MATH-UA 349: Homework 1

James Pagan

Professor Kleiner

Contents

1	Problem 1	2
2	Problem 2	2
3	Problem 3	3
4	Problem 4	3
5	Problem 5	4
	5.1 Part (a)	4
	5.2 Part (b)	6
6	Problem 6	6
7	Problem 7	7
8	Problem 8	7
9	Problem 9	9
	9.1 Part (a)	9
	9.2 Part (b)	9
10	Problem 10	10

1 Problem 1

Proof. The number $7 + \sqrt[3]{2}$ is a root of the polynomial $x^3 - 21x^2 + 147x - 345 = (x - 7)^3 - 2$ in $\mathbb{Z}[x]$, as verified by the following computation:

$$((7 + \sqrt[3]{2}) - 7)^3 - 2 = (\sqrt[3]{2})^3 - 2$$
$$= 2 - 2$$
$$= 0.$$

We conclude that $7 + \sqrt[3]{2}$ is algebraic.

2 Problem 2

Proof. We begin by characterzing the subring R generated by $\alpha = \frac{i}{2}$. For all $n \in \mathbb{Z}_{\geq 0}$:

- 1. If $n \equiv 0 \pmod{4}$, then $\alpha^n = \frac{1}{2^n}$.
- 2. If $n \equiv 1 \pmod{4}$, then $\alpha^n = \frac{i}{2^n}$.
- 3. If $n \equiv 2 \pmod{4}$, then $\alpha^n = -\frac{1}{2^n}$.
- 4. If $n \equiv 3 \pmod{4}$, then $\alpha^n = -\frac{i}{2^n}$.

Claim 1. If n is an odd integer and b+ci is a Gaussian integer, then $\frac{a+bi}{2^n} \in R$

Proof. Suppose that $n \equiv 1 \pmod{4}$. Then

$$\frac{b+ci}{2^n} = \frac{b}{2^n} + \frac{ci}{2^n} = -2b\left(-\frac{1}{2^{n+1}}\right) + c\left(\frac{i}{2^n}\right) = -2b\alpha^{n+1} + b\alpha^n,$$

which lies in R by closure. Similarly, $n \equiv 3 \pmod{4}$ yields that

$$\frac{b+ci}{2^n} = \frac{b}{2^n} + \frac{ci}{2^n} = 2b\left(\frac{1}{2^{n+1}}\right) - c\left(-\frac{i}{2^n}\right) = 2b\alpha^{n+1} - b\alpha^n,$$

which also lies in R.

We now examine closure. Let z be a complex number, and define $S_n = \left\{ \frac{a+bi}{2^n} \mid a, b \in \mathbb{Z} \right\}$ for odd integers n; observe that $S_n \subset R$. It is a trivial exercise in geometry that the farthest z lie away from an element of S is "half of the main diagonal" of the smallest square — more formally,

$$\min\{|z-s| \mid s \in S_n\} \le \frac{1}{2^n} \left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2^{n+1}}.$$

For all $\epsilon > 0$, the Archmedian Property ensures the existence of an integer N such that $\frac{\sqrt{2}}{2^{N+1}} < \epsilon$. Then N < n implies

$$\min\{|z-s| \mid s_n \in S_n\} = \frac{\sqrt{2}}{2^{n+1}} < \frac{\sqrt{2}}{2^{N+1}} < \epsilon,$$

so there exists $s \in S_n \subset R$ such that $|z - s| < \epsilon$ for all ϵ . We conclude that the subring generated by α is dense in R.

3 Problem 3

Proof. We tackle Part (c) first:

Claim 2. A number $m \in \mathbb{Z}_n$ is a unit if and only if gcd(n, m) = 1.

Proof. Realize the following:

$$m$$
 is a unit in $\mathbb{Z}_n \iff ma \equiv 1 \pmod{n}$ for some $a \in \mathbb{Z}$
 $\iff n \mid (ma - 1)$ for some $a \in \mathbb{Z}$
 $\iff nb = ma - 1$ for some $a, b \in \mathbb{Z}$
 $\iff nb - ma = 1$ for some $a, b \in \mathbb{Z}$
 $\iff \gcd(n, m) = 1$.

