HAFTA 12

ALAN ETKİLİ TRANSİSTORLAR (FET)-DEVAM

Gerilim bölücü ile öngerilimleme

Bu devre bize, dc öngerilimleme noktasının daha büyük bir aralıkta ayarlanmasını ve daha büyük R_s değerlerinin kullanılmasını mümkün kılar. Devrenin analizi daha önce anlatılanla aynı olup, burada tek fark, kendinden öngerilim doğrusunun (0,0) noktasından kaydırılmış olmasıdır.

Burada da kapı ters öngerilimlidir. Dolayısıyla $I_G=0\,$ dır ve kapı gerilimi V_G ve JFET öngerilimi V_{GS} aşağıdaki gibi elde edilirler.

$$V_{G} = \frac{R_{G2}}{R_{G1} + R_{G2}} \cdot V_{DD}$$

$$V_{GS} = V_G - V_S = V_G - I_D R_S$$

Şekil 1. Gerilim bölücü ile öngerilimleme devresi

Kanal oluşturmalı MOSFET öngerilim devreleri

Kanal oluşturmalı bir MOSFET transistoru açmak için gereken eşik geriliminden daha büyük bir kapı-kaynak gerilimine ihtiyaç duyulur. Aşağıdaki devre en çok kullanılan tip olup, buradaki R_G direnci üzerinden MOSFET i açık duruma getirmek için, kapıya yeterli büyüklükte bir gerilim uygulanmaktadır. Akım daha sonra akaç-kaynak (veya kapı-kaynak) gerilimi ile akaç akımı arasında belli bir denge durumu oluşana kadar artar. MOSFET akaç akımı, kapı-kaynak gerilimiyle oluşturulur ve $I_D = K(V_{GS} - V_T)^2$ ifadesiyle verilir. Burada V_{τ} eşik gerilimidir. I_{D} akımı da R_D üzerinde bir gerilim düşümüne yol açar ve böylece aşağıdaki ifadeye gelinir (Şekil 2).

$$V_D = V_{DD} - I_D R_D$$

Şekil 2. Kanal oluşturmalı MOSFET öngerilim devresi

Kapı akımı $I_G=0$ olduğundan $V_{GS}=V_{DS}$ dir. Buradan hareketle aşağıdaki sonuç elde edilir.

$$I_D = K(V_{GS} - V_T)^2 = K(V_{DS} - V_T)^2$$

Ayrıca $V_s = 0$ olduğundan aşağıdaki ifade yazılabilir.

$$V_{DS} = V_D - V_S = V_D = V_{DD} - I_D R_D$$

$$\begin{bmatrix} I_D = 0 & \text{iken} & V_{DS} = V_{DD} & \text{ve} & V_{DS} = 0 & \text{iken} & I_D = \frac{V_{DD}}{R_D} \end{bmatrix}$$

MOSFET akaç karakteristiği $I_D = K(V_{GS} - V_T)^2$ denklemi ve yük doğrusunu da $V_D = V_{DD} - I_D R_D$ denklemi kullanılarak aynı grafik üzerinde Şekil 3'deki gibi çizilebilir.

Şekil 3. Kanal oluşturmalı MOSFET öngerilim devresinin transfer karakteristiği

FET ile ilgili örnekler:

Örnek 1. Şekil 4'deki sabit öngerilim devresinin (I_D) akaç akımını ve (V_{DS}) akaç-kaynak gerilimini bulunuz.

Çözüm 1.

Bu devreye göre denklemleri yazacak olursak aşağıdakileri elde ederiz.

$$V_{GS} = -V_{GG} = -1.5 V$$

$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_p})^2 = 12 \, mA \times (1 - \frac{-1.5 \, V}{-4 \, V})^2 = 4.69 \, mA$$

$$V_D = V_{DD} - I_D R_D = 12 V - 1.2 k\Omega \times 4.69 mA = 6.4 V$$

$$V_{DS} = V_D - V_S = 6.4 V - 0 V = 6.4 V$$

Örnek 2. Şekil 5'deki devrede $V_{DD}=24\,V$, $R_D=6.2\,k\Omega$, $R_G=1\,M\Omega$, $R_S=1.5\,k\Omega$, $I_{DSS}=10\,mA$ ve $V_p=-4\,V$ için;

Şekil 5. Kendinden öngerilimli JFET yükseltici devresi

- a) Transfer karakteristiği yardımıyla V_{GS} ve I_D yi bulunuz.
- b) V_{DS} yi bulunuz.
- c) $I_{DSS}/2$ ile $I_{DSS}/4$ arasında dc öngerilimlemeyi sağlayacak R_S direncinin değer aralığını bulunuz.

