

ECE320H1F: Fields and Waves Laboratory 3: Design of a Double Stub Matching Network

Marking Scheme

Show your calculations for *all* work, including theoretical diagrams and plots. **Measurement** graphs refer to intrumentation screen captures obtained in the laboratory. **Include the full name, student number and PRA session for all group members on the laboratory report.**

- 4.2 [1] Measurement Smith chart plot of load impedance versus frequency.
 - [1] **Measurement** Smith chart plot of load impedance versus frequency, de-embedded by 0.2 ns.
 - [3] Equivalent electrical distance (in wavelengths) at 800 MHz associated with the 0.2 ns port extension. Demonstrate that this additional distance corresponds to the Smith chart transformation seen in the measurement.
- 4.3 [5] Determination of z_A by rotating z_L by $d_0 = 3.4$ cm on the Smith chart, and transformation of z_A to y_A on the Smith chart.
- 4.4 [20] Design of the double stub matching network for the load provided using a Smith chart. Show the calculated stub lengths \hat{l}_1 and \hat{l}_2 in terms of wavelengths, and l_1 and l_2 in terms of cm. Determine all lengths for both fundamental solutions.
- 4.5 [3] Experimental determination of the final stub lengths for both fundamental solutions to achieve a match between the load and the line.
 - [2] **Measurement** Smith chart plots of the matched load for both fundamental solutions.
- 4.6 [5] **Measurement** plot of the final VSWR and measurement of bandwidth for both fundamental solutions. Relate the VSWR bandwidth criteria to the reflection coefficient and its value in decibels $(20 \log |\Gamma|)$. Give some reason for the bandwidth limitation.
 - [5] Discussion of how the measured results compare to the theoretically calculated ones; outline any potential sources of errors.
 - [5] Presentation and neatness.
- Indicates the number of marks out of 50 total marks