

National University of Computer & Emerging Sciences, Karachi Spring-2019 CS-Department

MidTerm 2 2nd April 2019, 1:00 pm – 2:00 pm

Course Code: CS205	Course Name: Operating Systems			
Instructor Name / Names: Dr. Hasina Khatoon, Nausheen Shoaib, and Tania Iram				
Student Roll No:	Section No:			

Instructions

- Read each question completely before answering it. There are **3 questions on 1 page**.
- In case of any ambiguity, you may make assumptions. But your assumptions should not contradict any statement in the question paper.
- All the answers must be solved according to the sequence given in the question paper.

Time: 60 minutes. Max Marks: 60

- **Q1:** Answer the following questions briefly: [21 marks]
 - i. List the steps taken in translating virtual address to physical address without the use of TLB.
 - ii. Differentiate between hard and soft real-time systems.
 - iii. How does internal fragmentation of memory take place? Which memory management technique may have external fragmentation?
 - iv. Why is there a need for *page replacement* in virtual memory environment?
 - v. Differentiate between user and kernel level threads, giving the pros and cons of each.
 - vi. How many memory accesses are required to access data in a three-level page table implementation? Explain your answer.
- **Q2** (a) Consider a virtual memory of 4 GBytes, a page size of 4Kbytes and 2²⁰ pages of logical address space. The physical memory comprises of 64 Mbytes. [8]
 - (i) How many bits are required in the virtual address?
 - (ii) How many bits are required in the physical address?
 - (iii) Give the logical address (in binary or hexadecimal) for offset of 16 on page No. 20.
 - (iv) How many entries are there if an inverted page table is used?
- **Q2(b)** Calculate the physical addresses for each of the following logical addresses, using the segment table given below: [10]

Segment No	Limit	Base	
0	2000	50000	i. 3: 1000
1	1000	40000	ii. 4: 900
2	1500	20000	iii. 2: 300
3	1200	10000	iv. 0: 2000
4	500	30000	

- Q3(a). Calculate the effective memory access time if the hit ratio of the TLB is 97% and time to search the TLB is 20nsec. The memory access time 110 nsec and there is a single level page table. [6]
- **Q3(b)** Give the number of page faults for the following reference string using FIFO and LRU page replacement algorithms. Assume that there are four page frames available using demand paging.