Семинар 4

Общая информация:

• Квадратные матрицы $A, B \in \mathrm{M}_n(\mathbb{R})$ называются сопряженными, если найдется невырожденная матрица $C \in \mathrm{M}_n(\mathbb{R})$ такая, что $B = C^{-1}AC$.

Задачи:

1. Какие из следующих матриц сопряжены? Если они сопряжены, то укажите с помощью какой матрицы: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 3 & -1 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$

$$\bullet \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \bowtie \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \bullet \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} \bowtie \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}, \bullet \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \bowtie \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}.$$

2. В пространстве \mathbb{R}^3 заданы следующие векторы

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \ v_3 = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}, \ u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \ u_3 = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

Найдите матрицу A линейного оператора $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ по правилу $x \mapsto Ax$, такого, что $Av_i = u_i$ для всех $1 \leqslant i \leqslant 3$.

3. Пусть $\phi \colon \mathbb{R}^3 \to \mathbb{R}^2$ — линейное отображение, заданное в стандартном базисе матрицей $A = \left(\begin{smallmatrix} 1 & 2 & 0 \\ -1 & 0 & 2 \end{smallmatrix} \right)$. Пусть

$$f_1=egin{pmatrix}1\\1\\1\end{pmatrix},\ f_2=egin{pmatrix}1\\1\\2\end{pmatrix},\ f_3=egin{pmatrix}1\\2\\3\end{pmatrix}$$
 вектора в $\mathbb{R}^3,\quad g_1=egin{pmatrix}1\\2\end{pmatrix},\ g_2=egin{pmatrix}1\\1\end{pmatrix}$ вектора в \mathbb{R}^2

Найти матрицу отображения ϕ в базисах f_1, f_2, f_3 и g_1, g_2 .

- 4. Найти собственные значения и собственные векторы линейных операторов, заданных в некотором базисе матрицами: (a) $\begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$, (b) $\begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix}$. Можно ли эти матрицы диагонализовать в каком-нибудь базисе?
- 5. Найдите собственные значения для матрицы $x^t x$, где x матрица-строка (a_1, \ldots, a_n) .
- 6. Найти матрицу какого-нибудь линейного оператора $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ такого, что выполнены следующие условия: $\ker \phi = \langle \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \rangle$, $\operatorname{Im} \phi = \langle \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \rangle$.
- 7. Линейный оператор $A: \mathbb{R}^n \to \mathbb{R}^n$ таков, что A^3 это оператор проекции. Какие собственные значения может иметь A? Верно ли, что A будет иметь диагональную матрицу в каком-либо базисе \mathbb{R}^n ?

1