Aditya Vamsikrishna Mandalika

adityavk.com adityavk@cs.uw.edu

Education

PhD, Computer Science and Engineering, University of Washington	2017 - Present
Advisor: Dr. Siddhartha S. Srinivasa	
MS, Robotics, Carnegie Mellon University [Transferred to UW]	2016-2017
Advisor: Dr. Siddhartha S. Srinivasa	
B.Tech, Mechanical Engineering, Indian Institute of Technology Madras	2012 - 2016
Advisor: Dr. Arun D. Mahindrakar	

Experience

Personal Robotics Laboratory

Graduate Research Assistant

University of Washington

2017 - Present

With a research interest that lies at the intersection of planning and learning, I work on search-based geometric motion planning and decision-making under uncertainty in application to robotics.

Personal Robotics Laboratory

Graduate Research Assistant

Carnegie Mellon University

2016 - 2017

Studied the application of double quaternions for solving the inverse kinematics of high DoF robot manipulators, specifically the Kinova Jaco.

Dynamics and Control Laboratory

Undergraduate Research Assistant

Indian Institute of Technology, Madras

2015 - 2016

My Bachelor's Thesis investigated the application of the Leapfrog algorithm and Pontryagin's Maximum Principle to generate time, distance, and fuel optimal trajectories for mobile robots.

Systemantics India Pvt. Ltd.

Summer Research Intern

Bangalore

2014 - 2015

Modelled the dynamics of a hybrid manipulator Modelled the dynamics of a hybrid manipulator for trajectory tracking and control in performing industry-precision manipulation tasks.

Raftar Formula Racing

Vehicle Dynamics Engineer

Indian Institute of Technology Madras

2013 - 2014

Designed and manufactured the suspension system of a Formula-style racecar for Formula Student Combustion (FSC) Germany, 2014.

Academic Honors

• Best Student Paper Award [See C1]

29th International Conference on Automated Planning and Scheduling, 2019 Generalized Lazy Search for Robot Motion Planning: Interleaving Search and Edge Evaluation via Event-based Toggles.

• Best Demonstration Award [See D1]

32nd Conference on Neural Information Processing Systems (NeurIPS), 2018 Autonomous robot feeding for upper-extremity mobility impaired people: Integrating sensing, perception, learning, motion planning, and robot control.

Publications

• International Conferences

- C1 Generalized Lazy Search for Robot Motion Planning: Interleaving Search and Edge Evaluation via Event-based Toggles, A. Mandalika, S. Choudhury, O. Salzman and S.S. Srinivasa. In *International Conference on Automated Planning and Scheduling (ICAPS)*, 2019. Best Student Paper Award Winner
- C2 **LEGO:** Learning to Sample Robust Adaptive Roadmaps, R. Kumar, A. Mandalika, S. Choudhury and S.S. Srinivasa. In *International Conference on Robotics and Automation (ICRA)*, 2019 (submitted).
- C3 Bayesian Policy Optimization for Model Uncertainty, G. Lee, B. Hou, A. Mandalika, J. Lee and S.S. Srinivasa. In *International Conference on Learning Representations (ICLR)*, 2019.
- C4 Lazy Receding Horizon A* for Efficient Path Planning in Graphs with Expensive-to-Evaluate Edges, A. Mandalika, O. Salzman and S.S. Srinivasa. In *International Conference on Automated Planning and Scheduling (ICAPS)*, 2018.
- C5 Numerical and Experimental Implementation of Leapfrog Algorithm for Optimal Control of a Mobile Robot, A. Vamsikrishna, Arun D. Mahindrakar and Shaligram Tiwary. In *International Control Conference (ICC)*, 2017.

• Workshops

W1 Sample-Efficient Learning of Nonprehensile Manipulation Policies via Physics-Based Informed State Distributions, L. Pinto, A. Mandalika, B. Hou and S.S. Srinivasa. *Robotics Science and Systems (RSS)* 2019.

• Demonstrations

D1 Autonomous robot feeding for upper-extremity mobility impaired people: Integrating sensing, perception, learning, motion planning, and robot control, T. Bhattacharjee, D. Gallenberger, D. Dubois, L. L'cuyer-Lapiere, Y. Kim, A. Mandalika, R. Scalise, R. Qu, H. Song, E. Gordon, and S.S. Srinivasa. In Conference on Neural Information Processing Systems (NeurIPS) 2018.

Teaching and Invited Talks

Graduate Teaching Assistant, University of Washington	Winter 2019
CSE571 Robotics: Algorithms and Applications	
Graduate Teaching Assistant, University of Washington	Fall 2017
CSE599 Advanced Robotics: Manipulation Algorithms	
Guest Lectures, Lakeside High School, Seattle	Fall 2017
Introduction to Robotics	

Mentoring

Andrey Ryabtsev
Motion Planning: Benchmarking Framework

Rahul Kumar Vernwal
Learning Efficient Roadmaps for Robust Motion Planning

Summer 2018

Open Source Software Development Experience

Contributor to AIKIDO

2017 - Present

C++ library for solving robotic motion planning and decision making problems.

Repository: https://github.com/personalrobotics/aikido

Technical Skills

Languages: C, C++, Python, MATLAB, IATEX

Libaries and Tools: ROS, OMPL, OpenCV