Error-Correction Codes

CS6025 Data Encoding

Yizong Cheng

4-7-15

Block Codes

- Cyclic redundancy check (CRC) appends a checksum to data so that the codeword is a multiple of G(x), the generator.
- Addition of codewords forms other codewords.
- All codewords are multiples of G(x) and thus form a cyclic group.
- When the codeword size is fixed, we may transmit a block of them along with a parity word.
- For instance, we have codewords A, B, C, D, E, F and the Parity word P
 = A + B + C + D + E + F.
- (n,k) block codes have n bits in a block with k of them for data.

Syndrome

- Suppose we received a block.
- We can compute the syndrome as
- S = A + B + C + D + E + F P.
- If S = 0, no error is indicated.
- Otherwise if we also know which codeword is wrong (based on its own CRC?), we can subtract the syndrome S from that received word and recover the correct codeword.
- S = A + B + C + D + dD + E + F P is not zero and D + dD is wrong
- D = (D + dD) S corrects the error.

Double Parity Code

- P = A + B + C + D + E + F
- Q = 6A + 5B + 4C + 3D + 2E + F
- S1 = A + B + C + D + E + F P
- S2 = 6A + 5B + 4C + 3D + 2E + F Q
- Assume one of the words may contain error.
- If S1 = 0 but S2 != 0, then Q contains an error.
- If S2 = 0 but S1 != 0, then P contains an error.
- If S1 = S2, F is wrong; if 2S1 = S2, E is wrong; if 3S1 = S2, D is wrong;
- if 4S1 = S2, C is wrong; if 5S1 = S2, B is wrong; if 6S1 = S2, A is wrong.

Hamming Codes

- minimum Hamming distance between codewords of 3 provides single-error correctability (move to the nearest codeword), and double-error detectability.
- (7,4) Hamming code: data bits A, B, C, D and parity bits P = B + C + D, Q = A + C + D, and R = A + B + D. (addition in Z_2)
- Check matrix M = [0111100, 1011010, 1101001]
- Transmit ABCDPQR as a 7-bit vector and the receiver receives V and computes the syndrome S = MV.
- If S is not zero and matches a column of M, then the bit corresponding to the column is in error and it to be flipped.

QR Code

Version 2 25x25 QR Code Layout

Version 2

Format Information

- Format information is a 15-bit string with the first five bits the message and the remaining 10 bits error correcting bits.
- The generator polynomial over GF(2) is $G(x) = x^{10} + x^8 + x^5 + x^4 + x^2 + x + 1$.
- The error correcting bits are computed so that the codeword is a multiple of G(x).
- This is a block code (15, 5).
- It is then XORed with the Mask Pattern 101010000010010.

The 32 Codewords

00000000000000
000010100110111
000101001101110
000111101011001
001000111101011
001010011011100
001101110000101
001111010110010
010001111010110
010011011100001
010100110111000
010110010001111
011001000111101
011011100001010
011100001010011
011110101100100

 α

Codewords are Multiples of G(x)

0	00000000000000	21	100001010011011
1	000010100110111	20	100011110101100
2	000101001101110	23	100100011110101
3	000111101011001	22	100110111000010
5	001000111101011	16	101001101110000
4	001010011011100	17	101011001000111
7	001101110000101	18	101100100011110
6	001111010110010	19	101110000101001
10	010001111010110	31	110000101001101
11	010011011100001	30	110010001111010
8	010100110111000	29	110101100100011
9	010110010001111	28	110111000010100
15	011001000111101	26	111000010100110
14	011011100001010	27	111010110010001
13	011100001010011	24	111101011001000
12	011110101100100	25	1111111111111111

Linear Block Code

- If u and v are codewords, then u + v is also a codeword.
 - addition is XOR here.
- Codewords are linear combinations of a basis of five codewords.

Cyclic Codes

0000000000000	111111111111111	
000010100110111	000111101011001	3
000101001101110	001111010110010	6
001010011011100	011110101100100	12
010100110111000	111101011001000	24
101001101110000	111010110010001	27
010011011100001	110101100100011	29
100110111000010	101011001000111	17
001101110000101	010110010001111	9
011011100001010	101100100011110	18
110111000010100	011001000111101	15
101110000101001	110010001111010	30
011100001010011	100100011110101	23
111000010100110	001000111101011	5
110000101001101	010001111010110	10
100001010011011	100011110101100	20
	000010100110111 0001010011011100 001010011011	000010100110111 000111101011001 000101001101110 001111010110010 001010011011100 011110101100100 010100110111000 111010110010001 1010011011100001 110101100100011 100110111000010 101011001000111 001101110000101 101100100011110 11011100001010 11001000111101 1110000101001 10010001111010 111000010101101 001000111101011

BCH (15,5) Code

- The Bose-Chaudhuri-Hocquenghem (15,5) code is used for error correction for the format information.
- 15 is a rare number that is $2^m 1$ for (m = 4) that allows 7 as the minimum Hamming distance between codewords.
 - BCH codes like this are called primitive codes
- One can find a unique nearest codewords for up to three errors.
 - a triple error correcting code
- Decoding: The bit string from the 32codewords closest to the bit string read from the symbol is taken, provided the strings differ by 3 bits or less.

