2SA1291/2SC3255

60V/10A High-Speed Switching Applications

Applications

- · Various inductance lamp drivers for electrical equipment.
- · Inverters, converters (strobo, flash, fluorescent lamp lighting circuit).
- · Power amp (high power car stereo, motor controller).
- · High-speed switching (switching regulator, driver).

Features

- · Low saturation voltage.
- \cdot Excellent current dependence of $h_{\mbox{\scriptsize FE}}.$
- · Short switching time.

(): 2SA1291

Specifications

Absolute Maximum Ratings at Ta = 25°C

Package Dimensions

unit:mm

2010B

Parameter	Symbol	Conditions	Ratings	Unit
Collector-to-Base Voltage	VCBO		(–)80	V
Collector-to-Emitter Voltage	VCEO		(-)60	V
Emitter-to-Base Voltage	V _{EBO}		(-)5	V
Collector Current	lc		(-)10	Α
Collector Current (Pulse)	ICP		(–)12	Α
Collector Dissipation	PC	Tc=25°C	40	W
Junction Temperature	Tj		150	°C
Storage Temperature	Tstg		-55 to +150	°C

Electrical Characteristics at Ta = 25°C

Parameter	Symbol	Conditions		Ratings		
Farameter	Symbol	Conditions	min	typ	max	Unit
Collector Cutoff Current	I _{CBO}	V _{CB} =(-)40V, I _E =0			(-)0.1	mA
Emitter Cutoff Current	I _{EBO}	V _{EB} =(-)4V, I _C =0			(-)0.1	mA
DC Current Gain	h _{FE}	V _{CE} =(-)2V, I _C =(-)1A	70*		280*	
Gain-Bandwidth Product	f _T	V _{CE} =(-)5V, I _C =(-)1A		100		MHz
Collector-to-Emitter Saturation Voltage	V _{CE(sat)}	I _C =(-)5A, I _B =(-)0.25A			(-)0.4	V
Collector-to-Base Breakdown Voltage	V(BR)CBO	I _C =(-)1mA, I _E =0	(-)80			V
Collector-to-Emitter Breakdown Voltage	V(BR)CEO	I _C =(-)1mA, R _{BE} =∞	(-)60			V
Emitter-to-Base Breakdown Voltage	V _{(BR)EBO}	I _E =(-)1mA, I _C =0	(-)5			V
Turn-ON Time	ton	See specified Test Circuit		0.1		μs
Storage Time	t _{stg}	See specified Test Circuit		0.5		μs
Fall Time	t _f	See specified Test Circuit		0.1		μs

^{* :} The 2SA1291/2SC3255 are classified by 1A h_{FE} as follows :

	70	Q	140	100	R	200	140	S	280	
--	----	---	-----	-----	---	-----	-----	---	-----	--

Switching Time Test Circuit

 $20I_{B1}$ = $-20I_{B2}$ = I_C =5A(For PNP, the polarity is reversed) Unit (resistance : Ω , capacitance : F)

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibilty for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of July, 1998. Specifications and information herein are subject to change without notice.