Corrigé problème 2 — CENTRALE PSI 2012

I. Préliminaires, définition de la transformation L.

I.A. L'intégrabilité (= convergence absolue) entraîne la convergence de l'intégrale et on a donc

$$E \subset E'$$

I.B. Si $x \in E$ alors pour tout $y \ge x$ on a $\forall t \in \mathbb{R}^+$, $|f(t)e^{-\lambda(t)y}| \le |f(t)|e^{-\lambda(t)x}$ (car $\lambda(t) \ge 0$) et, la fonction majorante étant intégrable sur \mathbb{R}^+ puisque $x \in E$, on a $y \in E$. On vient donc de voir que

$$\forall x \in E, \ [x, +\infty[\subset E]$$

On suppose désormais E non vide et on distingue deux cas.

- Si E n'est pas minoré; pour tout réel y il existe $x \in E$ tel que $x \leq y$ et ce qui précède indique indique que $y \in E$. On a donc

$$E = \mathbb{R}$$

- Si E est minoré, étant non vide il possède une borne inférieure α et $E \subset [\alpha, +\infty[$. Par ailleurs, si $y > \alpha$ alors (caractérisation de la borne inférieure) il existe $x \in E$ tel que $x \leqslant y$ et ainsi $y \in E$. On a prouvé que

$$\alpha, +\infty \subset E \subset [\alpha, +\infty]$$

et E est égal à l'un des intervalles $\alpha, +\infty$ ou $\alpha, +\infty$.

- I.C. Il s'agit d'utiliser le théorème de continuité des intégrales à paramètre.
 - $\forall x \in E, \ t \mapsto f(t)e^{-\lambda(t)x}$ est continue sur \mathbb{R}^+ .
 - $\forall t \geq 0, \ x \mapsto f(t)e^{-\lambda(t)x}$ est continue sur E.
 - $\forall [a,b] \subset E, \ \forall x \in [a,b], \ \forall t \geqslant 0, \ |f(t)e^{-\lambda(t)x}| \leqslant |f(t)|e^{-\lambda(t)a}$. Le majorant est indépendant de x et est intégrable sur \mathbb{R}^+ .

Le théorème s'applique et donne

$$Lf \in \mathcal{C}^0(E)$$

II. Exemples dans le cas de f positive.

- II.A. Si f est positive il y a équivalence entre intégrabilité (=absolue convergence) et convergence de l'intégrale donc E = E'.
- II.B. Dans les trois cas proposés, la fonction f est positive (en B.1 cela découle de la croissance supposée de λ). On peut donc indifféremment étudier la convergence de l'intégrale (c'est-à-dire l'existence d'une limite de $\int_0^a f(t)e^{-\lambda(t)x} dt$ quand $a \to +\infty$) ou l'intégrabilité (au voisinage de $+\infty$ car les fonctions sont continues sur \mathbb{R}^+ et $+\infty$ est donc le seul problème).
- II.B.1) Soit $a \in \mathbb{R}^+$. On a

$$\forall x \neq 0, \ \int_0^a \lambda'(t)e^{-\lambda(t)x} \ dt = \left[-\frac{1}{x}e^{-\lambda(t)x} \right]_{t=0}^{t=a} = \frac{e^{-\lambda(0)x} - e^{-\lambda(a)x}}{x}$$

 λ étant croissante et non majorée tend vers $+\infty$ en $+\infty$ et ainsi

$$\forall x > 0, \lim_{a \to +\infty} \int_0^a \lambda'(t) e^{-\lambda(t)x} dt = \frac{e^{-\lambda(0)x}}{x}$$

$$\forall x < 0, \lim_{a \to +\infty} \int_0^a \lambda'(t) e^{-\lambda(t)x} dt = +\infty$$

Enfin (cas x = 0) $\int_0^a \lambda'(t) dt = \lambda(a) - \lambda(0) \to +\infty$ quand $a \to +\infty$. On a donc montré que

$$E = E' = \mathbb{R}^{+*}$$
 et $\forall x > 0$, $Lf(x) = \frac{e^{-\lambda(0)x}}{x}$

II.B.2) Soit $x \in \mathbb{R}$. On a $\forall t \ge \max(x,0)$, $f(t)e^{-\lambda(t)x} = e^{\lambda(t)(t-x)} \ge 1$. On n'a donc pas intégrabilité au voisinage de $+\infty$ et

$$E = \emptyset$$

II.B.3) Soit $x \in \mathbb{R}$. On a $\forall t \ge \max(-x,0), \ 0 \le f(t)e^{-\lambda(t)x} = \frac{e^{-\lambda(t)(x+t)}}{1+t^2} \le \frac{1}{1+t^2}$. La fonction majorante étant intégrable, on a $x \in E$. Ainsi

$$E = E' = \mathbb{R}$$

- **II.C.** Il s'agit ici d'étudier la fonction $x \mapsto \int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt$.
- **II.C.1)** Si $x \ge 0$ alors $0 \le \frac{e^{-xt^2}}{1+t^2} \le \frac{1}{1+t^2}$ qui est intégrable sur \mathbb{R}^+ . On a donc $x \in E$.

