ALPAYDIN'S BOOK: Ex. 11.14.3 NN

Machine Learning 2024-25 Course Activity

 $Furno\ Francesco\ -\ francesco. furno\ @studenti.unipd.it\ -\ 2139507$

December 18, 2024

Exercise 11.14.3

Show the perceptron that calculates the parity of its three inputs.

Parity function

Let's see what is a parity function. There exist two types of it:

- even parity: outputs 1 when the number of values set to 1 is even. For example:
 - $1,0,1 \Rightarrow 1$
 - \cdot 1,0,0 \Rightarrow 0
- odd parity: outputs 1 when the number of values set to 1 is odd. For example:
 - \cdot 1, 0, 1 \Rightarrow 0
 - \cdot 1, 1, 1 \Rightarrow 1

Now, let's consider three inputs, A, B, C and the *odd parity* function.

\boldsymbol{A}	B	C	$\operatorname{Parity}(A,B,C)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Table 1: Parity(A, B, C) truth table

Note that the *even parity* function can be obtained as \neg Parity(A, B, C).

Relation between Parity and XOR

The XOR function is strictly related to the parity function. The XOR function directly computes the *odd parity* of its input.

\boldsymbol{A}	\boldsymbol{B}	C	$A \oplus B$	$A \oplus B \oplus C$
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	0	1

Table 2: $A \oplus B \oplus C$ truth table

Hence,

- the odd parity of (A,B,C) can be seen as $(A\oplus B\oplus C)$.
- the even parity of (A, B, C) can be seen as $\neg (A \oplus B \oplus C)$

Perceptron implementation? Not with a single layer

We already saw that the *odd parity* function can be seen as a combination of two XOR functions. Is it possible to implement a perceptron for the *odd parity* function? Not with a single layer, in fact, there is no hyperplane that linearly separates the positive and negative values in the XOR function.

Figure 1: Visual representation of $A \oplus B$

Since the XOR function, which forms the basis of the parity function, is not linearly separable, it is impossible to construct a hyperplane that separates the positive and negative values of the parity function in a three-dimensional space. Consequently, a single-layer perceptron cannot implement the parity function for three inputs.