개인 맞춤형 주거 지역 추천 서비스

목차

01. 팀 소개

02. 프로젝트 소개

01. 개발 배경

02.사이트 구조도

03. 차별점

03. 프로젝트 개발 과정

01. 설계도 및 개발 도구

02. 분석 프로세스

03. 주요 기능

04. 프로젝트 결과

01. 시연 영상

02. 기대효과 및 활용분야

팀 소개

김시은

데이터 수집 및 전처리 데이터 시각화

김지호

웹 디자인 프론트엔드 김효정

백엔드

이현지

데이터 수집 및 전처리 알고리즘

개발 배경

01. 기존 부동산 애플리케이션의 한계점 보완

기존의 부동산 애플리케이션은 **집의 위치, 가격, 평수에 치중한 정보만을 제공**한다. 하지만 집을 구할 때 우리는 집의 위치, 가격, 평수 외에도 교통, 안전, 직장과의 거리, 편의시설 등 많은 정보를 필요로 한다. 이러한 정보를 제공해주는 서비스의 부재로 대부분의 사람들은 **본인의 라이프 스타일에 맞는 주거지를 찾기 위해서 많은 시간과 비용을 투자**해야한다.

이 프로젝트를 통해 사용자의 나이, 성별, 라이프 스타일에 적합한 지역을 추천하여 집을 구하는 사용자의 만족도를 향상시키고자 한다.

사진1. 기존 부동산 애플리케이션이 제공하는 정보의 한계

개발 배경

02. 주거 환경과 주거지에 대한 중요성 부각

포스트 코로나 시대의 영향으로 '집'의 의미가 변화했다. 팬데믹 이전까지만 해도 집은 안락한 휴식처 혹은 잠깐 머물다가는 숙소에 가까웠다. 하지만 더 이상 집은 거쳐 가는 곳이 아니다. 이제 집은 사회·문화·경제 등과 관련된 일련의 모든 생활 활동이 가능한 복합생활공간'과 다를 바 없다.1) 특히 사람들은 집의 내부만큼이나 인근 동네의 기능에도 큰 관심을 갖기 시작했다. 신조어 '슬세권'2) 등장은 주변 환경의 중요성을 강조한다. 이 프로젝트를 통해 데이터 시각화를 기반으로 주거지역 정보를 제공하여 사람들이 보다 편리하게 만족스러운 주거지역을 찾을 수 있도록 한다.

사진2. 코로나 이후 주거 환경 트렌드 ' 레이어드 홈'

1) 최아름. (2021). '집방'을 통해 본 '집'의 의미와 역할 변화에 대한 고찰. 문화콘텐츠연구,(21), 193-226. 2) 슬리퍼 차림과 같은 편한 복장으로 카페나 편의점, 도서관, 쇼핑몰 같은 편의시설을 사용할 수 있는 주거 권역

사이트 구조도

차별점

'나'의 라이프 스타일에 맞는 주거지역 추천

나이, 성별, 부양가족, 취미 등 오로지 '나'의 정보를 기반으로 주거지역을 추천해주는 서비스

주거지역의 다양한 정보를 한 눈에 비교

별도로 검색할 필요없이 지역의 모든 정보를 한 눈에 확인 가능

설계도 및 개발도구

기능	개발도구
데이터 시각화	- PowerBI
맞춤형 지역 추천	- Python package (Pandas, Numpy, Scikit-learn) - Colab
프론트엔드	- React
백엔드	- Node js
데이터	- 수집 : 공공데이터 - 전처리 : Pandas

분석 프로세스

주요 기능

	구분	기능						
데이터	지역 대시보드	주거지역의 주변 환경, 복지, 교통 등의 지표를 사용자가 한 눈에 보기 쉽게 대시보드로 시각회 특정 지역의 모든 지표 를 한 눈에 확인 가능 (구 단위 정보 제공)						
시각화	시각화 지도 - 지도 상에 데이터를 시각화 - 특정 요소에 대해 전체 지역의 정보를 한 눈에 볼 수 있음.							
맞춤형	형 지역 추천	- 추천 알고리즘을 통해 사용자가 입력한 데이터와 매칭되는 지역을 추천 - 사용자는 연령, 성별, 취미와 중요하게 고려하는 요소(대중교통, 복지•의료시설 등)를 입력						
로그인	/ 마이페이지	- 소셜 계정 연동을 통한 편리한 로그인 - 사용자의 라이프 스타일 정보 저장 - 관심 지역 저장 및 지역 간 특징 비교						

