DWDM LAB-5

NAME: MAJJIGA JASWANTH REGNO:20BCD7171

Question-1

Attribute	Transformation						
	From	To					
	single	0					
marital	Other	1					
(no	0					
housing	yes	1					
1	no	0					
loan	yes	1					
	'unknown'	np.nan					
	'management'	0					
	'technician'	1					
	'entrepreneur'	2					
	'blue-collar'	3					
:-1-	'retired'	4					
job	'admin.'	5					
	'services'	6					
	'self-employed'	7					
	'unemployed'	8					
	'housemaid'	9					
	'student'	10					
	'unknown'	np.nan					
education	'tertiary'	0					
education	'secondary'	1					
	'primary'	2					
default	no	0					
default	yes	1					
	unknown	np.nan					
contact	telephone	0					
	cellular	1					
month	jan-dec	1-12					
	'unknown'	np.nan					
	'failure'	0					
poutcome	'other'	1					
	'success'	2					
	no	0					
У	ves	1					

Code:-

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv("bank.csv") df.head()

	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	poutcome	У
0	30	unemployed	married	primary	no	1787	no	no	cellular	19	oct	79	1	-1	0	unknown	no
1	33	services	married	secondary	no	4789	yes	yes	cellular	11	may	220	1	339	4	failure	no
2	35	management	single	tertiary	no	1350	yes	no	cellular	16	apr	185	1	330	1	failure	no
3	30	management	married	tertiary	no	1476	yes	yes	unknown	3	jun	199	4	-1	0	unknown	no
4	59	blue-collar	married	secondary	no	0	yes	no	unknown	5	may	226	1	-1	0	unknown	no

```
df['marital'] = df['marital'].map({'single': 0, 'married': 1, 'divorced ': 1})
df['housing'] = df['housing'].map(\{'no': 0, 'yes': 1\})
df['loan'] = df['loan'].map(\{'no': 0, 'yes': 1\})
df['job'] = df['job'].map({'unknown': np.nan, 'management': 0, 'technic ian': 1, 'ent
repreneur':2, 'bluecollar':3, 'retired':4, 'admin.':5, 'services':6, 'self-
employed':7, 'unemployed':8, 'housemaid':9,'student':10})
df['education'] = df['education'].map({'unknown': np.nan, 'tertiary': 0, 'secondary':
1, 'primary':2})
df['default'] = df['default'].map(\{'no': 0, 'yes': 1\})
df['contact'] = df['contact'].map({'unknown': np.nan, 'telephone': 0, 'cellular': 1})
df['month'] = df['month'].map({'jan': 0, 'feb': 1, 'mar': 2, 'apr': 3, 'may': 4, 'jun': 5, 'jul':
6, 'aug':7, 'sep':8, 'oct':9, 'nov':10,'dec':11})
df['poutcome'] = df['poutcome'].map({'unknown': np.nan, 'failure': 0, 'other': 1, 's
uccess':2})
df['y'] = df['y'].map(\{'no': 0, 'yes': 1\})
df.head()
```

Output:

	age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	poutcome	У
0	30	8.0	1	2.0	0	1787	0	0	1.0	19	9	79	1	-1	0	NaN	0
1	33	6.0	1	1.0	0	4789	1	1	1.0	11	4	220	1	339	4	0.0	0
2	35	0.0	0	0.0	0	1350	1	0	1.0	16	3	185	1	330	1	0.0	0
3	30	0.0	1	0.0	0	1476	1	1	NaN	3	5	199	4	-1	0	NaN	0
4	59	3.0	1	1.0	0	0	1	0	NaN	5	4	226	1	-1	0	NaN	0

 b. Develop user defined functions for min-max normalization to [0,1] and Z-Score normalization for the attributes, duration, pdays and balance.

During min-max normalization, observe the data distribution before and after with a plot, and in Z-Score normalization identify data points which are far from three standard deviations.

After data transformation, save the data into preprocessed_bank.csv file.

