STAT 576 Bayesian Analysis

Lecture 7: Bayesian Computation

Chencheng Cai

Washington State University

- ▶ Suppose we have x_1, \ldots, x_n i.i.d. from a distribution p(x).
- Let f(x) be a measurable function with finite expectation under p.

- ▶ Suppose we have x_1, \ldots, x_n i.i.d. from a distribution p(x).
- Let f(x) be a measurable function with finite expectation under p.
- ▶ By law of large numbers, we have

$$\bar{f}_n = \frac{1}{n} \left(f(x_1) + f(x_2) + \dots + f(x_n) \right) \xrightarrow{P} \mathbb{E}[f(x)] = \int f(x) p(x) d\mu(x)$$

- ▶ Suppose we have x_1, \ldots, x_n i.i.d. from a distribution p(x).
- Let f(x) be a measurable function with finite expectation under p.
- ▶ By law of large numbers, we have

$$\bar{f}_n = \frac{1}{n} \left(f(x_1) + f(x_2) + \dots + f(x_n) \right) \xrightarrow{P} \mathbb{E}[f(x)] = \int f(x) p(x) d\mu(x)$$

By central limit theorem, we have

$$\sqrt{n}\left(\bar{f}_n - \mathbb{E}[f(x)]\right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2),$$

where

$$\sigma^2 = \operatorname{Var}[f(x)] = \int (f(x) - \mathbb{E}[f(x)])^2 p(x) d\mu(x)$$

Now we consider the reverse.

▶ If we want to compute the following integral:

$$I = \int_D f(x)d\mu(x)$$

Now we consider the reverse.

▶ If we want to compute the following integral:

$$I = \int_{D} f(x)d\mu(x)$$

- ► Method 1:
 - Generate $x^{(1)}, \ldots, x^{(n)}$ i.i.d. and uniformly from D.
 - Estimate the integral by the sample mean:

$$\hat{I}_n = |D| \frac{f(x^{(1)}) + f(x^{(2)}) + \dots + f(x^{(n)})}{n}$$

Now we consider the reverse.

▶ If we want to compute the following integral:

$$I = \int_D f(x)d\mu(x)$$

- Method 1:
 - Generate $x^{(1)}, \ldots, x^{(n)}$ i.i.d. and uniformly from D.
 - Estimate the integral by the sample mean:

$$\hat{I}_n = |D| \frac{f(x^{(1)}) + f(x^{(2)}) + \dots + f(x^{(n)})}{n}$$

Variance:

$$\operatorname{var}[\hat{I}_n] = \frac{|D|^2}{n} \operatorname{Var}_{\mathsf{unif}}[f(x)] = \frac{|D|^2}{n} \int_D \left(f(x) - \frac{I}{|D|} \right)^2 \frac{1}{|D|} d\mu(x)$$

- ► Method 2:
 - ▶ Generate $x^{(1)}, \dots, x^{(n)}$ i.i.d. from a non-uniform distribution p(x) on D.

- ► Method 2:
 - Generate $x^{(1)}, \ldots, x^{(n)}$ i.i.d. from a non-uniform distribution p(x) on D.
 - Estimate the integral by the sample mean:

$$\hat{I}_n = \frac{1}{n} \sum_{i=1}^n \frac{f(x^{(i)})}{p(x^{(i)})}$$

- ► Method 2:
 - Generate $x^{(1)}, \ldots, x^{(n)}$ i.i.d. from a non-uniform distribution p(x) on D.
 - Estimate the integral by the sample mean:

$$\hat{I}_n = \frac{1}{n} \sum_{i=1}^n \frac{f(x^{(i)})}{p(x^{(i)})}$$

Variance:

$$\operatorname{Var}[\hat{I}_n] = \frac{1}{n} \operatorname{Var}_p \left[\frac{f(x)}{p(x)} \right] = \frac{1}{n} \int_D \left(\frac{f(x)}{p(x)} - I \right)^2 p(x) d\mu(x)$$

- ► Method 2:
 - ▶ Generate $x^{(1)}, \ldots, x^{(n)}$ i.i.d. from a non-uniform distribution p(x) on D.
 - **E**stimate the integral by the sample mean:

$$\hat{I}_n = \frac{1}{n} \sum_{i=1}^n \frac{f(x^{(i)})}{p(x^{(i)})}$$

Variance:

$$\operatorname{Var}[\hat{I}_n] = \frac{1}{n} \operatorname{Var}_p \left[\frac{f(x)}{p(x)} \right] = \frac{1}{n} \int_D \left(\frac{f(x)}{p(x)} - I \right)^2 p(x) d\mu(x)$$

