ПМИ. Группа 1. Домашнее задание №2. Часть 1. (Дедлайн: 3 октября)

Найдите супремумы и инфимумы множеств (везде нужны доказательства):

1. (1) Множество состоит из десятичных дробей из (0;1), в записи которых (после запятой) не содержатся нечетные цифры.

2. (1)
$$\left\{ \frac{nm}{m^2+n^2} : m, n \in \mathbb{N} \right\}$$

3.
$$(1)$$
 $\left\{\frac{(n+1)^2}{2^n} : n \in \mathbb{N}\right\}$.

4. (1)
$$\left\{2\cdot(-1)^{n+1}+(-1)^{\frac{n(n+1)}{2}}\left(2+\frac{3}{n}\right): n\in\mathbb{N}\right\}$$
.

5. (1)
$$\left\{ \frac{\ln(n^2-n+1)}{\ln(n^{10}+n+1)} : n \in \mathbb{N} \right\}$$
.

6. (1)
$$\{\sqrt{n} - [\sqrt{n}] : \mathbb{N}\}.$$

ПМИ. Группа 1. Домашнее задание №2. Часть 2. (Дедлайн: 3 октября)

7. Найдите предел последовательности, укажите $N_{\varepsilon}.$

7.1. (1)
$$y_n = \frac{99^n}{n!}$$
;

 $\mathit{Hint}\colon \mathit{b}\ \mathit{kaчествe}\ \mathit{nodckasku}\ \mathit{можетe}\ \mathit{pasoбpamьcs}\ \mathit{c}\ \mathit{npumepom}\ \frac{2^n}{n!}.$

7.2. (1)
$$x_n = \frac{(n+1)(n+2)...(n+10)}{(n-1)(n-2)...(n-10)}$$
.

8. Вычислить предел:

8.1. (1)
$$\lim_{n\to\infty} \frac{\left(n+\frac{n}{3}+\cdots+\frac{n}{3^n}\right)(n-3)(n+5)(n-1)}{(1+3+5+\cdots+(2n+1))(2n^2+5)}$$
.

8.2. (1)
$$\lim_{n\to\infty} \frac{n}{2} \left(\sqrt[3]{1+\frac{2}{n}} - 1 \right)$$
.

Комментарий к задаче 8.1: что такое геометрический ряд Bы не знаете (бесконечная сумма q^n). Не обманывайте ни себя, ни меня.

- **9.** (1) Пусть последовательность x_n имеет предел. Докажите, что множество $\{x_n, n \in \mathbb{N}\}$ достигает хотя бы одной своей точной грани верхней или нижней.
- **10.** (1) Известно, что $\lim x_n y_n = 0$. Следует ли отсюда, что:
 - а) $\lim x_n = \lim y_n = 0$; б) хотя бы одна из последовательностей $\{x_n\}$ или $\{y_n\}$ стремится к нулю?
- **11.** (1) Пусть $x_n > 0$ и $x_n \to a$. Докажите, что $\sqrt{x_n} \to \sqrt{a}$. Выразите $\tilde{N}(\varepsilon)$ из определения предела для $\sqrt{x_n}$ через $N(\varepsilon)$ для x_n .

1