Introduction to Scikit-Learn: Machine Learning with Python

Machine Learning Intro

郭耀仁

About Scikit-Learn

What is Machine Learning?

Machine Learning is about building programs with tunable parameters (typically an array of floating point values) that are adjusted automatically so as to improve their behavior by
adapting to previously seen data.

Tom Mitchell (http://www.cs.cmu.edu/~tom/)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. Machine Learning can be considered a subfield of **Artificial Intelligence** since those algorithms can be seen as building blocks to make computers learn to behave more intelligently by somehow **generalizing** rather that just storing and retrieving data items like a database system would do.

Artificial Intelligence

Any technique which enables computers to mimic human behavior.

Machine Learning

Subset of AI techniques which use statistical methods to enable machines to improve with experiences.

Deep Learning

Subset of ML which make the computation of multi-layer neural networks feasible.

Source: <u>rapidminer (https://rapidminer.com/artificial-intelligence-machine-learning-deep-learning/)</u>

Machine Learning is

- Constructing/using algorithms that learn from data
- Performing better with more information
- Learning from previous solutions as experience

Formulating Machine Learning

- input -> Function(f) -> output
- input -> Estimated Function(\hat{f}) -> predicted output

Machine Learning Topics

- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Dimensionality Reduction
 - Clustering

Machine Learning Topics in Depth

- Supervised Learning: Finding function \hat{f} which can be used to assign a class or value to unseen observations given a set of labeled observations.
- Unsupervised Learning: Finding groups observation that are similar or using less vairiables to achieve similar predictability.

Machine Learning Topics in Depth

- Supervised Learning: Finding function \hat{f} which can be used to assign a class or value to unseen observations given a set of labeled observations.
- Unsupervised Learning: Finding groups observation that are similar or using less vairiables to achieve similar predictability.

Measuring performance

- Supervised Learning: Comparing real labels with predicted labels, great performance means predictions should be similar to real labels
- Unsupervised Learning: No real labels to compare

Representation of Data in Scikit-learn

Machine learning is about

- Creating models from data
- How data can be represented in order to be understood by the computer?

Two-dimensional array or matrix

Most machine learning algorithms implemented in scikit-learn expect data to be stored in a **two-dimensional array or matrix**. The size of the array is expected to be <code>[m_samples, n features]</code>

m x n in general

- m_samples: The number of samples: each sample is an item to process (e.g. classify). A sample can be a document, a picture, a sound, a video, an astronomical object, a row in database or CSV file, or whatever you can describe with a fixed set of quantitative traits.
- n_features: The number of features or distinct traits that can be used to describe each item in a quantitative manner. Features are generally real-valued, but may be boolean or discrete-valued in some cases.

In [1]: plt.show()

Simple Examples: Getting Started with Kaggle

We're going to take a look at the data hosted by Kaggle. Try extracting feature matrix and target vector from the following datasets:

- House Prices: Advanced Regression Techniques
- Titanic: Machine Learning from Disaster
- Digit Recognizer

Installing Kaggle Module

```
In [2]:
        !pip install kaggle
        Requirement already satisfied: kaggle in /Users/kuoyaojen/anaconda3/lib/python
        3.7/site-packages (1.5.3)
        Requirement already satisfied: requests in /Users/kuoyaojen/anaconda3/lib/pyth
        on3.7/site-packages (from kaggle) (2.21.0)
        Requirement already satisfied: certifi in /Users/kuoyaojen/anaconda3/lib/pytho
        n3.7/site-packages (from kaggle) (2018.11.29)
        Requirement already satisfied: six>=1.10 in /Users/kuoyaojen/anaconda3/lib/pyt
        hon3.7/site-packages (from kaggle) (1.12.0)
        Requirement already satisfied: python-dateutil in /Users/kuoyaojen/anaconda3/l
        ib/python3.7/site-packages (from kaggle) (2.7.5)
        Requirement already satisfied: urllib3<1.25,>=1.21.1 in /Users/kuoyaojen/anaco
        nda3/lib/python3.7/site-packages (from kaggle) (1.24.1)
        Requirement already satisfied: tqdm in /Users/kuoyaojen/anaconda3/lib/python3.
        7/site-packages (from kaggle) (4.28.1)
        Requirement already satisfied: python-slugify in /Users/kuoyaojen/anaconda3/li
        b/python3.7/site-packages (from kaggle) (3.0.2)
        Requirement already satisfied: idna<2.9,>=2.5 in /Users/kuoyaojen/anaconda3/li
        b/python3.7/site-packages (from requests->kaggle) (2.8)
        Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /Users/kuoyaojen/anaco
        nda3/lib/python3.7/site-packages (from requests->kaggle) (3.0.4)
        Requirement already satisfied: text-unidecode==1.2 in /Users/kuoyaojen/anacond
        a3/lib/python3.7/site-packages (from python-slugify->kaggle) (1.2)
```

