Уточнение исчисления предикатов

- Пусть требуется доказывать утверждения про равенство. Введём E(p,q) предикат «равенство».
- ightharpoonup Однако ot
 ot E(p,q)
 ightarrow E(q,p): если $D=\{0,1\}$ и E(p,q)::=(p>q), то ot
 ot E(p,q)
 ightarrow E(q,p).
- lacktriangle Конечно, можем указывать $\forall p. \forall q. E(p,q)
 ightarrow E(q,p) dash arphi.$
- lacktriangle Но лучше добавим аксиому orall p. orall q. E(p,q)
 ightarrow E(q,p).
- Добавив необходимые аксиомы, получим теорию первого порядка.

Теория первого порядка

Определение

Теорией первого порядка назовём исчисление предикатов с дополнительными («нелогическими» или «математическими»):

- предикатными и функциональными символами;
- аксиомами.

Сущности, взятые из исходного исчисления предикатов, назовём логическими

Порядок логики/теории

Порядок	Кванторы	Формализует суждения
нулевой	запрещены	об отдельных значениях
первый	по предметным переменным	о множествах
	$\{2,3,5,7,\ldots\} = \{t \mid \forall p. \forall q. (p)\}$	$\neq 1 \And q \neq 1) \rightarrow (t \neq p \cdot q)\}$
второй	по предикатным переменным	о множествах множеств
	$S = \{\{t \mid P(t)\} \mid \varphi[p := P]\}$	

```
Пример (логики 2 порядка) \alpha \to \beta \to \alpha \text{ (cx. акс. 1)} \qquad \forall a. \forall b. a \to b \to a let rec map f l = match l with map: \forall a. \forall b. (a \to b) \to a list | [] -> [] | l1::ls -> f l1:: map f l1 map ((+) 1) [1;2;3] = [2;3;4]
```

Формальная арифметика

Определение

Формальная арифметика — теория первого порядка, со следующими добавленными нелогическими . . .

- двухместными функциональными символами (+), (·);
 одноместным функциональным символом (′),
 нульместным функциональным символом 0;
- двухместным предикатным символом (=);
- восемью нелогическими аксиомами:

(A1)
$$a = b \rightarrow a = c \rightarrow b = c$$
 (A5) $a + 0 = a$
(A2) $a = b \rightarrow a' = b'$ (A6) $a + b' = (a + b)'$
(A3) $a' = b' \rightarrow a = b$ (A7) $a \cdot 0 = 0$
(A4) $\neg a' = 0$ (A8) $a \cdot b' = a \cdot b + a$

▶ нелогической схемой аксиом индукции $\psi[x:=0]$ & $(\forall x.\psi \to \psi[x:=x']) \to \psi$ с метапеременными x и ψ .

Докажем, что a=a

(16)

(17)

a = a

Пусть
$$\top ::= 0 = 0 \to 0 = 0 \to 0 = 0$$
, тогда:
(1) $a = b \to a = c \to b = c$ (Акс. А
(2) $(a = b \to a = c \to b = c) \to \top \to (a = b \to a = c \to b = c)$ (Сх. ам
(3) $\top \to (a = b \to a = c \to b = c)$ (М.Р. 3
(4) $\top \to (\forall c.a = b \to a = c \to b = c)$ (Введ.
(5) $\top \to (\forall b. \forall c.a = b \to a = c \to b = c)$ (Введ.
(6) $\top \to (\forall a. \forall b. \forall c.a = b \to a = c \to b = c)$ (Введ.
(7) \top

(8) $(\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c)$ (9) $(\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c) \rightarrow$

 $\rightarrow (\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)$ $\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c$ (10)

(12) $\forall c.a + 0 = a \rightarrow a + 0 = c \rightarrow a = c$ (14) $a+0=a \rightarrow a+0=a \rightarrow a=a$ (15)a + 0 = a

 $a+0=a\rightarrow a=a$

(Cx. ar (M.P. 3

> (M.P. (M.P.

(Akc. *I* (M.P.

(M.P.

(M.P.

Общие замечания

- ▶ Рассматриваем функции $\mathbb{N}_0^n \to \mathbb{N}_0$.
- ightharpoonup Обозначим вектор $\langle x_1, x_2, \dots, x_n \rangle$ как \overrightarrow{x} .

