ECC, Probability and LDPCC

CoCoNut, 2016 Emmanuela Orsini

Previously

[8,3,5] Linear Code over GF(3)

[8,3,5] Linear Code over GF(3)

```
[1 0 0 0 1 2 2]

[1 0 0 1 1 0 2 2]

[0 1 0 0 0 1 2]

[0 1 0 0 0 0 1 2]

[0 0 1 0 2 1 2 2]

[0 0 0 1 0 1 1 0]

[0 0 0 0 1 2 2]

r:=Vector(GF(3),[1,1,0,1,0,2,0,2]);

r*Transpose(H);

(1 2 2 0 2)
```

Consider the usual $[7,4]_2$ Hamming code with parity-check matrix H, and suppose ${\bf r}=1011000$ is the received word. Then the associated syndrome is

$$\mathbf{s} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

The decoding procedure for binary Hamming code is as follows: Suppose a single error occurred in the *i*th component, then $\mathbf{s} = H\mathbf{e}_i = \mathbf{h}_i$, where \mathbf{h}_i is the *i*th column of H.

- Compute the syndrome $\mathbf{s} = H\mathbf{r}$;
 - Find the column \mathbf{h}_i of H that matches the syndrome;
 - Complement the ith bit of the received word.

The simplest way to add redundancy to a transmission is to repeat each symbol of the message a fixed number of times.

- $\bullet \mathcal{A} = \{a_1, \ldots, a_q\}$
- A codeword is given by a symbol of A repeated n times

$$C_q^{rep}(n) = \{\underbrace{a_1 \dots a_1}_{n}, \underbrace{a_2 \dots a_2}_{n}, \dots, \underbrace{a_q \dots a_q}_{n}\},$$

- Minimum distance? Length? Dimension? Rate?
- Decoding with a majority vote strategy (it can be proved equivalent to the MLD)

This lecture

A communication scheme

Figure: Communication channel model with noise

A communication scheme

Figure: Communication channel model with noise

TRANSMITTER Source Channel Encoder Modulator

 Source encoder: it represents the source message in a compact way by removing unnecessary content (data compression)

TRANSMITTER Source Channel Modulator Encoder Encoder

- Source encoder: it represents the source message in a compact way by removing unnecessary content (data compression)
- Channel encoder: it outputs a "channel codeword", introducing a systematic redundancy to tolerate errors that might be introduced by the channel (error correcting encoding).

- Source encoder: it represents the source message in a compact way by removing unnecessary content (data compression)
- Channel encoder: it outputs a "channel codeword", introducing a systematic redundancy to tolerate errors that might be introduced by the channel (error correcting encoding).

Channel decoder: reverse operation of channel encoder

- Source encoder: it represents the source message in a compact way by removing unnecessary content (data compression)
- Channel encoder: it outputs a "channel codeword", introducing a systematic redundancy to tolerate errors that might be introduced by the channel (error correcting encoding).

- Channel decoder: reverse operation of channel encoder
- Source decoder: reverse operation of source encoder

- Procedures for data compression
- How much can we compress? Is there a limit?
- How much redundancy is necessary to minimize the error probability in decoding?
- Is it true that to minimize the error probability we need to add a lot of redundancy, or we can achieve the same result more efficiently?

A random variable is a real-valued function of the experimental outcome:

$$X: \Omega \rightarrow E \subseteq \mathbb{R}$$
.

Visualization of a random variable: it is a function that assigns a numerical value to each possible outcome of the experiment

Discrete random variable: if the set of possible values is finite or at most countably finite.

Random variables II

Example Consider two rolls of a 4-sided dice. Let X be the maximum of the two rolls. If the outcome is (4,2) then the value of X is 4, if the outcome is (2,3), the value of X is 3.

Random variables II

Example Consider two rolls of a 4-sided dice. Let X be the maximum of the two rolls. If the outcome is (4,2) then the value of X is 4, if the outcome is (2,3), the value of X is 3.

• Let X be a discrete random variable, the *probability mass function* (probability for short) of X, denoted by p_X is the probability of the event $\{X = x\}$ consisting of all outcomes that give rise to a value of X equal to X:

$$p_X(x) = \Pr(X = x).$$

In many experiments, more than a single random variable is involved. For example, to calculate probabilities involving two random variables X and Y we need the joint probability of X and Y.

Definition

Let X and Y be two discrete random variables associated with the same experiment. The **joint probability** of X and Y is defined as

$$p_{X,Y}(x,y)=\Pr(X=x,Y=y),$$

for all pairs of numerical values (x, y) that X and Y can take.

