## **CSCI 6110**

## Applied Combinatorics & Graph Theory

N. Adlai A. DePano, Ph.D. Spring 2023 ndepano@uno.edu



1

## "Twentyfold Way"

• Distribution problems

| The Twentyfo               | The Twentyfold Way: A Table of Distribution Problems |           |  |
|----------------------------|------------------------------------------------------|-----------|--|
| k objects and conditions   | n recipients and mathematical model for distribution |           |  |
| on how they are received   | Distinct                                             | Identical |  |
| 1. Distinct                | Ī                                                    |           |  |
| no conditions              |                                                      |           |  |
| 2. Distinct                |                                                      |           |  |
| Each gets at most one      |                                                      |           |  |
| 3. Distinct                |                                                      |           |  |
| Each gets at least one     |                                                      |           |  |
| 4. Distinct                |                                                      |           |  |
| Each gets exactly one      |                                                      |           |  |
| 5. Distinct, order matters |                                                      |           |  |
| 6. Distinct, order matters |                                                      | -         |  |
| Each gets at least one     |                                                      |           |  |
| 7. Identical               |                                                      |           |  |
| no conditions              |                                                      | -         |  |
| 8. Identical               |                                                      |           |  |
| Each gets at most one      |                                                      |           |  |
| 9. Identical               |                                                      |           |  |
| Each gets at least one     |                                                      |           |  |
| 10. Identical              |                                                      |           |  |
| Each gets exactly one      |                                                      |           |  |
|                            |                                                      |           |  |



## "Twentyfold Way"

• Distribution problems

| The Twentyfold Way: A Table of Distribution Problems |                                                      |                               |  |
|------------------------------------------------------|------------------------------------------------------|-------------------------------|--|
| k objects and conditions                             | n recipients and mathematical model for distribution |                               |  |
| on how they are received                             | Distinct                                             | Identical                     |  |
| 1. Distinct                                          | $n^k$                                                |                               |  |
| no conditions                                        | functions                                            |                               |  |
| 2. Distinct                                          |                                                      | 1 if $k \le n$ ; 0 otherwise  |  |
| Each gets at most one                                | _                                                    |                               |  |
| 3. Distinct                                          |                                                      |                               |  |
| Each gets at least one                               |                                                      |                               |  |
| 4. Distinct                                          | k! = n!                                              | 1 if $k = n$ ; 0 otherwise    |  |
| Each gets exactly one                                | bijections                                           |                               |  |
| 5. Distinct, order matters                           |                                                      |                               |  |
| 6. Distinct, order matters                           |                                                      | -                             |  |
| Each gets at least one                               |                                                      |                               |  |
| 7. Identical                                         |                                                      |                               |  |
| no conditions                                        | 7-5                                                  |                               |  |
| 8. Identical                                         | $\binom{n}{k}$                                       | 1 if $k \leq n$ ; 0 otherwise |  |
| Each gets at most one                                | subsets                                              |                               |  |
| 9. Identical                                         |                                                      |                               |  |
| Each gets at least one                               |                                                      |                               |  |
| 10. Identical                                        | 1 if $k = n$ ; 0 otherwise                           | 1 if $k = n$ ; 0 otherwise    |  |
| Each gets exactly one                                |                                                      |                               |  |



