Data Science – Machine Learning – Underfitting and Overfitting

26. Data Science – Machine Learning – Underfitting and Overfitting

Contents

1. Overfitting & Underfitting	2
2. Noise	2
3. Bias	
4. Variance	
5. Overfitting	3
6. Underfitting	4
7. Good fit model	4
8. Good evample	5

26. Data Science - Machine Learning - Underfitting and Overfitting

1. Overfitting & Underfitting

- ✓ The main goal of every machine learning model is to generalize well.
- ✓ A generalized model provides a suitable output on unknown dataset
 - This means after providing training on the dataset, it can produce reliable and accurate output.
- ✓ Overfitting and Underfitting are the two main problems that occur in machine learning, because of these ML model performances may impact to reduce.

2. Noise

✓ Noise means irrelevant data; it reduces the performance of the model.

3. Bias

✓ Difference between the predicted values and the actual values.

4. Variance

✓ Machine learning model performs well with the training dataset, but does not perform well with the test dataset.

5. Overfitting

- ✓ Overfitting is the scenario where a machine learning model cannot generalize or fit well on unseen dataset.
- ✓ The over fitted model has low bias and high variance.

Note:

✓ We can avoid the Overfitting in Model by using cross-Validation, Training with more data, removing features, regularization, Ensemble

Data Science – Machine Learning – Underfitting and Overfitting

6. Underfitting

- ✓ During training if model unable to learn properly then this is called as Underfitting.
- ✓ So it reduces the accuracy and produces unreliable predictions.
- ✓ The under fitted model has high bias and low variance.

7. Good fit model

✓ If model predicts well on training dataset and unseen dataset then it's called as good fit model

8. Good example

✓ Assuming that there are three students have prepared for a mathematics examination.

✓ First student:

 Prepared only Addition operations and skipped other math operations from textbook[X]

✓ Second student

Prepared all math operations from textbook[X]

✓ Third student

- Prepared all math operations from textbook[X].
- Practiced more on new topics from other math text books[Y, Z]

During exam

- ✓ First student:
 - o He can answer only for addition related questions.

✓ Second student

He can answer to the questions which are from only textbook[X]

✓ Third student

He can answer to the questions which are from textbook[X, Y, Z]

Comparison

✓ First student - Under fitting

✓ Second student - Over fitting

✓ Third student - Good fit