

Binary Prediction of Smoker Status using Bio-Signals and Machine Learning

Utilizing Machine Learning to Predict Smoker Status from Bio-Signals

# Abstract and Introduction



#### **Problem**

"Smoking increases risk of developing more than 50 serious health condition" - NHS

#### Objective

Explores the use of machine learning to predict smoking status from a variety of medical features

#### Scope

Our journey includes data preprocessing, model selection, evaluation, and deployment



## Steps towards predicting smoking status

Engineering







## **Exploratory Data Analysis**





#### 1. Quality and Structure

- → Shape
- → Unique values per feature
- → Computed statistical measures
- → Graphical representations

## **Exploratory Data Analysis**



Medical Description

Reasonable Values

Data Type

Values Collected

Relationship with target

Observations for f.e.





## **Exploratory Data Analysis**

| Feature                                   | Insights                                                    |
|-------------------------------------------|-------------------------------------------------------------|
| Age                                       | Majority class = aged 40                                    |
| Eyesight                                  | Visual acuity of smokers < non-smokers. // Extreme outliers |
| Waist / Height                            | Smokers > non-smokers in the sample, contrary to studies.   |
| Hearing                                   | Few cases // Worse in non-smokers                           |
| Systolic / Relaxation                     | Too high values, overly specific cases                      |
| Fasting blood sugar                       | Extreme boundary values                                     |
| Cholesterol / Triglyceride<br>/ HDL / LDL | Extreme values // Cholesterol = the sum of other variables  |
| Hemoglobin                                | In smokers > non-smokers                                    |
| Urine protein / Serum<br>creatinine       | Values as limit range data points (diseases)                |
| AST / ALT / Gtp                           | Values exceed the boundaries (diseases)                     |
| Dental caries                             | Smokers > non-smokers                                       |









## **Model Configuration**

#### **Data Scaling**

We rare using MinMaxScaler() due to its non-Gaussian distribution and the situation with the outliers



#### Sampling

Tried training the models using a sample of the dataset instead of the entire one. The resulting model did not make much sense.



## Huperparameter Tuning Each model has its own set of

characteristics, complexities and underlying assumptions.

- We started with GridSearch()
   and then shifted to
   RandomizedSearchCV()
- K-Fold cross validation with K=5
- ROC AUC as scoring metric for comparing the models

#### **Model Selection**

#### Non-probabilistic models

Decision Trees are straightforward and easy to understand but prone to overfitting and high variance.

Random Forest are ensemble methods that combine multiple Decision Trees to improve performance.

XGBoost is a gradient boosting algorithm that incorporate regularization techniques to prevent overfitting and also minimizes loss.



#### **Logistic Regression**

Understandable model where feature engineering is needed as it is prone to noise

#### **SVMs**

Robust against over-fitting but computationally intensive

## Coding the models

#### **First Impressions**

Logistic and XGBoost seem good (ROC AUC around 0.84)

Decision Trees and Random Forest give us a ROC AUC of 1

SVM is to heavy to compute, so taking into account it is not efficient with large datasets we discard it



### Once training with hyperparameter tuning

Once we run the code to perform the RandomizedSearch() we will perform the following analysis:

- 1. Original Dataframe
- 2. Transformed Dataframe
- 3. Transformed Dataframe with ages under-sampled

#### **Evaluation of Models**

|            | precision | recall | f-1 score |
|------------|-----------|--------|-----------|
| non-smoker | 0.83      | 0.70   | 0.76      |
| smoker     | 0.68      | 0.82   | 0.75      |
| accuracy   |           |        | 0.75      |

Table 4: Scoring metrics for Logistic Regression model trained on the original dataframe

|            | precision | recall | f-1 score |
|------------|-----------|--------|-----------|
| non-smoker | 0.82      | 0.71   | 0.76      |
| smoker     | 0.68      | 0.82   | 0.74      |
| accuracy   |           |        | 0.75      |

Table 5: Scoring metrics for Decision Tree model trained on the original dataframe

|            | precision | recall | f-1 score |
|------------|-----------|--------|-----------|
| non-smoker | 0.91      | 0.95   | 0.93      |
| smoker     | 0.93      | 0.88   | 0.91      |
| accuracy   |           |        | 0.92      |

Table 6: Scoring metrics for Random Forest model trained on the original dataframe

|            | precision | recall | f-1 score |
|------------|-----------|--------|-----------|
| non-smoker | 0.86      | 0.78   | 0.81      |
| smoker     | 0.74      | 0.83   | 0.79      |
| accuracy   |           |        | 0.80      |

Table 7: Scoring metrics for XGBoost model trained on the original dataframe.

|            | precision | recall | f1-score |
|------------|-----------|--------|----------|
| non-smoker | 0.86      | 0.81   | 0.84     |
| smoker     | 0.78      | 0.83   | 0.80     |
| accuracy   |           |        | 0.82     |

Table 8: Scoring metrics for XGBoost model trained on the transformed dataframe.

|            | precision | recall | f1-score |
|------------|-----------|--------|----------|
| non-smoker | 0.85      | 0.80   | 0.82     |
| smoker     | 0.76      | 0.81   | 0.78     |
| accuracy   |           |        | 0.80     |

Table 9: Scoring metrics for XGBoost model trained on the transformed and age undersampled dataframe.





- Logistic Regression on the original dataset showed balanced performance across classes, but with room for improvement in accuracy.
- Decision Tree metrics indicated a similar trend, with a slight variation in precision and recall.
- Random Forest outperformed other models on the original data, showing high precision and recall for both classes.
- XGBoost on the original data had lower precision for non-smokers compared to the Random Forest model.
- Upon transformation, XGBoost's performance slightly decreased, which was unexpected given the feature engineering efforts.
- The age-undersampled dataset further decreased the XGBoost performance, hinting at the synthetic data's inability to capture the original data's essence.
- Scaling the original training dataset and applying XGBoost revealed a distinct peak in the Accuracy vs. Threshold graph, indicating an optimal point for classification threshold.
- The Precision-Recall Trade-off curve underscored the inverse relationship between precision and recall, emphasizing the need for a strategic balance in threshold setting to cater to specific application requirements.

## Results and Kaggle Scores

Comparison of Predictive Model Scores

|               | Log. Regression | Decision Tree | Random Forest | XGBoost |
|---------------|-----------------|---------------|---------------|---------|
| Public Score  | 0.7673          | 0.75894       | 0.78071       | 0.78673 |
| Private Score | 0.76207         | 0.75714       | 0.77894       | 0.78687 |



- Scores ranged narrowly, with XGBoost achieving the highest accuracy on the original dataset.
- Decision Tree and Logistic Regression underperformed compared to Random Forest and XGBoost.
- Random Forest's running time was significantly longer, heavily dependent on CPU capabilities.
- Kaggle scores showed the original dataset without feature engineering yielded the best results.
- Final model predictions indicated a higher proportion of smokers compared to the original dataset's distribution.

## Conclusion



#### Challenges

- Sensitive to over-fitting
- Effectiveness of Sampling
- Feature Engineering's Double-Edged Sword

#### **Future Solutions**

- Exploration of Alternative Models and Techniques: LightGBM, CatBoost
- Hyper-parameter tuning techniques such as Optuna or Ray Tune

