ECE 606, Fall 2021, Assignment 10 Due: Tuesday, November 23, 11:59pm

Submission: submit your written solutions to crowdmark. There are no [python3] problems in this assignment.

1. Recall that we define a decision problem as a function whose codomain is $\{\text{true}, \text{false}\}$. Let $f: \{0,1\}^* \to \{\text{true}, \text{false}\}$ be the following function:

for all
$$x \in \{0,1\}^*$$
, $f(x) = false$

That is, f maps every input bit string to false. Prove that the decision problem f is not \mathbf{NP} -hard.

2. Let INARRAY be the problem: given inputs (i) an array A[1, ..., n] of integers where n is a positive integer, and, (ii) an integer i, is $i \in A[1, ..., n]$?

Let LongSimplePath be the problem: given inputs (i) connected undirected $G = \langle V, E \rangle$, (ii) two distinct $a, b \in V$, and, (iii) a positive integer k between 1 and |V| - 1, does there exist a simple path $a \leadsto b$ of $\geq k$ edges?

Prove that InArray \leq_k LongSimplePath.

(*Hint*: INARRAY \in **P**.)

- 3. Consider the following two problems:
 - HAMPATHDECISION: given input an undirected graph, is there a simple path of all the vertices?
 - HAMPATHCONSTRUCTION: given input an undirected graph, output a simple path of all the vertices if one exists, and the string "none" otherwise.

Prove that if HamPathDecision $\in \mathbf{P}$ then there exists a polynomial-time algorithm for HamPathConstruction.

4. Prove that if problem s is **NP**-hard and $s \leq_k t$, then t is **NP**-hard.