FIT5145 Introduction to Data Science Module 3 Data Types and Storage 2019 Lecture 6

Monash University

Discussion: Unix Shell

Useful for managing and manipulating large files

- without ever loading them fully into memory
- using pipes allow us to process files as a stream
- allows us to deal with files that are too big for applications and/or don't fit into memory

Shell contains many useful commands, like

- less to view large files
- grep to search large files
- awk to process them one line at a time (and cut them down to size for visualising)

Discussion: Factors that Influence Data Science

over and above general growth of hardware

Can you name some?

- business needs
- data analysis and general wrangling tools
- ► the internet (related to new "computing class")
- big business recognition

FLUX Question New Classes of Computing

Remember Bell's law ... new classes of computing every decade.

Can you suggest some new classes of computing?

Discussion: New Classes of Computing

in-body devices

NB. sounds like science fiction but we know R&D exists in all these areas!

Unit Schedule: Modules

Module	Week	Content
1.	1	Overview and look at projects
	2	(Job) roles, and the impact
2.	3	Data business models / application areas
3.	4	Characterising data and "big" data
	5	Data sources and case studies
4.	6	Resources and standards
	7	Resources case studies
5.	8	Data analysis theory
	9	Regression and decision trees
	10	Data analysis process
6.	11	Issues in data management
	12	GUEST SPEAKER & EXAM INFO

Learning Outcomes (Week 6)

By the end of this week you should be able to:

- Characterize different database types
- Differentiate between SQL and NoSQL databases
- Define what distributed processing is
- Analyse the Map-Reduce framework
- Differentiate between Hadoop and Spark
- Apply R/shell commands to read/manipulate big data files

Big Data Processing (ePub section 3.4)

processing data at scale, especially for analysis

- databases
 storing and accessing data
- distributed processing breaking up computation to scale it up

Business Context

- businesses function in a continuously changing environment:
 - ▶ fixed formats as per RDBMS not suitable
- businesses function in a continuously changing environment:
 - usage varies, requires complex analytical queries
- need to reach insights faster and act on them in real time
 - stream processing

Big Data Processing: Databases

storing and accessing data

SQL Review

- Relational Database Management Systems (RDBMS)
- SQL ::= structured query language

```
SET clause - SET population = population + 1

WHERE clause - WHERE name = USA;

Predictes
```

- rather like large scale set of Excel spreadsheets with better indexing and retrieval
- transaction oriented with support for correctness, distribution, ...

JSON Example

```
"firstName": "John",
"lastName": "Smith",
"isAlive": true.
"age": 25.
"address": {
  "streetAddress": "21 2nd Street",
  "city": "New York",
  "state": "NY",
  "postalCode": "10021-3100"
"phoneNumbers": [
    "type": "home",
    "number": "212 555-1234"
    "type": "office",
    "number": "646 555-4567"
"children": [],
"spouse": null
```

- no fixed format
- semi-structured, key-value pairs, hierarchical
- "friendly" alternative to XML
- self-documenting structure

Graph Database Example

- stores graph, commonly as triples, subject, verb, object
- commonly used to store Linked Open Data

Database Background Concepts

in-database analytics: the analytics is done within the DB in-memory database: the DB content resides memory

cache: data stored in-memory

key-value: value accessible by key, e.g., hash table information silo: an insular information system incapable of reciprocal operation with other, related information systems

- if two big banks merge, then initially their RDBMSs will be siloed
- in a big insurance company, auto and home insurance customer RDBMSs may be siloed

Database Background Concepts

Many NoSQL and SQL DBs offer:

- large scale, distributed processing
- robustness achieved
- general query languages
- some notion of consistency
 e.g. "eventually" as nodes spread updates

Beyond SQL Databases

Туре	Notes
RDBMS	SQL
Object DB	navigate network
Doc. DB	JSON like, Javascript like queries
key-val cache	in-memory
key-val store	not in-memory but highly optimised
tabular key-val	relational-like, "wide column store"
graph DB	RDF, SPARQL,

SQL and Beyond SQL Databases (NoSQL)

- Use SQL database when:
 - data is structured and unchanging
- Use NoSQL database when:
 - Storing large volume of data with little to no structure
 - Data changes rapidly
- NoSQL databases offer a rich variety beyond traditional relational.

Overview: Databases

Figure 4: Data Storage Technologies

Big Data Processing: Distributed processing

breaking up computation to scale it up

Overview: Processing

Figure 5: Information Flow

Interactive: bringing humans into the loop

Streaming: massive data streaming through system with little

storage

Batch: data stored and analysed in large blocks,

"batches," easier to develop and analyse

Processing Background Concepts

in-memory: in RAM, i.e., not going to disk

parallel processing: performing tasks in parallel

distributed computing: across multiple machines

scalability: to handle a growing amount of work; to be

enlarged to accommodate growth (not just "big")

data parallel: processing can be done independently on separate chunks of data

yes: process all documents in a collection to extract names

no: convert a wiring diagram into a physical design (optimisation)

FLUX Question

Which one of the following tasks is not easy to make data parallel?

