Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Физтех-школа аэрокосмических технологий Кафедра Аэрофизики и летательных аппаратов

Направление подготовки: 09.03.01 Информатика и вычислительная техника (бакалавриат)

Направленность (профиль) подготовки: Компьютерное моделирование

Форма обучения: очная

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

«Алгоритм предиктивного анализа отказов системы видеоаналитики в режиме времени по данным от систем мониторинга»

(бакалаврская работа)

Студент:					
Боровец Николай Васильевич					
(noduvo omudavma)					
(подпись студента)					
Научный руководитель:					
Гришин Никита Александрович,					
программист ПИШ РПИ					
(подпись научного руководителя)					

Жуковский

2025

АННОТАЦИЯ

Выпускная квалификационная работа посвящена разработке метода предиктивного анализа задержек в конвейере видеоаналитики для мониторинга объектов инфраструктуры. Цель работы — создать алгоритм прогнозирования метрики $common_event_delay$ с автоматическим обнаружением аномалий для предупреждения операторов о потенциальных сбоях. В работе применяются методы исследования, включающие анализ временных рядов Prometheus-метрик, сравнение архитектур ML-моделей (таких как LSTM и градиентный бустинг), временную кросс-валидацию, развертывание в Docker и A/B-тестирование. В результате исследования разработан MLOpsконвейер с точностью прогнозирования, превышающей базовые методы, и временем отклика менее 1 секунды. Создана система оповещений с адаптивными порогами. Проведена валидация разработанного решения на исторических данных объемом 90643 точки, собранных за 16 дней. Практическая значимость работы заключается в создании готового к использованию решения для предиктивного мониторинга видеосистем с возможностью адаптации для применения в телекоммуникациях и промышленной автоматизации.

Ключевые слова: предиктивный анализ, задержки, видеоаналитика, Prometheus, временные ряды, аномалии.

СОДЕРЖАНИЕ

АННОТАЦИЯ	2
СОДЕРЖАНИЕ	3
ВВЕДЕНИЕ	5
1 Общие положения	10
1.1 Архитектура системы видеоаналитики	10
1.2 Постановка задачи	11
2 Анализ данных и выбор методов	16
2.1 Анализ структуры данных видеоконвейера	16
2.1.1 Описание набора метрик	16
2.1.2 Временные характеристики данных	17
2.1.3 Статистический анализ метрик	18
2.1.4 Анализ пропусков и качества данных	19
2.1.5 Выявление аномалий в данных	19
2.2 Корреляционный анализ метрик	21
2.2.1 Матрица корреляций Пирсона	21
2.2.2 Анализ связей с целевой переменной	22
2.2.3 Анализ временной структуры рядов	23
2.2.4 Выводы по итогам анализа данных	26
3 Глава n	28
3.1 Секция п	28

4	Глава п	29			
4.1	Секция п	29			
ЗАК	лючение	30			
СПІ	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ				
Спи	сок сокращений и условных обозначений	32			

ВВЕДЕНИЕ

Обоснование выбора темы и актуальность

Современные системы видеоаналитики играют критически важную роль в обеспечении безопасности и мониторинга объектов критической инфраструктуры, включая аэродромы, железнодорожные станции, морские порты, промышленные предприятия и нефтеперерабатывающие комплексы [1]. Эти системы обрабатывают огромные объемы видеоданных в режиме реального времени, что предъявляет высокие требования к производительности и надежности всего технологического конвейера.

С ростом масштабов развертывания и усложнением архитектуры видеоаналитических систем возрастает и сложность их мониторинга. Современные решения часто включают в себя многоуровневые конвейеры обработки, начиная от захвата видеопотоков с камер, их предварительной обработки, применения алгоритмов машинного обучения для детекции объектов и событий, передачи результатов через брокеры сообщений в бэкенд-системы и далее к конечным пользователям через веб-интерфейсы.

