Einführung in Visual Computing

186.822

eine gemeinsame Lehrveranstaltung von

Werner Purgathofer – Computergraphik Robert Sablatnig – Computer Vision

Für wen ist diese Lehrveranstaltung?

- Pflicht in den Bachelorstudien
 - Medieninformatik & Visual Computing
 - Software & Information Engineering
 - Medizinische Informatik
- **Freifach** für alle anderen

- Vertiefende Übungen im Winter-Semester:
 - Einführung in die Computergraphik UE
 - Einführung in die digitale Bildverarbeitung UE
 (Pflicht nur für Medieninformatik & Visual Computing)

Was ist Visual Computing?

Datenverarbeitung mit Bildern

- Computergraphik: Beschreibung → Bilder
- Bildverarbeitung: "schlechtes" → "besseres" Bild
- Computer Vision: Bilder → Beschreibung

Informationen zu EVC

www.cg.tuwien.ac.at/courses/EinfVisComp

zuständige Assistenten:

Johannes Unterguggenberger

Bernhard Steiner

Sebastian Zambanini

evc@cg.tuwien.ac.at

■ Favoritenstraße 9-11

und/oder

■ TISS → 186.822

Organisatorische oder inhaltliche Fragen?

Zur Lösung bieten sich an (in dieser Reihenfolge!)

- 1. Web
 - LVA-Seite, wikipedia oder google oder ...
- 2. Kolleginnen
- 3. TutorInnen
 - Diskussionsforum im TUWEL-Kurs
 - Sprechstunden im Pong-Labor
- 4. zuständige Assistenten:
 - J. Unterguggenberger, B. Steiner, S. Zambanini: evc@cg.tuwien.ac.at

Vorlesungsteil

- AudiMax: Mo, Di, Mi 13:15 14:45
- geplanter Service:
 - Streaming (ohne Gewähr)
 - Aufzeichnung (ohne Gewähr)
- "abwechselnd" Robert Sablatnig und Werner Purgathofer (je ~50%)
- letzter Vorlesungstermin (voraussichtlich): 30. Mai
- inkl. 4 Wiederholungseinheiten

Unterlagen zu EVC

- Skriptum Textblätter
 - Kurzfassung des Wesentlichen in Deutsch
 - ~4 Seiten / Doppelstunde
- Wie, Wo, Wann?
 - als PDF online zum Herunterladen in TISS
 - zeitnah zur jeweiligen Vorlesungseinheit

Unterlagen zu EVC

- Kopien der Slides (Folien)
 - geringfügig veränderte Slides (Copyright!)
 - in Englisch
 - reichen zum Lernen alleine nicht aus!
- Wie, Wo, Wann?
 - als PDF online zum Herunterladen in TISS
 - zeitnah zur jeweiligen Vorlesungseinheit

Weiterführende Unterlagen

Buch in Deutsch:

Mischwitz, Fischer, Haberäcker, Socher:

Computergrafik und Bildverarbeitung.

3. Auflage

link.springer.com/book/10.1007/978-3-8348-8323-0

Weiterführende Unterlagen

Engl. Buch zu Computergraphik:

Shirley, Marschner: Fundamentals of Computer Graphics 3rd Edition

Engl. Buch zu Computer Vision:

Richard Szeliski:

Computer Vision: A Modern Approach

szeliski.org/Book

Übungsbeispiele

Details werden heute präsentiert.

ANMELDUNG zur Lehrveranstaltung:

bis 6. März in TISS

- + Eingangsbeispiel bis 15. März abgeben.
- Ohne Anmeldung keine Teilnahme!

