Machine Learning and Data Analytics

Eric Medvet Matilde Trevisani

A.A. 2018/2019

Section 1

General information

Lecturers

- Matilde Trevisani
 - $ho \approx 24 \, h \, (12 \, \text{CFU only}) \, + \approx 24 \, h$
 - Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche (DEAMS)
 - http://www.units.it/persone/index.php/from/abook/ persona/8754
- Eric Medvet
 - $ho \approx 48 \, h$
 - ▶ Dipartimento di Ingegneria e Architettura (DIA)
 - http://medvet.inginf.units.it/

Course materials

- Lecturer's slides (my part)
 - http://medvet.inginf.units.it/teaching/ machine-learning-and-data-analytics-2018-2019
- Suggested textbooks (for further reading)
 - ► Gareth James et al. *An introduction to statistical learning*. Vol. 6. Springer, 2013
 - Kenneth A De Jong. Evolutionary computation: a unified approach. MIT press, 2006
- Other material:
 - ▶ I'll point you to some scientific papers for discussing examples of application or specific details—just a "chat"

Everything you are required to know is in the lecturer's slides

How to attend lectures

Everything you are required to know is in the lecturer's slides

But: slides are designed assuming that you are attending the lecture and taking notes

However:

- ▶ lectures will be recorded: https://videocenter.units.it
- during the lectures, I'll (hopely) use the interactive whiteboard for writing annotations
- including answers to questions posed in the slides, e.g.,
 - Q: is this working?
- the annotated slides will be available on my website

How to attend lectures: lab activities

Focus is on methodology, rather than on theory behind techniques: how to tackle a problem with ML?

Practicing (in tackling problems) is crucial \rightarrow lab activities

- ► ≈ 13h
- mainly design, then implementation
 - you practice
 - ▶ I am available any time during/before/after for advising
 - there's a tutor: Marco Zullich
 - ▶ in general, there is no one solution; you make the solution better or worse while (virtually) presenting it
 - we'll analyzie in depth at least one solution
- ▶ form small (2–4) groups
 - possibly with different background
 - peer-tutoring

Exam

Either:

- a student project and a written test
- a larger written test

Written test: questions on theory and application with mediumand short-length open answers

Project: design, develop, and assess an ML system, choosing among a few options (see http://medvet.inginf.units.it/teaching/machine-learning-and-data-analytics-2018-2019/student-project)

You?

Who are you?

Section 2

Introduction

What is Machine Learning?

Definition

Machine Learning is the science of getting computer to learn without being explicitly programmed.

Definition

Data Mining/Analytics is the science of discovering patterns in data.

In practice

A set of mathematical and statistical tools for:

- building a model which allows to predict an output, given an input (supervised learning)
 - example (input, output) pairs are available
- learn relationships and structures in data (unsupervised learning)

Example problem: spam

Discriminate between spam and non-spam emails.

Figure: Spam filtering in Gmail.

Example problem: flight trajectories

Do flights over the same pair $\langle \text{origin, destination} \rangle$ follow the "same" trajectory? Why?

Figure: Clustering of flight trajectories.

Example problem: image understanding

Recognize objects in images.

Figure: Object recognition in Google Photos.

Example problem: authoring regular expressions Write a regular expression from matching examples.

Figure: Regex generation with http://regex.inginf.units.it/.

Q: what type of learning (supervised/unsupervised) is in the examples?

- spam
- image understanding
- flight trajectories
- authoring regular expressions

Why ML/DM "today"?

- we collect more and more data (big data)
- we have more and more computational power

Figure: From http://www.mkomo.com/cost-per-gigabyte-update.

ML/DM is popular!

Figure: Popular areas of interest, from the Skill Up 2016: Developer Skills Report²

top-5-highest-paying-programming-languages-of-2016/

https://techcus.com/p/r1zSmbXut/
top-5-highest-paying-programming-languages-of-2016/.
https://techcus.com/p/r1zSmbXut/

Be able to:

- 1. design
- 2. implement
- 3. assess experimentally

Be able to:

- 1. design
- 2. implement
- 3. assess experimentally

an end-to-end Machine Learning or Data Mining system.

▶ Which is the problem to be solved? Which are the input and output? Which are the most suitable techniques? How should data be prepared? Does computation time matter?

Be able to:

- 1. design
- 2. implement
- 3. assess experimentally

- Which is the problem to be solved? Which are the input and output? Which are the most suitable techniques? How should data be prepared? Does computation time matter?
- Write some code!

Be able to:

- design
- 2. implement
- 3. assess experimentally

- ▶ Which is the problem to be solved? Which are the input and output? Which are the most suitable techniques? How should data be prepared? Does computation time matter?
- Write some code!
- ► How to measure solution quality? How to compare solutions? Is my solution general?

Be able to:

- 1. design
- 2. implement
- 3. assess experimentally

- ▶ Which is the problem to be solved? Which are the input and output? Which are the most suitable techniques? How should data be prepared? Does computation time matter?
- Write some code!
- How to measure solution quality? How to compare solutions? Is my solution general?
 - Itself: design and implementation

Aims of the course: communication

Be able to:

- 1. design
- 2. implement
- 3. assess experimentally

an end-to-end Machine Learning or Data Mining system.

And be able to convince the "client" that it is:

- technically sound
- economically viable
- in its larger context

Subsection 1

Motivating example

The amateur botanist friend

He likes to collect Iris plants. He "realized" that there are 3 species, in particular, that he likes: *Iris setosa*, *Iris virginica*, and *Iris versicolor*. He'd like to have a tool to automatically *classify* collected samples in one of the 3 species.

Figure: Iris versicolor.

How to help him?

Which is the problem to be solved?

- Which is the problem to be solved?
 - ► Assign exactly one specie to a sample.

- Which is the problem to be solved?
 - Assign exactly one specie to a sample.
- Which are the input and output?

- Which is the problem to be solved?
 - Assign exactly one specie to a sample.
- Which are the input and output?
 - Output: one species among I. setosa, I. virginica, I. versicolor.

- Which is the problem to be solved?
 - ► Assign exactly one specie to a sample.
- ▶ Which are the input and output?
 - Output: one species among I. setosa, I. virginica, I. versicolor.
 - Input: the plant sample...

- Which is the problem to be solved?
 - Assign exactly one specie to a sample.
- Which are the input and output?
 - ▶ Output: one species among I. setosa, I. virginica, I. versicolor.
 - ▶ Input: the plant sample. . .
 - a description in natural language?

- Which is the problem to be solved?
 - Assign exactly one specie to a sample.
- Which are the input and output?
 - Output: one species among I. setosa, I. virginica, I. versicolor.
 - ▶ Input: the plant sample...
 - a description in natural language?
 - a digital photo?

- Which is the problem to be solved?
 - Assign exactly one specie to a sample.
- Which are the input and output?
 - Output: one species among I. setosa, I. virginica, I. versicolor.
 - ▶ Input: the plant sample. . .
 - a description in natural language?
 - a digital photo?
 - ► DNA sequences?

- Which is the problem to be solved?
 - Assign exactly one specie to a sample.
- Which are the input and output?
 - Output: one species among I. setosa, I. virginica, I. versicolor.
 - ▶ Input: the plant sample...
 - a description in natural language?
 - a digital photo?
 - ► DNA sequences?
 - some measurements of the sample!

Iris: input and output

Figure: Sepal and petal.

Input: sepal length and width, petal length and width (in cm)

Output: the class

Example: $(5.1, 3.5, 1.4, 0.2) \rightarrow I$. setosa

Other information

The botanist friend asked a senior botanist to inspect several samples and label them with the corresponding species.

Sepal length	Sepal width	Petal length	Petal width	Species
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
7.0	3.2	4.7	1.4	I. versicolor
6.0	2.2	5.0	1.5	I. virginica

- Sepal length, sepal width, petal length, and petal width are input variables (or independent variables, or features, or attributes).
- Species is the output variable (or dependent variable, or response).

$$\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,p} \end{pmatrix} \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

 $x_1^T = (x_{1,1}, x_{1,2}, \dots, x_{1,p})$ is an observation (or instance, or data point), composed of p variable values;

$$\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,p} \end{pmatrix} \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

 $x_1^T = (x_{1,1}, x_{1,2}, \dots, x_{1,p})$ is an observation (or instance, or data point), composed of p variable values; y_1 is the corresponding output variable value

$$\mathbf{X} = \begin{pmatrix} x_{1,1} & \mathbf{x}_{1,2} & \cdots & \mathbf{x}_{1,p} \\ x_{2,1} & \mathbf{x}_{2,2} & \cdots & \mathbf{x}_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & \mathbf{x}_{n,2} & \cdots & \mathbf{x}_{n,p} \end{pmatrix} \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

- $x_1^T = (x_{1,1}, x_{1,2}, \dots, x_{1,p})$ is an observation (or instance, or data point), composed of p variable values; y_1 is the corresponding output variable value
- $\mathbf{x}_2^T = (x_{1,2}, x_{2,2}, \dots, x_{n,2})$ is the vector of all the n values for the 2nd variable (X_2) .

Different communities (e.g., statistical learning vs. machine learning vs. artificial intelligence) use different terms and notation:

- $\triangleright x_j^{(i)}$ instead of $x_{i,j}$ (hence $x^{(i)}$ instead of x_i)
- ▶ m instead of n and n instead of p
- . . .

Focus on the meaning!

Simplification: forget petal and I. virginica \rightarrow 2 variables, 2 species (binary classification problem).

Simplification: forget petal and I. virginica \rightarrow 2 variables, 2 species (binary classification problem).

Problem: given any new observation, we want to automatically assign the species.

Simplification: forget petal and I. virginica \rightarrow 2 variables, 2 species (binary classification problem).

- Problem: given any new observation, we want to automatically assign the species.
- Sketch of a possible solution:

Simplification: forget petal and I. virginica \rightarrow 2 variables, 2 species (binary classification problem).

- Problem: given any new observation, we want to automatically assign the species.
- Sketch of a possible solution:
 - 1. learn a model (classifier)

Simplification: forget petal and I. virginica \rightarrow 2 variables, 2 species (binary classification problem).

- Problem: given any new observation, we want to automatically assign the species.
- Sketch of a possible solution:
 - 1. learn a model (classifier)
 - 2. "use" model on new observations

"A" model?

There could be many possible models:

- ▶ how to choose?
- ▶ how to compare?

Q: a model of what?

Choosing the model

The choice of the model/tool/technique to be used is determined by many factors:

- Problem size (n and p)
- Availability of an output variable (y)
- Computational effort (when learning or "using")
- Explicability of the model

We will see some options.

Comparing many models

Experimentally: does the model work well on (new) data?

Comparing many models

Experimentally: does the model work well on (new) data? Define "works well":

- a single performance index?
- how to measure?
- repeatability/reproducibility...
 - Q: what's the difference?

We will see/discuss some options.

It does not work well...

Why?

- the data is not informative
- the data is not representative
- the data has changed
- the data is too noisy

We will see/discuss these issues.

ML is not magic

Problem: find birth town from height/weight.

Q: which is the data issue here?

Implementation

When "solving" a problem, we usually need:

- explore/visualize data
- apply one or more ML technique
- assess learned models

"By hands?" No, with software!

ML/DM software

Many options:

- libraries for general purpose languages:
 - ▶ Java: e.g., http://haifengl.github.io/smile/
 - Python: e.g., http://scikit-learn.org/stable/
- specialized sw environments:
 - ▶ Octave: https://en.wikipedia.org/wiki/GNU_Octave
 - R: https: //en.wikipedia.org/wiki/R_(programming_language)
- from scratch

ML/DM software: which one?

- production/prototype
- platform constraints
- degree of (data) customization
- documentation availability/community size
- **.**..
- previous knowledge/skills

ML/DM software: why?

In all cases, sw allows to be more productive and concise. E.g., learn and use a model for classification, in Java+Smile:

We will work with R.

Section 3

Fundamentals of R

R software

- R
- a programming language
- ▶ a software environment
- RStudio
 - ▶ an IDE built on R

Section 4

Plotting data: an overview

Advanced plotting

- many packages (e.g., ggplot2)
- many options

Which is the most proper chart to support a thesis?


```
bringing changing
                                                                                                                                                                                                                                                                                                            keep delayed generally maximum really forumes building, extent currency requirements
                                                                                                                                                                                                                                                                        g p figures building boost almost
                                                                                                                                                                logislation grant many properties of the propert
                                                                                                                    § medden up men skie span "rifniggty disprizitie geldmint disclations of the desired and the span shows a show the span show the
                                                        agenough %2 upter points produce decir total near total near time market prices(sign-near) continual move future-month first dirs time market prices(sign-near) continual move future-month first dirs
                        account move future mor
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         part offerunion american monday
                                                                            pressure largest continue
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     high e estock agencyusing sets strong sets growth a set offect growth tell domestic left
                                                                    difficult cost call expected
                                                                details looking west january
precision authors is in the proof and world year earlier four and a sease of the proof and a sea
                                                            Sign from propriets gooksensan added *** marchsince ... average _ braayree cour helden good user attest however current major ... higher following propriets attest however current major ... higher following propriets and state of the pro
                                                                                                                                                volume want analyst companies range past buying volume want analyst companies countrynine official sistem makes proposal days start gave longer washington expansion whether any problems increases
                                                                                                                                                                                                        committeeimmediate local levels support december subsidiary
                                                                                                                                                                                                                                                                                                                                                         tomorrowactions sharp commerce needs
                                                                                                                                                                                                        agriculture paying
                                                                                                                                                                                                                                        measures legue previously believed exchanges reduction manager requirement competitiveness transactions chance
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             factors ≥ coming
                                                                                                                                                                                                                                                                                                                                                                                                 meanwhile
```

Car Milage Data in PC2/PC1 Order

Lab: let's know iris (1 h)

- 1. get iris data
- 2. know basic info about it (summary)
- 3. plot iris and play with it

Hints:

```
dr = iris %>% group_by(Species) %>% summarise(Avg.Sepal.Ratio=
mean(Sepal.Length/Sepal.Width),Avg.Petal.Ratio=mean(Petal.Length/
Petal.Width))
dr %>% gather(ratio, value, -Species)
Packages: ggplot2, dplyr, tidyr
```

Section 5

Tree-based methods

The carousel robot attendant

Problem: replace the carousel attendant with a robot which automatically decides who can ride the carousel.

Observed human attendant's decisions.

How can the robot take the decision?

Observed human attendant's decisions.

How can the robot take the decision?

• if younger than $10 \rightarrow$ can't!

Observed human attendant's decisions.

How can the robot take the decision?

- if younger than $10 \rightarrow$ can't!
- otherwise:

Observed human attendant's decisions.

How can the robot take the decision?

- if younger than $10 \rightarrow$ can't!
- otherwise:
 - if shorter than 120
 → can't!
 - ▶ otherwise \rightarrow can!

Carousel: data

Observed human attendant's decisions.

How can the robot take the decision?

- if younger than $10 \rightarrow$ can't!
- otherwise:
 - if shorter than 120
 → can't!
 - $\blacktriangleright \ \ \text{otherwise} \to \mathsf{can!}$

Decision tree!

How to build a decision tree

Dividi-et-impera (recursively):

- find a cut variable and a cut value
- ▶ for left-branch, dividi-et-impera
- for right-branch, dividi-et-impera

How to build a decision tree: detail

```
Recursive binary splitting
   function BuildDecisionTree(X, y)
       if ShouldStop(y) then
             \hat{y} \leftarrow \text{most common class in } \mathbf{y}
             return new terminal node with \hat{y}
        else
             (i, t) \leftarrow \text{BestBranch}(\mathbf{X}, \mathbf{y})
             n \leftarrow new branch node with (i, t)
             append child BUILDDECISIONTREE(\mathbf{X}|_{\mathbf{x}_i < t}, \mathbf{y}|_{\mathbf{x}_i < t}) to n
             append child BUILDDECISIONTREE(\mathbf{X}|_{\mathbf{x}_i > t}, \mathbf{y}|_{\mathbf{x}_i > t}) to n
             return n
        end if
   end function
```

- Recursive binary splitting
- ► Top down (start from the "big" problem)

Best branch

function BESTBRANCH(
$$\mathbf{X}, \mathbf{y}$$
)
 $(i^*, t^*) \leftarrow \arg\min_{i,t} E(\mathbf{y}|_{\mathbf{x}_i \geq t}) + E(\mathbf{y}|_{\mathbf{x}_i < t})$
return (i^*, t^*)
end function

Classification error on subset:

$$E(\mathbf{y}) = \frac{|\{y \in \mathbf{y} : y \neq \hat{y}\}|}{|\mathbf{y}|}$$

$$\hat{y} = \text{the most common class in } \mathbf{y}$$

Greedy (choose split to minimize error now, not in later steps)

Best branch

$$(i^\star, t^\star) \leftarrow \operatorname*{arg\,min}_{i,t} E(\mathbf{y}|_{\mathbf{x}_i \geq t}) + E(\mathbf{y}|_{\mathbf{x}_i < t})$$

The formula say what is done, not how is done!

Q: different "how" can differ? how?

Stopping criterion

```
function ShouldStop(y)

if y contains only one class then

return true

else if |y| < k_{min} then

return true

else

return false

end if

end function
```

Other possible criterion:

▶ tree depth larger than d_{max}

Best branch criteria

Classification error E() works, but has been shown to be "not sufficiently sensitive for tree-growing".

$$E(\mathbf{y}) = \frac{|\{y \in \mathbf{y} : y \neq \hat{y}\}|}{|\mathbf{y}|} = 1 - \max_{c} \frac{|\{y \in \mathbf{y} : y = c\}|}{|\mathbf{y}|} = 1 - \max_{c} p_{\mathbf{y},c}$$

Other two option:

► Gini index

$$G(\mathbf{y}) = \sum_{c} p_{\mathbf{y},c} (1 - p_{\mathbf{y},c})$$

Cross-entropy

$$D(\mathbf{y}) = -\sum_{c} p_{\mathbf{y},c} \log p_{\mathbf{y},c}$$

For all indexes, the lower the better (node impurity).

Best branch criteria: binary classification

Cross-entropy is rescaled.

Q: what happens with multiclass problems?

Categorical independent variables

- Trees can work with categorical variables
- ▶ Branch node is $x_i = c$ or $x_i \in C' \subset C$ (c is a class)
- Can mix categorical and numeric variables

Stopping criterion: role of k_{min}

Q: what's wrong? (recall: "a model of what?")

Tree complexity

When the tree is "too complex"

- less readable/understandable/explicable
- maybe there was noise into the data

Q: what's noise in carousel data?

Tree complexity is not related (only) with k_{min} , but also with data

Tree complexity: other interpretation

maybe there was noise into the data

The tree fits the learning data too much:

- it overfits (overfitting)
- does not generalize (high variance: model varies if learning data varies)

High variance

"model varies if learning data varies": what? why data varies?

- ▶ learning data is about the system/phenomenon/nature S
 - a collection of observations of S
 - a point of view on S

High variance

"model varies if learning data varies": what? why data varies?

- ▶ learning data is about the system/phenomenon/nature *S*
 - a collection of observations of S
 - a point of view on S
- ► learning is about understanding/knowing/explaining *S*

High variance

"model varies if learning data varies": what? why data varies?

- ▶ learning data is about the system/phenomenon/nature *S*
 - a collection of observations of S
 - a point of view on S
- ► learning is about understanding/knowing/explaining *S*
 - if I change the point of view on S, my knowledge about S should remain the same!

Spotting overfitting

Test error: error on unseen data

Spotting overfitting

Test error: error on unseen data

k-fold cross-validation

Where can I find "unseen data"? Pretend to have it!

- 1. split learning data (**X** and **y**) in k equal slices (each of $\frac{n}{k}$ observations/elements)
- 2. for each split (i.e., each $i \in \{1, ..., k\}$)
 - 2.1 learn on all but k-th slice
 - 2.2 compute classification error on **unseen** k-th slice
- 3. average the k classification errors

In essence:

- can the learner generalize beyond available data?
- how the learned artifact will behave on unseen data?

k-fold cross-validation

$$error = \frac{1}{k} \sum_{i=1}^{i=k} error_i$$

Or with any other meaningful (effectiveness) measure

Q: how should data be split?

Fighting overfitting with trees

- ▶ large k_{min} (large w.r.t. what?)
- when building, limit depth
- when building, don't split if low overall impurity decrease
- after building, prune

Pruning: high level idea

- 1. learn a full tree t_0
- 2. build from t_0 a sequence $T = \{t_0, t_1, \dots, t_n\}$ of trees such that
 - ▶ t_i is a root-subtree of t_{i-1} $(t_i \subset t_{i-1})$
 - t_i is always less complex than t_{i-1}
- 3. choose the $t \in T$ with minimum classification error with k-fold cross-validation

k-fold cross-validation: data splitting

Q: how should data be split? Example: Android Malware detection

- Gerardo Canfora et al. "Effectiveness of opcode ngrams for detection of multi family android malware". In: Availability, Reliability and Security (ARES), 2015 10th International Conference on. IEEE. 2015, pp. 333–340
- Gerardo Canfora et al. "Detecting android malware using sequences of system calls". In: Proceedings of the 3rd International Workshop on Software Development Lifecycle for Mobile. ACM. 2015, pp. 13–20

Android Malware detection

Using cross-validation (CV) for assessment (I)

How the learned artifact will behave on unseen data?

More precisely:

How an artifact learned with **this learning technique** will behave on unseen data?

Using CV for assessment (II)

"This learning technique" $= \mathrm{BUILDDECISIONTREE}()$ with $k_{\mathsf{min}} = 10$

- 1. repeat k times
 - 1.1 BUILDDECISIONTREE() with $k_{min} = 10$ on all but one slice
 - ▶ $\frac{k}{k-1}n$ observations in each **X** passed to BUILDDECISIONTREE()
 - 1.2 compute classification error on left out slice
- 2. average computed classification errors

k invocations of BuildDecisionTree()

Using CV for assessment (III)

"This learning technique" = BuildDecisionTree() with k_{min} chosen automatically with a 10-fold CV

For assessing this technique, we do two nested CVs:

- 1. repeat k times
 - 1.1 choose k_{min} among m values with 10-CV (repeat BUILDDECISIONTREE() 10m times) on all but one slice
 - ▶ $\frac{k-1}{k} \frac{9}{10} n$ observations in each **X** passed to BUILDDECISIONTREE()!
 - 1.2 compute classification error on left out slice
 - ▶ usually, a new tree is built on $\frac{k-1}{k}n$ observations
- 2. average computed classification errors

(10m+1)k invocations of BuildDecisionTree()

Using CV for assessment: "cheating"

"This learning technique" = BuildDecisionTree() with k_{min} chosen automatically with a 10-fold CV

Using just one CV is cheating (cherry picking)!

