

Interrogación 2

19 de Junio de 2024

Preguntas e incisos en blanco se evalúan con nota 1.5 proporcional.

Pregunta 1

Sea A un conjunto y \sim una relación de equivalencia.

- (a) (3 ptos.) Demuestre que \sim^{-1} es una relación de equivalencia.
- (b) (3 ptos.) Considere la relación identidad I_A definida como $I_A = \{(x, x) \mid x \in A\}$. Demuestre las siguientes afirmaciones.
 - (1 pto.) $I_A \subseteq \sim$
 - (2 ptos.) Si $I_A \subsetneq \sim y \sim \text{es finito, entonces } |\sim \backslash I_A| \geq 2$

Solución

- (a) Notemos que ~ es simétrica, por lo que para todo (a, b) ∈~, se tiene que (b, a) ∈~, y por definición de relación inversa, que (a, b) ∈~⁻¹. Luego todos los elementos de ~ están en ~⁻¹, es decir, ~⊆~⁻¹. Del mismo modo, ~= (~⁻¹)⁻¹ por definición de inversa, por lo que el mismo argumento se puede utilizar para decir que ~⁻¹⊆~. Concluimos que ~⁻¹=~, por lo que ~⁻¹ es una relación de equivalencia.
- (b) Sea $(x, x) \in I_A$. Luego, $x \in A$ por definición de I_A . Como \sim es una relación de equivalencia, en particular es refleja, por lo que $(x, x) \in \sim$. Como se tomó (x, x) arbitrario, se cumple que para todo $(x, x) \in I_A$, $(x, x) \in \sim$, por lo que $I_A \subseteq \sim$.
 - Notemos que \sim es finito, por lo que $|\sim|$ (y $|\sim\backslash I_A|\leq|\sim|$) debe ser un natural mayor o igual a 0. Notemos además que si $I_A \subsetneq \sim$, entonces existe al menos un elemento en $\sim \backslash I_A$. Sea (a,b) este elemento. Dado que $(a,b)\notin I_A$, por definición de diferencia de conjuntos, tenemos que $a\neq b$. Además, como $(a,b)\in\sim$, por definición de diferencia de conjuntos, y como \sim es simétrica por ser relación de equivalencia, tenemos además que $(b,a)\in\sim$. Luego, tenemos que (a,b) y (b,a) pertenecen a $\sim \backslash I_A$. Finalmente, como $a\neq b$, se tiene que los pares ordenados también son distintos, esto es $(a,b)\neq (b,a)$. Concluimos que $\sim \backslash I_A$ tiene al menos dos elementos, es decir, $|\sim \backslash I_A| \geq 2$.

Pregunta 2

- (a) (3 ptos.) Sean A, B, C y D conjuntos tales que |A| = |C| y |B| = |D|. Demuestre que existe una inyección $f: A \to B$ si y sólo si existe una inyección $g: C \to D$.
- (b) (3 ptos.) Sean m y n naturales y sea A conjunto finito tal que |A| = n. Demuestre que

$$|A^m| = n^m$$

mostrando una biyección $h: A^m \to \{0, \dots, n^m - 1\}$.

Solución

- (a) De |A| = |C| deducimos que existe una función biyectiva $f_1: A \to C$, que es en particular inyectiva e invertible, cuya inversa $f_1^{-1}: C \to A$ es también una biyección, y en particular una función inyectiva.
 - De |B| = |D| deducimos igualmente que existe otra función biyectiva $f_2: B \to D$, que es en particular inyectiva, y cuya inversa $f_2^{-1}: D \to B$ es también una biyección, y en particular una función inyectiva.
 - (⇒) Sea $f:A\to B$ una función inyectiva, luego consideramos la función $(f_2\circ f\circ f_1^{-1}):C\to D$, que es la composición entre f_2 , una función inyectiva, y la composición entre f y f_1^{-1} , ambas funciones inyectivas. Como la composición de funciones inyectivas es inyectiva, $(f\circ f_1^{-1})$ es inyectiva y $g:=(f_2\circ f\circ f_1^{-1})$ también lo es.
 - (\Leftarrow) Sea $g:C\to D$ una función inyectiva, luego con el mismo argumento sabemos que la función $f:=(f_2^{-1}\circ g\circ f_1):A\to B$ es una función inyectiva.

Concluimos que existe una inyección $f: A \to B$ si y solo si existe una inyección $g: C \to D$.

(b) Dado que A es finito y de cardinalidad n, existe una función biyectiva $f: A \to \{0, ..., n-1\}$. Luego, definimos la biyección $h: A^m \to \{0, ..., n^m - 1\}$ como:

$$h(a_1, ..., a_m) = \sum_{i=1}^m f(a_i) \cdot n^{i-1}$$

para cada $(a_1, ..., a_m) \in A^m$. Es fácil ver que h es total, pues está bien definida para cada elemento de A^m . Notemos además que es inyectiva y sobre pues en base n, cada $f(a_i)$ es un dígito de $h(a_1, ..., a_m)$, por lo que todos los números de 0 a $n^m - 1$ están siendo representados (m dígitos con valor entre 0 incluido y n no incluido), y dos imágenes son iguales si todos sus dígitos son iguales, lo que solo ocurre si cada $f(a_i)$ es igual para cada a_i , lo que está dado por la inyectividad de f.

