日本国特許庁 JAPAN PATENT OFFICE

22.07.03

REC'D 1 9 SEP 2003

WIFO FOT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 7月22日

出 願 番 号 Application Number:

特願2002-212384

[ST. 10/C]:

[JP2002-212384]

出 願 人 Applicant(s):

出光興産株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 8月29日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

IK5402

【提出日】

平成14年 7月22日

【あて先】

特許庁長官殿

【国際特許分類】

CO1G 33/00

【発明の名称】

灯油の脱硫方法及び燃料電池用水素の製造方法

【請求項の数】

-8

【発明者】

【住所又は居所】

千葉県袖ヶ浦市上泉1280番地

【氏名】

気仙 忠

【発明者】

【住所又は居所】

千葉県袖ヶ浦市上泉1280番地

【氏名】

松本 寛人

【発明者】

【住所又は居所】

千葉県袖ヶ浦市上泉1280番地

【氏名】

勝野 尚

【発明者】

【住所又は居所】

千葉県袖ヶ浦市上泉1280番地

【氏名】

齋藤 一仁

【特許出願人】

【識別番号】

590000455

【氏名又は名称】

財団法人 石油産業活性化センター

【代理人】

【識別番号】

100078732

【弁理士】

【氏名又は名称】

大谷 保

【手数料の表示】

【予納台帳番号】

003171

【納付金額】

21,000円

ページ: 2/E

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】 灯油の脱硫方法及び燃料電池用水素の製造方法

【特許請求の範囲】

【請求項1】 金属系脱硫剤を使用し、水素を添加することなく灯油中の硫 黄分を除去する方法であって、

脱硫条件が下記式(1)を満足することを特徴とする脱硫方法:

0. $3.8 \times P_{ope}^{0.44} < T_{ope} / T_{50} < 1. 0.7 \times P_{ope}^{0.22} \cdots (1)$

(式中、T_{ope}は運転温度(℃)であり、P_{ope}は運転圧力(k g/c m²A)で あり、T50はJISK2254石油製品-蒸留試験方法に規定する常圧法蒸留試 験方法により求めた50%留出時の留出温度である。)

【請求項2】 脱硫条件が、下記式(2)を満足することを特徴とする請求 項1に記載の脱硫方法:

0. $5.3 \times P_{ope}^{0.35} < T_{ope} / T_{50} < 0.96 \times P_{ope}^{0.24} \cdots (2)$ (式中、Tope、Pope及びT50は、請求項1で定義したとおりである。)

【請求項3】 金属系脱硫剤が、少なくともニッケル(Ni)を含む金属元 素を多孔質無機酸化物に担持してなる脱硫剤であることを特徴とする請求項1又 は2に記載の脱硫方法。

【請求項4】 金属系脱硫剤が、ニッケルー銅系脱硫剤であることを特徴と する請求項3に記載の脱硫方法。

【請求項5】 請求項1~4のいずれか1項に記載の脱硫方法によって脱硫 された灯油を改質処理することを特徴とする燃料電池用水素の製造方法。

【請求項6】 改質処理が、部分酸化改質処理、オートサーマル改質処理又 は水蒸気改質処理であることを特徴とする請求項5に記載の燃料電池用水素の製 造方法。

【請求項7】 部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質 触媒が、ルテニウム又はニッケルを含むことを特徴とする請求項6に記載の燃料 電池用水素の製造方法。

【請求項8】 改質触媒が、酸化マンガン、酸化セリウム又は酸化ジルコニ ウムを含むことを特徴とする請求項7に記載の燃料電池用水素の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、金属系脱硫剤を使用し、水素を添加することなく灯油中の硫黄分を低濃度まで効率良く除去する方法、及び燃料電池用水素の製造方法に関するものである。

[0002]

【従来の技術】

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。

この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらには石油系のLPG、ナフサ、灯油などの石油系炭化水素の使用が研究されている。

[0003]

燃料電池を民生用や自動車用などに利用する場合、上記石油系炭化水素、特に 灯油、軽油、ガソリンは常温常圧で液状であって、保管及び取り扱いが容易であ る上、ガソリンスタンドや販売店など、供給システムが整備されていることから 、水素源として有利である。

