Optimal combination forecasts for hierarchical time series

Rob J. Hyndman Roman A. Ahmed

Department of Econometrics and Business Statistics

MONASH University

Outline

- Review of hierarchical forecasting
- 2 A new approach
- Simulation study
- Summary

Introduction

Examples

- Manufacturing product hierarchies
- Pharmaceutical sales
- Net labour turnover

Hierarchical time series

- A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.
- Forecasts should be aggregate consistent, unbiased, minimum variance.
- Existing methods:
 - Bottom-up
 - > Top-down
 - Middle-out
- How to compute forecast intervals?
- Most research is concerned about relative performance of existing methods.

Top-down method

Advantages

- Works well in presence of low counts.
- Single forecasting model easy to build
- Provides reliable forecasts for aggregate levels.

Disadvantages

- Loss of information, especially individual series dynamics.
- Distribution of forecasts to lower levels can be difficult
- No prediction intervals

Bottom-up method

Advantages

- No loss of information.
- Better captures dynamics of individual series.

Disadvantages

- Laborious because of number of series to be forecast.
- Constructing forecasting models is harder because of noisy data at bottom level.
- No prediction intervals

A new approach

We aim to develop a new statistical methodology for forecasting hierarchical time series which:

- provides point forecasts that are consistent across the hierarchy;
- allows for correlations and interaction between series at each level;
- provides estimates of forecast uncertainty which are consistent across the hierarchy;
- allows for ad hoc adjustments and inclusion of covariates at any level.

Notation

K: number of levels in the hierarchy (excl. Total).

 Y_t : observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X

at time t.

 $\mathbf{Y}_{i,t}$: vector of all series at level i in time t.

 $\mathbf{Y}_t = [Y_t, \mathbf{Y}_{1,t}, \dots, \mathbf{Y}_{K,t}]'$

$$\begin{aligned} \mathbf{Y}_{t} &= [Y_{t}, Y_{A,t}, Y_{B,t}, Y_{C,t}]' = \\ \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} Y_{A,t} \\ Y_{B,t} \\ Y_{C,t} \end{pmatrix} \underbrace{\begin{pmatrix} Y_{A,t} \\ Y_{B,t} \\ Y_{C,t} \end{pmatrix}}_{\mathbf{Y}_{K,t}} \end{aligned}$$

Notation

Forecasts

$$\mathbf{Y}_t = S\mathbf{Y}_{K,t}$$

Let $\hat{\mathbf{Y}}_n(h)$ be vector of independent (base) forecasts for horizon h, stacked in same order as \mathbf{Y}_t .

Write

$$\hat{\mathbf{Y}}_n(h) = S\beta_n(h) + \varepsilon_h$$

where

- $\beta_n(h) = E[\mathbf{Y}_{K,n+h} \mid \mathbf{Y}_1, \dots, \mathbf{Y}_n]$ is unknown mean of bottom level K
- ε_h has zero mean and covariance matrix Σ_h .

Idea: Estimate $\beta_n(h)$ using regression.

$$\hat{\boldsymbol{\beta}}_n(h) = (S'\boldsymbol{\Sigma}_h^{\dagger}S)^{-1}S'\boldsymbol{\Sigma}_h^{\dagger}\hat{\mathbf{Y}}_n(h)$$

where Σ_h^{\dagger} is generalized inverse of Σ_h .

$$\tilde{\mathbf{Y}}_n(h) = S\hat{\boldsymbol{\beta}}_n(h) = S(S'\Sigma_h^{\dagger}S)^{-1}S'\Sigma_h^{\dagger}\hat{\mathbf{Y}}_n(h)$$

Revised forecasts

Base forecasts

• Revised forecasts unbiased if $\hat{\mathbf{Y}}_n(h)$ unbiased:

$$\mathsf{E}[\tilde{\mathbf{Y}}_n(h)] = S(S'\Sigma_h^{\dagger}S)^{-1}S'\Sigma_h^{\dagger}S\beta_n(h) = S\beta_n(h).$$

Minimum variance by construction:

$$\operatorname{\mathsf{Var}}[ilde{\mathbf{Y}}_n(h)] = S(S'\Sigma_h^\dagger S)^{-1}S'$$

$$\tilde{\mathbf{Y}}_n(h) = S(S'\Sigma_h^{\dagger}S)^{-1}S'\Sigma_h^{\dagger}\hat{\mathbf{Y}}_n(h)$$

Revised forecasts

Base forecasts

- **Problem:** Don't know Σ_h and hard to estimate.
- **Solution:** Assume $\varepsilon_h \approx S \varepsilon_{K,h}$ where $\varepsilon_{K,h}$ is the forecast error at bottom level.

