Diodes

Semiconductor Diode

The semiconductor diode is formed by bringing p and n-type materials together (constructed from the same base – Ge or Si)

Diode Symbol

Diode equation

$$I_D = I_s(e^{V_D/nV_T} - 1)$$

where I_s is the reverse saturation current

 V_D is the applied forward-bias voltage across the diode n is an ideality factor which is a function of operating conditions and physical construction; it has a range between 1 &2. (n=1 will be assumed unless otherwise noted)

$$V_{T} = \frac{kT}{q}$$

k is Boltzman constant= 1.38×10^{-23} J/K

T is the absolute temperature in Kelvins

q is the electronic charge= $1.6 \times 10^{-19} C$

V_T ≈26 mV at room temperature

For
$$V_D > 0$$
, $I_D \approx I_s e^{V_D/nV_T}$ and for $V_D < 0$, $I_D = -I_s$

V-I characteristic of Diode

Temperature Effect

The reverse saturation current I_s approximately doubles for every 10°C rise in temperature.

If $I_s = I_{s1}$ at $T = T_1$, then at temperature T_2 , I_{s2} is given by,

$$I_{s2} = I_{s1} \times 2^{(T2 - T1)/10}$$

PIV (Peak Inverse Voltage Rating)

The maximum reverse-bias potential that can be applied to the diode without damaging it or causing it to break down.

$$I_D = \frac{V_S - V_D}{R}$$

$$I_D = \left(-\frac{1}{R}\right)V_D + \left(\frac{V_S}{R}\right)$$

<u>Diode Equivalent Circuit</u> <u>Ideal Diode</u>:

Piecewise Linear Model

Diode Equivalent Circuit

Simple Diode Model Typically Used

Use this for your circuit analysis

A more complicated model for a diode (Do not use this for your circuit analysis)

Follows the actual diode characteristics better

Zener Diode

Zener diodes are special diodes manufactured with adequate power dissipation capabilities to operate in the breakdown region.

Symbol:

$$I_Z$$
 V_{Z0} I_Z

$$V_Z = V_{Z0} + I_Z r_Z$$

Equivalent ckt.

$$\stackrel{+}{\xrightarrow{I_Z}}$$
 V_Z

$$\stackrel{+}{\longrightarrow}$$
 I_Z

$$V_Z = V_{Z0}$$

($I_Z r_Z$ is ignored)

Approx. Eq. ckt.

V-I Characteristics of Zener Diode

Zener Regulator

• $V_s > V_z$ for breakdown

• R_s is the current limiting resistance to limit the zener current to less than its maximum rating $I_s = (V_s - V_7)/R_s$

Loaded Zener regulator

$$I_s = (V_s - V_z)/R_s$$
, $I_s = I_z + I_L$

$$V_{th}$$
 = voltage across zener when
it is not in breakdown
= $V_s \times R_L/(R_s+R_L)$

For breakdown, $V_{th} > V_z$

$$I_L = V_L/R_L = V_Z/R_L$$

 $I_z = I_s - I_L$
Power dissipated by zener diode = V_zI_z

Zener Regulator

Typically, for a Zener Diode, one would specify the zener voltage V_Z and the maximum power dissipation $P_{Z,max}$ in the zener diode.

Loaded Zener regulator

$$I_s = (V_s - V_z)/R_s$$
, $I_s = I_z + I_L$

Additionally, we may also specify the minimum zener current I_{Z,min} that must flow through the zener diode to provide the zener action