





















Directed graphs...with cycles.

Quick Review: DFS so far  $\equiv$ 

#### Quick Review:

DFS so far  $\equiv$  how I learned to love the stack. pre/post = time on stack.

Topological Ordering:

Inverse post ordering  $\equiv$  topological ordering.

Remove source, repeat.

#### Quick Review:

DFS so far  $\equiv$  how I learned to love the stack.

pre/post = time on stack.

Topological Ordering:

Inverse post ordering  $\equiv$  topological ordering.

Remove source, repeat.

Strongly Connected Components: directed graphs.

Strong Connectivity for u and v.

On a cycle together.

Easy: O(|V||E|) algorithm.

Linear time algorithm!

#### Quick Review:

DFS so far  $\equiv$  how I learned to love the stack.

pre/post = time on stack.

Topological Ordering:

Inverse post ordering  $\equiv$  topological ordering.

Remove source, repeat.

Strongly Connected Components: directed graphs.

Strong Connectivity for u and v.

On a cycle together.

Easy: O(|V||E|) algorithm.

Linear time algorithm!

Observation: Highest post in "source component".

Find vertex in sink component.

Explore.

Repeat.

How I learned to stop worrying

How I learned to stop worrying ...and love the stack.

How I learned to stop worrying ...and love the stack. See "Dr. Strangelove".

How I learned to stop worrying ...and love the stack. See "Dr. Strangelove".

[pre(u), post(u)] is "clock interval on stack."

How I learned to stop worrying ...and love the stack. See "Dr. Strangelove".

[pre(u), post(u)] is "clock interval on stack."



Who is an ancestor of whom?

How I learned to stop worrying ...and love the stack. See "Dr. Strangelove".

[pre(u), post(u)] is "clock interval on stack."



Who is an ancestor of whom?

v is an ancestor of u

How I learned to stop worrying ...and love the stack. See "Dr. Strangelove".

[pre(u), post(u)] is "clock interval on stack."



No cycles: no back edge

How I learned to stop worrying ...and love the stack. See "Dr. Strangelove".

[pre(u), post(u)] is "clock interval on stack."



No cycles: no back edge Back edge – edge to ancestor in "tree" of explore calls."

How I learned to stop worrying ...and love the stack. See "Dr. Strangelove".

[pre(u), post(u)] is "clock interval on stack."



No cycles: no back edge Back edge – edge to ancestor in "tree" of explore calls."

How I learned to stop worrying ...and love the stack. See "Dr. Strangelove".

[pre(u), post(u)] is "clock interval on stack."



No cycles: no back edge

Back edge – edge to ancestor in "tree" of explore calls."

Topological order - edge (u, v) means u before v

How I learned to stop worrying ...and love the stack. See "Dr. Strangelove".

[pre(u), post(u)] is "clock interval on stack."



No cycles: no back edge Back edge – edge to ancestor in "tree" of explore calls."

Topological order - edge (u, v) means u before v Inverse post ordering is topological order.

How I learned to stop worrying ...and love the stack. See "Dr. Strangelove".

[pre(u), post(u)] is "clock interval on stack."



No cycles: no back edge Back edge – edge to ancestor in "tree" of explore calls."

Topological order - edge (u, v) means u before v Inverse post ordering is topological order. Bonus Topological Order Algorithm:

How I learned to stop worrying ...and love the stack. See "Dr. Strangelove".

[pre(u), post(u)] is "clock interval on stack."



No cycles: no back edge Back edge – edge to ancestor in "tree" of explore calls."

Topological order - edge (u, v) means u before v Inverse post ordering is topological order. Bonus Topological Order Algorithm: remove source.

How I learned to stop worrying ...and love the stack. See "Dr. Strangelove".

[pre(u), post(u)] is "clock interval on stack."



No cycles: no back edge Back edge – edge to ancestor in "tree" of explore calls."

Topological order - edge (u, v) means u before v Inverse post ordering is topological order. Bonus Topological Order Algorithm: remove source, repeat.







































Tree/forward edge (u, v): int(v) = [pre(v), post(v)] in int(u) = [pre(u), post(u)].



