

Controllo del canale

Franco CALLEGATI

Dipartimento di Informatica: Scienza e Ingegneria

Controllare il canale?

Canale di comunicazione

Protocolli di linea

- Canale sequenziale a banda costante di tipo puntopunto o punto-multipunto
 - Le trame arrivano nella stessa sequenza con cui sono inviate a meno degli errori
 - Tutte sperimentano ritardi di propagazione circa uguali

Protocolli di trasporto

- Canale non sequenziale a capacità variabile
 - Perdite di dati (errori di trasmissione, scarto nei nodi)
 - Duplicazione dei dati
 - Ritardi variabili
 - Arrivi fuori sequenza

Controllo del canale: strato 2

- I servizi di controllo del canale intendono
 - rendere affidabile e sicuro il servizio di collegamento che lo strato 2 offre alle entità di strato 3
- Le funzioni tipicamente svolte dallo strato 2 per il controllo del canale
 - strutturazione del flusso di dati
 - · Le PDU di strato 2 sono dette trame o frame
 - controllo e gestione degli errori di trasmissione
 - controllo di flusso
 - controllo di sequenza
 - gestire il protocollo di accesso per un collegamento puntomultipunto
- Non tutti i protocolli di strato 2 svolgono tutte queste funzioni, alcuni implementano solo dei sottoinsiemi

Problematiche di Sincronismo

- Nelle trasmissioni numeriche per riconoscere i bit in ricezione occorre determinare gli istanti di campionamento per ricostruire il sincronismo di cifra
- È un problema dello strato 1 che ha dei riflessi sullo strato 2
- Un circuito nel ricevitore estrae il segnale di sincronismo ma ha bisogno di agganciarsi
- Sono possibili due modalità
 - Il canale può essere tenuto sempre pieno di bit
 - L'aggancio avviene in fase di inizializzazione e viene poi sempre mantenuto
 - Il protocollo di linea deve garantire la presenza di segnale anche quando non ha dati da trasmettere
 - Il canale può avere momenti di vuoto di segnale
 - All'inizio di ogni nuova trasmissione deve essere inserito un preambolo di sincronismo

Il sincronismo di trama

- Il sincronismo di cifra garantisce la corretta lettura dei singoli bit
- Rimane il problema di distinguere le PDU una dall'altra
- Si deve garantire il sincronismo di trama
 - Protocolli asincroni a livello di trama
 - · Le trame possono iniziare e finire in ogni istante
 - Informazioni aggiuntive (nel PCI) vengono usate per riconoscere correttamente inizio e fine delle trame
 - Protocolli sincroni a livello di trama
 - · Le trame devono iniziare e terminare in istanti predefiniti
 - Non sono necessarie PCI per il sincronismo

Garantire affidabilità

- Come garantire affidabilità? Prima di consegnare i dati allo strato superiore si controllano
 - Errori di trasmissione
 - · Codifica di canale con codici a rivelazione di errore
 - · Conferma di ricezione e ritrasmissione
 - Sequenzialità dei dati
 - Numerazione delle unità informative
 - Conferma di ricezione e ritrasmissione
 - Flusso dei dati
 - Finestra scorrevole
 - Conferma dei dati

La codifica di canale

- A ognuno di questi blocchi corrisponde una Decodifica in ricezione
- Le operazioni di codifica possono essere combinate in vari modi (canale/linea, sorgente/canale, ...)
- La crittografia può essere inserita in diversi punti e in diversi strati dell'architettura OSI

Controllo dell'errore

Alcune definizioni

- Codici a blocco
 - Si applica la codifica a blocchi di k bit di informazione
 - Vengono calcolati r bit di ridondanza come funzione combinatoria dei suddetti k bit e trasmessi n=k+r bit
- Codici convoluzionali
 - Vengono calcolati r bit di ridondanza ogni k di informazione mediante reti logiche sequenziali
 - Nel calcolo dei bit di ridondanza si tiene conto dei k bit di informazione e di variabili di stato dipendenti dalle operazioni passate
- Faremo riferimento d'ora in poi solamente a codici a blocco

