N^2M), on unit networks O(N^{1/2}M)
                                                        54
                                                        55
struct FlowEdge {
                                                        56
    int v, u;
    11 \text{ cap. flow} = 0:
                                                        58
    FlowEdge(int v, int u, ll cap) : v(v), u(u),

    cap(cap) {}

};
                                                        61
struct Dinic {
                                                        62
    const ll flow inf = 1e18;
    vector<FlowEdge> edges;
                                                        64
    vector<vector<int>> adj;
                                                        65
    int n, m = 0;
    int s, t;
                                                        67
    vector<int> level, ptr;
    queue<int> q;
    Dinic(int n, int s, int t) : n(n), s(s), t(t) {
                                                        70
        adi.resize(n):
        level.resize(n):
```

```
ptr.resize(n);
   void add edge(int v. int u. 11 cap) {
       edges.emplace back(v, u, cap);
       edges.emplace_back(u, v, 0);
      adj[v].push_back(m);
       adj[u].push back(m + 1);
      m += 2:
  }
   bool bfs() {
      while (!q.empty()) {
          int v = q.front();
          q.pop();
          for (int id : adi[v]) {
               if (edges[id].cap - edges[id].flow < 1)</pre>
                   continue:
               if (level[edges[id].u] != -1)
                   continue;
              level[edges[id].u] = level[v] + 1;
              q.push(edges[id].u);
          }
      return level[t] != -1;
  11 dfs(int v, 11 pushed) {
       if (pushed == 0)
           return 0:
       if (v == t)
           return pushed:
      for (int& cid = ptr[v]; cid <</pre>
int id = adi[v][cid];
          int u = edges[id].u;
          if (level[v] + 1 != level[u] ||

    edges[id].cap - edges[id].flow < 1)
</pre>
              continue;
          11 tr = dfs(u, min(pushed, edges[id].cap -

    edges[id].flow));

          if (tr == 0)
              continue:
           edges[id].flow += tr;
           edges[id ^ 1].flow -= tr;
           return tr:
      return 0;
  11 flow() {
      11 f = 0:
      while (true) {
          fill(level.begin(), level.end(), -1);
          level[s] = 0;
           q.push(s);
          if (!bfs())
              break:
           fill(ptr.begin(), ptr.end(), 0);
           while (ll pushed = dfs(s, flow_inf)) {
              f += pushed;
```

```
44
             return f;
                                                              45
    };
75
    // To recover flow through original edges: iterate over48

→ even indices in edges.

    MCMF – maximize flow, then minimize
    its cost. O(Fmn).
     #include <ext/pb_ds/priority_queue.hpp>
                                                              56
     template <typename T, typename C>
                                                              57
     class MCMF {
                                                              58
     public:
                                                              59
        static constexpr T eps = (T) 1e-9;
                                                              60
                                                              61
        struct edge {
                                                              62
          int from;
                                                              63
          int to;
                                                              64
          T c:
10
         Tf;
11
                                                              66
         C cost:
12
                                                              67
13
14
                                                              69
       int n:
15
                                                              70
16
        vector<vector<int>> g;
       vector<edge> edges;
17
                                                             71
       vector<C> d:
18
                                                              72
        vector<C> pot;
19
        __gnu_pbds::priority_queue<pair<C, int>> q;
20
        vector<typename decltype(q)::point_iterator> its;
21
22
        const C INF_C = numeric_limits<C>::max() / 2;
23
                                                              77
24
       explicit MCMF(int n_) : n(n_), g(n), d(n), pot(n, 0),
25
     \rightarrow its(n), pe(n) {}
26
       int add(int from, int to, T forward_cap, C edge_cost,
27
     \hookrightarrow T backward cap = 0) {
          assert(0 <= from && from < n && 0 <= to && to < n)
28
          assert(forward_cap >= 0 && backward_cap >= 0);
                                                              85
          int id = static cast<int>(edges.size());
30
                                                              86
          g[from].push_back(id);
31
          edges.push_back({from, to, forward_cap, 0,
                                                              88

    edge cost});

          g[to].push_back(id + 1);
33
                                                              90
          edges.push_back({to, from, backward_cap, 0,
                                                              91
         -edge cost});
                                                              92
          return id;
35
                                                              93
36
                                                              94
37
                                                              95
        void expath(int st) {
38
                                                              96
          fill(d.begin(), d.end(), INF_C);
39
                                                              97
          g.clear():
40
                                                              98
          fill(its.begin(), its.end(), q.end());
41
                                                              99
          its[st] = q.push({pot[st], st});
42
                                                             100
          d[st] = 0:
```

```
while (!q.empty()) {
      int i = q.top().second;
                                                       102
      g.pop():
      its[i] = q.end();
                                                       104
      for (int id : g[i]) {
                                                       105
        const edge &e = edges[id];
        int j = e.to;
        if (e.c - e.f > eps \&\& d[i] + e.cost < d[j]) 1/68
          d[j] = d[i] + e.cost;
          pe[j] = id;
                                                       110
          if (its[j] == q.end()) {
            its[j] = q.push({pot[j] - d[j], j});
                                                       113
            q.modify(its[j], {pot[j] - d[j], j});
                                                       116
     }
                                                       117
    swap(d, pot);
                                                       119
                                                       120
                                                       121
  pair<T, C> max_flow(int st, int fin) {
   T flow = 0;
                                                       123
    C cost = 0:
                                                       124
    bool ok = true;
    for (auto& e : edges) {
                                                       126
      if (e.c - e.f > eps && e.cost + pot[e.from] -
                                                       127
\rightarrow pot[e.to] < 0) {
        ok = false:
                                                       129
        break;
     }
                                                       131
    if (ok) {
                                                       132
      expath(st):
    } else {
                                                       134
      vector<int> deg(n, 0);
      for (int i = 0; i < n; i++) {
        for (int eid : g[i]) {
                                                       137
          auto& e = edges[eid];
                                                       138
          if (e.c - e.f > eps) {
                                                       139
            deg[e.to] += 1;
                                                       140
          }
                                                       141
        }
                                                       142
                                                       143
      vector<int> que;
                                                       144
      for (int i = 0; i < n; i++) {
                                                       145
        if (deg[i] == 0) {
          que.push_back(i);
                                                       147
                                                       148
      for (int b = 0; b < (int) que.size(); b++) {</pre>
                                                      150
        for (int eid : g[que[b]]) {
                                                       151
          auto& e = edges[eid];
          if (e.c - e.f > eps) {
                                                       153
            deg[e.to] -= 1;
            if (deg[e.to] == 0) {
                                                       155
              que.push_back(e.to);
                                                       156
```

```
}
      fill(pot.begin(), pot.end(), INF_C);
      pot[st] = 0;
      if (static_cast<int>(que.size()) == n) {
        for (int v : que) {
          if (pot[v] < INF_C) {</pre>
            for (int eid : g[v]) {
              auto& e = edges[eid];
              if (e.c - e.f > eps) {
                if (pot[v] + e.cost < pot[e.to]) {</pre>
                  pot[e.to] = pot[v] + e.cost;
                  pe[e.to] = eid;
             }
            }
      } else {
        que.assign(1, st);
        vector<bool> in_queue(n, false);
        in queue[st] = true;
        for (int b = 0; b < (int) que.size(); b++) {</pre>
          int i = que[b];
          in_queue[i] = false;
          for (int id : g[i]) {
            const edge &e = edges[id];
            if (e.c - e.f > eps && pot[i] + e.cost <

→ pot[e.to]) {
              pot[e.to] = pot[i] + e.cost;
              pe[e.to] = id:
              if (!in queue[e.to]) {
                que.push_back(e.to);
                in_queue[e.to] = true;
            }
         }
     }
    while (pot[fin] < INF_C) {</pre>
      T push = numeric_limits<T>::max();
      int v = fin;
      while (v != st) {
        const edge &e = edges[pe[v]];
        push = min(push, e.c - e.f);
        v = e.from:
      v = fin:
      while (v != st) {
        edge &e = edges[pe[v]];
        e.f += push;
        edge &back = edges[pe[v] ^ 1];
        back.f -= push;
        v = e.from;
      }
      flow += push;
```

Graphs

Kuhn's algorithm for bipartite matching

```
The graph is split into 2 halves of n1 and n2 vertices.
    Complexity: O(n1 * m). Usually runs much faster. MUCH
     const int N = 305:
    vector<int> g[N]; // Stores edges from left half to
    bool used[N]; // Stores if vertex from left half is
    int mt[N]; // For every vertex in right half, stores to 7

