第十二届"中关村青联杯"全国研究生 数学建模竞赛

学 校 中国人民解放军海军工程大学

参赛队		90038025
	1.	何宪文
队员姓名	2.	李湘平
	3.	

参赛密码

(由组委会填写)

第十二届"中关村青联杯"全国研究生 数学建模竞赛

题 目 面向节能的列车调度优化决策研究

摘 要:

随着低碳环保、节能减排日益受到关注,轨道交通系统中针对减少列车牵引能耗的列车运行优化控制近年来成为轨道交通领域的重要研究方向。本文针对面向节能的列车调度优化决策问题进行了深入研究。

对于问题1-1,以站间时间、距离、速度限制等为约束条件,建立了单列车单区间节能运行优化模型。按"牵引-巡航-惰行-制动"的模式寻找单列车单区间节能运行轨迹,以一定时间步长进行数值计算,通过始末两端速度、位移边界条件等,计算不同离散时间节点的速度、位移和加速度,搜索出能耗最小的一组运行参数。通过该组运行参数,绘制出该区间的速度位移曲线,得到最小消耗能量 $E_{\min}=36675.823$ kJ。

对于问题1-2,同样,以耗能最小为优化目标,建立了单列车双区间节能运行优化模型。当固定一个区间的运行时间,则单列车双区间节能优化问题转化为单列车单区间节能优化问题。因此针对单列车双区间节能运行优化问题,实质上是增加了双区间在运行时间上的寻优。提出了变时搜索的优化策略,得到了单列车双区间的节能运行轨迹,其最小消耗能量 E_{lmin} =67753.4858kJ。

对于问题2-1,首先给出了单列车多区间的最优节能运行方案,在所有列车在轨道线路上运行模式一致时,以可利用的再生能量最大为目标,以列车发车时间间隔为决策变量,建立多列车节能运行优化模型。采用联合迭代的算法为模型设定相同的单列车全区间运行轨迹,然后采用区间重合法,以5辆车为一组进行循环发车的思路对优化目标进行计算。得到前5辆车对应的发车间隔 H'={h₁,h₂,h₃,h₄,h₅}={645,660,645,660,615}。

对于问题2-2,考虑早晚高峰期,首先,将列车运行分成五个时间段,并依据不同时间段发车时间间隔的约束条件,分配不同时间段的发车数,然后,将整天的列车运行转化为五个多列车运行问题,采用优化的发车间隔,利用联合迭代算法,调节时间区间

内对应发车数量的集合,以再生能源最大化为目标,获得不同阶段的多列车运行策略。。

对于问题3-1,为了解决如何安全、尽快、耗能小的恢复正常运行的问题,建立了考虑延误的列车运行控制模型。选择某特定环境,对特定延误进行两种不同的控制方案进行比较,从而实现优化控制。

对于问题3-2,根据统计数据,提出切实可行的优化调整策略。一方面是建立一个能够准确量化后车延误时间的模型,另一方面对具有随机性延误时间的列车运行控制策略进行了分析。

最后,论文还对给出了模型的优缺点及进一步改进的方向。

关键词: 列车节能运行,多约束条件,定值搜索优化算法,联合迭代算法,制动能量再生

目 录

1.问题重述	4
2.基本假设与符号说明	5
2.1 基本假设	5
2.2 符号说明	5
3.问题分析	6
4.单列车节能运行建模与求解	7
4.1 单列车两站间运行建模与求解	7
4.1.1 建模准备	7
4.1.2 模型建立	8
4.1.3 模型求解	
4.2 单列车两站间运行结果及分析	10
4.3 三站间运行能耗建模与求解	
4.3.1 建模准备	13
4.3.2 模型建立	13
4.3.3 模型求解	14
4.4 单列车三站间运行结果及分析	14
5.多列车节能运行建模与求解	18
5.1 多列车节能运行优化建模	
5.2 多列车节能运行优化模型求解	19
5.2.1 单车运行轨迹优化	19
5.2.2 实时速度监测	21
5.2.3 多列车运行策略优化	22
5.3 考虑早晚高峰期多列车节能运行优化建模	24
5.4 考虑早晚高峰期多列车节能运行优化模型求解	25
6.考虑延误的列车节能运行控制建模与求解	28
6.1 基于延误的列车节能运行控制模型	28
6.2 延误时间为随机变量时的多列车节能调整策略	30
7.模型评价	30
参考文献:	32
附录	33

1.问题重述

随着低碳环保、节能减排日益受到关注,对能源合理使用、分配和回收成为各个行业关注的重点。铁路各部门中,运输部门的能耗占到铁路能耗的 80%以上。机车牵引能耗占到铁路能耗的 60%~70%,是铁路能耗的主要部分,降低机车牵引能耗对于降低铁路能耗具有举足轻重的作用。列车运行可分为牵引模式、巡航模式、惰行模式和制动模式,根据路况、列车性能、行驶时间可灵活选择各种运行模式进行组合。各种运行模式所对应的能源消耗不同,因此在满足安全、准时、舒适等相关约束条件的情况下,应尽可能减少列车的能量消耗,增加能量的回收利用。

本文旨在研究以下问题:

问题一: 单列车数学建模并计算速度距离曲线

- (1) 列车在行驶过程中主要受到牵引力、基本阻力、附加阻力、重力、制动力和支持力的共同作用。根据对列车动力学模型的分析,结合列车限制速度、轨道坡度和轨道曲率等约束条件,对单列列车在 110s 内由 A_6 站运行到 A_7 站最小能量消耗问题展开研究,建立适当的数学模型计算速度距离曲线,得到列车各阶段运行模式的详细报告及相应的最小能量消耗值。
- (2) 在前阶段计算模型的基础上,分析单列列车在 220s 内从 A_6 站到 A_8 站的运行情况,其中 A_7 站停靠时间为 45s,建立新的模型分析列车从 A_6 站运行到 A_8 站能耗最省的速度距离曲线,并得到各阶段运行模式的详细报告。

问题二: 多列车运行优化计算建模

- (1)分析共 100 列列车从 A_1 站依次运行到 A_{14} 站的多列车调度情况,各列列车的发车间隔时间为 $H=\{h_1,\dots,h_{99}\}$,各个站点的停靠时间为 $D_{min}\sim D_{max}$,第一列列车发车时间和最后一列列车发车时间间隔 63900s,每列列车从 A1 站到 A14 站的运行时间均为 2086s。前后相邻两列列车追踪运行时,跟踪列车速度不能超过限制速度 V_{limit} ,以防止跟踪列车缺乏制动停车时间而发生追尾事故。所有列车处于同一供电区段,某列列车制动回收的能量可用于轨道上正处于牵引或巡航耗能的列车,建立优化模型求解使所有列车运行总能耗最低的最佳间隔时间 H。
- (2)分析 24h 内共 240 列列车依次从 A₁站依次运行到 A₁₄站的多列车调度情况,在出行高峰时间,其中早高峰为 7200 秒至 12600 秒,晚高峰为 43200 至 50400 秒,相邻列车间的发车间隔不大于 2.5min 且不小于 2min,其余非高峰时段发车间隔不小于 5min,制定列车的运行图和相应的速度距离曲线。

问题三: 列车延误发车后优化控制

- (1) 在前阶段的模型基础上,分析某列列车延误一定时间后,通过建立控制模型 在确保安全的情况下,尽快使所有后续列车恢复正点运行,同时使能耗最小,并得到相 应的列车运行曲线。
- (2) 若延误时间的时长由已知固定值变为随机变量,并服从一定的概率分布,允许列车在各站到、发时间与原时间相比提前不超过 10 秒,根据问题二中的统计数据,如何调整控制方案使能耗最小。

2.基本假设与符号说明

2.1 基本假设

- 1.多列车运行时,后续列车在各个站点间均按照第一辆列车的最优运行轨迹运行;
- 2.列车驾驶人员能够按照制定的控制方法准确的操作列车,忽略列车驾驶员的误操作;
- 3.不考虑洪涝、雪灾、雾霾等极端天气情况以及轨道故障、紧急停车等列车运行过程中意外制动的情况;
- 4.假设所有列车处于同一供电区段,再生制动的能量可被同一供电区段的其它任一 列车使用;
 - 5.列车停靠站时其中心点正对地标处。

2.2 符号说明

 符号	 符号说明
E_q	牵引阶段列车能耗
$E_{\scriptscriptstyle x}$	巡航阶段列车能耗
E_z	列车制动时产生的能量
E_{used}	列车制动过程中被利用的再生能量
F	列车牵引力
v_q	牵引阶段结束时刻速度
v_x	巡航阶段结束时刻速度
v_z	制动阶段开始时刻速度
v_d	惰性阶段结束时刻速度
B	列车运行的制动力
$oldsymbol{\mu}_q$	牵引加速度系数
μ_z	制动加速度系数
v_a	轨道最大限制速度
$v_b^{}$	列车自身限制速度
t_q	牵引段运行时间
t_{χ}	巡航段运行时间
t_d	惰行段运行时间
t_z	制动段运行时间
i	线路坡度
R	曲率半径
M	列车质量
D_{\min}	单列列车在 A; 站停站的时间
D_{max}	多列列车在各个车站最小停靠时间
$H_{ m min}$	多列列车在各个车站最大停靠时间
$H_{ m max}$	两列列车发车最小间隔时间
$V_{ m limit}$	轨道限制速度
V_{real}	列车实时速度

3.问题分析

对于问题1-1,以站间时间、距离、速度限制等为约束条件,建立了单列车单区间节能运行优化模型。按"牵引-巡航-惰行-制动"的模式寻找单列车单区间节能运行轨迹,以一定时间步长进行数值计算,通过始末两端速度、位移边界条件等,计算不同离散时间节点的速度、位移和加速度,搜索出能耗最小的一组运行参数。通过该组运行参数,绘制出该区间的速度位移曲线,得到最小消耗能量 $E_{\min}=36675.823$ kJ。

对于问题1-2,同样,以耗能最小为优化目标,建立了单列车双区间节能运行优化模型。当固定一个区间的运行时间,则单列车双区间节能优化问题转化为单列车单区间节能优化问题。因此针对单列车双区间节能运行优化问题,实质上是增加了双区间在运行时间上的寻优。提出了变时搜索的优化策略,得到了单列车双区间的节能运行轨迹,其最小消耗能量 E_{lmin} =67753.4858kJ。

对于问题2-1,首先给出了单列车多区间的最优节能运行方案,在所有列车在轨道线路上运行模式一致时,以可利用的再生能量最大为目标,以列车发车时间间隔为决策变量,建立多列车节能运行优化模型。采用联合迭代的算法为模型设定相同的单列车全区间运行轨迹,然后采用区间重合法,以5辆车为一组进行循环发车的思路对优化目标进行计算。得到前5辆车对应的发车间隔 H'={h₁,h₂,h₃,h₄,h₅}={645,660,645,660,615}。

对于问题2-2,考虑早晚高峰期,首先,将列车运行分成五个时间段,并依据不同时间段发车时间间隔的约束条件,分配不同时间段的发车数,然后,将整天的列车运行转化为五个多列车运行问题,采用优化的发车间隔,利用联合迭代算法,调节时间区间内对应发车数量的集合,以再生能源最大化为目标,获得不同阶段的多列车运行策略。。

对于问题3-1,为了解决如何安全、尽快、耗能小的恢复正常运行的问题,建立了考虑延误的列车运行控制模型。选择某特定环境,对特定延误进行两种不同的控制方案进行比较,从而实现优化控制。

对于问题3-2,根据统计数据,提出切实可行的优化调整策略。一方面是建立一个能够准确量化后车延误时间的模型,另一方面对具有随机性延误时间的列车运行控制策略进行了分析。

4.单列车节能运行建模与求解

4.1 单列车两站间运行建模与求解

4.1.1 建模准备

1、列车运行模式

对列车受力情况进行分析,判断列车能耗与运行模式的关系,列车运行分为四种模式:牵引模式、巡航模式、惰行模式和制动模式。列车处于牵引模式时,列车消耗能量加速运行;处于巡航模式时,列车消耗能量匀速运行;处于惰行模式时,列车随路况在重力与阻力合成作用下运行,不消耗能量也不产生能量;处于制动模式时,列车减速运行,若为再生制动则可产生能量。

通过运动模式可初步判断列车在一定路况上的最节能运行模式,距离较短时列车一般采用"牵引-惰行-制动"的策略运行。如果站间距离较长,列车通常会采用牵引到接近限制速度后,交替使用惰行、巡航、牵引三种工况,直至接近下一车站采用制动进站停车。

2、列车受力分析

对列车受力情况进行简化,视为一个单质点模型,如图 4.1:

图 4.1 列车单质点模型受力分析

由已知条件,牵引力为

$$F(v) = \begin{cases} 203 \cdot \mu_q(t) & 0 \le v \le 51 \cdot 5 \\ \mu_q(t) \cdot (-0.0020332v^3 + 0.4928v^2 - 42.13v + 1343) & 51 \cdot \$v \le 80 \end{cases}$$
(4.1)

阻力为

$$W(v) = (A + Bv_a + Cv_a^2 + i + C/R) \cdot g \cdot M / 1000$$
 (4.2)

制动力为

$$B(v) = \begin{cases} 166\mu_z(t) & 0 \le v \le 77\\ \mu_z(t) \cdot (0.1343v^2 - 25.07v + 1300) & 77 \le v \le 80 \end{cases}$$
 (4.3)

由图 4.1 可知,列车前进方向上受到牵引力F、总阻力W 和制动力B的共同作用,列车的能量消耗只存在于牵引阶段和巡航阶段的牵引力做功。

3、对 A。站到 A,站进行路况分析

根据坡度、曲率半径和限速,对 A_6 站到 A_7 站的路况进行分析,见图 4.2。

图 4.2 A_6 站与 A_7 站间路况分析

图 4.2 中,两站间不存在转弯路段,路段限速分为两段,速度限制分别为 55km/h 和 80km/h,在车站间距离较短时采用四阶段运行模式作为初始运行模式。

4.1.2 模型建立

1、目标函数

以最小能量消耗作为目标函数,由牵引阶段能耗和巡航阶段能耗组成。设牵引阶段运行距离为 S_a ,牵引阶段能量消耗为

$$E_q = \int_0^{S_q} F(v) ds \tag{4.4}$$

设巡航阶段运行距离为 S_x , 匀速运行速度为 v_a , 巡航阶段能量消耗为

$$E_{x} = \int_{0}^{S_{x}} W(v_{q}) ds \tag{4.5}$$

则目标函数为

Min
$$E = E_q + E_x = \int_0^{S_q} F(v)dS + \int_0^{S_x} W(v_q)dS$$
 (4.6)

2、约束条件

1) 距离约束: 四阶段运行总距离应等于两站间的距离:

$$S_1 = S_a + S_x + S_d + S_z = 1354 \tag{4.7}$$

2)速度约束:牵引结束时刻速度 v_q 为列车整个运行过程中的最大速度,应小于道路最大限制速度 v_a 和自身限速 v_b ,且应大于列车全程匀速运动的速度值,即 1354/110=12.3 m/s;制动阶段起始速度 v_z 小于巡航阶段速度 v_x ;初始速度与末速度匀为零。可得速度约束为

$$\begin{cases} v_q \le \min\{v_a, v_b\} \\ 44 \le v_q \le 80 \\ v_0 = v_t = 0 \\ 0 \le v_z \le v_x \end{cases}$$

$$(4.8)$$

3) 加速度约束:

$$\begin{cases} -1 \le a_q \le 1 \\ -1 \le a_z \le 1 \end{cases} \tag{4.9}$$

4) 时间约束:

$$t = t_a + t_x + t_d + t_z = 110 (4.10)$$

综上所述,单车从 46 站到 47 站间运行模型为

Min
$$E = \int_{0}^{S_q} F(v) dS + \int_{0}^{S_x} W(v_q) dS$$
 (4.11)

$$\begin{cases} S = S_q + S_x + S_d + S_z = 1354 \\ t = t_q + t_x + t_d + t_z = 110 \end{cases}$$

$$0 < \mu_q \le 1$$

$$0 < \mu_z \le 1$$

$$-1 \le a_q \le 1$$

$$-1 \le a_z \le 1$$

$$44 < v_q \le 80$$

$$0 \le v_z \le v_x$$

4.1.3 模型求解

以一定时间步长进行数值计算,通过始末两端速度、位移边界条件等可不断由两端 向中间夹逼计算不同离散时间节点的速度、位移和加速度,进而搜索使能耗最小的一组 最优运行参数。模型求解的基本思路:

(1) 确定迭代参数

设定影响总能耗的关键迭代参数,包括牵引加速度系数 μ_q 、制动加速度系数 μ_z 、牵引结束时刻速度 ν_a 、制动开始时刻速度 ν_z 。选定一组 μ_a 、 μ_z 、 ν_a 、 ν_z 进行初始迭代。

(2) 确定时间步长

根据运行总时间、最大限速可初步预估最大时间步长为 0~5s 之间,其中 5s 由总路程/最大运行限速得到。考虑先采用 1s 作为时间步长进行初判,再采用 0.1s 时间步长进行调优。

(3) 由牵引结束时刻速度 v_q 确定牵引段时间及位移参数

在时间步长、牵引加速度系数 μ_q 一定的情况下,可得到牵引段的加速度 a_q ,通过数值积分迭代确定牵引段位移 S_a 。

$$\begin{cases} v_{q} = \int_{0}^{t_{1}} a_{q}(t)dt \\ S_{q} = \int_{0}^{t_{1}} v(t)dt = \int_{0}^{t_{1}} [\int_{0}^{t} a_{q}(\tau)d\tau]dt \end{cases}$$
(4.12)

(4) 由制动开始时刻速度 v_1 确定制动段时间 t_4 及制动位移 S_2

在时间步长、制动加速度系数 μ_z 一定的情况下,可得到牵引段的加速度 a_z ,通过数值积分迭代,确定牵引段时间 t_a 以及牵引段位移 S_z 。

$$\begin{cases} v_z = \int_0^{t_4} a_z(t)dt \\ S_z = \int_0^{t_4} v(t)dt = \int_0^{t_4} \left[\int_0^t a_z(\tau)d\tau \right] dt \end{cases}$$
 (4.13)

(5) 由牵引段位移 S_a 以及制动段时间 S_a 确定惰行段时间 t_3 及位移 S_a

情行段列车受到的合力包括基本阻力 f_a 以及附加阻力 f_a , f_b 是关于速度的函数, f_a 是关于路标 s 的函数。由于不确定惰行段的起始位置,故不能获知其初始的加速度 $a_a(t)$ 。但在假定惰行段路程一定的情况下,必然可确定每一时刻的路标,可将 s 看作一系列常数,故计算时可通过将惰行阶段看作是由制动阶段开始点到巡航段结束点的加速过程的逆过程。

$$\begin{cases} v_d = \int_0^{t_3} a_d(t) dt \\ S_z = \int_0^{t_4} v(t) dt = \int_0^{t_3} \left[\int_0^t a_d(\tau) d\tau \right] dt \end{cases}$$
 (4.14)

(6) 根据巡航段距离以及速度约束条件,确定巡航段运行时间 t_3 及位移参数 S_x 由于巡航段做匀速运动,因此根据巡航段的运行速度 v_x 即可求得其运行时间 t_3

$$\begin{cases} S_x = S - S_q - S_z - S_x \\ t_3 = \frac{S_x}{v_x} \end{cases}$$
 (4.15)

(7) 由运行得到的参数计算优化性能指标

在获得列车在各段运行情况的基础上,得到其能耗指标,其中巡航段列所受阻力与牵引力相等,因此可用阻力代替牵引力计算能耗

$$\begin{cases}
E_q = \int_0^{t_1} F(v(t)) \cdot v(t) dt \\
E_x = \int_0^{S_x} W(v_q) ds
\end{cases} \tag{4.16}$$

(8) 在约束条件下对 μ_q 、 μ_z 、 ν_q 和 ν_z 进行搜索寻优,比较每组参数下的能耗值,取最小值作为最优。

整个运行过程的实时速度、加速度、位置信息均已明确,形成了一个先确定约束段两端,再向中间逆向求解的夹逼计算方法,比较不同参数组合下的能耗值,最终得到在同等求解条件及约束条件下的较优能耗值及相应运行参数。

4.2 单列车两站间运行结果及分析

经 Matlab 编程计算,程序见附件 1-1,得到最小消耗能量 E_{\min} =35967.1453kJ, v_q =60km/h, v_z =39 km/h,列车运行时间为 110s,运行距离为 1340.9m,初始牵引加速度为 $0.9m/s^2$,初始制动加速度为 $1m/s^2$ 。

速度距离曲线结果如图 4.3:

图 4.3 两站间速度距离曲线

速度时间曲线:

图 4.4 两站间速度时间曲线

由图 4.3 和图 4.4 可知,列车运行分为四个阶段, $0\sim t_1$ 阶段为牵引阶段, $t_1\sim t_2$ 阶段为巡航阶段, $t_2\sim t_3$ 阶段为惰行阶段, $t_3\sim t_4$ 阶段为制动阶段。从红色限速折线可以看出,列车在整个运行过程中始终满足速度限速约束,且最大时速为 60km/h。

加速度与时间的关系如图 4.5:

图 4.5 加速度曲线

从图 4.4 可知,整个运行过程中,牵引加速度和制动加速度幅值均在 lm/s²以内,满足约束限制。牵引阶段列车速度逐渐增大,但加速度受最大牵引力的限制,逐渐减小;巡航阶段牵引力主要用于克服阻力,使列车匀速运动,加速度为零;惰行阶段停止牵引,列车逐渐减速,由于阻力与速度呈正比,因此阻力逐渐减小,则加速度幅值也随之减小;制动阶段,由于制动力的影响加速度负增长,直至运行速度为零。由于制动过程采用的是固定制动加速度系数的制动方式,因此,尽管到达终点时刻的速度为零,但此时的最大制动力不变,在下一时刻,能够通过置零加速度系数使加速度达到零。

能耗与时间、距离的关系 4.6、图 4.7:

