

Санкт-Петербургский государственный университет Кафедра системного программирования

Локация источников акустической эмиссии

Автор: Павел Андреевич Макарихин, 21.М07-мм группа **Научный руководитель:** к.т.н., доц. каф. информатики А.В. Григорьева

Санкт-Петербургский государственный университет Кафедра системного программирования

28 декабря 2021г.

Введение. Неразрушающий контроль

- Электромагнитный
- Оптический
- Радиационный
- Акустический
- Ультразвуковой
- ...

Введение. Акустическая эмиссия

Существующие подходы

- Анализ мод волны
- Вейвлет-анализ волн
- Анализ на основе априорно известных значений

Постановка задачи

Целью курсовой работы является изучение предметной области и дальнейшая разработка методов локации источника **Задачи**:

- Изучить предметную область
- Обработать входные данные для дальнейшей работы;
- Разработать метод локации источников сигналов;
- Провести апробацию разработанных методов.

Первичная обработка

Id HHMMSS MSEC		TRAI	E(TE)	R	D THR	RMS	CNTS	ALIN	NE	ld	Channel	Time	MSec	Amplitude	Energy	Duration	Counts
[hhmmss] [ms.µs]	[dB]		[eu]	[µs]	[µs] [dB]	[µV]		[µV]	0	LE	9	00:00:43	937,538	88,5	9370000	11894,4	1174
La Label 1: '14:11 DT 7 Ноябрь 2017 г.,									0	Ht	1	00:00:43	937,5559	56.5	3800	3500.8	161
Ev00:00:03 66.2965	3 41.1	14:11	215E-1	0.4	5.0 40.0	3.7	- 1	114	0	Ht	7	00:00:43	937 5956	80.3	11300	3237.6	255
Ev00:00:18 783,5382	10 44.1		986E-1	40,2	195,2 40,0	4,5	7	161	0	Ht	3	00:00:43	937.6193	63.3	25000	4144	356
Ev00:00:19 223,2265	4 45,2	1	896E-1	7.4	76.0 40.0	3.8	4	183	0	Hi	5	00.0043	937 6333	59.9	9480	2916.8	214
Ev00:00:24 41,7766	4 48,6	2	143E00	56,6	173,0 40,0	3,7	16	270		Ht	8	00:0043	937 6708	54.7	4350	2533.6	191
Ev00:00:36 840,8211	2 48,3	3	719E-1	10,4	55,8 40,0	3,7	6	259	0		8						
Ev00:00:49 313,9390	3 43,7	4	116E00	5,0	219,0 40,0	3,7	9	154	0	Ht	6	00:00:43	937,6803	53,5	2140	2072	118
Ev00:01:01 313,9168	3 40,7		297E-1	0,2	0,8 40,0	3,7	1	109	1	LE	1	00:00:47	714,1407	57,7	3830	3544	179
Ev00:01:17 277,1777	3 52,0	5	211E00	37,4	120,0 40,0	3,7	11	399	1	Ht	9	00:00:47	714,143	92,3	13300000	8819,2	955
Ev00:01:20 563,9134	3 42,6		334E-1	4,4	9,2 40,0	3,7	1	135	1	Ht	7	00:00:47	714,2131	62,6	18100	3229,6	264
Ht00:01:20 564,0599	9 45,2		125E00	121,2	194,0 40,0	4,5	6	183	1	Ht	3	00:00:47	714.2197	69.3	51700	4107.2	348
Ev00:01:21 537,8829	4 48,6	6	430E00	223,4	626,0 40,0	3,8	28	270	,	Hi	6	00:00:47	714.2382	64.4	18400	3000.8	243
Ev00:01:34 14,4855	2 44,5	- /	148E00	66,0	300,8 40,0	4,2	11	168			8						
Ht00:01:34 14,6637 Ev00:01:36 160.8530	6 42,6 3 41.9	8	797E-1 489E-1	41,8	161,0 40,0	3,9	4	135 124	1	Ht		00:00:47	714,2434	58	6010	2740,8	211
Ev00:01:36 160,8530 Ev00:01:48 669,3676	10 53.2		489E-1 100E01	4,6 197.0	27,4 40,0 435,0 40,0	3,7 4,5	44	455	1	Ht	10	00:00:47	714,2654	52,8	3150	2626,4	166
Ev00:01:46 669,3676 Ev00:02:13 728,6979	10 52,0		184E00	8.0	81,6 40,0	4,5	44	399	2	LE	9	00:00:51	801,4268	85,5	3050000	7366,4	718
Ev00:02:51 261,4181	1 45.2	a	139E00	70,8	156,4 40,0	4,0	8	183	2	Ht	1	00:00:51	801,4843	55	1640	1577,2	74
Ev00:03:01 459,7859	1 43,0	,	209E-1	29.2	33,8 40,0	4,0	1	141	2	Ht	7	00:00:51	801,5094	57,7	4320	2508,8	161
LE00:03:04 543,9642	1 55,4	10	279E01	47.0	2468,0 40,0	4.0	131	589	2	Ht	3	00:00:51	801.5151	61.8	13300	3073.6	243
Ht00:03:04 544,0345	7 53,5	11	209E01	464.2	2153,6 40,0	3,5	110	475	2	Hi	6	00:00:51	801 5298	56.5	4220	2428.8	142
Ht00:03:04 544,0361	3 74,2	12	262E03	139,0	5803,2 40,0	3,7	540	5142		Ht		00:00:51	801.6042	49.8	807	1631.6	58
Ht00:03:04 544,0429	9 93,4		318E04	384,0	3601,6 40,0	4,5	314	46848	4		ь						
Ht00:03:04 544,0595	5 63,7	13	245E02	126,8	3307,2 40,0	3,6	308	1529	2	Ht	8	00:00:51	801,6172	52	2080	2307,2	128
Ht00:03:04 544,0896	10 56,5		503E01	523,6	2617,6 40,0	4,4	169	671	3	LE	9	00:00:58	60,7406	91,9	15100000	9504	890
Ht00:03:04 544,1383	8 55,4		476E01	814,8	2293,6 40,0	4,3	156	589	3	Ht	1	00:00:58	60,7457	60,3	7240	3435,2	207
LE00:03:10 761,0621	1 55,8	18	259E01	51,6	1910,4 40,0	4,0	116	616	3	Ht	3	00:00:58	60,8186	66,7	54300	4300,8	375
Ht00:03:10 761,1338	3 74,6	19	160E03	143,4	4926,4 40,0	3,7	429	5370	3	Ht	5	00:00:58	60,8404	62,9	26100	3606,4	279

