Table 1: solutions to ternary differential equations

differetial equation	differetial inclusion	classical solution	caratheodory solution	Filippov solution
$\dot{x} = \begin{cases} 1 & \text{if } x < 0 \\ a & \text{if } x = 0 \\ -1 & \text{if } x > 0 \end{cases}$	$\dot{x} \in \mathcal{F}(x) = \begin{cases} 1 & \text{if } x < 0 \\ [-1,1] & \text{if } x = 0 \\ -1 & \text{if } x > 0 \end{cases}$	Only when $a = 0$, classical solution exists. The maximal classical solution is $ \begin{aligned} &1. &\text{if } x(0) > 0, x_1(t) = x(0) - t, t < x(0) \\ &2. &\text{if } x(0) < 0, x_2(t) = x(0) + t, t < -x(0) \\ &3. &\text{if } x(0) = 0, x_3(t) = 0, t \in [0, \infty) \end{aligned} $	Only when $a=0$, caratheodory solution exists. The maximal classical solution is $1. \ \text{if } x(0)>0, x_1(t)=\max(x(0)-t,0), t\in[0,\infty)\\ 2. \ \text{if } x(0)<0, x_2(t)=\min(x(0)+t,0), t\in[0,\infty)\\ 3. \ \text{if } x(0)=0, x_3(t)=0, t\in[0,\infty)\\ \text{Note:} \text{These only absolutely continuous (not continuously differentiable)}$	Whatever the value of a is, the Filippov solution is $1. \ \text{if } x(0)>0, x_1(t)=\max(x(0)-t,0), t\in \\ [0,\infty)\\ 2. \ \text{if } x(0)<0, x_2(t)=\min(x(0)+t,0), t\in \\ [0,\infty)\\ 3. \ \text{if } x(0)=0, x_3(t)=0, t\in [0,\infty)$
$\dot{x} = \begin{cases} -1 & \text{if } x < 0 \\ a & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$	$\dot{x} \in \mathcal{F}(x) = \begin{cases} -1 & \text{if } x < 0 \\ [-1,1] & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$	From $x = x(0) \neq 0$, classical solution exists as 1. $x_1(t) = x(0) + t$ if $x(0) > 0$ 2. $x_2(t) = x(0) - t$ if $x(0) < 0$ From $x = x(0) = 0$, classical solution exists when $a = 1$ or $a = -1$ 1. when $a = 1$, $x_1(t) = t$, $t \in [0, \infty)$ 2. when $a = -1$, $x_2(t) = -t$, $t \in [0, \infty)$	From $x=x(0)\neq 0$, classical solution exists as 1. $x_1(t)=x(0)+t$ if $x(0)>0$ 2. $x_2(t)=x(0)-t$ if $x(0)<0$. From $x=x(0)=0$, two caratheodory solutions exist for all $a\in\mathbb{R}$ 1. $x_1(t)=t, t\in[0,\infty)$ 2. $x_2(t)=-t, t\in[0,\infty)$ These two solutions only violate the vector field in $t=0$	Filippov solution exists for all $a\in\mathbb{R}$ and $x(0)\in\mathbb{R}$. 1. if $x(0)\geq 0$, $x_1(t)=x(0)+t$, $t\in[0,\infty)$ 2. if $x(0)\leq 0$,, $x_2(t)=x(0)-t$, $t\in[0,\infty)$ Note: When $x(0)=0$, exists two Filippov solutions.
$\dot{x} = \begin{cases} 1 \text{ if } x \neq 0 \\ 0 \text{ if } x = 0 \end{cases}$	$\dot{x} \in \{1\}$	$x=0,t\in [0,\infty)$	two caratheodory solutions: $1. \ x(t)=0, t\in [0,\infty)$ $2. \ x(t)=t, t\in [0,\infty)$	one unique solution: $1. \ x(t)=t, t \in [0,\infty)$

Table 2: conditions of solutions to $\dot{x} = X(x(t))$

	solution	existence	uniqueness
classical	continuously differentiable	$X: \mathbb{R}^d o \mathbb{R}^d$ is continuous	essentially one-sided Lipschitz on $B(x, \varepsilon)$, $^{\scriptscriptstyle 1}$
Filippov	absolutely continuous	$X: \mathbb{R}^d o \mathbb{R}^d$ is measurable and locally essentially bounded	essentially one-sided Lipschitz on $B(x, \varepsilon)$

 $^{^1}$ Every vector field that is locally Lipschitz at x satisfies the one-sided Lipschitz condition on a neighborhood of x, but the converse is not true.