Group Theory Notes

Lance Remigio

June 7, 2024

Contents

1	1 Introduction to Groups				
	1.1	Basic Axioms and Examples	7		

List of Theorems

Chapter 1

Introduction to Groups

1.1 Basic Axioms and Examples

Definition 1.1.1 (Binary Operation). (1) A binary operation \cdot on a set G is a function $\cdot: G \times G \to G$. For any $a, b \in G$, we shall write $a \cdot b$ for $\cdot (a, b)$.

(2) A binary operation \cdot on a set G is **associative** if for all $a, b, c \in G$, we have

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c.$$

(3) If \cdot is a binary operation on a set G we say elements a and b of G commute if $a \cdot b = b \cdot a$. We say \cdot (or G) is commutative if for all $a, b \in G$, $a \cdot b = b \cdot a$.

Suppose we have a binary operation \cdot defined on a set G and H is a subset of G. Then the operations described in the definition above are preserved in H.

Example 1.1.1. (1) + (usual addition) is a commutative binary operation on \mathbb{Z}, \mathbb{R} , or \mathbb{C} .

- (2) \times (usual multiplication) is a commutative binary operation on \mathbb{Z} (or on \mathbb{Q}, \mathbb{R} , or \mathbb{C}).
- (3) (usual subtraction) is a noncommutative binary operation on \mathbb{Z} , where -(a,b) = a b. The map $a \to -a$ is not a binary operation.
- (4) is not a binary operation on \mathbb{Z}^+ (nor $\mathbb{Q}^+, \mathbb{R}^+$) because $a, b \in \mathbb{Z}^+$ with a < b, $a b \notin \mathbb{Z}^+$ that is, does not map $\mathbb{Z}^+ \times \mathbb{Z}^+$ into \mathbb{Z}^+ .
- (5) The vector cross product in \mathbb{R}^3 is a binary operation that is neither commutative nor associative.

Definition 1.1.2 (Groups). A **group** is an ordered pair (G, \cdot) where G is a set and \cdot is a binary operation on G satisfying the following axioms:

- (i) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in G$.
- (ii) There exists an element e in G, called an **identity** of G, such that for all $a \in G$, we have $a \cdot e = e \cdot a = a$.
- (iii) For each $a \in G$, there is an element a^{-1} of G, called an **inverse** of a, such that $a \cdot a^{-1} = a^{-1} \cdot a = e$.

Definition 1.1.3 (Abelian). A group (G, \cdot) is called **abelian** (or **commutative**) if $a \cdot b = b \cdot a$ for all $a, b \in G$.

Definition 1.1.4 (Finite Group). If G is a group, then we call G finite if G is a finite set.

Example 1.1.2. (1) Under the binary operation +, the sets $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} are groups with e = 0 and $a^{-1} = -a$ for all a.

Proposition 1.1.1. If G is a group under the operation \cdot , then

- (1) The identity of G is unique.
- (2) For each $a \in G$, a^{-1} is uniquely determined.
- (3) $(a^{-1})^{-1} = a$ for all $a \in G$.
- $(4) (a \cdot b)^{-1} = (b^{-1}) \cdot (a^{-1})$
- (5) For any $a_1, a_2, \ldots, a_n \in G$ the value of $a_1 \cdot a_2 \cdot \cdots \cdot a_n$ is independent of how the expression is bracketed (this is called the **generalized associative law**).
- **Proof.** (1) Suppose f and g are both identities. Since G is a group under the operation \cdot and g is an identity of G, we have $f \cdot g = f$. Using the same axiom, f is an identity of G. Thus, $g \cdot f = g$. So, $f = f \cdot g = g \cdot f = g$, and the
 - (2) Suppose b and c are both inverses of a and let e be the identity of G. Since b is an inverse of a, we must have $b \cdot a = a \cdot b = e$. Likewise, $c \cdot a = a \cdot c = e$ since c also an inverse of a. We need to show that b = c. Since associativity holds in G, we must have

$$a \cdot b = e \Rightarrow c \cdot (a \cdot b) = c \cdot e$$
$$\Rightarrow (c \cdot a) \cdot b = c \cdot e$$
$$\Rightarrow e \cdot b = c \cdot e$$
$$\Rightarrow b = c.$$

Thus, b = c and we conclude that the multiplicative identity of a is uniquely determined.

- (3) Since $aa^{-1} = a^{-1}a = e$. We can view a^{-1} as the element in question, and state that a is the inverse of a^{-1} . Thus, we can write that $a = (a^{-1})^{-1}$.
- (4) Let $c = (a \cdot b)^{-1}$. Since every element in G contains an inverse, we have

$$(a \cdot b) \cdot c = e. \tag{1}$$

. Since a and b also contain inverses, we must have $a^{-1}a = e$ and $b^{-1}b = e$. Using associativity, we get that

$$a \cdot (b \cdot c) = e$$

and applying the binary operation \cdot to the left-side, we must have

$$b \cdot c = a^{-1}e.$$

Then applying b^{-1} on both sides, we have

$$c = b^{-1}a^{-1}.$$

So, we conclude that $(a \cdot b)^{-1} = b^{-1}a^{-1}$.

(5) Left as an exercise.

Proposition 1.1.2. Let G be a group and let $a, b \in G$. The equation ax = b and ya = b have unique solutions for $x, y \in G$. In particular, the left and right cancellation laws hold in G, i.e,

- (1) If au = av, then u = v, and
- (2) If ub = vb, then u = v.

Proof.

CHAPTER 1. INTRODUCTION TO GROUPS

9