Project 1

March 2024

1 Student Details

Name: Joel Anto Paul Roll No.: 210070037

2 Methedology

I used Lecture-12 and Thomas Lee to get an idea of how to start designing the circuit.

Fig.1 Common Source LNA

Figure 1: Inductive Degeneration CS LNA Circuit

I used the following steps to design the circuit:

- I chose RB first
- Selected Bias Current
- Set L = 60nm and selected a width of 1um for all Mosfets
- Using impedance matching, I calculated the value of L_S , The Transit Frequency of the given Mosfet came out to be more than 60GHz, But for Impedance Matching, no such L_S was realizable, therefore I set L_S approximately 1nH and started working from there

- Selected C_G such that a realizable LG can be set for resonance
- I chose L_D and C_D such that these and CLOAD resonate at 2.49GHz.
- Iteratively changed values of L_S , L_G , C_G , C_D , L_D , and C_{LOAD} to get the desired specs.
- L_D and C_D had a huge impact on P1dB and IIP3
- Set Multipliers of M1 and M2 to 10
- From simulations, understood higher width required for Lower NF, therefore increased width of all transisitors to 4.5um
- To match Power constraints I decreased Bias current to less than 300uA.

These are the equations which helped me get a rough idea of the values of the components:

- $R_S = \omega_T L_S$, where R_S is the port resistance = 50Ω
- Then used the modified equation which takes account of Parsasitic Capacitance, $R_S = \omega_T L_S \left(\frac{C_G}{C_G + C_{par}}\right)^2$
- $\omega_0^2 = \frac{1}{(L_G + L_S)(C_G + C_{par})}$, where ω_0 is the resonant frequency = 2.49GHzS
- $\bullet \ \omega_0^2 = \frac{1}{L_D(C_D + C_{LOAD})}$

Given, $V_{DD} = 1.2V$, Therefore to match the power constrain: Power < 4mW, We needed current drawn from V_{DD} to be less than 3.33 mA.

3 Final Values and Schematic

Power Dissipation = 2.98554 mA * 1.2 V = 3.58265 mWThe final values of the components are given in Table.

Table 1: Final Component Values

Component	Value
R_B	$1 \text{ k}\Omega$
I_{Bias}	$215 \mu A$
L_S	1.5 nH
C_G	616.56 fF
L_G	5.5 nH
C_D	581.944 fF
L_D	4 nH
C_{Large}	40 pF
W/L (same for all MOSFETS)	$\frac{4.5\mu M}{60nM}$

Schematic of the circuit with annotated DC operating points

 $Figure \ 2: \ Annotated \ Schematic$

4 Simulations Plots

Figure 3: Noise Figure vs Frequency

Figure 4: S11 vs Frequency

Figure 5: Gain(dB) vs Frequency

5 Noise Contributions

The noise contributions of the different components are given in Table ??.

Figure 6: P1dB vs Frequency

Figure 7: IIP3 vs Frequency

Figure 8: Noise Contributions in descending order