- (1) For every $u \in E$, if $\varphi(u, v) = 0$ for all $v \in F$, then u = 0, and
- (2) For every $v \in F$, if $\varphi(u, v) = 0$ for all $u \in E$, then v = 0.

Proposition 29.1 translates into the following proposition. The proof is left as an exercise.

Proposition 29.9. Given a sesquilinear map $\varphi \colon E \times F \to K$, the following properties hold:

- (a) The map l_{φ} is injective iff Property (1) of Definition 29.10 holds.
- (b) The map r_{φ} is injective iff Property (2) of Definition 29.10 holds.
- (c) The sesquilinear form φ is nondegenerate and iff l_{φ} and r_{φ} are injective.
- (d) If the sesquillinear form φ is nondegenerate and if E and F have finite dimensions, then $\dim(E) = \dim(F)$, and $l_{\varphi} \colon \overline{E} \to F^*$ and $r_{\varphi} \colon \overline{F} \to E^*$ are linear isomorphisms.

Propositions 29.2 and 29.3 also generalize to sesquilinear forms. We also have the following version of Theorem 29.4, whose proof is left as an exercise.

Theorem 29.10. Given any sesquilinear form $\varphi \colon E \times E \to K$ with $\dim(E) = n$, if φ is Hermitian and K does not have characteristic 2, then there is a basis (e_1, \ldots, e_n) of E such that $\varphi(e_i, e_j) = 0$, for all $i \neq j$.

As in Section 29.1, if E and F are finite-dimensional vector spaces and if (e_1, \ldots, e_m) is a basis of E and (f_1, \ldots, f_n) is a basis of F then the sesquilinearity of φ yields

$$\varphi\left(\sum_{i=1}^{m} x_i e_i, \sum_{j=1}^{n} y_j f_j\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i \varphi(e_i, f_j) \overline{y}_j.$$

This shows that φ is completely determined by the $n \times m$ matrix $M = (m_{ij})$ with $m_{ij} = \varphi(e_j, f_i)$, and in matrix form, we have

$$\varphi(x,y) = x^{\top} M^{\top} \overline{y} = y^* M x,$$

where x and \overline{y} are the column vectors associated with $(x_1, \ldots, x_m) \in K^m$ and $(\overline{y}_1, \ldots, \overline{y}_n) \in K^n$, and $y^* = \overline{y}^\top$. As earlier, we are committing the slight abuse of notation of letting x denote both the vector $x = \sum_{i=1}^n x_i e_i$ and the column vector associated with (x_1, \ldots, x_n) (and similarly for y).

Definition 29.11. If (e_1, \ldots, e_m) is a basis of E and (f_1, \ldots, f_n) is a basis of F, for any sesquilinear form $\varphi \colon E \times F \to K$, the $n \times m$ matrix $M = (m_{ij})$ given by $m_{ij} = \varphi(e_j, f_i)$ for $i = 1, \ldots, n$ and $j = 1, \ldots, m$ is called the matrix of φ with respect to the bases (e_1, \ldots, e_m) and (f_1, \ldots, f_n) .