Creating New API Token

- Register / Log in Kaggle
- My Account
- Create New API Token

Using Kaggle API on Google Colab

```
!mkdir /root/.kaggle
import json
token = {"username": "YOUR-USERNAME", "key": "YOUR-KEY"}
with open('/root/.kaggle/kaggle.json', 'w') as file:
    json.dump(token, file)
!chmod 600 /root/.kaggle/kaggle.json
```

In [3]: !kaggle datasets list

ref			titl	_e
size lastUpdated	downloadCount			
ronitf/heart-disease-uci			Hear	t Disease UCI
3KB 2018-06-25 11:33:56	27773			
karangadiya/fifa19				19 complete
player dataset	2MB		03:52:59	21716
iarunava/cell-images-for-d	letecting-malar:	ia	Mala	aria Cell Imag
es Dataset	337MB	2018-12-05	05:40:21	4379
bigquery/crypto-ethereum-c	lassic		Ethe	ereum Classic
Blockchain	70GB	2019-03-20	23:21:25	0
jutrera/stanford-car-datas	et-by-classes-	folder	Star	nford Car Data
set by classes folder	2GB	2018-07-02	07:35:45	2769
vjchoudhary7/customer-segm		ial-in-pytho	n Mall	Customer Seg
mentation Data	2KB	2018-08-11	07:23:02	6845
russellyates88/suicide-rat	es-overview-198	85-to-2016	Suic	cide Rates Ove
rview 1985 to 2016	396KB	2018-12-01	19:18:25	20324
rmisra/news-headlines-data	set-for-sarcası	m-detection	News	Headlines Da
taset For Sarcasm Detection	n 2MB	2018-06-09	22:14:56	2556
lava18/google-play-store-a	pps		Goog	gle Play Store
Apps	2MB	2019-02-03	13:55:47	48807
mohansacharya/graduate-adm	nissions		Grad	luate Admissio
ns	9KB	2018-12-28	10:07:14	18344
jessicali9530/stanford-dog	s-dataset		Star	nford Dogs Dat
aset	735MB	2019-02-13	05:45:25	2480
anokas/kuzushiji			Kuzu	ıshiji-MNIST
318MB 2018-12-17 01:19:31	. 798	3		
cityofLA/los-angeles-parki	ng-citations		Los	Angeles Parki
ng Citations	257MB	2019-04-13	22:17:45	3032
noriuk/us-education-datase	ts-unification	-project	U.S.	Education Da
tasets: Unification Projec	t 85MB	2019-03-02	18:41:52	3308
safegraph/visit-patterns-b	y-census-block	-group	Cons	sumer & Visito
r Insights For Neighborhoo	ods 66MB	2018-12-19	21:31:50	1303

safegraph/census-block-group-ameri	can-com	munity-surve	ey-data Censu	s Block Grou
p American Community Survey Data	2GB	2018-12-22	00:29:56	707
jessicali9530/celeba-dataset			Celeb	Faces Attrib
utes (CelebA) Dataset	1GB	2018-06-01	20:08:48	6412
pavansanagapati/urban-sound-classification				
ification	6GB	2018-06-16	13:44:36	2271
fivethirtyeight/fivethirtyeight-co	mic-cha	racters-data	aset FiveT	hirtyEight C
omic Characters Dataset	577KB	2019-03-26	15:01:15	2297
xvivancos/barcelona-data-sets			Barce	lona data se
ts	1MB	2018-12-13	14:16:53	3669

