Supervised Learning: Regression

Nonlinearity

Maarten Cruyff

Program

Content

- 1. Polynomials
- 2. Splines
- 3. Interactions
- linear model
- regression trees

How to fit non-linearity?

Relationship x, y

- Polynomials
- Splines

Relationship x_1x_2, y

- interactions with lm() (linear)
- interactions with trees (non-linear)

Polynomials

Small data example

Data suggests non-linearity

- fit a curve with 'lm()'
- polynomials
- splines

What's the difference and how does that work?

Fit polynomials with poly()

quadratic model

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2$$

quad
$$\leftarrow lm(y \sim poly(x, 2), data = d)$$

cubic model

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

$$cub \leftarrow lm(y - poly(x, 3), data = d)$$

etc.

Orthogogal basis matrix 'poly(x, 3)

	(Intercept)	poly(x, 3)1	poly(x, 3)2	poly(x, 3)3
1	1	-0.592	0.604	-0.384
2	1	-0.381	-0.036	0.448
3	1	-0.260	-0.258	0.380
4	1	-0.123	-0.377	0.069
5	1	-0.022	-0.377	-0.196
6	1	0.143	-0.216	-0.426
7	1	0.190	-0.134	-0.400
8	1	0.327	0.199	0.037
9	1	0.348	0.263	0.164
10	1	0.370	0.330	0.308

Predictions for quad and cub

Splines

What are splines

Splines are piecewise polynomial functions

- Partition range x in n subintervals
- Fit a polynomial function $b_j(x)$ to each subinterval
- Smooth connections at the knots (endpoints subintervals)

$$\hat{y}_i = \begin{cases} \beta_1 b_1(x) & \text{if } x \le a \\ \beta_2 b_2(x) & \text{if } a < x \le b \\ \beta_3 b_3(x) & \text{if } x > b \end{cases}$$
 (1)

B-splines

Function bs() of package splines

creates B-spline basis matrix

```
bs(x, df = NULL, knots = NULL, degree = 3)
```

- df degrees of freedom (df = knots + degree)
- knots user-specified quantile for the knots
- degree polynomial degree

To fit a cubic B-spline

$$lm(y \sim bs(x))$$

B-spline basis matrix for bs(x)

```
1
 [1,] 0.000 0.000 0.000
 [2,] 0.401 0.112 0.010
 [3,] 0.444 0.234 0.041
 [4.] 0.384 0.365 0.116
 [5,] 0.295 0.429 0.209
 [6.] 0.127 0.413 0.446
 [7,] 0.085 0.371 0.538
 [8,] 0.006 0.121 0.873
 [9,] 0.001 0.063 0.935
[10,] 0.000 0.000 1.000
attr(,"degree")
Г17 3
attr(,"knots")
numeric(0)
attr(,"Boundary.knots")
[1] 0.644768 9.780757
attr(,"intercept")
[1] FALSE
attr(,"class")
[1] "bs"
            "basis" "matrix"
```

B-spline vs polynomial

```
lm(y ~ bs(x, degree = k))
is identical to
lm(y ~ poly(x, degree = k))
```

B-splines more flexible through specification ${\tt df}\ /\ {\tt knots},\ {\tt e.g.}$

```
lm(y ~ poly(x, degree = 4))
lm(y ~ bs(x, knots = quantile(x, probs = 0.5)))
```

The basis matrix for this B-spline is shown on next slide

```
2 3
 [1,] 0.000 0.000 0.000 0.000
 [2,] 0.515 0.158 0.015 0.000
 [3.] 0.504 0.317 0.061 0.000
 [4.] 0.350 0.457 0.170 0.000
 [5.] 0.204 0.487 0.307 0.000
 [6.] 0.041 0.310 0.630 0.019
 [7.] 0.020 0.222 0.684 0.074
 [8.] 0.000 0.017 0.342 0.641
 [9.] 0.000 0.004 0.188 0.808
[10,] 0.000 0.000 0.000 1.000
attr(,"degree")
[1] 3
attr(,"knots")
    50%
6.845001
attr(,"Boundary.knots")
[1] 0.644768 9.780757
attr(,"intercept")
[1] FALSE
attr(,"class")
[1] "bs"
            "basis" "matrix"
```

Varying df

Smoothing splines

Knots at each unique value of x

- df penalty for ruggedness
- cv = TRUE is LOOCV
- cv = FALSE is ordinary CV (default)

smooth.spline(formula, df, cv = FALSE)

Interactions linear model

What are interactions

Main-effect models

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$

- effect x_1 on y does not depend on x_2, x_3, \ldots
 - slope β_1 is fixed

Interaction-effect models

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 * x_2$$

- effect x₁ on y does depend on x₂
 - slope β_1 changes with β_{12} with unit increase in x_2
 - slope β_2 changes with β_{12} with unit increase in x_1

Example

How does math achievement depend on sex and SES?

Main-effect model: lm(MathAch ~ SES + Minority)

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.525 0.088 153.307 0
MinorityYes -2.829 0.173 -16.354 0
SES 2.744 0.099 27.692 0
```

Interaction-effect model: lm(MathAch ~ SES + Minority + SES:Minority)

	${\tt Estimate}$	Std.	Error	t value	Pr(> t)
(Intercept)	13.499		0.089	152.279	0.000
MinorityYes	-2.940		0.177	-16.586	0.000
SES	2.942		0.121	24.278	0.000
MinorityYes:SES	-0.597		0.210	-2.842	0.005

Regression plots

Linearity interaction effects

In the linear interaction-effects model:

- slope x_1 change linearly with changes in x_2
- slope x_2 changes linearly with changes in x_1

Non-linear approach to interactions

- effect x₁ changes at threshold values of x₂
- effect x_2 changes at threshold values of x_1

This is the tree-based models approach

Interactions in trees

Binary recursive partioning with rpart

- 1. Partition predictor space in J square non-overlapping regions
- 2. For each observation in region R_j make the same prediction
- 3. Find partition that minimizes $\sum_{j} MSE_{j}$

Math achievement tree

Pros and cons

Pro Intuitive interpretation

Con Recursive partioning is top-down, greedy algorithm

- Starts at the top of tree
- At each step, the best split at moment step is made
 - it does not look ahead for potentially better splits

Alternatives

- pruning (cut branches) reduces risk of overfitting
- alternatives (bagging, boosting, etc.) improve tree structure
 - to be discussed with classification trees

Pruned tree

Regression trees in R

Package rpart

Regression trees are different from classification trees

classification trees later in course

Lab 2b

The lab introduces functions to fit polynomials, splines, interactions and trees.