PARTEA 3

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019 · ID

(PARTEA 2) EVALUĂRI

Definiția 1.8

O evaluare (sau interpretare) este o funcție $e: V \rightarrow \{0,1\}$.

Teorema 1.9

Pentru orice evaluare $e: V \rightarrow \{0,1\}$ există o unică funcție

$$e^+: Form \rightarrow \{0,1\}$$

care verifică următoarele proprietăți:

- $e^+(v) = e(v)$ pentru orice orice $v \in V$.
- $e^+(\neg \varphi) = \neg e^+(\varphi)$ pentru orice $\varphi \in Form$,
- $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$ pentru orice $\varphi, \psi \in Form$.

(partea 2) modele. satisfiabilitate. tautologii

Fie φ o formulă și Γ, Δ mulțimi de formule.

- · O evaluare $e: V \to \{0,1\}$ este model al lui φ dacă $e^+(\varphi) = 1$. Notație: $e \models \varphi$.
- · O evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă este model al fiecărei formule din Γ (adică $e \models \gamma$ pentru orice $\gamma \in \Gamma$).
 - Notaţie: $e \models \Gamma$.
- $\cdot \varphi (\Gamma)$ este satisfiabilă dacă admite un model.
- · φ este tautologie dacă orice evaluare este model al lui φ . Notație: $\models \varphi$.
- · O formulă φ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\varphi)$. Notație: $\Gamma \models \varphi$.
- · Δ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\Delta)$. Notație: $\Gamma \models \Delta$.
- · Γ şi Δ sunt (logic) echivalente dacă $Mod(\Gamma) = Mod(\Delta)$. Notație: $\Gamma \sim \Delta$.

LITERALI

Definiția 2.1

Un literal este o

- · variabilă (caz în care spunem că este literal pozitiv) sau
- · negația unei variabile (caz în care spunem că este literal negativ).

LITERALI

Definiția 2.1

Un literal este o

- · variabilă (caz în care spunem că este literal pozitiv) sau
- · negația unei variabile (caz în care spunem că este literal negativ).

Exemplu.

- v_1, v_2, v_{10} literali pozitivi
- $\cdot \neg v_0, \neg v_{100}$ literali negativi

Definiția 2.2

O formulă φ este în formă normală disjunctivă (FND) dacă φ este o disjuncție de conjuncții de literali.

$$\varphi$$
 este în FND ddacă $\varphi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$, unde fiecare $L_{i,j}$ este literal.

Definiția 2.2

O formulă φ este în formă normală disjunctivă (FND) dacă φ este o disjuncție de conjuncții de literali.

$$\varphi$$
 este în FND ddacă $\varphi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$, unde fiecare $L_{i,j}$ este literal.

Definiția 2.3

O formulă φ este în formă normală conjunctivă (FNC) dacă φ este o conjuncție de disjuncții de literali.

$$\varphi$$
 este în FNC ddacă $\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right)$, unde fiecare $L_{i,j}$ este literal.

$$\cdot \ \, \left(v_0 \vee v_1\right) \wedge \left(v_3 \vee v_5\right) \wedge \left(\neg v_{20} \vee \neg v_{15} \vee \neg v_{34}\right)$$

- · $(v_0 \lor v_1) \land (v_3 \lor v_5) \land (\neg v_{20} \lor \neg v_{15} \lor \neg v_{34})$ este în FNC
- $\cdot \ (\neg v_9 \wedge v_1) \vee v_{24} \vee (v_2 \wedge \neg v_1 \wedge v_2)$

- · $(v_0 \lor v_1) \land (v_3 \lor v_5) \land (\neg v_{20} \lor \neg v_{15} \lor \neg v_{34})$ este în FNC
- · $(\neg v_9 \land v_1) \lor v_{24} \lor (v_2 \land \neg v_1 \land v_2)$ este în FND
- $\cdot \ v_1 \wedge \neg v_5 \wedge v_4$

- \cdot $(v_0 \lor v_1) \land (v_3 \lor v_5) \land (\neg v_{20} \lor \neg v_{15} \lor \neg v_{34})$ este în FNC
- · $(\neg v_9 \land v_1) \lor v_{24} \lor (v_2 \land \neg v_1 \land v_2)$ este în FND
- · $v_1 \land \neg v_5 \land v_4$ este atât în FND cât și în FNC
- $\cdot \ \, \neg v_{10} \lor v_{20} \lor v_4$

- \cdot $(v_0 \lor v_1) \land (v_3 \lor v_5) \land (\neg v_{20} \lor \neg v_{15} \lor \neg v_{34})$ este în FNC
- · $(\neg v_9 \land v_1) \lor v_{24} \lor (v_2 \land \neg v_1 \land v_2)$ este în FND
- \cdot $v_1 \wedge \neg v_5 \wedge v_4$ este atât în FND cât și în FNC
- · $\neg v_{10} \lor v_{20} \lor v_4$ este atât în FND cât și în FNC
- $\cdot \ (v_1 \vee v_2) \wedge ((v_1 \wedge v_3) \vee (v_4 \wedge v_5))$

- \cdot $(v_0 \lor v_1) \land (v_3 \lor v_5) \land (\neg v_{20} \lor \neg v_{15} \lor \neg v_{34})$ este în FNC
- · $(\neg v_9 \land v_1) \lor v_{24} \lor (v_2 \land \neg v_1 \land v_2)$ este în FND
- $\cdot v_1 \wedge \neg v_5 \wedge v_4$ este atât în FND cât și în FNC
- · $\neg v_{10} \lor v_{20} \lor v_4$ este atât în FND cât și în FNC
- · $(v_1 \lor v_2) \land ((v_1 \land v_3) \lor (v_4 \land v_5))$ nu este nici în FND, nici în FNC

Notație. Dacă
$$L$$
 este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

Notație. Dacă
$$L$$
 este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

Propoziția 2.4

(i) Fie φ o formulă în FNC, $\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right)$. Atunci $\neg \varphi \sim \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c\right)$, o formulă în FND.

Notaţie. Dacă
$$L$$
 este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

Propoziția 2.4

- (i) Fie φ o formulă în FNC, $\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FND.
- (ii) Fie φ o formulă în FND, $\varphi = \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FNC.

Notație. Dacă
$$L$$
 este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

Propoziția 2.4

- (i) Fie φ o formulă în FNC, $\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FND.
- (ii) Fie φ o formulă în FND, $\varphi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FNC.

Demonstrație.

$$\neg \varphi \sim \neg \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right)$$

Notaţie. Dacă
$$L$$
 este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

Propoziția 2.4

- (i) Fie φ o formulă în FNC, $\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FND.
- (ii) Fie φ o formulă în FND, $\varphi = \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FNC.

Demonstrație.

$$\neg \varphi \sim \neg \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} \mathsf{L}_{i,j} \right) \sim \bigvee_{i=1}^{n} \neg \left(\bigvee_{j=1}^{k_i} \mathsf{L}_{i,j} \right)$$

Notație. Dacă
$$L$$
 este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

Propoziția 2.4

- (i) Fie φ o formulă în FNC, $\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FND.
- (ii) Fie φ o formulă în FND, $\varphi = \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FNC.

Demonstrație.

$$\neg \varphi \sim \neg \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_{i}} L_{i,j} \right) \sim \bigvee_{i=1}^{n} \neg \left(\bigvee_{j=1}^{k_{i}} L_{i,j} \right)$$
$$\sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_{i}} \neg L_{i,j} \right)$$

Notaţie. Dacă
$$L$$
 este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

Propoziția 2.4

- (i) Fie φ o formulă în FNC, $\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FND.
- (ii) Fie φ o formulă în FND, $\varphi = \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FNC.

Demonstrație.

$$\neg \varphi \sim \neg \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_{i}} L_{i,j} \right) \sim \bigvee_{i=1}^{n} \neg \left(\bigvee_{j=1}^{k_{i}} L_{i,j} \right)$$
$$\sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_{i}} \neg L_{i,j} \right) \sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_{i}} L_{i,j}^{c} \right).$$

Notaţie. Dacă
$$L$$
 este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

Propoziția 2.4

- (i) Fie φ o formulă în FNC, $\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FND.
- (ii) Fie φ o formulă în FND, $\varphi = \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FNC.

Demonstrație.

(i) Aplicând Propoziția 1.18, obținem

$$\neg \varphi \sim \neg \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_{i}} L_{i,j} \right) \sim \bigvee_{i=1}^{n} \neg \left(\bigvee_{j=1}^{k_{i}} L_{i,j} \right)$$
$$\sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_{i}} \neg L_{i,j} \right) \sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_{i}} L_{i,j}^{c} \right).$$

(ii) Exerciţiu.

Teorema 2.5

Orice formulă φ este echivalentă cu o formulă $\varphi^{\rm FND}$ în FND și cu o formulă $\varphi^{\rm FNC}$ în FNC.

Algoritm pentru a aduce o formulă la FNC/FND:

Pasul 1. Se înlocuiesc implicațiile și echivalențele, folosind:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
 şi $\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$.

Algoritm pentru a aduce o formulă la FNC/FND:

Pasul 1. Se înlocuiesc implicațiile și echivalențele, folosind:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
 şi $\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$.

Pasul 2. Se înlocuiesc dublele negații, folosind $\neg\neg\psi\sim\psi$, și se aplică regulile De Morgan pentru a înlocui

$$\neg(\varphi \lor \psi)$$
 cu $\neg\varphi \land \neg\psi$ şi $\neg(\varphi \land \psi)$ cu $\neg\varphi \lor \neg\psi$.

Algoritm pentru a aduce o formulă la FNC/FND:

Pasul 1. Se înlocuiesc implicațiile și echivalențele, folosind:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
 şi $\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$.

Pasul 2. Se înlocuiesc dublele negații, folosind $\neg\neg\psi\sim\psi$, și se aplică regulile De Morgan pentru a înlocui

$$\neg(\varphi \lor \psi) \text{ cu } \neg\varphi \land \neg\psi \quad \text{ \emptyset i } \quad \neg(\varphi \land \psi) \text{ cu } \neg\varphi \lor \neg\psi.$$

Pasul 3.

Pentru FNC, se aplică distributivitatea lui \lor fața de \land , pentru a înlocui

$$\varphi \vee (\psi \wedge \chi) \operatorname{cu} (\varphi \vee \psi) \wedge (\varphi \vee \chi) \quad \text{ \sharp i } \quad (\psi \wedge \chi) \vee \varphi \operatorname{cu} (\psi \vee \varphi) \wedge (\chi \vee \varphi).$$

Algoritm pentru a aduce o formulă la FNC/FND:

Pasul 1. Se înlocuiesc implicațiile și echivalențele, folosind:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
 şi $\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$.

Pasul 2. Se înlocuiesc dublele negații, folosind $\neg\neg\psi\sim\psi$, și se aplică regulile De Morgan pentru a înlocui

$$\neg(\varphi \lor \psi) \mathsf{cu} \ \neg \varphi \land \neg \psi \quad \mathsf{şi} \quad \neg(\varphi \land \psi) \mathsf{cu} \ \neg \varphi \lor \neg \psi.$$

Pasul 3.

Pentru FNC, se aplică distributivitatea lui \lor fața de \land , pentru a înlocui

$$\varphi \vee (\psi \wedge \chi) \operatorname{cu} (\varphi \vee \psi) \wedge (\varphi \vee \chi) \quad \text{ §i } \quad (\psi \wedge \chi) \vee \varphi \operatorname{cu} (\psi \vee \varphi) \wedge (\chi \vee \varphi).$$

Pentru FND, se aplică distributivitatea lui \wedge faţa de \vee , pentru a înlocui $\varphi \wedge (\psi \vee \chi)$ cu $(\varphi \wedge \psi) \vee (\varphi \wedge \chi)$ şi $(\psi \vee \chi) \wedge \varphi$ cu $(\psi \wedge \varphi) \vee (\chi \wedge \varphi)$.

Exemplu.

Considerăm formula $\varphi := (\neg v_0 \rightarrow \neg v_2) \rightarrow (v_0 \rightarrow v_2)$.

Exemplu.

Considerăm formula $\varphi := (\neg v_0 \rightarrow \neg v_2) \rightarrow (v_0 \rightarrow v_2)$.

$$\varphi \sim \neg(\neg v_0 \rightarrow \neg v_2) \lor (v_0 \rightarrow v_2)$$
 Pasul 1

Exemplu.

$$arphi \sim \neg (\neg v_0 \rightarrow \neg v_2) \lor (v_0 \rightarrow v_2)$$
 Pasul 1 $\sim \neg (\neg \neg v_0 \lor \neg v_2) \lor (v_0 \rightarrow v_2)$ Pasul 1

Exemplu.

$$\varphi \sim \neg(\neg v_0 \rightarrow \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 1}$$

Exemplu.

$$\varphi \sim \neg(\neg v_0 \rightarrow \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 1}$$

$$\sim \neg(v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 2}$$

Exemplu.

Considerăm formula $\varphi := (\neg v_0 \rightarrow \neg v_2) \rightarrow (v_0 \rightarrow v_2)$.

$$\begin{array}{lll} \varphi & \sim & \neg(\neg v_0 \rightarrow \neg v_2) \lor (v_0 \rightarrow v_2) & \text{Pasul 1} \\ & \sim & \neg(\neg \neg v_0 \lor \neg v_2) \lor (v_0 \rightarrow v_2) & \text{Pasul 1} \\ & \sim & \neg(\neg \neg v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) & \text{Pasul 1} \\ & \sim & \neg(v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) & \text{Pasul 2} \\ & \sim & (\neg v_0 \land \neg \neg v_2) \lor (\neg v_0 \lor v_2) & \text{Pasul 2} \end{array}$$

Exemplu.

$$\begin{array}{lll} \varphi & \sim & \neg (\neg v_0 \rightarrow \neg v_2) \vee (v_0 \rightarrow v_2) & \text{Pasul 1} \\ \sim & \neg (\neg \neg v_0 \vee \neg v_2) \vee (v_0 \rightarrow v_2) & \text{Pasul 1} \\ \sim & \neg (\neg \neg v_0 \vee \neg v_2) \vee (\neg v_0 \vee v_2) & \text{Pasul 1} \\ \sim & \neg (v_0 \vee \neg v_2) \vee (\neg v_0 \vee v_2) & \text{Pasul 2} \\ \sim & (\neg v_0 \wedge \neg \neg v_2) \vee (\neg v_0 \vee v_2) & \text{Pasul 2} \\ \sim & (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2 & \text{Pasul 2}. \end{array}$$

FORMA NORMALĂ CONJUNCTIVĂ / DISJUNCTIVĂ

Exemplu.

