Nirma University

Institute of Technology

Supplementary Examination (SPE), August - 2022
B. Tech. in Computer Science and Engineering, Semester-VI
2CS601 Theory of Computation

Roll /					
Exam I	No.	Super	visor's Initial		
Time: 3		rs with I			
Instructio	ons:	 Attempt all questions Figures to right indicate full marks Assume necessary data. Use section-wise separate answer book. Draw neat sketches wherever necessary. 		Max Mar	ks: 10
		SECTION-I			
Q:1 [CLO3]	Ans	swer the following questions			[18]
A BL-3	(i) (ii)	Give recursive definition for the language of se $\{a,b\}^*$ containing the substring aba Find the language from the recursive definition a . $a \in L$;		ngs in	[06]
B BL-4	Prov	b. For any $x \in L$, xb and xba are in L . We that for every $n \ge 0$, using PMI $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$			[06]
		OR			
B BL-4 C BL-5		any integer a and b with 0<=a <b and="" every="" n="">=1, sible by (b-a). I the regular expression for following language: The language of strings having at most one pair pair of 1's. The language of strings not containing the subs	r of 0's or at n		[06]
Q:2 CLO1]	Ansv	ver the following questions			[18]
A BL-5	(i) (ii)	Draw the DFA for following Regular Expression. (111+100)*0 Find the generated language from given DFA.			[06]

Page 1/4

B Let L₁ and L₂ be language represented by the following automata. Construct DFA representing L1-L2

[06]

C Define δ^* recursively for NFA. Also Find δ^* (1,ab) for the following NFA. Consider $\Sigma = \{a,b\}$

[06]

State q	δ (q,a)	δ (q,b)
1	{1,2}	{1}
2	{3}	{3}
3	{4}	{4}
4	{5}	ф
5	ф	{5}

Q:3 Answer the following questions [CLO2]

[14]

A BL-4 Minimize the following DFA.

[07]

B BL-5 Convert following NFA - A to DFA

[07]

OR

B
BL-4
Assume L1 and L2 languages are recognized by the NFA - \(\lambda \) M1 and M2 [07]
respectively. Define and Construct NFA - \(\lambda \) for Mu, Mc and Mk to recognize the language L1 U L2, L1L2 and L1*. Explain the construction with a neat diagram.

page 2/4

SECTION-II

Q:4 [CLO4]	Answer the following questions	[18]
A BL-4	Find the equivalent CFG for following languages. (i) {ai bi ck i> j or i > k} (ii) Set of all (positive or negative) odd integer. e.g. +123, -243 (Assume terminals = {+,-,0,1,2,3,4,5,6,7,8,9}	[06]
B BL-5	Convert following CFG to CNF (Chomsky Normal Form). S → AACD A →aAb ∧ C →aC a D → aDa bDb ∧	[06]
C BL-5	 Do as Directed (i) Describe the language generated by following grammar S → b S aA ∧ A → aA bB b B → bS (ii) Define an unambiguous grammar. Is following grammar unambiguous? Justify your answer. S → ABA A → aA ∧ B → bB ∧ 	[06]
Q:5	Answer the following questions	[18]

Q:5 Answer the following questions [CLO1,

[18]

CLO3]

A Following table shows the DPDA. Find out the language accepted by DPDA [06] BL-5 where starting state={q0} and accepting state = {q0}

Move	State	Input	Stack	Move(s)
No			Symbol	
1	q0	a	Z0	(qa,Z0)
2	q0	b	Z0	(qb,Z0)
3	qa	a	Z0	(qa,aZ0)
4	qa	a	a	(qa,aa)
5	qa	b	а	(qa, ∧)
6	qa	b	ZO	(q0,Z0)
7	qb	b	ZO	(qb,bZ0)
8	qb	b	b	(qb,bb)
9	qb	a	b	(qb, ∧)
10	qb	a	Z0	(q0,Z0)

B BL-6	Design the NPDA for the language of nonpalindromes over Σ ={a,b}	[06]
B BL-6	OR Design the DPDA for the language $L = \{x \in \{a,b\}^* \mid n_a(x) < 2^*n_b(x)\}$	[06]

page 3/4

Design a top down PDA for the following CFG also trace the string abaabaa [06] C BL-6 $S \rightarrow aAA$ $A \rightarrow aS \mid bS \mid a$ Q:6 Answer the following questions [14] CLO2, CLO41 Design the Turing Machine(TM) for calculating following function f for the A [07]BL-6 string x where $x \in \{a,b\}^*$ f(x) = 0 if x having $n_a(x) = n_b(x)$ f(x) = 1 else B Design the TM for copying the whole string. (eg: i/p string = $\Delta aaba\Delta$ o/p [07]BL-6 string=∆aaba∆aaba∆) OR В Define Regular Language, Context Free Language and Context Sensitive [07] BL-3 Language. State the difference between all the languages in the context of theory of computation and design of automata. Exemplify each language.

page 4/4