この石油系炭化水素を用いて水素を製造する場合、一般に、該炭化水素を、改質触媒の存在下にオートサーマル改質、水蒸気改質又は部分酸化改質する方法が用いられる。このような改質処理においては、上記改質触媒は、炭化水素中の硫黄分により被毒されるため、触媒寿命の点から、該炭化水素に脱硫処理を施し、硫黄分を低濃度まで除去することが肝要である。

[0004]

燃料電池用水素の製造を目的とした市販灯油の改質処理において、灯油による 改質触媒の被毒を抑制するためには、灯油中の硫黄分を、長時間に渡り0.2質 量ppm以下、好ましくは0.1質量ppm以下に低減させる必要がある。

脱硫した灯油を工業的に製造する方法としては、通常、水素化脱硫法が用いられる。この方法は、例えば、Co-Mo/アルミナやNi-Mo/アルミナなどの水素化脱硫触媒とZnOなどの硫化水素吸着剤を用い、常圧~5MPaの圧力下、200~400℃の温度で水素化脱硫するものである。しかし、この方法では、水素をリサイクルする必要が生じ、燃料電池用燃料油を製造するための設備が複雑になり、また、用役消費量が増加するなど、問題が多い。従って、小型の燃料電池システムでは、燃料電池用燃料油の製造に水素化脱硫法を用いると、システムが非常に複雑になってしまう。そのため、水素の添加を必要としない脱硫システムが求められている。

[0005]

一方、石油系炭化水素中の硫黄分を、水素化精製処理を行うことなく、温和な条件で吸着除去し、硫黄含量を 0.2 質量 p p m以下に低減し得る脱硫剤として、ニッケル系あるいはニッケルー銅系吸着剤(脱硫剤)が知られている〔特公平6-65602号公報、同平7-115842号公報、同平7-115843号公報、特開平1-188405号公報、同平2-275701号公報、同平2-204301号公報、同平5-70780号公報、同平6-80972号公報、同平6-91173号公報、同6-228570号公報(以上、ニッケル系吸着剤)、特開平6-315628号公報(ニッケルー銅系吸着剤)〕。

上記ニッケル系あるいはニッケルー銅系脱硫剤を利用する灯油の脱硫方法について、種々の脱硫条件が提案されている。しかしながら、原料となる灯油はその製造方法により、品質が変化するにも拘わらず、原料となる灯油の品質と、最適な脱硫処理条件との関係は明らかにされておらず、脱硫剤の性能を最大限に発揮できるまでには至っていない。

[0006]

例えば、上記特公平6-65602号公報及び特公平7-115842号公報 には、ニッケル系脱硫剤を用い、水素を添加しない脱硫方法が開示されており、 脱硫の反応条件も記載されている。しかしながら、灯油の品質に応じた最適な脱 硫条件の詳細については何も述べられていない。

上記特開平1-188405号公報にも、ニッケル系脱硫剤を用い、水素を添加しない脱硫方法が開示されており、脱硫の反応条件が記載されているが、この反応条件は、上記特公平6-65602号公報記載の反応条件の範囲を単純に広げただけのものである。従って、上記と同様に、灯油の品質に応じた最適な脱硫条件の詳細については何も述べられていない。

[0007]

また、特公平6-65602号公報の実施例で用いられた原料灯油と特開平1-188405号公報の実施例で用いられた原料灯油の品質は殆ど同等であるにも拘わらず、最適とされる温度範囲は異なっている。これは、灯油の品質と最適な脱硫条件との関係が見出されていないために、矛盾した結果となったものと考えられる。

上記特公平7-115843号公報にも、ニッケル系脱硫剤を用い、水素を添加しない脱硫方法が開示されており、最適とされる脱硫条件の範囲が開示されているが、その条件範囲は、上記特公平6-65602号公報、特公平7-115842号公報及び特開平1-188405号公報記載の範囲を包含するものであり、何ら新たな情報は含まれていない。また、この公報にも灯油の品質と最適な脱硫条件との関係については何も述べられていない。

[0008]

