EEE3069W Formula Sheet

General

$$s^{2}x + 2\zeta\omega_{0}sx + \omega_{0}^{2}x$$

$$g_{CL} = \frac{L}{1+L}$$

$$ZOH = (1 - z^{-1}) = \frac{1 - e^{-sT}}{s}$$

 $t_{2\%} \simeq 4\tau$

$$\begin{split} &\zeta = \cos(\theta) \\ &\tau = \frac{-1}{Re\{s\}} = \frac{1}{\zeta \omega_n} \\ &z = e^{sT} = e^{(\sigma + j\omega)T} = e^{\sigma T} e^{j\omega T} = \rho e^{\varphi} \end{split}$$

 $t_{2\%} = b: R\{z\} < e^{\frac{-4T}{b}}$

Jury Stability Test

$$A(z) = a_0 + a_1 z + a_2 z^2 + ... + a_n z^n = 0$$

 $A(1) > 0, A(-1) > 0$ for n even, $A(-1) < 0$ for n odd.

$$\begin{aligned} |a_0| < |a_n|, & |b_0| > |b_{n-1}|, |c_0| > |c_{n-2}|, \dots \\ \text{where } b_k = \begin{vmatrix} a_0 & a_{n-k} \\ a_n & a_k \end{vmatrix}, \dots \end{aligned}$$

Z-Transform

$$Z[x(kT)] = \sum_{k=0}^{\infty} x(kT)z^{-k}$$

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$$

$$e^{j\theta} = cos(\theta) + jsin(\theta)$$

$$sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

Sampling

$$\overline{g^*(s) = g}(z)$$

$$g^*(t) = g(nT)$$

$$y(s) = g(s)u(s); y^*(s) = gu^*(s);$$

y(z) = gu(z)

 $\frac{y(z)}{r(z)}$: pulse transfer function.

$$u^*(s+jm\Omega) = u^*(s); \Omega = \frac{2\pi}{T};$$

 $\Omega/2 > BW$

Controllability and Observability

$$\frac{d}{dt}x(t) = Ax(t) + bu(t) \text{ with } n \text{ states.}$$

 $\ddot{y}(t) = C^T x(t) + du(t)$

$$\mathbf{C} \colon Rank[b|Ab|A^2b|...|A^{n-1}b] = n$$

O:
$$Rank[C^T|C^TA|C^TA^2|...|C^TA^{n-1}]^T =$$

where R(rows) = R(columns) = LI columns/ no. of pivots / no. zero rows in RRE

Can you 'see' control action (u(t)) and output?

$$x = P\bar{x}; P^{-1}AP = D$$

Discrete Controller Implementation

Difference equation:

$$k(z) = \frac{u(z)}{e(z)}; u(z)z^{-a} = u(n-a)$$

Direct: powers of z^{-1} ; introduce internal state variable x(z); equate denominator then numerator; no. past values = no. poles

Cascade: split into first order blocks connected in cascade; apply direct; use internal variables to equate

Parallel: partial fraction expansion; apply direct; use internal variables to equate $e(z) \Rightarrow k(z) \Rightarrow u(z)$

State Feedback Control

$$\overline{u(t) = -k^T x(t) + r(t)}$$

 $u(t) = -k^T x(t) + r(t)$ $Z_m[gh(s)] = Z[gh(s)e^{-s\theta}]$ Replace u(t) in basic state space model and $m = 1 - \frac{\theta}{T} = 1 - \Delta$ take Laplace:

$$g(s) = \frac{y}{r} = C^T \frac{(sI - A + bk^T)b}{\det(sI - A + bk^T)}$$

$$\phi_c = \det(sI - A + bk^T)$$

$$det(sI - A + bk^{T}) = 0$$

for closed-loop poles = eigenvalues

for closed-loop poles = eigenvalues of $(\bar{A} =$ $A - bk^T$).

Set-point tracking: add K/s, block diagram manipulation, state space for inte-

$$\frac{d}{dt}x_a = r(t) - C^T x(t) + du(t)$$
$$z = -k_a x_a$$

Integrator output becomes a state and augmented matrix formed:

$$\begin{array}{l} \mbox{mented matrix formed:} \\ \frac{d}{dt} \begin{bmatrix} x \\ x_a \end{bmatrix} = \begin{bmatrix} A & 0 \\ -C^T & 0 \end{bmatrix} \begin{bmatrix} x \\ x_a \end{bmatrix} + \begin{bmatrix} b \\ -d \end{bmatrix} u + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r \quad \begin{array}{l} n_\infty = n_p - n_z \\ angle = \frac{180^0 - 360^0 l}{n_\infty} \\ center = \frac{sumofpoles - sumofzeros}{n_\infty} \\ x_a \end{bmatrix} \\ u(t) = -\begin{bmatrix} k^T & k_a \end{bmatrix} \begin{bmatrix} x \\ x_a \end{bmatrix} \\ subbing this in gives: \begin{array}{l} Symmetric about real axis. \end{array}$$

