实验三 模型机组合部件的实现(二)(实验报告格式案例)

班级 __ 计科 2305 __ 姓名 __ 刘良锐 ___ 学号 __ 202308010524 __

一、实验目的

- 1.了解模型机的内部结构和工作原理。
- 2.分析模型机功能,设计8重3-1多路复用器。
- 3.分析模型机功能,设计8重2-1多路复用器。
- 4.分析模型机的工作原理,设计模型机控制信号产生逻辑。

二、实验内容

- 1.用 VERILOG 语言设计模型机的 8 重 3-1 多路复用器。
- 2.用 VERILOG 语言设计模型机的 8 重 2-1 多路复用器。
- 3.用 VERILOG 语言设计模型机的控制信号产生逻辑。

三、实验过程

- 1、8 重 3-1 多路复用器
- A) 创建工程(选择的芯片为 family=Cyclone II; name=EP2C5T144C8)

When you click Finish, the project will be created with the following settings:											
Project directory:											
E:/electronic circuit design/experiment3/											
Project name:	mux3_1										
Top-level design entity:	mux3_1										
Number of files added:	0										
Number of user libraries added:	0										
Device assignments:											
Family name:	Cyclone II										
Device:	AUTO										
EDA tools:											
Design entry/synthesis:	<none></none>										
Simulation:	<none></none>										
Timing analysis:	<none></none>										
Operating conditions:											
Core voltage:	n/a										
Junction temperature range:	n/a										

B) 编写源代码

输入引脚为 a, b, c 和 s, 其中 a~c 的位宽为 8, s 的位宽为 2; 输出引脚为 y, 位宽为 8. 当 s 输入为 00 时,引脚 y 输出 a 的值; s 输入为 01 时,y 输出 b 的值; s 输入为 10 时,y 输出 b 的值。其余情况引脚 y 均输出 a 的值。

该元件功能以下列真值表表示:

S[10]	Y
00	a
01	b
10	С
其它	a

C) 编译与调试(包含编译调试过程中的错误、警告信息以及资源消耗)

对源代码进行编译,未出现严重错误。(0错误,8警告)

```
Successful - Wed Nov 27 11:09:46 2024
Quartus II Version
                                   9.0 Build 184 04/29/2009 SP 1 SJ Web Edition
Revision Name
                                   mux3_1
Top-level Entity Name
                                   mux3_1
Family
                                   Cyclone II
Met timing requirements
                                   Yes
                                   16 / 4,608 ( < 1 % )
Total logic elements
   Total combinational functions 16 / 4,608 ( < 1 % )
                                   0 / 4,608 ( 0 % )
   Dedicated logic registers
Total registers
                                   0
Total pins
                                   34 / 89 ( 38 % )
Total virtual pins
                                   0
Total memory bits
                                  0 / 119,808 ( 0 % )
Embedded Multiplier 9-bit elements 0 / 26 ( 0 % )
                                   0/2(0%)
Total PLLs
Device
                                   EP2C5T144C6
Timing Models
                                   Final
```

上图为源代码所表示电路的资源消耗。

D) RTL 视图

视图分析及结论:观察 RTL 视图可知,电路左侧为输入引脚,右侧为输出引脚。输入引脚 s 接三个比较器,分别代表元件真值表的不同情况。中间为三个 2-1 多路 复用器,执行信号选择的功能。对输入信号进行选择后,通过引脚 y 输出结果。

E) 功能仿真波形

结果分析及结论:对电路进行功能仿真,发现 s 为 00 或 11 时输出信号 a, s 为 01 时输出信号 b, s 为 10 时输出信号 c。结果与功能真值表一致,表明电路涉及符合要求。

F) 时序仿真波形

第 3 页 共 13 页

结果分析及结论:对电路进行时序仿真,发现每次输入信号变化时,输出信号 v 会在一段时 间内出现不符合期望的输出,这是由于不同元器件存在的延迟所导致的, 我们称之为电路的"冒险"。可以对电路进行改进,从而减小输出信号受 到的影响。

