Limits at Infinity

Nijat Aliyev

BHOS

Calculus

September 27, 2023

Example: Let us investigate the behavior of $f(x) = \frac{x^2 - 1}{x^2 + 1}$ as x becomes large.

Example: Let us investigate the behavior of $f(x) = \frac{x^2 - 1}{x^2 + 1}$ as x becomes large.

Example: Let us investigate the behavior of $f(x) = \frac{x^2 - 1}{x^2 + 1}$ as x becomes large.

As x grows larger and larger, the values of f(x) get closer and closer to 1.

Let us see some values in table:

х	f(x)
0	-1
± 1	0
±2	0.600000
±3	0.800000
±4	0.882353
±5	0.923077
±10	0.980198
±50	0.999200
± 100	0.999800
±1000	0.999998

Ee can make the values of f(x) as close as we like to 1 by taking x sufficiently large.

Let us see some values in table:

х	f(x)
0	-1
± 1	0
±2	0.600000
±3	0.800000
±4	0.882353
±5	0.923077
± 10	0.980198
± 50	0.999200
± 100	0.999800
± 1000	0.999998

Ee can make the values of f(x) as close as we like to 1 by taking x sufficiently large.

Mathematically,

$$\lim_{x\to\infty}\frac{x^2-1}{x^2+1}=1.$$

Definitions:

1. We say that f(x) has the **limit** L as x approaches infinity and write

$$\lim_{x \to \infty} f(x) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number M such that for all x

$$x > M \implies |f(x) - L| < \epsilon.$$

2. We say that f(x) has the **limit** L as x approaches minus infinity and write

$$\lim_{x \to -\infty} f(x) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number N such that for all x

$$x < N \implies |f(x) - L| < \epsilon.$$

Definitions:

Definitions:

1. Let f(x) be defined on some interval (M, ∞) . We say that f(x) approaches L as x approaches infinity and write

$$\lim_{x\to\infty}f(x)=L$$

if the values of f(x) can be made arbitrarily close to L by taking x values sufficiently large.

Definitions:

1. Let f(x) be defined on some interval (M,∞) . We say that f(x) approaches L as x approaches infinity and write

$$\lim_{x\to\infty}f(x)=L$$

if the values of f(x) can be made arbitrarily close to L by taking x values sufficiently large.

2. Let f(x) be defined on some interval $(-\infty, N)$. We say that f(x) approaches L as x approaches minus infinity and write

$$\lim_{x\to -\infty} f(x) = L$$

if the values of f(x) can be made arbitrarily close to L by taking x values sufficiently large **negative**.

Example: Show that $\lim_{x\to\infty}\frac{1}{x}=0$.

Example: Show that $\lim_{x\to\infty}\frac{1}{x}=0$.

Solution: Let $\epsilon > 0$ be given. We must find a number M such that

$$x > M \Longrightarrow \left| \frac{1}{x} - 0 \right| = \left| \frac{1}{x} \right| < \epsilon$$

If we choose $M = \frac{1}{\epsilon}$, then we get

$$x > M = \frac{1}{\epsilon} \Longrightarrow \left| \frac{1}{x} \right| < \epsilon.$$

Example: Show that $\lim_{x\to-\infty}\frac{1}{x}=0$.

Example: Show that $\lim_{x\to -\infty} \frac{1}{x} = 0$.

Solution: Let $\epsilon > 0$ be given. We must find a number N such that

$$x < N \Longrightarrow \left| \frac{1}{x} - 0 \right| = \left| \frac{1}{x} \right| < \epsilon$$

If we choose $M=-\frac{1}{\epsilon}$, then we get

$$x < N = \frac{1}{\epsilon} \Longrightarrow \left| \frac{1}{x} \right| < \epsilon.$$

Theorem:

All the Limit Laws are true when we replace $\lim_{x\to x_0}$ by $\lim_{x\to\infty}$ or $\lim_{x\to -\infty}$ that is, the variable x may approach a finite number x_0 or $\pm\infty$

Example: Find $\lim_{x\to\pm\infty} \frac{x^3+3}{|x|^3-2}$

Theorem:

All the Limit Laws are true when we replace $\lim_{x\to x_0}$ by $\lim_{x\to\infty}$ or $\lim_{x\to -\infty}$ that is, the variable x may approach a finite number x_0 or $\pm\infty$

Example: Find $\lim_{x\to\pm\infty} \frac{x^3+3}{|x|^3-2}$

Solution:

