Gaussian Phase-Space Representations IV Vssup Lectures 2012

P. D. Drummond

July 6, 2012

Outline

- 1 Fun with fermions
- 2 General Coherent States
- 3 General Gaussian Phase-space
- 4 Phase-space methods for finite temperature bosons
- 5 Phase-space methods for finite temperature fermions
- 6 Ground states of the Fermi-Hubbard model

Mesoscopic cold atoms (Esslinger 2012)

Landauer Quantum Transport

Universal quantized conductivity formula

What is the channel conductivity, ie the current in atoms per second per potential difference?

$$G=G_0\sum_n t_n$$

$$G=1/\left(\pi\hbar
ight)$$

This is a universal law found with mesoscopic electronics,
 and now with mesoscopic atomtronics.

Mesoscopic cold atoms (Esslinger 2012)

Dealing with atomic coherence in fermions

Hpw do we treat coherent phenomena with fermions?

- Is there a coherent state for fermions?
- Is there such a thing as a P-representation?
- Can we efficiently compute ground states?
- What about quantum transport?

Ways to define coherent states

- Definition 1: The coherent states $|z\rangle$ are eigenstates of the annihilation operator a: $\hat{a}|z\rangle = z|z\rangle$.
- Definition 2: The coherent states $|z\rangle$ are quantum states with a minimum uncertainty relationship: $\Delta x \Delta p = \hbar/2$
- Definition 3: The coherent states $|z\rangle$ can be obtained by applying a displacement operator D(z) on the ground state of harmonic oscillator:

$$|z\rangle = D(z)|0\rangle, D(z) = exp(z\hat{a}^{\dagger}-z^*\hat{a})$$

General coherent states from (3)

Can we generalize coherent states?

- Consider T as a set of operators closed under commutation called a LIE ALGEBRA
- $\blacksquare \text{ le } [T_i, T_j] = \sum_k C_{ijk} T_k$
- **Define a continuous Lie group** of operators $g(z) = \exp(T \cdot z)$
- lacksquare Let $|\psi_o
 angle$ be some fixed vector the *reference* state
- Then a general coherent state is the set of states $|\mathbf{z}\rangle = \exp{(\mathbf{T} \cdot \mathbf{z})} |\psi_o\rangle$
- Can get different coherent states from different $|\psi_o\rangle$.

Coherent states for fermions

- Definition 1: Gives anticommuting Grassmann variables: if $\hat{a}|z\rangle = z|z\rangle$, then a anti-commutes \rightarrow z anti-commutes
- Definition 2: Not always unique, and not a complete set
- Definition 3:

Coherent states for fermions?

- lacktriangledown Consider $|\psi_{o}\rangle=|1,\dots 1,0,\dots 0\rangle$ as the N-particle ground state
- lacksquare Let $|{\sf z}
 angle = \exp\left(\sum_{p,h} \hat{a}_p^\dagger z_{ph} \hat{a}_h
 ight) |\psi_o
 angle$
- For every created particle (p) we create a hole (h)

General phase-space approach

Expand density matrix in a complete basis of operators

$$\widehat{\rho} = \int P(\overrightarrow{\lambda}) \widehat{\Lambda}(\overrightarrow{\lambda}) d\overrightarrow{\lambda}$$

Phase-space may be larger still!

- Here $\widehat{\Lambda}(\overrightarrow{\lambda})$ must be complete
- lacktriangle Quantum dynamics \rightarrow Trajectories in $\overrightarrow{\lambda}$.
- Different basis choice $\widehat{\Lambda}(\overline{\lambda})$ → different representation
- Eg, positive P-representation: $\widehat{\Lambda}(\overrightarrow{\lambda}) = |\alpha\rangle\langle\beta|/\langle\beta||\alpha\rangle$

General phase-space approach

Expand density matrix in a complete basis of operators

$$\widehat{\rho} = \int P(\overrightarrow{\lambda}) \widehat{\Lambda}(\overrightarrow{\lambda}) d\overrightarrow{\lambda}$$

Phase-space may be larger still!

- Here $\widehat{\Lambda}(\overrightarrow{\lambda})$ must be complete
- Quantum dynamics \rightarrow Trajectories in $\overrightarrow{\lambda}$.
- Different basis choice $\widehat{\Lambda}(\overrightarrow{\lambda})$ → different representation
- Eg, positive P-representation: $\widehat{\Lambda}(\overrightarrow{\lambda}) = |\alpha\rangle\langle\beta|/\langle\beta||\alpha\rangle$

Trade-offs: distribution vs basis

General Gaussian operator

General Gaussian operators give a complete basis in all cases

Normally-ordered exponential of a quadratic form in the 2M-vector mode operator $\delta \hat{\underline{a}} = (\hat{a}, \hat{a}^{\dagger}) - \underline{\alpha}$, where $\underline{\alpha}$ is a c-vector and \hat{a} is the vector of annihilation operators. Used for either bosons or fermions:

$$\widehat{\Lambda}(\overrightarrow{\lambda}) = \frac{\Omega}{\sqrt{\left|\underline{\underline{\sigma}}\right|}} : \exp\left[-\delta \widehat{\underline{a}}^{\dagger} \underline{\underline{\sigma}}^{-1} \delta \widehat{\underline{a}}/2\right] : .$$

Quantum phase-space: $\overrightarrow{\lambda} = (\Omega, \underline{\alpha}, \underline{\sigma}).$

What is the covariance?

