Übungen

Normalisierung

Sei das Schema R(A, B, C, D, E) mit folgenden fkt. Abh.:

$$F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$$

- Finde alle Kandidatschlüssel der Relation R.
- 2. Berechne die kanonische Überdeckung von F.
- 3. Ist R in BCNF? Erkläre.
- 4. Finde eine verlustlose BCNF Zerlegung von R.
- 5. Ist die Zerlegung von Punkt 4. abhängigkeitsbewahrend? Erkläre.
- 6. Ist R in 3NF? Erkläre.
- 7. Berechne mithilfe des Synthesealgorithmus eine 3NF Zerlegung von R.

1. Finde alle Kandidatschlüssel der Relation R.

$$F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$$

$$A^{+} = A$$
, $B^{+} = BCDE$, $C^{+} = BCDE$, $D^{+} = D$, $E^{+} = E$

Wir merken, dass kein Attribut das Attribut A bestimmt ⇒ A gehört zu dem Schlüssel

 $AB^+ = ABCDE \Rightarrow Kadidatschlüssel$

 $AC^+ = ABCDE \Rightarrow Kadidatschlüssel$

 $AD^+ = AD$

 $AE^+ = AE$

 $ADE^+ = ADE$

Es gibt keine anderen Mengen von Attributen, die minimal sind und die A enthalten.

- 2. Berechne die kanonische Überdeckung von F.
 - Schritt 1 : Linksreduktion: $A \to B, X \in A$, falls $B \subset (A \{X\})^+$ bzgl. $F \Rightarrow$ reduziere X (ersetze $A \to B$ durch $A \{X\} \to B$)
 - Schritt 2 : Rechtsreduktion: $A \to B, Y \in B$, falls $Y \in A^+$ bzgl. $F (A \to B) \cup (A \to B \{Y\}) \Rightarrow$ reduziere Y (ersetze $A \to B$ durch $A \to B \{Y\}$)
 - Schritt 3: Entferne die FDs der Form A → Ø
 - Schritt 4: Ersetze alle FDs der Form $A \to B_1, ..., A \to B_k$ durch $A \to B_1 \cup \cdots \cup B_k$

$$F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$$

- $F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
- Linksreduktion:

```
AB \rightarrow CDE, B^+ = BCDE => B \rightarrow CDE (B \rightarrow C, C \rightarrow D, B \rightarrow E)
```

$$AC \rightarrow BDE$$
, $C^+ = BDE (C \rightarrow B, C \rightarrow D, B \rightarrow E)$

 $B \rightarrow C$

 $C \rightarrow B$,

 $C \rightarrow D$,

 $B \rightarrow E$

Nach der Linksreduktion: $\{B \rightarrow CDE, C \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$

- $\{B \rightarrow CDE, C \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
- Rechtsreduktion:

```
B \rightarrow CDE, Erkl. B->C, B->E, C->D (aus den unteren Abh.)
```

 $C \rightarrow BDE$, C->B, C->D, B->E (aus den unteren Abh.)

 $B \rightarrow C$

 $C \rightarrow B$,

 $C \rightarrow D$,

 $B \rightarrow E$

Nach der Rechtsreduktion: $\{B \rightarrow \emptyset, C \rightarrow \emptyset, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$

 $\{B \rightarrow \emptyset, C \rightarrow \emptyset, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$

Schritt 3. $\{B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$

Schritt 4. $F_C = \{B \rightarrow CE, C \rightarrow BD\}$

3. Ist R in BCNF? Erkläre.

R ist in BCNF wenn für alle Abhängigkeiten $A \rightarrow B$ aus F⁺ gilt:

- $B \subseteq A$ (FD ist trivial) **oder**
- A enthält einen Schlüssel von R (A ist ein Superschlüssel)

 $F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$ Kandidatschlüssel AB, AC

 $B \rightarrow C$ verletzt BCNF \Rightarrow R nicht in BCNF

- 4. Finde eine verlustlose BCNF Zerlegung von R.
- Wenn die $\alpha \to \beta$ die BCNF verletzt, dann können wir die Relation in R β und $\alpha \cup \beta$ zerlegen.

$$F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$$

B → C verletzt BCNF in R

Zerlege R in R₁={ABDE}, F₁={AB
$$\rightarrow$$
 DE, B \rightarrow E} und R₂={BC}, F₂={B \rightarrow C, C \rightarrow B}, B - KS, C - KS

B → E verletzt BCNF in R₁

Zerlege R₁ in R₁₁={ABD}, F₁₁={AB
$$\rightarrow$$
 D}, R₁₂={BE}, F₁₂={B \rightarrow E}

 \Rightarrow BCNF Zerlegung ist R₁₁, R₁₂, R₂

5. Ist die Zerlegung von Punkt 4. abhängigkeitsbewahrend? Erkläre.

$$F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$$

 $F_C = \{B \rightarrow CE, C \rightarrow BD\}$

Zerlegung: {ABD} (zugeordnete FDs AB \rightarrow D) , {BE} (zugeordnete FDs B \rightarrow E) und {BC} (zugeordnete FDs B \rightarrow C, C \rightarrow B)

Diese Zerlegung ist verlustlos, aber nicht abhängigkeitsbewahrend $(C \rightarrow D)$ ist nicht lokal überprüfbar)

6. Ist R in 3NF? Erkläre.

R ist in 3NF wenn für alle Abhängigkeiten $A \rightarrow B$ aus F⁺ gilt:

- B ⊆ A (FD ist trivial) oder
- A enthält einen Schlüssel von R (A ist ein Superschlüssel) oder
- B ist Teil eines Schlüsselkandidaten (B ist prim)

 $F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$

Kandidatschlüssel AB, AC

 $C \rightarrow D$ verletzt 3NF \Rightarrow R nicht in 3NF

7. Berechne mithilfe des Synthesealgorithmus eine 3NF Zerlegung von R.

Synthesealgorithmus:

- 1. Bestimme die kanonische Überdeckung F_c der Menge F
- 2. Führe für jede FD A \rightarrow B in F_c folgende Anweisungen: Erzeuge eine Relation $R_A = A \cup B$ und ordne R_A die FDs $F_A = \{C \rightarrow D \in F_c | C \cup D \subseteq R_A\}$ zu
- 3. Falls alle Relationen erzeugt in Schritt 2 keinen Schlüsselkandidaten des ursprunglichen Relation R enthalten, so erzeuge zusätzlich eine neue Relation $R_K = K$ und $F_K = \emptyset$, wobei K ein Schlüsselkandidat von R ist
- 4. Eliminiere die Relationen R_A , die in einem anderen Schema enthalten sind, d.h. $R_i \subseteq R_j$

7. Berechne mithilfe des Synthesealgorithmus eine 3NF Zerlegung von R.

Schritt 1. $F_C = \{B \rightarrow CE, C \rightarrow BD\}$ – kanonische Überdeckung

Schritt 2. $R_1 = \{BCE\}$ (zugeordnete FDs $B \rightarrow CE, C \rightarrow B)$,

 $R_2 = \{BCD\}$ (zugeordnete FDs $C \rightarrow BD$, $B \rightarrow C$)

Schritt 3. $R_3 = \{AB\}$ (keine zugeordnete FDs)

Schritt 4. –

 \Rightarrow {BCE}, {BCD}, {AB} - 3NF Zerlegung

Relationale Algebra 1: Gib die Namen der Studenten aus, die für den Kurs 'BD1' angemeldet sind

```
• Lsg1.
                          \pi_{\text{Name}}((\sigma_{\text{KursId='BD1'}}(\text{Enrolled})) \bowtie \text{Studenten})
• Lsg2.
                                          \rho_{\text{Temp1}}(\sigma_{\text{KursId='BD1'}}(\text{Enrolled}))
                                          \rho_{\mathsf{Temp2}}(\mathsf{Temp1} \bowtie \mathsf{Studenten})
                                                       \pi_{Name}(Temp2)
```

• Lsg3. $\pi_{\text{Name}}(\sigma_{\text{KursId='BD1'}}(\text{Enrolled} \bowtie \text{Studenten}))$

Relationale Algebra 2: Gib die Namen der Studenten aus, die für einen Kurs mit 5 ECTS angemeldet sind

• Lsg1.

$$\pi_{Name}((\sigma_{ECTS=5}(Kurse)) \bowtie Enrolled \bowtie Studenten)$$

• Lsg2.

$$\pi_{Name}(\pi_{MatrNr}(\pi_{KursId}(\sigma_{ECTS=5}(Kurse)) \bowtie Enrolled) \bowtie Studenten)$$

• Lsg2 ist effizienter. Ein Abfrageoptimierer würde, gegeben die erste Abfrage, die zweite Abfrage finden.