MATH FOR ECON I

Problem Set 3*

Exercise 1

Let (Y, d) be a metric space.¹

- (a) True or False: If Y is bounded, $(2^Y \setminus \{\emptyset\}, d_H)$ is a semimetric space.
- (b) Give an example of Y s.t. $(2^Y \setminus \{\emptyset\}, d_H)$ is not a metric space.
- (c) Let $\mathbf{c}(Y)$ be the class of all nonempty compact subset of Y. Show that $(\mathbf{c}(Y), d_H)$ is a metric space.

Exercise 2

Prove that if Y is complete, then so is $(\mathbf{c}(Y), d_H)$. (Hint. Use Cantor Intersection Theorem)

Exercise 3

Let X and Y be two metric spaces. Prove that the correspondence $\Gamma: X \rightrightarrows Y$ satisfies the closed graph property if and only if $Gr(\Gamma)$ is closed in the product space $X \times Y$.

Exercise 4

Let T be a compact metric space and $\mathcal{F} \subset C(T)$. Define $\Gamma : T \rightrightarrows \mathbb{R}$ by $\Gamma(t) := \bigcup \{f(t) : f \in \mathcal{F}\}$. Prove that if \mathcal{F} is compact in $(C(T), d_{\infty})$, then Γ is upper hemicontinuous and compact valued.

^{*}Due by October Wed 30th, 7pm.

¹For all subset $A, B \subset Y$, define $w(A, B) := \sup\{d(z, B) : z \in A\}$ and the function $d_H : 2^Y \setminus \{\emptyset\} \times 2^Y \setminus \{\emptyset\} \to \overline{\mathbb{R}}$ with $d_H(A, B) := \max\{w(A, B), w(B, A)\}$.

Exercise 5

Prove that a subset S of a linear space X is a basis for X iff S is linearly independent and X = span(S).

Exercise 6

Let X and Y be linear spaces. Show that $\dim(X \times Y) = \dim(X) + \dim(Y)$.

Exercise 7

Let S be a non-empty subset of a linear space X. Show that

$$aff(S) = \bigcap \{Y \subset X | Y \text{ is an affine manifold of } X \text{ and } S \subseteq Y\}$$

Exercise 8

Prove that if $f: \mathbb{R}^n \to \mathbb{R}^m$ is linear and onto, then the image of any open set is open.

²Clearly, $(X \times Y, +, \cdot)$ is a linear space where the operation of sum and scalar multiplication are inherited from those in (X, \oplus_X, \odot_X) and (Y, \oplus_Y, \odot_Y) . E.g. $(x, y) + (x', y') := (x \oplus_X x', y \oplus_Y y')$, and $\lambda \cdot (x, y) := (\lambda \odot_X x, \lambda \odot_Y y)$.