Commutative Algebra - Assignment 2

Matteo Durante, 2303760, Leiden University Waifod@protonmail.com

19th November 2018

Exercise 1

(a) Consider the ideals $\mathfrak{q}_1 = \langle X^2 - 7 \rangle^2$, $\mathfrak{q}_2 = \langle X^2 + 7 \rangle \subset \mathbb{Z}[X]$.

Since $\mathfrak{q}_2 = \mathfrak{p}_2$ is generated by an irreducible polynomial, it is prime and hence primary. Furthermore, the associated prime is itself.

On the other hand, let $gh \in \mathfrak{q}_1$. Then, $gh = (X^2 - 7)^2 t$ and, if $g \notin \mathfrak{q}_1$, $(x^2 - 7)^2 \not g$, thus, being $X^2 - 7$ irreducible and $\mathbb{Z}[X]$ a UFD, $(X^2 - 7)|h$. It follows that $(X^2 - 7)^2|h^2$, and therefore $h^2 \in \mathfrak{q}_1$. The prime associated to \mathfrak{q}_1 is $\mathfrak{p}_1 = r(\mathfrak{q}_1) = \langle X^2 - 7 \rangle$, for we have that $X^2 - 7$ is irreducible and $(X^2 - 7) \in r(\mathfrak{q}_1)$, which must therefore contain $\langle X^2 - 7 \rangle$, which in turn contains $\langle X^2 - 7 \rangle^2$.

Notice that $\mathfrak{p}_1 + \mathfrak{p}_2 = \langle X^2 - 7, 14 \rangle$, thus neither \mathfrak{p}_1 is contained nor contains \mathfrak{p}_2 and a prime ideal \mathfrak{p} containing both has to contain either 2 or 7 (and just one prime, for otherwise it would be equal to $\mathbb{Z}[X]$). Observe now that $(f) = \mathfrak{q}_1 \cap \mathfrak{q}_2$, with $(f) \subsetneq \mathfrak{q}_1, \mathfrak{q}_2$. We have found a suitable minimal primary decomposition. Furthermore, given that the set of associated primes is $\{\mathfrak{p}_1, \mathfrak{p}_2\}$, they are both isolated, hence we have by [1, cor. 4.11] its uniqueness.

(b) We can better describe the ideals in A by looking at the corresponding ideals in $\mathbb{Z}[X]$ containing (f), thanks to the fact that the elements of A are just equivalence classes of those in $\mathbb{Z}[X]$ and we have a 1:1 correspondence between the two sets of ideals. More specifically, $\operatorname{Spec}(A) \cong V(f)$ through the morphism of spectra induced by $\mathbb{Z}[X] \xrightarrow{\pi} A$. It follows that it is sufficient to describe the irreducible components of V(f) and solve the problem there. Then, the generators of a prime in A will be just the classes of the generators of the corresponding one in $\mathbb{Z}[X]$.

Notice that, if $(f) = \mathfrak{q}_1 \cap \mathfrak{q}_2 \subset \mathfrak{p}$, then $\mathfrak{q}_1 \subset \mathfrak{p}$ or $\mathfrak{q}_2 \subset \mathfrak{p}$ by [1, prop. 1.11(ii)], and hence $\mathfrak{p}_1 = r(\mathfrak{q}_1) \subset \mathfrak{p}$ or $\mathfrak{p}_2 = r(\mathfrak{q}_2) \subset \mathfrak{p}$. It follows that $V(f) = V(\mathfrak{p}_1) \cup V(\mathfrak{p}_2)$. Furthermore, being $\mathfrak{p}_1, \mathfrak{p}_2$ primes, $V(\mathfrak{p}_1), V(\mathfrak{p}_2)$ are irreducible. We have already given a system of generators for each \mathfrak{p}_i , which are s.t. $\operatorname{Spec}(A) = V(\pi(\mathfrak{p}_1)) \cup V(\pi(\mathfrak{p}_2)) = V(X^2 - 7) \cup V(X^2 + 7)$ is a decomposition in irreducible components.

