

Teoria da Computação

Segundo Teste 2019–2020

Data: 29 de Novembro de 2019 Duração: 60 minutos

Justifique de forma clara e sucinta todas as respostas.

- 1. (9 valores) Considere a linguagem não regular $L_1 = \{0^n 1^n \mid n > 0\}$ e a linguagem L_2 associada à expressão regular $(aa)^*(bb)^*$.
 - (a) Mostre que $L_3 = \{(aa)^n (bb)^n \mid n > 0\}$ não é regular. (Sugestão: defina um homomorfismo entre L_1 e L_3 .)

Solução: Defina-se o homomorfismo $h: \{0,1\}^* \to \{a,b\}^*$, por h(0) = aa e h(1) = bb. Então $h^{-1}(L_3) = L_1$. Como a classe das linguagens regulares é fechada para a imagem inversa por intermédio de um homomorfismo, se L_3 fosse regular então também L_1 seria regular, o que não é o caso. Logo L_3 não pode ser regular.

(b) Mostre que $L_4 = \{(aa)^n (bb)^m \mid m \neq n \text{ e } m, n > 0\}$ não é regular. (Sugestão: considere a linguagem $L_2 \cap \overline{L_4}$.)

Solução: $\overline{L_4}$ é constituída pelas palavras sobre o alfabeto $\{a,b\}$ que não são da forma $(aa)^n(bb)^m$, com $m \neq n$ e m,n > 0. Note-se que $\overline{L_4} \neq L_3$, mas $L_3 = L_2 \cap \overline{L_4}$. Como a classe das linguagens regulares é fechada para o complementar e para a interseção, se L_4 fosse regular então $\overline{L_4}$ seria regular e como L_2 é regular, tabém L_3 seria regular, o que é falso, conforme vimos na alínea anterior. Logo L_4 não pode ser regular.

(c) Mostre que a linguagem $\left\{a^mb^{m^2+n}c^n\ \middle|\ m\geq 0\ \mathrm{e}\ 0\leq n\leq m\right\}$ não é Independente do Contexto.

Solução: Seja $z=a^mb^m\in L$, para algum m tal que $|z|=m+m^2\geq n$, onde n é o inteiro indicado no lema da bombagem. Consideremos uma qualquer partição z=uvwxy nas condições do lema. Temos os seguintes casos:

- 1. Se vwx contém apenas a's então $v=a^p, x=a^q$ com $p+q\geq 1$ e, para k=0, $uv^0wx^0y=a^{m-p-q}b^{m^2}\notin L$ uma vez que $(m-p-q)^2\neq m^2$.
- 2. Se vwx contém apenas b's então $v=b^p,~x=b^q$ com $p+q\geq 1$ e, para $k=0,~uv^0wx^0y=a^mb^{m^2-p-q}\notin L$ uma vez que $m^2\neq m^2-p-q.$
- 3. Se vwx contém a's e b's então temos os seguintes casos:

- (a) v contém a's e b's: neste caso $v=a^pb^q$ com $p+q\geq 2$ e, para k=2, $uv^2wx^2y\notin L$ pois conteria a subpalavra $a^pb^pa^pb^q$.
- (b) x contém a's e b's: neste caso $x=a^pb^q$ com $p+q\geq 2$ e, para k=2, $uv^2wx^2y\notin L$ pois conteria a subpalavra $a^pb^pa^pb^q$.
- (c) v contém apenas a's e x contém apenas b's então $v=a^p$ e $x=b^q$ com $p+q\geq 1$ e, para $k=2,\ uv^2wx^2y=a^{m+p}b^{m^2+q}\notin L$ uma vez que $(m+p)^2=m^2+q\iff 2mp+p^2=q$ é impossível (atendendo a que $q\leq m$).

Em qualquer dos casos chegamos a uma contradição com $\forall k \in \mathbb{N}_0, uv^kwx^ky \in L$, pelo que L não é uma LIC.

2. (9 valores) Considere a GIC $G = (\{S, A, B, X\}, \{a, b\}, P, S)$ com as seguintes produções P:

$$S \to ASA \mid XB$$
 $A \to B \mid S$ $B \to bb \mid \varepsilon$ $X \to aa$

(a) Mostre que G não tem variáveis inúteis.

Solução:

- Todas as variáveis de G são atingíveis: S é atingível porque é o axioma da gramática; A é atingível porque S é atingível e $S \to ASA$; B é atingível porque S é atingível e $S \to XB$; X é atingível porque S é atingível e $S \to XB$;
- Todas as variáveis são geradoras: B é geradora porque $B \to bb$; X é geradora porque $X \to aa$; A é geradora porque $A \to B$ e B é geradora; S é geradora porque $S \to XB$ e X e B são geradoras.
- (b) Reduza G à Forma Normal de Chomsky.

