

ЭТИКЕТКА <u>СЛКН.431116.006 ЭТ</u>

Микросхема интегральная 564 ГГ1ТЭП

Функциональное назначение – Генератор с фазовой автоподстройкой частоты

Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Обозначение вывода	Назначение вывода	№ вывода	Обозначение вывода	Назначение вывода
1	QF	Выход "фазовый импульс"	9	IG	Вход генератора
2	Q0	Выход фазового компаратора	10	QDM	Выход демодулятора
3	IC	Вход компараторный	11	R1	Вывод для подключения резистора R1
4	QG	Выход генератора	12	R2	Вывод для подключения резистора R2
5	INH	Вход запрета генератора	13	Q1	Выход фазового компаратора
6	C1.1	Вывод для подключения конденсатора C1	14	IS	Вход сигнальный
7	C1.2	Вывод для подключения конденсатора C2	15	Uz	Вывод для подключения внутреннего стабилитрона
8	0V	Общий	16	V_{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25 \pm 10)^{\circ}$ C) Таблица 1

Harrisonana Tanasanna a Turing na tanasan na manara na tanasan	Буквенное	Норма		
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = U_{IH} = 5$, 10, 15 B, $U_{IL} = 0$ В	$\rm U_{OL}$	-	0,05	
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = U_{IH} = 5$, 10, 15 B, $U_{IL} = 0$ B	U _{OH}	U _{CC} - 5 B	-	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC} = 5$ B, $U_{IL} = 1.5$ B, $U_{IH} = 3.5$ B $U_{CC} = 10$ B, $U_{IL} = 3.0$ B, $U_{IH} = 7.0$ B $U_{CC} = 15$ B, $U_{IL} = 4.0$ B, $U_{IH} = 11.0$ B	U _{OL max}	- - -	0,5 1,0 1,5	
4. Минимальное выходное напряжение высокого уровня, B, при: $U_{CC} = 5 \; B, \; U_{IL} = 1,5 \; B, \; U_{IH} = 3,5 \; B$ $U_{CC} = 10 \; B, \; U_{IL} = 3,0 \; B, \; U_{IH} = 7,0 \; B$ $U_{CC} = 15 \; B, \; U_{IL} = 4,0 \; B, \; U_{IH} = 11,0 \; B$	$ m U_{OH~min}$	4,5 9,0 13,5	- - -	

Продолжение таблицы 1			
1	2	3	4
5 . Ток потребления, мк A , при: $U_{IL} = 0$ B, $U_{IH} = U_{CC}$			
при этом по выводу 14: U_i = 0 B, или U_{CC} по выводу 5: U_i = U_{CC}			
выводы 15 не подключен	I_{CC1}		
$U_{CC} = 5 B$		-	20
$U_{CC} = 10 B$		-	40
$U_{CC} = 15 B$		-	80
6. Ток потребления, мкА, при:			
$U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$			
при этом по выводу 5: $U_I = U_{CC}$ выводы 14 и 15 не подключены $U_{CC} = 5$ В	I_{CC2}		
$U_{CC} = 10 \text{ B}$		-	100
$U_{CC} = 15 B$		-	500 1500
7. Входной ток низкого уровня, мкА, при:			1000
$U_{\rm CC} = U_{\rm IH} = 15 \text{ B}, U_{\rm IL} = 0 \text{ B}$	${ m I}_{ m IL}$	-	/-0,1/
8. Входной ток высокого уровня, мкА, при: $U_{CC} = U_{IH} = 15 \text{ B}, U_{IL} = 0 \text{ B}$	I_{IH}	-	0,1
9. Выходной ток низкого уровня, мА, при: $U_{CC} = 5$ B, $U_{IL} = 0$ B, $U_{IH} = 5$ B, $U_0 = 0.4$ B		0,51	
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, U_0 = 0.5 \text{ B}$	I_{OL}	1,3	- -
$U_{CC} = 15 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 15 \text{ B}, U_0 = 1,5 \text{ B}$		3,4	-
10. Выходной ток высокого уровня, мА, при:			
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, U_0 = 4,6 \text{ B}$		/-0,51/	-
$U_{CC} = 5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}, U_{O} = 2,5 \text{ B}$	I_{OH}	/-1,6/	-
$U_{CC} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}, U_0 = 9.5 \text{ B}$		/-1,3/	-
$U_{CC} = 15 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 15 \text{ B}, U_{O} = 13,5 \text{ B}$		/-3,4/	-
11. Выходной ток низкого уровня в состоянии "выключено", мкА, при:	_		
$U_{CC} = U_{IH} = U_{OH} = 15 \text{ B}, U_{IL} = U_{OL} = 0 \text{ B}$	I_{OZL}	-	/-0,4/
12. Выходной ток высокого уровня в состоянии "выключено", мкА, при:	T	_	0,4
$U_{CC} = U_{IH} = U_{OH} = 15 \text{ B}, U_{IL} = U_{OL} = 0 \text{ B}$	I_{OZH}	-	0,4
13. Разность напряжений на входе генератора и выходе демодулятора, В, при:	ΔU_{GS}	минус 2,5	_
$U_{CC} = U_{IH} = U_{OH} = 5, 10, 15 \text{ B}, I_{IL} = 25 \text{mkA}$	2 00		
14 II			
14. Чувствительность компараторов по сигнальному входу, мВ, при: f _{IS} =100 кГц и			
$U_{\rm CC} = 5$ B	S	-	360
$U_{CC} = 10 B$		-	660
$U_{CC} = 15 B$		-	1800
15. Напряжение стабилизации стабилитрона, В			
при:	U_{Z}	4,45	-
$I_Z = 50 \text{ MKA}$	- <u>Z</u>	,	
15. Входное сопротивление (по сигнальному входу), мОм, при:			
$U_{CC} = 5 B$	$R_{\rm I}$	1,0	-
$U_{\rm CC} = 10 \text{ B}$	KĮ	0,2	-
U _{CC} = 15 B		0,1	-
16. Максимальная частота генерации, МГц, при: $R_1 = 10 \text{ кOm}, R_2 = \infty, U_{IG} = U_{CC}, C_L = 50 \text{ п}\Phi$			
$U_{CC} = 5 B$	f_{max1}	0,30	-
$U_{CC} = 10 \text{ B}$		0,60	-
$U_{CC} = 15 B$		0,80	-
17. Максимальная частота генерации, МГц, при:			
$R_1 = 5 \text{ кОм}, R_2 = \infty, U_{GI} = U_{CC}, C_L = 50 \text{ п}\Phi$ $U_{CC} = 5 \text{ B}$	f	0,5	
$U_{CC} = 3 B$ $U_{CC} = 10 B$	f_{max2}	1,0	-
$U_{\rm CC} = 15 \mathrm{B}$		1,4	-
18. Время задержки распространения при включении, нс, при:			
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$	_	-	450
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$	$t_{ m PHL}$	-	200
$U_{CC} = 15 \text{ B}, C_L = 50 \text{ n}\Phi$		-	130
19. Время задержки распространения при выключении, нс, при:			_
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ n}\Phi$	t_{PLH}	-	700
$U_{CC} = 10 \text{ B}, C_L = 50 \pi\Phi$ $U_{CC} = 15 \text{ B}, C_L = 50 \pi\Phi$	-1 L11	-	300 200
		-	200
 Время задержки распространения при переходе из состояния высокого уровня в состояние «выключено», нс, при: 			
$R_L = 1 \text{ kOm}, C_L = 50 \text{ m}\Phi$			
$U_{CC} = 5 B$	t_{PHZ}	-	450
$U_{\rm CC} = 10 \mathrm{B}$		-	200
$U_{\rm CC} = 15 \mathrm{B}$		-	190

