Anvendt matematikk 2 1T, R1 og R2

Innhold

1	\mathbf{Geo}	Gebra	2			
	1.1	Knapper og kommandoer	3			
2	Numeriske metoder					
	2.1	Introduksjon til Python	10			
	2.2	Newtons metode	12			
	2.3	Trapesmetoden	14			

Kapittel 1

GeoGebra

1.1 Knapper og kommandoer

Grafikkfelt

Knappene velges fra rullemenyer på verktøylinjen. Nummereringen av menyene er fra venstre.

Flytter grafikkfeltet. Endrer verdiavstanden hvis man peker på aksene. (Meny nr. 10)

CAS

Gjengir uttrykket som er inntastet, ofte i forkortet form.
Gjengir uttrykket som er inntastet.
Gir tilnærmet verdi av et uttrykk (som desimaltall).
Gir eksaktløsningen av en ligning.
Gir tilnærmet løsning av en ligning som desimaltall.

Hurtigtaster

Beskrivelse	\mathbf{PC}	Mac
kvadratrot	alt+r	alt+r
pi	alt+p	alt+p
uendelig	alt+u	alt+,
kryssprodukt	alt+shift+8	ctrl+shift+8
eulers tall	alt+e	alt+e
gradtegnet $(\frac{\pi}{180})$	alt+o	alt+o
	kvadratrot pi uendelig kryssprodukt eulers tall	kvadratrot alt+r pi alt+p uendelig alt+u kryssprodukt alt+shift+8 eulers tall alt+e

Kommandoliste

```
abs( \langle x \rangle )
```

Finner lengden til et objekt x.

Asymptote(<Funksjon>)

Finner asymptotene til en funksjon.

Avstand(<Punkt>, <Objekt>)

Gir avstanden fra et punkt til et objekt.

ByttUt($\langle \text{Uttrykk} \rangle$, $\langle \text{Liste med for and ringer} \rangle$) (CAS)

Viser et gitt uttrykk etter endring av variabler, gitt i en liste.

Deriverte(<Funksjon>)

Gir den deriverte av en funksjon.

Merk: For en definert funksjon f(x), kan man like gjerne skrive f'(x).

Ekstremalpunkt(<Funksjon>, <Start>, <Slutt>)

Finner lokale ekstremalpunkt og ekstremalverdier for en funksjon f på et gitt intervall.

Ekstremalpunkt(Polynom)

Finner lokale ekstremalpunkt og ekstremalverdier til et polynom.

Funksjon(<Funksjon>, <Start>, <Slutt>)

Tegner en funksjon på et gitt intervall.

Høyde(<Objekt>)

Gir avstanden fra toppunkt til grunnflate i et objekt. Merk: Avstanden har retning, og derfor kan den noen ganger være negativ. Tallverdien er den geometriske høyden.

HøyreSide(<Likning>) (CAS)

Gir høyresiden til en likning.

HøyreSide(<Liste med likninger>) (CAS)

Gir en liste med høyresidene i en liste med ligninger.

Integral(<Funksjon>)

Gir uttrykket til det ubestemte integralet av en funksjon. (Merk: Hvis kommandoen skrives i inntastingsfeltet, blir konstantleddet utelatt).

Integral(<Funksjon>, <Start>, <Slutt>)

Gir det bestemte integralet av en funksjon på et intervall.

Integral(<Variabel>) (CAS)

Gir uttrykket til det ubestemte integralet til en funksjon av gitt variabel. (Brukes dersom man ønsker å integrere funksjoner avhengig av en annen variabel enn x).

Kule(<Punkt>, <Radius>)

Viser en kule i Grafikkfelt 3D med sentrum i et gitt punkt og med en gitt radius.

Kurve(<Uttrykk>, <Uttrykk>, <Parametervariabel>, <Start>, <Slutt>)

Viser parameteriseringen av en kurve i Grafikkfelt 3D på et gitt intervall. Uttrykkene er henholdsvis uttrykkene for x, y og z-koordinatene, bestemt av en gitt parametervariabel.

Merk: Med mindre et bestemt intervall av kurven er ønsket, er det bedre å skrive parameteriseringen direkte inn i inntastingsfeltet som A+t*u, hvor A er et punkt på linja og u er en retningsvektor.

Linje(<Punkt>, <Punkt>)

Gir uttrykket til en linje mellom to punkt. Hvis punktene har tre koordinater besår uttrykket av et punkt på linja og en fri variabel $\{lambda\}$ mulitplisert med en retningsvektor.

Løs(<Likning med x>) (CAS)

Løser en likning med x som ukjent.

Løs(<Liste med likninger>, <Liste med variabler>) $({\rm CAS})$

Finner alle løsninger av en liste med ligninger med gitte variabel som ukjente.

Løs(<Likning>, <Variabel>) (CAS)

Finner alle løsninger av en gitt likning med en gitt variabel som ukjent.

