1 Temperatur Relaxatierung 1.4 mit stochastischer Dynamik

Das System 1.1

- abgeschlossenes System
- geloeste Moelkuele:
 - Loesungsmittel loest die Molekuele ohne chem. Reaktion
 - durch loesungsmittel wird chemische Reaktion thermisch kontrolierbar
- was sind genau vakuum RB?

1.2klassische Molekueldynamik

- i Partikel
- x Koordinate
- v Geschwindigkeit
- F systematisches Kraftfeld
- F kann durch Kraftfeld berechnet werden
- Kraftfeld von Interaktion der Partikel abhaengig
- \bullet jedes Molekuel Koord u. Bewegung \rightarrow hochdim System
- max System mit 50-1000 Partikeln simuliert \Rightarrow troepchengroesse
- unerwünschte Randeffekte
- SD umgeht Problem
- bewegungsdetails von Loesemittel unwichtig \Rightarrow keine exakte Simulation
- werden durch stocha Kraft beschrieben, die auf anderen Partikel wirkt
- resultiert folgende formel

1.3 Langevin Gleichung

- \bullet Reibungskoeffizient γ_i abhaengig von der Viskositaet des Loesungsmittels
- Die stochastische Kraft $R_i(t)$ beschreibt kollisionen mit Partikeln des Loesungsmittels
- umgebendes Loesungsmittel ist in systematischer Kraft F_i eingebunden

Stochastische Kraft R_i

- stationäre Gaussche ZV

 - Kollisionen mit Partikel als ZV darstellen Kollisionen mit Partikeln sind zeitinvariant \Rightarrow stationaer
 - $normal verteilt\ model liert$
- Mittelwert ueber Zeit ist Null
 - Kollisionen kommen von allen Seiten gleich oft vor im Mittel
- kein Zusammenhang zu vorherigen Geschwindigkeiten oder der systematischen Kraft.
 - kollisionen unabhaengig davon wie schnell die anderen Partikel sind oder welche Kraft auf diese wirkt
- \bullet der quadratische Mittelwert von R_i berechnet sich zu $2m_i\gamma_i k_B T_0$
 - $-\gamma_i$ Reibungskoeffizient
- die $R_{i\mu}$ sind unabhängig voneinander

 - μ x,y od. z Achse betrachte $R_{i\mu},~R_{j\nu}$ verschieden. Voneinander unabhaengig
- zusammenfassung der letzten beiden

Reibungskoeefizient γ_i 1.5

- 0: siehe Formel: $\gamma_i = 0$ ein Teil der Formel faellt weg. letzter Teil faellt weg \Rightarrow Newtonsche Bewegungsgl. MD
- zu klein: schlechte Temperaturregelung, kanonisches Ensemble wird erst spaet erreicht, anhaufung von numerischen Fehlern, falsch simuliert
- zu gross: stoerrt Dynamik des Systems

Reibungskoefizient γ_i

• Ziel:Wert für Reibungskoeffizienten festsetzen

1.7Reibungskoeefizient γ_i : Herleitung

- \bullet . $\Delta \tau$ ist ein Zeitintervall, Veränderung der Temperatur wird beobachtet
- \dot{r}_i geschwindigkeit des iten Teilchens

1.8 Reibungskoefizient γ_i : Herleitung 2.2

wie von franziska gezeigt wurde

1.9 Eigenschaften der stochastischen Dynamik

- Phasenraum: jeder Pkt ist bestimmter Zustand des Systems, jeder pkt beschreibt zu jedem simulierten teilchen alle Eigenschaften. Betrachte nun Trajektorie.
- Trajektorie verfügbar und stetig
 - verfügbar: können durch die Bewegungsgleichung Trajektorie nachvollziehen
 - stetig:
- Trajektorie nicht deterministisch
 - Deterministisch: durch Vorbedingungen eindeutig festgelegt. hier nicht, da stochastische Variablen, die sich bei jedem mal verändern können. Prozess zweimal ausführen -> unterschiedliche Ergebnisse
- Bewegungsgleichung nicht zeitreversibel
 - Prozess kann umgekehrt werden, ohne dass Veränderungen im System stattfinden. hier nt mgl, da stochastische Terme beim Umkehren etwas anders aussehen -; anderer Endzustand als vorher.

