

Métodos Heurísticos aplicados ao Problema de Tabela-Horário de Universidades

Edmar Hell Kampke Maria Claudia Silva Boeres

Laboratório de Otimização – LabOtim Universidade Federal do Espírito Santo – UFES

12 de Setembro de 2023

Sumário

- ► Introdução
- Definição do Problema
- Revisão da Literatura
- Métodos
- Resultados Computacionais
 - Detalhes de Implementação
 - Escolha dos Parâmetros
 - Análise dos Resultados
- Conclusões e Trabalhos Futuros
- Referências

Introdução

- Problemas de Agendamento (Scheduling)
- ► Problemas de Tabela-Horário (PTH)
- Algumas aplicações:
 - Escalas de Funcionários
 - Partidas de um Campeonato Esportivo
 - Tabela-horário Educacionais

- Problema de Tabela-Horário Educacionais
 - Escolas de Ensino Médio
 - Universidades (PTHU)
 - Exames

Hi Dave - Professor Jones says that he can teach Monday mornings, but he'll need to finish early on Wednesdays, and will need three free hours on Fridays to walk his dog.

- ▶ NP-Completo para a maioria das formulações (Schaerf [1995])
- As formulações variam entre as universidades
- Dificuldade aumenta com o aumento no número de restrições
- Restrições Fracas e Fortes são definidas
- Restrições Fortes devem ser satisfeitas a qualquer custo
 - Qualquer violação inviabiliza a solução
- É desejável que Restrições Fracas sejam satisfeitas
 - O não atendimento não inviabiliza a solução

Definição do Problema PATAT e ITC

- ► The International Series of Conferences on the Practice and Theory of Automated Timetabling (PATAT)
- Organizam competições de tabela-horário educacional
- Objetivo
 - Gerar pesquisas com diferentes abordagens e preencher o espaço entre a pesquisa e prática nessa área de pesquisa.
- ▶ ITC International Timetabling Competition
 - ITC–2002 (Universidades)
 - ITC-2007 (Universidades Três Formulações)
 - * PTHU Exames Finais
 - * PTHU Matrícula dos Alunos
 - * PTHU Currículo de Cursos
 - ITC-2011 (Escolas de Ensino Médio)

► ITC-2019 (Universidades)

Important Dates

- August 30, 2018: Competition is announced, sample data instances are published.
- November 15, 2018: Early data instances are published.
- February 1, 2019: The deadline for the first milestone submission of the results for early instances to announce
 the three best competitors at this point.
- June 1, 2019: The deadline for the second milestone submission of the results for early instances to announce the three best competitors at this point.
- September 18, 2019: Middle data instances are published.
- November 8, 2019: Late data instances are published.
- November 18, 2019: The final deadline for submission of the results for all the competition instances and the summary paper.
- January 1, 2020: The deadline for the publication of the solvers competing for the open source price.
- January 15, 2020: Finalists are published and winners are informed.
- February-March, 2020: Submission deadline for PATAT 2020 competition track where any paper related to the competition can be submitted.
- . August, 2020: Winners are announced at PATAT 2020.
- Autumn, 2020: Submission deadline for PATAT 2020 journal special issue.

https://www.itc2019.org

Modelagem do Problema

- A modelagem do problema foi baseada nas instâncias utilizadas pelo ITC-2007.
- Cada instância possui as seguintes informações:
 - Dias, Horários e Períodos
 - Disciplinas e Professores
 - Salas
 - Currículo
 - Indisponibilidades

9

- ► T é uma solução (ou Tabela-Horário) para o problema
 - -d é o número de dias de aula na semana em T (d=2)
 - Cada dia é dividido em q horários (q = 2)
 - nr é o número de salas disponíveis (nr = 2)
- T representa a alocação de todas as aulas de todas as disciplinas a um timeslot t

Sala	Dia	a 0	Dia 1		
Jaia	P ₀	p ₁	p ₂	p ₃	
r ₀					
r_1		t			

Name: Toy3

Courses: 3 Rooms: 2 Days: 2

Periods per day: 2 Curricula: 2

Constraints: 2

COURSES:

DiscMath Edmar 2 2 40 CompProg Geraldo 2 2 35 GraphThe Edmar 2 3 20

ROOMS: rA 38 rB 32

CURRICULA:

Cur1 2 DiscMath CompProg Cur2 1 GraphThe

UNAVAILABILITY CONSTRAINTS: CompProg 0 0 CompProg 1 1 FND

Lab∰tim

Restrições ITC-2007

- Restrições Fortes:
 - H1. Aulas
 - **H2.** Ocupação de Salas
 - H3. Conflitos-Professor e Currículo
 - **H4.** Disponibilidade
- Restrições Fracas:
 - **S1**. Capacidade de Sala
 - **\$2.** Estabilidade de Sala
 - **S3.** Dias Mínimos
 - **S4.** Aulas Isoladas

Função Objetivo

Função Objetivo

$$Minimizar f(s) = f_{Fortes}(s) + f_{Fracas}(s)$$

Custo - Restrições Fortes e Fracas

- ▶ Se *s* é uma solução viável, então $f_{Fortes}(s) = 0$.
- $f_{Fracas}(s) = \sum_{i=1}^{4} \alpha_i \cdot \omega_i$
- α_i e ω_i são os pesos e o número total de violações, respectivamente, de cada Restrição Fraca i.
- $\alpha_1 = 1, \ \alpha_2 = 1, \ \alpha_3 = 5 \ e \ \alpha_4 = 2$

Revisão de Literatura

- ► A maior parte dos trabalhos recentes usa métodos heurísticos para resolver o problema
 - Procedimentos inteligentes de busca local
 - Explora o espaço de soluções
 - Escapa de ótimos locais
- Müller [2009] foi o vencedor da terceira formulação do ITC-2007 utilizando Conflict Based Statistics para gerar solução inicial e Hill Climbing, Great Deluge e Simulated Annealing para refinamento da solução e com movimentos específicos.
- Lü e Hao [2010] usaram Adaptive Tabu Search para encontrar uma solução da terceira formulação do ITC-2007. Além disso propuseram um método guloso para gerar uma solução inicial. Foram o segundo colocado na competição.

- ► Lü et al. [2011] analisou quatro movimentos clássicos da busca local para o problema
- Os movimentos foram estudados separadamente e combinados
- Três critérios foram considerados na análise
 - Porcentagem de vizinhos melhores
 - A intensidade de melhoria
 - O número de etapas da busca
- O algoritmo Steepest Descent (SD) foi usado como técnica de busca local na análise

- Rocha [2013] utiliza GRASP com Hill Climbing e Simulated Annealing como busca local para solução do PTHU da terceira formulação do ITC-2007.
- ➤ Segatto et al. [2015] deu continuidade ao trabalho de Rocha [2013], aplicando Cadeia de Kempe como um novo movimento para a geração de vizinhos na busca local.
- ► Kampke et al. [2017] estenderam a análise de Lü et al. [2011] adicionando movimentos específicos propostos por Müller [2009].
- ► Kampke et al. [2019] apresentaram um novo método para construção de uma solução inicial, usando fluxo em redes.

Algoritmo 1: Pseudocódigo genérico do GRASP.

```
Entrada: MaxIter, \alpha
  Saída: Solução S*
1 f^* \leftarrow \infty:
2 para i \leftarrow 1 até MaxIter faça
       S \leftarrow \text{ConstrucaoSolucaoInicial}(\alpha);
       S \leftarrow BuscaLocal(S);
       se f(S) < f^* então
            S^* \leftarrow S:
            f^* \leftarrow f(S);
       fim
```

3

4

5

6

8

fim

Construção da Solução Inicial (Rocha [2013])

- Lista de aulas não alocadas é ordenada pela quantidade de períodos disponíveis (que não causam violação de restrição forte).
- É possível alocar a primeira aula da lista em algum período?
 - Se não houver horário disponível: Explosão
 - Retira-se aleatoriamente uma aula já alocada para abrir espaço na tabela-horário
- Lista de Candidatos (LC): Timeslots disponíveis para a aula ser alocada.

