Einführung in die Datenbanken

Felix Leitl

8. Juli 2024

Inhaltsverzeichnis

rundlagen
Modellierung
Warum Datenbanken
Vorteile einer Datenbank
Nachteile
Begriffe
Datenbank
Datenbank-Management-System
Datenbanksystem
Datenbankanwendung
Datenmodell
Datenbankschema
Nutzdaten
Metadaten
Konzeptionelles Schema
Externes Schema
Internes Schema
Phasen des Datenbankentwurfs
1 haben des Battenounkentwaris
CRM
telationenmodell
Bestandteile eines Datenmodells
Begriffe
Erweiterte Atributdefinition
Sicherstellung der Referenziellen Integrität
Löschen eines referenzierten Primärschlüssels
Ändern eines referenzierten Primärschlüssels
Integritätsbedingungen
"System-enforced Integrity"
Reputgordefinierte eder globale" Integritätsbedingung

Mapping	8
Abbildungskonzepte	. 8
Algorithmus	
Reguläre Entity-Typen	. 8
Schwache Entity-Typen	
M:N-Beziehungen	. 8
N:1-Beziehungen	. 9
1:1-Beziehungen	. 9
Mehrwertige Attribute	. 9
Mehrstellige Beziehungen	. 9
Generalisierung/Spezialisierung	. 9
Kategorien	
Normalisierung	9
Anomalien	
Funktionale Abhänigkeit $X \to Y$	
Volle Funktionale Abhängigkeit	. 10
Normalformen	. 10
Erst Normalform (1NF)	. 10
Zweite Normalform (2NF)	. 10
Dritte Normalform (3NF)	. 10
Boyce-Codd-Normalform (BCNF)	
Vierte Normalform (4NF)	
Denormalisierung	
Wann ist eine Denormalisierung angebracht?	
Relationenalgebra	11
SQL	11
	- 11
Multidimensionale Datenmodellierung	11
OLTP vs. OLAP	. 11
OLTP	. 11
OLAP	
Relationenmodell vs. Multidimensionales Datenmodell	
Relationenmodell	
Multidimensionales Datenmodell	
Charakterisierung der Datenanalyse	
Mikro-, Makro- und Meta-Daten	
Anforderungen	
MD Entwurf	
Logisches Schema einer Dimension	
Instanz einer Dimension	
Schema eines Datenwürfels	
Instanz eines Würfels	
Multidimensionale Operatoren	
Aggregation	1.7
MD Schemaentwurf (Kimball)	. 14
	. 14

Snowf	ake Schema	 	 	 	 	 	 15
Schichtenmo	lell						15
Transaktione	n						15
Pufferverwal	ung						15

Grundlagen

Modellierung

Ein Modell ist ein zweckgerichtetes Abbild der Wirklichkeit Zweck:

- Spezifizieren
- Konstruieren
- Visualisieren
- Dokumnetieren

Warum Datenbanken

- Große Software-Systeme
- Viele Anwendungen/Benutzer arbeiten mit den gleichen Daten
- Daten sollen auch nach Ende eines Programms verfügbar bleiben
- Daten sollen vor Verlust geschützt werden
- Daten sollen konsistent bleiben

Vorteile einer Datenbank

- Anwendungsneutralität
- Vermeidung redundanter Daten
- Zentrale Kontrolle der Datenintegrität
- Synchronisation im Mehrnutzerbetrieb
- Fehlertoleranz
- Perfomance
- Skalierbarkeit
- Verkürzte Entwicklungszeiten für Anwendungen
- Umsetzung von Standarts

Nachteile

- Hohe initiale Kosten
- General purpose software
- Signifikanter Overhead

Begriffe

Datenbank

Eine Datenbank ist eine Sammlung zusammenhängender Daten.

- repräsentiert einen Ausschnitt der realen Welt (Miniwelt)
- Logisch kohärente Sammlung von Daten
- Hat definierten Zweck

Datenbank-Management-System

Sammlung von Programmen zur Verwaltung einer Datenbank

- Erzeugung von DB
- Wartung von DB
- Konsistenter Zugriff auf DB

Datenbanksystem

• DB + DBMS

Datenbankanwendung

 \bullet DBS + Anwendungsprogramme

Datenmodell

• Strukturierungsvorschrift für Daten (z.B. Tabellenform)

Datenbankschema

• Beschreibung einer konkreten Datenbank

Nutzdaten

• Eigentliche Datenbank

Metadaten

- Struktur der DB
- Information über Speicherungsstrukturen

Konzeptionelles Schema

- Beschreibt sämtliche Daten auf logischer Ebene
- z.B. Patient (NR. Krankenkasse, Laborwerte)

