Cockrell School of Engineering

Capacitance Resistance Model (CRM) as a Scikit-Learn Estimator

Akhil Potla & John T. Foster
DIRECT
06/23/21

Executive Summary

- We are implementing CRM into a Scikit-Learn estimator to easily compare various machine learning estimators and take advantage of cross validation features
- The goal is to CRM and machine learning technique to predict the oil production rate and to optimize injection rate

Motivation

- Predict the oil production rate using Capacitance-Resistance Model - Producer (CRMP)
- CRMP implemented as a Scikit-Learn Estimator
 - Common API
 - Use different cross validation tools provided by Scikit-Learn to determine the optimal parameters for CRMP

Origins of CRM

- ► First Proposed in 1943
- Reservoir was divided into "grid blocks"

Origins of CRM

- Capacitors represent reservoir unit storage capacity
- Resistors represent inverse transmissibility

Origins of CRM

- Capacitors represent reservoir unit storage capacity
- Resistors represent inverse transmissibility

CRM Producer Volume (CRMP)

CRMP Assumptions

- Constant temperature
- Slightly compressible fluids
- No formation gas
- Negligible capillary pressure effects
- Constant volume

Time Constant

$$\tau = \frac{c_t V_p}{J}$$

- ightharpoonup au, time constant [days]
- $ightharpoonup c_t$, total compressibility [psi⁻¹]
- V_p , pore volume [bbls]
- ▶ J, productivity index $\left[\frac{bbl}{day \cdot psi}\right]$

Gains

$$f_{ij} = \frac{T_{ij}}{\sum_{j=1}^{N_{prod}} T_{ij}}$$

 $ightharpoonup T_{ij}$, Transmissibility $\left[\frac{\mathrm{bbl}}{\mathrm{day}\cdot\mathrm{psi}}\right]$

CRMP Production Rate

$$q_{j}^{k} = q_{j}^{k-1} exp(\frac{-\Delta t^{k}}{\tau}) + (1 + exp(\frac{-\Delta t^{k}}{\tau})) \sum_{i=1}^{N} I_{i} f_{ij}$$

- q_j^k , production rate at producer j at time step $k \left\lceil \frac{\text{bbls}}{\text{day}} \right\rceil$
- $ightharpoonup \Delta t^k$, time that elapses during time step k [days]
- $ightharpoonup I_i$, injection rate $\left[\frac{\text{bbls}}{\text{day}}\right]$

Production Rate of Our Wells

Producer 1: Convergence Across the Parameter Space

Producer 1: Convergence Across the Parameter Space

Real Data: Production Rate vs Time

Real Data: Production Rate vs Time

Usage

```
In [16]: # Linear Regression
         from sklearn.linear model import LinearRegression
         model = LinearRegression().fit(X train, y train)
         print(model.coef)
         y hat = model.predict(X test)
         [ 0.60719089 -0.00369698  0.
                                               0.
                                                            0.
                                                                      1
```

Out[16]: <matplotlib.legend.Legend at 0x7fdaaf1458e0>

Usage

Future Work

- Analyzing the oil cut
 - Koval Model
 - ML Estimators
- Investigating uncertainty

DIRECT Sponsors

