Title

D. Zack Garza

Tuesday 1st September, 2020

Contents

1 Tuesday, September 01

1

1 Tuesday, September 01

Last time: $V(I) = \{x \in \mathbb{A}^n \mid f(x) = 0 \,\forall x \in I\}$ and $I(X) = \{f \in k[x_1, \dots, x_n] \mid f(x) = 0 \,\forall x \in X\}$. We proved the Hilbert Nullstellensatz $I(V(J)) = \sqrt{J}$, defined the coordinate ring of an affine variety X as $A(X) \coloneqq k[x_1, \dots, x_n]/I(X)$, the ring of "regular" (polynomial) functions on X.

Recall that a topology on X can be defined as a collection of "closed" subsets of X that are closed under arbitrary intersections and finite unions. A subset $Y \subset X$ inherits a subspace topology with closed sets of the form $Z \cap Y$ for $Z \subset X$ closed.

 $\textbf{Definition 1.0.1} \ (Zariski\ Topology).$

Let X be an affine variety. The closed sets are affine subvarieties $Y \subset X$.

We have \emptyset , X closed, since

- 1. $V_X(1) = \emptyset$,
- 2. $V_X(0) = X$

Closure under finite unions: Let $V_X(I), V_X(J)$ be closed in X with $I, J \subset A(X)$ ideals. Then $V_X(IJ) = V_X(I) \cup V_X(J)$.

Closure under intersections: We have $\bigcap_{i \in \sigma} V_X(J) = V_X \left(\sum_{i \in \sigma} J_i \right)$.

Remark 1.

There are few closed sets, so this is a "weak" topology.

Example 1.1.

Compare the classical topology on \mathbb{A}^1/\mathbb{C} to the Zariski topology.

Consider the set $A := \{x \in \mathbb{A}^1/\mathbb{C} \mid ||x|| \le 1\}$, which is closed in the classical topology.

But A is not closed in the Zariski topology, since the closed subsets are finite sets or the whole space.

Here the topology is in fact the cofinite topology.

Example 1.2.

Let $f: \mathbb{A}^1/k \longrightarrow \mathbb{A}^1/k$ be any injective map. Then f is necessarily continuous wrt the Zariski topology.

Thus the notion of continuity is too weak in this situation.

Example 1.3.

Consider $X \times Y$ a product of affine varieties. Then there is a product topology where open sets are of the form $\bigcup_{i=1}^{n} U_i \times V_i$ with U_i, V_i open in X, Y respectively.

This is the wrong topology! On $\mathbb{A}^1 \times \mathbb{A}^1 = \mathbb{A}^2$, the diagonal $\Delta := V(x - y)$ is closed in the Zariski topology on \mathbb{A}^2 but not in the product topology.

Example 1.4.

Consider \mathbb{A}^2/\mathbb{C} , so the closed sets are curves and points. Observation: $V(x_1x_2) \subset \mathbb{A}^2/\mathbb{C}$ decomposed into the union of the coordinate axes $X_1 := V(x_1)$ and $X_2 := V(x_2)$. The Zariski topology can detect these decompositions.

Definition 1.0.2 (Irreducibility and Connectedness).

Let X be a topological space.

- a. X is reducible iff there exist nonempty proper closed subsets $X_1, X_2 \subset X$ such that $X = X_1 \cup X_2$. Otherwise, X is said to be *irreducible*.
- b. X is disconnected if there exist $X_1, X_2 \subset X$ such that $X = X_1 \coprod X_2$. Otherwise, X is said to be connected.

Example 1.5.

 $V(x_1x_2)$ is reducible but connected.

Remark 2.

 \mathbb{A}^1/\mathbb{C} is *not* irreducible, since we can write $\mathbb{A}^1/\mathbb{C} = \{\|x\| \le 1\} \cup \{\|x\| \ge 1\}$.

Proposition 1.1(?).

Let X be a disconnected affine variety with $X = X_1 \coprod X_2$. Then $A(X) \cong A(X_1) \times A(X_2)$.

Proof.

We have $X_1 \cup X_2 = X$, so $I(X_1) \cap I(X_2) = I(X) = (0)$ in the coordinate ring A(X) (recalling that it is a quotient by I(X).)

Since $X_1 \cap X_1 \emptyset$, we have

$$I(X_1 \cap X_2) = \sqrt{I(X_1) + I(X_2)} = I(\emptyset) = \langle 1 \rangle.$$

Thus $I(X_1) + I(X_2) = \langle 1 \rangle$, and by the Chinese Remainder Theorem, the following map is an isomorphism:

$$A(X) \longrightarrow A(X)/I(X_1) \times A(X)/I(X_2)$$
.

But the codomain is precisely $A(X_1) \times A(X_2)$.

Proposition 1.2(?).

An affine variety X is irreducible \iff A(X) is an integral domain.

Proof.

 \Longrightarrow : By contrapositive, suppose $f_1, f_2 \in A(X)$ are nonzero with $f_1 f_2 = 0$. Let $X_i = V(f_i)$, then $X = V(0) = V(f_1 f_2) = X_1 \cup X_2$ which are closed and proper since $f_i \neq 0$.

 \Leftarrow : Suppose X is reducible with $X = X_1 \cup X_2$ with X_i proper and closed. Define $J_i := I(X_i)$, and note $J_i \neq 0$ because $V(J_i) = V(I(X_i)) = X_i$ by part (a) of the Nullstellensatz. So there exists a nonzero $f_i \in J_i = I(X_i)$, so f_i vanishes on X_i . But then $V(f_1) \cup V(f_2) \supset X_1 \cup X_2 = X$, so $X = V(f_1f_2)$ and $f_1f_2 \in I(X) = \langle 0 \rangle$ and $f_1f_2 = 0$. So A(X) is not a domain.

Example 1.6.

Let $X = \{p_1, \dots, p_d\}$ be a finite set in \mathbb{A}^n . The Zariski topology on X is the discrete topology, and $X = \prod \{p_i\}$. So

$$A(X) = A(\coprod \{p_i\}) = \prod_{i=1}^d A(\{p_i\}) = \prod_{i=1}^d k[x_1, \dots, x_n] / \langle x_j - a_j(p_i) \rangle_{j=1}^d.$$

Example 1.7.

Set $V(x_1x_2) = X$, then $A(X) = k[x_1, x_2]/\langle x_1x_2\rangle$. This not being a domain (since $x_1x_2 = 0$) corresponds to $X = V(x_1) \cup V(x_2)$ not being irreducible.

Example 1.8.

 \mathbb{A}^2/k is irreducible since $k[x_1, \dots x_n]$ is a domain.

Example 1.9.

Let X_1 be the xy plane and X_2 be the line parallel to the y-axis through [0,0,1], and let $X=X_1\coprod X_2$. Then $X_1=V(z)$ and $X_2=V(x,z-1)$, and $I(X)=\langle z\rangle\cdots\langle x,z-1\rangle=\left\langle xz,z^2-z\right\rangle$.

Then the coordinate ring is given by $A(X) = \mathbb{C}[x, y, z] / \langle xz, z^2 - z \rangle$.