58.8

科 學 譯 叢

關於物種變化問題的研究

C. A. 科 特 等 著

(8.8 410 (1)

58.8081 410

科學出版社

Bradenia serbana

科學譯叢

關於物種變化問題的研究

孫 濟 中 劉 菊 生 襲 畿 道 陳 恆 鶴 譯 童 克 忠

科 學 出 版 社 1955年7月

內 容 提 要

本書一共選擇了五篇論文,其主要的內容是介紹蘇聯植物學家將農作物還有草 本植物和木本的樹木做了詳細的實驗和觀察,知道一種植物在不同的生活條件之下,可能會變爲另一種植物的。

從這幾篇論文裏,我們在討論物種的形成問題時,可以得到一些值得研究的費料。而且蘇聯科學家在討論物種問題時,常附帶地討論到以上的論文。

此書可作爲生物學工作者、農學工作者、中學生物學教師、農業學校教師等的 參考資料。

關於物種變化問題的研究

原著者	C.	· A.	. 乖	4	特		等
翻譯者	孫		濟		中		等
出版者、	科		學 京東四	出區帽兒		反 2號	社
印刷者	北	京	新	華	印	刷	廠
總經售	新		華		書		店

書號: 0230 (譯)143 (京)0001—4,300 1955年7月第 — 版 1955年7月第一次印刷 開本:787×1092 1/25

字數:43,000

印張:26/25

定價(8)三角五分

目 錄

農作物一些種由其他種形成的事實
從燕麥植株獲得黑麥的試驗
從分枝圓錐小麥 (Triticum turgidum) 獲得軟粒小麥
(Tr. vulgare) 的植株
春小麥發芽種子在低温影響下的種之形成
千金榆產生榛 ····································

農作物一些種由其他種形成的事實

C. A. 科 特

有殼燕麥由裸粒燕麥形成和裸粒燕麥由有殼燕麥形成

1952 年在列寧全蘇農業科學研究院"列寧斯克"試驗站的田地上,栽培了1951 年由玻利脫國營農場(梁贊州)收穫的莜麥(或稱裸粒燕麥)的籽粒。事先,從播種材料中仔細地剔出其中個別的有殼的籽粒。植株生長良好並獲得成熟的籽粒。

如所周知, 莜麥(Avena muda L.) 具有可以作為特徵的周散圓錐花序, 有着白色的、無芒的稃, 其外部的形態學特徵如下: 小穗多花(多籽粒); 着生在纖細的小穗軸上的小花之間 距離長, 因此它的小穗下垂; 籽粒突 出于護穎; 稃和護穎薄而軟, 因此成熟後打穀時容易脫粒。沒有具莖稈 直生的有殼燕麥圓錐花序的混雜物。 當用手工脫粒時, 莜麥圓錐花序上曾 發現了有殼的籽粒, 殼的堅硬程度有 差異(將籽粒由殼中脫出需要不同的 力量)(圖 1)。

分化出來的有殼籽粒在 1953 年 單獨種植。當圓錐花序開始成熟時, 燕麥的異質性變得很明顯。典型的 **莜麥圓錐花序佔** 58%, 典型的帶有

圖 1 帶有多花小穗的裸粒 燕麥圓錐花序。

較小直立性小穗, 小穗中有 1, 2, 3 個籽粒的有殼燕麥圓錐花序佔 42%(圖 2)。

除此以外,曾發現了鑲嵌的花序,在它的上面部分小穗是裸粒的、 複麥型,部分是有殼燕麥型(圖3)。

圖 2 帶有 1, 2, 3, 朶小花小穗的 有殼燕麥圓錐花序。

圖 3 帶有裸粒型和有殼型小 穗的燕麥圓錐花序。

按照外部形態分類的裸粒和有殼燕麥型圓錐花序會經仔細地檢查過。

從 24 個裸粒的莜麥的圓錐花序上,每一個取出 1,298 個籽粒, 發現其中 86 粒或 6%是有殼的。在一個裸粒的莜麥型圓錐花序上, 真正的、很好地固定下來的有殼籽粒的數量,在 1 — 4 個之間。

既然在裸粒的莜麥型圓錐花序上形成有殼籽粒的植株數量很多,這個事實决不能用純粹的偶然性來解釋。

進一步分析是為了查明有殼籽粒在裸粒燕麥圓錐花序的哪一部 分(層)形成。 有殼籽粒會被我們在圓錐花序的全部小穗中發現,但是在第二、第三和第四輪的小穗中較多(表 1)。

表 1	有蒙	设籽	粒在複	粒麥	花序中	的分佈
	(根據	24	個圖銷	北序	分析材	(指)

	圓錐的單	花序	頂端穗	圓錐花序中小穗的輪次 (由上向下計算)						
	第一	第二	第三	第一	第二	第三	第四	第五		
被發現的有殼籽粒 數量	1	2	3	1	15	14	13	5		

在裸粒的莜麥的圓錐花序中小穗的分析確定了,有殼籽粒由頂端小花形成情形有39次,由中部小花形成的有17次,由下部小花形成的僅4次。

如果有殼籽粒由下部小花形成,那末小穗上其餘小花通常便不 結實。如果有殼籽粒是由中間小花發育而成,那末它下面的小花通

常產生裸露的籽粒,其殼略微硬 於下部帶有裸露籽粒的小花的 殼。第二和第三輪籽粒有殼的較 少。通常在第三、第四和第五輪 小穗着生在不同長度的分枝上。 在這些分枝上,有殼籽粒形成機 會計算結果,沒有找到任何規律 性。

在第一年輪種時,裸粒的莜麥圓錐花序外部形態沒有改變,但是有殼籽粒在多花小穗中間或由穗的頂部小花形成(圖4、圖5和圖6)。在第二年,除了裸粒的莜麥圓錐花序型外,出現了具有多花小穗(裸粒的莜麥型)的圓錐花序和1,2,3小花(有殼的燕麥型)

圖 4 裸粒的莜麥圓錐花序,個別的頂端小穗帶有有殼籽粒。

圖7 裸粒的夜麥圓锥作序在雙列 小穗中發現有殼籽粒。

圖6 裸粒的夜麥圓錐花序帶有 個別的有殼籽粒 (用黑色 觀明)的模式圖。

圖 5 圖 4 所指的裸粒件被麥圓錐化序上的將 粒;上部為有數籽粒,其餘為裸露籽粒。

的小穗(圖7)。這種多花小穗多數分佈在圓錐花序的上部和中部。 在這種混合型圓錐花序上裸露籽粒和有殼籽粒的比數差異很大,例 如其中一株上有 18 個裸露籽粒, 22 個單獨的有殼籽粒和 11 對帶有 兩列籽粒的雙生有殼籽粒(圖8)。部分的成對合生的有殼籽粒的下 部籽粒有芒。如所周知,燕麥的芒當栽培在瘦瘠的土壤上時,出現較 多並較清晰,相反,當栽培在肥沃土壤上時便失去。但是在這個情况 下,有殼燕麥下部籽粒上,甚至於在裸粒燕麥小穗的小穗殼上,芒的 出現,完全不能用土壤瘦瘠來解釋,因為我們的試驗是在很好耕作的 地段上進行的,

圖8 一個圓錐花序中的燕麥籽粒: 18 個裸粒的(上面二行); 22 個有殼 的(中間的兩行); 11 個有殼的變 列小鵝(下面兩行)。

圖 9 帶有 1, 2, 3 桑小花小穗的有殼 燕麥圓錐花序: 在第一, 第二, 第 四, 第五, 第六, 第七和第十輪次 小穗 (由上計算起) 的下部籽粒 是裸露的; 第五和第十輪次 小 穗籽粒是裸露的。

第二年在由 1952 年播種的裸粒的莜麥上所產生的有殼籽粒的播種地上,形成了有殼燕麥型圓錐花序植株。它上面全部小穗都是1,2,3 朶小花的,帶有個別的裸露籽粒。這個花序上所產生的籽粒詳細分析於表 2。

表 2 在有殼燕麥型圓錐花序中有殼和裸露素 粒的分配 (根據 5 個花序分析材料)

花序]	頁端單獨	小穗	圓錐花序小穗輪次,由上而下計算						
第一	第二	第三	第一	第二	第三	第四	第五	合計	%
			有	殼	籽	粒	, ;		
5	7	3	12	17	25	37 -	12	118	80
	•	·	裸	露	籽	粒			
3	4	0	2	6	6	6	2	29	20

表 3 在有殼燕麥型圓錐花序小穗中有殼和裸露彩粒的分配 (根據 5 個花序分析材料)

一架小	、花小穗	兩	朶 小 花 小	三杂小花小穗			
裸露籽粒	有殼籽粒	第一有殼 籽粒第二 裸露籽粒	第一裸露 籽粒第二 殼有籽粒	兩個有殼籽粒	第一裸露籽 粒第二和第 三有殼籽粒	三個全 是有殼 粒籽	
3	14	2	17	25	5	1	

從所引證的材料得到結論,裸露籽粒在有殼燕麥型圓錐花序中, 沿着圓錐花序的全部高度,在所有的小穗中形成,然而絕大多數是在 第二、第三和第四輪次的小穗(由上向下計算)和最頂端單獨的小穗 中形成。

由表3可見,裸露籽粒在有殼燕麥型圓錐花序中一朵小花的小穗中形成;在兩朵小花和三朵小花的小穗中,由下部的小花形成,很少由兩朵小花的小穗的上部小花形成。有殼籽粒在這種花序中,在一朵小花的小穗中形成;在二朵小花和三朵小花的小穗中由第二和第三小花形成。

最後,在由1952年播種的裸粒的莜麥產生出來的有殼籽粒所長

圖10 布. 帶有個別裸露籽粒 (由白色標明)的有殼燕麥型圓錐 花序 模式圖,某些下部籽粒有芒;左. 在模式圖上所描繪的圓錐花序 上的籽粒,上面 7 個為裸露籽粒,其餘的為有殼籽粒。

成的有殼籽粒燕麥型的植株中,發現了許多這樣的植株,在它的圓錐 花序上全部籽粒都是有殼的。因此,裸粒的莜麥便完全變成了有殼 的了(圖 11)。

如果認為播種由裸粒的莜麥在第一年播種 時所形成 的有 殼籽 粒,裸粒的莜麥完全轉變為有殼的,那末個別的裸露籽粒從有殼燕麥 型圓錐花序中的兩朶小花和三朶小花的小穗中的下部小花中 出現, 同樣可以認為是在一個生長季中,由有殼籽粒形成了裸露籽粒。

