Problem Set 2

PAWS 2025

Nathaniel Hurst

Let $a \in K$ and consider the (affine plane) curve C (not elliptic curve since $4a^3 + 27b^2$ is not necessarily 0 in this exercise), defined by $y^2 = x^3 + ax + b$.

- (a) Show that $4a^3+27b^2=0$ if and only if the polynomial $f=x^3+ax+b$ has a repeated root.
- (b) A point P on an affine plane curve is a singularity if and only if both partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ vanish at P; otherwise P is called a smooth point. Use this definition and part (a) to show that all points P on C are smooth if and only if $4a^3+27b^2\neq 0$.

Α

Consider the elliptic curve $E:y^2=x^3-3x+1$ defined over $\mathbb{F}_{\!13}$ and let

- (a) Compute $[2] \cdot P_1$. Is there any relation to the point P_2 of Example 3.8 in the lecture notes?
- (b) Compute $[12] \cdot P_1$. Try to use as few elliptic curve additions as possible.

A

Given an elliptic curve E over K, a point $P \in E(K)$ and an integer N. Show that Algorithm 4 computes $[N] \cdot P$ using at most $2 \log_2(N)$ elliptic curve additions (a doubling $[2] \cdot P$ is counted as one addition P + P).

A

Consider $E: y^2 = x^3 - 2x + 5$ over \mathbb{F}_{19} . Let P = (2,3) and Q = (10,4). (Note: See the SageMath documentation for how to construct elliptic curves and points on elliptic curves.)

- (a) Check that P and Q are points on E.
- (b) Calculate P + Q, without using SageMath.

- (c) Calculate $[5] \cdot P$ using the double-and-add algorithm (Algorithm 4 of the lecture notes).
- (d) Calculate $[7] \cdot Q$. What does this tell you about the order of Q?

A

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve defined over a field of characteristic \neq 2, 3. In this exercise, you are asked to show that #E[3] = 9 by describing how to compute the points.

- (a) Use the description of the group law (in Theorem 3.7 of the lecture notes) to construct a polynomial φ such that $\varphi(x)=0$ if and only if $[3]\cdot P=\infty$, where P=(x, y) is a point on the (affine) curve.
- (b) Show that φ has no repeated roots. (Hint: Show that φ and its derivative cannot share any roots.)

A

For each of the following elliptic curves and finite fields \mathbb{F}_p , list the points in $E(\mathbb{F}_p)$ and check that the number of points is within the Hasse bound:

- (a) $E: y^2 = x^3 + 7x 3$ over \mathbb{F}_{13} .
- (b) $E: y^2 = x^3 + 11x + 2$ over \mathbb{F}_{17} .

A

Let p > 3 be a prime, and consider two elliptic curves:

$$E: y^2 = x^3 + ax + b$$
 and $\overline{E}: y^2 = x^3 + ax - b$

defined over \mathbb{F}_n .

(a) Assume that $p \equiv 1 \pmod{4}$. Show that

$$\#E(\mathbb{F}_p) = \#\overline{E}(\mathbb{F}_p)$$

(b)Assume that $p \equiv 3 \pmod{4}$. Show that

$$\#E\big(\mathbb{F}_{\!p}\big) + \#\overline{E}\big(\mathbb{F}_{\!p}\big) = 2p+2.$$

Some hints: 1) Check if -1 is a square in \mathbb{F}_p . 2) Let $p=(x_0,y_0)\in E\big(\mathbb{F}_p\big)$. Is there a point $\overline{P}=(x_0,\star)\in \overline{E}\big(\mathbb{F}_p\big)$? What about $\overline{P}=(-x_0,\star)\in \overline{E}\big(\mathbb{F}_p\big)$?

Let p > 2 be a prime number and let $E : y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{F}_p , and denote with $E(\mathbb{F}_p)$ all points of E with coordinates in \mathbb{F}_p . Further, let $\left(\frac{a}{b}\right)$ be the Legendre symbol.