Code:-

```
df_mm = df.copy()
c = ['duration','pdays','balance']
for column in c:
    df_mm[column] = (df_mm[column] -
    df_mm[column].min())/( df_mm[column].max() - df_mm[column].min())
    df_mm.head()
```

)		age	job	marital	education	default	balance	housing	loan	contact	day	month	duration	campaign	pdays	previous	poutcome	У
	0	30	8.0	1	2.0	0	0.068455	0	0	1.0	19	9	0.024826	1	0.000000	0	NaN	0
	1	33	6.0	1	1.0	0	0.108750	1	1	1.0	11	4	0.071500	1	0.389908	4	0.0	0
	2	35	0.0	0	0.0	0	0.062590	1	0	1.0	16	3	0.059914	1	0.379587	1	0.0	0
	3	30	0.0	1	0.0	0	0.064281	1	1	NaN	3	5	0.064548	4	0.000000	0	NaN	0
	4	59	3.0	1	1.0	0	0.044469	1	0	NaN	5	4	0.073486	1	0.000000	0	NaN	0

```
df_z = df.copy()
c = ['duration','pdays','balance']
for column in c:
df_z[column] = (df_z[column] -
df_z[column].mean()) / df_z[column].std()
df_z.head()
```

	age	Job	marital	education	detault	balance	nousing	Ioan	contact	aay	montn	auration	campaign	paays	previous	poutcome	У
0	30	8.0	1	2.0	0	0.121058	0	0	1.0	19	9	-0.711782	1	-0.407173	0	NaN	0
1	33	6.0	1	1.0	0	1.118521	1	1	1.0	11	4	-0.169175	1	2.988713	4	0.0	0
2	35	0.0	0	0.0	0	-0.024142	1	0	1.0	16	3	-0.303865	1	2.898822	1	0.0	0
3	30	0.0	1	0.0	0	0.017724	1	1	NaN	3	5	-0.249989	4	-0.407173	0	NaN	0
4	59	3.0	1	1.0	0	-0.472701	1	0	NaN	5	4	-0.146086	1	-0.407173	0	NaN	0

```
fig, (ob1,ob2) = plt.subplots(ncols = 2, figsize= (15,8))
ob1.set_title("Before Minmax") sns.kdeplot(df['duration'], ax=ob1)
sns.kdeplot(df['balance'], ax=ob1)
ob2.set_title("After Minmax") sns.kdeplot(df_mm['duration'], ax=ob2)
sns.kdeplot(df_mm['balance'], ax=ob2)
```


Code:-

```
sns.kdeplot(df['pdays'], ax=ob1)
sns.kdeplot(df_mm['pdays'], ax=ob2)
fig, (ob1,ob2) = plt.subplots(ncols = 2, figsize= (15,8))
ob1.set_title("Before Minmax")
sns.kdeplot(df['duration'], ax=ob1) sns.kdeplot(df['pdays'], ax=ob1)
sns.kdeplot(df['balance'], ax=ob1)
ob2.set_title("After Minmax") sns.kdeplot(df_z['duration'], ax=ob2)
sns.kdeplot(df_z['pdays'], ax=ob2)
sns.kdeplot(df_z['balance'], ax=ob2)
```

Output:-

Question 2:

2. Reload the preprocessed_bank.csv file and calculate covariance and correlation matrices. Display the correlation matrix with a diagram as:

Sort Correlation matrix values of attribute "y" in descending order.

Code:

dataplot = sns.heatmap(df1.corr(),cmap="summer")

output:

Question-3:

3. Generate synthetic data to visualize following kind of images. (Use sklean package)

CODE AND OUTPUT:

	x1	x2	x3	x4	у
0	-0.219941	-2.067641	-1.373962	1.985504	-67.005156
1	-1.861846	-0.389227	0.302358	-1.179046	-94.668307
2	-1.064474	0.634286	0.278482	-0.046779	-30.466316
3	-1.314073	0.443650	0.770119	0.824777	-46.980608
4	0.497826	-1.414528	1.173223	-0.444175	-16.618808

