1

Consider a bivariate normal distribution with $\mu_1=1, \mu_2=3, \sigma_{11}=2, \sigma_{22}=1$ and $\rho_{12}=-0.8$

- (a) Write out the bivariate normal density.
- (b) write out the square statistics distance expression

$$(x-\mu)^T \Sigma^{-1} (x-\mu)$$

as a quadratic function of x_1 and x_2 .

- (c) Plot the constant-density contour that contains 50% of the probability
- (a) 已知

$$\mu = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 2 & -0.8\sqrt{2} \\ -0.8\sqrt{2} & 1 \end{bmatrix}$$

透過計算可得

$$\Sigma^{-1} = \begin{bmatrix} 1.3889 & 1.5714 \\ 1.5714 & 2.7778 \end{bmatrix}$$

令 $x = (x_1, x_2)^T$,而透過定義可得 bivariate 的 density function 可寫成

$$f(x) = \frac{1}{2\pi |\Sigma^{\frac{1}{2}}|} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}, -\infty < x_i < \infty, \quad i = 1, 2$$

(b) 承上題,透過計算

$$d^{2} = \begin{bmatrix} x_{1} - 1 & x_{2} - 3 \end{bmatrix} \begin{bmatrix} 1.3889 & 1.5714 \\ 1.5714 & 2.7778 \end{bmatrix} \begin{bmatrix} x_{1} - 1 \\ x_{2} - 3 \end{bmatrix}$$

可得

$$d^{2}(x_{1}, x_{2}) = 2.9603(x_{1} - 1)^{2} + 3.1428(x_{1} - 1)(x_{2} - 3) + 4.3492(x_{2} - 3)^{2}$$

(c) 已知 $(x-\mu)^T \Sigma^{-1} (x-\mu) \sim \chi_2^2$,因此可得

$$(x-\mu)^T \Sigma^{-1}(x-\mu) = \chi_2^2(0.5) = 1.386$$

透過 python 繪圖可得:

2

Let X be distributed as $N_3(\mu, \Sigma)$, where $\mu^T = (1, -1, 2)$ and

$$\Sigma = \begin{bmatrix} 4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

Which of the following random variables are independent? Explain

- (a) X_1 and X_2
- (b) X_1 and X_3
- (c) X_2 and X_3
- (d) (X_1, X_3) and X_2
- (e) X_1 and $X_1 + 3X_2 2X_3$

(a) 我們可以透過 partition 得到 X_1, X_2 的 covariance matrix

$$\Sigma = \begin{bmatrix} 4 & 0 \\ 0 & 5 \end{bmatrix}$$

由於 X 服從 Multinormal distribution,且 $\sigma_{12}=0$,可得 X_1,X_2 爲 independent

(b) 透過 partition 得到 X_1, X_3 的 covariance matrix

$$\Sigma = \begin{bmatrix} 4 & -1 \\ -1 & 2 \end{bmatrix}$$

 $\sigma_{13}=-1 \neq 0$,因此 X_1,X_3 不爲 independent

(c) 透過 partition 得到 X_1, X_3 的 covariance matrix

$$\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}$$

由於 X 服從 Multinormal distribution,且 $\sigma_{23}=0$,可得 X_2,X_3 爲 independent

(d) 透過 partition 可得

$$\Sigma = \begin{bmatrix} \begin{array}{c|c} \Sigma_{13} & \Sigma_{13,2} \\ \hline \Sigma_{2,13} & \Sigma_2 \end{array} \end{bmatrix} = \begin{bmatrix} \begin{array}{c|c} 4 & -1 & 0 \\ -1 & 2 & 0 \\ \hline 0 & 0 & 5 \end{bmatrix}$$

由於 $\Sigma_{2,13}=\Sigma_{13,2}=0$,因此 (X_1,X_3) 和 X_2 爲 independent

(e) 已知 $\sigma_{12} = 0, \sigma_{13} = -1$,因此

$$Cov(X_1, X_1 + 3X_2 - 2X_3) = Cov(X_1, X_1) + 3Cov(X_1, X_2) - 2Cov(X_1, X_3)$$
$$= \sigma_{11} + 3\sigma_{12} - 2\sigma_{13}$$

$$= 4 + 3 \times 0 - 2 \times (-1)$$

= $6 \neq 0$

因此 X_1 和 $X_1 + 3X_2 - 2X_3$ 不爲 independent

3

Let $X_1,X_2,\cdots X_{20}$ be a random sample of size n=20 from an $N_6(\mu,\Sigma)$ population. Specify each of the following completely.

