O

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-282367

(43) Date of publication of application: 03.10.2003

(51)Int.Cl.

H01G 9/02 H01G 9/028 H01G 9/035 H01G 9/04 H01G 9/06 H01G 9/08 H01G 9/10

(21)Application number: 2002-083782

(71)Applicant: RUBYCON CORP

(22)Date of filing:

25.03.2002

(72)Inventor: UZAWA SHIGERU

NOZAWA TAKASHI

KOMATSU AKIHIKO

(54) ELECTROLYTIC CAPACITOR AND ITS MANUFACTURING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an electrolytic capacitor in which a structure is simple, a production is easy, and the resistance between electrodes is conspicuously lowered, to attain low impedance. SOLUTION: An electrolytic capacitor comprises a capacitor element, which contains two electrodes having a dielectric film on at least one surface thereof, a separator for separating these electrodes, and an electrolytic liquid containing an electrolyte, and a case for housing the capacitor element, so that the separator is constituted of a graphite member.

最終頁に続く

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-282367 (P2003-282367A)

(43)公開日 平成15年10月3日(2003.10.3)

						,			/-) H (2000)	10.07
(51) Int.Cl.7		識別記号		FI						73}*(参	考)
H01G	9/02	301		H0	1 G	9/02		3 (•
	9/028					9/04		3 (7		
•	9/035					9/06			Z		
	9/04	307				9/08			D		
	9/06					9/10			E		
			審查請求	未請求	永龍	項の数30	OL	(全	20 頁)	最終頁	に続く
(21) 出願番号		特顯2002-83782(P2002	2-83782)	(71)	出願人						
(22)出願日		平成14年3月25日(2002	. 3. 25)	(70)	ora men aka		伊那市		箕輪193	8番地 1	
				(12)	発明者		伊那市		箕輪193	8番地1	ルビ
				(72)	発明者	野沢	肇				
						長野県			箕輪193	8番地1	ルビ
		•		(74) (人野分	1000775	517				
						弁理士	石田	敬	(外 44	<u>ട</u>)	
									•		

(54) 【発明の名称】 電解コンデンサ及びその製造方法

(57)【要約】

【課題】 構造が単純で、製造が容易であり、かつ電極間の抵抗を顕著に低下させ、よって低インピーダンスの電解コンデンサを提供すること。

【解決手段】 少なくともそのどちらか一方の表面に誘電体皮膜を有する2つの電極と、これらの電極を隔離したセパレータと、電解質を含有する電解液とを含むコンデンサ素子及び該コンデンサ素子を収納したケースを備えている電解コンデンサにおいて、前記セパレータが、グラファイト部材からなるように構成する。

【特許請求の範囲】

【請求項1】 少なくともそのどちらか一方の表面に誘 電体皮膜を有する2つの電極と、これらの電極を隔離し たセパレータと、電解質を含有する電解液とを含むコン デンサ素子及び該コンデンサ素子を収納したケースを備 えている電解コンデンサにおいて、

前記セパレータが、グラファイト部材からなることを特 徴とする電解コンデンサ。

【請求項2】 前記グラファイト部材が、前記電極の形 態に追従して変形可能であり、それらの電極間に配置さ 10 れていることを特徴とする請求項1に記載の電解コンデ ンサ。

【請求項3】 前記グラファイト部材が、紙、布帛、フ レキシブルプレート又はクラックプレートの形状を有し ていることを特徴とする請求項2に記載の電解コンデン

【請求項4】 前記グラファイト部材が、0.0005 ~10Ω·cmの比抵抗を有していることを特徴とする 請求項1~3のいずれか1項に記載の電解コンデンサ。

【請求項5】 前記電解液が、水を主溶媒とすることを 20 特徴とする請求項1~4のいずれか1項に記載の電解コ ンデンサ。

【請求項6】 前記電解液が、有機溶媒を主溶媒とする ことを特徴とする請求項1~4のいずれか1項に記載の 電解コンデンサ。

【請求項7】 前記電解コンデンサが、その内部に、ニ トロ化合物、ニトロソ化合物、不飽和結合鎖を有する化 合物又はその混合物を含むことを特徴とする請求項1~ 6のいずれか1項に記載の電解コンデンサ。

【請求項8】 前記電解コンデンサが、その内部に、ポ 30 リアクリルアミド及びその誘導体ならびにポリアクリル 酸及びその誘導体からなる群から選ばれた一員を含むこ とを特徴とする請求項1~7のいずれか1項に記載の電 解コンデンサ。

【請求項9】 前記電極が、それぞれ、それに接続され た外部引出しのための端子を有しており、かつ前記電極 と前記端子の接合部の少なくともどちらか一方におい て、前記グラファイト部材に接する側の端子の表面が絶 縁化されていることを特徴とする請求項1~8のいずれ か1項に記載の電解コンデンサ。

【請求項10】 前記絶縁化が、10~200μmの厚 さを有するシート、フィルム又はプレートの形をした絶 縁部材又は絶縁性酸化皮膜で覆うことによりなされてい ることを特徴とする請求項9に記載の電解コンデンサ。

【請求項11】 前記絶縁部材が、天然高分子材料、合 成高分子材料又は無機の絶縁材料を含有した高分子材料 からなることを特徴とする請求項10に記載の電解コン デンサ。

【請求項12】 前記電極の少なくともどちらか―方の を特徴とする請求項1~11のいずれか1項に記載の電 解コンデンサ。

【請求項13】 前記導電性材料が、電荷移動錯体又は 導電性高分子からなることを特徴とする請求項12に記 載の電解コンデンサ。

【請求項14】 前記電荷移動錯体が、7,7,8,8 ーテトラシアノキノジメタン錯塩又はその誘導体である ことを特徴とする請求項13に記載の電解コンデンサ。

【請求項15】 前記導電性高分子が、ポリビロール及 びその誘導体、ポリチオフェン及びその誘導体、ポリエ チレンジオキシチオフェン及びその誘導体ならびにポリ アニリン及びその誘導体からなる群から選ばれた一員で あることを特徴とする請求項13に記載の電解コンデン サ。

【請求項16】 前記ケースの開口部を、高気密性、耐 薬品性、耐湿性、耐熱性、耐候性などの特性を満足する ゴム硬度が60以上の弾性材料からなる封口体で封止さ れていることを特徴とする請求項1~15のいずれか1 項に記載の電解コンデンサ。

【請求項17】 前記封口体の弾性材料が、エチレン・ プロピレンゴム、イソブチレン・イソプレンゴム、フッ 素樹脂又はシリコーン樹脂で構成されることを特徴とす る請求項16に記載の電解コンデンサ。

【請求項18】 前記封口体の弾性材料に、耐応力特性 に優れた高剛性材料が積層されていることを特徴とする 請求項16又は17に記載の電解コンデンサ。

【請求項19】 前記高剛性材料が、フッ素樹脂、エポ キシ樹脂、ポリアセタール樹脂、ベークライト樹脂、尿 素樹脂又はセラミック材料であることを特徴とする請求 項18に記載の電解コンデンサ。

【請求項20】 前記高剛性材料が、前記弾性材料に貼 り合わせたプレートの形をしており、その厚さが0.1 ~3mmであることを特徴とする請求項18又は19に 記載の電解コンデンサ。

【請求項21】 軟鋼又は半軟鋼で構成されるCP線も しくは銅線又は銀線からなる外部引出しリード線をさら に有していることを特徴とする請求項1~20のいずれ か1項に記載の電解コンデンサ。

【請求項22】 前記ケースの開口部が封口体で封止さ 40 れているとともに、その封口部がさらに、熱可塑性樹脂 又は熱硬化性樹脂からなる封止材料で封止されているこ とを特徴とする請求項1~21のいずれか1項に記載の 電解コンデンサ。

【請求項23】 前記封止材料が、エポキシ樹脂、フラ ン樹脂、フェノール樹脂、尿素樹脂、ポリイミド不飽和 ポリエステル樹脂、ウレタン樹脂、アクリロニトリルブ タジエンスチレン樹脂、ポリエチレンテレフタレート樹 脂、ポリプチレンテレフタレート樹脂、ナイロン、ポリ カーポネート、アクリル樹脂、ポリスチレン、ポリプロ 表面の一部又は全面が導電性材料で被覆されていること 50 ピレン又はポリエチレンであることを特徴とする請求項

22に記載の電解コンデンサ。

【請求項24】 前記グラファイト部材の表面が表面改質剤によって親水化されていることを特徴とする請求項1~23のいずれか1項記載の電解コンデンサ。

【請求項25】 前記表面改質剤がシランカップリング 剤であることを特徴とする請求項24に記載の電解コン デンサ。

【請求項26】 前記ケースの、前記コンデンサ素子が収納される側の表面に、絶縁皮膜が形成されていることを特徴とする請求項1~25のいずれか1項に記載の電解コンデンサ。

【請求項27】 前記コンデンサ素子が絶縁性部材で覆われて前記ケースに収納されていることを特徴とする請求項1~26のいずれか1項に記載の電解コンデンサ。

【請求項28】 85℃~150℃の条件下で所定の電圧を印加するエージング工程、交流を重畳して直流電圧を印加するエージング工程、及び所定の電圧を印加する通常のエージング工程中に、極性を反転させて、前記所定の電圧と同じかもしくはそれ以下の電圧を印加するエージング工程を組み込んだ工程からなる群から選ばれる少なくとも1つのエージング工程を経て製造されたものであることを特徴とする請求項1~27のいずれか1項に記載の電解コンデンサ。

【請求項29】 前記電極がそれぞれアルミニウム、タンタル及びニオブからなる群から選ばれた弁金属から形成されていることを特徴とする請求項1~28のいずれか1項に記載の電解コンデンサ。

【請求項30】 請求項1~27及び請求項29のいずれか1項に記載の電解コンデンサを製造する方法であって、85℃~150℃の条件下で所定の電圧を印加するエージング工程、交流を重畳して直流電圧を印加するエージング工程、及び所定の電圧を印加する通常のエージング工程中に、極性を反転させて、前記所定の電圧と同じかもしくはそれ以下の電圧を印加するエージング工程を組み込んだ工程からなる群から選ばれる少なくとも1つのエージング工程を含むことを特徴とする電解コンデンサの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は電解コンデンサに関 40 する。さらに詳しく述べると、本発明は、低インピーダンスでかつ高温特性に優れた電解コンデンサとその製造方法に関する。

[0002]

【従来の技術】コンデンサは、一般的な電気部品の一つであり、種々の電気・電子製品において、主として電源回路用や、ディジタル回路のノイズフィルター用に広く使用されている。コンデンサは、電解コンデンサとその他のコンデンサ(例えば、セラミックコンデンサ、フィルムコンデンサ等)に大別される。

