Table de caractères.

1 Exercice 1. Caractères linéaires

Soit G un groupe fini.

- 1. Si G est abélien, montrer qu'il admet #G représentations de degré 1 à isomorphisme près.
- **2.** En déduire que, dans le cas général, il en admet [G : D(G)].
- 1. On sait que G est abélien. Alors, toutes les représentations irréductibles de G sont de degré 1. Ainsi,

$$\#G = \sum_{V \text{ irréductible}} (\dim V)^2 = \#\{\text{représentations irréductibles}\}.$$

Justifions le « toutes les représentations irréductibles de G sont de degré 1 ». Soit (V, ρ) une représentation irréductible de G. Alors, pour tout $g, h \in G$ alors $\rho(g)\rho(h) = \rho(h)\rho(g)$ et ainsi $\rho(g)$ et $\rho(h)$ sont diagonalisables. Donc elles sont co-diagonalisable. Alors il existe une base \mathcal{B} de V qui co-diagonalise $\rho(g)$ et donc le premier vecteur de \mathcal{B} engendre une droite propre D pour chaque $\rho(g)$. Et, D est donc stable par tous les $\rho(g)$, c'est donc une sous-représentation de V. Par irréductibilité de V, on a D = V et donc dim V = 1.

2. Le dual de G, noté G^* , est l'ensemble des caractères linéaires. On a vu dans le DM n°1 que $G^* \cong (G^{ab})^*$, où $G^{ab} := G/D(G)$. Ainsi, d'après la question 1, on sait que G^{ab} admet exactement $|G^{ab}|$ caractères linéaires. D'où, $|(G^{ab})^*| = |G^{ab}|$. On en conclut que

$$|G^*| = [G : D(G)].$$

- 1/6 -

2 Exercice 2. Certaines propriétés des représentations de \mathfrak{S}_n .

Soit $n \geq 2$ un entier.

- 1. Soit $\sigma \in \mathfrak{S}_n$. Justifier que σ et σ^{-1} sont conjuguées dans \mathfrak{S}_n .
- **2.** En déduire que la table de caractère de \mathfrak{S}_n est à valeurs réelles.

Remarque : On peut même montrer que la table de caractère de \mathfrak{S}_n est toujours à valeurs entières, mais cela nécessite des arguments de théorie des corps du cours d'Algèbre 2.

- 1. La classe de conjugaison de σ est déterminée par les longueurs des cycles apparaissant dans la décomposition en cycles à supports disjoints (*i.e.* le type). L'inverse d'un p-cycle est un p-cycle par tout $p \in [2, n]$ donc σ et σ^{-1} ont même type. On en conclut que σ et σ^{-1} sont conjugués.
- 2. Pour tout caractère χ , pour toute permutation $\sigma \in \mathfrak{S}_n$, on a

$$\chi(\sigma) = \overline{\chi(\sigma^{-1})} = \overline{\chi(\sigma)},$$

car χ est constant sur les classes de conjugaisons. Ainsi, $\chi(\sigma) \in \mathbb{R}$ et la table de caractères de \mathfrak{S}_n est réelle.

3 Exercice 3. Table de caractères de \mathfrak{A}_4 .

- 1. Montrer que \mathfrak{A}_4 a 4 classes de conjugaison : l'identité, la classe de $(1\ 2\ 3)$, la classe de $(1\ 3\ 2)$, et les doubles transpositions.
- **2.** Montrer que le groupe dérivé de \mathfrak{A}_4 est le sous-groupe des doubles transpositions, et en déduire 3 caractères linéaires de \mathfrak{A}_4 .
- 3. Déterminer la dimension de la dernière représentation irréductible de \mathfrak{A}_4 grâce aux propriétés de la représentation régulière.
- **4.** En utilisant l'orthogonalité des colonnes, déterminer alors la table de caractère de \mathfrak{A}_4 .

1. On connait les classes de conjugaisons dans \mathfrak{S}_4 , et on regardent celles qui sont dans \mathfrak{A}_4 . Il faudra après re-vérifier que ces classes de conjugaisons ne se re-découpent pas dans \mathfrak{A}_4 .

Dans \mathfrak{S}_4 , on a

- \triangleright {id} $\subseteq \mathfrak{A}_4$;
- \triangleright {transpositions} $\not\subseteq \mathfrak{A}_4$;
- \triangleright {3-cycles} $\subseteq \mathfrak{A}_4$;
- \triangleright {bi-transpositions} $\subseteq \mathfrak{A}_4$;
- \triangleright {4-cycles} $\not\subseteq \mathfrak{A}_4$.

Les classes $\{id\}$ et $\{bi$ -transpositions $\}$ ne se re-découpent pas. Cependant, pour les 3-cycles, on les décompose en deux classes : celle de $(1\ 2\ 3)$ et $(1\ 3\ 2)$.

