# Calcul trigonométrique Tronc commun science

Pr. LATRACH Abdelkbir Année scolaire: 2019 - 2020

#### 

$$A(0)$$
 ;  $B(\frac{\pi}{3})$  ;  $C(\frac{\pi}{2})$  ;  $D(-\frac{\pi}{3})$  ;  $E(\pi + \frac{\pi}{3})$ ;  $F(\pi - \frac{\pi}{3})$  ;  $G(\frac{5\pi}{6})$  ;  $H(2\pi)$  ;  $K(103\pi)$ .

### 

① Déterminer l'abscisse curviligne principal des points sui-

$$A\left(\frac{15\pi}{6}\right) \quad ; \quad B\left(-\frac{21\pi}{4}\right) \quad ; \quad C\left(\frac{2017\pi}{3}\right);$$

$$D\left(\frac{253\pi}{12}\right) \quad ; \quad E\left(-\frac{65\pi}{7}\right) \quad ; \quad F\left(\frac{23\pi}{6}\right).$$

② Donner tous les abscisses curvilignes du point  $M\left(-\frac{17\pi}{3}\right)$ dans l'intervalle  $\left[-\frac{\pi}{2}, 3\pi\right]$ .

# 

Représenter sur le cercle trigonométrique les points  $\mathcal{M}_k$  dont les abscisses curviligne sont :  $-\frac{\pi}{6} + \frac{2k\pi}{3}$  tel que  $k \in \mathbb{Z}$ .

### 

Soit ABCD un carré tel que  $(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{2} [2\pi]$ .

Déterminer: 
$$(\overrightarrow{\overrightarrow{OA}}, \overrightarrow{OC})$$
;  $(\overrightarrow{\overrightarrow{DC}}, \overrightarrow{\overrightarrow{DA}})$ ;  $(\overrightarrow{\overrightarrow{BO}}, \overrightarrow{\overrightarrow{DC}})$ ;  $(\overrightarrow{\overrightarrow{AB}}, \overrightarrow{\overrightarrow{AC}})$ .

# Exercice 05 🐰

- (*C*) est un cercle trigonométrique de centre *A* et d'origine *B*.
- ① Représenter sur le cercle trigonométrique les points C, D, E et F tels que :

$$\frac{\overrightarrow{(AB, AD)}}{\overrightarrow{(AB, AD)}} \equiv \frac{3\pi}{4} [2\pi] \quad ; \quad \overline{\overrightarrow{(AB, AC)}} \equiv \frac{\pi}{3} [2\pi];$$

$$\overline{\overrightarrow{(AB, AF)}} \equiv -\frac{3\pi}{4} [2\pi] \quad ; \quad \overline{\overrightarrow{(AB, AE)}} \equiv \frac{7\pi}{6} [2\pi].$$

2 Déterminer la mesure principale des mesures suivantes :  $(\overrightarrow{AF}, \overrightarrow{AE}); (\overrightarrow{AF}, \overrightarrow{AC}); (\overrightarrow{AD}, \overrightarrow{AE}); (\overrightarrow{AC}, \overrightarrow{AE}).$ 

#### 

On considère dans le plan les triangles ABC et BDC représentés dans la figure ci-contre :



Déterminer la mesure principale des mesures suivantes :  $(\overrightarrow{BA}, \overrightarrow{BC}); (\overrightarrow{DC}, \overrightarrow{DB}); (\overrightarrow{AB}, \overrightarrow{AC}); (\overrightarrow{CB}, \overrightarrow{DB}); (\overrightarrow{BA}, \overrightarrow{DB}).$ 

# Exercice 07

Soit *x* un nombre réel.

- ① Simplifier les expressions suivantes :
  - $\bullet A(x) = 1 (\cos(x) + \sin(x))^2.$
  - $B(x) = (\cos(x) + \sin(x))^2 + (\cos(x) \sin(x))^2$ .
  - $\bullet C(x) = cos^2(x) 2sin^2(x) 1.$
  - $\bullet D(x) = \cos^3(x)\sin(x) + \sin^3(x)\cos(x).$
- ② Calculer D(0),  $D(\frac{\pi}{2})$ ,  $D(\pi)$  et  $D(17\pi)$ .

#### Exercice 08 🐰

Soit x un nombre réel. Simplifier les expressions suivantes :

- $A(x) = \frac{\cos(\pi x) \sin(\pi x)}{\cos(\pi x) + \sin(\pi x)} \times \frac{\cos(x) \sin(x)}{\cos(x) + \sin(x)}$   $B(x) = \frac{\cos^3(x) \sin^3(x)}{\cos(x) \sin(x)} + \frac{\cos^3(x) + \sin^3(x)}{\cos(x) + \sin(x)}$ .

Soit *x* un nombre réel de l'intervalle  $\left[0, \frac{n}{2}\right]$ .

On pose:  $A = cos^2(x) + 3cos(x)sin(x) - 2sin^2(x)$ .

- ① Montrer que :  $A = cos^2(x) (1 + 3tan(x) 2tan^2(x))$ .
- ② Déterminer la valeur de *A* si  $tan(x) = 1 + \sqrt{2}$ .