Gestione dell'errore : la codifica

- Nella codifica a blocchi
 - k bit vengono codificati in una parola di n bit aggiungendo r=n-k bit
 - Sono disponibili 2ⁿ parole di codice per trasportare 2^k messaggi
 - 2^k sono parole di codice ammesse (valide)
 - · 2ⁿ 2^k sono parole di codice non ammesse (invalide)

Codici a rivelazione di errore

- La ricezione di una parola di codice invalida indica la presenza di errori di trasmissione
- Non si può dire quali siano i bit errati
- Per garantire la trasparenza semantica è necessaria la ritrasmissione dei dati errati

Codici a correzione di errore

- Una parola di codice invalida
 - · Indica la presenza di errori di trasmissione
 - Permette di individuare I parola di codice valida corrispondente (identifica gli errori)
 - · Garantisce la trasparenza semantica in tutti i casi in cui l'errore è correggibile

Codifica di canale: correzione o rivelazione?

- PROBLEMA
 - Trasmissione di 1 Mbit di dati in trame lunghe 1000 bit
 - · Codice a correzione di errore richiede 10 bit aggiuntivi per trama
 - · Codice a rivelazione richiede 1 solo bit per trama
 - Alla rivelazione dell'errore fa seguito la ritrasmissione
- Caso 1: tasso di errore per bit del canale pari a 10⁻⁶
 - In media un errore ogni 1000 trame: bit aggiuntivi
 - 10000 bit nel caso a correzione,
 - 1000+1001=2001 nel caso a rivelazione
- Caso 2: tasso di errore per bit del canale pari a 10⁻⁵
 - In media un errore ogni 100 trame: bit aggiuntivi
 - 10000 bit nel caso a correzione,
 - 1000+10*1001=11010 nel caso a rivelazione.
- Caso 3: tasso di errore per bit del canale pari a 10⁻⁴
 - In media un errore ogni 10 trame: bit aggiuntivi
 - 10000 bit nel caso a correzione,
 - 1000+111*1001=112111 nel caso a rivelazione.

Conviene la rivelazione

Circa equivalente

Conviene la correzione

In generale

- Correzione di errore (anche forward error correction o FEC)
 - Richiede un numero abbastanza elevato di bit aggiuntivi
 - Permette la correzione dei dati errati in base ai soli dati ricevuti

Rivelazione d'errore

- Richiede un numero limitato di bit aggiuntivi
- Rende necessaria la ritrasmissione dei dati errati

In linea con l'esempio precedente

- Conviene la rivelazione se il canale è affidabile per cui ci sono pochi errori
- Conviene la correzione se il canale produce molti errori di trasmissione

Nelle reti di solito

- Si usano codici a correzione di errore nello strato fisico
- Si usa la rivelazione di errore nei protocolli di linea e di trasporto

Definizioni

Codici lineari

- Dati due messaggi di k bit m_1 e m_2
- Ricavate le parole di codice c_1 e c_2
- Il codice si dice lineare se $m_3 = m_1 + m_2$ da origine a $c_3 = c_1 + c_2$

Codificatori sistematici

 nella sequenza di n bit da trasmettere i k bit di informazione, mantenuti distinti dagli r bit di ridondanza, vengono trasmessi inalterati

Uso del codice: in trasmissione

- Rivelazione d'errore
 - Codice a blocco sistematico

Uso del codice: in ricezione

Il bit di parità

• Dati k bit di informazione b_0 , b_1 , ... , b_{k-1}

$$b_k = b_0 \oplus b_1 \oplus b_2 \oplus ... \oplus b_{k-1}$$
: parità pari $b_k = NOT [b_0 \oplus b_1 \oplus ... \oplus b_{k-1}]$: parità dispari

- Dove ⊕ è l'operazione di OR esclusivo
- r = 1 un solo bit di ridondanza per qualunque dimensione del blocco dati k