上記特許公報の他、本願出願人による、特開2001-342466号、同2001-342465号、同2001-279274号、同2001-279281号、同2001-279260号、同2001-279259号、同2001-279259号、同2001-279257号、同2001-279255号、同2001-278602号、同2001-276605号及び同2001-252556号の各公報にも、ニッケル系脱硫剤を用い、水素を添加しない脱硫方法が開示されており、脱硫の反応条件が記載されているが、灯油の品質とそれに応じた最適な脱硫条件との関係は見出されていなかった。

[0009]

【発明が解決しようとする課題】

上記現状において、本発明の目的は、灯油中の硫黄分を水素を添加することなく、低濃度まで効率良く除去することができ、かつ、寿命の長い灯油用の脱硫剤の最適な使用方法を提供することである。

[0010]

【課題を解決するための手段】

そこで、本発明者らは、灯油の品質と脱硫性能との関係を鋭意研究した結果、 灯油の蒸留性状とそれに対応する最適な脱硫条件の間に一定の関係が有ることを 見出し、本発明に到達した。

[0011]

すなわち、本発明は、

1. 金属系脱硫剤を使用し、水素を添加することなく灯油中の硫黄分を除去する方法であって、

脱硫条件が下記式(1)を満足することを特徴とする脱硫方法:

0. $3.8 \times P_{ope}^{0.44} < T_{ope} / T_{50} < 1. 0.7 \times P_{ope}^{0.22} \cdots (1)$

(式中、 T_{ope} は運転温度(\mathbb{C})であり、 P_{ope} は運転圧力($k_{\rm g}/c_{\rm m}^2A$)であり、 T_{50} は $J_{\rm I}S_{\rm K}2254$ 石油製品-蒸留試験方法に規定する常圧法蒸留試験方法により求めた50%留出時の留出温度である。);

- 2. 脱硫条件が、下記式(2)を満足することを特徴とする上記1に記載の脱硫方法:
- 0. $5.3 \times P_{ope}^{0.35} < T_{ope} / T_{50} < 0.96 \times P_{ope}^{0.24}$... (2) (式中、 T_{ope} 、 P_{ope} 及び T_{50} は、上記1で定義したとおりである。);
- 3. 金属系脱硫剤が、少なくともニッケル(Ni)を含む金属元素を多孔質無機酸化物に担持してなる脱硫剤であることを特徴とする上記1又は2に記載の脱硫方法;
- 4. 金属系脱硫剤が、ニッケルー銅系脱硫剤であることを特徴とする上記3に記載の脱硫方法;
- 5. 上記1~4のいずれかに記載の脱硫方法によって脱硫された灯油を改質処理 することを特徴とする燃料電池用水素の製造方法;

- 6. 改質処理が、部分酸化改質処理、オートサーマル改質処理又は水蒸気改質処理であることを特徴とする上記5に記載の燃料電池用水素の製造方法;
- 7. 部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒が、ルテニウム又はニッケルを含むことを特徴とする上記6に記載の燃料電池用水素の製造方法;
- 8. 改質触媒が、酸化マンガン、酸化セリウム又は酸化ジルコニウムを含むことを特徴とする上記7に記載の燃料電池用水素の製造方法を提供するものである。

[0012]

【発明の実施の形態】

以下、本発明を詳細に説明する。

本発明の脱硫方法は、金属系脱硫剤を使用し、水素を添加することなく灯油中 の硫黄分を除去する方法であって、脱硫条件が下記式(1)を満足することを特 徴とする:

0.38×P_{ope}0.44<T_{ope}/T₅₀<1.07×P_{ope}0.22 ··· (1) (式中、T_{ope}は運転温度 (℃) であり、P_{ope}は運転圧力 (kg/cm²A) であり、T₅₀はJISK2254石油製品-蒸留試験方法に規定する常圧法蒸留試験方法により求めた50%留出時の留出温度である。)。

[0013]

本発明の脱硫方法で用いる金属系脱硫剤には、特に制限はないが、担体上に少なくともニッケルを含む金属元素が担持されたものが好ましい。ニッケル以外に必要に応じて少量混在させる金属元素としては、例えば、銅、コバルト、鉄、マンガン、クロムなどが挙げられる。金属系脱硫剤としては、特にニッケルー銅系脱硫剤が好ましい。