- \triangleright k_{\min} is chosen exactly to minimize error on the full dataset
- ightharpoonup conceptually, this way of "fitting" k_{min} is similar to the way we build the tree

Subsection 1

Regression trees

Regression with trees

Trees can be used for regression, instead of classification.

decision tree vs. regression tree

Tree building: decision \rightarrow regression

```
function BuildDecisionTree(X, y)
        if Shouldstop(y) then
             \hat{y} \leftarrow \text{most common class in } \mathbf{y}
             return new terminal node with \hat{y}
        else
             (i, t) \leftarrow \text{BestBranch}(\mathbf{X}, \mathbf{y})
             n \leftarrow new branch node with (i, t)
             append child BUILDDECISIONTREE(\mathbf{X}|_{\mathbf{x}_i < t}, \mathbf{y}|_{\mathbf{x}_i < t}) to n
             append child BUILDDECISIONTREE(\mathbf{X}|_{\mathbf{x}_i > t}, \mathbf{y}|_{\mathbf{x}_i > t}) to n
             return n
        end if
   end function
Q: what should we change?
```

Tree building: decision \rightarrow regression

```
function BuildDecisionTree(X, y)
       if Shouldstop(y) then
             \hat{v} \leftarrow \bar{v}
                                                                               ▷ mean y
             return new terminal node with \hat{y}
        else
             (i, t) \leftarrow \text{BestBranch}(\mathbf{X}, \mathbf{y})
             n \leftarrow new branch node with (i, t)
             append child BUILDDECISIONTREE(\mathbf{X}|_{\mathbf{x}_i < t}, \mathbf{y}|_{\mathbf{x}_i < t}) to n
             append child BUILDDECISIONTREE(\mathbf{X}|_{\mathbf{x}_i > t}, \mathbf{y}|_{\mathbf{x}_i > t}) to n
             return n
        end if
   end function
Q: what should we change?
```

□ ► ◆□ ► ◆□ ► ◆□ ► ▼ ○ ○ 76/272

Best branch

```
function BESTBRANCH(\mathbf{X}, \mathbf{y})
(i^{\star}, t^{\star}) \leftarrow \arg\min_{i,t} E(\mathbf{y}|\mathbf{x}_{i} \geq t) + E(\mathbf{y}|\mathbf{x}_{i} < t)
return (i^{\star}, t^{\star})
end function
Q: what should we change?
```

Best branch

```
function BESTBRANCH(X, y)
(i^{\star}, t^{\star}) \leftarrow \arg\min_{i,t} \sum_{y_i \in \mathbf{y}|_{\mathbf{x}_i \geq t}} (y_i - \bar{y})^2 + \sum_{y_i \in \mathbf{y}|_{\mathbf{x}_i < t}} (y_i - \bar{y})^2
return (i^{\star}, t^{\star})
end function
```

Q: what should we change?

Minimize sum of residual sum of squares (RSS) (the two \bar{y} are different)

Stopping criterion

```
function ShouldStop(y)
     if y contains only one class then
         return true
     else if |y| < k_{\min} then
         return true
     else
         return false
     end if
  end function
Q: what should we change?
```

Stopping criterion

```
function ShouldStop(y)
     if RSS is 0 then
         return true
     else if |y| < k_{\min} then
         return true
     else
         return false
     end if
  end function
Q: what should we change?
```

Interpretation

Regression and overfitting

Trees in summary

Pros:

- ▲ easily interpretable/explicable
- ▲ learning and regression/classification easily understandable
- ▲ can handle both numeric and categorical values

Cons:

▼ not so accurate (Q: always?)

Tree accuracy?

Lab: tree on iris (2 h)

- for each of the 5 variables in iris, predict it with the other 4
- which is the hardest to be predicted? why?

Packages: tree

Functions: tree, prune.tree, predict.tree(t, type="class"), table

Subsection 2

Trees aggregation

Weakness of the tree

Small tree:

- low complexity
- will hardly fit the "curve" part
- high bias, low variance

Big tree:

- high complexity
- may overfit the noise on the right part
- ▶ low bias, high variance

The trees view

Small tree:

"a car is something that moves"

Big tree:

"a car is a made-in-Germany blue object with 4 wheels, 2 doors, chromed fenders, curved rear enclosing engine"

Big tree view

A big tree:

- has a detailed view of the learning data (high complexity)
- "trusts too much" the learning data (high variance)

What if we "combine" different big tree views and ignore details on which they disagree?

Wisdom of the crowds

What if we "combine" different big tree views and ignore details on which they disagree?

- many views
- independent views
- aggregation of views

 \approx the wisdom of the crowds: a collective opinion may be better than a single expert's opinion

- many views
- independent views

aggregation of views

- many views
 - just use many trees
- independent views

aggregation of views

- many views
 - just use many trees
- independent views

- aggregation of views
 - just average prediction (regression) or take most common prediction (classification)

- many views
 - just use many trees
- independent views
 - ➤ ??? learning is deterministic: same data ⇒ same tree ⇒ same view
- aggregation of views
 - just average prediction (regression) or take most common prediction (classification)

Independent views

Independent views \equiv different points of view \equiv different learning data

But we have only one learning data!

Independent views: idea! (Bootstrap)

Like in cross-fold, consider only a part of the data, but:

- instead of a subset
- a sample with repetitions

Independent views: idea! (Bootstrap)

Like in cross-fold, consider only a part of the data, but:

- instead of a subset.
- a sample with repetitions

$$\mathbf{X} = (x_1^T x_2^T x_3^T x_4^T x_5^T) \qquad \text{original learning data}$$

$$\mathbf{X_1} = (x_1^T x_5^T x_3^T x_2^T x_5^T) \qquad \text{sample 1}$$

$$\mathbf{X_2} = (x_4^T x_2^T x_3^T x_1^T x_1^T) \qquad \text{sample 2}$$

$$\mathbf{X_i} = \dots \qquad \text{sample } i$$

- ▶ (y omitted for brevity)
- learning data size is not a limitation (differently than with subset)

Tree **bagging**

When learning:

- 1. Repeat *B* times
 - 1.1 take a sample of the learning data
 - 1.2 learn a tree (unpruned)

When predicting:

- 1. Repeat B times
 - 1.1 get a prediction from *i*th learned tree
- 2. predict the average (or most common) prediction

For classification, other aggregations can be done: majority voting (most common) is the simplest

Using independent, possibly different classifiers together: *ensemble* of classifiers

How many trees?

B is a parameter:

- when there is a parameter, there is the problem of finding a good value
- remember k_{\min} , depth (Q: impact on?)

How many trees?

B is a parameter:

- when there is a parameter, there is the problem of finding a good value
- remember k_{\min} , depth (Q: impact on?)
- it has been shown (experimentally) that
 - ▶ for "large" B, bagging is better than single tree
 - increasing B does not cause overfitting
 - (for us: default B is ok! "large" \approx hundreds)
- Q: how better? at which cost?

Bagging: impact of B

Independent view: improvement

Despite being learned on different samples, bagging trees may be correlated, hence views are not very independent

 e.g., one variable is much more important than others for predicting (strong predictor)

Idea: force point of view differentiation by "hiding" variables

Random forest

When learning:

- 1. Repeat B times
 - 1.1 take a sample of the learning data
 - 1.2 consider only m on p independent variables
 - 1.3 learn a tree (unpruned)

When predicting:

- 1. Repeat B times
 - 1.1 get a prediction from *i*th learned tree
- 2. predict the average (or most common) prediction
- (observations and) variables are randomly chosen...
- ...to learn a forest of trees

Q: are missing variables a problem?

Random forest: parameter m

How to choose the value for m?

- ▶ $m = p \rightarrow \text{bagging}$
- it has been shown (experimentally) that
 - m does not relate with overfitting
 - $m = \sqrt{p}$ is good for classification
 - $m = \frac{\dot{p}}{3}$ is good for regression
 - ▶ (for us, default *m* is ok!)

Random forest

Experimentally shown: one of the "best" multi-purpose supervised classification methods

Manuel Fernández-Delgado et al. "Do we need hundreds of classifiers to solve real world classification problems". In: J. Mach. Learn. Res 15.1 (2014), pp. 3133–3181

but...

No free lunch!

"Any two optimization algorithms are equivalent when their performance is averaged across all possible problems"

▶ David H Wolpert. "The lack of a priori distinctions between learning algorithms". In: Neural computation 8.7 (1996), pp. 1341–1390

Why free lunch?

- many restaurants, many items on menus, many possibly prices for each item: where to go to eat?
- no general answer
- but, if you are a vegan, or like pizza, then a best choice could exist

Q: problem? algorithm?

Observation sampling

When learning:

- 1. Repeat B times
 - 1.1 take a sample of the learning data
 - 1.2 consider only m on p independent variables (only for RF)
 - 1.3 learn a tree (unpruned)

Each learned tree uses only a portion of the observation in the learning data:

• for each observation, $\approx \frac{B}{3}$ trees did not considered it when learned

Observation sampling

When learning:

- 1. Repeat B times
 - 1.1 take a sample of the learning data
 - 1.2 consider only m on p independent variables (only for RF)
 - 1.3 learn a tree (unpruned)

Each learned tree uses only a portion of the observation in the learning data:

- ▶ for each observation, $\approx \frac{B}{3}$ trees did not considered it when learned
- those observation were unseen for those trees, like in cross-validation (OOB = out-of-bag)

Bonus 1: OOB error

- ▶ for unseen each observation there are $\frac{B}{3}$ predictions
- can "average" prediction among trees, observation and obtain an estimate of the testing error (OOB error)
 - ▶ like with cross-fold validation
 - ▶ for free!

OOB error

Image from An Introduction to Statistical Learning

Why estimating the test error?

Because the test data, in real world, is not available!

▶ will my ML solution work?

Bagging/RF and explicability

- lacktriangle Trees are easily understandable ightarrow explicability
- Hundreds of trees are not!

Image from F. Daolio

Bagging/RF and explicability: idea!

While learning:

- 1. for each tree, at each split
 - 1.1 keep note of the split variable
 - 1.2 keep note of RSS/Gini reduction
- 2. for each variable, sum reductions

The largest reduction, the more important the variable!

Bonus 2: variable importance

Instead of explicability based on tree shape:

▶ importance of variables based on RSS/Gini reduction

Nature of the prediction

Consider classification:

- ightharpoonup tree ightharpoonup the class
- lacktriangleright forest ightarrow the class, as resulting from a voting

Nature of the prediction

Consider classification:

- ightharpoonup tree ightharpoonup the class
 - "virginica" is just "virginica"
- ▶ forest → the class, as resulting from a voting
 - ► "241 virginica, 170 versicolor, 89 setosa" is different than "478 virginica, 10 versicolor, 2 setosa"

Different confidence in the prediction

Bonus 3: confidence/tunability

Voting outcome:

- ▶ in classification, a measure of confidence of the decision
- in binary classification, voting threshold can be tuned to adjust bias towards one class (sensitivity)

Q: in regression?

Subsection 3

Binary classification

Binary classification

Binary classification:

- one of the most common classes of problems
- (comparative) evaluation is important!

Binary classification: evaluation

Consider the problem of classifying a person ('s data) as suffering or not suffering from a disease X.

Suppose we have "an accuracy of 99.99%". Q: is it good?