Повышение объемов данных и жестких требований к end-to-endзадержкам (от момента возникновения события на видео до его отображения оператору) делает необходимым переход от реактивного к предиктивному подходу в управлении производительностью. Традиционные методы мониторинга, основанные на статических пороговых значениях и алертах по факту превышения SLA, не способны предотвратить деградацию качества обслуживания до ее критических проявлений.

В данном контексте особую важность приобретает разработка интеллектуальных систем предиктивного анализа, способных на основе пото-

ковых метрик мониторинга (например, собираемых системой Prometheus [2] и визуализируемых в Grafana [3]) заблаговременно оценивать потенциальные проблемы производительности и инициировать превентивные меры по их устранению.

Цель и задачи исследования

Цель работы: разработать и внедрить комплексный метод предиктивного анализа задержек в конвейере видеоаналитики, способный прогнозировать конечную метрику $common_event_delay$ с заданной точностью и автоматически детектировать аномальные паттерны в работе системы для предупреждения операторов о потенциальных сбоях до их фактического проявления.

Достижение поставленной цели требует решения комплекса взаимосвязанных задач:

- 1. Проведение аналитического обзора и систематизация современной литературы по предиктивному анализу временных рядов, машинному и глубокому обучению в контексте мониторинга и диагностики производительности систем реального времени.
- 2. Проведение анализа структуры и взаимных корреляций временных рядов метрик, собираемых на этапах видеоконвейера, включая выявление скрытых зависимостей между компонентами системы и идентификацию наиболее информативных признаков для прогнозирования.
- 3. Систематический обзор и сравнительный анализ современных методов прогнозирования временных рядов и обнаружения аномалий, включая классические статистические подходы, методы машинного обучения и глубокие нейронные сети, с оценкой их применимости к специфике видеоаналитических конвейеров.

- 4. Обоснованный выбор оптимальной архитектуры модели (трансформер, градиентный бустинг или их гибридная комбинация) с учетом требований к точности и скорости inference, а также определение необходимого объёма обучающих данных и оптимальной периодичности переобучения модели.
- 5. Проектирование и реализация полноценного MLOps-конвейера, включающего автоматизированный feature-engineering, механизмы периодического дообучения модели на новых данных, высокопроизводительный inference-сервис и системы мониторинга качества оценок.
- 6. Всестороннее экспериментальное исследование точности и производительности разработанной модели на обширных исторических данных с использованием методов временной кросс-валидации и оценкой устойчивости к различным типам аномалий в данных.
- 7. Разработка и внедрение интеллектуальной системы оповещений с адаптивными порогами, а также формулирование практических рекомендаций по эксплуатации, настройке и масштабированию решения в производственной среде.

Методология и методы исследования

Для достижения поставленной цели и решения сформулированных задач применяется комплексная методология, сочетающая теоретические исследования с практическими экспериментами:

1. Организация непрерывного сбора и интеллектуальной предобработки потоковых метрик из системы мониторинга Prometheus [2], включая очистку от выбросов, нормализацию, обработку пропущенных значений и синхронизацию временных рядов различных компонентов системы.

- 2. Разработка специализированного модуля построения многомерных временных рядов с интеллектуальной генерацией признаков, включая временные лаги различной глубины, скользящие статистические агрегаты, спектральные характеристики и высокоразмерные эмбеддинги для захвата сложных временных зависимостей.
- 3. Реализация и экспериментальное сравнение различных архитектур моделей (трансформеры с механизмом внимания, ансамбли градиентного бустинга LightGBM/CatBoost, гибридные нейро-символьные подходы) с применением строгих методов перекрёстной валидации по времени для обеспечения корректной оценки обобщающей способности.
- 4. Контейнеризация решения с использованием технологии Docker и проведение детальных измерений latency inference в условиях, максимально приближенных к производственным, включая тестирование под нагрузкой и оценку масштабируемости.
- 5. Организация и проведение А/В-тестирования в реальной производственной среде с использованием методов статистической оценки значимости результатов и анализа влияния на ключевые показатели эффективности системы.