The covariance matrix acts as a 'stochastic Green's function'

$$\underline{\underline{\sigma}} = \left[\begin{array}{cc} \mathbf{I} + \mathbf{n} & \mathbf{m} \\ \mathbf{m}^+ & \mathbf{I} + \mathbf{n}^{\mathcal{T}} \end{array} \right] \; .$$

Eg, fermion case: representation phase space is $\lambda = (\Omega, n, m, m^+)$

- \blacksquare Ω = weight factor
- $\mathbf{n} = \text{number correlation} \text{OBSERVABLE}$
- m, m⁺= anomalous correlation OBSERVABLE

What is the covariance?

The covariance matrix acts as a 'stochastic Green's function'

$$\underline{\underline{\sigma}} = \left[\begin{array}{cc} \mathbf{I} + \mathbf{n} & \mathbf{m} \\ \mathbf{m}^+ & \mathbf{I} + \mathbf{n}^T \end{array} \right] \; .$$

Eg, fermion case: representation phase space is $\overline{\chi} = (\Omega, n, m, m^+)$

- Ω = weight factor
- n = number correlation OBSERVABLE
- m, m⁺ = anomalous correlation OBSERVABLE

Weighted stochastic gauge equations

Exponential quantum problems \rightarrow tractable stochastic equations

$$d\Omega/\partial t = \Omega[U + \mathbf{g} \cdot \boldsymbol{\zeta}]$$
$$d\boldsymbol{\alpha}/\partial t = \mathbf{A} + \mathbf{B}(\boldsymbol{\zeta} - \mathbf{g})$$

- Can be used for fermions AND bosons
- Can be used in imaginary time for finite temperatures
- g is a gauge chosen to stabilize trajectories
- A careful choice of basis, gauge and stochastic method is necessary

BOSONIC INITIAL ENSEMBLES

Nonlinear interactions at each site + linear interactions coupling different sites:

- $\blacksquare \ \widehat{H}(\mathbf{a}, \mathbf{a}^{\dagger}) = \hbar \left[\sum \sum \omega_{ij} a_i^{\dagger} a_j + \sum : \widehat{n}_j^2 : \right] .$
- ω_{ij} nonlocal coupling, includes chemical potential.
- Boson number: $\widehat{n}_i = a_i^{\dagger} a_i$.
- General approach also holds for quantum fields

A: ONE-DIMENSION, FINITE TEMPERATURE

$$\begin{array}{lcl} \frac{d\alpha}{d\tau} & = & -\left[|\alpha\beta^*| + \omega - \nabla^2 + i\zeta_1(\tau)\right]\alpha \\ \\ \frac{d\beta}{d\tau} & = & -\left[|\alpha\beta^*| + \omega - \nabla^2 + i\zeta_2(\tau)\right]\beta \\ \\ \frac{d\Omega}{d\tau} & = & -H\Omega + \text{gauge terms} \end{array}$$

weighted Gross-Pitaevskii equation + quantum noise

ONE-DIMENSIONAL BEC

Uses imaginary time propagation to get a finite temperature Agreement of simulations with exact solutions

Predicts: anomalous spatial correlations

INTERACTING FERMIONS

$$\widehat{H} = -\sum_{ij,\sigma} t_{ij} \widehat{a}_{i,\sigma}^{\dagger} \widehat{a}_{j,\sigma} + U \sum_{j} : \widehat{n}_{j,j,\downarrow} \widehat{n}_{j,j,\uparrow} :$$

- Hubbard model of an interacting Fermi gas on a lattice
- Ultracold gas in an optical lattice: experiments at ETH, Zurich
 - Weak-coupling limit → BCS transitions
 - Relevance to high- T_c superconductors?
 - Universal fermionic behavior neutron star interiors?

QMC sign problem

Traditional fermionic Quantum Monte Carlo (QMC) suffers from sign problems:

$$\langle A
angle \sim rac{\langle sA
angle}{\langle s
angle}$$

- sign problem increases with:
 - dimension,
 - lattice size,
 - interaction strength

Finite-temperature phase-space equations

$$\qquad \text{Paths:} \ \ \frac{dn_\sigma}{d\tau} = \frac{1}{2} \left\{ \left(\textbf{I} - \textbf{n}_\sigma \right) \boldsymbol{\mathcal{T}}_\sigma^{(1)} \textbf{n}_\sigma + \textbf{n}_\sigma \, \boldsymbol{\mathcal{T}}_\sigma^{(2)} (\textbf{I} - \textbf{n}_\sigma) \right\}.$$

- Weights: $\frac{d\Omega}{d\tau} = -\Omega H(\mathbf{n}_1, \mathbf{n}_{-1})$
 - T-matrix: $T_{i,j,\sigma}^{(r)} = t_{ij} \delta_{i,j} \left\{ U(n_{j,j,-\sigma} n_{j,j,\sigma} + \frac{1}{2}) \mu + \sigma \xi_j^{(r)} \right\}.$
 - Noises: $\left\langle \xi_j^{(r)}(\tau) \xi_{j'}^{(r')}(\tau') \right\rangle = 2U\delta(\tau \tau') \delta_{j,j'} \delta_{r,r'}$.

A: 1D Lattice - 100 sites vs: exact result

B: 16×16 2D Lattice

IMADA ALGORITHM

Imada improved on the original Gaussian method

- Used number projections to reduce the size of Hilbert space
 - Importance sampling helps to improve statistics
 - No evidence of a Fermi 'sign' problem
 - No evidence of boundary term problems

Imada algorithm test case - two sites

Imada algorithm test case - tail exponent = -4

Imada algorithm Hubbard model: no pairing

Summary

Gaussian phase-space extends to fermions

- Provides a new way to treat strongly correlated systems
 - Predicts no long-range order in Hubbard model
 - Apparently NOT the explanation of high Tc superconductors
 - To be tested in atomic Fermi gas experiments