Variables aléatoires - Lois de probabilité

Exercice 1 (Modèle Statistique)

1) On note d'abord que

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y = (X^{\top}X)^{-1}X^{\top}(X\beta + \epsilon) = (X^{\top}X)^{-1}X^{\top}X\beta + (X^{\top}X)^{-1}X^{\top}\epsilon$$
$$= \beta + (X^{\top}X)^{-1}X^{\top}\epsilon.$$

Par définition de l'OLS et d'après l'équation ci-dessus, et puisque ϵ est de moyenne nulle,

$$\mathbb{E}[\hat{\beta}] = \beta + (X^{\top}X)^{-1}X^{\top}\mathbb{E}[\epsilon] = \beta.$$

De plus, puisque $Var[\epsilon] = \Sigma$,

$$\operatorname{Var}[\hat{\beta}] = (X^{\top}X)^{-1}X^{\top}\operatorname{Var}[\epsilon] \left((X^{\top}X)^{-1}X^{\top} \right)^{\top} = (X^{\top}X)^{-1}X^{\top}\Sigma X(X^{\top}X)^{-1}.$$

2) Puisque Σ est définie positive, elle est diagonalisable dans une base orthonormale. Soit $P^{\top}DP$ la décomposition en valeurs propres de Σ , avec P orthonormale $(P^{-1} = P^{\top})$ et $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$ la matrice diagonale contenant les valeurs propres de Σ :

$$\Sigma = P^{\top}DP$$
.

Soit $\tilde{D} = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$. On a $\Sigma = P^{\top} \tilde{D} \tilde{D} P$. Soit $\Omega = P^{\top} \tilde{D}$, alors $\Omega^{\top} = (P^{\top} \tilde{D})^{\top} = \tilde{D} P$ et $\Sigma = \Omega \Omega^{\top}$.

De plus, $\Omega = P^{\top} \tilde{D}$ est inversible et

$$\Omega^{-1} = \tilde{D}^{-1}(P^{\top})^{-1} = \tilde{D}^{-1}P = \text{diag}(1/\sqrt{\lambda_1}, \dots, 1/\sqrt{\lambda_n})P.$$

(Vérifier par calcul direct)

- 3) Cela revient à montrer que l'endomorphisme associé à $\Omega^{-1}X$ est injectif. Soit $u \in \mathbb{R}^p$ tel que $\Omega^{-1}Xu = 0$. Alors en multipliant par Ω on a Xu = 0. Or, comme X est de rang complet, on obtient u = 0.
- 4) En multipliant tous les termes du modèle de régression initial par Ω^{-1} on obtient

$$\Omega^{-1}Y = \Omega^{-1}X\beta + \Omega^{-1}\epsilon,$$

ce qui équivaut à

$$Y^*X^*\beta + \epsilon^*$$
.

D'après la question 2,

$$\operatorname{Var}[\epsilon^*] = \Omega^{-1} \operatorname{Var}[\epsilon] \Omega^{-1} = \Omega^{-1} \Sigma (\Omega^{-1})^{\top}$$
$$= \Omega^{-1} \Omega \Omega^{\top} (\Omega^{-1})^{\top} = \Omega^{\top} (\Omega^{\top})^{-1} = I_n.$$
(2)

De plus, $\mathbb{E}[\epsilon^*] = \Omega^{-1} \mathbb{E}[\epsilon] = 0$. On trouve donc le modèle de régression linéaire dans lequel les erreurs sont centrées et homoscédastiques.

5) Dans ce nouveau modèle, on peut calculer l'estimateur des moindres carrés ordinaires :

$$\hat{\beta}^* = \left((X^*)^\top X^* \right)^{-1} (X^*)^\top Y^*$$

$$= \left((\Omega^{-1} X)^\top \Omega^{-1} X \right)^{-1} (\Omega - 1X)^\top \Omega^{-1} Y$$

$$= \left(X^\top (\Omega^{-1})^\top \Omega^{-1} X \right)^{-1} X^\top (\Omega^{-1})^\top \Omega^{-1} Y$$

$$= \left(X^\top (\Omega \Omega^\top)^{-1} X \right)^{-1} X^\top (\Omega \Omega^\top)^{-1} Y$$

$$= (X^\top \Sigma^{-1} X)^{-1} X^\top \Sigma^{-1} Y$$

$$:= \hat{\beta}_G.$$
(3)

