```
In [74]: import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as np

import tensorflow
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense, Dropout, Input
    from sklearn.metrics import confusion_matrix, accuracy_score , classification_report
    import warnings
    warnings.filterwarnings('ignore')
In [75]: #reading the data set
```

	<pre>data = pd.read_ data.head()</pre>	csv("C:/Users/	david/De	esktop/pers	onal/AI/cours	se-4_P0	AIM	L - Deep Lear	ning/proje	ect/15960:	L8188_dataset	5 (1)/loan __	_data
Out[75]:	credit.policy	purpose	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util	inq.last.6mths	delinq.2yrs	pub

Out[75]:		credit.policy	purpose	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util	inq.last.6mths	delinq.2yrs	pub
	0	1	debt_consolidation	0.1189	829.10	11.350407	19.48	737	5639.958333	28854	52.1	0	0	
	1	1	credit_card	0.1071	228.22	11.082143	14.29	707	2760.000000	33623	76.7	0	0	
	2	1	debt_consolidation	0.1357	366.86	10.373491	11.63	682	4710.000000	3511	25.6	1	0	
	3	1	debt_consolidation	0.1008	162.34	11.350407	8.10	712	2699.958333	33667	73.2	1	0	
	4	1	credit_card	0.1426	102.92	11.299732	14.97	667	4066.000000	4740	39.5	0	1	

```
In [77]: df= pd.get_dummies(data, columns = ["purpose"])
    df.head()
```

Out[77]:		credit.policy	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util	inq.last.6mths	delinq.2yrs	pub.rec	not.fully.paid
	0	1	0.1189	829.10	11.350407	19.48	737	5639.958333	28854	52.1	0	0	0	0
	1	1	0.1071	228.22	11.082143	14.29	707	2760.000000	33623	76.7	0	0	0	0
	2	1	0.1357	366.86	10.373491	11.63	682	4710.000000	3511	25.6	1	0	0	0
	3	1	0.1008	162.34	11.350407	8.10	712	2699.958333	33667	73.2	1	0	0	0
	4	1	0.1426	102.92	11.299732	14.97	667	4066.000000	4740	39.5	0	1	0	0

In [78]: # 2. Exploratory data analysis of different factors of the dataset.

In [79]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9578 entries, 0 to 9577
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	credit.policy	9578 non-null	int64
1	int.rate	9578 non-null	float64
2	installment	9578 non-null	float64
3	log.annual.inc	9578 non-null	float64
4	dti	9578 non-null	float64
5	fico	9578 non-null	int64
6	days.with.cr.line	9578 non-null	float64
7	revol.bal	9578 non-null	int64
8	revol.util	9578 non-null	float64
9	inq.last.6mths	9578 non-null	int64
10	delinq.2yrs	9578 non-null	int64
11	pub.rec	9578 non-null	int64
12	not.fully.paid	9578 non-null	int64
13	purpose_all_other	9578 non-null	uint8
14	purpose_credit_card	9578 non-null	uint8
15	<pre>purpose_debt_consolidation</pre>	9578 non-null	uint8
16	purpose_educational	9578 non-null	uint8
17	purpose_home_improvement	9578 non-null	uint8
18	purpose_major_purchase	9578 non-null	uint8
19	purpose_small_business	9578 non-null	uint8
dtyp	es: float64(6), int64(7), ui	nt8(7)	
memo	ry usage: 1.0 MB		

```
In [80]: df.shape
```