少なくともニッケルを含む金属系脱硫剤におけるニッケルの担持量は、脱硫剤 全量に基づき、金属ニッケルとして30質量%以上であることが好ましい。この 金属ニッケルの量が30質量%未満では脱硫性能が充分に発揮されない。また、 担持量があまり多すぎると担体の割合が少なくなって、脱硫剤の機械的強度や脱 硫性能が低下する原因となる。脱硫性能及び機械的強度などを考慮すると、この

[0014]

また、担体としては、多孔質担体が好ましく、特に多孔質の無機酸化物が好ましい。多孔質無機酸化物としては、例えばシリカ、アルミナ、シリカーアルミナ、チタニア、ジルコニア、マグネシア、酸化亜鉛、白土、粘土及び珪藻土などを挙げることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中で、特にシリカーアルミナが好適である。

上記担体に、金属を担持させる方法については特に制限はなく、含浸法、共沈 法、混練法などの公知の任意の方法を採用することができる。

[0015]

好ましい脱硫剤であるシリカーアルミナ担体上にニッケルを担持させてなる脱 硫剤は、例えば以下に示すような共沈法によって製造することができる。

この共沈法においては、まずニッケル源及びアルミニウム源を含む酸性水溶液 又は酸性水分散液と、ケイ素源及び無機塩基を含む塩基性水溶液を調製する。前 者の酸性水溶液又は酸性水分散液に用いられるニッケル源としては、例えば塩化 ニッケル、硝酸ニッケル、硫酸ニッケル及びこれらの水和物などが挙げられる。 また、アルミニウム源としては、硝酸アルミニウム、擬ベーマイト、ベーマイト アルミナ、バイヤライト、ジブサイトなどのアルミナ水和物や、γーアルミナな どが挙げられる。

[0016]

一方、塩基性水溶液に用いられるケイ素源としては、アルカリ水溶液に可溶であって、焼成によりシリカになるものであればよく、特に制限されず、例えばオルトケイ酸、メタケイ酸、及びそれらのナトリウム塩やカリウム塩、水ガラスなどが挙げられる。また、無機塩基としては、アルカリ金属の炭酸塩や水酸化物などが挙げられる。

次に、このようにして調製した酸性水溶液又は酸性水分散液と塩基性水溶液を、それぞれ $50\sim90$ C程度に加温して、両者を混合し、さらに $50\sim90$ C程度の温度に保持して反応を完結させる。

次に、生成した固形物を充分に洗浄したのち固液分離するか、あるいは生成し

た固形物を固液分離したのち充分に洗浄し、次いで、この固形物を公知の方法により80~150℃程度の温度で乾燥処理する。このようにして得られた乾燥処理物を、好ましくは200~400℃の範囲の温度において焼成することにより、シリカーアルミナ担体上にニッケルが担持された脱硫剤が得られる。

[0017]

以下、上記のようにして得た金属系脱硫剤を用いた、灯油の脱硫処理条件について説明する。

本発明者らは、灯油の脱硫処理条件(運転圧力及び運転温度)は、用いる灯油の蒸留性状に応じた適切な範囲があることを見出した。すなわち、運転圧力(P Ope)及び運転温度(T Ope)が、下記式(1):

- $0.38 \times P_{ope}^{0.44} < T_{ope} / T_{50} < 1.07 \times P_{ope}^{0.22}$ … (1) を満足する場合に、灯油中の硫黄分を十分除去可能となり、且つ、長期間に渡り、金属系脱硫剤の脱硫性能を保持することが可能となるのである。より好ましくは、運転圧力(P_{ope})及び運転温度(T_{ope})が、下記式(2):
- $0.53 \times P_{ope}^{0.35} < T_{ope} / T_{50} < 0.96 \times P_{ope}^{0.24}$ ··· (2) を満足する場合である。

[0018]

ここで、 T_{ope} は運転温度(\mathbb{C})であり、 P_{ope} は運転圧力($k_{\rm g}/c_{\rm m}^2A$)であり、 T_{50} は J I S K 2 2 5 4 石油製品 - 蒸留試験方法に規定する常圧法蒸留試験方法により求めた 5 0 %留出時の留出温度である。

