PDIE8 - Processamento Digital de Imagem

Repositorio dos Códigos feitos em aula da Disciplina

Feito por: Vinicius de Souza Santos

Lecionado por: Murilo Varges

Aula 5 - 28/08 - Transformações de Intensidade

- Transformações de intensidade
- Fundamentos
- Histograma
- Equalização de histograma

Exercícios - Transformações e Histograma

- Utilizar as imagens Fig 3.8 e enhance-me.gif disponíveis no Moodle
- Aplicar a transformação logarítmica, testar vários valores para o parâmetro c "s = c log (1 + r)"
- Aplicar a transformação de potência (gama), testar vários valores para o parâmetro γ e c=1 "s = crγ"
- Implemente a representação de cada plano de bits das imagens
- Implementar a equalização do histograma
- Elaborar relatório explicando a implementação de cada transformação e qual foi o efeito na imagem.

Importando Bibliotecas

```
import cv2
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
```

Funçoes de Transformação

```
In [ ]: def log_transform(c, img):
    return c * np.log(1 + img)

def power_transform(c, gamma, img):
    return c * np.power(img, gamma)

def bit_plane(img, bit):
    return (img & (1 << bit)) >> bit
```

Leitura e Processamento das Imagens

```
In []: enhance_path = '/Meu Drive/Faculdade/Aula/2023.2/Processamento Digital de Imagem
Fig0308_path = '/Meu Drive/Faculdade/Aula/2023.2/Processamento Digital de Imagem
# Leitura das imagens
enhance_img = np.array(Image.open(enhance_path))
Fig0308_img = np.array(Image.open(Fig0308_path))

# Aplicação das transformações
c_values = [1, 5, 10, 20]
gamma_values = [0.1, 0.5, 1, 2, 5]
```

```
for c in c_values:
     # Transformação Logarítmica
     transformed_enhance = log_transform(c, enhance_img)
     transformed_Fig0308 = log_transform(c, Fig0308_img)
     # Exibicão
     fig, axs = plt.subplots(1, 2, figsize=(10, 5))
     axs[0].imshow(transformed_enhance, cmap='gray')
     axs[0].set_title(f'Enhance-me (c = {c})')
     axs[1].imshow(transformed_Fig0308, cmap='gray')
     axs[1].set_title(f'Fig0308 (c = {c})')
     plt.show()
 for gamma in gamma_values:
     # Transformação de Potência (Gama)
     transformed_enhance = power_transform(1, gamma, enhance_img)
     transformed Fig0308 = power transform(1, gamma, Fig0308 img)
     # Exibição
     fig, axs = plt.subplots(1, 2, figsize=(10, 5))
     axs[0].imshow(transformed_enhance, cmap='gray')
     axs[0].set\_title(f'Enhance-me (\gamma = {gamma})')
     axs[1].imshow(transformed Fig0308, cmap='gray')
     axs[1].set title(f'Fig0308 (\gamma = \{gamma\})')
     plt.show()
 # Representação de cada plano de bits
 for i in range(8):
     bit enhance = bit plane(enhance img, i)
     bit_Fig0308 = bit_plane(Fig0308_img, i)
     # Exibição
     fig, axs = plt.subplots(1, 2, figsize=(10, 5))
     axs[0].imshow(bit_enhance, cmap='gray')
     axs[0].set title(f'Enhance-me (Bit Plane {i})')
     axs[1].imshow(bit_Fig0308, cmap='gray')
     axs[1].set title(f'Fig0308 (Bit Plane {i})')
     plt.show()
 # Equalização do histograma
 equalized enhance = cv2.equalizeHist(enhance img)
 equalized Fig0308 = cv2.equalizeHist(Fig0308 img)
 # Exibição
 fig, axs = plt.subplots(1, 2, figsize=(10, 5))
 axs[0].imshow(equalized_enhance, cmap='gray')
 axs[0].set_title('Enhance-me (Equalização)')
 axs[1].imshow(equalized Fig0308, cmap='gray')
 axs[1].set_title('Fig0308 (Equalização)')
 plt.show()
C:\Users\vinny\AppData\Local\Temp\ipykernel_20780\382409465.py:2: RuntimeWarning:
divide by zero encountered in log
  return c * np.log(1 + img)
```


Relatório: Análise e Implementação de Transformações em Processamento Digital de Imagem

1. Introdução

O processamento digital de imagens (PDI) é uma área que se concentra na manipulação e análise de imagens digitais. Este relatório detalha a aplicação de quatro técnicas de PDI em duas imagens distintas: enhance-me.gif e Fig0308(a)(fractured_spine).tif. As técnicas abordadas são: transformação logarítmica, transformação de potência (gama), representação de plano de bits e equalização de histograma.

2. Transformação Logarítmica

2.1 Fundamentação Teórica

A transformação logarítmica visa expandir a escala de valores de pixels escuros e comprimir a de pixels claros. É útil para imagens com grandes variações de brilho.

2.2 Implementação

A transformação é aplicada através da fórmula:

 $s=c \times log(1+r)$ onde r é o valor do pixel original e c é uma constante.

2.3 Efeito nas Imagens

Ao variar o valor de c, observa-se uma alteração no contraste das imagens. Valores maiores de c resultam em um contraste mais acentuado, enquanto valores menores suavizam o efeito. Esta transformação é especialmente útil para realçar detalhes em regiões escuras das imagens.

3. Transformação de Potência (Gama)

3.1 Fundamentação Teórica

A transformação de potência, ou correção gama, é utilizada para ajustar o brilho global de uma imagem.

3.2 Implementação

A transformação é dada pela fórmula:

s=c×r^y, onde γ é o valor que determina o grau de correção.

3.3 Efeito nas Imagens

Valores de γ <1 clareiam a imagem, tornando-a mais luminosa, enquanto valores de γ >1 escurecem a imagem. Esta transformação é útil para ajustar imagens capturadas sob diferentes condições de iluminação.

4. Representação de Cada Plano de Bits

4.1 Fundamentação Teórica

Cada pixel de uma imagem em escala de cinza pode ser representado em termos de seus bits individuais.

4.2 Implementação

A representação de cada plano de bits é obtida isolando-se cada bit do valor do pixel.

4.3 Efeito nas Imagens

O plano de bit mais significativo contém a maior parte da informação visual. Planos de bits inferiores contribuem com detalhes mais sutis e, frequentemente, com ruído. Esta técnica é útil para analisar a contribuição de cada bit para a imagem global.

5. Equalização do Histograma

5.1 Fundamentação Teórica

A equalização de histograma redistribui os valores de pixel de uma imagem para produzir um histograma uniforme.

5.2 Implementação

A equalização é realizada através da função cv2.equalizeHist().

5.3 Efeito nas Imagens

A técnica melhora o contraste global das imagens, tornando os detalhes mais visíveis e distribuindo a intensidade dos pixels de forma mais uniforme.

6. Conclusão

As técnicas de processamento digital de imagem discutidas neste relatório são essenciais para a manipulação e melhoria de imagens digitais. A aplicação destas técnicas em duas imagens distintas demonstrou sua eficácia e versatilidade. A compreensão teórica, juntamente com a implementação prática, fornece uma base sólida para explorar aplicações mais avançadas no campo do PDI.