3

## "Twentyfold Way"

• Distribution problems

| The Twentyfold Way: A Table of Distribution Problems $k$ objects and conditions on how they are received $ \begin{array}{ c c c c c }\hline &n \ \text{recipients and mathematical model for distribution}\\\hline Distinct &n^k & & & & & & & \\\hline 1. \ Distinct &n^k & & & & & \\\hline 2. \ Distinct &&&&&&&&&&\\\hline 2. \ Distinct &&&&&&&&&\\\hline Each gets at most one &&&&&&&&\\\hline 3. \ Distinct &&&&&&&&&\\\hline Each gets at least one &&&&&&&\\\hline 4. \ Distinct &&&&&&&&\\\hline 4. \ Distinct &&&&&&&&\\\hline Each gets at least one &&&&&&\\\hline 5. \ Distinct, order matters &&&&&&\\\hline 6. \ Distinct, order matters &&&&&&\\\hline Each gets at least one &&&&&&\\\hline 7. \ Identical &&&&&&&\\\hline 8. \ Identical &&&&&&\\\hline 9. \ Identical &&&&&&\\\hline 1. \ if \ k=n;\ 0\ \text{otherwise} &&&&\\\hline 1. \ if \ k=n;\ 0\ \text{otherwise} &&&&\\\hline 1. \ if \ k=n;\ 0\ \text{otherwise} &&&&\\\hline 1. \ if \ k=n;\ 0\ \text{otherwise} &&&\\\hline 1. \ if \ k=n;\ 0\ \text{otherwise} &&\\\hline 1. \ if \ $                                                                               |                            |                                                      |                                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------|---------------------------------|--|
| on how they are received   1. Distinct   1. Distinct   1. Distinct   1. Distinct   1. Distinct   2. Distinct   2. Distinct   3. Distinct   4. Distinct   5. Distinct   5. Distinct   6. Distinct, order matters   6. Disti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The Twentyfo               | The Twentyfold Way: A Table of Distribution Problems |                                 |  |
| 1. Distinct no conditions $n^k$ functions       2. Distinct Each gets at most one $k$ -element permutations       3. Distinct Each gets at least one $k$ -element permutations       4. Distinct Each gets exactly one $k! = n!$ 1 if $k = n$ ; 0 otherwise       5. Distinct, order matters $k! = n!$ 1 if $k = n$ ; 0 otherwise       6. Distinct, order matters Each gets at least one $n = n$ 1 if $n = n$ 1 if $n = n$ 2 otherwise       7. Identical no conditions $n = n$ 2 otherwise       8. Identical Each gets at most one $n = n$ 3 otherwise       9. Identical Each gets at least one $n = n$ 1 if $n = n$ 2 otherwise       10. Identical I if $n = n$ 1 if $n = n$ 3 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | k objects and conditions   | n recipients and mathematical model for distribution |                                 |  |
| no conditions  2. Distinct Each gets at most one 3. Distinct Each gets at least one 4. Distinct Each gets at least one 5. Distinct, order matters Each gets at least one 6. Distinct, order matters Each gets at least one 7. Identical no conditions 8. Identical Each gets at most one 9. Identical Each gets at least one 10. Identical  1 if $k = n$ ; 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on how they are received   | Distinct                                             | Identical                       |  |
| 2. Distinct Each gets at most one 3. Distinct Each gets at least one 4. Distinct Each gets at least one 4. Distinct Each gets exactly one 5. Distinct, order matters Each gets at least one 7. Identical no conditions 8. Identical Each gets at most one 9. Identical Each gets at least one 9. Identical Each gets at least one 10. Identical 1 if $k = n$ ; 0 otherwise 11 if $k = n$ ; 0 otherwise 12 if $k = n$ ; 0 otherwise 13. If $k = n$ ; 0 otherwise 14. If $k = n$ ; 0 otherwise 15. Identical 1 if $k = n$ ; 0 otherwise 15. Identical 1 if $k = n$ ; 0 otherwise 15. Identical 1 if $k = n$ ; 0 otherwise 15. Identical 1 if $k = n$ ; 0 otherwise 15. Identical 1 if $k = n$ ; 0 otherwise 15. Identical 1 if $k = n$ ; 0 otherwise 15. Identical 1 if $k = n$ ; 0 otherwise 15. Identical 1 if $k = n$ ; 0 otherwise 15. Identical 1 if $k = n$ ; 0 otherwise 1 if $k = n$ ; 0 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Distinct                | $n^k$                                                |                                 |  |
| Each gets at most one 3. Distinct Each gets at least one 4. Distinct Each gets at least one 5. Distinct, order matters Each gets at least one 7. Identical no conditions 8. Identical Each gets at most one 9. Identical Each gets at least one 10. Identical 1 if $k=n$ ; 0 otherwise 11 if $k=n$ ; 0 otherwise 12 if $k=n$ ; 0 otherwise 13. Each gets at least one 15 if $k=n$ ; 0 otherwise 15 if $k=n$ ; 0 otherwise 16 if $k=n$ ; 0 otherwise 17 if $k=n$ ; 0 otherwise 17 if $k=n$ ; 0 otherwise 17 if $k=n$ ; 0 otherwise 18 if $k=n$ ; 0 otherwise 19. Each gets at least one 19. Each gets a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | no conditions              |                                                      |                                 |  |
| 3. Distinct Each gets at least one 4 l. Distinct Each gets exactly one 5. Distinct, order matters Each gets at least one 7. Identical no conditions 8. Identical $\binom{n}{k}$ 1 if $k = n$ ; 0 otherwise bijections 5. Distinct, order matters Each gets at least one 7. Identical no conditions 8. Identical $\binom{n}{k}$ 1 if $k \leq n$ ; 0 otherwise Each gets at most one 9. Identical Each gets at least one 10. Identical 1 if $k = n$ ; 0 otherwise 1 if $k = n$ ; 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Distinct                | n-                                                   | 1 if $k \le n$ ; 0 otherwise    |  |
