Занятие 15. ОДУ первого порядка, его решение. Геометрическое решение ОДУ первого порядка методом изоклин. Интегрирование ОДУ с разделяющимися переменными и однородных ОДУ.

Функциональное уравнение

$$F(x, y, y') = 0 \tag{1}$$

или

$$y' = f(x, y), \tag{2}$$

связывающее между собой независимую переменную, искомую функцию () и ее производную у' (x), называется дифференциальным уравнением 1-го порядка.

Решением (частным решением) уравнения (1) или (2) на интервале (a,b) называется любая функция $y = \phi(x)$, которая, будучи подставленой в это уравнение вместе со своей производной ϕ' , обращает его в тождество относительно $x \in (a,b)$.

9.1. Показать, что при любом действительном значении параметра C выражение $y = x (C - \ln |x|)$ определяет решения дифференциального уравнения (x - y) dx + x dy = 0.

⊲ Преобразуем заданное дифференциальное уравнение

$$(x-y) dx + x dy = 0 \Rightarrow x dy = (y-x) dx,$$

разделив полученное выражение на dx, получим:

$$x\frac{dy}{dx} = (y-x)$$
 ,значит $y' = \frac{(y-x)}{x}$

Подставим в последнее равенство заданную функцию y и её производную $y' = (C - \ln |x|) - 1$, получим:

 $(C-\ln|x|)-1=rac{(x\,(C-\ln|x|)-x)}{x}$ тождество верно \Rightarrow заданная функция определяет решения дифференциального уравнения.

Метод изоклин

Решение уравнения y' = f(x, y), проходящее через точку (x, y), должно иметь в этой точке производную y', равную f(x, y), т.е. оно должно касаться прямой, наклоненной под углом $\alpha = \arctan(f(x, y))$ к оси Ox.

Геометрическое место точек плоскости (x,y), в которых наклон касательных к решениям уравнения y' = f(x,y) один и тот же, называется изоклиной. Уравнение изоклины имеет вид f(x,y) = k, где k – постоянная.

• Чтобы приближенно построить решения уравнения y' = f(x,y), можно начертить достаточное число изоклин, а затем провести решения, т.е. кривые, которые в точках пересечения с изоклинами $f(x,y) = k_1$, $f(x,y) = k_2$, \cdots имеют касательные с угловыми коэффициентами k_1, k_2, \cdots соответственно.

• Чтобы потроить дифференциальное уравнение, которому удовлетворяют кривые семейства

$$\phi(x, y, C_1, \cdots, C_n) = 0, \tag{3}$$

надо продифференцировать равенство (3) n раз, считая y функцией от x, а затем из полученных уравнений и уравнения (3) исключить произвольные постоянные C_1, \cdots, C_n

9.9. Составить дифференциальные уравнения семейств парабол $y = x^2 + 2ax$.

 \triangleleft Единственная произвольная постоянная a, дифференцируем исходное уравнение y'=2x+2a, выражаем $a=\frac{y'}{2}-x$ и из исходного уравнения $a=\frac{y}{2x}-\frac{x}{2}$, приравнивая выражения для a, имеем:

$$\frac{y}{2x} - \frac{x}{2} = \frac{y'}{2} - x$$
 или $y - x^2 = xy' - 2x^2$ или $y + x^2 = xy'$. \triangleright

9.16. Методом изоклин построить приближенно семейство интегральных кривых уравнения

$$y' = x + y.$$

Напомним, что уравнение изоклины имеет вид y' = k, где k – некоторая постоянная. Строится достаточно густая сетка изоклин для различных значений k и на каждой изоклине изображаются небольшие отрезки (показаны стрелочками) с наклоном $lpha = ext{arctg}(k).$ Разберем построение на примере:

- при k=0 имеем $x+y=0 \Rightarrow y=-x,\, \alpha=0.$
- Чертим прямую y=-x и наносим на неё под углом $\alpha=0$ стрелочки.

