Algebraic Geometry Codes

Group 5.239A Martin Sig Nørbjerg

Institute of Mathematics Aalborg University

Linear Error Correcting Codes

Martin Sig Nørbjerg

Coding Theory

Bounds on the Parameters of Codes

Divisors

Goppa Code

Definition 1.1 & 1.5. Let $C \subseteq \mathbb{F}_q^n$ be a linear subspace of dimension k, then C is called a $[n, k]_q$ code. Furthermore if C has minimum distance d, then C is called a $[n, k, d]_q$ code.

Linear Error Correcting Codes

Martin Sig Nørbjerg

Coding Theory

Bounds on the Parameters of Codes

Divisor

Goppa Code

Definition 1.1 & 1.5. Let $C \subseteq \mathbb{F}_q^n$ be a linear subspace of dimension k, then C is called a $[n, k]_q$ code. Furthermore if C has minimum distance d, then C is called a $[n, k, d]_q$ code.

▶ If C has minimum distance d, then it can correct $\lfloor \frac{d-1}{2} \rfloor$ errors but detect d-1 errors.

Martin Sig Nørbjerg

Coding Theory

Bounds on the Parameters 2
of Codes

Divisors

Goppa Codes

Corollary 1.18. Let C be a $[n, k, d]_q$ code, then $d - 1 \le n - k$.

Martin Sig Nørbjerg

Coding Theory

Bounds on the Parameters 2
of Codes

Divisors

Goppa Codes

Corollary 1.18. Let C be a $[n, k, d]_q$ code, then $d - 1 \le n - k$. *Proof:* Let H be a parity check matrix of C.

Martin Sig Nørbjerg

Coding Theory
Bounds on the Parameters 2
of Codes

Divisor

Goppa Codes

Corollary 1.18. Let C be a $[n, k, d]_q$ code, then $d - 1 \le n - k$. *Proof:* Let H be a parity check matrix of C.

 $ightharpoonup dim(C) = dim(null(H)) = k \implies rank(H) = n - k$

Martin Sig Nørbjerg

Coding Theory
Bounds on the Parameters 2
of Codes

Divisors

Goppa Code

Corollary 1.18. Let C be a $[n, k, d]_q$ code, then $d - 1 \le n - k$. *Proof:* Let H be a parity check matrix of C.

- $ightharpoonup dim(C) = dim(null(H)) = k \implies rank(H) = n k$
- ▶ $rank(H) \ge d 1$, by the Proposition 1.16.

Coding Theory

Divisors

Goppa Codes

Definition 2.81 & 2.82. Let \mathcal{X} be an aboslutely irreducible regular projective plane curve, over \mathbb{F}_q .

Coding Theory

Divisors

Goppa Code

Definition 2.81 & 2.82. Let \mathcal{X} be an aboslutely irreducible regular projective plane curve, over \mathbb{F}_q .

ightharpoonup A divisor *D* on \mathcal{X} is a formal sum:

$$D = \sum_{P \in \mathcal{X}} n_P P$$

where $n_P = 0$ for all but a finite number of points $P \in \mathcal{X}$.

Coding Theory

Divisors

Goppa Code

Definition 2.81 & 2.82. Let \mathcal{X} be an aboslutely irreducible regular projective plane curve, over \mathbb{F}_q .

ightharpoonup A divisor *D* on \mathcal{X} is a formal sum:

$$D = \sum_{P \in \mathcal{X}} n_P P$$

where $n_P = 0$ for all but a finite number of points $P \in \mathcal{X}$.

▶ Let $f \in \overline{\mathbb{F}}_q(\mathcal{X}) \setminus \{0\}$, then $(f) := \sum_{P \in \mathcal{X}} v_P(f)P$ is called a principal divisor.

Coding Theory

Divisors

Goppa Code

- **Definition 2.81 & 2.82.** Let \mathcal{X} be an aboslutely irreducible regular projective plane curve, over \mathbb{F}_q .
 - ightharpoonup A divisor *D* on \mathcal{X} is a formal sum:

$$D = \sum_{P \in \mathcal{X}} n_P P$$

where $n_P = 0$ for all but a finite number of points $P \in \mathcal{X}$.

