MINISTÈRE DE L'EDUCATION NATIONALE ET DE L'ALPHABETISATION

REPUBLIQUE DE COTE D'IVOIRE

MON ECOLE A LA MAISON

2^{nde} C MATHEMATIQUES

Durée: 10 heures Code:

COMPETENCE 3 Traiter une situation relative à la géométrie du plan, à la géométrie

de l'espace et aux transformations du plan

THEME 1 Géométrie du plan

Leçon10: PRODUIT SCALAIRE

A-SITUATION D'APPRENTISSAGE

Pendant les cours de mécanique dans la classe de seconde, le professeur donne des forces appliquées à un véhicule représenté par le point A dans la figure ci-dessous.

Il demande aux élèves de calculer le travail de chaque force $(\overrightarrow{R2}, \overrightarrow{R1} \ et \ \overrightarrow{P})$ pour un déplacement de A à B avec AB = 10 m.

L'un d'eux affirme qu'il suffit de calculer le produit des vecteurs forces et du vecteur déplacement.

Ensemble; les élèves font des recherches sur le produit scalaire de deux vecteurs.

B- CONTENU DE LA LECON

I) Produit scalaire de deux vecteurs

1- Définition

Soit \vec{u} et \vec{v} deux vecteurs; on appelle produit scalaire de \vec{u} par \vec{v} le nombre réel noté \vec{u} . \vec{v} défini par :

- $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \cos(\widehat{\vec{u} \cdot \vec{v}}) \operatorname{si} \vec{u} \neq \vec{0} \operatorname{et} \vec{v} \neq \vec{0}$
- $\vec{u} \cdot \vec{v} = 0$ si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$

 \vec{u} . \vec{v} se lit « \vec{u} scalaire \vec{v} »

Exemples

a)
$$\vec{u}$$
 et \vec{v} sont deux vecteurs tels que $\|\vec{u}\| = 2\sqrt{3}$; $\|\vec{v}\| = 4$ et $\cos(\widehat{\vec{u}}\ \vec{v}) = \frac{\sqrt{3}}{2}$
 $\vec{u} \cdot \vec{v} = \|\vec{u}\| \times \|\vec{v}\| \cos(\widehat{\vec{u}}\ \vec{v})$
 $= 2\sqrt{3} \times 4 \times \frac{\sqrt{3}}{2} = 12$

b)
$$\|\vec{u}\| = 2\sqrt{3}$$
; $\|\vec{v}\| = 4$ et mes $(\hat{\vec{u}}; \hat{\vec{v}}) = \frac{\pi}{2}$

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \cos(\frac{\pi}{2}) = 8\sqrt{3} \times 0 = 0$$

Remarque

Pour trois points A, B et C distincts

$$\overrightarrow{AB}$$
. \overrightarrow{AC} = AB x AC x cos (\widehat{BAC})

En effet,
$$\|\overrightarrow{AB}\| = AB$$
, $\|\overrightarrow{AC}\| = AC$ et $\cos(\overrightarrow{AB}; \overrightarrow{AC}) = \cos(\overrightarrow{BAC})$

2 Propriétés

Pour tous vecteurs \vec{u} et \vec{v} on a:

1-
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

2-
$$|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| \times ||\vec{v}||$$

- 3- \vec{u} et \vec{v} sont colinéaires et :
- de meme sens si et seulement si \vec{u} . $\vec{v} = ||\vec{u}|| \times ||\vec{v}||$
- de sens contraire si et seulement si \vec{u} . $\vec{v} = -\|\vec{u}\| \times \|\vec{v}\|$

Exercice de fixation

Calcule le produit scalaire $\vec{u} \cdot \vec{v}$ dans chacun des cas ci-dessous.

