CSC343 Prep9

Haider Sajjad

August 1, 2019

- 2. a) no, closure of B, B^+ is {B, D, E}, A is not in the set.
 - b) yes, closure of CF, CF^+ is {A, B, C, D, E, F}, E is in the set.
 - c) no, closure of DF, DF^+ is {A, D, E, F}, B is not in the set.
 - d) no, closure of BD, BD^+ is {B, D, E}, C is not in the set.
 - e) yes, closure of BFC, BFC^+ is $\{A, B, C, D, E, F\}$, A is in the set.

$$A^+ = \{A,D,C,E\}, \quad FDs = A \rightarrow D$$

$$B^+ = \{A,B,C,D,E\}, \quad FDs = B \rightarrow A, B \rightarrow D$$

ABD

$$D^+ = \{A,C,D,E\}, \quad FDs = D \rightarrow A$$

ABD

$$BD^+ = \{A,B,C,D,E\}, \quad FDs = NONE$$

$\mathbf{A}\mathbf{B}\mathbf{D}$

$$AD^+ = \{A, C, D, E\}, \quad FDs = NONE$$

ABD

$$AB^+ = \{A,B,C,D,E\}, \quad FDs = NONE$$

$$ABD^+ = \{A,B,C,D,E\}, \quad FDs = NONE$$

Projection of S on ABD is: A \rightarrow D , B \rightarrow A, B \rightarrow D, D \rightarrow A

- 4. An instance of R is below. The '2' that is bold and highlighted is the redundant data, because we already had the in the first row $F(5) \to D(2)$
- \mathbf{C} \mathbf{F} \mathbf{A} В \mathbf{D} \mathbf{E}
- 3 1 1 2 4 5
- 5 4 6
- 2 4 3 <u>2</u> 5 6 8 5