PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-220221

(43) Date of publication of application: 09.08.1994

(51)Int.CI.

CO8J 5/18 CO8J 5/18 B29C 71/02 B65D 85/50 CO8J 7/00 COSL 29/04 COSL 33/00 B29K 29:00 B29L 7:00

(21)Application number: 05-031404

(71)Applicant: KUREHA CHEM IND CO LTD

(22)Date of filing:

27.01.1993

(72)Inventor: TANAKA HIDEAKI

OBA HIROYUKI HIROSE KAZUHIKO

(54) GAS-BARRIER FILM AND ITS PRODUCTION

(57)Abstract:

PURPOSE: To obtain a film formed from a mixture of PVA with a poly(meth) acrylic acid and having very excellent gas-barrier properties under high-humidity conditions and excellent water resistance.

CONSTITUTION: This film is formed from a mixture of a polyvinyl alcohol and a poly(meth) acrylic acid in a weight ratio of 95:5 to 20:80 and has an oxygen permeability coefficient of 1.25 ×10-3ml(STP).cm/m2.hr.atm[Pa] or below as measured under the conditions of 30° C and 80% RH. The process for producing this gas-barrier film comprises forming a film from a mixture of a polyvinyl alcohol and a poly(meth)acrylic acid in a weight ratio of 95:5 to 20:80 and heat-treating the film under conditions satisfying the following relationships (a) and (b): log t≥-0.0282 × T+14.14...(a), and 373≤T≤523...(b) wherein (t) is the heat treatment time (min), and T is the heat treatment temperature (° K).

LEGAL STATUS

[Date of request for examination]

05.08.1999

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3340780

[Date of registration]

16.08.2002

[Number of appeal against examiner's decision

of rejection

Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-220221

(43)公開日 平成6年(1994)8月9日

(51) Int. C1. 5		識別記号	庁内整理番号		F I		技術表示箇所
C 0 8 J	5/18	CEX	9267-4 F				
		CEY	9267-4 F				
B 2 9 C	71/02		7344-4 F				
B 6 5 D	85/50	Α	7445-3 E			•	
C 0 8 J	7/00	3 0 1 A	7310-4 F				
	審査請求	未請求 請求	項の数 2	FD		(全11頁)	最終頁に続く
(21) 出願番号	特原	類平5-31404			(71)出願人	000001100	
(21) [[29(]]]	134	, 0 01101			(11) 四四次(吳羽化学工業株式会社	
(22) 出願日	平成5年(1993)1月27日					東京都中央区日本橋堀留町	T1丁自9番11号
,,	• •	, (====, =, •,		ļ	(72)発明者	田中英明	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
						茨城県新治郡玉里村大字」	- 玉里字新林21-
						138	
					(72)発明者	大場 弘行	
						茨城県新治郡千代田町稲吉	54丁目7番23号
					(72)発明者	広瀬 和彦	
						千葉県我孫子市泉38-5-	105
					(74)代理人	弁理士 西川 繁明	

(54) 【発明の名称】ガスパリヤー性フィルム及びその製造方法

(57) 【要約】

【目的】 PVAとポリ (メタ) アクリル酸との混合物 から形成したフィルムであって、髙湿度条件下でのガス バリヤー性が顕著に優れ、しかも耐水性に優れたフィル ムを提供すること。

【構成】 ポリビニルアルコールとポリ (メタ) アクリ ル酸とを重量比95:5~20:80で含有する混合物 から形成されたフィルムからなり、30℃及び80%R Hの条件下で測定した酸素透過係数が1.25×10⁻³ ml(STP)·cm/m²·h·atm{Pa}以下 であることを特徴とするガスバリヤー性フィルム。ポリ ビニルアルコールとポリ (メタ) アクリル酸とを重量比 95:5~20:80で含有する混合物からフィルムを 形成し、次いで、該フィルムを下記関係式(a)及び (b) を満足する条件で熱処理することを特徴とするガ

- スパリヤー性フィルムの製造方法。
- (a) $\log t \ge -0$. 0.282×T+14.14
- (b) $373 \le T \le 523$

〔式中、tは、熱処理時間 (min) で、Tは、熱処理 温度(K)である。]

【特許請求の範囲】

【請求項1】 ポリビニルアルコールとポリ (メタ) ア クリル酸とを重量比95:5~20:80で含有する混 合物から形成されたフィルムからなり、30℃及び80 %相対湿度の条件下で測定した酸素透過係数が1.25 $\times 10^{-3}$ ml (STP) · cm/m²·h·atm {P a } 以下であることを特徴とするガスバリヤー性フィル

【請求項2】 ポリピニルアルコールとポリ(メタ)ア 合物からフィルムを形成し、次いで、該フィルムを下記 関係式(a)及び(b)を満足する条件で熱処理するこ とを特徴とするガスバリヤー性フィルムの製造方法。