Tree/forward edge (u, v): int(v) = [pre(v), post(v)] in int(u) = [pre(u), post(u)]. Forward (A, F): [10,11] in [0,13] or [0,[10,11],13]



Tree/forward edge (u, v): int(v) = [pre(v), post(v)] in int(u) = [pre(u), post(u)]. Forward (A, F): [10,11] in [0,13] or [0,[10,11],13]Back edge (u, v): int(v) contains int(u).



```
Tree/forward edge (u, v): int(v) = [pre(v), post(v)] in int(u) = [pre(u), post(u)].

Forward (A, F): [10,11] in [0,13] or [0,[10,11],13]

Back edge (u, v): int(v) contains int(u).

(C, B): [3,4] in [1,8] or [1, [3, 4], 8]
```



```
Tree/forward edge (u, v): int(v) = [pre(v), post(v)] in int(u) = [pre(u), post(u)].

Forward (A, F): [10,11] in [0,13] or [0,[10,11],13]

Back edge (u, v): int(v) contains int(u).

(C, B): [3,4] in [1,8] or [1, [3, 4], 8]

Cross edge (u, v): int(v) before int(u).
```



```
Tree/forward edge (u, v): int(v) = [pre(v), post(v)] in int(u) = [pre(u), post(u)].

Forward (A, F): [10,11] in [0,13] or [0,[10,11],13]

Back edge (u, v): int(v) contains int(u).

(C, B): [3,4] in [1,8] or [1, [3, 4], 8]

Cross edge (u, v): int(v) before int(u).

(F, D): [2,5] before [10,11]
```

Back Edge: (u, v) where int(v) contains int(u).

Back Edge: (u, v) where int(v) contains int(u).

**Thm:** A graph has a cycle if and only if there is back edge.

Back Edge: (u, v) where int(v) contains int(u).

**Thm:** A graph has a cycle if and only if there is back edge.

**Proof Idea:** 

Back Edge: (u, v) where int(v) contains int(u).

**Thm:** A graph has a cycle if and only if there is back edge.

**Proof Idea:** Back edge ⇒ cycle!

Back Edge: (u, v) where int(v) contains int(u).

**Thm:** A graph has a cycle if and only if there is back edge.

**Proof Idea:** Back edge ⇒ cycle!

Edge to ancestor, plus path from ancestor is cycle.

Back Edge: (u, v) where int(v) contains int(u).

**Thm:** A graph has a cycle if and only if there is back edge.

**Proof Idea:** Back edge ⇒ cycle!

Edge to ancestor, plus path from ancestor is cycle.

Interval of first explored vertex,  $v_0$ , contains all others.

Back Edge: (u, v) where int(v) contains int(u).

**Thm:** A graph has a cycle if and only if there is back edge.

**Proof Idea:** Back edge ⇒ cycle! Edge to ancestor, plus path from ancestor is cycle.

Interval of first explored vertex,  $v_0$ , contains all others. Edge from "last" vertex,  $v_k$ , to  $v_0$  is back edge.

Back Edge: (u, v) where int(v) contains int(u).

**Thm:** A graph has a cycle if and only if there is back edge.

**Proof Idea:** Back edge ⇒ cycle! Edge to ancestor, plus path from ancestor is cycle.

Interval of first explored vertex,  $v_0$ , contains all others. Edge from "last" vertex,  $v_k$ , to  $v_0$  is back edge.

Back Edge: (u, v) where int(v) contains int(u).

**Thm:** A graph has a cycle if and only if there is back edge.

**Proof Idea:** Back edge  $\implies$  cycle! Edge to ancestor, plus path from ancestor is cycle.

Interval of first explored vertex,  $v_0$ , contains all others. Edge from "last" vertex,  $v_k$ , to  $v_0$  is back edge.

Topological Ordering:  $\pi$ , where for all edges (u, v),  $\pi(u) < \pi(v)$ .

Back Edge: (u, v) where int(v) contains int(u).

**Thm:** A graph has a cycle if and only if there is back edge.

**Proof Idea:** Back edge  $\implies$  cycle! Edge to ancestor, plus path from ancestor is cycle.

Interval of first explored vertex,  $v_0$ , contains all others. Edge from "last" vertex,  $v_k$ , to  $v_0$  is back edge.

Topological Ordering:  $\pi$ , where for all edges (u, v),  $\pi(u) < \pi(v)$ .