Maks(<Funksjon>, <Start x-verdi>, <Slutt x-verdi>)

Finner absolutt maksimum og maskimalpunkt for en funksjon f på et gitt intervall.

Min(<Funksjon>, <Start x-verdi>, <Slutt x-verdi>)

Finner absolutt minimum og minimumspunkt for en funksjon f på et gitt intervall.

Nullpunkt(<Polynom>)

Finner alle nullpunkter til et polynom.

NullpunktIntervall(<Funksjon>, <Start>, <Slutt>)

Finner alle nullpunkter på et gitt intervall til en hvilken som helst funksjon.

Plan(<Punkt>, <Punkt>, <Punkt>)

Viser et plan i Grafikkfelt 3D, utspent av to av vektorene mellom tre gitte punkt.

Prisme(<Punkt>, <Punkt>, ...)

Framstiller en prisme i Grafikkfelt 3D. Prisme [A,B,C,D] lager en prisme med grunnflate ABC og tak DEF, Prisme [A,B,C,D,E] har grunnflate ABCD og tak EFG. F,G og eventelt E blir konstruert av GeoGebra slik at hver sideflate er et parallellogram. Under kategorien Prisme i algebrafaltet finner man en konstant som oppgir volumet til pyramiden.

Punkt(<Liste>)

Lager et punkt med koordinater gitt som liste.

Merk: For å lage punktet (x, y), kan man liksågodt skrive (x, y) i inntastingsfeltet. Skriver man (x, y) i CAS lager man vektoren [x, y].

Pyramide(<Punkt>, <Punkt>, ...)

Framstiller en pyramide i Grafikkfelt 3D. Pyramide [A,B,C,D] lager en pyramide med grunnflate A,B,C og toppunkt D, mens Pyramide [A,B,C,D,

E] har grunnflate A,B,C,D og toppunkt E. Under kategorien Pyramide i algebrafaltet finner man en konstant som oppgir volumet til pyramiden.

RegLin(<Liste>)

Bruker regresjon med en rett linje for å tilpasse punkt gitt i en liste.

RegEksp(<Liste>)

Bruker regresjon med en eksponentialfunksjon for å tilpasse punkt gitt i en liste.

RegPoly(<Liste>, <Grad>)

Bruker regresjon med et polynom av gitt grad for å tilpasse punkt gitt i en liste.

RegPot(<Liste>)

Bruker regresjon med en potensfunksjon for å tilpasse punkt gitt i en liste.

RegSin(<Liste>)

Bruker regresjon med en sinusfunksjon for å tilpasse punkt gitt i en liste.

Skalarprodukt(<Vektor>, <Vektor>)

Finner skalarproduktet av to vektorer.

 $\mathit{Merk} :$ For to vektorer u og v kan man like gjerne skrive $\mathtt{u} \! \star \! \mathtt{v}.$

Skjæring(<Objekt>, <Objekt>)

Finner skjæringspunktene mellom to objekter.

Skjæring(<Funksjon>, <Funksjon>, <Start>, <Slutt>)

Finner skjæringspunktene mellom to funksjoner på et gitt intervall.

 ${\tt Sum(\ <\! Uttrykk>,\ <\! Variabel>,\ <\! Start>,\ <\! Slutt>\)\ (CAS)}$

Finner summen av en rekke med en løpende variabel på et intervall.

TrigKombiner(<Funksjon>)

Skriver om et uttrykk på formen $a\sin(kx) + b\cos(kx)$ til et kombinert

uttrykk på formen $r\cos(kx-c)$.

TrigKombiner(<Funksjon>, sin(x))

Skriver om en funksjon på formen $a\sin(kx) + b\cos(kx)$ til et kombinert uttrykk på formen $r\sin(kx+c)$.

Vektor(<Punkt>)

Lager vektoren fra origo til et gitt punkt.

Merk: I CAS kan man lage vektoren [x, y] ved å skrive (x, y), dette anbefales.

Vektorprodukt(<Vektor>, <Vektor>) (CAS)

Finner vektorproduktet av to vektorer.

Merk: Merk: For to vektorer u og v kan man like gjerne skrive $u \otimes v$.

Vendepunkt(<Polynom>)

Finner vendepunktene til et polynom.

VenstreSide(<Likning>) (CAS)

Gir venstresiden til en likning.

VenstreSide(<Liste med likninger>) (CAS)

Gir en liste med venstresidene i en liste med ligninger.