Externes Schema

- Beschreibt den für die Anwendung relevanten Teil einer DB auf logischer Ebene
- z.B. für den Artzt: Patient (Nr., Laborwerte) und für die Verwaltung: Patient (Nr., Krankenkasse)

Internes Schema

- Beschreibt die interne Speicherungsstrukturen einer Datenbank
- Unsichtbar für Anwendung
- z.B. Index über Attribut Nr. von Patient

Phasen des Datenbankentwurfs

- Konzeptioneller Entwurf
 - Abbildung auf Semantisches Datenmodell (z.B. E/R-Modell)
- Logischer Entwurf
 - Abbildung auf Datenmodell

\mathbf{ERM}

Siehe Vorlesungsfolien

Relationenmodell

Bestandteile eines Datenmodells

- einfache Datentypen und Konstruktoren für zusammengesetzte Datentypen
- Konsitenzregeln:
 - inhärente Konsistenzregeln:
 gelten für ein Datenmodell per Konvenzion
 - explizite Konsistenzregeln:
 werden f
 ür eine Anwendung im Zuge der Datendefinition festgelegt
- Bennenungskonvention für die Bezeichnung von Datenbankelementen

Begriffe

- Relation: Menge von gleichartig aufgebauten Tupeln
- Tupel: Zeile einer Tabelle
- Kardinalität: Anzahl der Tupel in einer Relation
- Attribut: Spalte einer Tabelle

- Grad: Anzahl der Attribute
- Relationenschema:
 - Beschreibung einer Relation
 - besteht aus Relationennamen (z.B. Personen)
 - und einer Menge von Attributen (z.B. {PNr, Vorname, Nachname})
 - Jedes Attribut wird definiert über einen Attributnamen und einen Wertebereich
 - z.B. Personen (PRn, Vorname, Nachname)
- Relationales Datenbankschema: Menge von Relationalendatenbankschemata
- Wertebereich: zulässige Attribute
- Superschlüssel: definiert ein Tupel eindeutig
- Schlüsselkandidat: Minimaler Superschlüssel
- Primärschlüssel: Ausgewählter Schlüsselkandidat
- Fremdschlüssel: Attribut, dass mit Primärschlüssel einer Tabelle auf ein bestimmtes Tupel verweist

Erweiterte Atributdefinition

- NOT NULL
- UNIQUE
- PRIMARY KEY

Sicherstellung der Referenziellen Integrität

Löschen eines referenzierten Primärschlüssels

- RESTRICTED: ablehnen der Operation
- CASCADES: Alle referenzierenden Tupel werden auch gelöscht
- NULLIFIE: Referenzen werden auf NULL gesetzt
- SET DEFAULT

Ändern eines referenzierten Primärschlüssels

- RESTRICTED
- CASCADES

Integritätsbedingungen

,, System-enforced Integrity " $\,$

- Primärschlüsseleigenschaft
- Referenzielle Integrität

Benutzerdefinierte oder "globale" Integritätsbedingung

- Bedingungen aus der Anwendungsdomäne, die explizit formuliert werden müssen
- Kontrolliert durch das DBMS
- Operationen, die die Integritätsbedingungen verletzen werden abgelehnt

Mapping

Abbildungskonzepte

${f ER} ext{-Modell}$	${\bf Relation en modell}$
Entity-Typ	"Entity"-Relation
1:1- oder 1:N-Beziehungstyp	Fremdschlüssel oder
M:N-Beziehungstyp	Beziehungstabelle mit 2 FS
N-ärer Beziehungstyp	Beziehungstabelle mit N FS
Einfaches Attribut	Attribut
Zusammengesetztes Attribut	Menge von Attributen
Mehrwertiges Attribut	"Attribut"-Relation mit FS
Wertebereich	Wertebereich
Schlüsselattribut	Schlüsselkandidat \rightarrow Primärschlüssel

Algorithmus

Reguläre Entity-Typen

- Erzeuge eine Relation R, die alle einfachen Attribute von E umfasst
 - Bei zusammengesetzten Attributen nur Komponenten als eigenständige Attribute
- Wähle aus Schlüsselkandidaten einen Primärschlüssel
 - -zusammengesetzt \rightarrow Komponenten bilden zusammen den Primärschlüssel
 - Jeder Schlüsselkandidat, außer PS wird UNIQUE & NOT NULL

Schwache Entity-Typen

- Erzeuge eine Relation, die alle einfachen Attribute von W umfasst
- Füge als Fremdschlüssel alle PS-Attribute der Owner-Typen ein
- PS wird Kombination aller FSA, zusammen mit partiellem Schlüssel (falls vorhanden)

M:N-Beziehungen

- Erzeuge Relation die alle einfachen Attribute von X umfasst
- FS ightarrow PSA der beidem Relationen
- PS ist Kombination der FSA