• Let E be the set consisting of all (x, y) values, then

$$\Pr((X,Y) \in E) = \sum_{(x,y) \in E} p_{X,Y}(x,y).$$

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$
 $p_Y(y) = \sum_{x} p_{X,Y}(x,y)$

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$
 $p_Y(y) = \sum_{x} p_{X,Y}(x,y)$

Example. The input source to a noisy channel is a r. v. X over a, b, c, d. The output for this channel is a r. v. Y over the same alphabet. The joint probability of these two random variables is:

X	а	b	С	d	$Pr_X(x)$
а	1/8	1/16	1/16	1/4	1/2
b	1/16	1/8	1/16	0	1/4
С	1/32	1/32	1/16	0	1/8
d	1/32	1/32	1/16	0	1/8
$Pr_{Y}(y)$	1/4	1/4	1/4	1/4	1

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$
 $p_Y(y) = \sum_{x} p_{X,Y}(x,y)$

Example. The input source to a noisy channel is a r. v. X over a, b, c, d. The output for this channel is a r. v. Y over the same alphabet. The joint probability of these two random variables is:

X	а	b	С	d	Pr _X (x)
а	1/8	1/16	1/16	1/4	1/2	_
b	1/16	1/8	1/16	0	1/4	
С	1/32	1/32	1/16	0	1/8	
d	1/32	1/32	1/16	0	1/8	
$Pr_{Y}(y)$	1/4	1/4	1/4	1/4	1	_
X	<i>y</i> 1			Уı		$Pr_X(x)$
x ₁	$p_{X,Y}(x)$	$(1, y_1)$		$p_{X,Y}(.$	x_1, y_l	$p_X(x_1)$
<i>x</i> ₂	$p_{X,Y}(x)$	$(2, y_1)$		$p_{X,Y}(.$	(x_2, y_1)	$p_X(x_2)$
			:			:
x _h	$p_{X,Y}(x)$	(h, y_1)		$p_{X,Y}(x)$	x_h, y_l	$p_X(x_h)$
$Pr_{\nu}(y)$	p _Y (V ₁)		p _Y (V_n)	1

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$
 $p_Y(y) = \sum_{x} p_{X,Y}(x,y)$

Example. The input source to a noisy channel is a r. v. X over a, b, c, d. The output for this channel is a r. v. Y over the same alphabet. The joint probability of these two random variables is:

X	а	b	С	d	Pr _X (x))	
а	1/8	1/16	1/16	1/4	1/2		
b	1/16	1/8	1/16	0	1/4		
С	1/32	1/32	1/16	0	1/8		$\Pr_{Y}(Y = a) = \Pr_{X,Y}(X = a, Y = a) +$
d	1/32	1/32	1/16	0	1/8		Y X,Y
$Pr_{\gamma}(y)$	1/4	1/4	1/4	1/4	1		$\Pr_{X,Y}(X=b, Y=a) +$
Y	<i>Y</i> 1			у	,	$Pr_X(x)$	<i>'</i>
X							$\Pr_{X,Y}(X=c, Y=a) +$
<i>x</i> ₁	$p_{X,Y}(x)$			$p_{X,Y}(.$		$p_X(x_1)$	<i>'</i>
<i>x</i> ₂	$p_{X,Y}(x)$	$(2, y_1)$		$p_{X,Y}(.$	$x_2, y_1)$	$p_X(x_2)$	$\Pr_{X \mid Y}(X = d, Y = a) = 1/4$
					.		х, т
	:		:		:	:	
x _h	$p_{X,Y}(x$	(h, y_1)		$p_{X,Y}(.$	$x_h, y_l)$	$p_X(x_h)$	
$Pr_{\nu}(\nu)$	pv(I	V ₁)		pv(Vn)	1	

Conditional probability:

$$p_{X|Y}(x,y) = \Pr(X = x|Y = y).$$

$$p_{X|Y}(x,y) = \frac{\Pr(X = x, Y = y)}{\Pr(Y = y)} = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}.$$

• Multiplication rule:

$$p_{X,Y}(x,y) = p_{X|Y}(x,y) \cdot p_Y(y) \quad p_X(x) > 0$$

and

$$p_{X,Y}(x,y) = p_{Y|X}(x,y) \cdot p_X(x)$$
 if $p_Y > 0$.