주요 기능

콘텐츠 기반 모델 (CB)

모델 특징 : 사용자 정보, 아이템 정보를 활용하는 모델

모델 강점: 항목의 특성을 기반으로 분석

- 콜드스타트, 특이 취향 유저에 대한 처리 가능

- 가장 원시적인 모델로 직접적으로 특성에 대한 가중치 조절 가능

사용자 기반 협력 필터링 모델 (CF, Collaborative Filtering) [6]

유사도 행렬을 기반으로 사용자와 유사한 선호도를 가진 다른 사용자가 구매하거나 선호하는 상품을 추천하는 기법

그림1. CF 모델 예시 [5]

주요 기능

콘텐츠 기반 모델 (CB) 예시

User matrix 가중치 정보

	경찰서	마트	미술관	공연장	테니스	축구	초등학교	공원	미세먼지	병원	지하철	버스	노인복지시설
Α	10	6	1	1	6	1	4	10	3	7	11	11	2
В	7	7	1	1	1	6	3	8	2	8	12	7	4
C	6	7	1	6	1	1	8	7	4	8	6	11	8
D	8	5	6	1	1	1	6	12	8	6	3	3	2

Item matrix 자치구별 특성 정보

	강남구	강동구	강북구	강서구	관악구	광진구	구로구	공천구	노원구	도봉구
경찰서	0.166040	0.504123	0.518537	0.922622	0.539030	0.305636	0.009182	0.888631	0.945022	0.517929
마트	0.413616	0.170858	0.122650	0.121031	0.743667	0.987296	0.528436	0.035151	0.381106	0.305310
미술관	0.000757	0.124618	0.925627	0.862807	0.695232	0.804820	0.070049	0.869554	0.753210	0.968609
공연장	0.655050	0.155790	0.482464	0.450374	0.052364	0.996938	0.015063	0.591317	0.172262	0.010102
테니스	0.520953	0.677668	0.193265	0.407466	0.317512	0.682270	0.443371	0.898093	0.205366	0.945218
축구	0.201792	0.790534	0.876274	0.529418	0.446671	0.372449	0.887418	0.755597	0.496506	0.592141
초등학교	0.317354	0.584853	0.697348	0.199177	0.507345	0.040719	0.212259	0.844177	0.530031	0.005382
공원	0.645463	0.421798	0.478593	0.336234	0.758430	0.146772	0.963641	0.516519	0.324349	0.641324
미세먼지	0.733647	0.394459	0.560116	0.164915	0.995805	0.865096	0.378240	0.802366	0.511513	0.386464
병원	0.824380	0.286702	0.503665	0.128179	0.045627	0.955536	0.427687	0.797893	0.026753	0.896670
지하철	0.797121	0.847622	0.362927	0.405662	0.504514	0.508467	0.883019	0.339916	0.070819	0.503527
따름이	0.075610	0.193837	0.303140	0.924731	0.646911	0.058646	0.004158	0.769158	0.450794	0.799366
인복지시설	0.829940	0.458442	0.998480	0.250926	0.310822	0.204735	0.947169	0.566732	0.276322	0.054862

	강남구	강동구	강북구	강서구	관악구	광진구	구로구	금천구	노원구	도봉구
Α	31.525291	40.147040	46.375280	25.018446	26.245367	47.813658	34.462801	44.625601	46.227770	42.904204
В	30.535635	35.860424	39.424981	24.476356	24.415362	40.641647	30.857115	40.718282	41.600804	40.894238
C	34.218555	37.673022	44.729631	24.398890	28.858180	46.085683	35.468856	41.550753	48.605106	46.087203
D	22.557123	27.982963	34.262560	23.662304	24.757876	39.852693	32.774256	35.071538	41.685719	37.477234