我們的試驗和在田間條件下的觀察指明,裸粒的燕麥(Avena sativa vaor. inemis Körn)當栽培條件改變時,特別是在生活的第二年改變,就大量轉變爲具有改變了型態的圓錐花序的有殼的燕麥(Avena sativa var. mutica Al. 和 var. aurea Kr.)。在條件改變的

圖 11 由裸粒燕麥籽粒所 生成的有殼燕麥型 圓錐花序。

第一年就引起有殼籽粒的出現,但是裸粒的莜麥圓錐花序多花型的形態未改變。在 栽培的第二年,由有殼籽粒生成的植株的 圓錐花序成為帶有一朶小花小穗的另一種 形態構造,全部或部分包含着有殼籽粒。 某些下部的有殼籽粒上出現粗的或中等粗 細的芒。同時,由裸粒的莜麥在第一年播種 時所形成的有殼籽粒,產生具有有殼籽粒 和有殼燕麥型圓錐花序的有殼燕麥植株。

B. A. 諾維可夫,在光照階段開始通過 時,將長日照改變爲短日照,引起新陳代謝 的改變,由有殼燕麥"黃金雨"品種出現了 裸粒的莜麥(Avena nuda L.),部分小穗和 莖分枝,同樣也引起了野燕麥(Avena fatua,或稱烏麥)籽粒的形成。

在我們的試驗中,裸粒的莜麥向有殼的燕麥轉變和由有殼的向裸粒的轉變是產

生在不加人工干預的田間條件下。由此可見,為了由裸粒的莜麥形成有殼的燕麥,不需要某種不正常的條件,外界環境不很大的改變, 特別是營養條件的改變便已足够。

除此以外,在我們試驗中發現了由燕麥莖上的上部節增添形成結果枝。

B. M. 斯米爾諾夫在薩拉托夫州條件下,通過過早的播種在不同 的土壤耕作的處女地上,在燕麥"勝利"品種的圓錐花序上得到了個 別的灰黑色的、無茸毛的普通燕麥草籽粒;播種在不耕的處女地上, 野燕麥產生燕麥,播種在春季淺耕的處女地上,就强烈地產生覆有茸 毛的、褐色的野燕麥。

黑麥由燕麥籽粒形成。

在莫斯科州列寧區靠近加里諾夫克村的田地上,1950年在晚播

的燕麥中,會發現了數十株黑麥植株。九月底黑麥植株很好地抽穗, 並迅速地從矮生燕麥中分化出來。黑麥植株分佈在田間各個地方。

我們在 1950 年 9 月 25 日挖出 30 株生長在燕麥中的黑麥植株, 洗净其根,從而研究由何種籽粒生出黑麥。從一株黑麥植株根上,發 現了很好地保存着的燕麥籽粒的殼(圖 12)。仔細研究燕麥殼的位置 和固着狀態,證明了包含在這些殼中的籽粒長出黑麥植株,因爲由這 些籽粒長出第一節(幼根和幼芽),靠近地面由這一節形成第二個分 藥節和大量的根。

圖 12 由燕麥籽粒(籽粒在照片上可見)所生出的黑麥植株的根系。

扁粒種大巢菜由小粒種濱豆形成

我們用來作試驗的濱豆種子標本,係 1952 年由 莫爾多瓦蘇維 埃社會主義自治共和國、薩倫斯克師範大學講師庫茲明娜處得來。 仔細地挑選濱豆籽粒,我們剔除了其中所發現的扁粒種大巢菜的種 子。

然而在 1952 年田間條件下 (列寧斯克) 在濱豆播種地中發現了

圖 13 右。濱豆植株; 左, 由濱豆種子形成的扁粒種大巢菜的植株。

個別的大巢菜植株。我 們把所有這些植株都清 除了,濱豆播種地是純淨 的。

1953年,由濱豆植株 上收穫的種子,栽培在另 一地方的小壠上。在播 種的濱豆植株中發現了 一株扁粒種大巢菜植株。

這樣,在田間條件下,我們從小粒種濱豆 (Lens esculenta Mnch)得 到了扁粒種大巢菜(Vici asativa var. lensispeorma)。(圖13)

栽培種大巢菜 由 栽 培種豌豆形成

白色種粒豌豆標本, 我們得自別洛露西亞蘇 維埃社會主義共和國波 布魯依斯克州科貝爾區 斯大林集體農莊。在白 俄羅斯蘇維埃社會主義 共和國的條件下,豌豆

常被野豌豆和栽培種大巢菜所混雜。1952年播種之前,我們仔細地 清除種子中的野豌豆、大巢菜和其他種子。在豌豆的播種地上,出現 了8株野豌豆植株,我們將它和豌豆分開,單獨收穫和脫粒。

1953 年由豌豆(Pisum sativum L.)植株上所收穫的種子種植在 另一個地方單獨小壠上。在豌豆植株中發現了栽培種大巢菜(Vicia

圖 14 由豌豆種子形成的栽培種大巢菜植株

satival.)的植株。在這個地段上,無論豌豆或大巢菜,以前從沒有種植 過。在土壤中沒有存留栽培種大巢菜種子,而這種大巢菜在列寧全 蘇農業科學院試驗站田地上不是田間雜草。所以大巢菜的出現是由 於在土壤中有巢菜種子的存留或偶然帶到田地裏的可能性都消除了 (會應用所有方法防止機械混雜,在隣近的田地上沒有種過大巢菜)。

參考文獻

- [1] A. 多爾古辛;1953, 從燕麥植株獲得黑麥的試驗, 農業生物學雜誌, 1953 年第 5 期。
- [2] T. A. 李森科: 1950, 生物學種在科學上的新概念, 農業生物學雜誌, 1950年第6期。
- [3] B. A. 諾維科夫: 1953, 植物階段發育若干特性和禾穀類作物新類型的形成, 農業生物學雜誌, 1953 年第4期(中譯本見科學出版社版, 劉富林譯)。
- [4] B. M. 斯米爾諾夫: 1953, 野燕麥由燕麥產生和燕麥由野燕麥產生, 農業生物學雜誌, 1953 年第4期。

(孫濟中譯自"蘇聯農業生物學"雜誌(Агробиология), 1953 年第 6 期; 著者: С. А. Котт; 原題: Факты Образования Одних Видов Сельскохозяйственных Растений из Других Видов; 原文出版者: 蘇聯農業出版社)

從燕麥植株獲得黑麥的試驗

Д. A. 多爾古辛

燕麥變成黑麥的事實,是大家早已知道的事,還在 1836 年時"農業報"上就刊載過這個問題的短評(日期為 4 月12日),該文作者 А.索科洛夫斯基 (А. Соколовский)(諾夫哥羅特州的地主)寫道:"為了形成一塊覆蓋壤,在 1832 年他把燕麥和貓尾草混在一起播種,在其生長期內刈割了若干次,在下一年從越冬的燕麥植株中長出了黑麥。"

為了回答對他所報導的事實所引起的疑問, A. 索科洛夫斯基在 "農業報"(1837年53期)上再一次地寫道:"燕麥產生黑麥是沒有任何可懷疑的, 因為燕麥和貓尾草的種子被仔細的檢查過, 而進行播種 的土壤又是絕對沒有黑麥種子的土壤。"

1837年"農業報"上,由於 А. 索科洛夫斯基的短評,又轉載了里加(Рижской)報紙"州報"(Provinzialblatt)上署名 Л. 的一篇文章,該文論述一個有趣的實驗,這位作者非常驚奇地在實驗中肯定了燕麥產生黑麥的事實,因為他做這個實驗的目的本來是企圖證明在自然界中不可能有燕麥產生黑麥的這件事。

1834年平茲地區的地主 И. В. 薩布羅夫 (И. В. Сабуров) 在"祖國紀要"雜誌上,報導了燕麥變成黑麥的事實。1852 年在"皇家自由經濟協會彙報"(第1卷,第3集,第3期,第209—210頁)發表了 В. 波古舍夫斯基 (В. Богушевкий) 在科斯特羅馬 (Кострома) 的實驗,在這篇文章裏描寫了如何從燕麥中獲得黑麥。

皇家自由經濟協會會員 M. 別卓勃拉卓夫 (M. Безобразов),在 "農業和養羊業"雜誌裏同樣描寫過他在 1833 年做的燕麥變成 黑麥的實驗。

報紙和雜誌的編輯認為在刊載各個作者關於燕麥變成黑麥的實驗報導時,自己有責任提醒讀者"類似這樣的蛻變在自然界裏不是常有的"。П. 耶爾莫拉耶夫(П. Ермолаев)在自己的論文"關於穀物起源的思想"("農業報" 1835 年 41 期) 斷裏言: "在自然界裏除了多年的、長時間的漸近過程和人工影響……之外,這樣的蛻變不存在"。這並不是偶然的。值得注意的是: 這是在達爾文的"物種起源"出版以前很久寫的。

所有關於燕麥產生黑麥的報導都談到所採用的同樣方法: 燕麥 在夏天播種, 直到生長的末期, 每當植株剛剛開始拔節的時候便進行 刈割。春天, 在這個播種地上, 就生長出正常的黑麥植株來。

應該指出,夏天播種本身,對於燕麥植株的發育就是不正常的條件。並且在一定程度上,違背了它所能要求的發育條件。定期的刈割使它們不能形成莖稈,也不能吐出圓錐花序,强迫它們在新的不習慣的條件下產生新的生長點和新的嫩芽。改變了從夏天到秋天的光照條件、温度和其他的生長因素,便很可能在植物發育的過程中,破壞原來的新陳代謝類型。假使這些新的條件不適合該種植物所特有的要求,那未這個種的植物就會死亡或開始向另外一個種轉變,李森科院士寫道:"當該種植物,用某種方法使之處於一種對某種的特徵正常發育相當不利的條件下,就會產生强迫的變異,在該種植物有機體中產生了其他種的胚芽,它所形成的特徵,就更能適應於新的外界環境條件"("蘇聯大百科全書"中的"種"的論文)。

