Bureau d'étude Véhicule Autonome

Jérémie Kreiss : <u>jeremie.kreiss@univ-lorraine.fr</u>

Amaury Saint-Jore : amaury.saint-jore@univ-lorraine.fr

Clément Fauvel : <u>clement.fauvel@univ-lorraine.fr</u>

Abdelkader Lahmadi : <u>abdelkader.lahmadi@univ-lorraine.fr</u>

S9 2023-2024 ENSEM

Objectifs du bureau d'étude

- Appliquer la pédagogie par projet
- Formation par l'expérience et le développement de l'autonomie
- Concevoir, développer et expérimenter une solution numérique
- Application par la pratique des cours de S5, S6, S7 et S8
- Apprendre par la pratique la gestion d'un projet
- Savoir-faire et compétences acquises
 - Connaissance des techniques de contrôle et commande pour le suivi d'une trajectoire
 - Savoir développer une solution basée sous ROS (Robot Operating System)

Contexte du sujet

Fonctionnement d'un véhicule Autonome

Sujet du bureau d'étude

 Réaliser et évaluer le déplacement autonome et en toute sécurité d'un véhicule (robot)

Le déplacement autonome du robot entre deux points donnés

La supervision du robot afin d'analyse ses performances

Plateforme expérimentale

- Robot Agilex Limo
- Programmable sous ROS en Python
- Connexion Wifi
- Accès via NoMachine

Specification

Product sp	pecification	
Mechanical Parameter	Dimensions	322x215x247mm
	Weight	4.2kg
	Chassis height	20mm
	Climbing Ability	25°
	Wheel-Motor Integration	Hub Motor(4x14.4W)
Hardware System	Working temperature	-10~+40°C
	Power interface	DC (5.5x2.1mm)
	system	Ubuntu18.0
	IMU	MPU6050
	CPU	ARM 64Quad core@1.43GHz (Cortex-A57)
	GPU	128core NVIDIA Maxwell @921MHz
	Battery	5600mAh 12V
	Work time	40min
	Standby time	2h
	Communication Interface	WIFI
Sensor	LIDAR	EAI X2L
	Camera	Stereo Camera
	Industrial PC	NVIDIA Jetson Nano (4G)
	Voice module	IFLYTEK Voice Assistant/Google Assistant
	Trumpet	Left and right channels (2x2W)
	Monitor	7 inch 1024x600 touch screen
Remote control	Control method	APP
	Wheels included	Off-road wheel x4, Mecanum wheel x4, track x2

Travail demandé

- Développement de l'algorithme de commande pour amener le robot vers une position et une orientation cible
 - Mise en œuvre de la solution sous ROS
- Développement d'une interface de supervision
 - Afficher sur un poste de supervision l'état du robot
 - Commande du robot à distance : démarre, stop, action 1, ...
- Démonstration de la solution

Gestion du BE

- N équipes de 3 personnes
 - Découpage en tâches et répartition entre les membres
 - Intégration, tests, validation et documentation : toute l'équipe
- Rôle des enseignants
 - Soutien scientifique et technologique
 - Veille au plan de développement de la solution logicielle
 - Formation de 4H : partie commande
 - Formation de 8H: partie ROS
- Soutenance 23 Janvier 2024
 - 20 minutes de présentation et 10 minutes de questions
 - Démonstrations dans la salle SAMI (H4)

Rendus attendus et dates importantes

- Découpage du projet en tâches et planning prévisionnel (GANTT) : 29/09/2023
- Dépôt du projet sur Arche 22/01/2023
- Présentation finale : 23/01/2024 de 8h-12h