Out[80]: (9578, 20)

```
In [81]: df.describe().T
```

	count	mean	std	min	25%	50%	75%	max
credit.policy	9578.0	0.804970	0.396245	0.000000	1.000000	1.000000	1.000000	1.000000e+00
int.rate	9578.0	0.122640	0.026847	0.060000	0.103900	0.122100	0.140700	2.164000e-01
installment	9578.0	319.089413	207.071301	15.670000	163.770000	268.950000	432.762500	9.401400e+02
log.annual.inc	9578.0	10.932117	0.614813	7.547502	10.558414	10.928884	11.291293	1.452835e+01
dti	9578.0	12.606679	6.883970	0.000000	7.212500	12.665000	17.950000	2.996000e+01
fico	9578.0	710.846314	37.970537	612.000000	682.000000	707.000000	737.000000	8.270000e+02
days.with.cr.line	9578.0	4560.767197	2496.930377	178.958333	2820.000000	4139.958333	5730.000000	1.763996e+04
revol.bal	9578.0	16913.963876	33756.189557	0.000000	3187.000000	8596.000000	18249.500000	1.207359e+06
revol.util	9578.0	46.799236	29.014417	0.000000	22.600000	46.300000	70.900000	1.190000e+02
inq.last.6mths	9578.0	1.577469	2.200245	0.000000	0.000000	1.000000	2.000000	3.300000e+01
delinq.2yrs	9578.0	0.163708	0.546215	0.000000	0.000000	0.000000	0.000000	1.300000e+01
pub.rec	9578.0	0.062122	0.262126	0.000000	0.000000	0.000000	0.000000	5.000000e+00
not.fully.paid	9578.0	0.160054	0.366676	0.000000	0.000000	0.000000	0.000000	1.000000e+00
purpose_all_other	9578.0	0.243370	0.429139	0.000000	0.000000	0.000000	0.000000	1.000000e+00
purpose_credit_card	9578.0	0.131760	0.338248	0.000000	0.000000	0.000000	0.000000	1.000000e+00
purpose_debt_consolidation	9578.0	0.413134	0.492422	0.000000	0.000000	0.000000	1.000000	1.000000e+00
purpose_educational	9578.0	0.035811	0.185829	0.000000	0.000000	0.000000	0.000000	1.000000e+00
purpose_home_improvement	9578.0	0.065671	0.247720	0.000000	0.000000	0.000000	0.000000	1.000000e+00
purpose_major_purchase	9578.0	0.045625	0.208682	0.000000	0.000000	0.000000	0.000000	1.000000e+00
purpose_small_business	9578.0	0.064627	0.245880	0.000000	0.000000	0.000000	0.000000	1.000000e+00

```
In [82]: # here categorical columns are :
    # 'credit.policy','not.fully.paid','inq.last.6mths','delinq.2yrs' ,'pub.rec' ,
    # 'purpose_all_other', 'purpose_credit_card','purpose_debt_consolidation', 'purpose_educational',
    # 'purpose_home_improvement', 'purpose_major_purchase','purpose_small_business'
```

```
In [83]: #checking balanced or not
In [84]: df['not.fully.paid'].value_counts()
              8045
Out[84]:
              1533
         Name: not.fully.paid, dtype: int64
In [85]: plt.figure(figsize=(5,3))
         sns.countplot(x='not.fully.paid',data=df)
         <Axes: xlabel='not.fully.paid', ylabel='count'>
Out[85]:
            8000
            6000
            4000
            2000
                0
                               0
                                                           1
                                        not.fully.paid
         #imbalanced class , we have more samples of fully paid borrowers versus not fully paid borrowers
In [13]:
         #handling imbalanced dataset - using resample
In [14]:
         not_fully_paid_0 = df[df['not.fully.paid'] == 0]
         not_fully_paid_1 = df[df['not.fully.paid'] == 1]
         print('not_fully_paid_0', not_fully_paid_0.shape)
         print('not_fully_paid_1', not_fully_paid_1.shape)
```

```
not fully paid 0 (8045, 20)
          not_fully_paid_1 (1533, 20)
In [15]: from sklearn.utils import resample
          df minority upsampled = resample(not fully paid 1, replace = True, n samples = 8045)
          df = pd.concat([not fully paid 0, df minority upsampled])
          from sklearn.utils import shuffle
          df = shuffle(df)
In [16]: #imbalanced data handled
          df['not.fully.paid'].value counts()
               8045
Out[16]:
               8045
         Name: not.fully.paid, dtype: int64
In [17]: # Is there any outliers ?
          cols 1=['int.rate', 'installment', 'log.annual.inc', 'dti', 'fico', 'days.with.cr.line', 'revol.bal', 'revol.util']
          sns.set style('whitegrid')
          plt.figure(figsize = (15,7))
          sns.boxplot(data=df[cols 1])
Out[17]: <Axes: >
```


<Axes: >

Out[23]:

