POLCOMS User Guide

V6.4

Jason Holt, March 2008

1. Introduction	
Background	3
The scope of POLCOMS	3
Using this guide	3
The code	
2. Defining the problem	
Control files	
3. Defining a POLCOMS grid	6
Horizontal discretization	6
case-I boundaries	7
case-II boundaries	9
Open boundaries	9
Vertical discretization	
Initial conditions	11
4. Defining forcing for POLCOMS	
Surface forcing	
ECMWF data	
Met. Office data	
Open boundary forcing	
Tidal forcing	14

Residual/combined forcing	15
Temperature and salinity	16
River inputs	17
5. Compilation	17
Compilation Options	19
Compiling Additional Models	20
6. Execution	20
Runtime arguments	21
Parallel Execution	22
Running in ensemble mode	22
7. Output	23
dailymeanUVT	23
Physseries	24
Appendix A: Model control (CPP directives and logical variables)	25
Appendix B: Principle Model variables	35
Three dimensional arrays	35
Two-dimensional arrays at 3 time levels	37
Two-dimensional arrays.	37
Two-dimensional integer arrays	39
Appendix C: Model parameters	
Appendix D: Example compiler directive lists	
MRCS – full model	40
MRCS – tide only	
HRCS – Full Model	
LB – TVD wetting drying	
S12 – full model	41
Plume	
Appendix E: Logical units for input data	41
Bibliography	42.

1. Introduction

Background

The origins of the Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS) lie with studies of frontal dynamics in the North sea for the UK NERC's North Sea Project. Since then it has been extensively developed both as a hydrodynamic and a multi-disciplinary model, including use of its sediment transport module, coupling to the European Regional Seas Ecosystem model and the Los Alamos Sea Ice model. Coupling to the GOTM model lends it a range of improved turbulence models. It has been used extensively in POL and PML's core research programme, and in on-going research contracts with the UK Met. Office and a wide range of NERC and EU funded research project and programmes, notably MERSEA, CASIX, MARPROD, LOIS, RAPID, ODON. It currently provides the 'work-horse' shelf sea model for the UK marine research centre programme: Oceans 2025, and the National Centre for Ocean Forecasting.

The scope of POLCOMS

POLCOMS is a three-dimensional baroclinic B-grid model designed for the study of shelf sea processes and ocean-shelf interaction. Recent work has taken it into estuarine environments. The model solves the momentum and scalar transport equations for oceanographic applications with realistic topography, bathymetry and forcing. The underlying hydrodynamics in POLCOMS are the shallow water equations with the hydrostatic and Boussinesq approximations. This limits models applicability to flows where the vertical acceleration is small and in practice this imposes a minimum horizontal resolution; simulation can be made at resolutions finer than this but at no benefit to the solution. As a rough guide this can be taken as half the maximum water depth.

Using this guide

This guide is aimed at providing a new user with a basic introduction to POLCOMS and to act as a reference for setting up new model domains. It lacks much of the details of the solution techniques, the most up-to-date reference for this is Holt and James [2001]; a full technical manual is in preparation.

POLCOMS is a complex model system and a large code (currently standing at around 95,000 lines of code) particularly resulting from the range of options and the parallel message passing code. To use it effectively requires an understanding of the model equations and boundary conditions, and how these are represented numerically and coded. While this document describes many of the options available nothing beats looking in the code to see what they do.

Throughout this guide the following typographic conventions are used:

- Variables in equations in italics e.g. T
- Variables names and code in bold e.g. **tmp**
- cpp compiler directives in bold capital e.g. NOSCOORD
- Subroutine/module names in bold italics e.g. b3drun
- Filenames in bold Arial e.g. **b3drun.F**

The code

POLCOMS is available under license to collaborators of the Proudman Oceanographic Laboratory.

The model release 'un-tars' into the following directory structure:

pol3db v6.3 The source code PMLersemv2.0 CICE Additional model codes (available from the wam originators) setups Application specific subdirectories plume MRCS IRS

The source code consists of:

•	*.F	- FORTRAN 90 (fixed format) source with cpp directives:
		the main body of code
•	*.c	- C source files (used for command line arguments and
		GUI)
•	*.h	- include files
•	makefile	- for compilation control
•	objects *	- lists of source object files for POLCOMS and subsidiary
	· _	models
•	machine_list	- machine_dependent options
•	dependencies_pol3db	- code inter-dependencies

Generally one set of source code is used for all applications, but there is the option of including application-specific code e.g. for different forms of data output. The GOTM model should be installed as per instructions on www.gotm.net and is then used as a library.

2. Defining the problem

Unlike a global model, a regional ocean model is defined for a limited area and as such can take on a wide range of configurations and domains, each approaching the solution of the equations in a different fashion and being subject to different forcing. This requirement for flexibility is controlled in three ways in POLCOMS:

- cpp compiler directives are used to select portions of the code or exclude others
 (e.g. -DNOSCOORD selects σ-coordinates instead of s-coordinates). Many of
 these in fact set logical variables in parm_defaults.F. Compiler directives are
 most conveniently set in a compilation script specific for the application (e.g.
 make_polcoms).
- All logical variables defined in the main module (b3d.F) can be set in a name list file logicalvariables.inp. This overrides the logical variables set by compiler directives
- A number of run-time command-line arguments are available, to set properties such as length of model run, check-pointing, type of domain decomposition.

Current compiler directives are described in appendix A and options required for several example applications are listed described in appendix D

Control files

POLCOMS used a number of control files to set basic model parameters and define input/output files. These can be used in combination with the model described above to define the model application.

- **parameters.dat** defines the grid size, resolution and a number of model parameters. For the current format see the example in appendix C.
- **scoord_params.dat** defines parameters for the s-coordinate transform (if used).

An example is:

```
150.0d0 hc )
1.0d0 cc ) S coordinate parameters
5.0d0 theta )
0.25d0 bb )
```

for an explanation of these see Holt and James [2001]

- **logicalvariables.inp**. A nameslist file setting the logical variables in **b3d.F**, see appendix A.
- **filenames.dat** sets the names of input and output files. The format is:

```
INPUT
<input files directory>
<numnames >
<input file, 1>

clogical unit> <type> <filename

input file, numnames>
OUTPUT

Path to directory of input files
Number of input files
```

Data Types are

- 1. formatted
- 2. unformatted
- 3. unformatted, without input directory path

When the model is run it opens all input files in the given path with the given name at the given unit, and all output files with the suffix "Idname" to identify the run output. Output files are (by default) written to the directory the model is run in.

Note: the logical units read in here are only used for the purpose of opening the files; they must match those used in the code. These are usually set in **data_out.F** for output, see appendix E for input data units.

3. Defining a POLCOMS grid

As a finite difference model, the spatial discretization on which the equations are solved is especially important. In POLCOMS this is a B-grid on either spherical polar coordinates or Cartesian coordinates in the horizontal and terrain following coordinates in the vertical.

Horizontal discretization

In the horizontal POLCOMS uses a B-grid discretisation, so both components of velocity (u,v) are defined at u-points, half a grid box to the southwest of points where elevations, ζ and other scalar variables are defined: b-points (see Figure 1). The domain size is icg=1...l, jcg=1...m, with (1,1) being the southwest corner. All horizontal arrays have a halo of at least 1 point (i.e array size is at least (0..l+1,0..m+1)) to facilitate message passing and open boundary data. Figure 1 shows the arrangement of grid points. The grid resolution (rdal,rdbe) is set in **parameters.dat** either as an inverse angular resolution (in degrees) or in metres for Cartesian coordinates (with directive **FLAT**). The coordinates (lat/lon or Cartesian) of the southwest (bottom-left) elevation points (alon0, alat0 at icg=1,jcg=1) are also set in **parameters.dat**.

IMPORTANT Because the model is coded for multiprocessor systems almost all the horizontal indices in the model code (apart from i/o) refer to the **LOCAL** arrays (i.e.

those on a particular processor) and range from i=1, i

```
icg=i+ielb-1
jcg=j+jelb-1
```

The model is designed to be highly flexible in its definition of coastal and open boundaries. Hence there are 7 masks used to define these:

```
    ipexu = 1 at u-point where calculations are conducted
    ipexb = 1 at b-point where calculations are conducted
    ipexub = 1 at a sea u-point (including coastal points)
    ipexbb = 1 at a sea b-point
    iucoast = 1 where u-point is coastal and velocities are evaluated by the lateral boundary condition (case-II boundaries only, see below)
    incb = 1 at an open boundary points (always on b-points).
    incu = 1 at sea u-points next to open boundaries
```

The distinction between **ipexb** and **ipexbb** arises because there can be points across boundaries that are sea points, but where model calculations are not conducted. Other more specialized masks (e.g. in the advection routines) are described in the subroutine documentation

The bathymetry (**hs**) is read in at the b-points as an ASCII file by the subroutine *hset*:

```
real*8 depth(l,m)
If (leader) then
read(13,*) ((depth(i,j),i=1,l),j=1,m)
endif
call dist (leadid,depth,hs,1)
```

If the **flipbathy** logical variable is set then the array is read from north to south rather than south to north (the defualt).

