MH1820 Introduction to Probability and Statistical Methods Tutorial 10 (Week 11) Solution

Problem 1 (Bias and Standard Error of Parameter Estimators)

Let D_{θ} , $0 \le \theta \le 1$, be the discrete distribution with the following PMF:

and f(x) = 0 otherwise. Let X_1, \ldots, X_n be an i.i.d random sample drawn from D_{θ} and let \overline{X} denote the sample mean. We consider the following estimators for θ .

$$\widehat{\theta}_{1}(n) = -\frac{1}{2}\overline{X}
\widehat{\theta}_{2}(n) = \frac{7 - (X_{1} + X_{2} + X_{3})}{6}
\widehat{\theta}_{3}(n) = \frac{7 - 3\overline{X}}{6}
\widehat{\theta}_{4}(n) = \frac{1}{16} \left(17 - \frac{3}{n} \sum_{i=1}^{n} X_{i}^{2}\right)$$

- (a) Which of the these estimators are unbiased?
- (b) For each of these estimators, compute the standard error.
- (c) The following observations for X_1, \ldots, X_n are given (here n = 10):

For each *unbiased* estimator from above, substitute the observations into the estimator to obtain an estimation for θ .

(d) If the unknown parameter θ occurs in the formula for the standard error $SE(\widehat{\theta})$, we can replace θ by $\widehat{\theta}$ to get an *estimated* standard error, denoted by $\widehat{SE}(\widehat{\theta})$. For each estimator found in part (c), compute its etimated standard error.

Solution (a) For any $1 \le i \le n$,

$$\mathbb{E}(X_i) = \sum_{x=0}^{3} x f(x) = 0 \frac{2\theta}{3} + 1 \frac{\theta}{3} + 2 \frac{2(1-\theta)}{3} + 3 \frac{1-\theta}{3} = \frac{7}{3} - 2\theta,$$

$$\mathbb{E}(X_i^2) = \sum_{x=0}^{3} x^2 f(x) = 0^2 \frac{2\theta}{3} + 1^2 \frac{\theta}{3} + 2^2 \frac{2(1-\theta)}{3} + 3^2 \frac{1-\theta}{3} = \frac{17-16\theta}{3}.$$

Note that $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$ for any random variable X. We have

$$\mathbb{E}(\hat{\theta}_{1}(n)) = -\frac{1}{2}\mathbb{E}(\overline{X}) = -\frac{1}{2}(\frac{7}{3} - 2\theta) = \theta - \frac{7}{6},$$

$$\mathbb{E}(\hat{\theta}_{2}(n)) = \frac{7}{6} - \frac{1}{6}(\mathbb{E}(X_{1}) + \mathbb{E}(X_{2}) + \mathbb{E}(X_{3})) = \frac{7}{6} - \frac{1}{2}(\frac{7}{3} - 2\theta) = \theta,$$

$$\mathbb{E}(\hat{\theta}_{3}(n)) = \frac{7}{6} - \frac{3}{6}\mathbb{E}(\overline{X}) = \frac{7}{6} - \frac{1}{2}(\frac{7}{3} - 2\theta) = \theta,$$

$$\mathbb{E}(\hat{\theta}_{4}(n)) = \frac{1}{16}\left(17 - \frac{3}{n}\sum_{i=1}^{n}\mathbb{E}(X_{i}^{2})\right) = \frac{1}{16}\left(17 - 3\frac{17 - 16\theta}{3}\right) = \theta.$$

The estimators $\widehat{\theta}_2(n)$, $\widehat{\theta}_3(n)$, $\widehat{\theta}_4(n)$ are unbiased.

(b) Note that $\operatorname{Var}(aX+b)=a^2\operatorname{Var}(X)$ and $\operatorname{Var}(X)=\mathbb{E}(X^2)-\mathbb{E}(X)^2$ for every random variable X constants a,b. For $1\leq i\leq n$, we have

$$Var(X_i) = \mathbb{E}(X_i^2) - \mathbb{E}(X_i)^2 = \frac{17 - 16\theta}{3} - (\frac{7}{3} - 2\theta)^2 = -4\theta^2 + 4\theta + \frac{2}{9}.$$