• Two random variables X and Y are independent if

$$p_{X|Y}(x,y) = p_X(x).$$

In this case we also have that

$$p_{Y|X}(x,y)=p_Y(y).$$

Problem 1 We choose one box at random and extract from it a ball. We want to compute the probability that the extracted ball is green.

Solution:

- X the random value that takes values in {1,2}
- Y the random value that takes values {g, r}

We need to compute

$$Pr(Y = g) = Pr(X = 1) \cdot Pr(Y = g|X = 1) + Pr(X = 2) \cdot Pr(Y = g|X = 2)$$

 Sum rule: We can rewrite the marginal probabilities: Given X and Y two random variables, and E_X , E_Y the set of all values x and y respectively

$$Pr_X(x) = \sum_{y \in E_y} Pr(X = x, Y = y) =$$
$$\sum_{y \in E_y} Pr(Y = y) \cdot Pr(X = x | Y = y)$$

Bayes rule: From the multiplication rule

$$p_{X,Y}(x,y) = p_{X|Y}(x,y) \cdot p_Y(y)$$
 $p_{X,Y}(x,y) = p_{Y|X}(x,y) \cdot p_X(x)$

we obtain

$$p_{X|Y}(x,y) = \frac{p_{Y|X}(x,y) \cdot p_X(x)}{p_Y(y)}$$

Problem 2 We now want to compute the probability that \mathcal{B}_1 is the chosen box, knowing that the extracted ball is green.

Solution:

- X takes values {0, 1}
- Y takes values {g, r}

We need to compute Pr(X = 1 | Y = g). Using the multiplication rule,

$$\Pr(X = 1 | Y = g) \cdot \Pr(Y = g) = \Pr(Y = g | X = 1) \cdot \Pr(X = 1)$$

and from this

$$Pr(X = 1 | Y = g) = \frac{Pr(Y = g | X = 1) \cdot Pr(X = 1)}{Pr(Y = g)} = 5/11$$

Suppose a BSC with crossover probability p (p < 1/2).

 $\mathbf{c} \in \mathbb{F}_2^n$ is sent and $\mathbf{r} \in \mathbb{F}_2^n$ is received

The probabilities

$$Pr(c|r)$$
 $Pr(c)$ $Pr(r|c)$ $Pr(r)$

are related by Bayes'rule

$$\Pr(c|r) = \frac{\Pr(r|c)\Pr(c)}{\Pr(r)}$$

- $\hat{\mathbf{c}} = max_{\mathbf{c} \in C} \Pr(\mathbf{c} | \mathbf{r})$ Maximum a posteriori probability
- $\hat{\mathbf{c}} = max_{\mathbf{c} \in C} \Pr(\mathbf{r} | \mathbf{c})$ Maximum likelihood decoder

- $\mathbf{r} = r_1 \dots r_n$ and $\mathbf{c} = c_1 \dots c_n$
- $Pr(\mathbf{r}|\mathbf{c}) = \prod_{i=1}^{n} Pr(r_i|c_i)$ since we assumed that bit errors are independent.

 $\begin{cases} \Pr(r_i|c_i) = p & \text{if } r_i \neq c_i \\ \Pr(r_i|c_i) = 1 - p & \text{if } r_i = c_i \end{cases}$

$$\mathsf{Pr}(\mathbf{r}|\mathbf{c}) = \rho^{d(\mathbf{r},\mathbf{c})} (1-\rho)^{n-d(\mathbf{r},\mathbf{c})} = (1-\rho)^n \left(\frac{\rho}{1-\rho}\right)^{d(\mathbf{r},\mathbf{c})},$$

Since 0 and <math>0 < p/(1-p) < 1, we can deduce that maximizing $Pr(\mathbf{r}|\mathbf{c})$ is equivalent to minimizing $d(\mathbf{r}, \mathbf{c})$.

This means that on a BSC, maximum likelihood decoding and nearest decoding are the same.

- This result can be generalized to the q-ary symmetric channel.

- Bit error probability p_b: suppose that a codeword is represented by a binary vector **c** of length N; this is the average probability that a bit of **r** is not equal to the corresponding bit of **c**.
- Block error probability p_B: of a code and decoder, for a given channel, and for a given input probability Pr(c_i), is the probability that at least one symbol of a block of symbols is decoded incorrectly.
- The optimal decoder: is the one that minimizes the probability of block error. If a uniform input distribution on c is assumed the optimal decoder is the MLD decoder.

PROBLEM 1

Compute the error probability of the code R_3 (the Repetition code of length 3) for a binary symmetric channel with noise level p.

PROBLEM 1

Compute the error probability of the code R_3 (the Repetition code of length 3) for a binary symmetric channel with noise level p.

