$\gamma-$ 피복을 리용한 모든 최대 $\alpha-$ 간격반복들의 한계에 관한 한가지 계산방법

강진웅, 조영선

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《새로운 과학기술분야를 개척하기 위한 사업도 전망성있게 밀고나가야 합니다.》 (《김정일선집》 중보판 제11권 138폐지)

모든 최대 α -간격반복들의 한계를 구하는것은 최근 생명정보학을 비롯한 여러 분야에서 중요한 문제의 하나로 제기되고있다.

선행연구[1, 2]에서는 최대 α - 간격반복들의 모임을 조건에 따라 몇가지 부분모임으로 가르고 매 부분모임의 한계를 구하는 방법으로 길이가 n인 문자렬에 대한 최대 α - 간격반복들의 개수가 추상적으로 $O(\alpha^2 n)$, $O(\alpha n)$ 이라는 사실을 밝혔다. 선행연구[3]에서는 최대 α - 간격반복들의 한가지 부분모임인 γ - 피복을 리용한 최대 α - 간격반복들의 한계가 구체적으로 $3n/\gamma$ 이라는것을 증명하였다.

론문에서는 γ -피복값을 새롭게 정의하고 그에 기초하여 γ -피복을 리용한 모든 최 대 α - 간격반복들의 한계를 구하였다.

정의 1[1] 임의의 실수 $\alpha \ge 1$ 과 반복문자렬 (u_λ, u_ρ) 에 대하여 그 주기가 반복되는 부분문자렬길이의 α 배를 넘지 못하며 반복되는 부분문자렬들의 왼쪽, 오른쪽문자들이 각각 서로 다를 때 (u_λ, u_ρ) 를 최대 α -간격반복이라고 부른다.

정의로부터 b(s), e(s) 가 문자렬 s의 시작위치, 마지막위치를 나타내고 w[i] 가 w의 i 번째 문자를 나타낸다면 $q=b(u_{\alpha})-b(u_{\lambda})$ 라고 할 때 $q\leq\alpha|u_{\lambda}|=\alpha|u_{\alpha}|$ 이고

$$w[b(u_{\lambda})-1] \neq w[b(u_{\rho})-1], \ w[e(u_{\lambda})+1] \neq w[e(u_{\rho})+1]$$

이다.(그림 1)

최대 α — 간격반복 (u_{λ}, u_{ρ}) 를 \mathbf{Z}^2 의 점 $(e(u_{\lambda}), q)$ 로 보내는 넘기기를 φ 로 표시하자.[1] $C_n := \{(x, y) \in Z^2 \mid 1 \leq y \leq n-1, \ 1 \leq x \leq n-y\}$ 이라고 하자. 그러면 $e(u_{\lambda}) + q = e(u_{\rho}) < n$ 이므로 임의의 $(e(u_{\lambda}), q) \in C_n$ 이다. 즉 G_{α} 를 최대 α — 간격반복전체의 모임이라고 할 때 $\varphi(G_{\alpha}) \subseteq C_n$ 이다.

정의 2[3] 2차원자리표계의 점 (x, y), (x', y')와 임의의 $\gamma \in (0, 1]$ 에 대하여

$$\begin{cases} x - \gamma y \le x' \le x \\ y - \gamma y \le y' \le y \end{cases}$$

가 성립할 때 (x, y)는 (x', y')를 γ -피복한다고 말한다.(그림 2) 그리고 ψ 를 분포길이라고 부른다.

정의 2에서 알수 있는바와 같이 점 (x, y)가 γ -피복하는 점들의 y 자리표 $y' \ge 0$ 을 만족시키며 고정된 y에 대하여 점들의 y자리표값에 따라 분포길이가 달라지면서 γ -피복하는 점의 개수가 차이난다.

먼저 C_n 에서 γ -피복과 관련한 점모임농도의 한계를 구하기 위하여 필요한 몇가지 보조정리들을 정식화한다.

보조정리 1 임의의 $I = [\psi - 1/\gamma, \psi)$, $\gamma, \psi \in \mathbf{R}$, $\gamma \in (0, 1]$ 에 대하여

$$|I \cap Z| = \begin{cases} \lfloor 1/\gamma \rfloor + 1, & 0 < \psi - \lfloor \psi \rfloor \le \delta \\ |1/\gamma|, & \gamma \not\models \end{cases} \tag{1}$$

이다. 여기서 $I \cap \mathbf{Z} = \{i \in \mathbf{Z} | i \in I\}$, $\delta := 1/\gamma - |1/\gamma|$ 이다.

