

Sensitivity: Internal

Background

- Information security requirements change with the advance in technology
- Traditional security is provided by physical and administrative mechanisms
- Computer security requires new applications of these such as automated tools to protect stored information
- Networks and data storage systems require additional protection on the communications link and at the end point.

A long time ago...

Once upon a time, Information Security was only a matter of perimeter protection. Stop the perpetrator from physically getting onto your premises (or to unauthorised areas on your premises) and you have total information security

... and now...

- Security in the current context means:
 - Information systems security
 - Cryptography
 - Encryption
 - Confidentiality
 - Authentication
 - Integrity
 - Auditing
 - Authorisation
 - Availability
 - Nonrepudiation

- Our perpetrators are:
 - External and internal attackers
 - Our own systems
- For those of you who like videos:
 - 10 Essential Security Practices
 - What would Google do

... but it is rare, right?

- No, security breaches are common and now well reported on
- Some you might remember:
 - Equifax (2017)
 - CEX (2017)
 - Deloitte (2017)
 - Pizza Hut (2017)
 - Bupa (2017)
 - Wonga (2017)
 - In fact here is a list of 27 famous ones:
 - <u>Government paper</u> on security breaches

- ... 2020
 - July Twitter
 - April Zoom
 - April Magellan Health
 - March Marriott
 - February MGM

Well at least its only online...

- HMRC
 - 21st November 2007, HMRC 2CDs containing:
 - 25 million records of
 - Names
 - Addresses
 - dates of birth
 - child benefit numbers
 - National Insurance numbers
 - bank or building society account details.
 - Password protected but not encrypted
 - Effects were that:
 - 1000s of citizens closed and reopened bank accounts
 - Security became a matter of huge concern, story was followed by numerous similar stories in the press
 - Head of HMRC resigned

- ... but they learned right?
- 4204 data losses in 2019-20
- Mostly from improperly secured devices outside of offices
- 25 classed as severe

Protocols: rules that govern communications

Rules' layer in client-server protocols

Basic components of a client-server protocol

- They also define rules which bring together
 - 'commands' → verbs and nouns
 - data protocol units → e.g., bits, frames, packets, segments, data
 - data representation \rightarrow e.g., 00-B0-D0-86-BB-F7, 192.168.1.1, 80

Network security protocols and the OSI model

PPP protocol

- Provides security for direct node-to-node communication through a serial link
- Allows two modes for authentication: PAP or CHAP
 - both modes rely on lookup of pre-shared secret passwords

PAP: Password Authentication Protocol

- Password and username are sent repeatedly in plain text
- Receiver authenticates and acknowledges authentication using ack message

CHAP: Challenge Handshake Authentication Protocol

COMPONENTS OF CHALLENGE PACKET

RANDOM NR.

- Both systems know a shared secret
- Device challenges connecting device One way hash of challenge + secret is sent back
- Challenge is repeated at random intervals
- Resilient to replay attacks (due to random number and packet id)

https://en.wikipedia.org/wiki/Challenge-Handshake_Authentication_Protocol

CHAP: Challenge Handshake Authentication Protocol (1)

Source: Cisco CCNA; RFC 1994

CHAP: Challenge Handshake Authentication Protocol

HASH DIGEST

RANDOM

R1

R3

Source: Cisco CCNA

Comparison between

CHAP: Challenge Handshake Authentication Protocol (3)

Source: Cisco CCNA

What can we say about the security provided by PPP?

- PAP provides little protection against impersonation
 - It is subject to eavesdropping
 - It is subject to replay attacks
 - It is subject to man in the middle attacks

- CHAP provides a higher level of protection
 - Due to the randomly-generated number used for the challenge and one-way hashing it is less vulnerable to replay attacks and eavesdropping
 - However, it suffers from similar weaknesses as symmetric encryption
 - We must both know the shared secret.
 - We must communicate the shared secret out of band
 - If the shared secret is compromised, the protection is broken

Solution to message tampering: hashing

Changing a single bit in x will result in a different value for y

Idea behind hashing

For input data x, the output y is

$$y=h(x)$$

- Compression
 - Hashing algorithms produce a fixed size output of y regardless of the size of x. y is a fixed length, but needs to be 'small' for this to work
- Efficiency
 - The computation of h(x) should be efficient. It will grow for greater lengths of x, but shouldn't take much longer
- One way
 - It should be difficult to invert the hash, i.e. Given y it should be difficult if not impossible to calculate x

Hashing algorithms

- Example hashing algorithms and digest size
 - MD5 hash algorithm produces 128-bits digests
 - SHA-1 hash algorithm produces 160-bits digests
 - SHA-256 hash algorithm produces 256-bits digests
 - SHA-512 hash algorithm produces 512-bits digests

. . .

