

AXE5-Eagle User Guide

Important Note:

This document is still under development. All specifications, procedures, and processes described in this document are subject to change without prior notice.

Please read the legal disclaimer at the end of this document.

Revision 0.3

Commented [SB1]: Do not forget to update the number here and in the Revision History. Also update the month in footer and the Table of Contents

Table of Contents

Chapter	1 - AXE5-Eagle Development Kit	5
1.1	About Arrow AXE5-Eagle Development Kit	5
1.2	Useful Links	5
1.3	Getting Help	6
1.4	Documentation Guidelines	6
Chapter	2 - Introduction to the AXE5-Eagle Board	7
2.1	Layout and Components	7
2.2	Block Diagram	8
2.3	Board Features	8
2.4	Ordering Information	11
2.5	Box Contents	11
Chapter	3 - Development Board Setup	
3.1	System Power	12
3.2	DIP Switch Settings	13
3.3	Board Status Elements	15
Chapter	4 - Connections and Peripherals of the AXE5-Eagle Development Kit	16
4.1	Clock Circuitry	16
4.2	I ² C Structure	18
4.2.	Power and System Control	20
4.2.	2 I ² C MUX and FPGA Peripherals	21
4.3	Peripherals Connected to the Agilex 5 SoC FPGA	22
4.3.	l Configuration	22
4.3	3.1.1 JTAG Chain Configuration	22
4.	3.1.2 QSPI Configuration Flash Memory	23
4.3.	2 Memory Interfaces	24
4.3	3.2.1 LPDDR4 memory	24
4.:	3.2.2 QSPI NOR Flash Memory	27
4.:	3.2.3 MicroSD Card	28
4.3.	3 Data Communication Interfaces	29
4.	3.3.1 10/100/1000 Ethernet PHY	29
4.	3.3.2 SFP+ Interfaces	30
4.	3.3.3 HDMI Transmitter	32
4.	3.3.4 PCI Express Gen4	33
4.	3.3.5 USB 3.2 Gen1	34
4.	3.3.6 USB to UART Bridge	36

WDW

4.3.4	Expansion Connectors	36
4.3.4.1	FPGA Mezzanine Card Plus Interface (FMC+)	
4.3.4.2	CRUVI High-Speed Connectors	
4.3.4.3	CRUVI Low-Speed Connectors	
4.3.4.4	MIPI D-PHY	
4.3.5	Miscellaneous Interfaces	
4.3.5.1	Analog Interface	
4.3.5.2	User-defined LEDs	
4.3.5.2	User Buttons	
4.4 FOW	er Distribution System Power Tree	
4.4.1	Power Sequence	
4.4.2	Thermal Protection	
	oftware and Driver Installation	
-	alling Quartus Prime Software	
	alling Arrow USB Programmer2	
	nse	
	etting Started with AXE5-Eagle Board	
-	ating a new Chroma Cycle Project with AXE5-Eagle	
	ding a Blinky Project with AXE5-Eagle	
6.2.1	Block Diagram	
6.2.2	Components of the Design	
6.2.3	Catalog IP	
6.2.4	Analysis and Synthesis	
6.2.5	Adding Timing Constraints	
6.2.6	Pinning Assignments	
6.2.7	Compiling the Design	
6.2.8	Reading the Compilation Report	
Chapter 7 - C	onfiguring the AXE5-Eagle Board	
	figure the FPGA in JTAG mode	
	I flash memory programming	
7.2.1	Programming File generation	
7.2.2	Device Programming	
7.3 Test	ing the Design	
	ommon Issues and Fixes	
Chapter 9 - A	ppendix	70

AXE-5 Eagle	Development	Kit
User Guide		

WUV

9.1	Revision History	70
9.2	Legal Disclaimer	71

Chapter 1 - AXE5-Eagle Development Kit

1.1 About Arrow AXE5-Eagle Development Kit

The AXE5-Eagle Development Kit is a general-purpose, full-featured board in PCIe form factor delivering a development platform for evaluating the features of the Intel Agilex® 5 SoC FPGA. It supports various connector interfaces for transceivers, FPGA, and Hard Processor System (HPS) workloads providing a complete design environment to speed up the development.

The evaluation board is based on Intel Agilex® 5 E-Series SoC FPGA which provides power-efficient performance and smaller form factors for midrange FPGA applications. This series is manufactured using Intel 7 technology and offers advanced features such as a second-generation Intel® Hyperflex™ FPGA architecture, high-speed transceivers support up to 28.1 Gbps (17 Gbps is available on the development board), PCIe 4.0, and a processor system consisting of dual Arm Cortex-A76 cores and dual Arm Cortex-A55 cores. The capabilities and cutting-edge functionality of Intel Agilex® 5 are suitable for a broad range of applications that require high performance, lower power consumption, smaller form factor, and lower logic densities.

The AXE5-Eagle board is equipped with HPS-enabled hardware features, LPDDR4 memory, 2 Time-Sensitive Networking (TSN) capable 10/100/1000 Mbps Ethernet ports, 2 ports SFP+ cage for up to 16 Gbps, PCIe 4.0 x4 edge connector, 4 ports USB 3.2 Gen1, FMC+ connector, HDMI 1.4, microSD card, flash memory, CRUVI HS and LS interfaces.

The AXE5-Eagle Development Kit contains all the tools needed to use the board in conjunction with a computer that runs a 64-bit Linux or Microsoft Windows 10, Windows 11, or later operating system.

Commented [SB2]: Quartus OS support check

1.2 Useful Links

A set of useful links that can be used to get relevant information about the AXE5-Eagle development kit or the Agilex 5 FPGA and FPGA SoC.

- AXE5-Eagle at Arrow Shop
- AXE5-Eagle at Trenz Electronic Shop
- Intel Agilex 5 Webpage
- AXE5-Eagle Wiki Page

Commented [SB3]: Link must be added

Commented [SB4]: Link must be added

Commented [SB5]: Link must be added

www.arrow.com Page | 5 February 2024

1.3 Getting Help

Here are the addresses where you can get help if you encounter any problems:

• Arrow Electronics

In Person Arrow EMEA

+ 49 (0) 6102 5030 0

Online

https://arrow.com

Trenz Electronic GmbH

https://www.trenz-electronic.de/en/

1.4 Documentation Guidelines

The meaning of the icon in this User Guide as follow:

This icon signposts warnings and important items that must be taken care of and needs to be aware of when operating the AXE5-Eagle Development Kit.

Chapter 2 - Introduction to the AXE5-Eagle Board

2.1 Layout and Components

Figure 1 and Figure 2 show the top and the bottom view of the board. It depicts the layout of the board and indicates the location of the various connectors and key components.

Figure 1 – AXE5-Eagle Board (top view)

Figure 2 – AXE5-Eagle Board (bottom view)

2.2 Block Diagram

Figure 3 represents the block diagram of the board. All the connections are established through the Agilex SoC FPGA device to provide maximum flexibility for users. Users can configure the FPGA to implement any system design.

A complete set of schematics and other board relevant files are available at Trenz Electronic

Figure 3 – AXE5-Eagle Block Diagram

2.3 Board Features

The following features are available on the AXE5-Eagle board:

System

FPGA Device:

- Intel Agilex® 5 E-Series SoC FPGA device:
 - A5ED065BB32AE4SR0 (Engineering Sample)
 - A5ED043BB32AE4S (Production FPGA)

Features of the SoC FPGAs on the AXE5-Eagle Board:

Commented [SB6]: Link must be added

	Device		
Resources	A5ED065B ('ES' version)	A5ED043B	
Logic Elements (kLE)	656	434	
Logic core architecture:	Second generation Intel Hy	oerflex™ FPGA architecture	
M20K Memory (Mb)	31.46	20.51	
18x19 Multipliers	1,692	1,128	
LVDS data rate	1.6 Gbps		
MIPI D-PHY data rate	2.5 (Sbps	
Processor	Dual core Arm Cortex-A76 up to 1.4 GHz Dual core Arm Cortex-A55 up to 1.25 GHz		
Cache size	Shared: 2 MB L3 Cortex-A76: 64 KB L1, 256 KB L2 Cortex-A55: 32 KB L1, 128 KB L2		
Transceiver data rate	17.16 Gbps		
Process technology:	Intel 7		
Package	1591-pin VPBGA		

Board Management System:

- Power Monitor
- Temperature Monitor
- Fan Control
- Configurable Clock Source

FPGA Configuration and Debug

- On-board Arrow USB Programmer2 (micro-USB type B connector) JTAG mode
- 1 Gbit QSPI Flash AS x4 Configuration scheme
- Partial reconfiguration support
- Support for Configuration via Protocol (CvP) through the PCI Express interface

FPGA Side

Memory Devices

- 8 Gbit 2133 MHz LPDDR4, 32 bits
- 1 Gbit QSPI Flash memory
- 2x 2 kbit serial MAC-Address EEPROMs
- 128 kbit EEPROM

Communication and Connectivity

- VITA 57.4 FMC+ Connector with 8 serial transceivers (8 RX and 8 TX)
- PCle Gen4 x4 Edge connector
- 2× SFP+ connectors with up to 16 Gbps data rate
- 10/100/1000 Mbps Ethernet with TSN support via RJ45 connector
- HDMI 1.4 Transmitter with HDMI connector
- 2× CRUVI HS Connectors with MIPI D-PHY v2.5 interface
- 2× CRUVI LS Connectors
- 8-Channel, 12-Bit configurable ADC/DAC

HPS Side

Memory Devices

- 8 Gbit 2133 MHz LPDDR4, 32 bits
- microSD Card socket

Communication and Connectivity

- 10/100/1000 Mbps Ethernet with TSN support via RJ45 connector
- 4× USB-A 3.2 Gen1 Connectors
- USB to UART Bridge with Micro-USB Connector

Others

Buttons and Indicators

- 4× user RGB LEDs
- 2× green user LEDs
- 3× board status LEDs
- 7× push buttons
- 3× 4POS DIP switches

Power

- 2×3 PCIe auxiliary power input connector for PCIe add-in operation
- DC Jack power input connector for standalone operation
- Recommended external supply voltage range: +12.0 V, 6.25 A (nominal)
- Recommended I/O signal voltage ranges:

 $\begin{array}{lll} - & FMC+ interface: & 0 \text{ to } +1.3 \text{ V}^1 \\ - & CRUVI \text{ HS interface:} & 0 \text{ to } +1.3 \text{ V}^1 \\ - & CRUVI \text{ LS interface:} & 0 \text{ to } +3.3 \text{ V} \\ - & ADC \text{ analog input:} & 0 \text{ to } +2.5 \text{ V} \\ - & ADC \text{ digital input:} & 0 \text{ to } +3.3 \text{ V} \end{array}$

Mechanical

- PCIe standard form factor (full height, 3/4 length)
- 165mm × 241 mm board size
- Air-cooled heatsink and fan assembly

Commented [SB7]: ID3: Slot or Card too?

¹ These values represent maximums. The VCCIO voltages are adjustable via DIP switches, thus their actual values might vary depending on the exact configuration.

2.4 Ordering Information

This chapter provides information on the different versions of the development kit, including their corresponding ordering codes and the associated FPGA configurations.

Development Kit Version	Ordering Code	Core Device Part Number
ES version	AXE5-Eagle-ES	A5ED065BB32AE4SR0
Production	AXE5-Eagle	A5ED043BB32AE4S

2.5 Box Contents

The AXE5-Eagle Development Kit includes the following hardware:

- AXE5-Eagle development board
- Power supply
- Arrow USB Programmer2
- Micro USB cable

Commented [SB8]: ID6: Have to check

Chapter 3 - Development Board Setup

3.1 System Power

This development kit is designed to operate in two modes:

• Standalone evaluation mode

In standalone evaluation mode, the board must be powered by the provided power supply connected to the power connector J29 of the board.

PCIe add-in card mode

When operating the card as a PCIe endpoint in a PCIe-Compliant System, the board can be powered in two ways:

- Powered by the PCIe slot: when the board is inserted into a PCI Express slot on a motherboard, it can be sourced entirely from the host. It eliminates the need for additional external power connections, relying solely on the power supply provided by the PCIe slot.
- ➤ ATX Power Supply: insert the card into an available PCIe slot and connect a 2×3 pin PCIe power cable from the ATX Power Supply System to the power connector J27 of the board respectively. This power supply provides the entire power to the board without the need to obtain power from the PCIe slot.

The power source selection occurs automatically on the AXE5-Eagle board. The external power connections, J27 and J29, take precedence over the PCIe power source without the need for user intervention or manual switching.

For detailed information about the AXE5-Eagle power system, see the <u>Power Distribution System</u> section.

Caution: Please note that the J27 and J29 input power supplies on the board are not electrically isolated from one another. It is crucial to operate the board using only one external power connection mode at a time. Using both simultaneously can result in unstable performance and may cause irreversible damage to the development kit, power supplies and even the surrounding environment.

Note: Before the AXE5-Eagle board is powered through the PCIe slot, ensure that the host PCIe system is able to deliver a minimum of 75 W on the 12 V power rail. If this requirement is not met, the board should be powered using the ATX Power Supply System.

3.2 DIP Switch Settings

There are switches on the AXE5-eagle development kit that affect the basic functionality of the board. These switches offer the ability to modify configurations and peripheral accesses and adjust circuit settings.

Before utilizing the kit, it is essential to review and verify the switch configurations. If it is necessary, configure them appropriately to align with the specific design requirements.

Figure 4 – Switch Locations

S7 DIP Switch Settings

Switch	Board Label	Function	Default Position		
1	MSEL1	Configuration scheme setting • MSEL [2], MSEL [1] = [0,0] QSPI AS Fast mode • MSEL [2], MSEL [1] = [0,1] QSPI AS Normal mode	<tbd></tbd>		
2	MSEL2	 MSEL [2], MSEL [1] = [1,0] Not supported mode MSEL [2], MSEL [1] = [1,1] JTAG only mode MSEL [0] is tied to V_{CC} 	<tbd></tbd>		
Continued on the next page					

Commented [SB9]: ID7: Default switch setup?

