Reproducible Research: Peer Assessment 1

Loading and preprocessing the data

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
unzip('activity.zip')
data<- read.csv('activity.csv', stringsAsFactors = FALSE)</pre>
data$date <- as.Date(data$date,'%Y-%m-%d')</pre>
data <- as_tibble(data)</pre>
```

What is mean total number of steps taken per day?

```
step_sum <- group_by(data[complete.cases(data),], date)%>% summarise(total = sum(steps, na.rm =TRUE))
ggplot(step_sum, aes(x = total))+geom_histogram(bins = 30)+labs(x = 'Day',y = 'Total Steps', title = 'T
```



```
cat('Mean of total number of steps taken per day',mean(step_sum$total))
```

```
## Mean of total number of steps taken per day 10766.19
cat('\n')
```

```
cat('Mean of total number of steps taken per day', median(step_sum$total))
```

Mean of total number of steps taken per day 10765

What is the average daily activity pattern?

Average Steps in each interval

cat('The',intTimeAvg[which.max(intTimeAvg\$avg),]\$interval,'th interval contains the maximum average number of the contains the contains the maximum average number of the contains the contains the maximum average number of the contains the conta

The 835 th interval contains the maximum average number of steps= 206.1698

Imputing missing values

```
attach(data)
sum(is.na(interval))

## [1] 0
sum(is.na(steps))

## [1] 2304
sum(is.na(date))

## [1] 0
cat('There are', sum(is.na(steps)), 'NAs in the steps column')

## There are 2304 NAs in the steps column
null <-data%>% group_by(date)%>%summarise(total = mean(steps))%>%is.na()
sum(null[,2])
```

[1] 8

There are 8 dates with no measurements of steps, and therefore using the mean of steps by date doesn't solve the problem. Let's check the same for interval

```
null2 <-data%>% group_by(interval)%>%summarise(total = mean(steps, na.rm =TRUE))%>%is.na()
sum(null2[,2])
```

[1] O

There is at least one value of steps for each interval. Thus, imputing via the means of the interval number. The following function will allow imputing missing values using the 5-min interval mean

```
data$imputedSteps <- imputer(vals, data)
imputed_sum <- group_by(data, date)%>% summarise(total = sum(imputedSteps, na.rm =TRUE))
imputed_sum$total <- as.integer(imputed_sum$total)
ggplot(imputed_sum, aes(x = total))+geom_histogram(bins = 30)+labs(y = 'frequency',x = 'Total Steps', t</pre>
```



```
cat('Mean of total number of steps taken per day',mean(imputed_sum$total))
## Mean of total number of steps taken per day 10766.16
cat('\n')
cat('Median of total number of steps taken per day',median(imputed_sum$total))
```

Median of total number of steps taken per day 10766

There is no significant difference because the msising values are computed from mean.

Are there differences in activity patterns between weekdays and weekends?

There is a decrease of average steps taken per day on the weekends for shorter intervals but appears to have increases for bigger intervals