(a) Show that

8

$$|E(\mathbb{F}_p)| = p + 1 + \sum_{x \in \mathbb{F}_p} \left(\frac{x^3 + Ax + B}{p}\right).$$

- (b) Let $d\in\mathbb{F}_p$ be such that $\left(\frac{d}{p}\right)=-1$ and $E':dy^2=x^3+Ax+B$. Show that $|E(\mathbb{F}_p)|+|E'(\mathbb{F}_p)|=2p+2.$
- (c) Let p be a prime such that $p\equiv 3\pmod 4$ and $E:y^2=x^3+Ax$. Show that $|E(\mathbb{F}_p)|=p+1$.

A

Compute the group structure of $E(\mathbb{F}_p)$ for the given elliptic curves E and primes p. (Can you also find generators?)

(a)
$$E: y^2 = x^3 + 1$$
 for $p = 5$

9

(b)
$$E: y^2 = x^3 + x \text{ for } p = 7$$

(c)
$$E: y^2 = x^3 - 1$$
 for $p = 7$

(d)
$$E: y^2 = x^3 + 3x + 1$$
 for $p = 11$

(e) For p=13, compute the group structures of $E(\mathbb{F}_p)$ for all elliptic curves over \mathbb{F}_p . (You can use the command .abelian_group() for this.)

A

In this exercise we will outline a proof of Hasse's theorem (Theorem 3.16 of the lecture notes): Let E be an elliptic curve over \mathbb{F}_q . Then:

$$q+1-2\sqrt{q} \leq \#E\big(\mathbb{F}_q\big) \leq q+1+2\sqrt{q}.$$

We first introduce the q-power Frobenius endomorphism,

10

$$\pi_q: E \longrightarrow E, \quad (x,y) \mapsto (x^q,y^q), \quad \infty \mapsto \infty.$$

(Note: Endomorphisms have not been defined in the lecture! An endomorphism is a rational map from an elliptic curve to itself, which maps ∞ to ∞ . Multiplication by N for an integer N is an example of an endomorphism. One can show that an endomorphism is a group homomorphism.)

(a) Show that $\pi_q: E \longrightarrow E$ is a group homomorphism.

- (b) Show that $\#E(\mathbb{F}_q)=\#\ker(1-\pi_q)$, where 1 is the identity map on E.
- (c) A **binary quadratic form** on an abelian group $A,Q:A\longrightarrow \mathbb{Z}$, is a function satisfying the properties:
- 1) Q(x) = Q(-x) for all $x \in A$,
- 2) The pairing (x,y)=Q(x+y)-Q(x)-Q(y) is bilinear. It is further called **positive definite** if $Q(x)\geq 0$ for all $x\in A$ and Q(x)=0 if and only if x=0.
- (i) Prove that for a positive definite quadratic form Q,

$$|Q(x-y) - Q(x) - Q(y)| \le 2\sqrt{Q(x)Q(y)}$$

for all $x, y \in A$.

(d) For an endomorphism $\varphi: E \longrightarrow E$, when $p \nmid \# \ker(\varphi)$ (more generally, when φ is separable), we define the degree of φ to be the size of its kernel and denote it by $\deg(\varphi)$. It is a fact that $1-\pi_q$ is separable (see Silverman's **The Arithmetic of Elliptic Curves**, III.5.5), so $\# \ker(1-\pi_q) = \deg(1-\pi_q)$.

Then the proof of Hasse's Theorem reduces to proving that the degree map \deg : $\operatorname{End}(E) \longrightarrow \mathbb{Z}$ is a positive definite binary quadratic form and applying the preceding result in part (c).

- (i) (Practice with the definition.) Let $p \nmid N$. What is deg([N]), where [N] is the multiplication-by-N map on E?
- (ii) Prove that the degree map is a positive definite binary quadratic form. (Hard part: bilinearity of the pairing.)
- (iii) Apply the result in part (c) to the degree map to show that

$$|\#E\big(\mathbb{F}_q\big)-q-1|\leq 2\sqrt{q}.$$

A