ФКурс по STM32 Ф

Лекция #6:

- Обработка исключений в Cortex-M0!
- Обработка исключений в Cortex-M0!!!
- Обработка исключений в Cortex-M0!!!!!
- Системный таймер в Cortex-M0.

Исключения и прерывания в Cortex-M0

Что такое прерывание?

- 1) Периферия генерирует запрос на прерывание оповещает процессор.
- 2) Процессор сохраняет текущее состояние.
- 3) Процессор определяет адрес обработчика прерывания и исполняет его.
- 4) Процессор возвращается в исходное состояние.

(1) Контроллер прерываний

NVIC - Nested Vectored Interrupt Controller.

Функции NVIC:

- Включение/выключение отдельных прерываний.
- Приоритеты прерываний.
- Ручной вызов прерывания.

(1) Прерывания != исключения

Прерывание (interrupt)! = исключение (exception)

Table 8.1: List of exceptions in the Cortex-M0 and Cortex-M0+ processors

Exception number	Exception type	Priority	Descriptions
1	Reset	-3 (Highest)	Reset
2	NMI	-2	Non-Maskable Interrupt
3	HardFault	-1	Fault handling exception
4-10	Reserved	NA	_
11	SVCall	Programmable	Supervisor call via SVC instruction
12-13	Reserved	NA	
14	PendSV	Programmable	Pendable request for system service
15	SysTick	Programmable	System Tick Timer
16	Interrupt #0	Programmable	External Interrupt #0
17	Interrupt #1	Programmable	External Interrupt #1
	•••	•••	
47	Interrupt #31	Programmable	External Interrupt #31

(1) Какие бывают исключения?

Исключения в Cortex-M0:

- Reset
- HardFault
- SVCall
- PendSV
- SysTick
- IRO

- сброс микросхемы в начальное состояние.
- Non-Maskable Interrupt беда: отказ питания, сторожевой таймер.
 - некорректная инструкция или адрес, ...
 - Системный вызов, инструкция SVC.
 - отложенная системная процедура.
 - срабатывание системного таймера.
 - прерывания.

В Cortex-M4 более подробная обработка ошибок:

HardFault + BusFault, MemoryManagementFault, UsageFault.

(1) Какие бывают прерывания?

Table 36. Vector table (continued)

	(
Position	Priority	Type of priority	Acronym Description		Address	
3	10	settable	FLASH	Flash global interrupt	0x0000 004C	
4	11	settable	RCC_CRS	RCC and CRS global interrupts	0x0000 0050	
5	12	settable	EXTIO_1	EXTI Line[1:0] interrupts	0x0000 0054	
6	13	settable	EXTI2_3	EXTI Line[3:2] interrupts		
7	14	settable	EXTI4_15	EXTI Line[15:4] interrupts		
8	15	settable	TSC	Touch sensing interrupt	0x0000 0060	
9	16	settable	DMA_CH1	DMA channel 1 interrupt	0x0000 0064	
10	17	settable	DMA_CH2_3 DMA2_CH1_2	DMA channel 2 and 3 interrupts DMA2 channel 1 and 2 interrupts	0x0000 0068	
11	18	settable	DMA_CH4_5_6_7 DMA2_CH3_4_5	DMA channel 4, 5, 6 and 7 interrupts DMA2 channel 3, 4 and 5 interrupts	0x0000 006C	
12	19	settable	ADC_COMP	ADC and COMP interrupts (ADC interrupt combined with EXTI lines 21 and 22) 0x0000		
12	19	settable		ADC and COMP interrupts (ADC interrupt	0x000	

(1) Приоритеты исключений в Cortex-M0

Приоритеты контролируют:

- Очерёдность исполнения.
- Возможность вложенности.

Приоритеты бывают:

- Закреплённые.
- Устанавливаемые.

Figure 8.3
A Priority Level Register with 2 bits implemented.

Available priority levels in the Cortex®-M0 and Cortex-M0+ Processors.

(2) Сохранение регистров на стеке

Figure 8.6

Stacking and unstacking of registers at exception entry and exit.

(2) Сохранение регистров на стеке

Stacking paботает как вызов функции по calling convention!

Обработчиком исключения может быть обычная функция, написанная на си!

(2) Сохранение регистров на стеке

Figure 8.21
Stack frame and double word stack alignment.