6) $\hat{\beta}_G$ est l'estimateur des moindres carrés ordinaires pour le nouveau modèle. Il satisfait donc $\mathbb{E}[\hat{\beta}_G] = \beta$. Par ailleurs, on a

$$\operatorname{Var}[\hat{\beta}_G] = \hat{\beta^*} = \left((X^*)^\top X^* \right)^{-1} = \left(X^\top \Sigma^{-1} X \right)^{-1}.$$

7) Notons d'abord que tout estimateur linéaire T dans les observations Y est linéaire dans les observations Y^* :

$$T = AY = A\Omega Y^* = A^*Y^* = T^*.$$

L'estimateur $\hat{\beta}_G$ est linéaire (dans les observations Y et Y^*) et sans biais. Par Gauss-Markov, il vient que $\hat{\beta}_G$ est optimal parmi tous les estimateurs linéaires sans biais T^* dans le nouveau modèle car les hypothèses du théorème sont satisfaites. Pour tout $u \in \mathbb{R}^p$:

$$u^{\top} \operatorname{Var}[T^*] u \geq u^{\top} \operatorname{Var}[\hat{\beta}_G] u.$$

8) En particulier pour l'estimateur $\hat{\beta}$, on obtient que

$$u^{\top} \operatorname{Var}[\hat{\beta}] u \geq u^{\top} \operatorname{Var}[\hat{\beta}_G] u.$$

Exercice 2 (Régression ridge)

1) Notons ma fonction $\Phi(\beta) = ||Y - X\beta||^2 + \lambda ||\beta||^2$. Cette fonction objectif est différentiable et convexe, on peut donc écrire les conditions d'optimalité du premier ordre :

$$\nabla \Phi(\beta) = -2X^{\top} (Y - X\beta) + 2\lambda \beta.$$

L'estimateur ridge satisfait $\nabla \Phi(\hat{\beta}_{\lambda}^{R}) = 0$. On en déduit la relation voulue :

$$(X^{\top}X + \lambda I_p)\hat{\beta}_{\lambda}^R = X^{\top}Y.$$

2) Une matrice symétrique A est inversible si et seulement si $\forall v \in \mathbb{R}^p \setminus \{0\}, \ v^\top A v \neq 0$. Ici, pour $v \in \mathbb{R}^p$ non nul,

$$v^{\top}(X^{\top}X + \lambda I_p)v = ||Xv||^2 + \lambda ||v||^2.$$

Puisque $\lambda > 0$, $||Xv||^2 + \lambda ||v||^2 > 0$ ce qui prouve que $X^\top X + \lambda I_p$ est définie positive. En conséquence, $(X^\top X + \lambda I_p)^{-1}$ est bien définie et on obtient

$$\hat{\boldsymbol{\beta}}_{\lambda}^{R} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}.$$

3) $X^{\top}X$ admet une décomposition spectrale $X^{\top}X\sum_{j=1}^{p}\mu_{j}\theta_{j}\theta_{j}^{\top}$, où les μ_{j} sont les valeurs propres et θ_{j} sont les vecteurs propres correspondants. Notons que $(\theta_{1},\ldots,\theta_{p})$ est une base orthonormale. On obtient donc

$$X^{\top}X + \lambda I_p = \sum_{j=1}^{p} (\mu_j + \lambda)\theta_j\theta_j^{\top}, \text{ et}$$

$$(X^{\top}X + \lambda I_p)^{-1} = \sum_{j=1}^{p} \frac{1}{\mu_j + \lambda} \theta_j \theta_j^{\top}.$$