**Thm:** Reverse order of post number is a topological ordering.

Back Edge: (u, v) where int(v) contains int(u).

**Thm:** A graph has a cycle if and only if there is back edge.

**Proof Idea:** Back edge  $\implies$  cycle! Edge to ancestor, plus path from ancestor is cycle.

Interval of first explored vertex,  $v_0$ , contains all others. Edge from "last" vertex,  $v_k$ , to  $v_0$  is back edge.

Topological Ordering:  $\pi$ , where for all edges (u, v),  $\pi(u) < \pi(v)$ .

**Thm:** Reverse order of post number is a topological ordering.

Proof: No back edges!

Back Edge: (u, v) where int(v) contains int(u).

**Thm:** A graph has a cycle if and only if there is back edge.

**Proof Idea:** Back edge  $\implies$  cycle! Edge to ancestor, plus path from ancestor is cycle.

Interval of first explored vertex,  $v_0$ , contains all others. Edge from "last" vertex,  $v_k$ , to  $v_0$  is back edge.

Topological Ordering:  $\pi$ , where for all edges (u, v),  $\pi(u) < \pi(v)$ .

**Thm:** Reverse order of post number is a topological ordering.

Proof: No back edges! Tree/Forward edge: (u, v) :  $[pre(u), post(u)] \in [pre(v), post(v)]$   $\implies post(u) > post(v)$ . Cross edge: (u, v) : [pre(u), post(u)] > [pre(v), post(v)] $\implies post(u) > post(v)$ .

Back Edge: (u, v) where int(v) contains int(u).

 $\implies$  for every edge, (u, v), post(u) > post(v)

**Thm:** A graph has a cycle if and only if there is back edge.

**Proof Idea:** Back edge ⇒ cycle! Edge to ancestor, plus path from ancestor is cycle.

Interval of first explored vertex,  $v_0$ , contains all others. Edge from "last" vertex,  $v_k$ , to  $v_0$  is back edge.

Topological Ordering:  $\pi$ , where for all edges (u, v),  $\pi(u) < \pi(v)$ .

**Thm:** Reverse order of post number is a topological ordering.

Proof: No back edges! Tree/Forward edge: (u, v):  $[pre(u), post(u)] \in [pre(v), post(v)]$   $\implies post(u) > post(v)$ . Cross edge: (u, v): [pre(u), post(u)] > [pre(v), post(v)]  $\implies post(u) > post(v)$ .

Back Edge: (u, v) where int(v) contains int(u).

**Thm:** A graph has a cycle if and only if there is back edge.

**Proof Idea:** Back edge ⇒ cycle! Edge to ancestor, plus path from ancestor is cycle.

Interval of first explored vertex,  $v_0$ , contains all others. Edge from "last" vertex,  $v_k$ , to  $v_0$  is back edge.

Topological Ordering:  $\pi$ , where for all edges (u, v),  $\pi(u) < \pi(v)$ .

**Thm:** Reverse order of post number is a topological ordering.

Proof: No back edges! Tree/Forward edge: (u, v):  $[pre(u), post(u)] \in [pre(v), post(v)]$   $\implies post(u) > post(v)$ . Cross edge: (u, v): [pre(u), post(u)] > [pre(v), post(v)] $\implies post(u) > post(v)$ .

 $\implies$  for every edge, (u, v), post(u) > post(v)

# Topological Sort Example.



## Topological Sort Example.



A linear order:

## Topological Sort Example.



A linear order:

A,E,F,B,G,D,C

# Topological Sort Example.



A linear order:

A,E,F,B,G,D,C

In DFS: When is A popped off stack?

# Topological Sort Example.



A linear order:

A, E, F, B, G, D, C

In DFS: When is *A* popped off stack? plus Induction.

# Topological Sort Example.



A linear order:

In DFS: When is A popped off stack?

plus Induction.  $\implies$  Reverse order of post numbering is topological ordering.

# Topological Sort: DFS

Last post order should...

- (A) be first in linearization!
- (B) be last in linearization!

# Topological Sort: DFS

Last post order should...

- (A) be first in linearization!
- (B) be last in linearization!
- (A). First!

Two nodes are connected...

Two nodes are connected...when?

Two nodes are connected...when? When there is a path from u to v?

Two nodes are connected...when?