$$\frac{d}{dt} \begin{bmatrix} x \\ x_a \end{bmatrix} = (\bar{A} - \bar{b}\bar{k}^T) \begin{bmatrix} x \\ x_a \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r$$

$$\phi_c = |sI - \bar{A} + \bar{b}\bar{k}^T|$$

Observer: the observer state is added and error poles can be designed separately from CL poles:

$$\frac{d}{dt}\tilde{x}(t) = A\tilde{x}(t) + bu(t) + p[y(t) - \tilde{y}(t)]$$

$$\tilde{y}(t) = C^T\tilde{x}(t)$$

state observer is a mathematical model of plant with error term. $\tilde{x}(t)$ is an estimated

Introducing error state:

$$\frac{d}{dt}e = x - \bar{x} = (A - pC^T)e$$

$$|sI - A + bk^T| |sI - A + pC^T| = 0$$

Modified Z-Transform

$$Z_m[gh(s)] = Z[gh(s)e^{-s\theta}]$$

$$m = 1 - \frac{\theta}{T} = 1 - \Delta$$

Other Transformations

$$z = \frac{1+w}{1-w}$$

$$w = \frac{z-1}{z+1}$$

$$z = \frac{1 + w' \frac{T}{2}}{1 - w' \frac{T}{2}}$$
$$w' = \frac{2(z - 1)}{T(z + 1)}$$

$$w' = \frac{2(z-1)}{T(z+1)}$$

Used for: Nyquist of
$$gh(z)$$

$$\begin{array}{l} z=e^{j\omega T}\\ w=\frac{e^{j\omega T}-1}{e^{j\omega T}+1}=jtan(wT/2)\simeq j\omega T/2\simeq j\Omega \end{array}$$

Root Locus

$$n_{\infty} = n_p - n_z$$

$$angle = \frac{180^{\circ} - 360^{\circ} l}{n_{--}}$$

$$center = \frac{sumofpoles - sumofzero}{r}$$

$$q(s) = \gamma \frac{N_q(s)}{D_q(s)}$$

$$q(s) = \gamma \frac{N_q(s)}{D_q(s)}$$

$$\frac{d}{ds}\gamma(s) = N_q(s)\frac{d}{ds}D_q(s) - D_q(s)\frac{d}{ds}N_q(s) = 0$$

Between open loop poles - breakaway point.

Controller Synthesis

$$k(z) = \frac{1}{gh(z)} \cdot \frac{\frac{y(z)}{r(z)}}{1 - \frac{y(z)}{r(z)}}$$
Dalin:
$$\frac{z^{-N}(1 - e^{-\frac{T}{\tau}})}{z - e^{\frac{T}{\tau}}}$$

Dalin:
$$\frac{z^{-N}(1-e^{\frac{-T}{\tau}})}{z-e^{\frac{-T}{\tau}}}$$

EEE4093F Formula Sheet

Table 2.1: Summary of Laplace Transform Properties

	J of Helpiere Tremiere.	
Description	Time Domain	Laplace Domain
Linearity	$\mathscr{L}[(\gamma f(t) + \beta g(t))]$	$\gamma F(s) + \beta G(s)$
Differentiation	$\mathcal{L}\left[\frac{d^n}{dt^n}f(t)\right]$	$s^n F(s)$
Integration	$\mathscr{L}[\int_1 \dots \int_n f(t)dt]$	$\frac{F(s)}{s^n}$
Final Value Theorem	$\lim_{t\to\infty} f(t)$	$\lim_{s\to 0} sF(s)$
Initial Value Theorem	$\lim_{t\to 0} f(t)$	$\lim_{s\to\infty} sF(s)$
Time Delay	$\mathscr{L}[f(t-d)]$	$e^{-sd}F(s)$
Time Scaling	$\mathscr{L}[f(\frac{t}{\alpha})]$	$\alpha F(\alpha s)$
Frequency Scaling	$\alpha f(\alpha t)$	$\mathcal{L}^{-1}[F(\frac{s}{\alpha})]$
Complex Translation	$\mathscr{L}[e^{-\alpha t}f(t)]$	$F(s+\alpha)$
Multiplication	$\mathscr{L}[f(t) \times g(t)]$	F(s) * G(s)
Convolution	$\mathscr{L}[f(t) * g(t)]$	$F(s) \times G(s)$