- \triangleright p(x) is known as the **sampling** distribution.
- ▶ The sampling distribution that minimizes the variance of \hat{I}_n is

$$p(x) \propto f(x)$$

$$I = \int_{D} f(x)d\mu(x)$$

► The optimal sampling distribution is

$$q(x) = \frac{f(x)}{I}$$

$$I = \int_D f(x)d\mu(x)$$

▶ The optimal sampling distribution is

$$q(x) = \frac{f(x)}{I}$$

 \blacktriangleright For any sampling distribution p(x), we have

$$\operatorname{Var}[\hat{I}_n] = \frac{I^2}{n} \underbrace{\int_D \left(\frac{q(x)}{p(x)} - 1\right)^2 p(x) d\mu(x)}_{\chi^2 \text{-divergence: } \chi^2(q||p)}$$

$$I = \int_D f(x)d\mu(x)$$

▶ The optimal sampling distribution is

$$q(x) = \frac{f(x)}{I}$$

ightharpoonup For any sampling distribution p(x), we have

$$\operatorname{Var}[\hat{I}_n] = \frac{I^2}{n} \underbrace{\int_D \left(\frac{q(x)}{p(x)} - 1\right)^2 p(x) d\mu(x)}_{\chi^2 \text{-divergence: } \chi^2(q||p)}$$

- ▶ The variance of the Monte Carlo estimator depends on the χ^2 divergence between the sampling distribution and the optimal one.
- In practice, q(x) is not always tractable. We should choose tractable p(x) that is close to q(x).

We want to compute the following integral

$$\int_0^1 \left(1 - 2|x - 0.5|\right) dx$$

Method 1: draw samples from unif[0, 1].

```
f <- function(x) {1 - 2*abs(x-0.5)}
n = 20
r = 100

That_unif = rep(0, r)
for(i in 1:r) {
    x = runif(n)
    That_unif[i] = mean(f(x))
}</pre>
```

$$\int_0^1 (1 - 2|x - 0.5|) \, dx$$

 $\textbf{Method 1 + vectorization}: \ \mathsf{draw \ samples \ from \ } unif[0,1].$

$$\int_0^1 (1 - 2|x - 0.5|) \, dx$$

Method 1 + vectorization: draw samples from unif[0,1].

```
n = 20
r = 100

x = matrix(runif(n*r), ncol = r)
Ihat_unif = colMeans(f(x))
hist(Ihat_unif)
```

- ▶ Runtime without vectorization: 0.346 ms
- Runtime with vectorization: 0.025 ms

$$\int_0^1 (1 - 2|x - 0.5|) \, dx$$

Method 1 + **vectorization**: draw samples from unif[0,1].

```
n = 20
r = 100

x = matrix(runif(n*r), ncol = r)
Ihat_unif = colMeans(f(x))
hist(Ihat_unif)
```

- ▶ Runtime without vectorization: 0.346 ms
- ▶ Runtime with vectorization: 0.025 ms

Histogram of Ihat unif 20 -requency 10 2 0.45 0.50 0.55 0.60 0.65 Ihat unif

$$\int_0^1 (1 - 2|x - 0.5|) \, dx$$

Method 2: draw samples from Beta(2,2).

$$\int_0^1 (1 - 2|x - 0.5|) \, dx$$

Method 2: draw samples from Beta(2,2).

$$\int_0^1 (1 - 2|x - 0.5|) \, dx$$

Method 2: draw samples from Beta(2, 2).

$$\int_0^1 (1 - 2|x - 0.5|) \, dx$$

Method 3: draw samples from Beta(2,2) with more MC samples.

$$\int_0^1 \left(1 - 2|x - 0.5|\right) dx$$

Method 3: draw samples from Beta(2,2) with more MC samples.

n = 100
x = matrix(rbeta(n*r, 2, 2), ncol=r)
That_beta = colMeans(f(x) / dbeta(x, 2, 2))
hist(Ihat_beta)

Quasi Monte Carlo Methods

- Monte Carlo method: draw $x^{(1)}, \ldots, x^{(n)}$ i.i.d. from a sampling distribution.
- ▶ Quasi Monte Carlo method: pick $x^{(1)}, \ldots, x^{(n)}$ to represent the sampling distribution.

Quasi Monte Carlo Methods

- Monte Carlo method: draw $x^{(1)}, \ldots, x^{(n)}$ i.i.d. from a sampling distribution.
- ▶ Quasi Monte Carlo method: pick $x^{(1)}, \ldots, x^{(n)}$ to represent the sampling distribution.
- ► The samples in the quasi Monte Carlo method are deterministic and are assume to be "uniform" in the whole space.
- ▶ The sample sequence $x^{(1)}, x^{(2)}, \ldots$ is called **low discrepancy sequence** (e.g. Sobel sequence).

$$\int_0^1 (1 - 2|x - 0.5|) \, dx$$

Method 4: QMC samples from unif[0, 1].

$$\int_0^1 (1 - 2|x - 0.5|) \, dx$$

Method 4: QMC samples from unif[0, 1].

```
x = (seq(n)-0.5)/n
That_unif_qmc = mean(f(x))
print(Ihat_unif_qmc)
```

The outcome is 0.5.

$$\int_0^1 (1 - 2|x - 0.5|) \, dx$$

Method 5: QMC samples from Beta(2,2).

$$\int_0^1 (1 - 2|x - 0.5|) \, dx$$

Method 5: QMC samples from Beta(2,2).

```
x = (seq(n)-0.5)/n
y = qbeta(x, 2, 2)
Ihat_beta_qmc = mean(f(y)/dbeta(y, 2, 2))
print(Ihat_beta_qmc)
```

The outcome is 0.50002.

