

Transformer Multi-Modal Deep Learning • for Sensing assisted Beam Prediction

ITU AI/ML in 5G Grand Challenge 2022

Qiyang Zhao, Yu Tian, Zine Kherroubi, Fouzi Boukhalfa* Thanks to Kebin Wu

^{*}Team members contributed equally to this work.

Outline

- Problem Statement
- Multi-Modal Sensing Data Preprocessing
- Deep Learning for Beam Prediction
- Experimental Results and Discussions
- Conclusions and Future Works

Problem Statement

- Communications beyond 5G
 - Exploiting high frequency with narrow beams
 - Boost system capacity and increase SINR
 - Challenges in mobility and beam management
 - Large propagation loss and fast changing channel
 - Require ultra-high reliability and low energy
- Sensing assisted beam prediction
 - Integrated sensing and communications for 6G
 - Sensing in network: camera, LiDAR, radar, GPS
 - Improve beam prediction by multi-modal sensors
 - Information of mobility, blockage, reflection

Problem Statement

- Multi-modal sensing data in different scenarios
 - Measured in different time, location, sampling rate
 - Multiple static and mobile objects without labels
 - Generalization to unseen scenario than training
 - Misaligned viewing angles of camera, LiDAR, GPS
 - Fusing 3D LiDAR, radar, 2D camera, 1D GPS data
- Distance base accuracy of top 3 beams
 - DBA-Score: $Y_K = 1 \frac{1}{N} \sum_{n=1}^{N} \min_{1 \le k \le K} \min \left(\frac{|\hat{y}_{n,k} y_n|}{\Delta} \right)$
 - Distance to ground-truth top *k* beam (by receive power)
 - Adjacent beam with high score give better connection

Sensing Data Preprocessing

- Camera data:
 - Difficult to recognize targeted user from other mobile agents and backgrounds
 - Enhancing the brightness
 - MIRNet: lighten night scenarios 33, 34
 - Semantic segmentation
 - PDNet: lighten vehicle from background
 - Background masking
 - Blackout background and retain street
 - Guide deep learning model to focus on regions and objects of interests

Sensing Data Preprocessing

- LiDAR data:
 - Filtering backgrounds
 - Remove static points by moving average calculation cross the dataset
 - Bird Eye View projection
 - Discretize region of interest into grid cells
 - Encode height and intensity per maximum value in each cell, project to 2D channels
 - Produce image-like representation that preserve structure with less computation
 - Custom Field of View
 - Crop BEV to align FoV with camera

Sensing Data Preprocessing

- Radar data:
 - Perform 2D Fourier transform to produce range-angle and range-velocity maps
 - Produce reliable speed information without impacts from the environments
- GPS data:
 - Min-max normalization
 - Produce UE relative coordinates $(\Delta x, \Delta y)$ with refer to BS and divide maximum value
 - Calibrated angle normalization
 - Position zero-degree coordinate to the central pixel of images in all scenarios

Deep Learning for Beam Prediction

Deep Learning for Beam Prediction

- Soft beam index
 - Change one-hot best beam index to Gaussian distribution with cutoff at 5
 - Soften the cross-entropy loss function to match the DBA score function
- Foal loss
 - Apply modulating factor to reduce loss contribution from easy examples
 - Solve data imbalance between scenarios by focus training on hard examples
- Data augmentation
 - Change image brightness, contrast, gamma, hue, saturation, sharpness, blurring
 - Add random noise to LiDAR, radar and random down sampling LiDAR data

Deep Learning for Beam Prediction

- Cosine decay schedular
 - Start training with high learning rate, decrease to minimum then restart
 - Stabilize convergence after long run and preserve stochastic optimization
- Exponential moving average
 - Maintain parameter values during training and store EMA of last n steps
 - Improve model robustness by avoiding fluctuation after long training

Experimental Results

- Single 5th timestamp
 - High score in trained scenarios
 - Fine tune improves generalization
- Multiple timestamps
 - Improve score cross scenarios with imbalanced data using focal loss
 - GPS angle calibration contributes to improvement in unseen scenario
 - EMA largely improves score in all scenarios by making model robust
 - LiDAR FoV calibration contribute to best score by alignment of scenes

TABLE I: DBA score on test dataset of developed schemes

Test	Base	Enhance	Overall	31	32	33	34
A		Timestamp 5 Image enhance Radar angle	0.4618	0.1147	0.6864	0.7848	0.8188
В	A	Fine tune 31	0.5891	0.4718	0.6222	0.6933	0.7328
С	A	Timestamp 1 to 5 Radar velocity Focal loss Cosine decay LR Soft beam index	0.5989	0.4509	0.6852	0.7538	0.7369
D	С	GPS angle norm Data augment	0.5997	0.4713	0.7000	0.7424	0.6997
E	D	EMA	0.6325	0.4760	0.7123	0.7819	0.7985
F	D	LiDAR FoV	0.6671	0.5331	0.7173	0.7910	0.8209

Experimental Results

- Background reduction
 - Reduced score when filter, mask and segment on LiDAR and image
 - Visionary information benefit beam predicting by learning propagation environment and relative position
 - EMA enhance model robustness
- Convergence performance
 - DBA score converges at 80 epochs, both training and validation datasets in all the 4 scenarios

TABLE II: DBA score on test dataset of experimental preprocessing

Te	est Base	Enhance	Overall	31	32	33	34
(3 F	LiDAR filter	0.6398	0.4856	0.7000	0.7914	0.8061
F	H G	EMA	0.6458	0.5347	0.6951	0.7505	0.7679
I	* F	Image segment Image mask	0.6298	0.4709	0.7284	0.7810	0.7684
J	* I	EMA	0.6433	0.4947	0.7506	0.7890	0.7837

^{*} No image enhancement in scenario 33 and 34.

Conclusions and future works

- Innovative contribution
 - Transformer multi-modal learning framework for sensing aid communication
 - Novel sensor data preprocessing and training method for communications
 - Improve beam prediction accuracy to 66.71%, and 55.31% in new scenario
- Future works
 - Generalizing framework to wider communication, sensing, control applications
 - Enhance generalization with semi-supervise learning and contrastive learning

Thank you