from sklearn.datasets import make_classification

	x1	x2	x3	×4	y
0	-2.841544	1.334339	-0.442517	2.545980	1
1	-0.607188	-0.376452	1,535582	2.449090	0
2	-0.486435	0.349992	1.473063	2.805494	1
3	0.251321	0.337464	2.101803	2.771056	0
4	0.277327	-0.090831	1.751884	1,240031	

```
from itertools import combinations
from math import ceil
lst_var = list(combinations(df2.columns[:-1],2))
len_var = len(lst_var)
plt.figure(figsize = (18,10))
plt.subplot(2, ceil(len_var/2),1)
var1 = lst_var[1-1][0]
var2 = lst_var[1-1][0]
var2 = lst_var[1-1][1]
plt.scatter(df2[var1], df2[var2], s=200, c=df2['y'], edgecolor = 'k')
plt.xlabel(var2, fontsize = 14)
plt.grid(True)
```


from sklearn.datasets import make_blobs

	x1	×2	x3	x4	у
0	-4.712138	-2.549029	0.779563	0.075924	0
1	0.201801	3.539015	2.431481	5.169500	2
2	2.393452	-4.444970	-2.810233	-2.723678	1
3	-4.397831	-1.621647	1.705371	-1.683557	0
4	-0.587559	3.278270	2.854883	5.435253	2

```
from itertools import combinations
from math import ceil
lst_var = list(combinations(df2.columns[:-1],2))
len_var = len(lst_var)
plt.figure(figsize = (18,10))
plt.subplot(2, ceil(len_var/2),1)
var1 = lst_var[1-1][0]
var2 = lst_var[1-1][1]
plt.scatter(df3[var1], df3[var2], s=200, c=df3['y'], edgecolor = 'k')
#plt.xlabel(var1, fontsize = 14)
plt.ylabel(var2, fontsize = 14)
plt.grid(True)
```


from sklearn.datasets import make_circles

```
d4 = make_circles(n_samples=50, shuffle=True, noise=None, random_state=None, factor=0.6) df4 = pd.DataFrame(d4[0], columns = ['x'+str(i) for i in range(1,3)]) df4['y'] = d4[1] df4.head()
```

	x1	x2	y
0	0.535827	-0.844328	0
1	-0.637424	0.770513	0
2	0.728969	0.684547	0
3	-0.112429	0.589372	1
4	-0.929776	-0.368125	0

```
plt.figure(figsize = (8,5))
plt.scatter(df4['x1'], df4['x2'], c = df4['y'], s = 200, edgecolors = 'k')
plt.xlabel('x1', fontsize = 14)
plt.ylabel('x2', fontsize = 14)
plt.grid(True)
plt.show()
      1.00
                      0.75
      0.50
      0.25
     0.00
     -0.25
     -0.50
     -0.75
     -1.00
                                                    0.25
           -1.00
                   -0.75
                           -0.50
                                            0.00
                                                            0.50
                                                                    0.75
                                                                            1.00
                                   -0.25
                                            x1
from sklearn.datasets import make_moons
d5 = make_moons(n_samples=50, shuffle=True, noise=None, random_state=None)
dfS = pd.DataFrame(dS[0], columns = ['x'+str(i) for i in range(1,3)])
df5['y'] = d5[1]
df5.head()
             x1
                      x2 y
 0 1.608761e+00 -0.293353 1
 1 6.123234e-17 1.000000 0
 2 1.382683e+00 -0.423880 1
 3 3.407417e-02 0.241181 1
 4 1.707107e+00 -0.207107 1
plt.figure(figsize = (8,5))
plt.scatter(df5['x1'], df5['x2'], c = df5['y'], s = 200, edgecolors = 'k')
plt.xlabel('x1', fontsize = 14)
plt.ylabel('x2', fontsize -14)
plt.grid(True)
plt.show()
     1.0
     0.8
     0.6
     0.4
                                                                    0
 Ø
    0.2
     0.0
    -0.2
    -0.4
```

Question-4

-1.0

-0.5

0.0

- **4.** Create Fake Customer data of super market with the following fields and store it in a CSV file. (Using Faker package and random package)
 - Customer id, Customer name, Customer address, date of birth, gender, blood group, email, phone no.
 - Customer id, Transaction ID, Purchase amount

0.5

- Transaction ID, Product purchased, # of items for each product
- Product Id, Product Name, cost of single product.

