INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

End-Spring Semester Examination, 2015-2016

Subject: Advanced Mathematical Techniques in Chemical Engineering

Subject No.: CH 61015

Date:

Time: 2 Hrs

Full Marks: 50

Instructions: Answer all Questions. Assume any missing data suitably. Closed notes/books

- 1. Consider a problem, Lu=f, where, L= $3x\frac{d^2}{dr^2} + 5\frac{d^2}{dr^2} + 3$ with set of boundary conditions B such as at x=0, $\frac{du}{dx}$ = 0 and at x=1, $\frac{du}{dx}$ - 4u = 0. Find out adjoint operator L* with associated boundary condition set B*. (10)
- 2. Working in a spherical coordinate system an engineer has landed into the following equation:

$$x^{2} \frac{d^{2}y}{dx^{2}} - 8x \frac{dy}{dx} + y = 0 \text{ with BC at } x=0, y=\text{finite and } x=1, y=1$$
Find the solution of above equation. (6)

- 3. Consider PDE, $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with conditions: at t=0, u=1; at x=0, u=0 and at x=1, $\frac{\partial u}{\partial x} + u = 2$. Divide this problem into sub-problems such that each sub-problem is well posed. (10)
- 4. A transient chemical engineering system is described as,

$$\frac{dx_1}{dt} = x_1^2 - ax_1x_2 - x_1 \text{ and } \frac{dx_2}{dt} = bx_2^2 + x_1x_2 - 2x_2$$

where, a and b are two positive process parameters. Find the possible steady states. Check stability of each steady state.

3. Identify the following equations homogeneous, non-homogeneous, linear, non-linear:

(i)
$$u \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
; (ii) $u \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + 5x$; (iii) $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + 5ux$
(iv) $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + 5u$; (4)

4. Consider an enzyme catalyzed fermentation process is governed by Monod kinetics is occurring in a CSTR with volume V, flow rate q. Feed concentration of the reactant S is Cf. The reaction occurs isothermally. The reaction can be considered as an irreversible reaction

as S
$$\rightarrow$$
 P, where rate equation is given as $-r_A = \frac{k_1 c}{(1 + k_2 c)^2}$. (10)

Show that two parameters of this system are $Da = k_1 V/q$ and $\sigma = k_2 c_f$. Find the condition for existence of unique steady state. If D=3, show that maximum value of σ is 8.