Теоретическая и практическая значимость

Теоретическая значимость работы заключается в сравнительном анализе методов прогнозирования временных рядов для систем мониторинга и определении их применимости к задачам предиктивной диагностики в условиях жестких временных ограничений.

Практическая значимость определяется разработкой готового к промышленному использованию решения для мониторинга и предупрежде-

ния отказов видеоконвейера с гарантированным соблюдением SLA по конечной метрике $common_event_delay$. Созданная система может быть адаптирована и масштабирована для применения в различных отраслях, где критична надежность систем обработки потоковых данных в реальном времени, включая телекоммуникации, финансовые технологии и промышленную автоматизацию.

1 Общие положения

Данная глава посвящена формальной постановке задачи предиктивного анализа задержек в конвейере видеоаналитики и представлению архитектуры исследуемой системы. В рамках главы вводятся ключевые математические обозначения, определяются целевые метрики и ограничения, формулируются требования к разрабатываемому алгоритму. Особое внимание уделяется описанию структуры видеоконвейера и точек сбора телеметрических данных, которые лягут в основу построения прогностической модели.

1.1 Архитектура системы видеоаналитики

Исследуемая система видеоаналитики представляет собой многокомпонентный конвейер, предназначенный для обработки видеопотоков в режиме реального времени с применением алгоритмов компьютерного зрения для детекции событий и объектов. Архитектура системы строится по принципу микросервисной архитектуры, что обеспечивает масштабируемость и отказоустойчивость, но одновременно усложняет задачи мониторинга и диагностики производительности.

Видеоконвейер включает следующие основные компоненты: модуль захвата видеопотока с IP-камер (получающий данные по протоколу RTSP), ML-ріреline для применения алгоритмов компьютерного зрения, брокер сообщений Арасhe Kafka [4] для асинхронной передачи результатов обработки, бэкенд-сервисы для бизнес-логики и сохранения данных, а также WebSocket-клиенты для доставки уведомлений конечным пользователям. Каждый компонент генерирует множество метрик производительности, которые собираются централизованной системой мониторинга Prometheus [2].

Критической характеристикой системы является end-to-end-задержка, измеряемая как время от момента возникновения события в видеопотоке до его отображения на интерфейсе оператора. Данная метрика, обозначаемая как $common_event_delay$, напрямую влияет на эффективность работы операторов и качество принимаемых ими решений в критических ситуациях.

1.2 Постановка задачи

Для формальной постановки задачи прогнозирования введем необходимые математические обозначения и определения. Пусть $T=\{t_1,t_2,\ldots,t_n\}$ — упорядоченное множество временных меток наблюдений, соответствующих моментам сбора метрик из системы мониторинга с фиксированным интервалом дискретизации. Обозначим через d общее число различных метрик, одновременно собираемых системой мониторинга со всех компонентов видеоконвейера.

Для каждой временной метки t_i формируется d-мерный вектор наблюдений:

$$\mathbf{x}_i = [m_i^{(1)}, m_i^{(2)}, \dots, m_i^{(d)}] \in \mathbb{R}^d, \tag{1.1}$$

где каждая компонента $m_i^{(j)}$ представляет значение j-й метрики в момент времени t_i .

Компоненты вектора наблюдений соответствуют различным категориям метрик, характеризующих работу отдельных подсистем видеоконвейера:

• Метрики ML-конвейера: $vidcap_delay$ (задержка видеозахвата), $vidcap_fps$ (частота кадров видеозахвата), $vidcap_fps_avg$ (средняя частота кадров видеозахвата), характеризующие производительность модулей ком-

пьютерного зрения;

- **Метрики бэкенда:** $ml_to_backend_kafka_delay$ (задержка передачи результатов ML через Kafka), db_insert_delay (время записи в базу данных), отражающие эффективность серверной части системы;
- Метрики WebSocket-клиента: common_event_delay (целевая end-to-end-задержка), heartbeat_* (метрики жизнеспособности соединений), event_counter (счетчики событий), seq_events_health (показатели кор-ректности последовательности событий), характеризующие качество доставки результатов до конечных пользователей.