Considerăm formula $\varphi := (\neg v_0 \to \neg v_2) \to (v_0 \to v_2)$.

$$\begin{array}{lll} \varphi & \sim & \neg (\neg v_0 \rightarrow \neg v_2) \vee (v_0 \rightarrow v_2) & \text{Pasul 1} \\ & \sim & \neg (\neg \neg v_0 \vee \neg v_2) \vee (v_0 \rightarrow v_2) & \text{Pasul 1} \\ & \sim & \neg (\neg \neg v_0 \vee \neg v_2) \vee (\neg v_0 \vee v_2) & \text{Pasul 1} \\ & \sim & \neg (v_0 \vee \neg v_2) \vee (\neg v_0 \vee v_2) & \text{Pasul 2} \\ & \sim & (\neg v_0 \wedge \neg \neg v_2) \vee (\neg v_0 \vee v_2) & \text{Pasul 2} \\ & \sim & (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2 & \text{Pasul 2}. \end{array}$$

Putem lua $\varphi^{FND} := (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2$.

FORMA NORMALĂ CONJUNCTIVĂ / DISJUNCTIVĂ

Exemplu.

Considerăm formula $\varphi := (\neg v_0 \rightarrow \neg v_2) \rightarrow (v_0 \rightarrow v_2)$.

$$\begin{array}{lll} \varphi & \sim & \neg (\neg v_0 \rightarrow \neg v_2) \vee (v_0 \rightarrow v_2) & \text{Pasul 1} \\ & \sim & \neg (\neg \neg v_0 \vee \neg v_2) \vee (v_0 \rightarrow v_2) & \text{Pasul 1} \\ & \sim & \neg (\neg \neg v_0 \vee \neg v_2) \vee (\neg v_0 \vee v_2) & \text{Pasul 1} \\ & \sim & \neg (v_0 \vee \neg v_2) \vee (\neg v_0 \vee v_2) & \text{Pasul 2} \\ & \sim & (\neg v_0 \wedge \neg \neg v_2) \vee (\neg v_0 \vee v_2) & \text{Pasul 2} \\ & \sim & (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2 & \text{Pasul 2}. \end{array}$$

Putem lua $\varphi^{FND} := (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2$.

Pentru a obține FNC, continuăm cu Pasul 3:

$$\varphi \sim (\neg v_0 \wedge v_2) \vee (\neg v_0 \vee v_2) \sim (\neg v_0 \vee \neg v_0 \vee v_2) \wedge (v_2 \vee \neg v_0 \vee v_2).$$

FORMA NORMALĂ CONJUNCTIVĂ / DISJUNCTIVĂ

Exemplu.

Considerăm formula $\varphi := (\neg v_0 \rightarrow \neg v_2) \rightarrow (v_0 \rightarrow v_2)$.

$$\varphi \sim \neg(\neg v_0 \rightarrow \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 1}$$

$$\sim \neg(v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land \neg \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land v_2) \lor \neg v_0 \lor v_2 \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land v_2) \lor \neg v_0 \lor v_2 \quad \text{Pasul 2}.$$

Putem lua $\varphi^{FND} := (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2$.

Pentru a obţine FNC, continuăm cu Pasul 3:

$$\varphi \sim (\neg v_0 \wedge v_2) \vee (\neg v_0 \vee v_2) \\ \sim (\neg v_0 \vee \neg v_0 \vee v_2) \wedge (v_2 \vee \neg v_0 \vee v_2).$$

Putem lua $\varphi^{FNC} := (\neg v_0 \lor \neg v_0 \lor v_2) \land (v_2 \lor \neg v_0 \lor v_2)$. Se observă, folosind idempotența $(v \lor v \sim v)$ și comutativitatea $(v_1 \lor v_2 \sim v_2 \lor v_1)$ lui \lor , că $\varphi^{FNC} \sim \neg v_0 \lor v_2$.

12

REZOLUŢIA

PROBLEMA SAT

Problema satisfiabilității (SAT)

Fiind dată o formulă φ (în forma normală conjunctivă) există o evaluare $e: Var \to \{0,1\}$ astfel încât $f_e(\varphi) = 1$?

Teorema Cook-Levin

SAT este o problemă NP-completă.

REZOLUŢIA

- · Rezoluția propozițională este o regula de deducție pentru calculul propozițional clasic.
- · Multe demonstratoare automate și SAT-solvere au la bază rezoluția.
- Utilizând rezoluţia se poate construi un demonstrator automat corect şi complet pentru calculul propoziţional, fără alte teoreme şi reguli de deducţie.
- · Limbajul PROLOG este bazat pe rezoluție.

REZOLUŢIA

- · Rezoluția propozițională este o regula de deducție pentru calculul propozițional clasic.
- · Multe demonstratoare automate și SAT-solvere au la bază rezoluția.
- Utilizând rezoluţia se poate construi un demonstrator automat corect şi complet pentru calculul propoziţional, fără alte teoreme şi reguli de deducţie.
- · Limbajul PROLOG este bazat pe rezoluţie.

Rezoluția este o metodă de verificare a satisfiabilității pentru formule în forma clauzală.

Definiția 2.6

O clauză este o mulțime finită de literali:

$$C = \{L_1, \ldots, L_n\}$$
, unde L_1, \ldots, L_n sunt literali.

Dacă n = 0, obţinem clauza vidă $\square := \emptyset$.

Definiția 2.6

O clauză este o mulțime finită de literali:

$$C = \{L_1, \ldots, L_n\}$$
, unde L_1, \ldots, L_n sunt literali.

Dacă n = 0, obţinem clauza vidă $\square := \emptyset$.

O clauză nevidă este considerată implicit o disjuncție.

Definiţia 2.6

O clauză este o mulțime finită de literali:

$$C = \{L_1, \ldots, L_n\}$$
, unde L_1, \ldots, L_n sunt literali.

Dacă n = 0, obţinem clauza vidă $\square := \emptyset$.

O clauză nevidă este considerată implicit o disjuncție.

Definiția 2.7

Fie C o clauză și $e: V \to \{0,1\}$. Spunem că e este model al lui C sau că e satisface C și scriem $e \models C$ dacă

Definiţia 2.6

O clauză este o mulțime finită de literali:

$$C = \{L_1, \ldots, L_n\}$$
, unde L_1, \ldots, L_n sunt literali.

Dacă n = 0, obţinem clauza vidă $\square := \emptyset$.

O clauză nevidă este considerată implicit o disjuncție.

Definiția 2.7

Fie C o clauză și $e: V \to \{0,1\}$. Spunem că e este model al lui C sau că e satisface C și scriem $e \models C$ dacă există $L \in C$ a.î. $e \models L$.

Definiția 2.6

O clauză este o mulțime finită de literali:

$$C = \{L_1, \ldots, L_n\}$$
, unde L_1, \ldots, L_n sunt literali.

Dacă n = 0, obţinem clauza vidă $\square := \emptyset$.

O clauză nevidă este considerată implicit o disjuncție.

Definiția 2.7

Fie C o clauză și $e: V \to \{0,1\}$. Spunem că e este model al lui C sau că e satisface C și scriem $e \models C$ dacă există $L \in C$ a.î. $e \models L$.

Definiția 2.8

O clauză C se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare $e: V \to \{0,1\}$ este model al lui C.

Definiția 2.9

O clauză C este trivială dacă există un literal L a.î. $L, L^c \in C$.

Propoziţia 2.10

- (i) Orice clauză nevidă este satisfiabilă.
- (ii) Clauza vidă □ este nesatisfiabilă.
- (iii) O clauză este validă ddacă este trivială.

Demonstrație. Exercițiu.

Fie $S = \{C_1, \dots, C_m\}$ este o mulţime de clauze.

Dacă m=0, obţinem mulţimea vidă de clauze \emptyset .

 ${\cal S}$ este considerată implicit ca o formulă în FNC: conjuncție de disjuncții ale literalilor din fiecare clauză.

Definiția 2.11

Fie $e:V\to\{0,1\}$. Spunem că e este model al lui $\mathcal S$ sau că e satisface $\mathcal S$ şi scriem $e\models\mathcal S$ dacă

Fie $S = \{C_1, \dots, C_m\}$ este o mulţime de clauze.

Dacă m=0, obţinem mulţimea vidă de clauze \emptyset .

 ${\cal S}$ este considerată implicit ca o formulă în FNC: conjuncție de disjuncții ale literalilor din fiecare clauză.

Definiția 2.11

Fie $e: V \to \{0,1\}$. Spunem că e este model al lui S sau că e satisface S şi scriem $e \models S$ dacă $e \models C_i$ pentru orice $i \in \{1, ..., m\}$.

Definiția 2.12

 ${\cal S}$ se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare $e: V \to \{0,1\}$ este model al lui S.

Propoziția 2.13

- · Dacă ${\mathcal S}$ conține clauza vidă \square , atunci ${\mathcal S}$ nu este satisfiabilă.
- ∅ este validă.

Propoziția 2.13

- · Dacă ${\mathcal S}$ conține clauza vidă \square , atunci ${\mathcal S}$ nu este satisfiabilă.
- · ∅ este validă.

Exemplu.

Arătăm că $\mathcal{S} = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}$ este satisfiabilă.

Propoziţia 2.13

- · Dacă ${\mathcal S}$ conține clauza vidă \square , atunci ${\mathcal S}$ nu este satisfiabilă.
- · ∅ este validă.

Exemplu.

Arătăm că $\mathcal{S} = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}$ este satisfiabilă.

Considerăm $e: V \to \{0,1\}$ a.î. $e(v_1) = e(v_2) = 1$. Atunci $e \models S$.

- · Dacă $\mathcal S$ conține clauza vidă \square , atunci $\mathcal S$ nu este satisfiabilă.
- ∅ este validă.

Exemplu.

Arătăm că $\mathcal{S} = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}$ este satisfiabilă.

Considerăm $e: V \to \{0,1\}$ a.î. $e(v_1) = e(v_2) = 1$. Atunci $e \models S$.

Exemplu.

Arătăm că $\mathcal{S}=\{\{\neg v_1,v_2\},\{\neg v_3,\neg v_2\},\{v_1\},\{v_3\}\}$ nu este satisfiabilă.

- · Dacă $\mathcal S$ conține clauza vidă \square , atunci $\mathcal S$ nu este satisfiabilă.
- ∅ este validă.

Exemplu.

Arătăm că $\mathcal{S} = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}$ este satisfiabilă.

Considerăm $e: V \to \{0,1\}$ a.î. $e(v_1) = e(v_2) = 1$. Atunci $e \models S$.

Exemplu.

Arătăm că $\mathcal{S}=\{\{\neg v_1,v_2\},\{\neg v_3,\neg v_2\},\{v_1\},\{v_3\}\}$ nu este satisfiabilă.

Presupunem că ${\cal S}$ are un model e. Atunci

- · Dacă $\mathcal S$ conține clauza vidă \square , atunci $\mathcal S$ nu este satisfiabilă.
- ∅ este validă.

Exemplu.

Arătăm că $\mathcal{S} = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}$ este satisfiabilă.

Considerăm $e: V \to \{0,1\}$ a.î. $e(v_1) = e(v_2) = 1$. Atunci $e \models S$.

Exemplu.

Arătăm că $S = \{\{\neg v_1, v_2\}, \{\neg v_3, \neg v_2\}, \{v_1\}, \{v_3\}\}$ nu este satisfiabilă.

Presupunem că S are un model e. Atunci $e(v_1) = e(v_3) = 1$

- · Dacă $\mathcal S$ conține clauza vidă \square , atunci $\mathcal S$ nu este satisfiabilă.
- ∅ este validă.

Exemplu.

Arătăm că $S = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}$ este satisfiabilă.

Considerăm $e: V \to \{0,1\}$ a.î. $e(v_1) = e(v_2) = 1$. Atunci $e \models S$.

Exemplu.

Arătăm că $\mathcal{S}=\{\{\neg v_1,v_2\},\{\neg v_3,\neg v_2\},\{v_1\},\{v_3\}\}$ nu este satisfiabilă.

Presupunem că S are un model e. Atunci $e(v_1) = e(v_3) = 1$ şi, deoarece $e \models \{\neg v_3, \neg v_2\}$, trebuie să avem $e(v_2) = 0$.

- · Dacă $\mathcal S$ conține clauza vidă \square , atunci $\mathcal S$ nu este satisfiabilă.
- ∅ este validă.

Exemplu.

Arătăm că $S = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}$ este satisfiabilă.

Considerăm $e: V \to \{0,1\}$ a.î. $e(v_1) = e(v_2) = 1$. Atunci $e \models S$.

Exemplu.

Arătăm că $\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1 \}, \{ v_3 \} \}$ nu este satisfiabilă.

Presupunem că S are un model e. Atunci $e(v_1) = e(v_3) = 1$ şi, deoarece $e \models \{\neg v_3, \neg v_2\}$, trebuie să avem $e(v_2) = 0$. Rezultă că $e(v_2) = e^+(\neg v_1) = 0$, deci e nu satisface $\{\neg v_1, v_2\}$.

- · Dacă $\mathcal S$ conține clauza vidă \square , atunci $\mathcal S$ nu este satisfiabilă.
- ∅ este validă.

