数电单选题 (150)

一、逻辑代数基础(40)

难	度:	1 容易	i						
	A: B: C: D:	表达式 表达式 表达式 表达式 案: C	、中乘积 ¹ 、中乘积 ¹ 、 、中乘积 ¹ 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	-	且每个乘和 且每个乘和 <mark>且每个乘和</mark> 且每个乘和 / 逻辑代数	识项的变 <mark>识项的变</mark> 识项的变	医量个数量 医量个数量	最多 最少	
答	A: 案: I	8 D		B: 12	数来说,共存 / 逻辑代数	C: 14		분: (D:	
3、 答》	3 个 A: 案: A	输入变 8 A	量的卡语	吉图,共有 B: 10	7 逻辑代数 有的方格个 / 逻辑代数	·数是: C: 12		D:	16
答	A、 案:I	6 3		B、7	需要的二进 / 逻辑代数	C, 8	位数为:	() D,	9
难	度:	2 适中	1						
5、	n 个	变量可	构成的最	是小项的]个数为:	()		
	A、	n		B、2n		C, 2	1	D,	$2^{n}-1$
	案: (只点:		电路 / 基	础知识	/ 逻辑代数	女			
答	A: B: C: D: 案: (消去 1 消去 4 <mark>消去 2</mark> 消去 3	个表现; 个表现; 个表现; 个表现;	形式不[形式不[形式不] 形式不[四个相邻项司的变量,信司的变量,信 <mark>司的变量,信司的变量,</mark> 信司的变量,信	保留相同 保留相同 保留相同 保留相同]变量]变量]变量	它能:(
7、	已知	1真值表	如表1所 表1		則其逻辑表	达式为	: ()	
	A		В	(2	F			

0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

A: $A \oplus B \oplus C$ B: $\overline{AB} + \overline{BC}$

C: AB + BC D: ABC (A+B+C)

答案: A 难度: 3

知识点:数字电路/基础知识/逻辑代数

8、已知逻辑函数式为 $F = \overline{AB} + BC$,可列出真值表如表 2 中的是: (表 2

		~~~	-			
A	В	C	1	2	3	4
0	0	0	0	0	0	0
0	0	1	1	0	1	0
0	1	0	0	1	1	1
0	1	1	1	1	0	1
1	0	0	0	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	0	0
1	1	1	1	0	1	1

答案: ④ 难度: 1

知识点:数字电路/基础知识/逻辑代数

## 9、逻辑函数 F = AC + BC + AB + CD(E + P) 的最简与或式为: (

A: F=AB+C

B:  $F = \overline{AC} + \overline{BC} + CD(E + P)$ 

C:  $F = \overline{AC} + \overline{BC} + AB$ 

D: F=C

答案: A 难度: 2

知识点:数字电路/基础知识/逻辑代数

10、函数 F(A,B,C) = AB + BC + AC 的最小项表达式为: (

A:  $F(A,B,C) = \sum m(0,2,4)$  B:  $F(A,B,C) = \sum m(3,5,6,7)$ 

C:  $F(A,B,C) = \sum m(0,2,3,4)$  D:  $F(A,B,C) = \sum m(2,4,6,7)$ 

答案: B

难度: 2

知识点:数字电路/基础知识/逻辑代数

11、 $F_1 = AB + \overline{A} \cdot \overline{B}$  与  $F_2 = \overline{AB} + A\overline{B}$  两函数的关系为: ( )

A: 相同

答案: C

```
难度: 2
```

知识点:数字电路/基础知识/逻辑代数

12、
$$F_1 = A\overline{B} + C + \overline{B}D$$
 与  $F_2 = (\overline{A} + B)\overline{C}(B + \overline{D})$  两函数的关系为:(A: 相同 B: 对偶 C: 反函数 D: 无关系 答案: A 难度: 2 知识点: 数字电路 / 基础知识/ 逻辑代数 
$$13、 F_1 = \overline{AB + A \oplus B}$$
 与  $F_2 = \overline{AB} + \overline{A \oplus B}$  两函数的关系为:(

答案: D 难度: 3

知识点:数字电路/基础知识/逻辑代数

14、
$$F_1 = A\overline{B} + B\overline{C} + C(\overline{A} + D)$$
与 $F_2 = (A + \overline{B})(B + \overline{C})(B + \overline{A}D)$ 两函数的关系为:()A: 相同 B: 对偶 C: 反函数 D: 无关系 答案: B 难度,2

难度: 2

知识点:数字电路/基础知识/逻辑代数

A、差动放大电路 B、集成运放电路 C、RC振荡电路 D、逻辑运算电路

答案: D 难度: 1

A、与项相或 B、最小项相或 C、最大项相与 D、或项相与

答案: B 难度: 1

17、在四变量卡诺图中,逻辑上不相邻的一组最小项为:( )

A.  $m_1 = m_3$  B.  $m_4 = m_6$  C.  $m_5 = m_{13}$  D.  $m_2 = m_8$ 

答案: D 难度: 2

18、L=AB+C 的对偶式为: ( )

A . A+BC

B. (A+B)C C. A+B+C D. ABC

答案: B 难度1

A. 
$$F = \overline{A} \overline{B} + \overline{B} \overline{C} + \overline{C} \overline{A}$$
 B.  $F = \overline{\overline{AB} \overline{BCCA}}$  C.  $F = \overline{AB} + \overline{BC} + \overline{CA}$ 

C. 
