Московский Государственный Университет им. М. В. Ломоносова Механико-математический факультет Кафедра вычислительной математики

Отчет

«Сравнение схемы с центральными разностями для логарифма плотности и схемы Соколова А. Г. Плотность-Импульс для уравнений движения вязкого баротропного газа»

Студента 410 группы

Назаренко Вячеслава Львовича

Москва

Оглавление

1.	Постановка задачи	3
2.	Схема с центральными разностями	
	для логарифма плотности	3
3.	Схема Соколова А. Г. Плотность-Импульс	6
4.	Сравнение точности схем для гладких решений	
	при разной вязкости газа	7
5.	Сравнение схем при нулевых правых частях	13
6.	Вывод	28

1. Постановка задачи

Рассматривается система дифференциальных уравнений движения вязкого баротропного газа в двумерной области. А именно:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u_1}{\partial x_1} + \frac{\partial \rho u_2}{\partial x_2} = f_0 \\ \frac{\partial \rho u_1}{\partial t} + \frac{\partial \rho u_1^2}{\partial x_1} + \frac{\partial \rho u_2 u_1}{\partial x_2} + \frac{\partial p}{\partial x_1} = \mu \left(\frac{4}{3} \frac{\partial^2 u_1}{\partial x_1^2} + \frac{\partial^2 u_1}{\partial x_2^2} + \frac{1}{3} \frac{\partial^2 u_2}{\partial x_1 \partial x_2} \right) + \rho f_1 \\ \frac{\partial \rho u_2}{\partial t} + \frac{\partial \rho u_1 u_2}{\partial x_1} + \frac{\partial \rho u_2^2}{\partial x_2} + \frac{\partial p}{\partial x_2} = \mu \left(\frac{1}{3} \frac{\partial^2 u_1}{\partial x_1 \partial x_2} + \frac{\partial^2 u_2}{\partial x_1^2} + \frac{4}{3} \frac{\partial^2 u_2}{\partial x_2} \right) + \rho f_2 \end{cases}$$

Неизвестными являются функции: плотность $\rho>0,$ вектор скорости ${\bf u}.$

Область:
$$(t, \mathbf{x}) \in Q = [0, T] \times \Omega$$
, где $\Omega = [0, 3\pi] \times [0, \pi] \cup [\pi, 2\pi] \times [\pi, 2\pi]$

Граничные условия:

$$\begin{cases} u_1 = \omega = 1, u_2 = 0, \rho = \rho_{\gamma} = 1 & \mathbf{x} \in \{0\} \times [0, \pi] \\ u_1 = 0, \frac{\partial u_2}{\partial x_2} = 0 & \mathbf{x} \in [\pi, 2\pi] \times \{2\pi\} \\ u_2 = 0, \frac{\partial u_1}{\partial x_1} = 0 & \mathbf{x} \in \{3\pi\} \times [0, \pi] \end{cases}$$

.

Начальные условия могут ставиться разные в зависимости от требований численного эксперимента.

Для нахождения «реального» движения газа функции f_0 , f_1 , f_2 полагаются равным нулю. Однако для отладки алгоритмов, реализующих ниже описываемые разностные схемы, полезно положить их такими, что решением системы уравнений были бы заранее известные гладкие функции.

2. Схема с центральными разностями

для логарифма плотности

Для автоматического выполнения условия $\rho>0$ рассматривают другую неизвестную функцию $g=\ln\rho$