Moreover,

$$\operatorname{Var}(\overline{X}) = \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{Var}(X_i) = \frac{1}{n} \left(-4\theta^2 + 4\theta + \frac{2}{9} \right)$$

and

$$\begin{aligned} \operatorname{Var}(X_i^2) &= \mathbb{E}(X_i^4) - \mathbb{E}(X_i^2)^2 &= \sum_{x=0}^3 x^4 f(x) - \frac{1}{9} (17 - 16\theta)^2 \\ &= \frac{113 - 112\theta}{3} - \frac{(17 - 16\theta)^2}{9} \\ &= -\frac{256}{9} \theta^2 + \frac{208}{9} \theta + \frac{50}{9}. \end{aligned}$$

We obtain

$$\operatorname{Var}(\widehat{\theta}_{1}(n)) = (-1/2)^{2} \operatorname{Var}(\overline{X}) = \frac{1}{4n} \left(-4\theta^{2} + 4\theta + \frac{2}{9} \right) = \frac{1}{n} \left(-\theta^{2} + \theta + \frac{1}{18} \right),$$

$$\operatorname{Var}(\widehat{\theta}_{2}(n)) = (-1/6)^{2} (\operatorname{Var}(X_{1}) + \operatorname{Var}(X_{2}) + \operatorname{Var}(X_{3})) = -\frac{1}{3}\theta^{2} + \frac{1}{3}\theta + \frac{1}{54},$$

$$\operatorname{Var}(\widehat{\theta}_{3}(n)) = (-3/6)^{2} \operatorname{Var}(\overline{X}) = \frac{1}{4n} \left(-4\theta^{2} + 4\theta + \frac{2}{9} \right) = \frac{1}{n} \left(-\theta^{2} + \theta + \frac{1}{18} \right),$$

$$\operatorname{Var}(\widehat{\theta}_{4}(n)) = \left(\frac{3}{16n} \right)^{2} \sum_{i=1}^{n} \operatorname{Var}(X_{i}^{2}) = \frac{9}{256n} \left(-\frac{256}{9}\theta^{2} + \frac{208}{9}\theta + \frac{50}{9} \right) = \frac{1}{n} \left(-\theta^{2} + \frac{13}{16}\theta + \frac{25}{128} \right).$$

By definition, we have $SE(\widehat{\theta}(n)) = \sqrt{\operatorname{Var}(\widehat{\theta}(n))}$. Hence

$$\begin{split} SE(\widehat{\theta_1}(n)) &= \sqrt{\frac{1}{n} \left(-\theta^2 + \theta + \frac{1}{18} \right)}, \\ SE(\widehat{\theta_2}(n)) &= \sqrt{-\frac{1}{3}\theta^2 + \frac{1}{3}\theta + \frac{1}{54}}, \\ SE(\widehat{\theta_3}(n)) &= \sqrt{\frac{1}{n} \left(-\theta^2 + \theta + \frac{1}{18} \right)}, \\ SE(\widehat{\theta_4}(n)) &= \sqrt{\frac{1}{n} \left(-\theta^2 + \frac{13}{16}\theta + \frac{25}{128} \right)}. \end{split}$$

(c) Given the data, the following are estimations of θ and standard errors using unbiased estimators $\widehat{\theta}_2(n)$, $\widehat{\theta}_3(n)$ and $\widehat{\theta}_4(n)$:

• For $\widehat{\theta}_2(n)$: An estimation of θ is

$$\widehat{\theta}_2 = (7 - x_1 - x_2 - x_3)/6 = (7 - 3 - 0 - 2)/6 = 1/3.$$

• For $\hat{\theta}_3(n)$: An estimation of θ is

$$\hat{\theta}_3 = (7 - 3\bar{x})/6 = (7 - 3 \times 1.5)/6 = 5/12,$$

here $\bar{x} = 1.5$ is obtained from the given sample.