When there is a path from u to v?

When there is a path from v to u?

Two nodes are connected...when? When there is a path from u to v? When there is a path from v to u? Both!

Two nodes are connected...when?

When there is a path from u to v? When there is a path from v to u?

Both!

Nodes *u* and *v* are **strongly connected** 

Two nodes are connected...when?

When there is a path from u to v? When there is a path from v to u?

Both!

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* 

Two nodes are connected...when?

When there is a path from u to v? When there is a path from v to u?

Both!

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* and a path from *v* to *u*.

Two nodes are connected...when?

When there is a path from u to v? When there is a path from v to u?

Both!

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* **and** a path from *v* to *u*.

Note: Nodes are strongly connected to themselves.

Two nodes are connected...when?

When there is a path from u to v? When there is a path from v to u?

Both!

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* **and** a path from *v* to *u*.

Note: Nodes are strongly connected to themselves.

Path with zero edges in both directions!

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* and a path from *v* to *u*.

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* and a path from *v* to *u*.

Remember: Nodes are strongly connected to themselves.

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* and a path from *v* to *u*.

Remember: Nodes are strongly connected to themselves.

True/False?

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* and a path from *v* to *u*.

Remember: Nodes are strongly connected to themselves.

True/False?

If u is strongly connected to v and v is strongly connected to  $w \implies u$  connected to w.

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* and a path from *v* to *u*.

Remember: Nodes are strongly connected to themselves.

True/False?

If u is strongly connected to v and v is strongly connected to  $w \implies u$  connected to w.

True!

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* and a path from *v* to *u*.

Remember: Nodes are strongly connected to themselves.

True/False?

If u is strongly connected to v and v is strongly connected to  $w \implies u$  connected to w.

#### True!

path from u (through v) to w and path from w (through v) to u!

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* and a path from *v* to *u*.

Remember: Nodes are strongly connected to themselves.

True/False?

If u is strongly connected to v and v is strongly connected to  $w \implies u$  connected to w.

True!

path from u (through v) to w and path from w (through v) to u!

Transitive: u strongly connected to v strongly connected to w

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* and a path from *v* to *u*.

Remember: Nodes are strongly connected to themselves.

True/False?

If u is strongly connected to v and v is strongly connected to  $w \implies u$  connected to w.

True!

path from u (through v) to w and path from w (through v) to u!

Transitive: u strongly connected to v strongly connected to  $w \implies u$  connected to w.

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* and a path from *v* to *u*.

Remember: Nodes are strongly connected to themselves.

True/False?

If u is strongly connected to v and v is strongly connected to  $w \implies u$  connected to w.

#### True!

path from u (through v) to w and path from w (through v) to u!

Transitive: u strongly connected to v strongly connected to  $w \Rightarrow u$  connected to w.

Relation  $\implies$  a partition into equivalence classes.

Nodes *u* and *v* are **strongly connected** if there is a path from *u* to *v* and a path from *v* to *u*.

Remember: Nodes are strongly connected to themselves.

True/False?

If u is strongly connected to v and v is strongly connected to  $w \implies u$  connected to w.

True!

path from u (through v) to w and path from w (through v) to u!

Transitive: u strongly connected to v strongly connected to  $w \Rightarrow u$  connected to w.

Relation  $\implies$  a partition into equivalence classes.

Strongly connected components: sets of nodes which are strongly connected.









Collapsing strongly connected components (SCCs).. ..yields a DAG!



Collapsing strongly connected components (SCCs).. ..yields a DAG!

Why?



Collapsing strongly connected components (SCCs).. .. yields a DAG!

#### Why?

..any cycle collapses nodes into a single SCC.

**Property:** Every directed graph is a DAG of strongly connected components.



**Property:** Every directed graph is a DAG of strongly connected components.



Finding the strongly connected components?

**Property:** Every directed graph is a DAG of strongly connected components.



Finding the strongly connected components?

**Property: explore**(u) visits all nodes reachable from u.

**Property:** Every directed graph is a DAG of strongly connected components.



Finding the strongly connected components?

**Property:** explore(u) visits all nodes reachable from u.

Algorithm:

1. Run explore on node in sink component.

**Property:** Every directed graph is a DAG of strongly connected components.



Finding the strongly connected components?