Binary classification: positives/negatives

Consider the problem of classifying a person ('s data) as suffering or not suffering from a disease X.

- positive: an observation of "suffering" class
- negative: an observation of "not suffering" class

In other problems, positive may mean a different thing: define it!

Effectiveness indexes: FPR, FNR

Given some labeled data and a classifier for the disease X problem, we can measure:

- the number of negative observations wrongly classified as positives: False Positives (FP)
- the number of positive observations wrongly classified as negatives: False Negatives (FN)

To decouple FP, FN from data size:

$$\begin{aligned} & \mathsf{FPR} = \frac{\mathsf{FP}}{\mathsf{N}} = \frac{\mathsf{FP}}{\mathsf{FP} + \mathsf{TN}} \\ & \mathsf{FNR} = \frac{\mathsf{FN}}{\mathsf{P}} = \frac{\mathsf{FN}}{\mathsf{FN} + \mathsf{TP}} \end{aligned}$$

Accuracy and error rate

Relation of FPR, FNR with accuracy and error rate

$$\begin{aligned} & \mathsf{Accuracy} = 1 - \mathsf{Error} \ \mathsf{Rate} \\ & \mathsf{Error} \ \mathsf{Rate} = \frac{\mathsf{FN} + \mathsf{FP}}{\mathsf{P} + \mathsf{N}} \end{aligned}$$

Q: Error Rate
$$\stackrel{?}{=}$$
 $\frac{\text{FPR+FNR}}{2}$

FPR, FNR and sensitivity

- ► Suppose FPR = 0.06, FNR = 0.04 with threshold set to 0.5 (default for RF)
- \blacktriangleright One could be interested in "limiting" the FNR \rightarrow change the threshold

Experimentally:

Comparing classifiers with FPR, FNR

- ► Classifier A: FPR = 0.06, FNR = 0.04
- ▶ Classifier B: FPR = 0.10, FNR = 0.01

Which one is the better?

We'd like to have one single index \rightarrow EER, AUC

Equal Error Rate (EER)

EER: the FPR at the value of t for which FPR = FNR

AUC: Area Under the Curve

AUC: the area under the TPR vs. FPR curve, plotted for different values of threshold t

▶ the curve is called the Receiver operating characteristic (ROC)

ROC and comparison

Q: what does the bisector represent?

Other issues: robustness w.r.t. the threshold

"Same" with other parameters

Other issues: robustness w.r.t. random components

Consider A vs. B, AUC measured with cross-fold validation:

- A: $0.85, 0.73, 0.91, \dots \rightarrow \mu = 0.83, \sigma = 0.15$
- ▶ B: $0.81, 0.78, 0.79, \dots \rightarrow \mu = 0.81, \sigma = 0.03$

Can we say that A is better than B? (for effectiveness only)

In general, other sources of performance variability:

- random seed
- subclass of problem class (e.g., image recognition of dogs, cats, . . .)

Comparing techniques

Technique A, B; different index (e.g., AUC) values:

- A \rightarrow $(x_a^1, x_a^2, \dots) \rightarrow$ random variable X_a
- ▶ B \rightarrow $(x_b^1, x_b^2, \dots) \rightarrow$ random variable X_b

Do X_a, X_b follow different distributions?

- yes: A and B are different (concerning the AUC)
- ▶ no: difference in μ_a , μ_b might be due to randomness \rightarrow A, B are not significantly different

Statistical significance in a nutshell

Just the way of thinking:

- 1. State a set of assumptions (the *null hypothesis* H_0), e.g.:
 - \triangleright X_a, X_b are normally distributed and independent
 - $\bar{x}_a = \bar{x}_b \text{ (or } \bar{x}_a \geq \bar{x}_b)$
 - any other assumption in the statistical model

Statistical significance in a nutshell

Just the way of thinking:

- 1. State a set of assumptions (the *null hypothesis* H_0), e.g.:
 - \triangleright X_a, X_b are normally distributed and independent
 - $\bar{x}_a = \bar{x}_b \text{ (or } \bar{x}_a \geq \bar{x}_b)$
 - any other assumption in the statistical model
- 2. Perform a statistical test, appropriate choice depending on many factors, e.g.:
 - Wilcoxon test (many versions)
 - Friedman (many versions)

Statistical significance in a nutshell

Just the way of thinking:

- 1. State a set of assumptions (the *null hypothesis* H_0), e.g.:
 - \triangleright X_a, X_b are normally distributed and independent
 - $\bar{x}_a = \bar{x}_b \text{ (or } \bar{x}_a \geq \bar{x}_b \text{)}$
 - any other assumption in the statistical model
- 2. Perform a statistical test, appropriate choice depending on many factors, e.g.:
 - Wilcoxon test (many versions)
 - Friedman (many versions)
- 3. ... which outputs a p-value $\in [0,1]$
 - ▶ 0 is "good", 1 is "bad"

p-value: meaning

0 is "good", 1 is "bad"

The p-value is the degree to which the data conform to the pattern predicted by the null hypothesis

• p-value =
$$P(x_a^1, x_a^2, \dots, x_b^1, x_b^2, \dots | H_0)$$

If *p*-value is low:

- we've been very (un)lucky in having observed $x_a^1, x_a^2, \dots, x_b^1, x_b^2, \dots$
- ▶ "maybe" because H₀ is not true

p-value: meaning

0 is "good", 1 is "bad"

The p-value is the degree to which the data conform to the pattern predicted by the null hypothesis

•
$$p$$
-value = $P(x_a^1, x_a^2, \dots, x_b^1, x_b^2, \dots | H_0)$

If *p*-value is low:

- we've been very (un)lucky in having observed $x_a^1, x_a^2, \dots, x_b^1, x_b^2, \dots$
- "maybe" because H_0 is not true
 - ▶ **Warning!** Any part of H_0 , not necessarily the $\bar{x}_a = \bar{x}_b$ part!

Statistical significance

Things are much more complex than this...

Some interesting papers:

- ▶ Joaquín Derrac et al. "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms". In: Swarm and Evolutionary Computation 1.1 (2011), pp. 3–18
- Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. "How Many Random Seeds? Statistical Power Analysis in Deep Reinforcement Learning Experiments". In: arXiv preprint arXiv:1806.08295 (2018)
- Sander Greenland et al. "Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations". In: European journal of epidemiology 31.4 (2016), pp. 337–350

Subsection 4

Boosting

Many views and aggregation

In bagging/RF (regression):

- many views are different samples
- aggregation is average

Alternative:

- many views are subsequent residuals
- aggregation is the sum

Boosting

When learning:

- 1. Current data is learning data
- 2. Repeat B times
 - 2.1 learn a tree on current data
 - 2.2 current data becomes residuals of learned tree $(\mathbf{y} \hat{\mathbf{y}})$

When predicting:

- 1. Repeat B times
 - 1.1 get a prediction from *i*th learned tree
- 2. sum prediction
- Q: implementation differences w.r.t. RF?

Boosting (regression)

```
function BOOSTTREES(\mathbf{X}, \mathbf{y})
t(\mathbf{X}) \leftarrow \mathbf{0}
for i \in \{1, 2, \dots, B\} do
t_i \leftarrow \text{BUILDDECISIONTREE}(\mathbf{X}, \mathbf{y}, d)
t(\mathbf{X}) \leftarrow t(\mathbf{X}) + \lambda t_i(\mathbf{X})
\mathbf{y} \leftarrow \mathbf{y} - \lambda t_i(\mathbf{X})
end for
return t
end function
```

- Each learned tree should be simple (maximum splits d)
- $ightharpoonup \lambda$ slows down learning

Trickier with classification.

Boosting parameters

- \blacktriangleright λ usually set to 0.01 or 0.001
- \triangleright λ and B interact: for small λ , B should be large
- ▶ large B can lead to overfitting (unlike bagging/RF, Q: why)

Find a good value for B with cross-validation

(Both boosting and bagging general techniques)

Bagging/RF/boosting in summary

	Tree	Bagging	RF	Boosting
interpretability	A			
numeric/categorical	A	A	A	A
accuracy	▼		A	A
test error estimate		A	A	
variable importance		A	A	A
confidence/tunability		A	A	
fast to learn	*			▼
(almost) non-parametric		A		

^{*:} Q: how faster? when? does it matter?

Lab: visualize forest errors and boundaries (3 h)

Consider just versicolor and virginica and their classification:

- 1. investigate variable importance with RF
 - 1.1 verify that it is true by removing important variables
- 2. investigate influence of B (ntree)
- 3. compare against decision tree
- 4. plot fuzzy decision boundaries

Packages: randomForest Functions: geom_raster

Section 6

Support Vector Machines

Binary classification

Let's draw a decision boundary!

Binary classification

Let's draw a decision boundary!

Hyperplane

▶ We drew a line:

$$X_2 = mX_1 + q$$

which can be written also as:

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$$

or, when the feature space is p-dimensional:

$$\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p = 0$$

the line is a separating hyperplane.

The hyperplane:

$$\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p = 0$$

 $1.1X_1 + X_2 + 27 = 0$

Given an observation (x_1, x_2) :

The hyperplane:

$$\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p = 0$$

 $1.1X_1 + X_2 + 27 = 0$

Given an observation (x_1, x_2) :

• if
$$1.1X_1 + X_2 + 27 > 0$$
 then

The hyperplane:

$$\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p = 0$$

 $1.1X_1 + X_2 + 27 = 0$

Given an observation (x_1, x_2) :

• if
$$1.1X_1 + X_2 + 27 > 0$$
 then

• if
$$1.1X_1 + X_2 + 27 < 0$$
 then

The hyperplane:

$$\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p = 0$$

 $1.1X_1 + X_2 + 27 = 0$

Given an observation (x_1, x_2) :

• if
$$1.1X_1 + X_2 + 27 > 0$$
 then

• if
$$1.1X_1 + X_2 + 27 < 0$$
 then

The larger the difference, the stronger the confidence

Learning a separating hyperplane

► We want an hyperplane which perfectly separates the learning data...

Learning a separating hyperplane

- We want an hyperplane which perfectly separates the learning data...
- ... but there could be many (∞) of them! Which one?

Learning a separating hyperplane

- We want an hyperplane which perfectly separates the learning data...
- ... but there could be many (∞) of them! Which one?
- Idea: the farthest from the learning observations!
 Maximal margin classifier

Maximal margin classifier

Maximal margin classifier

Maximal margin classifier

Learning the maximal margin classifier

- Find the line which:
 - 1. perfectly separates learning observations
 - 2. has the largest margin from support vectors

Looks like an optimization problem...

Learning the maximal margin classifier

$$\max_{\beta_0,...,\beta_p} M$$

under constraints

$$\sum_{j=1}^{p} \beta_j^2 = 1$$

$$\forall i \in \{1, \dots, n\}, y_i(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p}) \ge M$$

Some math tricks:

- if $\sum_{j=1}^{p} \beta_j^2 = 1$, then $|\beta_0 + \beta_1 x_{i,1} + \cdots + \beta_p x_{i,p}|$ is the distance between x_i^T and the hyperplane
- ▶ if $y \in \{1, -1\}$, then writing $y_i(...) \ge M$ is like writing $... \ge M$, \forall and $... \le M$, \forall ●

Support vectors

$$\forall i \in \{1,\ldots,n\}, y_i(\beta_0 + \beta_1 x_{i,1} + \cdots + \beta_p x_{i,p}) = M$$

They lie exactly on the margin!

Learning the maximal margin classifier

Looks like an optimization problem...

