

Curvas e Superficies

André Tavares da Silva

andre.silva@udesc.br

Capítulo 3 de Azevedo e Conci Capítulo 11 de Foley Capítulo 2 de Mortenson

Roteiro

- Representação de curvas
 - Analítica / Paramétrica
- Curvas livres
- Características das Curvas
- Comportamento das Famílias de Curvas
- Formulação das Curvas
- Modelagem de Superfícies

Representação das Curvas

- Arrays de coordenadas
 - grande quantidade de informações e dificuldade computacional
- Equações Analíticas
 - possibilita maior controle das curvas, e menos dados
 - formulações implícitas/explícitas
- Equações Paramétricas
 - permite a definição de curvas suaves sem a necessidade de conhecer sua formulação analítica

Curva Analítica/Não Paramétrica

Curvas Implícitas

$$F(x, y, z) = 0$$

- Pode ter mais soluções que o desejado
- o mesmo equacionamento do circulo é usado para semicírculo mas, precisa de condição extra

Curvas Explícitas

$$x = F(y,z)$$

- Correspondem a sistemas CNC
- Não apropriada para curvas fechadas
- Não retornam dois valores para o mesmo (y,z)

Curvas/Superficies Analíticas

Elliptic paraboloid

Elliptic cylinder

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} - \frac{z^2}{C^2} = 1$$

Hyperboloid of one sheet

Sphere

Representação das Curvas

- Arrays de coordenadas
 - grande quantidade de informações e dificuldade computacional
- Equações Analíticas
 - possibilita maior controle das curvas, e menos dados
 - formulações implícitas/explícitas
- Equações Paramétricas
 - permite a definição de curvas suaves sem a necessidade de conhecer sua formulação analítica

Curvas Paramétricas

• Elas aceitam funções fechadas e multi-valoradas

- Na forma paramétrica cada ponto da curva é expresso como função de um parâmetro *t* (ou u)
- O parâmetro funciona como uma coordenada local da curva

Exemplos

$$x(t) = r \cdot \cos(t)$$
$$y(t) = r \cdot \sin(t)$$
$$0 \le t \le 2\pi$$

$$x(\alpha, \beta) = r \cdot \cos(\beta) \cdot \sin(\alpha)$$

 $y(\alpha, \beta) = ...$
 $z(\alpha, \beta) = ...$
 $0 \le \alpha, \beta \le 2\pi$

Exemplos: Representações de Cônicas

Cônica	Forma Paramétrica	Forma Implícita
Elipse	$x = a \cos \theta$	x^2 y^2
	$y = b sen \theta$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$
Parábola	$x = at^2$, $y = 2at$	$y^2 - 4ax = 0$
Hipérbole	$x = a \cosh \theta$	$x^2 + y^2 = 1 = 0$
	$y = b senh \theta$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$

5 Tipos de Seções Cônicas

Vantagens Curvas Paramétricas

- Intrinsecamente independente do sistema de coordenadas
- Elementos geométricos são facilmente representados por matrizes onde uma única formulação matemática servirá a todos os tipos de curvas
- Transformações geométricas podem ser aplicadas na própria formulação parametrizada

Definições

- Geometria da Curva
 - Definida por Pontos de Controle (conjunto de pontos que definem a forma da curva)
 - Outras informações geométricas
- Tipo da Curva
 - Identifica o comportamento de uma <u>família</u> de curvas (ex: Bezier, Hermite, etc...)
- Pontos do Traçado da Curva
 - Conjunto de pontos calculados com base na geometria e no tipo da curva

Características das Curvas

- Interpoladoras ou Aproximadoras
- Grau da Curva
- Controle Local ou Global
- Aberta / Fechada
- Continuidade

Características das Curvas

- Interpoladoras
 - Gera uma curva com traçado que passa por TODOS os pontos de descrição da curva
- Aproximadoras
 - Gera uma curva que não "necessariamente"
 passa por TODOS os pontos que definem o formato da curva

Somente formulações paramétricas podem ser divididas assim

Interpolação

Grau da Curva

• Em termos práticos, o grau da curva define a distância da curva dos **Pontos de Controle** e também a sua suavidade (Microstation:9-43, Zeid229)

