Distributed Representations of Words and Phrases and their Compositionality

2013b

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean

Seminar "Selected Topics in Semantics and Discourse", presenter Yauhen Klimovich, tutor Prof. Manfred Pinkal

a vector

a vector

word embeddings, word projections

a vector

word embeddings, word projections

e.g. 300-d vector
$$(3.4, 0.45, ..., 7.4, 5.63)$$
 $(X_1, X_2, ..., X_{299}, X_{300})$

Good for similarity measure

Meaningful word compounds

Meaningful word compounds

e.g. 'Tesla Motors'
is neither Tesla nor Motors,
'Toronto Maple Leafs'
is not Toronto and a maple and leafs

Meaningful word compounds

e.g. 'Tesla Motors'
is neither Tesla nor Motors,
'Toronto Maple Leafs'
is not Toronto and a maple and leafs

Good for accuracy

Math operations on word vectors

Math operations on word vectors

vec("Germany") + vec("capital") ≈ vec("Berlin")

Math operations on word vectors

vec("Germany") + vec("capital") ≈ vec("Berlin")

vec("Steve Ballmer") - vec("Microsoft") + vec("Google") ≈ vec("Larry Page")

Math operations on word vectors

Basic operations can give us better results

Agenda

- Skip-gram in details
- Improvements for skip-gram
- Phrases
- Evaluation

Improvements for vector quality and training speed

Improvements for vector quality and training speed

Continuous skip-gram

"Efficient Estimation of Word Representations in Vector Space" [Mikolov et al, 2013]

Improvements for vector quality and training speed

Continuous skip-gram

"Efficient Estimation of Word Representations in Vector Space" [Mikolov et al, 2013]

No dense matrix multiplication!

Improvements for vector quality and training speed

Continuous skip-gram

"Efficient Estimation of Word Representations in Vector Space" [Mikolov et al, 2013]

No dense matrix multiplication!

Efficient!

Improvements for vector quality and training speed

Continuous skip-gram

"Efficient Estimation of Word Representations in Vector Space" [Mikolov et al, 2013]

No dense matrix multiplication!

What is new?

- Negative sampling approach
- Subsampling of frequent words

Efficient!

Improvements for vector quality and training speed

Continuous skip-gram

"Efficient Estimation of Word Representations in Vector Space" [Mikolov et al, 2013]

No dense matrix multiplication!

What is new?

- Negative sampling approach
- Subsampling of frequent words

Phrases (Tesla Motors, Silicon Valley)

Efficient!

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log \underbrace{p(w_{t+j}|w_t)}_{p(w_O|w_I) = \underbrace{\exp(v'_{w_O}^{\top}v_{w_I})}_{\sum_{w=1}^{W} \exp(v'_w^{\top}v_{w_I})}}$$

inefficient, let's approximate

Hierarchical softmax

binary Huffmann tree (short codes to frequent words)

Efficient way to compute softmax

Efficient way to compute softmax

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left([n(w, j+1) = \operatorname{ch}(n(w, j))] \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I} \right)$$

$$S(t) = \frac{1}{1 + e^{-t}}.$$

for normalization

$$[\![x]\!] = egin{cases} 1 & \text{if x is true;} \\ -1 & \text{otherwise.} \end{cases}$$

better for infrequent words, fast training

Efficient way to compute softmax

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left([n(w, j+1) = \operatorname{ch}(n(w, j))] \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I} \right)$$

$$S(t) = \frac{1}{1 + e^{-t}}.$$

for normalization

$$[\![x]\!] = egin{cases} 1 & \text{if x is true;} \\ -1 & \text{otherwise.} \end{cases}$$

Max logW for each word

better for infrequent words, fast training

Efficient way to compute softmax

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left([n(w, j+1) = \operatorname{ch}(n(w, j))] \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I} \right)$$

$$S(t) = \frac{1}{1 + e^{-t}}.$$

for normalization

$$[\![x]\!] = egin{cases} 1 & \text{if x is true;} \\ -1 & \text{otherwise.} \end{cases}$$

Max logW for each word

better for infrequent words, fast training

Structure of the tree is important

Negative sampling

idea is based on Noise Contrastive Estimation (NCE)

$$\log \sigma(v'_{w_O}^{\top} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v'_{w_i}^{\top} v_{w_I}) \right]$$

