ピーン

Midterm Exam STRUCTURE OF MATTER

November 28 2014

Exercise 1 8 Points A certain knowledge of scales and dimensions of physical quantities is essential in all fields of physics.

- i) Please give an estimate value for the de Broglie wavelength of a resting football ($\mathbf{v} = 0$). What is a typical wavelength of IR, visible light and UV?
- ii) Order the following colors with respect to the wavelength. Start with the shortest wavelength: yellow, red, blue, green. Fed you Gran believe
- Which of the colors mentioned in ii) will create the highest voltage via the photoelectric effect and why?
- (v) An electron and a football travel at $v = 1 ms^{-1}$. Which of them has the shorter de Broglie wavelength and why?
 - v) Which of the displayed lattices has a nonisotropic optical response? In which plane is the electric field always parallel to the induced polarization for all three crystals!

Figure 1: Unit cells of different lattices

Exercise 2 Consider the electric field of a plane wave propagating in vacuum given by $\mathbf{E}(\mathbf{r},t) = \Re \mathbf{E}_0 \left\{ e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} \right\}$.

Under which conditions is this field divergence-free (div $\mathbf{E}=0$)?

→ ベランニ ! Ric Ero さ、

Please derive the magnetic field $\mathbf{B}(\mathbf{r},t)$ linked to this electric field in the <u>absence of external currents</u>.

Derive the expression for the time-averaged Poynting vector of this plane wave.

Please derive the general wave equation for the B-field from Maxwell's equations.

Please turn page

In frequency domain, the response of a material to an external electric field is described by the complex dielectric function $\varepsilon(\omega)$. The respective dielectric functions of a dielectric material with a single resonance and a typical metal are given by

$$\varepsilon_{dielectric}(\omega) = 1 + \frac{f}{\omega_0^2 - \omega^2 - i\gamma\omega}, \qquad \varepsilon_{metal}(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + i\gamma\omega}.$$

- i) Please sketch $\varepsilon'(\omega)$ and $\varepsilon''(\omega)$ for both cases. Mark the regions of normal and anomalous dispersion and the region of strong absorption for the dielectric.
- Λ) Give the formula of the plasma frequency in a metal. What happens with $\epsilon'_{motal}(\omega)$ in the vicinity of the plasma frequency? Is there anything similar in dielectrics?
- iii) What happens to the field propagation for $\varepsilon'(\omega) < 0$?

5 Points Exercise 4

- i) Assume that the imaginary part of the dielectric function is given by $\varepsilon''(\omega) = A\delta(\omega \omega_0)$ for positive frequencies $\omega > 0$.
 - What does $\varepsilon''(\omega)$ look like for $\omega < 0$? b) Calculate $\varepsilon'(\omega)$ for all frequencies.
- ii) Name two properties of the response function $R(\tau)$ which are necessary to derive the Kramers-Kronig relations?

8 Points Exercise 5

Consider a massive particle in a potential box

 $V(x) = \begin{cases} 0 & 0 \le x \le a, \\ \infty & \text{otherwise} \end{cases}$

The particle shall be in a superposition composed of the ground state and the first excited state, so that its wavefunction at t = 0 can be written as

$$\Psi(x, t = 0) = c_1 \psi_1(x) + c_2 \psi_2(x),$$

where c_1 and c_2 are constants and $\psi_1(x)$ and $\psi_2(x)$ are the eigenfunctions corresponding to the ground state and first excited state, respectively. The average value of the energy of the particle is $\frac{\pi^2 h^2}{ma^2}$. What does this mean for the constants c_1 and c_2 ? Calculate the wavefunction $\Psi(x,t)$ for t>0.