1001010000111000 Parità pari 1001010000111000 0

Parità dispari 1001010000111000 1

Proprietà

- Rivela sempre un numero dispari di errori
- Fallisce con un numero pari di errori

Trasmesso 10010100001110000 Errore doppio Ricevuto 1001011000011000 Calcolo del bit di parità RICEZIONE CORRETTA **RIVELAZIONE ERRATA!**

- Nei protocolli di Internet vengono solitamente utilizzati codici a blocchi sistematici
- Sono estensioni del bit di parità, volte ad estenderne le prestazioni
- Si applica su parole di 16 bit, indipendente dalla lunghezza complessiva del blocco dati

RFC1071 - 1988

In outline, the Internet checksum algorithm is very simple:

- (1) Adjacent octets to be checksummed are paired to form 16-bit integers, and the 1's complement sum of these 16-bit integers is formed.
- (2) To generate a checksum, the checksum field itself is cleared, the 16-bit 1's complement sum is computed over the octets concerned, and the 1's complement of this sum is placed in the checksum field.
- (3) To check a checksum, the 1's complement sum is computed over the same set of octets, including the checksum field. If the result is all 1 bits (-0 in 1's complement arithmetic), the check succeeds.

- La somma complemento a 1 è simile al calcolo binario intero senza segno (somma complemento a 2) ma differisce per l'uso dei riporti
- Se una somma genera un riporto questo viene aggiunto al risultato

```
Somma complemento a 1
11110010 +
11110010
-----
111100111
```

Proprietà

- Blocco dati fatto di byte A, B, C, D, E, F, G, ...
- Parole di 16 bit [A,B], [C,D], [E,F], [G,H]
- Proprietà commutativa e associativa
 - [A,B]+[C,D] = [C,D]+[A,B]
 - -([A,B]+[C,D])+[E,F] = [A,B]+([C,D]+[E,F])
- Indipendenza dall'ordine dei byte
 - [A,B]+[C,D] = [X,Y]allora [B,A]+[D,C] = [Y,X]
 - Questa proprietà è molto importante perché rende il calcolo indipendente dalla rappresentazione del numero a livello di sistema hardware "big-endian" o "little-endian"

Esempio

Devo calcolare il checksum di 64 bit, raggruppabili in 4 parole da 16 bit

Eseguo la somma

Checksum giusto Ricezione corretta

Errore

Eseguo la somma

Checksum inesatto Ricezione errata

```
0000000
            00000001
  11110010
            00000011
  11110010
            00000100
  11110100
            11110101
 111100110
            11111001
  11110110
            11101111
1011011100 1111111000
  00100010 00001101
101111111010000000101
  11111110 000000101
        10
                  10
 100000000 00000111
```

Algebra binaria e codici polinomiali

- L'algebra si costruisce sull'insieme dele cifre binarie 0 e 1
 - $\mathbb{A} = \{0, 1\}$
- Operazioni:
 - Or esclusivo ⊕ (somma e sottrazione)
 - a \oplus (b \oplus c) = (a \oplus b) \oplus c infatti ad esempio 1 \oplus (1 \oplus 0) = (1 \oplus 1) \oplus 0 = 0
 - · Ha elemento neutro ed opposto

• 0 elemento neutro infatti $1 \oplus 0 = 1 e 0 \oplus 0 = 0$ • 1 opposto infatti $1 \oplus 1 = 0 e 0 \oplus 1 = 1$

- Vale la proprietà commutativa
 - Infatti $1 \oplus 0 = 0 \oplus 1 = 1$
- · Genera un gruppo abeliano
- Moltiplicazione
 - · Esiste l'elemento neutro
 - 1 infatti 0 x 1 = 0 e 1 x 1 = 1
 - Vale la proprietà commutativa infatti $1 \times 0 = 0 \times 1 = 0$
 - Vale la proprietà distributiva infatti $1 \times (1 \oplus 0) = 1 \times 1 \oplus 1 \times 0 = 1$
- Si genera un anello
- Ne risulta un'algebra analoga a quella ordinaria ma limitata alle cifre binarie
- L'insieme polinomi con variabile x e coefficienti in un anello formano un anello ed ereditano le operazioni e le loro proprietà