Примитивно-рекурсивные функции

Определение (Примитивы Z, N, U, S)

1. Примитив «Ноль» (Z)

$$Z: \mathbb{N}_0 \to \mathbb{N}_0, \qquad Z(x_1) = 0$$

2. Примитив «Инкремент» (N)

$$N: \mathbb{N}_0 \to \mathbb{N}_0, \qquad N(x_1) = x_1 + 1$$

3. Примитив «Проекция» (U) — семейство функций; пусть $k,n\in\mathbb{N}_0,k\leq n$

$$U_n^k: \mathbb{N}_0^n \to \mathbb{N}_0, \qquad U_n^k(\overrightarrow{x}) = x_k$$

4. Примитив «Подстановка» (S) — семейство функций; пусть $g: \mathbb{N}_0^k \to \mathbb{N}_0, \quad f_1, \dots, f_k: \mathbb{N}_0^n \to \mathbb{N}_0$ $S\langle g, f_1, f_2, \dots, f_k \rangle (\overrightarrow{x}) = g(f_1(\overrightarrow{x}), \dots, f_k(\overrightarrow{x}))$

Примитивная рекурсия

Определение (примитив «примитивная рекурсия», R)

Пусть $f:\mathbb{N}_0^n \to \mathbb{N}_0$ и $g:\mathbb{N}_0^{n+2} \to \mathbb{N}_0$. Тогда $R\langle f,g \rangle:\mathbb{N}_0^{n+1} \to \mathbb{N}_0$, причём

$$R\langle f,g\rangle(\overrightarrow{x},y) = \begin{cases} f(\overrightarrow{x}), & y = 0\\ g(\overrightarrow{x},y-1,R\langle f,g\rangle(\overrightarrow{x},y-1)), & y > 0 \end{cases}$$

Пояснение

Пример

$$R\langle f, g \rangle(\overrightarrow{x}, 3) = g(\overrightarrow{x}, 2, R\langle f, g \rangle(\overrightarrow{x}, 2))$$

$$= g(\overrightarrow{x}, 2, g(\overrightarrow{x}, 1, R\langle f, g \rangle(\overrightarrow{x}, 1)))$$

$$= g(\overrightarrow{x}, 2, g(\overrightarrow{x}, 1, g(\overrightarrow{x}, 0, R\langle f, g \rangle(\overrightarrow{x}, 0))))$$

$$= g(\overrightarrow{x}, 2, g(\overrightarrow{x}, 1, g(\overrightarrow{x}, 0, f(\overrightarrow{x}))))$$

Примитивно-рекурсивные функции

Определение

Функция f — примитивно-рекурсивна, если может быть выражена как композиция примитивов Z, N, U, S и R.

Теорема

$$f(x) = x + 2$$
 примитивно-рекурсивна

Доказательство.

$$f = S\langle N, N \rangle$$

$$N(x) = x + 1$$

$$S(g, f)(x) = g(f(x))$$

$$f,g = N$$

 $S\langle N,N\rangle(x) = N(N(x)) = (x+1)+1$

Примитивно-рекурсивные функции: x+y

Лемма

$$f(a,b) = a + b$$
 примитивно-рекурсивна

Доказательство.

$$f = R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle$$
:

$$R\langle f,g\rangle(x,y) = \begin{cases} f(x), & y=0\\ g(x,y-1,R\langle f,g\rangle(x,y-1)), & y>0 \end{cases}$$

- **>** База. $R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle (x,0) = U_1^1(x) = x$
- ▶ Переход. $R\langle U_1^1, S\langle N, U_3^3 \rangle\rangle(x, y+1) =$... = $S\langle N, U_3^3 \rangle(x, y, R\langle U_1^1(x), S\langle N, U_3^3 \rangle\rangle(x, y)) =$... = $S\langle N, U_3^3 \rangle(x, y, x+y) =$... = N(x+y) = x+y+1

Какие функции примитивно-рекурсивные?