In [4]: !kaggle datasets list -s MNIST

ref		title	size	lastUpd
ated	downloadCount			
daavoo/3d-mnis		3D MNIST	154MB	2016-11
-09 18:53:12	2471	a	0.1.45	0015 10
	n-language-mnist	Sign Language MNIST	31MB	2017-10
-20 15:09:18	5690	al ' a	2.00	0010 00
	ancer-mnist-ham10000	Skin Cancer MNIST: HAM10000	3GB	2018-09
-20 20:36:13	7400	Donking MNICH	COMP	2017 12
-07 00:54:20	cch/fashionmnist	Fashion MNIST	69MB	2017-12
	28597	Colomostal Histology MNICE	0.0.1 MD	2010 00
-19 14:20:49	ctal-histology-mnist 927	Colorectal Histology MNIST	991MB	2018-09
vikramtiwari/m		mnist.npz	11MB	2018-06
-29 01:59:44	445	mirsc.npz	TIMD	2010-00
oddrationale/m		MNIST in CSV	15MB	2018-05
-19 02:24:20	4936	MNIBI III CBV	13111	2010-03
pablotab/mnist		mnist.pkl.gz	15MB	2017-11
-20 15:02:57	298	mirro c. prir. 92	13110	2017 11
miningjerry/mr		mnist for tf	15MB	2017-05
-16 09 : 50 : 29	63		10112	201, 03
joewkim/mnist-		mnist data	11MB	2017-11
-07 19:39:08	66			
backalla/words	s-mnist	Words MNIST	47MB	2018-06
-06 09:34:28	114			
mustafaali96/m	nnist	mnist.	11MB	2018-05
-10 22:18:24	44			
crawford/emnis	st	EMNIST (Extended MNIST)	1GB	2017-12
-20 17:42:58	5887			
5 - 5	it/handwritten-az	Handwritten A-Z	92MB	2018-01
-26 15 : 44 : 12	527			
kevinv/mnist1		mnist1	15MB	2017-11
-30 16 : 55 : 58	4			

jwjohnson314/notmnist		notMNIST	226MB	2018-02
-14 19:52:14	607			
anokas/kuzushiji		Kuzushiji-MNIST	318MB	2018-12
-17 01:19:31	798			
farhanhubble/multimnistm2nist		Multidigit MNIST(M2NIST)	17MB	2018-07
-16 12:05:34	161			
lianglirong/mnistnpz		mnist.npz	11MB	2018-09
-16 12:44:43	6			
zsx242030/mnistplk		mnist.plk	11MB	2018-10
-06 03:59:01	0			

House Prices: Advanced Regression Techniques

https://www.kaggle.com/c/house-prices-advanced-regression-techniques (https://www.kaggle.com/c/house-prices-advanced-regression-techniques)

```
In [5]: # Target Vector: SalePrice
    train_url = "https://storage.googleapis.com/kaggle_datasets/House-Prices-Advanced-
    Regression-Techniques/train.csv"
```

```
In [6]:
        # Or using Kaggle-API
         !kaggle competitions download -c house-prices-advanced-regression-techniques --for
         ce
        Downloading sample submission.csv to /Users/kuoyaojen/python-sklearn-cht
                                                                0.00/31.2k [00:00<?, ?B/
           0 %
        s]
        100%
                                                                                   31.2k/
        31.2k [00:00<00:00, 639kB/s]
        Downloading test.csv to /Users/kuoyaojen/python-sklearn-cht
        100%
                                                                                     441
        k/441k [00:00<00:00, 1.16MB/s]
        Downloading train.csv to /Users/kuoyaojen/python-sklearn-cht
        100%
                                                                                     450
        k/450\overline{k} [00:00<00:00, 2.46MB/s]
        Downloading data description.txt to /Users/kuoyaojen/python-sklearn-cht
           0 %
                                                                 0.00/13.1k [00:00<?, ?B/
        s]
        100%
                                                                                  13.1k/1
        3.1k [00:00<00:00, 6.88MB/s]
```

