Real Analysis Qualifying Exam Notes

D. Zack Garza

Monday 18^{th} May, 2020

Contents

1	Ineq	ualities and Equalities	2			
2	Basi	ics	3			
3	Unif	orm Convergence 4				
4	Mea	asure Theory	6			
5 6	5.1 5.2 5.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 11 13			
7	Exar	m 2 (Practice)	14			
	7.1	1: Fubini-Tonelli	14			
		7.1.1 b	15			
	7.2	2: Convolutions and the Fourier Transform	15			
		7.2.1 a	15			
		7.2.2 b	16			
		7.2.3 c	17			
	7.3	3: Hilbert Spaces	18			
		7.3.1 a	18			
		7.3.2 b	19			
		7.3.3 c	20			
	7.4	4: Lp Spaces	20			
		7.4.1 a	21			
		7.4.2 c	22			
	7.5	5: Dual Spaces	23			
			24			
		7.5.2 c	25			
8	Exa	m 2 (2018)	26			
9	Exar	m 2 (2014)	26			

10	ual: Fall 2019		2
	.1 1		. 2
	.2 2		. 2
	.3 3		. 2
	.4 4		. 2
	.5 5		. 2
	.6 Definitions		. 2
	7 Useful Results		2

1 Inequalities and Equalities

AM-GM Inequality:

$$\sqrt{ab} \le \frac{a+b}{2}.$$

Reverse Triangle Inequality

$$|||x|| - ||y||| \le ||x - y||.$$

Chebyshev's Inequality

$$\mu(\lbrace x: |f(x)| > \alpha \rbrace) \le \left(\frac{\|f\|_p}{\alpha}\right)^p.$$

Holder's Inequality:

$$\frac{1}{p} + \frac{1}{q} = 1 \implies ||fg||_1 \le ||f||_p ||g||_q.$$

Application: For finite measure spaces,

$$1 \le p < q \le \infty \implies L^q \subset L^p \pmod{\ell^p \subset \ell^q}$$

Proof. Fix
$$p, q$$
, let $r = \frac{q}{p}$ and $s = \frac{r}{r-1}$ so $r^{-1} + s^{-1} = 1$. Then let $h = |f|^p$:
$$||f||_p^p = ||h \cdot 1||_1 \le ||1||_s ||h||_r = \mu(X)^{\frac{1}{s}} ||f||_q^{\frac{q}{r}} \implies ||f||_p \le \mu(X)^{\frac{1}{p} - \frac{1}{q}} ||f||_q.$$

Note: doesn't work for ℓ spaces, but just note that $\sum |x_n| < \infty \implies x_n < 1$ for large enough n, and thus $p < q \implies |x_n|^q \le |x_n|^q$.

Cauchy-Schwarz:

$$|\langle f, \; g \rangle| = \|fg\|_1 \leq \|f\|_2 \|g\|_2 \quad \text{with equality} \quad \Longleftrightarrow \; f = \lambda g.$$

Relates inner product to norm, and only happens to relate norms in L^1 .

 $\frac{Proof}{?}$

Minkowski's Inequality:

$$1 \le p < \infty \implies ||f + g||_p \le ||f||_p + ||g||_p$$

Note: does not handle $p = \infty$ case. Use to prove L^p is a normed space.

Young's Inequality:

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1 \implies ||f * g||_r \le ||f||_p ||g||_q.$$

Useful specific cases:

$$\begin{split} & \|f*g\|_1 \leq \|f\|_1 \|g\|_1 \\ & \|f*g\|_p \leq \|f\|_1 \|g\|_p, \\ & \|f*g\|_\infty \leq \|f\|_2 \|g\|_2 \\ & \|f*g\|_\infty \leq \|f\|_p \|g\|_q. \end{split}$$

Bessel's Inequality:

For $x \in H$ a Hilbert space and $\{e_k\}$ an orthonormal sequence,

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2.$$

Note: this does not need to be a basis.

Parseval's identity:

Equality in Bessel's inequality, attained when $\{e_k\}$ is a *basis*, i.e. it is complete, i.e. the span of its closure is all of H.

2 Basics

Useful Technique: $\lim f_n = \lim \sup f_n = \lim \inf f_n$ iff the limit exists, so $\lim \sup f_n \leq g \leq \lim \inf f_n$ implies that $g = \lim f$. Similarly, a limit does not exist iff $\lim \inf f_n > \lim \sup f_n$.

Lemma: $\sum a_n < \infty \implies a_n \longrightarrow 0$ and $\sum_{k=N}^{\infty} \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$, i.e. the terms/tails of convergent sums go to zero.

Lemma (Heine-Borel): A subset of \mathbb{R}^n is compact iff it is closed and bounded.

Lemma (Geometric Series):

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \iff |x| < 1.$$

Corollary:
$$\sum_{k=0}^{\infty} \frac{1}{2^k} = 1.$$

Definition: A set S is **nowhere dense** iff the closure of S has empty interior iff every interval contains a subinterval that does not intersect S.

Definition: A set is **meager** if it is a *countable* union of nowhere dense sets.

Note that a *finite* union of nowhere dense is still nowhere dense.

Lemma: The Cantor set is closed with empty interior.

Proof: Its complement is a union of open intervals, and can't contain an interval since intervals have positive measure and $m(C_n)$ tends to zero.

Corollary: The Cantor set is nowhere dense.

Definition: An F_{σ} set is a union of closed sets, and a G_{δ} set is an intersection of opens.

Mnemonic: "F" stands for *ferme*, which is "closed" in French, and σ corresponds to a "sum", i.e. a union.

Lemma: Singleton sets in \mathbb{R} are closed, and thus \mathbb{Q} is an F_{σ} set.

Theorem (Baire): \mathbb{R} is a Baire space, i.e. countable intersections of open, dense sets are still dense. Thus \mathbb{R} can not be written as a countable union of nowhere dense sets.

Lemma: There is a function discontinuous precisely on \mathbb{Q} .

Proof: $f(x) = \frac{1}{n}$ if $x = r_n \in \mathbb{Q}$ is an enumeration of the rationals, and zero otherwise. The limit at every point is 0.

Lemma: There do not exist functions that are discontinuous precisely on $\mathbb{R} \setminus \mathbb{Q}$.

Proof: D_f is always an F_σ set, which follows by considering the oscillation ω_f . $\omega_f(x) = 0 \iff f$ is continuous at x, and $D_f = \bigcup_{x} A_{\frac{1}{n}}$ where $A_\varepsilon = \{\omega_f \ge \varepsilon\}$ is closed.

Lemma: Any nonempty set which is bounded from above (resp. below) has a well-defined supremum (resp. infimum).

3 Uniform Convergence

Theorem (Egorov):

Let $E \subseteq \mathbb{R}^n$ be measurable with m(E) > 0 and $\{f_k : E \longrightarrow \mathbb{R}\}$ be measurable functions such that $f(x) := \lim_{k \longrightarrow \infty} f_k(x) < \infty$ exists almost everywhere.

Then $f_k \longrightarrow f$ almost uniformly, i.e.

