RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 1.1

R: Ver texto (página 9).

Exercício 1.2

R: Ver texto (página 10).

Exercício 1.3

R: a) Mobilidade de electrões e lacunas: $\mu_e = \frac{v_e}{E}$, $\mu_h = \frac{v_h}{E}$

$$\vec{F} = e \vec{E} + e (\vec{v}_e \times \vec{B})$$

- A grandeza da força para os electrões é $F_e = eE_x + ev_eB_y$
- A grandeza da força para as lacunas é $F_h = eE_x + ev_hB_y$
- b) Condutividade eléctrica: $\sigma = \sigma_e + \sigma_h = ne\mu_e + pe\mu_h$, como não há corrente σ =0, vem $n/p = \mu_h/\mu_e = 1/2$.

Exercício 1.4

 \mathbf{R} : a) Ver equação (1.1).

b) Ver texto (página 5).

Exercício 1.5

R: a) Ver texto. Não, porque pode ter impurezas em que a concentração de dadores é igual à concentração de aceitadores.

- b) A altas temperaturas, uma grande concentração dos electrões na banda de valência tendem a saltar para a banda de condução, logo a concentração de impurezas é desprezável face à passagem de grande quantidade electrões para a banda de condução ficando uma grande concentração de lacunas na banda de valência, logo n=p.
- c) Ver texto (página 8).

Exercício 1.6

R: Pela lei de Ohm $\overrightarrow{J} = \sigma \overrightarrow{E}$, logo $J = ne\mu_e E + pe\mu_h E$ sabendo que $\sigma_e = ne\mu_e$ e $\sigma_h = pe\mu_h$. Como $\mu_e = 2\mu_h$ e p = 4n vem $J = 3ne\mu_e E$.

Exercício 1.7

R: a) Ver texto (página 10).

b) Ver texto (página 10).

Exercício 1.8

R: $\sigma = \sigma_e + \sigma_h = ne\mu_e + pe\mu_h$

- a) Como $\mu = \mu_e = \mu_h$, então a condutividade é mínima quando as concentrações de n e p são baixas.
- b) Como $\sigma_i \rho_i = \sigma_{dop} \rho_{dop}$, onde:

 $-\sigma_i$ é a condutividade no estado intrínseco;

- ρ_i é a resistividade no estado intrínseco;

- σ_{dop} é a condutividade no estado dopado;

- $\rho_{\scriptscriptstyle dop}$ é a resistividade no estado dopado.

Vem $\sigma_i = e n_i (\mu_e + \mu_h)$, pois $n=p=n_i$.

 $\mu_{dop} = ne\mu_e + pe\mu_h = 4 \times 10^{23} e\mu_e + n_i e\mu$, pois P (fósforo) é dador, $p=n_i$ e n_i a 300 K é calculado pela equação (1.1).

Exercício 1.9

R: Para altas temperaturas, n_i e σ crescem e estamos na região intrínseca. Na região entre 40 e 300 K estamos na região extrínseca. Abaixo de 40 K, os electrões estão "congelados".

Exercício 1.10

R: Ver texto (página 2).

Exercício 1.11

R: O alumínio (Al) é uma impureza aceitadora.

Para $T=300 \text{ K e } n=0 \text{ vem } R_H=1/(pe), \text{ com } p=10^{18}.$

Para T=1000 K estamos na região intrínseca (ver exercício 1.5), logo $R_H=(p,\mu_h^2-n,\mu_e^2)/[e(n,\mu_e+p,\mu_h)^2]$ e $n=p=n_i$, onde n_i obtém-se da equação (1.1).

RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 2.1

R: Para λ>1 μm o silício é transparente (Figura 2.4), mas para valores inferiores é possível fabricarem-se fotodíodos com a construção simples de junções pn. À medida que λ diminui dentro da região visível (começando na faixa correspondente ao vermelho, passando pelo amarelo e terminando no verde - Figura 2.3), também o coeficiente de absorção diminui. Significa isto que a profundidade de penetração dos fotões correspondentes também diminui. Para ser eficaz, a detecção de fotões correspondentes a maiores comprimentos de onda deve ser feita através de junções pn mais profundas. Usando três junções pn com profundidades diferentes é possível discriminar o tipo de cor. A junção mais profunda vai servir para detectar o vermelho, a menos profunda o azul e a intermédia o verde.