→ which vertex in left half it's matched (-1 if not)

     \rightarrow matched).
                                                             11
     bool try dfs(int v){
11
                                                             12
      if (used[v]) return false;
      used[v] = 1;
13
                                                             14
      for (auto u : g[v]){
                                                             15
        if (mt[u] == -1 || try_dfs(mt[u])){
                                                              16
          mt[u] = v;
16
                                                             17
          return true;
                                                              18
18
                                                              19
      }
19
                                                             20
      return false:
20
                                                             21
21
                                                             22
                                                             23
    int main(){
                                                             24
24
      for (int i = 1; i <= n2; i++) mt[i] = -1;
                                                             25
                                                             26
       for (int i = 1; i <= n1; i++) used[i] = 0;
                                                             27
       for (int i = 1; i <= n1; i++){
27
                                                             28
        if (try_dfs(i)){
          for (int j = 1; j \le n1; j++) used[j] = 0;
                                                             30
30
                                                             31
      }
31
       vector<pair<int, int>> ans;
32
      for (int i = 1; i <= n2; i++){
                                                             33
         if (mt[i] != -1) ans.pb({mt[i], i});
35
```

Hungarian algorithm for Assignment Problem

• Given a 1-indexed $(n \times m)$ matrix A, select a number in each row such that each column has at most 1 number selected, and the sum of the selected numbers is minimized.

```
int INF = 1e9; // constant greater than any number in 1
vector<int> u(n+1), v(m+1), p(m+1), way(m+1);
for (int i=1; i<=n; ++i) {
    p[0] = i;
    int j0 = 0;
    vector<int> minv (m+1, INF);
    vector<bool> used (m+1, false);
        used[j0] = true;
        int i0 = p[j0], delta = INF, j1;
        for (int j=1; j<=m; ++j)
            if (!used[j]) {
                int cur = A[i0][j]-u[i0]-v[j];
                if (cur < minv[j])</pre>
                    minv[j] = cur, way[j] = j0;
                if (minv[j] < delta)</pre>
                    delta = minv[j], j1 = j;
            }
        for (int j=0; j<=m; ++j)
            if (used[i])
                u[p[j]] += delta, v[j] -= delta;
                minv[i] -= delta:
                                                        10
        i0 = i1;
                                                        13
    } while (p[j0] != 0);
                                                        14
        int j1 = way[j0];
        p[j0] = p[j1];
                                                        17
        j0 = j1;
                                                        18
    } while (j0);
                                                        20
vector<int> ans (n+1); // ans[i] stores the column
                                                        21
\hookrightarrow selected for row i
for (int j=1; j<=m; ++j)
                                                        23
    ans[p[j]] = j;
int cost = -v[0]; // the total cost of the matching
```

Dijkstra's Algorithm

Eulerian Cycle DFS

```
void dfs(int v){
  while (!g[v].empty()){
    int u = g[v].back();
    g[v].pop_back();
    dfs(u);
    ans.pb(v);
}
```

SCC and 2-SAT

```
void scc(vector<vector<int>>& g, int* idx) {
 int n = g.size(), ct = 0;
 int out[n]:
 vector<int> ginv[n];
  memset(out, -1, sizeof out);
  memset(idx, -1, n * sizeof(int));
  function<void(int)> dfs = [&](int cur) {
   out[cur] = INT MAX;
   for(int v : g[cur]) {
      ginv[v].push back(cur);
      if(out[v] == -1) dfs(v);
   ct++; out[cur] = ct;
  vector<int> order;
  for(int i = 0; i < n; i++) {
   order.push_back(i);
   if(out[i] == -1) dfs(i);
  sort(order.begin(), order.end(), [&](int& u, int& v) {
   return out[u] > out[v];
  }):
  ct = 0;
  stack<int> s:
  auto dfs2 = [&](int start) {
```

```
s.push(start);
                                                            17
        while(!s.empty()) {
                                                            18
27
          int cur = s.top():
                                                            19
          s.pop();
29
                                                           20
          idx[cur] = ct;
30
                                                           21
          for(int v : ginv[cur])
                                                           22
            if(idx[v] == -1) s.push(v);
                                                           23
32
        }
33
                                                           24
      };
                                                           25
      for(int v : order) {
                                                            26
35
        if(idx[v] == -1) {
36
                                                            27
          dfs2(v);
38
          ct++:
        }
39
      }
40
41
    // 0 => impossible, 1 => possible
    pair<int.vector<int>> sat2(int n. vector<pair<int.int>>&
     vector<int> ans(n):
45
      vector<vector<int>>> g(2*n + 1);
      for(auto [x, y] : clauses) {
47
       x = x < 0 ? -x + n : x;
48
        y = y < 0 ? -y + n : y;
        int nx = x <= n ? x + n : x - n;</pre>
        int ny = y \le n ? y + n : y - n;
                                                           10
51
                                                           11
        g[nx].push back(y);
                                                           12
        g[ny].push_back(x);
                                                           13
54
                                                           14
      int idx[2*n + 1];
                                                            15
      scc(g, idx):
56
                                                            16
      for(int i = 1; i <= n; i++) {
57
        if(idx[i] == idx[i + n]) return {0, {}};
        ans[i - 1] = idx[i + n] < idx[i]:
60
      return {1, ans};
61
62
    Finding Bridges
    Results are stored in a map "is bridge".
    For each connected component, call "dfs(starting vertex,9

    starting vertex)".

    const int N = 2e5 + 10; // Careful with the constant! 12
                                                           13
    vector<int> g[N];
                                                           14
    int tin[N], fup[N], timer;
    map<pair<int, int>, bool> is_bridge;
11
                                                           16
    void dfs(int v, int p){
                                                           17
      tin[v] = ++timer;
                                                            18
      fup[v] = tin[v];
                                                           19
      for (auto u : g[v]){
                                                                  root[v] = rt:
        if (!tin[u]){
                                                                  for (int i = 0; i < sz(g[v]); i++){
```

```
dfs(u, v);
      if (fup[u] > tin[v]){
        is_bridge[{u, v}] = is_bridge[{v, u}] = true; 24
      fup[v] = min(fup[v], fup[u]);
                                                       27
    elsef
                                                      28
      if (u != p) fup[v] = min(fup[v], tin[u]);
                                                       32
                                                       33
Virtual Tree
// order stores the nodes in the queried set
sort(all(order), [&] (int u, int v){return tin[u] <</pre>

    tin[v]:}):
int m = sz(order);
for (int i = 1; i < m; i++){
    order.pb(lca(order[i], order[i - 1]));
sort(all(order), [&] (int u, int v){return tin[u] <</pre>

    tin[v]:}):
order.erase(unique(all(order)), order.end());
vector<int> stk{order[0]};
for (int i = 1; i < sz(order); i++){
    int v = order[i]:
    while (tout[stk.back()] < tout[v]) stk.pop_back(); 8</pre>
    int u = stk.back():
    vg[u].pb({v, dep[v] - dep[u]});
    stk.pb(v);
                                                       12
HLD on Edges DFS
                                                       13
void dfs1(int v, int p, int d){
  par[v] = p;
  for (auto e : g[v]){
   if (e.fi == p){
      g[v].erase(find(all(g[v]), e));
      break:
                                                       19
  dep[v] = d:
  sz[v] = 1;
                                                      21
  for (auto [u, c] : g[v]){
    dfs1(u, v, d + 1);
    sz[v] += sz[u];
  if (!g[v].empty()) iter_swap(g[v].begin(),

→ max_element(all(g[v]), comp));
void dfs2(int v, int rt, int c){
 pos[v] = sz(a);
 a.pb(c);
```

```
auto [u, c] = g[v][i];
   if (!i) dfs2(u, rt, c);
   else dfs2(u, u, c):
int getans(int u, int v){
  int res = 0:
  for (; root[u] != root[v]; v = par[root[v]]){
   if (dep[root[u]] > dep[root[v]]) swap(u, v);
   res = max(res, rmq(0, 0, n - 1, pos[root[v]],
 if (pos[u] > pos[v]) swap(u, v);
  return max(res, rmq(0, 0, n - 1, pos[u] + 1, pos[v]);
Centroid Decomposition
vector<char> res(n), seen(n), sz(n);
function<int(int, int)> get size = [%](int node, int fa)
← {
 sz[node] = 1;
 for (auto& ne : g[node]) {
   if (ne == fa | seen[ne]) continue;
   sz[node] += get_size(ne, node);
 return sz[node]:
function<int(int, int, int)> find centroid = [&](int