In [24]: # outliers are present in the dataset

```
In [25]: from scipy.stats import norm
   import seaborn as sns
   cols_1=['int.rate', 'installment', 'log.annual.inc', 'dti','fico', 'days.with.cr.line', 'revol.bal', 'revol.util']

   for i in range(0,len(cols_1),2):
        plt.figure(figsize=(8,4))
        plt.subplot(121)
        sns.distplot(df[cols_1[i]], kde=True,fit = norm, color = 'crimson')
        plt.subplot(122)
        sns.distplot(df[cols_1[i+1]], kde=True,fit = norm, color = 'crimson')
        plt.tight_layout()
        plt.show()
```



```
In [26]: #Removing outliers
```

```
# Detect outliers in combined data set
In [27]:
         def detect_outlier(feature):
             outliers = []
             data = df[feature]
             mean = np.mean(data)
             std =np.std(data)
             for y in data:
                 z_score= (y - mean)/std
                 if np.abs(z_score) > 3:
                     outliers.append(y)
             print(f"\nOutlier caps for {feature}")
             print(' --95p: {:.1f} / {} values exceed that'.format(data.quantile(.95),
                                                                      len([i for i in data
                                                                           if i > data.quantile(.95)])))
             print(' --3sd: {:.1f} / {} values exceed that'.format(mean + 3*(std), len(outliers)))
```

Outlier caps for credit.policy --95p: 1.0 / 0 values exceed that --3sd: 2.1 / 0 values exceed that --99p: 1.0 / 0 values exceed that Outlier caps for int.rate --95p: 0.2 / 805 values exceed that --3sd: 0.2 / 36 values exceed that --99p: 0.2 / 158 values exceed that Outlier caps for installment --95p: 807.6 / 801 values exceed that --3sd: 983.4 / 0 values exceed that --99p: 878.9 / 157 values exceed that Outlier caps for log.annual.inc --95p: 11.9 / 800 values exceed that --3sd: 12.8 / 168 values exceed that --99p: 12.6 / 156 values exceed that Outlier caps for dti --95p: 23.8 / 800 values exceed that --3sd: 33.5 / 0 values exceed that --99p: 26.8 / 160 values exceed that Outlier caps for fico --95p: 777.0 / 672 values exceed that --3sd: 816.2 / 14 values exceed that --99p: 802.0 / 103 values exceed that Outlier caps for days.with.cr.line --95p: 9150.0 / 802 values exceed that --3sd: 11948.3 / 239 values exceed that --99p: 12930.0 / 159 values exceed that Outlier caps for revol.bal --95p: 62739.0 / 804 values exceed that --3sd: 138068.5 / 293 values exceed that --99p: 191303.0 / 158 values exceed that Outlier caps for revol.util --95p: 94.6 / 793 values exceed that --3sd: 136.4 / 0 values exceed that --99p: 99.1 / 156 values exceed that

Outlier caps for ing.last.6mths --95p: 6.0 / 790 values exceed that --3sd: 9.6 / 234 values exceed that --99p: 12.0 / 127 values exceed that Outlier caps for deling.2vrs --95p: 1.0 / 507 values exceed that --3sd: 1.8 / 507 values exceed that --99p: 3.0 / 49 values exceed that Outlier caps for pub.rec --95p: 1.0 / 33 values exceed that --3sd: 0.9 / 1128 values exceed that --99p: 1.0 / 33 values exceed that Outlier caps for not.fully.paid --95p: 1.0 / 0 values exceed that --3sd: 2.0 / 0 values exceed that --99p: 1.0 / 0 values exceed that Outlier caps for purpose all other --95p: 1.0 / 0 values exceed that --3sd: 1.5 / 0 values exceed that --99p: 1.0 / 0 values exceed that Outlier caps for purpose credit card --95p: 1.0 / 0 values exceed that --3sd: 1.1 / 0 values exceed that --99p: 1.0 / 0 values exceed that Outlier caps for purpose debt consolidation --95p: 1.0 / 0 values exceed that --3sd: 1.9 / 0 values exceed that --99p: 1.0 / 0 values exceed that Outlier caps for purpose educational --95p: 0.0 / 657 values exceed that --3sd: 0.6 / 657 values exceed that --99p: 1.0 / 0 values exceed that Outlier caps for purpose_home_improvement --95p: 1.0 / 0 values exceed that --3sd: 0.8 / 1050 values exceed that

```
--99p: 1.0 / 0 values exceed that
          Outlier caps for purpose_major_purchase
            --95p: 0.0 / 668 values exceed that
            --3sd: 0.6 / 668 values exceed that
            --99p: 1.0 / 0 values exceed that
          Outlier caps for purpose small business
            --95p: 1.0 / 0 values exceed that
            --3sd: 0.9 / 1402 values exceed that
            --99p: 1.0 / 0 values exceed that
In [29]: # Lower and Upper bounded outliers
          for var in df:
               df[var].clip(lower = df[var].quantile(.05), upper = df[var].quantile(0.95), inplace=True)
          cols1 = ['int.rate', 'installment', 'log.annual.inc', 'dti',
In [31]:
                  'fico', 'days.with.cr.line', 'revol.bal', 'revol.util', 'pub.rec']
          sns.set style('whitegrid')
          plt.figure(figsize = (21,6))
          sns.boxplot(data=df[cols1])
          <Axes: >
Out[31]:
          60000
          50000
          40000
          30000
          20000
          10000
                    int.rate
                                  installment
                                                log.annual.inc
                                                                                             days.with.cr.line
                                                                                                                             revol.util
                                                                                                              revol.bal
                                                                                                                                            pub.rec
```

```
In [ ]: # After capping off outliers, we can see that outliers are now elimited in the numerical variables except revol.bal because it st
In [33]: cols2=['credit.policy','not.fully.paid','inq.last.6mths','delinq.2yrs',
                  'purpose_all_other', 'purpose_credit_card',
                  'purpose debt consolidation', 'purpose educational',
                  'purpose home improvement', 'purpose major purchase',
                  'purpose small business']
          sns.set style('whitegrid')
          plt.figure(figsize = (26,6))
          sns.boxplot(data=df[cols2])
          <Axes: >
Out[33]:
                           not.fully.paid
               credit.policy
                                       ing.last.6mths
                                                    delinq.2yrs
          # removed outliers
 In [ ]:
 In [ ]: # 3. Additional Feature Engineering
              # You will check the correlation between features and will drop those features which have a strong correlation
In [34]: df.corr()
```