► Most currently used random number generators on modern computers are **pseudo** random number generators (PRNG).

- Most currently used random number generators on modern computers are pseudo random number generators (PRNG).
- PRNG is a deterministic sequence that requires a starting value (known as **seed**).

- Most currently used random number generators on modern computers are pseudo random number generators (PRNG).
- ▶ PRNG is a deterministic sequence that requires a starting value (known as **seed**).
- ▶ The sequence generated by PRNG behaves like independent random numbers.
- The sequence generated by PRNG will finally repeat.
- ► Two sequences generated by the same PRNG and the same seed should be identical.

- Most currently used random number generators on modern computers are pseudo random number generators (PRNG).
- ▶ PRNG is a deterministic sequence that requires a starting value (known as **seed**).
- ► The sequence generated by PRNG behaves like independent random numbers.
- The sequence generated by PRNG will finally repeat.
- Two sequences generated by the same PRNG and the same seed should be identical.
- Common practices:
 - Set the seed at the beginning of your program for easy replication of the results.

```
set.seed(0)
```

Do not abuse it! Use a predetermined seed instead of optimizing it.

Generating Random Numbers

- ightharpoonup The default random numbers generated by PRNG are i.i.d. unif[0,1].
- \blacktriangleright How do we generate random numbers from an arbitrary univariate distribution F?

Generating Random Numbers

- ightharpoonup The default random numbers generated by PRNG are i.i.d. unif[0,1].
- \blacktriangleright How do we generate random numbers from an arbitrary univariate distribution F?
 - ► Transformation.
 - ► Inverse C.D.F.
 - Accept-reject sampling.

Generating Random Numbers — Transformation

Let u_1, u_2, \ldots be a sequence of i.i.d. $\mathrm{unif}[0,1]$ random variables.

Let u_1, u_2, \ldots be a sequence of i.i.d. unif[0, 1] random variables.

Let $z_i = \mathbb{I}\{u_i > 0.5\}$. Then z_1, z_2, \ldots is an i.i.d. sequence of Bernoulli(0.5) random variables.

- Let $z_i = \mathbb{I}\{u_i > 0.5\}$. Then z_1, z_2, \ldots is an i.i.d. sequence of Bernoulli(0.5) random variables.
- Let $y_i = \sum_{j=1}^n z_{n(i-1)+j}$. Then y_1, y_2, \ldots is an i.i.d. sequence of $\operatorname{Binomial}(n, 0.5)$ random variables.

- Let $z_i = \mathbb{I}\{u_i > 0.5\}$. Then z_1, z_2, \ldots is an i.i.d. sequence of Bernoulli(0.5) random variables.
- Let $y_i = \sum_{j=1}^n z_{n(i-1)+j}$. Then y_1, y_2, \ldots is an i.i.d. sequence of $\operatorname{Binomial}(n, 0.5)$ random variables.
- Let $d_i^j = \lfloor 2^j u_i \rfloor \mod 2$. That is $u_i = 0.d_i^1 d_i^2 d_i^3 \dots$ is a base-2 representation. Then d_i^j 's are i.i.d. Bernoulli(0.5).

- Let $z_i = \mathbb{I}\{u_i > 0.5\}$. Then z_1, z_2, \ldots is an i.i.d. sequence of Bernoulli(0.5) random variables.
- Let $y_i = \sum_{j=1}^n z_{n(i-1)+j}$. Then y_1, y_2, \ldots is an i.i.d. sequence of $\operatorname{Binomial}(n, 0.5)$ random variables.
- Let $d_i^j = \lfloor 2^j u_i \rfloor \mod 2$. That is $u_i = 0.d_i^1 d_i^2 d_i^3 \dots$ is a base-2 representation. Then d_i^j 's are i.i.d. Bernoulli(0.5).
- Let $x_i = \sum_{j=1}^n d_i^j$. Then x_1, x_2, \ldots is an i.i.d. sequence of $\operatorname{Binomial}(n, 0.5)$ random variables.

- Let $z_i = \mathbb{I}\{u_i > 0.5\}$. Then z_1, z_2, \ldots is an i.i.d. sequence of Bernoulli(0.5) random variables.
- Let $y_i = \sum_{j=1}^n z_{n(i-1)+j}$. Then y_1, y_2, \ldots is an i.i.d. sequence of $\operatorname{Binomial}(n, 0.5)$ random variables.
- Let $d_i^j = \lfloor 2^j u_i \rfloor \mod 2$. That is $u_i = 0.d_i^1 d_i^2 d_i^3 \dots$ is a base-2 representation. Then d_i^j 's are i.i.d. Bernoulli(0.5).
- Let $x_i = \sum_{j=1}^n d_i^j$. Then x_1, x_2, \ldots is an i.i.d. sequence of $\operatorname{Binomial}(n, 0.5)$ random variables.
- Let $w_i = 2u_i$. Then w_1, w_2, \ldots is an i.i.d. sequence of $\mathrm{unif}[0,2]$ random variables.

