Surname	Centre Number	Candidate Number
Other Names		2

GCE AS/A level

1092/01

CHEMISTRY - CH2

P.M. TUESDAY, 3 June 2014

1 hour 30 minutes

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1. to 6.	10	
7.	16	
8.	16	
9.	15	
10.	11	
11.	12	
Total	80	

Section A

Section B

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- · calculator:
- Data Sheet containing a Periodic Table supplied by WJEC. Refer to it for any relative atomic masses you require.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer **all** questions in the spaces provided.

Section B Answer **all** questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The *QWC* label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

Examine
only

SECTION A

Answer all questions in the spaces provided.

1.	Put the following in order of inc	creasing strength.		[1]
	covalent bonds	hydrogen bonds	van der Waals' forces	

weakeststrongest

2. Give the **systematic** name of the compound whose structure is shown below. [1]

3. Draw dot-and-cross diagrams to show the formation of calcium chloride from atoms of chlorine and calcium.

PMT

Atom	Н	N	0	Al	CI
Electronegativity value	2.1	3.0	3.5	1.6	3.0

(a) Use the data in the table to identify any dipoles present in the following bonds. Mark their polarity clearly. [1]

N-H O-CI

(b) Use the data to give a reason why aluminium chloride is considered to be a covalent compound, while aluminium oxide is an ionic compound. [1]

5. Cyclohexane and hex-2-ene are isomers. Give a chemical test to distinguish between these two compounds.

cyclohexane

hex-2-ene

Reagent(s)

Observations

© WJEC CBAC Ltd.

EC CBAC Ltd. (1092-01)

Turn over.

Exa	angles of less than 109°.	all the molecules from the li	Select
		NH ₄ ⁺	A
		BF ₃	В
		NH ₃	С
		CH₄	D
		SF ₆	E
]	[2]		
]	Section A Total [10]		

© WJEC CBAC Ltd.

(1092-01)

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Turn over.

PMT

Examiner only

SECTION B

Answer all questions in the spaces provided.

7. Ewan and Gwyneth are given four unlabelled bottles. They know that these contain the following four solutions:

potassium carbonate sodium hydroxide barium chloride magnesium nitrate

(a) Ewan predicted what will happen when each of the four solutions is added to the others, and presented this information in the grid below.

	magnesium nitrate	barium chloride	sodium hydroxide
potassium carbonate	white precipitate	white precipitate	no visible change
sodium hydroxide			
barium chloride			

(i)	Complete the three empty boxes with the observations expected in	each of these
	cases.	[2]

(ii)	Name the white precipitate formed when magnesium nitrate is mixed with p	otassium
	carbonate, and write an ionic equation for its formation.	[2]

Name of precipitate	
Ionic equation	

PMT

(b)	Gwyl distin give	neth uses different tests to identify the four solutions. Each test allows haguish between some of the solutions. For each test state the solution(s) that a visible change and the observation(s) that would be made.	ner wol
	(i)	Addition of litmus solution	
	•••••		
	•····		
	•····		
	(ii)	Flame test	
	•••••		
	(iii)	Addition of sodium sulfate solution	
	•····		

© WJEC CBAC Ltd. (1092-01) Turn over.

1092 010007

	an and Gwyneth are provided with a white solid that they believe to be sodium bromide odium iodide.
(i)	They dissolve the solid in water to make a solution. Explain what occurs when an ionic solid such as sodium bromide dissolves in water. [2]
(ii)	Gwyneth uses aqueous silver nitrate to identify the solution. Give the observations expected when silver nitrate is added separately to solutions of sodium bromide and sodium iodide. [2]
	Observation with sodium bromide
	Observation with sodium iodide
(iii)	Ewan thinks that a further test is needed after addition of the silver nitrate to distinguish between sodium bromide and sodium iodide. Give the reagent and observations for this further test. [2]
	Reagent
	Observation with sodium bromide
	Observation with sodium iodide
(iv)	When bromine water is added to a solution of sodium iodide, a reaction occurs. Write an equation for this reaction. [1]

8. Crude oil is a complex mixture of hydrocarbons, with samples from different locations in the world having different compositions. The table below gives the composition of crude oil from two locations.