(a) $\log t \ge -0$. 0282×T+14.14 (b) $3.7.3 \le T \le 5.2.3$

[式中、tは、熱処理時間(min)で、Tは、熱処理 温度(K)である。}

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ガスバリヤー性フィル 20 ムに関し、さらに詳しくは、ポリビニルアルコール (P VA)とポリ(メタ)アクリル酸とを含む混合物から形 成された酸素ガスバリヤー性に優れたフィルムに関す る。本発明のフィルムは、耐水性及び酸素ガスバリヤー 性に優れ、かつ、塩素原子を含まないため、食品包装材 料などの用途に好適である。

[0002]

【従来の技術】PVAフィルムは、溶媒として水を使用 する流延法または押出法により製膜される。PVAフィ バリヤー性が乾燥状態では合成樹脂フィルム中で最も優 れているという特徴を持っている。そこで、従来、PV Aフィルムのこのガスバリヤー性を利用して、酸素ガス バリヤー性を必要とする包装材料分野での用途展開が図 られてきた。しかしながら、PVAフィルムの酸素ガス バリヤー性は、湿度依存性が大きく、高湿度条件下では 吸湿によりこのガスバリヤー性が大きく損なわれる。ま た、PVAフィルムは、沸騰水中で容易に溶解してしま う。

【0003】従来、PVAフィルムを実用的な酸素ガス 40 バリヤー性が求められる用途に使用する場合には、PV Aフィルムと他のフィルムとの2層以上の多層構成のラ ミネートフィルムとして、湿度の影響をできるだけ少な くするようにしてきた。しかし、ラミネートフィルムと する方法では、耐湿性及び耐水性の点でいまだ不十分で あり、PVAフィルム自体の耐水性を向上させ、かつ、 高湿度下でも十分な酸素ガスパリヤー性を持たせること が望まれている。

【0004】PVAフィルムの上記問題点を解決するた めに、これまで、例えば、下記のような各種の検討が行 50 ても開示されている。そして、その具体例として、PV

なわれている。

D PVAの水酸基の化学修飾による耐水化:アルデヒ ド類を用いて、PVAの水酸基をアセタール化する方法 が知られている。しかしながら、この方法では、PVA の水に対する不溶化は実現しても、成形物の吸水による 酸素ガスバゾヤー性能の低下が著しい。米国特許第2. 169,250号には、PVAとポリカルボン酸との混 合水溶液からフィルムや繊維等を形成し、次いで加熱す ることにより、PVAの水酸基とポリカルポン酸とを反 クリル酸とを重量比95:5~20:80で含有する混 10 応させて架橋構造を形成させ、水に不溶化とする方法が 提案されている。

> 【0005】② 熱処理による耐水化:PVAフィルム は、熱処理により結晶化し易く、耐水性が向上する。ま た、PVAフィルムは、二軸延伸することにより、配向 結晶化が進むとともに機械的性質が改善される。そこ で、PVAフィルムを二軸延伸及び熱処理することによ り、耐水・耐湿性を改善する方法が知られている。しか し、この方法により水不溶化は実現しても、PVAフィ ルムの吸湿による酸素ガスバリヤー性能の低下が著し く、特に高湿度条件下では、吸湿による変形や物性変化 を起こす。

【0006】③ ポリ塩化ビニリデンラテックスコート による耐水化: PVAフィルムに、防湿性付与のために ポリ塩化ビニリデンラテックスをコートする方法が知ら れている。しかしながら、廃棄物処理の際の焼却時に、 ポリ塩化ビニリデン中の塩素に起因する塩素ガスが発生 するため、環境上の問題点がある。

【0007】 ④ 共重合による耐水化: エチレンと酢酸 ビニルの共重合体を加水分解するとエチレンービニルア ルムは、柔軟性及び非帯電性であるとともに、酸素ガス 30 ルコール共重合体(EVOH)が得られる。EVOHフ ィルムは、PVAフィルムの特徴である酸素ガスバリヤ ー性を保ちながら、熱可塑性フィルムの性質を合わせ持 つフィルムである。しかし、EVOHフィルムの酸素ガ スバリヤー性の湿度依存性は大きく、吸湿による酸素ガ スバリヤー性能の低下防止についての改良は、いまだ不 十分である。

> 【0008】以上、説明したように、従来の耐水化策 は、乾燥条件下におけるPVAフィルムの優れた酸素ガ スバリヤー性能を高湿度下、あるいは高温・高湿度下で も維持するという観点からは、いまだ不十分なものであ る。一方、PVAとポリアクリル酸との混合物を用いた フィルムやシートが提案されているが(例えば、特開昭 63-47743号、特公平2-14376号、特公平 2-27941号)、これらのフィルムやシートは、い ずれも水溶性または水吸収性であり、耐水性かつ酸素ガ スバリヤー性のフィルムではない。

