深層学習基礎のあんちょこ

DEEP-PEOPLE #4

2022/4/27

パーセプトロン

パーセプトロン(Perceptron)

- 。複数の信号を入力として受け取り、1つの信号を出力する
 - 。2つの入力の重み付き和がある値(閾値)を越えるかで0/1を出力する
 - ∘ y = 1のとき「ニューロンが発火した」という

$$y = \begin{cases} 0 & (w_1 x_1 + w_2 x_2 \le \varphi) \\ 1 & (w_1 x_1 + w_2 x_2 > \varphi) \end{cases}$$

y : 出力

 x_1, x_2 :入力

 w_1, w_2 :重み

 φ :閾値

パーセプトロン ver.2

パーセプトロン ver.2

- 。前ページの閾値 φ を-bに変えると良い感じにわかりやすくなる
 - ∘ bはバイアス(Bias)と呼ばれ、ニューロンの発火しやすさを表す

パーセプトロンの使い道

パーセプトロンの使い道

- 単層パーセプトロンで論理回路を表現できる!
 - 。重みを適切に設定することでAND, NAND, ORゲートを表現可
 - ∘ (NANDゲートの組み合わせですべての論理回路を表すことができる)
 - 。究極的にはNANDゲートだけでコンピュータを作り出せる(NAND2Tetris,...)

→XORを表現してみよう

単層パーセプトロンでXORを表す

単層パーセプトロンでXORを表す

。単層パーセプトロンで表現できる=出力を線形関数で分けられる

▼XORゲートの真理値表[1]

INPUT 1	INPUT 2	ОИТРИТ
1	1	0
1	0	1
0	1	1
0	0	0

▲入力に対するXORゲートの出力[1]

分けられなくない?

多層パーセプトロン

多層パーセプトロン

- 。単層パーセプトロンでは XORゲートを表現できない
 - 。AND, NAND, ORゲートを組み合わせることでXORゲートを表現できる
 - ⇔単層パーセプトロンを積み重ねる

多層パーセプトロン:非線形関数への拡張

右図の赤線を表現できる

活性化関数

活性化関数

。単層パーセプトロンの式を以下のように書き換える

$$a = b + w_1 x_1 + w_2 x_2$$
$$y = h(a)$$

。非線形関数hを**活性化関数**と呼ぶ

$$h(x) = \begin{cases} 0 & (x \le 0) \\ 1 & (x > 0) \end{cases}$$

ならば単層パーセプトロン(ステップ関数)

ニューラルネットワーク

ニューラルネットワーク(Neural Network, NN)

- 。NNは全結合層(パーセプトロン)と活性化関数で構成される
 - ∘ Feedforward Neural Network, Deep Feedforward Networkとも

$$\hat{y} = W^{(4)}h^{(3)} + b^{(4)}$$

$$h^{(3)} = g(z^{(3)})$$

$$z^{(3)} = W^{(3)}h^{(2)} + b^{(3)}$$

$$h^{(2)} = g(z^{(2)})$$

$$z^{(2)} = W^{(2)}h^{(1)} + b^{(2)}$$

$$h^{(1)} = g(z^{(1)})$$

$$z^{(1)} = W^{(1)}x + b^{(1)}$$

深層学習における最適化のイメージ

深層学習における最適化のイメージ

。関数の最小点(解)を探したい(関数を-1倍すれば最大点になる)

深層学習の理解を深める

活性化関数の種々

活性化関数の種々

- 。活性化関数はNN中で微分される(=勾配が計算される)
 - 。導関数の値域によって問題があるものも(勾配消失(Gradient vanishing)など)

深層学習の理解を深める

正則化と正規化

正則化と正規化

- 正則化(Regularization):パラメータの偏りを減らし過学習を防ぐ
 - L1(Lasso), L2(Ridge)正則化など
- 。正規化(Normalization):値のばらつきを減らし学習を速める
 - 。[0,1]への変換が一般的
 - 。標準化(Standardization):平均で引いて標準偏差で割る(中心に移動・拡大縮小)

参考: https://qiita.com/ryouka0122/items/a7fbad253680bb7f815e

深層学習の理解を深める

データセットの使い方

データセットの使い方

- ◦基本的に訓練用・テスト用の2つに分ける
 - 。テストで良い結果が出なければ意味がない(汎化性能 ⇔ 過学習)
- 。データの分け方も様々
 - ∘ ホールドアウト(Hold-out)
 - 。ランダムサブサンプリング(Random subsampling)
 - 。交差検証(Cross-validation)
 - 。層化抽出(Stratified sampling)

参考文献

- "Solving the XOR problem using MLP." Priyansh Kedia.
 https://medium.com/mlearning-ai/solving-the-xor-problem-using-mlp-83e35a22c96f, (最終参照日付 2022-4-27).
- "Derivation: Derivatives for Common Neural Network Activation Functions." The Clever Machine. https://dustinstansbury.github.io/theclevermachine/derivation-common-neural-network-activation-functions, (最終参照日付 2022-4-27).