Fiche de SI101 - OASIS

Les SLI

Def. Soit $(u_n)_n \in \mathbf{C}^{\mathbf{N}}$ et $m \in \mathbf{Z}$. La suite v est la m-translatée de u si $\forall n \in \mathbf{Z}, v_n = u_{n-m}$.

Def. Soit T une application de V dans W, des s-ev de suites invariants par translation. On dit que T est un système linéraire invariant (**SLI**) si T est linéaire et invariante par translation, i.e. si v est la m-translatée de u alors T(v) est la m-translatée de T(u).

Def. Soit u et v deux suites, leur **produit de convolution** est la suite de terme général $(u \star v)_n = \sum_{m \in \mathbf{Z}} u_m v_{n-m}$. **Prop.** La convolution est commutative, associative, linéraire et invariante par décalage (de l'une des deux suites).

Th. T est un SLI entre V et W si et seulement s'il existe une suite h telle que $\forall u \in V, T(u) = u \star h$. h est appelée réponse impulsionnelle de T.

Prop (Caractérisation des ondes de Fourier sur Z).

$$\exists \nu \in \left[-\frac{1}{2}\,; \frac{1}{2}\right[, u_n = e^{2i\pi\nu n} \iff \left\{ \begin{array}{l} \textit{Pout tout SLI T}, \exists C \in \mathbf{C}, T(u) = Cu \\ u \in l^\infty \textit{ et } u_0 = 1 \end{array} \right.$$

On appelle ν la fréquence de la suite harmonique u (réductible à $\left[-\frac{1}{2};\frac{1}{2}\right]$). Si ν convient dans la formule ci-dessus alors tout $\nu+m$ avec $m\in \mathbf{Z}$ convient aussi.

Prop. Soit T un SLI de RI h. Pour chaque suite harmonique de fréquence ν , noté u^{ν} , on sait par ce qui précède que $\exists C(\nu) \in \mathbf{C}, T(u^{\nu}) = C(\nu)u^{\nu}.$ $C(\nu) = \sum_{n \in \mathbf{Z}} h_n u_{-n}^{\nu} = \sum_{n \in \mathbf{Z}} h_n e^{-2i\pi\nu n}$ est appelé **gain fréquentiel** de T.

Toutes les propositions précédentes sur les suites sont vraies pour les fonctions en adaptant les énoncés.

Def. $\forall f : \mathbf{R} \to \mathbf{C}, \forall x \text{ la } x\text{-translat\'ee de } f \text{ est } f_x : y \mapsto f(y-x).$

Def. On appelle onde de Fourier sur ${\bf R}$ toute fonction f telle que $\exists \nu \in {\bf R}, \forall x \in {\bf R}, f(x) = e^{2i\pi\nu x}$, ν est sa fréquence.

Prop. Si T est un SLI sur \mathbf{R} et f une onde de Fourier, alors $\exists C \in \mathbf{C}, T(f) = Cf$.

Def. Si T est un SLI qui admet des ondes de Fourier en entrée, alors on appelle **réponse en fréquence** (ou **gain fréquentiel**) de T la fonction C sur $\mathbf R$ telle que $\forall \nu \in \mathbf R, T(f^{\nu}) = C(\nu)f^{\nu}$ où f^{ν} est l'onde de Fourier de fréquence ν .

Def. Signaux finis périodiques : définis sur $\mathbb{Z}/N\mathbb{Z}$ où $N \in \mathbb{N}^*$.

Def. Si u est un signal fini périodique et $m \in \mathbf{Z}/N\mathbf{Z}$, on appelle m-translatée de u la suite v définie par $v_n = u_{n-m}$ où n-m est pris dans $\mathbf{Z}/N\mathbf{Z}$.

Def. Tout SLI T de l'espace des signaux finis périodiques est de la forme $(u)_n \mapsto \sum_{m=0}^{N-1} u_m h_{n-m}$ (convolution) où h est appelée réponse impulsionnelle de T. Leurs ondes de Fourier sont de la forme $\phi \colon n \mapsto e^{2i\pi \frac{k}{N}n}$ où $k \in \mathbf{Z}/N\mathbf{Z}$. Leur fréquence est $\frac{k}{N}$ et un gain fréquentiel $C(\nu)$ leur est associé.