> 【0009】ところで、前記米国特許第2.169.2 50号には、PVAと反応させるポリカルポン酸として ポリメタクリル酸やポリアクリル酸を用いる場合につい

A水溶液中でメタクリル酸モノマーを重合させ、得られ た混合物を支持体上に流延し、水を蒸発させたのち、1 40℃で5分間加熱してPVAとポリメタクリル酸とを 反応させて水不溶化フィルムを得たことが記載されてい る(実施例 I)。しかしながら、本願発明者らの検討結 果によれば、この熱処理条件では、髙湿度条件下での酸 素ガスバリヤー性に優れたフィルムを得ることはできな い。また、該文献に記載されているその他の具体的な熱 処理条件(実施例II~V)を適用しても、PVAとポ 酸素ガスバリヤー性に優れたフィルムを得ることができ ない。

[0010]

【発明が解決しようとする課題】本発明の目的は、PV Aとポリ(メタ)アクリル酸との混合物から形成したフ ィルムであって、高湿度条件下での酸素ガスバリヤー性 が顕著に優れ、しかも耐水性に優れたフィルムを提供す ることにある。

【0011】本願発明者らは、鋭意研究した結果、PV Aとポリ(メタ)アクリル酸との特定割合の混合物か ら、例えば、該混合物の水溶液を支持体上に流延した 後、乾燥することにより、フィルムを形成し、次いで、 特定の条件下で熱処理することにより、PVA単体のフ ィルムの場合と比較して、乾燥条件下ではもとより、髙 湿度下でも顕著に改善された酸素ガスバリヤー性(酸素 透過係数)を有する耐水性に優れたフィルムが得られる ことを見いだした。また、このフィルムは、塩素原子を 含んでいないため、焼却時に塩素ガスを発生することが ない。本発明は、これらの知見に基づいて完成するに至 ったものである。

[0 0 1 2]

【課題を解決するための手段】かくして本発明によれ ば、ポリビニルアルコールとポリ(メタ)アクリル酸と を重量比95:5~20:80で含有する混合物から形 成されたフィルムからなり、30℃及び80%相対湿度 (RH) の条件下で測定した酸素透過係数が1.25× 10^{-3} ml (STP) · cm/m²·h·atm {P a} 以下であることを特徴とするガスバリヤー性フィル ムが提供される。

ールとポリ (メタ) アクリル酸とを重量比95:5~2 0:80で含有する混合物からフィルムを形成し、次い で、該フィルムを下記関係式(a)及び(b)を満足す る条件で熱処理することを特徴とするガスバリヤー性フ ィルムの製造方法が提供される。

(a) $\log t \ge -0$. 0282×T+14.14 (b) $373 \le T \le 523$

[式中、tは、熱処理時間(min)で、Tは、熱処理 温度(K)である。〕

おいて使用するPVAとしては、好ましくはケン化度が 95%以上、より好ましくは98%以上であって、平均 重合度が好ましくは300~2500、より好ましくは 300~1500の範囲のものが望ましい。

【0015】本発明で使用するポリ(メタ)アクリル酸 は、ポリアクリル酸、ポリメタクリル酸あるいはこれら の混合物であって、分子中に2個以上のカルボキシル基 を有する化合物である。好適なものとして、アクリル酸 あるいはメタクリル酸のホモポリマーやコポリマーなど リ(メタ)アクリル酸との混合物から高湿度条件下での 10 を例示することができる。ポリ(メタ)アクリル酸の平 均分子量としては、2000~25000の範囲のも のが好ましい。

> 【0016】高ケン化度のPVAとポリ(メタ)アクリ ル酸との混合系は、相溶性に優れており、例えば、水溶 液にした場合、均一な混合溶液が得られる。これらの混 合物からフィルムを形成するには、混合物水溶液をガラ ス板やプラスチックフィルム等の支持体上に流延し、乾 燥して皮膜を形成させる方法(溶液流延法)、あるいは 混合物の高濃度の水溶解液をエキストルーダーにより吐 20 出圧力をかけながら細隙から膜状に流延し、含水フィル ムを回転ドラムまたはベルト上で乾燥する方法(押出 法)などがある。これらの製膜法の中でも、溶液流延法 は、PVAとポリ(メタ)アクリル酸との混合物水溶液 から透明性に優れた乾燥皮膜を得ることができるため好

> 【0017】 PVAとポリ(メタ) アクリル酸との混合 物を得るには、各ポリマーを水に溶解させる方法、各ポ リマーの水溶液を混合する方法、PVA水溶液中で(メ タ) アクリル酸モノマーを重合させる方法、などが採用 30 される。また、水以外の溶剤を用いて混合物としてもよ い。溶液流延法を採用する場合には、ポリマー濃度は、 通常5~30重量%程度とする。なお、水溶液または水 溶解液を作成する場合、所望によりアルコールなど水以 外の溶剤や柔軟剤等を適宜添加してもよい。また、フィ ルムの厚みは、使用目的に応じて適宜定めることがで き、特に限定されないが、通常 0. 1~500 µm、好 ましくは $0.5 \sim 200 \mu m$ 、最も好ましくは $1 \sim 10$ 0 μ m程度である。

