8 Icelandic saithe

Summary

The 2015 reference biomass (B_{4+}) is estimated as 255 kt, around the average in the assessment period (1980 to the present). Spawning biomass is estimated as 139 kt, above the average in the assessment period and well above $B_{\text{trigger}} = 65$ kt and $B_{\text{lim}} = 61$ kt.

Harvest rate has been around the HCR target of 20% since 2011, with fishing mortality rate between 0.19 and 0.25. Year classes 2008 and 2009 are above average, but recruitment has declined below average since then.

Weights of ages 3-6 have been low in recent years, but older ages are close to average weight. Maturity at ages 4-9 has decreased in recent years and is currently around average.

The assessment model is a separable statistical catch-at-age model implemented in AD Model Builder. Selectivity is age-specific and varies between three periods: 1980-1996, 1997-2003, and 2004 onwards.

The default separable model (ADSEP) estimates a slightly larger stock size than alternative diagnostic models (ADAPT, TSA, SAM). The estimates of this year's *B*₄₊ range from 209 (TSA) to 255 kt (ADSEP).

In 2013, the Icelandic government adopted a harvest control rule for managing the Icelandic saithe fishery, evaluated by ICES (2013). It is similar to the 20% rule used for the Icelandic cod fishery. When the population is above B_{trigger} , the TAC set in year t equals the average of 0.2 B_{4+} in year t and last year's TAC.

According to the adopted harvest control rule, the TAC will be 55 kt in the next fishing year.

8.1 Stock description and management units

Description of the stock and management units is provided in the stock annex.

8.2 Fisheries-dependent data

8.2.1 Landings, advice and TAC

Landings of saithe in Icelandic waters in 2014 are estimated to have been 46 500 t (Table 8.1 and Figure 8.1). Of the landings, 38 600 t were caught by trawl, 2 400 t by gillnets, and the rest caught by other fishing gear. The domestic as well as ICES advice for the fishing year 2014/2015 was based on the 20% harvest control rule and was 58 kt. The TAC issued was also 58 kt. The trajectory of the landings in the current fishing year and calendar year is shown in Figure 8.2.

Most of the catch is caught in bottom trawl (80% in 2010-2014), with gillnet and jiggers taking the majority of the rest. The share taken by the gillnet fleet was larger in the past, 26% in 1982-1996 compared to 9% in 1997-2014 (Figure 8.1).

8.2.2 Landings by age

Catch in numbers by age based on landings are listed in Table 8.2. Discarding is not considered to be a problem in the Icelandic saithe fisheries, with an estimated discard proportion of 0.1% (annual reports by Palsson et al. 2003 and later). Comparison of sea

and harbour samples indicate that discards have been small in most years since 2000. The sea samples constitute about 60-70% of the length samples used in the calculation of the catch in number. Since the amount of discards is likely to be small, not taking discards into account in the total catches and catch in numbers is not considered to have major effect on the stock assessment.

The sampling program was slightly revised in 2013 and 2014, but the approach used for calculating catch in numbers has not changed. In 2013, the sampling frequency was reduced for bottom trawl, while the sampling frequency was increased for gillnets, jiggers, and demersal seine in 2014. Also in 2014, the number of otoliths from each sample was halved from 50 to 25 for all fishing gears. These revisions in the sampling program were based on the analysis of Thordarson (2012). The age and length sampling in 2014 is indicated in the following table:

Fleet	Landings (t)	No. of otolith samples	No. of otoliths read	No. of length samples	No. of length measurements
Gillnets	2355	9	250	10	1036
Jiggers	2115	14	370	15	1601
Demersal seine	1005	4	150	4	471
Bottom trawl	38634	52	1625	224	32251
Other gear	1624	-	-	189	2354
Foreign landings	750	-	-	-	-
Total	46483	79	2395	442	37713

Two age-length keys are used to calculate catch at age, one key for the gillnet catch and another key for other gears combined. The same length-weight relationship ($W = 0.02498 * L^2.75674$) is applied to length distributions from both fleets.

8.2.3 Mean weight and maturity at age

Weights of ages 3-6 have been low in recent years, but older ages are close to average weight (Table 8.3 and Figure 8.3). The long-term trend since 1980 has been a gradual decline in the weight of all ages. Weight at age in the landings is also used as weight at age in the stock. Weights for the current calendar year are predicted by applying a linear model using survey weights and the weight of a year class in the previous year as predictors (Magnusson 2012).

Maturity at ages 4-9 has decreased in recent years and is currently around average (Table 8.4 and Figure 8.4). A model using maturity at age from the Icelandic groundfish spring survey is used to derive smoothed trends in maturity by age and year (see stock annex).

8.2.4 Logbook data

Commercial CPUE indices are not used for tuning in this assessment. Although these indices have been explored for inclusion in the past, they were not considered for inclusion in the benchmark (ICES 2010), as the trends in CPUE are considered unreliable as an indicator of changes in abundance.

8.3 Scientific surveys

In the benchmark, spring survey data were considered superior to the autumn survey for calibrating the assessment. Saithe is among the most difficult demersal fishes to get

reliable information on from bottom trawl surveys. In the spring survey, which has 500-600 stations, a large proportion of the saithe is caught in relatively few hauls and there seems to be considerable inter-annual variability in the number of these hauls.

The survey biomass indices fluctuated greatly in 1985-1995, but were consistently low in 1995-2001, high in the period around 2005, declining to a relatively low level in 2007-2011. The 2012 and 2013 survey biomass indices were relatively high (Table 8.5 and Figure 8.5).

Internal consistency in the surveys measured by the correlation of the indices for the same year class in 2 adjacent surveys is poor, with R^2 close to 0.3 for the best-defined age groups, and much lower for some other.

Young saithe tend to live very close to shore, so it is not surprising that survey indices for ages 1 and 2 are poor measures of recruitment, and the number of young saithe caught in the survey is very low.

8.4 Assessment method

In accordance with the recommendation from the benchmark (ICES 2010), a separable forward-projecting statistical catch-age model, developed in AD Model Builder, is used to fit commercial catch at age (ages 3-14 from 1980 onwards) and survey catch at age (ages 2-10 from 1985 onwards). The selectivity pattern is constant within each period (Figure 8.6). Natural mortality is set at 0.2 for all ages.

The commercial catch-at-age residuals (Table 8.6 and Figure 8.7) are relatively small in recent years, owing to the model flexibility provided by the two recent selectivity periods 1997-2003 and 2004 onwards. The survey catch-at-age residuals (Table 8.7 and Figure 8.7) have year blocks with all residuals being only negative or only positive in some years. The survey residuals are modelled as multivariate normal distribution with the correlation estimated (one coefficient).

8.5 Reference points and HCR

In April 2013, the Icelandic government adopted a management plan for managing the Icelandic saithe fishery (Ministry of Industries and Innovation 2013). ICES evaluated this management plan and concluded that it was in accordance with the precautionary approach and the ICES MSY framework. In the harvest control rule (HCR) evaluation (ICES 2013) B_{lim} was defined as 61 kt, based on B_{loss} as estimated in 2010, and $B_{trigger}$ was defined as 65 kt, based on an estimated hockey-stick recruitment function.

The TAC set in year *t* is for the upcoming fishing year, from 1 September in year *t*, to 31 August in year *t*+1. The 20% HCR consists of two equations, as follows.

When $SSB \ge B_{\text{trigger}}$, the TAC set in year t equals the average of 0.20 times the current biomass and last year's TAC:

$$TAC_t = 0.5 \times 0.20 B_{t,4+} + 0.5 TAC_{t-1}$$
 (Eq. 1)

When SSB is below B_{trigger} , the harvest rate is reduced below 0.20:

$$TAC_t = SSB_t/B_{trigger} [(1 - 0.5 SSB_t/B_{trigger}) 0.20 B_{t,4+}) + 0.5 TAC_{t-1}]$$
 (Eq. 2)

Equation 1 is a plain average of two numbers. Equation 2 is continuous over $SSB_t/B_{trigger}$, so the rule does not lead to very different TAC when SSB_t is slightly below or above $B_{trigger}$ (Magnusson 2013).

8.6 State of the stock

The results of the principal stock quantities (Table 8.8 and Figure 8.8) show that the reference biomass has historically ranged from 410 to 130 kt (in 1988 and 1999), but this range has been narrower since 2003, between 220 and 320 kt. The current stock size of 255 kt is around the average in the assessment period (1980 to the present). Spawning biomass is estimated as 139 kt, above the average in the assessment period and well above B_{trigger} and B_{lim} .

The harvest rate peaked around 30% in the mid 1990s, but has fluctuated around the HCR target of 20% since 2011, with fishing mortality rate between 0.19 and 0.25. SSB has been stable at a relatively high level during the last ten years, having declined to its historical minimum in the mid 1990s.

Year classes 2008 and 2009 are above average, but recruitment has declined below average since then. The details of the fishing mortality and stock in numbers are presented in Tables 8.9 and 8.10.

8.7 Short-term forecast

The input for the short-term forecast is shown in Table 8.11. Future weights, maturity, and selectivity are assumed to be the same as in the assessment year, as described in the stock annex. Recruitment predictions are based on the segmented stock-recruitment function estimated in the assessment model.

The landings for the ongoing calendar year are predicted based on the 20% HCR, with the calendar year landings consisting of 2/3 of the ongoing fishing year's TAC and 1/3 of the next fishing year's TAC.

Following the HCR, the predicted landings in 2016 are 54 kt and the resulting SSB in 2017 is predicted to be 130 kt.

