\$ 51 A First course. gl-1. Conditional Expectation. Given a probability space (r.F.P), a r-field & CFo. and a r.v. XEFO with EIXI < M Def 1.1. We define the conditional expectation of X given F. (TEIXIFI) to be any r.v. Y s.t. (i). YEF, i.e. F measurable (ii). JAY dIP = JAX dIP. YAEF. Rmk: Any Y sortisfying (i) and (ii) is said to be a version of. IE[XIF], i.e. the representative element of the equivalence class in the a.e. sense. Example 1.2. Given (1, Fo, P), let N., Nr, Asis a finite partition of 1 into disjoint sets and P(si)>0 (i=1,2-n). let F=o(s, sz, -- sz), then TEIXIFI = Srixdiff on si. A degenerate but important special case is F= fp, r], the trivial o-field. In this case, TEIX/4]= TEX. To start the existence of C.E. we recall v is said to be. absolutely antinuous wirt u (V<< u) if ucas=0 implies V(A)= Radon - Nikodym Theorem. Let mand v be T-finite measure on (1,7). If V<< \mu, there is a function f EF s.t. for all. AEF. Jafdu=VCA, Prof. See Appendix A.4. in . « Probability: Theory and Examples».

. Let $\mu = \mathbb{R}$ and VCA)= X dP. XEF. Since EIXIX N; V is a measure, and VXXI. R-N thm implies du EF and. SAX dIP=VCA)=/ du dIP. 7hm.1.3. Assume EIXI, EIXI < N. X.YCF. ca) FLax+YIF] = a E[x|F] + E[Y|F]. as (c). If X is F-measurable. then F[X|4]= x a.s. (d). If XCF and EI/XY/1< N., ELXY/9]=XFIY/9]. (e). If X is independend of F. EIXIFI = EIXI. (f). If F. CF2 then FIELXIFI | FI = FIXIFI ECECXITI I FI = ECXITI Proof. See « Durrett» or « Evans» Thm 1.4. Suppose EX2 < M. FIXIFI is the variable Y CF that minimizes the "error" TEIX-YI2. Youf. See << Durrett» Thm. 15. If X, 30, and TEXXX, X, X, X. then TECX, 17] TEIXIFI. it provides a basical approximation producer. take 7hm/3 (d) for example. we only need to check. X is simple function, (wolg X>0). then take Xn TX where Xn is simple function. IEI X, Y 191 = X, IE[Y19] => IE[XY19] = X E[Y19]. a.e. and this prop is the importaling redient in the proof of than /st. Since TELY (X-ELX/41)]=0 YYCF, YUPIN

Def/8A real-stochastic process B(.) is confled Brownian motion
(or Wiener process) if.
(1). B(0) = 0 a.s.
(ii). B(t)-B(s) N N(0,t-s) Yt>s>0
(iii) Yocticteccta, the r.D. With Witzy-with).
Witni-Witn-) are independent
(iv) for a.e. wEst, the sample path t1-> WIt, w) is continuo
Rmk: the construction of B.M. can be found in (Evans)
uniformly
Defly We say f is Hölder continuous with exponent/>r>D
if there exists a constant K s.t.
1f(t)-f(s) ≤ K t-s r \ \ x.t ∈ [0,7]
Thm/ofor a.e. WEN. Too the sample path t/->BIt, W)
is uniformly Hölder antinuous on Fo, I for each o < r < \f.
which implies the puth is a.s. continuous, however
a.e. nowhere differentiable.
Prof. see «Evans»
Example 1-11. Chack B.M. is a Martingale and TELBSB+ I = SAt.
W.D.L.G. let t>S. FIB+ / Fs]=FIB++B+Bs/Fs]
= Bs + EI By -Bs / Fs] = Bs.
ECROBOLE EL ELBOBOLIST = TEL BOTELBOLBOLL = ELBOBOLS = SAT.
· · · · · · · · · · · · · · · · · · ·