一百多年以前,所進行的燕麥產生黑麥的實驗,在目前具有特別 重要的意義,因爲這些實驗指出了,由一個種的植物獲得另外一個種 的植物的方法。

1952 年至蘇遺傳育種研究所作了這樣的試驗,當時有很多類似 這樣的試驗登載在"農業報"和其他報紙以及雜誌上。

洛霍夫斯基 (Лоховский) 品種燕麥的種子、巴利杜姆 (Паллидум) 32 春大麥的種子,和德斯-116 (ДС-116) 油用亞麻的種子在兩 個時期,即 5 月 27 日和 6 月 5 日播種於長 40 米、寬 0.6 米的小區上, 每小區是 4 行,用馬拉十行播種機進行播種,除去中間的兩個開溝器,因此播種機走一趟,就可以在一個小區上播種燕麥,同時又在另一個小區上播種大麥,然後再走一趟,就可以在第三個小區上播種亞麻。燕麥、大麥和亞麻的種子是 1951 年春播所得到的。第一次播種的是在 7 月 4 日進行第一次刈割,第二次播種的是在 7 月 12 日進行第一次刈割,以後的刈割不管是那一次播種的均在 7 月 25 日、9 月 5 日和 10 月 17 日。刈割時用鐮刀把植株離地 4—5 厘米以上的部分割除,最後一次的刈割進行遲了,當時燕麥的個別枝芽已形成了圓錐花序。 8 月 1 日和 8 月 20 日進行灌溉。

第一次播種的大麥,因為炎熱和蟲害,到秋天幾乎完全死亡了; 第二次播種的長得非常稀疏,但是畢竟有一部分植株被保存下來。燕 麥和亞麻,尤其是第二次播種的保存相當好,在11月時,燕麥小區上 的燕麥,具有完全令人滿意的樣子,在這個時期很少經常下雨,早寒 很少,第一次的嚴寒(-10°C)是在12月8日。第二天各小區用蘇丹 草掩蓋起來,到天氣轉暖的時候再將遮蓋物除去,植株幾乎完全被嚴 寒毀滅了。被控出來的大麥和亞麻植株好像還活着,但移植到温室 之後,並沒有生長而是死掉了。

在燕麥的小區上保存了將近50 棵植株,1月2日它們被挖出來,經過檢查以後栽種在温室裏,其中僅有12 棵植株長大了,在這12 棵植株裏有7 株是第一次播種的,5 株是第二次播種的,被挖出並生存下來的植株中有2 株葉子受凍害比較小,雖然這些植株如同其他的植株一樣藥少,很軟弱,葉子狹小,好像野生禾本科植物而不像燕麥,但也不能把它們看作是黑麥植株。

在第一次播種的7株燕麥中有1株長得像黑麥(在移植的時候可看出它與其他燕麥植株的區別)。它生長得非常不好,總共長出兩個同時抽穗的莖,葉子很早便枯萎了,穗子很小,而且沒有形成籽粒,植株略高於40厘米,這個植物表明在圖1中,它位於第一次播種所保存下來的其他植物中間。這個植物同樣也表明在圖2中,其旁是發育不正常的燕麥植株。在第一次播種的燕麥中有2株這樣的發育

1 由第一次潘種的燕麥所長出的1株 黑麥(以黑頭表示者)。

不正常的燕麥,它們與其他的燕麥不同,矮生,具有緊密的圓錐花序 有較大的內外額,葉子的顏色較淡(圖3)。它們的花葯發育不完全,

花粉沒有生殖力。在每一個 花中, 子房沒有經過受精作 用能很快地發育起來, 但達 到大約為正常籽粒大小的1/8 或 1/2 時, 所有的子房就枯萎 了(僅有殼留下來), 在子房 內沒有胚和胚乳。其他的燕 麥植物完全是正常的,它們 形成了好的圓錐花序, 並結 了種子。

在第二次播種的5株 中,2株是正常的燕麥。1 株則和剛剛所描寫的那種不 正常的類型相同,另外2株 是黑麥(圖4), 其中的1株 在移植的時候, 看出它與其 他的燕麥植株不同,另外1 株也沒有什麼特殊的地方。 這兩株植物發育得很好,形 成了正常的穗, 與通常黑麥 圖3 發育不正常的燕麥植株的圓錐花序

因此,在保存下來的12株燕麥中有3株表現出是黑麥。雖然在 實驗中獲得了預定的結果,但畢竟環難於相信這個事實。因此,我們 仔細地考查了所有的實驗條件。可以認為下列情况是毫無疑問的: 在燕麥種子裏不混有黑麥種子,因爲播種機(在此以前播種機播的是 水稻)在播種之前被仔細地檢查渦,假若在播種機內的什麼地方偶爾 有黑麥種子,它們將不僅落到燕麥的小區上,而且會落到大麥的小區

不同的地方是它們形成的穗下面的莖上毫無茸毛。

圖 4 第二次潘锺的燕 麥,其中長出2株 黑麥。

上,因為它們都是用同一個播種機同時進行播種的。用來播種的田地從春天起便把它作休閒地進行耕耘,假如有栽培植物的種子存在,則在播種燕麥以前進行耕耘的時候它們就死亡了。在周圍1公里範圍內的田地上,在1951年和1952年均未種過黑麥,同時,從來也沒有割下來的穀物經過試驗地區四周的路上。因此所進行的試驗,保證沒有混進黑麥種子方面是絲毫沒有疑問的。最後還有一點可以注意的就是在實驗中所獲得的黑麥,在生物學上與通常黑麥不相同。

李森科推測,由小麥穗中產生的黑麥種子長成的黑麥比通常的黑麥具有更大的生活力,而且由於它是由另一個種的植物所形成,故包含着巨大的矛盾力,能够進行自花授粉。 全蘇科學院遺傳研究所進行了關於由小麥穗中的黑麥籽粒所長出來的黑麥的試驗,這個試驗證明了李森科的推測,事實上很難期望小麥田中的個別黑麥植株由於不能得到其他黑麥植株的花粉而死去(產生不孕的現象)。如果條件促使新種的產生,那末這些條件就應該使它能够具有基本的機能——繁殖的機能。研究為什麼能够如此則是另外的問題。但不管怎樣,已經確定:由小麥產生的黑麥是能够自花授粉,能够由另一個種的植物花粉

授粉而結實,有時甚致不經過授精作用而形成種子。 由燕麥產生的 黑麥同樣地具有自花授粉的能力。

2棵"黑麥-燕麥"(Ржи-овсянки)植株的大多數穗子被小心地隔離起來,因此具能通過自花授粉的方法結實。 一個穗去雄後被隔離

起來,結果一個籽粒也沒有形成。另一個穗去雄後在它的一面,以燕麥花粉授粉,另一面用小麥的花粉授粉。在這個穗裏用小麥授粉的結了一個籽粒。兩個植株中有兩個穗子有可能異花授粉,其中的一個穗子結了七個種子,另外一個穗子沒有結種子並且較早就枯萎了。被隔離的穗子具有自花授粉的可能性,它們產生的籽粒數如下:

植株號數	穗 號 數	抽穗日期	結的籽粒數
(1	3/1	10
1	2	22/ N	0
. ()	. 3	5/ ₹	0
(1	1	1/1	4
	2 -	16/∭	0
2	3	8/ N	2
	4	16/N	6
	5	19/N	2

為了進行比較,在4月2日把同樣是生長在温室裏的普通冬黑麥的5個穗子加以隔離,所有的穗只結了一個籽粒。1953年春天在田

圖 5 2 號黑麥植株的 5 個憩子, 每個憩的旁邊爲其所結的籽實, 第一個懇子中的一個籽粒遺失掉。

間將普通黑麥的 10 個穗子隔離,也只結了一個籽粒。因此,說明由 燕麥所獲得的黑麥在自花授粉的能力上與普通的黑麥有着顯著的區 別,進行自花授粉的黑麥穗子以及授粉後得到的種子,表示在圖 5 和

圖 6 1 號黑麥植株的第一個穗 和它所結的籽實。

圖6中。

大家都知道,由於自花授 粉所獲得的黑麥種子,通常產 生具有退化現象的、生活力小 的後代,應該推測到從"黑麥-燕麥"的種子能得到完全正常 的、發育良好的植株。為了證實 這個推測,我們於 1953 年秋天 進行了播種。

由一個種產生另一個種的 事實,一般乃指由舊種植株穗 子或果實的種子獲得新種的 植物(如在小麥的穗裏發現了 典型的黑麥種子,在燕麥的穗 裏發現了燕麥草的種子,在硬 粒小麥的穗裏發現了軟粒小麥 的種子等)。

在這個燕麥實驗當中,黑麥並非由燕麥穗中所形成的黑麥種子長成的,而是直接由燕麥植株獲得的。 這一點證明了企圖用雜種遺傳性的特殊形式,去解釋一個種產生另一個種的事實是無能爲力的。 燕麥因為經常的刈割毀壞了莖的生長點也可說毀壞了圓錐花序的原始體不能結實而且不能形成結實器官。黑麥是否可能是由在上代中接受到黑麥花粉的燕麥雜種種子形成的呢? 這種推測是不必要的,因為第一,燕麥一般不能和黑麥雜交(它們甚至從來也不是同時開花)。第二,假如可能是這樣的話,則燕麥不僅能在夏天或秋天播種並且應用特殊方法的條件下能產生黑麥,而且在其他任何條件下播

種皆可產生黑麥,但大家知道這種現象是沒有看到的。

以上所叙述的方法,很顯然,能引起不同的變異,直到種的改變, 對某些其他的農作物也不例外。在形成新的生長點時調節其生活條 件可以成為使各種植物形成對人類有益的新特性的培育方法。

(劉菊生譯自"蘇聯農業生物學"雜誌 (Агробиология), 1953 年第 5 期; 著者Д. А. Долгушин; 原題: Опыт Получения Ржи из Растений Овса; 原文出版者:蘇聯農業出版社)

從分枝圓錐小麥(Triticum turgidum) 獲得軟粒小麥(Tr. vulgare) 的植株

M. M. 吉斯柳克

李森科院士的"生物學種在科學上的新見解"發表以後,物種形成問題就成為蘇維埃生物學家特別是農業生物學家的注意中心。在最近幾年中發表了大量試驗結果,其中報導了許多有關一個植物種產生另一個種個體的事實。但是在這方面所做的,據我們的看法,僅僅是這一問題試驗研究的開始。而這種研究是極端需要的。已經展開的爭論就可以證明這一點。

我們認為物種形成問題的實際材料的累積有頭等重要的意義。 從 1950 年起我們在這一方面開始了試驗和觀察,固然,我們的試驗 是在很小的範圍內進行的。工作還沒有結束,將繼續下去。但是我 們認為現在進行交換我們試驗和觀察的某些預先結果,是可能的和 有益的。

