Single server queuing models

- **1.** Write a G/G/1 simulator. Your program can be based on the simulator that is presented in the 841 Reader, pp. 340-345 (you may use that simulator). The simulator should provide uniform and exponential distributions of interarrival and service times, as well as constant values.
 - (a) The simulator should compute the average value and the standard deviation of the following parameters:
 - interarrival time
 - service time
 - queue length
 - server utilization
 - response time
 - (b) [extra credit] Expand your simulator to present the distribution of response times and queue lengths.

2

#	Distribution of interarrival time
1	Constant value: 2 sec
2	Exponential with mean value of 2 sec
3	Uniform from 1 to 3 seconds

#	Distribution of service time
1	Constant value: 1 sec
2	Exponential with mean value of 1 sec
3	Uniform from 1 to 2 seconds

A single server system has three different distributions of interarrival time and three different distributions of service time presented in the above tables. There are 3*3=9 different combinations of interarrival and service time distributions. For each of these combinations compute the following indicators

- Server utilization U
- Mean response time R
- Mean queue length Q
- Time spent waiting in queue (before the service) W

To reduce computations it is useful to write a short program that computes U,R,Q, and W.

Then use your G/G/1 simulator to compute the results in the following table:

a dist	s dist	Uan	Usim	E[%]	Qan	Qsim	E[%]	Ran	Rsim	E[%]
1	1									
1	2									
1	3									
2	1									
2	2									
2	3									
3	1									
3	2							·		
3	3									

a dist = distribution type # of interarrival time, s dist = distribution type # of service time, an = analytic result, sim = result obtained from simulator, E = relative error (E=100*(sim - an)/an)