Model order reduction of deep structured state-space models: A system-theoretic approach

Marco Forgione, Manas Mejari, and Dario Piga

¹IDSIA Dalle Molle Institute for Artificial Intelligence SUPSI-USI, Lugano, Switzerland

March 24, 2024

(IDSIA) LRU reduction 1/12

Deep structured state-space models

Growing interest within the machine-learning community. They dominate long-range sequence learning where Transformers suffer the $\mathcal{O}(N^2)$ scaling.

- Interconnection of linear dynamical systems with static non-linearities (and Normalization layers, skip connection, ...)
- The architecture should ring a bell to sysid researchers.

The classic block-oriented modeling framework.

E.W. Bai, F. Giri Block-oriented nonlinear system identification. Springer, 2010

(IDSIA)

The dynoNet architecture

LTI blocks for deep learning in our 2021 dynoNet architecture

dynoNet architecture

Python code

```
 \begin{split} &\text{G1} = \text{LinearMimo}(1, \quad 4, \quad \dots) \; \# \; a \; \textit{SIMO} \; \; tf \\ &\text{F} = \; \text{StaticNonLin}(4, \quad 3, \quad \dots) \; \# \; a \; \; \textit{static} \; \; \textit{NN} \\ &\text{G2} = \; \text{LinearMimo}(3, \quad 1, \quad \dots) \; \# \; a \; \; \textit{MISO} \; \; tf \\ &\text{G3} = \; \text{LinearSiso}(1, \quad 1, \quad \dots) \; \# \; a \; \; \textit{SISO} \; \; tf \\ \\ &\text{def model(in\_data):} \\ &\text{y1} = \; \text{G1(in\_data)} \\ &\text{z1} = \; \text{F(y1)} \\ &\text{y2} = \; \text{G2(z1)} \\ &\text{out} = \; \text{y2} + \; \text{G3(in\_data)} \\ \end{aligned}
```


M. Forgione and D.Piga. *dynoNet:* A Neural Network architecture for learning dynamical systems. *International Journal of Adaptive Control and Signal Processing*, 2021

Differentiable transfer functions are now also in the torchaudio library.

https://pytorch.org/audio/main/generated/torchaudio.functional.lfilter.html

(IDSIA) LRU reduction 3/12

Deep Structured State-Space Model Architecture

- Architecture with normalization layers, skip connections, (dropout).
- State-space parameterization of the linear dynamical system

Several strategies to make the LTI state-space system fast and efficient.

A. Gu, K. Goel, C. Ré. Efficiently Modeling Long Sequences with Structured State Spaces. ICLR, 2022

Our idea: bring in model order reduction to simplify these architectures!

(IDSIA) LRU reduction 4/12

Deep Structured State-Space Model Architecture

- Architecture with normalization layers, skip connections, (dropout).
- State-space parameterization of the linear dynamical system

Several strategies to make the LTI state-space system fast and efficient.

A. Gu, K. Goel, C. Ré. Efficiently Modeling Long Sequences with Structured State Spaces. ICLR, 2022

Our idea: bring in model order reduction to simplify these architectures!

(IDSIA) LRU reduction 4/12

Deep Linear Recurrent Units

We consider the deep LRU architecture recently introduced by DeepMind:

A. Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. ICML, 2023

- Discrete-time, MIMO LTI system
- ullet Complex diagonal state-transition matrix A_D
- Stable parameterization
- Implementation with either:
 - $ightharpoonup \mathcal{O}(N)$ sequential ops (standard recursion)
 - lacktriangleright N parallel jobs, $\mathcal{O}(\log N)$ ops each (parallel scan)
- SOTA on long-range sequences

Our idea: further exploit the diagonal structure for model order reduction.

(IDSIA) LRU reduction 5/12

Deep Linear Recurrent Units

We consider the deep LRU architecture recently introduced by DeepMind:

A. Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. ICML, 2023

- Discrete-time, MIMO LTI system
- ullet Complex diagonal state-transition matrix A_D
- Stable parameterization
- Implementation with either:
 - $ightharpoonup \mathcal{O}(N)$ sequential ops (standard recursion)
 - lacktriangleq N parallel jobs, $\mathcal{O}(\log N)$ ops each (parallel scan)
- SOTA on long-range sequences

Our idea: further exploit the diagonal structure for model order reduction.

5/12

(IDSIA) LRU reduction

Consider a LTI state-space system partitioned as:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(k),$$
$$y(k) = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + Du(k),$$

Reduction is often applied to systems in

- Modal form (A diagonal, states sorted from slowest to fastest)
- Balanced form (states sorted for decreasing Hankel singular values)

The states x_2 can be removed by

- Truncation \Rightarrow keep (A_{11}, B_1, C_1, D)
- Singular perturbation \Rightarrow solve $x_2(k) = x_2(k-1)$

We tested all combinations for LRU simplification: MT, MSP, BT, BSP.