Exercício 2.2

R: Ver texto (página 19). Membranas de SiN apresentam stress residual em tensão. Membranas de SiO2 apresentam stress compressivo.

Exercício 2.3

R: Ver texto (página 25).

Exercício 2.4

R: Evitar a presença de outros gases na câmara de deposição e a oxidação.

Exercício 2.5

R: Ver texto (página 17).

Exercício 2.6

R: São as forças a que está sujeito um material em repouso, o qual pode ser compressivo ou em tensão. O recozimento (*annealing*) dos filmes finos ajuda a diminuir o stress residual.

Exercício 2.7

R: Na oxidação térmica basta apenas introduzir oxigénio e aumentar a temperatura no interior de um forno, resultando na formação e no crescimento progressivo de uma camada de SiO₂ sobre o silício. Filmes finos de SiO₂ obtidos por deposição envolvem a tecnologia LPCVD onde há reacções químicas e a utilização de gases específicos.

Exercício 2.8

R: Menor espessura e menor stress por exemplo numa membrana em tensão. Ver texto (páginas 19-20).

Exercício 2.9

R: Aplicações no infravermelho, visível e ultravioleta respectivamente.

Exercício 2.10

R: Ver texto (páginas 22, 24 e 25).

RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 3.1

R: Ver texto (Figura 3.20b).

Exercício 3.2

R: a) Ver texto (página 39).

b) Apenas em tecnologia CMOS.

Exercício 3.3

R: Definir regiões dopadas (com sinal contrário) como base para o n-MOSFET e p-MOSFET. A desvantagem é o uso de mais uma máscara para a p-well.

Exercício 3.4

R: a) Para a mesma área, consegue-se integrar um maior número de transístores e diminuir a potência de consumo pois a V_{th} é menor para comprimento de canais menores.

b) A resolução óptica do processo litográfico (comprimentos de onda muito pequenos para definição das máscaras) e a tensão V_{th} está a atingir valores mínimos para a passagem de um electrão da *source* para o *drain*. A partir de um valor limite o processo é probabilístico.

Exercício 3.5

R: Ver texto (páginas 30-31).

Exercício 3.6

R: a) $Z = X \oplus Y = \overline{X}Y + X\overline{Y}$.

b) Desenhar dois inversores lógicos e obter as ligações eléctricas $A_1 = \overline{X}$ e $A_2 = \overline{Y}$. Desenhar duas portas AND e obter as ligações eléctricas $B_1 = A_1 Y$ e $B_2 = X A_2$. Desenhar uma porta OR e obter a ligação eléctrica $Z = B_1 + B_2$.

Exercício 3.7

R: Para definir as zonas de dopagem.

Exercício 3.8

R: Ver texto (página 45).

Exercício 3.9

R

Exercício 3.10

R: Ver texto (página 42-43).

Exercício 3.11

R: a) $R=N_{\square}R_{sheet}$, com $N_{\square}=100$ μm/10 μm=10. Logo $R_{sheet}=25$ kΩ.

- b) $R=N_{\square}R_{sheet}$, com $N_{\square}=100$ µm/20 µm=5. Obtém-se metade do valor inicial.
- c) $R=N_{\square}R_{sheet}$, com $N_{\square}=200 \mu m/10 \mu m=20$. Obtém-se o dobro do valor inicial.

Exercício 3.12

R: a) $C = \varepsilon A/d = 4 \times 10^{-9}/(36\pi).(100 \ \mu m \times 100 \ \mu m)/(1.645 \ \mu m) \approx 215 \ fF$,

b) $C = \varepsilon A/d = 4 \times 10^{-9}/(36\pi).(100 \ \mu m \times 100 \ \mu m)/(1.645 \ \mu m) \approx 354 \ fF$,

RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 4.1

R: Ver texto (página 68).

Exercício 4.2

R: Ver texto (página 68).

Exercício 4.3

R: a) Ver texto (páginas 69-70).

b) Ver texto (página 68).

Exercício 4.4

R: Ver texto (página 76).

Exercício 4.5

R: É possível, mas exige maior tempo na deposição e a colocação do substrato e alvo a diferentes distâncias para obter uma deposição conformal. Ver texto (página 81).

