

Pre-lecture Video

Alphabet: finite set of symbols e.g. $\Sigma = \{0,1\}$. Σ^{n} : Set of all finite strings using only symbols from Σ .

Language (over Σ): a subset of Σ^{n} e.g. $L_{1} = \emptyset$, $L_{2} = \Sigma^{n}$.

Convention: Strings are written without quotes. e.g. x = 011, y = 00, z = xy = 011 = 0E denotes the empty string.

String reversal: symbols in reverse order . e.g. xR = (011)R = 110

Language Operations:

Complementation: $L = \Sigma^n - L = \{x : x \in \Sigma^n, x \notin L\}$ Union: L, U L_2 Intersection: L, $\cap L_2$ Concatenation: L, $L_1 = \{x : x \in \Sigma^n, x \notin L\}$ Kleene star: $L^n = \{x : x \in \Sigma^n : x \in U, y \in L\}$ Exponentation: $L^n = \{x : x \in \Sigma^n : x \in U, y \in L\}$ Exponentation: $L^n = \{x : x \in \Sigma^n : x \in U, y \in U\}$

Reversal: LR = { xR : xeL}

Remark: , P.L = b , L . b = b , p" = { E}

Regular expressions (regex)

A way to describe a language

Given an alphebet Σ , a regex (over Σ) is a string in $(\Sigma \cup \{\phi, \epsilon, *, +, (,)\})^*$ e.g. $((O+1)(OO))^*$

Definition:

The set of regexes (over Σ), called RE, is the smallest set st.

Basis: ϕ , ϵ e RE and a ϵ RE for any $a \epsilon \Sigma$.

I.S: If R, S & RE, then (R+S), (RS), R* & RE

We define L(R), the language denoted by R (the set of strings that R matches)

 $L(\phi) = \phi$ $L(x) = \{x\}$ $L(x) = \{x\}$, for any $x \in \mathbb{Z}$ $L(x+s) = L(x) \cup L(s)$ $L((x+s)) = L(x) \cup L(s)$ $L(x+s) = L(x) \cup L(s)$

R	L(R)	
(0+1) *	All strings in £0,13*	
	8.4	
('0 (0+1)*)	All strings that start with	0
(0(0+1),)	All strings that start with	0

Convention: drop outer most parauthoses

e.g. (0+1) ⇒ 0+1

Precendences (high to low)

(i) star

(ii) concatenation

(iii) + (Union)

Definition:

We say 2 regexes Rand S are equivalent iff I(R) = I(S)

Definition:

Let L be a language. We say L is regular iff there's a regex R s.t. L= L(R).

Closure Properties for Regular Languages

Let f be a language operation, i.e. $f: P(\Sigma^*) \to P(\Sigma^*)$.

Put another way, F maps a language to a language.

We say f preserves regular languages iff for every regular language L, fll) is regular.

We also say regular languages are closed under f.

.To prove that f preserves regular languages, we can define a predicate (on regexes)

P(R): There exists regex R' s.t. I(R') = f(I(R)) then prove that P(R) holds for all regexes R.

```
Ex. Is
```

Let $\Sigma = \{0,1\}$. Consider this language operation

InsO(L)= { u Ov : u, v & 2 * and uve L }

Prove that Ins O preserves regular languages.

Proof:

P(R): 3R' s.t. I(R') = InsO(I(R))

Prove P(R) holds for all regexes R.

Basis: (3 cases)

(i) If $R = \phi$, then let $R' = \frac{\phi}{\phi}$

(ii) If R= E, then let R'= 0

(iii) If R = b, where b \(\sum \) = \(\{ 0, 1 \} \), then let R' = \(\frac{0b+b0}{}{} \)

I.S.: Let S.T be regeres

Suppose P(s), P(T) hold [I.H.]

i.e. there are regexes S', T' s.t. I(S') = InsO(I(S)) and I(T') = InsO(I(T))

WTP: P(R) for 3 cases. R = S+T, R = ST, R = S*

Case I It R=S+T, then let R'= S'+T'

Want : 1(R') = Ins O (2(S+T))

= Ins O(2(5) v 2(T))

= Ins O(\$(s)) U InsO(\$(T))

= \$(s') U \$(T')

= \$(S'+T')

Case 2: If R = ST, then let R' = S'T+ST'

Want : I(R') = Ins O(I(ST))

= Ins O (I(s) I(T))

= Ins 0 (2(s)) · 2(t) U Ins 0 (2(t)) · 2(s)

= $\chi(s')\chi(T) \cup \chi(s)\chi(T')$ [I.H]

= \$(S'T+ST')

Case 3: If R = S*, then let R' = 0+ S*S'S*

Want: 1(R') = Inso (1(S#))

= Ins 0 (t(s)*)

= f(0 + s*s's*)

B36 Oct 6 Lec 1 Notes

1. Pre: L is a list of distinct integers
Post: Return the set of all peaks in L.

(fet Peaks(L)

1. if len(c) <3: return {3 # empty set

2. m = MaxIndex(L); S = {}

3. if m>0:

4. S= Getpeaks (L[o:m])

5. if m < len (L)-1:

6. S= S union Em} union Get Peaks (LEmtl: len (4)])

7. return S

Corrected:

GP(L)

1. if len(4)<3: return {3

1. m = Max Index (L);

3. if m>0:

4. SI = GP(L[0:m])

5. if m < len (4) -1

6. Sz=GP(L[m+1: len(4)])

7. add m+1 to each element of S2

8. If O<m< len(L)-1: return 51 union Em3 union 52

9. else: return SI union SZ

Q(n): If L is a list of distinct integers and n=len(c) then Get peaks (c) returns the set of all peaks in L.

Basis: n = 0, n=1, n=2
Q(n) holds by C1

I.S.: Let n23

Assume O(j) holds for 0= j < n . [I.H.]

WTP: Q(n) holds