Interpréter la Physique Quantique

Cours d'interpretation de la théorie quantique des champs

Sébastien Fauvel

Remerciements

Avant-propos

Table des matières

1	Pr	éliminaires épistémologiques	1
1	Qu'	est-ce qu'interpréter?	2
	1.1	Interpréter des observations	2
	1.2	Interpréter une théorie effective	2
	1.3	Interpréter une théorie fondamentale	2
2	Que	e puis-je connaître?	3
	2.1	L'impasse solipsiste	3
	2.2	L'objectivisme fondateur	3
	2.3	La connaissance dans un monde aléatoire	3
II	\mathbf{N}	Iodéliser le monde matériel	5
3	Rég	gulariser la théorie quantique des champs	6
	3.1	Inexistence d'une théorie quantique des champs	6
	3.2	Régularisation physique maximale	6
	3.3	L'espace physique	6
4	L'es	space des états quantiques	7
	4.1	Etats localisés du champ	7
	4.2	Opérateurs de création et d'annihilation	7
	4.3	Ondes planes	7
5	Inte	eractions physiques	8
	5.1	Evolution hamiltonienne	8
	5.2	Représentation d'interaction	8
	5.3	Développement perturbatif	8

II	I Modéliser le monde mental	9
6	L'expérience subjective	10
	6.1 Conscience déclarative	. 10
	6.2 Subconscient	. 10
	6.3 Expérience subjective	. 10
7	Le champ d'expériences subjectives	11
	7.1 Objectivation des expériences subjectives	. 11
	7.2 Réalisation physique d'un état mental	. 11
	7.3 Indiscernabilité des sujets	. 11
8	Interactions psycho-physiques	12
	8.1 Dynamique stochastique	. 12
	8.2 Mesure quantique	. 12
	8.3 Décohérence quantique	. 12
ΙV	V Applications	13
_		- 4
9	Electrodynamique quantique	14
	9.1 Opérateurs de charge, de courant et de potentiel	
	9.2 Hamiltonien d'interaction	
10	Théorème de réincarnation	15
	10.1 Un théorème de récurrence des états mentaux	
	10.2 Démonstration	
	10.3 Discussion	. 15
\mathbf{V}	Appendices	17
\mathbf{A}	Fonctions usuelles	18
	A.1 La fonction sinus cardinal	. 18
	A.2 La fonction esinc	. 18
	A.3 La fonction δ de Dirac	
В	Matrices de Dirac et de Pauli	19
_	B.1 Matrices de Pauli	
	B.2 Matrices de Dirac	
\mathbf{C}	Opérateurs spinoriels	21

		ix
C.1	Opérateurs de polarisation photoniques	21
C.2	Opérateurs d'antisymétrisation fermioniques	21
C.3	Opérateurs spinoriels de Dirac	21

Première partie

Préliminaires épistémologiques

Qu'est-ce qu'interpréter?

- 1.1 Interpréter des observations
- 1.2 Interpréter une théorie effective
- 1.3 Interpréter une théorie fondamentale

Que puis-je connaître?

- 2.1 L'impasse solipsiste
- 2.2 L'objectivisme fondateur
- 2.3 La connaissance dans un monde aléatoire

Deuxième partie Modéliser le monde matériel

Régulariser la théorie quantique des champs

- 3.1 Inexistence d'une théorie quantique des champs
- 3.2 Régularisation physique maximale
- 3.3 L'espace physique

L'espace des états quantiques

- 4.1 Etats localisés du champ
- 4.2 Opérateurs de création et d'annihilation
- 4.3 Ondes planes

Interactions physiques

- 5.1 Evolution hamiltonienne
- 5.2 Représentation d'interaction
- 5.3 Développement perturbatif

Troisième partie Modéliser le monde mental

L'expérience subjective

- 6.1 Conscience déclarative
- 6.2 Subconscient
- 6.3 Expérience subjective

Le champ d'expériences subjectives

- 7.1 Objectivation des expériences subjectives
- 7.2 Réalisation physique d'un état mental
- 7.3 Indiscernabilité des sujets