1. For $x \ge 0$:

$$\text{lim}_{x \to \infty} \, \tfrac{x^3 + 3}{|x|^3 - 2} = \text{lim}_{x \to \infty} \, \tfrac{x^3 + 3}{x^3 - 2} = \text{lim}_{x \to \infty} \, \tfrac{1 + 3/x^3}{1 - 2/x^3} = 1.$$

2. For x < 0:

$$\text{lim}_{x \to \infty} \, \tfrac{x^{3} + 3}{|x|^{3} - 2} = \text{lim}_{x \to \infty} \, \tfrac{x^{3} + 3}{-x^{3} - 2} = \text{lim}_{x \to \infty} \, \tfrac{1 + 3/x^{3}}{-1 - 2/x^{3}} = -1.$$

Limits at Infinity of Rational Functions

Let $P(x)=a_px^p+a_{p-1}x^{p-1}+\cdots+a_0$ and $Q(x)=b_qx^q+b_{q-1}x^{q-1}+\cdots+b_0$. Then, to find the limit of $\frac{P(x)}{Q(x)}$ as $x\to\pm\infty$ we first divide the denominator and numerator by the highest power of x in the denominator.

Example: Find $\lim_{x\to-\infty} \frac{x^3+2x^2+1}{x-1}$.

Limits at Infinity of Rational Functions

Let $P(x)=a_px^p+a_{p-1}x^{p-1}+\cdots+a_0$ and $Q(x)=b_qx^q+b_{q-1}x^{q-1}+\cdots+b_0$. Then, to find the limit of $\frac{P(x)}{Q(x)}$ as $x\to\pm\infty$ we first divide the denominator and numerator by the highest power of x in the denominator.

Example: Find $\lim_{x\to-\infty} \frac{x^3+2x^2+1}{x-1}$.

Solution: Divide numerator and denominator by x

$$\lim_{x\rightarrow -\infty}\frac{x^3+2x^2+1}{x-1}=\lim_{x\rightarrow -\infty}\frac{x(x+2)+1/x}{1-1/x}=\infty$$

Limits at Infinity of Rational Functions

Example: Find $\lim_{x\to\infty} \frac{3x^2+4x+4}{-5x^2+5x+6}$

Limits at Infinity of Rational Functions

Example: Find $\lim_{x\to\infty} \frac{3x^2+4x+4}{-5x^2+5x+6}$

Solution: Divide numerator and denominator by x^2 $\lim_{x\to\infty} \frac{3x^2+4x+4}{-5x^2+5x+6} = \lim_{x\to\infty} \frac{3+4/x+4/x^2}{-5+5/x+6/x^2} = -3/5.$

Limits at Infinity of Rational Functions

Example: Find $\lim_{x\to\infty} \frac{3x^2+4x+4}{\frac{-5x^2+5x+6}{-5x^2+5x+6}}$

Solution: Divide numerator and denominator by
$$x^2$$
 $\lim_{x\to\infty} \frac{3x^2+4x+4}{-5x^2+5x+6} = \lim_{x\to\infty} \frac{3+4/x+4/x^2}{-5+5/x+6/x^2} = -3/5$.

Example: Find $\lim_{x\to\infty} \frac{3x^2+4x+4}{2x^3+x+4}$

Limits at Infinity of Rational Functions

Example: Find $\lim_{x\to\infty} \frac{3x^2+4x+4}{\frac{-5x^2+5x+6}{-5x^2+5x+6}}$

Solution: Divide numerator and denominator by
$$x^2$$
 $\lim_{x\to\infty} \frac{3x^2+4x+4}{-5x^2+5x+6} = \lim_{x\to\infty} \frac{3+4/x+4/x^2}{-5+5/x+6/x^2} = -3/5$.

Example: Find $\lim_{x\to\infty} \frac{3x^2+4x+4}{2x^3+x+4}$

Solution: Divide numerator and denominator by x^3

Limits at Infinity of Rational Functions

Example: Find $\lim_{x\to\infty} \frac{3x^2+4x+4}{-5x^2+5x+6}$

Solution: Divide numerator and denominator by x^2

$$lim_{x\to\infty} \tfrac{3x^2+4x+4}{-5x^2+5x+6} = lim_{x\to\infty} \tfrac{3+4/x+4/x^2}{-5+5/x+6/x^2} = -3/5.$$

Example: Find $\lim_{x\to\infty} \frac{3x^2+4x+4}{2x^3+x+4}$

Solution: Divide numerator and denominator by x^3

$$\lim_{x \to \infty} \frac{3x^2 + 4x + 4}{2x^3 + x + 4} = \lim_{x \to \infty} \frac{3/x + 4/x^2 + 4/x^3}{2 + 1/x^2 + 4/x^3} = 0$$

Limits at Infinity of Rational Functions

- 1. If p>q, then $\lim_{x\to\pm\infty}rac{P(x)}{Q(x)}=\infty$ (+ or depending on the sign)
- 2. If p=q, then $\lim_{x \to \pm \infty} \frac{P(x)}{Q(x)} = \frac{a_p}{b_q}$
- 3. If p < q, then $\lim_{x \to \pm \infty} \frac{P(x)}{Q(x)} = 0$.