$$F = \overline{AB} + \overline{BC} + \overline{CAB}$$

答案: B

难度: 1

21. 逻辑函数 F= 2	$A \oplus (A \oplus B) = ($	)。		
A.B 答案: A 难度: 2	B.A	$C. A \oplus B$	D. $\overline{A} \oplus \overline{B}$	
后。			含)的最小项个数越多,则说 C.该乘积项含因子少	包明化简
答案: C 难度: 1	3,720	,		
	ABC+A+B+C 的最简 式 B. 0	·	=	
	(AB+B)CD+(A+B)(E +B • C			
25、卡诺图上变量 上的相邻。	的取值顺序是采用	的形式,以便	能够用几何上的相邻关系表	表示逻辑
	B. 循环码	C. ASCII 码	D. 十进制码	
26. 根据最小项的	的性质,任意两个不	下同的最小项之积为	J。	
A. 不确定 答案: B 难度: 2	B. 0	C. 1	D: 仍为 1 个最小项	
27.下列函数中,5 A. Y=A+BC	是最小项表达式形式	的是。 B. Y ₂ =ABC+A	CD	
$C.  Y = \overline{ABC} + \overline$	_ ABC	D. $Y = A\overline{BC}$		
答案: C 难度: 1				
	简逻辑函数时,若·	每个方格群尽可能	送选大,则在化简后的最简	i表达式
中。 A. 与项的个数少	>	B. 每个与项中	含有的变量个数少	

答案: B 难度: 2

29、已知某电路的真值表如下,该电路的逻辑表达式为。

A. Y = C

AB(

$$\mathbf{C}$$
.  $\mathbf{Y} = \mathbf{A}\mathbf{B} + \mathbf{C}$ 

B. 
$$Y = ABC$$
 C.  $Y = AB + C$  D.  $Y = B\overline{C} + C$ 

A	В	C	Y	A	В	C	Y
0	0	0	0	1	0	0	0
0	0	1	1	1	0	1	1
0	1	0	0	1	1	0	1
0	1	1	1	1	1	1	1

答案: C 难度: 2

30. 函数 F = ABC + ABC

A.F=A+B B. 
$$F = \overline{A} + \overline{C}$$
 C.F=B+C D.F=B

$$C F=B+C$$

E. 以上答案都不对

答案: D 难度: 2

32、逻辑函数 F = AB + BC + AC 与  $G = \overline{AB} \bullet \overline{BC} \bullet \overline{AC}$  ( )。

A、相等

B、互为反函数 C、互为对偶式 D、以上答案都不对

答案: B 难度: 2

33、逻辑函数  $F = \overline{A + BC}(A + B)$  ,当 ABC 取值为 ( ) 时, F = 1

A, 000

B₂ 011 C₂ 101 D₂ 111

答案: B 难度: 2

34、函数  $F = A(B + \overline{C}) + \overline{DE}$  的反函数是 ( )。

A,  $(A+B\overline{C})\overline{\overline{D}}+E$ 

B,  $(A + \overline{BC})\overline{D} + \overline{\overline{E}}$ 

 $\overline{C}$   $\overline{(A+BC)D+\overline{E}}$ 

 $D \cdot (\overline{A} + \overline{B}C)\overline{DE}$ 

答案: C 难度: 2

35、	函数 $F(A,B,C,L)$	(0,1,2,3,8)	$9,11,13,15) + \sum d(10,12)$	)的最简与或式是(
	$ \begin{array}{l} \mathbf{A} \cdot \overline{B} + AD \\ \vec{\xi} \colon \mathbf{A} \\ \vec{\xi} \colon 3 \end{array} $	B, $AC + AD$	$C, F = \overline{AC} + AD$	$D \cdot \overline{B}C + AD$
36.	逻辑函数 $Z(A, B)$	$,C)=A\overline{B}+AC$ 包	含个最小项。	
	A. 2 ₹: B ₹: 2	B. 3	C. 4	D. 5
答	<ul><li>A. 卡诺图的变量</li><li>B. 卡诺图上每一</li><li>C. 序号相邻的最</li></ul>	可说法中哪些是错误标注均采用循环码个小方格代表一个 小项,逻辑上就一两个几何相邻的最	; 最小项;	·取值不同的变量;
38 -	$F(A,B,C,D)=\sum (0$	,2,4,5,6,8,), 其约束	条件是 AB+AC=0 则	它的最简与或式是:
	A. $F = \overline{B} + \overline{C} + \overline{D}$ $\xi \colon B$ $\xi \colon 3$	B. $F = \overline{D} + B$	$\overline{C}$ C. $F = \overline{A} + \overline{B} \overline{C}$	D. $F = \overline{A} \overline{D} + \overline{C} \overline{D}$
39、	$F(A,B,C,D)=\sum (3,7)$	7,11,12,13,14,15)的旨	最简与非一与非表达式是:	: ( )
	A. $F = \overline{AB} \cdot \overline{CD}$ $\xi : A$ $\xi : 3$	B. F=AB+Cl	D C. $F = \overline{AB + C}$	$\overline{D}$ D. $F = \overline{AB} * \overline{CD}$
40、	以下最小项中与。	 ABCD 是逻辑上相	邻的是: ( )	
难厚	A. ABCD 록: A ₹: 2 <b>充颢:</b>	B. $\overline{A}BCD$	C. ABCD	D. $ABC\overline{D}$

1、下列逻辑代数中的定理哪个是与普通代数相似的:( )

A、同一律 答案 C	B、还原律	C、分配律	D、摩根定理
	中的定理哪个是与普	<b>普通代数不同的</b> :	( )
A、结合律 答案 B	B、还原律	C、分配律	D、交换律
3、最小项 ABCD	) 的编号是: (	)	
A、0000 答案: D	В、0110	C、0101	D、1010
4、以下最小项中	与 <i>ABCD</i> 是逻辑上	不相邻的是:(	)
A. $A\overline{B}CD$	B. $A\overline{B} \cdot \overline{C}D$	C. $AB\overline{C} \cdot \overline{D}$	D. ABCD
A. 不确定	性质,一个函数全部 B. 0		