Def. Signaux (1-)périodiques : définis sur $\left[-\frac{1}{2}; \frac{1}{2}\right[$. Les opérations y sont faites modulo 1.

Def. Si f est un signal périodique et $x \in \left[-\frac{1}{2}; \frac{1}{2}\right[$, on appelle x-translatée de f la fonction sur $\left[-\frac{1}{2}; \frac{1}{2}\right[$, $f_x \colon y \mapsto f(y-x)$. Les SLI y sont des convolutions par $\int_{-\frac{1}{2}}^{\frac{1}{2}}$ et les ondes de Fourier de la forme $x \mapsto e^{2i\pi kx}$ où $k \in \mathbf{Z}$.

La transformation de Fourier (pour Z et $\mathbb{Z}/N\mathbb{Z}$)

 $\begin{array}{ll} \textbf{Prop} \text{ (Inégalité de Hölder).} & -- \textit{Si } u \in l^1 \textit{ et } v \in l^\infty \textit{, alors } u \cdot v \in l^1 \textit{ et } \|u \cdot v\|_1 \leqslant \|u\|_1 \|v\|_\infty . \\ & -- \textit{Si } u \in l^2 \textit{ et } v \in l^2 \textit{ alors } u \cdot v \in l^1 \textit{ et } \|u \cdot v\|_1 \leqslant \|u\|_2 \|v\|_2 \textit{ (CS)}. \end{array}$

On a aussi, à chaque fois, $\|u \star v\|_{\gamma} \leq \|u\|_{\alpha} \|v\|_{\beta}$.

Def. Soit $u \in l^1$, sa transformée de Fourier à temps discret (**TFtD**) est $\mathcal{F}(u) = \hat{u} : \nu \mapsto \sum_{n \in \mathbb{Z}} u_n e^{-2i\pi\nu n}$. Elle est continue, que ce soit sur $\left[-\frac{1}{2}; \frac{1}{2}\right]$ ou sur \mathbb{R} .

Prop. Soit $u, v \in l^1$, $\nu_0 \in \left[-\frac{1}{2}; \frac{1}{2}\right[$, φ une onde de Fourier sur \mathbf{Z} de fréquence ν_0 , $m \in \mathbf{Z}$ et $\psi \colon x \mapsto e^{-2i\pi mx}$ une onde de Fourier sur $\left[-\frac{1}{2}; \frac{1}{2}\right[$ de fréquence -m.

- La TFtD de l'impulsion en m $(\delta_n^m)_n$ est une onde de Fourier de fréquence -m sur $\left[-\frac{1}{2};\frac{1}{2}\right[$.
- $\mathcal{F}(u \star v) = \hat{u} \cdot \hat{v}.$
- $\mathcal{F}(u \cdot v) = \hat{u} \star \hat{v}.$
- Soit u^m la \tilde{u} -translatée de u, $\mathcal{F}(u^m) = \hat{u} \cdot \varphi$, i.e. $\hat{u}^m(\nu) = \hat{u}(\nu)e^{-2i\pi m\nu}$.
- Si u est réelle, alors \hat{u} est à symétrie hermitienne : $\hat{u}(-X) = \overline{\hat{u}(\nu)}$.
- Si u est symétrique alors \hat{u} aussi.
- Si u est symétrique et réelle alors \hat{u} aussi.

Prop. Soit un SLI $T: l^{\infty} \to l^{\infty}$ et $h \in l^1$ sa R.I. Si $u \in l^1$ et v = T(u) alors : la réponse fréquentielle de T est \hat{h} , $h \star u = v \in l^1$ et $\hat{v} = \hat{h}\hat{u}$.

Th. On peut étendre \mathcal{F} de façon unique à l^2 et elle forme une bijection de l^2 sur $L^2\left(\left[-\frac{1}{2};\frac{1}{2}\right[\right)$. De plus, on a l'égalité de **Parseval**: $\forall u \in l^2, \|\hat{u}\|_2 = \|u\|_2$.

Th (Inversion de la TFtD). Si $u \in l^2$ alors on a $\forall n \in \mathbf{Z}, u_n = \int_{-\frac{1}{3}}^{\frac{1}{2}} \hat{u}(\nu) e^{2i\pi n\nu} d\nu$.

