Основная теорема арифметики

Следующее утверждение называется основной теоремой арифметики.

1. Докажите, что каждое натуральное число, большее единицы, раскладывается в произведение степеней различных простых множителей однозначно с точностью до порядка следования множителей.

Для того, чтобы было удобно сравнивать разложения различных чисел, отсутствующие простые делители иногда дописывают с нулевыми степенями. Например, числа $18=2^1\cdot 3^2$ и $50=2^1\cdot 5^2$ можно записать как $18=2^1\cdot 3^2\cdot 5^0$ и $50=2^1\cdot 3^0\cdot 5^2$.

Простые числа

Вспомним некоторые базовые факты о простых числах.

- 2. Докажите, что при любом $n \geqslant 2$ для первых n+1 простого числа $p_1 < p_2 < \ldots < p_{n+1}$ верно неравенство $p_{n+1} \leqslant p_1 p_2 \ldots p_n 1$.
- 3. Докажите, что простых чисел бесконечно много
- 4. Докажите, что простых чисел вида 4k-1 бесконечно много.

Степень вхождения

Показатели $a_1, a_2, \ldots a_k$ в разложении $n = p_1^{a_1} p_2^{a_2} \ldots p_k^{a_k}$ называются степенями вхождения простых чисел p_1, \ldots, p_k в число n. Степень вхождения простого числа p в n обозначается как $v_p(n)$ или $\|n\|_p$. Из основной теоремы арифметики следует, что равенство a = b равносильно тому, что $v_p(a) = v_p(b)$ для каждого простого числа p.

5. Докажите, что $v_p(a+b) \geqslant \min(v_p(a), v_p(b))$, причём, если $v_p(a) \neq v_p(b)$, то это неравенство является равенством (но обратное утверждение неверно).

Целой частью вещественного числа x называется наибольшее целое число, не превосходящее x, обозначения: $\lfloor x \rfloor$ или $\lfloor x \rfloor$. Например, $\lfloor 2.7 \rfloor = 2$, $\lfloor 1 \rfloor = 1$ и $\lfloor -2.7 \rfloor = -3$.

6. Докажите тождество $v_p(n!) = \lfloor \frac{n}{p} \rfloor + \lfloor \frac{n}{p^2} \rfloor + \lfloor \frac{n}{p^3} \rfloor + \ldots = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$.

Наименьшее общее кратное

Наименьшее общее кратное натуральных чисел a и b — это наименьшее число делящееся и на a, и на b; обозначения: HOK(a, b) или lcm(a, b).

- 7. Чему равны НОД $(p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}, p_1^{b_1}p_2^{b_2}\dots p_k^{b_k})$ и НОК $(p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}, p_1^{b_1}p_2^{b_2}\dots p_k^{b_k})$?
- 8. Докажите тождество $HOД(a,b) \cdot HOK(a,b) = a \cdot b$.
- 9. Докажите, что для любых натуральных чисел a, b и c верно следующее равенство: HOД(HOK(a,b), HOK(b,c), HOK(c,a)) = HOK(HOД(a,b), HOД(b,c), HOД(c,a)).

¹Это равенство называется формулой Лежандра.

Упражнения

- 10. Докажите, что при всех натуральных n верно неравенство $p_n \leqslant 2^{2^{n-1}}$.
- 11. Докажите, что для любого $n \in \mathbb{N}$ найдутся n последовательных чисел, среди которых: **a)** все составные; **б)** ровно одно простое.
- 12. Существует ли арифметическая прогрессия, состоящая только из простых чисел?
- 13. Для всех натуральных чисел a, b докажите неравенство $HOK(a,b) + HOД(a,b) \geqslant a+b$ и определите, когда выполняется равенство.
- 14. Докажите тождество $v_p(n!) = \frac{n-s_p(n)}{p-1}$, где через s_p обозначена сумма цифр числа n в p-ичной записи.

Задачи

- 15. Числа $x,y,z\in\mathbb{N}$ таковы, что сумма $\frac{xy^2}{z}+\frac{y^3z^4}{x}+\frac{z^5x^6}{y}$ натуральное число. Докажите, что каждое слагаемое является натуральным числом.
- 16. Докажите, что $HOK(a, b) \neq HOK(a + c, b + c)$ при любых натуральных a, b, c.
- 17. Для натурального числа $n\geqslant 3$ через $\alpha_1,\alpha_2,\ldots,\alpha_k$ обозначим последовательность степеней в разложении числа $n!=p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_k^{\alpha_k}$, где $p_1< p_2<\ldots< p_k$ простые числа. Найдите все натуральные числа $n\geqslant 3$, для которых $\alpha_1,\alpha_2,\ldots,\alpha_k$ геометрическая прогрессия.
- 18. Даны натуральные числа a, b, c и d такие, что $ad \neq bc$ и HOД(a,b,c,d) = 1. Множество S состоит из всех значений, которые принимает HOД(an+b,cn+d), когда n пробегает множество всех натуральных чисел. Докажите, что множество S совпадает с множеством всех делителей некоторого натурального числа.