

Algorithms & Data Structures

Lesson 8: Priority Queues

Marc Gaetano

Edition 2017-2018

A new ADT: Priority Queue

- A priority queue holds compare-able data
 - Like dictionaries, we need to compare items
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general
 - Typically two fields, the priority and the data

Priorities

- Each item has a "priority"
 - In our examples, the *lesser* item is the one with the *greater* priority
 - So "priority 1" is more important than "priority 4"
 - (Just a convention, think "first is best")

- Operations:
 - insert
 - deleteMin
 - is_empty

 Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)

Example

```
insert x1 with priority 5
insert x2 with priority 3
insert x3 with priority 4
a = deleteMin // x2
b = deleteMin // x3
insert x4 with priority 2
insert x5 with priority 6
c = deleteMin // x4
d = deleteMin // x1
```

- Analogy: insert is like enqueue, deleteMin is like dequeue
 - But the whole point is to use priorities instead of FIFO

Applications

Like all good ADTs, the priority queue arises often

- Sometimes blatant, sometimes less obvious
- Run multiple programs in the operating system
 - "critical" before "interactive" before "compute-intensive"
 - Maybe let users set priority level
- Treat hospital patients in order of severity (or triage)
- Select print jobs in order of decreasing length?
- Forward network packets in order of urgency
- Select most frequent symbols for data compression
- Sort (first insert all, then repeatedly deleteMin)

Finding a good data structure

- Will show an efficient, non-obvious data structure for this ADT
 - But first let's analyze some "obvious" ideas for n data items
 - All times worst-case; assume arrays "have room"

data	insert algorithm / time		deleteMin algorithm / time	
unsorted array	add at end	O(1)	search	<i>O</i> (<i>n</i>)
unsorted linked list	add at front	O(1)	search	O(<i>n</i>)
sorted circular arra	y search / shift	<i>O</i> (<i>n</i>)	move front	O(1)
sorted linked list	put in right place	<i>O</i> (<i>n</i>)	remove at fror	nt O(1)
binary search tree	put in right place	<i>O</i> (<i>n</i>)	leftmost	<i>O</i> (<i>n</i>)
AVL tree	put in right place	O(log	n) leftmost C	$O(\log n)$

More on possibilities

- One more idea: if priorities are 0, 1, ..., k can use an array of k lists
 - insert: add to front of list at arr[priority], O(1)
 - deleteMin: remove from lowest non-empty list O(k)
- We are about to see a data structure called a "binary heap"
 - Another binary tree structure with specific properties
 - $O(\log n)$ insert and $O(\log n)$ deleteMin worst-case
 - Possible because we don't support unneeded operations; no need to maintain a full sort
 - Very good constant factors
 - If items arrive in random order, then insert is O(1) on average
 - Because 75% of nodes in bottom two rows

Our data structure

A binary min-heap (or just binary heap or just heap) has:

- Structure property: A complete binary tree
- Heap property: The priority of every (non-root) node is less important than the priority of its parent
 - Not a binary search tree

- So:
- Where is the highest-priority item?
- What is the height of a heap with n items?

Operations: basic idea

- findMin: return root.data
- deleteMin:
 - 1. answer = root.data
 - Move right-most node in last row to root to restore structure property
 - 3. "Percolate down" to restore heap property

• insert:

- Put new node in next position on bottom row to restore structure property
- 2. "Percolate up" to restore heap property

Overall strategy:

- Preserve structure property
- Break and restore heap property

DeleteMin

Delete (and later return) value at root node

DeleteMin: Keep the Structure Property

- We now have a "hole" at the root
 - Need to fill the hole with another value
- Keep structure property: When we are done, the tree will have one less node and must still be complete
- Pick the last node on the bottom row of the tree and move it to the "hole"

DeleteMin: Restore the Heap Property

Percolate down:

- Keep comparing priority of item with both children
- If priority is less important, swap with the most important child and go down one level
- Done if both children are less important than the item or we've reached a leaf node

Why is this correct? What is the run time?

DeleteMin: Run Time Analysis

- Run time is O(height of heap)
- A heap is a complete binary tree
- Height of a complete binary tree of n nodes?
 - height = $\lfloor \log_2(n) \rfloor$
- Run time of deleteMin is $O(\log n)$

Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct

Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property

Insert: Restore the heap property

Percolate up:

- Put new data in new location
- If parent is less important, swap with parent, and continue
- Done if parent is more important than item or reached root

What is the running time?

Like deleteMin, worst-case time proportional to tree height: O(log n)

Summary

- Priority Queue ADT:
 - insert comparable object,
 - deleteMin

- Binary heap data structure:
 - Complete binary tree
 - Each node has less important priority value than its parent

- insert and deleteMin operations = O(height-of-tree)=O(log n)
 - insert: put at new last position in tree and percolate-up
 - deleteMin: remove root, put last element at root and percolate-down