Sistemas Operacionais

Mecanismos de Paginação

André Luiz da Costa Carvalho

andre@icomp.ufam.edu.br

Aula 10 - Paginação

Mecanismos de Paginação

- Introdução
- Paginação Básica
 - Tabela de Paginação
 - Tradução de Endereços
- Mecanismos de Paginação
 - Armazenamento
 - Entradas da tabela de páginas
- Performance

Na aula anterior...

Vimos o conceito de gerenciamento de memória via segmentação.

Vimos que a segmentação, por quebrar o espaço de enderecamento em blocos de tamanho diferentes, pode levar a fragmentação externa.

Mecanismos de Paginação

Para resolver este problema, foi criada a paginação.

Paginação

Na paginação, Ao invés do processo ser quebrado em blocos lógicos (code, heap, stack), todo o espaço de enderecamento virtual é dividido em blocos de tamanho fixo, as páginas.

Mecanismos de Paginação

A memória também é quebrada em blocos de tamanho fixo, chamadas de quadros(ou frames).

Virtualização de memória por paginação.

Um exemplo simples

Introdução

Processo

Processo:

Endereçamento virtual de 64 bytes, 4 páginas de 16 bytes.

Mecanismos de Paginação

Processo

Processo:

Endereçamento virtual de 64 bytes, 4 páginas de 16 bytes.

Memória:

8 quadros de 16 bytes, 128 bytes de memória

Memoria

Vantagens da Paginação

Flexibilidade: S.O. não precisa se preocupar com detalhes do espaço de enderecamento do processo, pra que direcão cresce o heap/stack, como usa cada um e etc.

Mecanismos de Paginação

Simplicidade no gerenciamento de memória livre: Basta uma lista de páginas livres e first fit.

Mecanismos de Paginação

Tabela de Paginação

Aula de Hoje

- Paginação Básica
 - Tabela de Paginação
 - Tradução de Endereços
- - Armazenamento
 - Entradas da tabela de páginas

Tabela de paginação

Como saber onde está na memória real as páginas de cada processo? Tabela de Páginas.

Objetivo: Traduzir os endereços virtuais em reais.

Tabela de Paginação

Introdução

Tabela de paginação

Memoria

Tabela de Paginação

Introdução

Tabela de paginação

Memoria

Uma tabela por processo.

Mecanismos de Paginação

Introdução

Aula de Hoje

- Paginação Básica
 - Tabela de Paginação
 - Tradução de Endereços
- - Armazenamento
 - Entradas da tabela de páginas

Tradução de endereço

movl <endvirtual>, %eax

Introdução

Traducão de endereco

Este <endvirtual> deve ser traduzido. Para isto, precisamos do número da página virtual (VPN) e do offset da memória dentro desta página.

• Neste exemplo, como temos 64 bytes de espaço de endereçamento virtual, precisamos de 6 bits para um endereço ($2^6 = 64$):

Quantos destes bits devem representar a página virtual e quantos o offset?

Introdução

Traducão de endereco

Este <endvirtual> deve ser traduzido. Para isto, precisamos do número da página virtual (VPN) e do offset da memória dentro desta página.

• Neste exemplo, como temos 64 bytes de espaço de endereçamento virtual, precisamos de 6 bits para um endereco ($2^6 = 64$):

Quantos destes bits devem representar a página virtual e quantos o offset?

Introdução

Tradução de Endereços

movl 21, %eax

Qual seria a página e o offset?

Performance

Introdução

Tradução de Endereços

movl 21, %eax

Qual seria a página e o offset?

Introdução

Traducão de Enderecos

Após localizar a página e o offset, o próximo passo é descobrir em qual quadro físico está a página um.

No caso, na página 7.

De posse disto, basta traduzir a parte virtual que corresponde à página pelo quadro físico:

Performance

Introdução

Resumindo

De posse desse conhecimento básico, vamos agora ver um pouco dos detalhes sujos sobre como a paginação funciona.

Vamos também resolver algumas dúvidas que vocês podem estar tendo:

- Onde as páginas são armazenadas?
- Qual o conteúdo da tabela de páginas e qual o tamanho delas?
- Esse monte de tradução não deixa o sistema lento?

Mecanismos de Paginação

•00000

Introdução

Aula de Hoje

- - Tabela de Paginação
 - Tradução de Endereços
- Mecanismos de Paginação
 - Armazenamento
 - Entradas da tabela de páginas

Introdução

Onde as páginas são armazenadas

Em espaços de enderecamento reais, a tabela de páginas pode ficar muito grande, ordens de magnitude maior que tabelas de segmentos.

Por exemplo: em um espaço de 32bits, com páginas de 4KB, os enderecos seriam 20 bits de número de páginas virtuais e 12 de offset.