Для учета временных зависимостей в данных введем понятие скользящего окна наблюдений. Определим окно длины L и шаг сдвига s, где L представляет глубину истории, необходимую для прогнозирования, а s — частоту обновления прогнозов. Каждое k-е скользящее окно определяется как матрица:

$$X_k = [\mathbf{x}_{t_k - L + 1}, \dots, \mathbf{x}_{t_k}] \in \mathbb{R}^{L \times d}, \tag{1.2}$$

содержащая L последовательных векторов наблюдений, предшествующих моменту прогнозирования. На основе данной матрицы формируется расширенное множество признаков для обучения модели, включающее различные статистические агрегаты, временные лаги и производные характеристики, детальное описание которых приводится в главе 2.

Целевая переменная для задачи прогнозирования определяется как значение критической метрики end-to-end-задержки в будущий момент времени:

$$y_k = common_event_delay(t_k + \Delta),$$
 (1.3)

где $\Delta = 900 \times 15$ с = 13500 с $\approx 3,75$ ч представляет горизонт прогнозирования, выбранный исходя из требований к заблаговременности предупреждений о потенциальных проблемах в системе. Данный горизонт соответствует прогнозу на 900 временных шагов вперед при интервале дискретизации 15 секунд.

Обучающая выборка для построения прогностической модели формируется как множество пар «окно-целевое значение»:

$$\mathcal{N} = \{ (X_k, y_k) \}_{k=1}^N, \tag{1.4}$$

где N — общее количество доступных обучающих примеров, определяемое длиной исторических данных и параметрами скользящего окна.

В рамках данной постановки предполагается существование неизвестной целевой функции:

$$f^*: \mathbb{R}^{L \times d} \to \mathbb{R},\tag{1.5}$$

которая отображает текущее состояние системы (представленное матрицей метрик скользящего окна) в прогнозируемое значение end-to-end-задержки.

Основная задача исследования состоит в построении алгоритма $A: \mathbb{R}^{L \times d} \to \mathbb{R}$, аппроксимирующего неизвестную функцию f^* с заданной точностью:

$$|A(X_k) - f^*(X_k)| \le \varepsilon \quad \forall k, \tag{1.6}$$

где ε — допустимая погрешность прогнозирования, определяемая практическими требованиями к системе предупреждения.

К разрабатываемому алгоритму A предъявляется ряд требований:

1. Точность прогнозирования: обеспечение качества прогноза целевой

метрики $common_event_delay$ с MAPE < 10% и других метрик (MAE, RMSE) на валидационной выборке;

- 2. **Производительность:** время формирования прогноза < 5 с при развертывании в контейнеризованной среде [5] для практического применения в системе мониторинга;
- 3. Интерпретируемость: возможность анализа важности признаков и понимания логики принятия решений моделью;
- 4. **Практичность:** простота интеграции в существующую инфраструктуру мониторинга и возможность автоматизации процесса обновления модели.

Исходные данные для обучения и валидации алгоритма представляют собой многомерный временной ряд $X \in \mathbb{R}^{n \times d}$ с элементами типа FLOAT64, формируемый из системы мониторинга Prometheus с периодичностью сбора 15 секунд. Объем доступных исторических данных составляет приблизительно 90643 точки, накопленные за период 16 дней непрерывной работы системы.

Итоговая формализация задачи: построить алгоритм A, наилучшим образом аппроксимирующий неизвестную функцию f^* и одновременно удовлетворяющий всем указанным ограничениям по точности, производительности и адаптивности для обеспечения надежного предиктивного мониторинга систем видеоаналитики.