| Each gets at least one  4. Distinct 4. Distinct Each gets exactly one 5. Distinct, order matters 6. Distinct, order matters Each gets at least one 7. Identical no conditions 8. Identical $\binom{n}{k}$ 1 if $k \leq n$ ; 0 otherwise Each gets at most one 9. Identical subsets 9. Identical 1 if $k \leq n$ ; 0 otherwise Each gets at least one 10. Identical 1 if $k \leq n$ ; 0 otherwise 11 if $k \leq n$ ; 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | k-element permutations                               |                                 |  |
| 4. Distinct $k! = n!$ bijections  5. Distinct, order matters  6. Distinct, order matters Each gets at least one  7. Identical no conditions  8. Identical $\binom{n}{k}$ 1 if $k \le n$ ; 0 otherwise Each gets at most one  9. Identical subsets  9. Identical $\binom{n}{k}$ 1 if $k \le n$ ; 0 otherwise Each gets at least one  10. Identical 1 if $k = n$ ; 0 otherwise 1 if $k = n$ ; 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0. D. 10.111101            |                                                      |                                 |  |
| Each gets exactly one bijections  5. Distinct, order matters  6. Distinct, order matters  6. Distinct, order matters  Each gets at least one  7. Identical no conditions  8. Identical $\binom{n}{k}$ 1 if $k \le n$ ; 0 otherwise  Each gets at most one subsets  9. Identical Each gets at least one  10. Identical 1 if $k = n$ ; 0 otherwise 1 if $k = n$ ; 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                                      |                                 |  |
| 5. Distinct, order matters  6. Distinct, order matters Each gets at least one 7. Identical no conditions 8. Identical Each gets at most one 9. Identical Each gets at least one 10. Identical  1 if $k = n$ ; 0 otherwise 1 if $k = n$ ; 0 otherwise 1 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | II Distinct                |                                                      | 1 if $k = n$ ; 0 otherwise      |  |
| 6. Distinct, order matters Each gets at least one 7. Identical no conditions 8. Identical $\begin{bmatrix} n \\ k \end{bmatrix} \qquad 1 \text{ if } k \leq n; \ 0 \text{ otherwise} \\ \text{Subsets} \qquad 0. \text{ Identical} \\ \text{Each gets at least one} \qquad 0. \text{ Identical} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n; \ 0 \text{ otherwise} \\ \text{Each gets at least one} \qquad 0. \text{ If } k = n$ |                            | bijections                                           |                                 |  |
| Each gets at least one 7. Identical no conditions 8. Identical $\binom{n}{k}$ 1 if $k \le n$ ; 0 otherwise Each gets at most one subsets 9. Identical Each gets at least one 10. Identical 1 if $k = n$ ; 0 otherwise 1 if $k = n$ ; 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5. Distinct, order matters |                                                      |                                 |  |
| Each gets at least one 7. Identical no conditions 8. Identical $\binom{n}{k}$ 1 if $k \le n$ ; 0 otherwise Each gets at most one subsets 9. Identical Each gets at least one 10. Identical 1 if $k = n$ ; 0 otherwise 1 if $k = n$ ; 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                                      | -                               |  |
| 7. Identical no conditions 8. Identical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                                      |                                 |  |
| no conditions  8. Identical $\binom{n}{k}$ 1 if $k \le n$ ; 0 otherwise  Each gets at most one  9. Identical subsets  10. Identical 1 if $k = n$ ; 0 otherwise 1 if $k = n$ ; 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                                      |                                 |  |
| 8. Identical $\binom{n}{k}$ 1 if $k \leq n$ ; 0 otherwise Each gets at most one subsets 9. Identical Each gets at least one 10. Identical 1 if $k = n$ ; 0 otherwise 1 if $k = n$ ; 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                                      |                                 |  |
| Each gets at most one subsets 9. Identical Each gets at least one 10. Identical 1 if $k=n;$ 0 otherwise 1 if $k=n;$ 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | (n)                                                  | 1161 - 0 -1                     |  |
| 9. Identical Each gets at least one 10. Identical 1 if $k = n$ ; 0 otherwise 1 if $k = n$ ; 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                                      | 1 if $k \leq n$ ; 0 otherwise   |  |
| Each gets at least one 10. Identical 1 if $k = n$ ; 0 otherwise 1 if $k = n$ ; 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | subsets                                              |                                 |  |
| 10. Identical 1 if $k = n$ ; 0 otherwise 1 if $k = n$ ; 0 otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                                      |                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 1/6101                                               | 1 16 1 0                        |  |
| Each gets exactly one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 1 II $\kappa = n$ ; 0 otherwise                      | I II $\kappa = n$ ; 0 otherwise |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lacii gets exactiy one     |                                                      |                                 |  |



