Öğrenme Aktarmanın Çok-Kipli Konuşma Analizi için Kullanılması

Mehmet Ali Tuğtekin Turan, mturan@ku.edu.tr

Motivasyon

- *Akustik Mikrofon:* Yüksek kaliteli kayıt fakat gürültülerden kolay etkilenme
- *Gırtlak Mikrofonu:* Gürültüye karşı gürbüz ancak dar-bantlı konuşma kayıtları
- Gırtlak mikrofonu kayıtlarının kalitesini ve doğallığını arttırmak mümkün mü? ¹

Öğrenme Aktarma (Transfer Learning)

- Geleneksel öğrenimde veri dağılımları,
 öznitelik ve çıktı uzayları aynı olmalıdır
- Öğrenme aktarma her görevi sıfırdan
 öğrenmek yerine önceki görevleri kullanır

Gürültü Giderici Yığın Otokodlayıcı (GGYO)

– Kaynak $[K, K^{(p)}]$ ve hedef $[H, H^{(p)}]$ alanı için karesel hata maliyetini en aza indirgeyecek, ağırlık matrisleri, W_K, W_H ,

$$\sum_{i} \left\| \left[K, K^{(p)}
ight] - W_K \left[K, K^{(p)}
ight]^i
ight\|^2$$

burada (i) gürültü ile bozulmuş veridir

- GGYO çıktısıyla doğrusal olmayan öznitelikler, $\left[U_K,U_K^{(p)}\right]= anh\left(W_K\left[K,K^{(p)}\right]\right)$
- Her katman için ağırlık matrisleri W_K, W_H yeni öznitelik gösterimleri $U_K, U_H, U_K^{(p)}, U_H^{(p)}$
- Herhangi bir *l* katmanında öğrenilecek
 öznitelik dönüşüm matrisi,

$$G_{l} = \left(U_{K,l}^{(p)} (U_{H,l}^{(p)})^{T}\right) \left(U_{H,l}^{(p)} (U_{H,l}^{(p)})^{T} + \lambda I\right)^{-1}$$

– Dönüştürülmüş öznitelikler,

$$D_{H}^{(p)} = [(G_{1} U_{H,1}^{(p)}), (G_{2} U_{H,2}^{(p)}), \dots, (G_{L} U_{H,L}^{(p)})]^{T}$$

$$D_{K} = [U_{K,1}, U_{K,2}, \dots, U_{K,L}]^{T}$$

Veriseti

- Kaynak Veriseti: 120 kullanıcıdan, 2462
 cümlelik Türkçe veritabanı, "METUbet" ²
- Paralel Veriseti: Tek kullanıcıyla eşzamanlı kaydedilmiş, 800 cümleden oluşan akustik ve gırlak mikrofonu kayıtları

Öznitelik Dönüşümü

- Süzgeç kümesi (filter-bank) öznitelikleri
 40 adet mel bandıyla, içiçe geçen 25 ms'lik
 çerçeveler üzerinden hesaplandı
- Toplamda 40 farklı foneme ait kaynak ve hedef verisetlerine GGYO uygulandı
- GGYO ile iyileştirilmiş öznitelikler,
 evrişimsel sinir ağları ile sınıflandırıldı

Genel Şema

Fonem Sınıflandırma Sonuçları

Deney	Sınıflandırma Başarımı
Sadece Gırtlak Mikrofonu	% 31
Sadece Akustik Mikrofon	% 78
GGYO İyileştirmesi	% 59

Referanslar

- 1 Tuğtekin Turan ve Engin Erzin. "Source and Filter Estimation for Throat-Microphone Speech Enhancement" IEEE Transactions on Audio, Speech and Language Processing, 2016
- 2 Tolga Çiloğlu, Mübeccel Demirekler ve diğerleri "Developing New Audio Corpora and Speech Recognition Tools for the Turkish Language" 2002