Commented [SB10]: ID7: Default switch setup?

www.arrow.com Page | 13 February 2024

Switch	Board Label	Function	Default Position
3	SDM_RESTORE	Direct to Factory input when RSU is used.OFF: Load Application ImageON: Load Factory Image	<tbd></tbd>
4	CRUVI_VADJ	IO Voltage select for CRUVI-HS Interfaces ON: VIO_CRUVI = 1.3 V OFF: VIO_CRUVI = 1.2 V	<tbd></tbd>

S10 DIP Switch Settings

Switch	Board Label	Function	Default Position
1	EE_WP	Write-Protect of EEPROM memory ON: Read/Write operations are enabled OFF: Only Read operations are enabled	<tbd></tbd>
2	I2C_DCDC_EN	Enable I ² C communication with the Power Supply System ON: Disable OFF: Enable	<tbd></tbd>
3	I2C_EN	Enable I ² C communication with the System Control's components ON: Disable OFF: Enable	<tbd></tbd>
4	FMC_ADJ_SEL	IO Voltage select for FMC+ Interface ON: FMC_ADJ = 1.3 V OFF: FMC_ADJ = 1.2 V	<tbd></tbd>

S13 DIP Switch Settings

The S13 DIP switch is a user-configurable input, allowing for various static variable inputs to be defined by the user for custom application configurations.

	Switch	Board Label	FPGA Pin No.	Function	I/O Std	Default Position
	1	HPS_SW0	PIN_N134	HPS user input	1.8 V	<tbd></tbd>
1	2	HPS_SW1	PIN_T132	HPS user input	1.8 V	<tbd></tbd>
F	3	FPGA_SW2	PIN_CL54	FPGA user input	Adjustable	<tbd></tbd>
	4	4 FPGA_SW3 PIN_CK63		FPGA user input	Adjustable	<tbd></tbd>

Note: Without proper anti-static handling, you can damage the board.

Commented [SB11]: ID7: Default switch setup?

Commented [SB12]: ID7: Default switch setup?

3.3 Board Status Elements

The Arrow AXE5-Eagle development kit has overall 6 user-controlled LEDs and 3 board-specific status LEDs that indicate the status of the board. The following figure shows the status LED areas of the board.

Figure 5 – Position of Indication LEDs

The following table defines the status LEDs. For user-controlled LED details, see $\underline{\sf User-defined}$ $\underline{\sf LEDs}$ section.

Board Reference	LED Name	Colour	Description
D12	CONF_DONE	Green	On when configuration data was loaded to Agilex 5 device without error
D13	CVP_CONFDONE	Green	On when Agilex 5 is fully configured via CvP initialization mode
D15	CBUS0	Green	Configurable pin of USB to UART bridge

Chapter 4 - Connections and Peripherals of the AXE5-Eagle Development Kit

4.1 Clock Circuitry

On the AXE5-Eagle board, the Intel Agilex 5 receives clock signals from multiple clock sources to ensure that the correct clock signal is directly available for different applications and interfaces.

The devkit contains two type of clock circuits:

On-Board Clock Circuits

This includes constant value oscillators and a preprogrammed, user-programmable PLL*, that are integrated into the board and provide all local clock signals for the operation of the AXE5-Eagle board including reference clocks for memory interfaces, SFP+, FPGA SDM, fabric, and the HPS core.

*The programming of the PLL is not the focus of this document. For detailed information regarding Si5332 PLL programming, we recommend visiting the manufacturer's website, where datasheets and other related documents are available.

• Off-Board Clock I/Os

The development board has optional input and output clocks which can be driven onto the board. These clock I/Os can be any preferred frequencies and different I/O standards according to the FPGA device's specification.

The clock system can be seen in Figure 6. For detailed clock connections, refer to the schematic.

Commented [SB13]: ID9: Preprogram?

Figure 6 – Simplified Clock Connection Diagram

On-Board Clock Inputs

Commented [SB14]: ID9: Default frequencies?

Board Reference	FPGA Input Pin No.	Default Frequency	Description	I/O Std
FPGA_25M	PIN_BR102	25.0MHz	25 MHz clock for SDM	1.8 V
HPS_OSC_CLK	PIN_W135	25.0MHz	25 MHz clock for HPS	1.8 V
FMC_GT_CK0_P	PIN_AY16	156.25MHz		LVDS
FMC_GT_CK0_N	PIN_AY21	150.25141112	FMC+ GT clocks	LVD3
FMC_GT_CK1_P	PIN_AT16	156.25MHz	TIME I GI CLOCKS	LVDS
FMC_GT_CK1_N	PIN_AT21	150.2514117		LVD3
FMC_REFPL_CK_P	PIN_BR49	156.25MHz	FMC+ reference clock for FPGA	Adjustable
FMC_REFPL_CK_N	PIN_BU49	190.2914112	fabric	Aujustable
LPDDR4A_REFCK_P PIN_M105		200 0MH-	HPS LPDDR4 reference clock	1.1-V
LPDDR4A_REFCK_N	PIN_K105	200.0MHz F	HP3 LPDDR4 Telefelice clock	LVSTL
LPDDR4B_REFCK_P	PIN_BW78	200.0MHz	FPGA LPDDR4 reference clock	1.1-V
LPDDR4B_REFCK_N	PIN_CA78	200.014112		LVSTL
PCIE_100M_CK_P	PIN_AY120	100.0MHz	On board PCIe reference clock	HCSL
PCIE_100M_CK_N	PIN_AY115	100.0141112	On board PCIe reference clock	
REFCLK_3B0_P	PIN_AC68	25.0MHz	FPGA fabric reference clock	Adjustable
REFCLK_3B0_N	PIN_AC72	25.UMH2		Adjustable
SFP_REFCLK_P	PIN_AT120	156.25MHz	SFP+ reference clock	LVDS
SFP_REFCLK_N	PIN_AT115	ISO.ZSIMITZ	SEFF TETETICE CLOCK	LVD3
USB_REFCLK_P	PIN_AP120	100.0MHz	USB 3.1 reference clock	L) (DC
USB_REFCLK_N	PIN_AP115	IOO.UMHZ	USB 3.1 reference clock	LVDS

Off-Board Clock I/Os

For detailed pinout information regarding off-board clock I/Os, please refer to the section associated with the respective connector.

4.2 I²C Structure

The $\rm I^2C$ is a two-wire serial communication protocol that allows multiple devices to communicate with each other over a common bus.

The Intel Agilex 5 device use the I^2C for reading and writing to the various components on the board and have option to utilize it as the I^2C host for accessing the devices, adjusting clock frequencies, obtaining board status data or accessing EEPROM memory.

Figure 7 – I²C Block Diagram

I²C Device Address Table

All I²C addresses are in 7-bit format.

Bus	Address	Device Part Number	Device Label	Device Name	
	0x49	LT7182S	U26	DC to DC Converter	
	0x40	LT7182S	U27	DC to DC Converter	
	0x47	LT7182S	U28	DC to DC Converter	
0x4E		LT7182S	U29	DC to DC Converter	
	- 1	-	J9	Pin Header	
PWRMGT	0x31	MAX20830	U20	DC to DC Converter	
PWRMGI	PWRMGI	-	J8	Pin Header	
	0x50	24AA025E48	U3	MAC EEPROM	
	0x51	24AA025E48	U6	MAC EEPROM	
	0x54	24AA128	U11	EEPROM	
I2C0	0x57	MAX31760	U19	Fan Control	
1200	0x48	ADT75	U54	Temperature Sensor	
	0x49	ADT75	U56	Temperature Sensor	
	0x6A	SI5332A	U10	PLL	
	-	-	J10	Pin Header	
Continued	on the next pa	ае			

Bus	Address	Device Part Number	Device Label	Device Name
	0x70	TCA9544A	U57	I ² C MUX
	-	-	J3	FMC+ Connector
MUX_I2C	0x72	ADV7511	U23	HDMI Transmitter
	0x50 ²	-	J30	SFP+ Connector
	0x50 ²	-	J32	SFP+ Connector
USB_HUB	0x2D	USB5734	U38	USB Hub
CY_SMB	-	-	J19	CRUVI HS Connector
CX_SMB	-	-	J21	CRUVI HS Connector

4.2.1 Power and System Control

The I²C bus forms the essential interface for board management. This management system is divided into two parts:

- The PWR and the PWRMGT I²C bus lines provide access to the power system thereby enabling control of the power supply and taking advantage of the SmartVID capability of Agilex 5. The SmartVID technology enables dynamic power consumption control during the FPGA operation without compromising system stability or reliability. This feature contributes to the efficiency and energy saving of FPGAs in various application areas. The Intel FPGA documentation provides detailed information on setting up and using SmartVID.
- The I2C0 bus line enables access to various board management functions such as MAC and user EEPROMs, temperature sensors fan control, and PLL clock system.

Devices connected to the I2CO bus line:

- 2x MAC Address EEPROMs: 24AA025E48T from Microchip, which is a serial pre-programmed EEPROM memory. It only contains its own unique number to give individual identification and Internet addressing;
- User EEPROM: 24AA128T from Microchip, which is a serial EEPROM for custom application-related configuration data;
- Fan Controller: in accordance with data measured by various temperature sensors, supervising and regulating the fan speed to prevent the FPGA device and the board from overheating;
- PLL: provides clock to the FPGA and other board components;
- 2x Temperature sensors: these devices function is to measure and monitor the board temperature;

² Default SFP+ I²C address, it may differ depending on the exact device.

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
I2C0_SDA	PIN_U134	Bidir	Serial Data Line of I2C0	1.8 V
I2C0_SCL	PIN_AL120	Bidir	Serial Clock Line of I2C0	1.8 V
PWR_SDA	PIN_J2	Bidir	Serial Data Line of PWR	1.8 V
PWR_SCL	PIN_G2	Bidir	Serial Clock Line of PWR	1.8 V
PWRMGT_SDA	PIN_CF99	Bidir	Serial Data Line of PWRMGT	1.8 V
PWRMGT_SCL	PIN_CF109	Bidir	Serial Clock Line of PWRMGT	1.8 V

4.2.2 I²C MUX and FPGA Peripherals

The I²C bus also provides access to managing interfaces of various FPGA peripherals. These peripherals are the USB Hub, CRUVI HS and FMC+ connectors, HDMI and SFP+ transmitters. All excepted CRUVI HS connectors and USB Hub are accessed through a common I²C MUX device, which needs to be configured and set separately before communicating with peripherals.

I²C MUX Channel Assignment

Channel	Device Label	Device Name
0	J3	FMC+ Connector
1	U23	HDMI Transmitter
2	J30	SFP+ Connector
3	J32	SFP+ Connector

FPGA Pin Connection

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
MUX_I2C_SDA	PIN_F4	Bidir	Serial Data Line	1.8 V
MUX_I2C_SCL	PIN_D4	Bidir	Serial Clock Line	1.8 V
MUX_I2C_INT	PIN_K4	Input	Peripheral Interrupts	1.8 V

 $For further connections of the interfaces, please {\tt refer}\ to\ the\ section\ about\ the\ specific\ interface.$

Note: Please be advised that the I²C MUX address (0x70) is persistently present on MUX_I2C and on all I²C buses connected to it. Consequently, users are advised to avoid using this address assignment for any connected devices on FMC+ or SFP+ connectors.

4.3 Peripherals Connected to the Agilex 5 SoC FPGA

The Agilex 5 SoC FPGA connects to various peripherals for both the FPGA and HPS parts. The versatile peripheral integration offers a flexible platform and ensures efficient and seamless system operation with the SoC FPGA, resulting in faster and smoother development cycles.

4.3.1 Configuration

There are multiple types of configuration methods supported by AXE5-Eagle:

- JTAG Configuration: configuration using JTAG ports. JTAG configuration scheme allows
 you to directly configure the device core through JTAG pins (TDI, TDO, TMS and TCK pins).
 The Quartus Prime software automatically generates a .sof that can be downloaded to
 the Agilex 5 with a download cable through the Quartus Prime Programmer. The AXE5Eagle board uses an integrated Arrow USB Programmer2 to perform configuration of the
 FPGA for JTAG configuration.
- Active Serial Configuration from QSPI flash: configuration using external flash. Before
 configuration, you need to program the configuration data .jic into the configuration flash
 memory which provides non-volatile storage for the bit stream. The information is
 retained within flash memory even if the AXE5-Eagle is turned off. When the board is
 powered on, the configuration data in the flash memory is automatically loaded into the
 Agilex 5 FPGA.
- Configuration via Protocol through PCI Express: it is an advanced and powerful method
 for FPGA configuration. This configuration scheme leverages the high-speed PCIe
 interface to efficiently update the configuration bitstream of the FPGA, offering seamless
 adaptability in real-time applications.

For detailed information about how to configure the Agilex 5, please refer to Chapter 7.

4.3.1.1 JTAG Chain Configuration

The JTAG Chain Configuration is controlled by an Arrow USB Programmer2 module which is a development tool for Intel FPGAs and supported by Intel Quartus Prime. For connection to the AXE5-Eagle board, there is used the standard JTAG header. The following diagram illustrates its connection.

For the detailed operation of this module, please refer to the related <u>Technical Reference</u> <u>Manual</u>.

Figure 8 - JTAG Connections

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
JTAG_TCK	PIN_CA109	Input	Test Interface Clock	1.8 V
JTAG_TDI	PIN_BW112	Input	Test Data In	1.8 V
JTAG_TDO	PIN_BW109	Output	Test Data Out	1.8 V
JTAG_TMS	PIN_CA112	Input	Test Mode Select	1.8 V
DBG_TXD	PIN_BK22	Output	Additional UART TX	1.8 V
DBG_RXD	PIN_CH4	Input	Additional UART RX	1.8 V

4.3.1.2 QSPI Configuration Flash Memory

The AXE5-Eagle board is integrated with a 1 Gbit of QSPI flash memory that can be used for user data and programming non-volatile storage. The configuration bitstream is downloaded into the configuration device which automatically loads the configuration data into the Agilex 5 when the board is powered on. The Secure Device Manager (SDM) in Agilex 5 SoC FPGA is responsible for the entire AS mode process and interface.

