

Semester 1 2022/2023
Sistem Pengawasan
Nuklir (RN6086)
FMIPA ITB

Sistem Pengawasan Nuklir (RN6086)

Isotopic Composition Actinide dan Kode Komputer ORIGEN

Sidik Permana dan Sparisoma Viridi

Nuclear Physics and Biophysics Research Division
Physics Department, Nuclear Science and Engineering
Department, Faculty of Matematis and Natural Sciences,
Institut Teknologi Bandung

Pokok Bahasan Mata Kuliah

Sistem Pengawasan Nuklir

- 1. tekait tema pengawasan, juga tema keselamatan atau safety dan juga keamanan atau security fasilitas nuklir
- **2.** Sinergitas konsep 3S safety, secuarity dan safeguard proses dan implementasinya,
- **3.** konsep dasar depence in depth dari safety dan safeguard,
- **4.** analisa desain basis dari konsep safety dan safeguard by design

- **5.** material nuklir terkait daur ulang bahan bakar, kuantitas materil nuklir terkait data
- 6. pelaporan khusunya material nuklir terkait uranium dan plutonium
- 7. konsep non proliferasi nuklir, pengetahuan mengenai protected plutonium proliferation
- 8. Konsep material attractiveness,

Komposisi Bahan Bakar Bekas

Composition of Spent Fuel

3-5% of spent fuel

1 GWe NPP class

Burnup: 33000 MWD/T

Cooling: 3 yrs

Konsep Seifgard (Safeguard)

Safeguarding a reprocessing plant

- Large commercial plant: 800 MTHM/yr, ~8 tPu/yr
- 1 close-out for measured inventory/yr
- 1% uncertainty ≈ 80 kg Pu
- If only challenge if MUF>3 σMUF 2 240 kg Pu
- Also, can't meet timeliness goal with 1 inventory/yr
- Partial solutions:
 - Comprehensive transparency and containment and surveillance throughout plant – monitor all flows, detect all unusual activity
 - Near-real-time accountancy much more frequent partial measurements of material in process, with statistical models designed to detect both abrupt and protracted diversions

Konsep Seifgard (Safeguard)

Traditional safeguards

- Traditional safeguards use "material accountancy" and "containment and surveillance" to provide timely detection of diversion of significant quantities of nuclear material, and to deter such diversion by the risk of detection
- Significant quantities:

– Pu or U233: 8 kg

- HEU: 25 kg contained U-235

Bombs can be made with less -- a key issue

- Timeliness goal:
 - 1 month for unirradiated Pu or HEU (incl. MOX)
 - Longer than estimated conversion time another key issue

Consep Seifgard (Safeguard)

International accountancy standards

Facility Type	Relative STD (%)
Uranium enrichment	0.2
Uranium fabrication	0.3
Plutonium reprocessing	1.0
Plutonium fabrication	0.5
Scrap store	4.0
Waste store	25.0

Source: IAEA Inspector Training Course

Konsep Seifgard (Safeguard)

Safeguards technologies: A wide range

TABLE 7: VERIFICATION MEASUREMENT METHODS FOR ON-SITE IAEA ANALYTICAL LABORATORIES

PROCESS AREA	SAMPLING POINT	INSTRUMENT OR METHOD	CONCENTRATION MEASUREMENT	SAMPLE FRACTION	GOAL ACCURACY
HEAD END	INPUT TANK	HYBRID K-EDGE DENSITOMETER (HKEDG)	Pu U	100 % 50 %	≤ 1 % ≤ 0.5 %
SEPARATION	BUFFER/FEED TANKS	ISOTOPE DILUTION MASS SPECTRO- METRY (IDMS)	Pu U	25 % 2 %	≤ 0.2 % 0.2 %
SEPARATION	SCRUB AND WASTE TANKS	Pu(VI) SPECTRO- PHOTOMETRY	, Pu	< 20 %	≤ 25 %
Pu PURIFICATION	COLLECTION AND FEED TANKS	HKEDG IDMS	Pu Pu	50 % ≤ 10 %	1 % ≤ 0.2 %
Pun Tanks Waste Tanks	PuN TANKS	KEDG IDMS	Pu Pu	25 - 100 % 10 - 90 %	0.2 % 0.1 %
	WASTE TANKS	Pu(VI) SPECTRO- PHOTOMETRY	Pu	< 10 %	≤ 25 %
U PURIFICATION UN	UN TANKS	K-EDGE DENSITOM- ETER (KEDGG)	U	≤ 10 %	0.2 %
Maitson in en el a en els marchisassis sul les ganster mess	UO ₃ CANS UO ₃ CANNING	NDA (MEASURE- MENTS MADE IN PLANT) KEDG	U U	≤ 10 % 1 %	< 5 % 0.2 %
MOX CONVERSION	U, Pu N TANKS	KEDG	U Pu	< 10 % 50 %	0.2 % 0.2 %
	,	IDMS	Pu	20 %	≤ 0.2 %
	MOX CANISTERS	NDA (MEASURE- MENTS MADE IN	Pu	100 %	1 %
	MOX CANNING	PLANT)	Pu	25 %	≤ 0.2 %
	W.	KEDG	S 2		ALC: ALC: A