... which is not hard to be solved.

Maximal margin classifier issues

- ▶ What if the learning data is not perfectly separable?
 - cannot learn!
- What if a learning observation (being a support vector) is added/removed?
 - ▶ could learn a very different classifier → high variance!

High variance of Maximal margin

Image from An Introduction to Statistical Learning

Soft margin

How to cope with these issues?

- Idea: be more tolerant!
 - some learning observation may be within the margin
 - some learning observation may be misclassified

Margin can be exceeded \rightarrow soft margin classifier or support vector classifier

Learning with toleration: support vector classifier

$$\max_{\beta_0,...,\beta_p,\epsilon_1,...,\epsilon_n} M$$

under constraints

$$\sum_{j=1}^{p} \beta_j^2 = 1$$

$$\forall i \in \{1, \dots, n\}, y_i(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p}) \ge M(1 - \epsilon_i)$$

$$\forall i \in \{1, \dots, n\}, \epsilon_i \ge 0$$

$$\sum_{i=1}^{n} \epsilon_j = C$$

- $ightharpoonup \epsilon_i$ are positive slack variables
 - if $\epsilon_i \in]0,1[$, then x_i^T is within the margin
 - if $\epsilon_i \in [1, \infty[$, then x_i^T is misclassified
- ▶ C is the toleration budget ($C = 0 \rightarrow \text{maximal margin classifier}$)

Role of the parameter C

The larger C

- the larger the toleration
- the larger the number of learning observations which can exceed the margin (or be misclassified)
- the larger the number of support vectors
- the lower the variance

Summary

	Maximal margin	Soft margin
fast to learn	A	A
variance	▼	A
robustness to "trivial" observations	A	A

Linearity?

Some problems cannot be solved with an hyperplane!

Some math rewriting

Finding values for β_0, \ldots, β_p involves computing inner products between pair of observations:

$$\langle x_i, x_{i'} \rangle = \sum_{j=1}^{p} x_{i,j} x_{i',j}$$

And we can rewrite:

$$\beta_0 + \sum_{i=1}^p \beta_i x_i^* = f(x^*) = \beta_0 + \sum_{i=1}^n \alpha_i \langle x^*, x_i \rangle$$

For non support vectors, $\alpha_i = 0 \Rightarrow x_i$ does not impact on $f(x^*)!$

Non support vectors

$$f(x^*) = \beta_0 + \sum_{i=1}^n \alpha_i \langle x^*, x_i \rangle$$

- $f(x^*)$ is the distance of x^* from the decision boundary
- the (position of the) decision boundary depends only on the support vectors
- $ightharpoonup \Rightarrow f(x^*)$ depends only on the support vectors

When predicting:

$$f(x^*) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i \langle x^*, x_i \rangle$$

Kernel

Equation for the decision boundary can be generalized

$$f(x^*) = \beta_0 + \sum_{i=1}^n \alpha_i K(x^*, x_i)$$

Where $K(x^*, x_i)$ is a function $K : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$, called *kernel* (with some other properties).

Support Vector Machines

Intuition for the kernel

Consider prediction:

$$f(x^*) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i K(x^*, x_i)$$

- ▶ x^* is mapped from \mathbb{R}^p to $\mathbb{R}^{p'}$, with $p' \gg p$, using a function Φ : $K(x_i, x_j)$ computes the inner product $\langle \phi(x_i), \phi(x_j) \rangle$ of mapped x_i, x_j without explicitly mapping them (kernel trick)
- ▶ the α_i define (indirectly) an hyperplane in $\mathbb{R}^{p'}$
- ▶ the classification is done by means of a separating hyperplane in the new space, i.e., $f(x^*)$ measures the distance of mapped x^* from the hyperplane

Kernels

linear kernel:

$$K(x^*, x_i) = \langle x_i, x^* \rangle = \sum_{j=1}^{p} x_{i,j} x_j^*$$

polynomial kernel: (d is the degree)

$$K(x^{\star},x_i) = \left(1 + \sum_{j=1}^{p} x_{i,j} x_j^{\star}\right)^d$$

radial basis function kernel (or radial, or RBF, or Gaussian):

$$K(x^{\star}, x_i) = \exp\left(-\gamma \sum_{j=1}^{p} (x_{i,j} - x_j^{\star})^2\right)$$

Intuition behind radial kernel

$$K(x^{\star}, x_i) = \exp\left(-\gamma \sum_{j=1}^{p} (x_{i,j} - x_j^{\star})^2\right) = \exp\left(-\gamma ||x_i, x^{\star}||^2\right)$$

- ▶ the coordinates in the new space are related to the distances of x^* from the support vectors (the closer, the higher the $K(\cdot)$, $K(\cdot) \in]0,1]$)
- $ightharpoonup \gamma$ determines how fast the coordinate goes to 0, i.e., a support vector becomes irrelevant for classifying x^*

Very raw visual intuition

Q: draw a reasonable decision boundary, in the two spaces

Multiclass (> 2) classification with SVM

- one-vs.-one classification
- one-vs.-all classification

and many other proposals...

One-vs.-one SVM

When learning:

1. for each pair $(\mathcal{C}_1,\mathcal{C}_2)$ of classes, learn a binary SVM

When predicting:

- 1. for each learned SVM, predict class \hat{y}
- 2. choose the most frequently predicted class

$$\binom{K}{2} = \frac{K(K-1)}{2}$$
 binary classifiers

One-vs.-all SVM

When learning:

1. for each class C_i , learn a binary SVM (C_i vs. all C_j , with $j \neq i$, C_i coded as y = +1)

When predicting:

- 1. for each learned SVM, get $f(x^*)$
- 2. choose the class with the largest $f(x^*)$

K classifiers

Lab: SVM kernels (1 h)

Consider versicolor vs. virginica+setosa using only petal info:

1. use different kernels

2. play with params

3. artificially unbalance data and compare against RF

Packages: e1071

Functions: plot with SVM values

Section 7

Text mining

Text mining

Definition

Text mining is about extracting high level information from textual data.

A joint effort of *Machine Learning* and *Natural Language Processing* (NLP).

Example 1: sentiment on brands

Is people on Twitter talking good or bad about brand X?

Example 2: topics in letters

In this corpus of letters to/from the front in WW1, which are the topics covered?

Common tasks

- ▶ text categorization
- text clustering
- entity extraction
- sentiment analysis
- summarization
- **.** . . .

Example 3: relevance of citations

Find a way to quantify relevance of a citation from a scientific paper A to a scientific paper B?

Step 0

- ▶ Define the nature of the solution:
 - ▶ input
 - output
 - learning data (if any)
- Define a way to asses a solution

Step 0: is it easy?

- Q: for "sentiment on brands"?
- Q: for "topics in letters"?
- Q: for "relevance of citations"?

Natural language and ambiguity

- ► Text is (usually) natural language
- ▶ Natural means "as humans naturally express" ⇒ ambiguity!

Expect "raw results" to be worse than in normal ML!

Subsection 1

Sentiment analysis (and text categorization)

Problem formalization

- ▶ Input: a piece of text (document)
- Output?
 - ▶ a numeric value in [-1,1] (positivity)
 - ► a categorical value in {Pos, Neg}
 - a categorical value in {Pos, Neutral, Neg}
- Q: learning data?

Regression, multiclass classification, or binary classification (possibly with confidence).

We can use the techniques we already know (e.g., RF)!

Which are the features?

Good coffee. Great for families. Always had good service. We go early so pretty empty. Flexible with menus. Wish they would remove service charge.

Need to transform a document into an numerical vector!

Text to features

- ▶ Not only for sentiment analysis
- ► Many options
- Options can be combined

Bag of words

- One dimension (feature, dependent variable) for each word
- Value of x_{i,j} is the number of occurrences of j-th word in the i-th document.

```
t_1= the cat is on the table x_{1, {
m the}}=2 x_{1, {
m cat}}=1 x_{1, {
m is}}=1 x_{1, {
m mouse}}=0
```

Bag of which words?

▶ One dimension (feature, dependent variable) for each word

Which words? How big is x_i ? p = ?

common solution: the most k frequent words in the corpus

"Interesting" words not frequent enough in the corpus may be lost

Stop words

- ► Some words may be very frequent, but useless for specific task (e.g., sentiment analysis)
 - ▶ a, an, the, are, ... (stop words)
- Just remove them!

Stop words are language dependent!

Stemming

- There are variants for many words:
 - ▶ drink, drinks, drinking
 - happy, happier
- Even more in other languages:
 - mangio, mangia, mangi, mangiai, ...
- Stemming: reduce word to its word stem (the morphological root)
 - ightharpoonup drink drink
 - ightharpoonup argued ightarrow argu

Stemming are language dependent!

A typical workflow

- ▶ Preprocessing $(d \rightarrow d')$
 - 1. remove punctuation
 - 2. to lowercase
 - 3. remove stop words
 - 4. stemming
- Learning
 - 1. preprocess each *d* in corpus
 - 2. find most frequent k words in preprocessed corpus
 - 3. compute X
 - 4. learn a classifier
- Predicting
 - 1. preprocess input *d*
 - 2. predict based on preprocessed d

Limitations and caveat: punctuation

remove punctuation

It has been show that often punctuation matter (e.g., Twitter sentiment analysis):

- ▶ I just saw Alice.
- ▶ I just saw Alice!!!!!
- ▶ I just saw Alice!!! :-))))

Case

▶ to lowercase

Case may be relevant in some case (e.g., music genre preferences classification):

- ▶ I like the Take That and I hate The Who.
- ▶ Who likes to take that song of Hate? Me!

Goal, context, hypothesis

Twitter profiling: predict age and gender of user from his/her tweets. (Q: what kind of problem/problems?)

- people of different ages differently use case
- people of different age/gender differently use punctuation

A step in the workflow corresponds to an (implicit) hypothesis:

 \blacktriangleright remove stop words \rightarrow stop words frequencies is not useful for predicting X

Words that matter

Word count may be too coarse to capture desired information:

- documents with very different lengths
- irrelevant terms with general high frequencies

Use frequency or more complex variants

tf-idf

$$x_{i,j} = x_{d,t} = tf(t,d)idf(t,D)$$

- $tf(t,d) = f_{t,d}$, term frequency
 - \blacktriangleright the more important the term t in document d, the larger
- ▶ $idf(t, D) = log \frac{|D|}{|\{d \in D: f_{t,d} > 0\}|}$, inverse document frequency
 - ightharpoonup the more common t in the corpus, the lower

Bag of words and ordering

Sentiment analysis of restaurant reviews:

```
t_1={
m The} beer was good and the pub was not too noisy. t_2={
m The} beer was not good and the pub was too noisy. x_1=x_2
```

- fundamental problem: ordering is lost
- even more fundamental: natural language can be hard to algorithmically understand (irony, sarcasm, ...)

Solutions:

- ngrams
- text parsing (NLP)

Aside: collecting data for text classification

Example: irony detection

Pavel Savov and Radoslaw Nielek. "Ridiculously Expensive Watches and Surprisingly Many Reviewers: A Study of Irony". In: Web Intelligence (WI), 2016 IEEE/WIC/ACM International Conference on. IEEE. 2016, pp. 725–729

ngrams

Instead of counting words, count short (up to n) sequences of words:

- $ightharpoonup x_{1,dog,eat,cat}$ instead of $x_{1,dog}$
- size of data (p) grows dramatically (and is sparser)
- useful in general for manipulating sequences

Generality of a sentiment classifier

How many sentiment classifier should exist? Words that matter in sentiment should be predefined

- predefined list of opinion words (positive, negative), i.e., features are those words
- but context often matter
 - predictable is good for a car and bad for a movie
 - features for sentiment analysis in Twitter are likely different than features from sentiment analysis of a early '900 writer's corrispondence

There are many pre-trained tool, often with more complex outcome than positive/negative.

