Problema 1:

Sea un procesador con el siguiente conjunto de instrucciones:

	Instrucción	Formato de la instrucción
Mnemónico	Significado	(XXXX-No usado)
ADD rs, rf	$rs \leftarrow ADD(rs,rf)$	00 rs rf XXXX 00
ADD rs, #cte	$rs \leftarrow ADD(rs,cte)$	00 rs cte 01
ADD rs, (rf)	$rs \leftarrow ADD(rs,M[rf])$	00 rs rf XXXX 10
ADD rs, dir	$rs \leftarrow ADD(rs,M[PC+1+dir])$	00 rs dir 11
JZ desp	$Si Z==1 PC \leftarrow ADD(PC+1, desp)$	10 <i>desp</i>

- Las características del procesador son las siguientes:
 - Tamaño de palabra de 16 bits; Banco de registros de 16 registros; cte, desp y dir están representados en C2; los 2 últimos bits de las instrucciones ADD indican el modo de direccionamiento del segundo operando; PC se incrementa en 1
- Dibuja el datapath del procesador.
- Diseña la unidad de control suponiendo un procesador monociclo
- Añade al diseño la siguiente instrucción:

LAC
$$rd rd \leftarrow M[AC]$$
 11||xxxxxxx||rd (AC es un registro de propósito especifico)

Problema 2:

 Diseñar la unidad de datos y de control (versión monociclo) de una máquina que ejecuta las siguientes instrucciones:

Mnemónico	Descripción			
LOAD X	Transfiere el contenido de la posición X al acumulador:			
	$AC \leftarrow MEM(X)$			
STORE X	Transfiere el contenido del acumulador a la posición X:			
	$MEM(X) \leftarrow AC$			
ADD X	Suma al acumulador el contenido de la posición X:			
	$AC \leftarrow AC + MEM(X)$			
AND X	AND lógica del acumulador con el contenido de la posición			
	$X: AC \leftarrow AC \land MEM(X)$			
JUMP X	Salto incondicional a la dirección X: $PC \leftarrow X$			
JUMPZ X	Salta a la dirección X si el resultado fue cero:			
	$siZ \Rightarrow PC \leftarrow X$			
COMP	Complemento lógico del acumulador: $AC \leftarrow \overline{AC}$			
RSHIFT	Desplazamiento a la derecha del acumulador:			
	$AC \leftarrow 0, AC[15:1]$			

- El tamaño de palabra del procesador es de 16 bits y las memorias son de tamaño 8K x16
- La ALU realiza las siguientes operaciones: suma y AND lógica de dos operandos, desplazamiento a la derecha y complemento lógico del operando que entra por el puerto B.

Problema 3:

Modifica la unidad de datos y de control del procesador MIPS para añadir la siguiente instrucción:

Instrucción LUI:LUI rd, constante : rd ← constante,0..0

	101111	00000	rd	constante
31	26	25 21	20 16	15 0

Problema 4:

Supongamos que tenemos el procesador del problema 1. Dados los contenidos de memoria principal que se muestran en la tabla (en hexadecimal) y suponiendo que PC contiene 0045₁₆ y que el contenido de todos los registros es 0, mostrar como evolucionan los contenidos de los elementos de memoria (traza) en la tabla vacía

dir.	contenido
29_{16}	0033_{16}
$2A_{16}$	0042_{16}
$2B_{16}$	0008_{16}
41_{16}	0023_{16}
42_{16}	$000A_{16}$
43_{16}	$0C01_{16}$
4416	0001_{16}
45_{16}	1793_{16}

dir.	contenido
4616	0542 ₁₆
47_{16}	$0BD5_{16}$
48_{16}	0480_{16}
49_{16}	0405_{16}
$4A_{16}$	8002 ₁₆
$4B_{16}$	0801_{16}
$4C_{16}$	$0C01_{16}$
$4D_{16}$	1001_{16}
$4E_{16}$	1401_{16}

Dirección comienzo	mnemónico ensamblador	Operando/s fuente	operando destino	valor a escribir