答案: C 6、根据冗余定理,	,表达式 $Y = \overline{B} \cdot \overline{C}$	$+\overline{A}C+B\overline{C}+\overline{A}$	
A. $\overline{B} \cdot \overline{C}$	$\mathbf{B}. \ \overline{A} \cdot \overline{B}$	C. <i>AC</i> D.	$B\overline{C}$
答案: B 7、逻辑函数 <i>F</i> =	AB+BC+AC ,当	<i>ABC</i> 的下列取值	直中哪个是使 <i>F</i> =1: ( )
A、000 答案: B 难度: 2	B、011	C、010	D、100
8、逻辑函数 <i>F</i> =	$A\overline{B} + AB\overline{C} + \overline{A+B}$	- B ,当 <i>ABC</i> 的下列	取值中哪个是使 $F=0:($ )
A、011 答案: A 难度: 2	B、101	C、010	D、100
9、函数 F = ABC		为(  )	
$A. \overline{F} =$	$=(A+\overline{B}+\overline{C})(\overline{A}+\overline{B})$	$\overline{B} + C$ )	B. $\overline{F} = \overline{(A + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)}$
C. $\overline{F} =$	$=\overline{(A\overline{B}\overline{C})(\overline{A}\overline{B}C)}$		D. $\overline{F} = \overline{A + \overline{B} + \overline{C} + \overline{A} + \overline{B} + C}$
答案: A			
10、将 $F = ABC$	+ <i>ACD</i> + <i>CD</i> 展开)	成最小项表达式应	立为 ( )
A. \( \sum_{1}^{\dagger}	m(0,3,4,7,8,12,14)	.,15)	B. $\sum m(0,3,4,7,8,12,13,15)$
C. \( \sum_{1} \)	m(0, 2, 4, 7, 8, 12, 14)	.,15)	D. $\sum m(0,3,4,7,8,11,14,15)$

二、门电路(20)	
1、下列哪种逻辑门中的输出可以并A、TTL发射极开路门C、TTL三态输出门	B、具有推拉式输出的 TTL 与非门
答案: C 难度: 1 知识点: 数字电路 / 基础知识/逻辑i 2、下列哪种逻辑门中的输出不可以	
A、TTL集电极开路门 C、TTL三态输出门 答案: B 难度: 1	
3、下列逻辑门类型中,可以用(A、与门 B、或门 答案: D 难度: 2	
5、三极管作为开关时工作区域是(A. 饱和区+放大区 B. C. 放大区+击穿区 D. 答案: D 难度: 1	击穿区+截止区
6. 若将一 TTL 异或门当作反相器使A. A 或 B 中有一个接 1 B. C. A 和 B 并联使用 D. 答案: A 难度: 2	
7. 逻辑符号如图所示, 当 B为方波时,则输出F应为 A. "1" B."0" 答案: C	$A \mid \geq 1 \mid$

#### 难度: 1

8. 若输入变量 A, B 取值不同时, 输出 F=1; 否则输出 F=0, 则其输出与输入的关系是( )。

- A . 或非运算 B. 异或运算 C. 同或运算 D. 与运算

答案: B

难度: 1

9. 逻辑图和输入A,B的波形如图二所示, 分析在 t1 时刻输出 F 为(

答案: A 难度: 1

A. "1" B. "0"

C. 任意



10. 图三逻辑电路为()。

- A. 与非门 B. 与门
- C. 或门 D. 或非门



答案: A 难度: 2

11. 逻辑电路如图四所示,输入A=0,B=1,C=1,则输出 $F_1$ 和 $F_2$ 分别为( )。

- A.  $F_1 = 0, F_2 = 0$  B.  $F_1 = 0, F_2 = 1$  C.  $F_1 = 1, F_2 = 1$  D.  $F_1 = 1, F_2 = 0$

答案: D 难度: 2

12. 逻辑电路如图五所示,其逻辑功能相当于一个()。

A. "与"非门

- B. "异或"门 C. "与或非"门 D. "同或"门



答案: C 难度: 1

13. ( ) 电路的输入电流始终为零。

答案: B 难度: 1	
14. 在数字系统里,当某一线路作为总线使用。 必须具有 ( ) 结构,否则会产生数据冲突。 A. 集电极开路 B. 三态门 ( 答案: B 难度: 2	0
	损耗比较大;而 MOS 集成电路采用的是( ) C. 灌电流 D. 拉电流
答案: B、A 难度: 2	
16. 当晶体三极管( )时处于饱和状态。 A. 发射结和集电结均处于反向偏置 B. 发射结正向偏置,集电结反向偏置 C. 发射结和集电结均处于正向偏置 D. 发射极反向偏置,集电极正向偏执 答案: C 难度: 2	
	B. TTL 与非门不能线与的问题 D. TTL 与非门功耗较大的问题
`	)
A. 0 B. 1 C. $\overline{AB}$	D. $A+B$
$ \begin{array}{c} A \\ B \\ \hline \end{array} $ $ \begin{array}{c} A \\ \hline \end{array} $ $ \begin{array}{c} B \\ \hline \end{array} $ $ \begin{array}{c} A \\ \hline \end{array} $ $ \begin{array}{c} B \\ \hline \end{array} $ $ \begin{array}{c} A \\ \hline \end{array} $ $ \begin{array}{c} B \\ \hline \end{array} $ $ \begin{array}{c} A \\ \hline \end{array} $ $ \begin{array}{c} B \\ \hline \end{array} $ $ \begin{array}{c} A \\ \hline \end{array} $ $ \begin{array}{c} B \\ \hline \end{array} $ $ \begin{array}{c} A \\ \hline \end{array} $ $ \begin{array}{c} B \\ \end{array} $ $ \begin{array}$	
答案: C 难度: 3	

19、如图 1-3 所示门电路,按正逻辑体制,电路实现的逻辑关系 F=()

A. TTL 电路 B. CMOS 电路 C. 三极管反相器





图 1-3

答案: C 难度: 3

20、如图 1-1 所示门电路,按正逻辑体制,电路实现的逻辑式 F=()



A. 