 $\forall \varepsilon > 0, \ \exists F \subseteq E \text{ closed such that } m(E \setminus F) < \varepsilon \text{ and } f_k \xrightarrow{u} f \text{ on } F.$

Theorem (Important Example): The space X = C([0,1]), continuous functions $f : [0,1] \longrightarrow \mathbb{R}$, equipped with the norm $||f|| = \sup_{x \in [0,1]} |f(x)|$, is a **complete** metric space.

Proof:

Step θ : Let $\{f_k\}$ be Cauchy in X.

Step 1: Define a candidate limit using pointwise convergence:

Fix an x; since

$$|f_k(x) - f_j(x)| \le ||f_k - f_k|| \longrightarrow 0,$$

the sequence $\{f_k(x)\}\$ is Cauchy in \mathbb{R} . So define $f(x) := \lim_{k \to \infty} f_k(x)$.

Step 2: Show that $||f_k - f|| \longrightarrow 0$:

$$|f_k(x) - f_j(x)| < \varepsilon \ \forall x \implies \lim_j |f_k(x) - f_j(x)| < \varepsilon \ \forall x$$

Alternatively, $||f_k - f|| \le ||f_k - f_N|| + ||f_N - f_j||$, where N, j can be chosen large enough to bound each term by $\varepsilon/2$.

Step 3: Show that $f \in X$:

The uniform limit of continuous functions is continuous. (Note: in other cases, you may need to show the limit is bounded, or has bounded derivative, or whatever other conditions define X.)

Lemma: Metric spaces are compact iff they are sequentially compact, (i.e. every sequence has a convergent subsequence).

Corollary: The unit ball in C([0,1]) with the sup norm is not compact.

Proof: Take $f_k(x) = x^n$, which converges to a dirac delta at 1. The limit is not continuous, so no subsequence can converge.

Lemma: A uniform limit of continuous functions is continuous.

Lemma (Testing Uniform Convergence): $f_n \longrightarrow f$ uniformly iff there exists an M_n such that $||f_n - f||_{\infty} \leq M_n \longrightarrow 0$.

Negating: find an x which depends on n for which the norm is bounded below.

Useful Technique: If f_n has a global maximum (computed using f'_n and the first derivative test) $M_n \longrightarrow 0$, then $f_n \longrightarrow 0$ uniformly.

Lemma (Baby Commuting Limits with Integrals): If $f_n \longrightarrow f$ uniformly, then $\int f_n = \int f$.

Lemma (Uniform Convergence and Derivatives) If $f'_n \longrightarrow g$ uniformly for some g and $f_n \longrightarrow f$ pointwise (or at least at one point), then g = f'.

Lemma (Uniform Convergence of Series): If $f_n(x) \leq M_n$ for a fixed x where $\sum M_n < \infty$, then the series $f(x) = \sum f_n(x)$ converges pointwise.

Lemma: If $\sum f_n$ converges then $f_n \longrightarrow 0$ uniformly.

Useful Technique: For a fixed x, if $f = \sum_{n} f_n$ converges uniformly on some $B_r(x)$ and each f_n is continuous at x, then f is also continuous at x.

Lemma (M-test for Series): If $|f_n(x)| \leq M_n$ which does not depend on x, then $\sum f_n$ converges uniformly.

Lemma (p-tests): Let *n* be a fixed dimension and set $B = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$.

$$\sum_{n} \frac{1}{n^{p}} < \infty \iff p > 1$$

$$\int_{\varepsilon}^{\infty} \frac{1}{x^{p}} < \infty \iff p > 1$$

$$\int_{0}^{1} \frac{1}{x^{p}} < \infty \iff p < 1$$

$$\int_{B} \frac{1}{|x|^{p}} < \infty \iff p < n$$

$$\int_{B^{c}} \frac{1}{|x|^{p}} < \infty \iff p > n$$

4 Measure Theory

Useful Technique: $s = \inf \{x \in X\} \implies \text{ for every } \varepsilon \text{ there is an } x \in X \text{ such that } x \leq s + \varepsilon.$ **Useful Techniques**: Always consider bounded sets, and if E is unbounded write $E = \bigcup B_n(0) \cap E$ and use countable subadditivity or continuity of measure.

Lemma 4.1.

Every open subset of \mathbb{R} (resp \mathbb{R}^n) can be written as a unique countable union of disjoint (resp. almost disjoint) intervals (resp. cubes).

Definition: The outer measure of a set is given by

$$m_*(E) = \inf_{\substack{\{Q_i\} \rightrightarrows E \text{closed cubes}}} \sum |Q_i|.$$

Lemma 4.2 (Properties of [Outer).

Measure]

- Montonicity: E ⊆ F ⇒ m_{*}(E) ≤ m_{*}(F).
 Countable Subadditivity: m_{*}(∪ E_i) ≤ ∑ m_{*}(E_i).
 Approximation: For all E there exists a G ⊇ E such that m_{*}(G) ≤ m_{*}(E) + ε.
- Disjoint* Additivity: $m_*(A \coprod B) = m_*(A) + m_*(B)$.

Note: this holds for outer measure **iff** dist(A, B) > 0.

Lemma 4.3 (Subtraction of Measure):).

m(A) = m(B) + m(C) and $m(C) < \infty$ implies that m(A) - m(C) = m(B).

Lemma 4.4 (Continuity of Measure).

$$E_i \nearrow E \implies m(E_i) \longrightarrow m(E)$$

 $m(E_1) < \infty \text{ and } E_i \searrow E \implies m(E_i) \longrightarrow m(E).$

Proof.

- 1. Break into disjoint annuli $A_2 = E_2 \setminus E_1$, etc then apply countable disjoint additivity to $E = \prod A_i$.
- 2. Use $E_1 = (\coprod E_j \setminus E_{j+1}) \coprod (\bigcap E_j)$, taking measures yields a telescoping sum, and use countable disjoint additivity.

Lemma 4.5.

Lebesgue measure is translation and dilation invariant.

Proof.

Obvious for cubes; if $Q_i \rightrightarrows E$ then $Q_i + k \rightrightarrows E + k$, etc.

Theorem 4.6 (Non-Measurable Sets).

There is a non-measurable set.

Proof.

- Use AOC to choose one representative from every coset of \mathbb{R}/\mathbb{Q} on [0,1), which is countable, and assemble them into a set N
- Enumerate the rationals in [0,1] as q_j , and define $N_j = N + q_j$. These intersect trivially.
- Define $M := \coprod N_j$, then $[0,1) \subseteq M \subseteq [-1,2)$, so the measure must be between 1 and 3. By translation invariance, $m(N_j) = m(N)$, and disjoint additivity forces m(M) = 0, a contradiction.

Lemma (Borel Characterization of Measurable Sets)

If E is Lebesgue measurable, then $E = H \coprod N$ where $H \in F_{\sigma}$ and N is null.

Useful technique: F_{σ} sets are Borel, so establish something for Borel sets and use this to extend it to Lebesgue.

Proof: For every $\frac{1}{n}$ there exists a closed set $K_n \subset E$ such that $m(E \setminus K_n) \leq \frac{1}{n}$. Take $K = \bigcup K_n$, wlog $K_n \nearrow K$ so $m(K) = \lim m(K_n) = m(E)$. Take $N := E \setminus K$, then m(N) = 0.

