РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

Отчёт по лабораторной работе №7 Дискретное логарифмирование в конечном поле

Дисциплина: Математические основы защиты информации и информационной безопасности

Студент: Леонова Алина Дмитриевна, 1032212306

Группа: НФИмд-01-21

Преподаватель: Кулябов Дмитрий Сергеевич,

д-р.ф.-м.н., проф.

Москва 2021

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение 3.1 Алгоритм, реализующий ρ-Метод Полларда для задач дискретного логарифмирования. 3.2 Пример	6 6 7
4	Выполнение лабораторной работы 4.1 Промежуточные функции	9 10 12
5	Выводы	14
Сп	писок литературы	15

List of Figures

3.1	Пример из задания	7
4.1	Результат выполнения L7 Leonova.py	12

1 Цель работы

Целью данной работы является ознакомление с ρ -методом Полларда для задач дискретного логарифмирования и его реализация на выбранном языке программирования.

2 Задание

- Реализовать алгоритм программно.
- Получить у преподавателя задание, содержащее числа $p,\,a,\,b$ и вычислить логарифм.

3 Теоретическое введение

Задача дискретного логарифмирования, как и задача разложения на множители, применяется во многих алгоритмах криптографии с открытым ключом. Предложенная в 1976 году У. Диффи и М. Хеллманом для установления сеансового ключа, эта задача послужила основой для создания протоколов шифрования и цифровой подписи, доказательств с нулевым разглашением и других криптографических протоколов.

3.1 Алгоритм, реализующий ho – Метод Полларда для задач дискретного логарифмирования.

Вход. Простое число p, число a порядка r по модулю p, целое число b, 1 < b < p; отображение f, обладающее сжимающими свойствами и сохраняющее вычислимость логарифма.

Выход. Показатель x, для которого $a^x \equiv b (\ mod \ p)$, если такой показатель существует.

- 1. Выбрать произвольные целые числа u,v и положить $c<-a^ub^v(\ mod\ p),d<-c.$
- 2. Выполнять $c < -f(c) (\mod p), d < -f(f(d)) (\mod p)$, вычисляя при этом логарифмы для c и d как линейные функции от x по модулю r, до получения равенства $c \equiv d (\mod p)$.

3. Приравняв логарифмы для c и d, вычислить логарифм x решением сравнения по модулю r. Результат: x или "Решений нет".

3.2 Пример

Пример. Решим задачу дискретного логарифмирования $10^x \equiv 64 \pmod{107}$, используя р-Метод Полларда. Порядок числа 10 по модулю 107 равен 53.

Выберем отображение $f(c) \equiv 10c \ (mod \ 107)$ при c < 53, $f(c) \equiv 64c \ (mod \ 107)$ при $c \ge 53$. Пусть u = 2, v = 2. Результаты вычислений запишем в таблицу:

Номер шага	С	$\log_a c$	d	$\log_a d$
0	4	2+2 x	4	2+2 x
1	40	3+2 x	76	4+2 x
2	79	4+2 x	56	5+3 x
3	27	4+3 x	75	5+5 x
4	56	5+3 x	SHW 3	5+7 x
5	53	5+4 x	86	7+7 x
6	75	5+5 x	42	8+8 x
7	92	5+6 x	23	9+9 x
8	3	5+7 x	53	11+9 x
9	30	6+7 x	92	11+11 x
10	86	7+7 x	30	12+12 x
11	47	7+8 x	47	13+13 x

Приравниваем логарифмы, полученные на 11-м шаге: $7+8 \ x \equiv 13+13 \ x \ (mod\ 53)$. Решая сравнение первой степени, получаем: $x=20 \ (mod\ 53)$.

Проверка: $10^{20} \equiv 64 \pmod{107}$.

Figure 3.1: Пример из задания

Для проверки правильности реализации в задании дан пример (см. рис. 3.1) [1].

