

GEOMETRÍA Capítulo 4

APLICACIONES DE LA CONGRUENCIA

MOTIVATING | STRATEGY

APLICACIONES DE LA CONGRUENCIA

TEOREMA DE LA BISECTRIZ

Ejemplo: Del gráfico, calcule x + y.

Por teorema:

$$x = 5$$

$$y = 7$$

$$x+y = 12$$

Nota:

Todo triangulo tiene tres bases medias y cada una es paralela a un lado.

Ejemplo: Del gráfico, halle el valor de y.

 $\frac{\text{Se}}{\text{PQ}}$ observa que

$$12 = \frac{y}{2}$$

$$y = 12$$

APLICACIONES DE LA CONGRUENCIA

TEOREMA DE LA MEDIATRIZ

L: Mediatriz del AB

Nota:

Al tener un triángulo isósceles, se sugiere trazar la **altura** hacia la base para obtener una **mediana** y **bisectriz**.

TEOREMA DE LA MEDIANA RELATIVA A LA HIPOTENUSA

BM: Mediana relativa a la hipotenusa.

Ejemplo: Si BM es mediana, halle el valor de x.

- Luego: AM = BM = MC = 3x
- Entonces: 3x + 3x = 2x+8

$$4x = 8$$

TRIÁNGULOS RECTÁNGULOS NOTABLES

1. En el gráfico, halle BH.

Resolución

- · Piden: BH
- Se traza la altura BP

$$BP = PA = 6$$

Por teorema de la bisectriz

$$BH = BP = 6$$

2. En un triángulo ABC, donde la m $\pm BCA = 40^{\circ}$, la mediatriz de \overline{AC} intersecta a \overline{BC} en P, tal que AB = PC. Halle la m $\pm ABP$.

Resolución

- Piden: x
- Teorema de la mediatriz.
- Se traza PA:

$$PC = PA = a$$

△PAB: isósceles

m4ABP = 80°

3. En el gráfico, halle el valor de x.

Resolución

- Piden: x
- Trazamos MN

MN: base media del ∆ABC.

- $\overline{MN} / \overline{AC}$
- AMNT: isósceles

$$x = 80^{\circ}$$

4. En un triángulo rectángulo ABC recto en B, se ubican los puntos D en \overline{AC} y E en \overline{BC} , tal que: AD = DC = BE y m \not BED = 70°. Halle la m \not EDC.

TEOREMA

BM: Mediana relativa a la hipotenusa.

$$BM = \frac{AC}{2}$$

Resolución

a

- Trazamos BD
- △BDC: isósceles
- △DBE: isósceles
- En el ∆DEC:

$$x + 40^{\circ} = 70^{\circ}$$

$$x = 30^{\circ}$$

$$m \neq EDC = 30^{\circ}$$

5. En el gráfico, AB = 2 y BC = 1. Halle el valor de x.

Resolución

• Piden: x

Trazamos BD

$$BA = BD = 2$$

△ABD: isósceles

 △BCD: notable 30°y 60°

• En el ∆ABD:

$$x + x = 60^{\circ}$$

6. En la figura se observa una antena 5G que está sujeta a dos cables, si BD es bisectriz del ángulo ABC. Halle la medida del ángulo BCD.

Resolución

- Trazamos $\overline{DP} \perp \overline{BC}$

$$DA = DP = a$$

$$BA = BP = b$$

△DPC: notable 45° y 45°

$$x = 45^{\circ}$$

7. En la figura halle la altura del edificio.

- · Piden: h
- Se traza AC

$$DC = AC = 50$$

△ABC: notable de 37° y 53°

h = 40 m