Exemplu.

Arătăm că $S = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}$ este satisfiabilă. Considerăm $e: V \to \{0, 1\}$ a.î. $e(v_1) = e(v_2) = 1$. Atunci $e \models S$.

Exemplu.

Arătăm că $\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1 \}, \{ v_3 \} \}$ nu este satisfiabilă.

Presupunem că S are un model e. Atunci $e(v_1) = e(v_3) = 1$ şi, deoarece $e \models \{\neg v_3, \neg v_2\}$, trebuie să avem $e(v_2) = 0$. Rezultă că $e(v_2) = e^+(\neg v_1) = 0$, deci e nu satisface $\{\neg v_1, v_2\}$. Am obținut o contradicție.

Unei formule φ în FNC îi asociem o mulţime de clauze \mathcal{S}_{φ} .

Fie

$$\varphi := \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right),$$

unde fiecare $L_{i,j}$ este literal.

Unei formule φ în FNC îi asociem o mulţime de clauze \mathcal{S}_{φ} .

Fie

$$\varphi := \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right),$$

unde fiecare $L_{i,j}$ este literal. Pentru orice i, fie C_i clauza obținută considerând toți literalii $L_{i,j}, j \in \{1, \dots, k_i\}$ distincți.

Unei formule φ în FNC îi asociem o mulţime de clauze \mathcal{S}_{φ} .

Fie

$$\varphi := \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right),$$

unde fiecare $L_{i,j}$ este literal. Pentru orice i, fie C_i clauza obţinută considerând toţi literalii $L_{i,i}, j \in \{1, \dots, k_i\}$ distincţi.

Fie S_{φ} mulţimea tuturor clauzelor $C_i, i \in \{1, ..., n\}$ distincte.

 S_{φ} se mai numește și forma clauzală a lui φ .

Unei formule φ în FNC îi asociem o mulțime de clauze \mathcal{S}_{φ} .

Fie

$$\varphi := \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right),$$

unde fiecare $L_{i,j}$ este literal. Pentru orice i, fie C_i clauza obţinută considerând toţi literalii $L_{i,i}, j \in \{1, \dots, k_i\}$ distincţi.

Fie S_{φ} mulţimea tuturor clauzelor $C_i, i \in \{1, \dots, n\}$ distincte.

 \mathcal{S}_{φ} se mai numește și forma clauzală a lui φ .

Propoziția 2.14

Pentru orice evaluare $e: V \to \{0,1\}, e \models \varphi ddacă e \models S_{\varphi}.$

Unei mulţimi de clauze ${\mathcal S}$ îi asociem o formulă ${\varphi}_{{\mathcal S}}$ în FNC astfel:

$$\cdot \ C = \{L_1, \dots, L_n\}, n \geq 1 \longmapsto \varphi_C := L_1 \vee L_2 \vee \dots \vee L_n.$$

$$\cdot \ \Box \longmapsto \varphi_{\Box} := \mathsf{V}_0 \land \neg \mathsf{V}_0.$$

Unei mulţimi de clauze ${\mathcal S}$ îi asociem o formulă ${\varphi}_{{\mathcal S}}$ în FNC astfel:

- $\cdot C = \{L_1, \ldots, L_n\}, n \geq 1 \longmapsto \varphi_C := L_1 \vee L_2 \vee \ldots \vee L_n.$
- $\cdot \square \longmapsto \varphi_{\square} := \mathsf{V}_0 \land \neg \mathsf{V}_0.$

Fie $\mathcal{S} = \{C_1, \dots, C_m\}$ o mulţime nevidă de clauze. Formula asociată lui \mathcal{S} este

$$\varphi_{\mathcal{S}} := \bigwedge_{i=1}^m \varphi_{\mathcal{C}_i}.$$

Unei mulţimi de clauze ${\cal S}$ îi asociem o formulă ${\varphi}_{{\cal S}}$ în FNC astfel:

- $\cdot \ C = \{L_1, \ldots, L_n\}, n \geq 1 \longmapsto \varphi_C := L_1 \vee L_2 \vee \ldots \vee L_n.$
- $\cdot \square \longmapsto \varphi_{\square} := \mathsf{V}_0 \wedge \neg \mathsf{V}_0.$

Fie $\mathcal{S} = \{C_1, \dots, C_m\}$ o mulţime nevidă de clauze. Formula asociată lui \mathcal{S} este

$$\varphi_{\mathcal{S}} := \bigwedge_{i=1}^{m} \varphi_{\mathcal{C}_i}.$$

Formula asociată mulțimii vide de clauze este $\varphi_{\emptyset} := v_0 \vee \neg v_0$.

Unei mulţimi de clauze ${\cal S}$ îi asociem o formulă ${\varphi}_{{\cal S}}$ în FNC astfel:

- $\cdot \ C = \{L_1, \dots, L_n\}, n \geq 1 \longmapsto \varphi_C := L_1 \vee L_2 \vee \dots \vee L_n.$
- $\cdot \square \longmapsto \varphi_{\square} := \mathsf{V}_0 \wedge \neg \mathsf{V}_0.$

Fie $\mathcal{S} = \{C_1, \dots, C_m\}$ o mulţime nevidă de clauze. Formula asociată lui \mathcal{S} este

$$\varphi_{\mathcal{S}} := \bigwedge_{i=1}^{m} \varphi_{\mathcal{C}_i}.$$

Formula asociată mulțimii vide de clauze este $\varphi_{\emptyset} := v_0 \vee \neg v_0$.

Formula $\varphi_{\mathcal{S}}$ nu este unic determinată, depinde de ordinea în care se scriu elementele în clauze și în \mathcal{S} , dar se observă imediat că: $\mathcal{S} = \mathcal{S}'$ implică $\varphi_{\mathcal{S}} \sim \varphi_{\mathcal{S}'}$.

Unei mulţimi de clauze ${\cal S}$ îi asociem o formulă ${\varphi}_{{\cal S}}$ în FNC astfel:

$$\cdot \ C = \{L_1, \dots, L_n\}, n \geq 1 \longmapsto \varphi_C := L_1 \vee L_2 \vee \dots \vee L_n.$$

$$\cdot \square \longmapsto \varphi_{\square} := \mathsf{V}_0 \wedge \neg \mathsf{V}_0.$$

Fie $S = \{C_1, \dots, C_m\}$ o mulţime nevidă de clauze. Formula asociată lui S este

$$\varphi_{\mathcal{S}} := \bigwedge_{i=1}^{m} \varphi_{\mathcal{C}_i}.$$

Formula asociată mulțimii vide de clauze este $\varphi_{\emptyset} := v_0 \vee \neg v_0$.

Formula $\varphi_{\mathcal{S}}$ nu este unic determinată, depinde de ordinea în care se scriu elementele în clauze și în \mathcal{S} , dar se observă imediat că: $\mathcal{S} = \mathcal{S}'$ implică $\varphi_{\mathcal{S}} \sim \varphi_{\mathcal{S}'}$.

Propoziția 2.15

Pentru orice evaluare $e: V \to \{0,1\}, e \models S$ ddacă $e \models \varphi_S$.

REZOLUŢIE

Definiția 2.16

Fie C_1, C_2 două clauze. O clauză R se numește rezolvent al clauzelor C_1, C_2 dacă există un literal L a.î. $L \in C_1, L^c \in C_2$ și

$$R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\}).$$

REZOLUŢIE

Definiția 2.16

Fie C_1, C_2 două clauze. O clauză R se numește rezolvent al clauzelor C_1, C_2 dacă există un literal L a.î. $L \in C_1, L^c \in C_2$ și

$$R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\}).$$

Regula Rezoluției

$$Rez \qquad \frac{C_1, C_2}{\left(C_1 \setminus \{L\}\right) \cup \left(C_2 \setminus \{L^c\}\right)}, \quad L \in C_1, L^c \in C_2$$

Notăm cu $Res(C_1, C_2)$ mulțimea rezolvenților clauzelor C_1, C_2 .

REZOLUŢIE

Exemplu.

Fie
$$C_1 = \{v_1, v_2, \neg v_5\}$$
 și $C_2 = \{v_1, \neg v_2, v_{100}, v_5\}.$

Exemplu.

Fie
$$C_1 = \{v_1, v_2, \neg v_5\}$$
 şi $C_2 = \{v_1, \neg v_2, v_{100}, v_5\}$.

· Luăm $L := \neg v_5$. Atunci $L \in C_1$ și $L^c = v_5 \in C_2$.

Exemplu.

Fie
$$C_1 = \{v_1, v_2, \neg v_5\}$$
 şi $C_2 = \{v_1, \neg v_2, v_{100}, v_5\}$.

· Luăm $L := \neg v_5$. Atunci $L \in C_1$ și $L^c = v_5 \in C_2$. Prin urmare, $R = \{v_1, v_2, \neg v_2, v_{100}\}$ este rezolvent al clauzelor C_1, C_2 .

Exemplu.

Fie $C_1 = \{v_1, v_2, \neg v_5\}$ şi $C_2 = \{v_1, \neg v_2, v_{100}, v_5\}$.

- · Luăm $L := \neg v_5$. Atunci $L \in C_1$ și $L^c = v_5 \in C_2$. Prin urmare, $R = \{v_1, v_2, \neg v_2, v_{100}\}$ este rezolvent al clauzelor C_1, C_2 .
- · Dacă luăm $L' := v_2$, atunci $L' \in C_1$ și $L'^c = \neg v_2 \in C_2$.

Exemplu.

Fie $C_1 = \{v_1, v_2, \neg v_5\}$ şi $C_2 = \{v_1, \neg v_2, v_{100}, v_5\}$.

- · Luăm $L := \neg v_5$. Atunci $L \in C_1$ și $L^c = v_5 \in C_2$. Prin urmare, $R = \{v_1, v_2, \neg v_2, v_{100}\}$ este rezolvent al clauzelor C_1, C_2 .
- · Dacă luăm $L':=v_2$, atunci $L'\in C_1$ şi $L'^c=\neg v_2\in C_2$. Prin urmare, $R'=\{v_1,\neg v_5,v_{100},v_5\}$ este rezolvent al clauzelor C_1,C_2 .

Exemplu.

Fie $C_1 = \{v_1, v_2, \neg v_5\}$ şi $C_2 = \{v_1, \neg v_2, v_{100}, v_5\}.$

- · Luăm $L := \neg v_5$. Atunci $L \in C_1$ și $L^c = v_5 \in C_2$. Prin urmare, $R = \{v_1, v_2, \neg v_2, v_{100}\}$ este rezolvent al clauzelor C_1, C_2 .
- · Dacă luăm $L':=v_2$, atunci $L'\in C_1$ și $L'^c=\neg v_2\in C_2$. Prin urmare, $R'=\{v_1, \neg v_5, v_{100}, v_5\}$ este rezolvent al clauzelor C_1, C_2 .

Exemplu.

Fie
$$C_1 = \{v_7\}$$
 şi $C_2 = \{\neg v_7\}$.

Exemplu.

Fie $C_1 = \{v_1, v_2, \neg v_5\}$ şi $C_2 = \{v_1, \neg v_2, v_{100}, v_5\}$.

- · Luăm $L := \neg v_5$. Atunci $L \in C_1$ și $L^c = v_5 \in C_2$. Prin urmare, $R = \{v_1, v_2, \neg v_2, v_{100}\}$ este rezolvent al clauzelor C_1, C_2 .
- · Dacă luăm $L' := v_2$, atunci $L' \in C_1$ şi $L'^c = \neg v_2 \in C_2$. Prin urmare, $R' = \{v_1, \neg v_5, v_{100}, v_5\}$ este rezolvent al clauzelor C_1, C_2 .

Exemplu.

Fie $C_1 = \{v_7\}$ şi $C_2 = \{\neg v_7\}$.

Atunci clauza vidă \square este rezolvent al clauzelor C_1, C_2 .

Fie ${\mathcal S}$ o mulţime de clauze.

Definiția 2.17

O derivare prin rezoluție din S sau o S-derivare prin rezoluție este o secvență C_1, C_2, \ldots, C_n de clauze a.î. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) C_i este o clauză din S;
- (ii) există j, k < i a.î. C_i este rezolvent al clauzelor C_i, C_k .

Fie ${\mathcal S}$ o mulţime de clauze.

Definiția 2.17

O derivare prin rezoluție din S sau o S-derivare prin rezoluție este o secvență C_1, C_2, \ldots, C_n de clauze a.î. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) C_i este o clauză din S;
- (ii) există j, k < i a.î. C_i este rezolvent al clauzelor C_i, C_k .

Definiția 2.18

Fie C o clauză. O derivare prin rezoluție a lui C din S este o S-derivare prin rezoluție C_1, C_2, \ldots, C_n a.î. $C_n = C$.

