

Kaggle Competition: Predicting Housing Sales Price in Ames, Iowa

August 2019

Fred(Lefan) Cheng Paul Dingus Wenjun Ma Haoyun Zhang

Team Introduction

Please contact us if your company is looking for Data Science or Data Analytics talents

Fred(Lefan) Cheng

- Linkedin: https://www.linkedin.com/in/ lefancheng/
- Email:

fredchengnyc@gmail.com

Paul Dingus

- Linkedin: https://www.linkedin.com/in/ paul-dingus/
- Email: williampdingus@gmail.com

Wenjun Ma

- Linkedin: https://www.linkedin.com/in/wenjun-ma-phd/
- Email: wenjunma0303@gmail.com

Haoyun Zhang

- Linkedin: https://www.linkedin.com/in/

 Haoyun-Zhang-UPenn/
- Email:

haoyunz@sas.upenn.edu

Data Exploration

The Purpose is to Predict Housing Price with Least Error (RMSE)

We trained 5 models, which are proven to be effective, to predict prices based on houses information

Over 80 Input Variables: Information about houses **Overall Quality Above-Grade Living Area** Size of garage in square feet **Original construction date** Neighborhood Lot size in square feet

Output Variable: Housing Sales Price

RMSE: Root Mean Squared Error

A glance of dataset

Explorating dataset is the foundation of the following pre-processing and modeling

Distributions of variables

Some variables are significantly skewed that might need to be standardized

Relationship between input and output variables

Outliers exist and some variables have strong linear relationship with price

Transform the Target Feature by Taking the Log for Normalization

A violation of normality assumption of linear regression manifests in the target feature that it's notable right skew.

It would be advantages to work with the normally distributed output variable (Sales Price)

Removing Outliers of Important - Highly Correlated - Features

Filter out outliers in important features that have high correlation with Sales Price and remove them.

Missing Values

General view of missing values

Missing value imputation of train dataset

Pseudo Missing Values

```
Alley ----- 1369
PoolQC ------ 1453
MiscFeature ----- 1406
Fence ------ 1179
FireplaceQu ----- 690
GarageType ----- 81
GarageYrBlt ----- 81
GarageFinish ----- 81
GarageQual ----- 81
GarageCond ---- 81
```

No Alley Access
No Pool
All Covered
No Fence
No Fireplace
No Garage

Impute with 'No ***'

Real Missing Values

BsmtQual	37
BsmtCond	37
BsmtFinType1	37
BsmtFinType2	38
BsmtExposure	38
lotFrontage	259
MasVnrType	8
MasVnrArea	8
Electrical	1

37 No Basement
Id 949 misses Exposure
Id 333 misses FinType2
259 miss lot Frontage
8 miss MasVnrType
8 miss MaxVnrArea
1 Electrical

Features	Group	Imputation
BsmtExposure BsmtFinType2	Neighborhood YearBuilt	Mode
LotFrontage	Neighborhood	Median
MasVnrType MasVnrArea	Neighborhood YearBuilt	Mode
Electrical	YearBuilt	SBrkr

Missing value imputation of test dataset

BsmtCond	45
BsmtQual	44
BsmtExposure	44
BsmtFinType1	42
BsmtFinType2	42
BsmtFinSF1	1
BsmtFinSF2	1
BsmtUnfSF	1
TotalBsmtSF	1
BsmtFullBath	2
BsmtHalfBath	2

GarageQual	78
GarageCond	78
GarageYrBlt	78
GarageFinish	78
GarageType	76
GarageCars	1
GarageArea	1

Feature Engineering

Dealing with different types of data

Grouping data into different categories can help to sort through it and organize it effectively

Type of variable

Transformation

Examples

Continuous

Just ensure that the variable is numeric: column.astype('float64')

LotFrontage, LotArea, MassVnrArea, BsmtFinSF1

Ordinal Categorical

Manually encode the variables:

['Po', 'Fa', 'Av', 'Gd', 'Ex'] - [2, 4, 6, 8, 10]

OverallQual, OverallCond, ExterQual, BsmtCond

Nominal Categorical

Dummify the variables:

pd.get_dummies(column)

MSSubClass, MSZoning, LotConfig

Dummifying Data

Dummifying Data

Dealing with Skewness

Reducing the skew in our continuous or ordered features will help our modeling. We applied the box-cox transformation to particularly skewed data.

