Perceptron Homework

Parameters:

- Number of Inputs: 3 (plus bias)
- Learning Rate (c): 1
- Initial Weights: w1 = 1, w2 = 1, w3 = 1, and bias wb = 1
- Activation Function: Outputs 1 if Net > 0, otherwise 0.

Training Set:

```
1. Pattern 1: [1, 0, 1] \rightarrow 0
```

- 2. Pattern 2: [1, 0.5, 0] → 0
- 3. Pattern 3: $[1, -0.4, 1] \rightarrow 1$
- 4. Pattern 4: $[0, 1, 0.5] \rightarrow 1$

Weight Update Rule:

```
\Delta wi = c \times (t - z) \times xi
```

where:

- t = target output
- z = actual output
- xi = input value
- c = learning rate (1 here)

Process Each Pattern:

Initial Weights

- w1 = 1
- w2 = 1
- w3 = 1

Pattern 1: $[1, 0, 1] \rightarrow 0$

Net Input Calculation:

- Net = $w1 \times 1 + w2 \times 0 + w3 \times 1 + wb \times 1$
- Net = $1 \times 1 + 1 \times 0 + 1 \times 1 + 1 \times 1 = 3$
- **Output (z):** 1 (because net > 0)
- Error Calculation: t z = 0 1 = -1

Weight Updates:

- For w1: Δ w1 = 1 × (-1) × 1 = -1
- For w2: $\Delta w2 = 1 \times (-1) \times 0 = 0$
- For w3: Δ w3 = 1 × (-1) × 1 = -1
- For wb: \triangle wb = 1 × (-1) × 1 = -1

Updated Weights:

- w1 = 1 1 = 0
- w2 = 1 + 0 = 1
- w3 = 1 1 = 0
- wb = 1 1 = 0

Pattern 2: [1, 0.5, 0] → 0

Net Input Calculation:

- Net = $w1 \times 1 + w2 \times 0.5 + w3 \times 0 + wb \times 1$
- Net = $0 \times 1 + 1 \times 0.5 + 0 \times 0 + 0 \times 1 = 0.5$
- **Output (z):** 1 (because net > 0)
- Error Calculation: t z = 0 1 = -1

• Weight Updates:

- For w1: Δ w1 = 1 × (-1) × 1 = -1
- For w2: Δ w2 = 1 × (-1) × 0.5 = -0.5
- For w3: Δ w3 = 1 × (-1) × 0 = 0
- For wb: \triangle wb = 1 × (-1) × 1 = -1

Updated Weights:

•
$$w1 = 0 - 1 = -1$$

```
• w2 = 1 - 0.5 = 0.5
```

•
$$w3 = 0 + 0 = 0$$

•
$$wb = 0 - 1 = -1$$

Pattern 3: $[1, -0.4, 1] \rightarrow 1$

Net Input Calculation:

```
• Net = w1 \times 1 + w2 \times (-0.4) + w3 \times 1 + wb \times 1
```

• Net =
$$(-1) \times 1 + 0.5 \times (-0.4) + 0 \times 1 + (-1) \times 1$$

• Net =
$$-1 - 0.2 - 1 = -2.2$$

- **Output (z):** 0 (because net ≤ 0)
- Error Calculation: t z = 1 0 = 1

Weight Updates:

• For w1:
$$\Delta$$
w1 = 1 × 1 × 1 = 1

• For w2:
$$\Delta$$
w2 = 1 × 1 × (-0.4) = -0.4

• For w3:
$$\Delta$$
w3 = 1 × 1 × 1 = 1

• For wb:
$$\triangle$$
wb = 1 × 1 × 1 = 1

Updated Weights:

•
$$w1 = -1 + 1 = 0$$

•
$$w2 = 0.5 - 0.4 = 0.1$$

•
$$w3 = 0 + 1 = 1$$

•
$$wb = -1 + 1 = 0$$

Pattern 4: [0, 1, 0.5] → 1

Net Input Calculation:

• Net =
$$w1 \times 0 + w2 \times 1 + w3 \times 0.5 + wb \times 1$$

• Net =
$$0 \times 0 + 0.1 \times 1 + 1 \times 0.5 + 0 \times 1$$

• Net =
$$0 + 0.1 + 0.5 = 0.6$$

- **Output (z):** 1 (because net > 0)
- Error Calculation: t z = 1 1 = 0
- Weight Updates: No change as error is 0.
- Updated Weights:

•
$$w1 = 0$$

```
• w2 = 0.1
```

- w3 = 1
- wb = 0

Summary of Weights After Each Pattern

```
1. After Pattern 1: w1 = 0, w2 = 1, w3 = 0, wb = 0
```

2. After Pattern 2: w1 = -1, w2 = 0.5, w3 = 0, wb = -1

3. After Pattern 3: w1 = 0, w2 = 0.1, w3 = 1, wb = 0

4. After Pattern 4: w1 = 0, w2 = 0.1, w3 = 1, wb = 0