DSA 8070 R Session 9: Factor Analysis

Whitney Huang, Clemson University

Contents

Intelligence Tests Example
Load the data summary
Factor analysis
Stock Price Example
Load the stock price data
Summary statistics
Scatter plot matrix
Compute PCs from the correlation matrix
Factor Loadings and specific variances
MLE

Intelligence Tests Example

Load the data summary

```
data(ability.cov)
(cor <- cov2cor(ability.cov$cov))</pre>
```

```
## general picture blocks maze reading vocab
## general 1.0000000 0.4662649 0.5516632 0.3403250 0.5764799 0.5144058
## picture 0.4662649 1.0000000 0.5724364 0.1930992 0.2629229 0.2392766
## blocks 0.5516632 0.5724364 1.0000000 0.4450901 0.3540252 0.3564715
## maze 0.3403250 0.1930992 0.4450901 1.0000000 0.1839645 0.2188370
## reading 0.5764799 0.2629229 0.3540252 0.1839645 1.0000000 0.7913779
## vocab 0.5144058 0.2392766 0.3564715 0.2188370 0.7913779 1.0000000
```

Factor analysis

We will use the *factanal* command to perform factor analysis. The usage can be found below:

```
(ability.FA <- factanal(factors = 1, covmat = ability.cov))</pre>
```

Figure 1: factanal usage

```
##
## Call:
## factanal(factors = 1, covmat = ability.cov)
##
## Uniquenesses:
## general picture blocks
                              maze reading
                                              vocab
     0.535
            0.853
                     0.748
                                      0.232
                                              0.280
##
                             0.910
##
## Loadings:
##
           Factor1
## general 0.682
## picture 0.384
## blocks 0.502
## maze
           0.300
## reading 0.877
## vocab
           0.849
##
                  Factor1
## SS loadings
                    2.443
## Proportion Var
                    0.407
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 75.18 on 9 degrees of freedom.
## The p-value is 1.46e-12
```

The output suggests that the test of the hypothesis that one factor is sufficient has resulted in a p-value of 1.46e-12, which indicates strong evidence against the null hypothesis, suggesting that one factor is not sufficient to explain the data.

```
update(ability.FA, factors = 2)
```

```
##
## factanal(factors = 2, covmat = ability.cov)
##
## Uniquenesses:
  general picture blocks
                              maze reading
                                              vocab
     0.455
             0.589
                                              0.334
##
                     0.218
                             0.769
                                      0.052
##
## Loadings:
           Factor1 Factor2
## general 0.499
                   0.543
```

```
## picture 0.156
                   0.622
## blocks 0.206
                   0.860
## maze
           0.109
                   0.468
## reading 0.956
                   0.182
## vocab
           0.785
                   0.225
##
                  Factor1 Factor2
## SS loadings
                    1.858
                            1.724
## Proportion Var
                    0.310
                            0.287
                            0.597
## Cumulative Var
                    0.310
##
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 6.11 on 4 degrees of freedom.
## The p-value is 0.191
```

Stock Price Example

Load the stock price data

```
url <- "http://users.stat.umn.edu/~sandy/courses/8053/Data/Wichern_data/T8-4.DAT"
stock <- read.table(url, sep = "\t", header = F)</pre>
colnames(stock) <- c("JP Morgan", "City bank", "Wells Fargo", "Royal Dutch", "Exxon")</pre>
head(stock)
      JP Morgan City bank Wells Fargo Royal Dutch
##
                                                       Exxon
## 1 0.0130338 -0.0078431 -0.0031889 -0.0447693 0.0052151
## 2 0.0084862 0.0166886 -0.0062100
                                       0.0119560 0.0134890
## 3 -0.0179153 -0.0086393
                            0.0100360
                                       0.0000000 -0.0061428
## 4 0.0215589 -0.0034858 0.0174353 -0.0285917 -0.0069534
## 5 0.0108225 0.0037167 -0.0101345
                                       0.0291900 0.0409751
## 6 0.0101713 -0.0121978 -0.0083768
                                       0.0137083 0.0029895
```

Summary statistics

```
(Xbar <- colMeans(stock))
                   City bank Wells Fargo Royal Dutch
## 0.0010627806 0.0006554204 0.0016260816 0.0040491252 0.0040386417
(S <- cov(stock))
##
                               City bank Wells Fargo Royal Dutch
                  JP Morgan
                                                                          Exxon
               4.332695e-04 0.0002756679 1.590265e-04 6.411929e-05 8.896616e-05
## JP Morgan
## City bank
               2.756679e-04 0.0004387172 1.799737e-04 1.814512e-04 1.232623e-04
## Wells Fargo 1.590265e-04 0.0001799737 2.239722e-04 7.341348e-05 6.054612e-05
## Royal Dutch 6.411929e-05 0.0001814512 7.341348e-05 7.224964e-04 5.082772e-04
## Exxon
              8.896616e-05 0.0001232623 6.054612e-05 5.082772e-04 7.656742e-04
```