- 1. Сложение, вычитание
- 2. Умножение, деление
- 3. Вычисление простых чисел
- 4. Неформально: все функции, вычисляемые конечным числом вложенных циклов for:

Общерекурсивные функции

Определение

Функция — общерекурсивная, если может быть построена при помощи примитивов Z, N, U, S, R и примитива минимизации:

```
M\langle f\rangle(x_1,x_2,\ldots,x_n)=\min\{y:f(x_1,x_2,\ldots,x_n,y)=0\}
Если f(x_1, x_2, ..., x_n, y) > 0 при любом y, результат не
определён.
Пример:
Пусть f(x,y) = x - y^2, тогда \lceil \sqrt{x} \rceil = M \langle f \rangle(x)
int sqrt(int x) {
     int v = 0;
     while (x-y*y > 0) y++;
     return y;
```

Выразительная сила

Определение

Функция Аккермана:

$$A(m,n) = \begin{cases} n+1, & m=0\\ A(m-1,1), & m>0, n=0\\ A(m-1,A(m,n-1)), & m>0, n>0 \end{cases}$$

Пример n = 0 1 2 3 4 ... 0 = 1 2 3 5 13 1 2 3 5 5 3 3 2 3 4 7 29 $2^{65536} - 3$ n = n+1 n+2 2n+3 $2^{n+3}-3$ $2^{2^{2^{...^2}}}-3$

Лемма о росте функции Аккермана

1. $A(p,q) = A^{(q+1)}(p-1,1)$

2.
$$A^{(x+2)}(k,x) < A(k+2,x)$$
 $A^{(0,n)=n+1}$ $A^{(2,n)=2n+3}$

Доказательство.

1.
$$A(p,q) = A(p-1,A(p,q-1)) = \cdots = A(p-1,A(p-1))$$

 $A(p,q) = A^{(q)}(p-1,A(p,0)) = A^{(q+1)}(p-1,1)$

2.
$$A(k+2,x) = A(k+1, A(k+2,x-1)) =$$

 $A^{(A(k+2,x-1)+1)}(k,1) \ge A^{(A(2,x-1)+1)}(k,1) =$
 $A^{(2(x-1)+3+1)}(k,1) = A^{(2x+2)}(k,1) = A^{(x+2)}(k,A^{(x)}(k,1)) \ge$
 $A^{(x+2)}(k,A^{(x)}(0,1)) = A^{(x+2)}(k,x+1) > A^{(x+2)}(k,x)$

Функция Аккермана не примитивно-рекурсивна

Теорема

Пусть $f(\overrightarrow{x})$ — примитивно-рекурсивная. Тогда найдётся k, что $f(\overrightarrow{x}) < A(k, \max(\overrightarrow{x}))$

Доказательство.

Индукция по структуре f.

- 1. f = Z, тогда k = 0, т.к. A(0, x) = x + 1 > Z(x) = 0;
- 2. f = N, тогда k = 1, т.к. A(1,x) = x + 2 > N(x) = x + 1;
- 3. $f = U_s^n$, тогда k = 0, т.к. $f(\overrightarrow{x}) \leq \max(\overrightarrow{x}) < A(0, \max(\overrightarrow{x}))$;
- 4. $f = S\langle g, h_1, \dots, h_n \rangle$, тогда $k = k_g + \max(k_{h_1}, \dots, k_{h_n}) + 2$;
- 5. $f = R\langle g, h \rangle$, тогда $k = \max(k_g, k_h) + 2$.

Доказательство оценки для R

Лемма

Пусть $f=R\langle g,h\rangle$. Тогда при $k=\max(k_g,k_h)+2$ выполнено $f(\overrightarrow{x},y)\leq A^{(y+1)}(k-2,\max(\overrightarrow{x},y)).$

Доказательство.

Индукция по у.

- ▶ База: y = 0. Тогда: $f(\overrightarrow{x},0) = g(\overrightarrow{x}) \le A(k_g,\max(\overrightarrow{x})) \le A^{(1)}(k-2,\max(\overrightarrow{x},0))$.
- Регод: пусть $f(\overrightarrow{x},y) \leq A^{(y+1)}(k-2,\max(\overrightarrow{x},y))$. Тогда $f(\overrightarrow{x},y+1) = h(\overrightarrow{x},y,f(\overrightarrow{x},y)) \leq A(k_h,\max(\overrightarrow{x},y,f(\overrightarrow{x},y))) \leq A(k_h,\max(\overrightarrow{x},y,A^{(y+1)}(k-2,\max(\overrightarrow{x},y))) = A(k_h,A^{(y+1)}(k-2,\max(\overrightarrow{x},y))) \leq A^{(y+2)}(k-2,\max(\overrightarrow{x},y+1))$

Заметим, что

$$A^{(y+1)}(k-2,\max(\overrightarrow{x},y)) \leq A^{(\max(\overrightarrow{x},y)+1)}(k-2,\max(\overrightarrow{x},y)) \leq A^{(\max(\overrightarrow{x},y)+1)}(k-2,\max(\overrightarrow{x},y)) \leq A^{(\max(\overrightarrow{x},y)+2)}(k-2,\max(\overrightarrow{x},y)) < A(k,\max(\overrightarrow{x},y))$$

Тезис Чёрча

Определение

Тезис Чёрча для общерекурсивных функций: любая эффективно-вычислимая функция $\mathbb{N}_0^k \to \mathbb{N}_0$ является общерекурсивной.