The last step is a direct application of Bézout's Identity.

We deduce the following answers for each part:

- (a) The units are 1, 5, 7, and 11.
- (b) The units are 1, 3, 5, and 7.
- (c) The units are all $m \in \mathbb{Z}_n$ such that gcd(n, m) = 1,

as desired.

4 Problem 4

Proof. Performing polynomial divisor yields that

$$x^4 + 3x^3 + x^2 + 7x + 5 = (x^2 + 2x - 2)(x^2 + x + 1) + (7x + 7).$$

If $x^4 + 3x^3 + x^2 + 7x + 5$ divides $x^2 + x + 1$ in \mathbb{Z}_n , then 7x + 7 is must be the zero polynomial — which occurs if and only if $7 \equiv 0 \pmod{n}$. The answer is all positive n such that $7 \mid n$, with a *potential* inclusion of n = 1 if deemed a valid modulus.

5 Problem 5

5.1 Part (a)

Proof. Rather routine calculations verify that F[[x]] is a ring. We must first prove that (F[[x]], +) is an Abelian group:

- 1. Closure: It is clear that if $f, g \in F[[x]]$, then $f + g \in F[[x]]$.
- 2. **Associativity**: Since F is a field, $f, g, h \in F[x]$ implies ((f+g)+h)(k) = (f(k)+g(k)) + h(k) = f(k) + (g(k)+h(k)) = (f+(g+h))(k) for all $k \in \mathbb{Z}_{\geq 0}$; thus (f+g)+h=f+(g+h)
- 3. **Identity**: It is easy to verify that f(k) = 0 is an additive identity of F[[x]].
- 4. **Invertability**: For $f \in F[[x]]$, define -f by (-f)(k) = -f(k). Then (-f)(k) + f(k) = -f(k) + f(k) = 0 = f(k) f(k) = f(k) + (-f)(k) for all $k \in \mathbb{Z}_{>0}$; thus -f + f = 0.
- 5. Commutativity: See that (f+g)(k) = f(k) + g(k) = g(k) + f(k) = (g+f)(k) for all $k \in \mathbb{Z}_{\geq 0}$; hence f = g.

The multiplicative axioms are as follows:

- 6. Closure: It is clear that if $f, g \in F[[x]]$, then $fg \in F[[x]]$.
- 7. Associativity: Observe that for all $k \in F$,

$$((fg)h)(k) = \sum_{i+j=k} (fg)(i)h(j) = \sum_{i+j=k} \left(\sum_{a+b=i} f(a)g(b)\right)g(j)$$

$$= \sum_{a+b+c=k} f(a)g(b)h(c)$$

$$= \sum_{i+j=k} f(i)\left(\sum_{a+b=j} g(a)h(b)\right) = \sum_{i+j=k} f(i)(gh)(j)$$

$$= (f(gh))(k).$$

Therefore, f(gh) = fg(h).

8. **Identity**: Let g(k) = 0 if $k \neq 0$ and g(0) = 1. Then for all $f \in F[[x]]$, and $k \in F$,

$$(fg)(k) = \sum_{i+j=k} f(i)g(j) = f(k) = \sum_{i+k=k} g(i)f(j) = (gf)(k).$$

We conclude that fg=gf=f for all $f\in F[[x]],$ so g is a multiplicative identity.

The two distributive axioms are as follows:

9. **Left Distributivity**: For all $f, g, h \in F[[x]]$ and $k \in F$, we have

$$(f(g+h))(k) = \sum_{i+j=k} f(i)(g+h)(j)$$
$$= \sum_{i+j=k} f(i)g(j) + \sum_{i+k=k} f(i)h(j)$$
$$= (fg)(k) + (fh)(k).$$

Thus f(g+h) = fg + fh.

10. **Right Distributivity**: For all $f, g, h \in F[[x]]$ and $k \in F$, we have

$$((f+g)h)(k) = \sum_{i+j=k} (f+g)(i)h(j)$$
$$= \sum_{i+j=k} f(i)h(j) + \sum_{i+k=k} g(i)h(j)$$
$$= (fh)(k) + (gh)(k).$$

Thus (f+g)h = fg + gh.