There are two configurations available as to where the sea-land boundary lies on this grid.

case-I boundaries

In this case land boundaries lie along b-points (Figure 1) and the primary definition of the land-sea grid is by the u-points (**ipexu**) which are either wholly land or sea. In the latter case each u-point is surrounded by four sea b-points, some of which may be fractional. This configuration implies a free-slip horizontal boundary condition, which is appropriate to all but fine resolution simulations. Most calculations occur at the coastal b-points (**ipexb(i,j)=1 here**), but the point is surrounded by a fractional grid box (**ar(i,j) = 0.5 or 0.25**). The grid is defined in *boset* by reading in **ipexu** (from an ASCII file in a similar

fashion to hs), then by setting ipexb = 1 at all b-points surrounding a u-point where ipexu = 1. There is a test that the depth hs is non-zero at points with non-zero ipexb.

This configuration allows small islands and peninsulas to be included and gives a subgrid scale representation of the coastline, but wetting and drying is not available because of issues of volume conservation that would arise with fractional grid boxes. Model grid setups should use a procedure such as:

- 1. Define mask at u-points (**ipexu**) using the coastline (e.g. use GMT's command grdlandmask)
- 2. Calculate mask at b-points (**ipexb**)
- 3. Find bathymetry at sea b-points

Matlab (or similar) is useful for this and sometimes iteration from 3 to 1 is needed if the available bathymetry is not completely consistent with the available coastline.

Figure 1 Case-I boundaries: coastal and open boundary lies along b-points.

A simpler definition of case-I boundaries is available if sub-grid scale coastline representation is not required. In this case (compiler directive **SIMPLECASEI**) only a bathymetry file is used (no mask file), which defines **ipexb**; **ipexu=1** is then defined when all four surrounding b-points have **ipexb=1**.

An alternative method of defining the grid/water depth is provided by the logical options **analytic-depth.** In this case FORTRAN files called **set_bathymetry.F** and

POLCOMS user guide.doc

set_maks.F are 'included'. These adjust set the global arrays **depth** and **mask** respectively.

case-II boundaries

In this case land boundaries lie along u-points (Figure 2). Calculations do not occur at the boundary points, but rather a lateral boundary condition is used, either non-slip (default) or slip (zero horizontal gradients are imposed with compiler directive UBC). In this configuration the bathymetry is used to set ipexb (where hs > land), then ipexu = 1 if no surrounding ipexb = 0. At coastal grid points ipexub = 1 and ipexu = 0. Hence all masks are derived from the bathymetry (no extra mask file is required) and this significantly simplifies model setup. This case allows wetting and drying to be implemented but the need for a horizontal velocity boundary condition is not desirable for coarser resolution simulations.

Figure 2 Case-II coastal boundaries: coastal points lie alone u-points and open boundary lies along b-points.

Open boundaries

Open boundaries always lie along b-points (with either case-I or case-II coastal boundaries), but any point within the domain can be an open boundary point. Open boundary b-points are indicated by the **incb** array and the array **ifaceob** stores which faces of an open boundary point are open (i.e. receive fluxes from outside the model domain). By default any point with **ipexb(i,j)=1** at **icg=1**, **icg=1**, **jcg=m** is an open boundary point (this means with case-I boundaries there can not be a coast-line along these rows/columns, since **ipexb = 1** on the coast - the model domain must be extended to

accommodate this). In addition to these default points a list of points can be read in of which faces around any model points are open boundaries (if the directive **READOPENBCPOINTS** is set). This reads the ASCII file **openbcpoints.dat**, which has the format

```
npts
icg jcg iface(1)
.
.
.
icg jcg iface(npts)
```

where **npts** is the number of additional open faces and the columns list the position of these (**icg,jcg**), and which face is open:

```
iface = 1 south
iface = 2 north
iface = 3 west
iface = 4 east
```

This allows any shaped open boundary to be defined.

Vertical discretization

The model uses a staggered vertical grid (Figure 3) with state variables defined 1/2 a grid box above and below the sea surface and bed, and flux variables defined at the surface and sea bed. Vertical indexing for the state variables is **k=2...n-1** (**k=1** and **k=n** are used for boundary conditions), and for flux variables is **k=1..n-1**, from the sea bed to the surface.

The model vertical coordinate is written in **\sigma**-coordinates, but there are two choices of how the model levels are discretized in **\sigma**-space:

- S-coordinates The level spacing in σ -space can vary in the horizontal; vertical coordinate variables **ds**, **dsu**, **sig**, **sigo** have 3 indices, and separate variables are defined at u-points: **dsv**, **dsu**, **sig**, **sigo**.
- σ -coordinates The level spacing in σ -space is fixed in the horizontal.

Figure 3 Vertical discretization

Hence in s-coordinates, state variables on b-points (e.g. tmp(k,i,j)) are defined at sig(k-1,i,j), are separated by dsu(k-1,i,j) and are associated with a depth, ds(k-1,i,j). Note: the difference in indexing of -1 from state variables is a historical anomaly which will be corrected in a future version.

Initial conditions

POLCOMS simulations generally start from rest with a level sea surface $(u=v=\zeta=0)$, currently there are no provisions to initialise the model currents elevations except with a re-start files. The scalar fields on the other hand, are either initialised to a constant value (the default), read in from a file or specified from an 'included' piece of FORTRAN code.

With no options the initial *T* and *S* are set to the values given in **parameters.dat**. With directive **READ_INITIAL_TS** set they are read from unit 16 according to the format specified by **ts_form** in **parameters.dat**. If **ts_form='unf'** they are read from an unformatted file otherwise as an ASCII formatted file. Either way they are read as global 3D arrays, temperature then salinity:

real*8 temp3d(l,m,n) read(16) temp3d

or

real*8 temp3d(l,m,n) real(16,ts_form) temp3d

POLCOMS_user_guide.doc

Alternatively if the **ANALYTIC_INIT** directive is set a FORTRAN file called **tmpfield.F** is 'included'. This should set the values of **tmp** and **sal** at all local b-points. This is useful for defining idealised problems/test cases.

4. Defining forcing for POLCOMS

In all but the most idealised cases external forcing provides an important control on a coastal-ocean simulation. POLCOMS includes a wide range of provisions for surface (metrological), open-boundary (lateral) and riverine/land forcing.

Surface forcing

Complete POLCOMS simulations require surface fluxes of heat (hfl_in, hfl_out), momentum (fs,gs) and freshwater (ep), and also surface pressure, pr. Apart from pressure, which is used directly, these are usually defined via bulk formulae from atmospheric data; the alternative approach, to use fluxes directly from an NWP model (e.g. the Met. Office applications of POLCOMS), is not described here. The model then requires the following variables as local arrays (note units):

```
at air temperature (degrees C)
we,wn wind speed, eastwards and northwards (m/s)
rh relative humidity (%)
cl cloud cover (%)
pr atmospheric pressure (mb)
pn precipitation (ms<sup>-1</sup>)
```

The data are read in in **metset.F**, which is currently 'hard-wired' to a number of fixed data types. The data is read in on the native grid and frequency of the atmospheric model data set (e.g. as provided by BADC), a copy is passed to each processor and is then interpolated in spaced onto the model grid (this is efficient for coarse resolution atmospheric data, but could be improved with parallel input for large data sets). Note: no distinction between u-points and b-points is made in the interpolation, both use b-point value with the same index. Input infrequency is set by the **istress, icloud, isalt** variables defined in **parameters.dat**.

The model includes code for reading met. data on the Northwest European shelf from two sources. Work in the GCOMS project will generalise this to any region around the globe.

ECMWF data

This is the default and refers to either reanalysis (ERA40) or operational products. Data is read from 3 files: From unit 17, **we, wn, pr, at, rh**; from unit 21. **cl**; from unit 89, **pn**. Optionally solar radiation (**sr**) is read from unit 87. In each case the data is on a grid of size $nx \times ny = 41x26$ staring at -25E, 40N and read from an ASCII file:

```
read(17, (10f8.2)) ((modata1(j,k), j=1,nx), k=1,ny)y.
```

In a number of cases the daily accumulation files (cloud cover, precipitation and solar-radiation) are provided in a 'north to south' format. The directives **FLIPCLD** and **FLIP_PRCP** accommodate this. This data are converted from day⁻¹ to s⁻¹

Met. Office data

There are two sources here, differing in resolution: the mesoscale model (~12km; directive **MESOMET**) and a sub-set of the global model data (1°; directive **GLOBMET**). In each case data is provided as one file per variable. Logical units are:

at	20
pr	17
rh	19
we	18
wn	24
cl	21
ер	15

Note in this case rh is specific humidity rather than relative humidity; this is accounted for in **heatin.F** by the directive **SHUMID.**

The mesoscale data uses unformatted files and has $\mathbf{nx} \times \mathbf{ny} = 218 \times 136$ starting at -13E, 48.39N and a resolution of 0.11. The global data sub-set uses formatted files and has $\mathbf{nx} \times \mathbf{ny} = 42 \times 47$ starting at -20.4166E, 39.7233N and a resolution of 0.833 lon and 0.5555 lat.

Open boundary forcing

Open boundary forcing consists of elevations and barotropic currents (tidal and residual or combined), and temperature and salinity. A depth varying component of current can also be included in an advective scalar boundary condition. Apart from the radiation component of the barotropic forcing, these are all 'active' boundary conditions in that they require the specification of external values for the variables. This is appropriate for nesting in tidally active flows, but more work on the passive boundary conditions (e.g. implementing an Orlanski condition) is required.