Si x<0, $t\frac{e^{-xt^2}}{1+t^2}\to +\infty$ quand $t\to +\infty$ (croissances comparées) donc $\frac{e^{-xt^2}}{1+t^2}\geqslant \frac{1}{t}$ pour t assez grand et la fonction $t\mapsto \frac{e^{-xt^2}}{1+t^2}$ n'est pas intégrable au voisinage de $+\infty$, c'est-à-dire $x\notin E$. On a donc

$$E = \mathbb{R}^+$$

On a immédiatement (arctan étant une primitive de $t\mapsto \frac{1}{1+t^2}$ sur \mathbb{R})

$$Lf(0) = \int_0^{+\infty} \frac{dt}{1+t^2} = \frac{\pi}{2}$$

- II.C.2) Il s'agit d'utiliser le théorème de régularité des intégrales à paramètres.
 - $\forall x > 0, \ \forall t \geqslant 0, \ t \mapsto \frac{e^{-xt^2}}{1+t^2}$ est continue et intégrable sur \mathbb{R}^+ .
 - $\forall t \geqslant 0, \ x \mapsto \frac{e^{-xt^2}}{1+t^2}$ est de classe C^1 sur \mathbb{R}^{+*} de dérivée $x \mapsto -\frac{t^2e^{-xt^2}}{1+t^2}$.
 - $\forall x > 0, \ t \mapsto -\frac{t^2 e^{-xt^2}}{1+t^2}$ est continue sur \mathbb{R}^+ .
 - On a

$$\forall a > 0, \ \forall x \geqslant a, \ \forall t \geqslant 0, \ \left| -\frac{t^2 e^{-xt^2}}{1+t^2} \right| \leqslant \frac{t^2}{1+t^2} e^{-at^2} = \psi(t)$$

avec ψ continue sur \mathbb{R}^+ et négligeable devant $1/t^2$ au voisinage de $+\infty$ (car a>0); c'est donc une fonction intégrable sur \mathbb{R}^+ .

Le cours indique alors que Lf est de classe C^1 sur \mathbb{R}^{+*} avec

$$\forall x > 0, \ (Lf)'(x) = -\int_0^{+\infty} \frac{t^2}{1+t^2} e^{-xt^2} \ dt$$

Remarque : on ne sait rien a priori quant à la dérivabilité en 0 ! L'énoncé n'était pas très clair.

II.C.3) On en déduit que

$$\forall x > 0, \ Lf(x) - (Lf)'(x) = \int_0^{+\infty} e^{xt^2} \ dt = \frac{A}{\sqrt{x}} \text{ avec } A = \int_0^{+\infty} e^{-t^2} \ dt$$

la dernière égalité provenant du changement de variable $u = t\sqrt{x}$.

Remarque : On a donc $(Lf)'(x) \to -\infty$ quand $x \to 0^+$. Par théorème de prolongement de la dérivée (avec $Lf \in C^0(\mathbb{R}^+) \cap C^1(\mathbb{R}^{+*})$, on peut en déduire que Lf n'est PAS dérivable en 0 mais que son graphe présente en $(0, \pi/2)$ une demi-tangente verticale. :

II.C.4) g est dérivable sur \mathbb{R}^{+*} et

$$\forall x > 0, \ g'(x) = e^{-x}((Lf)'(x) - Lf(x)) = -A\frac{e^{-x}}{\sqrt{x}}$$

 $x \mapsto \frac{e^{-x}}{\sqrt{x}}$ est continue sur \mathbb{R}^{+*} donc (« théorème fondamental de l'analyse ») $x \mapsto \int_1^x \frac{e^{-t}}{\sqrt{t}} dt$ en est une primitive sur \mathbb{R}^{+*} . Deux primitives sur un intervalle différenat d'une constante,

$$\exists c \in \mathbb{R} \text{ tq } \forall x > 0, \ g(x) = c - A \int_1^x \frac{e^{-t}}{\sqrt{t}} \ dt$$

Par ailleurs, g est continue en 0 (Lf l'est) et $g(x) \to g(0) = Lf(0) = \frac{\pi}{2}$ quand $x \to 0$. On en déduit que l'on peut passer à la limite dans l'égalité ci-dessus (en particulier, l'intégrale existe sur [0,1] ce qui n'est pas surprenant car la fonction que l'on intègre est prolongeable par continuité en 0). On obtient $c = \frac{\pi}{2} + A \int_{0}^{0} \frac{e^{-t}}{\sqrt{t}} dt$. Finalement, on a

$$\forall x > 0, \ g(x) = \frac{\pi}{2} - A \int_0^x \frac{e^{-t}}{\sqrt{t}} dt$$

et l'égalité reste vraie en x = 0 (elle se lit $g(0) = \pi/2$).

II.C.5) Remarquons que

$$\forall x \geqslant 0, \ 0 \leqslant g(x) \leqslant e^{-x} \int_0^{+\infty} \frac{dt}{1+t^2} \underset{x \to +\infty}{\longrightarrow} 0$$

En faisant tendre x vers $+\infty$ dans l'identité de la question précédente, on obtient donc

$$\lim_{x \to +\infty} A \int_0^x \frac{e^{-t}}{\sqrt{t}} dt = \frac{\pi}{2}$$

Par ailleurs, le changement de variable $u=\sqrt{t}$ (licite car $t\mapsto \sqrt{t}$ est une bijection de classe C^1 de]0,x[dans $]0,\sqrt{x}[)$ donne

$$\forall x > 0, \ \int_0^x \frac{e^{-t}}{\sqrt{t}} dt = 2 \int_0^{\sqrt{x}} e^{-u^2} du$$

Cette quantité tend vers 2A quand $x \to +\infty$ et finalement, $2A^2 = \frac{\pi}{2}$ ou encore (comme $A \ge 0$)

$$\int_0^{+\infty} e^{-t^2} dt = A = \frac{\sqrt{\pi}}{2}$$

III. Étude d'un premier exemple.

III.A. Comme $e^t-1 \sim t$, on a $f(t) \to 0$ quand $t \to 0^+$. f est donc prolongeable par continuité en posant

$$f(0) = 0$$

III.B. Soit $x \in \mathbb{R}$; $g: t \mapsto f(t)e^{-xt}$ est continue sur \mathbb{R}^+ et $g(t) \sim \frac{t}{2}e^{-xt}$ en $+\infty$ (car $f(t) \sim t/2$). Si x > 0, g est intégrable au voisinage de $+\infty$ (négligeable devant $1/t^2$). Si $x \le 0$, g est non intégrable au voisinage de $+\infty$ (de limite infinie). Ainsi

$$E = \mathbb{R}^{+*}$$

III.C. Par définition, on a

$$\forall x > 0, \ Lf(x) = \int_0^{+\infty} f(t)e^{-xt} \ dt$$

Par ailleurs, pour t > 0 on a $e^{-t} \in [0, 1]$ et donc

$$\forall t > 0, \ f(t) = \frac{te^{-t}}{1 - e^{-t}} - 1 + \frac{t}{2} = te^{-t} \sum_{k=0}^{+\infty} e^{-kt} - 1 + \frac{t}{2}$$