- Basati sull'uso di polinomi in un'algebra binaria
 - k bit vengono posti in corrispondenza con un polinomio di grado k-1 nella variabile binaria x:

$$P_{k-1}(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{k-1} x^{k-1}$$

- Vengono calcolati i bit di ridondanza utilizzando operazioni sui polinomi
- Polinomio generatore
 - Viene stabilito un polinomio di grado r noto a trasmettitore e ricevitore
 - $G_r(x)$ determina le proprietà di rivelazione del codice

Polinomio trasmesso

- Per calcolare polinomio $T_{n-1}(x)$ da trasmettere:
 - Si moltiplica il polinomio $P_{k-1}(x)$ per x^r
 - r bit a zero posti in coda
 - Si esegue la divisione polinomiale fra $P_{k-1}(x)$ x^r e $G_r(x)$ ottenendo un quoziente ed un resto

$$P_{k-1}(x) x^r = G_r(x) Q_{k-1}(x) \oplus R_{r-1}(x)$$

 Notando che nell'algebra adottata somma e sottrazione coincidono, si trasmette

$$T_{n-1}(x) = P_{k-1}(x) x^r \oplus R_{r-1}(x) = G_r(x) Q_{k-1}(x)$$

- Proprietà di $T_{n-1}(x)$
 - Realizza una codifica di tipo sistematico perché i bit di resto, al più r bit, vanno a sovrapporsi agli r zeri in coda
 - È multiplo di $G_r(x)$

 Il ricevitore riceve una sequenza di n bit che corrisponde al polinomio ricevuto

$$T'_{n-1}(x)$$

Se si verifica un errore di trasmissione

$$T'_{n-1}(x) \neq T_{n-1}(x)$$

• Esisterà un polinomio E(x) tale che

$$T'_{n-1}(x) = T_{n-1}(x) + E(x)$$

- E(x)
 - ha coefficienti non nulli in corrispondenza dei bit in cui $T'_{n-1}(x)$ differisce da $T_{n-1}(x)$
 - rappresenta in forma polinomiale gli eventuali errori e per questo si dice polinomio errore

Rivelazione dell'errore

• Il ricevitore esegue la divisione:

$$T'_{n-1}(x)/G_r(x) = (T_{n-1}(x) + E(x))/G_r(x) = T_{n-1}(x)/G_r(x) + E(x)/G_r(x)$$

- Il primo di questi termini ha sempre resto 0
- Se E(x) ≠ 0 e E(x) non è divisibile per G_r(x), allora il resto della divisione precedente risulta diverso da 0 e viene quindi rilevato l'errore
- Per rilevare gli errori si deve quindi evitare che:

$$Resto[E(x)/G_r(x)] = 0$$

- $G_r(x)$ va scelto per minimizzare la probabilità di non rivelare un errore
 - affinché due polinomi siano divisibili è comunque necessario che il grado del numeratore sia maggiore o uguale al grado del denominatore

Un singolo errore

- $E(x) = x^i$
 - è sufficiente che in $G_r(x)$ vi siano almeno due bit a 1

Numero dispari di errori

- Se $G_r(x)$ è multiplo di (1+x) non divide mai un polinomio con numero dispari di termini
- Se si sceglie $G_r(x) = 1+x$, il codice polinomiale fornisce 1 singolo bit di ridondanza eguale al bit di parità