보조정리 2 $g_{\gamma}(i)$: $\exists \{y \in \mathbb{N} \mid (i-1)/\gamma \le y < i/\gamma\} \mid$, $1 \le i \le \lceil n\gamma \rceil$ 인 $g_{\gamma}: \mathbb{N} \to \mathbb{N}$ 과 임의의 비증가정값함수 $f: \mathbb{N} \to \mathbb{R}^+$ 에 대하여

$$\sum_{i=1}^{\lceil n\gamma \rceil} (f(i)g_{\gamma}(i)) \le \sum_{i=1}^{\lceil n\gamma \rceil} f(i)/\gamma$$

이다. 여기서 $\gamma \in (0, 1]$ 이다.

정의 2에 기초하여 모든 최대 α — 간격반복들의 한계계산에서 중요하게 쓰이게 될 γ — 피복값을 정의한다.

정의 3 점모임 C와 \mathbf{Z}^2 의 점 p에 대하여 p를 γ -피복하는 C의 점 (x', y')가 $(i-1)/\gamma \le y' < i/\gamma$ $(i \in \mathbf{N})$ 를 만족시킬 때 p는 γ -피복값 $1/i^2$ 을 가진다고 말한다. 만일 p가 C의 어느 한 점에 의해서도 γ -피복되지 않는다면 γ -피복값을 0으로 정의한다.

그리고 점 p(x, y)의 γ -피복값을 w(p) 또는 w(x, y)로 표시한다.

y 자리표값이 부수인 점은 그 어떤 점에 의해서도 y-피복되지 않으므로 y-피복값이 항상 0이다.

이때 점 p 가 C의 여러 점들에 의하여 γ -피복된다면 p 는 γ -피복값을 여러개 가지게 되는데 하나만 가지게 하자면 C에 일정한 조건을 주어야 한다.

지금 γ-피복과 관련한 다음의 정리를 증명한다.

정리 1 임의의 실수 $\gamma \in (0, 1]$ 과 $C \subseteq C_n$ 에 대하여 C의 임의의 두 점이 같은 점을 γ -피복하지 않는다면 $|C| < n\pi^2/(6\gamma)$ 이다. 특히 $\gamma = 1$ 이면 $|C| < n(\pi^2/6 - 3/4)$ 이다.

증명 정의 1로부터 γ -피복되는 점의 y자리표가 0이 될수는 있지만 부의 값은 가질수 없으며 정리의 조건으로부터 γ -피복하는 점의 y자리표는 1부터 가능하다. 또한 C의 임의의 두 점이 같은 점을 γ -피복하지 않으므로 \mathbf{Z}^2 의 모든 점의 γ -피복값은 유일

하게 된다.

정의 2로부터 $(i-1)/\gamma \le v' < i/\gamma$ 이고 $i-1 \le w' < i$ 이며

$$\begin{cases} x' - i < x' - \gamma y' \le x' - (i - 1) \\ y' - i < y' - \gamma y' \le y' - (i - 1) \end{cases}$$

이다. 그러면

$$\begin{cases} x' - i < x' - \gamma y' \le x' - (i - 1) \le x \le x' \\ y' - i < y' - \gamma y' \le y' - (i - 1) \le y \le y' \end{cases}$$

를 얻으며 결국 C에 속하는 점 (x', y')에 의해 γ -피복되는 점은 모두 i^2 개이고 그것들 의 γ -피복값들의 합은 1로 된다.(그림 3) 즉 C의 점 하 나에 그에 의해 γ -피복되는 점들의 γ -피복값합 1이 대 응된셈이다. 결국 |C|의 한계를 \mathbb{Z}^2 에서 모든 점들의 γ -피복값들의 총합으로 보아도 무방하므로 이제부터 \mathbf{Z}^2 의 모든 점의 γ -피복값합의 한계를 구하겠다.

우선 $(i-1)/\gamma \le y < i/\gamma$ 인 y 를 고정하면 (\cdot, y) 인 점 들의 γ -피복값합은 기껏 n/i^2 이다.

