Statistical Inference

Nguyen Toan

October 26th, 2014

Part 1: Simulation Exercise

Simulation purpose

The exponential distribution can be simulated in R with rexp(n, lambda) where lambda(λ) is the rate parameter. The mean of exponential distribution is $1/\lambda$ and the standard deviation is also $1/\lambda$. For this simulation, we set $\lambda = 0.2$. In this simulation, we investigate the distribution of averages of 40 exponential(0.2)s.

Simulation codes

Results

1. Show where the distribution is centered at and compare it to the theoretical center of the distribution.

```
# center of the distribution
mean(sim.average)
```

```
## [1] 5.012
# theoretical center of the distribution
1/lambda
## [1] 5
```

Answer: The distribution is centered close to the theoretical center of the distribution.

2. Show how variable it is and compare it to the theoretical variance of the distribution.

```
# variance of the distribution
var(sim.average)

## [1] 0.6088

# theoretical variance of the distribution
1 / ((lambda^2) * sample.size)

## [1] 0.625
```

Answer: the variability in the distribution is close to the theoretical variance of the distribution.

3. Show that the distribution is approximately normal.

```
# use qqplot and qqline to show the distribution is approximately normal
qqnorm(sim.average)
qqline(sim.average)
```

Answer: The Q-Q plot proves the statement.

4. Evaluate the coverage of the confidence interval for $1/\lambda : \bar{X} \pm 1.96 \frac{S}{\sqrt{n}}$.

Answer:

```
# Confidence interval
mean(sim.average) + c(-1, 1) * 1.96 * sd(sim.average)
## [1] 3.483 6.541
```

Below is a more detailed graph showing the coverage of the confidence interval.

Normal Q-Q Plot


```
# Coverage of confidence interval
lambdas <- seq(1, 10, by=0.01)
coverage <- sapply(lambdas, function(1) {
   mu.hat <- rowMeans(matrix(rexp(sample.size*simulations, rate=0.2), simulations, sample.siz
   conf.inv <- qnorm(0.975) * sqrt(1/lambda**2/sample.size)
   lower <- mu.hat - conf.inv
   upper <- mu.hat + conf.inv
   mean(lower < 1 & upper > 1)
})

# Plot coverage
library(ggplot2)
```


qplot(lambdas, coverage) + geom_hline(yintercept=0.95, col="blue")