Negative sampling

idea is based on Noise Contrastive Estimation (NCE)

$$\log \sigma(v'_{w_O}^{\top} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i} \sim \underbrace{P_n(w)}_{} \left[\log \sigma(-v'_{w_i}^{\top} v_{w_I}) \right]$$

noise distribution: best result is given by $U(\omega)^{\wedge}(\frac{34}{4})$

trained classifier

Negative sampling

idea is based on Noise Contrastive Estimation (NCE)

$$\log \sigma(v'_{w_O}^{\top} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i} \sim \underbrace{P_n(w)}_{} \left[\log \sigma(-v'_{w_i}^{\top} v_{w_I}) \right]$$

noise distribution: best result is given by $U(\omega)^{(3/4)}$

trained classifier

better for frequent words, better with low dimensional vectors

Subsampling of frequent words

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$

Subsampling of frequent words

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$
 threshold 1/10^5 Frequency of w_i

improves the accuracy of the learned vectors of the rare words

Subsampling of frequent words

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$
 threshold 1/10^5 Frequency of w_i

improves the accuracy of the learned vectors of the rare words

cutting them off, context is larger

Evaluation

Analogical reasoning task:

- syntactic analogy
- semantic analogy

about 19.5k samples

- Berlin Germany Bern Switzerland
- boy girl brother sister
- amazing amazingly apparent apparently
- acceptable unacceptable certain uncertain
- cold colder great greater
- Europe euro Romania leu

- Data
- 1b words;
- cut out infrequent words(<5t),
- they got |Voc| = 692K

- bright brightest sharp sharpest
- code coding jump jumping
- Belarus Belorussian Germany German
- flying flew enhancing enhanced
- car cars cat cats
- enhance enhances work works

Evaluation(results)

Analogical reasoning task:

- syntactic analogy
- semantic analogy

Data

- 1b words;
- cut out infrequent words(<5t),
- they got |Voc| = 692K

Method	Time [min]	Syntactic [%]	Semantic [%]	Total accuracy [%]	
NEG-5	38	63	54	59	
NEG-15	97	63	58	61	
HS-Huffman	41	53	40	47	
NCE-5	38	60	45	53	
The following results use 10 ⁻⁵ subsampling					
NEG-5	14	61	58	60	
NEG-15	36	61	61	61	
HS-Huffman	21	52	59	55	

Table 1: Accuracy of various Skip-gram 300-dimensional models on the analogical reasoning task as defined in [8]. NEG-k stands for Negative Sampling with k negative samples for each positive sample; NCE stands for Noise Contrastive Estimation and HS-Huffman stands for the Hierarchical Softmax with the frequency-based Huffman codes.

Evaluation(results)

Analogical reasoning task:

- syntactic analogy
- semantic analogy

Data

- 1b words;
- cut out infrequent words(<5t),
- they got |Voc| = 692K

Method	Time [min]	Syntactic [%]	Semantic [%]	Total accuracy [%]	
NEG-5	38	63	54	59	
NEG-15	97	63	58	61	
HS-Huffman	41	53	40	47	
NCE-5	38	60	45	53	
The following results use 10^{-5} subsampling					
NEG-5	14	61	58	60	
NEG-15	36	61	61	61	
HS-Huffman	21	52	59	55	

Table 1: Accuracy of various Skip-gram 300-dimensional models on the analogical reasoning task as defined in [8]. NEG-k stands for Negative Sampling with k negative samples for each positive sample; NCE stands for Noise Contrastive Estimation and HS-Huffman stands for the Hierarchical Softmax with the frequency-based Huffman codes.

Phrases

Data-driven approach to find the phrases (words that appear frequently together and infrequently in other contexts)

$$score(w_i, w_j) = \frac{count(w_i w_j) - \delta}{count(w_i) \times count(w_j)}$$

 δ is discounting coefficient

 δ prevents phrases made of infrequent words

Phrases

Data-driven approach to find the phrases (words that appear frequently together and infrequently in other contexts)

$$score(w_i, w_j) = \frac{count(w_i w_j) - \delta}{count(w_i) \times count(w_j)}$$

 δ is discounting coefficient

 δ prevents phrases made of infrequent words

Training

2-4 passes over data to form longer sequences

Demo for phrases

Evaluation of 'Phrases'

New test set (3218, 5 categories only):

- Boston Boston_Celtics Miami Miami_Heat
- Werner_Vogels Amazon Samuel_J._Palmisano IBM
- Germany Lufthansa Spain Spanair
- Atlanta Atlanta_Thrashers Boston Boston_Bruins
- Boston Boston_Globe Seattle Seattle_Times

Evaluation of 'Phrases' (result)

1 b, dim = 300, context= window-5

Method	Dimensionality	No subsampling [%]	10^{-5} subsampling [%]
NEG-5	300	24	27
NEG-15	300	27	42
HS-Huffman	300	19	47

Table 3: Accuracies of the Skip-gram models on the phrase analogy dataset. The models were trained on approximately one billion words from the news dataset.

