CONVOLUTIONAL NEURAL NETWORK

CONVOLUTIONAL NEURAL NETWORK

- Convolutional Neural Networks (CNNs) are a category of Neural Network that have proven very effective in areas such as image recognition and classification.
- CNNs have been successful in identifying faces, objects and traffic signs apart from powering vision in robots and self driving cars.
- CNNs are also used in Smart Grid applications as well.

CNN ARCHITECTURE

CNN has three types of layers to build architectures apart from input layer:

CONVOLUTIONAL LAYER

 Convolutional Layer: The primary purpose of Convolution is to extract features from the input image. Convolution preserves the spatial relationship between input by learning input features.

Convolution layer output $y = \sum_{i=1}^{n} x * f$

Input Image(x) (nxn)						(fxf)		Output Image (y) (n-f+1) x (n-f+1)		
0	0 1 -1 0 0				737	1 0 1		-2	1	0
0	0	-1	1	0	*	1 0 1 0 1 0	=	0	2	1
0	0	-1	1	1				0	-	
0	1	1	1	0				2	3	2
1	1	1	0	0				1000		

CONVOLUTIONAL LAYER OPERATION

ReLU Layer

ReLU stands for rectified linear unit, and is a type of **activation function**.

$$f(x) = \max(0, x)$$

3	2		2	3
2	1	 →	0	2
1	0		0	1

Input of ReLU

Output of ReLU

Pooling layers

- Pooling layers would reduce the number of parameters when the inputs are too large.
- Pooling also called down sampling which reduces the dimensionality of each map but retains important information.
- There are three types of pooling namely, Max Pooling, Average Pooling, Sum Pooling.

Flatten layer

• The feature matrix will be converted as vector (x1, x2, x3, ...).

Fully Connected layer with ReLU

Fully Connected layer & Softmax Activation

$$O = W_2 A_1 + b_2$$

$$\begin{bmatrix} O_1 \\ O_2 \end{bmatrix} = \begin{bmatrix} 0.2 & 0.1 & 0.5 & 0.5 \\ 0.1 & 0.5 & 0.1 & 0.2 \end{bmatrix} \begin{bmatrix} 8 \\ 7.1 \\ 7.4 \\ 7 \end{bmatrix} + \begin{bmatrix} 0.1 \\ 0.1 \end{bmatrix}$$

$$= \begin{bmatrix} 9.61 \\ 6.49 \end{bmatrix}$$

Softmax Activation:

$$\sigma(O_i) = \frac{e^{o_i}}{\sum e^{o_i}}$$

$$\sigma(O1) = \frac{e^{o1}}{e^{o1} + e^{o2}} = \frac{14913.17}{14913.17 + 658.52} = 0.95$$

$$\sigma(O2) = \frac{e^{o2}}{e^{o1} + e^{o2}} = \frac{658.52}{14913.17 + 658.52} = 0.04$$

STACKED CNN ARCHITECTURE

