Discrete Math Question Set 2

Abrar Habib

October 11, 2022

- 1. Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R} .
 - a) f(x) = 2x + 1

To prove this function is bijective, we need to prove it is injective and surjective.

A function is injective if f(a) = c and f(b) = c and a = b. Therefore, we get

$$c = 2a + 1 \& c = 2b + 1$$

$$2a + 1 = 2b + 1$$

$$2a = 2b$$

$$a = b$$
(1)

Since f(a) = f(b), and we proved that a = b, this function is injective. Now we must prove this function is surjunctive.

$$f(x) = y$$

$$2x + 1 = y$$

$$x = \frac{y - 1}{2}$$

$$y = 2x + 1$$

$$y = 2(\frac{y - 1}{2}) + 1$$

$$y = y$$

$$(2)$$

Because f(x) = y, this function is surjective. From our previous comclusions, it is also injective, and therefore also Bijective.

b)
$$f(x) = x^2 + 1$$

Use same logic as before.

$$a^{2} + 1 = b^{2} + 1$$

$$a^{2} = b^{2}$$

$$\pm a = \pm b$$

$$(3)$$

Therefore, this function is injective.

For this function to be surjective, we need to prove f(x) = y.

$$f(x) = y$$

$$x^{2} + 1 = y$$

$$x^{2} = y - 2$$

$$x = \sqrt{y - 2}$$

$$f(x) = f(\sqrt{y - 2})$$

$$f(\sqrt{y - 2}) = \sqrt{y - 2}^{2} + 1$$

$$f(\sqrt{y - 2}) = y - 2 + 1$$

$$f(\sqrt{y - 2}) = y + 1$$
(4)

Since $f(x) \neq y$, this function is not surjective and therefore not bijective.

c)
$$f(x) = \frac{x^2+1}{x^2+2}$$

Use the same logic for proving injective-ness.

$$\frac{a^2 + 1}{a^2 + 2} = c$$

$$\frac{b^2 + 1}{b^2 + 2} = c$$

$$\frac{a^2 + 1}{a^2 + 2} = \frac{b^2 + 1}{b^2 + 2}$$

$$(a^2 + 1)(b^2 + 2) = (a^2 + 2)(b^2 + 1)$$

$$a^2b^2 + 2a^2 + b^2 + 2 = a^2b^2 + a^2 + 2b^2 + 2$$

$$a^2 = b^2$$

$$\pm a = \pm b$$
(5)

This function is therefore not injective. For example, if we make $x = \pm 1$, we get the same output of $\frac{1}{2}$. This already makes this function not bijective.

2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \lfloor x \rfloor$, the greatest integer in x. Find $f^{-1}(B)$ for the following subset B of \mathbb{R} . B = [0, 2)

$$f^{-1}([0,2)) = \{x \in \mathbb{R} | \lfloor x \rfloor = 0\} \cup \{xx \in \mathbb{R} | \lfloor x \rfloor = 1\}$$

$$\tag{6}$$

The floor function does not have an inverse. The floor function is also defined to take in only integers. I.E. $f(\mathbb{R}) = \mathbb{Z}$. Therefore, the only values which I can find the inverse of are 0 and 1 (2 is not included in the set B). The "inverse" of this function is any x whose floor is either 0 or 1 and therefore is what makes answer a disjoint set. No floor(x) is equal to 2 different numbers.

- 3. Does the formula $f(x) = \frac{1}{x^2 2}$ define a function $f : \mathbb{R} \to \mathbb{R}$? What about $f : \mathbb{Z} \to \mathbb{R}$?
 - a) $f: \mathbb{R} \to \mathbb{R}$ The function will be undefined if the denominator is equal to 0.

$$x^{2} - 2 = 0$$

$$x^{2} = 2$$

$$x = \pm \sqrt{2}$$

$$(7)$$

At $\pm\sqrt{2}$, the function is not well defined as there is a hole there.

- b) $f: \mathbb{R} \to \mathbb{Z}$ Since the only number that makes the function undefined, $\pm \sqrt{2}$, is a real number, it is not part of the domain, which is \mathbb{Z} , and therefore makes the function well defined.
- 4. For each of the following functions $f: \mathbb{Z} \to \mathbb{Z}$, determine whether the function is one-to-one and whether it is onto. If the function is not onto, determine the range of $f(\mathbb{Z})$.
 - a) f(x) = -x + 5 To prove if this function is one to one, we can check to see if two different inputs a and b give us the same output.

$$-a+5=c$$

$$-b+5=c$$

$$-a+5=-b+5$$

$$-a=-b$$

$$a=b$$
(8)

Since we determined that a is equal to b, this function is one-to-one.

To determine if a function is onto, we need to find its inverse (if it has one) and plug it back to the equation. It will be onto if f(x) = y.

Take any $y \in \mathbb{Z}$. Also $x \in \mathbb{Z}$.

$$f(x) = y$$

$$-x + 5 = y$$

$$(x = 5 - y) \in \mathbb{Z}$$

$$f(5 - y) = -(5 - y) + 5$$

$$f(5 - y) = -5 + y + 5$$

$$f(5 - y) = y$$
(9)

This function is onto as well and its domain is \mathbb{R} . We made f(x) = y with $y \in \mathbb{R}$ and proved the first equality.

b) $f(x) = x^2$ Once again, we can use the same principles from before.

$$a^{2} = c$$

$$b^{2} = c$$

$$a^{2} = b^{2}$$

$$\pm a = \pm b$$

$$(10)$$

This function is not one-to-one because of the plus minus. We can also logically see that if $x = \pm 1$ both output 1.

This function is also not onto because it does not map $f: \mathbb{R} \to \mathbb{R}$. There is no integer such that $x^2 = -1$. The domain therefore for this function is \mathbb{Z}^+ because the input domain was \mathbb{Z} and we determined that the function has no input (within the domain) whose output is negative.