Hashing in practice

3. Bob compares the hash digest he computed with the one received from Alice

→ If they match: the message has not been tampered with

Potential problem with hashing: collision

- A collision happens when two different messages can be manipulated to generate a same hash digest
- A collision attack
 - on the MD5 hashing algorithm is known since 2004 (Wang et al. 2004)
 - on the SHA-1 hashing algorithm is known since 2005 (Wang et al. 2005)

MD5

- One way function (computationally infeasible to find correct input from output)
- Algorithm
 - produces 128 bit fixed length output
 - from 512bit block inputs
 - using 32 bit operations
 - Input padded to 512 bits using 10...0 until 64 bits left, then message length%2⁶⁴

https://tools.ietf.org/html/rfc1321 https://en.wikipedia.org/wiki/MD5 http://merlot.usc.edu/csac-f06/papers/Wang05a.pdf

MD5

- ABCD are 32 bit words initialised to constants
- M_i is a 32 bit input block
- K_i is a 32 bit constant (different for each operation)
- This is performed 16 times for each of 4 different unique functions

$$F(B,C,D) = (B \wedge C) \vee (\neg B \wedge D)$$
 $G(B,C,D) = (B \wedge D) \vee (C \wedge \neg D)$
 $H(B,C,D) = B \oplus C \oplus D$
 $I(B,C,D) = C \oplus (B \vee \neg D)$

Figure 1. One MD5 operation. MD5 consists of 64 of these operations, grouped in four rounds of 16 operations. F is a nonlinear function; one function is used in each round. M_i denotes a 32-bit block of the message input, and K_i denotes a 32-bit constant, different for each operation. <<<, denotes a left bit rotation by S places; S varies for each operation. The red square with a cross denotes addition modulo S.

SHA Family

- SHA-1 Deprecated
- SHA-2 In use, short versions are insecure
- SHA-3 In use

Algorithm and variant		Output size (bits)	Internal state size (bits)	Block size (bits)	Rounds	Operations	Security against collision attacks (bits)	Security against <u>length</u> <u>extension attacks</u> (bits)
MD5 (as reference)		128	128 (4 × 32)	512	64	And, Xor, Rot, Add (mod 2 ³²), Or	≤ 18 (collisions found) ^[39]	0
<u>SHA-0</u>		160	160 (5 × 32)	512	80	And, Xor, Rot, Add (mod 2 ³²), Or	< 34 (collisions found)	0
SHA-1							< 63 (collisions found) ^[40]	
SHA-2	SHA-224 SHA-256	224 256	256 (8 × 32)	512	64	And, Xor, Rot, Add (mod 2 ³²), Or, Shr	112 128	32 0
	SHA-384 SHA-512	384 512	512 (8 × 64)	1024	80	And, Xor, Rot, Add (mod 2 ⁶⁴), Or, Shr	192 256	128 (≤ 384) 0 ^[41]
	SHA-512/224 SHA-512/256	224 256					112 128	288 256
SHA-3	SHA3-224 SHA3-256 SHA3-384 SHA3-512	224 256 384 512	1600 (5 × 5 × 64)	1152 1088 832 576	24 ^[42]	And, Xor, Rot, Not	112 128 192 256	448 512 768 1024
	SHAKE128 SHAKE256	d (arbitrary)d (arbitrary)		1344 1088			min(d/2, 128) min(d/2, 256)	256 512

IPSec Protocol

 Provides security for IPv4 and IPv6 packets, allowing secure remote communication over the Internet

- Three main technologies:
 - Authentication Headers
 - data integrity, data origin authentication, replay attack prevention
 - Encapsulating Security Payloads
 - Confidentiality, data origin authentication, integrity, replay attack prevention
 - Security Associations
 - Key exchange and location services
- Can be used by any higher layer protocol

(Main reference: RFC 2401)

- 7 Application
- 6 Presentation
- 5 Session
- 4 Transport
- 3 Network
- 2 Data Link
- 1 Physical

IPSec: Transport Mode

- Encrypts the payload only
- Breaks with port / network address translation
 - Hash is different so packet is market as tampered with
 - NAT-T protocol allows for NAT and IPSec
- Security protocols:
 - https://tools.ietf.org/html/rfc7321
 - HMAC- SHA1, SHA2 integrity, protection, authenticity
 - TripleDES-CBC confidentiality
 - AES-CBC confidentiality
 - AES-GCM confidentiality, authentication

IPSec: Tunneling Mode

Source: http://infrastructureadventures.com/tag/ipsec/

Internet Key Exchange (IKE) service

http://documentation.axsguard.net/manuals/Gatekeeper/7.7.0PL2/html/ipsec/

- You will need to implement something like this for your second practical
- Negotiation of encryption and authentication is an important factor for future proofing your protocol