图 4.6 能耗随时间累积曲线

图 4.7 能耗随距离累积曲线

能耗产生过程只存在于牵引阶段和巡航阶段,故后两个阶段列车能耗不再增加。由结果图可知列车运行速度始终处于限速以内,时间、距离、加速度均满足约束限制。

4.3 三站间运行能耗建模与求解

4.3.1 建模准备

列车从 A_6 站出发经过 A_7 站后到达 A_8 站,中间停靠 45s,总运行时间为 220s。可将运行分为两个子运行过程: A_6 站到 A_7 站、 A_7 站到 A_8 站。分析第二个子运行过程的线路约束可知,其最大限速与第一子运行过程相同,且站间路程曲率均为 0,结合两个子运行过程各自的约束,分两个子问题分别循环搜索求解,最后综合搜索总运行时间为 220s 的能耗最优解。

4.3.2 模型建立

1、目标函数

目标函数为列车整个运行过程中的最小能耗,为两子运行过程能耗之和:

Min
$$E_1 = \sum_{i=1}^{2} (E_{qi} + E_{xi}) = \sum_{i=1}^{2} \left[\int_{0}^{S_{qi}} F(v) ds + \int_{0}^{S_{xi}} W(v_{qi}) \right] ds$$
 (4.17)

2、约束条件

1) 距离约束,各个子运行过程四阶段运行距离应等于两站间的距离:

$$\begin{cases}
S_1 = S_{q1} + S_{x1} + S_{d1} + S_{z1} = 1354 \\
S_2 = S_{q2} + S_{x2} + S_{d2} + S_{z2} = 1280
\end{cases}$$
(4.18)

2) 速度约束, 两站之间运行速度存在限速, 且两个子运行过程速度约束相同

$$\begin{cases} 4 & 4 \le v_{qi} \le 80 \\ 0 \le v_{zi} \le v_{xi} \\ v_{qi} \le \text{min} \left(v_a \ v_b \right) \\ i = 1, 2 \end{cases}$$

$$(4.19)$$

3) 加速度约束

$$\begin{cases}
0 \le a_{qi} \le 1 \\
0 \le a_{zi} \le 1 \\
i = 1, 2
\end{cases}$$
(4.20)

4) 时间约束

$$t' = \sum_{i=1}^{2} (t_{qi} + t_{xi} + t_{di} + t_{zi}) = 220$$
 (4.21)

综上所述,单车从 4。站到 4。站间运行模型为

Min
$$E_1 = \sum_{i=1}^{2} \left[\int_0^{S_{qi}} F(v) ds + \int_0^{S_{xi}} W(v_{qi}) \right] ds$$
 (4.22)

$$\begin{cases}
S_1 = S_1 + S_2 + S_3 + S_4 = 1354 \\
S_2 = S_{q2} + S_{x2} + S_{d2} + S_{z2} = 1280
\end{cases}$$

$$t' = \sum_{i=1}^{2} (t_{1i} + t_{2i} + t_{3i} + t_{4i}) = 220$$

$$0 < \mu_{qi} \le 1$$

$$0 < \mu_{zi} \le 1$$

$$-1 \le a_q \le 1$$

$$-1 \le a_z \le 1$$

$$44 < v_{qi} \le 80$$

$$0 \le v_{zi} \le v_{xi}$$

$$i = 1, 2$$

4.3.3 模型求解

模型求解过程与两站间运行问题类似,时间步长为两个子运行时间之和,将运行时间作为总约束循环选优求解总能耗。

4.4 单列车三站间运行结果及分析

最终迭代得到最小消耗能量 E_{lmin} =67336.0kJ,运行总时间为220s,停车45s,运行总距离为2602.8m,Matlab程序见附件1-2。

第一子运行过程 A_6 站到 A_7 站牵引阶段结束速度 v_{q1} =55km/h,制动开始速度 v_{z1} =35km/h,运行时间为111s,实际运行距离为1338.9357m, A_6 站到 A_7 站规定运行距离1354m;第二子运行过程 A_7 站到 A_8 站牵引阶段结束速度 v_{q2} =62km/h,制动开始速度 v_{z2} =4km/h,运行时间为109s,实际运行距离为1263.928m, A_7 站到 A_8 站规定运行距离1280m。采用循环迭代搜索法,得到速度距离曲线如图4.8;

图4.8 三站运行速度距离曲线

同时可得

图4.9 三站运行速度时间曲线

由图4.8和图4.9可知,列车运行分为四个阶段,从红色限速折线可以看出,列车在整个运行过程中始终满足速度限速约束,且最大时速为60km/h。

图4.10 三站运行加速度曲线

从图4.10可知,整个运行过程中,牵引加速度和制动加速度均在 $0\sim 1\,m/s^2$ 内,满足约束限制。列车加速度是一个逐渐减小的过程,在牵引阶段逐渐减小;巡航阶段加速度为零;惰行阶段列车逐渐减速,由于阻力与速度呈正比,因此阻力逐渐减小,则加速度也随之减小;制动阶段,由于制动力的影响加速度负增长直至停车。

图4.11 三站运行能耗时间曲线

图4.12 三站运行能耗距离曲线

三站间能耗呈阶梯状,为两个子运行过程的能耗累加,能耗产生过程只存在于牵引阶段和巡航阶段,故后两个阶段列车能耗不再增加。由结果图可知列车运行速度始终处于限速以内,时间、距离、加速度均满足约束限制。

5.多列车节能运行建模与求解

5.1 多列车节能运行优化建模

根据已知条件分析:

- 1) D_i 表示在每一站停留的时间, $D_{\min} = 30s$, $D_{\max} = 45s$;
- 2) h_i 表示第i辆列车和第i+1辆列车的发车间隔, $H_{min} = 120s$, $H_{max} = 660s$;
- 3) T₀ 表示第一列列车发车时间和最后一列列车的发车时间之间间隔;
- 4)T 表示从 A_1 站到 A_{14} 站的总运行时间(包括停站时间);
- 5) S表示从A,站到A,4站的总距离。
- 6) V_{real} 表示实时速度, V_{limit} 表示限制速度, V_{lime} 表示线路限速,L表示后车与前车的距离, B_{e} 表示最大减速度。
- 7) L=100, 其中L表示列车总数。

其中L表示列车数量,N表示对于列车i的重合区间, $\Delta E_{used(i)}^{j}$ 表示第i辆列车第j段制动区间(与加速段重合部分)产生的可利用的再生能量。

1、目标函数

$$E_{used} = \max \sum_{i=1}^{L} \sum_{j=1}^{N} \Delta E_{used(i)}^{j}$$
 (5.1)

2、约束条件

$$D_{\min} < D_{i} < D_{\max}$$

$$H_{\min} < h_{i} < H_{\max}$$

$$T_{0} = 63900s$$

$$S.t.$$

$$T = 2086s$$

$$S = 22728m$$

$$V_{real} < V_{limit} = \min(V_{line}, \sqrt{2LB_{e}})$$

$$L = 100$$

多列车节能运行模型结构框图如图4.1所示,多列车节能运行模型包括实时速度检测模块,运行轨迹优化模块和再生能量计算模块三部分。其中实时速度监测模块获取保证安全情况下的最小时间间隔 T_{safe} ,运行轨迹优化模块获取单列车最节能运行轨迹,再生能量计算模块计算制动再生生成的能量,从而构建多列车节能运行模型。

对于多参数 $H=\{h_1,h_2...h_{99}\}$ 的估计是一个复杂的非线性问题,用搜索寻优的方式对于计算量是一个巨大的挑战。根据第1个和第3个限制条件很容易计算得到,在 A_1 站点到 A_1 4 站点运行路程上最多可以存在5辆列车同时运行。因此,该模型对100辆列车进行分组,每5辆列车作为一组,对每一组中的5辆列车的发车时间 $H_1=\{h_1,h_2,h_3,h_4\}$ 进行优化,计算5辆列车的再生能量,而 h_5 作为补足量以保证第一列列车发车时间和最后一列列车的发车时间之间间隔符合要求。剩余组列车的发车间隔按照第一组前5辆列车的发车时间进行循环,从而计算100辆列车运行过程中的再生能量。

图5.1 多列车节能运行优化模型结构框图

5.2 多列车节能运行优化模型求解

5.2.1 单车运行轨迹优化

1、求解思路与步骤

运行轨迹优化模块用于获取模型中列车采用的最优节能运行轨迹,由于从 A_1 站点到 A_{14} 站点包含 13 段运行路线,如果用每段运行路线的运行时间作为搜索参数进行全局寻优,其计算复杂度大,计算时间长。本模块采用部分寻优和整体联合迭代的算法搜寻较优解。

本模块首先对13段运行路线进行分区段,并对区段进行标号,如图4.2所示。

其中 $B_1=\{A_1,A_2,A_3\}$, $B_2=\{A_3,A_4,A_5,A_6\}$, $B_3=\{A_6,A_7,A_8\}$, $B_4=\{A_8,A_9,A_{10},A_{11}\}$, $B_5=\{A_{11},A_{12},A_{13},A_{14}\}$ 。

然后将三站间节能运行模型推广到四站间节能运行模型,分别对 B_1 , B_2 , B_3 , B_4 , B_5 按定时的约束条件进行求解运行轨迹。每个区段内运行时间 Tg_i 由下式可得:

$$Tg_{i} = \frac{T_{total} - T_{wait}}{S_{total}} \times S_{Bi}$$
 (5.2)

其中 T_{total} 为 2086s, T_{wait} 为 A2 站点到 A13 站点停车的总时间 $T_{wait}=12D_{min}$, S_{total} 为 A1 站点到 A14 站点的总路程, S_{Bi} 为对应区段的区段路程。

根据上节提出的站间节能运行模型可以求解出在粗略定时下,相对较优的各区段运行轨迹。该运行轨迹作为局部寻优的较优解。

最后,采用整体联合迭代算法,对较优解进行全局寻优。联合迭代算法的流程图如图 4.3 所示。

- 1) 确定最大迭代次数 N;
- 2) 计算区段{B1,B2,B3,B4,B5}时间增加 ΔT_{α} 后各区段的运行轨迹,从而计算出各区段的能耗减少量 ΔE_{m} ;

- 3) 计算区段{B1,B2,B3,B4,B5}时间减少 ΔT_{α} 后各区段的运行轨迹,从而计算出各区段的能耗增加量 ΔE_{α} ;
- 4) 比较区段{B1,B2,B3,B4,B5}的能耗增减量 ΔE_m 和 ΔE_a ,确定能耗减少量 ΔE_m 最大的区段 Bi 和能耗增加量 ΔE_a 最大的区段 Bj。
- 5) 对 Bi 和 Bj 段进行区段运行时间修定。具体修定方法为: Bi 区段运行时间 Tg_i 增加 ΔT_a ,Bj 区段运行时间 Tg_i 减少 ΔT 。
 - 6)继续进行迭代,直到迭代次数达到最大迭代次数 N。
- 7) 迭代结束后,最后依据每个区段内运行时间 T_{g_i} 计算运行轨迹。得到单列车最节能全程运行轨迹。

2、求解结果

总能耗随迭代次数变化如图5.3所示:

由图可知:随着迭代次数的增加,运行轨迹的总能耗不断减少,说明迭代能够优化运行轨迹,在迭代次数为10次时,总能耗不再发生变化,说明运行运行轨迹已经得到优化。

单列车节能运行轨迹速度距离曲线如图5.4所示:

图5.4 全程位移速度曲线图

由图可知:单列车最节能运行轨迹为上图蓝色曲线,全路段限制速度与位移的关系曲线为上图红色曲线,能够满足定距离和限制速度的约束条件。该运行轨迹能够遵从限速条件保证运行安全,同时保证能耗最少,全程能耗量为6.39×10⁵kJ。

单列车最节能运行轨迹速度时间曲线如图5.5所示。

由图可知:蓝色曲线表示单列车最节能轨迹时间速度曲线,能够做到在定时条件下完成从A1站点到A14站点的全程运行。其中每个站点停留时间设置为 D_{coll} 。

附件程序见附件 2-1。

图5.5 全程时间速度曲线图

3. 误差分析

在限制条件中T=2086s,而实际运行时间为 $T_{real}=2065s$,定时计算存在1%的时间误差。在限制条件中S=22728m,而实际运行距离为 $S_{real}=22537m$,计算过程存在0.8%的距离误差。其中误差的主要来源是步长。在计算条件充裕的情况下,可以降低步长以满足精度计算的需求。

5.2.2 实时速度监测

1. 求解思路

多列车追踪运行时,前后列车之间的最小安全间隔时间 T_{safe} 是保证追踪列车运行安全的必要条件。追踪列车最小间隔时间 T_{safe} 是指在列车追踪运行时,能够保证安全的最小发车间隔时间。追踪列车以最小间隔时间 T_{safe} 发车,可以保证跟踪列车速度不能超过限制速度 V_{limit} ,以免后车无法及时制动停车,发生追尾事故。实时速度监测模块对于多列车追踪运行具有重要意义,对于控制系统运行方案的设计具有引导作用。其限制速度表示为:

$$V_{limit} = \min(V_{line}, \sqrt{2LB_e})$$
 (5.3)

其中, V_{line} 是列车当前位置的线路限速,L是当前时刻前后车之间的距离, B_e 是列车制动的最大减速度。

实时监测模块在多列车节能运行优化模型的最前端,用于确定追踪列车的最小时间间隔 T_{safe} ,追踪列车的最小时间间隔是该优化模型的基础,保证多列车运行安全。实时监测的具体流程如下所述:

1)设定起始时间间隔 T_0 ,步长为 ΔT_{β} 。

- 2) 前车按照单列车最节能全程运行轨迹开始运行。
- 3) 后车设定时间间隔 T₀ 同样按照单列车最节能全程运行轨迹开始运行。
- 4)按照离散化时间间隔点 ΔT ,在 $n\Delta T$ 时刻计算后车实时速度。
- 5) 与此同时计算前车与后车的距离间隔 $L = S_{T_0 + n\Delta T} S_{n\Delta T}$ 。
- 6) 判断是否 $V_{real} < V_{limit}$,如果否,则跳出循环,以时间间隔 $T_0 + \Delta T_\beta$ 重新开始运行该流程。
- 7) 如果全程的实时速度满足 $V_{real} < V_{limit}$,则认定该时间间隔为追踪列车的最小时间间隔 T_{safe} 。

2. 求解结果

根据实时速度监测模块的模型计算出 T_{safe} =220s,给出某站点之间实时速度监测示意图,如图5.6所示。

图5.4 某站点之间实时速度监测示意图

其中红色曲线表示限制速度,蓝色曲线表示实际速度,根据上图可知,实际运行的速度可以符合限制条件中限制速度的要求。要保证多列车安全运行,时间间隔限制条件设定为 $T_{safe} < h_i < H_{max}$ 。附件程序见Q2-1。

5.2.3 多列车运行策略优化

1. 求解思路

随着制动技术的进步,再生制动技术已经广泛应用于城市轨道交通。这一技术对于轨道交通的节能运行有着重大的意义。轨道交通列车在制动过程将动能转化为电能,从而减少以此同时从变电站获得的能量。即再生能量仅为所处供电区段内其他列车加速使用,如果该时刻无列车加速则意味着再生能量被浪费。

多列车节能运行过程中都采用单列车最节能运行轨迹,因此所有列车运行轨迹相同。多列车运行轨迹对比示例图如图 5.5 所示,其中红色线段表示加速段,蓝色段表示制动段, h_i 表示第 i 辆列车和第 i+1 辆发车间隔。由图 5.5 可知,当在 t_i 和 τ_i 段时表示再生能量被利用。为了准确计算再生能量,本节提出了区间重合算法。

图 5.5 运行轨迹对比示例图

在计算再生能量之前需要对运行轨迹获得的数据信息作特定处理:单列车最节能全程运行轨迹过程中记录向量数据:所有向量长度为全路程运行轨迹的时间长度,向量 $\varphi_{accerlate}$ 用于在时间点上记录加速段的路径,加速段上的时间点用 1 表示,其余段用 0 表示;向量 φ_{brake} 与 $\varphi_{accerlate}$ 相似,用于在时间点上记录制动段的路径,制动段上的时间点用 1 表示,其余段用 0 表示;向量 φ_{vec} 记录各个时间点速度;向量 φ_{road} 记录各个时间点路况信息。

区间重合算法的核心思想即为通过比较第 i 辆列车的向量 φ_{brake} 和第 i+1 辆列车推移 h_i 之后的向量 $\varphi_{accertate}$ 的区间重叠部分。即两个向量都为 1 的时间长度即为 $t_{overlap}$; 在第 i+1 辆列车的向量 φ_{brake} 中求该重叠部分所在的制动过程的时间 t_{brake} 。根据向量 φ_{vec} 和向量 φ_{road} 可以计算 E_f , E_{mech} 。 其中 $E_{mech} = E_M + E_G$,表示在制动过程中机械能转化为动能和势能。根据公式 $E_{used} = (E_{mech} - E_f) \times 95\% \times \frac{t_{overlap}}{t_{brake}}$,可以求出再生能量 τ_j ;同理可得,第 i+1 辆列车处于制动段,第 i 辆列车处于加速段,产生的再生能量 t_i 。

但在多列车节能运行模型中,根据已知条件,会在 A1 站点到 A14 站点同时出现多辆列车的情况(不考虑早晚高峰的情况下,最多会出现 5 辆列车的情况)。同样可以计算多辆列车的区间重叠部分,用第 i 辆列车的向量 φ_{brake} 与其他辆列车推移发车间隔时间之后的 $\varphi_{accertate}$ 进行比较,若有至少一辆列车的 $\varphi_{accertate}$ 与第 i 辆列车的 φ_{brake} 重叠,则取最大重叠长度,其再生能量标记为可用,再生能量的计算的方法与上述方法类似,在此就不再赘述。之后再依次计算其他辆列车的再生能量,并且进行累加。

2. 求解结果

通过该模型可以根据不同组输入的 $H=\{h_1,h_2...h_{99}\}$ 计算出目标函数 E_{used} ,前 6 辆列车的发车时间为 $H'=\{h_1,h_2,h_3,h_4,h_5\}$,剩余组列车按照第一组前 5 辆列车的发车间隔进行循环发车,表 5.1 为不同发车间隔再生能量数据表,为了方便起见,只显示 $H'=\{h_1,h_2,h_3,h_4,h_5\}$ 。

表 5.1	发车间隔对应再生能量数据表

	h_1	h_2	h_3	h_4	h_5	E_{used}
数据1	645	660	645	660	615	196115.4
数据 2	645	645	645	645	645	162644.1
数据3	645	645	659	645	631	193101.9
数据 4	632	645	659	645	658	169629.9
数据 5	632	645	659	653	637	138647
数据 6	632	645	649	653	641	173417.1
数据 7	632	645	654	653	636	171839.4
数据 8	632	645	654	636	654	130042.8
数据 9	632	647	654	643	654	80883.59
数据 10	632	647	646	644	641	139126.3
数据 11	632	644	646	646	641	151406.2
数据 12	643	644	647	646	641	161208.5
数据 13	642	648	647	646	641	181379.4
数据 14	650	648	647	640	641	112172.7
数据 15	650	648	653	637	641	108744.8

根据上述表格数据可知:组 1 对应的 $H'=\{h_1,h_2,h_3,h_4,h_5\}$,其目标函数 E_{used} 为最大,使得全程总能耗最小,为最优的时间间隔 $H=\{h_1,h_2...h_{99}\}$,其时间间隔的数据是基于前车制动时后车发车的特殊情况下。为了确认最优解,选择大量的数据进行寻优工作,经过反复寻优,确认该组数据可以作为较优解。

附件程序见附件 2-1

5.3 考虑早晚高峰期多列车节能运行优化建模

该模型建立在多列车节能运行优化模型的基础上,不同之处在于,该模型更为宏观地考虑在不同时间节点之间采用不同的时间间隔运行方案。不同时间节点示意图如图 5.6 所示。简单地把凌晨记作 M_1 ,该区段内发车总数为 L_1 ,早高峰记作 M_2 ,该区段内发车总数为 L_2 ,自天时间记作 M_3 ,该区段内发车总数为 L_3 ,晚高峰记作 M_4 ,该区段内发车总数为 L_4 ,夜晚记作 M_5 ,该区段内发车总数为 L_5 。 $L=\{L_1,L_2,L_3,L_4,L_5\}$ 的限定条件可以根据 $120s \le h_{early},h_{lat} \le 150s$, $300s \le h_{other} \le 660s$ 时间限定条件推导出,其中 h_{early},h_{lat} 分别代表早、晚高峰的发车间隔, h_{other} 代表其他时间段的发车间隔。

图 5.6 不同时间节点示意图

1、目标函数

$$E_{used} = \max \sum_{i=1}^{5} \sum_{l=1}^{L_i} \sum_{i=1}^{N} \Delta E_{used(l)}^{j}(i)$$

2、约束条件

$$\begin{cases} 10 \le L_1 \le 24 \\ 36 \le L_2 \le 45 \\ 46 \le L_3 \le 102 \end{cases}$$

$$48 \le L_4 \le 60$$

$$20 \le L_5 \le 45$$

$$L_1 + L_2 + L_3 + L_4 + L_5 = 240$$

一旦确定某时间区段内出发的列车总数 L_i ,则可以把每一时间区段当做问题 2-1 中多列车节能运行优化模型来进行解析,可以求出该时间区间内再生能量值,通过对每一个时间区段进行求解,则可以求出目标函数 E_{used} 。因此,基于早晚高峰列车节能运行优化模型可以简化为对 L 的合理优化。即通过合理安排 $L=\{L_1,L_2,L_3,L_4,L_5\}$,来使目标函数 E_{used} 最大化,从而实现较节能的基于早晚高峰的多列车运行方案。

5.4 考虑早晚高峰期多列车节能运行优化模型求解

1、求解思路

模型建立的整体思路是采用联合迭代算法,对初始值进行全局寻优。联合迭代算法的流程如下所述:

Step1: 确定最大迭代次数 N 并且对区段 $\{M_1, M_2, M_3, M_4, M_5\}$ 对应的 $L = \{L_1, L_2, L_3, L_4, L_5\}$ 进行初始化;

Step2: 根据 $L = \{L_1, L_2, L_3, L_4, L_5\}$, 计算区段 $\{M_1, M_2, M_3, M_4, M_5\}$, 从而计算出各区段的再生能量总和 $E'_{used} = \{E_{used1}, E_{used2}, E_{used3}, E_{used4}, E_{used5}\}$ 。

