Reg. No.:	
Name :	

Continuous Assessment Test II – March 2023

Programme	:	B.Tech (ECE)	Semester	:	WS 2022-23
Course	:		Code	:	BECE207L
		Random Processes	Class Nbr	:	CH2022235000478 CH2022235000481 CH2022235000483 CH2022235000476
Faculty	•	Dr Chandrasekaran N, Dr. Jeetashree Aparajeeta, Dr. Kalaivanan K., Ralph Thangaraj	Slot	••	B2+TB2
Time	:	90 Minutes	Max. Marks	:	50

Answer **ALL** the questions

Q.No.	Sub. Sec.	Questions	Marks
1.		Random variables X and Y have the joint characteristic function $\varphi_{x,y}(\omega_1,\omega_2)=e^{\left(-\frac{1}{2}(4\omega_1^2-\omega_1\omega_2+9\omega_2^2)\right)}$ (a) Find the cross correlation of X and Y. (b) Determine mean of X and Y.	5
2.		A random process is defined in the below figure, in which $X(t)$ and $\sin(\omega_0 t + \theta)$ are applied to the multiplier. $X(t) \xrightarrow{\text{Multiplier}} Y(t)$ Sin $(\omega_0 t + \theta)$ Where $X(t)$ is a wide sense stationary random process that amplitude-modulates a carrier of constant angular frequency ω_0 with a random phase θ independent of $X(t)$ and uniformly distributed on $(-\pi, \pi)$. (i) Find $E[Y(t)]$ (ii) Find the autocorrelation function of $Y(t)$ (iii) Is $Y(t)$ wide sense stationary?	10
3.		A random process is given by $Z(t) = 0.4 X(t) - 0.9 Y(t)$ where $X(t)$ and $Y(t)$ are jointly wide sense stationary processes. (i) Find the power spectral density of $Z(t)$ (ii) Find the power spectral density of $Z(t)$, if $X(t)$ and $Y(t)$ are uncorrelated	10

		(iii) Find the cross power spectrum $S_{XZ}(\omega)$ and $S_{YZ}(\omega)$	
		Statistically independent, zero-mean random processes $\alpha(t)$ and $\beta(t)$ have autocorrelation function	
		$R_{\alpha\alpha}(\tau) = A_0 sin(2\pi\tau)$	
4.		and $R_{\beta\beta}(\tau) = B_0 e^{-9 \tau/2 }$	10
		respectively.	
		(i) Find the auto correlation function of the sum $W_1(t) = \alpha(t) + \beta(t)$ (ii) Find the auto correlation function of the difference $W_2(t) = \alpha(t) - \beta(t)$ (iii) Find the cross correlation function of $W_1(t)$ and $W_2(t)$	
		X_n is a wide sense stationary discrete-time random sequence with autocorrelation function	
	a	$R_x[k] = \delta[k] + (0.1)^{ k }$; for $k = 0, \pm 1, \pm 2,$, Compute the power spectral density $S_X(\omega)$.	5
5.		A discrete time WSS random sequence $X[n]$ has the following autocorrelation sequence	
	b	$R_X[m] = \begin{cases} 1 - 0.2 m , & m \le 4 \\ 0, & m > 4 \end{cases}$	5
		Compute the power spectrum $S_X(\omega)$.	
		Two identical networks are cascaded. Each has impulse response $h_1(t) = u(t)4t \exp(-3t)$	
		$h_2(t) = u(t)3\exp(-2t)$	
6		$x(t) \longrightarrow h_1(t) \longrightarrow h_2(t)$	5
		(i) Find the expression for the response Y(t) of the cascade (ii) If $E[X(t)] = \bar{X} = 6$, Find \bar{Y} .	

Course Faculty