G) 时序分析

操作方法是:编译后,在compilation report 中选择【timing analysis】-【summary】和【tpd】

Ti	ming Analyzer Summary	1									
	Туре	Slack	Require Time		Actual Time	From	То	From Clock	To Clock	Failed Paths	
1	Worst-case tpd	N/A	None		11.373 ns	s[1]	y[5]		Ī	0	
2	Total number of failed path:		1				************		***************************************	0	
-	rotarrametro er talea patri	1		_							
	tpd										
	Slack	Required P2P Time	Actual P2P Time	From	То						
	1 N/A	None	11.373 ns	s[1]	y[5]						
	2 N/A	None	11.305 ns	c[4]	y[4]						
	3 N/A	None	11.291 ns	ь(5)	y[5]						
	4 N/A	None	11.240 ns	s[1]	y[0]						
	5 N/A	None	11.153 ns	b[4]	y[4]						
	6 N/A 7 N/A	None	11.090 ns 10.754 ns	c[2]	y[2]						
	8 N/A	None None	10.754 ns	c[1] a[5]	y[1] y[5]						
	9 N/A	None	10.746 ns	c[5]	y[5]						
	10 N/A	None	10.656 ns	c[7]	y[7]						
	11 N/A	None	10.649 ns	b[1]	y[1]						
	12 N/A	None	10.585 ns	ь[7]	y[7]						
	13 N/A	None	10.529 ns	s[1]	y[6]						
	14 N/A	None	10.460 ns	c[3]	y[3]						
	15 N/A	None	10.452 ns	s[1]	y[4]						
	16 N/A	None	10.445 ns	c[6]	y[6]						
	17 N/A	None	10.359 ns	ь[2]	y[2]						
	18 N/A	None	10.353 ns	a[3]	y[3]						
	19 N/A	None	10.274 ns	s[1]	y[2]						
	20 N/A	None	10.193 ns	a[7]	y[7]						
	21 N/A	None	10.186 ns	s[1]	y[7]						
	22 N/A	None	10.155 ns	s[1]	y[1]						
	23 N/A 24 N/A	None	10.154 ns	a[4]	y[4]						
	25 N/A	None None	10.134 ns 10.125 ns	b[6] s[1]	y[6] y[3]						
	26 N/A	None	10.099 ns	a[1]	y[3] y[1]						
	27 N/A	None	9.843 ns	a[2]	y[2]						
	28 N/A	None	9.767 ns	p[3]	y[3]						
	29 N/A	None	9.643 ns	a[6]	y[6]						
	30 N/A	None	7.638 ns	s[0]	y[5]						
	31 N/A	None	7.619 ns	c[0]	y[0]						
	32 N/A	None	7.499 ns	s[0]	y[0]						
	33 N/A	None	7.441 ns	ь[0]	y[0]						
	34 N/A	None	7.222 ns	s[0]	y[4]						
	35 N/A	None	7.220 ns	s[0]	y[2]						

结果分析及结论: 由图可得, Timing Analyzer Summary 总结所有经典定时分析的结果, 并 报告每个定时特性的最坏情况定时。而 tpd 报告表则给出了源节点和目标节点之间的 tpd 延 迟时间,比如第一行中s[1]到y[5]的延迟时间为11.373ns。

2、8 重 2-1 多路复用器

A) 创建工程(选择的芯片为 family=Cyclone II; name=EP2C5T144C8)

```
When you click Finish, the project will be created with the following settings:
  E:/electronic circuit design/experiment3/mux2_1/
Project name:
Top-level design entity:
                                0
Number of files added:
Number of user libraries added:
Device assignments:
  Family name:
                                 Cyclone II
                                 AUTO
EDA tools:
   Design entry/synthesis:
   Timing analysis:
                                  <None>
Operating conditions:
   Core voltage:
   Junction temperature range:
```