 (\cdot, v) 인 점들을 γ - 피복하는 점의 v 자리표는 $[(i-1)/\gamma, i/\gamma)$ 에 속할수도 있고 그보다 더 큰 구간들에 들수도 있으므로 (\cdot, y) 인 점들의 γ -피복값은 기껏 $1/i^2$ 로 된다

 C_n 에서 x의 정의역이 $1 \le x \le n-y$ 이므로 다음과 같 이 나눌수 있다.(그림 4)

되는 i^2 개의 점

 $x \ge n - y + 1$ 인 점들에 대해서는 C의 점이 피복할 수 없으므로 γ -피복값이 0이고 $1 \le x \le n - y$ 인 n - y개의 점들의 γ -피복값은 기껏 $1/i^2$ 이다.

 $x \le 0$ 인 점들에 대하여 보면 $i-1 \le w < i$ 이므로 γ -피복될수 있는 가장 작은 x자리표값은 (1, v)에 의 해 피복되는 2-i이다. 즉 $2-i \le x \le 0$ 인 i-1개의 점 들의 γ -피복값은 기껏 $1/i^2$ 이고 x < 2-i 인 점들에 대해서는 γ-피복값이 0으로 된다.

따라서 (\cdot, y) 인 점들의 γ -피복값합은

$$\sum_{y \in Z} w(x, y) \le (n - y + i - 1)/i^2 \le (n - y + \gamma y)/i^2 \le n/i^2$$

으로 된다.

다음 고정했던 v를 변화시키면서 i를 보다 구체적으로 따져 \mathbb{Z}^2 에서의 γ -피복값 합의 한계를 계산해보자.

먼저 $\gamma=1$ 인 경우를 보자.

(·, 0)인 점들을 1-피복하는 점 (x', y')는 무조건 y'=1이므로 i-1≤y'<i 라는데로부

터 i=2로 되며 $(\cdot, 0)$ 인 점들의 γ -피복값합은 기껏 $n/2^2$ 이다.

 $y \ge 1$ 인 (x, y)를 1-피복하는 (x', y')는 y' = y도 가능하므로 i = y + 1 즉 $y \ge 1$ 인 (\cdot, y) 인 점들의 $\gamma -$ 피복값합은 기껏 $n/(y + 1)^2$ 이다.

그러므로

$$\sum_{(x, y) \in \mathbb{Z}^2} w(x, y) \le n/2^2 + n \sum_{y=1}^n (1/(y+1)^2) < n/4 + n \sum_{i=2}^\infty (1/i^2) = n/4 +$$
(2)

$$+n\pi^2/6-n=n\pi^2/6-3n/4=n(\pi^2/6-3/4)$$

이다. 마지막으로 $\gamma < 1$ 인 경우를 보자.

우에서와 마찬가지로 따지면 $1 \leq i \leq \lceil n\gamma \rceil$ 에 대하여 $(i-1)/\gamma \leq y < i/\gamma$ 인 점 (x, y)의 γ -피복값은 기껏 $1/i^2$ 이므로 $Y_i := \{y \in N \,|\, (i-1)/\gamma \leq y < i/\gamma\}$ 라고 할 때 전체 γ -피복값합

$$\sum_{(x, y)\in \mathbb{Z}^2} w(x, y) \le \sum_{i=1}^{\lfloor n\gamma \rfloor} n |Y_i|/i^2$$

이다.

이제 Y_i가 들어간 오른변을 정돈하자.

 $f(i) := n/i^2$ 이라고 하면 f(i)는 비증가정값함수로 되며 보조정리 2로부터

$$\sum_{(x, y) \in \mathbb{Z}^2} w(x, y) \le \sum_{i=1}^{\lceil n\gamma \rceil} \frac{n |Y_i|}{i^2} \le \sum_{i=1}^{\lceil n\gamma \rceil} (n/i^2) / \gamma < \sum_{i=1}^{\infty} \frac{n}{i^2 \gamma} = \frac{n}{\gamma} \sum_{i=1}^{\infty} \frac{1}{i^2}$$

을 얻는다. $\sum_{i=1}^{\infty} (1/i^2) = n\pi^2/6$ 이므로

$$\sum_{(x, y) \in \mathbb{Z}^2} w(x, y) < n\pi^2 / (6\gamma) \tag{3}$$

이 성립한다. 식 (2)와 (3)으로부터 정리의 결과를 얻는다.(증명끝)

보조정리 3 $(x, y) \in \varphi(G_{\alpha})$ 이면 $(x+1, y) \notin \varphi(G_{\alpha})$ 이다.

