]	
}			
Ej. 1	Ej.2		NOTA

Universidad Autónoma de Madrid

Facultad de Ciencias. DEPARTAMENTO DE MATEMÁTICAS.

Ejercicio 1.

Sea S el catenoide de parametrización $\mathbb{X}(u,v) = (\cosh v \cos u, \cosh v \sin u, v)$, con $(u,v) \in (0,2\pi) \times \mathbb{R}$. Se pide:

- a) Calcular la primera forma fundamental.
- b) Calcular la segunda forma fundamental.
- c) Calcular las curvaturas principales.
- d) Determinar las lineas de curvatura.
- e) Calcular la curvatura gaussiana.
- f) Determinar las curvas asintóticas.

Ejercicio 2.

Decidir razonadamente (es decir, indicando una demostración o dando un contraejemplo) si los siguientes enunciados son verdaderos o falsos:

- a) La esfera tiene un paralelo de puntos parabólicos.
- b) Sea S una superficie regular. Supongamos que, en un punto $p \in S$, la curvatura gaussiana es igual a 7, mientras que la curvatura media es igual a 4. Entonces:
 - (i) Una de las curvaturas principales en p puede ser igual a 1.
 - (ii) Una de las curvaturas principales en p tiene que ser igual a 1.
- c) Cualquier curva en la esfera (birregular y parametrizada por longitud de arco) tiene curvatura normal constante.
- d) El cilindro $x^2 + y^2 = 1$ es localmente isométrico al plano z = 0.
- e) Sea $f: S_1 \to S_2$ una isometría local, $\alpha: I \to S_1$ una curva parametrizada por longitud de arco y $\beta = f \circ \alpha: I \to S_2$ la curva imagen. Entonces:
 - (i) La curva β está también parametrizada por longitud de arco.
 - (ii) Para todo $s \in I$ las curvaturas normales de α y β en s son iguales, es decir, $k_n^{\beta}(s) = k_n^{\alpha}(s)$.

 $X(u_1v) = (\cosh v \cos u, \cosh v \sin u, v)$ $X_u = \cosh v (- \sec u, \cos u, 0)$ $X_v = (\sec h v \cos u, \sec h v \sec u, 1)$ $= \cosh^2 v$ $G = \sinh^2 v + 1 = \cosh^2 v$ $N = Xu \times X_v \cdot \frac{1}{\|Xu \times Xv\|} = N = \frac{1}{\cosh v} (\cosh v \cdot \sinh v)$ $x_{uu} = -\cosh v (\cos u, \operatorname{senu}, 0)$ $x_{uv} = \operatorname{senh} v (-\operatorname{senu}, \cos u, 0)$ $x_{vv} = (\cosh v \cos u, \cosh v \operatorname{senu}, 0)$ q = 1 $W = I^{-1} \cdot II = \begin{pmatrix} \frac{1}{\cosh^2 v} & 0 \\ 0 & \frac{\Lambda}{\cosh^2 v} \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{-4}{\cosh^2 v} & 0 \\ 0 & \frac{4}{\cosh^2 v} \end{pmatrix}$ $K_1 = \frac{-1}{\cosh^2 V} \qquad K_2 = \frac{1}{\cosh^2 V}$ F = f = 0 \iff linear coordenadas son los de curvatura $\int_{0}^{\infty} de \cos t ración$ $\begin{vmatrix} v^{12} - u^{1}v^{1} & u^{12} \\ E F G \end{vmatrix} = \begin{vmatrix} v^{12} - u^{1}v^{1} & v^{12} \\ E O G \end{vmatrix} = u^{1}v^{1}(Eg - Ge) = 0 \iff u^{1} = 0$ $v^{1} = 0$ $K_{n}=0 \iff I(\alpha'(t), \alpha'(t))=0 \iff eu^{2}+2fu^{1}v^{1}+gv^{2}=0$ $-u^{12}+v^{12}=0$ (v'-u')(v'+u')u+v = constante, u-v = constante,

a) FALSO

Todos los puntos de la enfera son elipticos (K=cte.)

b) K=7 H=4

$$K = K_1 \cdot K_2 = 7$$
 $K = K_4 \cdot K_2 = 7$
 $K_2 = 7$
 $K_2 = 7$
 $K_2 = 7$
 $K_2 = 7$

 $H = \frac{K_1 + K_2}{2} = 4 \longrightarrow K_4 = 8 - K_2$

$$\Rightarrow K_1 = \begin{cases} K_1 = 1 \\ K_1 = 7 \end{cases}$$

Por la tanto tiene que ser una igual a uno. VERDADERO

c) En la esfera todas los puntos son umbrilicos y Kn=
VERDADERO

parau.

$$\chi(u_iv) = (\cos u_i \ \text{sen} \ u_i \ v)$$

$$Xu = (-senu, cosu, o)$$

$$X_V = (0, 0, 1)$$

$$E = 1$$

$$F = 0$$

$$I_{X} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\underbrace{I_{\underline{a}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}$$

ii) <u>FALSO</u>: contraejemple -> plano y el cilindro.

$$\frac{d}{du} = \left(r(u)\cos\theta, \ r(u)\sin\theta, \ z(u)\right)$$

$$\frac{d}{du} = \left(r'(u)\cos\theta, \ r'(u)\sin\theta, \ z'(u)\right)$$

$$\frac{d}{du} = \left(r'(u)\cos\theta, \ r'(u)\sin\theta, \ z'(u)\right)$$

$$\frac{d}{du} = \left(r^{(u)}\sin\theta, \ r'(u)\cos\theta, \ 0\right)$$

$$\frac{d}{du} = \left(r^{(u)}\cos\theta, \ r'(u)\cos\theta, \ 0\right)$$

$$\frac{d}{du} = \left(r^{(u)}\cos\theta, \ r'(u)\cos\theta, \ z'(u)\right)$$

$$\frac{d}{du} = \left(r^{(u$$