EE882 Experimento 3

Alunos:

Marcos Gabriel Barboza Dure Diaz RA: 221525 TURMA A

Questão 1 - Modulação

Nessa questão implementamos a simulação de um modulador AM por chaveamento utilizando o Simulink. São testadas algumas formas de onda modulante para diferentes índices de modulação.

Questão 1.1

Inicialmente é necessário calcular a fonte DC aditiva que garante cada índice de modulação pretendido. Para o caso do modulador por chaveamento, isso pode ser feito pela fórmula $\mbox{m} = \frac{|x(t)_{max}|}{E} \mbox{n}, na qual x(t) é o sinal modulante e E o nível DC. Assim, para os índices 10%, 50%, 100% e 150%, temos níveis DC de 5V, 1V, 0,5V e 0,33V, respectivamente.$

Modelo simulink para o Modulador

Modulação com índice 10%: onda modulante em amarelo, onda portadora em azul e onda modulada em vermelho

Sinal resultante AM para índice 10%

Sinal resultante AM para índice 50%

Sinal resultante AM para índice 100%

Sinal resultante AM para índice 150%

Modulação com índice 100%

Modulação com índice 150%

Em comparação à saída da multiplicação entre o sinal de informação e o sinal portador, no qual, para os casos de índice de modulação até 100%, a amplitude da da saída é sempre positiva, a saída do filtro passa-faixa, ou sinal resultante AM, apresenta amplitude negativa.

Observamos que o aumento do índice de modulação tem como principal resultado reduzir a amplitude do sinal de saída (e, por consequência, sua energia). Além disso, quando utilizamos um índice maior que 100%, ocorre uma alteração no formato da onda modulante. Esse comportamento é resultado de a onda modulante apresentar amplitude negativa.

Espectro com índice 10%

Espectro com índice 50%

Espectro com índice 100%

Espectro com índice 150%

Os espectros resultantes têm formato esperado: um pico de magnitude na frequência da portadora e mais dois picos de magnitude menor. O aumento do índice de modulação reduz a diferença de magnitude entre o pico central e os secundários, além de reduzir todas as magnitudes .

Em seguida calculamos os índices de modulação por meio de medições nos sinais resultantes AM.

Exemplo de medição de amplitude com os cursores

Para os índices teóricos m = 0,1, m = 0,5, m = 1, encontramos por medição m = 0,0905, m = 0,459, m = 0,9084, respectivamente. Já para o caso sobremodulado não foi possível medir o índice no tempo, então ele foi medido no espectro por meio da seguinte fórmula $m = \frac{2^m n}{2}$ magnitude do segundo pico} magnitude do primeiro pico}, encontrando m = 1,28. Os índices calculados são próximos aos teóricos (com exceção do caso sobremodulado).

Medição do índice pelo espectro

Repetimos as simulações utilizando a terceira harmônica (3 MHz) como frequência de passagem no FPF.

Sinal resultante AM para índice 10% (terceira harmònica)

Sinal resultante AM para índice 50% (terceira harmònica)

Sinal resultante AM para índice 100% (terceira harmònica)

Sinal resultante AM para índice 150% (terceira harmònica)

Espectro com índice 10% (terceira harmònica)

Espectro com índice 50% (terceira harmònica)

Espectro com índice 100% (terceira harmònica)

Espectro com índice 150% (terceira harmònica)

No tempo, a filtragem pela terceira harmônica resultou numa energia menor para o sinal com m=0,1 e amplitudes maiores para os outros índices, comportamento inverso da filtragem pela primeira harmônica.

Na frequência, como esperado, os picos de magnitude estão centrados na frequência da terceira harmônica.

Questão 1.2

Neste item utilizamos como sinal modulante uma onda quadrada de média 0,5V e frequência 10k Hz.

Sinal resultante AM

Espectro da resultante AM

Observamos, no tempo, a forma aproximada do sinal modulante, no entanto com transições mais lentas entre nível baixo e alto. Na frequência observamos a presença de picos adicionais de magnitude.

Questão 1.3

Neste item utilizamos como sinal modulante uma onda chirp de 100 Hz a 4 kHz.

Sinal resultante AM

Espectro da resultante AM

Neste item utilizamos como sinal modulante uma onda chirp de 100 Hz a 4 kHz.

No tempo, observamos o comportamento esperado da modulação da onda chirp.