Çözüm 2.

(a) JFET transfer karakteristiğini çizmek için $I_D = I_{DSS} (1 - \frac{V_{GS}}{V_p})^2$ ve yük eğrisini çizmek için $V_{GS} = -R_S.I_D$ denklemlerinden faydalanmak suretiyle aşağıdaki tablolar oluşturulur.

	$V_{GS}(V)$	$I_D(mA)$			
-	0	$10 [I_{DSS}]$		$I_D(mA)$	$V_{GS}(V)$
0	$3V_p$ -1.2	$5 \left[I_{DSS}/2\right]$	$\left[V_{p}/R_{S}\right]$	0	0
0	$.5V_p$ -2.0	$2.5 \left[I_{DSS} / 4 \right]$		$\left[\frac{1}{2} \right] 2.67 $	-4
_	V_p -4.0	0			

(b)
$$I_D = 1.6 \, mA$$

$$V_D = V_{DD} - R_D I_D = 24 V - (1.6 \text{ mA}) \times (6.2 \text{ k}\Omega) = 14.08 V$$

$$V_S = I_D R_S = (1.6 \, mA) \times (1.5 \, k\Omega) = 2.4 \, V$$

$$V_{DS} = V_D - V_S = 14.08 V - 2.4 V = 11.68 V$$

Şekil 6. Kendinden öngerilimli JFET yükselticinin transfer karakteristiği

(c) Bu durum, ölçekli bir şekilde Şekil 7'de gösterilmiştir.

$$I_{D} = \frac{I_{DSS}}{2} = \frac{10}{2} = 5 \, mA \qquad \rightarrow \qquad R_{S} \left(\frac{I_{DSS}}{2} \, \text{için} \, \right) = \frac{|V_{GS}|}{I_{D}} = \frac{1.2 \, V}{5 \, mA} = 240 \, \Omega$$

$$I_{D} = \frac{I_{DSS}}{4} = \frac{10}{4} = 2.5 \, mA \qquad \rightarrow \qquad R_{S} \left(\frac{I_{DSS}}{4} \, \text{için} \, \right) = \frac{|V_{GS}|}{I_{D}} = \frac{2 \, V}{2.5 \, mA} = 800 \, \Omega$$

$$\downarrow \qquad \qquad \downarrow$$

Örnek 3. Şekil 8(a)'da verilen transfer karakteristiğinden yararlanarak, Şekil 8(b)'de verilen devrenin I_{DSS} ve V_p değerlerini belirleyin ve I_D ve V_{DS} değerlerini bulunuz.

Şekil 8.(a) Transfer karakteristiği, (b) Örnek devre

Çözüm 3.

Transfer karakteristiğinden $I_{DSS} = 9 \, mA$ ve $V_p = -4.5 \, V$ ölçülür.

 $V_{GS} = -I_D R_S$ den R_S doğrusu çizilir.

$$I_D = 0$$
 iken $V_{GS} = 0$ ve,

$$V_{GS} = V_p = -4.5 V$$
 iken $I_D = \frac{-V_p}{R_s} = \frac{-(-4.5 V)}{0.56 k\Omega} = 8.04 mA$ olur.

$$\begin{array}{c|c}
I_D(mA) & V_{GS}(V) \\
\hline
0 & 0 \\
-(-V_p)/R_S & 8.04 & -4.5
\end{array}$$

Buradan akaç gerilimi aşağıdaki gibi elde edilir.

$$V_D = V_{DD} - R_D I_D = 16V - (3.2 \text{ mA}) \times (2.2 \text{ k}\Omega) = 8.96V$$

$$V_S = I_D R_S = (3.2 \, mA) \times (0.56 \, k\Omega) = 1.79 \, V$$

$$V_{DS} = V_D - V_S = 8.96 V - 1.79 V = 7.17 V$$

Örnek 4. Şekil 9'daki devrenin çalışma noktalarını belirleyiniz.

Çözüm 4.

 $I_D = I_{DSS} (1 - \frac{V_{GS}}{V_p})^2 = 8 \, mA \times (1 - \frac{V_{GS}}{-4 \, V})^2$ ifadesinden aşağıdaki tablo oluşturulur. Ardından bu tablo değerleri göz önüne alınmak suretiyle transfer karakteristiği çizilir.