$$\overline{A \bullet B \bullet C}$$
 B.  $A \bullet B \bullet C$  C.  $A + B + C$  D.  $\overline{A + B + C}$ 

答案: B 难度: 3

- 21. 将 TTL 与非门正常使用时, 多余的输入端应 ( )。
- A. 全部接高电平

B. 部分接高电平, 部分接地

C. 全部接地

D. 部分接地,部分悬空

答案: A 难度: 2

22、下列各门电路中, ( )的输出端可直接相连, 实现线与。

A、一般 TTL 与非门

B、集电极开路 TTL 与非门

C、一般 TTL 或非门

D、以上答案都不对

答案: B 难度: 2

23、TTL 与非门在正常使用时,如果多余的输入端悬空,则:( )

A、输出为0

B、输出为1

C、悬空输入端默认为 0

D、悬空输入端默认为1

答案: D

难度: 3

#### 补充题:

1、场效应管作为开关时工作区域是:()

 A. 截止区+恒流区
 B. 可变电阻区+截止区

 C. 可变电阻区+恒流区
 D. 饱和区+截止区

答案: A 难度: 1

2、下列逻辑门中,带负载能力最强的是:

A、与门 B、或门 C、非门

答案: C 难度: 2

3、CMOS 与非门电路如右图所示,输出 F=( )

A. 0 B. 1

C.  $\overline{AB}$  D.  $\overline{A+B}$ 



答案: B

难度: 3

4、TTL 与非门电路如右图所示,输出 F=( )

A. 0 B. 1 C.  $\overline{AB}$  D.  $\overline{A+B}$ 



答案: C

难度: 3

5、逻辑电路如图所示,其逻辑功能相当于一个()。

A. "异或"门 B. "与"非门 C. "与或非"门 D. "同或"门



答案: A 难度: 2

6、如图为三态门,当 $\overline{EN}$  = 1 时,Y 为: ( )

A. 0 B. 1 C.  $\overline{AB}$  D. 高阻



答案: D

7、下列电路中,输出电压的最大值是:()

A. 2V B. 5V C. 3V D. 8V



答案: C 难度: 3

8、下列电路中,输出电压的最小值是:( )

A. 5V B. 2V C. 8V D. 3V



答案: D 难度: 3



### 三、组合逻辑电路(40)

- 1、组合逻辑电路的特点是()。
- A. 含有存储元件

B. 输出、输入间有反馈通路

- C. 电路输出与以前状态有关 D. 全部由门电路构成

答案: D 难度: 1

- 2、E²PROM 是指( )
- A、随机读写存储器

B、掩模只读存储器

C、可擦可编程只读存储器 D、电可擦可编程只读存储器

答案: D 难度: 2

- 3、组合逻辑电路中的竞争冒险现象是由于()引起的。
- A、电路未达到最简

B、电路有多个输出

C、电路中的时延

D、逻辑门类型不同

答案: C 难度: 2

- 4、下列中规模集成器件中,输入端个数小于输出端个数的有( )
- A、二进制并行加法器

B、译码器

C、编码器

D、数据选择器

答案: B 难度: 1

知识点:数字电路/基础知识/逻辑门

5、表 3 所列真值表的逻辑功能所表示的逻辑器件是:( )

表 3

输入								<i>t</i>	俞出	
$I_0$	$I_1$	$I_2$	$I_3$	$I_4$	$I_5$	$I_6$	$I_7$	C	В	A
×	×	×	×	×	×	×	0	0	0	0
×	$\times$	X	×	$\times$	×	0	1	0	0	1
×	$\times$	X	$\times$	$\times$	0	1	1	0	1	0
0	1	1	1	1	1	1	1	1	1	1

A: 译码器 B: 选择器 C: 优先编码器

D: 比较器

答案: C 难度: 2

知识点:数字电路/组合逻辑电路/器件及应用

6、表 4 所示的逻辑功能, 其逻辑器件是: ( )

表 4

表 1								
输	入		输出					
A	В	$Y_0$	$Y_1$	$Y_2$	$Y_3$			
0	0	1	0	0	0			
0	1	0	1	0	0			
1	0	0	0	1	0			
1	1	0	0	0	1			

A: 编码器

B: 半加器

C: 译码器

D: 选择器

答案: C

难度: 2

知识点: 数字电路 / 组合逻辑电路/ 器件及应用

7、下图所示为2个4位二进制数相加的串接全加器逻辑电路图,运算后的C4S4S3S2S1结果

A: 11000

B: 11001

C: 10111

D: 10101

答案: A 难度: 3

知识点:数字电路/组合逻辑电路/器件及应用



8、已知 74LS138 译码器的输入三个使能端( $E_1=1,\overline{E_{2A}}=\overline{E_{2B}}=0$ )时,地址码为  $A_2A_1A_0=101$ ,则对应的输出为0的是:

A: 
$$\overline{Y_0}$$

B:  $\overline{Y}_{5}$ 

C:  $\overline{Y_2}$ 

D:  $\overline{Y_7}$ 

答案: B

难度: 2

知识点:数字电路/组合逻辑电路/器件及应用

9、已知 74LS138 译码器的输入三个使能端(  $E_1=1$ ,  $\overline{E_{2A}}=\overline{E_{2B}}=0$  )时,地址码  $A_2A_1A_0$ =111, 则对应的输出为0的是:

A: 
$$\overline{Y_0}$$

B:  $\overline{Y_5}$  C:  $\overline{Y_2}$  D:  $\overline{Y_7}$ 

答案: D 难度: 2

知识点:数字电路/组合逻辑电路/器件及应用

