Quantum Espresso Tutorial

Goal?

- •Know what you want from the code. It is not about defining atoms and changing parameters
- Strength of DFT:

Energetics: point defects formation energies, migration energies,...

Electronic structure: charge localization, magnetic properties,....

-How is it done? Kohn- Sham equation is solved using pw.x code in QE package.

Codes in QE package

PW.X

NEB.X

DOS.X

PP.X

..,etc.

Self-consistent Iterative Solution

Sample Input Files

```
&CONTROL
 calculation = 'scf' ,
 prefix='Silicon' ,
 outdir='E:\Graduate\QE_tutorial\perfect\outdir',
 pseudo_dir = 'E:\Graduate\QE_tutorial\',
&SYSTEM
 ibrav = 0,
 nat = 8,
 ntyp = 1,
 ecutwfc = 30,
 ecutrho = 240,
&ELECTRONS
&IONS
&CELL
```

ATOMIC_SPECIES
Si 28.086 Si.pbe-n-rrkjus_psl.UPF

ATOMIC_POSITIONS crystal

Si	0.000000000	0.000000000	0.000000000
Si	0.000000000	0.500000000	0.500000000
Si	0.500000000	0.500000000	0.000000000
Si	0.500000000	0.00000000	0.500000000
Si	0.750000000	0.250000000	0.750000000
Si	0.250000000	0.250000000	0.250000000
Si	0.250000000	0.750000000	0.750000000
Si	0.750000000	0.750000000	0.250000000

CELL_PARAMETERS angstrom

5.4700000000	0.000000000	0.000000000
0.000000000	5.4700000000	0.0000000000
0.0000000000	0.0000000000	5.4700000000

K_POINTS automatic 4 4 4 1 1 1

```
CELL PARAMETERS angstrom
                                                                                              5.439039 0.000000
                                                                                                                   0.000000
calculation = 'relax',
                                                diagonalization='david',
                                                                                              3.097504 4.470863
                                                                                                                   0.000000
prefix='fe2o3',
                                                mixing mode = 'plain',
                                                                                              3.097504 1.622263 4.166159
outdir='/home/data/prim_fe2o3_dft+u/scratch',
                                                mixing beta = 0.7,
pseudo dir = '/home/alex021u1/data',
                                                startingwfc = 'random',
                                                                                          ATOMIC SPECIES
etot conv thr = 7.7D-6,
                                                conv thr = 1.0d-9,
                                                                                          Fe1 55.845 Fe.pbe-spn-rrkjus psl.0.2.1.UPF
forc conv thr = 4.0D-5,
                                                                                          Fe2 55.845 Fe.pbe-spn-rrkjus psl.0.2.1.UPF
&SYSTEM
ibrav = 0,
                                                &ions
                                                                                          O 15.999 O.pbe-n-rrkjus psl.0.1.UPF
nat = 10,
ntyp = 3,
                                                  ion dynamics='bfgs'
                                                                                          ATOMIC POSITIONS crystal
nbnd = 60,
                                                                                          Fe1
                                                                                                 0.144983
                                                                                                           0.144983
                                                                                                                      0.144984
ecutwfc = 90,
                                                                                                 0.855016
                                                                                                           0.855016
                                                                                                                      0.855016
                                                                                          Fe1
ecutrho = 1080,
                                                                                          Fe2
                                                                                                 0.355016 0.355016
                                                                                                                      0.355016
occupations = 'fixed',
                                                &CELL
                                                                                          Fe2
                                                                                                 0.644983
                                                                                                           0.644983
                                                                                                                      0.644982
nspin = 2,
                                                                                                0.749999 0.444610
                                                                                                                     0.055389
                                                                                          O
starting magnetization(1)=1.0,
                                                 cell dynamics = 'bfgs',
                                                                                          0
                                                                                                0.944610
                                                                                                          0.249999
                                                                                                                     0.555389
starting magnetization(2)=-1.0,
                                                 cell dofree = 'all',
                                                                                                0.444610
                                                                                                          0.055389
                                                                                                                     0.750000
                                                                                          0
tot_magnetization = 0,
                                                 press conv thr = 0.5,
                                                                                          0
                                                                                                0.249999
                                                                                                          0.555389
                                                                                                                     0.944610
Ida plus u = .TRUE.,
                                                                                          0
                                                                                                0.055389
                                                                                                          0.749999
                                                                                                                     0.444610
Hubbard_U(1) = 3.0,
                                                                                          0
                                                                                                0.555389 0.944610
                                                                                                                     0.249999
Hubbard U(2) = 3.0,
Hubbard_U(3) = 7.0,
                                                                                           K POINTS automatic
                                                                                          888 000
```

&ELECTRONS

&CONTROL

Understanding Input Parameters

Namelists

- Must be in the following order
- Start with "&" and end with "/"

```
&CONTROL
```

Input Parameters in "&Control"

- Calculation = 'scf', 'relax', 'vc-relax', 'md',...
- •scf: self-consistent field (simply, calculate ground state energy and charge density)
- relax: calculate forces after each scf cycle and change ionic positions to minimize forces (but cell size is fixed)
- vc-relax: variable cell relax

Input Parameters in "&Control"

- •Outdir = '\$path_to_folder_to_create_output_files'
- pseudo_dir= '\$path_to_folder_of_pseudopotential_files'
- •etot_conv_thr = convergence threshold for total energy in ionic relaxation
 (in Rydberg)
- •forc_conv_thr = convergence threshold for forces in ionic relaxation
 (in Ry/bohr)

```
1 Ry = 13.6 eV
1 bohr = 0.529 Angstrom
```

- ibrav = Bravais lattice index
- 1: simple cubic, 2: FCC, 3: BCC, see manual for more structures

