BROUILLON - NEWTON, BERNOULLI, LEIBNIZ, FIBONACCI ET BELL

CHRISTOPHE BAL

Document, avec son source L^AT_EX , disponible sur la page https://github.com/bc-writings/bc-public-docs/tree/main/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1.	Des identités bien connues	2
2.	La loi binomiale révèle	2
2.1.	De l'utilité des arbres	2
2.2.	. XXX	2
3.	La formule du binôme de Newton implique	2

Date: 17 Mars 2025 - 22 Mars 2025.

1. Des identités bien connues

Les formules suivantes sont intrigantes par leur ressemblance. Bien qu'elles relèvent de domaines différents, nous verrons que cela n'a rien d'une coïncidence : à travers deux démonstrations adoptant des points de vue distincts, nous mettrons en évidence les liens entre ces objets qui, à première vue, semblent sans rapport.

- Formule du binôme de Newton : $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- Formule de dérivation de Leibniz : $(fg)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(x) g^{(n-k)}(x)$.
- Loi binomiale : $P(X = j) = \sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} \delta_{jk}$, même s'il est d'usage de juste écrire $P(X = j) = {n \choose j} p^j (1-p)^{n-j}$.
- Une identité portant sur la suite de Fibonacci : $F_{2n} = \sum_{k=0}^{n} {n \choose k} F_k$.
- Une équation reliant les nombres de Bell : $B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_k$.
 - 2. La loi binomiale révèle...

2.1. De l'utilité des arbres. XXXX

2.2. **XXX.** XXXX

3. La formule du binôme de Newton implique...

XXXX

^{1.} δ_{jk} est le symbole de Kronecker valant 1 si j = k, et 0 sinon, tandis que X désigne la variable aléatoire comptant le nombre de succès d'un schéma de Bernoulli de paramètre (n; p).

^{2.} B_n est le nombre de façons de partitionner un ensemble de n éléments en sous-ensembles non vides : par exemple, $B_3 = 5$, car l'ensemble $\{a, b, c\}$ admet les partitions $\{a\} \cup \{b\} \cup \{c\}, \{a, b, c\}, \{a\} \cup \{b, c\}, \{b\} \cup \{a, c\}$ et $\{c\} \cup \{a, b\}$.