Adaptive Probability of Failure Estimation with Gaussian Processes

Aleksei G. Sorokin^{1,2} asorokin@hawk.iit.edu

Vishwas Rao²

 $^1 \rm Illinois$ Institute of Technology, Department of Applied Mathematics. $^2 \rm Argonne$ National Laboratory, Mathematics and Computer Science Division.

Background

Goal Estimate a small probability of failure to desired error tolerance

Failure A expensive simulation exceeds a threshold

Uses Reliability certification, structural design, power grids

Method Iteratively update a Gaussian Process [6] with intelligent sampling [2], similar to Bayesian Optimization [4] or Level Set Estimation [7]

Formulation

 $\begin{array}{c} \textbf{Distribution} \ \ U \overset{\mathbb{U}}{\sim} \mathcal{U}[0,1)^d \\ \textbf{Model} \ \ \mathsf{GP} \ G \ \ \text{with distribution} \ \mathbb{P} \\ \textbf{Simulation} \ \ g:[0,1)^d \to \mathbb{R}, \ \mathsf{path} \ \mathsf{of} \ G \\ \textbf{Failure Region} \ \ F = \{u \in [0,1)^d: g(u) \ge 0\} \\ \textbf{Failure Probability} \ \ P = \mathbb{U}(F) = \mathbb{E}_{\mathbb{U}}[1_F(U)], \\ \text{random variable in } G \end{array}$

GP Regression i.e. Kriging

Simulated Data $X \in [0,1)^{n \times d}$. Y = a(X)

Prior Covariance Kernel $k:(0,1)^{n_1\times d}\times (0,1)^{n_2\times d}\to \mathbb{R}^{n_1\times n_2}$

Posterior Mean $m_n(u) = k(u, X)K_{X,X}^{-1}Y$, $K_{X,X} = k(X, X)$

Posterior Covariance $k_n(u_1, u_2) = k(u_1, u_2) - k(u_1, X) K_{X X}^{-1} k(X, u_2)$

Posterior Variance $\sigma_n^2(u) = k_n(u,u)$

Posterior Distribution at $u \in [0,1)^d$ with Conditional Probability \mathbb{P}_n

$$G(u) \stackrel{\mathbb{P}_n}{\sim} \mathcal{N}\left(m_n(u), \sigma_n^2(u)\right)$$

Posterior Failure Probability at $u \in [0,1)^d$

$$p_n(u) = \mathbb{P}_n(G(u) \ge 0) = \Phi\left(\frac{m_n(x)}{\sigma_n(u)}\right)$$

Estimator & Error Bound

Posterior Failure Probability $p_n(u) = \Phi\left(\frac{m_n(u)}{\sigma_n(u)}\right)$, fixed $u \in [0,1)^d$ Preicted Failure Region $\hat{F}_n = \{u \in [0,1)^d : p_n(u) \geq 1/2\}$ $1-\alpha$ Confidence Interval (CI) $P \in \left[\hat{P}_n - \hat{\gamma}_n, \hat{P}_n + \hat{\gamma}_n\right]$ under \mathbb{P}_n GP Based Estimate $\hat{P}_n = \mathbb{E}_{\mathbb{U}}[1_{\hat{F}_n}(U)] = \mathbb{U}\left(\hat{F}_n\right)$ GP Based CI Half-Width $\hat{\gamma}_n = \mathbb{E}_{\mathbb{U}}[\tilde{\varrho}_n(U)]/\alpha$

$$\begin{split} \tilde{\varrho}_n(u) &= \min\{p_n(u), 1 - p_n(u)\} \\ &= \underbrace{[1 - p_n(u)]1_{\hat{F}_n}}_{\mathbb{P}_n(\mathsf{False Positive}(u))} + \underbrace{p_n(u)1_{\hat{F}_n^c}}_{\mathbb{P}_n(\mathsf{False Negative}(u))} \end{split}$$

Expected Misclassification Rate $\tilde{\varrho}_n = \mathbb{P}_n(\mathsf{FP}) + \mathbb{P}_n(\mathsf{FN})$