(c) Suppose $\pi(\mathfrak{p}_i) \subset \mathfrak{p} \in \mathrm{mSpec}(A)$, $2, 7 \notin \mathfrak{p}$, and hence $\pi(\mathfrak{p}_i)A_{\mathfrak{p}} \subset \mathfrak{p}A_{\mathfrak{p}}$, $\pi(\mathfrak{p}_j)A_{\mathfrak{p}} \not\subset \mathfrak{p}A_{\mathfrak{p}}$ for $j \neq i$. By previous observations and the 1:1 order-preserving correspondence between the prime ideals in $A_{\mathfrak{p}}$ and the ones in A contained in \mathfrak{p} , $\pi(\mathfrak{p}_i)A_{\mathfrak{p}}$ is a prime ideal contained in every other prime ideal of $A_{\mathfrak{p}}$. Indeed, they are of the form $\mathfrak{p}'A_{\mathfrak{p}}$, where $\mathfrak{p}' \in \mathrm{Spec}(A) = V(\pi(\mathfrak{p}_1)) \cup V(\pi(\mathfrak{p}_2))$, and if $\pi(\mathfrak{p}_i) \not\subset \mathfrak{p}'$, and hence $\pi(\mathfrak{p}_j) \subset \mathfrak{p}'$, then $\pi(\mathfrak{p}_j) \subset \mathfrak{p}$, against the assumption. Remember that $nil(A_{\mathfrak{p}}) = \bigcap \mathfrak{p}'A_{\mathfrak{p}} = \pi(\mathfrak{p}_i)A_{\mathfrak{p}}$. This is a prime ideal in $A_{\mathfrak{p}}$, hence $A_{\mathfrak{p}}/nil(A_{\mathfrak{p}}) \cong A_{\mathfrak{p}}/\pi(\mathfrak{p}_i)A_{\mathfrak{p}} \cong (A/\pi(\mathfrak{p}_i))_{\mathfrak{p}}$ is an integral domain. It is a local ring by construction, with $\mathfrak{p}(A/\pi(\mathfrak{p}_i))_{\mathfrak{p}}$ being the maximal ideal. Remember that it is a Noetherian ring by [1, cor. 7.4], as $A/\pi(\mathfrak{p}_1)$ is by [1, cor. 7.1]. Furthermore, to justify the last isomorphism, notice that the sequence $0 \to \pi(\mathfrak{p}_i) \to A \to A/\pi(\mathfrak{p}_i) \to 0$ is exact, hence $0 \to \pi(\mathfrak{p}_i)A_{\mathfrak{p}} \to A_{\mathfrak{p}} \to (A/\pi(\mathfrak{p}_i))_{\mathfrak{p}} \to 0$ is also exact by [1, prop. 3.3].

We shall focus on $\pi(\mathfrak{p}_1) \subset \mathfrak{p}$, which corresponds to a maximal ideal in $\mathbb{Z}[X]$ of the form < p, f(X) > s.t. $f|X^2 - 7 \mod p$ for $p \neq 2, 7$. The proof in the case where $\pi(\mathfrak{p}_2) \subset \mathfrak{p}$ is essentially identical. In what comes after, we may use \mathfrak{p} to refer either to the maximal ideal in $A/\pi(\mathfrak{p}_1) \cong \mathbb{Z}[X]/\mathfrak{p}_1$ or the one in $\mathbb{Z}[X]$.

There are two cases in $A/\pi(\mathfrak{p}_1)$: either X^2-7 is irreducible mod p, and hence $\mathfrak{p}=< p, X^2-7>=$, or $X^2-7=(X-a)(X+a)\mod p$, in which case \mathfrak{p} can be either < p, X-a> or < p, X+a>.

An element in $(A/\pi(\mathfrak{p}_1))_{\mathfrak{p}}$ is of the form $f_1(X)/f_2(X)$, where $f_2(X) \notin \mathfrak{p}$.

Considering the case where $\mathfrak{p}=\langle p,X-a\rangle$, we have that $X^2-7=X^2-a^2+pk$, hence $pk=(X^2-7)-(X^2-a^2)$.

If $p \not\mid k$, since $k \notin \mathfrak{p}$, then, considered $h(X)/g(X) \in \mathfrak{p}(A/\pi(\mathfrak{p}_1))_{\mathfrak{p}}$:

$$\begin{split} \frac{h(X)}{g(X)} &= \frac{ps(X) + (X-a)f(X)}{g(X)} \\ &= \frac{pks(X) + (X-a)kf(X)}{kg(X)} \\ &= (X-a)\frac{kf(X) - (X+a)s(X)}{kg(X)} \in < X-a > (A/\pi(\mathfrak{p}_1))_{\mathfrak{p}} \end{split}$$

It follows that $\mathfrak{p}(A/\pi(\mathfrak{p}_1)_{\mathfrak{p}}) = \langle X - a \rangle (A/\pi(\mathfrak{p}_1))_{\mathfrak{p}}$.

