3. Fonctions mesurables

- **3.1.** Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables d'un espace mesurable (E,\mathcal{A}) dans $(\mathbb{R},\mathscr{B}(\mathbb{R}))$.
 - 1. Montrer que $\inf_n f_n$, $\sup_n f_n$, $\lim \inf_n f_n$, $\lim \sup_n f_n$ sont mesurables.
 - 2. Montrer que si f_n converge simplement vers une fonction f, alors f est mesurable.
- **3.2.** Soient (E, A) un espace mesurable et $(f_n)_n$ une suite de fonctions mesurables de E dans \mathbb{C} . Montrer que l'ensemble

$$\{x \in E, (f_n(x))_n \text{ converge}\}\$$

est un élément de la tribu A.

- **3.3.** Soient (E, A) un espace mesurable et f, g des applications mesurables de (E, A) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On souhaite redémontrer que f + g est mesurable.
 - 1. Montrer que

$$\{f < g\} := \{x \in E, \ f(x) < g(x)\} \in \mathcal{A}.$$

- 2. En déduire que f + g est une fonction mesurable.
- **3.4.** Soient $a, b \in \mathbb{R}$ et $f : [a, b] \to \mathbb{R}$.
 - 1. Montrer que si f est monotone, alors f est mesurable.
 - 2. Montrer que si f est continue par morceaux, alors f est mesurable.
- **3.5.** Exemples de fonctions mesurables. Soit (E, A) un espace mesurable.
 - 1. Soit $A \subset E$. Montrer que la fonction indicatrice $\mathbb{1}_A$ est mesurable si et seulement si $A \in \mathcal{A}$.
 - 2. Soit \mathcal{E} une partition dénombrable de E qui engendre \mathcal{A} . Montrer qu'une fonction $f:E\to\mathbb{R}$ est mesurable si et seulement si f est constante sur chaque partie $X\in\mathcal{E}$.

Indication : décrire la tribu engendrée par \mathcal{E} .

- 3. L'inverse d'une bijection mesurable est-elle toujours mesurable?
- **3.6.** Soit $(f_n)_n$ une suite de fonctions mesurables de (E, \mathcal{A}) dans (F, \mathcal{B}) .
 - 1. Soit $(E_n)_n$ une partition dénombrable de E telle que $E_n \in \mathcal{A}$ pour tout $n \in \mathbb{N}$. Montrer que la fonction f définie par $f(x) = f_n(x)$ si $x \in E_n$ est mesurable.
 - 2. On considère une fonction $N:(E,\mathcal{A})\to (\mathbb{N},\mathcal{P}(\mathbb{N}))$ mesurable. Montrer que la fonction définie sur E par

$$g: x \mapsto f_{N(x)}(x)$$

est mesurable.

- **3.7.** Théorème de récurrence de Poincaré Soient (E, A, μ) un espace mesuré de masse 1, et $f: E \to E$ une application mesurable qui telle que pour tout $A \in \mathcal{A}$, $\mu(f^{-1}(A)) = \mu(A)$.
- Si $A \in \mathcal{A}$ et $x \in A$, on dit que x est A-récurrent s'il existe une infinité d'entiers naturels n tels que la n-ième image itérée de x par f soit dans $A: f^n(x) \in A$. Notons \hat{A} l'ensemble des points A-récurrents. Montrer que, pour toute partie $A \in \mathcal{A}$, \hat{A} est de mesure pleine dans A, c'est-à-dire que $\mu(\hat{A}) = \mu(A)$.

Indication: On pourra considérer les ensembles $B_n = \{x \in A, \ \forall k \geqslant n, \ f^k(x) \notin A\}$ et chercher une condition sur p,q entiers pour que $f^{-p}(B_n) \cap f^{-q}(B_n) = \emptyset$ où on note $f^{-k}(B_n) = \{x \in E, \ f^k(x) \in B_n\}$ pour tout entier k.

3.8. (pour plus tard...) Utiliser l'ensemble de Cantor pour construire un ensemble non borélien dans la tribu de Lebesgue.