	Name:		 RCSID:
 	-	/	

1. Grammars, ambiguity, precedence and associativity (25 points)

Consider the Boolean expression grammar. S and E are nonterminals; and, or, not, and b are terminals.

$$S \rightarrow E$$

 $E \rightarrow E$ and $E \mid E$ or $E \mid$ not $E \mid$ b

a) (12 points) Show that the grammar is ambiguous by drawing all parse trees for expression b or not b and b.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Name: R0	CSID:
----------	-------

Suppose that we wanted **b** or **not b** and **b** to have only one possible parse tree (call this property P):

b) (5 points) Describe in English the precedence needed to ensure property P.

Assignment Project Exam Help

https://powcoder.com

c) (8 points) Construct an equivalent unambiguous grammar that gives precedence to operators or, and, and not according to drop the property P and left-associativity to or and.

Name:	RCSID:
Name	I IOOID

2. LL Parsing (22 points)

Consider the following grammar over terminals 0, 1, a, and b.

$$S \rightarrow A \$\$$$

 $A \rightarrow B A \mid 0 A 1 A \mid \varepsilon$
 $B \rightarrow a C b$
 $C \rightarrow B C \mid 0 C 1 C \mid \varepsilon$

a) (9 points)* Fill in the table below with the FIRST and FOLLOW sets for the nonterminals:

	FIRST	FOLLOW
Α		
В		
С		

b) (10 points)* Fill in the column headings and the entries for the LL(1) parsing table for this grammar: (The entries to the decent exam Help

	hı	tns://n	owcod	er.com		
S		<i>tps.//p</i>	OWCOU			
Α	A	dd We	Chat p	owcod	er	
В						
С						

c) (3 points) Is the above grammar LL(1)? Explain briefly why yes, or why not.

3. SLR(1) Parsing (50 points)

We return to the ambiguous grammar for Boolean expressions from Part 1.

$$S \rightarrow E$$

 $E \rightarrow E$ and $E \mid E$ or $E \mid$ not $E \mid$ b

Name:	RCSID:
Name.	HOUID.

h) (3 points)* Given the conflict resolution rules from q), what is the maximal number of grammar symbols, terminals or nonterminals, that can appear on the stack?

4. LL and SLR grammars (8 points)

a) (2 points)* Consider this grammar over terminals (,). The grammar is

$$S \rightarrow A$$

 $A \rightarrow AA \mid (A) \mid \varepsilon$

- (1) LL(1) only

- (2) SLR(1) only (3) LL(1) and SLR(1) (4) neither LL(1) nor SLR(1)

b) (2 points)* Consider this grammar over terminals and Exam, Help

$$S \rightarrow E$$

 $E \rightarrow \text{and } E \mid \text{or } E \mid \text{not } E \mid \text{b}$ $\frac{\text{https://powcoder.com}}{\text{L(1) only}}$ (2) SLR(4) only (3) LL(1) and SLR(1) (4) neither LL(1) nor SLR(1) (1) LL(1) only

- c) (2 points)* Now this one: Add WeChat powcoder

$$S \to E$$

 $E \rightarrow E$ and $E \mid E$ or $E \mid not E \mid b$

- (1) LL(1) only
- (2) SLR(1) only (3) LL(1) and SLR(1)
- (4) neither LL(1) nor SLR(1)
- d) (2 points)* Consider the following grammar over terminals c and d. The grammar is

 $S \rightarrow AcAd \mid BdBc$

- $A \rightarrow \varepsilon$
- $B \rightarrow \varepsilon$

- (1) LL(1) only (2) SLR(1) only (3) LL(1) and SLR(1)
- (4) neither LL(1) nor SLR(1)

Name:	RCSID:
-------	--------

5. Prolog (20 points)

a) (8 points) Consider the program below. You may assume that the first two arguments are positive integers.

d(A, B, 0, A) := A < B.d(A, B, Q, R) := A >= B, A1 is A-B, d(A1, B, Q1, R), Q is Q1+1.

Show ALL answers to this query

?-d(5, 3, Q, R).

d (A, B, Q, R) does _____ Q contains ____ R contains ____

b) (12 points)** Write a Prolog predicate eval that takes a list representing a boolean expression in preorder, and prints its boolean value. 0 and 1 stand for boolean values false and transfer by the project Exam Help

E.g., eval([or,0,1],V). yields V = 1, and eval([and,or,0,and,0,1,1],V). yields V = 0. However, eval([or,0,1],V). Cyields false.

Note: You may use built-in or helper predicates as needed. You may use arithmetic operators + and * to help emulate at and respectively.

Add WeChat powcoder