Examen Intégration et probabilité 1

Durée: 1H30.

Documents et calculatrices interdits.

Les réponses doivent être justifiées.

La qualité de la rédaction sera prise en compte.

Exercice 1 "Compréhension du cours et TD"

1- Donner la définition d'une tribu.

2- Soit $S = \{A \in \mathcal{B}(\mathbb{R})/A = -A\}$, où $-A = \{-x/x \in A\}$. Montrer que S est une tribu sur \mathbb{R} .

3- Soient $a \in \mathbb{R}$ et B un borélien de \mathbb{R} . Prouver que a+B est un borélien de \mathbb{R} .

3- Enoncer le théorème de convergence monotone.

4- Soit $(f_n)_n$ une suite décroissante de fonctions mesurables à valeurs dans $[0, +\infty[$.

Montrer que si $\int f_1 d\mu < +\infty$ alors $\lim_{n\to+\infty} \int f_n d\mu = \int \lim_{n\to+\infty} f_n d\mu$.

5- Enoncer le théorème de convergence dominée.

6- Soient (E, \mathcal{T}, μ) un espace mesuré et $f: E \to \mathbb{R}$ une fonction μ -intégrable. Posons pour tout $n \in \mathbb{N}$. $A_n = \{x \in E/|f(x)| \ge n\}$.

a- Montrer que $\lim_{n\to+\infty} \int_{A_n} |f(x)| d\mu(x) = 0.$

b- Vérifier que $\lim_{n\to+\infty} n\mu(A_n) = 0$.

7- Soient μ une mesure de probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et F l'application de \mathbb{R} dans [0,1] définie par:

$$F(x) = \mu(] - \infty, x]).$$

a-Montrer que F est croissante sur $\mathbb R$ et continue à droite et admet une limite à gauche en tout point de $\mathbb R$ et que $\lim_{x\to-\infty}F(x)=0$ et $\lim_{x\to+\infty}F(x)=1$.

b- Montrer que pour tout a, b de \mathbb{R} , avec a < b:

 $\mu(]a,b]) = F(b) - F(a);$ $\mu(\{a\}) = F(a) - F(a^-);$ et F est continue en a si et seulement si, $\mu(\{a\}) = 0.$

8- Soit μ une mesure de probabilité sur $\mathbb R$ telle que $\mu(\mathbb R^*_-)=0$. Pour $x\geq 0$, on pose

 $L_{\mu}(x) = \int_{\mathbb{R}} \exp(-xt) d\mu(t)$. Calculer L_{μ} pour les cas suivants:

a- $\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$. b- $\mu = \theta \exp(-\theta t)\mathbf{1}_{\mathbb{R}_+}(t)\lambda_{\mathbb{R}}, \ (\theta > 0)$. Sfix) d 8q(n) = f(a)

Exercice 2

On pose, pour tout $x \in [1, +\infty[$,

$$f(x) = \sum_{n=0}^{+\infty} n \exp(-nx).$$

Calculer
$$\int_{1}^{+\infty} f(x)dx$$
.

Exercice 3

On considère X une variable aléatoire réelle de loi Gamma $\gamma(p,\lambda)$, avec p>0 et $\lambda>0$. La densité de la loi Gamma $\gamma(p,\lambda)$ est

$$f(x) = \begin{cases} \frac{\lambda^p}{\Gamma(p)} \exp(-\lambda x) x^{p-1} & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases},$$

où $\Gamma(a) = \int_0^{+\infty} t^{a-1} \exp(-t) dt$, pour a > 0.

1- Vérifier que $\Gamma(a+1)=a\Gamma(a)$. Déduire que $\Gamma(n+1)=n!$.

2- Calculer $E(X^k)$, pour $k \in \mathbb{N}^*$.

3- Déduire que $E(X) = \frac{p}{\lambda}$ et $Var(X) = \frac{p}{\lambda^2}$.

4- Soit a > 0. Déterminer la loi de aX.

5- on en gose que pe mot, Laberminer explicitement F.

Exercice 4 6- $\frac{1}{2}$ $\frac{1}{2}$ + Determiner la li do $\frac{1}{2}$.

Soit X une variable aléatoire de densité:

$$f(x) = \begin{cases} \frac{2x}{\theta^2} & \text{si} & \text{odd} \\ 0 & \text{sinon} \end{cases}$$

où θ est un nombre positif donné. Déterminer la fonction de répartition de X puis calculer l'espérance et la variance de X.