2 Temperatur Relaxatierung mit stochastischer Verknüpfung

2.1 Das System

- geschlossenes System: kein Partikelaustausch: konst. Volumen, konst. # Partikel
- Wärmeaustausch mit Wärmebad
- Ziel: System bei konstanter Temperatur simulieren
- Wie Wärmebad simulieren? Anderson Thermostat

2.2 Idee des Anderson Thermostats

- Partikel kollidieren mit Wärmebad
- Kollisionen durch zufällige stochastische Kraft simuliert, die auf Partikel wirkt
- bei Kollision neue Geschwindigkeit für Teilchen
- kinetische Energie verändert sich
- Umsetzung: Newtonsche Bewegungsgleichung
- bei jeder Kollision gestört
- Zu welchem Zeitpkt kollidieren Teilchen?
- Wie sehen neue Geschwindigkeiten aus?

2.3 Zeitpunkt der Kollision

- betrachte zuerst Zeitpunkt der Kollision; wann neue Geschwindigkeit
- Betrachte nur eine Teichen i
- Zeitintervall τ zwischen zwei aufeinanderfolgenden Kollisionen
- geg durch Wkeitsverteilung $p(\tau) = \alpha e^{-\alpha \tau}$
- α Kollisionsfrequenz
- vor Simulation Festlegung zufälliger Folge von Zeitintervallen für Geschwindigkeitsneuzuordnung

2.4 Wahl der neuen Geschwindigkeit

- Geschwindigkeit des Partikels ändert sich in jeder Koordinate gemäß einer Maxwell-Boltzmann Verteilung
- i Teilchen, μ Koordinatenache, r Position, T_0 Referenztemperatur, wollen System auf diese Temperatur bringen, m_i Masse
- Maxwell-Boltzmann-Verteilung beschreibt statistische Verteilung des Betrages der Teilchengeschwindigkeit im Idealen Gas

2.5 Newtonsche Bewegungsgleichung für das Anderson Thermostat

- Newtonsche Bewegungsgleichung für Anderson Thermostat
- Grundlage: Newtonsche Bewegungsgleichung
- n: Intervalle für die Neuzuweisungen

- δ Dirac Delta: 1, falls term in Klammer 0, 0 sonst.
- $\dot{r}_{i,n}(t)$ neue Geschwindigkeit nach dem n-ten Intervall
- t nicht ende/ anfang des Intervalls, normale Bewegungsgl.
- t anfangs/endzeitpkt von irgendeinem Intervall: addieren zu alter Bewegungsgleichung abstand von neuer zu alter Geschwindigkeit.

2.6 Wahl der Kollisionsfrequenz α

- vorhin, bei Wahl der Intervalle τ , Kollisionsfrequenz α . Wie wählen?
- gleiche wie bei stochastischer Dynamik
- Kollisionsfrequenz 0: keine Kollision mit Wärmebad, keine Veränderung, Molekulare Simulation
- α zu klein: sehr selten Neuzuweisung von Geschwindigkeiten d.h. schlechte Temperaturkontrolle.
- \bullet α zu groß: Dynamik des Systems gestört.
- \bullet kann gezeigt werden: enge Verbindung zwischen Temperatur Relaxationszeit ζ_T und Kollisionsfrequenz besteht
- Temperatur Relaxationszeit: Zeit, in dem sich das System dem stationären Zustand, hier: gleiche Temperatur, annähert.
- \bullet N: Teilchenzahl, c_{ν} isochore Wärmekapazität
- Kollisionsfrequenz skaliert für jeden Partikel mit $N^{-2/3}$
- # Kollisionen pro Partikel weniger, je größer das System
- (Rem: Wärmekapazität: Verhältnis zwischen zugeführter Wäre und dadurch resultierende Temperaturerhöhung)
- (isochor: Zustandsänderung, bei der Volumen gleich bleibt)

2.7 Eigenschaften der stochastischen Verknüpfung

- Trajektorie Verfügbar, stetig
 - verfügbar: können durch die Bewegungsgleichung Trajektorie nachvollziehen
 stetig:
- Trajektorie nicht deterministisch
 - nicht durch Vorbedingung eindeutig festgelegt, da Wahl der Intervalle sich ändert und auch Neuzuweisung der Geschwindigkeiten sich verändern kann
- Bewegungsgleichung nicht Zeitreversibel
 - gleiche begründung wie bei nicht deterministisch: Stochastische Komponenten verhindern