Рисунок 1.1 — Схема видеоконвейера и точки сбора метрик

2 Анализ данных и выбор методов

2.1 Анализ структуры данных видеоконвейера

Для построения эффективной модели прогнозирования необходимо провести анализ структуры и характеристик доступных данных. Исходный набор данных представляет собой многомерный временной ряд, собираемый системой мониторинга Prometheus [2] с различных компонентов видеоконвейера с периодичностью 15 секунд.

2.1.1 Описание набора метрик

Система мониторинга Prometheus [2] собирает широкий спектр метрик, характеризующих работу различных подсистем видеоконвейера, включая метрики ML-конвейера ($vidcap_delay$, $vidcap_fps$), бэкенда ($ml_to_backend_kagdb_insert_delay$), и WebSocket-клиентов ($heartbeat_*, event_counter, seq_events_heagdelay$)

Для построения модели прогнозирования отобраны следующие ключевые метрики, наиболее релевантные для задачи предсказания end-to-end-задержки:

- common_cad целевая метрика end-to-end-задержки, усредненная за 1 час (мс);
- db_insert_cad задержка записи в базу данных, усредненная за 1 час (мс);
- kafka_network_cad сетевая задержка Каfka [4], усредненная за 1 час (мс);

• counter_events_total — общий счетчик обработанных событий в системе.

2.1.2 Временные характеристики данных

Исходный набор данных охватывает период с 25 ноября по 11 декабря 2024 года (16 дней непрерывной работы системы) и содержит 90543 временных точек. При интервале дискретизации 15 секунд это соответствует полному покрытию анализируемого периода без пропусков в данных.

Рисунок 2.1 — Обзор временных рядов основных метрик видеоконвейера

Анализ временных характеристик показывает наличие различных паттернов в поведении метрик: циклические колебания, связанные с суточной активностью системы, периодические всплески нагрузки и редкие аномальные события, требующие особого внимания при построении модели.

2.1.3 Статистический анализ метрик

Для понимания распределения значений каждой метрики проведен описательный статистический анализ, результаты которого представлены в таблице 2.1.

Таблица 2.1 — Описательная статистика основных метрик

Метрика	Среднее	Медиана	Мин.	Макс.	Std
common_cad	423.72	400.63	273.66	1591.18	138.11
db_insert_cad	5.51	5.07	2.74	57.56	2.73
kafka_network_cad	351.51	339.84	234.22	532.15	68.76
counter_events_total	1.28×10^{7}	1.24×10^7	1.06×10^7	1.38×10^7	8.21×10^{5}

Рисунок 2.2 — Гистограммы распределения ключевых метрик системы

2.1.4 Анализ пропусков и качества данных

Качество исходных данных является критическим фактором для построения надежной прогностической модели. Анализ показывает наличие пропусков данных только в начале и конце временных рядов, что связано с особенностями синхронизации сбора различных метрик. В середине периода наблюдения пропуски отсутствуют, что свидетельствует о стабильной работе системы мониторинга.

Для обеспечения единообразия временных рядов из каждой метрики было исключено следующее количество точек:

- *common_cad* 2 точки;
- *db_insert_cad* 188 точек;
- *kafka_network_cad* 188 точек;
- counter_events_total 216 точек.

Данная стратегия обработки пропусков путем обрезания краевых значений является предпочтительной по сравнению с интерполяцией, поскольку сохраняет естественную структуру временных зависимостей в данных и исключает внесение искусственных артефактов в модель.

2.1.5 Выявление аномалий в данных

Для обнаружения аномальных значений в данных применен метод межквартильного размаха (IQR). Точки, выходящие за границы $Q_1-1.5\times IQR$ и $Q_3+1.5\times IQR$, рассматриваются как потенциальные выбросы.

Рисунок 2.3 — IQR-диаграммы (диаграммы размаха) и boxplots для выявления выбросов в метриках

IQR-диаграммы наглядно демонстрируют квартили и выбросы для каждой метрики, позволяя оценить степень вариабельности данных и выявить аномальные периоды работы системы.