T₅₀は、用いる灯油の蒸留性状を示す1つのパラメーターである。これを基に上記式から脱硫処理条件を決定することにより、灯油の蒸留性状に応じた最適な脱硫条件を決定することができるのである。

 T_{ope}/T_{50} が、下限値(上記式(1)における、 $0.38 \times P_{ope}^{0.44}$)を下回ると脱硫反応速度が遅くなるため、脱硫性能は低下する。また、上限値(上記式(1)における、 $1.07 \times P_{ope}^{0.22}$)を上回ると、 $1.07 \times P_{ope}^{0.22}$ を上回ると、 $1.07 \times P_{ope}^{0.22}$)を上回ると、 $1.07 \times P_{ope}^{0.22}$ を上回ると、 $1.07 \times P_{ope}^{0.22}$ を上回るとができなくなる。

[0019]

次に、金属系脱硫剤を用いて、灯油を脱硫処理する際の手順について説明する

まず、脱硫剤を脱硫器に充填する。この脱硫器に水素を供給し、150~400℃程度の温度において、脱硫剤の還元処理を行う。あるいは、脱硫剤を、予め他の還元装置で還元し、安定化処理を施したものを使用してもよい。この場合は、脱硫器内での脱硫剤の還元処理温度は150~300℃程度で行う。脱硫器への水素供給を停止し、灯油を脱硫器中に上向き又は下向きの流れで流通させる。この際の灯油の液時空間速度(LHSV)は、例えば、0.1~2hr⁻¹であることが好ましい。このとき、上記式(1)、好ましくは式(2)を満足する運転圧力及び運転温度を適用する。

[0020]

本発明の脱硫方法によって得られる脱硫灯油は、硫黄濃度が0.2質量ppm 以下、好ましくは0.1質量ppm以下、より好ましくは0.05質量ppm以 下であり、燃料電池用水素の製造に用いる燃料油として非常に好ましいものであ る。また、本発明の脱硫方法は、灯油に水素を添加しないので、複雑なシステム を必要とせず、小型の燃料電池に用いる燃料油の製造に適している。

[0021]

次に、本発明の燃料電池用水素の製造方法(以下、本発明の製造方法という) について説明する。

本発明の燃料電池用水素の製造方法は、上記本発明の脱硫方法によって脱硫された灯油を改質処理することを特徴とする。

本発明の製造方法においては、上記本発明の脱硫方法を用いて脱硫した灯油を、部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒(以下、全てをまとめて、単に改質触媒ということもある)と接触させる改質処理により、燃料電池用水素を製造するものである。

[0022]

本発明の製造方法において用いられる改質触媒としては特に制限はなく、従来 から炭化水素の改質触媒として知られている公知のものの中から任意のものを適 宜選択して用いることができる。このような改質触媒としては、例えば適当な担 体にニッケルやジルコニウム、あるいはルテニウム、ロジウム、白金などの貴金属を担持したものを挙げることができる。上記担持金属は一種でもよく、二種以上を組み合わせてもよい。これらの触媒の中で、ニッケルを担持させたもの(以下、ニッケル系触媒という)とルテニウムを担持させたもの(以下、ルテニウム系触媒という)が好ましく、これらは、部分酸化改質処理、オートサーマル改質処理又は水蒸気改質処理中の炭素析出を抑制する効果が大きい。

上記改質触媒を担持させる担体には、酸化マンガン、酸化セリウム、ジルコニ ア等が含まれていることが好ましい。

[0023]

ニッケル系触媒の場合、ニッケルの担持量は担体基準で3~60質量%の範囲が好ましい。この担持量が3質量%未満では、部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒の活性が十分に発揮されないおそれがあり、一方、60質量%を超えると、その担持量に見合った触媒活性の向上効果があまり認められず、むしろ経済的に不利となる。触媒活性及び経済性などを考慮すると、ニッケルのより好ましい担持量は5~50質量%であり、特に10~30質量%の範囲が好ましい。

[0024]

