Analysis of Adverse Event Rates

In this section we compare the rate of Global and US reports of post-vaccination adverse events (AE), for the COVID-19 vaccine and the Flu vaccine. For each of the AE, we compare three relevant rates of reporting: i) the rate of reported AE per unit time, ii) the rate of reported AE per dose given, and iii) the rate of reported AE per person vaccinated.

In Table 0 below, we report the period used for normalizing the data, Global values are reported on the top line, US value on the second line.

Vaccine	Time Tracked	Billion Doses Given	Billion People Vaccinated
COVID-19	18 Months	12.07 0.596	5.23 0.260
Flu	294 Months	66 (estimated) 3.3	7.71 (simulated) 0.313 (simulated)

Table 0

Counting the number of people vaccinated with the COVID-19 vaccine is straightforward because there has only been one worldwide attempt at vaccination and the data has been tracked from day one. The Flu vaccine is harder because individuals are not tracked and there are yearly seasons where an individual may choose to receive a subsequent vaccinations. We run a Monte Carlo simulation to estimate the number of people that have received at least one Flu vaccine in the US since 1998.

We track a sample population where each year a fraction of the eligible (old enough) population is vaccinated, f_v , a fraction of the population dies (some of whom may be vaccinated), f_d , and a new fraction of the population is becomes eligible (none of whom are vaccinated), f_e . By simulating the demographics change yearly, we can estimate the total number of people who have received at least one flu vaccine by 2022. We use the UN population data to estimate f_e and f_d each year (reference: https://population.un.org/) and the conditional probability of Flu vaccination from Kwong, et al. (reference: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961264/). Kwong reports that roughly 57% (33,234 out of 58,021) of the population in their study who receives a flu shot in one year repeats it a subsequent year. The CDC reports that approximately 50% of the population receives the vaccine in any given year. From that, we approximate $f_v = 0.57$ for previously vaccinated individuals and $f_v = 0.43$ for previously unvaccinated individuals, which will result in the rough CDC approximation of 50% of the population being vaccinated any given year.

To allow simulation "burn in" for the stochastic nature of this experiment, we start in 1980 with a sample of the eligible US population of 100,000,000 people with 50% of them "pre-vaccinated" from previous years. From 1980 to 1997 we grow the population by f_e , shrink it by f_d , and vaccinate individuals by the conditional f_v based on their current vaccination status, by 1997 we can see that the fraction of vaccinated population has stabalized. We continue the simulation until 2021 with the addition that in 1998 we start accumulating the number of people who were vaccinated and died. The results of that simulation are shown below in Table 00.

End of Year	Sample Population (Thousands)	Vaccinated Population (Thousands)	Total Vaccinated Since 1998 (Thousands)
-------------	----------------------------------	--------------------------------------	---

End of Year	Sample Population (Thousands)	Vaccinated Population (Thousands)	Total Vaccinated Since 1998 (Thousands)
1980	100685	70921 (70.4%)	
1981	101328	82921 (81.8%)	
1982	101936	89923 (88.2%)	
1983	102629	94190 (91.8%)	
1984	103253	96842 (93.8%)	
1985	103924	98746 (95.0%)	
1986	104615	100133 (95.7%)	
1987	105344	101170 (96.0%)	
1988	106017	102026 (96.2%)	
1989	106742	102790 (96.3%)	
1990	107434	103590 (96.4%)	
1991	108187	104335 (96.4%)	
1992	108919	105104 (96.5%)	
1993	109637	105790 (96.5%)	
1994	110313	106507 (96.5%)	
1995	110959	107191 (96.6%)	
1996	111615	107893 (96.7%)	
1997	112289	108579 (96.7%)	
1998	112919	109203 (96.7%)	110157 (97.6%)
1999	113542	109799 (96.7%)	111722 (98.4%)
2000	114182	110390 (96.7%)	113264 (99.2%)
2001	114821	111055 (96.7%)	114889 (100.1%)
2002	115497	111745 (96.8%)	116497 (100.9%)
2003	116175	112461 (96.8%)	118139 (101.7%)
2004	116819	113102 (96.8%)	119745 (102.5%)
2005	117465	113757 (96.8%)	121371 (103.3%)
2006	118119	114412 (96.9%)	122989 (104.1%)
2007	118792	114997 (96.8%)	124521 (104.8%)