Na frequência, observamos que o espectro da onda chirp está centrado na frequência da onda portadora e apresenta um pico também nessa frequência.

Zoom no espectro da resultante AM

Questão 2 - Demodulação Não-Coerente

Questão 2.1

O detector de envoltória pode ser descrito aproximadamente por um retificador de onda combinado com um filtro passa-baixas. Para que a envoltória do sinal (ou seja, a forma de onda modulante) seja adequadamente recuperada, o período de descarregamento do capacitor deve ser menor que o período da onda portadora e maior que a banda do sinal modulador.

Assim, para que a demodulação apresente resquícios da onda original, precisamos que $RC \le \frac{1}{f_c}$ ou $C \le \frac{1}{f_c}$. Nesse caso a faixa de capacitância será $C \le 2^{-10} F$.

Para que a demodulação não acompanhe as variações da informação, precisamos que $RC = \frac{1}{W}$ sou $C = \frac{1}{WR}$. Nesse caso a faixa de capacitância será $C = 5^-8 F$.

Para que a demodulação seja correta, precisamos que do oposto dos dois casos anteriores, isto é 2^-10 F =< C <= 5^-8 F.

Questão 2.2

Foi montado o diagrama de blocos combinando o modulador e o demodulador da questão anterior. Os parâmetros utilizados foram os indicados no relatório, salvo o tempo de simulação, que precisou ser atualizado para 3e-1 para que o bloco Spectrum Analyzer tivesse amostras suficientes.

Foram simulados os três casos da questão anterior variando a frequência de corte do filtro passa-baixas.

Para o caso de desempenho adequado (fc = 500 kHz), observamos que tanto o formato da onda modulante quanto seu espectro foram recuperados com sucesso, apenas com leve efeito Gibbs no tempo e redução significativa de energia do sinal (amplitudes recuperadas mais baixas).

Para o caso de resquícios da onda moduladora (fc = 2 MHz), ou seja, frequência de corte muito alta, observamos o formato da onda modulante e a presença de frequências mais altas. Na frequência, a presença de frequências mais altas é refletida na maior distribuição de magnitude entre os picos das harmônicas.

Para o caso de não acompanhar as mudanças da informação (fc = 1 kHz), ou seja, frequência de corte muito baixa, verificamos no tempo que a resultante da demodulação é uma onda senoidal de frequência igual a frequência de oscilação da onda modulante, mas sem seu formato característico. Consequentemente, na frequência, observamos somente um pico de amplitude em 500Hz.

Modelo simulink para o Modulador

Sinal modulante (entrada)

Espectro do sinal modulante (entrada)

Saída do demodulador com frequência de corte 500kHz

Espectro da saída do demodulador com frequência de corte 500kHz

Saída do demodulador com frequência de corte 2 MHz

Espectro da saída do demodulador com frequência de corte 2 MHz

Saída do demodulador com frequência de corte 1 kHz

Espectro da saída do demodulador com frequência de corte 1 kHz

Questão 2.3

Neste item utilizamos a onda chirp com frequência de 100 Hz até 4 kHz como entrada. Simulamos o modulador com diferentes índices de modulação.

Sinal de entrada

Espectro do sinal de entrada

Saída do demodulador com m = 10%

Espectro da saída do demodulador com m = 10%

Saída do demodulador com m = 50%

Espectro da saída do demodulador com m = 50%

Saída do demodulador com m = 150%

Espectro da saída do demodulador com m = 150%

Os resultados com os índices 10% e 50% foram satisfatórios, apresentando comportamento no tempo e na frequência com a mesma forma da entrada, ainda que com magnitude menor. Podemos destacar que para 50% a saída apresenta amplitude mais próxima da original.

A saída para índice 150%, sobremodulação, como esperado, apresentou distorções, tanto no tempo quanto na frequência.

Questão 2.4

Ouvimos o som do sinal de entrada. Ele inicia com tons graves e termina com agudos, como esperado numa onda que aumenta de frequência. A saída do demodulador, para o índice de modulação de 10%, resulta no mesmo som, com volume menor. Já para 50%, a saída apresenta volume mais próximo da original. Para a sobremodulação, índice de 150%, a saída de áudio apresenta somente alguns tons graves, sem a gradação esperada.

Modelo simulink

Questão 3 - Demodulação Coerente

Questão 3.1.1 e 3.1.2

Agora experimentamos enviar uma onda modulante com nível DC nulo - o que, pela matemática dos itens anteriores, corresponde a um índice de modulação infinito. Observamos tanto a modulação quanto a demodulação não-coerente.