Lemma 4.7.

$$\limsup_{n} A_{n} = \bigcap_{n} \bigcup_{j \geq n} A_{j} = \left\{ x \mid x \in A_{n} \text{ for inf. many } n \right\}$$
$$\liminf_{n} A_{n} = \bigcup_{n} \bigcap_{j \geq n} A_{j} = \left\{ x \mid x \in A_{n} \text{ for all except fin. many } n \right\}$$

Lemma 4.8.

If A_n are all measurable, $\limsup A_n$ and $\liminf A_n$ are measurable.

Proof: Measurable sets form a sigma algebra, and these are expressed as countable unions/intersections of measurable sets.

Theorem 4.9 (Borel-Cantelli).

Let $\{E_k\}$ be a countable collection of measurable sets. Then

$$\sum_k m(E_k) < \infty \implies \text{ almost every } x \in \mathbb{R} \text{ is in at most finitely many } E_k.$$

Application:

$$m\left(\left\{x \text{ such that } \exists \text{ inf. many } \frac{p}{q} \text{ with } \left|x - \frac{p}{q}\right| \le \frac{1}{q^3}\right\}\right) = 0.$$

Proof.

Idea: write E_j to be the above set with p,q replaced by p_j,q_j where $r_j = \frac{p_j}{a_i}$ is an enumeration

of \mathbb{Q} , then $m(E_j) \leq \frac{2}{q^3}$ and $\sum \frac{1}{q^3} < \infty$.

- If $E = \limsup_{j \to \infty} E_j$ with $\sum_{j \to \infty} m(E_j) < \infty$ then m(E) = 0.
- If E_j are measurable, then $\limsup_{j \to \infty} E_j$ is measurable.
- If $\sum_{j} m(E_{j}) < \infty$, then $\sum_{j=N}^{\infty} m(E_{j}) \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$ as the tail of a convergent sequence. $E = \limsup_{j} E_{j} = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E_{j} \implies E \subseteq \bigcup_{j=k}^{\infty} \text{ for all } k$ $E \subset \bigcup_{j=k}^{\infty} \implies m(E) \le \sum_{j=k}^{\infty} m(E_{j}) \stackrel{k \longrightarrow \infty}{\longrightarrow} 0$.

Lemma 4.10.

- Characteristic functions are measurable
- If f_n are measurable, so are $|f_n|$, $\limsup f_n$, $\liminf f_n$, $\lim f_n$,
- Sums and differences of measurable functions are measurable,

- Cones F(x,y) = f(x) are measurable,
- Compositions $f \circ T$ for T a linear transformation are measurable,
- "Convolution-ish" transformations $(x,y) \mapsto f(x-y)$ are measurable

Proof (Convolution): Take the cone on f to get F(x,y) = f(x), then compose F with the linear transformation T = [1, -1; 1, 0].

5 Integration

Definition: $f \in L^+$ iff f is measurable and non-negative.

Useful techniques:

- Break integration domain up into disjoint annuli.
- Break real integrals up into x < 1 and x > 1.

Definition: A measurable function is integrable iff $||f||_1 < \infty$.

Useful facts about C_c functions:

- Bounded almost everywhere
- Uniformly continuous

5.1 Convergence Theorems

Monotone Convergence Theorem (MCT):

If $f_n \in L^+$ and $f_n \nearrow f$ a.e., then

$$\lim \int f_n = \int \lim f_n = \int f$$
 i.e. $\int f_n \longrightarrow \int f$.

Needs to be positive and increasing.

Dominated Convergence Theorem (DCT):

If $f_n \in L^1$ and $f_n \longrightarrow f$ a.e. with $|f_n| \leq g$ for some $g \in L^1$, then

$$\lim \int f_n = \int \lim f_n = \int f$$
 i.e. $\int f_n \longrightarrow \int f$,

and more generally,

$$\int |f_n - f| \longrightarrow 0.$$

Positivity not needed.

Generalized DCT: can relax $|f_n| < g$ to $|f_n| < g_n \longrightarrow g \in L^1$.

Lemma: If $f \in L^1$, then

$$\int |f_n - f| \longrightarrow 0 \iff \int |f_n| \longrightarrow |f|.$$

Proof: Let
$$g_n = |f_n| - |f_n - f|$$
, then $g_n \longrightarrow |f|$ and

$$|g_n| = ||f_n| - |f_n - f|| \le |f_n - (f_n - f)| = |f| \in L^1,$$

so the DCT applies to g_n and

$$||f_n - f||_1 = \int |f_n - f| + |f_n| - |f_n| = \int |f_n| - g_n$$

$$\longrightarrow_{DCT} \lim \int |f_n| - \int |f|.$$

Fatou's Lemma:

If $f_n \in L^+$, then

$$\int \liminf_{n} f_n \le \liminf_{n} \int f_n$$
$$\lim \sup_{n} \int f_n \le \int \limsup_{n} f_n.$$

Only need positivity.

Theorem (Tonelli): For f(x,y) non-negative and measurable, for almost every $x \in \mathbb{R}^n$,

- $f_x(y)$ is a **measurable** function
- $F(x) = \int f(x,y) dy$ is a **measurable** function,
- For E measurable, the slices $E_x := \{y \mid (x,y) \in E\}$ are measurable.
- $\int f = \int \int F$, i.e. any iterated integral is equal to the original.

Theorem (Fubini): For f(x,y) integrable, for almost every $x \in \mathbb{R}^n$,

- $f_x(y)$ is an **integrable** function
- $F(x) = \int f(x,y) dy$ is an **integrable** function,
- For E measurable, the slices $E_x := \{y \mid (x,y) \in E\}$ are measurable.
- $\int f = \int \int f(x,y)$, i.e. any iterated integral is equal to the original

Theorem (Fubini/Tonelli): If any iterated integral is absolutely integrable, i.e. $\int \int |f(x,y)| < \infty$, then f is integrable and $\int f$ equals any iterated integral.

Differentiating under the integral:

If
$$\left| \frac{\partial}{\partial t} f(x,t) \right| \leq g(x) \in L^1$$
, then letting $F(t) = \int f(x,t) \ dt$,

$$\frac{\partial}{\partial t} F(t) \coloneqq \lim_{h \to 0} \int \frac{f(x, t+h) - f(x, t)}{h} dx$$
$$\stackrel{\text{DCT}}{=} \int \frac{\partial}{\partial t} f(x, t) \ dx.$$

To justify passing the limit, let $h_k \longrightarrow 0$ be any sequence and define

$$f_k(x,t) = \frac{f(x,t+h_k) - f(x,t)}{h_k},$$

so
$$f_k \stackrel{\text{pointwise}}{\longrightarrow} \frac{\partial}{\partial t} f$$
.

Apply the MVT to f_k to get $f_k(x,t) = f_k(\xi,t)$ for some $\xi \in [0,h_k]$, and show that $f_k(\xi,t) \in L_1$.

Lemma (Swapping Sum and Integral) If f_n are non-negative and $\sum \int |f|_n < \infty$, then $\sum \int f_n = \int \sum f_n$.

