Sheet 8

Solutions to be handed in before class on Wednesday May 29

Problem 37. Let R be a fixed root system of rank r in the space V. Let α, β be non-zero elements of V, and $\theta = \theta_{\alpha,\beta}$ the corresponding angle. Then $(\alpha, \beta) = \|\alpha\| \|\beta\| \cos \theta$. Denoting $\langle \beta, \alpha^{\vee} \rangle = 2(\beta, \alpha)/(\alpha, \alpha)$ we get $\langle \alpha, \beta^{\vee} \rangle \langle \beta, \alpha^{\vee} \rangle = 4 \cos^2 \theta$.

- 1. Using the axioms of a root system, make a table of the possible values of $\langle \alpha, \beta^{\vee} \rangle$, $\langle \beta, \alpha^{\vee} \rangle$, θ and $\|\beta\|^2 / \|\alpha\|^2$. (1 point)
 - Notice that one can assume that $\alpha \neq \pm \beta$, and $\|\beta\| \geq \|\alpha\|$.
- 2. Using the pictures from problem 35, explain how the maximal $\langle \beta, \alpha^{\vee} \rangle$ is realised by drawing the root system and explaining which choice of α and β realises this scenario. (1 point)
- 3. Let α and β be non-proportional roots. If $(\alpha, \beta) > 0$ then $\alpha \beta$ is again a root. (2 points)

Problem 38. We continue the setup of the previous problem. Let α and β be non-proportional roots. The α -string through β is the set of roots of the form $\beta + n\alpha$ for $n \in \mathbb{Z}$.

- 1. Denote $r, q \ge 0$ the largest integers for which $\beta r\alpha$ (resp. $\beta + q\alpha$) is still a root. Show that the string is unbroken, i.e. that it contains all elements between $\beta r\alpha$ and $\beta + q\alpha$. (2 points)
- 2. Show that $r q = \langle \beta, \alpha^{\vee} \rangle$. (1 point)
- 3. What is the maximal length of a root string? (1 point)

Problem 39. An element of a basis π for a root system R is called a *simple* root.

- 1. Let α be such a simple root. Show that the reflection s_{α} permutes the positive roots other than α . (2 points)
 - **Hint** Consider the coefficient of α versus the coefficients of the other simple roots before and after applying s_{α} .
- 2. Let $\rho = \frac{1}{2} \sum_{\beta \in R^+} \beta$ be the half-sum of positive roots. Show that $s_{\alpha}(\rho) = \rho \alpha$ for α a simple root. (1 point)

Problem 40. Let k be of characteristic zero. Assuming the existence of bases for root systems, show that there exists no semisimple Lie algebras of dimension 4 or 5. (2 points)

Problem 41. Assume $R \subset V$ is a root system of rank 2, with basis α, β . Consider the space $V_{\mathbb{R}}$, with the hyperplanes $H_{s_{\alpha}}$ given by the reflections s_{α} , with $\alpha \in R$. Draw a picture.

Let \mathcal{A} be the set of connected components of $V_{\mathbb{R}} \setminus \{H_{s_{\alpha}} \mid \alpha \in R\}$. Show that the Weyl group W = W(R, V) acts transitively on \mathcal{A} . Deduce from this a bijection between W and \mathcal{A} by picking an arbitrary element in \mathcal{A} corresponding to $e \in W$. Illustrate this in a picture! (3 points)

We will give occasionally some optional problems for additional credit. These can be solved using computer algebra, in particular using Sage. You can use the online version at https://cocalc.com.

The documentation for root systems can be found at http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/root_system/__init__.html.

Optional problem 1. Fill in the following table. We use $\alpha_1, \ldots, \alpha_n$ the simple roots in the usual construction of the root system as implemented in Sage, so that $\beta \in R$ is $\sum_{i=1}^{n} k_i \alpha_i$, and the height $\operatorname{ht}(\beta)$ of a root β is the sum of the coefficients in the simple roots. (1 point)

Dynkin type $\#\{\beta \in R^+ \mid k_1 \ge 1\}$ $\#\{\beta \in R^+ \mid \operatorname{ht}(\beta) \ge 10\}$

 A_{10}

 F_4

 E_6

 E_7

 E_8