Prop 1.12 Suppose Plafa=ty<t2<...<tn=b} and the mesh of $\mathbb{P}^n \longrightarrow 0$ $(n \rightarrow + N)$, then. 5 (Btin - Bti) - L'(N) b-a Prwt. Notice that if XNN(10,02): Yar (X2)= EIX"]- T'= 204 $X_{i} := (B_{tin} - B_{ti})^{2} - (tin - ti).$ $E \left[\sum_{i=0}^{\infty} (B_{tin} - B_{ti})^{2} - (b-\alpha) \right]^{2} = E \left[\sum_{i=0}^{\infty} E(B_{tin} - B_{ti})^{2} - (t_{in} - ti) \right]$ = FIXI' = EX'I (for i>j, E[XiX;]=E[E[XiX; | F;]]=E[X; E[Xi|F]]=0) 245= \(\frac{\infty}{2}\) 2(tin-ti) = \(\infty\) 2 ||P|| (tin-ti)=2(b-a)||P|| \(\rightarrow\)0. Rmk: this assertion partly justifies dW 2 (dt) 2 号1·3. Itô integral. Def 1.13. A process is said to be progressively measurable if for It >0, the mapping: (W, S) 1-> X-(W) defined on NXCO, t) is measurable for the r-field F+ @B([at]) Rmk: Specially, a right or left continuous adapted process is progressively measurable: Def 1.14. We denote by L2 (0,1) the space of P. measurable. S.P. G.(.) st. IE(57G2dt) < M. denote. L'IN.). IEIXIZM. corespondingly L'(0,T) Def 1-15. A process G EL2(9) is called a step process if. GH, w) = = ei(w) 1(ti, tim1 (t) + eo(w) 1 soy(t). nEN. where eic Iti, Fti = T (Bs, OSSSti) we define Itô integral for step process STG11-W): dB+ = = ei (W) (Btin-B1) YUPIN

Lemma 1.16. (Itô Isometry for a simple process).
For simple process Gitiwi, we have.
For simple process Gitiwi, we have. IEI ST GITIWI dBt 12 = IE Sot I GITIWI 2 dt
Proof.
Proof. 2HS = $E:I \stackrel{N-1}{\sum} e_{i}Iw$) $IB_{tin} - B_{ti}$) $I=E:I \stackrel{N-1}{\sum} e_{i}^{2}Iw$) $IB_{tin} - B_{ti}$) $I=E:I \stackrel{N-1}{\sum} E[B_{tin} - B_{ti}]^{2}I$ = $I=I \stackrel{N-1}{\sum} E[B_{tin} - B_{ti}]^{2}e_{i}^{2}Iw$) $I=I=I \stackrel{N-1}{\sum} E[B_{tin} - B_{ti}]^{2}I$
= 5 F (B+ R+)2 e 2 44 1 - 5 F [F [R+ R+] 2 F 7 7 7
12
= = E[e; (tin-ti)] = E[s[6,(t,w)] dt:
rel 12 C2 C C241 CE 15 10/11/W/ WC
7- 17 TC (CC 13107) +han airl
Lemma 1.17. If G.E.L. 2007), there exists a sequence of
bounded step processes $G^{n} \in L^{2}(0,T)$, s.t. $E(\int_{0}^{T} G(t,w) ^{2} dt) \longrightarrow 0$
$\frac{ E(\int f(t,w) - f(t,w) ^2 dt) \longrightarrow 0}{ E(\int f(t,w) - f(t,w) ^2 dt)}$
Also we define a isometry map i from the dense subspace
of L2(0,T) to 12(1), for + GEL2(0,T).
of $L^{2}(0,T)$ to $L^{2}(\Omega)$, for $\forall G \in L^{2}(0,T)$. define $\int_{0}^{7} G(t,w) dB_{t} = \lim_{n \to \infty} \int_{0}^{7} G^{n}(t,w) dB_{t}$. in $L^{2}(\Omega)$
y
Thm 1.18. For a, b & R, Y G, H & L 2 10, Tr, we have
Ci). Sa a G + bH dB = a ST G dB + + b ST H dB+
(ii). $E(\int_{0}^{T}G(t,w)dB_{t}) = O$ (iii). $E(\int_{0}^{T}GdB_{t})^{2}) = E\int_{0}^{T}G^{2}(t,w)dB_{t}$
(iv). So G (t, w) dBt is a martingale
••