Proof: MCT. Let $F_N = \sum_{n=1}^{N} f_n$ be a finite partial sum; then there are simple functions $\phi_n \nearrow f_n$ and so $\sum_{n=1}^{N} \phi_n \nearrow F_N$, so apply MCT.

Lemma: If $f_k \in L^1$ and $\sum ||f_k||_1 < \infty$ then $\sum f_k$ converges almost everywhere and in L^1 .

Proof: Define
$$F_N = \sum_{k=1}^{N} f_k$$
 and $F = \lim_{k \to \infty} F_k$, then $||F_N||_1 \le \sum_{k=1}^{N} ||f_k|| < \infty$ so $F \in L^1$ and $||F_N - F||_1 \longrightarrow 0$ so the sum converges in L^1 . Almost everywhere convergence: ?

5.2 L^1 Facts

Lemma (Translation Invariance): The Lebesgue integral is translation invariant, i.e. $\int f(x) dx = \int f(x+h) dx$ for any h.

Proof:

- For characteristic functions, $\int_E f(x+h) = \int_{E+h} f(x) = m(E+h) = m(E) = \int_E f$ by translation invariance of measure.
- So this also holds for simple functions by linearity
- For $f \in L^+$, choose $\phi_n \nearrow f$ so $\int \phi_n \longrightarrow \int f$.
- Similarly, $\tau_h \phi_n \nearrow \tau_h f$ so $\int \tau_h f \longrightarrow \int f$
- Finally $\left\{ \int \tau_h \phi \right\} = \left\{ \int \phi \right\}$ by step 1, and the suprema are equal by uniqueness of limits.

Lemma (Integrals Distribute Over Disjoint Sets):

If
$$X \subseteq A \bigcup B$$
, then $\int_X f \leq \int_A f + \int_{A^c} f$ with equality iff $X = A \coprod B$.

Lemma (L^1 functions may Decay Rapidly):

If $f \in L^1$ and f is uniformly continuous, then $f(x) \stackrel{|x| \longrightarrow \infty}{\longrightarrow} 0$.

Doesn't hold for general L^1 functions, take any train of triangles with height 1 and summable areas.

Lemma (L^1 functions have Small Tails):

If $f \in L^1$, then for every ε there exists a radius R such that if $A = B_R(0)^c$, then $\int_A |f| < \varepsilon$.

Proof: Approximate with compactly supported functions. Take $g \xrightarrow{L_1} f$ with $g \in C_c$, then choose N large enough so that g = 0 on $E := B_N(0)^c$, then $\int_E |f| \le \int_E |f - g| + \int_E |g|$.

Lemma (L^1 functions have absolutely continuity):

$$m(E) \longrightarrow 0 \implies \int_E f \longrightarrow 0.$$

Proof: Approximate with compactly supported functions. Take $g \xrightarrow{L_1} f$, then $g \leq M$ so $\int_E f \leq \int_E f - g + \int_E g \longrightarrow 0 + M \cdot m(E) \longrightarrow 0.$

Lemma (L^1 functions are finite almost everywhere):

If $f \in L^1$, then $m(\{f(x) = \infty\}) = 0$.

Proof (Split up domain2): Let
$$A = \{f(x) = \infty\}$$
, then $\infty > \int f = \int_A f + \int_{A^c} f = \infty \cdot m(A) + \int_{A^c} f \implies m(X) = 0.$

Lemma (Continuity in L^1): $\|\tau_h f - f\|_1 \longrightarrow 0$ as $h \longrightarrow 0$.

Proof: Approximate with compactly supported functions. Take $g \xrightarrow{L_1} f$ with $g \in C_c$.

$$\int f(x+h) - f(x) \le \int f(x+h) - g(x+h) + \int g(x+h) - g(x) + \int g(x) - f(x)$$

$$\longrightarrow 2\varepsilon + \int g(x+h) - g(x)$$

$$= \int_{K} g(x+h) - g(x) + \int_{K^{c}} g(x+h) - g(x) \longrightarrow 0,$$

which follows because we can enlarge the support of g to K where the integrand is zero on K^c , then apply uniform continuity on K.

Theorem (Integration by Parts, Special Case):

$$F(x) := \int_0^x f(y)dy \quad \text{and} \quad G(x) := \int_0^x g(y)dy$$
$$\implies \int_0^1 F(x)g(x)dx = F(1)G(1) - \int_0^1 f(x)G(x)dx.$$

Proof: Fubini-Tonelli, and sketch region to change integration bounds.

Theorem (Lebesgue Density):

$$A_h(f)(x) := \frac{1}{2h} \int_{x-h}^{x+h} f(y) dy \implies ||A_h(f) - f|| \stackrel{h \longrightarrow 0}{\longrightarrow} 0.$$

Proof: Fubini-Tonelli, and sketch region to change integration bounds, and continuity in L^1 .

5.3 L^p Spaces

Lemma: The following are dense subspaces of $L^2([0,1])$:

- Simple functions
- Step functions
- $C_0([0,1])$
- Smoothly differentiable functions $C_0^{\infty}([0,1])$
- Smooth compactly supported functions C_c^{∞}

Dual Spaces: In general, $(L^p)^{\vee} \cong L^q$

- For qual, supposed to know the p=1 case, i.e. $(L^1)^{\vee} \cong L^{\infty}$
 - For the analogous $p=\infty$ case: $L^1\subset (L^\infty)^\vee$, since the isometric mapping is always injective, but *never* surjective. So this containment is always proper (requires Hahn-Banach Theorem).
- The p=2 case: Easy by the Riesz Representation for Hilbert spaces.

6 Fourier Series and Convolution

Definition (Convolution)

$$f * g(x) = \int f(x - y)g(y)dy.$$

Definition (Dilation)

$$\phi_t(x) = t^{-n}\phi\left(t^{-1}x\right).$$

Definition (The Fourier Transform):

$$\widehat{f}(\xi) = \int f(x) \ e^{2\pi i x \cdot \xi} \ dx.$$

Lemma: $\hat{f} = \hat{g} \implies f = g$ almost everywhere.

Lemma (Riemann-Lebesgue)

$$f \in L^1 \implies \widehat{f}(\xi) \to 0 \text{ as } |\xi| \to \infty.$$

Motto: Fourier transforms decay.

Lemma: If $f \in L^1$, then \hat{f} is continuous and bounded.

Proof:
$$|\widehat{f}| \leq \int |f| \cdot |e^{\cdots}| \leq ||f||_1$$
, and the DCT shows that $|\widehat{f}(\xi_n) - \widehat{f}(\xi)| \longrightarrow 0$.

Todo: search qual alerts.

7 Exam 2 (Practice)

Link to PDF File

Proving uniform continuity: show

$$||f - \tau_h f||_1 \xrightarrow{h \longrightarrow 0} 0$$

Notation: C_0 is the set of functions that vanish at infinity.

7.1 1: Fubini-Tonelli

Theorem (Fubini):

Suppose

- $f: \mathbb{R}^{n_1+n_2} \longrightarrow \mathbb{R}$ is measurable on its domain
- \bullet f is non-negative

Then for almost every $x \in \mathbb{R}^{n_1}$,

1. Every slice

$$f_x: \mathbb{R}^{n_2} \longrightarrow \mathbb{R}$$

 $y \mapsto f(x, y)$

is measurable on \mathbb{R}^{n_2} .