10、已知 74LS138 译码器的输入三个使能端( $E_1=1,\overline{E_{2A}}=\overline{E_{2B}}=0$ )时,地址码  $A_2A_1A_0=011$ ,则输出 $\overline{Y_7}\sim\overline{Y_0}$ 是:

A: 11111101

B: 10111111

C: 11110111 D: 11111111

答案: C 难度: 3

知识点:数字电路/组合逻辑电路/器件及应用

13、已知 74LS148 优先编码器的使能输入端 $\overline{S}=0$ ,输入信号 $\overline{I_7}\sim\overline{I_0}=0$ 1011111,则输 出 $\overline{Y_2} \sim \overline{Y_0}$ 是:

A: 111

B: 010

C: 011

D: 101

答案: A

难度: 3

知识点: 数字电路 / 组合逻辑电路/ 器件及应用

14、已知 74LS148 作 $\overline{Y_2}\sim \overline{Y_0}$ 是:	尤先编码器的使	能输入端 $\overline{S} = 1$ ,	输入信号 $\overline{I_7}$ ~	$\overline{I_0} = 11011001$ ,则输出	i
A: 111 答案: D 难度: 3 知识点: 数字电路	B: 010 / 组合逻辑电路		C: 011	D: 101	
16、已知 74LS148 出 $\overline{Y_2} \sim \overline{Y_0}$ 是:	优先编码器的信	b能输入端 $\overline{S}=1$	输入信号 $\overline{I_7}$ ~	$\sim \overline{I_0} = 00000000$ ,则输	Ì
A: 111 答案: A 难度: 3	B: 010	(	C: 011	D: 101	
17、EPROM 是指 (A、随机读写存储器 C、可擦可编程只读答案: C 难度: 1	1	B、掩模只读有 D、电可擦可编			
18、译码器 74LS13	8 的使能端 $S_1$	$\frac{1}{2}\overline{S_3}$ 取值为(	)时,处于工	作态.。	
A、010 答案: C 难度: 2	B、011	(	C. 100	D、101	
19、下列中规模集员 A、数据选择器 C、编码器 答案: B 难度: 2	<b>成器件中,输</b> 出	端个数大于输入。 <mark>B、译码器</mark> D、二进制并行			
20、并行加法器采用A、简化电路结构C、提高运算速度答案: C 难度: 1	用先行进位(并	行进位)的目的身 B、提高运算精 D、消除竞争冒	<b></b>		
21、已知逻辑函数	$Y = AB + \overline{AC} +$	_ <i>BC</i> 与其相等的函	函数为 ( )。		
A. <i>AB</i>	$BAB + \overline{A}C$	$CAB + \overline{B}C$	$\mathbf{D}.AB+C$		
答案: D 难度: 2					

22、一个数据选择器的地址输入端有3个时,最多可以有())个数据信号输出。

A. 4 B. 6 C. 8 D. 16 答案: C 难度: 2 23. 一个 16 选一的数据选择器, 其地址输入端有( )个。 A. 1 B. 2 C. 4 D. 16 答案: C 难度: 2 24. 对于四位二进制译码器,其相应的输出端共有___ A. 4个 C. 8 个 B. 16 个 D. 10 个 答案: B 难度: 2 25、32 位输入的二进制编码器, 其输出端有( )位。 A. 256 B. 128 C. 4 D. 5 答案: D 难度: 2 26、下列集成器件中,不属于组合逻辑电路的有( ) A、七段显示译码器 B、二进制并行加法器 C、四位二进制加法计数器 D、优先编码器 答案: C 难度: 1 27. 3 线-8 线译码器有____。 B. 8条输入线,3条输出线 A. 3条输入线,8条输出线 C. 2条输入线,8条输出线 D. 3条输入线,4条输出线 答案: A 难度: 1 28、下列组合逻辑电路中,()实现了"异或"运算功能。 *B* -В Α &  $\geq 1$ B-C D

答案: D 难度: ??、下列逻辑电路中,()不属于组合电路。



答案: B 难度:

29、下列逻辑电路中,()不能实现三变量"一致性电路"的功能。



答案: A 难度: 3

30、已知某电路的真值表如下表所示,则该电路的逻辑表达式为()。

A. Y = C B. Y = ABC C. Y = AB + C D.  $Y = B\overline{C} + C$ 

A	В	С	Y	A	В	С	Y
0	0	0	0	1	0	0	0
0	0	1	1	1	0	1	1
0	1	0	0	1	1	0	1
0	1	1	1	1	1	1	1

答案: C 难度:

32、组合逻辑电路任何时刻的输出信号,与该时刻的输入信号____;与电路原来所处的状

态____。( )

A、无关.有关

B、无关.无关

C、有关.无关

D、有关.有关

答案: C 难度: 1

33、电路如右图所示,该电路是()

A、一位全加器

B、一位全减器

C、一位数值比较器

D、以上答案都不对

答案: C 难度: 2



34、能使逻辑函数  $F(A,B,C) = (A+B+\overline{C})(A+\overline{B}+C)(\overline{A}+B+C)$ 为 0 的变量组合是

( )。

A, 110, 101, 011

B、011, 110, 101

C, 010, 001, 100

D, 110, 101, 111

答案: C 难度: 2

35. 图 3 所示电路的输出逻辑函数 Z 等于____。

A. ABCD

B. AB+CD

C.  $\overline{AB+CD}$ 

D.  $\overline{AB} + \overline{CD}$ 



36. 图 4 电路是由二进制译码器组成的逻辑电路,输出 Z 等于____。

A. 
