Algebraic Methods in Combinatorics

Instructor: Benny Sudakov

Assignment 3

To be completed by October 09

The solution of each problem should be no longer than one page!

Problem 1. Let \mathcal{A} be a family of subsets of [n] such that |A| is odd for every $A \in \mathcal{A}$, and $|A \cap B \cap C|$ is even for every distinct $A, B, C \in \mathcal{A}$. Our aim is to show that $|\mathcal{A}| \leq n(n+1)$. Let G be a graph, whose vertices are the sets in \mathcal{A} , and for distinct $A, B \in \mathcal{A}$, there is an edge between A and B if and only if $|A \cap B|$ is odd.

- (a) Show that the maximum degree of G is at most n.
- (b) Show that every graph on m vertices, with maximum degree at most d, has an independent set of size at least $\frac{m}{d+1}$ (recall that an *independent set* is a set of vertices with no edges between them). Deduce that G has an independent set of size at least $\frac{|A|}{n+1}$.
- (c) Show that every independent set in G has size at most n. Deduce that $|A| \leq n(n+1)$.

Problem 2. Let $S = \{v_1, \ldots, v_m\}$ be a subset of \mathbb{R}^n . Let M be the *Gram matrix* corresponding to S, i.e. M is the $m \times m$ matrix M where $M_{i,j} = \langle v_i, v_j \rangle$. Let D be the $m \times m$ matrix defined by $D_{i,j} = \|v_i - v_j\|^2$.

- (a) Show that $rank(M) \le n$ and $rank(D) \le n + 2$.
- (b) Suppose that S is a unit-distance set, i.e. $||v_i v_j|| = 1$ for $i \neq j$. Show that $|S| \leq n+1$.
- (c)* Suppose that the distance between any two distinct points in S is either d_1 or d_2 , where $d_2 > 2d_1$. Show that $|S| \le n + 2$.

Problem 3. Let $A \subseteq \mathbb{F}_3^n$ be a set such that for every distinct $a, b \in A$, where $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$, there is a coordinate $i \in [n]$ such that $b_i = a_i - 1$. Show that $|A| \leq 2^n$.