For some variables, we found it was better to manually apply power transformations to reduce extreme skew. This was done for BsmtCond, BsmtQual, GarageCond, and GarageQual.

Dealing with Skewness

Skewed Data Before Transformation After Transformation BsmtCond -3.605053-0.729901 GarageCond -3.4099300.510577 GarageQual -3.2847720.692163 **BsmtQual** -1.2677080.358122 Tot.RmsAbvGrd 0.757017 0.051948 ExterQual 0.789348 0.463858 2ndFlrSF 0.859141 0.304594 BsmtUnfSF 0.918694 0.918694 BsmtFinSF1 0.981443 -0.618988 GrLivArea 1.077108 0.014593 LotFrontage 1.102316 -1.072827BsmtExposure 1.121619 0.200598 1stFlrSF 1.266426 0.048269 ExterCond 1.336540 -0.065391WoodDeckSF 1.846248 0.157069 OpenPorchSF 2,477720 -0.043021MasVnrArea 2,617879 0.535434 BsmtFinType2 3.147874 -1.085226ScreenPorch 3.938725 2.915270 EnclosedPorch 1.904747 4.010200 BsmtFinSF2 4.137937 2.375989 3SsnPorch 11,356127 8.726202 12.067635 LowQualFinSF 8.395317 LotArea 13.310014 -0.553923 MiscVal 21.919304 5.084193

Model Fitting

Feature Selection via Lasso Regression

Analyze the lasso regression plot to decide which features need to be dropped

Feature Dropped

Numbers of Features Dropped: 119

	Features	Lambda
0	LandContour_Lvl	1.072267e-08
1	BsmtFullBath_1.0	5.722368e-08
4	LotConfig_Inside	2.009233e-07
5	Heating_GasA	2.656088e-07
6	LandSlope_Gtl	3.511192e-07
9	MSZoning_RL	1.629751e-06
10	PoolQC_Fa	1.873817e-06
11	Foundation_CBlock	2.154435e-06
12	Alley_None	4.328761e-06
13	Exterior2nd_MetalSd	4.977024e-06

Parameter Optimization of Lasso Regression

Comparison of feature selection

Before Feature Selection

After Feature Selection

RMSE Min: 0.1075

Optimal Lambda: 9.33e-05

RMSE Min: 0.1071

Optimized lambda: 7.22e-05

Parameter Optimization of Ridge Regression

Comparison after feature selection

Before Feature Selection

After Feature Selection

RMSE Min: 0.1135 optimized lambda: 0.231

RMSE Min: 0.1091 optimized lambda: 0.145

Price Prediction by Elastic Net Regression

Model comparison and price prediction

Lasso Regression

R2 before Dropping is: 0.9233 / RMSE before Dropping: 0.10749
R2 std before Dropping is: 0.0077 / RMSE Std before Dropping: 0.00847
R2 after Dropping is: 0.9243 / RMSE after Dropping: 0.1071
R2 std after Dropping is: 0.0079 / RMSE Std after Dropping: 0.00833

Ridge Regression

Elastic Net Regression

R2 before Dropping is: 0.9231 / RMSE before Dropping: 0.10799
R2 std before Dropping is: 0.0079 / RMSE Std before Dropping: 0.008935
R2 after Dropping is: 0.9241 / RMSE after Dropping: 0.107218
R2 std after Dropping is: 0.0084 / RMSE Std after Dropping: 0.008672

ld	SalePrice
1461	121722.57280509300
1462	162883.24122821200
1463	183499.5354773000
1464	195278.28425508900
1465	201451.36481446300
1466	170683.33384617700
1467	176268.4884023650
1468	161506.94628051700
1469	198094.44361075500

Gradient Boosting

Feature Importance via Gradient Boosting

Feature Dropped by Lasso

	feature_name	importance_score
3	2ndFlrSF	0.022378
92	FullBath_1	0.020209
95	HalfBath_0	0.012514
5	GarageYrBlt	0.011994
93	FullBath_2	0.007853
6	GarageCond	0.006208
99	GarageType_Attchd	0.005253
74	Exterior2nd_VinylSd	0.004791
37	Neighborhood_NAmes	0.004009
79	Foundation_CBlock	0.003179
87	BsmtFullBath_1.0	0.003002
38	Neighborhood_OldTown	0.002543
65	Exterior1st_VinylSd	0.002511

Stack Regressor

Stack All Models(ridge, lasso, elastic, xg boosting, g boosting) and Price Prediction

Thank you!