20 bits de páginas virtuais significam 2^{20} traduções na tabela de páginas (+ de um milhão). Se cada entrada na tabela de páginas for apenas 1 inteiro (4 bytes), cada tabela teria 4 MEGAS

Parece pouco? Imagine que tem 100 processos rodando no sistema, isso daria 400 MEGAS SÓ DE TABELAS DE TRADUCÃO.

Onde as páginas são armazenadas

Em espaços de enderecamento reais, a tabela de páginas pode ficar muito grande, ordens de magnitude maior que tabelas de segmentos.

Por exemplo: em um espaço de 32bits, com páginas de 4KB, os enderecos seriam 20 bits de número de páginas virtuais e 12 de offset.

Mecanismos de Paginação

20 bits de páginas virtuais significam 2^{20} traduções na tabela de páginas (+ de um milhão). Se cada entrada na tabela de páginas for apenas 1 inteiro (4 bytes), cada tabela teria 4 MEGAS

Parece pouco? Imagine que tem 100 processos rodando no sistema, isso daria 400 MEGAS SÓ DE TABELAS DE TRADUCÃO.

Agora imagine isso num espaco de 64 bits!

Introdução

Onde as páginas <u>são armazenadas</u>

Devido aos tamanhos da tabela, não tem condição de ter um hardware próprio na MMU para guardar a tabela do processo atual.

Ao invés disso, as tabelas são guardadas na própria memória:

000000

Aula de Hoje

Introdução

- - Tabela de Paginação
 - Tradução de Endereços
- Mecanismos de Paginação
 - Armazenamento
 - Entradas da tabela de páginas

Introdução

Qual o conteúdo da tabela de páginas?

A tabela de páginas é apenas uma estrutura de dados para fazer a tradução de página (virtual) para (quadro).

000000

• Então qualquer estrutura de dados poderia servir.

Por enquanto vamos focar nas tabelas de páginas lineares: Vetores onde o índice é a página virtual e o conteúdo indica, entre outras coisas, o quadro correspondente.

No futuro veremos estruturas mais avançadas.

Mas afinal, o que exatamente é guardado no conteúdo da tabela?

Entradas da tabela de páginas

Introdução

Conteúdo de entrada na tabela:

Temos, além do número do quadro para a tradução, uma série de bits de flag:

- Bit de validade: Diz se esta página já foi alocada ou não.
- Bits de proteção: Indicam se a página pode ser lida, escrita ou executada.
- Bit de presença
- Bit dirty
- Bit de referência

Traducões podem deixar o sistema lento?

Além das tabelas serem grandes, elas também podem levar a atrasos no sistema. Vamos voltar a nossa instrução:

Mecanismos de Paginação

```
movl 21, %eax
```

Por alto, para fazer esta instrução (ignorando seu fetch), o sistema deve traduzir o endereço virtual (21) para o real (117).

Para isto, o sistema deve primeiro encontrar a entrada correspondente na tabela de páginas, fazer a tradução e carregar os dados da memória para o registrador.

We have to go deeper.

Traducões de enderecos

Antes de tudo, o hardware tem que saber onde está a tabela de páginas do processo atual.

 Vamos assumir um registrador base para a tabela (como um ponteiro para o inicio do vetor).

Mecanismos de Paginação

De posse dele, é só calcular a página virtual do endereco e usar ela para achar na tabela:

```
PagVirtual = (EndVirtual & MASKPAG) >> SHIFTPAG
EntradaPag = *(RegBaseTabelaPag + (PagVirtual * sizeof(entradaTabPag)))
```

Com MASKPAG=110000b pois os dois últimos bits são a página, SHIFTPAG=4 pois são quatro bits de offset

Traducão de enderecos

Introdução

De posse do endereço na tabela de páginas, basta extrair o número da página física e concatenar com o offset para gerar o endereço físico:

Mecanismos de Paginação

```
offset = (EndVirtual & MASKOFF)
EndFisico = EntradaPag<<SHIFTPAG | offset</pre>
```

Depois de todo esse trabalho que finalmente dá para pegar o conteúdo do endereco físico e colocar no registrador eax.

Traducão de enderecos

Que trabalhão hein? Mas não acabou!

S.O. ainda precisa checar todos os bits de controle, como permissão de acesso e se a página é válida.

Mecanismos de Paginação

Isto para CADA USO DA MEMÓRIA.

Se não for feita corretamente, a paginação pode:

- Gastar muita memória com as tabelas.
- Ser computacionalmente caras de computar.

Concluindo

Na aula de hoje introduzimos o conceito de paginação, que é a solução de fato utilizada nos sistemas operacionais.

Mecanismos de Paginação

Vimos que ela tem várias vantagens sobre a segmentação, como não ter fragmentação externa e a simplicidade para utilizar enderecos esparsos.

Contudo, a implementação de paginação não é simples, e erros de projeto podem levar a desperdícios de recursos no sistema.

Nas próximas aulas duas aulas, veremos como estes problemas podem ser solucionados.