dr: Crcu, 3) > Cri(u, 3) Cohomology (m toric von's) (P(a)):= \(\frac{1}{2}\) (-1) X: vour J: sheut on X metive resolution Is Ui's one all affine, then ワップ スップング Thm. H(N, T)Seme vanishing P>0, $H^{P}(affine, q-coh)$ H(X, T)Zi's one inj. V B > Zi Apply $\Gamma(x, \cdot)$: $\lambda \cdot \qquad \qquad \lambda \cdot \qquad \qquad \lambda$ where Fis quoh. $Q.g. X=P^1, G=2$ H'(X) F) = Ker d' im di-1 by Enler cequence. auv: general enough $0 \rightarrow \mathcal{D}_{\mathbb{P}^1} \rightarrow \mathcal{D}_{\mathbb{P}^1}(-1) \rightarrow \mathcal{D}_{\mathbb{P}^1} \rightarrow 0$ disorde: not easy for compretation 0 > H'UP (P) > D H'(P) (P) (P) Insternd, people prefer Cech cohom. Ex X vs covered by $M = \{U_i\}_{i=1}^d$, U_i open >H'(17,52p,)>> DH'(17,6p(-13) notestim: [d]p:= all (p+4)-tuples of [1,...] notestion: Edip := all (p+1) - tuples of [1,...l)

p-th Euch cochain: (P(U,7):=DF(U;,n...nu;p) / => H'(p',52p,) = H'(p',52p,) =

· For Gpi(-1), consider J = Cp, Cp(-1) 0 > Op((-1) > Gp1 > Gp > 0 X = Wo U WL D is tl:07 Pi Sper et x] Sper et 2] => H°(Op((-1)) = H1(Op((-1))= 0. Ct = Uon U1 = Spec Ctx, \frac{1}{7} Cech cochain: F(U)DF(U) F(U)D) In toriz world, gon HP(P1,F)=0 if P=Z. In torir world, gonl: · For Opt: compute MP(X)=? $(f(x)), g(\frac{1}{x})) \mapsto f(x) - g(\frac{1}{x}) = 2 a_{p} p_{p}, \quad (t \geq (4))$ $\Rightarrow f(x) = g(\frac{1}{x})$ $\exists not now of a fine open con$ $\Rightarrow f = g = c \in C$ $\Rightarrow f = g = c \in C$ $\Rightarrow f = g = c \in C$ If do (f. y)=0 M: {U6}6EZ(n), need 65. > H"(P) On): (do 15 sur / (come 6 -> offine open > >> H (P) (Dp) = 0 C(U, Ox(b)= +) H'(DUik, Ox(D))

Compute HICP, Gpr(d)) Recall: D=Zappp) pilytipe, PW) MR $\supseteq P(D) := \{ m \in M_R | \langle m, V_p \rangle \ge -\alpha_p, \\ \forall p \in \mathbb{Z}(1) \}$ $\forall p \in \mathbb{Z}(1) \}$ Gi C= A2) Moir (= (C))

Cech complex: (b) d I mem (Pr(d)) mttcD)nM. (→ ¿(d) → ¿(d) → ¿(d) → o S. H'(Ub, Ox(b))= D) H'(Ub,Ox(b))m ¿ (d) = D H (CU:, G(d)) HP(X,6x65) 1. le={ · / 1 ~ Vs > = 0 } lone to MR into chum kers. eg. X= P, Z:

· 6:0 6; = (Vk)			
61062=	(vo> dual 4	~ < ~	$n, V_0 > \geq -a$
Go simi	(vo) dual +	6	n MR
			1/1/1/
$C^{1}(d)_{m} \neq 0 \iff m \cdot h$ $6012 \iff U012 (2(2))$			
Er (d) m t v alurary true.			
In each m-granting:			
m in	dim C'Cds	(+ ·	~ ~ ~
C-+4 U C4-1 U C4+-	1	ک	T
C-++UC-+-UC+-	O	1	1
C	U	U	1
			Doblem
			others one
1 these			
M Ch John Ch.			
(d) m only me the contributes.			
Theterior			