$$AB \cdot \overline{AB}$$

B. 
$$AB + \overline{AB}$$

C. 
$$\overline{AB + \overline{AB}}$$

D. 
$$\overline{AB \cdot \overline{AB}}$$



答案: B 难度: 3

38、如下图所示的波形图, 其表示的逻辑关系是()



$$C_{\bullet} F = \overline{A \cdot B}$$

D, 
$$F = \overline{A + B}$$

答案: C 难度: 2

39、已知逻辑函数的卡诺图如图所示能实现这一函数功能的电路是()

$\ \ BC$	1			
A	00	01	11	10
0	1	0	0	1
1	1	0	Ф	Ф



答案: D 难度:

## 补充题:

1、按下表所示的逻辑功能,其逻辑器件是:( )

	输入		输出
D	A1	A0	Υ
D0	0	0	D0
D1	0	1	D1
D2	1	0	D2
D3	1	1	D3

A: 编码器

B: 半加器

C: 译码器 D: 选择器

答案: D 难度: 2

2、按下表所示的逻辑功能,其逻辑器件是:( )

ABC	S	С
000	0	0
0 0 1	1	0
0 1 0	1	0
0 1 1	0	1
100	1	0
1 0 1	0	1
110	0	1
111	1	1

A: 编码器

B: 全加器 C: 译码器 D: 选择器

答案: B 难度: 2

3、同 $A+\overline{BC}$ 相等的逻辑函数表达式是()。

A.  $A(\overline{B}+C)$  B.  $(\overline{A}+B)(\overline{A}+C)$  C.  $A(\overline{B}+\overline{C})$  D.  $(A+\overline{B})(A+\overline{C})$ 

#### 答案: D

4、下列等式不正确的是()。

A. 
$$\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$$
;

B. 
$$(A+B)(A+C)=A+BC$$

C. 
$$A(\overline{A+B}) = A + \overline{B}$$
;

C. 
$$A(\overline{A+B}) = A + \overline{B}$$
; D.  $AB + \overline{A}C + BC = AB + \overline{A}C$ 

答案: C

5、函数 F(A,B,C,D)的卡诺图如图所示,则其最简与或表达式为:( )

A. 
$$\overline{BCD} + BC\overline{D} + \overline{ACD}$$

$$_{\rm B} \overline{B}D + \overline{B}\overline{C}D$$

C. 
$$B\overline{C}\overline{D} + \overline{B}C\overline{D} + \overline{A}\overline{C}D$$
 D.  $B\overline{D} + \overline{B}\overline{C}D$ 

$$B\overline{D} + \overline{B}\overline{C}D$$

答案: B

6、图所示的组合电路其函数表达式为。



A. 
$$F(A,B,C) = \Sigma m (2,4,5)$$

B. 
$$F(A,B,C) = \Sigma m (1,3,7)$$

C. 
$$F(A,B,C) = \Sigma m (2,6,7)$$

D. 
$$F(A,B,C) = AB+BC$$

答案: C

7、如图所示的组合电路其函数表达式为____。



A. 
$$F(A,B,C) = \Sigma m (2,4,5)$$

B. 
$$F(A,B,C) = \Sigma m (1,3,7)$$

C. 
