STAT GU4221/GR5221 Homework 1 [100 pts] Due: Monday, February 9th at 11:59pm (ET)

Problem 1

Let $\{X_t : t \in \mathbb{N}\}$ be a stochastic process (or time series) defined by

$$X_t = \sum_{i=1}^t Z_i, \quad t \in \mathbb{N},$$

where $Z_i \sim WN(0, \sigma^2)$.

- 1.i Derive the mean function $\mu_X(t)$ of $\{X_t : t \in \mathbb{N}\}.$
- 1.ii Derive the covariance function $\gamma_X(t,s)$ of $\{X_t:t\in\mathbb{N}\}.$
- 1.iii Derive the correlation function $\rho_X(t,s)$ of $\{X_t:t\in\mathbb{N}\}.$

Problem 2

Let $\{X_t : t \in \mathbb{Z}\}$ be a time series defined by the First-Order Autoregressive Model (AR(1)):

$$X_t = \phi X_{t-1} + Z_t, \quad t \in \mathbb{N},$$

where $Z_t \sim WN(0, \sigma^2), |\phi| < 1.$

- 2.i Derive the variance of $\{X_t\}$.
- 2.ii Show that if $\phi = 1$, the AR(1) is the random walk model (assume that and $X_0 = 0$).

Problem 3

Let $\{X_t : t \in \mathbb{Z}\}$ be a time series defined by the First-Order Moving Average Model (MA(1)):

$$X_t = Z_t + \theta Z_{t-1}, \quad t \in \mathbb{Z},$$

where $Z_t \sim WN(0, \sigma^2)$ and $\theta \in \mathbb{R}$.

- 3.i Derive the mean function $\mu_X(t)$ of $\{X_t : t \in \mathbb{Z}\}$.
- 3.ii Derive the covariance function $\gamma_X(t+h,t)$ of $\{X_t:t\in\mathbb{Z}\}$.
- 3.iii Is $\{X_t : t \in \mathbb{Z}\}$ stationary and why? Does the stationarity of X_t depend on θ ?
- 3.iv Derive the correlation function $\rho_X(h)$ of $\{X_t : t \in \mathbb{Z}\}$.

Problem 4

Consider the csv file HW1_problem4.csv, which includes the realized time series $\{x_t : t = 1, 2, ..., 200\}$. Assume the classical decomposition

$$X_t = m_t + s_t + Y_t,$$

where m_t is the deterministic trend, s_t is the deterministic seasonal component and $\{Y_t\}$ is the de-trended and de-seasonalized time series.

- 4.i Display the raw time series $\{x_t: t=1,2,\ldots,200\}$ in a scatterplot and plot its sample ACF. Do you see any notable features based on these two plots?
- 4.ii De-trend and de-seasonalize $\{x_t\}$, i.e., $y_t \approx x_t \hat{m}_t \hat{s}_t$. Show your resulting residual plot of y_t and its sample ACF. Does this plot show an *iid* error structure and why?
- 4.iii Assume that $\{Y_t\}$ follows an AR(1) process, i.e.,

$$Y_t = \phi Y_{t-1} + Z_t,$$

where $Z_i \stackrel{iid}{\sim} WN(0, \sigma^2)$, $|\phi| \le 1$ and $X_0 = 0$. Compute the ordinary least squares (OLS) estimator of ϕ by regressing $Y[2:200] \sim Y[1:199]$. What is the estimated AR(1) coefficient $\hat{\phi}$?

- 4.iv Estimate the noise variance σ^2 using techniques from your GU4205/GR5205 (or similar) class.
- 4.v Display the sample ACF of the *residuals* of your AR(1) model Y_t . Does this plot show an *iid* error structure and why?

Problem 5 (Expectation exercise)

Let $Z \sim WN(0, \sigma^2)$. Show that $E|Z| \leq \sigma$.

Hint: Apply Jensen's inequality on concave function $h(u) = \sqrt{u}, u \ge 0$. Also note that $|u| = \sqrt{u^2}$

Problem 6

Let $\{X_t : t \in \mathbb{Z}\}$ be a time series defined by:

$$X_t = Z_t Z_{t-1},$$

where $Z_t \sim IID(0, \sigma^2)$.

- 6.i Derive the mean function $\mu_X(t)$ of $\{X_t : t \in \mathbb{Z}\}$.
- 6.ii Derive the covariance function $\gamma_X(t+h,t)$ of $\{X_t:t\in\mathbb{Z}\}.$
- 6.iii Is $\{X_t : t \in \mathbb{Z}\}$ a stationary time series?

Problem 7

Let $\{X_t : t \in \mathbb{Z}\}$ be a time series defined by:

$$X_t = Z_1 cos(\omega t) + Z_2 sin(\omega t)$$

where $Z_1, Z_2 \sim WN(0, 1)$ and ω is a fixed frequency in the interval $[0, \pi]$.

- 7.i Derive the mean function $\mu_X(t)$ of $\{X_t : t \in \mathbb{Z}\}$.
- 7.ii Derive the covariance function $\gamma_X(t+h,t)$ of $\{X_t:t\in\mathbb{Z}\}.$

Hint: Look up the trig identities for cos(A+B) and sin(A+B). Note that this problem requires a lot of "bookkeeping".

- 7.iii Is $\{X_t : t \in \mathbb{Z}\}$ a stationary time series?
- 7.iv Prove that the function $\kappa(h)$ is nonnegative definite, where

$$\kappa(h) = \cos(\omega h), \quad h \in \mathbb{Z}.$$

Hint: Don't over complicate this problem.