電子學(一) HW4

1. It is required to bias the MOS amplifier of Fig. 7.3 at point Q for which $V_{OV} = 0.2 \text{ V}$ and $V_{DS} = 1 \text{ V}$. Find the required value of R_D when $V_{DD} = 5 \text{ V}$, $V_{th} = 0.5 \text{ V}$, and $k_n = 10 \text{ mA/V}^2$. Also specify the coordinates of the VTC end point B. What is the small-signal voltage gain of this amplifier? Assuming linear operation, what is the maximum allowable negative signal swing at the output? What is the corresponding peak input signal?

Fig. 7.3

- 2. Design the MOS amplifier of Fig. 7.4(a) to obtain maximum gain while allowing for an output voltage swing of at least ± 0.5 V. Let $V_{DD} = 5$ V, and utilize an overdrive voltage of approximately 0.2 V.
- (a) Specify V_{DS} at the bias point.
- (b) What is the gain achieved? What is the signal amplitude v_{gs} that results in the 0.5-V signal amplitude at the output?
- (c) If the dc bias current in the drain is to be 100 μ A, what value of R_D is needed?
- (d) If $k_n' = \mu_n C_{ox} = 200 \,\mu\text{A/V}^2$, what W/L ratio is required for the MOSFET?

- 3. Threshold voltage $V_{th} = 0.7 \text{ V}$, $\mu_n C_{ox} = 200 \text{ } \mu\text{A/V}^2$, $\mu_p C_{ox} = 200 \text{ } \mu\text{A/V}^2$, W/L = 5. Ignore channel length modulation $\lambda = 0$ and body effect. $V_{DD} = 1.8 \text{ V}$.
- (a) In Fig. 3(a), draw the voltage transfer curve of V_{out} when V_{in} is DC from 0V to
- 1.8V. Specify the operating point V_{out} and Vin at cut-off, linear, saturation region
- (b) In Fig. 3(b), draw the VTC.
- (c) In Fig. 3(c), draw the VTC.

4. When body effect must be taken into account, and using $V_{SB}=1V$ to simply your calculation. Redraw the problem 3 (a), (b), (c).

$$V_{th} = V_{th0} + \gamma \left[\sqrt{2\phi_f + V_{SB}} - \sqrt{2\phi_f} \right]; 2\phi_f = 0.7V, \gamma = 0.4V^{1/2}$$

- 5. Consider the FET amplifier of Fig. 7.10 for the case $V_{th} = 0.4 \text{ V}$, $k_n = 5 \text{ mA/V}^2$, $V_{GS} = 0.6 \text{ V}$, $V_{DD} = 1.8 \text{ V}$, and $R_D = 10 \text{ k}\Omega$.
- (a) Find the dc quantities I_D and V_{DS} .
- (b) Calculate the value of g_m at the bias point.
- (c) Calculate the value of the voltage gain.
- (d) If the MOSFET has $\lambda = 0.1 \text{ V}^{-1}$, find r_o at the bias point and calculate the voltage gain.

Fig. 7.10

6. An NMOS amplifier is to be designed to provide a 0.20-V peak output signal across a 20-k Ω load that can be used as a drain resistor. If a gain of at least 10 V/V is needed, what gm is required? Using a dc supply of 1.8 V, what values of I_D and V_{OV} would you choose? What W/L ratio is required if $\mu_n C_{ox} = 200 \,\mu\text{A/V}^2$? If $V_{th} = 0.4 \,\text{V}$, find V_{GS} .