Th. Soit
$$k \in \mathbb{N}$$
, on a $\left(\sum_{n \in \mathbb{Z}} |n|^k |u_n| < \infty\right) \implies \left(\hat{u} \in \mathcal{C}^k \left(\left[-\frac{1}{2}; \frac{1}{2}\right[\right]\right) \text{ et } \hat{u}^{(k)} = \hat{v^k} \text{ où } v_n^k = (-2i\pi n)^k u_n.$

Th. Si $u: \mathbf{Z}/N\mathbf{Z} \to \mathbf{R}$. On note \hat{u} sa transformée de Fourier discrète (TFD) définie sur $\mathbf{Z}/N\mathbf{Z}$ par $k \mapsto \sum_{n \in \mathbf{Z}/N\mathbf{Z}} u_n e^{-2i\pi \frac{k}{N}n}$.

Th (Inversion et interprétation de la TFD comme décomposition sur une base). Si $u: \mathbf{Z}/N\mathbf{Z} \to \mathbf{R}$, $\forall n \in \mathbf{Z}/n\mathbf{Z}$, $u_n = \frac{1}{N} \sum_{k \in \mathbf{Z}/n\mathbf{Z}} \hat{u}_k e^{2i\pi \frac{k}{N}n}$, ou encore $u = \sum_{k \in \mathbf{Z}/n\mathbf{Z}} \frac{1}{N} \hat{u}_k \mathbf{w}^k$ où \mathbf{w} est l'onde de Fourier sur $\mathbf{Z}/n\mathbf{Z}$ de fréquence k/N, i.e. les $\frac{\hat{u}_k}{N}$ sont les coefficients de la décomposition de u sur la base des ondes de Fourier.

Prop. Soit u et v des suites définies sur $\mathbb{Z}/n\mathbb{Z}$.

- 1. La TFD de l'impulsion en m est une onde de Fourier de fréquence $-\frac{m}{N}$ sur $\mathbf{Z}/n\mathbf{Z}$.
- 2. La convolution est transformée en produit : $\mathcal{F}(u \star v) = \hat{u} \cdot \hat{v}$.
- 3. Le produit est transformé en convolution à facteur de normalisation près : $\mathcal{F}(uv) = \frac{1}{N}\hat{u} \star \hat{v}$.
- 4. $\forall k \in \mathbf{Z}/n\mathbf{Z}, [\mathcal{F}(\varphi \cdot u)](k) = \hat{u}(k-k_0)$ où $k_0 \in \mathbf{Z}/n\mathbf{Z}$ et $\varphi_n = e^{2i\pi\frac{k_0}{N}n}$ (onde de Fourier de fréquence $\frac{k_0}{N}$).
- 5. $\mathcal{F}(u^m) = \hat{u} \cdot \psi$ où u^m est la m-translatée de u et $\psi_n = e^{-2i\pi \frac{m}{N}k}$ (onde de Fourier de fréquence $-\frac{m}{N}$).
- 6. Si u est réelle, alors \hat{u} possède la symétrie hermitienne. Si u est symétrique alors \hat{u} aussi. Si u est symétrique et réelle alors \hat{u} également.

Prop (Égalité de Parseval). $\sum_{n \in \mathbf{Z}/n\mathbf{Z}} |u_n|^2 = \frac{1}{N} \sum_{k \in \mathbf{Z}/n\mathbf{Z}} |\hat{u}_k|^2$.

Rem. Une TFD peut capturer toute l'information d'une suite à support fini.

Def. Soit u une suite sur \mathbf{Z} à support inclus dans $\llbracket 0\,;N-1 \rrbracket$ et $M\geqslant N$. Soit v la suite finie définie sur $\llbracket 0\,;M-1 \rrbracket$ par $\forall n,v_n=u_n$. On appelle \hat{v} **TFD d'ordre arbitraire** de u, avec $\forall k\in \llbracket 0\,;M-1 \rrbracket, \hat{v}(k)=\sum_{n=0}^{M-1}v_ne^{-2i\pi\frac{k}{M}n}=\hat{u}\left(\frac{k}{M}\right).$ $\hat{v}(k)$ est l'échantillonnage de la TFtD de u aux points $\frac{k}{M}$.

