Dark matter direct detection at one loop

Michael A. Schmidt 12 December 2017

CosPA 2017

based on C. Hagedorn, J. Herrero-García, E. Molinaro, MS [1712.xxxxx] J. Herrero-García, E. Molinaro, MS [1712.xxxxx]

Motivation

- No clear evidence for DM in direct/indirect detection or at LHC
- · Only hints from DAM.*
- · Option: DM is not directly coupled to quarks
- Examples: fermionic singlet DM ψ such as bino, fermionic DM in scotogenic model, or models explaining the DAMPE result
- · Direct detection occurs at one loop
- · Next generation (liquid noble gas) experiments could probe it

Simplified fermionic DM model

Dark sector	Field	$SU(3)_{\rm C}$	$SU(2)_{\rm L}$	$U(1)_{\rm Y}$	U(1) _{dm}
Dark matter	ψ	1	1	0	1
Dark scalar Dark fermion	S F	1 1	d _F	Y _F Y _F	q_s $q_s + 1$

$$\begin{split} \mathcal{L}_{\psi} &= i\,\overline{\psi}\,\partial\!\!\!/\psi \,-\, m_{\psi}\,\overline{\psi}\,\psi \,+\, i\,\overline{F}\,\partial\!\!\!/F \,-\, m_{F}\,\overline{F}\,F + (D_{\mu}S)^{\dagger}\,D^{\mu}S \\ &-\, \left(y_{1}\,\overline{F_{\mathrm{R}}}\,S\,\psi_{\mathrm{L}} \,+y_{2}\,\overline{F_{\mathrm{L}}}\,S\,\psi_{\mathrm{R}} \,+\, \mathrm{H.c.}\right) - \lambda_{\mathrm{HS}}\,v\,h\,S^{\dagger}S + \ldots \end{split}$$

- Higgs portal coupling may arise in different ways
- Easy to generalise to larger dark symmetry groups

Simplified fermionic DM model

Dark sector	Field	$SU(3)_{\rm C}$	$SU(2)_{\rm L}$	$U(1)_{\rm Y}$	U(1) _{dm}
Dark matter	ψ	1	1	0	1
Dark scalar Dark fermion	S F	1 1	d _F	Y _F Y _F	q_s $q_s + 1$

$$\begin{split} \mathcal{L}_{\psi} &= i\,\overline{\psi}\,\partial\!\!\!/\psi \,-\, m_{\psi}\,\overline{\psi}\,\psi \,+\, i\,\overline{F}\,\partial\!\!\!/F \,-\, m_{F}\,\overline{F}\,F + (D_{\mu}S)^{\dagger}\,D^{\mu}S \\ &-\, \left(y_{1}\,\overline{F_{\mathrm{R}}}\,S\,\psi_{\mathrm{L}} \,+y_{2}\,\overline{F_{\mathrm{L}}}\,S\,\psi_{\mathrm{R}} \,+\, \mathrm{H.c.}\right) - \lambda_{HS}\,v\,h\,S^{\dagger}S + \ldots \end{split}$$

- Higgs portal coupling may arise in different ways
- Easy to generalise to larger dark symmetry groups

SM fields in loop

- 1. $F \rightarrow L_L/e_R$: ψ or S have L=1 LFV, EDM/AMMs, LNV
- 2. $F
 ightarrow
 u_R$: u_R and u or S have L = 1 Gonzalez-Macias, Escudero, ...
- 3. $S \rightarrow H$: mixing ψF_0 , thus tree-level H/Z exchange

(Relevant) effective interactions for direct detection

Dirac DM

• Electric and magnetic dipoles: $\mathcal{L} = \mu_{\psi} \mathcal{O}_{\mathrm{mag}} + d_{\psi} \mathcal{O}_{\mathrm{edm}}$ [long-range]

$$\mathcal{O}_{\rm mag} = \frac{e}{8\pi^2} (\overline{\psi} \sigma^{\mu\nu} \psi) F_{\mu\nu}, \qquad \mathcal{O}_{\rm edm} = \frac{e}{8\pi^2} (\overline{\psi} \sigma^{\mu\nu} i \gamma_5 \psi) F_{\mu\nu} \,,$$