Lab∰tim

Construção da Solução Inicial (Rocha [2013])

- Lista Restrita de Candidatos:
 - LC é ordenada pelo custo de alocação da aula em cada timeslot
 - Escolhe-se aleatoriamente um timeslot dentre os $\alpha\%$ elementos de LC.
- A construção termina quando todas aulas estão inseridas na tabela-horário.
- O procedimento sempre retorna uma solução viável

Construção da Solução Inicial (Kampke et al. [2019])

Name: Toy3 Courses: 3 Rooms: 2 Davs: 2 Periods per day: 2

Curricula: 2 Constraints: 2

COURSES:

DiscMath Edmar 2 2 40 CompProg Geraldo 2 2 35 GraphThe Edmar 2 3 20

ROOMS: rA 38

rB 32

CURRICULA:

Cur1 2 DiscMath CompProg Cur2 1 GraphThe

UNAVAILABILITY CONSTRAINTS: CompProg 0 0

CompProg 1 1 END.

Construção da Solução Inicial (Lü e Hao [2010])

- Realizada de forma gulosa para produzir soluções de melhor qualidade.
- Cada iteração é composta por duas operações distintas: escolha da aula e escolha do timeslot.
- As escolhas são realizadas considerando algumas definições sobre a tabela-horário.

Construção da Solução Inicial (Lü e Hao [2010])

- apd_i(S): Total de períodos disponíveis para uma disciplina i em S.
- ▶ aps_i(S): Total de timeslots disponíveis para uma disciplina i em S.
- $ightharpoonup nl_i(S)$: Total de aulas não alocadas da disciplina i em S.
- uac_{i,j}(S): Total de aulas das disciplinas ainda não alocadas completamente que se tornam indisponíveis para alocação no período j após a inserção de uma aula da disciplina i no período j.
- conf_i: Número de disciplinas que compartilham estudantes ou professores com a disciplina i.

Construção da Solução Inicial (Lü e Hao [2010])

- A escolha da aula é realizada de acordo com os seguintes critérios:
 - 1. Escolhe-se a disciplina com o menor valor de $\frac{apd_i(S)}{\sqrt{nl_i(S)}}$.
 - 2. Se existir múltiplas disciplinas com o mesmo valor, é escolhida a disciplina com o menor valor de $aps_i(S)\sqrt{nl_i(S)}$.
 - 3. Se ainda houver a ocorrência de mais de uma disciplina com o menor valor, é escolhida a disciplina com maior valor de *conf_i*.
 - 4. Se ainda existir empates isso é resolvido seguindo a ordem alfabética do nome da disciplina.

Construção da Solução Inicial (Lü e Hao [2010])

Em seguida, é escolhido o período j e sala k com o menor valor da função g(j, k), dada pela fórmula:

$$g(j,k) = k_1 \times uac_{i,j}(S) + k_2 \times \Delta f_S(i,j,k)$$
 (1)

- ▶ $\Delta f_S(i,j,k)$ o valor da penalidade das restrições fracas sobre a possível alocação da aula i no período j e sala k.
- ▶ Os pesos k₁ e k₂ são relativos às restrições fortes e fracas, respectivamente.

Busca Local - Steepest Descent

Algoritmo 2: Pseudocódigo genérico do SD.

```
Entrada: Solução Inicial S
Saída: Melhor Solução S^*

1 S^* \leftarrow S;

2 S_{atual} \leftarrow S;

3 enquanto S_{atual} = S^* faça

4 | Escolher m' \in M(S^*), tal que f(S^* \otimes m') = min_{m \in M(S)} f(S^* \otimes m);

5 S_{atual} \leftarrow f(S^* \otimes m');

6 S_{atual} \leftarrow f(S^* \otimes m');

7 S_{atual} \leftarrow f(S^* \otimes m');

8 S_{atual} \leftarrow f(S^* \otimes m');

9 fim
```