 P_0 k = 6 (quintic) k = 4 (cubic) k = 3 (quadratic) P_1 k = 2 (linear)

Melhor Grau (Foley96:478)

- Quadrática
 - Uma única concavidade
 - Rápida
- Cúbica
 - Muda de concavidade (ponto de inflexão)
 - Pouco custosa
 - Primeiro grau não planar
- Bi-quadrática
 - Dois pontos de inflexão
 - Custosa (demorada)

Controle Local / Global

Continuidade Paramétrica

Famílias de Curvas

Interpoladoras

Spline

Hermite

Catmull-Rom

Aproximadoras

Bezier

B-Spline

NURBS

Interpoladoras

Spline

- Interpoladora Spline é uma régua flexível usada por arquitetos e engenheiros que pode ser curvada e que se dobra para passar por alguns pontos.
- Uma Spline é uma função polinomial por partes
- Uma Spline Cúbica tem até C²

$$s_i(t) = a_i(t - t_i)^3 + b_i(t - t_i)^2 + c_i(t - t_i) + d_i$$

Interpoladora de Hermite

Curvas de Hermite (Zeid 1991:215)

É definida por 2 Pontos de Controle e 2 tangentes Interpola os pontos P_0 e P_1

Curvas de Hermite Foley:486)

Interpoladora Catmull-Rom

Catmull Rom

(Christopher Twigg, 2003)

Família de Curvas Interpoladora Cúbicas

A Tangente de cada Ponto de Controle é dada pelos pontos Anterior e Posterior ao atual $\tau(\mathbf{p}_{i+1} - \mathbf{p}_{i-1})$.

Primeiro e Último Pontos assume-se usar o ponto atual para a Tangente

Exemplos de Catmull-Rom

FIGURA 3.18. A Spline continua sem descontinuidade na di reção da tangente.

Catmull Rom

O parâmetro T é a "tensão" da curva

A tensão afeta o quanto a curva dobra nos Pontos de Controle

Garante C¹ e Controle Local

Não garante C²

Curva extrapola o Polígono dos Pontos de Controle (Convex-Hull)

Aproximadoras

Curvas de Bézier

Curvas Bézier

• Criada pelo designer francês Piérre Bézier e usada por ele no projeto de um carro Renault nos anos 70

 Muito utilizada pelo programa Adobe na criação de suas fontes

Comportamento das Curvas Bezier

- Interpola o primeiro e o último ponto mas não passa pelos demais
- Tem controle Global
- Os PC direcionam a forma da curva
- A tangente em P_0 é (P_0-P_1)
- A tangente em P_3 é (P_2-P_3)

Curvas Bézier

- A Bézier se curva conforme o seu grau
 - Grau 1 (linear) é uma linha reta
 - Grau 2 (quadrática) se curva uma vez
 - Grau 3 (cúbica) se curva duas vezes

Curvas Bézier

• Permite definir curvas fechadas

- Invariante à rotação, escala e translação
 - garante que para transformar a curva/superfície basta transformar os Pontos de Controle e não os Pontos de Traçado (conjunto de pontos calculados)
 - Economia significativa de tempo

Exemplos de Curvas Bézier (Zeid:220)

Exercício: Qual a Bezier Resultante?

Construindo Curvas Bezier

Curvas B-spline

Curvas B-spline

São curvas aproximadoras São a generalização das curvas de Bézier (Zeid91:226).

O **grau** da curva independe dos pontos controle Com quatro pontos pode-se gerar uma B-spline linear, quadrática ou cúbica (enquanto que estes só gerariam a Bézier cúbica)

Ou seja, tem as seguintes vantagens sobre a Bézier:

- controle local, ao invés de controle global.
- possibilidade de acrescentar Pontos de Controle sem necessariamente aumentar o grau da curva.

