Some Absolutely Continuous Distributions

Name	Notation	p.d.f.	range	m.g.f.	mean	variance	
Uniform	U(a,b)	$\frac{1}{b-a}$	$a \le x \le b$	$\frac{e^{b\theta} - e^{a\theta}}{(b-a)\theta}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Normal	$N(\mu,\sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	$-\infty < x < \infty$	$e^{\mu\theta+\frac{1}{2}\sigma^2\theta^2}$	μ	σ^2	
Gamma	$\Gamma(t,\lambda)$	$\frac{\lambda^t}{\Gamma(t)} x^{t-1} e^{-\lambda x}$	$0 < x < \infty, \\ t, \lambda > 0$	$\left(\frac{\lambda}{\lambda-\theta}\right)^t$	$\frac{t}{\lambda}$	$\frac{t}{\lambda^2}$	
Exponential	$\operatorname{Exp}(\lambda)$	$\lambda e^{-\lambda x}$	$0 < x < \infty, \\ \lambda > 0$	$\frac{\lambda}{\lambda - \theta}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	
Chi-square	χ_n^2	$\frac{1}{2^{n/2}\Gamma(n/2)}x^{n/2-1}e^{-x/2}$	$0 < x < \infty,$ n > 0 integer	$(1-2\theta)^{-n/2}$	n	2n	
Beta	$\beta(\alpha_1,\alpha_2)$	$\frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} x^{\alpha_1 - 1} (1 - x)^{\alpha_2 - 1}$	$0 < x < 1, \\ \alpha_1, \alpha_2 > 0$	not useful	$\frac{\alpha_1}{\alpha_1 + \alpha_2}$	$\frac{\alpha_1\alpha_2}{(\alpha_1+\alpha_2)^2(\alpha_1+\alpha_2+1)}$	
Cauchy	_	$\frac{\lambda}{\pi(\lambda^2 + (x-\mu)^2)}$	$ \begin{array}{c} -\infty < x < \infty, \\ \lambda > 0 \end{array} $	doesn't exist but char. fn. is $e^{i\mu\theta-\lambda \theta }$	no moments exist		
Multivariate Normal	$N(\mu,\Sigma)$	$\frac{\exp\left\{-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)\right\}}{(2\pi)^{d/2}\det(\Sigma)^{1/2}}$	$x \in \mathbb{R}^d$	$e^{\mu^T \theta + \frac{1}{2} \theta^T \Sigma \theta}$	μ	$\begin{array}{c} \text{covariance} \\ \text{matrix } \Sigma \end{array}$	

Some Discrete Distributions

(All distributions below have integer-valued ranges)

Name	Notation	prob. fn.	range	m.g.f.	mean	variance
Binomial	Bin(n, p)	$\binom{n}{x}p^x(1-p)^{n-x}$	$0 \le x \le n \\ 0$	$[(1-p)+pe^{\theta}]^n$	np	np(1-p)
Poisson	$\mathrm{Pois}(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}$	$0 \le x < \infty$ $\lambda > 0 \text{ real}$	$e^{\lambda(e^{\theta}-1)}$	λ	λ
Hyper- geometric	$\mathrm{Hgeo}(n,a,b)$	$\frac{\binom{a}{x}\binom{b}{n-x}}{\binom{a+b}{n}}$	$0 \le x \le n$ $a,b>0$ integers	not useful	$\frac{na}{a+b}$	$\frac{nab(a+b-n)}{(a+b)^2(a+b-1)}$
Negative binomial	Nbin(k, p)	$\binom{x-1}{k-1} p^k (1-p)^{x-k}$	$\begin{array}{c} k \leq x < \infty, \\ 0 < p < 1 \end{array}$	$p^k[e^{-\theta} - (1-p)]^{-k}$	k/p	$k(1-p)/p^2$
Geometric	$\operatorname{Geo}(p)$	$p(1-p)^{x-1}$	$1 \le x < \infty \\ 0 < p < 1$	$p[e^{-\theta} - (1-p)]^{-1}$	1/p	$(1-p)/p^2$

Multinomial: multivariate extension of binomial

Prob. fn. is given by

$$f(x_1, x_2, \dots, x_k) = \frac{n!}{x_1! x_2! \dots x_k! x_{k+1}!} p_1^{x_1} p_2^{x_2} \dots p_k^{x_k} p_{k+1}^{x_{k+1}}, \quad 0 \le x_i \le n, \quad 0 < p_i < 1 \quad \forall i = 1, 2, \dots, n+1$$

where $p_1 + p_2 + \cdots + p_{k+1} = 1$ and $x_1 + x_2 + \cdots + x_{k+1} = n$.

The m.g.f. is given by

$$[p_1e^{\theta_1} + p_2e^{\theta_2} + \dots + p_ke^{\theta_k} + p_{k+1}]^n.$$

Moments: $E(X_i) = np_i$, $Var(X_i) = np_i(1 - p_i)$, $cov(X_i, X_j) = -np_ip_j$, i, j = 1, 2, ..., n + 1.