- Let $z_i = \mathbb{I}\{u_i > 0.5\}$. Then z_1, z_2, \ldots is an i.i.d. sequence of Bernoulli(0.5) random variables.
- Let $y_i = \sum_{j=1}^n z_{n(i-1)+j}$. Then y_1, y_2, \ldots is an i.i.d. sequence of $\operatorname{Binomial}(n, 0.5)$ random variables.
- Let $d_i^j = \lfloor 2^j u_i \rfloor \mod 2$. That is $u_i = 0.d_i^1 d_i^2 d_i^3 \dots$ is a base-2 representation. Then d_i^j 's are i.i.d. Bernoulli(0.5).
- Let $x_i = \sum_{j=1}^n d_i^j$. Then x_1, x_2, \ldots is an i.i.d. sequence of Binomial(n, 0.5) random variables.
- Let $w_i = 2u_i$. Then w_1, w_2, \ldots is an i.i.d. sequence of $\mathrm{unif}[0,2]$ random variables.
- Let $r_i = -\log u_i$. Then r_1, r_2, \ldots is an i.i.d. sequence of $\operatorname{Exp}(1)$ random variables.

A special type of transformation is using the inverse c.d.f. function.

A special type of transformation is using the inverse c.d.f. function.

ightharpoonup The c.d.f. of a distribution F is given by

$$F(x_0) = \mathbb{P}[x \le x_0]$$

► The inverse c.d.f. is given by

$$F^{-1}(q) = \inf \{x : F(x) \ge q\}$$

A special type of transformation is using the inverse c.d.f. function.

▶ The c.d.f. of a distribution *F* is given by

$$F(x_0) = \mathbb{P}[x \le x_0]$$

► The inverse c.d.f. is given by

$$F^{-1}(q) = \inf \{x : F(x) \ge q\}$$

▶ If $u_1, u_2,...$ is an i.i.d. sequence of $\operatorname{unif}[0,1]$ random variables, then $F^{-1}(u_1), F^{-1}(u_2),...$ is an i.i.d. sequence of F random variables.

A special type of transformation is using the inverse c.d.f. function.

ightharpoonup The c.d.f. of a distribution F is given by

$$F(x_0) = \mathbb{P}[x \le x_0]$$

► The inverse c.d.f. is given by

$$F^{-1}(q) = \inf \{x : F(x) \ge q\}$$

- If $u_1, u_2, ...$ is an i.i.d. sequence of $\operatorname{unif}[0, 1]$ random variables, then $F^{-1}(u_1), F^{-1}(u_2), ...$ is an i.i.d. sequence of F random variables.
- Justification:

$$\mathbb{P}[F^{-1}(u_1) \le x_0] = \mathbb{P}[u_1 \le F(x_0)] = F(x_0)$$

Method 1: approximated inverse c.d.f.

Method 1: approximated inverse c.d.f.

We approximate the inverse c.d.f. of a standard normal by (for 0 < q < 1/2)

$$\Phi^{-1}(q) \approx t - \frac{c_0 + c_1 t + c_2 t^2}{1 + d_1 t + d_2 t^2 + d_3 t^3}$$

for
$$t = \sqrt{-2\log q}$$
 and

$$c_0 = 2.515517$$
 $d_1 = 1.432788$ $c_1 = 0.802853$ $d_2 = 0.189269$ $c_2 = 0.010328$ $d_3 = 0.001308$

```
c0 = 2.515517
  = 0.802853
c2 = 0.010328
  = 1.432788
d2 = 0.189269
d3 = 0.001308
u = runif(100)
t = sqrt(-2*log(abs(u-0.5)))
denum = c0 + c1*t + c2*t**2
num = 1 + d1*t + d2*t**2 + d3*t**3
x = t - denum/num
x = x * sign(u - 0.5)
hist(x)
```


Method 2: Box-Muller transformation.

- Assume x_1 and x_2 are independent standard normal random variables.
- ► The joint density is

$$p(x_1, x_2) \propto e^{-\frac{x_1^2 + x_2^2}{2}}$$

Method 2: Box-Muller transformation.

- ightharpoonup Assume x_1 and x_2 are independent standard normal random variables.
- ► The joint density is

$$p(x_1, x_2) \propto e^{-\frac{x_1^2 + x_2^2}{2}}$$

Consider the following transformation

$$r = \sqrt{x_1^2 + x_2^2}$$
 $x_1 = r \cos \theta$
 $\theta = \arctan \frac{x_2}{x_1}$ $x_2 = r \sin \theta$

Method 2: Box-Muller transformation.

- ightharpoonup Assume x_1 and x_2 are independent standard normal random variables.
- ► The joint density is

$$p(x_1, x_2) \propto e^{-\frac{x_1^2 + x_2^2}{2}}$$

► Consider the following transformation

$$r = \sqrt{x_1^2 + x_2^2}$$

$$x_1 = r \cos \theta$$

$$\theta = \arctan \frac{x_2}{x_1}$$

$$x_2 = r \sin \theta$$

▶ The density for (r, θ) is

$$p(r,\theta) = p(x_1, x_2) \left| \frac{\partial(x_1, x_2)}{\partial(r, \theta)} \right| \propto re^{-r^2/2}$$

Method 2: Box-Muller transformation.