1950 年春季我們開始了分枝小麥的物種形成的研究工作。為此會搜集了卡赫契亞分枝小麥 65 個典型穗子,並且每個穗子都是單獨脫粒和分系播種的。

1951 年在這些種系播種之前(在萌芽狀態) 使其經受 45 天零下 温度(零下 2—4°C)的影響,然後再播於田間,每系播 500 株。播種 是在利用一年的車軸草之後進行的。試驗地未施任何有機肥料。

在這一試驗中從 65 系中的 15 系裏發現了另外一些種,即軟粒小麥和硬粒小麥、大麥和燕麥的個別植株。但是不能無疑地證明這些植株不是機械混雜(經過土壤)的結果。因此,就提出了一個任務,

繼續應用這一方法佈置試驗,用來排除所有機械混雜的可能性並從而完全保證所獲得的結果的精確性。為此,在 1952 年的春季從 41 個供作試驗的分枝小麥系選擇了典型的穗子,為了避免脫粒時混雜,所有的穗子都是由手脫粒的,並採用了一切方法。以這種方法所獲得的種子進行了發芽,並在幼苗上纒以塗有樹脂的線,結成小結。然後使幼苗遭受到和上年一樣的零下温度的影響,再栽種到大田去。其後植株發育時在根頸之下遺留了小結。如在某一植株上發現了這種小結,我們就可以相信它是從我們栽種的種子所長出的植株,而不是從偶然掉在土壤裏的其他種子所長出來的植株。41 系中每系都曾栽種了做有這種記號的幼苗 500 株。結果在7 系中總共獲得 18 株軟粒小麥和1 株硬粒小麥。

在1953年對上述方法有某些改變。這種改變就是:為試驗而選出的穗子在精密察看之後,不加脫粒而直接用水浸濕,在室温下經24小時。此後使它們經受0—2°C度的温度,直到種子不再開始萌發為止。我們會應用在低温的條件下使其發芽,因爲我們的一些觀察提供了根據來假定,在低温條件下,以後能形成軟粒小麥的那些卡赫契亞分枝小麥的種子比那些不能發生改變的分枝小麥植株的種子之發芽要快些和好些。

我們用鑷子把發育最好的幼苗從穗上取下,並套以接管用的橡皮管所切成的橡皮圈套(如圖 1),以代替 1952 年我們曾經用過的塗油線所結的小結。應用這樣的橡皮圈大大地便於標記植物的工作。此外,橡皮在土中也比那即使塗油的線保存得更好些。

這樣做好標記的幼苗放在零下 2—4°C的低温條件下經過45天之後, 栽種到田間。

1953年的試驗中包括 30 個系。每個系栽種 500 株 幼苗。栽種 幼苗的成活率是很低的,在個別的系區上 500 株栽種的幼苗,僅僅成 活了10株左右。1953年只在 3 系中獲得了軟粒小麥;其中一系是第 一次獲得它,在 74 株成活的植株中有 2 株為軟粒小麥。在另外二系 中軟粒小麥是重複地獲得的:在前一年,即 1952年曾獲得過軟粒小 麥的植株。其中一系在 1953 年栽種的 500 株幼苗中只成活了 11株, 其中 7 株是軟粒小麥。在另一系 500 株幼苗中僅成活了 13 株,而其

圖1 套有接管用橡皮管所切成圈套的分枝小麥幼苗。

中9株是軟粒小麥。在所有軟粒小麥植株上檢查的結果,都發現有橡皮圈,所以無疑是由原始種所產生的。

1953 年曾播種在1952 年從分枝小麥中所獲得的軟粒小麥植株的種子。所有這些植株的後代都沒有改變,從沒有一種有分離現象。 這就證明了這些後代的原始植株不是起源於雜種。

在對照試驗中,從西班牙來的硬粒小麥 №20603 標本,在三代的期間於播種前幼苗期連續不斷的遭受零下温度的影響以後,同樣 也會發現有軟粒小麥的出現。

不論從分枝小麥或硬粒小麥所獲得的所有軟粒小麥的植株,會 經過細胞學的分析,而且在所有情况下,根部都發現42個染色體。

現在在物種形成問題上所發生的爭論,不論對達爾文物種學說的評價或物種形成新材料的解釋上,都顯出了顯著分歧的觀點。例如,不否認在一個種的後代中出現另一個種個別植株的事實的 H. B. 杜爾賓是用種間異花授粉和後代中分離出帶有父本種特徵的標本來解釋這些個別植株的起源¹⁾。

¹⁾ H. B. 杜爾賓:達爾文主義和"種"的新學說。植物學 雜誌,1952 年第 6 期 (中 讓本參閱科學出版社版、"關於物種與物種形成問題的討論",第一集)。

在我們的試驗中所獲得的和上面引證的許多物種形成的事實是 不能用自然雜交來解釋的,因為在任何一種情况下也沒有發現種間 雜種的中間類型的出現,而所有被發現的重新產生的類型是完全結 實並保持不變的。

對這一點可用種間雜種和所獲得的新類型出現之直接比較來證 實。我們會在很大的範圍內以分枝小麥與軟粒小麥用自由授粉的方 法進行了雜交。在所獲得的廣大雜種材料中,我們從未曾發現一個 父本遺傳的現象,而所有第二代雜種植株都發生正常的分離現象。

一般,父本遺傳性完全吸收母本遺傳性的現象,像大家所知道的,是極為稀少的。現在所知道的從一個種變為另一種的事實,决不能歸納為這類個別事例,何况,這些事實是在極不同的條件下為許多不同的研究者所獲得的。

我們要指出,甚至在母本遺傳性被吸收的情况下,雜種的後代部分不變,但部分照例分離。而在我們的試驗中,像早已指出的那樣,在已改變的植株種子的播種時,沒有發現任何分離,可見,這些新類型的出現,不能歸結於種間雜種的範疇。

我們試驗的預測結果提供出根據來證明,在一定的條件下,從一種植物種產生另一種個體事實的存在,特別是從分枝小麥(Tr. turgidum)中發生軟粒小麥(Tr. vulgare)和硬粒小麥(Tr. durum)的植株。

在我們的試驗中,同樣的事實發生在用作試驗的材料在一些世 代期間於春播前的幼苗期遭受零下温度(零下 2—4°C)的長期影響 的情况下。

這就證明了,這種影響的方式能引起植物遺傳性深入動搖,並為 這一目的可在試驗工作上利用。

(閱叢道譯自"蘇聯植物學"雜誌(Ботаническии журнал),1954年39卷第4期, 著者: М. М. Кислюк; 原題: Получение растенци мяткои пшениуы (*Triticum tulgare*) из ветвистой пшеницы вида Тургидум(*Tr. turgidum*); 原文出版者: 蘇聯科學院出版社)

春小麥發芽種子在低温影響下的 種之形成

C. B. 莫克羅夫

我們給自己擬定了查明在種子發芽期温度由 10°С 變到 -5°С 對春小麥變異的影響底任務。為此在 1951 年我們以分枝圓錐小麥 (Tr. turgidum)卡赫欽斯卡亞分枝品種 (Сорт кахетинская ветвистая)和硬粒小麥(Tr. durum)梅里亞諾普斯69 (Мелянопус)、梅里亞諾普斯37 和郭爾杰依型 (Горденформе) 432 等品種進行了試驗。所有這些品種都非雜種起源。種子取自全蘇選種遺傳研究所。我們將種子浸濕,保持在10—16°С 的温度下至種皮突破,然後給以下列的不同温度的影響。

處理 1. 温度由 10°C 徐緩的轉變到 -5°C。

處理 2. 温度由 10℃ 迅速的轉變到 -5℃。

處理 3. 温度由 0° C 徐緩的轉變到 -5° C。

處理 4. 温度由 0°C 迅速的轉變到 -5°C。

對 照 發芽的種子。

對 照 乾燥的種子。

我們將種子分三期催芽(1月25、2月3日和21日),1951年8 月17日同時進行播種。

由一種温度徐緩的變爲另一種温度的處理中,種子是放在裝有土壤的缽中;而温度迅速改變的處理,種子放在金屬的箱中。

1月25日浸濕的種子將温度由 10°C 變為-5°C 進行 10 次; 2 月3日浸濕的種子進行7次; 2月21日浸濕的種子進行1次。而温 度由0°C 變為 -5°C 的種子相應地進行 8 次、5 次和 1 次。

1月25日和2月3日浸濕的種子,當播種時已經發芽達2厘米,而2月21日浸濕的和對照(催過芽的)的種子正好突破種皮。

物候學的觀察指出在所有的處理中,種子遭受過低温影響的,植 株發育都比對照晚.1—2天。

由於考慮到原來的種子可能是機械混雜了的,我們在第一年未會注意播種田中的其它類型的存在。

從 1951 年的收成中我們選擇了每個品種最典型的穗,而在卡赫 欽斯卡亞分枝品種中另外還選了屬於硬粒種柴盧列斯澄斯 (Церулесценс) 與郭爾杰依型變種的穗(混雜在內的),以考查其起源。

然後將每穗的種子分別播種,如果一個穗上種子數少就以 4—5個穗的種子代之。播種分四期 (1951 年 12 月 4 日,11 日和 27 日以及 1952 年 4 月 3 日) 在絕對休閒地上進行。從下半年起直到播種前我們仔細地檢查了田間;沒有發現作物的幼苗,也就是說沒有機械的混雜。

秋季播種的目的是為了再次以低温影響於發芽的種子, 而春季 播種的目的是為了查明一次影響的作用。

第一期播種的在1952年1月29日出苗;第二期播種的在2月4日出苗,第三期播種的在2月15日出苗。1952年1月29日植株狀况如下;第一期播種的幼苗極好,苗長3.5厘米;第二期播種的苗長1.5厘米,第三期播種的苗長0.5厘米。

