Characterizing PSSs through graph theory

S. Kerleau, C. Royer, D. Cornaz

DFOS, Padova June 2024

Characterizing PSSs

Characterizing positive bases

Why should we care?

Question

How to minimize a smooth function f? (∇f is not available).

Why should we care?

Question

How to minimize a smooth function f? (∇f is not available).

Through direct search:

- Inputs: $x \in \mathbb{R}^n$, $M = \{c_1, \dots, c_s\} \subset \mathbb{R}^n$.
- Compare f(x) to each $f(x + \alpha c_i)$.
- If f(x) is the smallest, decrease α .
- Otherwise, $x \leftarrow x_0 + \alpha c_i$.

Why should we care?

Question

How to minimize a smooth function f? (∇f is not available).

Through direct search:

- Inputs: $x \in \mathbb{R}^n$, $M = \{c_1, \dots, c_s\} \subset \mathbb{R}^n$.
- Compare f(x) to each $f(x + \alpha c_i)$.
- If f(x) is the smallest, decrease α .
- Otherwise, $x \leftarrow x_0 + \alpha c_i$.

If the elements of M are 'well spread' in \mathbb{R}^n , the algorithm converges.

Definition

A **PSS** is a set of vectors well spread in \mathbb{R}^n .

Definition

A **PSS** is a set of vectors well spread in \mathbb{R}^n .

Definition

A **PSS** is a matrix M such that $y^{\top}M \leq 0^{\top}$ implies y = 0.

Definition

A **PSS** is a matrix M such that $y^{\top}M \leq 0^{\top}$ implies y = 0.

Definition

A **PSS** is a matrix M such that $y^{\top}M \leq 0^{\top}$ implies y = 0.

Quiz

We're looking for transformations that leave the 'positively spanning' property invariant.

Quiz

Examples in \mathbb{R}^2

Reorder the elements.

Definition (Structural equivalence \equiv)

M is structurally equivalent to N if M = NP where P is a permutation matrix,

Quiz

Examples in \mathbb{R}^2

Rescale them.

Definition (Structural equivalence \equiv)

M is structurally equivalent to N if M = NPD where P is a permutation matrix, D is diagonal with positive entries

Quiz

Definition (Structural equivalence \equiv)

M is structurally equivalent to N if M = BNPD where P is a permutation matrix, D is diagonal with positive entries and B is invertible.

• If
$$M \equiv N$$
:
$$\begin{cases} M \; PSS & \iff & N \; PSS. \\ M \; positive \; basis & \iff & N \; positive \; basis. \end{cases} .$$

- If $M \equiv N$: $\begin{cases} M \ PSS & \iff & N \ PSS. \\ M \ positive \ basis & \iff & N \ positive \ basis. \end{cases}$
- M positive basis $\implies n+1 \le |M| \le 2n$.

- If $M \equiv N$: $\begin{cases} M \ PSS & \iff & N \ PSS. \\ M \ positive \ basis & \iff & N \ positive \ basis. \end{cases}$
- M positive basis $\implies n+1 \le |M| \le 2n$.
- ullet $egin{bmatrix} I_n & -1_n \end{bmatrix}$ and $egin{bmatrix} I_n & -I_n \end{bmatrix}$ are positive bases, where $-1_n = egin{bmatrix} -1 \ \dots \ -1 \end{bmatrix}$.

- If $M \equiv N$: $\begin{cases} M \ PSS & \iff & N \ PSS. \\ M \ positive \ basis & \iff & N \ positive \ basis. \end{cases}$
- M positive basis $\implies n+1 \le |M| \le 2n$.
- ullet $igl[I_n \quad -1_nigr]$ and $igl[I_n \quad -I_nigr]$ are positive bases, where $-1_n=egin{bmatrix} -1 \ \dots \ -1 \end{bmatrix}$.
- PSSs span \mathbb{R}^n with positive combinations.

Characterizing positive bases

Proposition

$$M$$
 positive basis and $|M| = n + 1$ \Longrightarrow $M \equiv \begin{bmatrix} I_n & -I_n \end{bmatrix}$. M positive basis and $|M| = 2n$ \Longrightarrow $M \equiv \begin{bmatrix} I_n & -I_n \end{bmatrix}$.

Application

In
$$\mathbb{R}^3$$
, any non-minimal PSS of size 5 satisfies $M \equiv \begin{bmatrix} 1 & 0 & 0 & -1 & \times \\ 0 & 1 & 0 & -1 & \times \\ 0 & 0 & 1 & -1 & \times \end{bmatrix}$.

