Cvičení 1 – Eukleidés a Bézout

30. září 2025

Příklad 1. Najděte následujcící hodnoty:

- a) NSD(104, 168), nsn(104, 168),
- b) NSD(728, 1001), nsn(728, 1001),
- c) $NSD(F_n, F_{n+1}), nsn(F_n, F_{n+1}),$
- d) NSD(2k+1, 3k-1), nsn(2k+1, 3k-1).

Příklad 2. V supermarketu prodávají mléčnou, bílou a hořkou čokoládu, všechny za stejnou cenu. Jednoho krásného dne činila tržba za prodanou mléčnou čokoládu 270,–, za bílou čokoládu 189,– a za hořkou 216,–. Kolik nejméně tabulek čokolády se ten den mohlo prodat?

Příklad 3. Určete Bézoutovy koeficienty pro následující dvojice:

- a) 1023, 96;
- b) 104, 168;
- c) 2k+1, 3k-1.

Příklad 4. Najděte celočíselná řešení následujících rovnic:

- a) 1023x + 96y = 18,
- b) 18x + 24y = 5,
- c) 18x + 24y = 12.

Příklad 5. Spočítejte 10^{-1} v \mathbb{Z}_{37} .

Příklad 6. Spočítejte 27^{-1} v \mathbb{Z}_{41} .

Příklad 7. Spočítejte 8^{-1} a 12^{-1} v \mathbb{Z}_{27} . Zamyslete se, proč tomu tak je.

Příklad 8. Spočítejte následující rovnice:

- a) $5 3x \equiv 4 \mod 7$,
- b) $11 + 4x \equiv 7 \mod 12$,
- c) $4x + 7 \equiv 3 6x \mod 8$,

Příklad 9. Ukažte, že $n^2 \equiv 1 \mod 8$ pro všechna lichá $n \in \mathbb{N}$.

Příklad 10. Vyřešte následujcící rovnici: $x^2 + 5x \equiv 0 \mod 19$.

Příklad 11. Vyřešte následující rovnici: $x^2 + 10x + 6 \equiv 0 \mod 17$.

Příklad 12. Pomocí modulární matematiky odvoďte kritéria dělitelnosti 9 a 11.

Domácí úkol. Najděte největší číslo n takové, že pomocí odečítání 2020 a přičítání n dokážeme dosáhnout libovolného celého čísla od 0 po 8787, aniž bychom přitom opustili interval [0,8787], bez ohledu na to, s jakým číslem začneme.

Hint: použijte Bézoutovu větu.