

远程桌面监控系统需求规格说明书

1. 概况

目名称	远程桌面监控系统
行业	影音
架构类型	C/S
开发技术	服务端: C++: MFC+三层架构、Socket 通信 桌面端: C++: MFC+三层架构、Socket 通信 项目管理工具: Svn/Git 项目管理工具 数据库: MySQL 项目特点: Socket 通信、桌面捕获
规模	系统总体规模: 6 人月

2. 项目概述

远程监控系统是一款远程控制软件,以在网络上由一台电脑(主控端 Remote/客户端)远距离去控制另一台电脑(被控端 Host/服务器端)的技术,这里的远程不是字面意思的远距离,一般指通过网络控制远端电脑,不过,大多数时候我们所说的远程控制往往指在局域网中的远程控制而言。

3. 总体业务流程介绍

启动服务器后,多个客户端就可以连接上该服务器,客户端负责采集本机的进程信息和 桌面截图,定时发送到服务器端。服务器端可以实时监控客户端的桌面及进程信息,并保存 到数据库或文件中以备查询日志记录,服务器端可以远程控制终端计算机,比如可以远程查 杀进程、锁屏、关机等。

4. 系统功能

4.1 系统功能结构

远程监控桌面系统包括7个功能模块:登陆、数据采集、通讯管理、监控管理、数据存储、用户管理和系统配置。功能结构图如图4.1.1 所示

图 4.1.1 远程监控桌面系统功能结构图

4.2 系统功能需求

4.2.1 功能需求概述

登录

本模块为用户提供登陆的功能。

● 数据采集

本模块采集客户端的各种数据信息。

● 通讯管理

本模块是用于通讯的各种设置。

● 监控管理

本模块是用于服务器监控客户端的各种信息。

● 数据存储

本模块是用于将监控得到的信息存储。

● 用户管理

本模块是用于对用户信息进行操作。

● 系统配置

本模块是用于对系统的信息进行修改配置。

4.2.2 登录

本功能模块通过本地文件/数据库,保存用户的账号信息,登录时通过文件/数据库信息 判断玩家是否已注册。

4.2.3 数据采集

本功能模块为采集被控端的数据,主控端可以选择采集进程、桌面和电脑配置信息等数据。

4.2.4 通讯管理

本模块主要用于设置通讯信息。

4.2.5 监控管理

本模块主要为主控端监控被控端的各种信息,比如桌面、进程、关机和重启等信息。

4.2.6 数据存储

本模块主要是用于将监控到的数据有选择的进行存储。

4.2.7 用户管理

本模块主要用于对用户信息进行增删改查。

4.2.8 系统配置

本模块主要用于对系统配置进行设置。

4.3 系统逻辑结构

远程监控桌面系统的核心组件就是监控管理。系统逻辑分层组件结构如下图所示:

图 4.3.1 系统架构图

1. 关键技术与难点

技术知识:

- C++、MFC 编程知识;
- 数据库/I0流;
- 双缓冲绘图、掩码贴图;
- 多线程;
- Socket 通信;

2. 行业知识

1、双缓冲绘图

在图形图象处理编程过程中,双缓冲是一种基本的技术。我们知道,如果窗体在响应 WM_PAINT 消息的时候要进行复杂的图形处理,那么窗体在重绘时由于过频的刷新而引起闪烁现象。解决这一问题的有效方法就是双缓冲技术。因为窗体在刷新时,总要有一个擦除原来图象的过程 OnEraseBkgnd,它利用背景色填充窗体绘图区,然后在调用新的绘图代码进行重绘,这样一擦一写造成了图象颜色的反差。当 WM_PAINT 的响应很频繁的时候,这种反差也就越发明显。于是我们就看到了闪烁现象。

我们会很自然的想到,避免背景色的填充是最直接的办法。但是那样的话,窗体上会变的一团糟。因为每次绘制图象的时候都没有将原来的图象清除,造成了图象的残留,于是窗体重绘时,画面往往会变的乱七八糟。所以单纯的禁止背景重绘是不够的。我们还要进行重新绘图,但要求速度很快,于是我们想到了使用 BitBlt 函数。它可以支持图形块的复制,

速度很快。我们可以先在内存中作图,然后用此函数将做好的图复制到前台,同时禁止背景 刷新,这样就消除了闪烁。以上也就是双缓冲绘图的基本的思路。

2. Socket

Socket 的英文原义是"孔"或"插座"。作为 BSD UNIX 的进程通信机制,取后一种意思。通常也称作"套接字",用于描述 IP 地址和端口,是一个通信链的句柄,可以用来实现不同虚拟机或不同计算机之间的通信。在 Internet 上的主机一般运行了多个服务软件,同时提供几种服务。每种服务都打开一个 Socket,并绑定到一个端口上,不同的端口对应于不同的服务。Socket 正如其英文原意那样,像一个多孔插座。一台主机犹如布满各种插座的房间,每个插座有一个编号,有的插座提供 220 伏交流电, 有的提供 110 伏交流电,有的则提供有线电视节目。 客户软件将插头插到不同编号的插座,就可以得到不同的服务。

3. 系统工作量估计

模块	功能	工作量 (人天)	合计	备注
登陆	登陆注册	10	10	
数据采集	采集进程数据	15	30	
	采集桌面截图	15		
通讯管理		10	10	
监控管理	桌面监控	15	60	
	进程监控	15		
	锁屏解锁	15		
	关机重启	15		
数据存储	保存桌面截图	15	30	
	保存进程信息	15		
用户管理	新增用户	10	40	
	更新用户信息	10		
	查询用户信息	10		
	删除用户	10		
系统配置	端口号	10	20	

	数据库配置	10	

本项目总的实施工作量为200人天