Санкт-Петербургский политехнический университет Петра Великого

Физико-механический иститут

Кафедра «Прикладная математика»

Отчёт по лабораторной работе №1 по дисциплине «Анализ данных с интервальной неопределённостью»

Выполнил студент: Мишутин Дмитрий Валерьевич группа: 5040102/20201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2024 г.

Содержание

1	По	становка задачи	2
2	Tec 2.1 2.2 2.3 2.4 2.5	Ория Индекс Жаккара	2 2 2 3 3
3	Pea	еализация 4	
4	Pea	езультаты	
5	Вы	воды	9
6	Ли	атура 9	
7	Пр	иложения	9
C	¦пи(сок иллюстраций	
	1	Исходная интервальная выборка $X_1 \dots \dots \dots$	4
	2 3	Исходная интервальная выборка X_2	5 5
	4	Частота пересечений подынтервалов с интервалами выбор- ки X_2	6
	5	Зависимость JC от R	7
	6 7	Зависимость k_0 от R	7 8
	8	Зависимость T от R	8

1 Постановка задачи

Имеется две вещественные выборки. Необходимо на их основе построить две интервальные выборки X_1, X_2 . Рассматриваются 4 меры совместности интервальных данных: индекс Жаккара, частота моды, оптимальный корректирующий множитель в методе центра неопределённости, мультипликативная мера. Каждую выборку необходимо оценить в отдельности с использованием каждой меры совместности. После, для каждой меры найти такие значения R, которые были бы оптимальным для выборки $X = X_1 \cup RX_2$.

2 Теория

2.1 Индекс Жаккара

Индекс Жаккара (далее обозначим через JC) определяет степень совместности двух интервалов x, y.

$$JC(x,y) = \frac{wid(x \wedge y)}{wid(x \vee y)} \tag{1}$$

Здесь \land , \lor представляют собой операции взятия минимума и максимума по включению в полной арифметике Каухера. Формула 1 легко может быть обобщена на случай интервальной выборки $X = \{x_i\}_{i=1}^n$.

$$JC(X) = \frac{wid(\wedge_{i=1,n}x_i)}{wid(\vee_{i=1,n}x_i)}$$
(2)

2.2 Частота моды

Модой интервальной выборки называют совокупность интервалов пересечения наибольших совместных подвыборок рассматриваемой выборки. Наибольшая длина совместных подвыборок данной выборки называется частотой моды. Исследование частоты моды (обозначим далее через $max\mu$) имеет смысл только для несовместных выборок.

2.3 Оптимальный корректирующий множитель в методе центра неопределённости

Для обеспечения совместности выборки интервальных измерений применяется метод "центра неопределенности". Если выборка измерений несов-

местна, то путем одновременного увеличения величины неопределенности всех измерений в выражении можно всегда добиться того, чтобы выборка стала совместной.

$$\overline{x_i'} = \overline{x_i} + k * (\overline{x_i} - x_i) \tag{3}$$

$$x_{i}^{'} = \underline{x_{i}} - k * (\overline{x_{i}} - \underline{x_{i}}) \tag{4}$$

Оптимальным (k_0) называется такое значение k, при котором непустое пересечение интервальной выборки является точкой.

2.4 Мультипликативная мера

Мультипликативная мера T учитывает степень совместности по нескольким функционалам качества одновременно, а ее значения находятся в интервале [0,1]:

$$T = \prod_{i=1}^{k} T_i \tag{5}$$

В качестве множителей берем перечисленные выше меры, нормированные в [0,1]:

$$T_1 = \frac{1}{2} * (1 + JC) \tag{6}$$

$$T_2 = \frac{max\mu}{n} \tag{7}$$

$$T_3 = \frac{1}{1 + k_0} \tag{8}$$

2.5 Нахождение оптимального значения R

Для поиска оптимальных значений R разумно найти первое приближение. Возьмем за такое приближение внешнюю оценку R_{out} .

$$\underline{R_{out}} = \frac{\min_{i=1,n} \underline{x_{1i}}}{\max_{i=1,n} \overline{x_{2i}}} \tag{9}$$

$$\overline{R_{out}} = \frac{\max_{i=1,n} \overline{x_{1i}}}{\min_{i=1,n} x_{2i}} \tag{10}$$

Будем исследовать поведение R в области, заданной R_{out} .