- A. Face recognition in 1M images
- B. Invert a large matrix
- C. Looking for common 3-4 word phrases in a collection of documents

Distributed Analytics

 legacy systems provide powerful statistical tools on the desktop

SAS, R, Matlab

but often-times without distributed or multi-processor support

 supporting distributed/multi-processor computation requires special redesign of algorithms

Map-Reduce

Simple distributed processing framework developed at Google

- published by Dean and Ghemawat of Google in 2004
- intended to run on commodity hardware; so has fault-tolerant infrastructure
- from a distributed systems perspective, is quite simple

Map-Reduce Example

for a simple word-count task: (1) divide data across machines (2) map() to key-value pairs (3) sort and merge() identical keys

Map-Reduce, cont.

- requires simple data parallelism followed by some merge ("reduce") process
- stopped using by Google probably in 2005
- Google now uses <u>"Cloud Dataflow"</u> (and <u>here</u>), available commercially, as open source

Hadoop

Open-source Java implementation of Map-Reduce

- originally developed by <u>Doug Cutting</u> while at Yahoo!
- architecture:

Common: Java libraries and utilities MapReduce: core paradigm

- huge tool ecosystem
- well passed the peak of the hype curve

Spark

- another (open source) Apache top-level project at <u>Apache Spark</u>
- developed at <u>AMPLab</u> at UC Berkeley
- builds on Hadoop infrastructure
- interfaces in Java, Scala, Python, R
- provides in-memory analytics
- works with some of the Hadoop ecosystem

FLUX Question

Which one of the following is suitable for real-time data processing?

- A. Hadoop
- B. Spark

Summary: Hadoop and Spark

- Hadoop provides an inexpensive and open source platform for parallelising processing:
 - based on a simple Map-Reduce architecture
 - not suited to streaming (suitable for offline processing)
- Spark is a more recent development than Hadoop
 - includes Map-Reduce capabilities
 - provides real-time, in-memory processing
 - much faster than Hadoop

Evolution of the Netflix Data Pipeline

- Here are some statistics about Netflix data pipeline:
 - ~500 billion events and ~1.3 PB per day
 - ~8 million events and ~24 GB per second during peak hours
- There are several hundred event streams flowing through the pipeline. For example:
 - Video viewing activities
 - UI activities
 - Error logs
 - · Performance events
 - Troubleshooting & diagnostic events

Netflix Data Pipeline V1.0 Chukwa pipeline

Netflix Data Pipeline: V1.5 Chukwa pipeline with real-time branch

Netflix Data Stack

Simplified view using Apache Kafka, Elastic Search, AWS S3, Apache Spark, Apache Hadoop, and EMR.

see Architecture of Giants: Data Stacks

The Machine Learning Renaissance

Mike Olson (co-founded Cloudera in 2008) says without big data and a platform to manage big data, machine learning and artificial intelligence just don't work.

See the machine learning renaissance starting at 60 seconds.

Data Case Studies (ePub section 3.3)

examples of different kinds of data

- ► illustrating the process
 - ▶a quick walkthrough illustrating the steps

NIST Case Studies

they give us a catalogue of examples and an infrastructure for doing our analysis

Reminder: NIST Analysis

data sources: where the data comes from

data volume: how much there is

data velocity: how it changes over time

data variety: what different kinds of data there is

data veracity: correctness problems in the data

software: software needed to do the work

analytics: broadly, what sorts of statistical analysis and

visualisation needed

processing: broadly, computational requirements

capabilities: broadly, key requirements of the operational system

security/privacy: nature of needs here

lifecycle: ongoing requirements

other: noteable factors

Motivating Examples

not really case studies, but some good motivating examples of whats out there

Case Studies

<u>"Visualizing the world's Twitter data – Jer Thorp"</u>, a TEDYouth 2012 Talk, former New York Times data artist-in-residence Jer Thorp (video, 6mins)

<u>National Map</u> (Youtube, 14 mins) is a website for map-based access to Australian spatial data from government agencies. The website is <u>http://nationalmap.gov.au/</u>.

<u>"Style Stalking; The Stochastic Patterns that Drive Fashion Trends"</u>, by Karen Moon from Strata+Hadoop World 2014 (video, 10 minutes)

<u>Panama Papers</u>, leaked papers (11.5M) on financial transactions, <u>motivations for using data science</u>, and <u>how analysed</u> (Wired, 2016).

Next: Module 4 Data Resources, Processes, Standards and Tools