Source: Shea et al., "Safeguarding Reprocessing Plants," JNMM, 1993

Sumber: Capacity Building For Safeguards: Some Perspectives, MANAGING THE DEVELOPMENT OF NATIONAL INFRASTRUCTURE FOR NUCLEAR POWER Vienna 9 - 12 February 2010

Consep Seifgard (Safeguard)

Different steps, different safeguards

Fuel cycle step	Current safeguards	Future safeguards?
U mining and milling	Essentially none	Declarations +
U conversion	Covered; limited accountancy	Full accountancy
Enrichment	In-depth safeguards	Flow monitoring
LEU fuel fabrication	Covered; limited effort	Covered; limited effort
Power reactor operation	Covered; limited effort	Neutrino detection
Research reactors	Covered; limited effort	Increased effort
Spent fuel storage pool	Covered; limited effort	Remote monitoring
Spent fuel storage cask	Covered; v. limited effort	Remote monitoring
Reprocessing	In-depth safeguardschallenge	Still a challenge
Pu storage	In-depth safeguards	Remote monitoring
MOX fuel fabrication	In-depth safeguardschalenge	Still a challenge
Spent fuel disposal	Not operational	Unmanned monitors
HLW disposal	Termination of safeguards	Termination of safeguards

Sumber: Capacity Building For Safeguards: Some Perspectives, MANAGING THE DEVELOPMENT OF NATIONAL INFRASTRUCTURE FOR NUCLEAR POWER Vienna 9 - 12 February 2010

(n,2n)

Actinides from Thorium Fuel

Isotopic Composition Evaluation

Spent Fuel Compositions of LWR

Spent Fuel Compositions of LWR

Different Burnup Constant

As A function of cooling time

Simulasi Peluruhan dengan ORIGEN Code

OAK RIDGE NATIONAL LABORATORY
managed by
UT-BATTELLE, LLC
for the
U.S. DEPARTMENT OF ENERGY
RSICC COMPUTER CODE COLLECTION

ORIGEN 2.2
Isotope Generation and Depletion Code
Matrix Exponential Method

Contributed by:
Oak Ridge National Laboratory
Oak Ridge, Tennessee

RISCC (RADIATION SAFETY INFORMATION COMPUTATIONAL CENTER)

ORIGEN Code

Simulasi Peluruhan dengan ORIGEN Code

- 1. Induk Tunggal 1. Deret Uranium: a.U-235, b.U-238,
 - 2. Deret Thorium: a. Th-232
 - 3. Deret Neptunium: a. Np-237
 - 4. Deret Americium: a. Am-241, b. Am-244
 - 5. Deret Curium : a. Cm-243, Cm-244
- Contoh : Input → 922380 :
- 92: Nomor Atom Uranium
- 238: Nomor Massa
- 0: Status ground (Bukan meta stabil)
- Untuk U-235 \rightarrow 922350

Tugas 1 (kumpulkan minggu depan Selasa via edunex):

1220

ORIGEN Code

Peluruhan dengan Nuklida Banyak

Simulasi Peluruhan dengan ORIGEN Code

Tugas 1 (kumpulkan minggu depan Selasa via edunex):

- 1. Plot gambar y-axis : Massa (gram) dan x-axis : Waktu peluruhan
- 2. Plot semua nuklida induk dan turunan dari masing-masing induk tunggal
- 3. Buat perbandingan peluruhan induk tunggal dalam satu grafik untuk Thorium, Uranium dan Plutonium, Americium dan Curium
- 4. Buat analisa dari data dan juga tampilkan masing-masing waktu paruh nulida induk dan turunannya

