Coloration d'arêtes union-distinguante

Nicolas Bousquet, Antoine Dailly, Éric Duchêne, Hamamache Kheddouci, Aline Parreau

> LIRIS, Université Lyon 1 JGA 2016

But : identifier chaque sommet du graphe par un code.

But : identifier chaque sommet du graphe par un $\it code$. Les codes peuvent être des entiers

But : identifier chaque sommet du graphe par un *code*. Les codes peuvent être des entiers, des ensembles d'entiers

But : identifier chaque sommet du graphe par un *code*. Les codes peuvent être des entiers, des ensembles d'entiers, des flottants, . . .

But : identifier chaque sommet du graphe par un *code*. Les codes peuvent être des entiers, des ensembles d'entiers, des flottants, . . .

 \Rightarrow On utilise une coloration pour générer les codes.

Coloration identifiante (Parreau, 2012)

Coloration identifiante (Parreau, 2012)

► Sommets colorés par un entier

Coloration identifiante (Parreau, 2012)

- Sommets colorés par un entier
- Code d'un sommet = l'union des couleurs de son voisinage fermé

Coloration identifiante (Parreau, 2012)

- Sommets colorés par un entier
- Code d'un sommet = l'union des couleurs de son voisinage fermé
- ▶ Minimiser le nombre de couleurs (paramètre χ_{id})

Coloration d'arêtes distinguante (Harary et Plantholt, 1985)

Coloration d'arêtes distinguante (Harary et Plantholt, 1985)

► Arêtes colorées par un entier

Coloration d'arêtes distinguante (Harary et Plantholt, 1985)

- Arêtes colorées par un entier
- Code d'un sommet = l'union des couleurs de ses arêtes incidentes

Coloration d'arêtes distinguante (Harary et Plantholt, 1985)

- Arêtes colorées par un entier
- Code d'un sommet = l'union des couleurs de ses arêtes incidentes
- ▶ Minimiser le nombre de couleurs (paramètre χ_S)

Coloration d'arêtes union-distinguante

Coloration d'arêtes union-distinguante

Arêtes colorées par un ensemble d'entiers

Coloration d'arêtes union-distinguante

- Arêtes colorées par un ensemble d'entiers
- Code d'un sommet = l'union des couleurs de ses arêtes incidentes

Coloration d'arêtes union-distinguante

- Arêtes colorées par un ensemble d'entiers
- Code d'un sommet = l'union des couleurs de ses arêtes incidentes
- ▶ Minimiser le nombre de couleurs (paramètre χ_{\cup})

Coloration d'arêtes union-distinguante

- Arêtes colorées par un ensemble d'entiers
- ► Code d'un sommet = l'union des couleurs de ses arêtes incidentes
- ▶ Minimiser le nombre de couleurs (paramètre χ_{\cup})

⇒ Graphes avec des composantes connexes de taille au moins 3!

Une coloration d'arêtes distinguante est une coloration d'arêtes union-distinguante !

Une coloration d'arêtes distinguante est une coloration d'arêtes union-distinguante !

Une coloration identifiante induit une coloration d'arêtes union-distinguante.

Une coloration d'arêtes distinguante est une coloration d'arêtes union-distinguante !

Une coloration identifiante induit une coloration d'arêtes union-distinguante.

Une coloration d'arêtes distinguante est une coloration d'arêtes union-distinguante !

Une coloration identifiante induit une coloration d'arêtes union-distinguante.

Proposition

Pour tout graphe G, $\chi_{\cup}(G) \leq min(\chi_{S}(G), \chi_{id}(G))$.

On veut construire une coloration d'arêtes union-distinguante d'un graphe G(V,E) utilisant k couleurs.

On veut construire une coloration d'arêtes union-distinguante d'un graphe G(V, E) utilisant k couleurs.

 $\{1,\ldots,k\}$ a 2^k-1 sous-ensembles non-vides, donc $|V|\leq 2^k-1$.

On veut construire une coloration d'arêtes union-distinguante d'un graphe G(V, E) utilisant k couleurs.

 $\{1,\ldots,k\}$ a 2^k-1 sous-ensembles non-vides, donc $|V| \le 2^k-1$.

Proposition

Pour tout graphe G, $\chi_{\cup}(G) \geq \lceil \log_2(|V(G)| + 1) \rceil$.

On veut construire une coloration d'arêtes union-distinguante d'un graphe G(V, E) utilisant k couleurs.

 $\{1,\ldots,k\}$ a 2^k-1 sous-ensembles non-vides, donc $|V| \leq 2^k-1$.

Proposition

Pour tout graphe G, $\chi_{\cup}(G) \geq \lceil \log_2(|V(G)| + 1) \rceil$.

Définition

Un graphe G est optimalement coloré si

$$\chi_{\cup}(G) = \lceil \log_2(|V(G)| + 1) \rceil.$$

On veut construire une coloration d'arêtes union-distinguante d'un graphe G(V, E) utilisant k couleurs.

