

Tema 5: Interbloqueos

Sistemas Operativo

Contenia

Introducción

Condicione

Modelado del interbloqueo

Estrategias para el interbloqueo

Predicción Detección

Tema 5: Interbloqueos

Sistemas Operativos

Grado en Ingeniería Informática Departamento de Ingeniería Informática

Universidad de Cádiz

Contenido

Tema 5: Interbloqueos

Sistemas Operativo

Contenido

Introducció

Condicione: necesarias

Modelado del interbloqueo

estrategias para el interbloqueo

- Introducción
- Condiciones necesarias para que se produzcan interbloqueos
- Modelado del interbloqueo
- Estrategias para tratar los interbloqueos
 - Prevención
 - 2 Predicción
 - O Detección

Recursos

Tema 5: Interbloqueos

Sistema Operativo

Contenia

Introducción

Condiciones necesarias

Modelado del interbloqueo

Estrategias para el interbloqueo

Prevención Predicción Detección

- Los sistemas de computación suelen disponer de una gran variedad de recursos tales como dispositivos de E/S, ficheros, variables, etc.
- Podemos clasificar los recursos de distintas formas, una de ellas es:
 - Recursos compartibles Pueden ser asignados a más de un proceso simultáneamente.
 - Recursos no compartibles o críticos Si están asignados a un proceso no pueden asignarse a otro.

Exclusión mutua

Tema 5: Interbloqueos

Sistema Operativo

Conteniac

Introducción

Condiciones necesarias

Modelado del interbloqueo

Estrategias para el interbloqueo Prevención Predicción El acceso a los recursos críticos debe realizarse bajo exclusión mutua.

- Si un proceso tiene asignado un recurso crítico y abandona la CPU, otro proceso podría solicitar ese mismo recurso crítico. No se debe asignar el recurso a este segundo proceso mientras el primero lo retenga.
- La exclusión mutua no es fácil de conseguir y se requieren mecanismos tales como los semáforos, monitores o paso de mensajes para conseguirla.

Interbloqueo

Tema 5: Interbloqueos

Sistema: Operativo

Contenia

Introducción

Condiciones necesarias

Modelado del interbloqueo

Estrategias para el interbloqued

Prevención Predicción

Definición

Bloqueo permanente de un conjunto de procesos que compiten por los recursos del sistema o que se comunican entre sí.

Cada proceso del conjunto está esperando un suceso que sólo puede ser causado por otro proceso del mismo conjunto.

Condiciones

Tema 5: Interbloqueos

Operati

Conteniac

Introduccioi

Condiciones necesarias

Modelado del interbloqueo

Estrategias para el interbloqueo

Prevención Predicción Detección Coffman, Elphick y Shoshani en 1971 establecen las condiciones para la aparición del interbloqueo.

Condiciones necesarias

- Exclusión mutua
- Retener y esperar Los procesos retienen recursos mientras esperan la asignación de otros.
- No apropiación No se puede quitar un recurso a un proceso.

Condición consecuencia de las anteriores

Separa circular Hay un conjunto de procesos en espera $\{p_0, \ldots, p_n\}$, tal que el proceso p_i está esperando un recurso retenido por p_{i+1} , para todo $i = \{0, \ldots, n\}$; y, p_n está esperando un recurso retenido por p_0 .

Modelado

Tema 5: Interbloqueos

Operau

Contonido

Condiciones

Modelado del interbloqueo

Estrategias para el interbloqueo

Prevención Predicción

El grafo de asignación de recursos consta de:

- Los círculos representan procesos.
- Los cuadrados grandes representan clases o tipos de recursos críticos.
- Los círculos pequeños dentro de los anteriores indican las unidades que existen de cada tipo de recurso.
- Arcos orientados representan asignación, solicitud y producción.

Tema 5: Interbloqueos

Operativ

Contenia

Introducció

necesarias

Modelado del interbloqueo

Estrategias para el interbloqueo

Tema 5: Interbloqueos

Operan

Contenid

Introducció

necesarias

Modelado del interbloqueo

Estrategias para el interbloqueo

Tema 5: Interbloqueos

Sistemas Operativos

Contenido

Introducció

Condiciones necesarias

Modelado del interbloqueo

Estrategias para el interbloqueo

Tema 5: Interbloqueos

Operativ

Contenid

Introduccio

necesarias

Modelado del interbloqueo

Estrategias para el interbloqueo

Tema 5: Interbloqueos

Sistemas Operativos

Contenid

Introducció

Condiciones

Modelado del interbloqueo

Estrategias para el interbloqueo

Tema 5: Interbloqueos

Sistemas Operativo

Contenide

Introducció

Condiciones

Modelado del interbloqueo

Estrategias para el interbloqueo

Tema 5: Interbloqueos

Sistemas Operativo

Contenido

Introducció

Condiciones necesarias

Modelado del interbloqueo

Estrategias para el interbloqueo

Estrategias

Tema 5: Interbloqueos

Sistem: Operativ

Contenido

Introducción

Condicione necesarias

Modelado del interbloqueo

Estrategias para el interbloqueo

Predicción Detección

Prevención

- Evitan que aparezca el interbloqueo eliminando una de las condiciones que deben darse para que éste se produzca. La única condición que no se puede eliminar es la exclusión mutua.
- Presentan un bajo uso de los recursos e introducen limitaciones a los programadores para solicitar los recursos.

