On the other hand, with respect to the dual basis (e_1^*, \ldots, e_n^*) of E^* , the linear form f is represented by the column vector

$$\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}.$$

Remark: In many texts using tensors, vectors are often indexed with lower indices. If so, it is more convenient to write the coordinates of a vector x over the basis (u_1, \ldots, u_n) as (x^i) , using an upper index, so that

$$x = \sum_{i=1}^{n} x^{i} u_{i},$$

and in a change of basis, we have

$$v_j = \sum_{i=1}^n a_j^i u_i$$

and

$$x^i = \sum_{j=1}^n a_j^i x'^j.$$

Dually, linear forms are indexed with upper indices. Then it is more convenient to write the coordinates of a covector φ^* over the dual basis (u^{*1}, \dots, u^{*n}) as (φ_i) , using a lower index, so that

$$\varphi^* = \sum_{i=1}^n \varphi_i u^{*i}$$

and in a change of basis, we have

$$u^{*i} = \sum_{j=1}^{n} a_{j}^{i} v^{*j}$$

and

$$\varphi_j' = \sum_{i=1}^n a_j^i \varphi_i.$$

With these conventions, the index of summation appears once in upper position and once in lower position, and the summation sign can be safely omitted, a trick due to *Einstein*. For example, we can write

$$\varphi_i' = a_i^i \varphi_i$$

as an abbreviation for

$$\varphi_j' = \sum_{i=1}^n a_j^i \varphi_i.$$