Pregunta 3

Sea P un conjunto finito, no vacío, de variables proposicionales. Demuestre que $\mathcal{L}(P)$ es enumerable.

Solución

Demostraremos tres cosas:

- 1. Toda fórmula proposicional tiene largo finito natural, por inducción estructural.
 - CB. Sea $p \in P$, luego |p| = 1, por lo que p tiene largo finito natural.
 - HI. Supongamos que para φ y ψ tienen largo finito natural.
 - TI. $|(\neg \varphi)| = 3 + |\varphi|$ que es finito natural por HI.
 - $|(\varphi \star \psi)| = 3 + |\varphi| + |\psi|$ que es finito natural por HI, para $\star \in \{\land, \lor, \to, \leftrightarrow\}$.
- 2. Para todo natural k, las fórmulas de largo k en $\mathcal{L}(P)$ son finitas, por inducción fuerte.
 - CB. No hay fórmulas de largo 0 en $\mathcal{L}(P)$, las fórmulas de largo 1 son exactamente las fórmulas p para $p \in P$. Estas fórmulas son finitas pues P es finito.
 - HI. Supongamos que para todo $k \in \mathbb{N}$, las fórmulas de largo $l \leq k$ son finitas.
 - TI. Sea φ de largo k+1. Hay dos opciones:
 - $\varphi = \neg \psi$ para $\psi \in \mathcal{L}(P)$, en cuyo caso $|\psi| = |\varphi| 3 = k 2 \le k$, por lo que las fórmulas que cumplen esto son finitas por HI.
 - $\varphi = (\psi \star \psi')$ con $\psi, \psi' \in \mathcal{L}(P)$ y $\star \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, en cuyo caso $|\psi| \leq |\varphi| 3 = k 2 \leq k$ y $|\psi'| \leq |\varphi| 3 = k 2 \leq k$, por lo que las fórmulas ψ y ψ' que permiten esto son finitas por HI.

Luego las fórmulas φ de largo k+1 son finitas.

3. Si para cada $i \in \mathbb{N}$ definimos:

$$L_i = \{ \varphi \in \mathcal{L}(P) \mid |\varphi| = i \}$$

por lo anteriormente demostrado tenemos que $\mathcal{L}(P) = \bigcup_{i \in \mathbb{N}} L_i$. Sea $k_i = |L_i|$ para cada i. Luego, podemos escribir L_i como $L_i = \{L_{i,0}, ..., L_{i,k_i}\}$. Podemos entonces describir $\mathcal{L}(P)$ por la lista infinita:

$$L_{1,0}; ...; L_{1,k_1}; L_{2,0}; ...; L_{2,k_2}; ...$$

De manera que cada fórmula aparece exactamente una vez. Luego, concluimos que $\mathcal{L}(P)$ es enumerable.

Pregunta 4

Sea A un conjunto y R una relación binaria sobre A. Decimos que R es una relación de dependencia sobre A si es refleja y simétrica. Para esta pregunta, consideramos $\mathcal{P} \subsetneq \mathbb{N} \setminus \{0\}$ y la relación binaria \triangle que se interpreta como "está a los más a un factor 2 de", que cumple

$$x \triangle y$$
 si y solo si máx $\{x, y\} \le 2 \cdot \min\{x, y\}$

Por ejemplo, si $\mathcal{P} = \{1, 2, 3, 5, 20, 21\}$ entonces $2\triangle 3$, $3\triangle 5$ y $20\triangle 29$, pero no $2\triangle 5$ ni $5\triangle 21$.

- (a) (2 ptos.) Demuestre que \triangle es una relación de dependencia sobre \mathcal{P} .
- (b) (1 pto.) Dé un ejemplo de \mathcal{P} tal que \triangle es una relación de equivalencia sobre \mathcal{P} .
- (c) (2 ptos.) Dada una relación R, definimos la i-ésima potencia de R como:

$$R^{i} = \begin{cases} \varnothing & \text{si } i = 0\\ R & \text{si } i = 1\\ R^{i-1} \circ R & \text{si } i > 1 \end{cases}$$

Definimos entonces a R_{CT} , la clausura transitiva de R, como

$$R_{CT} = \bigcup_{i \in \mathbb{N}} R^i$$

Demuestre que si R es una relación de dependencia, entonces R_{CT} es una relación de equivalencia.

(d) (1 pto) Demuestre que \triangle_{CT} es una relación de equivalencia.

