Problema 13. (a) Demostreu que la contracció d'un ideal primer és un ideal primer.

- (b) Considereu la injecció de \mathbb{Z} en $\mathbb{Z}[i]$. Proveu que l'extensió de l'ideal (2) no és un ideal primer.
- (c) Siguin A un anell i \mathfrak{p} un ideal primer. Proveu que l'extensió de \mathfrak{p} en A[x] és un ideal primer.

Solució. (a) Siguin: $f: A_1 \longrightarrow A_2$ un homomorfisme d'anells $I \subseteq A_2$ un ideal primer.

Siguin $x, y \in A_1$ tals que $xy \in f^{-1}(I)$ llavors $f(xy) \in I$ d'on $f(xy) = f(x)f(y) \in I$ i, per tant, $f(x) \in I$ ó $f(y) \in I$

Suposem que $f(x) \in I$. En el cas que $f(y) \in I$ el raonament és anàleg.

Aleshores tenim que

$$x \in f^{-1}(f(x)) \subseteq f^{-1}(I)$$
 o sigui $x \in f^{-1}(I)$

(b) Sigui

$$\lambda: \mathbb{Z} \longrightarrow \mathbb{Z}[i]$$
$$x \longmapsto x + 0i$$

.

Volem veure que $(2)^e$ no és un ideal primer de $\mathbb{Z}[i]$. Veiem que la extensió de (2) són els elements de la forma 2(a+bi) amb $a,b\in\mathbb{Z}$, ja que els elements de $\mathbb{Z}[i]$ es redueixen a "nombres complexos de coeficients enters".

Donats $x_1 = 3 + i$; $x_2 = 3 + i$, és evident que

 $x_1,x_2\notin(2)^e$ però $x_1x_2=8+6i=2(4+3i)\in(2)^e$; per tant, l'extensió de (2) no és un ideal primer.

(c) Nota: Utilitzarem que si A és un anell i I és un ideal aleshores es compleix la seguent propietat: A/I és un domini d'integritat si, i només si I és un ideal primer.

Considerem

$$f: A \longrightarrow A[x]$$

$$p \longmapsto p$$

.

L'extensió de \mathfrak{p} per f en A[x] és $\mathfrak{p}[x]$, ja que \mathfrak{p} és un ideal. Si donat aquest ideal $\mathfrak{p}[x]$ fem l'anell quocient $A[x]/\mathfrak{p}[x]$ i, pel que s'ha demostrat a l'exercici 11.b, tenim que $A[x]/\mathfrak{p}[x]$ és isomorf a l'anell de polinomis amb coeficients de A/\mathfrak{p} .

Sabem que \mathfrak{p} és un ideal primer i, per tant, A/\mathfrak{p} és un domini d'integritat. Si A/\mathfrak{p} és un domini d'integritat, aleshores $(A/\mathfrak{p})[x]$ també ho és i, en definitiva, $A[x]/\mathfrak{p}[x]$ també ho és ja que són isomorfs. Aleshores, $\mathfrak{p}[x] = \mathfrak{p}^e$ és un ideal primer.