Statistical Modelling Exam preparation

January 11, 2024

Exercise 1

The mtcars dataset comprises fuel consumption (mpg: Miles/(US) gallon) and 8 aspects of automobile design and performance for 32 automobiles. Specifically, the covariates are

• wt: Weight (1000 lbs)

• am: Transmission (0 = automatic, 1 = manual)

• cyl: Number of cylinders

• disp: Displacement (cu.in.)

• hp: Gross horsepower

• drat: Rear axle ratio

• qsec: 1/4 mile time

• vs: Engine (0 = V-shaped, 1 = straight)

Fitting a Gaussian linear model in R produces the following output

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	15.5731	16.3817	0.951	0.3517
wt	-3.9437	1.2874	-3.063	0.0055
am = 1	2.7937	1.8682	1.495	0.1484
cyl	-0.2786	0.9348	-0.298	0.7683
disp	0.0147	0.0120	1.223	0.2338
hp	-0.0214	0.0162	??	0.1995
drat	0.8151	1.5101	0.540	0.5946
qsec	??	0.6587	1.229	0.2314
vs = 1	0.3684	2.0116	0.183	??

Residual standard error $\sqrt{\sum_{i=1}^{32}(y_i-\hat{y}_i)^2/23}=2.544$ Coefficient $R^2=0.8678$

- a) Write the statistical model corresponding to the analysis (quantities and assumptions). Denote this model as "model A".
- b) Write the parameter space and sample space.
- c) Complete the missing values in the table. For "Pr(>|t|)" of vs1, write the meaning of the missing value and how to obtain it.
- d) Perform a test of overall significance of the model using a 5% significance level.

e) On the same dataset, it is then estimated a reduced model ("model B") that only includes the variables wt and am. The software estimates the following quantities:

Residual standard error = 3.098

Coefficient $R^2 = 0.7528$

What procedure would you use to compare model A and model B? Following your chosen procedure, which model do you prefer?

f) Starting from model B, it is then introduced as additional covariate the interaction between wt and am. Explain the resulting model and how you interpret the parameters.

Exercise 2

Given a set of n = 30 observations, consider fitting the model $Y_i \sim \text{Bernoulli}(\pi_i)$ where $\text{logit}(\pi_i) = \beta_1 + \beta_2 x_i$, with x_i is a dummy variable taking value 1 for the first 10 observations and 0 otherwise. Fitting this model returns the following output

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	1.3863	0.5590	2.480	0.01314
x	-2.0794	0.7826	-2.657	0.00788
Null deviance	47.111			
Residual deviance	39.112			

- a) Write the likelihood, log-likelihood and score functions for (β_1, β_2) . Write the fitted model.
- b) Compute the estimate of the probability $\hat{\pi}$ for x = 0 and x = 1. Obtain the odds for x = 0 and x = 1 and interpret them. Give an estimate of the odds ratio and interpret it.
- c) Test the hypothesis $H_0: \beta_2 = -1$ vs $H_1: \beta_2 < -1$.
- d) What are the two quantities "Null deviance" and "Residual deviance"?

					p			
		0.90	0.95	0.975	0.99	0.995	0.9975	0.999
standard Normal	z_p	1.2816	1.6449	1.9600	2.3263	2.5758	2.8070	3.0902
t with 21 df	$t_{21,p}$	1.3232	1.7207	2.0796	2.5176	2.8314	3.1352	3.5272
t with 22 df	$t_{22,p}$	1.3212	1.7171	2.0739	2.5083	2.8188	3.1188	3.5050
t with 23 df	$t_{23,p}$	1.3195	1.7139	2.0687	2.4999	2.8073	3.1040	3.4850
t with 31 df	$t_{31,p}$	1.3095	1.6955	2.0395	2.4528	2.7440	3.0221	3.3749
t with 32 df	$t_{32,p}$	1.3086	1.6939	2.0369	2.4487	2.7385	3.0149	3.3653
t with 33 df	$t_{33,p}$	1.3077	1.6924	2.0345	2.4448	2.7333	3.0082	3.3563

Table 1: Some quantiles of Gaussian and Student's t distribution: $p = \mathbb{P}(X \leq q_p)$. Columns correspond to probabilities p. Rows correspond to different distributions, in particular, for the t, each row corresponds to different degrees of freedom (df).

				\overline{p}			
	0.90	0.95	0.975	0.99	0.995	0.9975	0.999
$f_{6,23;p}$	2.0472	2.5277	3.0232	3.7102	4.2591	4.8366	5.6486
$f_{7,23;p}$	1.9949	2.4422	2.9023	3.5390	4.0469	4.5807	5.3308
$f_{8,23;p}$	1.9531	2.3748	2.8077	3.4057	3.8822	4.3826	5.0853
$f_{9,23;p}$	1.9189	2.3201	2.7313	3.2986	3.7502	4.2243	4.8896
$f_{6,32;p}$	1.9668	2.3991	2.8356	3.4269	3.8886	4.3653	5.0211
$f_{7,32;p}$	1.9132	2.3127	2.7150	3.2583	3.6819	4.1185	4.7186
$f_{8,32;p}$	1.8702	2.2444	2.6202	3.1267	3.5210	3.9271	4.4846
$f_{9,32;p}$	1.8348	2.1888	2.5434	3.0208	3.3919	3.7738	4.2977
$f_{23,6;p}$	2.8223	3.8486	5.1284	7.3309	9.4992	12.2271	16.9460
$f_{23,7;p}$	2.5796	3.4179	4.4263	6.0921	7.6688	9.5865	12.7758
$f_{23,8;p}$	2.4086	3.1229	3.9587	5.2967	6.5260	7.9832	10.3357
$f_{23,9;p}$	2.2816	2.9084	3.6257	4.7463	5.7516	6.9197	8.7618
$f_{32,6;p}$	2.7953	3.7998	5.0521	7.2073	9.3290	11.9983	16.6155
$f_{32,7;p}$	2.5504	3.3670	4.3491	5.9712	7.5066	9.3740	12.4795
$f_{32,8;p}$	2.3777	3.0703	3.8806	5.1776	6.3691	7.7816	10.0616
$f_{32,9;p}$	2.2491	2.8543	3.5468	4.6282	5.5984	6.7255	8.5031

Table 2: Some quantiles of the F distribution: $p = \mathbb{P}(X \leq f_{df_1,df_2;p})$. Columns correspond to probabilities p. Rows correspond to different distributions, in particular, each row corresponds to different degrees of freedom (df).