Valbal Trajectory Planning

Joan Creus-Costa and John Dean
Stanford Student Space Initiative

December 7, 2018

Outline

ValBal

Trajectory Planning Background

Altitude Control
System Dynamics

ValBal

ValBal

- Research project by the Stanford Space Initiative (undergrad student club).
- High altitude latex balloon platform that controls its altitude by venting lifting gas and dropping ballast mass.
- Very cheap (sub thousand dollars), long endurance (5 days demonstrated).
- ▶ Potential applications: hurricane data collection, radar probing of Greenland ice, lightning research, data relay...
- Control: in altitude (remain between bounds while minimizing control effort), in space (pick altitude to get good winds).
- A. Sushko, A. Tedjarati, J. Creus-Costa, S. Maldonado, K. Marshland and M. Pavone, "Low cost, high endurance, altitude-controlled latex balloon for near-space research (ValBal)," 2017 IEEE Aerospace Conference, Big Sky, MT, 2017, pp. 1-9.
- A. Sushko et al., "Advancements in low-cost, long endurance, altitude controlled latex balloons (ValBal)," 2018 IEEE Aerospace Conference, Big Sky, MT, 2018, pp. 1-10.

Outline

ValBal

Trajectory Planning

Background

Altitude Control
System Dynamics

Trajectory Planning

Tree search for station keeping

 Born and Schwager, "Riding an Uncertain Wind Field: Receding Horizon Tree Search Planning with Opportunistic Sampling for an Autonomous Weather Balloon" (2019)

MDP

 Wolf et al., "Probabilistic motion planning of balloons in strong, uncertain wind fields" (2010)

Formulation

- lacktriangle System represented by states $s \in \mathcal{S}$
- \triangleright $S = \mathcal{H} \times \Lambda \times \Phi \times \mathcal{T}$ (Time, Altitude, Longitude, Latitude)
 - Physically intuitive to keep majority of state continuous—curse of dimensionality as we discretize.
 - ▶ $h \in \mathcal{H}$: altitudes ([0 km, 20 km])
 - $\lambda \in \Lambda$: longitudes ([0, 2 π])
 - $\phi \in \Phi$: latitudes $([-\pi/2, \pi/2])$
 - $-t \in \mathcal{T}$: time, defined in discrete steps of 10 min. Allows us to use simple Euler integration spatially to trace out wind field (altitude handled differently).
- ▶ Atmospheric winds act on the balloon $w(h, \lambda, \phi, t) \rightarrow (u, v)$. w given by NOAA on 0.25° grid at various altitudes; interpolate in each variable.
- ightharpoonup Control policies $heta(t) = (h_{\mathrm{cmd}}, e_{\mathrm{tol}})$ command the altitude of the balloon and error tollerance around set altitude

Formulation

- ▶ Goal: formulate value function V as a differentiable function of a (small) set of policy parameters θ .
 - Avoids having to discretize a huge state space as in most MDP formulations.
- ▶ Optimize V via a gradient method, e.g. $\theta^{k+1} = \theta^k + \alpha_k \nabla_\theta V(\theta)$. for stepsize a_k
- ▶ Allows us to preserve key properties of the spaces we're in:
 - We preserve smoothness of the value function: the wind field is not random, and has a rather small spatial frequency.
 - We preserve the continuity of our variables: altitude, latitude, longitude need small discretization to be realistic.
 - We will be able to handle stochasticity without blowing up the size of the problem.

Formulation: example

- Suppose we want to maximize longitudinal distance of final point after N steps (say N=720, 5 days).
- ► Final longitude is the result of doing a simulation rollout, using Euler integration in latitude and longitude.
- $V = \lambda_f = \lambda_0 + v_1(t_1, h_1, \phi_1, \lambda_1) \Delta t + \dots + v_N(t_N, h_N, \phi_N, \lambda_N) \Delta t.$
- Need to parametrize V. We control altitude of the balloon (see later). Simplest formulation: define waypoints θ_1,\ldots,θ_k at points T_1,\ldots,T_k , and assume balloon goes linearly between waypoints: $h_i=\theta_j+(t_i-T_j)\frac{\theta_{j+1}-\theta_j}{T_{j+1}-T_j}$.
- However each velocity depends on altitude, which means that each successive longitude depends on all previous altitudes...OH GOD THE BLOCK IS REAL

$$s_{k+1} = a(s_k, \theta(t_k))$$

$$s_{k+1} = a(\dots a(a(s_0, \theta(t_0)), \theta(t_1)) \dots) \theta(t_k))$$

$$\frac{ds_{k+1}}{d\theta(t_k)} = a(\dots a(a(s_0, \theta(t_0)), \theta(t_1)) \dots), \theta(t_k))$$

algorithm

```
1: procedure STOCASTICMPC(S_1, S_2)
      s: intial sim state
2:
3: while not converged do
         obj: objective object
4:
         for i \in \{0, 1, \dots, N-1\} do
5:
6:
             Sim: simulation object
7:
         end for
       check convergence
      end while
8:
9: end procedure
```