這樣一來, 秋冬季的温度影響了發芽的種子。從播種到開春, 温度在10°C到 -5°C的範圍內發生了8次改變。

以後植株發育正常,在7月21日和24日之間成熟。

我們把所有植株根據形態特徵首先在田間然後在實驗室內加以分析(表1)。

表 1. 的資料證明,由於低温對春小麥發芽種子影響的結果形成了其他變種和種。

產生變異最多的是由卡赫欽斯卡亞分枝品種中分離出來的郭爾

		每穗種子分別播種 幾個穗 一同					的種子 播種	2	變		
岳 學帝 日毎	由其中取	生長出	產生	變	共工		生長出	變	其 中		異
種,變種,品種	得種子穗	田來的株	變異的穗	的株		同種 異		異株	同種異變	異	植株
	數	數	數	數	種	種	株數	數	種	種	%
圓錐種,發里尼阿奴姆——卡赫欽斯卡亞 分枝((Плинианум))	310	2,040	13	51	_	51	2,818	26	-	26	1.6
硬粒種,柴鷹列斯澄 斯(由卡赫欽斯卡亞 分枝品種中分離出來 的)	178	994	8	10	6	4	1,897	59	12	47	2.6
硬粒種,郭爾杰依型 (由卡赫欽斯卡亞分 枝品種中分 雕 出 來 的)	166	649	17	66	9	57	712	43	5	38	9.7
硬粒種,梅里亞諾普斯——梅里亞諾普斯 37品種	775	5,116	3	11	11	_	4,166	1	1	_	0.13
硬粒種,梅里亞諾普斯——梅里亞諾普斯 69品種	672	4,245	3	11	11		4,072	19	12	7	0.36
硬粒種,郭爾杰依型 ——郭爾杰依型 432 品種	236	946	_	-	_	_	488	-	-	_	0

表 1 低溫對發芽種子的影響引起春小麥種的形成。

杰依型(9.7%)和柴盧列斯澄斯(2.6%)變種,而最少的是梅里亞諾普斯37品種(0.13%);在郭爾杰依型432品種中沒有發現新類型的形成。 每個品種中產生有以下的種和戀種。

(一) 卡赫欽斯卡亞分枝品種(圓錐種, 潑里尼阿奴姆變種)

為了可以判斷種形成的性質和這些事實的可靠性,我們引用了 足以表明在甚麼條件下產生了甚麼種和變種的資料(表 2)。

在卡赫欽斯卡亞分枝品種播種田的 4,858 株植株中 77 株是以下的種和硬粒種的變種: 郭爾杰依型變種 37 株, 柴盧列斯澄斯變種 17 株, 艾里特洛梅朗變種 11 株, 列烏科梅朗變種 6 株, 別烏芬變種 1

表 2 低溫對發芽種子的影響引起卡赫欽斯卡亞分枝春小麥的種的形成

處		理		Ŀ	ŧ j	Ę	出來的植株
第一	年	第二年	用單一	悤	其中		
處置發芽種 子時的温度	影響時間(天)	播種期	多種種種	だった	2月1	更異的	其中的 種和變種
1. 温度由 10° C { 的轉變到 -5°	余緩 42	1952年4月31日	單穗 1	11	10	1	別 鳥 芬-1 硬粒種,(Беуфин)
2.同 上	24	1951年12月11日	單穗	8	7	1	硬粒種, 艾里特洛梅朗-1 (Эритромелан)
3. 温度由 0°C 行的轉變到 -5		1951年12月4日	多穗	7	-	7	硬粒種,柴盧列斯澄斯-7
4. 同 上	42	1951年12月27日	單穗	4	-	4	硬粒種,艾里特洛梅朗-4
5. 同 上	51	1952年4月3日	單穗	9	-	9	硬粒種,柴盧列斯澄斯-9
6. 温度由 10°C (6) 的轉變到一5°C	Ö 91	1951年 3 月11日	單穗	5	-	5	硬粒種,列科梅考曼朗-5 (Леукомелан)
7. 温度由 10°C 运 變到一5°C	51	1951年 3 月11日	單穗	5	2	3	硬粒種,艾里特洛梅朗-3
8. 同 上	51	1951年12月27日	單穗 2	22	21	1	硬粒種,艾里特洛梅朗-1
9. 同 上	51	1951年12月27日	多穗 2	29	28	1	硬粒種,郭爾杰依型-1
10. 同 上	51	1951年4月3日	單穗	8	-	8	硬粒種,郭爾杰依型-8
11. 同 上	51	1951年4月3日	多穗 1	.6	15	1	硬粒種,柴盧列斯澄斯-1
12. 同 上	42	1951年12月11日	多穗 8	35	83	2	硬粒種,郭爾杰依型-1
13. 同 上	24	1951年12月4日	多穗 6	57	66	1	普通種,留切斯前斯-1
14. 同 _ 上	24	1951年12月11日	多穂 8	39	86	3	普通種愛力特羅斯彼爾木 姆-2 (Эритоспермум) 硬粒種,郭爾派依型-2
15. 温度由 0°C 迁	速 51	1951年12月4日	多種 2	27	25	2	硬粒種,郭爾杰依型-2
的轉變到 -5° 16. 同 上	51	1951年12月11日	多穗 6			2	硬粒種,郭爾杰依型-2
17. 同 上	51	1951年12月27日		6	_	6	硬粒種,郭爾杰依型-6
18.同 上	42	1951年12月11日		8	2	6	硬粒種,郭爾杰依型-6
19. 同 上	42	1951年12月11日	多穗 6	0	56	4	硬粒種,郭爾杰依型-4
20. 同 上	42	1951年12月27日	多穗8		86	1	硬粒種,不 定 變 種-1
21. 同 上	24	1951年12月27日	多穗8	8 8	87 1	L	硬粒種,艾里特洛梅朝-1
22. 對	照一	1951年12月11日	單穗	2 -	- 2	2	硬粒種,郭爾杰依型-2
23. 對	照一	1951年12月27日	單穗	3 -	- 8	3	硬粒種,郭爾杰依型-1
							硬粒種,艾里特洛梅朗-1 硬粒種,列 鳥 科 梅 朗-1
24. 對	照 —	1951年4月3日	單穗	8	6 2		硬粒種,列馬科梅朗-1

(註) 表內只是引用具有變異植株的處理。

株;普通種,愛力特羅斯彼爾木姆變種 2 株,留切斯前斯 1 株,不定變種 1 株。

值得特別注意的是表中所列第 1, 2, 7, 8, 18, 23, 24 等項(表 2) 的單穗種子播種田中所產生的變異。譬如,第 1 項中播種的是圓錐種潑里尼阿奴姆穗上的種子,在 11 株中 10 株是同一變種,而 1 株是硬粒種別烏芬變種。

它們之間的形態上差異非常懸殊。但是所產生的種仍然還遺留

着舊有的特徵: 在這些植 株上有窄的突起的護穎, 不太發達的鋸齒狀龍骨, 這正是卡赫欽斯卡亞分枝 品種的特徵。

在表中所列第⁷項中, 用不分枝穗上的種子播種 的 5 株植株中,²株是具 有分枝穗的圓錐種潑里尼 阿奴姆,而 ³ 株是艾里特 洛梅朗變種(硬粒種)。

在表中所列第13項中,67株植株中66株是潑里尼阿奴姆變種,而1株是另一個種——普通種留切斯前斯變種(圖1,左2穗)。

表中所列第8項中, 潑里尼阿奴姆穗種子的播 種田中的22株植株中21 株依然屬於同一變種,而 1株是屬於硬粒種艾里特

圖1 1. 潑里尼阿奴姆變種穗 (Tr. turgidum); 2. 智切斯前斯變種穗 (Tr. vulgore), 這二個 穗都是由卡赫欽斯卡亞分校小麥(Tr. turgidum)種子在 +10°C迅速變到-5°C温度下保持24天,1951年3月17日播種和1951年12月4日重新播種後得到的; 3. 潑里尼阿奴姆變種穗 (Tr. turgidum); 4. 艾里特洛梅朗變種穗 (Tr. turgidum); 4. 艾里特洛梅朗變種穗 (Tr. durum), 這二個穗都是由卡赫欽斯卡亞分枝小麥單穗的種子經在+10°C迅速變到-5°C的温度下保持51天,1951年3月17日播種和1951年12月11日重新播種後獲得的。

圖2 1. 稍有分枝的凝里尼阿奴姆 變 種 穗 (Tr. turgidum); 2. 郭爾杰依型變種穗 (Tr. durwnm), 這二個穗都是由卡赫欽斯卡亞分枝小麥單穗的 種 子 經 由 0°C 迅速變到−5°C的温度下保持 42 天, 1951 年 3 月17日播種和1951 年 12 月 11 日重新播種所獲得的; 3. 潑里尼阿奴姆變種穗(Tr. turgidum); 4. 艾里特洛梅朗變種穗(Tr.durnm), 這二個穗都是由卡赫欽斯卡亞分枝小麥單穗的種子經+10°C迅速變到−5°C温度下保持 51 天, 1951 年 3 月 17 日播種, 1951 年 12 月27日重新播種所獲得的。

洛梅朗變種(圖2,右2穗)。這植株上同樣有着卡赫欽斯卡亞分枝 品種的痕跡: 在穗下部的護穎上鋸齒狀龍骨很不發達,像卡赫欽斯 卡亞分枝小麥一樣,但是在穗的上部則像硬粒小麥一樣很發達。

在表中所列第 18 項中,播種的是圓錐種潑里尼阿奴姆不分枝穗 上的種子; 8 株植株中 2 株是穗稍有分枝的圓錐種潑里尼阿奴姆, 6 株是硬粒種郭爾杰依型變種(圖 2, 左 2 穗)。

在表中所列第23項中,由圓錐種潑里尼阿奴姆穗的種子生長出

3 株硬粒種的不同變種: 郭爾杰依型 1 株, 艾里特洛梅朗 1 株, 列島 科梅朗 1 株。

(二) 1951年由卡赫欽斯卡亞分枝小麥中分離出來的硬粒種, 柴鷹列斯澄斯變種(表3)

在柴盧列斯澄斯變種播種田的 298 株中 69 株是屬於其他種和 變種的,其中硬粒種郭爾杰依型變種 11 株,艾里特洛梅朗 3 株,瓦列 西亞 3 株,阿歷克山德利烏姆 1 株;圓錐種潑里尼阿奴姆變種50株和 不定變種 1 株。

表中所列第 1,6,9,12,14,15和16項中,在整個穗範圍內產生了 變異,特別可靠地證明了新類型形成的事實。表中所列第 1 項由柴 盧列斯澄斯單穗種子播種的田中得到 5 株植株: 柴盧列斯澄斯變種 3 株,艾里特洛梅朗 1 株和混雜的 1 株。第五株上有 3 個穗:上部最 發達的是艾里特洛梅朗變種;其次是柴盧列斯澄斯變種,第三穗也是 柴盧列斯澄斯,但葉鞘的出口和莖稈的結構近似卡赫欽斯卡亞分枝 品種,即潑里尼阿奴姆變種。因之,這一植株中有着二個不同變種的 穗和一個具有第三變種(其他種)特徵的穗。