 $\{1,\ldots,k\}$ a 2^k-1 sous-ensembles non-vides, donc $|V| \leq 2^k-1$.

Proposition

Pour tout graphe G, $\chi_{\cup}(G) \geq \lceil \log_2(|V(G)| + 1) \rceil$.

Définition

Un graphe G est optimalement coloré si

$$\chi_{\cup}(G) = \lceil \log_2(|V(G)| + 1) \rceil.$$

Proposition

Proposition

Proposition

Proposition

Proposition

Proposition

Propriétés

Proposition

Le graphe complet K_n d'ordre $n = 2^k - 1$ ne peut pas être optimalement coloré.

 \Rightarrow Un seul sommet peut être identifié par un singleton dans K_{2^k-1} \Rightarrow K_{2^k-1} nécessite plus que k couleurs

Théorème

Un chemin P_n peut être optimalement coloré.

Preuve

Théorème

Un chemin P_n peut être optimalement coloré.

Preuve

Hypothèse d'induction sur $n=2^k+\ell$ ($\ell \leq 2^k-1$) : P_{2^k-1} et P_ℓ peuvent être optimalement colorés.

Théorème

Un chemin P_n peut être optimalement coloré.

Preuve

Hypothèse d'induction sur $n=2^k+\ell$ ($\ell \leq 2^k-1$) : P_{2^k-1} et P_ℓ peuvent être optimalement colorés.

Théorème

Un chemin P_n peut être optimalement coloré.

Preuve

Hypothèse d'induction sur $n=2^k+\ell$ ($\ell \leq 2^k-1$) : P_{2^k-1} et P_ℓ peuvent être optimalement colorés.

Théorème

Un chemin P_n peut être optimalement coloré.

Preuve

Hypothèse d'induction sur $n=2^k+\ell$ ($\ell \leq 2^k-1$) : P_{2^k-1} et P_ℓ peuvent être optimalement colorés.

Théorème

Pour $n \ge 4$, $n \ne 7$, C_n peut être optimalement coloré. $\chi_{\square}(C_3) = 3$ et $\chi_{\square}(C_7) = 4$.

Théorème

Un chemin P_n peut être optimalement coloré.

Preuve

Hypothèse d'induction sur $n=2^k+\ell$ ($\ell \leq 2^k-1$) : P_{2^k-1} et P_ℓ peuvent être optimalement colorés.

Théorème

Pour $n \ge 4$, $n \ne 7$, C_n peut être optimalement coloré. $\chi_{\square}(C_3) = 3$ et $\chi_{\square}(C_7) = 4$.

Théorème

Un arbre binaire complet de hauteur au moins 1 peut être optimalement coloré.

Théorème

Pour tout graphe G(V, E), on a $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 2$.

Remarque

 χ_{\cup} ne peut prendre que trois valeurs!

Théorème

Pour tout graphe G(V, E), on a $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 2$.

Remarque

 χ_{\cup} ne peut prendre que trois valeurs!

 $\chi_{\cup}(G)$	$\lceil \log_2(V(G) +1) \rceil$	$\lceil \log_2(V(G) +1) \rceil + 1$	$\lceil \log_2(V(G) +1) \rceil + 2$

Théorème

Pour tout graphe G(V, E), on a $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 2$.

Remarque

 χ_{\cup} ne peut prendre que trois valeurs!

$\chi_{\cup}(G)$	$\lceil \log_2(V(G) +1) \rceil$	$\lceil \log_2(V(G) +1) \rceil + 1$	$\lceil \log_2(V(G) +1) \rceil + 2$
	Chemins Cycles Arbres binaires complets	K_{2^k-1} C_3, C_7	

Lemme

Lemme

Lemme

Lemme

Lemme

Lemme

Depuis un graphe G:

1. Extraire H, forêt d'étoiles subdivisées au plus une fois et sous-graphe d'arêtes de G;

Depuis un graphe G:

1. Extraire *H*, forêt d'étoiles subdivisées au plus une fois et sous-graphe d'arêtes de *G* ;

- 1. Extraire *H*, forêt d'étoiles subdivisées au plus une fois et sous-graphe d'arêtes de *G*;
- 2. Colorer optimalement chaque composante de H;

- 1. Extraire *H*, forêt d'étoiles subdivisées au plus une fois et sous-graphe d'arêtes de *G*;
- 2. Colorer optimalement chaque composante de H;

- 1. Extraire *H*, forêt d'étoiles subdivisées au plus une fois et sous-graphe d'arêtes de *G*;
- 2. Colorer optimalement chaque composante de H;
- 3. Colorer leur union disjointe, *H*, avec le nombre optimal de couleurs plus une;

3	4-7	8-15	16-31

Colorer l'union disjointe d'étoiles subdivisées au plus une fois avec le nombre optimal de couleurs plus une :

Couleur 4 ajoutée

Colorer l'union disjointe d'étoiles subdivisées au plus une fois avec le nombre optimal de couleurs plus une :