 при $k=\frac{1}{\sqrt{3}}$ имеем $x+y=\frac{1}{\sqrt{3}}\Rightarrow y=-x+\frac{1}{\sqrt{3}},\ \alpha=\frac{\pi}{6}$ Чертим прямую $y=-x+\frac{1}{\sqrt{3}}$ и наносим на неё под углом $\alpha=\frac{\pi}{6}$ стрелочки. Аналогично для следующих значений k:
- при k = 1 имеем $x + y = 1 \Rightarrow y = -x + 1, \ \alpha = \frac{\pi}{4}$
- при $k = \sqrt{3}$ имеем $x + y = \sqrt{3} \Rightarrow y = -x + \sqrt{3}$, $\alpha = \frac{\pi}{3}$
- при k = -1 имеем $x + y = -1 \Rightarrow y = -x 1, \ \alpha = -\frac{\pi}{4}$
- при $k = -\frac{1}{\sqrt{3}}$ имеем $x + y = -\frac{1}{\sqrt{3}} \Rightarrow y = -x \frac{1}{\sqrt{3}}, \ \alpha = -\frac{\pi}{6}$ при $k=-\sqrt{3}$ имеем $x+y=-\sqrt{3} \Rightarrow y=-x-\sqrt{3}, \ \alpha=-\frac{\pi}{3}$
- 2. Начиная из некоторой точки (x_0, y_0) , поводится линия, которая, будет пересекать каждую изоклину под углом, заданным полем направлений (стрелками). Полученная таким образом кривая и будет приближенным изображением (эскизом) интегральной кривой уравнения, проходящей через точку (x_0, y_0) .

9.18. Методом изоклин построить приближенно семейство интегральных кривых уравнения y' = -y/x.

Строим изоклины: $-y/x = k \Rightarrow y = -kx$

$$k=0, \Rightarrow y=0, \alpha=0$$

Чертим прямую y=0 и наносим на неё под углом $\alpha=0$ стрелочки. $k=\frac{1}{\sqrt{3}},\ y=-\frac{1}{\sqrt{3}}x,\ \alpha=\frac{\pi}{6}$

$$k = \frac{1}{\sqrt{3}}, y = -\frac{1}{\sqrt{3}}x, \alpha = \frac{\pi}{6}$$

Чертим прямую $y=-\frac{1}{\sqrt{3}}x$ и наносим на неё под углом $\alpha=\frac{\pi}{6}$ стрелочки.

Аналогично для следующих значений
$$k$$
: $k=1$ имеем $y=-x,\ \alpha=\frac{\pi}{4}$

$$k=\sqrt{3}$$
 имеем $y=-\sqrt{3}x,\, \alpha=\frac{\pi}{3}$ $k=-1$ имеем $y=x,\, \alpha=-\frac{\pi}{4}$

$$k=-1$$
 имеем $y=x,\, \alpha=-\frac{\pi}{4}$

$$k = -\frac{1}{\sqrt{3}}$$
 имеем $y = \frac{1}{\sqrt{3}}x$, $\alpha = -\frac{\pi}{6}$

$$k=-\sqrt{3}$$
 имеем $y=\sqrt{3}x,\,\alpha=-\frac{\pi}{3}$

Можно строить сколь угодно много изоклин, выбирая разные значения k, не только табличные.

Уравнения с разделяющимися переменными и однородной правой частью

Уравнения с разделяющимися переменными могут быть записаны в виде

$$y' = f(x)g(y) \tag{4}$$

а также в виде

$$M(x)N(y)dx + P(x)Q(y)dy = 0.$$
 (5)

Для решения такого уравнения надо обе его части умножить и разделить на такое выражение, чтобы в одну часть уравнения входило только x, в другую – только y, и затем проинтегрировать обе части.

При делении обеих частей уравнения на выражение, содержащее неизвестные x и y, могут быть потеряны решения,обращающее это выражение в нуль.

Решить дифференциальные уравнения:

9.22. y' = x/y.

