Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

TUTORIAL SESSION 21:

Time complexity of various problems

Concept Building

Time complexity is a critical concept in computer science that quantifies the amount of time an algorithm takes to complete as a function of the length of the input. It provides a way to analyze the efficiency of algorithms and helps in comparing different algorithms for the same problem.

Key Concepts of Time Complexity

- 1. **Definition**: Time complexity is expressed as a function of the size of the input, typically denoted as n. It describes how the runtime of an algorithm increases as the input size increases.
- 2. **Big O Notation**: The most common way to express time complexity is through Big O notation, which provides an upper bound on the time complexity of an algorithm. It describes the worst-case scenario of an algorithm's growth rate.

o Examples:

- O(1): Constant time the algorithm's runtime does not change with the input size.
- O(n): Linear time the runtime increases linearly with the input size.
- O(n²): Quadratic time the runtime increases quadratically with the input size.
- O(2ⁿ): Exponential time the runtime doubles with each additional input element.

3. Polynomial vs. Exponential Time:

- Polynomial Time: An algorithm is said to run in polynomial time if its time complexity can be expressed as O(n^k) for some constant kk. Polynomial time is generally considered efficient and feasible for computation.
- Exponential Time: An algorithm is said to run in exponential time if its time complexity can be expressed as O(2ⁿ) or similar. Exponential time algorithms are often impractical for large inputs due to their rapid growth.

4. Classes of Problems:

- o **P (Polynomial Time)**: The class of problems that can be solved by a deterministic Turing machine in polynomial time. Examples include sorting algorithms and searching algorithms.
- NP (Nondeterministic Polynomial Time): The class of decision problems for which a proposed solution can be verified in polynomial time. Examples include the Subset Sum problem and the Traveling Salesman problem.
- NP-Complete: A subset of NP problems that are as hard as the hardest problems in NP. If any NP-complete problem can be solved in polynomial time, then all NP problems can be solved in polynomial time. Examples include the 3-SAT problem and the Hamiltonian Cycle problem.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		227
Course Code(s)	22CS2002A	Page 227 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

- NP-Hard: Problems that are at least as hard as NP-complete problems but do not need to be in NP. They may not even be decision problems. An example is the Halting Problem.
- 5. **Reduction**: This is a technique used to show that one problem is at least as hard as another. If problem A can be transformed into problem B in polynomial time, and if B is known to be hard, then A is also hard.

Examples of Time Complexity

1. Linear Search:

- o Algorithm: Search for an element in an unsorted list.
- Time Complexity: O(n)—in the worst case, you may have to check every element.

2. Binary Search:

- o Algorithm: Search for an element in a sorted list.
- **Time Complexity**: O(log n)— with each step, the search space is halved.

3. Bubble Sort:

- Algorithm: A simple sorting algorithm that repeatedly steps through the list, compares
 adjacent elements, and swaps them if they are in the wrong order.
- Time Complexity: O(n²) in the worst case, every element needs to be compared with every other element.

4. Quick Sort:

- Algorithm: A divide-and-conquer algorithm that sorts by selecting a 'pivot' and partitioning the
 array into elements less than and greater than the pivot.
- \circ Time Complexity: Average case O(n * log n), worst case O(n²) (when the smallest or largest element is always chosen as the pivot).

5. Traveling Salesman Problem (TSP):

- Algorithm: Find the shortest possible route that visits each city exactly once and returns to the origin city.
- Time Complexity: The brute-force solution is O(n!), which is exponential and impractical for large n.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		228
Course Code(s)	22CS2002A	Page 228 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

Pre-Tutorial (To be completed by student before attending tutorial session)

1. Consider a non-deterministic Turing machine that decides a language L. If the time complexity of this NDTM is $O(n^k)$ for some constant k. Is L considered to be in P or NP? Explain.

Solution:

The language L is in **NP** because an NDTM decides it in polynomial time $O(n^k)$. However, we can't confirm L is in **P** without a deterministic polynomial-time algorithm.

2. If a polynomial-time algorithm exists for any NP-complete problem, what can be concluded?

Solution:

If a polynomial-time algorithm exists for any NP-complete problem, then P = NP.

3. What is the time complexity of the brute-force solution to the Subset Sum Problem? Solution:

The time complexity is O(2^n).

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		229
Course Code(s)	22CS2002A	Page 229 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

IN-TUTORIAL (To be carried out in presence of faculty in classroom)

1. Give an example of a problem that is in NP but not known to be NP-complete? Solution:

An example of a problem that is in NP but not known to be NP-complete is Graph Isomorphism.

2. Compare polynomial-time and exponential-time algorithms with examples.

Solution:

Гуре	Definition	Example Problem	Time Complexity
Polynomial-time	Solves in $O(n^k)$ for some constant k	Sorting (e.g., Merge Sort)	$O(n \log n)$
Exponential- ime	Solves in $O(2^n)$ or similar large growth	Subset Sum (brute- force)	$O(2^n)$

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		230
Course Code(s)	22CS2002A	Page 230 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

3. What is the time complexity of Dijkstra's algorithm when implemented with a priority queue?

Solution:

The time complexity of Dijkstra's algorithm with a priority queue is $O((V + E) \log V)$.

4. What is the time complexity of the DFS algorithm for a graph represented as an adjacency list?

Solution:

The time complexity of DFS using an adjacency list is O(V + E).

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		231
Course Code(s)	22CS2002A	Page 231 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

Post-Tutorial (To be carried out by student after attending tutorial session)

1. Determine the time complexity of the following recursive function:

```
function fib(n):
    if n <= 1:
        return n
    else:
        return fib(n-1) + fib(n-2)
Solution:</pre>
```

The time complexity of the recursive Fibonacci function is O(2^n).

2. Determine the time complexity of the following function:

```
def example_function(n):
for i in range(n):
for j in range(n):
print(i, j)
```

Solution:

The time complexity of the function is $O(n^2)$.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		232
Course Code(s)	22CS2002A	Page 232 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

3. Discuss the exponential time complexity of the Traveling Salesman Problem (TSP) using the brute force approach.

Solution:

The Traveling Salesman Problem (TSP) has a brute force time complexity of O(n!). This is due to evaluating all permutations of cities, leading to impractical computation times as n increases.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		233
Course Code(s)	22CS2002A	Page 233 of 261

Experiment #	<to be="" by="" filled="" student=""></to>	Student ID	<to be="" by="" filled="" student=""></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	<to be="" by="" filled="" student=""></to>

Viva – Questions

1. What is time complexity, and why is it important in algorithm analysis?

Sol	ı.	.+	:_		
NO	и	IT		m	•

Time com	alevity	measures	an ald	orithm's	efficienc	v as innut	arows
Time com	JIENILY	Illeasures	an any	OHUIIII	emclenc	y as iliput	grows.

2. Explain the difference between worst-case, average-case, and best-case time complexity.

Solution:

Worst-case: maximum time, average-case: expected time, best-case: minimum time.

(For Evaluator's use only)

Comment of the Evaluator (if Any)	Evaluator's Observation	
	Marks Secured: out of <u>50</u>	
	Full Name of the Evaluator:	
	Signature of the Evaluator Date of	
	Evaluation:	

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		234
Course Code(s)	22CS2002A	Page 234 of 261