Portfolio Optimization

Changlin Yi

cy2578@nyu.edu

Consider the daily closing prices of the following companies from January 1, 2024 until December 31, 2024:

- Microsoft (MSFT)
- JPMorgan (JPM)

A. Determine the average daily return and daily volatility of these two stocks.

```
In [3]: import yfinance as yf
        import numpy as np
        import pandas as pd
        tickers = ["MSFT", "JPM"]
        data = yf.download(tickers, start="2024-01-01", end="2024-12-31")["Close"]
        returns = data.pct_change().dropna()
       # Compute metrics
        avg_daily_ret = returns.mean()
        daily_vol = returns.std()
        print("avg daily return", avg_daily_ret)
        print("daily_volatility",daily_vol)
      YF.download() has changed argument auto_adjust default to True
       [*********** 2 of 2 completed
      avg daily return Ticker
              0.001523
      JPM
              0.000653
      MSFT
      dtype: float64
      daily_volatility Ticker
      JPM
              0.014845
      MSFT
              0.012581
      dtype: float64
```

B. Annualize these numbers (252 trading days, rf = 0).

```
In [5]: ann return = 252 * avg daily ret
        ann vol = np.sqrt(252) * daily vol
        print("annual return is", ann return)
        print("annual_vol is",ann_vol)
       annual return is Ticker
       JPM
               0.383907
               0.164483
       MSFT
       dtype: float64
       annual vol is Ticker
       JPM
               0.235658
       MSFT
               0.199714
       dtype: float64
```

C. Construct a long-only portfolio that maximizes the Sharpe Ratio (rf = 0).

```
In [7]: import scipy.optimize as sco

mu = ann_return.values
    cov = returns.cov().values * 252

def neg_sharpe(w):
        ret = w.dot(mu)
        vol = np.sqrt(w.dot(cov).dot(w))
        return -ret/vol

cons = ({'type':'eq','fun': lambda w: np.sum(w)-1})
    bnds = tuple((0,1) for _ in tickers)
    init = np.array([1/2,1/2])

opt = sco.minimize(neg_sharpe, init, bounds=bnds, constraints=cons)
    w_opt = opt.x

for ticker, weight in zip(tickers, w_opt):
        print(f"{ticker}: {weight}")
```

MSFT: 0.6927027754999318 JPM: 0.30729722450006824

D. What are the Risk, Return, and Sharpe Ratio of this portfolio?

```
In [9]: port_ret = w_opt.dot(mu)
    port_vol = np.sqrt(w_opt.dot(cov).dot(w_opt))
    port_sharpe = port_ret/port_vol

    print("annual return:", port_ret)
    print("annual risk:", port_vol)
    print("Sharpe Ratio:", port_sharpe)
```

annual return: 0.316478414717738 annual risk: 0.18341165007992843 Sharpe Ratio: 1.7255087917251757

E. For an investor tolerating up to 18% annual vol, build the max-return portfolio with vol ≤ 18%.

MSFT: 0.6647406727014394 JPM: 0.3352593272985605

F. What are the Risk, Return, and Sharpe Ratio of this new portfolio?

G. How would portfolios in parts (c) and (e) have performed from January 1, 2025 to April 1, 2025?

```
In [15]: # download out-of-sample
  oos = yf.download(tickers, start="2025-01-01", end="2025-04-01")["Close"]
  oos_ret = oos.pct_change().dropna()

# compute realized performance
def perf(weights):
    port = oos_ret.dot(weights)
    ann_ret = np.mean(port) * 252
    ann_vol = np.std(port) * np.sqrt(252)
    return ann_ret, ann_vol, ann_ret/ann_vol
```

```
perf_c = perf(w_opt)
perf_e = perf(w_18)
```

[********** 2 of 2 completed

```
In [16]: # Calculate and print the performance of the optimal weights portfolio
    perf_c = perf(w_opt)
    print("Optimal Weights Portfolio Performance:")
    print(f"Annualized Return: {perf_c[0]:.2f}%")
    print(f"Annualized Volatility: {perf_c[1]:.2f}%")
    print(f"Annualized Sharpe Ratio: {perf_c[2]:.2f}")
    print("\n")

# Calculate and print the performance of the volatility-constrained portfolio perf_e = perf(w_18)
    print("Constrained 18%—vola Portfolio Performance:")
    print(f"Annualized Return: {perf_e[0]:.2f}%")
    print(f"Annualized Volatility: {perf_e[1]:.2f}%")
    print(f"Annualized Sharpe Ratio: {perf_e[2]:.2f}")

Optimal Weights Portfolio Performance:
    Annualized Return: -0.03%
```

Annualized Return: -0.03% Annualized Volatility: 0.21% Annualized Sharpe Ratio: -0.14

Constrained 18%—vola Portfolio Performance: Annualized Return: -0.04% Annualized Volatility: 0.21% Annualized Sharpe Ratio: -0.21

In []: