

Signup and get free access to 100+ Tutorials and Practice Problems

Start Now

Big o Cheatsheet - Data structures and Algorithms with thier complexities

Time-complexity

Algorithms

Big-o

Big o cheatsheet with complexities chart

Big o complete Graph

Legend

Data Structures

Data Structure	Time Comple		Space Complexity						
	Average				Worst				Worst
	Indexing	Search	Insertion	Deletion	Indexing	Search	Insertion	Deletion	
Basic Array	0(1)	0(n)			0(1)	O(n)	-		O(n)
Dynamic Array	0(1)	O(n)	O(n)	0(n)	0(1)	0(n)	0(n)	0(n)	O(n)
Singly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	O(n)	0(1)	0(1)	0(n)
Doubly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Skip List	O(log(n))	0(log(n))	O(log(n))	O(log(n))	O(n)	O(n)	0(n)	0(n)	O(n log(n))
Hash Table	-	0(1)	0(1)	0(1)		O(n)	O(n)	0(n)	0(n)
Binary Search Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)	O(n)	O(n)	0(n)	0(n)
Cartresian Tree		0(log(n))	O(log(n))	0(log(n))		0(n)	0(n)	0(n)	0(n)
B-Tree	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
Red-Black Tree	O(log(n))	0(log(n))	0(log(n))	0(log(n))	O(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
Splay Tree		0(log(n))	0(log(n))	0(log(n))		0(log(n))	0(log(n))	0(log(n))	0(n)
AVL Tree	0(log(n))	O(log(n))	O(log(n))	0(log(n))	O(log(n))	O(log(n))	O(log(n))	0(log(n))	0(n)

Data Structures

Data Structure	Time Compl	Space Complexity							
	Average				Worst				Worst
	Indexing	Search	Insertion	Deletion	Indexing	Search	Insertion	Deletion	
Basic Array	0(1)	0(n)			0(1)	O(n)			0(n)
Dynamic Array	0(1)	0(n)	O(n)	0(n)	0(1)	0(n)	O(n)	0(n)	0(n)
Singly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	O(n)	0(1)	0(1)	0(n)
Doubly-Linked List	0(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	(n)
Skip List	O(log(n))	0(log(n))	O(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	O(n log(n))
Hash Table		0(1)	0(1)	0(1)	•	O(n)	0(n)	0(n)	0(n)
Binary Search Tree	O(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)	O(n)	O(n)	0(n)	O(n)
Cartresian Tree	-	0(log(n))	O(log(n))	0(log(n))		0(n)	0(n)	0(n)	0(n)
B-Tree	O(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	O(log(n))	0(log(n))	O(n)
Red-Black Tree	O(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
Splay Tree		0(log(n))	0(log(n))	0(log(n))		0(log(n))	0(log(n))	0(log(n))	0(n)
AVL Tree	0(log(n))	O(log(n))	O(log(n))	0(log(n))	0(log(n))	O(log(n))	O(log(n))	0(log(n))	0(n)

Searching

Algorithm	Data Structure	Time Complexity	Space Complexity	
		Average	Worst	Worst
Depth First Search (DFS)	Graph of V vertices and E edges		O(E + V)	0(V)
Breadth First Search (BFS)	Graph of V vertices and E edges		O(E + V)	0(V)
Binary search	Sorted array of n elements	0(log(n))	O(log(n))	0(1)
Linear (Brute Force)	Array	O(n)	O(n)	0(1)
Shortest path by Dijkstra, using a Min-heap as priority queue	Graph with V vertices and E edges	O((V + E) log V)	0((V + E) log V)	0(V)
Shortest path by Dijkstra, using an unsorted array as priority queue	Graph with V vertices and E edges	0(V ^2)	0(V ^2)	(VI)
Shortest path by Bellman-Ford	Graph with V vertices and E edges	O(V E)	0(V E)	0(V)

Sorting Algorithms chart

Sorting

Algorithm	Data Structure	Time Complexit	у		Worst Case Auxiliary Space Complexity		
		Best	Average	Worst	Worst		
Quicksort	Array	O(n log(n))	O(n log(n))	0(n^2)	0(n)		
Mergesort	Array	O(n log(n))	O(n log(n))	$0(n \log(n))$	O(n)		
Heapsort	Array	O(n log(n))	O(n log(n))	O(n log(n))	0(1)		
Bubble Sort	Array	O(n)	O(n^2)	0(n^2)	0(1)		
Insertion Sort	Array	O(n)	O(n^2)	0(n^2)	0(1)		
Select Sort	Array	O(n^2)	O(n^2)	0(n^2)	0(1)		
Bucket Sort	Array	O(n+k)	O(n+k)	0(n^2)	O(nk)		
Radix Sort	Array	O(nk)	O(nk)	O(nk)	0(n+k)		