$$F(A,B,C) = \overline{A} \cdot \overline{B} \cdot \overline{C}$$
 D.  $F(A,B,C) = ABC$ 

答案: D

8、如图所示的组合电路其函数表达式为____。



- A.  $F(A,B,C) = \Sigma m (1,3,7)$
- B.  $F(A,B,C) = \Sigma m (2,3)$
- C.  $F(A,B,C) = \Sigma m (6,7)$
- D.  $F(A,B,C) = \Sigma m (2,3,6,7)$

答案: C

#### 四、触发器(10)

1、为了将 D 触发器改造为 T 触发器,图中所示电路中的虚线框内应为()。



- A、或非门
- B、与非门
- C、异或门
- D、同或门

答案: D

难度: 2

- 2、在下列触发器中,对输入端有约束条件的是()
- A、边沿 JK 触发器
- B、边沿 D 触发器
- C、同步 RS 触发器
- D、边沿 T 触发器

答案: C 难度: 1

- 3、4个边沿JK触发器,可以存储()位二进制数
- A. 4
- B. 8
- C. 16

答案: A

难度: 1

4、T触发器中,当 T=1 时,触发器实现()功能。

A. 置 1

- B. 置 0
- **C. 翻转** D. 保持

答案: C 难度: 2

5. 电路如图所示,实现 $Q^{n+1} = Q^n$ 的电路是 ( )。









答案: D 难度: 3

6. JK 触发器要实现 Qⁿ⁺¹=1 时, J、K 端的取值为 ( )。

- A. J=0,K=1 B. J=0,K=0 C. J=1,K=1 D. J=1,K=0

答案: D 难度: 2

7. 仅具有"置0""置1""保持""翻转"功能的触发器是____。

A. JK 触发器 B. T 触发器 C. D 触发器

- D. T'触发器

答案: A 难度: 2

8. 下图所示是 触发器的状态图。

A. SR

B. D

C. T

D. T´



答案: C 难度: 2

9.对于 JK 触发器, 若 J=K=1,则可完成 触发器的逻辑功能。

- A. T

- B. D C. 同步 RS D. T' E. 基本 RS

答案: D

#### 难度: 2

- 11. RS 触发器不具有_____功能。
- A. 保持
- B. 翻转
- C. 置 1 D. 置 0

答案: B

难度: 2

#### 补充题:

- 1、下图所示是___ _触发器的状态图。
- SR
- B. D
- C. T
- D. T´



答案: B

- 2、下图所示是____ 触发器的状态图。
  - A. JK
- B. RS
- C. D
- D.T



答案: A

- 3、设  $Q^{n=0}$ ,JK 触发器要实现  $Q^{n+1}=1$  时, $\overline{R_D}$  、 $\overline{S_D}$  、J、K 端的取值应为 ( )。
  - A.  $\overline{R_D} = 0$ ,  $\overline{S_D} = 1$ , J=0,K=1 B.  $\overline{R_D} = 1$ ,  $\overline{S_D} = 1$ , J=0,K=0
  - C.  $\overline{R_D} = 0$ ,  $\overline{S_D} = 1$ , J=1,K=1 D.  $\overline{R_D} = 1$ ,  $\overline{S_D} = 1$ , J=1,K=0

答案: D

难度: 3

- 4、设  $Q^{n=0}$ ,下面的 D 触发器要实现  $Q^{n+1}=1$  时, $\overline{S_D}$  、 $\overline{R_D}$  、D 端的取值应为 ( )。
  - A.  $\overline{R_D} = 0$ ,  $\overline{S_D} = 1$ , D=0
    - B.  $\overline{R_D} = 1$ ,  $\overline{S_D} = 1$ , D=1

  - C.  $\overline{R_D} = 0$ ,  $\overline{S_D} = 1$ , D=1 D.  $\overline{R_D} = 1$ , D=0

答案: B

难度: 3

5、下图所示的触发器具有的逻辑功能是:()



A. 保持

- B. 翻转
- C. 置 1 D. 置 0

答案: B

5、下图所示的触发器具有的逻辑功能是:()



A. 保持

- B. 置1
- C. 置 0 D. 翻转

答案: D

6、下图所示的触发器具有的逻辑功能是:()



- A. 置 0
- B. 置1
- C. 保持
- D. 翻转

答案: C

7、为了将 JK 触发器改造为 D 触发器,图中所示电路中的虚线框内应为()。



- A、或门 B、与门 C、非门 D、与非门

答案: C

8、下列触发器的特性状态方程是:



$$\mathbf{A} \cdot Q^{n+1} = \overline{Q^n}$$

A 
$$Q^{n+1} = \overline{Q^n}$$
 B  $Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$ 

C, 
$$Q^{n+1} = \overline{Q^n} + Q^n = 1$$
 D,  $Q^{n+1} = Q^n$ 

$$D \cdot Q^{n+1} = Q^n$$

答案: A
9、R、S 是 RS 触发器的输入端,则约束条件为。
A. $RS = 0$ B. $R + S = 0$
C. $RS = 1$ D. $R + S = 1$
答案: C
10、一个 RS 触发器的现态为 $0$ , R = 1, S = $0$ ,在一个 CP 周期后触发器的状态应该
是。
A. 1 状态 B. 0 状态
C. 高阻 D. 不确定
答案: B
$11$ 、一个 JK 触发器的现态为 $0$ , $J = 1$ , $K = 1$ ,在一个 CP 周期后触发器的状态应该 $\mathbb{R}$
是。 A. 不确定 B. 0 状态 C. 1 状态 D. 高阻
A. 小姍走 B. U 小芯 C. I 小芯 D. 同阻 答案: C
合衆:し
五、时序逻辑电路(40)
1、下列集成器件中,不属于时序逻辑电路的有( )
A、移位寄存器 B、二进制并行加法器
C、四位二进制加法计数器 D、基本 RS 触发器
答案: B
难度: 1
知识点:数字电路/基础知识/逻辑门
2、构造一个模 10 同步计数器,至少需要 ( ) 个触发器。
A、3 个 B、4 个 C、5 个 D、10 个