IVIELOGOIOGIA Busca Local – Hill Climbing

Algoritmo 3: Pseudocódigo genérico do Hill Climbing

```
Entrada: Solução S, N, k
   Saída: Melhor Solução S*
 1 i \leftarrow 0:
_2 S^* \leftarrow S:
 _3 enquanto i < N faça
        S' \leftarrow GeraVizinho(S^*, k);
        \Delta f \leftarrow f(S') - f(S^*);
 5
        se \Delta f < 0 então
            S^* \leftarrow S':
 7
            i \leftarrow 0:
 8
        fim
 q
        i \leftarrow i + 1;
10
11 fim
```


Busca Local - Simulated Annealing

Algoritmo 4: Pseudocódigo genérico do Simulated Annealing

```
Entrada: Solução S, T<sub>i</sub>, T<sub>f</sub>, \beta, N<sub>v</sub>
     Saída: Solução 5*
    T \leftarrow T_i;
    S^* \leftarrow S:
     S_{atual} \leftarrow S;
     enquanto T > T_f faça
            para i \leftarrow 1 até N_{\nu} faca
 6
                    S' \leftarrow GeraVizinho(S_{sturl});
                    \Delta f \leftarrow f(S') - f(S^*):
 7
                    se \Delta f < 0 então
 8
                           S^* \leftarrow S':
 q
                           S_{atual} \leftarrow S';
10
11
                    fim
12
                    senão
                            Gere um número aleatório p \in (0, 1];
13
                           14
15
16
                    fim
17
            fim
18
             T \leftarrow T * \beta;
19
20
     fim
```

Movimentos

Quatro movimentos tradicionais

- ► Move (M)
- Swap (S)
- Cadeia de Kempe Simples (KS)
- Cadeia de Kempe Estendida (KE)

Move

Sala X

	Segunda	Terça	Quarta	Quinta	Sexta
07:00 - 08:00					
08:00 - 09:00			Mat. Discreta		
10:00 - 11:00		Programação 1			
11:00 - 12:00				Otim. Linear	
12:00 - 13:00					
13:00 - 14:00	Comp. Gráfica	Mat. Discreta			
14:00 - 15:00					
15:00 - 16:00					Teo. dos Grafos
16:00 - 17:00					Teo. dos Grafos
17:00 - 18:00					

Swap

Sala X

Lab∰tim

Cadeia de Kempe Simples

Lab∰tim

Cadeia de Kempe Simples

Movimentos

Lab∰tim

Cinco movimentos específicos propostos por Müller [2009]

Cinco movimentos específicos propostos por Müller [2009]

- Time Move (TM)
- Room Move (RM)
- Lecture Move (LM)
- Room Stability Move (RS)
- Minimum Working Days Move (MWD)

Time Move

Sala X

			** * *		
	Segunda	Terça	Quarta	Quinta	Sexta
07:00 - 08:00					
08:00 - 09:00					
10:00 - 11:00		Programação 1	1000		
11:00 - 12:00				Otim. Linear	
12:00 - 13:00		`			
13:00 - 14:00			Mat. Discreta		
14:00 - 15:00					
15:00 - 16:00					Teo. dos Grafos
16:00 - 17:00					Teo. dos Grafos
17:00 - 18:00					

Room Move

Sala X

Lecture Move

Salas	Dia	1	Dia 2		Dia 3	
Jaias	p 1	p ₂	p 3	p ₄	p ₅	p 6
r ₁		AT	TC			
r ₂		GT	AT			
r ₃	AT	TC		GT		
r ₄	GT	AV				
r 5		BP				

Salas	Dia	1	Dia 2		Dia 3	
Jaias	p_1	p ₂	p ₃	p ₄	p ₅	p 6
r ₁		AT	GT			
r ₂		GT	AT			
r ₃	AT	TC		GT		
r ₄	TC	AV				
r ₅		BP				

Salas	Dia	a 1	Dia 2		Dia 3	
Jaias	p 1	p ₂	p 3	p 4	p ₅	p 6
r ₁		AT	TC			
r ₂		GT	AT			
r ₃	AT	TC		GT		
r ₄	GT	AV				
r 5		BP				