When a model domain is run three files are produced which list the required location of open boundary conditions. These are

openbclist_z	elevation points on the boundary	
openbclist_u	velocity points outside the boundary	
openbclist_b	elevation points outside the boundary	

Each has the format

nzbc ipt jpt	Number of points, nzbc, nzbc,nbbc Global index of each open boundary poin	
•		
•		
•		

ipt jpt(npts)

This then defines the data (and order of the data) required in the open boundary forcing files. The files can be produced by executing the model, but without running any time steps: <exename> -tdur 0, and then used to generate boundary condition data for the first model run.

Tidal forcing

Barotropic tidal elevation and currents are forced using a flux/radiation scheme (with **READ_TIDECON**). Tidal velocities are used to calculate a volume flux into/out of each boundary elevation point, which is used in the standard model equations in *barot*. The elevation at these grid points is also relaxed towards the imposed tidal elevation at a rate proportional to the long wave phase speed \sqrt{gh} (a 'Flather radiation condition').

Tidal data is provided to the model either according to the lists described above or across the whole of the four boundaries of a rectangular model domain. Information about the tidal constituents to be used is defined in a tidal definition file (unit 43). This has the format:

```
ncond number of constituents
nfac flag >0 to use date information
idate 
hours day month year> corresponding to the start of the model run or series of runs (start_time), usually t=0s.
indx which of a standard list of 15 each of 1..ncond tidal constituents refers to.

Q1, 2) Q1, 3) P1, 4) S1, 5) K1, 6) 2N2, 7) MU2, 8) N2, 9) NU2, 10) M2, 11)
L2, 12) T2, 13) S2, 14) K2, 15 M4.

mcon =1 or =0 depending on whether each of the ncond constituents is to be used
```

This information is used to apply nodal factors and date corrects to give the correct tidal phase for the specified date. The assumption being the data is provided in date-independent form (if this is not the case set **nfac**=0). The format for the tidal data depends on the whether the **LONGBCFORM** is used. The file (unit 14) starts with the tidal frequencies:

```
sigma(1) frequency of 1<sup>st</sup> constituent in degrees/hour

.
sigma(ncond) frequency of ncond<sup>th</sup> constituent in degrees/hour

then the default is to read:
    do i=1,ncond
    read(itide,'(8f10.6)') (z1(j,i),j=1,nzbc)
    read(itide,'(8f10.6)') (z2(j,i),j=1,nzbc)
```

```
read(itide,'(8f10.6)') (u1(j,i),j=1,nubc)
read(itide,'(8f10.6)') (u2(j,i),j=1,nubc)
read(itide,'(8f10.6)') (v1(j,i),j=1,nubc)
read(itide,'(8f10.6)') (v2(j,i),j=1,nubc)
enddo
```

from unit **itide**=14. **z1** and **z2** are the cosine and sine components of the elevation of each constituent (similarly for velocity, \mathbf{u} and \mathbf{v})

If LONGBCFORM is used data is read according to

```
do i=1,ncond read(itide,'(8f10.6)') (z1(j,i),j=1,nobdZ) read(itide,'(8f10.6)') (z2(j,i),j=1,nobdZ) read(itide,'(8f10.6)') (u1(j,i),j=1,nobdUV) read(itide,'(8f10.6)') (u2(j,i),j=1,nobdUV) read(itide,'(8f10.6)') (v1(j,i),j=1,nobdUV) read(itide,'(8f10.6)') (v2(j,i),j=1,nobdUV) enddo
```

where nobdZ=2l+2m, nobdUV=(2(l+1)+2(m+1)) and the data is ordered east to west and north to south along the southern, northern, eastern then western boundaries (irrespective of whether points are land or sea).

The boundary tidal currents are then calculated from these constituents at each barotropic time step. If directive **ZBAR** is used the equilibrium tide is also used.

Residual/combined forcing

As well as tidal forcing time series of barotropic elevation and current can be applied around the model boundaries. These either represent the residual, in which case they are additive with the tidal component, or they can be used to provide the full forcing. The Data are read from unit **nrm**=77 at a format (default is *, boundzuv_form='unf' for unformatted) and frequency (in hours) set in **parameters.dat** (less than 1 hour currently causes an error). At each time data is read in using

```
read(nrm,*) (z1(j),j=1,nzbc)
read(nrm,*) (u1(j),j=1,nubc)
read(nrm,*) (v1(j),j=1,nubc)
```

and similarly for the unformatted case. **z1**, **u1**, **v1** are boundary currents and elevations. These are ramped linearly in time between concurrent values and applied as boundary conditions as described above. A **LONGBCFORM** is also available in a similar format to the tidal constituents.

If only elevations are available these can be imposed using a relaxation condition (set using (**READ_ZET**; this has not been extensively tested).

```
POLCOMS_user_guide.doc
```

Temperature and salinity

Two options are provided for scalar boundary conditions, an up-wind advective scheme and a relaxation scheme. Currently the list data format is only available for the advective scheme – the relaxation scheme is limited to the longer format and hence only rectangular domains. The type of T and S boundary condition data is controlled by the file **boundarycon.h**:

```
c #define TS_boundary_condition bost
c #define TS_boundary_condition boundaryTS
#define TS_boundary_condition boundaryTS_longform
c#define TS_boundary_condition bfix
c#define TS_boundary_condition no bc
```

The appropriate sub-routine is un-commented.

For advective boundary conditions data is provided one grid cell outside the model domain and the boundary condition currents used to advect it into the domain on inflow. Data frequency is set in **parameters.dat** and at each time data is read from unit **nrmt=78** by:

```
do j=1,nbbc
read(nrmt,*) Iin,Jin,(btmp1(k,j),k=1,n-2)
enddo
do j=1,nbbc
read(nrmt,*) Iin,Jin,(bsal1(k,j),k=1,n-2)
enddo

unless bounts_form='unf' in which case

do j=1,nbbc
read(nrmt) (btmp1(k,j),k=1,n-2)
enddo
do j=1,nbbc
read(nrmt) (bsal1(k,j),k=1,n-2)
enddo
```

is used. Data is ramped linearly in time at each time step.

For relaxation conditions the width of the relaxation zone (**niw**) is set in **parameters.dat**. The relaxation coefficient is set to vary linearly from 1 (clapped) at the open boundary to zero at **niw+1** points in side the model. Data is read uses

```
read(nrmt,*) ((btmp1(k,j),k=1,n-2),j=1,nobw)
read(nrmt,*) ((bsal1(k,j),k=1,n-2),j=1,nobw)
```

where **nobw=2l+2m** unless **VARY_RELAX** is set. In this case the imposed data can vary across the relaxation zone and **nobw=2.niw.l+2.niw.m.** Data is ordered east to west and north to south along the southern, northern, eastern then western boundaries (irrespective of whether points are land or sea). If **VARY_RELAX** is set this is repeated for **kk =1** to **niw** points inside the model domain using the provided data, otherwise the data at the boundary is used across the relaxation zone (note: side length does not decrease as **kk** increases).

A number of FORTRAN program are available to extract boundary condition data from POLCOMS output for use as forcing for a smaller (and usually finer resolution) domain.

River inputs

A simple approach for applying river forcing is used: this is to increase the sea surface elevation according to the volume flux, with a corresponding adjustment to the salinity through the water column. The river locations are provided by an index file (unit 29) that lists the model grid points. The file starts with **nofriv** (number of rivers in the domain) then the locations are given in a range of formats:

Default (36 NW shelf rivers):

```
read(29,'(i2,1x,a14,2(1x,i3))') idriv(nr),name,icriv(nr),jcriv(nr)
```

If **NORIVTMP** is set (40 years NW shelf database of ~300 rivers):

```
read(29,'(i3,2(i4),1x,a20)') idriv(nr),icriv(nr), jcriv(nr),name
```

If **CEH** set (40 year data base of UK rivers)

```
read(29,'(i3,1x,a19,2(1x,i3))') idriv(nr),name,icriv(nr),jcriv(nr)
```

The format for the river data is one row per day and one column per river. The number of rivers in the database (i.e. number of columns) is set in **parameters.dat**, and which of these is in the domain is given by the array **idriv**.

5. Compilation

Compilation is carried out using an application specific script (**make_polcoms**) from the application directory (e.g. **pol3db/setups/plume**). For example:

```
#!/bin/csh -f
```

```
set OPTS = ("-DFLAT -DNOTIDE -DRIVERS -DNO_SCOORD -DADV_BC")
set OPTS = ($OPTS " -DNOCOMPRESS -DANALYTICINIT -
DANALYTIC_DEPTH -DANALYTIC_INIT -DRIVERFIX")
```

set MACHINE = shelf-ibmcluster

POLCOMS user guide.doc

```
set POLDIR = ../../v6.3
set MAKEDIR = $cwd
set EXE_NAME = shelf
```

#copy application specific files cp boundarycon.h \$POLDIR cp data_out.F \$POLDIR cp tmpfield.F \$POLDIR cp set_bathymetry.F \$POLDIR cp set_mask.F \$POLDIR

#enter source directory cd \$POLDIR

#compile
#make clean
make \$MACHINE ''OPTIONS= \$OPTS '' "MAKE_TARGET=polcoms"
cd \$MAKEDIR

#return to application directory and copy in executable.
cp \$POLDIR/\$EXE_NAME ./
exit(0)

In this example the **OPTS** variable sets a list of complier directives (see appendix A) to define the model problem, use **MACHINE** to choose one of the computer dependent 'make targets' in **machine_list**, and the **MAKE_TARGET** variable choose which selection of models is to be compiled. The **makefile** currently includes the following options:

- polcoms
- polcoms gotm
- polcoms_gotm_ersem
- polcoms ersem
- polcoms wam

Each also requires the corresponding cpp directives to be set: **-DERSEM**, **-DGOTM**, **-DWAM**.

The optional **make clean** statement will remove all object files and .f files so compilation will start from scratch (usually not necessary).

Compilation proceeds in two stages:

Each FORTRAN source file (**.F**) is compiled in turn by **make:** first compiler directives are resolved to give a **.f** file then these are compiled with the FORTRAN compiler e.g.

POLCOMS_user_guide.doc

```
cpp –D.... b3drun.F b3drun.f The resulting .f files should not be edited f90 –r8 -c b3drun.F -o b3drun.o
```

Then all object files (.o) files are linked to create the executable. The default executable name is **shelf**.).

Compilation Options

The make targets in **machine_list** provide the compilation options required for each different computer/compiler. They are also used for different compilation and linking options e.g. for debugging and profiling and to set paths to libraries. Three examples are shown.

A linux workstation with debugging on:

```
shelf-linux-pg-g:

$(MAKE) $(MAKE_TARGET) "OPTIONS=$(OPTIONS)" \

"OPTIONS=$(OPTIONS)" "DEBUG=$(DEBUG)" \

"PROGRAM=$(PROGRAM)" \

"SIZE=$(SIZE)" "ENV=SERIAL" \

"CPP=cpp" \

"CPPFLAGS=-P -traditional" "CPPMACH=-DLINUX" \

"CC=pgf90" "CFLAGS=-Ktrap=fp -g" \

"FC=pgf90" "FFLAGS= -g -r8 -Ktrap=fp -Mprof -Mextend " \

"OFLAGS=" "GFLAGS=" "PFLAGS=" \

"LOPTS= -L /packages/netcdf/netcdf-3.5.1/lib -lnetcdf" \
"LIBS=$(LIBS)"
```

The POL IBM cluster, using MPI:

```
"LIBS=$(LIBS)"
```

```
The HPCx, IBM Power 5:
shelf-regatta-mpi:
     $(PMAKE) $(MAKE TARGET) \
           "OBJECTS=$(OBJECTS)" "DEPENDS=$(DEPENDS)" \
           "NPES=$(NPES)" \
           "OPTIONS=$(OPTIONS)" "DEBUG=$(DEBUG)" \
           "PROGRAM=$(PROGRAM)" \
           "ENV=MPI" \
           "CPP=/lib/cpp" "CPPFLAGS=-P" "CPPMACH=
I/usr/lpp/ppe.poe/include/thread64 -DIBM'' \
           "CC=cc" "CFLAGS=-q64" \
           "FC=mpxlf90 r" "OFLAGS=-O2 -garch=pwr4 -gtune=pwr4 -ghot -
qsuppress=1500-036''
           "GFLAGS=" "PFLAGS=" "FFLAGS=-q64" \
           "F77FLAGS=-qfixed" "F90FLAGS=-qsuffix=f=f90" \
           "LFLAGS=-L/usr/local/lib" \
           "LIBS=$(LIBS)"
```

For each new computer POLCOMS is compiled/run on a new target is required in **machine_list**, following this template.

Compiling Additional Models

POLCOMS has been coupled to a range of different modelling systems; notably, ERSEM (ecosystem model), GOTM (turbulence model), CICE (sea ice model) and WAM (wave model). Generally the additional model code is placed in a subdirectory of the POLCOMS source code directory. An objects list file is provided in the POLCOMS directory and 'included' by the makefile. The POLCOMS **makefile** is then used for the additional model (including the **machine_list** options) and all object files created are linked to produce the executable. If there are connections between modules then these need to specified in the **makefile** with a –I option. Note: the dependencies of additional models are not explicitly specified. This means, for example, if a POLCOMS module that the ERSEM model uses is changed, "make clean" should be used for both POLCOMS and ERSEM codes, and the compilation started from scratch. An exception to this procedure is GOTM, which is installed as a library and then linked in.

6. Execution

The mode of execution depends on particular computer used, its job submission system and whether the code is run in batch or interactive mode. Apart from the simplest single processor execution on a stand alone workstation, a batch processing script is required to request resources and control the multi-processor execution.

Runtime arguments

The follow command line options are available (except when the **NOGUI** directive is used):

Model command line options:

-help-quiet: Print this usage information-quiet: Suppress stdout monitor

-verbose : Adds debugging info to monitor

-tdur
 -nstep
 -mnth
 -particles
 -indir
 Run length (timesteps)
 Month number for input
 Enable particle tracking
 Directory for input data files

-flipeld : flips cloud data from north-south to south-north

Restart/checkpointing:

-warm_start-restart-resetStart from restart file-resetResets time, u, v, zet

-restm : Resets time on restart to start time

-tchk : Checkpoint interval (hours)
-nchk : Checkpoint interval (timesteps)
-tcmin : Time of first checkpoint (hours)
-ncmin : Timestep of first checkpoint (hours)
-tfwnd :Forward-wind input data (hours)

Parallel processing:

-nproc : Number of processes (not usually required)

-nprocy : Number of processes in y
-nens : Number of ensemble members
-asynch : Use asynchronous comms
-immed : Use non-blocking comms
-promis : Use promiscuous receives
-nocomms : Disable boundary exchange

-noimmed : Use blocking comms

-nosndrcv : Do not use send/receive mode

-simple
 -sndrcv
 -synch
 -partrk
 Use simple partitioning
 Use send/receive mode
 Use synchronous comms
 -partrk
 Use RK partitioning

-map : Print partitioning map to file

Client/Server operation:

-server : Start POLCOMS as server

Debugging:

-idbg-jdbg-kdbg-kdbgDebugging point y-coordinateDebugging point z-coordinate

An important feature available from these run-time options is check-pointing/restarting. For example:

cp filenames.jan01 filenames.dat

./shelf -tdur 744. -tchk 744.

cp filenames.feb01 filenames.dat

./shelf -tdur 672. -tchk 672. -restart

will run **shelf** for two legs (January 2001 and February 2001), check pointing at the end of the first then restarting at the start of the second. This allows a long simulation to be broken down into manageable sections e.g. to fit in the constraints of a batch queuing system.

Parallel Execution

In a normal parallel execution environment in which the number of processors is specified as part of the batch job script or interactive options, POLCOMS picks up the number of processors automatically from the size of the MPI Comm World communicator. If necessary the number of processors can be set using the –nprocs command line option. By default, POLCOMS automatically partitions the grid in the two horizontal dimensions using a recursive partitioning algorithm. This balances the number of sea points across the processors in order to obtain the optimum run-time load balance. Usually the default settings are those which will work best and give the best performance. The number of processors is factored in two dimensions as near square as possible e.g. on 8 processors then nprocx=4 and nprocy=2. If a different factorization is required this can be specified using the –nprocx and –nprocy options. The –simple option disables the recursive partitioning in favour of a scheme which divides the domain without any regard to the distribution of sea points. The -map option may be used to write a map of the portioned domain to a file in PPM format. The netpbm package (http://netpbm.sourceforge.net/) may be used to convert this file to an image e.g. using the ppmtogif command. Options –asynch and –synch switch between asynchronous and synchronous communications i.e. normal MPI sends and synchronous MPI sends. Options -immed and -noimmed switch between normal MPI sends and immediate MPI sends. The option –nocomms may be used to disable all nearest neighbour boundary exchange. Whereas this invalidates the results of the code it is useful to compare timings with and without communications.

Running in ensemble mode

It is possible to run POLCOMS in ensemble mode where a number of independent model runs are combined in a single job. To enable this specify the command line option —nens e.g —nens 16. For example when running on 64 processors this will execute 16

independent model runs with 4 processors each (except see later). In order to specify different parameters for each ensemble member POLCOMS looks for individual copies of the files parameters.dat and filenames.dat of the form parameters_001.dat, parameters_002.dat etc. and filenames_001.dat and filenames_002.dat etc. If these files are not found then each ensemble member runs with the same standard parameters.dat and filenames.dat files. In this way every aspect of the forcing, initial data and output files for the ensemble members may be customized. If different bathymetry files are specified for each ensemble member then POLCOMS reads these first before assigning processors and the number of processors per ensemble member is balanced according to the number of sea points. The standard output from each ensemble member is reassigned to a file named output_001, output_002 etc.