Les fonctions $t\mapsto e^{-xt}$ et $t\mapsto te^{-xt}$ étant intégrables sur \mathbb{R}^+ pour x>0, on peut découper Lf(x) en trois morceaux pour x>0 et obtenir

$$\forall x > 0, \ Lf(x) = \int_0^{+\infty} \sum_{k=0}^{+\infty} t e^{-(k+1+x)t} \ dt - \int_0^{+\infty} e^{-xt} \ dt + \frac{1}{2} \int_0^{+\infty} t e^{-xt} \ dt$$

Pour y > 0, une intégration par parties donne $\int_0^a te^{-yt} dt = \left[-\frac{t}{y} e^{-yt} \right]_0^a + \frac{1}{y} \int_0^a e^{-yt} dt = \frac{-aye^{-ya} + 1 - e^{-ay}}{y^2}.$ En faisant tendre a vers $+\infty$, on trouve alors

$$\forall y > 0, \ \int_0^{+\infty} t e^{-ty} \ dt = \frac{1}{y^2}$$

et ainsi

$$\forall x > 0, \ Lf(x) = \frac{1}{2x^2} - \frac{1}{x} + \int_0^{+\infty} \sum_{k=0}^{+\infty} te^{-(k+1+x)t} \ dt$$

On veut maintenant intervertir somme et intégrale par le théorème d'intégration terme à terme. On travaille pour un x > 0 fixé.

- Posons $f_k: t \mapsto te^{-(k+1+x)t}$. f_k est continue pour tout $k \ge 0$ et la série de fonctions $\sum f_k$ converge simplement sur \mathbb{R}^{+*} ; elle a pour somme $t \mapsto \frac{t}{e^t-1}e^{-xt}$ qui est aussi continue sur \mathbb{R}^{+*} .
- Les f_k sont intégrables sur \mathbb{R}^+ et $\int_0^{+\infty} |f_k| = \int_0^{+\infty} f_k = \frac{1}{(k+1+x)^2}$ est le terme général d'une série convergente.

Le théorème s'applique et le calcul d'intégrale fait plus haut donne

$$\forall x > 0, \ Lf(x) = \frac{1}{2x^2} - \frac{1}{x} + \sum_{k=0}^{+\infty} \frac{1}{(k+x+1)^2}$$

C'est la formule voulue (il suffit de poser n = k + 1).

III.D. On vient de voir que

$$\forall x > 0, \ Lf(x) - \frac{1}{2x^2} + \frac{1}{x} = \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2}$$

- Posons $h_n: x \mapsto \frac{1}{(n+x)^2}$. On a $||h_n||_{\infty}^{\mathbb{R}^+} \leqslant \frac{1}{n^2}$ qui est le terme général d'une série convergente. Ainsi, la série de fonctions $\sum h_n$ converge normalement donc uniformément sur \mathbb{R}^+ .
- Les h_n sont continues sur \mathbb{R}^+ .

Le cours indique que la somme de la série $\sum h_n$ est continue sur \mathbb{R}^+ . En particulier,

$$\lim_{x \to 0^+} Lf(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

IV. Généralités dans le cas typique.

IV.A. Il s'agit d'utiliser le théorème de régularité des intégrales à paramètres.

- Pour tout $x > \alpha$ (et donc $x \in E$) $t \mapsto e^{-xt} f(t)$ est intégrable sur \mathbb{R}^+ .
- Pour tout $t \ge 0$, $x \mapsto e^{-xt} f(t)$ est de classe C^{∞} sur $]\alpha, +\infty[$ de dérivée n-ième $x \mapsto (-t)^n e^{-xt} f(t)$.
- Pour tout $x > \alpha$, $t \mapsto (-t)^n e^{-xt} f(t)$ est continue sur \mathbb{R}^+ .
- Soient $n \in \mathbb{N}^*$ et $[a,b] \subset]\alpha, +\infty[$. On a

$$\forall x \in [a, b], \ \forall t \ge 0, \ |(-t)^n e^{-xt} f(t)| \le t^n e^{-at} |f(t)| = \phi_n(t)$$

 ϕ_n est continue sur \mathbb{R}^+ et présente un unique problème d'intégrabilité en $+\infty$. Comme $a>\alpha=\inf(E)$, il existe $c\in E$ tel que a>c (caractérisation de la borne inférieure). On a alors, au voisinage de $+\infty$, $\phi_n(t)=e^{-ct}|f(t)|t^ne^{-(a-c)t}=o(e^{-ct}f(t))$ (car a-c>0). Comme $c\in E$, $t\mapsto e^{-ct}f(t)$ est intégrable au voisinage de $+\infty$ (sur \mathbb{R}^+). Ainsi, ϕ_n est intégrable au voisinage de $+\infty$ elle aussi et donc elle l'est sur \mathbb{R}^+ .

