Institute of Technology of Cambodia

Department of Applied Mathematics and Statistics

Group: I3-AMS-TP-B (1)

Lecturers: Dr. PHAUK Sokkey (Course)

Mr. PEN Chentra (TP)

Presented by:

MON Sreylin e20221701

PHYRUN Pichchhorda e20220895

SOM Chann Reaksmey e20220981

SONGSEANG Pisey e20220225

SOPHON Rachana e20220725

Electricity Price Prediction

Here is where our presentation begins

Table of contents

O1 Introduction
Project Overview and Data
Description

O2 Exploratory Data Analysis
Data Cleaning and Visualization

Data PreparationPrepare Data for Model Building

O4 Model Building
Linear Regression, Train model
and Predictions

Result
Result, Key Findings and
Implications

Discussion and ConclusionInsights

01 Introduction

Overview

This project focuses on building models to analyze and predict electricity prices in the United States using historical data. By identifying key factors such as price, revenue, and sales across various sectors and states, the study aims to provide accurate and interpretable predictive models that can guide multiple stakeholders.

Dataset

The dataset provided is from the kaggle site that contains various information about many sectors across different states in the United States. The data spans multiple years and months (01-2001 to 01-2024), capturing key metrics such as price, revenue, and sales for each sectors.

Data Description

Entries

85870 entries

Numerical

- Price
- Revenue
- Sales
- Year
- month

Categorical

- stateDescription
- sectorName

02

Exploratory Data Analysis

Data Cleaning

[19]	[19] dt.duplicated().sum()					
	0					
<pre>dt.isnull().sum()</pre>						
~	0.0s					
year		0				
mont	h	0				
stat	eDescription	0				
sect	orName	0				
cust	omers	26040				
pric	е	0				
reve	nue	0				
sale	S	0				
dtype: int64						

Handling Missing Values:

Null Values in Customers Column: 26,040

Action Taken: Dropped the customers

column

Handling Outliers:

Negative Revenue Values: 2 instances (<0.002%

of total data)

Action Taken: Retained for completeness

(minimal impact on trends)

Data Visualization

03

Data Preparation

Choosing Importance Features

```
from sklearn.ensemble import RandomForestRegressor

model = RandomForestRegressor()
model.fit(dt[['price', 'revenue', 'sales']], dt['price'])
print(model.feature_importances_)

v 12.0s

[9.98990346e-01 7.34540402e-04 2.75113378e-04]
```

Random Forest Regressor Results:

- Most Important Feature: Price (highest importance score)
- Second Most Important Feature: Revenue
- Least Important Feature: Sales (lowest importance score)

RFE & Linear Regression Results:

All features (Price, Revenue,
 Sales) are selected as relevant.

Splitting Data into Training and Testing Sets

Define feature X and variable target Y:

Feature (X): Predictor variables (price, revenue, sales)

Target Variable (Y): Price

```
# Define features (X) and target variable (y)
X = dt[['price', 'revenue', 'sales']] #features
y = dt['price'] #target variable
```

Split Data: The data is split into training and testing sets using 80-20 split.

Splitting ensures that the model generalizes well to unseen data, reducing the risk of overfitting.

```
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Models Used

Linear Model

Strengths:

- Simplicity: Easy to implement and interpret.
- Efficiency: Quick training and prediction, suitable for smaller datasets.
- Baseline Comparison: Serves as a benchmark for evaluating more complex models.

Limitations:

- Linear Assumption: Assumes a linear relationship between features and the target variable, which may not always hold.
- Sensitivity to Outliers: Linear Regression is affected by extreme values, which can distort predictions.

04

Model Building

Linear Model

01

Choose Linear regression model for training

Train Process

03

Evaluate by finding R-squared and MSE

Evaluate model

05

Split Data

X (features) and y (target)

02

Make Prediction

Predict electricity prices for the testing dataset.

04

Analyze Error

Plot error term distribution and scatter y_test vs y_pred plot

Linear Model

01 Split Data

X (features) and y (target)

02 Train Process

Choose Linear regression model for training

03 Make Prediction

Predict electricity prices for the testing dataset.

```
# Define features (X) and target variable (y)
X = dt[['price', 'revenue', 'sales']] # Example features
y = dt['price'] # Example target variable

# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize and train a model (example: Linear Regression)
model = LinearRegression()
model.fit(X_train, y_train)

# Make predictions on the test set
y_pred = model.predict(X_test)
```

Linear Model

04 Evaluate Model

Evaluate by finding R-squared and MSE

05 Analyze Error

Plot error term distribution and scatter y test vs y pred plot

```
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"Mean Squared Error: {mse}")
print(f"R-squared: {r2}")
```

Mean Squared Error: 8.171903547157617e-31

R-squared: 1.0

train_and_predict_for_each_feature

Group by sectorName to build separate models for each sector

Segment the Data

03

Linear Regression

Choose a Model

05

Filter the Dataset

01

Focus on data for a specific state

02

Prepare the data for the model

X (features): Date

(Convert to numerical format)

y (target): Price

04

Train, Make
Prediction and
Store to a
DataFrame

05

Result

	stateDescription	sectorName	date	predicted_price	predicted_revenue	predicted_sales			
0	Alabama	all sectors	2025-01	11.618125	843.626369	7273.747016			
1	Alabama	all sectors	2025-02	11.650562	847.329642	7288.297147			
2	Alabama	all sectors	2025-03	11.682998	851.032914	7302.847279			
3	Alabama	all sectors	2025-04	11.715434	854.736186	7317.397410			
4	Alabama	all sectors	2025-05	11.747871	858.439459	7331.947542			
	***			***					
4459	Wyoming	transportation	2025-08	0.000000	0.000000	0.000000			
4460	Wyoming	transportation	2025-09	0.000000	0.000000	0.000000			
4461	Wyoming	transportation	2025-10	0.000000	0.000000	0.000000			
4462	Wyoming	transportation	2025-11	0.000000	0.000000	0.000000			
4463	Wyoming	transportation	2025-12	0.000000	0.000000	0.000000			
4464 ro	4464 rows x 6 columns								

4464 rows × 6 columns

Visualize the Results

Visualize the Results

Visualize the Results

06

Discussion and Conclusion

Sector-Specific Trends

- Residential Sector: Higher prices and revenues due to consistent demand patterns.
- Commercial & Industrial Sectors: Lower prices reflect bulk energy usage discounts.

State-Level Insights

- Predictions align with historical trends, capturing **seasonal** and **sectoral variations** accurately.

Seasonality

- Seasonal peaks observed in **summer** and **winter**, especially in residential electricity prices.

Project Highlights

- Applied Random Forest and RFE with Linear Regressor.
- Predictions offer insights for businesses, policymakers, and investors.

Key Findings

- **Seasonal demand** drives residential price peaks.
- Bulk usage discounts lower commercial/industrial prices.

Conclusion & Future Directions

Predictive analytics provide real-world utility in the energy sector. **Next steps**:

- Explore complex models and add predictors.
- Integrate **real-time data** for dynamic forecasting.

Thank You For Your Attention!!!