End of Year	Sample Population (Thousands)	Vaccinated Population (Thousands)	Total Vaccinated Since 1998 (Thousands)
2008	119496	115736 (96.9%)	126181 (105.6%)
2009	120074	116317 (96.9%)	127789 (106.4%)
2010	120665	116899 (96.9%)	129362 (107.2%)
2011	121265	117562 (96.9%)	130979 (108.0%)
2012	121819	118175 (97.0%)	132571 (108.8%)
2013	122308	118774 (97.1%)	134195 (109.7%)
2014	122830	119335 (97.2%)	135733 (110.5%)
2015	123360	119866 (97.2%)	137231 (111.2%)
2016	123855	120378 (97.2%)	138736 (112.0%)
2017	124287	120819 (97.2%)	140225 (112.8%)
2018	124730	121263 (97.2%)	141695 (113.6%)
2019	125123	121666 (97.2%)	143178 (114.4%)
2020	125570	122107 (97.2%)	144657 (115.2%)
2021	125981	122575 (97.3%)	146200 (116.0%)

Table 00

After running the simulation, in 2021 our sample population grew to 125,981,000, with a total of 146,200,000 (current vaccinated living plus the accumulated vaccinated dead) receiving at least one dose of the Flu vaccine since 1998 (116% of the current population). Now, we scale this estimate to the true 2022 the total eligible population of 269.5 million (329.5 million minus 60 million who are too young) (reference: https://population.un.org/), we estimate the same fraction of 116% of the current population vaccinated since 1998, that results in roughly a total 313 million people in the US that have received at least one dose of flu vaccine. Using the same scaling factor for an eligible world population of 6.65 (7.95 billion minus 1.3 billion), we get an estimate of 7.71 billion people worldwide who have received at least one dose of the flu vaccine since 1998. These are all rough estimates given the limited data available; however, even if these estimates are high by a factor of 2 (highly unlikely), the signals reported below are still significant.

Kwong, et al. track the number of vaccine doses a population of 38,766 people had over a 10-year period (Table 4 in their paper). A weighted average of the number of doses given per peson over that 10-year period is 0.62 doses/person/year. Our estimates of 7.71 billion people receiving 66 billion doses globally (0.30 doses/person/year) and 313 million people receiving 3.3 billion doses in the US (0.35 doses/person/year) provide more evidence that our estimates are not wildly inconsistent with existing studies. Kwong, et al. are specifically studying people in the 65+ age category, which has roughtly double the uptake of the general population (reference: https://www.cdc.gov/f lu/fluvaxview/coverage-1819estimates.htm), consistent with our estimates.

In Table 1 below we show the count of AE reported post vaccine in VAERS along with the mean rate of report over the time tracked, the mean rate of report per billion doses given, and the mean rate of report per billion people vaccinated. Report count and rates for the COVID-19 Vaccine are on the top line with the counts and rates for the Flu vaccine below them for each AE. The same data for global counts and rates is shown in Table 2.