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_2, \neg v_3, v_4 \}, \{ v_1 \}, \{ v_3 \}, \{ \neg v_4 \} \}.$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_2, \neg v_3, v_4 \}, \{ v_1 \}, \{ v_3 \}, \{ \neg v_4 \} \}.$$

$$C_1 = \{ \neg v_4 \}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_2, \neg v_3, v_4 \}, \{ v_1 \}, \{ v_3 \}, \{ \neg v_4 \} \}.$$

$$C_1$$
 = $\{\neg v_4\}$ $C_1 \in \mathcal{S}$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_2, \neg v_3, v_4 \}, \{ v_1 \}, \{ v_3 \}, \{ \neg v_4 \} \}.$$

$$\begin{array}{lll} C_1 & = & \{\neg v_4\} & C_1 \in \mathcal{S} \\ C_2 & = & \{\neg v_2, \neg v_3, v_4\} \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_2, \neg v_3, v_4 \}, \{ v_1 \}, \{ v_3 \}, \{ \neg v_4 \} \}.$$

$$\begin{array}{lll} C_1 & = & \{\neg v_4\} & C_1 \in \mathcal{S} \\ C_2 & = & \{\neg v_2, \neg v_3, v_4\} & C_2 \in \mathcal{S} \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg V_1, V_2 \}, \{ \neg V_2, \neg V_3, V_4 \}, \{ V_1 \}, \{ V_3 \}, \{ \neg V_4 \} \}.$$

$$\begin{array}{lll} C_1 &=& \left\{ \neg v_4 \right\} & C_1 \in \mathcal{S} \\ C_2 &=& \left\{ \neg v_2, \neg v_3, v_4 \right\} & C_2 \in \mathcal{S} \\ C_3 &=& \left\{ \neg v_2, \neg v_3 \right\} \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_2, \neg v_3, v_4 \}, \{ v_1 \}, \{ v_3 \}, \{ \neg v_4 \} \}.$$

$$C_1 = \{\neg v_4\}$$
 $C_1 \in \mathcal{S}$
 $C_2 = \{\neg v_2, \neg v_3, v_4\}$ $C_2 \in \mathcal{S}$
 $C_3 = \{\neg v_2, \neg v_3\}$ C_3 rezolvent al clauzelor C_1, C_2

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_2, \neg v_3, v_4 \}, \{ v_1 \}, \{ v_3 \}, \{ \neg v_4 \} \}.$$

$$\begin{array}{lll} C_1 & = & \{ \neg v_4 \} & C_1 \in \mathcal{S} \\ C_2 & = & \{ \neg v_2, \neg v_3, v_4 \} & C_2 \in \mathcal{S} \\ C_3 & = & \{ \neg v_2, \neg v_3 \} & C_3 \text{ rezolvent al clauzelor } C_1, C_2 \\ C_4 & = & \{ v_3 \} \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_2, \neg v_3, v_4 \}, \{ v_1 \}, \{ v_3 \}, \{ \neg v_4 \} \}.$$

$$\begin{array}{lll} C_1 & = & \{ \neg v_4 \} & C_1 \in \mathcal{S} \\ C_2 & = & \{ \neg v_2, \neg v_3, v_4 \} & C_2 \in \mathcal{S} \\ C_3 & = & \{ \neg v_2, \neg v_3 \} & C_3 \text{ rezolvent al clauzelor } C_1, C_2 \\ C_4 & = & \{ v_3 \} & C_4 \in \mathcal{S} \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg V_1, V_2 \}, \{ \neg V_2, \neg V_3, V_4 \}, \{ V_1 \}, \{ V_3 \}, \{ \neg V_4 \} \}.$$

$$\begin{array}{lll} C_1 & = & \{\neg v_4\} & C_1 \in \mathcal{S} \\ C_2 & = & \{\neg v_2, \neg v_3, v_4\} & C_2 \in \mathcal{S} \\ C_3 & = & \{\neg v_2, \neg v_3\} & C_3 \text{ rezolvent al clauzelor } C_1, C_2 \\ C_4 & = & \{v_3\} & C_4 \in \mathcal{S} \\ C_5 & = & \{\neg v_2\} \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg V_1, V_2 \}, \{ \neg V_2, \neg V_3, V_4 \}, \{ V_1 \}, \{ V_3 \}, \{ \neg V_4 \} \}.$$

$$\begin{array}{lll} C_1 &=& \{\neg v_4\} & C_1 \in \mathcal{S} \\ C_2 &=& \{\neg v_2, \neg v_3, v_4\} & C_2 \in \mathcal{S} \\ C_3 &=& \{\neg v_2, \neg v_3\} & C_3 \text{ rezolvent al clauzelor } C_1, C_2 \\ C_4 &=& \{v_3\} & C_4 \in \mathcal{S} \\ C_5 &=& \{\neg v_2\} & C_5 \text{ rezolvent al clauzelor } C_3, C_4 \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg V_1, V_2 \}, \{ \neg V_2, \neg V_3, V_4 \}, \{ V_1 \}, \{ V_3 \}, \{ \neg V_4 \} \}.$$

$$\begin{array}{lll} C_1 & = & \{\neg v_4\} & C_1 \in \mathcal{S} \\ C_2 & = & \{\neg v_2, \neg v_3, v_4\} & C_2 \in \mathcal{S} \\ C_3 & = & \{\neg v_2, \neg v_3\} & C_3 \text{ rezolvent al clauzelor } C_1, C_2 \\ C_4 & = & \{v_3\} & C_4 \in \mathcal{S} \\ C_5 & = & \{\neg v_2\} & C_5 \text{ rezolvent al clauzelor } C_3, C_4 \\ C_6 & = & \{\neg v_1, v_2\} & \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg V_1, V_2 \}, \{ \neg V_2, \neg V_3, V_4 \}, \{ V_1 \}, \{ V_3 \}, \{ \neg V_4 \} \}.$$

$$\begin{array}{lll} C_{1} & = & \{\neg v_{4}\} & C_{1} \in \mathcal{S} \\ C_{2} & = & \{\neg v_{2}, \neg v_{3}, v_{4}\} & C_{2} \in \mathcal{S} \\ C_{3} & = & \{\neg v_{2}, \neg v_{3}\} & C_{3} \text{ rezolvent al clauzelor } C_{1}, C_{2} \\ C_{4} & = & \{v_{3}\} & C_{4} \in \mathcal{S} \\ C_{5} & = & \{\neg v_{2}\} & C_{5} \text{ rezolvent al clauzelor } C_{3}, C_{4} \\ C_{6} & = & \{\neg v_{1}, v_{2}\} & C_{6} \in \mathcal{S} \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg V_1, V_2 \}, \{ \neg V_2, \neg V_3, V_4 \}, \{ V_1 \}, \{ V_3 \}, \{ \neg V_4 \} \}.$$

$$\begin{array}{llll} C_{1} & = & \{\neg v_{4}\} & C_{1} \in \mathcal{S} \\ C_{2} & = & \{\neg v_{2}, \neg v_{3}, v_{4}\} & C_{2} \in \mathcal{S} \\ C_{3} & = & \{\neg v_{2}, \neg v_{3}\} & C_{3} \text{ rezolvent al clauzelor } C_{1}, C_{2} \\ C_{4} & = & \{v_{3}\} & C_{4} \in \mathcal{S} \\ C_{5} & = & \{\neg v_{2}\} & C_{5} \text{ rezolvent al clauzelor } C_{3}, C_{4} \\ C_{6} & = & \{\neg v_{1}, v_{2}\} & C_{6} \in \mathcal{S} \\ C_{7} & = & \{\neg v_{1}\} \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg V_1, V_2 \}, \{ \neg V_2, \neg V_3, V_4 \}, \{ V_1 \}, \{ V_3 \}, \{ \neg V_4 \} \}.$$

$$\begin{array}{lll} C_1 &=& \{\neg v_4\} & C_1 \in \mathcal{S} \\ C_2 &=& \{\neg v_2, \neg v_3, v_4\} & C_2 \in \mathcal{S} \\ C_3 &=& \{\neg v_2, \neg v_3\} & C_3 \text{ rezolvent al clauzelor } C_1, C_2 \\ C_4 &=& \{v_3\} & C_4 \in \mathcal{S} \\ C_5 &=& \{\neg v_2\} & C_5 \text{ rezolvent al clauzelor } C_3, C_4 \\ C_6 &=& \{\neg v_1, v_2\} & C_6 \in \mathcal{S} \\ C_7 &=& \{\neg v_1\} & C_7 \text{ rezolvent al clauzelor } C_5, C_6 \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg V_1, V_2 \}, \{ \neg V_2, \neg V_3, V_4 \}, \{ V_1 \}, \{ V_3 \}, \{ \neg V_4 \} \}.$$

$$\begin{array}{llll} C_{1} & = & \{\neg v_{4}\} & C_{1} \in \mathcal{S} \\ C_{2} & = & \{\neg v_{2}, \neg v_{3}, v_{4}\} & C_{2} \in \mathcal{S} \\ C_{3} & = & \{\neg v_{2}, \neg v_{3}\} & C_{3} \text{ rezolvent al clauzelor } C_{1}, C_{2} \\ C_{4} & = & \{v_{3}\} & C_{4} \in \mathcal{S} \\ C_{5} & = & \{\neg v_{2}\} & C_{5} \text{ rezolvent al clauzelor } C_{3}, C_{4} \\ C_{6} & = & \{\neg v_{1}, v_{2}\} & C_{6} \in \mathcal{S} \\ C_{7} & = & \{\neg v_{1}\} & C_{7} \text{ rezolvent al clauzelor } C_{5}, C_{6} \\ C_{8} & = & \{v_{1}\} & C_{7} \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg V_1, V_2 \}, \{ \neg V_2, \neg V_3, V_4 \}, \{ V_1 \}, \{ V_3 \}, \{ \neg V_4 \} \}.$$

$$\begin{array}{llll} C_{1} & = & \{\neg v_{4}\} & C_{1} \in \mathcal{S} \\ C_{2} & = & \{\neg v_{2}, \neg v_{3}, v_{4}\} & C_{2} \in \mathcal{S} \\ C_{3} & = & \{\neg v_{2}, \neg v_{3}\} & C_{3} \text{ rezolvent al clauzelor } C_{1}, C_{2} \\ C_{4} & = & \{v_{3}\} & C_{4} \in \mathcal{S} \\ C_{5} & = & \{\neg v_{2}\} & C_{5} \text{ rezolvent al clauzelor } C_{3}, C_{4} \\ C_{6} & = & \{\neg v_{1}, v_{2}\} & C_{6} \in \mathcal{S} \\ C_{7} & = & \{\neg v_{1}\} & C_{7} \text{ rezolvent al clauzelor } C_{5}, C_{6} \\ C_{8} & = & \{v_{1}\} & C_{8} \in \mathcal{S} \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg V_1, V_2 \}, \{ \neg V_2, \neg V_3, V_4 \}, \{ V_1 \}, \{ V_3 \}, \{ \neg V_4 \} \}.$$

$$\begin{array}{llll} C_{1} & = & \{\neg v_{4}\} & C_{1} \in \mathcal{S} \\ C_{2} & = & \{\neg v_{2}, \neg v_{3}, v_{4}\} & C_{2} \in \mathcal{S} \\ C_{3} & = & \{\neg v_{2}, \neg v_{3}\} & C_{3} \text{ rezolvent al clauzelor } C_{1}, C_{2} \\ C_{4} & = & \{v_{3}\} & C_{4} \in \mathcal{S} \\ C_{5} & = & \{\neg v_{2}\} & C_{5} \text{ rezolvent al clauzelor } C_{3}, C_{4} \\ C_{6} & = & \{\neg v_{1}, v_{2}\} & C_{6} \in \mathcal{S} \\ C_{7} & = & \{\neg v_{1}\} & C_{7} \text{ rezolvent al clauzelor } C_{5}, C_{6} \\ C_{8} & = & \{v_{1}\} & C_{8} \in \mathcal{S} \\ \end{array}$$

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg V_1, V_2 \}, \{ \neg V_2, \neg V_3, V_4 \}, \{ V_1 \}, \{ V_3 \}, \{ \neg V_4 \} \}.$$

$$\begin{array}{llll} C_1 &=& \{\neg v_4\} & C_1 \in \mathcal{S} \\ C_2 &=& \{\neg v_2, \neg v_3, v_4\} & C_2 \in \mathcal{S} \\ C_3 &=& \{\neg v_2, \neg v_3\} & C_3 \text{ rezolvent al clauzelor } C_1, C_2 \\ C_4 &=& \{v_3\} & C_4 \in \mathcal{S} \\ C_5 &=& \{\neg v_2\} & C_5 \text{ rezolvent al clauzelor } C_3, C_4 \\ C_6 &=& \{\neg v_1, v_2\} & C_6 \in \mathcal{S} \\ C_7 &=& \{\neg v_1\} & C_7 \text{ rezolvent al clauzelor } C_5, C_6 \\ C_8 &=& \{v_1\} & C_8 \in \mathcal{S} \\ C_9 &=& \square & C_9 \text{ rezolvent al clauzelor } C_7, C_8. \end{array}$$

Teorema 2.19

Fie $\mathcal S$ o mulţime de clauze. Dacă \square se derivează prin rezoluţie din $\mathcal S$, atunci $\mathcal S$ este nesatisfiabilă.

Intrare: $\mathcal S$ mulţime nevidă de clauze netriviale.

$$i := 1$$
, $S_1 := S$

Intrare: S mulţime nevidă de clauze netriviale.

$$i := 1$$
, $S_1 := S$

Pasul i.1. Fie x_i o variabilă care apare în S_i . Definim

$$\mathcal{T}_i^1 := \{C \in \mathcal{S}_i \mid x_i \in C\}, \quad \mathcal{T}_i^0 := \{C \in \mathcal{S}_i \mid \neg x_i \in C\}.$$

Intrare: S mulţime nevidă de clauze netriviale.

$$i := 1$$
, $S_1 := S$

Pasul i.1. Fie x_i o variabilă care apare în S_i . Definim

$$\mathcal{T}_i^1 := \{C \in \mathcal{S}_i \mid x_i \in C\}, \quad \mathcal{T}_i^0 := \{C \in \mathcal{S}_i \mid \neg x_i \in C\}.$$

Intrare: S mulţime nevidă de clauze netriviale.

$$i := 1$$
, $S_1 := S$

Pasul i.1. Fie x_i o variabilă care apare în S_i . Definim

$$\mathcal{T}_i^1 \ := \{C \in \mathcal{S}_i \mid x_i \in C\}, \ \mathcal{T}_i^0 \ := \{C \in \mathcal{S}_i \mid \neg x_i \in C\}.$$

Pasul i.2. Dacă $(\mathcal{T}_i^1 \neq \emptyset \text{ și } \mathcal{T}_i^0 \neq \emptyset)$ atunci

$$\mathcal{U}_i \ := \ \{ \left(C_1 \setminus \{x_i\} \right) \cup \left(C_0 \setminus \{ \neg x_i \} \right) \mid C_1 \in \mathcal{T}_i^1, C_0 \in \mathcal{T}_i^0 \}.$$

altfel $\mathcal{U}_i := \emptyset$.