Device memory capacity not consumed storing configuration data can be used as general-purpose non-volatile memory, which with its operation of up to 166 MHz is perfect for program and data storage. Several interfaces available with Nios V embedded processors allow you to access the serial configuration device as a memory module connected to your embedded system.

Figure 9 - Configuration Flash Connections

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
AS_NCS_MSEL0	PIN_CF112	Output	Dual purpose I/O, MSEL[0] during power-up, Chip Select after determining the configuration scheme	1.8 V
AS_CLK	PIN_BK99	Output	Clock	1.8 V
AS_DATA0	PIN_BH99	Bidir	Data [0]	1.8 V
AS_DATA1	PIN_BK102	Bidir	Data [1]	1.8 V
AS_DATA2	PIN_CH99	Bidir	Data [2]	1.8 V
AS_DATA3	PIN_CF102	Bidir	Data [3]	1.8 V

4.3.2 Memory Interfaces

The AXE5-Eagle development board supports an array of volatile and non-volatile interface options. From high-speed DDR memory to large-capacity flash memory, it provides adaptable solutions in various applications by addressing a broad spectrum of memory integration.

4.3.2.1 LPDDR4 memory

The AXE5-Eagle board supports single-chip LPDDR4 with 8 Gbit density, operating at a speed of 2133 MHz, for both the FPGA and the HPS parts. Below are the connections and pinning of the LPDDR4 used in the AXE5-Eagle.

Figure 10 - LPDDR4 Connections

LPDDR4 (A) - HPS Connections

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std	
LPDDR4A_CK_P	PIN_AK107	Outrout	Differential clock	1.1-V LVSTL	
LPDDR4A_CK_N	PIN_AK104	Output	Differential Clock	1.1-V LV51L	
LPDDR4A_CKE0	PIN_V108	Output	Clock enable	1.1-V LVSTL	
LPDDR4A_CKE1	PIN_T108	Output	Clock enable	1.1-V LVSTL	
LPDDR4A_CS0_N	PIN_T105	Output	Chip select	1.1-V LVSTL	
LPDDR4A_CS1_N	PIN_P105	Output	Chip select	1.1-V LVSTL	
Continued on the next page					

WDVN

	ı	ı				
Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std		
LPDDR4A_RST	PIN_AG111	Output	Reset	1.1-V LVSTL		
LPDDR4A_CA0	PIN_T114	Output	Command/Address	1.1-V LVSTL		
LPDDR4A_CA1	PIN_P114	Output	Command/Address	1.1-V LVSTL		
LPDDR4A_CA2	PIN_V117	Output	Command/Address	1.1-V LVSTL		
LPDDR4A_CA3	PIN_T117	Output	Command/Address	1.1-V LVSTL		
LPDDR4A_CA4	PIN_M114	Output	Command/Address	1.1-V LVSTL		
LPDDR4A_CA5	PIN_K114	Output	Command/Address	1.1-V LVSTL		
LPDDR4A_DQ0	PIN_B128	Bidir	Data [0]	1.1-V LVSTL		
LPDDR4A_DQ1	PIN_A128	Bidir	Data [1]	1.1-V LVSTL		
LPDDR4A_DQ2	PIN_B130	Bidir	Data [2]	1.1-V LVSTL		
LPDDR4A_DQ3	PIN_A130	Bidir	Data [3]	1.1-V LVSTL		
LPDDR4A_DQ4	PIN_B116	Bidir	Data [4]	1.1-V LVSTL		
LPDDR4A_DQ5	PIN_A116	Bidir	Data [5]	1.1-V LVSTL		
LPDDR4A_DQ6	PIN_B113	Bidir	Data [6]	1.1-V LVSTL		
LPDDR4A_DQ7	PIN_A113	Bidir	Data [7]	1.1-V LVSTL		
LPDDR4A_DQ8	PIN_F117	Bidir	Data [8]	1.1-V LVSTL		
LPDDR4A_DQ9	PIN_H117	Bidir	Data [9]	1.1-V LVSTL		
LPDDR4A_DQ10	PIN_K117	Bidir	Data [10]	1.1-V LVSTL		
LPDDR4A_DQ11	PIN_M117	Bidir	Data [11]	1.1-V LVSTL		
LPDDR4A_DQ12	PIN_H108	Bidir	Data [12]	1.1-V LVSTL		
LPDDR4A_DQ13	PIN_F108	Bidir	Data [13]	1.1-V LVSTL		
LPDDR4A_DQ14	PIN_M108	Bidir	Data [14]	1.1-V LVSTL		
LPDDR4A_DQ15	PIN_K108	Bidir	Data [15]	1.1-V LVSTL		
LPDDR4A_DQ16	PIN_H98	Bidir	Data [16]	1.1-V LVSTL		
LPDDR4A_DQ17	PIN_F98	Bidir	Data [17]	1.1-V LVSTL		
LPDDR4A_DQ18	PIN_M98	Bidir	Data [18]	1.1-V LVSTL		
LPDDR4A_DQ19	PIN_K98	Bidir	Data [19]	1.1-V LVSTL		
LPDDR4A_DQ20	PIN_K87	Bidir	Data [20]	1.1-V LVSTL		
LPDDR4A_DQ21	PIN_M87	Bidir	Data [21]	1.1-V LVSTL		
LPDDR4A_DQ22	PIN_F84	Bidir	Data [22]	1.1-V LVSTL		
LPDDR4A_DQ23	PIN_D84	Bidir	Data [23]	1.1-V LVSTL		
LPDDR4A_DQ24	PIN_A106	Bidir	Data [24]	1.1-V LVSTL		
LPDDR4A_DQ25	PIN_B103	Bidir	Data [25]	1.1-V LVSTL		
LPDDR4A_DQ26	PIN_B106	Bidir	Data [26]	1.1-V LVSTL		
LPDDR4A_DQ27	PIN_A110	Bidir	Data [27]	1.1-V LVSTL		
LPDDR4A_DQ28	PIN_B81	Bidir	Data [28]	1.1-V LVSTL		
LPDDR4A_DQ29	PIN_A94	Bidir	Data [29]	1.1-V LVSTL		
LPDDR4A_DQ30	PIN_B88	Bidir	Data [30]	1.1-V LVSTL		
LPDDR4A_DQ31	PIN_A91	Bidir	Data [31]	1.1-V LVSTL		
LPDDR4A_DQSA0_P	PIN_B122	Bidir	Data strobo	1.1-V LVSTL		
LPDDR4A_DQSA0_N	PIN_A125	Diuli	Data strobe	1.1-V LV31L		
LPDDR4A_DQSA1_P	PIN_F114	Didia	Data strobo	11 \/ \/CT!		
LPDDR4A_DQSA1_N	PIN_D114	Bidir	Data strobe	1.1-V LVSTL		
Continued on the next page						

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
LPDDR4A_DQSB0_P	PIN_F95	Bidir	Data strobe	11 \/ I \/CTI
LPDDR4A_DQSB0_N	PIN_D95	Bluir	Data Strobe	1.1-V LVSTL
LPDDR4A_DQSB1_P	PIN_A101	Bidir	Data strobe	1.1-V LVSTL
LPDDR4A_DQSB1_N	PIN_B101			
LPDDR4A_DMA0	PIN_B119	Bidir	Data mask/Data bus inversion	1.1-V LVSTL
LPDDR4A_DMA1	PIN_F105	Bidir	Data mask/Data bus inversion	1.1-V LVSTL
LPDDR4A_DMB0	PIN_H87	Bidir	Data mask/Data bus inversion	1.1-V LVSTL
LPDDR4A_DMB1	PIN_B97	Bidir	Data mask/Data bus inversion	1.1-V LVSTL

LPDDR4 (B) – FPGA Connections

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std		
LPDDR4B_CK_P	PIN_BM81	_		/ ·		
LPDDR4B_CK_N	PIN_BP81	Output	Differential clock	1.1-V LVSTL		
LPDDR4B_CKE0	PIN_BR81	Output	Clock enable	1.1-V LVSTL		
LPDDR4B_CKE1	PIN_BU81	Output	Clock enable	1.1-V LVSTL		
LPDDR4B_CS0_N	PIN_BR78	Output	Chip select	1.1-V LVSTL		
LPDDR4B_CS1_N	PIN_BU78	Output	Chip select	1.1-V LVSTL		
LPDDR4B_RST	PIN_BH92	Output	Reset	1.1-V LVSTL		
LPDDR4B_CA0	PIN_BR89	Output	Command/Address	1.1-V LVSTL		
LPDDR4B_CA1	PIN_BU89	Output	Command/Address	1.1-V LVSTL		
LPDDR4B_CA2	PIN_BR92	Output	Command/Address	1.1-V LVSTL		
LPDDR4B_CA3	PIN_BU92	Output	Command/Address	1.1-V LVSTL		
LPDDR4B_CA4	PIN_BW89	Output	Command/Address	1.1-V LVSTL		
LPDDR4B_CA5	PIN_CA89	Output	Command/Address	1.1-V LVSTL		
LPDDR4B_DQ0	PIN_CL91	Bidir	Data [0]	1.1-V LVSTL		
LPDDR4B_DQ1	PIN_CK94	Bidir	Data [1]	1.1-V LVSTL		
LPDDR4B_DQ2	PIN_CK97	Bidir	Data [2]	1.1-V LVSTL		
LPDDR4B_DQ3	PIN_CL97	Bidir	Data [3]	1.1-V LVSTL		
LPDDR4B_DQ4	PIN_CK80	Bidir	Data [4]	1.1-V LVSTL		
LPDDR4B_DQ5	PIN_CL82	Bidir	Data [5]	1.1-V LVSTL		
LPDDR4B_DQ6	PIN_CK76	Bidir	Data [6]	1.1-V LVSTL		
LPDDR4B_DQ7	PIN_CL76	Bidir	Data [7]	1.1-V LVSTL		
LPDDR4B_DQ8	PIN_CC92	Bidir	Data [8]	1.1-V LVSTL		
LPDDR4B_DQ9	PIN_CA92	Bidir	Data [9]	1.1-V LVSTL		
LPDDR4B_DQ10	PIN_CF92	Bidir	Data [10]	1.1-V LVSTL		
LPDDR4B_DQ11	PIN_CH92	Bidir	Data [11]	1.1-V LVSTL		
LPDDR4B_DQ12	PIN_CA81	Bidir	Data [12]	1.1-V LVSTL		
LPDDR4B_DQ13	PIN_CC81	Bidir	Data [13]	1.1-V LVSTL		
LPDDR4B_DQ14	PIN_CH78	Bidir	Data [14]	1.1-V LVSTL		
LPDDR4B_DQ15	PIN_CF78	Bidir	Data [15]	1.1-V LVSTL		
LPDDR4B_DQ16	PIN_BR69	Bidir	Data [16]	1.1-V LVSTL		
LPDDR4B_DQ17	PIN_BU69	Bidir	Data [17]	1.1-V LVSTL		
LPDDR4B_DQ18	PIN_BR71	Bidir	Data [18]	1.1-V LVSTL		
Continued on the next page						

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
LPDDR4B_DQ19	PIN_BU71	Bidir	Data [19]	1.1-V LVSTL
LPDDR4B_DQ20	PIN_BU59	Bidir	Data [20]	1.1-V LVSTL
LPDDR4B_DQ21	PIN_BR59	Bidir	Data [21]	1.1-V LVSTL
LPDDR4B_DQ22	PIN_BW59	Bidir	Data [22]	1.1-V LVSTL
LPDDR4B_DQ23	PIN_CA59	Bidir	Data [23]	1.1-V LVSTL
LPDDR4B_DQ24	PIN_CF71	Bidir	Data [24]	1.1-V LVSTL
LPDDR4B_DQ25	PIN_CH71	Bidir	Data [25]	1.1-V LVSTL
LPDDR4B_DQ26	PIN_CC71	Bidir	Data [26]	1.1-V LVSTL
LPDDR4B_DQ27	PIN_CA71	Bidir	Data [27]	1.1-V LVSTL
LPDDR4B_DQ28	PIN_CF62	Bidir	Data [28]	1.1-V LVSTL
LPDDR4B_DQ29	PIN_CH62	Bidir	Data [29]	1.1-V LVSTL
LPDDR4B_DQ30	PIN_CF59	Bidir	Data [30]	1.1-V LVSTL
LPDDR4B_DQ31	PIN_CH59	Bidir	Data [31]	1.1-V LVSTL
LPDDR4B_DQSA0_P	PIN_CL88	Bidir	Data strobe	1.1-V LVSTL
LPDDR4B_DQSA0_N	PIN_CK88	Diuli	Data strobe	1.1-4 LV31L
LPDDR4B_DQSA1_P	PIN_CH89	Bidir	Data strobe	1.1-V LVSTL
LPDDR4B_DQSA1_N	PIN_CF89	Biuli	Data strobe	1.1-4 LV31L
LPDDR4B_DQSB0_P	PIN_BW69	Bidir	Data strobe	1.1-V LVSTL
LPDDR4B_DQSB0_N	PIN_CA69	Biuli	Data strobe	1.1-4 LV31L
LPDDR4B_DQSB1_P	PIN_CH69	Bidir	Data strobe	1.1-V LVSTL
LPDDR4B_DQSB1_N	PIN_CF69	Diuli	Data sti obe	1.1-V LV31L
LPDDR4B_DMA0	PIN_CK85	Bidir	Data mask/Data bus inversion	1.1-V LVSTL
LPDDR4B_DMA1	PIN_CF81	Bidir	Data mask/Data bus inversion	1.1-V LVSTL
LPDDR4B_DMB0	PIN_BU62	Bidir	Data mask/Data bus inversion	1.1-V LVSTL
LPDDR4B_DMB1	PIN_CA62	Bidir	Data mask/Data bus inversion	1.1-V LVSTL

4.3.2.2 QSPI NOR Flash Memory

Beyond the QSPI Configuration Flash Memory, there exists a separate non-volatile, QSPI Flash memory with a 1 Gbit density, capable of operating at speeds up to 166 MHz on the AXE5-Eagle board. This memory is entirely accessible for the user's applications, offering ample space for storing extensive user data or software for Nios V embedded processors.