• Vector interactions induced by Z/γ -penguins $\left[\underset{\text{enapole}}{\text{anapole}}\left(\overline{\psi}\gamma^{\mu}\psi\right)\left(\partial^{\nu}\mathsf{F}_{\mu\nu}\right)\equiv\mathcal{O}_{\mathrm{SI}}^{\mathsf{V}}$ by $_{\mathsf{EOM}}\right]$

$$\mathcal{O}_{\mathrm{SI}}^{\mathsf{V}} = (\overline{\psi} \gamma^{\mu} \psi) (\overline{q} \gamma_{\mu} q) \qquad \qquad \mathcal{O}_{\mathrm{SD}}^{\mathsf{AV}} = (\overline{\psi} \gamma^{\mu} \gamma_{5} \psi) (\overline{q} \gamma_{\mu} \gamma_{5} q),$$

· Scalar interactions [and gluon interaction induced by heavy quarks]

$$\mathcal{O}_{\mathrm{SI}}^{\mathrm{S}} = m_{\mathrm{q}}(\overline{\psi}\psi)(\overline{\mathrm{q}}\mathrm{q}) \qquad \qquad \mathcal{O}_{\mathrm{SI}}^{\mathrm{G}} = \frac{\alpha_{\mathrm{S}}}{8\pi}(\overline{\psi}\psi)G^{a\mu\nu}G^{a}_{\mu\nu}$$

3

(Relevant) effective interactions for direct detection

Dirac DM

• Electric and magnetic dipoles: $\mathcal{L} = \mu_{\psi} \mathcal{O}_{\text{mag}} + d_{\psi} \mathcal{O}_{\text{edm}}$ [long-range]

$$\mathcal{O}_{\rm mag} = \frac{e}{8\pi^2} (\overline{\psi} \sigma^{\mu\nu} \psi) F_{\mu\nu}, \qquad \mathcal{O}_{\rm edm} = \frac{e}{8\pi^2} (\overline{\psi} \sigma^{\mu\nu} i \gamma_5 \psi) F_{\mu\nu} \,,$$

• Vector interactions induced by Z/γ -penguins $\left[\underset{\text{enapole}}{\operatorname{anapole}}\left(\overline{\psi}\gamma^{\mu}\psi\right)\left(\partial^{\nu}F_{\mu\nu}\right)\equiv\mathcal{O}_{\mathrm{SI}}^{V}$ by $\left[\underset{\text{EOM}}{\operatorname{DM}}\right]$

$$\mathcal{O}_{\mathrm{SI}}^{\mathrm{V}} = (\overline{\psi} \gamma^{\mu} \psi) (\overline{q} \gamma_{\mu} q) \qquad \qquad \mathcal{O}_{\mathrm{SD}}^{\mathrm{AV}} = (\overline{\psi} \gamma^{\mu} \gamma_{5} \psi) (\overline{q} \gamma_{\mu} \gamma_{5} q),$$

· Scalar interactions [and gluon interaction induced by heavy quarks]

$$\mathcal{O}_{\mathrm{SI}}^{\mathrm{S}} = m_q(\overline{\psi}\psi)(\overline{q}q)$$
 $\qquad \qquad \mathcal{O}_{\mathrm{SI}}^{\mathrm{G}} = \frac{\alpha_{\mathrm{S}}}{8\pi}(\overline{\psi}\psi)G^{a\mu\nu}G^a_{\mu\nu}$

Majorana DM

- no dipole and vector interactions
- P-violating vector interaction [momentum suppressed]

$$\mathcal{O}^{AV} = (\overline{a}|_{\Omega})^{\mu}_{\Omega}(\overline{a}|_{\Omega})(\overline{a}|_{\Omega})$$