8.8 Uncertainties in assessment and forecast

The assessment of Icelandic saithe is relatively uncertain due to fluctuations in the survey data, as well as irregular changes in the fleet selectivity. The internal consistency in the spring bottom trawl survey is very low for saithe. This is not surprising, considering the nature of the species that is partly pelagic, schooling, and relatively widely migrating. There are also indications of time-varying selectivity, so changes in the commercial catch at age may not reflect changes in the age dstribution of the population. The retrospective pattern (Figure 8.9) reveals some of the assessment uncertainty. The harvest control rule evaluation incorporated uncertainties about assessment estimates, among other sources of uncertainty (ICES 2013).

The results from the default separable assessment model (ADSEP) are compared to alternative diagnostic model runs, involving ADAPT, TSA, and SAM, in order to explore the overall uncertainty in the assessment. The comparison involved four models which differ mainly in the way the commercial catch-at-age variability and F-matrix is modelled:

	Model	Family	CA variability	F matrix
1	ADSEP (default)	separable	observation error	multiplicative in 3 periods
2	ADAPT	vpa	process error	no constraints
3	TSA	state-space (kalman filter)	observation & process error	orthogonal polynomials

4	SAM	state-space	observation & process	correlated
		(random effects)	error	random walk

The results from the model comparison (Figure 8.10) show that the default model estimates a slightly larger stock size than the other models, which has also been the case for saithe assessments in recent years. The estimates of this year's B_{4+} range from 209 (TSA) to 255 kt (ADSEP).

8.9 Comparison with previous assessment and forecast

Compared to last year's assessment the estimated reference biomass B_{4+} in 2014 has decreased from 296 to 265 kt, SSB 2014 has decreased from 150 to 132 kt, and the harvest rate u_{2013} has increased from 19% to 22% (fishing mortality 0.22 to 0.25). Stock numbers at age 5 have increased slightly, while stock numbers at ages 6 and 7 have decreased as shown below.

	NWWG 2014	NWWG 2015	
B4+(2014)	296	265	
SSB(2014)	150	132	
u(2013)	19%	22%	
F4-9(2013)	0.22	0.25	
N5(2014)	24	26	
N6(2014)	21	17	
N7(2014)	11	9	

8.10 Ecosystem considerations

Changes in the distribution of large pelagic stocks (blue whiting, mackerel, Norwegian spring-spawning herring, Icelandic summer-spawning herring) may affect the propensity of saithe to migrate off shelf and between management units. Saithe is a migrating species and makes both vertical and long-distance feeding and spawning migrations (Armannsson et al. 2007, Armannsson and Jonsson 2012, i Homrum et al. 2013). The evidence from tagging experiments (ICES 2008) show some migrations along the Faroe-Iceland Ridge, as well as onto the East Greenland shelf.

8.11 Changes in fishing technology and fishing patterns

According to the stock assessment model fit to the commercial catch-at-age data, the fleet is targeting younger fish since around 2004, compared to earlier years. This can be partly explained by reduced use of gillnets in the saithe fishery.

8.12 References

Armannsson, H. and S.T. Jonsson. 2012. Vertical migrations of saithe (*Pollachius virens*) in Icelandic waters as observed with data storage tags. ICES J. Mar. Sci. 69:1372-1381.

Armannsson, H., S.T. Jonsson, J.D. Neilson, and G. Marteinsdottir. 2007. Distribution and migration of saithe (*Pollachius virens*) around Iceland inferred from mark-recapture studies. ICES J. Mar. Sci. 64:1006-1016.

Gudmundsson, G. 2013. Fish stock assessment by time series analysis. ICES NWWG WD29.

i Homrum, E., B. Hansen, S.T. Jonsson, K. Michalsen, J. Burgos, D. Righton, P. Steingrund, T. Jakobsen, R. Mouritsen, H. Hatun, H. Armannsson, and J.S. Joensen. 2013. Migration of saithe (*Pollachius virens*) in the Northeast Atlantic. ICES J. Mar. Sci. 70:782-792.

- ICES. 2008. Report of the North-Western Working Group (NWWG). ICES CM 2008/ACOM:03.
- ICES. 2010. Report of the Benchmark Workshop on Roundfish (WKROUND). ICES CM 2010/ACOM:36.
- ICES. 2013. Report of the evaluation of the Icelandic saithe management plan. ICES CM 2013/ACOM:60.
- Magnusson, A. 2012. Icelandic saithe: New model to predict current weight at age. ICES NWWG WD30.
- Magnusson, A. 2013. Mathematical properties of the Icelandic saithe HCR. ICES NWWG WD 31.
- Ministry of Industries and Innovation. 2013. Adoption of management plan for Icelandic saithe. Letter to ICES, dated 22 Apr 2013.
- Palsson, O.K., G. Karlsson, A. Arason, G.R. Gislason, G. Johannesson, and S. Adalsteinsson. 2003. Discards in demersal Icelandic fisheries 2002. Mar. Res. Inst. Rep. 94.
- Thordarson, G. 2012. Sampling of demersal fish stocks from commercial catches and surveys: Flatfish and elongated species. Report for the Marine Research Institute.

Table 8.1. Saithe in division Va. Nominal catch (t) by countries, as officially reported to ICES.

	Belgium	Faroes	France	Germany	Iceland	Norway	UK (E/W/NI)	UK (Scot)	UK	Total
1980	980	4 930			52 436	1				58 347
1981	532	3 545			54 921	3				59 001
1982	201	3 582	23		65 124	1				68 931
1983	224	2 138			55 904					58 266
1984	269	2 044			60 406					62 719
1985	158	1 778			55 135	1	29			57 101
1986	218	2 291			63 867					66 376
1987	217	2 139			78 175					80 531
1988	268	2 596			74 383					77 247
1989	369	2 246			79 796					82 411
1990	190	2 905			95 032					98 127
1991	236	2 690			99 811					102 737
1992	195	1 570			77 832					79 597
1993	104	1 562			69 982					71 648
1994	30	975		1	63 333					64 339
1995		1 161		1	47 466	1				48 629
1996		803		1	39 297					40 101
1997		716			36 548					37 264
1998		997		3	30 531					31 531
1999		700		2	30 583	6	1	1		31 293
2000		228		1	32 914	1	2			33 146
2001		128		14	31 854	44	23			32
2002		366		6	41 687	3	7	2		063 42 071
2003		143		56	51 857	164			35	52 255

	Belgium	Faroes	France	Germany	Iceland	Norway	UK (E/W/NI)	UK (Scot)	UK	Total
2004		214		157	62 614	1	105		-	63 091
2005		322		224	67 283	2			312	68 143
2006		415		33	75 197	2			16	75 663
2007		392			64 008	3			30	64 433
2008		196			69 992	2				70 190
2009		269			61 391	3				61 663
2010		499			53 772	1				54 272
2011		735			50 386	2				51 123
2012		940			50 843					51 783
2013		925			57 077					58 002
2014		746			45 733	4				46 483

Table 8.2. Saithe in division Va. Commercial catch at age (millions).

	3	4	5	6	7	8	9	10	11	12	13	14
198	0.27	2.540	5.21	2.596	2.169	1.34	0.38	0.26	0.15	0.11	0.06	0.03
0	5	2.540	4	2.570	2.107	1.54	7	2	5	2	4	3
198	0.20	1.325	3.50	5.404	1.457	1.41	0.57	0.24	0.06	0.15	0.13	0.12
1	3		3			5	8	2	1	4	5	8
198	0.50	1.092	2.80	4.845	4.293	1.21	0.97	0.30	0.05	0.03	0.04	0.04
2	8		4			5	5	6	9	5	8	6
198	0.10	1.750	1.06	2.455	4.454	2.31	0.50	0.25	0.03	0.01	0.00	0.00
3	7	0.657	5	1 005	2 104	2.61	1	1 0.27	8	2	2	4
198 4	0.05 3	0.657	0.80 0	1.825	2.184	3.61 0	0.84 4	0.37 6	0.29 1	0.13 5	0.18 5	0.22 6
198	0.37	4.014	3.36	1.958	1.536	1.17	0.74	0.47	0.07	0.02	0.07	0.07
5	6	1,011	6	1,,00	1.000	2	7	9	4	3	2	1
198	3.10	1.400	4.17	2.665	1.550	1.11	0.62	1.54	0.21	0.05	0.03	0.01
6	8		0			6	8	9	6	1	0	4
198	0.95	5.135	4.42	5.409	2.915	1.34	0.66	0.49	0.49	0.05	0.02	0.04
7	6		8			8	1	6	8	8	7	8
198	1.31	5.067	6.61	3.678	2.859	1.77	0.84	0.22	0.27	0.10	0.02	0.00
100	8	4 212	9	7 200	1.704	5	5	6	0	7	4	1
198 9	0.31 5	4.313	8.47 1	7.309	1.794	1.92 8	0.84 8	0.27 0	0.19 1	0.13 5	0.07 6	0.01
199	0.14	1.692	5.47	10.11	6.174	1.81	1.08	0.38	0.15	0.05	0.07	0.03
0	3	1.072	1	2	0.174	6	7	0.50	1	5	6	7
199	0.19	0.874	3.61	6.844	10.77	3.22	0.85	0.83	0.22	0.04	0.00	0.00
1	8		3		2	3	8	8	8	0	6	5
199	0.24	2.928	3.84	4.355	3.884	4.04	1.29	0.35	0.19	0.05	0.05	0.01
2	2		4			6	0	0	6	6	4	5
199	0.65	1.083	2.84	2.252	2.247	2.31	3.67	0.83	0.22	0.18	0.08	0.01
3	7	2.055	1	2 (02	1 000	4	1	0	3	8	1	2
199 4	0.70 2	2.955	1.77 0	2.603	1.377	1.24 3	1.26 3	2.00 9	0.45 4	0.15 8	0.18 8	0.08
199	1.57	1.853	2.66	1.807	2.370	0.90	0.57	0.48	0.52	0.10	0.03	0.01
5	3	1.000	1	1.007	2.070	5	4	2	1	6	5	3
199	1.10	2.608	1.86	1.649	0.835	1.23	0.38	0.26	0.21	0.23	0.14	0.07
6	2		8			3	5	7	0	2	1	4
199	0.60	2.960	2.76	1.651	1.178	0.59	0.45	0.12	0.09	0.11	0.07	0.04
7	3		6			9	4	5	5	4	7	3
199	0.18	1.289	1.76	1.545	1.114	0.65	0.35	0.26	0.12	0.08	0.08	0.08
8	3	0.755	7	0.151	4.05:	8	1	5	0	1	5	5
199 9	0.98 9	0.732	1.56 4	2.176	1.934	0.66 9	0.32 4	0.14 0	0.07 2	0.02 5	0.02 8	0.02
200	0.85	2.383	0.89	1.511	1.612	1.80	0.33	0.17	0.05	0.03	0.01	0.00
0	0.85	2.303	6	1.011	1.012	6	0.33 5	3	0.03 7	3	7	7
200	1.22	2.619	2.18	0.591	0.977	0.94	0.81	0.18	0.09	0.02	0.02	0.01
1	3		4			3	9	6	4	8	8	3
200	1.18	4.190	3.14	2.970	0.519	0.82	0.57	0.30	0.10	0.02	0.01	0.01
2	7		7			0	0	9	1	7	5	1
200	2.28	4.363	4.03	2.472	1.942	0.28	0.43	0.28	0.19	0.02	0.02	0.01
3	4		1			5	8	9	6	8	9	5