→ node, int fa, int t) {
 for (auto& ne : g[node])
   if (ne != fa && !seen[ne] && sz[ne] > t / 2) return

    find centroid(ne. node. t):

 return node;
```

function < void(int, char) > solve = [&](int node, char

get_size(node, -1); auto c = find_centroid(node, -1,

solve(ne, char(cur + 1)); // we can pass c here to

Math

}

}:

sz[node]);

→ build tree

Binary exponentiation

seen[c] = 1, res[c] = cur;

for (auto& ne : g[c]) { if (seen[ne]) continue;

```
11 power(ll a, ll b){
ll res = 1:
 for (; b; a = a * a \% MOD, b >>= 1){
```

```
if (b & 1) res = res * a \% MOD;
      return res:
   }
    Matrix Exponentiation: O(n^3 \log b)
    const int N = 100, MOD = 1e9 + 7;
    struct matrix{
      11 m[N][N]:
      int n;
      matrix(){
        n = N:
        memset(m, 0, sizeof(m));
      matrix(int n ){
        n = n :
        memset(m, 0, sizeof(m)):
12
      matrix(int n_, ll val){
14
15
        n = n;
        memset(m, 0, sizeof(m));
        for (int i = 0; i < n; i++) m[i][i] = val;</pre>
17
18
19
      matrix operator* (matrix oth){
20
        matrix res(n);
21
        for (int i = 0; i < n; i++){
22
          for (int j = 0; j < n; j++){
23
            for (int k = 0; k < n; k++){
              res.m[i][j] = (res.m[i][j] + m[i][k] *
     \rightarrow oth.m[k][j]) % MOD;
          }
27
28
        return res;
30
    };
31
    matrix power(matrix a, ll b){
33
      matrix res(a.n, 1);
34
      for (; b; a = a * a, b >>= 1){
        if (b & 1) res = res * a;
      }
37
      return res;
38
    Extended Euclidean Algorithm
   // gives (x, y) for ax + by = q
2 // solutions given (x0, y0): a(x0 + kb/q) + b(y0 - ka/q)
    int gcd(int a, int b, int& x, int& y) {
      x = 1, y = 0; int sum1 = a;
      int x2 = 0, v2 = 1, sum2 = b:
      while (sum2) {
```

```
int q = sum1 / sum2;
  tie(x, x2) = make_tuple(x2, x - q * x2);
  tie(y, y2) = make_tuple(y2, y - q * y2);
  tie(sum1, sum2) = make tuple(sum2, sum1 - q * sum2);
return sum1:
                                                     22
                                                     23
```

Linear Sieve

10

11

15

16

17

18

22

23

11

15

16

• Mobius Function

```
vector<int> prime;
bool is_composite[MAX_N];
int mu[MAX N]:
void sieve(int n){
 fill(is_composite, is_composite + n, 0);
 for (int i = 2; i < n; i++){
   if (!is_composite[i]){
     prime.push back(i):
     mu[i] = -1; //i is prime
 for (int j = 0; j < prime.size() && i * prime[j] < n_{i}^{10}
   is_composite[i * prime[j]] = true;
   if (i % prime[j] == 0){
     mu[i * prime[j]] = 0; //prime[j] divides i
     break:
     } else {
     mu[i * prime[j]] = -mu[i]; //prime[j] does not

    divide i

                                                       20
 }
                                                       21
                                                       22
   • Euler's Totient Function
```

```
vector<int> prime;
bool is_composite[MAX_N];
int phi[MAX N];
void sieve(int n){
 fill(is_composite, is_composite + n, 0);
  phi[1] = 1:
  for (int i = 2; i < n; i++){
   if (!is composite[i]){
      prime.push_back (i);
      phi[i] = i - 1; //i is prime
  for (int j = 0; j < prime.size () && i * prime[j] < m;</pre>
    is_composite[i * prime[j]] = true;
    if (i % prime[j] == 0){
      phi[i * prime[j]] = phi[i] * prime[j]; //prime[j]A1

    divides i
```

```
break;
     phi[i * prime[j]] = phi[i] * phi[prime[j]];

→ //prime[j] does not divide i

}
```

Gaussian Elimination

```
bool is O(Z v) { return v.x == 0; }
Z abs(Z v) { return v: }
bool is 0(double v) { return abs(v) < 1e-9; }</pre>
// 1 => unique solution. 0 => no solution. -1 =>
template <typename T>
int gaussian elimination(vector<vector<T>> &a. int
→ limit) {
  if (a.empty() || a[0].empty()) return -1;
  int h = (int)a.size(), w = (int)a[0].size(), r = 0;
  for (int c = 0; c < limit; c++) {
   int id = -1:
    for (int i = r; i < h; i++) {
      if (!is O(a[i][c]) \&\& (id == -1 || abs(a[id][c]) <

    abs(a[i][c]))) {
        id = i;
    if (id == -1) continue:
    if (id > r) {
      swap(a[r], a[id]);
      for (int j = c; j < w; j++) a[id][j] = -a[id][j];</pre>
    vector<int> nonzero;
    for (int j = c; j < w; j++) {
      if (!is_0(a[r][j])) nonzero.push_back(j);
    T inv_a = 1 / a[r][c];
    for (int i = r + 1; i < h; i++) {
      if (is_0(a[i][c])) continue;
     T coeff = -a[i][c] * inv a;
      for (int j : nonzero) a[i][j] += coeff * a[r][j];
    ++r:
  for (int row = h - 1: row >= 0: row--) {
    for (int c = 0; c < limit; c++) {</pre>
      if (!is O(a[row][c])) {
       T inv a = 1 / a[row][c];
        for (int i = row - 1; i >= 0; i--) {
          if (is_0(a[i][c])) continue;
          T coeff = -a[i][c] * inv a;
          for (int j = c; j < w; j++) a[i][j] += coeff *

    a[row][j];
```

```
break;
                                                              26
        }
45
      } // not-free variables: only it on its line
46
      for(int i = r; i < h; i++) if(!is_0(a[i][limit]))</pre>

    return 0:

       return (r == limit) ? 1 : -1;
48
49
51
     template <typename T>
     pair<int, vector<T>> solve_linear(vector<vector<T>> a,

    const vector<T> &b. int w) {
      int h = (int)a.size():
       for (int i = 0; i < h; i++) a[i].push_back(b[i]);</pre>
                                                              10
       int sol = gaussian elimination(a, w):
                                                              11
      if(!sol) return {0, vector<T>()};
                                                              12
       vector < T > x(w, 0);
                                                              13
      for (int i = 0: i < h: i++) {
                                                              14
        for (int j = 0; j < w; j++) {
                                                              15
           if (!is_0(a[i][j])) {
                                                              16
             x[j] = a[i][w] / a[i][j];
                                                              17
             break;
                                                              18
           }
                                                              19
        }
                                                              20
                                                              21
       return {sol, x};
                                                              22
                                                              23
                                                              24
    is prime
                                                              25
                                                              26
                                                              27
        • (Miller–Rabin primality test)
    typedef __int128_t i128;
     i128 power(i128 a, i128 b, i128 MOD = 1, i128 res = 1)_{3}{
      for (; b; b /= 2, (a *= a) \%= MOD)
        if (b & 1) (res *= a) %= MOD;
      return res:
     bool is_prime(ll n) {
       if (n < 2) return false;
       static constexpr int A[] = \{2, 3, 5, 7, 11, 13, 17,
      int s = builtin ctzll(n - 1);
      11 d = (n - 1) >> s;
       for (auto a : A) {
         if (a == n) return true;
15
         ll x = (ll)power(a, d, n);
         if (x == 1 \mid | x == n - 1) continue;
17
18
         bool ok = false:
         for (int i = 0; i < s - 1; ++i) {
           x = 11((i128)x * x % n); // potential overflow!
           if (x == n - 1) {
             ok = true;
22
             break:
23
```