Out-of-the-box sentiment analysis

Should I use a pre-trained tool or build my own?

It depends:

- is sentiment analysis just a piece of a more complex ML system?
- which is my budget?
- is learning data easily available?

Parsing: POS tagging

Assign a role to part of speech (POS):

Image from http://www.nltk.org/

Lab: Text categorization: sport vs. politics (4h)

Build a binary classifier for tweets: sport vs. politics

- 1. decide input, output
- 2. decide solution assessment
- 3. decide (if any) how to obtain learning data
- 4. decide workflow and ML technique

R and Twitter

Package twitteR

- (Linux, possibly install libcurl4-gnutls-dev and libssl-dev)
- needs Twitter API registration: https://apps.twitter.com/
- https://rayli.net/blog/data/ newborn-app-using-twitter-and-r-data-analysis/
- retrieve (userTimeline("MaleLabTs", n = 20)), convert in DF
 (twListToDF(tweets))

Text mining in R

Package tm

- http: //www.rdatamining.com/docs/text-mining-with-r
- load data from character vector
 Corpus (VectorSource(tweets.df\$text))
- ▶ to lowercase tm _map(myCorpus, content_transformer(tolower))
- remove punctuation
 removeNumPunct <- function(x) gsub("[^[:alpha:][:space:]]*"
 , "", x)
 tm _map(myCorpus, content_transformer(removeNumPunct))</pre>
- remove stop words tm _map(myCorpus, removeWords, myStopwords)
- stemming tm _map(myCorpus, stemDocument) (requires package snowballC)

Subsection 2

Topic modeling (very very briefly)

Topics

Given a corpus of documents, what do they talk about?

▶ talks about → topic

Probabilistic model

Assume stochastic document building process:

- ▶ there exist *k* topics
- a topic is a distribution over words
- a topic is assigned to the document according to a known probability (a document may exhibit multiple topics)
- a word in a document is drawn according to topic and document-topic assignment

Words order does not matter!

Probabilistic model

Image from https://www.cs.princeton.edu/~blei/topicmodeling.html

Probabilistic graphical model

Image from https://www.cs.princeton.edu/~blei/topicmodeling.html

- nodes are random variables
- edges are dependencies
- shaded nodes are observed
- boxes are repeated variables

Latent Dirichlet allocation (LDA)

A way for inferring distributions/assignments from observed values! (*Posterior inference*)

Given K (parameter),

- for each topic, compute words distribution
- for each document, compute topic "distribution"
- ▶ Latent refers to the unknown random variables
- Dirichlet is the distribution assumed for topics and words
- ▶ **Allocation** of words to topics and topics to documents

LDA internals

(Just a coarse overview)

While inferring posterior, try to (both):

- associate each document with as few topics as possible
- associate each topic with as few words as possible

Conflicting goals, which results in finding (and putting in the same topics) words which often co-occur

LDA output

- ► For each document of the corpus, a vector in [0,1]^K where *i*-th value is "how much the document exhibits *i*-th topic"
 - ▶ reasonable values for the number of topics K is some tens (10-50) (Q: how to choose the right value for a problem?)
- For each topic, a vector $[0,1]^V$ where the *i*-th value is "how much the *i*-th word (on V words) is associated with the topic"
 - how to visualize/understand a topic? Select its most likely words

Visualize topics

Image from https://www.cs.princeton.edu/~blei/topicmodeling.html

LDA as a building block

- corpus visualization
- document similarities
- **.** . . .
- document $\to \mathbb{R}^K$

LDA: document $\to \mathbb{R}^K$

How to apply to new data?

- assume everything is known (i.e., already computed on the corpus)
- just infer the posterior of topic assignment for the new document

Lab: Sport vs. politics with topics (1.5h)

Augment the classifier of previous lab with LDA

In R:

- package topicmodels
- ▶ functions LDA(train.data, k), posterior(lda.model, test.data)

Section 8

Recommender systems

Recommender systems

Scenario: a service where users consume items

predict the users' rating to unconsumed items

Recommender systems

Scenario: a service where users consume items

- predict the users' rating to unconsumed items
- great interest from industry
 - e-commerce
 - online social networks
 - entertainment on demand
- users usually pay for consuming

Example: movie recommendation

Hugs and kisses Sweetness day The true love Crazy Max The final judgement	Movie	Alice	Bob	Carol	Dave
	Sweetness day The true love Crazy Max				

Example: movie recommendation

Movie	Alice	Bob	Carol	Dave
Hugs and kisses	5	5	0	0
Sweetness day	5			0
The true love		4	0	
Crazy Max	0	0	5	4
The final judgement	0	0	5	

some users rated some movies

Example: movie recommendation

Movie	Alice	Bob	Carol	Dave
Hugs and kisses	5	5	0	0
Sweetness day	5	?	?	0
The true love	?	4	0	?
Crazy Max	0	0	5	4
The final judgement	0	0	5	?

- some users rated some movies
- predict the rating of unrated movies
 - ▶ Q: and then? where's the recommendation?

Content-based representation

Suppose 2 features (independent variables) exist for movies (content of)

- X₁ represents "romance"
- ▶ X₂ represents "action"
- $X_0 = 1$ represents bias

Movie	Alice	Bob	Carol	Dave	X ₁	<i>X</i> ₂
Hugs and kisses	5	5	0	0	0.95	0.01
Sweetness day	5	?	?	0	1	0
The true love	?	4	0	?	0.99	0
Crazy Max	0	0	5	4	0	1
The final judgement	0	0	5	?	0.02	0.99

Notation

Movie	Alice	Bob	Carol	Dave	X ₁	<i>X</i> ₂
Hugs and kisses	5	5	0	0	0.95	0.01
Sweetness day	5	?	?	0	1	0
The true love	?	4	0	?	0.99	0
Crazy Max	0	0	5	4	0	1
The final judgement	0	0	5	?	0.02	0.99

- ▶ $r_{i,j} \in \{0,1\}$ is 1 iff user j rated movie i
- ▶ $y_{i,j}$ is rating given by user j to movie i (iff $r_{i,j} = 1$)
- \triangleright x_i is the feature vector of movie i

Notation

Movie	Alice	Bob	Carol	Dave	X ₁	<i>X</i> ₂
Hugs and kisses	5	5	0	0	0.95	0.01
Sweetness day	5	?	?	0	1	0
The true love	?	4	0	?	0.99	0
Crazy Max	0	0	5	4	0	1
The final judgement	0	0	5	?	0.02	0.99

- ▶ $r_{i,j} \in \{0,1\}$ is 1 iff user j rated movie i
- ▶ $y_{i,j}$ is rating given by user j to movie i (iff $r_{i,j} = 1$)
- x_i is the feature vector of movie i

"predict the rating of unrated movies" corresponds to solving n_u (number of users) regression problems

▶ learn $f_{Alice}(x)$, $f_{Bob}(x)$, . . .

Recommendation as linear regression

Assume a linear dependency between rating and features:

$$y_{i,j} = \theta_{0,j} x_{i,0} + \theta_{1,j} x_{i,1} + \theta_{2,j} x_{i,2} + \dots$$

= $\theta_j^T x_i$

- ▶ $\theta_j \in \mathbb{R}^p$ is the set of parameters of user j
 - $lackbox{ } heta_j$ represents preferences of user j

"solving n_u (number of users) regression problems" corresponds to for each user j, learn θ_j

Goal: learned θ_i should be minimize errors on already rated movies:

$$\min_{\theta_j} \frac{1}{2} \sum_{i=1}^n \left(\theta_j^T x_i - y_{i,j} \right)^2$$

Goal: learned θ_j should be minimize errors on already rated movies:

$$\min_{\theta_j} \frac{1}{2} \sum_{i=1}^n \left(\theta_j^T x_i - y_{i,j} \right)^2$$

minimize sum of squared errors

Goal: learned θ_j should be minimize errors on already rated movies:

$$\min_{\theta_j} \frac{1}{2} \sum_{i=1}^n r_{i,j} \left(\theta_j^T x_i - y_{i,j} \right)^2$$

- minimize sum of squared errors
- ▶ consider only rated movies $(r_{i,j} = 0 \text{ for unrated})$

Goal: learned θ_j should be minimize errors on already rated movies:

$$\min_{\theta_{j}} \frac{1}{2} \sum_{i=1}^{n} r_{i,j} \left(\theta_{j}^{T} x_{i} - y_{i,j} \right)^{2} + \frac{\lambda}{2} \sum_{k=1}^{p} \theta_{k,j}^{2}$$

- minimize sum of squared errors
- ▶ consider only rated movies $(r_{i,j} = 0 \text{ for unrated})$
- with regularization (Q: role of λ ?)

Goal: learned θ_j should be minimize errors on already rated movies:

$$\min_{\theta_j} \frac{1}{2} \sum_{i=1}^n r_{i,j} \left(\theta_j^T x_i - y_{i,j} \right)^2 + \frac{\lambda}{2} \theta_j^T \theta_j$$

- minimize sum of squared errors
- consider only rated movies $(r_{i,j} = 0 \text{ for unrated})$
- with regularization (Q: role of λ ?)

Goal: learned θ_j should be minimize errors on already rated movies:

$$\min_{\theta_j} \frac{1}{2} \sum_{i=1}^n r_{i,j} \left(\theta_j^T x_i - y_{i,j} \right)^2 + \frac{\lambda}{2} \theta_j^T \theta_j$$

- minimize sum of squared errors
- ▶ consider only rated movies $(r_{i,j} = 0 \text{ for unrated})$
- with regularization (Q: role of λ ?)

For all users:

$$\min_{\theta_1,...,\theta_{n_u}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i=1}^{n} r_{i,j} \left(\theta_j^T x_i - y_{i,j} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \theta_j^T \theta_j$$

Can be solved with any optimization algorithm, e.g., gradient descent

The movie features?

- Which features to characterize movies? (or songs, products, people, ...)
- Who assign feature values to movies? Is it costly?
 - scale?

The movie features?

- Which features to characterize movies? (or songs, products, people, ...)
- Who assign feature values to movies? Is it costly?
 - scale?

Assume we "want" p features:

Movie	Alice	Bob	Carol	Dave	X_1		X_p
Hugs and kisses	5	5	0	0	?	?	?
Sweetness day	5	?	?	0	?	?	?
The true love	?	4	0	?	?	?	?
Crazy Max	0	0	5	4	?	?	?
The final judgement	0	0	5	?	?	?	?