200 4	0.95 2	7.841	7.19 5	5.363	1.563	1.05 7	0.21 1	0.22 4	0.15 7	0.07 4	0.03 9	0.01 1
200 5	2.60 7	3.089	7.33 3	6.876	3.592	0.97 8	0.64	0.11 9	0.14 9	0.08 9	0.04 6	0.01
200 6	1.38 0	10.05 1	2.61 6	5.840	4.514	1.98 9	0.66 7	0.48 5	0.11 8	0.11	0.08 6	0.03 1
200 7	1.24 4	6.552	8.75 1	2.124	2.935	1.81 7	0.96 4	0.39 5	0.19 0	0.04 3	0.03 6	0.02 0
200 8	1.43 2	3.602	5.87 4	6.706	1.155	1.89 4	1.24 8	0.80 3	0.26 2	0.17 6	0.08 7	0.04 4
200 9	2.82 0	5.166	2.08 4	2.734	2.883	0.77 7	1.10 1	0.84 7	0.55 5	0.20 3	0.13 4	0.03 6
201 0	2.14 6	6.284	3.05 8	0.997	1.644	1.57 1	0.51 4	0.65 6	0.52 2	0.23 1	0.11 4	0.06 4
201 1	2.00 4	4.850	4.00 6	1.502	0.677	1.06 5	1.14 5	0.32 3	0.43 3	0.24 4	0.15 0	0.07 5
201 2	1.18 3	4.816	3.51 4	2.417	0.903	0.43 2	0.88 3	1.01 5	0.35 4	0.27 7	0.17 3	0.09 9
201 3	1.16 3	5.538	6.36 6	2.963	1.610	0.66 4	0.37 5	0.53 7	0.46 0	0.12 4	0.11 8	0.07 8
201 4	0.66 8	3.499	4.86 7	2.805	1.276	0.72 5	0.34 7	0.24 1	0.31 2	0.19 9	0.12 8	0.07 4

Table 8.3. Saithe in division Va. Mean weight at age (g) in the catches and in the spawning stock, with predictions in gray.