Heaps

Heaps	Time Comp						
	Heapify	Find Max	Extract Max	Increase Key	Insert	Delete	Merge
Linked List (sorted)		0(1)	0(1)	0(n)	0(n)	0(1)	O(m+n)
Linked List (unsorted)	-	0(n)	O(n)	0(1)	0(1)	0(1)	0(1)
Binary Heap	O(n)	0(1)	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(m+n)
Binomial Heap		O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))
Fibonacci Heap	<u> </u>	0(1)	0(log(n))*	0(1)*	0(1)	0(log(n))*	0(1)

Graphs

Node / Edge Management	Storage	Add Vertex	Add Edge	Remove Vertex	Remove Edge	Query
Adjacency list	O(V + E)	0(1)	0(1)	O(V + E)	0(E)	0(V)
Incidence list	O(V + E)	0(1)	0(1)	O(E)	O(E)	O(E)
Adjacency matrix	0(V ^2)	0(V ^2)	0(1)	0(V ^2)	0(1)	0(1)
Incidence matrix	0(V + E)	O(V · E)	0(V + E)	O(V - E)	O(V + E)	O(E)

Like 8 Tweet

SORT BY: Relevance ▼

COMMENTS (17) 2

. , .

Login/Signup to Comment

Harish Patel 4 years ago

You must acknowledge the original author which is Eric, http://www.bigocheatsheet.com. Its good to collect likes but its better, moral and humane to credit people. Till now, there isn't much issue of web plagiarism which lets people easily copy things. But I thank you for at least helping people learn something. Your intention is right.

▲ 25 votes

C Woo 2 years ago

It doesn't quite look the same, I do prefer this one over the one on the website.

These tables are general knowledge. What is compiled here is different, though similar. This user's other post was a copy pasta, but I don't he took these from your referenced website.

▲ 2 votes

Ketan Singh 4 years ago

http://bigocheatsheet.com/

▲ 1 vote

Tarun anand 4 years ago

much needed cheats

▲ 1 vote

development 4 years ago

Nice!!

0 votes

Parakrant Sarkar 4 years ago

awesome

0 votes

Richard Pressler 4 years ago

This is really convenient, thanks!

0 votes

Naveen 4 years ago

Excellent

0 votes

Swapnil Walke 4 years ago

Well Documentation!

0 votes

Rajasekhara Inturi 4 years ago

well defined

0 votes

Swaraj Kumar 4 years ago

Good Work

0 votes

Rahul R. Jadhav 4 years ago

nice..

?

0 votes

Utkarsh Prasad 4 years ago

Good one

0 votes

vivek gautam 4 years ago

Mast

▲ 0 votes

e7ca67147f2c45e79f883e3c58ef6452 4 years ago

Good one :-D

0 votes

Gautam Singh 4 years ago

its always good to mention the source

0 votes

Vignesh lyer 4 years ago

Awesome just awesome!!:)

0 votes

AUTHOR

Varun N R

➡ Frontend Developer at Loll...

♀ Bangalore, Karnataka, India

2 notes

TRENDING NOTES

Python Diaries Chapter 3 Map | Filter | Forelse | List Comprehension written by Divyanshu Bansal

Bokeh | Interactive Visualization Library | Use Graph with Django Template written by Prateek Kumar

Bokeh | Interactive Visualization Library | Graph Plotting

written by Prateek Kumar

Python Diaries chapter 2 written by Divyanshu Bansal

Python Diaries chapter 1 written by Divyanshu Bansal

more ...

	Resources	Solutions	Company	yService & Support	
	Tech Recruitment Blog	Assess Developers	About Us		
	Product Guides	Conduct Remote Interviews	Press Careers	Contact Us	LIVE EVENTS
+1-650-461-4192 contact@hackerearth.con	Developer hiring nguide	Assess University Talent			
	Engineering Blog	Organize Hackathons			
£ 50 :	Developers Blog				
f y in	Developers Wiki				
	Competitive Programming				
	Start a Programming Club				
	Practice Machine Learning				

♦ | © 2020 HackerEarth All rights reserved | Terms of Service | Privacy Policy Site Language: English