⊲ Имеем уравнение с разделяющимися переменными

$$\frac{dy}{dx} = \frac{x}{y}, \ y \, dy = x \, dx,$$

Интегрируем обе части

$$\int y \, dy = \int x \, dx \Rightarrow \frac{y^2}{2} = \frac{x^2}{2} + C,$$

$$y^2 = x^2 + C. \triangleright$$

9.27. $y'\sqrt{1 - x^2} = 1 + y^2.$

◁

$$\frac{dy}{dx}\sqrt{1-x^2}=1+y^2--$$
уравнение с разделяющимися переменными

$$\frac{dy}{1+y^2} = \frac{dx}{\sqrt{1-x^2}}$$

Интегрируем обе части

$$\int \frac{dy}{1+y^2} = \frac{dx}{\sqrt{1-x^2}}$$

 $arctg y = arcsin x + C. \triangleright$

9.30.
$$(1+y^2)x dx + (1+x^2) dy = 0.$$

⊲ Имеем уравнение с разделяющимися переменными

$$(1+y^2)x dx = -(1+x^2) dy$$
$$\frac{x dx}{1+x^2} = -\frac{dy}{1+y^2}$$
$$\frac{1}{2} \frac{d(1+x^2)}{1+x^2} = -\frac{dy}{1+y^2}$$

$$\frac{1}{2}\ln|1+x^2| = -\arctan y + C. \triangleright$$

9.37. $y' = \cos(x + y)$.

 \triangleleft В этом уравнении необходимо сделать замену u(x) = x + y(x).

Тогда u' = 1 + y' и $u' - 1 = \cos u$

$$\frac{du}{dx} = \cos u + 1$$
$$\frac{du}{\cos u + 1} = dx$$

(Заметим, что $\cos u = -1$ не даст решения)

$$\int \frac{du}{\cos u + 1} = \left| \begin{array}{c} t = \operatorname{tg} \frac{u}{2} \\ u = 2 \operatorname{arctg} t \end{array} \right| = \int \frac{\frac{2 dt}{1 + t^2}}{\frac{1 - t^2}{1 + t^2} + 1} = \int \frac{2 dt}{1 - t^2 + 1 + t^2} = \int dt = t + C = \operatorname{tg} \frac{u}{2} + C$$

$$\operatorname{tg} \frac{u}{2} = x + C$$

Выполняем обратную замену:

$$\operatorname{tg} \frac{x+y}{2} = x + C. \triangleright$$

9.39. $y' = (4x + y + 1)^2$.

 \triangleleft Замена: u(x) = 4x + y + 1, u' = 4 + y'.

$$u' - 4 = u^2$$
; $\frac{du}{dx} = u^2 + 4$; $\frac{du}{u^2 + 4} = dx$; $\frac{1}{2} \arctan \frac{u}{2} = x + C$;

Выполняем обратную замену:
$$\frac{4x+y+1}{2}=2x+C.
ightharpoons$$

9.44. Найти частное решение уравнения $(xy^2+x) dy+(x^2y-y) dx=0$, удовлетворяющее начальному условию y(1) = 1.

$$x(y^{2} + 1) dy = y(1 - x^{2}) dx$$
 : xy
 $(y + 1/y) dy = (1/x - x) dx$

Интегрируем обе части уравнения

$$\int (y+1/y) \, dy = \int (1/x - x) \, dx$$
$$\frac{y^2}{2} + \ln|y| = \ln|x| - \frac{x^2}{2} + C;$$

Подставляем начальные условия:

$$\frac{1}{2} + 0 = 0 - \frac{1}{2} + C$$
, откуда $C = 1$, подставляем константу в решение

$$\frac{y^2}{2} + \ln|y| = \ln|x| - \frac{x^2}{2} + 1. \triangleright$$

Однородные дифференциальные уравнения.

Однородные уравнения могут быть записаны в виде $y' = f(\frac{x}{y})$, а также в виде M(x,y)dx + N(x,y)dy = 0, где M(x,y) и N(x,y) – однородные функции одной и той же степени.

• Чтобы решить однородное уравнение, можно сделать замену y = ux, после чего получается уравнение с разделяющимися переменными.

Пример. Решить уравнение xdy = (x + y)dx.

Имеем однородное уравнение. Полагаем $y = u(x) \cdot x$. Тогда dy = xdu + udx. Подставляя в уравнение, получим

$$x(xdu + udx) = (x + ux)dx; xdu = dx$$

Получили уравнение с разделяющимися переменными

$$du = \frac{dx}{x}, u = \ln|x| + C.$$

Возвращаемся к исходным переменным, получим $y = x(\ln |x| + C)$. Кроме того, имеется решение x = 0, которое было потеряно при делении на x.