• 2 errori

- $E(x) = x^i + x^j = x^j(x^h + 1)$. Esistono diversi polinomi che non dividono mai $(x^h + 1)$. ITU ha proposto il seguente polinomio :

$$G_{16}(x) = x^{16} + x^{12} + x^5 + 1$$

Errori a burst

- Nelle reti di telecomunicazione è frequente una distribuzione non uniforme degli errori, con concentrazione degli stessi in certi intervalli
 - filotto (burst) di bit lungo k cui bit intermedi sono inaffidabili (supponiamo abbiano una probabilità di essere errati pari al 50%)
 - rappresentato da un polinomio di grado k -1
- Si possono avere i seguenti casi:
 - k 1 < r: l'errore viene sempre rilevato;
 - k 1 = r: si ha resto nullo se $E(x) = G_r(x)$
 - questo evento può verificarsi con probabilità = 1/2^{r-1}
 - k 1 > r: il resto ha valore casuale e l'errore sfugge se il resto è nullo (r bit a 0)
 - questo evento può con probabilità = 1/2^r

- Si vuole trasmettere da S a D la seguente stringa di bit utilizzando un codice polinomiale per verificare che la trasmissione avvenga senza errori.
- Informazione Iniziale: 101101000101
- Il polinomio di grado k-1, $P_{k-1}(x)$ nella variabile binaria $x \in I$ seguente:

$$P(x) = x^{11} + 0 + x^9 + x^8 + 0 + x^6 + 0 + 0 + 0 + x^2 + 0 + 1$$

• Il polinomio generatore è il seguente:

$$G(x)=x^2+x+1$$

Quindi r = 2

- Determiniamo ora gli n bit realmente trasmessi e verifichiamo la resistenza agli errori di trasmissione che si ottiene attraverso il metodo dei codici polinomiali.
- G(x) è un polinomio di secondo grado per cui occorre moltiplicare il polinomio P(x) per x^2 :

$$P(x)x^2 = x^{13} + 0 + x^{11} + x^{10} + 0 + x^8 + 0 + 0 + 0 + x^4 + 0 + x^2 + 0 + 0$$

Si devono calcolare gli n bit che verranno trasmessi

• Si divide P(x) x^2 per G(x), per ottenere $T_{n-1}(x)$:

```
x^{13}+0+x^{11}+x^{10}+0+x^8+0+0+0+x^4+0+x^2+0+0
x^{13}+x^{12}+x^{11}
/ x^{12}+0+x^{10}+0+x^{8}+0+0+0+x^{4}+0+x^{2}+0+0
    X^{12}+X^{11}+X^{10}
        x^{11}+0 +0+x^8+0+0+0+x^4+0+x^2+0+0
         X^{11}+X^{10}+X^{9}
         / x^{10}+x^9+x^8+0+0+0+x^4+0+x^2+0+0
             x^{10}+x^9+x^8
             / / /
                                  x^4+0+x^2+0+0
                                    x^4 + x^3 + x^2
                                    / x^3 + 0 + 0 + 0
                                        X^3 + X^2 + X
                                        / x^2 + x + 0
                                           x^2 + x + 1
                                           / / 1
```

$$\frac{x^2 + x + 1}{x^{11} + x^{10} + x^9 + x^8 + x^2 + x + 1}$$

- Dalla divisione si ottiene:
 - R(x) = 1

$$-Q(x) = x^{11} + x^{10} + x^9 + x^8 + x^2 + x + 1$$

• quindi il polinomio da trasmettere è

- Tn-1(x) =
$$x^{13}+0+x^{11}+x^{10}+0+x^8+0+0+0+x^4+0+x^2+0+1$$

 In conclusione la sequenza di bit da trasmettere è dunque:

10110100010101

- Il polinomio ricevuto alla destinazione è dato da:
 - $T_{n-1}^1(x) = T_{n-1}(x) + E(x);$
 - E(x) rappresenta il polinomio errore.
 - E(x) ha coefficienti diversi da 0 in corrispondenza dei bit $T_{n-1}(x)$ che vengono corrotti dall'errore.
- Il ricevitore verifica la correttezza dei dati ricevuti eseguendo la seguente divisione:

$$\frac{T'_{n-1}(x)}{G(x)} = \frac{T_{n-1}(x) + E(x)}{G(x)}$$

- Consideriamo i seguenti E(x)
 - $E(x) = x^9 + x^8$
 - $E(x) = x^4 + x^3 + x^2$
- Considerando il primo polinomio E(x):
 - $T_{n-1}(x) = x^{13} + 0 + x^{11} + x^{10} + 0 + x^8 + 0 + 0 + 0 + x^4 + 0 + x^2 + 0 + 1$
 - $T_{n-1}^{1}(x) = T_{n-1}(x) + E(x) = x^{13} + 0 + x^{11} + x^{10} + x^{10} + x^{10} + 0 + 0 + 0 + 0 + x^{10} + 0 + 0 + 1$
 - $T_{n-1}^1(x) = I101110000101I01I$
- Per verificare se l'errore viene rilevato si deve dividere T¹_{n-1}(x) per G(x) = x²+x+1

• $T_{n-1}^1(x)$ diviso G(x):

```
x^{13}+0 +x^{11}+x^{10}+x^{9}+0+0+0+0+x^{4}+0+x^{2}+0+1
X^{13}+X^{12}+X^{11}
/ x^{12} + 0 + x^{10}
     X^{12}+X^{11}+X^{10}
      / x^{11} + 0 + x^9
          x^{11}+x^{10}+x^9
           / x^{10}+0+0
               X^{10}+X^{9}+X^{8}
                 / x^9 + x^8 + 0
                     x^9+x^8+x^7
                      / / x^7 + 0 + 0
                             x^7 + x^6 + x^5
                              / x^6 + x^5 + x^4
                                  X^6+X^5+X^4
                                   / / 0+x^2+0+1
                                                x^2 + x + 1
                                                / + x + 0
```

```
x^2 + x + 1
x^{11}+x^{10}+x^9+x^8+x^7+x^5+x^4+1
```


- Eseguiamo la divisione per il secondo caso:
 - $E(x)=x^4+x^3+x^2$

```
x^{13}+0 +x^{11}+x^{10}+0+x^{8}+0+0+0+0+x^{3}+0+0+1
                                                                  x^2 + x + 1
                                                                  x^{11}+x^{10}+x^9+x^8+x+1
x^{13}+x^{12}+x^{11}
/ x^{12} + 0 + x^{10}
     x^{12}+x^{11}+x^{10}
      / x^{11} + 0 + 0
           x^{11}+x^{10}+x^{9}
           / x^{10} + x^9 + x^8
                x^{10}+x^9+x^8
                 / / /
                                              x^3+0+0
                                              x^3 + x^2 + x
                                              / x^2 + x + 1
                                                   x^2 + x + 1
                                                   1 1 1
```

• In questo caso l'errore **NON VIENE RIVELATO**

Authomatic Repeat Request

- I protocolli ARQ vengono utilizzati nello strato di linea ed in quello di trasporto in sinergia con una codifica a rivelazione di errore
- Obiettivo:
 - Rendere affidabile il canale di comunicazione
 - · Affidabile?
 - Identifica errori di trasmissione e innesca la ritrasmissione
 - Riconosce perdita di informazioni
 - Riconosce perdite di sequenza
- Il canale tipicamente è:
 - Singolo collegamento seriale nello strato di linea
 - · Flusso seriale di bit
 - Connessione end-to-end nello strato di trasporto
 - · Cascata di nodi e collegamenti con diverse caratteristiche e prestazioni
- La diversità del canale rende le problematiche dei protocolli di trasporto più complesse ma esistono molti elementi in comune

- Alle PDU viene applicata una codifica di canale
- Il ricevitore
 - Verifica la correttezza delle PDU ricevute grazie a rivelazione di errore
 - Ignora le PDU errate
 - Può far partire le procedure di ritrasmissione
- Il trasmettitore
 - Ritrasmette le trame non correttamente ricevute
 - Su indicazione del ricevitore
 - Alla scadenza del time-out