Обнаруженные аномалии требуют детального анализа для определения их природы: являются ли они результатом реальных событий в системе

(пиковые нагрузки, сбои) или ошибками измерения. В зависимости от результатов анализа принимается решение о сохранении, корректировке или исключении аномальных точек из обучающей выборки.

2.2 Корреляционный анализ метрик

Для выявления взаимосвязей между метриками и определения наиболее информативных признаков для прогнозирования целевой переменной $common_cad$ проведен корреляционный анализ временных рядов.

2.2.1 Матрица корреляций Пирсона

Вычисление коэффициентов корреляции Пирсона между всеми парами метрик позволяет оценить степень линейной взаимосвязи между переменными. Результаты анализа представлены в виде тепловой карты корреляций.

Рисунок 2.4 — Матрица корреляций между метриками системы

Анализ матрицы корреляций показывает наличие значимых взаимосвязей между отдельными метриками, что свидетельствует о взаимозависимости различных компонентов видеоконвейера. Наиболее сильные корреляции наблюдаются между метриками задержек ($common_cad$, db_insert_cad , $kafka_network_cad$), что логично с точки зрения архитектуры системы.

2.2.2 Анализ связей с целевой переменной

Особое внимание уделено корреляциям с целевой метрикой $common_cad$ поскольку они определяют потенциальную предсказательную способность признаков:

Таблица 2.2 — Корреляции метрик с целевой переменной $common_cad_avg1h$

Метрика	Корреляция с common_cad_avg1h
$kafka_network_cad_avg1h$	+0.583
$db_insert_cad_avg1h$	+0.406
$counter_events_total$	-0.143

2.2.3 Анализ временной структуры рядов

Для более глубокого понимания временных зависимостей был проведен анализ автокорреляционной функции (ACF), частной автокорреляционной функции (PACF) и сезонная декомпозиция для ключевых временных рядов.

Сезонная декомпозиция

Сезонная декомпозиция позволяет разложить временной ряд на три компоненты: тренд, сезонность и остаток (шум). Это помогает выявить долгосрочные тенденции и периодические колебания в данных. На *рисунке* 2.5 представлена декомпозиция для целевой метрики $common_cad_avg1h$.

Рисунок 2.5 — Сезонная декомпозиция метрики $common_cad_avg1h$

Анализ показывает наличие выраженного нелинейного тренда с характерным ростом в начале декабря и последующим спадом. Наиболее важной особенностью является доминирующая суточная сезонность с четким повторяющимся паттерном, что характерно для систем с циклической нагрузкой. В остатках наблюдаются аномальные выбросы (например, 26.11 и 04.12), которые модель декомпозиции не смогла объяснить трендом и сезонностью.

Анализ автокорреляций

Функции ACF и PACF используются для определения порядка авторегрессионных (AR) и скользящих средних (MA) компонентов в моделях

временных рядов, таких как ARIMA. На *рисунке 2.6* показаны графики ACF и PACF.

Рисунок 2.6 — Графики АСF и PACF для метрики $common_cad_avg1h$

Анализ автокорреляционных функций выявил ключевые характеристики временного ряда:

- **АСF медленно убывает** на протяжении всех 200 лагов, что является классическим признаком нестационарности ряда и наличия тренда. Волнообразная структура АСF подтверждает сильную сезонность;
- **PACF имеет резкий всплеск на лаге 1** с последующим обрывом, что указывает на авторегрессионный процесс первого порядка (AR(1)). Это означает сильную зависимость текущего значения от предыдущего;
- Совместный анализ ACF/PACF предполагает использование модели SARIMA

с начальными параметрами p=1, d=1, q=0 для несезонной части и дополнительными сезонными параметрами.