Dominant interactions: electric/magnetic dipole moments

For Dirac DM ψ [m_{η} , $\ll m_{\rm F} < m_{\rm S}$]

$$\begin{split} \mu_{\psi} &\approx -\frac{Q_F}{4\,m_S} \left(|y_V|^2 - |y_A|^2 \right) x_F \, \frac{1 - x_F^2 + 2\,\ln x_F}{(1 - x_F^2)^2} \\ d_{\psi} &\approx -\frac{Q_F}{2\,m_S} \, \text{Im}[y_V^* \, y_A] \, x_F \, \frac{1 - x_F^2 + 2\,\ln x_F}{(1 - x_E^2)^2} \end{split}$$

where

$$x_F \equiv \frac{m_F}{m_S}$$

$$x_F \equiv \frac{m_F}{m_S}$$
 and $y_{V,A} = \frac{y_2 \pm y_1}{2}$.

- · Dirac DM: magnetic and electric dipole moments
- · Majorana DM: Higgs, but also photon penguin.

Dominant interactions: electric/magnetic dipole moments

For Dirac DM ψ [m_{η} , $\ll m_{\rm F} < m_{\rm S}$]

$$\begin{split} \mu_{\psi} &\approx -\frac{Q_F}{4\,m_S} \left(|y_V|^2 - |y_A|^2 \right) x_F \, \frac{1 - x_F^2 + 2\,\ln x_F}{(1 - x_F^2)^2} \\ d_{\psi} &\approx -\frac{Q_F}{2\,m_S} \, \text{Im}[y_V^* \, y_A] \, x_F \, \frac{1 - x_F^2 + 2\,\ln x_F}{(1 - x_E^2)^2} \end{split}$$

where

$$x_F \equiv \frac{m_F}{m_S}$$

$$x_F \equiv \frac{m_F}{m_S}$$
 and $y_{V,A} = \frac{y_2 \pm y_1}{2}$.

- · Dirac DM: magnetic and electric dipole moments
- Majorana DM: Higgs, but also photon penguin.

All contributions have to be considered simultaneously

- Analytical expressions valid for general models provided in paper and compared to existing results Berlin, Chang, Agrawal, Kumar, Schmidt, Kopp, Ibarra...
- Implemented with DirectDM_{1708,02678} and LikeDM_{1708,04630}

Direct detection limits

Vector-like fermions

Direct detection limits

Vector-like fermions

Right-handed charged leptons

Connection to neutrino masses: scotogenic model with Dirac fermion

Scotogenic model with Dirac DM

Simple example of loopy DD with radiative ν masses:

Dirac DM ψ , $F \equiv L_L$, $S = \Phi, \Phi'$. Dark global (anomaly-free) U(1)_{DM}

Field	$SU(3)_{\mathrm{C}}$	${ m SU(2)_L}$	$U(1)_{\rm Y}$	$U(1)_{ m DM}$
Φ	1	2	1/2	1
Φ′	1	2	-1/2	1
ψ	1	1	0	1

Just one fermionic singlet ψ needed. $\mathbf{y}_{\mathbf{\Phi}^{(\prime)}}$ are 3-component vectors

$$\mathcal{L}_{\psi} \;\supset\; i\,\overline{\psi}\,\partial\!\!\!/\psi \;-\; m_{\psi}\,\overline{\psi}\,\psi \;-\; \left(y^{\alpha}_{\Phi}\,\overline{\psi}\,\tilde{\Phi}^{\dagger}\,L^{\alpha}_{L} \;+\; (y^{\alpha}_{\Phi'})^{*}\;\overline{\psi}\,\tilde{\Phi}'^{\dagger}\tilde{L}^{\alpha}_{L} \;+\; \text{H.c.}\right).$$

Two neutral scalars $\eta_0^{(\prime)}$ (mixing angle θ), two charged scalars $\eta^{(\prime)\pm}$ (no mixing)

$$V \supset \lambda_{H\Phi\Phi'} \left[(H^{\dagger}\tilde{\Phi}')(H^{\dagger}\Phi) + \text{H.c.} \right] \longrightarrow \sin 2\theta \propto \lambda_{H\Phi\Phi'}.$$