Détermination de la fréquence d'une onde par la TFD. On a un signal du type $u_n = e^{2i\pi\nu_0 n}$ et l'on veut estimer ν_0 à partir de u_0,\ldots,u_N . On prend u^T la suite tronquée égale à u sur [0;N-1] et nulle ailleurs. Le module de sa TFtD est un sinus cardinal.

Th. La valeur $\frac{k}{M}$ la plus proche de ν_0 est celle pour laquelle la TFD de u^T est maximale en module.

Prop. Avec une TFD d'ordre M on peut connaître la fréquence ν_0 de l'onde avec une précision de au moins $\frac{1}{M}$.

Cas avec deux ondes. Pour un signal du type $u_n = A_0 e^{2i\pi\nu_0 n} + A_1 e^{2i\pi\nu_1 n}$, il faut au moins avoir $|\nu_0 - \nu_1| > \frac{1}{N}$ pour pouvoir distinguer deux pics sur la TFtD.

Voc. On dit que $\frac{1}{N}$ est la **résolution fréquentielle**. Il faut augmenter N pour pouvoir séparer des fréquences proches l'une de l'autre.

Si A_1 est beaucoup plus grand que A_0 alors le lobe principal peut être masqué, même par des lobes secondaires de l'autre. Pour palier à ceci on peut utiliser une fenêtre de Hamming : au lieu de faire une troncature en multipliant par un signal créneau $c=(\mathbf{1}_{\llbracket 0;N-1\rrbracket}(n))_n$ on multiplie par h où $h_n=\mathbf{1}_{\llbracket 0;N-1\rrbracket}(n)\cdot \left(0.54-0.46\cos\left(2\pi\frac{n}{N-1}\right)\right)$. Alors le lobe central est plus étalé (\rightarrow perte de résolution fréquentielle) mais les lobes secondaires sont bien moins hauts et ne masquent plus le lobe principal d'une seconde onde.

Def. Soit u une suite définie sur \mathbf{Z} , w_0, \ldots, w_N une fenêtre de taille N et $M \ge N$. La Transformée de Fourier à Court Terme (TFCT) de u, de fenêtre w et de précision $\frac{1}{M}$ est la fonction

$$U \colon \begin{array}{ccc} \mathbf{Z} \times \frac{\llbracket 0; N-1 \rrbracket}{M} & \to & \mathbf{C} \\ \left(n, \frac{k}{M}\right) & \mapsto & \sum_{m \in \mathbf{Z}} u_m w_{n-m} e^{-2i\pi \frac{k}{M} m} \end{array}$$

On peut aussi, en remplaçant $\frac{k}{M}$ par ν la considérer comme une fonction de $\mathbf{Z} \times \left[-\frac{1}{2}\,;\frac{1}{2}\right]$ que l'on échantillonnera aussi finement que l'on veut en augmentant la valeur de M.

Pour n fixé (un instant donné) : la fonction $\nu \mapsto U(n,\nu)$ est la TFtD de $(u_l w_{l-n})$. Autour de chaque n on

extrait un morceau de signal dont on calcule la TFtD (par le moyen d'une TFD aussi fine que voulue). Pour ν fixé : on a $U(n,\nu) = \sum_{m \in \mathbf{Z}} u_m w_{m-n} e^{-2i\pi\nu m} = e^{-2i\pi\nu n} \sum_m u_m \gamma_{n-m}$ où $\gamma_l = w_{-l} e^{2i\pi\nu l}$. Alors $|U(n,\nu)| = |(u\star\gamma)_n|$, ce qui signifie qu'à ν fixé, le module de U reflète à quel point la fréquence ν est présente dans le signal autour de n. En effet la TFtD de γ est centrée autour de ν (la fenêtre w a son spectre centré en 0).

Le **spectogramme** est $|U(n,\nu)|^2$. On le visualise comme une image en niveaux de gris ou en couleurs, avec n et ν pour axes.

Transformée en Z, les filtres discrets récursifs

Voc. Causalité

- h est causale si $\forall n < 0, h_n = 0$.
- Un SLI est causal si sa réponse impulsionnelle est causale.
- Une suite h est anti-causale si $\forall h \ge 0, h_n = 0$ et un SLI est anti-causal si sa RI l'est.
- Suite bilatère : qui n'est ni causale, ni anti-causale.
- RIF: un SLI à réponse impulsionnelle finie.
- RII : un SLI à réponse impulsionnelle infinie.

