Lecture 11: Time stepping methods

COMP5930M Scientific Computation

Today

Time stepping for PDE models

Classes of methods

Stability

Implications for nonlinear systems

Time stepping process

Next

Time stepping

► In the Method of Lines framework we define a semi-discrete form of our partial differential equation (PDE) as a coupled system of ordinary differential equations (ODEs)

For example, a typical discrete 1D PDE at node i is written as:

$$\dot{\mathbf{u}}_i = \mathbf{f}(\mathbf{u}_{i-1}, \mathbf{u}_i, \mathbf{u}_{i+1})$$

 In this form, many standard numerical methods for ODEs can be applied

First-order accurate methods

► Forward (explicit) Euler:

$$\frac{\mathbf{u}^{k+1}-\mathbf{u}^k}{\Delta t}=\mathbf{f}(\mathbf{u}^k)$$

Backward (implicit) Euler:

$$\frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = \mathbf{f}(\mathbf{u}^{k+1})$$

Both are $\mathcal{O}(\Delta t)$ accurate (termed, first order)

Implicit or Explicit methods?

Efficiency trade-offs

- Explicit many short, cheap timesteps
- ► Implicit fewer long, expensive timesteps

Accuracy requirements

- **Explicit** timestep often limited for stability, e.g. $\Delta t < Ch^2$
- ▶ Implicit timestep often limited for accuracy, by $\Delta t < Ch$

Higher accuracy in time

- For efficient computation of time-dependent PDE problems we should balance the errors in time and space
- ▶ FDM applied to many standard second-order (in space) PDE models leads to a spatial error of $\mathcal{O}(h^2)$
- After applying an approximation in time:
 - ▶ An $\mathcal{O}(\Delta t)$ scheme leads to a total error $E \propto \mathcal{O}(\Delta t, h^2)$
 - An $\mathcal{O}(\Delta t^2)$ scheme leads to a total error $E \propto \mathcal{O}(\Delta t^2, h^2)$ Need to find time-stepping method at least $\mathcal{O}(\Delta t^2)$ accurate

The θ -method \int

Idea: Linear combination of the implicit and explicit Euler methods

$$\frac{\mathbf{u}^{k+1} - \mathbf{u}^k}{\Delta t} = \theta \, \mathbf{f}(\mathbf{u}^{k+1}) + (1 - \theta) \, \mathbf{f}(\mathbf{u}^k)$$

for $0 \le \theta \le 1$

- $\theta = 0$ gives explicit Forward Euler, $\mathcal{O}(\Delta t)$ accurate
- $\theta = 1$ gives implicit Backward Euler, $\mathcal{O}(\Delta t)$ accurate
- lacktriangledown $heta=rac{1}{2}$ gives an implicit, $\mathcal{O}(\Delta t^2)$ accurate scheme
 - known as the trapezoidal rule or Crank-Nicolson method¹

¹Named after Phyllis Nicolson, a physicist at University of Leeds

Time stepping families

- ▶ It is possible to define methods of arbitrarily high order
- Runge-Kutta family
 - ► One-step methods:

```
\mathbf{u}^{k+1} depends on \mathbf{u}^k only
```

- but f(u) is evaluated multiple times per step (stages)
- Commonly explicit methods (RK4), implicit also possible

Time stepping families

- ▶ It is possible to define methods of arbitrarily high order
- Runge-Kutta family
 - ► One-step methods:

$$\mathbf{u}^{k+1}$$
 depends on \mathbf{u}^k only

but f(u) is evaluated multiple times per step (stages)