Figure 11 – QSPI NOR Flash Memory Connections

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
FPGA_SPI_CS	PIN_BM19	Output	Chip Select	1.8 V
FPGA_SPI_CLK	PIN_BU19	Output	Serial Data Clock	1.8 V
FPGA_SPI_D0	PIN_BR19	Bidir	Serial Data [0]	1.8 V
FPGA_SPI_D1	PIN_CK4	Bidir	Serial Data [1]	1.8 V
FPGA_SPI_D2	PIN_CJ2	Bidir	Serial Data [2]	1.8 V
FPGA_SPI_D3	PIN_CK2	Bidir	Serial Data [3]	1.8 V

4.3.2.3 MicroSD Card

The AXE5-Eagle board features a microSD card interface with x4 data lanes, primarily designed to function as an external storage solution for the HPS. The SD card can also be utilized for booting purposes, allowing for firmware execution directly from the card. Additionally, the SD card socket is equipped with a Card Detect pin, facilitating automatic detection of card insertion or removal, enhancing system responsiveness and user convenience.

Figure 12 - MicroSD Card Socket Connection

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
SD_RDAT0	PIN_E135	Bidir	Data line [0]	1.8 V
SD_RDAT1	PIN_F132	Bidir	Data line [1]	1.8 V
SD_RDAT2	PIN_AA135	Bidir	Data line [2]	1.8 V
SD_RDAT3	PIN_V127	Bidir	Data line [3]	1.8 V
SD_RCMD	PIN_AB132	Bidir	Command line	1.8 V
SD_RCLK	PIN_D132	Output	SD Clock	1.8 V
SD_DETECT	PIN_P124	Input	Card detect pin	1.8 V

4.3.3 Data Communication Interfaces

The AXE5-Eagle development board offers various data communication interfaces, including Ethernet, SFP+, USB 3.1, HDMI, and PCIe, ensuring high-level integration in an extensive range of applications. From high-speed data transfer with Ethernet and PCIe to multimedia capabilities with HDMI, this board provides adaptable solutions tailored to diverse requirements.

4.3.3.1 10/100/1000 Ethernet PHY

The development kit is equipped with two independent, standard RJ45-connected Gigabit Ethernet ports using an external Analog Devices ADIN1300 PHY chip and HPS Ethernet MAC function with integrated Time-Sensitive Networking support. The ADIN1300 chip is a low-power Ethernet transceiver with low latency primarily designed for industrial Ethernet applications.

The MAC-to-PHY interface is configured to an RGMII interface connections with MDIO interface as management.

Figure 13 – Connection between the Agilex 5 and Ethernet PHYs

Ethernet PHY connected to the HPS

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
ETH_MDIO	PIN_T127	Bidir	Management Data	1.8 V
ETH_MDC	PIN_Y132	Output	Management Clock	1.8 V
ETH_TXCK	PIN_M127	Output	Transmit Clock	1.8 V
ETH_TXCTL	PIN_K127	Output	Transmit Control Signal	1.8 V
ETH_TXD0	PIN_K124	Output	Transmit data [0]	1.8 V
ETH_TXD1	PIN_Y127	Output	Transmit data [1]	1.8 V
ETH_TXD2	PIN_F127	Output	Transmit data [2]	1.8 V
ETH_TXD3	PIN_Y124	Output	Transmit data [3]	1.8 V
Continued on the next page				

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
ETH_RXCK	PIN_M124	Input	Receive Clock	1.8 V
ETH_RXCTL	PIN_AB127	Input	Receive Control Signal	1.8 V
ETH_RXD0	PIN_H127	Input	Receive data [0]	1.8 V
ETH_RXD1	PIN_AB124	Input	Receive data [1]	1.8 V
ETH_RXD2	PIN_F124	Input	Receive data [2]	1.8 V
ETH_RXD3	PIN_D124	Input	Receive data [3]	1.8 V
ETH_RST	PIN_T124	Output	PHY Reset	1.8 V

Ethernet PHY connected to the FPGA Fabric

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
ETH1_MDIO	PIN_J1	Bidir	Management Data	1.8 V
ETH1_MDC	PIN_G1	Output	Management Clock	1.8 V
ETH1_TXCK	PIN_F24	Output	Transmit Clock	1.8 V
ETH1_TXCTL	PIN_F15	Output	Transmit Control Signal	1.8 V
ETH1_TXD0	PIN_H27	Output	Transmit data [0]	1.8 V
ETH1_TXD1	PIN_D24	Output	Transmit data [1]	1.8 V
ETH1_TXD2	PIN_H18	Output	Transmit data [2]	1.8 V
ETH1_TXD3	PIN_D15	Output	Transmit data [3]	1.8 V
ETH1_RXCK	PIN_D8	Input	Receive Clock	1.8 V
ETH1_RXCTL	PIN_F15	Input	Receive Control Signal	1.8 V
ETH1_RXD0	PIN_K8	Input	Receive data [0]	1.8 V
ETH1_RXD1	PIN_F8	Input	Receive data [1]	1.8 V
ETH1_RXD2	PIN_H8	Input	Receive data [2]	1.8 V
ETH1_RXD3	PIN_C2	Input	Receive data [3]	1.8 V
ETH1_RST	PIN_F27	Output	PHY Reset	1.8 V

4.3.3.2 SFP+ Interfaces

The development kit supports two independent SFP+ connectors that connect to the Intel Agilex 5's transceivers. Each port is capable of operation at a speed of up to 16 Gbps. These modules take in serial data from Agilex 5 device and transform them into optical signals. The board includes cage assemblies for the SFP+ connectors.

Figure 14 shows the connection diagram between SFP+ and Intel Agilex 5.

Figure 14 – SFP+ Connection

SFPA Connection

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
SFPA_TD_P	PIN_AU129	Output	Transmitter data	High Speed
SFPA_TD_N	PIN_AU126	Output	Transmitter data	Differential I/O
SFPA_RD_P	PIN_AT135	Input	Desciver data	High Speed
SFPA_RD_N	PIN_AT133		Receiver data	Differential I/O
SFPA_TX_FAULT	PIN_Y74	Input	Transmitter fault	Adjustable
SFPA_TX_DIS	PIN_Y77	Output	Transmitter output disable	Adjustable
SFPA_MDEF0	PIN_A80	Input	Module definition signal	Adjustable
SFPA_RS0	PIN_AC64	Output	Rate select 0	Adjustable
SFPA_RS1	PIN_Y58	Output	Rate select 1	Adjustable
SFPA_LOS	PIN_AG64	Input	Signal loss indicator	Adjustable
SFPA_SDA / MUX_I2C_SDA	PIN_F4	Bidir	Serial Data Line	1.8 V
SFPA_SCL / MUX_I2C_SCL	PIN_D4	Bidir	Serial Clock Line	1.8 V

SFPB Connection

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
SFPB_TD_P	PIN_AL129	Output	Transmitter data	High Speed
SFPB_TD_N	PIN_AL126	Output	Transmitter data	Differential I/O
SFPB_RD_P	PIN_AK135	Input	Receiver data	High Speed
SFPB_RD_N	PIN_AK133		Receiver data	Differential I/O
SFPB_TX_FAULT	PIN_Y55	Input	Transmitter fault	Adjustable
SFPB_TX_DIS	PIN_AC50	Output	Transmitter output disable	Adjustable
SFPB_MDEF0	PIN_AG83	Input	Module definition signal	Adjustable
SFPB_RS0	PIN_AG57	Output	Rate select 0	Adjustable
SFPB_RS1	PIN_AC53	Output	Rate select 1	Adjustable
Continued on the r	next page			

Board Reference	Board Reference	Pin Func.	Board Reference	Board Reference
SFPB_LOS	PIN_AC61	Input	Signal loss indicator	Adjustable
SFPB_SDA / MUX_I2C_SDA	PIN_F4	Bidir	Serial Data Line	1.8 V
SFPB_SCL / MUX_I2C_SCL	PIN_D4	Bidir	Serial Clock Line	1.8 V

For detailed information about the I²C connection, please refer to the <u>I²C Structure</u> section.

4.3.3.3 HDMI Transmitter

The development board provides High Performance HDMI Transmitter via the Analog Devices ADV7511 which incorporates HDMI v1.4 features, including 3D video support, and 225 MHz supports all video formats up to 1080p. The ADV7511 is controlled via a serial I^2C bus interface, which is connected to the Agilex 5 SoC FPGA through the I2C MUX device. Additionally, the HDMI interface supports single-wire SPDIF (Sony/Philips Digital Interface Format) audio transmission up to 192 kHz sampling rate.

Detailed information on using ADV7511 HDMI Transmitter is available on the manufacturer's website.

Figure 15 – HDMI Transmitter Connection

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
HDMI_VS	PIN_BH19	Output	Vertical Synchronization	1.8 V
HDMI_HS	PIN_CF12	Output	Horizontal Synchronization	1.8 V
HDMI_CLK	PIN_BK31	Output	Video Pixel Clock	1.8 V
HDMI_DE	PIN_BK19	Output	Data Enable Signal for Digital Video	1.8 V
HDMI_D0	PIN_BF32	Output	Video Data bus [0]	1.8 V
HDMI_D1	PIN_CH12	Output	Video Data bus [1]	1.8 V
HDMI_D2	PIN_BM22	Output	Video Data bus [2]	1.8 V
HDMI_D3	PIN_BF21	Output	Video Data bus [3]	1.8 V
HDMI_D4	PIN_BE21	Output	Video Data bus [4]	1.8 V
Continued on the	next page			

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
HDMI_D5	PIN_BP22	Output	Video Data bus [5]	1.8 V
HDMI_D6	PIN_BR22	Output	Video Data bus [6]	1.8 V
HDMI_D7	PIN_BE25	Output	Video Data bus [7]	1.8 V
HDMI_D8	PIN_BU22	Output	Video Data bus [8]	1.8 V
HDMI_D9	PIN_BW28	Output	Video Data bus [9]	1.8 V
HDMI_D10	PIN_BU28	Output	Video Data bus [10]	1.8 V
HDMI_D11	PIN_BM31	Output	Video Data bus [11]	1.8 V
HDMI_D12	PIN_BR28	Output	Video Data bus [12]	1.8 V
HDMI_D13	PIN_BM28	Output	Video Data bus [13]	1.8 V
HDMI_D14	PIN_BK28	Output	Video Data bus [14]	1.8 V
HDMI_D15	PIN_BH28	Output	Video Data bus [15]	1.8 V
HDMI_D16	PIN_BF36	Output	Video Data bus [16]	1.8 V
HDMI_D17	PIN_BE43	Output	Video Data bus [17]	1.8 V
HDMI_D18	PIN_BU31	Output	Video Data bus [18]	1.8 V
HDMI_D19	PIN_BP31	Output	Video Data bus [19]	1.8 V
HDMI_D20	PIN_BR31	Output	Video Data bus [20]	1.8 V
HDMI_D21	PIN_BF29	Output	Video Data bus [21]	1.8 V
HDMI_D22	PIN_BF40	Output	Video Data bus [22]	1.8 V
HDMI_D23	PIN_BE29	Output	Video Data bus [23]	1.8 V
HDMI_INT	PIN_BF16	Input	Interrupt signal	1.8 V
HDMI_SPDIF	PIN_CF9	Output	SPDIF Audio signal	1.8 V
HDMI_I2C_SDA / MUX_I2C_SDA	PIN_F4	Bidir	Serial Data Line	1.8 V
HDMI_I2C_SCL / MUX_I2C_SCL	PIN_D4	Bidir	Serial Clock Line	1.8 V
CEC_CLK	PIN_BF25	Output	CEC Clock	1.8 V
CT_HPD	PIN_BW19	Output	Hot Plug Detect Control	1.8 V

For detailed information about the I^2C connection, please refer to the $\underline{I^2C}$ Structure section.

4.3.3.4 PCI Express Gen4

The AXE5-Eagle Development Kit provides PCIe-compliant multi-lane edge connectivity through the integrated transceivers and PCIe hard IP block of the Intel Agilex 5 SoC FPGA. Integration of the PCI Express hard IP block within the Agilex 5 device empowers users to deploy an efficient, high-speed protocol, all while optimizing logic resources for the logic application.

The PCI Express edge connector supports varying connection speeds:

- 2.5 Gbps/lane for a maximum of 10 Gbps full-duplex (Gen1);
- 5.0 Gbps/lane for a maximum of 20 Gbps full-duplex (Gen2);
- 8.0 Gbps/lane for a maximum of 32 Gbps full-duplex (Gen3);
- 16.0 Gbps/lane for a maximum of 64 Gbps full-duplex (Gen4);

Figure 16 - PCIe Edge Connection

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
PERO_P	PIN_BE129	Outrout	Transmit lane [0]	High Speed
PERO_N	PIN_BE126	Output	Transmit lane [0]	Differential I/O
PER1_P	PIN_BC129	Output	Transmit Jana [1]	High Speed
PER1_N	PIN_BC126	Output	Transmit lane [1]	Differential I/O
PER2_P	PIN_BA129	Output	Transmit lane [2]	High Speed
PER2_N	PIN_BA126	Output	Transmit talle [2]	Differential I/O
PER3_P	PIN_AW129	Output	Transmit lane [3]	High Speed
PER3_N	PIN_AW126		Transmit tane [5]	Differential I/O
PETO_P	PIN_BD135	1	Receive lane [0]	High Speed
PETO_N	PIN_BD133	Input		Differential I/O
PET1_P	PIN_BB135	Input	Receive lane [1]	High Speed
PET1_N	PIN_BB133	IIIput	Receive taile [1]	Differential I/O
PET2_P	PIN_AY133	Input	Receive lane [2]	High Speed
PET2_N	PIN_AY135	IIIput		Differential I/O
PET3_P	PIN_AV135	Input	Receive lane [3]	High Speed
PET3_N	PIN_AV133	iiiput	Receive talle [5]	Differential I/O
PCIE_CLK_P	PIN_AV120	Input	100 MHz PCIe reference clock	HCSL
PCIE_CLK_N	PIN_AV115	прис	100 MHZ PCIe reference clock	ПСЭL
PCIE_RSTb	PIN_CF132	Input	Reset	3.3 V
PCIE_R_WAKE	PIN_D34	Output	Wake signal	3.3 V

4.3.3.5 USB 3.2 Gen1

The AXE5-Eagle board features a Microchip's USB5734 USB Hub that offers a total of four USB-A connectivity options. This USB Hub is fully compliant with the USB 3.2 Gen1 specification and supports Full Speed and Low-Speed USB signalling. This hub enables parallel operation of both USB 2.0 and SuperSpeed data transfer, ensuring optimal performance for a wide range of devices.