Therefore, F[[x]] is a ring.

5.2 Part (b)

Proof. Recall that the identity function of F[[x]] is 1 when k=0 and 0 otherwise. If $f \in F[[x]]$ has a multiplicative inverse g, then expanding these equations across all $k \geq 0$ yields

$$1 = f(0)g(0)$$

$$0 = f(1)g(0) + f(0)g(1)$$

$$0 = f(2)g(0) + f(1)g(1) + f(0)g(1)$$

$$\vdots$$

$$0 = f(k)g(0) + \dots + f(0)g(k)$$

$$\vdots$$

Solving for g along each equation, we obtain a recursive formula:

$$g(0) = \frac{1}{f(0)}$$

$$g(1) = -\frac{f(1)g(0)}{f(0)}$$

$$g(2) = -\frac{f(2)g(0) + f(1)g(1)}{f(0)}$$

$$\vdots$$

$$g(k) = \frac{f(k)g(0) + \dots + f(1)g(k-1)}{f(0)}$$

$$\vdots$$

A straightforward induction verifies that this formula produces a multiplicative inverse. Naturally, this recursion can occur if and only if $f(0) \neq 0$.

6 Problem 6

Proof. Suppose \mathfrak{a} is a nonzero ideal of the Gaussian integers, and let $a+bi \in \mathfrak{a}$ for $a,b \in \mathbb{Z}$, not both equal to zero. Then

$$(a+bi)(a-bi) = a^2 + b^2 \in \mathfrak{a};$$

noting that $a^2 + b^2 \in \mathbb{Z} + > 0$ completes the proof.

7 Problem 7

Proof. Since the operations upon F are pointwise, verifying that Φ is a homomorphism is easy: for all $f, g \in R$ and $a \in F$, we have

$$\Phi(f+g)(a) = (f+g)(a) = f(a) + g(a) = \Phi(f)(a) + \Phi(g)(a)$$

$$\Phi(fg)(a) = (fg)(a) = f(a)g(a) = \Phi(f)(a)\Phi(g)(a).$$

As for the injectivity of Φ , suppose that $\Phi(f)(a) = f(a) = 0$ for all $a \in F$. Consider f in the algebraically closed extension of F: it has more roots than its degree, since the former is finite while the latter is infinite.

We conclude that f it must be the zero polynomial in this algebraically closed extension. Thus f = 0 in F[x] as well, so Φ is injective.

8 Problem 8

Proof. Suppose $\phi : \mathbb{Z}[x] \to \mathbb{Z}[x]$ is an automorphism, and let $p = a_n x^n + \dots + a_1 x + a_0$ be any polymonial of $\mathbb{Z}[x]$, where $a_n \neq 0$. Then

$$\phi(p) = \phi(a_n x^n + \dots + a_1 x + a_0) = a_n \phi(x)^n + \dots + a_1 \phi(x) + a_0 \phi(1).$$

Hence, ϕ is uniquely determined by $\phi(x)$ and $\phi(1)$. We claim the answer is as follows: ϕ is an automorphism if and only if ϕ is an endomorphism and $\phi(x)$ is an affine function with leading coefficient 1 or -1.

Let ϕ be an automorphism. We wish to demonstrate that $\phi(x)$ is an affine function with leading coefficient 1 or -1.

Claim 3. $\phi(x)$ is an affine function with leading coefficient 1 or -1.

Proof. Suppose for contradiction that $\deg \phi(x) > 1$; then the degree of all nonconstant polynomials in $\phi(\mathbb{Z}[x])$ is an integer multiple of $\phi(x)$, violating the injectivity of ϕ . Hence $\phi(x)$ is an affine function of the form bx + c for some $b, c \in \mathbb{Z}$.

As noted in Claim 1, $b \neq 0$. Realize that the leading term of $\phi(p)$ is the leading term of $a_n \phi(x)^n$, which is

$$a_n b^n x^n$$
.

We must have that $b^n = \pm 1$ in order for ϕ to be injective; thus $b = \pm 1$.