Titanic: Machine Learning from Disaster

https://www.kaggle.com/c/titanic (https://www.kaggle.com/c/titanic)

```
In [7]:
        # Target Vector: Survived
        train url = "https://storage.googleapis.com/kaggle datasets/Titanic-Machine-Learni
        ng-from-Disaster/train.csv"
In [8]:
        # Or using Kaggle-API
         !kaggle competitions download -c titanic --force
        Downloading train.csv to /Users/kuoyaojen/python-sklearn-cht
        100%
                                                                                  59.8k/
        59.8k [00:00<00:00, 494kB/s]
        Downloading test.csv to /Users/kuoyaojen/python-sklearn-cht
          0 %
                                                               0.00/28.0k [00:00<?, ?B/
        s]
        100%
                                                                                28.0k/2
        8.0k [00:00<00:00, 10.9MB/s]
        Downloading gender submission.csv to /Users/kuoyaojen/python-sklearn-cht
          0%
                                                               0.00/3.18k [00:00<?, ?B/
        s]
        100%
                                                                                3.18k/3.
        18k [00:00<00:00, 2.58MB/s]
```



```
In [9]:
         # Target Vector: label
          train url = "https://storage.googleapis.com/kaggle datasets/Digit-Recognizer/trai
          n.csv"
In [10]:
         # Or using Kaggle-API
          !kaggle competitions download -c digit-recognizer --force
         Downloading train.csv to /Users/kuoyaojen/python-sklearn-cht
         100%
                                                                                   73.0M/7
         3.2M [00:40<00:00, 2.48MB/s]
         100%
                                                                                   73.2M/7
         3.2M \overline{(00:40<00:00, 1.88MB/s)}
         Downloading test.csv to /Users/kuoyaojen/python-sklearn-cht
         100%
                                                                                   48.8M/4
         8.8M [00:13<00:00, 4.17MB/s]
         Downloading sample submission.csv to /Users/kuoyaojen/python-sklearn-cht
           0 %
                                                                  0.00/235k [00:00<?, ?B/
         s]
         100%
                                                                                      235
         k/235k [00:00<00:00, 4.25MB/s]
```

The Scikit-learn Estimator Object

Every algorithm is exposed in scikit-learn via an "Estimator" object.

```
In [11]: import numpy as np import pandas as pd import matplotlib.pyplot as plt
```

Estimator parameters: All the parameters of an estimator can be set when it is instantiated, and have suitable default values:

```
In [12]: from sklearn.linear_model import LinearRegression
  model = LinearRegression()
  print(model)
```

Estimated Model parameters: When data is fit with an estimator, parameters are estimated from the data at hand. All the estimated parameters are attributes of the estimator object ending by an underscore:

```
In [13]: train_url = "https://storage.googleapis.com/kaggle_datasets/House-Prices-Advanced-
Regression-Techniques/train.csv"
    train_df = pd.read_csv(train_url)
    X_train = train_df["GrLivArea"].values.reshape(-1, 1)
    y_train = train_df["SalePrice"].values.reshape(-1, 1)
    reg = LinearRegression()
    reg.fit(X_train, y_train)
    print(reg.intercept_)
    print(reg.coef_)
```

[18569.02585649] [[107.13035897]]

```
In [ ]: xfit = np.linspace(X_train.min() - 10, X_train.max() + 10, 100).reshape(-1, 1)
    yfit = reg.predict(xfit)
    plt.scatter(train_df["GrLivArea"], train_df["SalePrice"], label='train', s=3, colo
    r="#4286f4")
    plt.plot(xfit, yfit, color="#f4a041", linewidth=2, label='thetas')
    plt.legend()
```

In [14]: | plt.show()