【0003】現在使用されている電解コンデンサにはいろいろな種類のものがあり、その一例を示すと、アルミニウム電解コンデンサ、湿式タンタル電解コンデンサなどである。なお、本発明で特に優れた効果を期待できるものはアルミニウム電解コンデンサであり、したがって、以下では特にアルミ電解コンデンサを参照して本発明を説明する。なお、当業者に容易に理解できるように、本発明はアルミニウム電解コンデンサーのみ限定されるものではなく、電解コンデンサー般に広く適用できるものである。

【0004】電解コンデンサにおいて、その電極材料に は弁作用をもった金属(弁金属)を使用する。例えばア ルミニウム電解コンデンサの場合には、アルミニウムを 電極材料に使用する。電解コンデンサの基本構造は、通 常、図1に模式的に示すように、誘電体である酸化皮膜 32を表面に所定量形成させた電極31を陽極として用 意する。電極31は、必要に応じてエッチングなどの処 理により、表面積を増大させて静電容量を制御してもよ い。また、必要に応じて電極31と同様な構造を有して いてもよいもう1つの電極33を陰極として用意する。 陽極及び陰極は、通常、箔の形態で使用される。陽極箔 と陰極箔を図示のように対向して配置し、さらにそれら の中間に電解液を保持した隔離紙 (セパレータ) 34を 介在させてコンデンサ索子を作製する。セパレータ34 は、一般的に、天然もしくは合成のシート状繊維材料か らなる。また、コンデンサ素子には、巻回構造や積層構 造を持つものがある。作製したコンデンサ素子を適当な 金属製のケースに収納し、さらにそのケースの開口部を 封止して電解コンデンサが完成する。

【0005】上述のような電解コンデンサにおいては、 陽極箔と陰極箔の間の電極間抵抗がコンデンサの性能を 決定する大きな要因になっている。特に近年の電解コン デンサの小型化に伴い、電極箔はエッチング倍率の高い ものが使用されるようになり、コンデンサの電極箔に起 因する抵抗が大きくなっている。そこで、電極間抵抗を 小さくするためには、2つの電極箔間に配置される電解 液のイオン伝導性の効率を上げる必要がある。そのた め、従来から、移動度の大きいイオン種を用いた電解液 を使用する方法、あるいはイオンの物理的な障壁(妨 げ)となっているセパレータの繊維の数を減らす方法 (充填密度を小さくする方法) が広く用いられてきた。 【0006】また、高圧用電解コンデンサの分野では、 高い印加電圧(電位差)に起因する化学反応の活性化を 抑制するために電解液の活性を抑える必要がある。この ため、イオン伝導特性の優れた塩は電解液に使用するこ とができず、結果的に低圧用電解液に比べて5~30倍 も比抵抗の大きい電解液が使用されているのが実状であ った。

【0007】これまでの電解コンデンサのセパレータは、その主成分がセルロースなどの絶縁性の高い天然繊

維で構成されていることが一般的で、セパレータは、主 に電解液を保持することを目的に使用されてきた。しか し、最近ではコンデンサの低抵抗化の要求から、セパレ ータに対して、低抵抗化に寄与すべくさまざまな手法が 用いられている。例えば、特開平3-25004号公報 には、天然繊維を主成分とするイオン透過性中間層に 0.5~7重量%の導電性微粒子(例えばグラファイト 粉末)が分散結着されていることを特徴とする電解コン デンサが開示されている。また、特開平5-15997 7号公報には、セパレータに硬質炭素皮膜(例えば、多 結晶質のダイヤモンド膜)をCVD法又はPVD法によ って形成したことを特徴とする電解コンデンサが開示さ れている。さらに、特開平5-326333号公報に は、絶縁紙と炭素繊維シートをセパレータとして使用して たことを特徴とする電解コンデンサが開示されている。 [0008]

【発明が解決しようとする課題】上記したように、従来の電解コンデンサでは、陽極と陰極の間の電極間抵抗を低下させるためにセパレータの構造を改良するいろいろな試みがなされているが、製造工程が複雑になり、製造 20コストも増加するにもかかわらず、セパレータを高導電化することは非常に困難である。

【0009】本発明の目的は、上記したような従来の技術の問題点を解決して、構造が単純で、製造が容易であり、かつ陽極と陰極の間の電極間抵抗を顕著に低下させ、よって低ESR(等価直列抵抗値)の電解コンデンサを提供することにある。

【0010】本発明の目的はまた、低ESRの中~高圧 用電解コンデンサを提供することにある。

【0011】さらに、本発明の目的は、このような高性 30 能の電解コンデンサの製造方法を提供することにある。 【0012】

【課題を解決するための手段】本発明によれば、少なくともそのどちらか一方の表面に誘電体皮膜を有する2つの電極と、これらの電極を隔離したセパレータと、電解質を含有する電解液とを含むコンデンサ素子及び該コンデンサ素子を収納したケースを備えている電解コンデンサであって、前記セパレータが、グラファイト部材からなることを特徴とする電解コンデンサが提供される。

【0013】また、本発明によれば、85℃~150℃の条件下で所定の電圧を印加するエージング工程、交流を重畳して直流電圧を印加するエージング工程、及び所定の電圧を印加する通常のエージング工程中に、極性を反転させて、前記所定の電圧と同じかもしくはそれ以下の電圧を印加するエージング工程を組み込んだ工程からなる群から選ばれる少なくとも1つのエージング工程を含むことを特徴とする、上述の電解コンデンサの製造方法が提供される。

[0014]

【発明の実施の形態】本発明をその好ましい実施の形態

について説明する。なお、先にも説明したが、以下においては特にアルミニウム電解コンデンサを参照して本発明を説明するが、本発明は、電解コンデンサー般に広く適用できるものである。例えば、電極材料に、アルミニウムに代えてタンタル、ニオブ等のその他の弁金属を使用すれば、アルミニウム電解コンデンサと異なる作用・効果を示す電解コンデンサを提供できる。

【0015】本発明によるアルミニウム電解コンデンサは、少なくともそのどちらか一方の表面に誘電体皮膜を有する2つの電極と、これらの電極を隔離したグラファイト(黒鉛)からなるセパレータと、電解質を含有する電解液とを含むコンデンサ素子、そしてコンデンサ素子を収納したケース、を少なくとも備えている。ここで、「電極」は、通常、陽極及び陰極の2つの電極を指すが、本発明の実施に当っては、無極性電解コンデンサに用いられる電極も包含される。

【0016】コンデンサ素子は、例えば図2に示すよう な基本構造を有することができる。図2のコンデンサ素 子において、陽極は、弁金属であるアルミニウムからな る電極21と、その表面に陽極酸化によって形成された 酸化アルミニウム(A1203)からなる誘電体皮膜2 2とから構成される。電極21は、例えばエッチングな どによりその表面に微細なピットを形成し、表面積を増 大させて静電容量を高めることが好ましい。また、陰極 は、アルミニウムからなる電極23によって構成され る。図示しないが、この電極23も、必要に応じて電極 21と同様な構造を有していてもよい。すなわち、この 電極23の表面に、陽極酸化によって形成された酸化ア ルミニウムからなる誘電体皮膜が設けられていてよい。 陽極及び陰極は、通常、箔の形態で使用される。陽極箔 と陰極箔を図示のように対向して配置し、さらにそれら の中間に、ほぼ隙間のない状態で、グラファイト部材を 介在させてコンデンサ素子とする。なお、コンデンサ素 子は、従来の素子と同様に、巻回構造や積層構造を有す ることができる。コンデンサ素子に電解液を含浸した 後、適当な金属製のケースに収納し、さらにそのケース の開口部を封止して、アルミニウム電解コンデンサが完 成する。

【0017】このようなアルミニウム電解コンデンサでは、電極箔の表面に形成されたピット内に電解液を充填するとともに、隣りあう電極箔の間に電子伝導体であるグラファイト部材を挟み込んだ構成を採用しているので、コンデンサの等価直列抵抗を小さくし、その高性能化を図ることができる。本発明者らの知見によると、今までに予想されなかったことであるが、従来のコンデンサと比較して、40%程度の等価直列抵抗の低下を実際に達成することができる。さらに、グラファイト部材は高純度であるので、コンデンサの諸特性に悪影響を及ぼさないばかりでなく、120~150℃の高温条件下においても安定であり、したがって、従来のセバレータの

50

ように分解して、劣化成分をコンデンサ内部に放出したり、素子の強度を低下させたりすることがない。換言すると、本発明のアルミニウム電解コンデンサは、いままでの技術では実現が難しいとされてきた高温対応型の電解コンデンサとして注目に値する。

【0018】ところで、グラファイト部材を電解コンデンサのセパレータに使用した場合には何らかの不具合が発生することも考えられるが、本発明では、以下に説明するように、コンデンサ素子の固定手段、ケースの開口部を封止する封口体、電極箔に接続する外部引出しのための端子、グラファイト部材の表面状態、さらにはコンデンサの製造工程の改善を通じて、不具合の発生に対する予防手段を講じ、また、諸性能の向上を図っている。 【0019】引き続いて、本発明による電解コンデンサの構成要素を詳細に説明する。

【0020】本発明の電解コンデンサにおいて、陽極及 び陰極は、それぞれ、弁金属(例えば、アルミニウム、 タンタル、ニオブなど)をいろいろな形に加工して使用 できるけれども、金属箔の形で使用するのが好ましい。 例えば、アルミニウム箔を陽極箔及び陰極箔として有利 に使用することができ、その際、アルミニウム箔は、好 ましくは、純度99%以上の高純度のアルミニウム箔で ある。また、陽極箔は、好ましくは、アルミニウム箔を 電気化学的にエッチング処理して、その表面に微細な凹 凸(ピット、この部分に電解液を充填可能)を形成した 後、陽極酸化して、エッチング処理したアルミニウム箔 の表面の全面に酸化アルミニウムからなる誘電体皮膜を 形成することによって作製することができる。得られた 陽極箔の端面には、外部引出し用のリード線端子を取り 付ける。リード線端子は、通常、陽極箔との接合部(通 30 常、アルミニウム製;タブともいう)と、それに接続さ れたリード線とから構成される。また、陰極箔は、アル ミニウム箔にエッチング処理を施して作製することがで きるが、陽極箔と同様に、その表面に、陽極酸化によっ て形成された酸化アルミニウムからなる誘電体皮膜を設 けてもよい。陰極箔にも外部引出し用のリード線端子を 取り付ける。

【0021】上記のようにして作製した陽極箔と陰極箔とを、両者の表面をセパレータを介して対向させつつ卷回することによって、コンデンサ素子を得ることができる。ここで重要なことは、本発明では、従来のコンデンサ素子のようにそれ自体に導電性を有しないか、さもなければ導電性の付与のために導電性粒子を添加したかもしくは導電性シートを貼り付けた繊維材料からなる隔離紙をセパレータとして使用するのではなくて、グラファイト部材をセパレータとして使用するという点である。【0022】セパレータとして使用するグラファイト部材は、本質的にカーボンのみからなり、非常に高純度

