

EE2211 Pre-Tutorial 2

Dr Feng LIN feng_lin@nus.edu.sg

Agenda

- Recap
- Self-learning
- Tutorial 2

Recap

Types of data

Data wrangling and cleaning

Data integrity and visualization

View Data by Scale/Level of Measurement

Nominal

- Lowest Level of Measurement
- Discrete Categories
- NO natural order
- Estimating a mean, median, or standard deviation, would be meaningless.
- Possible Measure: mode, frequency distribution

Ordinal

- Ordered Categories
- Relative Ranking
- Unknown "distance" between categories: orders matter but not the difference between values
- Possible Measure: mode, frequency distribution + median

View Data by Scale/Level of Measurement

Interval

- Ordered Categories
- Well-defined "unit" measurement:
- Equal Interval
- Zero is arbitrary (not absolute), in many cases human-defined
- Ratio is meaningless
- Possible Measure: mode, frequency distribution + median + mean, standard deviation, addition/subtraction

Ratio

- Most precise and highest level of measurement
- Ordered
- Equal Intervals
- Natural Zeros
- Possible Measure: mode, frequency distribution + median + mean, standard deviation, addition/subtraction + multiplication and division (ratio)

View Data by Levels/Scales of Measurement

Highest Precision

NOIR

Interval

Named + Ordered +

Named + Ordered + Equal Interval + Has "True" 7ero

Ratio

Ordinal

Named + Ordered

Equal Interval

Nominal

Named

Indicates difference

Indicates direction of difference

Indicates amount of difference

"Absolute Zero"

"Absolute magnitudes"

© Copyright National University of Singapore. All Rights Reserved.

Lowest

View Data by Numerical/Categorical

Data Wrangling

Collect Human Face Images for Face Detector

Binary Coding

- One-hot encoding: unify several entities within one vector

	Color					
	IsRed	IsYellow	IsGeen			
Apple	1	0	0			
Banana	0	1	0			
Watermelon	0	0	1			

1 2 3 color ∈ {Red, Yellow, Green}

Red Yellow IsGreen Green Green = [0, 0, 1]Red = [1, 0, 0]Yellow = [0, 1, 0]IsRed **IsYellow**

Often we have feature vectors in which features are on different scales.

For example:

$$\mathbf{x}_1 = \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix}, \quad \dots, \mathbf{x}_1 = \begin{bmatrix} x_{n1} \\ x_{n2} \end{bmatrix}$$

First feature: Height \in [140, 195]

Second feature: Shoe size $\in [6, 13]$

- So even if both features are deemed equally "important", unfortunately, any machine learning method would place more importance on the first feature because of its larger values, which is not ideal.
- Thus, we have to scale or normalize the features so that their dynamic ranges are roughly the same.

Min-max scaling

Define the minimum and maximum values of feature 1 to be

$$\max \quad x_{max,1} = \max_{1 \le i \le n} x_{i1}$$

$$Min x_{min,1} = \min_{1 \le i \le n} x_{i1}$$

Then we create the normalized 1st features associated to each training sample as

$$\bar{x}_{i1} = \frac{x_{i1} - x_{min,1}}{x_{max,1} - x_{min,1}}$$

We can do this for all features so that, in some sense, they are all "normalized".

Z-Score

First we calculate the empirical mean and empirical standard deviation of each feature.

$$\mu_1 = \frac{1}{n} \sum_{i=1}^{n} x_{i1}$$
 and $\sigma_1 = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i1} - \mu_1)^2}$

Then we create the normalized 1st features associated to each training sample as

$$\bar{x}_{i1} = \frac{x_{i1} - \mu_1}{\sigma_1}$$

Data Cleaning

The process of detecting and correcting (or removing)
 corrupt or inaccurate records from a record set, table, or
 database.

Example:

Clipping outliers

Handling missing features

Students	Year of Birth	Gender	Height	GPA
Tan Ah Kow	1995	М	1.72	4.2
Ahmad Abdul	X NA	M	1.65	4.1
John Smith	1995	М	1.75	X NA
Chen Lulu	1995	F	X NA	4.0
Raj Kumar	1995	М	1.73	4.5
Li Xiuxiu	1994	F	1.70	3.8

Data Cleaning: Handling missing features

- Removing the examples with missing features from the dataset
 - Can be done if the dataset is big enough so we can sacrifice some training examples
- Using a learning algorithm that can deal with missing feature values
 - Example: random forest
- 3. Using a data imputation technique

Data Cleaning: Handling missing features: **Imputation**

 Method 1. Replace the missing value of a feature by an average value of this feature in the dataset:

$$\hat{x}^{(j)} \leftarrow \frac{1}{N} \sum_{i=1}^{N} x_i^{(j)}$$

- Method 2. Highlight the missing value
 - Replace the missing value with a value outside the normal range of values.
 - For example, if the normal range is [0, 1], then you can set the missing value to −1.
 - Enforce the learning algorithm to learn what is best to do when the feature has a value significantly different from regular values.

Data Integrity

- Data integrity is the maintenance and the assurance of data accuracy and consistency;
 - A critical aspect to the <u>design</u>, implementation, and usage of any system that stores, processes, or retrieves data.
 - Very broad concept!
- Example:
 - In a dataset, numeric columns/cells should not accept alphabetic data.
 - · A binary entry should only allow binary inputs

outs	Organization	User Type	Ť	Profile Entered	Primary	Secondary	Bid	Relevance	Suggestion Rank	Tpms Rank	Quota	Number Of Assignments
	filter	click here		click he	filter	filter	click h	e.g. <3	e.g. <3	e.g	e.g. «	e.g. <3
	Day	Clear	Selec	t All	Owr	Chier	Clour	Clear	Clier	Dear	Cher	Clour
/IC ISW /IC		Student, >3 times as reviewer for CVPR, ICCV, or ECCV	□ Yes	DBLP	Machine learning	3D from single images; Adversarial attack and defense; Computer vision theory; Explainable computer vision; Self-& semi-& meta-& unsupervised learning; Transfer/low-shot/long-tail learning; Vision + graphics	Not Entered	0.08	1	1434		4
	Zhejiang University	Faculty/Researcher, 3-10 times as reviewer for CVPR, ICCV, or ECCV	No		Transfer/ low- shot/ long-tail learning	Efficient learning and inferences; Explainable computer vision; Image and video synthesis and generation; Recognition:	Not Entered	0.16	7			2

Mr. Mark John	33	21-08-1985	180	M	0433010010	Mel,VIC
Mr. Chris, Peter	34	21-Sep-1982	?	Fale	0000000000	Syd, NSW
Ethan Steedman	36	01/01/82	17o	М	0388886789	Mel,VIC

Visualization: Boxplots

Maximum (100th percentile)

 $Q_3 + 1.5 \times IQR$

Third Quartile (75th percentile)

Median (50th percentile)

First Quartile (25th percentile)

Minimum (0th percentile)

 $Q_1 - 1.5 \times IQR$

- The first quartile (Q_1) is defined as middle number between the smallest number and the median of the data set.
- The third quartile (Q_3) is defined as middle number between the highest number and the median of the data set.
- Interquartile range (IQR) is defined as distance between the first and third quartile, $IQR=Q_3-Q_1$.

Summary

- Types of data
 - NOIR
- Data wrangling and cleaning

- Data integrity and visualization
 - Integrity: Design
 - Visualization: Graphical Representation

THANK YOU