Documentation des bases de données

Table des matières

Base de données SQL : server	2
Table : homes	2
Structure de la table :	2
Description :	2
Table : ports	3
Structure de la table :	3
Description :	3
Relations entre les tables	
Diagramme relationnel :	3
Base de données INFLUXDB :	
Introduction :	
Structure de la base de données :	
Bucket:	
Mesures disponibles :	
Structure des données :	

Base de données SQL: server

Cette base de données contient deux tables principales : homes et ports. Elle est conçue pour gérer les informations sur des « homes » (possiblement des appareils connectés ou des entités logiques) et les ports associés.

Table: homes

Cette table stocke les informations relatives à chaque « home ». Chaque entrée représente un home identifié par une clé unique.

Structure de la table :

Tableau 1

Nom de l'attribut	Туре	Contraintes	Description
id	varchar(255)	Clé primaire (PK), NOT	Identifiant unique du
		NULL	home.
Mac	varchar(255) NOT NULL	NOT NULL	Adresse MAC du
		Valcital (255)	NOT NOLL
Last_ping	datetime	NULL	Dernière fois où le
			home a répondu à un
			ping.
Datecreated	recreated datetime NOT NULL		Date et heure de
		NOT NULL	création de
			l'enregistrement.
sshkey	varchar(2048)	NOT NULL	Clé SSH associée au
			home.

Description:

- La table homes sert à suivre les appareils connectés ou entités logiques.
- Les informations comme l'adresse MAC, la clé SSH et les timestamps permettent de suivre l'état et la configuration du home.

Table: ports

Cette table stocke les informations sur les ports associés aux homes.

Structure de la table :

Tableau 2

Nom de l'attribut	Туре	Contraintes	Description
id	int	Clé primaire (PK), AUTO_INCREMENT, NOT NULL	Identifiant unique du port.
homeid	varchar(255)	NULL	Identifiant du home auquel ce port est
			associé.
port	int	NULL	Numéro de port
			associé.
createdAt	datetime	NOT NULL	Date et heure de
			création de
			l'enregistrement.
updatedAt	datetime	NOT NULL	Date et heure de la
			dernière mise à jour
			de l'enregistrement.

Description:

- La table ports est utilisée pour gérer les ports réseau associés à chaque home.
- Elle inclut des timestamps pour suivre les changements et modifications.

Relations entre les tables

Il existe une relation entre les tables homes et ports :

• La colonne homeid dans la table ports est une clé étrangère qui fait référence à la colonne id dans la table homes.

Diagramme relationnel:

- homes.id \leftrightarrow ports.homeid
- Cette relation signifie qu'un home peut avoir plusieurs ports associés.

Base de données INFLUXDB:

Introduction:

Cette base de données est utilisée pour collecter et analyser des données de capteurs en temps réel. InfluxDB stocke ces données sous forme de séries temporelles, permettant des analyses avancées sur les capteurs connectés.

Structure de la base de données :

Voici en détail la structure des données dans la base de données InfluxDB

Bucket:

Le bucket correspond au groupe de données pour un utilisateur, dans notre cas l'utilisateur sera l'identifiant attribué à la Raspberry lors de sa première connexion.

Mesures disponibles:

Les mesures correspondent aux types de données collectées dans la base de données.

- sensors/humidity : Mesure l'humidité ambiante.
- sensors/luminosity: Mesure la luminosité.
- sensors/pressure : Mesure la pression atmosphérique.
- sensors/temperature : Mesure la température.

Structure des données :

Chaque mesure est composée des éléments suivants :

Tags (Filtres disponibles dans l'interface):

Les tags sont des valeurs indexées qui permettent de catégoriser et d'identifier les séries temporelles.

• sensor_id (Identifiant du capteur) : Celui-ci correspond à l'adresse physique des capteurs.

Ces identifiants permettent de différencier les données de différents capteurs.

Fields (Données enregistrées):

Les données enregistrées dans les mesures contiennent le champ suivant :

• value : La valeur mesurée (ex. température, humidité, etc.).

Horodatage (Timestamp):

Chaque point de données est associé à un horodatage permettant de suivre l'évolution des mesures dans le temps.