Total No. of Questions : 6]	SEAT No. :

P5788 [Total No. of Pages : 3

B.E. (Civil)

ENVIRONMENTAL ENGINEERING - II

(2015 Pattern)

Time: 1 Hour [Max. Marks: 30

Instructions to the candidates:

- 1) Solve Q. No.1 or Q. No.2, Q. No.3 or Q. No.4, Q. No.5 or Q. No.6.
- 2) Figures to the right indicate full marks.
- 3) Draw neat diagram wherever necessary.
- 4) Use of logarithmic table, slide rule and electronic pocket calculator are allowed.
- 5) Assume suitable data if necessary, stating it clearly.
- Q1) a) What factors are considered while estimating sewage flow? Determine the domestic sewage flow generated from a town using following data, Population: 80000 and rate of water supply: 150 lpcd. [2+2]
 - b) Determine the storm water flow from a catchment of 50 hecters. It consist of different sub-catchments as given in table below. The critical intensity of rainfall in the area is 18mm in 24 hours. [4]

Type of sub-catchment	% of total	Impermeability coefficient
9.	catchment	(i.e., Coefficient of runoff)
i. Water tight roof area	30	0.95
ii. Road pavement	15	0.85
iii. WBM road	10	0.55
iv. Gardens	5	0.2
v. Agriculture area	40	0.1

c) What is self purification of a polluted river?

[2]

- What is the significance of minimum velocity of sewage flow in the sewers? Calculate the minimum velocity and gradient required to carry inorganic coarse partials of 1.2mm through a sewer of 0.9m diameter. Assume sewer running half full. Take Sp.gr. = 2.65, constants: β=0.04 and f=0.03 [2+4]
 - b) Explain the different zones of pollution for a river undergoing self purification. [4]
- Q3) a) Design a grit chamber consisting two channels, each of 1.2m wide for following data.[6]

Ave. sewage flow: 10MLD, Max.flow=1.5(Ave.flow), Design size of grit particles to be removed=0.18mm, Sp.gr.of grit=2.65, kinematic viscosity of sewage at 10° C=1.14 × 10^{-6} m²/s, Desired efficiency for removal of particles of given size and above=80%, constant for performance of the basin (n) =1/4, detention time=60 seconds. Draw a sketch of the designed details.

[4]

b) Define BOD and COD. Differentiate between BOD & COD [4]

OR

- **Q4)** a) What is DO deficit? Explain the Oxygen Sag curve.
 - b) A circular sedimentation tank is to be designed using following data. Sewage flow=10MLD, Design size of suspended particles to be removed=0.06 mm, Sp.gr. solids=1.2, kinematic viscosity of sewage at 10°C=1.14 × 10⁻⁶m²/s, Desired efficiency for removal of particles of given size and above=65%, constant for performance of the basin (n)=1/4. Draw a sketch of the designed details. [6]

Detention time = 2.5hours. Determine,

- i) Required surface overflow rate,
- ii) Dimensions of sedimentation tank,
- iii) Wier overflow rate

- **Q5)** a) Explain the principle and working of Activated Sludge Process with suitable flow chart. [4]
 - b) Design a high rate single stage trickling filter for treating domestic sewage flow of 12 MLD using N.R.C. formula. Use following data. [6]
 - i) BOD₅ of raw sewage=300mg/L,
 - ii) BOD removed during primary treatment=30%,
 - iii) Organic loading rate=0.8Kg/m³/d,
 - iv) Hydraulic loading rate=15m³/m²/d,
 - v) Recirculation ratio=2.

Determine,

- 1) Volume of filter media
- II) Dimensions of trickling filter
- III) Efficiency of trickling filter

OR

- **Q6)** a) Explain the principle and working of trickling filter with suitable flow chart. [4]
 - b) Design a completely mixed activated sludge process for treating domestic sewage flow of 12 MLD. Use following data. [6]
 - i) BOD₅ of raw sewage=300mg/L,
 - ii) BOD removed during primary treatment=30%.
 - iii) Permissible effluent BOD=30mg/L.
 - iv) MLSS=3000mg/L,
 - v) Return sludge solids concentration=10000mg/1,
 - vi) Ratio of VSS/SS=0.8,
 - vii) Kinetic constants: Y=0.5, Kd=0.05, f=0.68,
 - viii) Mean Cell Residence Time (MCRT)=10 days
 - ix) Oxygen transfer capacity for aerators under field condition=1.6 KgO₂/KWh

Determine,

- I) Volume of aeration tank
- II) Sludge recirculation ratio
- III) Oxygen and power requirement

