Survey of Materials. Lecture 2

Atomistic structure

Andriy Zhugayevych

October 1, 2019

Outline

- Why symmetry is important
- 2D crystallography
- 3D crystallography
- Nonperiodic solids
- Structure characterization and determination

2D crystallography

Space group = point group + translation symmetry

- Determine all 2D point groups
- Determine all 2D Bravais lattices

2D crystallography

2D space groups (17), point groups, Bravais lattices, and crystal systems (4)

2D glide plane

2D materials

- graphene, BN
- organic networks

MoS₂

• P, As

3D point groups

3D symmetry elements

3D crystallography

Lecture of Artem Abakumov or any textbook

Unit cell

	min.size	parallelepiped	symmetric
primitive	+	+	_
Wigner–Seitz	+	_	+
Bravais	_	+	+

Generators, fundamental domain, asymmetric unit

also orbits (Wyckoff positions), stabilizators, independent geometrical parameters etc.

 $-43m \equiv T_d = \{1, 8c_3, 3c_2, 6c_{4i}, 6\sigma_v\} \sim O$

Generators: $c_3(1)$ and $\sigma_v(34)$, e.g. $c_3(1)\sigma_v(34) = c_{Ai}^{-1}(7)$, $c_{Ai}^2 = c_2$

	orbit	WP	stab.	atoms
000	Γ	1a	-43m	
XXX	Λ	4e	3m	CH
×00	Δ	6f	2mm	C
XXZ	$\Lambda\Delta$	12i	m	Н
xyz		24j	1	

 $\Lambda\Delta\Lambda'$ -pyramid (V=1/24) Asymetric unit is HCCH

Geometrical parameters are

CC, $2\times$ CH, CCC, HCH or $x(C_1), x(H_1), x(C_2), x(H_2), z(H_2)$

10 / 15

The same for crystal

 $I41/\mathsf{amd}:1 \equiv D_{4h}^{19}$

Generators: -4_{001} , 2_{110} , $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, $\left\{-1, \left[0, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, (100), (010), (001)\right]\right\}$

Fundamental domain is the box (1/2,1/2,1/8) with V=1/32 Asymetric unit is TiOLi

Geometrical parameters are a, c, ζ or $2 \times TiO$ and OTiO

Classification of space groups

structural type	A4 (dia)	A3 (hcp)	A7 (α -As)
space group	Fd-3m	P63/mmc	R-3m
arithmetic crystal class	Fm-3m	P6/mmm	R-3m
lattice centering	F	Р	R
crystal class	m-3m	6/mmm	-3m
crystal family	С	h	h*

^{*} Lattice system is rhombohedral, crystal system is trigonal

Lattice system vs crystal system, crystal family

-			Landa		
space		lattice	crystal	crystal	
	gro	ups	system	family	system
P1		P-1	anorthic*	а	anorthic
P2		C2/c	monoclinic	m	monoclinic
P222		Imma	orthorhombic	0	orthorhombic
P4		$I4_1/acd$	tetragonal	t	tetragonal
R3		R-3c	rhombohedral	h	trigonal
P3		P-3c1	hexagonal	h	trigonal
P6		$P6_3/mmc$	hexagonal	h	hexagonal
P23		la-3d	cubic	С	cubic

^{*} anorthic is also called triclinic

Structure factor and radial distribution function

Summary and Resources

See summary here

- Wikipedia
- Bilbao Crystallographic Server
- Crystal structures
- References: crystallography, symmetry
- Textbooks (sections General, Crystallography, Symmetry)

Visualization software:

- Jmol
- Mercury
- Surface explorer (online tool)