The USB 2.0 controller within the HPS is interfaced with a USB PHY via ULPI, establishing a connection to the upstream port of the USB Hub. Simultaneously, the communication on the high-speed data lines of the USB 3.2 Gen1 is ensured by the FPGA transceivers.

Figure 17 – USB Connection of Agilex 5 SoC FPGA

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
USB_CLK	PIN_P132	Bidir	ULPI Clock	1.8 V
USB_STP	PIN_L135	Output	ULPI STP signal	1.8 V
USB_DIR	PIN_J135	Input	Direction of ULPI	1.8 V
USB_NXT	PIN_AD134	Input	ULPI NXT signal	1.8 V
USB_DATA0	PIN_AD135	Bidir	ULPI data bus [0]	1.8 V
USB_DATA1	PIN_M132	Bidir	ULPI data bus [1]	1.8 V
USB_DATA2	PIN_K132	Bidir	ULPI data bus [2]	1.8 V
USB_DATA3	PIN_AG129	Bidir	ULPI data bus [3]	1.8 V
USB_DATA4	PIN_J134	Bidir	ULPI data bus [4]	1.8 V
USB_DATA5	PIN_AG120	Bidir	ULPI data bus [5]	1.8 V
USB_DATA6	PIN_G134	Bidir	ULPI data bus [6]	1.8 V
USB_DATA7	PIN_G135	Bidir	ULPI data bus [7]	1.8 V
USB_RST	PIN_B134	Output	USB PHY Reset	1.8 V
USB_SSTX_P	PIN_AN129	Outout	USB 3.2 Gen 1 SuperSpeed	High Speed
USB_SSTX_N	PIN_AN126	Output	transmit data	Differential I/O
USB_SSRX_P	PIN_AM135	Louis	USB 3.2 Gen 1 SuperSpeed	High Speed
USB_SSRX_N	PIN_AM133	Input	receive data	Differential I/O
USBH_CFG0	PIN_A35	Output	I ² C Slave 0 Configuration Strap	3.3 V
USBH_CFG1	PIN_A33	Output	I ² C Slave 1 Configuration Strap	3.3 V
USB_HUB_SMDAT	PIN_B23	Bidir	SMBus/I ² C data	3.3 V
USB_HUB_SMCLK	PIN_B26	Bidir	SMBus/I ² C clock	3.3 V
USB_HUB_RST	PIN_BU118	Output	USB Hub reset	3.3 V

4.3.3.6 USB to UART Bridge

Besides the USB 3.2 Gen1 interfaces, the AXE5-Eagle board uses an additional FT234XD chip to perform UART communication over USB. The FTDI chip converts signals from USB 2.0 to a standard serial interface, which is routed to the HPS core.

The USB to UART Bridge communicates over the micro-USB connector labelled as J5.

Figure 18 - FTDI Connection

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
UARTO_RX	PIN_AK115	Input	Receiving Asynchronous Data Input	1.8 V
UARTO_TX	PIN_W134	Output	Transmit Asynchronous Data Output	1.8 V

4.3.4 Expansion Connectors

The AXE5-Eagle development kit features expansion options with support for various mezzanine cards, including FMC+, CRUVI HS, and CRUVI LS connectors. This flexibility allows users to easily integrate additional peripherals, functionalities, and customize the development environment to their specific needs.

4.3.4.1 FPGA Mezzanine Card Plus Interface (FMC+)

The AXE5-Eagle development board supports the latest standard VITA 57.4 FMC+ specification. It features a subset implementation of the high pin count at the J3 High Serial Pin Connector (HSPC), specifically designed to expand FPGA I/Os capabilities.

The 560-pin FMC+ connector provides connectivity for:

- 68 single-ended or 34 differential user-defined signals
- 8 transceivers differential pairs with 17.16 Gbps data date (8 TX and 8 RX)
- 2 transceivers differential clocks
- 2 differential Mezzanine to Carrier clocks
- 1 differential reference clock (1 Mezzanine to Carrier and 1 Carrier to Mezzanine)
- 1 differential sync clock (1 Mezzanine to Carrier and 1 Carrier to Mezzanine)

The AXE5-Eagle board provides 12 V, 3.3 V and FMC_ADJ power through FMC+ port. The power control of the VADJ_FMC power rail is managed by the U46 DCDC regulator. This rail powers the VADJ pins of J3 connector, as well as the 2B I/O Bank of Agilex 5 SoC FPGA. The FPGA I/O standards of the FMC+ ports can be adjusted by configuring a switch position. The valid values of the VADJ_FMC rail is 1.2 V or 1.3 V which can be adjusted via the S10 DIP switch on the AXE5-Eagle board. For detailed setting, please refer to Switch Settings section.

Figure 19 – FMC+ Connection on AXE5-Eagle Board

FMC+ Clock Interface

Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std
FMC_GBTCLK0_P	PIN_AV16	D4	Innut	Mezzanine to Carrier seria	1.8 V
FMC_GBTCLK0_N	PIN_AV21	D5	Input	clock	1.0 V
FMC_GBTCLK1_P	PIN_AP16	B20	Innut	Mezzanine to Carrier serial	1.8 V
FMC_GBTCLK1_N	PIN_AP21	B21	Input	clock	1.0 V
FMC_CLK0_M2C_P	PIN_BK38	H4	loout	Mezzanine to Carrier FPGA	Adjustable
FMC_CLK0_M2C_N	PIN_BM38	H5	Input	fabric clock	
FMC_CLK1_M2C_P	PIN_BF68	G2	lanut	Mezzanine to Carrier FPGA	Adjustable
FMC_CLK1_M2C_N	PIN_BE68	G3	Input	fabric clock	
FMC_REFCK_C2M_P	PIN_BE61	L20	Output	Carrier to Mezzanine	Adjustable
FMC_REFCK_C2M_N	PIN_BE57	L21	Output	reference clock	Adjustable
FMC_SYNC_C2M_P	PIN_CH41	L16	0	Carrier to Mezzanine sync	A diversalal a
FMC_SYNC_C2M_N	PIN_CF41	L17	Output	clock	Adjustable
FMC_REFCK_M2C_P	PIN_CH38	L24	lanut	Mezzanine to Carrier	A diversalal a
FMC_REFCK_M2C_N	PIN_CF38	L25	Input	reference clock	Adjustable
FMC_SYNC_M2C_P	PIN_BH49	L28	lanut	Mezzanine to Carrier sync	A diversalal a
FMC_SYNC_M2C_N	PIN_BH52	L29	Input	clock	Adjustable

FMC+ XCVR Channels

Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std		
DP0_C2M_P	PIN_BE7	C2	Output	Carrier to Mezzanine	High Speed		
DP0_C2M_N	PIN_BE10	C3	Output	transmit data pair[0]	Differential I/O		
Continued on the next page							

Board Reference	FPGA Pin	Conn.	Pin	Description	I/O Std
DD4 6314 D	No.	Pin No.	Func.		
DP1_C2M_P	PIN_BC7	A22	Output	Carrier to Mezzanine	High Speed Differential I/O
DP1_C2M_N	PIN_BC10	A23	· ·	transmit data pair[1]	,
DP2_C2M_P	PIN_BA7	A26	Output	Carrier to Mezzanine	High Speed
DP2_C2M_N	PIN_BA10	A27		transmit data pair[2]	Differential I/O
DP3_C2M_P	PIN_AW7	A30	Output	Carrier to Mezzanine	High Speed
DP3_C2M_N	PIN_AW10	A31		transmit data pair[3]	Differential I/O
DP4_C2M_P	PIN_AU7	A34	Output	Carrier to Mezzanine	High Speed
DP4_C2M_N	PIN_AU10	A35	Output	transmit data pair[4]	Differential I/O
DP5_C2M_P	PIN_AR7	A38	Output	Carrier to Mezzanine	High Speed
DP5_C2M_N	PIN_AR10	A39	Output	transmit data pair[5]	Differential I/O
DP6_C2M_P	PIN_AN7	B36	Output	Carrier to Mezzanine	High Speed
DP6_C2M_N	PIN_AN10	B37	Output	transmit data pair[6]	Differential I/O
DP7_C2M_P	PIN_AL7	B32	Output	Carrier to Mezzanine	High Speed
DP7_C2M_N	PIN_AL10	B33	Output	transmit data pair[7]	Differential I/O
DP0_M2C_P	PIN_BF1	C6	Input	Mezzanine to Carrier	High Speed
DP0_M2C_N	PIN_BF3	C7	IIIput	receiver data pair[0]	Differential I/O
DP1_M2C_P	PIN_BD1	A2	1	Mezzanine to Carrier	High Speed
DP1_M2C_N	PIN_BD3	А3	Input	receiver data pair[1]	Differential I/O
DP2_M2C_P	PIN_BB1	A6		Mezzanine to Carrier	High Speed
DP2_M2C_N	PIN_BB3	A7	Input	receiver data pair[2]	Differential I/O
DP3_M2C_P	PIN_AY1	A10		Mezzanine to Carrier	High Speed
DP3_M2C_N	PIN_AY3	A11	Input	receiver data pair[3]	Differential I/O
DP4_M2C_P	PIN_AV1	A14		Mezzanine to Carrier	High Speed
DP4_M2C_N	PIN_AV3	A15	Input	receiver data pair[4]	Differential I/O
DP5_M2C_P	PIN_AT1	A18		Mezzanine to Carrier	High Speed
DP5_M2C_N	PIN_AT3	A19	Input	receiver data pair[5]	Differential I/O
DP6_M2C_P	PIN_AP1	B16		Mezzanine to Carrier	High Speed
DP6_M2C_N	PIN_AP3	B17	Input	receiver data pair[6]	Differential I/O
DP7_M2C_P	PIN_AM1	B12		Mezzanine to Carrier	High Speed
DP7_M2C_N	PIN_AM3	B13	Input	receiver data pair[7]	Differential I/O

FMC+ Single-ended/differential signals

Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std						
LA00_P	PIN_CF19	G6	Bidir	FMC+ LA bank data[0]_p	Adjustable						
LA00_N	PIN_CC19	G7	Bidir	FMC+ LA bank data[0]_n	Adjustable						
LA01_P	PIN_CF22	D8	Bidir	FMC+ LA bank data[1]_p	Adjustable						
LA01_N	PIN_CH22	D9	Bidir	FMC+ LA bank data[1]_n	Adjustable						
LA02_P	PIN_CC22	H7	Bidir	FMC+ LA bank data[2]_p	Adjustable						
LA02_N	PIN_CA22	H8	Bidir	FMC+ LA bank data[2]_n	Adjustable						
LA03_P	PIN_CF28	G9	Bidir	FMC+ LA bank data[3]_p	Adjustable						
LA03_N	PIN_CC28	G10	Bidir	FMC+ LA bank data[3]_n	Adjustable						
LA04_P	PIN_CA31	H10	Bidir	FMC+ LA bank data[4]_p	Adjustable						
LA04_N	PIN_CC31	H11	Bidir	FMC+ LA bank data[4]_n	Adjustable						
Continued on the nex	t page			Continued on the next page							

Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std
LA05_P	PIN_CH31	D11	Bidir	FMC+ LA bank data[5]_p	Adjustable
LA05_N	PIN_CF31	D12	Bidir	FMC+ LA bank data[5]_n	Adjustable
LA06_P	PIN_CK8	C10	Bidir	FMC+ LA bank data[6]_p	Adjustable
LA06_N	PIN_CL6	C11	Bidir	FMC+ LA bank data[6]_n	Adjustable
LA07_P	PIN_CK11	H13	Bidir	FMC+ LA bank data[7]_p	Adjustable
LA07_N	PIN_CL8	H14	Bidir	FMC+ LA bank data[7]_n	Adjustable
LA08_P	PIN_CL14	G12	Bidir	FMC+ LA bank data[8]_p	Adjustable
LA08_N	PIN_CL11	G13	Bidir	FMC+ LA bank data[8]_n	Adjustable
LA09_P	PIN_CK17	D14	Bidir	FMC+ LA bank data[9]_p	Adjustable
LA09_N	PIN_CL17	D15	Bidir	FMC+ LA bank data[9]_n	Adjustable
LA10_P	PIN_CL20	C14	Bidir	FMC+ LA bank data[10]_p	Adjustable
LA10_N	PIN_CK20	C15	Bidir	FMC+ LA bank data[10]_n	Adjustable
LA11_P	PIN_CL23	H16	Bidir	FMC+ LA bank data[11]_p	Adjustable
LA11_N	PIN_CK26	H17	Bidir	FMC+ LA bank data[11]_n	Adjustable
LA12_P	PIN_BH38	G15	Bidir	FMC+ LA bank data[12]_p	Adjustable
LA12_N	PIN_BH41	G16	Bidir	FMC+ LA bank data[12]_n	Adjustable
LA13_P	PIN_BF57	D17	Bidir	FMC+ LA bank data[13]_p	Adjustable
LA13_N	PIN_BF53	D18	Bidir	FMC+ LA bank data[13]_n	Adjustable
LA14_P	PIN_BE46	C18	Bidir	FMC+ LA bank data[14]_p	Adjustable
 LA14_N	PIN_BF46	C19	Bidir	FMC+ LA bank data[14]_n	Adjustable
 LA15_P	PIN_BE64	H19	Bidir	FMC+ LA bank data[15] p	Adjustable
 LA15_N	PIN_BF64	H20	Bidir	FMC+ LA bank data[15]_n	Adjustable
LA16_P	PIN_BF50	G18	Bidir	FMC+ LA bank data[16]_p	Adjustable
 LA16_N	PIN_BE50	G19	Bidir	FMC+ LA bank data[16]_n	Adjustable
 LA17_P	PIN_BR41	D20	Bidir	FMC+ LA bank data[17]_p	Adjustable
 LA17_N	PIN_BU41	D21	Bidir	FMC+ LA bank data[17]_n	Adjustable
 LA18_P	PIN_BK49	C22	Bidir	FMC+ LA bank data[18]_p	Adjustable
LA18_N	PIN_BM49	C23	Bidir	FMC+ LA bank data[18]_n	Adjustable
 LA19_P	PIN_CK73	H22	Bidir	FMC+ LA bank data[19]_p	Adjustable
 LA19_N	PIN_CL73	H23	Bidir	FMC+ LA bank data[19]_n	Adjustable
LA20_P	PIN_CA38	G21	Bidir	FMC+ LA bank data[20]_p	Adjustable
LA20_N	PIN_BW38	G22	Bidir	FMC+ LA bank data[20]_n	Adjustable
LA21_P	PIN_BR38	H25	Bidir	FMC+ LA bank data[21]_p	Adjustable
LA21_N	PIN_BU38	H26	Bidir	FMC+ LA bank data[21]_n	Adjustable
LA22_P	PIN_CF49	G24	Bidir	FMC+ LA bank data[22]_p	Adjustable
LA22_N	PIN_CH49	G25	Bidir	FMC+ LA bank data[22]_n	Adjustable
LA23_P	PIN_BW49	D23	Bidir	FMC+ LA bank data[23]_p	Adjustable
LA23_N	PIN_CA49	D24	Bidir	FMC+ LA bank data[23]_n	Adjustable
LA24_P	PIN_CF52	H28	Bidir	FMC+ LA bank data[24]_p	Adjustable
LA24_N	PIN_CH52	H29	Bidir	FMC+ LA bank data[24]_n	Adjustable
LA25_P	PIN_CL51	G27	Bidir	FMC+ LA bank data[25]_p	Adjustable
LA25_N	PIN_CK54	G28	Bidir	FMC+ LA bank data[25]_n	Adjustable
LA26_P	PIN_BM52	D26	Bidir	FMC+ LA bank data[26]_p	Adjustable
LA26_N	PIN_BP52	D27	Bidir	FMC+ LA bank data[26]_n	Adjustable
Continued on the nex					
	,				

Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std
LA27_P	PIN_CC52	C26	Bidir	FMC+ LA bank data[27]_p	Adjustable
LA27_N	PIN_CA52	C27	Bidir	FMC+ LA bank data[27]_n	Adjustable
LA28_P	PIN_BP41	H31	Bidir	FMC+ LA bank data[28]_p	Adjustable
LA28_N	PIN_BM41	H32	Bidir	FMC+ LA bank data[28]_n	Adjustable
LA29_P	PIN_CK33	G30	Bidir	FMC+ LA bank data[29]_p	Adjustable
LA29_N	PIN_CL30	G31	Bidir	FMC+ LA bank data[29]_n	Adjustable
LA30_P	PIN_CK35	H34	Bidir	FMC+ LA bank data[30]_p	Adjustable
LA30_N	PIN_CL35	H35	Bidir	FMC+ LA bank data[30]_n	Adjustable
LA31_P	PIN_CK39	G33	Bidir	FMC+ LA bank data[31]_p	Adjustable
LA31_N	PIN_CL39	G34	Bidir	FMC+ LA bank data[31]_n	Adjustable
LA32_P	PIN_CK48	H37	Bidir	FMC+ LA bank data[32]_p	Adjustable
LA32_N	PIN_CL45	H38	Bidir	FMC+ LA bank data[32]_n	Adjustable
LA33_P	PIN_CL42	G36	Bidir	FMC+ LA bank data[33]_p	Adjustable
LA33_N	PIN_CK45	G37	Bidir	FMC+ LA bank data[33]_n	Adjustable

FMC+ Control and Management

Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std
FMC_I2C_SDA / MUX_I2C_SDA	PIN_F4	C31	Bidir	Serial Data Line	1.8 V
FMC_I2C_SCL / MUX_I2C_SCL	PIN_D4	C30	Bidir	Serial Clock Line	1.8 V
FMC_PRSNT	PIN_B39	H2	Input	FMC card presence indicator	3.3 V
PG_GROUP3	-	D1		Power Good from Carrier to Mezzanine	3.3 V

For detailed information about the I²C connection, please refer to the <u>I²C Structure</u> section.

4.3.4.2 CRUVI High-Speed Connectors

The AXE5-Eagle board features two CRUVI HS connectors. CRUVI is an open ecosystem, low-pin-count interface solution that enables the integration of a wide range of peripherals into the system, accommodating both high-speed signalling and support for low-speed device interfaces at the same time. CRUVI HS allows the connection of high-speed interfaces such as Gigabit Ethernet, camera, and other types of multimedia peripherals.

The AXE5-Eagle board provides 5.0 V, 3.3 V and VIO_CRUVI power through CRUVI HS port. The power control of the VIO_CRUVI power rail is managed by the U50 DCDC regulator. This rail powers the VADJ pins of J19 and J21 connectors, as well as the 3B I/O Bank of Agilex 5 SoC FPGA. The FPGA I/O standards of the CRUVI HS ports can be adjusted by configuring a switch position. The valid values of the VIO_CRUVI rail is 1.2 V or 1.3 V which can be adjusted via the S7 DIP switch on the AXE5-Eagle board. For detailed setting, please refer to Switch Settings section.

For custom add-on cards with CRUVI HS interface, the recommended counterpart for the connector is ST4-30-1.50-L-D-P from Samtec.

For hardware module mounting, use M2x6mm pan head Philips drive screw.

Below is the connection diagram and pinning information.

Figure 20 – CRUVI HS Connections

CRUVI HS CY Connection

Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std
CY_A0_P	PIN_T65	14	Bidir	HS Differential Data A[0]_p	Adjustable
CY_A0_N	PIN_P65	16	Bidir	HS Differential Data A[0]_n	Adjustable
CY_A1_P	PIN_P74	20	Bidir	HS Differential Data A[1]_p	Adjustable
CY_A1_N	PIN_T74	22	Bidir	HS Differential Data A[1]_n	Adjustable
CY_A2_P	PIN_M65	26	Bidir	HS Differential Data A[2]_p	Adjustable
CY_A2_N	PIN_K65	28	Bidir	HS Differential Data A[2]_n	Adjustable
CY_A3_P	PIN_V67	32	Bidir	HS Differential Data A[3]_p	Adjustable
CY_A3_N	PIN_T67	34	Bidir	HS Differential Data A[3]_n	Adjustable
CY_A4_P	PIN_M67	38	Bidir	HS Differential Data A[4]_p	Adjustable
CY_A4_N	PIN_K67	40	Bidir	HS Differential Data A[4]_n	Adjustable
CY_A5_P	PIN_F65	44	Bidir	HS Differential Data A[5]_p	Adjustable
CY_A5_N	PIN_D65	46	Bidir	HS Differential Data A[5]_n	Adjustable
Continued on the	next page				

Board	FPGA Pin	Conn. Pin	Pin	Description	I/O Std
Reference	No.	No.	Func.		
CY_B0_P	PIN_M74	15	Bidir	HS Differential Data B[0]_p	Adjustable
CY_B0_N	PIN_K74	17	Bidir	HS Differential Data B[0]_n	Adjustable
CY_B1_P	PIN_V77	21	Bidir	HS Differential Data B[1]_p	Adjustable
CY_B1_N	PIN_T77	23	Bidir	HS Differential Data B[1]_n	Adjustable
CY_B2_P	PIN_D74	27	Bidir	HS Differential Data B[2]_p	Adjustable
CY_B2_N	PIN_F74	29	Bidir	HS Differential Data B[2]_n	Adjustable
CY_B3_P	PIN_K77	33	Bidir	HS Differential Data B[3]_p	Adjustable
CY_B3_N	PIN_M77	35	Bidir	HS Differential Data B[3]_n	Adjustable
CY_B4_P	PIN_F77	39	Bidir	HS Differential Data B[4]_p	Adjustable
CY_B4_N	PIN_H77	41	Bidir	HS Differential Data B[4]_n	Adjustable
CY_B5_P	PIN_H67	45	Bidir	HS Differential Data B[5]_p	Adjustable
CY_B5_N	PIN_F67	47	Bidir	HS Differential Data B[5]_n	Adjustable
CY_HSI	PIN_B56	10	Input	HS Serial In	Adjustable
CY_HSIO	PIN_A70	2	Bidir	HS Serial Data I/O	Adjustable
CY_HSO	PIN_B70	6	Output	HS Serial Out	Adjustable
CY_RESET	PIN_A60	8	Output	Serial Reset	Adjustable
CY_SMB_ALERT	PIN_CG134	3	Input	SMBus interrupt signal	3.3 V
CY_SMB_SDA	PIN_CD135	5	Bidir	SMBus Data Line	3.3 V
CY_SMB_SCL	PIN_CD134	7	Bidir	SMBus Data Clock Line	3.3 V
CY_REFCLK	PIN_CH128	11	Input	Clock Input	3.3 V
5V	-	60	PWR	5V power to the connector	-
3.3V	-	4, 9	PWR	3.3V power to the connector	-
VIO_CRUVI	-	36	PWR	HS IO Bank voltage	-
GND	2	12, 13, 18, 19, 24, 25, 30, 31, 37, 42, 43, 48, 49, 54	PWR	Ground to the connector	-
n.c.		1, 50, 51, 52, 53, 55, 56, 57, 58, 59	-	Not connected	-

CRUVI HS CX Connection

Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std	
CX_A0_P	PIN_D44	14	Bidir	HS Differential Data A[0]_p	Adjustable	
CX_A0_N	PIN_F44	16	Bidir	HS Differential Data A[0]_n	Adjustable	
CX_A1_P	PIN_H58	20	Bidir	HS Differential Data A[1]_p	Adjustable	
CX_A1_N	PIN_F58	22	Bidir	HS Differential Data A[1]_n	Adjustable	
CX_A2_P	PIN_F47	26	Bidir	HS Differential Data A[2]_p	Adjustable	
CX_A2_N	PIN_H47	28	Bidir	HS Differential Data A[2]_n	Adjustable	
CX_A3_P	PIN_M47	32	Bidir	HS Differential Data A[3]_p	Adjustable	
CX_A3_N	PIN_K47	34	Bidir	HS Differential Data A[3]_n	Adjustable	
Continued on the next page						

Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std
CX_A4_P	PIN_V47	38	Bidir	HS Differential Data A[4]_p	Adjustable
CX_A4_N	PIN_T48	40	Bidir	HS Differential Data A[4]_n	Adjustable
CX_A5_P	PIN_K44	44	Bidir	HS Differential Data A[5]_p	Adjustable
CX_A5_N	PIN_M44	46	Bidir	HS Differential Data A[5]_n	Adjustable
CX_B0_P	PIN_F55	15	Bidir	HS Differential Data B[0]_p	Adjustable
CX_B0_N	PIN_D55	17	Bidir	HS Differential Data B[0]_n	Adjustable
CX_B1_P	PIN_M58	21	Bidir	HS Differential Data B[1]_p	Adjustable
CX_B1_N	PIN_K58	23	Bidir	HS Differential Data B[1]_n	Adjustable
CX_B2_P	PIN_K55	27	Bidir	HS Differential Data B[2]_p	Adjustable
CX_B2_N	PIN_M55	29	Bidir	HS Differential Data B[2]_n	Adjustable
CX_B3_P	PIN_P55	33	Bidir	HS Differential Data B[3]_p	Adjustable
CX_B3_N	PIN_T55	35	Bidir	HS Differential Data B[3]_n	Adjustable
CX_B4_P	PIN_V58	39	Bidir	HS Differential Data B[4]_p	Adjustable
CX_B4_N	PIN_T58	41	Bidir	HS Differential Data B[4]_n	Adjustable
CX_B5_P	PIN_P44	45	Bidir	HS Differential Data B[5]_p	Adjustable
CX_B5_N	PIN_T44	47	Bidir	HS Differential Data B[5]_n	Adjustable
CX_HSI	PIN_A63	10	Input	HS Serial In	Adjustable
CX_HSIO	PIN_B45	2	Bidir	HS Serial Data I/O	Adjustable
CX_HSO	PIN_A48	6	Output	HS Serial Out	Adjustable
CX_RESET	PIN_A51	8	Output	Serial Reset	Adjustable
CX_SMB_ALERT	PIN_BR112	3	Input	SMBus interrupt signal	3.3 V
CX_SMB_SDA	PIN_BU109	5	Bidir	SMBus Data Line	3.3 V
CX_SMB_SCL	PIN_BR109	7	Bidir	SMBus Data Clock Line	3.3 V
CX_REFCLK	PIN_BM109	11	Input	Clock Input	3.3 V
5V	- 9	60	PWR	5V power to the connector	-
3.3V	-	4,9	PWR	3.3V power to the connector	-
VIO_CRUVI	- 6	36	PWR	HS IO Bank voltage	-
GND		12, 13, 18, 19, 24, 25, 30, 31, 37, 42, 43, 48, 49, 54	PWR	Ground to the connector	-
n.c.	-	1, 50, 51, 52, 53, 55, 56, 57, 58, 59	-	Not connected	-

4.3.4.3 CRUVI Low-Speed Connectors

CRUVI LS is the low-speed version of the CRUVI ecosystem that provides a connection surface for the simple peripheral modules. It features a simple layout with standard pins for power, ground, and several digital I/O signals. It offers an array of ready-to-use modules for easy prototyping and extends functional capabilities. This compact interface simplifies the connection of sensors, communication devices, and other components.

Delivering power to the mezzanine board, the AXE5-Eagle board offers both 5.0 V and 3.3 V via the CRUVI LS port.

The AXE5-Eagle development board provides two CRUVI LS connection interfaces.