User-item martix

사용자 c의 점수가 가장 높은 구 3개 찾기
user_C_scores = user_item_matrix3.loc['C']
top_3_gu = user_C_scores.nlargest(3).index

print("사용자 c에 대한 가장 높은 점수를 가지는 구 3개:")
print(top_3_gu)

사용자 c에 대한 가장 높은 점수를 가지는 구 3개: Index(['노원구', '도봉구', '광진구'], dtype='object')

시연 영상

프로젝트 결과

기대효과 및 활용분야

■ 사용자 측면

- 만족도와 삶의 질 향상
- 많은 시간과 노력을 들이지 않고 최적화된 주거지를 찾을 수 있음

■ 기술적 측면

- 데이터 시각화를 통해 복자한 데이터를 쉽게 표현
- 데이터 분석을 통해 최적의 주거지를 제안

■ 사회적 측면

- 지속 가능한 도시 발전
- 지역 경제에 긍정적 영향
- 정부, 지자체의 투자 가능성

< 부록 >

발표 내용 외 추가 기능 설명

설문조사 페이지

사용자가 상반되는 답변 클릭 시 다른 답변 사전 차단

사용자 답변 중 특정 답변이 포함되면 disabled 상태로 전환

설문조사 페이지

답변의 양이 많은 경우 버튼으로 구현하여 사용자의 편리성 향상 화면 상에 사용자의 답변이 바로 보이도록 구성.

	내가 중요하		Q.07 소를 1순위부터 7순 이후 다음 페이지로 처음부터 다시하기 3			
안전	생활시설	교육	의료	환경	교통	기타 (금액, 평수 등)
		1순위 의료	2순위 3순위 환경 교통	4순위 기타		
			이전			

사용자가 누르는 순서대로 화면에 나열

지역 추천 결과 페이지

맞춤형 주거지역 3곳 추천

PowerBI 프로그램 연동 - 시각화지도 보기, 대시보드 보기

시각화 지도 보기 대시보드 보기

지역 추천 결과 페이지

나에게 딱 맞는 주거지역 순위

버튼을 눌러 지역에 대한 다양한 정보를 탐색해보세요!

∭ 지도 보기

1위 **도봉구**

대시보드 보기 / 관심목록 저장하기

#편안한 주거환경과 공원이 많은 지역

2위 **서대문구**

해당 지역에 대한 간략한 특징 소개

#역사적인 명소와 문화 시설이 풍부한 지역

3위 **노원구**

#주택가와 자연이 조화로운 도시

라이프 스타일 설문조사 처음부터 다시하기

마이페이지

한 눈에 여러 지역 특징 비교하기

김지호님의 딱 맞는 관심목록 리스트

관심지역이 없습니다.

지금 바로 오직 나를 위한 지역을 추천받아요!

지금 바로 추천받기

김지호님의 딱 맞는 관심목록 리스트

노원구	•	강북구	•	종로구	•
#주택가와 자연	인 조화로운 도시	#자연경관이	아름다운 도시	#역사와 전통(이 어우러진 지역
평균시세	n000만원	평균시세	n000만원	평균시세	n000만원
복지	n위	복지	n위	복지	n위
교통	n위	교통	n위	교통	n위

추천 알고리즘

- 항목별 함수 생성: 사용자 설문 결과가 저장된 파 일을 불러와서 가중치를 부여하는 것 항목별 함 수 생성
- 효율적인 처리 방식: dataframe을 dictionary 형태 로 전환하여 key, value를 통해 코드 단순화

```
def update_ten(user,matrix):
   if user == '자연':
       matrix['공원'] += 5
   elif user == '핫플':
       matrix['쇼핑'] += 5
# key와 함수 매핑
key_to_func = {
   'sex': update_gender,
   'age': update_age,
   'family': update_family,
   'marry': update_marry,
   'child': update_child,
   'hobby': update_hobby,
   'sports': update_sports,
   # 'car':
   # 'env':
    'wel':update wel,
   'ten': update_ten
##### 사용자 정보에 따라 matrix 업데이트
for key, update_func in key_to_func.items():
   for user, info in zip(users, user_matrix.index):
       update_func(user[key], user_matrix.loc[info])
```

