知能システム学特論 最終レポート Hdp第2班 16344217 津上祐典 2016年8月19日

1 テーマ

Spark と Hadoop を用いた分散機械学習によるクラス分類 -スパムメールの検出と画像認識

2 概要

はじめに、Hadoop、Spark、機械学習の原理ついて述べ、最後に実行結果と考察を示す.

2.1 Hadoop

Hadoopとはビッグデータを複数のPCを用いて分散並列処理を可能にするフレームワークである.一台マスターサーバとその配下にある複数のスレーブサーバによって分散並列処理を行う.Hadoopは分散ファイルシステム (Hadoop Distributed File System),並列分散処理フレームワーク (MapReduce Framework)より構成されている.分散ファイルシステムとは複数のスレーブサーバを一つのストレージとして扱うファイルシステムである.分散並列処理フレームワークでは与えられたデータから欲しいデータの抽出と分解する Map 処理,それらのデータを集計する Reduce 処理が行われる.MapReduce 処理を複数のスレーブサーバで行うことで分散処理を可能にし,ビッグデータを効率よく扱うことができる. Hadoop は分散並列処理システムであり,Hadoop のみでは機械学習が行えない.しかし,機械学習するためのライブラリ等のツールがいくつか用意されている.Hdp 第2 班では,Spark を用いた.次節にて,Spark について説明する.

図 1. Hadoop の構成

図 2. Hadoop の分散処理の流れ

2.2 Spark

Spark とは Hadoop 同様,分散並列処理を可能にするフレームワークである.Spark 自身は HDFS を持っておらず,Hadoop の HDFS を利用することが出来る.Hadoop は一つの処理が終わるたびに HDFS に書き込まなければならないが,Spark ではインメモリを用いることで一つの処理ごとに HDFS に書き込む必要が無く,処理を高速化している.図 3 に Hadoop の場合と Spark と Hadoop を組み合わせた場合の処理の流れを示す.図 3(b) では,まず,大きなデータを MapReduce で加工し,その後 Spark で分散処理している.Spark のデータ処理には RDD(Resilient Distributed Dataset) と呼ばれるデータ構造を用いている.RDD は大量のデータを要素として保持する分散コレクションである.RDD 内はパーティションというかたまりに分割されており,これが分散処理の単位である.RDD をパーティションごとに複数の PC で分散処理することで一台の PC では難しいビッグデータの分散処理が可能となる.また,機械学

(a) Hadoop のみ

(b) Hadoop と Spark の組み合わせ

図 3. Hadoop と Spark

図 4. RDD の構造

習用ライブラリ MLlib が用意されており、機械学習の分散並列処理が可能である. 使用可能な言語は Java, Python, R 言語である.

2.3 機械学習 (Machine Learning)

2.3.1 スパムメールの分類

一つ目の学習テーマとしてスパムメールの分類を行った。データセットとして Spambase DataSet[1] を用いた。このデータセットは 4601 通のメールがあり,うち 1813 通のスパムメールと 2788 通の非スパムメールから構成されている。また,57 次元のベクトルとして特徴量抽出済みである。 $1\sim48$ 番目の要素は特定の変数名の出現頻度, $49\sim54$ 番目の要素は記号文字の

出現頻度,55~57番目の要素は、大文字の連なりの長さの平均、最長、合計である。学習アルゴリズムとして、ロジスティック回帰を使用した。ロジスティック回帰とは、識別関数としてシグモイド関数を用いた回帰モデルである。シグモイド関数は以下の式で表される。また、図5にシグモイド関数のグラフを示す。

$$f_{\theta}(x) = \frac{1}{1 + e^{-\theta x}} \tag{1}$$

ただし、 θ はパラメータである. 目的関数である対数尤度関数 $\log L(\theta)$

$$\log L(\theta) = \sum_{i=1}^{n} (y^{(i)} \log f_{\theta}(x) + (1 - y^{(i)}) \log(1 - f_{\theta}(x)))$$
 (2)

を最大化するするようなパラメータ θ を学習(更新)する. パラメータの更新式を求めるには、 最急降下法や確率的勾配法,準ニュートン法などがあるが、Spark の MLlib で用意されている 準ニュートン法を用いてパラメータを更新した.

2.3.2 画像の分類

二つ目の学習テーマとして画像の分類を行った. データセットとして CIFAR-10[2] を用いた. CIFAR-10 は 60000 枚の画像からなり, うち 50000 枚が訓練用画像であり, 残り 10000 枚はテスト用画像である. オープンライブラリの scikit-image を HOG 特徴量を抽出し, 前節と同じくロジスティック回帰で画像認識(他クラス分類)を行った.

2.4 実行条件

前述した2つのテーマの実行条件を表1に示す.

図 5. シグモイド関数

表 1. 実行条件

24 24 24 13 24 11				
テーマ	スパムメールの検出 画像認識			
データセット	Spambase Data Set CIFAR-10			
学習アルゴリズム	ロジスティック回帰			
評価法	ホールドアウト法			
環境	Master:1台, Slave:2台			
OS	Ubuntu 14.04	LTS		

表 2. スパムメールの検出の結果

	•			
非スパム再現率	スパム再現率	非スパム適合率	スパム適合率	AUC(PR)
91.92%	90.41%	93.48%	88.21%	0.9123

3 自分の分担範囲

機械学習・分散処理(Hadoop,Spark)の理論調査,毎週のレポート作成

4 感想

本プロジェクトを通して,ビッグデータの分散並列処理の原理を理解し,実装することができた.また,機械学習の理論を理解し,分散並列処理に適用できた.

5 評価

参考文献

- [1] "Spambase Data Set", https://archive.ics.uci.edu/ml/datasets/Spambase, 2016年8月9日 最終確認.
- [2] "The CIFAR-10 dataset", https://www.cs.toronto.edu/kriz/cifar.html, 2016年8月9日最終確認.

表 3. 画像認識の結果

	Airplane	automobile	Bird	Cat	Derr	Dog	Frog	Horse	Ship	Truck
Precision	55.53%	64.49%	42.98%	38.21%	42.69%	45.91%	51.63%	57.36%	57.91%	62.30%
Recall	55.70%	66.10%	35.80%	29.80%	42.90%	43.80%	63.40%	60.40%	62.20%	65.10%

表 4. 評価

	SA TA HI IIM				
学籍番号	氏名	評価			
16344217	自分	機械学習の理論,プログラムを担当した.機械学習や分散処理のの理論の			
		方は理解できたが、プログラムの方ではあまり貢献できなかった.			
16344201	井上 聖也	機械学習のプログラムを作ってくれた. 理論やプログラムに関して色々教			
		えてもらった.			
16344216	田中 良道	Hadoop と Spark について調査してくれた.通信エラーの解決法など色々			
		調査してくれた.			
15344229	沈 歩偉	Hadoop,Spark の完全分散処理環境を構築してくれた.実行時間の比較実			
		験などしっかりやってくれた. また, Hadoop,Spark のインストールに困っ			
		ている時, 手伝ってくれた.			