

Data Warehousing & Business IntelligenceAssignment 02 – Report

Pallawala P.K.B.D.S IT20123772

Contents

Data Source for the Assignment	3
SSAS Cube Implementation	4
Demonstration of OLAP Operations	9
SSRS Reports	14
Power BI Dashboard	18

Data Source for the Assignment 2

I have chosen a bank retail dataset from data world. This data set reflects combinations between retail banking of clients, related to credit card payments, loans and transactions. Client details, client transaction information, account details, loan details and credit card payment details are some of the key details included in the data set.

The link to the source data set is mentioned below:

https://data.world/lpetrocelli/retail-banking-demo-data

I used a snowflake schema for my data warehouse. There are 8 dimension tables and one fact table.

SSAS Cube Implementation

Tools Used:

- SQL Server Data Tools
- SQL Server Management Studio

Steps:

- 1. Create the SSAS Project
- 2. Create a Data Source
- 3. Create a Data Source View
- 4. Create a Cube
- 5. Deploy the Cube

Step 1: Creating the SSAS Project

In SQL server Data tools, I created an Analysis Services Multidimensional and Data Mining Project and named it as **Bank_Retail_SSAS**.

Step 2: Creating a Data Source

Data source defines from where, the cube is extracting data. At this step Icreated connection to the data warehouse.

Step 3: Creating a Data Source View

In this step I created a new data source view named DSV_Bank Retail DW and after that I selected all dimension tables and fact table andcreated table links.

Step 4: Creating a Cube

- 1. The data source view had created with the relevant tables in the previous section. We can use this existing data source to create the Cube.
- 2. From the "Cube wizard" select all the measures from the "Fact Transactions" fact table which is needed to include in the cube.
- In the Select New Dimensions page, Selected the dimensions "Dim Disposition"," Dim client"," Dim Date"," Dim Account"," Dim CRM Event" and "Dim Loan"
- The cube is named as Cube_Bank_Retail DW

After that I added all the attributes to the dimension tables except SK. (it was already added).

Step 5: Deploy the Cube

Provide connection credentials and deployed the cube.

Creating a KPI

A Key Performance Indicator is the measurable value that demonstrates how effectively the company is achieving its key business objectives.

Here, I created a KPI to check transaction amount greater than 1000.

Creating Hierarchy

Created hierarchy in District Dimension.

Creating Role

£

I created a role named cubereader with permission read definition

General 🏰 Membership	p 🗐 Data Sources 😡 Cubes 🖄 Cell Data 🟒 Dimensions ᡫ Dimension Data 🧖 Mining Struct	ures
The database role defines a	category of users and groups that have the same permissions on the database.	
Role name:	Cubereader	
Role description:		
Set the database permiss	sions for this role.	
Full control (Admin		
Process database		
Read definition		

Demonstration of OLAP Operations

Tools used:

- Microsoft Excel
- SQL Server Management Studio

Connecting cube excel

Connecting Excel to SSAS Cube without MDX.

• In the Excel sheet Data tab, select From Other Sources Then from Analysis Service.

OLAP Operations

Slice

• A new sub cube is created using one dimension.

Dice

- Dice is similar to slice.
- But here two or more dimensions are resulted in the creation of a sub cube.
- Here the dimensions DimDate(Year), DimDisposition(type), Fact_Transactions and DimClient(sex) results in creation of the subcube.

Roll Up

- Roll up is known as "consolidation" or "aggregation".
- Here roll up operation is performed climbing up the location concept hierarchy of DimDistrict.

Drill Down

- In drill down data is fragmented into smaller parts.
- It can be done via moving down the concept hierarchy increasing the dimension.
- Here data hierarchy of DimDistrict is drilled down.

Pivot

• Pivot is a visualization operation which rotates the data axes in view to provide an alternative presentation of the data.

SSRS Reports

Report 01 - Report with matrix

Account frequency type wise monthly transaction report

Month	Туре	Туре	Total
February	Monthly Issuance	Monthly Issuance	21139781.3000
April	Monthly Issuance	Monthly Issuance	69022718.1000
March	Monthly Issuance	Monthly Issuance	652945286.0000
October	Monthly Issuance	Monthly Issuance	66998065.5000
Total	342823481.8000	467282369.1000	810105850.9000

Report 02 - Report with more than one parameter

Issue and consumer disputed wise CRM event report

Product	Sub product	Submit Mode	Date Received
Bank account or service	Other bank product/ser vice	Web	11/9/2016 12:00:00 AM
Bank account or service	Other bank product/ser vice	Web	11/9/2016 12:00:00 AM
Bank account or service	Other bank product/ser vice	Web	11/9/2016 12:00:00 AM
Bank account or service	Other bank product/ser vice	Web	11/9/2016 12:00:00 AM
Bank account or service	Other bank product/ser vice	Web	11/9/2016 12:00:00 AM

Report 3: Create an SSRS drill-down report.

Year and month wise loan amount obtained by clients

Datewise loan amount obtained

Year	Month	Ioan Amount
⊡2011		
	April	
		65184.0000
		65184.0000
		65184.0000
		41904.0000
		41904.0000
	August	
		105804.0000

Report 4: Create an SSRS drill-through report.

This chart shows amount of transactions done in years and we can view number of transactions done during each month by clicking an

Transaction Analysis

Power BI Dashboard