— La convolution de deux suites causale est causale.

- La composition de deux suites à support fini est une suite à support fini.
 - La composition de deux SLI causaux est causale.
- La composition de deux SLI RIF est RIF.

Def. Si h est un signal défini sur **Z** et est sommable. On appelle **transformée en** Z de h, la fonction H défini U, sur le cercle unité de C, par

 $H(z) = \sum_{n \in Z} h_n z^{-n} .$

Prop (Théorème d'inversion). Si h est une suite sommable et que H est sa transformée en Z, alors on a:

$$\forall n \in \mathbf{Z}, h_n = \int_{-1/2}^{1/2} H\left(e^{2i\pi\nu}\right) e^{2i\pi\nu n} \,\mathrm{d}\nu.$$

En particulier, si deux suites sommables ont la même transformées en Z, alors elles sont égales.

Prop. Soit $(x_n)_n$ et $(y_n)_n$ deux signaux sommables. On note X et Y leurs transformée en Z et $u = x \star y$. On a :

$$\forall z \in \mathbf{U}, U(z) = X(z)Y(z)$$
.

Def (Filtres récursifs stables). Un SLI sur Z est dit récursif stable s'il vérifie les conditions suivantes :

- 1. Sa réponse impulsionnelle est sommable $(\sum_n |h_n| < +\infty)$.
- 2. Il existe des coefficients a_0,\ldots,a_p et b_0,\ldots,b_q tels que, si $(x_n)_n$ est une entrée et $(y_n)_n$ la sortie qui lui correspond par le SLI, alors

$$\forall n \in \mathbf{Z}, b_0 y_n + b_1 y_{n-1} + \ldots + b_q y_{n-q} = a_0 x_n + a_1 x_{n-1} + \ldots + a_p x_{n-p}$$

Les a_i et b_j sont appelés coefficients du SLI.

3. Les polynômes $\sum_i a_i z^i$ et $\sum_i b_i z^i$ sont premiers entre eux.

Prop. Si T est un SLI récursif stable et h sa réponse impulsionnelle, H admet une transformée en Z notée H:

$$H(z) = \frac{P(z^{-1})}{Q(z^{-1})}$$
 avec $P = \sum_{i=0}^{p} a_i X^i$ et $Q = \sum_{i=0}^{q} b_i X^i$.

En particulier Q n'a pas de zéro sur U.

Prop. Sous les conditions ci-dessus, pour toute suite sommable x, il existe une unique suite sommable y qui vérifie l'équation de récurrence, donnée par $h \star x$.

Def. On appelle **zéros** du filtre les zéros de la fonction $P(z^{-1})$, c'est à dire les inverses du polynôme P. On appelle **pôles** du filtre les zéros de $Q(z^{-1})$.

Prop. Un SLI récursif stable dont l'équation de récurrence est

$$\forall n \in \mathbf{Z}, y_n + b_1 y_{n-1} + \ldots + b_q y_{n-q} = a_0 x_n + a_1 x_{n-1} + \ldots + a_p x_{n-p}$$

est causal si et seulement si tous ses pôles sont dans l'intérieur du disque unité (i.e. de module strictement plus petit que 1).

Def. Filtre à minimum de phase : filtre récursif stable causal dont l'inverse est aussi stable et causal. Cela est équivalent à dire que ses pôles et ses zéros sont dans l'intérieur du disque unité.

Prop (Implémentation des filtres récursifs). Soit T un SLI récursif stable causal avec $b_0 = 1$, x sommable, y = T(x)et $x^c = (\mathbf{1}_{\mathbf{N}}(n)x_n)_n$ la troncature causale de x. On considère la suite causale t telle que

$$\forall n \geqslant 0, t_n = \left(\sum_{i=0}^p a_i x_{n-i}^c\right) - \left(\sum_{i=1}^q a_i t_{n-i}\right) .$$

Alors on a:

- 1. Si x est causale alors t = y (implémentation parfaite).
- 2. Dans tous les cas, $\exists A < 1, C \geqslant 0, \forall n \geqslant 0, |t_n y_n| < CA^n ||x||_1$, i.e. pour n assez grand, t devient aussi proche que l'on veut de la vraie solution y.

