

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 Claim 1 (currently amended) : A method for determining
2 a threshold value (O_{\max} , O_{\min} , O_{TR}) serving to limit an output
3 signal of a processing unit into which an input signal has
4 been fed, characterized in that a level of the input signal
5 is determined and that the threshold value (O_{\max} , O_{\min} , O_{TR})
6 is controlled as a function of the level of the input
7 signal, the threshold value (O_{\max} , O_{\min} , O_{TR}) being controlled
8 independently of the output signal.

1 Claim 2 (currently amended) : The A method as in claim
2 + for determining a threshold value (O_{\max} , O_{\min} , O_{TR}) serving
3 to limit an output signal of a processing unit into which
4 an input signal has been fed, characterized in that a level
5 of the input signal is determined and that the threshold
6 value (O_{\max} , O_{\min} , O_{TR}) is controlled as a function of the
7 level of the input signal, wherein from the said level a
8 mean level (I) is derived on the basis of which the
9 threshold value (O_{\max} , O_{\min} , O_{TR}) is set controlled.

1 Claim 3 (currently amended) : The method as in claim 2,
2 wherein the threshold value (O_{TR}) is set controlled by a

3 differential amount (TR_{max}) above the mean level (I) of the
4 input signal.

1 Claim 4 (previously presented): The method as in claim
2, wherein the mean level (I) is derived from the input
3 signal $s(t)$ along the following formula:

$$I = \frac{1}{T} \times \int_0^T |s(t)| \times dt$$

5 whereby an averaging function is performed over a time
6 interval T .

1 Claim 5 (currently amended): ~~The A method as in claim~~
2, ~~wherein for determining~~ a maximum threshold value (O_{max})
3 ~~is established serving to limit an output signal of a~~
4 ~~processing unit into which an input signal has been fed,~~
5 ~~characterized in that a level of the input signal is~~
6 ~~determined and that the threshold value (O_{max}) is controlled~~
7 ~~as a function of the level of the input signal.~~

1 Claim 6 (previously presented): The method as in claim
2, wherein the maximum threshold value (O_{max}) is so selected
3 as to be equal to an upper comfort level of a hearing-
4 impaired person.

1 Claim 7 (currently amended): ~~The A method as in claim~~
2, ~~wherein for determining~~ a minimum threshold value (O_{min})
3 ~~is established serving to limit an output signal of a~~

4 processing unit into which an input signal has been fed,
5 characterized in that a level of the input signal is
6 determined and that the threshold value (O_{min}) is controlled
7 as a function of the level of the input signal.

1 Claim 8 (previously presented): The method as in claim
2 7, characterized in that the minimum threshold value (O_{min})
3 is so selected as to be equal to an output level that
4 results from an input level of about 80 dB and the
5 corresponding amplification at that input level that is
6 produced for a hearing-impaired person.

1 Claim 9 (previously presented): The method as in claim
2 3, wherein the differential amount (TR_{max}) is adjusted along
3 a compression ratio for a hearing-impaired person.

1 Claim 10 (original): Application of the method per one
2 of the claims 1 to 9 for operating a hearing aid.

1 Claim 11 (previously presented): Application of the
2 method per claim 6 for operation of a hearing aid by a
3 hearing-impaired person.

1 Claim 12 (currently amended): A system for
2 implementing the method per claim 1 in a method for
3 determining a threshold value (O_{max} , O_{min} , O_{TR}) serving to

4 limit an output signal of a processing unit into which an
5 input signal has been fed, wherein a level of the input
6 signal is determined and that the threshold value (O_{max} , O_{min} ,
7 O_{TR}) is controlled as a function of the level of the input
8 signal, the threshold value (O_{max} , O_{min} , O_{TR}) being controlled
9 independently of the output signal, characterized in that
10 a processing unit is provided which receives an input
11 signal and which permits within the processing unit the
12 determination of a threshold value (O_{max} , O_{min} , O_{TR}) for the
13 purpose of limiting the output signal, said threshold value
14 (O_{max} , O_{min} , O_{TR}) being adjustable as a function of the level
15 of the input signal.

1 Claim 13 (previously presented): The system as in
2 claim 12, wherein from the level of the input signal a mean
3 level (I) can be determined by averaging.

1 Claim 14 (currently amended): The system as in claim
2 13—claim 13, wherein the threshold value (O_{TR}) can be
3 adjusted to a point which by a differential amount (TR_{max})
4 is above the mean level (I) of the input signal.

1 Claim 15 (previously presented): The system as in
2 claim 14, wherein the mean level (I) can be derived from
3 the input signal $s(t)$ by employing the following formula:

4
$$I = \frac{1}{T} \times \int_0^T |s(t)| \times dt$$

5 where an averaging function can be performed over a
6 time interval T.

1 Claim 16 (previously presented) : The system as in
2 claim 12, wherein it permits a maximum threshold value
3 (O_{max}) to be established.

1 Claim 17 (previously presented) : The system as in
2 claim 16, wherein the maximum threshold value (O_{max}) can
3 be selected to be equal to an upper comfort level of a
4 hearing-impaired person.

1 Claim 18 (previously presented) : The system as in
2 claim 12, wherein it permits a minimum threshold value
3 (O_{min}) to be established.

1 Claim 19 (previously presented) : The system as in
2 claim 18, wherein the minimum threshold value (O_{min}) can
3 be selected to be equal to a mean amplification value for
4 a hearing-impaired person.

1 Claim 20 (previously presented) : The system as in
2 claim 13, wherein the differential amount (TR_{max}) can be
3 adjusted corresponding to a compression ratio for a
4 hearing-impaired person.