Домашня робота #3 з курсу "Комплексний аналіз" (частина друга)

Студента 3 курсу групи МП-31 Захарова Дмитра

5 грудня 2023 р.

Варіант 5

Завдання.

Умова. Знайти всі особливі точки та класифікувати їх

- 1. $f(z) = \frac{1}{(z+3)(z-12)}$;
- 2. $f(z) = \frac{\sin 3z}{(z+1)^3}$;
- 3. $f(z) = \frac{z + \frac{5}{2}}{\cos \pi z}$.

Розв'язок.

Пункт 1. Тут z=-3, z=12 – полюси першого порядку. Для цього можемо скористатися критерієм полюса: f(z) має полюс порядку m у точці z_0 тоді і тільки тоді, коли $\frac{1}{f(z)}$ має корінь z_0 кратності m. Оскільки $\frac{1}{f(z)}=(z+3)(z-12)$, то маємо два полюси першого порядку z=-3, z=12.

Також $z=\infty$ є усувною, оскільки $\lim_{z\to\infty}f(z)=0$.

Пункт 2. Нуль знаменника z=-1 кратності 3, а нулі чисельника $3z_k=\pi k \to z_k=\frac{\pi k}{3}$ для $k\in\mathbb{Z}.$

Отже, z=-1 є полюсом третього порядку, оскільки є коренем кратності 3 виразу $\frac{1}{f(z)}=\frac{(z+1)^3}{\sin 3z}$. При цьому корені чисельника і знаменника не збігаються, оскільки рівняння $\frac{\pi k}{3}=-1$ немає розв'язків для $k\in\mathbb{Z}$.

Точка $z=\infty$ є усувною, оскільки $\lim_{z\to\infty}\frac{\sin 3z}{(z+1)^3}=0$. Дійсно,

$$\left| \frac{\sin 3z}{(z+1)^3} \right| < \frac{1}{(z+1)^3} \xrightarrow[z \to \infty]{} 0$$

Пункт 3. Нуль чисельника $z=-\frac{5}{2}$, а у знаменника $\cos \pi z_k=0 \implies \pi z_k=\frac{\pi}{2}+\pi k$, тобто $z_k=\frac{1}{2}+k$.

Бачимо, що при k=-3, корені чисельника та знаменника збігаються. Тому проаналізуємо границю:

$$\lim_{z \to -\frac{5}{2}} \frac{z + \frac{5}{2}}{\cos \pi z} = \lim_{w \to 0} \frac{w}{\cos \left(\pi \left(w - \frac{5}{2}\right)\right)} = \lim_{w \to 0} \frac{w}{\cos \left(\pi w - \frac{5\pi}{2}\right)} = \lim_{w \to 0} \frac{w}{\sin \pi w} = \frac{1}{\pi}$$

Отже, точка $z=-\frac{5}{2}$ є усувною. Всі точки $z_k=\frac{1}{2}+k, k\in\mathbb{Z}\setminus\{-3\}$ є полюсами першого порядку.

 $z=+\infty$ є істотною особливістю, оскільки $\lim_{z\to\infty}f(z)$ не визначено.

Ітогові відповіді на наступній сторінці

Відповідь.

Пункт 1.

- 1. z = -3, z = 12 полюси (першого порядку);
- 2. $z = \infty$ усувна особливість.

Пункт 2.

- 1. z = -1 полюс (третього порядку);
- 2. $z = \infty$ усувна особливість.

Пункт 3.

- 1. $z = -\frac{5}{2}$ усувна особливість;
- 2. $z_k = \frac{1}{2} + k, \ k \in \mathbb{Z} \setminus \{-3\}$ полюси (першого порядку);
- $3. \ z = \infty$ істотна особливість.