Step3: $L = \{L_1, L_2, L_3, L_4, L_5\}$ 分别增加 ΔL , 计算区段 $\mathbf{M} = \{M_1, M_2, M_3, M_4, M_5\}$ 对应的再生能量 $\mathbf{E}^{inc}_{used} = \{\mathbf{E}^{inc}_{used1}, \mathbf{E}^{inc}_{used2}, \mathbf{E}^{inc}_{used3}, \mathbf{E}^{inc}_{used4}, \mathbf{E}^{inc}_{used5}\}$, 计算 \mathbf{E}^{inc}_{used} - \mathbf{E}'_{used} ,选择其中最大的再生能量对应的区段 M_i ;

Step4: $L = \{L_1, L_2, L_3, L_4, L_5\}$ 分别减少 ΔL ,计算区段 $M = \{M_1, M_2, M_3, M_4, M_5\}$ 对应的再生能量 $E_{used}^{dec} = \{E_{used1}^{dec}, E_{used2}^{dec}, E_{used3}^{dec}, E_{used4}^{dec}, E_{used5}^{dec}\}$,计算 E_{used}^{\prime} - E_{used}^{dec} 选择其中最大的再生能量对应的区段 M_i ;

Step4: 对 M_i 和 M_j 区段进行 $L=\{L_1,L_2,L_3,L_4,L_5\}$ 修定。具体修定方法为: M_i 区段列车数量增加 ΔL , M_i 区段列车减少增加 ΔL 。

Step5: 返回 Step2 继续进行迭代,直到迭代次数达到最大迭代次数 N。

联合迭代过程中如果出现 $L=\{L_1,L_2,L_3,L_4,L_5\}$ 超出限定值,则跳出迭代。迭代结束后, $L=\{L_1,L_2,L_3,L_4,L_5\}$ 为最佳的节能运行方案。

2、求解结果与分析

通过该模型可以根据较优 $L=\{L_1,L_2,L_3,L_4,L_5\}$ 计算出目标函数 E_{used} ,根据较优 $L=\{L_1,L_2,L_3,L_4,L_5\}$,可以根据上文提到的多列车节能运行优化模型计算各时间区间的发车间隔。表 5.2 为不同时间区段列车数再生能量对应数据表,为了更清楚地表现,表格中显示其他 L 对应的数据作对照。表 5.3 为对应时间区段发车间隔循环表,以 A1 站

点到 A14 站点全路程内最多列车数作为周期,对发车间隔进行循环,循环周期为 $T_{\max} = \{8,15,5,15,5\}$ 。

表 5.2 不同时间区段列车数量对应再生能量数据表

	L_1	L_2	L_3	L_4	L_5	L	E_{used}
数据 1	21	37	90	54	38	240	16966306.16
数据 2	21	41	86	54	38	240	16053531.6
数据 3	21	37	90	54	38	240	15856942.25
数据 4	11	44	86	59	40	240	15416473.56
数据 5	24	37	90	51	38	240	15142276.79
数据 6	12	44	86	59	39	240	14217450.54
数据 7	19	42	90	51	38	240	12731517.5
数据 8	19	42	86	51	42	240	12731517.5
数据 9	22	42	86	51	39	240	12731517.5
数据 10	17	42	86	56	39	240	12731517.5
数据 11	19	42	90	51	38	240	12413649.93
数据 12	16	44	86	59	35	240	12392809.12
数据 13	14	42	86	59	39	240	12381090.03
数据 14	14	44	84	59	39	240	11716770.39

表 5.3 对应时间区段发车间隔循环表格

	M_1	M_2	M_3	M_4	M_{5}
h_1	337	131	345	135	359
h_2	340	146	340	144	341
h_3	342	131	352	128	352
h_4	346	146	361	119	362
h_5	342	121	377	133	362
h_6	348	125		133	
h_7	342	136		148	
h_8	339	131		118	
h_9		128		119	
h_{10}		119		117	
$h_{\!\scriptscriptstyle 11}$		140		133	
h_{12}		141		151	
h_{13}		129		148	
h_{14}		131	••	134	
h_{15}		120		135	

根据上述表格数据可知:组 1 对应的最优 $L=\{L_1,L_2,L_3,L_4,L_5\}$,其目标函数 E_{used} 为 1.69×10^7kJ ,再生能量值最大,从而使得总能耗最小, $L=\{21,37,90,54,38\}$ 确认为基于早晚高峰多列车较佳节能运行方案。表中选择大量的数据进行对比,以确认该组数据可以作为较优解。其中..表示继续循环。

附件程序见附件 2-2。

6.考虑延误的列车节能运行控制建模与求解

6.1 基于延误的列车节能运行控制模型

1、建模准备

当 DT_i^j 在运行过程中出现的时刻(DT_i^j 表示第 i 辆列车,在第 j 站出现延误,其中 $DT_i^j=10s$),可能会引起后续的列车同时延迟的连锁反应。为了解决延误带来的一系列问题,对延误的列车提出了安全,快速,耗能最小的恢复正常运行的要求。为了满足上述要求,需要减少延误列车到达下一站或者下两站的运行时间。

如果利用要求最快速的恢复正常运行,则要求到达下一站的运行时间为 $T_{j,j+1} - DT_i^j$ ($T_{j,j+1}$ 为从 j 站点到 j+1 站点正常运行的时间);如果要求尽快且耗能最小,则要求到达下一站的运行时间为 $T_{j,j+1} - \Delta A_j$,到达下两站的运行时间为 $T_{j+1,j+2} - \Delta A_{j+1}$,其中 $DT_i^j = \Delta A_j + \Delta A_{j+1}$;如果速度不受限,仅要求耗能最小,则接下来站点与站点之间的运行时间,调整为,, $\left\{T_{j,j+1}, T_{j+1,j+2} ... T_{13,14}\right\} - \left\{\Delta A_j, \Delta A_{j+1} ... \Delta A_{13}\right\}$,其中 $DT_i^j = \Delta A_j + \Delta A_{j+1} + ... + \Delta A_{13}$ 。

基于延误的列车节能运行控制模型的一般情况下的目标函数:

$$E_{add} = \min \sum_{i=1}^{L} \sum_{k=1}^{Ki} \Delta E_i^{j,k}$$
 (6.1)

其中, $\Delta E_i^{j,k}$ 表示在第 i 辆列车,在第 j 站出现延误,并且通过增加运行时间补偿延误时间的方法,导致能耗的增加量, $\Delta E_i^{j,k} = f(\Delta A_k)$,函数 $f(\mathbf{x})$ 为第 2 节中计算能耗的模型,其中 L 为引起延误的列车数量,列车 i 在 K 个站点之后恢复正常运行。

2、建模与求解

模型 1:

设定一种场景进行建模求解,假定第 i 辆列车在 A3 站点发生了延误,则在此特定情况下的目标函数为:

$$E_{add} = \min\left(\Delta E_i^{3,1} + \Delta E_i^{3,2}\right)$$

$$s.t.\begin{cases} DT_{i+1}^2 = 10s \\ K = 2 \\ L = 1 \end{cases}$$
(6.2)

采用搜索寻优的方法,以 A3 站点到 A4 站点与 A4 站点到 A5 站点运行时间的减少量 $\{\Delta A_3, \Delta A_4\}$ 作为为搜索量, $E_{add} = \min \left(\Delta E_i^{3,1} + \Delta E_i^{3,2}\right)$ 为目标函数,则最优搜索量 $\{\Delta A_3, \Delta A_4\} = \{7,3\}$,其 $E_{add} = 7 \times 10^3 \, kJ$ 。恢复延误路线与正常运行路线对比图如图 6.1 所示。

图 6.1 恢复延误路线与正常运行路线对比图

图中用 K=1时恢复路线作对比,其目标函数 $E_{add}=1.5\times10^4kJ$,可以看出, K=1时恢复策略虽然速度最优,但是耗能较大,因此针对尽快及耗能较小的要求,采用 K=2时恢复策略最优。

模型 2:

同样设定第 i 辆列车在 A3 站点发生了延误,设定其后仅有第 i+1 辆列车受延误影响, $DT_{i+1}^2=3s$,则在此特定情况下的目标函数为:

$$E_{add} = \min\left(\Delta E_{i}^{3,1} + \Delta E_{i}^{3,2} + \Delta E_{i+1}^{2,1}\right)$$

$$DT_{i+1}^{2} = 3s$$

$$DT_{i}^{3} = 10s$$

$$K_{i} = 2$$

$$K_{i+1} = 1$$

$$L = 2$$
(6.3)

模型 2 与模型 1 相比,多了后车受延误的限定条件,在模型 1 的基础上,以 $K_{i+1}=1$ 的恢复策略恢复正常运行,其目标函数 $E_{add}=1.68\times10^4kJ$,恢复延误路线与正常运行路线对比图如图 6.2 所示:

图 6.2 恢复延误路线与正常运行路线对比图

蓝色虚线为后车正常运行路线,红色虚线为后车恢复延迟路线。受延迟影响的后车能耗增多 $\Delta E_{\rm int}^{2,1}=1.8\times 10^3 kJ$ 。附件程序见附件 3-1。

6.2 延误时间为随机变量时的多列车节能调整策略

6.2.1 延误时间对后续车辆的影响分析

设第 i+1 辆车与第 i 辆车的原始发车时间间隔为 h_i ,第 i 辆车在车站 A_j 延误 DT_j^i 后,两车时间间隔减少至 $h_i' = h_i - DT_j^i$,若在此间隔 h_i' ,两车在后面的车站运行过程中的最短距离为 Δd_i ,两车安全距离为 ΔD_i 。则当 $\Delta d_i \geq \Delta D_i$ 时,第 i 辆车延误 DT_j^i 对后续的第 i+1 辆车无影响,若 $\Delta d_i < \Delta D_i$,则后续的第 i+1 辆车必然要延误,若两车距离最近时的第 i+1 辆车速度为 v_{i+1} ,则第 i+1 辆车应该在车站 A_{j-1} 延时 $DT_{j-1}^{i+1} = \frac{\Delta D_i - \Delta d_i}{v_{i+1}}$ 。

由 $\Delta d_i = \Delta D_i$,可确定影响第 i+1 辆车是否延时的第 i 辆车延时时间临界点 $\tilde{D}T^i_j$,若第 i+1 辆车延时时间 $DT^{i+1}_{j-1} > \tilde{D}T^i_j$,则第 i+1 辆车与需要延时,否则不延时…由此可得出第 i 辆车在车站 A_i 延时 $\tilde{D}T^i_i$ 对后续有影响的车辆数。

6.2.2 调整策略

当 DT_{j}^{i} 为随机变量时,由于允许列车在各站的发车时间与原时间对比可提前10秒,因此,当普通延时时($0 < DT_{j}^{i} < 10s$)发生时,只需让该车在下一路段直接赶上即可;当发生严重延误时(概率为10%),可将后续车辆的延时时间均在使用上述方法的基础上减去10秒,即 $\overline{DT}_{j-1}^{i+1} = DT_{j-1}^{i+1} - 10, \overline{DT}_{j-2}^{i+2} = DT_{j-2}^{i+2} - 10, \cdots$,再据此调整控制方案。

7.模型评价

本文针对列车调度问题进行了优化,采用强约束条件(时间、速度、加速度、能量以及距离等限制)下的循环搜索算法,首先通过简化列车运行需要优化的参数,在已有参数的基础上,从物理意义上精确推导其它的运行参数,极大提高了运行速度及精度。 其次,基于物理情景及目标耦合迭代寻优思想,先确定单列车运行模式,减少列车之间的耦合参数,简化对于多列车的耦合优化问题。最后,对整个求解的过程进行模块化,从概念上以及代码的实现上,提出了模块化的框架,方便模型的求解及扩充。但本文模型未考虑列车变运动模式下的运行情况,优化算法存在一定的片面性。

对于单列车的节能运行建模,采用搜索寻优思想,构建了列车节能优化模型,同时考虑了多站之间的耦合限制因素;对于多列车的节能运行建模,建立了不同发车间隔、不同运行时间下的多列车耦合运动模式,同时给出了同等条件下的相对最优解。但是当列车运行情况发生变化时,尤其是发生突发事件时,未对模型进行全面考虑。受运算速度的限制,仿真步长较大,计算误差较大,可考虑采用变步长的算法进行数值计算。同时,在寻优算法的选择上,可以选择更为智能、自适应性更强的算法,如遗传算法、神

经网络等。

列车的调度优化问题是解决铁路能耗的关键问题,本文的研究能够对列车的实际调度具有一定的指导作用,但是需考虑更为全面的运行模型,以更好地适用真实轨道交通的运行状况。

参考文献:

- [1] P. Howllet, An Optimal Strategy for the Control of A Train, Journal of the Australian Mathematical Society. Series B. Applied Mathematics, Volume 31, Issue 04, April 1990, pp. 454-471.
- [2] 丁勇,毛保华,刘海东,张鑫,王铁城,列车节能运行模拟系统的研究,北京交通大学学报,第28卷第2期,第76-81页
- [3] 金炜东,靳蕃,李崇维,胡飞,苟先太,列车优化操纵速度模式曲线生成的智能计算研究,铁道学报,第20卷,第5期,第47-52页.
- [4] 王峰,刘海东,丁勇,陈善亮,毛保华,列车节能运行的算法及实施技术研究,北方交通大学学报,第26卷,第5期,第13-18页.

附录

A6-A7 运行数据

HU-A/ ₹		永 に 油	그 보 ## - Hun	上格 唱	上始 八	水铁种	上 答 太	<u> </u>
时 刻	实际速	实际速	计算加	计算距	计算公	当前坡	计算牵	计算牵
(hh:mm:	度(cm/s)	度	速,度	离(m)	里标(m)	度(‰)	引力(N)	引功率
ss)		(km/h)	(m/s^2)					(Kw)
0:00:00	0	0	0	0	0	0	182700	0
0:00:01	92.04189	3.313508	0.920418	0.920418	0.920418	0	182700	168.1605
	052	059	905	905	905			34
0:00:02	183.8623	6.619044	0.918204	2.759042	2.759042	0	182700	335.9165
	6	959	695	505	505			317
0:00:03	275.4231	9.915235	0.915608	5.513274	5.513274	0	182700	503.1981
	955	038	355	46	46			782
0:00:04	366.6865	13.20071	0.912634	9.180140	9.180140	0	182700	669.9364
	964	747	009	423	423			115
0:00:05	457.6152	16.47414	0.909286	13.75629	13.75629	0	182700	836.0630
	358	849	394	278	278			357
0:00:06	548.1723	19.73420	0.905570	19.23801	19.23801	0	182700	1001.510
	21	356	852	599	599			83
0:00:07	638.3216	22.97957	0.901493	25.62123	25.62123	0	182700	1166.213
	518	946	308	251	251			658
0:00:08	728.0276	26.20899	0.897060	32.90150	32.90150	0	182700	1330.106
	768	637	25	928	928			566
0:00:09	817.2555	29.42119	0.892278	41.07406	41.07406	0	182700	1493.125
	477	972	709	475	475			886
0:00:10	905.9711	32.61496	0.887156	50.13377	50.13377	0	182700	1655.209
	708	215	231	646	646			329
0:00:11	994.1412	35.78908	0.881700	60.07518	60.07518	0	182700	1816.296
	565	524	858	903	903			076
0:00:12	1081.733	38.94240	0.875921	70.89252	70.89252	0	182700	1976.326
	366	119	097	269	269			86
0:00:13	1168.715	42.07377	0.869825	82.57968	82.57968	0	182700	2135.244
	956	441	895	225	225			051
0:00:14	1255.058	45.18210	0.863424	95.13026	95.13026	0	182700	2292.991
	417	3	607	641	641			727
0:00:15	1340.731	48.26632	0.856726	108.5375	108.5375	0	182700	2449.515
	113	008	969	775	775			744
0:00:16	1425.705	51.32539	0.849743	122.7946	122.7946	0	182700	2604.763
	42	512	066	317	317			802
0:00:17	1509.953	54.35833	0.842483	137.8941	137.8941	0	164379.5	2482.054
	75	5	3	692	692		303	882
0:00:18	1584.020	57.02473	0.740666	153.7343	153.7343	0	149618.4	2369.986
	383	38	332	731	731		549	824
0:00:19	1649.801	59.39284	0.657809	170.2323	170.2323	0	138072.9	2277.929
	304	693	203	861	861		415	189
0:00:20	1649.801	59.39284	0	186.7303	186.7303	0	23038.44	380.0885
	304	693		992	992		648	904
0:00:21	1649.801	59.39284	0	203.2284	203.2284	0	23038.44	380.0885
	304	693		122	122		648	904
0:00:22	1649.801	59.39284	0	219.7264	219.7264	0	23038.44	380.0885
	304	693		252	252		648	904
0:00:23	1649.801	59.39284	0	236.2244	236.2244	0	23038.44	380.0885
	304	693		383	383		648	904
0:00:24	1649.801	59.39284	0	252.7224	252.7224	0	23038.44	380.0885
	304	693		513	513		648	904
0:00:25	1649.801	59.39284	0	269.2204	269.2204	0	23038.44	380.0885
	1	1	1	1	1	1	1	1

	304	693		643	643		648	904
0:00:26	1649.801	59.39284	0	285.7184	285.7184	0	23038.44	380.0885
0.00.20	304	693		774	774		648	904
0:00:27	1649.801	59.39284	0	302.2164	302.2164	0	23038.44	380.0885
0.00.27	304	693	U	904	904	0	648	904
0:00:28	1649.801	59.39284	0	318.7145	318.7145	0	23038.44	380.0885
0:00:28			U			U		
0.00.20	304	693	0	034	034	1.0	648	904
0:00:29	1649.801	59.39284	0	335.2125	335.2125	1.8	23041.87	380.1451
0.00.20	304	693		165	165	1.0	385	351
0:00:30	1649.801	59.39284	0	351.7105	351.7105	1.8	23041.87	380.1451
	304	693		295	295		385	351
0:00:31	1649.801	59.39284	0	368.2085	368.2085	1.8	23041.87	380.1451
	304	693		426	426		385	351
0:00:32	1649.801	59.39284	0	384.7065	384.7065	1.8	23041.87	380.1451
	304	693		556	556		385	351
0:00:33	1649.801	59.39284	0	401.2045	401.2045	1.8	23041.87	380.1451
	304	693		686	686		385	351
0:00:34	1649.801	59.39284	0	417.7025	417.7025	1.8	23041.87	380.1451
	304	693		817	817		385	351
0:00:34	1649.801	59.39284	0	417.7025	417.7025	1.8	0	0
	304	693		817	817			
0:00:35	1646.072	59.25860	-0.03729	434.2005	434.2005	1.8	0	0
	292	252	0115	947	947			
0:00:36	1634.363	58.83707	-0.11708	450.6613	450.6613	1.8	0	0
0.00.50	309	911	9835	176	176	1.0		
0:00:37	1622.766	58.41959	-0.11596	467.0049	467.0049	1.8	0	0
0.00.57	463	265	8461	507	507	1.0		U
0:00:38	1611.280	58.00608	-0.11486	483.2326	483.2326	1.8	0	0
0.00.38	077	278	3854	153	153	1.6	U	0
0.00.20	1599.902	57.59649				1.8	0	0
0:00:39	509	032	-0.11377 5682	499.3454 161	499.3454 161	1.8	0	U
0.00.40						1.0	0	0
0:00:40	1588.632	57.19075	-0.11270	515.3444	515.3444	1.8	0	0
0.00.41	147	729	3621	412	412	1.0		0
0:00:41	1577.467	56.78882	-0.11164	531.2307	531.2307	1.8	0	0
	411	68	7356	627	627			
0:00:42	1566.406	56.39064	-0.11060	547.0054	547.0054	1.8	0	0
	753	312	658	368	368			
0:00:43	1555.448	55.99615	-0.10958	562.6695	562.6695	1.8	0	0
	654	155	0991	043	043			
0:00:44	1544.591	55.60529	-0.10857	578.2239	578.2239	1.8	0	0
	624	848	0298	908	908			
0:00:45	1533.834	55.21803	-0.10757	593.6699	593.6699	1.8	0	0
	203	131	4213	071	071			
0:00:46	1523.174	54.83429	-0.10659	609.0082	609.0082	1.8	0	0
	957	846	2459	491	491			
0:00:47	1512.612	54.45404	-0.10562	624.2399	624.2399	1.8	0	0
	481	932	4761	987	987			
0:00:48	1502.145	54.07723	-0.10467	639.3661	639.3661	1.8	0	0
3.00.10	396	424	0855	235	235	1.0		~
0:00:49	1491.772	53.70380	-0.10373	654.3875	654.3875	1.8	0	0
0.00. 4 3	348	451	048	775	775	1.0	0	
0:00:50	1481.492	53.33371	-0.10280	669.3053	669.3053	1.8	0	0
0.00:30						1.0	U	0
0.00 51	009	234	3382	009	009	2.5	0	
0:00:51	1471.308	52.96709	-0.10183	684.1202	684.1202	-3.5	0	0
0.00.72	226	613	7835	21	21	2.5		
0:00:52	1461.214	52.60372	-0.10093	698.8333	698.8333	-3.5	0	0

