New York University Wilf Family Department of Politics

Quantitative Research in Political Science I

Professor Patrick Egan

Partialling Out¹

Another way to write the k'th element of the vector of OLS estimates $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ is:

$$\widehat{\beta}_{k} = \frac{cov(y_{i}, \widetilde{x}_{ki})}{var(\widetilde{x}_{ki})},$$

where \tilde{x}_{ki} is the residual of the regression of x_k on all the other x's in the model, i.e.,

$$x_{ki} = \widehat{\delta}_0 + \sum_{j \neq k} \widehat{\delta}_j x_{ji} + \widetilde{x}_{ki}$$

$$\widetilde{x}_{ki} = x_{ki} - \widehat{\delta}_0 - \sum_{j \neq k} \widehat{\delta}_j x_{ji}$$

$$\widetilde{x}_{ki} = x_{ki} - \widehat{x}_{ki}$$

This shows us that each coefficient in a multivariate regression is the bivariate slope coefficient for the corresponding regressor after **partialling out** the variation of all the other covariates with y and their covariation with x_k .

A [plain-language] proof: re-write y_i as:

$$y_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{1i} + \dots + \widehat{\beta}_k x_{ki} + \dots + \widehat{\beta}_K x_{Ki} + \widehat{u}_i$$

Now note that:

- because \widetilde{x}_k is a linear combination of all the x's, it is by construction uncorrelated with the \widehat{u} ;
- because \tilde{x}_k is a residual from a regression on all the other x's in the model, it is by construction uncorrelated with these x's
- and for the same reason, $cov(\widetilde{x}_{ki}, x_{ki})$ is just $var(\widetilde{x}_{ki})$
- thus $cov(y_i, \widetilde{x}_{ki})$ simplifies to

$$cov(y_i, \widetilde{x}_{ki}) = cov(\widehat{\beta}_k x_{ki}, \widetilde{x}_{ki})$$
$$= \widehat{\beta}_k var(\widetilde{x}_{ki})$$

so

$$\widehat{\beta}_k = \frac{cov(y_i, \widetilde{x}_{ki})}{var(\widetilde{x}_{ki})}.$$

¹borrowing heavily from Angrist and Pischke's Mostly Harmless Econometrics (pp. 35-36).

Note that the magnitude of $\hat{\beta}_k$ is larger to the extent that y varies with the variation in x_k after accounting for x_k 's covariation with the other x's in the model. This nicely corresponds to our notion of $\hat{\beta}_k$ as an estimate of the *ceteris paribus*/all things being equal relationship between y and x_k .

It can also be shown that

$$\widehat{\beta}_{k} = \frac{cov\left(\widetilde{y}_{ki}, \widetilde{x}_{ki}\right)}{var\left(\widetilde{x}_{ki}\right)},$$

where \widetilde{y}_{ki} is the residual from the regression of y on all the x's except x_k in the model.

One thing that's nice about both of these formulations is that in a bivariate plot of either y on \widetilde{x}_k or \widetilde{y}_k on \widetilde{x}_k , the slope of the (bivariate) best-fit line is, in fact, $\widehat{\beta}_k$. Here's an example from my book. I'm interested in the relationship between the extent to which a political party's "owned" issues are salient in a U.S. presidential election campaign and how well the party performs in the election. The table displays a series of regression equations modeling y (election performance) as a function of x_k (the salience of the party's owned issues) and other potential confounding x's. The figures plot (first) y on x and (second) \widetilde{y}_k on \widetilde{x}_k .

TABLE 3.3. Issue salience, economic conditions, and incumbency in presidential elections, 1960–2012

ope of line in <u>top</u> gure on next page	DV: Republican Candidate Share of Two-Party Vote			
	I	П	Ш	IV (1980 election omitted)
Republican issue salience advantage	.22** (.06)		.07 (.05)	(.05)
Republican incumbent Change in GDP, Q4 to Q2 of election year (percentage points)		13.35* (5.28) -2.54*** (.50)	13.18* (4.96) -2.02* (.79)	7.34 (5.00) -4.40+ (2.04)
Republican incumbent x change in GDP		4.69*** (.71)	3.71** (1.06)	5.87* (1.94)
Number of consecutive terms Republican has held presidency		-5.12** (1.35)	-4.76** (1.41)	-4·59* (1·37)
Intercept	50.18*** (1.19)	44.67*** (1.91)	44.61*** (1.97)	50.37*** (3.18)
N R² Adjusted R² SEE p-value of coefficient on issue salience advantage term	·47 ·42 4·4 ·005	.84 .77 2.8	.87 .79 2.7 .25	.88 .80 2.7 .06

OLS. Estimates significantly different from zero at +p<.10; *p<.05; **p<.01; ***p<.001 (two-tailed tests, robust standard errors).

Slope of line in bottom figure on next page

FIGURE 3.5. Issue salience, issue ownership, and vote share in U.S. presidential elections, 1960–2012.

Source: Estimates in Table 3.3.