7. Output

POLCOMS has a range of output options controlled by the subroutine <code>data_out</code>. This is an application specific code that is copied into the source directory at compile time, it calls generic output routines contained in <code>out.F</code> and <code>tidemeanout.F</code>. The general procedure for spatial arrays is to copy data to the <code>leader</code> processor (using standard communications routines) and output from here. For output at a specific grid cell, a test is required that that cell is on a particular processor: <code>if</code> (<code>ielb.le.icg.and.icg.le.ieub.and.jelb.le.jcg.and.jcg.le.jeub</code>) <code>then.</code> ... The logical units set by <code>filenames.dat</code> need to be consistent with those used in data_out.F. Typically a model run uses unformatted compressed binary output for high-volume data (e.g. 3D fields) and formatted output for others. Two examples are described here;

dailymeanUVT

These files are used to output 25 hour means of **tmp**, **sal**, **u**, and **v**, and also **spm** if used. It can use a compressed format to only output at sea points. In which case, a header is written first containing the size of the grid and the location of the sea b-points. This is repeated for u-points. Then the 3D model fields are output daily. FORTRAN code to read these files is like:

```
real*4, allocatable, dimension (:,:,:) :: tmp,sal,u,v
integer, allocatable, dimension (:) :: isea,jsea,iusea,jusea
.
. read(1) l,m,n,npsea
if ( .not. allocated(isea)) allocate(isea(npsea),jsea(npsea))
read(1) isea
read(1) l,m,n,npusea
if ( .not. allocated(iusea)) allocate(iusea(npusea),jusea(npusea))
read(1) iusea
read(1) jusea
```

```
if ( .not. allocated(tmp) ) then allocate(tmp(l,m,n-2)) allocate(sal(l,m,n-2)) allocate(u(l,m,n-2)) allocate(v(l,m,n-2)) endif do it=1,ntimes read(1) itimt read(1) ((u(iusea(i),jusea(i),k),k=1,n-2),i=1,npusea) read(1) ((tmp(isea(i),jsea(i),k),k=1,n-2),i=1,npsea) read(1) ((sal(isea(i),jsea(i),k),k=1,n-2),i=1,npsea) read(1) ((sal(isea(i),jsea(i),k),k=1,n-2),i=1,npsea)
```

Note: the binary format of the input and output system must match. As most systems now use IEEE floating point format this is not usually a problem, though there can be an issue with file record structures and big-endian versus little-endian. POLCOMS is generally set up to use UNIX (rather than PC/LINUX) style binaries.

Physseries

This outputs data at a list of grid points typically every hour. The files are opened with, e.g. call initseries(200, 'physseries'). This will read from unit 88 a list of ioutpt points and for each of this open a file physseries. <i>.RUNID to unit 200+i. each call to outseries (e.g. call outseries_wcol(200,ioutpt)) writes depth profiles of u,v, tmp, aa, ak, qsq, al and spm if used. Variables are converted to integer unless REALSERIES is defined. MATLAB code to read these files is like

```
load physseries...
ni=8
np=length(physseries)/ni;
i=1:np;
t=i/24:
k=2:n-1
ii=ni-1
eval(['clear aa' RunID '_' Id ])
eval(['clear ak' RunID '_' Id ])
eval(['clear qsq' RunID ' ' Id ])
eval(['clear al' RunID '_' Id ])
eval(['time' RunID '_' Id '=physseries(ni*i-ii,1):']);
eval(['u' RunID '_' Id '=physseries(ni*i-ii,k)/1000;ii=ii-1;']);
eval(['v' RunID '_' Id '=physseries(ni*i-ii,k)/1000;ii=ii-1']);
eval(['tmp' RunID' 'Id'=physseries(ni*i-ii,k)/1000;ii=ii-1']);
eval(['sal' RunID '_' Id '=physseries(ni*i-ii,k)/1000;ii=ii-1']);
eval(['aa' RunID '_' Id '(:,2:n-1)=physseries(ni*i-ii,k)/100000;ii=ii-1']);
eval(['ak' RunID '_' Id '(:,2:n-1)=physseries(ni*i-ii,k)/100000;ii=ii-1']);
eval(['qsq' RunID ' ' Id '(:,2:n-1)=physseries(ni*i-ii,k)/100000;;ii=ii-1']);
```

eval(['al' RunID '_' Id '(:,2:n-1)=physseries(ni*i-ii,k)/1000;;ii=ii-1']);

Work is in progress to replace these files with NetCDF (http://www.unidata.ucar.edu/software/netcdf/).

Appendix A: Model control (CPP directives and logical variables)

Unless otherwise specified the default value of logical variables is .false.

Compiler directive	Logical variable	Description
METOFFICE		Needed if using met.
		office heat fluxes and
		system
GULF		A Met. Office domain
AMM		A Met. Office domain
IRSH		A Met. Office domain
MRCS		A Met. Office domain
	advection	Do momentum and scalar advection
	advect_v	Advect v component of momentum
ADV_BC	adv_bc	Used advective boundary conditions (otherwise relaxation)
ANALYTIC_DEPTH	analytic_depth	Set bathymetry to idealised values defined in set_bathymetry.F
ANALYTIC_INIT	analytic_init	Set an analytic buoyancy (temperature) field, defined in tmpfield.F
ATTEN		Use IOP derived attenuation coefficients for heating and ecosystem model
BALTIC	Baltic	Include the Baltic as an inflow
BIHARM		Biharmonic, rather than Laplacian in sigma- coordinate horizontal diffusivity (NOT TESTED)

BIO_LAMDA	bio_lambda	Use transmissivity from
_		the ERSEM model in the
		heatflux calculation
BNDUADV		Include boundary points
		in velocity advection –
		acts as 'Sommerfeld' type
		passive boundary
		condition
BULKMET	bulk_met	Read met data from
		files(s) (pressure, winds,
		temperature, relative
		humidity and cloud cover)
BULK_COARE		Use COARE 3 bulk heat
		flux
BULK_NSP		Use Goldsmith and
		Bunker Heat bulk heat
		flux
СЕН	ceh	Use CEH UK river data
CICE	cice	Use the Los Alamos
		CICE sea ice model
CLOUDPOINT	cloudpoint	a single value of cloud
		data is read to represent
		the cloud over the whole
		domain at each time; use
		with BULKMET
COARSEGRID		Setup a coarse resolution
		grid to run alongside
		standard model
COASTFRIC		Increase z0 near coast -
		not stable
COEF_NSP		Interpolate latitude
		dependent heat flux
		parameters
COLLECTIVE		Use collective
		communication routines
COMPOUT		Only output tide means at
		sea points
	compress	Use compressibility term
		in equation of state for
CONCE ES DS		HPG.
CONST_TS_BC	const_ts_bc	Boundary temperature
		and salinity values are
		held constant (values read
CONCT HODIZ DIE		in from file)
CONST_HORIZ_DIF		Constant diffusivity in σ-
		coordinate horizontal

		diffusivity, otherwise,
		Smagorinsky
CONVECTU	convect_u	Convective adjustment
		for u, v, temperature and
		salinity (not advisable)
CTDTRACK		Output T, S and SPM
		profiles according to a list
		of time, long. and lats.
DEBUG		Output a range of
		information and specific
		values of variables at the
		debuging point. For use in
		debugging.
plus extra debugging		
information on:		
DEBUG_MODEL		physics model
DEBUG_ADV		advection
DEBUG_B3DRUN		main program control
DEBUG_BAROC		baroclinic integration
DEBUG_BAROT		barotropic integration
DEBUG_CONVECT		convective adjustment
DEBUG_DIFFUSEB		scalar diffusion
DEBUG_DIFFUSEU		velocity diffusion
DEBUG_HORIZUV		Horizontal diff. u,v.
DEBUG_HORIZTS		Horizontal diff T & S.
DEBUG_PGRAD		Pressure gradient
DEBUG_LAGRANGE		Particle tracking
DEBUG_EXCHANGE		Halo exchange
DEBUG_COMMS		Communications
DEBUG_GLOBCOM		Global communications
DEBUG_LAGRANGE		Partical tracking
DEBUG_STRSET		Met. Data input
DIA_F	dia_f	Output flux data for T and
		S budget
DIA_T	dia_t	Output temperature
		diagnostics at specified
		points and in 3D
DSSRDATA		Use downward SW
		radiation forcing rather
		than astronomical
		calculation corrected for
		clouds. Requires albedo
DSTRDATA		Use downward thermal
		radiation forcing
	L	1441441011 10101115

DOCUMENT		Make the POLCOMS
		documentation
ERSEM		Use ERSEM
EXTRARIVS	extrarivs	Use constant annual mean
		data for additional rivers
FOAM		Fix for missing FOAM
		b.c. data
FORCEafterDIFF		Moving surface forcing to
		occur after vertical
		diffusion
FLAT	Flat	Use Cartesian coordinates
		- daldi and dbedi in
		parameters.dat represent
		dx and dy in metres.
FLIPBATHY	flipbathy	Bathymetry file is read in
		by row from north to
		south (default is south to
		north)
FLIPCLD	flipcld	Cloud data is read in by
		row from south to north
		(default is north to south)
FLIP_PRCP	flip_prcp	Precipitation data is read
		in by row from south to
		north (default is north to
		south)
FLIP_RAD	flip_rad	SW radiation data is read
		in by row from south to
		north (default is north to
		south)
GLOBMET	globmet	Use Met. Office's Global
		NWP data
GOTM		Use the General Ocean
		Turbulence Model to
		calculate vertical
		diffusivities
HARM_ANA		Do harmonic analysis and
		output harmonic constants
		to file
HARMW		Include the vertical
		velocity in the harmonic
		analysis calculations
		(requires HARM_ANA
		too)
HORIZDIF	Horizdif	Add horizontal diffusion
		to currents - on Z -levels
HORIZTS	Horizdifts	Do horizontal diffusion of