H¹(
$$\mathbb{P}^{2}$$
, $\mathbb{O}_{\mathbb{P}^{2}}(d)$)= \mathbb{D} H⁰(\mathbb{P}^{2} , $\mathbb{O}_{\mathbb{P}^{2}}(d)$)m

= \mathbb{P}^{2} ($\mathbb{O}_{\mathbb{P}^{2}}(d)$)= \mathbb{H}^{2} \mathbb{P}^{2} in \mathbb{Q}^{2}

= \mathbb{P}^{2} (\mathbb{P}^{2})

Similarly, if $d > 0$

H²($\mathbb{O}_{\mathbb{P}^{2}}(d)$)= \mathbb{P}^{2}

Comparation (in general).

 $\mathbb{X} = \mathbb{X}_{\mathbb{Z}}$, $\mathbb{D} = \mathbb{Z}$ $\mathbb{Q}_{\mathbb{P}}$ $\mathbb{D}_{\mathbb{P}^{2}}$, $\mathbb{M} \in \mathbb{M}$

def: a) $\mathbb{V}_{\mathbb{P}}$ in \mathbb{C}^{2} \mathbb{C}^{2}

24,642

exput.

ey. $\chi_{\overline{z}} = Bl_3 p^{\nu}$ PTO: $\chi_{\overline{z}}$ m= l: (1,0) EM VD/m V4 VI Swpp.
Vom $\langle m, \nu_{\perp} \rangle = (1,0) \cdot (1,0) = 1 \geq 0$ <m, >>= (1,1)・(1,1)= (20 <m, >3>=(1,0).(0,1)= 0 < -03=1 Cm, V4>=(1,0).(-1,0)=-1 <-a4=0 b). if D Conther) I piecewissly (2n, Us) = (1,0) · (-1,-1) = -1 ≥ -05 = -2 (m, 16)=(1,0)(0,-1)=0<-96=1 $V_{P,m} = \left\{ u \in \left| \overline{z} \right| \left(m, u \right) < \mathcal{U}_{P}(u) \right\} / \left(bi = \left\langle v_{i}, v_{i+1} \right\rangle \text{ by cline: } v_{j} = v_{j}$ cm2. N2) = 0, cm2. N3>=1 $(1,0)(u_1,u_1)<(-1,1).(u_1,u_1)$ m= (-1,1)

By ustry Voim, Voim, ve leure: Ell, --, elzeli] und Ma onto Chimilers, each chamber Thm: Dis only Weil sign b (m)
sth like t-t--. \Rightarrow $H^{P}(X, G_{X}(D))_{m} \rightarrow H^{P-1}(V_{D,m}, C)$ Dis Contiles Probable to the control of the cont # of strings of consecutive cons. "-1" is 3 Main app. in dim Z. Xz: somt. D=Znpp toric div. · h ~ ((bx (b)) m = \(\frac{1}{2}, \frac{5\ightarrow{\text{fy} \text{folm}}{\text{cm}} = \frac{1}{2}, \frac{5\ightarrow{\text{fy} \text{folm}}{\text{cm}} = \frac{1}{2}. h ((0x (d)) comprotation (m) Counting) le := {m c MR (m, v, > = - ap }

When people compute HT's. an important tool is Serre duality. 7 hm. X complete dim n toric D: Q - Constiler dis $\Rightarrow H^{p}(X, O_{x}(A)) \vee 2 H^{n-p}(X O_{x}(K_{x}-P))$ Q: When one we safe? A: X is CM. Tes, mormal took vons one CM. Detually, & comple > m X \times cm \Leftrightarrow $H^{P}(X, O(-kb))=0$ Thm (Batyner - Borison) XI complete torde, D'D- Contiter D nef => HP(Xz (Dxz (-D))=), +p + dim P(D)

Domple

Wret.

U. BB

HP(XE, GL-FD) = 3

W. E

X CM.