N:1-Beziehungen

- identifiziere die Relation, die dem Entity-Typ E auf der N-Seite des Beziehungstyps entspricht
- Füge den PS des anderen ET als FS in R ein
- Füge alle einfachen Attribute des Beziehungstyps X als Attribute in R ein

1:1-Beziehungen

- Identifiziere Relationen R & S
- Nehme den PS von S bzw. R als FS von R bzw. S auf UNIQUE
- Füge alle einfachen Attribute in R bzw. S ein

Mehrwertige Attribute

- Erzeuge Relation R mit folgenden Attributen:
 - Ein Attribut A, dass dem abzubildenden Attribut A entspricht
 - Den PS K der Relation S, die zu E gehört, als FS auf S
- Der PS der Relation R ist die Kombination von A & K

Mehrstellige Beziehungen

- Erzeuge Relation R, die alle einfachen Attribute von B umfasst
- FS \rightarrow PS aller Relationen
- $PS \rightarrow Kombination aller FS$

Generalisierung/Spezialisierung

siehe VL

Kategorien

siehe VL

Normalisierung

Anomalien

- Einfüge-Anomalie (ohne hinzufügen von Info B, geht Info A nicht)
- Lösch-Anomalie
- Änderungs-Anomaile

Funktionale Abhänigkeit $X \to Y$

Y ist funktional abhängig von X, wenn es keine Tupel geben darf, in denen für gleiche X-Werte verschiedene Y-Werte auftreten

Linke Seite der FA wird "Determinante" genannt

Volle Funktionale Abhängigkeit

Y ist voll funktional abhängig von X, wenn es keine echte Teilmenge $Z \subset X$ gibt, für die gilt $Z \to Y$

Normalformen

Erst Normalform (1NF)

Eine Relation, die nur atomare Attributwerte besitzt (keine Mengen als Attributwert)

Zweite Normalform (2NF)

Eine Relation, in 1NF & deren Nicht-Schlüsselattribute voll funktional von jedem Schlüsselkandidaten abhängen

Dritte Normalform (3NF)

Eine Relation, deren Nicht-Schlüsselkandidaten nicht transitiv abhängig von einem Schlüsselkandidaten sind

Boyce-Codd-Normalform (BCNF)

Eine Relation, bei welcher jede Determinante einer FA ein Superschlüssel ist

Vierte Normalform (4NF)

Eine Relation R ist in 4NF, wenn für jede nicht-triviale mehrwertige Abhängigkeit $X \twoheadrightarrow A \in R$ gilt: X ist Superschlüssel von R

Eine mehrwerte Abhängigkeit gilt, wenn die Attributwerte von C nur von A und nicht von B abhängig sind $A \twoheadrightarrow C$ ist trivial, wenn $C \in A$ oder $B = \emptyset$

Denormalisierung

Normalisierung kostet Zugriffszeit

Wann ist eine Denormalisierung angebracht?

- Seltene Änderungen
- Viele Joins

Bei weiteren Fragen Anhang VL_06 lesen

Relationenalgebra

\mathbf{SQL}

Multidimensionale Datenmodellierung

OLTP vs. OLAP

OLTP

Online Transaction Processing

OLAP

Online Analytical Processing

Relationenmodell vs. Multidimensionales Datenmodell

Relationenmodell

- Einfach, wenige Modellierungskonstrukte
- Anwendungsneutral
- Keine "eingebaute" Anwendungssemantik
- ⇒ Nützlich in beliebigen Domänen, manchmal etwas komplizierter in der Anwendung

Multidimensionales Datenmodell

- Komplexer, mehr Modellierungskonstruke
- Speziell auf Anwendung zur Datenanalyse zugeschnitten
- \Rightarrow Nur nützlich für analytische Zwecke

Charakterisierung der Datenanalyse

- Qualifizierende und Quantifizierende Daten
 - Spezielle funktionale Abhängigkeiten ⇒ spezifische Repräsentation
- Klassifikationshierachien
 - Aggregierende Anfragen nutzen Hierarchien zu ihrem Vorteil
- Stabile Daten
 - Daten werden (fast) nie geändert
 - Nur neue Daten hinzugefügt
- Zugriff auf materialisierte Sichten
 - Voraggregierte Daten

Mikro-, Makro- und Meta-Daten

- Mikro-Daten
 - Einzelne Observationen, beschreiben Elementarereignisse
 - -Ergebnis der Ladephase \rightarrow Basisdaten
- Makro-Daten
 - Aggregierte Daten für die Datenanalyse
 - -Ergebnis der Auswertungsphase \rightarrow Data Warehouse, Data Mart
- Meta-Daten
 - Beschreibungsdaten
 - Beschreiben die Eigenschaften von Mikro-Daten und Makro-Daten
 - Beschreiben auch den Entstehungsprozess