Exercício 4.6

A evaporação por *hot-wire* (ou resistiva) é simples, pois o aquecimento é feito através da passagem de uma corrente eléctrica por um barco de evaporação que segura o material a evaporar. De entre outras vantagens, a evaporação por *e-beam* (feixe de electrões) permite ultrapassar um grande inconveniente da evaporação resistiva: o de projectar impurezas e outros contaminantes presentes no filamento e assegurar com maior resolução a espessura do filme a depositar.

Exercício 4.7

R: A micromaquinagem superficial é a técnica que permite fabricar estruturas de menores dimensões.

Exercício 4.8

R: Ver texto (página 71).

Exercício 4.9

R: Sim, mas obriga a um elevado número de máscaras com várias CQSA.

Exercício 4.10

R: Por CVD, pois um dos gases presentes é o SiH₄.

RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 5.1

R: a) Para os n-MOSFETs:

$$-\frac{W_1/L_1}{W_2/L_2} = \frac{I_2}{I_1} = 10 \to (W_2/L_2) = 10 \times (W_1/L_1)$$

$$-(W_3/L_3) = 12.5 \times (W_1/L_1)$$

Para os p-MOSFETs:

Assumindo que:

- os transístores M_1 e M_4 possuem o mesmo tamanho

$$-I_4=I_1=100 \mu A$$

-
$$V_{ds4} = V_{ds1} = V_{gs1}$$

Para um bom funcionamento do circuito, tanto M_4 como M_7 devem operar em saturação, ou seja:

$$-I_4 = \frac{\mu_n C_{ox}}{2} (\frac{W_1}{L_1}) (V_{gs1} - V_{thn})^2 \quad (*)$$

$$-I_4 = \frac{\mu_p C_{ox}}{2} \left(\frac{W_7}{L_7}\right) \left(V_{sg7} + V_{thp}\right)^2$$

O tamanho de M₇ é tal que:

$$-\left(\frac{W_7}{L_7}\right) = \frac{2I_4}{\mu_p C_{ox}} (V_{dd} - V_{ds4} + V_{thp})^2 = \frac{2I_4}{\mu_p C_{ox}} (V_{dd} - V_{gs1} + V_{thp})^2 \quad (**)$$

Combinando a equação (*) anterior:

$$-V_{gs1} = V_{ds4} = \sqrt{\frac{2I_4}{\mu_n C_{ox}(W_1/L_1)}} + V_{thn}$$

Com a equação (**), resulta finalmente no tamanho de M₇:

$$-(\frac{W_7}{L_7}) = \frac{2I_4}{\mu_p C_{ox}} (V_{dd} - \sqrt{\frac{2I_4}{\mu_n C_{ox} (W_1 / L_1)}} + V_{thp} - V_{thn})^2$$

O tamanho dos restantes p-MOSFETs são:

$$-(W_5/L_5) = \frac{I_5}{I_4} \times (W_7/L_7) = 5 \times (W_7/L_7)$$

$$-(W_6/L_6) = \frac{I_6}{I_4} \times (W_7/L_7) = 7.5 \times (W_7/L_7)$$
 b)
$$-(W_2/L_2) = 3 \times (W_1/L_1)$$

Exercício 5.2

R: a)
$$R.I_{ds} = V_{dd}/2 \rightarrow I_{ds} = V_{dd}/(2R)$$

$$I_{ds} = \frac{\mu_n C_{ox}}{2} (\frac{W}{L}) (V_{bias} - V_{thn})^2 = \frac{V_{dd}}{2R}$$

$$V_{bias} = \sqrt{\frac{V_{dd}}{\mu_s C_{ox} R(W/L)}} + V_{thn} \approx 1.21 \text{ V}$$

 $-(W_3/L_3) = 10 \times (W_1/L_1)$

- b) $g_m = \mu_n C_{ox}(W/L)(V_{gs} V_{thn}), V_{gs} = V_{bias} = 1.21 \text{ V}$ $g_m \approx 573 \text{ mS}$
- c) Supondo que C_b é muito elevado de modo a não atenuar x(t) $V_{gs}=V_{bias}+x(t)$ varia no tempo

O caso mais desfavorável em termos de operação é quando V_{gs} se torna inferior a V_{thn} , fazendo com que o transístor deixe de operar na região de saturação. Assim, deve-se garantir que:

-
$$min(V_{gs})=V_{bias}+min[x(t)]>V_{thn}$$

Portanto $V_{bias}>V_{thn}$ -0.01=0.78 V

Exercício 5.3

 \boldsymbol{R} : a) $A_v = -g_{m1}.R_{d(eq)}$

$$-g_{m1} = \mu_n C_{ox} (\frac{W_1}{L_1}) (V_{bias1} - V_{thn0}) = \sqrt{2\mu_n C_{ox} (\frac{W_1}{L_1}) I_{ds1}}$$

$$-R_{d(eq)} = \frac{V_{ds2}}{I_{ds2}} = [\mu_p C_{ox} (\frac{W_2}{L_2}) (V_{sg2} + V_{thp0})]^{-1}$$

mas $V_{sg2}=V_{dd}-V_{bias2}$ e $V_{gs1}=V_{bias1}$

Se por hipótese admitir-se que $R_{d(eq)}$ =10 K Ω $\rightarrow g_{m1}$ =2.10 mS $\rightarrow V_{bias1}$ =0.89 V $\rightarrow I_{ds1}$ =0.20 mA

$$R_{d(eq)} = \left[\mu_p C_{ox} \left(\frac{W_2}{L_2}\right) (V_{dd} - V_{bias2} + V_{thp0})\right]^{-1} = 10 \text{ K}\Omega \rightarrow V_{bias2} = 1.45 \text{ V}$$

b)
$$g_{m1} = \mu_n C_{ox} (\frac{70}{2}) (V_{bias1} - V_{thn0}) = 1.05 \text{ mS}$$

 $A_v = -g_{m1} \cdot R_{d(ea)} = -10.5$

Exercício 5.4

R: a)
$$R_{bias} = \frac{1}{I_{ref}} \times \left[V_{dd} - V_{thn0} - \sqrt{\frac{2I_{ref}}{\mu_n C_{ox}(W_3/L_3)}} \right] = 38.75 \text{ K}\Omega$$

- b) $I_{ds}=100 \ \mu\text{A} \rightarrow (W_1/L_1)=(W_2/L_2)=100/4\times40/5=100/5 \ [\mu\text{m}/\mu\text{m}]$
- c) Como $V_{sb}\neq 0$, é necessário considerar o efeito de corpo que afecta M_1 . Para um bom funcionamento do circuito, M_1 e M_2 tem de operar em saturação.

Para isso: $V_{ds2} > V_{gs2} - V_{thn2}$ (como o efeito de corpo não afecta M_2 , então $V_{thn2} = V_{thn0}$) e $V_{ds1} > V_{gs1} - V_{thn1}$ (o efeito de corpo afecta M_1 , logo $V_{thn1} \neq V_{thn0}$),

Assumindo que $V_{ds3}=V_{ds2}=V_{gs3}=2.5-38.75\times10^3\times40\times10^{-6}=0.95 \text{ V}$ $(V_{ds3}>V_{gs3}-V_{thn0}=0.25 \text{ V})$ e M_2 mantém-se em saturação).

$$V_{sb1} = V_{ds2} = 0.95 \text{ V} \rightarrow V_{thn(1)} = V_{thn0} + [(|2\Phi_F| + V_{sb})^{-1/2} - |2\Phi_F|^{-1/2}] \approx 0.89 \text{ V}$$

$$I_{ds1} = \frac{\mu_n C_{ox}}{2} (\frac{W_1}{L_1}) (V_{bias1} - V_{ds2} - V_{thn(1)})^2 = 100 \,\mu\text{A} \rightarrow V_{bias1} = 2.09 \,\text{V}$$

 M_1 opera em saturação porque V_{ds1} =2.5-0.95=1.55 é maior que V_{gs1} - $V_{thn(1)}$ =0.25 V

d) $A_v = g_{m1} (1/g_{mb1}//r_{o1}//r_{o2})/[1+g_{m1}(1/g_{mb1}//r_{o1}//r_{o2})]$

 $r_{o1}=r_{o2}=\infty$ pois ignora-se λ ($\lambda=0$)

 $\operatorname{Assim} A_{v} = g_{m1}/(g_{m1} + g_{mb1})$

$$g_{m1} = \sqrt{2\mu_n C_{ox}(\frac{W_1}{L_1})I_{ds1}} = 0.18 \text{ mS}$$

$$g_{mb1} = \frac{\gamma g_{m1}}{2\sqrt{|2\Phi_F| + V_{sb1}}} = 43.4 \,\mu\text{S}$$

 A_v =0.81 (<1 como era esperado).

e) $R_{out}=1/(g_{m1}+g_{mb1})=4.48 \text{ K}\Omega$

Exercício 5.5

R: a) Deve garantir-se que qualquer que seja a tensão instantânea no terminal do drain V_d =0.3+0.05cos(2 πft), o transístor não saia de saturação. Além disso $V_{sb} \neq V_s$, não se podendo desprezar o efeito de corpo.