```
if (!ok) return false;
  return true;
typedef __int128_t i128;
11 pollard rho(ll x) {
 ll s = 0, t = 0, c = rng() \% (x - 1) + 1;
  ll stp = 0, goal = 1, val = 1;
  for (goal = 1; goal *= 2, s = t, val = 1) {
    for (stp = 1; stp <= goal; ++stp) {</pre>
      t = 11(((i128)t * t + c) \% x):
      val = ll((i128)val * abs(t - s) % x):
      if ((stp \% 127) == 0) {
        11 d = gcd(val, x);
        if (d > 1) return d;
    11 d = gcd(val, x);
    if (d > 1) return d;
11 get_max_factor(ll _x) {
  11 max factor = 0:
  function \langle void(11) \rangle fac = [&](11 x) {
    if (x \le max factor | | x < 2) return;
    if (is prime(x)) {
      max factor = max factor > x ? max factor : x;
    while (p >= x) p = pollard_rho(x);
    while ((x \% p) == 0) x /= p;
    fac(x), fac(p);
  };
  fac(x);
  return max_factor;
```

19

20

Berlekamp-Massey

25

- Recovers any n-order linear recurrence relation from the first 2n terms of the sequence.
- \bullet Input s is the sequence to be analyzed.
- Output c is the shortest sequence $c_1, ..., c_n$, such that

$$s_m = \sum_{i=1}^n c_i \cdot s_{m-i}$$
, for all $m \ge n$.

- Be careful since c is returned in 0-based indexation.
- Complexity: $O(N^2)$

```
vector<11> berlekamp massey(vector<11> s) {
 int n = sz(s), l = 0, m = 1;
 vector<11> b(n). c(n):
 11 \ 1dd = b[0] = c[0] = 1;
 for (int i = 0; i < n; i++, m++) {
   ll d = s[i];
   for (int j = 1; j \le 1; j++) d = (d + c[j] * s[i -
if (d == 0) continue;
   vector<11> temp = c;
   11 coef = d * power(ldd, MOD - 2) % MOD;
   for (int j = m; j < n; j++){
     c[j] = (c[j] + MOD - coef * b[j - m]) % MOD;
     if (c[j] < 0) c[j] += MOD;
   if (2 * 1 <= i) {
     1 = i + 1 - 1;
     b = temp;
     1dd = d:
     m = 0;
 c.resize(1 + 1);
 c.erase(c.begin());
 for (11 &x : c)
     x = (MOD - x) \% MOD;
 return c:
```

Calculating k-th term of a linear recurrence

• Given the first n terms $s_0, s_1, ..., s_{n-1}$ and the sequence $c_1, c_2, ..., c_n$ such that

$$s_m = \sum_{i=1}^n c_i \cdot s_{m-i}$$
, for all $m \ge n$,

the function calc kth computes s_k .

```
vector<ll> poly_mult_mod(vector<ll> p, vector<ll> q,
    vector<ll>& c){
    vector<ll> ans(sz(p) + sz(q) - 1);
    for (int i = 0; i < sz(p); i++){
        for (int j = 0; j < sz(q); j++){
            ans[i + j] = (ans[i + j] + p[i] * q[j]) % MOD;
        }
    }
    int n = sz(ans), m = sz(c);
    for (int i = n - 1; i >= m; i--){
        for (int j = 0; j < m; j++){</pre>
```

```
ans[i - 1 - j] = (ans[i - 1 - j] + c[j] * ans[i])_2

→ % MOD;

                                                            15
13
      ans.resize(m);
14
      return ans;
                                                            16
16
17
                                                            17
    11 calc_kth(vector<ll> s, vector<ll> c, ll k){
      assert(sz(s) \ge sz(c)); // size of s can be greater 19
     if (k < sz(s)) return s[k];
                                                            21
      vector<ll> res{1}:
21
                                                            22
      for (vector<11> poly = \{0, 1\}; k; poly =
                                                            23

→ poly_mult_mod(poly, poly, c), k >>= 1){
                                                            24
        if (k & 1) res = poly_mult_mod(res, poly, c);
                                                            26
      11 \text{ ans} = 0;
      for (int i = 0: i < min(sz(res), sz(c)): i++) ans =
     \rightarrow (ans + s[i] * res[i]) % MOD;
      return ans:
                                                            31
```

Partition Function

• Returns number of partitions of n in $O(n^{1.5})$

```
int partition(int n) {
  int dp[n + 1]:
  dp[0] = 1;
  for (int i = 1; i <= n; i++) {
    dp[i] = 0;
    for (int j = 1, r = 1; i - (3 * j * j - j) / 2 >= 0
 \leftrightarrow ++j, r *= -1) {
      dp[i] += dp[i - (3 * j * j - j) / 2] * r;
      if (i - (3 * j * j + j) / 2 >= 0) dp[i] += dp[i -6]
 \leftrightarrow (3 * j * j + j) / 2] * r;
                                                           10
  return dp[n];
                                                           11
                                                           12
NTT
                                                           13
                                                           14
void ntt(vector<ll>& a, int f) {
                                                           15
 int n = int(a.size());
  vector<ll> w(n);
                                                           16
  vector<int> rev(n):
 for (int i = 0; i < n; i++) rev[i] = (rev[i / 2] / 2) i < n
 \rightarrow | ((i & 1) * (n / 2));
  for (int i = 0: i < n: i++) {
                                                           20
    if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
 ll wn = power(f ? (MOD + 1) / 3 : 3, (MOD - 1) / n); _{23}
  for (int i = 1; i < n; i++) w[i] = w[i - 1] * wn \% 25
```

```
for (int mid = 1; mid < n; mid *= 2) {
   for (int i = 0; i < n; i += 2 * mid) {
      for (int j = 0; j < mid; j++) {
       11 x = a[i + j], y = a[i + j + mid] * w[n / (22*)

    mid) * j] % MOD;

       a[i + j] = (x + y) \% MOD, a[i + j + mid] = (x *1)

→ MOD - y) % MOD;

   }
  if (f) {
   11 iv = power(n, MOD - 2);
   for (auto& x : a) x = x * iv % MOD:
vector<ll> mul(vector<ll> a. vector<ll> b) {
 int n = 1, m = (int)a.size() + (int)b.size() - 1;
 while (n < m) n *= 2;
  a.resize(n), b.resize(n):
  ntt(a, 0), ntt(b, 0); // if squaring, you can save one

→ NTT here

 for (int i = 0; i < n; i++) a[i] = a[i] * b[i] % MOD;
 ntt(a, 1);
 a.resize(m):
 return a;
```

```
FFT
const ld PI = acosl(-1);
auto mul = [&](const vector<ld>& aa, const vector<ld>&
 int n = (int)aa.size(), m = (int)bb.size(), bit = 1; 7
  while ((1 << bit) < n + m - 1) bit++:
  int len = 1 << bit;</pre>
  vector<complex<ld>> a(len), b(len);
  vector<int> rev(len);
  for (int i = 0; i < n; i++) a[i].real(aa[i]);</pre>
 for (int i = 0; i < m; i++) b[i].real(bb[i]);</pre>
 for (int i = 0; i < len; i++) rev[i] = (rev[i >> 1] >> 1

→ 1) | ((i & 1) << (bit - 1));
</p>
  auto fft = [&](vector<complex<ld>>& p, int inv) {
                                                         15
   for (int i = 0; i < len; i++)
      if (i < rev[i]) swap(p[i], p[rev[i]]);</pre>
   for (int mid = 1; mid < len; mid *= 2) {</pre>
      auto w1 = complex<ld>(cos(PI / mid), (inv ? -1 : 18
\rightarrow 1) * sin(PI / mid)):
      for (int i = 0; i < len; i += mid * 2) {
        auto wk = complex<ld>(1, 0);
        for (int j = 0; j < mid; j++, wk = wk * w1) { ^{22}
          auto x = p[i + j], y = wk * p[i + j + mid];
          p[i + j] = x + y, p[i + j + mid] = x - y;
                                                         26
    if (inv == 1) {
      for (int i = 0; i < len; i++)
```

```
}
};
fft(a, 0), fft(b, 0);
for (int i = 0; i < len; i++) a[i] = a[i] * b[i];
fft(a, 1);
a.resize(n + m - 1);
vector<ld> res(n + m - 1);
for (int i = 0; i < n + m - 1; i++) res[i] =

    a[i].real();
return res;
};</pre>
```

MIT's FFT/NTT, Polynomial mod/log/exp Template

- For integers rounding works if $(|a| + |b|) \max(a, b) < \sim 10^9$, or in theory maybe 10^6
- $\frac{1}{P(x)}$ in $O(n \log n)$, $e^{P(x)}$ in $O(n \log n)$, $\ln(P(x))$ in $O(n \log n)$, $P(x)^k$ in $O(n \log n)$, Evaluates $P(x_1), \dots, P(x_n)$ in $O(n \log^2 n)$, Lagrange Interpolation in $O(n \log^2 n)$

