Introduction to Forecasting in Data Science

Dr. Khaing S Htun

What is Forecasting?

predict or estimate about the future as accurately as possible with available (historical) data

Some things are easier to forecast than others.

- Exact time of the sun will rise tomorrow morning
- Lottery numbers

The <u>predictability</u> of an event or a quantity <u>depends</u> on <u>several factors</u> including:

- how well we understand the factors that contribute to it
- how much data are available
- whether the forecasts can affect the thing we are trying to forecast.

Is Forecasting Necessary?

Why do we need forecasts?

To make timely decisions

Who makes forecasts?

• Business, households, government, etc.

What are the ingredients for good forecasting?

Good judgment

Is Forecasting Necessary?

What is good judgement?

Ask RIGHT questions!!!

- a. What are we concerned about?
- b. What is the time period to be forecasted?
- c. What is the level of aggregation required?
- d. How much are we willing to spend to acquire information?
- e. Is historical data relevant for the future?
- f. What is the penalty for forecasting inaccuracy?

Forecasting problems occur in many fields

Business and industry

Economics

Finance

Environmental sciences

Social sciences

Political sciences

Short-term forecasts

- Predicting only a few periods ahead (hours, days, weeks)
- Typically, bad on modeling and extrapolating patterns in the data

Medium-term forecasts

One to two years into the future, typically

Long-term forecasts

Several years into the future

Forecasting Problems

Forecasting Methods

Qualitative

- No (relevant) data availability
- Structured approach without using historical data

Quantitative

- Past data availability
- Reasonable to assume from past patterns will continue in the future

Types of Quantitative Forecasting Methods

- 1. Regression Analysis
- 2. Time Series Analysis

Regression Analysis

- Set of statistical methods to estimate the relationships between dependent and independent(s) variables
- Strength of the relationships
- To build regression model
- Variations
 - 1. Linear regression
 - 2. Multiple regression
 - 3. Non-linear regression

the scatterplot between the quarterly sales and the student population of Armand's Pizza restaurants

Time Series Analysis

- Observed sequentially over time at regular intervals of time (hourly, daily, weekly, monthly, quarterly, annually)
- Possible occurrence of irregularly spaced time series
- Estimate how the sequence of observations will continue into the future
- Time series models
 - 1. Decomposition models
 - 2. Exponential smoothing models
 - 3. ARIMA models

Australian quarterly beer production: 1992Q1 – 2010Q2, with two years of forecasts

Forecasting Process

Types of Data

1. Cross-sectional data

collected at a single point in time

Annual Sales (\$ millions) Earnings / Share (\$) **Exchange** Company **Advanced Comm. Systems** OTC 75.10 0.32 **Ag-Chem Equipment Co.** OTC 321.10 0.48 Aztec Manufacturing Co. NYSE 79.70 1.18 Cal-Maine Foods, Inc. OTC 314.10 0.38 **Chesapeake Utilities** NYSE 174.50 1.13 **Dataram Corporation AMEX** 73.10 0.86 OTC 74.00 1.67 **Energy South, Inc.** Gencor Industries, Inc. **AMEX** 263.30 1.96 **Industrial Scientific** OTC 43.50 2.03 **Keystone Consolodated** NYSE 365.70 0.86

2. A time series data

collected at regular intervals over time

Month	Number of VCRs sold
January	123
February	130
March	125
April	138
May	145
June	142
July	141
August	146
September	147
October	157
November	150
December	160