1980 1428 1983 2667 3689 5409 6321 7213 8565 9147 9617 10066 11041 1981 1585 2037 2696 3525 4541 6247 6991 8202 9537 9089 9351 10225 1982 1547 2194 3015 3183 5114 6202 7256 7922 8924 10134 9447 10535 1983 1530 2221 3171 4270 4107 5984 7565 8673 8801 9039 11138 9818 1984 1653 2432 3330 4681 5466 4973 7407 8179 8701 10335 11027 10644 1986 1450 2190 2959 4402 5488 6406 7570 6487 9616 10462 11747 11902 1987 1516 1715 2670 3839 5081 6185 7330 8025<
1982 1547 2194 3015 3183 5114 6202 7256 7922 8924 10134 9447 10535 1983 1530 2221 3171 4270 4107 5984 7565 8673 8801 9039 11138 9818 1984 1653 2432 3330 4681 5466 4973 7407 8179 8770 8831 11010 11127 1985 1609 2172 3169 3922 4697 6411 6492 8346 9401 10335 11027 10644 1986 1450 2190 2959 4402 5488 6406 7570 6487 9616 10462 11747 11902 1987 1516 1715 2670 3839 5081 6185 7330 8025 7974 9615 12246 11656 1988 1261 2017 2513 3476 4719 5932 7523 8439
1983 1530 2221 3171 4270 4107 5984 7565 8673 8801 9039 11138 9818 1984 1653 2432 3330 4681 5466 4973 7407 8179 8770 8831 11010 11127 1985 1609 2172 3169 3922 4697 6411 6492 8346 9401 10335 11027 10644 1986 1450 2190 2959 4402 5488 6406 7570 6487 9616 10462 11747 11902 1987 1516 1715 2670 3839 5081 6185 7330 8025 7974 9615 12246 11656 1988 1261 2017 2513 3476 4719 5932 7523 8439 8748 9559 10824 14099 1989 1403 2021 2194 3047 4505 5889 7172 8852
1984 1653 2432 3330 4681 5466 4973 7407 8179 8770 8831 11010 11127 1985 1609 2172 3169 3922 4697 6411 6492 8346 9401 10335 11027 10644 1986 1450 2190 2959 4402 5488 6406 7570 6487 9616 10462 11747 11902 1987 1516 1715 2670 3839 5081 6185 7330 8025 7974 9615 12246 11656 1988 1261 2017 2513 3476 4719 5932 7523 8439 8748 9559 10824 14099 1989 1403 2021 2194 3047 4505 5889 7172 8852 10170 10392 12522 11923 1990 1647 1983 2566 3021 4077 5744 7038 7
1985 1609 2172 3169 3922 4697 6411 6492 8346 9401 10335 11027 10644 1986 1450 2190 2959 4402 5488 6406 7570 6487 9616 10462 11747 11902 1987 1516 1715 2670 3839 5081 6185 7330 8025 7974 9615 12246 11656 1988 1261 2017 2513 3476 4719 5932 7523 8439 8748 9559 10824 14099 1989 1403 2021 2194 3047 4505 5889 7172 8852 10170 10392 12522 11923 1990 1647 1983 2566 3021 4077 5744 7038 7564 8854 10645 11674 11431 1991 1224 1939 2432 3160 3634 4967 6629
1986 1450 2190 2959 4402 5488 6406 7570 6487 9616 10462 11747 11902 1987 1516 1715 2670 3839 5081 6185 7330 8025 7974 9615 12246 11656 1988 1261 2017 2513 3476 4719 5932 7523 8439 8748 9559 10824 14099 1989 1403 2021 2194 3047 4505 5889 7172 8852 10170 10392 12522 11923 1990 1647 1983 2566 3021 4077 5744 7038 7564 8854 10645 11674 11431 1991 1224 1939 2432 3160 3634 4967 6629 7704 9061 9117 10922 11342 1992 1269 1909 2578 3288 4150 4865 6168 7
1987 1516 1715 2670 3839 5081 6185 7330 8025 7974 9615 12246 11656 1988 1261 2017 2513 3476 4719 5932 7523 8439 8748 9559 10824 14099 1989 1403 2021 2194 3047 4505 5889 7172 8852 10170 10392 12522 11923 1990 1647 1983 2566 3021 4077 5744 7038 7564 8854 10645 11674 11431 1991 1224 1939 2432 3160 3634 4967 6629 7704 9061 9117 10922 11342 1992 1269 1909 2578 3288 4150 4865 6168 7926 8349 9029 11574 9466 1993 1381 2143 2742 3636 4398 5421 5319 700
1988 1261 2017 2513 3476 4719 5932 7523 8439 8748 9559 10824 14099 1989 1403 2021 2194 3047 4505 5889 7172 8852 10170 10392 12522 11923 1990 1647 1983 2566 3021 4077 5744 7038 7564 8854 10645 11674 11431 1991 1224 1939 2432 3160 3634 4967 6629 7704 9061 9117 10922 11342 1992 1269 1909 2578 3288 4150 4865 6168 7926 8349 9029 11574 9466 1993 1381 2143 2742 3636 4398 5421 5319 7006 8070 10048 9106 11591 1994 1444 1836 2649 3512 4906 5539 6818 637
1989 1403 2021 2194 3047 4505 5889 7172 8852 10170 10392 12522 11923 1990 1647 1983 2566 3021 4077 5744 7038 7564 8854 10645 11674 11431 1991 1224 1939 2432 3160 3634 4967 6629 7704 9061 9117 10922 11342 1992 1269 1909 2578 3288 4150 4865 6168 7926 8349 9029 11574 9466 1993 1381 2143 2742 3636 4398 5421 5319 7006 8070 10048 9106 11591 1994 1444 1836 2649 3512 4906 5539 6818 6374 8341 9770 10528 11257 1995 1370 1977 2769 3722 4621 5854 6416 735
1990 1647 1983 2566 3021 4077 5744 7038 7564 8854 10645 11674 11431 1991 1224 1939 2432 3160 3634 4967 6629 7704 9061 9117 10922 11342 1992 1269 1909 2578 3288 4150 4865 6168 7926 8349 9029 11574 9466 1993 1381 2143 2742 3636 4398 5421 5319 7006 8070 10048 9106 11591 1994 1444 1836 2649 3512 4906 5539 6818 6374 8341 9770 10528 11257 1995 1370 1977 2769 3722 4621 5854 6416 7356 6815 8312 9119 11910 1996 1229 1755 2670 3802 4902 5681 7182 7734 </td
1991 1224 1939 2432 3160 3634 4967 6629 7704 9061 9117 10922 11342 1992 1269 1909 2578 3288 4150 4865 6168 7926 8349 9029 11574 9466 1993 1381 2143 2742 3636 4398 5421 5319 7006 8070 10048 9106 11591 1994 1444 1836 2649 3512 4906 5539 6818 6374 8341 9770 10528 11257 1995 1370 1977 2769 3722 4621 5854 6416 7356 6815 8312 9119 11910 1996 1229 1755 2670 3802 4902 5681 7182 7734 9256 8322 10501 11894 1997 1325 1936 2409 3906 5032 6171 7202 7883
1992 1269 1909 2578 3288 4150 4865 6168 7926 8349 9029 11574 9466 1993 1381 2143 2742 3636 4398 5421 5319 7006 8070 10048 9106 11591 1994 1444 1836 2649 3512 4906 5539 6818 6374 8341 9770 10528 11257 1995 1370 1977 2769 3722 4621 5854 6416 7356 6815 8312 9119 11910 1996 1229 1755 2670 3802 4902 5681 7182 7734 9256 8322 10501 11894 1997 1325 1936 2409 3906 5032 6171 7202 7883 8856 9649 9621 10877 1998 1347 1972 2943 3419 4850 5962 6933 7781
1993 1381 2143 2742 3636 4398 5421 5319 7006 8070 10048 9106 11591 1994 1444 1836 2649 3512 4906 5539 6818 6374 8341 9770 10528 11257 1995 1370 1977 2769 3722 4621 5854 6416 7356 6815 8312 9119 11910 1996 1229 1755 2670 3802 4902 5681 7182 7734 9256 8322 10501 11894 1997 1325 1936 2409 3906 5032 6171 7202 7883 8856 9649 9621 10877 1998 1347 1972 2943 3419 4850 5962 6933 7781 8695 9564 10164 10379 1999 1279 2106 2752 3497 3831 5819 7072 8078
1994 1444 1836 2649 3512 4906 5539 6818 6374 8341 9770 10528 11257 1995 1370 1977 2769 3722 4621 5854 6416 7356 6815 8312 9119 11910 1996 1229 1755 2670 3802 4902 5681 7182 7734 9256 8322 10501 11894 1997 1325 1936 2409 3906 5032 6171 7202 7883 8856 9649 9621 10877 1998 1347 1972 2943 3419 4850 5962 6933 7781 8695 9564 10164 10379 1999 1279 2106 2752 3497 3831 5819 7072 8078 8865 10550 10823 11300 2001 1280 1882 2599 3697 4420 5538 5639 7985 </td
1995 1370 1977 2769 3722 4621 5854 6416 7356 6815 8312 9119 11910 1996 1229 1755 2670 3802 4902 5681 7182 7734 9256 8322 10501 11894 1997 1325 1936 2409 3906 5032 6171 7202 7883 8856 9649 9621 10877 1998 1347 1972 2943 3419 4850 5962 6933 7781 8695 9564 10164 10379 1999 1279 2106 2752 3497 3831 5819 7072 8078 8865 10550 10823 11300 2000 1367 1929 2751 3274 4171 4447 6790 8216 9369 9817 10932 12204 2001 1280 1882 2599 3697 4420 5538 5639 7985 </td
1996 1229 1755 2670 3802 4902 5681 7182 7734 9256 8322 10501 11894 1997 1325 1936 2409 3906 5032 6171 7202 7883 8856 9649 9621 10877 1998 1347 1972 2943 3419 4850 5962 6933 7781 8695 9564 10164 10379 1999 1279 2106 2752 3497 3831 5819 7072 8078 8865 10550 10823 11300 2000 1367 1929 2751 3274 4171 4447 6790 8216 9369 9817 10932 12204 2001 1280 1882 2599 3697 4420 5538 5639 7985 9059 9942 10632 10988 2002 1308 1946 2569 3266 4872 5365 6830 7067<
1997 1325 1936 2409 3906 5032 6171 7202 7883 8856 9649 9621 10877 1998 1347 1972 2943 3419 4850 5962 6933 7781 8695 9564 10164 10379 1999 1279 2106 2752 3497 3831 5819 7072 8078 8865 10550 10823 11300 2000 1367 1929 2751 3274 4171 4447 6790 8216 9369 9817 10932 12204 2001 1280 1882 2599 3697 4420 5538 5639 7985 9059 9942 10632 10988 2002 1308 1946 2569 3266 4872 5365 6830 7067 9240 9659 10088 11632 2003 1310 1908 2545 3336 4069 5792 7156 8131<
1998 1347 1972 2943 3419 4850 5962 6933 7781 8695 9564 10164 10379 1999 1279 2106 2752 3497 3831 5819 7072 8078 8865 10550 10823 11300 2000 1367 1929 2751 3274 4171 4447 6790 8216 9369 9817 10932 12204 2001 1280 1882 2599 3697 4420 5538 5639 7985 9059 9942 10632 10988 2002 1308 1946 2569 3266 4872 5365 6830 7067 9240 9659 10088 11632 2003 1310 1908 2545 3336 4069 5792 7156 8131 8051 10186 10948 11780 2004 1467 1847 2181 2918 4017 5135 7125 773
1999 1279 2106 2752 3497 3831 5819 7072 8078 8865 10550 10823 11300 2000 1367 1929 2751 3274 4171 4447 6790 8216 9369 9817 10932 12204 2001 1280 1882 2599 3697 4420 5538 5639 7985 9059 9942 10632 10988 2002 1308 1946 2569 3266 4872 5365 6830 7067 9240 9659 10088 11632 2003 1310 1908 2545 3336 4069 5792 7156 8131 8051 10186 10948 11780 2004 1467 1847 2181 2918 4017 5135 7125 7732 8420 8927 10420 10622 2005 1287 1888 2307 2619 3516 5080 6060 805
2000 1367 1929 2751 3274 4171 4447 6790 8216 9369 9817 10932 12204 2001 1280 1882 2599 3697 4420 5538 5639 7985 9059 9942 10632 10988 2002 1308 1946 2569 3266 4872 5365 6830 7067 9240 9659 10088 11632 2003 1310 1908 2545 3336 4069 5792 7156 8131 8051 10186 10948 11780 2004 1467 1847 2181 2918 4017 5135 7125 7732 8420 8927 10420 10622 2005 1287 1888 2307 2619 3516 5080 6060 8052 8292 8342 8567 10256 2006 1164 1722 2369 2808 3235 4361 6007 7166<
2001 1280 1882 2599 3697 4420 5538 5639 7985 9059 9942 10632 10988 2002 1308 1946 2569 3266 4872 5365 6830 7067 9240 9659 10088 11632 2003 1310 1908 2545 3336 4069 5792 7156 8131 8051 10186 10948 11780 2004 1467 1847 2181 2918 4017 5135 7125 7732 8420 8927 10420 10622 2005 1287 1888 2307 2619 3516 5080 6060 8052 8292 8342 8567 10256 2006 1164 1722 2369 2808 3235 4361 6007 7166 8459 9324 9902 9636
2002 1308 1946 2569 3266 4872 5365 6830 7067 9240 9659 10088 11632 2003 1310 1908 2545 3336 4069 5792 7156 8131 8051 10186 10948 11780 2004 1467 1847 2181 2918 4017 5135 7125 7732 8420 8927 10420 10622 2005 1287 1888 2307 2619 3516 5080 6060 8052 8292 8342 8567 10256 2006 1164 1722 2369 2808 3235 4361 6007 7166 8459 9324 9902 9636
2003 1310 1908 2545 3336 4069 5792 7156 8131 8051 10186 10948 11780 2004 1467 1847 2181 2918 4017 5135 7125 7732 8420 8927 10420 10622 2005 1287 1888 2307 2619 3516 5080 6060 8052 8292 8342 8567 10256 2006 1164 1722 2369 2808 3235 4361 6007 7166 8459 9324 9902 9636
2004 1467 1847 2181 2918 4017 5135 7125 7732 8420 8927 10420 10622 2005 1287 1888 2307 2619 3516 5080 6060 8052 8292 8342 8567 10256 2006 1164 1722 2369 2808 3235 4361 6007 7166 8459 9324 9902 9636
2005 1287 1888 2307 2619 3516 5080 6060 8052 8292 8342 8567 10256 2006 1164 1722 2369 2808 3235 4361 6007 7166 8459 9324 9902 9636
2006 1164 1722 2369 2808 3235 4361 6007 7166 8459 9324 9902 9636
<u>2007 1140 1578 2122 2719 3495 4114 5402 6995 7792 9331 9970 10738</u>
<u>2008 1306 1805 2295 2749 3515 4530 5132 6394 7694 9170 9594 11258</u>
<u>2009 1412 1862 2561 3023 3676 4596 5651 6074 7356 8608 9812 10639</u>
<u>2010</u> 1287 1787 2579 3469 4135 4850 5558 6289 6750 7997 9429 10481
2011 1175 1801 2526 3680 4613 5367 5685 6466 6851 7039 8268 8958
2012 1160 1668 2369 3347 4430 5486 6161 6448 7220 8054 8147 8901
2013 1056 1675 2219 3244 4529 5628 6397 7055 7378 7955 8400 8870
2014 1211 1575 2229 2983 4378 5598 6773 8023 7875 8646 9179 9749
2015 1142 1726 2217 3071 4030 5532 6846 7175 7491 8218 8575 9173
2016 1142 1726 2217 3071 4030 5532 6846 7175 7491 8218 8575 9173
2017 1142 1726 2217 3071 4030 5532 6846 7175 7491 8218 8575 9173

Table 8.4. Saithe in division Va. Maturity at age used for calculating the SSB.