**Property:** explore(u) visits all nodes reachable from u.

#### Algorithm:

1. Run explore on node in sink component. get all nodes in sink.

# Dag of SCCs

**Property:** Every directed graph is a DAG of strongly connected components.



Finding the strongly connected components?

**Property: explore**(u) visits all nodes reachable from u.

#### Algorithm:

- Run explore on node in sink component. qet all nodes in sink.
- 2. Output visited nodes.

# Dag of SCCs

**Property:** Every directed graph is a DAG of strongly connected components.



Finding the strongly connected components?

**Property:** explore(u) visits all nodes reachable from u.

#### Algorithm:

- Run explore on node in sink component. get all nodes in sink.
- 2. Output visited nodes.
- Repeat.

# Dag of SCCs

**Property:** Every directed graph is a DAG of strongly connected components.



Finding the strongly connected components?

**Property:** explore(u) visits all nodes reachable from u.

#### Algorithm:

- Run explore on node in sink component. get all nodes in sink.
- 2. Output visited nodes.
- 3. Repeat.

How do we find a node in the sink component?

Finding a source.

**Property:** The node with the highest post order number is in a source component.

Finding a source.

**Property:** The node with the highest post order number is in a source component.









**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.



Highest post# in C bigger than any in C'
not true every post# in C greater than any in C'





**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'. **Proof:** 

If a node v in C' is explored first.



**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'. **Proof:** 

If a node v in C' is explored first. explore(v) gets to all of C'and none of C! So every node in C explored after every node in C'.



**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'. **Proof:** 

If a node v in C' is explored first.

explore(v) gets to all of C' and none of C!

So every node in C explored after every node in C'.

 $\equiv$  every post # in C larger than every post # in C'.



**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'. **Proof:** 

If a node v in C' is explored first.

explore(v) gets to all of C' and none of C!

So every node in C explored after every node in C'.

 $\equiv$  every post # in C larger than every post # in C'.

If a node *u* in *C* is explored first



**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'. **Proof:** 

If a node v in C' is explored first.

explore(v) gets to all of C' and none of C!

So every node in C explored after every node in C'.

 $\equiv$  every post # in C larger than every post # in C'.

If a node u in C is explored first All of C and C' will be explored before returning



**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'. **Proof:** 

If a node v in C' is explored first.

explore(v) gets to all of C' and none of C!

So every node in C explored after every node in C'.

 $\equiv$  every post # in C larger than every post # in C'.

If a node u in C is explored first

All of C and C' will be explored before returning from **explore**(u)



**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'. **Proof:** 

If a node v in C' is explored first.

explore(v) gets to all of C' and none of C!

So every node in C explored after every node in C'.

 $\equiv$  every post # in C larger than every post # in C'.

If a node *u* in *C* is explored first

All of C and C' will be explored before returning from **explore**(u)

So u has higher post number than any node in C'.



**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'. **Proof:** 

If a node v in C' is explored first.

explore(v) gets to all of C' and none of C!

So every node in C explored after every node in C'.

 $\equiv$  every post # in C larger than every post # in C'.

If a node *u* in *C* is explored first

All of C and C' will be explored before returning from **explore**(u)

So u has higher post number than any node in C'.



**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'. **Proof:** 

If a node v in C' is explored first.

explore(v) gets to all of C' and none of C!

So every node in C explored after every node in C'.

 $\equiv$  every post # in C larger than every post # in C'.

If a node *u* in *C* is explored first

All of C and C' will be explored before returning from **explore**(u)

So u has higher post number than any node in C'.

Implies highest post numbered node is in source component.



**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'. **Proof:** 

If a node v in C' is explored first.

explore(v) gets to all of C' and none of C!

So every node in C explored after every node in C'.

 $\equiv$  every post # in C larger than every post # in C'.

If a node *u* in *C* is explored first

All of C and C' will be explored before returning from **explore**(u)

So u has higher post number than any node in C'.

Implies highest post numbered node is in source component.

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Does every node in C have a higher post order number than every node in C'?

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Does every node in C have a higher post order number than every node in C'?

(A) Yes!

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Does every node in C have a higher post order number than every node in C'?

(A) Yes! (B) Not Necessarily.

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Does every node in C have a higher post order number than every node in C'?