Solução:

- 1. Não existem produções inúteis (provado na alínea anterior).
- 2. Substituir terminais não isolados nos lados direitos por variáveis:

$$S \to ASA \mid XB$$
 $A \to B \mid S$ $B \to YY \mid \varepsilon$ $X \to ZZ$
 $Y \to b$ $Z \to a$

3. Reduzir os lados direitos a duas variáveis:

$$S \to AW \mid XB$$
 $A \to B \mid S$ $B \to YY \mid \varepsilon$ $X \to ZZ$ $W \to SA$ $Y \to b$ $Z \to a$

4. Eliminar produções ε : as variáveis anuláveis são A e B.

$$S \to AW \mid W \mid XB \mid X \qquad A \to B \mid S \qquad B \to YY \qquad X \to ZZ$$

$$W \to SA \mid S$$

$$Y \to b \qquad Z \to a$$

5. Eliminar as produções unitárias: O grafo de dependências unitárias é

Assim os pares unitários são:

- $(A, B), (A, S), (A, W), (A, X): A \rightarrow YY \mid AW \mid XB \mid SA \mid ZZ$
- $(S,X),(S,W): S \to ZZ \mid SA$
- $(W,S),(W,X): W \to AW \mid XB \mid ZZ$

Daqui resulta a gramática na FNC

$$\begin{split} S &\to AW \mid XB \mid ZZ \mid SA \\ A &\to YY \mid AW \mid XB \mid SA \mid ZZ \\ B &\to YY \qquad X \to ZZ \\ W &\to SA \mid AW \mid XB \mid ZZ \\ Y &\to b \qquad Z \to a \end{split}$$

(c) Determine, como função de $n \in \mathbb{N}$, o número de passos utilizados para derivar palavras da forma $a^{2n}b^{2n}$ usando a gramática na forma normal de Chomsky obtida na alínea anterior.

Solução: Para derivar uma qualquer palavra de tamanho $m \in \mathbb{N}$ usando uma qualquer gramática na FNC é necessário aplicar m-1 produções da forma $A \to BC$ seguida de m produções da forma $A \to a$, num total de 2n-1 passos. Assim, para derivar uma palavra da forma $a^{2n}b^{2n}$, a qual tem tamanho 4n, são necessários 8n-1 passos.

3. (2 valores) Sabe-se que uma linguagem é regular se e só se é gerada por uma gramática linear à direita. Mostre que toda a linguagem gerada por uma gramática linear à esquerda é também gerada por uma gramática linear à direita.

Solução: Seja L uma linguagem linear à esquerda gerada por uma gramática linear à esquerda G_L . Então a gramática $(G_L)^{-1}$, obtida de G_L revertendo os lados direitos

das produções, é uma gramática linear à direita que gera a linguagem L^{-1} . Logo a linguagem L^{-1} é uma linguagem regular. Uma vez que a classe das linguagens regulares é fechada para a operação de inversão (reversão), $L=(L^{-1})^{-1}$ é uma linguagem regular e portanto é gerada por uma gramática linear à direita.

FIM.

GIC:

Para $A, B, C \in V$, $a \in T$ e $\alpha \in T^*$,

- Linear à esquerda: $A \to \alpha$; $A \to B\alpha$.
- Linear à direita: $A \to \alpha$; $A \to \alpha B$.
- Regular: $A \to \varepsilon$; $A \to aB$.
- F. N. Chomsky: $A \rightarrow BC$; $A \rightarrow a$.

Conversão à Forma Normal de Chomsky:

- 1. Eliminar as produções inúteis;
- 2. Substituir os símbolos terminais não isolados nos lados direitos por variáveis;
- 3. Reduzir cada um dos lados direitos das produções a um máximo de duas variáveis;
- 4. Eliminar as produções ε ;
- 5. Eliminar as produções unitárias.

Lema da Bombagem para Linguagens Regulares:

Se L é uma linguagem regular então existe n > 0 tal que, para toda a palavra $w \in L$ com $|w| \ge n$, existem $x, y, z \in \Sigma^*$ tais que: (i) w = xyz; (ii) $y \ne \varepsilon$; (iii) $|xy| \le n$; (iv) $\forall k \ge 0$, $xy^kz \in L$.

Lema da Bombagem para LIC:

Se L é uma linguagem independente do contexto sobre um alfabeto Σ então existe um inteiro positivo n tal que, para qualquer palavra $z \in L$ de tamanho $|z| \ge n$, existem $u, v, w, x, y \in \Sigma^*$ tais que: (i) z = uvwxy; (ii) $|vwx| \le n$; (iii) |vx| > 0; (iv) $\forall k \ge 0$, $uv^kwx^ky \in L$.