Marco Ferraro Rodriguez B82957 Gabriel Bogantes Armijo B71146

Se realizan 3 corridas para cada cantidad de servidores y se calcula el promedio para cada uno y se tabula.

	1 Servidor	2 Servidores	3 Servidores
Clientes perdidos	2	0,6666666667	0
Clientes servidos	41534,66667	13844,88889	18459,85185
Tiempo de servidores ociosos	25,55666667	8,518888889	11,35851852
Promedio de tiempo ociosos	12,77666667	4,258888889	5,678518519
Tiempo de servidores sirviendo	987,23	329,0766667	438,7688889
Promedio de tiempo sirviendo	1974,46	658,1533333	877,5377778
Tiempo en cola	8157,77	4596,15	2056,01
Promedio en cola	0,278	0,110	0,042

Adicionalmente, se generan gráficos para representar los datos.

Clientes Servidos

Tiempo de servidores ociosos

Promedio de tiempo servidores ociosos

Tiempo de servidores sirviendo

Promedio de tiempo sirviendo

Con respecto a la pregunta de cuál de los modelos presentan un buen balance entre tiempo ocioso y tiempo en espera. Se puede realizar viendo el que tenga el menor valor de la resta entre ellos ya que "entre más cerca estén" menos tiempo desperdiciado en el sistema. Por otro lado, es importante tomar en cuenta los costos que pueden traer pero en este caso como es un simple ejercicio se asume que no tienen costos adicionales.

Entonces,

- 1 Servidor = 12,77 0,278 = 12,492
- 2 Servidores = 4,26 0,11 = 4,15
- 3 Servidores = 11,34 0,042 = 11,298

Por ende, es recomendado manejar el sistema con dos servidores ya que el desperdicio de tiempo es mucho menor que con las otras dos opciones.