Продолжение таблицы 1			
1	2	3	4
21. Время задержки распространения при переходе из состояния низкого уровня в состояние «выключено», нс, при: $R_L = 1 \ \kappa \text{OM}, \ C_L = 50 \ \text{п} \Phi$ $U_{CC} = 5 \ \text{B}$ $U_{CC} = 10 \ \text{B}$ $U_{CC} = 15 \ \text{B}$	$t_{ m PLZ}$	- - -	570 260 190
22. Время перехода при включении и выключении, нс, при: $U_{CC} = 5 \; B, C_L = 50 \; \Pi \Phi$ $U_{CC} = 10 \; B, C_L = 50 \; \Pi \Phi$ $U_{CC} = 15 \; B, C_L = 50 \; \Pi \Phi$	t _{TLH} t _{THL}	- - -	200 100 80
23. Входное сопротивление (по сигнальному входу), Мом, при: $U_{\rm CC}$ = 5 B $U_{\rm CC}$ = 10 B $U_{\rm CC}$ = 15 B	R _{IS}	1,1 0,2 0,1	- - -
24. Входная емкость, п Φ , при: $U_{CC} = 10 \; B, \; U_I = 0 \; B$ для выводов 3 и 5 для вывода 14	C_{I}	- -	7,5 15,0

1.2 Содержание драгоценных металлов в 1000 шт. изделий:

золото г, cepeбро г, в том числе: $\begin{tabular}{lll} Γ, \\ σ олото & Γ/MM \\ σ олото & σ/MM \\ $\sigma/$

на 16 выводах, длиной мм.

Цветных металлов не содержится.

- 2 НАДЕЖНОСТЬ
- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5)°С не менее 100000 ч, а в облегченном режиме (U_{CC} от 5 до 10В)- не менее 120000 ч.
- 2.2 Гамма процентный срок сохраняемости (T_{Cy}) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.610-33ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхемы.

	ODER	TITIA	O TT	TIEL OCE
4	CBEA	ЕПИЛ	OH	РИЕМКЕ

Микросхемы 564 ГГ1ТЭП соответств	уют техническим условия	м АЕЯР.431200.610-33ТУ	и признаны	годными для эксплуатации.
Приняты по	от (дата)			
Место для штампа ОТК		Место для штампа ВП		
Место для штампа «Перепроверка п	произведена	у (дата)		
Приняты по(извещение, акт и др.)	от			
Место для штампа ОТК		Место для штампа ВП		
Цена договорная				

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка, вход – выход, питание-общая точка.

Остальные указания по применению и эксплуатации – в соответствии с АЕЯР.431200.610ТУ