equipotenciales (la fuerza es radial y las superficies equipotenciales son esferas concéntricas).

Figura 4.3.7 Los campos vectoriales asociados con (a) cargas del mismo signo (Qe > 0) y (b) cargas de distinto signo (Qe < 0).

El siguiente ejemplo muestra que no todo campo vectorial es un gradiente.

Ejemplo 7

Demostrar que el campo vectorial \mathbf{V} en \mathbb{R}^2 definido por $\mathbf{V}(x,y) = y\mathbf{i} - x\mathbf{j}$ no es un campo gradiente; es decir, no existe ninguna función f de clase C^1 tal que

$$\mathbf{V}(x,y) = \nabla f(x,y) = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}.$$

Solución

Supongamos que existe una f así. Entonces $\partial f/\partial x = y$ y $\partial f/\partial y = -x$. Puesto que son funciones de clase C^1 , f tiene derivadas parciales de primer orden y de segundo orden. Pero, $\partial^2 f/\partial x \, \partial y = -1$ y $\partial^2 f/\partial y \, \partial x = 1$, lo que incumple la igualdad de las derivadas cruzadas. Por tanto, \mathbf{V} no puede ser un campo vectorial gradiente.

Conservación de la energía y escape del campo gravitatorio terrestre

Considérese una partícula de masa m que se mueve dentro de un campo de fuerzas \mathbf{F} que es un campo potencial. Es decir, suponemos $\mathbf{F} = -\nabla V$ para una función real V y que la partícula se mueve según la ley $\mathbf{F} = m\mathbf{a}$. Por tanto, si la trayectoria es $\mathbf{r}(t)$, entonces

$$m\ddot{\mathbf{r}}(t) = -\nabla V(\mathbf{r}(t)). \tag{1}$$

Una cuestión básica acerca de dicho movimiento es la conservación de la energía. La energía E de la partícula se define como la suma de las energías potencial y cinética

$$E = \frac{1}{2}m\|\dot{\mathbf{r}}(t)\|^2 + V(\mathbf{r}(t)).$$
 (2)

El principio de la conservaci'on de la energ\'a establece que si se cumple la segunda ley de Newton, entonces E es independiente del tiempo; es