(通常、カーポン100%)であり、したがって、電解コンデンサの語特性に悪影響を及ぼす不純物を含有しな

いばかりか、高温下で分解や劣化を生じることもなく、 したがって、過酷な条件下でコンデンサを長期間にわた って安定に使用することが可能である。

【0023】グラファイト部材は、電極やコンデンサの形態に追従して変形可能であり、電極間に実質的に隙間のない状態で、なんらの不具合もなくびったりとフィットした状態で配置されていることが好ましい。したがって、グラファイト部材の形状は、以下に列挙するものに限定されるわけではないけれども、紙又はシート、布帛(織物又は不織布)、フレキシブルプレート、クラックブレートなどを包含する。例えば、紙又はシートの形状で使用する場合に、グラファイト部材の厚さは、通常、約 $30~500~\mu$ mの範囲であり、さらに好ましくは、約 $30~200~\mu$ mの範囲である。

【0024】また、グラファイト部材は、導電特性に優れており、通常、併用される電解液のそれと同等もしくはそれ以上である。グラファイト部材の導電性を比抵抗で示すと、通常、約 $0.005\sim10\Omega\cdot cm$ の範囲であり、さらに好ましくは約 $0.001\sim1.0\Omega\cdot cm$ の範囲である。

【0025】さらに、グラファイト部材は、上記のよう な状態でそのまま使用してもよいけれども、その表面を 改質した後に使用するのが好ましい。例えばグラファイ ト部材の表面を表面改質剤によって親水化処理した後に 使用するのが好ましい。適当な表面改質剤としては、シ ランカップリング剤、例えば、ビニルトリクロルシラ ン、ピニルトリメトキシシラン、ピニルトリエトキシシ ラン、ビニルトリス (β-メトキシエトキシ) シラン、 β-(3, 4-エポキシシクロヘキシル) エチルトリメ トキシシラン、ァーグリシドキシプロピルトリメトキシ シラン、ァーグリシドキシプロピルメチルジエトキシシ ラン、ァーグリシドキシプロピルトリエトキシシラン、 y ーメタクリロキシプロピルメチルジメトキシシラン、 yーメタクリロキシプロピルトリメトキシシラン、yー メタクリロキシプロピルメチルジエトキシシラン、ァー メタクリロキシプロピルトリエトキシシラン、N-β(アミノエチル) γ-アミノプロピルメチルジメトキシ シラン、Nーβ(アミノエチル)γ-アミノプロピルト リメトキシシラン、N-β (アミノエチル) γ-アミノ プロピルトリエトキシシラン、ァーアミノプロピルトリ メトキシシラン、ァーアミノプロピルトリエトキシシラ ン、Ν-フェニル-γ-アミノプロピルトリメトキシシ ラン、γークロロプロピルトリメトキシシラン、γーメ ルカプトプロピルトリメトキシシラン、などを挙げるこ とができる。グラファイト部材が親水性を持つようにな ると、電解液との親和力が格段に向上する。

【0026】得られたコンデンサ素子を、電解液とともにアルミニウムやその他の金属材料からなる有底ケースの開口部から挿入し収容した後、陽極箔と陰極箔とから引き出された外部引出し用の端子をケースから突出さ

50

せ、さらにケースの開口部を封口体で密封する。

【0027】本発明の電解コンデンサでは、通常、コンデンサ素子の収納のために円筒形の有底ケースを使用するが、必要なら、その他の形態のケースを使用してもよい。ケースの材料は、目的とする電解コンデンサの種類などに応じて適当なものを選択できるが、適当なケース材料としては、金属材料、例えば、アルミニウムやその合金などを挙げることができる。コンデンサの軽量化やコストの面から、アルミニウム製のケースを有利に使用できる。また、最近では高性能なものもあるので、必要ならば、エンジニアリングプラスチックなどからケースを作製してもよい。

【0028】コンデンサ用のケースは、そのままで使用 してもよいが、コンデンサの性能を高めるため、その表 面に処理を施すのが好ましい。例えば、このケースの表 面のなかで、コンデンサ素子が収納される側の表面 (す なわち、内面)に絶縁皮膜を形成するのが好ましい。例 えば、アルミニウム電解コンデンサでアルミニウム製の ケースを使用しているような場合、そのケースの内面を 化成処理して酸化アルミニウムの皮膜を形成するのが好 20 ましい。ケースの内面が不活性処理されることによっ て、コンデンサの内部における化学反応を抑制できるの で、長寿命化が期待できる。また、反応性が小さくなる ので、エージング効率が上昇し、より漏れ電流の小さい 電解コンデンサを提供することができる。なお、表面処 理は、上述の化成処理に限られるものではなく、絶縁性 の保護皮膜をコーティングするなどの方法も採用可能で ある。

【0029】また、コンデンサ素子をケースに収納するに当り、コンデンサ素子をそのままの状態で直接ケースに収納してもよいが、コンデンサの性能を高めるため、コンデンサ素子を絶縁性部材で覆ってからケースに収納するのが好ましい。例えば、コンデンサ素子を、ポリフェニレンサルファイド(PPS)などの絶縁性や耐熱性に優れた材料で成形された容器や袋などに挿入した後、それをケースに収納するのが好ましい。コンデンサ素子とケースとの間に絶縁性部材が配置されることによって、コンデンサの内部における化学反応を抑制できるので、長寿命化が期待できる。また、反応性が小さくなるので、エージング効率が上昇し、より漏れ電流の小さいの解コンデンサを提供することができる。

【0030】本発明の電解コンデンサでは、その駆動用 電解液をコンデンサ素子に含浸して使用する。電解液 は、電解質とその電解質を溶解するための溶媒とから構 成され、必要に応じて、任意の添加剤を含有することが できる。

【0031】電解液を溶解するための溶媒は、目的とする電解コンデンサの種類及び使途、そして電解質の種類及び性質などに応じて最適なものを選択して使用することができる。

【0032】例えば、低電圧(160ボルト未満)及び低インピーダンスの電解コンデンサに使用する電解液では、通常、水を主溶媒とする有機溶媒との混合溶媒が用いられる。

10

【0033】混合溶媒で水と一緒に使用する有機溶媒と しては、プロトン系溶媒又は非プロトン系溶媒を単独 で、あるいは任意に組み合わせて使用することができ る。適当なプロトン系溶媒の例としては、アルコール化 合物を挙げることができる。また、ここで有利に使用す ることのできるアルコール化合物の具体的な例として は、以下に列挙するものに限定されるわけではないけれ ども、エチルアルコール、プロピルアルコール、ブチル アルコール等の一価アルコール、エチレングリコール、 ジエチレングリコール、トリエチレングリコール、プロ ピレングリコール等の二価アルコール (グリコール)、 グリセリン等の三価アルコールを挙げることができる。 また、適当な非プロトン系溶媒の例としては、ラクトン 化合物を挙げることができる。また、ここで有利に使用 することのできるラクトン化合物の具体的な例として は、以下に列挙するものに限定されるわけではないけれ ども、γーブチロラクトンやその他の分子内分極化合物 を挙げることができる。本発明の実施に当たって、プロ トン系溶媒と非プロトン系溶媒の中から選択される1種 以上を使用する場合には、より具体的に説明すると、1 種のプロトン系溶媒を使用してもよく、1種の非プロト ン系溶媒を使用してもよく、複数種のプロトン系溶媒を 使用してもよく、複数種の非プロトン系溶媒を使用して もよく、あるいは1種以上のプロトン系溶媒と1種以上 の非プロトン系溶媒の混合系を使用してもよい。

【0034】本発明の電解液において、水を主溶媒とする混合溶媒を使用すると、溶媒の凝固点を低下させ、それにより低温での電解液の比抵抗特性を改善して、低温と常温での比抵抗の差が小さいことで示される良好な低温特性を実現することができる。混合溶媒中の水の含有量は、約20~80重量%の範囲にあるのが好適であり、残部が有機溶媒である。水の含有量が20重量%より少ない場合にも、80重量%を超える場合にも、電解液の凝固点降下の度合いは不十分となり、電解コンデンサの良好な低温特性を得るのが困難になる。混合溶媒中におけるより好適な水の含有量は、約30~80重量%の範囲であり、最も好適な水の含有量は、約45~80重量%の範囲である。

【0035】また、中~高電圧(160~500ボルト)の電解コンデンサや非プロトン系電解液を使用した電解コンデンサを製造する場合には、有機溶媒を主溶媒とする混合溶媒を電解質の溶解に使用するのが有用である。有機溶媒は、上記したものである。有機溶媒を主溶媒とする混合溶媒を使用すると、耐電圧特性の向上、長寿命化、耐食性の向上などの効果を得ることができる。 50 混合溶媒中の有機溶媒の含有量は、約80~100重量

20 成日借煙での行政借煙の百行風は、約00~100里面

%の範囲にあるのが好適であり、残部が水である。有機 溶媒の含有量が80重量%より少ない場合には、電解液 の耐食性や長寿命化が不十分となり、電解コンデンサの 良好な特性を得るのが困難になる。混合溶媒中における より好適な有機溶媒の含有量は、約80~100重量% の範囲であり、最も好適な有機溶媒の含有量は、約90 ~100重量%の範囲である。

【0036】本発明の電解液において、上記のような溶 媒に溶解する電解質としては、好ましくは、カルボン 酸、カルボン酸の塩、無機酸又は無機酸の塩が用いら れ、また、これらの電解質は、単独で使用してもよく、 あるいは2種以上を組み合わせて使用してもよい。

【0037】電解質として使用可能なカルボン酸の例と しては、以下に列挙するものに限定されるわけではない けれども、蟻酸、酢酸、プロピオン酸、酪酸、pーニト 口安息香酸、サリチル酸及び安息香酸に代表されるモノ カルボン酸や、蓚酸、マロン酸、コハク酸、グルタル 酸、アジピン酸、フマル酸、マレイン酸、フタル酸及び アゼライン酸に代表されるジカルボン酸が含まれ、例え ばクエン酸、オキシ酪酸などのようにヒドロキシル基等 の官能基を持ったカルボン酸も使用可能である。

【0038】また、同じく電解質として使用可能な無機 酸の例としては、以下に列挙するものに限定されるわけ ではないけれども、リン酸、亜リン酸、次亜リン酸、ア ルキルリン酸エステル、ホウ酸、スルファミン酸等が含 まれる。

【0039】さらに、上記したようなカルボン酸又は無 機酸の塩としては、いろいろな塩を使用することができ るけれども、適当な塩としては、例えば、アンモニウム 塩、ナトリウム塩、カリウム塩、アミン塩、アルキルア ンモニウム塩等が含まれる。このような塩のなかでも、 アンモニウム塩を用いるのがより好ましい。