Le théorème s'applique. Il indique que $Lf \in C^{\infty}(]\alpha, +\infty[)$ et

$$\forall n \in \mathbb{N}^*, \ \forall x > \alpha, \ (Lf)^n(x) = (-1)^n \int_0^{+\infty} t^n f(t) e^{-xt} \ dt.$$

IV.B. Comme f est positive, on a E=E'. Il s'agit de trouver les $x\in\mathbb{R}$ tel que $\int_0^{+\infty}t^ne^{-(x+a)t}\,dt$ converge (le seul problème étant celui au voisinage de $+\infty$) ou tels que $t\mapsto t^ne^{-(x+a)t}$ est intégrable sur \mathbb{R}^+ (idem). Si x+a>0 alors $t^ne^{-(x+a)t}=o(1/t^2)$ au voisinage de $+\infty$ (croissances comparées) et la fonction est intégrable au voisinage de $+\infty$. Si $x+a\leqslant 0$ alors $t.t^ne^{-(x+a)t}\to +\infty$ quand $t\to +\infty$ et la fonction n'est donc pas intégrable au voisinage de $+\infty$. Finalement;

$$E = E' =] - a, +\infty[$$

Pour y>0 et $n\in\mathbb{N}^*$, une intégration par parties donne (en omettant les détails de calcul) $d\int_0^{+\infty}t^ne^{-yt}\,dt=\frac{n}{y}\int_0^{+\infty}t^{n-1}e^{-yt}\,dt$. On en déduit par récurrence simple que

$$\forall y > 0, \ \forall n \in \mathbb{N}, \ \int_0^{+\infty} t^n e^{-yt} \ dt = \frac{n!}{y^{n+1}}.$$

En particulier, on a

$$\forall x > -a, \ Lf(x) = \frac{n!}{(x+a)^{n+1}}$$

IV.C.1) On fixe $\beta > 0$. Posons $g: t \mapsto f(t) - \sum_{k=0}^{n} \frac{a_k}{k!} t^k$. On sait qu'au voisinage de 0 on a $g(t) = O(t^{n+1})$. Il existe donc $M \in \mathbb{R}^+$ et $c \in]0, \beta[$ tel que

$$\forall t \in [0, c], \ |g(t)| \leqslant Mt^{n+1}$$

La relation de Chasles, l'inégalité triangulaire et la croissance du passage à l'intégrale donnent

$$\left| \int_0^\beta g(t) e^{-tx} \ dt \right| \leqslant \int_0^c |g(t)| e^{-tx} \ dt + \|g\|_\infty^{[c,\beta]} \int_c^\beta e^{-xt} \ dt \leqslant M \int_0^c t^{n+1} e^{-tx} \ dt + \|g\|_\infty^{[c,\beta]} (\beta - c) e^{-cx} dt = 0$$

Le calcul de IV.B indique alors que

$$\left| \int_0^\beta g(t) e^{-tx} \ dt \right| \leqslant \frac{M(n+1)!}{x^{n+2}} + \|g\|_{\infty}^{[c,\beta]} (\beta - c) e^{-cx} \underset{x \to +\infty}{=} \mathcal{O}(x^{-n-2})$$

ce qui correspond au résultat demandé.

IV.C.2) Avec le calcul de IV.B on a (en continuant à utiliser la fonction g introduite en IV.C.1)

$$\forall x \in E \cap \mathbb{R}^{+*}, \ Lf(x) - \sum_{k=0}^{n} \frac{a_k}{x^{k+1}} = \int_0^{+\infty} g(t)e^{-tx} \ dt$$

La question précédente donne un renseignement pour l'intégrale entre 0 et 1. Intéressons-nous à l'autre partie. Fixons $c \in E \cap \mathbb{R}^{+*}$ (c existe car E est non majoré), travaillons avec $x \ge c+1$ et écrivons que

$$\forall t \geqslant 1, |g(t)e^{-tx}| = |g(t)e^{-ct}e^{-(x-c)t}| \leqslant |g(t)e^{-ct}|e^{-(x-c)t}|$$

 $t\mapsto g(t)e^{-ct}$ est intégrable sur $[1,+\infty[$ (car $c\in E$ donc $t\mapsto f(t)e^{-ct}$ est intégrable et c>0 donc pour tout $k,\ t\mapsto t^ke^{-ct}$ est aussi intégrable sur \mathbb{R}^+). On a alors

$$\left| \int_{1}^{+\infty} g(t)e^{-xt} dt \right| \leqslant e^{-(x-c)} \int_{1}^{+\infty} |g(t)|e^{-ct} dt$$

et cet terme est dominé par (et même négligeable devant) x^{-n-2} quand $x \to +\infty$. En sommant, on a alors

$$\int_0^{+\infty} \left(f(t) - \sum_{k=0}^n \frac{a_k}{k!} t^k \right) e^{-tx} dt = O(x^{-n-2})$$

et le calcul de IV.B donne

$$Lf(x) = \sum_{k=0}^{n} \frac{a_k}{x^{k+1}} + O(x^{-n-2})$$

IV.D.1) f est continue sur \mathbb{R}^+ et admet une limite en $+\infty$ et elle est donc bornée sur \mathbb{R}^+ (majorée en module par $|\ell|+1$ au voisinage de $+\infty$ et continue sur le segment qui reste). Soit x>0; $|f(t)e^{-xt}| \leq ||f||_{\infty}^{\mathbb{R}^+}e^{-xt}$ est intégrable sur \mathbb{R}^+ et donc $x \in E$. Ainsi

$$\mathbb{R}^{+*} \subset E$$

IV.D.2) On a

$$\forall x > 0, \ xLf(x) = \int_0^{+\infty} xf(t)e^{-xt} \ dt$$

Le changement de variable u = xt donne

$$\forall x > 0, \ xLf(x) = \int_0^{+\infty} f(u/x)e^{-u} \ du = G(x)$$

Pour étudier le comportement de G en $+\infty$, on va utiliser la caractérisation séquentielle. On se donne ainsi une suite (x_n) d'éléments de]0,1] telle que $x_n \to 0$ et on veut montrer que $G(x_n) \to \ell$. Pour cela, on utilise le théorème de convergence dominée.

- Posons $g_n: u \mapsto f(u/x_n)e^{-u}$. (g_n) est une suite de fonctions continues qui converge simplement sur \mathbb{R}^{+*} vers la fonction constante $u \mapsto \ell$ elle même continue sur \mathbb{R}^+ .
- $\forall n \in \mathbb{N}, \ \forall u \geqslant 0, \ |g_n(u)| \leqslant ||f||_{\infty} e^{-u}$ et le majorant est intégrable sur \mathbb{R}^+ .