		1 1: :/
		temperature and salinity
WODER DEED GEG		(requires HORIZDIF too)
HORIZ_DIF_SIG		Add horizontal diffusion
		to currents - on σ-levels
HORIZ_DIF_SIG_TS		Do horizontal diffusion of
		temperature and salinity
		(requires
		HORIZ_DIF_SIG too)
	hor_press_grad	Switch on/off hpg
IBM		Machine dependent
		option for IBM systems
		(e.g. HPCx)
INVERSE_B	inverse_b	Apply inverse barometer
		correction at the boundary
		- used when boundary
		data elevations do not
		include the effects of
		atmospheric pressure but
		either BULKMET or
		POINTMET is used
IRREG_BC	irreg_bc	Use irregular shaped
		relaxation zone T&S
		b.c.'s
key_EnKF		Use ensemble Kalman
		Filter assimilation
Key_EnOI		Use ensemble optimal
		interpolation assimilation
key_ENSEMBLEOUT		
key_clderr		Perturb cloud cover in
		ensemble Kalman filter
key_ImpSam		
key_turberr		
key_winderr		
key_1DASSIM		
	lchkpnt	Do full checkpoint at time
		intervals tchk
	lfwnd	Forward-wind forcing
		data by time tfwnd
	lnoout	Suppress output
	looping	
LOCOMS		Run Low resolution
		Coastal-Ocean Model, in
		addition to POLCOMS
LONGBCFORM	longbcform	use long format boundary
	_	conditions - south, north,
		west, east
•	•	

	lwarm	Read in full restart data
MPI		Use MPI for message
		passing
MONITOR		Output largest current
		speed
MESOMET	mesomet	Use Met. Office's
		mesoscale NWP data
MY25CBF	my25cbf	Set a spatially varying
		coefficient of bottom
		friction (otherwise
		constant)
NOCOMPRESS		Omit the pressure term
		from the calculation of
		'potential buoyancy'.
		Required if not using s-
OLD UD VD		coordinates.
OLD_UR_VR		Use original calculation
		of depth varying component of volume
		fluxes in scalar advection
NO_CONVADJ		Do not do a convective
110_COTTADS		adjustment (default with
		GOTM on)
	ncep_lcd	Use cloud data from
	neep_red	NCEP (to replace
		ERA40)
NODIFF	nodiff	Switch off vertical
		diffusion
NOHPG		Switch off horizontal
		pressure gradient
		calculation
NOCLI		Make b3drun.F the main
		program, needed for error
		trapping with Portland
		Compilers but disables
NOTOPH		command line arguments
NOMODEL		Omit the physics model
NO DODAS		calculations
NO_PGRAD		Calculate the horizontal
		pressure gradientalong σ-
MODIFICADA		levels Turn off all physics
NOPHYSADV		Turn off all physics
NO DAMB		advection
NO_RAMP		Do not ramp up the initial
NODIVEDSKIP		wind forcing
NORIVERSKIP	riverskip	Read in river data from

		start of file instead of
NODW/ENG		skipping nday-1 records
NORIVTMP		Do not read in river
Nonom		temperatures
NOROT	norot	No rotation - Coriolis
	_	force is zero
NO_SAL	no_sal	Turn off salinity
		integration
NOSCAADV	no_tmp	Turn off scalar advection
NO_SCOORD	scoord	Use σ - rather than s-
		coordinates
NOSPMADV		Turn off advection of SPM
NOSPMRIV		Turn off spm input from
1,0011,111		rivers
NOSPMSOURCE	lspmsource	Turn off coastal sources
		of SPM
NOSLIP		
NOSTEEP		Turn off steepening
		during calculation of
		horizontal advection
NOSTEEPZ		Turn off steepening
		during calculation of
		vertical advection
NOTEVENSIG		σ-levels are not evenly
		spaced (redundant)
NOTIDE	no_tide	Run without tide or
		residual forcing
NO_TMP		Turn off temperature
		integration
NO_V		Turn off northwards
		advection
NOVELADV		Turn off velocity
		advection
ONESPMADV		Only advect the first SPM
		class
OUTSCOORD	outscoord	Output 3d array of s-
		coordinates; run will stop
		as soon as file is written
PARALLEL_STATS		Output parallel statistics
	part_tracking	Use particle tracking sub-
		model
PGRAD	lpgrad	Calculate the horizontal
		pressure gradient by
		interpolating onto

		horizontal plane (default
		linear interpolation)
		Default = .true.
PGRAD SPLINE	lnaved anline	Calculate the horizontal
PGRAD_SPLINE	lpgrad_spline	
		pressure by spline
		interpolation onto
DOD A D. WEGGE		horizontal plane
PGRAD_TEST	pgrad_test	T
	physmodel	Execute the physics
DOWNER CENT	• • •	model
POINTMET	point_met	Use single point met data:
		pressure, winds,
		temperature, relative
		humidity and cloud cover
POLARSTEREO		Use polarstereo project
	_	for horizontal coordinates
PROGDENS	progdens	Set buoyancy =
		temperature i.e.
		equivalent to linear
		equation of state
PVM		Use PVM for message
		passing (not recently
		tested)
Q2L	q2l	Use lengthscale equation
		in MY turbulence closure
		(not tested)
RAMPTIDE		Increase tidal constituents
		from zero at start of run
READ_INITIAL_TS	read_initial_ts	Read initial temperature
		and salinity fields from
		file
READOPENBCPOINTS	readopenbcpoints	Read additional open
		boundary locations from
		file
READ_TIDECON	read_tidecon	Read tidal constituents
		from file.
READ_ZETUB	read_zetub	Read from file boundary
		elevations and currents at
		frequency set in
		parameters.dat
READ_ZET	read_zet	Read boundary elevations
		from file for 'elevation
		only' boundary condition
REALSERIES		Use floating point format
		for time seriesoutput
	reset	Time and currents reset to

		zero – allows spin up of <i>T</i>
		and S.
	resetweekmeans	Weekly means are
		initialized at the start of
		this run
RILIMIT	rilimit	Option on limiting the
		mixing length in
		turbulence routines
RIMIX	rimix	Use the Richardson
		number dependent
		boundary layer mixing
		scheme
RIVERFIX		Elevation is modified by
		river inflow at a river grid
		box during baroclinic
		(rather than barotropic
		time step
RIVERS	rivers	Include freshwater inflow
		from rivers
	resettm	Reset time to be
		start_time, rather than
		time from resart file
SALFLUX	salflux	Include salinity flux
		calculations
SALTFLUX	lsaltflux	Read in surface
		precipitation data
SCOORD_EVEN	scoord_even	s-levels are equally-
		spaced in the vertical
		(same as σ -levels),
		irrespective of the water
		depth
SCOORD		Use horizontally varying
		vertical coordinate
		(default: .true.)
SCINTERP		Use original calculation
		of s-coordinates at u-
		points
SERIAL		Run on single processor
		machine
	Server	Run POLCOMS as a
		server.
SHMEM		Use Cray SHMEM library
		for message passing in
		addition to MPI/PVM
		(not recently tested)
SPM	lspm	Use the SPM submodel
	1 . 1	

	spm_advection	Advect SPM
SSRDATA	ssrdata	Use net SW radiation
		forcing rather than
		astronomical calculation
		corrected for clouds
	Stdout	Write monitor output to
		stdout on this processor
TIMING	Timing	Output timing
	s	information for various
		stages of the model run
TIMING_ADV		Include detailed timing
		for advection routines
TIMING_BAROC		Include detailed timing
TIVIII (G_B/MCC		for baroclinic integration
TIMING_BAROT		Include detailed timing
IIMING_BAROT		for barotropic integration
TSFLUX		Output horizontal <i>T</i> and <i>S</i>
ISTLUA		fluxes
TVD		
IVD		Use TVD wetting and
TD A CED	TD	drying (with WETDRY)
TRACER	Tracer	Advection and diffusion
VID C		of a passive tracer
UBC		Use non-zero tangential
		velocities at coastal
		boundaries (for use with
		case II boundaries)
UBC_CALC		Calculate velocities at
		coastal-points (with
		UCOAST). Not fully
		tested
UCOAST	ucoast	Use case II boundaries -
		land boundaries lie along
		u-points (default is case I)
UNFORMMET	unformmet	Use unformatted
		meteorological data files
		(specific implementation)
VAMPIR		Use vampire profiler
VARY_LAMBDA	vary_lambda	Use a water depth
		dependent transmissivity
		in the SW downwelling
		calculation
VARY_REALAX	vary_realax	Use a relaxation boundary
_		condition for temperature
		and salinity with forcing
		values changing across
		the relaxation zone

VECTOR		Use code optimized for
		vector machine (i.e. not
		cache optimized)
	Verbose	Write time steps to screen
WAVES	Waves	Add wave coupling terms
WAM		Use WAM wave model
WETDRY	Wetdry	Use wetting/drying code
WINDFLUC	Windfluc	Add a fluctuation
		component (read in from
		file) to the wind field
ZBAR	Lzbar	Include the equilibrium
		tide in barotropic
		calculation
ZERO_PG_BC	zero_pg_bc	In the pressure gradient
		calculation use zero
		pressure gradient near bed
		boundary condition
		(default is zero density
		gradient)
ZVARYBC	Zvarybc	use depth-varying
		currents in T and S
		advective boundary
		condition

Appendix B: Principle Model variables

Variables defined in module **b3d.F**

Three dimensional arrays

• real*8, dimension(n,1-mhalo:iesub+mhalo,1-mhalo:jesub+mhalo)

