Birkhoff's variety theorem for relative algebraic theories

Yuto Kawase

RIMS, Kyoto University

September 20, 2023. MSJ 2023 Autumn Meeting

- A categorical view of algebras
- 2 4 examples
- Relative algebraic theories
- Birkhoff's variety theorem
- 5 Filtered colimit elimination

Single-sorted algebras

Definition

A (single-sorted) algebra consists of:

- a base set A;
- operators $\sigma \colon A^n \to A \ (n \ge 0)$;
- equations.

Example

A group consists of:

- a base set G:
- operators $e: 1 \to G$, $i: G \to G$, $m: G^2 \to G$;
- \bullet equations $m(e,x)=x=m(x,e), \quad m(x,i(x))=e=m(i(x),x), \\ m(m(x,y),z)=m(x,m(y,z)).$

Multi-sorted algebras

Definition

S: a set. (the set of sorts)

An S-sorted algebra consists of:

- base sets $(A_s)_{s \in S}$ indexed by S;
- operators $\sigma \colon A_{s_1} \times \cdots \times A_{s_n} \to A_s$;
- equations.

Example

A chain complex consists of:

- base sets $(A_n)_{n\in\mathbb{Z}}$;
- operators $0_n \colon 1 \to A_n$, $-_n \colon A_n \to A_n$, $+_n \colon A_n \times A_n \to A_n$, $d_n \colon A_n \to A_{n+1}$;
- appropriate equations.

This is an \mathbb{Z} -sorted algebra.

The free-forgetful adjunctions

$$Alg(\Omega, E)$$

$$F \left(\neg \right) U$$

$$\mathbf{Sot}^{S}$$

 $(\underline{\Omega}, \underline{E})$: an S-sorted algebraic theory.

Finitary monads

Definition

A monad on a category \mathscr{C} consists of:

- an endofunctor $T: \mathscr{C} \to \mathscr{C}$.
- a natural transformation $\eta: \mathrm{Id}_{\mathscr{C}} \Rightarrow T$,
- \bullet a natural transformation $\mu: T^2(:=T\circ T)\Rightarrow T$

such that the following commute.

$$\begin{array}{ccc} T^3 & \xrightarrow{T\mu} & T^2 \\ \mu T \!\!\! \downarrow & & \downarrow \mu \\ T^2 & \xrightarrow{\mu} & T \end{array}$$

Definition

A monad (T, η, μ) is finitary when the functor T preserves filtered colimits.

Linton's theorem

Theorem ([Lin69])

There is an equivalence

$$\mathbf{Th}^S \simeq \mathbf{Mnd_f}(\mathbf{Set}^S).$$

Here,

 \mathbf{Th}^{S} : the category of S-sorted algebraic theories,

 $\mathbf{Mnd_f}(\mathbf{Set}^S)$: the category of finitary monads on \mathbf{Set}^S .

S-sorted algebraic theory = finitary monad on \mathbf{Set}^S

- A categorical view of algebras
- 4 examples
- Relative algebraic theories
- Birkhoff's variety theorem
- 5 Filtered colimit elimination

Algebras over a quiver

Example

A small category consists of:

- a base quiver $\operatorname{mor}\mathscr{C} \xrightarrow{\operatorname{d}} \operatorname{ob}\mathscr{C}$;
- a total operator $id: ob\mathscr{C} \to mor\mathscr{C}$;
- \bullet a partial operator $\circ \colon \mathrm{mor}\mathscr{C} \times \mathrm{mor}\mathscr{C} \to \mathrm{mor}\mathscr{C}$ such that

$$g \circ f$$
 is defined iff $d(g) = c(f)$

which satisfy the following:

- d(id(x)) = x and c(id(x)) = x;
- $d(g \circ f) = d(f)$ and $c(g \circ f) = c(g)$ whenever d(g) = c(f);
- $f \circ id(d(f)) = f$ and $id(c(f)) \circ f = f$;
- $\bullet \ (h \circ g) \circ f = h \circ (g \circ f) \text{ whenever } \mathrm{d}(h) = \mathrm{c}(g) \text{ and } \mathrm{d}(g) = \mathrm{c}(f).$

Small categories are algebras over quivers.