- ▶ Let $f \in \overline{\mathbb{F}}_q(\mathcal{X}) \setminus \{0\}$, then $(f) := \sum_{P \in \mathcal{X}} v_P(f)P$ is called a principal divisor.
 - ▶ $\forall f \in \overline{\mathbb{F}}_q(\mathcal{X}) \setminus \{0\}$ we have deg((f)) = 0 by Proposition 2.83.

Martin Sig Nørbjerg

Coding Theory

Divisors

Goppa Code

Definition 2.84. Let $D \in Div(\mathcal{X})$, then we define the vector space L(D) as:

$$L(D):=\left\{f\in\overline{\mathbb{F}}_q(\mathcal{X})\setminus\{0\}\mid (f)+D \text{ is effective}\right\}\cup\{0\}$$
 and let $\ell(D):=\dim_{\overline{\mathbb{F}}_q}(L(D)).$

Martin Sig Nørbjerg

Coding Theory

Divisors

Goppa Code

Definition 2.84. Let $D \in Div(\mathcal{X})$, then we define the vector space L(D) as:

$$L(D) := \left\{ f \in \overline{\mathbb{F}}_q(\mathcal{X}) \setminus \{0\} \mid (f) + D \text{ is effective} \right\} \cup \{0\}$$

and let $\ell(D) := \dim_{\overline{\mathbb{F}}_{G}}(L(D))$.

Proposition 2.88. (i) Let $D \in Div(\mathcal{X})$, then deg(D) < 0 implies that $\ell(D) = 0$.

Martin Sig Nørbjerg

Coding Theory

Divisors

Goppa Code

Definition 2.84. Let $D \in Div(\mathcal{X})$, then we define the vector space L(D) as:

$$L(D) := \left\{ f \in \overline{\mathbb{F}}_q(\mathcal{X}) \setminus \{0\} \mid (f) + D \text{ is effective} \right\} \cup \{0\}$$

and let $\ell(D) := \dim_{\overline{\mathbb{F}}_a}(L(D))$.

Proposition 2.88. (i) Let $D \in Div(\mathcal{X})$, then deg(D) < 0 implies that $\ell(D) = 0$.

Proof: For all $f \in \overline{\mathbb{F}}_q(\mathcal{X}) \setminus \{0\}$ we have:

$$\deg((f)+D)=\deg((f))+\deg(D)=\deg(D)<0$$

since deg((f)) = 0.

Martin Sig Nørbjerg

Coding Theory

Divisors

Goppa Code

Definition 2.84. Let $D \in Div(\mathcal{X})$, then we define the vector space L(D) as:

$$L(D) := \left\{ f \in \overline{\mathbb{F}}_q(\mathcal{X}) \setminus \{0\} \mid (f) + D \text{ is effective} \right\} \cup \{0\}$$

and let $\ell(D) := \dim_{\overline{\mathbb{F}}_q}(L(D))$.

Proposition 2.88. (i) Let $D \in Div(\mathcal{X})$, then deg(D) < 0 implies that $\ell(D) = 0$.

Proof: For all $f \in \overline{\mathbb{F}}_q(\mathcal{X}) \setminus \{0\}$ we have:

$$\deg((f) + D) = \deg((f)) + \deg(D) = \deg(D) < 0$$

since deg((f)) = 0. Meaning $L(D) = \{0\}$.

Martin Sig Nørbjerg

Coding Theory

Divisors

Goppa Code:

Let \mathcal{X} be a regular projective plane curve of genus g. **Theorem 2.91.** Let $D \in Div(\mathcal{X})$, then for all canonical $W \in Div(\mathcal{X})$ we have

$$\ell(D) - \ell(W - D) = \deg(D) - g + 1$$

Martin Sig Nørbjerg

Coding Theory

Divisors

Let \mathcal{X} be a regular projective plane curve of genus g. **Theorem 2.91.** Let $D \in Div(\mathcal{X})$, then for all canonical $W \in Div(\mathcal{X})$ we have

$$\ell(D) - \ell(W - D) = \deg(D) - g + 1$$

Corollary 2.92. If $\deg(D) > 2g - 2$, then $\ell(D) = \deg(D) - g + 1$.