【0018】図1は、PVAとポリアクリル酸との混合 【0013】また、本発明によれば、ポリビニルアルコ 40 比を変化させて、溶液流延法により各種組成の乾燥皮膜 を得、それらを200℃で15分間熱処理したフィルム について、80%RH、30℃、厚さ3μmでの酸素透 過度を測定したデーター (表 1 参照) をグラフとして示 したものである。図1から明らかなように、PVAの含 有量が20~95重量%の範囲内において、PVA単体 フィルムの場合と比較して、高湿度条件下で優れた酸素 ガスバリヤー性を示している。これらの実験データーか ら、PVAとポリ(メタ)アクリル酸との混合割合は、 重量比で95:5~20:80であることが酸素ガスバ 【0014】以下、本発明について詳述する。本発明に 50 リヤー性改善の観点から必要であり、好ましくは90:

10~20:80、より好ましくは80:20~20:80である。

【0019】また、表1から本発明の熱処理法によれば、驚くべきことに、ポリ(メタ)アクリル酸の混合割合が多くなるほど、100%RH、30 $^{\circ}$ 、厚さ3 $^{\circ}$ μmの条件下においても酸素透過度が顕著に改善されたフィルムを得ることができる。具体的には、PVAとポリ(メタ)アクリル酸との混合割合が、重量比で60:40 $^{\circ}$ 20:80、より好ましくは50:50 $^{\circ}$ 20:80の範囲で、100%RH(30 $^{\circ}$)という極めて過酷な高湿度条件下であっても、優れた酸素ガスバリヤー性を有するフィルムを得ることができる。

【0020】図2には、PVAとポリアクリル酸との重 量比60:40の混合物水溶液から溶液流延法により作 成した乾燥皮膜(厚み3μm)について、熱処理温度及 び熱処理時間を変化させて各熱処理フィルムを作成し、 酸素透過度(30℃、80%RH)を測定したデーター (表2参照)をグラフ化して示した。図2から明らかな ように、酸素透過度が小さなフィルムを作成するには、 熱処理温度が高い場合には、比較的短時間でよいが、熱 20 処理温度が低くなるほど長時間を必要とする。熱処理し たPVA単体フィルム(厚み3μm)の酸素透過度(3 0℃、80%RH) が100ml (STP) /m2·d ay・atm {Pa} 程度である。そこで、熱処理温 度、熱処理時間及び酸素透過度に関する実験データーを 整理すると、高湿度下で、PVAとポリ(メタ)アクリ ル酸との混合物フィルムの酸素透過度をPVA単体フィ ルムよりも改善されたものとするためには、熱処理温度 と熱処理時間が下記の関係式 (a) 及び (b) を満足す る条件で熱処理することが必要であることが判明した。 $[0\ 0\ 2\ 1]$ (a) $\log t \ge -0$, $0\ 2\ 8\ 2 \times T + 1$ 4.14

(b) $373 \le T \le 523$

[式中、tは、熱処理時間 (min) で、Tは、熱処理温度 (K) である。〕

この熱処理条件を採用することにより、PVAとポリ (メタ) アクリル酸との混合物から形成されたフィルム であって、30 \mathbb{C} \mathbb{C}

【0022】厚み3μmのフィルムであって、50ml (STP) /m²·day·atm {Pa} 以下の酸素 透過度(30℃、80%RH) を達成するには、下記関 係式(c) を満足させる熱処理条件を採用することが好 ましい。

(c)logt≧−0.0278×T+14.14 この熱処理条件(c)により、酸素透過係数(30℃、 80%RH)6.25×10⁻⁴ml(STP)・cm/ m²·h·atm{Pa}以下のフィルムを得ることが できる。

【0023】同様に、厚み3μmのフィルムであって、25ml (STP) /m²·day·atm {Pa} 以下の酸素透過度 (30℃、80%RH) を達成するには、下記関係式 (e) を満足させる熱処理条件を採用することが好ましい。

6

ルムを得ることができる。具体的には、PVAとポリ (e) logt≧-0.0274×T+14.14 (メタ) アクリル酸との混合割合が、重量比で60:4 この熱処理条件(e) により、酸素透過係数 (30℃、0~20:80、より好ましくは50:50~20:8 80%RH) 3.13×10⁻⁴ml (STP)・cm/0の範囲で、100%RH(30℃)という極めて過酷 10 m²・h・atm {Pa} 以下のフィルムを得ることがな高湿度条件下であっても、優れた酸素ガスバリヤー性 できる。

