

第二章 初等模型 (初等数学方法建模)

- §1 席位分配
- § 2 双层玻璃窗的功效
- § 3 划艇比赛的成绩
- § 4 录象机计数器的用途
- § 5 实物交换
- § 6 传送带的效率
- § 7* 启帆远航

§1 席位分配

三个系学生共200名(甲系100,乙系60,丙系40)。代表会议共20席,按比例分配,三个系分别为10,6,4席。

现因学生转系,三系人数为103,63,34。问20席如何分配

若增加为21席,又如何分配

比例加惯例

系别	学生	比例	20席的分配		21席的分配		
	人数	(%)	比例	结果	比例	结果	
甲	103	51.5	10.3	10	10.815	11	
乙	63	31.5	6.3	6	6.615	7	
丙	34	17.0	3.4	4	3.570	3	
总和	200	100.0	20.0	20	21.000	21	

对丙系公平吗

舍弃惯例, 寻找公平的分配方法

建立衡量公平分配的数量指标

| 人数 席位 | 当
$$p_1/n_1 = p_2/n_2$$
 时,分配公平 | B方 p_2 p_2 p_2 若 $p_1/n_1 > p_2/n_2$ 对A不公平

$$p_1/n_1 - p_2/n_2 \sim$$
 对A的绝对不公平度

$$p_1=150, n_1=10, p_1/n_1=15$$

 $p_2=100, n_2=10, p_2/n_2=10$

$$p_1/n_1 - p_2/n_2 = 5$$

$$p_1=1050, n_1=10, p_1/n_1=105$$

 $p_2=1000, n_2=10, p_2/n_2=100$

$$p_1/n_1 - p_2/n_2 = 5$$

但后者对A的不公 平已大大降低!

将绝对度量改为相对度量

若
$$p_1/n_1 > p_2/n_2$$
 , 定义

$$\frac{p_1/_{n_1} - p_2/_{n_2}}{p_2/_{n_2}} = r_A(n_1, n_2)$$
 ~ 对**A**的相对不公平度
类似地定义 $r_B(n_1, n_2)$

公平的分配方案应使 r_A , r_B 尽量小

将一次性的席位分配转化为动态的席位分配,即

设A, B已分别有 n_1 , n_2 席,若增加1席,问应分给A, 还是B

不妨设初始
$$p_1/n_1 > p_2/n_2$$
 , 即对A不公平,

应讨论以下几种情况: 初始
$$p_1/n_1 > p_2/n_2$$
 1) 若 $p_1/n_1 > p_2/n_2$, 则这席应给A

1) 若
$$\frac{p_1}{(n_1+1)} > \frac{p_2}{n_2}$$
 , 则这席应给A

2) 若
$$p_1/(n_1+1) < p_2/n_2$$
 应计算 $r_B(n_1+1, n_2)$
3) 若 $p_1/n_1 > p_2/(n_2+1)$, 应计算 $r_A(n_1, n_2+1)$
问: $p_1/n_1 < p_2/(n_2+1)$ 是否会出现?

3) 若
$$p_1/n_1 > p_2/(n_2+1)$$
 , 应计算 $r_A(n_1, n_2+1)$

问:
$$p_1/n_1 < p_2/(n_2+1)$$
 是否会出现?

若
$$\mathbf{r}_{\mathbf{B}}(\mathbf{n}_1+1,\mathbf{n}_2) < \mathbf{r}_{\mathbf{A}}(\mathbf{n}_1,\mathbf{n}_2+1)$$
,则这席应给 \mathbf{A}

反之,给B

当
$$r_B(n_1+1, n_2) < r_A(n_1, n_2+1)$$
, 该席给A

定义
$$Q_i = \frac{p_i^2}{n_i(n_i+1)}$$
, $i=1,2$, 该席给Q值较大的一方

推广到m方分配席位,设i方人数p_i,席位n_i,若增加1席

计算
$$Q_i = \frac{p_i^2}{n_i(n_i+1)}$$
, $i = 1,2\cdots,m$ 该席给Q值 最大的一方

() 值 方 法

三系用O值方法重新分配 21个席位

按人数比例的整数部分已将19席分配完毕

甲系:
$$p_1=103, n_1=10$$

乙系:
$$p_2$$
= 63, n_2 = 6

丙系: p₃= 34, n₃= 3

用Q值方法分配 第20席和第21席

第20席
$$Q_1 = \frac{103^2}{10 \times 11} = 96.4, \ Q_2 = \frac{63^2}{6 \times 7} = 94.5, \ Q_3 = \frac{34^2}{3 \times 4} = 96.3$$

Q₁最大,第20席给甲系

第21席
$$Q_1 = \frac{103^2}{11 \times 12} = 80.4$$
, Q_2 , Q_3 同上 Q_3 最大,第 21席给丙系

Q值方法 分配结果

甲系11席, 乙系6席, 丙系4席

公平吗?