- 1) $\|\vec{u}\| = 2$; $\|\vec{v}\| = 6$; et les vecteurs \vec{u} et \vec{v} sont colinéaires et de même sens.
- 2) $\|\vec{u}\| = 15$; $\|\vec{v}\| = 7$; et les vecteurs \vec{u} et \vec{v} sont colinéaires et de sens contraires

SOLUTION

- 1) $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| = 2 \times 6 = 12$
- 2) $\vec{u} \cdot \vec{v} = -\|\vec{u}\| \times \|\vec{v}\| = -15 \times 7 = -105$

3- Carré scalaire

a) Définition

Le carré scalaire d'un vecteur \vec{u} est défini par $\vec{u}.\vec{u}$ on le note \vec{u}^2 .

b) Propriété

Pour tout vecteur \vec{u} on a : $\vec{u}^2 = ||\vec{u}||^2$

Exercice de fixation

On donne \vec{v} avec $||\vec{v}|| = \sqrt{5}$

Calcule \vec{v}^2

SOLUTION

$$\vec{v}^2 = \|\vec{v}\|^2 = \sqrt{5}^2 = 5$$

Remarque: pour tous points distincts A et B, on a: $\overrightarrow{AB}^2 = \|\overrightarrow{AB}\|^2 = AB^2$

b) Autre expression du produit scalaire

a) Propriété 1

Pour tous points A, B et C tels que A \neq B On a \overrightarrow{AB} . $\overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AH}$ où H est le projeté orthogonal de C sur la droite (AB)

Exercice de fixation

ABCD est un carré de coté 4cm.

Calcule \overrightarrow{AB} . \overrightarrow{AC} et \overrightarrow{AB} . \overrightarrow{AD}

SOLUTION

$$\overrightarrow{AB}$$
. $\overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AB} = AB \times AB = 16$.

Soit I le milieu du segment [AB]

$$\overrightarrow{AB}.\overrightarrow{AD} = \overrightarrow{AB} \times \overrightarrow{AA} = -AB \times AA = -4 \times 0 = 0$$

b Propriété 2

Soit A, B, C et D quatre points tels que $A \neq B$.

 $\overrightarrow{AB}.\overrightarrow{CD} = \overrightarrow{AB} \times \overrightarrow{HK}$ où H et K sont les projetés

Orthogonaux respectifs des points C et D sur la droite (AB)

Exercice de fixation

Dans la figure ci-dessous, ABC est un triangle. ABIJ est un parallélogramme et BC=4 Calcule le produit scalaire suivant .

- 1) $\overrightarrow{BC}.\overrightarrow{BA}$
- 2) $\overrightarrow{BC}.\overrightarrow{JC}$
- 3) $\overrightarrow{BC}.\overrightarrow{AJ}$
- 4) $\overrightarrow{BC}.\overrightarrow{BJ}$
- 5) $\overrightarrow{BC}.\overrightarrow{CI}$

SOLUTION

- 1) $\overrightarrow{BC} \cdot \overrightarrow{BA} = \overrightarrow{BC} \cdot \overrightarrow{BO} = 4 \times 2 = 8$
- 2) $\overrightarrow{BC}.\overrightarrow{JC} = \overline{BC}.\overline{BC} = 16$
- 3) $\overrightarrow{BC}.\overrightarrow{AJ} = \overline{BC}.\overline{OB} = -8$
- 4) $\overrightarrow{BC} \cdot \overrightarrow{BJ} = \overline{BC} \cdot \overline{BB} = 4 \times 0 = 0$
- 5) $\overrightarrow{BC} \cdot \overrightarrow{CI} = \overrightarrow{BC} \cdot \overrightarrow{CK} = -4 \times 6 = -24$

3. Propriétés du produit scalaire

4.1 Vecteurs orthogonaux

a- Propriété

Pour tous vecteurs \vec{u} et \vec{v} on a:

 \vec{u} et \vec{v} sont orthogonaux si et seulement si \vec{u} . $\vec{v} = 0$

b- Conséquence

- Soit (D) et (D') deux droites de vecteurs directeurs respectifs \vec{u} et \vec{v} on a :

(D)
$$\perp$$
 (D') \iff $\vec{u} \cdot \vec{v} = 0$

- Soit les points A, B, C, et D avec $A \neq B$ et $C \neq D$

On a (AB)
$$\perp$$
 (CD) $\iff \overrightarrow{AB} \cdot \overrightarrow{CD} = 0$

- Soit les points A, B et M avec A≠B

M appartient au cercle (φ) de diametre [AB] si et seulement si \overrightarrow{MA} . $\overrightarrow{MB} = 0$

Exercice de fixation

ABCD est un carré. Calcule le produit scalaire \overrightarrow{AC} . \overrightarrow{DB}

- **SOLUTION**
- \overrightarrow{AC} . $\overrightarrow{DB} = 0$ car (AC) \perp (DB).

