Identification of Right Ventricular Dysfunction

In patients with acute pulmonary embolism

Group 7: Wang Zhe, Wen Di

Agenda

- **❖** Introduction
 - ➤ Acute Pulmonary Embolism
 - ➤ Right Ventricular Dysfunction
- Objectives
- **❖** Material & Methods
- **❖** Simulation
- **&** Example
- **&** Limitation
- **❖** Contribution
- **♦**Q&A

Introduction

Acute Pulmonary Embolism

Acute: short duration, rapidly progressive, and in need of urgent care

Pulmonary: lung

Embolism: blood clot in the arteries or in the veins

Pulmonary embolism

Acute Pulmonary Embolism

Signs and Symptoms

- Dyspnea
- ❖ Pleuritic chest pain
- **❖** Tachycardia
- Hypotension
- ❖ Signs of DVT(Deep vein thrombosis)
 - ➤ Swollen leg
 - ➤ Pain in leg

Right Ventricular Dysfunction

Right ventricle is a volume pump

Characterized by the RVEDD > 3 cm and the RV FAC < 25%

Most notably:

Acute increases in afterload (pulmonary hypertension)

RVEDD (Right Ventricular End-Diastolic Diameter) FAC (Fractional Area Change)

Objectives

❖ Create a logistic regression model

❖ Identify Right Ventricular Dysfunction (RVD) in patients with PE reliably

❖ Use computed tomography pulmonary angiography (CTPA)

Material & Methods

Patients Characteristics

Identified 97 patients

Age: 22-92

RVD(-) = 46 patients

RVD(+) = 51 patients

	-	-	
	RVD($-$) PASP \leq 30 mmHg; n = 46	RVD(+) PASP > 30 mmHg; n = 51	р
Age [years]	71.5 (27-91)	67 (22-92)	NS
BMI	26.79 (23.23–38.51)	26.57 (19.15-34.29)	NS
Systolic BP [mmHg]	119 (85–168)	124 (70-163)	NS
Heart rate [bpm]	94 (60-125)	96 (48-144)	NS
PASP [mmHg]	25 (18-30)	45 (32-95)	< 0.00
Length of hospitalization [days]	9 (1-31)	12 (1-44)	0.03
ICU admission (*)	21 (46%)	34 (67%)	0.04
Mortality (*)	4 (8.7%)	7 (13.7%)	NS

Measurements

- 1. Maximum short axis of the Right (RV) and Left (LV) Ventricle
- 2. Diameter of the pulmonary artery (PA)
- 3. Diameter of superior vena cava (SVC)
- 4. Diameter of inferior vena cava (IVC)
- 5. Diameter of coronary sinus (CS)

Methods – Logistic Regression

SPSS

95% confidence limits

P value ≤ 0.05

Multivariate logistic regression model

$$z = b_0 + b_1 x_1 + b_2 x_2 + \ldots + b_n x_n$$
.

$$p=\frac{1}{1+e^{-z}},$$

Accessed Parameters

	RVD ($-$) PASP \leq 30mmHg	RVD (+) PASP > 30mmHg	p
Regression model probability	0.22 (0.44-0.94)	0.79 (0.12-0.99)	<0.001
Obstruction score [points]	7 (2-31)	22 (2-38)	< 0.001
RV [mm]	41 (22-68)	48.63 (30.07-69.13)	< 0.001
RV/LV	0,95 (0,56-2,38)	1.25 (0.49-3.02)	< 0.001
PA [mm]	29 (20-47)	32 (21-48)	0.007
SVC [mm]	23 (12-31)	25 (17-36)	0.002
IVC [mm]	30 (19-44)	32 (22-45)	0.003
CS[mm]	13 (5,15-29)	15 (5.77-28)	0.008
Lung infarction	22 (47.8%)	33 (64.7%)	ns
IVS bowing (%)	4 (9%)	17 (33%)	< 0.01
IVC reflux (%)	17 (37%)	26 (51%)	ns

Determine Best Parameters

Backward conditional stepwise method was used to select the parameters

Results of logistic regression analysis.

		Estimate	SE	T test	P level	OR	95.0% C.I.	
							Lower	Upper
b ₀	Intercept log. reg.	-8.361	1.92	18.85	<0.001	0.001	-	-
b_1	Obstruction score	0.132	0.02	29.75	<0.001	1.141	1.088	1.196
b_2	RV	0.078	0.03	8.48	0.004	1.082	1.025	1.140
b_3	IVC	0.094	0.05	3.61	0.012	1.098	0.997	1.211

Obtained Model

Z = -8.361 + 0.132 x Obstruction score

+ 0.078 x RV +0.094 x IVC

AUC = 0.860, 95% Confidence Interval

How well does the model fit the data?

Hosmer-Lemeshow test

A statistical test for goodness of fit for logistic regression models

Frequently used in risk prediction models

Result

- P = 0.930
- Shows a good fit of model

$$H = \sum_{g=1}^{G} \frac{(O_g - E_g)^2}{N_g \pi_g (1 - \pi_g)}.$$

Here Og, Eg, Ng, and πg denote the observed events, expected events, observations, predicted risk for the gth risk decile group, and G is the number of groups.

Simulation - R Code

```
library(pROC)
library(ResourceSelection)
setwd('/Users/wang/Desktop')
data = read.csv('project.csv')
mod <- glm(data$Z~data$Obstruction+data$RV+data$IVC, family="binomial")
summary(mod)
predpr <- predict(mod)</pre>
roccurve < - roc(data\$Z \sim predpr)
plot(roccurve,legacy.axes=TRUE)
hoslem.test(mod$y, fitted(mod), g=10)
```


Example

Pulmonary Severity was graded with the pulmonary obstruction score

Obstruction score = 20

Short axis diameter of right ventricle (RV) = 57 mm

Diameter of Inferior Vena Cava (IVC) = 27 mm

Probability of right ventricular dysfunction (RVD) = 0.78

$$z = b_0 + b_1 x_1 + b_2 x_2 + \ldots + b_n x_n$$
.

$$-8.361 + 0.132 \times 20 + 0.078 \times 57 + 0.094 \times 27 = 1.263$$

$$p=\frac{1}{1+e^{-z}},$$

$$1/(1+e^{-1.263}) = 0.7795$$

Challenges

- Substantial overlap in symptoms and signs of both disorders
- ❖ Dyspnea (breathing difficulty) is commonly reported symptom in both disorders
- * Heart failure patients often demonstrate signs of right ventricular dysfunction in the absence of PE
- Pulmonary vascular congestion or systemic hypertension should be stabilized before undergoing chest CT

Limitation

- **❖** Retrospective study
- ♦ Only use existing data
- **❖** Continue with Prospective Study

Contribution to Healthcare

- Reliable Assessment of RVD in the course of the acute PE
- ❖ Performed better than single CT-based measurements

Question And Answer

