

Signals and Systems

Lecture 17: Properties of Fourier Transform

Outline

- > Properties of Fourier Transform.
- > Fourier transform properties (Table 1).
- Basic Fourier transform pairs (Table 2).

Properties of Fourier Transform

The Fourier Transform possesses the following properties:

- 1) Linearity.
- 2) Time shifting.
- 3) Conjugation and Conjugation symmetry.
- 4) Differentiation.
- 5) Integration.
- 6) Time scaling and time reversal.
- 7) Frequency shifting.
- 8) Duality.
- 9) Time Convolution.
- 10) Parseval's Theorem.
- 11) Modulation.

Linearity

If

$$x(t) \overset{FT}{\leftrightarrow} X(\omega) \ \textit{and} \ y(t) \overset{FT}{\leftrightarrow} Y(\omega)$$

Then

$$z(t) = a x(t) + b y(t) \stackrel{FT}{\leftrightarrow} Z(\omega) = a X(\omega) + b Y(\omega)$$

➤ Meaning: The FT of linear combination of the signals is equal to linear combination of their Fourier transforms.

Time shifting

If

$$x(t) \stackrel{FT}{\leftrightarrow} X(\omega)$$

Then

$$y(t) = x(t - t_0) \stackrel{FT}{\leftrightarrow} Y(\omega) = e^{-j\omega t_0} . X(\omega)$$

Meaning: A shift of ' t_0 ' in time domain is equivalent to introducing a phase shift of $-\omega t_0$. But amplitude remains same.

Conjugation and Conjugation Symmetry

If

$$x(t) \stackrel{FT}{\leftrightarrow} X(j\omega)$$

Then

$$x^*(t) \stackrel{FT}{\leftrightarrow} X^*(-j\omega)$$

Remark:

If

$$x(t)$$
 is real: $x^*(t) = x(t)$

Then

$$X^*(-\omega) = X(\omega)$$

Also

$$X(-\omega) = X^*(\omega)$$

Differentiation

A. Differentiation in time:

If

$$x(t) \stackrel{FT}{\leftrightarrow} X(\omega)$$

Then

$$d \frac{x(t)}{dt} \stackrel{FT}{\leftrightarrow} j\omega X(\omega)$$

ightharpoonup Meaning: Differentiation in time domain corresponds to multiplying by $j\omega$ in frequency domain.

B. Frequency Differentiation:

If

$$x(t) \stackrel{FT}{\leftrightarrow} X(\omega)$$

Then

$$-jt \ x(t) \stackrel{FT}{\leftrightarrow} \frac{d}{d\omega} \ X(\omega)$$

 \triangleright Meaning: Differentiating the frequency spectrum is equivalent to multiplying the time domain signal by complex number – jt.

Time Integration

If

$$F[x(t)] = X(\omega)$$

Then

$$F\left[\int_{-\infty}^{t} x(\tau). d\tau\right] = \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$$

Where X(0) - is the intial condition.

If X(0) = 0 then

$$\int_{0}^{t} x(\tau) \, d\tau \stackrel{FT}{\Leftrightarrow} \frac{1}{j\omega} X(\omega)$$

Time scaling and time reversal

If

$$x(t) \stackrel{FT}{\leftrightarrow} X(\omega)$$

Then

$$y(t) = x(at) \stackrel{FT}{\leftrightarrow} Y(\omega) = \frac{1}{|a|} X(\frac{\omega}{a})$$

Meaning: Compression of a signal in time domain is equivalent to expansion in frequency domain and vice versa.

