Linguagens Formais e Autômatos

Exercícios: Encontrar gramáticas que gerem as linguagens:

- a) $L(G_1)=\{w \in \{a,b\}^+ / \text{ o numero de a s = numero de b s } \}$
- b) $L(G_2) = \{a^i b^j / j > i \}$
- c) $L(G_3) = \{a^n b^n c^n / n \ge 1\}$
- d) $L(G_4) = \{ww / w \in \text{palavra de } \{a,b\}^*\}$
- e) $L(G_5) = \{wcw^r / w \text{ está em } \{0,1\}^*\}$. Observação: w^r é palavra reversa.
- Para item "e" será pedido uma Gramática Livre de Contexto. Aguardar tal conteúdo.

Linguagens Formais e Autômatos

Para item c temos G e podemos provar que esta gera a L

G:
$$S \rightarrow abc / aYb^2c^2$$

 $aYb \rightarrow a^2Xb / a^2b$
 $Xb \rightarrow bX$
 $bXc \rightarrow b^2Yc^2$
 $bY \rightarrow Yb$

Prova (Simon, 1978): $|G| = \{a^nb^nc^n / n \ge 1\}$. De fato é fácil verificar que para cada $n \ge 2$, G tem a derivação: $S \Rightarrow a^{n-1}Yb^nc^n \Rightarrow a^nXb^nc^n \Rightarrow^* a^nb^nXc^n \Rightarrow a^nb^{n+1}Yc^{n+1} \Rightarrow^* a^nYb^{n+1}c^{n+1}$

Como $S \Rightarrow aYb^2c^2$ segue que para todo $n \ge 2$

 $S \Rightarrow^* a^{n-1}Yb^nc^n$. Logo, usando a produção a $Yb \to a^2b$ temses $S \Rightarrow^* a^nb^nc^n$ ($n \ge 2$)

Como S \Rightarrow abc, segue que $|G| \supset a^n b^n c^n / n \ge 1$).