Predicción

- Cada vez que un proceso solicita un recurso intenta averiguar si su concesión puede conducir a un interbloqueo. Dependiendo de la conclusión a la que llegue, concede o no los recursos solicitados.
- Introduce sobrecarga de trabajo en el sistema.

Detección y recuperación

- Cuando un proceso solicita un recurso, lo concede si está disponible.
- Cada cierto tiempo comprueba si existe interbloqueo.
- Si existe, inicia la recuperación para que desaparezca.
- Aprovecha mejor los recursos que las anteriores estrategias, pero puede implicar pérdidas de ejecuciones de procesos.

Métodos de Prevención

Tema 5: Interbloqueos

> Sistemas Operativo

Contenid

Introducción

Condiciones necesarias

Modelado del interbloqueo

Estrategias para el interbloqueo Prevención Predicción

Negación de la condición de retener y esperar

- Todo o nada Fuerza a los procesos a pedir todos los recursos que van a necesitar al principio de su ejecución. Si no están todos los recursos disponibles no se le da ninguno y no puede comenzar su ejecución.
- División de peticiones Se divide el proceso en fases que puedan considerarse independientes y se aplica la estrategia anterior a cada una de ellas.
- Petición incremental de recursos y liberación El proceso pide los recursos a medida que los necesita, si uno de ellos no está disponible debe devolver todos los que tiene asignados.

Métodos de Prevención

Tema 5: Interbloqueos

Sistema Operativo

Contenid

Introducció

Condiciones necesarias

Modelado del interbloqueo

Estrategias para el interbloqueo Prevención

Negación de la condición de no apropiación

 Cuando un proceso pide un recurso y no está disponible, el sistema está autorizado a retirarle todos los recursos que tiene ya asignados.

Negación de la condición de espera circular

 Se define una ordenación de los tipos de recursos y se exige a los procesos a que pidan los recursos en orden ascendente de numeración.

Predicción. Algoritmo del banquero

Tema 5: Interbloqueos

Introducció

Condiciones necesarias

Modelado del interbloqueo

Estrategias para el interbloqueo

Predicción Detección

El sistema puede encontrarse en:

Estado seguro No existe interbloqueo, ni ninguna probabilidad de que se llegue a él.

Estado inseguro Existe cierta probabilidad de llegar a un interbloqueo.

Estado de interbloqueo Es un estado inseguro en el que existe ya el interbloqueo.

Esquema de funcionamiento

- El sistema se encuentra inicialmente en estado seguro.
- Los procesos declaran de antemano la cantidad de cada tipo de recurso que van a necesitar.
- Cada vez que un proceso solicita recursos, se analiza la solicitud para averiguar si su concesión conduciría a estado seguro o inseguro.
- Si conduce a estado seguro, se concede. En caso contrario, se deniega la solicitud.

Ejemplo del banquero

Tema 5: Interbloqueos

Introducció

Condicione

Modelado del

Estrategias para el interbloqueo

Predicción Detección

Situación actual de un sistema en estado seguro

		Asignación					
		R1 R2 R3					
	P1	0	0	1			
	P2	1	0	0			
	P3	2	3	5			
Г	Colinitud D2						

	Demanda				
	R1 R2 R3				
P1	0 0 1				
P2	1	7	5		
P3	3	3	5		

Disponible				
R1 1				
R2	5			
R3	2			

Solicitud P2					
R1 0					
R2 4					
R3	2				

PASO 1 Cálculo de la matriz Necesidad = Demanda - Asignación

	Necesidad				
	R1 R2 R3				
P1	0	0	0		
P2	0	7	5		
P3	1	0	0		

Ejemplo del banquero (cont.)

Tema 5: Interbloqueos

Condicione

Modelado del

Estrategias para el interbloqueo

Predicción Detección

PASO 2 Creamos las estructuras Trabajo y Acabar

	Asignación				
	R1 R2 R3				
P1	0	0	1		
P2	1	0	0		
P3	2	3	5		

	Necesidad				
	R1 R2 R3				
P1	0	0	0		
P2	0	7	5		
P3	1	0	0		

Trabajo			Acabar			
R1	1		P1	F		
R2	5		P2	F		
R3	2		P3	F		

PASO 3 P2 solicita (0,4,2): Comprobamos $Solicitud(P2) \le Necesidad[P2]$ y Solicitud(P2) < Disponible

PASO 4 Simulamos la asignación y determinamos si el nuevo estado es seguro

	Asignación				
	R1 R2 R3				
P1	0	0	1		
P2	1	4	2		
P3	2	3	5		

	Necesidad				
	R1 R2 R3				
P1	0	0	0		
P2	0	3	3		
P3	1	0	0		

Trabajo			Acabar	
R1	1		P1	F
R2	1		P2	F
R3	0		P3	F

PASO 5 Seleccionamos P1 pues Acabar[P1] = F y $Necesidad[P1] \le Trabajo$

Ejemplo del banquero (cont.)