Локация источника

$$v_1 - v_2 < accuracy, \tag{1}$$

где accuracy - заранее заданная точность

$$\begin{cases} v_{1} = \left| \frac{\sqrt{(x_{2} - \overline{x})^{2} + (y_{2} - \overline{y})^{2}} - \sqrt{(x_{1} - \overline{x})^{2} + (y_{1} - \overline{y})^{2}}}{t_{2} - t_{1}} \right| \\ v_{2} = \left| \frac{\sqrt{(x_{3} - \overline{x})^{2} + (y_{3} - \overline{y})^{2}} - \sqrt{(x_{2} - \overline{x})^{2} + (y_{2} - \overline{y})^{2}}}{t_{3} - t_{2}} \right| \end{cases}$$
(2)

где $\overline{x},\overline{y}$ - координаты вершины сетки, x_i,y_i - координаты датчиков, t_i - время прихода волны на датчик

Локация источника

Локация источника

	x	у						
1	220.616	338.316						
2	220.916	342.016						
3	221.216	345.916						
4	221.616	351.516						
5	222.016	357.616						

Датасет реальных данных

Датасет реальных данных

Санкт-Петербургский государственный университет Кафедра системного программирования

Локация источников акустической эмиссии

Автор: Павел Андреевич Макарихин, 21.М07-мм группа **Научный руководитель:** к.т.н., доц. каф. информатики А.В. Григорьева

Санкт-Петербургский государственный университет Кафедра системного программирования

28 декабря 2021г.