O	4 Г	24	1 .
υu	τı	34	:

	credit.policy	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	revol.util	inq.last.6mt
credit.policy	1.000000	-0.282765	0.053693	0.019055	-0.072089	0.367873	0.086316	-0.096409	-0.084485	-0.5847
int.rate	-0.282765	1.000000	0.259678	0.077954	0.197713	-0.702432	-0.111021	0.105973	0.427965	0.1972
installment	0.053693	0.259678	1.000000	0.477643	0.027296	0.112259	0.196378	0.327932	0.057627	-0.00387
log.annual.inc	0.019055	0.077954	0.477643	1.000000	-0.030829	0.105569	0.373146	0.496275	0.083805	0.03143
dti	-0.072089	0.197713	0.027296	-0.030829	1.000000	-0.208458	0.101486	0.294946	0.318520	0.0175!
fico	0.367873	-0.702432	0.112259	0.105569	-0.208458	1.000000	0.249862	-0.016108	-0.492924	-0.1870 ⁻
days.with.cr.line	0.086316	-0.111021	0.196378	0.373146	0.101486	0.249862	1.000000	0.342745	0.023656	-0.0138
revol.bal	-0.096409	0.105973	0.327932	0.496275	0.294946	-0.016108	0.342745	1.000000	0.346329	-0.00550
revol.util	-0.084485	0.427965	0.057627	0.083805	0.318520	-0.492924	0.023656	0.346329	1.000000	-0.0401
inq.last.6mths	-0.584724	0.197232	-0.003825	0.031435	0.017553	-0.187073	-0.013847	-0.005507	-0.040142	1.0000
delinq.2yrs	-0.047963	0.164196	0.003193	0.015278	-0.021818	-0.229699	0.081987	-0.058498	-0.030781	-0.00009
pub.rec	-0.064586	0.102742	-0.028703	0.010706	0.030215	-0.162760	0.083195	-0.049377	0.080320	0.10209
not.fully.paid	-0.193486	0.217160	0.078110	-0.044045	0.041874	-0.209217	-0.034872	0.054858	0.103689	0.1906
purpose_all_other	-0.025119	-0.120703	-0.205774	-0.084775	-0.124782	0.054284	-0.077735	-0.119198	-0.120135	0.0091
purpose_credit_card	0.012249	-0.043799	-0.000311	0.076602	0.078221	-0.007528	0.047579	0.115706	0.089308	-0.0445
purpose_debt_consolidation	0.024277	0.089997	0.116552	-0.047857	0.181831	-0.140818	0.001324	0.047707	0.204263	-0.0589
purpose_educational	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
purpose_home_improvement	-0.021902	-0.038005	0.019066	0.103361	-0.086892	0.080116	0.068575	-0.015174	-0.108331	0.0786
purpose_major_purchase	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Na
purpose_small_business	-0.004159	0.165559	0.202025	0.135717	-0.062956	0.072581	0.055380	0.084634	-0.056934	0.04639

