Лекция 3

Внешние запоминающие устройства

Иерархия устройств хранения информации

Внешние запоминающие устройства (ВЗУ)

Внешние запоминающие устройства используются в системе для хранения информации, с возможностью доступа и дальнейшей обработки этой информации.

Основные технические характеристики:

- информационная ёмкость
- плотность записи число бит информации, записанных на единице поверхности носителя
- время доступа интервал времени от момента запроса до момента выдачи блока
- скорость передачи данных количество данных, считываемых или записываемых в единицу времени

Классификация ВЗУ

Обмен данными:

- блоками
- записями произвольного размера

По возможным операциям:

- операции чтения и записи (жесткий диск, CD-RW).
- только операции чтения (CD-ROM, DVD-ROM, ...).

Классификация ВЗУ

По характеристикам доступа к данным:

- Последовательного доступа. В устройствах последовательного доступа для чтения n-ого блока памяти необходимо прочитать предыдущие n-1 блок.
 - пример магнитная лента
 - -: время доступа
 - +: объем и надежность хранения информации

Классификация ВЗУ

По характеристикам доступа к данным:

- Прямого доступа. В таких устройствах не нужен просмотр предыдущих записей при организации обмена с какой-то из записей, размещенных на этом устройстве.
 - пример жесткий диск
 - +: время доступа

Организация обмена

Два типа модели синхронизации:

- Синхронная организация обмена
 - При обращении программы на доступ к информации, драйвер ожидает информацию о завершении обмена
 - Все компоненты системы будут приостановлены
 - Неэффективно

Организация обмена

Два типа модели синхронизации:

- Асинхронная организация обмена
 - При обращении программы на доступ к информации, драйвер передает информацию на аппаратуру устройства, и управление возвращается в программу
 - Программа продолжает работу
 - По факту выполнения доступа происходит прерывание
 - Необходим механизм прерываний в ОС
- Прерывание передача управления специальной процедуре, называемой обработчиком прерываний при наступлении какого-либо события. После выполнения необходимых действий, обработчик прерываний, как правило, возвращает управление прерванной программе.

Устройства внешней памяти

• Магнитные ленты, барабаны, диски

Устройства внешней памяти

Информационная система требует высокую среднюю скорость выполнения операций, при наличии больших объёмов данных. При этом:

- магнитные барабаны не вместительны
- магнитные ленты не могут работать быстро

Магнитный диск (HDD)

Магнитный диск - устройство внешней памяти с несколькими магнитными поверхностями и подвижными головками для чтения/записи.

При выполнении обмена с диском аппаратура выполняет три основных действия:

- подвод головок к нужному цилиндру
- поиск на дорожке нужного блока
- обмен с этим блоком

Пусть имеется некоторый жёсткий диск, у которого имеется позиционирование головки в некоторый точке. Пусть есть очередь запросов к дорожкам. Стоит задача обработки этого набора запросов.

- FIFO в порядке поступления
- Shortest Service Time First "жадный" алгоритм, на каждом шаге поиск обмена с минимальным перемещением
- SCAN сканирование в обе стороны
- На основе приоритетов

Очередь запросов: 5, 40, 10, 35, 7, 15. Находимся в позиции 14.

<u>FIFO</u>

Путь головки	L
$14 \rightarrow 5$	9
$5 \to 40$	35
$40 \rightarrow 10$	30
$10 \rightarrow 35$	25
$35 \rightarrow 7$	28
$7 \rightarrow 15$	8
общ. 135 средн. 22,5	

Очередь запросов: 5, 40, 10, 35, 7, 15. Находимся в позиции 14.

<u>SSTF</u>

Путь головки	L
$14 \rightarrow 15$	1
$15 \rightarrow 10$	5
$10 \rightarrow 7$	3
$7 \rightarrow 5$	2
$5 \rightarrow 35$	30
$35 \rightarrow 40$	5
общ. 46 средн. 7,67	

Очередь запросов: 5, 40, 10, 35, 7, 15. Находимся в позиции 14.

<u>SCAN</u>

Путь головки	L
$14 \rightarrow 15$	1
$15 \rightarrow 35$	20
$35 \rightarrow 40$	5
$40 \rightarrow 10$	30
$10 \rightarrow 7$	3
$7 \rightarrow 5$	2
общ. 61 средн. 10,16	

RAID системы

RAID (Redundant Array of Independent (Inexpersive) Disks) — избыточный массив независимых (недорогих) дисков.

RAID система — это технология, обеспечивающая объединение набора физических дисковых устройств, рассматриваемых операционной системой, как единое дисковое устройство (данные распределяются по физическим устройствам, образуется избыточная информация, используемая для контроля и восстановления информации).

RAID системы

RAID 0 – объединение без избыточной информации

- каждое устройство может работать параллельно и независимо
- +: объем, скорость
- -: без избыточности

RAID 1 – создает фактически два комплекта устройств

- информация, которая записывается на один комплект, дублируется на второй
- каждое устройство может работать параллельно и независимо
- +: надежность, нет временных потерь
- -: объём

RAID системы

- RAID 2 построенные на использовании кодов Хэмминга
 - может исправлять одинарные ошибки и обнаруживать двойные
- RAID 3 система с четностью с чередующимися битами

- В случае гибели одного из содержательных устройств, можно восстановить его содержание по контрольной информации.
- Недостаток RAID 2 и RAID 3: диски с контрольной информацией получают максимальную нагрузку, что приводит к быстрому выходу из строя устройства.