	525	29	7007	033	033			
0:00:53	1451.209	52.24354	-0.10004	713.4454	713.4454	-3.5	0	0
	653	751	8722	485	485			
0:00:54	1441.292	51.88652	-0.09917	727.9575	727.9575	-3.5	0	0
	378	561	2748	451	451			
0:00:55	1431.461	51.53261	-0.09830	742.3704	742.3704	-3.5	0	0
	492	372	886	688	688			
0:00:56	1421.715	51.18176	-0.09745	756.6850	756.6850	-3.5	0	0
	808	91	6838	838	838			
0:00:57	1412.054	50.83394	-0.09661	770.9022	770.9022	-3.5	0	0
	162	982	6467	419	419			
0:00:58	1402.475	50.48911	-0.09578	785.0227	785.0227	-3.5	0	0
	408	469	7535	835	835			
0:00:59	1392.978	50.14722	-0.09496	799.0475	799.0475	-3.5	0	0
	424	328	9837	376	376			
0:01:00	1383.562	49.80823	-0.09416	812.9773	812.9773	-3.5	0	0
	107	586	3172	218	218			
0:01:01	1374.225	49.47211	-0.09336	826.8129	826.8129	-3.5	0	0
	373	343	7343	429	429			
0:01:02	1364.967	49.13881	-0.09258	840.5551	840.5551	-3.5	0	0
	157	766	2158	966	966			
0:01:03	1355.786	48.80831	-0.09180	854.2048	854.2048	-3.5	0	0
	414	092	7428	682	682			
0:01:04	1346.682	48.48055	-0.09104	867.7627	867.7627	-3.5	0	0
	117	623	297	323	323			
0:01:05	1337.653	48.15551	-0.09028	881.2295	881.2295	-3.5	0	0
	257	726	8603	535	535			
0:01:06	1328.698	47.83315	-0.08954	894.6060	894.6060	-3.5	0	0
	842	831	4152	861	861			
0:01:07	1319.817	47.51344	-0.08880	907.8930	907.8930	-3.5	0	0
0.01.00	897	431	9445	745	745	2.5		
0:01:08	1311.009	47.19634	-0.08808	921.0912	921.0912	-3.5	0	0
0.01.00	466	078	4312	535	535	2.5		0
0:01:09	1302.272	46.88181	-0.08736	934.2013	934.2013	-3.5	0	0
0.01.10	607 1293.606	386	859	481	481	2.5		0
0:01:10	396	46.56983 024	-0.08666	742	947.2240 742	-3.5	0	0
0:01:11	1285.009	46.26035	2116 -0.08596	960.1601	960.1601	-3.5	0	0
0:01:11	922	721	4733	381	381	-3.3	0	0
0:01:12	1276.482	45.95336	-0.08527	973.0102	973.0102	-3.5	0	0
0:01:12	294	257	6287	374	374	-3.3	0	0
0:01:13	1268.022	45.64881	-0.08459	985.7750	985.7750	-3.5	0	0
0.01.13	631	472	6625	603	603	-3.3		U
0:01:14	1259.630	45.34668	-0.08392	998.4552	998.4552	-3.5	0	0
0.01.14	071	256	5601	866	866	-5.5		
0:01:15	1251.303	45.04693	-0.08326	1011.051	1011.051	-3.5	0	0
0.01.15	764	551	3069	587	587	3.3		
0:01:16	1243.042	44.74954	-0.08260	1023.564	1023.564	-3.5	0	0
0.01.10	876	352	8887	625	625	3.3		
0:01:17	1234.846	44.45447	-0.08196	1035.995	1035.995	-3.5	0	0
J. VI.I/	584	703	2916	054	054			
0:01:18	1226.714	44.16170	-0.08132	1048.343	1048.343	-3.5	0	0
2.01.10	082	695	502	52	52			
0.01.10		43.87120	-0.08069	1060.610	1060.610	-3.5	0	0
0:01:19	1 1218.644	1 43.07120						
0:01:19	1218.644 575	472	5066	66	66	3.3		

	283	219	2923	106	106			
0:01:21	1202.691	43.29689	-0.07945	1084.903	1084.903	-3.5	0	0
	437	172	8464	479	479			
0:01:22	1194.806	43.01302	-0.07885	1096.930	1096.930	-3.5	0	0
	281	61	1563	393	393			
0:01:23	1186.981	42.73131	-0.07825	1108.878	1108.878	-3.5	0	0
	071	855	2097	456	456			
0:01:24	1179.215	42.45174	-0.07765	1120.748	1120.748	-3.5	0	0
	076	275	9946	267	267			
0:01:25	1171.507	42.17427	-0.07707	1132.540	1132.540	-3.5	0	0
	577	277	4993	418	418			
0:01:26	1163.857	41.89888	-0.07649	1144.255	1144.255	-3.5	0	0
	865	314	7121	493	493			
0:01:27	1156.265	41.62554	-0.07592	1155.894	1155.894	-3.5	0	0
	243	875	6218	072	072			
0:01:28	1148.729	41.35424	-0.07536	1167.456	1167.456	-3.5	0	0
	026	493	2173	724	724			-
0:01:29	1141.248	41.08494	-0.07480	1178.944	1178.944	-3.5	0	0
0.01.00	538	737	4877	015	015			
0:01:30	1133.823	40.81763	-0.07425	1190.356	1190.356	-3.5	0	0
0.01.21	116	216	4224	5	5	2.5		
0:01:31	1126.452	40.55227	-0.07371	1201.694	1201.694	-3.5	0	0
0.01.22	105	577	0109	731	731	2.5		
0:01:32	1119.134	40.28885	-0.07317	1212.959	1212.959	-3.5	0	0
0.01.22	862	502	2429	252	252	2.5		
0:01:33	1111.870	40.02734	-0.07264	1224.150	1224.150	-3.5	0	0
0.01.24	753	712	1085	601	601	2.5		
0:01:34	1104.659	39.76772	-0.07211	1235.269	1235.269	-3.5	0	0
0.01.25	155 1097.499	959 39.50998	5978	308 1246.315	308 1246.315	-3.5	0	0
0:01:35	454	036	-0.07159 7011	1240.313	9	-3.3	U	0
0:01:36	1090.391	39.25407	-0.07108	1257.290	1257.290	-3.5	0	0
0.01.30	045	763	4089	895	895	-3.3	0	
0:01:37	1083.333	39	-0.07057	1268.194	1268.194	-3.5	0	0
0.01.57	333		7121	805	805	-3.3		
0:01:37		37.75268	-0.34647		1268.194	0	0	0
0.01.57	829	985	5042	805	805			
0:01:38	965.5470	34.75969	-0.83138	1278.681	1278.681	-3.5	0	0
0.01.00	66	438	7631	663	663			
0:01:39	882.9400	31.78584	-0.82607	1288.337	1288.337	-3.5	0	0
	244	088	0416	134	134			
0:01:40	800.8304	28.82989	-0.82109	1297.166	1297.166	-3.5	0	0
	622	664	5622	534	534			
0:01:41	719.1848	25.89065	-0.81645	1305.174	1305.174	-3.5	0	0
	84	583	5782	839	839			
0:01:42	637.9704	22.96693	-0.81214	1312.366	1312.366	-3.5	0	0
	84	742	4	688	688			
0:01:43	557.1516	20.05746	-0.80818	1318.746	1318.746	0	0	0
	777	04	8063	393	393			
0:01:44	476.7003	17.16121	-0.80451	1324.317	1324.317	0	0	0
	042	095	3735	909	909			
0:01:45	396.5853	14.27707	-0.80114	1329.084	1329.084	0	0	0
	044	096	9997	912	912			
0:01:46	316.7761	11.40393	-0.79809	1333.050	1333.050	0	0	0
	021	967	2024	765	765			
0:01:47	237.2425	8.540732	-0.79533	1336.218	1336.218	0	0	0
	1	I	ı	1	ı	1	1	1

	556	003	5464	526	526			
0:01:48	157.9549	5.686376	-0.79287	1338.590	1338.590	0	0	0
	125	851	6431	952	952			
0:01:49	78.88376	2.839815	-0.79071	1340.170	1340.170	0	0	0
	377	496	1488	501	501			
0:01:50	0	0	-0.78883	1340.959	1340.959	0	0	0
			7638	339	339			

A6-A8 运行数据

时 刻	实际速	实际速	计算加	计算距	计 算 公	当 前 坡	计算牵	计算牵
(hh:mm:	度(cm/s)	度	速度	离(m)	里标(m)	度(‰)	引力(N)	引功率
ss)	,	(km/h)	(m/s^2)		, ,	,		(Kw)
0:00:00	0	0	0	0	0	0	182700	0
0:00:01	92.04189	3.313508	0.920418	0.920418	0.920418	0	182700	168.1605
	052	059	905	905	905			34
0:00:02	183.8623	6.619044	0.918204	2.759042	2.759042	0	182700	335.9165
	6	959	695	505	505			317
0:00:03	275.4231	9.915235	0.915608	5.513274	5.513274	0	182700	503.1981
	955	038	355	46	46			782
0:00:04	366.6865	13.20071	0.912634	9.180140	9.180140	0	182700	669.9364
	964	747	009	423	423			115
0:00:05	457.6152	16.47414	0.909286	13.75629	13.75629	0	182700	836.0630
0.00.06	358	849	394	278	278	0	100500	357
0:00:06	548.1723	19.73420	0.905570	19.23801	19.23801	0	182700	1001.510
0.00.07	21	356	852	599	599	0	102700	83
0:00:07	638.3216	22.97957	0.901493	25.62123 251	25.62123	0	182700	1166.213
0:00:08	518 728.0276	946 26.20899	308 0.897060	32.90150	251 32.90150	0	182700	658 1330.106
0:00:08	728.0276 768	637	25	928	928	U	182700	566
0:00:09	817.2555	29.42119	0.892278	41.07406	41.07406	0	182700	1493.125
0.00.09	477	972	709	475	475	U	102700	886
0:00:10	905.9711	32.61496	0.887156	50.13377	50.13377	0	182700	1655.209
0.00.10	708	215	231	646	646	V	102700	329
0:00:11	994.1412	35.78908	0.881700	60.07518	60.07518	0	182700	1816.296
	565	524	858	903	903			076
0:00:12	1081.733	38.94240	0.875921	70.89252	70.89252	0	182700	1976.326
	366	119	097	269	269			86
0:00:13	1168.715	42.07377	0.869825	82.57968	82.57968	0	182700	2135.244
	956	441	895	225	225			051
0:00:14	1255.058	45.18210	0.863424	95.13026	95.13026	0	182700	2292.991
	417	3	607	641	641			727
0:00:15	1340.731	48.26632	0.856726	108.5375	108.5375	0	182700	2449.515
0.00.16	113	008	969	775	775		102500	744
0:00:16	1425.705	51.32539	0.849743	122.7946	122.7946	0	182700	2604.763
0.00.17	42	512	066	317	317	0	1.6.4270.5	802
0:00:17	1509.953	54.35833	0.842483	137.8941	137.8941	0	164379.5	2482.054
0:00:18	75 1509.953	5 54.35833	0	692 152.9937	692 152.9937	0	303 20471.76	882 309.1141
0.00.18	75	5	U	067	067	U	525	87
0:00:19	1509.953	54.35833	0	168.0932	168.0932	0	20471.76	309.1141
0.00.19	75	5	U	442	442	U	525	87
0:00:20	1509.953	54.35833	0	183.1927	183.1927	0	20471.76	309.1141
0.00.20	75	5		818	818		525	87
0:00:21	1509.953	54.35833	0	198.2923	198.2923	0	20471.76	309.1141
3.00.21	75	5		193	193		525	87

0:00:22	1509.953	54.35833	0	213.3918	213.3918	0	20471.76	309.1141
	75	5		568	568		525	87
0:00:23	1509.953	54.35833	0	228.4913	228.4913	0	20471.76	309.1141
	75	5		943	943		525	87
0:00:24	1509.953	54.35833	0	243.5909	243.5909	0	20471.76	309.1141
	75	5		318	318		525	87
0:00:25	1509.953	54.35833	0	258.6904	258.6904	3	20477.47	309.2004
0.00.23	75	5		693	693		752	397
0:00:26	1509.953	54.35833	0	273.7900	273.7900	3	20477.47	309.2004
0.00.20	75	5	U	068	068	3	752	397
0:00:27	1509.953	54.35833	0	288.8895	288.8895	3	20477.47	309.2004
0.00.27	75	5		443	443		752	397
0:00:28	1509.953	54.35833	0	303.9890	303.9890	3	20477.47	309.2004
0.00.20	75	5		818	818		752	397
0:00:29	1509.953	54.35833	0	319.0886	319.0886	3	20477.47	309.2004
0.00.29	75	5	U	193	193	3	752	397
0:00:30	1509.953	54.35833	0	334.1881	334.1881	3	20477.47	309.2004
0.00.30	75	5	0	568	568	3	752	397
0:00:31	1509.953	54.35833	0	349.2876	349.2876	3	20477.47	309.2004
0.00.51	75	54.33633	0	943	943	3	752	309.2004
0:00:32	1509.953	54.35833	0	364.3872	364.3872	3	20477.47	309.2004
0:00:32			U			3		
0.00.22	75	5 25022	0	318	318	2	752	397
0:00:33	1509.953	54.35833	0	379.4867	379.4867	3	20477.47	309.2004
0.00.24	75	5		693	693		752	397
0:00:34	1509.953	54.35833	0	394.5863	394.5863	3	20477.47	309.2004
	75	5		068	068		752	397
0:00:35	1509.953	54.35833	0	409.6858	409.6858	3	20477.47	309.2004
	75	5		443	443		752	397
0:00:36	1509.953	54.35833	0	424.7853	424.7853	3	20477.47	309.2004
	75	5		818	818		752	397
0:00:37	1509.953	54.35833	0	439.8849	439.8849	3	20477.47	309.2004
	75	5		193	193		752	397
0:00:38	1509.953	54.35833	0	454.9844	454.9844	3	20477.47	309.2004
	75	5		568	568		752	397
0:00:39	1509.953	54.35833	0	470.0839	470.0839	3	20477.47	309.2004
	75	5		943	943		752	397
0:00:39	1509.953	54.35833	0	470.0839	470.0839	1.8	0	0
	75	5		943	943			
0:00:40	1504.950	54.17822	-0.05003	485.1835	485.1835	1.8	0	0
	598	154	1518	318	318			
0:00:41	1494.552	53.80388	-0.10398	500.2330	500.2330	1.8	0	0
	396	626	2022	377	377			
0:00:42	1484.247	53.43290	-0.10305	515.1785	515.1785	1.8	0	0
	258	129	1379	617	617			
0:00:43	1474.033	53.06521	-0.10213	530.0210	530.0210	1.8	0	0
0.001.5	875	949	3832	343	343	110		
0:00:44	1463.910	52.70079	-0.10122	544.7613	544.7613	1.8	0	0
0.00	961	46	9137	73	73	110		
0:00:45	1453.877	52.33958	-0.10033	559.4004	559.4004	1.8	0	0
0.00.15	255	12	7056	826	826	1.0		
0:00:46	1443.931	51.98153	-0.09945	573.9392	573.9392	1.8	0	0
0.00.70	52	471	7357	552	552	1.0		
0:00:47	1434.072	51.62661	-0.09858	588.3785	588.3785	1.8	0	0
0.00.4/	538	138	9813	704	704	1.0		
0:00:48	1424.299	51.27476	-0.09773	602.7192	602.7192	1.8	0	0
0.00:48						1.0	0	١٠
	118	826	4201	958	958			

0:00:49	1414.610	50.92596	-0.09689	616.9622	616.9622	1.8	0	0
0.00.70	088	316	0305	87	87	1.0		
0:00:50	1405.004	50.58015	-0.09605	631.1083	631.1083	1.8	0	0
0.00.51	297	468 50.23730	7912	878 645.1584	878	1.0	0	0
0:00:51	1395.480		-0.09523		645.1584	1.8	0	0
0.00.52	615	214	6816	308	308	1.0	0	0
0:00:52	1386.037	49.89736	-0.09442	659.1132	659.1132	1.8	0	0
0.00.52	934	561	6814	37	37 672.9736	-3.5	0	0
0:00:53	1376.680 313	49.56049 127	-0.09357 6205	672.9736 163	163	-3.3	U	0
0:00:54	1367.401	49.22645	-0.09278	686.7404	686.7404	-3.5	0	0
0.00.54	49	364	8231	194	194	-3.3	0	0
0:00:55	1358.200	48.89521	-0.09201	700.4144	700.4144	-3.5	0	0
0.00.55	414	49	0762	343	343	-3.3		0
0:00:56	1349.076	48.56673	-0.09124	713.9964	713.9964	-3.5	0	0
0.00.50	053	79	3612	385	385	3.3		
0:00:57	1340.027	48.24098	-0.09048	727.4871	727.4871	-3.5	0	0
0.00.57	393	613	6601	99	99	3.3		
0:00:58	1331.053	47.91792	-0.08973	740.8874	740.8874	-3.5	0	0
0.00.20	437	375	9552	729	729	3.5		Ů
0:00:59	1322.153	47.59751	-0.08900	754.1980	754.1980	-3.5	0	0
0.00.00	208	55	2291	073	073			
0:01:00	1313.325	47.27972	-0.08827	767.4195	767.4195	-3.5	0	0
	744	677	4649	394	394			
0:01:01	1304.570	46.96452	-0.08755	780.5527	780.5527	-3.5	0	0
	097	351	646	968	968			
0:01:02	1295.885	46.65187	-0.08684	793.5984	793.5984	-3.5	0	0
	341	228	7563	978	978			
0:01:03	1287.270	46.34174	-0.08614	806.5573	806.5573	-3.5	0	0
	562	022	7797	512	512			
0:01:04	1278.724	46.03409	-0.08545	819.4300	819.4300	-3.5	0	0
	861	498	7008	568	568			
0:01:05	1270.247	45.72890	-0.08477	832.2173	832.2173	-3.5	0	0
	356	483	5044	054	054			
0:01:06	1261.837	45.42613	-0.08410	844.9197	844.9197	-3.5	0	0
	181	85	1756	79	79			
0:01:07	1253.493	45.12576	-0.08343	857.5381	857.5381	-3.5	0	0
	481	531	6998	508	508			
0:01:08	1245.215	44.82775	-0.08278	870.0730	870.0730	-3.5	0	0
	418	505	0627	856	856			
0:01:09	1237.002	44.53207	-0.08213	882.5252	882.5252	-3.5	0	0
	168	804	2504	398	398		1	
0:01:10	1228.852	44.23870	-0.08149	894.8952	894.8952	-3.5	0	0
0.04.44	919	507	2491	615	615			
0:01:11	1220.766	43.94760	-0.08086	907.1837	907.1837	-3.5	0	0
0.01.10	873	743	0455	906	906	2.5	0	
0:01:12	1212.743	43.65875	-0.08023	919.3914	919.3914	-3.5	0	0
0.01.12	247	687	6265	594	594	2.5	0	
0:01:13	1204.781	43.37212	-0.07961	931.5188	931.5188	-3.5	0	0
0.01.14	267	563	9791	918	918	-3.5	0	0
0:01:14	1196.880	43.08768	-0.07901	943.5667	943.5667	-3.3	U	0
0.01.15	177	635	0909	045	045	2.5	0	
0:01:15	1189.039	42.80541	-0.07840	955.5355	955.5355	-3.5	U	0
0.01.14	227	218	9493	063	063	-3.5	0	0
0:01:16	1181.257	42.52527 665	-0.07781 5425	967.4258 985	967.4258 985	-3.3	U	'
	685	003	3423	703	703	L		

0:01:17	1173.534	42.24725	-0.07722	979.2384	979.2384	-3.5	0	0
	826	374	8584	754	754			
0:01:18	1165.869	41.97131	-0.07664	990.9738	990.9738	-3.5	0	0
	941	786	8856	237	237			
0:01:19	1158.262	41.69744	-0.07607	1002.632	1002.632	-3.5	0	0
	328	381	6126	523	523			
0:01:20	1150.711	41.42560	-0.07551	1014.215	1014.215	-3.5	0	0
	3	679	0283	146	146			
0:01:21	1143.216	41.15578	-0.07495	1025.722	1025.722	-3.5	0	0
	178	241	1218	259	259			
0:01:22	1135.776	40.88794	-0.07439	1037.154	1037.154	-3.5	0	0
	296	664	8822	421	421			
0:01:23	1128.390	40.62207	-0.07385	1048.512	1048.512	-3.5	0	0
	996	587	2993	184	184			
0:01:24	1121.059	40.35814	-0.07331	1059.796	1059.796	-3.5	0	0
	634	682	3626	094	094			
0:01:25	1113.781	40.09613	-0.07278	1071.006	1071.006	-3.5	0	0
	572	659	062	69	69			
0:01:26	1106.556	39.83602	-0.07225	1082.144	1082.144	-3.5	0	0
	184	263	3877	506	506			
0:01:27	1099.382	39.57778	-0.07173	1093.210	1093.210	-3.5	0	0
	854	275	33	068	068			
0:01:28	1092.260	39.32139	-0.07121	1104.203	1104.203	-3.5	0	0
	975	509	8793	896	896			
0:01:29	1085.189	39.06683	-0.07071	1115.126	1115.126	-3.5	0	0
	948	814	0263	506	506			
0:01:30	1078.169	38.81409	-0.07020	1125.978	1125.978	-3.5	0	0
	187	072	7619	406	406			
0:01:31	1071.198	38.56313	-0.06971	1136.760	1136.760	-3.5	0	0
	11	195	077	098	098			
0:01:32	1064.276	38.31394	-0.06921	1147.472	1147.472	-3.5	0	0
	147	128	9629	079	079			
0:01:33	1057.402	38.06649	-0.06873	1158.114	1158.114	-3.5	0	0
	736	849	4109	84	84			
0:01:34	1050.577	37.82078	-0.06825	1168.688	1168.688	-3.5	0	0
	323	364	4125	867	867			_
0:01:35	1043.799	37.57677	-0.06777	1179.194	1179.194	-3.5	0	0
	364	71	9595	641	641			_
0:01:36	1037.068	37.33445	-0.06731	1189.632	1189.632	-3.5	0	0
0.01.00	32	953	0435	634	634	0.0		
0:01:37	1030.383	37.09381	-0.06684	1200.003	1200.003	-3.5	0	0
0.01.0	664	189	6568	318	318			
0:01:38	1023.744	36.85481	-0.06638	1210.307	1210.307	-3.5	0	0
0.01.50	872	54	7913	154	154	3.3		
0:01:39	1017.151	36.61745	-0.06593	1220.544	1220.544	-3.5	0	0
0.01.57	433	159	4393	603	603	3.3		· ·
0:01:40	1010.602	36.38170	-0.06548	1230.716	1230.716	-3.5	0	0
0.01.10	84	222	5934	117	117	3.3		· ·
0:01:41	1004.098	36.14754	-0.06504	1240.822	1240.822	-3.5	0	0
0.01.71	594	937	246	146	146	-5.5		
0:01:42	997.6382	35.91497	-0.06460	1250.863	1250.863	-3.5	0	0
0.01.42	038	53.91497	3898	132	132	-5.5		'
0:01:43	991.2211	35.68396	-0.06417	1260.839	1260.839	-3.5	0	0
0.01.43		27		514	514	-5.5	U	'
0:01:44	861 984.8470	35.45449	0177	1270.751	1270.751	-3.5	0	0
0.01:44		35.45449 428	-0.06374			-5.3	U	0
	635	420	1227	725	725			