Collaborative filtering

In content-based:

- we know movie features $x_1, x_2, ..., x_n$ and ratings $\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_{n_u}$
- we learn users' preferences $\theta_1, \theta_2, \dots, \theta_{n_u}$

Collaborative filtering

In content-based:

- we know movie features $x_1, x_2, ..., x_n$ and ratings $\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_{n_u}$
- we learn users' preferences $\theta_1, \theta_2, \dots, \theta_{n_u}$

Assume we know users' preferences:

we learn movie features

Collaborative filtering

In content-based:

- we know movie features $x_1, x_2, ..., x_n$ and ratings $\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_{n_u}$
- we learn users' preferences $\theta_1, \theta_2, \dots, \theta_{n_u}$

Assume we know users' preferences:

we learn movie features

Users (implicitly) collaborate to characterize content

Learning features from preferences

One movie:

$$\min_{x_{i}} \frac{1}{2} \sum_{j=1}^{n_{u}} r_{i,j} \left(\theta_{j}^{T} x_{i} - y_{i,j} \right)^{2} + \frac{\lambda}{2} x_{i}^{T} x_{i}$$

All movies:

$$\min_{x_{i},...,x_{n}} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n_{u}} r_{i,j} \left(\theta_{j}^{T} x_{i} - y_{i,j} \right)^{2} + \frac{\lambda}{2} \sum_{j=1}^{n} x_{i}^{T} x_{i}$$

Users' preferences

"Assume we want p features" corresponds to "users' preferences are p dimensional"

- how to collect users' preferences?
- how many?
- relation with "linear dependency assumption"?

Users' preferences

"Assume we want p features" corresponds to "users' preferences are p dimensional"

- how to collect users' preferences?
- how many?
- relation with "linear dependency assumption"?

It may be preferable to learn features and preferences together!

Learning features and preferences

$$\min_{x_{i},...,x_{n},\theta_{1},...,\theta_{n_{u}}} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n_{u}} r_{i,j} \left(\theta_{j}^{T} x_{i} - y_{i,j} \right)^{2} + \frac{\lambda}{2} \sum_{i=1}^{n} x_{i}^{T} x_{i} + \frac{\lambda}{2} \sum_{j=1}^{n_{u}} \theta_{j}^{T} \theta_{j}$$

New user?

Movie	Alice	Bob	Carol	Dave	Eric
Hugs and kisses	5	5	0	0	?
Sweetness day	5	?	?	0	?
The true love	?	4	0	?	?
Crazy Max	0	0	5	4	?
The final judgement	0	0	5	?	?

$$\min_{x_{i},...,x_{n},\theta_{1},...,\theta_{n_{u}}} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n_{u}} r_{i,j} \left(\theta_{j}^{T} x_{i} - y_{i,j} \right)^{2} + \frac{\lambda}{2} \sum_{i=1}^{n} x_{i}^{T} x_{i} + \frac{\lambda}{2} \sum_{j=1}^{n_{u}} \theta_{j}^{T} \theta_{j}$$

New user?

Movie	Alice	Bob	Carol	Dave	Eric
Hugs and kisses	5	5	0	0	?
Sweetness day	5	?	?	0	?
The true love	?	4	0	?	?
Crazy Max	0	0	5	4	?
The final judgement	0	0	5	?	?

$$\min_{x_{i},...,x_{n},\theta_{1},...,\theta_{n_{u}}} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n_{u}} r_{i,j} \left(\theta_{j}^{T} x_{i} - y_{i,j} \right)^{2} + \frac{\lambda}{2} \sum_{i=1}^{n} x_{i}^{T} x_{i} + \frac{\lambda}{2} \sum_{j=1}^{n_{u}} \theta_{j}^{T} \theta_{j}$$

sum of squared errors is always zero for the new user

New user?

Movie	Alice	Bob	Carol	Dave	Eric
Hugs and kisses	5	5	0	0	?
Sweetness day	5	?	?	0	?
The true love	?	4	0	?	?
Crazy Max	0	0	5	4	?
The final judgement	0	0	5	?	?

$$\min_{x_{i},...,x_{n},\theta_{1},...,\theta_{n_{u}}} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n_{u}} r_{i,j} \left(\theta_{j}^{T} x_{i} - y_{i,j} \right)^{2} + \frac{\lambda}{2} \sum_{i=1}^{n} x_{i}^{T} x_{i} + \frac{\lambda}{2} \sum_{j=1}^{n_{u}} \theta_{j}^{T} \theta_{j}$$

- sum of squared errors is always zero for the new user
- ▶ the only goal is to minimize "sum of preferences"
 - Q: what happens without regularization?
- which results in no preferences $(\forall_k, \theta_{k,j} = 0)$, and hence equal predicted ratings for all movies

Cold start problem

When something "new" arrives and no data is available:

- new user
- new movie (Q: is really a problem?)

One possible solution: use mean values

$$\mathbf{y}_{j'} = \frac{1}{n_u} \sum_{j=1}^{n_u} \mathbf{y}_j$$

Many options:

▶ as a regression problem, RMSE

Many options:

- as a regression problem, RMSE
- as a classification problem, accuracy
 - does the tool recommend the most preferred item to the user?

Many options:

- as a regression problem, RMSE
- as a classification problem, accuracy
 - does the tool recommend the most preferred item to the user?
- as a classification problem, accuracy@K
 - does the tool recommend the most preferred item to the user among the top k recommendations?

Many options:

- as a regression problem, RMSE
- as a classification problem, accuracy
 - does the tool recommend the most preferred item to the user?
- ▶ as a classification problem, accuracy@K
 - does the tool recommend the most preferred item to the user among the top k recommendations?
- as an information retrieval problem, precision and recall
 - does the tool recommend relevant items?

$$\mathsf{Prec.} = \frac{\#(\mathsf{relevant} \land \mathsf{recomm.})}{\#\mathsf{recomm.}} \quad \mathsf{Rec.} = \frac{\#(\mathsf{relevant} \land \mathsf{recomm.})}{\#\mathsf{relevant}}$$

Q: relation with FPR, FNR?

Many options:

- as a regression problem, RMSE
- as a classification problem, accuracy
 - does the tool recommend the most preferred item to the user?
- ▶ as a classification problem, accuracy@K
 - ▶ does the tool recommend the most preferred item to the user among the top k recommendations?
- as an information retrieval problem, precision and recall
 - does the tool recommend relevant items?

$$\mathsf{Prec.} = \frac{\#(\mathsf{relevant} \land \mathsf{recomm.})}{\#\mathsf{recomm.}} \quad \mathsf{Rec.} = \frac{\#(\mathsf{relevant} \land \mathsf{recomm.})}{\#\mathsf{relevant}}$$

Q: relation with FPR, FNR?

In practice, how to measure them?

Beyond accuracy

- diversity
- serendipity
 - positive surprise
- revenue? number of click/user/usages?

More in general, UI plays a crucial role!

Section 9

Evolutionary computation

What is Machine Learning?

Definition

Machine Learning is the science of getting computer to learn without being explicitly programmed.

Up to now

"learn without being explicitly" \rightarrow refine some predefine more general solution scheme

- ightharpoonup RF for regression ightharpoonup find a *good* forest
- ightharpoonup SVM for binary classification ightharpoonup find a good hyperplane

Up to now

"learn without being explicitly" \rightarrow refine some predefine more general solution scheme

- ▶ RF for regression → find a good forest
- lacktriangle SVM for binary classification o find a good hyperplane

We have some (quite precise) idea (the *hypothesis*) about the nature of the solution: a tree, an hyperplane, . . .

What if we do not?

No hypothesis

- ▶ We just have a way to assess a candidate solution
- No hypothesis
- ► Computer: be free, learn a (good) solution!

How?

No hypothesis

- We just have a way to assess a candidate solution
- No hypothesis
- Computer: be free, learn a (good) solution! (= program yourself!)

How? A significant case:

problem: life

▶ user: God?

computer: nature

learning method: natural evolution

Evolutionary process

A general and basic scheme:

- ▶ a population of individuals compete for limited resources
- ▶ the population is dynamic: individuals die and are born
- fittest individual survive and reproduce more than the others
- offspring inherit some characters from parents (they are similar but not identical)

Evolutionary process

A general and basic scheme:

- ▶ a population of individuals compete for limited resources
- ▶ the population is dynamic: individuals die and are born
- fittest individual survive and reproduce more than the others
- offspring inherit some characters from parents (they are similar but not identical)

On/by/for computers? Evolutionary computation (EC)

EC: a bit of history

```
1930s first ideas
1960s ideas development using first computers
1970s exploration
1980s exploitation
1990s unification
2000s+ mature expansion
```

Communities

At least three communities:

- biologists: simulate/understand real evolution
- computer scientists/engineers: build interesting artifacts
- artificial-life researchers: build/study artificial worlds

Result:

- some duplications
- different vocabularies
- strong habits

Kenneth A De Jong. Evolutionary computation: a unified approach. MIT press, 2006

What can be taught/learned?

Here:

- general scheme
- terminology
- some significant variants
- general usage guidelines

Not here:

- (variant) details
- detailed motivation ("theory")
- specific tools

General scheme

- a population of individuals compete for limited resources
- the population is dynamic: individuals die and are born
- fittest individual survive and reproduce more than the others
- offspring inherit some characters from parents (they are similar but not identical)

Some questions:

- what is an individual?
- what is a population? what are resources?
- how individuals compete?
- how fitness is measured?
- how do individual reproduce?

Individual

A candidate solution for the considered problem:

- a program in a given programming language
- a set of numerical parameters
- a picture

Internally represented as:

- ▶ itself (program, set, picture, . . .)
- some well defined data structure:
 - a fixed/variable-length string of bits
 - an abstract syntax tree
 - **.** . . .

Individual

A candidate solution for the considered problem: (phenotype)

- a program in a given programming language
- a set of numerical parameters
- a picture
- **.** . . .

Internally represented as: (genotype)

- ▶ itself (program, set, picture, . . .)
- some well defined data structure:
 - a fixed/variable-length string of bits
 - an abstract syntax tree
 - **.** . . .

Individual: why genotype/phenotype?

- To resemble nature
- ► To ease manipulation
 - how two programs should reproduce?
 - how two images should reproduce?
- ▶ To allow reuse, hence enabling actual usage of EC
 - someone found a good way of making bits strings reproduce
 - user "just" need to decide how to transform (genotype-phenotype mapping) a bits string to his/her solution form (e.g., numerical parameters)

Population and competition for resources

Mainstream:

- a population is a set of individuals with a fixed (max) size
- "limited resources" is a place in the population

The population is dynamic:

when a new individual is born, some individual must leave the population (die): which one?

Population dynamics

How/when individuals are replaced? (**generational model** or replacement strategy)

Underlying (and common) assumptions:

- individuals life is instantaneous
 - given the genotype, the phenotype (if any) and the fitness are immediately known
- time flowing is determined by births (and deaths)

Generational model: general scheme

Parameters:

- a population of m parents
- ▶ a population of n offspring (built from parents; how? later)
- a boolean flag (overlapping vs. non-overlapping)

(Recall: population size is fixed)

Overlapping generational model

At each time tick:

- 1. build n offspring from the m parents
- 2. obtain an n + m population by merging parens and offspring
- 3. select *m* individuals to survive

Non-overlapping generational model

At each time tick:

- 1. build *n* offspring from the *m* parents (assume $n \ge m$)
- 2. select m individuals to survive among the n offspring All parents die!

Common cases

- ightharpoonup n = m, overlapping
- ightharpoonup n = m, non-overlapping
- ightharpoonup n = 0.8m, overlapping
- ightharpoonup n=1, overlapping (steady state)

Common cases

- ightharpoonup n = m, overlapping
- ightharpoonup n = m, non-overlapping
- ightharpoonup n = 0.8m, overlapping
- ightharpoonup n = 1, overlapping (steady state)

Problem:

- different degrees of dynamicity in the single time tick
 - makes different variants comparison difficult

Solution:

- measure time flowing as number of births referred to population size m
- a generation occurs each m births

Selection criteria

How to

- select individuals to survive?
- select parents to reproduce?

