Recurrent neural networks: vanishing and exploding gradients are not the end of the story

Nicolas Zucchet

Antonio Orvieto

Motivation

Deep state-space models / RNNs models in practice (Mamba, Griffin, xLSTMs, S4...)

Deep state-space models / recurrent networks in theory

Gu and Dao, COLM 2023; De et al. 2024; Beck et al. 2024; Gu et al. ICLR 2023

Our contributions

- We identify, for the first time, a **critical issue** arising in the training of RNNs. We analyze it theoretically in great details.
- We show that successful RNNs mitigate this issue.
- Our theory precisely captures learning dynamics in a controlled teacher-student task and is a good approximation for more realistic scenarios.

Vanishing and exploding gradients

Backpropagated errors tend to vanish or explode as they are propagated over longer intervals

Hochreiter, Master's thesis 1991; Bengio et al., IEEE trans. neural net. 1994; Hochreiter et al., IEEE 2001; Pascanu et al., ICML 2013.

The curse of memory: intuition

Even if each term decays exponentially fast, the sum (i.e. the gradient) diverges as λ goes to 1.

The curse of memory: theory

Deep SSMs (e.g. S4, S5, LRU) are great for mathematical analysis because their **recurrent update is very simple**.

$$h_{t+1} = \lambda h_t + x_{t+1}$$
 hidden state recurrent parameter input

We can calculate how signals propagate when the time horizon is infinite, and the input distribution is wide-sense stationary.

Deep SSMs (and LSTMs) mitigate the curse of memory

These architectures all features some form of normalization and reparameterization. $h_{t+1} = \lambda(\omega)h_t + \gamma(\lambda)x_{t+1}$

	Normalization	Reparameterization
Deep SSMs	Discretization ODE	Powerful discretization scheme
LSTM	Input gate	Forget gate

Linear teacher – linear student task

Goal: find the simplest setup in which (deep) SSMs outperform vanilla RNNs. A simple teacher-student task is enough!

Key results. 1. The reparametrization strategy **greatly simplifies optimization**. 2. **Modularity** makes it possible for **Adam** to **compensate** for the imperfections of reparametrization.

In the paper: many more analyses + theory explaining this!

More realistic scenarios

Next token prediction task on BERT embeddings (Wiki data).

How to improve RNN training?

Reparameterization cannot work for strongly connected RNNs, let's (re)investigate more elaborate optimizers.

Modularity as a promising direction to improve optimization + nice connections with the brain (cortical columns),