Ordered algebras

Example ([Gol03])

A uniquely difference-ordered semiring consists of:

- a base poset (R, \leq) ;
- total operators $+, \cdot : R \times R \to R$;
- constants $0, 1 \in R$;
- a partial operator \ominus : $R \times R \rightharpoonup R$ such that

$$b \ominus a$$
 is defined iff $a \leq b$

which satisfy the following:

- $(R, +, \cdot, 0, 1)$ is a semiring;
 - $a \le a + b$;
 - $(a+b) \ominus a = b$;
 - $a + (b \ominus a) = b$ whenever $a \le b$.

UDO semirings are algebras over posets.

Partial algebras

Example ([BH12])

A partial abelian group consists of:

- a base set A with a reflexive symmetric relation $\odot \subseteq A \times A$; (a set with commeasurability)
- a constant $0 \in A$;
- a total operator $-: A \to A$;
- ullet a partial operator $+\colon A\times A \rightharpoonup A$ such that

$$a+b$$
 is defined iff $a\odot b$

which satisfy the following:

- *a* ⊙ 0;
- ullet $a\odot(-b)$ whenever $a\odot b$;
- $a \odot (b+c)$ whenever $a \odot b$, $b \odot c$, $c \odot a$;
- (a+b)+c=a+(b+c) whenever $a\odot b$, $b\odot c$, $c\odot a$;
- a + b = b + a whenever $a \odot b$;
- a + 0 = a and $a \odot (-a) = 0$.

Definition

A monoid-graded set is a map $d: X \to M$ from a set X to a monoid (M, \cdot, e) .

Example

A monoid-graded ring consists of:

- ullet a base monoid-graded set (X, d, M, \cdot, e) ;
- ullet a constant $1 \in X$;
- total operators $\otimes : X \times X \to X$, $0: M \to X$, $-: X \to X$; • a partial operator $+: X \times X \rightharpoonup X$ s.t. x + y is defined iff d(x) = d(y)
- which satisfy the following: • d(1) = e, $d(x \otimes y) = d(x)d(y)$, d(0(a)) = a, d(-x) = d(x);
 - d(x + y) = d(x) whenever d(x) = d(y);
 - $(x \otimes y) \otimes z = x \otimes (y \otimes z), \quad 1 \otimes x = x = x \otimes 1;$ • $x + 0(d(x)) = x, \quad x + (-x) = 0(d(x));$
 - \bullet (x+y)+z=x+(y+z) whenever d(x)=d(y)=d(z);
 - (x+y)+z=x+(y+z) whenever d(x)=d(y)=d(z)• x+y=y+x whenever d(x)=d(y);
 - $(x+y) \otimes z = x \otimes z + y \otimes z$ and $z \otimes (x+y) = z \otimes x + z \otimes y$ whenever d(x) = d(y).

- A categorical view of algebras
- 4 examples
- Relative algebraic theories
- Birkhoff's variety theorem
- 5 Filtered colimit elimination

Relative algebraic theories

Informal definition [Kaw23a]

```
A: a (locally presentable) category
```

An *A*-relative algebraic theory consists of:

- a set Ω of partial operators;
- ullet a set E of implications $\cdots (\underbrace{YYY}_{postcondition}$ whenever $\underbrace{XXX}_{precondition})$

such that

- For each operator $\omega \in \Omega$, its domain must be defined by "A's language."
- For each implication in E, its precondition must be written in " $\mathscr A$'s language."

Example

- ullet small categories \leadsto a \mathbf{Quiv} -relative algebraic theory
- UDO semirings → a Pos-relative algebraic theory
- ullet partial abelian groups \leadsto an \mathbf{RSRel} -relative algebraic theory
- ullet monoid-graded rings \leadsto an \mathbf{MGSet} -relative algebraic theory

A generalized Linton's theorem

Theorem ([Kaw23a])

There is an equivalence

 $\mathbf{Th}^{\mathscr{A}} \simeq \mathbf{Mnd_f}(\mathscr{A}).$

Here,

 $\mathbf{Th}^\mathscr{A}\colon$ the category of $\mathscr{A}\text{-relative}$ algebraic theories,

 $\mathbf{Mnd_f}(\mathscr{A})\colon$ the category of finitary monads on $\mathscr{A}.$

↑ generalize

Recall (Linton's theorem)

 $\mathbf{Th}^S \simeq \mathbf{Mnd_f}(\mathbf{Set}^S).$

S-sorted algebraic theory $=\mathbf{Set}^S$ -relative algebraic theory

The free-forgetful adjunction

 (Ω, E) : an S-sorted algebraic theory

$$Alg(\Omega, E)$$
 $Alg(\Omega, E)$

$$F \left(\begin{array}{c} \downarrow \\ \downarrow \\ \end{array} \right) U$$

$$\mathbf{Set}^{S}$$
 \mathscr{A}

 (Ω, E) : an \mathscr{A} -relative algebraic theory

- A categorical view of algebras
- 4 examples
- Relative algebraic theories
- 4 Birkhoff's variety theorem
- 5 Filtered colimit elimination

Equational classes

Definition

 (Ω,E) : a single-sorted algebraic theory. A full subcategory $\mathscr{E}\subseteq Alg(\Omega,E)$ is definable (by equations) if $\mathscr{E}=Alg(\Omega,E+{}^{\exists}E')$, i.e., \mathscr{E} can be defined by adding equations.