Intrare: S mulţime nevidă de clauze netriviale.

$$i:=1$$
, $\mathcal{S}_1:=\mathcal{S}$

Pasul i.1. Fie x_i o variabilă care apare în S_i . Definim

$$\mathcal{T}_i^1 := \{C \in \mathcal{S}_i \mid x_i \in C\}, \quad \mathcal{T}_i^0 := \{C \in \mathcal{S}_i \mid \neg x_i \in C\}.$$

Pasul i.2. Dacă $(\mathcal{T}_i^1 \neq \emptyset \text{ și } \mathcal{T}_i^0 \neq \emptyset)$ atunci

$$\mathcal{U}_i \ := \ \{(C_1 \setminus \{x_i\}) \cup (C_0 \setminus \{\neg x_i\}) \mid C_1 \in \mathcal{T}_i^1, C_0 \in \mathcal{T}_i^0\}.$$

altfel $\mathcal{U}_i := \emptyset$.

Pasul i.3. Definim

$$\mathcal{S}'_{i+1} := (\mathcal{S}_i \setminus (\mathcal{T}_i^0 \cup \mathcal{T}_i^1)) \cup \mathcal{U}_i;$$

Intrare: S mulţime nevidă de clauze netriviale.

$$i := 1$$
, $S_1 := S$

Pasul i.1. Fie x_i o variabilă care apare în S_i . Definim

$$\mathcal{T}_i^1 := \{C \in \mathcal{S}_i \mid x_i \in C\}, \quad \mathcal{T}_i^0 := \{C \in \mathcal{S}_i \mid \neg x_i \in C\}.$$

Pasul i.2. Dacă $(\mathcal{T}_i^1 \neq \emptyset \text{ și } \mathcal{T}_i^0 \neq \emptyset)$ atunci

$$\mathcal{U}_i \ := \ \{ \left(C_1 \setminus \{x_i\} \right) \cup \left(C_0 \setminus \{ \neg x_i \} \right) \mid C_1 \in \mathcal{T}_i^1, C_0 \in \mathcal{T}_i^0 \}.$$

altfel $U_i := \emptyset$.

Pasul i.3. Definim

$$\begin{array}{lll} \mathcal{S}'_{i+1} & := & \left(\mathcal{S}_i \setminus (\mathcal{T}_i^0 \cup \mathcal{T}_i^1)\right) \cup \mathcal{U}_i; \\ \mathcal{S}_{i+1} & := & \mathcal{S}'_{i+1} \setminus \{C \in \mathcal{S}'_{i+1} \mid C \text{ trivial} \check{a}\}. \end{array}$$

Intrare: S mulţime nevidă de clauze netriviale.

$$i := 1$$
, $S_1 := S$

Pasul i.1. Fie x_i o variabilă care apare în S_i . Definim

$$\mathcal{T}_i^1 := \{C \in \mathcal{S}_i \mid x_i \in C\}, \quad \mathcal{T}_i^0 := \{C \in \mathcal{S}_i \mid \neg x_i \in C\}.$$

Pasul i.2. Dacă $(\mathcal{T}_i^1 \neq \emptyset \text{ și } \mathcal{T}_i^0 \neq \emptyset)$ atunci

$$\mathcal{U}_i \ := \ \{(C_1 \setminus \{x_i\}) \cup (C_0 \setminus \{\neg x_i\}) \mid C_1 \in \mathcal{T}_i^1, C_0 \in \mathcal{T}_i^0\}.$$

altfel $U_i := \emptyset$.

Pasul i.3. Definim

$$\begin{array}{lll} \mathcal{S}'_{i+1} & := & \left(\mathcal{S}_i \setminus \left(\mathcal{T}^0_i \cup \mathcal{T}^1_i\right)\right) \cup \mathcal{U}_i; \\ \mathcal{S}_{i+1} & := & \mathcal{S}'_{i+1} \setminus \{C \in \mathcal{S}'_{i+1} \mid C \text{ trivial} \check{a}\}. \end{array}$$

Pasul i.4. Dacă $S_{i+1} = \emptyset$ atunci S este satisfiabilă.

altfel dacă
$$\square \in \mathcal{S}_{i+1}$$
 atunci \mathcal{S} este nesatisfiabilă.

altfel
$$\{i := i + 1; go to Pasul i.1\}.$$

Exemplu.

Fie
$$S = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}$$

 $i := 1, S_1 := S$.

$$\begin{split} &\text{Fie } \mathcal{S} = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\} \\ &\text{$i := 1$, $\mathcal{S}_1 := \mathcal{S}$.} \\ &\text{P1.1} \quad X_1 := v_3; \ \mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}; \ \mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}. \end{split}$$

Fie
$$S = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}\$$
 $i := 1, S_1 := S.$

P1.1 $x_1 := v_3; \mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}; \mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}.$
P1.2 $\mathcal{U}_1 := \{\{v_2, \neg v_1, v_1\}\}.$

Fie
$$S = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}\$$

 $i := 1, S_1 := S.$
P1.1 $x_1 := v_3; \mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}; \mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}.$
P1.2 $\mathcal{U}_1 := \{\{v_2, \neg v_1, v_1\}\}.$
P1.3 $S_2' := \{\{v_2, v_1\}, \{v_2, \neg v_1, v_1\}\}; S_2 := \{\{v_2, v_1\}\}.$

Fie
$$S = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}$$

 $i := 1, S_1 := S$.
P1.1 $x_1 := v_3; \mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}; \mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}.$
P1.2 $\mathcal{U}_1 := \{\{v_2, \neg v_1, v_1\}\}.$
P1.3 $S_2' := \{\{v_2, v_1\}, \{v_2, \neg v_1, v_1\}\}; S_2 := \{\{v_2, v_1\}\}.$
P1.4 $i := 2$ and go to P2.1.

Fie
$$S = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}\$$
 $i := 1, S_1 := S.$

P1.1 $x_1 := v_3; \mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}; \mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}.$
P1.2 $\mathcal{U}_1 := \{\{v_2, \neg v_1, v_1\}\}.$
P1.3 $S_2' := \{\{v_2, v_1\}, \{v_2, \neg v_1, v_1\}\}; S_2 := \{\{v_2, v_1\}\}.$
P1.4 $i := 2$ and go to P2.1.

P2.1 $x_2 := v_2; \mathcal{T}_2^1 := \{\{v_2, v_1\}\}; \mathcal{T}_2^0 := \emptyset.$

Fie
$$S = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}\$$
 $i := 1, S_1 := S.$

P1.1 $x_1 := v_3; \mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}; \mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}.$
P1.2 $\mathcal{U}_1 := \{\{v_2, \neg v_1, v_1\}\}.$
P1.3 $S_2' := \{\{v_2, v_1\}, \{v_2, \neg v_1, v_1\}\}; S_2 := \{\{v_2, v_1\}\}.$
P1.4 $i := 2$ and go to P2.1.

P2.1 $x_2 := v_2; \mathcal{T}_2^1 := \{\{v_2, v_1\}\}; \mathcal{T}_2^0 := \emptyset.$
P2.2 $\mathcal{U}_2 := \emptyset.$

Fie
$$S = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}\$$
 $i := 1, S_1 := S.$

P1.1 $x_1 := v_3; \mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}; \mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}.$
P1.2 $\mathcal{U}_1 := \{\{v_2, \neg v_1, v_1\}\}.$
P1.3 $S_2' := \{\{v_2, v_1\}, \{v_2, \neg v_1, v_1\}\}; S_2 := \{\{v_2, v_1\}\}.$
P1.4 $i := 2$ and go to P2.1.

P2.1 $x_2 := v_2; \mathcal{T}_2^1 := \{\{v_2, v_1\}\}; \mathcal{T}_2^0 := \emptyset.$
P2.2 $\mathcal{U}_2 := \emptyset.$
P2.3 $S_2 := \emptyset$

Fie
$$S = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}$$

 $i := 1, S_1 := S$.
P1.1 $x_1 := v_3; \mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}; \mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}.$
P1.2 $\mathcal{U}_1 := \{\{v_2, \neg v_1, v_1\}\}.$
P1.3 $S'_2 := \{\{v_2, v_1\}, \{v_2, \neg v_1, v_1\}\}; S_2 := \{\{v_2, v_1\}\}.$
P1.4 $i := 2$ and go to P2.1.
P2.1 $x_2 := v_2; \mathcal{T}_2^1 := \{\{v_2, v_1\}\}; \mathcal{T}_2^0 := \emptyset.$
P2.2 $\mathcal{U}_2 := \emptyset.$
P2.3 $S_3 := \emptyset.$
P2.4 S este satisfiabilă.

Fie
$$\mathcal{S} = \{ \{ \neg v_1, v_2, \neg v_4 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1, v_3 \}, \{ v_1 \}, \{ v_3 \}, \{ v_4 \} \}.$$

$$i:=1$$
, $\mathcal{S}_1:=\mathcal{S}$.

$$\begin{split} &\text{Fie } \mathcal{S} = \{ \{ \neg v_1, v_2, \neg v_4 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1, v_3 \}, \{ v_1 \}, \{ v_3 \}, \{ v_4 \} \}. \\ &\text{$i := 1$, $\mathcal{S}_1 := \mathcal{S}$.} \\ &\text{$P1.1$} \quad x_1 := v_1; \ \mathcal{T}_1^1 := \{ \{ v_1, v_3 \}, \{ v_1 \} \}; \ \mathcal{T}_1^0 := \{ \{ \neg v_1, v_2, \neg v_4 \} \}. \end{split}$$

Fie
$$S = \{ \{ \neg v_1, v_2, \neg v_4 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1, v_3 \}, \{ v_1 \}, \{ v_3 \}, \{ v_4 \} \}.$$

 $i := 1, S_1 := S.$
P1.1 $x_1 := v_1; \mathcal{T}_1^1 := \{ \{ v_1, v_3 \}, \{ v_1 \} \}; \mathcal{T}_1^0 := \{ \{ \neg v_1, v_2, \neg v_4 \} \}.$
P1.2 $\mathcal{U}_1 := \{ \{ v_3, v_2, \neg v_4 \}, \{ v_2, \neg v_4 \} \}.$

$$\begin{split} &\text{Fie } \mathcal{S} = \{ \{ \neg v_1, v_2, \neg v_4 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1, v_3 \}, \{ v_1 \}, \{ v_3 \}, \{ v_4 \} \}. \\ &\text{$i := 1$, $\mathcal{S}_1 := \mathcal{S}$.} \\ &\text{P1.1} \quad x_1 := v_1; \ \mathcal{T}_1^1 := \{ \{ v_1, v_3 \}, \{ v_1 \} \}; \ \mathcal{T}_1^0 := \{ \{ \neg v_1, v_2, \neg v_4 \} \}. \\ &\text{P1.2} \quad \mathcal{U}_1 := \{ \{ v_3, v_2, \neg v_4 \}, \{ v_2, \neg v_4 \} \}. \\ &\text{P1.3} \quad \mathcal{S}_2 := \{ \{ \neg v_3, \neg v_2 \}, \{ v_3 \}, \{ v_4 \}, \{ v_3, v_2, \neg v_4 \}, \{ v_2, \neg v_4 \} \}. \end{split}$$

Fie
$$S = \{\{\neg v_1, v_2, \neg v_4\}, \{\neg v_3, \neg v_2\}, \{v_1, v_3\}, \{v_1\}, \{v_3\}, \{v_4\}\}.$$
 $i := 1, S_1 := S.$
P1.1 $x_1 := v_1; \mathcal{T}_1^1 := \{\{v_1, v_3\}, \{v_1\}\}; \mathcal{T}_1^0 := \{\{\neg v_1, v_2, \neg v_4\}\}.$
P1.2 $\mathcal{U}_1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$
P1.3 $S_2 := \{\{\neg v_3, \neg v_2\}, \{v_3\}, \{v_4\}, \{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$
P1.4 $i := 2$ and go to P2.1.

Fie
$$S = \{\{\neg v_1, v_2, \neg v_4\}, \{\neg v_3, \neg v_2\}, \{v_1, v_3\}, \{v_1\}, \{v_3\}, \{v_4\}\}\}.$$
 $i := 1, S_1 := S.$

P1.1 $X_1 := v_1; \mathcal{T}_1^1 := \{\{v_1, v_3\}, \{v_1\}\}; \mathcal{T}_1^0 := \{\{\neg v_1, v_2, \neg v_4\}\}.$

P1.2 $\mathcal{U}_1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$

P1.3 $S_2 := \{\{\neg v_3, \neg v_2\}, \{v_3\}, \{v_4\}, \{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$

P1.4 $i := 2$ and go to P2.1.