Leistungsbeurteilung der VU

- Übungserfordernisse:
 - 1+5 Beispiele abgeben (insgesamt 160 Punkte)
 - +20 Bonuspunkte erreichbar!
 - 80 Punkte (ohne Bonus) mindestens erforderlich
- Tests:
 - 2 Tests mit je 120 Punkten: 6.4., 19.6.
 - 100 Punkte mindestens erforderlich
 - Ersatztest Anfang Oktober ersetzt einen Test
- Note:
 - ab 200 Punkte (ohne Bonus) = positiv
 - ... 340 bis 420 Punkte = sehr gut

Einführung in Visual Computing

Übungsteil

Johannes Unterguggenberger
Bernhard Steiner
Sebastian Zambanini

Aufbau des Übungsteils

■ Eingangsbeispiel - Bildbearbeitung

Abgabe 1:

- Matlab Basics
- Kamerasensoren

Abgabe 2:

- Rekonstruktion und Modellierung
- Rasterization
- Bonusbeispiel (optional)

Matlab

- www.sss.tuwien.ac.at/sss/
- wird im Informatiklabor verfügbar sein

Blender

www.blender.org/download/

Gimp

www.gimp.org/downloads/

Autodesk ReMake

http://www.autodesk.com/education/free-software/remake

Einführung in Visual Computing

Kommunikation

- Kommunikation über das Diskussionsforum im TUWEL-Kurs
 - TISS-Forum oder andere Plattformen werden nicht betreut!

186.822 Einführung in Visual Computing (VU 5,0) 2017S

In diesem Forum könnt ihr euch über die Übungsbeispiele austauschen und bei Unklarheiten nachfragen! Bitte postet KEINE Codesnippets aus den Beispielen.

Betreuung

- Pong-Raum
 - TutorInnen bieten Sprechstunden nach der Vorlesung an
 - an welchen Tagen kann man auf der LVA-Seite nachlesen: www.cg.tuwien.ac.at/courses/EinfVisComp
 - keine Anmeldung nötig

Termine

Wichtige Termine wie Abgabefristen, Abgabegespräche und Tests finden sich auf den LVA-Seiten:

www.cg.tuwien.ac.at/courses/EinfVisComp/

https://tuwel.tuwien.ac.at/course/view.php?idnumber=186822-2017S

Eingangsbeispiel

"Bildbearbeitung" (verpflichtend)

■ Foto mit einem Bildbearbeitungsprogramm bearbeiten

Eingangsbeispiel

"Bildbearbeitung" (verpflichtend)

■ Foto mit einem Bildbearbeitungsprogramm bearbeiten

Deadline: 15. März 2017 23:55

= verbindliche Anmeldung zur LVA!(d.h. Sie bekommen ein Zeugnis)

Beispiel 1: Matlab

Dient der Einführung in Matlab

- Verwenden der eingebauten Hilfe
- Code debuggen
- simple Bildverarbeitung
- ...

Dient der Wiederholung von

- Vektorrechnung
- Matrizenrechnung
- ...

Beispiel 1: Matlab

Dient der Vorbereitung auf den Test

- Berechnungen v. Normalen (für Beleuchtung)
- Filter anwenden
- Transformationsmatrizen ...

Besteht aus 4 Teilen:

- 1. Basics Matlab-Einführung 13. März 2017
- Triangles
- 3. Images
- 4. Transformations

EVC - TUWEL

- https://tuwel.tuwien.ac.at/course/view.php?idnumber=186822-2017S
- Login über TU-Account
- nur offen für LVA-Teilnehmer (TISS Anmeldung)
- enthält alle Angaben zu den Beispielen
 - Angaben werden während des Semesters freigeschaltet
- Anmeldung zu Abgabegesprächen
- Livestream und Aufzeichnungen der Vorlesungen
- Vorlesungsfolien und Skripten

Einführung in Visual Computing

Introduction to Computer Graphics

Werner Purgathofer

Was ist Visual Computing?

Datenverarbeitung mit Bildern

- Computergraphik: Beschreibung → Bilder
- Bildverarbeitung: "schlechtes" → "besseres" Bild
- Computer Vision: Bilder → Beschreibung

Who needs Computer Graphics?