Now, let ϕ be an endomorphism of $\mathbb{Z}[x]$ such that $\phi(x) = bx + c$, where $b \in \{-1, 1\}$ and $c \in \mathbb{Z}$. We wish to demonstrate that ϕ is an automorphism.

Claim 4. ϕ is injective.

Proof. Let $p = a_n x^n + \cdots + a_1 x + a_0$ be a polynomial in $\mathbb{Z}[x]$ of degree n such that $\phi(p) = 0$; suppose for contradiction that $n \geq 1$. Then the leading coefficient $\pm a_n x^n$ of $\phi(p)$ of must be zero; hence $a_n = 0$, which violates the degree of n.

Thus p must be constant. Since $\phi(p) = p$ for all constant polynomials (a consequence of the fact $\phi(1) = 1$), we must have p = 0; thus Ker $\phi = 0$, so ϕ is injective.

Claim 5. ϕ is surjective.

Proof. We prove that for all $p \in \mathbb{Z}[x]$, there exists $s \in \mathbb{Z}[x]$ such that $\phi(s) = p$ by induction on the degree of p. For the base clase: clearly if p is constant, then $\phi(p) = p$. For the inductive step: suppose that all polyomials of degree n-1 or smaller lie within $\phi(\mathbb{Z}[x])$, and let $p = a_n x^n + \cdots + a_n x^n + a_0$, where $a_n \neq 0$. Then

$$p \pm a_n (bx + c)^n$$

is of degree n-1 or smaller, where \pm cancels out the leading coefficient of p, sign being dependent on b and the parity of n. Our inductive hypothesis guarantees the existence of a polynomial $s \in \mathbb{Z}[x]$ such that

$$\phi(s) = p \pm a_n (bx + c)^n.$$

Hence, we deduce that

$$\phi(s \mp a_n x^n) = \phi(s) \mp a_n \phi(x)^n = p \pm a_n (bx + c)^n \mp a_n (bx + c)^n = p.$$

Thus all polynomials of degree n lie within $\phi(\mathbb{Z}[x])$. This completes the induction.

We conclude that ϕ is an automorphism, which implies the required result.

9 Problem 9

9.1 Part (a)

Proof. We claim that $\mathbb{Z}[i]/(2+i) \cong \mathbb{Z}_5$, by the isomorphism: $\phi(a+bi) = a+3b \pmod{5}$. Verifying that ϕ is a homomorphism is straightforward: if a+bi and c+di are Gaussian integers,

$$\phi(a+bi) + \phi(c+di) = a + 3b + c + 3d \pmod{5}$$

$$\equiv (a+c) + 3(b+d) \pmod{5}$$

$$= \phi(a+c+i(b+d))$$

$$= \phi((a+bi) + (c+di)).$$

As per the multiplicative condition,

$$\phi(a+bi)\phi(c+di) = (a+3b)(c+3d) \pmod{5}$$

$$\equiv ac + 3(ad+bc) + 9bd \pmod{5}$$

$$\equiv (ac-bd) + 3(ad+bc) \pmod{5}$$

$$= \phi((ac-bd) + i(ad+bc))$$

$$= \phi((a+bi)(c+di)).$$

It is clear that $\phi(1) = 1$, so ϕ is a homomorphism; it is surjective, as $\phi(n) = n$ for $n \in \{0, ..., 4\}$. We need only demonstrate that ϕ is injective. Suppose that $\phi(a + bi) = 0$, which implies $a + 3b \equiv 0 \pmod{5}$; we wish to demonstrate that a + bi = (2 - i)z for a Gaussian integer z. See that

$$2a + b \equiv 2(a + 3b) \cong 0 \pmod{5}$$
 and $-a + 2b = -1(a + 3b) \cong 0 \pmod{5}$.

Then let us divide a + bi by 2 - i: define

$$z = \frac{a+bi}{2-i} = \frac{(a+bi)(2-i)}{2^2-i^2} = \frac{(2a+b)+(-a+2b)i}{5}.$$

Since both the real and imaginary components of this fraction are divisible by 5, we deduce that z is a Gaussian integer. Then a+bi is 0 modulo (2+i), so Ker $\phi=0$. We conclude that ϕ is injective, which implies the desired isomorphism.

