LECTURE 1: EE 381K - CONVEX OPTIMIZATION

KURTIS DAVID

1. Class Policy Extras

Linear Programming Books:

- (1) Bertsimas, Tsitsiklis "Introduction to Linear Optimization"
- (2) R.J. Vanderbli "Linear Programming Foundation and Extension"

Convex Optimization Books:

- (1) Ben Tal & Nemirovski "Lectures on Modern Convex Opt
- (2) Bertsekas, Nedic, Oz

2. MINIMIZATION

General Formulation:

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq b_i(x)$ $i=1,...,m$ $f_0: \mathbb{R}^n \to \mathbb{R} \Rightarrow \text{Objective function}$ $f_i: \mathbb{R}^n \to \mathbb{R}$ $i=1,...,m \Rightarrow \text{Constraint function}$ $x \in \mathbb{R}^n \Rightarrow \text{ optimization/decision variable}$ \hat{x} feasible if $f_i(\hat{x}) \leq b_i(\hat{x})$ $x^*: \text{ optimal solution}$ $f_0(x^*) \leq f_0(\hat{x}) \forall \text{ feasible } \hat{x}$

3. Linear Programming

Definition 3.1. <u>Linear programs</u> are one type of convex optimization problems, and they consist of:

- Objective function f_0
- All the constraints $f_1, ..., f_m$

If these are all linear functions, then it is a linear program.

$$\min_{x_1,\dots,x_n} \sum_{i=1}^n c_j x_j \mid c_j \text{ cost of } x_j$$

$$s.t. \sum_{j=1}^{n} a_{ij} x_j \le b_i$$
 for $i = 1, ..., m \Rightarrow m$ Inequality constraints

2 KURTIS DAVID

$$\sum_{i=1}^{n} d_{ij}x_j = e_i \text{ for } i = 1, ..., P \Rightarrow P \text{ Equality constraints}$$

Example: Resource Allocation

Parameters i.e. given variables

- n: Number of activities j = 1, ..., n
- m: Number of Resources i = 1, ..., m
- P_i : Profit of activity j
- b_i : Amount of available resource i
- a_{ij} : amount of resource i used by activity j

Variables

• x_j amount of activity j selected for resource i

Goal

$$\max \sum_{j=1}^{n} P_{j} x_{j}$$

s.t. $\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i}$ for $i = 1, ...m$
s.t. $x_{j} \ge 0$ for $j = 1, ..., m$

Example: Matching Problem

We have *N* people and *N* tasks.

People indexed by i = 1,...N

Tasks indexed by j = 1, ..., N

 a_{ij} cost of assigning task j to person i

$$x_{ij} = \begin{cases} 1 & \text{Assign task } j \text{ to person } i \\ 0 & \text{otherwise} \end{cases}$$

Goal

minimize
$$\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} x_{ij}$$

s.t. $\sum_{i=1}^{N} x_{ij} = 1$ $j = 1, ..., N$
s.t. $\sum_{j=1}^{N} x_{ij} = 1$ $i = 1, ..., N$
AND $x_{ij} \in \{0, 1\}$

Problem: Feasible set is only $\{0,1\}$.

Thus we should **relax** constraints such that $0 \le x_{ij} \le 1$. We will come back to this later.

4. Vectorization

Now let's vectorize these formulations.

$$c = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{R}^n \quad x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$

$$a_i = \begin{bmatrix} a_{i1} \\ \vdots \\ a_{in} \end{bmatrix} i = 1, ..., m \quad d_i = \begin{bmatrix} d_{i1} \\ \vdots \\ d_{in} \end{bmatrix} i = 1, ..., P$$

minimize
$$c^T x$$

s.t. $a_i^T x \le b_i i = 1, ..., m$
 $d_i^T n = e_i i = 1, ..., P$

Now let

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \in \mathbb{R}^{mn} \quad D = \begin{bmatrix} d_{11} & d_{12} & \dots & d_{1n} \\ \vdots & \vdots & \dots & \vdots \\ d_{P1} & d_{P2} & \dots & d_{Pn} \end{bmatrix} \in \mathbb{R}^{Pn}$$

Now we can rewrite the constraints to be:

$$Ax \le b$$
$$Dx = e$$

Remark 4.1. Whenever using \leq with vectors, this implies all elements in one vector are \leq than their respective element (same idx) in the other vector.

5. Shit ton of Definitions

Definition 5.1. *x* is feasible if it satisfies $Ax \le b \& Dx = e$

Definition 5.2. <u>feasible set</u> $S = \{x \in \mathbb{R}^n | Ax \le b \& Dx = e\}$

Definition 5.3. x^* is optimal if $c^Tx^* \le c^Tx$ for any $x \in S$

Definition 5.4. optimal value $p^* = c^T x^*$

Definition 5.5. Unbounded LP $p^* = c^T x^*$

Definition 5.6. Hyperplane: Solution set of one linear equation with nonzero coeff. vector a ($a_i \neq 0$) s.t. $a^T x = b$

Definition 5.7. <u>Half Space</u>: Solution set of one linear inequality with nonzero coefficients. i.e. $a^T x \le b$.

Definition 5.8. <u>Subspace</u> Intersection of a set of hyperplanes. Or a solution to a system of equality equations.

Definition 5.9. Polyhedron Intersection of a set of half-spaces. Or a solution to a finite number of linear inequalities.

Definition 5.10. Function set Set of points where some f has value α . i.e. $f(x) = \alpha$. e.g. hyperplanes

6. Polyhedrons

$$P = \{x | Ax \le B, Cx = d\}$$

Definition 6.1. Lineality space: The lineality space of *P* is defined as

$$L = \text{nullspace}(\begin{bmatrix} A \in \mathbb{R}^{mn} \\ C \in \mathbb{R}^{Pn} \end{bmatrix}$$

4 KURTIS DAVID

Claim. Let $x \in P$, $v \in L$. Then $x + v \in L$.

Proof. Trivial. x in the solution space, and Av = 0 = Cv

Definition 6.2. Pointed polyhderon A polyhderon P with Lineality space $L = \{0\}$. i.e. the null space of both A and C is trivial.

 \Rightarrow A polyhderon is pointed if it doesn't contain a *line*.

Example 1

a half space $\{xa^Tx \leq b\}$.

Only when $x \in \mathbb{R}$ is this a pointed polyhedron.

Example 2

a half space $\{x - 1 \le a^T x \le 1\}$.

Only when $x \in \mathbb{R}$ is this a pointed polyhedron.

Example 3

a half space $\{x|x| \le 1|y| \le 1\}$.

$$S = \{(0,0,z) | z \in \mathbb{R}\}$$

therefore always not pointed.

Example 4

$$\overline{\{x|1^Tx=1}, x\geq 0\}.$$

YEET it is pointed