【0040】さらに加えて、本発明の実施において電解 質として無機酸又はその塩を使用すると、電解液の凝固 点降下が期待でき、そのため電解液の低温特性の更なる 向上に寄与することができる。また、無機酸又はその塩 の使用は、もしもニトロ化合物を添加剤として使用する 場合に、そのニトロ化合物に由来する水素ガス吸収能力 を長期間にわたって維持することができるという点でも 注目に値する。

【0041】また、本発明者らの研究によると、このよ うな無機酸又はその塩のような電解質を前記したカルボ ン酸又はその塩のような電解質に組み合わせて使用する と、それらを単独で使用した場合に比較して、電解コン デンサの寿命を顕著に延長することができるという効果 も得ることができる。

【0042】本発明の電解液において使用する電解質の 量は、電解液や最終的に得られる電解コンデンサに要求 される特性、使用する溶媒の種類や組成及び量、使用す

を適宜決定することができる。

【0043】本発明の電解液は、さらに、上記したよう な組成の電解液に対して、任意の添加剤を好適量で含む ことができる。適当な添加剤としては、以下に列挙する ものに限定されるわけではないけれども、下記のような 化合物を包含する。

【0044】(1)キレート化合物、例えばエチレンジ アミン四酢酸(EDTA)、トランス-1, 2-ジアミ ノシクロヘキサンーN,N,N',N'-四酢酸一水和 物(CyDTA)、ジヒドロキシエチルグリシン(DH EG)、エチレンジアミンテトラキス (メチレンホスホ ン酸) (EDTPO)、ジエチレントリアミン-N, N, N', N", N" - 五酢酸 (DTPA) 、ジアミノ プロパノール四酢酸(DPTA-OH)、エチレンジア - ミン二酢酸 (EDDA)、エチレンジアミン-N, N' ービス(メチレンホスホン酸)1/2水和物(EDDP O)、グリコールエーテルジアミン四酢酸(GEDT A)、ヒドロキシエチルエチレンジアミン三酢酸(E D TA-OH) 等。キレート化合物は、一般的に、電解液 の全量を基準にして、約0.01~3重量%の範囲で添 加することが好ましい。このようなキレート化合物は、 低インピーダンスコンデンサのアルミニウム (A1) 電 極箔の水和反応の抑制によるコンデンサの長寿命化、電 解コンデンサの低温特性の改善(溶媒が不凍状態に近い 組成なので、常温と低温でのインピーダンスの変化が小 さくなる)、耐蝕性の向上などの効果をもたらすことが

【0045】(2)糖類、例えば、グルコース、フルク トース、キシロース、ガラクトース等。糖類は、一般的 に、電解液の全量を基準にして、約0.01~5重量% の範囲で添加することが好ましい。このような糖類は、 低インピーダンスコンデンサのAI電極箔の水和反応の 抑制によるコンデンサの長寿命化、糖類の添加による電 解質、例えばカルボン酸の分解や活性化の抑制、電解コ ンデンサの低温特性の改善(溶媒が不凍状態に近い組成 なので、常温と低温でのインピーダンスの変化が小さく なる) などの効果をもたらすことができる。

【0046】(3) ヒドロキシベンジルアルコール、例 えば2ーヒドロキシベンジルアルコール、Lーグルタミ ン酸二酢酸又はその塩等。このような化合物は、一般的 40 に、電解液の全量を基準にして、約0.01~5重量% の範囲で添加することが好ましい。このような化合物 は、低インピーダンスコンデンサのAl電極箔の水和反 応の抑制によるコンデンサの長寿命化、電解コンデンサ の低温特性の改善(溶媒が不凍状態に近い組成なので、 常温と低温でのインピーダンスの変化が小さくなる)な どの効果をもたらすことができる。

【0047】(4)ニトロ化合物。ニトロ化合物は、電 解液に可溶あるいはグラファイト部材や電極箔に付着可 る電解質の種類等の各種のファクタに応じて、最適な量 50 能なものが好適である。例えば、ニトロ安息香酸、例え

ばpーニトロ安息香酸、ジニトロ安息香酸、ニトロアセトフェノン、例えばpーニトロアセトフェノン、ニトロアセトフェノン、ニトロバンゼン、ニトログアニジンなどが挙げられる。ニトロ化合物は、一般的に、電解液の企量を基準にして、約0.01~10重量%の範囲で添加することが好ましい。また、ニトロ化合物をグラファイトの計算に付着させる場合には、通常、0.007~1mg/cm²(投影面積)の範囲で添加することが好ましい。このようなニトロ化合物は、顕著な水素でいるのようなニトロ化合物は、顕著な水ス吸収効果、そしてブリント基板の洗浄に際して使用されるハロゲン化炭化水素、例えばトリクロロエタンなの作用により素子が腐食せしめられるのを抑制する作用(換言すると、ハロゲン捕捉作用)を合わせて有することができる。さらに、ニトロ化合物は、グラファイト部

材のカーボンを安定化する作用を有している。 【0048】(5)ニトロソ化合物、例えば、ニトロソキノリノール、ニトロソジエチルアミン、ニトロソジスルホン酸、ニトロソフェノール、ニトロソグアニジンなど。ニトロソ化合物は、一般的に、電解液の全量を基準にして、約0.1~5重量%の範囲で添加することが好 20ましい。このようなニトロソ化合物は、上記したニトロ化合物と同様な作用を奏することができる。

【0049】(6)不飽和結合鎖を有する化合物、例えばマレイン酸水素アンモニウム、trans-2-プテン-1、4-ジカルボン酸等の化合物やその誘導体など。このような化合物は、一般的に、電解液の全量を基準にして、約0.1~5重量%の範囲で添加することが好ましい。このような化合物は、顕著な水素ガス吸収作用を有している。

【0050】(7)ポリアクリルアミド、ポリアクリル酸等。これらの化合物は、電解液に可溶あるいはグラファイト部材や電極箔に付着可能なものが好適である。これらの化合物は、水を主溶媒とした電解液の電解質のイオンを安定化させる作用がある。ポリアクリルアミドやポリアクリル酸等の化合物は分子量144~2000000で電解液の全量を基準にして約0.05~5重量%の量で添加することが好ましい。また、グラファイト部材や電極箔に付着させる場合には、通常、0.007~1mg/cm² (投影面積)の範囲で添加することが好ましい。

【0051】(8)グルコン酸、グルコノラクトン等。これらの化合物は、一般的に、電解液の全量を基準にして、約0.01~5重量%の範囲で添加することが好ましい。これらの化合物は、それを本発明の電解液に追加して含ませた場合、電解コンデンサの長寿命化や低温特性の向上、そして優れた水素ガス吸収効果などという本発明に特有な効果を追加して、耐蝕性の向上といった顕著な効果をさらにもたらすことができる。

【0052】これらの添加剤のなかでも、本発明の実施には、ニトロ化合物、ニトロソ化合物、そして不飽和結

合鎖を有する化合物を単独もしくは混合して使用するのが有利である。これらの添加剤が、本発明の電解コンデンサでグラファイト部材をセパレータとして使用する効果をより一層高めることができるからである。

【0053】さらにまた、本発明で使用する電解液は、上記した添加剤のほかにも、アルミニウム電解コンデンサあるいはその他の電解コンデンサの分野で常用の添加剤をさらに含有することができる。 適当な常用の添加剤としては、例えば、マンニット、シランカップリング剤、水溶性シリコーン、高分子電解質などを挙げることができる。

【0054】本発明の実施において、電極の外部への引き出しに用いられるリード線は、いろいろな金属材料から形成することができるというものの、特に、炭素鋼、例えば軟鋼、半軟鋼などのCP線や銅線、銀線などが有用である。このようなリード線の太さは、通常、約0.4~1.2 mmの範囲である。このような軟らかいリード線を使用することで、従来の電解コンデンサでは回避できなかったリード線を介してコンデンサ素子にかかるストレスの問題を解消できる。

【0055】さらに、外部引出し用のリード線端子は、 その端子とそれぞれの電極との接合部の少なくともどち らか一方において、その表面(グラファイト部材側の表 面)が絶縁化されていることが好ましい。絶縁化は、い ろいろな技法で行うことができる。例えば、接合部の表 面を絶縁性酸化皮膜で覆う方法や絶縁部材で被覆する方 法が好適である。絶緑性酸化皮膜は、例えば、陽極酸化 工程で形成することができる。また、被覆目的に使用で きる絶縁部材は、いろいろの形のものを包含するが、通 常、約10~200µmの厚さを有するシート、フィル ム又はブレートであることが好ましい。このような絶縁 部材は、いろいろな絶縁材料から形成することができる が、好ましくは、高分子材料、例えば、天然高分子材 料、合成高分子材料、無機の絶縁材料を含有した高分子 材料などである。具体的には、ポリプロピレン製の絶縁 テープ、セルロース製の紙、布、ナイロン、ポリエステ ル、ポリフェニレンサルファイド、セラミック含有テー プなどを挙げることができる。また、必要ならば、絶縁 性のコーティングなどを絶縁部材として使用してもよ 40 い。絶縁部材を併用したことにより、ショートの発生率 を大幅に低下させることができる。

【0056】さらにまた、電極の少なくともどちらか一方の表面の一部又は全面を、密着性に優れた、化学的に安定な導電性材料で被覆してもよい。このような導電性材料にはいろいろなものがあるが、好ましくは、電荷移動錯体、例えば、7,7,8,8-テトラシアノキノジメタン錯塩(TCNQ錯塩)およびその誘導体など、又は、導電性高分子、例えば、ポリピロール、ポリチオフェン、ポリエチレンジオキシチオフェン、ポリアニリン、及びそれらの誘導体などである。かかる導電性材料

-8-

は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。このような被覆処理を施すことにより、 被覆された電極の溶解を防ぐことができる。

【0057】コンデンサ素子を収納したケースを封止するために用いられる封口体は、電解コンデンサに要求されている特性、例えば、高気密性、耐薬品性、耐湿性、耐熱性、耐候性などを満足させるとともに、硬度が高くかつ適度のゴム弾性を有しているいろいろな常用の材料から形成することができる。特に、ゴム硬度が60以上の弾性材料が封口体材料として有用である。

【0058】本発明の実施に有用な封口体材料としては、以下に列挙するものに限定されるわけではないけれども、例えば、天然ゴム(NR)、スチレン・ブタジエンゴム(SBR)、エチレン・プロピレンゴム(EPD M)、イソブチレン・イソプレンゴム(IIR)等の弾性ゴムを挙げることができる。また、気密性が高く、電解液が蒸気として透過してしまうようなことがないので、イソブチレン・イソプレンゴム(IIR)を使用することも好ましい。特に、より優れた耐熱性を有する加硫IIR、例えば、イオウ加硫、キノイド加硫、樹脂加硫IIR、例えば、イオウ加硫、キノイド加硫、樹脂加硫、過酸化物加硫等のIIRを使用することがさらに好ましい。樹脂加硫IIRや過酸化物加硫IIRがとりわけ好ましい。