Input file: DecaySampleTestU238.INP

BAT file: DecaySampleTestU238.BAT

Output File: DecaySampleTestU238.u6

ORIGEN Code

Simulasi Peluruhan dengan ORIGEN Code

1. Blok Input untuk Peluruhan

RDA **DECAY MODULE** DEC 100 4 3 4 0 DEC DEC 1.0 3 4 5 0 DEC 10.0 4 5 5 0 100.0 5 6 5 0 DEC 1000.0 6 7 5 0 DFC 10000.0 7 8 DEC 100000.0 8 DEC DEC 1000000.0 9 10 5 DEC 10000000.0 10 11 100000000.0 11 DEC

Table 4.2. Time unit designation

1 = seconds
2 = minutes
3 = hours
4 = days
5 = years
6 = stable
7 = 10³ years (kY)
8 = 10⁶ years (MY)
9 = 10⁹ years (GY)

ORIGEN Code

Simulasi Peluruhan dengan ORIGEN Code

2. Blok Input untuk Nuklida dan konsentrasinya

END

2 922380 1000000.0 922350 O. O 0.0 FUEL 100% U238 ()

- Contoh : Input → 922380 :
- 92: Nomor Atom Uranium
- 238: Nomor Massa
- 0 : Status ground (Bukan meta stabil)
- Untuk U-235 \rightarrow 922350

Simulasi Peluruhan dengan ORIGEN Code

2. Blok Output Jumlah Aktinida (gram)

Ambil dari file output : DecaySampleTestU238.u6

```
5 SUMMARY TABLE: CONCENTRATIONS, GRAMS
```

1 MTIHM 3.2% UO2;BURNUP=33,000 MWD/MTIHM, 3 CYCLE

FUEL CHG FUEL DIS 100.0D 1.0YR 10.0YR 100.0YR 1000.0YR 1.0E+04YR 1.0E+05YR 1.0E+06YR 1.0E+07YR 1.0E+08YR 0.000E+00 0.000E+00 7.138E-07 2.607E-06 2.607E-05 2.608E-04 2.611E-03 2.648E-02 3.439E-01 1.439E+01 2.015E+02 2.063E+03 HE 4 PB206 0.000E+00 0.000E+00 0.000E+00 3.202E-23 3.391E-17 2.457E-12 5.498E-08 3.083E-04 4.228E-01 8.619E+01 1.290E+03 1.327E+04 PB210 0.000E+00 0.000E+00 1.024E-22 5.007E-20 5.842E-16 3.731E-12 7.281E-09 3.494E-06 3.852E-04 4.182E-03 4.395E-03 4.334E-03 **RA226** 0.000E+00 0.000E+00 5.713E-18 5.400E-16 6.192E-13 6.190E-10 5.624E-07 2.699E-04 2.975E-02 3.230E-01 3.395E-01 3.348E-01 TH230 0.000E+00 0.000E+00 8.487E-12 1.904E-10 2.105E-08 2.122E-06 2.116E-04 2.043E-02 1.457E+00 1.582E+01 1.663E+01 1.640E+01 U234 0.000E+00 0.000E+00 2.806E-05 1.380E-04 1.511E-03 1.524E-02 1.523E-01 1.504E+00 1.328E+01 5.064E+01 5.372E+01 5.298E+01 U238 1.000E+06 9.998E+05 9.985E+05 9.846E+05 SF250 0.000E+00 0.000E+00 2.275E-11 8.311E-11 8.311E-10 8.311E-09 8.311E-08 8.311E-07 8.311E-06 8.310E-05 8.304E-04 8.247E-03 1.000E+06 1.000E SUMTOT 1.000E+06

TOTAL 1.000E+06 1.000E+06

Sumber ORIGEN:

https://drive.google.com/drive/folders/1KNbdPjm7sl9UMDWGJJJ7YwO1WO7sZJeL?usp=sharing

Semester 1 2022/2023
Sistem Pengawasan
Nuklir (RN6086)
FMIPA ITB

Sidik Permana

Nuclear Physics and Biophysics Research Division
Physics Department, Nuclear Science and Engineering
Department, Faculty of Matematis and Natural Sciences,
Institut Teknologi Bandung

²³²Thank YoU²³⁸ TeriMA Kasih Merci