Table of Laplace and Z-transforms

	X(s)	x(t)	x(kT) or $x(k)$	X(z)
			Kronecker delta $\delta_0(k)$	(6)
1.	_	_	1 $k = 0$	1
			$0 k \neq 0$ $\delta_0(n-k)$	
2.	_	_	$ \begin{array}{ccc} O_0(n-k) \\ 1 & n=k \end{array} $	z^{-k}
			$0 n \neq k$	
3.	$\frac{1}{s}$	1(t)	1(<i>k</i>)	$\frac{1}{1-z^{-1}}$
		.,	` '	$1-z^{-1}$
4.	$\frac{1}{s+a}$	e^{-at}	e^{-akT}	$\frac{1}{1 - e^{-aT}z^{-1}}$
				T_7^{-1}
5.	$\frac{1}{s^2}$	t	kT	$\frac{Tz^{-1}}{\left(1-z^{-1}\right)^2}$
				$T^2 \tau^{-1} \left(1 + \tau^{-1}\right)$
6.	$\frac{2}{s^3}$	t^2	$(kT)^2$	$\frac{T^2 z^{-1} \left(1 + z^{-1}\right)}{\left(1 - z^{-1}\right)^3}$
				$(1-\zeta)$
7.	$\frac{6}{s^4}$	t^3	$(kT)^3$	$\frac{I \cdot z \cdot (1+4z+z)}{(z-1)^4}$
				$(1-z^{-})$
8.	$\frac{a}{a}$	$1 - e^{-at}$	$1 - e^{-akT}$	$\frac{(1-e^{-at})z^{-1}}{(1-e^{-t})(1-e^{-t})}$
	s(s+a) $b-a$			$\frac{T^{3}z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}$ $\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$ $\frac{(e^{-aT}-e^{-bT})z^{-1}}{(1-e^{-aT}z^{-1})(1-e^{-bT}z^{-1})}$
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at}-e^{-bt}$	$e^{-akT} - e^{-bkT}$	$\frac{(e^{-a}-e^{-b})z}{(1-e^{-aT}-1)(1-e^{-bT}-1)}$
	(s+a)(s+b)			(1-e z (1-e z)
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe^{-akT}	$\frac{Te^{-aT}z^{-1}}{\left(1-e^{-aT}z^{-1}\right)^2}$
				$(1-e^{-x}z^{-x})$
11.	$\frac{s}{(s-s)^2}$	$(1-at)e^{-at}$	$(1 - akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$
	$\overline{(s+a)^2}$			$\frac{(1-e^{-at}z^{-1})}{2z^{-1}(z^{-1}z^{-1})}$
12.	$\frac{2}{(2)^3}$	t^2e^{-at}	$(kT)^2 e^{-akT}$	$\frac{T^{2}e^{-at}(1+e^{-at}z^{-1})z^{-1}}{(z^{2}+z^{2})^{3}}$
	$\overline{(s+a)^3}$			$\frac{T^{2}e^{-aT}\left(1+e^{-aT}z^{-1}\right)z^{-1}}{\left(1-e^{-aT}z^{-1}\right)^{3}}\left[\left(aT-1+e^{-aT}\right)+\left(1-e^{-aT}-aTe^{-aT}\right)z^{-1}\right]z^{-1}$
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\underbrace{\ (aT-1+e^{-at}) + (1-e^{-at}-aTe^{-at})z^{-1}\ z^{-1}}_{2}$
	$s^{2}(s+a)$	(+a)		$(1-z^{-1})^2(1-e^{-aT}z^{-1})$
14.	$\frac{\omega}{s^2+\omega^2}$	sin <i>w</i> t	sin <i>∞kT</i>	$\frac{z^{-1}\sin\omega T}{}$
				$1-2z^{-1}\cos\omega T+z^{-2}$
15.	$\frac{s}{s^2 + \omega^2}$	cos ωt	$\cos \omega kT$	$\frac{1 - z^{-1} \cos \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$
	<i>ω</i>			$\frac{1-2z}{e^{-aT}}\frac{\cos \omega T+z}{\sin \omega T}$
16.	$\frac{\omega}{(s+a)^2+\omega^2}$	e ^{-at} sin ωt	$e^{-akT}\sin \omega kT$	$\frac{e^{-z} \sin \omega t}{1 - 2e^{-aT}z^{-1}\cos \omega T + e^{-2aT}z^{-2}}$
	$\frac{(s+a)+a}{s+a}$			$\frac{1 - e^{-aT} z^{-1} \cos \omega T}{1 - e^{-aT} z^{-1} \cos \omega T}$
17.	$\overline{(s+a)^2+\omega^2}$	e ^{-at} cos ωt	$e^{-akT}\cos \omega kT$	$\frac{1 - 2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}{1 - 2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$
10	` '		a^k	1
18.	_	_		$ \frac{1 - az^{-1}}{1 - az^{-1}} $ $ \frac{z^{-1}}{1 - az^{-1}} $
19.	_	_	a^{k-1}	z^{-1}
			$k = 1, 2, 3, \dots$	$1-az^{-1}$
20.	_	_	ka ^{k-1}	$\frac{z^{-1}}{\sqrt{z^{-1}}}$
				$(1-az^{-1})^2$
21.	_	_	k^2a^{k-1}	$\frac{z^{-1}(1+az^{-1})}{(1+az^{-1})}$
21.			n u	$(1-az^{-1})^3$
22.			k^3a^{k-1}	$z^{-1}(1+4az^{-1}+a^2z^{-2})$
<i>LL</i> .	_		ки	$(1-az^{-1})^4$
22			k^4a^{k-1}	$z^{-1}(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3})$
23.	_	_	ка	$(1-az^{-1})^5$
24.	_	_	$a^k \cos k\pi$	1
۷4.	_	_	u cos kn	$1+az^{-1}$