Couleur 4 ajoutée

Colorer l'union disjointe d'étoiles subdivisées au plus une fois avec le nombre optimal de couleurs plus une :

3	4-7	8-15	16-31
Caulant Asiant			

Couleur 4 ajoutée Couleur 5 ajoutée

- 1. Extraire *H*, forêt d'étoiles subdivisées au plus une fois et sous-graphe d'arêtes de *G*;
- 2. Colorer optimalement chaque composante de H;
- 3. Colorer leur union disjointe, *H*, avec le nombre optimal de couleurs plus une;

- 1. Extraire *H*, forêt d'étoiles subdivisées au plus une fois et sous-graphe d'arêtes de *G*;
- 2. Colorer optimalement chaque composante de H;
- 3. Colorer leur union disjointe, *H*, avec le nombre optimal de couleurs plus une;
- 4. Colorer G avec le nombre optimal de couleurs plus deux en utilisant une nouvelle couleur pour les arêtes de $G \setminus H$.

- 1. Extraire *H*, forêt d'étoiles subdivisées au plus une fois et sous-graphe d'arêtes de *G*;
- 2. Colorer optimalement chaque composante de H;
- 3. Colorer leur union disjointe, *H*, avec le nombre optimal de couleurs plus une;
- 4. Colorer G avec le nombre optimal de couleurs plus deux en utilisant une nouvelle couleur pour les arêtes de $G \setminus H$.

- 1. Extraire *H*, forêt d'étoiles subdivisées au plus une fois et sous-graphe d'arêtes de *G*;
- 2. Colorer optimalement chaque composante de H;
- 3. Colorer leur union disjointe, *H*, avec le nombre optimal de couleurs plus une;
- 4. Colorer G avec le nombre optimal de couleurs plus deux en utilisant une nouvelle couleur pour les arêtes de $G \setminus H$.

Théorème

Théorème

$\chi_{\cup}(G)$	$\lceil \log_2(V(G) +1) \rceil$	$\lceil \log_2(V(G) +1) \rceil + 1$	$\lceil \log_2(V(G) +1) \rceil + 2$
	Chemins Cycles Arbres binaires complets	K_{2^k-1} C_3, C_7	

Théorème

$\chi_{\cup}(G)$	$\lceil \log_2(V(G) +1) \rceil$	$\lceil \log_2(V(G) +1) \rceil + 1$	$\lceil \log_2(V(G) +1) \rceil + 2$
	Chemins Cycles Arbres binaires complets Étoiles subdivisées au plus une fois	K_{2^k-1} C_3, C_7 C_3 Forêt d'étoiles subdivisées au plus une fois	

Théorème

$\chi_{\cup}(G)$	$\lceil \log_2(V(G) +1) \rceil$	$\left \lceil \log_2(V(G) +1) \rceil + 1\right $	$\lceil \log_2(V(G) +1) \rceil + 2$
	Chemins Cycles Arbres binaires complets Étoiles subdivisées au plus une fois	K ₂ k−1 C ₃ , C ₇ Forêt d'étoiles subdivisées au plus une fois Graphes hamiltoniens Super-graphes d'arêtes d'étoiles subdivisées au plus une fois	

Théorème

$\chi_{\cup}(G)$	$\lceil \log_2(V(G) +1) \rceil$	$\left\lceil \log_2(V(G) +1) \right\rceil + 1$	$\lceil \log_2(V(G) +1) \rceil + 2$
	Chemins Cycles Arbres binaires complets Étoiles subdivisées au plus une fois	K ₂ ^k −1 C ₃ , C ₇ Forêt d'étoiles subdi- visées au plus une fois Graphes hamiltoniens Super-graphes d'arêtes d'étoiles subdivisées au plus une fois	?

Conjecture

Pour tout graphe G(V, E), on a $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 1$.

Conjecture

Pour tout graphe G(V, E), on a $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 1$.

Pistes

- 1. Prouver que tout arbre peut être optimalement coloré (cas connexe).
- 2. Prouver que toute forêt d'étoiles subdivisées au plus une fois peut être optimalement colorée.

Conjecture

Pour tout graphe G(V, E), on a $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 1$.

Pistes

- 1. Prouver que tout arbre peut être optimalement coloré (cas connexe).
- 2. Prouver que toute forêt d'étoiles subdivisées au plus une fois peut être optimalement colorée.

Variantes

- 1. Avec une coloration propre?
- 2. En n'identifiant que les sommets adjacents?

Conjecture

Pour tout graphe G(V, E), on a $\chi_{\cup}(G) \leq \lceil \log_2(|V|+1) \rceil + 1$.

Pistes

- 1. Prouver que tout arbre peut être optimalement coloré (cas connexe).
- 2. Prouver que toute forêt d'étoiles subdivisées au plus une fois peut être optimalement colorée.

Variantes

- 1. Avec une coloration propre?
- 2. En n'identifiant que les sommets adjacents?