Однако учитывая сложность выявленных паттернов (нелинейный тренд, аномалии, сильная сезонность), для достижения высокой точности прогнозирования целесообразно рассмотреть как классические статистические методы (SARIMA), так и современные подходы машинного обучения (LSTM, Transformer), способные улавливать нелинейные зависимости.

2.2.4 Выводы по итогам анализа данных

На основе проведенного анализа данных сделаны следующие выводы:

- Корреляционный анализ подтвердил наличие статистически значимой связи между системными метриками и целевой переменной. Наиболее сильное влияние оказывает задержка в Kafka ($kafka_network_cad_avg1h$) с корреляцией +0.583, что логично с точки зрения архитектуры системы;
- Сезонная декомпозиция выявила доминирующую суточную сезонность и нелинейный тренд с пиком в начале декабря. Обнаружены аномальные выбросы, требующие специальной обработки при моделировании;
- Анализ АСГ/РАСГ показал нестационарность ряда (медленно убывающая АСГ) и авторегрессионную структуру первого порядка (резкий обрыв РАСГ после лага 1). Это указывает на возможность применения модели SARIMA(1,1,0) с сезонными компонентами;
- Сложность выявленных паттернов (нелинейность, аномалии, сильная

сезонность) обосновывает необходимость сравнения классических статистических методов с современными подходами машинного обучения;

• Отсутствие сильной мультиколлинеарности между признаками позволяет использовать их все в модели без предварительного отсева.

Полученные результаты формируют основу для этапа feature engineering и выбора архитектуры модели прогнозирования, которые будут рассмотрены в следующей главе.

- 3 Глава n
- 3.1 Секция п

- 4 Глава n
- 4.1 Секция п

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Jain K., Adapa K.S., Grover K., Sarvadevabhatla R.K., Purini S. A Cloud-Fog Architecture for Video Analytics on Large Scale Camera Networks Using Semantic Scene Analysis // 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid). — 2023. — P. 513–523. DOI: 10.1109/CCGrid57682.2023.00054.
- 2) Prometheus monitoring system and time series database. URL: https://prometheus... (дата обращения: 05.06.2025).
- 3) Grafana: The open observability platform. URL: https://grafana.com/docs/ (дата обращения: 05.06.2025).
- 4) Apache Kafka: A distributed streaming platform. URL: https://kafka.apache.org/do(дата обращения: 05.06.2025).
- 5) Docker: Accelerated Container Application Development. URL: https://docs.docket/ (дата обращения: 05.06.2025).
- 6) Third

Список сокращений и условных обозначений

Сокращения:

API Application Programming Interface — программный интерфейс

приложения

Docker платформа контейнеризации приложений

FPS Frames Per Second — кадры в секунду

Kafka Арасhe Kafka — распределенный брокер сообщений

LoRA Low-Rank Adaptation — адаптация с низкоранговой аппрок-

симацией

ML Machine Learning — машинное обучение

MLOps Machine Learning Operations — операции машинного обуче-

ния

MSE Mean Squared Error — среднеквадратическая ошибка

Prometheus система мониторинга и оповещений с открытым исходным

кодом

SLA Service Level Agreement — соглашение об уровне обслужива-

ния

WS WebSocket — протокол полнодуплексной связи

Условные обозначения:

Т множество временных меток наблюдений

d число метрик, собираемых системой мониторинга

L длина скользящего окна наблюдений

s шаг сдвига скользящего окна

 \mathbf{x}_i d-мерный вектор наблюдений в момент времени t_i

 X_k матрица скользящего окна размерности $L \times d$

 y_k целевая переменная (значение $common_event_delay$)

 \mathcal{N} обучающая выборка

N общее количество обучающих примеров

 f^* неизвестная целевая функция

A разрабатываемый алгоритм прогнозирования

 ε допустимая погрешность прогнозирования

 Δ горизонт прогнозирования (15 секунд)

end-to-end сквозной (от начала до конца процесса)

inference процесс получения оценок от обученной модели

warm-start инициализация обучения с предобученными параметрами