DCP 1206: Probability Lecture 22 — Chernoff Bounds, Hoeffding's Inequality, and WLLN

Ping-Chun Hsieh

December 6, 2019

Announcements

Our class will be relocated at EC114 next Wednesday (12/11)

HW5 is posted on E3 (Due: 12/11 in class)

This Lecture

1. Chernoff Bounds and Hoeffding's Inequality

2. Weak Law of Large Numbers

Reading material: Chapter 11.1-11.3

Review: Chebyshev's Inequality

• Chebyshev's Inequality: Let X be a random variable with mean μ and variance σ^2 . Then, for any t > 0,

$$P(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}$$

Proof:

Review: Chebyshev's Inequality and Sample Mean

• Chebyshev's and Sample Mean: Let X_1, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ and variance σ^2 . Define $\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$. Then, for any $\varepsilon > 0$, we have

$$P(|\bar{X} - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2 n}$$

Any Issue With Chebyshev's Inequality?

- Example: X_1, \dots, X_n are i.i.d. Bernoulli with parameter 0.5
 - $E[X_i] =$ _____ and $Var[X_i] =$ _____
 - Chebyshev's: $P(|\bar{X} \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2 n}$
 - ▶ Let's plot $P(|\bar{X} \mu| \ge \varepsilon)$ for small ε

$$\varepsilon = 0.01$$

1. Chernoff Bounds

Chernoff Bound

• Chernoff Bound: Let X be a random variable with MGF $M_X(t)$ Suppose $M_X(t)$ exists for all t in some set S. Then, for any t>0 and $t\in S$, for any $a\in \mathbb{R}$, we have

$$P(X \ge a) \le e^{-ta} \cdot M_X(t)$$

Proof:

Optimizing the Chernoff Bound

• Chernoff Bound: Let X be a random variable with MGF $M_X(t)$ Suppose $M_X(t)$ exists for all t in some set S. Then, for any t>0 and $t\in S$, for any $a\in \mathbb{R}$, we have

$$P(X \ge a) \le e^{-\phi(a)},$$

where
$$\phi(a) = \max_{t>0, t \in S} (ta - \ln M_X(t))$$

Proof:

Example: Chernoff Bound for Bernoulli R.V.s

- Example: Suppose $X \sim \text{Bernoulli}(p)$
 - What is $M_X(t)$?
 - What is the Chernoff bound for X? $(P(X \ge a) \le e^{-ta} \cdot M_X(t))$

Example: Optimizing Chernoff Bound for Bernoulli R.V.s

- Example: Suppose $X \sim \text{Bernoulli}(p)$
 - How to optimize the Chernoff bound for X? $(P(X \ge a) \le e^{-\phi(a)}, \phi(a) = \max_{t>0, t \in S} (ta \ln M_X(t)))$

How about applying Chernoff bound to sum of independent random variables?

Hoeffding's Inequality (Formally)

► Hoeffding's Inequality (For Bernoulli): Let X_1, \dots, X_n be a sequence of i.i.d. Bernoulli random variables with parameter p. Define $\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$. Then, for any $\varepsilon > 0$, we have $P(|\bar{X} - p| \ge \varepsilon) \le 2 \exp(-2n\varepsilon^2)$

Proof of Hoeffding's Inequality (Positive Part)

$$P(\bar{X} - p \ge \varepsilon) \le \exp(-2n\varepsilon^2)$$

• [Hint] Chernoff bound: $P(X \ge a) \le e^{-ta} \cdot M_X(t)$

$$P(\bar{X} - p \ge \varepsilon) \le$$

Hoeffding's Lemma

► Hoeffding's Lemma: Let Z be a random variable with E[Z] = 0, and $Z \in [a,b]$ with probability 1. Then, for any t > 0, we have $E[e^{tZ}] \le \exp\left(\frac{t^2(b-a)^2}{2}\right)$

• Question: If $Z \sim \text{Bernoulli}(p)$, then $E[e^{t(Z-p)}] \leq$

Proof of Hoeffding's Inequality (Negative Part)

$$P(\bar{X} - p \le -\varepsilon) = P(p - \bar{X} \ge \varepsilon) \le \exp(-2n\varepsilon^2)$$

• [Hint] Chernoff bound: $P(X \ge a) \le e^{-ta} \cdot M_X(t)$

$$P(p - \bar{X} \ge \varepsilon) \le$$

What if we let $n \to \infty$?

Chebyshev's and Sample Mean: $n \to \infty$

• Chebyshev's and Sample Mean: Let X_1, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ and variance σ^2 . Define $\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$. Then, for any $\varepsilon > 0$, we have

$$P(|\bar{X} - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2 n}$$

▶ By letting $n \to \infty$:

The Weak Law of Large Numbers (WLLN)

The Weak Law of Large Numbers (Khinchin's Law): Let X_1, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ . Define $\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$. Then, for every $\varepsilon > 0$, we have $P(|\bar{X} - \mu| \ge \varepsilon) \to 0$ as $n \to \infty$

Question: Any change in technical conditions (cf: Chebyshev's)?

Question: What does "convergence" mean here?

Convergence in Probability

• Convergence of a Deterministic Sequence: Let $a_1, a_2 \cdots$ be a sequence of real numbers. We say that a_n converges to a if for every $\varepsilon > 0$, there exists N_0 such that

$$|a_n - a| \le \varepsilon$$
 for all $n \ge N_0$

• Convergence in Probability: Let $Y_1, Y_2 \cdots$ be a sequence of i.i.d. random variables, and let a be a real number. We say that Y_n converges to a if for every $\varepsilon > 0$, we have

Next Lecture

- Strong Law of Large Numbers
- Central Limit Theorem

1-Minute Summary

1. Chernoff Bounds and Hoeffding's Inequality

- Put the r.v. in the exponentiate (similar to MGF)
- Hoeffding's: $P(|\bar{X} p| \ge \varepsilon) \le 2 \exp(-2n\varepsilon^2)$

2. Weak Law of Large Numbers

Convergence in probability