【0059】また、上記したような弾性ゴムに加えて、 気密性があり強度も十分に高い樹脂材料、例えばPTF Eなどのようなフッ素樹脂、あるいは例えばポリシロキ サンなどのようなシリコーン樹脂、ナイロンなどの樹脂 をも封口体の構成材料として有利に使用することができ る。

【0060】さらに、封口体は、2種類以上の材料から、積層体などとして形成することもできる。例えば、弾性材料に、耐応力特性に優れた高剛性材料を積層して複合封口体を形成することができる。

【0061】弾性材料と高剛性材料の複合對口体において、高剛性材料は、例えば、フッ素樹脂、エポキシ樹脂、ポリアセタール樹脂、ペークライト樹脂、尿素樹脂、セラミック材料などが有用である。また、このような複合對口体は、高剛性材料が弾性材料に貼り合わせたブレートの形をしており、その厚さが約0.1~3mmの範囲であることが有利である。具体的には、例えば、気密性があり強度も十分に高い樹脂材料板(例えば、PTFE板などのフッ素樹脂板)と弾性ゴムを貼り合わせた複合對口体を挙げることができる。

【0062】さらにまた、本発明の電解コンデンサでは、ケースの開口部が上述のような封口体で封止されているとともに、その封口部がさらに、熱可塑性樹脂や熱硬化性樹脂からなる封止材料で封止されていることが好ましい。適当な封止材料として、比較的に硬質な樹脂、例えば、エポキシ樹脂、フラン樹脂、フェノール樹脂、尿素樹脂、ポリイミド不飽和ポリエステル樹脂、ウレタ

ン樹脂、ABS(アクリロニトリルブタジエンスチレン)樹脂、PET(ポリエチレンテレフタレート)樹脂、PBT(ポリブチレンテレフタレート)樹脂、ナイロン、ポリカーボネート、アクリル樹脂、ポリスチレン、ポリプロピレン、ポリエチレンなどを挙げることができる。とりわけ、エポキシ樹脂が封止材料として有用である。このような封止材料を併用することによって、リード線端子をより強固に固着でき、ぐらつきが発生しないという効果が得られる。

10 【0063】上記のような構造上の特徴の他に、本発明の電解コンデンサでは、その製造の途中で、以下に示すようなエージング工程を導入することによって、電解コンデンサの性能の向上をはかることができる。そのエージング工程として、85℃~150℃の高められた温度条件下で所定の電圧を印加するエージング工程、及び所定面上を印加するエージング工程に極性を反転させて電圧を印加するエージング工程を組み込んだ工程が挙げられる。これらのエージング工程は単独で行われてもよいが、これらを組み合わせたエージングを行うことにより、電解コンデンサのさらなる性能の向上を期待できる。

【0064】本発明による電解コンデンサは、好ましく は、アルミニウム電解コンデンサであり、その際、エッ チングが施されたアルミニウム箔の表面が陽極酸化され た陽極箔と、エッチングが施されたアルミニウム箔から 成る陰極箔とを、両者の表面がシート状のグラファイト 部材からなるセパレータを介して対向するように卷回し て形成したコンデンサ素子と電解液とがケース内に収容 され、かつ前記コンデンサ素子が収容されたケースの開 口部が弾性封口体で密封されているように構成される。 図3は、本発明によるこのようなアルミニウム電解コン デンサの好ましい 1 例を示した断面図であり、また、図 4は、図3に示した電解コンデンサのコンデンサ素子 を、特に一部を厚さ方向に拡大して示した斜視図であ る。なお、図示の例は巻回構造を備えた電解コンデンサ であるが、本発明の電解コンデンサは巻回構造以外のも のも包含することを理解されたい。

【0065】図示の電解コンデンサ10は、アルミニウム電解コンデンサであり、電解液を含浸したコンデンサ素子1を金属製のケース4に収納し、さらにケース4の開口部を封口体3で封止した構造を有する。

【0066】また、金属製のケースに収納されたコンデンサ素子1は、図4に示すように、巻き取られたシート状積層体20の形をしている。積層体20は、表面全体に酸化アルミニウムからなる誘電体皮膜22を有するアルミニウム箔(陽極)21と、アルミニウム箔(陰極)23と、これらの電極の間に挟まれたグラファイト部材からなる第1のセパレータ24と、第2のセパレータ25とからなる。第1のセパレータ24と第2のセパレー

50

30

タ25は、必要に応じて異なる材料から形成されてもよいが、電解コンデンサの特性の向上、製造工程の簡略化、製造コストの低減などを考慮した場合、これらの2つのセパレータは、同一の材料から形成されているのが好適である。コンデンサ素子1には電解液が含浸せしめられている。

【0067】図示の電解コンデンサ10において、封口体3は、外部引出し用のリード線端子2を挿入し、密封するためのリード線端子貫通孔をその内部に有している。また、ケース4の開口部の末端には、封口体3の封口強度を高めるため、カール14が施されている。さらに、封口体3の上には、図示しないけれども、その上方部分が封止材料で全面的に封止されている。

【0068】図3及び図4に示す電解コンデンサは、例えば、次のようにして製造することができる。最初に、高純度アルミニウム箔を原料として使用して、その表面をエッチングして表面積を増加させた後、そのアルミニウム箔の表面全体を陽極酸化して酸化皮膜を施した陽極箔と、表面をエッチングして表面積を増加させた状態の*

*陰極箔を作製する。次いで、得られた陽極箔と陰極箔と を対向して配置し、さらにそれらの箔の中間に第1のセパレータ(シート状のグラファイト部材)を介在させて 積層体となし、この積層体を巻き取つた構造の素子、すなわち、コンデンサ素子、を作製する。引き続いて電解 をわち、コンデンサ素子に電解液を含浸し、そして電解に 含浸後のコンデンサ素子を上述のようにケース(一般に はアルミニウム製)に収納し、そしてケースの開口部を 封口体で封止する。なお、封口体のリード線端子貫通孔 には2本のリード線端子を挿入し、電解液の漏れがない ように完全に密封し、最後の仕上げとして、封口体の上 部の全体をエポキシ樹脂で封止する。

[0069]

【実施例】次いで、本発明をその実施例についてさらに 説明する。

【0070】下記の第1表及び第2表は、それぞれの実施例で使用された電解液の組成をまとめたものである。

[0071]

【表1】

第1表

電解液	電解液の組成〔重量%〕	
	エチレングリコール	66. 0
電解液a	水	20. 0
-5/A/W 0	アジピン酸アンモニウム	13. 0
	亜リン酸 ニュー・ニュー・ニュー・ニュー・ニュー・ニュー・ニュー・ニュー・エー・エー・エー・エー・エー・エー・エー・エー・エー・エー・エー・エー・エー	1.0
	エチレングリコール	55. 0
電解液 b	水	35. 0
-5.7	アジピン酸アンモニウム	9. 5
<u> </u>	リン酸	0. 5
ĺ	エチレングリコール	40. 0
電解液c	水	45. 0
	アジピン酸アンモニウム	14. 0
	亜リン酸	1.0
	エチレングリコール	35. 0
電解液d	水	50. 0
	アジピン酸アンモニウム	14. 0
	リン酸	1.0
	エチレングリコール	30. 0
⇔Arrata .	水	50. 0
電解液e	アジピン酸アンモニウム	8. 0
	ギ酸アンモニウム	11. 0
	リン酸	1.0
	ァープチロラクトン エギしいがリューリ	66. 0
電解液f	エチレングリコール 水	7. 0
电杆板	小 フタル酸	3. 0
	ファル版 トリエチルアミン	14.0
		10.0
	エチレングリコール 水	81.0
電解液度		7. 0
	アゼライン酸2アンモニウム リン酸	11.5
	ツノ田	0. 5

[0072]

)

【表2】

第2表

電解液	電解液の組成〔重量%〕	
	エチレングリコール	65. 0
	水	20. 0
電解液A	アジピン酸アンモニウム	13. 0
	pーニトロ安息香酸	1.0
	亜リン酸	1.0
	エチレングリコール	55. Q
	水	35. 0
電解液B	アジピン酸アンモニウム	8. 5
	pーニトロフェノール	1. 0
ļ	リン酸	0. 5
	エチレングリコール	40. 0
	水	45. 0
電解液C	アジピン酸アンモニウム	13. 0
	pーニトロ安息香酸	1. 0
	亜リン酸	1. 0
	エチレングリコール	35. 0
3 55	水	50. 0
電解液D	アジピン酸アンモニウム	13. 0
	pーニトロ安息香酸	1. 0
	リン酸	1. 0

[0073]

【表3】 第2表 (続き)

電解液	電解液の組成 [重量%]	
	エチレングリコール	30, 0
	水	50. 0
電解液E	アジピン酸アンモニウム	8. 0
- SAME	スルファミン酸アンモニウム	10. 0
1	pーニトロフェノール	1.0
	リン酸	1. 0
1	ァーブチロラクトン	65. 0
1-	エチレングリコール	7. 0
雷解液F	水	3. 0
-5.77	フタル酸	14. 0
l	トリエチルアミン	10.0
	pーニトロ安息香酸	1.0
	エチレングリコール	80, 0
	水	7. 0
電解液G	アゼライン酸2アンモニウム	11.5
	ジニトロ安息香酸	1.0
	リン酸	0. 5
	エチレングリコール	29. 5
	木	50. 0
	アジピン酸アンモニウム	8. 0
電解液H	スルファミン酸アンモニウム	10.0
ı	Pーニトロフェノール	1.0
ļ	ポリアクリルアミド (分子量約50,000)	0.5
	リン酸	1.0

【0074】 <u>比較例1~6</u>

アルミニウム箔をエッチング処理してその箔の投影面積 あたりの実表面積を拡大した後、そのアルミニウム箔を さらに化成処理してその表面に 6. 3 W V コンデンサ仕・ 様の酸化皮膜を形成し、これに外部引出し用リード線端

処理を施した別のアルミニウム箔に、陽極用電極箔と同 様に外部引出し用リード線端子を取り付けて陰極用電極 箔とした。続いて、この陽極用電極箔と陰極用電極箔と の間に従来使用しているセルロースを主原料とする隔離 紙を挟んで巻回し、コンデンサ索子を作製した。そし 子を取り付けて陽極用電極箔とした。また、エッチング 50 て、それぞれのコンデンサ素子に電解液を含浸してか