Para V_{d1} =0.35 V $\rightarrow V_{thn1}$ =0.78 V \rightarrow para continuar saturado, V_{bias1} >1.01 V

Para V_{d2} =0.25 V \rightarrow V_{thn2} =0.76 V \rightarrow para continuar saturado, V_{bias2} >1.13 V Logo para não sair de saturação deve V_{bias} >max(V_{bias1} , V_{bias2})=1.13 V.

b)
$$A_v = \frac{\mu_n C_{ox}}{2} (\frac{W_1}{L_1}) (V_{bias} - V_d - V_{thn}) (1 + \frac{g_{mb}}{g_m})$$

 V_{bias} =1.40 V e supondo V_d =0.3 V (só com componente DC) \rightarrow V_{thn} =0.77 V

 $\rightarrow I_{ds}$ =61 µA $\rightarrow g_m$ =0.37 mS, g_{mb} =76 µS $\rightarrow A_v$ =0.04

c) $R_{in}=1/(g_m+1/g_{mh})=2.24 \text{ K}\Omega$

RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 6.1

R: Ver texto (página 112).

Exercício 6.2

R: Ver texto (páginas 129 a 131).

Exercício 6.3

R: Ver texto (página 112).

Exercício 6.4

R: Ver texto (página 114).

Exercício 6.5

R: Ver texto (página 116).

Exercício 6.6

R: Escolher o par L [H] e C [F], de modo a $f = 1/(2\pi\sqrt{LC})$.

Para f=4 MHz, pode escolher-se L=5 μ H e L=316 pF Seguir o procedimento apresentado nas páginas 124 e 125 do texto.

Exercício 6.7

R: a) Uma PLL necessita dos cinco componentes seguintes:

- (1) divisor de frequência: *N*=5200/12.5=416 (é a razão entre a frequência de saída da PLL e a frequência do oscilador de referência note-se que 5.2 GHz=5200 MHz);
- (2) comparador de frequência/fase: trata-se de um circuito digital como o ilustrado na Figura 6.19 e por essa razão não necessita de um projecto específico;
- (3) oscilador controlado por tensão: K_{VCO} =680 MHz/V (um outro valor qualquer pode ser utilizado desde que o VCO consiga oscilar à frequência que se deseja gerar; a razão da escolha deste valor é por já ter sido implementado um VCO destes e o valor constar no texto);
- (4) bomba de carga: K_{VCO} =175 mA.rad/(2 π) (idem);
- (5) filtro de malha: suaviza a variação do sinal à entrada do VCO; o projecto dos constituintes do filtro de malha é o foco da próxima alínea.
- b) Aconselha-se a leitura da secção 6.4.5.5 do texto.

A largura de banda da PLL constitui uma outra especificação, mas a sua importância não é tão critica como a da margem de fase, pois só tem efeito na velocidade de convergência da PLL. Assim, um projecto possível do filtro de malha implica a definição deste valor:

- $f_P = 1.2 \text{ MHz}$

No texto pode observar-se o procedimento para a obtenção dos componentes do filtro:

```
- \tau_1=61.85×10<sup>-9</sup> s: ver equação (6.33)
```

- τ_3 =70.46×10⁻⁹ s: ver equação (6.34)
- $-f_c$ =537.84 KHz: ver equação (6.36)
- τ_2 =661.84×10 ⁻⁹ s: ver equação (6.35)
- C_1 =1.92 nF: ver equação (6.37)
- C_2 =18.58 nF: ver equação (6.38)
- R_2 =35.62 Ω: ver equação (6.39)
- C_3 =190 pF ($< C_1/10$): ver equação (6.40)
- R_3 =370.83 Ω : ver equação (6.40)

Alternativamente, aplicando o factor de proporcionalidade 1/1000×(11/1.92), obtêm-se um conjunto de componentes mais fáceis de adquirir comercialmente:

- C_1 =11 pF (diminuiu)
- *C*₂=10.64 pF (diminuiu)
- R_2 =6.22 K Ω (aumentou)
- C_3 =10 pF < C_1 /10 (diminuiu)
- R_3 =7.05 K Ω (aumentou)

Exercício 6.8

R: a) Em primeiro lugar importa saber se com 3.3 V de alimentação é possível fornecer directamente 1 W a uma antena com resistência de entrada igual a 50 Ω.