```
// use #define FFT 1 to use FFT instead of NTT (default)
// Examples:
// poly a(n+1); // constructs degree n poly
// a[0].v = 10; // assigns constant term a 0 = 10
// poly b = exp(a);
// polu is vector<num>
// for NTT, num stores just one int named v
// for FFT, num stores two doubles named x (real), y
\hookrightarrow (imag)
#define sz(x) ((int)x.size())
#define rep(i, j, k) for (int i = int(j); i < int(k);
#define trav(a, x) for (auto \&a: x)
#define per(i, a, b) for (int i = (b)-1; i \ge (a); --i)
using ll = long long;
using vi = vector<int>;
namespace fft {
#if FFT
// FFT
using dbl = double;
struct num {
  dbl x, y;
  num(dbl x_ = 0, dbl y_ = 0): x(x_), y(y_) {}
inline num operator+(num a, num b) {
 return num(a.x + b.x, a.y + b.y);
inline num operator-(num a, num b) {
  return num(a.x - b.x, a.y - b.y);
```

p[i].real(p[i].real() / len);

```
num z = pow(num(g), (mod - 1) / (2 * k)); // NTT 138
    inline num operator*(num a, num b) {
      return num(a.x * b.x - a.y * b.y, a.x * b.y + a.y * 85
                                                                 #endif
                                                                                                                             #if FFT
                                                                                                                        139
                                                                     rep(i, k / 2, k) rt[2 * i] = rt[i].
                                                                                                                              // Double multiplu (num = complex)
                                                                                              rt[2 * i + 1] = rt[i] * z_{141}
                                                                                                                              using vd = vector<double>;
                                                            87
    inline num conj(num a) { return num(a.x, -a.y); }
                                                                                                                              vd multiply(const vd& a, const vd& b) {
                                                            88
    inline num inv(num a) {
                                                                                                                               int s = sz(a) + sz(b) - 1;
                                                             89
      dbl n = (a.x * a.x + a.y * a.y);
                                                                 inline void fft(vector<num>& a, int n) {
                                                                                                                               if (s <= 0) return {};
                                                            90
                                                                                                                        144
      return num(a.x / n, -a.y / n);
                                                                                                                               int L = s > 1 ? 32 - __builtin_clz(s - 1) : 0, n = 1
                                                            91
37
                                                                   int s = __builtin_ctz(sz(rev) / n);
                                                            92
                                                                   rep(i, 0, n) if (i < rev[i] >> s) swap(a[i], a[rev[i] + 6)
                                                                                                                               if (sz(fa) < n) fa.resize(n);</pre>
                                                            93
39
                                                                  □ >> sl):
                                                                                                                                if (sz(fb) < n) fb.resize(n);</pre>
40
    #else
                                                                   for (int k = 1; k < n; k *= 2)
                                                                                                                                fill(fa.begin(), fa.begin() + n, 0);
                                                            94
    const int mod = 998244353, g = 3;
                                                                     for (int i = 0; i < n; i += 2 * k) rep(j, 0, k) { 149
                                                                                                                               rep(i, 0, sz(a)) fa[i].x = a[i];
                                                                                                                               rep(i, 0, sz(b)) fa[i].y = b[i];
    // For p < 2^30 there is also (5 << 25. 3). (7 << 26. 96
                                                                         num t = rt[j + k] * a[i + j + k];
                                                                         a[i + j + k] = a[i + j] - t;
                                                                                                                                fft(fa. n):
    // (479 << 21, 3) and (483 << 21, 5). Last two are >
                                                                                                                               trav(x, fa) x = x * x:
                                                                         a[i + i] = a[i + i] + t:
                                                                                                                               rep(i, 0, n) fb[i] = fa[(n - i) & (n - 1)] -

→ 10^9.

                                                            99
                                                                                                                        153
    struct num {

    conj(fa[i]);

                                                           100
                                                                 // Complex/NTT
                                                                                                                               fft(fb, n):
                                                           101
46
      num(11 v = 0): v(int(v \% mod)) {
                                                                 vn multiply(vn a, vn b) {
                                                                                                                               vd r(s);
47
                                                           102
                                                                                                                        155
      if (v < 0) v += mod:
                                                           103
                                                                  int s = sz(a) + sz(b) - 1:
                                                                                                                               rep(i, 0, s) r[i] = fb[i].y / (4 * n);
48
                                                                   if (s <= 0) return {};
                                                                                                                               return r;
                                                           104
      explicit operator int() const { return v; }
                                                                   int L = s > 1 ? 32 - builtin clz(s - 1) : 0, n = 1<sub>158</sub>
                                                           105
                                                                                                                              // Integer multiply mod m (num = complex)
51
    inline num operator+(num a, num b) { return num(a.v + 106
                                                                  a.resize(n), b.resize(n);
                                                                                                                              vi multiply mod(const vi& a, const vi& b, int m) {
     \rightarrow b.v): }
                                                                  fft(a. n):
                                                                                                                               int s = sz(a) + sz(b) - 1:
                                                                                                                        161
    inline num operator-(num a. num b) {
                                                                   fft(b, n):
                                                                                                                               if (s <= 0) return {}:
                                                           108
      return num(a.v + mod - b.v);
                                                                   num d = inv(num(n));
                                                                                                                               int L = s > 1 ? 32 - builtin clz(s - 1) : 0, n = 1
                                                           109
                                                                   rep(i, 0, n) a[i] = a[i] * b[i] * d:
55
                                                           110
    inline num operator*(num a, num b) {
                                                                   reverse(a.begin() + 1, a.end());
                                                                                                                               if (sz(fa) < n) fa.resize(n);</pre>
56
      return num(111 * a.v * b.v);
                                                                   fft(a, n):
                                                                                                                               if (sz(fb) < n) fb.resize(n);</pre>
                                                           112
57
                                                                   a.resize(s):
                                                                                                                               rep(i, 0, sz(a)) fa[i] =
                                                           113
                                                                                                                        166
58
                                                                                                                                 num(a[i] & ((1 << 15) - 1), a[i] >> 15);
    inline num pow(num a, int b) {
                                                                   return a;
                                                           114
                                                                                                                        167
                                                                                                                                fill(fa.begin() + sz(a), fa.begin() + n, 0);
      num r = 1:
                                                           115
                                                                 // Complex/NTT power-series inverse
      do {
                                                           116
                                                                                                                                rep(i, 0, sz(b)) fb[i] =
                                                                                                                        169
61
                                                                 // Doubles b as b[:n] = (2 - a[:n] * b[:n/2]) * b[:n/2]70
                                                                                                                                 num(b[i] & ((1 << 15) - 1), b[i] >> 15);
      if (b \& 1) r = r * a;
                                                           117
62
                                                                 vn inverse(const vn& a) {
                                                                                                                                fill(fb.begin() + sz(b), fb.begin() + n, 0);
        a = a * a:
                                                           118
                                                                                                                               fft(fa, n);
      } while (b >>= 1);
                                                           119
                                                                   if (a.empty()) return {};
                                                                                                                        172
64
                                                                   vn b({inv(a[0])});
                                                                                                                                fft(fb, n);
      return r;
                                                           120
                                                                                                                        173
65
                                                           121
                                                                   b.reserve(2 * a.size());
                                                                                                                        174
                                                                                                                                double r0 = 0.5 / n; // 1/2n
                                                                   while (sz(b) < sz(a)) {
    inline num inv(num a) { return pow(a, mod - 2); }
                                                                                                                                rep(i, 0, n / 2 + 1) {
                                                           122
67
                                                                     int n = 2 * sz(b):
                                                                                                                                 int j = (n - i) & (n - 1);
                                                           123
                                                                                                                        176
                                                                     b.resize(2 * n. 0):
                                                                                                                                 num g0 = (fb[i] + conj(fb[j])) * r0;
    #endif
                                                           124
                                                                                                                        177
    using vn = vector<num>;
                                                                     if (sz(fa) < 2 * n) fa.resize(2 * n);
                                                                                                                                 num g1 = (fb[i] - conj(fb[j])) * r0;
                                                           125
70
    vi rev({0, 1}):
                                                                     fill(fa.begin(), fa.begin() + 2 * n, 0);
                                                                                                                                 swap(g1.x, g1.y);
                                                                                                                        179
                                                           126
    vn rt(2, num(1)), fa, fb;
                                                                     copy(a.begin(), a.begin() + min(n, sz(a)),
                                                                                                                                 g1.v *= -1;
                                                           127
                                                                                                                        180
    inline void init(int n) {