0:01:45	978.5153	35.22655	-0.06331	1280.600	1280.600	-3.5	0	0
	657	317	6977	196	196			
0:01:46	972.2222 222	35	-0.06293 1435	1290.385 35	1290.385 35	0	0	0
0:01:46	888.0700 325	31.97052 117	-0.84152 1897	1290.385 35	1290.385 35	0	0	0
0:01:47	797.4366	28.70771	-0.90633	1299.266	1299.266	-3.5	0	0
0.01.40	572 707.3122	966 25.46324	3753	05 1307.240	05 1307.240	-3.5	0	0
0:01:48	923	25.46324	-0.90124 3649	417	417	-3.3	0	0
0:01:49	617.6538	22.23553	-0.89658	1314.313	1314.313	0	0	0
0:01:50	824 528.4259	977 19.02333	4099 -0.89227	54 1320.490	54 1320.490	0	0	0
0.01.51	712	496	9112	078	078			
0:01:51	439.5903 623	15.82525 304	-0.88835 609	1325.774 338	1325.774 338	0	0	0
0:01:52	351.1094 82	12.63994 135	-0.88480 8803	1330.170 242	1330.170 242	0	0	0
0:01:53	262.9463	9.466067	-0.88163	1333.681	1333.681	0	0	0
0:01:54	148 175.0643	334 6.302316	1671 -0.87881	337 1336.310	337 1336.310	0	0	0
0.01.51	406	263	9742	8	8			O
0:01:55	87.42747 308	3.147389 031	-0.87636 8676	1338.061 443	1338.061 443	0	0	0
0:01:56	0	0	-0.87427	1338.935	1338.935	0	0	0
0:01:57	0	0	4731 0	718 1338.935	718 1338.935	3	0	0
0:01:58	0	0	0	718 1338.935	718 1338.935	3	0	0
				718	718			
0:01:59	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:00	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:01	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:02	0	0	0	1338.935	1338.935	3	0	0
0:02:03	0	0	0	718 1338.935	718 1338.935	3	0	0
				718	718			
0:02:04	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:05	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:06	0	0	0	1338.935	1338.935	3	0	0
0:02:07	0	0	0	718 1338.935	718 1338.935	3	0	0
				718	718			
0:02:08	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:09	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:10	0	0	0	1338.935	1338.935	3	0	0
0:02:11	0	0	0	718 1338.935	718 1338.935	3	0	0
				718	718			

0:02:12	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:13	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:14	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:15	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:16	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:17	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:18	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:19	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:20	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:21	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:22	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:23	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:24	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:25	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:26	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:27	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:28	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:29	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:30	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:31	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:32	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:33	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:34	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:35	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:36	0	0	0	1338.935 718	1338.935 718	3	0	0
0:02:37	92.04189 052	3.313508 059	0.920418 905	0.920418 905	1339.856 137	0	182700	168.1605 34
0:02:38	183.8623 6	6.619044 959	0.918204 695	2.759042 505	1341.694 76	0	182700	335.9165 317
0:02:39	275.4231 955	9.915235 038	0.915608 355	5.513274 46	1344.448 992	0	182700	503.1981 782

0:02:40	366.6865	13.20071	0.912634	9.180140	1348.115	0	182700	669.9364
	964	747	009	423	858			115
0:02:41	457.6152	16.47414	0.909286	13.75629	1352.692	0	182700	836.0630
	358	849	394	278	011			357
0:02:42	548.1723	19.73420	0.905570	19.23801	1358.173	0	182700	1001.510
	21	356	852	599	734			83
0:02:43	638.3216	22.97957	0.901493	25.62123	1364.556	0	182700	1166.213
	518	946	308	251	95			658
0:02:44	728.0276	26.20899	0.897060	32.90150	1371.837	0	182700	1330.106
	768	637	25	928	227			566
0:02:45	817.2555	29.42119	0.892278	41.07406	1380.009	0	182700	1493.125
	477	972	709	475	783			886
0:02:46	905.9711	32.61496	0.887156	50.13377	1389.069	0	182700	1655.209
	708	215	231	646	494			329
0:02:47	994.1412	35.78908	0.881700	60.07518	1399.010	0	182700	1816.296
	565	524	858	903	907			076
0:02:48	1081.733	38.94240	0.875921	70.89252	1409.828	0	182700	1976.326
	366	119	097	269	241			86
0:02:49	1168.715	42.07377	0.869825	82.57968	1421.515	0	182700	2135.244
	956	441	895	225	4			051
0:02:50	1255.058	45.18210	0.863424	95.13026	1434.065	0	182700	2292.991
0.00.71	417	3	607	641	984		102500	727
0:02:51	1340.731	48.26632	0.856726	108.5375	1447.473	0	182700	2449.515
0.00.70	113	008	969	775	295		102500	744
0:02:52	1425.705	51.32539	0.849743	122.7946	1461.730	0	182700	2604.763
0.00.50	42	512	066	317	35		164250.5	802
0:02:53	1509.953	54.35833	0.842483	137.8941	1476.829	0	164379.5	2482.054
0.00.74	75	5	3	692	887		303	882
0:02:54	1584.020	57.02473	0.740666	153.7343	1492.670	0	149618.4	2369.986
0.02.55	383	38	332 0.657809	731	091	0	549	824
0:02:55	1649.801 304	59.39284 693	203	170.2323 861	1509.168 104	U	138072.9 415	2277.929 189
0:02:56	1709.007	61.52426	0.592061	187.3224	1526.258	0	128814.0	2201.441
0.02.30	405	659	0.392001	602	1320.238	0	298	309
0:02:57	1762.861	63.46302	0.538543	204.9510	1543.886	0	121231.0	2137.136
0.02.37	8	481	951	782	796	U	666	163
0:02:58	1762.861	63.46302	0	222.5796	1561.515	0	25240.99	444.9639
0.02.30	8	481	ľ	962	414	0	772	068
0:02:58	1762.861	63.46302	0	222.5796	1561.515	0	0	0
0.02.50	8	481		962	414		· ·	
0:02:59	1755.564	63.20033	-0.07296	240.2083	1579.144	3	0	0
0.02.57	8	282	9998	142	032			
0:03:00	1742.776	62.73995	-0.12788	257.7639	1596.699	3	0	0
0.05.00	465	273	3357	622	68			
0:03:01	1730.116	62.28420	-0.12659	275.1917	1614.127	3	0	0
	812	524	6526	268	445			
0:03:02	1717.583	61.83301	-0.12532	292.4928	1631.428	3	0	0
	831	79	9816	95	613			
0:03:03	1705.175	61.38631	-0.12408	309.6687	1648.604	3	0	0
	549	977	2813	333	451			
0:03:04	1692.890	60.94404	-0.12285	326.7204	1665.656	3	0	0
	038	138	511	887	207			
0:03:05	1680.725	60.50611	-0.12164	343.6493	1682.585	3	0	0
	407	465	6313	891	107			
0:03:06	1668.679	60.07247	-0.12045	360.4566	1699.392	3	0	0
	803	292	6037	432	361	I	I	I

0:03:07	1656.751	59.64305	-0.11928	377.1434	1716.079	3	0	0
0.00.00	413	085	3906	412	159			
0:03:08	1644.938 457	59.21778 446	-0.11812 9555	393.7109 554	1732.646 673	3	0	0
0:03:09	1633.239	58.79661	-0.11699	410.1603	1749.096	3	0	0
	194	1	2627	399	058			
0:03:10	1621.651	58.37946	-0.11587	426.4927	1765.428	3	0	0
	917	902	2774	319	45			
0:03:11	1610.174	57.96629	-0.11476	442.7092	1781.644	3	0	0
0.02.12	951	825	9657	51	969	3	0	0
0:03:12	1598.806 657	57.55703 964	-0.11368 2946	458.8110 006	1797.746 718	3	U	0
0:03:13	1587.545	57.15163	-0.11261	474.7990	1813.734	3	0	0
0.03.13	425	53	2318	671	785			Ü
0:03:14	1576.389	56.75002	-0.11155	490.6745	1829.610	3	0	0
	679	845	7458	214	239			
0:03:15	1565.337	56.35216	-0.11051	506.4384	1845.374	3	0	0
	873	344	8059	182	136			
0:03:16	1554.388	55.95798	-0.10949	522.0917	1861.027	3	0	0
	491	569	3821	969	515			
0:03:17	1543.540	55.56744	-0.10848	537.6356	1876.571	3	0	0
	046	166	4452	818	4	_		
0:03:18	1532.791	55.18047	-0.10748	553.0710	1892.006	3	0	0
0.02.10	079	885	9668	823	8	3	0	0
0:03:19	1522.140 16	54.79704 578	-0.10650 9188	568.3989 931	1907.334 711	3	U	0
0:03:20	1511.585	54.41709	-0.10554	583.6203	1922.556	3	0	0
0.03.20	886	191	2741	947	113	3	U	U
0:03:21	1501.126	54.04056	-0.10459	598.7362	1937.671	3	0	0
0.03.21	88	769	0062	535	971			Ü
0:03:22	1490.761	53.66742	-0.10365	613.7475	1952.683	3	0	0
	791	448	0891	223	24			
0:03:23	1480.494	53.29778	-0.10267	628.6551	1967.590	-2	0	0
	15	939	6412	402	858			
0:03:24	1470.317	52.93143	-0.10176	643.4600	1982.395	-2	0	0
	757	924	3933	817	8			
0:03:25	1460.231	52.56832	-0.10086	658.1632	1997.098	-2	0	0
	335	808	4211	593	977			
0:03:26	1450.233	52.20841	-0.09997	672.7655	2011.701	-2	0	0
0.02.27	634	084	7012	727	291	2		
0:03:27	1440.323 424	51.85164 326	-0.09910 2104	687.2679 09	2026.203 627	-2	0	0
0:03:28	1430.499	51.49798	-0.09823	701.6711	2040.606	-2	0	0
0:05:28	498	191	9263	432	861	-2	U	0
0:03:29	1420.760	51.14738	-0.09738	715.9761	2054.911	-2	0	0
0.03.27	671	414	8269	382	856	-2		O
0:03:30	1411.105	50.79980	-0.09654	730.1837	2069.119	-2	0	0
0.05.50	78	808	8907	449	463	_		Ü
0:03:31	1401.533	50.45521	-0.09572	744.2948	2083.230	-2	0	0
_	683	26	0967	027	521			
0:03:32	1392.043	50.11355	-0.09490	758.3101	2097.245	-2	0	0
	259	732	4242	396	857			
0:03:33	1382.633	49.77480	-0.09409	772.2305	2111.166	-2	0	0
	406	26	8534	722	29			
0:03:34	1373.303	49.43890	-0.09330	786.0569	2124.992	-2	0	0
	041	948	3644	062	624			

0:03:35	1364.051	49.10583	-0.09251	799.7899	2138.725	-2	0	0
	103	971	9381	366	654			
0:03:36	1354.876	48.77555	-0.09174	813.4304	2152.366	-2	0	0
	547	57	5558	477	166			
0:03:37	1345.778	48.44802	-0.09098	826.9792	2165.914	-2	0	0
	348	054	1991	131	931			
0:03:38	1336.755	48.12319	-0.09022	840.4369	2179.372	-2	0	0
	498	794	8499	966	714			
0:03:39	1327.807	47.80105	-0.08948	853.8045	2192.740	-2	0	0
	007	227	4908	516	269			
0:03:40	1318.931	47.48154	-0.08875	867.0826	2206.018	-2	0	0
	903	85	1046	217	34			
0:03:41	1310.129	47.16465	-0.08802	880.2719	2219.207	-2	0	0
	228	222	6744	407	659			
0:03:42	1301.398	46.85032	-0.08731	893.3732	2232.308	-2	0	0
*****	045	96	1838	33	951			
0:03:43	1292.737	46.53854	-0.08660	906.3872	2245.322	-2	0	0
0.03.13	428	74	6167	134	931	_		
0:03:44	1284.146	46.22927	-0.08590	919.3145	2258.250	-2	0	0
0.03.77	47	294	9574	877	306	-2		O .
0:03:45	1275.624	45.92247	-0.08522	932.1560	2271.091	-2	0	0
0.03.43	28	409	1903	524	77	-2		U
0:03:46	1267.169	45.61811	-0.08454	944.9122	2283.848	-2	0	0
0:03:46						-2	U	U
0.02.47	98	927	3004	952	013	2		0
0:03:47	1258.782	45.31617	-0.08387	957.5839	2296.519	-2	0	0
0.00.10	707	744	273	95	713			
0:03:48	1250.461	45.01661	-0.08321	970.1718	2309.107	-2	0	0
	613	808	0935	221	54	_		
0:03:49	1242.205	44.71941	-0.08255	982.6764	2321.612	-2	0	0
	865	116	7478	382	156			
0:03:50	1234.014	44.42452	-0.08191	995.0984	2334.034	-2	0	0
	643	716	2221	969	215			
0:03:51	1225.887	44.13193	-0.08127	1007.438	2346.374	-2	0	0
	141	707	5026	643	361			
0:03:52	1217.822	43.84161	-0.08064	1019.697	2358.633	-2	0	0
	564	232	5763	515	233			
0:03:53	1209.820	43.55352	-0.08002	1031.875	2370.811	-2	0	0
	135	485	4299	74	458			
0:03:54	1201.879	43.26764	-0.07941	1043.973	2382.909	-2	0	0
	084	702	0507	942	66			
0:03:55	1193.998	42.98395	-0.07880	1055.992	2394.928	-2	0	0
	658	167	4263	733	45			
0:03:56	1186.178	42.70241	-0.07820	1067.932	2406.868	-2	0	0
********	113	208	5444	719	437			
0:03:57	1178.416	42.42300	-0.07761	1079.794	2418.730	-2	0	0
0.03.37	72	193	3929	5	218	_		
0:03:58	1170.713	42.14569	-0.07702	1091.578	2430.514	-2	0	0
0.03.50	76	537	9601	667	385	-		
0:03:59	1163.068	41.87046	-0.07645	1103.285	2442.221	-2	0	0
0.03.37	526	692	2346	805	523	-2		U
0:04:00	1155.480	41.59729	-0.07588	1114.916	2453.852	-2	0	0
0.04.00				49		-2	0	"
0.04.01	321	154	2049		208	2	10	
0:04:01	1147.948	41.32614	-0.07531	1126.471	2465.407	-2	0	0
0.04.02	461	458	8601	294	011	2		
0:04:02	1140.472	41.05700	-0.07476	1137.950	2476.886	-2	0	0
	271	177	1893	778	496			

0:04:03	1133.051	40.78983	-0.07421	1149.355	2488.291	-2	0	0
0:04:03	09	922	1818	501	219	-2	0	0
0:04:04	1125.684	40.52463	-0.07366	1160.686	2499.621	-2	0	0
0:04:04						-2	0	0
0.04.05	262 1118.371	344	8272	012	73	2	0	0
0:04:05		40.26136	-0.07313	1171.942	2510.878	-2	0	0
0.04.06	147	13	1152	854	572			
0:04:06	1111.111	40	-0.07260	1183.126	2522.062	-2	0	0
0.04.05	111	4.0	036	566	284			
0:04:06	1111.111	40	0	1183.126	2522.062	0	0	0
	111			566	284			
0:04:07	1026.955	36.97040	-0.84155	1194.237	2533.173	0	0	0
	731	633	3798	677	395			
0:04:08	943.3979	33.96232	-0.83557	1204.507	2543.442	0	0	0
	687	687	7627	234	952			
0:04:09	860.4014	30.97445	-0.82996	1213.941	2552.876	0	0	0
	171	102	5515	214	932			
0:04:10	777.9305	28.00550	-0.82470	1222.545	2561.480	0	0	0
	822	096	8349	228	946			
0:04:11	695.9508	25.05422	-0.81979	1230.324	2569.260	0	0	0
	153	935	7669	534	252			
0:04:12	614.4282	22.11941	-0.81522	1237.284	2576.219	0	0	0
	516	706	5637	042	76			
0:04:13	533.3297	19.19987	-0.81098	1243.428	2582.364	0	0	0
0.02	504	102	5012	325	042			
0:04:14	452.6228	16.29442	-0.80706	1248.761	2587.697	0	0	0
0.01.11	383	218	9122	622	34			
0:04:15	372.2756	13.40192	-0.80347	1253.287	2592.223	0	0	0
0.04.13	539	354	1844	85	568	l o		
0:04:16	292.2568	10.52124	-0.80018	1257.010	2595.946	0	0	0
0.04.10	955	824	7583	607	325	0	U	0
0:04:17	212.5357	7.651287	-0.79721	1259.933	2598.868	0	0	0
0.04.17	702	7.031287	1253	176	894	0	U	0
0.04.19		4.790950	-0.79453	1262.058	2600.994	0	0	0
0:04:18	133.0819 445			534	252	U	U	0
0.04.10		003	8257			0	0	0
0:04:19	53.86549	1.939157	-0.79216	1263.389	2602.325	0	0	0
0.04.20	671	881	4478	353	071	0		
0:04:20	0	0	-0.53865	1263.928	2602.863	0	0	0
			4967	008	726			
0:04:21	292.2568	10.52124	-0.80018	1257.010	2595.946	0	0	0
	955	824	7583	607	325			
0:04:22	212.5357	7.651287	-0.79721	1259.933	2598.868	0	0	0
	702	729	1253	176	894			
0:04:23	133.0819	4.790950	-0.79453	1262.058	2600.994	0	0	0
	445	003	8257	534	252			
0:04:24	53.86549	1.939157	-0.79216	1263.389	2602.325	0	0	0
	671	881	4478	353	071			
0:04:25	0	0	-0.53865	1263.928	2602.863	0	0	0
			4967	008	726			
	•		•	•	•	•	•	•