Scatter plot matrix

Compute PCs from the correlation matrix

```
(s.cor <- var(stock_std))</pre>
##
               JP Morgan City bank Wells Fargo Royal Dutch
                                                               Exxon
## JP Morgan
               1.0000000 0.6322878
                                     0.5104973
                                                 0.1146019 0.1544628
## City bank
               0.6322878 1.0000000
                                     0.5741424
                                                 0.3222921 0.2126747
## Wells Fargo 0.5104973 0.5741424
                                     1.0000000
                                                 0.1824992 0.1462067
## Royal Dutch 0.1146019 0.3222921
                                     0.1824992
                                                 1.0000000 0.6833777
                                                 0.6833777 1.0000000
## Exxon
               0.1544628 0.2126747
                                     0.1462067
s.pca <- prcomp(stock, scale = T, center = T)</pre>
s.pca$rotation
```

```
PC1
                              PC2
                                         PC3
                                                   PC4
                                                              PC5
##
## JP Morgan -0.4690832 -0.3680070 -0.60431522 -0.3630228 0.38412160
## City bank -0.5324055 -0.2364624 -0.13610618 0.6292079 -0.49618794
## Wells Fargo -0.4651633 -0.3151795 0.77182810 -0.2889658 0.07116948
## Royal Dutch -0.3873459 0.5850373 0.09336192 0.3812515 0.59466408
## Exxon
             s <- var(s.pca$x)
(Proportion.std <- round(diag(s) / sum(diag(s)), 3))
    PC1 PC2 PC3
                   PC4
                          PC5
## 0.487 0.281 0.100 0.080 0.051
(Cumulative.std <- round(cumsum(diag(s)) / sum(diag(s)), 3))
    PC1 PC2 PC3 PC4
##
                          PC5
## 0.487 0.769 0.869 0.949 1.000
p <- 5
par(las = 1, mgp = c(2, 1, 0), mar = c(3, 3, 1, 3))
plot(1:p, Proportion.std, xlab = "# of PCs", ylim = c(0, 1),
ylab = "Proportion", pch = 16, cex = 0.8, xaxt = "n", col = "blue")
axis(1, at = 1:p)
mtext("Cumulative", 4, las = 0, line = 2)
axis(4, col = "green"); axis(2, col = "blue")
grid()
points(1:p, Cumulative.std, cex = 1, col = "green")
```


Factor Loadings and specific variances

```
# m = 2, factor Loadings
lambda <- s.pca$sdev^2</pre>
e <- s.pca$rotation
sqrt(lambda[1]) * e[, 1]
##
     JP Morgan City bank Wells Fargo Royal Dutch
                                                          Exxon
   -0.7323218 -0.8311791 -0.7262022 -0.6047155 -0.5630885
sqrt(lambda[2]) * e[, 2]
##
                 City bank Wells Fargo Royal Dutch
                                                          Exxon
   -0.4365209 -0.2804859 -0.3738582
                                        0.6939569
                                                      0.7186401
# specific variances
sVar \leftarrow diag(s.cor - (lambda[1] * e[, 1] %*% t(e[, 1]) + lambda[2] * e[, 2] %*% t(e[, 2])))
# residual matrix
round(s.cor - (lambda[1] * e[, 1] %*% t(e[, 1]) + lambda[2] * e[, 2] %*% t(e[, 2]) + diag(sVar)), 2)
```

```
JP Morgan City bank Wells Fargo Royal Dutch Exxon
## JP Morgan
                    0.00
                             -0.10
                                         -0.18
                                                     -0.03 0.06
## City bank
                   -0.10
                              0.00
                                         -0.13
                                                      0.01 -0.05
## Wells Fargo
                   -0.18
                             -0.13
                                          0.00
                                                      0.00 0.01
## Royal Dutch
                   -0.03
                              0.01
                                          0.00
                                                      0.00 -0.16
## Exxon
                    0.06
                             -0.05
                                          0.01
                                                     -0.16 0.00
```

MLE

```
(stock.fac <- factanal(stock, factors = 2, method = "mle", scale = T, center = T))
##
## factanal(x = stock, factors = 2, method = "mle", scale = T, center = T)
## Uniquenesses:
                 City bank Wells Fargo Royal Dutch
##
     JP Morgan
                                                          Exxon
##
         0.417
                     0.275
                                 0.542
                                              0.005
                                                          0.530
##
## Loadings:
##
               Factor1 Factor2
## JP Morgan
               0.763
## City bank
               0.819
                       0.232
## Wells Fargo 0.668
                       0.108
## Royal Dutch 0.113
                       0.991
## Exxon
               0.108
                       0.677
##
##
                  Factor1 Factor2
                    1.725
                            1.507
## SS loadings
## Proportion Var
                    0.345
                            0.301
## Cumulative Var
                            0.646
                    0.345
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 1.97 on 1 degree of freedom.
## The p-value is 0.16
par(las = 1, mgp = c(2, 1, 0), mar = c(3, 3, 1, 3))
plot(stock.fac$loadings, xlab = "F1 Loadings", ylab = "F2 Loadings",
     type = "n", xlim = c(-0.1, 1.1), ylim = c(-0.1, 1.1))
text(stock.fac$loadings, labels = colnames(stock))
```



```
# residual matrix
pred <- (stock.fac$loadings %*% t(stock.fac$loadings)) + diag(stock.fac$uniqueness)
(resid <- s.cor - pred)</pre>
```

```
##
                   JP Morgan
                                 City bank
                                             Wells Fargo
                                                           Royal Dutch
## JP Morgan
                1.055860e-07
                              7.496780e-06 -2.564223e-03 -3.325561e-04
## City bank
                              3.255673e-08 1.608871e-03 2.116218e-04
                7.496780e-06
## Wells Fargo -2.564223e-03
                              1.608871e-03 5.157373e-08 -9.518792e-06
## Royal Dutch -3.325561e-04
                              2.116218e-04 -9.518792e-06 -1.559500e-06
## Exxon
                5.198222e-02 -3.307885e-02 5.547153e-04 1.218853e-04
##
                       Exxon
## JP Morgan
                5.198222e-02
## City bank
               -3.307885e-02
## Wells Fargo 5.547153e-04
## Royal Dutch
               1.218853e-04
## Exxon
                2.670491e-07
```