Internet Key Exchange

- IKEv1:
 - symmetric encryption, shared secret key
 - asymmetric encryption
 - public key encryption and digital signature
 - · Many problems with difficult to interpret output and very strict negotiations
- IKEv2
 - Allows mobility (MOBIKE), NAT, increased DOS resilience (less forward processing)
- For symmetric encryption
 - enforces periodic secret key change and frequent refresh
 - administrator can control key strength and refresh frequency

http://www.ciscopress.com/articles/article.asp?p=25474&seqNum=7

IPSec uses <u>Diffie-Hellman</u> key exchange method

Shared key is never transmitted

Why does it work

- 1. Alice and Bob agree to use a modulus p = 23 and base g = 5 (which is a primitive root modulo 23).
- 2. Alice chooses a secret integer $\mathbf{a} = 4$, then sends Bob $A = q^a \mod p$
 - $A = 5^4 \mod 23 = 4$
- 3. Bob chooses a secret integer b = 3, then sends Alice $B = q^b \mod p$
 - $B = 5^3 \mod 23 = 10$
- 4. Alice computes $\mathbf{s} = B^a \mod p$
 - $s = 10^4 \mod 23 = 18$
- 5. Bob computes $\mathbf{s} = A^b \mod p$
 - $s = 4^3 \mod 23 = 18$
- 6. Alice and Bob now share a secret (the number 18).
- 7. Both Alice and Bob have arrived at the same value s, because, under mod p,

 $(g^a mod p)^b mod p = (g^b mod p)^a mod p$

What can we say about the security provided by IPSec?

- IPSec provides several mechanisms to ensure confidentiality, integrity and authentication
- Basically
 - IPSec encrypts
 - then authenticates
 - then tunnels/encapsulates a packet before transmission
- IPSec is not mandatory but is useful for security and providing things like VPN services.

https://www.geeksforgeeks.org/ip-security-ipsec/ Is a very nice description of IPSec

Virtual Private Network – VPN

 Uses the Internet as the public backbone for access to a secure private network → it extends the private network

VPN tunneling

- VPN can be implemented via tunnelling protocols such as
 - PPTP (Point-to-Point Tunneling Protocol) largely obsolete
 - https://en.wikipedia.org/wiki/Point-to-Point_Tunneling_Protocol
 - L2TP (Layer Two Tunneling Protocol)
 - https://en.wikipedia.org/wiki/Layer_2_Tunneling_Protocol
 - SSTP (Secure Socket Tunneling Protocol)
 - https://en.wikipedia.org/wiki/Secure_Socket_Tunneling_Protocol
- All of those depend on features of the Point to Point Protocol (PPP)

PPTP

- PPTP encapsulates PPP frames in IP datagrams
 - PPTP does not provide encryption or authentication
 - Authentication can be done using PAP or CHAP (or EAP for wireless)
 - Obsolete and with security flaws
 - Essentially:
 - Wraps the PPP content with a new header
 - Receiving end unwraps and performs appropriate actions on the payload

Source: https://technet.microsoft.com/en-us/library/cc771298%28v=ws.10%29.aspx https://tools.ietf.org/html/rfc2637

L2TP

- L2TP is a combination of PPTP & Layer 2 Forwarding (L2F), developed by Cisco
 - L2TP relies on Internet Protocol security (IPsec) for encryption services
 - https://tools.ietf.org/html/rfc3193

Source: http://technet.microsoft.com/en-us/library/cc771298%28v=ws.10%29.aspx

SSTP

- Tunneling protocol that uses the HTTPS protocol to pass traffic through firewalls and Web proxies that might block PPTP and L2TP/IPsec traffic
 - The SSTP message is encrypted with the SSL channel of HTTPS
 - OpenVPN and SoftEther VPN use SSTP

VPN – security features

- Confidentiality
 - PPTP, L2TP/IPSec and SSTP protocol suites provide confidentiality via encryption
- Integrity and Authentication
 - L2TP/IPSec provides authentication via IPSec asymmetric or symmetric-based authentication
 - SSTP provides integrity and authentication inherited from SSL
 - PPTP does not provide features to assure data integrity or protection against impersonation

Further Reading:

- Network security essentials, 6th edition. William Stallings, Pearson
- Computer Networking: A Top Down Approach, 7th edition. Jim Kurose and Keith Ross. Addison-Wesley.
- Security in Computing, 5th edition. Charles P. Pfleeger and Shari L. Pfleeger. Pearson Education.
- Reading:
 - http://www.cisco.com/c/en/us/support/docs/wan/point-to-point-protocol-ppp/25647-understanding-ppp-chap.html
 - http://technet.microsoft.com/en-us/library/bb742596.aspx
 - https://www.infosec.gov.hk/english/technical/files/vpn.pdf
- Video:
 - Network Security 101: https://www.youtube.com/watch?v=E03gh1huvW4
 - Cyber Security in 7 minutes: https://www.youtube.com/watch?v=inWWhr5tnEA
 - Computerphile Networking and Security playlist: https://www.youtube.com/watch?v=PG9oKZdFb7w&list=PLt6GfwFEfTfNPsY4kfLnEe6niP4qECxkX

Sensitivity: Internal