2. The function

$$F: \mathbb{R}^{n_1} \longrightarrow \mathbb{R}$$
$$x \mapsto \int_{\mathbb{R}^{n_2}} f_x(y) \ dy$$

is measurable on \mathbb{R}^{n_1}

3. The function

$$G(y) = \int_{\mathbb{R}^n} F(x) \ dx$$

is measurable and

$$G(y) = \int_{\mathbb{R}^n} f = \int_{\mathbb{R}^{n_1}} \int_{\mathbb{R}^{n_2}} f(x, y) \ dy \ dx$$

for any iterated version of this integral.

Corollary (Measurable Slices):

Let E be a measurable subset of \mathbb{R}^n . Then

- For almost every $x \in \mathbb{R}^{n_1}$, the slice $E_x := \{ y \in \mathbb{R}^{n_2} \mid (x,y) \in E \}$ is measurable in \mathbb{R}^{n_2} .
- The function

$$F: \mathbb{R}^{n_1} \longrightarrow \mathbb{R}$$

$$x \mapsto m(E_x) = \int_{\mathbb{R}^{n_2}} \chi_{E_x} \, dy$$

is measurable and

$$m(E) = \int_{\mathbb{R}^{n_1}} m(E_x) \ dx = \int_{\mathbb{R}^{n_1}} \int_{\mathbb{R}^{n_2}} \chi_{E_x} \ dy \ dx$$

 \Longrightarrow :

- Let f be measurable on \mathbb{R}^n .
- Then the cylinders F(x,y) = f(x) and G(x,y) = f(y) are both measurable on ℝⁿ⁺¹.
 Write A = {G ≤ F} ∩ {G ≥ 0}; both are measurable.

- Let A be measurable in \mathbb{R}^{n+1} . Define $A_x = \{ y \in \mathbb{R} \mid (x,y) \in \mathcal{A} \}$, then $m(A_x) = f(x)$.
- By the corollary, A_x is measurable set, $x \mapsto A_x$ is a measurable function, and m(A) = $\int f(x) dx$.
- Then explicitly, $f(x) = \chi_A$, which makes f a measurable function.

7.1.1 b

- Define $A_y = \{x \in \mathbb{R}^n \mid (x, y) \in A\}$, and notice that $A_y = \{x \in \mathbb{R}^n \mid 0 \le y \le f(x)\}$.
- By the corollary, A_y is measurable and

$$m(\mathcal{A}) = \int m(\mathcal{A}_y) dy = \int_0^y m(\{x \in \mathbb{R}^n \ni f(x) \ge y\}) dy$$

7.2 2: Convolutions and the Fourier Transform

7.2.1 a

Definition (Convolution):

$$(f * g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y) \ dy.$$

Facts:

- $f, g \in L^1 \implies f * g \in L^1$
- $f \in L^1, g \leq M \implies f * g \leq M'$ and is uniformly continuous. $f, g \in L^1, f \leq M, g \leq M' \implies f * g \xrightarrow{x \longrightarrow \infty} 0.2$

- $\|f * g\|_1 \le \|f\|_1 \|g\|_1$ $f \in L^1, g' \text{ exists}, \frac{\partial g}{\partial x_i} \text{ all bounded } \Longrightarrow \frac{\partial}{\partial x_i} (f * g) = f * \frac{\partial g}{\partial x_i}$ $f, g \in C_c^\infty \Longrightarrow f * g \in C^\infty \text{ and } f * g \xrightarrow{x \longrightarrow \infty} 0.$

7.2.2 b

Definition (Approximation to the Identity):

$$\phi(x) = e^{-\pi x^2}$$
$$\phi_t(x) = t^{-n}\phi(\frac{x}{t}).$$

Facts:

•
$$\int \phi = \int \phi_t = 1$$

• $\int \phi = \int \phi_t = 1$ • f bounded and uniformly continuous $\implies f * \phi_t \rightrightarrows f$

Theorem (Norm Convergence of Approximate Identities):

$$||f * \phi_t - f||_1 \xrightarrow{t \longrightarrow 0} 0.$$

Proof:

$$\begin{split} \|f-f*\phi_t\|_1 &= \int f(x) - \int f(x-y)\phi_t(y) \; dy dx \\ &= \int f(x) \int \phi_t(y) \; dy - \int f(x-y)\phi_t(y) \; dy dx \\ &= \int \int \phi_t(y)[f(x)-f(x-y)] \; dy dx \\ &=_{FT} \int \int \phi_t(y)[f(x)-f(x-y)] \; dx dy \\ &= \int \phi_t(y) \int f(x) - f(x-y) \; dx dy \\ &= \int \phi_t(y) \|f-\tau_y f\|_1 dy \\ &= \int_{y<\delta} \phi_t(y) \|f-\tau_y f\|_1 dy + \int_{y\geq\delta} \phi_t(y) \|f-\tau_y f\|_1 dy \\ &\leq \int_{y<\delta} \phi_t(y) \varepsilon + \int_{y\geq\delta} \phi_t(y) \left(\|f\|_1 + \|\tau_y f\|_1\right) dy \quad \text{by continuity in } L^1 \\ &\leq \varepsilon + 2\|f\|_1 \int_{y\geq\delta} \phi_t(y) dy \\ &\leq \varepsilon + 2\|f\|_1 \varepsilon \quad \text{since } \phi_t \text{ has small tails} \\ &\to 0 \blacksquare. \end{split}$$

Theorem (Convolutions Vanish at Infinity)

$$f, g \in L^1$$
 and bounded $\implies \lim_{|x| \to \infty} (f * g)(x) = 0.$

Proof:

- Choose $M \geq f, g$.
- By small tails, choose N such that $\int_{B_c^c} |f|, \int_{B_c^c} |g| < \varepsilon$

• Note

$$|f * g| \le \int |f(x-y)| |g(y)| dy := I$$

• Use $|x| \le |x - y| + |y|$, take $|x| \ge 2N$ so either

$$|x-y| \ge N \implies I \le \int_{\{x-y \ge N\}} |f(x-y)| M \ dy \le \varepsilon M \longrightarrow 0$$

 $|y| \ge N \implies I \le \int_{\{y \ge N\}} M|g(y)| \ dy \le M\varepsilon \longrightarrow 0$

7.2.3 c

Definition (The Fourier Transform):

$$\widehat{f}(\xi) = \int f(x)e^{-2\pi ix \cdot \xi} dx.$$

Facts:

- Riemann-Lebesgue lemma: \hat{f} vanishes at infinity $f \in L^1 \implies \hat{f}$ is bounded and uniformly continuous $f, \hat{f} \in L^1 \implies f$ is bounded, uniformly continuous, and vanishes at infinity $f \in L^1$ and $\hat{f} = 0$ almost everywhere $\implies f = 0$ almost everywhere.

Theorem (Fourier Inversion):

$$f(x) = \int_{\mathbb{R}^n} \widehat{f}(x)e^{2\pi ix\cdot\xi}d\xi.$$

Proof: Idea: Fubini-Tonelli doesn't work directly, so introduce a convergence factor, take limits, and use uniqueness of limits.