6

Majorana ν mass

$$\mathcal{M}_{\nu}^{\alpha\beta} = \frac{\sin 2\theta \, m_{\psi}}{32 \, \pi^2} \left(y_{\Phi}^{\alpha} y_{\Phi'}^{\beta} + y_{\Phi'}^{\alpha} y_{\Phi}^{\beta} \right) \left[\frac{m_{\eta_0}^2}{m_{\eta_0}^2 - m_{\psi}^2} \log \frac{m_{\eta_0}^2}{m_{\psi}^2} - (\eta_0 \leftrightarrow \eta_0') \right]$$

Lepton number L violated by combination of \mathbf{y}_{Φ} , \mathbf{y}'_{Φ} , $\lambda_{H\Phi\Phi'}(\sin 2\theta)$, m_{Ψ} , and $m_{\eta'_0}-m_{\eta_0}$

 $\mathcal{M}_{
u}$ is rank 2, so one massless u and two massive

$$m_{
u}^{\pm} \propto \left(|\mathbf{y}_{\Phi}| \ |\mathbf{y}_{\Phi'}| \ \pm \ |\mathbf{y}_{\Phi} \cdot \mathbf{y}_{\Phi'}^{\dagger}|
ight) \ .$$

Yukawa vectors $\mathbf{y}_{\Phi}^{(\prime)}$ determined by low-energy data up to one parameter ζ which determines relative size

Majorana ν mass

$$\mathcal{M}_{\nu}^{\alpha\beta} = \frac{\sin 2\theta \, m_{\psi}}{32 \, \pi^2} \Big(y_{\Phi}^{\alpha} \, y_{\Phi'}^{\beta} + y_{\Phi'}^{\alpha} y_{\Phi}^{\beta} \Big) \left[\frac{m_{\eta_0}^2}{m_{\eta_0}^2 - m_{\psi}^2} \log \frac{m_{\eta_0}^2}{m_{\psi}^2} - (\eta_0 \leftrightarrow \eta_0') \right]$$

Lepton number L violated by combination of \mathbf{y}_{Φ} , \mathbf{y}_{Φ}' , $\lambda_{H\Phi\Phi'}(\sin 2\theta)$, m_{Ψ} , and $m_{\eta'_0}-m_{\eta_0}$

 $\mathcal{M}_{
u}$ is rank 2, so one massless u and two massive

$$m_{
u}^{\pm} \propto \left(|\mathbf{y}_{\Phi}| \ |\mathbf{y}_{\Phi'}| \ \pm \ |\mathbf{y}_{\Phi} \cdot \mathbf{y}_{\Phi'}^{\dagger}| \right) \, .$$

Yukawa vectors $\mathbf{y}_{\Phi}^{(\prime)}$ determined by low-energy data up to one parameter ζ which determines relative size

Lepton flavour violation: $\mu \rightarrow e$ transition

$$BR(\mu \to e \, \gamma) = \frac{3 \, \alpha_{\rm em}}{64 \pi G_F^2} \left| \frac{y_\Phi^{\beta*} y_\Phi^{\alpha}}{m_{\eta^\pm}^2} f\left(\frac{m_\psi^2}{m_{\eta^\pm}^2}\right) + \frac{y_{\Phi'}^{\beta*} y_{\Phi'}^{\alpha}}{m_{\eta'^\pm}^2} f\left(\frac{m_\psi^2}{m_{\eta'^\pm}^2}\right) \right|^2$$

$$CR(Al) \simeq [0.0077, 0.011] \times BR(\mu \to e \gamma) \qquad \text{Dipole dominance}$$