表中所列第 16 項中,由柴盧列斯澄斯變種單穗的種子中獲得 7 株植株,其中 5 株是柴盧列斯澄斯, 1 株是艾里特洛梅朗(也是硬粒種)和 1 株是潑里尼阿奴姆變種(圓錐種)。換言之,由一個穗的種子中生長出來了 2 個種, 3 個變種的植株。

試驗資料證明,從卡赫欽斯卡亞分枝小麥(圓錐種, 潑里尼阿奴姆)中分離出來的柴盧列斯澄斯植株,是由卡赫欽斯卡亞分枝小麥形成的,不是機械混雜。關於這一點同樣可以指出這一事實,69 株變異的植株中50 株是圓錐種潑里尼阿奴姆品種。這是完全合乎規律地回復到了原始類型。

在許多其它植株上還保存着原始種的痕跡。例如表中所列第10 項中有一株植株,它四個穗全是柴盧列斯澄斯變種,但是其中兩個穗 的下部分枝,這正是卡赫欽斯卡亞分枝小麥的特徵。

表 3 低溫對發芽種子的影響引起春小麥硬粒種柴盧列斯澄斯變種 (由卡赫欽斯分枝小麥中分離出來的)的種的形成

		處		理		用單	1	生	長	出	來	的	植	株
	第	一年		第二	年	穗或		其						
	處置到	學芽種	影響			多穗		柴盧列斯	20		其中	的種	和繼	頹
	子時的	油油	時間(天)	播種其	胡	種子	計	澄斯	美			4 O LONG	Insc	L-M.
_						播種	13 1	變種	HO					
	−5°C		51	1951年12月	月4日	單穗	5	3	2		種,支			
2.	由 0°C −5°C	徐綏變到	51	1951年12月	月4日	多穗	6		6	圓錐	種,意	便压	是阿如	7姆—6
3.	由0°C -5°C	徐緩變到	51	1951年12月	月11日	多穗	3	1	2	圓錐	種,意	建里尼	三可如	7姆1
										硬粒	種,引	了爾 ;	杰依	型—1
4.	由0°C -5°C	徐緩變到	51	1951年12月	月27日	多穗	21	3	18	圓錐	種,意	里尼	三阿如	√姆 —17
										硬粒	種,郭	爾	杰依	型—1
5.	由0°C -5°C	徐緩變到	51	1952年4月	月3日	多穗	26	_	26	圓錐	種,覆	里尼	三阿如	₹ 第 19
										硬粒	種,郭	爾	杰依	型—7
6.	由0°C -5°C	徐緩變到	42	1951年12月	月4日	單穗	7	6	1	硬粒	種, 瓦			亚—1 төсия)
7.	曲0°C -5°C	徐緩變到	42	12月	到11日	多穗	38	37	1	圓錐	種,產	里尼	阿如	《姆—-1
8.	由0°C -5°C	徐緩變到	42	1951年12月	月27日	多穗	58	57	1	圓錐	種,潑	里尼	阿如	7姆一1
9.	由0℃ -5℃	徐緩變到	24	1951年12月	14日	單穗	10	9	1	硬粒	種,不	定	變	種—1
10.	由 0°C -5°C	徐緩變到	24	1951年12月	月4日	多穗	55	53	2	硬粒	種,瓦	列	西	亞—2
11.	由10°C -5°C	迅速變到	51	1951年12月]11日	多穗	44	42	2	圓錐	種,潑	里尼	阿奴	/姆2
12.	由 0°C -5°C	迅速變到	51	1951年12月	月27日	單穗	7	6	1	硬粒	種,郭	爾為	た依	型—1
13.	曲 0°C -5°C	迅速變到	51	1951年12月	月27日	多穗	36	35	1					感利。鳥 риум)
14.	由 0°C -5°C	迅速變到	24	1951年12月	527日	單穗	5	4	1	圓錐	種,潑	里尼	阿奴	/姆—1
15.		照	-	1951年12月]11日	單穗	5	4	1	硬粒	重,郭	爾不	* 依	型—1
16.	對	照		1951年12月	月27日	單穗	7	5	2	圓錐	重,磁	里尼	阿奴	姆—1
										硬粒	重, 艾	里特	洛梅	朗—1

這些資料證實着硬粒種由圓錐種中形成和部分向原**始類型恢復** 的事實。

(三) 1951年由卡赫欽斯卡亞分枝小麥植株中分 離出來的硬粒種郭爾杰依型變種(表 4)

在郭爾杰依型變種播種田裏的 759 株植株中 109 株屬於其他種和變種, 其中屬於圓錐種潑里尼阿奴姆變種的有 96 株, 屬於硬粒種的有 13 株, 其中艾里特洛梅朗變種 6 株和梅里亞諾普斯變種 7 株。

在表中所列第 12,13,和18 項中得到了有趣的結果。表中所列第 12 項中,同一穗的種子產生了四株植株,其中兩株是郭爾杰依型而 另二株是梅里亞諾普斯(圖 3 右面的兩個穗)。 表中 所列 第 13 項中,1 株是郭爾杰依型變種,而另一株是艾里特洛梅朗變種(圖 3 方左面的兩個穗)。 變表中所列第 18 項中,5 株植株中 1 株是郭爾杰依型 种,而 4 株是圓錐種潑里尼阿奴姆變種。

96 株圓錐種潑里尼阿奴姆植株的形成證明 所檢查的郭爾杰依 型變種起源於卡赫欽斯卡亞分枝小麥。為了證明這一點還可以引用 下述事實。由 13 個郭爾杰依型變種的穗分別播種的種子中完全形 成了圓錐種潑里尼阿奴姆變種的植株(表 4)。

在分析由卡赫欽斯卡亞分枝品種中分離出來的柴盧列斯澄斯和 郭爾杰依型變種中的種的形成底材料時,應該指出,只是這些變種中 產生了圓錐種。在硬粒種梅里亞諾普斯 37和69 以及郭爾杰依型432 品種的播種田中沒有形成 1 株圓錐種。這說明我們所具有的材料不 是機械混雜,而是由一個類型中產生了另一個類型。

表 4 低溫對發芽種子影響所引起的春小麥郭爾杰依型變種 (由卡赫 多斯卡亞分枝小麥植株中分離出來的)種的形成

處		理	用單	生	長	出來的植株
第一年		第二年	想或 總	其	中	
處置發芽種	影響		多穗	郭爾	4327	其中的種和變種
子時的温度	時間(天)	播種期	種子	杰依型的	共山	八十四四四
丁时间通及			播種計	變種	的	
1.由10°C徐緩變到		1051 6010 5111 5	BO THE A			THE CALL AND THE PARTY OF THE P
-5°C	51	1951年12月11日	單穗 4	_	4	圓錐種,潑里尼阿奴姆—4
2. 同 上	51	1951年12月27日	單穗 4	-	4	圓誰種,發里尼阿奴姆—4
3. 同 上	51	1951年12月3日	單穗 2	-	2	圓錐種,發里尼阿奴姆—2
4. 同 上	42	1951年12月3日	單穗 4	-	4	圓錐種,潑里尼阿奴姆一4
5. 同 上	24	1951年12月11日	多穗 23	21	2	硬粒種,艾里特洛梅朗一2
6. 由 0°徐緩變到 -5°·············	42	1951年12月4日	多穗 13	4	9	圓錐種,發里尼阿奴姆—9
7. 同 上	42	1951年12月11日	單穗 5		5	圓錐種,發里尼阿奴姆一5
8. 同 上	42	1951年12月11日	多穗 28	12	16	圓錐種,潑里尼阿奴姆-16
9.同 上	42	1951年12月27日	單穗 3		3	圓錐種,發里尼阿奴姆一3
10. 同 上	42	1951年12月27日	單穗 2	-	2	圓錐種,潑里尼阿奴姆一2
11. 同 上	42	1952年4月3日	多穗 10	4	6	圓錐種,潑里尼阿奴姆一6
12. 同 · 上	24	1951年12月11日	單穗 4	2	2	硬粒種,梅里亞諾普斯一2
13. 同 上	24	1951年12月11日	單穗 2	1	1	硬粒種,艾里特洛梅朗—1
14. 同 上	24	1952年4月3日	多穗 15	13	2	硬粒種,艾里特洛梅朗—2
15. 由 10°C迅速變到 -5°C	51	1591年12月4日	多穗 4		4	圓錐種,潑里尼阿奴姆—4
16. 同 上	51	1951年12月27日	單穗 5	_	5	圓錐種,發里尼阿奴姆—5
17.由 10℃迅速變到 -5℃	51	1951年12月27日	多穗 9	8	1	圓錐種,潑里尼阿奴姆—1
18.同 上	51	1952年4月3日	單穗 5	1	4	圓錐種,發里尼阿奴姆—4
19. 同 上	51	1952年4月3日	單穗 4		4	圓錐種,發里尼阿奴姆—4
20. 同 上	51	1952年4月3日	單穗 2	-	2	圓錐種,發里尼阿奴姆—2
21. 同 上	51	1951年12月4日	多穗 23	22	1	圓錐種,發里尼阿奴姆—1
22. 同 上	51	1951年12月11日	單穗 6	-	6	圓錐種,殼里尼阿奴姆—6
23. 同 上	51	1951年12月11日	多穗 30	29	1	圓錐種,潑里尼阿奴姆—1
24. 同 上	51	1951年12月4日	單穗 4		4	圓錐種,潑里尼阿奴姆—4
25. 同 上	51	1951年12月11日	單穗 9	-	9	圓錐種,發里尼阿奴姆—9
26. 同 上	24	1951年12月27日	單穗 5		5	硬粒種,梅里亞諾普斯一5
27. 對 照	-	1952年4月3日	多穗 13	12	1	硬粒種,艾里特洛梅朗——1

圖 3 郭爾杰依型變種的穗 (Tr. durum); 2. 艾里特洛梅朗變種穗 (Tr. durum) 這二個穗都是由郭爾杰依型單穗種子經在0°C徐緩變到5°C的温度下保持 24 天, 1951年。3 月 17日播種和 1951 年 12 月 11 日重新播種所獲得的; 3. 郭爾杰依 型變種穗(Tr. durum); 4. 梅里 亚 諾普斯變種穗(Tr. durum), 這二個穗都是由郭爾杰依型單穗種子經 0°C 徐緩變到 5°C 的温度下保持 24 天, 1951年 3 月 17 日播種和 1951年 12 月 11 日重新播種所獲得的。