Variable	Description	Units	File changed in
aa	Vert. viscosity	m^2s^{-1}	turbulence.F
ah	Horiz viscosity	m^2s^{-1}	horizdiffusivity.F,
			horizdiffuse.F
ak	Vert. diffusivity	m^2s^{-1}	turbulence.F
aka	Viscosity for slow	m^2s^{-1}	b3drun.F
	baroclinic step		
ak_temp	Temporary array	m^2s^{-1}	b3drun.F
al	Mixing length	m	turbulence.F
b	Buoyancy	ms ⁻²	bcalc.F
bsal	Boundary sal.	p.s.u.	boundaryTS.F
btmp	Boundary tmp	°C	boundaryTS.F
fu	Volume flux (u)	m^2s^{-1}	barot.F

fv	Volume flux (v)	m^2s^{-1}	barot.F
fus	Volume flux (u) for	m^2s^{-1}	b3drun.F
	slow baroclinic step		
fvs	Volume flux (v) for	m^2s^{-1}	b3drun.F
	slow baroclinic step		
qsq	T.K.E.	m^2s^{-2}	turbulence.F
sal	Salinity	p.s.u.	advect_sca.F, saltflux.F,
			diffuse.F
tmp	Potential	°C	advect_sca.F, downwell.F,
	temperature		diffuse.F
tra	Tracer	m ⁻³	advdif_spm.F
		1	
u	Eastward velocity	ms ⁻¹	baroc.F, barot.F diffuse.F,
		1	advect_vel.F
V	Northward velocity	ms ⁻¹	baroc.F, barot.F, diffuse.F,
	<u> </u>	1	advect_vel.F
uo	u velocity at last	ms ⁻¹	turbulence.F
	time step	_1	
vo	v velocity at last	ms ⁻¹	turbulence.F
	time step	-1	<u> </u>
ur	Depth varying	ms ⁻¹	baroc.F
	velocity (u)	-1	Lance E
vr	Depth varying	ms ⁻¹	baroc.F
	velocity (v)	ms ⁻¹	
W	Vertical velocity	ms	Turbulence.F
aln	Mixing length profile	-	Turbulence.F
ds	Level	-	sigmaset.F, scoordset.F
dsu	Level width	-	sigmaset.F, scoordset.F
dsup	Level spacing to	- _	sigmaset.F, scoordset.F
usup	surface and sea bed	_	Januardin , accordated
dsv	Level width at u-	_	scoordset.F
WD T	points		
dsuv	Level spacing at u-	-	scoordset.F
	points		
sig	s-levels for state	-	sigmaset.F, scoordset.F
8	variables, b-point		,
sigv	s-levels for state	-	scoordset.F
3	variable, u-point		
sigo	s-level for flux	-	sigmaset.F, scoordset.F
	variable, b-point		
sigov	s-level for flux	-	scoordset.F
	variable, u-point		
aastor	25 hours means, aa	m^2s^{-1}	tidemeanout.F
akstor	25 hours means, ak	m^2s^{-1}	tidemeanout.F

1.4	25.1	1	4:damaanau4 F
salstor	25 hours means, sal	p.s.u.	tidemeanout.F
tmpstor	25 hours means,	°C	tidemeanout.F
	tmp		
ustor	25 hours means, u	ms ⁻¹	tidemeanout.F
vstor	25 hours means, v	ms ⁻¹	tidemeanout.F
al_stor	25 hours means, al	m	tidemeanout.F
spmstor1	25 hour mean, spm1	gm ⁻³	tidemeanout.F
spmstor2	25 hour mean, spm2	gm ⁻³	tidemeanout.F
tuflx	tmp flux u	$^{\circ}$ C m 2 s $^{-1}$	tidemeanout.F
tvflx	tmp flux v	$^{\mathrm{o}}\mathrm{C}\;\mathrm{m}^{2}\mathrm{s}^{-1}$	tidemeanout.F
suflx	sal flux u	p.s.u.	tidemeanout.F
		p.s.u. m ² s ⁻¹	
svflx	sal flux b	p.s.u.	tidemeanout.F
		p.s.u. m ² s ⁻¹	
rowbar	Mean density	kgm ⁻³	bcalc.F
pressure	Pressure for	Pa	bcalc.F , pgrad.F, p
	compressibility calc.		
d_bl	Worker arrays for	-	advpb[uv].F
_	advection routines		
d br		-	advpb[uv].F
d_dba		-	advpb[uv].F
d_dmb		-	advpb[uv].F
d_db		-	advpb[uv].F
d_d2b		-	advpb[uv].F
d_fuu		-	advpb[uv].F
d_fba		-	advpb[uv].F
sigo2		-	advpb[uv].F
Aku	diffusivity at u-point	m^2s^{-1}	turbulence.F
epsilon	Dissipation	m^2s^{-3}	turbulence.F

Two-dimensional arrays at 3 time levels

• real*8, dimension(1-mhalo:iesub+mhalo,1-mhalo:jesub+mhalo,3)

Variable	Description	Units	File changed in
Zet	Elevation	m	barot.F
Ub	Depth mean current	ms ⁻¹	barot.F
	u		
Vb	Depth mean current	ms ⁻¹	barot.F
	v		

Two-dimensional arrays

• real*8, dimension(1-mhalo:iesub+mhalo,1-mhalo:jesub+mhalo)

Variable	Description	Units	File changed in
v arrabic	Description	Cilita	i ne changea m

Afnlb	Depth mean of non-	ms ⁻²	baroc.F
Aimo	linear/buoyancy	1115	baroc.i
	terms u		
Ar	Fraction area of grid	_	b3dgrid.F
711	cell		boughtun
At	Air temperature	°C	metset.F
Bfnlb	Depth mean of non-	ms ⁻²	baroc.F
	linear/buoyancy		
	terms u		
cdb	Bottom friction	-	cbfset.F
	coefficient		
Cl	Cloud cover	%	metset.F
Csq	'old' bottom friction	ms ⁻¹	barot.F
	term		
Dzdt	elevation changes	ms ⁻¹	out.F
Ep	Precipitation minus	ms ⁻¹	Saltflux.F
	evaporation	2 2	
Fb	Bottom stress u	m^2s^{-2}	barot.F
Fs	Surface stress u	m^2s^{-2}	metset.F
Flxu	Volume flux u	m^2s^{-1} m^2s^{-1}	tidemeanout.F
Flxv	Volume flux v	m^2s^{-1}	tidemeanoutF
Gb	Bottom stress v	m^2s^{-2}	barot.F
Gs	Surface Stress v	m^2s^{-2}	metset.F
H	Total water depth	m	barot.F
h1	Intermediate water	m	Advect_sca.F
	depth		<u> </u>
h2		m	Advect_sca.F
h22		m	Advect_sca.F
hfl_in	Heat flux in	°Cms ⁻¹	heatin.F
hfl_out	Heat flux out		heatin.F
Hs	Undisturbed water	m	hset.F
Hsu	depth Undisturbed water		b3dgrid.F
nsu	depth u-points	m	baugilu.F
Hu	Water depth u-points	m	barot.F
hu1	Intermediate water	m	Advect vel.F
nuı	depth	111	Advect_vel.i
hu2	черш	m	Advect_vel.F
hu22		m	Advect vel.F
Pn	Precipitation	ms ⁻¹	metset.F
Pr	Atmospheric pressure	mb	metset.F
Sr	Shortwave Rad.	Wm ⁻²	metset.F
Rh	Relative humidity	%	metset.F
Relfac	Relaxation zone	-	bost.F
	factor		

We	Eastward wind	ms ⁻¹	metset.F
Wn	Northward wind	ms ⁻¹	metset.F
Zbar	Equilibrium tide	m	tidbndrp2.F
Zetbc	Elevation boundary	m	tidbndrp2.F,
	condition		boundaryUVZ.F, bcbr.F
Dzb	Accumulated change	m	barot.F
	in elevation		
Dlim	Limit for equation in	-	barot_tvd.F
	very shallow water.		