- entertainment: games, film, tv
- industrial design, architecture, landscape arch.
- marketing, advertisements
- simulators (training): cars, aircraft, spacecraft...
- perceptual rendering: security issues, design, ...
- cultural heritage, museums, learning
- science, medical visualisation
- • •

Contents of Computer Graphics Part

- color
- graphics primitives, rasterization
- graphics pipeline, projections, transformations
- camera definition, data structures and models
- clipping, anti-aliasing
- visibility testing, lighting + shading
- ray-tracing, global illumination
- texture maps, surface structure
- curves and surfaces

Color

what is color?

how can color be described?

color on monitor/printer

Contents of Computer Graphics Part

- color
- graphics primitives, rasterization
- graphics pipeline, projections, transformations
- camera definition, data structures and models
- clipping, anti-aliasing
- visibility testing, lighting + shading
- ray-tracing, global illumination
- texture maps, surface structure
- curves and surfaces

Graphics Primitives

rasterization:

which pixels form a line, a circle, any primitive

triangle filling:

how to interpolate inside a triangle

Contents of Computer Graphics Part

- color
- graphics primitives, rasterization
- graphics pipeline, projections, transformations
- camera definition, data structures and models
- clipping, anti-aliasing
- visibility testing, lighting + shading
- ray-tracing, global illumination
- texture maps, surface structure
- curves and surfaces

Projections in the Graphics Pipeline

Transformations

- translation, rotation, scaling, ...
- simple formulas for simple transformations:

$$\mathbf{x}' = \mathbf{s}_{\mathbf{x}} \cdot \mathbf{x}$$

$$y' = s_y \cdot y$$

general notation for all transformations: matrices

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

- color
- graphics primitives, rasterization
- graphics pipeline, projections, transformations
- camera definition, data structures and models
- clipping, anti-aliasing
- visibility testing, lighting + shading
- ray-tracing, global illumination
- texture maps, surface structure
- curves and surfaces

Camera Definition

- similar to taking a photograph
- involves selection of
 - camera position
 - camera direction
 - camera orientation
 - "window" (zoom) of camera

Data Structures and Models

polygon surfaces: general data structure

CSG-tree, octree, ...: special data structures

- color
- graphics primitives, rasterization
- graphics pipeline, projections, transformations
- camera definition, data structures and models
- clipping, anti-aliasing
- visibility testing, lighting + shading
- ray-tracing, global illumination
- texture maps, surface structure
- curves and surfaces

Clipping

- cutting off parts that are outside window
- clipping lines = easy
- clipping polygons:

clipping in clip-space [0..1, 0..1, 0..1]

Anti-Aliasing

reduce discretization artifacts

- color
- graphics primitives, rasterization
- graphics pipeline, projections, transformations
- camera definition, data structures and models
- clipping, anti-aliasing
- visibility testing, lighting + shading
- ray-tracing, global illumination
- texture maps, surface structure
- curves and surfaces

Visibility Testing

remove hidden parts of a model

Lighting & Shading

- lightsource definition
- reflection properties
- smooth shading

- color
- graphics primitives, rasterization
- graphics pipeline, projections, transformations
- camera definition, data structures and models
- clipping, anti-aliasing
- visibility testing, lighting + shading
- ray-tracing, global illumination
- texture maps, surface structure
- curves and surfaces

Ray Tracing

generates realistic images by following viewing rays

Global Illumination

 describes the physical process of light distribution in a diffuse reflecting environment

- color
- graphics primitives, rasterization
- graphics pipeline, projections, transformations
- camera definition, data structures and models
- clipping, anti-aliasing
- visibility testing, lighting + shading
- ray-tracing, global illumination
- texture maps, surface structure
- curves and surfaces

Texture Maps & Surface Structure

- adds surface details to simple models
- texture in (u,v)-space
- parametrization (mapping texture ← object)
- render objects with texture information

- color
- graphics primitives, rasterization
- graphics pipeline, projections, transformations
- camera definition, data structures and models
- clipping, anti-aliasing
- visibility testing, lighting + shading
- ray-tracing, global illumination
- texture maps, surface structure
- curves and surfaces

Curves and Surfaces

 smooth modeling with interpolating and approximating curves and surfaces

Some Topics of Related Lectures

- visualization
- visual analysis
- computer animation
- virtual and augmented reality
- advanced modeling
- fractals, particle systems, ...
- realtime algorithms for graphics
- user interface design