Outline

ValBal

Trajectory Planning Background

Altitude Control
System Dynamics

System Dynamics

Assumptions

- $F_d \propto v$ i.e. drag is linear.
- $-F_l-F_g=F_d$ i.e. the balloon is always at terminal velocity

Equations of motion

- let $\ell = F_\ell F_g$ be the net lift on the balloon
- $-\dot{\ell}$ is commanded by controller
- $-\dot{v}(t) = k_d(\dot{\ell}(t) + w_{\dot{\ell}}(t))$
- $-\dot{h}(t) = v(t) + w_v(t)$
- $\mathcal{L}\{h(t)/\dot{\ell}(t)\} = k_d/s^2$

 F_d : Force of drag

 F_g : Gravity

 F_{ℓ} : Buoyant force

v: vertical velocity of balloon

 w_v : vertical velocity of

surrounding air

Plant Block Diagram

 $\dot{\ell}$: commanded change in lift (valve and ballast actions)

 w_{ℓ} : atmospheric lift disturbance

 w_v : atmosphereic velocity disturbance

h: altitude

$$x = \begin{bmatrix} h \\ v \end{bmatrix} \qquad u = \dot{\ell}$$

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ k_d \end{bmatrix} u + \begin{bmatrix} w_v \\ k_d w_{\dot{\ell}} \end{bmatrix}$$

Controller Block Diagram

H(s) low-pass filter

 $f_1(v\,;v_{
m lim})$ clamp on the velocity commanded by the altitude loop set by $v_{
m lim}$

 $f_{2}(\dot{\ell}\,; au)$ deadband on the controller effort set by au

 h_c commanded altitude (set by Flight Controller)

 $v_c - commanded$ velocity (output of position loop)

commanded change in lift per unit time (output of velocity loop)

 $w_{\dot{\ell}}$ —atmospheric disturbances that change balloon lift (heating/cooling)

 w_v atmospheric disturbances that change balloon velocity (turbulence)

h balloon altitude

 \hat{v} estimate of velocity

Controller Deadband

Since we typically command a target altitude and an allowable region, we add a deadband to the controller output. Let \dot{l}_o be the output of the nonlinearity. Deadband:

To set bounds on the altutude, we set $\tau = e_{\rm tol} k_v k_h$, where $e_{\rm tol}$ is the allowable distance from the altitude command.

Controller Block Diagram

- H(s) low-pass filter
- $f_1(v\,;v_{
 m lim})$ clamp on the velocity commanded by the altitude loop set by $v_{
 m lim}$
 - $f_2(\dot{\ell}\,; au)$ deadband on the controller effort set by au
 - h_c commanded altitude (set by Flight Controller)
 - v_c commanded velocity (output of position loop)
 - ℓ_c commanded change in lift per unit time (output of velocity loop)
 - $w_{\dot{\ell}}$ $\,$ atmospheric disturbances that change balloon lift (heating/cooling)
 - w_v atmospheric disturbances that change balloon velocity (turbulence)
 - h balloon altitude
 - \hat{v} estimate of velocity

Atmosphere Waves

Velocity Estimator

Low pass filtered velocity estimate uses a 2nd order filter to remove the effect of atmospheric waves

H(s) a 2nd order lowpass filter

Controller Block Diagram

- H(s) low-pass filter
- $f_1(v\,;v_{
 m lim})$ clamp on the velocity commanded by the altitude loop set by $v_{
 m lim}$
 - $f_2(\dot{\ell}\,; au)$ deadband on the controller effort set by au
 - h_c commanded altitude (set by Flight Controller)
 - v_c commanded velocity (output of position loop)
 - ℓ_c commanded change in lift per unit time (output of velocity loop)
 - $w_{\dot{\ell}}$ $\,$ atmospheric disturbances that change balloon lift (heating/cooling)
 - w_v atmospheric disturbances that change balloon velocity (turbulence)
 - h balloon altitude
 - \hat{v} estimate of velocity

Picking gains

note: while the deadband makes the controller non-linear, it still peicewise linear, thus linear analysis can be used.

Transfer function for the linear system is

$$T(s) = \frac{k_h k_v k_d}{s^2 + k_v k_d s + k_h k_v k_d}.$$

So damping ratio is $\zeta = \frac{1}{2} \sqrt{\frac{k_d k_v}{k_h}}$.

- lacktriangle We choose gains such that $\zeta>1$ and we have over damping.
- ▶ This gives ratio between k_v and k_h , but what about magnitude?
- lacktriangle high gain o controller waits and acts agressively near $e_{
 m tol}$
- lacktriangle low gain o controller acts cautiously before $e_{
 m tol}$

demonstraited on next slide

High vs Low Gain

Plots of simulation shown high gain

low gain

High gain performs better but can't tolerate uncertainty, low gain is worse but performs better under uncertainty

Simulations

Nightfall

- ► Left plot shows 10 sunsets across various flights (each flight different color).
- plot blow shows a fit to the data using convex regularization and contraints