Notice that $X + a \notin \mathfrak{p}$, for otherwise $2a \in \mathfrak{p}$ and therefore p|2a, i.e., given that $p \neq 2$, p|a, thus $X^2 - 7 = X^2 \mod p$ and p|7, which is absurd. If $p \not\mid k - 1$, then:

$$\begin{split} \frac{h(X)}{g(X)} &= \frac{ps(X) + (X - a)f(X)}{g(X)} \\ &= \frac{p(X + a)s(X) + (X^2 - a^2)f(X)}{(X + a)g(X)} \\ &= p\frac{(X + a)s(X) - kf(X)}{(X + a)g(X)} \in (A/\pi(\mathfrak{p}_1))_{\mathfrak{p}} \end{split}$$

Hence, $\mathfrak{p}(A/\pi(\mathfrak{p}_1))_{\mathfrak{p}} = \langle p \rangle (A/\pi(\mathfrak{p}_1))_{\mathfrak{p}}.$

Let \mathfrak{a} be a non-zero ideal of a local Noetherian domain A with maximal \mathfrak{p} ideal generated by $g \neq 0$. We will show that it is a PID.

Define $n:=\min\{m\geq 1\mid \exists x\in \mathfrak{a} \text{ s.t. } x\in \mathfrak{p}^m\setminus \mathfrak{p}^{m+1}\}$. We will prove that $n<\infty$. Let $\mathfrak{b}=\bigcap_{m\geq 1}\mathfrak{p}^m$ and fix a primary decomposition of \mathfrak{bp} (which is possible by [1, thm. 7.13]). We only have to show that \mathfrak{b} is contained in every primary ideal \mathfrak{q} of the decomposition. Let $\mathfrak{p}'=\sqrt{\mathfrak{q}}$. If $\mathfrak{p}'\neq \mathfrak{p}$, pick $x\in \mathfrak{p}\setminus \mathfrak{p}'$. It is not nilpotent in A/\mathfrak{q} , hence it is not a zero-divisor either. However, $x\mathfrak{b}\subset \mathfrak{p}\mathfrak{b}\subset \mathfrak{q}$, hence $\mathfrak{b}\subset \mathfrak{q}$. If $\mathfrak{p}'=\mathfrak{p}=(g)$, being $g\in \sqrt{\mathfrak{q}}$, for some m>0 we have $\mathfrak{b}\subset \mathfrak{p}^m\subset \mathfrak{q}$, hence we are done. It follows that $\mathfrak{p}\bigcap_{m\geq 1}\mathfrak{p}^m=\bigcap_{m\geq 1}\mathfrak{p}^m=0$ by [1, prop. 2.6], thus, for some $x\in \mathfrak{a}$, there is a m>0 s.t. $x\notin \mathfrak{p}^{m+1}$, hence $n<\infty$. By the minimality of n, $\mathfrak{a}\subset \mathfrak{p}^n$ and there is a $x\in \mathfrak{a}\setminus \mathfrak{p}^{n+1}$. Since $\mathfrak{p}^n/\mathfrak{p}^{n+1}$ is a 1-dimensional A/\mathfrak{p} -vector space (*), x forms a basis, hence, by [1, cor. 2.7], x>0 and x>0 is $x\in \mathfrak{p}^n=0$.

Since $(A/\pi(\mathfrak{p}_1))_{\mathfrak{p}}$ satisfies all of the hypothesis, it is a PID, hence it is a UFD and therefore integrally closed.

(*) Notice that $\mathfrak{p}/\mathfrak{p}^2 \cong \mathfrak{p}^n/\mathfrak{p}^{n+1}$ by the A/\mathfrak{p} -isomorphism induced by g^{n-1} . We will show that g forms a A/\mathfrak{p} -basis of the A/\mathfrak{p} -vector space $\mathfrak{p}/\mathfrak{p}^2$. Indeed, an element there is of the form ag, where a = 0 or $a \in A \setminus \mathfrak{p}$, hence we are done as $\mathfrak{p} \neq \mathfrak{p}^2$, for otherwise \mathfrak{p} would be = 0 by [1, prop. 2.6].

References

[1] M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, CRC Press, 1994.