TSKS14 Multiple Antenna Communications

Lecture 6, 2020

Emil Björnson

Outline of this lecture

- Channel coherence intervals
 - Coherence time and coherence bandwidth
- Massive MIMO
 - Motivation and basic properties
 - Duplexing modes
 - Uplink system model

Linear time-invariant channels

- Is the channel a linear time-invariant (LTI) filter?
- Linearity due to Maxwell's equations
- Coherence time T_c
 - Time that channel is *approximately* time-invariant
 - Simple model: $T_c = \lambda/(2v)$ or $T_c = \lambda/(4v)$ seconds

Proportional to wavelength, inversely to speed v

Channel dispersion

• Is the channel dispersive?

- Coherence bandwidth B_c
 - Bandwidth over which frequency response $G(f) \approx g$ is almost constant:

$$g(t) = g \cdot \delta(t)$$

• Simple model: $B_c = c/|d_{\text{max}} - d_{\text{min}}|$ or $B_c = c/(2|d_{\text{max}} - d_{\text{min}}|)$ Hz

Inversely proportional to path length difference

Coherence interval (block fading)

- Divide bandwidth and time resources into coherence intervals
 - According to sampling theorem: $\tau_C = B_C T_C$ complex samples
 - Channel time-invariant and described by a scalar

This is an example of fast fading

How large is a coherence interval?

• Example: Support vehicular speed in suburban area:

$$v = 30 \text{ m/s} = 108 \text{ km/h}$$

 $|d_{\text{max}} - d_{\text{min}}| = 1000 \text{ m}$

- Typical carrier frequency: f = 2 GHz, $\lambda = 15$ cm
 - Coherence time: $T_c = \frac{\lambda}{2v} = \frac{0.15}{2.30} = 2.5 \text{ ms}$
 - Coherence bandwidth: $B_c = \frac{c}{|d_{\text{max}} d_{\text{min}}|} = \frac{3.10^8}{1000} = 300 \text{ kHz}$

Coherence interval:

 $\tau_c = 750$ complex samples

Recall: Multiuser MIMO Communication

- Uplink
 - From *K* users to base station
 - Multipoint-to-point MIMO

- Downlink
 - From base station to *K* users
 - Point-to-multipoint MIMO

base station

Multiuser MIMO vs. Massive MIMO

- Conventional multiuser MIMO
 - $M \le 8$, $K \le 4$
 - Used in LTE and WiFi
 - Seldom reaches the min(M, K) = K capacity gain
- Massive MIMO
 - $M \approx 100$, $K \approx 10$ (or more)
 - More directive signals: Less randomness, larger beamforming gain, less interference

Motivation for Massive MIMO

• Recall: Sum Capacity with K = 2:

$$R_1 + R_2 = \log_2(\det(\mathbf{I}_M + \rho_{ul}\mathbf{G}\mathbf{G}^H)) = \log_2(\det(\mathbf{I}_2 + \rho_{ul}\mathbf{G}^H\mathbf{G}))$$

• If
$$G = [g_1 g_2]$$
:
$$G^H G = \begin{vmatrix} ||g_1||^2 & g_1^H g_2 \\ g_2^H g_1 & ||g_2||^2 \end{vmatrix}$$

Expanding sum capacity:

$$\log_2(\det(\mathbf{I}_2 + \rho_{ul}\mathbf{G}^H\mathbf{G})) = \log_2\left((1 + \rho_{ul}\|\mathbf{g}_1\|^2)(1 + \rho_{ul}\|\mathbf{g}_2\|^2) - \rho_{ul}^2|\mathbf{g}_1^H\mathbf{g}_2|^2\right)$$

$$\leq \log_2(1 + \rho_{ul}\|\mathbf{g}_1\|^2) + \log_2(1 + \rho_{ul}\|\mathbf{g}_2\|^2)$$

Motivation for Massive MIMO: Favorable propagation

• Consider two M-antenna channels \boldsymbol{g}_1 , \boldsymbol{g}_2

Inner product $\frac{|g_1^H g_2|}{M}$ converges to zero as $M \to \infty$

Less interference

Related to beamforming gain and beamwidth

Number of antennas (M)

Reference: J. Hoydis, C. Hoek, T. Wild, and S. ten Brink, "Channel Measurements for Large Antenna Arrays," ISWCS 2012

Motivation for Massive MIMO: Channel hardening

• Consider an M-antenna channel $g \sim CN(\mathbf{0}, \mathbf{I}_M)$

$$\frac{1}{M} \|\boldsymbol{g}\|^2$$
 has
$$\begin{cases} \text{Mean: 1} \\ \text{Variance: } 1/M \end{cases}$$

Consequence of spatial diversity: $\|\boldsymbol{g}\|^2 \approx \mathbb{E}\{\|\boldsymbol{g}\|^2\}$ when M is large

Consequence of beamforming gain: $\|g\|^2 \approx M$ when M is large

Background of Massive MIMO

- Proposed by Thomas L. Marzetta
 - Awarded *honorary doctor* at Linköping University, 2015

"Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas," IEEE Trans. Wireless Communications, 2010.