(四) 硬粒種梅里亞諾普斯 37 和梅里亞諾普斯 69 品種(表 5)

在梅里亞諾普斯 37 播種田裏的 9,282 株植株中僅有 12 株(或 0.13%)是其他變種: 10 株雷赫揚巴興,1 株柴盧列斯澄斯和 1 株瓦 列西亞。表中所列第 3 項可作為特徵。在單穗種子的播種田中有 8 株梅里亞諾普斯和 1 株無芒的、它只可以屬於www quindecium Flaksb. 變種的植株(圖 4)。 這些變種的出現,無論是在大田和在試驗田中根本沒有遇到過,不能用機械混雜來說明。其中也沒有雷赫揚巴興變種,其中出現的 10 株雷赫揚巴興變種的植株只可認為是形態形成。

表 5 低溫對發芽種子的影響引起春小麥梅里亞諾普斯 37 和 梅里亞諾普斯 69 品種的種的形成

	艮	是心					理				F	單			長	出	來	的	植	1	姝	
第	,	_	_	年		_[_	第		年	E	租	越	總	其	-							
處日	置	蓌	芽	種	影			播			1	を想		梅里亞諾	變		其中	中的	種和	變種	重	
子申	時日	约	温	度	時(天			種期				香香	1	普斯	共的							
					,	梅	. 1	E	丽	925	苦	普		37	-							
1. 温度					51		-				1	多穗	48		1	硬粒	拉種,		袜 揚			
				5°C														(F	ойх.	өнб	бахи	IN
2. 温度的轉				立述 5°C	24	195	1年	12)	月1:	1日	目	超	8	7	1	硬粒	位種,	柴鼠	量列其	扩泛	数	-:
3. 温度的轉				迅速 5℃	51	195	1年	12)	月2	7日	日	單穗	9	8	1.	硬粒	拉種,	unu	n qu F		decii sb	
4和5.	對	將	{···		_	195	1年	4)	月 3	E	E	單穗	9	-	9	硬粒	雄,	雷	赫揚	巴	與	_
						,	梅	里		亚	ZUE	诺 3	普	斯 6	9							
6. 温度的刺	由ま	10	°C	徐緩	51	195	1年	12	月2	7 E	1 2	多穗	60	57	3	硬粒	立種:	雷	赫揚	巴巴	興	
7. 全					24	195	1年	12	月4	1 E	1	多穗	63	61	2				赫揚			
						-	i												切期			
8. 温度轉變	生由	10	形° 6-	速的 C···	51	195	51年	≘12	月	4 F	3	多穗	41	40	1	普通	通種	,尼村姆-	各羅 -1	可禾	当斯	į
9. 仝		<u> </u>			51	195	51年	€12	月2	7 E	3	多穗	99	98	1	硬料	立種	,列,	poap 鳥 科	植	朝	/ IV
0. //	,	<i>"</i> · ·	••••		42	195	51年	12	月	4 [3	多穗	52	51	1	硬料	並種	,雷	赫揚		興	
1. 温思			·进。		51	19	51年	≢12	月1	1	3	多穗	80	77	3	普	面種	,留	切期	前	前斯	_
12. 仝		Ŀ.	••••		42	19	51年	£12	月	4	E	多穗	56	55	1	硬料	並種	,雷	赫揚	3 E	三興	_
13. //		// .	• • • •		24	19	514	€ 12	月	4	H	單穗	5	2	3	列	烏庫	奴妣	列	\vec{J}	亚 Tey:	К
14. //		// ·			24	19	51 4	É12	月	4	H	多穗	64	63	1	pyr	y)不	定领	整種- 赫 接	-1		
15. //		<i>"</i>	••••	•••••	24			-			- 1	多穗		98	1				赫县			
16. //		<i>"</i>			24	1					- 1	多穗		3 77	1	硬	粒種	,雷	赫县	易巴	旦興	ļ-
17. 對				照	-							單穗		-		硬	粒種	,列	鳥眉	五女	又姆	-
18. 對				照	-	19	514	≢ 12	月:	11	H	多穗	11(109	1	硬	粒種	,雷	赫戈	BE	旦興	<u>l</u> —
19. 對				照	-	19	514	¥12	2月	11	日	多穗	92	91	1	HOC			鳥眉			
20. 對				照	-	19	514	¥12	2月	27	日	單穗	1	0 4	6	硬硬	粒種粒質	, 阿	赫拉弗利	卡	奴娲	} -
21. 對				照	-	19	514	年12	2月	27	日	多穏	14	2 140	2			,愛彼	中 力 精 被 後	羅姆	斯——1	
																91	雨中		loyk			

■ 4 1. 梅里亚諾普斯穗(Tr. durum); 2—3. unum quindecium Flaksb.穗, 所有這三個穗都是由 梅里亚諾普 斯 37 單穗種子經 由 0° C 迅速變 到 −5°C的温度下保持51天,1951 年 3 月 17日播種和 1951 年 12 月 27 日重新播種後所獲得的。

在梅里亞諾普斯 69 品種播種田裏, 8,917 株植株中出現了30 株(或 0.36%)其他種和變種的植株: 硬粒種: 雷赫揚巴興 15 株, 列烏庫奴姆 4 株, 瓦列西亞 1 株, 列烏科梅朗 1 株, 阿弗利卡奴姆 1 株; 普通種: 留切斯前斯 4 株, 愛力特羅斯彼爾木姆 1 株, 列烏科斯彼爾木姆 1 株, 尼格羅阿利斯吐姆 1 株, 不定變種 1 株。

表中所列第 20, 8, 21 和 18 項也是有趣的。表中所列第20項 (單穗種子的播種田中)的 10 株 植株中, 4 株是梅里亞諾普斯變 種, 5 株是雷赫揚巴興和 1 株是 阿弗利卡奴姆變種。在表中的同 一項內的 1 株梅里亞諾普斯植株 上有 3 個梅里亞諾普斯變種的穗 和 1 個不定變種的穗。

表中所列第8項的41株植 株中,40株是硬粒種梅里亞諾普 斯變種和1株普通種尼格羅阿利 斯吐姆變種。尼格羅阿利斯吐姆

(普通種)的穗上有着許多硬粒種的特徵: 芒粗糙而平直, 莖稈在距穗 3 厘米處充實, 穗的下部小穗護穎上龍骨直到基部非常明顯, 鋸齒狀龍骨短。這一切都說明這些穗子是起源於硬粒種。這些穗整個看來是屬於普通種的。

表中所列第 21 項中的 142 株植株中, 140 株是梅里亞諾普斯變種, 而 2 株是普通種: 1 株是愛力特羅斯彼爾木姆變種(圖 5, 右穗)

和1株是列島科斯彼爾木姆戀種。

表中所列第 18 項中的 110 株植株中 109 株屬於梅里亞諾普斯 變種,而 1 株具有着不同的穗。第一穗最發達是雷赫揚巴興變種,另 二個穗是梅里亞諾普斯變種。

事實證明了由梅里亞諾普斯 37 和 69 品種中形成其他種和變種 的 32 株植株中有 25 株 (或 78%) 是屬於雷赫揚巴與變種。現試驗 條件是適於由梅里亞諾普斯中產生雷赫揚巴與變種的。而在同樣條

圖 5 1. 梅里亞諾普斯變種(Tr. durum) 觀; 2. 由梅里亞諾普斯 69 中獲得的尼格羅阿利斯吐姆變種(Tr. vulgare) 的蔥,尼格羅阿利斯吐姆變種(Tr. vulgare) 的蔥,尼格羅阿利斯吐姆變種(Tr. vulgare) 的蔥,尼格羅阿利斯吐姆變種(Tr. durum) 蔥; 4. 梅里亞諾普斯變種(Tr. durum) 蔥; 4. 梅里亞諾普斯變種(Tr. durum) 蔥; 5. 需赫楊巴與變種(Tr. durum) 蔥; 5. 需赫楊巴與變種(Tr. durum) 蔥; 5. 雷赫楊巴與變種(Tr. durum) 蔥; 5. 雷赫楊巴與變種(Tr. durum) 蔥; 7. 愛力特羅斯彼爾木姆變種(Tr. vulgare) 蔥,是由 1951 年12 月 27 日播種的梅里亞諾普斯 69 中獲得的。

件下,由卡赫欽斯卡亞分枝品種和其中分離出來的柴 盧**列斯澄斯及** 郭爾杰依型變種中沒有產生一株雷赫揚巴興變種。

郭爾杰依型 432 品種在同樣條件下播種二年,沒有得到任何一 株變異了的植株。

結 論

- 1.由於對二代的春小麥發芽種子給與温度 10°C 到 -5°C 的影響,卡赫欽斯卡亞分枝品種、梅里亞諾普斯 37 品種、梅里亞諾普斯69 品種以及由卡赫欽斯卡亞分枝小麥中分離出來的柴盧列斯澄斯和郭爾杰依型變種都形成了另一個種和變種。
 - 2. 較長時間的低温影響作用於發芽種子,促使新類型的形成。

(陳恆鶴翠自蘇聯農業生物學雜誌 (Агробиология), 1954 年第 5 期; 著者С. В. Мокров; 原題:Видообразование у Яровой Пшеницы при Воздействии Пониженными Температурами на Проросшие Семена; 原文出版者: 蘇聯農業出版社〕

千 金 楡 產 生 榛

C. K. 卡拉别江

在生物科學中,達爾文肯定了一種有機體類型是從另一種 產生 的進步的唯物主義學說。但他並不能克服庸俗的進化論,根據庸俗 的進化論,則生物界的發展僅僅歸結爲一種漸次的量的變化。

一種類型(種)過渡到另一種類型是一條連續不斷的鏈條的進化 理論原理、與自然界缺少這種中間類型(統一鏈條的環節)的事實發 生了鮮明的矛盾。達爾文採用了馬爾薩斯關於種內鬥爭的反動公 式,似乎由於種內鬥爭,比較不適應的中間類型消滅了。達爾文據此 建立的分歧理論(теория дивергенции),就是性狀分離理論,數十年 來給這個已形成的缺口罩上一層掩護的面紗。

假使自然界事實上存在過由於種內鬥爭而被消滅的所謂中間類型,那末古生物學家應該已經發現它們,並且已經重建了"連續的系列"。但是古生物學家過去沒有、現在仍然沒有找到中間類型,因為自然界過去和現在都沒有過中間類型。