For custom add-on cards with CRUVI LS interface, the recommended counterpart for the connector is TMMH-106-04-F-DV-A-M from Samtec.

For hardware module mounting, use M2x6mm pan head Philips drive screw.

Figure 21 - CRUVI LS Connections

CRUVI LS B Connection

Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std
В0	PIN_BE115	3	Bidir	CRUVI LS Data [0]	3.3 V
B1	PIN_BF111	5	Bidir	CRUVI LS Data [1]	3.3 V
B2	PIN_BF107	7	Bidir	CRUVI LS Data [2]	3.3 V
B3	PIN_BE107	9	Bidir	CRUVI LS Data [3]	3.3 V
B4	PIN_BF120	4	Bidir	CRUVI LS Data [4]	3.3 V
B5	PIN_BE111	8	Bidir	CRUVI LS Data [5]	3.3 V
B6	PIN_BF115	1	Bidir	CRUVI LS Data [6]	3.3 V
B7	PIN_BH118	2	Bidir	CRUVI LS Data [7]	3.3 V
5.0V	-	12	PWR	5V power to the connector	-
3.3V	-	10	PWR	3.3V power to the connector	-
GND	-	8	PWR	Ground to the connector	-
n.c.	_	11	-	Not connected	-

CRUVI LS C Connection

Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std
C0	PIN_BK109	3	Bidir	CRUVI LS Data [0]	3.3 V
C1	PIN_BF104	5	Bidir	CRUVI LS Data [1]	3.3 V
C2	PIN_BM118	7	Bidir	CRUVI LS Data [2]	3.3 V
C3	PIN_BK118	9	Bidir	CRUVI LS Data [3] 3.3	
C4	PIN_BP112	4	Bidir	CRUVI LS Data [4]	3.3 V
C5	PIN_BH109	8	Bidir	CRUVI LS Data [5]	3.3 V
C6	PIN_BM112	1	Bidir	CRUVI LS Data [6] 3.3 V	
C7	PIN_BK112	2	Bidir	CRUVI LS Data [7] 3.3 V	
5.0V	-	12	PWR	5V power to the connector -	
3.3V	-	10	PWR	3.3V power to the connector -	
GND	-	8	PWR	Ground to the connector -	
n.c.	-	11	-	Not connected -	

4.3.4.4 MIPI D-PHY

MIPI interface is a high-speed serial interface standard designed for efficient data transfer between components like cameras, displays, and sensors. The Intel Agilex 5 FPGA and SoCs support native MIPI IP D-PHY. The MIPI D-PHY implements MIPI transmit and receive interfaces, enabling the Camera Serial Interface (CSI-2) and the Display Serial Interface (DSI-2) at a data rate of 2.5 Gbps per lane.

The AXE5-Eagle board does not have standalone connection for MIPI interface, it is accessible through the CRUVI HS ports. For more information about CRUVI HS connections, please refer to the <u>CRUVI High-Speed Connectors</u> section.

Figure 22 – MIPI D-PHY Connections

CRUVI HS CY Connection

MIPI	Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std
	CY_B3_P	PIN_K77	33	Bidir	MIPI CSI-2 Data Lane [0]	Adjustable
	CY_B3_N	PIN_M77	35	Biuli	MIFT C31-2 Data Latte [0]	Aujustable
	CY_B4_P	PIN_F77	39	Bidir	 MIPI CSI-2 Data Lane [1]	Adjustable
	CY_B4_N	PIN_H77	41	Biuli	MIFI C3I-2 Data Lalle [1]	Aujustable
CSI-2	CY_A4_P	PIN_M67	38	Bidir	 MIPI CSI-2 Data Lane [2]	Adiustable
CS	CY_A4_N	PIN_K67	40	Diuli	MIPI CSI-2 Data Lane [2]	Adjustable
	CY_B5_P	PIN_H67	45	Bidir	MIDI CCI 2 Deta Lega [2]	Adjustable
	CY_B5_N	PIN_F67	47	Biair	MIPI CSI-2 Data Lane [3]	
	CY_B2_P	PIN_D74	27	D: J:	MIDI CCI 2 Clask Lang	Adjustable
	CY_B2_N	PIN_F74	29	Bidir	MIPI CSI-2 Clock Lane	
	CY_A1_P	PIN_P74	20	D:d:v	MIDI DCI 2 Data I ana [0]	Adjustable
	CY_A1_N	PIN_T74	22	Bidir	MIPI DSI-2 Data Lane [0]	
	CY_B1_P	PIN_V77	21	D: 4:	MIDI DCI 2 D . I MI	Adjustable
	CY_B1_N	PIN_T77	23	Bidir	MIPI DSI-2 Data Lane [1]	
DSI-2	CY_A3_P	PIN_V67	32	Bidir	MIPI DSI-2 Data Lane [2]	
DS	CY_A3_N	PIN_T67	34			Adjustable
	CY_A2_P	PIN_M65	26	D: I:	MIDLDCL 2 Data Lava [2]	A -1:+-1-1 -
	CY_A2_N	PIN_K65	28	Bidir	MIPI DSI-2 Data Lane [3]	Adjustable
	CY_B0_P	PIN_M74	15	Didie	MIDLDCL 3 Clock Land	A diversals! -
	CY_B0_N	PIN_K74	17	Bidir	MIPI DSI-2 Clock Lane	Adjustable

CRUVI HS CX Connection

MIPI	Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std
	CX_B3_P	PIN_P55	33	D: J:	MIDLOCL 2 Data Lava [0]	A diversalata
	CX_B3_N	PIN_T55	35	Bidir	MIPI CSI-2 Data Lane [0]	Adjustable
	CX_B4_P	PIN_V58	39	Bidir	MIPI CSI-2 Data Lane [1]	A -1:+- - -
	CX_B4_N	PIN_T58	41	Bluir	MIPI CSI-2 Data Lane [1]	Adjustable
CSI-2	CX_A4_P	PIN_V47	38	Bidir	MIPI CSI-2 Data Lane [2]	Adjustable
S	CX_A4_N	PIN_T48	40	Diuii	MIPI CSI-2 Data Lalle [2]	Aujustable
	CX_B5_P	PIN_P44	45	Bidir	MIPI CSI-2 Data Lane [3]	Adjustable
	CX_B5_N	PIN_T44	47	Didii	MIFI CSI-2 Data Lane [5]	
	CX_B2_P	PIN_K55	27	7 Bidir	MIPI CSI-2 Clock Lane	Adjustable
	CX_B2_N	PIN_M55	29	ыші		
	CX_A1_P	PIN_H58	20	Bidir	MIPI DSI-2 Data Lane [0]	Adjustable
	CX_A1_N	PIN_F58	22	Biuli	MIFI D31-2 Data Lalle [0]	
	CX_B1_P	PIN_M58	21	Bidir	MIPI DSI-2 Data Lane [1]	Adjustable
	CX_B1_N	PIN_K58	23	Didii	MIF I D3I-2 Data Lane [1]	
DSI-2	CX_A3_P	PIN_M47	32	Bidir	 MIPI DSI-2 Data Lane [2]	Adjustable
20	CX_A3_N	PIN_K47	34	Biuli	MIF1 D31-2 Data Lalle [2]	Adjustable
	CX_A2_P	PIN_F47	26	Bidir	MIPI DSI-2 Data Lane [3]	Adjustable
	CX_A2_N	PIN_H47	28	ווטום	MILL DOI-5 Data Falle [3]	Aujustable
	CX_B0_P	PIN_F55	15	Bidir	MIPI DSI-2 Clock Lane	Adjustable
	CX_B0_N	PIN_D55	17	Diuli	MILL D31-2 CLOCK Falle	Aujustable

4.3.5 Miscellaneous Interfaces

The AXE5-Eagle development kit provides various miscellaneous interfaces, such as ADC/DAC modules for analog signal conversion, user LEDs offering visual indications, and user buttons for user input, enabling interactions and signal processing capabilities.

4.3.5.1 Analog Interface

The AXE5-Eagle board is equipped with Analog Devices' AD5592R multipurpose chip which is an 8-channel, 12-bit, configurable analog-to-digital, digital-to-analog converter with GPIO capabilities. It allows for handling both analog and digital data, supporting various configurations for sensing, measuring, and control functions.

Figure 23 - ADC/DAC Connections

Board Reference	FPGA Pin No.	Conn. Pin No.	Pin Func.	Description	I/O Std	
ADDA_RST	PIN_A17	-	Output	Reset	3.3 V	
ADDA_SYNC	PIN_A14	-	Output	Synchronization	3.3 V	
ADDA_CLK	PIN_B20	-	Output	Serial Clock	3.3 V	
ADDA_DIN	PIN_A20	-	Output	Data Input	3.3 V	
ADDA_DOUT	PIN_A23	-	Input	Data Output	3.3 V	
ADDA_IO0		4	Analog	Analog I/O Channel [0]	-	
ADDA_IO1	-	6	Analog	Analog I/O Channel [1]	-	
ADDA_IO2	-	8	Analog	Analog I/O Channel [2]	-	
ADDA_IO3	-	10	Analog	Analog I/O Channel [3]	/O Channel [3] -	
ADDA_IO4	-	12	Analog	g Analog I/O Channel [4]		
ADDA_IO5	-	14	Analog	g Analog I/O Channel [5] -		
ADDA_IO6	-	16	Analog	Analog I/O Channel [6] -		
ADDA_IO7	-	18	Analog	Analog I/O Channel [7]		
3.3V	-	2	PWR	3.3V power to the connector	-	
GND	-	1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20	PWR	Ground to the connector	-	

4.3.5.2 User-defined LEDs

The AXE5-Eagle board integrates four RGB LEDs directly connected to the FPGA, offering extensive user control over colours and illumination. Furthermore, there are two green user-controllable LEDs linked to the HPS, providing additional visual indicators. Each LED is individually addressable, offering precise control and illumination options, thereby enabling diverse applications and customizable visual feedback within the Agilex 5 SoC FPGA applications.

Figure 24 – LED Connections

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
LED0R	PIN_CK125	Output	Red colour of D1 LED	3.3 V
LED0G	PIN_CL125	Output	put Green colour of D1 LED 3	
LED0B	PIN_BR118	Output	t Blue colour of D1 LED 3.3	
LED1R	PIN_CF118	Output Red colour of D2 LED		3.3 V
LED1G	PIN_BW118	Output	ut Green colour of D2 LED 3.3 V	
Continued on the next page				

Board				./
Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
LED1B	PIN_CA118	Output	Blue colour of D2 LED	3.3 V
LED2R	PIN_CL128	Output	Red colour of D3 LED	3.3 V
LED2G	PIN_CK128	Output	Green colour of D3 LED	3.3 V
LED2B	PIN_CL130	Output	Blue colour of D3 LED	3.3 V
LED3R	PIN_CF128	Output	Red colour of D4 LED	3.3 V
LED3G	PIN_CH132	Output	Green colour of D4 LED	3.3 V
LED3B	PIN_CG135	Output	Blue colour of D4 LED	3.3 V
GPIO_LED0	PIN_R134	Output	HPS GPIO LED	1.8 V
GPIO_LED1	PIN_AG115	Output	HPS GPIO LED	1.8 V

4.3.5.3 User Buttons

The AXE5-Eagle board has seven push buttons connected to the SoC FPGA that allows user to interact with the Agilex 5 device. The buttons have different functions:

- 2 buttons connected to the HPS as user-defined push buttons
- 2 buttons connected to the FPGA as user-defined push buttons
- 1 button dedicated to HPS reset
- 1 button dedicated to FPGA reset
- 1 button for reconfiguration FPGA purpose

Figure 25 – Push Button Connections

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
PB0	PIN_N135	Input	HPS user button	1.8 V
PB1	PIN_AK120	Input	HPS user button	1.8 V
PB2	PIN_B30	Input	FPGA user button	3.3 V
PB3	PIN_A30	Input	FPGA user button	3.3 V
FPGA_RST	PIN_CK134	Input	FPGA reset	3.3 V
HPS_COLD_RST	PIN_CH109	Input	HPS reset	1.8 V
NCONFIG	PIN_BU99	Input	nCONFIG trigger	1.8 V

4.4 Power Distribution System

The AXE5-Eagle development kit relies on a comprehensive power distribution system to efficiently manage power delivery to its components. This system ensures a coordinated flow of power, overseeing critical functions such as power sequencing, thermal protection, and the hierarchical power tree structure. These functionalities collectively ensure optimal performance and reliability across the AXE5-Eagle board operations.

4.4.1 Power Tree

The AXE5-Eagle is designed with a flexible power system that accommodates multiple power source options, including PCIe connectors and standalone power inputs. Employing diverse configurations with compact, small-footprinted power modules ensures reliable power delivery to the board and the connected mezzanine cards.

The following figure below shows the power tree structure on the AXE5-Eagle development board.

Figure 26 – Power Tree Structure

4.4.2 Power Sequence

Intel Agilex 5 SoC FPGA requires power-up sequencing. The AXE5-Eagle power system organizes power rails into power groups and enables them in the appropriate sequence for the Agilex 5 device.

Figure 27 – Power Sequence

4.4.3 Thermal Protection

The AXE5-Eagle board is equipped with a heatsink and cooling fan to manage the Agilex 5 device power dissipation, and it is designed to operate in a typical laboratory environment with an ambient temperature of approximately 25 °C. However, the cooling system interfaces with the Agilex 5 device, allowing for parameterization based on application-specific needs and requirements.

The board is equipped not only with internal temperature diodes within various components, but also with separate, standalone temperature sensors. These sensors continuously monitor ambient temperatures and directly interface with the cooling system in addition to the FPGA.

Figure 28 – Temperature Sensors locations

Figure 29 – Cooling solution

Board Reference	FPGA Pin No.	Pin Func.	Description	I/O Std
FAN_ALERT	PIN_A39	Bidir	ALERT input of fan controller	3.3 V
FAN_FF_FS	PIN_B35	Bidir	Bidir Fan-Failure Output and Full-Speed Input of fan controller	
FAN_SHDN	PIN_CF121	Input Shutdown output for over temperature		3.3 V
FPGA_TEMP_P	PIN_BE100	lnnu+	Input Temperature Sensing Diode	
FPGA_TEMP_N	PIN_BF100	прис		
I2C0_SDA	PIN_U134	Bidir	Serial Data Line of I2C0	1.8 V
I2C0_SCL	PIN_AL120	Bidir	Serial Clock Line of I2CO 1.	