Two-dimensional integer arrays

• integer, dimension(n,1-mhalo:iesub+mhalo,1-mhalo:jesub+mhalo)

Variable	Description	File changed in
Iapbu	Advection mask	advset.F
Iapbv		advset.F
Iapuu		advset.F
Iapuv		advset.F
Incb	point is at open	setopenbc.F
	boundary	
Incu	u-point is next to	setopenbc.F
	open boundary	
Ipexb	Calculation mask- b	boset.F
Ipexu	calculation mask- u	boset.F
ipexbb	land-sea mask – b	boset.F
ipexub	land sea mask – u	boset.F
irel	relaxation zone –	relzone.F
	points from	
	boundary	
iucoast	coastal u-point	b3dgrid.F

Appendix C: Model parameters

This is an example **parameters.dat** file from the MRCS domain:

251	1)	
206	m)	Model grid dimensions
20	n)	
10.0d0	hsmin	Minimum water depth
'(53f6.2)'	bathf	Format for bathymetry
'(50i2)'	maskf	Format for mask data
'(20f8.4)'	ts_form	Format for initial temperature & salinity
'(41(1x,f3.0)))'	format for cloud data
'50f8.4'	bounts_form	boundary T S format (only use for =unf)

'20f8.4'	bounzuv form	boundary U,V,zeta format (only use f	
10.0d0	daldi	Inverse longitude resolution (degrees)	
15.0d0	dbedi	Inverse latitude resolution (degrees)	
-11.9875d0	along1	Western limit of domain B-point (1,1)	
48.00833d0	alat1	Southern limit of domain B-point (1,	
0.0d0	st	Start time	
20.0d0	dlt	Barotropic time step	
15	mt	Time step ratio	
4	mts	Number of fast baroclinic steps	
744.0	tdur	Run Length	
1.0d-5	avmin	Minimum Diffusivity	
1.0d-15	dbdzmin	Minimum buoyancy gradient in TKE equations.	
1.0 d- 6	q2min	Minimum turbulent energy	
200.0d0	ahm	Coefficent for Killworth Filter	
0.2	ahc	Coefficient for Smag. or constant h.diff	
1.0	prt	Turbulent Prandlt number	
0.005d0	cbf	Constant or min. coeff. of bottom friction	
3.0d-3	z0	Bottom roughness length	
10000.0d0	conv_lim	Maximum depth for convective adjustment	
0.0d0	land	value for dry land in bathymetry data	
6.0d0	rstress)		
24.0d0	rcloud)	Frequency of forcing (hours)	
24.0d0	rsalt)		
6	ntypes	Number of met. data variables	
24.0d0	bounfreq_TS	Frequency of T and S boundary data (hours)	
1.0d0	bounfreq_ZET	Frequency of U,V,ZET boundary data (hours)	
171	ig)		
184	jg)	Debugging co-ordinates	
2	kg)		
8.0d0	tmp_init	Initial temperature	
35.1d0	sal_init	Initial salinity	
38	noriv	Number of rivers in data base	
0.01	ddry wett	ting-drying - depth at which points are 'dry'	
0.5	zwet char		
1	niw Nu	niw Numer of points in relaxation zone.	

Appendix D: Example compiler directive lists

MRCS - full model

SPM, MY25CBF, READOPENBCPOINTS, RIVERFIX, BULKMET, INVERSE_B RIVERS, TIMING, READ_TIDECON, READ_INITIAL_TS, BALTIC, ADV_BC, CLOUDPOINT, NOSTEEP, ONESPMADV, BNDUADV, SCINTERP, REALSERIES, NOCOMPRESS, PGRAD_SPLINE, VARY_LAMBDA, COMPOUT, CTDTRACK

MRCS - tide only

MY25CBF, READOPENBCPOINTS, NO_TMP, NO_SAL, TIMING, READ_TIDECON, NOSTEEP, BNDUADV, SCINTERP, NOCOMPRESS, NOHPG, COMPOUT, HARM_ANA

HRCS - Full Model

COMPOUT, MY25CBF, BULKMET, NOSTEEP, UCOAST, BALTIC, BNDUADV, VARY_LAMBDA, READOPENBCPOINTS, FLIPCLD, HORIZ_DIF_SIG, HORIZ_DIF_SIG_TS, ADV_BC, NOCOMPRESS, RIVERS, READ_ZETUB TIMING, RIVERS, RIVERFIX, READ_INITIAL_TS, NORIVTMP, ZVARYBC, TRACER, TRACERSTART, BNDUADV, DIA_F, SCINTERP

LB – TVD wetting drying

READ_TIDECON, NO_SCOORD, FLIPBATHY, MY25CBF, NOCOMPRESS, UCOAST, WETDRY, TVD, RIVERS, NO_TMP, NO_PGRAD

S12 – full model

MY25CBF, RIVERFIX, BULKMET, INVERSE_B, RIVERS, READ_TIDECON, READ_INITIAL_TS, BALTIC, NOSTEEP, SALTFLUX, SALFLUX, PGRAD_SPLINE, NOTMPRIV, COMPOUT, TIMING, FLIPCLD, FLIP_PRCP, ZBAR, HORIZTS, HORIZDIF, READ_ZETUB, VARY_REALAX, FLIPBATHY, LONGBCFORM, FOAM, BNDUADV

Plume

BNDUADV, RIVERS, ANALYTIC_INIT, ANALYTIC_DEPTH, FLAT, NO_SCOORD, NOCOMPRESS

Appendix E: Logical units for input data

Unit	File description	Subroutine
13	Mean water depth	hset
12	ipexu mask	boset
55	Extra open boundary points	openbcpoints.dat
16	T and S initial conditions	bset
17	Met. variables for ECMWF forcing	interp_met1
21	Cloud data	interp_met1
89	Precipitation data	interp_met1
87	Shortwave radiation	interp_met1
20	air temp	interp_meso
17	Pressure	interp_meso
19	Humidity	interp_meso
18	Eastward wind	interp_meso
24	Northward wind	interp_meso
15	Precipitation	interp_meso

43	Tidal constituents and start time	tideset
14	Tidal constituent data	tideset
77	Elevation and current boundary data	boundaryUVZ
78	T and S boundary data	boundaryTS
29	Rivedr index	fwin
30	River flow data	fwin
31	River water temperature	fwin
32	Baltic inflow data	fwin
117	River SPM load	fwin
88	Time series output points	filope

Bibliography

- Allen, J. I., J. Blackford, J. T. Holt, R. Proctor, M. Ashworth, and J. Siddorn (2001), A highly spatially resolved ecosystem model for the North West European continental shelf, *SARSIA*, *86*, 423-440.
- Ashworth, M., J. T. Holt, and R. Proctor (2004), Optimization of the POLCOMS Hydrodynamic Code for Terascale High-Performance Computers, in *Proceedings of the 18th International Parallel & Distributed Processing Symposium*, 26th-30th April 2004, edited, Santa Fe, New Mexico.
- Ashworth, M., R. Proctor, J. T. Holt, J. I. Allen, and J. C. Blackford (2001), Coupled Marine Ecosystem Modelling on High Performance Computers, in *Developments in Teracomputing*, edited by W. Z. a. N. Kreitz, pp. 150-163.
- Cooper, W., C. Hinton, N. Ashton, A. Saulter, C. Morgan, R. Proctor, C. Bell, J. Holt, E. Young, and Q. Huggett (2006), UK Marine Renewable Energy Atlas, *ICE Journal of Maritime Engineering, In Press*.
- Holt, J. T., J. I. Allen, R. Procter, and F. Gilbert (2005), Error quantification of a high resolution coupled hydrodynamic-ecosystem coastal-ocean model: part 1 model overview and assessment of the hydrodynamics *Journal of Marine Systems*, *57*, 167-188.
- Holt, J. T., and I. D. James (1999), A simulation of the Southern North Sea in comparison with measurements from the North Sea Project. Part 1: Temperature, *Continental Shelf Research*, 19, 1087-1112.
- Holt, J. T., and I. D. James (1999b), A simulation of the Southern North Sea in comparison with measurements from the North Sea Project. Part 2: Suspended Particulate Matter, *Continental Shelf Research*, 19, 1617-1642.

- Holt, J. T., and I. D. James (2001), An s-coordinate density evolving model of the North West European Continental Shelf. Part 1 Model description and density structure, *Journal of Geophysical Research*, 106(C7), 14015-14034.
- Holt, J. T., and I. D. James (2006), An assessment of the fine scale-eddies in a high resolution model of the shelf seas west of Great Britain, *Ocean Modelling*, 13, 271-291.
- Holt, J. T., I. D. James, and J. E. Jones (2001), An s-coordinate density evolving model of the North West European Continental Shelf. Part 2 Seasonal currents and tides, *Journal of Geophysical Research*, *106*(*C7*), 14035-14053.
- Holt, J. T., and R. Proctor (2003), The role of advection in determining the temperature structure of the Irish Sea, *Journal of Physical Oceanography*, *33*, 2288-2306.
- Holt, J. T., R. Proctor, J. C. Blackford, J. I. Allen, and M. Ashworth (2004), Advective controls on primary production in the stratified western Irish Sea: an eddy-resolving model study, *Journal of Geophysical Research*, *109*, doi: 10.1029/2003JC001951.
- Lewis, K., J. I. Allen, A. Richardson, J, and J. T. Holt (2006), Error quantification of a high resolution coupled hydrodynamic-ecosystem coastal-ocean model: part3, Validation with Continuous Plankton Recorder data, *Journal of Marine Systems*, 63, 209-224.
- Proctor, R., J. T. Holt, J. I. Allen, and J. C. Blackford (2003), Nutrient fluxes and budgets for the North West European Shelf from a three-dimensional model, *Science of the Total Environment*, 313-316, 769-785.
- Proctor, R., J. T. Holt, T. R. Anderson, B. A. Kelly-Gerreyn, J. Blackford, and F. Gilbert (2002), Towards 3-D ecosystem modelling of the Irish Sea., paper presented at Estuarine and Coastal Modeling Proceedings of the 7th International Conference. American Society of Civil Engineers, 5-7 November 2001, St. Petersburg Florida.
- Siddorn, J. R., J. I. Allen, J. C. Blackford, F. J. Gilbert, J. T. Holt, M. W. Holt, J. P. Osborne, R. Procter, and D. K. Mills (2007), Modelling the hydrodynamics and ecosystem of the North-West European continental shelf for operational oceanography, *Journal of Marine Systems*, 65, 417-429.
- Young, E. F., and J. T. Holt (2007), Prediction and analysis of long-term variability of temperature and salinity in the Irish Sea, *Journal of Geophysical Research*, *112*, doi:10.1029/2005JC003386, 002007.