Electromagnetism

Professor D. Evans d.evans@bham.ac.uk

Lecture 4
Gauss's Law 2
More examples
Week 2

Last-Lesture

- Some more examples of continuous charge distributions
 - Infinite plane
 - Inside charged hollow sphere
- Electric flux
- Gauss's Law
 - Examples using Gauss's Law

Gauss's Law

- This is Gauss's Law
 - You need to know this and know how to use it

$$\int_{S} \underline{E} \cdot d\underline{S} = \frac{Q_{encl}}{\varepsilon_{0}}$$

 Very useful for solving problems where there's symmetry (see examples).

Johann Carl Friedrich Gauss

Born: 30 April 1777 in Brunswick, Duchy of Brunswick

Died: 23 Feb 1855 in Göttingen, Hanover

number theory, statistics, analysis, differential geometry, electrostatics, astronomy, and optics

Lecture 3 Content

More examples using Gauss's Law

Solid Sphere with Uniform Charge

Example: Sphere of radius *R* uniformly charged throughout its volume. Total charge *Q*

- (a) E-field for r > R
- (b) \underline{E} -field for r < R

Method: set up an (imaginary) *Gaussian*Surface and use symmetry

E-field outside & inside uniform charged sphere

(a) Outside r > R

What about Solid Sphere with Non-Uniform Charge

Example: Sphere of radius R with charge density

$$\rho(r) = \rho_0 r$$

Now
$$Q_{encl} = \int_0^r \rho(r) dV$$

Use Gauss's Law and symmetry

$$\int_{S} \underline{E} \cdot d\underline{S} = \frac{1}{\varepsilon_0} \int_{0}^{r} \rho(r) dV$$

Let's solve this using the visualizer

E-fields in Conductors

- EXTERNAL <u>E</u>-FIELD. Electrons are free to move, and exist in vast quantities.
- Free electrons drift to the surface until they create

an equal but opposite E-field that cancels external E-field.

 $\underline{\boldsymbol{E}} = 0$ in a conductor

$$\int_{S} \underline{E} \cdot d\underline{S} = 0$$

Thus Q=0, free charge found on surface only

Gauss's Lawt More Examples

- Spherical Shell
- Infinite sheet of charge
 - Non-conducting
 - Conducting
- Infinite charged thin wire

E-field Inside Uniform Charged Shell

 We already know it's zero from before but now use Gauss's Law.

Inside shell (using Gauss's Law)

$$\int_{S} \underline{E} \cdot d\underline{S} = \frac{Q_{encl}}{\varepsilon_{0}} = 0 \to E = 0$$

E-field Inside Uniform Charged Shell

$$\int_{S} \underline{E} \cdot d\underline{S} = \frac{Q_{encl}}{\varepsilon_{0}} = 0 \to E = 0$$

Outside shell (using Gauss's Law)

$$\int_{S} \underline{E} \cdot d\underline{S} = \frac{Q}{\varepsilon_{0}} \to 4\pi r^{2} E = \frac{Q}{\varepsilon_{0}}$$

$$E = \frac{Q}{4\pi \varepsilon_{0} r^{2}}$$

E-field Inside Uniform Charged Shell

For 'thin' shell

Note: Same as for conducting material

• Non-Conducting (charge uniform throughout sheet) – surface charge density = σ

As sheet is infinite (i.e. no edge effects) \underline{E} is \bot to the sheet.

Use a cylindrical Gaussian surface - axis \perp to the sheet (as shown).

Gaussian surface

No E-field coming out of side walls, only ends

Make area of end of cylindrical Gaussian surface = A

LHS: total flux, $\Phi = AE + AE = 2AE$

RHS: total charge on surface = $A\sigma$ So RHS = $A\sigma / \varepsilon_0$

$$E = \frac{\sigma}{2\varepsilon_0}$$

Gaussian surface

The result agrees with the one we found by taking the infinite radius limit of a disk.

But much easier method (only works for infinite sheet, otherwise have to use integration as before).

- Conducting (charge only on surface, not inside conductor) surface charge density = σ
- Charges move until $\underline{E} = 0$ inside a conductor
- No net charges exist inside a conductor
- Free (extra) charges reside on surface

E-field due to an infinite conducting sheet

• Q distributes until there is a charge density σ on both surfaces

We now repeat the "pill box" construction.

No E-field inside

E-field due to an infinite conducting sheet

Apply Gauss's Law

$$\Phi_E = EA = \frac{\sigma A}{\varepsilon_0}$$

$$\therefore \mathbf{E} = \frac{\boldsymbol{\sigma}}{\boldsymbol{\varepsilon_0}}$$

Factor of 2 difference between the fields of insulator and conducting infinite planes. Why?

E-field due to an infinite conducting sheet

Let's put the Gaussian surface (pillbox) through the conducting sheet

$$f_E = 2EA = \frac{2SA}{e_0}$$

$$E = \frac{S}{e_0}$$

E-field just out surface of charged conductor

\underline{E} -field just outside a charged conductor

$$E = \frac{S}{e_0}$$

 σ is the surface charge density.

E-field between Charged Metal Plates

<u>E</u>-field between parallel charged metal (i.e. conducting) plates

E-field between Charged Metal Plates

Cylindrical Gaussian Surface

$$E = \frac{S}{e_0}$$

23

E-Field from an Infinite Line Charge

$$\grave{0}\underline{E}.d\underline{A} = E \cdot 2prl = \frac{/l}{e_0}$$

 $E = \frac{7}{2\rho e_0 r}$

Gaussian Surface in Efield but no enclosed charge.

arge.
$$\vec{E} = 0$$

E=0 ??

No. In this case E is not parallel to dA and not constant around surface

If the charge falls outside the Gaussian Surface, the net flux through the surface is zero.

Summary on Gauss's Law

- In situations of high symmetry (planar, spherical, cylindrical), Gauss's law allows us to compute quantitatively the <u>E</u>-field in a straightforward manner.
- Very useful.

$$\int_{S} \underline{E} \cdot d\underline{S} = \frac{Q_{encl}}{\varepsilon_0}$$