Tema 5: Interbloqueos

Operativos

Contenido

Condiciones

Modelado del

Estrategias para el interbloqueo

Predicción Detección PASO 6 Actualizamos Trabajo = Trabajo + Asignado[P1], Asignado[P1] = Necesidad[P1] = 0, Acabar[P1] = V

	Asignación				
	R1 R2 R3				
P1	0	0	0		
P2	1	4	2		
P3	2	3	5		

Necesidad									
R1 R2 R3									
0	0	0							
0	3	3							
1	0	0							
	R1 0	R1 R2 0 0							

Trab	ajo	Acal	oar	
R1	1	P1	٧	
R2	1	P2	F	
R3	1	P3	F	

PASO 7 Volver a PASO 5 seleccionando P3 pues Acabar[P3] = F y $Necesidad[P3] \le Trabajo$

PASO 8 Actualizamos Trabajo = Trabajo + Asignado[P3], Asignado[P3] = Necesidad[P3] = 0, Acabar[P3] = V

	As	ignaci	ón							
	R1 R2 R									
P1	0	0	0							
P2	1	4	2							
P3	0	0	0							

	Ne	Necesidad								
	R1 R2 R3									
P1	0	0	0							
P2	0	3	3							
P3	0	0	0							

Trab	ajo	Aca	bar		
R1	3	P1 V			
R2	4	P2	F		
R3	6	P3	٧		

PASO 9 Como P2 cumple que Acabar[P2] = F y $Necesidad[P2] \le Trabajo$, entonces $\forall iAcabar[i] = V$ por lo que el sistema está en estado seguro. Por tanto, se concede la petición

Detección

Tema 5: Interbloqueos

Operati

Landard and the second

Condiciones

Modelado del interbloqueo

Estrategias para el interbloqueo

Predicción Detección

La detección del interbloqueo consta de dos fases:

Fase 1: Detección

- No impone restricciones a las peticiones de recursos. Se concede siempre que hay recursos libres.
- Cada cierto tiempo (intervalos regulares, peticiones denegadas, etc.) se ejecuta la detección para comprobar si hay interbloqueo y los procesos implicados

Fase 2: Recuperación Para eliminar el interbloqueo podemos:

- Apropiar recursos
- Matar procesos (todos o uno a uno)

Ambas opciones requieren:

- Elección de la víctima.
- Ejecutar la detección tras realizar una acción para comprobar que no hay interbloqueo.

Ejemplo algoritmo de detección

Tema 5: Interbloqueos

> Sistemas Operativo

Contenid

Introducció

Condiciones necesarias

Modelado de interbloqueo

Estrategias para el interbloqued

Predicción Detección

Dado el siguiente sistema

	Asignación				S	Solicitu	d	Disp	onible
	R1 R2 R3			R1	R2	R3	R1	0	
P1	0	0	1	P1	0	0	1	R2	0
P2	2	0	0	P2	0	2	1	R3	1
P3	2	2	1	P3	1	0	0		

PASO 1 Creamos las estructuras Trabajo y Bloqueado

	Asignación			Asignación				Solicitud			Trab	ajo	Bloq	ueado
	R1	R2	R3		R1	R2	R3	R1	0	P1	V			
P1	0	0	1	P1	0	0	1	R2	0	P2	V			
P2	2	0	0	P2	0	2	1	R3	1	P3	V			
P3	2	2	1	P3	1	0	0							

Ejemplo de detección (cont.)

Tema 5: Interbloqueos

Sistema Operativo

Contenic

Introducció

Condiciones necesarias

Modelado de interbloqueo

estrategias para el interbloqueo

Prevención
Predicción
Detección

PASO 2 Escogemos P1 pues Bloqueado[P1] = V y $Solicitud[P1] \le Trabajo$

	As	ignaci	ón		S	Solicitu	d	Trab	ajo	Bloq	ueado
	R1	R2	R3		R1	R2	R3	R1	0	P1	F
P1	0	0	0	P1	0	0	0	R2	0	P2	V
P2	2	0	0	P2	0	2	1	R3	2	P3	V
P3	2	2	1	3	1	0	0				

Ningún proceso Bloqueado[Pi]=V cumple $Solicitud[Pi] \leq Trabajo$, entonces como Bloqueado[Pi] = V para i = 2, 3, tenemos un interbloqueo entre los procesos P2 y P3.