name	age	child	hobby	sex	sports	ten	wel	marry	family	location1	location2	location3
김효정	10대	["없음"]	["운동"]	남성	["축구"]	핫플 도시	["필요없	[음"]				
김효정	20대	["고등학교	["쇼핑","기	여성		핫플	["필요없	음 기혼	5인	강남구	관악구	서초구
name	e	안전	생활	시설	교육	의	료	환경		교통	기ㅌ	}
김효	정	7	1		2	3		4		5	6	
name	·	광역버스	기차		따릉이	시내	버스	자차	지	 하철	_	
김효정	덩	o	o		0	5		0	O			
nam		공원		네먼지		,	풍수히	Н	중요	요하게 성	생각하는	=
김효	정	0	0		0		5		요 : 저 장	노에 가중 당	동치를	두어

```
# 마지막 유저만 추출
  last_user = survey_result.iloc[-1:]
  last_user
                    child hobby sex sports ten wel marry family location1 location2 location3
   11 김효정 50대 ["고등학교"] ["쇼핑"] 여성
users = last_user.to_dict(orient='records')
  users
  [{'name': '김효정',
     age': '50CH',
    'child': '["고등학교"]',
    'hobby': '["쇼핑"]',
     'sex': '여성',
     'sports': nan,
    'ten': nan,
     wel': nan,
     'marry': '기혼'
     family': '20
     'location1': '강남구
     'location2': '관악구'
    'location3': '서초구'}]
```

추천 알고리즘

- 항목별 함수 생성: 사용자 설문 결과가 저장된 파 일을 불러와서 가중치를 부여하는 것 항목별 함 수 생성
- 효율적인 처리 방식: dataframe을 dictionary 형태 로 전환하여 key, value를 통해 코드 단순화

```
def update_ten(user,matrix):
   if user == '자연':
       matrix['공원'] += 5
   elif user == '핫플':
       matrix['쇼핑'] += 5
# key와 함수 매핑
key_to_func = {
   'sex': update_gender,
   'age': update_age,
   'family': update_family,
   'marry': update_marry,
   'child': update_child,
   'hobby': update_hobby,
   'sports': update_sports,
   # 'car':
   # 'env':
    'wel':update wel,
   'ten': update_ten
##### 사용자 정보에 따라 matrix 업데이트
for key, update_func in key_to_func.items():
   for user, info in zip(users, user_matrix.index):
       update_func(user[key], user_matrix.loc[info])
```

name	age	child	hobby	sex	sports	ten	wel	marry	family	location1	location2	location3
김효정	10대	["없음"]	["운동"]	남성	["축구"]	핫플 도시	["필요없	[음"]				
김효정	20대	["고등학교	["쇼핑","기	여성		핫플	["필요없	음 기혼	5인	강남구	관악구	서초구
name	e	안전	생활	시설	교육	의	료	환경		교통	기ㅌ	}
김효	정	7	1		2	3		4		5	6	
name	·	광역버스	기차		따릉이	시내	버스	자차	지	 하철	_	
김효정	덩	o	o		0	5		0	O			
nam		공원		네먼지		,	풍수히	Н	중요	요하게 성	생각하는	=
김효	정	0	0		0		5		요 : 저 장	노에 가중 당	동치를	두어

```
# 마지막 유저만 추출
  last_user = survey_result.iloc[-1:]
  last_user
                    child hobby sex sports ten wel marry family location1 location2 location3
   11 김효정 50대 ["고등학교"] ["쇼핑"] 여성
users = last_user.to_dict(orient='records')
  users
  [{'name': '김효정',
     age': '50CH',
    'child': '["고등학교"]',
    'hobby': '["쇼핑"]',
     'sex': '여성',
     'sports': nan,
    'ten': nan,
     wel': nan,
     'marry': '기혼'
     family': '20
     'location1': '강남구
     'location2': '관악구'
    'location3': '서초구'}]
```

생성형 Al

- 실행 화면

