Questions de cours.

- **1.** Énoncer le Théorème de Division Euclidienne dans $\mathbb{K}[X]$ et démontrer l'unicité.
- 2. Énoncer et démontrer une caractérisation de l'ordre de multiplicité d'une racine d'un polynôme.
- **3.** En utilisant le fait que \mathbb{C} est algébriquement clos (i.e. tout polynôme non constant admet une racine), donner les irréductibles de $\mathbb{C}[X]$.

1 Arithmétique dans \mathbb{Z}

Exercice 1.1 (*). Montrer que $\forall n \in \mathbb{N}, 4^n + 15n \equiv 1 \mod 9$.

Exercice 1.2 (*). Pour $n \in \mathbb{N}^*$, on note $h_n = \sum_{k=1}^n \frac{1}{k}$. On note de plus v_2 la valuation 2-adique.

- **1.** On pose $\alpha = \max_{1 \leq k \leq n} v_2(k)$. Montrer qu'il existe un unique $k_0 \in \{1, \ldots, n\}$ t.q. $\alpha = v_2(k_0)$.
- **2.** En déduire que $h_n \notin \mathbb{N}$.

Exercice 1.3 (Nombres de Mersenne, \star). Soit $(a, n) \in (\mathbb{N}_{\geq 2})^2$. Montrer que si $a^n - 1$ est premier, alors a = 2 et n est premier.

Exercice 1.4 (*). Soit p un nombre premier et $k \in \{1, ..., p-1\}$. Montrer que $\binom{p}{k} \equiv 0 \mod p$.

Exercice 1.5 (*). Trouver le dernier chiffre de l'écriture décimale de $7^{7^7} = 7^{(7^{(7^7)})}$.

Exercice 1.6 (Rennes '17, \star). Résoudre l'équation diophantienne $x^4 - y^2 = 5z + 3$, d'inconnue $(x, y, z) \in \mathbb{Z}^3$.

2 Polynômes

Exercice 2.1 (\star) . Soit $(a,b) \in \mathbb{K}^2$, $a \neq b$. Quel est le reste de la division euclidienne de $P \in \mathbb{K}[X]$ par (X-a)(X-b)?

Exercice 2.2 (*). Soit $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$. Déterminer le reste de la division euclidienne de $(X \sin \theta + \cos \theta)^n$ par $(X^2 + 1)$ puis pas par $(X^2 + 1)^2$.

Exercice 2.3 (*). Quelle identité obtient-on en considérant le coefficient de X^n dans $(1+X)^{2n} (1-X)^{2n} = (1-X^2)^{2n}$?

Exercice 2.4 (\star) . Soit $P \in \mathbb{R}[X]$ scindé. Montrer que

$$\forall x \in \mathbb{R}, P''(x)P(x) \leqslant P'^{2}(x).$$

Exercice 2.5 (*). Trouver tous les polynômes $P \in \mathbb{R}[X] \setminus \{0\}$ t.q. $P(X^2) = P(X)P(X+1)$.

Exercice 2.6 (*). Déterminer un polynôme à coefficients entiers dont $\cos\left(\frac{\pi}{9}\right)$ est racine, puis montrer que $\cos\left(\frac{\pi}{9}\right)$ est irrationnel.

Exercice 2.7 (*). Soit $n \in \mathbb{N}^*$.

- **1.** Factoriser $P_n = \sum_{k=0}^n X^k \ sur \ \mathbb{C}$.
- **2.** Calculer $\prod_{k=1}^{n} \sin\left(\frac{k\pi}{n+1}\right)$.

Exercice 2.8 (\star) .

1. Démontrer que pour tout $n \in \mathbb{N}$, il existe un unique polynôme $U_n \in \mathbb{R}[X]$ t.q.

$$\forall \theta \in \mathbb{R}, \sin(n\theta) = U_n(\cos\theta)\sin\theta.$$

2. Donner le degré de U_n et son coefficient dominant.

- **3.** Pour $n \ge 2$, déterminer les racines de U_n .
- ${f 4.}\ D\'{e}montrer\ que$:

$$\forall n \in \mathbb{N}, \ \left(1 - X^2\right) U_n'' - 3XU_n' + \left(n^2 - 1\right) U_n = 0.$$

Exercice 2.9 (*). Soit $P = X^3 - X - 1$. On note α , β et γ les racines complexes de P. Calculer $\alpha^4 + \beta^4 + \gamma^4$.

Exercice 2.10 (Ulm '16, \star). Soit $P \in \mathbb{R}[X]$ avec deg $P \geqslant 3$. On suppose que P est scindé sur \mathbb{R} . Montrer que toute racine multiple de P' est racine de P.