

IA BIG ATA

Mineração de Dados

Parte 7
Extração de Padrões
Classificação baseada em Instâncias
Método kNN

Prof. Ricardo M. Marcacini ricardo.marcacini@icmc.usp.br

Identificação do problema

Tarefas Preditivas

k-NN

Relembrando...

IMBA IA BIG DATA

Medidas de proximidade (Parte 2 de MD)

Distância Euclidiana

Distância de Manhattan

Distância Suprema

Distância de Minkowski

Distância de Mahalanobis

Cosseno

Casamento Simples

Jaccard

O Método kNN (k-Nearest Neighbors)

MBA IA BIG DAYA

Ideia principal e motivação:

"Se anda como um pato, grasna como um pato, age como um pato, então provavelmente é um pato."

Nova instância

MBA IA BIG DAYA

• Ideia principal e motivação:

"Se anda como um pato, grasna como um pato, age como um pato, então provavelmente é um pato."

WIBA IA BIG DATA

• Ideia principal e motivação:

"Se anda como um pato, grasna como um pato, age como um pato, então provavelmente é um pato."

Objetos (instâncias) com informação de rótulo

Objetos (instâncias) com informação de rótulo

MBA IA BIG DATA

• Pré-requisitos e parâmetros

Uma base de instâncias/objetos com <u>informação de classe</u>

Pré-requisitos e parâmetros

- Uma base de instâncias/objetos com <u>informação de classe</u>
- Escolher um <u>medida de</u><u>proximidade</u> entre objetos

• Pré-requisitos e parâmetros

- Uma base de instâncias/objetos com <u>informação de classe</u>
- Escolher um <u>medida de</u><u>proximidade</u> entre objetos
- Definir um <u>valor de k</u> (quantidade de vizinhos mais próximos)

• Pré-requisitos e parâmetros

- Uma base de instâncias/objetos com informação de classe
- Escolher um <u>medida de</u><u>proximidade</u> entre objetos
- Definir um <u>valor de k</u> (quantidade de vizinhos mais próximos)
- Uma <u>estratégia de votação</u> para determinar a classe

O efeito do parâmetro k (votação majoritária)

Classificação usando a informação de classe do vizinho rotulado mais próximo do novo objeto

IVIBA IA BIG DAYA

O efeito do parâmetro k (votação majoritária)

1-NN

Classificação usando a informação de classe do vizinho rotulado mais próximo do novo objeto

Sensível a objetos ruidosos/outliers

O efeito do parâmetro k (votação majoritária)

2-NN

Valores pares (e pequenos) para k podem ocasionar empates.

Também pode ocorrer com valores ímpares para k, por exemplo, k=3 e três classes.

Estratégias comuns para desempatar:

- Utilizar o resultado com "k-1"
- Votação ponderada (em breve)

O efeito do parâmetro k (votação majoritária)

MBA IA BIG DAYA

O efeito do parâmetro k (votação majoritária)

O uso de valores muito grandes para *k* tende a incluir objetos de outras classes como vizinhos

IVIBA IA BIG DATA

Exemplo (Conjunto de dados IRIS)

ID	Sepal Length	Sepal Width	Petal Length	Petal Width	Class
1	5,1	3,5	1,4	0,2	Iris-setosa
2	4,9	3,0	1,4	0,2	Iris-setosa
3	7,0	3,2	4,7	1,4	Iris-versicolor
4	6,4	3,2	4,5	1,5	Iris-versicolor
5	6,3	3,3	6,0	2,5	Iris-virginica
6	5,8	2,7	5,1	1,9	Iris-virginica

Sepal Length	Sepal Width	Petal Length	Petal Width	Class
5,4	3,1	2,5	1,0	???

 Vamos usar distância euclidiana e testar valores de k entre 1 e 6 (votação majoritária).