x(t) = 0 for t < 0 x(kT) = x(k) = 0 for k < 0Unless otherwise noted, k = 0, 1, 2, 3, ...

Definition of the Z-transform

$$\mathcal{R}\lbrace x(k)\rbrace = X(z) = \sum_{k=0}^{\infty} x(k)z^{-k}$$

Important properties and theorems of the Z-transform

	x(t) or $x(k)$	$Z\{x(t)\}$ or $Z\{x(k)\}$	
1.	ax(t)	aX(z)	
2.	$ax_1(t)+bx_2(t)$	$aX_1(z) + bX_2(z)$	
3.	x(t+T) or $x(k+1)$	zX(z)-zx(0)	
4.	x(t+2T)	$z^2X(z)-z^2x(0)-zx(T)$	
5.	x(k+2)	$z^2X(z)-z^2x(0)-zx(1)$	
6.	x(t+kT)	$z^{k}X(z) - z^{k}x(0) - z^{k-1}x(T) - \dots - zx(kT - T)$	
7.	x(t-kT)	$z^{-k}X(z)$	
8.	x(n+k)	$z^{k}X(z)-z^{k}x(0)-z^{k-1}x(1)-\ldots-zx(k1-1)$	
9.	x(n-k)	$z^{-k}X(z)$	
10.	tx(t)	$-Tz\frac{d}{dz}X(z)$	
11.	kx(k)	$-z\frac{d}{dz}X(z)$	
12.	$e^{-at}x(t)$	$X(ze^{aT})$	
13.	$e^{-ak}x(k)$	$X(ze^a)$	
14.	$a^k x(k)$	$X\left(\frac{z}{a}\right)$	
15.	$ka^kx(k)$	$-z\frac{d}{dz}X\left(\frac{z}{a}\right)$	
16.	x(0)	$\lim_{z \to \infty} X(z) \text{if the limit exists}$	
17.	$x(\infty)$	$\lim_{z \to 1} \left[(1 - z^{-1}) X(z) \right] \text{ if } \left(1 - z^{-1} \right) X(z) \text{ is analytic on and outside the unit circle}$	
18.	$\nabla x(k) = x(k) - x(k-1)$	$(1-z^{-1})X(z)$	
19.	$\Delta x(k) = x(k+1) - x(k)$	(z-1)X(z)-zx(0)	
20.	$\sum_{k=0}^{n} x(k)$	$\frac{1}{1-z^{-1}}X(z)$	
21.	$\frac{\partial}{\partial a} x(t,a)$	$\frac{\partial}{\partial a}X(z,a)$	
22.	$k^m x(k)$	$\left(-z\frac{d}{dz}\right)^m X(z)$	
23.	$\sum_{k=0}^{n} x(kT) y(nT - kT)$	X(z)Y(z)	
24.	$\sum_{k=0}^{\infty} x(k)$	X(1)	

References

[1] Dipartimento di Ingegneria dellinformazione e scienze matematiche Dipartimento di Ingegneria dellinformazione e scienze matematiche. (2016, May) Table of Laplace and Z-transforms . (Accessed May, 2016). [Online]. Available: http://www.dii.unisi.it/~control/sdc/altro/TabellaTrasformataZ.pdf

Contributors

Benjamin Scholtz Sean Wood