Example

 $\{\text{commutative monoids}\}\subseteq \mathbf{Mon}$ is definable by the equation xy=yx.

Example

 $\{\text{invertible monoids}\}\subseteq \mathbf{Mon} \text{ is not definable by equations.}$

How can we prove this?

Birkhoff's variety theorem

Birkhoff's variety theorem [Bir35]

 (Ω,E) : a single-sorted algebraic theory. $\mathscr{E}\subseteq Alg(\Omega,E)$: fullsub.

TFAE:

- $\bullet \ \mathscr{E} \subseteq Alg(\Omega,E) \text{ is definable by equations.}$
- $\mathscr{E} \subseteq Alg(\Omega, E)$ is closed under *products*, *subobjects*, and *quotients*.

closed under products: $A_i \in \mathscr{E} \implies \prod_i A_i \in \mathscr{E}$.

 $\text{closed under subobjects: } B \subseteq A \text{: sub, } A \in \mathscr{E} \implies B \in \mathscr{E}.$

 $\text{closed under quotients: } A \twoheadrightarrow B \text{: surj, } A \in \mathscr{E} \implies B \in \mathscr{E}.$

Corollary

 $\{\mathsf{invertible} \ \mathsf{monoids}\} \subseteq \mathbf{Mon} \ \mathsf{is} \ \mathsf{not} \ \mathsf{definable} \ \mathsf{by} \ \mathsf{equations}.$

Proof.

There is a submonoid $\mathbb{N} \subset \mathbb{Z}$. The additive monoid \mathbb{N} is not invertible even though \mathbb{Z} is invertible. Thus, {invertible monoids} $\subseteq \mathbf{Mon}$ is not closed under subobjects.

A generalized Birkhoff's theorem

Theorem ([Kaw23a])

 (Ω, E) : an \mathscr{A} -relative algebraic theory. $\mathscr{E} \subseteq Alg(\Omega, E)$: fullsub.

TFAE:

- $\mathscr{E} \subseteq Alg(\Omega, E)$ is definable.
- $\mathscr{E} \subseteq Alg(\Omega,E) \text{ is closed under } \textit{products, closed subobjects, U-local retracts,} \\ \text{and } \textit{filtered colimits.}$

single-sorted alg. $(\mathbf{Set}$ -relative alg.)		$\mathscr{A} ext{-relative alg.}$
products	~ →	products
subobjects	~ →	closed subobjects
quotients	~ →	U-local retracts
	~ →	filtered colimits (new)

The filtered colimit elimination problem

Question

Why can the closure property under filtered colimits be eliminated in the case of **Set**-relative algebras?

Answer

The category Set satisfies a "noetherian" condition.

- A categorical view of algebras
- 4 examples
- Relative algebraic theories
- Birkhoff's variety theorem
- 5 Filtered colimit elimination

A noetherian condition for categories

Definition ([Kaw23b])

A category \mathscr{A} satisfies the ascending chain condition (ACC) if it has no chain $A_0 \to A_1 \to A_2 \to \cdots$ of objects such that there is no morphism $A_n \leftarrow A_{n+1}$ for all n.

Definition

- Objects X and Y are strongly connected if there are morphisms $X \to Y$, $Y \to X$.
- An equivalence class under strong connectedness is called a strongly connected component.
- $\sigma(\mathscr{A})$: the large poset of all strongly connected components in a category \mathscr{A} . (the posetification of \mathscr{A})

Proposition

A category $\mathscr A$ satisfies ACC \Leftrightarrow the large poset $\sigma(\mathscr A)$ satisfies ACC.

Filtered colimit elimination

Theorem ([Kaw23b])

 (Ω, E) : an \mathscr{A} -relative algebraic theory. $\mathscr{E} \subseteq Alg(\Omega, E)$: fullsub.

