Universitatea din Bucuresti, Facultatea de Matematică și Informatică Concursul de admitere, iulie 2011. Domeniul de licență - Informatică

- I. Algebră 1. (a) Fie $n \geq 1$ un număr natural. Să se demonstreze că suma cuburilor primelor nnumere naturale nenule este $\frac{n^2(n+1)^2}{4}$.
- (b) Să se determine numerele naturale $x_1 < x_2 < ... < x_{10}$ pentru care $x_1^3 + x_2^3 + ... + x_{10}^3 = 2025$.
 - 2. Fie matricea $X = \begin{pmatrix} a & b \\ 1 & -1 \end{pmatrix}$, cu $a, b \in \mathbf{R}$.
- (i) Să se calculeze X^2 .
- (ii) Să se arate că X este inversabilă în $M_2(\mathbf{R})$ dacă și numai dacă $a+b\neq 0$.
- (iii) Să se determine a și b pentru care $X^3 = O_2$.
- II. Analiză matematică 1. Fie funcția $f: (-\infty, -1) \bigcup (0, \infty) \to \mathbf{R}, f(x) = \ln \left(1 + \frac{1}{x}\right)$.
 - a) Să se calculeze f'(x) și să se studieze monotonia funcției f.
 - b) Să se determine ecuațiile asimptotelor la graficul funcției f.
 - c) Fie şirul $(a_n)_{n\in\mathbb{N}}$ cu $a_n=\frac{f(1)+f(2)+\cdots+f(n)}{n}, \, \forall \, n\in\mathbb{N}$. Să se calculeze $\lim_{n\to\infty}a_n$. 2. Fie $I_n=\int\limits_0^\pi x^n\sin^2x\,dx$ şi $J_n=\int\limits_0^\pi x^n\cos^2x\,dx,\, \forall \, n\in\mathbb{N}$.

 - a) Să se calculeze I_0 și J_0 .
 - b) Să se arate că $I_n + J_n = \frac{\pi^{n+1}}{n+1}, \ \forall n \in \mathbb{N}.$
- III. Geometrie 1. Se consideră punctele A(2,3), B(4,n), C(2,2) și D(m,5). Să se determine $m, n \in \mathbf{R}$ astfel încât patrulaterul ABCD să fie paralelogram.
 - 2. Fie $a, b \in \mathbf{R}$ astfel în cât $\sin a + \sin b = 1$ şi $\cos a + \cos b = \frac{1}{2}$. Să se calculeze $\cos(a b)$.
 - 3. Se consideră vectorii $\overrightarrow{u} = \overrightarrow{i} \overrightarrow{j}$ și $\overrightarrow{v} = 2\overrightarrow{i} + 4\overrightarrow{j}$. Să se calculeze modulul vectorului $\overrightarrow{u} + \overrightarrow{v}$.

IV. Informatică

Se dă un vector v de n elemente egale cu 1. Prin partiție a vectorului v înțelegem o împărțire a vectorului în subvectori, astfel încât fiecare element al vectorului v apare exact o dată într-unul dintre subvectori. Pentru fiecare partiție a vectorului v în k subvectori $v_{11}, \ldots, v_{1n_1}, v_{21}, \ldots, v_{2n_2}, \ldots, v_{k1}, \ldots, v_{kn_k}$ se calculează produsul sumelor elementelor din fiecare subvector al partiției, adică $\prod_{i=1}^k n_i$.

- a) Să se scrie un program care determină cel mai mare produs calculat în acest fel pentru toate partițiile posibile ale vectorului v.
 - b) Există o soluție la punctul a) care să nu calculeze toate produsele posibile? Justificați.

Notă. Programele vor fi scrise într-unul dintre limbajele de programare studiate în liceu (Pascal,C,C++). Pentru fiecare soluție se vor descrie informal detaliile algoritmului folosit și ale implementării sub formă de program: semnificația variabilelor, a structurilor de date, a structurilor repetitive, a instrucțiunilor condiționale.

Universitatea din Bucuresti, Facultatea de Matematică și Informatică Concursul de admitere, iulie 2011. Domeniul de licență - Matematică

- I. Algebră (1) Să se rezolve ecuațiile:
 - (a) $\sqrt{5x-1} = x+1$, unde $x \in \mathbf{R}$.
 - (b) $2^x + 4^x = 72$, unde $x \in \mathbf{R}$.
 - (c) $x^3 + 8x^2 + 8x + 1 = 0$, unde $x \in \mathbb{C}$.
 - (d) $\overline{z} = z^2$, unde $z \in \mathbb{C}$.
 - (2) Fie multimea $A = \{a + b\sqrt{3} \mid a, b \in \mathbf{Z}\}$. Să se arate că:
 - (i) A este parte stabilă în raport cu adunarea și înmulțirea numerelor reale.
 - (ii) $(A, +, \cdot)$ este inel comutativ.
 - (iii) Elementul $7 + 4\sqrt{3}$ este inversabil în inelul A.
- II. Analiză matematică 1. Fie funcția $f: \mathbf{R} \to \mathbf{R}, f(x) = (x^2 + x + 1)e^x$.
 - a) Să se calculeze f'(x) și să se determine punctele de extrem ale funcției f.
 - b) Să se determine asimptotele la graficul funcției f.
 - c) Să se arate că șirul

$$(a_n)_{n\in\mathbb{N}}$$
 cu $a_0\in\mathbb{R}$ și $a_{n+1}=e^{-a_n}f(a_n), \ \forall n\in\mathbb{N}$

este crescător și $\lim_{n\to\infty} a_n = +\infty$.

- 2. Fie $f:[1,e] \to \mathbf{R}, f(x) = 3x^2 + \frac{1}{x}$.
- a) Să se caluleze $\int f(x)dx$.
- b) Să se determine primitivele funcției q = f'f pe intervalul (1, e).
- III. Geometrie 1. Să se calculeze aria triunghiului echilateral ABC știind că A(-1,1) și B(3,-2).

 - 2. Să se calculeze $|\vec{u}|^2 |\vec{v}|^2$, știind că $\vec{u} + \vec{v} = 2\vec{i} + 3\vec{j}$ și $\vec{u} \vec{v} = 3\vec{i} + 2\vec{j}$. 3. Să se calculeze perimetrul triunghiului ABC știind că AB = 6, $\widehat{B} = \frac{\pi}{4}$, $\widehat{C} = \frac{\pi}{6}$.
- $1, \ldots, m$ vectori p-dimensionali de numere reale.
- a) Să se scrie un program care să calculeze elementele $d(i,j) = \|\vec{x_i} \vec{y_j}\|^2$ (norma euclidiană
- b) Dacă oricare 2 vectori $(\vec{x_i}, \vec{y_j})_{i=1,\dots,n}^{j=1,\dots,m}$ sunt ortogonali, să se scrie un program care să calculeze elementele d(i, j), cu efectuarea unui număr cât mai mic de operații.
- Notă. Programele vor fi scrise într-unul dintre limbajele de programare studiate în liceu (Pascal, C, C++). Pentru fiecare solutie se vor descrie informal detaliile algoritmului folosit și ale implementării sub formă de program: semnificația variabilelor, a structurilor de date, a structurilor repetitive, a instrucțiunilor condiționale.

Universitatea din Bucuresti, Facultatea de Matematică și Informatică Concursul de admitere, iulie 2011. Domeniul de licență - *Informatică* Barem de corectare

I. Algebră 1 p. din oficiu.	
1. (a) Abordarea prin metoda inducției și verificarea pentru n=1	1p.
Pasul de inducție	2p.
(b) Observația faptului că $1^3 + 2^3 + \cdots + 9^3 = 2025$	0,5p.
Deducerea faptului că $x_1 = 0, x_2 = 1,, x_{10} = 9$	
2. (i) Calculul lui X^2	
(ii) $\det X = -a - b$	_
X inversabilă $\Leftrightarrow a+b \neq 0$	′ -
(iii) $X^3 = 0_2 \Rightarrow \det X = 0 \Rightarrow b = -a$, -
Calculul lui X^3 folosind $b = -a$	
Deducerea faptului că $a=1,b=-1$	
$Variant ar{a}$: Calculul lui X^3	
Rezolvarea sistemului în a și b astfel obținut	
,	1
II. Analiză 1 p. din oficiu.	
a) Calculul lui f'	1 p.
Monotonia lui f	1 p.
b) Asimptote orizontale	1 p.
Asimptote verticale	1 p.
c) Limita şirului	1 p.
2. a) I_0, J_0	câte 1 p.
b)	2 p.
III. Geometrie 1 p. din oficiu.1. O condiție ca cele patru puncte să formeze un paralelogram	0 m
Finalizare	-
2. Formula lui $\cos(a-b)$	•
Calculul pătratelor $(\sin a + \sin b)^2 = 1$ și $(\cos a + \cos b)^2 = \frac{1}{4}$	
<u> </u>	
Finalizare	
	•
Calculul normei	2 p.
IV. Informatică 1 p. din oficiu.	
a) Corectitudine algoritm (inclusiv descriere)	5 p.
b) Soluție directă 1 p.	- 1
c) Sintava limbajului de programare (inclusiv detalii de implementare)	3 n

Universitatea din Bucuresti, Facultatea de Matematică și Informatică Concursul de admitere, iulie 2011. Domeniul de licență - *Matematică* Barem de corectare

I. Algebră 1 p. din oficiu.	
1. (a), (b), (c), (d)	câte 1 p.
2. (i)	
(ii) Enunţarea axiomelor inelului	_
Finalizare	
(iii)	
II. Analiză 1 p. din oficiu.	
1. a) Calculul lui f'	1 p.
Punctele de extrem	1 p.
b) Asimptota orizontală la $-\infty$	
c) Monotonia	
Limita	-
2. a), b)	
III. Geometrie 1 p. din oficiu.	
1. Calculul laturii AB sau aflarea coordonatelor lui C	1 p.
Finalizare	
2. Găsirea lui \vec{u} și \vec{v}	-
Finalizare	
3. Determinarea laturilor AC , BC	=
IV. Informatică 1 p. din oficiu.	
a) Algoritm	4 p.
b) Algoritm	1 p.
Sintaxa limbajului de programare	-
Detalii de algoritm și de implementare	-