The Prisoner's Dilemma

Can a Q-learning agent learn to play?

Irene Ferfoglia
UniTS - Reinforcement Learning exam
18.07.2022

The agenda

- Prisoner's Dilemma
 - Introduction
 - Formalisation
 - Player's strategies
- Q-Learning
 - TD learning
 - Policy control in TD(0)
 - The algorithm
 - Convergence
- Results

The Prisoner's Dilemma

Introduction

- Two prisoners with no means of speaking to each other
- Each can either cooperate with the other or give them up to the police
- They don't know each other's action
- No loyalty to each other: objective is to maximise their own reward

Multiple games

If the two players

- play more than once
- remember previous actions of their opponent
- change strategy accordingly

Iterated Prisoner's Dilemma

Formalisation

- Adversarial bandits problem
- Two choices of actions: Cooperate (C) or Defect (D)
- Four states: (A's previous action, B's previous action)
- Rewards: defined in a payoff matrix

Payoff matrix

B A	Cooperate	Defect
Cooperate	(R,R)	(S,T)
Defect	(T,S)	(P,P)

- T > R > P > S, 2R > S + T
- For each player it is beneficial to defect: Nash equilibrium
- BUT highest mutual payoff is with cooperation

Payoff matrix

A B	Cooperate	Defect
Cooperate	(3,3)	(0,5)
Defect	(5,0)	(1,1)

- 5 > 3 > 1 > 0, 6 > 5
- For each player it is beneficial to defect: Nash equilibrium
- BUT highest mutual payoff is with cooperation

Strategies

- Always cooperate
- Always defect
- Random action
- Tit-for-Tat: copy opponent's previous action

Q-Learning

Temporal-Difference (TD) learning

- Learn from experience, without a model of the environment, its rewards and next-state probability distributions
- Update estimates before final outcome is known (bootstrap)
- Simplest TD method, TD(0):

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(R_{t+1}) - V(S_t)]$$

Policy control in TD(0)

SARSA	Q-Learning
$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$	$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$
On-policy	Off-policy
Learns near-optimal policy while exploring	Directly learns optimal policy
More conservative	More aggressive

Q-Learning algorithm

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in \mathcal{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \big[ R + \gamma \max_a Q(S',a) - Q(S,A) \big]
S \leftarrow S'
until S is terminal
```

Requirements for convergence

- Every state-action pair continues to be visited
- Learning rate decreases over time
- Stationary and Markovian environment
- Problem! when vs Q-learner, environment is not stationary

ε -greedy policy

- Simple way to achieve balance of exploration and exploitation
- $0 \le \varepsilon \le 1$

$$A_t = \begin{cases} \max_a Q(s, a) & \text{with probability } 1 - \varepsilon \\ \text{random action} & \text{with probability } \varepsilon \end{cases}$$

Can be decaying by a factor

The choice of α

• TD algorithm convergence criterion:

$$\sum_{t} \alpha_{t} = \infty \qquad \sum_{t} \alpha_{t}^{2} < \infty$$

So
$$\alpha$$
 is set to $\frac{1}{t+1}$.

Results

Can a Q-learning agent learn to play:

- vs a fixed strategy?
- vs another Q-learning agent?

Set Up

- 100 independent meetings, to avoid random uncertainty
- 10'000 games each meeting
- Q learner with varying epsilons and decays
- Strategies are unknown to one another
- Objective: learn optimal strategy to maximise own avg reward

All vs all

Average reward per game of Player A vs Player B

All vs all

Average % of cooperations per game of Player A vs Player B

All vs all

% wins of Player A against Player B

Conclusions

Can a Q-learning agent learn to play the Iterated Prisoner's Dilemma...

- Vs a fixed strategy?
- Vs another Q-learning agent?

Kind of

Thank you!