B) 编写源代码

```
1
   module mux2_1(a, b, s, y);
 2
 3
         input wire [7:0] a;
 4
         input wire [7:0] b;
5
         input s;
 6
         output reg [7:0] y;
7
8
    always @ (a, b, s)
9 ■begin
10
         if(s==1'b0)
11
             begin y=a; end
12
         else
13
             begin y=b; end
14
15
16
     endmodule
```

输入引脚为 a, b 和 s, 位宽分别为 8、8、1; 输出引脚是 y, 位宽为 8.该器件通过输入的 s 值对 a 与 b 进行选择。当 s 的值为 0 时,输出为 a, 当 s 的值为 1 时,输出为 b。 功能真值表如下:

S	Y
0	a
1	b

C) 编译与调试(包含编译调试过程中的错误、警告信息以及资源消耗)

对源代码进行编译,未出现严重错误(0错误,4警告)。

上图为源代码所表示电路的资源消耗。

D) RTL 视图

结果分析及结论: 观察 RTL 视图可知,左侧为输入引脚 a,b 和 s,右侧为输出引脚 y。中间有一 2-1 多路复用器,对信号 a 和信号 b 进行选择。

E) 功能仿真波形

结果分析及结论:对电路进行功能仿真,可以发现,当 s 的值为 0 时,输出为 a,当 s 的值 为 1 时,输出为 b。结果与功能真值表一致,表明电路设计符合要求。

F) 时序仿真波形

结果分析及结论:对电路进行时序仿真,得到结果与功能仿真大致相同,但中间存在一段时间的失真。这是由于电路元器件实际上存在一定的传输延迟和惯性延迟, 这些延迟时间导致了电路输出的短暂失真。

G) 时序分析

Timing Analyzer Summary												
	Туре	Slack	Required Time	Actual Time	From	То	From Clock	To Clock	Failed Paths			
1	Worst-case tpd	N/A	None	11.853 ns	s	у[3]			0			
2	Total number of failed paths								0			

tpc	1					
	Slack	Required P2P Time	Actual P2P Time	From	То	
1	N/A	None	11.853 ns	s	y[3]	
2	N/A	None	11.589 ns	s	y[7]	
3	N/A	None	11.512 ns	s	y[0]	
4	N/A	None	11.312 ns	s	y[6]	
5	N/A	None	10.903 ns	s	y[2]	
6	N/A	None	10.775 ns	s	y[4]	
7	N/A	None	10.676 ns	a[7]	y[7]	
8	N/A	None	10.568 ns	ь[0]	y[0]	
9	N/A	None	10.537 ns	s	y[1]	
10	N/A	None	10.484 ns	s	y[5]	
11	N/A	None	10.456 ns	a[6]	y[6]	
12	N/A	None	10.429 ns	ь[6]	y[6]	
13	N/A	None	10.362 ns	a[0]	y[0]	
14	N/A	None	10.253 ns	ь[2]	y[2]	
15	N/A	None	10.249 ns	ь[7]	y[7]	
16	N/A	None	10.241 ns	a[2]	y[2]	
17	N/A	None	9.820 ns	ь[5]	y[5]	
18	N/A	None	9.712 ns	a[1]	y[1]	
19	N/A	None	9.559 ns	Ь[1]	y[1]	
20	N/A	None	9.479 ns	a[5]	y[5]	
21	N/A	None	7.419 ns	ь[3]	y[3]	
22	N/A	None	7.254 ns	a[3]	y[3]	
23	N/A	None	6.361 ns	ь[4]	y[4]	
24	N/A	None	6.067 ns	a[4]	y[4]	

结果分析及结论:对电路进行时序分析,由 Timing Analyzer Summary 可得所有经典定时分析的结果,并报告每个定时分析的最长延时。从 tpd 表中可以得到从不同源节点到不同目标节点的延时。例如第一行中表示从 s 到 y[3]的延时为11.853ns。

3、控制信号产生逻辑

A) 创建工程(选择的芯片为 family=Cyclone II; name=EP2C5T144C8)

