untitled protocol

IGEM-EGYPT 2017

Abstract

Flow Cytometry

Citation: IGEM-EGYPT 2017 untitled protocol. protocols.io

dx.doi.org/10.17504/protocols.io.m6ic9ce

Published: 09 Feb 2018

Protocol

Step 1.

☐ Inoculate single colony of freshly transformed DH5☐Pro or TOP10 cells in 4 ml LB medium containing

Step 2.

50μg/ml chloramphenicol (or appropriate antibiotic).

Step 3.

☐ Grow the culture overnight at 37 C with shaking (250 rpm).

Step 4.

☐ Next day re-inoculate the cultures into 4 ml fresh LB medium having antibiotics and varying inducer

Step 5.

concentrations. Inducer concentrations can be varied from 0-1mM of IPTG or 0-200 ng/ml aTc.

Sten 6

☐ Collect the samples at different time intervals of 3, 6 and 9 hours.

Step 7.

☐ Monitor the growth rate by measuring optical density at 600 nm.

Step 8.

☐ Measure the fluorescence in a Becton Dickinson FACS Calibur flow cytometer equipped with a 488 nm argon

Step 9.

laser and a 515-545 nm emission filter (FL-1) and a 585-610 nm emission filter (FL-2).

Step 10.

☐ Make sure that machine has settings for E. coli.

Step 11.

 \square To measure the fluorescence, add 3-5 μ l of the growing culture in 1 ml PBS (phosphate buffer saline, pH-7.5).

Step 12.

Measurement should be done at low flow rate (1000 events/second).

Step 13.

☐ For each sample, collect 50,000 events.

Step 14. [] Analyze the fluorescence in both FL-1 and FL-2 channel using FlowJo software (BD Biosciences).
Step 15. ☐ Determine the background fluorescence by using controls (cells having empty plasmid vector).