    fa.begin()):
                                                                                                                                 if (j != i) {
      if (n <= sz(rt)) return:</pre>
                                                                     fft(b, 2 * n):
                                                                                                                                    swap(fa[j], fa[i]);
                                                           128
                                                                                                                        182
                                                                     fft(fa, 2 * n);
      rev.resize(n);
                                                                                                                                    fb[i] = fa[i] * g1;
75
                                                                                                                        183
      rep(i, 0, n) rev[i] = (rev[i >> 1] | ((i & 1) * n)) 130
                                                                     num d = inv(num(2 * n)):
                                                                                                                                   fa[j] = fa[j] * g0;
                                                                     rep(i, 0, 2 * n) b[i] = b[i] * (2 - fa[i] * b[i]) 185
     rt.reserve(n);
                                                                                                                                  fb[i] = fa[i] * conj(g1);
77
      for (int k = sz(rt); k < n; k *= 2) {
                                                                     reverse(b.begin() + 1, b.end());
                                                                                                                                 fa[i] = fa[i] * conj(g0);
                                                           132
        rt.resize(2 * k);
                                                                     fft(b, 2 * n);
                                                           133
                                                                                                                        188
79
    #if FFT
                                                                     b.resize(n):
                                                                                                                               fft(fa, n);
                                                           134
                                                                                                                        189
        double a = M_PI / k;
                                                                                                                                fft(fb. n):
                                                           135
        num z(cos(a), sin(a)); // FFT
                                                           136
                                                                   b.resize(a.size());
                                                                                                                        191
                                                                                                                                vi r(s);
82
                                                                   return b:
    #else
                                                           137
```

```
rep(i, 0, s) r[i] =
                                                                247
          int((ll(fa[i].x + 0.5) + (ll(fa[i].y + 0.5) \% m < 248)
193
      (11(fb[i].x + 0.5) \% m << 15) +
                                                                250
194
                 (11(fb[i].y + 0.5) \% m << 30)) \%
195
                                                                251
            m);
196
        return r;
                                                                253
197
198
                                                                254
199
      #endif
     } // namespace fft
                                                                255
200
      // For multiply mod, use num = modnum, poly =
                                                                256

→ vector<num>

                                                                257
      using fft::num:
202
                                                                258
      using poly = fft::vn;
203
                                                                259
      using fft::multiply;
                                                                260
204
      using fft::inverse:
                                                                261
205
                                                                262
      poly& operator+=(poly& a, const poly& b) {
                                                                263
207
       if (sz(a) < sz(b)) a.resize(b.size());</pre>
208
                                                                264
        rep(i, 0, sz(b)) a[i] = a[i] + b[i];
                                                                265
209
       return a:
                                                                266
210
^{211}
      poly operator+(const poly& a, const poly& b) {
212
                                                                268
       polv r = a:
213
                                                                269
       r += b;
214
       return r:
215
                                                                271
                                                                272
216
      poly& operator = (poly& a, const poly& b) {
217
                                                                273
       if (sz(a) < sz(b)) a.resize(b.size());</pre>
218
                                                                274
       rep(i, 0, sz(b)) a[i] = a[i] - b[i];
219
                                                                275
       return a:
220
                                                                276
                                                                277
221
      poly operator-(const poly& a, const poly& b) {
222
                                                                278
       polv r = a:
                                                                279
223
       r -= b:
                                                                280
224
       return r;
225
                                                                281
                                                                282
226
     poly operator*(const poly& a, const poly& b) {
                                                                283
227
       return multiply(a, b);
                                                                284
228
                                                                285
229
     poly& operator*=(poly& a, const poly& b) { return a = 286
230
                                                                287
231
                                                                288
     poly& operator*=(poly& a, const num& b) { // Optional 289
232
       trav(x, a) x = x * b:
233
                                                                290
       return a:
                                                                291
234
                                                                292
      poly operator*(const poly& a, const num& b) {
236
                                                                293
       polv r = a;
237
                                                                294
       r *= b:
                                                                295
        return r;
                                                                296
239
240
      // Polynomial floor division; no leading 0's please
      poly operator/(poly a, poly b) {
                                                                200
242
       if (sz(a) < sz(b)) return {};</pre>
243
                                                                300
       int s = sz(a) - sz(b) + 1;
                                                                301
       reverse(a.begin(), a.end());
                                                                302
245
       reverse(b.begin(), b.end());
                                                                303
```

```
a.resize(s);
  b.resize(s);
  a = a * inverse(move(b)):
  a.resize(s):
                                                      307
 reverse(a.begin(), a.end());
 return a:
poly& operator/=(poly& a, const poly& b) { return a = 3a1
poly& operator%=(poly& a, const poly& b) {
  if (sz(a) \ge sz(b)) {
    poly c = (a / b) * b;
    a.resize(sz(b) - 1):
    rep(i, 0, sz(a)) a[i] = a[i] - c[i]:
                                                      317
                                                      318
 return a:
                                                      319
                                                      320
poly operator%(const poly& a, const poly& b) {
 poly r = a;
                                                      322
 r %= b;
                                                      323
  return r:
                                                      324
// Log/exp/pow
                                                      326
poly deriv(const poly& a) {
                                                      327
  if (a.empty()) return {};
  poly b(sz(a) - 1);
                                                      329
  rep(i, 1, sz(a)) b[i - 1] = a[i] * i;
 return b:
                                                      332
polv integ(const polv& a) {
                                                      333
 poly b(sz(a) + 1);
                                                      334
  b[1] = 1: // mod p
                                                      335
  rep(i, 2, sz(b)) b[i] =
   b[fft::mod % i] * (-fft::mod / i); // mod p
  rep(i, 1, sz(b)) b[i] = a[i - 1] * b[i]: // mod p 337
  //rep(i,1,sz(b)) \ b[i]=a[i-1]*inv(num(i)); // else 338
  return b:
                                                      340
poly log(const poly& a) { // MUST have a[0] == 1
  poly b = integ(deriv(a) * inverse(a));
                                                      342
  b.resize(a.size());
                                                      343
  return b:
                                                      344
                                                      345
poly exp(const poly& a) { // MUST have a[0] == 0
  polv b(1, num(1)):
  if (a.empty()) return b;
                                                      347
  while (sz(b) < sz(a)) {
    int n = min(sz(b) * 2, sz(a));
    b.resize(n);
    poly v = poly(a.begin(), a.begin() + n) - log(b);
    v[0] = v[0] + num(1);
    b *= v:
    b.resize(n);
  return b:
poly pow(const poly& a, int m) { // m >= 0
 poly b(a.size());
```

```
if (!m) {
   b[0] = 1;
   return b:
 int p = 0;
  while (p < sz(a) \&\& a[p].v == 0) ++p;
  if (111 * m * p >= sz(a)) return b;
 num mu = pow(a[p], m), di = inv(a[p]);
 poly c(sz(a) - m * p);
 rep(i, 0, sz(c)) c[i] = a[i + p] * di;
 c = log(c):
 trav(v, c) v = v * m;
 c = exp(c):
 rep(i, 0, sz(c)) b[i + m * p] = c[i] * mu;
 return b:
// Multipoint evaluation/interpolation
vector<num> eval(const polv& a, const vector<num>& x) {
 int n = sz(x);
 if (!n) return {}:
 vector<poly> up(2 * n);
 rep(i, 0, n) up[i + n] = poly({0 - x[i], 1});
 per(i, 1, n) up[i] = up[2 * i] * up[2 * i + 1];
 vector<poly> down(2 * n);
 down[1] = a \% up[1];
 rep(i, 2, 2 * n) down[i] = down[i / 2] % up[i];
 vector<num> v(n);
 rep(i, 0, n) v[i] = down[i + n][0]:
 return v:
poly interp(const vector<num>& x, const vector<num>& y)
 int n = sz(x):
 assert(n);
  vector<poly> up(n * 2);
 rep(i, 0, n) up[i + n] = poly({0 - x[i], 1});
 per(i, 1, n) up[i] = up[2 * i] * up[2 * i + 1];
 vector<num> a = eval(deriv(up[1]), x);
 vector<poly> down(2 * n);
 rep(i, 0, n) down[i + n] = poly({y[i] * inv(a[i])});
 per(i, 1, n) down[i] =
   down[i * 2] * up[i * 2 + 1] + down[i * 2 + 1] * up[i

→ * 21:

 return down[1]:
```

Data Structures

Fenwick Tree

```
11 sum(int r) {
    11 ret = 0;
    for (; r >= 0; r = (r & r + 1) - 1) ret += bit[r];
    return ret;
```

```
42
    void add(int idx, ll delta) {
        for (; idx < n; idx |= idx + 1) bit[idx] += delta; 44</pre>
                                                            47
    Lazy Propagation SegTree
                                                            48
 1 // Clear: clear() or build()
   const int N = 2e5 + 10; // Change the constant!
                                                            51
    template<tvpename T>
    struct LazvSegTree{
      T t[4 * N];
      T lazv[4 * N]:
      int n;
      // Change these functions, default return, and lazu
     □ mark
      T default return = 0. lazv mark =

→ numeric limits<T>::min();

      // Lazy mark is how the algorithm will identify that 59

→ no propagation is needed.

      function\langle T(T, T) \rangle f = [\&] (T a, T b) \{
        return a + b:
      // f on seg calculates the function f, knowing the

→ lazu value on seament.