P2.1. $X_2 := v_2; \mathcal{T}_2^1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}; \mathcal{T}_2^0 := \{\{\neg v_3, \neg v_2\}\}.$

$$\begin{split} &\text{Fie } \mathcal{S} = \{ \{ \neg v_1, v_2, \neg v_4 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1, v_3 \}, \{ v_1 \}, \{ v_3 \}, \{ v_4 \} \}. \\ &\text{$i := 1$, $\mathcal{S}_1 := \mathcal{S}$.} \\ &\text{P1.1} \quad x_1 := v_1; \ \mathcal{T}_1^1 := \{ \{ v_1, v_3 \}, \{ v_1 \} \}; \ \mathcal{T}_1^0 := \{ \{ \neg v_1, v_2, \neg v_4 \} \}. \\ &\text{P1.2} \quad \mathcal{U}_1 := \{ \{ v_3, v_2, \neg v_4 \}, \{ v_2, \neg v_4 \} \}. \\ &\text{P1.3} \quad \mathcal{S}_2 := \{ \{ \neg v_3, \neg v_2 \}, \{ v_3 \}, \{ v_4 \}, \{ v_3, v_2, \neg v_4 \}, \{ v_2, \neg v_4 \} \}. \\ &\text{P1.4} \quad i := 2 \text{ and go to P2.1.} \\ &\text{P2.1.} \quad x_2 := v_2; \ \mathcal{T}_2^1 := \{ \{ v_3, v_2, \neg v_4 \}, \{ v_2, \neg v_4 \} \}; \ \mathcal{T}_2^0 := \{ \{ \neg v_3, \neg v_2 \} \}. \\ &\text{P2.2} \quad \mathcal{U}_2 := \{ \{ v_3, \neg v_4, \neg v_3 \}, \{ \neg v_4, \neg v_3 \} \}. \end{split}$$

Fie
$$S = \{\{\neg v_1, v_2, \neg v_4\}, \{\neg v_3, \neg v_2\}, \{v_1, v_3\}, \{v_1\}, \{v_3\}, \{v_4\}\}.$$
 $i := 1, S_1 := S.$

P1.1 $x_1 := v_1; \mathcal{T}_1^1 := \{\{v_1, v_3\}, \{v_1\}\}; \mathcal{T}_1^0 := \{\{\neg v_1, v_2, \neg v_4\}\}.$

P1.2 $\mathcal{U}_1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$

P1.3 $S_2 := \{\{\neg v_3, \neg v_2\}, \{v_3\}, \{v_4\}, \{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$

P1.4 $i := 2$ and go to P2.1.

P2.1. $x_2 := v_2; \mathcal{T}_2^1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}; \mathcal{T}_2^0 := \{\{\neg v_3, \neg v_2\}\}.$

P2.2 $\mathcal{U}_2 := \{\{v_3, \neg v_4, \neg v_3\}, \{\neg v_4, \neg v_3\}\}.$

P2.3 $S_3 := \{\{v_3\}, \{v_4\}, \{\neg v_4, \neg v_3\}\}.$

```
Fie S = \{\{\neg v_1, v_2, \neg v_4\}, \{\neg v_3, \neg v_2\}, \{v_1, v_3\}, \{v_1\}, \{v_3\}, \{v_4\}\}.
i := 1, S_1 := S.
           X_1 := V_1; \mathcal{T}_1^1 := \{\{V_1, V_3\}, \{V_1\}\}; \mathcal{T}_1^0 := \{\{\neg V_1, V_2, \neg V_4\}\}.
  P1.2 U_1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.
  P1.3 S_2 := \{\{\neg V_3, \neg V_2\}, \{V_3\}, \{V_4\}, \{V_3, V_2, \neg V_4\}, \{V_2, \neg V_4\}\}.
  P1.4 i := 2 and go to P2.1.
  P2.1.
             X_2 := V_2; \mathcal{T}_2^1 := \{\{V_3, V_2, \neg V_4\}, \{V_2, \neg V_4\}\}; \mathcal{T}_2^0 := \{\{\neg V_3, \neg V_2\}\}.
  P2.2 U_2 := \{\{v_3, \neg v_4, \neg v_3\}, \{\neg v_4, \neg v_3\}\}.
  P2.3 S_3 := \{\{v_3\}, \{v_4\}, \{\neg v_4, \neg v_3\}\}.
  P2.4 i := 3 and go to P3.1.
```

$$P3.1 \quad \ X_3 := V_3; \ \mathcal{T}_3^1 := \{\{V_3\}\}; \ \mathcal{T}_3^0 := \{\{\neg V_4, \neg V_3\}\}.$$

P3.1
$$X_3 := V_3$$
; $\mathcal{T}_3^1 := \{\{v_3\}\}$; $\mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}$.
P3.2. $\mathcal{U}_3 := \{\{\neg v_4\}\}$.

```
\begin{array}{ll} P3.1 & x_3 := v_3; \, \mathcal{T}_3^1 := \{\{v_3\}\}; \, \mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}. \\ P3.2. & \mathcal{U}_3 := \{\{\neg v_4\}\}. & P3.3 & \mathcal{S}_4 := \{\{v_4\}, \{\neg v_4\}\}. \end{array}
```

```
P3.1 x_3 := v_3; \mathcal{T}_3^1 := \{\{v_3\}\}; \mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}.
P3.2. \mathcal{U}_3 := \{\{\neg v_4\}\}. P3.3 \mathcal{S}_4 := \{\{v_4\}, \{\neg v_4\}\}.
P3.4 i := 4 and go to P4.1.
```

```
P3.1 x_3 := v_3; \mathcal{T}_3^1 := \{\{v_3\}\}; \mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}.
P3.2. \mathcal{U}_3 := \{\{\neg v_4\}\}. P3.3 \mathcal{S}_4 := \{\{v_4\}, \{\neg v_4\}\}.
P3.4 i := 4 and go to P4.1.
P4.1 x_4 := v_4; \mathcal{T}_4^1 := \{\{v_4\}\}; \mathcal{T}_4^0 := \{\{\neg v_4\}\}.
```

```
P3.1 x_3 := v_3; \mathcal{T}_3^1 := \{\{v_3\}\}; \mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}.
P3.2. \mathcal{U}_3 := \{\{\neg v_4\}\}. P3.3 \mathcal{S}_4 := \{\{v_4\}, \{\neg v_4\}\}.
P3.4 i := 4 and go to P4.1.

P4.1 x_4 := v_4; \mathcal{T}_4^1 := \{\{v_4\}\}; \mathcal{T}_4^0 := \{\{\neg v_4\}\}.
P4.2 \mathcal{U}_4 := \{\Box\}.
```

```
P3.1 X_3 := v_3; \mathcal{T}_3^1 := \{\{v_3\}\}; \mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}.
P3.2. \mathcal{U}_3 := \{\{\neg v_4\}\}. P3.3 \mathcal{S}_4 := \{\{v_4\}, \{\neg v_4\}\}.
P3.4 i := 4 and go to P4.1.

P4.1 X_4 := v_4; \mathcal{T}_4^1 := \{\{v_4\}\}; \mathcal{T}_4^0 := \{\{\neg v_4\}\}.
P4.2 \mathcal{U}_4 := \{\Box\}. P4.3 \mathcal{S}_5 := \{\Box\}.
```

```
P3.1 X_3 := v_3; \mathcal{T}_3^1 := \{\{v_3\}\}; \mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}.
P3.2. \mathcal{U}_3 := \{\{\neg v_4\}\}. P3.3 \mathcal{S}_4 := \{\{v_4\}, \{\neg v_4\}\}.
P3.4 i := 4 and go to P4.1.

P4.1 X_4 := v_4; \mathcal{T}_4^1 := \{\{v_4\}\}; \mathcal{T}_4^0 := \{\{\neg v_4\}\}.
P4.2 \mathcal{U}_4 := \{\Box\}. P4.3 \mathcal{S}_5 := \{\Box\}.
P4.4 \mathcal{S}_5 nu este satisfiabilă.
```

RECAP - SIST. DEDUCTIV DE TIP HILBERT

(PARTEA 2) SISTEMUL DEDUCTIV DE TIP HILBERT

Axiomele logice.

Mulțimea Axm a axiomelor lui LP constă în toate formulele de forma:

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$

unde φ , ψ și χ sunt formule.

Regula de deducție.

Pentru orice formule φ, ψ ,

 $\dim \varphi$ şi $\varphi \to \psi$ se inferă ψ (modus ponens sau (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

(PARTEA 2) Γ-TEOREME

Fie Γ o mulţime de formule.

Definiția 1.23

T-teoremele sunt formulele lui *LP* definite astfel:

- (T0) Orice axiomă este Γ-teoremă.
- (T1) Orice formulă din Γ este Γ -teoremă.
- (T2) Dacă φ și $\varphi \to \psi$ sunt Γ -teoreme, atunci ψ este Γ -teoremă.

```
\begin{array}{lll} Thm(\Gamma) & := & \text{multimea } \Gamma\text{-teoremelor} \\ Thm & := & Thm(\emptyset) \\ \Gamma \vdash \varphi & \Leftrightarrow & \varphi \text{ este } \Gamma\text{-teoremă} \\ \vdash \varphi & \Leftrightarrow & \emptyset \vdash \varphi \\ \Gamma \vdash \Delta & \Leftrightarrow & \Gamma \vdash \varphi \text{ pentru orice } \varphi \in \Delta. \end{array}
```

Definiția 1.24

O formulă φ se numește teoremă a lui LP dacă $\vdash \varphi$.

CONSECINȚE

Propoziție 2.20

Pentru orice mulţime de formule Γ și orice formule φ,ψ ,

dacă
$$\Gamma \cup \{\neg \psi\} \vdash \varphi$$
 și $\Gamma \cup \{\psi\} \vdash \varphi$, atunci $\Gamma \vdash \varphi$

Demonstrație. Exercițiu.

LEGĂTURA DINTRE SINTAXĂ ŞI SEMANTICĂ

Teorema de corectitudine (Soundness Theorem) 2.21 Orice Γ-teoremă este consecință semantică a lui Γ, adică,

$$\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form$ şi $\Gamma \subseteq Form$.

Teorema de corectitudine (Soundness Theorem) 2.21

Orice Γ -teoremă este consecință semantică a lui Γ , adică,

$$\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form$ şi $\Gamma \subseteq Form$.

Demonstrație. Fie

$$\Sigma := \{ \varphi \in \mathit{Form} \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma) \subseteq \Sigma$.

Teorema de corectitudine (Soundness Theorem) 2.21

Orice Γ -teoremă este consecință semantică a lui Γ , adică,

$$\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form$ şi $\Gamma \subseteq Form$.

Demonstrație. Fie

$$\Sigma := \{ \varphi \in \mathit{Form} \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma) \subseteq \Sigma$. Arătăm prin inducție după Γ -teoreme.

Teorema de corectitudine (Soundness Theorem) 2.21

Orice Γ -teoremă este consecință semantică a lui Γ , adică,

$$\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form$ şi $\Gamma \subseteq Form$.

Demonstrație. Fie

$$\Sigma := \{ \varphi \in \mathit{Form} \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma) \subseteq \Sigma$. Arătăm prin inducție după Γ -teoreme.

· Axiomele sunt în Σ (exerciţiu).

Teorema de corectitudine (Soundness Theorem) 2.21

Orice Γ -teoremă este consecință semantică a lui Γ , adică,

$$\Gamma \vdash \varphi \quad \Rightarrow \quad \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form$ şi $\Gamma \subseteq Form$.

Demonstrație. Fie

$$\Sigma := \{ \varphi \in \mathit{Form} \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma) \subseteq \Sigma$. Arătăm prin inducție după Γ -teoreme.

- · Axiomele sunt în Σ (exercițiu).
- · Evident, $\Gamma \subseteq \Sigma$.

Teorema de corectitudine (Soundness Theorem) 2.21

Orice Γ -teoremă este consecință semantică a lui Γ , adică,

$$\Gamma \vdash \varphi \quad \Rightarrow \quad \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form$ şi $\Gamma \subseteq Form$.

Demonstrație. Fie

$$\Sigma := \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma) \subseteq \Sigma$. Arătăm prin inducție după Γ -teoreme.

- · Axiomele sunt în Σ (exercițiu).
- · Evident, $\Gamma \subseteq \Sigma$.
- · Demonstrăm acum că Σ este închisă la modus ponens. Presupunem că $\varphi, \varphi \to \psi \in \Sigma$, adică, $\Gamma \vDash \varphi$ şi $\Gamma \vDash \varphi \to \psi$.

CORECTITUDINE

Teorema de corectitudine (Soundness Theorem) 2.21

Orice Γ -teoremă este consecință semantică a lui Γ , adică,

$$\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form$ şi $\Gamma \subseteq Form$.

Demonstrație. Fie

$$\Sigma := \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma) \subseteq \Sigma$. Arătăm prin inducție după Γ -teoreme.

- · Axiomele sunt în Σ (exercițiu).
- · Evident, $\Gamma \subseteq \Sigma$.
- · Demonstrăm acum că Σ este închisă la modus ponens. Presupunem că $\varphi, \varphi \to \psi \in \Sigma$, adică, $\Gamma \vDash \varphi$ şi $\Gamma \vDash \varphi \to \psi$. Atunci obţinem că $\Gamma \vDash \psi$ (exerciţiu), adică, $\psi \in \Sigma$.

Notaţii.

Pentru orice variabilă $v \in V$ și orice evaluare $e: V \to \{0,1\}$,

$$v^e = \begin{cases} v & \text{dacă } e(v) = 1 \\ \neg v & \text{dacă } e(v) = 0. \end{cases}$$

Aşadar, $e^+(v^e) = 1$.

Pentru orice mulţime $W = \{x_1, \dots, x_k\}$ de variabile, notăm

$$W^e = \{v^e \mid v \in W\} = \{x_1^e, x_2^e, \dots, x_k^e\}.$$

Propoziția 2.22

Fie $e: V \to \{0,1\}$ o evaluare. Pentru orice formulă φ ,

- (i) Dacă $e^+(\varphi) = 1$, atunci $Var(\varphi)^e \vdash \varphi$.
- (ii) Dacă $e^+(\varphi) = 0$, atunci $Var(\varphi)^e \vdash \neg \varphi$.

Propoziția 2.22

Fie $e: V \to \{0,1\}$ o evaluare. Pentru orice formulă φ ,

- (i) Dacă $e^+(\varphi) = 1$, atunci $Var(\varphi)^e \vdash \varphi$.
- (ii) Dacă $e^+(\varphi) = 0$, atunci $Var(\varphi)^e \vdash \neg \varphi$.

$$\varphi = v$$
. Atunci $Var(\varphi)^e = \{v^e\}$ şi $e^+(v) = e(v)$.

Propoziţia 2.22

Fie $e: V \to \{0,1\}$ o evaluare. Pentru orice formulă φ ,

- (i) Dacă $e^+(\varphi) = 1$, atunci $Var(\varphi)^e \vdash \varphi$.
- (ii) Dacă $e^+(\varphi) = 0$, atunci $Var(\varphi)^e \vdash \neg \varphi$.