Code

```
import numpy as np
import pandas as pd
import csv
from faker import Faker
import datetime
def datagenerate (records, headers):
    fake = Faker('en US')
    fake1 = Faker('en_GB')
    with open("Customer_data.csv", "wt") as csvFile:
        writer = csv.DictWriter(csvFile, fieldnames=headers)
        writer.writeheader()
        for 1 in range(records):
            full_name = fake.name()
            Finame = full_name.split(" ")
            Fname - FLname[0]
            Lname = FLname[1]
            gender = np.random.choice(["Male", "Female"], p=[0.5, 0.5])
            first name = fake.first name male() if gender == "Male" else fake.first name female()
            last name = fake.last name()
            blood = np.random.choice(["0+", "0-", "A+", "A-", "B+", "B-", "AB+", "AB-"])
            writer.writerow({ "Customer ID": fake.random_int (10000, 9999999),
                             "Fname": first_name,
                             "Lname": last name,
                             "Email Id": f"{last_name}.{first_name}@vitap.ac.in",
                             "Gender": gender,
                             "Blood Group":blood,
                             "Birth Date": fake.date(pattern="%d-%m-%Y", end_datetime=datetime.date(2000, 1,1)),
                             "Phone Number": fake1.phone_number(),
                             "Address": fake.address(),
                             "Purchase Amount": fake.random_int (1000, 10000)})
if __name__ == '__main__':
    records = 10
    headers = [ "Customer ID", "Fname", "Lname", "Email Id", "Gender", "Blood Group", "Birth Date",
               "Phone Number", "Address", "Purchase Amount"]
    datagenerate(records, headers)
    print("CSV generation Complete")
df = pd.read_csv("Customer_data.csv")
```

Output:

Purchase Amount	Address	Phone Number	Birth Date	Blood Group	Gender	Email Id	Lname	Fname	Customer ID	
3096	8200 Daniels Club Apt. 092\r/nEast Caleb, NC 4	(0118) 4960457	18-06- 1984	AB-	Male	Stone Matthew@vitap.ac.in	Stone	Matthew	4651411	0
6149	USCGC NicholskrinFPO AP 46271	+44808 157 0274	11-04- 1983	A-	Male	Rasmussen,Seth@vitap.ac.in	Rasmussen	Seth	2819598	1
2685	5575 Green Coves Suite 394/rinPort Jonathanbur	+44131 4960514	04-08- 1994	A-	Female	Good Kayla@vltap.ac.in	Good	Kayla	2478531	2
4982	USNS Alexanderir\nFPO AP 28380	(0113) 4960632	13-06- 1974	A+	Male	Walker.Howard@vitap.ac.in	Walker	Howard	8900672	3
9695	621 Brandt Union Suite 696 rnPort Brianland,	+44(0)115 496 0133	21-01- 1980	AB+	Male	Ponce Patrick@vitap.ac.in	Ponce	Patrick	5523021	4
2003	943 Heather Meadows Suite 654\r\nNew Travisbur	+44(0)292018216	22-12- 1991	AB+	Male	Mata.Christopher@vltap.ac.in	Mata	Christopher	7815333	5
2820	2354 Esparza Ways Apt. 869\r\nWigginsmouth, PA	+44(0)808 1570298	06-01- 1982	0-	Male	Harrison.Nathaniel@vitap.ac.in	Harrison	Nathaniel	2834744	6
9224	197 Robert Run Apt. 748\r\nNorth Rachelfurt, M	+44(0)20 7496 0632	25-10- 1992	AB+	Male	Gibson.Jacob@vitap ac.in	Gibson	Jacob	2746460	7
3435	69396 Johnson CorneririnEast Angela, ND 83924	(01632)960810	18-09- 1994	A+	Female	Willis Jessica@vitap ac in	Willis	Jessica	6463572	8
7369	56359 Fowler ForestrinCollinsville, NH 08761	+44(0)114 4960860	10-12- 1987	B+	Female	Cruz Elizabeth@vitap.ac.in	Cruz	Elizabeth	6819845	9