

Разработка универсального семантического энкодера текстов для русского языка

Выполнил: Малашенко Б. Т.

Научный руководитель: Мухин М. С.

Соруководитель: Спирин Е. С.

2/14

Что такое эмбеддинги и зачем они нужны

Энкодер переводит текст в скрытое пространство векторов фиксированной размерности, называемых эмбеддингами.

Они наследуют семантические отношения исходных текстов. Похожие по смыслу предложения будут ближе друг к другу в скрытом пространстве, чем противоположные по смыслу.

Такая структура скрытого пространства позволяет решать задачи: классификации, кластеризации, суммаризации.

Разработка универсального семантического энкодера текстов для русского языка

Мотивация

Все лидирующие места в наиболее актуальном русскоязычном бенчмарке «Рейтинг русскоязычных энкодеров предложений» (далее «Энкодечка») [1] занимают мультиязычные модели.

Топ 2 модель на «Энкодечке» находится лишь на 25 месте в англоязычном бенчмарке МТЕВ [2] среди моделей такого же или меньшего размера. Все места выше занимают моноязычные модели.

Энкодечка

Nº	Модель	Encodechka (Mean S)	Размер модели Млн. парам.*		
1	bge-m3	0.786	303		
2	multilingual-e5-large	0.780	303		
3	paraphrase-multilingual-mpnet- base-v2	0.762	85		

Massive Text Embedding Benchmark (MTEB)

Nº**	Модель	MTEB (Average)	Размер модели Млн. парам.*
1	mxbai-embed-large-v1	64.68	303
25	multilingual-e5-large	61.5	303

^{*}без учёта слоя эмбеддингов

Разработка универсального

для русского языка

семантического энкодера текстов

^{**}позиция в лидерборде среди моделей размера < 500 Млн парам.

Цель и задачи

Цель — разработать энкодер текстов для русского языка, который покажет более высокое качество, чем существующие модели.

Разработка универсального

для русского языка

семантического энкодера текстов

Задачи:

- 1. провести обзор предметной области;
- 2. разработать алгоритм обучения универсального семантического энкодера, содержащий новейшие подходы, подготовить данные для обучения;
- 3. обучить модель по разработанной методологии;
- 4. апробировать полученную модель, сравнить с существующими решениями.

MedNLI

TERRA

Tapaco

RuParadetox

BiblenIpCorpus

Подготовка данных

Эвристика — семантическая связь между парой текстов.

Энкодер текстов обучается без учителя и требует данные в формате пар, связанных различными эвристиками. Эвристики можно разделить на асимметричные и симметричные.

Из открытых источников удалось собрать примерно 2.5 миллиона пар текстов.

Дополнительно 2 датасета собрано нами.

Распределение найденных датасетов по эвристикам

Асимметричные Симметричные (заголовок, текст) (текст, логическое следствие) **ALLNLI** RussianKeywords Panorama (текст, перефразированный текст) (вопрос, ответ) RudetoxifierDataDetox Gsm8kRu Pravolsrael (текст, перевод) (инструкция, ответ) Fialka-v1 Opus100 (запрос, релевантные тексты) MLDR MrTyDi (суммаризация, текст) Summ_Dialog_News **DSumRu**

RuHNP

Russian Hard Non Paraphrases (RuHNP) — датасет перефразированных текстов, особенность которого в количестве сложных отрицательных пар.

Для каждого из 100 тысяч текстов было сгенерировано 5 положительных и 5 отрицательных пар.

Характеристики датасета:

- более миллиона пар;
- нейтральный домен Википедия;
- медианная длина текста 115 символов.

Пример из RuHNP

query: После войны продолжал

службу в Советской армии

на штабной работе.

роз: На штабе в Советской

армии продолжал служить

после войны.

neg: После войны

переквалифицировался

и ушел из Советской

армии на завод.

RuWANLI

Russian Worker and AI collaboration for NLI (RuWANLI) — NLI датасет, который собирался по алгоритму WANLI [3]. В дополнение к синтетической генерации, использовалась фильтрация с помощью аннотаторов.

Характеристики датасета:

- 100000 примеров;
- благодаря наличию троек данных, можно эффективно использовать для обучения энкодера текстов.

Пример из RuWANLI

text: Группа друзей отдыхает на

пляже пьют коктейли под

пальмами.

entail: Друзья наслаждаются

отдыхом у моря, попивая

напитки в тени деревьев.

contr: Группа друзей

находится в городском

кафе и кушает бургеры.

Детали обучения

При построении пайплайна я следовали алгоритму обучения BGE-en [4], но в процессе работы пришел к нескольким улучшениям. Шаги алгоритма:

- 1. предобученная модель deepvk/deberta-v1-base [5];
- 2. первый этап дообучения на mMarco;
- 3. добавление инструкций, обучение двух моделей на различных типах данных;
- 4. объединение в итоговую модель с помощью LM-Coctail [6].

Алгоритм обучения модели USER

Разработка универсального

для русского языка

семантического энкодера текстов

Анализ шагов алгоритма

СПбШФМиКН

Анализ промежуточных решений показывает, что все шаги улучшают финальное качество.