创建工程的时候忘记截图了, 用工程文件夹代替。

B) 编写源代码

```
module con_signal(
2
         mova, movb, movc, movd, add,
 3
          sub, jmp, jg, g, inl, outl,
 4
          movi, halt, ir, sm,
5
 6
          sm_en, ir_ld, ram_re, ram_wr, pc_ld, pc_in,
          reg_sr, reg_dr, reg_we, s, au_en, au_ac,
          gf_en, in_en, out_en, mux_s,
8
9
10
          input wire mova, movb, movc, movd;
11
          input wire add, sub, jmp, jg, g;
          input wire inl, outl, movi, halt, sm;
          input wire [7:0] ir;
13
14
          output reg sm_en, ir_ld, ram_re, ram_wr;
output reg pc_ld, pc_in, reg_we, au_en;
15
16
17
          output reg gf_en, in_en, out_en, mux_s;
18
          output reg [1:0] reg_sr, reg_dr, s;
19
          output reg [3:0] au ac;
20
21
   always @ (*)
22 ■begin
23
          pc_ld=jmp|jg;
24
          pc_in=movi|(~sm);
25
          ram wr=movb;
26
          ram re= (~sm) |movc|movi;
         ir ld=~sm;
27
28
          sm en=~halt;
29
         mux s=mova|movc|movi|add|sub|inl;
          reg_we=mova|movc|movd|movi|add|sub|inl;
30
          au en=mova|movb|add|sub|outl;
31
32
          gf_en=sub;
33
          in_en=inl;
34
          out en=outl;
35
          au_ac=ir[7:4];
36
37
          if (movb)
             begin s=2'bl0; end
38
39
          else if (movc)
40
             begin s=2'b01; end
          else
41
              begin s=2'b00; end
42
43
44
          reg_sr=ir[1:0];
45
          reg_dr=ir[3:2];
46
     end
```

C) 编译与调试(包含编译调试过程中的错误、警告信息以及资源消耗)

```
Type Necessary II Assembler was successful. 0 errors, 0 warnings

B. dy Info: Quartum II Assembler was successful. 0 errors, 0 warnings

B. dy Info: Communicy Quartum II Classic Tising Analyzer

dy Info: Communicy Quartum II Classic Tising Analyzer

g dy Info: Communicy Quartum II Classic Tising Analyzer to destination pin Pip_Lin' is III.434 ns

B. dy Info: Communicy Tising Analyzer was successful. 0 errors, 0 warnings

dy Info: Quartum II Tising Completion was successful. 0 errors, 0 warnings

dy Info: Quartum II Tising Completion was successful. 0 errors, 0 warnings

dy Info: Quartum II Tising Completion was successful. 0 errors, 0 warnings
```

编译未出现严重错误(0错误,7警告)。

```
Successful - Wed Nov 27 16:56:45 2024
Flow Status
Quartus II Version
                                  9.0 Build 184 04/29/2009 SP 1 SJ Web Edition
Revision Name
                                   con_signal
Top-level Entity Name
                                   con_signal
Family
                                  Cyclone II
Met timing requirements
                                  9 / 4,608 ( < 1 % )
Total logic elements
   Total combinational functions
                                  9 / 4,608 ( < 1 % )
   Dedicated logic registers
                                  0 / 4,608 ( 0 % )
Total registers
                                  0
Total pins
Total virtual pins
                                  0 / 119,808 ( 0 % )
Total memory bits
Embedded Multiplier 9-bit elements 0 / 26 ( 0 % )
Total PLLs
                                   0/2(0%)
                                  EP2C5T144C6
Device
Timing Models
```

以上为资源消耗。

D) RTL 视图

结果分析及结论:对 RTL 视图进行观察,发现左侧为输入引脚,表示指令信号,右侧为输出引脚,代表不同的控制信号。中间有不同的元器件,使得不同的输入对应不同的输出。整个电路是根据控制信号真值表搭建的。

