

Universidade de São Paulo

ESCOLA POLITÉCNICA

EP1 - MAP3121

Um problema inverso para obtenção de distribuição de Temperatura

MAP3121

Nome Otavio Henrique Monteiro NUSP 10774159

Conteúdo

1	Objetivos						2	
2	2 Introdução							
3			o do Projeto				9	
	3.1	Prime	neira tarefa				•	
			Item A					
		3.1.2	Item B				ţ	
		3.1.3	Item C				(
	3.2		ında Tarefa					
		3.2.1	Item A				8	
		3.2.2	Item B				8	
		3.2.3	Item C				1	
1	Ref	erêncis	ias				19	

1 Objetivos

O projeto desenvolvido almeja analisar a distribuição de calor por meio da utilização de métodos numéricos, como diferenças finitas, expansões de Taylor, método de Newton e método de Crank Nicholson. Inicialmente sera analisado o problema direto relacionado à distribuição de calor e, posteriormente, o problema inverso.

2 Introdução

A distribuicao de calor e' dada pela seguinte equação diferencial parcial:

$$u_t(t,x) = u_{xx}(t,x) + f(t,x)\operatorname{em}[0,T] \times [0,1]$$
 (1)

Onde u_{xx} e' a segunda derivada parcial de u_t em relacao a x. E' necessario também considerar as condições iniciais, bem como a evolução nas condições de fronteira (prescritas, do tipo Dirichlet).

Para solucionar as equações computacionalmente desejamos simplificá-las, avaliando em cada método os erros locais momentâneos encontrados (definidos na Equação 2), bem como a sua norma e delimitação e a norma dos erros de truncamento.

Em suma, exploraremos três métodos (em conjunto com suas equações principais, que sintetizam a descrição da evolução da temperatura ao longo do tempo):

- Método das diferenças finitas, definido na equacao 3
- Método de Euler implícito, definido no sistema 8
- Método de Crank-Nicholson, definido no sistema 9

Ademais, podemos definir o erro local no tempo como:

$$e_i^k = u(t_k, x_i) - u_i^k \tag{2}$$

Outras variações desse erro e de outros serão explorados em seções subsequentes.

3 Descrição do Projeto

3.1 Primeira tarefa

A primeira tarefa consiste em implementar a equação 3, de modo a avaliar os resultados, erros e tempo de execução para diferentes valores de N e M.

3.1.1 Item A

O método das diferencas finitas pode ser sintetizado pela equação 3.

$$u_i^{k+1} = u_i^k + \Delta t \left(\left(\frac{u_{i-1}^k - 2u_i^k + u_{i+1}^k}{\Delta x^2} \right) + f(x_i, t_k) \right), i = 1, ..., N - 1, \ e \ k = 0, ..., M - 1.$$
 (3)

Inicialmente serão avaliados os resultados das execuções para os seguintes valores:

•
$$f(t,x) = 10\cos(10t)x^2(1-x)^2 - (1+\sin(10t))(12x^2-12x+2)$$

•
$$u_0(x) = x^2(1-x)^2$$

•
$$g_1(t) = 0$$

•
$$g_2(t) = 0$$

Com a equação que corresponde à temperatura esperada igual a:

•
$$u(t,x) = (1 + \sin(10t))x^2(1-x)^2$$

Foi realizada a integração para N=10,20,40,80,160e320 para $\lambda=0.5e\lambda=0.25.$ Para $\lambda=0.5:$

N	M	λ	$ u(t_M, x_i) - u_i^M $	$ \tau(dt,dx) $	$ e_i^M $	$ e_i^M <=$
10	200	0.5	0.00316693	2.66E - 015	5.59E - 018	1.89E - 017
20	800	0.5	0.00078785	1.11E - 014	4.19E - 018	1.81E - 017
40	3200	0.5	0.00019939	4.45E - 014	4.81E - 018	1.87E - 017
80	12800	0.5	5.267E - 005	1.78E - 013	1.89E - 017	3.28E - 017
160	51200	0.5	1.601E - 005	7.11E - 013	1.92E - 017	3.31E - 017
320	204800	0.5	6.85E - 006	2.84E - 012	4.92E - 017	6.31E - 017

