

Lines and Angles Ex 8.4 Q26

Answer:

(i)

Statement: If two lines are intersected by a transversal, then corresponding angles are equal.

False

Reason:

The above statement holds good if the lines are parallel only.

(ii)

<u>Statement</u>: If two parallel lines are intersected by a transversal, then alternate interior angles are equal.

True

Reason:

Let / and m are two parallel lines.

And transversal t intersects l and m making two pair of alternate interior angles, $\angle 1$, $\angle 2$ and $\angle 3$, $\angle 4$.

We need to prove that $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$

We have,

 $\angle 2 = \angle 5$ (Vertically opposite angles)

And, $\angle 1 = \angle 5$ (corresponding angles)

Therefore,

 $\angle 1 = \angle 2$ (Vertically opposite angles)

Again, $\angle 3 = \angle 6$ (corresponding angles)

Hence, $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$.

(iii)

Statement: Two lines perpendicular to the same line are perpendicular to each other.

False

Reason:

The figure can be drawn as follows:

Here, $l \perp n$ and $m \perp n$

It is given that $l \perp n$, therefore,

 $\angle 1 = 90^{\circ}$ (i)

Similarly, we have $m \perp n$, therefore,

 $\angle 2 = 90^{\circ}$ (ii)

From (i) and (ii), we get:

 $\angle 1 = \angle 2$

But these are the pair of corresponding angles.

Theorem states: If a transversal intersects two lines in such a way that a pair of corresponding angles is equal, then the two lines are parallel.

Thus, we can say that $l \parallel m$

(iv

Statement: Two lines parallel to the same line are parallel to each other.

True

Reason

The figure is given as follows:

It is given that $l \parallel m$ and $m \parallel n$

We need to show that $I \parallel m$

We have $l \parallel m$, thus, corresponding angles should be equal.

That is,

 $\angle 1 = \angle 2$

Similarly,

 $\angle 3 = \angle 2$

Therefore,

 $\angle 1 = \angle 3$

But these are the pair of corresponding angles.

Therefore, $l \parallel m$

(V)

<u>Statement</u>: If two parallel lines are intersected by a transversal, then interior angles on the same side of the transversal are equal.

False

Reason:

Theorem states: If a transversal intersects two parallel lines then the pair of alternate interior angles is equal.

Lines and Angles Ex 8.4 Q27

Answer

- (i) If two parallel lines are intersected by a transversal, then corresponding angles are equal.
- (ii) If two parallel lines are intersected by a transversal, then interior angles on the same side of the transversal are <u>supplementary</u>.
- (iii) Two lines perpendicular to the same line are <u>parallel</u> to each other.
- (iv) Two lines parallel to the same line are parallel to each other.
- (v) If a transversal intersects a pair of lines in such a way that a pair of interior angles is equal, then the lines are <u>parallel</u>.
- (vi) If a transversal intersects a pair of lines in such a way that a pair of interior angles on the same side of transversal is 180° , then the lines are <u>parallel</u>.