4.2 Opération sur les produits scalaires

Propriétés

Pour tous vecteurs \vec{u} , \vec{v} , \vec{t} , \vec{w} du plan et pour tout nombre réel k on a :

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

$$(\mathbf{k}\vec{u})\ \vec{v} = \vec{u}\ (\mathbf{k}.\vec{v}) = \mathbf{k}(\vec{u}\ .\ \vec{v})$$

$$(\vec{u} + \vec{w}) \cdot \vec{v} = \vec{u} \cdot \vec{v} + \vec{w} \cdot \vec{v}$$

$$(\vec{u} + \vec{v})(\vec{w} + \vec{t}) = \vec{u} \cdot \vec{w} + \vec{u} \cdot \vec{t} + \vec{v} \cdot \vec{w} + \vec{v} \cdot \vec{t}$$

$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u}\vec{v} + \vec{v}^2$$

$$(\vec{u} - \vec{v})^2 = \vec{u}^2 - 2\vec{u}\vec{v} + \vec{v}^2$$

$$(\vec{u} - \vec{v})((\vec{u} + \vec{v}) = \vec{u}^2 - \vec{v}^2)$$

Exercice de fixation

On considère les vecteurs \vec{u} et \vec{v} tels que $||\vec{u}|| = 2$; $||\vec{v}|| = 3$ et \vec{u} . $\vec{v} = 1$ Démontre que $(2\vec{u} + \vec{v})(\vec{u} - \vec{v}) = -2$

SOLUTION

$$(2\vec{u} + \vec{v})(\vec{u} - \vec{v}) = 2\vec{u}^2 - 2\vec{u} \vec{v} - \vec{v}^2 + \vec{u} \vec{v}$$

= 2 \times 2^2 - 2 \times 1 - 3^2 + 1
= -2

4.3 Produit scalaire et norme

Propriété

Pour tous vecteurs \vec{u} et \vec{v} ,

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$$

4. Relation métrique dans un triangle

5.1 Produit scalaire dans un triangle

Propriété

Soit A, B et C trois points non alignés. On a : \overrightarrow{AB} . $\overrightarrow{AC} = \frac{1}{2}(AC^2 + AB^2 - BC^2)$

Remarque

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = \frac{1}{2}(BC^2 + BA^2 - AC^2)$$

$$\overrightarrow{CA} \cdot \overrightarrow{CB} = \frac{1}{2}(CA^2 + CB^2 - AB^2)$$

Exercice de fixation

Soit ABC un triangle tels que AB = 5 ; AC = 6 et BC = 3 Calcule \overrightarrow{AB} . \overrightarrow{AC}

В

SOLUTION

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$$
$$= \frac{1}{2}(25 + 36 - 9)$$
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 26$$

5.2 Théorème d'Al Kashi

Propriété

Soit ABC un triangle quelconque.

Posons BC = a, AC = b, AB = c puis
$$\hat{A} = \widehat{BAC}$$
; $\hat{B} = \widehat{ABC}$ et $\hat{C} = \widehat{ACB}$ on a: $a^2 = b^2 + c^2 - 2bc \cos \hat{A}$; $b^2 = a^2 + c^2 - 2ac \cos \hat{B}$; $c^2 = a^2 + b^2 - 2ab \cos \hat{C}$

Exercice de fixation

ABC est un triangle tels que AB = 8 ; AC = 3 et mes $\widehat{BAC} = \frac{\pi}{3}$. Calcule BC

SOLUTION

$$BC^{2} = AB^{2} + AC^{2} - 2 \times AB \times AC \times \cos \overline{BAC}$$

$$= 64 + 9 \cdot 2 \times 8 \times 3\cos \frac{\pi}{3}$$

$$BC^{2} = 49 \text{ donc BC} = 7$$

5.3 <u>Caractéristique d'un triangle rectangle</u> <u>Propriété</u>

Soit ABC triangle, H pied de la hauteur issue de A.

Les affirmations suivantes sont équivalentes

- ABC est un triangle en A
- $\bullet \quad BC^2 = AB^2 + AC^2$
- $BA^2 = \overline{BH} \times \overline{BC}$
- $HA^2 = \overline{HB} \times \overline{HC}$

Exercice de fixation

ABC est un triangle n'ayant pas d'angle obtus et H le pied de la hauteur issue de A. On donne AB = 6 ; BC=9 ; BH=4

Justifie que le triangle ABC est rectangle.