- Commonly explicit methods (RK4), implicit also possible
- Backward differentiation formulae (BDF)
 - ► Multi-step methods:

$$\mathbf{u}^{k+1}$$
 depends on $\mathbf{u}^k, \mathbf{u}^{k-1}, \dots, \mathbf{u}^{k-m+1}$

for a general *m*-step method

Implicit methods, balance between stability and cost

Time stepping families

- It is possible to define methods of arbitrarily high order
- Runge-Kutta family
 - One-step methods:

$$\mathbf{u}^{k+1}$$
 depends on \mathbf{u}^k only

- Commonly explicit methods (RK4), implicit also possible
- Backward differentiation formulae (BDF)
 - ► Multi-step methods:

$$\mathbf{u}^{k+1}$$
 depends on $\mathbf{u}^k, \mathbf{u}^{k-1}, \dots, \mathbf{u}^{k-m+1}$

for a general m-step method

Implicit methods, balance between stability and cost

Runge-Kutta methods

Simplest example is Explicit Euler

$$\mathbf{k}_1 = \mathbf{f}(\mathbf{u}^k)$$
 (stage 1)
 $\mathbf{u}^{k+1} = \mathbf{u}^k + \Delta t \mathbf{k}_1$

A second-order (explicit) scheme

$$\mathbf{k}_1 = \mathbf{f}(\mathbf{u}^k) \qquad \text{(stage 1)}$$

$$\mathbf{k}_2 = \mathbf{f}(\mathbf{u}^k + \frac{\Delta t}{2}\mathbf{k}_1) \qquad \text{(stage 2)}$$

$$\mathbf{u}^{k+1} = \mathbf{u}^k + \Delta t \mathbf{k}_2$$

General Runge-Kutta method with s stages

For the general problem $\mathbf{u}'(t) = \mathbf{f}(t, \mathbf{u}(t))$:

$$\mathbf{k}_{i} = \mathbf{f}(t_{k} + c_{i}\Delta t, \mathbf{u}^{k} + \Delta t \sum_{j=1}^{s} a_{ij}\mathbf{k}_{j}), \quad i = 1, \dots, s \quad \text{(stage } i\text{)}$$

$$\mathbf{u}^{k+1} = \mathbf{u}^{k} + \Delta t \sum_{j=1}^{s} b_{j}\mathbf{k}_{j} \qquad \text{(update)}$$

- ▶ If $a_{ij} = 0$ for all $i \le j$ method is explicit, otherwise implicit
- Implicit R-K leads to nonlinear system of equations to solve for $\mathbf{k}_1, \dots, \mathbf{k}_s$ at each time step \Rightarrow full system is of size $n \times s!$

Backward Differentiation Method (BDF-m)

▶ Idea: Use m previous solutions $\mathbf{u}^k, \dots, \mathbf{u}^{k-m+1}$ to construct Lagrange interpolating polynomial $\mathbf{p}_m(t)$ of degree m s.t.

$$\mathbf{p}_m(t_{k-i+1}) = \mathbf{u}^{k-m+1}, \quad i = 0, \dots, m$$
 and solve $\mathbf{p}_m'(t_k + \Delta t) = \mathbf{f}(\mathbf{u}^{k+1})$ to find \mathbf{u}^{k+1} .

► Simplest example is Implicit Euler (BDF-1)

$$\frac{\mathsf{u}^{k+1} - \mathsf{u}^k}{\Delta t} = \mathsf{f}(\mathsf{u}^{k+1})$$

Backward Differentiation Method (BDF-m)

▶ Idea: Use m previous solutions $\mathbf{u}^k, \dots, \mathbf{u}^{k-m+1}$ to construct Lagrange interpolating polynomial $\mathbf{p}_m(t)$ of degree m s.t.

$$\mathbf{p}_m(t_{k-i+1}) = \mathbf{u}^{k-m+1}, \quad i = 0, \dots, m$$
 and solve $\mathbf{p}_m'(t_k + \Delta t) = \mathbf{f}(\mathbf{u}^{k+1})$ to find \mathbf{u}^{k+1} .