In [35]: plt.figure(figsize = (15,12))
 sns.heatmap(data = data.corr(), annot = True)
 plt.show()

credit.policy	1	-0.29	0.059	0.035	-0.091	0.35	0.099	-0.19	-0.1	-0.54	-0.076	-0.054	-0.16
int.rate	-0.29	1	0.28	0.056	0.22	-0.71	-0.12	0.093	0.46	0.2	0.16	0.098	0.16
installment	0.059	0.28	1	0.45	0.05	0.086	0.18	0.23	0.081	-0.01	-0.0044	-0.033	0.05
log.annual.inc	0.035	0.056	0.45	1	-0.054	0.11	0.34	0.37	0.055	0.029	0.029	0.017	-0.033
dti	-0.091	0.22	0.05	-0.054	1	-0.24	0.06	0.19	0.34	0.029	-0.022	0.0062	0.037
fico	0.35	-0.71	0.086	0.11	-0.24	1	0.26	-0.016	-0.54	-0.19	-0.22	-0.15	-0.15
days.with.cr.line	0.099	-0.12	0.18	0.34	0.06	0.26	1	0.23	-0.024	-0.042	0.081	0.072	-0.029
revol.bal	-0.19	0.093	0.23	0.37	0.19	-0.016	0.23	1	0.2	0.022	-0.033	-0.031	0.054
revol.util	-0.1	0.46	0.081	0.055	0.34	-0.54	-0.024	0.2	1	-0.014	-0.043	0.067	0.082
inq.last.6mths	-0.54	0.2	-0.01	0.029	0.029	-0.19	-0.042	0.022	-0.014	1	0.021	0.073	0.15
delinq.2yrs	-0.076	0.16	-0.0044	0.029	-0.022	-0.22	0.081	-0.033	-0.043	0.021	1	0.0092	0.0089
pub.rec	-0.054	0.098	-0.033	0.017	0.0062	-0.15	0.072	-0.031	0.067	0.073	0.0092	1	0.049
not.fully.paid	-0.16	0.16	0.05	-0.033	0.037	-0.15	-0.029	0.054	0.082	0.15	0.0089	0.049	1

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

- -0.6

```
log.annual.inc
                                                                          days.with.cr.line
                                                                                                                           not.fully.paid
                                                                                                   ing.last.6mths
In [36]: # from the correlation heatmaps we can observe that no two features have positive corelation of more than 0.7, so we will not re
In [37]: # 4. Modeling
              # After applying EDA and feature engineering, you are now ready to build the predictive models
              # In this part, you will create a deep learning model using Keras with Tensorflow backend
In [38]: #Identify X and Y
          X = df.drop("not.fully.paid", axis = 1)
          v = df["not.fully.paid"]
In [39]: # Split X and Y
          X train, X test, y train, y test = train test split(X,y,test size = 0.10, stratify = y, random state = 987)
          X train, X val, y train, y val = train test split(X train, y train, test size = 0.15, stratify = y train, random state = 987)
          print(X train.shape,y train.shape)
          print(X val.shape,y val.shape)
          print(X_test.shape,y_test.shape)
          (12308, 19) (12308,)
          (2173, 19) (2173,)
          (1609, 19) (1609,)
In [40]: # feature scaling
          scaler = StandardScaler()
          X train scale = scaler.fit transform(X train)
          X val scale = scaler.transform(X val)
          X test scale = scaler.transform(X test)
In [49]: # Lets build the Model
          model = Sequential()
          # No of Input will be == (total number of train examples , 8)
          # where 8 = feature
```

revol.bal

```
model.add(Input(shape=(X_train_scale.shape[1],)))

# Hidden Layer 1
model.add(Dense(units=200,activation='relu'))
model.add(Dropout(0.2))
# Hidden Layer 2
model.add(Dense(units=200,activation='relu'))
model.add(Dropout(0.2))
# Hidden Layer 3
model.add(Dense(units=200,activation='relu'))
model.add(Dropout(0.2))
# Output Layer - this is a binary classification
model.add(Dense(units=1,activation='sigmoid'))
model.summary()
```

Model: "sequential 2"

Non-trainable params: 0 (0.00 Byte)

