CD40109BMS

December 1992

CMOS Quad Low-to-High Voltage Level Shifter

Features

- High Voltage Type (20V Rating)
- Independence of Power Supply Sequence Considerations
 - VCC can Exceed VDD
 - Input Signals can Exceed Both VCC and VDD
- . Up and Down Level Shifting Capability
- Three-State Outputs with Separate Enable Controls
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VCC = 5V, VDD = 10V
 - 2V at VCC = 10V, VDD = 15V
- Standardized Symmetrical Output Characteristics
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- High or Low Level Shifting with Three-State Outputs for Unidirectional or Bidirectional Bussing
- Isolation of Logic Subsystems Using Separate Power Supplies from Supply Sequencing, Supply Loss and Supply Regulation Considerations

CD40109BMS

TOP VIEW

Description

CD40109BMS contains four low-to-high voltage level shifting circuits. Each circuit will shift a low voltage digital logic input signal (A, B, C, D) with logical 1 = VCC and logical 0 = VSS to a higher voltage output signal (E, F, G, H) with logical 1 = VDD and logical 0 = VSS.

The CD40109BMS, unlike other low-to-high level shifting circuits, does not require the presence of the high voltage supply (VDD) before the application of either the low voltage supply (VCC) or the input signals. There are no restrictions on the sequence of application of VDD, VCC, or the input signals. In addition, with one exception there are no restrictions on the relative magnitudes of the supply voltages or input signals within the device maximum ratings, provided that the input signal swings between VSS and at least 0.7VCC; VCC may exceed VDD, and input signals may exceed VCC and VDD. When operated in the mode VCC > VDD, the CD40109BMS will operate as a high-to-low level shifter.

The CD40109BMS also features individual three-state output capability. A low level on any of the separately enabled three-state output controls produces a high impedance state in the corresponding output.

The CD40109BMS is supplied in these 16-lead outline packages:

Braze Seal DIP H4T
Frit Seal DIP H1E
Ceramic Flatpack H6W

Pinout

VCC 1 16 VDD ENABLE A 2 15 ENABLE D A 3 14 D E 4 13 H F 5 12 NC B 6 11 G ENABLE B 7 10 C VSS 8 9 ENABLE C

Functional Diagram

1 OF 4 UNITS

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V DC Input Current, Any One Input±10mA Operating Temperature Range -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance $1/16 \pm 1/32$ Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	θ_{ja}	θ _{jc} 20°C/W
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD		
For T _A = -55°C to +100°C (Package Typ		
For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package T		
Lineari	ty at 12mW/	C to 200mW
Device Dissipation per Output Transistor .		100mW
For T _A = Full Package Temperature Ran	ige (All Pack	age Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

		GROUP A		GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (1	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	2	μА
				2	+125°C	-	200	μА
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	2	μА
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	IN = VDD or GND VDD = 20		+25°C	-	100	nA
					+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load		1, 2, 3	+25°C, +125°C, -55°C	-	50	m∨
Output Voltage	VOH15	VDD = 15V, No Load	DD = 15V, No Load (Note 3)		+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = (DD = 10V, VOUT = 0.5V		+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	/DD = 15V, VOUT = 1.5V		+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	/DD = 5V, VOUT = 4.6V		+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	VDD = 5V, VOUT = 2.5V		+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μΑ	4	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VD	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C	1		
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 10V, VOH > 9\ VCC = 5V	/, VOL < 1V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 10V, VOH > 9\ VCC = 5V	/, VOL < 1V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V, VCC = 10		1, 2, 3	+25°C, +125°C, -55°C	-	3	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V, VCC = 10		1, 2, 3	+25°C, +125°C, -55°C	7	-	V
Tri-State Output	IOZL	VIN = VDD or GND	VDD = 20V	1	+25°C	-0.4	-	μА
Leakage		VOUT = 0V		2	+125°C	-12	-	μА
			VDD = 18V	3	-55°C	-0.4	-	μΑ
Tri-State Output	IOZH	VIN = VDD or GND	VDD = 20V	1	+25°C	-	0.4	μА
Leakage		VOUT = VDD		2	+125°C	-	12	μА
			VDD = 18V	3	-55°C	-	0.4	μΑ

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 10V, VIN = VCC or GND	9	+25°C	-	600	ns
Data In to Out Shift Mode L-H		VCC = 5V (Notes 1, 2)	10, 11	+125°C, -55°C	-	810	ns
Propagation Delay	TPLH1	VDD = 10V, VIN = VCC or GND	9	+25°C	-	260	ns
Data In to Out Shift Mode L-H		VCC = 5V (Notes 1, 2)	10, 11	+125°C, -55°C	=	351	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VCC or GND	9	+25°C	-	500	ns
Data In to Out Shift Mode H-L		VCC = 10V (Notes 1, 2)	10, 11	+125°C, -55°C	-	675	ns
Propagation Delay	TPLH2	VDD = 5V, VIN = VCC or GND	9	+25°C	-	460	ns
Data In to Out Shift Mode H-L		VCC = 10V (Notes 1, 2)	10, 11	+125°C, -55°C	=	621	ns
Transition Time	TTHL1	VDD = 10V, VIN = VDD or GND	9	+25°C	-	100	ns
Shift Mode L-H	TTLH1	VCC = 5V (Notes 1, 2)	10, 11	+125°C, -55°C	-	135	ns
Transition Time	TTHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
Shift Mode H-L	TTLH2	VCC = 10V (Notes 1, 2)	10, 11	+125°C, -55°C	-	270	ns
Propagation Delay	TPHZ1	VDD = 10V, VIN = VCC or GND	9	+25°C	-	120	ns
3-State Shift Mode L-H		VCC = 5V (Notes 2, 3)	10, 11	+125°C, -55°C	-	162	ns
Propagation Delay	TPHZ2	VDD = 5V, VIN = VCC or GND	9	+25°C	-	400	ns
3-State Shift Mode H-L		VCC = 10V (Notes 2, 3)	10, 11	+125°C, -55°C	-	540	ns
Propagation Delay	TPLZ1	VDD = 10V, VIN = VCC or GND	9	+25°C	-	740	ns
3-State Shift Mode L-H		VCC = 5V (Notes 2, 3)	10, 11	+125°C, -55°C	-	999	ns
Propagation Delay	TPLZ2	VDD = 5V, VIN = VCC or GND	9	+25°C	-	500	ns
3-State Shift Mode H-L		VCC = 10V (Notes 2, 3)	10, 11	+125°C, -55°C	-	675	ns
Propagation Delay	TPZH1	VDD = 10V, VIN = VCC or GND	9	+25°C	-	640	ns
3-State Shift Mode L-H		VCC = 5V (Notes 2, 3)	10, 11	+125°C, -55°C	-	864	ns
Propagation Delay	TPZH2	VDD = 5V, VIN = VCC or GND	9	+25°C	-	600	ns
3-State Shift Mode H-L		VCC = 10V (Notes 2, 3)	10, 11	+125°C, -55°C	-	810	ns
Propagation Delay	TPZL1	VDD = 10V, VIN = VCC or GND	9	+25°C	-	200	ns
3-State Shift Mode L-H		VCC = 5V (Notes 2, 3)	10, 11	+125°C, -55°C	-	270	ns
Propagation Delay	TPZL2	VDD = 5V, VIN = VCC or GND	9	+25°C	-	400	ns
3-State Shift Mode H-L		VCC = 10V (Notes 2, 3)	10, 11	+125°C, -55°C	-	540	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.
- 3. CL = 50pF, RL = 1K, Input TR, TF < 20ns.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	ITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	1	μΑ
				+125°C	-	30	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μΑ
				+125°C	-	60	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μΑ
				+125°C	-	120	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	=	50	mV

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	=	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
					0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA
Output Current (Source) IOF		VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V VCC = 5V	1, 2	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V VCC = 5V	1, 2	+25°C, +125°C, -55°C	3.5	-	V
Propagation Delay	TPHL1	VDD = 15V, VCC = 5V	1, 2, 3	+25°C	-	440	ns
Data In to Data Out Shift Mode L-H		VDD = 15V, VCC = 10V	1, 2, 3	+25°C	-	360	ns
Propagation Delay	TPLH1	VDD = 15V, VCC = 5V	1, 2, 3	+25°C	-	240	ns
Data In to Out Shift Mode L-H		VDD = 15V, VCC = 10V	1, 2, 3	+25°C	-	140	ns
Propagation Delay	TPHL2	VDD = 5V, VCC = 15V	1, 2, 3	+25°C	-	500	ns
Data In to Out Shift Mode H-L		VDD = 10V, VCC = 15V	1, 2, 3	+25°C	-	240	ns
Propagation Delay	TPLH2	VDD = 5V, VCC = 15V	1, 2, 3	+25°C	-	460	ns
Data In to Out Shift Mode H-L		VDD = 10V, VCC = 15V	1, 2, 3	+25°C	-	160	ns
Transition Time	TTHL1	VDD = 15V, VCC = 5V	1, 2, 3	+25°C	-	80	ns
Shift Mode L-H	TTLH1	VDD = 15V, VCC = 10V	1, 2, 3	+25°C	-	80	ns
Transition Time	TTHL2	VDD = 5V, VCC = 15V	1, 2, 3	+25°C	-	200	ns
Shift Mode H-L	TTLH2	VDD = 10V, VCC = 15V	1, 2, 3	+25°C	-	100	ns
Propagation Delay	TPHZ1	VDD = 15V, VCC = 5V	1, 2, 4	+25°C	-	150	ns
3-State Shift Mode L-H		VDD = 15V, VCC = 10V	1, 2, 4	+25°C	-	70	ns
Propagation Delay	TPHZ2	VDD = 5V, VCC = 5V	1, 2, 4	+25°C	-	400	ns
3-State Shift Mode H-L		VDD = 10V, VCC = 15V	1, 2, 4	+25°C	-	80	ns
Propagation Delay	TPLZ1	VDD = 15V, VCC = 5V	1, 2, 4	+25°C	-	600	ns
3-State Shift Mode L-H		VDD = 15V, VCC = 10V	1, 2, 4	+25°C	-	500	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

				LIM	IITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPLZ2	VDD = 5V, VCC = 15V	1, 2, 4	+25°C	-	500	ns
3-State Shift Mode H-L		VDD = 10V, VCC = 15V	1, 2, 4	+25°C	-	260	ns
Propagation Delay	TPZH1	VDD = 15V, VCC = 5V	1, 2, 4	+25°C	-	460	ns
3-State Shift Mode L-H		VDD = 15V, VCC = 10V	1, 2, 4	+25°C	-	360	ns
Propagation Delay	TPZH2	VDD = 5V, VCC = 15V	1, 2, 4	+25°C	-	600	ns
3-State Shift Mode H-L		VDD = 10V, VCC = 15V	1, 2, 4	+25°C	-	260	ns
Propagation Delay	TPZL1	VDD = 15V, VCC = 5V	1, 2, 4	+25°C	-	160	ns
3-State Shift Mode L-H		VDD = 15V, VCC = 10V	1, 2, 4	+25°C	-	80	ns
Propagation Delay	TPZL2	VDD = 5V, VCC = 15V	1, 2, 4	+25°C	-	400	ns
3-State Shift Mode H-L		VDD = 10V, VCC = 15V	1, 2, 4	+25°C	i	80	ns

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. CL = 50pF, RL = 1K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	7.5	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	1	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-1	IDD	± 0.2μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	: 1)	100% 5004	1, 7, 9, Deltas	
Interim Test	3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	: 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B Subgroup B-5		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V ± -0.5V	50kHz	25kHz
Static Burn-In 1 (Note 1)	4, 5, 11-13	2, 3, 6-10, 14, 15	1, 16			
Static Burn-In 2 (Note 1)	4, 5, 11-13	8	16	1-3, 4, 7, 9, 10, 14, 15		
Dynamic Burn-In (Note 4)	12	8	16	1, 4, 5, 11, 13	3, 6, 10, 14 (Note 3)	2, 7, 9, 15 (Note 3)
Irradiation (Note 2)	4, 5, 11-13	8	1-3, 6, 7, 9, 10, 14-16			

NOTES:

- 1. Each pin except Pin 1, VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except Pin 1, VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = 10V \pm 0.5V
- 3. Pin voltage is VDD/2
- 4. Each pin except Pin 1, VDD and GND will have a series resistor of 4.75K \pm 5%, VDD = 18V \pm 0.5V.

Logic Diagram

TRUTH TABLE

INPUTS		OUTPUTS
A, B, C, D	ENABLE A, B, C, D	E, F, G, H
0	1	0
1	1	1
Х	0	Z

Logic 0 = Low(VSS)

X = Don't care

Z = High impedance

Logic 1 = VCC at Inputs and VDD at Outputs

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 6. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 7. TYPICAL HIGH-TO-LOW PROPAGATION DELAY
TIME AS A FUNCTION OF LOAD CAPACITANCE

Typical Performance Characteristics (Continued)

FIGURE 8. TYPICAL LOW-TO-HIGH PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 9. TYPICAL INPUT SWITCHING AS A FUNCTION OF HIGH LEVEL SUPPLY VOLTAGE

FIGURE 10. HIGH LEVEL SUPPLY VOLTAGE vs LOW LEVEL SUPPLY VOLTAGE

FIGURE 11. TYPICAL DYNAMIC POWER DISSIPATION AS A FUNCTION OF INPUT FREQUENCY

Test Circuit and Waveform

	TEST VOLTAGE	
CHAR	AT A	AT B
tPHZ	VCC	VSS
tPLZ	VSS	VDD
tPZL	VSS	VDD
tPZH	VCC	VSS

FIGURE 12. OUTPUT ENABLE DELAY TIMES TEST CIRCUIT AND WAVEFORMS

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

METALLIZATION: Thickness: 11kÅ - 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902

TEL: (321) 724-7000 FAX: (321) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310

FAX: (886) 2 2716 9310 FAX: (886) 2 2715 3029