





## **Submission Final Task**

**Kalbe Nutritionals Data Scientist Virtual Internship Program** 

Presented by Marselius Agus Dhion





#### **About You**

Saya merupakan mahasiswa semester 5 di Universitas Kristen Maranatha dengan jurusan Sistem Informasi. Saya memiliki *interest* di bidang data analyst dan data science. Oleh karena itu, saya memiliki keahlian menggunakan SQL (MySQL, PostgreSQL, Server SQL), Python, dan tools visualisasi seperti Tableau dan Looker Studio.



### **Job Experiences**



Saya menganalisis total revenue secara keseluruhan, revenue dari cabangnya, dan total produk yang terjual dari suatu periode menggunakan Looker Studio.

## Data Analyst Intern - Ditusi Gaming (June 2023 - July 2023)

Saya menganalisis konten dan engagement social media Tiktok dan Instagram. Seperti menganalisis konten yang diminati dengan metrics likes, share, new followers, Engagement Rate Post (ERP), Engagement Rate Reach (ERR), dan beberapa metrics lainnya menggunakan Looker Studio.



# **Case Study**

Machine Learning- Clustering



## **Dataset**

|            | TransactionCount | TotalQty | TotalAmountSum |
|------------|------------------|----------|----------------|
| CustomerID |                  |          |                |
| 1          | 17               | 60       | 623300         |
| 10         | 14               | 50       | 478000         |
| 100        | 8                | 35       | 272400         |
| 101        | 14               | 44       | 439600         |
| 102        | 15               | 57       | 423300         |



## **Exploratory Data Analysis (EDA)**



## **Drop Outlier**





Dari kedua plot diatas dapat dilihat terdapat beberapa point yang valuenya outlier.

Oleh karena itu, nanti value-value tersebut akan didrop



#### **Data Distribution**



Dari plot disamping, persebaran datanya mengarah ke kanan atas. Mengartikan bahwa data tersebut saling berkorelasi positif.

Jadi jika suatu feature valuenya naik, nanti feature-feature lainnya juga ikut menaik, dikarenakan berkolerasi positif.



#### **Data Correlation**



Berdasarkan slide sebelumnya, bahwa setiap featurenya berkolerasi positif.

Ketika diplot kolerasi setiap featurenya menghasilkan value seperti disamping.

Dimana angkanya berada di angka 0.86 s/d 0.9.



## **Feature Engineering**



## **Drop Outlier**





Dari fase EDA (Exploratory Data Analysis) sebelumnya, akan ada membuang outlier. Dari kedua plot diatas dapat dilihat bahwa data point yang outlier sudah didrop.



### **Min-Max Scaling**

|            | TransactionCount | TotalQty | TotalAmountSum |
|------------|------------------|----------|----------------|
| CustomerID |                  |          |                |
| 1          | 17               | 60       | 623300         |
| 10         | 14               | 50       | 478000         |
| 100        | 8                | 35       | 272400         |
| 101        | 14               | 44       | 439600         |
| 102        | 15               | 57       | 423300         |

Dari value dataframe disamping, dapat dilihat bahwa valuenya berada pada range yang berbeda-beda. Oleh karena itu, harus dilakukan min-max scaling, tujuannya supaya range valuenya berada pada range yang sama.

[[0.875, 0.7936507936507936, 0.9094333162129773], [0.6875, 0.6349206349206349, 0.6606745420304743], [0.3125, 0.39682539682539686, 0.30868002054442734], [0.6875, 0.5396825396825397, 0.5949323745933915], [0.75, 0.7460317460317459, 0.5670261941448382]]

Gambar disamping merupakan value setiap kolom setelah dilakukan min-max scaling. Dimana valuenya sudah pada rentang yang sama, yaitu 0 s/d 1 tanpa mengurangi makna dari datanya. Jadi hanya mengubah valuenya saja.



## **Clustering Metrics**



Saya menggunakan empat metrics, yaitu Elbow curve, Silhouette score, Davies-Bouldin (DB) score, CH-score.

- Elbow method :
   Nilai k yang diambil ketika curvenya sudah patah dan mulai lambai.
- 2. Silhouette score : Semakin tinggi scorenya, semakin bagus clusternya.
- DB score : Semalin rendah scorenya, semakin bagus clusternya.
- 4. CH (Calinki-Harabasz) score : Semakin tinggi valuenya, maka semakin bagus clusternya.

Dari keempat metrics ini, saya menggunakan k-clustering sebesar 3.



## **Scatter Plot Clustering**



Gambar diatas merupakan scatter plot dengan jumlah k-clustering = 3.



