

Universidade Federal Rural do Rio de Janeiro, DECOMP/ICE Prova Optativa, Curso de Sistema de Informação, prof. Luiz Maltar C. B. matéria: Arquitetura de Computadores, Data 27 de agosto de 2021. ALUNO:

(qualquer evidência de cópia da resolução implicará no anulamento da questão para quem passou e para quem recebeu)

Escolha 10 questões e as faça.

- 1) Explique com suas palavras: o pipeline de instrução reduz o tempo total gasto para executar um conjunto de instruções.(valor 1.0)
- 2) Como funciona o modelo de memória cache tipo associativo por conjunto(valor 1.0)
- 3) Por que a técnica de separação de cache de instrução e cache de dados é utilizada para resolver conflitos estruturais nos processadores RISCs.?(valor 1.0)
- 4) Explique, com suas palavras, o funcionamento da unidade de adiantamento na arquitetura MIPS (valor 1.0)
- 5) Dado uma máquina semelhante ao MIPS, com *pipeline* de 5 estágios responda:

O código a seguir foi executado nesta máquina. Sabe-se que a máquina <u>faz</u> adiantamento de dados, quantos ciclos foram gastos?(valor 1.0)

	t1	t2	t3	t4	t5	t6	t7	t8	t9	t10	t11	t12	t13	14	t15	t16	t17	t18	t19
add r3, r11, r12																			
lw r3,30(\$8)																			
or r4,r2,r5																			
and r7,r6,r4																			
lw r6, 10(\$9)																			
sub r7,r5,r8																			

- 6)Marque com (x) a(s) frase(s) correta(s):(valor 1.0)
- () No computador MIPS, admitindo-se a duração de 2ns por estágio do pipeline, a leitura dos registradores é feita no primeiro 1ns do 2º estágio.
- () Somente as instruções de load (lw) e Store (Sw) fazem algo de útil no 4º estágio do MIPS.
- () A predição de desvio fixa tem um desempenho melhor do que a predição dinâmica de desvio que utiliza apenas um bit.
- () No mapeamento completamente associativo que faz uso da localidade espacial, o conteúdo da memória cache é composto por: endereço completo e o dado(informação).
- () Uma característica do modelo de cache completamente associativo é a utilização ao máximo da capacidade da cache.
- () O principal algoritmo utilizado para substituição de blocos na cache com modelo de mapeamento direto é o LRU.
- () No modelo associativo por conjunto, a parte dos bits mais significativo do endereço é armazenado na cache no campo chamado de índice.
- () No mapeamento completamente associativo cada bloco da memória principal só pode ser mapeado em uma única posição da memória cache.
- () Uma característica da arquitetura RISC é unidade de controle microprogamada

- 7) Explique o que é localidade temporal num contexto de memória cache. (valor 1.0)
- 8) Faça um programa em máquina de pilha que resolva a expressão abaixo:(valor 1.5) A = (B-C)/(D+E+I) + B
- 9) Como funciona o algoritmo LRU?(valor 1.0)
- 10) Dê os correspondentes valores em decimal com sinal para o número 1111111112, admitindo-se: (valor 1.0)
- a) o número se encontra em complemento de 2.
- b) o número se encontra em complemento de 1.
- c) o número se encontra em representação sinal magnitude.
- 11) Conforme mostrado no curso, a hierarquia de memória pode ser vista como organizada segundo uma forma triangular. Preencher os pontilhados abaixo segundo as características de hierarquia de memória. (valor 1.0)

hierarquia de memória

12) Converta o número -11,5625 para o formato normalizado IEEE de precisão simples. Dê o resultado em hexadecimal.(valor 2.5)

128	64	32	16	8	4	2	1

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				\Box															\Box											-	
																															ı
																														-	
																															ı
																														لـــــا	
												- 1																		1 1	ı

13) Sabendo-se que as variáveis W,X,R,S,Y,Z se encontram, respectivamente, nas posições de memória 07_{hexa}, 3E_{hexa}, 21_{hexa}, 03_{hexa}, 11_{hexa}, 2B_{hexa} e, de um computador hipotético, figura abaixo, cuja CPU possui 6 bis de endereços e 1byte de dados. Faça as seguintes três operações e **indique se ocorrerá overflow (mostrando conhecimento)**.(as ligações físicas de linhas de endereço e de dados não foram colocadas de modo a melhorar a visualização) (valor 2.0)

W + X, em sinal magnitude.

R - S, em complemento de 1.

Y +Z, em complemento de 2.

