Smooth Priors and Random Fields

Gaussian and Exponential priors

Geo-thermal Power Stations

Motivation for today's project

Krafla Power Station, Iceland

Porosity Estimation

1D flow in porous medium

Porosity Estimation

1D flow in porous medium

Smooth Priors for Bayesian Inverse Problems

The covariance function method

- We want to create a random function X(s), with $s \in [0,1)$.
- We want realizations of X be continuous and differentiable.

Smooth Priors for Bayesian Inverse Problems

The covariance function method

• Let us first discretize x(s), by choosing step-size $\Delta s = 1/N$.

$$x(s) \approx \mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_N), \quad \mathbf{x}_i = x(i\Delta s)$$

- We can now specify how \mathbf{x}_i are correlated using a covariance function:
 - Gaussian covariance function (infinitely many times differentiable):

$$f(\mathbf{x}_i, \mathbf{x}_j) = c_{ij} := \exp(-\frac{|\mathbf{x}_i - \mathbf{x}_j|^2}{2\ell^2})$$

- Exponential covariance function (1-time differentiable):

$$f(\mathbf{x}_i, \mathbf{x}_j) = c_{ij} := \exp(-\frac{|\mathbf{x}_i - \mathbf{x}_j|}{\ell})$$

• ℓ is called the <u>length scale</u> and controls how far apart points have strong correlation.

Smooth Priors for Bayesian Inverse Problems

The covariance function method

Once we have the correlations, we can create a covariance matrix:

$$C_X = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1,N} \\ c_{21} & c_{22} & \dots & c_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ c_{N1} & c_{N2} & \dots & c_{N,N} \end{pmatrix}$$

• We can then create a Gaussian prior for
$$X$$
 following
$$X \sim \mathcal{N}(0, C_X), \quad \text{with} \qquad \pi_X(\mathbf{x}) \propto \exp(-\frac{1}{2}\mathbf{x}^T C_X^{-1}\mathbf{x})$$

Independent Components of X

- Since we enforced spatial correlation for components of X(s) then, by definition, it's components, i.e., $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ are correlated. This makes inference really challenging!
- Theorem: If the covariance matrix ${\cal C}$ of a multi-variate random variable ${\cal X}$ is symmetric and positive-definite, then the random variable

$$Z := C^{-1/2}X$$

- has independent and standard normal components, where $C^{-1/2}$ is the precision matrix, or the inverse or the Cholesky factor $C^{1/2}$
- The formulation of $X = C^{1/2}Z$ for a random function is referred to as the Karhunen-Loève expansion of X.

Exercise 1

- Create a covariance matrix following once the Gaussian cov. function, and once following the exponential cov. function.
- Sample random functions from the distribution $\mathcal{N}(0,C_X)$. For different length scales 0.05, 0.1, and 0.2. Explain what you see.
- Compute the Cholesky factor $C_X^{1/2}$.
- For the Gaussian covariance kernel, set the length scale to 0.1 and plot 5 samples from $C^{1/2}Z$, where $Z \sim \mathcal{N}(0,I_N)$.

Samples from a Gaussian Random Field

Problem formulation

• The hydraulic imaging can be formulated in terms of the PDE problem:
$$\frac{\partial}{\partial s} \left(\exp(x(s)) \frac{\partial p_i(s)}{\partial s} \right) = q_i \delta(s_i^{\text{Well}}), \qquad i = 1, \dots, N_{\text{Well}}$$

- $p_i(s)$ is the pressure profile when the *i*th injector is active
- q_i is the injection rate at the location of ith well
- $\exp(x)$ is the porosity profile.
- x is a continuous and possibly differentiable function.

Hydraulic Imaging Notation

- We refer to x to be the unknown in the inverse problem.
- We refer to $\mathbf{p}_i = F_i(\mathbf{x})$ to refer to the experiment of injecting in the ith well and recording the pressure profile \mathbf{p}_i (solving 1 PDE).
- We can write the inverse problem as

$$\mathbf{y}_i = F_i(\mathbf{x}) + \varepsilon_i$$
, for $i = 1,...,5$

Hydraulic Imaging Run the hydraulic problem

import numpy as np
import matplotlib.pyplot as plt

from hydraulic import hydraulic_class

 $N_points = 128$

hydraulic = hydraulic_class(N_points) # initiate hydraulic problem with N discretization points

X = np.ones(N_points) # constant porosity profile
p = hydraulic.forward(X) # returns the pressure profile for 5 injections

Bayesian Formulation

• First we introduce random variables:

$$\mathbf{Y}_i = F_i(\mathbf{X}) + E_i$$

- Y_i , i = 1, ..., 5, are random variables of pressure profile for ith injection.
- E_i , i = 1,...,5, are random variables of noise for ith injection.
- X is the random variable for log-porosity.

Bayesian Formulation

We now formulate the Bayes' rule

$$\pi_{X|Y_1,...,Y_5} \propto \pi_{Y_1,...,Y_5|X} \pi_X$$

Under independence of measurements we can further break down the posterior

$$\pi_{X|Y_1,\ldots,Y_5} \propto \pi_{Y_1|X}\cdots\pi_{Y_5|X}\pi_X$$

Now we need to specify each distribution on the right hand side.

Bayesian Formulation

• Let us break down the terms in Bayes' rule:

$$\pi_{X|Y_1,\ldots,Y_5} \propto \pi_{Y_1|X}\cdots\pi_{Y_5|X}\pi_X$$

- $\pi_{Y_i|X}$ is the likelihood density for the *i*th injection/measurement:

$$\pi_{Y_i|X}(\mathbf{y}_i^{\text{obs}}) \propto \exp(-\frac{\|F_i(\mathbf{x}) - \mathbf{y}_i^{\text{obs}}\|_2^2}{2\sigma_i^2}),$$

where σ_i is the noise standard deviation for the *i*th experiment.

- $\pi_X(\mathbf{x})$ is the prior density for a smooth function

$$\pi_X(\mathbf{x}) \propto \exp\left(-\frac{\mathbf{x}C_X^{-1}\mathbf{x}}{2}\right)$$

Bayesian Formulation with Reparameterization

• Let us break down the terms in Bayes' rule:

$$\pi_{Z|Y_1,\ldots,Y_5} \propto \pi_{Y_1|Z}\cdots\pi_{Y_5|Z}\pi_Z$$

- $\pi_{Y_i|X}$ is the likelihood density for the ith injection/measurement:

$$\pi_{Y_i|Z}(\mathbf{y}_i^{\text{obs}}) \propto \exp(-\frac{\|F_i(C_X^{1/2}\mathbf{z}) - \mathbf{y}_i^{\text{obs}}\|_2^2}{2\sigma_i^2}),$$

where σ_i is the noise standard deviation for the *i*th experiment.

- $\pi_Z(\mathbf{z})$ is the prior density for a smooth function

$$\pi_Z(\mathbf{z}) \propto \exp\left(-\frac{\|\mathbf{z}\|_2^2}{2}\right)$$

Exercise 2

- Write a Python function that computes the log-prior density corresponding to a Gaussian covariance function with correlation length $\ell=0.1$.
- Write a Python function that computes the log-likelihood density function which combines the 5 experiments for the hydraulic imaging problem.
- Combine the two to write a Python function that computes the log-posterior of the hydraulic imaging problem.
- Use the random-walk Metropolis-Hasting algorithm to sample from the posterior distribution.
- Plot the posterior mean and also point-wise variance.