Echantillonnage des signaux

Th (Formule de Poisson ou le repliement spectral). Si f est une fonction définie sur \mathbf{R} , intégrable et telle que sa transformée de Fourrier est aussi intégrable, et que la suite $(f(n))_n$ est sommable, alors :

$$\forall \nu \in \left[-\frac{1}{2}; \frac{1}{2} \right[, \sum_{m \in Z} f(m) e^{-2i\pi m\nu} = \sum_{n \in Z} \hat{f}(n+\nu) \qquad \text{et} \qquad \hat{u}(\nu) = \sum_{n \in Z} \hat{f}(n+\nu) \;.$$

Th (Théorème de bon échantillonnage ou théorème de Shannon). Si f est une fonction sommable et que sa TFtC, \hat{f} , est nulle en dehors de $\left[-\frac{1}{2};\frac{1}{2}\right]$, alors on a

$$f(t) = \sum_{n \in \mathbf{Z}} f(n) \operatorname{sinC}(\pi(t-n)) \qquad et \qquad \forall \nu \in \left[-\frac{1}{2} \, ; \frac{1}{2} \right[, \sum_{m \in \mathbf{Z}} f(m) e^{2i\pi\nu m} = \hat{f}(\nu) \, .$$

En particulier l'opération d'échantillonnage sur Z est injective sur l'espace des fonctions dont la TF est à support dans

Th (Théorème de Shannon pour les énergies finies). Soit f d'énergie finie telle que son spectre est à support dans $\left[-\frac{1}{2}; \frac{1}{2}\right[\text{ et } u_n = f(n), \text{ alors } ||f||_2 = ||u||_2.$

Prop. Dans le cas $(f(n))_n \in l^1$, on a

$$\forall t \in \mathbf{R}, f(t) = \sum_{n \in \mathbf{Z}} f(n) \operatorname{sinC}(\pi(t-n))$$

ce qui signifie que, si le spectre de f est à support dans $\left[-\frac{1}{2};\frac{1}{2}\right]$, alors on peut reconstruire la fonction f à partir de ses échantillons. On parle CNA parfait ou CNA idéal.

Cas d'un échantillonnage réel avec une période $T_e = \frac{1}{F_e}$. Soit g définie par $g(x) = f(xT_e) = f\left(\frac{x}{T_e}\right)$. Alors :

- $\hat{g}(\nu) = \frac{1}{T_e} \hat{f}\left(\frac{\nu}{T_e}\right) = F_e \hat{f}(F_e \nu) \text{ et } \hat{f}(\nu) = T_e \hat{g}\left(\frac{\nu}{F_e}\right).$
- Condition du théorème de Shannon : $\left(\forall \nu > \frac{1}{2}, \hat{g}(\nu) = 0\right) \iff \left(\forall \xi > \frac{F_e}{2}, \hat{f}(\xi) = 0\right)$.
- Formule de Poisson : $\forall \nu \in \left[-\frac{1}{2}; \frac{1}{2}\right[, \sum_{m \in \mathbf{Z}} f(mT_e) e^{-2i\pi m\nu} = F_e \sum_{n \in \mathbf{Z}} \hat{f}(F_e(n+\nu))\right]$. Théorème de Shannon : $f(t) = \sum_n f(nT_e) \operatorname{sinC}\left(\pi\left(\frac{t}{T_e} n\right)\right)$.

Transformée en cosinus discret

Def. Soit u_0, \ldots, u_{N-1} un signal fini. La transformée en cosinus discret (**DCT**) de u est \hat{u}^D telle que

$$\forall k \in \llbracket 0; N-1 \rrbracket, \hat{u}_k^D = \omega_k \sum_{n=0}^{N-1} u_n \cos \left(2\pi \left(n + \frac{1}{2} \right) \frac{k}{2N} \right)$$

avec
$$\omega_0 = \sqrt{\frac{1}{N}}$$
 et $\omega_k = \sqrt{\frac{2}{N}}$ pour $k \neq 0$.