Múltiplos Pontos de Controle

(Zeid 1991:230)

Curva B-Spline

- Equivale a ter-se várias curvas Bézier cúbicas unidas
- B-splines são C² e não tem restrições quanto ao número nem localização dos Pontos de Controle (como as Bézier)

NURBS

NURBS

(B-splines Racionais Não Uniformes)

- Non-Uniform Rational B-Splines
- É uma das curvas mais populares para representação softwares de CAD pois permite:
 - -Controle Local (como uma B-spline)
 - Habilidade de ajustar as funções peso variandose os parâmetros (como nas curvas não uniformes)
 - Habilidade de dar peso aos Pontos de Controle (como nas racionais)

NURBS

(B-splines Racionais Não Uniformes)

- Tem vantagem da **invariância** à rotação, escala e translação dos Pontos de Controle, como as não racionais, e também à transformação de <u>perspectiva</u>
- Podem definir precisamente seções **cônicas** (as não racionais podem apenas aproximar) (FOLEY96:504)
- Não estão limitadas pelo Convex-Hull

Exemplo de NURBS

$$C(u) = \frac{\sum_{i=0}^{n} N_{i,p}(u)w_{i}P_{i}}{\sum_{i=0}^{n} N_{i,p}(u)w_{i}}$$

FIGURA 3.19. Variando um dos pesos de uma curva racional.

Formulação das Curvas

Formulações das Curvas Paramétricas

• *Blending* / Peso

- Enfatiza como as características geométricas afetam a curva
- Os pontos de controle da curva são evidenciados

Polinomial

- Enfatiza o grau da curva e a variável paramétrica
- O parâmetro é evidenciado

Matricial

Separa o vetor parâmetro das características
 intrínsecas da curva e das referências geométricas desta

Formulação *Blending*Caso Geral

$$C(u) = \sum_{i \leftarrow 0..N} P_i B_i(u)$$

P_i = Pontos de Controle (PC) da Curva

B_i(u) = Funções *Blending* da Curva

N = número de Pontos de Controle da curva

C(u) = trajetória da curva

- É organizada em função dos Pontos de Controle
- Enfatiza as funções (**Bi**) que influenciam a contribuição dos PC (Pi) nos PT final

Formulação Não Racional **Polinomial** Paramétrica

$$p(u) = \sum_{k=0}^{n} u^k c_k$$

n = grau do polinômio/curva

Ck = parâmetros da curva

u = variável paramétrica

p(u) = pontos da trajetória da curva

Formulação Polinomial Paramétrica

f(t) se desdobrará em x(t), y(t) e z(t)

Os parâmetros se desdobram em ax, ay, az; bx, by, bz;

Formulação Matricial (Foley96:483)

$$P(t) = T. M. G = T. C$$

- $-T = \begin{bmatrix} t^n & t^{n-1} & \cdots & t & 1 \end{bmatrix}$
- M = Matriz Específica da família de Curvas
- G = Característica Geométrica = vetor coluna onde cada linha tem um uma restrição geométrica como Ponto de Controle/Tangentes/..
- C = M. G; Característica daquela Curva
- Isola as características geométrica (G) das variáveis de controle (M) e enfatiza o parâmetro (T)

Formulações para a Reta 2D

• Analítica Explícita

$$y = ax + b$$

• Reta Polinomial

$$P(u) = u (P_1 - P_0) + P_0$$

Blending

$$P(u) = (1 - u)P_0 + u P_1$$

Matricial

$$-P(u) = U.M.G$$

 $-M = \begin{vmatrix} -1 & 1 \\ 1 & 0 \end{vmatrix}$

Bézier Cúbica

• Forma das Blending Functions da Bézier

Bezier Cúbica (Formulação Matricial)

(Mortenson2006:125; Foley1996:489)

Formulação da Spline

$$\vec{P}(t) = \langle t^3 \quad t^2 \quad t \quad 1 \rangle \begin{bmatrix} -c & 2-c & c-2 & c \\ 2c & c-3 & 3-2c & -c \\ -c & 0 & c & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} V_{0x} & V_{0y} & V_{0z} \\ V_{1x} & V_{1y} & V_{1z} \\ V_{2x} & V_{2y} & V_{2z} \\ V_{3x} & V_{3y} & V_{3z} \end{bmatrix}$$

• Tem-se a *spline* cúbica quando c=0,5

Matriz de Hermite

(Foley96:484, Mortenson2006:66)

$$\vec{P}(t) = \langle t^3 \quad t^2 \quad t \quad 1 \rangle \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} V_{0x} & V_{0y} & V_{0z} \\ V_{1x} & V_{1y} & V_{1z} \\ V_{2x} & V_{2y} & V_{2z} \\ V_{3x} & V_{3y} & V_{3z} \end{bmatrix}$$

