Metabolism, Transport, and Mechanistic CL

PSCI-599, Spring 2024

Noam Morningstar-Kywi

Clearance

- Removal of drug from system (body)
- Can be through enzymatic metabolism, excretion into urine or bile
 - Drug excreted into bile has chance to reabsorb, remainder excreted in feces
 - Other minor routes include chemical degradation, evaporation & mucociliary CL (ELF), glandular secretion, metabolism by gut bacteria, exsorption
- Mechanistic clearance allows modeling of saturation (enzymes and transporters) and physiologic scaling of intrinsic CL
- In GastroPlus, enzymes and transporters use Michaelis-Menten kinetics, CL_{int} uses linear processes
 - Transporters only move drug from one compartment to another, they do not "remove it from the system"

Linear Clearance

Intrinsic Clearance

- Systemic CL and Vd are not drug properties, they are parameters that can be used to describe the pharmacokinetics of a drug for a specific physiology
- Intrinsic Clearance (CLint) is the innate ability of a tissue to clear unrestricted drug
 - Units are: volume / time / amount-clearance-mechanism (e.g. mass enzyme)
 - uL/min/nmol 3A4
 - mL/min/mg microsomal protein
- Systemic CL can be derived from CLint(s) by accounting for perfusion (and RBP), protein binding, and permeation to site of clearance
 - CLint will always be higher than systemic CL; systemic CL will always be limited by perfusion

1st order kinetics

$$\frac{L}{h} \times \frac{mg}{L} = \frac{mg}{h}$$

1st order kinetics have variable reaction rate, but static elimination constant (k) and half-life

1st Order Clearance of Drugs

- Most drugs undergo 1st order (linear) clearance
 - Non-saturated enzymatic metabolism
 - Renal filtration
- Systemic clearance (CL) refers to removal of drug from plasma
 - This is what we can measure
- Units for CL are volume / time
 - Volume of plasma cleared of drug per unit time
 - Concentration * $CL = mg/s \rightarrow Rate varies with concentration, but CL remains constant$
- Volume of distribution will affect rate of clearance in terms of drug mass
 - When volumetric flow (CL) is constant, it takes longer to clear a larger volume

Non-Linear Kinetics

Dose (non)proportionality

Dose (mg)	Cmax (ng/mL)	AUC (ng*h/mL)
10	20	100
20	40	200
40	80	400

Dose (mg)	Cmax (ng/mL)	AUC (ng*h/mL)
10	41	285
20	90	571
40	219	1576

Dose (mg)	Cmax (ng/mL)	AUC (ng*h/mL)
10 IV	32	151
20 IV	63	299
10 PO	2.6	41.5
20 PO	10.2	86.1

20	40	200			
10	$=\frac{1}{20}$	$=\frac{100}{100}$	40	80	400
40	_ 80 _	400	$\overline{10}$	$=\frac{1}{20}$	$=$ $\overline{100}$
$\frac{1}{20}$	= 40 =	$=\frac{1}{200}$			

Dose (mg)	Cmax (ng/mL)	AUC (ng*h/mL)
10 PO	41	285
20 PO	90	571
40 PO	110	620

Dose (mg)	Cmax (ng/mL)	AUC (ng*h/mL)
10 IV	21	151
20 IV	39	502
10 PO	5.1	41.5
20 PO	6.9	149

Nonlinear Kinetics

$$V = \frac{V_{max} \cdot [S]}{K_m + [S]}$$

• Nonlinear = Saturable = Michaelis-Menten

Getting Clearance from Kinetics

$$CL_{int} = \frac{V_{max}}{K_m + [S_U]}$$

When not saturated:

$$CL_{int,in\ vitro} \approx \frac{V_{max}}{K_m}$$

Therefore, can estimate V_{max} from CL_{int} using K_m

Ratio of Vmax:Km behaves similarly for transporters

Fig. 2. Representative experiments of PAH transport kinetics for wild-type R50-hOAT1 ($K_{\rm m}=5.1\pm0.2~\mu{\rm M},~V_{\rm max}=11.2\pm0.1~{\rm pmol/oocyte/20~min}$), R50H-hOAT1 ($K_{\rm m}=4.3\pm0.1~\mu{\rm M},~V_{\rm max}=11.2\pm0.1~{\rm pmol/oocyte/20~min}$), and K525I-hOAT1 ($K_{\rm m}=4.9\pm0.2~\mu{\rm M},~V_{\rm max}=6.8\pm0.1~{\rm pmol/oocyte/20~min}$)

Fig. 4. Representative experiments of cidofovir transport kinetics for wild-type R50-hOAT1 ($K_{\rm m}=55.4\pm9.1~\mu{\rm M},~V_{\rm max}=25.3\pm1.5~{\rm pmol/oocyte/20~min}$), R50H-hOAT1 ($K_{\rm m}=16.1\pm2.7~\mu{\rm M},~V_{\rm max}=14.3\pm0.5~{\rm pmol/oocyte/20~min}$), and K525I-hOAT1 ($K_{\rm m}=52.3\pm5.7~\mu{\rm M},~V_{\rm max}=33.6\pm5.7~{\rm pmol/oocyte/20~min}$).

Bleasby K, et al. *J Pharmacol Exp Ther*.

2005;314(2):923-31.

rCYP: per **pmol enzyme**

Expressed Cells/Hepatocytes: per # cells

Microsomes: per mg **total** microsomal protein

- Different *in vitro* methods give different kinetic parameters
- GastroPlus contains module to convert to *in vivo* kinetics using *in vitro-in vivo* extrapolation (Metabolism & Transporter Module), can also convert *in* vitro CL_{int} to in vivo Cl_{int} OR V_{max}/K_m
- GastroPlus further converts units to mg/s or mg/s/mg-enz/trans
 - Gut uses mg/s, using built in scaling for expression
 - <u>PBPK</u> uses **mg/s/mg-enz/trans**, using tissue-specific protein expression

effect in permeability limited tissues

Q = 1.6465

V = 3293.04

GastroPlus Activities

Demo then Group Work

- Create records for including enzymes/transporters
- Set linear CL to 0 (or proportion of linear CL if multiple routes of elimination), add renal filtration of Fup*GFR
- Add enzymes/transporters to respective tables
 - Make sure to input correct location(s): PBPK +/- Gut only (no Liver)
- Use 'Unit Converter' to input in vitro parameters
- Explore results of nonlinear kinetics on simulations results