Martin Sig Nørbjerg

Coding Theory

Divisors

Goppa Code

Let \mathcal{X} be a regular projective plane curve of genus g. **Theorem 2.91.** Let $D \in Div(\mathcal{X})$, then for all canonical $W \in Div(\mathcal{X})$ we have

$$\ell(D) - \ell(W - D) = \deg(D) - g + 1$$

Corollary 2.92. If deg(D) > 2g - 2, then $\ell(D) = deg(D) - g + 1$. *Proof:*

▶ deg(W-D) < 0.

Martin Sig Nørbjerg

Coding Theory

Divisors

Goppa Code

Let \mathcal{X} be a regular projective plane curve of genus g. **Theorem 2.91.** Let $D \in Div(\mathcal{X})$, then for all canonical $W \in Div(\mathcal{X})$ we have

$$\ell(D) - \ell(W - D) = \deg(D) - g + 1$$

Corollary 2.92. If deg(D) > 2g - 2, then $\ell(D) = deg(D) - g + 1$. *Proof:*

- ▶ deg(W-D) < 0.
- $\ell(W-D) = 0$ by Proposition 2.88 (i), combining this with Theorem 2.91 yields the result.

Coding Theory

Goppa Codes

Definition 3.3. Let $P_1, P_2, \dots, P_n \in \mathcal{X}$ be *n* distinct rational points.

Goppa Codes

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Definition 3.3. Let $P_1, P_2, \dots, P_n \in \mathcal{X}$ be *n* distinct rational points.

▶ Let $D = \sum_{i=1}^{n} P_i$ and $G \in Div(\mathcal{X})$ such that $supp(D) \cap supp(G) = \emptyset$.

Coding Theory

Goppa Codes

Definition 3.3. Let $P_1, P_2, \dots, P_n \in \mathcal{X}$ be *n* distinct rational points.

- ▶ Let $D = \sum_{i=1}^{n} P_i$ and $G \in Div(\mathcal{X})$ such that $supp(D) \cap supp(G) = \emptyset$.
- ▶ If $\mathcal{P} := (P_1, P_2, ..., P_n)$, then $\mathcal{C}_{D,G} := E v_{\mathcal{P}}(L(G))$ is called a Goppa Code.

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Theorem 3.5. If $C_{D,G}$ is a $[n,k,d]_q$ code. Then:

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Theorem 3.5. If $C_{D,G}$ is a $[n,k,d]_q$ code. Then:

(i)
$$k = \ell(G) - \ell(G - D)$$
.

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Theorem 3.5. If $C_{D,G}$ is a $[n,k,d]_q$ code. Then:

- (i) $k = \ell(G) \ell(G D)$.
- (ii) $d \ge n \deg(G)$.

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Theorem 3.5. If $C_{D,G}$ is a $[n,k,d]_q$ code. Then:

- (i) $k = \ell(G) \ell(G D)$.
- (ii) $d \ge n \deg(G)$.

Proof:

(i) Follows from the fact that $Ev_{\mathcal{P}} \upharpoonright_{L(G)}$ is a surjective linear map, from L(G) to $\mathcal{C}_{G,\mathcal{D}}$.

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Theorem 3.5. If $C_{D,G}$ is a $[n,k,d]_q$ code. Then:

- (i) $k = \ell(G) \ell(G D)$.
- (ii) $d \ge n \deg(G)$.

Proof:

(i) Follows from the fact that $Ev_{\mathcal{P}} \upharpoonright_{L(G)}$ is a surjective linear map, from L(G) to $\mathcal{C}_{G,\mathcal{D}}$.

$$k = \dim_{\mathbb{F}_a}(image(Ev_{\mathcal{P}})) = \ell(G) - \dim_{\mathbb{F}_a}(ker(Ev_{\mathcal{P}}))$$

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Theorem 3.5. If $C_{D,G}$ is a $[n, k, d]_q$ code. Then:

- (i) $k = \ell(G) \ell(G D)$.
- (ii) $d \ge n \deg(G)$.

Proof:

(i) Follows from the fact that $Ev_{\mathcal{P}} \upharpoonright_{L(G)}$ is a surjective linear map, from L(G) to $\mathcal{C}_{G,D}$.

$$k = \dim_{\mathbb{F}_q}(image(Ev_{\mathcal{P}})) = \ell(G) - \dim_{\mathbb{F}_q}(ker(Ev_{\mathcal{P}}))$$

But $ker(Ev_p) = L(G - D)$ since:

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Theorem 3.5. If $C_{D,G}$ is a $[n, k, d]_q$ code. Then:

- (i) $k = \ell(G) \ell(G D)$.
- (ii) $d \ge n \deg(G)$.