- ightharpoonup Assume x_1 and x_2 are independent standard normal random variables.
- ► The joint density is

$$p(x_1, x_2) \propto e^{-\frac{x_1^2 + x_2^2}{2}}$$

► Consider the following transformation

$$r = \sqrt{x_1^2 + x_2^2}$$
 $x_1 = r \cos \theta$
 $\theta = \arctan \frac{x_2}{x_1}$ $x_2 = r \sin \theta$

▶ The density for (r, θ) is

$$p(r,\theta) = p(x_1, x_2) \left| \frac{\partial(x_1, x_2)}{\partial(r, \theta)} \right| \propto re^{-r^2/2}$$

lacktriangledown $heta\sim \mathrm{unif}[0,2\pi)$ and $p(r)\propto re^{-r^2/2}$ with c.d.f. $1-e^{-r^2/2}$ (i.e. $r^2\sim \mathrm{Exp}(1/2)$)

```
u = runif(100)
theta = runif(100) * 2 * pi
r = sqrt(-2*log(u))
x1 = r * sin(theta)
x2 = r * cos(theta)
x = c(x1, x2)
hist(x)
```


Generate random variables that are uniform in a unit circle.

Generate random variables that are uniform in a unit circle.

Method 1: Transformation.

We use the polar coordinate (r, θ) instead of (x_1, x_2) .

$$p(r,\theta) = p(x_1, x_2) \left| \frac{\partial(x_1, x_2)}{\partial(r, \theta)} \right| \propto r$$

Generate random variables that are uniform in a unit circle.

Method 1: Transformation.

We use the polar coordinate (r, θ) instead of (x_1, x_2) .

$$p(r,\theta) = p(x_1, x_2) \left| \frac{\partial(x_1, x_2)}{\partial(r, \theta)} \right| \propto r$$

- generate $\theta \sim \text{unif}[0, 2\pi)$.
- ightharpoonup generate $p(r) \propto r$ (use inverse c.d.f.)

Generate random variables that are uniform in a unit circle.

Method 1: Transformation.

We use the polar coordinate (r, θ) instead of (x_1, x_2) .

$$p(r,\theta) = p(x_1, x_2) \left| \frac{\partial(x_1, x_2)}{\partial(r, \theta)} \right| \propto r$$

- generate $\theta \sim \text{unif}[0, 2\pi)$.
- ightharpoonup generate $p(r) \propto r$ (use inverse c.d.f.)

```
n = 1000
r = sqrt(runif(n))
theta = runif(n, 0, 2*pi)
x1 = r*cos(theta)
x2 = r*sin(theta)
plot(x1, x2)
```


Method 2: Accept-Reject Sampling (naive version). We can generate (x_1,x_2) uniformly from $[-1,1]\times[-1,1]$ and **only keep** the samples that are in the unit circle.

Method 2: Accept-Reject Sampling (naive version). We can generate (x_1,x_2) uniformly from $[-1,1]\times[-1,1]$ and **only keep** the samples that are in the unit circle.

```
x1 = runif(n, -1, 1)
x2 = runif(n, -1, 1)
accept = (x1**2 + x2**2) <= 1
plot(x1[accept], x2[accept])</pre>
```


In general, we call such an algorithm **Accept-Reject Algorithm** (**Rejection Sampling**) that generate a set of samples and then take a subset of them.

In general, we call such an algorithm **Accept-Reject Algorithm** (**Rejection Sampling**) that generate a set of samples and then take a subset of them.

The general accept-reject sampling: (target distribution F supported on \mathcal{X})

- ightharpoonup Draw $x^{(1)}, \ldots, x^{(n)}$ i.i.d. from G
- For each $i=1,\ldots,n$, accept $x^{(i)}$ with probability

$$\frac{f(x^{(i)})}{c \cdot g(x^{(i)})}$$

for some constant c > 0.

In general, we call such an algorithm **Accept-Reject Algorithm** (**Rejection Sampling**) that generate a set of samples and then take a subset of them.

The general accept-reject sampling: (target distribution F supported on \mathcal{X})

- ightharpoonup Draw $x^{(1)}, \ldots, x^{(n)}$ i.i.d. from G
- For each $i=1,\ldots,n$, accept $x^{(i)}$ with probability

$$\frac{f(x^{(i)})}{c \cdot g(x^{(i)})}$$

for some constant c > 0.

Conditions:

- ▶ F is absolutely continous with respect to G: $supp(G) \supseteq supp(F)$
- ightharpoonup The constant c > 0 satisfies

$$f(x) \le c \cdot g(x) \ \forall x \in \mathcal{X}$$

Example

Generate random variables from the $\mathrm{Beta}(2,2)$ distribution.

Example

Generate random variables from the Beta(2,2) distribution.

- ightharpoonup Consider a sampling distribution using unif [0,1].
- ► The constant *c* should satisfy

$$c \geq \sup_x \ \frac{\operatorname{Beta}(x;2,2)}{\operatorname{unif}(x;0,1)} = \frac{\operatorname{Beta}(1/2;2,2)}{\operatorname{unif}(1/2;0,1)}$$

Example

Generate random variables from the Beta(2,2) distribution.

