Introduction à l'Analyse Numérique

EMA 2014-2015

Généralités

Problème réel

Interprétations des résultats

Modélisation et données numériques

Analyse Numérique

Traitement informatique

Résolution par approximation du modèle

Chaque algorithme est caractérisé par :

1) Sa justification théorique.

Démonstration de la convergence du procédé numérique vers la solution exacte.

2) Son champs d'application.

Conditions nécessaires pour assurer la convergence, rapidité de convergence suivant des contraintes plus fortes.

3) Son mode de convergence, sa complexité.

Ordre de grandeur (linéaire, quadratique, ...) du nombre d'opérations pour obtenir une précision des résultats par rapport à celle des données.

4) Sa stabilité.

Evaluation des conséquences de perturbations des données ou du traitement, sur le résultat et sa précision.

Les différentes incertitudes (ou erreurs) : un exemple

Calcul d'une vitesse d'un mobile, soumis à une attraction.

Les incertitudes antérieures au procédé numérique, hors du champs de l'Analyse Numérique :

1) Incertitude de modélisation.

On choisit de simplifier en $\frac{dv}{dt} = \gamma(t)$ en négligeant la résistance de l'air.

2) Incertitude sur les données.

Connaissance approchée de v_0 et de $\gamma(t)$ dans

$$v(t) = v_0 + \int_0^t \gamma(u) du$$

Les différentes incertitudes (ou erreurs)

Calcul d'une vitesse.

Les incertitudes internes au procédé numérique, du ressort de l'Analyse Numérique :

3) Incertitude de méthode

(ou de troncature).

L'intégrale est approchée par la méthode des trapèzes:

$$\int_0^t \gamma(u) du = \frac{t}{n} \left[\frac{1}{2} (\gamma(0) + \gamma(t)) + \gamma\left(\frac{t}{n}\right) + \dots + \gamma\left(\frac{it}{n}\right) + \dots + \gamma\left(\frac{(n-1)t}{n}\right) \right]$$

4) Incertitude de calcul

(ou d'arrondi).

Chaque calcul de $\gamma\left(\frac{it}{n}\right)$ est approché, avec un certain nombre de décimales.

Incertitudes du domaine de l'Analyse Numérique, un équilibre à trouver :

7