For detailed information about the I²C connection, please refer to the $\underline{I^2C\ Structure}$ section.

Chapter 5 - Software and Driver Installation

The using and programming of the AXE5-Eagle development board require various program installation of which are detailed in this section.

First, it is necessary to create your <u>Basic Intel Account</u> if you do not already have one. This account is required for using the software, including licensing. Below, you will find step-by-step guides on installing the software and drivers for Windows operating systems.

5.1 Installing Quartus Prime Software

- 5.1.1 Go to the Intel Download Center: Link.
- 5.1.2 Make sure that **Quartus Prime Pro** and **24.1** are selected, or your preferred version³ (highlighted in red).

- 5.1.3 Download the following files from the "Individual Files" tab (highlighted in yellow) and save them in the same folder:
 - Intel Quartus Prime Pro Edition Part 1 (included Nios II EDS)
 - Intel Quartus Prime Pro Edition Part 2
 - Questa Intel FPGA and Starter Edition
 - Intel Agilex 5 device support

If the download page redirects you to the Software License Agreement page, accept the Legal Disclaimer, and the downloading will start automatically.

Commented [SB15]: Verify this section, update links, all images, and correct versions, guide, footnote, if it is necessary

³ Please note, that Agilex 5 SoC FPGA is supported from version 24.1 in Quartus Prime Pro Edition.

Devices

- 5.1.4 After the download is finished, run the Quartus Prime installer.
- 5.1.5 When prompted to select the components, the installer will automatically detect the Agilex 5 device support and Questa packages when they are in the same folder. Make sure these components are selected:

5.1.6 Finish the installation of the Quartus Pro and proceeded to the next section to install Arrow USB Programmer2 to be able to connect to the AXE5-Eagle board.

5.2 Installing Arrow USB Programmer2

The AXE5-Eagle board uses version 2 of the Arrow USB Programmer2 programming solution, that is an FTDI FT2232H Hi-Speed USB controller plus a programmer DLL. Since this FTDI USB controller is a very common standard device, usually no specific drivers are needed to make the AXE5-Eagle work.

5.2.1 Download the appropriate version⁴ of Arrow USB Programmer2 for AXE5-Eagle from Trenz Electronic Wiki page or alternatively this direct <u>link.</u>

⁴ Modules produced after June 2020 are no longer compatible with older drivers. Please install driver version 2.4 or newer.

- 5.2.2 After downloading the file, run the installer to install the Arrow USB Programmer2. The setup executable installs the programmer DLL and adds some keys to the registry of the
- 5.2.3 Make sure that the Arrow USB Programmer2 module is connected to the AXE5-Eagle board correctly.

5.2.4 After connecting the AXE5-Eagle board to the PC, two unknown devices might appear in the "Other devices" section of device manager of the PC.

Windows usually automatically finds the appropriate drivers for these devices. After some time, the "Other devices" section should be empty. Instead, two USB Serial Converters should be listed in the section "USB Serial Bus controllers":

Furthermore, a USB Serial Port should be listed in the "Ports (COM & LPT)" section.

Note that the number of the port will most probably be different from the one shown here.

In case Windows does not automatically find the appropriate drivers, go to http://www.ftdichip.com/Drivers/D2XX.htm to download the setup executable to install the required drivers.

5.3 License

Quartus Lite does not require a license, its use is completely free. However, even though Questa Starter Edition can be used free of charge, you need to generate a free license for it.

- 5.3.1 Log in to Intel FPGA Self-Service Licensing Center
- 5.3.2 Go to Sign up for **Evaluation or Free Licenses** tab.
- 5.3.3 Select Questa*-Intel® FPGA Starter Edition SW-QUESTA option.
- 5.3.4 Set the seats and accept the terms of use this license.

Commented [SB16]: Check Agilex 5 license properties under Quartus Pro, and modify this section accordingly..

- 5.3.5 Click on Get License button.
- 5.3.6 In the pop-up window select **+New computer** under Create a New Computer.
- 5.3.7 In the Create Computer window, fill in the fields with your computer details and click on Generate License.

The license file will be provided by email, or you can also download it under Intel® FPGA Self-Service Licensing Center.

Chapter 6 - Getting Started with AXE5-Eagle Board

6.1 Creating a new Chroma Cycle Project with AXE5-Eagle

<TBD>

6.2 Building a Blinky Project with AXE5-Eagle

<TBD>

6.2.1 Block Diagram

The final system that will be built with the following steps will look as follows when complete:

6.2.2 Components of the Design

<TBD>

6.2.3 Catalog IP

<TBD>

6.2.4 Analysis and Synthesis

The next step is to run Analysis and Synthesis to ensure that there are no errors in the design. To run Analysis and synthesis open $\mathbf{Processing} \to \mathbf{Start} \to \mathbf{Analysis}$ and $\mathbf{Synthesis}$ or clicking button on the top toolbar.

There should be no errors. If there are errors, they should be fixed before continuing and Analysis and Synthesis run again.

www.arrow.com Page | 61 February 2024

6.2.5 Adding Timing Constraints

Timing Constraints tell the Quartus what the timing requirements for this design are. Timing Constraints are required in every CPLD/FPGA design.

<TBD>

6.2.6 Pinning Assignments

Before the design can be downloaded to the FPGA, pin assignments that match the hardware on the board are needed. There are different ways to do this such as the Pin Planner, Assignment Editor, and text files.

The following steps will show one of these ways, the Pin Planner.

<TBD>

6.2.7 Compiling the Design

<TBD>

6.2.8 Reading the Compilation Report

After successfully compiling the design, a Compilation Report should appear as shown above:

This report is very useful with a lot of information about the design. Last message state that the design was fully constrained, Timing Analysis and compilation successful, but there is more to it:

- In the Flow Summary, it can be seen how many logic elements the whole design took, along with total PLLs, registers, pins, etc.
- In Analysis and Synthesis, more detailed information about the resources used can be seen in Resource Usage Summary, as well how many LEs were used for each component in Resource Utilization by Entity.
- In the Fitter, more detailed information about the pins and their banks can be seen.
- Timing Analyzer shows various timing information concerning the design, as well as if the
 design has met the timing requirements. In this case timing requirements were met, but in
 other cases that requirements might not be met, could be solved by going over the
 information provided in the reports inside this folder. Most notable reports in this folder are
 the maximum frequency the design can achieve, setup and hold slack, unconstrained paths in
 case they were missed, etc.

Chapter 7 - Configuring the AXE5-Eagle Board

After successfully compiling your project, there should new files be generated. In case of Agilex 5 devices, only the .sof file is generated automatically.

7.1 Configure the FPGA in JTAG mode

7.1.1 Connect your AXE5-Eagle board to your PC using an USB cable. Since the Arrow USB Blaster should be already installed, the Window's Device Manager should display the following entries are highlighted in red (port number may differ depending on your PC). If the Arrow USB Blaster is not installed, please refer to Chapter 5.2 for installing the drivers

7.1.2 Open the Quartus Prime Programmer from $Tools \rightarrow Programmer$ or double-click on Program Device (Open Programmer) from the Tasks pane.

www.arrow.com Page | 64 February 2024

7.1.3 The programmer should add the programming file automatically. After opening the program this should be the view of the new window:

- 7.1.4 If the hardware or programming file was not found automatically, continue with the steps below to add the missing parts. Otherwise, continue from step 7.1.12.
- 7.1.5 To add hardware, click **Hardware Setup...** and double click **Arrow-USB-Blaster** entry in the Hardware Setup tab. The Currently selected hardware should now show Arrow-USB-Blaster [USB0] (depending on your PC, the USB port number may vary).

- 7.1.6 Click "Close".
- 7.1.7 Make sure the hardware setup is **Arrow-USB-Blaster [USB0]** and the mode is **JTAG**. If the Mode is not set to JTAG, click on it, and select JTAG from the drop-down menu.

7.1.8 To add the device, click "Auto Detect" on the left side of the Programmer.

7.1.9 Select <TBD> device and click "OK" on the Select Device window.

7.1.10 To add programming file, double click <none> to choose programming file.

- 7.1.11 Navigate to roject_directory>/output_files/ in your compilation directory. Select and open the top.sof file.
- 7.1.12 Make sure the Programmer shows the correct file and correct part in the JTAG chain and check the Program/Configure checkbox.

www.arrow.com Page | 66 February 2024

7.1.13 Click Start to program the AXE5-Eagle. When the configuration is complete, the Progress bar should reach 100% (Successful).

The design is now programmed to the FPGA.

Note that turning off and then on the FPGA will result into losing its configuration.

7.2 QSPI flash memory programming

<TBD>

7.2.1 Programming File generation

<TBD>

7.2.2 Device Programming

<TBD>

7.3 Testing the Design

<TBD>

Chapter 8 - Common Issues and Fixes

1) **Issue:** In some rare cases when using Windows 10 operating system, the programmer DLL is not properly loaded/unloaded, causing the Quartus Programmer to not detect the Arrow USB Programmer2.

Solution: Restart the Altera JTAG Server using the Services application of Windows.

Chapter 9 - Appendix

9.1 Revision History

Version	Change Log	Date of Change
V0.3	Preliminary Version release	09/02/2024

Commented [SB18]: Do not forget to update this table

9.2 Legal Disclaimer

ARROW ELECTRONICS

EVALUATION BOARD LICENSE AGREEMENT

By using this evaluation board or kit (together with all related software, firmware, components, and documentation provided by Arrow, "Evaluation Board"), You ("You") are agreeing to be bound by the terms and conditions of this Evaluation Board License Agreement ("Agreement"). Do not use the Evaluation Board until You have read and agreed to this Agreement. Your use of the Evaluation Board constitutes Your acceptance of this Agreement.

PURPOSE

The purpose of this evaluation board is solely intended for evaluation purposes. Any use of the Board beyond these purposes is on your own risk. Furthermore, according the applicable law, the offering Arrow entity explicitly does not warrant, guarantee or provide any remedies to you with regard to the board.

LICENSE

Arrow grants You a non-exclusive, limited right to use the enclosed Evaluation Board offering limited features only for Your evaluation and testing purposes in a research and development setting. Usage in a live environment is prohibited. The Evaluation Board shall not be, in any case, directly or indirectly assembled as a part in any production of Yours as it is solely developed to serve evaluation purposes and has no direct function and is not a finished product.

EVALUATION BOARD STATUS

The Evaluation Board offers limited features allowing You only to evaluate and test purposes. The Evaluation Board is not intended for consumer or household use. You are not authorized to use the Evaluation Board in any production system, and it may not be offered for sale or lease, or sold, leased or otherwise distributed for commercial purposes.

OWNERSHIP AND COPYRIGHT

Title to the Evaluation Board remains with Arrow and/or its licensors. This Agreement does not involve any transfer of intellectual property rights ("IPR) for evaluation board. You may not remove any copyright or other proprietary rights notices without prior written authorization from Arrow or it licensors.

RESTRICTIONS AND WARNINGS

Before You handle or use the Evaluation Board, You shall comply with all such warnings and other instructions and employ reasonable safety precautions in using the Evaluation Board. Failure to do so may result in death, personal injury, or property damage.

You shall not use the Evaluation Board in any safety critical or functional safety testing, including but not limited to testing of life supporting, military or nuclear applications. Arrow expressly disclaims any responsibility for such usage which shall be made at Your sole risk.

WARRANTY

Arrow warrants that it has the right to provide the evaluation board to you. This warranty is provided by Arrow in lieu of all other warranties, written or oral, statutory, express or implied, including any warranty as to merchantability, non-infringement, fitness for any particular purpose, or uninterrupted or error-free operation, all of which are expressly disclaimed. The evaluation board is provided "as is" without any other rights or warranties, directly or indirectly.

You warrant to Arrow that the evaluation board is used only by electronics experts who understand the dangers of handling and using such items, you assume all responsibility and liability for any improper or unsafe handling or use of the evaluation board by you, your employees, affiliates, contractors, and designees.

LIMITATION OF LIABILITIES

In no event shall Arrow be liable to you, whether in contract, tort (including negligence), strict liability, or any other legal theory, for any direct, indirect, special, consequential, incidental, punitive, or exemplary damages with respect to any matters relating to this agreement. In no event shall arrow's liability arising out of this agreement in the aggregate exceed the amount paid by you under this agreement for the purchase of the evaluation board.

IDENTIFICATION

You shall, at Your expense, defend Arrow and its Affiliates and Licensors against a claim or action brought by a third party for infringement or misappropriation of any patent, copyright, trade secret or other intellectual property right of a third party to the extent resulting from (1) Your combination of the Evaluation Board with any other component, system, software, or firmware, (2) Your modification of the Evaluation Board, or (3) Your use of the Evaluation Board in a manner not permitted under this Agreement. You shall indemnify Arrow and its Affiliates and Licensors against and pay any resulting costs and damages finally awarded against Arrow and its Affiliates and Licensors or agreed to in any settlement, provided that You have sole control of the defense and settlement of the claim or action, and Arrow cooperates in the defense and furnishes all related evidence under its control at Your expense. Arrow will be entitled to participate in the defense of such claim or action and to employ counsel at its own expense.

RECYCLING

The Evaluation Board is not to be disposed as an urban waste. At the end of its life cycle, differentiated waste collection must be followed, as stated in the directive 2002/96/EC. In all the countries belonging to the European Union (EU Dir. 2002/96/EC) and those following differentiated recycling, the Evaluation Board is subject to differentiated recycling at the end of its life cycle, therefore: It is forbidden to dispose the Evaluation Board as an undifferentiated waste or with other domestic wastes. Consult the local authorities for more information on the proper disposal channels. An incorrect Evaluation Board disposal may cause damage to the environment and is punishable by the law.