Numerazione

- I protocolli ARQ numerano sequenzialmente le unità informative (UI) da consegnare ai protocolli superiori
- Cosa numerare?
 - PDU
 - Unità informative standard (bit, byte ...)
- Trasmettitore e ricevitore mantengono due contatori:
 - S conta in modo sequenziale le unità informative inviate
 - R conta le unità informative ricevute in modo corretto
- S permette il "posizionamento" nel flusso
- R permette la confermare di ricezione

Conferma (Acknowledge)

- La corretta ricezione viene confermata dal ricevitore inviando al trasmettitore il proprio valore di R
 - Le PDU ricevute in modo corretto fanno aumentare R
 - Quando una PDU viene ricevuta in modo non corretto viene ignorata ed R non viene modificato
- La conferma della corretta ricezione può essere
 - Esplicita
 - Ogni PDU ricevuta correttamente genera una conferma
 - Implicita (cumulativa)
 - Una PDU di conferma con R = n conferma la ricezione fino a n-1
 - In piggybacking
 - Viaggia inserita (a "cavalluccio") in una PDU contenente dati utili

Gli ACK

- Gli acknowledge o ACK
 - Sono PDU specializzate che non portano dati di utente ma solamente informazioni di controllo per il protocollo
- Servono qualora
 - Il protocollo ARQ non possa usare il piggybacking
 - Il ricevitore non abbia dati da trasmettere
- Non è necessario numerare gli ACK
 - I protocolli ARQ tipicamente
 - · confermano la ricezione delle PDU che portano dati d' utente
 - non confermano la ricezione degli ACK (conferma della conferma)
 - Non si ritiene necessario controllare la sequenza degli ACK

Finestra scorrevole

- Le funzioni di controllo
 - Dell'errore
 - Di flusso
 - Di sequenza
- Possono essere implementate con l'uso sinergico di
 - Codici di canale
 - Numerazione delle unità informative
 - Conferma di ricezione
- Il meccanismo utilizzato è quello della trasmissione a finestra scorrevole

Finestra di trasmissione

Trasmetto 0, 1, 2, 3

Trasmetto 5

- W_T = numero massimo di trame che il trasmettitore può inviare senza ricevere alcuna conferma
- La numerazione delle trame viene effettuata modulo M
 - $M = 2^n$ dove n è il numero di bit utilizzati per la numerazione
- Si può procedere con la trasmissione di nuove trame solo al ricevimento delle conferme
 - La numerazione delle trame trasmesse scorre nel tempo (sliding window)

Trasmetto 4

Dimensione della finestra

- Per quale motivo imporre W finito e sospendere la trasmissione delle trame?
 - Garantire unicità di numerazione delle trame
 - · Lo spazio di numerazione
 - Dipende dal numero di bit dedicati alla numerazione nell'intestazione
 - Ha necessariamente dimensioni limitate
 - Se si continuasse a trasmettere all' infinito non si avrebbe più una corrispondenza biunivoca trame-numero
 - Le trame con uguale numerazione sono indistinguibili

Efficacia della numerazione a finestra

- Permettere la gestione automatica del controllo di flusso
 - Il ricevitore deve poter ricevere un' intera finestra, dopodichè "pilota" il trasmettitore con gli ACK
- Permette di riconoscere l'errata ricezione o la perdita di dati
 - Il ricevitore vede arrivare una trama (segmento) fuori sequenza
- Permette di ricostruire in ricezione la corretta sequenza dei dati

Controllo di flusso

 Accorda la velocità del trasmettitore alla capacità del ricevitore (e della rete)

- Il ricevitore
 - Deve essere in grado di gestire un' intera finestra
 - Memorizzazione ed elaborazione di W trame
 - Accorda il flusso di trame in arrivo tramite le conferme
- A regime un nuova trama ogni T_e
 - T_e = tempo necessario per elaborare una trama

Recupero dell'errore: go-back-n ARQ

R = 6

R = 7

- Viene persa la trama N
- Il ricevitore
 - Scarta tutte le trame successive a quella errata
 - A seconda dell' implementazione
 - Segnale al trasmettitore la mancata ricezione della trama N
 - Rimane in silenzio senza inviare alcuna trama di segnalazione