(2) Поиск обработчика исключения


```
.section .vector table
       stack start
.word
                          // Initial SP
     reset handler
                             Reset Handler
.word
       exc handler
                          // NMI Handler
     exc handler
                          // Hard Fault Handler
.word
.fill 7, 4, 0x00
                           // Reserved
.word
       exc handler
                          // SVCall
.fill 2, 4, 0x00
                          // Reserved
.word exc handler
                          // PendSV
.word systick handler
                          // SysTick
```

0x0000003C	SysTick vector	15
0x00000038	PendSV vector	14
0x00000034	Not used	13
0x00000030	Not used	12
0x0000002C	SVC vector	11
0x00000028	Not used	10
0x00000024	Not used	9
0x00000020	Not used	8
0x0000001C	Not used	7
0x00000018	Not used	6
0x00000014	Not used	5
0x0000010	Not used	4
0x000000C	HardFault vector	3
0x00000008	NMI vector	2
0x0000004	Reset vector	1
0x00000000	MSP initial value	0
		_1

Figure 8.5 Vector table.

(2) Оптимизация stacking-a: tail-chaining

(2) Оптимизация stacking-a: late arrival

(3) Очистка бита IRQ Pending

Иногда бит "Interrupt Pending Status X" надо очищать вручную!

Figure 8.12

Simple case of interrupt activation and pending status behavior.

(3) Стек в прерываниях: тот же стек

Figure 8.19

Exception stacking in nested interrupt with main stack used in the Thread mode.

(3) Стек в прерываниях: другой стек

Figure 8.20

Exception stacking in nested interrupt with process stack used in the Thread mode.

(3) Стек в прерываниях: сравнение подходов

Тот же стек:

- Простота системы.
- Взаимозависимость "OC" и ПО.

Разные стеки:

- Сложности при разработке.
- Независимость (почти) ОС и ПО.
- Возможность смены стека ПО.

Figure 10.6

Separate memory ranges for OS and application tasks.

(3) Программное отключение исключений

```
; Запрет конфигурируемых исключений (PRIMASK = 1): cpsid i ; Включение исключений (PRIMASK = 0): cpsie i
```

		Table 2-7 PRIMASK register bit assignments
Bits	Name	Function
[31:1]	-	Reserved
[0]	PRIMASK	 0 = no effect 1 = prevents the activation of all exceptions with configurable priority.

(4) Выход из исключения: совместимость с си

```
; Вход в функцию:
push {r7, lr}; lr = ???
; Выход из функции:
pop {r7, pc}
```

Table 8.3: Valid EXC_RETURN values for the Cortex-M0 and Cortex-M0+ processors

EXC_RETURN	Condition		
0xFFFFFFF1 0xFFFFFFF9 0xFFFFFFD	Return to handler mode (nested exception case) Return to Thread mode and use the main stack for return Return to Thread mode and use the process stack for return		

Table 8.2: Bit fields in the EXC_RETURN value

Bits	31:28	27:4	3	2	1	0
Descriptions	EXC_RETURN	Reserved	Return mode	Return stack	Reserved	Processor
	indicator					state
Value	0xF	0xFFFFFF	1 (thread) or	0 (main stack)	0	1
			0 (handler)	or 1 (process stack)		(reserved)

(4) Восстановление регистров со стека

(4) Восстановление регистров со стека

(4) Восстановление регистров со стека

Системный таймер в Cortex-M0

Системный таймер: схема работы

Системный таймер: устройство

Системный таймер: регистры

Описание системного таймера можно найти в документации на Cortex-M0 (docs/cortex_m0_gug.pdf).

				Table 4-19 System timer registers summary
Address	Name	Туре	Reset value	Description
0xE000E010	SYST_CSR	RW	_a	SysTick Control and Status Register on page 4-22
0xE000E014	SYST_RVR	RW	Unknown	SysTick Reload Value Register on page 4-23
0xE000E018	SYST_CVR	RW	Unknown	SysTick Current Value Register on page 4-23
0xE000E01C	SYST_CALIB	RO	_a	SysTick Calibration Value Register on page 4-24

Системный таймер: регистры

SysTick control and status register (SysTick CTRL) 31 17 16 15 Reserved Reserved COUNTFLAG — Clock Source TICKINT **ENABLE** SysTick current value register (SysTick VAL) 31 24 23 0 **CURRENT**

SysTick reload value register (SysTick LOAD) 31 24 23 0 RELOAD SysTick calibration register (SysTick CALIB) 23 31 30 **TENMS** Reserved **SKEW**

NOREF

Спасибо за внимание!