Assignment: Vending Machine Simulation Using DFA, NFA, and Python (20 marks)

Theory of Computation Course ID: CSE6344

Objective:

The purpose of this assignment is to design and implement a **vending machine simulator** using the concepts of **Deterministic Finite Automata (DFA)** and **Nondeterministic Finite Automata (NFA)**. You will apply formal language concepts to represent the machine's behavior and simulate its operations using **Python**.

You are tasked with designing a vending machine that sells the following items:

Item	Price (RM)
Water	2.00
Soda	3.50
Chips	4.50
Chocolate	6.00
Coffee	7.50
Juice	8.50
Sandwich	9.00
Energy Drink	10.00

Machine Behavior:

- The machine only accepts values of **RM0.5** and **RM1**.
- All other values (RM5, RM10, RM20, RM50, RM100) are rejected and returned to the user.
- If the inserted amount matches the item price, the item is **dispensed**.
- If the inserted amount exceeds the price, the machine will:
 - **❖** Dispense the item
 - **Return the excess money as change**
- The user can select a new item after each purchase. (*This point in code implementation only*)

The vending machine's behavior can be described using formal language concepts as follows:

• Alphabet (Σ) :

 $\Sigma = \{0.5, 1, Invalid\}$

Where:

0.5 represents RM0.5 value, **1** represents RM1 value, **Invalid** represents values like RM5, RM10, RM20, etc.

Part 1: Design the NFA

- 1. **Design a Nondeterministic Finite Automaton(s) (NFA(s))** for the vending machine for all items.
- 2. In the NFA:
 - ❖ When deemed necessary, use epsilon transitions.
- 3. Provide a clear state diagram for the NFA(s).

Part 2: Convert the above NFA(s) into DFA using Subset Construction Method

1. Clearly represent the states and transitions using a state diagram and transition tables.

Part 3: Python Implementation

You are required to simulate the vending machine using **Python**.

Requirements:

- 1. Implement both the **DFA** and the **NFA** using Python Programming Language.
- 2. The program should:
 - ❖ Allow users to select an item.
 - Simulate value insertion using RM0.5 and RM1.
 - ❖ Track the cumulative amount and display the state transitions.
 - ❖ Dispense the item and calculate the change if applicable, return it via epsilon transitions in NFA.
 - Reject invalid values and return them to the user.
- 3. Provide appropriate outputs displaying the machine's state at each step.

Submission Guidelines

Your submission should be in the form of a well-structured **report**. The report must include the following sections:

- 1. Title Page
 - ❖ Assignment Title: Vending Machine Simulation Using DFA, NFA, and Python
 - Group ID
 - ❖ Your Names

- Student IDs
- Course Name and Code
- Instructor's Name
- Submission Date

2. Table of Contents

• Provide a clear table of contents with proper headings and page numbers.

3. Introduction

- ❖ Briefly describe the purpose of the assignment.
- * Explain the concept of vending machines and how automata theory applies to simulate their behavior.

4. Problem Statement

❖ Clearly state the given problem, item prices, and the machine's behavior.

6. NFA Design

❖ Present all state diagrams for the **Nondeterministic Finite Automaton (NFA)**.

5. NFA to DFA Conversion

❖ Show the conversion process in detail using subset construction method.

7. Python Implementation

- ❖ Include your Python code simulating both the DFA and NFA.
- ❖ Provide clear comments within the code to explain its functionality.

8. Test Cases and Results

- ❖ Perform multiple test cases to demonstrate the correctness of your simulation.
- ❖ Include screenshots or output logs showing different scenarios:
 - Successful purchases
 - Change returned
 - Invalid values rejected
 - Exact payment scenarios

9. Conclusion

- Summarize your learning experience.
- ❖ Discuss any challenges faced and how you overcame them.

10. References

Cite any resources, textbooks, research papers, or online materials used in completing the assignment. (If any)

Evaluation Criteria for 20% Assignment

- [1] Design and Explanation 8%
- [2] Python Implementation 8%
- [3] Report Quality and Presentation 4%