3 Реализация

Из языка Python 3.12.2 были использованы следующие модули:

- "питру" генерация множества чисел;
- "matplotlib.pyplot" построение и отображение графиков;
- "typing", "annotations" строгая типизация с аннотациями;
- "os" взаимодействие с ОС.

4 Результаты

Данные были взяты из файлов $+0_5V/+0_5V_13.txt$ и $-0_5V/-0_5V_13.txt$. С коррекцией при помощи вспомогательных данных из файла $ZeroLine/ZeroLine_13.txt$. Размер выборок: 1024. Интервальная выборка на основе изначальных строится по формулам:

$$x = [x_0 - \varepsilon, x_0 + \varepsilon], \varepsilon = 2^{-14}$$
(11)

где x_0 - точечное значение.

Сначала посмотрим на исходные интервальные выборки X_1, X_2 .

Рис. 1: Исходная интервальная выборка X_1

Рис. 2: Исходная интервальная выборка X_2

Также построим графики частоты пересечений подынтервалов для исходных выборок.

Рис. 3: Частота пересечений подынтервалов с интервалами выборки X_1

Рис. 4: Частота пересечений подынтервалов с интервалами выборки X_2

Проанализируем выборки.

Индекс Жаккара: $JC(X_1) = -0.9909, JC(X_2) = -0.9911.$

Частота моды: $max\mu(X_1) = 29, max\mu(X_2) = 26.$

Оптимальный корректирующий множитель: $k_0(X_1)=109.375, k_0(X_2)=111.666.$

Мультипликативная мера: $T(X_1) = 1.1623 \underline{e^{-6}}, T(X_2) = 1.0001 e^{-6}.$

Верхняя и нижняя границы $\underline{R} = -1.0082, \overline{R} = -1.0065.$

Найдем оптимальные R (для наглядности на графиках изображёны более широкии интервалы значений R).

Рис. 5: Зависимость JC от R

Оптимальное значение R относительно JC равно $R_{opt} = [-1.0069, -1.0065]$ при J(X) = -0.9911.

Рис. 6: Зависимость k_0 от R

Оптимальное значение R относительно k_0 равно $R_{opt} = [-1.0069, -1.0067]$ при $k_0(X) = 111.666$.

Рис. 7: Зависимость частоты моды от R

Оптимальное значение R относительно $\max \mu$ равно $R_{opt} = [[-1.009, -1.0088], [-1.0078, -1.0088], [-1$

Рис. 8: Зависимость T от R

Оптимальное значение R относительно T равно $R_{opt} = -1.0077$ при $T(X) = 1.0578e^{-6}$.

Итоговая оценка совместности: [-1.0077, [-1.0082, -1.0065]].

5 Выводы

Из полученных результатов можно заметить следующее. Из теории следует, что после совмещения двух выборок описанным образом нельзя получить более совместную выборку, чем худшая из двух изначальных. Это означает, что

$$J(X) \le \min(JC(X_1), JC(X_2)) \tag{12}$$

$$k_0(X) \ge \max(k_0(X_1), k_0(X_2))$$
 (13)

$$\max \mu(X) \le \max \mu(X_1) + \max \mu(X_2) \tag{14}$$

На практике во всех трех случаев удалось достичь равенства. Также можно заметить, что данное правило не распространяется на мультипликативную меру. Более того, только для мультипликативной меры R_{opt} задается точным числом, а не интервалом/мульти-интервалом.

6 Литература

- Баженов А.Н. «Интервальный анализ. Основы теории и учебные примеры: учебное пособие»;
- Баженов А.Н. «Естественнонаучные и технические применения интервального анализа: учебное пособие»;
- Баженов А.Н. Репозиторий "Students" на GitHub;

7 Приложения

Исходники лабораторной работы выложены на GitHub.