Prop (Lien avec la TFD). Soit x le signal fini de taille 2N donné par $x_n = \begin{cases} u_n & \text{si} \quad n < N \\ u_{2N-1-n} & \text{si} \quad N \leqslant n \leqslant 2N-1 \end{cases}$ (concaténation du signal u avec son symétrique). Alors, avec \hat{x} la TFD (d'ordre 2N) de x, on $a: \hat{u}_0^D = \frac{1}{2\sqrt{N}}\hat{x}_0$ et $\forall 1 \leqslant k \leqslant N-1, \hat{u}_k^D = e^{-i\pi\frac{k}{2N}} \frac{1}{\sqrt{2N}} \hat{x}_k$. De plus, si u est réel, $\sum_k \left| \hat{u}_k^D \right|^2 = \sum_n \left| u_n \right|^2$.

Def (Base de la DCT). C'est la base orthonormée de \mathbf{R}^n constituée des vecteurs indexés par $k=0\ldots N-1$ et de formule générale $n\mapsto w_k\cos\left(2\pi\left(n+\frac{1}{2}\right)\frac{k}{2N}\right)$. Obtenir la DCT d'un signal c'est effectuer le produit scalaire contre ces vecteurs. Cette base est orthonormée car $\sum_k \left|\hat{u}_k^D\right|^2 = \sum_n |u_n|^2$.

Def (**DCT locale**). Pour les signaux de taille mN on appelle base de la DCT locale de taille N l'ensemble des mN vecteurs obtenus en translatant les vecteurs de la base de la DCT de taille N aux positions multiples de N. **Def** (**DCT 2D**). La base de la DCT bi-dimensionnelle de $\mathbf{R}^{n\times N}$ est celle obtenue en opérant le produit tensoriel sur la base de la DCT monodimensionnelle de taille N. Elle compte N^2 vecteurs.

Def (**DCT locale 2D**). La DCT locale de taille $N \times N$ pour une image de taille $(mN) \times (mN)$ est la base que l'on obtient en décalant la base de la DCT 2D de taille $N \times N$ à toutes les positions multiples de N (dans les deux dimensions).

Compression des signaux naturels

Def (Approximation). Soit x un vecteur et α_n une collection de M vecteurs, de plus $n_i \in \{1...M\}$ on a :

$$\tilde{x} = \sum_{j=0}^{m-1} a_j \alpha_{n_j} \ .$$

On dit que \tilde{x} est une **approximation** de x dans la collection d'atomes α_n avec les coefficient a_j .

Def. Le taux de compression, noté τ_c , est défini par $\tau_c = \frac{m}{N}$.

Def. L'erreur relative de compression, notée τ_c , est définie par $err_c = \frac{\|x - \tilde{x}\|}{\|x\|}$.

Def (Compression linéaire). Pour un taux de compression $\tau = \frac{m}{N}$, on prend pour approximation de x, le vecteur :

 $\tilde{x} = \sum_{i=1}^{m} a_j \langle x \mid \alpha_i \rangle \alpha_i .$

Autrement dit, on choisit les m premiers vecteurs de la base α pour approximer x.

Processus aléatoires sur Z

Définition des processus

On se donne une mesure de probabilité \mathbf{P} sur un espace probabilisé Ω .

Def. Un **processus** *X* est une fonction de **Z** vers l'ensemble des variables aléatoires (suite de v.a.).

Def. Si X est un processus tel que $\forall n, X_n \in L^1(\Omega)$. On dit que X est **stationnaire à l'ordre 1** si $\exists m_X \in \mathbf{C}, \forall n \in \mathbf{Z}, \mathbf{E}(X_n) = m_X$.

Def. Si X et Y sont L^2 (admettent des variances) leur covariance est définie par

$$\operatorname{Cov}(X,Y) = \mathbf{E}\left[(X - \mathbf{E}(X))\overline{(Y - \mathbf{E}(Y))} \right] = \mathbf{E}(X^C \overline{Y^C})$$
.

D'après l'inégalité de Cauchy-Schwartz : $|Cov(X, Y)| \le \sqrt{Var(X) Var(Y)}$.

