

**Capstone Project** 

Miguel Suarez, Jill Baker, and Brigilda Lleshi

04 September 2024



## Objective

- Develop a portfolio optimization model tp recommend portfolio weights whilst aiming to maximize returns while managing risk, using LSTM networks and sentiment analysis
- Create user interface to allow for portfolio customization



## **Model Summary**

- Long Short-Term Memory (LSTM) networks
- Historical prices
- Sentiment analysis data from Alpha Vantage API
- Portfolio optimization using Efficient Frontier (PyPortfolioOpt library)
- Notebooks:
  - LSTM\_Model.ipynb
  - Sentiment.ipynb
  - Visualizations.ipynb
  - Data Retrieval.ipynb
  - Controller.ipynb
  - app.py (screen interface)

# **Model Implementation**



#### **LSTM Model**

- Implements an LSTM neural network for predicting stock returns
- Uses Bayesian Optimization for hyperparameter tuning
- Employs walk-forward validation for model evaluation



## **Portfolio Optimization**

- Calculates expected returns based on LSTM predictions
- Computes the covariance matrix using the Ledoit-Wolf shrinkage method
- Applies the Efficient Frontier algorithm to determine optimal portfolio weights





**Capstone Project** 

Miguel Suarez, Jill Baker, and Brigilda Lleshi

04 September 2024





#### **Weight Distribution**

• If a stock is not recommended, the portfolio optimizer will apply a 0% weight to said stock.

#### **Optimization Algorithm**

• Started with random search for hyperparameter tuning but later transitioned to Bayesian optimization, which proved to be more efficient for this application.

#### **Hyperparameter Optimization**

 Initially, k-fold cross-validation was attempted for model validation. However, it was discovered that walk-forward validation was more suitable for time series data in this context.

#### **Optimization Algorithm**

• Started with random search for hyperparameter tuning but later transitioned to Bayesian optimization, which proved to be more efficient for this application.



#### **Portfolio Optimization**

• Considered the Black-Litterman model but chose the Efficient Frontier model for a simplified portfolio optimization.

#### Limitations

• 25 calls per day for the sentiment analysis.

#### **Multi-Step Prediction**

 Implementing the model to iteratively predict weekly returns over a 52-week period required careful consideration of the model architecture and prediction process.

#### **Target Variable Selection**

 Determining the most appropriate target variable for the LSTM model to predict was a significant challenge. The team had to carefully consider which financial metric would be most useful for portfolio optimization.

# Implemented Solutions

### **Data Management**

 Efficient storage and retrieval techniques (e.g., using pickle files) helped manage the large datasets.

#### **User Interface**

 Used streamlit to facilitate easy customization of desired portfolio for the user.



**Capstone Project** 

Miguel Suarez, Jill Baker, and Brigilda Lleshi

04 September 2024