### **Sampling With Replacement**

# Applied Combinatorics

#### ORDER MATTERS

The notation  $P^R(m,r)$  from the textbook represents the number of r-permutations of an m-set, with replacement or repetition allowed. It is given by:

$$P^R(m,r) = m^r$$

#### • Example:

The number of seasons an NFL team can have (they play 17 games and each game can result in a win, loss, or tie) is given by:

 $3^{17}$ 

5

### **Sampling With Replacement**

| 1  | 9/12  | Green Bay Packers                | W | 38-3  |    |
|----|-------|----------------------------------|---|-------|----|
| 2  | 9/19  | @ Carolina Panthers              | L | 7-26  |    |
| 3  | 9/26  | @ New England Patriots           | W | 28-13 |    |
| 4  | 10/3  | New York Giants                  | L | 21-27 | OT |
| 5  | 10/10 | @ Washington Football Team       | W | 33-22 |    |
| 7  | 10/25 | @ Seattle Seahawks               | W | 13-10 |    |
| 8  | 10/31 | Tampa Bay Buccaneers             | W | 36-27 |    |
| 9  | 11/7  | Atlanta Falcons                  | L | 25-27 |    |
| 10 | 11/14 | @ Tennessee Titans               | L | 21-23 |    |
| 11 | 11/21 | <pre>@ Philadelphia Eagles</pre> | L | 29-40 |    |
| 12 | 11/25 | Buffalo Bills                    | L | 6-31  |    |
| 13 | 12/2  | Dallas Cowboys                   | L | 17-27 |    |
| 14 | 12/12 | @ New York Jets                  | W | 30-9  |    |
| 15 | 12/19 | @ Tampa Bay Buccaneers           | W | 9-0   |    |
| 16 | 12/27 | Miami Dolphins                   | L | 3-20  |    |
| 17 | 1/2   | Carolina Panthers                | W | 18-10 | 5  |
| 18 | 1/9   | @ Atlanta Falcons                | W | 30-20 |    |