Matricial da Catmull-Rom

$$p(s) = \begin{bmatrix} 1 & u & u^2 & u^3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\tau & 0 & \tau & 0 \\ 2\tau & \tau - 3 & 3 - 2\tau & -\tau \\ -\tau & 2 - \tau & \tau - 2 & \tau \end{bmatrix} \begin{bmatrix} p_{i-2} \\ p_{i-1} \\ p_i \\ p_{i+1} \end{bmatrix}$$

Convenção:

U está com colunas invertidas e M está com as linhas invertidas

B-Spline Periódica Cúbica

(Foley96:493)

Para cada par V_i , V_{i+1} , i=0,...,nPara cada t=0,...,1

$$\vec{P}(t) = \langle t^3 \quad t^2 \quad t \quad 1 \rangle \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} V_{i-1,x} & V_{i-1,y} & V_{i-1,z} \\ V_{i,x} & V_{i,y} & V_{i,z} \\ V_{i+1,x} & V_{i+2,y} & V_{i+2,z} \\ V_{i+3,x} & V_{i+3,y} & V_{i+3,z} \end{bmatrix}$$

Periódica:

$$i=0, ..., n$$

 $V_{-1} = V_n$
 $V_{n+1} = V_0$
 $V_{n+2} = V_1$

UDESC Joinville

Algoritmo de Discretização de Curva na Formulação Matricial

```
BEGIN

Calcula C = M.G // M qualquer, intrínseca à curva

Para t variando de 0.0 a 1.0 de Delta_t (se uniforme)

Begin

Calcula T = [t³ t² t 1]

Calcula P(t) = T.C

Grava/Plota(x,y,z)

End
```

End

Ver otimização em Foley96:488

Modelagem de Superfícies

Modelagem de Superfícies

- Vantagens
 - Estética/Suavidade
 - Armazena mais informações que Wireframe mas é mais compacta
 - Características (Aerodinâmica / Curvas Orgânicas)
 - Facilidade de Criação/Manipulação

Criação de Superfícies

- A necessidade de superfícies livres advém de três formas básicas:
 - quando se tem uma **equação** analítica (f(x,y))
 - quando a curva é projetada com base numa nuvem de pontos (medidos)
 - quando parte-se de uma formulação de curva respectiva (*patches*)

Representação de Superfícies por Subdivisão Paramétrica

Figura 13. Representação por subdivisão paramétrica.

Parametric Patches

• Um dos primeiros usos de *parametric* patches gerou o "Utah Teapot"

Parametric Patches

- Um dos primeiros usos de *parametric* patches gerou o "Utah Teapot"
 - O verdadeiro é o da esquerda

Bézier Patches

- Baseados na curva de Bezier
- Equacionamento na forma de *blending functions*: $C(u, v) = \sum_{i \in 0...3} \sum_{j \in 0...3} P_{ij} B_i(u) B_j(v)$
- Então precisa-se de uma malha de curvas Bézier
 - Especificamente, 4 curvas na horizontal (direção u) e
 4 na vertical (direção v)
- Estas 8 curvas compartilham os pontos de controle que são num total de 16

Parametros U e V

FIGURA 3.23. Parametros u, v e geração de superfícies por quatro pontos limites.

Superficie de Bézier

FIGURA 3.28. Os dezesseis pontos de controle de um patch bicúbico de Bézier.

Bézier Patches

• Como a superfície adquire características da Bézier, ela interpola a Malha de Pontos de Controle nos 4 cantos

Definindo uma Superfície Bézier

(Foley:521)

Superficie Bézier Fechada (Zeid:297)

B-Spline Patches

- B-Spline patches são similares aos patches Bézier exceto que são baseados em curvas B-Spline
- Isto implica que:
 - Pode haver qualquer numero de pontos de controle tanto nas direções u quanto v (4x4, 8x12, etc.) e ainda manter continuidade c² das curvas cúbicas
 - Com patches uniformes, o patch não passa pelo poliedro de controle

Modelagem de Superfícies

• Formas Des-uniformes e Sinuosas.

Modelagem de Superficies

Modelagem de Superficies (CATIA)