【0024】熱処理温度は、100 $^{\circ}$ (373K) $^{\circ}$ 250 $^{\circ}$ (523K) の範囲から選択される。しかしながら、この温度が低い範囲では、高度の酸素ガスバリヤー性フィルムを得るには、非常に長時間の熱処理時間を必要とし、生産性が低下する。熱処理温度が高くなる程、短い熱処理時間で高度の酸素ガスバリヤー性を得ることができるが、高過ぎると、PVAの融点近くになり、変色や分解のおそれがある。そこで、熱処理温度は、好ましくは120 $^{\circ}$ (393K) $^{\circ}$ (503K) である。

【0025】ところで、PVAとボリ(メタ)アクリル酸との混合割合が90:10~50:50(重量比)の範囲内において、両者の混合物水溶液を流延し、乾燥皮膜としただけで、乾燥条件下(30℃、0%RH、厚さ3μm)における酸素透過度は、同様にして作成したPVA単体フィルムと比較して、改善され、PVA:ポリアクリル酸=80:20(重量比)のときに極小値をと30ることが分かった。ところが、この乾燥皮膜は、PVA単体フィルムと同様、その優れたガスバリヤー性能は、乾燥及び低湿度条件下に限られ、高湿度条件下においては、皮膜の吸湿によって、それが大きく損なわれるばかりか、沸騰水中では、皮膜が容易に溶解してしまう。

【0026】これに対して、本発明の熱処理条件を採用すれば、高湿度条件下でも従来得られなかった高度の酸素ガスバリヤー性を有する耐水性のフィルムを得ることができる。前記したとおり、米国特許第2,169,250号には、PVAとポリメタクリル酸との混合物からなる熱処理フィルムが開示されているけれども、その熱処理条件は、単に架橋構造を形成して、水に不溶化するためであって、具体的に示されている熱処理温度及び熱処理時間を混合物フィルムに適用しても、高湿度条件で高度のガスバリヤー性を有するフィルムを得ることができない。この点で、本件発明で採用する熱処理条件は、従来開示されていない新規なものであり、それによって得られるフィルムも新規な酸素ガスバリヤー性フィルムである。本発明のガスバリヤー性フィルムは、高湿度条件下で高度の酸素ガスバリヤー性を有しているた

m²·h·atm{Pa}以下のフィルムを得ることが 50 め、単独または他のフィルムとのラミネートフィルムと

た。

7

して、特に食品包装材料の分野に好適である。

[0 0 2 7]

【実施例】以下に、実施例及び比較例を挙げて、本発明 についてさらに具体的に説明するが、本発明は、これら の実施例のみに限定されるものではない。

【0028】 [実施例1] PVAとしてクラレ(株)社製のボバール105(ケン化度98.5%、平均重合度500)を用い、また、ボリアクリル酸(PAA)として和光純薬工業(株)社製のボリアクリル酸25重量%水溶液(平均分子量150000)を用いて、各10重 10量%水溶液を調製し、それらを混合して PVA:PAA=60:40(重量比)の混合水溶液を作成した。

【0029】この混合水溶液を延伸ポリエチレンテレフタレートフィルム(厚み 16μ mの延伸PETフィルム)上にメイヤーバーを用いてコーティングし、次いで、ドライヤーを用いて水を蒸発させて、厚み 3μ mの乾燥皮膜を得た。この乾燥皮膜が形成された延伸PETフィルムをオープン中で200℃で15分間熱処理したところ、80%RH、30℃における乾燥皮膜の酸素透過度は、厚み 3μ m当たりで21m1(STP)/m²・day・atm{Pa}となり、非常に酸素ガスバリヤー性に優れたフィルムが得られた。この熱処理フィルムは、沸騰水に不溶であった。

【0030】<酸素透過度の測定>酸素透過度は、Modern Control社製、酸素透過試験器OX-TRAN 2/20および100TWINを用いて測定し、以下の計算式により、Prilmを計算することにより本願発明のフィルムの酸素透過度を求めた。

 $1/P_{total} = 1/P_{film} + 1/P_{PET}$

ただし、P_{total}:本願発明のフィルムがコートされた 延伸PETフィルムの酸素透過度

Pfilm:本願発明フィルムの酸素透過度

PPET: 支持体である延伸PETフィルムの酸素透過度 【0031】[比較例1]実施例1において、PVAと PAAとの混合水溶液にかえて、PVAの10重量%水 溶液を用いたこと以外は、同様にして、延伸PET上で 厚さ 3μ mの乾燥皮膜を作成し、熱処理を行なうことにより、 80%RH、 30%Cにおける酸素透過度が厚み 3μ m当りで 100 ml (STP) /m² · day · at m (Pa) のPVAフィルムが得られた。このPVAフィルムは、沸騰水中で溶解した。また、PVAとPAAとの混合物水溶液にかえて、PAAの 10 重量%水溶液を用いたこと以外は、同様にして、乾燥皮膜を熱処理して、酸素透過度が厚み 3μ m当り 1000 ml (STP) /m² · day · atm $\{Pa\}$ のPAAフィルムが得られた。このPAAフィルムは沸騰水中で溶解し