2 Characterizing PSSs

Characterizing positive bases

nec matrices

Definition (Negative echelon column matrix)

 $N \in \mathbb{R}^{n \times s}$ is a **nec matrix** if there exists a sequence $z_0 = 1 < z_1 < z_2 < \cdots < z_{s-1} \le n$ of integers satisfying

- $\textbf{ 1} \text{ For all } j \in \llbracket 1,s-1 \rrbracket \text{, for all } i \in \llbracket z_j,n \rrbracket \text{, } \mathsf{N}_{i,j} = 0.$
- ② For all $j \in [[1, s-1]]$, for all $i \in [[z_{j-1}, z_j 1]]$, $N_{i,j} < 0$.
- **3** $N_{i,s} < 0$, for all $i \ge z_{s-1}$.

nec matrices

Definition (Negative echelon column matrix)

 $N \in \mathbb{R}^{n \times s}$ is a nec matrix if

Each column ends with zeros.

except the last.

Each has less zeros than its predecessor.

3 Each has a block of -1 above the zeros.

the first column starts with it.

The other values are arbitrary.

Example

$$\begin{bmatrix} -1 & \times & \times \\ 0 & -1 & \times \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & \times & \times & \times \\ -1 & \times & \times & \times \\ 0 & -1 & \times & \times \\ 0 & -1 & \times & \times \\ 0 & 0 & -1 & \times \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & \times & \times \\ -1 & \times & \times \\ 0 & -1 & \times \\ 0 & 0 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

Nec and PSS

Theorem

$$M \equiv \begin{bmatrix} I_n & N & X \end{bmatrix}$$
 (with N nec) \Longrightarrow M PSS

Proof.

Simply note that $-1_n \in cone(M)$!

Example

$$\begin{vmatrix} 1 & \times & \times \\ 0 & -1 & \times \\ 0 & -1 & \times \\ 0 & -1 & \times \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{vmatrix}$$

$$\begin{bmatrix} -1 & \times & \times & \times \\ -1 & \times & \times & \times \\ 0 & -1 & \times & \times \\ 0 & -1 & \times & \times \\ 0 & 0 & -1 & \times \end{bmatrix}$$

$$\begin{bmatrix}
-1 & \times \\
0 & -1 \\
0 & 0 \\
0 & 0
\end{bmatrix}$$

Strong edge-connection

Definition (Strongly connected)

A digraph G is **strongly connected** if for each two vertices u and v, an oriented path joins u to v.

Not strongly connected: no path from red to blue.

Strong edge-connection

Definition (Strongly connected)

A digraph G is **strongly connected** if for each two vertices u and v, an oriented path joins u to v.

A strongly connected digraph G.

Definition (Ear)

An ear is a directed path with no vertices in G, except the extremities.

Definition (Ear)

An ear is a directed path with no vertices in G, except the extremities.

Definition (Ear)

An ear is a directed path with no vertices in G, except the extremities.

Definition (Ear)

An ear is a directed path with no vertices in G, except the extremities.

Three ears of the black digraph G.

Definition (Ear)

An ear is a directed path with no vertices in G, except the extremities.

Not ears!

Characterization

G strongly connected \iff G can be built from a sequence of ears.

Characterization

G strongly connected \iff G can be built from a sequence of ears.

Characterization

G strongly connected \iff G can be built from a sequence of ears.

Characterization

G strongly connected \iff G can be built from a sequence of ears.

PSSs arise from strongly connected digraphs through network matrices.

Draw your favourite connected digraph G.

PSSs arise from strongly connected digraphs through network matrices.

Choose a spanning tree. That's your basis.

PSSs arise from strongly connected digraphs through network matrices.

The n^{th} column is the n^{th} arc expressed in the basis.

PSSs arise from strongly connected digraphs through **network matrices**.

$$\mathsf{M} = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & -1 \end{bmatrix}$$

arcs: -1-2 = 4 columns: $-c_1-c_2 = c_4$

PSSs arise from strongly connected digraphs through network matrices.

All network matrices are equivalent.

PSSs arise from strongly connected digraphs through network matrices.

G is strongly connected \implies M is a PSS.

PSSs arise from strongly connected digraphs through network matrices.

G is **not** strongly connected \implies M is **not** a PSS.

Nec matrices

Definition (Negative echelon column matrix)

 $N \in \mathbb{R}^{n \times s}$ is a nec matrix if

• Each column ends with zeros.

except the last.

