Simbologia

- Ø ou {} = vazio
- \exists = existe
- $\exists x = \text{existe pelo menos um } x$
- ∄ = não existe
- ∄x = não existe nenhum
- $\exists I = existe apenas um, unitário$
- ∀x = qualquer que seja x, ou seja, algo que se aplique a todos os elementos ou conjuntos, independente do valor de x..
 ex: quaquer que seja x (x = elemento do conjunto), Ø ⊂ A
 vazio sempre estará contido em algum conjunto de maneira implicita/escondida, não importa a quantidade ou o valor de elementos no conjunto
- ∈ = pertence
- ∉ = não pertence
- ⊂ = está contido
- ¢ = não está contido
- ⊃ = contém
- ⊅ = não contém
- ∩ = inter/interseção
- U = união
- C_b^a = complementar de um subconjunto (a letra que estará acima), em relação ao conjunto "principal" no qual ele está contido (a letra que ficará em baixo)
- S = solução

Conteúdo

- Intervalos
- Módulos
- Plano cartesiano
- Pares ordenados
- Distância entre pontos
- Funções 1º grau

O professor explicará na próxima e ultima aula

- Combinatória
- Arranjos

Recomendo estudar um pouco de..

- Equações 1º grau
- Equaões 2° grau

Resumo matemática

Conjuntos -> "Coleção" de objetos/elementos.

ex: $A = \{1, 3, 5\}$

A é o conjunto que possui os elementos 1, 3 e 5

Simbologia da teoria dos conjuntos ∈ e ∉

 \in -> Quando um elemento pertence à um conjunto.

ex: $1 \in A \rightarrow o$ elemento 1 pertence ao conjunto A

∉ -> Quando um elemento NÃO pertence á um conjunto.

ex: 4 ∉ A -> o elemento 4 NÃO pertence ao conjunto A

Podemos determinar um conjunto escrevendo todos os seus elementos.

ex1:
$$A = \{1, 3, 5\}$$

ou..

Descrever características dos elementos presentes no conjunto.

ex2:
$$A = \{x | x \in impar\} \rightarrow (x | x) = "x, tal que x"$$

A é o conjunto dos x, tal que x é impar

Conjuntos só podem ser iguais se tiverem os mesmos elementos e a mesma quantidade

ex:
$$A = \{1, 3, 5\}, B = \{1, 2\}, C = \{1, 3, 5\}$$

A ≠B -> A é diferente de B

A = C -> A é igual á C

Elementos não podem repetir ou serem "duplicados"

ex: $A = \{x | x \in \text{letra da palavra ovo}\}$

 $A = \{o, v, o\} \rightarrow está errado$

 $A = \{o, v\} \rightarrow \text{está correto}$

Conjunto unitário

ex: $A = \{a\}$ -> apenas um elemento

Conjunto vazio

ex: A = {} ou Ø

Subconjuntos e simbologia \subset , $\not\subset$, \supset e $\not\supset$

Se temos os conjuntos $A = \{1, 2, 3\}$, $B = \{1, 3\}$, $C = \{1, 4\}$ para serem subconjuntos..

- TODOS os elementos devem estar presentes no conjunto maior
- O subconjunto deve ser menor ou igual ao conjunto "principal"
- Um conjunto menor não pode conter um maior
- Ø (vazio) sempre está contido em algo..

então..

 $A \supset B \rightarrow A$ contém B, pois B é menor ou igual ao A, e TODOS os elementos de B estão presentes em A

A ⊅ C -> A não contém C, alguns elemtentos de C são diferentes de A

B ⊂ A -> B está contido em A

A ⊄ B -> A não está contido em B, pois A é maior que B

Complementar

Se temos os conjuntos $A = \{1, 2, 3, 4, 5\}, B = \{1, 3\}$

- TODOS os elementos de B estão presentes em A?
- B ⊂ A (B está contido em A)?

complementar de B em relação à A seriam todos os elementos presentes no conjunto A que não estão no subconjunto B ex: $C_a^b = \{2, 4, 5\}$

ex: $C_b^a = \mathbb{Z} -> B$ é menor que A, logo, não existem elementos para complementar

Simbologia Interseção (∩) e União (U)

se temos $A = \{1, 2, 3, 4, 5, 6, 7\}$ e $B = \{1, 3, 4, 5, 7, 8\}$

• Ambos os conjuntos devem possuir elementos em comum

então..

A \cap B -> A inter B quais são os elementos em comum? Demonstre A \cap B ex: A \cap B = {1, 3, 4, 5, 7}

União seria exatamente isso, a União dos elementos contidos nos conjuntos, lembrando.. não podemos repetir elementos

A U B = {1, 2, 3, 4, 5, 6, 7, 8} está correto A U B = {1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8} está errado

Intervalos ∞

x > 5, outros meios de representar este intervalo seriam..

