

6.一個母體比例

[間斷型資料的統計分析]

- 1. The goodness of fit using the pearson chi square test statistic
- 2. The independent test (cross analysis) of two discrete random variable
- 3. The homogenous test
- 4. One population proportion test(With Replacement)
- 5. One population proportion test(Without Replacement)
- 6. Two independent population proportions difference test (With Replacement)
- 7. Two independent population proportions difference test (Without Replacement)
- 8. Two dependent population proportions difference test

 The proportions are the probability of multi-nomial distribution.
- 9. return

選擇4,

Simulating the Bernoulli probability distribution, B(1,p), p is population proportion. Please input p value 0.5	Only on sample data will be simulated and the drawing method is with replacement, n please input the sample size

Output data,

[間斷型資料的統計分析]

- 1. The goodness of fit using the pearson chi square test statistic
- 2. The independent test (cross analysis) of two discrete random variable
- 3. The homogenous test
- 4. One population proportion test(With Replacement)
- 5. One population proportion test(Without Replacement)
- 6. Two independent population proportions difference test (With Replacement)
- 7. Two independent population proportions difference test (Without Replacement)
- 8. Two dependent population proportions difference test

 The proportions are the probability of multi-nomial distribution.
- 9. return

選擇5,

Simulating the Bernoulli probability distribution, B(1,p), p is population proportion. Please input number of population 50	Simulating the Bernoulli probability distribution, B(1,p), the number of population=50. Please input successful number of population 25
Only on sample data will be simulated and the drawing method is without replacement, n please input the sample size	The population proportion null hypothesis value, H0:p=a special value, please input a special value 0.4

Output data,

X1~Bernoulli(p=0.500000) the sample size=20	
simulating data	
0,1,1,1,1,0,1,0,0,0,1,0,1,1,0,1,1,1	
inference statistiscs	
One population proportion test (sample size is large sample)	
The popluation size=50 and the successful number=25	
The sample size=20 and the sample summation=12	
The sample proportion=0.600000	
The drawing method is without replacement	
H0: p=0.400000 , p is population proportion	
P(X<12)=0.980469, X is the successful times of 20 trials	
from the population size=50 and successful number=25	
P(X>12)=0.003887, X is the successful times of 20 trials	
from the population size=50 and successful number=25	
left sided test p-value=0.980469	
right sided test p-value=0.003887	
two sided test p-value=0.007773	