#### **Sampling With Replacement**

## Applied Combinatorics

#### ORDER DOESN'T MATTER

The notation  $C^R(m,r)$  from the textbook represents the number of r-combinations of an m-set, with replacement or repetition allowed. It is given by

$$C^{\mathbb{R}}(m,r) = C(m+r-1,r)$$

#### • Example:

The number of ways of forming a box of 12 doughnuts, given that there are 4 kinds of doughnuts is given by:

$$C^{R}(4,12) = C(4+12-1,12) = C(15,12) = (15\times14\times13)/6 = 455$$

7



## "Twentyfold Way"

• Distribution problems

| The Twentyfold Way: A Table of Distribution Problems |                                                      |                               |  |
|------------------------------------------------------|------------------------------------------------------|-------------------------------|--|
| k objects and conditions                             | n recipients and mathematical model for distribution |                               |  |
| on how they are received                             | Distinct                                             | Identical                     |  |
| 1. Distinct                                          | $n^k$                                                |                               |  |
| no conditions                                        | functions                                            |                               |  |
| 2. Distinct                                          | $n^{\underline{k}}$                                  | 1 if $k \leq n$ ; 0 otherwise |  |
| Each gets at most one                                | k-element permutations                               |                               |  |
| 3. Distinct                                          |                                                      |                               |  |
| Each gets at least one                               |                                                      |                               |  |
| 4. Distinct                                          | k! = n!                                              | 1 if $k = n$ ; 0 otherwise    |  |
| Each gets exactly one                                | permutations                                         |                               |  |
| 5. Distinct, order matters                           |                                                      |                               |  |
| 6. Distinct, order matters                           |                                                      |                               |  |
| Each gets at least one                               | .,                                                   |                               |  |
| 7. Identical<br>no conditions                        | $\binom{n+k-1}{k}$ multisets                         |                               |  |
| 8. Identical                                         | $\binom{n}{k}$                                       | 1 if $k \leq n$ ; 0 otherwise |  |
| Each gets at most one                                | subsets                                              |                               |  |
| 9. Identical                                         |                                                      |                               |  |
| Each gets at least one                               |                                                      |                               |  |
| 10. Identical                                        | 1 if $k = n$ ; 0 otherwise                           | 1 if $k = n$ ; 0 otherwise    |  |
| Each gets exactly one                                |                                                      |                               |  |



9

## **Pigeonhole Principle**

#### SIMPLEST VERSION

If there are "many" pigeons and "few" pigeonholes, then there must be two or more pigeons occupying the same pigeonhole.





#### **Pigeonhole Principle**



If *k*+1 pigeons are placed into *k* pigeonholes, then at least one pigeonhole will contain two or more pigeons.



11

#### **Pigeonhole Principle**

#### GENERAL VERSION

If n discrete objects are to be allocated to m containers, then at least one container must hold no fewer than  $\lceil n/m \rceil$  objects.



#### FUNCTION-BASED VERSION

There does not exist an *injective* function on finite sets whose codomain (or range) is *smaller* than its domain.

#### **Pigeonhole Principle**

#### DIJKSTRA'S VERSION

"For a nonempty, finite bag of real numbers, the maximum is at least the average (and the minimum is at most the average)."

[cf. http://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1094.html]





13

### **Pigeonhole Principle**

#### • Example:

There are 50 baskets of apples. Each basket contains no more than 24 apples. Show that there are at least 3 baskets containing the same number of apples.





## **Pigeonhole Principle**

#### • Example:

If a PC manufacturer makes at least one PC a day over a period of 30 days, doesn't start a PC on a day when it is impossible to finish it, and averages no more than 1½

PCs per day, then there must be a period of consecutive days during which *exactly* 14 PCs have been finished.

