Rodadas de Geometria

§1 Rodada 1

Problema 1 (APMO 2007, 2) Let ABC be an acute angled triangle with $\angle BAC = 60^{\circ}$ and AB > AC. Let I be the incenter, and H the orthocenter of the triangle ABC. Prove that $2\angle AHI = 3\angle ABC$.

Problema 2 (**Rússia 2008**) Um ponto K é escolhido sobre a diagonal BD do quadrilátero inscritível ABCD tal que $\angle AKB = \angle ADC$. Denote por I e I' os incentros dos triângulos ACD e ABK, respectivamente. Os segmentos II' e BD se intersectam no ponto X. Prove que A, X, I e D são concíclicos.

Problema 3 (Ibero 2013, 2) Let X and Y be the diameter's extremes of a circumference Γ and N be the midpoint of one of the arcs XY of Γ . Let A and B be two points on the segment XY. The lines NA and NB cuts Γ again in C and D, respectively. The tangents to Γ at C and at D meets in P. Let M the the intersection point between XY and NP. Prove that M is the midpoint of the segment AB.

Problema 4 (**Rússia 2008**) O incírculo ω do triângulo ABC tangencia os lados BC, CA e AB nos pontos A', B' e C', respectivamente. Dois pontos distintos K e L são escolhidos sobre ω tal que $\angle AKB' + \angle BKA' = \angle ALB' + \angle BLA' = 180^{\circ}$. Prove que a reta KL é equidistante dos pontos A', B' e C'.

Problema 5 (USA TST 2017, 5) Let ABC be a triangle with altitude AE. The A-excircle touches BC at D, and intersects the circumcircle at two points F and G. Prove that one can select points V and N on lines DG and DF such that quadrilateral EVAN is a rhombus.

Problema 6 (China TST 2013, 2.2) Let P be a given point inside the triangle ABC. Suppose L, M, N are the midpoints of BC, CA, AB respectively and

$$PL:PM:PN=BC:CA:AB.$$

The extensions of AP, BP, CP meet the circumcircle of ABC at D, E, F respectively. Prove that the circumcentres of APF, APE, BPF, BPD, CPD, CPE are concyclic.

§2 Rodada 2

Problema 7 (IMO 2008, 1) Seja H o ortocentro do triângulo acutângulo ABC. O círculo Γ_A , centrado no ponto médio de BC que passa por H intersecta a reta BC nos pontos A_1 e A_2 . Da mesma maneira, defina os pontos B_1 , B_2 , C_1 e C_2 .

Prove que os seis pontos A_1 , A_2 , B_1 , B_2 , C_1 e C_2 são concíclicos.

Problema 8 (Japão 2009, 4) Let Γ be a circumcircle. A circle with center O touches to line segment BC at P and touches the arc BC of Γ which doesn't have A at Q. If $\angle BAO = \angle CAO$, then prove that $\angle PAO = \angle QAO$.

Problema 9 (Bulgária 1998) Um quadrilátero convexo ABCD tem AD = CD e $\angle DAB = \angle ABC < 90^{\circ}$. A reta por D e pelo ponto médio de BC corta AB no ponto E. Prove que $\angle BEC = \angle DAC$.

Problema 10 (IMO 2007, 2) Consider five points A, B, C, D and E such that ABCD is a parallelogram and BCED is a cyclic quadrilateral. Let ℓ be a line passing through A. Suppose that ℓ intersects the interior of the segment DC at F and intersects line BC at G. Suppose also that EF = EG = EC. Prove that ℓ is the bisector of angle DAB.

Problema 11 (**Rússia 2007**) Dado um triângulo ABC, uma circunferência passa pelos vértices $B \in C$ e intersecta os lados $AB \in AC$ nos pontos $D \in E$, respectivamente. Os segmentos $CD \in BE$ se intersectam no ponto O. Denote os incentros dos triângulos $ADE \in ODE$ por $M \in N$, respectivamente. Prove que o ponto médio do menor arco DE está sobre a reta MN.

Problema 12 (**Rússia 2012**) O ponto E é o ponto médio do segmento conectando o ortocentro do triângulo escaleno ABC e o ponto A. O incírculo do triângulo ABC tangencia os lados AB e AC nos pontos C' e B', respectivamente. Seja F o simétrico do ponto E em relação à rela B'C' e sejam I e O o incentro e o circumcentro do triângulo ABC, respectivamente. Prove que F, I e O são colineares.

§3 Rodada 3

Problema 13 (IMO 2014, 4) Let P and Q be on segment BC of an acute triangle ABC such that $\angle PAB = \angle BCA$ and $\angle CAQ = \angle ABC$. Let M and N be the points on AP and AQ, respectively, such that P is the midpoint of AM and Q is the midpoint of AN. Prove that the intersection of BM and CN is on the circumference of triangle ABC.

Problema 14 (Rioplatense 2008, 5) In triangle ABC, where AB < AC, let X, Y, Z denote the points where the incircle is tangent to BC, CA, AB, respectively. On the circumcircle of ABC, let U denote the midpoint of the arc BC that contains the point A. The line UX meets the circumcircle again at the point K. Let T denote the point of intersection of AK and YZ. Prove that XT is perpendicular to YZ.

Problema 15 (Tuymaada 2012, 3) Point P is taken in the interior of the triangle ABC, so that $\angle PAB = \angle PCB = \frac{1}{4}(\angle A + \angle C)$.

Let L be the foot of the angle bisector of $\angle B$. The line PL meets the circumcircle of $\triangle APC$ at point Q. Prove that QB is the angle bisector of $\angle AQC$.

Problema 16 (Cone Sul 2010, 5) The incircle of triangle ABC touches sides BC, AC, and AB at D, E, and F respectively. Let ω_a , ω_b and ω_c be the circumcircles of triangles EAF, DBF, and DCE, respectively. The lines DE and DF cut ω_a at $E_a \neq E$ and $F_a \neq F$, respectively. Let F_a be the line F_a . Let F_a and F_a be defined analogously. Show that the lines F_a , F_a , and F_a determine a triangle with its vertices on the sides of triangle F_a .

Problema 17 (**Bulgária 2013**) Considere um triângulo acutângulo ABC com alturas AA_1 , BB_1 e CC_1 . Considere o ponto C' no prolongamento de B_1A_1 além do ponto A_1 tal que $A_1C' = B_1C_1$. Analogamente, considere o ponto B' no prolongamento de A_1C_1 além do ponto C_1 tal que $C_1B' = A_1B_1$ e o ponto A' no prolongamento de C_1B_1 além do ponto B_1 tal que $B_1A' = C_1A_1$. Denote A'', B'' e C'' os pontos simétricos de A', B' e C' em relação aos pontos BC, CA e AB, respectivamente. Prove que se R, R' e R'' são os circunraios dos triângulos ABC, A'B'C' e A''B''C'', então R, R' e R'' são lados de um triângulo com área igual a metade da área do triângulo ABC.

Problema 18 (Bulgária 2014) O quadrilátero ABCD está inscrito na circunferência ω . As retas AC e BD se intersectam no ponto E e as semirretas \overrightarrow{CB} e \overrightarrow{DA} se encontram no ponto F. Mostre que a reta pelos incentros de ABE e ABF e a reta pelos incentros de CDE e CDF se encontram em um ponto sobre a circunferência ω .