Para $\lambda = 0.25$:

N	M	λ	$ u(t_M, x_i) - u_i^M $	$ \tau(dt,dx) $	$ e_i^M $	$ e_i^M <=$
10	400	0.25	0.00305042	5.55E - 015	3.31E - 018	1.72E - 017
20	1600	0.25	0.00076158	2.22E - 014	5.32E - 018	1.92E - 017
40	6400	0.25	0.000193	8.88E - 014	1.37E - 017	2.76E - 017
80	25600	0.25	5.108E - 05	3.55E - 013	1.48E - 017	2.87E - 017
160	102400	0.25	1.561E - 05	1.42E - 012	1.16E - 017	2.55E - 017
320	409600	0.25	6.75E - 06	5.68E - 012	1.74E - 017	3.13E - 017

Experimentamos também com $\lambda = 0.51$. O método ficou instável e apresentou valores de erro crassos. Isso se deve ao fato da convergência condicional desse método:

N	M	λ	$ u(t_M, x_i) - u_i^M $	$ \tau(dt,dx) $	$ e_i^M $	$ e_i^M <=$
20	784	0.51024	45290.3	1.09E - 08	2.59E - 09	2.60E - 09

Podemos verificar que os erros estão diretamente relacionados ao numero de iterações de refinamento realizadas e são inversamente proporcionais ao fator λ . Ao aumentar os valores de N e M e diminuir o valor de λ , o erro relativo à diferença entre o valor encontrado e o valor esperado ($|u(t_M, x_i) - u_i^M|$) diminui bastante.

Podemos discutir também o fator de refinamento referente ao erro encontrado. A relação entre os erros (referentes aos valores encontrados para $\lambda=0.25$) são:

$$\frac{erro_{Nj}}{erro_{Nj+1}} \colon 4,005 \to 3,946 \to 3,778 \to 3,272 \to 2,313$$

Já quanto ao numero de passos computados podemos analisar de forma simplificada ao aceitar a hipótese de que o real numero de passos é aproximadamente igual ao numero de vezes que foi calculada a expressão 3. Para N=640, $\lambda=0.5$, M=819200 temos que:

$$N_{passos} = M * N = 819200 * 640 = 524288000 \tag{4}$$

Ao duplicar o valor de N, mantendo-se λ , o valor de M deve ser quadruplicado. Isso implica uma multiplicação por um fator de oito no numero de passos.

Resultados para N=20 e M=8000 para o método das diferenças finitas.

Encontrado	Esperado	Erro local
6.95319e - 310	0	6.95319e - 310
0.00115604	0.0010288	0.000127239
0.00394	0.00369343	0.000246575
0.0077686	0.00741251	0.000356094
0.0121272	0.0116731	0.000454155
0.0165699	0.0160305	0.000539373
0.0207193	0.0201087	0.000610603
0.0242667	0.0235998	0.000666931
0.026972	0.0262644	0.000707656
0.0286638	0.0279316	0.000732287
0.0292392	0.0284987	0.000740529
0.0286638	0.0279316	0.000732287
0.026972	0.0262644	0.000707656
0.0242667	0.0235998	0.000666931
0.0207193	0.0201087	0.000610603
0.0165699	0.0160305	0.000539373
0.0121272	0.0116731	0.000454155
0.0077686	0.00741251	0.000356094
0.00394	0.00369343	0.000246575
0.00115604	0.0010288	0.000127239
4.94066e - 323	0	4.94066e - 323

3.1.2 Item B

Temos que a solução exata é dada por:

$$u(t,x) = e^{t-x}\cos(5tx) \tag{5}$$

E definimos:

$$u_t(t,x) = u_{xx} + f(t,x) \tag{6}$$

Assim calculamos:

$$u_{xx} = e^{t-x} \left(10t \sin(5tx) + \left(1 - 25t^2 \right) \cos(5tx) \right) \tag{7}$$

Encontrando assim: $f(t, x) = et - x\cos(5tx) - et - x(10t\sin(5tx) + (1-25t^2)\cos(5tx));$ $u_0(x) = x^2(1-x)^2 g_1(t) = e^t g_2(t) = et - 1\cos(5t)$