Le théorème s'applique et indique que $G(x_n) \to \int_0^{+\infty} \ell e^{-u} du = \ell$. On obtient la même limite pour toutes les suites (x_n) et ainsi (caractérisation séquentielle des limites)

$$\lim_{x \to 0^+} x L f(x) = \ell$$

V. Étude d'un deuxième exemple.

V.A. Il s'agit de montrer que f n'est pas intégrable sur \mathbb{R}^+ ou encore que $F(a) = \int_0^a |f|$ n'admet pas de limite infinie quand $a \to +\infty$. On remarque que

$$\forall n \in \mathbb{N}, \ \int_{n\pi}^{(n+1)\pi} |f(t)| \ dt \geqslant \int_{n\pi+\pi/4}^{(n+1)\pi-\pi/4} \frac{dt}{\sqrt{2}t} \geqslant \frac{1}{\sqrt{2}(n+1)\pi} \frac{\pi}{2}$$

On en déduit que

$$\forall n \in \mathbb{N}^*, \ F((n+1)\pi) \geqslant \frac{1}{2\sqrt{2}} \sum_{k=0}^n \frac{1}{k+1} \underset{n \to +\infty}{\longrightarrow} +\infty$$

F n'est donc pas bornée sur \mathbb{R}^+ et

$$0 \notin E$$

V.B. Avec la partie préliminaire, on en déduit que $E \subset]0, +\infty[$. Réciproquement, si x>0 alors $f(t)e^{-xt}=o(1/t^2)$ au voisinage de $+\infty$ et donc $x\in E$. Ainsi

$$E =]0, +\infty[$$

V.C. Le seul problème dans l'intégrale $\int_0^{+\infty} f(t) dt$ est celui au voisinage de $+\infty$. On a

$$\forall a \geqslant 1, \int_1^a \frac{\sin(t)}{t} dt = \left[-\frac{\cos(t)}{t} \right]_1^a + \int_1^a \frac{\cos(t)}{t^2} dt$$

Le terme « entre crochets » du membre de droite admet une limite quand $a \to +\infty$.

 $t\mapsto \frac{\cos(t)}{t^2}$ est intégrable au voisinage de $+\infty$ (majorée en module par $1/t^2$) et l'intégrale du membre de droite admet donc une limite quand $a\to +\infty$). Il en est finalement de même de l'intégrale du membre de gauche. L'intégrale de $\frac{\sin(t)}{t}$ existe donc aussi au voisinage de $+\infty$. On a finalement existence de

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt$$
 et

$$0 \in E'$$

V.D. Il convient encore d'utiliser le théorème de régularité des intégrales à paramètres.

- $\forall x > 0, \ t \mapsto f(t)e^{-xt}$ est intégrable sur \mathbb{R}^+ (car $x \in E$).
- $\forall t > 0, \ x \mapsto f(t)e^{-xt}$ est de classe C^1 sur \mathbb{R}^{+*} dé dérivée $x \mapsto -\sin(t)e^{-xt}$.
- $\forall x > 0, \ t \mapsto -\sin(t)e^{-xt}$ est continue sur \mathbb{R}^+ .
- $\forall a > 0, \ \forall x \geqslant a, \ \forall t \geqslant 0, \ |-\sin(t)e^{-xt}| \leqslant e^{-at}$ qui est intégrable sur \mathbb{R}^+ .

Ainsi, $Lf \in C^1(\mathbb{R}^{+*})$ et

$$\forall x > 0 \ (Lf)'(x) = -\int_0^{+\infty} \sin(t)e^{-xt} \ dt = -\frac{1}{1+x^2}$$

le calcul de l'intégrale se faisant, par exemple, en écrivant le sinus comme partie imaginaire de e^{it} .

V.E. Deux primitives d'une fonction sur un intervalle différant d'une constante,

$$\exists c \in \mathbb{R} \text{ tq } \forall x > 0, \ Lf(x) = c - \operatorname{Arctan}(x)$$

f étant bornée sur \mathbb{R}^+ (continue et de limite nulle en l'infini) on a $|Lf(x)| \leq ||f||_{\infty} \int_0^{+\infty} e^{-xt} dt = \frac{|f||_{\infty}}{x} \to 0$ quand $x \to +\infty$. On en déduit que $c = \pi/2$ et

$$\forall x > 0, \ f(x) = \frac{\pi}{2} - \operatorname{Arctan}(x)$$

V.F. Soit $x \ge 0$ (et donc $x \in E'$). Le changement de variable $u = x - n\pi$ donne

$$f_n(x) = (-1)^n e^{-n\pi x} \int_0^{\pi} \frac{\sin(u)}{u + n\pi} e^{-ux} dx$$

On remarque que $(f_n(x))$ est une suite alternée, de limite nulle $(\operatorname{car} x \in E')$ et que $(|f_n(x)|)$ décroît $(\operatorname{car} x \in E')$ et $(\operatorname{car} x \in E')$ et que $(|f_n(x)|)$ décroît $(\operatorname{car} x \in E')$ et $(\operatorname{car} x \in E')$ et

$$\forall n \in \mathbb{N}, \ \left| \sum_{k=n+1}^{+\infty} f_k(x) \right| \leqslant |f_{n+1}(x)| \leqslant \int_{(n+1)\pi}^{(n+2)\pi} \frac{dt}{t} = \ln\left(\frac{n+2}{n+1}\right)$$

et on a donc

$$\left\| \sum_{k=n+1}^{+\infty} f_k \right\|_{\infty}^{\mathbb{R}^+} \le \ln \left(\frac{n+2}{n+1} \right) \to 0$$

ce qui montre que la série $\sum f_k$ converge uniformément sur \mathbb{R}^+ .

V.G. On peut ainsi utiliser le théorème de la double limite pour affirmer que

$$\frac{\pi}{2} = \lim_{x \to 0} Lf(x) = \lim_{x \to 0} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} f_n(0) = Lf(0)$$

VI. Injectivité dans le cas typique.

VI.A.1) Par linéarité du passage à l'intégrale, on a

$$\forall P \in \mathbb{R}[X], \int_0^1 P(t)g(t) dt = 0$$

VI.A.2) D'après le théorème de Weierstrass, il existe une suite (P_n) d'éléments de $\mathbb{R}[X]$ telle que $||P_n - g||_{\infty}^{[0,1]} \to 0$. On a alors

$$\left| \int_0^1 P_n g - \int_0^1 g^2 \right| \le \|P_n - g\|_{\infty}^{[0,1]} \int_0^1 |g| \to 0$$

et comme $\int_0^1 P_n g$ est toujours nul,

$$\int_{0}^{1} g^{2} = 0$$

 g^2 étant continue et positive sur [0,1] ceci entraîne que

$$\forall t \in [0, 1], \ g(t) = 0$$

VI.B.1) $u \mapsto e^{-xu} f(u)$ étant continue sur \mathbb{R}^+ , le « théorème fondamental de l'analyse » indique que h est une primitive de cette fonction sur \mathbb{R}^+ . Une intégration par parties donne alors

$$\forall b > 0, \int_0^b f(t)e^{-(x+a)t} dt = \left[h(t)e^{-at}\right]_0^b + a \int_0^b e^{-at}h(t) dt$$

Le membre de gauche admet une limite (égale à Lf(x+a)) quand $b \to +\infty$ (car $x+a \in E$). On a donc

$$Lf(x+a) = \lim_{b \to +\infty} \left(h(b)e^{-ab} + a \int_0^b e^{-at}h(t) dt \right)$$

Par ailleurs, h admet une limite finie en $+\infty$ (car $x \in E \subset E'$) et $e^{-ab} \to 0$ quand $b \to +\infty$ (car a > 0). Ainsi,

$$L(fx + a) = \lim_{b \to +\infty} a \int_0^b e^{-at} h(t) dt = a \int_0^{+\infty} e^{-at} h(t) dt$$

l'existence de l'intégrale étant conséquence de l'existence des autres limites.

VI.B.2) $t \mapsto e^{-at}$ est une bijection de classe \mathscr{C}^1 de \mathbb{R}^{+*} dans]0,1[. On peut ainsi poser $u=e^{-ta}$ pour obtenir (ce qui inclut l'existence de l'intégrale du membre de droite)

$$a \int_0^{+\infty} e^{-t(n+1)a} h(t) dt = \int_0^1 u^n h\left(-\frac{\ln(u)}{a}\right) du$$

Par ailleurs le membre de gauche vaut $\frac{1}{n+1}Lf(x+(n+1)a)$ et est nul d'après la question précédente. Ainsi

$$\forall n \in \mathbb{N}, \ \int_0^1 u^n h\left(-\frac{\ln(u)}{a}\right) \ du = 0$$

- **VI.B.3)** La fonction $g: u \mapsto h\left(-\frac{\ln(u)}{a}\right)$ est continue sur]0,1] et prolongeable par continuité en 0 (car h admet une limite finie en $+\infty$ car $x \in E$). Avec les question VI.B.2) et VI.A.2), on en déduit que g est nulle. Quand u varie dans [0,1], $-\frac{\ln(u)}{a}$ varie dans \mathbb{R}^+ et h est donc nulle sur \mathbb{R}^+ .
- **VI.C.** Soit f telle que E est non vide. Supposons que Lf = 0; la question précédente indique que $\forall x \in E$, une primitive de $u \mapsto e^{-xu} f(u)$ est nulle sur \mathbb{R}^+ . Pour tout x de E, $u \mapsto e^{-xu} f(u)$ est donc nulle sur \mathbb{R}^+ . Comme E non vide (et comme exp ne s'annule pas sur \mathbb{R}) f est donc nulle sur \mathbb{R}^+ . Le noyau de l'application linéaire L est donc réduit à $\{0\}$ et L est injective.

VII. Etude en la borne inférieure de E.

- **VII.A.** Comme f est positive, on a E=E' mais aussi Lf qui est décroissante sur E ($\forall x,y \in E$ tels que $x \leq y$, $\forall t \in \mathbb{R}^+$ on a $f(t)e^{-\lambda(t)x} \geq f(t)e^{-\lambda(t)y}$ et donc $Lf(x) \geq Lf(y)$). En particulier, par théorème de limite monotone, Lf admet des limites aux bornes de l'intervalle E (éventuellement $+\infty$ en la borne inférieure si la fonction n'est pas majorée).
- VII.A.1) On suppose Lf bornée sur E et on note M un majorant de cette fonction. Montrons que

$$\forall b \geqslant 0, \ \int_0^b f(t)e^{-\alpha t} \ dt \leqslant M$$
 (*)

Fixons donc $b \ge 0$; G_b : $x \mapsto \int_0^b f(t)e^{-xt} dt$ est continue sur \mathbb{R} par théorème sur les intégrales à paramètres car

- $\forall x \in \mathbb{R}, \ t \mapsto f(t)e^{-xt}$ est continue sur [0, b]
- $\forall t \in [0, b], \ x \mapsto f(t)e^{-xt}$ est continue sur \mathbb{R}
- $\forall [u,v] \subset \mathbb{R}, \ \forall x \in [u,v], \ \forall t \in [0,b], \ |f(t)e^{-xt}| \leqslant f(t)e^{-ut}$ et le majorant est intégrable sur [0,b] puisque continu sur ce segment.

Or, $\forall x \in E, G_b(x) \leq Lf(x)$ (car f est positive) et donc $\forall x \in E, G_b(x) \leq M$. En faisant tendre x vers α , on obtient (*).

 $b \mapsto \int_0^b f(t)e^{-\alpha t} dt$ est ainsi majoré sur \mathbb{R}^+ et c'est une fonction croissante (car f est positive). Elle admet donc une limite finie quand $b \to +\infty$ et donc

$$\alpha \in E' = E$$

VII.A.2) Par contraposée, si $\alpha \notin E$ alors Lf n'est pas bornée. Avec la remarque initiale de monotonie, on a donc

$$\lim_{x \to \alpha^+} Lf(x) = +\infty$$

VII.B. On a ici (pour $x \in E'$) $Lf(x) = \int_0^{+\infty} \frac{\cos(t)}{(1+t)^x} dt$.

VII.B.1) Si x > 1 alors $\left| \frac{\cos(t)}{(1+t)^x} \right| \le d \frac{1}{(1+t)^x}$ qui est intégrable au voisinage de $+\infty$ et $x \in E$.

Si $x \leq 1$ alors on remarque que

$$\forall n \in \mathbb{N}, \ \int_{n\pi}^{(n+1)\pi} \frac{|\cos(t)|}{(1+t)^x} dt \geqslant \int_{n\pi}^{n\pi+\pi/4} \frac{dt}{\sqrt{2}(1+t)^x} \geqslant \frac{\pi}{4\sqrt{2}(1+(n+1)\pi)^x}$$

On conclut alors comme en V.A que $x \notin E$. Ainsi

$$E=]1,+\infty[$$

VII.B.2) Il s'agit de voir si $G: b \mapsto \int_0^b \frac{\cos(t)}{(1+t)^x} dt$ admet une limite en $+\infty$.

- Si x > 0, une intégration par parties donne

$$\forall b \geqslant 0, \ G(b) = \frac{\sin(b)}{(1+b)^x} + x \int_0^b \frac{\sin(t)}{(1+t)^{x+1}} \ dt.$$

Les deux termes du membre de droite admettent une limite quand $b \to +\infty$ (en effet, la fonction sous l'intégrale est intégrable car dominée par $1/t^{x+1}$ au voisinage de $+\infty$). Il en est de même du membre de gauche et $x \in E'$.

- Si x=0 alors $G(b)=\sin(b)$ n'admet pas de limite en $+\infty$ et $0\notin E'$.

- Si x < 0 alors $\int_{2n\pi}^{2n\pi+\pi/4} \frac{\cos(t)}{(1+t)^x} dt \ge \frac{1}{\sqrt{2}} \int_{2n\pi}^{2n\pi+\pi/4} \frac{1}{(1+t)^x} dt \ge \frac{\pi}{4\sqrt{2}} (1+n\pi)^{-x}$ ne tend pas vers 0 quand $n \to +\infty$. Ainsi $G(2n\pi+\pi/4) - G(2n\pi)$ ne tend pas vers 0 et $x \notin E'$ (sinon, cette différence tendrait vers 0 comme différence de deux termes ayant la même limite).

On a donc montré que

$$E' =]0, +\infty[$$

VII.B.3) On réutilise le calcul de VI.B.2) (intégration par parties) dans le cas x > 0 qui nous donne

$$\forall x > 0, \ Lf(x) = x \int_0^{+\infty} \frac{\sin(t)}{(1+t)^{x+1}} \ dt.$$

En utilisant le théorème de continuité des intégrales à paramètre, on obtient que $x \mapsto \int_0^{+\infty} \frac{\sin(t)}{(1+t)^{x+1}} dt$ est continue sur $[1, +\infty[$ (on utilise la domination $\left|\frac{\sin(t)}{(1+t)^{x+1}}\right| \leqslant \frac{1}{(1+t)^2}$). On en déduit que

$$\lim_{x \to 1^+} Lf(x) = \int_0^{+\infty} \frac{\sin(t)}{(1+t)^2} dt$$

En refaisant alors une intégration par parties dans l'autre sens, on obtient alors

$$\int_0^{+\infty} \frac{\sin(t)}{(1+t)^2} dt = \int_0^{+\infty} \frac{\cos(t)}{1+t} dt = Lf(1) \text{ donc}$$

$$\lim_{x \to 1^+} Lf(x) = Lf(1).$$

VIII. Une utilisation de la transformation L.

VIII.A. Soient $P,Q \in \mathcal{P}$. $t \mapsto P(t)Q(t)e^{-t}$ est continue sur \mathbb{R}^+ et dominée par $1/t^2$ au voisinage de $+\infty$ (croissances comparées). C'est donc une fonction intégrable sur \mathbb{R}^+ et son intégrable existe a fortiori sur \mathbb{R}^+ .

VIII.B. L'application est bien définie, est symétrique ($\langle P | Q \rangle = \langle Q | P \rangle$) et est linéaire par rapprot à la prmière variable (par linéarité du passage à l'intégrale). De plus si $P \in \mathcal{P}$, $\langle P | P \rangle = \int_0^{+\infty} |P(t)|^2 e^{-t} \ dt \geqslant 0$ et si cette quantité est nulle alors P = 0 (car $t \mapsto |P(t)|^2 e^{-t}$ est alors continue positive d'intégrale nulle et donc nulle et l'exponentielle ne s'annule pas).

On a finalement un produit scalaire sur le \mathbb{C} -espace vectoriel \mathcal{P} .

