Propuesta MACHINE LEARNING

Introducción

- Predecir la "danceability" de las canciones para abordar necesidad de negocio de Spotify.
- Análisis de datos
- Modelo ML

Análisis de datos

Dataset de Música → Kaggle

No valores nulos + Estandarizados

Sí NaN

50.000 filas → Canciones

17 columnas --- Variables: popularidad, volumen, energía...

Volumen (dB)

Acústica

Valencia

Instrumentalidad

Energía

Popularidad

Habla/Letra

Análisis de datos

Volumen (dB)

Valencia

Preprocesamiento de datos

Distribución del target

Codificación del target

Mucha 'danceability 60% 1
Poca 'danceability' 40%

Problema de clasificación

Preprocesamiento de datos

Correlaciones con el target

Positivamente correladas

- Popularidad (0.36)
- Energía (0.26)

0.50

- 0.25

- 0.00

- -0.25

- -0.50

- -0.75

- -1.00

- Volumen (0.39)
- Hablabilidad (0.28)
- **Valencia**(0.43)

Negativamente correladas

- Acústica (-0.35)
- Instrumentalidad (-0.3)
- Duración (-0.16)

Correlaciones

Valencia vs Danzabilidad

Acústica vs Danzabilidad

Entendiendo correlaciones

Música clásica vs. danzabilidad

% de canciones del género "Clásica" que son danzables

Música electrónica vs. danzabilidad

% canciones del género "Electrônica" que son danzables

No Danzables

Aumentando correlaciones

- 1. Dividir la variable en rangos y asignar números
- 2. Agrupar la variable por la media de "danceability"
- 3. Reajustar los valores si fuera necesario

- Energía 0.26 **0.45**
- Volumen 0.39 **0.43**
- Habla/Letra 0.28 **0.32**

Modelado

Variables predictoras útiles

- Popularidad
- Energía
- Volumen
- Letra
- Valencia
- Acústica
- Instrumentalidad
- Tempo
- Género

Target

Danzabilidad

Resultados sobre TEST

	Model	Accuracy	AUC	Kecali	Prec.	FI	карра	MCC
lightgbm	Light Gradient Boosting Machine	0.8051	0.8778	0.8779	0.8134	0.8444	0.5846	0.5877
rt	Random Forest Classifier	0.8045	0.8746	0.8785	0.8123	0.8441	0.5831	0.5864
xgboost	Extreme Gradient Boosting	0.8034	0.8736	0.8724	0.8146	0.8425	0.5819	0.5845
et	Extra Trees Classifier	0.8001	0.8702	0.8725	0.8102	0.8402	0.5742	0.5771
gbc	Gradient Boosting Classifier	0.7997	0.8711	0.8853	0.8026	0.8419	0.5704	0.5757
ada	Ada Boost Classifier	0.7879	0.8577	0.8698	0.7968	0.8317	0.5464	0.5504
qda	Quadratic Discriminant Analysis	0.7362	0.7972	0.8856	0.7325	0.8018	0.4179	0.4351
lr	Logistic Regression	0.7323	0.7919	0.8534	0.7414	0.7934	0.4184	0.4270
knn	K Neighbors Classifier	0.7323	0.7754	0.8321	0.7506	0.7892	0.4249	0.4293