(A) Yes! (B) Not Necessarily. ... (B)

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Does every node in C have a higher post order number than every node in C'?

(A) Yes! (B) Not Necessarily. ... (B)



**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Does every node in C have a higher post order number than every node in C'?

(A) Yes! (B) Not Necessarily. ... (B)



Explore(a)

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Does every node in C have a higher post order number than every node in C'?

(A) Yes! (B) Not Necessarily. ... (B)



Explore(a)  $\Longrightarrow$ 

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Does every node in C have a higher post order number than every node in C'?

(A) Yes! (B) Not Necessarily. ... (B)



 $Explore(a) \Longrightarrow Explore(b)$ 

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Does every node in C have a higher post order number than every node in C'?

(A) Yes! (B) Not Necessarily. ... (B)



 $Explore(a) \Longrightarrow Explore(b) \Longrightarrow Explore(c)$ 

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Does every node in C have a higher post order number than every node in C'?

(A) Yes! (B) Not Necessarily. ... (B)



$$\begin{array}{c} \mathsf{Explore}(\mathsf{a}) \Longrightarrow \; \mathsf{Explore}(\mathsf{b}) \implies \mathsf{Explore}\; (\mathsf{c}) \\ \Longrightarrow \; \mathsf{Return}\; \mathsf{from}\; (\mathsf{c}) \end{array}$$

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Does every node in C have a higher post order number than every node in C'?

(A) Yes! (B) Not Necessarily. ... (B)



 $\begin{array}{c} \mathsf{Explore}(\mathsf{a}) \Longrightarrow \; \mathsf{Explore}(\mathsf{b}) \implies \mathsf{Explore}\left(\mathsf{c}\right) \\ \Longrightarrow \; \mathsf{Return} \; \mathsf{from}\left(\mathsf{c}\right) \implies \mathsf{Explore}(\mathsf{d}) \end{array}$ 

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Does every node in C have a higher post order number than every node in C'?

(A) Yes! (B) Not Necessarily. ... (B)



$$\begin{array}{c} \mathsf{Explore}(\mathsf{a}) \Longrightarrow \; \mathsf{Explore}(\mathsf{b}) \implies \mathsf{Explore}\;(\mathsf{c}) \\ \Longrightarrow \; \mathsf{Return}\; \mathsf{from}\;(\mathsf{c}) \implies \mathsf{Explore}(\mathsf{d}) \implies \mathsf{Return}\; \mathsf{from}\;(\mathsf{d}) \dots \end{array}$$

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Does every node in C have a higher post order number than every node in C'?

(A) Yes! (B) Not Necessarily. ... (B)



$$\begin{array}{ccc} \mathsf{Explore}(\mathsf{a}) \Longrightarrow & \mathsf{Explore}(\mathsf{b}) \implies \mathsf{Explore}\left(\mathsf{c}\right) \\ \Longrightarrow & \mathsf{Return} \; \mathsf{from} \; (\mathsf{c}) \implies \mathsf{Explore}(\mathsf{d}) \implies \mathsf{Return} \; \mathsf{from} \; (\mathsf{d}) \; ... \end{array}$$

(c) has lower post order number than (d).

**Property:** The highest post numbered node is in source component.

**Property:** The highest post numbered node is in source component.

#### Algorithm:

- 1. Run explore on node in sink component.
- 2. Output visited nodes.
- 3. Repeat.

**Property:** The highest post numbered node is in source component.

#### Algorithm:

- 1. Run explore on node in sink component.
- 2. Output visited nodes.
- 3. Repeat.

Uh...oh.

**Property:** The highest post numbered node is in source component.

#### Algorithm:

- Run explore on node in sink component.
- 2. Output visited nodes.
- 3. Repeat.

Uh...oh.

How should we fix this?

**Property:** The highest post numbered node is in source component.

**Property:** The highest post numbered node is in source component.

Find node in sink component?

**Property:** The highest post numbered node is in source component.

Find node in sink component?

Reverse edges!

**Property:** The highest post numbered node is in source component.

Find node in sink component?

Reverse edges! GR

**Property:** The highest post numbered node is in source component.

Find node in sink component?

Reverse edges! GR

Source component in  $G^R$  is sink component in G.