### Exercice 10 8

Les questions de cet exercice sont indépendantes :

- ① Soit x un nombre réel de  $\left[0, \frac{\pi}{2}\right]$  tel que  $sin(x) = \frac{2}{3}$ . Calculer cos(x) et tan(x)
- ② Soit *x* un nombre réel de  $\left[-\frac{\pi}{2}, 0\right]$  tel que  $cos(x) = \frac{1}{2}$ . Calculer sin(x) et tan(x).
- 3 sachant que  $tan\left(\frac{\pi}{2}\right) = \sqrt{2} 1$ .

Montrer que :  $cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$  puis calculer  $sin\left(\frac{\pi}{8}\right)$ .

# Exercice 11 🐰

- ① Écrire, en fonction de cos(x) et sin(x), les expressions sui-

  - $\bullet A = \sin(-x) + \cos(-x) + \sin(\pi + x) + \cos(\pi x).$   $\bullet B = \sin(x + 10\pi) \cos(3\pi x) + \sin\left(\frac{\pi}{2} + x\right).$
  - $C = 4\sin(x + 7\pi) 2\sin(13\pi x) + \cos\left(\frac{5\pi}{2} x\right)$ .
  - $D = sin\left(\frac{\pi}{2} x\right)cos(\pi x) + cos\left(\frac{\pi}{2} x\right)sin(\pi x).$
  - $E = cos^2(x + 111\pi) + sin^2(9\pi x) + cos^2\left(x \frac{9\pi}{2}\right)$
- ② Écrire, en fonction de tan(x), les expressions suivantes :
  - $\bullet F = tan(5\pi + x) + tan(5\pi x) + tan(-\pi)$
  - $\bullet G = tan\left(\frac{\pi}{2} x\right)tan(\pi x) tan^2\left(x \frac{9\pi}{2}\right).$

### 

- Calculer les nombres suivantes :  $A = cos\left(\frac{\pi}{7}\right) + cos\left(\frac{2\pi}{7}\right) + cos\left(\frac{5\pi}{7}\right) + cos\left(\frac{6\pi}{7}\right)$
- $B = sin\left(\frac{11\pi}{26}\right) + sin\left(\frac{3\pi}{26}\right) + cos\left(\frac{12\pi}{13}\right) + cos\left(\frac{8\pi}{13}\right)$

#### 

Soit x un nombre réel de l'intervalle  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ .

Soit:  $A(x) = sin(x) \left(cos^2(x) - sin^2(x)\right)$ 

① Calculer 
$$A(0)$$
,  $A\left(\frac{\pi}{4}\right)$ ,  $A\left(\frac{\pi}{3}\right)$ ,  $A\left(\frac{\pi}{6}\right)$  et  $A\left(\frac{5\pi}{6}\right)$ .

② Montrer pour tout 
$$x$$
 de  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$  que :  $A\left(\frac{\pi}{2} - x\right) = A\left(\frac{\pi}{2} + x\right)$ .

### 

Soit *x* un nombre réel de l'intervalle  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ .

Soit:  $A(x) = \frac{1}{2} [(cos(2x) + sin(2x))^2 - 1].$ 

① Calculer 
$$A\left(\frac{\pi}{4}\right)$$
 et  $A\left(-\frac{\pi}{8}\right)$ .

② Montrer que : 
$$A(x) = sin(2x)cos(2x)$$
.

3 Montrer que : 
$$A(-x) = -A(x)$$
.

**4** Calculer: 
$$A(x) + A\left(x + \frac{\pi}{4}\right)$$
.

## Exercice 15 🐰

Soit *x* un nombre réel de l'intervalle  $\left[0, \frac{n}{2}\right]$ .

On pose :  $A = 2\sin(\frac{\pi}{2} - x) + \sqrt{3}\sin(\pi - x) + \cos(\pi - x)$ et  $B = \sqrt{3}\cos^3(x) + \sqrt{3}\cos(x)\sin^2(x) + \sin(x)$ .

① Montrer que : 
$$A = cos(x) + \sqrt{3}sin(x)$$
  
et  $B = \sqrt{3}cos(x) + sin(x)$ .

**②** Résoudre dans 
$$\mathbb{R}^2$$
 le système : 
$$\begin{cases} x + \sqrt{3}y = \sqrt{3} \\ \sqrt{3}x + y = 2 \end{cases}$$

③ Déterminer la valeur de x si  $A = \sqrt{3}$  et B = 2.