E) 功能仿真波形

结果分析及结论:对电路进行功能仿真,得到以下波形图。根据比对可得,波形图与真值表 一致,表示电路设计符合要求。

F)时序仿真波形

结果分析及结论:对电路进行时序仿真,发现结果与要求基本一致,但在过程中产生了少量 冒险,由元器件的传输延迟和惯性延迟等导致。

G) 时序分析

结果分析及结论:对电路进行时序分析,由 Timing Analyzer Summary 可得所有经典定时分析的结果,并报告每个定时分析的最长延时。从 tpd 表中可以得到从不同源节点到不同目标节点的延时。例如第一行中表示从 sm 到 pc_in 的延时为 11.543ns。

四、思考题

1、任选一条指令,介绍指令的过程、信息流动的情况以及执行时控制信号的值。 **MOVA 指令**

操作:源寄存器 Rs 中的数据写入目的寄存器 Rd,即 Rs->Rd

执行过程: 根据控制信号 SR1、SR0 选择源寄存器 Rs 的数据从通用寄存器 S 口输出,在 AC3-AC0 和 AU_EN 的控制下,经 AU 送入总线 BUS; S0 为 1,BUS 上的数据传送至通用寄存器的输入端,在 WE 和 DR1 和 DR0 的控制下,时钟下降沿将输入端的数据写入目的寄存器 Rd。

2、如何产生正确的控制信号以及具体的编程实现?

首先要声明输入和输出变量,通过不同指令需要的控制信号列出真值表。 真值表如下:

	P	C	3-1	R/	AM	IR寄存器	指令译码器	2-1		寄存器		A	U	PSW	IN	OUT
指令	LD_PC	IN_PC	S[2:1]	WR	RE	LD_IR	SM_EN	S0	SR[1:0]	DR[1:0]	WE	AU_EN	AC[3:0]	G_EN	IN_EN	OUT_EN
取指	0	1	0, 0	0	1	1	1	1	0, 0	0,0	0	0	0000	0	0	0
JMP	1	0	00	0	0	0	1	0	11	00	0	0	1010	0	0	0
JG	1	0	00	0	0	0	1	0	11	00	0	0	1011	0	0	0
MOVA	0	0	0	0	0	0	1	1	2b'xx	2b'xx	1	1	100	0	0	0
MOVB	0	0	10	1	0	0	1	0	2b'xx	0	0	1	101	0	0	0
MOVC	0	0	1	0	1	0	1	1	0	2b'xx	1	0	110	0	0	0
MOVD	0	0	0	0	0	0	1	0	0	11	1	0	111	0	0	0
MOVI	0	1	0	0	1	0	1	1	2b'xx	0	1	0	1110	0	0	0
ADD	0	0	0	0	0	0	1	1	2b'xx	2b'xx	1	1	1000	. 0	0	0
SUB	0	0	0	0	0	0	1	1	2b'xx	2b'xx	1	1	1001	1	0	0
IN	0	0	0	0	0	0	1	1	0	2b'xx	1	0	1100	0	1	0
OUT	0	0	0	0	0	0	1	0	2b'xx	0	0	1	1101	0	0	1
HALT	0	0	0	0	0	0	0	0	0	0	0	0	1111	0	0	0

通过真值表编写代码,将所有信号为1的指令情况用"或"符号连接即可。

五、实验总结、必得体会及建议

- 1、从需要掌握的理论、遇到的困难、解决的办法以及经验教训等方面进行总结。
 - (1) 需要掌握的理论:模型机的内部结构和工作原理,学会使用 VERILOG 语言编写简单电路。
 - (2) 遇到的困难:软件使用不够熟悉,经常不知道如何正确操作;编写 VERILOG 代码块时常出现编译错误;在模型机总体架构的掌握上尚 有欠缺。
 - (3) 解决的办法:上网查找资料,与他人讨论。
 - (4) 经验教训: 多加实践,提升电路的设计能力和编写 VERILOG 代码的能力。学会将课上学到的知识灵活运用在实际的电路设计中。
- 2、对本实验内容、过程和方法的改进建议(可选项)。