PRÁCTICA DE AULA 4

Propiedades Coligativas de las Soluciones

1. Calcule la presión de vapor de una disolución preparada al disolver 218 g de glucosa en 460 mL de agua a 30°C. ¿Cuál es la disminución en la presión de vapor? La presión de vapor del agua pura a 30°C está dada en la tabla 2 al reverso de la práctica. Suponga que la densidad de la disolución es de 1.00 g/mL.

R. 1.4 mmHg

2. Calcule la presión de vapor de una disolución preparada al disolver 82.4 g de urea (masa molar = 60.06 g/mol) en 212 mL de agua a 35° C (δ_{agua} a 35° C = 994.08 kg/m³). ¿Cuál es la disminución de la presión de vapor?

R. 4.42 mmHg

3. El etilenglicol (EG), CH₂(OH)CH₂(OH), es un anticongelante comúnmente utilizado en automóviles. Es soluble en agua y bastante no volátil (p. eb. 197°C). Calcule el punto de congelación de una disolución que contenga 651 g de esta sustancia en 2505 g de agua. ¿Debe mantener esta sustancia en el radiador de su automóvil durante el verano? La masa molar del etilenglicol es de 62.01 g

$R = -7.79 \, ^{\circ}C$

- **4.** Calcule el punto de ebullición y el punto de congelación de una disolución que contenga 478 g de etilenglicol en 3202 g de agua.
- **5.** Calcule el punto de congelación y el punto de ebullición de una disolución que contenga 958 gramos de etilenglicol con 1250 g de acido acético
- **6.** La presión osmótica promedio del agua de mar, es aproximadamente de 30.0 atm a 25°C. Calcule la concentración molar de una disolución acuosa de sacarosa (C₁₂H₂₂O₁₁) que es isotónica con el agua de mar.

R = 1.23 M

- 7. ¿Cuál es la presión osmótica (en atm) de una disolución de urea 0.884 M a 16°C?
- 8. Una muestra de 7.85 g de un compuesto con la fórmula empírica C₅H₄ se disuelve en 301 g de benceno. El punto de congelación de la disolución es de 1.05°C por debajo del punto de congelación del benceno puro. ¿Cuál será la masa molar y la fórmula molecular de este compuesto?

R. 127 g/mol; C₁₀H₈

9. ¿Cuántos litros de CH₂(OH)CH₂(OH) (anticongelante etilenglicol) se deben agregar al radiador de un automóvil que contiene 6.50 L de agua, si la temperatura invernal más baja en la región es de -20°C? Calcule el punto de ebullición de esta mezcla agua-etilenglicol. (La densidad del etilenglicol es de 1.11 g/mL.)

Tabla 1. Constantes del punto de congelación y del punto de ebullición

	Constantes molales de elevación del punto de ebullición y de disminución del punto de congelación de varios líquidos comunes			
Disolvente	Punto de congelación normal (°C)*	<i>K</i> _f (°C/ <i>m</i>)	Punto de ebullición normal (°C)*	<i>K</i> _b (°C/ <i>m</i>)
Agua	0	1.86	100	0.52
Benceno	5.5	5.12	80.1	2.53
Etanol	-117.3	1.99	78.4	1.22
Ácido acético	16.6	3.90	117.9	2.93
Ciclohexano	6.6	20.0	80.7	2.79

^{*} Medido a 1 atm.

Tabla 2. Presión de vapor de agua

Presión de vapor de agua a				
diferentes temperaturas				
Town on atuna	Presión de			
Temperatura $({}^{\circ}C)$	vapor de agua			
(C)	(mmHg)			
0	4.58			
5	6.54			
10	9.21			
15	12.79			
20	17.54			
25	23.76			
30	31.82			
35	42.18			
40	55.32			
45	71.88			
50	92.51			
55	118.04			
60	149.38			
65	187.54			
70	233.70			
75	289.10			
80	355.10			
85	433.60			
90	525.76			
95	633.90			
100	760.00			