Momento Síncrono 6 - Data: 07/06/2022

Teste1_Unidade2[Manhã/Tarde] - Comentários:

Erros, muitos erros: v = (x, y, z). v = 2x - y + z = 0. Faltou paciência para consultar o arquivo do Momento Síncrono 5.

- Q2. $(10_pontos)_Dos_subconjuntos_do_espaço_vetorial_V = \mathbb{R}^3,_definidos_abaixo, quantos_são_exemplos_de_Subespaço_Vetorial?¶$
 - a) $W_1 = \{(x,y,z) \in \mathbb{R}^3 / x + y z = 0\}.$
 - **b)** $W_2 = \{(x,y,z) \in \mathbb{R}^3 / 2x + 3y + 4z = 1\}.$
 - c) $W_3 = \{(x,y,z) \in \mathbb{R}^3 / y = x^2\}.$
 - **d)** $W_4 = \{(x,y,z) \in \mathbb{R}^3 / |x| + |y| + z = 0\}.$
 - **e)** $W_5 = \{(x,y,z) \in \mathbb{R}^3 / x = y_- \mathbf{e}_- z = y\}$.

Resposta:

0	1	2	3	4	5
---	---	---	---	---	---

Verdadeiro: letras a) e e).

.....

Teste2_Unidade2: Dia 09/06/2022

Principais assuntos dos resumos 11 e 12

- 1) Soma, Interseção e União de subespaços vetoriais.
- 2) Combinação Linear e Subespaço Gerado.
- 3) Dependência e Independência Linear.

Lembrando: Igualdade de vetores e Sistemas Lineares

Sejam u = (a,b,c) e v = (x,y,z) dois vetores de $V=R^3$.

1) $Adi\tilde{c}ao: u+v = (a,b,c) + (x,y,z) = (a+x,b+y,c+z)$

2) Multiplicação por escalar: kv = k(x,y,z) = (kx,ky,kz)

3) Igualdade: $u = v \leftrightarrow a = x$; b = y e c = z

Sistema de equações Lineares

 (\star) $AX = B \Longrightarrow M = [A : B]$; n = número de incógnitas. (i)Se p(A) = p(M), (\star) é possível, tem solução.

Se p(A) = p(M) = n, (\star) tem uma única solução.

Se p(A) = p(M) < n, (\star) tem várias soluções.

(ii)Se $p(A) \neq p(M)$, (\star) é impossível, não tem solução.

Soma e Interseção de subespaços vetoriais

Sejam V um espaço vetorial e W_1 e W_2 dois subespaços de V.

Soma: $W_1 + W_2 = \{ v \in V \mid v = w_1 + w_2, w_1 \in W_1 \in w_2 \in W_2 \}$.

Interseção: $W_1 \cap W_2 = \{v \in V \mid v \in W_1 \text{ e } v \in W_2\}$.

Soma Direta: $W_1 + W_2 = V$ e $W_1 \cap W_2 = \{0\} \Leftrightarrow W_1 \oplus W_2 = V$.

Importante! $W_1 + W_2$ e $W_1 \cap W_2$ são subespaços de V.

Exemplo1: Sejam $V = \mathbb{R}^3$,

$$W_1 = \{(a, b, 0) / a, b \in \mathbb{R}\}$$
 e

 $W_2 = \{(0, y, z) \mid y, z \in \mathbb{R}\}$ dois subespaços de \mathbb{R}^3 .

$$W_1 + W_2 = \{(a, b + y, z) / a, b, y, z \in \mathbb{R}\} = \mathbb{R}^3$$

$$W_1 \cap W_2 = \{(0, t, 0) / t \in \mathbb{R}\} = \text{Ei} xo - y.$$

Exemplo2: Sejam $V = \mathbb{R}^3$,

$$W_1 = \{(a, b, 0) / a, b \in \mathbb{R}\}$$
 e

 $W_2 = \{(0,0,c) \mid c \in \mathbb{R}\}$ dois subespaços de \mathbb{R}^3 .

$$W_1 + W_2 = \{(a, b, c) / a, b, c \in \mathbb{R}\} = \mathbb{R}^3.$$

$$W_1 \cap W_2 = \{(0,0,0)\} = \text{vetor nulo.}$$

Importante! $W_1 \oplus W_2 = \mathbb{R}^3$.