Adverse Event	US Count of AE reports post Vaccine	US Rate of reported AE (count/Month)	US Rate of reported AE (count/billion doses)	US Rate of reported AE (count/billion people vaccinated)
Menstrual	6352	353	10700	24400
abnormality	54	0.184	16.4	173
Miscarriage	1232	68.4	2070	4740
	259	0.881	78.5	827
Fetal chromosomal abnormalities	7	0.389	11.7	26.9
	0	0.00	0.00	0.00
Fetal malformation	2	0.111	3.35	7.69
	1	0.00340	0.303	3.19
Fetal cystic	5	0.278	8.39	19.2
hygroma	0	0.00	0.00	0.00
Fetal cardiac	10	0.556	16.8	38.5
disorders	2	0.00680	0.606	6.39
Fetal arrhythmia	3	0.167	5.03	11.5
	0	0.00	0.00	0.00
Fetal cardiac arrest	3	0.167	5.03	11.5
	0	0.00	0.00	0.00
Fetal vascular mal-	5	0.278	8.39	19.2
perfusion	0	0.00	0.00	0.00
Fetal growth abnormalities	59	3.28	99.0	227
	20	0.0680	6.06	63.9
Fetal abnormal surveillance	125	6.94	210	481
	36	0.122	10.9	115
Fetal placental thrombosis	5	0.278	8.39	19.2
	0	0.00	0.00	0.00
Fetal stillbirth	168	9.33	282	646
	42	0.143	12.7	134
Low amniotic fluid	11	0.611	18.4	42.3
	1	0.00340	0.303	3.19

Adverse Event	Global Count of AE reports post Vaccine	Global Rate of reported AE (count/Month)	Global Rate of reported AE (count/billion doses)	Global Rate of reported AE (count/billion people vaccinated)
Menstrual	12843	714	1060	2460
abnormality	65	0.221	0.985	8.43
Miscarriage	3338	185	277	638
	325	1.11	4.92	42.2
Fetal chromosomal abnormalities	10 0	0.556 0.00	0.829 0.00	1.91 0.00
Fetal	22	1.22	1.82	4.21
malformation	2	0.00680	0.0303	0.259
Fetal cystic	8	0.444	0.663	1.53
hygroma		0.00	0.00	0.00
Fetal cardiac	18	1.00	1.49	3.44
disorders	2	0.00680	0.0303	0.259
Fetal arrhythmia	5	0.278	0.414	0.956
	0	0.00	0.00	0.00
Fetal cardiac	20	1.11	1.66	3.82
arrest	0	0.00	0.00	0.00
Fetal vascular	12	0.667	0.994	2.29
mal-perfusion	0	0.00	0.00	0.00
Fetal growth abnormalities	188	10.4	15.6	35.9
	24	0.0816	0.364	3.11
Fetal abnormal surveillance	178	9.89	14.7	34.0
	45	0.153	0.682	5.84
Fetal placental thrombosis	6	0.333	0.497	1.15
	0	0.00	0.00	0.00
Fetal stillbirth	402	22.3	33.3	76.9
	64	0.218	0.970	8.30
Low amniotic fluid	17	0.944	1.41	3.25
	1	0.00340	0.0152	0.130

Table 2

For all AE, the rates of reports post COVID-19 vaccine are higher than the Flu vaccine across all three normalization methods: by unit time, by dose given, and by person vaccinated. We proceed with two analyses below: 1) compute the p-value to determine if the AE report rates are statistically different between the two vaccines, and 2) compute the relative rate and 95% CI of AE reports after the COVID-19 vaccine versus the Flu vaccine. That is, we answer the

questions: 1) "Are the rate of AE reports post COVID-19 vaccine (statistically) different than the rates of report post Flu vaccine?" and 2) "How much more frequently is an AE reported after the COVID-19 vaccine than after the Flu vaccine?"

Statistical Significance

We treat each AE report as discrete independent events occurring at the mean rate specified in Tables 1 and 2 which we model as a Poisson distribution. Given two rates r_1 and r_2 over a period, P, we perform a Poisson E-test [reference: https://userweb.ucs.louisiana.edu/~kxk4695/JSPI-04.pdf] to compute the p-value. The E-test is used for Poisson statistics analogous to the traditional t-test used for Gaussian statistics. The p-value is interpreted in the same way: the probability that the observed events came from the same probability distribution. Or stated another way: the probability that the means (in this case rates) are same by random chance.