Proof:

(i) Follows from the fact that $Ev_{\mathcal{P}} \upharpoonright_{L(G)}$ is a surjective linear map, from L(G) to $\mathcal{C}_{G,\mathcal{D}}$.

$$k = \dim_{\mathbb{F}_q}(image(Ev_{\mathcal{P}})) = \ell(G) - \dim_{\mathbb{F}_q}(ker(Ev_{\mathcal{P}}))$$

But $ker(Ev_p) = L(G - D)$ since:

► $f \in L(G)$ & $E \vee_{P_i}(f) = 0 \implies \vee_{P_i}(f) \ge 1$ and hence $f \in L(G - D)$. As (f) + G - D is effective.

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Theorem 3.5. If $C_{D,G}$ is a $[n, k, d]_q$ code. Then:

- (i) $k = \ell(G) \ell(G D)$.
- (ii) $d \ge n \deg(G)$.

Proof:

(i) Follows from the fact that $Ev_{\mathcal{P}} \upharpoonright_{L(G)}$ is a surjective linear map, from L(G) to $\mathcal{C}_{G,\mathcal{D}}$.

$$k = \dim_{\mathbb{F}_q}(image(Ev_{\mathcal{P}})) = \ell(G) - \dim_{\mathbb{F}_q}(ker(Ev_{\mathcal{P}}))$$

But $ker(Ev_P) = L(G - D)$ since:

- ► $f \in L(G)$ & $Ev_{\mathcal{P}}(f) = 0 \implies v_{\mathcal{P}_i}(f) \ge 1$ and hence $f \in L(G D)$. As (f) + G - D is effective.
- ▶ $f \in L(G D) \implies f(P) = 0 \forall P \in supp(D)$ as $supp(G) \cap supp(D) = \emptyset$. Meaning $f \in ker(Evp)$.

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Corollary 3.6 (i). If deg(G) < n, then $k = \ell(G)$.

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Corollary 3.6 (i). If deg(G) < n, then $k = \ell(G)$.

Proof: deg(G - D) < 0, the rest follows by Proposition 2.88 (i) and Theorem 3.5 (i).

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Corollary 3.6 (i). If deg(G) < n, then $k = \ell(G)$.

Proof: deg(G-D) < 0, the rest follows by Proposition 2.88 (i) and Theorem 3.5 (i).

Remark 3.7.

▶ $k = \ell(G) \ge \deg(G) - g + 1$ by the Riemann-Roch Theorem 2.91.

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Corollary 3.6 (i). If deg(G) < n, then $k = \ell(G)$.

Proof: deg(G - D) < 0, the rest follows by Proposition 2.88 (i) and Theorem 3.5 (i).

Remark 3.7.

- ► $k = \ell(G) \ge \deg(G) g + 1$ by the Riemann-Roch Theorem 2.91.
- ► Combining this with Theorem 3.5 (ii), we see:

$$d+k \ge \underbrace{(n-\deg(G))}_{>d} + \underbrace{(\deg(G)-g+1)}_{>k} = n-g+1 \tag{1}$$

Martin Sig Nørbjerg

Coding Theory

Goppa Codes

Corollary 3.6 (i). If deg(G) < n, then $k = \ell(G)$.

Proof: deg(G - D) < 0, the rest follows by Proposition 2.88 (i) and Theorem 3.5 (i).

Remark 3.7.

- ▶ $k = \ell(G) \ge \deg(G) g + 1$ by the Riemann-Roch Theorem 2.91.
- ► Combining this with Theorem 3.5 (ii), we see:

$$d+k \ge \underbrace{(n-\deg(G))}_{\ge d} + \underbrace{(\deg(G)-g+1)}_{\ge k} = n-g+1$$
 (1

▶ Combining this with the Singleton Bound we see that $n+1 \ge d+k \ge n-g+1$, and that g=0 implies that $\mathcal{C}_{G,D}$ is an MDS code.

Coding Theory

Goppa Codes

Thank you for listening.