- Colchetes para fora e um círculo aberto indicam um intervalo aberto, que não incluem o número apresentado, ou seja, 5 não estará presente neste caso, apenas números maiores que ele
- Colchetes para dentro, e um círculo "pintado" indicam intervalo fechado, que incluem o número, caso a solução fosse x ≥ 5 (x maior ou igual a 5) neste caso, o 5 também estaria incluso
- Não lidaremos apenas com números interiros, portanto, 5,0001/5,0002, dentre outras possibilidades infinitas também devem ser levadas em consideração na hora de apresentar o resultado

se x > 5, então..

ex1:
$$S =]5; +\infty[$$

graficamente..

ex2:

se $2 < x \le 10$, então..

graficamente..

ex2:

Interseção do intervalos ∩

se [4; 10 [\cap] -1; 8] ou (4 \leq x < 10) \cap (-1 < x \leq 8) lembrando que interseção são os elementos em comum presentes em ambos

União dos intervalos U

Temos [4; 10 [U] -1; 8]

$$S =] -1; 10 [$$

Nem sempre a união resultara em apenas um intervalo

Se
$$A =] -3; 0 [U B = [3; 8 [$$

Subtração

Temos A = [4; 10 [- B =] -1; 7 [

A 4 10

S = [7; 10 [

o elemento 7 não está

presente em B, apenas números

menores que 7, pois o intervalo está aberto

logo, não pode ser subtraido de A

caso contrário seria S =] 7; 10 [

Módulos

Como estamos lidando com distância, queremos o valor, e "desconsideramos" o sinal negativo já que queremos apenas o valor positivo, porém, na hora de realizarmos uma conta, teremos que levar em consideração dois possíveis resultados caso x sendo um elemento qualquer acabe sendo..

$$|x| = (\underline{\mathbf{x}}; \operatorname{caso} \ge 0) \operatorname{ou} (\underline{-\mathbf{x}}; \operatorname{caso} < 0)$$

ex1:
$$|-5|$$
 (módulo de -5) = 5

ex2: |5 - 8| = -5 + 8 = 3, caso o valor da operação vá dar negativo, retiramos do módulo invertendo os sinais

ex3: |8-5|=8-5=3, caso o valor da operação seja positivo, apenas retiramos do módulo repedindo o problema antes de resolve-lo

$$ex4: |2x - 3| < 8$$

levando em consideração a possibilidade do x ser positivo ou negativo realizaresmos 2 operações

$$|2x - 3| < 8$$

$$2x < 8 + 3$$

$$x < 11/2 = x < 5,5$$

neste sugundo caso invertemos tbm o símbolo de < ou >

$$-|2x-3|<8$$

$$-2x + 3 > 8$$

$$-2x > 8 - 3$$

$$-2x > 5$$

$$x > 5/2 = x > 2,5$$

$$S = 2.5 < x < 5.5$$
 ou $S =] 2.5; 5.5 [$

Plano cartesiano e pares ordenados

Sabendo que temos $A = \{1, 3\}$ e $B = \{2\}$

AxB

A representará o conjunto dos x, e B o conjunto dos y $\{(1, 2), (3, 2)\}$

caso contrário

BxA

B representará o conjunto dos x, e A o conjunto dos y $\{(2, 1), (2, 3)\}$

essa orden fará diferença na hora de aplicar em um gráfico

ex1: caso o conjunto dos x seja $A = \{-1, 0, 1, 2\}$

e o conjunto dos y B = $\{1, 4, 6, 7\}$

Qual seria o <u>conjunto</u> resposta de pares ordenados que se apliquem à sentença 2x + y = 6

$$2x + y = 6$$

pegaremos o valor de y substituindo o x então isolamos o y y = 6 - 2x

x | 6 - 2x | no conjunto dos y ou B

-1 | 6 - 2(-1) | 8 ∉ B

 $0 \mid 6 - 2(0) \mid 6 \in B$

1 $|6 - 2(1)|4 \in B$

2 | 6 - 2(2) | 2 ∉ B

0 e 1, do conjunto dos x, quando substituidos na sentença correspondem aos elementos 6 e 4 que pertencem ao conjunto B, logo..

$$S = \{(0, 6), (1, 4)\}$$

Distância entre pontos

- Fórmula
- d² delta x + delta y
- $d^2(x1-x1)^2+(y1-y2)^2$
- $d = \sqrt{(x1 x1)^2 + (y1 y2)^2}$

ex: Se temos como primeiro ponto A(-2, -2), x1 = -2, y1 = -2 e segundo ponto B(4, 6), x2 = 4, y2 = 6

$$d = \sqrt{(-2 - 4)^2 + (-2 - 6)^2}$$

$$d = \sqrt{(-6)^2 + (-8)^2}$$

$$d = \sqrt{36 + 64}$$

$$dAB = \sqrt{100} = 10$$

$$distancia A e B$$

caso houvessem mais pontos dAB, mesma fórmula dAC, mesma fórmula dBC, mesma fórmula verificar se no final são equidistantes, mesma distância

Agora, podemos calcular o delta ABC (área do triângulo ABC) usando a fórmula do determinante:

delta ABC = 0.5 * $|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$ Substituindo os valores dos pontos A(1, 4), B(5, 1) e C(5, 4) na fórmula,

delta ABC =
$$0.5 * |1(1 - 4) + 5(4 - 4) + 5(4 - 1)| = 0.5 * |-3 + 0 + 15| = 0.5 * |12| = 0.5 * 12 = 6$$

Portanto, o delta ABC (área do triângulo ABC) é igual a 6.

Funções 1º grau

- Um valor de x (domínio)
- x Gerando um valor de y (imagem)
- R, relação entre ambos

$$D = \{1, 3, -2\}$$

$$Img = \{3, 9, -6\}$$

Contradomínio = $\{3, 9, -6, 6, 7\}$, tudo que esta no conjunto dos y, mesmo não sendo gerados por x

$$R = \{(1, 3), (3, 9), (-2, -6)\}, pontos x e y$$

Lei da função, como o y é formado pela função = (y = 3x)

ex1: Dada a função f de A = $\{-3, -2, -1\}$ em B = $\{-3, -2, 1, 2, 4, 6\}$ definida por f(x) = 3x + 7, determinar o conjunto imagem de f

$$f(-3) = 3(-3) + 7 = -2$$

 $f(-2) = 3(-2) + 7 = 1$
 $f(-1) = 3(-1) + 7 = 4$

$$Img = \{-2, 1, 4\}$$