进一步的讨论

席位分配的理想化准则

已知: m方人数分别为 $p_1, p_2, \dots p_m$, 记总人数为 $P = p_1 + p_2 + ... + p_m$, 待分配的总席位为N。

设理想情况下m方分配的席位分别为n,,n,,...n, (自然应有 $n_1 + n_2 + ... + n_m = N$),

记q_i=Np_i/P_i, i=1,2,...m_i, 若q_i均为整数,显然应 n_i=q_i

当 qi 不全为整数时,研究 ni 应满足的准则

记 $[q_i]_-$ =floor $(q_i) \sim$ 向 $\leq q_i$ 方向取整; $[q_i]_+$ =ceil $(q_i) \sim$ 向 $\geq q_i$ 方向取整.

q:=Np:/P不全为整数时,n;应满足的准则

- 1) $[q_i]_- \le n_i \le [q_i]_+$ (i=1,2,...m),即 n_i 必取 $[q_i]_-$, $[q_i]_+$ 之一 n_i 应是 N和 p_1 ,... p_m 的函数,记 $n_i = n_i$ (N, p_1 ,... p_m)
- 2) $n_i(N, p_1, p_m) \le n_i(N+1, p_1, p_m)$ (i=1,2, ...m) 即当总席位增加时 n_i 不应减少

"比例加惯例"方法满足 1),但不满足 2)

Q值方法满足2),但不满足1) (令人遗憾!)

记双层玻璃窗传导的热量Q₁

T_a~内层玻璃的外侧温度

T_b~外层玻璃的内侧温度

k₁~玻璃的热传导系数

k,~空气的热传导系数

$$Q_{1} = k_{1} \frac{T_{1} - T_{a}}{d} = k_{2} \frac{T_{a} - T_{b}}{l} = k_{1} \frac{T_{b} - T_{2}}{d}$$

$$Q_1 = k_1 \frac{T_1 - T_2}{d(s+2)}, \ s = h \frac{k_1}{k_2}, \ h = \frac{l}{d}$$

$$Q_2 = k_1 \frac{T_1 - T_2}{2d}$$
 $Q_1 = k_1 \frac{T_1 - T_2}{d(s+2)}$

$$Q_1 = k_1 \frac{T_1 - T_2}{d(s+2)}$$

双层与单层窗传导的热量之比

$$\frac{Q_1}{Q_2} = \frac{2}{s+2}, \quad s = h\frac{k_1}{k_2}, \quad h = \frac{l}{d}$$
 $Q_1 < Q_2$

$$Q_1 < Q_2$$

 $k_1=4\times10^{-3}\sim8\times10^{-3}$, $k_2=2.5\times10^{-4}$, $k_1/k_2=16\sim32$

对 Q_1 比 Q_2 的减少量

$$\mathbb{R}_{1}/k_{2}=16$$

模型应用

取h=l/d=4, 则 Q_1/Q_2 =0.03

即双层玻璃窗与同样多材 料的单层玻璃窗相比,可 减少97%的热量损失。

结果分析

Q1/Q3所以如此小,是由于层间空气极低的热传 导系数k,, 而这要求空气非常干燥、不流通。

实际上,双层窗的功效不会如此之大。

§ 3 划艇比赛的成绩

问 题

对四种赛艇(单人、双人、四人、八人)4次 国际大赛冠军的成绩进行比较, 发现与浆手数 有某种关系。试建立数学模型揭示这种关系。

赛艇	2000米成绩 t (分)					艇长1	艇宽b		空艇重w ₀ (kg)
种类	1	2	3	4	平均	(米)	(米)	1/b	浆手数n
单人	7.16	7.25	7.28	7.17	7.21	7.93	0.293	27.0	16.3
双人	6.87	6.92	6.95	6.77	6.88	9.76	0.356	27.4	13.6
四人	6.33	6.42	6.48	6.13	6.32	11.75	0.574	21.0	18.1
八人	5.87	5.92	5.82	5.73	5.84	18.28	0.610	30.0	14.7