- ightharpoonup Consider a sampling distribution using unif [0,1].
- ▶ The constant *c* should satisfy

$$c \geq \sup_{x} \ \frac{\mathrm{Beta}(x;2,2)}{\mathrm{unif}(x;0,1)} = \frac{\mathrm{Beta}(1/2;2,2)}{\mathrm{unif}(1/2;0,1)}$$

n = 1000 c = dbeta(0.5, 2, 2) x = runif(n) p_accept = dbeta(x, 2, 2)/c x = x[runif(n) <= p_accept] hist(x)</pre>

Histogram of x

The probability of acceptance:

$$\begin{split} p[x^{(1)} \text{ is accepted}] &= \mathbb{E}_g \left[p[x^{(1)} \text{ is accepted} \mid x^{(1)} = x] \right] \\ &= \int_{\mathcal{X}} p[x^{(1)} \text{ is accepted} \mid x^{(1)} = x] g(x) d\mu(x) \\ &= \int_{\mathcal{X}} \frac{f(x)}{c \cdot g(x)} g(x) d\mu(x) = \frac{1}{c} \end{split}$$

The probability of acceptance:

$$\begin{split} p[x^{(1)} \text{ is accepted}] &= \mathbb{E}_g \left[p[x^{(1)} \text{ is accepted} \mid x^{(1)} = x] \right] \\ &= \int_{\mathcal{X}} p[x^{(1)} \text{ is accepted} \mid x^{(1)} = x] g(x) d\mu(x) \\ &= \int_{\mathcal{X}} \frac{f(x)}{c \cdot g(x)} g(x) d\mu(x) = \frac{1}{c} \end{split}$$

Distribution density after acceptance:

$$p[x^{(1)} = x \mid x^{(1)} \text{ is accepted}] = \frac{p[x^{(1)} = x \text{ and } x^{(1)} \text{ is accepted}]}{p[x^{(1)} \text{ is accepted}]} = \frac{g(x)\frac{f(x)}{c \cdot g(x)}}{1/c} = f(x)$$

- We only need to know the densities f and g up to a constant (i.e. in proportional form). (The constants are absorbed into c.)
- ightharpoonup We should choose c as small as possible to increase acceptance rate.
- ightharpoonup c is lower bounded by $\sup f(x)/g(x)$.
- ightharpoonup We should choose g to minimize the ratio.

- We only need to know the densities f and g up to a constant (i.e. in proportional form). (The constants are absorbed into c.)
- lacktriangle We should choose c as small as possible to increase acceptance rate.
- ightharpoonup c is lower bounded by $\sup f(x)/g(x)$.
- ightharpoonup We should choose g to minimize the ratio.

- The major drawback of accept-reject sampling is that we have to discard some samples.
- ▶ To make full use of all samples, we should consider importance sampling.

Weighted Sample

Let $\{x^{(i)}\}_{i=1}^n$ be a sample. If we equip each value $x^{(i)}$ with a **nonnegative weight** $w^{(i)}$, then $\{(x^{(i)},w^{(i)})\}_{i=1}^n$ is called a (unnormalized) **weighted sample**.

Weighted Sample

Let $\{x^{(i)}\}_{i=1}^n$ be a sample. If we equip each value $x^{(i)}$ with a **nonnegative weight** $w^{(i)}$, then $\{(x^{(i)},w^{(i)})\}_{i=1}^n$ is called a (unnormalized) **weighted sample**.

ightharpoonup (weighted) sample mean of f(x):

$$\bar{f} = \frac{\sum_{i=1}^{n} w^{(i)} f(x^{(i)})}{\sum_{i=1}^{n} w^{(i)}}$$

Let $\{x^{(i)}\}_{i=1}^n$ be a sample. If we equip each value $x^{(i)}$ with a **nonnegative weight** $w^{(i)}$, then $\{(x^{(i)},w^{(i)})\}_{i=1}^n$ is called a (unnormalized) **weighted sample**.

ightharpoonup (weighted) sample mean of f(x):

$$\bar{f} = \frac{\sum_{i=1}^{n} w^{(i)} f(x^{(i)})}{\sum_{i=1}^{n} w^{(i)}}$$

• (weighted) sample variance of f(x): (fixing weights)

$$Var[\bar{f}] = \frac{\sum_{i=1}^{n} (w^{(i)})^{2}}{(\sum_{i=1}^{n} w^{(i)})^{2}} Var[f(x)]$$

Let $\{x^{(i)}\}_{i=1}^n$ be a sample. If we equip each value $x^{(i)}$ with a **nonnegative weight** $w^{(i)}$, then $\{(x^{(i)},w^{(i)})\}_{i=1}^n$ is called a (unnormalized) **weighted sample**.

ightharpoonup (weighted) sample mean of f(x):

$$\bar{f} = \frac{\sum_{i=1}^{n} w^{(i)} f(x^{(i)})}{\sum_{i=1}^{n} w^{(i)}}$$

• (weighted) sample variance of f(x): (fixing weights)

$$Var[\bar{f}] = \frac{\sum_{i=1}^{n} (w^{(i)})^{2}}{(\sum_{i=1}^{n} w^{(i)})^{2}} Var[f(x)]$$