### 

① Résoudre dans 
$$\mathbb{R}^2$$
 le système : 
$$\begin{cases} x+y=\frac{1}{2} \\ xy=-\frac{1}{4} \end{cases}$$

② En déduire la valeur de 
$$cos\left(\frac{\pi}{5}\right)$$
 et  $cos\left(\frac{3\pi}{5}\right)$  sachant que : 
$$\begin{cases} cos\left(\frac{\pi}{5}\right) + cos\left(\frac{3\pi}{5}\right) = \frac{1}{2} \\ cos\left(\frac{\pi}{5}\right) \times cos\left(\frac{3\pi}{5}\right) = -\frac{1}{4} \end{cases}$$

3 Montrer que :  $1 + 2\cos\left(\frac{2\pi}{5}\right) + 2\cos\left(\frac{4\pi}{5}\right) = 0$ .

#### 

Résoudre dans  $]-\pi,\pi]$  les equations et les inéquations suivantes :

$$\bullet cos(x) = \frac{\sqrt{3}}{2} \quad \bullet 2cos(x) + \sqrt{2} = 0 \quad \bullet cos\left(x + \frac{\pi}{4}\right) = \frac{1}{2}$$

$$\bullet cos(x) \ge \frac{\sqrt{3}}{2} \quad \bullet 2cos(x) + \sqrt{2} < 0 \quad \bullet cos\left(x + \frac{\pi}{4}\right) \ge \frac{1}{2}$$

Résoudre dans  $]0,2\pi]$  les equations et les inéquations sui-

## 

Résoudre dans  $\left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$  les equations et les inéquations sui-

• 
$$tan(x) = \sqrt{3}$$
 •  $tan\left(x + \frac{\pi}{3}\right) + 1 = 0$ 

• 
$$tan(x) = \sqrt{3}$$
 •  $tan\left(x + \frac{\pi}{3}\right) + 1 = 0$   
•  $tan(x) \le \sqrt{3}$  •  $tan\left(x + \frac{\pi}{3}\right) + 1 > 0$ 

### 

Soit *x* un nombre réel. On pose :  $A(x) = 2\cos^2(x) + \sin(x) - 1$ .

① Calculer: 
$$A\left(\frac{31\pi}{6}\right)$$
.

② Vérifier que : 
$$A(x) = (1 - \sin(x))(1 + 2\sin(x))$$
.

**3** Résoudre dans 
$$\mathbb{R}$$
 l'équation  $A(x) = 0$ .

### Exercice 21 🐰

Résoudre les équations suivantes dans l'intervalle I:

(1) 
$$2\cos^2(x) - \cos(x) = 0$$
 ;  $I = ]-\pi, \pi$ 

(2) 
$$\sin^2(x) - 2\sin(x) = 0$$
 ;  $I = ]0, 2\pi]$ 

(1) 
$$2\cos^2(x) - \cos(x) = 0$$
 ;  $I = ]-\pi,\pi]$   
(2)  $\sin^2(x) - 2\sin(x) = 0$  ;  $I = ]0,2\pi]$   
(3)  $2\cos^2(x) - 3\cos(x) + 1 = 0$  ;  $I = ]-\pi,\pi]$ 

(4) 
$$2\sin^2(x) - \sin(x) - 1 = 0$$
 ;  $I = ]-2\pi, \pi]$ 

(5) 
$$tan^2(x) - \sqrt{3}tan(x) = 0$$
 ;  $I = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ 

### Exercice 22 🐰

- ① a) Calculer  $(\sqrt{3}-1)^2$ .
- b) Résoudre dans  $]-\pi,\pi]: 4\sin^2(x) 2(\sqrt{3}+1)\sin(x) + \sqrt{3} = 0.$
- c) Résoudre dans  $]-\pi,\pi]: 4\sin^2(x) 2(\sqrt{3}+1)\sin(x) + \sqrt{3} \le 0.$ 
  - ① a) Calculer  $(\sqrt{3} + \sqrt{2})^2$ .
- b) Résoudre dans  $]-\pi,\pi]:4\cos^2(x)-2(\sqrt{3}-\sqrt{2})\cos(x)-\sqrt{6}=0.$
- c) Résoudre dans  $]-\pi,\pi]:4\cos^2(x)-2(\sqrt{3}-\sqrt{2})\cos(x)-\sqrt{6}\geq 0.$

#### 

Soit *ABC* un triangle tel que :  $AB = \sqrt{3}$  et  $AC = \frac{\sqrt{2} + \sqrt{6}}{2}$  et  $BC = \sqrt{2} \text{ et } B\widehat{C}A = \frac{\pi}{2}.$ 

① Calculer  $sinB\widehat{A}C$ , puis déduire la mesure de  $B\widehat{A}C$ .

② Vérifier que : 
$$\widehat{ABC} = \frac{5\pi}{12}$$
, puis calculer  $\sin\left(\frac{5\pi}{12}\right)$ .

3 En déduire que 
$$cos\left(\frac{5\pi}{12}\right) = \frac{\sqrt{2-\sqrt{3}}}{2}$$
.

#### 

Soit ABC un triangle tel que :  $B\widehat{C}A = \frac{\pi}{4}$  et  $B\widehat{A}C = \frac{\pi}{3}$  et  $BC = \sqrt{3}$ .

- ① Calculer AB.
- ② a) Vérifier que : $A\widehat{B}C = \frac{5\pi}{12}$

b) sachant que 
$$AC = \frac{\sqrt{6} + \sqrt{2}}{2}$$
 calculer  $sin\left(\frac{5\pi}{12}\right)$ .

c) En déduire que 
$$cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$$
.

**③** Résoudre dans 
$$\mathbb{R}$$
 l'équation  $sin(x) = sin\left(\frac{5\pi}{12}\right)$ .