STAT 521: Take-Home Final Exam Name:

Problem 1: (30 pts)

Suppose that Y is a binary random variable (taking either 1 or 0) and we are interested in estimating $\theta = P(Y = 1)$, the population proportion of Y = 1. We assume that x_i are available throughout the finite population but y_i are observed only in the sample.

To incorporate the auxiliary information, we consider the following logistic regression model

$$P(Y = 1 \mid x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)} := p(x; \beta_0, \beta_1)$$

and estimate (β_0, β_1) by solving the following weighted score equation:

$$\sum_{i \in A} \frac{1}{\pi_i} \{ y_i - p(x_i; \beta_0, \beta_1) \} (1, x_i) = (0, 0),$$

where π_i is the first-order inclusion probability of unit i.

Once $(\hat{\beta}_0, \hat{\beta}_1)$ is computed from the above formula, we use the following projection estimator.

$$\hat{\theta}_P = \frac{1}{N} \sum_{i=1}^{N} \hat{p}_i,$$

where

$$\hat{p}_i = \frac{\exp(\hat{\beta}_0 + \hat{\beta}_1 x)}{1 + \exp(\hat{\beta}_0 + \hat{\beta}_1 x)}$$

1. Let (β_0^*, β_1^*) be the finite-population quantity that satisfies

$$\sum_{i=1}^{N} \{y_i - p(x_i; \beta_0^*, \beta_1^*)\} (1, x_i) = (0, 0)$$

Show that $\hat{\theta}_P$ is asymptotically equivalent to

$$\hat{\theta}_{\ell} = \frac{1}{N} \sum_{i=1}^{N} p_i^* + \frac{1}{N} \sum_{i \in A} \frac{1}{\pi_i} (y_i - p_i^*), \qquad (1)$$

where $p_i^* = p(x_i; \beta_0^*, \beta_1^*)$.

- 2. Show that $\hat{\theta}_{\ell}$ in (1) is design unbiased for $\theta_N = N^{-1} \sum_{i=1}^N y_i$. How to estimate the variance of $\hat{\theta}_{\ell}$ from the observations in the sample?
- 3. Compute the approximate anticipated variance of $\hat{\theta}_P$ and derive the optimal π_i (in terms of x and β) that minimizes the anticipated variance (given a fixed value of expected sample size). You may assume Poisson sampling.

Problem 2: (30 pts)

Consider a finite population with bivariate measurement (X,Y), where both X and Y are categorical taking values in $\{0,1\}$. From the finite population, we are interested in estimating P=Pr(Y=1). Let N_{ab} be the number of elements with (X=a,Y=b) in the population, where a=0,1;b=0,1.

From the finite population, we select a SRS of size n and observe (x_i, y_i) in the sample. Let n_{ab} be the number of elements with $(x_i, y_i) = (a, b)$ in the sample. The HT estimator of P is $\hat{P}_{HT} = n_{+1}/n$, where $n_{+1} = n_{01} + n_{11}$.

Now, suppose that x_i are available throughout the finite population so that we know N_{1+} and N_{0+} outside the sample. To take advantage of this extra information, we consider the following estimator:

$$\hat{P}_r = \frac{1}{1 + \hat{\theta}_r}$$

where

$$\hat{\theta}_r = \frac{N_{0+}}{N_{1+}} \times \frac{n_{1+}}{n_{0+}} \times \frac{n_{+0}}{n_{+1}}.$$

Answer the following questions:

- 1. Show that \hat{P}_r is asymptotically unbiased.
- 2. Derive the asymptotic variance of \hat{P}_r .
- 3. Under what conditions, \hat{P}_r is more efficient than the HT estimator?

Problem 3: (40 pts)

Assume that two independent samples are drawn from the same population. Let A_1 and A_2 be the set of the sample indices for the two SRS samples with the size n_1 and n_2 , respectively. Assume that only x_i is observed in sample A_1 and x_i and y_i are observed in sample A_2 . Let $\bar{x}_1 = n_1^{-1} \sum_{i \in A_1} x_i$ and $\bar{x}_2 = n_2^{-1} \sum_{i \in A_2} x_i$ be the unbiased estimators of $\bar{x}_N = N^{-1} \sum_{i=1}^N x_i$ from sample A_1 and from sample A_2 , respectively. Also, $\bar{y}_2 = n_2^{-1} \sum_{i \in A_2} y_i$ is an unbiased estimator of $\bar{y}_N = N^{-1} \sum_{i=1}^N y_i$. Consider the following regression estimator

$$\bar{y}_{reg} = \bar{y}_2 + (\bar{x}_1 - \bar{x}_2)\,\hat{\beta}_2$$

where $\hat{\beta}_2$ is the slope β for the regression of y on x, obtained from the sample A_2 .

- 1. Show that \bar{y}_{reg} is approximately design unbiased. Compute the asymptotic variance of \bar{y}_{reg} .
- 2. Under what conditions, we have $V\left(\bar{y}_{reg}\right) < V\left(\bar{y}_{2}\right)$? Answer the question in terms of the sample sizes.
- 3. Discuss how you can obtain a consistent estimator for the variance of \bar{y}_{reg} from the two samples.
- 4. Express \bar{y}_{reg} as a calibration estimator. That is, discuss how to express $\hat{\omega}_i$ for $\bar{y}_{reg} = \sum_{i \in A_2} \hat{\omega}_i y_i$ as the solution to the primal optimization problem of the weights.