准 备

调查赛艇的尺寸和重量 🗀 l/b, w₀/n 基本不变

问题分析

分析赛艇速度与浆手数量之间的关系 赛艇速度由前进动力和前进阻力决定

- 前进动力~浆手的划浆功率
- 前进阻力~浸没部分与水的摩擦力

艇 ↑ □ 浸没 ↑ □ 前进 ↑ □ 阻力 ┃

- 对浆手体重、功率、阻力与艇速的关系等作出假定
- 运用合适的物理定律建立模型

模型假设

符号: 艇速 v, 浸没面积 s, 浸没体积 A, 空艇重 wo, 阻力 f, 浆手数 n, 浆手功率 p, 浆手体重 w, 艇重 W

- 1) 艇形状相同(l/b为常数), w₀与n成正比 艇的静态特性
- 2) v是常数,阻力 f与 sv²成正比
- 艇的动态特性
- 3)w相同,p不变,p与w成正比
- 浆手的特征

模型 建立 $np \propto fv \quad f \propto sv^2$

 $p \propto w$ \Rightarrow $v \propto (n/s)^{1/3}$

 $s^{1/2} \propto A^{1/3}$ $A \propto W(=w_0 + nw) \propto n$ $\Rightarrow s \propto n^{2/3}$

 \Rightarrow $v \propto n^{1/9}$

□ 比赛成绩 t∞ n - 1/9

§ 4 录象机计数器的用途

经试验,一盘录象带从头走到尾,时间用了183分30秒,计数器读数从0000变到6152。

在一次使用中录象带已经转过大半,计数器读数为4580,问剩下的一段还能否录下1小时的节目?

要求

不仅回答问题, 而且建立计数器读数与 录象带转过时间的关系。

思考

计数器读数是均匀增长的吗?

模型假设

- ·录象带的运动速度是常数 v;
- •计数器读数 n与右轮转数 m成正比,记 m=kn;
- ·录象带厚度(加两圈间空隙)为常数w;
- ·空右轮盘半径记作 r;
- •时间 t=0 时读数 n=0.

建模目的

建立时间t与读数n之间的关系

(设V, k, w, r 为已知参数)

模型建立

建立t与n的函数关系有多种方法

1. 右轮盘转第 i 圈的半径为r+wi, m圈的总长度等于录象带在时间t内移动的长度vt, 所以

$$\sum_{i=1}^{m} 2\pi (r + wi) = vt$$

$$m = kn$$

$$\Rightarrow t = \frac{\pi w k^2}{v} n^2 + \frac{2\pi r k}{v} n$$

模型建立

2. 考察右轮盘面积的 变化,等于录象带厚度 乘以转过的长度,即

3. 考察t到t+dt录象带在 右轮盘缠绕的长度,有

$$\pi[(r + wkn)^{2} - r^{2}] = wvt \qquad (r + wkn)2\pi kdn = vdt$$

$$\downarrow \qquad \qquad \downarrow$$

$$t = \frac{\pi wk^{-2}}{v}n^{2} + \frac{2\pi rk}{v}n$$

思考

1. 3种建模方法得到同一结果

$$\sum_{i=1}^{m} 2\pi (r + wi) = vt$$

$$\pi[(r + wkn)^2 - r^2] = wvt$$

$$(r + wkn) 2\pi kdn = vdt$$

但仔细推算会发现稍有差别, 请解释。

2. 模型中有待定参数 r, w, v, k,

一种确定参数的办法是测量或调查,请设计测量方法。

参数估计

另一种确定参数的方法——测试分析

将模型改记作 $t = an^2 + bn$, 只需估计 a,b,

现有一批测试数据:

t	0	20	40	60	80
n	0000	1153	2045	2800	3466
t	100	120	140	160	183.5
n	4068	4621	5135	5619	6152

用最小二乘法可得 $a = 2.51 \times 10^{-6}$, $b = 1.44 \times 10^{-2}$.

