

WEBENCH® Design Report

VinMin = 6.0V VinMax = 14.0V Vout = 5.0V Iout = 2.5A

Device = TPS82130SILR Topology = Buck Created = 3/27/17 5:54:51 AM BOM Cost = \$2.12 BOM Count = 7 Total Pd = 1.34W

> Vout = 5.0V lout = 2.5A

Design: 957852/92 TPS82130SILR TPS82130SILR 6.0V-14.0V to 5.00V @ 2.5A

My Comments

No comments

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cin	Taiyo Yuden	TMK316BJ106KL-T Series= X5R	Cap= 10.0 uF VDC= 25.0 V IRMS= 0.0 A	1	\$0.05	1206 11 mm ²
2.	Cout	Taiyo Yuden	LMK212BJ226MG-T Series= X5R	Cap= 22.0 uF VDC= 10.0 V IRMS= 0.0 A	1	\$0.13	0805 7 mm ²
3.	Css	Samsung Electro- Mechanics	CL21C621JBCNNNC Series= C0G/NP0	Cap= 620.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
4.	Rfbb	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
5.	Rfbt	Vishay-Dale	CRCW0402523KFKED Series= CRCWe3	Res= 523.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
6.	Rpg	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
7.	U1	Texas Instruments	TPS82130SILR	Switcher	1	\$1.90	Oll cocco CMD 45 vvv²

SIL0008D_SMD 15 mm²

Operating Values

$-$ p \circ	rainig varace			
#	Name	Value	Category	Description
1.	Cin IRMS	1.212 A	Current	Input capacitor RMS ripple current
2.	Cout IRMS	393.892 mA	Current	Output capacitor RMS ripple current
3.	lin Avg	988.39 mA	Current	Average input current
4.	BOM Count	7	General	Total Design BOM count
5.	FootPrint	49.0 mm ²	General	Total Foot Print Area of BOM components
6.	Frequency	2.262 MHz	General	Switching frequency
7.	Mode	CCM	General	Conduction Mode
8.	Pout	12.5 W	General	Total output power
9.	Total BOM	\$2.12	General	Total BOM Cost
10.	ICThetaJA Effective	46.1 degC/W	Op_Point	Effective IC Junction-to-Ambient Thermal Resistance
11.	Vout Actual	4.984 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
12.	Vout OP	5.0 V	Op_Point	Operational Output Voltage
13.	Duty Cycle	37.723 %	Op_point	Duty cycle
14.	Efficiency	90.334 %	Op_point	Steady state efficiency
15.	IC Tj	91.657 degC	Op_point	IC junction temperature
16.	IOUT_OP	2.5 A	Op_point	lout operating point
17.	VIN_OP	14.0 V	Op_point	Vin operating point
18.	Vout p-p	3.974 mV	Op_point	Peak-to-peak output ripple voltage
19.	Cin Pd	0.0 W	Power	Input capacitor power dissipation
20.	Cout Pd	0.0 W	Power	Output capacitor power dissipation
21.	IC Pd	1.337 W	Power	IC power dissipation
22.	Total Pd	1.338 W	Power	Total Power Dissipation
23.	Vout Tolerance	4.62 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

#	Name	Value	Description
1.	lout	2.5	Maximum Output Current
2.	VinMax	14.0	Maximum input voltage
3.	VinMin	6.0	Minimum input voltage
4.	Vout	5.0	Output Voltage
5.	base_pn	TPS82130	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

- 1. Feature Highlights: DCS-Control(TM) Architecture with up to 3A output current, Power module with integrated inductor, 3V to 17V Input Voltage Range, Adjustable output voltage from 0.9V to 5V, Optional softstart capacitor for slow startup, Power Save Mode for light load efficiency, 100% duty cycle for lowest dropout, PG=Low when device is in shutdown through EN or Thermal Shutdown
- 2. TPS82130 Product Folder: http://www.ti.com/product/TPS82130: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.