We use the rates in Tables 1 and 2 above and normalize the event counts over each period, P: the time-, dose-, or people-vaccinated-window and report the p-values below in Table 3. Where there is sufficient data, the p-values are small, and where 0.0 is reported, it was too small to represent as a double precision floating point number in our E-test function [reference: https://github.com/nolanbconaway/poisson-etest].

Estimating Relative Reporting Rates

For the rates that have non-zero counts in the reporting period, we compute ratio of rates of AE reports for each vaccine and the 95% confidence interval (We do not use the p-value as a metric here to avoid claims of p-hacking, the full confidence interval is shown and the reader can deduce significance from that). That is, we compute how much more often a post COVID-19 vaccination AE is reported compared to post Flu vaccination. Consider a case were Event A is reported at a rate of 100 per month and Event B is reported at a rate of 10 per month. The naïve approach is to simply state that Event A is reported $\frac{100/month}{10/month} = 10$ times as often as Event B. However, events do not occur at uniform frequency, independent events occur at frequencies described by the Poisson distribution. We proceed by computing the ratio distribution, R, which is the distribution of the ratio of two different Poisson distributions. That is, given two Poisson distributions, $Poisson(r_1)$ and $Poisson(r_2)$, we aim to compute the ratio distribution, R, which represents the probability distribution of the ratio of the distribution of events.

$$R(r_1, r_2) = rac{Poisson(r_1)}{Poisson(r_2)}$$

We estimate the shape of R for each AE and period, P, by performing Monte Carlo simulations. We draw 1,000,000 random samples from Poisson distributions with rates r_1 and r_2 resulting in a sample of paired event counts n_1 and n_2 , respectively, over the observation window P.

$$n_i \leftarrow Poisson(r_i)$$

That is, we create a set of 1,000,000 tuples of event counts $\{(n_1,n_2)_1,(n_1,n_2)_2,\ldots,(n_1,n_2)_{1000000}\}$ drawn from the two Poisson distributions. The ratio distribution, R, is built up from the ratio of the draws of each pair of n_1 and n_2

$$R(r_1, r_2) = \left\{ \left(\frac{n_1}{n_2} \right)_1, \left(\frac{n_1}{n_2} \right)_2, \dots, \left(\frac{n_1}{n_2} \right)_{1000000} \right\}$$

The mean of R is is the expectation value for the ratio of the two Poisson distributions and the empirically-derived quantile function of R is used to estimate the 95% CI of the mean. All computed values have converged to a precision of 1% or better. For AE that are reported infrequently post Flu vaccine there is finite probability that n_2 is zero resulting in R being undefined. To mitigate this problem, we use the zero-truncated Poisson distribution [reference: https://www.jstor.org/stable/2527552] and only count instances of non-zero n_2 draws. This approach skews the R distribution to the left [reference: https://epubs.siam.org/doi/10.1137/0134043] and makes the AE rates for the COVID-19 vaccine actually look better. That is, in these cases, the AE rate is actually a lower bound.

We did these analyses using a custom-written Python script, and will make it available upon request.

We report in Table 3 below the relative rate of post COVID-19 vaccine AE reports to post Flu vaccine AE report. Global values are the top line and US values are in the bottom line for each AE. A relative rate greater than 1 implies that there are more post COVID-19 vaccine AE reports than post Flu vaccine AE report. According to CDC's Standard Operating Procedures for COVID-19 [reference: https://www.cdc.gov/vaccinesafety/pdf/VAERS-v2-SOP.pdf] when doing a Proportional Reporting Ratio (PRR) analysis (which is analogous to the analysis presented here in this paper), a 2x increase in reporting is a sufficient signal to be concerned.

