вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Контролно по Бързи алгоритми върху структури от данни спец. 06.12.2018 г.

Задача 1. Разглеждаме следния проблем:

Дадено: A[0..n-1][0..m-1] - матрица от различни числа.

Вход: $0 \le i \le j < n$, $0 \le k \le l < m$.

Изход: $(s,r)\in [i;j]\times [k;l]$, за която $A[s][r]=\min A[i..j][k..l]$.

- 1. (0.5 т.) Предложете алгоритъм, който индексира дадената матрица за време $O(nm \log n \log m)$ и отговаря на всяка заявка за време O(1).
- 2. (0.5 т.) Предложете индекс, който зависи от O(nm) сравнения върху елементите на дадената матрица и има характеристиките от първата подточка. Докажете, че сравненията необходими за построяването на индекса действително са O(nm).
- 3. (0.5 т.) Предложете алгоритъм, който индексира дадената матрица за време O(nm) и отговаря на всяка заявка за време O(1).

Обосновете коректността и времевата сложност на предложените от Вас алгоритми.

Упътване: Може да си мислите за подматриците $A[s2^p..(s+1)2^k-1][t2^q..(t+1)2^l-1]$ на A, организирани по степените на двойката $2^p < n$ и $2^q < m$. Показателен е случаят, когато m и n са точни степени на 2.

Забележка: Алгоритмите, разглеждани по време на курса могат да използват без допълнителна верификация.

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Контролно по Бързи алгоритми върху структури от данни спец. 06.12.2018 г.

Задача 1. Разглеждаме следния проблем:

Дадено: A[0..n-1][0..m-1] - матрица от различни числа.

Вход: $0 \le i \le j < n$, $0 \le k \le l < m$.

Изход: $(s,r)\in [i;j]\times [k;l]$, за която $A[s][r]=\min A[i..j][k..l]$.

- 1. (0.5 т.) Предложете алгоритъм, който индексира дадената матрица за време $O(nm \log n \log m)$ и отговаря на всяка заявка за време O(1).
- 2. (0.5 т.) Предложете индекс, който зависи от O(nm) сравнения върху елементите на дадената матрица и има характеристиките от първата подточка. Докажете, че сравненията необходими за построяването на индекса действително са O(nm).
- 3. (0.5 т.) Предложете алгоритъм, който индексира дадената матрица за време O(nm) и отговаря на всяка заявка за време O(1).

Обосновете коректността и времевата сложност на предложените от Вас алгоритми.

Упътване: Може да си мислите за подматриците $A[s2^p..(s+1)2^k-1][t2^q..(t+1)2^l-1]$ на A, организирани по степените на двойката $2^p < n$ и $2^q < m$. Показателен е случаят, когато m и n са точни степени на 2.

Забележка: Алгоритмите, разглеждани по време на курса могат да използват без допълнителна верификация.