	3	4	5	6	7	8	9	10	11	12	13	14
1985	0	0.089	0.197	0.380	0.604	0.792	0.905	1	1	1	1	1
1986	0	0.080	0.178	0.351	0.575	0.772	0.894	1	1	1	1	1
1987	0	0.072	0.162	0.325	0.547	0.751	0.883	1	1	1	1	1
1988	0	0.065	0.148	0.303	0.521	0.731	0.871	1	1	1	1	1
1989	0	0.060	0.138	0.285	0.499	0.714	0.862	1	1	1	1	1
1990	0	0.057	0.131	0.273	0.484	0.701	0.854	1	1	1	1	1
1991	0	0.055	0.127	0.266	0.475	0.694	0.850	1	1	1	1	1
1992	0	0.055	0.127	0.266	0.476	0.694	0.850	1	1	1	1	1
1993	0	0.057	0.131	0.274	0.485	0.702	0.855	1	1	1	1	1
1994	0	0.062	0.141	0.290	0.505	0.718	0.864	1	1	1	1	1
1995	0	0.069	0.157	0.317	0.537	0.743	0.879	1	1	1	1	1
1996	0	0.081	0.181	0.355	0.579	0.775	0.896	1	1	1	1	1
1997	0	0.097	0.212	0.402	0.627	0.807	0.913	1	1	1	1	1
1998	0	0.117	0.248	0.451	0.673	0.837	0.928	1	1	1	1	1
1999	0	0.137	0.284	0.497	0.712	0.860	0.939	1	1	1	1	1
2000	0	0.154	0.313	0.532	0.740	0.877	0.947	1	1	1	1	1
2001	0	0.165	0.331	0.552	0.755	0.885	0.951	1	1	1	1	1
2002	0	0.169	0.337	0.560	0.760	0.888	0.952	1	1	1	1	1
2003	0	0.168	0.335	0.557	0.759	0.887	0.952	1	1	1	1	1
2004	0	0.163	0.328	0.549	0.753	0.884	0.950	1	1	1	1	1
2005	0	0.157	0.318	0.538	0.744	0.879	0.948	1	1	1	1	1
2006	0	0.152	0.309	0.527	0.736	0.874	0.946	1	1	1	1	1
2007	0	0.146	0.300	0.517	0.728	0.870	0.943	1	1	1	1	1
2008	0	0.141	0.291	0.506	0.719	0.865	0.941	1	1	1	1	1
2009	0	0.136	0.282	0.495	0.710	0.859	0.939	1	1	1	1	1
2010	0	0.130	0.272	0.483	0.700	0.853	0.936	1	1	1	1	1
2011	0	0.124	0.261	0.469	0.688	0.847	0.932	1	1	1	1	1
2012	0	0.118	0.250	0.455	0.676	0.839	0.929	1	1	1	1	1
2013	0	0.112	0.239	0.440	0.662	0.830	0.924	1	1	1	1	1
2014	0	0.106	0.228	0.424	0.648	0.821	0.920	1	1	1	1	1
2015	0	0.100	0.217	0.409	0.633	0.812	0.915	1	1	1	1	1
2016	0	0.100	0.217	0.409	0.633	0.812	0.915	1	1	1	1	1
2017	0	0.100	0.217	0.409	0.633	0.812	0.915	1	1	1	1	1

Table 8.5. Saithe in division Va. Survey catch at age.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
198	0.0	0.6	0.58	2.99	5.1	1.74	1.0	0.5	1.3	0.1	0.0	0.0	0.0	0.0
5	5	1			1		6	0	7	6	8	8	7	7
198	0.0	2.3	2.40	2.06	2.0	1.42	0.6	0.2	0.1	0.3	0.0	0.0	0.0	0.0
6	2	3	11 5	12.0	9	2.05	2	8	9	2	9	7	3	0
198 7	0.1	0.3 9	11.5 2	12.9 3	6.4 2	3.95	3.0 7	0.7 9	0.3 6	0.2 6	0.3 3	0.0 5	0.0 1	0.0 3
198	0.6	0.3	0.49	2.72	2.8	1.71	0.9	0.4	0.0	0.0	0.1	0.0	0.0	0.0
8	9	1			1		5	0	7	8	0	5	1	0
198	0.2	1.4	3.96	5.05	6.5	2.49	1.7	0.9	0.4	0.0	0.0	0.0	0.0	0.0
9	0	3	1.60	1.06	7	10.0	7	1	0	0	2	0	3	0
199 0	0.0 1	0.3 5	1.69	4.86	6.3 7	12.3 3	3.3 0	1.2 1	0.6 4	0.1 2	0.0 6	0.0 2	0.0 1	0.0 3
199	0.0	0.2	1.40	1.72	2.2	1.13	2.5	0.3	0.0	0.0	0.0	0.0	0.0	0.0
1	1	2			2		0	0	2	3	0	1	0	1
199	0.0	0.1	0.91	5.73	5.5	2.79	2.6	1.9	0.2	0.0	0.0	0.0	0.0	0.0
2	1	5			2		8	1	8	6	6	2	0	0
199 3	0.0	1.2 7	11.0 4	2.00	6.8 0	2.41	2.2 5	1.0 2	4.0 2	0.6 4	0.0 5	0.0	0.0 2	0.0
199	0.0	0.8	0.73	1.89	1.7	1.95	0.5	0.8	1.0	3.6	0.4	0.1	0.0	0.0
4	4	2	0.70	1.03	4	2.50	3	4	0	2	1	8	0	4
199	0.0	0.4	1.98	1.12	0.5	0.28	0.3	0.1	0.1	0.1	0.3	0.0	0.0	0.0
5	6	8			1		4	0	5	5	3	2	0	0
199 6	0.0	0.1	0.51	3.76	1.1 2	0.99	0.5 8	1.0 0	0.0 5	0.0 9	0.1	0.2 5	0.0	0.0
199	0.1	0.3	0.90	4.72	3.9	0.94	0.4	0.1	0.1	0.0	0.0	0.0	0.0	0.0
7	6	2	0.70	4.72	6	0.74	0.4	6	0.1	5	2	2	2	0.0
199	0.0	0.1	1.64	2.33	2.5	1.23	0.7	0.3	0.0	0.0	0.0	0.0	0.0	0.0
8	1	1			3		1	1	8	7	4	3	5	3
199 9	0.5 7	0.7 5	3.71	0.93	1.2 5	1.64	0.5 7	0.1 7	0.0 2	0.0 2	0.0 2	0.0	0.0	0.0 2
200	0.0	0.3	2.02	2.54	0.6	0.84	0.5	0.4	0.0	0.0	0.0	0.0	0.0	0.0
0	0	8		2.01	1	0.01	3	7	7	3	1	0	1	1
200	0.0	0.8	1.90	2.64	1.6	0.20	0.2	0.4	0.1	0.0	0.0	0.0	0.0	0.0
	0	9			0		3	0	3	7	4	1	0	0
200 2	0.0 2	1.0 5	2.23	2.97	3.0 8	2.15	0.4 2	0.4 9	0.3 2	0.2 2	0.0	0.0 3	0.0	0.0
200	0.0	0.0	9.62	5.06	2.9	1.34	0.7	0.2	0.0	0.1	0.0	0.0	0.0	0.0
3	1	5	7.0∠	5.00	4	1.04	7	1	5	0.1	2	3	0.0	0.0
200	0.0	0.9	1.38	9.39	6.0	4.35	1.4	0.8	0.1	0.1	0.1	0.0	0.0	0.0
4	1	1			4		8	1	7	6	2	6	2	0
200	0.0	0.2	4.32	2.39	7.4	4.66	2.3	0.8	0.4	0.1	0.0	0.0	0.0	0.0
5	0	6	0.10	(()	2	0.01	1	6	4	2	5	8	3	0
200 6	0.0 1	0.0	2.18	6.69	1.9 8	8.91	3.5 2	1.2 1	0.2 9	0.2 5	0.0	0.0 4	0.0 4	0.0
200	0.0	0.0	0.31	1.73	3.2	0.81	1.6	0.7	0.2	0.1	0.1	0.0	0.0	0.0
7	0	6			2		2	0	9	6	1	8	2	0
200	0.0	0.0	2.25	1.79	2.8	4.01	0.6	0.7	0.3	0.1	0.0	0.1	0.0	0.0
8	1	8			5		1	8	4	5	9	3	4	2

200 9	0.0 1	0.2 1	2.43	1.80	0.6 8	0.91	0.8 4	0.1 2	0.2 6	0.1 5	0.0 3	0.0 4	0.0	0.0 2
201 0	0.0	0.0 7	1.23	4.99	2.4 9	0.63	0.6 0	0.4 8	0.0 7	0.1 3	0.0 7	0.0 7	0.0 7	0.0
201 1	0.0 0	0.1 5	3.83	4.20	3.0 6	1.15	0.4 1	0.3 9	0.4 4	0.1 7	0.1 0	0.0 9	0.0 6	0.0 5
201 2	0.0 2	0.0 2	1.75	12.0 4	6.8 6	2.75	0.6 2	0.1 7	0.3 8	0.5 0	0.1 3	0.1 2	0.0 6	0.0
201 3	0.0 1	0.1 2	4.27	7.43	6.7 8	4.65	2.5 7	1.1 2	0.3 0	0.4 4	0.3 6	0.2 6	0.1 3	0.0
201 4	0.0 1	0.0 3	0.39	3.84	3.7 8	2.04	0.8 6	0.4 2	0.1 5	0.1 1	0.1 8	0.1 8	0.0 7	0.0 9
201 5	0.0 6	0.0 4	1.07	1.90	3.1 6	1.72	0.8 1	0.7 2	0.6 8	0.4 5	0.2 6	0.2 3	0.2 1	0.1 5

Table 8.6. Saithe in division Va. Commercial catch-at-age residuals log(obs/fit).