- $\varphi = v$. Atunci $Var(\varphi)^e = \{v^e\}$ şi $e^+(v) = e(v)$.
 - Dacă e(v) = 1, atunci

Propoziția 2.22

Fie $e: V \to \{0,1\}$ o evaluare. Pentru orice formulă φ ,

- (i) Dacă $e^+(\varphi) = 1$, atunci $Var(\varphi)^e \vdash \varphi$.
- (ii) Dacă $e^+(\varphi) = 0$, atunci $Var(\varphi)^e \vdash \neg \varphi$.

·
$$\varphi = v$$
. Atunci $Var(\varphi)^e = \{v^e\}$ şi $e^+(v) = e(v)$.

Dacă
$$e(v) = 1$$
, atunci $v^e = v$, deci, $\{v^e\} \vdash v$.

Propoziția 2.22

Fie $e: V \to \{0,1\}$ o evaluare. Pentru orice formulă φ ,

- (i) Dacă $e^+(\varphi) = 1$, atunci $Var(\varphi)^e \vdash \varphi$.
- (ii) Dacă $e^+(\varphi) = 0$, atunci $Var(\varphi)^e \vdash \neg \varphi$.

- $\varphi = v$. Atunci $Var(\varphi)^e = \{v^e\}$ şi $e^+(v) = e(v)$.
 - Dacă e(v) = 1, atunci $v^e = v$, deci, $\{v^e\} \vdash v$.
 - Dacă e(v) = 0, atunci

Propoziţia 2.22

Fie $e: V \to \{0,1\}$ o evaluare. Pentru orice formulă φ ,

- (i) Dacă $e^+(\varphi) = 1$, atunci $Var(\varphi)^e \vdash \varphi$.
- (ii) Dacă $e^+(\varphi) = 0$, atunci $Var(\varphi)^e \vdash \neg \varphi$.

- $\varphi = v$. Atunci $Var(\varphi)^e = \{v^e\}$ şi $e^+(v) = e(v)$.
 - Dacă e(v) = 1, atunci $v^e = v$, deci, $\{v^e\} \vdash v$.
 - Dacă e(v) = 0, atunci $v^e = \neg v$, deci, $\{v^e\} \vdash \neg v$.

$$\cdot \varphi = \neg \psi$$
. Atunci $Var(\varphi) = Var(\psi)$, deci $Var(\varphi)^e = Var(\psi)^e$.

 $\varphi = \neg \psi$. Atunci $Var(\varphi) = Var(\psi)$, deci $Var(\varphi)^e = Var(\psi)^e$.

Dacă $e^+(\varphi) = 1$, atunci $e^+(\psi) = 0$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \neg \psi$, adică, $Var(\varphi)^e \vdash \varphi$.

 $\varphi = \neg \psi$. Atunci $Var(\varphi) = Var(\psi)$, deci $Var(\varphi)^e = Var(\psi)^e$.

Dacă $e^+(\varphi) = 1$, atunci $e^+(\psi) = 0$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \neg \psi$, adică, $Var(\varphi)^e \vdash \varphi$.

Dacă $e^+(\varphi) = 0$, atunci $e^+(\psi) = 1$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \psi$, adică, $Var(\varphi)^e \vdash \psi$.

 $\varphi = \neg \psi$. Atunci $Var(\varphi) = Var(\psi)$, deci $Var(\varphi)^e = Var(\psi)^e$.

Dacă $e^+(\varphi) = 1$, atunci $e^+(\psi) = 0$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \neg \psi$, adică, $Var(\varphi)^e \vdash \varphi$.

Dacă $e^+(\varphi)=0$, atunci $e^+(\psi)=1$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \psi$, adică, $Var(\varphi)^e \vdash \psi$. Deoarece $\vdash \psi \to \neg \neg \psi$ (exercițiu), putem aplica (MP) pentru a obține $Var(\varphi)^e \vdash \neg \neg \psi = \neg \varphi$.

 $\varphi = \neg \psi$. Atunci $Var(\varphi) = Var(\psi)$, deci $Var(\varphi)^e = Var(\psi)^e$.

Dacă $e^+(\varphi) = 1$, atunci $e^+(\psi) = 0$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \neg \psi$, adică, $Var(\varphi)^e \vdash \varphi$.

Dacă $e^+(\varphi)=0$, atunci $e^+(\psi)=1$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \psi$, adică, $Var(\varphi)^e \vdash \psi$. Deoarece $\vdash \psi \to \neg \neg \psi$ (exercițiu), putem aplica (MP) pentru a obține $Var(\varphi)^e \vdash \neg \neg \psi = \neg \varphi$.

 $\cdot \varphi = \psi \to \chi$. (exerciţiu)

Teorema de completitudine (Completeness Theorem) 2.23 Pentru orice formulă φ ,

$$\vdash \varphi$$
 ddacă $\models \varphi$.

Demonstrație. " \Rightarrow " Se aplică Teorema de corectitudine pentru $\Gamma = \emptyset$.

Teorema de completitudine (Completeness Theorem) 2.23 Pentru orice formulă φ ,

$$\vdash \varphi$$
 ddacă $\models \varphi$.

Demonstrație. " \Rightarrow " Se aplică Teorema de corectitudine pentru $\Gamma = \emptyset$.

" \Leftarrow " Fie φ o tautologie și $Var(\varphi) = \{x_1, \dots, x_n\}$. Demonstrăm prin inducție după k următoarea proprietate:

(*) pentru orice $k \le n$, pentru orice $e: V \to \{0,1\}, \{x_1^e, \dots, x_{n-k}^e\} \vdash \varphi$.

Teorema de completitudine (Completeness Theorem) 2.23 Pentru orice formulă φ ,

$$\vdash \varphi$$
 ddacă $\models \varphi$.

Demonstrație. " \Rightarrow " Se aplică Teorema de corectitudine pentru $\Gamma = \emptyset$.

" \Leftarrow " Fie φ o tautologie și $Var(\varphi) = \{x_1, \dots, x_n\}$. Demonstrăm prin inducție după k următoarea proprietate:

(*) pentru orice
$$k \le n$$
, pentru orice $e: V \to \{0,1\}, \{x_1^e, \dots, x_{n-k}^e\} \vdash \varphi$.

Pentru k = n, (*) ne dă $\vdash \varphi$.

Teorema de completitudine (Completeness Theorem) 2.23 Pentru orice formulă φ ,

$$\vdash \varphi$$
 ddacă $\models \varphi$.

Demonstrație. " \Rightarrow " Se aplică Teorema de corectitudine pentru $\Gamma = \emptyset$.

" \Leftarrow " Fie φ o tautologie și $Var(\varphi) = \{x_1, \dots, x_n\}$. Demonstrăm prin inducție după k următoarea proprietate:

(*) pentru orice
$$k \le n$$
, pentru orice $e: V \to \{0,1\}, \{x_1^e, \dots, x_{n-k}^e\} \vdash \varphi$.

Pentru k = n, (*) ne dă $\vdash \varphi$.

k=0. Fie $e:V\to\{0,1\}$. Deoarece φ este tautologie, $e^+(\varphi)=1$. Aplicând Propoziția 2.22, obținem că

$$Var(\varphi)^e = \{x_1^e, \dots, x_n^e\} \vdash \varphi.$$

 $k \Rightarrow k+1$. Presupunem că (*) este adevărată pentru k și fie $e: V \to \{0,1\}$. Trebuie să arătăm că $\{x_1^e, \dots, x_{n-k-1}^e\} \vdash \varphi$.

 $k\Rightarrow k+1$. Presupunem că (*) este adevărată pentru k şi fie $e:V\to\{0,1\}$. Trebuie să arătăm că $\{x_1^e,\ldots,x_{n-k-1}^e\}\vdash \varphi$. Considerăm evaluarea $e':=e_{x_{n-k}\leftarrow \neg e(x_{n-k})}$. Aşadar, e'(v)=e(v) pentru orice $v\neq x_{n-k}$ şi

$$e'(x_{n-k}) =$$

 $k \Rightarrow k+1$. Presupunem că (*) este adevărată pentru k şi fie $e: V \to \{0,1\}$. Trebuie să arătăm că $\{x_1^e, \dots, x_{n-k-1}^e\} \vdash \varphi$. Considerăm evaluarea $e' := e_{x_{n-k} \leftarrow \neg e(x_{n-k})}$. Aşadar, e'(v) = e(v) pentru orice $v \neq x_{n-k}$ şi $e'(x_{n-k}) = \begin{cases} 0 & \text{dacă } e(x_{n-k}) = 1 \\ 1 & \text{dacă } e(x_{n-k}) = 0. \end{cases}$

 $k \Rightarrow k+1$. Presupunem că (*) este adevărată pentru k şi fie $e: V \to \{0,1\}$. Trebuie să arătăm că $\{x_1^e, \dots, x_{n-k-1}^e\} \vdash \varphi$. Considerăm evaluarea $e' := e_{x_{n-k} \leftarrow \neg e(x_{n-k})}$. Aşadar, e'(v) = e(v) pentru orice $v \neq x_{n-k}$ şi

$$e'(x_{n-k}) = \begin{cases} 0 & \text{dacă } e(x_{n-k}) = 1\\ 1 & \text{dacă } e(x_{n-k}) = 0. \end{cases}$$

Rezultă că $x_i^{e'} = x_i^e$ pentru orice $i \in \{0, \dots, n-k-1\}$ și

 $k \Rightarrow k+1$. Presupunem că (*) este adevărată pentru k şi fie $e: V \to \{0,1\}$. Trebuie să arătăm că $\{x_1^e, \ldots, x_{n-k-1}^e\} \vdash \varphi$. Considerăm evaluarea $e' := e_{x_{n-k} \leftarrow \neg e(x_{n-k})}$. Aşadar, e'(v) = e(v) pentru orice $v \neq x_{n-k}$ şi

$$e'(x_{n-k}) = \begin{cases} 0 & \text{dacă } e(x_{n-k}) = 1\\ 1 & \text{dacă } e(x_{n-k}) = 0. \end{cases}$$

Rezultă că $x_i^{e'} = x_i^e$ pentru orice $i \in \{0, \dots, n-k-1\}$ și

$$x_{n-k}^{e'} =$$

 $k\Rightarrow k+1$. Presupunem că (*) este adevărată pentru k și fie $e:V\to\{0,1\}$. Trebuie să arătăm că $\{x_1^e,\ldots,x_{n-k-1}^e\}\vdash \varphi$. Considerăm evaluarea $e':=e_{x_{n-k}\leftarrow \neg e(x_{n-k})}$. Așadar, e'(v)=e(v) pentru orice $v\neq x_{n-k}$ și

$$e'(x_{n-k}) = \begin{cases} 0 & \text{dacă } e(x_{n-k}) = 1\\ 1 & \text{dacă } e(x_{n-k}) = 0. \end{cases}$$

Rezultă că $x_i^{e'} = x_i^e$ pentru orice $i \in \{0, \dots, n-k-1\}$ și

$$x_{n-k}^{e'} = \begin{cases} \neg x_{n-k} & \text{dacă } x_{n-k}^e = x_{n-k} \\ x_{n-k} & \text{dacă } x_{n-k}^e = \neg x_{n-k}. \end{cases}$$

 $k \Rightarrow k+1$. Presupunem că (*) este adevărată pentru k și fie $e: V \to \{0,1\}$. Trebuie să arătăm că $\{x_1^e, \dots, x_{n-k-1}^e\} \vdash \varphi$. Considerăm evaluarea $e' := e_{x_{n-k} \leftarrow \neg e(x_{n-k})}$. Așadar, e'(v) = e(v) pentru orice $v \neq x_{n-k}$ și

$$e'(x_{n-k}) = \begin{cases} 0 & \text{dacă } e(x_{n-k}) = 1\\ 1 & \text{dacă } e(x_{n-k}) = 0. \end{cases}$$

Rezultă că $x_i^{e'} = x_i^e$ pentru orice $i \in \{0, \dots, n-k-1\}$ și

$$x_{n-k}^{e'} = \begin{cases} \neg x_{n-k} & \text{dacă } x_{n-k}^e = x_{n-k} \\ x_{n-k} & \text{dacă } x_{n-k}^e = \neg x_{n-k}. \end{cases}$$

Din (*) pentru e și e', obținem

$$\{x_1^e,\ldots,x_{n-k-1}^e,x_{n-k}\}\vdash\varphi\ \text{si}\ \{x_1^e,\ldots,x_{n-k-1}^e,\neg x_{n-k}\}\vdash\varphi.$$

 $k\Rightarrow k+1$. Presupunem că (*) este adevărată pentru k și fie $e:V\to\{0,1\}$. Trebuie să arătăm că $\{x_1^e,\ldots,x_{n-k-1}^e\}\vdash \varphi$. Considerăm evaluarea $e':=e_{x_{n-k}\leftarrow \neg e(x_{n-k})}$. Așadar, e'(v)=e(v) pentru orice $v\neq x_{n-k}$ și

$$e'(x_{n-k}) = \begin{cases} 0 & \text{dacă } e(x_{n-k}) = 1\\ 1 & \text{dacă } e(x_{n-k}) = 0. \end{cases}$$

Rezultă că $x_i^{e'} = x_i^e$ pentru orice $i \in \{0, \dots, n-k-1\}$ și

$$x_{n-k}^{e'} = \begin{cases} \neg x_{n-k} & \text{dacă } x_{n-k}^e = x_{n-k} \\ x_{n-k} & \text{dacă } x_{n-k}^e = \neg x_{n-k}. \end{cases}$$

Din (*) pentru e şi e', obţinem

$$\{x_1^e,\ldots,x_{n-k-1}^e,x_{n-k}\}\vdash\varphi\ \text{si}\ \{x_1^e,\ldots,x_{n-k-1}^e,\neg x_{n-k}\}\vdash\varphi.$$