Da equação (6.55) sabe-se que P_{RF} =max $[v_{out}(t)]^2/(2R_L)$ e da Figura 6.32(d) sabe-se também que max $[v_{out}(t)]=V_{dd}$, logo a maior potência que é possível entregar directamente a esta carga é P_{RF} =109 mW.

Para o amplificador poder fornecer uma potência de 1 W, a máxima resistência de carga deve ser tal que $R_L = V_{dd}^2/(2P_{RF}) = 5.44 \Omega$, ou seja muito menor que os 50 Ω .

À partida parece que não é possível realizar-se um amplificador em classe A para as especificações apresentadas. Contudo e graças à introdução de uma malha LC constituída por dois ramos (com uma indutância L num dos ramos e uma capacidade C no outro ramo) é possível cumprir com as especificações (fornecer 1 W a uma antena de 50 Ω) ao mesmo tempo que o amplificador "ve" uma impedância de carga puramente real e inferior ou igual 5.44 Ω . Se R_{out} [Ω] for a resistência de entrada da antena e R_{in} [Ω] for a resistência "observada" pelo amplificador, então para a frequência f_0 [Hz] consegue-se demonstrar que os elementos da malha LC são tais que:

$$C = \frac{1}{2\pi f_0 R_{in}} \times \sqrt{\frac{R_{in}}{R_{out}}}$$
$$- L = R_{in} R_{out} C$$

A figura seguinte ilustra o amplificador de classe A completo:

Tendo em conta a máxima resistência anterior de 5.44 Ω e assumindo justamente que $R_L = R_{in} = 5.44 \Omega$, então L = 2.6 nH e C = 9.7 pF.

Seleccionando C_0 e L_0 de forma que $f_0 = (2\pi\sqrt{L_0C_0})^{-1}$, então uma possibilidade é usar L_0 =1.624 nH para combinar-se com a indutância da malha adaptadora de forma a resultar na indutância equivalente L_{eq} =2.6×1.624/(2.6+1.624)=1 nH. Por outro lado C_0 =25 pF mantém-se inalterada. Como a capacidade de bloqueio DC, C_b , é muito elevada para não atenuar o sinal de RF, a combinação desta com a capacidade da malha de adaptação resulta em C_{eq} = $C \times C_b$ /($C + C_b$)≈C, significando que possui dupla função (ajudar na adaptação e no bloqueio DC).

Sabe-se que a corrente I_{choke} é igual à máxima corrente de pico RF (I_{choke} = A_{RF} – Figura 6.32b) e vale I_{choke} = V_{dd} /5.44 \approx 0.60 A. Da mesma figura percebe-se que o n-MOSFET tem de aguentar uma corrente que é o dobro desse valor, ou seja 1.20 A. Além disso (Figura 6.32c), a tensão entre os terminais do *drain* e da *source* atinge o dobro da tensão de alimentação, o que significa que o n-MOSFET deve ser capaz de dissipar uma potência de pico igual a $1.20\times2\times3.3=7.92$ W. Uma boa regra é desenhar-se um n-MOSFET com o menor comprimento permitido pela tecnologia, L= L_{min} , e para a largura W seleccionada, desenhar-se um transístor *multi-finger* para haver uma maior distribuição das correntes por vários canais.

O sistema de polarização deve ser tal que
$$I_{chooke} = \frac{\mu_n C_{ox}}{2} (\frac{W}{L_{min}}) (V_{bias} - V_{thn})^2$$
, com

 C_{bias} o mais elevada possível para evitar atenuar o sinal a amplificar, $v_{in}(t)$, e R_{bias} também o mais elevada possível para evitar que haja fugas de $v_{in}(t)$ para a massa. Um bom exemplo é considerar C_{bias} =1 nF e R_{bias} =5 K Ω .

Quanto à indutância de *choke*, sabe-se que esta comporta-se como uma fonte de corrente assim, o módulo da sua reactância deve ser muito maior que a resistência

de carga "vista" pelo amplificador. Um bom exemplo é considerar $X_{choke}>10R_L=54.4~\Omega$, resultando em $L_{choke}>54.4/(2\pi10^9)=8.66~\text{nF}$.