Тогда система уравнений преобразовывается к виду:

$$\begin{cases} \frac{\partial g}{\partial t} + \frac{1}{2} \sum_{k=1}^{2} \left(u_{k} \frac{\partial g}{\partial x_{k}} + \frac{\partial u_{k}g}{\partial x_{k}} + (2 - g) \frac{\partial u_{k}}{\partial x_{k}} \right) = f_{0} \\ \frac{\partial u_{k}}{\partial g} + \frac{1}{3} \left(u_{k} \frac{\partial u_{k}}{\partial x_{k}} + \frac{\partial u_{k}^{2}}{\partial x_{k}} \right) + \frac{1}{2} \sum_{m=1, m \neq k}^{2} \left(u_{m} \frac{\partial u_{k}}{\partial x_{m}} + \frac{\partial u_{m}u_{k}}{\partial x_{m}} - u_{k} \frac{\partial u_{m}}{\partial x_{m}} \right) + \\ + p'_{\rho}(\rho) \frac{\partial g}{\partial x_{k}} = \frac{\mu}{\rho} \left(\frac{4}{3} \frac{\partial^{2} u_{k}}{\partial x_{k}^{2}} + \sum_{m=1, m \neq k} \left(\frac{\partial^{2} u_{k}}{\partial x_{m}^{2}} + \frac{1}{3} \frac{\partial^{2} u_{m}}{\partial x_{k} \partial x_{m}} \right) \right) + f_{k} \end{cases}$$

$$p = p(\rho)$$

$$g = \ln \rho$$

Пусть неизвестным функциям соответствуют их сеточные аналоги следующим образом:

$$u_1 \to V_1$$
$$u_2 \to V_2$$
$$\rho \to H$$
$$g \to G$$

Сетка рассматривается равномерная с шагами τ и h_1, h_2 по времени и пространственным переменным соответственно.

$$\tau = \frac{T}{N}$$

$$h_1 = \frac{\pi}{M_1}$$

$$h_2 = \frac{\pi}{M_2}$$

где M_1, M_2 - число разбиений сторон элементарного квадрата $\pi \times \pi$. Пусть γ_k^{\pm} - участок границы области, где x_k достигает своего минимума (—) или максимума (+). Опишем разностную схему:

$$G_t + 0.5 \cdot \sum_{k=1}^{2} \left(V_k \hat{G}_{x_k}^0 + (V_k \hat{G})_{x_k}^0 + 2(\hat{V}_k)_{x_k}^0 - G \cdot (V_k)_{x_k}^0 \right) = f_0,$$

$$\mathbf{x} \in \Omega_{\overline{h}}$$
(1)

$$G_{t} + 0.5 \cdot \left((V_{k} \hat{G})_{x_{k}} + 2(\hat{V}_{k})_{x_{k}} - G(V_{k})_{x_{k}} \right) -$$

$$-0.5h_{k} \left((GV_{k})_{x_{k}\overline{x_{k}}}^{+1_{k}} - 0.5(GV_{k})_{x_{k}\overline{x_{k}}}^{+2_{k}} + (2 - G)((V_{k})_{x_{k}\overline{x_{k}}}^{+1_{k}} - 0.5(V_{k})_{x_{k}\overline{x_{k}}}^{+2_{k}}) \right) =$$

$$= f_{0}, \qquad \mathbf{x} \in \gamma_{k}^{-}, \ k = 1, 2$$

$$(2)$$

$$G_{t} + 0.5 \cdot \left((V_{k} \hat{G})_{\overline{x_{k}}} + 2(\hat{V_{k}})_{\overline{x_{k}}} - G(V_{k})_{\overline{x_{k}}} \right) +$$

$$+0.5h_{k} \left((GV_{k})_{x_{k}}^{-1_{k}} - 0.5(GV_{k})_{x_{k}}^{-2_{k}} + (2 - G)((V_{k})_{x_{k}}^{-1_{k}} - 0.5(V_{k})_{x_{k}}^{-2_{k}}) \right) =$$

$$= f_{0}, \qquad \mathbf{x} \in \gamma_{k}^{+}, \ k = 1, 2$$

$$(3)$$

$$(V_{k})_{t} + \frac{1}{3} \left(V_{k} (\hat{V}_{k})_{x_{k}^{0}} + (V_{k} \hat{V}_{k})_{x_{k}^{0}} \right) +$$