#### **Hasil Akhir**

|   | TransactionCount | TotalQty  | TotalAmountSum | Jumlah Customer |
|---|------------------|-----------|----------------|-----------------|
| 1 | 14.846774        | 55.887097 | 505401.612903  | 124             |
| 2 | 7.408696         | 26.034783 | 220050.434783  | 115             |
| 3 | 11.014706        | 39.637255 | 348654.901961  | 204             |

Tabel diatas merupakan rata-rata value dari TransactionCount, TotalQty, dan TotalAmountSum. Serta terdapat kolom jumlah customer.

Cluster dengan jumlah uang yang dikeluarkan terbanyak yaitu pada cluster 1. Sedangkan yang paling sedikit yaitu pada cluster .

~ ~ ~ Model Metrics Scores ~ ~ ~

Silhouette Score : 0.43339306239644226
Davies-Bouldin Score : 0.7387372361994299
Calinski-Harabasz Score : 735.6779809934534

Gambar diatas ini merupakan metrics score dari model yang dibuat.



# **Case Study**

Machine Learning - Regression (Time Series)



## **Dataset yang Digunakan**

|            | Qty |
|------------|-----|
| Date       |     |
| 2022-01-01 | 49  |
| 2022-01-02 | 50  |
| 2022-01-03 | 76  |
| 2022-01-04 | 98  |
| 2022-01-05 | 67  |
|            |     |

Data disamping merupakan data yang akan dipakai untuk dibuat model ARIMA. Dimana kolom "Qty" tersebuh sudah dilakukan sebuah agregasi SUM dan di-groupby berdasarkan Date.



## **Dekomposisi Dataset**





Uji stationer yang saya gunakan, menggunakan dua metode :

- 1. Augmented Dickey Fuller (ADF) Test
- 2. Kwiatkowski Phillips Schmidt Shin (KPSS) Test



#### **ADF Test**

| Nilai uji                  | Keterangan       |   |
|----------------------------|------------------|---|
| -19.018783                 | Uji Statistik    | 0 |
| 0.0                        | p-value          | 1 |
| 0                          | Lags digunakan   | 2 |
| 364                        | Banyak Observasi | 3 |
| H0 ditolak                 | Hasil Uji        | 4 |
| Data terindikasi Stasioner | Kesimpulan       | 5 |
|                            |                  |   |

Jika p-value < 0.05. Maka H0 ditolak dan berarti data stasioner. Sebaliknya, jika p-value > 0.05. Maka H0 diterima dan artinya data non- stasioner

#### **Keterangan ADF Test**

Hipotesa Null (H0) : Data terindikasi non-stasioner.

Hipotesa Alternatif (H1): Data terindikasi stasioner



#### **KPSS Test**

|   | Keterangan     | Nilai uji                  |
|---|----------------|----------------------------|
| 0 | Uji Statistik  | 0.425352                   |
| 1 | p-value        | 0.066227                   |
| 2 | Lags digunakan | 5                          |
| 3 | Hasil Uji      | H0 diterima                |
| 4 | Kesimpulan     | Data terindikasi Stasioner |

Jika p-value < 0.05. Maka H0 ditolak dan berarti data non-stasioner. Sebaliknya, jika p-value > 0.05. Maka H0 diterima dan artinya data stasioner

#### Keterangan KPSS Test

Hipotesa Null (H0) : Trend data terindikasi stasioner. Hipotesa Alternatif (H1) : Data terindikasi non-stasioner



#### **ADF Test**

|   | Keterangan       | Nilai uji                  |
|---|------------------|----------------------------|
| 0 | Uji Statistik    | -19.018783                 |
| 1 | p-value          | 0.0                        |
| 2 | Lags digunakan   | 0                          |
| 3 | Banyak Observasi | 364                        |
| 4 | Hasil Uji        | H0 ditolak                 |
| 5 | Kesimpulan       | Data terindikasi Stasioner |

#### **KPSS Test**

| Keterangan |                | Nilai uji                  |
|------------|----------------|----------------------------|
| 0          | Uji Statistik  | 0.425352                   |
| 1          | p-value        | 0.066227                   |
| 2          | Lags digunakan | 5                          |
| 3          | Hasil Uji      | H0 diterima                |
| 4          | Kesimpulan     | Data terindikasi Stasioner |

Dari kedua test ini didapatkan kesimpulan bahwa Data terindikasi stasioner. Dikarenakan pada kedua uji test ini mengindikasikan bahwa datanya stasioner.

Dengan informasi ini, nanti untuk ordo d pada model ARIMA, nanti nilainya dijadikan 0. Karena tidak perlu dilakukan differencing kembali pada datanya.



## **Data Splitting**



Data train saya gunakan 70% dan sisanya (30%) merupakan data testnya.

Datanya nanti digunakan untuk penentuan ordo p dan q.



## Ordo p - PACF (Partial Autocorrelation Function)



Dari plot PACF diatas, terdapat empat lag yang diluar bluish area (area yang berwarna biru) yaitu lag 28, 42, 44, dan 50.