	3	4	5	6	7	8	9	10	11	12	13	14
1980	-0.79	-0.60	0.25	0.16	-0.08	0.22	-0.05	0.22	-0.30	-0.41	-0.70	-0.04
1981	-0.51	-0.26	-0.56	0.36	-0.16	0.06	0.12	0.28	-0.85	0.93	1.19	1.88
1982	0.84	-0.25	0.13	-0.37	0.24	-0.03	0.37	-0.36	-1.20	-1.15	-0.53	-0.10
1983	-2.48	0.94	-0.67	0.11	0.46	0.20	-0.01	-0.80	-2.43	-2.79	-5.17	-3.83
1984	-4.23	-1.61	-1.29	0.22	0.47	0.79	-0.45	0.43	0.96	1.03	3.47	4.90
1985	-0.28	1.23	0.58	0.08	0.27	-0.19	-1.16	-0.75	-1.41	-3.07	0.65	2.46
1986	2.28	-0.72	0.24	-0.32	-0.09	0.10	-0.41	0.93	-1.09	-1.39	-1.83	-1.75
1987	-0.99	0.16	0.32	0.22	0.09	0.07	0.06	-0.18	-0.08	-2.91	-1.91	-0.24
1988	0.92	-0.31	0.06	0.04	-0.14	0.20	0.79	-0.66	0.48	-1.69	-3.27	-6.88
1989	-0.84	0.61	0.01	0.23	-0.58	0.04	0.27	-0.18	0.71	0.37	-1.13	-3.73
1990	-1.78	-0.54	0.07	0.01	0.34	0.06	0.11	-0.37	0.07	-0.78	0.16	-1.61
1991	-1.96	-1.11	0.06	0.33	0.03	-0.08	0.01	0.72	0.23	-1.38	-3.92	-3.95
1992	-0.22	0.58	1.05	0.43	0.06	-0.83	-0.25	-0.40	-0.28	-1.17	0.48	-0.88
1993	0.98	-0.16	-0.33	-0.14	-0.20	-0.08	0.40	0.04	0.33	0.75	0.65	-1.28
1994	1.09	0.98	-0.12	-0.69	-0.43	-0.46	0.20	0.41	0.51	0.80	1.87	1.79
1995	1.59	0.28	0.10	-0.02	0.04	-0.08	-0.20	-0.19	-0.26	-0.87	-0.68	-1.83
1996	1.45	0.17	-0.12	-0.51	-0.34	0.19	0.27	0.03	0.39	-0.15	1.33	2.41
1997	0.25	0.33	-0.30	0.08	-0.03	0.29	-0.10	-0.40	-0.30	0.37	-1.12	0.20
1998	-0.36	-0.07	-0.47	-0.76	0.18	0.00	0.84	0.70	1.24	1.15	1.57	0.84
1999	0.38	0.03	0.00	0.08	0.00	-0.20	-0.35	0.33	-0.65	-0.57	0.31	0.17
2000	-0.07	-0.20	0.11	0.07	-0.16	0.48	-0.49	-0.27	-0.22	-0.93	-0.09	-1.12
2001	-0.09	0.23	-0.27	-0.14	-0.03	-0.18	0.39	0.06	0.13	0.04	0.37	1.00
2002	-0.62	-0.08	0.18	0.36	-0.17	0.12	-0.26	-0.35	-0.09	-1.20	-0.10	-0.36
2003	0.40	-0.28	0.42	-0.02	-0.02	-0.61	0.04	-0.20	0.04	-1.24	0.24	1.21
2004	-0.16	-0.39	-0.11	0.27	-0.10	0.28	0.61	0.41	-0.05	-0.47	0.75	-0.26
2005	-0.39	-0.32	-0.31	0.44	0.34	-0.23	-0.13	-0.01	0.31	-0.07	-0.31	-0.43
2006	-0.69	-0.16	-0.35	-0.03	0.56	0.07	-0.33	-0.10	0.76	0.95	1.05	0.12
2007	0.79	0.22	0.14	0.25	-0.13	-0.04	-0.40	-0.48	-0.82	0.30	0.25	-0.26
2008	0.11	0.36	0.18	0.23	-0.11	-0.23	-0.24	-0.30	-0.60	0.10	2.71	1.70
2009	0.75	0.49	-0.11	-0.27	-0.16	0.29	-0.34	-0.12	0.10	0.42	1.08	2.54
2010	0.46	0.28	0.11	-0.46	0.03	-0.12	0.47	-0.43	0.07	-0.06	0.84	1.18
2011	0.14	-0.06	-0.05	-0.30	-0.04	0.29	0.14	0.36	-0.24	-0.01	0.48	1.41
2012	-0.57	-0.37	-0.27	-0.20	-0.24	0.06	0.66	0.55	1.38	0.12	0.55	0.91
2013	-0.50	-0.04	0.33	-0.02	-0.19	-0.11	0.28	0.12	-0.36	0.35	-0.53	0.01
2014	0.16	-0.20	0.50	-0.04	-0.22	-0.37	-0.24	0.45	0.28	-0.38	1.99	0.16

Table 8.7. Saithe in division Va. Survey catch-at-age residuals log(obs/fit).

	2	3	4	5	6	7	8	9	10
1985	-0.43	-1.53	-0.46	0.55	0.20	0.36	-0.17	0.83	-1.01
1986	0.78	-0.61	-0.69	-0.80	-0.50	-0.35	-0.47	-0.68	-0.39
1987	-0.62	0.87	0.73	0.74	0.44	1.13	0.74	0.53	0.25
1988	-0.35	-2.15	-1.48	-0.96	-0.29	-0.46	-0.39	-1.31	-0.59
1989	1.95	0.86	-0.05	-0.34	-0.60	0.50	0.33	0.35	-5.74
1990	-0.12	0.36	0.45	0.33	0.91	0.48	0.88	0.65	-0.47
1991	0.15	-0.28	-0.27	-0.36	-1.18	-0.62	-1.45	-3.10	-2.26
1992	-0.64	0.03	0.74	1.23	0.46	0.66	-0.02	-0.70	-1.15
1993	2.00	2.63	0.31	1.07	0.80	1.02	0.44	1.69	0.97
1994	0.88	-0.44	-0.09	0.29	0.18	-0.12	0.84	1.31	2.32
1995	0.43	0.12	-0.56	-1.48	-1.24	-0.96	-1.03	-0.21	-0.09
1996	-0.62	-1.29	0.24	-0.41	-0.09	0.52	1.34	-0.87	0.00
1997	1.22	-0.13	0.70	0.44	-0.07	-0.32	-0.04	-0.47	-0.15
1998	-1.50	1.36	0.36	0.11	-0.41	0.34	0.23	-0.06	-0.18
1999	0.72	0.85	0.06	-0.24	0.09	-0.64	-0.57	-2.24	-1.04
2000	-0.72	0.10	-0.23	-0.30	-0.21	-0.55	-0.07	-0.87	-1.14
2001	0.10	-0.62	-0.22	-0.64	-1.11	-1.04	-0.08	-0.84	-0.22
2002	0.13	-0.61	-0.72	0.08	0.18	0.42	0.60	0.34	0.36
2003	-2.22	0.95	-0.28	-0.61	-0.41	-0.34	0.38	-1.36	-0.40
2004	-0.05	-0.12	0.31	0.07	0.34	0.37	0.45	0.80	0.59
2005	-0.87	0.00	-0.06	0.26	0.33	0.29	0.40	0.25	0.83
2006	-6.50	-0.16	-0.07	-0.03	1.07	0.72	0.23	-0.33	0.06
2007	-2.08	-1.51	-1.01	-0.67	-0.48	-0.20	-0.47	-0.90	-0.54
2008	-2.23	0.39	-0.03	-0.17	0.19	-0.09	-0.36	-0.77	-1.19
2009	-1.10	0.00	-0.45	-0.90	-0.89	-0.90	-1.27	-1.08	-1.22
2010	-2.62	-0.81	0.25	0.18	-0.39	-0.66	-0.85	-1.35	-1.41
2011	-1.60	0.30	0.04	-0.10	-0.17	-0.21	-0.50	-0.45	0.12
2012	-3.77	-0.50	1.04	0.82	0.31	-0.24	-0.60	-0.05	0.11
2013	-0.95	0.71	0.60	0.56	0.88	0.87	1.09	0.54	0.52
2014	-2.84	-1.35	-0.03	0.00	-0.32	-0.45	-0.62	-0.80	-0.24
2015	-2.74	-0.45	-0.10	-0.09	-0.43	-0.80	-0.06	0.38	0.85

Table 8.8. Saithe in division Va. Main population estimates. The recruitment column is aligned so that the 2000 cohort is shown in the year 2000, but that cohort size is the estimated N at age 3 in 2003.

