Matrix Theory (EE5609) Assignment 24

Arkadipta De MTech Artificial Intelligence AI20MTECH14002

Abstract—This document solves problem on ideals.

All the codes for the figure in this document can be found at

https://github.com/Arko98/EE5609/blob/master/ Assignment_24

1 Problem

Let
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & \alpha \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ \beta \end{pmatrix}$. Then the

system $AX = \mathbf{b}$ over the real numbers has

- 1) No solution when $\beta \neq 7$
- 2) Infinite number of solutions when $\alpha \neq 2$
- 3) Infinite number of solutions when $\alpha = 2$ and $\beta \neq 7$
- 4) A unique solution if $\alpha \neq 2$

2 Solution

First we derive the Row Reduced Echelon Form (RREF) of the augmented matrix of the system AX = b as follows,

$$\begin{pmatrix}
1 & -1 & 1 & 1 \\
1 & 1 & 1 & 3 \\
2 & 3 & \alpha & \beta
\end{pmatrix}
\xrightarrow{R_2 = R_2 - R_1}
\begin{pmatrix}
1 & -1 & 1 & 1 \\
0 & 2 & 0 & 2 \\
0 & 5 & \alpha - 2 & \beta - 2
\end{pmatrix}$$

$$\xrightarrow{R_2 = \frac{1}{2}R_2}
\begin{pmatrix}
1 & -1 & 1 & 1 \\
0 & 5 & \alpha - 2 & \beta - 2
\end{pmatrix}$$

$$\xrightarrow{R_1 = R_1 + R_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 5 & \alpha - 2 & \beta - 2
\end{pmatrix}$$

$$\xrightarrow{R_1 = R_1 + R_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 5 & \alpha - 2 & \beta - 2
\end{pmatrix}$$

$$\xrightarrow{R_3 = R_3 - 5R_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & \alpha - 2 & \beta - 7
\end{pmatrix}$$

$$\xrightarrow{R_3 = R_3 - 5R_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & \alpha - 2 & \beta - 7
\end{pmatrix}$$

From the RREF of the augmented matrix of the system $\mathbf{AX} = \mathbf{b}$ in (2.0.4) we make the following observations for different values of α and β ,

1

X 7 1	01 .:
Values	Observations
	Then the existence of solution and
$\beta \neq 7$	the number of solutions will entirely
	depend on value of α
	Then RREF in (2.0.4) will contain
$\alpha = 2$	Zero Row in R_3 . Moreover solvability
$\beta \neq 7$	condition will not satisfy.
	⇒ system will have Zero solutions
	RREF in (2.0.4) will have all pivots
$\alpha \neq 2$	\implies RREF in (2.0.4) will be fullrank
	\implies AX = b have unique solution.

Hence, if $\alpha \neq 2$ then the system $\mathbf{AX} = \mathbf{b}$ has unique solution.