Adverse Event	Relative Rate (by time)	Relative Rate (by dose)	Relative Rate (by person vaccinated)
Menstrual abnormality	4257 [1589.1-12893]	1192 [673.95-2162.8]	298 [223.0-406.0]
	p=0.0	p=0.0	p=0.0
	2524 [894.57-6419.0]	738 [391.6-1584]	145 [108.6-197.4]
	p=0.0	p=0.0	p=0.0
Miscarriage	177 [114.4-283.5] p=0.0 83 [50.8-143] p=0.0	57 [44.3-74.7] p=0.0 27 [20.2-36.5] p=0.0	15 [13.3-17.5] p=0.0 6 [5.0-6.7] p=0.0
Fetal chromosomal abnormalities	p=0.00058	p=0.00058	p=0.00058
	p=0.0048	p=0.0048	p=0.0048
Fetal malformation	21 [10.0-32.0]	20 [7.67-31.0]	15 [4.50-30.0]
	p=1.9x10 ⁻⁰⁷	p=1.9x10 ⁻⁰⁷	p=2.1x10 ⁻⁰⁶
	2 [0.0-5.0] p=0.20	2 [0.0-5.0] p=0.20	2 [0.0-5.0] p=0.20
Fetal cystic hygroma	p=0.0024	p=0.0024	p=0.0024
	p=0.020	p=0.020	p=0.020
Fetal cardiac disorders	17 [8.00-27.0] p=2.6x10 ⁻⁰⁶ 10 [4.00-17.0] p=0.00058	16 [6.00-26.0] p=2.6x10 ⁻⁰⁶ 9 [3.0-16] p=0.00058	12 [3.60-25.0] p=2.7x10 ⁻⁰⁵ 6 [1.5-15] p=0.0047
Fetal arrhythmia	p=0.020	p=0.020	p=0.020
	p=0.088	p=0.088	p=0.088
Fetal cardiac arrest	p=6.9x10 ⁻⁰⁷	p=6.9x10 ⁻⁰⁷	p=6.9x10 ⁻⁰⁷
	p=0.088	p=0.088	p=0.088
Fetal vascular mal-	p=0.00015	p=0.00015	p=0.00015
perfusion	p=0.020	p=0.020	p=0.020
Fetal growth abnormalities	126 [42.00-210.0] p=0.0 43 [14.0-72.0] p=0.0	56 [20.7-189] p=0.0 22 [7.14-64.0] p=0.0	12 [7.42-21.4] p=0.0 4 [2.2-6.8] p=3.2x10 ⁻ 07
Fetal abnormal surveillance	83 [26.9-193] p=0.0	25 [12.2-58.7] p=0.0	6 [4.1-9.0] p=0.0
	68 [21.6-140] p=0.0	24 [10.1-63.0] p=0.0	4 [2.9-6.6] p=0.0
Fetal placental thrombosis	p=0.0096	p=0.0096	p=0.0096
	p=0.020	p=0.020	p=0.020

Adverse Event	Relative Rate (by time)	Relative Rate (by dose)	Relative Rate (by person vaccinated)
Fetal stillbirth	135 [48.25-412.0] p=0.0 82 [26.5-184] p=0.0	38 [21.1-73.0] p=0.0 26 [12.2-60.0] p=0.0	9 [6.9-13] p=0.0 5 [3.4-7.2] p=0.0
Low amniotic fluid	17 [8.00-25.0] p=5.1x10 ⁻⁰⁶ 11 [5.00-18.0] p=0.00029	16 [7.00-25.0] p=5.1x10 ⁻⁰⁶ 11 [4.00-18.0] p=0.00029	14 [4.67-25.0] p=5.1x10 ⁻⁰⁶ 9 [2.5-17] p=0.00029

Table 3

In the Figures below we show the Global and US relative rates of the reports of AE after the COVID-19 vaccine versus the Flu vaccine for the rates of AE by unit time, by dose given, and by person vaccinated. A value greater than 1 implies that the AE is reported more frequently after the COVID-19 vaccine than after the Flu vaccine. Note the log scale spanning multiple orders of magnitude indicating a large effect across many different AE - all (much) greater than 1.

Relative Rate By People (Global)

Relative Rate By People (US)