Data Masking for Version 1 Symbol


```
public class H21{
  static final int maxSize = 200;
  static final int formatLength = 15;
  String[] rawBitmap = new String[maxSize];
  int numberOfLines = 0;
  int version = 0;
  int width = 0;
  int height = 0;
 boolean[][] matrix = null;
  boolean[] format = new boolean[formatLength];
  boolean[] dataBitStream = null;
  int dataSpace = 0;
  void readRawBitmap(){
    Scanner in = new Scanner(System.in);
   while (in.hasNextLine())
      rawBitmap[numberOfLines++] = in.nextLine();
```

```
void getMatrix(){
   int firstRow = 0;
   for (; firstRow < numberOfLines; firstRow++)</pre>
     if (rawBitmap[firstRow].indexOf("XXXXXXXX ") >= 0) break;
   int leftPos = rawBitmap[firstRow].indexOf ("XXXXXXXX ");
   int rightPos = rawBitmap[firstRow].lastIndexOf(" XXXXXXX");
   width = rightPos + 8 - leftPos;
   height = width;
   version = (width - 17) / 4;
   matrix = new boolean[height][width];
   for (int i = 0; i < height; i++)
    for (int j = 0; j < width; j++)
      matrix[i][j] =
       rawBitmap[firstRow + i].charAt(leftPos + j) == 'X';
   dataSpace = width * height - 3 * 64 - 2 * 15
     - 2 * (width - 16) - 1;
   dataBitStream = new boolean[dataSpace];
```

```
void getFormatInformation(){
   for (int i = 0; i < 6; i++) format[i] = matrix[8][i];
   format[6] = matrix[8][7]; format[7] = matrix[8][8];
   format[8] = matrix[7][8];
   for (int i = 0; i < 6; i++)
    format[formatLength - 1 - i] = matrix[i][8];
   for (int i = 0; i < formatLength; i++)
    if (format[i]) System.out.print("1");
    else System.out.print("0");
   System.out.println();
```

Table C.1 — Valid format information bit sequences

Sequence before masking		Sequence after mas Code symbo	• •	Sequence after masking (Micro QR Code symbols)			
Data bits	Error correction bits	binary	hex	binary	hex		
00000	000000000	101010000010010	5412	100010001000101	4445		
00001	0100110111	101000100100101	5125	100000101110010	4172		
00010	1001101110	101111001111100	5E7C	100111000101011	4E2B		
00011	1101011001	101101101001011	5B4B	100101100011100	4B1C		
00100	0111101011	100010111111001	45F9	101010110101110	55AE		
00101	0011011100	100000011001110	40CE	101000010011001	5099		
00110	1110000101	100111110010111	4F97	1011111111000000	5FC0		
00111	1010110010	1010110010 1001010100000 4AA0		101101011110111	5AF7		
ı	ı	' I	ı	l I			
10000	1010011011	001011010001001	1689	000011011011110	06DE		
10001	1110101100	001001110111110	13BE	000001111101001	03E9		
10010	0011110101	001110011100111	1CE7	000110010110000	0CB0		
10011	0111000010	001100111010000	19D0	000100110000111	0987		
10100	1101110000	000011101100010	0762	001011100110101	1735		

Demasking for mask 001 (i%2=0)

```
void demask(){
  for (int i = 0; i < 9; i++) if (i != 6)
    for (int j = 9; j < width - 8; j++)
      if (i % 2 == 0) matrix[i][j] = !matrix[i][j];
  for (int i = 9; i < height - 8; i++)
      for (int j = 0; j < width; j++) if (j != 6)
        if (i % 2 == 0) matrix[i][j] = !matrix[i][j];
  for (int i = height - 8; i < height; i++)
      for (int j = 9; j < width; j++)
      if (i % 2 == 0) matrix[i][j] = !matrix[i][j];
}</pre>
```

Getting Data Bit Stream

```
void getDataBitStream(){
 int n = 0;
 for (int i = 0; i < 4; i++){
    boolean up = (i \% 2) == 0;
   int x = width - 1 - 2 * i;
   if (up)
      for (int y = height - 1; y >= 9; y--){
        dataBitStream[n++] = matrix[y][x];
       dataBitStream[n++] = matrix[y][x - 1];
   else for (int y = 9; y < height; y++){
        dataBitStream[n++] = matrix[y][x];
        dataBitStream[n++] = matrix[y][x - 1];
```


