Numbers: Greater-than and Less-than

Video companion

1 Inequalities, basic idea

Introduction to symbols:

a < b	" a is less than b "
x > y	" x is greater than y "
$c \le d$	" c is less than or equal to d "
$z \ge w$	" z is greater than or equal to w "
$e \ll f$	" e is much, much less than f "

2 Inequality on the real number line

2 < 3.1 "2 is to the left of 3.1 on the real number line" -11.78 < 3.1 "-11.78 is to the left of 3.1 on the real number line"

For any a < b, a must be to the left of b on the real number line.

3.1 > 2 "3.1 is to the right of 2 on the real number line"

In general, a is less than b, if, and only if, b is greater than a:

$$a < b \iff b > a$$

3 Much, much less than

 $x \ll y$ "x is much, much less than y" (Not proper math, but used frequently in data science)

For example, $1 \ll 1,000,000$, which is reasonable but not possible to prove "true"

4 Less than or equal to

$$a \le b$$
 means $a < b$ or $a = b$

Examples:

Is $2 \le 3.1$ true?

$$\begin{bmatrix} 2 < 3.1 & \checkmark \\ 2 = 3.1 & \times \end{bmatrix} \checkmark$$

Is $2 \le 2$ true?

$$\begin{array}{ccc}
2 < 2 & \times \\
2 = 2 & \checkmark
\end{array}$$

Is $2 \le 0.8$ true?

$$\begin{bmatrix} 2 < 0.8 & \times \\ 2 = 0.8 & \times \end{bmatrix} \times$$