Aplicăm acum Propoziția 2.20 cu Γ :=

 $k\Rightarrow k+1$. Presupunem că (*) este adevărată pentru k și fie $e:V\to\{0,1\}$. Trebuie să arătăm că $\{x_1^e,\ldots,x_{n-k-1}^e\}\vdash \varphi$. Considerăm evaluarea $e':=e_{x_{n-k}\leftarrow \neg e(x_{n-k})}$. Așadar, e'(v)=e(v) pentru orice $v\neq x_{n-k}$ și

$$e'(x_{n-k}) = \begin{cases} 0 & \text{dacă } e(x_{n-k}) = 1\\ 1 & \text{dacă } e(x_{n-k}) = 0. \end{cases}$$

Rezultă că $x_i^{e'} = x_i^e$ pentru orice $i \in \{0, \dots, n-k-1\}$ și

$$x_{n-k}^{e'} = \begin{cases} \neg x_{n-k} & \text{dacă } x_{n-k}^e = x_{n-k} \\ x_{n-k} & \text{dacă } x_{n-k}^e = \neg x_{n-k}. \end{cases}$$

Din (*) pentru e şi e', obţinem

$$\{x_1^e,\dots,x_{n-k-1}^e,x_{n-k}\}\vdash\varphi\ \S i\ \{x_1^e,\dots,x_{n-k-1}^e,\neg x_{n-k}\}\vdash\varphi.$$

Aplicăm acum Propoziția 2.20 cu $\Gamma:=\{x_1^e,\dots,x_{n-k-1}^e\}$ și $\psi:=$

 $k\Rightarrow k+1$. Presupunem că (*) este adevărată pentru k şi fie $e:V\to\{0,1\}$. Trebuie să arătăm că $\{x_1^e,\ldots,x_{n-k-1}^e\}\vdash \varphi$. Considerăm evaluarea $e':=e_{x_{n-k}\leftarrow \neg e(x_{n-k})}$. Aşadar, e'(v)=e(v) pentru orice $v\neq x_{n-k}$ şi

$$e'(x_{n-k}) = \begin{cases} 0 & \text{dacă } e(x_{n-k}) = 1\\ 1 & \text{dacă } e(x_{n-k}) = 0. \end{cases}$$

Rezultă că $x_i^{e'} = x_i^e$ pentru orice $i \in \{0, \dots, n-k-1\}$ și

$$x_{n-k}^{e'} = \begin{cases} \neg x_{n-k} & \text{dacă } x_{n-k}^e = x_{n-k} \\ x_{n-k} & \text{dacă } x_{n-k}^e = \neg x_{n-k}. \end{cases}$$

Din (*) pentru e şi e', obţinem

$$\{x_1^e, \dots, x_{n-k-1}^e, x_{n-k}\} \vdash \varphi \text{ si } \{x_1^e, \dots, x_{n-k-1}^e, \neg x_{n-k}\} \vdash \varphi.$$

Aplicăm acum Propoziția 2.20 cu $\Gamma := \{x_1^e, \dots, x_{n-k-1}^e\}$ şi $\psi := x_{n-k}$ pentru a conclude că $\{x_1^e, \dots, x_{n-k-1}^e\} \vdash \varphi$.

Propoziția 2.24

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq \mathit{Form}$. Presupunem că $\varphi \sim \psi$. Atunci

$$\Gamma \vdash \varphi \iff \Gamma \vdash \psi.$$

Propoziția 2.24

Fie $\Gamma \cup \{\varphi,\psi\} \subseteq \mathit{Form}$. Presupunem că $\varphi \sim \psi$. Atunci

$$\Gamma \vdash \varphi \iff \Gamma \vdash \psi.$$

Demonstrație. Observăm că

$$\varphi \sim \psi \quad \iff \quad \models \varphi \rightarrow \psi \text{ \emptyset i } \models \psi \rightarrow \varphi$$
 (conform Propoziției 1.15)

Propoziția 2.24

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq \mathit{Form}$. Presupunem că $\varphi \sim \psi$. Atunci

$$\Gamma \vdash \varphi \iff \Gamma \vdash \psi.$$

Demonstrație. Observăm că

$$\begin{array}{cccc} \varphi \sim \psi & \iff & \models \varphi \rightarrow \psi \; \S i \vDash \psi \rightarrow \varphi \\ & & (\text{conform Propoziţiei 1.15}) \\ & \iff & \vdash \varphi \rightarrow \psi \; \S i \vdash \psi \rightarrow \varphi \\ & & (\text{conform Teoremei de completitudine}). \end{array}$$

Propoziția 2.24

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq \mathit{Form}$. Presupunem că $\varphi \sim \psi$. Atunci

$$\Gamma \vdash \varphi \iff \Gamma \vdash \psi.$$

Demonstrație. Observăm că

$$\begin{array}{cccc} \varphi \sim \psi &\iff & \vDash \varphi \rightarrow \psi \; \S i \vDash \psi \rightarrow \varphi \\ & & (\text{conform Propoziţiei 1.15}) \\ & \iff & \vdash \varphi \rightarrow \psi \; \S i \vdash \psi \rightarrow \varphi \\ & & (\text{conform Teoremei de completitudine}). \end{array}$$

" \Rightarrow " Presupunem că $\Gamma \vdash \varphi$. Deoarece $\vdash \varphi \rightarrow \psi$, rezultă din Propoziția 1.26.(ii) că $\Gamma \vdash \varphi \rightarrow \psi$. Aplicăm acum (MP) pentru a obține că $\Gamma \vdash \psi$.

Propoziția 2.24

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq \mathit{Form}$. Presupunem că $\varphi \sim \psi$. Atunci

$$\Gamma \vdash \varphi \iff \Gamma \vdash \psi.$$

Demonstrație. Observăm că

$$\begin{array}{cccc} \varphi \sim \psi &\iff & \vDash \varphi \rightarrow \psi \; \S i \vDash \psi \rightarrow \varphi \\ & & (\text{conform Propoziţiei 1.15}) \\ & \iff & \vdash \varphi \rightarrow \psi \; \S i \vdash \psi \rightarrow \varphi \\ & & (\text{conform Teoremei de completitudine}). \end{array}$$

" \Rightarrow " Presupunem că $\Gamma \vdash \varphi$. Deoarece $\vdash \varphi \rightarrow \psi$, rezultă din Propoziția 1.26.(ii) că $\Gamma \vdash \varphi \rightarrow \psi$. Aplicăm acum (MP) pentru a obține că $\Gamma \vdash \psi$.

"⇐" Similar.

NOTAŢII

Fie Γ o mulţime de formule şi φ o formulă.

Notaţii.

MULŢIMI CONSISTENTE

Definiția 2.25

Fie Γ o mulţime de formule.

· Γ este consistentă dacă există o formulă φ astfel încât $\Gamma \not\vdash \varphi$.

MULŢIMI CONSISTENTE

Definiția 2.25

Fie Γ o mulţime de formule.

- · Γ este consistentă dacă există o formulă φ astfel încât $\Gamma \not\vdash \varphi$.
- · Γ este inconsistentă dacă nu este consistentă, adică, $\Gamma \vdash \varphi$ pentru orice formulă φ .

MULŢIMI CONSISTENTE

Definiția 2.25

Fie Γ o multime de formule.

- · Γ este consistentă dacă există o formulă φ astfel încât $\Gamma \not\vdash \varphi$.
- · Γ este inconsistentă dacă nu este consistentă, adică, $\Gamma \vdash \varphi$ pentru orice formulă φ .

Observație.

Fie Γ, Δ mulţimi de formule a.î. $\Gamma \subseteq \Delta$.

Definiția 2.25

Fie Γ o multime de formule.

- · Γ este consistentă dacă există o formulă φ astfel încât $\Gamma \not\vdash \varphi$.
- · Γ este inconsistentă dacă nu este consistentă, adică, $\Gamma \vdash \varphi$ pentru orice formulă φ .

Observație.

Fie Γ, Δ mulţimi de formule a.î. $\Gamma \subseteq \Delta$.

· Dacă Δ este consistentă, atunci și Γ este consistentă.

Definiția 2.25

Fie Γ o multime de formule.

- · Γ este consistentă dacă există o formulă φ astfel încât $\Gamma \not\vdash \varphi$.
- · Γ este inconsistentă dacă nu este consistentă, adică, $\Gamma \vdash \varphi$ pentru orice formulă φ .

Observație.

Fie Γ , Δ mulţimi de formule a.î. $\Gamma \subseteq \Delta$.

- · Dacă Δ este consistentă, atunci și Γ este consistentă.
- · Dacă Γ este inconsistentă, atunci și Δ este inconsistentă.

Propoziția 2.26

- (i) ∅ este consistentă.
- (ii) Mulţimea teoremelor este consistentă.

Demonstrație.

Propoziția 2.26

- (i) ∅ este consistentă.
- (ii) Mulţimea teoremelor este consistentă.

Demonstrație.

(i) Dacă $\vdash \bot$, atunci, conform Teoremei de corectitudine, ar rezulta că $\models \bot$, o contradicție. Aşadar $\not\vdash \bot$, deci \emptyset este consistentă.

Propoziţia 2.26

- (i) ∅ este consistentă.
- (ii) Mulţimea teoremelor este consistentă.

Demonstrație.

- (i) Dacă ⊢ ⊥, atunci, conform Teoremei de corectitudine, ar rezulta că ⊨ ⊥, o contradicție. Aşadar ⊬ ⊥, deci Ø este consistentă.
- (ii) Aplicând Propoziția 1.26.(iv) pentru $\Gamma=\emptyset$, obținem că Thm=Thm(Thm), adică, pentru orice φ ,

Propoziţia 2.26

- (i) ∅ este consistentă.
- (ii) Mulţimea teoremelor este consistentă.

Demonstrație.

- (i) Dacă ⊢ ⊥, atunci, conform Teoremei de corectitudine, ar rezulta că ⊨ ⊥, o contradicție. Aşadar ⊬ ⊥, deci Ø este consistentă.
- (ii) Aplicând Propoziția 1.26.(iv) pentru $\Gamma=\emptyset$, obținem că Thm=Thm(Thm), adică, pentru orice φ ,

 $\vdash \varphi \; \mathsf{ddac} \; \mathsf{T} \mathsf{h} \mathsf{m} \vdash \varphi.$

Din (i) rezultă că *Thm* este consistentă.

Propoziţia 2.27

Pentru o mulțime de formule Γ sunt echivalente:

- (i) Γ este inconsistentă.
- (ii) Pentru orice formulă ψ , $\Gamma \vdash \psi$ şi $\Gamma \vdash \neg \psi$.
- (iii) Există o formulă ψ a.î. $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.
- (iv) Γ ⊢ ⊥.

Propoziţia 2.27

Pentru o mulțime de formule Γ sunt echivalente:

- (i) Γ este inconsistentă.
- (ii) Pentru orice formulă ψ , $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.
- (iii) Există o formulă ψ a.î. $\Gamma \vdash \psi$ şi $\Gamma \vdash \neg \psi$.
- (iv) $\Gamma \vdash \bot$.

Propoziția 2.28

Fie Γ o mulţime de formule şi φ o formulă.

- (i) $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$ este inconsistentă.
- (ii) $\Gamma \vdash \neg \varphi \iff \Gamma \cup \{\varphi\}$ este inconsistentă.

Propoziția 2.29

Fie Γ o mulţime de formule. Γ este inconsistentă ddacă Γ are o submulţime finită inconsistentă.

Propoziția 2.29

Fie Γ o mulţime de formule. Γ este inconsistentă ddacă Γ are o submulţime finită inconsistentă.

Un rezultat echivalent:

Propoziția 2.30

Fie Γ o mulţime de formule. Γ este consistentă ddacă orice submulţime finită a lui Γ este consistentă.

Teorema 2.31 Pentru orice formulă φ ,

 $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

Teorema 2.31

Pentru orice formulă φ ,

 $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

Demonstrație. Avem

$$\{\varphi\}$$
 este inconsistentă $\iff \vdash \neg \varphi$ conform Propoziției 2.28 (ii)

Teorema 2.31

Pentru orice formulă φ ,

 $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

Demonstrație. Avem

$$\{\varphi\} \text{ este inconsistentă} \iff \vdash \neg \varphi \\ \text{conform Propoziției 2.28 (ii)} \\ \iff \vdash \neg \varphi \\ \text{conform Teoremei de completitudine}$$

Teorema 2.31

Pentru orice formulă φ ,

 $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

Demonstrație. Avem

$$\{\varphi\} \text{ este inconsistent} \quad \iff \quad \vdash \neg \varphi \\ \text{ conform Propoziţiei 2.28 (ii)} \\ \iff \quad \vdash \neg \varphi \\ \text{ conform Teoremei de completitudine} \\ \iff \quad \{\varphi\} \text{ este nesatisfiabilă} \\ \text{ (exercitiu)}$$

Aşadar, $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

TEOREMA DE COMPLETITUDINE TARE

Teorema de completitudine tare - versiunea 1) 2.32 Pentru orice mulțime de formule Γ ,

 Γ este consistentă $\iff \Gamma$ este satisfiabilă.

TEOREMA DE COMPLETITUDINE TARE

Teorema de completitudine tare - versiunea 1) 2.32 Pentru orice mulţime de formule Γ ,

 Γ este consistentă $\iff \Gamma$ este satisfiabilă.

Teorema de completitudine tare - versiunea 2) 2.33 Pentru orice mulțime de formule Γ și orice formulă φ ,

$$\Gamma \vdash \varphi \iff \Gamma \vDash \varphi.$$

Baftă la examen!

Conținutul tehnic al acestui curs se regăsește în cursul de Logică Matematică și Computațională al prof. Laurențiu Leuștean din anul universitar 2017/2018.

Comic-ul aparţine xkcd.