Linear functions / transformations

3)
$$t(\alpha \vec{n}) = \alpha t(\vec{n})$$

1) $t(\vec{n} + \vec{n}) = t(\vec{n}) + t(\vec{n})$

ex)
$$f(\underline{A}) = \underline{A}^T$$
 is linear ex.) $f(\underline{v}) = \underline{v} \cdot \underline{v}$ not linear

Theorems

brot:

1)
$$L(O_V) = L(OO_V) = OL(O_V) = O_W$$

$$2) L(-\underline{v}) = L(-|(\underline{v})) = -|L(\underline{v}) = -L(\underline{v})$$

3)
$$l(a_1v_1 + a_2v_1 + ... + a_nv_n) = l(a_1v_1) + l(a_1v_2 + ... + a_nv_n)$$
 $= a_1 l(v_1) + l(a_2v_2) + l(a_1v_2 + ... + a_nv_n)$
 $= a_1 l(v_1) + a_2 l(v_2) + ... + a_n l(v_n)$

Thus the composition of linear experience,

is linear.

 $ex_1 l(v_1) + a_2 l(v_2) + ... + a_n l(v_n)$
 $ex_1 l_0 + l_1(v_2) = v_1 l_2(v_2) = c v_2 v_3 v_4$
 $ex_1 l_0 + l_1(v_2) = v_1 l_2(v_2) = c v_2 v_3 v_4$
 $ex_1 l_0 + l_1(v_2) = v_1 l_2(v_2) = c v_2 v_3 v_4$
 $ex_1 l_0 + l_1(v_2) = v_1 l_2(v_2) = c v_2 v_3 v_4$
 $ex_1 l_0 + l_1(v_2) = v_1 l_2(v_2) = c v_2 v_3 v_4$
 $ex_1 l_0 + l_1(v_2) = v_1 l_2(v_2) = c v_2 v_3 v_4$
 $ex_1 l_0 + l_1(v_2) = v_1 l_2(v_2) = c v_2 v_3 v_4$
 $ex_1 l_0 + l_1(v_2) = v_1 l_2(v_2) = c v_2 v_3 v_4$
 $ex_1 l_0 + l_1(v_2) = v_1 l_1(v_2) = c v_2 v_3 v_4$
 $ex_1 l_0 + l_1(v_2) = v_1 l_1(v_2) = v_2 l_1(v_2) = v_1 l_$

Action et a Linear Transformation.

The effect of a linear transformation (the action of it) on a vector space is completely dofined by the action of that transformation on basis of the vector space,

Let L: Vosw be linear w/ V having a besis & St, by, in, bn?

It KEN then N= K'D'+ KDD'+ 11-1- KUDU

Γ(n) = Γ(y'p'+ 1c'p' - ···+ 1c'p')

= K, L(b) + K, L(b) + 11.+ kn L(b)

Note: Ky - 1 km one the "coundinates" of Y in the basis.

ex.) Let
$$B = \begin{cases} 0 \\ -2 \\ -3 \\ -1 \end{cases}$$

$$\begin{cases} -1 \\ 5 \\ 5 \\ 2 \end{cases}$$

$$\begin{cases} 0 \\ 1 \\ 1 \end{cases}$$

$$\begin{cases} 0 \\ 1 \\ 1 \end{cases}$$

$$\begin{cases} 0 \\ 1 \end{cases}$$

$$(0 \\$$

What is
$$L(\underline{v})$$
 if $\underline{v} = \begin{bmatrix} -4 \\ 14 \end{bmatrix}$?

Then
$$L(\underline{v}) = k_1 L(\underline{b}_1) + \dots + k_{c_f} L(\underline{b}_{l_f})$$

$$= 2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + (-1) \begin{bmatrix} 2 \\ 1 \end{bmatrix} + (1) \begin{bmatrix} -1 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 6 \\ 1 \end{bmatrix} = \begin{bmatrix} 18 \\ 9 \\ 2 \end{bmatrix}$$

Thm! let B= 3b, 111, b, 2 form a bais for vector space V. Let william, we be the novertons in There is always a unique linear transformation L: U > W Sun that L(D) = W, し(り))= ピノ L(Dn) = lon Now tie to matrix-vector products. A metrix-vector product in nothing but a linear combination & columne Ax = [a, a, ... a,] [x1] = x a, +xa, +... + x, a, = b Takes a vector x + maps it to vector b, b is the image of X due to function A Is this Cinear? $A(x+y) = Ax + Ay \qquad A(cx) = CAx$ Compone to the action of a linear govatur.

 \underline{X} on the coordinates of a vector $\underline{U} \in V$ \underline{b} is the vector \underline{w} in $\underline{L}(V) = \underline{w}$ Columns of \underline{A} ar $\underline{L}(\underline{b}_{\lambda})$ $\underline{L}(\underline{b}_{\lambda})$ etc. (ct B=) b, b, b, D, or above. let L(b,), L(b), L(b), L(b,) be as above, If $\Lambda = \begin{bmatrix} 2 \\ -71 \end{bmatrix}$ then $\Gamma(\bar{n}) = \frac{1}{3}$ $\lfloor (\underline{v}) = \underline{A} \times \underline{-} \begin{bmatrix} 18 \\ q \end{bmatrix}$ Thm: let B be en ordered besis for verter

Space V & let C be en ordered besis

for vector space h.

For any linear transformation LIVIW the

exits a metrix sub that

be the andered bain for Phs.

1) reflection about
$$Q_3$$

$$L\left(\begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} = \begin{bmatrix} q_1 \\ q_2 \\ q_2 \end{bmatrix} = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} q_1 \\ q_2 \\ q_4 \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} q_1 \\ q_2 \\ q_4 \end{bmatrix} = \begin{bmatrix} q_1 \\ q_4 \\ q_4 \end{bmatrix}$$

Rank, Nullity, Kerrel let L: V-) w & a linear transformation. Kernel & L: Ker(L) en all vector in V that map to \$b in b nullity & L: D'ineniin & Ken(L) For victor, the # & Voctori in the basis & Ker(L) nullity (L)= Sim(Ker(L)) hank of L: the rank of L is the Dimension & the range of L (image space) L(V1) range of L L(U,) rank(L)= Dim(image(L))= Dim(range(L))

	Rank- Nullity Theorem
	let L: V-> be a linear transformation
	for verton Spare, V & L.
	'
	The Rank-Nullity Theorem State, that
	ronk(L) + null. ty(L) = din(U)
	Very important for Metrices.
	Matrix Subspaces
	All metrix-vector products en linear transformations
	Ax= x XEX YEY
	+
	Four Subspeces
(1)	Colomn Space
(E)	null space
	how Coca
(J)	how space Left-NJI space
	Colomp Space
	Recoll that Ex=5 i=
	b = x, q, + x, q, + 11 - + 9, x,
	= 1 1 1 1 x 3 x 4 11 1 1 1 1 1 1 1 1 1
	=> b is in the column space of A: DEC(A)

	100
	If AERMAN then each column has length-m.
	((A) is a subspace of IRM
	, and the second
	Now, the quartier is when Joes x exist such
	that $A \times = D$
	For x to oxist then b mut be in C(A)
	If $b \in C(A)$ then at least 1 x exits
	Suh that $A \times = D$,
	Two caser!
开	Two caser! let AER with det(A) 70 = 2 A-1 exists
	then Ax=b sim x=A-1b
	Therefore: (1) X is the considered by m ((A) (A) (B) (A) (CA) (A) (B) (CA) (B) (CA)
	@ An bell' is in ((A)
	3 ((A) Spans all & Rn
中2	let ACR mxn w/mxn or oet(A)=0 if m=n A-1 door not exist
	A-1 dos, not exist
	For a soldier to Ax=2 to exit then
	=> if x exits depends on AdD