**Property:** The highest post numbered node is in source component.

Find node in sink component?

Reverse edges! *G*<sup>R</sup>

Source component in  $G^R$  is sink component in G.

Algorithm:

**Property:** The highest post numbered node is in source component.

Find node in sink component?

Reverse edges! GR

Source component in  $G^R$  is sink component in G.

Algorithm:

1. DFS on  $G^R$  to compute  $post(\cdot)$ 

**Property:** The highest post numbered node is in source component.

Find node in sink component?

Reverse edges! GR

Source component in  $G^R$  is sink component in G.

#### Algorithm:

1. DFS on  $G^R$  to compute  $post(\cdot)$ Highest post # vertex,v, in  $G^R$  in sink comp. of G.

**Property:** The highest post numbered node is in source component.

Find node in sink component?

Reverse edges! GR

Source component in  $G^R$  is sink component in G.

#### Algorithm:

- DFS on G<sup>R</sup> to compute post(·)
   Highest post # vertex,v, in G<sup>R</sup> in sink comp. of G.
- 2. Output nodes visited in: explore(v)

**Property:** The highest post numbered node is in source component.

Find node in sink component?

Reverse edges! *G*<sup>R</sup>

Source component in  $G^R$  is sink component in G.

#### Algorithm:

- DFS on G<sup>R</sup> to compute post(·)
   Highest post # vertex,v, in G<sup>R</sup> in sink comp. of G.
- 2. Output nodes visited in: explore(*v*) Then what?

**Property:** The highest post numbered node is in source component.

Find node in sink component?

Reverse edges! *G*<sup>R</sup>

Source component in  $G^R$  is sink component in G.

#### Algorithm:

- DFS on G<sup>R</sup> to compute post(·)
   Highest post # vertex,v, in G<sup>R</sup> in sink comp. of G.
- 2. Output nodes visited in: explore(v)

Then what?

Find another node in sink of unvisited part of G!

**Property:** The highest post numbered node is in source component.

Find node in sink component?

Reverse edges! G<sup>R</sup>

Source component in  $G^R$  is sink component in G.

#### Algorithm:

- DFS on G<sup>R</sup> to compute post(·)
   Highest post # vertex,v, in G<sup>R</sup> in sink comp. of G.
- 2. Output nodes visited in: explore(v)

Then what?

Find another node in sink of unvisited part of G!

Recompute DFS in  $G^R$ ...

**Property:** The highest post numbered node is in source component.

Find node in sink component?

Reverse edges! *G*<sup>R</sup>

Source component in  $G^R$  is sink component in G.

#### Algorithm:

- DFS on G<sup>R</sup> to compute post(·)
   Highest post # vertex,v, in G<sup>R</sup> in sink comp. of G.
- 2. Output nodes visited in: explore(v)

Then what?

Find another node in sink of unvisited part of G!

Recompute DFS in *G*<sup>R</sup>...or...

**Property:** The highest post numbered node is in source component.

Find node in sink component?

Reverse edges! *G*<sup>R</sup>

Source component in  $G^R$  is sink component in G.

#### Algorithm:

- DFS on G<sup>R</sup> to compute post(·)
   Highest post # vertex,v, in G<sup>R</sup> in sink comp. of G.
- 2. Output nodes visited in: explore(v)

Then what?

Find another node in sink of unvisited part of G!

Recompute DFS in  $G^R$ ...or...

.... use post(·) again!















**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

Removes sink component of G.

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

Removes sink component of G.

 $\implies$  removes source component of  $G^R$ .

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

Removes sink component of G.

 $\implies$  removes source component of  $G^R$ .

⇒ highest rem. post # vertex, v,

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

Removes sink component of G.

 $\implies$  removes source component of  $G^R$ .

 $\implies$  highest rem. post # vertex,v, in  $G^R$  in component with no in-edges

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

Removes sink component of G.

 $\implies$  removes source component of  $G^R$ .

 $\implies$  highest rem. post # vertex,v, in  $G^R$  in component with no in-edges

 $\implies$  in source component of  $G^R$ 

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

Removes sink component of G.

 $\implies$  removes source component of  $G^R$ .

 $\implies$  highest rem. post # vertex,v, in  $G^R$  in component with no in-edges

 $\implies$  in source component of  $G^R$ 

 $\implies v$  in sink component of G!

