

Plano de Ensino para o Ano Letivo de 2020

	IDE	NTIFICAÇÃO		
Disciplina:				Código da Disciplina:
Ciência e Tecnologia de Políme	eros			EQM946
Course:				
Polymer Science and Technolo	gy			
Materia:				
Ciencia y Tecnología de políme	ero			
Periodicidade: Anual	Carga horária total:	80	Carga horária sem	anal: 00 - 00 - 02
Curso/Habilitação/Ênfase:	•		Série:	Período:
Engenharia Química			6	Noturno
Engenharia Química			5	Diurno
Professor Responsável:		Titulação - Graduaç	ção	Pós-Graduação
Juliana Ribeiro Cordeiro		Bacharel em Qu	uímica	Doutor
Professores:		Titulação - Graduaç	ção	Pós-Graduação
Juliana Ribeiro Cordeiro		Bacharel em Qu	uímica	Doutor
OBJE	TIVOS - Conheci	imentos, Habili	dades, e Atitud	es

CONHECIMENTOS:

- C1: noções sobre nomenclatura e classificação de polímeros
- C2: noções sobre propriedades físicas e químicas de macromoléculas
- C3: noções sobre metodologias de síntese de macromoléculas
- C4: noções sobre técnicas de processamento de macromoléculas
- C5: aditivos usados na indústria de polímeros
- C6: metodologias de análise de polímeros
- C7: materiais poliméricos avançados (por exemplo, polímeros condutores e biodegradáveis)
- C8: reciclagem de materiais poliméricos

HABILIDADES:

- H1: empregar corretamente os materiais poliméricos
- H2: distinguir as propriedades dos materias poliméricos com relação aos materiais tradicionais
- H3: reconhecer os diversos tipos de polímeros existentes
- H4: reconhecer os aditivos empregados em materiais poliméricos
- H5: identificar a origem de massas moleculares elevadas no mecanismo de formação dos polímeros
- H6: Discutir as possíveis variações na estrutura dos polímeros e seu efeito nas propriedades do material final
- H7: Estudar as transições térmicas dos polímeros e explicar sua significância em termos de suas propriedades e de seus processamentos

ATITUDES

Al: Maior responsabilidade quanto ao emprego de materiais poliméricos pela indústria química

2020-EQM946 página 1 de 10

EMENTA

Monômeros, funcionalidade, grau de polimerização, classificação de polímeros, transição vítrea (Tg), e de fusão (Tm). Métodos e técnicas de polimerização. Métodos: adição e condensação; obtenção por meio de metalocenos e outros, copolimerização, copolímeros randômicos, alternados, em bloco e grafitizados, Técnicas: em massa, solução, suspensão, emulsão. Termoplásticos: PE, PP, poliestireno, PVC, poliésteres, acrílicos, poliuretanos. Plásticos engenharia: Nylon, policarbonato, pol(tereftalato de butileno), polisulfona, poli(óxido de fenileno), acrilonitrila butadieno estireno, fluoropolímeros. Polímeros termofixos: resinas fenólica, melamina-formaldeído, resina de ureia, epóxi, poliéster insaturado, alquídicas. Elastômeros naturais e sintéticos: de butadieno-estireno e nitrílica, borrachas elastômero policloropreno, polietileno clorossulfonado, EPDM (Terpolímero com base em três monômeros: etileno, propileno e um dieno não conjugado), borracha de isobutileno e isopreno, polibutadieno, silicone, elastômero termoplástico (TPE). Blendas poliméricas e compósitos. Formação de ligações cruzadas e vulcanização. Síntese e propriedades de alguns polí

SYLLABUS

functionality, degree of polymerizations, classification polymers, glass (Tg) and melting (Tm) transitions, polymerization methods:addition and condensation; metallocene polymers and other newer techniques of polymerization, copolymerization, random, alternating, block and graft copolymers, techniques for polymerization: bulk, solution, suspension, emulsion. Commodity and general purpose thermoplastics: PE, PP, PS, PVC, Polyesters, Acrylic, Polyurethanes. Engineering Plastics: Nylon, Polycarbonate, Polybutylene terephthalate, Polysulphone, Poly(phenylene oxide), Acrylonitrile butadiene styrene, Fluoropolymers. Thermosetting polymers: phenolic resin, melamine- ormaldehyde resin, urea resin, Epoxy, Unsaturated polyester, Alkyds.