União de Subespaços → nem sempre é um subespaço.

Exemplo:

Dados $U = \{(x,y) \in \mathbb{R}^2 ; \ x+y=0\}$ e $W = \{(x,y) \in \mathbb{R}^2 ; \ x-y=0\}$, subespaços de \mathbb{R}^2 , o conjunto $U \cup W$ não é um subespaço de \mathbb{R}^2 . De fato, temos que $u = (1,1) \in U \cup W$ e $w = (1,-1) \in U \cup W$, mas $u+w=(2,0) \notin U \cup W$

Combinação Linear

Sejam Vum Espaço Vetorial; $v_{\scriptscriptstyle 1}, v_{\scriptscriptstyle 2}, v_{\scriptscriptstyle 3}, ..., v_{\scriptscriptstyle n}$ elementos de Ve $a_1, a_2, a_3, ..., a_n$ números reais.

Então,

 $(*)\ v = a_{\scriptscriptstyle 1}v_{\scriptscriptstyle 1} + a_{\scriptscriptstyle 2}v_{\scriptscriptstyle 2} + a_{\scriptscriptstyle 3}v_{\scriptscriptstyle 3} + \ldots + a_{\scriptscriptstyle n}v_{\scriptscriptstyle n}$ é um elemento de Vchamado Combinação Linear dos vetores $v_1, v_2, v_3, ..., v_n$

Importante! A equação (*) se transforma em um sistema de equações lineares.

Cuidado! Em geral, queremos saber se é possível escrever o vetor vcomo uma Combinação Linear dos vetores $\ v_{\scriptscriptstyle 1}, v_{\scriptscriptstyle 2}, v_{\scriptscriptstyle 3}, ..., v_{\scriptscriptstyle n}\,.$

Pergunta: O vetor v = (1, 3, 4) é uma combinação linear dos vetores $v_1 = (2, 4, 6), v_2 = (3, 6, 10) e v_3 = (5, 10, 16)$?

$$(1,3,4) = x(2,4,6) + y(3,6,10) + z(5,10,16) \Leftrightarrow$$

$$\begin{cases} 2x + 3y + 5z = 1 \\ 4x + 6y + 10z = 3 : \\ 6x + 10y + 16z = 4 \end{cases} \begin{pmatrix} 2 & 3 & 5 & | & 1 \\ 4 & 6 & 10 & | & 3 \\ 6 & 10 & 16 & | & 4 \end{pmatrix} \sim$$

$$\begin{pmatrix} 2 & 3 & 5 & | & 1 \\ 0 & 0 & 0 & | & 1 \\ 0 & 1 & 1 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & 5 & | & 1 \\ 0 & 1 & 1 & | & 1 \\ 0 & 0 & 0 & | & 1 \end{pmatrix}. \quad P(A) = 2 \neq 3 = P(M).$$

O sistema não admite solução. Portanto, não é possível escrever o vetor v=(1,3,4) como <u>uma combinação linear</u> dos vetores $v_1=(2,4,6)$, $v_2=(3,6,10)$ e $v_3=(5,10,16)$.

Muito Importante!

Subespaço Gerado

$$W = \{ v \in V / v = a_1 v_1 + a_2 v_2 + a_3 v_3 + \dots + a_n v_n \}$$

$$W = [v_{1}, v_{2}, v_{3}, ..., v_{n}]$$

Cuidado!

Exemplo: Sejam $V=\mathbb{R}^3$ e $v_1=(1,2,3)\in V$, então

$$[v_{\scriptscriptstyle 1}] = \left\{ v \in \mathbb{R}^3 \; / \; v = a_{\scriptscriptstyle 1} v_{\scriptscriptstyle 1}, \; a_{\scriptscriptstyle 1} \in \mathbb{R} \right\}$$
 .