Vinkel(<Vektor>, <Vektor>)

Gir vinkelen mellom to vektorer. Kan også brukes for vinkel mellom plan/linjer, plan/plan og linje/linje

Kapittel 2

Numeriske metoder

2.1 Introduksjon til Python

```
print("Hello world!")

Output
Hello world!
```

Python deler talll inn i tre typer:

```
int | reelle heltall
float | relle tall
complex | komplekse tall
```

Vi skal i denne boka konsentrere oss om int og float. Tallypene definerer vi ved å ekskludere eller inkludere punktum:

```
1 a = 3 # a er av typen int
2 e = -5 # e er av typen int
3 b = 2.8 # b er av typen float
4 c = 2. # c=2.0, og er av typen float
5 d = .7 # d=0.7, og er av typen float
6 f = -0.01 # f er av typen float
```

```
1 a = 5
_{2} b = _{2}
4 print("a+b = ",a+b);
5 print("a-b = ",a-b);
6 print ("a*b = ",a*b);
7 print ("a/b = ",a/b);
8 print("a**b = ",a**b); # potens med grunntall a og
      eksponent b
9 print ("a%b = ",a%b); # resten til divisjonen a/b
print ("a//b = ",a//b); # 5/2 rundet ned til narmeste
     heltall
  Output
  a + b = 7
  a - b = 3
  a*b = 10
  a/b = 2.5
  a^{**}b = 25
  a\%b = 1
  a//b = 2
```

 $print(x) \mid Skriver x til terminal.$

2.2 Newtons metode

Gitt en funskjon f(x) og likningen

$$f = 0$$

hvor f(a) = 0. Ved Newtons metode gjør vi denne antakelsen for å en tilnærming a:

La x_1 være skjæringspunktet mellom x-aksen og tangenten til f i x_0 . Vi antar da at $|x_1 - a| < |x_0 - a|$. Sagt med ord antar vi at x_1 gir en bedre tilnærming for a enn det x_0 gjør.

Siden x_1 er skjæringspunktet mellom x-aksen og tangenten til f i x_0 , har vi at¹

$$f'(x_0)(x_1 - x_0) + f(x_0) = 0$$
$$f'(x_0)x_1 = f'(x_0)x_0 - f(x_0)$$
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

La x_2 være skjæringspunktet mellom x-aksen og tangenten til f i x_1 . Ved å gjenta prosedyren vi brukte for å finne x_1 , kan vi finne x_2 , som vi antar er en enda bedre tilnærming for a enn x_1 . Prosedyren kan vi gjenta fram til vi har funnet en x-verdi som gir en tilstrekkelig² tilnærming til a.

¹Se oppgave??

 $^{^2\}mathrm{Hva}$ som er en tilstrekkelig tilnærming er det opp til oss selv å bestemme.

Regel 2.1 Newtons metode

Gitt en funskjon f(x) og likningen

$$f = 0$$

hvor f(a) = 0. Gitt x-verdiene x_n og x_{n+1} for $n \in \mathbb{N}$. Ved å bruke formelen

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

antas det at x_{n+1} gir en bedre tilnærming for a enn x_n .

Språkboksen

Newtons metode kalles også Newton-Rhapsos metode.

2.3 Trapesmetoden

Gitt en funksjone f(x). Integralet $\int_a^b f \, dx$ kan vi tilnærme ved å

- 1. Dele intervallet [a, b] inn i mindre intervall. Disse kaller vi delintervall.
- 2. Finne en tilnærmet verdi for integralet av f på hvert delintervall.
- 3. Summere verdiene fra punkt 2.

I figur 2.1a har vi 3 like store delintervaller. Hvis vi setter $a = x_0$ og $h = \frac{b-a}{3}$, betyr dette at

$$x_1 = x_0 + h$$
 $x_2 = x_0 + 2h$ $x_3 = x_3 + 3h = b$

En tilnæret verdi for $\int_a^{x_1} f dx$ får vi ved å finne arealet til trapeset med hjørner (husk at $x_0 = a$)

$$(x_0,0)$$
 $(x_1,f(x_1))$ $(x_0,f(a))$

Dette arealet er gitt ved uttrykket

$$\frac{1}{2}(x_1 - x_0) \left[f(x_0) + f(x_1) \right]$$

Ved å tilnærme integralet for hvert delintervall på denne måten, kan vi skrive

$$\int_{a}^{b} f \, dx \approx \frac{1}{2} \sum_{i=0}^{2} (x_{i+1} - x_i) \left[f(x_i) + f(x_{i+1}) \right]$$

(a) Tilnærming med 3 delintervaller.

(b) Tilnærming med 20 delintervaller

Figur 2.1

Regel 2.2 Trapesmetoden

Gitt en integrerbar funksjon f. En tilnærmet verdi for $\int_a^b f dx$ er da gitt som

$$\int_{a}^{b} f \, dx \approx \frac{1}{2} \sum_{i=0}^{n} (x_{i+1} - x_i) \left[f(x_i) + f(x_{i+1}) \right]$$

hvor $a = x_0, b = x_n \text{ og } x_{n+1} > x_n.$

Merk

Slik regel 2.2 er formulert, vil [a,b] være delt inn i n+1 delintervaller. Det er ikke et krav at delintervallene skal være like store, men det gjør implementeringen av metoden lettere. Uttrykket for h fra side 14 vil i så fall bli

$$h = \frac{b - a}{n + 1}$$

Da er $x_{n+1} = x_n + h$.