Layer (type)	Output Shape	Param #						
dense (Dense)	(None, 200)	4000						
dropout (Dropout)	(None, 200)	0						
dense_1 (Dense)	(None, 200)	40200						
dropout_1 (Dropout)	(None, 200)	0						
dense_2 (Dense)	(None, 200)	40200						
dropout_2 (Dropout)	(None, 200)	0						
dense_3 (Dense)	(None, 1)	201						
======================================								

```
Epoch 1/100
Epoch 2/100
80
Epoch 3/100
13
Epoch 4/100
13
Epoch 5/100
36
Epoch 6/100
79
Epoch 7/100
Epoch 8/100
88
Epoch 9/100
61
Epoch 10/100
Epoch 11/100
64
Epoch 12/100
78
Epoch 13/100
02
Epoch 14/100
93
Epoch 15/100
```

```
69
Epoch 16/100
Epoch 17/100
Epoch 18/100
85
Epoch 19/100
Epoch 20/100
Epoch 21/100
82
Epoch 22/100
37
Epoch 23/100
Epoch 24/100
60
Epoch 25/100
99
Epoch 26/100
03
Epoch 27/100
94
Epoch 28/100
18
Epoch 29/100
Epoch 30/100
```

```
78
Epoch 31/100
Epoch 32/100
Epoch 33/100
50
Epoch 34/100
27
Epoch 35/100
Epoch 36/100
14
Epoch 37/100
37
Epoch 38/100
Epoch 39/100
02
Epoch 40/100
34
Epoch 41/100
62
Epoch 42/100
43
Epoch 43/100
68
Epoch 44/100
98
```

```
Epoch 45/100
Epoch 46/100
62
Epoch 47/100
Epoch 48/100
Epoch 49/100
18
Epoch 50/100
27
Epoch 51/100
Epoch 52/100
31
Epoch 53/100
40
Epoch 54/100
Epoch 55/100
14
Epoch 56/100
00
Epoch 57/100
50
Epoch 58/100
96
Epoch 59/100
```

```
32
Epoch 60/100
Epoch 61/100
Epoch 62/100
65
Epoch 63/100
Epoch 64/100
Epoch 65/100
88
Epoch 66/100
Epoch 67/100
42
Epoch 68/100
33
Epoch 69/100
21
Epoch 70/100
25
Epoch 71/100
13
Epoch 72/100
25
Epoch 73/100
Epoch 74/100
```

```
44
Epoch 75/100
29
Epoch 76/100
Epoch 77/100
Epoch 78/100
96
Epoch 79/100
Epoch 80/100
Epoch 81/100
90
Epoch 82/100
Epoch 83/100
Epoch 84/100
53
Epoch 85/100
86
Epoch 86/100
21
Epoch 87/100
94
Epoch 88/100
45
```

```
Epoch 89/100
 Epoch 90/100
 30
 Epoch 91/100
 22
 Epoch 92/100
 71
 Epoch 93/100
 05
 Epoch 94/100
 23
 Epoch 95/100
 Epoch 96/100
 40
 Epoch 97/100
 73
 Epoch 98/100
 Epoch 99/100
 13
 Epoch 100/100
 42
In [92]: X train pred= model.predict(X train scale)
 X test pred=model.predict(X test scale)
 385/385 [=========== ] - 1s 2ms/step
```



```
In [62]: #training score
      model.evaluate(X train scale,y train)
      [0.0628020241856575, 0.9881377816200256]
Out[62]:
In [63]: #validatn score
      model.evaluate(X val scale, v val)
      [0.3008177578449249, 0.8941555619239807]
Out[63]:
In [64]: #testing score
      model.evaluate(X test scale,y test)
      [0.33529841899871826, 0.8931013345718384]
Out[64]:
In [65]: predictions =(model.predict(X test scale)>0.5)
      predictions2 =(model.predict(X val scale)>0.5)
      51/51 [======== ] - 0s 2ms/step
      68/68 [======== ] - 0s 2ms/step
In [66]:
      accuracy score(y test, predictions)
      0.8931013051584835
Out[66]:
      accuracy score(y val,predictions2)
In [67]:
      0.8941555453290382
Out[67]:
      print(classification report(y test, predictions))
```

	precision	recall	f1-score	support
0 1	0.96 0.84	0.82 0.97	0.88 0.90	804 805
accuracy macro avg weighted avg	0.90 0.90	0.89 0.89	0.89 0.89 0.89	1609 1609 1609

In [69]: print(classification_report(y_val, predictions2))

	precision	recall	f1-score	support
0	0.95	0.83	0.89	1087
1	0.85	0.96	0.90	1086
accuracy			0.89	2173
macro avg	0.90	0.89	0.89	2173
weighted avg	0.90	0.89	0.89	2173

In []: