Data Science and Artificial Intelligence

# Machine Learning

Classification

Lecture No. 2













# **Topics to be Covered**







Topic

Topic







Fazil Azmaan



# **Basics of Machine Learning**



# **Linear Classification: Indicator Matrix**

Concept of we create Y's > No of classes

2 classes Y, Y2

3 classes Y, Y2 Y3

4 Chsses Y, Y2 Y3 Yy

For

Indicator matrix

For adata point only one is 1'



# **Basics of Machine Learning**





# Linear Classification: Why LR cannot be used

here?

Then we do unear negnesson for each y and in 2 class case





For any newpoint & Rule

Bix+Bo>Bix+Bo > Class 1

Bix+Bo>Bix+Bo > Class 0





# Linear Regression of an Indicator Matrix



# So, now the analysis is as follows:

```
So for more than 2 classes > Knumber of classes in label of data
           > One hot coding Yi Y2 - -- YK 7 Indicator matrix
           -> Now linear negnession for all Y's > we will get
               K lineaneg> 1D Case > B, x+Bo -> Y1
B, x+Bb -> Y2
                                        B"x+B" -> Y2
```





# Linear Regression of an Indicator Matrix





Linear Regression of an Indicator Matrix

Indication mat.

|                     | ets extend the ca             |                       | s Nes     | No Car    | n'45ay |
|---------------------|-------------------------------|-----------------------|-----------|-----------|--------|
| data. 1 2 3 4 5 6 7 | Yes Yes No No Can't Say No No | es data<br>1284<br>56 | Y-1 10000 | 100000011 |        |
| 8                   | 29Y                           | 78                    | 1         | 100       |        |





#### Linear Regression of an Indicator Matrix

· So the previous algorithm I

· But now lets see the linear Classification >

In prievious method for a 2 class case we need 2 linear Reg, and then by analysis we do classification

Lets consider a 2 class problem... We can have a single classifier for a 2 class problem...





## Linear Regression of an Indicator Matrix







#### Linear Regression of an Indicator Matrix

dets take example of 2D data points

Classo

But this loss function has 2 problems 1. outlier and 2. value of predicted Y

| χ¹ | χ² | 7 78 20 |
|----|----|---------|
|    |    |         |

In case of classification we donot need to show y values to represent data because we can drow the points of different classes using different markings.

# 30 data









# Linear Regression of a



· So now we need to find the Classifier

- > we can see that points of class 1 in the eq of classifier > (tue)
- => also class opoints in classifier eq

> Now Y label of Class 0 > -1
Y label of Class 1 > 1

The best classifier will be where all the class opoints are below-the classifier and all the class-1 points are above The classifier > So to find the best classifier> So for best classifier > (4? (B2x2+Bix1+Bo) Such that class I Will be such that where this Product is the for all points





# Linear Regression of a



Classo 
$$\rightarrow Y=+1$$

Class  $1 \rightarrow Y=-1$ 

When dat ahas 2 classes

Now it is the freedom So for Pink point B2x2+B1x1+B0>0
u u green u B2x2+B1x1+B0<0 When dat ahas 2 classes

Now it is the freedom So for Pink point B2x2+B1x1+B0<0
u u gneen u B2x2+B1x1+B0>0

# So Linear classification

For a 2 class problem -> labelthe classes as ± 1 The Best classifier → SoBest classifier N

mpximizes = Y: (X:B)







#### Linear Classification

#### **Problem of outliers**

because outlier have very high-veralise of yi(xip)
Thus the algorithm shift the whole
Classifier, to max 24i(xiB)





#### Linear Classification

To solve the problem of outlier we will not use the distance in the analysis rather we will use the probability.





#### Linear Classification

To solve the problem of outlier we will not use the distance in the analysis rather we will use the probability.







#### Linear Classification

To solve the problem of outlier we will not use the distance in the analysis rather we will use the probability.





#### Linear Classification

Why linear regression was not good in case of classification problem

 because Y was either 0/1 but the line that we learn was giving very large values also.

Hence in logistic regression we are doing regression but we are using sigmoid function here for perfect regression.





#### Logistic Regression

Let us have a data with some classes 1 and 0, these are the Y values of the input, In logistic Regression we actually try to fit a S curve on the data.





#### Logistic Regression

Now we have the concept of the threshold, how to find the best coefficients?





# Logistic Regression

The concept of threshold





#### Logistic Regression

#### Comparison of the linear classification and logistic Regression

In linear classification we find a line and say value <>0 but here we say value <> some threshold



# This is called sigmoid...





# This is called sigmoid...





# This is called sigmoid...







This can be used when the data is linearly seperable...





Logistic regression cannot solve XOR problem...





# What is Logit ??





# **Logistic Regression**

2 class case

The loss function...





# **Logistic Regression**

2 class case





Now calculation Probability is easy....





Simple decision rule in 2 class case



# THANK - YOU