9.2 Part (b)

Proof. We claim that $\mathbb{Z}[x]/(x^2+3,5) \cong \mathbb{F}_{25}$, the field with 25 elements; since all finite fields of the same order are isomorphic, we need only demonstrate that $\mathbb{Z}[x]/(x^2+3,5)$ is a field with 25 elements.

Our proof will utilize the equivalent notation $\mathbb{Z}[x]/(x^2+3,5) = \mathbb{Z}_5[x]/(x^2+3)$.

Naturally, the elements of $\mathbb{Z}_5[x]/(x^2+3)$ are the 25 polynomials of the form ax+b, for $a,b\in\{0,\ldots,4\}$; this is because if $\deg p\geq 2$, there exist polynomials q and r with integer coefficients (ensured since x^2+3 is monic) such that

$$p = (x^2 + 3)q + r$$

where r is zero or $\deg r < 2$. Hence $p \equiv r \pmod{x^2 + 3}$, and r is of the aforementioned form ax + b. Hence the commutative ring $\mathbb{Z}_5[x] / (x^2 + 5)$ has order 25.

Claim 6. Every nonzero polynomial in $\mathbb{Z}_5[x]/(x^2+3)$ is a multiplicative unit.

Proof. The nonzero constant polynomials 1, 2, 3, 4 are units by Problem 3. Now, consider ax for $a \neq 0$; since $x^2 \equiv 2 \pmod{x^2 + 3}$, we have that

$$(ax)(3a^{-1}x) \equiv (aa^{-1})3x^2 \equiv 3x^2 \equiv 6 \equiv 1 \pmod{x^2+3}.$$

where a^{-1} denotes the modular inverse of a; thus ax is a unit. Now, consider ax + b for $a, b \neq 0$; define n as the multiplicative inverse of $2 - (a^{-1}b)^2$ (since squares modulo 5 are congruent to 0, 1, or 4, this quantity is never zero and is thus a unit). Then

$$(ax+b)\Big(n(a^{-1}x-a^{-2}b)\Big) \equiv n(ax+b)(a^{-1}x-a^{-2}b) \pmod{x^2+3}$$
$$\equiv n(x^2-a^{-2}b^2) \pmod{x^2+3}$$
$$\equiv n(2-(a^{-1}b)^2) \pmod{x^2+3}$$
$$\equiv 1 \pmod{x^2+3}.$$

Thus every nonzero polynomial in $\mathbb{Z}_{5}[x]/(x^{2}+3)$ is a unit.

We conclude that $\mathbb{Z}_5[x]/(x^2+3)$ is a field with 25 elements, so it is isomorphic to \mathbb{F}_{25} . \square

10 Problem 10

Proof. Suppose for contradiction that $\phi: \mathbb{Z}[x]/(2x^2+7) \to \mathbb{Z}[x]/(x^2+7)$ is an isomorphism. Observe that $(2x^2+7)$ and (x^2+7) are prime ideals of $\mathbb{Z}[x]$, so both quotient rings are integral domains. Since $\phi(n) = n$ for all constant polynomials n, we have

$$\phi(0) = 0 \implies \phi(x^2 + 7) = 2x^2 + 7$$

$$\implies \phi(x^2) + \phi(7) = 2x^2 + 7$$

$$\implies \phi(x)^2 + 7 = 2x^2 + 7.$$

We deduce that $\phi(x)^2 = 2x^2$. Let $\phi(x) = ax + b$ for integers a, b; then

$$2x^2 = (ax + b)^2 = a^2x^2 + 2abx + b^2.$$

We must have that 2abx = 0; thus a = 0 or b = 0. If a = 0, then $\phi(x)$ is a constant; the image of ϕ consists of constant polynomials, violating the injectivity of ϕ . Thus b = 0 and $\phi(x) = ax$. This leaves us with the equation

$$2x^2 = a^2x^2 \implies (2 - a^2)x^2 = 0.$$

Then $2 - a^2 = 0$; however, no integer a satisfies this equation. Any possibility of the value $\phi(x)$ leads to a contradiction, so the rings are not isomorphic.