For time reversal:

$$x(-t) \stackrel{FT}{\leftrightarrow} X(-\omega)$$
; put $a = -1$

Frequency shifting

If

$$x(t) \stackrel{FT}{\leftrightarrow} X(\omega)$$

Then

$$e^{j\omega_0 t} \cdot x(t) \stackrel{FT}{\leftrightarrow} X(\omega - \omega_0)$$

ightharpoonup Meaning: Shifting the frequency by ω_0 in frequency domain is equivalent to multiplying the time domain signal by $e^{j\omega_0t}$

Duality

If

$$x(t) \stackrel{FT}{\leftrightarrow} X(\omega)$$

Then

$$X(t) \stackrel{FT}{\leftrightarrow} 2\pi x(-\omega)$$

Time Convolution

If

$$x(t) \overset{FT}{\leftrightarrow} X(\omega) \text{ and } h(t) \overset{FT}{\leftrightarrow} H(\omega)$$

Then

$$y(t) = x(t) * h(t) \stackrel{FT}{\leftrightarrow} Y(\omega) = X(\omega).H(\omega)$$

Meaning: A convolution operation is transformed to modulation (multiplication) in frequency domain.

Parseval's Theorem

If

$$x(t) \stackrel{FT}{\leftrightarrow} X(\omega)$$

Then

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega = \int_{-\infty}^{\infty} |X(f)|^2 df$$

Where E is the energy of the signal.

➤ Meaning: Energy of the signal can be obtained by interchanging its energy spectrum.

Modulation

If

$$x(t) \overset{FT}{\leftrightarrow} X(\omega) \text{ and } y(t) \overset{FT}{\leftrightarrow} Y(\omega)$$

Then

$$z(t) = x(t). y(t) \stackrel{FT}{\leftrightarrow} Z(\omega) = \frac{1}{2\pi}. [X(\omega) * Y(\omega)]$$

> Meaning: Modulation in time domain corresponds to convolution of spectrums in frequency domain.

Table 1: Fourier transform properties

	Property	Time domain $x(t)$	Fourier transform $X(j\omega)$
1)	Linearity	$x(t) = A x_1(t) + B x_2(t)$	$X(j\omega) = A X_1(j\omega) + B X_2(j\omega)$
2)	Time shifting	$x(t-t_0)$	$e^{-j\omega t_0} X(j\omega)$
3)	Conjugation	$x^*(t)$	$X^*(-j\omega)$
4)	Differentiation in time	$\frac{d^n x(t)}{dt^n}$	$(j\omega)^n.X(j\omega)$
5)	Differentiation in frequency	-jt x(t)	$\frac{d X(j\omega)}{d\omega}$
6)	Time Integration	$\int_{-\infty}^t x(\tau)d\tau$	$\frac{1}{j\omega}X(j\omega)+\pi.X(0).\delta(\omega)$
7)	Time scaling	x(at)	$\frac{1}{ a } X \left(j \frac{\omega}{a} \right)$
8)	Time reversal	x(-t)	$X(-j\omega)$
9)	Frequency shifting	$x(t).e^{j\omega_0t}$	$X(j(\omega-\omega_0))$
10)	Duality	X(t)	$2\pi x(-j\omega)$
11)	Time convolution	x(t) * h(t)	$X(j\omega).H(j\omega)$
12)	Parseval's Theorem	$E = \int_{-\infty}^{\infty} x(t) ^2 dt$	$E = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 dt$
13)	Modulation	z(t) = x(t).y(t)	$Z(\omega) = \frac{1}{2\pi} . X(j\omega) * Y(j\omega)$

Table2: Basic Fourier transform pairs

	Signal	Fourier transform
1)	$oldsymbol{\delta(t)}$	1
2)	u(t)	$rac{1}{j\omega} + \pi\delta(\omega)$
3)	$\delta(t-t_0)$	$e^{-j\omega t_0}$
4)	$t.e^{-at}.u(t)$	$\frac{1}{(a+j\omega)^2}$
5)	u(-t)	$\pi\delta(\omega)-rac{1}{j\omega}$
6)	$e^{at}.u(-t)$	$\frac{1}{a-j\omega}$
7)	$e^{-a t }$	$\frac{2a}{a^2+\omega^2}$
8)	$cos(\omega_0 t)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
9)	$sin(\omega_0 t)$	$-j\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
10)	$\frac{1}{a^2+t^2}$	$e^{-a \omega }$
11)	Sgn(t)	$\frac{2}{j\omega}$
12)	1; for all t	$2\pi\delta(\omega)$