- Il trasmettitore
 - Ritrasmette tutte la trame a partire dalla numero N
- Vantaggi
 - Semplicità operativa
 - Ridotta complessità nel ricevitore
- Svantaggi
 - Inefficienza
 - Si ritrasmettono trame senza che questo sia strettamente necessario

W=3

- Recupero dell'errore: go-back-n ARQ
- Viene persa la trama N
- Il ricevitore
 - Scarta tutte le trame successive a quella errata
 - A seconda dell' implementazione
 - Segnale al trasmettitore la mancata ricezione della trama N
 - Rimane in silenzio senza inviare alcuna trama di segnalazione

- Ritrasmette tutte la trame a partire dalla numero N
- Vantaggi
 - Semplicità operativa
 - Ridotta complessità nel ricevitore
- Svantaggi
 - Inefficienza
 - Si ritrasmettono trame senza che questo sia strettamente necessario

Finestra e numerazione

S

R

R

Trame ritrasmesse

• Campo di numerazione finito (n bit -> $M = 2^n$ diversi numeri di sequenza)

Esempio:

W=2 n=2

M=4

- deve essere $W_T \leq M-1$

R

0 0

S

Selective repeat ARQ

- Viene persa la trame N
- Il ricevitore
 - Scarta solamente la trama errata
 - Segnala la mancata ricezione della trama N
- Il trasmettitore
 - Ritrasmette solamente la trama N
- Il ricevitore
 - Riordina le trame nella memoria di ricezione
- Vantaggi
 - Maggiore efficienza
- Svantaggi
 - Complessità del ricevitore
 - Deve tenere in memoria le trame correttamente ricevute fintanto che non può consegnarle allo strato superiore nella giusta sequenza

- Il concetto di finestra si può applica anche in ricezione
- Finestra di ricezione
 - W_R = massimo numero di PDU che Rx può memorizzare prima di consegnare i dati allo strato superiore
 - Nel protocollo go-back-N tipicamente W_R = 1
 - In un protocollo Selective Repeat deve essere W_R > 1

TER STUDIORUM

Finestra e numerazione

- Campo di numerazione finito (n bit -> M = 2ⁿ diversi numeri di sequenza)
 - Se $W_T = W_R$ deve deve essere $W_T + W_R \le M$

- Il protocollo può entrare in stallo (deadlock)
 - Se le trame informative sono perdute
 - Se gli ACK sono perduti
- È necessario un time out per riprendere il dialogo
 - Un orologio parte al termine della trasmissione di ciascuna trama
 - Se si raggiunge il time out senza avere conferma si ritrasmette la trama

- RTT = tempo necessario per effettuare un' andata e ritorno sul canale
 - Tempo intercorso fra la partenza dell' ultimo bit di una trama e la ricezione del relativo ACK
- Variabilità di RTT
 - RTT è praticamente deterministico per lo strato 2
 - RTT può variare da segmento a segmento per lo strato 4

Dimensione del Time out?

- Il time out va relazionato al RTT
- Time out troppo breve
 - Non si attende l'arrivo dell'ACK
 - Invio non necessario di trame duplicate

- Time out troppo lungo
 - Inutile attesa prima di ritrasmettere le trame errate

- In entrambi i casi
 - Si spreca capacità di trasmissione (banda)
 - ₅₈– Degradano le prestazioni

Time out correttamente dimensionato: equivalente con o senza Reject

Time out mal dimensionato: Reject permette di reagire prima alla perdita

Time out mal dimensionato: l'assenza di Reject fa perdere tempo

- Go-Back-N con e senza ACK negativo (Reject)
 - Reject utile in case di timeout mal dimensionato

La dimensione della finestra è prossima al RTT

- Go-Back-N a confronto con Selective Repeat
 - Una perdita singola non determina particolare differenza

Il time out è sovradimensionato

 $W_T < RTT$

Selective Repeat ha un vantaggio

- Selective Repeat ha un vantaggio
 - Una perdita singola non determina particolare differenza