	B4+	SSB	Cohort	Υ	F4-9	HR
1980	312	122	32	58	0.29	19%
1981	304	130	42	59	0.26	19%
1982	294	148	35	69	0.30	23%
1983	270	147	67	58	0.24	22%
1984	287	149	91	63	0.23	22%
1985	299	139	50	57	0.25	19%
1986	318	137	32	65	0.28	20%
1987	335	128	21	81	0.35	24%
1988	415	125	29	77	0.32	19%
1989	397	127	15	82	0.31	21%
1990	377	134	20	98	0.35	26%
1991	336	143	18	102	0.37	30%
1992	288	135	30	80	0.37	28%
1993	230	112	25	72	0.40	31%
1994	187	93	17	64	0.45	34%
1995	152	70	9	49	0.46	32%
1996	148	61	30	40	0.41	27%
1997	155	62	31	37	0.37	24%
1998	153	68	53	32	0.30	21%
1999	131	72	63	31	0.31	24%
2000	141	74	72	33	0.33	23%
2001	161	80	26	32	0.28	20%
2002	217	96	72	42	0.31	19%
2003	276	118	42	52	0.30	19%
2004	316	137	19	65	0.26	20%
2005	282	147	27	69	0.29	25%
2006	307	156	41	76	0.31	25%
2007	278	152	41	64	0.28	23%
2008	248	149	50	70	0.32	28%
2009	224	137	45	61	0.30	27%
2010	227	127	39	54	0.27	24%
2011	239	122	21	51	0.24	21%
2012	253	122	26	52	0.23	20%
2013	268	128	32	58	0.25	22%
2014	265	132	33	46	0.19	18%
2015	255	139	33	57	0.26	22%

Table 8.9. Saithe in division Va. Stock in numbers.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1980	32.2	24.6	28.2	46.8	30.9	10.3	8.1	3.7	1.3	0.7	0.7	0.5	0.3	0.1
1981	47.9	26.4	20.2	22.7	35.2	21.2	6.3	4.6	2.0	0.7	0.4	0.4	0.3	0.2
1982	62.4	39.3	21.6	16.3	17.2	24.6	13.3	3.7	2.6	1.1	0.4	0.2	0.2	0.2
1983	52.8	51.1	32.1	17.4	12.2	11.8	14.8	7.5	1.9	1.4	0.6	0.2	0.1	0.1
1984	99.7	43.2	41.8	26.0	13.3	8.6	7.5	9.0	4.3	1.1	0.8	0.4	0.1	0.1
1985	136.4	81.6	35.4	33.8	19.9	9.4	5.6	4.6	5.2	2.5	0.7	0.5	0.2	0.1
1986	75.3	111.7	66.8	28.6	25.8	14.0	6.0	3.4	2.6	3.0	1.4	0.4	0.3	0.1
1987	47.6	61.7	91.4	53.9	21.6	17.8	8.7	3.5	1.8	1.5	1.6	0.8	0.2	0.2
1988	31.0	39.0	50.5	73.4	39.8	14.3	10.2	4.6	1.7	0.9	0.7	0.9	0.4	0.1
1989	44.0	25.4	31.9	40.6	54.7	26.8	8.5	5.6	2.3	0.9	0.5	0.4	0.5	0.2
1990	22.1	36.0	20.8	25.7	30.4	37.2	16.2	4.7	2.9	1.2	0.5	0.3	0.2	0.3
1991	29.5	18.1	29.5	16.7	19.0	20.2	31.4	8.6	2.3	1.5	0.6	0.2	0.1	0.1
1992	26.3	24.2	14.8	23.6	12.3	12.4	11.3	16.2	4.0	1.1	0.7	0.3	0.1	0.1
1993	44.3	21.5	19.8	11.9	17.4	8.0	7.0	5.9	7.7	2.0	0.5	0.4	0.2	0.1
1994	38.0	36.3	17.6	15.9	8.7	11.2	4.4	3.5	2.7	3.6	0.9	0.3	0.2	0.1
1995	25.0	31.1	29.7	14.1	11.4	5.4	5.8	2.1	1.5	1.2	1.5	0.4	0.1	0.1
1996	12.8	20.5	25.5	23.7	10.1	7.0	2.8	2.7	0.8	0.6	0.5	0.7	0.2	0.1
1997	44.9	10.5	16.8	20.4	17.3	6.5	3.8	1.4	1.2	0.4	0.3	0.2	0.4	0.1
1998	46.2	36.8	8.6	13.3	14.5	11.2	3.9	2.1	0.7	0.6	0.2	0.1	0.1	0.2
1999	79.7	37.8	30.1	6.8	9.6	9.8	7.1	2.3	1.1	0.3	0.3	0.1	0.1	0.1
2000	93.4	65.2	31.0	23.9	5.0	6.5	6.1	4.1	1.2	0.6	0.2	0.1	0.0	0.0
2001	106.8	76.5	53.4	24.6	17.2	3.3	4.0	3.5	2.1	0.6	0.3	0.1	0.1	0.0
2002	38.1	87.5	62.6	42.6	18.0	11.8	2.1	2.4	1.9	1.1	0.3	0.1	0.0	0.0
2003	107.7	31.2	71.6	49.8	30.9	12.2	7.4	1.2	1.3	1.0	0.6	0.2	0.1	0.0
2004	62.2	88.2	25.5	57.0	36.2	20.9	7.7	4.3	0.7	0.6	0.5	0.3	0.1	0.0
2005	28.1	50.9	72.2	19.9	38.0	22.8	13.0	4.8	2.7	0.4	0.4	0.3	0.2	0.0
2006	40.4	23.0	41.7	56.2	13.0	23.3	13.8	7.9	3.0	1.6	0.2	0.2	0.1	0.1
2007	61.0	33.1	18.8	32.4	36.2	7.9	13.8	8.2	4.8	1.7	0.9	0.1	0.1	0.1
2008	61.1	50.0	27.1	14.7	21.2	22.3	4.8	8.5	5.1	2.8	0.9	0.4	0.1	0.0
2009	74.2	50.0	40.9	21.0	9.3	12.6	13.0	2.8	5.0	2.9	1.5	0.5	0.2	0.0
2010	66.6	60.8	41.0	31.8	13.6	5.6	7.5	7.8	1.7	2.9	1.6	0.7	0.2	0.1
2011	58.4	54.5	49.7	32.0	21.1	8.5	3.5	4.7	4.9	1.0	1.6	0.8	0.4	0.1
2012	30.6	47.8	44.6	39.0	21.7	13.6	5.4	2.2	3.0	3.0	0.6	0.9	0.5	0.2
2013	39.3	25.1	39.2	35.1	26.7	14.1	8.7	3.5	1.4	1.9	1.8	0.3	0.5	0.3
2014	47.6	32.1	20.5	30.7	23.6	17.0	8.9	5.5	2.2	0.9	1.1	1.0	0.2	0.3
2015	48.8	39.0	26.3	16.2	21.6	16.0	11.4	6.0	3.7	1.5	0.6	0.7	0.6	0.1

Table 8.10. Saithe in division Va. Fishing mortality rate.

	3	4	5	6	7	8	9	10	11	12	13	14
1980	0.02	0.09	0.18	0.30	0.36	0.44	0.41	0.44	0.36	0.36	0.36	0.36
1981	0.01	0.08	0.16	0.26	0.32	0.39	0.36	0.39	0.32	0.32	0.32	0.32
1982	0.02	0.09	0.18	0.30	0.37	0.45	0.42	0.45	0.37	0.37	0.37	0.37
1983	0.01	0.07	0.15	0.24	0.30	0.36	0.34	0.36	0.30	0.30	0.30	0.30
1984	0.01	0.07	0.14	0.23	0.29	0.34	0.32	0.34	0.28	0.28	0.28	0.28
1985	0.01	0.07	0.15	0.25	0.30	0.37	0.34	0.37	0.30	0.30	0.30	0.30
1986	0.02	0.08	0.17	0.28	0.35	0.42	0.39	0.42	0.34	0.34	0.34	0.34
1987	0.02	0.10	0.21	0.35	0.43	0.52	0.49	0.52	0.43	0.43	0.43	0.43
1988	0.02	0.09	0.19	0.32	0.40	0.48	0.45	0.48	0.39	0.39	0.39	0.39
1989	0.02	0.09	0.19	0.31	0.38	0.46	0.43	0.46	0.37	0.37	0.37	0.37
1990	0.02	0.10	0.21	0.35	0.43	0.52	0.48	0.52	0.43	0.43	0.43	0.43
1991	0.02	0.11	0.23	0.38	0.46	0.56	0.52	0.56	0.46	0.46	0.46	0.46
1992	0.02	0.11	0.22	0.37	0.45	0.55	0.51	0.55	0.45	0.45	0.45	0.45
1993	0.02	0.12	0.24	0.40	0.49	0.59	0.55	0.59	0.49	0.49	0.49	0.49
1994	0.03	0.13	0.27	0.45	0.56	0.67	0.63	0.67	0.55	0.55	0.55	0.55
1995	0.03	0.13	0.28	0.46	0.57	0.69	0.64	0.69	0.56	0.56	0.56	0.56
1996	0.02	0.12	0.25	0.41	0.50	0.60	0.56	0.60	0.49	0.49	0.49	0.49
1997	0.04	0.14	0.23	0.31	0.42	0.53	0.57	0.55	0.56	0.56	0.56	0.56
1998	0.03	0.12	0.19	0.26	0.34	0.43	0.46	0.45	0.46	0.46	0.46	0.46
1999	0.03	0.12	0.20	0.27	0.36	0.45	0.49	0.47	0.48	0.48	0.48	0.48
2000	0.03	0.13	0.21	0.28	0.38	0.47	0.51	0.50	0.51	0.51	0.51	0.51
2001	0.03	0.11	0.18	0.24	0.32	0.40	0.43	0.42	0.43	0.43	0.43	0.43
2002	0.03	0.12	0.19	0.26	0.35	0.44	0.47	0.46	0.47	0.47	0.47	0.47
2003	0.03	0.12	0.19	0.26	0.34	0.43	0.47	0.45	0.46	0.46	0.46	0.46
2004	0.05	0.21	0.26	0.28	0.27	0.26	0.30	0.37	0.43	0.43	0.43	0.43
2005	0.05	0.22	0.29	0.31	0.29	0.29	0.32	0.40	0.47	0.47	0.47	0.47
2006	0.05	0.24	0.31	0.33	0.31	0.31	0.35	0.43	0.51	0.51	0.51	0.51
2007	0.05	0.22	0.28	0.30	0.29	0.28	0.32	0.39	0.46	0.46	0.46	0.46
2008	0.06	0.25	0.32	0.34	0.33	0.33	0.37	0.45	0.53	0.53	0.53	0.53
2009	0.05	0.24	0.30	0.32	0.31	0.30	0.34	0.42	0.50	0.50	0.50	0.50
2010	0.05	0.21	0.27	0.28	0.27	0.27	0.30	0.37	0.44	0.44	0.44	0.44
2011	0.04	0.19	0.24	0.26	0.25	0.24	0.27	0.34	0.40	0.40	0.40	0.40
2012	0.04	0.18	0.23	0.25	0.23	0.23	0.26	0.32	0.38	0.38	0.38	0.38
2013	0.04	0.20	0.25	0.27	0.25	0.25	0.28	0.35	0.41	0.41	0.41	0.41
2014	0.03	0.15	0.19	0.20	0.20	0.19	0.22	0.27	0.32	0.32	0.32	0.32
2015	0.05	0.20	0.26	0.28	0.26	0.26	0.29	0.36	0.43	0.43	0.43	0.43