Limits at Infinity of Rational Functions

Definition

y=b is called a horizontal asymptote of the graph of y=f(x) if

$$\lim_{x \to \infty} f(x) = b$$
 or $\lim_{x \to -\infty} f(x) = b$

Limits at Infinity of Rational Functions

Definition

y = b is called a horizontal asymptote of the graph of y = f(x) if

$$\lim_{x \to \infty} f(x) = b$$
 or $\lim_{x \to -\infty} f(x) = b$

Example: Find the horizontal asymptotes of $f(x) = \frac{5x^2 + 8x - 3}{3x^2 + 2}$.

Limits at Infinity of Rational Functions

Definition

y=b is called a horizontal asymptote of the graph of y=f(x) if

$$\lim_{x \to \infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b$$

Example: Find the horizontal asymptotes of $f(x) = \frac{5x^2 + 8x - 3}{3x^2 + 2}$.

Solution:

1.
$$\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2} = \lim_{x \to \infty} \frac{5 + 8/x - 3/x^2}{3 + 2/x^2} = 5/3.$$

Limits at Infinity of Rational Functions

Definition

y=b is called a horizontal asymptote of the graph of y=f(x) if

$$\lim_{x \to \infty} f(x) = b$$
 or $\lim_{x \to -\infty} f(x) = b$

Example: Find the horizontal asymptotes of $f(x) = \frac{5x^2 + 8x - 3}{3x^2 + 2}$.

Solution:

1.
$$\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2} = \lim_{x \to \infty} \frac{5 + 8/x - 3/x^2}{3 + 2/x^2} = 5/3.$$

1.
$$\lim_{x \to -\infty} \frac{5x^2 + 8x - 3}{3x^2 + 2} = \lim_{x \to -\infty} \frac{5 + 8/x - 3/x^2}{3 + 2/x^2} = 5/3.$$

Limits at Infinity of Rational Functions

Definition

y=b is called a horizontal asymptote of the graph of y=f(x) if

$$\lim_{x \to \infty} f(x) = b$$
 or $\lim_{x \to -\infty} f(x) = b$

Example: Find the horizontal asymptotes of $f(x) = \frac{5x^2 + 8x - 3}{3x^2 + 2}$.

Solution:

- 1. $\lim_{x \to \infty} \frac{5x^2 + 8x 3}{3x^2 + 2} = \lim_{x \to \infty} \frac{5 + 8/x 3/x^2}{3 + 2/x^2} = 5/3.$
- 1. $\lim_{x \to -\infty} \frac{5x^2 + 8x 3}{3x^2 + 2} = \lim_{x \to -\infty} \frac{5 + 8/x 3/x^2}{3 + 2/x^2} = 5/3.$

The line y = 5/3 is a horizontal asymptote on both right nd left.

Limits at Infinity of Rational Functions

Limits at Infinity of Rational Functions

Example:

Find the horizontal asymptotes of the graph of

$$f(x) = \frac{x^3 - 2}{|x|^3 + 1}.$$

Limits at Infinity of Rational Functions

Example:

Find the horizontal asymptotes of the graph of

$$f(x) = \frac{x^3 - 2}{|x|^3 + 1}.$$

Solution:

For
$$x \ge 0$$
: $\lim_{x \to \infty} \frac{x^3 - 2}{|x|^3 + 1} = \lim_{x \to \infty} \frac{x^3 - 2}{x^3 + 1} = \lim_{x \to \infty} \frac{1 - (2/x^3)}{1 + (1/x^3)} = 1$.

For
$$x < 0$$
: $\lim_{x \to -\infty} \frac{x^3 - 2}{|x|^3 + 1} = \lim_{x \to -\infty} \frac{x^3 - 2}{(-x)^3 + 1} = \lim_{x \to -\infty} \frac{1 - (2/x^3)}{-1 + (1/x^3)} = -1$.

Limits at Infinity of Rational Functions

The lines y=1 and y=-1 are horizontal asymptotes.

Limits at Infinity of Rational Functions

The lines y = 1 and y = -1 are horizontal asymptotes.