Results •00000

- 1. Fix $U_0, \dots, U_{N-1} \sim \mathcal{U}[0,1)^d$, large N e.g. 1 million, possible quasi-random design
- 2. Initialize $X \leftarrow \emptyset, Y \leftarrow \emptyset$ and set GP priors with fixed hyperparameters.
- 3. Draw $X_1, \ldots, X_h \stackrel{\text{IID}}{\sim} \tilde{\rho}_n$ using rejection sampling from the unnormalized density

$$\tilde{\varrho}_n(u) = \min\{p_n(u), 1 - p_n(u)\} = \mathbb{P}_n(\mathsf{FP}(u)) + \mathbb{P}_n(\mathsf{FN}(u)).$$

- 4. Simulate $\tilde{Y} = g(\tilde{X})$ at $\tilde{X} = \{X_i\}_{i=1}^b$ and update $X \leftarrow X \cup \tilde{X}, Y \leftarrow Y \cup \tilde{Y}$
- 5. Compute $\{p_n(U_i)\}_{i=0}^{N-1}$ from the GP posterior using efficient block-matrix updates.
- 6. Approximate estimate \hat{P}_n and CI half-width $\hat{\gamma}_n$ with Monte Carlo

$$\hat{P}_{n}^{\mathsf{MC}} = \frac{1}{N} \sum_{i=0}^{N-1} 1_{\hat{F}_{n}}(U_{i}), \qquad \hat{\gamma}_{n}^{\mathsf{MC}} = \frac{1}{\alpha N} \sum_{i=0}^{N-1} \tilde{\varrho}_{n}(U_{i})$$

- 7. If $\hat{\gamma}_n^{\text{MC}}$ too large and sample budget *not* expired, go to step 3.
- 8. Return $1-\alpha$ approximate confidence interval $[\hat{P}_n^{\text{MC}} \hat{\gamma}_n^{\text{MC}}, \hat{P}_n^{\text{MC}} + \hat{\gamma}_n^{\text{MC}}]$

Algorithm Example: $g(u) = \sin(6\pi u)$

Algorithm Example: Multimodal Function [3]

$$d=3$$
, $P(g)=0.162$, samples: initial = 128, batch = 16, budget = 512

$$d = 6$$
, $P(g) = 7.37 \times 10^{-3}$, samples: initial = 512, batch = 32, budget = 1024

Future Work

Implementation

- open source
- accommodate alternative sampling schemes
- larger suite of examples

Analysis

- \bullet include uncertainty in $\hat{P}_n^{\rm MC}, \hat{\gamma}_n^{\rm MC}$ in CI
- convergence rate of CI width

Extensions

- multi-fidelity problems
- multi-level problems

References I

- [1] Maximilian Balandat et al. "BoTorch: a framework for efficient Monte-Carlo Bayesian optimization". In: Advances in neural information processing systems 33 (2020), pp. 21524–21538.
- [2] Julien Bect et al. "Sequential design of computer experiments for the estimation of a probability of failure". In: Statistics and Computing 22.3 (2012), pp. 773–793.
- [3] Barron J Bichon et al. "Efficient global reliability analysis for nonlinear implicit performance functions". In: AIAA journal 46.10 (2008), pp. 2459–2468.
- [4] Peter I Frazier. "Bayesian optimization". In: Recent advances in optimization and modeling of contemporary problems. Informs, 2018, pp. 255–278.
- [5] Tsutomu Ishigami and Toshimitsu Homma. "An importance quantification technique in uncertainty analysis for computer models". In: [1990] Proceedings. First international symposium on uncertainty modeling and analysis. IEEE. 1990, pp. 398–403.

References II

- [6] Carl Edward Rasmussen. "Gaussian processes in machine learning". In: Summer school on machine learning. Springer. 2003, pp. 63–71.
- [7] Andrea Zanette, Junzi Zhang, and Mykel J Kochenderfer. "Robust super-level set estimation using gaussian processes". In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer. 2018, pp. 276–291.