Шаг 4 предложен нами, без него итоговое качество отличается практически на 0.03 в абсолютном значении.

Оценка вариаций алгоритма

Nº	Модель	Энкодечка <i>(Mean S)</i>		
1	USER	0.772		
2	USER без инструкций	0.769		
3	USER без AnglE loss	0.759		
4	USER без разделения	0.743		
5	USER без первого этапа дообучения	0.739		
6	USER без предобучения	0.711		

Сравнение моделей

Энкодечка – наиболее актуальный русскоязычный бенчмарк.

Mean S — среднее значение на всех задачах в Энкодечке, кроме NER.

Mean CLF — среднее значение на задачах классификации: TI, SA, IA.

МТЕВ — крупнейший бенчмарк, ориентированный на англо и мультиязычные модели. Однако, он содержит 10 подзадач на русском, которыми я дополнил валидацию.

«Энкодечка» лидерборд

Nº	Модель	Размер модели <i>Млн. парам.*</i>	Encodechka mean S	Encodechka mean CLF	MTEB ru subset
1	bge-m3 <i>(dense)</i>	303	0.786	0.859	0.705
2	mult-e5-large	303	0.78	0.863	0.695
3	USER	85	0.772	<u>0.871</u>	0.703
4	mpnet-base- v2	85	0.762	0.84	0.675
5	mult-e5-base	85	0.756	0.849	0.676

*без учёта слоя эмбеддингов

Парето оптимальность

Посмотрим на все модели из Энкодечки, их качество и оценку скорости генерации. Окажется, что полученная нами модель является оптимальной по Парето.

Разработка универсального семантического энкодера текстов для русского языка

Фронт Парето всех моделей из «Энкодечки»

Дальнейшая работа

MIRACL, MLDR — задачи выделения релевантных текстов, содержат длинные тексты. Ими я дополняю валидацию для более объективной оценки, в частности на Retrieval Augmented Generation (RAG).

Recall@100 — оценка качества обнаружения релевантных документов.

Задачи выделения релевантных текстов

Nº	Модель	Размер модели Млн. парам.*	MIRACL Recall@100	MLDR Recall@100
1	bge-m3 <i>(dense)</i>	303	0.959	0.6
2	mult-e5-large	303	0.927	0.66
3	USER	85	0.763	0.605
4	mpnet-base- v2	85	0.365	0.43
5	mult-e5-base	85	0.915	0.65

^{*}без учёта слоя эмбеддингов

Результаты проекта

Рассмотрим результаты:

- 1. Проведён обзор предметной области, изучены подходы к обучению энкодеров текстов.
- 2. Разработан алгоритм обучения энкодера текстов с новейшими подходами, предложены улучшения. Подготовлены данные: собрано 2.5 млн положительных пар текстов из 23 датасетов, дополнительно сгенерировано 2 датасета суммарно с 540 тыс. положительных и таким же числом отрицательных пар.
- 3. Обучена модель в соответствии с предложенным алгоритмом.
- 4. Проведена апробация полученной модели. На целевой метрике удалось достичь роста качества среди моделей того же размера на 0.012 абсолютных единиц. Однако, дополнительные метрики показали, что модель недостаточно эффективна в задачах извлечения релевантных текстов.

Оценка качества RuHNP

Для оценки полученного датасета мы провели эксперимент, в котором построили графики распределения косинусных близостей до и после обучения группы моделей на RuHNP.

Датасет консистентен, так как на его тестовой части распределение для отрицательных пар сместилось левее. Аналогично для тестовых частей других датасетов, что говорит о генерализуемости.

Разработка универсального семантического энкодера текстов для русского языка

Сравнение распределений косинусных близостей

Список источников

- 1. Dale David. Рейтинг русскоязычных энкодеров предложений. 2022. June. [Online; posted 5-June-2022]. Access mode: https://habr.com/ru/articles/669674/.
- 2. Muennighoff N. et al. MTEB: Massive text embedding benchmark //arXiv preprint arXiv:2210.07316. 2022.
- 3. Liu Alisa, Swayamdipta Swabha, Smith Noah A, and Choi Yejin. Wanli: Worker and ai collaboration for natural language inference dataset creation // arXiv preprint arXiv:2201.05955. 2022.
- 4. Chen Jianlv, Xiao Shitao, Zhang Peitian, Luo Kun, Lian Defu, and Liu Zheng. Bge m3-embedding: Multi-lingual, multi-functionality, multi- granularity text embeddings through self-knowledge distillation // arXiv preprint arXiv:2402.03216. 2024.
- 5. deepvk. DeBERTa-base: Pretrained Bidirectional Encoder for Russian Language. 2023. Access mode: https://huggingface.co/deepvk/deberta-v1-base. Model type: DeBERTa. Languages: Mostly Russian. License: Apache 2.0.
- 6. Xiao S. et al. Lm-cocktail: Resilient tuning of language models via model merging //arXiv preprint arXiv:2311.13534. 2023.
- 7. Li X., Li J. Angle-optimized text embeddings //arXiv preprint arXiv:2309.12871. 2023.