Many options:

- uniform (neutral) selection
- fitness-proportional selection
- rank-proportional selection
- truncation selection
- tournament selection

Fitness/rank-proportional

Fitness-proportional:

- 1. given the numerical fitness of each individual
- 2. randomly pick one individual with probability proportional to the fitness (the better, the larger probability)

Rank-proportional:

- 1. given the rank of each individual in a fitness-based ranking
- randomly pick one individual with probability proportional to the rank (the better, the larger probability)

(Can be applied to a non-numerical fitness, in principle)

Uniform and truncation

Uniform:

1. pick randomly an individual (with uniform probability)

Truncation:

pick the best individual (elitism)
 (Deterministic)

Tournament selection

Given a parameter n_{size} (size of the tournament):

- 1. randomly (with uniform probability) pick n_{size} individuals
- 2. from them, choose the one with the best fitness

Selection criteria differences

Is criterion A better than criterion B? Just measure!

Criteria differ in how strongly they tend to prefer fit vs. unfit individuals:

- uniform selection: no preferences
- truncation selection: strong preference of fit individuals
- ▶ tournament: $n_{\text{size}} \rightarrow 1$: no preference, $n_{\text{size}} \rightarrow m$: strong preference

Selecting fit/unfit individuals

Strong preference (or selective/evolutionary pressure):

- population tends to converge to fittest individuals
- evolution concentrates in improving most promising solutions (exploitation)
- risk of "falling" in local optimum

Weak preference (or selective/evolutionary pressure):

- population includes also unfit individuals
- evolution investigates many different (maybe not promising) solutions (exploration)
- risk of not finding a good solution

Exploration/exploitation trade-off is hard to rule!

Selectors: common cases

- ▶ Reproduction: tournament of *n*_{size}
 - e.g., $m = n_{pop} = 500$, $n_{size} = 5$
- Survival: truncation

- Reproduction: fitness proportional
- Survival: truncation

Reproduction

Build *n* offspring from the *m* parents. How? General scheme:

- given one or more parents, an offspring is generated by applying a unary or binary genetic operator on parent genotypes
 - ▶ unary (**mutation**): $f: \mathcal{G} \rightarrow \mathcal{G}$
 - ▶ binary (recombination or **crossover**): $f: \mathcal{G}^2 \to \mathcal{G}$
- given n and a set of weighted operators, generate offspring with operators according to their weights (deterministically or stochastically)

Choice of operators

Operators:

- crossover for generating 80% of offspring
- mutation for generating 20% of offspring

Deterministically:

- 1. for 0.8n times
 - 1.1 select 2 parents (with reproduction selection criterion)
 - 1.2 apply crossover to genotypes
- 2. for 0.2*n* times
 - 2.1 select 1 parent (with reproduction selection criterion)
 - 2.2 apply mutation to genotype

Choice of operators

Operators:

- crossover for generating 80% of offspring
- mutation for generating 20% of offspring

Stochastically:

- 1. for *n* times
 - 1.1 randomly choose between mutation/crossover with 20/80 probability
 - 1.2 select 1 or 2 parents (with reproduction selection criterion) accordingly
 - 1.3 apply operator to genotype(s)

Mutation for bits string genotypes

Most classical option: probabilistic bit flip mutation

- 1. copy parent genotype g_p as child genotype g_c
- 2. for each bit in the in g_c , flip it $(0 \to 1 \text{ or } 1 \to 0)$ with p probability

Commonly, p = 0.01

```
g_p = 001010011101010101100100101

g_c = 0010101111010101101101100101
```

Crossover for (bits) string genotypes

Many options:

- one-point crossover
- two-points crossover
- n-points crossover
- uniform crossover
- **.** . . .

One-, two-, *n*-points crossover

Assume parents with equal genotype size:

- 1. choose randomly one (two, n) cut points in the genotype (indexes i such that $i < |g_{p_1}| = |g_{p_2}|$)
- 2. child bits before the cut point comes from parent 1, child bits after the cut point comes from parent 2

In general, jth bit comes from parent 1 iff closest larger cut point is even, from 2, otherwise.

One-, two-, n-point crossover

One-point:

```
g_{p_1} = 00101001110101010|1100100101

g_{p_2} = 1110101010101010|0101110111

g_c = 001010011101010101010111111
```

Two-points:

```
g_{p_1} = 0010100|1110101010|1100100101

g_{p_2} = 1110101|0101001010|0101110111

g_c = 0010100 0101001010 1100100101
```

Uniform crossover

A cut point is placed at each index with p = 0.5 probability

Crossover with variable length (bits) string genotype

Many variants:

- one-, two-points crossover
 - cut points may be different within parents
 - ▶ child genotype size may be larger or smaller than parents sizes

•

One-point:

```
g_{p_1} = 00101001110101010|1100100101
g_{p_2} = 111010101|010010100101110111
g_c = 001010011101010101010101010111111
```

Genotype-phenotype mapping must allow for variable length genotypes!

Mutation (trees)

Parent

$$(x-y)\frac{1}{x}+0.5$$

Child

$$(x-y)\frac{1}{x}+1+y$$

- 1. choose a random subtree
- 2. replace with a randomly generated subtree

Usually, constraints on depth

Crossover (trees)

Parent 1

$$(x-y)\frac{1}{x}+0.5$$

Parent 2

$$(1+x)(1-y)$$

Child

$$1 + x + 0.5$$

- 1. choose a random subtree in parent 1
- 2. choose a random subtree in parent 2
- 3. swap subtrees (child is copy of parent)

Usually, constraints on depth

Role of operators

Mutation (x)or crossover?

- ightharpoonup mutation ightarrow exploitation
- ▶ crossover → exploration

Population initialization

- ► Totally random
- ▶ More specific approaches, dependent on genotype form

Fitness

Fitness of an individual = ability to solve the problem of interest

 errors on several fitness cases by execution/simulation/application

Common cases:

- one numerical index
- more than one numerical indexes

Closely related with selectors

Many indexes: multiobjective

$$f(i) = \langle f_1(i), \ldots, f_n(i) \rangle$$

How to compare individuals i_1 , i_2 ?

- linearization
 - $f(i) = \alpha_1 f_1(i) + \cdots + \alpha_n f_n(i)$
- lexicographical order
 - compare $f_1(i_1) \stackrel{?}{>} f_1(i_2)$; if tie, $f_2(i_1) \stackrel{?}{>} f_2(i_2)$; ...
- Pareto dominance
- **.** . . .

Q: with which selectors?

 i_1 dominates i_2 iff:

$$\forall j, f_j(i_1) \geq f_j(i_2) \land \exists k, f_k(i_1) > f_k(i_2)$$

 i_1 dominates i_2 iff:

$$\forall j, f_i(i_1) \geq f_i(i_2) \wedge \exists k, f_k(i_1) > f_k(i_2)$$

1st Pareto front: undominated solutions

 i_1 dominates i_2 iff:

$$\forall j, f_i(i_1) \geq f_i(i_2) \wedge \exists k, f_k(i_1) > f_k(i_2)$$

- 1st Pareto front: undominated solutions
- 2nd Pareto front: undominated solutions, while not considering 1st front

 i_1 dominates i_2 iff:

$$\forall j, f_i(i_1) \geq f_i(i_2) \wedge \exists k, f_k(i_1) > f_k(i_2)$$

- 1st Pareto front: undominated solutions
- 2nd Pareto front: undominated solutions, while not considering 1st front
- **•** ...

In practice

- ▶ Is my EA working?
- ▶ When to stop evolution?
- ▶ How to choose value for parameter *X*?

In practice

- ▶ Is my EA working?
- When to stop evolution?
- ▶ How to choose value for parameter *X*?

On many (\geq 30) runs!

Issues

- Diversity
- Variational inheritance
- Expressiveness . . .

Diversity

Is the population diverse enough?

- "No" \rightarrow too much exploitation \rightarrow local minimum
- ightharpoonup "Yes" ightharpoonup in principle, no drawbacks
 - how to measure diversity?
 - how to enforce/promote diversity?

Giovanni Squillero and Alberto Tonda. "Divergence of character and premature convergence: a survey of methodologies for promoting diversity in evolutionary optimization". In: *Information Sciences* 329 (2016), pp. 782–799

Diversity: visualization

Eric Medvet and Tea Tušar. "The DU Map: A Visualization to Gain Insights into Genotype-phenotype Mapping and Diversity". In: *Proceedings of the Genetic and Evolutionary Computation Conference Companion*. GECCO '17. Berlin, Germany: ACM, 2017, pp. 1705–1712

Variational inheritance

Are children similar but not identical to parents?

- "Too much similar" \rightarrow too much exploitation \rightarrow local minimum, no/slow evolution
- "Too much different" \rightarrow no exploitation, just coarse exploration (random walk)
- How to measure? (locality, redundancy, degeneracy, uniformity, . . .)
- How to tackle? Operators, mapping, both?

Expressiveness

Is the representation (phenotype) expressive enough?

- "Low expressiveness" → good/optimal solution might not be representable, or might not be reachable
- lacktriangle "Large expressiveness" ightarrow large search space ightarrow very long or infiniti convergence time

Fitness landscape

- How are genotype and fitness spaces related?
- What does a small step on one correspond to on the other?

Q: is phenotype space relevant?

Genetic Algorithms (GA)

- Genotype = phenotype = bits string
- $m = n \approx 1000$, no overlapping
- Fitness-proportional selection, or multiobjective (Pareto-based) selection

- Most widely used/studied
- Genotypes often encodes numerical parameters

Genetic Programming (GP)

Focus: individuals are programs

- Genotype = phenotype = tree (tree-based GP) or list of instructions (linear GP)
- $m = n \approx 1000$, overlapping
- Tournament selection
- Syntactic/semantic validity?

Grammatical Evolution (GE)

A form of GP based on GA, given a context-free grammar ${\cal G}$

- ▶ Genotype = bits string, phenotype = string $\in \mathcal{L}(\mathcal{G})$, by means of a mapping procedure
- ▶ steady state ($m \approx 500, n = 1$, overlapping) or m = n, overlapping
- Tournament selection

GE (standard) genotype-phenotype mapping

```
g = 01101001\,00001101\,01011000\,0000011\,11000110\,01111101 (bits) 
= 105\,13\,88\,3\,198\,125 (integers)
```

i	gi	$ r_s $	j	w	Phenotype p
					<expr></expr>
0	105	3	0	0	(<expr> <op> <expr>)</expr></op></expr>
1	13	3	1	0	(<var> <op> <expr>)</expr></op></var>
2	88	2	0	0	(x <op> <expr>)</expr></op>
3	3	4	3	0	(x / <expr>)</expr>
4	198	3	0	0	(x / (<expr> <op> <expr>))</expr></op></expr>
5	125	3	2	0	(x / (<num> <op> <expr>))</expr></op></num>
0	105	10	5	1	(x/(5 <op> <expr>))</expr></op>
1	13	4	1	1	(x/(5- <expr>))</expr>
2	88	3	1	1	(x/(5- <var>))</var>
3	3	2	1	1	(x/(5-y))

```
<expr> ::= ( <expr> <op> <expr> ) | <var> | <num>
<op> ::= + | - | * | /
<var> ::= x | y
<num> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

An alternative: WHGE genotype-phenotype mapping

Eric Medyet. "Hierarchical Grammatical Evolution". In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. GECCO '17. Berlin, Germany: ACM, 2017, pp. 249–250