Anforderungen

- Datenwürfel soll flexibel durchsucht werden können
- Qualifizierende Daten \rightarrow Dimensionen des Würfels
- Quantifizierende Daten \rightarrow Fakten (Zellen des Würfels)
- Dimensionen müssen unabhängig sein
- Eindeutige Trennung von Fakten

MD Entwurf

- 1. Benutzer-Anforderungen
- 2. Konzeptionelle Schema
 - semi-formal: mE/R, mUML
- 3. Logisches Schema
 - formal: Dimensionen, Cubes
- 4. Physisches Schema
 - Relationen, MD-Strukturen

Logisches Schema einer Dimension

- Partiell geordnete Menge D von Klassifikationsstufen
- Partielle Ordnung erlaubt parallele Hierarchie: "Pfade"
- Orthogonalität: Verschiedene Dimensionen sind unabhänig

Instanz einer Dimension

- Funktionale Abhängigkeiten \rightarrow Baumstruktur auf Instanzebene
- Jeder Pfad im Schema einer Dimension definiert eine Klassenhierarchie
- Klassenhierarchie ist ein balancierter Baum
- Instanz einer Dimension ist die Menge aller Klassenhierarchien

Schema eines Datenwürfels

- \bullet Definition: Schema eines Datenwürfels C
 - Struktur: C[G, M]
 - Menge von Fakten: $M = (M_1, \dots, M_m)$
 - Granularität: $G = (G_1, \ldots, G_n)$
 - Jedes G_i ist ein dimensionales Attribut
- Bsp.:
 - Sales und Turnover pro Article, Shop und Day
 - * $C_{\text{sales}}[(P.\text{Article}, S.\text{Shop}, T.\text{Day}), (\text{Sales}, \text{Turnover})]$
- Fakten (Kenngrößen)
 - können auch Eigenschaften zugesprochen werden
 - sind aber keine Datenstruktur an sich, eher analog zu einem Wertebereich
- Aggregatstyp
 - -nicht-triviale Eigenschafen neben Name und Wertebereich \to definiert, welche Aggregationsoperationen auf einer Kenngröße ausgeführt werden dürfen
 - 1. beliebig aggregierbar (Sales, Turnover, ...): FLOW
 - 2. nicht temporal summierbar (Stock, Inventory, ...): STOCK
 - 3. nicht summierbar (Preis, Steuer, i.Allg. Faktoren): VPU (Value per Unit)
 - MIN, MAX & AVG können immer durchgeführt werden

Instanz eines Würfels

- Alle Zellen aus dem Definitionsbereich des Datenwürfels werden als existierend angenommen, egal ob ein Datensatz physisch vorhanden ist
- Gegenüberstellung: Im relationalen Datenmodell herrscht eine andere Grundannahme vor $(\rightarrow$ "closed world"-Prinzip): Nichts wird angenommen, was nicht explizit als Datensatz vorhanden ist $(\rightarrow$ "Intension vs. Extension")

Multidimensionale Operatoren

- Slice
- Dice
- Drill-Down: Abstieg in der Klassifikationshierarchie zu feinerem Granulat
- Roll-Up: Aufstieg in der Klassifikationshierarchie hin zu gröberem Granulat
- Drill-Across: Verknüpfung mehrerer Datenwürfel mit gemeinsamen Dimensionen
- Drill-Through: Wechsel zu den Originaldaten
- Pivotisierung: Wechsel der Darstellung in einer Pivottabelle, entspricht Drehen des Würfels

Aggregation

- Zusammenfassen mehrerer Zellen
- Notwendig beim Roll-Up
- Bsp.: vom Tag zum Monat, vom Produkt zur Kategorie
- Standart
 - SUM
 - AVG
 - MIN
 - MAX
 - COUNT
- Ordnungsbasiert
 - cumulating
 - ranking

MD Schemaentwurf (Kimball)

- 1. Auswahl eines Geschäftsprozesses \rightarrow Subjektorientierung
- 2. Auswahl der Erfassungsgranularität
- 3. Auswahl der Dimensionen
- 4. Auswahl der Kennziffern

ROLAP

- Idee für die Speicherung multidimensionaler Daten
 - Tabelle mit zusammengesetztem Primärschlüssel aus den Dimensionen
 - (Nur) für jede vorhandene Datenzelle wird ein Tupel abgespeichert
- Trennung von Struktur und Inhalt führt zur Aufteilung in
 - zentrale "Fact Table" und
 - Dimensionstabellen

Star Schema

• Eine Tabelle für jede Dimension

Snowflake Schema

- Normalisierung der Dimensionstabellen
- Viele Tabellen je Dimension

Schichtenmodell

Transaktionen

Pufferverwaltung