(IDSIA) LRU reduction 6 / 12

Consider a LTI state-space system partitioned as:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(k),$$
$$y(k) = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + Du(k),$$

Reduction is often applied to systems in

- Modal form (A diagonal, states sorted from slowest to fastest)
- Balanced form (states sorted for decreasing Hankel singular values)

The states x_2 can be removed by:

- Truncation \Rightarrow keep (A_{11}, B_1, C_1, D)
- Singular perturbation \Rightarrow solve $x_2(k) = x_2(k-1)$

We tested all combinations for LRU simplification: MT, MSP, BT, BSP.

Consider a LTI state-space system partitioned as:

$$\begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(k),$$
$$y(k) = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + Du(k),$$

Reduction is often applied to systems in

- Modal form (A diagonal, states sorted from slowest to fastest)
- Balanced form (states sorted for decreasing Hankel singular values)

The states x_2 can be removed by:

- Truncation \Rightarrow keep (A_{11}, B_1, C_1, D)
- Singular perturbation \Rightarrow solve $x_2(k) = x_2(k-1)$

We tested all combinations for LRU simplification: MT, MSP, BT, BSP.

(IDSIA) LRU reduction 6 / 12

Regularization

Regularization introduced to enhance the MOR:

$$\hat{\theta} = \arg\min_{\theta \in \Theta} \frac{1}{N} \sum_{k=1}^{N} (y_k - \hat{y}_k(\theta))^2 + \gamma \mathcal{R}(\theta),$$

Modal ℓ_1

$$\mathcal{R}(\theta) = \sum_{j=1}^{n_x} |\lambda_j|$$

- Push some modes towards 0
- Tailored for modal reduction MT/MSP

Hankel nuclear norm (HNN)

$$\mathcal{R}(\theta) = \sum_{j=1}^{n_x} \sigma_j$$

- Push some HSV towards 0
- Tailored for balanced reduction BT/BSP
- Modal ℓ_1 efficient $(\lambda_j$ are on the diagonal)
- ullet HNN also efficient exploiting diagonal A_D for HSV computation

(IDSIA) LRU reduction 7/12

Example

Experiments on the F16 ground vibration benchmark. Deep LRU with

- $n_{\text{lavers}} = 6$ layers
- $n_x = 100$ states per layer
- $d_{\text{model}} = 50$ units per layer
- Layer Normalization
- MLP non-linearity

Results on test set FullMSine_Level6_Validation

Regularization	Channel 1			Channel 2			Channel 3		
	fit	RMSE	NRMSE	fit	RMSE	NRMSE	fit	RMSE	NRMSE
No reg.	86.5	0.180	0.134	90.0	0.167	0.099	76.2	0.368	0.237
Modal ℓ_1	85.4	0.195	0.145	89.8	0.171	0.102	74.5	0.395	0.254
Hankel norm	85.8	0.190	0.142	89.0	0.185	0.110	75.5	0.379	0.245

In line with literature. Regularization has a large effect on the LTI blocks!

(IDSIA) LRU reduction 8 / 12

Example

Experiments on the F16 ground vibration benchmark. Deep LRU with

- $n_{\text{lavers}} = 6$ layers
- $n_x = 100$ states per layer
- $d_{\text{model}} = 50$ units per layer
- Layer Normalization
- MLP non-linearity

Results on test set FullMSine_Level6_Validation

Regularization	Channel 1			Channel 2			Channel 3		
	fit	RMSE	NRMSE	fit	RMSE	NRMSE	fit	RMSE	NRMSE
No reg.	86.5	0.180	0.134	90.0	0.167	0.099	76.2	0.368	0.237
Modal ℓ_1	85.4	0.195	0.145	89.8	0.171	0.102	74.5	0.395	0.254
Hankel norm	85.8	0.190	0.142	89.0	0.185	0.110	75.5	0.379	0.245

In line with literature. Regularization has a large effect on the LTI blocks!

(IDSIA) LRU reduction 8 / 12

No regularization: eigenvalues magnitude (top) and HSV (bottom)

Modal ℓ_1 regularization: eigenvalues magnitude (top) and HSV (bottom)

No regularization: eigenvalues magnitude (top) and HSV (bottom)

HNN regularization: eigenvalues magnitude (top) and HSV (bottom)

(IDSIA) LRU reduction 10 / 12

Performance of all regularizers/model order reduction techniques assessed.

	Tr	Truncation Method					
Regularization Method	ВТ	BSP	МТ	MSP			
No Regularization Modal ℓ_1	28 56	43 73	3 0	35 91			
Hankel nuclear norm	89	91	18	76			

Table: Number of states eliminated s.t. performance decrease is less than 1%

- Best results with Hankel nuclear norm + balanced singular perturbation and modal ℓ_1 + modal singular perturbation
- Without regularization, MOR is significantly less effective

(IDSIA) LRU reduction 11 / 12

Thank you. Questions?

marco.forgione@idsia.ch

(IDSIA