Simplest example is Implicit Euler (BDF-1)

$$\frac{\mathsf{u}^{k+1}-\mathsf{u}^k}{\Delta t} = \mathsf{f}(\mathsf{u}^{k+1})$$

▶ The second order scheme (BDF-2)

$$\frac{3u^{k+1} - 4u^k + u^{k-1}}{2\Delta t} = f(u^{k+1})$$

Backward Differentiation Method (BDF-m)

▶ Idea: Use m previous solutions $\mathbf{u}^k, \dots, \mathbf{u}^{k-m+1}$ to construct Lagrange interpolating polynomial $\mathbf{p}_m(t)$ of degree m s.t.

$$\mathbf{p}_m(t_{k-i+1}) = \mathbf{u}^{k-m+1}, \quad i = 0, \dots, m$$
 and solve $\mathbf{p}_m'(t_k + \Delta t) = \mathbf{f}(\mathbf{u}^{k+1})$ to find \mathbf{u}^{k+1} .

Simplest example is Implicit Euler (BDF-1)

$$\frac{\mathsf{u}^{k+1}-\mathsf{u}^k}{\Delta t} = \mathsf{f}(\mathsf{u}^{k+1})$$

► The second order scheme (BDF-2)

$$\frac{3u^{k+1} - 4u^k + u^{k-1}}{2\Delta t} = f(u^{k+1})$$

Stability of a time-stepping method

- ▶ There are many different definitions of (numerical) stability
- ► Time-stepping method is absolutely stable (A-stable) if the numerical solution applied to the linear test problem:

$$u'(t) = \lambda u(t)$$

approaches zero, $u_k \to 0$ as $k \to \infty$, whenever $\text{Re}(\lambda) < 0$ and for any fixed step size $\Delta t > 0$.

Stability of a time-stepping method

- ▶ There are many different definitions of (numerical) stability
- ► Time-stepping method is absolutely stable (A-stable) if the numerical solution applied to the linear test problem:

$$u'(t) = \lambda u(t)$$

approaches zero, $u_k \to 0$ as $k \to \infty$, whenever $\text{Re}(\lambda) < 0$ and for any fixed step size $\Delta t > 0$.

► Exact solution is $u(t) = \exp(\lambda t)$, which goes to 0 as $t \to \infty$ if and only if Re(λ) < 0

Stability of a time-stepping method

- ▶ There are many different definitions of (numerical) stability
- ► Time-stepping method is absolutely stable (A-stable) if the numerical solution applied to the linear test problem:

$$u'(t) = \lambda u(t)$$

approaches zero, $u_k \to 0$ as $k \to \infty$, whenever $\text{Re}(\lambda) < 0$ and for any fixed step size $\Delta t > 0$.

► Exact solution is $u(t) = \exp(\lambda t)$, which goes to 0 as $t \to \infty$ if and only if Re(λ) < 0

Explicit Euler:

$$u^{k+1} = u^k + \lambda \Delta t u^k = (1 + \lambda \Delta t) u^k = R(z) u^k$$

where $R(z) = R(\lambda \Delta t)$ is called the stability function.

The method is stable for |R(z)| < 1.

Explicit Euler:

$$u^{k+1} = u^k + \lambda \Delta t u^k = (1 + \lambda \Delta t) u^k = R(z) u^k$$

where $R(z) = R(\lambda \Delta t)$ is called the stability function.

The method is stable for |R(z)| < 1.

Stability region:
$$|1+z| < 1$$

 \Rightarrow disc of radius 1 centered at z=-1

Explicit Euler:

$$u^{k+1} = u^k + \lambda \Delta t u^k = (1 + \lambda \Delta t) u^k = R(z) u^k$$

where $R(z) = R(\lambda \Delta t)$ is called the stability function.

The method is stable for |R(z)| < 1.

Stability region: |1+z| < 1

 \Rightarrow disc of radius 1 centered at z=-1

Implicit Euler:

$$u^{k+1} = u^k + \lambda \Delta t u^{k+1}$$

so that the stability function is R(z) = 1/(1-z).