Def. On dit que le processus X est stationnaire à l'ordre $\mathbf{2}$ si $\forall n \in \mathbf{Z}, X_n \in L^2(\Omega)$ et

$$\forall k \in \mathbf{Z}, \forall n \in \mathbf{Z}, \operatorname{Cov}(X_{n+k}, X_n) = \operatorname{Cov}(X_k, X_0)$$

En particulier les X_n ont tous la même variance.

Def. Les processus stationnaires au sens large (SSL) sont ceux stationnaires aux ordres 1 et 2.

Def. Soit X une processus stationnaire au second ordre. On appelle **autocovariance** de X la fonction, définie sur \mathbf{Z} , $R_k \colon k \mapsto \operatorname{Cov}(X_k, X_0) = \operatorname{Cov}(X_{n+k}, X_n)$. On en déduit $\forall k \in \mathbf{Z}, R_X(-k) = \overline{R_X(k)}$ et $R_X(0) \in \mathbf{R}_+$ avec $\forall k \in \mathbf{Z}, |R_X(k)| \leqslant R_X(0)$.

Def. Soit *X* stationnaire du second ordre. Si $R_X \in l^1$, on définit sa **densité spectrale de puissance** par

$$\forall \nu \in \left[-\frac{1}{2}; \frac{1}{2} \right[S_X(\nu) := \sum_{k \in \mathbf{Z}} R_X(k) e^{-2i\pi\nu k} = \mathcal{F}(R_X)(\nu) .$$

Elle est à valeurs réelles puisque R_X est à symétrie hermitienne.

Def. Puissance d'un processus SSL: norme L^2 au carré de X_n , noté P_X . Elle ne dépend pas de n et est donnée par $P_X = \mathbf{E}\left(\left|X\right|^2\right) = \left|m_X\right|^2 + R_X(0) = m_X^2 + \int_{-\frac{1}{2}}^{\frac{1}{2}} S_X(\nu) \, \mathrm{d}\nu$.

Prop (Positivité de la DSP). Soit X stationnaire au 2^{nd} ordre avec R_X sommable. Alors $\forall \nu \in \left[-\frac{1}{2}; \frac{1}{2}\right], S_X(\nu) \geqslant 0$.

Filtrage des processus SSL

Prop (Filtrage par un filtre sommable). Soit X un processus SSL avec R_X sommable, et h une suite sommable. On appelle Y = h * X le processus filtré de X par le noyau h. Il est défini par $\forall n \in \mathbf{Z}, Y_n = \sum_{l \in \mathbf{Z}} h_l X_{n-l}$. Cette somme étant prise dans $L^2(\Omega)$, on a:

- 1. Pour presque tout $\omega \in \Omega$, $\forall n \in \mathbf{Z}, Y_n(\omega) = \sum_{l \in \mathbf{Z}} h_l X_{n-l}(\omega)$.
- 2. Y est SSL. On note $\tilde{h}_n = \overline{h_{-n}}$ le signal h symétrisé et conjugué. On a $m_Y = m_X \sum_{l \in \mathbf{Z}} h_l$ et $R_Y = (h * \tilde{h}) * R_X$. Soit ponctuellement $\forall k \in \mathbf{Z}, R_Y(k) = \sum_l (h * \tilde{h})(l) * R_X(k-l) = \sum_{t,m} h_t \tilde{h}_m R_X(k-t+m)$ et $\forall \nu \in \left[-\frac{1}{2}; \frac{1}{2}[, S_Y(\nu) = \left|\hat{h}(\nu)\right|^2 S_X(\nu) \text{ (\hat{h} est la TFtD de h)}.$
- 3. Si g est un autre signal sommable et Z = g * Y alors Z = (g * (h * X)) = (g * h) * X.

Prop (Filtrage récursif). Soit b_0, \ldots, b_q et a_0, \ldots, a_p des complexes tels que les polynômes $P(z) = \sum_n a_n z^n$ et $Q(z) = \sum_n b_n z^n$ n'ont pas de zéro commun et que Q n'a pas de zéro sur \mathbf{U} . Si de plus X est un processus SSL, alors il existe un unique processus SSL Y tel que $\sum_i b_i Y_{n-i} = \sum_i a_i X_{n-i}$ et Y = h * X où h est la réponse impulsionnelle du filtre récursif stable défini par cette équation de récurrence.