主要程序代码

```
注: 只列出了每一小问的主函数,相关 m 子函数请查看附件文件
第一题第一问主程序:
 function Q1_1()%µÚÒ»ÌâµÚÒ»ÎÊ
tic;
clc;close all;
global T;
si=13594;
se=12240;
L=si-se;
v0=0:
vmax=80;
ws=inf;
 Vm=v0;
 Vn=0;
T=1;
S1=0;S2=0;S3=0;S4=0;VData=[];U1=0;U2=0;
C=1e-3*3600;\%m/s\times^a»»\hat{I}^akm/hµÄϵÊý
tt=[];wtt=[];
 for u1=0.9:0.1:0.9
                      for u2=0.9:0.1:0.9
                                           for vm=45:vmax
[sData1,tData1,vData1,aData1,WData1,VData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,si);%Ȗµ
\tilde{A}C\hat{t}O\acute{y} \hat{l}\mu \ddot{A}\hat{l} »O\dot{E}/\hat{E} \pm \frac{1}{4} \ddot{a}/\ddot{E} \dot{U} \hat{l} \dot{E} \dot{E} \acute{y} \frac{3}{4} \acute{Y}
                                                                W1=max(WData1);
                                                                 if(exitflag1<0)
                                                                                     continue;
                                                                 end
                                                                 if(exitflag1==0)
                                                                                     vm=vData1(length(vData1));
                                                                 end
                                                                for vn=20:vm
[sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest 1(vn,u2,se); %ȖµÃÖÆ¶¶µÄλÒÆ
/ʱ1/4ä/ËÙ¶ÈÊý3/4Ý
                                                                                     if(exitflag4<0)
                                                                                                          continue;
[sData3,tData3,vData3,aData3,vlData3,kData3,exitflag3]=getBaseDrag 2(max(vData1),vn,se+max(sData4));
                                                                                                               if(exitflag3<0)
                                                                                                          continue;
                                                                                     end
if(t2 < 0)
                                                                                                                          continue;
                                                                                                          end
                                                                                                          t=max(tData1)+t2+max(tData3)+max(tData4);
                                                                                                          s2=t2*max(vData1)/C;
                                                                                                          vData2=max(vData1)*ones(1,floor(t2/T));
                                                                                                          aData2=zeros(1,floor(t2/T)-1);
                                                                                                          tData2=T:T:t2;
                                                                                                          sData2=max(vData1)*tData2/C;
 [WData2,vlData2,pData2,fData2,kData2,exitflag2] = getConstW(vData2,si-max(sData1)); \% \\ ) \\ \tilde{\mathbb{E}} \tilde{\mathbb{E}}
```

```
if(exitflag2<0)
                                                                                  continue;
                                                                  end
                                                                                  W2=max(WData2);
                                                                                  W=W1+W2;
                                                                                  if(t \le 111)
                                                                                                  tt=[tt,t];
                                                                                                  wtt=[wtt,W];
                                                                                                  if(ws>W)
                                                                                                                  ws=W:
                                                                                                                  Vm=vm
                                                                                                                  Vn=vn
                                                                                                                  S1=max(sData1);
                                                                                                                  S2=s2;
                                                                                                                  S3=max(sData3);
                                                                                                                  S4=max(sData4);
                                                                                                                  U1=u1;
                                                                                                                  U2=u2;
                                                                                                                   VData=[vData1,vData2,vData3,vData4];
                                                                                                                  VLData=[VlData1,vlData2,vlData3,vlData4];
                                                                                                                  aData=[aData1,aData2,-aData3,-aData4];
                                                                                                                  pData=[pData1,pData2,zeros(1,length(tData3)),zeros(1,length(tData4))];
                                                                                                                  fData=[fData1,fData2,zeros(1,length(tData3)),zeros(1,length(tData4))];
                                                                                                                  kData=[kData1,kData2,kData3,kData4];
                                                                                                                  if(isempty(tData2))
tData=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                                                                  else
tData=[tData1,tData2+max(tData1),tData3+max(tData1)+max(tData2),tData4+max(tData1)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(t
tData3)];
sData = [sData1, sData2 + max(sData1), sData3 + max(sData1) + max(sData2), sData4 + max(sData1) + max(sData2) + 
ax(sData3)];
                                                                                                                   end
wData=[WData1,max(WData1)+WData2(2:length(WData2)),ones(1,length(sData3))*(max(WData1)+max(WD
ata2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                                                  end
                                                                                  end
                                                  end
                                 end
                 end
end
if(isempty(VData))
                  disp(['²»Âú×ãÒªÇó']);
 else
disp(['\times \hat{i}D; \ddot{I}\hat{u}^{\circ}\ddot{A}\ddot{A}\ddot{U}\dot{A}; \hat{I}^{a}', num2str(ws), 'kJ']);
 disp(['vm=',num2str(Vm),',vn=',num2str(Vn),',s1=',num2str(S1),',s2=',num2str(S2),',s3=',num2str(S3),',s4=',num
2str(S4),',u1=',num2str(U1),',u2=',num2str(U2)]);
 disp([\dot{A}^{1/2}]\mu\tilde{O}^{3/4}\hat{E}\mu^{1/4}\hat{E}\hat{O}\ddot{E}DD\hat{E}\pm^{1/4}\ddot{a}',num2str(max(tData)),'s']);
 disp([\dot{A}^{1/2}]\mu\tilde{O}^{3/4}\hat{E}\mu^{1/4}\hat{E}\hat{O}\ddot{E}DD^{3/4}\hat{A}\ddot{e}^{\prime},num2str(max(sData)),'m']);
 figure
plot(tData, VData);grid on;xlabel('ʱ¼ā/s'),ylabel('ËٶĒ/km/h');hold on;plot(tData, VLData, 'r');hold off;
plot(sData,VData);grid on;xlabel('¾àÀë/m'),ylabel('ËÙ¶È/km/h');hold on;plot(sData,VLData,'r');hold off;
```

```
figure
plot(0:T:(length(aData)-1)*T,aData); grid on; xlabel('\hat{E}\pm\frac{1}{4}\ddot{a}/s'), ylabel('\frac{1}{4}\acute{O}\ddot{E}\grave{U}\P\grave{E}/m/s^2');
figure
plot(tData,wData);grid on;xlabel('ʱ1/4ä/s'),ylabel('ÄܰÄ/kJ');
figure
bar(wData);grid on;xlabel('ʱ1/4ä/s'),ylabel('ÄܰÄ/kJ');
figure
plot(sData,wData);grid on;xlabel('3/4àAë/m'),ylabel('ÄܰÄ/kJ');
figure
[a,b]=sort(tt);
plot(a,wtt(b));grid on;xlabel('ÔËĐĐʱ¼ä/s'),ylabel('ÄܰÄ/kJ');
len=length(tData);
adata=[0,diff(VData)/(3.6*T)];
for i=1:len
      m=floor(tData(i)/60);
      s=mod(tData(i),60);
      if(s<10)
            tsData\{i\}=['00:0',num2str(m),':0',num2str(s)];
      else
            tsData\{i\}=['00:0',num2str(m),':',num2str(s)];
      end
end
str=['A8:A',num2str(7+len)];
xlswrite('µÚÒ»lâµÚÒ»lÊÊäÈëÊý³¼ÝÄ£°å.xlsx',tsData',2,str);
writeData=[zeros(len,5),VData'*1e2/3.6,VData',adata',sData',sData',zeros(len,3),kData',zeros(len,1),1e3*fData',p
Data',zeros(len,1)];
str=[B8:S',num2str(7+len)];
xlswrite('µÚÒ»lâµÚÒ»lÊÊäÈëÊý¾ÝÄ£°å.xlsx',writeData,2,str);
disp(['3]\dot{B}\dot{O}\ddot{E}\dot{D}\dot{D}\dot{E}\pm \frac{1}{4}\ddot{a}',num2str(toc),'s']);
第一题第二问主程序:
function Q1_2()%\muÚÒ»Ìâ\muÚ¶bÎÊ
tic;
clc;close all;clear;
global T;
si=13594;
se=12240;
s0=10960;
v0=0;
vmax=80;
ws=inf;
T=1:
C=1e-3*3600;\%m/s\times^a \gg \hat{I}^a km/h\mu \ddot{A}\ddot{I}\mu \hat{E}\dot{v}
\%^3\tilde{o}^2\frac{1}{4}A\ddot{E}\tilde{a}\dot{A}^{1/2}\P\hat{I}\hat{O}\dot{U}\times\hat{I}'\acute{o}\ddot{E}\dot{U}\P\hat{E}\hat{O}\ddot{E}\dot{D}\dot{D}\ddot{I}\hat{A}\mu\ddot{A}\times\hat{I}\dot{D}_{\ddot{I}}\hat{O}\ddot{E}\dot{D}\dot{D}\hat{E}\pm\frac{1}{4}\ddot{a}
wt=inf:
for t1=96:5:127
S1=0;S2=0;S3=0;S4=0;VData=[];U1=0;U2=0;Vm=v0;Vn=0;
 L=si-se;
for u1=0.9:0.1:1
      for u2=0.9:0.1:1
%
                for vm=60:60
                     for vm=55:55
[sData1,tData1,vData1,aData1,WData1,VData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,si);%Ȗµ
ÃÇ£Òý¶ÎµÄλÒÆ/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                  W1=max(WData1);
                  if(exitflag1<0)
```

```
continue;
                                 end
                                 for vn=35:35
[sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest 1(vn,u2,se); %ȖµÃÖÆ¶¶ÎµÄλÔÆ
/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                                            if(exitflag4<0)
                                                       continue;
                                            end
                                            %ȖȡǣÒý¶Îµ½Öƶ¯¶ÎÖ®¼äµÄ¿¡öĐÅÏ¢
[sData3,tData3,vData3,aData3,vlData3,kData3,exitflag3]=getBaseDrag 2(max(vData1),vn,se+max(sData4));
                                                         if(exitflag3<0)
                                                       continue;
                                            end
t2 = (L-max(sData1)-max(sData3)-max(sData4)) *C/max(vData1); \% \tilde{n}\mu\tilde{A}\tilde{N}^{201}/2 \hat{n}\mu\tilde{A}\hat{1}) \tilde{O} \mathcal{E}/\hat{E} \pm \frac{1}{4}\ddot{a}/\ddot{E}\tilde{U}\tilde{n}\hat{E}\hat{E}\dot{v}^3/4\dot{Y}
                                                       if(t2 < 0)
                                                               continue:
                                                       end
                                                       t=max(tData1)+t2+max(tData3)+max(tData4);
                                                       s2=t2*max(vData1)/C;
                                                       vData2=max(vData1)*ones(1,floor(t2/T));
                                                       aData2=zeros(1,floor(t2/T)-1);
                                                       tData2=T:T:t2;
                                                       sData2=max(vData1)*tData2/C;
[WData2,vlData2,pData2,fData2,kData2,exitflag2]=getConstW(vData2,se-max(sData1));%ȖȡѲº¼¶ÎËù×öµÄ
                                                       if(exitflag2<0)
                                                       continue;
                                            end
                                                       W2=max(WData2);
                                                       W=W1+W2;
                                                       dt=abs(t-t1);
                                                       if(dt \le 1)
                                                                  if(ws>W)
                                                                             ws=W:
                                                                             Vm=vm
                                                                             Vn=vn
                                                                             S1=max(sData1);
                                                                             S2=s2;
                                                                             S3=max(sData3);
                                                                             S4=max(sData4);
                                                                             U1=u1;
                                                                             U2=u2;
                                                                             VData=[vData1,vData2,vData3,vData4];
                                                                             vlData 1=[VlData1,vlData2,vlData3,vlData4];
                                                                             aData=[aData1,aData2,-aData3,-aData4];
                                                                             pData 1=[pData1,pData2,zeros(1,length(tData3)),zeros(1,length(tData4))];
                                                                             fData 1=[fData1,fData2,zeros(1,length(tData3)),zeros(1,length(tData4))];
                                                                             kData 1=[kData1,kData2,kData3,kData4];
wData 1=[WData1,max(WData1)+WData2(2:length(WData2)),ones(1,length(sData3))*(max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+m
Data2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                             if(isempty(tData2))
tData=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
```

```
sData=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                         else
tData=[tData1,tData2+max(tData1),tData3+max(tData1)+max(tData2),tData4+max(tData1)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(tData2)+max(t
tData3)];
sData=[sData1,sData2+max(sData1),sData3+max(sData1)+max(sData2),sData4+max(sData1)+max(sData2)+m
ax(sData3)];
                                                                         end
                                                               end
                                                    end
                                          %end
                               end
                     end
           end
end
   %¹¼ÆËã°óÁ¹½¸öÕ¾μÄÔËĐĐ¹¦ºÄ
   S21=0;S22=0;S23=0;S24=0;VData2=[];U21=0;U22=0;Vm2=0;Vn2=0;ws2=inf;
   L2=se-s0:
   for u1=0.9:0.1:0.9
           for u2=0.9:0.1:0.9
%
                            for vm=60:60
                                for vm=64:64
[sData1,tData1,vData1,aData1,WData1,vIData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,se);%Ȗµ
ÃÇ£Òý¶ÎµÄλÒÆ/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                                W1=max(WData1);
                                if(exitflag1<0)
                                          continue;
                                end
%
                                       for vn=37:37
                                          for vn=40:40
[sData4,tData4,vData4,aData4,Ef4,vlData4,kData4,exitflag4]=getReducest(vn,u2,s0); %ȖμÃÖÆ¶¶μÄλÒÆ/
ʱ¼ä/ËÙ¶ÈÊý¾Ý
                                          if(exitflag4<0)
                                                    continue;
                                          end
                                          %Ȗ\grave{E}_{i}Ç£\grave{O}ý\P \hat{I} \mu \frac{1}{2} \ddot{O} \mathcal{E} \P^{-} \P \hat{I} \ddot{O} \mathbb{R}^{\frac{1}{4}} \ddot{a} \mu \ddot{A} \hat{A} \cdot \ddot{a} \ddot{O} \mathring{D} \mathring{A} \ddot{I} \acute{c}
[sData3,tData3,vData3,aData3,vlData3,kData3,exitflag3]=getBaseDrag 2(max(vData1),vn,s0+max(sData4));
                                          if(exitflag3<0)
                                                    continue;
                                          end
if(t2 < 0)
                                                            continue;
                                                    end
                                                    t=max(tData1)+t2+max(tData3)+max(tData4);
                                                    s2=t2*max(vData1)/C;
                                                    vData2=max(vData1)*ones(1,floor(t2/T));
                                                    aData2=zeros(1,floor(t2/T)-1);
                                                    tData2=T:T:t2;
                                                    sData2=max(vData1)*tData2/C;
if(exitflag2<0)
                                                               continue;
```

```
end
                                                                                   W2=max(WData2);
                                                                                   W=W1+W2;
                                                                                   t2=220-t1;
                                                                                   dt=abs(t-t2);
                                                                                   if(dt \le 1)
                                                                                                    if(ws2>W)
                                                                                                                    ws2=W;
                                                                                                                    Vm2=vm
                                                                                                                    Vn2=vn
                                                                                                                    S21=max(sData1);
                                                                                                                    S22=s2;
                                                                                                                    S23=max(sData3);
                                                                                                                    S24=max(sData4);
                                                                                                                    U21=u1;
                                                                                                                    U22=u2;
                                                                                                                    VData 2=[vData1,vData2,vData3,vData4];
                                                                                                                    vlData 2=[vlData1,vlData2,vlData3,vlData4];
                                                                                                                    aData 2=[aData1,aData2,-aData3,-aData4];
wData 2=[WData1,max(WData1)+WData2(2:length(WData2)),ones(1,length(sData3))*(max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+max(WData1)+m
Data2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                                                                    pData 2=[pData1,pData2,zeros(1,length(tData3)),zeros(1,length(tData4))];
                                                                                                                    fData 2=[fData1,fData2,zeros(1,length(tData3)),zeros(1,length(tData4))];
                                                                                                                    kData 2=[kData1,kData2,kData3,kData4];
                                                                                                                    if(isempty(tData2))
tData 2=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData 2=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                                                                    else
tData 2 = [tData1, tData2 + max(tData1), tData3 + max(tData1) + max(tData2), tData4 + max(tData1) + max(tData2) 
x(tData3);
sData 2=[sData1,sData2+max(sData1),sData3+max(sData1)+max(sData2),sData4+max(sData1)+max(sData2)+
max(sData3)];
                                                                                                                    end
                                                                                                            end
                                                                                   end
                                                               % end
                                                  end
                                 end
                 end
    end
                  w=ws+ws2;
                 if(wt>w)%ȖÈ¡Á½Õ¾×îÓŰÄÄܵÄ×îĐ¡Öµ
                                  wt=w:
                                  T1=t1:
                                  T2=220-t1;
                                  TData1=tData:
                                  TData2=tData 2;
                                  SData1=sData;
                                  SData2=sData 2;
                                  TData=[tData,max(tData)+(T:T:40),tData 2+max(tData)+40];
                                  SData=[sData,max(sData)*ones(1,40/T),sData_2+max(sData)];
                                  NSData=[sData,max(sData)*ones(1,40/T),sData 2];
                                  VDatas=[VData,zeros(1,40/T),VData 2];
                                  VLDatas=[vlData 1,zeros(1,40/T),vlData 2];
```

```
aDatas=[aData,zeros(1,40/T),aData 2];
                         wData=[wData 1,max(wData 1)*ones(1,40/T),wData 2+max(wData 1)];
                        kData=[kData 1,max(kData 1)*ones(1,40/T),kData 2];
                        fData=[fData 1,zeros(1,40/T),fData 2];
                        pData=[pData 1,zeros(1,40/T),pData 2];
                         VM1=Vm;
                         VM2=Vm2;
                         VN1=Vn;
                         VN2=Vn2;
                        UU1=U1:
                        UU2=U2:
                        UU21=U21;
                        UU22=U22;
             end
end
%ÏÔʾĐÅÏ¢
disp(['\times \hat{i}D_i\ddot{I}\hat{u}^o\ddot{A}\ddot{A}\ddot{U}\acute{A}_i\hat{I}^{ai},num2str(wt),'kJ']);
disp(['vm=',num2str(VM1),',vn=',num2str(VN1),',u1=',num2str(UU1),',u2=',num2str(UU2)]);
disp(['\circ^2A'/_2^3\mu\tilde{O}^3/_1^2\alpha^{\circ}]'\tilde{O}\ddot{E}DD\hat{E}\pm 1/4\ddot{a}',num2str(max(T1)),'s',',\circ^2A'/_2^3\mu\tilde{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}\ddot{E}DD\hat{E}\pm 1/4\ddot{a}',num2str(max(TData)),'s',',\circ^2A'/_2^3\mu\tilde{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}\ddot{E}DD\hat{E}\pm 1/_4\ddot{a}',num2str(max(TData)),'s',',\circ^2A'/_2^3\mu\tilde{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}\ddot{E}DD\hat{E}\pm 1/_4\ddot{A}',num2str(max(TData)),'s',',\circ^2A'/_2^3\mu\tilde{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}^3/_4\hat{E}\hat{O}^3/_4\hat{E}\hat{O}^3/_4\hat{E}\hat{O}^3/_4\hat{E}\hat{O}^3/_4\hat{E}\hat{O}^3/_4\hat{E}\hat{O}^3/_4\hat{E}\hat{O}^3/_4\hat{E}\hat{O}^3/_4\hat{E}\hat{O}^3/_4\hat{E}\hat{O}^3/_4\hat{E}\hat{O}^3/_4\hat{E}\hat{O}^3/_4\hat
disp(['C^{\circ}A'^{23}\mu\tilde{O}'^{3}4'a^{\circ}]^{\circ})\tilde{E}DD^{3}4\dot{a}\dot{A}\ddot{e}',num2str(L),'m',',C^{\circ}A'^{23}\mu\tilde{O}'^{3}4\dot{E}\mu'^{4}\dot{E}\dot{O}\ddot{E}DD^{3}4\dot{a}\dot{A}\ddot{e}',num2str(max(SData1)),'m']
disp(['vm=',num2str(VM2),',vn=',num2str(VN2),',u1=',num2str(UU21),',u2=',num2str(UU22)]);
disp(["o\acute{A}'/_2^3\mu \tilde{O}^3/_4^1a^{\circ}]"\hat{O}\ddot{E}DD^3/_4\hat{A}\ddot{A}\ddot{e}',num2str(L2),'m',',"o\acute{A}'/_2^3\mu \tilde{O}^3/_4\hat{E}\mu^1/_4\hat{E}\hat{O}\ddot{E}DD^3/_4\hat{A}\ddot{A}\ddot{e}',num2str(max(SData2)),'m']
%ȾÖÆÍ¼ÐÎ
figure
plot(TData, VDatas); grid on; xlabel('ʱ¼ä/s'), ylabel('˱¼ä/s'), ylabel('˱½km/h'); hold on; plot(TData, VLDatas, 'r'); hold off;
plot(SData, VDatas);grid on;xlabel('3/4àAë/m'),ylabel('ËÙ¶È/km/h');hold on;plot(SData, VLDatas, 'r');hold off;
figure
plot(0:T:(length(aDatas)-1)*T,aDatas);grid on;xlabel('ʱ1/4ä/s'),ylabel('1/4ÓËÙ¶È/m/s^2');
figure
plot(SData,wData);grid on;xlabel('3/4àAë/m'),ylabel('ËÙ¶È/km/h');
figure
plot(TData,wData);grid on;xlabel('ʱ1/4ä/s'),ylabel('ËÙ¶È/km/h');
\%^{1/2}\langle \hat{E}\dot{y}^{3/4}\dot{Y}^{\circ}', \tilde{n}\hat{E}^{1/2}\dot{D}'^{1/2}\omega xls\hat{I}\ddot{A}\mu\mu
len=length(TData);
adata=[0,diff(VDatas)/(3.6*T)];
for i=1:len
             m=floor(TData(i)/60);
             s=mod(TData(i),60);
            if(s<10)
                         tsData\{i\}=['00:0',num2str(m),':0',num2str(s)];
             else
                        tsData\{i\}=['00:0',num2str(m),':',num2str(s)];
             end
str=['A8:A',num2str(7+len)];
xlswrite('µÚÒ»ÌâµÚ¶bÎÊÊāÈëÊý³¼ÝÄ£°å .xlsx',tsData',2,str);
writeData=[zeros(len,5),VDatas'*1e2/3.6,VDatas',adata',NSData',zeros(len,3),kData',zeros(len,1),1e3*fD
ata',pData',zeros(len,1)];
str=['B8:S',num2str(7+len)];
xlswrite('µÚO'»lâµÚ¶bÎÊÊäÈëÊý¾ÝÄ£°å .xlsx',writeData,2,str);
disp(['3]DòÔËĐĐʱ1/4ä',num2str(toc),'s']);
```

```
第二题第一问
function h=Q2 1()%, \dot{u}^3/4\dot{Y}\dot{A}\dot{D}^3\mu\hat{O}\dot{U}, \div \hat{\Pi}\dot{\mu}\ddot{A}\hat{O}\ddot{E}\dot{D}\dot{D}\hat{E}\pm \frac{1}{4}\ddot{a}\pounds - \dot{E}\cdot \hat{\Pi}\dot{A}\frac{1}{2}\dot{A}\frac{3}{4}^3\mu^{\circ 2}\dot{E}\hat{C}\dot{D}\dot{D}\dot{E}\pm \frac{1}{4}\ddot{a}
global T;
E=0;
tic;
sis=[22903 21569
                          20283
                                      18197
                                                 15932
                                                            13594
                                                                        12240
                                                                                   10960
                                                                                              9422
                                                                                                         8429
                                                                                                                     6447
4081
           2806];
ses=[21569 20283
                           18197
                                      15932
                                                 13594
                                                                        10960
                                                                                   9422
                                                                                               8429
                                                                                                                     4081
                                                             12240
                                                                                                          6447
2806
           175];
v0=0;close all;
vmax=80;g=9.8;
T=5:
C=1e-3*3600;\%m/s\times^a \gg \hat{I}^a km/h\mu \ddot{A}\ddot{I}\mu \hat{E}\dot{v}
ds=sis-ses:
Vm=zeros(1,length(ds));
Vn=zeros(1,length(ds));
U1=zeros(1,length(ds));
U2=zeros(1,length(ds));
eGenerate=zeros(1,length(ds));
wdata=zeros(1,length(ds));
td=zeros(1,length(ds));
swdata=[];%<sup>1</sup>/<sub>4</sub>ÇÂ<sup>1</sup>/<sub>4</sub>ÓÅ» μÄ<sup>1</sup>|<sup>0</sup>ıä» Çϕ̈́
m=194.295;
TData=[];
VDatas=[];
SDatas=[];
WDatas=[];
 tDatas=[];
tMin=inf;
VM=load('Vm.mat');
VN=load('Vn.mat');
VM=VM.Vm;
VN=VN.Vn;
UU1=load('UU1.mat');
UU2=load('UU2.mat');
tRun=load('×îÓÅÔËĐĐʱ¼ä.mat');
tRun=tRun.tmean;
UU1=UU1.U1;
UU2=UU2.U2;
st=0;
VLdata=[];
for ti=1:length(ds)
         ws=inf;
                 for u1=UU1(ti):UU1(ti)
                 for u2=UU2(ti):UU2(ti)
                     for vm=VM(ti):VM(ti)
[sData1,tData1,vData1,aData1,WData1,vlData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,sis(ti));%»
ñµÃÇ£Òý¶ÎµÄλÒÆ/ʱ¹/4ä/ËÙ¶ÈÊý³/4Ý
                          W1=max(WData1);
                           if(exitflag1<0)
                                continue:
                           end
                              for vn=VN(ti):VN(ti)
[sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest 1(vn,u2,ses(ti)); %ȖµÃÖÆ¶¬¶ÎµÄλ
ÒÆ/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                                if(exitflag4<0)
                                      continue;
                                end
```

```
[sData3,tData3,vData3,aData3,vlData3,kData3,exitflag3]=getBaseDrag 2(max(vData1),vn,ses(ti)+max(sData4))
                                                         if(exitflag3<0)
                                                                   continue;
                                                         L=sis(ti)-ses(ti);