Solución

- (a) Debemos demostrar que \triangle es refleja y simétrica.
 - \blacksquare Refleja: Sea $x \in P$. Luego,

$$\max\{x, x\} = \max\{x\} = x$$

Del mismo modo,

$$\min\{x, x\} = \min\{x\} = x$$

Luego, en los naturales tenemos que $x \leq 2 \cdot x$, por lo que

$$\max\{x, x\} = x \le 2 \cdot x = 2 \cdot \min\{x, x\}$$

Es decir, tenemos que $x \triangle x$. Como x es arbitrario, concluimos que lo anterior se cumple para todo $x \in P$, por lo que \triangle es una relación refleja.

 \blacksquare Simétrica: Sean $x,y\in P$ tales que $x\triangle y.$ Luego, por definición, tenemos que

$$\max\{x, y\} \le 2 \cdot \min\{x, y\}$$

Notemos que $\{x,y\} = \{y,x\}$, por lo que también tenemos que

$$\max\{y, x\} \le 2 \cdot \min\{y, x\}$$

Tenemos entonces que $y\triangle x$. Como x e y fueron escogidos arbitrariamente, concluimos que se cumple para todos los pares $x,y\in P$ tales que $x\triangle y$. Luego, \triangle es una relación simétrica.

(b) Podemos tomar $P=\{1\}$. Trivialmente, el único par en \triangle es (1,1) pues $\triangle\subseteq\{(1,1)\}$ y $1\triangle 1$ dado que

$$\max\{1,1\} = 1 \le 2 = 2 \cdot 1 = 2 \cdot \min\{1,1\}$$

Ya mostramos en (a) que \triangle es refleja y simétrica por lo que nos falta solamente demostrar que con $P=\{1\}$ es también transitiva. Notemos entonces que para $a,b,c\in P$, si $a\triangle b$ y $b\triangle c$, tenemos que a=b=c=1, pues 1 es el único elemento de P, y entonces $a\triangle b$ es lo mismo que $1\triangle 1$ que es lo mismo que $a\triangle c$, de lo que concluimos que Δ es transitiva. Luego Δ es una relación de equivalencia sobre $P=\{1\}$.

- (c) Sea R una relación de dependencia. Debemos demostrar que R_{CT} es una relación de equivalencia, es decir que es refleja, simétrica y transitiva.
 - Refleja: Sea $x \in P$. Luego $(x, x) \in R$, pues R es de dependencia y por lo tanto refleja. Notemos que $R \subseteq R_{CT}$ pues R es parte de la unión que define a R_{CT} , por lo que $(x, x) \in R_{CT}$. Como x es arbitrario, tenemos que para todo $x \in P$, se tiene que $(x, x) \in R_{CT}$, con lo que concluimos que R_{CT} es refleja.
 - Simétrica: Sean $x, y \in P$ tales que $(x, y) \in R_{CT}$. Por definición de unión, existe i tal que $(x, y) \in R^i$. Mostraremos por inducción que R^i es simétrica, con lo que concluimos que $(y, x) \in R^i$, y por extensión, dado que $R^i \subseteq R_{CT}$, que $(y, x) \in R_{CT}$.
 - CB. Si i = 0, R^i es vacío, por lo que la propiedad se cumple trivialmente. Si i = 1, $R^i = R$, que es la relación de dependencia original, y por lo tanto es simétrica.
 - HI. Supongamos que para i = k, se tiene que R^i es simétrica.
 - TI. Queremos demostrar que R^{i+1} es simétrica. Notemos entonces que

$$R^{i+1} = R^i \circ R$$

Sean x,y tales que $x,y\in R^{i+1}$. Entonces, por definición de composición, existe un z tal que $(x,z)\in R^i$ y $(z,y)\in R$. Luego, como R^i es simétrica, por HI, y como R es simétrica, por ser de dependencia, tenemos también $(z,x)\in R^i$ y $(y,z)\in R$. Luego, nuevamente por definición de composición, tenemos que $(y,x)\in R^{i+1}$.

Como x, y fueron arbitrarios, lo anterior se cumple para todos los x, y tales que $(x, y) \in \mathbb{R}^{i+1}$. Concluimos que \mathbb{R}^{i+1} es simétrica.

Luego, por inducción simple, concluimos que cada R_i es simétrica, y por el argumento anterior, que R_{CT} debe ser simétrica también.

■ Transitiva: Sean x, y, z tales que $(x, y) \in R_{CT}$ y $(y, z) \in R_{CT}$. Luego, tenemos que existen m y n naturales tales que $(x, y) \in R^m$ y $(y, z) \in R^n$ por la unión que define a R_{CT} . Notemos entonces que esto significa que $(x, z) \in R^{m+n}$, lo que nuevamente por definición de R_{CT} implica que $(x, z) \in R_{CT}$. Como x, y, z fueron escogidos arbitrariamente, se cumple para todos los x, y, z tales que $(x, y) \in R_{CT}$ y $(y, z) \in R_{CT}$. Concluimos que R_{CT} es transitiva.

Finalmente, concluimos que si R es una relación de dependencia, entonces R_{CT} es una relación de equivalencia.

(d) Por (a) sabemos que \triangle es una relación de dependencia, por lo que por lo demostado en (c), concluimos que \triangle_{CT} es una relación de equivalencia.