Natural and synthetic elastomers: latex, styrene-butadiene rubber, Nitrile rubber, Polychloroprene elastomer, chlorosulfonated polyethylene, EPDM (terpolymer based on three monomers: ethylene, propylene and a non-conjugated diene), Isobutylene Isoprene Rubber, polybutadiene, silicone, Thermoplastic elastomer (TPE). Polymer blends and composites. Crosslinking and vulcanization. Synthesis and properties of some polymers

TEMARIO

2020-EQM946 página 2 de 10

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Sala de aula invertida
- Problem Based Learning

METODOLOGIA DIDÁTICA

No primeiro semestre e em meados do segundo semestre do curso serão ministradas aulas teóricas sobre os assuntos relacionados na ementa do curso. A avaliação desses conteúdos será feita por meio de questionários.

Experimentos relacionados a metodologia de síntese, processamento e caracterização de polímeros serão efetuados ao longo do ano letivo.

Seminários efetuados pelos alunos a partir da literatura serão motivo de avaliação na disciplina.

Quando possível, os experimentos serão efetuados pelos alunos ou, quando somente um reator for usado no experimento, os alunos serão convidados a auxiliar na execução do experimento efetuado como demonstração.

Alguns experimentos a serem elaborados são listados a seguir:

- 1. Preparação da geleca e síntese de cola de PVA
- 2. Polimerização por emulsão do acetato de vinila
- 3. Polimerização em suspensão do divinilbenzeno
- 4. Preparação de uma resina fenolformaldeído
- 5. Preparação de uma resina ortoftálica insaturada e suas aplicações
- 6. Síntese de um polímero condutor, a polianilina
- 7. Preparação de um filme de amido como exemplo de polímero biodegradável
- 8. Uso de resinas comerciais na formação de corpos poliméricos (acrílico, poliéster, poliuretano, epóxi e poliacrilato de sódio)

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Para o bom andamento do curso, são necessárias noções gerais de química orgânica, de cinética química, de cálculo de reatores e de materiais.

CONTRIBUIÇÃO DA DISCIPLINA

O curso de Ciência e Tecnologia de Polímeros irá contribuir para a formação de um profissional habilitado no reconhecimento de características macroscópicas e microscópicas de materiais poliméricos e de suas correlações. O profissional será capaz de interpretar e planejar metodologias de síntese de materiais poliméricos

e de planejar aplicações para materiais poliméricos.

2020-EQM946 página 3 de 10

BIBLIOGRAFIA

Bibliografia Básica:

MANO, Eloisa Biasotto. Polímeros como materiais de engenharia. São Paulo, SP: Edgard Blücher, 1996. 197 p.

NICHOLSON, John W. The chemistry of polymers. 2. ed. Cambridge: Royal Society of Chemistry, 1997. 190 p. (Royal Society of Chemistry Paperbacks). ISBN 0-85404-558-9.

Bibliografia Complementar:

BOVEY, F. A; WINSLOW, F. H. Macromolecules: an introduction to polymer science. New York: Academic Press, 1979. v. 1.

BOVEY, F. A; WINSLOW, F. H. Macromolecules: an introduction to polymer science. New York: Academic Press, 1979. v. 2.

GUEDES, Benedito; FILKAUSKAS, Mário E. O plástico. São Paulo, SP: Érica, 1986. 156 p.

SANDLER, Stanley R; KARO, Wolf. Polymer syntheses. 2. ed. Boston: Academic Press, 1992. v. 1. (Organic Chemistry).

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos.

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 2,0 \quad k_4: 2,0$

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

- T1: trabalho sobre a teoria abordada no primeiro semestre
- T2: apresentação, ao final do primeiro semestre, de trabalho sobre aplicações de materiais poliméricos.
- T3: apresentação sobre experimentos efetuados
- T4: seminário, no segundo semestre, sobre materiais poliméricos a partir de artigo sobre o assunto

