Distribución	Valores Posibles	f.d.p	μ	σ^2	$\varphi_{X}(t)$	$F_X(x_i)$
Distribución de Bernoulli	X=0,1	$f_X(x) = p^x q^{1-x}$	р	pq	$\varphi_X(t) = q + pe^t$	
Distribución Binomial	X=0,1,2,,n	$f_X(x) = \binom{n}{x} p^x q^{n-x}$	пр	пра	$\varphi_X(t) = (q + pe^t)^n$	$F_X(x) = \sum_{i=0}^{x} \binom{n}{i} p^i q^{n-i}$
Distribución Geométrica	X=1,2,3,,n	$f_X(x) = q^{x-1}p$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\varphi_X(t) = \frac{pe^t}{1 - qe^t}$	$F_X(x) = 1 - q^x \operatorname{si} P(X \le x)$ $F_X(x) = q^x \operatorname{si} P(X > x)$
Distribución Hipergeométrica	$\max(0, n - r_2) \le x$ $\le \min(r, n)$	$f_X(x) = \frac{\binom{r_1}{x}\binom{r_2}{n-x}}{\binom{r}{n}}$	$n\frac{r_1}{r}$	$n(\frac{r_1}{r})(1 - \frac{r_1}{r})(1 - \frac{n-1}{r-1})$	$\varphi_X(t) = \sum_{i=\max(0,n-r_2)}^{\min(n,r_1)} e^{tX} \frac{\binom{r_1}{i}\binom{r_2}{n-i}}{\binom{r}{n}}$	$F_X(x) = \sum_{i=\max(0,n-r_2)}^{x} \frac{\binom{r_1}{i}\binom{r_2}{n-i}}{\binom{r}{n}}$
Distribución de Poisson	X= 0,1,2,,n	$f_X(x) = e^{-\lambda} \frac{\lambda^x}{x!}$	λ	λ	$\varphi_X(t) = e^{\lambda(e^t - 1)}$	$F_X(x) = \sum_{k=0}^{x} e^{-\lambda} \frac{\lambda^k}{k!}$
Aproximación Binomial a Poisson	X=0,1,2,,n	$f_X(x) = e^{-(np)} \frac{(np)^x}{x!}$	λ = np	$\lambda = np$	$\varphi_X(t) = e^{np(e^t - 1)}$	$F_X(x) = \sum_{k=0}^{x} e^{-(np)} \frac{(np)^k}{k!}$