Algebra 2 Unit 3 Review

SHOW ALL WORK on the worksheet

Graph each function. Identify the vertex, A.O.S., domain, range, intercepts, max/min value, and end behavior.

1. $g(x) = 2x^2 - 4x - 5$

x-intercept:
$$\chi = \frac{0.2 \times 2.4 \times -5}{4} = \frac{4.4 \times 10.4 \times 10.4}{4} = \frac{4.4 \times 10.4}{4} = \frac{4.4 \times 10.4}{2}$$

End Behavior:
$$\begin{array}{c} x \rightarrow \infty, \ g(x) \rightarrow \infty \\ x \rightarrow -\infty, \ g(x) \rightarrow \infty \end{array}$$

3. $y = -\frac{1}{3}(x+2)^2 + 7$

A.O.S.:
$$x=-2$$

x-intercept:
$$0^{=-\frac{1}{3}(x+2)^2+7}$$

y-intercept:
$$\frac{17}{3}$$

End Behavior:
$$\times \rightarrow \sim$$
, $y \rightarrow -\sim$
 $\times \rightarrow -\sim$, $y \rightarrow -\sim$

4. $y = -\frac{2}{3}x^2 - 4x + 1$

2. f(x) = 3(x-1)(x+4)

A.O.S.:
$$\chi = -3$$

x-intercept:
$$0=\frac{-2}{3}x^2-4x+1$$

 $x=\frac{4\pm \sqrt{14+3}y_3}{-4/3}\approx -6.24$, 24
y-intercept: 1

5. The path of a placekicked football can be modeled by the function y = -0.026x(x - 46) where x is the horizontal distance (in yards) and y is the height (in yards). What is the football's

maximum height?

$$X-int: 0,46$$

 $Jertex: X = \frac{0+4b}{2} = 23$

$$x-int: 0,46$$

 $x-int: 0,46$
 $x-in$

Algebra 2 Unit 3 Review

Solve each equation

6.
$$-3y + 28 = y^2$$

 $0 = y^2 + 3y - 28$
 $0 = (y + 7)(y - 4)$
 $y = -7, 4$

7.
$$6x^{2} = 8x$$
 $(0)x^{2} - 8x = 0$
 $2x(3x-4) = 0$
 $x = 0, \frac{4}{3}$

8.
$$x^{2} = 6x - 4$$

$$x^{2} - 6x + 4 = 0$$

$$x = \frac{6^{\pm} \sqrt{36 - 16}}{2}$$

$$= \frac{6^{\pm} 2\sqrt{5}}{2}$$

$$= 3^{\pm} \sqrt{5}$$

9.
$$7x - 3x^{2} = 85 + 2x^{2} + 2x$$

 $0 = 5x^{2} - 5x + 85$
 $0 = 5(x^{2} - x + 17)$
 $x = \frac{1 \pm \sqrt{1 - 166}}{2}$
 $= \frac{1 \pm \sqrt{1 - 166}}{2}$
 $= \frac{1 \pm \sqrt{1 - 166}}{2}$

10.
$$\frac{t^2}{20} + 8 = 15$$

$$\frac{t^2}{20} = 7$$

$$t^2 = |40$$

$$t = \pm \sqrt{|40|}$$

$$t = \pm 2\sqrt{35}$$

11.
$$3(x+2)^2 + 10 = 3$$

 $(x+2)^2 = -\frac{1}{3}$
 $x+2 = \pm i \sqrt{\frac{1}{3}}$
 $x = -2 \pm i \frac{\sqrt{21}}{3}$

12.
$$4x^{2} + 12x + 56 = 0$$

 $4(x^{2} + 3x + 14) = 0$
 $x = -3 \pm \sqrt{9 - 56}$
 $= -3 \pm \sqrt{47}$
 $= -3 \pm \sqrt{47}$

13.
$$4x^{2} + 11x + 3 = -3$$

 $4x^{2} + 11x + 6 = 0$
 $(x + 2)(4x + 3) = 0$
 $x = -2, -\frac{3}{4}$

14. Find the x-intercepts of $f(x) = 3x^2 - 8x + 5$

$$0 = 3x^{2} - 8x + 5$$

$$0 = (3x - 5)(x - 1)$$

$$X = 1, \frac{2}{3}$$

Write the expression as a complex number in standard form

15.
$$-8 - (3 + 2i) + (7 + 5i)$$

= $-8 - 3 - 2i + 7 + 5i$
= $-4 + 3i$

16.
$$(5-7i)(-4+3i)$$

 $= -20+15i+28i - 21i^{2}$
 $= 1 + 43i$

17.
$$5i(3 + 2i)(8 + 3i)$$

= $(|5i| + 6i^{2})(8 + 3i)$
= $|20i + 45i^{2} - 80 - 30i$
= $-|25 + 90i$

18.
$$\frac{(5-3i)+(2+8i)}{(7+2i)-(11+4i)}$$

$$= \frac{7+5i}{-4-2i} \frac{-4+2i}{-4+2i}$$

$$= \frac{-28+14i-20i+20i}{10} \frac{-38-6i}{10}$$

$$= \frac{-19-3i}{10}$$