Salas	Di	a 1	Dia 2		Dia 3	
Jaias	p_1	p ₂	p 3	p 4	p ₅	p 6
r ₁		AT	TC			
r ₂		GT	AT			
r ₃	AT	TC	GT	GT		
r ₄		AV				
r ₅		BP				

Detalhes de Implementação

- \blacktriangleright 21 instâncias (comp01 \sim comp21) usadas no ITC-2007
- Os algoritmos foram implementados utilizando linguagem de programação C++, compilados com g++ versão 4.8.4 64 bits com a flag de otimização -O3 e testados em máquina com processador Intel I5-3570 3.4 GHz, 8 Gb de memória RAM, sistema operacional Ubuntu 14.04 LTS 64bits.
- Assim como feito no ITC-2007, o algoritmo foi executado 10 vezes para cada instância.
- Cada execução usou diferentes seeds para a geração de números aleatórios.
- Os valores de f(S) representam apenas as violações das restrições fracas, dado que ao final de cada execução todas as soluções obtidas são viáveis.

Escolha dos Parâmetros

Parâmetro	Descrição	Valor
maxlter	Número máximo de iterações do GRASP	200
α	Valor de threshold da LRC na construção da solução inicial	0,15
n	Número máximo de iterações sem melhora em Hill Climbing	10000
k	Número de vizinhos gerados por iteração no Hill Climbing	10
N_{ν}	Número de vizinhos gerados em cada valor de temperatura no SA	500
t _i	Temperatura inicial no SA	1,5
t _f	Temperatura final no SA	0,005
β	Taxa de resfriamento no SA	0,999
seed	Seed de geração de números aleatórios	$1\sim 10$
timeout	Tempo limite de execução.	220 s

Análise dos Resultados - Construção

l	CGRASP		C _{Gulosa}		CComAleatoriedade	
Instância	Construção	Após SD	Construção	Após SD	Construção	Após SD
comp01	623	50	330	25	324	40
comp02	1075	267	521	190	676	236
comp03	849	218	462	210	578	225
comp04	1273	177	721	182	997	181
comp05	1189	603	945	638	1030	696
comp06	2342	254	1373	233	1779	283
comp07	2615	248	1481	238	2059	238
comp08	1522	184	883	150	1238	183
comp09	1021	248	622	220	680	236
comp10	1891	213	849	204	1264	215
comp11	396	33	354	24	377	42
comp12	1496	622	1752	673	1154	631
comp13	1787	225	1088	215	1248	255
comp14	1417	199	983	221	1139	204
comp15	849	218	462	210	624	224
comp16	1697	216	1053	233	1413	211
comp17	1836	260	1023	253	1294	258
comp18	600	220	558	204	549	212
comp19	839	234	499	236	584	241
comp20	3353	277	1809	286	2005	276
comp21	1329	298	1033	258	966	291
Média	1428,5	250,7	895,3	243,0	1046,6	256,1

Análise dos Resultados - Busca Local

Instância	GRASPK	GRASPK2	GRASPHC	GRASPSD
comp01	5,5	5	17,9	25,8
comp02	180,3	94,7	160,6	235,9
comp03	157,3	102,4	196,9	201,6
comp04	99,6	48,6	141,5	157,1
comp05	537,8	383,2	589,4	488,3
comp06	160,8	84,8	206,6	234,4
comp07	142,3	51,7	211,9	227,5
comp08	104,3	54,3	141	165,4
comp09	167,5	119,8	206,2	227,7
comp10	116,4	46,3	184,7	192,5
comp11	0,3	0	12,9	14,8
comp12	485	395,3	613,4	569,2
comp13	139,8	87,4	174,4	207,6
comp14	119,4	72	154,8	172,1
comp15	157,3	102,4	196,9	201,6
comp16	136	62,7	187,8	198,5
comp17	164,6	103	227,4	234,7
comp18	123	97,5	154,3	175,4
comp19	148,6	86,2	187	211,9
comp20	185,1	81,9	234,6	268,1
comp21	211,3	135	255,6	270,3
Média	168,68	105,44	212,18	222,88