Each has less zeros than its predecessor.

 \odot Each has a block of -1 above the zeros.

the first column starts with it.

The other values are arbitrary.

Example

$$\begin{bmatrix} -1 & \times & \times \\ 0 & -1 & \times \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & \times & \times & \times \\ -1 & \times & \times & \times \\ 0 & -1 & \times & \times \\ 0 & -1 & \times & \times \\ 0 & 0 & -1 & \times \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & \times & \times \\ -1 & \times & \times \\ 0 & -1 & \times \\ 0 & 0 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

G strongly connected \iff G associated to $[I_n \ N \ X]$. Let's prove it.

Add an ear. What happens?

The previous matrix is contained in the new one...

$$\begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 \end{bmatrix}$$

...with zeros ending its columns.

$$\begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 \end{bmatrix}$$

The new column ends with -1.

$$\begin{bmatrix} I_3 & -1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 \end{bmatrix}$$

Add another ear.

Same phenomenon! **nec** matrix!

Non-ears break the pattern.

Non-ears break the pattern.

Trivial ears add useless columns.

Graphs and PSSs

Theorem

Graph strongly connected ⇔ its network matrices are PSSs!

Remark

Characterizations of strongly connected digraphs can be restated in the language of linear algebra !

Characterization

G strongly connected \iff a network matrix is $\begin{bmatrix} I & N & X \end{bmatrix}$ (N nec).

G not strongly connected \iff it is $\begin{bmatrix} I & N & X \\ 0 & 0 & A \end{bmatrix}$ (A non-negative).

Characterization

G strongly connected \iff a network matrix is $\begin{bmatrix} I & N & X \end{bmatrix}$ (N nec).

G not strongly connected \iff it is $\begin{bmatrix} I & N & X \\ 0 & 0 & A \end{bmatrix}$ (A non-negative).

G is strongly connected.

Characterization

G strongly connected \iff a network matrix is $[I \ N \ X]$ (N nec).

G not strongly connected \iff it is $\begin{bmatrix} I & N & X \\ 0 & 0 & A \end{bmatrix}$ (A non-negative).

Characterization

G strongly connected \iff a network matrix is $[I \ N \ X]$ (N nec).

G not strongly connected
$$\iff$$
 it is $\begin{bmatrix} I & N & X \\ 0 & 0 & A \end{bmatrix}$ (A non-negative).

The property can be generalized!

Characterization

$$\textit{M PSS} \qquad \iff \quad \textit{M} \equiv \begin{bmatrix} \textit{I} & \textit{N} & \textit{X} \end{bmatrix} \; (\textit{N nec})$$

$$\begin{array}{lll} \textit{M PSS} & \iff & \textit{M} \equiv \begin{bmatrix} \textit{I} & \textit{N} & \textit{X} \end{bmatrix} \; (\textit{N nec}). \\ \textit{M not PSS} & \iff & \textit{M} \equiv \begin{bmatrix} \textit{I} & \textit{N} & \textit{X} \\ \textit{0} & \textit{0} & \textit{A} \end{bmatrix} \; (\textit{A non-negative}). \end{array}$$

Structural equivalence

Characterizing PSSs

Characterizing positive bases

A very nice conjecture

Characterization

 $M PSS \iff it is equivalent to \begin{bmatrix} I & N & X \end{bmatrix}$ (N nec).

 $M \text{ not } PSS \iff \text{ it is equivalent to } \begin{bmatrix} I & N & X \\ 0 & 0 & A \end{bmatrix} \text{ (A non-negative)}.$

...well, maybe not

Nec matrices

Definition (Negative echelon column matrix)

 $N \in \mathbb{R}^{n \times s}$ is a nec matrix if

• Each column ends with zeros.

except the last.

Each has less zeros than its predecessor.

ullet Each has a block of -1 above the zeros.

the first column starts with it.

The other values are arbitrary.

Example

$$\begin{bmatrix} -1 & \times & \times \\ 0 & -1 & \times \\ 0 & 0 & -1 \\ 0 & 0 & -1 \\ \end{bmatrix}$$

```
\begin{bmatrix} -1 & \times & \times & \times \\ -1 & \times & \times & \times \\ 0 & -1 & \times & \times \\ 0 & -1 & \times & \times \\ 0 & 0 & -1 & \times \\ 0 & 0 & 0 & -1 \end{bmatrix}
```

$$\begin{bmatrix} -1 & \times & \times \\ -1 & \times & \times \\ 0 & -1 & \times \\ 0 & 0 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$$

We see three 'arbitrary' blocks.