We define the effective sample size by

ESS :=
$$\frac{\left(\sum_{i=1}^{n} w^{(i)}\right)^{2}}{\sum_{i=1}^{n} \left(w^{(i)}\right)^{2}}$$

The weighted sample $\{(x^{(i)},w^{(i)})\}_{i=1}^n$ is called **properly weighted** w.r.t. p(x) if for any "regular" function f, we have

$$\frac{\sum_{i=1}^{n} w^{(i)} f(x^{(i)})}{\sum_{i=1}^{n} w^{(i)}} \xrightarrow{P} \mathbb{E}_{P}[f(x)]$$

The weighted sample $\{(x^{(i)},w^{(i)})\}_{i=1}^n$ is called **properly weighted** w.r.t. p(x) if for any "regular" function f, we have

$$\frac{\sum_{i=1}^{n} w^{(i)} f(x^{(i)})}{\sum_{i=1}^{n} w^{(i)}} \xrightarrow{P} \mathbb{E}_{P}[f(x)]$$

Remarks

- ► The weights do not have to be normalized. In most cases, we have a proportional form for them.
- In many cases, the weights are also random (depending on x). The previous variance form is an approximation.
- ▶ But the effecitve sample size tells how unevenly the weights are distributed.

The importance sampling adjusts the weight of the samples if the sampling distribution and the target distribution differ.

Importance Sampling for target distribution P

- ▶ Draw (unweighted) samples $\{x^{(i)}\}_{i=1}^n$ from the sampling distribution Q.
- Set the weights by

$$w^{(i)} = \frac{p(x^{(i)})}{q(x^{(i)})}$$

 $lackbox\{(x^{(i)},w^{(i)})\}_{i=1}^n$ is a weighted sample that is properly weighted w.r.t. P.

The importance sampling adjusts the weight of the samples if the sampling distribution and the target distribution differ.

Importance Sampling for target distribution P

- ▶ Draw (unweighted) samples $\{x^{(i)}\}_{i=1}^n$ from the sampling distribution Q.
- Set the weights by

$$w^{(i)} = \frac{p(x^{(i)})}{q(x^{(i)})}$$

 $lackbrack \{(x^{(i)},w^{(i)})\}_{i=1}^n$ is a weighted sample that is properly weighted w.r.t. P.

Justification:

$$\frac{\sum_{i=1}^n w^{(i)} f(x^{(i)})}{\sum_{i=1}^n w^{(i)}} \xrightarrow{P} \frac{\mathbb{E}_Q[wf(x)]}{\mathbb{E}_Q[w]} = \frac{\int \frac{p(x)}{q(x)} f(x) q(x) d\mu(x)}{\int \frac{p(x)}{q(x)} q(x) d\mu(x)} = \mathbb{E}_P[f(x)]$$

Estiamte the expectation of $\mathrm{Beta}(2,2)$ distribution.

Estiamte the expectation of Beta(2,2) distribution.

Method 1: accept-reject sampling from unif[0, 1].

Estiamte the expectation of Beta(2,2) distribution. **Method 1:** accept-reject sampling from unif[0,1].

```
n = 50
r = 1000
c = dbeta(0.5, 2, 2)
x = matrix(runif(n*r), ncol=r)
p_accept = dbeta(x, 2, 2)/c
accept = runif(n*r) <= p_accept
ehat = colSums(x * accept) / colSums(accept)
hist(ehat)</pre>
```

Execepted sample size: $n/c \approx 33$.

Estiamte the expectation of $\mathrm{Beta}(2,2)$ distribution.

Method 2: importance sampling from $\mathrm{unif}[0,1]$.

Estiamte the expectation of $\mathrm{Beta}(2,2)$ distribution. **Method 2:** importance sampling from $\mathrm{unif}[0,1].$

```
x = matrix(runif(n*r), ncol=r)
w = dbeta(x, 2, 2)
ehat = colSums(x * w) / colSums(w)
hist(ehat)
```

Expected effective sample size: $n/\mathbb{E}[w^2] \approx 42$.

- ▶ We only need to know the densities up to a constant (in proportional form).
- P should be absolutely continous w.r.t. Q.
- Q should be easy to sample from.
- ightharpoonup The effective sample size depends on the distance between P and Q.

- We only need to know the densities up to a constant (in proportional form).
- P should be absolutely continous w.r.t. Q.
- Q should be easy to sample from.
- ▶ The effective sample size depends on the distance between *P* and *Q*.
- ▶ Change-of-measure property for the importance sampling: If $\{x^{(i)}, w^{(i)}\}_{i=1}^n$ is properly weighted w.r.t. to a proability measure P, then $\{x^{(i)}, \tilde{w}^{(i)}\}_{i=1}^n$ is properly weighted w.r.t. another probability measure Q if and only if
 - 1. Q is absoluately continous w.r.t. P.
 - 2. and

