*When relations are otherwise unnamed, I arbitrarily called them all "F" in order to display their schema in addition to the table.

```
1. R natural join S = F(R.A,R.B,R.C,S.D) = \pi R.A, R.B, R.C, S.D (\sigma R.B = S.B \wedge R.C = S.C (R(A,B,C,D) × S(B,C,D)))

F

R.A R.B R.C S.D

6 4 3 9

3 5 1 6
```

2. R theta-join S = F (R.A, R.B, S.B, S.C, S.D) =
$$\sigma$$
 R.B = S.B (R(A,B) × S(B,C,D))
F
R.A R.B S.B S.C S.D
10 t t 8 9

3. Given that natural-join for the described relations R (with r unique tuples within R) and S (with s unique tuples within S) can be expanded:

```
R natural join S = \pi R.A, R.B, S.C (\sigma R.B = S.B ( R(A,B) × S(B,C) ))
```

We will have to consider the resulting relation from the selection statement of the cross product (theta-join) of these sets. Because the tuples within S and R are respectively unique within S and R, each value in the B column can only have exactly one match within $R \times S$. Given that a tuple can also be defined as one row (or record) in any given relation, we know that for every matching value between the two different B columns, one tuple will be included in the natural-join of R and S. As stated before, this is equivalent to as many unique tuples there are in each B column of each set, which is r or s in R or S respectively.

Thus, the number of tuples in the final relation is in the range from 0 (where there are no matching values between R.B and S.B) to t = r or t = s depending on which value, s or r, is larger. For example, if s < r, then t = s because we know there can then only be s possible tuple combination which could overlap in the B columns.

In the case of R natural-join R, however, there would be no overlapping values between R.B and S.B because all values of the set R must be unique within R. Therefore, t = 0 in all instances of R.

```
4. F(R.B, R.A) = π B, A ( R )
F
R.B R.A
2 1
2 4
5 4
5 2
```

5. RUS = F(R.A, R.B, R.C)			
R.A	R.B	R.C	
a	b	С	
d	b	C	
d	e	f	
b	e	C	
a	b	f	
b	Р	д	

 $R \cap S = F(R.A, R.B, R.C)$

R.A R.B R.C a b c d e f b e c

R-S = F(R.A, R.B, R.C)

R.A R.B R.C d b c a b f

S-R = F(R.A, R.B, R.C) S.A S.B S.C b e d

I, Justin Anthony Timberlake, declare that I have completed this assignment completely and entirely on my own, without any consultation with others. I understand that any breach of the UAB Academic Honor Code may result in severe penalties.