Par construction de la décomposition en valeurs singulières $X = \sum_{j=1}^{r} \sqrt{\mu_j} \tilde{\theta}_j \theta_j^{\top}$, où r est le rang de la matrice X et $(\tilde{\theta}_j)_{i=1}^r$ est une famille orthonormale de \mathbb{R}^n . Donc

$$(X^{\top}X + \lambda I_p)^{-1}X^{\top} = \sum_{j=1}^{r} \frac{\mu_j^{1/2}}{\mu_j + \lambda} \theta_j \tilde{\theta}_j^{\top}$$

$$= \sum_{j=1}^{r} \frac{1}{\mu_j + \lambda} \theta_j \theta_j^{\top} X^{\top}.$$
(4)

Donc $(X^{\top}X + \lambda I_p)^{-1} \to \sum_{j=1}^r \frac{1}{\mu_j} \theta_j \theta_j^{\top}$ lorsque $\lambda \to 0$; on définit $(X^{\top}X)^* = \sum_{j=1}^r \frac{1}{\mu_j} \theta_j \theta_j^{\top}$ la pseudo-inverse de $X^{\top}X$. Finalement, $\hat{\beta}_{\lambda}^R \to (X^{\top}X)^*X^{\top}Y$ lorsque $\lambda \to 0$ et $\hat{\beta}_{\lambda}^R \to 0$ lorsque $\lambda \to +\infty$.

4)

$$\operatorname{Bias}(\hat{\beta}_{\lambda}^{R}) = \mathbb{E}[\hat{\beta}_{\lambda}^{R}] - \beta$$
$$= \left((X^{\top}X + \lambda I_{p})^{-1}X^{\top}X - I_{p} \right) \beta.$$
 (5)

5)
$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}_{\lambda}^{R}) = A\operatorname{Cov}(Y)A^{\top}$$

$$= \sigma^{2}(X^{\top}X + \lambda I_{p})^{-1}X^{\top}X(X^{\top}X + \lambda I_{p})^{-1}.$$
(6)

- 6) Supposons que X est de rang plein (i.e. $X^{\top}X$ est de rang p).
 - (a) L'estimateur des moindres carrés classique est donné par :

$$\hat{\beta} = (X^{\top} X)^{-1} X^{\top} Y,$$

avec $Cov(\hat{\beta}) = \sigma^2(X^\top X)^{-1}$.

- (b) La formule découle d'un calcul simple à l'aide des expressions $Cov(\hat{\beta}) = \sigma^2(X^\top X)^{-1}$ et $Cov(\hat{\beta}^R) = \sigma^2(X^\top X + \lambda I_p)^{-1}X^\top X(X^\top X + \lambda I_p)^{-1}$.
- (c) On va prouver que pour tout $x \in \mathbb{R}^p$,

$$x^{\top} \operatorname{Cov}(\hat{\beta}) x \ge x^{\top} \operatorname{Cov}(\hat{\beta}_{\lambda}^{R}) x.$$

Puisque $(\theta_j)_{1 \leq j \leq p}$ est une base orthonormale de \mathbb{R}^p , il suffit de montrer que l'inégalité ci-dessus est vraie pour tout θ_j . Soit $\lambda_j > 0$ une valeur propre de P et θ_j un vecteur propre associé; on a $P\theta_j = \lambda \theta_j$.

$$(P+I_p)^{-1}\theta_j = \frac{1}{\lambda_j + 1}\theta_j, \ P^{-1}\theta_j = \frac{1}{\lambda_j}\theta_j$$

On obtient donc

$$\theta_j^{\top} \left(\operatorname{Cov}(\hat{\beta}) - \operatorname{Cov}(\hat{\beta}_{\lambda}^R) \right) \theta_j = \frac{\sigma^2}{\lambda_j(\lambda_j + 1)} \left[1 + \frac{1}{\lambda_j} - \frac{\lambda_j}{\lambda_j + 1} \right],$$

et

$$\theta_j^{\top} \left(\operatorname{Cov}(\hat{\beta}) - \operatorname{Cov}(\hat{\beta}_{\lambda}^R) \right) \theta_j = \frac{\sigma^2}{\lambda_j (\lambda_j + 1)} \frac{(\lambda_j + 1)^2 - \lambda_j^2}{\lambda_j (1 + \lambda_j)} \ge 0.$$

(d) L'avantage principal de l'estimateur ridge est d'avoir une variance plus petite que celle de l'estimateur des moindres carrés classique.