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

Removes sink component of G.

 $\implies$  removes source component of  $G^R$ .

 $\implies$  highest rem. post # vertex,v, in  $G^R$  in component with no in-edges

 $\implies$  in source component of  $G^R$ 

 $\implies v$  in sink component of G!

SCC Algorithm:

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

Removes sink component of G.

 $\implies$  removes source component of  $G^R$ .

 $\implies$  highest rem. post # vertex,v, in  $G^R$  in component with no in-edges

 $\implies$  in source component of  $G^R$ 

 $\implies v$  in sink component of G!

SCC Algorithm:

1. DFS of *G*<sup>R</sup>.

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

Removes sink component of G.

 $\implies$  removes source component of  $G^R$ .

 $\implies$  highest rem. post # vertex,v, in  $G^R$  in component with no in-edges

 $\implies$  in source component of  $G^R$ 

 $\implies v$  in sink component of G!

#### SCC Algorithm:

- 1. DFS of  $G^R$ .
- 2. Run undirected components algorithm on G

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

Removes sink component of G.

- $\implies$  removes source component of  $G^R$ .
- $\implies$  highest rem. post # vertex,v, in  $G^R$  in component with no in-edges
- $\implies$  in source component of  $G^R$
- $\implies v$  in sink component of G!

### SCC Algorithm:

- 1. DFS of  $G^R$ .
- 2. Run undirected components algorithm on G
- in reverse post order number from step 1.

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

Removes sink component of G.

- $\implies$  removes source component of  $G^R$ .
- $\implies$  highest rem. post # vertex,v, in  $G^R$  in component with no in-edges
- $\implies$  in source component of  $G^R$
- $\implies v$  in sink component of G!

### SCC Algorithm:

- 1. DFS of  $G^R$ .
- 2. Run undirected components algorithm on G
- in reverse post order number from step 1.

O(|V| + |E|) time ...

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

Removes sink component of G.

- $\implies$  removes source component of  $G^R$ .
- $\implies$  highest rem. post # vertex,v, in  $G^R$  in component with no in-edges
- $\implies$  in source component of  $G^R$
- $\implies v$  in sink component of G!

### SCC Algorithm:

- 1. DFS of  $G^R$ .
- 2. Run undirected components algorithm on  ${\it G}$
- in reverse post order number from step 1.

$$O(|V| + |E|)$$
 time ...

Compute  $G^R$  in linear time?..

**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

First explore of *G*:

Removes sink component of G.

- $\implies$  removes source component of  $G^R$ .
- $\implies$  highest rem. post # vertex,v, in  $G^R$  in component with no in-edges
- $\implies$  in source component of  $G^R$
- $\implies v$  in sink component of G!

### SCC Algorithm:

- 1. DFS of  $G^R$ .
- 2. Run undirected components algorithm on G
- in reverse post order number from step 1.

$$O(|V| + |E|)$$
 time ...

Compute  $G^R$  in linear time?.. exercise.











**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.



**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.



**Property++:** If C and C' are SCCs with an edge from C to C', highest post# of a node in C larger than post# of any node in C'.

Quick Review: DFS so far  $\equiv$ 

#### Quick Review:

DFS so far  $\equiv$  how I learned to love the stack. pre/post = time on stack.

Topological Ordering:

Inverse post ordering  $\equiv$  topological ordering.

Remove source, repeat.

#### Quick Review:

DFS so far  $\equiv$  how I learned to love the stack.

pre/post = time on stack.

Topological Ordering:

Inverse post ordering  $\equiv$  topological ordering.

Remove source, repeat.

Strongly Connected Components: directed graphs.

Strong Connectivity for u and v.

On a cycle together.

Easy: O(|V||E|) algorithm.

Linear time algorithm!

#### Quick Review:

DFS so far  $\equiv$  how I learned to love the stack.

pre/post = time on stack.

Topological Ordering:

Inverse post ordering  $\equiv$  topological ordering.

Remove source, repeat.

Strongly Connected Components: directed graphs.

Strong Connectivity for u and v.

On a cycle together.

Easy: O(|V||E|) algorithm.

Linear time algorithm!

Observation: Highest post in "source component".

Find vertex in sink component.

Explore.

Repeat.