【0032】 [実施例2及び比較例2] 実施例1で使用したPVA及びPAAの各10重量%水溶液を用い、表1に示したようにPVA/PAA=90/10~20/80の重量組成となるような混合水溶液を作成し、実施例1と同様にして延伸PETフィルム上に厚さ3 μ mの乾燥皮膜を形成させた。なお、比較のためにPVA/PAA=10/90のものについても同様に作成した(比較例2)。

【0033】(1)得られた各乾燥皮膜を熱処理することなく、0%RH、30℃の乾燥条件下で酸素透過度を 測定した。その結果を表1に示す(表1中「Dry」の 欄を参照)。

(2)得られた各乾燥皮膜を200℃で15分間熱処理して、熱処理フィルムを作成した。この熱処理フィルムについて、80%RH、30℃の高湿度条件下で酸素透過度を測定した。その結果を表1に示す(表1中、「80%RH」の欄参照)。

(3)前記熱処理フィルムについて、100%RH、30℃の高湿度条件下で酸素透過度を測定した。その結果を表1に示す(表1中、「100%RH」の欄参照)。【0034】なお、表1には実施例1と比較例1で得られた熱処理の有無のフィルムについて、上記条件下で測定した酸素透過度の結果が合わせて示してある。

[0035]

【表1】

組(重集	成 赴比)	酸素透過度 ml(STP)/m²·day·atm{Pa},(30℃,3μm)			
PVA	PAA	Dry	80 % RH	100 % RH	
100	0	1.2	100	1820	
90	10	1.2	39	1040	
80	20	0.3	19	190	
70	30	0.4	19	220	
60	40	0.9	21	110	
50	50	1.2	16	77	
30	70	2.1	17	49	
25	75		17	20	
20	80	_	35	37	
10	90	3.0	1350	N.D.*	
0	100	2.6	10000	N.D.*	

(*) N. D. は、酸素透過度を測定中にフィルムが溶解しはじめ、フィルムの形状を保持することができなくなり、測定不能であったことを意味する。また、表1のデーター中、80%RH、30℃で測定した酸素透過度とPVA含有量との関係データーを図1にグラフ化して示す。

【0036】表1及び図1から明らかなように、本願発明のフィルムは、80%RH、30℃の高湿度条件下で 30優れた酸素ガスバリヤー性を有していることがわかる。さらに、100%RH、30℃という極端な高湿度条件下でも優れた酸素ガスバリヤー性が保持されている特徴も持っている。そして、熱処理を行なって得られた本願発明のフィルムは、すべて沸騰水に不溶であった。これ

に対し、熱処理を行なわなかったフィルムは、いずれも 沸騰水に溶解した。

【0037】 [実施例3] 実施例1と同様にして、PVA: PAA=60:40 (重量比)の組成をもつ厚さ3 μ mの乾燥皮膜を延伸PET上に作成した。この乾燥皮膜が形成された延伸PETフィルムをオーブン中で、熱処理温度及び熱処理時間を表2に示すように変化させて熱処理を行った。各熱処理フィルムについて、80%RH、30℃での酸素透過度を測定した。結果を表2に示す。

【0038】 【表2】

dik km	TT 47 (1)	酸素透過度	12	
無処:	理条件 	酸菜透過度 ml (STP)/m³•day⁻•atm{Pa}		
温度	時間	$(30^{\circ}\text{C}, 80\%\text{RH}, 3 \mu\text{m})$		
	2時間	N.D.*		
	4時間	N.D.*		
1 2 0 ℃	8時間	1010		
	16時間	280		
	31 時間	100		
	1時間	1570		
	2時間	4 3 0		
1 4 0℃	4時間	110		
	8時間	3 5		
	16 時間	1 4		
	30分	3 3 0		
160℃	1時間	5 2		
1000	2時間	2 2		
	4時間	9		
	15分	270		
180℃	30分	5 4		
1000	1時間	1 4		
	2時間	6		
	3分	1200		
200℃	5分	260		
	10分	5 5		
	15分	2 1		
	3分	3 3		
230℃	5分	1 4		
	10分	8		

(*) N. D. は、コートフィルムの支持体である延伸 PETフィルムの酸素透過度と本願発明のフィルムがコ ートされた延伸PETフィルムの酸素透過度とが接近し ているために、測定不能であったことを意味する。ま た、表2のデーターを各熱処理温度ごとに、熱処理時間 と酸素透過度との関係について図2にグラフ化した。 【0039】比較例1に示したとおり、PVAフィルム

