Advanced Formal Tools PRISM: Probabilistic Model Checking

Created and actively maintained by:

- <u>Dave Parker</u> (University of Oxford)
- Gethin Norman (University of Glasgow)
- Marta Kwiatkowska (University of Oxford)

Tansen RAHMAN

Tansen.Rahman@etu.uniae.ch

Stéphane Nguyen

Stephane.Nauven@etu.uniae.ch

University of Geneva

March 6th 2023

Overview

- 1 Current Status
 - Understand basic usage (modeling+analysis)
 - Learning coding syntax
 - Thinking about limitations

- 2 Goals
 - Understand other probability models
 - Learn advanced coding strategies (if any)
 - Look into case studies
 - Implement our own case study

Basic Usage

Probabilistic models in PRISM:

- discrete-time Markov chains (DTMCs)
- continuous-time Markov chains (CTMCs)
- Markov decision processes (MDPs)
- probabilistic automata (PAs)
- probabilistic timed automata (PTAs)
- partially observable Markov decision processes (POMDPs)
- partially observable probabilistic timed automata (POPTAs)
- Focus on DTMC to learn basic usage of PRISM

Model Analysis

Simulator

- Sample/simulate paths
- Manually choose transitions
- Reset path
- Choose number of steps

Properties

- Probability P s.t. property is true
- Is P ≥ value?
- Expected cumulative reward
- P in terms of x variable

Options

- Solutions methods (Value Iteration, Policy Iteration, Linear Programming, etc.)
- Change stopping condition

Intro to PCTL for DTMCs

Probabilistic Computation Tree Logic = Extension of CTL with:

- Prop. holding for a portion of the computations? e.g 50 %
 - Not just A (all) or E (exists) path(s)/run(s)/execution(s)
 - P properties in PRISM:

P bound [pathprop]

- Prop. holding cont. during time interval? (Discrete Time MC)
 - E.g : **P ≥ value [p1 U≤2 p2]**

"After a request for a service, there is at least a 98% probability that the service will be carried out within 2 seconds" - Wikipedia

PCTL Properties Syntax

PCTL

- PCTL syntax:
 - $\varphi ::= true | a | \varphi \wedge \varphi | \neg \varphi | P_{\sim p} [\psi]$

ψ is true with probability ~p

(state formulae)

- where a is an atomic proposition, $p \in [0,1]$ is a probability bound, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- Remaining operators can be derived (false, \vee , \rightarrow , F, G, ...)
 - hence will not be discussed here

PRISM Coding syntax

dtmc

module die

```
// local state
s: [0..7] init 0;
// value of the die
d: [0..6] init 0;

[] s=0 -> 0.5: (s'=1) + 0.5: (s'=2);
[] s=1 -> 0.5: (s'=3) + 0.5: (s'=4);
[] s=2 -> 0.5: (s'=5) + 0.5: (s'=6);
[] s=3 -> 0.5: (s'=1) + 0.5: (s'=7) & (d'=1);
[] s=4 -> 0.5: (s'=7) & (d'=2) + 0.5: (s'=7) & (d'=3);
[] s=5 -> 0.5: (s'=7) & (d'=4) + 0.5: (s'=7) & (d'=5);
[] s=6 -> 0.5: (s'=2) + 0.5: (s'=7) & (d'=6);
[] s=7 -> (s'=7);
```


endmodule

Limitations (In-progress)

Known/Documented

Variable ordering affects performance

Possible improvements (might already exist)

- Avoid creating states one-by-one
- Import model representation

Demo

. . . .

. . . .

Project Progression

Conclusion

. . . .