SOLUTION

On a : $AB^2 = 36$ et $\overline{BH} \times \overline{BC} = 4 \times 9 = 36$. Donc $AB^2 = \overline{BH} \times \overline{BC}$ d'où le triangle ABC est un triangle rectangle en A.

6. Produit scalaire de vecteurs connaissant leurs coordonnées

6.1 Expression du produit scalaire dans une base orthonormée

Propriété

Soit $(\vec{\iota}, \vec{\jmath})$ une base orthonormée et \vec{u} et \vec{v} deux vecteurs Si \vec{u} et \vec{v} ont pour coordonnées respectives (x;y) et (x';y') dans cette base alors \vec{u} . $\vec{v} = xx' + yy'$

Exercice de fixation

Le plan est rapporté à un repère orthonormé $(0,\vec{l},\vec{j})$. Dans chacun des cas ci-dessous, calcule le produit scalaire \vec{u} . \vec{v}

1-
$$\vec{u}\binom{2}{-3}$$
 et $\vec{v}\binom{-5}{2}$
2- $\vec{u} = (1-\sqrt{2})\vec{i} + (2-\sqrt{3})\vec{j}$ et $\vec{v} = (1+\sqrt{2})\vec{i} + (2+\sqrt{3})\vec{j}$
SOLUTION
1- $\vec{u} \cdot \vec{v} = -5 \times 2 - 3 \times 2 = -16$
2- $\vec{u} \cdot \vec{v} = (1-\sqrt{2})(1+\sqrt{2}) + (2-\sqrt{3})(2+\sqrt{3})$
= 1-2+4-3
= 0

C-Situation complexe

Le père d'une famille partage un terrain de forme carrée à ses trois enfants. Pour éviter le conflit entre les jumeaux, il décide que la parcelle de l'aîné, élève en classe de 2ndc soit entre celles des jumeaux. La figure ci-contre illustre ce partage.

L'ainé curieux voudrait connaître la mesure de. l'angle θ à 10^{-2} . pour cela il s'adresse au géomètre qui lui demande de calculer le produit scalaire \overrightarrow{AI} . \overrightarrow{AJ} . ne sachant pas comment procédé il te sollicite

A l'aide d'une démarche argumentée basée de tes connaissances en mathématiques, répond sa préoccupation

SOLUTION

Soit a le coté du carré ABCD (a est un nombre réel strictement positif)

J'exprime les vecteurs \overrightarrow{AI} et \overrightarrow{AJ} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AD}

On
$$a : \overrightarrow{AI} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}$$

 $\overrightarrow{AJ} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AB}$

Je calcule de deux manières le produit scalaire \overrightarrow{AI} . \overrightarrow{AJ}

$$\overrightarrow{AI}.\overrightarrow{AJ} = \left(\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}\right)\left(\overrightarrow{AD} + \frac{1}{2}\overrightarrow{AB}\right)$$

$$\overrightarrow{AI}.\overrightarrow{AJ} = \overrightarrow{AB}.\overrightarrow{AD} + \frac{1}{2}\overrightarrow{AB}.\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}.\overrightarrow{AD} + \frac{1}{4}\overrightarrow{AD}.\overrightarrow{AB}$$

$$\overrightarrow{AI}.\overrightarrow{AJ} = 0 + \frac{1}{2}a^2 + \frac{1}{2}a^2 + 0 \quad \overrightarrow{AB}.\overrightarrow{AD} = 0 \text{ car (AB) et (AD) sont perpendiculaire en A}$$

$$\overrightarrow{AI}.\overrightarrow{AJ} = a^2 \quad (1)$$

D'autre part:

$$\overrightarrow{AI}.\overrightarrow{AJ} = AI \times AJ \times \cos(\widehat{IAJ})$$

En appliquant la propriété de Pythagore au triangle ABI rectangle en I, on a : $AI^2 = a^2 + \frac{a^2}{4}$

Donc
$$AI^2 = \frac{5a^2}{4}$$
 soit $AI = \frac{a\sqrt{5}}{2}$

De même
$$AJ = \frac{a\sqrt{5}}{2}$$

De même
$$AJ = \frac{a\sqrt{5}}{2}$$

Donc $\overrightarrow{AI}.\overrightarrow{AJ} = \frac{5a^2}{4} \times \cos\theta$ (2)
Je détermine une valeur approchée de θ