また、ルテニウム系触媒の場合、ルテニウムの担持量は担体基準で0.05~20質量%の範囲が好ましい。ルテニウムの担持量が0.05質量%未満では、部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒の活性が十分に発揮されないおそれがあり、一方、20質量%を超えると、その担持量に見合った触媒活性の向上効果があまり認められず、むしろ経済的に不利となる。触媒活性及び経済性などを考慮すると、ルテニウムのより好ましい担持量は0.05~15質量%であり、特に0.1~2質量%の範囲が好ましい。

[0025]

部分酸化改質処理における反応条件としては、通常、圧力は常圧 $\sim 5\,\mathrm{MP}\,a$ ・G、温度は $4\,0\,0\,\sim 1\,1\,0\,0\,\mathrm{C}$ 、酸素 (O_2) /カーボン(モル比)は $0.2\,\sim 0.8$ 、液時空間速度(LHSV)は $0.1\,\sim 1\,0\,0\,\mathrm{h}\,\mathrm{r}^{-1}$ の条件が採用される

また、オートサーマル改質処理における反応条件としては、通常、圧力は常圧 $\sim 5\,\mathrm{MP}\,a\cdot G$ 、温度は $4\,0\,0\,\sim 1\,1\,0\,0\,^{\circ}$ 、スチーム/カーボン(モル比)は $0.\,1\,\sim 1\,0$ 、酸素(O_2)/カーボン(モル比)は $0.\,1\,\sim 1$ 、液時空間速度 (LHSV) は $0.\,1\,\sim 2\,\mathrm{h}\,\mathrm{r}^{-1}$ 、ガス時空間速度(GHSV)は $1\,0\,0\,0\,\sim 1\,0\,0\,0\,0\,\mathrm{h}\,\mathrm{r}^{-1}$ の条件が採用される。

[0026]

さらに、水蒸気改質処理における反応条件としては、水蒸気と燃料油に由来する炭素との比であるスチーム/カーボン(モル比)は、通常1.5~10、好ましくは1.5~5、より好ましくは2~4の範囲で選定される。スチーム/カーボン(モル比)が1.5未満では、水素の生成量が低下するおそれがあり、また10を超えると、過剰の水蒸気を必要とし、熱ロスが大きく、水素製造の効率が低下するので好ましくない。

また、水蒸気改質触媒層の入口温度を630 \mathbb{C} 以下、さらには600 \mathbb{C} 以下に保って水蒸気改質を行うのが好ましい。入口温度が630 \mathbb{C} を超えると、燃料油の熱分解が促進され、生成したラジカルを経由して触媒あるいは反応管壁に炭素が析出して、運転が困難になる場合がある。なお、触媒層出口温度は特に制限はないが、650 \mathbb{C} の範囲が好ましい。650 \mathbb{C} 未満では水素の生成量が十分でないおそれがあり、800 \mathbb{C} を超えると、反応装置を耐熱材料で構成する必要が生じる場合があり、経済的に好ましくない。

反応圧力は、通常常圧 ~ 3 MPa·G、好ましくは常圧 ~ 1 MPa·Gの範囲であり、また、LHS Vは、通常0. $1\sim 1$ 00 h r $^{-1}$ 、好ましくは0. $2\sim 5$ 0 h r $^{-1}$ の範囲である。

[0027]

本発明の製造方法においては、上記部分酸化改質、オートサーマル改質又は水蒸気改質により副生するCOが水素生成に悪影響を及ぼすため、COを反応によりCO2に変換して除くことが好ましい。

[0028]

このように、本発明の製造方法によれば、燃料電池用水素を効率よく製造することができ、燃料油中の硫黄分による被毒を抑制して改質触媒の寿命を長くする

ことができる。

[0029]

【実施例】

以下、本発明を実施例により、さらに具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。

[0030]