答案: B
难度: 1
3、构造一个模 20 同步计数器,需要 ( ) 个触发器。
A, $3 \uparrow$ B, $4 \uparrow$ C, $5 \uparrow$ D, $10 \uparrow$
答案: C
难度: 1
4、下列中规模通用集成电路中,( )属于时序逻辑电路。
A、多路选择器 74153 B、计数器 74161
C、并行加法器 74283 D、译码器 74138
答案: B
难度: 1

5、n位触发器构成	文的扭环形计数器,其无	关状态数为个(	)
A. $2^{n} - n$	B. $2^{n} - 2n$ C.	2 ⁿ D.	2 ⁿ -1
答案: B 难度: 3			
6、指出下列电路 A. JK 触发器 C. 移位寄存器	中能够把串行数据变成: B. 3/8 约 D. 十进	<b>线译码器</b>	该是(  )。
答案: C 难度: 2	D.   Æ	中1 日	
8、用4个触发器	设计的二进制的计数器。	,其最大计数容量	是 ( )
A. 16 答案: 难度: 2	B. 10	C. 4	D. 8
9、下列电路中不	属于时序电路的是	_	
A. 同步计数器 答案: C 难度: 1	B. 异步计数器 <b>C</b> .	组合逻辑电路 D.	数据寄存器
11. 一个 4 位的二 的状态为。	进制加法计数器,初始	ì状态为 0000,问约	经过 20 个输入脉冲后,此计数器
A. 00111 答案: C 难度: 3	B. 00101	C. 01000	D. 01001
12. 移位寄存器由 器具有几种有效制		构成的环形计数器	异具有几种有效状态;扭环形计数
	B. 8, 4	C. 4, 4	D. 4, 8
		十到十进制数 178,	则最少需要(  )个触发器。
A. 2 答案: D 难度: 3	B. 6	C. 7	D. 8
14. 时序逻辑电路	中一定是含(  )		
A. 触发器 答案: A 难度: 1	B. 组合逻辑电路	C. 移位寄存器	D. 译码器

15. 用 n 个触发器构成计数器,可得到最大计数长度是( D )

A. n

B. 2n

 $C. 2^n$ 

D.  $2^{n}-1$ 

答案: D 难度: 2

16. 同步时序电路和异步时序电路比较,其差异在于后者(B)。

A.没有触发器

B.没有统一的时钟脉冲控制

D. 三

C.没有稳定状态

D.输出只与内部状态有关

答案: B 难度: 2

18. 某计数器的状态转换图如下,其计数的容量为



答案: B 难度: 2

19. 寄存器在电路组成上的特点是____。

A. 有 CP 输入端, 无数据输入端 B. 有 CP 输入端和数据输入端

C. 无 CP 输入端, 有数据输入端 D. CP 输入端与数据输入端相连

答案: B 难度: 2

20. 根据组成计数器的各触发器状态翻转的时间与 CP 的关系分类, 计数器可分为 计 数器。

A. 加法、减法及加减可逆 B. 同步和异步

C. 二、十和 N 进制

D. 摩尔型和米里型

答案: B 难度: 1

21. 下列电路的逻辑功能为: ( )



A. 模 16 计数器

- B. 可以自启动的扭环形计数器
- C. 可以自启动的环形计数器
- D. 不可自启动的环形计数器
- E. 不可自启动的扭环形计数器
- 答案: D 难度: 2
- 22. 下图中 O 端的状态方程为: ( )



- $A.Q^{n+1} = \overline{D}$
- **B.**  $Q^{n+1} = \overline{Q}^n \cdot J + \overline{K} \cdot Q^n$
- C.  $Q^{n+1} = \overline{Q}^n$

- E. 以上答案都不对
- 答案: B 难度: 3
- 25、一个4位移位寄存器原来的状态为0000,串行输入端始终为1,经过4个移位脉冲后, 寄存器的状态为( )。
- A. 1111

- B、1110 C、0111 D、以上答案都不对
- 答案: A 难度: 2
- 26、若 4 位二进制加法计数器的初始状态为 0000, 经过 43 个 CP 脉冲以后,
- 该计数器的状态为(B)。

  - A, 0011 B, 1011
- C, 1101 D, 1110

答案: B 难度: 3

27. 图 1 时序电路的状态图中,具有自启动功能的是



答案: B 难度: 2

A. 0100	B 000	)0 C	0101	D 1001	
答案: A	<b>D.</b> 000	70	. 0101	<i>B</i> . 1001	
难度: 2					
29. 最能直观反映 A. 逻辑电路图 答案: D 难度: 1				D. 状态转移图	
<u>A</u> , 欲将数字系	统中多条价 实现两个相 马器 C. 文器 G.	- 专输线上的不[ 目同位二进制数 <mark>多路选择器</mark>	司数字信号按信 如低位进位数 D.数值比较	次将输入信号编成二进制代码需要选择一个送到公共数据线 故的相加运算选用E 器;	上选
下,四位数据的移位	立过程是(	A ).		国定接 0,在 4 个移位脉冲 CP 0101—0010—0001—0000	作用
33、由 n 位寄存器《 A. n      E 答案: B			J成的计数器的 D.无法		
难度: 2					
34、莫尔型时序逻辑 A. 只与当前外输 <i>)</i> C. 与外输入和内部 答案: C 难度: 1	有关	B.只-	与内部状态有; 外部输入和内部	•	
, m, 2, 1					
	^字 电路比较	,其差异在于	·后者 ( )。		
	亨电路比较			输入有关还和电路的内部状态	有关
35、组合电路和时户		В.	输出不仅与转		有关
35、组合电路和时户A. 没有触发器		В.	输出不仅与转		有关

- A、它应该有两个时钟输入端口
- B、它的内部包含一个二级制计数器和一个五进制计数器
- C、它只能作为十进制计数器使用
- D、它可以作为五分频电路来使用

答案: 0 难度: 2

- 37、集成计数器 74197 为二-八-十六进制计数器,下列说法中错误的是:( )
  - A、它的内部包含一个二进制计数器、一个八进制计数器和一个十六进制计数器
  - B、它的内部包含一个二进制计数器和一个八进制计数器
  - C、它可以作为八进制计数器使用
  - D、它的最大计数容量为十六

答案: A 难度: 2

38、已知74161为集成4位二进制加法计数器,下面哪种方法可以实现120进制加法计数器

A、一个触发器+一片 74161+与非门;

B、一片 74161+与非门;

C、二个触发器+一片 74161+与非门; D、二片 74161+与非门;

答案: D 难度: 3

## 补充题:





