

Best Arm Identification with Quantum Oracles

Xuchuang Wang, Yu-Zhen Janice Chen, Matheus Guedes de Andrade, Jonathan Allcock, Mohammad Hajiesmaili, John C.S. Lui, Don Towsley

Classical Best Arm Identification

Find the best treatment.

Find the most profitable ad.

- K arms: each with a Bernoulli r. v. $\mathcal{B}(\mu_k)$ with unknown mean μ_k
 - $\Delta_k = \mu^* \mu_k$
- In each time slot t, pull one arm, and observe the arm reward realization.
- With confidence 1δ , find the best arm $k^* \coloneqq \arg \max \mu_k$ with as small number of samples as possible (sample complexity)

Technique 1: Quantum Parallelism Permits More Information.

To Achieve $\mathbb{P}(|\hat{\mu}_k - \mu_k| \leq \epsilon) \geq 1 - \delta$,

- Classically: $O\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}\right)$ samples
- Quantumly: $O\left(\frac{1}{\epsilon}\log\frac{1}{\delta}\right)$ samples.

Technique 2: Amplitude Amplification

- + Binary Search.
- Query all arms coherently
- Shrink the potential optimal arms efficiently

Technique 3: Arm Set Partition.

- Partition K arms to $\frac{K}{m}$ subsets
- Eliminate bad arms in the subset level

Quantum Best Arm Identification

Find the best quantum solver

Weak quantum oracle (Parallelism)

Measure the state:
$$\mathcal{B}(\mu_k) \sim \begin{cases} |1\rangle & \text{w. p. } \mu_k \\ |0\rangle & \text{w. p. } 1 - \mu_k \end{cases}$$

$$\mathcal{O}_k$$
: $|0\rangle \mapsto \sqrt{\mu_k} |1\rangle + \sqrt{1 - \mu_k} |0\rangle$

Strong quantum oracle (Entanglement)

$$\mathcal{O}_{\text{MAB}}: \sum_{k=1}^{K} a_k |k\rangle_I |0\rangle_R \mapsto \sum_{k=1}^{K} a_k |k\rangle_I (\sqrt{1-\mu_k} |0\rangle_R + \sqrt{\mu_k} |1\rangle_R)$$

m-Constrained Quantum Oracle (Unified)

$$\mathcal{O}_{\mathcal{S}}: \sum_{k \in \mathcal{S}} a_k |k\rangle_I |0\rangle_R \mapsto \sum_{k \in \mathcal{S}} a_k |k\rangle_I (\sqrt{1 - \mu_k} |0\rangle_R + \sqrt{\mu_k} |1\rangle_R)$$

Simulations

SuccElim

-◆- Q-Elim

Oracle	Lower Bound	Upper Bound
Classical	$\Omega\left(\sum_{k} rac{1}{\Delta_k^2} \log rac{1}{\delta} ight)$	$O\left(\sum_{k} \frac{1}{\Delta_{k}^{2}} \log \frac{K}{\delta}\right)$
Weak Quantum	$\Omega\left(\sum_{k} rac{1}{\Delta_{k}} \log rac{1}{\delta} ight)$	$\tilde{O}\left(\sum_{k} \frac{1}{\Delta_{k}} \log \frac{1}{\delta}\right)$
Strong Quantum	$\Omega\left(\sqrt{\sum_{k}rac{1}{\Delta_{k}^{2}} ight)$	$\tilde{O}\left(\sqrt{\sum_{k} \frac{1}{\Delta_{k}^{2}} \log \frac{1}{\delta}}\right)$
<i>m</i> -Constrained Quantum	$\Omega\left(\sum_{\mathcal{S}\in\mathfrak{B}}\sqrt{\sum_{k\in\mathcal{S}}\frac{1}{\Delta_k^2}}\right)$	$\tilde{O}\left(\sum_{\mathcal{S}\in\mathfrak{B}}\sqrt{\sum_{k\in\mathcal{S}}\frac{1}{\Delta_k^2}}\right)$