<脱硫剤の製造>

硫酸ニッケル・6水和物(特級、和光純薬株式会社製) 7 3 0. 2 g及び硫酸 銅・5水和物(特級、和光純薬株式会社製) 1 5 1. 3 gを、80℃に加温したイオン交換水 8 Lに溶解し、これに擬ベーマイト(商品名:C-AP、A 1 2 O 3 として 6 7 質量%、触媒化成工業株式会社製) 1 6. 0 gを混合した。これに、1 N硫酸 3 0 0 m L を加えて p H を 2 に調整し、調製液 A を 得た。別に用意した、8 0 ℃に加温したイオン交換水に炭酸ナトリウム 6 0 0. 0 gを溶解し、水ガラス(J-1号、S i 濃度 2 9 質量%、日本化学工業社製) 1 8 0. 2 gを加えて調製液 B を 得た。調製液 A 及び調製液 B の温度を それぞれ 8 0 ℃に保持しながら、両者を瞬時に混合し、1 時間撹拌した。その後、イオン交換水 6 0 L を 用いて沈殿ケーキを洗浄・濾過を行い、1 2 0 ℃送風乾燥機にて生成物を 1 2 時間乾燥し、3 5 0 ℃で 3 時間焼成した。その後、打錠成形により脱硫剤を成形し、これを再度粉砕することにより、平均粒径 0.8 mmのニッケルー銅系脱硫剤(脱硫剤)を 得た。

[0031]

<脱硫剤の性能評価>

内径17mmのSUS製反応管に、上記で得た脱硫剤23mLを充填した。常圧下、水素気流中で反応管を120℃に昇温し、30分間保持した後、反応管を徐々に350℃まで昇温し、20時間保持することにより脱硫剤を活性化した。その後、反応管の温度を140℃まで降温し、保持した。

反応管に、下記表1に蒸留性状等を示す灯油を、液時空間速度(LHSV)3 hr⁻¹で供給し、反応管出口に設けられた圧力調整弁で、下記表2に示す圧力に 調整し、同じく表2に示す温度で脱硫処理を行った。結果を表2に示す。 表1に示す灯油の蒸留性状は、JISK2254石油製品-蒸留試験方法に規 定する常圧法蒸留試験方法に従って測定した。

[0032]

【表1】

表1:灯油の蒸留性状等

		留出温度(℃)	
留出量(vol%)	灯油A	灯油B	灯油C
0	150.0	152.0	152.5
5	162.5	166.0	171.0
10	164.0	167.0	176.0
20	170.0	175.5	185.5
30	176.0	184.0	193.5
40	183.0	193.5	200.5
(T ₅₀) 50	191.5	203.5	208.5
60	201.0	214.0	216.0
70	211.5	224.0	224.0
80	221.5	237.5	235.0
90	236.5	254.0	249.0
95	247.0	265.5	258.5
97	254.0	271.0	264.0
100	259.5	274.5	267.0
全留出量(vol%)	98.5	98.5	99.0
残留油(vol%)	1.5	1.5	1.0
消失量(vol%)	0.0	0.0	0.0
密度(g/cc)@15℃	0.7893	0.7968	0.7971
硫黄濃度(質量ppm)	31	64	48

[0033]

表 2 中の「0.2 p p m破過寿命(灯油/脱硫剤)」は、脱硫剤の性能を示す 指標であり、脱硫処理開始時から脱硫された灯油中の硫黄濃度が 0.2 質量 p p mを超えるまでの時間における、単位脱硫剤容量(cc)当たりの灯油処理容量 (cc)を示す値である。

表2中の式(1)及び式(2)は、前述の、用いる灯油の蒸留性状に応じた脱

硫処理条件を決定するための式である。

[0034]

表2:灯油の脱硫試験結果

		十世世	H. H.		(+)#	F	6) 1	6	
	灯油(T ₅₀)	(kg/cm	年表が (2C)	Tope Too	0.38 × P _{ope} 0.44	1.07 × P _{ope} 0.22	0.53 × P _{coe} 0.35	0.96 × P _{ope} 0.24	0.Sbbm被過率倍(灯油/脱硫型)
実施例1		C	220	1.15					650
実施例2		9	250	1.31	0.62	38	0.78	1.25	400
比較例1	(191.5°C)		140	0.73					220
実施例3		വ	250	1.31	7.0	1.52	0.93	14.1	1400
比較例2			300	1.57					120
比較例3		1	250	1.23	0.38	1.07	0.53	96.0	80
実施例4	ω,	3	250	1.23	0.62	1.36	0.78	1.25	580
束施例5	(203.5°C)	rc	270	1.33	74.0	1 50	6	. :	920
実施例6			300	1.47	0.77	70.1		4.	740
比較例4		1	250	1.20	0.38	1.07	0.53	96'0	06
実施例7		6	230	1.10	000		į		450
束施例8	-	,	260	1.25	70:0	30 30	8/:i	1.25	009
比較例5	(•	150	0.72					160
実施例9	(208.5°C)	Ľ	220	1.06		Ç.			510
実施例10		· · · · ·	270	1.29	```	72.1	0.93	14.	1100
比較例6			330	1.58				!	40
東施例11			200	96.0	000				430
実施例12		,	250	1.20	0.03	1.04	1.05	1.53	820

