

I키포인트

• 미분.

• 옵션의 민감도: 델타, 감마, 세타, 베가, 로.

FAST CAMPUS ONLINE

ı미분

• 함수 f(x)의 미분은 특정 지점에서의 변화율 (기울기)를 의미한다.

FAST CAMPUS ONLINE

I 옵션의 민감도: 델타 (delta) △

- 델타 Δ 는 기초자산 S의 가격상승에 따르는 옵션가격의 변화율이다.
 - ⇒ 델타의 수치는 기초자산이 1포인트 상승했을 때의 옵션가격의 변동 수치이다.
 - ⇒ 델타는 다음과 같이 미분으로 계산할 수 있다.

$$\Delta_C = \frac{\partial C}{\partial S}$$
 , $\Delta_P = \frac{\partial P}{\partial S}$

⇒ 블랙-숄즈 공식을 직접 대입해서 계산한 델타 민감도는 다음과 같다.

$$\Delta_C = N(d_1)$$
 , $\Delta_P = N(d_1) - 1$

$\,$ l 옵션의 민감도: 델타 (delta) Δ

콜옵션 매수(Long) 포지션의 델타.

풋옵션 매수(Long) 포지션의 델타.

m I 옵션의 민감도: 감마 (gamma) $m \Gamma$

- 감마 Γ 는 기초자산 S의 가격상승에 따르는 델타 Δ 민감도의 변화율이다.
 - ⇒ 델타 자체가 변화율이므로 감마는 "변화율의 변화율"인 것이다.

$$\Gamma_C = \frac{\partial \Delta_C}{\partial S} = \frac{\partial^2 C}{\partial S^2}$$
 , $\Gamma_P = \frac{\partial \Delta_P}{\partial S} = \frac{\partial^2 P}{\partial S^2}$

⇒ 블랙-숄즈 공식을 직접 대입해서 계산한 감마 민감도는 다음과 같다.

$$\Gamma = \Gamma_C = \Gamma_P = \frac{f(d_1)}{\sigma S \sqrt{T - t}}$$

 \Rightarrow 함수 f(x)는 표준정규확률분포이다: $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$

FAST CAMPUS ONLINE 장순용 강사.

$\,$ l 옵션의 민감도: 감마 (gamma) Γ

콜/풋옵션 매수(Long) 포지션의 감마.

। 옵션의 민감도: 세타 (theta) ⊙

- 세타 Θ 는 시간 t의 흐름에 따르는 옵션가격의 변화율을 나타낸다.
 - \Rightarrow 시간의 단위는 $1년이므로 세타에 <math>\frac{1}{365}$ 를 곱해주어서 나타내기도 한다.

$$\Theta_C = \frac{\partial C}{\partial t}$$
 , $\Theta_P = \frac{\partial P}{\partial t}$

⇒ 블랙-숄즈 공식을 직접 대입해서 계산한 세타 민감도는 다음과 같다.

$$\Theta_{C} = -\frac{\sigma Sf(d_{1})}{2\sqrt{T-t}} - r_{0}K e^{-r_{0}(T-t)}N(d_{2})$$

$$\Theta_{P} = -\frac{\sigma Sf(d_{1})}{2\sqrt{T-t}} + r_{0}K e^{-r_{0}(T-t)}N(-d_{2})$$

FAST CAMPUS ONLINE 장순용 강사.

Ⅰ옵션의 민감도: 세타 (theta) ⊙

콜옵션 매수(Long) 포지션의 세타.

풋옵션 매수(Long) 포지션의 세타.

ONLINE 장순용 강사.

FAST CAMPUS

ι 옵션의 민감도: 베가 (vega) υ

• 베가 υ 는 변동성 σ 의 증가에 따르는 옵션가격의 변화율을 나타낸다.

$$\upsilon_C = \frac{\partial C}{\partial \sigma}$$
 , $\upsilon_P = \frac{\partial P}{\partial \sigma}$

⇒ 블랙-숄즈 공식을 직접 대입해서 계산한 베가 민감도는 다음과 같다.

$$\upsilon = \upsilon_C = \upsilon_P = S\sqrt{T - t} f(d_1)$$

⇒ 베가 민감도와 감마 민감도 사이에는 다음과 같은 관계가 성립된다.

$$\upsilon = S^2(T - t)\Gamma$$

ι 옵션의 민감도: 베가 (vega) υ

콜/풋옵션 매수(Long) 포지션의 베가.

FAST CAMPUS ONLINE

I 옵션의 민감도: 로 (rho) ρ

• 로 ρ 는 무위험 이자율 r_0 의 상승에 따르는 옵션가격의 변화율을 나타냄.

$$\rho_C = \frac{\partial C}{\partial r_0} \quad , \quad \rho_P = \frac{\partial P}{\partial r_0}$$

⇒ 블랙-숄즈 공식을 직접 대입해서 계산한 로 민감도는 다음과 같다.

$$\rho_C = K(T - t)e^{-r_0(T - t)}N(d_2)$$

$$\rho_P = -K(T - t)e^{-r_0(T - t)}N(-d_2)$$

ι 옵션의 민감도: 로 (rho) ρ

콜옵션 매수(Long) 포지션의 로.

풋옵션 매수(Long) 포지션의 로.

감사합니다.

FAST CAMPUS ONLINE