Recommended: use (ibrav=0) and specify lattice vectors in (CELL_PARAMETERS) card

- nat: number of atoms in simulation cell
- •ntyp: number of atomic species
- •nbnd: number of electronic states to calculate (n/2 + extra states in conduction band (20% more))

- •tot_charge : (if not assigned, default = 0), used in modeling charged defects
- •nspin= 1 for non-polarized calc. , 2 for spin-polarized calc.
- •tot_magnetization= (if you know for sure. e.g. 0 for antiferromagnetic) or can leave it unconstrained to be determined in scf cycle
- -starting_magnetization(i): allowed values between -1 and 1

Should specify non zero starting_magnetization(i) for at least one species or you will probably get non-magnetic solution

- ecutwfc: see the suggested minimum cutoff in the pseudopotential file
- ecutrho (~ 4-12 *ecutrho)
- In Rydberg energy units (1 Ry = 13.6 eV)

Convergence tests:

typical convergence criterion for the total energy (~ 5 meV/ atom)

Perform the convergence test for the smallest system possible (primitive cell). Then use ecutwfc and ecutrho for larger systems.

- •lda_plus_u = .TRUE.
- hubbard_u(i) = (in eV)

- Koopman's theorem:Fractional occupation should be linear
- The perfect U should achieve this linearity

Note that: you should optimize your cell to a new lattice constant when you add U

- •Occupations = 'fixed' (for semiconductors and insulators with gap)
- •Occupations = 'smearing' (for metals or if you have point defects)
- Smearing = 'Gaussian' or 'mv' (for metals use mv)
- Degauss = value of broadening (~ 0.05 Ry for metals)
- The smaller, the better

Input Parameters in "&ELECTRONS"

- Can leave it empty and stick to default values while learning
- •conv_thr: Convergence threshold for self-consistency (default is 1.0d-6)
- •Mixing beta: mixing factor for self-consistency (default is 0.7) may use 0.5 or 0.3 if self-consistency is not achieved after 100 iterations

```
&ELECTRONS
conv_thr = 1.0d-9
/
```

Input Parameters in "&IONS"

- •Must include it if calculation = 'relax' or 'vc-relax'
- Can leave it empty and stick to default values

```
&CELL
ion_dynamics = 'bfgs', !default
/
```

Input Parameters in "&CELL"

- Must include it if calculation= 'vc-relax'
- It will be ignored if calculation= 'scf' or 'relax'

```
&CELL

cell_dynamics = 'bfgs' , !default

cell_dofree = 'all', !default

/
```

Cards

• Can be in any order

ATOMIC_SPECIES

ATOMIC_POSITIONS

CELL_PARAMETERS

K_POINTS

ATOMIC_SPECIES

- •Must have number of lines = <u>ntyp</u>
- You can choose any name for an atomic species
- Label atoms of interest
 (to track them or control their magnetization)
- Use SSSP library (very well tested except for actinides)
- For actinides use pseudopotentials in QE library.

ATOMIC_SPECIES

Fe1 55.845 Fe.pbe-spn-rrkjus_psl.0.2.1.UPF

Fe2 55.845 Fe.pbe-spn-rrkjus_psl.0.2.1.UPF

O 15.999 O.pbe-n-rrkjus_psl.0.1.UPF

CELL_PARAMETERS

- Options: 'bohr' or 'angstrom'
- These are the 3 cell vectors that define your system
- These values can be optimized automatically through "vc-relax"
- Or manually (for cubic structures)
 by making a set of "scf" calculations
 varying lattice parameter
- Periodicity will be applied to this cell

```
      CELL_PARAMETERS angstrom

      5.47000000 0.00000000 0.00000000

      0.00000000 5.47000000 0.00000000

      0.00000000 0.00000000 5.47000000
```

```
CELL_PARAMETERS angstrom

5.439039 0.000000 0.000000

3.097504 4.470863 0.000000

3.097504 1.622263 4.166159
```

CELL_PARAMETERS

- Equilibrium lattice constant has the lowest energy
- Also, can calculate theoretical bulk modulus, if you fit the data to a quadratic equation

ATOMIC_POSITIONS

- Options: 'bohr', 'angstrom', 'crystal'
- Recommended: <u>crystal</u>
 (use fractional coordinates)
 relative coordinates to lattice vectors
 (defined in <u>CELL_PARAMETERS</u>)
- •Must have number of lines = <u>nat</u>
- Keep in mind that periodic boundary condition is applied automatically
- So, don't add atoms more than you should or they might overlap for example, primitive BCC: only 2 atoms

ATOMIC_POSITIONS crystal Fe1 0.144983 0.144983 0.144984 Fe1 0.855016 0.855016 0.855016 Fe2 0.355016 0.355016 0.355016 Fe2 0.644983 0.644983 0.644982 0 0.749999 0.444610 0.055389 0.944610 0.249999 0.555389 0 0.444610 0.055389 0.750000 0 0.249999 0.555389 0.944610 0.055389 0.749999 0.444610 0.555389 0.944610 0.249999

Using Vesta

- Very useful in duplicating primitive cells to generate supercells of any size.
- Export atomic positions in ".vasp" format
- Can import structures from crystallography.net in ".CIF" format

K_POINTS (reciprocal space)

- Dependent on cell size (inverse relation)
- For very large supercells (> 100 atoms), may use only 1 k-point (gamma point)

For smaller super cells, we need convergence tests

•Options: 'automatic' generates grid using MP scheme (recommended) 'tpiba' read k-points in Cartesian coordinate units of $2\pi/a$

Output

To get lines with total energy: grep ! qe_output_file

To get lines with pressure or stresses: grep kbar qe_output_file

Stresses are calculated automatically in "vc-relax"

Forces are calculated automatically in "relax"

Use dos.x to plot density of states

Use pp.x to extract plottable charge density files