• Уравнение вида $y'=f(\frac{a_1x+b_1y+c_1}{ax+by+c})$ приводятся к однородному с помощью переноса начала координат в точку пересечения прямых ax+by+c=0 и $a_1x+b_1y+c_1=0$. Если эти прямые не пересекаются, то $a_1x+b_1y=k(ax+by)$, следовательно уравнение имеет вид y'=F(ax+by) и приводятся к уравнению с разделяющимися переменными заменой z=ax+by или (z=ax+by+c).

Решить уравнения:

9.46.
$$y' = \frac{y}{x} + \frac{x}{y}$$
.

 \triangleleft Выполним замену $y=x\cdot u(x)$, тогда $y'=u(x)+x\cdot u'(x)$.

Приравниваем исходное y' с тем, который получили после замены переменной:

$$u(x) + x \cdot u'(x) = u(x) + \frac{1}{u(x)},$$

 $xu' = \frac{1}{u}$ — уравнение с разделяющимися переменными, $x\frac{du}{dx} = \frac{1}{u}$, $u\,du = \frac{dx}{x}$.

Интегрируем и получаем: $\frac{u^2}{2} = \ln|x| + C;$ $\frac{y^2}{2x^2} = \ln|x| + C;$

Возвращаемся к исходным переменным:

$$y^2 = 2x^2 \ln|x| + 2Cx^2$$
. \triangleright

9.55.
$$xy' - y = \sqrt{x^2 - y^2}$$
.

Приравняем уравнения для производных:

$$x(u'x + u) - ux = \sqrt{x^2 - x^2u^2}$$

Получили уравнение с разделяющимися переменными:

$$u'x^2 = |x|\sqrt{1 - u^2}.$$

По-хорошему здесь надо рассматривать два случая: x > 0 и x < 0.

$$u'x=\pm\sqrt{1-u^2}.$$
 (Плюс для $x>0,$ минус для $x<0.$)
$$\frac{du}{\sqrt{1-u^2}}=\pm\frac{dx}{x}\quad \text{(отдельно рассмотрим случай }u=\pm1)$$

$$\arcsin u=\pm\ln|x|+C$$

$$u=\sin(\pm\ln|x|+C)$$

В исходных переменных:

$$\frac{y}{x} = \sin(\pm \ln|x| + C) \implies y = x\sin(\pm \ln|x| + C).$$

Теперь рассмотрим случай $u=\pm 1$, поскольку при этих значениях могут быть потеряны решения (обнуляют знаменатель), т.е. $y=\pm x$, подтавляем решение в исходное уравнение, получаем:

$$x \cdot (\pm 1) - (\pm x) = 0 \Rightarrow$$
 равенство удовлетворяется.

Otbet: $y = \pm x$, $y = x \sin(\pm \ln|x| + C)$. \triangleright

9.64. Найти частное решение уравнения $xy' = y \ln \frac{y}{x}$, удовлетворяющее начальному условию y(1) = 1.

 \triangleleft Исходное уравнение однородное, выполняем замену $y = x \cdot u(x); \ y' = u(x) + x \cdot u'(x).$ Подставляем производную в исходное уравнение и приходим к уравнению с разделяющимися переменными:

$$xu + x^2u' = xu \ln u; \quad xu' = (\ln u - 1)u; \quad \frac{du}{(\ln u - 1)u} = \frac{dx}{x}; \quad \frac{d(\ln u - 1)}{(\ln u - 1)} = \frac{dx}{x}$$

Интегрируя, получаем:

$$\ln |\ln u - 1| = \ln |x| + \ln C; \quad \ln u - 1 = Cx; \quad u = e^{Cx+1}$$

В исходных переменных решение примет вид: $y = xe^{Cx+1}$. Используя начальное условие, y(1) = 1 найдем константу C:

$$y(1) = e^{C+1} = 1 \implies C = -1; \quad y = xe^{1-x}. \triangleright$$

 $Tekyuee \ \mathcal{J}3: 9.3, 9.6, 9.12, 9.20, 9.22, 9.26, 9.28, 9.34, 9.36, 9.40, 9.45, 9.47, 9.51, 9.53, 9.66.$