Only free parameters: masses m_{ψ} , $m_{\eta^{\pm}}$, and ζ

<u>Lepton flavour violation:</u> $\mu \rightarrow e$ transition

$$BR(\mu \to e \, \gamma) = \frac{3 \, \alpha_{\rm em}}{64 \pi G_F^2} \left| \frac{y_{\Phi}^{\beta*} \, y_{\Phi}^{\alpha}}{m_{\eta^{\pm}}^2} f\left(\frac{m_{\psi}^2}{m_{\eta^{\pm}}^2}\right) + \frac{y_{\Phi'}^{\beta*} \, y_{\Phi'}^{\alpha}}{m_{\eta'^{\pm}}^2} f\left(\frac{m_{\psi}^2}{m_{\eta'^{\pm}}^2}\right) \right|^2$$

$$CR(Al) \simeq [0.0077, 0.011] \times BR(\mu \to e \gamma) \qquad \text{Dipole dominance}$$

Only free parameters: masses m_{ψ} , $m_{n^{\pm}}$, and ζ

NO:
$$y_{\Phi} = \frac{\zeta}{\sqrt{2}} \left(\sqrt{m_{sol}} u_2^* \pm i \sqrt{m_{atm}} u_3^* \right) \quad y_{\Phi'} = \frac{1}{\zeta \sqrt{2}} \left(\sqrt{m_{sol}} u_2^* \mp i \sqrt{m_{atm}} u_3^* \right)$$

IO:
$$\mathbf{y}_{\Phi} = \frac{\zeta}{\sqrt{2}} \left(\sqrt{m_{sol}} u_1^* \pm i \sqrt{m_{atm}} u_2^* \right) \quad \mathbf{y}_{\Phi'} = \frac{1}{\zeta \sqrt{2}} \left(\sqrt{m_{sol}} u_1^* \mp i \sqrt{m_{atm}} u_2^* \right)$$

$$\mathbf{y}_{\Phi'} = \frac{1}{\zeta\sqrt{2}} \left(\sqrt{m_{sol}} u_2^* \mp i \sqrt{m_{atm}} u_3^* \right)$$

$$\mathbf{y}_{\Phi'} = \frac{1}{\zeta\sqrt{2}} \left(\sqrt{m_{sol}} u_1^* \mp i \sqrt{m_{atm}} u_2^* \right)$$

with u; being the columns of the PMNS matrix

Using
$$f\left(m_{\eta^{\pm}}^2/m_{\psi}^2\right) \stackrel{m_{\eta^{\pm}} \to m_{\psi}}{\longrightarrow} \frac{1}{12}$$

$$\frac{10^{-34}}{0.100} = 10^{-34} \qquad \text{IO}: \quad 0.0004 \frac{100 \text{ GeV}}{m_{\eta'^{\pm}}} \lesssim \zeta \lesssim 3000 \frac{m_{\eta^{\pm}}}{100 \text{ GeV}}$$

Correlation between different LFV rates

$$\begin{split} & \text{NO} : \frac{\text{BR}(\tau \to e \, \gamma)}{\text{BR}(\mu \to e \, \gamma)} \approx \text{0.2 and} \quad \frac{\text{BR}(\tau \to \mu \, \gamma)}{\text{BR}(\mu \to e \, \gamma)} \approx \text{5} \\ & \text{IO} : \frac{\text{BR}(\tau \to e \, \gamma)}{\text{BR}(\mu \to e \, \gamma)} \approx \frac{\text{BR}(\tau \to \mu \, \gamma)}{\text{BR}(\mu \to e \, \gamma)} \approx \text{0.2} \; , \end{split}$$

DM s-wave annihilations into leptons and LFV

$$\frac{e^{\mp/\nu}}{\Phi^{(\prime)\pm/\Phi(\prime)0}} \xrightarrow{\text{ch.lep.}} \langle v\sigma_{\ell\ell} \rangle = \frac{1}{32\pi m_{\psi}^2} \left| y_{\Phi}^{\alpha} y_{\Phi}^{\beta*} \frac{m_{\psi}^2}{m_{\eta^{\pm}}^2 + m_{\psi}^2} - y_{\Phi'}^{\alpha} y_{\Phi'}^{\beta*} \frac{m_{\psi}^2}{m_{\eta'^{\pm}}^2 + m_{\psi}^2} \right|^2$$