보조정리 3을 리용하면 정리 1로부터 $\gamma-$ 피복을 리용한 모든 최대 $\alpha-$ 간격반복들의 한계를 계산할수 있다.

정리 2 임의의 $\gamma \in (0, 1]$ 과 $C \subseteq \varphi(G_\alpha)$ 에 대하여 C 의 임의의 두 점이 같은 점을 γ — 피복하지 않는다면 $|C| < n(\pi^2/6-1/2)/\gamma$ 이다.

즘명 $\gamma = 1$ 이라면 정리 1로부터 $|C| < n\pi^2/6 - 3n/4 < n\pi^2/6 - n/2$ 이다.

ν<1인 경우를 보자.

전체 평면에서의 점들의 γ -피복값합을 계산하기 위해 우선 y 축에서의 첫 $1/\gamma$ 구간 즉 $E:=\{(x,\ y)\in Z^2|1\le x\le n,\ 0\le y<1/\gamma\}$ 의 점들의 γ -피복값합을 따로 따져보자.

 $y < 1/\gamma$ 인 점들은 y < 1이므로 자기자체에 의해서만 $\gamma -$ 피복되는 점들 즉 $\gamma -$ 피복 값이 1인 점들이 있을수 있기때문이다.

E 에 속하는 점들의 γ — 피복값합을 정확히 구할수 없으므로 그것이 평균적으로 기 γ 얼마인가를 따지자.

E에 속하는 점들의 개수는 기껏 n/γ 이다.

 $(x, y) \in E \cap C$ 들의 γ - 피복값은 1이며 $(x, y) \in E \setminus C$ 들에 대해서는 최대로 가질수 있는 γ - 피복값은 $1/2^2$ 이다.

만일 $E \cap C = \emptyset$ 이면 E에 속하는 모든 점들의 γ -피복값합은 기껏 (1/4)|E|이다.

만일 $(x, y) \in E \cap C$ 인 점이 있다면 w(x, y) = 1이고 보조정리 3으로부터 $(x+1, y) \notin C$ 이다.

이때 w(x+1, y) = 0이면 두 점 (x, y)와 (x+1, y)는 y- 피복값합이 1이다.

이때 w(x+1, y) > 0 이면 (x+1, y) 를 γ -피복하는 점 $(x', y') \in C \setminus E$ 는 적어도 4개의 점을 γ -피복하게 되며 그 4개의 점들속에는 $(x+1, y) \notin C$ 도 있다. 그러면 E 에 속하는 세 점 (x, y), (x+1, y), (x+2, y)의 γ -피복값합은 기껏 1+1/4+1/4=3/2 이다.

이로부터 E에 속하는 점들의 평균 $\gamma-$ 피복값은 기껏 1/2임을 알수 있다.

즉 E에 속하는 점들의 γ -피복값합은 기껏 $(1/2)|E|=n/(2\gamma)$ 이다.

 $(i-1)/\gamma \le y < i/\gamma$, $i \ge 2$ 부터는 정리 1의 증명방법을 그대로 적용한다. 즉 비증가함수 f(1) := n/2, $f(i) := n/i^2$ ($i \ge 2$) 라고 하자. 그러면 결국

$$\sum_{i=1}^{\lceil n\gamma \rceil} (f(i)g_{\gamma}(i)) \le n(1/2 + \sum_{i=2}^{\lceil n\gamma \rceil} (1/i^2)) / \gamma < n(\pi^2/6 - 1/2) / \gamma$$

를 얻는다.(증명끝)

참 고 문 헌

- [1] Roman Kolpakov et al.; Proc. CPM., LNCS, 8486, 212, 2014.
- [2] Maxime Crochemore et al.; arXiv:1509.01221v3[cs.FL], 2, 2015.
- [3] Pawel Gawrychowski et al.; Theoret. Comput. Sci., 62, 1, 162, 2018.

주체109(2020)년 6월 5일 원고접수

A Computing Way about Bound for All Maximal α -Gapped Repeats by γ -Cover

Kang Jin Ung, Jo Yong Son

In this paper, we improved a computing way of partitioning the set of all maximal α – gapped repeats, defined γ – cover weight and computed a bound for all maximal α – gapped repeats by γ – cover at $n(\pi^2/6-1/2)/\gamma$.

Keywords: γ – cover, maximal α – gapped repeat