Assume that \mathscr{A} satisfies ACC.

TFAE:

- $\ \ \, \mathscr{E}\subseteq Alg(\Omega,E) \text{ is closed under } \textit{products, closed subobjects, and } U\text{-local } \textit{retracts}$

Example

 $\sigma(\mathbf{Set}) = \{ \text{ the empty set, the non-empty sets } \}.$

 \leadsto Set satisfies ACC. \leadsto fil.colim.elim. holds for single-sorted alg.

Further examples

Example

S: a set.

 \mathbf{Set}^S satisfies ACC \Leftrightarrow S is finite.

- → fil.colim.elim. holds for *finite-sorted algebras*.
- → This generalizes a result in [ARV12].

Example

Pos satisfies ACC.

- → fil.colim.elim. holds for ordered algebras.
- → This generalizes a result in [Blo76].

References

[BH12]

[ARV12] J. Adámek, J. Rosický, and E. M. Vitale. "Birkhoff's variety theorem in many sorts". In: Algebra Universalis 68.1-2 (2012), pp. 39-42. B. van den Berg and C. Heunen. "Noncommutativity as a colimit". In:

G. Birkhoff. "On the structure of abstract algebras". In: Math. Proc. [Bir35] Cambridge Philos. Soc. 31.4 (1935), pp. 433–454. [Blo76] S. L. Bloom. "Varieties of ordered algebras". In: J. Comput. System

Appl. Categ. Structures 20.4 (2012), pp. 393–414.

Sci. 13.2 (1976), pp. 200–212. [Gol03] J. S. Golan. Semirings and Affine Equations over Them: Theory and Applications. Vol. 556. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 2003, pp. xiv+241.

[Kaw23a] Y. Kawase. Birkhoff's variety theorem for relative algebraic theories. 2023. arXiv: 2304.04382. [Kaw23b] Y. Kawase. Filtered colimit elimination from Birkhoff's variety

theorem, 2023, arXiv: 2309,05304. [Lin69] F. E. J. Linton. "An outline of functorial semantics". In: Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67). Springer, Berlin, 1969, pp. 7–52.

l.f.p. category	Objects	Number of srg.conn. components	satisfaction of ACC
Set	sets	2	true
Pos	posets	2	true
Mon	monoids	1	true
\mathbf{Grp}	groups	1	true
$\mathbf{A}\mathbf{b}$	abelian groups	1	true
\mathbf{SGrp}	semigroups	infinity	false
Ring	rings	infinity	false
\mathbf{SLat}	(join-)semilattices	2	true
${f SLat_0}$	bounded (join-)semilattices	1	true
\mathbf{Lat}	lattices	2	true
$\mathbf{Lat_{0,1}}$	bounded lattices	infinity	false
\mathbf{Set}^n	n-sorted sets	2^n	true
\mathbf{Set}^S	S-sorted sets (S : an infinite set)	infinity	false
\mathbf{Set}_*	pointed sets	1	true
n/\mathbf{Set}	sets with n constants	the $n ext{-th}$ Bell number	true
S/\mathbf{Set}	sets with S -indexed constants $(S: \text{ an infinite set})$	infinity	false
\mathbf{End}	sets with an endomorphism	infinity	false
Idem	sets with an idempotent endomorphism	2	true
\mathbf{Aut}	sets with an automorphisms	infinity	false

I.f.p. category	Objects	Number of srg.conn.	satisfaction of ACC
		components	
Quiv	quivers (or directed graphs)	infinity	false
\mathbf{RQuiv}	reflexive quivers	2	true
Cat	small categories	2	true
$\mathbf{Set}^{\rightarrow}$	maps	3	true
Cospan	cospans of sets	6	true
$\mathbf{Set}^{\omega^{\mathrm{op}}}$	ω^{op} -chains of sets	infinity	false
\mathbf{Set}^{ω}	ω-chains of sets	infinity	true
$\mathbf{Set}^{\Delta^{\mathrm{op}}}$	simplicial sets	2	true
$\mathbf{Set}^{\mathbb{G}^{\mathrm{op}}}$	globular sets	infinity	false
Nom	nominal sets	infinity	false
URel	sets with an unary relation	3	true
BRel	sets with a binary relation	infinity	false
SRel	sets with a symmetric relation	infinity	false
RSRel	sets with a reflexive symmetric relation	2	true
PER	sets with a symmetric transitive relation	3	true
\mathbf{PreOrd}	preordered sets	2	true
ERel	sets with an equivalence relation	2	true