Introduction

- Reinforcement learning algorithm
- Problem: find a solution to a problem with incomplete information, uncertain rewards
- Takes "learnings" into account to define future actions
- Solves the exploration/exploitation dilemma elegantly

Exploration / Exploitation Dilemma

- Problem
 - incomplete information on a process
 - No simple solution
- Exploitation
 - Choose an action that you know
 - Getting a reward close to what I expect
- Exploration
 - Choose an action with an unsure outcome
 - Possibly learn something
- Best long-term solution might have short-term costs!

Exploration / Exploitation Dilemma

- Exploration/exploitation dilemma found in many aspects of life
 - Example: Dating

Multi-Armed-Bandit Problem

Multi-Armed Bandit Problem

Multi-Armed-Bandit Problem

Multi-Armed Bandit Problem

Multi-Armed-Bandit Problem

- Possible strategies
 - No exploration
 - Random exploration
 - Smart exploration

Workflow

Multi-Armed-Bandit Problem

Multi-Armed-Bandit Problem

Multi-Armed-Bandit Problem

Multi-Armed-Bandit Problem

■ Round: 3

Multi-Armed-Bandit Problem

Multi-Armed-Bandit Problem

Multi-Armed-Bandit Problem

Multi-Armed-Bandit Problem

Multi-Armed-Bandit Problem

Multi-Armed-Bandit Problem

Multi-Armed-Bandit Problem

• Round: 1000

Multi-Armed-Bandit Problem

• Round: 1000

Advantages / Disadvantages

- Adds some randomness
- Good balance of exploration and exploitation

Bad action might be explored