- 1. Let $\mathbf{a} = (3, 1)$ and $\mathbf{b} = (-2, 2)$.
 - (a) Make a reasonably large and accurate sketch of these vectors, then guess (estimate) the angle (in degrees) between the vectors.
 - (b) Use the dot product to calculate the angle between the vectors to the nearest tenth of a degree. How good was your estimate?
- 2. Find (to the nearest degree) the angle between vectors $\mathbf{a} = \langle 1, -2, 2 \rangle$ and $\mathbf{b} = \langle -1, 4, 8 \rangle$.
- 3. If **a** and **b** are two non-zero vectors, what is the geometric relationship between the vectors if $\mathbf{a} \cdot \mathbf{b} = 0$?
- 4. The "direction angles" of a non-zero vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ are the angles α , β , and γ that it makes with the vectors $\hat{\imath}$, $\hat{\jmath}$ and $\hat{\mathbf{k}}$, respectively. The "direction cosines" of the vector are the cosines of these angles.
 - (a) Find expressions for the direction cosines of the vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$.
 - (b) How do these expressions relate to the components of the unit vector in the direction of vector **a**?
 - (c) Find the direction cosines of the vector $\mathbf{a} = \langle 2, 6, 3 \rangle$.
 - (d) Find the direction angles (to the nearest degree) of the vector $\mathbf{a} = \langle 2, 6, 3 \rangle$.