Modulação com nível DC = 0

Saída da modulação AM

Espectro da saída da modulação AM

Saída da demodulação

Espectro da saída da demodulação

Observamos que a saída do modulador apresenta só os ciclos positivos da onda, como se ela tivesse sido retificada. O espectro apresenta dois picos em torno da frequência da portadora (1 MHz), mas não a frequência da modulante (10 kHz).

Na demodulação é observado a forma da onda modulante retificada, apresentando um pico no dobro da frequência original (20 kHz).

Questão 3.2

Em seguida, implementamos o demodulador coerente.

Espectro da saída da demodulação

Na saída da demodulação é possível observar que a onda foi recuperada com sucesso, tanto em sua forma quanto em espectro (pico em 10 kHz). Uma vantagem da demodulação coerente é que ela pode operar em moduladores com nível DC nulo, o que representa uma economia de potência em sistemas de comunicação.

Questão 3.3

No item 3.3, utilizamos a onda chirp já utilizada como entrada. Também escutamos o som da onda na saída do demodulador.

Saída da demodulação

Espectro da saída da demodulação

Ainda que o sinal no tempo seja o esperado, o sinal que ouvimos foi bem diferente do esperado. O espectro da onda chirp foi diferente do esperado, apresentando um degrau em vez das parábolas observadas no espectro da onda modulante.

Questão 3.4

Neste item, utilizamos a configuração da Questão 3.2 com defasagem no sinal de referência. Calculamos o Phase Delay (em segundos) para cada defasagem em radianos por meio da fórmula , o\$\$ defasagem = \frac{\theta T}{2\pi} \$\$, obtendo 1,25*10^-5; 2,5*10^-5; 5*10^-5 para theta pi/4, pi/2 e pi, respectivamente.

Os resultados para theta = 0 são os mesmos da Questão 3.2, por isso não foram repetidos.

Saída da demodulação para theta = pi/4

Espectro da saída da demodulação para theta = pi/4

Saída da demodulação para theta = pi/2

Espectro da saída da demodulação para theta = pi/2

Saída da demodulação para theta = pi

Espectro da saída da demodulação para theta = pi

A onda foi recuperada com sucesso em todos os casos. Os espectros são muito parecidos, com um pico na frequência da modulante. A única diferença que percebemos no tempo é uma alteração da fase (atraso) do sinal no tempo.

Questão 4 - Emissoras AM

Na questão 4, montamos 2 emissoras AM que compartilham um canal e um receptor AM, sintonizando o receptor para cada emissora.

No entanto, para facilitar a simulação, foi usado como portadora uma onda quadrada de 1Vpp somada a um nível DC de 0,5V, de modo que fosse possível especificar a frequência diretamente.

Observamos que a banda do sinal de entrada tem aproximadamente 5 kHz (o filtro passa baixas na entrada limita a banda nessa faixa). Assim, considerando a frequência de portadora média de 1000 kHz, a frequência escolhida do filtro passa-baixas na demodulação foi de 250 kHz.

As músicas escolhidas foram o tema do Super Mario Bros e o tema de The Legend of Zelda.

A modulação teve sucesso da música do Mario teve sucesso, com conferimos por áudio.

Como o tempo de simulação estava muito grande, dividimos as frequências por 10 e fizemos todos os ajustes necessários nos filtros, de modo a reduzir o passo e o tempo de simulação. Assim, as imagens apresentadas são desse caso.

Ouvindo as saídas, verificamos que a sintonização com a música do Mario(105kHz, filtro FPF de 102kHz a 108kHz) teve muito sucesso, de modo que foi filtrada quase que completamente a outra música. Na sintonização com a música de Zelda (95kHz, filtro FPF de 92kHz a 98kHz), foi possível ouvir baixo o sinal da música do Mario.

Diagrama Simulink

Modulação para música "Mario"

Modulação para música "Zelda"

Espectro da música "Mario"

Espectro da música "Zelda"

Sinal no canal

Espectro do sinal no canal

Saída para o FPF sintonizado em 105 kHz

Saída final sintonizada em 105 kHz

Saída para o FPF sintonizado em 95 kHz

Espectro da saída para o FPF sintonizado em 95 kHz

Saída final sintonizada em 95 kHz

Espectro da saída final sintonizada em 95 kHz