Prova scritta di Elettrotecnica

Corso di Laurea in Ingegneria Informatica

1) Determinare il circuito equivalente di Norton fra i punti 1 e 2 del circuito in figura.

V = 10 V; Risultati: $R = 10 \Omega;$ J = 0.5 A; $\alpha = 10 \text{ V/A}.$ $R_{NO} = 5 \Omega;$

2) Determinare l'andamento temporale della tensione Vc(t) ai capi del condensatore, come indicato in figura, per $-\infty < t < +\infty$, considerando che l'interruttore si **CHIUDE** per t=0. Il circuito è ipotizzato a regime per tempi negativi.

e(t) = 10 V (costante); J(t) = 1 A (costante); $R = 10 \Omega;$ L = 10 mH; $C = 10 \mu F.$

Risultati:

$$v(t) = \begin{cases} 20 \, V, & t < 0 \\ (22.91 \, e^{-8873t} - 2.91 \, e^{-1127t}) \, V, t \ge 0 \end{cases}$$

3) Determinare la rappresentazione a **parametri h** della rete a due porte indicata in figura (a sinistra). Si ipotizzi che il circuito si trovi a regime periodico sinusoidale con pulsazione ω. Supponendo poi che la stessa rete a parametri h sia utilizzata come in figura (a destra), calcolare la corrente **i(t)** che circola sul generatore di tensione e la **potenza complessa dissipata** sul resistore **R**.

 $i(t) = 6.9865\sqrt{2}\sin(1000t - 0.4824)A$

R = 10 Ω ; L₁ = 10 mH; L₂ = 20 mH; M = 12 mH; α = 10 V/A; ω = 1000 rad/sec; $e(t) = 100\sqrt{2} \sin(1000t) V$.