Use the following facts:

- $f, g \in L^1 \implies \int \widehat{f}g = \int f\widehat{g}$. $g(x) \coloneqq e^{-\pi|t|^2} \implies \widehat{g}(\xi) = g(\xi)$. $g_t(x) = t^{-n}g(x/t) = t^{-n}e^{-\pi|x|^2/t^2}$. $\widehat{g}_t(x) = g(tx) = e^{-\pi t^2|x|^2}$. $\phi(\xi) \coloneqq e^{2\pi ix \cdot \xi} \widehat{g}_t(\xi)$. $\widehat{\phi}(\xi) = \mathcal{F}(\widehat{g}_t(\xi x)) = g_t(x \xi)$. $\lim_{t \longrightarrow 0} \phi(\xi) = e^{2\pi ix \cdot \xi}$.

Take the modified integral:

$$\begin{split} I_t(x) &= \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi} \ e^{-\pi t^2 |\xi|^2} \\ &= \int \widehat{f}(\xi) \phi(\xi) \\ &= \int f(\xi) \widehat{\phi}(\xi) \\ &= \int f(\xi) \widehat{\widehat{g}}(\xi - x) \\ &= \int f(\xi) g_t(x - \xi) \ d\xi \\ &= \int f(y - x) g_t(y) \ dy \quad (\xi = y - x) \\ &= (f * g_t) \\ &\longrightarrow f \text{ in } L^1 \text{ as } t \longrightarrow 0, \end{split}$$

but we also have

$$\lim_{t \to 0} I_t(x) = \lim_{t \to 0} \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi} \ e^{-\pi t^2 |\xi|^2}$$

$$= \lim_{t \to 0} \int \widehat{f}(\xi) \phi(\xi)$$

$$= DCT \int \widehat{f}(\xi) \lim_{t \to 0} \phi(\xi)$$

$$= \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi}$$

So

$$I_t(x) \longrightarrow \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi} \ \text{ pointwise and } \|I_t(x) - f(x)\|_1 \longrightarrow 0.$$

So there is a subsequence I_{t_n} such that $I_{t_n}(x) \longrightarrow f(x)$ almost everywhere, so $f(x) = \int \widehat{f}(\xi) e^{2\pi i x \cdot \xi}$ almost everywhere by uniqueness of limits.

7.3 3: Hilbert Spaces

7.3.1 a

Theorem (Bessel's Inequality):

$$\left\| x - \sum_{n=1}^{N} \langle x, u_n \rangle u_n \right\|^2 = \|x\|^2 - \sum_{n=1}^{N} |\langle x, u_n \rangle|^2$$

and thus

$$\sum_{n=1}^{\infty} \left| \langle x, u_n \rangle \right|^2 \le \|x\|^2$$

Proof: Let
$$S_N = \sum_{n=1}^{N} \langle x, u_n \rangle u_n$$

$$||x - S_N||^2 = \langle x - S_n, x - S_N \rangle$$

$$= ||x||^2 + ||S_N||^2 - 2\Re \langle x, S_N \rangle$$

$$= ||x||^2 + ||S_N||^2 - 2\Re \left\langle x, \sum_{n=1}^{N} \langle x, u_n \rangle u_n \right\rangle$$

$$= ||x||^2 + ||S_N||^2 - 2\Re \sum_{n=1}^{N} \langle x, \langle x, u_n \rangle u_n \rangle$$

$$= ||x||^2 + ||S_N||^2 - 2\Re \sum_{n=1}^{N} \overline{\langle x, u_n \rangle} \langle x, u_n \rangle$$

$$= ||x||^2 + ||\sum_{n=1}^{N} \langle x, u_n \rangle u_n||^2 - 2\sum_{n=1}^{N} |\langle x, u_n \rangle|^2$$

$$= ||x||^2 + \sum_{n=1}^{N} |\langle x, u_n \rangle|^2 - 2\sum_{n=1}^{N} |\langle x, u_n \rangle|^2$$

$$= ||x||^2 - \sum_{n=1}^{N} |\langle x, u_n \rangle|^2.$$

And by continuity of the norm and inner product, we have

$$\lim_{N \to \infty} \|x - S_N\|^2 = \lim_{N \to \infty} \|x\|^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$\implies \left\| x - \lim_{N \to \infty} S_N \right\|^2 = \|x\|^2 - \lim_{N \to \infty} \sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$\implies \left\| x - \sum_{n=1}^\infty \langle x, u_n \rangle u_n \right\|^2 = \|x\|^2 - \sum_{n=1}^\infty |\langle x, u_n \rangle|^2.$$

Then noting that $0 \le ||x - S_N||^2$, we have

$$0 \le ||x||^2 - \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$$

$$\implies \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||^2 \blacksquare.$$

7.3.2 b

- Take $\{a_n\} \in \ell^2$, then note that $\sum |a_n|^2 < \infty \implies$ the tails vanish.
- Define $x = \lim_{N \to \infty} S_N$ where $S_N = \sum_{k=1}^N a_k u_k$

- $\{S_N\}$ is Cauchy and H is complete, so $x \in H$.
- By construction, $\langle x, u_n \rangle = \left\langle \sum_k a_k u_k, u_n \right\rangle = \sum_k a_k \langle u_k, u_n \rangle = a_n$ since the u_k are all orthogonal.
- $||x||^2 = \left\|\sum_k a_k u_k\right\|^2 = \sum_k ||a_k u_k||^2 = \sum_k |a_k|^2$ by Pythagoras since the u_k are normal.

7.3.3 c

Let x and u_n be arbitrary. Then

$$\left\langle x - \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k, u_n \right\rangle = \langle x, u_n \rangle - \left\langle \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k, u_n \right\rangle$$

$$= \langle x, u_n \rangle - \sum_{k=1}^{\infty} \langle \langle x, u_k \rangle u_k, u_n \rangle$$

$$= \langle x, u_n \rangle - \sum_{k=1}^{\infty} \langle x, u_k \rangle \langle u_k, u_n \rangle$$

$$= \langle x, u_n \rangle - \langle x, u_n \rangle = 0$$

$$\implies x - \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k = 0 \quad \text{by completeness.}$$

So

$$x = \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k \implies ||x||^2 = \sum_{k=1}^{\infty} |\langle x, u_k \rangle|^2. \blacksquare$$

7.4 4: Lp Spaces

p-test for integrals:

$$\int_{0}^{1} x^{-p} < \infty \iff p < 1$$
$$\int_{1}^{\infty} x^{-p} < \infty \iff p > 1.$$

Yields a general technique: break integrals apart at x = 1.

Inclusions and relationships:

$$m(X) < \infty \implies L^{\infty} \subset L^2 \subset L^1$$

 $\ell^2(\mathbb{Z}) \subset \ell^1(\mathbb{Z}) \subset \ell^{\infty}(\mathbb{Z}).$

7.4.1 a

Theorem (Holder's Inequality):

$$||fg||_1 \le ||f||_p ||g||_q$$
.