if(t2 < 0)
                                                                   continue;
                                                         end
                                                         t=max(tData1)+t2+max(tData3)+max(tData4);
                                                         s2=t2*max(vData1)/C;
                                                         vData2=max(vData1)*ones(1,floor(t2/T));
                                                         aData2=zeros(1,floor(t2/T)-1);
                                                         tData2=T:T:t2;
                                                         sData2=max(vData1)*tData2/C;
[WData2,vlData2,pData2,fData2,kData2,exitflag2]=getConstW(vData2,sis(ti)-max(sData1));%ȖȡѲº½¶ÎËù×ö
μŦ
                                                         if(exitflag2<0)
                                                                   continue;
                                                         end
                                                          W2=max(WData2);
                                                         W=W1+W2;
                                                         ddt=abs(t-tRun(ti));
                                                         if(ddt \le T)
                                                                   if(ws>W)
                                                                             ti
                                                                             ws=W;
                                                                             U1(ti)=u1;
                                                                             U2(ti)=u2;
                                                                             Vm(ti)=vm;
                                                                             Vn(ti)=vn;
                                                                             S1=max(sData1);
                                                                             S2=s2;
                                                                             S3=max(sData3);
                                                                             S4=max(sData4);
WData{ti}=[WData1,max(WData1)+WData2(2:length(WData2)),ones(1,length(sData3))*(max(WData1)+max(
WData2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                              VData{ti}=[vData1,vData2,vData3,vData4];
                                                                             vld{ti}=[vlData1,vlData2,vlData3,vlData4];
%
                                                                                    VLdata=[VLdata,vld];
                                                                              aData{ti}=[aData1,aData2,-aData3,-aData4];
                                                                              if(isempty(tData2))
                                                                                       tmax=max(tData4)+max(tData1)+max(tData3);
tData{ti}=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData{ti}=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                             else
                                                                                       tmax=max(tData4)+max(tData1)+max(tData3)+max(tData2);
tData\{ti\} = [tData1, tData2 + max(tData1), tData3 + max(tData1) + max(tData2), tData4 + max(tData1) + max(tData2) + max(tData2
max(tData3)];
sData\{ti\}=[sData1,sData2+max(sData1),sData3+max(sData1)+max(sData2),sData4+max(sData1)+max(sData2)\}
```

```
+max(sData3)];
                                                                                                             end
                                                                                                             if(ti>1)
                                                                                                                           sData{ti}=sData{ti}+max(sData{ti-1});
                                                                                                                            WData\{ti\}=WData\{ti\}+max(WData\{ti-1\});
                                                                                                              end
                                                                                                             wdata(ti)=ws;
                                                                                                             st=st+tmax;
                                                                                                                td(ti)=tmax;
                                                                                                              %±£′æ¸Ã¶ÎμÄÖÆ¶¯Ê±¼ä¶Î½Úμã/ÔÙÉúÄÜÁ¦ÒÔ¼°¹⁰Äʱ¼ä
                                                                                                              if(ti>1)
                                                                                                                           tData{ti}=tData{ti}+max(tData{ti-1});
                                                                                                                           tDrag{ti}=[tmax-max(tData4)+st,tmax+st];
                                                                                                                           tLoss\{ti\}=[min(tData1)+st,max(tData1)+max(tData2)+st];
                                                                                                             else
                                                                                                                           tDrag{ti}=[tmax-max(tData4),tmax];
                                                                                                                            tLoss\{ti\}=[min(tData1),max(tData1)+max(tData2)];
                                                                                                             end
                                                                                                             [vl,r,k] = getRoadCon(ses(ti) + max(sData4)); \% \\  \\ \tilde{n} \dot{E}_i \ddot{O} \mathcal{A}_i^{-} \hat{\Pi} \dot{\mu} \ddot{A} \mathcal{E} \hat{A}_i^{-} \dot{E}_i \dot{A} \dot{A}_i^{-} \dot{E}_i^{-} \dot{A}_i^{-} \dot{E}_i^{-} \dot{A}_i^{-} \dot{A}_i
Emesh=0.5*m*min(vData3)^2/3.6^2-m*g*max(sData4)*sin(pi*k/180);%¼ÆËãÖÆ¶¶ÎÁĐ³μ»úĐμÄÜμļõĐ
 ;Á¿£¬×¢Òâ·û°Å
                                                                                                             eGenerate(ti)=(Emesh-Ef)*0.95;
                                                                                               end
                                                                                 end
                                                                   end
                                                     end
                                      end
                         end
                         if(ti==length(ds))
                                       WDatas=[WDatas,WData{ti}];
                                       SDatas=[SDatas,sData{ti}];
                                       VDatas=[VDatas,VData{ti}];
%
                                                tDatas=[tDatas,tData{ti}];
                                           VLdata=[VLdata,vld{ti}];
                                       d=tData\{ti\}+35*(ti-1);
                                       tDatas=[tDatas,d];
                         else
                                       SDatas=[SDatas,sData{ti},max(sData{ti})*ones(1,35/T-1)];
                                       WDatas=[WDatas, WData{ti}, max(WData{ti})*ones(1,35/T-1)];
                                       VDatas=[VDatas, VData{ti}, zeros(1,35/T-1)];
                                       VLdata=[VLdata,vld{ti},zeros(1,35/T-1)];
                                       a=T:T:30;
                                       b=max(tData\{ti\}+35*(ti-1))*ones(1,30/T);
                                       c=a+b;
                                       d=tData\{ti\}+35*(ti-1);
                                       tDatas=[tDatas,d,c];
                         end
 end
    disp(['^3]D) \hat{O} \hat{E}DD \hat{E} \pm \frac{1}{4} \hat{a}', num 2 str(toc), 's']);
    disp(['×ÜÄܰÄ',num2str(sum(wdata)),'kJ']);
 figure
plot(tDatas)
        figure
```

```
plot(SDatas,VDatas);grid on;xlabel('λÒÆ/m'),ylabel('ËÙ¶È/km/h');hold on; plot(SDatas,VLdata,'r');grid on;xlabel('λÒÆ/m'),ylabel('ËÙ¶È/km/h');hold off;
```

```
figure
 plot(tDatas,SDatas);grid on;xlabel('ʱ¼ä/s'),ylabel('λÒÆ/m');
 figure
 plot(tDatas, VDatas); grid on; xlabel('ʱ'/4ä/s'), ylabel('ËÙ¶È/km/h');
 figure
 plot(SDatas, WDatas); grid on; xlabel('λÒÆ/m'), ylabel('110 Ä/kJ');
 plot(tDatas, WDatas); grid on; xlabel('ʱ1/4ä/s'), ylabel('110 Ä/kJ');
 sd=SDatas;%'æ'¢°óÁ¾³μμÄλÒÆ/ËÙ¶ÈÊý¾Ý
 vd=VDatas;
\%\pm\pounds'æÁг\mu^{1}'oĶΣ¬ÖÆ¶¯¶ÎÊ\pm\frac{1}{4}ä\muãÒÔ\frac{1}{4}°¶ÔÓ\frac{1}{4}°¶ÔÓ\frac{1}{4}ÄÖÙÉúÄÜÁ;
saveData{1}=tDrag;
saveData{2}=tLoss;
saveData{3}=eGenerate;
saveData{4}=td;
save('ÔÙÉúÄÜÁ¿.mat','saveData');
L0=150;%3搡3¤¶È
N=50;
for tInter=250:5:6000
      failure=0;
     bias=tInter/T;
      newVLdata=[];
           for ii=bias+1:N+bias
           L=abs(sd(ii)-sd(ii-bias))-L0;\%\times\phiÔâ\mathring{O}^{a1}/4\tilde{O}È¥\mathring{A}\mathring{D}^{3}\mu^{3}\square¶È
           if(L<0)
                 failure=1;
                 break;
           end
           VL=sqrt(2*L);\%\times^a \gg \hat{I}^a km/h*3.6
           vl=VLdata(ii-bias);
           VL=min([vl,VL]);
           if(vd(ii-bias)>VL)
                 failure=1;
                 break;
           end
           newVLdata=[newVLdata,VL];
      end
      if(failure==0)
           tMin=tInter;
           figure
 plot(tDatas(1:N),newVLdata,'r');grid on;xlabel('ʱ¼ä'),ylabel('ËÙ¶È/km/h');hold
on;plot(tDatas(1:N),vd(1:N));hold off;legend('\(\bar{\text{IPE}\dot\)','\(\hat{\text{E}}\mu^1\delta\bar{\text{EE}\dot\}\bar{\text{PE}}'\);
           break;
      end
end
%¼ÆËãÔÙÉúÄÜÁ¿
H=[];Es=[];
h = [605]
            660
                    660
                             660
                                     640];
E=GetE(0,h,5);
Es=[Es,E];
H=[H;h];
h = [645]
            660
                    645
                             660
                                     615];
E=GetE(0,h,5);
Es=[Es,E];
```

```
H=[H;h];
h=[645
          645
                 645
                       645
                              645];
E=GetE(0,h,5);
Es=[Es,E];
H=[H;h];
h0 = [645]
          645
                  645
                        645
                               645];
%Ëæ»ú²úÉú·¢³\mu¹¼ä¸ôÊý³¼Ý
for i=1:18
   a=ceil(rand(1,2)*5);
   t=ceil(rand()*15);
   h(a(1))=h0(a(1))+t;
   h(a(2))=h0(a(2))-t;
   E=GetE(0,h,5);
   Es=[Es,E];
   H=[H;h];
end
H=[H,Es'];
xlswrite(^{10}ÄÓë·\phi^3\mu^{1/4}ä,ô.xls',H);
第二题第二问主程序
function Q2 2()
global T;
clc;
tic;
sis=[22903 21569
                     20283
                               18197
                                        15932
                                                 13594
                                                          12240
                                                                   10960
                                                                            9422
                                                                                     8429
                                                                                              6447
4081
         2806];
ses=[21569 20283
                      18197
                               15932
                                        13594
                                                 12240
                                                          10960
                                                                   9422
                                                                            8429
                                                                                     6447
                                                                                              4081
2806
         175];
v0=0;close all;
vmax=80;g=9.8;
T=5;
C=1e-3*3600;%m/s×^{a}»»\hat{I}^{a}km/hµÄϵÊý
ds=sis-ses;
Vm=zeros(1,length(ds));
Vn=zeros(1,length(ds));
U1=zeros(1,length(ds));
U2=zeros(1,length(ds));
eGenerate=zeros(1,length(ds));
wdata=zeros(1,length(ds));
td=zeros(1,length(ds));
swdata=[];%½Ç½ÓÅ» μĽöıä» Çé¿ö
m=194.295;
TData=[];
VDatas=[];
SDatas=[];
WDatas=[];
 tDatas=[];
tMin=inf;
VM=load('Vm.mat');
VN=load('Vn.mat');
VM=VM.Vm;
VN=VN.Vn;
UU1=load('UU1.mat');
UU2=load('UU2.mat');
tRun=load('×îÓÅÔËĐĐʱ¼ä.mat');
tRun=tRun.tmean;
UU1=UU1.U1;
UU2=UU2.U2;
st=0;
```

```
VLdata=[];
 for ti=1:length(ds)
                                  ws=inf;
                                                           for u1=UU1(ti):UU1(ti)
                                                          for u2=UU2(ti):UU2(ti)
                                                                        for vm=VM(ti):VM(ti)
[sData1,tData1,vData1,aData1,WData1,vIData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,sis(ti));%»
ñµÃÇ£Òý¶ÎµÄλÒÆ/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                                                                                           W1=max(WData1);
                                                                                           if(exitflag1<0)
                                                                                                              continue;
                                                                                           end
                                                                                                    for vn=VN(ti):VN(ti)
[sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest(vn,u2,ses(ti)); %ȖµÃÖÆ¶¯¶ÎµÄλÒ
Æ/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                                                                                                              if(exitflag4<0)
                                                                                                                                continue:
                                                                                                              end
[sData3, tData3, vData3, aData3, vData3, kData3, exitflag3] = getBaseDrag\_2(max(vData1), vn, ses(ti) + max(sData4))
                                                                                                              if(exitflag3<0)
                                                                                                                                 continue;
                                                                                                              end
                                                                                                              L=sis(ti)-ses(ti);
if(t2 < 0)
                                                                                                                                 continue;
                                                                                                             t=max(tData1)+t2+max(tData3)+max(tData4);
                                                                                                              s2=t2*max(vData1)/C;
                                                                                                              vData2=max(vData1)*ones(1,floor(t2/T));
                                                                                                              aData2=zeros(1,floor(t2/T)-1);
                                                                                                              tData2=T:T:t2;
                                                                                                              sData2=max(vData1)*tData2/C;
[WData2,vlData2,pData2,fData2,kData2,exitflag2] = getConstW(vData2,sis(ti)-max(sData1)); \% \\ ) \\ \tilde{\mathbb{E}}\dot{\mathbb{N}}^{20} \\ / \hat{\mathbb{E}}\dot{\mathbb{D}}^{20} \\ / \hat{\mathbb{E}}\dot{\mathbb{D}}\dot{\mathbb{D}}^{20} \\ / \hat{\mathbb{E}}\dot{\mathbb{D}}\dot{\mathbb{D}}^{20} \\ / \hat{\mathbb{E}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}\dot{\mathbb{D}}
\mu \ddot{A}^{1}
                                                                                                              if(exitflag2<0)
                                                                                                                                 continue;
                                                                                                              end
                                                                                                              W2=max(WData2);
                                                                                                              W=W1+W2;
                                                                                                              ddt=abs(t-tRun(ti));
                                                                                                              if(ddt \le T)
                                                                                                                                 if(ws>W)
                                                                                                                                                    ws=W;
                                                                                                                                                    U1(ti)=u1;
                                                                                                                                                    U2(ti)=u2;
                                                                                                                                                     Vm(ti)=vm;
                                                                                                                                                     Vn(ti)=vn;
                                                                                                                                                    S1=max(sData1);
                                                                                                                                                    S2=s2;
                                                                                                                                                   S3=max(sData3);
                                                                                                                                                    S4=max(sData4);
```

```
WData\{ti\} = [WData1, max(WData1) + WData2(2:length(WData2)), ones(1, length(sData3)) * (max(WData1) + max(MData1) + max(MData1
WData2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                                                                       VData{ti}=[vData1,vData2,vData3,vData4];
                                                                                                                      vld{ti}=[vlData1,vlData2,vlData3,vlData4];
%
                                                                                                                                 VLdata=[VLdata,vld];
                                                                                                                       aData{ti}=[aData1,aData2,-aData3,-aData4];
                                                                                                                       if(isempty(tData2))
                                                                                                                                     tmax=max(tData4)+max(tData1)+max(tData3);
tData{ti}=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData{ti}=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                                                                      else
                                                                                                                                     tmax=max(tData4)+max(tData1)+max(tData3)+max(tData2);
tData\{ti\} = [tData1, tData2 + max(tData1), tData3 + max(tData1) + max(tData2), tData4 + max(tData1) + max(tData2) + max(tData2
max(tData3)];
sData\{ti\}=[sData1,sData2+max(sData1),sData3+max(sData1)+max(sData2),sData4+max(sData1)+max(sData2)\}
+max(sData3)];
                                                                                                                      end
                                                                                                                      if(ti>1)
                                                                                                                                     sData{ti}=sData{ti}+max(sData{ti-1});
                                                                                                                                      WData{ti}=WData{ti}+max(WData{ti-1});
                                                                                                                       end
                                                                                                                      wdata(ti)=ws;
                                                                                                                      st=st+tmax;
                                                                                                                         td(ti)=tmax;
                                                                                                                       %±£´æ¸Ã¶ÎμÄÖÆ¶¯Ê±¼ä¶Î½Úμã/ÔÙÉúÄÜÁ¦ÒÔ¼°¼°Ä˱¼ä
                                                                                                                       if(ti>1)
                                                                                                                                      tData{ti}=tData{ti}+max(tData{ti-1});
                                                                                                                                      tDrag\{ti\}=[tmax-max(tData4)+st,tmax+st];
                                                                                                                                      tLoss\{ti\}=[min(tData1)+st,max(tData1)+max(tData2)+st];
                                                                                                                       else
                                                                                                                                     tDrag\{ti\}=[tmax-max(tData4),tmax];
                                                                                                                                      tLoss\{ti\}=[min(tData1),max(tData1)+max(tData2)];
                                                                                                                      [vl,r,k]=getRoadCon(ses(ti)+max(sData4));%ȖÈ¡ÖÆ¶¶µÄÆÂ¶È
Emesh=0.5*m*min(vData3)^2/3.6^2-m*g*max(sData4)*sin(pi*k/180);%¼ÆЁãÖÆ¶¶ÎÁгµ»úеÄܵļõĐ
¡Á¿£¬×¢Òâ·û°Å
                                                                                                                       eGenerate(ti)=(Emesh-Ef)*0.95;
                                                                                                      end
                                                                                       end
                                                                        end
                                                         \quad \text{end} \quad
                                         end
                          end
                           if(ti==length(ds))
                                          WDatas=[WDatas,WData{ti}];
                                          SDatas=[SDatas,sData{ti}];
                                          VDatas=[VDatas,VData{ti}];
%
                                                    tDatas=[tDatas,tData{ti}];
                                              VLdata=[VLdata,vld{ti}];
                                          d=tData\{ti\}+35*(ti-1);
                                          tDatas=[tDatas,d];
```

```
else
            SDatas=[SDatas,sData{ti},max(sData{ti})*ones(1,35/T-1)];
            WDatas=[WDatas,WData{ti},max(WData{ti})*ones(1,35/T-1)];
            VDatas=[VDatas, VData{ti}, zeros(1,35/T-1)];
            VLdata=[VLdata,vld{ti},zeros(1,35/T-1)];
            a=T:T:30;
            b=max(tData\{ti\}+35*(ti-1))*ones(1,30/T);
            c=a+b;
            d=tData\{ti\}+35*(ti-1);
            tDatas=[tDatas,d,c];
        end
end
%¼ÆËãÔÙÉúÄÜÁ¿£¬·ÖÎå¶Î½øĐĐ¼ÆËã
nn=[8,15,5,15,5];
h{1}=342*ones(1,21);
h{2}=131*ones(1,41);
h{3}=355*ones(1,86);
h{4}=133*ones(1,54);
h{5}=355*ones(1,38);
E=[];
for i=1:5
    ht=0;
    for j=1:i-1
         ht=ht+sum(h\{j\});
    e = GetE(0,h\{i\},nn(i));
    E=[E,e];
end
WE=240*sum(wdata)-sum(E);%¼ÆËãÊμ¼ÊΪû°Ä¹¦°Ä
%²úÉúËæ»úʱ¼ä¶ÎµÄÔÙÉúÄÜÁ¿
cNum=[21,41,86,54,38];
tNum=[7200 5400 30600 7200 13500];
 hn=round(tNum./cNum);
 wdatas=[sum(E)];LN=cNum;
for ii=1:18
   a=ceil(rand(1,2)*5);
   n=ceil(rand()*5);
   cNum(a(1))=cNum(a(1))+n;
   cNum(a(2))=cNum(a(2))-n;
   hn=round(tNum./(cNum));
   for cn=1:length(cNum)
       h\{cn\}=hn(cn)*ones(1,cNum(cn));
   end
   E=0;
    for i=1:length(cNum)
     ht=0;
       for j=1:i-1
             ht=ht+sum(h\{j\});
       end
      e=GetE(0,h\{i\},nn(i));
     E=E+e;
   wdatas=[wdatas,E];
   LN=[LN;cNum];
end
LN=[LN,wdatas'];
xlswrite('¹¹ºÄÓë³µÊý.xls',LN);
```

```
disp(['3]D)ODEDDE\pm \frac{1}{4}a',num2str(toc),'s']);
 disp(['ÔÙÉúÄÜÁ¿',num2str(sum(E)),'kJ']);
 disp(['\hat{E}\mu^{1/4}\hat{E}\ddot{A}\ddot{U}^{\circ}\ddot{A}',num2str(WE),'kJ']);
第三题第一问主要程序
function Q3 1()
clc;close all;
NUM=3;\%\ddot{O}.\P"\tilde{N}\acute{O}^{3}\dot{U}^{3}\mu\pm\grave{a}^{o}\mathring{A}^{1}/\!\!\!\!/^{o}\tilde{O}^{3}/\!\!\!\!/\grave{I}"^{o}\mathring{A}
SNUM=4;
h = [645]
           660
                   645
                                   615];%·\phi^3 \mu^{1/4} \ddot{a},ô
                           660
global T;
E=0;
tic;
sis=[22903 21569
                         20283
                                    18197
                                              15932
                                                         13594
                                                                    12240
                                                                              10960
                                                                                         9422
                                                                                                   8429
                                                                                                              6447
4081
          2806];
ses=[21569 20283
                                                                    10960
                                                                               9422
                                                                                         8429
                                                                                                              4081
                         18197
                                    15932
                                               13594
                                                         12240
                                                                                                    6447
2806
          175];
v0=0;close all;
vmax=80;g=9.8;
T=1;
C=1e-3*3600;\%m/s\times^a»»\hat{I}^akm/hµ\ddot{A}\ddot{I}\mu\dot{E}\dot{y}
ds=sis-ses;
Vm=zeros(1,length(ds));
Vn=zeros(1,length(ds));
U1=zeros(1,length(ds));
U2=zeros(1,length(ds));
eGenerate=zeros(1,length(ds));
wdata=zeros(1,length(ds));
td=zeros(1,length(ds));
swdata=[];%½Ç¼ÓÅ»¯μļöı仯Çé;ö
m=194.295;
TData=[];
VDatas=[];
SDatas=[];
WDatas=[];
tDatas=[];
tMin=inf;
VM=load('Vm.mat');
VN=load('Vn.mat');
VM=VM.Vm;
VN=VN.Vn;
UU1=load('UU1.mat');
UU2=load('UU2.mat');
tRun=load('×îÓÅÔËĐĐʱ¼ä.mat');
tRun=tRun.tmean:
UU1=UU1.U1;
UU2=UU2.U2;
st=0;SMAX1=0;
VLdata=[];
WT=inf;
U1=zeros(1,2);U2=zeros(1,2);S1=zeros(1,2);S2=zeros(1,2);S3=zeros(1,2);S4=zeros(1,2);
 %¹¼ÆËã³õʹ¼¹½á¹û
 vvm=[72,64];
 vvn=[35,38];
 for ti=0:1
           ws=inf;
          for u1=0.9:0.1:0.9
                for u2=0.9:0.1:1
                     for vm=vvm(ti+1):vvm(ti+1)
```

```
[sData1,tData1,vData1,aData1,WData1,vIData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,sis(ti+SN
UM));%ȖµÃÇ£Òý¶ÎµÄλÒÆ/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                                                       W1=max(WData1);
                                                       if(exitflag1<0)
                                                                   continue;
                                                       end
                                                       for vn=vvn(ti+1):vvn(ti+1)
[sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest(vn,u2,ses(ti+SNUM)); %ȖµÃÖÆ¶¶
 Ī̂μÄλÒÆ/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                                                                   if(exitflag4<0)