Let's list the restrictions on these blocks.

$$\begin{bmatrix} -1 & \times & \times & \times \\ -1 & \times & \times & \times \\ 0 & -1 & \times & \times \\ 0 & 0 & -1 & \times \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix} x_{1}$$

• Vectors in $cone(X_i)$ do not have <u>one</u> positive coordinate.

$$\begin{bmatrix} -1 & \times & \times & \times \\ -1 & \times & \times & \times \\ 0 & -1 & \times & \times \\ 0 & 0 & -1 & \times \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix} X_{1}$$

- Vectors in $cone(X_i)$ do not have <u>one</u> positive coordinate.
- Vectors in $cone(X_i)$ are not negative.

June 2024

$$\begin{bmatrix} -1 & \times & \times & \times \\ -1 & \times & \times & \times \\ 0 & -1 & \times & \times \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}$$

- Vectors in $cone(X_i)$ do not have <u>one</u> positive coordinate.
- Vectors in $cone(X_i)$ are not negative.
- \implies In X_1 , each cross is a 0.

$$\begin{bmatrix} -1 & \times & \times & \times \\ -1 & \times & \times & \times \\ 0 & -1 & \times & \times \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix} x_{2}$$

- The max entry of $x \in cone(X_i)$, when positive, is <u>not</u> unique.
- Vectors in $cone(X_i)$ are not negative.

$$I_{10} \begin{bmatrix} -1 & 3 & 9 & 2 \\ -1 & 3 & 9 & 2 \\ 0 & -1 & \times & \times \\ 0 & -1 & \times & \times \\ 0 & -1 & \times & \times \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}$$

- The max entry of $x \in cone(X_i)$, when positive, is <u>not</u> unique.
- Vectors in $cone(X_i)$ are not negative.
- \implies Columns of X_2 are positive multiples of a same $y \in \{1_2, -e_1, -e_2\}$.

June 2024

$$I_{10} \begin{bmatrix} -1 & 3 & 9 & 2 \\ -1 & 3 & 9 & 2 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & -3 & 5 \\ 0 & -1 & -3 & 5 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}$$

- The max entry of $x \in cone(X_i)$, when positive, is <u>not</u> unique.
- Vectors in $cone(X_i)$ are not negative.

There are no other restrictions!

Characterizing bases

Definition (Critical set)

 $K(\mathbb{R}^n)$ is the set of vectors v satisfying condition 1 or 2.

- **1** $v \le 0_n$ & $\exists i, v_i = 0$.
- $\exists i, j, v_i = v_j = \max_{k \le n} v_k > 0.$

Characterizing bases

Definition (Critical set)

 $K(\mathbb{R}^n)$ is the set of vectors v satisfying condition 1 or 2.

- $0 \text{ v} \leq 0_n \text{ & } \exists i, v_i = 0.$
- **2** $\exists i, j, v_i = v_j = \max_{k \le n} v_k > 0.$

Theorem

Near-maximal bases

Proposition

$$M$$
 has size $2n-1\iff M\equiv \left[egin{array}{ccc} -1 & 0 \ n & -1 & x^{ op} \ 0 & -I_{n-2} \end{array}
ight]$, $x\in\mathbb{R}^{n-2}$, $x\leq 0_{n-2}$.

Example

Basis of size 7 in $\mathbb{R}^4 \iff \text{equivalent to} \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & -x & -y \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}$, where $x \leq 0$ and $y \leq 0$.

Near-minimal bases

Proposition

$$|M| = n + 2 \iff M \equiv \begin{bmatrix} I_n & -1_k & x \\ 0_{n-k} & -1_{n-k} \end{bmatrix}, \begin{bmatrix} 1 \le k < n, x \in \mathbb{R}^k \\ x \le 0, x_1 = 0 \end{bmatrix}.$$

Example

Basis of size 5 in
$$\mathbb{R}^3 \iff$$
 equivalent to
$$\begin{vmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & x \\ 0 & 0 & 1 & 0 & -1 \end{vmatrix}, x \le 0.$$

Conclusion

In a nutshell

- Digraphs are pretty cool.
- The notion of PSS generalizes that of strongly connected digraph.
- Knowing so allows to find new properties of PSSs.

Perspectives

- Characterizing blocks with even more rows.
- Characterizing blocks with few columns.
- Characterizing PkSSs in a similar fashion.

Thanks for your attention!