- (a) The distribution of $(X_1 \mu)^T \Sigma^{-1} (X_1 \mu)$
- (b) The distribution of \overline{X} and $\sqrt{n}(\overline{X} \mu)$
- (c) The distribution of (n-1)S
- (a) 根據題意可得

$$(X_1 - \mu)^T \Sigma^{-1} (X_1 - \mu) \sim \chi_6^2$$

(b) 根據題意可得

$$\overline{X} \sim N_6(\mu, \frac{1}{20}\Sigma)$$

$$\sqrt{n}(\overline{X} - \mu) \sim N_6(0, \Sigma)$$

(c) 根據題意可得

$$(n-1)S \sim W_6(19,\Sigma)^{1}$$

4

Exercise 1.4 contains data on three variables for the world's 10 largest companies as of April 2005. For the sales(x_1) and profit(x_2) data:

(a) Construct Q-Q plots. Do these data appear to be normally distributed? Explain

¹Wishart distribution

透過觀察可發現三張圖的 sample 並沒有很好的 fit 圖中的紅線,因此可以合理推斷這三種變數並沒有服從常態分佈。

5

Exercise 1.2 gives the age x_1 , measured in years, as well as the selling price x_2 , measured in thousands of dollars, for n=10 used cars. These data are reproduced as follows:

- (a) Use the results of Exercise 1.2 to calculate the squared statistical distances $(\mathbf{x}_j \overline{\mathbf{x}})^T \mathbf{S}^{-1} (\mathbf{x}_j \overline{\mathbf{x}})$, where $\mathbf{x}_j^T = [x_{j1}, x_{j2}], j = 1, 2, \dots, 10$.
- (b) Using the distances in Part a, determine the proportion of the observations falling within the estimated 50% probability contour of a bivariate normal distribution.
- (c) Order the distances in Part a and construct a chi-square plot.
- (a) 透過計算可得到 $\overline{x_1}=5.2,\overline{x_2}=12.481$,並且計算樣本共變異數矩陣

$$S = \begin{bmatrix} 10.62 & -17.71 \\ -17.71 & 30.85 \end{bmatrix}$$

根據定義

$$d^2 = (x_j - \overline{x})^T S^{-1} (x_j - \overline{x})$$

可求得

d_j^2	Statistical distance
$-d_{1}^{2}$	1.36941757
d_2^2	1.4213818
$d_3^{ar{2}}$	1.70320545
d_4^2	0.85747649
d_5^2	0.55724247
d_{6}^{2}	0.13272605
d_7^2	1.93207174
d_8^2	0.90362611
d_9^2	1.17274803
d_{10}^2	2.05311468

(b) 已知

$$^{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu) \sim \chi_{p}^{2}$$

且 $\chi_2^2(0.5) \approx 1.39$,因此可以整理出

d_j^2	Statistical distance	falling within the 50% contour
$-\frac{1}{d_1^2}$	1.36941757	N
$d_2^{\tilde{2}}$	1.4213818	Y
$d_3^{\bar{2}}$	1.70320545	Y
d_4^2	0.85747649	N
$d_{1}^{2} \\ d_{2}^{2} \\ d_{3}^{3} \\ d_{4}^{2} \\ d_{5}^{2} \\ d_{6}^{2} \\ d_{7}^{2} \\ d_{8}^{2} \\ d_{9}^{2}$	0.55724247	N
d_6^2	0.13272605	N
d_7^2	1.93207174	Y
d_8^2	0.90362611	N
d_{9}^{2}	1.17274803	N
d_{10}^2	2.05311468	Y

可知有 40% 的點落入 bivariate normal 的 50% contour, 因此拒絕服從 bivariate normal 的假說

 $[\]overline{}^2$ Johnson, Richard claim that we can roughly expect the same percentage although we replace Σ^{-1} with S^{-1}

(c) 將 distance 由小至大排序並繪圖可得