Agora, usando o mesmo método utilizado no item A computamos essas equações. Para $\lambda=0.5$

N	M	λ	$ u(t_M, x_i) - u_i^M $
10	200	0,5	0,159672
20	800	0,5	0, 192461
40	3200	0,5	0,200622
80	12800	0,5	0, 202817
160	51200	0,5	0, 203319
320	204800	0,5	0, 203462

Para $\lambda = 0.25$

N	M	λ	$u(t_M, x_i) - u_i^M$
10	400	0,25	0, 15967200
20	1600	0,25	0, 192461
40	6400	0,25	0, 200622
80	25600	0,25	0, 202817
160	102400	0,25	0, 203319
320	409600	0,25	0, 203462

A relação de refinamento, calculada utilizando os erros encontrados (referentes aos valores encontrados para $\lambda = 0.5$) são:

$$\frac{erro_{Nj}}{erro_{Nj+1}} \colon \ 0,829 \to 0,959 \to 0,989 \to 0,997 \to 0,999$$

3.1.3 Item C

Para o item C sera introduzido o conceito de fonte pontual, cuja equação descritiva adotada é:

$$g_h(x) = \frac{1}{h}$$
, se $p - \frac{h}{2} = \langle x = \langle p + \frac{h}{2}, eg_h(x) = 0$ caso contrário.

Com:

•
$$f(t,x) = r(t)g_h(x)$$

•
$$r(t) = 10000(1 - 2t^2)$$

•
$$p = 0.25$$

•
$$g_1(t) = g_2(t) = 0$$

Utilizando $N=20,\,M=60000$ com $\lambda=0.00666667,$ podemos então construir gráficos que mostram a evolução temporal da temperatura, com 20 pontos, a cada 0.1T.

Figura 2: T

3.2 Segunda Tarefa

Trabalharemos agora com métodos estáveis. Para isso precisamos de métodos implícitos, em que a solução de um determinado ponto depende de valores de outros pontos no mesmo instante.

3.2.1 Item A

Para a resolução de métodos implícitos necessitamos de ferramentas de solução de sistemas lineares. Estaremos solucionando Sistemas do tipo Ax = b em que "A" representa uma matriz tridi agonal, "b" uma matriz coluna e "x" uma matriz coluna das soluções buscadas.

A cada instante um sistema linear deve ser solucionado, para isso utilizamos o método de decomposição de matrizes de Cholesky (i.e. Decomposição de A em LDL^*). Solucionando como: $Ax = b \to LDL^*x = b$, LDy = b, $L^*x = y$

3.2.2 Item B

Utilizando a ferramenta desenvolvida no item anterior iremos solucionar o método de Euler implícito, descrito na equação 8.

$$\begin{bmatrix} 1 + 2\lambda & -\lambda & 0 & \cdots & 0 \\ -\lambda & 1 + 2\lambda & -\lambda & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1 + 2\lambda & -\lambda \\ 0 & \cdots & 0 & -\lambda & 1 + 2\lambda \end{bmatrix} \times \begin{bmatrix} u_1^{k+1} \\ u_2^{k+1} \\ \vdots \\ u_{N-2}^{k+1} \\ u_{N-1}^{k} \end{bmatrix} = \begin{bmatrix} u_1^k + \Delta t f_1^{k+1} + \lambda g_1(t^{k+1}) \\ u_2^k + \Delta t f_2^{k+1} \\ \vdots \\ u_{N-2}^k + \Delta t f_{N-2}^{k+1} \\ u_{N-1}^k + \Delta t f_{N-1}^{k+1} + \lambda g_2(t^{k+1}) \end{bmatrix}$$
(8)

Para $\lambda = 0.5$:

N	M	λ	$ u(t_M, x_i) - u_i^M $	$ \tau(dt,dx) $	$ e_i^M $	$ e_i^M <=$
10	200	0.5	0.00269763	1.52046	0.00738431	0.0149866
20	800	0.5	0.000682505	1.58578	0.00196852	0.00395074
40	3200	0.5	0.0001738	1.60221	3.70088e + 161	3.70088e + 161
80	12800	0.5	4.63146e - 05	1.60632	2.13628e + 180	2.13628e + 180
160	51200	0.5	1.44239e - 05	1.60735	2.80668e + 293	2.80668e + 293
320	204800	0.5	6.45005e - 06	1.60761	7.84945e - 06	1.56991e - 05