表2の結果から、各脱硫試験において、 T_{ope}/T_{50} が、式(1)の上限値又は下限値を超えている比較例では、0.2ppm破過寿命は $40\sim220$ と低いのに対し、 T_{ope}/T_{50} が、式(1)又は式(2)の上限値と下限値との間にある実施例では、0.2ppm破過寿命は $400\sim1400$ と高いことがわかる。従って、前記式(1)又は式(2)において、 T_{ope}/T_{50} が、それぞれの上限値と下限値との間になるように脱硫処理条件(運転温度及び運転圧力)を選択すれば、灯油中の硫黄分を長期間に渡って硫黄濃度0.2質量ppm以下まで効率良く除去することができ、同時に、脱硫剤の寿命を長くすることができることがわかる。

[0036]

<脱硫灯油の改質処理試験>

その結果、500時間経過後の改質器出口での水素の転化率は100%であった。

[0037]

【発明の効果】

本発明の脱硫方法によれば、用いる灯油の蒸留性状に応じた適切な脱硫処理条件を選択することができる。適切な脱硫処理条件を用いることにより、長時間に渡り灯油中の硫黄分を0.2質量ppm以下に効率よく低減することができるだけでなく、脱硫剤の寿命をも長くすることができる。

本発明の燃料電池用水素の製造方法は、本発明の脱硫方法によって脱硫された 灯油を改質処理することにより、効率よく燃料電池用水素を製造することができ 、また、改質触媒の寿命を長くすることができる。

【書類名】

要約書

【要約】

【課題】 灯油中の硫黄分を水素を添加することなく、低濃度まで効率良く除去することができ、かつ、寿命の長い灯油用の脱硫剤の最適な使用方法を提供する。

【解決手段】 金属系脱硫剤を使用し、水素を添加することなく灯油中の 硫黄分を除去する方法であって、

脱硫条件が下記式(1)を満足することを特徴とする脱硫方法:

 $0.38 \times P_{ope}^{0.44} < T_{ope} / T_{50} < 1.07 \times P_{ope}^{0.22} \cdots (1)$ (式中、 T_{ope} は運転温度 ($^{\circ}$) であり、 P_{ope} は運転圧力($^{\circ}$ k g / c m $^{\circ}$ A)であり、 T_{50} は J I S K 2 2 5 4 石油製品 - 蒸留試験方法に規定する常圧法蒸留試験方法により求めた 5 0 % 留出時の留出温度である。)

【選択図】 なし

出願人名義変更届

【提出日】

平成15年 7月 2日

【あて先】

特許庁長官殿

【事件の表示】

【出願番号】

特願2002-212384

【承継人】

【識別番号】

000183646

【氏名又は名称】

出光興産株式会社

【承継人代理人】

【識別番号】

100078732

【弁理士】

【氏名又は名称】

大谷 保

【手数料の表示】

【予納台帳番号】

003171

【納付金額】

4,200円

【提出物件の目録】

【包括委任状番号】

0000937

【プルーフの要否】

要

特願2002-212384

出願人履歷情報

識別番号

[590000455]

1. 変更年月日 [変更理由]

1990年12月 5日 新規登録

住 所 名

東京都港区麻布台2丁目3番22号 財団法人石油産業活性化センター

2. 変更年月日 [変更理由]

1995年11月 2日 住所変更

住 所

東京都港区虎ノ門四丁目3番9号 財団法人石油産業活性化センター

氏 名

特願2002-212384

出願人履歴情報

識別番号

[000183646]

1. 変更年月日 [変更理由]

1990年 8月 8日 新規登録

住 所 名

東京都千代田区丸の内3丁目1番1号

出光興産株式会社