模型检验

应该另外测试一批数据检验模型:

$$t = an^2 + bn$$
 $(a = 2.51 \times 10^{-6}, b = 1.44 \times 10^{-2})$

模型应用

- 1. 回答提出的问题:由模型算得 n = 4580 时 t = 118.5分,剩下的录象带能录 183.5-118.5 = 65分钟的节目。
- 2. 揭示了"t与n之间呈二次函数关系"这一普遍规律, 当录象带的状态改变时,只需重新估计 a,b 即可。

§ 5 实物交换

用x,y分别表示甲(乙)占有X,Y的数量。设交换前甲占有X的数量为 x_0 ,乙占有Y的数量为 y_0 ,作图:

若不考虑双方对X,Y的偏爱,则矩形内任一点 p(x,y)

都是一种交换方案: 甲占有(x,y), 乙占有 (x_0-x,y_0-y)

分析与建模

甲的无差别曲线

如果甲占有(x₁,y₁)与占有 (x2,y2)具有同样的满意程度, 即p1, p2对甲是无差别的,

将所有与p₁, p₂无差别的点 连接起来,得到一条无差 别曲线MN,

线上各点的满意度相同。线的形状反映对X,Y的偏爱程度 比MN各点满意度更高的点如p3,在另一条无差别曲线 M_1N_1 上。于是形成一族无差别曲线(无数条)。

甲的无差别 曲线族记作

c₁~满意度 $f(x,y)=c_1$ (f~等满意度曲线)

 $f(x,y)=c_1$

无差别曲线族的性质:

- 单调减(x增加, y减小) 下凸(凸向原点)
- 互不相交

在p₁点占有x少、y多, 宁愿以较多的Δy换取 较少的Δx

在p,点占有y少、x多, 就要以较多的Δx换取 较少的 Δy 。

乙的无差别曲线族 $g(x,y)=c_2$ 具有相同性质 (形状可以不同)

双方的交换路径

甲的无差别曲线族 $f=c_1$ 乙的无差别曲线族 $g=c_2$ (坐标系x'o'y', 且反向)

双方满意的交换方案必 在AB(交换路径)上

因为在AB外的任一点p', (双方的)满意度低于AB上的点p

交换方案的进一步确定

交换方案~交换后甲的占有量(x,y)

0≤x≤x₀, 0≤y≤y₀ 矩形内任一点

交换路 径AB

等价交

AB与CD 的交点p

双方的无差别曲线族

X,Y用货币衡量其价值,设交换前 x_0,y_0 价值相同,则等价交换原则下交换路径为 $(x_0,0),(0,y_0)$ 两点的连线CD

设X单价a, Y单价b, 则等价交换下ax+by=s (s=ax₀=by₀)

作台数固定,挂钩数量越多,传送带运走的产品越多。

在生产进入稳态后,给出衡量传送带效率的指标,研究提高传送带效率的途径

问题分析

进入稳态后为保证生产系统的周期性运转,应假 定工人们的生产周期相同,即每人作完一件产品 后,要么恰有空钩经过他的工作台,使他可将产 品挂上运走,要么没有空钩经过,迫使他放下这 件产品并立即投入下件产品的生产。

可以用一个周期内传送带运走的产品数占产品总数的比例,作为衡量传送带效率的数量指标。

工人们生产周期虽然相同,但稳态下每人生产完 一件产品的时刻不会一致,可以认为是随机的, 并且在一个周期内任一时刻的可能性相同。

模型假设

- 1) n个工作台均匀排列,n个工人生产相互独立, 生产周期是常数;
- 2) 生产进入稳态,每人生产完一件产品的时刻在一个周期内是等可能的;
- 3) 一周期内m个均匀排列的挂钩通过每一工作台的上方,到达第一个工作台的挂钩都是空的;
- 4)每人在生产完一件产品时都能且只能触到一只 挂钩,若这只挂钩是空的,则可将产品挂上运走; 若该钩非空,则这件产品被放下,退出运送系统。

模型建立

•定义传送带效率为一周期内运走的产品数(记作s,待定)与生产总数n(已知)之比,记作 D=s/n

问: 为确定s, 应从工人角度还是从挂钩角度考虑?