## Ordo d

Ordo d saya tentukan menjadi O. Dikarenakan datanya sudah stasioner, jadi tidak perlu dilakukan differencing dengan ordo d ini.



## Ordo q - ACF (Autocorrelation Function)



Dari plot ACF diatas, terdapat satu lag yang diluar bluish area (area yang berwarna biru) yaitu lag 28.



#### **Auto ARIMA**

```
Performing stepwise search to minimize aic
ARIMA(2,0,2)(0,0,0)[0]
                                   : AIC=2342.651, Time=0.19 sec
ARIMA(0,0,0)(0,0,0)[0]
                                   : AIC=2952.911, Time=0.01 sec
ARIMA(1,0,0)(0,0,0)[0]
                                   : AIC=2508.940, Time=0.02 sec
ARIMA(0,0,1)(0,0,0)[0]
                                   : AIC=2776.756, Time=0.06 sec
ARIMA(1,0,2)(0,0,0)[0]
                                   : AIC=2341.934, Time=0.16 sec
ARIMA(0,0,2)(0,0,0)[0]
                                   : AIC=2676.272, Time=0.08 sec
ARIMA(1,0,1)(0,0,0)[0]
                                   : AIC=2340.029, Time=0.09 sec
ARIMA(2,0,1)(0,0,0)[0]
                                   : AIC=2341.929, Time=0.18 sec
                                   : AIC=2433.732, Time=0.04 sec
ARIMA(2,0,0)(0,0,0)[0]
ARIMA(1,0,1)(0,0,0)[0] intercept
                                   : AIC=2334.527, Time=0.08 sec
ARIMA(0,0,1)(0,0,0)[0] intercept
                                   : AIC=2332.524, Time=0.05 sec
                                   : AIC=2330.528, Time=0.01 sec
ARIMA(0,0,0)(0,0,0)[0] intercept
ARIMA(1,0,0)(0,0,0)[0] intercept
                                   : AIC=2332.524, Time=0.04 sec
```

Best model: ARIMA(0,0,0)(0,0,0)[0] intercept

Total fit time: 1.038 seconds

Dari hasil Auto ARIMA untuk menentukan ordo (p,d,q). Disimpulkan bahwa ordo terbaik yaitu (0,0,0) dikarenakan nilai AIC terkecil yaitu sebesar 2330.528.

Namun berdasarkan plot PACF (ordo p) dan ACF (ordo q) sebelumnya.

Untuk ordo p terdapat empat lag yaitu 28, 42, 44, dan 50.

Lalu ordo q terdapat satu lag yaitu 28.

Maka saya mencoba kemungkinan-kemungkinan ordo p,d,q dengan kombinasi angka 28, 42, 44, dan 50.

Lalu saya mencari nilai MSE dan MAE menggunakan cross-validation supaya dapat membandingkan dengan model-model lainnya.



## Ordo (0, 0, 0)



Average MSE: 277.1196265119027 Average MAE: 13.43943779632897



## Ordo (28, 0, 28)



Average MSE: 507.5467529390553 Average MAE: 17.20640598321131



## Ordo (42, 0, 28)



Average MSE: 552.7357265162906 Average MAE: 17.46957313266143



## Ordo (44, 0, 28)



Average MSE: 473.0635526322021 Average MAE: 16.532379933269432



## Ordo (50, 0, 28)



Average MSE: 610.9998536076489 Average MAE: 18.248802427565835



### Conclusion

Dari seluruh ordo (p,d,q) yang saya coba. Saya memutuskan untuk menggunakan ordo (0,0,0) atau (28, 0, 28). Dikarenakan kedua kombinasi ordo (p,d,q) ini memiliki nilai MSE dan MAE yang terkecil.



# **Case Study**

Tableau Public Dashboard

Final Task - Kalbe | Tableau Public

## Challenge



**Query 1**: Berapa rata-rata umur customer jika dilihat dari marital statusnya?



#### Output:



**Query 2**: Berapa rata-rata umur customer jika dilihat dari gender nya?



#### Output:

|   | avg_age | gender 🔻 |   |
|---|---------|----------|---|
| 1 | 40.39   | 0        | Ī |
| 2 | 39.54   | 1        | ı |

## Challenge



#### **Query 3**: Tentukan nama store dengan total quantity terbanyak!



#### Output:



#### **Query 4**: Tentukan nama produk terlaris dengan total amount terbanyak!



#### Output:





## **Insert Your Link Github Here**

Github Profile: TheOX7 (Marselius Agus Dhion) (github.com)

Github Repository: TheOX7/Final-Task-Kalbe (github.com)



## **Video Presentation Here**

**Link Video Presentation** 

## **Thank You**



