МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №2 по курсу «Численные методы»

Выполнил: Велесов Д.И. Группа: 8О-408Б-20

Условие

Используя явную схему крест и неявную схему, решить начально-краевую задачу для дифференциального уравнения гиперболического типа. Аппроксимацию второго начального условия произвести с первым и со вторым порядком. Осуществить реализацию трех вариантов аппроксимации граничных условий, содержащих производные: двухточечная аппроксимация с первым порядком, трехточечная аппроксимация со вторым порядком, двухточечная аппроксимация со вторым порядком. В различные моменты времени вычислить погрешность численного решения путем сравнения результатов с приведенным в задании аналитическим решением $U\left(x,t\right)$. Исследовать зависимость погрешности от сеточных параметров τ,h .

Вариант 6
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial u}{\partial x} - 2u \,,$$
 $u(0,t) = \cos(2t),$ $u(\frac{\pi}{2},t) = 0,$ $u(x,0) = \exp(-x)\cos x \,,$ $u_t(x,0) = 0 \,.$ Аналитическое решение: $U(x,t) = \exp(-x)\cos x \cos(2t)$

Метод решения

Изначально задаём начальные условия и условия на границах. Затем также задаётся и аналитические решение. Используем следующую конечно-разностную схему:

$$\frac{u_j^{k+1} - 2u_j^k + u_j^{k-1}}{\tau^2} = a^2 \frac{u_{j+1}^k - 2u_j^k + u_{j-1}^k}{h^2} + O(\tau^2 + h^2), \quad j = \overline{1, N-1}; \quad k = 1, 2, \dots$$
 (5.38)

Аппроксимация 1 порядка рассчитывалась по формуле:

$$u_i^1 = \psi_1(x_i) + \psi_2(x_i)\tau$$
.

2 порядка по формуле:

$$u_j^1 = \psi_1(x_j) + \psi_2(x_j)\tau + a^2\psi_1''(x_j)\frac{\tau^2}{2}$$
.

Описание программы

Программа состоит из 1 ірупь файла.

В программе задаются условия и параметры варианта.

Все необходимые данные варианта введены в программу заранее. После реализуются решения краевой задачи с помощью явной и неявной схем, объявленных функциями в программе с применением необходимой аппроксимации. В процессе вычисления выводятся графики погрешностей.

Результаты

Явная схема

Зависимость погрешности от длины шага

Неявная схема

Зависимость погрешности от длины шага

Явная схема

Зависимость погрешности от мелкости разбиения по времени

Зависимость погрешности от мелкости разбиения по времени

Неявная схема

Зависимость погрешности от мелкости разбиения по времени

Зависимость погрешности от мелкости разбиения по времени

Выводы

Выполнив данную лабораторную работу, изучил явную схему крест и неявную схему для решения начально-краевой задачи для дифференциального уравнения гиперболического типа. Выполнил три варианта аппроксимации граничных условий, содержащих производные: двухточечная аппроксимация с первым порядком, трехточечная аппроксимация со вторым порядком и двухточечная аппроксимация со вторым порядком. В различные моменты времени вычислил погрешность численного решения путем сравнения результатов с приведенным в задании аналитическим решением. Также исследовал зависимость погрешности от сеточных параметров h и thau.