De (1) et (2) on déduit que
$$\frac{5a^2}{4} \times \cos \theta = a^2$$

On a
$$\frac{5}{4} \times \cos \theta = 1$$

Donc
$$\cos \theta = \frac{4}{5} = 0.8$$

$$\theta = 36,87 \operatorname{car} \theta \in \left]0; \frac{\pi}{2}\right[\text{ d'après la figure.} \right]$$

Donc une valeur approchée de θ à 10^{-2} près est $36,87^{\circ}$

D.EXERCICES D'APPLICATION

EXERCICE 1

Ecris le numéro d'un élément de l'affirmation de l'ensemble A suivi de la lettre qui correspond à un seul élément de l'ensemble B

Théorème d'AL KASHI 1 Produit scalaire dans un triangle connaissant les cotés 2 Théorème de la médiane 3 Carré scalaire Définition du scalaire du vecteur \overrightarrow{AB} par le vecteur \overrightarrow{AC} 5

Α.	AB×AC× cos BAC
В.	\overrightarrow{AC} . \overrightarrow{AC}
C .	$BC^2 = AC^2 + AB^2 - 2AB.AC.\cos\widehat{A}$
D .	$BC^2 = AB^2 + AC^2$
Ε.	$AB^2 + AC^2 = 2AA'^2 + \frac{BC^2}{2}$

В

Α

SOLUTION

1 C

2D

3 E

4A

5B

EXERCICE 2

Réponds par VRAI si l'affirmation est vraie ou FAUX si elle est fausse

- 1°) Le produit scalaire \overrightarrow{AB} . \overrightarrow{AC} a le même signe que $\cos \widehat{BAC}$
- 2°) Si les vecteurs \vec{u} et \vec{v} sont colinéaires et de même sens alors $\vec{u} \cdot \vec{v} = -\|\vec{u}\| \cdot \|\vec{v}\| \cdot \dots$
- 3°) $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$ signifie que $\overrightarrow{AB} \perp \overrightarrow{AC}$
- 4°) Soit $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ dans une base orthonormée $(\overrightarrow{t}, \overrightarrow{J})$. On a: $\overrightarrow{u} \cdot \overrightarrow{v} = xx' yy'$

SOLUTION

- 1°) VRAI
- 2°) FAUX
- 3°) VRAI
- 4°) FAUX

EXERCICES DE RENFORCEMENT

Exercice 3

 \vec{u} et \vec{v} sont deux vecteurs.

Démontre que :

1)
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$$

1)
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$$

2) $\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$
3) $\|\|\vec{u}\| - \|\vec{v}\|\| \le \|\vec{u} - \vec{v}\|$

3)
$$|||\vec{u}|| - ||\vec{v}||| \le ||\vec{u} - \vec{v}||$$

Exercice 4

On donne trois points A(1;2), B(4;-3) et C(-1;3) dans le plans rapporté à un repère orthonormé. Détermine une valeur approchée à 10^{-1} près de la mesure de l'angle \widehat{BAC} .

SOLUTION

Je calcule le couple des coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} et les distances AB et AC

$$\overrightarrow{AB}$$
 $\begin{pmatrix} 4-1 \\ -3-2 \end{pmatrix}$ \overrightarrow{AB} $\begin{pmatrix} 3 \\ -5 \end{pmatrix}$ donc AB = $\sqrt{3^2 + (-5)^2} = \sqrt{34}$

$$\overrightarrow{AC} \begin{pmatrix} -1 - 1 \\ 3 - 2 \end{pmatrix}$$
 $\overrightarrow{AB} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ donc $AC = \sqrt{(-2)^2 + (1)^2} = \sqrt{5}$

Je calcule \overrightarrow{AB} . \overrightarrow{AC} de deux manières

$$\overrightarrow{AB}.\overrightarrow{AC} = 3 \times (-2) + (-5) \times 1 = -6 - 5 = -11 \text{ alors } \overrightarrow{AB}.\overrightarrow{AC} = -11 (1)$$

 $\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos \overrightarrow{BAC} = \sqrt{170} \cos \overrightarrow{BAC} (2)$

Je détermine une valeur approchée à 10^{-1} de la mesure de l'angle \widehat{BAC} .