• For $\hat{\theta}_4(n)$: An estimation for θ is

$$\widehat{\theta_4} = \frac{1}{16} \left(17 - \frac{3}{10} \sum_{i=1}^{10} x_i^2 \right) = \frac{71}{160}.$$

(d)

• For $\widehat{\theta}_2(n)$: The estimated standard error is

$$\widehat{SE}(\hat{\theta}_2(n)) = \sqrt{-\frac{1}{3}\hat{\theta}_2^2 + \frac{1}{3}\hat{\theta}_2 + \frac{1}{54}} \approx 0.304.$$

• For $\hat{\theta}_3(n)$: The estimated standard error is

$$\widehat{SE}(\hat{\theta}_3(n)) = \sqrt{\frac{1}{10} \left(-\hat{\theta}_3^2 + \hat{\theta}_3 + \frac{1}{18} \right)} \approx 0.173.$$

• For $\hat{\theta}_4(n)$: The estimated standard error is

$$\widehat{SE}(\hat{\theta}_4(n)) = \sqrt{\frac{1}{10} \left(-\hat{\theta_4}^2 + \frac{13}{16} \hat{\theta_4} + \frac{25}{128} \right)} \approx 0.19.$$

Problem 2 (Bias and Standard Error)

Let X_1, X_2, \ldots, X_n be i.i.d (random sample) from the exponential distribution whose PDF is $f(x|\theta) = \frac{1}{\theta}e^{-x/\theta}$, where x > 0, $\theta > 0$.

- (a) Show that \overline{X} is an unbiased estimator of θ .
- (b) Show that the variance of \overline{X} is $\frac{\theta^2}{n}$.

Solution Recall that if $X \sim Exp(\theta)$, then $\mathbb{E}[X] = \theta$, $Var[X] = \theta^2$.

(a)

$$\operatorname{Bias}(\overline{X}) = \mathbb{E}[\overline{X}] - \theta = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] - \theta = \frac{1}{n}\mathbb{E}[\sum_{i=1}^{n}X_{i}] - \theta$$
$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[X_{i}] - \theta = \frac{1}{n}\sum_{i=1}^{n}\theta - \theta = \frac{1}{n}n\theta - \theta = 0.$$

(b)

$$\operatorname{Var}[\overline{X}] = \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}[X_{i}]$$
$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\theta^{2} = \frac{1}{n^{2}}n\theta^{2} = \frac{\theta^{2}}{n}.$$

Problem 3 (Maximum Likelihood Estimation)

Let X_1, \ldots, X_n be an i.i.d with PDF

$$f(x|\theta) = \frac{\theta}{\sqrt{2\pi}} e^{-\frac{\theta^2 x^2}{2}}$$
 for all $x \in \mathbb{R}$,

where $\theta \in (0, \infty)$ is an unknown parameter. Compute the MLE for θ based on the observations

$$x_1 = 1.5, x_2 = 2.2, x_3 = 1.3, x_4 = 3.5, x_5 = 3.3.$$

Solution The likelihood function of θ is

$$L = L(x_1, \dots, x_5 | \theta) = \prod_{i=1}^5 f(x_i | \theta) = \left(\frac{\theta}{\sqrt{2\pi}}\right)^5 e^{-\frac{\theta^2 \sum_{i=1}^5 x_i^2}{2}}.$$

Write $C = \left(\frac{1}{\sqrt{2\pi}}\right)^5$. We compute

$$\ln L = \ln L(x_1, \dots, x_5 | \theta) = \ln C + 5 \ln \theta - \frac{\theta^2 \sum_{i=1}^5 x_i^2}{2},$$
$$\frac{d}{d\theta} \ln L = \frac{5}{\theta} - \theta \sum_{i=1}^5 x_i^2$$

Hence we need to solve $\frac{5}{\theta} - \theta \sum_{i=1}^5 x_i^2 = 0$. This gives $\frac{5}{\theta} = \theta \sum_{i=1}^5 x_i^2$, $5 = \theta^2 \sum_{i=1}^5 x_i^2$, and thus

$$\theta = \sqrt{\frac{5}{\sum_{i=1}^5 x_i^2}}.$$

From the oberservations, we have

$$\sum_{i=1}^{5} x_i^2 = 1.5^2 + 2.2^2 + 1.3^2 + 3.5^2 + 3.3^2 = 31.92.$$

Hence the MLE for θ is

$$\theta = \sqrt{\frac{5}{31.92}} \approx 0.396.$$

Problem 4 (Maximum Likelihood Estimation)

Let X_1, \ldots, X_n be an i.i.d from the geometric distribution Geom(p), where 0 is an unknown parameter. Compute the MLE for <math>p based on the observations

$$x_1 = 2, x_2 = 3, x = 4$$

Solution The maximum likelihood function is

$$L = L(x_1, x_2, x_3|p) = (1-p)p(1-p)^2p(1-p)^3p = p^3(1-p)^{1+2+3} = p^3(1-p)^6.$$

$$ln L = 3 ln p + 6 ln(1-p)$$

Solving $\frac{d}{dp}(\ln L) = 0$, we have

$$\frac{3}{p} - \frac{6}{1-p} = 0$$
$$3(1-p) - 6p = 0$$
$$3 - 9p = 0$$
$$p = \frac{3}{9} = \frac{1}{3}.$$

So the MLE of p is $\frac{1}{3}$.

Problem 5 (Maximum Likelihood Estimation and Bias)

Let X_1, \ldots, X_n be i.i.d from the distribution with PDF $f(x|\theta) = \frac{1}{\theta}x^{(1-\theta)/\theta}$, 0 < x < 1, $\theta > 0$. Show that the maximum likelihood estimator of θ is

$$-\frac{1}{n}\sum_{i=1}^{n}\ln X_{i}.$$

Solution The maximum likelihood function is

$$L = L(X_1, ..., X_n | \theta) = \prod_{i=1}^n \frac{1}{\theta} X_i^{(1-\theta)/\theta} = \frac{1}{\theta^n} \prod_{i=1}^n X_i^{(1-\theta)/\theta}.$$

$$\ln L = \ln(\theta^{-n}) + \frac{1 - \theta}{\theta} \sum_{i=1}^{n} \ln X_i = -n \ln \theta + \left(\frac{1}{\theta} - 1\right) \sum_{i=1}^{n} \ln X_i$$

Setting $\frac{d}{d\theta} \ln L = 0$, we have

$$\frac{-n}{\theta} - \frac{1}{\theta^2} \sum_{i=1}^n \ln X_i = 0$$

$$\implies \theta = -\frac{1}{n} \sum_{i=1}^{n} \ln X_i.$$

Problem 6 (Confidence Intervals for Normal Distribution)

Suppose the fat content of certain steaks follows a $N(\mu, \sigma^2)$ distribution. The following observations x_1, \ldots, x_{16} for the fat content are given.

5.33, 4.25, 3.15, 3.70, 1.61, 6.39, 3.12, 6.59, 3.53, 4.74, 0.11, 1.60, 5.49, 1.72, 4.15, 2.28

- (i) Suppose $\sigma^2 = 3.2$. Find 90%, 95%, and 99% confidence intervals for μ based on the observations above.
- (ii) In part (i), if we want cut down the length of the confidence intervals to half their length, how much would we need to increase sample size?

Solution (i) We have

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$

We have

$$\mathbb{P}(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 - \alpha.$$

Next, we express $-z_{\alpha/2} \leq Z \leq z_{\alpha/2}$ as a condition on the true value μ

$$-z_{\alpha/2} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}$$

$$\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$$
(1)

For the given sample, we have n = 16, $\overline{X} = 3.61$, $\sigma = \sqrt{3.2}$.

- 1. For 90% confidence interval, $\alpha = 0.1$ and $z_{\alpha/2} = z_{0.05} \approx 1.645$. By (1), a 90% confidence interval for μ is [2.874, 4.346].
- 2. For 95% confidence interval, $\alpha = 0.05$ and $z_{\alpha/2} = z_{0.025} \approx 1.96$. By (1), a 95% confidence interval for μ is [2.733, 4.487].
- 3. For 99% confidence interval, $\alpha = 0.01$ and $z_{\alpha/2} = z_{0.005} \approx 2.576$. By (1), a 99% confidence interval for μ is [2.458, 4.762].
- (ii) In the part (i), by (1), the length of the confidence interval is $2z_{\alpha/2}\sigma/\sqrt{n}$. Hence, if we want to cut down this length by half, we need a sample which is 4 times as large.

Answer Keys. Q1(a) $\widehat{\theta}_2(n)$, $\widehat{\theta}_3(n)$, $\widehat{\theta}_4(n)$ Q1(c) $\widehat{\theta}_2 = \frac{1}{3}$, $\widehat{\theta}_3 = \frac{5}{12}$, $\widehat{\theta}_4 = \frac{71}{160}$ Q1(d) 0.304, 0.173, 0.19 Q3 0.396 Q4 $\frac{1}{3}$ Q6 90% CI: [2.874, 4.346], 95% CI: [2.733, 4.487], 99% CI: [2.458, 4.762]