Proof:

It suffices to show this when $\|f\|_p = \|g\|_q = 1,$ since

$$||fg||_1 \le ||f||_p ||f||_q \Longleftrightarrow \int \frac{|f|}{||f||_p} \frac{|g|}{||g||_q} \le 1.$$

Using $AB \leq \frac{1}{p}A^p + \frac{1}{q}B^q$, we have

$$\int |f||g| \le \int \frac{|f|^p}{p} \frac{|g|^q}{q} = \frac{1}{p} + \frac{1}{q} = 1 \blacksquare.$$

Theorem (Minkowski's Inequality):

$$||f + g||_p \le ||f||_p + ||g||_p.$$

Proof:

We first note

$$|f+g|^p = |f+g||f+g|^{p-1} \le (|f|+|g|)|f+g|^{p-1}.$$

Note that if p, q are conjugate exponents then

$$\frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p}$$
$$q = \frac{p}{p-1}.$$

Then taking integrals yields

$$\begin{split} \|f+g\|_p^p &= \int |f+g|^p \\ &\leq \int (|f|+|g|) |f+g|^{p-1} \\ &= \int |f||f+g|^{p-1} + \int |g||f+g|^{p-1} \\ &= \left\|f(f+g)^{p-1}\right\|_1 + \left\|g(f+g)^{p-1}\right\|_1 \\ &\leq \|f\|_p \left\|(f+g)^{p-1}\right\|_q + \|g\|_p \left\|(f+g)^{p-1}\right\|_q \\ &= \left(\|f\|_p + \|g\|_p\right) \left(\int |f+g|^{p-1})^q \right) \\ &= \left(\|f\|_p + \|g\|_p\right) \left(\int |f+g|^p\right)^{1-\frac{1}{p}} \\ &= \left(\|f\|_p + \|g\|_p\right) \left(\int |f+g|^p\right)^{1-\frac{1}{p}} \\ &= \left(\|f\|_p + \|g\|_p\right) \frac{\int |f+g|^p}{\left(\int |f+g|^p\right)^{\frac{1}{p}}} \\ &= \left(\|f\|_p + \|g\|_p\right) \frac{\|f+g\|_p}{\|f+g\|_p} \end{split}$$

and canceling common terms yields

$$\begin{split} 1 &\leq \left(\|f\|_p + \|g\|_p \right) \frac{1}{\|f + g\|_p} \\ \Longrightarrow & \|f + g\|_p \leq \|f\|_p + \|g\|_p \blacksquare. \end{split}$$

7.4.2 c

Definition (Infinity Norm):

$$\begin{split} L^{\infty}(X) &= \left\{ f: X \longrightarrow \mathbb{C} \ \middle| \ \|f\|_{\infty} < \infty \right\} \\ \text{where} \\ \|f\|_{\infty} &= \inf_{\alpha \geq 0} \left\{ \alpha \ \middle| \ m \left\{ |f| \geq \alpha \right\} = 0 \right\}. \end{split}$$

Theorem:

$$m(X) < \infty \implies \lim_{p \longrightarrow \infty} \|f\|_p = \|f\|_{\infty}.$$

Proof: Let $M = ||f||_{\infty}$. For any L < M, let $S = \{|f| \ge L\}$. Then m(S) > 0 and

$$||f||_{p} = \left(\int_{X} |f|^{p}\right)^{\frac{1}{p}}$$

$$\geq \left(\int_{S} |f|^{p}\right)^{\frac{1}{p}}$$

$$\geq L \ m(S)^{\frac{1}{p}} \xrightarrow{p \longrightarrow \infty} L$$

$$\implies \liminf_{p} ||f||_{p} \geq M.$$

We also have

$$||f||_{p} = \left(\int_{X} |f|^{p}\right)^{\frac{1}{p}}$$

$$\leq \left(\int_{X} M^{p}\right)^{\frac{1}{p}}$$

$$= M \ m(X)^{\frac{1}{p}} \xrightarrow{p \to \infty} M$$

$$\implies \limsup_{p} ||f||_{p} \leq M \blacksquare.$$

Note: this doesn't help with this problem at all.

Solution:

$$\int f^{p} = \int_{x \le 1} f^{p} + \int_{x=1} f^{p} + \int_{x \ge 1} f^{p}$$

$$= \int_{x \le 1} f^{p} + \int_{x=1} 1 + \int_{x \ge 1} f^{p}$$

$$= \int_{x \le 1} f^{p} + m(\{f = 1\}) + \int_{x \ge 1} f^{p}$$

$$\xrightarrow{p \to \infty} 0 + m(\{f = 1\}) + \begin{cases} 0 & m(\{x \ge 1\}) = 0\\ \infty & m(\{x \ge 1\}) > 0. \end{cases}$$

7.5 5: Dual Spaces

Definition: A map $L: X \longrightarrow \mathbb{C}$ is a linear functional iff

$$L(\alpha \mathbf{x} + \mathbf{y}) = \alpha L(\mathbf{x}) + L(\mathbf{y}).$$

Theorem (Riesz Representation for Hilbert Spaces): If Λ is a continuous linear functional on a Hilbert space H, then there exists a unique $y \in H$ such that

$$\forall x \in H, \quad \Lambda(x) = \langle x, y \rangle.$$

Proof:

- Define $M := \ker \Lambda$.
- \bullet Then M is a closed subspace and so $H=M\oplus M^\perp$
- There is some $z \in M^{\perp}$ such that ||z|| = 1.
- Set $u := \Lambda(x)z \Lambda(z)x$
- Check

$$\Lambda(u) = \Lambda(\Lambda(x)z - \Lambda(z)x) = \Lambda(x)\Lambda(z) - \Lambda(z)\Lambda(x) = 0 \implies u \in M$$

• Compute

$$\begin{split} 0 &= \langle u, \ z \rangle \\ &= \langle \Lambda(x)z - \Lambda(z)x, \ z \rangle \\ &= \langle \Lambda(x)z, \ z \rangle - \langle \Lambda(z)x, \ z \rangle \\ &= \Lambda(x)\langle z, \ z \rangle - \Lambda(z)\langle x, \ z \rangle \\ &= \Lambda(x)\|z\|^2 - \Lambda(z)\langle x, \ z \rangle \\ &= \Lambda(x) - \Lambda(z)\langle x, \ z \rangle \\ &= \Lambda(x) - \langle x, \ \overline{\Lambda(z)}z \rangle, \end{split}$$

- Choose $y := \overline{\Lambda(z)}z$.
- Check uniqueness:

$$\langle x, y \rangle = \langle x, y' \rangle \quad \forall x$$

$$\implies \langle x, y - y' \rangle = 0 \quad \forall x$$

$$\implies \langle y - y', y - y' \rangle = 0$$

$$\implies ||y - y'|| = 0$$

$$\implies y - y' = \mathbf{0} \implies y = y'.$$

7.5.1 b

Theorem (Continuous iff Bounded): Let $L: X \longrightarrow \mathbb{C}$ be a linear functional, then the following are equivalent:

- 1. L is continuous
- 2. L is continuous at zero
- 3. L is bounded, i.e. $\exists c \geq 0 \mid |L(x)| \leq c||x||$ for all $x \in H$
- $2 \implies 3$: Choose $\delta < 1$ such that

$$||x|| < \delta \implies |L(x)| < 1.$$

Then

$$|L(x)| = \left| L\left(\frac{\|x\|}{\delta} \frac{\delta}{\|x\|} x\right) \right|$$
$$= \frac{\|x\|}{\delta} \left| L\left(\delta \frac{x}{\|x\|}\right) \right|$$
$$\leq \frac{\|x\|}{\delta} 1,$$

so we can take $c = \frac{1}{\delta}$.