ら、有底のアルミニウム製ケースに収容し、このケースの開口をゴム硬度50の天然ゴム製の弾性封口体で密閉した。ここで、含浸する電解液として、比較例1では電解液αを、比較例2では電解液 bを、比較例3では電解液 cを、比較例4では電解液 dを、比較例5では電解液 eを、そして比較例6では電解液 fを、それぞれ使用した。さらに、所定の電圧を85℃の雰囲気中で1時間印加するエージングを行い、電解コンデンサ(6.3Vー1000μF)とした。

比較例7

アルミニウム箔をエッチング処理してその箔の投影面積 あたりの実表面積を拡大した後、そのアルミニウム箔を さらに化成処理してその表面に 6. 3 W V コンデンサ仕 様の酸化皮膜を形成し、これに外部引出し用リード線端 子を取り付けて電極箔とした。これと同様の電極箔を2 枚用意した。続いて、この2枚の電極箔の間に従来使用 しているセルロースを主原料とする隔離紙を挟んで巻回 し、コンデンサ素子を作製した。そして、このコンデン サ素子に電解液bを含浸してから、有底のアルミニウム ケースに収容し、このケースの開口をゴム硬度50の天 20 然ゴム製の弾性封口体で密閉した。さらに、所定の電圧 を85℃の雰囲気中で2時間印加した後、極性を反転さ せて所定の電圧を85℃の雰囲気中で1時間印加し、そ の後再度極性を反転させて所定の電圧を85℃の雰囲気 中で1時間印加するエージングを行い、電解コンデンサ (6. 3 V-470 μF) とした。

比較例8

アルミニウム箔をエッチング処理してその箔の投影面積 あたりの実表面積を拡大した後、そのアルミニウム箔を さらに化成処理してその表面に250WVコンデンサ仕 様の酸化皮膜を形成し、これに外部引出し用リード線端 子を取り付けて陽極用電極箔とした。また、エッチング 処理を施した別のアルミニウム箔に、陽極用電極箔と同 様に外部引出し用リード端子を取り付けて陰極用電極箔 とした。続いて、この陽極用電極箔と陰極用電極箔との 間に従来使用しているセルロースを主原料とする隔離紙 を挟んで巻回し、コンデンサ索子を作製した。そして、 このコンデンサ素子に電解液gを含浸してから、有底の アルミニウムケースに収容し、このケースの開口をゴム 硬度50の天然ゴム製の弾性封口体で密閉した。さら に、所定の電圧を85℃の雰囲気中で1時間印加するエ ージングを行い、電解コンデンサ (250V-10μ F)とした。

<u>実施</u>例1~6

前記比較例1~6と同様に陽極用電極箔及び陰極用電極 箔を作製した。続いて、この陽極用電極箔と陰極用電極 箔との間に、紙状または布状に形成されたグラファイト 部材(セパレータ)を挟んで巻回し、コンデンサ素子を作製した。ここで、実施例 $1 \sim 3$ では紙状に形成されたグラファイト部材を、実施例 $4 \sim 6$ では布状に形成された たグラファイト部材を、実施例 $4 \sim 6$ では布状に形成で成れた たグラファイト部材を、それぞれ使用した。そして、 名では電解液を含浸してから、 有口を のアルミニウム製ケースに収容し、このケースの開こで、 つりのの天然ゴム製の弾性封口体で密閉した。 ここで、 合浸する電解液として、実施例 1 では電解液 1 では電解液 1 では電解液 1 では電解液 1 では電解液 1 では電解液 1 を、実施例 1 では電解液 1 を、実施例 1 では電解液 1 を、実施例 1 では電解液 1 を、それぞれ使用 1 た。 さらに、所定の電圧を 1 を、それぞれ使用 1 の 1 の 1 の 1 の 1 の 1 の 1 の 1 の 1 の 1 の 1 の 1 に 電解コンデンサ 1 の 1 の 1 の 1 の 1 の 1 に 電解コンデンサ 1 の 1 に 1

<u>実施例 7</u>

前記比較例 7 と同様に 2 枚の電極箔を作製した。続いて、この 2 枚の電極箔の間に、紙状に形成されたグラファイト部材を挟んで巻回し、コンデンサ素子を作製した。そして、このコンデンサ素子に電解液 b を含浸してから、有底のアルミニウムケースに収容し、このケースの開口をゴム硬度 500 の天然ゴム製の弾性封口体で密閉した。さらに、所定の電圧を 85 00 の雰囲気中で 00 時間印加した後、極性を反転させて所定の電圧を 00 を 00 の 00 の 0

実施例8

前記比較例 8 と同様に陽極用電極箔及び陰極用電極箔を作製した。続いて、この陽極用電極箔と陰極用電極箔と の間に、クラックが入ったフレキシブルなプレート状に 形成されたグラファイト部材を挟んで巻回し、コンデン サ素子を作製した。そして、このコンデンサ素子を有 のアルミニウムケースに収容し、このケース中に電解液 gを注入して含浸した後、このケースの開口をゴム硬度 50の天然ゴム製の弾性封口体で密閉した。さらに、所 定の電圧を85℃の雰囲気中で2時間印加するエージン グを行い、電解コンデンサ(250V-10μF)とし た。

40 〔コンデンサ特性の測定〕比較例1~8及び実施例1~8の電解コンデンサについて、25℃における特性:120Hzにおける容量、100kHzにおけるESR(等価直列抵抗値)及び定格電圧印加による漏れ電流、を測定した。得られた測定結果を下記の第3表に示す。

[0075]

【表4】

第3表

				•
例の番号	電解液	容量	ESR	漏れ電流
	-5/17/10	[µF]	[m \Omega]	[µA]
比較例1	電解液a	1066	115	10.8
実施例 1	电炉仪点	1067	. 75	12. 2
比較例2	電解液b	1087	78	10.0
実施例2	电解液 D	1087	50	12, 7
比較例3	50 60 75	1073	53	9. 0
実施例3	電解液c	1075	33	11. 7
比較例4	電解液d	1091	38	10, 3
実施例4		1087	23	11. 7
比較例5	最 极大	1087	30	9. 1
実施例5	電解液e	1084	17	10, 2
比較例6	679 477 to ft	982	165	9. 7
実施例 6	電解液f	981	115	10.8
比較例7	674 AZZ 144 .	490	-80	9, 8
実施例7	電解液 b	492	52	10. 7
比較例8	- A7 -	10. 1	309	9. 0
実施例8	電解液g	10. 0	200	8, 9

【0076】上記第3表の測定結果から理解できるよう に、実施例1~8では、両電極箔間に導電性のグラファ イト部材を配置したことにより、セルロースを主原料と する絶縁性の隔離紙を配置した比較例1~8のような従 来品よりも箔間抵抗が大幅に低下したので、従来よりも さらに低ESRの電解コンデンサが得られた。

実施例 9~14

は、電解液a~fに代えて、ニトロ化合物を添加した電 解液A~Fをそれぞれ使用した。その他の点は前記実施 例 $1 \sim 6$ と同様にして電解コンデンサ (6.3 V-1000μF) を作製した。

<u>実施例</u>15

前記実施例8に記載の手法を繰り返したが、本例では、

電解液gに代えて、ニトロ化合物を添加した電解液Gを 用いた。その他の点は前記実施例8と同様にして電解コ ンデンサ($250V-10\mu F$)を作製した。

[コンデンサ特性の測定] 実施例 9~15の電解コンデ ンサについて、25℃における特性:120Hzにおける 容量、100kHz におけるESR及び定格電圧印加によ る漏れ電流、を測定した。次いで、同一の電解コンデン 前記実施例1~6に記載の手法を繰り返したが、本例で 30 サについて、105℃、定格電圧印加の高温負荷試験を 250時間実施し、再度25℃における特性を測定し た。また、同様な測定を実施例1~6及び8の電解コン デンサについても実施した。得られた測定結果を下記の 第4表に示す。

[0077]

【表5】

	電解液	初期特性			105℃負荷試験250時間後		
例の番号		容量 〔µF〕	ESR (mΩ)	漏れ電流 〔μ·A〕	容量 変化率 〔%〕	ESR (mΩ)	漏れ電流 〔μA〕
実施例1	電解液a	1067	75	12. 2	-12. 6	104	11.1
実施例9	電解液A	1065	76	12. 5	-3. 2	76	11.1
実施例2	電解液 b	1087	50	12.7	-12.7	77	11.1
実施例10	電解液日	1089	50	12. 9	-3. 5	49	11.3
実施例3	電解液c	1075	33	11.7	-14.5	59	9. 9
実施例11	電解液C	1075	33	11.8	-4.6	31	9, 8
実施例4	電解液 d	1087	23	11.7	-16. 1	43	10. 5
実施例12	電解液D	1090	23	11, 5	-4. 9	21	10. 0
実施例5	電解液e	1084	17	10. 2	-17.4	34	9. 8
実施例13	電解液E	1085	17	10. 3	-4.9	15	9.8
実施例6	電解液f	981	115	10. 8	-9.5	148	9.8
実施例14	電解液F	981	114	10.8	-3, 3	114	9. 7
実施例8	電解液度	10. 0	200	8.9	-5.8	251	
実施例15	電解液G	10. 1	198	9.0	-3. 3	196	8. 6 8. 5

【0078】上記第4表の測定結果から理解できるよう に、電解液にニトロ化合物を添加した実施例9~15で は、ニトロ化合物を添加しなかった実施例1~6及び8 よりも高温での安定性が増加し、高温負荷試験における 特性変化がより小さい電解コンデンサが得られた。

<u>実施例16</u>

)

前記実施例13に記載の手法を繰り返したが、本例で は、電解液Eに代えて、ポリアクリルアミドを添加した 電解液Hを使用した。その他の点は前記実施例13と同 様にして電解コンデンサ (6.3 V-1000μF)を*30

*作製した。

[コンデンサ特性の測定] 実施例13及び16の電解コ ンデンサについて、25℃における特性 (120Hzにお ける容量、100kHz におけるESR及び定格電圧印加 による漏れ電流)を測定した。次いで、それぞれの電解 コンデンサについて、105℃、定格電圧印加の高温負 荷試験を1000時間実施し、再度25℃における特性 を測定した。得られた測定結果を下記の第5表に示す。

[0079]

【表 6】

第5表

		初期特性			105℃負荷試験1000時間後		
例の番号	電解液	容量 [µF]	ESR [mQ]	漏れ電流 〔μA〕	容量 変化率 〔%〕	ESR [mΩ]	漏れ電流 〔µA〕
実施例13	電解液巨	1085	17	10, 2	-18, 3	38	11.8
実施例16	電解液H	1083	17	10. 0	-8. 1	19	9.8