Evaluation of 'Phrases' (result)

1 b, dim = 300, context= window-5

Method	Dimensionality	No subsampling [%]	10^{-5} subsampling [%]
NEG-5	300	24	27
NEG-15	300	27	42
HS-Huffman	300	19	47

Table 3: Accuracies of the Skip-gram models on the phrase analogy dataset. The models were trained on approximately one billion words from the news dataset.

6 b, dim = 1000, context = sentence -> accuracy 66%

33 b, dim = 1000, context = sentence -> accuracy 72%

Evaluation of 'Phrases' (result)

1 b, dim = 300, context= window-5

Method	Dimensionality	No subsampling [%]	10^{-5} subsampling [%]
NEG-5	300	24	27
NEG-15	300	27	42
HS-Huffman	300	19	47

Table 3: Accuracies of the Skip-gram models on the phrase analogy dataset. The models were trained on approximately one billion words from the news dataset.

6 b, dim = 1000, context = sentence -> accuracy 66%

33 b, dim = 1000, context = sentence -> accuracy 72%

Hierarchical softmax and subsampling; amount of data is crucial

Additive compositionality

Czech + currency	Vietnam + capital	German + airlines	Russian + river	French + actress
koruna	Hanoi	airline Lufthansa	Moscow	Juliette Binoche
Check crown	Ho Chi Minh City	carrier Lufthansa	Volga River	Vanessa Paradis
Polish zolty	Viet Nam	flag carrier Lufthansa	upriver	Charlotte Gainsbourg
CTK	Vietnamese	Lufthansa	Russia	Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two vectors are shown, using the best Skip-gram model.

Empirical comparison with previous results

Model	Redmond	Havel	ninjutsu	graffiti	capitulate
(training time)					
Collobert (50d)	conyers	plauen	reiki	cheesecake	abdicate
(2 months)	lubbock	dzerzhinsky	kohona	gossip	accede
	keene	osterreich	karate	dioramas	rearm
Turian (200d)	McCarthy	Jewell	-	gunfire	-
(few weeks)	Alston	Arzu	-	emotion	-
	Cousins	Ovitz	-	impunity	-
Mnih (100d)	Podhurst	Pontiff	-	anaesthetics	Mavericks
(7 days)	Harlang	Pinochet	-	monkeys	planning
	Agarwal	Rodionov	-	Jews	hesitated
Skip-Phrase	Redmond Wash.	Vaclav Havel	ninja	spray paint	capitulation
(1000d, 1 day)	Redmond Washington	president Vaclav Havel	martial arts	grafitti	capitulated
	Microsoft	Velvet Revolution	swordsmanship	taggers	capitulating

Table 6: Examples of the closest tokens given various well known models and the Skip-gram model trained on phrases using over 30 billion training words. An empty cell means that the word was not in the vocabulary.

Conclusion

Distributed vector representation can capture a large number of precise syntactic and semantic word relationships

Conclusion

Distributed vector representation can capture a large number of precise syntactic and semantic word relationships

more regular word representations

improved training speed

new approach called Negative sampling

new approach called Subsampling

Conclusion(in details)

The **hyper-parameter choice** is crucial for **performance** (both speed and accuracy)

The main choices to make are:

architecture: skip-gram (slower, better for infrequent words) vs CBOW (fast)

the training algorithm:

hierarchical softmax (better for infrequent words)

VS

negative sampling (better for frequent words, better with low dimensional vectors)

sub-sampling of frequent words: can improve both accuracy and speed for large data sets (useful values are in range 1e-3 to 1e-5)

dimensionality of the word vectors: usually more is better, but not always

context (window) size: for skip-gram usually around 10, for CBOW around 5

https://code.google.com/p/word2vec/

What was after the paper?

What was after the paper?

A lot!

What was after the paper?

A lot!

Names to follow: Socher, Manning, Omer Levy, Yoav Goldberg...

Why does this produce good word representations? Good question. We don't really know (Levy, Goldberg, 2014)

Resourceful links

word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method

Richard Socher lecture and course

Hierarchical softmax in neural network language model

Linguistic Regularities in Sparse and Explicit Word Representations

Short tutorial about word2vec in Python

Distributed Representations of Sentences and Documents: Doc2vec(Paragraph2Vec)

Thank you