 \triangleright Les deux permutions ne sont pas conjuguées car, si elles l'étaient, alors il existerait $\sigma \in \mathfrak{A}_4$ telle que

$$(\sigma(1) \ \sigma(2) \ \sigma(3)) = \sigma \ (1 \ 2 \ 3) \ \sigma^{-1} = (1 \ 3 \ 2).$$

Et, $\sigma(4) = 4$ donc σ permute 1, 2, 3. Par \mathfrak{A}_3 , on en déduit que l'on a $\sigma \in \{id, (1\ 2\ 3), (1\ 3\ 2)\}$. On en conclut que σ et $(1\ 2\ 3)$ commutent : **absurde** car

$$\sigma (123) \sigma^{-1} = (123) \neq (132).$$

▷ On sait que $\#\text{Cl}_{\mathfrak{A}_4}((1\ 2\ 3)) = \#\mathfrak{A}_4/\#\text{C}_{\mathfrak{A}_4}((1\ 2\ 3))$ (par relation orbite-stabilisateur pour la conjugaison). De plus, on sait que $\#\text{Cl}_{\mathfrak{G}_4}((1\ 2\ 3)) = \#\mathfrak{G}_4/\#\text{C}_{\mathfrak{G}_4}((1\ 2\ 3))$. Ainsi, on a que $\#\text{C}_{\mathfrak{G}_4}((1\ 2\ 3)) = 3$. On a $\text{C}_{\mathfrak{G}_4}((1\ 2\ 3)) = \langle (1\ 2\ 3) \rangle$. Or, $\text{C}_{\mathfrak{A}_4}((1\ 2\ 3)) = \mathfrak{A}_4 \cap \text{C}_{\mathfrak{G}_4}((1\ 2\ 3))$. Ainsi, $\#\text{Cl}_{\mathfrak{G}_4}((1\ 3\ 2)) = 4$.

Tous les 3-cycles de \mathfrak{A}_4 sont répartis dans deux classes de conjugaisons : celle de $(1\ 2\ 3)$ et celle de $(1\ 3\ 2)$.

▷ Et \mathfrak{A}_4 est 2-transitif donc (12)(34) est conjugué à (ab)(cd) pour tout a, b, c, d distincts avec $\sigma: 1 \mapsto a, 2 \mapsto b$ car

$$\sigma(1\ 2)(3\ 4)\sigma^{-1} = \cdots = (a\ b)(c\ d).$$
- 3/6 -

Donc, les classes de conjugaisons de \mathfrak{A}_4 sont :

- $\{id\}$ $\{classe\ de\ (123)\}$ $\{classe\ de\ (132)\}$ et $\{bi\text{-transpositions}\}.$
- 2. Si H ⊲ G et G/H est abélien alors D(G) ⊆ H. Le sous-groupe distingué V₄ ⊲ A₄ est le sous-groupe contenant l'identité et les bi-transpositions. On a |A₄/V₄| = 3 donc A₄/V₄ est abélien, d'où on a D(A₄) ⊆ V₄. Or, D(A₄) ⊲ A₄ donc c'est une union de classe de conjugaisons. Ainsi D(A₄) = {id} et D(A₄) = V₄. Et, puisque A₄ est non-abélien, alors D(A₄) ≠ {id}. On en déduit que D(A₄) = V₄. On a que A₄ a 3 = [A₄ : V₄] caractères linéaires (c.f. exercice 1). Un caractère linéaire χ de A₄ vérifie donc χ(V₄) = 1 et est uniquement déterminé par χ(123) ∈ {1, j, j²} où j = e^{2iπ/3}.
- 3. On a que $\#\mathfrak{A}_4 = 12 = 1^2 + 1^2 + 1^2 + 3^2$.
- 4. On en déduit la table suivante.

	lid	(1 2 3)	(132)	(12)(34)
-0	101	(120)	(102)	(12)(01)
1	1	1	1	1
$V_{\rm j}$	1	j	j^2	1
V_{j^2}	1	j^2	j	1
W	3	0	0	-1

Figure 1 | Table de caractères de \mathfrak{A}_4

4 Exercice 4. Tables de caractères de D_8 et H_8 .

On va calculer les tables de caractères des groupes D_8 et H_8 .

- 1. Soit D_8 le groupe diédral d'ordre 8. Il est engendré par deux éléments r et s tels que l'élément r est d'ordre 4, l'élément s est d'ordre 2 et l'égalité $srs^{-1} = r^{-1}$ est vérifiée.
 - a) Montrer que les classes de conjugaisons de D_8 sont $\{1\}$, $\{r, r^3\}$, $\{r^2\}$ $\{s, sr^2\}$ et $\{sr, sr^3\}$.
 - **b)** Montrer que le groupe dérivé de D_8 est $\{1, r^2\}$.

c) En déduire que D₈ a 4 représentations de degré 1, et une irréductible de degré 2, ainsi que la table de caractère de D₈. À quelle action géométrique correspond la représentation irréductible de degré 2?

1.

Table des matières

Tab	le de caractères.	1
1	Exercice 1. Caractères linéaires	1
2	Exercice 2. Certaines propriétés des représentations	
	$de \mathfrak{S}_n$	2
3	Exercice 3. Table de caractères de \mathfrak{A}_4	2
4	Exercice 4. Tables de caractères de D_8 et H_8	4