                                                            64
      // segment's size and the previous value.
      // The default is segment modification for RSQ. For

    increments change to:

            return cur seg val + seg size * lazy val;
      // For RMQ. Modification: return lazy val;
                                                            69
     → Increments: return cur seg val + lazy val:
      function<T(T, int, T)> f_on_seg = [&] (T cur_seg_val,

    int seg_size, T lazy_val){
        return seg_size * lazy_val;
21
                                                            72
      };
      // upd lazy updates the value to be propagated to
     // Default: modification. For increments change to:
     // lazy[v] = (lazy[v] == lazy_mark? val : lazy[v]_0^{10}
     \leftrightarrow + val):
      function < void (int, T) > upd_lazy = [&] (int v, T val) {
27
      // Tip: for "get element on single index" queries, use
     \rightarrow max() on segment: no overflows.
                                                            84
      LazySegTree(int n ) : n(n ) {
31
                                                            85
        clear(n);
32
33
                                                            87
34
      void build(int v, int tl, int tr, vector<T>& a){
35
        if (tl == tr) {
36
          t[v] = a[t1];
37
          return:
                                                            93
        int tm = (tl + tr) / 2:
        // left child: [tl, tm]
```

```
// right child: [tm + 1, tr]
   build(2 * v + 1, tl, tm, a);
   build(2 * v + 2, tm + 1, tr, a):
   t[v] = f(t[2 * v + 1], t[2 * v + 2]);
 LazySegTree(vector<T>& a){
                                                     100
   build(a);
                                                     102
 void push(int v, int tl, int tr){
                                                     103
   if (lazy[v] == lazy_mark) return;
                                                     104
   int tm = (tl + tr) / 2:
   t[2 * v + 1] = f_{on_seg}(t[2 * v + 1], tm - tl + 1_{106})
→ lazy[v]);
   t[2 * v + 2] = f_{on_seg}(t[2 * v + 2], tr - tm,
   upd_{lazy}(2 * v + 1, lazy[v]), upd_{lazy}(2 * v + 2,
→ lazv[v]):
   lazv[v] = lazv mark;
 void modify(int v, int tl, int tr, int l, int r, T
→ val){
   if (1 > r) return;
   if (tl == 1 && tr == r){
     t[v] = f_{on_seg}(t[v], tr - tl + 1, val);
     upd_lazy(v, val);
     return:
   push(v, tl, tr);
   int tm = (tl + tr) / 2:
   modify(2 * v + 1, tl, tm, l, min(r, tm), val);
   modify(2 * v + 2, tm + 1, tr, max(1, tm + 1), r,
   t[v] = f(t[2 * v + 1], t[2 * v + 2]);
                                                      10
 T query(int v, int tl, int tr, int l, int r) {
   if (1 > r) return default return:
   if (t1 == 1 && tr == r) return t[v];
   push(v, tl, tr);
   int tm = (tl + tr) / 2:
     query(2 * v + 1, tl, tm, l, min(r, tm)),
     query(2 * v + 2, tm + 1, tr, max(1, tm + 1), r)
 }
 void modifv(int 1, int r, T val){
   modify(0, 0, n - 1, 1, r, val);
 T query(int 1, int r){
   return query(0, 0, n - 1, 1, r);
 T get(int pos){
                                                      30
```

```
return query(pos, pos);
}

// Change clear() function to t.clear() if using

unordered_map for SegTree!!!

void clear(int n_){
    n = n_;
    for (int i = 0; i < 4 * n; i++) t[i] = 0, lazy[i] =

lazy_mark;
}

void build(vector<T>& a){
    n = sz(a);
    clear(n);
    build(0, 0, n - 1, a);
};
```

Sparse Table

```
const int N = 2e5 + 10, LOG = 20; // Change the
template<typename T>
struct SparseTable{
int lg[N];
T st[N][LOG]:
int n:
// Change this function
function\langle T(T, T) \rangle f = \lceil k \rceil (T a, T b) 
 return min(a, b);
void build(vector<T>& a){
  n = sz(a):
  lg[1] = 0;
  for (int i = 2; i \le n; i++) lg[i] = lg[i / 2] + 1;
  for (int k = 0; k < LOG; k++){
    for (int i = 0: i < n: i++){
      if (!k) st[i][k] = a[i];
      else st[i][k] = f(st[i][k-1], st[min(n-1, i+1)]
 \leftrightarrow (1 << (k - 1)))][k - 1]);
T query(int 1, int r){
 int sz = r - 1 + 1;
 return f(st[l][lg[sz]], st[r - (1 \leftleq lg[sz]) +

    1][lg[sz]]);
```

Suffix Array and LCP array

• (uses SparseTable above)

```
56
     struct SuffixArray{
                                                              57
       vector<int> p, c, h;
       SparseTable<int> st;
                                                              59
       In the end, array c gives the position of each suffix
       using 1-based indexation!
                                                              63
                                                              64
       SuffixArrav() {}
                                                              65
                                                              66
       SuffixArray(string s){
11
                                                              67
         buildArray(s);
12
                                                              68
         buildLCP(s);
                                                              69
         buildSparse();
                                                              70
15
                                                              71
                                                              72
       void buildArray(string s){
17
                                                              73
         int n = sz(s) + 1;
18
                                                             74
         p.resize(n), c.resize(n);
         for (int i = 0; i < n; i++) p[i] = i;
20
         sort(all(p), [&] (int a, int b){return s[a] <</pre>

    s[b]:}):
         c[p[0]] = 0;
22
         for (int i = 1; i < n; i++){
23
           c[p[i]] = c[p[i-1]] + (s[p[i]] != s[p[i-1]]);
24
25
         vector<int> p2(n), c2(n);
26
         // w is half-length of each string.
27
         for (int w = 1; w < n; w <<= 1){
           for (int i = 0; i < n; i++){
29
             p2[i] = (p[i] - w + n) \% n;
30
           vector<int> cnt(n):
32
           for (auto i : c) cnt[i]++;
33
           for (int i = 1; i < n; i++) cnt[i] += cnt[i - 1]; 1
           for (int i = n - 1; i >= 0; i--){
35
             p[--cnt[c[p2[i]]]] = p2[i];
36
           c2[p[0]] = 0;
38
           for (int i = 1: i < n: i++){
39
             c2[p[i]] = c2[p[i - 1]] +
             (c[p[i]] != c[p[i - 1]] ||
41
             c[(p[i] + w) \% n] != c[(p[i - 1] + w) \% n]);
43
           c.swap(c2);
                                                             11
44
45
                                                              12
         p.erase(p.begin());
                                                              13
46
47
48
                                                              15
       void buildLCP(string s){
                                                              16
49
         // The algorithm assumes that suffix array is

→ already built on the same string.

                                                             18
         int n = sz(s):
                                                             19
         h.resize(n - 1);
```

```
int k = 0;
    for (int i = 0; i < n; i++){
      if (c[i] == n){
       k = 0:
       continue;
      int j = p[c[i]];
      while (i + k < n \&\& j + k < n \&\& s[i + k] == s[j_2*]
 h[c[i] - 1] = k;
      if (k) k--;
    Then an RMQ Sparse Table can be built on array h
    to calculate LCP of 2 non-consecutive suffixes.
  void buildSparse(){
    st.build(h);
  // l and r must be in O-BASED INDEXATION
  int lcp(int 1, int r){
   1 = c[1] - 1, r = c[r] - 1;
   if (1 > r) swap(1, r);
    return st.query(1, r - 1);
};
```

31

44

45

61

62

63

67

68

70

71

Aho Corasick Trie

54

55

• For each node in the trie, the suffix link points to the longest proper suffix of the represented string. The terminal-link tree has square-root height (can^{55} be constructed by DFS).