Análise dos Resultados - Movimentos

- ➤ Os testes foram divididos em duas categorias, considerando respectivamente estruturas de vizinhanças simples e combinadas, conforme descrito por Lü et al. [2011]
 - Estrutura de vizinhança simples é composta por um único movimento
 - Estrutura de vizinhaça combinada é composta por dois ou três movimentos

- Vizinhança Combinada
 - União (∪)
 - Sequência (→)

União (∪)

- ▶ Dada uma solução s e k diferentes movimentos $m_1 \sim m_k$
- ► Gerar todos os *s* vizinhos usando cada um dos *k* movimentos
- O melhor vizinho de s é escolhido e o processo é repetido até que não ocorra melhoria

Análise dos Resultados - Movimentos

Sequência (\rightarrow)

- Dada uma solução s e k diferentes movimentos $m_1 \sim m_k$
- ▶ SD é aplicado em s usando m₁
- ▶ O melhor vizinho é submetido a SD usando m_2 , e assim sucessivamente seguindo a sequência até m_k
- O processo é repetido até que não seja encontrada nenhuma melhoria.

Análise dos Resultados - Movimentos

Tabela 1

- Média sobre 50 execuções do SD
- Valores arredondados para baixo

Instância	LM	М	S	RM	RS	KE	TM	KS	MWD
comp01	25	251	29	288	228	294	313	320	330
comp02	190	209	304	408	499	476	485	467	507
comp03	210	235	336	385	448	416	427	442	461
comp04	182	195	349	396	581	626	669	676	666
comp05	638	730	785	816	895	877	914	910	939
comp06	233	287	388	573	884	1180	1243	1333	1362
comp07	238	361	335	664	979	1238	1302	1426	1468
comp08	149	171	338	455	668	692	783	843	826
comp09	220	249	394	515	570	540	562	572	588
comp10	204	243	369	611	714	644	726	825	815
comp11	24	58	148	91	210	154	343	320	350
comp12	673	1140	913	1109	1243	1742	1707	1694	1752
comp13	215	226	407	436	772	1024	1013	1066	1088
comp14	221	247	547	479	865	934	931	952	935
comp15	210	235	336	385	448	416	427	442	461
comp16	233	273	491	677	936	748	879	1007	1013
comp17	253	312	377	639	708	810	925	947	993
comp18	204	217	305	296	369	481	558	540	503
comp19	236	262	340	380	423	463	485	472	487
comp20	286	421	609	633	1316	1640	1716	1726	1805
comp21	258	313	435	610	656	761	953	1001	1013

- Valores Normalizados
- $h = \frac{f f_{min}}{f_{max} f_{min}}$

- Valores Normalizados
- $h = \frac{f f_{min}}{f_{max} f_{min}}$

- Valores Normalizados
- $h = \frac{f f_{min}}{f_{max} f_{min}}$

Análise dos Resultados - Movimentos

- Comparando os resultados com Lü et al. [2011]
 - Com relação as estruturas de vizinhança simples similarmente implementadas
 - * Em Lü et al. [2011] os melhores resultados foram obtidos com KempeSwap, seguido por SimpleMove, SimpleSwap e KempeMove
 - * No nosso trabalho, M é o melhor, seguido por S, KE e KS
 - Nos dois trabalhos:
 - * M (SimpleMove) teve resultados melhores que S (SimpleSwap)
 - * **KE** (*KempeSwap*) teve resultados melhores que **KS** (*KempeMove*)

Sete estruturas de vizinhança combinadas foram consideradas

- LM ∪ RM

- LM ∪ TM

- RM ∪ TM

– LM ∪ RM ∪ TM

– LM ightarrow KE

– LM \rightarrow RS

– LM \rightarrow MWD

- ► LM foi usada em grande parte das estruturas de vizinhaça combinada pois foi a estrutura de vizinhança simples que apresentou o melhor comportamento
- ► LM, RM e TM movimentos muito similares aos tradicionais M ou S, foram combinados usando (U)
- ► LM foi combinado em (→) com outros movimentos diferentes do M e S

