

Movie Recommendation System

Sampriti Chatterjee (Great Learning)

Agenda

1	Why do we need data science?
---	------------------------------

- What is Data science?
- 3 Life cycle of Data science
- Why Python is so popular?
- 5 Install python
- 6 Statistical visualization on Python user

- 7 What is recommendation system?
- 8 Types of recommendation system
- 9 Use case for UBCF
- 10 Use case for CBF
- Demo: Movie recommendation system

Why do we need Data Science?

- In the past, we used to have data in a structured format but now as the volume of the data is increasing, so the number of structured data becomes very less, so to handle the massive amount of data we need data science techniques
- Those data can be used to get the proper business insights and the hidden trends from them.
- These insights helps the organization to predict the Future
- Using data science decision making can be faster and effective
- Helps to reduce the production cost
- Build model based on the data to give the ability to the machine to predicts on its own

What is Data Science?

Data science is a process to get some meaningful information from the massive amount of data. In simple terms, read and study the data to get proper intuitive insights. Data Science is a mixture of various tools, algorithms, and machine learning and deep learning concepts to discover hidden patterns from the raw and unstructured data

Life cycle of Data Science?

Most Popular Programming Languages For Data Science?

Introduction to Python

Python is a popular high level, object oriented and interpreted language

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited

Why should you learn Python?

Why Python is so popular?

1 Largest community for Learners and Collaborators

Open source

3 Easy to learn and usable flexibility

Huge numbers of Python libraries and Frame work

Supports Big Data, Machine Learning and Cloud computing

Supports Automation

Installing Python

This is the site to install Python -> https://www.python.org/downloads/

Popular IDE for Python: Pycharm

Site to install Python -> https://www.jetbrains.com/pycharm/download/#section=mac

Popular IDE for Python: Anaconda

Anaconda installation site-> https://www.anaconda.com/products/individual

Individual Edition

Your data science toolkit

With over 20 million users worldwide, the open-source Individual Edition (Distribution) is the easiest way to perform Python/R data science and machine learning on a single machine. Developed for solo practitioners, it is the toolkit that equips you to work with thousands of open-source packages and libraries.

Download

Popular IDE for Python: Google colab

Google collaboratory link-> https://colab.research.google.com/notebooks/intro.ipynb

Statistical measurement on Python user

In recent time it is prominent that Python is one of the most popular language because of it's simplicity

Machine learning is a sub-set of artificial intelligence (AI) that allows the system to automatically learn and improve from experience without being explicitly programmed

	Time	V1	V2	V3	V4	V5
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193

	Time	V1	\ _o V2	V3	V4
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828
284805	172788.0	-0.240440	0.530483	0.702510	0.689799
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271

Training Data

Model Building

Testing Data

Traditional Vs Machine Learning

Traditional Programming

Program

Machine Learning

Types Of Machine Learning

Action

Recommendation Engine

greatlearning

Learning for Life

- Recommendation engine is like a recommender system
- Predicts the choice of the user
- Helps the users to discover new products or content according to their past that they may not have come across otherwise

Product Recommendation

Recommendation System

Applications of Recommendation System

LinkedIn job matching algorithms has improved the performance by 50%

Netflix values recommendations at half a billion dollars to the company

Instagram switches to use algorithmic feed

Types of Recommendation System

User-based filtering

Content-based filtering

Types of Recommendation System: User-based

User-based filtering

Building a model from a user's past behavior as well as similar decisions made by other users. This model is then used to predict items that the user may have an interest in

Types of Recommendation System: User-based

Content-based filtering

Utilizes a series of discrete characteristics of an item in order to recommend additional items with similar properties to the user

Netflix: Hybrid Recommender System

A Hybrid recommender system is based on both the concept UBF and CBF

 Algorithm finds the large group of users and also searches users with similar tastes

 Algorithm looks at different things they like and combines them to create a ranked list of suggestions

Algorithms used for measuring user or item similarity:

- ❖ K nearest neighbor (k-NN)
- Pearson Correlation

watched by both users

"Liza just watched the movie Jocker."

Let's see how the recommendation engine recommends her the movies?

Generate a list by the machine of users who have seen the following movies:

Sam	Yes	Yes	Yes	Yes
Jay	No	Yes	No	No
Ratan	No	Yes	Yes	No
Dev	No	No	No	Yes

- List of Liza's watched movies
- Find the same taste user

Sam	Yes	Yes	Yes	Yes
Jay	No	Yes	No	No
Ratan	No	Yes	Yes	No
Dev	No	No	No	Yes
Liza	?	Yes	?	?

- List of Liza's watched movies
- Find the same taste user
- From the user's similarity, it's found the probable movie for Liza "Avengers" which gets more votes,

so it gets recommended to Liza

Sam	Yes	Yes	Yes	Yes
Jay	No	Yes	No	No
Ratan	No	Yes	Yes	No
Dev	No	No	No	Yes
Liza	?	Yes	?	?

1 vote

2 votes

1 vote

- Contents are the central entities
- Works with data that the user provides, either explicitly (rating)
 or implicitly (clicking on a link, purchase history)
- Based on that data, the suggestions are given to the user
- Engine's accuracy increases with more input given to it

Content-Based Filtering (CBF): Example

"Liza just watched the movie Jocker."

Let's see how the recommendation engine recommends her the movies?

- Generate a list of features about the
 - movies like:
 - Actors
 - Directors
 - Themes
 - Story
 - Characters

:

Compare columns of each movies with column of the movie *Jocker*

Hero	Yes	Yes	No	Yes
Horror	No	No	No	Yes
Theme	Yes	Yes	Yes	Yes
IMDB rating 8+	Yes	No	Yes	No
Comedy	Yes	No	No	No

Demo: Movie Recommendation system

Thank You