Finalmente, a eficiência é (equação 6.56) $\eta = \frac{0.62 \times 5.44}{2 \times 3.3} \approx 49.4\% \ (\le 50\%).$

b) Amplificador em classe C

A estrutura e os componentes de um amplificador de classe C são os mesmos da alínea anterior. A diferença reside no ângulo de condução que é inferior a 180°. Supondo que se pretende dissipar de forma segura 10% da potência a fornecer à carga (10% de 1 W), então a eficiência é η =1/1.1=91%. Da equação (6.66), obtém-se o ângulo de condução α =111.6° (obtido numericamente). A amplitude da máxima corrente RF na carga (na carga de 5.44 Ω "observada" a partir do terminal do drain) obtém-se da equação (6.65) e vale A_{RF} =3.74 A. Da equação (6.61) obtém-se a corrente média no n-MOSFET: \bar{I}_{ds} = 0.33 A. Finalmente, obtém-se a partir da equação (6.60) a corrente DC: I_{DC} =-2.10 mA. A tensão de polarização, V_{bias} , é negativa e é tal que quando V_{gs} = V_{bias} +max[x(t)], a corrente máxima será $I_{ds(max)}$ = $\frac{\mu_n C_{ox}}{2} (\frac{W}{L_{min}})(V_{bias} + \max[x(t)] - V_{thn})^2$ =3.74-2.10=1.64 A.

A maior eficiência deste amplificador deve-se ao n-MOSFET estar a maior parte do tempo em corte. Isto consegue-se graças a V_{bias} que garante $V_{gs} < V_{thn}$ nesses intervalos.

Amplificador em classe E

A estrutura e os componentes de um amplificador de classe E podem ser observados na Figura 6.36 do texto.

Assumindo que o n-MOSFET é ideal ($V_{ds,ON}$ =0 V quando em condução), da equação (6.71) com P_{RF} =1 W retira-se a resistência de carga R_L =6.31 Ω . Uma vez mais é necessário usar uma malha de adaptação por ser diferente dos 50 Ω especificados, ou seja: C_{malha} =8.9 pF e L_{malha} =2.8 nH.

Usando R_L =6.31 Ω na equação (6.69), escolhendo um factor de qualidade elevado (Q=20) e aplicando-o na equação (6.70), obtém-se as capacidades da malha de carga do amplificador em classe E: C_1 =4.63 pF, C_2 =1.36 pF. A indutância será L= QR_I/w =20 nH.

A figura seguinte ilustra o amplificador em classe E completo:

Na malha de adaptação a indutância e a capacidade podem trocar de posição (o único efeito é a malha de adaptação deixar de ser passa-alto para passar a ser passa-baixo). Neste caso fica-se somente com $L+L_{malha}=22.8$ nH na malha de carga e a capacidade 8.9 pF em paralelo com a antena.

Relativamente à indutância de *choke*, uma vez mais $X_{choke} > 10R_L = 63.1 \,\Omega$, resultando em $L_{choke} > 63.1/(2\pi 10^9) = 10 \,\text{nF}$.

RESOLUÇÕES DOS EXERCÍCIOS PROPOSTOS

Exercício 7.1

R: Possibilidade de integração completa de antena+transmissor/receptor no mesmo chip, diminuição de perdas, baixo consumo e boa adaptação de impedâncias entre componentes. Ver texto (página 173).

Exercício 7.2

R: Ver texto (páginas 173-174).

Exercício 7.3

R: Ver texto (página 176).

Exercício 7.4

R: Ver texto (página 176).

Exercício 7.5

R: Ver texto (páginas 177-178).

Exercício 7.6

R: Ver texto (páginas 178-179).

Exercício 7.7

R: Ver texto (páginas 181-182).

Exercício 7.8

R: Ver texto (página 183).

Exercício 7.9

R: Ver texto (página 185).

Exercício 7.10

R: Ver texto (página 187).

Exercício 7.11

R: Ver texto (página 188).

Exercício 7.12

R: Ver texto (página 190).

Exercício 7.13

R: Ver texto (página 189).

Exercício 7.14

R: Ver texto (página 193 e capítulo 4 sobre a micromaquinagem no silício para o processo de fabrico).