Then $\Sigma_h \approx S\Omega_h S'$ where $\Omega_h = \text{Var}(\varepsilon_{K,h})$. If Moore-Penrose generalized inverse used, then

$$(S'\Sigma^{\dagger}S)^{-1}S'\Sigma^{\dagger}=(S'S)^{-1}S'.$$

$$\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$$

$$\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$$

- OLS solution.
- Optimal weighted average of base forecasts.
- Computational difficulties in big hierarchies due to size of S matrix.
- Optimal weights are $S(S'S)^{-1}S'$
- Weights are independent of the data!

Weights:
$$S(S'S)^{-1}S' =$$


```
Weights: S(S'S)^{-1}S' =
```

```
0.69
      0.23
             0.23
                    0.23
                           0.08
                                  0.08
                                         0.08
                                               0.08
                                                      0.08
                                                             0.08
                                                                    0.08
                                                                           0.08
                                                                                 0.08 -
0.23
      0.58 - 0.17 - 0.17
                           0.19
                                  0.19
                                        0.19 - 0.06 - 0.06 - 0.06 - 0.06 - 0.06
0.23 - 0.17
             0.58 - 0.17 - 0.06 - 0.06 - 0.06
                                               0.19
                                                      0.19
                                                             0.19 - 0.06 - 0.06 - 0.06
0.23 - 0.17 - 0.17
                    0.58 \ -0.06 \ -0.06 \ -0.06 \ -0.06 \ -0.06
                                                                    0.19
                                                                          0.19
                           0.73 - 0.27 - 0.27 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02
80.0
      0.19 - 0.06 - 0.06
0.08
      0.19 - 0.06 - 0.06 - 0.27
                                  0.73 - 0.27 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02
      0.19 - 0.06 - 0.06 - 0.27 - 0.27 - 0.73 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02
80.0
0.08 - 0.06
           0.19 - 0.06 - 0.02 - 0.02 - 0.02 0.73 - 0.27 - 0.27 - 0.02 - 0.02 - 0.02
0.08 - 0.06 0.19 - 0.06 - 0.02 - 0.02 - 0.02 - 0.27 0.73 - 0.27 - 0.02 - 0.02 - 0.02
0.08 - 0.06 0.19 - 0.06 - 0.02 - 0.02 - 0.02 - 0.27 - 0.27 <math>0.73 - 0.02 - 0.02 - 0.02
0.08 - 0.06 - 0.06 0.19 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02
                                                                    0.73 - 0.27 - 0.27
0.08 \ -0.06 \ -0.06 \ 0.19 \ -0.02 \ -0.02 \ -0.02 \ -0.02 \ -0.02 \ -0.02 \ -0.27
                    0.19 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02 - 0.27 - 0.27
0.08 - 0.06 - 0.06
```

Variances

$$\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$$

$$Var[\tilde{\mathbf{Y}}_n(h)] = S\Omega_h S' = \Sigma_h.$$

- Revised forecasts have the same variance matrix as original forecasts.
- Revised forecasts have the same variance matrix as bottom-up forecasts.
- The assumption $\Sigma_h \approx S\Omega_h S'$ results in loss of minimum variance property.
- Need to estimate Ω_h to produce prediction intervals

Adjustments and covariates

- Adjustments can be made to base forecasts at any level. These will automatically propagate through to other levels of the hierarchy.
- Covariates can be included in the base forecasts at any level.
- Point forecasts are always consistent across the hierarchy.
- Relationships between series at any level are handled automatically. However, some simplifying assumptions have been made.
- Estimates of forecast uncertainty are consistent across the hierarchy, but we need an estimate of Ω_h .

Simulation design

- Hierarchy of four levels with each disaggregation into four series.
- Bottom level: 64 series.
- Total series: 85.
- Series length: n = 100 (90 used for fitting, 10 for evaluation)
- Data generated for each series by ARIMA(p, d, q) process with random order and coefficients.
- Aggregate and three components generated.
 Fourth series obtained by subtraction.
- 600 hierarchies
- Base forecasts using Hyndman et al. (IJF 2002)

Simulation results

Average MAE by level

Level	Top-down	Bottom-up	Optimal
			combination
0 (Top)	2.5	21.0	2.8
1	20.4	12.5	7.4
2	27.4	9.2	8.1
3 (Bottom)	27.4	8.2	8.2
Average	19.4	12.7	6.6

Top-down uses disaggregation by historical proportions

Summary

- Very flexible method. Can work with any base forecasts.
- Method outperforms bottom-up and top-down, especially for middle levels.
- Conceptually easy to implement: OLS on base forecasts.
- Weights independent of the data. So calculate once and reapply when new data available.

Remaining problems

- How to explain variance results compared to simulation?
- How to compute Ω_h in order to obtain prediction intervals?
- Computationally it may be difficult for large hierarchies.
 (But solution coming up!)

For more information

 Paper and computer code will appear at http://www.robhyndman.info

 Paper will also appear on RePEc and in NEP-FOR report http://ideas.repec.org/n/nep-for/