```
const int S = 26:
// Function converting char to int.
int ctoi(char c){
 return c - 'a';
// To add terminal links, use DFS
struct Node{
 vector<int> nxt;
  int link;
  bool terminal;
 Node() {
    nxt.assign(S, -1), link = 0, terminal = 0;
};
vector<Node> trie(1):
```

```
// add string returns the terminal vertex.
int add string(string& s){
 int v = 0:
  for (auto c : s){
   int cur = ctoi(c);
   if (trie[v].nxt[cur] == -1){
     trie[v].nxt[cur] = sz(trie);
      trie.emplace_back();
   v = trie[v].nxt[cur];
  trie[v].terminal = 1;
  return v:
Suffix links are compressed.
This means that:
 If vertex v has a child by letter x, then:
    trie[v].nxt[x] points to that child.
  If vertex v doesn't have such child, then:
    trie[v].nxt[x] points to the suffix link of that
    if we would actually have it.
void add_links(){
  queue<int> a:
  q.push(0);
  while (!q.empty()){
   auto v = q.front();
   int u = trie[v].link;
   for (int i = 0; i < S; i++){
      int& ch = trie[v].nxt[i]:
      if (ch == -1){
        ch = v? trie[u].nxt[i] : 0;
        trie[ch].link = v? trie[u].nxt[i] : 0;
        q.push(ch);
 }
bool is terminal(int v){
 return trie[v].terminal:
int get_link(int v){
 return trie[v].link;
int go(int v, char c){
 return trie[v].nxt[ctoi(c)];
```

Convex Hull Trick

- Allows to insert a linear function to the hull in (1) and get the minimum/maximum value of the stored function at a point in $O(\log n)$.
- NOTE: The lines must be added in the order of decreasing/increasing gradients. CAREFULLY CHECK THE SETUP BEFORE USING!
- IMPORTANT: THE DEFAULT VERSION SURELY WORKS. IF MODIFIED VERSIONS DON'T WORK, TRY TRANSFORMING THEM TO THE DEFAULT ONE BY CHANGING SIGNS.

```
11
                                                              12
    struct line{
                                                              13
      11 k, b;
                                                              14
      11 f(11 x){
                                                              15
         return k * x + b;
                                                              16
      };
                                                              17
    };
                                                              18
                                                              19
     vector<line> hull:
                                                              20
     void add line(line nl){
      if (!hull.empty() && hull.back().k == nl.k){
                                                              22
         nl.b = min(nl.b, hull.back().b); // Default:
                                                              23
     → minimum. For maximum change "min" to "max".
                                                              24
        hull.pop back():
      }
14
                                                              25
      while (sz(hull) > 1){
15
         auto& 11 = hull.end()[-2], 12 = hull.back();
         if ((nl.b - l1.b) * (l2.k - nl.k) >= (nl.b - l2.b)

    (11.k - nl.k)) hull.pop_back(); // Default:

     \hookrightarrow decreasing gradient k. For increasing k change the

⇒ sian to <=.
</p>
         else break;
18
      hull.pb(nl);
20
                                                              31
21
                                                              32
    11 get(11 x){
      int l = 0, r = sz(hull);
      while (r - 1 > 1){
25
         int mid = (1 + r) / 2;
         if (hull[mid - 1].f(x) >= hull[mid].f(x)) l = mid;
     → // Default: minimum. For maximum change the sign to
         else r = mid:
                                                              42
       return hull[1].f(x);
                                                              43
    }
```

Li-Chao Segment Tree

- allows to add linear functions in any order and query minimum/maximum value of those at 4& point, all in O(log n).
- Clear: clear()

9

10

```
const 11 INF = 1e18; // Change the constant!
struct LiChaoTree{
  struct line{
    11 k. b:
    line(){
     k = b = 0:
    line(ll k_, ll b_){
     k = k_{,} b = b_{;}
    11 f(11 x){
      return k * x + b:
 };
  int n;
  bool minimum, on_points;
  vector<11> pts;
  vector<line> t;
  void clear(){
    for (auto \& 1 : t) 1.k = 0, 1.b = minimum? INF :
 }
 LiChaoTree(int n_, bool min_){ // This is a default
\hookrightarrow constructor for numbers in range [0, n - 1].
    n = n_, minimum = min_, on_points = false;
    t.resize(4 * n);
    clear();
 };
  LiChaoTree(vector<ll> pts_, bool min_){ // This
 ⇔ constructor will build LCT on the set of points you 3
 ⇒ pass. The points may be in any order and contain
\hookrightarrow duplicates.
    pts = pts_, minimum = min_;
    sort(all(pts));
    pts.erase(unique(all(pts)), pts.end());
    on points = true;
    n = sz(pts):
    t.resize(4 * n):
    clear();
  void add_line(int v, int l, int r, line nl){
    // Adding on segment [l, r)
    int m = (1 + r) / 2;
    11 lval = on_points? pts[1] : 1, mval = on_points? 18

    pts[m] : m;
```

```
if ((minimum && nl.f(mval) < t[v].f(mval)) ||</pre>
\leftrightarrow (!minimum && nl.f(mval) > t[v].f(mval))) swap(t[v],
   if (r - 1 == 1) return;
   if ((minimum \&\& nl.f(lval) < t[v].f(lval)) \mid |
\hookrightarrow (!minimum && nl.f(lval) > t[v].f(lval))) add_line(2
\leftrightarrow * v + 1, 1, m, n1);
   else add_line(2 * v + 2, m, r, nl);
 11 get(int v, int 1, int r, int x){
   int m = (1 + r) / 2;
   if (r - 1 == 1) return t[v].f(on_points? pts[x] :
if (minimum) return min(t[v].f(on_points? pts[x] :
\Rightarrow x), x < m? get(2 * v + 1, 1, m, x) : get(2 * v + 2,
\rightarrow m, r, x));
     else return max(t[v].f(on_points? pts[x] : x), x <</pre>
\Rightarrow m? get(2 * v + 1, 1, m, x) : get(2 * v + 2, m, r,
}
 void add line(ll k, ll b){
   add_line(0, 0, n, line(k, b));
 11 get(11 x){
   return get(0, 0, n, on_points? lower_bound(all(pts),
\Rightarrow x) - pts.begin() : x);
}; // Always pass the actual value of x, even if LCT
→ is on points.
```

Persistent Segment Tree

• for RSQ

48

49

57

58

10

```
struct Node {
    ll val;
    Node *1, *r;
    Node(ll x) : val(x), l(nullptr), r(nullptr) {}
    Node(Node *11. Node *rr) {
       1 = 11, r = rr;
        val = 0:
        if (1) val += 1->val;
        if (r) val += r->val;
    Node(Node *cp) : val(cp->val), l(cp->l), r(cp->r) {}
const int N = 2e5 + 20;
11 a[N]:
Node *roots[N]:
int n, cnt = 1;
Node *build(int l = 1, int r = n) {
    if (1 == r) return new Node(a[1]);
```

```
int mid = (1 + r) / 2;
         return new Node(build(1, mid), build(mid + 1, r));
21
    Node *update(Node *node, int val, int pos, int l = 1,
     \rightarrow int r = n) {
         if (1 == r) return new Node(val);
         int mid = (1 + r) / 2;
25
26
         if (pos > mid)
             return new Node(node->1, update(node->r, val,
      \rightarrow pos, mid + 1, r));
         else return new Node(update(node->1, val, pos, 1,

→ mid), node->r);
    ll query(Node *node, int a, int b, int l = 1, int r = n)
         if (1 > b || r < a) return 0;
         if (1 \ge a \&\& r \le b) return node->val;
         int mid = (1 + r) / 2;
         return query(node->1, a, b, 1, mid) + query(node->r,
     \rightarrow a, b, mid + 1, r);
```

Miscellaneous

Ordered Set

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag,
tree_order_statistics_node_update> ordered_set;
```

Measuring Execution Time

Setting Fixed D.P. Precision

```
cout << setprecision(d) << fixed;
// Each number is rounded to d digits after the decimal
point, and truncated.</pre>
```

Common Bugs and General Advice

- Check overflow, array bounds
- Check variable overloading
- Check special cases (n=1?)
- $\bullet\,$ Do something instead of nothing, stay organized

- Write stuff down!
- Don't get stuck on one approach!