 $[v_{\scriptscriptstyle 1}] \Rightarrow$ representa uma reta de \mathbb{R}^3 passando pela origem.

Dependência e Independência Linear

Sejam V um Espaço Vetorial; $v_1,v_2,v_3,...,v_n$ <u>n</u> elementos de V e $a_1,a_2,a_3,...,a_n$ números reais.

Se a equação:

$$(**) \ 0 = a_1 v_1 + a_2 v_2 + a_3 v_3 + \ldots + a_n v_n$$
tem uma

única solução, $a_1=a_2=a_3=\ldots=a_n=0$, os vetores v_1,v_2,v_3,\ldots,v_n são Linearmente Independentes (LI), caso contrário, os os vetores v_1,v_2,v_3,\ldots,v_n são Linearmente Dependentes (LD).

Exemplo:

Os vetores $v_1=(1,1,1)$, $v_2=(0,2,3)$ e $v_2=(1,3,4)$ são LI ou LD?

Vejamos:

$$0 = xv_1 + yv_2 + zv_3 \Leftrightarrow$$

$$(0, 0, 0) = x(1, 1, 1) + y(0, 2, 3) + z(1, 3, 4) \Leftrightarrow$$

$$\begin{cases} x & + z = 0 \\ x + 2y + 3z = 0 : \\ x + 3y + 4z = 0 \end{cases} \cdot \begin{pmatrix} 1 & 0 & 1 & | & 0 \\ 1 & 2 & 3 & | & 0 \\ 1 & 3 & 4 & | & 0 \end{pmatrix} \sim$$

$$\begin{pmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 2 & 2 & | & 0 \\ 0 & 3 & 3 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

P(A) = 2 = P(M) < 3 = n. O sistema admite infinitas soluções.

Conclusão: Os vetores dados são LD.

Exemplo:

Dos_conjuntos_do_espaço_vetorial_ $V = \mathbb{R}^3$,_dados_abaixo,_quantos_são_LD?

$$A = \{(0,0,0), (1,1,2), (0,3,1)\}.$$

$$B = \{(1,1,0), (0,1,1), (0,0,1), (1,2,3)\}.$$

$$C = \{(1,0,1),(0,1,1),(1,1,2)\}.$$

$$D = \{(1,-1,0),(0,1,-1)\}.$$

$$E = \{(1,1,1), (0,2,2), (0,0,3)\}.$$

Resposta: A, B e C (Três).

Justificativa:

A: contem o vetor nulo→A é LD.

B: contem 4 vetores→B é LD.

$$C: \left(\begin{array}{c|c|c} 1 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline 1 & 1 & 2 \end{array}\right) \sim \left(\begin{array}{c|c|c} 1 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline 0 & 1 & 1 \end{array}\right) \sim \left(\begin{array}{c|c|c} 1 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline 0 & 0 & 0 \end{array}\right).$$

A matriz na forma escalonada tem uma linha de zeros→C é LD.

D: Os vetores <u>não</u> são paralelos → D é *LI*.

$$E: \left(\begin{array}{c|c|c} 1 & 1 & 1 \\ \hline 0 & 2 & 2 \\ \hline 0 & 0 & 3 \end{array} \right).$$

A matriz já está na forma escalonada → E é Ll.

Exercícios Propostos

1) O vetor v=(1,2,0) é <u>uma combinação linear</u> dos vetores u=(2,4,6) e w=(3,6,10)?

Resposta: Sim. v = 5u - 3w.

2) Determine se a matriz $A = \begin{bmatrix} -1 & 4 \\ 4 & -1 \end{bmatrix}$ é combinação linear das matrizes $V_1 = \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix}$, $V_2 = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ e $V_3 = \begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}$.

Verificação: $A = xV_1 + yV_2 + zV_3$ tem solução?

Esteja MUITO atento(a)!