**Note:** Before you begin, please note that there is a typo in the clamped spline example in the book (Example 2, page 148, eighth edition), the correct solution will be given below.

**Intro:** When computing a cubic spline with n+1 grid points, keep in mind that we have n intervals, n spline segments, and an  $(n+1) \times (n+1)$  matrix. For example, if the data is known at the grid points  $x_0, x_1, x_2, x_3, x_4$  we have 5 points, 4 intervals, 4 spline segments, and a  $5 \times 5$  matrix. The spacings between grid points, defined  $h_j = x_{j+1} - x_j$ , are used below.

**General approach:** We can verify the conditions of the spline by definition, but ultimately the way to implement this, even for small datasets, is to use matrix algebra. Let's use the vector  $\mathbf{r}$  (as in  $\mathbf{A}\mathbf{x} = \mathbf{r}$ , rather than  $\mathbf{A}\mathbf{x} = \mathbf{b}$ ) for the right-hand side to avoid likely confusion between entries of the right-hand side vector and the coefficients  $b_j$  of the splines. The first and last rows of  $\mathbf{A}$  and  $\mathbf{r}$  depend on the choice of boundary conditions, but the interior rows are illustrated below. On the interior rows of the main diagonal,  $\mathbf{A}$  has entries

$$2(h_0 + h_1), 2(h_1 + h_2), \dots, 2(h_{n-3} + h_{n-2}), 2(h_{n-2} + h_{n-1})$$

On the interior rows of the sub-diagonal (below main), A has entries

$$h_0, h_1, \cdots, h_{n-3}, h_{n-2}$$

On the interior rows of the super-diagonal (above main), A has entries

$$h_1, h_2, \cdots, h_{n-2}, h_{n-1}$$

$$\mathbf{A} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ h_0 & 2(h_0 + h_1) & h_1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \vdots \\ 0 & \cdots & \cdots & 0 & h_{j-1} & 2(h_{j-1} + h_j) & h_j & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n-1} & \vdots & \vdots & \vdots & \vdots \\ 3\left(\frac{a_2 - a_1}{h_{n-1}} - \frac{a_{1} - a_0}{h_{0}}\right) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 3\left(\frac{a_n - a_{n-1}}{h_{n-1}} - \frac{a_{n-1} - a_{n-2}}{h_{n-2}}\right) \end{bmatrix}$$

**Natural BCs:** The interior rows of **A** are as described above, but the first row begins with  $1, 0, \ldots$  and the last row ends with  $\ldots, 0, 1$ . To satisfy the boundary condition, the first and last rows of of **r** are exactly 0.

**Clamped BCs:** The interior rows of **A** are as described above, but the first row begins with  $2h_0, h_0, 0, \ldots$  and the last row ends with  $\ldots, 0, h_{n-1}, 2h_{n-1}$ . To satisfy the boundary condition, the first and last rows of of **r** are exactly  $3\left(\frac{a_1-a_0}{h_0}-f'(a)\right)$  and  $3\left(f'(b)-\frac{a_n-a_{n-1}}{h_{n-1}}\right)$ , respectively.

**Parameterizing the spline:** Once the  $c_j$ 's have been solved, the  $b_j$ 's and  $d_j$ 's can be specified in reverse order from j = n - 1, n - 2, ..., 0 (see Alg. 3.4 (Step 6) or Alg. 3.5 (Step 7)).

$$b_{j} = \frac{a_{j+1} - a_{j}}{h_{j}} - \frac{h_{j}(c_{j+1} + 2c_{j})}{3}$$
$$d_{j} = \frac{c_{j+1} - c_{j}}{3h_{j}}$$

Notice that  $c_n$  (from  $\mathbf{x}$ ) is used in the calculation of  $d_{n-1}$ , but is never actually used in a spline. Regardless of the boundary condition, the calculated coefficients will appear in the spline of the form

$$S(t) = \begin{cases} \dots, & \dots, & \dots, \\ S_j(t) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3, & x_j \le x < x_{j+1} \\ \dots, & \dots \end{cases}$$

Note that  $x_0 = a$  and  $x_n = b$ .

Keep reading: (next page, please)

**Example** Consider the data  $x_0 = 0, x_1 = 1, x_2, = 2, x_3 = 3$  and  $f(x) = e^x$ .

A natural spline: See Example 1 on page 143.

| $\underline{j}$ | $a_{j}$  | $b_{j}$  | $c_{j}$   | $d_j$      |
|-----------------|----------|----------|-----------|------------|
| 0               | 1.000000 | 1.465998 | 0.0000000 | 0.2522842  |
| 1               | 2.718282 | 2.222850 | 0.7568526 | 1.6910714  |
| 2               | 7.389056 | 8.809770 | 5.8300668 | -1.9433556 |



A clamped spline: See Example 2 on page 148.

| _j_ | $a_j$    | $b_{j}$  | $c_{j}$   | $d_j$     |
|-----|----------|----------|-----------|-----------|
| 0   | 1.000000 | 1.000000 | 0.4446825 | 0.2735993 |
| 1   | 2.718282 | 2.710163 | 1.2654805 | 0.6951308 |
| 2   | 7.389056 | 7.326516 | 3.3508729 | 2.0190916 |