Para $\lambda = 0.25$:

N	M	λ	$ u(t_M, x_i) - u_i^M $	$ \tau(dt,dx) $	$ e_i^M $	$ e_i^M <=$
10	400	0.25	0.00281574	0.980117	0.00287336	0.00532365
20	1600	0.25	0.000708905	1.01704	0.000762	0.00139765
40	6400	0.25	0.000180202	1.02633	3.51467e + 114	3.51467e + 114
80	25600	0.25	4.79027e - 05	1.02866	2.13628e + 180	2.13628e + 180
160	102400	0.25	1.48202e - 05	1.02924	2.80668e + 293	2.80668e + 293
320	409600	0.25	6.54906e - 06	1.02939	3.03357e - 06	5.54672e - 06

Para $\lambda=0.526316,$ podemos verificar que apesar de $\lambda<0.5$ os resultados encontrados ficaram muito próximos do esperado.

N	M	λ	$ u(t_M, x_i) - u_i^M $	$ \tau(dt,dx) $	$ e_i^M $	$ e_i^M <=$
20	760	0.526316	0.000679723	1.63278	2.20568e + 24	2.20568e + 24

Resultados para N=20 e M=8000 usando o metodo implicito de Euler.

Encontrado	Esperado	Erro local
0	0	0
0.00115403	0.0010288	0.000125226
0.00393612	0.00369343	0.000242688
0.00776305	0.00741251	0.000350547
0.0121203	0.0116731	0.000447196
0.0165618	0.0160305	0.000531259
0.0207102	0.0201087	0.00060158
0.024257	0.0235998	0.000657229
0.0269619	0.0262644	0.000697486
0.0286534	0.0279316	0.000721842
0.0292287	0.0284987	0.000729995
0.0286534	0.0279316	0.000721842
0.0269619	0.0262644	0.000697486
0.024257	0.0235998	0.000657229
0.0207102	0.0201087	0.00060158
0.0165618	0.0160305	0.000531259
0.0121203	0.0116731	0.000447196
0.00776305	0.00741251	0.000350547
0.00393612	0.00369343	0.000242688
0.00115403	0.0010288	0.000125226
9.38725e - 323	0	9.38725e - 323

Iremos verificar experimentalmente se podemos usar Δt de mesma ordem que Δx com o

método implícito de Euler. Para tal consideraremos N=10 e M=20, com $\lambda=5$

Encontrado	Esperado	Erro local
0	0	0
0.00383701	0.00369343	0.000143581
0.0119481	0.0116731	0.000275036
0.0205038	0.0201087	0.000395154
0.0267455	0.0262644	0.00048108
0.029011	0.0284987	0.000512295
0.0267455	0.0262644	0.00048108
0.0205038	0.0201087	0.000395154
0.0119481	0.0116731	0.000275036
0.00383701	0.00369343	0.000143581
4.44659e - 323	0	4.44659e - 323

Podemos verificar, desse modo que o método implícito de Euler é convergente de segunda ordem (podemos usar Δt de mesma ordem que Δx).

3.2.3 Item C

Em seguida verificamos o método implícito de Crank-Nicholson que, da mesma forma que o método implícito de Euler, se utiliza das ferramentas de solução de sistema linear para chegar ao resultado.

A equação 9 descreve o sistema linear a ser resolvido em cada passo temporal, a fim de chegar aos resultados que serão analisados em seguida.

$$\begin{bmatrix} 1 + \lambda & -\frac{\lambda}{2} & 0 & \cdots & 0 \\ -\frac{\lambda}{2} & 1 + \lambda & -\frac{\lambda}{2} & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 1 + \lambda & -\frac{\lambda}{2} \\ 0 & \cdots & 0 & -\frac{\lambda}{2} & 1 + \lambda \end{bmatrix} \times \begin{bmatrix} u_1^{k+1} \\ u_2^{k+1} \\ \vdots \\ u_{N-2}^{k+1} \\ u_{N-1}^{k+1} \end{bmatrix} = b$$
 (9)