$$+ \frac{1}{2} \sum_{m=1, m \neq k}^{2} \left(V_{m} (\hat{V}_{k})_{x_{m}^{0}} + (V_{m} \hat{V}_{k})_{x_{m}^{0}} - V_{k} (V_{m})_{x_{m}^{0}} \right) +$$

$$+ p'_{\rho} (e^{G}) \hat{G}_{x_{k}^{0}} = \tilde{\mu} \left(\frac{4}{3} (\hat{V}_{k})_{x_{m} \overline{x_{m}}} \right) -$$

$$- (\tilde{\mu} - \mu e^{-G}) \left(\frac{4}{3} (V_{k})_{x_{k} \overline{x_{k}}} + \sum_{m=1, m \neq k}^{2} (V_{k})_{x_{m} \overline{x_{m}}} \right) +$$

$$+ \frac{\mu e^{-g}}{3} \sum_{m=1, m \neq k}^{2} (V_{m})_{x_{k} x_{m}^{0}}^{0} + f_{k}, \quad \mathbf{x} \in \Omega_{\overline{h}}$$

$$(4)$$

Аналог уравнения (4) для скорости на границах области зависит от граничных условий на конкретной границе.

Узлы сетки нумеруются слева-направо, снизу-вверх. В этом случае вектор неизвестных имеет вид: $(G(0), V_1(0), V_2(0), G(1), V_1(1), V_2(1), \ldots)$. Для нахождения значений сеточных функций, на каждом временном слое решается одна система линейных уравнений, составленная с помощью уравнений (1) - (4) разностной схемы.

Данная схема имеет порядок аппроксимации $\tau + h^2$.

3. Схема Соколова А. Г. Плотность-Импульс

Особенность схемы, которая будет описана в этом разделе, заключается в том, что

- Сеточная функция H определяется на полуцелых узлах области, некоторые из которых выходят за ее пределы (на $\frac{h}{2}$),
- На каждом временном слое решаются две системы линейных уравнений: одна с вектором неизвестных $(H(0), H(1), \ldots)$ и другая с $(V_1(0), V_2(0), V_1(1), V_2(1), \ldots)$

Введем обозначения:

$$\vec{V} = \begin{cases} V, & V \geqslant 0 \\ 0, & V < 0 \end{cases}$$
$$\vec{V} = \begin{cases} V, & V \leqslant 0 \\ 0, & V > 0 \end{cases}$$

$$\theta_k\{H,V\} = HV^- + H^{-1_k}V^+$$

Опишем схему:

$$H_t + (\theta_1\{\hat{H}, V_{1s_2}\})_{x_1} + (\theta_2\{\hat{H}, V_{2s_1}\})_{x_2} = f_0, \quad x \in \Omega_h^{1/2}$$
 (5)

$$(H_{\overline{s}_{1}\overline{s}_{2}}V_{1})_{t} + 0.5(\theta_{1}\{\hat{H}_{\overline{s}_{2}}\hat{V}_{1}, V_{1}\})_{x_{1}} + 0.5(\theta_{1}\{\hat{H}_{\overline{s}_{2}}\hat{V}_{1}^{(+1_{1})}, V_{1}\})_{\overline{x}_{1}} + +0.5(\theta_{2}\{\hat{H}_{\overline{s}_{1}}\hat{V}_{2}, V_{1}\})_{x_{2}} + 0.5(\theta_{2}\{\hat{H}_{\overline{s}_{1}}\hat{V}_{2}^{(+1_{2})}, V_{1}\})_{\overline{x}_{2}} + +\frac{\gamma}{\gamma-1}\hat{H}_{\overline{s}_{1}\overline{s}_{2}}((\hat{H}_{\overline{s}_{2}})^{\gamma-1})_{\overline{x}_{1}} = = \mu\left(\frac{4}{3}(\hat{V}_{1})_{x_{1}\overline{x}_{1}} + (\hat{V}_{1})_{x_{2}\overline{x}_{2}}\right) + \frac{\mu}{3}(V_{2})_{x_{1}^{0}x_{2}}^{0} + \hat{f}_{1}\hat{H}_{\overline{s}_{1}\overline{s}_{2}}, \quad \hat{H}_{\overline{s}_{1}\overline{s}_{2}} \neq 0 \hat{V}_{1} = 0, \quad \hat{H}_{\overline{s}_{1}\overline{s}_{2}} = 0, \ \mathbf{x} \in \Omega_{\overline{h}}$$

