

Transistors à effet de champ: Labo $2\,$

AL-ZUBAIDI Ahmed, DUSPEAUX Antoine, RONDIA Arthur $13 \ {\rm novembre} \ 2024$

1 Partie A: Etude DC

- 1.1 Simulations Multisim
- 1.1.1 Simulation DC-Sweep
- 1.1.2 Evaluation des courbes et zones
- 1.1.3 Mesures à partir de la courbe
- 1.2 Manipulations physiques
- 1.2.1 Tableau des caractéristiques DC
- 1.2.2 Circuit sur breadboard
- 1.2.3 Courbe V_{ds}/V_{Id}
- 1.2.4 Evaluation pour $V_{GS} = 4$, 4.5 et 5 V
- 1.2.5 Courbes V_{ds}/V_{Id} pour différents V_{gs}
- 1.2.6 Evaluation des R_{ds} et I_{ds} des courbes et zones
- 1.2.7 Courbe de transfert $V_{\rm gs}/V_{\rm Id}$ avec $V_{\rm ds}=10~{
 m V}$
- 1.2.8 Evaluation de $V_{\rm th}$ et $g_{\rm m}$

2 Partie B: Etude AC

- 2.1 Simulations Multisim
- 2.1.1 Simulation transitoire de $V_{\mathbf{G}}$, $V_{\mathbf{D}}$ et $V_{\mathbf{1}}$
- 2.1.2 Description des imperfections dues aux capacités parasites
- 2.1.3 Constats pour $R_2 = 100$
- 2.1.4 Constats pour $R_2 = 100k$, $R_1 = 10$
- 2.1.5 Estimation du courant maximum de charge de C_{gs} et C_{gd}
- ${\bf 2.1.6}$ Simulation du courant $I_{\bf g}$ et comparaison au développement théorique
- 2.2 Manipulations physiques
- 2.2.1 Circuit sur breadboard
- 2.2.2 Mesure à l'oscilloscope des tensions $V_{\mathbf{G}}, V_{\mathbf{1}}$ et $V_{\mathbf{D}}, V_{\mathbf{1}}$ et comparaison aux simulations
- 2.2.3 Mesure à l'oscilloscope de $V_{\mathbf{G}}$ et $V_{\mathbf{D}}$ pour démontrer les effets capacitifs parasites

3 Conclusion