Глубокое обучение и вообще

Ульянкин Филипп и Соловей Влад

19 марта 2020 г.

Посиделка 11: Пора вспомнить все!

- 1. Нейронные ячейки наши кубики
- 2. Хаки специфичные под нейронки
- 3. Технические хаки

А что такое нейросеть? Что мы можем назвать нейросетью в текущем понимнии индустрии?

А какие нейронные ячейки помнишь ты?

Dense

Наша база - полносвязная ячейка. Чем она характеризуется? Сколько слоев нам надо на практике?

Dense

Наша база - полносвязная ячейка. Чем она характеризуется? Сколько слоев нам надо на практике?

Функции активации

Мы говорим, про функции активации. Вообще какие они бывают и какие они могут быть? На что влияет их выбор?

Функции активации

Название функции	$oldsymbol{\Phi}$ ормула $f(x)$	$oldsymbol{\Pi}$ роизводная $f'(x)$
Логистический сигмоид σ	$\frac{1}{1+e^{-x}}$	$f(x)\left(1-f(x) ight)$
Гиперболический тангенс tanh	$\frac{e^x - e^{-x}}{e^x + e^{-x}}$	$1 - f^2(x)$
SoftSign	$\frac{x}{1+ x }$	$\frac{1}{(1+ x)^2}$
Ступенька (функция Хевисайда)	$egin{cases} 0, & x < 0 \ 1, & x \geq 0 \end{cases}$	0
SoftPlus	$\log(1+e^x)$	$\frac{1}{1+e^{-x}}$
ReLU	$\begin{cases} 0, & x < 0 \\ x, & x \ge 0 \end{cases}$	$\begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$
Leaky ReLU, Parameterized ReLU	$\begin{cases} ax, & x < 0 \\ x, & x \ge 0 \end{cases}$	$\begin{cases} a, & x < 0 \\ 1, & x \ge 0 \end{cases}$
ELU	$\begin{cases} \alpha \left(e^{x} - 1 \right), & x < 0 \\ x, & x \ge 0 \end{cases}$	$egin{cases} f(x) + lpha, & x < 0 \ 1, & x \geq 0 \end{cases}$

Сверточная часть

А что у нас тут указано, какие еще есть характеристики сверток?

Пулинги

Когда и для чего используем каждый из пулингов?

Анпулинг

ConvTranspose

Обучение и градиентный спуск

Градиентные спуски

Какой главный гиперпараметр во всех градиентных спусках, которые мы используем?

Вспоминаем особенности кажлого градиентного спуска - ничто не будет забыто! (week2)

- 1. SGD
- 2. Momentum SGD
- 3. RMSprop
- 4. Adam

Градиентные спуски

В чем прелесть обратного распространения ошибки? Чем он глобально лучше прямого?

и еще эвристик

Эвристики

WEEK4

Архитектуры

Архитектуры

Мы рассмотрели не так много архитектур, но ключевые:

- 1. Inception
- 2. Resnet
- 3. YOLO
- 4. Autoencoder
- 5. GAN
- 6. Unet
- 7. W2V(к этому классу можно отнести все подобные эмбединги)

Что еще?

Наша мощь

Что мы еще умеем?

- 1. Задавать модели последовательно или нет
- 2. Использовать разные метрики и каллбеки
- 3. Доставать разные кусочки моделей и применять их
- 4. Поучились чуток дебажить по кускам наш код

Что научимся

И что нам еще осталось

- 1. Работать с последовательностями
- 2. Обсудить seq2seq модели
- 3. Несколько нейронных ячеек attention, RNN,LSTM,GRU
- 4. BERT и иже с ним модность
- 5. Поговорим немного об обучении с подкреплением