$$(6)$$

$$(H_{\overline{s}_{1}\overline{s}_{2}}V_{2})_{t} + 0.5(\theta_{1}\{\hat{H}_{\overline{s}_{2}}\hat{V}_{1}, V_{2}\})_{x_{1}} + 0.5(\theta_{1}\{\hat{H}_{\overline{s}_{2}}\hat{V}_{1}^{(+1_{1})}, V_{2}\})_{\overline{x}_{1}} + +0.5(\theta_{2}\{\hat{H}_{\overline{s}_{1}}\hat{V}_{2}, V_{2}\})_{x_{2}} + 0.5(\theta_{2}\{\hat{H}_{\overline{s}_{1}}\hat{V}_{2}^{(+1_{2})}, V_{2}\})_{\overline{x}_{2}} + +\frac{\gamma}{\gamma-1}\hat{H}_{\overline{s}_{1}\overline{s}_{2}}((\hat{H}_{\overline{s}_{1}})^{\gamma-1})_{\overline{x}_{2}} = = \mu\left(\frac{4}{3}(\hat{V}_{2})_{x_{2}\overline{x}_{2}} + (\hat{V}_{2})_{x_{1}\overline{x}_{1}}\right) + \frac{\mu}{3}(V_{1})_{x_{1}^{0}x_{2}^{0}} + \hat{f}_{2}\hat{H}_{\overline{s}_{1}\overline{s}_{2}}, \quad \hat{H}_{\overline{s}_{1}\overline{s}_{2}} \neq 0 \hat{V}_{2} = 0, \quad \hat{H}_{\overline{s}_{1}\overline{s}_{2}} = 0, \ \mathbf{x} \in \Omega_{\overline{h}}$$

$$(7)$$

На каждом временном первая система линейных уравнений составляется с помощью уравнения (5), вторая с помощью (6), (7).

Порядок аппроксимации схемы $\tau+h$

4. Сравнение точности схем для гладких решений при разной вязкости газа

Продемонстрируем асимптотику сходимости схем к гладким решениям для различных τ, h, μ . Для решения линейных систем используется алгоритм CGS с предобуславливателем Якоби

Положим

$$\rho(x,y) = (\cos(2x) + 1.5)(\sin(2y) + 1.5)e^t$$
$$u_1(x,y) = \sin x \sin y \ e^t$$
$$u_2(x,y) = \sin x \sin y \ e^{-t}$$

и вычислим соответствующие f_0, f_1, f_2 , чтобы указанные плотность и скорость были решениями дифференциальной задачи.

Приведем сравнительные таблицы норм разности вычисленной сеточной функции и искомой. Далее T=0.1

 $\mu = 0.001$. Норма: $||G||_{C_h}$ и $||H||_{C_h}$

Схема с ц. р.:

N\M	30	60	120
30	0.023909	0.006064	0.001617
60	0.024174	0.006056	0.001565
120	0.024308	0.006099	0.001540

Схема Соколова:

N\M	30	60	120
30	0.051275	0.026298	0.013302
60	0.051400	0.026363	0.013334
120	0.051464	0.026397	0.013351

 $\mu = 0.001.$ Норма: $||G||_{L^2_h}$ и $||H||_{L^2_h}$

Схема с ц. р.:

	' 1		
$N\backslash M$	30	60	120
30	0.032944	0.008582	0.002732
60	0.033067	0.008487	0.002302
120	0.033134	0.008470	0.002176

Схема Соколова:

N\M	30	60	120
30	0.107444	0.055484	0.028903
60	0.106941	0.054828	0.028031
120	0.106718	0.054553	0.027691

 $\mu = 0.001.$ Норма: $||G||_{W^2_{1\,h}}$ и $||H||_{W^2_{1\,h}}$

Схема с ц. р.:

N\M	30	60	120
30	0.037008	0.008868	0.002747
60	0.037207	0.008780	0.002320
120	0.037313	0.008766	0.002195

Схема Соколова:

N\M	30	60	120
30	0.113702	0.056532	0.029103
60	0.113178	0.055850	0.028210
120	0.112932	0.055563	0.027862

Далее для краткости сравним остальные сеточные функции только в ${\cal L}_h^2$ норме.

 $\mu = 0.001$. Норма: $||V_1||_{L^2_h}$

Схема с ц. р.:

		\ <u>1</u>		
N	\sqrt{M}	30	60	120
	30	0.080079	0.019818	0.005332
	60	0.081100	0.019938	0.005104
1	120	0.081632	0.020016	0.005038

Схема Соколова:

N\M	30	60	120
30	0.043571	0.020849	0.010416
60	0.043300	0.020632	0.010096
120	0.043191	0.020574	0.010031

 $\mu = 0.001$. Норма: $||V_2||_{L^2_h}$

Схема с ц. р.:

N\M	30	60	120
30	0.081669	0.020021	0.005127
60	0.082836	0.020268	0.005086
120	0.083437	0.020401	0.005091

Схема Соколова:

N\M	30	60	120
30	0.036769	0.017792	0.008731
60	0.036679	0.017774	0.008738
120	0.036637	0.017769	0.008749

Теперь приведем результаты для $\mu=0.01$

$$\mu = 0.01.$$
 Норма: $||G||_{L^2_h}$ и $||H||_{L^2_h}$

Схема с ц. р.:

N\M	30	60	120
30	0.032249	0.008408	0.002694
60	0.032395	0.008314	0.002259
120	0.032475	0.008298	0.002132

Схема Соколова:

N\M	30	60	120
30	0.107450	0.055483	0.028902
60	0.106946	0.054827	0.028030
120	0.106723	0.054552	0.027689

 $\mu = 0.01$. Норма: $||V_1||_{L^2_h}$

Схема с ц. р.:

N\M	30	60	120
30	0.078646	0.019479	0.005272
60	0.079649	0.019589	0.005022
120	0.080171	0.019661	0.004949

Схема Соколова:

N\M	30	60	120
30	0.043237	0.020683	0.010325
60	0.042981	0.020478	0.010015
120	0.042879	0.020425	0.009955

 $\mu = 0.01$. Норма: $||V_2||_{L^2_h}$

Схема с ц. р.:

N\M	30	60	120
30	0.080183	0.019667	0.005032
60	0.081338	0.019915	0.004995
120	0.081933	0.020047	0.005001

Схема Соколова:

N\M	30	60	120
30	0.036512	0.017673	0.008671
60	0.036427	0.017657	0.008680
120	0.036387	0.017652	0.008692

Теперь приведем результаты для $\mu=0.1$

$$\mu = 0.1$$
. Норма: $||G||_{L^2_h}$ и $||H||_{L^2_h}$

Схема с ц. р.:

N\M	30	60	120
30	0.027590	0.007250	0.002459
60	0.027870	0.007165	0.001992
120	0.028026	0.007159	0.001853

Схема Соколова:

N\M	30	60	120
30	0.107450	0.055484	0.028902
60	0.106946	0.054827	0.028030
120	0.106723	0.054552	0.027690

 $\mu = 0.1$. Норма: $||V_1||_{L^2_h}$

Схема с ц. р.:

N\M	30	60	120
30	0.068314	0.017128	0.005029
60	0.069215	0.017139	0.004507
120	0.069687	0.017181	0.004359

Схема Соколова:

N\M	30	60	120
30	0.043237	0.020683	0.010325
60	0.042981	0.020479	0.010015
120	0.042879	0.020426	0.009955

 $\mu = 0.1$. Норма: $||V_2||_{L^2_h}$

Схема с ц. р.:

N\M	30	60	120
30	0.069217	0.017042	0.004384
60	0.070353	0.017302	0.004336
120	0.070936	0.017444	0.004348

Схема Соколова:

$N\backslash M$	30	60	120
30	0.036513	0.017673	0.008671
60	0.036427	0.017656	0.008680
120	0.036387	0.017653	0.008692

Данные таблицы подтверждают порядки аппроксимаций схем: $\tau+h^2$ для ц.р. и $\tau+h$ для схемы Соколова. Видно, что больший порядок аппроксимации первой схемы дает на достаточно мелких разбиениях более близкое к настоящему решение.

5. Сравнение схем при нулевых правых частях

Далее приводятся графики плотности и скорости газа для двух схем до момента стабилизации газа (изменение скорости со временем становится незначительным) Неизменными являются следующие параметры:

$$M_{1} = 30$$

$$M_{2} = 30$$

$$T_{sokolov} = 150$$

$$T_{c.d.} = 80$$

$$p(\rho) = 1.4\rho$$

$$\omega = 1$$

$$\rho(x, y, 0) = \begin{cases} 1, & x \leqslant \frac{\pi}{5} \\ 0.1 & x > \frac{\pi}{5} \end{cases}$$

6

4

Рис. 1. Плотность и скорость при t=0

8 9 10

Далее в левой колонке приводятся графики для схемы с центральными разностями, а в правой для схемы Соколова.

Рассмотрим $\mu = 0.1$.

Рис. 2. Плотность при t=4

Рис. 3. Скорость при t=4

Рис. 4. Плотность при t=10

Рис. 5. Скорость при $t=10\,$

Рис. 6. Плотность при t=21.3

Рис. 7. Скорость при t=21.3

Рис. 8. Плотность при t=41

Рис. 9. Скорость при t=41

Рис. 10. Плотность при t=60

Рис. 11. Скорость при t=60

Как видно из графиков плотности и скорости схемы с центральными разностями газ стабилизировался. Далее результаты приводятся только для схемы Соколова.

Рис. 12. Плотность при t=71

Рис. 13. Скорость при t=71

Рис. 14. Плотность при t=81

Рис. 15. Скорость при t=81

Как видно из графиков плотности и скорости схемы Соколова газ стабилизировался.

Рассмотрим $\mu = 0.025$.

Рис. 16. Плотность при t=4

Рис. 17. Скорость при t=4

Рис. 18. Плотность при t=10.6

Рис. 19. Скорость при t=10.6

Рис. 20. Плотность при t=21.3

Рис. 21. Скорость при t = 21.3

Рис. 22. Плотность при t=42.6

Рис. 23. Скорость при t=42.6

Рис. 24. Плотность при t=60

Рис. 25. Скорость при t=60

Рис. 26. Плотность при t=71

Рис. 27. Скорость при t=71

Рис. 28. Плотность при t=80

Рис. 29. Скорость при t=80

Как видно из рисунков для схемы с ц. р. за $\Delta t = 9$ плотность и скорость газа почти не изменились. Далее приводятся рисунки только для схемы Соколова.

Рис. 30. Плотность при t = 92.3

Рис. 31. Скорость при t = 92.3

Рис. 32. Плотность при t=100

Рис. 33. Скорость при t=100

Рис. 34. Плотность при t=122

Рис. 35. Скорость при t=122

Рис. 36. Плотность при t=150

Рис. 37. Скорость при t=150

Как видно из рисунков за $\Delta t = 28$ плотность и скорость газа почти не изменились. Можно сделать вывод, что газ стабилизировался.

6. Вывод

Проведённые численные эксперименты демонстрируют, что в схеме Соколова стабилизация происходит медленнее, чем в схеме с центральными разностями. Также при меньшей вязкости газа стабилизация по обоим схемам медленнее.