Stability region: |1-z| > 1

 \Rightarrow complex plane except for a disc of radius 1 centered at z=1

Stability regions of different methods

We can illustrate A-stability by coloring the points $\lambda \Delta t \in \mathbb{C}$ for which different methods are stable for the problem $u'(t) = \lambda u(t)$:

Properties of BDF methods

- ▶ BDF-*m* methods can be defined for any m = 1, 2, 3, ...
- ▶ BDF-1 and BDF-2 are A-stable
- ▶ BDF-3 almost A-stable (except small region near *Im* axis)
- ▶ BDF-m for $m \ge 6$ is unstable, do not use

When choosing the time stepping method, we should consider:

- Computational complexity
 - ► Explicit Runge-Kutta method: no nonlinear equation solves

Stability and accuracy

When choosing the time stepping method, we should consider:

- Computational complexity
 - ► Explicit Runge-Kutta method: no nonlinear equation solves
 - Implicit Runge-Kutta (s stages): solve nonlinear system of s × n equations on each time step

Stability and accuracy

- Computational complexity
 - ► Explicit Runge-Kutta method: no nonlinear equation solves
 - Implicit Runge-Kutta (s stages): solve nonlinear system of s × n equations on each time step
 - ▶ BDF method: solve nonlinear system of *n* equations on each time step, but need to store *m* previous solutions
- Stability and accuracy

- Computational complexity
 - ► Explicit Runge-Kutta method: no nonlinear equation solves
 - Implicit Runge-Kutta (s stages): solve nonlinear system of s × n equations on each time step
 - ▶ BDF method: solve nonlinear system of *n* equations on each time step, but need to store *m* previous solutions
- Stability and accuracy
 - ► First-order methods not accurate enough

- Computational complexity
 - Explicit Runge-Kutta method: no nonlinear equation solves
 - Implicit Runge-Kutta (s stages): solve nonlinear system of s × n equations on each time step

- Stability and accuracy
 - ▶ First-order methods not accurate enough
 - lacksquare Some problems are stiff and explicit methods require $\Delta t \ll 1$

- Computational complexity
 - Explicit Runge-Kutta method: no nonlinear equation solves
 - Implicit Runge-Kutta (s stages): solve nonlinear system of s × n equations on each time step
 - ▶ BDF method: solve nonlinear system of *n* equations on each time step, but need to store *m* previous solutions
- Stability and accuracy
 - First-order methods not accurate enough
 - lacktriangle Some problems are stiff and explicit methods require $\Delta t \ll 1$
 - Some A-stable methods have too much damping that eliminates high-frequency oscillations in the solution

- Computational complexity
 - Explicit Runge-Kutta method: no nonlinear equation solves
 - Implicit Runge-Kutta (s stages): solve nonlinear system of s × n equations on each time step
 - ▶ BDF method: solve nonlinear system of n equations on each time step, but need to store m previous solutions
- Stability and accuracy
 - First-order methods not accurate enough
 - lacktriangle Some problems are stiff and explicit methods require $\Delta t \ll 1$
 - ► Some A-stable methods have too much damping that eliminates high-frequency oscillations in the solution

The time stepping process

- 1. $t = t^0$, $\mathbf{u}^0 = \mathbf{U}(x, t^0)$ 2. for k = 0, 1, ...2.1 set initial guess $\mathbf{u}_0^{k+1} = \mathbf{u}^k$ 2.2 $\mathbf{u}^{k+1} = Newton(\mathbf{F}(\mathbf{u}^{k+1}), \mathbf{u}_0^{k+1}, \Delta t, Tol)$ 2.3 $t = t + \Delta t$
- ▶ For small Δt the initial guess \mathbf{u}_0^{k+1} will be accurate
- For very large Δt we may have problems with convergence
- Tol should be chosen sufficiently small so as not to compromise the accuracy of the PDE model

Summary

- ► High-order time stepping methods balance the discretisation error in time and space and outperform first order methods
- Explicit Runge-Kutta methods usually not appropriate for PDEs due to stringent stability requirements ($\Delta t \ll 1$)
- Implicit BDF methods offer a good balance between stability and computational cost
- Time-stepping method should be chosen based on the physics of the specific problem being solved

Next time

- ► Lecture
 - Approximation of 2-d nonlinear PDEs
 - Sparse system structure and efficient algorithms