4 Выполнение лабораторной работы

4.1 Промежуточные функции

Функция для вычисления НОД(a,b) расширенным алгоритмом Евклида, взятая с небольшими изменениями из 4 лабораторной работы:

```
# Расширенный алгоритм Евклида

# d = HOД(a,b) = ax + by

def nod3(a, b):

    if a == 0 or b == 0:

        return max(a, b)

    if a == 1 or b == 1:

        return 1

    if abs(a) < abs(b):

        a, b = abs(b), abs(a)

x, y = [1,0], [0,1]

a_, b_ = a, b

while b_ != 0:

    a_, b_, p = b_, a_ % b_, a_ // b_

x[0], x[1] = x[1], x[0] - p*x[1]

y[0], y[1] = y[1], y[0] - p*y[1]
```

```
d = a_
#print(a,'*',x[1],' + ',b,'*',y[1],' = ',d)
return d, abs(y[0]), abs(x[0])
```

Функция

Далее функция для вычисления значения соответствующей функции в зависимости от :

```
def f(c, u, v):
    if c < r:
        return a*c % p, u+1, v
    else:
        return b*c % p, u, v+1

        Функция для печати промежуточных шагов:

def pr(c,uc,vc,d,ud,vd):</pre>
```

print(' ',c,' ',uc,' + ',vc,'x ', d,' ',ud,'+',vd,'x')

4.2 р-метод Полларда для задач дискретного логарифмирования

с использованием расширенного алгоритма Евклида:

```
def Pollard_log(a, p, r, b, u, v):
    c = a**u * b**v % p
    d = c
    uc, vc = u, v
    ud, vd = u, v
```

```
print(' c log_c d log_d')
print('----')
pr(c,uc,vd,d,ud,vd)
c, uc, vc = f(c, uc, vc)
c %= p
d, ud, vd = f(*f(d, ud, vd))
d %= p
pr(c,uc,vd,d,ud,vd)
while c%p != d%p:
   c, uc, vc = f(c, uc, vc)
   c %= p
   d, ud, vd = f(*f(d, ud, vd))
   d %= p
   pr(c,uc,vd,d,ud,vd)
v = vc - vd
u = ud - uc
d, x, y = nod3(v, r)
while d != 1:
   v /= d
   u /= d
   r /= d
   d, x, y = nod3(v, r)
   pr(c,uc,vd,d,ud,vd)
```

4.3 Проверка работы алгорима

Проверка работы алгорима на примере из задания:

```
print('p-метод Полларда ля задач дискретного логарифмирования')
a = 10
p = 107
r = 53
b = 64
u = 2
v = 2
print(Pollard_log(a, p, r, b, u, v))
```

```
In [17]: runfile('E:/GitHub/1.2-IS/Lab_7/
L7_Leonova.py', wdir='E:/GitHub/1.2-IS/
р-метод Полларда ля задач дискретного
логарифмирования
                       d
          log_c
                               log_d
                              2 + 2 \times
               2 x
                2 x
                                4 + 2 x
  40
                        79
                3 x
  79
         4
                        56
                                5 + 3 x
  27
         4
               5 x
                        75
                                5 + 5 x
         5
  56
                        3
  53
         5
                7 x
                        86
         5
  75
                8 x
                        42
  92
         5
                9 x
                        23
                                    9 x
               9 x
  3
                       53
                               11 + 9 x
        5
  30
         6
                                 11 + 11 x
                11 x
                         92
  86
                                 12 + 12 x
                12 x
                         30
  47
         7
                13 x
                         47
                                 13 + 13 x
20
In [18]:
```

Figure 4.1: Результат выполнения L7 Leonova.py

Результат выполнения программы, проверка реализации р-метод Полларда для задач дискретного логарифмирования на заданном примере (см. рис. 4.1).

5 Выводы

Цель лабораторной работы была достигнута, ρ -метод Полларда для задач дискретного логарифмирования был реализован на языке программирования Python и проверен на заданном примере.

Список литературы

1. Бубнов С.А. Лабораторный практикум по основам криптографии [Электронный ресурс]. Саратовский государственный университет имени Н.Г.Чернышевского, 2012. URL: http://elibrary.sgu.ru/uch_lit/656.pdf.