Análise dos Resultados - Movimentos

Tabela 2

- Média sobre 50 execuções do SD
- Valores arredondados para baixo

Instance	LM → KE	$LM \to MWD$	$LM \rightarrow RS$	LM ∪ TM	LM ∪ RM	$LM \cup RM \cup TM$	$RM \cup TM$
comp01	24	25	25	25	25	25	310
comp02	188	188	188	188	190	189	483
comp03	211	211	211	209	210	210	417
comp04	176	182	188	185	182	184	568
comp05	636	638	641	638	638	638	912
comp06	230	231	231	234	233	235	997
comp07	232	236	231	238	240	241	971
comp08	149	152	149	150	149	150	582
comp09	224	221	221	222	222	221	559
comp10	207	203	203	205	207	206	629
comp11	26	24	21	24	24	24	327
comp12	629	673	679	677	680	678	1707
comp13	216	212	216	215	215	215	891
comp14	221	213	227	221	224	226	902
comp15	211	211	211	209	210	210	417
comp16	222	229	230	230	234	233	721
comp17	250	258	254	258	255	254	873
comp18	199	201	204	204	204	204	558
comp19	235	236	235	236	234	235	468
comp20	280	280	274	287	286	286	1337
comp21	259	264	258	262	257	261	753

- Valores Normalizados
- $h = \frac{f f_{min}}{f_{max} f_{min}}$

- Valores Normalizados
- $h = \frac{f f_{min}}{f_{max} f_{min}}$

- Valores Normalizados
- $h = \frac{f f_{min}}{f_{max} f_{min}}$

Análise dos Resultados – Comparação

	Müller	Lü & Hao	Kiefer	GRASPK	GRASPK2	GMF-D
comp01	5	5	5	5,5	5	5
comp02	61,3	60,6	41,5	180,3	55,1	61,5
comp03	94,8	86,6	71,7	157,3	84,95	85,2
comp04	42,8	47,9	35,1	99,6	40,8	39,5
comp05	343,5	328,5	305,2	537,8	328,45	342,5
comp06	56,8	69,9	47,8	160,8	58,35	58,8
comp07	33,9	28,2	14,5	142,3	28,7	28,8
comp08	46,5	51,4	41,0	104,3	45,45	44,6
comp09	113,1	113,2	102,8	167,5	107,9	106,6
comp10	21,3	38	14,3	116,4	25,05	25,1
comp11	0	0	0	0,3	0	0
comp12	351,6	365	319,4	485	353,3	350,9
comp13	73,9	76,2	60,7	139,8	76,75	75,6
comp14	61,8	62,9	54,1	119,4	61	60,4
comp15	94,8	87,8	72,1	157,3	84,95	86,2
comp16	41,2	53,7	33,8	136	44,4	44,1
comp17	86,6	100,5	75,7	164,6	85	85,3
comp18	91,7	82,6	66,9	123	84,85	86,0
comp19	68,8	75	62,6	148,6	69,7	72,3
comp20	34,3	58,2	27,2	185,1	45,95	43,5
comp21	108	125,3	97,0	211,3	108,95	111,3
Média	87,22	91,26	73,73	168,68	85,46	86,34

Conclusões e Trabalhos Futuros

- O grupo de Timetabling da UFES abordou o PTHU utilizando a terceira formulação do ITC-2007 em diferentes abordagens de pesquisa
- Para uma comparação fiel ao ambiente computacional onde os algoritmos submetidos no campeonato foram testados, utilizou-se as mesmas instâncias e tempo equivalente a execução em uma máquina utilizada no ITC-2007
- Com os resultados obtidos, pode-se observar que a utilização da meta-heurística GRASP combinada com uma etapa de construção e uma busca local (Simulated Annealing) comprovadamente eficientes, proporcionam melhorias significativas nos resultados.