【0080】上記第5表の測定結果から理解できるよう に、電解液にポリアクリルアミドを添加した実施例16 では、ポリアクリルアミドを添加しなかった実施例13 よりも高温での安定性がさらに増加し、高温負荷試験に おける特性変化がさらに小さい電解コンデンサが得られ た。

比較例9

前記比較例2に記載の手法を繰り返したが、本例では、 電解液bに代えて、電解液Bを使用した。また、天然ゴ ム製の弾性封口体に代えてIIR製の弾性封口体でケー

40 にして電解コンデンサ (6.3 V-1000μF)を作 製した。

実施例17

前記実施例10に記載の手法を繰り返したが、本例で は、天然ゴム製の弾性封口体に代えてIIR製の弾性封 口体でケースの開口を密閉した。その他の点は前記実施 例10と同様にして電解コンデンサ(6.3V-100 0μF)を作製した。

[コンデンサ特性の測定] 比較例 9 及び実施例 1 7 の電 解コンデンサについて、25℃における特性(120Hz スの開口を密閉した。その他の点は前記比較例 2 と同様 50 における容量、1 0 0 kHz におけるESR及び定格電圧

印加による漏れ電流)を測定した。次いで、それぞれの電解コンデンサについて、130℃、定格電圧印加の高温負荷試験を250時間実施し、再度25℃における特性を測定した。得られた測定結果を下記の第6表に示

*す。 【0081】 【表7】

第6表

	初期特性			130℃負荷試験250時間後		
例の番号	容量 [µF]	ESR (mΩ)	漏れ電流 〔μA〕	容量 変化率 (%)	ESR (mΩ)	漏れ電流 〔μA〕
比較例 9	1088	78	10. 3	-80. 4	3700	34. 9
実施例17	1086	50	12.6	-16.1	65	10.8

【0082】上記第6表の測定結果から理解できるように、セルロースを主原料とする隔離紙を使用した比較例9では、130℃の高温負荷試験を行うことにより特性が著しく悪化する不具合がみられた。これに対して、不純物が少なく耐熱性に優れたグラファイト部材をセパレータに使用した実施例17では、高温負荷試験を行っても著しい不具合は発生しなかった。

<u>実施例18</u>

前記実施例 10 と同様に、紙状に形成されたグラファイト部材をセパレータとして使用してコンデンサ素子を作製した。ただし、本例の場合、陽極用電極箔の外部引出し用リード線端子の接合部の表面(グラファイト部材に接する側)を厚さ 30μ mのポリプロピレン製絶縁テープで被覆した。その他の点は前記実施例 10 と同様にして電解コンデンサ(6. 3 V - 1 0 0 0 μ F)を作製した。

実施例19

前記実施例 14 と同様に、布状に形成されたグラファイト部材をセパレータとして使用してコンデンサ素子を作製した。ただし、本例の場合、陽極用電極箔及び陰極用電極箔の外部引出し用リード線端子の接合部の表面(グラファイト部材に接する側)をセルロースを主原料とする厚さ 50μ mの隔離紙で被覆した。その他の点は前記実施例 14 と同様にして電解コンデンサ(6.3 V- 1000μ F)を作製した。

<u>実施例20</u>

前記実施例10に記載の手法を繰り返したが、本例の場合、天然ゴム製の弾性封口体に代えて、ゴム硬度60の EPDM製の弾性封口体でケースの開口を密閉した。その他の点は前記実施例10と同様にして電解コンデンサ (6.3 V-1000 μ F) を作製した。

実施例21

前記実施例14に記載の手法を繰り返したが、本例の場合、天然ゴム製の弾性封口体に代えて、ゴム硬度72のIIR製の弾性封口体でケースの開口を密閉した。その他の点は前記実施例14と同様にして電解コンデンサ(6.3 V-1000μF)を作製した。

実施例22

前記実施例10に記載の手法を繰り返したが、本例の場合、天然ゴム製の弾性封口体に代えて、EPDM製弾性体に厚さ1mmのPTFE製プレートを貼り合わせた封口体でケースの開口を密閉した。その他の点は前記実施例10と同様にして電解コンデンサ(6.3V-100020μF)を作製した。

<u>実施例23</u>

前記実施例 14 に記載の手法を繰り返したが、本例の場合、天然ゴム製の弾性封口体に代えて、IIR 製弾性体に厚さ 1 mmのセラミックプレートを貼り合わせた封口体でケースの開口を密閉した。その他の点は前記実施例 14 と同様にして電解コンデンサ $(6.3 V-1000 \mu)$ F) を作製した。

<u>実施例24</u>

前記実施例20に記載の手法を繰り返したが、本例の場 30 合、陽極用電極箔及び陰極用電極箔の外部引出し用リー ド線に半軟鋼のCP線を用いた。その他の点は前記実施 例20と同様にして電解コンデンサ(6.3V-100 0μF)を作製した。

<u>実</u>施例25

前記実施例21に記載の手法を繰り返したが、本例の場合、陽極用電極箔及び陰極用電極箔の外部引出し用リード線に軟鋼のCP線を用いた。その他の点は前記実施例21と同様にして電解コンデンサ(6.3 V-1000μF)を作製した。

0 実施例26

前記実施例20に記載の手法を繰り返したが、本例の場合、陽極用電極箔及び陰極用電極箔の外部引出し用リード線に銀めっきした銅線を用いた。その他の点は前記実施例20と同様にして電解コンデンサ(6.3V-1000μF)を作製した。

実施例27

前記実施例21に記載の手法を繰り返したが、本例の場合、陽極用電極箔及び陰極用電極箔の外部引出し用リード線に銀線を用いた。その他の点は前記実施例21と同50 様にして電解コンデンサ(6.3V-1000μF)を

作製した。

実施例28

前記実施例20に記載の手法を繰り返したが、本例の場合、EPDM製の弾性封口体でケースの開口を密閉した後、その封口部をエポキシ樹脂で封止した。その他の点は前記実施例20と同様にして電解コンデンサ(6.3 $V-1000\mu$ F)を作製した。

[コンデンサ特性の測定] 実施例10,14及び18~ 28の電解コンデンサについて、25℃における特性 * * (120Hzにおける容量、100kHz におけるESR及 び定格電圧印加による漏れ電流)を測定した。次いで、 それぞれの電解コンデンサについて、封口部でリード線 を繰り返し折り曲げてストレスを加えた。そののち、再 度漏れ電流を測定した。得られた測定結果を下記の第7 表に示す。

[0083]

【表8】

<u>第7表</u>

		初期特性		1
ĺ		リード線		
,]		İ	ストレス
例の番号	容量	ESR	漏れ電流	印加後の
	(μF)	(mΩ)	[µA]	漏れ電流
				[
実施例10	1087	50	12. 7	955, 0
実施例14	981	115	10. 8	105. 5
実施例18	1045	52	11. 9	11.5
実施例19	979	117	10. 4	10. 2
実施例20	1087	50	12. 9	25. 6
実施例21	982	114	11. 3	17. 3
実施例22	1088	50	12. 6	12. 9
実施例23	981	115	10. 7	10. 9
実施例24	1086	49	12. 4	12.1
実施例25	982	115	10.8	10.6
実施例26	1087	50	12.6	12. 1
実施例27	981	114	10. 9	10.5
実施例28	1086	50	12. 4	12.0

【0084】上記第7表の測定結果から理解できるように、実施例10及び14では、リード線にストレスが加えられてコンデンサ素子内部に応力が伝わり、漏れ電流が著しく増大した。これに対して、電極箔の外部引出し用リード線端子の接合部の表面(グラファイト部材に接する側)を絶縁体で覆った実施例18及び19では、リード線にストレスが加えられてコンデンサ素子内部に応力が伝わっても、陽極箔の外部引出し用リード線端子とグラファイト部材との間の絶縁性が確保されたので、漏れ電流の増大が抑えられた。

【0085】また、EPDMやIIRなど、天然ゴムより高剛性の弾性封口体を用いた実施例20及び21では、リード線にストレスが加えられても、コンデンサ素子内部へ伝わる応力が緩和されたので、著しい漏れ電流の増大が抑えられた。また、これらの弾性体にPTFEやセラミックなどのブレートを貼り合わせて対応力特性をさらに向上させた封口体を用いた実施例22及び23では、漏れ電流の増大を抑える効果がより大きかった。【0086】さらに、外部引出し用リード線に半軟鋼ま

たは軟鋼のCP線を用いた実施例24及び25、ならび に銅線または銀線を用いた実施例26及び27では、リード線によってストレスが吸収され、コンデンサ素子内 部へ伝わる応力が緩和されたので、漏れ電流の増大が抑 えられた。

【0087】さらにまた、封口部をエポキシ樹脂で封止した実施例28では、封口体界面のリード線部が樹脂で固定されることによりコンデンサ素子内部へ伝わる応力が緩和されたので、漏れ電流の増大が抑えられた。

実施例29

前記実施例 20 と同様に、紙状に形成されたグラファイト部材をセパレータとして使用してコンデンサ素子を作製した。ただし、このグラファイト部材にはあらかじめシランカップリング剤($N-\beta$ (アミノエチル) $\gamma-$ アミノプロピルトリメトキシシラン)を塗布して表面改質処理を施した。その他の点は前記実施例 20 と同様にして電解コンデンサ(6.3 V -1000 μ F)を作製した。

50 実施例30

前記実施例 21 と同様に、布状に形成されたグラファイト部材をセパレータとして使用してコンデンサ素子を作製した。ただし、このグラファイト部材にはあらかじめシランカップリング剤(γ ーグリシドキシプロピルトリエトキシシラン)を塗布して表面改質処理を施した。その他の点は前記実施例 21 と同様にして電解コンデンサ(6.3 $V-1000\mu$ F)を作製した。

[コンデンサ特性の測定] 実施例20~21及び29~30の電解コンデンサについて、それぞれの容量を測定して容量出現率を求めた。得られた測定結果を下記の第 108表に示す。

[0088]

【表9】

第8表

	容量
例の番号	出現率
	(%)
実施例20	86. 5
実施例21	78. 1
実施例29	93. 4
実施例30	91. 2
実施例30	91. 2

【0089】上記第8表の測定結果から理解できるように、実施例29及び30では、グラファイト部材にシランカップリング剤を塗布する表面改質処理を施したことにより、表面改質処理を施さなかった実施例20または21よりもグラファイト部材と電解液との親和性がよくなり、コンデンサ素子が保持する電解液の量が増加したので、容量出現率が増大した。

実施例31

前記実施例20に記載の手法を繰り返したが、本例では、使用するケースにあらかじめ、その内面に酸化アルミニウムからなる酸化皮膜を形成するための化成処理を施した。その他の点は前記実施例20と同様にして電解コンデンサ(6.3V-1000μF)を作製した。