0%RH、30℃における酸素透過度が100ml(S TP) /m²·day·atm {Pa} のフィルムが得 られる。そこで、図2において、酸素透過度100ml (STP)/m²·day·atm {Pa} の直線と各 熱処理温度の線との交点を求め、それぞれの交点を縦軸 を温度、横軸を熱処理時間(hr)の常用対数としてグ ラフ化し、直線として図3に表した。この直線は、10 (厚み3μm)を200℃で15分間熱処理すると、8 50 0ml (STP) /m²·day·atm {Pa} の酸

素透過度を得るための熱処理温度と時間を示し、これより少ない酸素透過度、すなわち酸素透過係数が1.25 × 10^{-3} m 1 (STP)・cm/m²・h・a tm {Pa} 以下とするためには前記関係式 (a) 及び (b) で表される範囲内での熱処理が必要である。図3の斜線部は、この範囲の一部を示したものである。

【0040】また、酸素透過度50ml(STP)/ m^2 ・day・atm {Pa} の直線を採用すると、前記 関係式(c) を得ることができ、25ml (STP) / m^2 ・day・atm {Pa} の直線を採用すると、前記関係式(e) を得ることができる。

【0041】 [実施例4及び比較例3] PVAとして実施例1で使用したものを用い、また、ポリメタクリル酸(PMAA)として日本純薬工業(株)社製のポリメタクリル酸(AC-30H)20重量%水溶液(平均分子量5000)を用いて、各10重量%水溶液を調製、それらを混合してPVA:PMAA=90:10及び80:20(重量比)の混合水溶液を作成した。

【0042】これらの混合水溶液を用いて実施例1と同様にしてそれぞれ厚さ3 μ mの乾燥皮膜を作成し、200℃で15分間熱処理を行ない、80%RH、30℃における乾燥皮膜の酸素透過度を測定した。厚さ3 μ m当りで、PVA:PMAA=90:10のものが18m1(STP)/m²·day·atm{Pa}、また、80:20のものが31m1(STP)/m²·day·atm{Pa}であった。そして、これらの熱処理フィルムは、いずれも沸騰水に不溶であった(実施例4)。このようにPVA/PMAA=90/10~80/20(重量比)から得られるフイルムは、高湿度下での酸素ガスバリヤー性が優れていることがわかる。

【0043】また、比較のために、PVAとPMAAとの混合水溶液のかわりにPMAA10重量%水溶液を用いた以外は、実施例4と同様にして乾燥皮膜を作り、熱

処理を行なった。酸素透過度は、5000ml (STP) $/m^2 \cdot day \cdot atm$ {Pa} で、熱処理フィルムは沸騰水で溶解した(比較例3)。

[0044]

【発明の効果】PVAフィルムは、酸素透過度の湿度依 存性が大きく、高湿度下での利用には適さなかった。従 来、PVAフィルムの耐水化について多くの提案がなさ れているが、乾燥条件下における優れた酸素ガスバリヤ 一性を高湿度下でも充分に維持するという観点からは、 10 いまだ不十分なものであり、さらに高温、高湿度下での 利用は難しい。これに対して、本発明によれば、PVA とポリ(メタ)アクリル酸との混合物から形成したフィ ルムであって、特定の熱処理条件を採用することによ り、高湿度条件下でのガスバリヤー性が顕著に優れ、し かも耐水性に優れたフィルムを提供することができる。 本発明のフィルムは、高湿度下でも優れた酸素ガスバリ ヤー性を発揮し、しかも髙温髙湿下でも優れた耐水性を 有するため、食品包装材料として、畜肉、ハム、ソーセ ージ等の畜肉加工品やジュース、サイダー等酸素によっ て変質し易い食品、飲料等の包装に好適である。

【図面の簡単な説明】

【図1】図1は、PVAとPAAとの混合割合を変化させて得た熱処理フィルムについて、PVA含有量と酸素透過度との関係を示すグラフである。

【図2】図2は、熱処理温度を変化させて得たPVAと PAAとの混合物からなる熱処理フィルムについて、熱 処理温度、熱処理時間及び酸素透過度の関係を示すグラ フである。

【図3】図3は、酸素透過係数が1.25×10⁻³ml (STP)・cm/m²・h・a tm {Pa}以下の熱 処理フィルムを得るための熱処理条件を示すグラフである

Best Available @opy

[図1]

【図2】

【図3】

【手続補正書】

【提出日】平成6年3月29日

【手続補正1】

【補正対象魯類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

【0008】 以上、説明したように、従来の耐水化策は、乾燥条件下におけるPVAフィルムの優れた酸素ガスパリヤー性能を高湿度下、あるいは高温・高湿度下でも維持するという観点からは、いまだ不十分なものである。一方、PVAとポリアクリル酸との混合物を用いたフィルムやシートが提案されているが(例えば、特公昭63-47743号、特公平2-14376号、特公平2-27941号)、これらのフィルムやシートは、いずれも水溶性または水吸収性であり、耐水性かつ酸素ガスパリヤー性のフィルムではない。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】 0 0 2 2