$$\tilde{w}^{(i)} \propto w^{(i)} \frac{q(x^{(i)})}{p(x^{(i)})}$$

- We only need to know the densities up to a constant (in proportional form).
- P should be absolutely continous w.r.t. Q.
- Q should be easy to sample from.
- ▶ The effective sample size depends on the distance between *P* and *Q*.
- ▶ Change-of-measure property for the importance sampling: If $\{x^{(i)}, w^{(i)}\}_{i=1}^n$ is properly weighted w.r.t. to a proability measure P, then $\{x^{(i)}, \tilde{w}^{(i)}\}_{i=1}^n$ is properly weighted w.r.t. another probability measure Q if and only if
 - 1. Q is absoluately continous w.r.t. P.
 - 2. and

$$\tilde{w}^{(i)} \propto w^{(i)} \frac{q(x^{(i)})}{p(x^{(i)})}$$

Exercise: How to generate samples from an improper distribution (e.g. $p(x) \propto 1$)?

- ▶ The major drawback of the importance sampling is the possible weight collapse.
- Weight collapse means most of the weights are assigned to few samples.
- Small ESS is an indicator of weight collapse.
- ▶ It usually happens when the sampling distribution is significantly different from the target one.

- ▶ The major drawback of the importance sampling is the possible weight collapse.
- Weight collapse means most of the weights are assigned to few samples.
- Small ESS is an indicator of weight collapse.
- ▶ It usually happens when the sampling distribution is significantly different from the target one.

- ▶ If weight collapse happens in the last step of sampling, we can mere do anything to reduce variance.
- ▶ If it happens in the intermediate step, we can reduce the weight collapse by importance resampling.

- Let $\{x^{(i)}, w^{(i)}\}_{i=1}^n$ be a weighted sample.
- ▶ Assign each data with a nonnegative **priority score** $\beta^{(i)}$.
- ▶ Draw r_1, \ldots, r_m i.i.d. from the **Multinomial distribution** with probabilities $\propto \beta^{(i)}$:

$$p(r_j = i) = \frac{\beta^{(i)}}{\sum_{i=1}^n \beta^{(i)}}$$

▶ The new sample after resampling is $\{\tilde{x}^{(j)}, \tilde{w}^{(j)}\}_{j=1}^m$ with

$$\tilde{x}^{(j)} = x^{(r_j)}, \quad \tilde{w}^{(j)} \propto \frac{w^{(r_j)}}{\beta^{(r_j)}}$$

How to sample from multinomial distributions?

- ▶ Use the default PRNG for multinomial: inverse c.d.f. + bisectional search.
- Residual sampling:
 - ▶ get $\lfloor m\beta^{(i)} / \sum_i \beta^{(i)} \rfloor$ copies of index i.
 - for the rest, use the default multinomial sampling.
- ► Stratified: divide the indices into clusters and do multinomial sampling within each cluster.

How to sample from multinomial distributions?

- ▶ Use the default PRNG for multinomial: inverse c.d.f. + bisectional search.
- Residual sampling:
 - ▶ get $\lfloor m\beta^{(i)}/\sum_i \beta^{(i)}\rfloor$ copies of index i.
 - for the rest, use the default multinomial sampling.
- ► Stratified: divide the indices into clusters and do multinomial sampling within each cluster.

How to choose priority scores?

- $ightharpoonup eta^{(i)} \propto 1$ wasting time.
- $lackbox{}{}$ $eta^{(i)} \propto w^{(i)}$ default way. resulting in an unweighted sample.
- $ightharpoonup eta^{(i)} \propto \sqrt{w^{(i)}}$ least aggresive resampling.
- ▶ Other customizable priority scores depending on sampling needs.

▶ How to generate samples from p(x,y) with known p(x)?

- ▶ How to generate samples from p(x, y) with known p(x)?

 - ▶ Draw $\hat{y}^{(i)}$ from $p(y \mid \hat{x}^{(i)})$ for each i.
 - ▶ Return $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$

- ▶ How to generate samples from p(x, y) with known p(x)?

 - ▶ Draw $y^{(i)}$ from $p(y \mid x^{(i)})$ for each i.
 - ▶ Return $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$
- ▶ How to generate samples from p(x,y) with unknown p(x)?

- ▶ How to generate samples from p(x, y) with known p(x)?

 - ▶ Draw $y^{(i)}$ from $p(y \mid x^{(i)})$ for each i.
 - ▶ Return $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$
- ▶ How to generate samples from p(x,y) with unknown p(x)? importance sampling / rejection sampling.

- ▶ How to generate samples from p(x, y) with known p(x)?

 - ▶ Draw $y^{(i)}$ from $p(y \mid x^{(i)})$ for each i.
 - ▶ Return $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$
- ▶ How to generate samples from p(x,y) with unknown p(x)? importance sampling / rejection sampling.
- ▶ How to generate samples from p(x) with known p(x, y)?

- ▶ How to generate samples from p(x, y) with known p(x)?

 - ▶ Draw $y^{(i)}$ from $p(y \mid x^{(i)})$ for each i.
 - ▶ Return $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$
- ▶ How to generate samples from p(x,y) with unknown p(x)? importance sampling / rejection sampling.
- ▶ How to generate samples from p(x) with known p(x,y)?
 - ▶ Draw $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$ from p(x, y).