• 若求出一周期内每只挂钩非空的概率p,则 s=mp

如何求概率

设每只挂钩为空的概率为q,则p=1-q

设每只挂钩不被一工人触到的概率为r,则 q=rn

设每只挂钩被一工人触到的概率为u,则 r=1-u

一周期内有m个挂钩通过每一工作台的上方

u=1/m \Rightarrow $p=1-(1-1/m)^n$ \Rightarrow $D=m[1-(1-1/m)^n]/n$

模型解释

的产品数与生产总数之比)

传送带效率(一周期内运走
的产品数与生产总数之比)
$$D = \frac{m}{n} [1 - (1 - \frac{1}{m})^n]$$

若(一周期运行的)挂钩数m远大于工作台数n,则

$$D \cong \frac{m}{n} [1 - (1 - \frac{n}{m} + \frac{n(n-1)}{2m^2})] = 1 - \frac{n-1}{2m}$$

定义E=1-D(一周期内未运走的产品数与生产总数之比)

当n远大于1时,E≅n/2m~E与n成正比,与m成反比

若n=10, m=40, 得D≅ 87.5% (D=89.4%)

提高效率 的途径:

- 增加m
- P56第6题

§ 7* 启帆远航

帆船在海面上乘风远航, 确定 最佳的航行方向及帆的朝向

简化问题

海面上东风劲吹, 设帆船 要从A点驶向正东方的B 点,确定起航时的航向θ,

以及帆的朝向α

模型 分析

- •风(通过帆)对船的推力 \mathbf{w}
- 风对船体部分的阻力p

推力w的分解

 $\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_2$

 $w_1 = f_1 + f_2$

 f_1 ~航行方向的推力

阻力p的分解

 $p = p_1 + p_2$

 p_1 ~航行方向的阻力

模型 假设 • w与帆迎风面积 \mathbf{s}_1 成正比, \mathbf{p} 与船迎风面积 \mathbf{s}_2 成正比,比例系数相同且 \mathbf{s}_1 远大于 \mathbf{s}_2 ,

- \cdot w₂与帆面平行,可忽略
- •f₂,p₂垂直于船身,可由舵抵消
- 航向速度v与力 $f=f_1-p_1$ 成正比

模型 建立 w=ks₁, p=ks₂

 $w_1 = wsin(\theta - \alpha)$

 $f_1 = w_1 \sin \alpha = w \sin \alpha \sin(\theta - \alpha)$

 $p_1 = p\cos\theta$

 $v=k_1(f_1-p_1)$

船在正东方向速度分量v₁=vcosθ

 $v_1 = k_1(f_1 - p_1)\cos\theta$ $f_1 = w_1 \sin \alpha = w \sin \alpha \sin(\theta - \alpha)$ 目的: 求 θ , α 使 v_1 最大

 $p_1 = p\cos\theta$

1) 当θ固定时求α使f₁最大

 $f_1=w[\cos(\theta-2\alpha)-\cos\theta]/2$

 $v_1 = k_1 [w(1-\cos\theta)/2 - p\cos\theta]\cos\theta$ 求θ使 v_1 最大($w=ks_1, p=ks_2$)

 $v_1 = k_1 [w(1-\cos\theta)/2 - p\cos\theta]\cos\theta$ = $(k_1w/2)[1-(1+2p/w)\cos\theta]\cos\theta$

 $w=ks_1, p=ks_2$

$$12 t = 1 + 2s_2/s_1, k_2 = k_1 w/2$$

$$v_1 = k_2 (1 - t \cos \theta) \cos \theta = k_2 t \left[\frac{1}{4t^2} - (\cos \theta - \frac{1}{2t})^2 \right]$$

$$\cos \theta = \frac{1}{2t} (t = 1 + \frac{2s_2}{s_1}), \ \alpha = \frac{\theta}{2}$$
v₁最大

取 1 < t < 2 (s_1 远大于 s_2) 1/4 $< \cos \theta < 1/2$

 $60^{\circ} < \theta < 75^{\circ}$

备注

- •只讨论起航时的航向,是静态模型
- 航行过程中终点B将不在正东方

作业布置 第2章作业: 55页习题1.2.7.6*

比赛日程(大作业候选题1)

- 1)5支球队进行单循环比赛,每天一场,给出一个比赛日程,使每支球队在两场比赛之间至少间隔一天(要有安排比赛日程的可操作的方法)。
- 2) 若有6支、7支球队,如何安排;能使每支球队 在两场比赛之间至少间隔两天吗。
- 3)推广到n支球队的情形,如何安排;每支球队 在两场比赛之间可至少间隔多少天。
- 4) 你建议用哪些指标衡量比赛日程的优劣,如何使这些指标达到最优。