Curvas en \mathbb{R}^2 y \mathbb{R}^3

RESPUESTAS A EJERCICIOS IMPARES AL FINAL.

- **E.1** ¿En qué instantes del intervalo $0 \le t \le \pi$ son los vectores de velocidad y aceleración del movimiento $\vec{r}(t) = \hat{i} + (5\cos t)\hat{j} + (3\sin t)\hat{k}$ perpendiculares?
- **E.2** Sea $\vec{r}: \mathbb{R} \to \mathbb{R}^3$ una trayectoria regular tal que $\vec{r}(t) \neq (0,0,0)$ para todo $t \in \mathbb{R}$.
 - I) Sea $t_0 \in \mathbb{R}$ tal que la curva descrita alcanza su distancia mínima al origen en el punto $\vec{r}(t_0)$. Pruebe que $\vec{r}(t_0)$ es perpendicular a $\frac{d\vec{r}}{dt}(t_0)$.
 - II) Usando lo anterior, hallar los puntos de la trayectoria $\vec{r}(t) = (t+1, 3t-2, 2t-1)$ que se encuentran más cerca del origen. Justifique su respuesta.
- **E.3** Encuentre una parametrización de la curva resultante al intersectar las superficies $x^2 + y^2 = 4$ y $x^2 + z^4 = 4 + y^2$, considerando que $z \ge 0$.
- **E.4** Considérese la hélice descrita por la ecuación vectorial $\vec{r}(t) = a\cos(\omega t)\hat{i} + a\sin(\omega t)\hat{j} + b\omega t\hat{k}$, donde ω es una constante positiva. Demostrar que la recta tangente forma un ángulo constante con el eje z y que el coseno de ese ángulo es $b/\sqrt{a^2+b^2}$.
- **E.5** Sea la curva regular Γ cuya parametrización está dada por $\vec{r}: \mathbb{R}_+ \to \mathbb{R}^3$, $\vec{r}(t) = (a\cos t, b\sin t, \beta(t))$, donde a, b > 0 y $\beta: \mathbb{R} \to \mathbb{R}$. Describa las funciones β que hacen que Γ esté contenida en un plano. Bosqueje la curva resultante bajo estas hipótesis.
- **E.6** Encuentre el valor de las constantes a y b para que la curvatura y la torsión de la curva parametrizada por $\vec{r}(t) = (a\cos(t), a\sin(t), bt)$ coincidan.
- **E.7** Una partícula se mueve en el espacio con vector posición $\vec{r}(t) = t\vec{A} + t^2\vec{B} + 2(\frac{2}{3}t)^{\frac{3}{2}}\vec{A} \times \vec{B}, t \in [0, +\infty[$, donde \vec{A} y \vec{B} son vectores unitarios que forman un ángulo de $\pi/3$. Determinar en cuánto tiempo recorre la partícula una distancia de 12 unidades de longitud de arco desde su posición en t = 0. Especifique además su posición final en el espacio.
- **E.8** Sea C la curva, conocida como tractriz, parametrizada por $\vec{r}:]0, \pi/2[\to \mathbb{R}^2,$ donde

$$\vec{r}(t) = (\sin t, \cos t + \log(\tan(t/2))).$$

Pruebe que la longitud del segmento de la tangente a la curva C que va desde el punto de tangencia a C hasta el eje Y es constante e igual a 1.

E.9 Considere las curva C parametrizada por $\vec{r}(t) = (\cosh t, \sinh t, t)$, $t \in \mathbb{R}_+$. Suponga que, partiendo desde el punto (1,0,0) se recorre una longitud de arco $\sqrt{2}$ sobre la curva. ¿En qué punto nos encontramos?

E.10

- a) Demostrar que en el vértice de una parábola, el radio de curvatura alcanza su valor mínimo.
- b) Dados dos vectores unitarios \vec{A} y \vec{B} que forman un ángulo θ , siendo $0 < \theta < \pi$. La curva con vector posición $\vec{r}(t) = t\vec{A} + t^2\vec{B}$ es una parábola situada en el plano generado por \vec{A} y \vec{B} . Determinar (en función de \vec{A} , \vec{B} y θ) el vector posición del vértice de esa parábola. Puede utilizarse la propiedad de la parábola establecida en la parte a).
- **E.11** Un tramo de un ferrocarril está pendiente de ser construido, y debe unir dos tramos rectos de ferrocarril que pueden ubicarse en un plano cartesiano de tal modo que el primer tramo se encuentra sobre el eje X negativo, terminando en el origen, y el segundo tramo se encuentra sobre la semirrecta $\{(x,x):x\geq 1\}$, a partir de (1,1). Se necesita que el tramo que une los dos tramos rectos complete un ferrocarril cuyo trayecto sea continuo, regular y tenga también curvatura continua. Para conseguir este objetivo, el trayecto a construir debe tener la forma de la gráfica de una función

$$y = Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F.$$

Determine los valores de las constantes A, B, C, D, E, F para que el ferrocarril cumpla con las condiciones requeridas. Justifique.

- **E.12** La astroide es la curva parametrizada por $\vec{r}(t) = (a\cos^3 t, a\sin^3 t)$, con $t \in [0, 2\pi]$ y a > 0. Usando un argumento de simetría, bosqueje la curva y calcule su longitud.
- **E.13** Sea $C \subseteq R^3$ la curva que resulta de intersectar los cilindros de ecuación $x^2 = 1 y$ y $z^2 = y$, con $z \ge 0$.
 - a) Obtener una parametrización $\vec{r}:[a,b]\to\mathbb{R}^3$ de la curva.
 - (ii) Calcular los vectores unitarios \hat{T} , \hat{N} , \hat{B} , la curvatura κ y la torsión τ en el punto (0,1,1).
- E.14 Considere la curva parametrizada por la función

$$\vec{r}(t) = (t, t^2, t^3), \quad t \in \mathbb{R}.$$

- I) Encuentre los planos osculadores a la curva en los puntos $P_1 = \vec{r}(0), P_2 = \vec{r}(1)$ y $P_3 = \vec{r}(2)$.
- II) Pruebe que los tres planos se intersectan simultáneamente en un solo punto Q, y que los 4 puntos P_1, P_2, P_3, Q pertenecen al mismo plano.

Respuestas a impares:

E1.
$$t = 0, t = \frac{\pi}{2}$$
 ó $t = \pi$.

E3.
$$x = 2\cos t, y = 2\sin t, z = 2^{\frac{3}{4}}\sqrt{|\sin t|}, \ 0 \le t \le 2\pi.$$

E5. $\beta(t) = M + N\cos t + P\sin t$. La gráfica de la función vectorial será la elipse de intersección entre el cilindro $x^2 + y^2 = a^2$ y un plano no vertical.

E7. t=3. Posición final: $\vec{r}(3)=3\vec{A}+9\vec{B}+4\sqrt{2}\vec{A}\times\vec{B}$.

E9. $(\sqrt{2}, 1, \ln(1 + \sqrt{2}))$.

E11. A = 3, B = -8, C = 6, D = 0, E = 0, F = 0.

E13. $\vec{T} = (1,0,0), \vec{N} = \frac{1}{\sqrt{5}}(0,-2,-1), \vec{B} = \frac{1}{\sqrt{5}}(0,1,-2), \kappa = \sqrt{5}, \tau = 0.$