Applied Stochastic Processes

Exercise sheet 6

Exercise 6.1 Show that a renewal process with renewal function M(t) = ct, $t \ge 0$ for some constant c > 0 is a Poisson process.

Hint: The Laplace transform determines the distribution.

Exercise 6.2 Vehicles of random lengths arrive at a gate. Let L_k denote the length of the k-th vehicle. We assume that the random variables L_k are i.i.d. with distribution 3 + Geometric(1/2). The first vehicle that arrives parks directly at the gate. The vehicles arriving afterwards queue behind, leaving a random distance to the vehicle parked in front of themselves. We assume that these distances are independent and uniformly distributed on [0,1].

- (a) For $x \ge 0$, let N_x denote the number of vehicles parked at distance at most x from the gate. Compute $\lim_{x \to \infty} N_x/x$.
- (b) Suppose that the k-th vehicle is carrying D_k people, where the random variable D_k is distributed as $1 + \text{Binomial}(2L_k, 1/2)$. For $x \geq 0$ let \widetilde{N}_x denote the number of people inside the vehicles parked at distance at most x from the gate. Estimate \widetilde{N}_x for x large enough.

Exercise 6.3 Central Limit Theorem for Renewal Processes

If $(N_t)_{t\geq 0}$ is a renewal process with inter-arrival times T_i , $i\geq 1$, not a.s. constant and such that $E[T_1^2]<\infty$, show that when $t\to\infty$,

$$Z_t := \frac{N_t - t/\mu}{\sigma(t/\mu^3)^{\frac{1}{2}}}$$

converges in law to the standard normal distribution, where $\mu = E[T_1]$ and $\sigma^2 = Var(T_1) > 0$.

Hint: Let $S_n := T_1 + ... + T_n$, then by the central limit theorem

$$\lim_{n \to \infty} P[(S_n - n\mu)/\sigma\sqrt{n} \le x] = \Phi(x)$$

uniformly in $x \in \mathbb{R}$, where Φ denotes the distribution function of the standard normal distribution.

Solution 6.1 We know that the Laplace transform L_m of the renewal function m satisfies that $L_m(s) = \frac{L_F(s)}{1 - L_F(s)}$ for every $s \ge 0$. Using

$$L_m(s) = \int_0^\infty e^{-st} dm(t) = c \int_0^\infty e^{-st} dt = \frac{c}{s},$$

we can derive that

$$L_F(s) = \frac{L_m(s)}{1 + L_m(s)} = \frac{1}{(s/c) + 1}.$$

On the other hand, the Laplace transform of an $\operatorname{Exp}(c)$ random variable is given by $\int_0^\infty e^{-st}ce^{-ct}dt = \frac{1}{(s/c)+1}$. Because the Laplace transform determines the distribution, the interarrival times are $\operatorname{Exp}(c)$ distributed. Therefore, We have a renewal process starting at 0 with jump size 1, whose interarrival time are exponentially distributed with the parameter c. We can then conclude that the renewal process is a Poisson process with rate c.

Solution 6.2

(a) For $k \in \mathbb{N}$ let U_k denote the distance between the (k+1)-st and the k-th vehicle queueing at the gate. Then for all $x \geq 0$,

$$N_x = 1 + \sum_{k=1}^{\infty} 1_{\{\sum_{j=1}^k L_j + U_j \le x\}}.$$

Hence, $(N_x - 1)_{x \ge 0}$ is a renewal process with interarrival times $T_k = L_k + U_k$. Note that $E[T_k] = \frac{1}{2} + 4 < \infty$. The strong law of large numbers for renewal processes implies

$$\lim_{x \to \infty} \frac{N_x}{x} = \frac{2}{9} \quad \text{a.s.}$$

(b) Note that

$$\widetilde{N}_x = D_1 + \sum_{k=1}^{\infty} D_{k+1} \mathbb{1}_{\left\{\sum_{j=1}^k T_j \le x\right\}}.$$

Then $(\widetilde{N}_x - D_1)_x$ is a renewal process with reward $(D_{i+1})_i$. Therefore, since $E[D_1] = 1 + E[L_k] = 5 < \infty$ we conclude that

$$\lim_{x \to \infty} \frac{\widetilde{N}_x}{x} = \frac{\mathrm{E}[D_i]}{\mathrm{E}[T_i]} = \frac{10}{9}.$$

Remark: we considered L_k with support in \mathbb{N}_0 .

Solution 6.3 Let Φ denote the distribution function of the standard normal distribution, and let $\lfloor x \rfloor$ be the greatest integer less than or equal to x for $x \in \mathbb{R}$. Let $S_n := \sum_{i=1}^n T_i$, then using the central limit theorem we have

$$\lim_{n \to \infty} P[(S_n - n\mu)/\sigma\sqrt{n} \le x] = \Phi(x)$$

uniformly in $x \in \mathbb{R}$.

Now, for given t > 0 and $x \in \mathbb{R}$, since N_t is integer-valued, we have

$$P[Z_t \le x] = P\left[N_t \le \lfloor x(\sigma(t/\mu^3)^{\frac{1}{2}}) + t/\mu \rfloor\right]. \tag{1}$$

Setting $h(t) := \lfloor x(\sigma(t/\mu^3)^{\frac{1}{2}}) + t/\mu \rfloor$, from

$$\{N_t \le h(t)\} = \{S_{h(t)} \ge t\}$$

we obtain that

$$(1) = P[S_{h(t)} \ge t] = P\left[(S_{h(t)} - \mu h(t)) / \sigma \sqrt{h(t)} \ge (t - \mu h(t)) / \sigma \sqrt{h(t)} \right]. \tag{2}$$

It suffices to show $h(t) \to \infty$ and $z(t) := (t - \mu h(t))/\sigma \sqrt{h(t)} \to -x$ as $t \to \infty$, since in that case the *uniform convergence* in the central limit theorem will imply

$$P\left[(S_{h(t)} - \mu h(t)) / \sigma \sqrt{h(t)} \ge z(t) \right] \to 1 - \Phi(-x) = \Phi(x),$$

which means that $P[Z_t \leq x] \to \Phi(x)$ and therefore Z_t converges to the standard normal distribution in law as $t \to \infty$. Indeed, if a sequence of functions $(f_n)_{n\geq 1}$ converges uniformly to a continuous function f, and a sequence of real numbers $(y_n)_{n\geq 1}$ converges to some $y \in \mathbb{R}$, then one can easily prove that $\lim_{n\to\infty} f_n(y_n) = f(y)$. Now for any sequence $(t_n)_{n\geq 1}$ tending to infinity, we can define f_n as the distribution function of $(S_{h(t_n)} - \mu h(t_n))/\sigma\sqrt{h(t_n)}$ and $y_n := z(t_n)$. Since f_n converges uniformly to the function $f(x) := 1 - \Phi(x)$ and y_n converges to y := -x, using the above claim we can deduce the desired result.

The fact that $\lim_{t\to\infty} h(t) = \infty$ is easy to see. To show that $\lim_{t\to\infty} z(t) = -x$, we first note that by definition $h(t) = x(\sigma(t/\mu^3)^{\frac{1}{2}}) + t/\mu + \epsilon(t)$, where $|\epsilon(t)| < 1$, and hence

$$z(t) = \frac{t - \mu[x(\sigma(t/\mu^3)^{\frac{1}{2}}) + t/\mu + \epsilon(t)]}{\sigma\sqrt{h(t)}}$$
$$\sim \frac{-\mu x(\sigma(t/\mu^3)^{\frac{1}{2}})}{\sigma\sqrt{t/\mu}}$$
$$\to -x \text{ as } t \to \infty.$$