Новые обозначения

Определение

Запись вида
$$\psi(\theta_1,\ldots,\theta_n)$$
 означает $\psi[x_1:=\theta_1,\ldots,x_n:=\theta_n]$

Определение (Литерал числа)

$$\overline{a}=\left\{egin{array}{ll} 0, & ext{ecли } a=0 \ (\overline{b})', & ext{ecли } a=b+1 \end{array}
ight.$$

Пример: пусть $\psi := x_1 = 0$. Тогда $\psi(\overline{3})$ соответствует формуле 0''' = 0

Выразимость отношений в Ф.А.

Определение

Будем говорить, что отношение $R\subseteq \mathbb{N}_0^n$ выразимо в ΦA , если существует формула ρ , что:

- 1. если $\langle a_1,\ldots,a_n
 angle\in R$, то $\vdash
 ho(\overline{a_1},\ldots,\overline{a_n})$
- 2. если $\langle a_1,\ldots,a_n \rangle \notin R$, то $\vdash \neg \rho(\overline{a_1},\ldots,\overline{a_n})$

Теорема

отношение «равно» выразимо в Φ .А.: $R = \{\langle x, x \rangle \mid x \in \mathbb{N}_0\}$

Доказательство.

Пусть $\rho := x_1 = x_2$. Тогда:

- ightharpoonup = p при $p := \overline{k}$ при всех $k \in \mathbb{N}_0$: $\vdash 0 = 0$, $\vdash 0' = 0'$, $\vdash 0'' = 0''$, ...
- $ightharpoonup \mapsto \neg p = q$ при $p := \overline{k}, \ q := \overline{s}$ при всех $k,s \in \mathbb{N}_0$ и $k \neq s$. $\vdash \neg 0 = 0', \vdash \neg 0 = 0'', \vdash \neg 0''' = 0', \dots$

Представимость функций в Ф.А.

Определение

Будем говорить, что функция $f:\mathbb{N}_0^n \to \mathbb{N}_0$ представима в ΦA , если существует формула φ , что:

- 1. если $f(a_1,\ldots,a_n)=u$, то $\vdash \varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
- 2. если $f(a_1,\ldots,a_n)\neq u$, то $\vdash \neg\varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
- 3. для всех $a_i \in \mathbb{N}_0$ выполнено $\vdash (\exists x. \varphi(\overline{a_1}, \dots, \overline{a_n}, x))$ & $(\forall p. \forall q. \varphi(\overline{a_1}, \dots, \overline{a_n}, p) \& \varphi(\overline{a_1}, \dots, \overline{a_n}, q) \to p = q)$

Соответствие рекурсивных и представимых функций

Теорема

Любая рекурсивная функция представима в Ф.А.

Теорема

Любая представимая в Ф.А. функция рекурсивна.

Примитивы Z, N, U представимы в Ф.А.

Теорема

Примитивы Z, N и U_n^k представимы в Φ .A.

Доказательство.

- $\zeta(x_1, x_2) := x_2 = 0$, формальнее: $\zeta(x_1, x_2) := x_1 = x_1 \& x_2 = 0$
- $\nu(x_1,x_2) := x_2 = x_1'$
- $v(x_1,\ldots,x_n,x_{n+1}):=x_k=x_{n+1}$ формальнее:

$$v(x_1,\ldots,x_n,x_{n+1}) := (\& x_i = x_i) \& x_k = x_{n+1}$$

Примитив S представим в Ф.А.

$$S\langle f, g_1, \ldots, g_k \rangle (x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n))$$

Теорема

Пусть функции f, g_1, \ldots, g_k представимы в Ф.А. Тогда $S\langle f, g_1, \ldots, g_k \rangle$ представима в Ф.А.

Доказательство.