Interactions psycho-physiques

- 8.1 Dynamique stochastique
- 8.2 Mesure quantique
- 8.3 Décohérence quantique

Quatrième partie Applications

Electrodynamique quantique

- 9.1 Opérateurs de charge, de courant et de potentiel
- 9.2 Hamiltonien d'interaction
- 9.3 Exemple : La section efficace de Rutherford

Théorème de réincarnation

- 10.1 Un théorème de récurrence des états mentaux
- 10.2 Démonstration
- 10.3 Discussion

Cinquième partie Appendices

Annexe A

Fonctions usuelles

- A.1 La fonction sinus cardinal
- A.2 La fonction esinc
- A.3 La fonction δ de Dirac

Annexe B

Matrices de Dirac et de Pauli

B.1 Matrices de Pauli

Pour décrire le spin de l'électron dans la limite non-relativiste, Wolfgang Pauli a été amené à introduire trois automorphismes de \mathcal{H}^2 , notés $\hat{\sigma}_1$, $\hat{\sigma}_2$ et $\hat{\sigma}_3$, dont la propriété essentielle est de vérifier les relations d'anticommutation suivantes :

$$\{\widehat{\sigma}_a, \widehat{\sigma}_b\} := \widehat{\sigma}_a \widehat{\sigma}_b + \widehat{\sigma}_b \widehat{\sigma}_a = 2\delta_{a,b} \mathbb{1}$$

Il existe une infinité de familles d'automorphismes vérifiant ces relations algébriques, le choix de l'une d'entre-elles en particulier n'ayant aucune influence sur les prédictions de la théorie. La famille de matrices suivantes :

$$\sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

représente canoniquement une famille d'automorphismes de \mathcal{H}^2 qui vérifie ces relations d'anticommutation. C'est pour cette convention que nous optons dans ce cours pour définir les matrices de Pauli.

B.2 Matrices de Dirac

De manière similaire, dans le but d'établir und équation d'onde du premier ordre décrivant la propagation libre d'un électron relativiste, Paul Dirac a été amené à introduire quatre automorphismes de \mathcal{H}^4 , notés $\widehat{\gamma}^0$, $\widehat{\gamma}^1$, $\widehat{\gamma}^2$ et $\widehat{\gamma}^3$, dont la propriété essentielle est de vérifier les relations d'anticommutation suivantes :

$$\{\widehat{\gamma}^{\mu}, \widehat{\gamma}^{\nu}\} := \widehat{\gamma}^{\mu} \widehat{\gamma}^{\nu} + \widehat{\gamma}^{\nu} \widehat{\gamma}^{\mu} = 2g^{\mu\nu} \mathbb{1}$$

Dans cette expression, vous aurez reconnu le tenseur de Minkowski, pour lequel nous choisissons dans ce cours la signature suivante :

$$q := diag(1, -1, -1, -1)$$

Ici encore, il existe une infinité de familles d'automorphismes vérifiant ces relations algébriques, le choix de l'une d'entre-elles en particulier n'ayant aucune influence sur les prédictions de la théorie. La famille de matrices suivantes, construites par blocs à l'aide des matrices de Pauli :

$$\gamma^0 := \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix} \quad \gamma^1 := \begin{pmatrix} 0 & \sigma_1 \\ -\sigma_1 & 0 \end{pmatrix}$$

$$\gamma^2 := \begin{pmatrix} 0 & \sigma_2 \\ -\sigma_2 & 0 \end{pmatrix} \quad \gamma^3 := \begin{pmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{pmatrix}$$

représente canoniquement une famille d'automorphismes de \mathcal{H}^4 qui vérifie ces relations d'anticommutation. C'est pour cette convention que nous optons dans ce cours pour définir les matrices de Dirac. Nous serons également amenés à faire usage de la notation vectorielle condensée :

$$oldsymbol{\gamma} := egin{pmatrix} \gamma^1 \ \gamma^2 \ \gamma^3 \end{pmatrix}$$

pour exprimer le Hamiltonien d'interaction de l'électrodynamique quantique.

Annexe C

Opérateurs spinoriels

- C.1 Opérateurs de polarisation photoniques
- C.2 Opérateurs d'antisymétrisation fermioniques
- C.3 Opérateurs spinoriels de Dirac

Bibliographie