 $3 \implies 1$:

We have $|L(x-y)| \le c||x-y||$, so given $\varepsilon \ge 0$ simply choose $\delta = \frac{\varepsilon}{c}$.

7.5.2 c

Definition (Dual Space):

$$X^{\vee} := \left\{ L : X \longrightarrow \mathbb{C} \mid L \text{ is continuous } \right\}$$

Definition (Operator Norm):

$$||L||_{X^{\vee}} \coloneqq \sup_{\substack{x \in X \\ ||x|| = 1}} |L(x)|$$

Theorem: (Operator Norm is a Norm)

Proof: The only nontrivial property is the triangle inequality, but

$$||L_1 + L_2|| = \sup |L_1(x) + L_2(x)| \le \sup L_1(x) + \sup L_2(x) = ||L_1|| + ||L_2||.$$

Theorem (Completeness in Operator Norm):

 X^{\vee} equipped with the operator norm is a Banach space.

Proof:

- Let $\{L_n\}$ be Cauchy in X^{\vee} .
- Then for all $x \in C$, $\{L_n(x)\}\subset \mathbb{C}$ is Cauchy and converges to something denoted L(x).
- Need to show L is continuous and $||L_n L|| \longrightarrow 0$.
- Since $\{L_n\}$ is Cauchy in X^{\vee} , choose N large enough so that

$$n, m \ge N \implies ||L_n - L_m|| < \varepsilon \implies |L_m(x) - L_n(x)| < \varepsilon \quad \forall x \mid ||x|| = 1.$$

• Take $n \longrightarrow \infty$ to obtain

$$m \ge N \implies |L_m(x) - L(x)| < \varepsilon \quad \forall x \mid ||x|| = 1$$

$$\implies ||L_m - L|| < \varepsilon \longrightarrow 0.$$

• Continuity:

$$|L(x)| = |L(x) - L_n(x) + L_n(x)|$$

$$\leq |L(x) - L_n(x)| + |L_n(x)|$$

$$\leq \varepsilon ||x|| + c||x||$$

$$= (\varepsilon + c)||x|| \blacksquare.$$

8 Exam 2 (2018)

Link to PDF File

9 Exam 2 (2014)

Link to PDF File

10 Qual: Fall 2019

10.1 1

See phone photo?

10.2 2

DCT?

10.3 3

"Follow your nose."

10.4 4

See Problem Set 8.

Bessel's Inequality: For any orthonormal set in a Hilbert space (not necessarily a basis), we have

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||^2$$

Proof:

$$0 \le \left\| x - \sum_{k=1}^{n} \left\langle x, e_k \right\rangle e_k \right\|^2$$

Corollary (Parseval's Identity): If span $\{u_n\}$ is dense in \mathcal{H} , so it is a basis, then this is an equality.

Riesz-Fischer: Let $U = \{u_n\}_{n=1}^{\infty}$ be an orthonormal set (not necessarily a basis), then

1. There is an isometric surjection

$$\mathcal{H} \longrightarrow \ell^2(\mathbb{N})$$

 $\mathbf{x} \mapsto \{\langle \mathbf{x}, \mathbf{u}_n \rangle\}_{n=1}^{\infty}$

i.e. if $\{a_n\} \in \ell^2(\mathbb{N})$, so $\sum |a_n|^2 < \infty$, then there exists a $\mathbf{x} \in \mathcal{H}$ such that

$$a_n = \langle \mathbf{x}, \mathbf{u}_n \rangle \quad \forall n.$$

2. \mathbf{x} can be chosen such that

$$\|\mathbf{x}\|^2 = \sum |a_n|^2$$

Note: the choice of **x** is unique \iff $\{u_n\}$ is **complete**, i.e. $\langle \mathbf{x}, \mathbf{u}_n \rangle = 0$ for all n implies

Proof:

• Given $\{a_n\}$, define $S_N = \sum_{n=1}^N a_n \mathbf{u}_n$. • S_N is Cauchy in \mathcal{H} and so $S_N \longrightarrow \mathbf{x}$ for some $\mathbf{x} \in \mathcal{H}$. • $\langle x, u_n \rangle = \langle x - S_N, u_n \rangle + \langle S_N, u_n \rangle \longrightarrow a_n$ • By construction, $\|x - S_N\|^2 = \|x\|^2 - \sum_{n=1}^N |a_n|^2 \longrightarrow 0$, so $\|x\|^2 = \sum_{n=1}^\infty |a_n|^2$.

10.5 5

See Problem Set 5.

Heine-Cantor theorem: Every continuous function on a compact set is uniformly continuous. Uniform continuity:

$$\forall \varepsilon \quad \exists \delta(\varepsilon) \mid \quad \forall x, y, \quad |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

$$\iff \forall \varepsilon \quad \exists \delta(\varepsilon) \mid \quad \forall x, y, \quad |y| < \delta \implies |f(x - y) - f(y)| < \varepsilon$$

Fubini-Tonelli interchange of integrals, where the change of bounds becomes very important. Continuity in L^1 :

$$\lim_{y \longrightarrow 0} \|\tau_y f - f\|_1 = 0.$$

10.6 Definitions

- Banach Space
- L^p

10.7 Useful Results

- Cauchy-Schwarz
- Young's Inequality
- Holder's Inequality
- Minkowski's Inequality
- Jensen's Inequality:

$$r^{-1} \coloneqq p^{-1} + q^{-1} - 1 \implies \|f * g\|_r \le \|f\|_p \|g\|_q$$

- Useful variant take q=1 to get $\|f*g\|_p \leq \|f\|_p \|g\|_1$
- Take p=1 to show L_1 is closed under *.
- The Riemann-Lebesgue Lemma
- Proving that $\delta \notin L_1(\mathbb{R})$ and that there is no such identity
 - Rather, is a distribution or measure that acts on f and satisfies $f(x) \int_{\mathbb{R}} f(t) \delta(t-x) dt$
- Fubini's Theorem
- Density Results:
 - $C_c(\mathbb{R}) \subset C_0(\mathbb{R})$
- $C_c(\mathbb{R}) \cap C^{\infty}(\mathbb{R}) \neq \emptyset$, e.g. take $f(x) = e^{\frac{-1}{x^2}} \chi_{(0,\infty}(x)$.
- The Banach Algebra $L^1(\mathbb{R})$ is not a principal ideal domain.
- \bullet Every locally compact abelian group G has a unique Borel measure (up to scaling) that is positive, regular, translation-invariant (the Haar measure).
 - For \mathbb{R} , $(S_1)^2$, equal to the Lebesgue measure. For \mathbb{Z} , the counting measure.