De (1) et (2) on a :
$$\sqrt{170} \cos \widehat{BAC} = -11$$

donc
$$\cos \widehat{BAC} = \frac{-11}{\sqrt{170}} = \frac{-11\sqrt{170}}{170} \approx -084$$

d'où mes \widehat{BAC} . ≈ 147,5°

Exercice 5

Soit ABC un triangle, tels que AB= $\sqrt{7}$ AC = 2 et BC = 3

- 1 a- Calcule $\cos \widehat{BAC}$
 - b justifie que \overrightarrow{AB} . $\overrightarrow{AC} = 1$
- 1) On considère le point M tel que

$$6\overrightarrow{AM} = 2\overrightarrow{AB} + \overrightarrow{AC}$$

- a) Calcule \overrightarrow{AM} . \overrightarrow{AC}
- b) Démontre que les droites (MB) et (AC) sont perpendiculaires.

SOLUTION

Soit ABC un triangle, tels que AB= $\sqrt{7}$ AC = 2 et BC = 3

1 a- je Calcule $\cos \widehat{BAC}$

D'après le théorème de AL KASHI,
$$3^2 = 2^2 + (\sqrt{7})^2 - 2\sqrt{7} \times \cos \hat{A}$$

Soit $\cos \widehat{BAC} = \frac{2}{2\sqrt{7}} = \frac{1}{\sqrt{7}} = \frac{\sqrt{7}}{7}$

b - justifie que
$$\overrightarrow{AB}$$
. $\overrightarrow{AC} = 1$

on a:
$$\overrightarrow{AB}$$
. $\overrightarrow{AC} = \frac{AC^2 + AB^2 - BC^2}{2}$

$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{4+7-9}{2} = 1$$

Donc \overrightarrow{AB} . $\overrightarrow{AC} = 1$

2 On considère le point M tel que

$$6\overrightarrow{AM} = 2\overrightarrow{AB} + \overrightarrow{AC}$$

a) Je Calcule \overrightarrow{AM} . \overrightarrow{AC}

$$6\overrightarrow{AM}.\overrightarrow{AC} = (2\overrightarrow{AB} + \overrightarrow{AC}).\overrightarrow{AC}$$

$$6\overrightarrow{AM}.\overrightarrow{AC} = 2\overrightarrow{AB}.\overrightarrow{AC} + \overrightarrow{AC}.\overrightarrow{AC}$$

$$6\overrightarrow{AM}.\overrightarrow{AC} = 2 + 4$$

$$6\overrightarrow{AM}.\overrightarrow{AC}=6$$

$$\overrightarrow{AM}.\overrightarrow{AC}=1$$

b) je Démontre que les droites (MB) et (AC) sont perpendiculaires

$$\overrightarrow{MB}.\overrightarrow{AC} = (\overrightarrow{MA} + \overrightarrow{AB}).\overrightarrow{AC}$$

$$\overrightarrow{MB}$$
, $\overrightarrow{AC} = \overrightarrow{MA}$, $\overrightarrow{AC} + \overrightarrow{AB}$, \overrightarrow{AC}

$$\overrightarrow{MB}.\overrightarrow{AC} = -\overrightarrow{AM}.\overrightarrow{AC} + \overrightarrow{AB}.\overrightarrow{AC}$$

$$\overrightarrow{MB}.\overrightarrow{AC} = -1 + 1$$

 \overrightarrow{MB} . $\overrightarrow{AC} = 0$ alors les droites (MB) et (AC) sont perpendiculaires.

Exercice 6

On admet la Propriété suivante :

ABC un triangle et A' le milieu du coté [BC] on a :

1-
$$AB^2 + AC^2 = 2AA'^2 + \frac{BC^2}{2}$$

2-
$$\overrightarrow{AB}$$
. $\overrightarrow{AC} = AA'^2 - \frac{BC^2}{4}$

Application

On considère la figure ci-contre

- a) Calcule la longueur AA'
- b) Calcule \overrightarrow{AB} . \overrightarrow{AC}
- c) Calcule la longueur des deux autres médianes **SOLUTION**

a)
$$2AA'^2 + \frac{BC^2}{2} = AB^2 + AC^2$$

 $AA'^2 = \frac{1}{2}(AB^2 + AC^2 - \frac{BC^2}{2})$
 $AA'^2 = \frac{1}{2}(8^2 + 9^2 - \frac{10^2}{2})$