VIII.C. U est linéaire par linéarité du passage à la dérivée. De plus, $U(X^0) = 0$ et

$$\forall n \in \mathbb{N}^* \ U(X^n)(t) = e^t D(nt^n e^{-t}) = -nt^n + n^2 t^{n-1}$$

Ainsi, $\forall n \in \mathbb{N}, \ U(X^n) \in \mathcal{P}$. Comme tout élément de \mathcal{P} est combinaison linéaire d'éléments de la famille $(X^n)_{n \in \mathbb{N}}, \ \mathcal{P}$ est stable par U. Finalement

$$U \in \mathcal{L}(\mathcal{P})$$

VIII.D. On a $U(P)(t)Q(t)e^{-t} = D(te^{-t}P'(t))Q(t)$. Une intégration par parties donne

$$\forall a \geqslant 0, \ \int_0^a U(P)(t)Q(t)e^{-t} \ dt = \left[te^{-t}P'(t)Q(t)\right]_0^a - \int_0^a te^{-t}P'(t)Q'(t) \ dt$$

Par croissances comparées, les différents termes admettent une limite quand $a \to +\infty$ et on obtient

$$\int_0^{+\infty} U(P)(t)Q(t)e^{-t} dt = -\int_0^{+\infty} te^{-t}P'(t)Q'(t) dt$$

On montre de même, en échangeant les rôles de P et Q, que

$$\int_{0}^{+\infty} P(t)U(Q)(t)e^{-t} dt = -\int_{0}^{+\infty} te^{-t}P(t)'Q'(t) dt$$

Donc:

$$\langle U(P) | Q \rangle = \langle P | U(Q) \rangle$$
.

VIII.E. U étant un endomorphisme symétrique d'un espace préhilbertien réel, les résultats demandés sont des résultats de cours.

VIII.F.1) $U(P)(t) = e^t D(te^{-t}P'(t)) = -tP'(t) + P'(t) + tP''(t)$. Si $U(P) = \lambda P$, P est solution de l'équation différentielle

$$ty''(t) + (1 - t)y'(t) - \lambda y(t) = 0$$

VIII.F.2) Soit n le degré de P. Il existe $Q \in \mathbb{R}_{n-1}[X]$ et $a \in \mathbb{R}^*$ tels que $P(t) = at^n + Q(t)$. Le coefficient de X^n dans $XP'' + (1-X)P' - \lambda P$ est $-na - \lambda a$. On en déduit que $\lambda = -\deg(P)$.

VIII.G.1) Soit $P \in \mathcal{P}$; on a $L(XP')(x) = \int_0^{+\infty} tP'(t)e^{-tx} dt$. Une intégration par parties (dont on ne détaille pas le calcul) donne (compte-tenu des croissances comparées et de la question IV.A)

$$\forall x > 0, \ L(XP')(x) = -\int_0^{+\infty} P(t)(e^{-tx} - xte^{-tx}) \ dt = -LP(x) - x(LP)'(x)$$

et de façon similaire,

$$\forall x > 0, \ L(XP'')(x) = -\int_0^{+\infty} P'(t)(e^{-tx} - xte^{-tx}) \ dt$$

$$= -L(P')(x) + x \int_0^{+\infty} tP'(t)e^{-tx} \ dt$$

$$= -L(P')(x) - x \int_0^{+\infty} P(t)(e^{-tx} - xte^{-tx}) \ dt$$

$$= -L(P')(x) - xLP(x) - x^2(LP)'(x)$$

Suppsons XP'' + (1-X)P' + nP = 0. On a alors L(XP'') + L(P') - L(XP') + nL(P) = 0 ce qui donne

$$\forall x > 0, \ x(1-x)(LP)'(x) + (1-x)LP(x) + nLP(x) = 0$$

Q = LP est donc solution sur $]0, +\infty[$ de

$$x(1-x)y'(x) + (n+1-x)y(x) = 0 (E'_n)$$

VIII.G.2) Sur $]1, +\infty[$, l'équation (E'_n) est résolue et à coefficients continus. L'ensemble de ses solutions est (théorème de Cauchy-Lipschitz) un espace vectoriel (l'équation est homogène) de dimension 1. Comme

$$\forall x > 1, \ \frac{x - n - 1}{x(1 - x)} = -\frac{n + 1}{x} + \frac{n}{1 - x},$$

une primitive sur]1, $+\infty$ [de $x \mapsto \frac{x-n-1}{x(1-x)}$ est $x \mapsto \ln\left(\frac{(x-1)^n}{x^{n+1}}\right)$. L'ensemble des solutions sur]1, $+\infty$ [de (E'_n) est donc l'espace vectoriel engendré par

$$f_n: x \mapsto \frac{(x-1)^n}{x^{n+1}}$$

Raisonnons par conditions nécessaires puis suffisantes pour trouver les éléments propres de U.

- Soit λ une valeur propre et P un vecteur propre associé. Il existe $n \in \mathbb{N}$ tel que $\lambda = -n$ et P est solution de (E_n) (question VIII.F). Q = LP est ainsi solution de (E'_n) sur $]1, +\infty[$ et LP est multiple de f_n . Par ailleurs, par la formule du binôme

$$f_n(x) = \sum_{k=0}^{n} \frac{(-1)^k}{k!} \binom{n}{k} \frac{k!}{x^{k+1}}$$

Avec la question IV.B dans le cas a = 0, on voit que f_n est image par L de $Q_n = \sum_{k=0}^n \frac{(-1)^k}{k!} \binom{n}{k} X^k$. Ainsi, avec la partie VI, P est un multiple de Q_n (puisque LP est multiple de LQ_n).

- Réciproquement on montre que $UQ_n = -nQ_n$ par un calcul que nous omettons en cette fin de problème. On a donc montré que les valeurs propres de U sont les éléments de \mathbb{Z}^- et que chaque sous-espace propre est la droite vectorielle de base $Q_n = \sum_{k=0}^n \frac{(-1)^k}{k!} \binom{n}{k} X^k$.

VIII.G.3) D'après la formule de Leibniz, on a

$$P_n(t) = e^t \sum_{k=0}^n \binom{n}{k} D^k (e^{-t}) D^{n-k} (t^n)$$
$$= e^t \sum_{k=0}^n \binom{n}{k} (-1)^k e^{-t} \frac{n!}{k!} t^k$$
$$= n! Q_n(t)$$

 P_n engendre donc aussi la droite vectorielle propre associée à la valeur propre -n.