Conclusões e Trabalhos Futuros

- Além disso, destaca-se que a busca local usa movimentos que proporcionam resultados de destaque e o código-fonte foi reestruturado para garantir mais eficiência na execução
- Caso o algoritmo tivesse participado do ITC-2007, ocuparia a primeira colocação na classificação final da competição.
- Como trabalhos futuros pretende-se implementar métodos híbridos (Meta-heurísticas e Exatos) para obtenção de limitantes inferiores (Lower Bounds).
 - Geração de Coluna
 - Relaxação Lagrangeana

Referências

- Kampke, E. H.; Scheideger, L. M.; Mauri, G. R.; Boeres, M. C. S. (2019). A network flow based construction for a grasp+sa algorithm to solve the university timetabling problem. Lecture Notes in Computer Science, p. 215–231.
- Kampke, E. H.; Segatto, E. A.; Boeres, M. C. S., Rangel; M. C.; Mauri, G. R. (2017). Neighborhood analysis on the university timetabling problem. Lecture Notes in Computer Science, p.148–164.
- ▶ Lü, Z.; Hao, J.-K. (2010). Adaptive tabu search for course timetabling. European Journal of Operational Research, 200(1):235–244.
- ▶ Lü, Z.; Hao, J.-K.; Glover, F. (2011). Neighborhood analysis: A case study on curriculum-based course timetabling. Journal of Heuristics, 17(2):97–118.

Referências

- ▶ Müller, T. (2009). Itc2007 solver description: a hybrid approach. Annals of Operations Research, 172(1):429.
- Rocha, W. S. (2013). Algoritmo grasp para o problema de tabela-horário de universidades. Master's thesis, Universidade Federal do Espírito Santo.
- ► Schaerf, A. (1995). A survey of automated timetabling. Artificial Intelligence Review, 13:87–127.
- Segatto, E. A.; Boeres, M. C. S.; Rangel, M. C.; Kampke, E. H. (2015). Um algoritmo grasp com cadeia de kempe aplicado ao problema de tabela-horário para universidades. Anais do XLVII SBPO-Simpósio Brasileiro de Pesquisa Operacional, p.2643–2654.

Obrigado!

Edmar Hell Kampke Maria Claudia Silva Boeres

edmar.kampke@ufes.br
boeres@inf.ufes.br

Laboratório de Otimização – LabOtim Universidade Federal do Espírito Santo – UFES

12 de Setembro de 2023

- Kampke, E. H., Scheideger, L. M., Mauri, G. R., e Boeres, M. C. S.
 - (2019). A network flow based construction for a grasp+sa algorithm to solve the university timetabling problem. In *Lecture Notes in Computer Science*, p. 215–231.
- Kampke, E. H., Segatto, E. A., Boeres, M. C. S., Rangel, M. C., e Mauri, G. R. (2017). Neighborhood analysis on the university timetabling problem. In *Lecture Notes in Computer Science*, p. 148–164.
- Lü, Z. e Hao, J.-K. (2010). Adaptive tabu search for course timetabling. *European Journal of Operational Research*, 200(1): 235–244.
- Lü, Z., Hao, J.-K., e Glover, F. (2011). Neighborhood analysis: A case study on curriculum-based course timetabling. *Journal of Heuristics*, 17(2):97–118.
- Müller Test (2009). Itc2007 solver description: a hybrid approach. Annals of Operations Research, 172(1):429.

- Rocha, W. S. (2013). Algoritmo grasp para o problema de tabela-horário de universidades. Master's thesis, Universidade Federal do Espírito Santo.
- Schaerf, A. (1995). A survey of automated timetabling. *Artificial Intelligence Review*, 13:87–127.
- Segatto, E. A., Boeres, M. C. S., Rangel, M. C., e Kampke, E. H. (2015). Um algoritmo grasp com cadeia de kempe aplicado ao problema de tabela-horário para universidades. In *Anais do XLVII SBPO-Simpósio Brasileiro de Pesquisa Operacional*, number 1, p. 2643–2654.