Ranking	ID	Distância	Classe
1°	1	1,44	Iris-setosa
2°	2	1,45	Iris-setosa
3°	4	2,29	Iris-versicolor
4 °	3	2,68	Iris-versicolor
5°	6	2,80	Iris-virginica
6°	5	3,91	Iris-virginica

- 2-NN = Iris-setosa
- 3-NN = Iris-setosa
- 4-NN = Empate
- 5-NN = Empate
- 6-NN = Empate

- Voto ponderado
 - Cada objeto vizinho (x) recebe um peso conforme sua distância em relação ao novo objeto

$$voto = \frac{1}{dist(x, novo)}$$

 O novo objeto é classificado conforme o somatório (ponderado) de cada voto

- Voto ponderado
 - O novo objeto é classificado conforme o somatório (ponderado) de cada voto

Ranking	ID	Distância	Classe
1°	1	1,44	Iris-setosa
2°	2	1,45	Iris-setosa
3°	4	2,29	Iris-versicolor
4 °	3	2,68	Iris-versicolor
5 °	6	2,80	Iris-virginica
6 °	5	3,91	Iris-virginica

- 2-NN = Iris-setosa
- 3-NN = Iris-setosa
- 4-NN = Iris-setosa
- 5-NN = Iris-setosa
- 6-NN = Iris-setosa

IVIBA IA BIG DATA

Seleção de instâncias e remoção de outliers

Se uma instância/objeto do conjunto de treinamento possui vizinhos com classes diferentes, então esse exemplo pode ser considerado um *outlier* e ser removido do conjunto de treinamento.

MBA IA BIG DATA

Seleção de instâncias e remoção de outliers

Se uma instância/objeto do conjunto de treinamento possui vizinhos com classes diferentes, então esse exemplo pode ser considerado um *outlier* e ser removido do conjunto de treinamento.

MBA IA BIG DATA

Seleção de instâncias e remoção de outliers

Se uma instância/objeto do conjunto de treinamento possui vizinhos com classes diferentes, então esse exemplo pode ser considerado um outlier e ser removido do conjunto de treinamento.

WIBA IA BIG DATA

- Propriedades
 - Classificação local
 - Estratégia lazy (preguiçosa)

Armazena os objetos do treinamento. Espera um novo objeto de teste para realizar a classificação.

Não paramétrico

Não assume qualquer distribuição a respeito dos dados.

 Capaz de modelar espaços de decisões complexos

http://vision.stanford.edu/teaching/cs231n-demos/knn/

MBA IA BRGA

kNN para problemas de regressão

O valor (numérico) predito é a média dos valores do atributo classe dos k-vizinhos mais próximos

ID	ldade	Anos de Profissão	Salário
1	20	2	2000
2	25	3	2500
3	50	25	8000
4	32	12	5000
5	27	5	3000
6	30	10	2700
7	31	13	????

Qual o salário estimado de ID=7?

WIBA IA BIG DATA

kNN para problemas de regressão

O valor (numérico) predito é a média dos valores do atributo classe dos k-vizinhos mais próximos

ID	ldade	Anos de Profissão	Salário
1	20	2	2000
2	25	3	2500
3	50	25	8000
4	32	12	5000
5	27	5	3000
6	30	10	2700
7	31	13	????

Qual o salário estimado de ID=7?

Resposta:

Usando k=2 e distância euclidiana

MBA IA BIG DAYA

kNN para problemas de regressão

Observação: mesma ideia pode ser empregada para tratamento de valores ausentes (imputação de valores ausentes)

ID	ldade	Anos de Profissão	Salário
1	20	2	2000
2	25	3	2500
3	50	25	8000
4	32	12	5000
5	27	5	3000
6	30	10	2700
7	31	13	????

Qual o salário estimado de ID=7?

Resposta:

Usando k=2 e distância euclidiana

Considerações Finais

- MBA IA BIG DATA
- Determinar parâmetros é um problema experimental
 - Valor de *k*
 - Medida de proximidade
 - Votação majoritária ou ponderada

Considerações Finais

- WBA IA BIG DATA
- Determinar parâmetros é um problema experimental
 - Valor de *k*
 - Medida de proximidade
 - Votação majoritária ou ponderada
- Padronizar os atributos

Considerações Finais

- MBA IA BIGA DAFA
- Determinar parâmetros é um problema experimental
 - Valor de *k*
 - Medida de proximidade
 - Votação majoritária ou ponderada
- Padronizar os atributos
- Técnicas para reduzir custo computacional
 - Paralelismo
 - Remover objetos redundantes e outliers
 - Indexação para acelerar o cálculo de distâncias

Bibliografia

Rezende, S. O. (2003). Sistemas inteligentes: fundamentos e aplicações. Editora Manole Ltda.

Tan, P.N.; Steinbach, M.; Karpatne, A.; Kumar, V. (2016). *Introduction to Data Mining (2nd Edition)*. Pearson.

