

MACHINE-LEARNING
APPROACHES FOR
ULTRASOUND-BASED
BREAST CANCER DETECTION

PRESENTED BY Ali Razi

Data Science Diploma Capstone

Agenda

1 <u>Project Goal</u>

5 <u>Proposed Models</u>

2 <u>Proposed Steps</u>

6 <u>Prediction</u>

3 <u>Objectives</u>

7 <u>Future Content</u>

4 <u>EDA Approaches</u>

8 <u>Resources</u>

Cancer Tomorrow

Cancer Tomorrow, gco.iarc.fr/tomorrow/en/dataviz/trends. Accessed 18 Aug. 2023

- In 2020, there were
 19,292,789 cancer cases.
- In 2040, the projected number of cancer cases is 30,226,151.
- The number of cancer cases might increase by around 10,933,362
 (56.7%) between 2020 and 2040.

Project Goal

 Using machine learning and ultrasound to estimate the mass of cancer and help practitioners for diagnosing cancer and its stags.

Proposed Steps

Step # 1

Data Collection and Preprocessing

Step # 2

Model Architecture

Step # 3

Model Training and Optimization

Step #4

Validation and Evaluation

Step #5

Fine-Tuning and Iteration

Step #6

Clinical Validation and Integration

Step #7

Ethical Considerations and Privacy

Step #8

Documentation and Communication

Objectives

Brief elaboration on what objectives for using machine learning breast ultrasound

Accuracy Improvement TARGET/OBJECTIVE # 1
Enhance the precision of size
measurements

Staging Enhancement

TARGET/OBJECTIVE # 2
Provide more accurate cancer
staging information

EDA Approaches

Brief elaboration of on what approaches happened in EDA

Resizing

Augment

Denoised

Balanced

Adjusting the dimensions or proportions of an image.

Applying various transformations or modifications to data,

Removed unwanted or random noise Class of images is equally represented, promoting fairness

Back to Agenda

Proposed Models

Back to Agenda

Epoch 5/5

Validation Loss: 0.2338

Validation Accuracy: 0.9092

- Lower validation loss ----> Model's predictions are closer to the actual labels on average
- **Higher** validation **accuracy** -----> **Larger** proportion of the **validation set** was correctly **classified** by the model.

Swipe Left

Is our Prediction Correct Or Incorrect per class?

	Statements	
True Positives (TP)	Predicted Malignant and True Malignant (1392)	
True Negatives (TN)	Predicted Benign and True Benign (2205)	
False Positives (FP)	Predicted Malignant but True Benign (230)- Type I error or a "false alarm	
False Negatives (FN)	Predicted Benign but True Malignant (533)- Type II error or a "miss"	
		Metrics
Accuracy		79.55%
Precision		85.81%
Recall (Sensitivity)		72.36%
Sp	ecificity	90.56%

Future Content

EMAIL

ali.razi9292@gmail.com

SOCIAL MEDIA

github.com/alirazi1992

Resource

1."Breast Cancer Medical Animation by Geometric Medical." YouTube, 7 Sept. 2020, www.youtube.com/watch?v=3DE6V_xHpVY.Slide 1.

2.Cancer Tomorrow, gco.iarc.fr/tomorrow/en/dataviz/trends. Accessed 18 Aug. 2023.

3.Kalafi, E. Y., Nor, N. A. M., Taib, N. A., Ganggayah, M. D., Town, C., & Dhillon, S. K. (2019). Machine learning and deep learning approaches in breast cancer survival prediction using clinical data. Folia biologica, 65(5/6), 212-220.

4.Wu, G. G., Zhou, L. Q., Xu, J. W., Wang, J. Y., Wei, Q., Deng, Y. B., ... & Dietrich, C. F. (2019). Artificial intelligence in breast ultrasound. World Journal of Radiology, 11(2), 19.

5.Shareef, B., Xian, M., & Vakanski, A. (2020, April). Stan: Small tumor-aware network for breast ultrasound image segmentation. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) (pp. 1-5). IEEE.

6. Baek, J., O'Connell, A. M., & Parker, K. J. (2022). Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning. Machine Learning: Science and Technology, 3(4), 045013.