Solution: An error is made by R_3 if

- if 3 bits are flipped, this happens with probability p^3
- if exactly 2 bits are flipped, this happens with probability $3p^2(1-p)$

$$p_b = p_B = 3p^2(1-p) + p^3 = 3p^2 - 2p^3 \approx 3p^2$$

PROBLEM 1

Compute the error probability of the code R_3 (the Repetition code of length 3) for a binary symmetric channel with noise level p.

Solution: An error is made by R_3 if

- if 3 bits are flipped, this happens with probability p³
- if exactly 2 bits are flipped, this happens with probability $3p^2(1-p)$

$$p_b = p_B = 3p^2(1-p) + p^3 = 3p^2 - 2p^3 \approx 3p^2$$

PROBLEM 2

Assuming p = 0.1, find how many repetitions are required to get the probability of error down to 10^{-15} .

Compute the error probability of the code R_3 (the Repetition code of length 3) for a binary symmetric channel with noise level p.

Solution: An error is made by R_3 if

- if 3 bits are flipped, this happens with probability p^3
- if exactly 2 bits are flipped, this happens with probability $3p^2(1-p)$

$$p_b = p_B = 3p^2(1-p) + p^3 = 3p^2 - 2p^3 \approx 3p^2$$

PROBLEM 2

Assuming p = 0.1, find how many repetitions are required to get the probability of error down to 10^{-15} . Solution:

 $n \approx 61$

Compute the error probability of the code R_3 (the Repetition code of length 3) for a binary symmetric channel with noise level p.

Solution: An error is made by R_3 if

- if 3 bits are flipped, this happens with probability p^3
- if exactly 2 bits are flipped, this happens with probability $3p^2(1-p)$

$$p_b = p_B = 3p^2(1-p) + p^3 = 3p^2 - 2p^3 \approx 3p^2$$

PROBLEM 2

Assuming p = 0.1, find how many repetitions are required to get the probability of error down to 10^{-15} . Solution:

 $n \approx 61$

Calculate the probability of block error p_B of the $[7,4,3]_2$ Hamming code as a function of the noise level p.

$$p_B \approx 21 p^2$$

Calculate the probability of block error p_B of the $[7,4,3]_2$ Hamming code as a function of the noise level p.

Solution:

$$p_B \approx 21 p^2$$

PROBLEM 2

Calculate the probability of bit error p_b for the same code.

$$p_b \approx 9p^2$$

Calculate the probability of block error p_B of the $[7,4,3]_2$ Hamming code as a function of the noise level p.

Solution:

$$p_B \approx 21p^2$$

PROBLEM 2

Calculate the probability of bit error p_b for the same code.

$$p_b \approx 9p^2$$

Good codes exist! but...

Good codes exist! but...

... but we do not know how to construct them

Shannon proved that for every DMC with a finite number of inputs and outputs points, one may define the notion of **channel capacity**.

Claude-Shannon 1916-2001

- If C is a code with rate R > C, then the probability of error in decoding this code is bounded away from 0. (In other words, at any rate R > C, reliable communication is not possible.)
- For any information rate $R < \mathcal{C}$ and any $\delta > 0$, there exists a code C of length n_{δ} and rate R, such that the probability of error in maximum likelihood decoding of this code is at most δ .

Proof: Non-constructive!

How can we find good codes?? Ingredients of Shannon's proof:

- Random code
- Large block length
- Optimal decoding

How can we find good codes?? Ingredients of Shannon's proof:

- Random code
- Large block length
- Optimal decoding

- Long, structured, "pseudorandom" codes
- Practical, near-optimal decoding algorithms

How can we find good codes?? Ingredients of Shannon's proof:

- Random code
- Large block length
- Optimal decoding

Solution:

- Long, structured, "pseudorandom" codes
- Practical, near-optimal decoding algorithms

State-of-art:

 Turbo codes and LDPC codes have brought Shannon limits to within reach on a wide range of channels

- LDPC codes are capacity-approaching codes
 - G.hn/G.9960 (ITU-T Standard for networking over power lines, phone lines and coaxial cable)
 - 802.3an (10 Giga-bit/s Ethernet over Twisted pair)
 - DVB-S2 / DVB-T2 / DVB-C2 (Digital video broadcasting, 2nd Generation) and DMB-T/H (Digital video broadcasting)
 - WiMAX (IEEE 802.16e standard for microwave communications)
 - IEEE 802.11n-2009 (Wi-Fi standard)