2020-EQM946 página 4 de 10

OUTRAS INFORMAÇÕES	
	1

2020-EQM946 página 5 de 10

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA		

2020-EQM946 página 6 de 10

2020-EQM946 página 7 de 10

	PROGRAMA DA DISCIPLINA		
Nº da	Conteúdo	EAA	
semana			
1 L	Somente haverá aula para o 1º ano.	91%	а
		100%	
2 L	Apresentação do curso e do site do Moodle da disciplina.	91%	а
	apresentação doplano de ensino.	100%	
3 L	Introdução aos Polímeros / Macromoléculas e sua importância	91%	a
	atual.Definições. Homopolímeros, copolímeros e misturas de	100%	
Í	polímeros.		
4 L	Polímeros lineares, ramificados e com ligações cruzadas.Forças	91%	а
	deLigação nos Polímeros. Influencia da Temperatura.	100%	
	Arranjocristalino.Conseqüências das forças de ligação		
	intermoleculares sobre os polímeros		
5 L	Tg, Tf e cristalinidade. Propriedades dos Polímeros:	91%	a
	Propriedadesmecânicas, térmicas, elétricas, óticas, químicas e	100%	
	físico-químicas.		
6 L	Propriedades físicas e químicas de polímeros a partir de exemplos	91%	a
	demateriais usados no cotidiano. Síntese de polímeros	100%	
	(polimerizaçãoiônica, por radicalar, Ziegler-Natta e outras)		
7 L	polimerização: massa, solução, emulsão, suspensão e	91%	a
	interfacial.Síntese de polímeros em massa e em solução, estudo	100%	
	comparativo.		
8 L	Polimerização por emulsão do acetato de vinila e testes de	91%	a
	formação defilme. Polimerização por suspensão. Demonstração de	100%	
	polimerizaçãointerfacial (nylon 6,6).		
9 L	Prova Pl	91%	a
		100%	
10 L	Aditivos: cargas, plastificantes, modificadores de	91%	a
	impacto, antioxidantes, retardantes de chama, lubrificantes, etc.	100%	
11 L	Preparação da "geleca"	91%	a
		100%	
12 L	estabilizadores de UV e térmicos, pigmentos , corantes, agentes de	91%	a
	cura e de expansão e antiestáticos. Influência da quantidade de	100%	
	plastificante (DOP) nas propriedades do PVC.		
13 L	Caracterização física e química de Polímeros (Relações entre a	91%	a
	estruturae as propriedades, cristalinidade, viscoelasticidade e	100%	
	transiçõesvítreas).TG e viscosidade de soluções diluídas,IR e		
	DSC.		
14 L	Transformações em materiais poliméricos acabados.	91%	a
		100%	-
15 L	Aplicações de polímeros e tópicos gerais (polímeros de	91%	а
-	engenharia, blendas, copolímeros, compósitos, etc.). Polímeros	100%	~
	condutores epolímeros biodegradáveis.	_ 2 3 3	
16 L	Projeto sobre a despolimerização química do PET e sua aplicação.	91%	<u>а</u>
то п	Apresentação das propostas pelos alunos.	100%	u
		1000	

2020-EQM946 página 8 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

17 L	Elaboração do projeto sobre a despolimerização química do PET	91%	a
		100%	
18 L	Apresentação do projeto sobre a despolimerização química do PET	91%	a
		100%	
19 L	Prova P2	91%	a
		100%	
20 L	Prova P2	91%	a
		100%	
21 L	Semana de engenharia	91%	a
		100%	
22 L	PS1	91%	a
		100%	
23 L	Polimerização por emulsão do acetato de vinila	91%	a
		100%	
24 L	Síntese da polianilina, um polímero condutor.	91%	a
		100%	
25 L	Polimerização em suspensão do divinilbenzeno	91%	a
		100%	
26 L	Fechamento dos experimentos anteriores, apresentações em	91%	a
	PowerPoint pelos alunos como forma de avaliação.	100%	
27 L	Preparação de uma resina fenol-formaldeído	91%	a
		100%	
28 L	Preparação de uma resina ortoftálica insaturada e suas	91%	a
	aplicações, parte 1/2	100%	
29 L	Preparação de uma resina ortoftálica insaturada e suas	91%	a
	aplicações, parte 2/2	100%	
30 L	Fechamento dos experimentos anteriores, apresentações em	91%	a
	PowerPoint pelos alunos como forma de avaliação.	100%	
31 L	Síntese de um polímero condutor, a polianilina;	91%	a
		100%	
32 L	Preparação de um filme de amido como exemplo de polímero	91%	a
	biodegradável;	100%	
33 L	Uso de resinas comerciais na formação de corpos poliméricos	91%	a
	(acrílico, poliéster, poliuretano, epoxi e poliacrilato de	100%	
	sódio).		
34 L	Fechamento dos experimentos anteriores, apresentações em	91%	a
	PowerPoint pelos alunos como forma de avaliação.	100%	
35 L	Seminários elaborados pelos alunos:Polymer Additives part I:	91%	a
	mechanicalproperty modifiers e Polymer Additives part II chemical	100%	
	and aestheticproperty Modifiers		
36 L	Seminários elaborados pelos alunos: Polymer Additives part III	91%	a
	surfaceproperty and processing Modifiers e polymer blends	100%	
	superior productsfrom inferior materials		
37 L	Prova P4	91%	a
		100%	
38 L	Prova P4	91% 100%	a

2020-EQM946 página 9 de 10

INSTITUTO MAUÁ DE TECNOLOGIA

L atividade de atendimento aos alunos	91% a
	100%
L atividade de atendimento aos alunos	91% a
	100%
L PS2	91% a
	100%
genda: T = Teoria, E = Exercício, L = Laboratório	

2020-EQM946 página 10 de 10