用馬爾薩斯的偽科學理論來解釋生物界發展的規律,不可避免 地使達爾文犯了另一個錯誤,其中包括否認種與變種之間的區別,實 質上就是否認自然界生物種的眞實存在。"'種'這個名詞——他寫 道——我認為完全是為了方便起見而任意設想出來用以表示彼此間 很相似的一羣個體的,並且本質上是與'變種'這個名詞沒有區別 的。"

實際上種是自然界真實存在的,而不是爲了分類學的方便;他們之間存在着相對的但完全明確的界限,存在着種的區別。在普通生活條件下,彼此不能雜交或是雜交得到無生殖力的後代往往是區別

種的可靠標誌。

根據馬克思主義的認識理論,根據斯大林同志所發展並提高到 新的高度的辯證唯物主義,蘇維埃創造性達爾文主義米丘林生物學 對種的理解作了一個統一的正確的科學定義。

"種——按照李森科的定義——是物質底生命形態的、質上不同的一定狀態。個體之間一定的種內相互關係是植物、動物和微生物種的主要特徵。這些種內相互關係與不同種個體間的相互關係在本質上是不同的。因此種內相互關係與種間相互關係之間的質上的差別,是區別種與變種的主要標準之一。"

在這個米丘林生物學原理的照耀下,進化論者所謂變種是孕育着的種,而種是顯著的變種的說法是不足憑信的。

米丘林生物學把變種看作是一定種的生存形態,而不**是轉變為**種的階梯。

由於和自然界突然出現新的有機體類型的事實發生衝突,達爾 文試圖以地球歷史遠古時期地質編年史的不完整來解釋這一點,由 於地質編年史的不完整,所以沒有發現中間的過渡類型。

在"物種起源"中,他說: "只有一種事實,就是在地層中突然發現 與其餘類型不同的新的生物類型,驟然看來,好像是支持突變的假定 的,但這些證據的說服力唯有依賴於涉及地球歷史遠古時期地質編 年史的完整程度,假使這部編年史是這樣殘缺不全,正如許多地質學 家所斷言的那樣,那末在我們看來似乎是突然發展起來的許多類型, 也就沒有什麼奇怪了。"

由於生活條件的改變,由於有機體發育過程中新陳代謝類型的 改變,而且這些改變牽涉到在類型形成和種間相互關係過程中所建 立起來的種的特性,一些種便產生另一些種。外界環境條件的改變 遅早要改變新陳代謝類型,因之也改變了該有機體的種的特性。To 工。李森科寫道:"在改變了的條件的作用下,如果這些條件不利於當 地生長的植物種有機體的本性(遺傳性),在這些種有機體的身體內 就孕育、形成更適於改變了的外界環境條件的其他種身體的胚"(着 重點是我加的——卡拉別江)。

在最近數年中,累積了豐富的實際材料,證明一些種產生於其他植物。

精改變外界環境條件——秋播,得以在兩三代中使 28 個染色體的硬粒小麥 (Triticum durum) 轉變為完全另一個種普通軟粒小麥 (Triticum vulgare)。

科學工作者、農學家和大學生在不同的近山地區的田野裏,特別是在南高加索和達格斯坦,在硬粒和軟粒小麥穗中發現了黑麥籽粒。在普通燕麥(Avena sativa)的穗中發現了同屬另一個種野燕麥(Avena fatua)(烏麥)的個別籽粒。

這些事實以及各個科學研究機構所進行的實驗, 毫無疑義 地證實一些植物種可能產生另一些種。

這篇文章來叙述在自然條件下發現千金楡(Carpinus caucasicus A. Grossh)產生榛(Corylus avellana L.)。如所周知,這些喬木樹種同屬於榛科(Corylaceae)的不同的屬。

1949年夏,在離基里案城(阿爾明尼亞蘇維埃社會主義共和國) 不遠的森林中,林務區工作人員指給我們看一株樹,這株樹由兩個不 同屬的千金榆和榛組成,他們並且發表了他們的臆測,說兩株不同屬 的樹在這裏發生癒合。但是對這株樹的觀察以及對千金榆樹、榛樹 木材顯微鏡研究,使我們深信我們所研究的事實是一個植物種產生 另一個種,即千金榆產生榛。

下面我們引證一些關於榆-榛生態的以及測樹方面的資料。

樹在基里寨林務區基里寨林場第 17 林區。第 17 林區在卡爾巧一巴希山嶺的北坡、阿克斯塔夫河的右岸。在該林地主要培植的是千金榆,並混和 20—50%的山毛欅、槭樹、榆樹、椴樹和梣樹。灌木林中大多是山楂、榛、薔薇、穗狀醋栗和接骨木。

草被 (травянистый покров) 主要由蕨類和禾本科植物構成: 有豆科、酸模屬及其他闊葉草。土壤為中黏壤土。山坡坡度 15—35°。

栽植鬱閉度中等——0.5(0.4-0.6)。樹的直徑 30—35 厘米, **高15**—26米。平均年齡 100—120 歲。

主軟母樹——千金楡——的年齡大約為 70 歲, 高 15 米, 高 2 米 處直徑39 厘米、圓周 117 厘米。離地3 米處從千金榆樹樹榦西邊—面 長着榛樹樹枝,這個樹枝我們稱它為右枝。在同一水平面,從相反的一面(東面) 長着另一個榛樹樹枝(左枝)。 右枝的年齡大約為 25—30 歲, 基部直徑 21 厘米、圓周 64 厘米,全長 7 米。左枝年齡 20 歲, 基部直徑10厘米、圓周 32 厘米, 全長 4 米(圖 1 甲, 乙)。

千金榆樹上產生出來的榛幾乎與普通森林中的榛沒有區別,只 是葉片比較小些,更加成長橢圓形(圖 2—4)。

無論是右枝,或則是左枝都正常開花並且結了在大小、形態和口 味方面和通常森林中的榛樹一樣的榛果(圖 5)。

從千金榆-榛不同部位採取的木材,經顯微鏡檢視*,證明如下。 從千金榆樹樹幹取下來的木材結構,無論是在形成榛樹枝的地方,無 論是在這一點以上,都是典型的榆樹千金木材(圖 6—8)。

無論是從榛右枝,或從榛左枝取下的木材結構,都是典型的榛樹 (Corylus avellana L.),與千金楡 (Carpinus caucasicus) 的木材結構 迥然不同,具有梯紋穿孔和異形射線(圖 9—12)。

為了闡明千金榆轉變為榛的界線上、即兩種樹種組織的接觸線上的木材組織結構是怎樣轉變的,我們從形成榛枝樹瘤的最邊上—包括一部分千金榆組織和一部分榛組織——採取木材樣本。分析證明在兩個種的木材之間存在着明晰的界限。

尋覓組織的過渡形式是徒然的。顯微鏡分析沒有可疑之點,證 明沒有中間型的組織,而只有千金榆的細胞、組織以及榛的組織。

某些專家見了我們所描述的樹後,懷疑地看待我們關於一個種產生另一個種的結論。他們更有意認為是兩種樹——千金榆和榛——癒合。但在這株樹的周圍(數十米的半徑內),旣沒有榛樹,而

^{*} 趁此感謝亚岑科-赫梅列茲基 (А. А. Яценко-хмелезский) 教授及其助手們, 他們仔細地完成了上述樹木木材的顯微鏡分析。

70歲的千金檢及生長在它樹軟上的條枝。1—3.老樹 枝;6.千金榆轉變爲燦的交界線;7.燦枝間的樹榴。

70歲的千金椒及生長在它樹條上的

圖4 普通條樹的枝條。

圖3 普通千金楹的枝條。

2 左,千金檢帶葉技條;右,蘇技。(兩個 技條都是圖1所描繪的樹上的)。

圖 5 1950 年從千金楡樹的榛枝上採集的榛果。

麗 6 圖 1 中所指千金楡木材圖示(橫切面)。

圖7 圖1中所指千金檢木材圖示(終切面,可見單穿孔)。

切面, 見有同形射線)。

圖10 生長在千金橇樹餘上條樹右枝木材 圖示(縱切面,可見梯紋穿孔)。

圖9 生長在千金橄樹軟上的條樹右枝的木材圖示。

國12 生長在千金楡関聯上的機関左技术 材圖示。

到11 生長在千金檢閱軟上的條閱右技术 材圖示,具有異形射線。

且連榛樹樹樁的痕跡也沒有,因此便完全排斥了兩種不同樹種的發 生态合的可能性。

另外一些專家發表他們的臆測,說在當時情况下會把榛人工嫁接在千金榆上。然而這種臆測也是落空的,因為新形成的榛枝是在高3米的千金榆樹幹上,並且也沒有任何人工嫁接或自然嫁接的跡象。不但如此,千金榆與榛之間有着顯著的不可能進行嫁接的種的差別。

在目前情况下,所有這些類似的臆測都是不承認一個種可能產 生另一個種的必然後果。

在"物種起源"第七章中達爾文寫道: "在自然選擇理論的基礎上,我們很明顯地了解爲什麼自然選擇僅僅作用於每一個細微的漸次的差異;它永遠不會作出突然的巨大的飛躍,而永遠是以短小的、雖然是緩慢的但是可靠的步伐前進"(着重點是我加的——卡拉別江)。

米丘林生物學——創造性蘇維埃達爾文主義——堅决駁斥達爾 文的這一原理。

外界環境條件,營養條件和新陳代謝類型是新的動植物類型出現和存在的動植物類型變異的基本因素。"一些種從另一些種產生、以及種內類型複雜的最初原因,是動植物生活條件的改變,新陳代謝類型的改變。新種的孕育和發展是和有機體發育過程中新陳代謝類型的改變聯系着的,這些改變牽涉到它們的種的特性"(T. Д. 李森科)。

本文所描述的例子,是這一米丘林生物學原理的證明。

(童克忠譯自蘇聯"農業生物學"(Агробиология), 1952 年第5 期著者; С. К. Карапетян; 原題: Порождение Лещины Грабом; 原文出版者: 蘇聯農業出版社)

退。专

58, 1221 264 170

1476882

科特、CA等著孫流中等譯 関於物種要化問題的研究

書號 \$8124 /170

登記號1476882

(Fo)

	昌平百	善印刷厂	
合订本车	三间		1.75
拆书	索线	做売	上面
	-	烫字	套壳
粘衬	裁切		扫浆
锯眼	起脊	校对	1777
		核单	
总质检		12/1	

5 W. S. H. S. L. S			
			,