Пусть $f, g_1, ..., g_k$ представляются формулами $\varphi, \gamma_1, ..., \gamma_k.$ Тогда $S\langle f, g_1, ..., g_k \rangle$ будет представлена формулой

$$\exists g_1,\ldots,\exists g_k,\varphi(g_1,\ldots,g_k,x_{n+1})\&\gamma_1(x_1,\ldots,x_n,g_1)\&\cdots\&\gamma_k(x_1,\ldots,x_n,g_k)$$

β -функция Гёделя

Задача: закодировать последовательность натуральных чисел произвольной длины.

Определение

$$eta$$
-функция Гёделя: $eta(b,c,i):=b\%(1+(i+1)\cdot c)$ Здесь (%) — остаток от деления.

Теорема

eta-функция Гёделя представима в Ф.А. формулой

$$\hat{eta}(b,c,i,d) := \exists q.(b=q\cdot(1+c\cdot(i+1))+d)\&(d<1+c\cdot(i+1))$$

Деление b на x с остатком: найдутся частное (q) и остаток (d), что $b=q\cdot x+d$ и $0\leq d< x$.

Теорема

Если $a_0, \ldots, a_n \in \mathbb{N}_0$, то найдутся такие $b, c \in \mathbb{N}_0$, что $a_i = \beta(b, c, i)$

Доказательство свойства eta-функции

Теорема

Китайская теорема об остатках (вариант формулировки): если u_0, \ldots, u_n — попарно взаимно просты, и $0 \le a_i < u_i$, то существует такой b, что $a_i = b\%u_i$.

Положим $c = \max(a_0, \dots, a_n, n)!$ и $u_i = 1 + c \cdot (i + 1)$.

- ▶ НОД $(u_i,u_j)=1$, если $i \neq j$. Пусть p — простое, $u_i : p$ и $u_j : p$ (i < j). Заметим, что $u_j - u_i = c \cdot (j-i)$. Значит, c : p или (j-i) : p. Так как $j-i \leq n$, то c : (j-i), потому если и (j-i) : p, всё равно c : p. Но и $(1+c \cdot (i+1)) : p$, отсюда 1 : p — что невозможно.
- $ightharpoonup 0 \le a_i < u_i$.

Условия китайской теоремы об остатках выполнены и найдётся b, что $a_i = b\%(1+c\cdot(i+1)) = \beta(b,c,i)$

Примитив «примитивная рекурсия» представим в Ф.А. Пусть $f:\mathbb{N}_0^n \to \mathbb{N}_0$ и $g:\mathbb{N}_0^{n+2} \to \mathbb{N}_0$ представлены формулами

 φ и γ .

Зафиксируем $x_1, \ldots, x_n, y \in \mathbb{N}_0$.

 $0 \le i \le y$. Теорема

 $\rho(x_1,\ldots,x_n,y,a)$:

& $\hat{\beta}(b,c,v,a)$

 $R\langle f,g\rangle(x_1,\ldots,x_n,0)=f(x_1,\ldots,x_n)$

По свойству β -функции, найдутся b и c, что $\beta(b,c,i)=a_i$ для

Примитив $R\langle f,g\rangle$ представим в Ф.А. формулой

 $\exists b. \exists c. (\exists a_0. \hat{\beta}(b, c, 0, a_0) \& \varphi(x_1, ...x_n, a_0))$

 $R\langle f,g\rangle(x_1,\ldots,x_n,y)=g(x_1,\ldots,x_n,y-1,a_{\nu-1})$ a_{ν} $\vdash \gamma(\overline{x_1},\ldots,\overline{x_n},y)$

& $\forall k.k < y \rightarrow \exists d. \exists e. \hat{\beta}(b, c, k, d) \& \hat{\beta}(b, c, k', e) \& \gamma(x_1, ... x_n, k, d, e)$

 $R\langle f,g\rangle(x_1,\ldots,x_n,1)=g(x_1,\ldots,x_n,0,a_0)$

 a_0 a_1

Об.

Утверждение

 $\vdash \varphi(\overline{x_1},\ldots,\overline{x})$

 $\vdash \gamma(\overline{x_1}, \ldots, \overline{x_r})$

Представимость рекурсивных функций в Ф.А.

Теорема

Пусть функция $f:\mathbb{N}_0^{n+1}\to\mathbb{N}_0$ представима в Ф.А. формулой $\varphi(x_1,\ldots,x_n,y,r)$. Тогда примитив $M\langle f\rangle$ представим в Ф.А. формулой

$$\mu(x_1, \ldots, x_n, y) := \varphi(x_1, \ldots, x_n, y, 0) \& \forall u.u < y \rightarrow \neg \varphi(x_1, \ldots, x_n, u, 0)$$

Теорема

Если f — рекурсивная функция, то она представима в Ф.А.

