Instituto Politécnico do Porto, Instituto Superior de Engenharia

Licenciatura em Eng. Electrotécnica e de Computadores, Teoria dos Sistemas, Abril-2010

Todas as perguntas devem ser respondidas unicamente na folha de respostas.

Seleccione apenas uma das 4 alternativas assinalando-a na matriz de respostas.

 ${\rm O}$ teste é sem consulta. Duração da prova
: $0{:}30$

1. Considere o seguinte diagrama de blocos de um sistema de controlo representado na figura. Sejam $s \in \mathcal{L}$, respectivamente a variável e o operador de Laplace e sejam $R(s) = \mathcal{L}[r(t)]$ e $Y(s) = \mathcal{L}[y(t)]$, repectivamente, as transformadas de Laplace do sinais de entrada e de saída. Simplificando o diagrama de blocos de modo a obter a função

2. Considere o sistema eléctrico representado na figura seguinte, onde u(t)e y(t) representam, respectivamente, os sinais de entrada e de saída. O modelo matemático vem dado por:

haddelo matematico vem dado por:
$$A)LC\frac{d^2y}{dt^2} + C(R_1 + R_2)\frac{dy}{dt} + y = CR_2\frac{du}{dt} + u$$

$$B)\frac{d^2y}{dt^2} + C(R_1 + R_2)\frac{dy}{dt} + \frac{1}{L}y = CR_2\frac{du}{dt} + u$$

$$C)LC\frac{d^2y}{dt^2} + (R_1 + R_2)\frac{dy}{dt} + y = R_2\frac{du}{dt} + u$$

$$D)(R_1 + R_2)C\frac{d^2y}{dt^2} + LC\frac{dy}{dt} + y = R_2\frac{du}{dt} + u$$

B)
$$\frac{d^2y}{dt^2} + C(R_1 + R_2)\frac{dy}{dt} + \frac{1}{L}y = CR_2\frac{du}{dt} + u$$

C)
$$LC\frac{d^2y}{dt^2} + (R_1 + R_2)\frac{dy}{dt} + y = R_2\frac{du}{dt} + u$$

D)
$$(R_1 + R_2) C \frac{d^2 y}{dt^2} + LC \frac{dy}{dt} + y = R_2 \frac{du}{dt} + u$$

Aluno Nº: _ _ _ Nome: _ _ _ _ _ _

Respostas

	Α	В	С	D	
1.					1.
2.					2.

TESIS MiniTestel Abril 2010

1)
$$\frac{R}{4}$$
 $\frac{1}{4}$ \frac

2)
$$\frac{L}{m}$$
 $\frac{R}{m}$ $\frac{d}{dt}$ $\frac{d}{dt}$