Only depends on masses and ζ and thus strongly constrained by LFV

A conservative estimate

$$\frac{\sum_{\alpha,\beta} \left\langle v \sigma(\psi \bar{\psi} \to \ell_{\alpha}^{-} \ell_{\beta}^{+}, \nu_{\alpha} \nu_{\beta}) \right\rangle}{\left\langle v \sigma \right\rangle_{\rm th}} \lesssim 1 \, (0.3) \times 10^{-6} \left(\frac{3 \times 10^{-26} {\rm cm}^{3}/{\rm s}}{\left\langle v \sigma \right\rangle_{\rm th}} \right) \left(\frac{m_{\psi}}{100 \, {\rm GeV}} \right)^{2}$$

for $m_{\eta_0'} \simeq m_{\eta^\pm} \simeq m_\psi$. Larger scalar masses lead to a further suppression. This is confirmed by numerical scan with micrOMEGAs.

DM s-wave annihilations into leptons and LFV

$$\psi \xrightarrow{\ell^{\mp/\nu}} \stackrel{\ell^{\pm/\nu}}{\longrightarrow} \langle v \sigma_{\ell\ell} \rangle = \frac{1}{32\pi m_{\psi}^2} \left| y_{\Phi}^{\alpha} y_{\Phi}^{\beta*} \frac{m_{\psi}^2}{m_{\eta^{\pm}}^2 + m_{\psi}^2} - y_{\Phi'}^{\alpha} y_{\Phi'}^{\beta*} \frac{m_{\psi}^2}{m_{\eta'^{\pm}}^2 + m_{\psi}^2} \right|^2$$

$$\bar{\psi} \xrightarrow{\ell^{\pm/\nu}} \ell^{\pm/\nu} = \frac{1}{32\pi m_{\psi}^2} \left| y_{\Phi}^{\alpha} y_{\Phi}^{\beta*} \frac{m_{\psi}^2}{m_{\eta^{\pm}}^2 + m_{\psi}^2} - y_{\Phi'}^{\alpha} y_{\Phi'}^{\beta*} \frac{m_{\psi}^2}{m_{\eta'^{\pm}}^2 + m_{\psi}^2} \right|^2$$

Only depends on masses and ζ and thus strongly constrained by LFV

A conservative estimate

$$\frac{\sum_{\alpha,\beta} \left\langle v \sigma(\psi \bar{\psi} \to \ell_{\alpha}^{-} \ell_{\beta}^{+}, \nu_{\alpha} \nu_{\beta}) \right\rangle}{\left\langle v \sigma \right\rangle_{\rm th}} \lesssim 1 \, (0.3) \times 10^{-6} \left(\frac{3 \times 10^{-26} {\rm cm}^{3}/{\rm s}}{\left\langle v \sigma \right\rangle_{\rm th}} \right) \left(\frac{m_{\psi}}{100 \, {\rm GeV}} \right)^{2}$$

for $m_{\eta_0'} \simeq m_{\eta^\pm} \simeq m_\psi$. Larger scalar masses lead to a further suppression. This is confirmed by numerical scan with micrOMEGAs.

Annihilations into leptons too small: need coannihilation with scalars $\Phi^{(\prime)}$

Complementarity of LFV and DM direct detection

Conclusions

DM may not couple directly to quarks

DM - nucleus scattering only at 1-loop order (or higher)

Discussion of simplifed fermionic DM model

magnetic and electric dipole moment dominate Higgs penguins are important for Majorana DM

Scotogenic model with Dirac fermion

fermionic DM requires coannihilation interplay between LFV and direct detection

Conclusions

DM may not couple directly to quarks

DM - nucleus scattering only at 1-loop order (or higher)

Discussion of simplifed fermionic DM model

magnetic and electric dipole moment dominate Higgs penguins are important for Majorana DM

Scotogenic model with Dirac fermion

fermionic DM requires coannihilation interplay between LFV and direct detection