【補正方法】変更

【補正内容】

【0022】 厚み 3μ mのフィルムであって、50ml(STP) $/m^2$ ・day・atm {Pa}以下の酸素透過度(30° 、 80° RH)を達成するには、<u>前記</u>関係式(a) にかえて、下記関係式(c) を満足させる熱処理条件を採用することが好ましい。ただし、Tは前記関係式(b) を満足するものとする。

(c) $\log t \ge -0$. $0278 \times T + 14$. 14 この熱処理条件(c) により、酸素透過係数(30%、80%RH) 6. 25×10^{-4} ml(STP)・cm/m²・h・a tm{Pa}以下のフィルムを得ることができる。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0 0 2 3

【補正内容】

【0023】 同様に、厚み3 μ mのフィルムであって、25ml (STP) $/m^2 \cdot day \cdot atm$ {Pa} 以下の酸素透過度(30%、80%RH)を達成するには、前記関係式(a) にかえて、下記関係式(d) を満足させる熱処理条件を採用することが好ましい。ただし、Tは前記関係式(b) を満足するものとする。(d) $logt \ge -0$. $0274 \times T + 14$. 14 この熱処理条件(d) により、酸素透過係数(30%、80%RH) $3.13 \times 10^{-4}ml$ (STP) $\cdot cm/m^2 \cdot h \cdot atm$ {Pa} 以下のフィルムを得ることができる。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0029

【補正方法】変更

【補正内容】

【0029】 この混合水溶液を延伸ポリエチレンテレフタレートフィルム(厚み 16μ mの延伸PETフィルム)上に卓上コーター(K CONTROL COATER 303、RK Print-Coat InstrumentsLtd. 社製)を用い、メイヤーバーでコーティングレ、次いで、ドライヤーを用いて水を蒸発させて、厚み 3μ mの乾燥皮膜を得た。この乾燥皮膜が形成された延伸PETフィルムをオーブン中で 200 でで 15 分間熱処理したところ、80%RH、30 でにおける乾燥皮膜の酸素透過度は、厚み 3μ m当たりで 21 ml (STP) /m² · day · atm $\{Pa\}$ となり、非常に酸素ガスバリヤー性に優れたフィルムが得られた。この熱処理フィルムは、沸騰水に不溶であった。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0036

【補正方法】変更

【補正内容】

【0036】 表1及び図1から、本願発明のフィルムは、80%RH、30℃の高湿度条件下で優れた酸素ガスバリヤー性を有していることがわかる。さらに、100%RH、30℃という極端な高湿度条件下でも優れた酸素ガスバリヤー性が保持されている特徴も持っている。そして、熱処理を行なって得られた本願発明のフィルムは、すべて沸騰水に不溶であった。これに対し、熱処理を行なわなかったフィルムは、いずれも沸騰水に溶解した。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】 0 0 3 9

【補正方法】変更

【補正内容】

【0039】 比較例1に示したとおり、PVAフィルム(厚み3 μ m)を200℃で15分間熱処理すると、80%RH、30℃における酸素透過度が100ml(STP)/m²·day·atm {Pa}のフィルムが得られる。そこで、図2において、酸素透過度100ml(STP)/m²·day·atm {Pa}の直線と各熱処理温度の線との交点を求め、それぞれの交点を横軸を温度、縦軸を熱処理時間(hr)の常用対数としてグラフ化し、直線として図3に表した。この直線は、100ml(STP)/m²·day·atm {Pa}の酸素透過度を得るための熱処理温度と時間を示し、これより少ない酸素透過度、すなわち酸素透過係数が1.25×10 $^{-3}$ ml(STP)·cm/m²·h·atm {Pa}以下とするためには前記関係式(a)及び

(b) で表される範囲内での熱処理が必要である。図3の斜線部は、この範囲の一部を示したものである。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 0

【補正方法】変更

【補正内容】

【0.040】 また、酸素透過度5.0 ml (STP) / m^2 · day·atm {Pa} の直線を採用すると、前記関係式(c)を得ることができ、2.5 ml (STP) / m^2 · day·atm {Pa} の直線を採用すると、前記関係式(d) を得ることができる。

【手続補正8】

【補正対象書類名】図面

【補正対象項目名】図3

【補正方法】変更

【補正内容】

【図3】

Best Avallable

フロントページの続き

(51) Int. Cl. ^s		識別記号	庁内整理番号	FI	技術表示箇所
C 0 8 L	29/04	LGT	6904-4 J		
	33/00	LHR	7921 — 4 J		
// B 2 9 K	29:00				
B 2 9 L	7:00		4 F		