Discrete Math

	Contents	Chapter I Propositional Logic			Propositional Logic	1
			§	1.1	Connectives and Truth	
		Assingments				1
Part I	Discrete Math: Logic	1		1	Connectives	1

CONTENTS

I

CONTENTS 1

PartI Discrete Math: Logic

Chapter I Propositional Logic

§ 1.1 Connectives and Truth Assingments

1 Connectives

Define 1.1.1 (Truth table of Connectives) (Omitted)

Define 1.1.2 (Truth Assingments) Suppose Σ is the set of propositional variables. A mapping from Σ to $\{T, F\}$ called a truth assignment.

Define 1.1.3 Suppose Σ is the set of propositional variables and $\mathcal{J}:\Sigma\to\{\mathbf{T},\mathbf{F}\}$ is a truth assignment. The truth value of the compond proposition on \mathcal{J} ... (Omitted)

Define 1.1.4 (Tautology, contradiction) (Omitted)

Define 1.1.5 (Contingency, Satisfiable) A contingency is a compound proposition that is neither a tautology nor a contradiction.

A compound proposition is satisfiable if it is true under some truth assignment.

e.g. 1.1.1 sd