

Figure 25.7: The geometric construction of $\langle a, \lambda \rangle + u$.

defined by a universal property are unique up to isomorphism. This property is left as an exercise.

Proposition 25.5. Given any affine space (E, \overrightarrow{E}) and any vector space \overrightarrow{F} , for any affine map $f: E \to \overrightarrow{F}$, there is a unique linear map $\widehat{f}: \widehat{E} \to \overrightarrow{F}$ extending f such that

$$\widehat{f}(u + \lambda a) = \lambda f(a) + \overrightarrow{f}(u)$$

for all $a \in E$, all $u \in \overrightarrow{E}$, and all $\lambda \in \mathbb{R}$, where \overrightarrow{f} is the linear map associated with f. In particular, when $\lambda \neq 0$, we have

$$\widehat{f}(u + \lambda a) = \lambda f(a + \lambda^{-1}u).$$

Proof. Assuming that \widehat{f} exists, recall that from Proposition 25.1, for every $a \in E$, every element of \widehat{E} can be written uniquely as $u + \lambda a$. By linearity of \widehat{f} and since \widehat{f} extends f, we have

$$\widehat{f}(u + \lambda a) = \widehat{f}(u) + \lambda \widehat{f}(a) = \widehat{f}(u) + \lambda f(a) = \lambda f(a) + \widehat{f}(u).$$

If $\lambda = 1$, since a + u and a + u are identified, and since \widehat{f} extends f, we must have

$$f(a) + \widehat{f}(u) = \widehat{f}(a) + \widehat{f}(u) = \widehat{f}(a + u) = f(a + u) = f(a) + \overrightarrow{f}(u),$$