Fraction	Percentage by mass			
Fraction	Brent Crude	Gulf of Suez		
petroleum gases	2.4	1.2		
naphtha	19.1	13.6		
kerosene	14.2	12.7		
gas oil	20.9	18.7		
residue	43.4	53.8		

(a) The different fractions are separated by fractional distillation. Explain why the different fractions have different boiling temperatures. [2]

- (b) The petroleum gases produced from crude oil can contain both propane and butane.
 - (i) A barrel of Gulf of Suez crude oil has a mass of 145 kg. Assuming all the petroleum gas released from the oil is butane, calculate the volume that this gas would occupy at 1 atmosphere pressure. [3]

[1 mol of gas occupies 24.0 dm³ under these conditions]

Volume =		dm ³
----------	--	-----------------

© WJEC CBAC Ltd. (1092-01) Turn over.

(ii)	Prop	pane can be chlorinated by a similar method to methane.	
	1	Give the condition(s) required for the chlorination of propane.	[1]
	II	Write an equation for the initiation stage of the chlorination of propane.	[1]
	III	The chlorination of propane also produces hexane as a minor product. Explain how this compound forms.	[2]

© WJEC CBAC Ltd.

		٦Εх
used	tha is used as a starting material for the production of alkenes, and these are then to produce polymers such as poly(ethene). Discuss how poly(ethene) is produced, ng from naphtha. Your answer should include:	
•	An explanation of which of the two types of crude oil given would be more useful for producing alkenes. How the naphtha is converted into alkenes.	
•	An equation for the production of ethene from decane, an alkane with 10 carbon atoms. An explanation of what is meant by polymerisation.	
	An equation for the polymerisation of ethene, clearly stating the type of polymerisation that is occurring. A different polymer in common use, with the structure of the monomer used in its	
	production. [6] QWC [1]	
	Total [16]	

	matite is an ore of iron that contains Fe_2O_3 . Iron is extracted from this ore in a blast furna	ice.
(a)	Balance the equation for the extraction of iron from Fe_2O_3 .	[1]
	Fe $_2$ O $_3$ +CO \longrightarrow Fe +CO $_2$	
(b)	Use oxidation states to show that the reaction in (a) is a redox reaction.	[2]
(c)	A different oxide of iron is iron(II) oxide, FeO. The ions in this compound adopt arrangement similar to that of sodium chloride.	an
	(i) Give the crystal co-ordination numbers for the ions in FeO.	[1]
	(ii) Draw the arrangement of oxide ions around each iron ion.	[1]
(d)	Iron can be extracted from FeO according to the equation below.	
	FeO + CO \longrightarrow Fe + CO $_2$	
	Calculate the mass of iron that could be extracted from 20.0 kg of iron(II) oxide, FeO.	[3]

	is meant by the terms <i>covalent bond</i> and <i>co-ordinate bond</i> , indicating the difference between them. [2]
(f)	Iron is a typical metal. Describe the bonding present in iron. Explain how it can conduct electricity and why it has a high melting temperature. [4] QWC [1]
	QWO [1]
	Total [15]

			Examiner
			only
10.	(a)	1-bromobutane is a liquid that is insoluble in water. It can be converted to butan-1-ol in a	1
	• •	one-step reaction.	
		one stop reaction.	1

(1)	ive the reagent(s) and condition(s) required for this reaction.

(ii)	Explain why butan-1-ol is soluble in water whilst 1-bromobutane is not.	[3]
•••••		

Butan-1-ol can be converted into liquid butanoic acid in a one-step reaction.

(i)	Give the reagent(s) and condition(s) required for this reaction.				
(ii)	Explain why butanoic 1-bromobutane.	acid has a	much higher	boiling temperature	than [3]
•••••					••••••

(iii)	The reaction above frequently produces a mixture containing unreacted butan- and butanoic acid. State how these two liquids could be separated.	-1-ol [1]
		· · · · · · · · · · ·

Total [11]

© WJEC CBAC Ltd.

(b)

11.	(a)	Prop	ene reacts with hydrogen bromide to give 2-bromopropane.	Examine only
	()	(i)	Draw the mechanism for this reaction. [3]	
		(ii)	Explain why the product of this reaction is mainly 2-bromopropane rather than	1
			1-bromopropane. [2]	

		•••••		

	Total [12] Section B Total [70]
······	
	3030 cm ⁻¹ . • Compound C is a Z-isomer.
	 The mass spectrum of compound C contains peaks at m/z of 15, 41 and a pair of peaks at 120 and 122. The infrared spectrum of compound C has absorptions at 550 cm⁻¹, 1630 cm⁻¹ and
	Compound C contains 29.8% carbon, 4.2% hydrogen and 66.0% bromine by mass.
(b)	Compound C is a compound of carbon, hydrogen and bromine only. Bromine has two isotopes, ⁷⁹ Br and ⁸¹ Br, in equal abundance. Use all the information below to deduce the structure of compound C , giving your reasoning. [6] QWC [1]

Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only
namber	write the question number(s) in the left-hand margin.	

GCE AS/A level

CHEMISTRY - DATA SHEET FOR USE WITH CH2

P.M. TUESDAY, 3 June 2014

Infrared Spectroscopy characteristic absorption values

Bond	Wavenumber/cm				
C—Br	500 to 600				
C—CI	650 to 800				
C — O	1000 to 1300				
C = C	1620 to 1670				
C=O	1650 to 1750				
C≡N	2100 to 2250				
С—Н	2800 to 3100				
O—H	2500 to 3550				
N—H	3300 to 3500				

THE PERIODIC TABLE

		Г		^		_	_	_				
	0		Helium 2	20.2 Neon	40.0 Ar Argon 18	83.8 Kr Krypton 36	Xenon 54	(222) Rn Radon 86				
	^			19.0 F Fluorine	35.5 CI Chlorine 17	79.9 Br Bromine 35	127 	(210) At Astatine 85		175 Lu Lutetium 71	(257) Lr Lawrencium 103	
	9		p Block	16.0 O Oxygen 8	32.1 S Sulfur 16	79.0 Se Selenium 34	128 Te Tellurium 52	(210) Po Polonium 84		Yb Ytterbium 70	(254) No Nobelium 102	
	4			<u>а</u>	14.0 Nitrogen 7	31.0 Phosphorus	74.9 As Arsenic	122 Sb Antimony 51	209 Bismuth		169 Tm Thulium 69	(256) Md Mendelevium 101
				12.0 C Carbon 6	Silicon	72.6 Ge Germanium	Sn Tin 50	207 Pb Lead 82		167 Er Erbium 68	(253) Fm Fermium 100	
	က			10.8 B Boron 5	27.0 Aluminium 13	69.7 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81		165 Ho Holmium 67	(254) Es Einsteinium 99	
ц					1	65.4 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80		163 Dy Dysprosium 66	(251) Cf Californium 98	
IABLE	Group						63.5 Cu Copper 29	Ag Silver	Au Au Gold 79	f Block	159 Tb Terbium 65	(245) BK Berkelium 97
		Key				58.7 Ni Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	fB	157 Gd Gadolinium 64	(247) Cm Curium 96	
HE PERIODIC					number Block	58.9 Co Cobalt 27 103 Rhodium 45 192 Iridium 77		(153) Eu Europium 63	(243) Am Americium 95			
표 고			elative	atomic mass . atomic number		55.8 Fe Iron 26	101 Ru Ruthenium 44	190 Os Osmium 76		150 Sm Samarium 62	(242) Pu Plutonium 94	
_			Key Symbol Name Z	d	54.9 Mn Manganese 25	98.9 Tc Technetium 43	186 Re Rhenium 75		(147) Pm Promethium 61	(237) Np Neptunium 93		
				<u> </u>		52.0 Cr Chromium 24	95.9 Mo Molybdenum 42	184 W Tungsten 74		144 Nd Neodymium 60	238 U Uranium 92	
						50.9 V Vanadium 23	92.9 Nb Niobium 41	181 Ta Tantalum 73		141 Praseodymium 59	(231) Pa Protactinium 91	
						47.9 Ti Titanium 22	91.2 Zr Zr Zirconium 40	179 Hf Hafnium 72		140 Cerium 58	232 Th Thorium 90	
						Scandium 21	88.9 Y Yttrium 39	139 La La Lanthanum	(227) Ac ►► Actinium 89	► Lanthanoid elements	Actinoid elements	
	7	호 		9.01 Be Beryllium	24.3 Mg Magnesium 12	40.1 Ca Calcium 20	87.6 Sr Strontium	137 Ba Barium 56	(226) Rad Radium 88	► Lar ele	A el	
	_	s Block	1.01 Hydrogen	6.94 Li Lithium 3	23.0 Na Sodium	39.1 K	85.5 Rb Rubidium 37	133 Cs Caesium 55	(223) Fr Francium 87			
					က	4	ر <u>.</u> د	9				
		Period			CBAC Ltd.	(1092-						
				220	- =	(.002	,					