<u>実施例32</u>

前記実施例 20 に記載の手法を繰り返したが、本例では、電解液を含浸したコンデンサ素子を、アルミニウムケースに収容する前に、PPS製の容器に挿入した。そして、コンデンサ素子をその容器ごとアルミニウムケースに収容した。その他の点は前記実施例 20 と同様にして電解コンデンサ(6.3 V -1000 μ F)を作製した。

<u>実施</u>例 3 3

前記実施例21に記載の手法を繰り返したが、本例では、使用する陽極用電極箔の外部引出し用リード線端子にあらかじめ、そのリード線端子の電極箔との接合部の表面に限って、酸化アルミニウムからなる酸化皮膜を形

成するための化成処理を施した。その他の点は前記実施例 2 1 と同様にして電解コンデンサ (6.3 V-1000 μ F) を作製した。

[コンデンサ特性の測定] 実施例31~33の電解コンデンサについて、定格電圧印加による漏れ電流を測定した。得られた測定結果を下記の第9表に示す。また、実施例20及び21の漏れ電流の測定結果も併せて示す。

[0090]

【表10】

<u>第9表</u>

例の番号	漏れ電流 〔μA〕
実施例20	12. 9
実施例21	44.5
关腔例21	11.3
実施例31	9. 0
	3.0
実施例32	8.8
実施例33	8.4

20

【0091】上記第9表の測定結果から理解できるように、アルミニウムケース内面への酸化皮膜の形成やコンデンサ素子を覆う絶縁性部材の採用などの方法により、コンデンサ素子とアルミニウムケースとの絶縁性を確保する対策を施した実施例31及び32では、対策を施さなかった実施例20よりもエージングが効率よく行われたので、より漏れ電流の小さい電解コンデンサを得ることができた。また、外部引出し用リード線端子の、電極箔との接合部の表面に酸化皮膜を形成した実施例33では、酸化皮膜を有しない実施例21よりもエージングが効率よく行われたので、より漏れ電流の小さい電解コンデンサを得ることができた。

【0092】さらに、アルミニウムケース内面や外部引出し用リード線端子の、電極箔との接合部の表面を絶縁化したことにより、それ自体の耐溶解性が向上した。

実施例34

前記実施例20に記載の手法を繰り返したが、本例では、使用する陽極用電極箔及び陰極用電極箔の外部引出し用リード線端子の接合部の表面(グラファイト部材に40 接する側)ならびに陽極用電極箔及び陰極用電極箔のエッジ部にあらかじめ、3%TCNQ錯塩のDMF溶液を塗布した後、乾燥させて導電性皮膜層を形成した。その他の点は前記実施例20と同様にして電解コンデンサ(6.3V-1000µF)を作製した。

実施例35

前記実施例20に記載の手法を繰り返したが、本例では あらかじめ、使用する陽極用電極箔を15%エチレンジ オキシチオフェンと20%pートルエンスルホン酸鉄

(III)の混合エタノール溶液中に浸漬し、重合工程を経た後、洗浄し、乾燥させてその全面にポリエチレンジオ

キシチオフェンからなる導電性皮膜層を形成した。その 他の点は前記実施例20と同様にして電解コンデンサ (6.3V-1000µF)を作製した。

実施例36

前記実施例20に記載の手法を繰り返したが、本例では あらかじめ、使用する陽極用電極箔及び陰極用電極箔を 15%エチレンジオキシチオフェンと20%pートルエ ンスルホン酸鉄 (III)の混合エタノール溶液中に浸漬 し、重合工程を経た後、洗浄し、乾燥させてそれらの全 面にポリエチレンジオキシチオフェンからなる導電性皮 10 膜層を形成した。その他の点は前記実施例20と同様に して電解コンデンサ (6. 3 V-1000μF) を作製*

*した。

[コンデンサ特性の測定] 実施例20及び実施例34~ 36の電解コンデンサについて、25℃における特性 (120Hzにおける容量、100kHzにおけるES R及び定格電圧印加による漏れ電流)を測定した。次い で、それぞれの電解コンデンサについて、105℃、定 格電圧印加の高温負荷試験を1000時間実施し、再度 25℃における特性を測定した。得られた測定結果を下 記の第10表に示す。

[0093] 【表11】

第10 表

	初期特性			105℃負荷試験 1000 時間後		
例の番号	容量 〔μ F〕	ESR (mΩ)	漏れ電流 〔μA〕	容量 変化率 [%]	ESR (mΩ)	漏れ電流 〔μA〕
実施例 20	1089	50	12.9	-8.0	56	11.6
実施例 34	1087	50	12. 7	-6. 1	54	8.7
実施例 35	1081	48	13.3	-3. g	50	7. 8
実施例 36	1078	48	13. 1	-3.3	49	7.4

30

【0094】上記第10表の測定結果から理解できるよ うに、電極箔の表面の一部又は全面を、密着性に優れ た、化学的に安定な導電性皮膜で被覆した実施例34~ 36では、被覆しなかった実施例20よりも電極箔表面 の安定性が増加し、高温負荷試験における特性変化がよ り小さい電解コンデンサが得られた。

<u>実施例37</u>

前記実施例20に記載の手法を繰り返したが、本例で は、エージング方法を変更して、所定の電圧を50℃の 雰囲気中で2時間印加するエージングを行った。その他 の点は前記実施例20と同様にして電解コンデンサ (6.3V-1000µF)を作製した。

実施例38

前記実施例21に記載の手法を繰り返したが、本例で は、エージング方法を変更して、所定の電圧を50℃の 雰囲気中で2時間印加するエージングを行った。その他 の点は前記実施例21と同様にして電解コンデンサ (6.3V-1000µF)を作製した。

実施例39

前記実施例20に記載の手法を繰り返したが、本例で は、エージング方法を変更して、所定の電圧を60℃の 雰囲気中で2時間印加するエージングを行った。その他 の点は前記実施例20と同様にして電解コンデンサ (6.3V-1000µF)を作製した。

実施例40

前記実施例21に記載の手法を繰り返したが、本例で は、エージング方法を変更して、所定の電圧を60℃の 雰囲気中で2時間印加するエージングを行った。その他 50 は、エージング方法を変更して、陰極箔餌を正電位とし

の点は前記実施例21と同様にして電解コンデンサ (6.3V-1000µF)を作製した。

実施例41

前記実施例20に記載の手法を繰り返したが、本例で は、エージング方法を変更して、所定の電圧を125℃ の雰囲気中で1時間印加するエージングを行った。その 他の点は前記実施例20と同様にして電解コンデンサ (6.3V-1000µF)を作製した。

実施例42

前記実施例20に記載の手法を繰り返したが、本例で は、エージング方法を変更して、所定の電圧の0.8倍 の直流電圧に、実効値が所定の電圧の0.1倍の交流電 圧を重畳した電圧を、85℃の雰囲気中で2時間印加す るエージングを行った。ここで、重畳する交流の周波数 を60世とした。その他の点は前記実施例20と同様に して電解コンデンサ (6.3 V-1000 μF) を作製 した。

40 実施例43前記実施例21に記載の手法を繰り返した が、本例では、エージング方法を変更して、所定の電圧 の0.8倍の直流電圧に、実効値が所定の電圧の0.1 倍の交流電圧を重畳した電圧を、85℃の雰囲気中で2 時間印加するエージングを行った。ここで、重畳する交 流の周波数を10kHz とした。その他の点は前記実施例 21と同様にして電解コンデンサ (6.3 V-1000 μF)を作製した。

<u>実施例44</u>

前記実施例20に記載の手法を繰り返したが、本例で

[コンデンサ特性の測定] 実施例37~44の電解コン*

*デンサについて、定格電圧印加による漏れ電流を測定した。得られた測定結果を下記の第11表に示す。また、 実施例20及び21の漏れ電流の測定結果も併せて示 す。

[0095]

【表12】

第11表

例の番号	エージング方法	漏れ電流 〔μA〕
実施例20	85℃雰囲気中で2時間電圧印加	12. 9
実施例21	85℃雰囲気中で2時間電圧印加	11.3
実施例37	50℃雰囲気中で2時間電圧印加	62. 8
実施例38	50℃雰囲気中で2時間電圧印加	58. 7
実施例39	60℃雰囲気中で2時間電圧印加	40. 7
実施例40	60℃雰囲気中で2時間電圧印加	38. 2
実施例41	125℃雰囲気中で 1 時間電圧印加	7. 0
突施例42	85℃雰囲気中で60Hzの交流を重畳した電圧を2時間印加	8. 1
実施例43	85℃雰囲気中で10kHzの交流を重畳した電圧を2時間印加	7. 4
実施例44	85℃雰囲気中で、陰極箔側を正として電圧を印加後、陽極箔側 を正として電圧を2時間印加	8. 3

【0096】上記第11表の測定結果から理解できるように、85℃でエージングを行った実施例20および21では、50℃または60℃でエージングを行った実施例37~40よりも陽極酸化皮膜の欠陥部の修復が効率よく行われたので、より漏れ電流の小さい電解コンデンサを得ることができた。

【0097】また、125℃でエージングを行った実施 例41では、陽極酸化皮膜の欠陥部の修復がさらに効率 よく行われたので、短いエージング時間でもより漏れ電 流の小さい電解コンデンサを得ることができた。

【0098】また、交流を重畳するエージングを行った 実施例42及び43では、実施例20または21よりも 陽極酸化皮膜の欠陥部の修復が効率よく行われたので、 より漏れ電流の小さい電解コンデンサを得ることができ た。

【0099】また、逆極性についても電圧を印加するエージングを行った実施例44では、実施例20よりも陽極酸化皮膜の欠陥部の修復が効率よく行われたので、より漏れ電流の小さい電解コンデンサを得ることができた。

[0100]

【発明の効果】以上に説明したように、本発明によれ

ば、構造が単純で、製造が容易であり、かつ電極間の抵抗を顕著に低下させ、よって低インピーダンスの電解コンデンサを提供することができる。

【図面の簡単な説明】

「図1】従来の電解コンデンサで使用されているコンデンサ素子の基本構成を示した断面図である。

【図2】本発明による電解コンデンサで使用されるコンデンサ素子の基本構成を示した断面図である。

【図3】本発明による電解コンデンサの好ましい1形態を示した断面図である。

【図4】図3の電解コンデンサで用いられるコンデンサ 素子の構成を示した斜視図である。

【符号の説明】

1…コンデンサ素子

40 2…リード線端子

3…封口体

4…ケース

10…電解コンデンサ

21…陽極

22…誘電体皮膜

23…陰極

24…セパレータ

フロントページの続き

(51) Int. CI. 7 H 0 1 G 9/08

)

識別記号

FΙ H 0 1 G 9/02

テーマコード(参考)

3 1 1 3 3 1 A

3 3 1 E

(72)発明者 小松 昭彦

長野県伊那市大字西箕輪1938番地1 ルビ

コン株式会社内

9/10