$$b = \begin{bmatrix} u_1^k + \frac{\lambda}{2}(u_0^k - 2u_1^k + u_2^k) + \frac{\Delta t}{2}(f_1^k + f_1^{k+1}) + \lambda g_1(t^{k+1}) \\ u_2^k + \frac{\lambda}{2}(u_1^k - 2u_2^k + u_3^k) + \frac{\Delta t}{2}(f_2^k + f_2^{k+1}) \\ \vdots \\ u_{N-2}^k + \frac{\lambda}{2}(u_{N-3}^k - 2u_{N-2}^k + u_{N-1}^k) + \frac{\Delta t}{2}(f_{N-2}^k + f_{N-2}^{k+1}) \\ u_{N-1}^k + \frac{\lambda}{2}(u_{N-2}^k - 2u_{N-1}^k) + \frac{\Delta t}{2}(f_{N-1}^k + f_{N-1}^{k+1}) + \lambda g_2(t^{k+1}) \end{bmatrix}$$

$$(10)$$

Para $\lambda = 0.5$:

N	M	λ	$u(t_M, x_i) - u_i^M$	$ \tau(dt,dx) $	$ e_i^M $	$ e_i^M <=$
10	200	0.5	0.00294175	0.980092	0.0047771	0.00967756
20	800	0.5	0.000735779	1.01704	0.00126354	0.00253484
40	3200	0.5	0.000186633	1.02633	2.00722e + 283	2.00722e + 283
80	12800	0.5	4.94926e - 05	1.02866	2.13628e + 180	2.13628e + 180
160	51200	0.5	1.52165e - 05	1.02924	2.80668e + 293	2.80668e + 293
320	204800	0.5	6.64808e - 06	1.02939	5.02619e - 06	1.00525e - 05

Para $\lambda = 0.25$:

N	M	λ	$ u(t_M, x_i) - u_i^M $	$ \tau(dt,dx) $	$ e_i^M $	$ e_i^M <=$
10	400	0.25	0.00293545	0.579365	0.00159369	0.00304211
20	1600	0.25	0.000735392	0.599395	0.000421472	0.000796094
40	6400	0.25	0.000186609	0.604438	3.51467e + 114	3.51467e + 114
80	25600	0.25	4.94911e - 05	0.605702	2.13628e + 180	2.13628e + 180
160	102400	0.25	1.52164e - 05	0.606018	2.80668e + 293	2.80668e + 293
320	409600	0.25	6.64808e - 06	0.606097	1.67648e - 06	3.15621e - 06

Para $\lambda=0.526316$, podemos verificar que apesar de $\lambda<0.5$ os resultados encontrados ficaram muito próximos do esperado, assim como no método de Euler implícito.

N	M	λ	$ u(t_M, x_i) - u_i^M $	$ \tau(dt,dx) $	$ e_i^M $	$ e_i^M <=$	
20	760	0.526316	0.000735835	1.05426	1.86992e + 24	1.86992e + 24	

Resultados para N=20 e M=8000, usando o método de Crank-Nicholson.

Encontrado	Esperado	Erro local	
0	0	0	
0.00115504	0.0010288	0.000126233	
0.00393806	0.00369343	0.000244633	
0.00776583	0.00741251	0.000353323	
0.0121237	0.0116731	0.000450679	
0.0165658	0.0160305	0.000535319	
0.0207148	0.0201087	0.000606096	
0.0242618	0.0235998	0.000662085	
0.026967	0.0262644	0.000702577	
0.0286586	0.0279316	0.00072707	
0.0292339	0.0284987	0.000735268	
0.0286586	0.0279316	0.00072707	
0.026967	0.0262644	0.000702577	
0.0242618	0.0235998	0.000662085	
0.0207148	0.0201087	0.000606096	
0.0165658	0.0160305	0.000535319	
0.0121237	0.0116731	0.000450679	
0.00776583	0.00741251	0.000353323	
0.00393806	0.00369343	0.000244633	
0.00115504	0.0010288	0.000126233	
9.38725e - 323	0	9.38725e - 323	

4 Referências

[1] Equipe de Métodos Numéricos. Um problema inverso para obtenção de distribuição de Temperatura - MAP3121, 2020.