Table 8.11. Saithe in division Va. Input values for short-term projections. Same weights are used for catch weights and stock weights.

N	201	2		-	•	-		•	10		10	12	1.4
M 0.2 0.0 0 <t< th=""><th></th><th>3</th><th>4</th><th>5</th><th>6</th><th>7</th><th>8</th><th>9</th><th>10</th><th>11</th><th>12</th><th>13</th><th>14</th></t<>		3	4	5	6	7	8	9	10	11	12	13	14
mat 0.00 0.10 0.21 0.40 0.63 0.81 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0	N		16.2	21.6	16.0	11.4	6.0	3.7	1.5	0.6	0.7	0.6	0.1
N	M	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
w 1.14 1.72 2.21 3.07 4.03 5.53 6.84 7.17 7.49 8.21 8.57 9.17 sel 0.10 0.47 0.60 0.64 0.62 0.61 0.68 0.84 1.00 1.00 1.00 1.00 pF 0 0 0 0 0 0 0 0 0 0 0 0 pM 0	mat												
Sel 0.10 0.47 0.60 0.64 0.62 0.61 0.68 0.84 1.00 1.00 1.00 pF 0					9	3					0	0	
sel 0.10 0.47 0.60 0.64 0.62 0.61 0.68 0.84 1.00 1.00 1.00 pF 0	W												
pF 0													
pF 0	sel												
pM 0													
201 3 4 5 6 7 8 9 10 11 12 13 14 N 31.9 M 0.2 0.0 0													
M 31.9 M 0.2				0			0	0	0	0	0	0	
M 0.2 0.0 0 <th></th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9</th> <th>10</th> <th>11</th> <th>12</th> <th>13</th> <th>14</th>		3	4	5	6	7	8	9	10	11	12	13	14
mat 0.00 0.10 0.21 0.40 0.63 0.81 0.91 1.00	N	31.9											
W 1.14 1.72 2.21 3.07 4.03 5.53 6.84 7.17 7.49 8.21 8.57 9.17 Z 6 7 1 0 2 6 5 1 8 5 3 sel 0.10 0.47 0.60 0.64 0.62 0.61 0.68 0.84 1.00 1.00 1.00 1.00 pF 0	M	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
w 1.14 1.72 2.21 3.07 4.03 5.53 6.84 7.17 7.49 8.21 8.57 9.17 zel 0.10 0.47 0.60 0.64 0.62 0.61 0.68 0.84 1.00 1.00 1.00 1.00 pF 0	mat	0.00	0.10	0.21	0.40	0.63	0.81	0.91	1.00	1.00	1.00	1.00	1.00
Sel 6 7 1 0 2 6 5 1 8 5 3 sel 0.10 0.47 0.60 0.64 0.62 0.61 0.68 0.84 1.00 1.00 1.00 1.00 pF 0		0	0	7	9	3	2	5	0	0	0	0	0
sel 0.10 0.47 0.60 0.64 0.62 0.61 0.68 0.84 1.00 1.00 1.00 1.00 pF 0	W	1.14	1.72	2.21	3.07	4.03	5.53	6.84		7.49	8.21	8.57	
pF 0				7	1	0	2				8	5	
pF 0	sel												
pM 0													
201 3 4 5 6 7 8 9 10 11 12 13 14 N 32.7 M 0.2 0.0 0 0 0 0 0 0 0 0 0 0 0 0	pF	0		0									
7 N 32.7 M 0.2 0.0 <	pМ	0	0	0	0	0	0	0	0	0	0	0	0
M 0.2		3	4	5	6	7	8	9	10	11	12	13	14
mat 0.00 0.10 0.21 0.40 0.63 0.81 0.91 1.00 0	N	32.7											
w 1.14 1.72 2.21 3.07 4.03 5.53 6.84 7.17 7.49 8.21 8.57 9.17 2 6 7 1 0 2 6 5 1 8 5 3 sel 0.10 0.47 0.60 0.64 0.62 0.61 0.68 0.84 1.00 1.00 1.00 1.00 pF 0 0 0 0 0 0 0 0 0 0	M	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
w 1.14 1.72 2.21 3.07 4.03 5.53 6.84 7.17 7.49 8.21 8.57 9.17 2 6 7 1 0 2 6 5 1 8 5 3 sel 0.10 0.47 0.60 0.64 0.62 0.61 0.68 0.84 1.00 1.00 1.00 1.00 6 6 8 8 1 1 7 6 0 0 0 0 pF 0 0 0 0 0 0 0 0 0 0	mat	0.00	0.10	0.21	0.40	0.63	0.81	0.91	1.00	1.00	1.00	1.00	1.00
2 6 7 1 0 2 6 5 1 8 5 3 sel 0.10 0.47 0.60 0.64 0.62 0.61 0.68 0.84 1.00 1.00 1.00 1.00 6 6 8 8 1 1 7 6 0 0 0 0 pF 0 0 0 0 0 0 0 0 0 0		0	0	7	9	3	2	5	0	0	0	0	0
sel 0.10 0.47 0.60 0.64 0.62 0.61 0.68 0.84 1.00 1.00 1.00 1.00 6 6 8 8 1 1 7 6 0 0 0 0 pF 0 0 0 0 0 0 0 0 0 0	w	1.14	1.72	2.21	3.07	4.03	5.53	6.84	7.17	7.49	8.21	8.57	9.17
6 6 8 8 1 1 7 6 0 0 0 0 pF 0 0 0 0 0 0 0 0 0 0 0		2	6	7	1	0	2	6	5	1	8	5	3
pF 0 0 0 0 0 0 0 0 0 0 0	sel	0.10	0.47	0.60	0.64	0.62	0.61	0.68	0.84	1.00	1.00	1.00	1.00
-		6	6	8	8	1	1	7	6	0	0	0	0
pM 0 0 0 0 0 0 0 0 0 0 0 0	pF	0	0	0	0	0	0	0	0	0	0	0	0
	pМ	0	0	0	0	0	0	0	0	0	0	0	0

Table 8.12. Saithe in division Va. Output from short-term projections.

2015						
B4+	SSB	Fbar	Landings			
255	139	0.26	57			
2016				2017		
B4+	SSB	Fbar	Landings	B4+	SSB	Rationale

238	138	0.26	54	227	130	20% HCR	

20% HCR = average between 0.2 B4+ (current year) and last year's TAC

Figure 8.1 Saithe in Division Va. Landings by gear.

Figure 8.2 Saithe in division Va. Cumulative landings in the current fishing year (left) and calendar year (right). The vertical (green line) in the left figure shows the quota for the current fishing year.

Figure 8.3 Saithe in division Va. Weight at age in the catches, as relative deviations from the mean. The current year's deviation is a preliminary prediction.

Figure 8.4 Saithe in division Va. Maturity at age used for calculating the SSB.

Figure 8.5 Saithe in division Va. Spring survey biomass index and model fit.

Figure 8.6. Estimated selectivity patterns for the 3 periods.

Figure 8.7. Saithe in division Va. Commercial and survey catch-at-age residuals from the fitted model. Filled circles are positive log residuals and hollow circles are negative log residuals.

Figure 8.8. Saithe in division Va. Results from the fitted model and short-term forecast. The red line indicates the time of the current assessment.

Figure 8.9. Saithe in division Va. Retrospective pattern for the assessment model.

Figure 8.10. Saithe in division Va. Comparison between the default separable model (ADSEP) and alternative assessment models.