Доказательство.

Индукция по структуре f.

Рекурсивность представимых функций в Ф.А.

Фиксируем f и x_1, x_2, \ldots, x_n . Обозначим $y = f(x_1, x_2, \ldots, x_n)$. По представимости нам известна φ , что $\vdash \varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$. Давайте просто переберём все результаты и доказательства!

- 1. Закодируем доказательства натуральными числами.
- 2. Напишем рекурсивную функцию, проверяющую доказательства на корректность.
- 3. Параллельный перебор значений и доказательств: $s=2^y\cdot 3^p$. Переберём все s, по s получим y и p. Проверим, что p код доказательства $\vdash \varphi(\overline{x_1},\overline{x_2},\ldots,\overline{x_n},\overline{y})$.

Гёделева нумерация

1. Отдельный символ.

Номер	Символ	Номер	Символ	Имя	k, n	Гёдел
3	(17	&	0	0, 0	27 + 6
5)	19	\forall	(')		27 + 6
7	,	21	3	(+)	0, 2	27 + 6
9		23	-	(.)	1,2	27 + 6
11	\neg	$25+6\cdot k$	x_k			29 + 6
13	\rightarrow	$25 + 6 \cdot k$ $27 + 6 \cdot 2^k \cdot 3^n$ $29 + 6 \cdot 2^k \cdot 3^n$	f_k^n			
15	\vee	$29+6\cdot 2^k\cdot 3^n$	$\hat{P_k^n}$			
		<u> </u>				

2. Формула. $\phi \equiv s_0 s_1 \dots s_{n-1}$. Гёделев номер: $\lceil \phi \rceil = 2^{\lceil s_0 \rceil} \cdot 3^{\lceil s_1 \rceil} \cdot \dots \cdot p_{n-1}^{\lceil s_{n-1} \rceil}$.

3. Доказательство. $\Pi = \delta_0 \delta_1 \dots \delta_{k-1}$, его гёделев номер: $\Pi = 2^{\lceil \delta_0 \rceil} \cdot 3^{\lceil \delta_1 \rceil} \cdot \dots \cdot p_{k-1}^{\lceil \delta_{k-1} \rceil}$

Проверка доказательства на корректность

Теорема

Следующая функция рекурсивна:

$$\mathit{proof}(f, x_1, x_2, \dots, x_n, y, p) = \left\{ egin{array}{ll} 1, & \mathit{если} \vdash \phi(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}, \overline{y}), \\ & p - \mathit{r\"{e}}\mathit{делев} \ \mathit{номер} \ \mathit{выводa}, f = \ulcorner \phi \\ 0, & \mathit{иначe} \end{array} \right.$$

Идея доказательства.

- 1. Проверка доказательства вычислима.
- 2. Согласно тезису Чёрча, любая вычислимая функция вычислима с помощью рекурсивных функций.

Перебор доказательств

Лемма

Следующие функции рекурсивны:

- 1. Функции $plog_k(n) = \max\{p : n : k^p\}$, $fst(x) = plog_2(x)$ и $snd(x) = plog_3(x)$.
- 2. Числовые литералы: $\overline{k}: \mathbb{N}_0 \to \mathbb{N}_0$, $\overline{k}(x) = k$.

Теорема

Если $f:\mathbb{N}_0^n\to\mathbb{N}_0$, и f представима в Ф.А. формулой φ , то f — рекурсивна.

Доказательство.

Пусть заданы x_1, x_2, \ldots, x_n . Ищем $\langle y, p \rangle$, что proof($\lceil \varphi \rceil, x_1, x_2, \ldots, x_n, y, p$) = 1, напомним: $y = f(x_1, x_2, \ldots, x_n), \ p = \lceil \Pi \rceil, \ \Pi -$ доказательство $\varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$.

$$f = S\langle \mathsf{fst}, M \langle S \langle \mathsf{proof}, \overline{\ulcorner \varphi \urcorner}, U^1_{n+1}, U^2_{n+1}, \dots, U^n_{n+1}, S \langle \mathsf{fst}, U^{n+1}_{n+1} \rangle, S \langle \mathsf{snd}, U^n_n \rangle$$