                                                                             continue;
                                                                   end
[sData3,tData3,vData3,vData3,vIData3,kData3,exitflag3]=getBaseDrag 2(max(vData1),vn,ses(ti+SNUM)+max(
sData4));
                                                                   if(exitflag3<0)
                                                                             continue:
                                                                   L=sis(ti+SNUM)-ses(ti+SNUM);
if(t2 < 0)
                                                                             continue;
                                                                   end
                                                                   t=max(tData1)+t2+max(tData3)+max(tData4);
                                                                   s2=t2*max(vData1)/C;
                                                                   vData2=max(vData1)*ones(1,floor(t2/T));
                                                                   aData2=zeros(1,floor(t2/T)-1);
                                                                   tData2=T:T:t2;
                                                                   sData2=max(vData1)*tData2/C;
[WData2,vlData2,pData2,fData2,kData2,exitflag2] = getConstW(vData2,sis(ti+SNUM)-max(sData1)); \% ) \\ \tilde{E}_i \tilde{N}^{20} = getConstW(vData2,sis(ti+SNUM)-max(sData1)); % \\ \tilde{E}_i \tilde{N}^{20} = getConstW(vData1,sis(ti+SNUM)-max(sData1)); % \\ \tilde{E}_i \tilde{N}^{20} = getCons
½¶ÎËù×öµÄ¹¦
                                                                   if(exitflag2<0)
                                                                             continue;
                                                                   end
                                                                   W2=max(WData2);
                                                                   W=W1+W2:
                                                                   ddt=abs(t-tRun(ti+SNUM));
                                                                   if(ddt \le T)
                                                                             if(ws>W)
                                                                                        U1(ti+1)=u1;
                                                                                        U2(ti+1)=u2;
                                                                                        Vm(ti+1)=vm;
                                                                                        Vn(ti+1)=vn;
                                                                                        ws=W;
                                                                                        S1(ti+1)=max(sData1);
                                                                                        S2(ti+1)=s2;
                                                                                        S3(ti+1)=max(sData3);
                                                                                        S4(ti+1)=max(sData4);
WData{ti+1}=[WData1,max(WData1)+WData2(2:length(WData2)),ones(1,length(sData3))*(max(WData1)+ma
x(WData2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                                        VData{ti+1}=[vData1,vData2,vData3,vData4];
                                                                                        vld{ti+1}=[vlData1,vlData2,vlData3,vlData4];
                                                                                                                                                                                      VLdata=[VLdata,vld];
                                                                                        aData\{ti+1\}=[aData1,aData2,-aData3,-aData4];
```

```
if(isempty(tData2))
                                                                                                                                     tmax=max(tData4)+max(tData1)+max(tData3);
tData\{ti+1\}=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData\{ti+1\}=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                                                                                      tmax=max(tData4)+max(tData1)+max(tData3)+max(tData2);
tData\{ti+1\} = [tData1, tData2 + max(tData1), tData3 + max(tData1) + max(tData2), tData4 + max(tData1) + max(tData2)\}
+max(tData3)];
sData\{ti+1\}=[sData1,sData2+max(sData1),sData3+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sD
a2)+max(sData3)];
                                                                                                                       end
                                                                                                                       if(ti>0)
                                                                                                                                     sData\{ti+1\}=sData\{ti+1\}+max(sData\{ti+1-1\});
                                                                                                                                      WData\{ti+1\}=WData\{ti+1\}+max(WData\{ti+1-1\});
                                                                                                                       end
                                                                                                                       wdata(ti+1)=ws;
                                                                                                                       st=st+tmax;
                                                                                                                       %±£'æ,öÎμÄÖÆ¶¯Ê±¼ä¶Î½Úμã/ÔÙÉúÄÜÁ¦ÒÔ¼°¹៉ºÄʱ¼ä
                                                                                                                       if(ti>0)
                                                                                                                                      tData\{ti+1\}=tData\{ti+1\}+max(tData\{ti+1-1\});
                                                                                                                                     tDrag\{ti+1\}=[tmax-max(tData4)+st,tmax+st];
                                                                                                                                     tLoss\{ti+1\}=[min(tData1)+st,max(tData1)+max(tData2)+st];
                                                                                                                       else
                                                                                                                                     tDrag\{ti+1\}=[tmax-max(tData4),tmax];
                                                                                                                                      tLoss\{ti+1\}=[min(tData1),max(tData1)+max(tData2)];
[vl,r,k]=getRoadCon(ses(ti+SNUM)+max(sData4));%ȖÈ¡ÖÆ¶¶µÄÆÂ¶È
Emesh=0.5*m*min(vData3)^2/3.6^2-m*g*max(sData4)*sin(pi*k/180);%¼ÆЁãÖÆ¶¶ÎÁгµ»úеÄܵļõĐ
 ¡Á¿£¬×¢Òâ·û°Å
                                                                                                                       eGenerate(ti+1)=(Emesh-Ef)*0.95;
                                                                                                        end
                                                                                         end
                                                                          end
                                                           end
                                             end
                              end
                end
                w=sum(wdata);
                if(WT>w)
                               WT=w;
                              vdata1=[VData{1},VData{2}];
                              sdata1=[sData\{1\},sData\{2\}];
                              tdata1=[tData\{1\},tData\{2\}];
                               wdata1=[WData\{1\},WData\{2\}];
 disp(['vm=',num2str(Vm(1)),',vn=',num2str(Vn(1)),',s1=',num2str(S1(1)),',s2=',num2str(S2(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(
(1)),',s4=',num2str(S4(1)),',u1=',num2str(U1(1)),',u2=',num2str(U2(1))]);
disp(['vm=',num2str(Vm(2)),',vn=',num2str(Vn(2)),',s1=',num2str(S1(2)),',s2=',num2str(S2(2)),',s3=',num2str(S3
(2), ', s4=', num2str(S4(2)), ', u1=', num2str(U1(2)), ', u2=', num2str(U2(2))]);
 disp(['3]D)ODEDDE\pm 1/4a',num2str(toc),'s']);
 disp(['\tilde{O}\dot{v}^3\pounds\tilde{D}\tilde{D}\hat{E})^{10}\ddot{A}',num2str(WT),'kJ']);
```

```
%1/4ÆËãÓÅ»¯1/2á1û
 vvm=[79,69];
 vvn=[38,38];
WT=inf
for dt=7:1:7
     dt
     tic;
     tti = [-dt - 10 + dt];
     for ti=0:1
         ws=inf;
         for u1=0.9:0.1:0.9
              for u2=1:0.1:1
                   %for vm=vvm(ti+1):vvm(ti+1)
                        for vm=45:vmax
[sData1,tData1,vData1,aData1,WData1,vIData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,sis(ti+SN
UM));%ȖµÃÇ£Òý¶ÎµÄλÒÆ/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                       W1=max(WData1);
                       if(exitflag1<0)
                            continue;
                       end
                         for vn=20:vm
%
                           for vn=vvn(ti+1):vvn(ti+1)
[sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest(vn,u2,ses(ti+SNUM)); %ȖµÃÖÆ¶¶
ÎμÄλÒÆ/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                            if(exitflag4<0)
                                 continue;
[sData3,tData3,vData3,vData3,vData3,vData3,vData3,exitflag3]=getBaseDrag 2(max(vData1),vn,ses(ti+SNUM)+max(
sData4));
                            if(exitflag3<0)
                                 continue;
                            end
                            L=sis(ti+SNUM)-ses(ti+SNUM);
t2 = (L-max(sData1)-max(sData3)-max(sData4)) *C/max(vData1); \% \tilde{n}\mu\tilde{A}\tilde{N}^{201}/2 \hat{n}\mu\tilde{A}\hat{1}) \tilde{O} \mathcal{E}/\hat{E} \pm \frac{1}{4}\ddot{a}/\ddot{E}\tilde{U}\tilde{n}\hat{E}\hat{E}\dot{v}^3/4\dot{Y}
                            if(t2 < 0)
                                 continue;
                            end
                            t=max(tData1)+t2+max(tData3)+max(tData4);
                            s2=t2*max(vData1)/C;
                            vData2=max(vData1)*ones(1,floor(t2/T));
                            aData2=zeros(1,floor(t2/T)-1);
                            tData2=T:T:t2;
                            sData2=max(vData1)*tData2/C;
½¶ÎËù×öµÄ¹¦
                            if(exitflag2<0)
                                 continue;
                            end
                            W2=max(WData2);
                            W=W1+W2;
                            ddt=abs(t-tRun(ti+SNUM)-tti(ti+1));
                            if(ddt \le T)
                                 if(ws>W)
                                      ws=W;
                                      U1(ti+1)=u1;
```

```
U2(ti+1)=u2;
                                                                                                                                Vm(ti+1)=vm;
                                                                                                                                Vn(ti+1)=vn;
                                                                                                                                ws=W;
                                                                                                                                S1(ti+1)=max(sData1);
                                                                                                                                S2(ti+1)=s2;
                                                                                                                                S3(ti+1)=max(sData3);
                                                                                                                                S4(ti+1)=max(sData4);
 WData{ti+1}=[WData1,max(WData1)+WData2(2:length(WData2)),ones(1,length(sData3))*(max(WData1)+ma
x(WData2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                                                                                VData{ti+1}=[vData1,vData2,vData3,vData4];
                                                                                                                                vld{ti+1}=[vlData1,vlData2,vlData3,vlData4];
                                                                                                                                                                                                                                                                      VLdata=[VLdata,vld];
                                                                                                                                aData\{ti+1\}=[aData1,aData2,-aData3,-aData4];
                                                                                                                                if(isempty(tData2))
                                                                                                                                               tmax=max(tData4)+max(tData1)+max(tData3);
tData\{ti+1\}=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData\{ti+1\}=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                                                                                else
                                                                                                                                                tmax=max(tData4)+max(tData1)+max(tData3)+max(tData2);
tData\{ti+1\} = [tData1, tData2 + max(tData1), tData3 + max(tData1) + max(tData2), tData4 + max(tData1) + max(tData2), tData4 + max(tData2) + max(tData2), tData4 + max(tData2),
 +max(tData3)];
sData\{ti+1\}=[sData1,sData2+max(sData1),sData3+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sData1)+max(sD
a2)+max(sData3)];
                                                                                                                                end
                                                                                                                                if(ti>0)
                                                                                                                                               sData\{ti+1\}=sData\{ti+1\}+max(sData\{ti+1-1\});
                                                                                                                                                WData\{ti+1\}=WData\{ti+1\}+max(WData\{ti+1-1\});
                                                                                                                                end
                                                                                                                                wdata(ti+1)=ws;
                                                                                                                                st=st+tmax;
                                                                                                                                \%\pm\pounds'æ,\tilde{A}\P\hat{I}\mu\ddot{A}\ddot{O}E\P^-\hat{E}\pm\frac{1}{4}\ddot{a}\P\hat{I}\frac{1}{2}\acute{U}\mu\tilde{a}/\hat{O}\grave{U}\acute{E}\acute{u}\ddot{A}\ddot{U}\acute{A}|\grave{O}\hat{O}^{1}\frac{4}{4}^{\circ 1}|\mathring{o}\ddot{A}\hat{E}\pm\frac{1}{4}\ddot{a}
                                                                                                                                if(ti>0)
                                                                                                                                               tData\{ti+1\}=tData\{ti+1\}+max(tData\{ti+1-1\});
                                                                                                                                               tDrag\{ti+1\}=[tmax-max(tData4)+st,tmax+st];
                                                                                                                                                tLoss\{ti+1\}=[min(tData1)+st,max(tData1)+max(tData2)+st];
                                                                                                                                               tDrag\{ti+1\}=[tmax-max(tData4),tmax];
                                                                                                                                               tLoss\{ti+1\}=[min(tData1),max(tData1)+max(tData2)];
                                                                                                                                end
[vl,r,k]=getRoadCon(ses(ti+SNUM)+max(sData4));%ȖÈ¡ÖÆ¶¯¶îµÄÆÂ¶È
 Emesh=0.5*m*min(vData3)^2/3.6^2-m*g*max(sData4)*sin(pi*k/180);%¼ÆËãÖÆ¶¯¶ÎÁĐ³μ»úĐμÄÜμļõĐ
 ¡Á¿£¬×¢Òâ·û°Å
                                                                                                                                eGenerate(ti+1)=(Emesh-Ef)*0.95;
                                                                                                                end
                                                                                                end
                                                                               end
                                                                end
                                                \quad \text{end} \quad
                                end
                 end
```

```
w=sum(wdata);
                  if(WT>w)
                                    WT=w;
                                    TT=tti;
                                    vdata2=[VData{1},VData{2}];
                                    sdata2=[sData{1},sData{2}];
                                    SMAX1=max(sData\{1\});
                                    tdata2=[tData{1},tData{2}];
                                    wdata2=[WData{1},WData{2}];
disp(\lceil 'vm=',num2str(Vm(1)),',vn=',num2str(Vn(1)),',s1=',num2str(S1(1)),',s2=',num2str(S2(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str
(1)),',s4=',num2str(S4(1)),',u1=',num2str(U1(1)),',u2=',num2str(U2(1))]);
disp(['vm=',num2str(Vm(2)),',vn=',num2str(Vn(2)),',s1=',num2str(S1(2)),',s2=',num2str(S2(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(S3(2)),',s3=',num2str(
(2), s4=', num2str(S4(2)), u1=', num2str(U1(2)), u2=', num2str(U2(2)));
                   disp(['\mu Y'\hat{I}^3]\dot{D}\dot{O}\ddot{E}\dot{D}\dot{D}\dot{E}\pm \frac{1}{4}\ddot{a}',num2str(toc),'s']);
disp(['\ddot{E} \ll \hat{I} \tilde{N} \acute{O} \hat{E} \pm D D \hat{E})^{1} \ddot{A}', num2str(WT), 'kJ']);
disp(['3]DòÔËĐĐʱ1/4ä',num2str(toc),'s']);
%¼ÆËãµ¥¶ÎÓÅ»¯½á¹û
WT=inf
for dt=10:1:10
                  dt
                  tic;
                  tti=[-dt -10+dt];
                  for ti=0:1
                                    ws=inf:
                                    for u1=0.9:0.1:0.9
                                                      for u2=0.9:0.1:1
                                                                        %for vm=vvm(ti+1):vvm(ti+1)
                                                                                              for vm=45:vmax
[sData1,tData1,vData1,aData1,WData1,vlData1,pData1,fData1,kData1,exitflag1]=getAccst(v0,vm,u1,sis(ti+SN
UM));%ȖµÃÇ£Òý¶ÎµÄλÒÆ/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                                                                                          W1=max(WData1);
                                                                                          if(exitflag1<0)
                                                                                                            continue;
                                                                                          end
                                                                                              for vn=20:vm
%
                                                                                                      for vn=vvn(ti+1):vvn(ti+1)
[sData4,tData4,vData4,aData4,Ef,vlData4,kData4,exitflag4]=getReducest(vn,u2,ses(ti+SNUM)); %ȖµÃÖÆ¶¶
 ÎμÄλÒÆ/ʱ¼ä/ËÙ¶ÈÊý¾Ý
                                                                                                            if(exitflag4<0)
                                                                                                                             continue:
                                                                                                            end
[sData3,tData3,vData3,aData3,vlData3,kData3,exitflag3]=getBaseDrag 2(max(vData1),vn,ses(ti+SNUM)+max(
sData4));
                                                                                                            if(exitflag3<0)
                                                                                                                             continue;
                                                                                                            L=sis(ti+SNUM)-ses(ti+SNUM);
```

```
if(t2<0)
                                                                     continue;
                                                           end
                                                           t=max(tData1)+t2+max(tData3)+max(tData4);
                                                           s2=t2*max(vData1)/C;
                                                           vData2=max(vData1)*ones(1,floor(t2/T));
                                                           aData2=zeros(1,floor(t2/T)-1);
                                                           tData2=T:T:t2;
                                                           sData2=max(vData1)*tData2/C;
[WData2,vlData2,pData2,fData2,kData2,exitflag2]=getConstW(vData2,sis(ti+SNUM)-max(sData1));%\tilde{E}_{i}\tilde{N}^{20}
½¶ÎËù×öµÄ¹¦
                                                           if(exitflag2<0)
                                                                     continue;
                                                           end
                                                           W2=max(WData2);
                                                           W=W1+W2:
                                                           ddt=abs(t-tRun(ti+SNUM)-tti(ti+1));
                                                           if(ddt \le T)
                                                                     if(ws>W)
                                                                              ws=W;
                                                                              U1(ti+1)=u1;
                                                                              U2(ti+1)=u2;
                                                                              Vm(ti+1)=vm;
                                                                              Vn(ti+1)=vn;
                                                                              ws=W;
                                                                              S1(ti+1)=max(sData1);
                                                                              S2(ti+1)=s2;
                                                                              S3(ti+1)=max(sData3);
                                                                              S4(ti+1)=max(sData4);
WData{ti+1}=[WData1,max(WData1)+WData2(2:length(WData2)),ones(1,length(sData3))*(max(WData1)+ma
x(WData2)),ones(1,length(sData4))*(max(WData1)+max(WData2))];
                                                                              VData{ti+1}=[vData1,vData2,vData3,vData4];
                                                                              vld{ti+1}=[vlData1,vlData2,vlData3,vlData4];
                                                                                                                                                                 VLdata=[VLdata,vld];
                                                                              aData\{ti+1\}=[aData1,aData2,-aData3,-aData4];
                                                                              if(isempty(tData2))
                                                                                        tmax=max(tData4)+max(tData1)+max(tData3);
tData\{ti+1\}=[tData1,tData2,tData3+max(tData1),tData4+max(tData1)+max(tData3)];
sData\{ti+1\}=[sData1,sData2,sData3+max(sData1),sData4+max(sData1)+max(sData3)];
                                                                              else
                                                                                        tmax=max(tData4)+max(tData1)+max(tData3)+max(tData2);
tData\{ti+1\}=[tData1,tData2+max(tData1),tData3+max(tData1)+max(tData2),tData4+max(tData1)+max(tData2)\}
+max(tData3)];
sData\{ti+1\} = [sData1, sData2 + max(sData1), sData3 + max(sData1) + max(sData2), sData4 + max(sData1) + max(sDat
a2)+max(sData3)];
                                                                              end
                                                                              if(ti>0)
                                                                                        sData\{ti+1\}=sData\{ti+1\}+max(sData\{ti+1-1\});
                                                                                         WData\{ti+1\}=WData\{ti+1\}+max(WData\{ti+1-1\});
                                                                              end
```

```
wdata(ti+1)=ws;
                                                                                       st=st+tmax:
                                                                                       \%\pm\pounds'æ,\tilde{A}\P\hat{I}\mu\ddot{A}\ddot{O}E\P^-\hat{E}\pm\frac{1}{4}\ddot{a}\P\hat{I}\frac{1}{2}\acute{U}\mu\tilde{a}/\hat{O}\grave{U}\acute{E}\acute{u}\ddot{A}\ddot{U}\acute{A}|\grave{O}\hat{O}^{1}4^{\circ1}|^{o}\ddot{A}\hat{E}\pm\frac{1}{4}\ddot{a}
                                                                                       if(ti>0)
                                                                                                  tData\{ti+1\}=tData\{ti+1\}+max(tData\{ti+1-1\});
                                                                                                  tDrag\{ti+1\}=[tmax-max(tData4)+st,tmax+st];
                                                                                                  tLoss\{ti+1\}=[min(tData1)+st,max(tData1)+max(tData2)+st];
                                                                                       else
                                                                                                  tDrag\{ti+1\}=[tmax-max(tData4),tmax];
                                                                                                  tLoss\{ti+1\}=[min(tData1),max(tData1)+max(tData2)];
                                                                                       end
[vl,r,k]=getRoadCon(ses(ti+SNUM)+max(sData4));%ȖÈ¡ÖÆ¶¬¶ÎµÄÆÂ¶È
Emesh=0.5*m*min(vData3)^2/3.6^2-m*g*max(sData4)*sin(pi*k/180);%¼ÆËãÖÆ¶¯¶ÎÁĐ³μ»úĐμÄÜμļõĐ
 ¡Á¿£¬×¢Òâ·û°Å
                                                                                       eGenerate(ti+1)=(Emesh-Ef)*0.95;
                                                                            end
                                                                 end
                                                      end
                                           end
                                 end
                     end
           end
            w=sum(wdata);
           if(WT>w)
                      WT=w;
                      vdata3=[VData{1},VData{2}];
                      sdata3=[sData{1},sData{2}];
                      SMAX1=max(sData\{1\}):
                      tdata3=[tData{1},tData{2}];
                      wdata3=[WData{1},WData{2}];
disp(['vm=',num2str(Vm(1)),',vn=',num2str(Vn(1)),',s1=',num2str(S1(1)),',s2=',num2str(S2(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(S3(1)),',s3=',num2str(
(1)),',s4=',num2str(S4(1)),',u1=',num2str(U1(1)),',u2=',num2str(U2(1))]);
disp(['vm=',num2str(Vm(2)),',vn=',num2str(Vn(2)),',s1=',num2str(S1(2)),',s2=',num2str(S2(2)),',s3=',num2str(S3
(2), ', s4=', num2str(S4(2)), ', u1=', num2str(U1(2)), ', u2=', num2str(U2(2))]);
            disp(['\mu Y'\hat{I}^3]D\hat{O}\ddot{E}DD\hat{E}\pm \frac{1}{4}\ddot{a}',num2str(toc),'s']);
disp(['\mu + \hat{I}\tilde{N}O\hat{E} \pm D + \hat{E})^{1}\hat{A}', num2str(WT), kJ']);
tRun(SNUM:SNUM+1)=tRun(SNUM:SNUM+1)+TT;
figure
plot(sdata1,vdata1);grid on;xlabel('¾àÀë/m'),ylabel('ËÙ¶È/km/h');hold on;plot(sdata2,vdata2,'r');grid
on;xlabel('3/4àAë/m'),ylabel('ËÙ¶È/km/h');plot(sdata3,vdata3,'v');grid
on;xlabel('3/4àAë/m'),ylabel('ËÙ¶È/km/h');hold off;
legend('Õý³£ĐĐʻ·Ïß','Ë«¶Î»Ö, 'ÑÓʱ','µ¥¶Î»Ö, 'ÑÓʱ');
% figure
% plot(sDatas, VDatas); grid on; xlabel('3/4à Aë/m'), ylabel('ËÙ TÈ/km/h');
save('ÔËĐĐʱ¼ä.mat','tRun');
disp(['3]D) \hat{O} \hat{E}DD \hat{E} \pm \frac{1}{4} \hat{a}', num2 str(toc), 's']);
disp(['×ÜÄܰÄ',num2str(sum(wdata)),'kJ']);
```