The Middle Section

```
int middleWidth = (width - 17) / 2;
  for (int i = 0; i < middleWidth; i++){
    boolean up = (i \% 2) == 0;
    int x = width - 9 - 2 * i;
    if (up)
      for (int y = height - 1; y >= 0; y--){
        if (y != 6){
        dataBitStream[n++] = matrix[y][x];
        dataBitStream[n++] = matrix[y][x - 1];
    else for (int y = 0; y < height; y++) if (y != 6){
        dataBitStream[n++] = matrix[y][x];
        dataBitStream[n++] = matrix[y][x - 1];
```

The Third Section of Data Bit Stream

```
for (int i = 0; i < 4; i++){
    boolean up = (i \% 2) == 0;
    int x = i == 0 ? 8 : 7 - 2 * i;
    if (up)
      for (int y = height - 9; y >= 9; y--){
        dataBitStream[n++] = matrix[y][x];
        dataBitStream[n++] = matrix[y][x - 1];
    else for (int y = 9; y \le height - 9; y++){
        dataBitStream[n++] = matrix[y][x];
        dataBitStream[n++] = matrix[y][x - 1];
```

Codeword Capacity

Table 1 — Codeword capacity of all versions of QR Code 2005

Version	No. of Modules/ side (A)	Function pattern modules (B)	Format and version information modules (C)	Data modules except (C) (D=A²-B-C)	Data capacity [codewords] ^a (E)	Remainder Bits
M1	11	70	15	36	5	0
M2	13	74	15	80	10	0
M3	15	78	15	132	17	0
M4	17	82	15	192	24	0
1	21	202	31	208	26	0
2	25	235	31	359	44	7
3	29	243	31	567	70	7
4	33	251	31	807	100	7
5	37	259	31	1 079	134	7

Mode Indicator and Terminator

Table 2 — Mode indicators for QR Code 2005

Mode	QR Code symbols	Micro QR Code symbols			
Version	all	M1	M2	М3	M4
Mode indicator length (bits)	4	0	1	2	3
ECI	0111	n/a	n/a	n/a	n/a
Numeric	0001	n/a	0	00	000
Alphanumeric	0010	n/a	1	01	001
Byte	0100	n/a	n/a	10	010
Kanji	1000	n/a	n/a	11	011
Structured Append	0011	n/a	n/a	n/a	n/a
FNC1	0101 (1st position) 1001 (2nd position)	n/a	n/a	n/a	n/a
Terminator (End of Message) ^a	0000	000	00000	0000000	000000000

⁻ Mode indicator

- Character count indicator
- Data bit stream

Data Capacity (EC Level Based)

Table 7 — Number of symbol characters and input data capacity for QR Code 2005

Version	Error correction level	Number of data codewords	Number of data bits	Data capacity			
				Numeric	Alphanumeric	Byte	Kanji
M1	Error Detection only	3	20	5	-	-	
M2	L M	5 4	40 32	10 8	6 5	-	-
M3	L M	11 9	84 68	23 18	14 11	9 7	6 4
M4	L M Q	16 14 10	128 112 80	35 30 21	21 18 13	15 13 9	9 8 5
1	L M Q H	19 16 13 9	152 128 104 72	41 34 27 17	25 20 16 10	17 14 11 7	10 8 7 4
2	L M Q H	34 28 22 16	272 224 176 128	77 63 48 34	47 38 29 20	32 26 20 14	20 16 12 8

Placement of Input Data

- The total number of codewords in the message shall always be equal to the total number of codewords capable of being represented in the symbol.
- The message bit stream shall be extended to fill the data capacity of the symbol corresponding to the Version and Error Correction Level, as defined in Table 8, by adding the Pad Codewords 11101100 and 00010001 alternately.

Get Message

```
int nextSymbol(int position, int bitSize){
   int result = 0;
   for (int i = 0; i < bitSize; i++){
     result <<= 1;
     if (dataBitStream[position + i]) result |= 1;
   return result;
}
void getMessage(){
  int mode = nextSymbol(0, 4);
  int messageLength = nextSymbol(4, 8);
  for (int i = 0; i < messageLength; i++)
   // print out message
```

Homework 21: due 4-12-15

- Complete H21.java and run it on a version 1 symbol (test21.txt).
- Give an explanation on the format information.
- Print out the message.

Table 13 — Error correction characteristics for versions 1 to 6

Version	Total number of codewords	Error correction level	Number of error correction codewords	Number of error correction blocks	Error correction code per block ^a
1	26	L	7	1	(26,19,2) b
		M	10	1	(26,16,4) b
		Q	13	1	(26,13,6) b
		Н	17	1	(26,9,8) b
2	44	L	10	1	(44,34,4) b
		M	16	1	(44,28,8)
		Q	22	1	(44,22,11)
		Н	28	1	(44,16,14)
3	70	L	15	1	(70,55,7) b
		M	26	1	(70,44,13)
		Q	36	2	(35,17,9)
		Н	44	2	(35,13,11)