Digital PID

Kjartan Halvorsen

2021-07-12

Mapping of the stable region of the s-plane when discretizing the controller

Mapping of the stable region of the s-plane when discretizing the controller

Mapping of the stable region of the s-plane when discretizing the controller

Activity Which of the above mappings of the left-half plane of the s-plane corresponds to A) the bilinear transformation (Tustin's approximation), B) the forward difference approximation, C) the backward difference approximation?

Mapping of the stable region of the s-plane

Figure 8.2 Mapping of the stability region in the *s*-plane on the z-plane for the transformations (8.4), (8.5), and (8.6).

Åström and Wittenmark Computer-controlled systems

ISA form of the PID

ISA - International Society of Automation

$$F(s) = K_c \left(1 + \frac{1}{T_i s} + T_d s \right)$$

With low-pass filter for the derivative part

$$F(s) = K_c \left(1 + \frac{1}{T_i s} + \frac{T_d s}{\frac{T_d}{N} s + 1} \right), \quad N \approx 3 - 10$$

PID with derivative action only on the process variable

$$U(s) = \underbrace{\mathcal{K}_c\left(1 + rac{1}{T_i s}\right)}_{F_{Pl}(s)} E(s) - \underbrace{\mathcal{K}_c rac{T_d s}{rac{T_d s}{N} s + 1}}_{F_D} Y(s)$$

Common discretization of the PID

$$U(s) = U_P(s) + U_I(s) - U_D(s) = K_c E(s) + K_c \frac{1}{T_i s} E(s) - K_c \frac{T_d s}{\frac{T_d}{N} s + 1} Y(s)$$

Activity 1) Use the forward difference $s \approx \frac{z-1}{h}$ for the integral part, and the backward difference $s \approx \frac{z-1}{zh}$ for the derivative part. 2) Apply the inverse z-transform to obtain the controller in the form of a difference equation.

Common discretization of the PID - Solution

Proportional part

Very simple: $u_P(kh) = K_c e(kh)$

Integral part

Substitute $s=\frac{z-1}{h}$ in the transfer function $F_I(s)=\frac{K_c}{T_i}\frac{1}{s}$

$$F_{I,d}(z) = \frac{K_c}{T_i} \frac{1}{\frac{z-1}{h}} = \frac{K_c}{T_i} \frac{h}{z-1}$$

$$U_I(z) = \frac{K_c}{T_i} \frac{h}{z - 1} E(z),$$

$$U_I(z)(z-1) = \frac{K_c}{T_i} hE(z)$$
, Apply inverse z-transform

$$u_I(kh+h)-u_I(kh)=\frac{K_c}{T_i}he(kh)$$
 \Leftrightarrow $u_I(kh+h)=u_I(kh)+\frac{K_c}{T_i}he(kh)$

Common discretization of the PID - Solution

Derivative part

Substitute $s=rac{z-1}{zh}$ in the transfer function $F_D(s)=\mathcal{K}_crac{T_ds}{rac{T_d}{N}s+1}$

$$F_{D,d}(z) = K_c \frac{T_d \frac{z-1}{zh}}{\frac{T_d}{N} \cdot \frac{z-1}{zh} + 1} = K_c \frac{T_d(z-1)}{\frac{T_d}{N}(z-1) + zh} = K_c \frac{T_d(z-1)}{(\frac{T_d}{N} + h)z - \frac{T_d}{N}}$$

$$U_D(z) = K_c \frac{T_d(z-1)}{(\frac{T_d}{N} + h)z - \frac{T_d}{N}} Y(z)$$

$$\left(\left(\frac{I_d}{N}+h\right)z-\frac{I_d}{N}\right)U_D(z)=K_cT_d(z-1)Y(z),$$
 Apply the inverse z-transform $\left(\frac{T_d}{N}+h\right)u_D(kh+h)-\frac{T_d}{N}u_D(kh)=K_cT_d\left(y(kh+h)-y(kh)\right)$

The discrete PID algorithm

Calculated:
$$\alpha_1 = \frac{\frac{T_d}{N}}{\frac{T_d}{N} + h}$$
, $\alpha_2 = K_c \frac{T_d}{\frac{T_d}{N} + h}$, $\beta = K_c \frac{h}{T_i}$
Stored: $y(kh - h)$, $u_I(kh - h)$, $u_D(kh - h)$
Sample signals: $r(kh)$, $y(kh)$
 $e(kh) = r(kh) - y(kh)$
 $u_P(kh) = K_c e(kh)$
 $u_D(kh) = \alpha_1 u_D(kh - h) + \alpha_2 (y(kh) - y(kh - h))$
 $u(kh) = u_P(kh) + u_I(kh - h) - u_D(kh)$, Send to DAC
 $u_I(kh) = u_I(kh - h) + \beta e(kh)$