$I_D(mA)$
$8 [I_{DSS}]$
$4\left[I_{DSS}/2\right]$
$\frac{2\left[I_{DSS}/4\right]}{2\left[I_{DSS}/4\right]}$
0

Kapı gerilimi V_G , gerilim bölücü şeklinde düşünülmek suretiyle aşağıdaki gibi hesaplanır.

$$V_G = \frac{270 \, k\Omega}{2.1 \, M\Omega + 270 \, k\Omega} \times (16 \, V) = 1.82 \, V$$

Kendinden öngerilim doğrusu $V_{GS} = V_G - V_S$ den,

$$V_{GS} = V_G - I_D R_S = 1.82 V - I_D \times (1.5 k\Omega)$$

$$I_D = 0$$
 iken $V_{GS} = 1.82 V$

$$V_{GS}=0$$
 iken $I_D=\frac{1.82\,V}{1.5\,k\Omega}=1.21\,mA$ değerlerinden elde edilir.

Tablo değerleri kullanılarak kendinden öngerilim doğrusu 10'da görüldüğü gibi çizilir. İki karakteristiğin kesişme noktası

 $V_{GSQ} = -1.8V$ ve $I_{DO} = 2.4 \, mA$ çalışma noktalarını verir.

$I_D(mA)$	$V_{GS}(V)$	
0	1.82	
1.21	0	

Şekil 10. Transfer karakteristiği ve kesişme noktaları

Soru: Aynı devre için V_D , V_S ve V_{DS} yi belirleyiniz.

$$V_D = V_{DD} - I_D R_D = 16 V - (2.4 \text{ mA}) \times (2.4 \text{ k}\Omega) = 10.24 V$$

$$V_S = I_D R_S = (2.4 \text{ mA}) \times (1.5 \text{ k}\Omega) = 3.6 \text{ V}$$

$$V_{DS} = V_D - V_S = 10.24 V - 3.6 V = 6.64 V$$

Örnek 5. Şekil 11'deki n-kanallı kanal ayarlamalı MOSFET in transfer karakteristiğini çizerek V_{GS} , I_D ve V_{DS} değerlerini bulunuz.

Çözüm 5.

 $I_D = I_{DSS}(1 - \frac{V_{GS}}{V_p})^2 = 6 \, m A \times (1 - \frac{V_{GS}}{-3 \, V})^2$ ifadesinden aşağıdaki tablo oluşturulur. Ardından bu tablo değerleri göz önüne alınarak Şekil 12'de verilen transfer karakteristiği çizilir.

	$V_{GS}(V)$	$I_D(m)$	A)
$[-0.4V_{p}]$	1.2	12	$[2I_{DSS}]$
_	0	6	$[I_{DSS}]$
$ 0.3V_{p} $	-0.9	3	$I_{DSS}/2$
$0.5V_{p}$	- . 1 ~	1.5	$-\left[I_{DSS}/4\right]$
V	-3.0	0	
$\lfloor p \rfloor$			

$$V_G = \frac{R_{G2}}{R_{G1} + R_{G2}} \cdot V_{DD} = \frac{10 \, M\Omega}{110 \, M\Omega + 10 \, M\Omega} \times (18 \, V)$$

$$V_G = 1.5 V$$

Kendinden öngerilim doğrusunu aşağıdaki gibi verilir.

$$V_{GS} = V_G - I_D R_S = 1.5 V - I_D \times (0.3 k\Omega)$$

Bunu göz önüne almak suretiyle aşağıdaki tablo oluşturulur.

$I_D(mA)$	$V_{GS}(V)$
0	1.5
5	0

Şekil 12. Transfer karakteristiği

Yukarıdaki tablo değerleri Şekil 12'deki transfer karakteristiği üzerinde gösterildiğinde aşağıdaki değerler bulunur.

$$V_{GSQ} = -0.15 V$$
 $I_{DQ} = 5.5 mA$

Bu değerler ile aşağıdaki büyüklükler elde edilir.

$$V_D = V_{DD} - I_D R_D = 18V - (5.5 \text{ mA}) \times (1.8 \text{ k}\Omega) = 8.1V$$

$$V_S = I_D R_S = (5.5 \, mA) \times (0.3 \, k\Omega) = 1.65 \, V$$

$$V_{DS} = V_D - V_S = 8.1 - 1.65 = 6.45V$$