Donc AA'=
$$\sqrt{\frac{95}{2}}$$

b)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AA'^2} - \frac{BC^2}{4} = \frac{95}{2} - \frac{100}{4} = 22,5$$

EXERCICES D'approfondissement

Exercice 7

Soit ABC un triangle

On pose a=BC; b=AC; c=AB

On appelle P son demi-périmètre et S son aire. On se propose de calculer S en fonction de a, b et c

1 /a- Démontre que cos
$$\hat{A} = \frac{b^2 + c^2 + a^2}{2bc}$$

b – En déduire $sin^2 \hat{A}$ en fonction de a, b et c

2/ Démontre que S=
$$\sqrt{p(p-a)(p-b)(p-c)}$$

SOLUTION

1) a- Je démontre que $\cos \hat{A} = \frac{b^2 + c^2 - a^2}{2bc}$

Je considère le triangle ABC tel que a=BC; b=AC; c=AB

D'après le théorème d'AL KASHI, on a : $a^2 = b^2 + c^2 - 2bc \cos \hat{A}$

Donc cos
$$\hat{A} = \frac{b^2 + c^2 - a^2}{2hc}$$

b - En déduire $sin^2 \hat{A}$ en fonction de a, b et c

on a:
$$\sin^2 \hat{A} = 1 - \cos^2 \hat{A} = (1 + \cos \hat{A}) (1 - \cos \hat{A})$$

$$1 + \cos \hat{A} = 1 + \frac{b^2 + c^2 - a^2}{2bc}$$

$$1 + \cos \hat{A} = \frac{2bc + b^2 + c^2 - a^2}{2bc}$$

$$1 + \cos \hat{A} = \frac{(b+c)^2 - a^2}{2bc}$$

$$1 + \cos \hat{A} = \frac{(b+c+a)(b+c-a)}{2bc}$$

Calculons 1- 1+
$$\cos \hat{A}$$

$$1 - \cos \hat{A} = 1 - \frac{b^2 + c^2 - a^2}{2bc}$$

$$1-\cos \hat{A} = \frac{2bc-b^2-c^2+a^2}{2bc}$$

1-
$$\cos \hat{A} = \frac{a^2 - (b-c)^2}{2bc}$$

$$1-\cos \hat{A} = \frac{(a+b-c)(a-b+c)}{2bc}$$

$$\sin^2 \hat{A} = (1 + \cos \hat{A}) (1 - \cos \hat{A})$$

$$sin^2 \hat{A} = \frac{(b+c+a)(b+c-a)}{2bc} \times \frac{(a+b-c)(a-b+c)}{2bc}$$

$$sin^2 \hat{A} = \frac{(b+c+a)(b+c-a)(a+b-c)(a-b+c)}{4b^2c^2}$$

D'après l'enoncé, a + b + c = 2

Donc:
$$b + c - a = 2p - 2a = 2(p-a)$$

$$a + c - b = 2p - 2b = 2(p-b)$$

$$a + b - c = 2p - 2c = 2(p-c)$$

$$sin^{2} \hat{A} = \frac{2p \times 2(p-a) \times 2(p-b) \times 2(p-c)}{4b^{2}c^{2}} = \frac{16p(p-a)(p-b)(p-c)}{4b^{2}c^{2}}$$
$$= \frac{4p(p-a)(p-b)(p-c)}{b^{2}c^{2}}$$

Donc
$$\sin^2 \hat{A} = \frac{4p(p-a)(p-b)(p-c)}{h^2c^2}$$

Donc $sin^2 \hat{A} = \frac{4p(p-a)(p-b)(p-c)}{b^2c^2}$ 2/ je Démontre que $S = \sqrt{p(p-a)(p-b)(p-c)}$

S étant l'aire du triangle ABC

On a
$$S = \frac{1}{2}bc \times \sin \hat{A}$$

$$\sin^2 \hat{A} = \frac{4p(p-a)(p-b)(p-c)}{b^2c^2}$$
 alors $\sin \hat{A} = \sqrt{\frac{4p(p-a)(p-b)(p-c)}{b^2c^2}} = \frac{2}{bc}\sqrt{p(p-a)(p-b)(p-c)}$

Donc
$$S = \frac{1}{2}bc \times \frac{2}{bc}\sqrt{p(p-a)(p-b)(p-c)}$$

Donc $S = \sqrt{p(p-a)(p-b)(p-c)}$