Now a main component of 5G

Marzetta's asymptotic motivation

- Example: Uplink with i.i.d. Rayleigh fading
 - Two users, send signals x_k for k = 1.2
 - Channels: $\boldsymbol{g}_k = \left[g_k^1 \dots g_k^M\right]^T \sim CN(\boldsymbol{0}, \boldsymbol{I}_M)$
 - Noise: $\mathbf{w} \sim CN(\mathbf{0}, \mathbf{I}_M)$
 - Received: $y = g_1 x_1 + g_2 x_2 + w$

- Signal remains: $a_1^H g_1 = \frac{1}{M} ||g_1||^2 \xrightarrow{M \to \infty} E[|g_1^1|^2] = 1$
- Interference vanishes: $a_1^H g_2 = \frac{1}{M} g_1^H g_2 \xrightarrow{M \to \infty} E[g_1^{1*} g_2^1] = 0$
- Noise vanishes: $a_1^H w = \frac{1}{M} g_1^H w \xrightarrow{M \to \infty} E[g_1^{1*} w_1] = 0$

Asymptotically noise/interference-free communication: $\tilde{y}_1 \xrightarrow{M \to \infty} x_1$

Estimating the channel responses

- Channels: *K* users with *M*-length channels
 - Estimate *MK* coefficients in each coherence interval
- Basic principle: Send known pilot signal

One pilot: Estimate all coefficients

M pilots to estimate all coefficients

- Time-division duplex (TDD): Separate uplink and downlink in time
 - *K* pilots are needed
- Frequency-division duplex (FDD): Separate uplink and downlink in frequency
 - *M* pilots are needed
- Example: $M = 100, K = 10, \tau_c = 200$

TDD operation is key!

Operating a TDD Massive MIMO System

Frames matched to coherence intervals

- Fixed single-tap channel responses
- Coherence time: T_c s
- Coherence bandwidth: B_c Hz
- Interval contains $\tau_c = T_c B_c$ symbols

Uplink pilots:

Enable channel estimation

Uplink Massive MIMO system model

• Received signal:

$$y = \sqrt{\rho_{ul}}Gx + w$$

where

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_M \end{pmatrix} \quad \mathbf{G} = \begin{pmatrix} g_1^1 & \cdots & g_K^1 \\ \vdots & \ddots & \vdots \\ g_1^M & \cdots & g_K^M \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_K \end{pmatrix} \quad \mathbf{w} = \begin{pmatrix} w_1 \\ \vdots \\ w_M \end{pmatrix}$$

• Parameters are normalized: Maximum power is ρ_{ul} $x_1, ..., x_K$ has power ≤ 1

• Channel of user k: $g_k^1, ..., g_k^M \sim CN(0, \beta_k)$

• Normalized noise: $\mathbf{w} \sim CN(\mathbf{0}, \mathbf{I}_M)$

Large-scale fading coefficient

Modeling of power and large-scale fading coefficients

- Maximum SNR of user k is $\rho_{ul}\beta_k$
- How to model ρ_{ul} ?

$$\rho_{ul} = \frac{\text{Uplink radiated power} \cdot \text{Antenna gains}}{BN_0}$$

$$N_0 = 10^{-17}$$

- How to model β_k ?
 - Example: 3GPP-type model at distance d_k :

$$\beta_k = 10^{-1.53} \left(\frac{d_k}{1 \text{ m}}\right)^{-3.76}$$
 for $d_k \ge 35 \text{ m}$

Typical values:

B = 10 MHz

Radiated power: 100 mW

Antenna gains = 0 dBi

Typical values:

 $d_k = 35 \text{ m}$: $\beta_k = -73 \text{ dB}$

 $d_k = 1 \text{ km}: \beta_k = -128 \text{ dB}$

Summary

- Massive MIMO is multi-user MIMO with many antennas and users
 - No strict definition exists
- TDD operation
 - Divide time-frequency resources into frames
 - Match frame size to coherence intervals
 - Send pilots in uplink for channel estimation
 - Switch between uplink/downlink data in same coherence interval

End of Lecture 6

TSKS14 Multiple Antenna Communications

