MS BGD: MDI720 Modèle linéaire: propriétés

François Portier Telecom ParisTech

Septembre 2018

1. Analyse de performance Biais Variance

Impact du niveau de bruit Estimation du niveau de bruit Cas hétéroscédastique

3. Aparté

Variables qualitatives Grande dimension p > n

1. Analyse de performance Biais

Variance

- 2. Impact du niveau de bruit
- 3. Aparté

Rappel:
$$\mathbf{y} = X\boldsymbol{\theta}^* + \boldsymbol{\epsilon}$$

Proposition

Sous l'hypothèse que $\mathbb{E}(\epsilon)=0$ et que la matrice X est de plein rang, alors l'estimateur des moindres carrés est sans biais :

$$\mathbb{E}(\widehat{m{ heta}}) = m{ heta}^\star$$

Rem: l'hypothèse
$$\mathbb{E}(\epsilon) = 0$$
 signifie que $\forall i \in [1, n], \mathbb{E}(\varepsilon_i) = 0$

Démonstration:

(plein rang)

Rappel:
$$\mathbf{y} = X\boldsymbol{\theta}^* + \boldsymbol{\epsilon}$$

Proposition

Sous l'hypothèse que $\mathbb{E}(\epsilon)=0$ et que la matrice X est de plein rang, alors l'estimateur des moindres carrés est sans biais :

$$\mathbb{E}(\widehat{m{ heta}}) = m{ heta}^\star$$

Rem: l'hypothèse $\mathbb{E}(\epsilon) = 0$ signifie que $\forall i \in [1, n], \mathbb{E}(\epsilon_i) = 0$

$$B = \mathbb{E}(\widehat{\boldsymbol{\theta}}) - \boldsymbol{\theta}^{\star} = \mathbb{E}((\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}) - \boldsymbol{\theta}^{\star}(\text{plein rang})$$

Rappel:
$$\mathbf{y} = X\boldsymbol{\theta}^* + \boldsymbol{\epsilon}$$

Proposition

Sous l'hypothèse que $\mathbb{E}(\epsilon)=0$ et que la matrice X est de plein rang, alors l'estimateur des moindres carrés est sans biais :

$$\mathbb{E}(\widehat{m{ heta}}) = m{ heta}^\star$$

Rem: l'hypothèse $\mathbb{E}(\epsilon) = 0$ signifie que $\forall i \in [1, n], \mathbb{E}(\epsilon_i) = 0$

$$B = \mathbb{E}(\widehat{\boldsymbol{\theta}}) - \boldsymbol{\theta}^* = \mathbb{E}((X^\top X)^{-1} X^\top \mathbf{y}) - \boldsymbol{\theta}^* \text{(plein rang)}$$

$$B = \mathbb{E}((X^\top X)^{-1} X^\top (X \boldsymbol{\theta}^* + \boldsymbol{\epsilon})) - \boldsymbol{\theta}^*$$

Rappel:
$$\mathbf{y} = X\boldsymbol{\theta}^* + \boldsymbol{\epsilon}$$

Proposition

Sous l'hypothèse que $\mathbb{E}(\epsilon)=0$ et que la matrice X est de plein rang, alors l'estimateur des moindres carrés est sans biais :

$$\mathbb{E}(\widehat{m{ heta}}) = m{ heta}^\star$$

Rem: l'hypothèse
$$\mathbb{E}(\epsilon) = 0$$
 signifie que $\forall i \in [1, n], \mathbb{E}(\epsilon_i) = 0$

$$B = \mathbb{E}(\widehat{\boldsymbol{\theta}}) - \boldsymbol{\theta}^* = \mathbb{E}((X^\top X)^{-1} X^\top \mathbf{y}) - \boldsymbol{\theta}^* \text{(plein rang)}$$

$$B = \mathbb{E}((X^\top X)^{-1} X^\top (X \boldsymbol{\theta}^* + \boldsymbol{\epsilon})) - \boldsymbol{\theta}^*$$

$$B = (X^\top X)^{-1} X^\top X \boldsymbol{\theta}^* + (X^\top X)^{-1} X^\top \mathbb{E}(\boldsymbol{\epsilon}) - \boldsymbol{\theta}^*$$

$$B = 0 \quad \text{(bruit centré)}$$

Définition

Le risque quadratique est la quantité suivante :

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E} \|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^2$$

Décomposition biais/variance

$$\boxed{\mathbb{E}\|\boldsymbol{\theta}^{\star}-\widehat{\boldsymbol{\theta}}\|^{2}=\mathbb{E}\|\boldsymbol{\theta}^{\star}-\mathbb{E}(\widehat{\boldsymbol{\theta}})\|^{2}+\mathbb{E}\|\mathbb{E}(\widehat{\boldsymbol{\theta}})-\widehat{\boldsymbol{\theta}}\|^{2}}$$

<u>Démonstration</u>:

Définition

Le risque quadratique est la quantité suivante :

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E} \|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^2$$

Décomposition biais/variance

$$\boxed{\mathbb{E}\|\boldsymbol{\theta}^{\star}-\widehat{\boldsymbol{\theta}}\|^{2}=\mathbb{E}\|\boldsymbol{\theta}^{\star}-\mathbb{E}(\widehat{\boldsymbol{\theta}})\|^{2}+\mathbb{E}\|\mathbb{E}(\widehat{\boldsymbol{\theta}})-\widehat{\boldsymbol{\theta}}\|^{2}}$$

$$\mathbb{E}\|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^2 = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\widehat{\boldsymbol{\theta}}) + \mathbb{E}(\widehat{\boldsymbol{\theta}}) - \widehat{\boldsymbol{\theta}}\|^2$$

Définition

Le risque quadratique est la quantité suivante :

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E} \|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^2$$

Décomposition biais/variance

$$\boxed{\mathbb{E}\|\boldsymbol{\theta}^{\star}-\widehat{\boldsymbol{\theta}}\|^{2}=\mathbb{E}\|\boldsymbol{\theta}^{\star}-\mathbb{E}(\widehat{\boldsymbol{\theta}})\|^{2}+\mathbb{E}\|\mathbb{E}(\widehat{\boldsymbol{\theta}})-\widehat{\boldsymbol{\theta}}\|^{2}}$$

$$\begin{split} \mathbb{E}\|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^{2} &= \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\widehat{\boldsymbol{\theta}}) + \mathbb{E}(\widehat{\boldsymbol{\theta}}) - \widehat{\boldsymbol{\theta}}\|^{2} \\ &= \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\widehat{\boldsymbol{\theta}})\|^{2} + \mathbb{E}\|\mathbb{E}(\widehat{\boldsymbol{\theta}}) - \widehat{\boldsymbol{\theta}}\|^{2} \\ &+ 2\mathbb{E}\langle\mathbb{E}(\widehat{\boldsymbol{\theta}}) - \widehat{\boldsymbol{\theta}}, \boldsymbol{\theta}^{\star} - \mathbb{E}(\widehat{\boldsymbol{\theta}})\rangle \end{split}$$

Définition

Le risque quadratique est la quantité suivante :

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E} \|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^2$$

Décomposition biais/variance

$$\boxed{\mathbb{E}\|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^{2} = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\widehat{\boldsymbol{\theta}})\|^{2} + \mathbb{E}\|\mathbb{E}(\widehat{\boldsymbol{\theta}}) - \widehat{\boldsymbol{\theta}}\|^{2}}$$

$$\mathbb{E}\|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^{2} = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\widehat{\boldsymbol{\theta}}) + \mathbb{E}(\widehat{\boldsymbol{\theta}}) - \widehat{\boldsymbol{\theta}}\|^{2}$$

$$= \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\widehat{\boldsymbol{\theta}})\|^{2} + \mathbb{E}\|\mathbb{E}(\widehat{\boldsymbol{\theta}}) - \widehat{\boldsymbol{\theta}}\|^{2}$$

$$+ 2\mathbb{E}\langle\mathbb{E}(\widehat{\boldsymbol{\theta}}) - \widehat{\boldsymbol{\theta}}, \boldsymbol{\theta}^{\star} - \mathbb{E}(\widehat{\boldsymbol{\theta}})\rangle$$

$$= \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\widehat{\boldsymbol{\theta}})\|^{2} + \mathbb{E}\|\mathbb{E}(\widehat{\boldsymbol{\theta}}) - \widehat{\boldsymbol{\theta}}\|^{2}$$

Décomposition biais/variance

 $\underline{\text{Rappel}}$: pour les moindres carrés le biais est nul sous l'hypothèse que X est de plein rang et que le bruit est centré.

Ainsi

$$\mathbb{E}(\widehat{\boldsymbol{\theta}}) - {\boldsymbol{\theta}}^{\star} = 0$$

et

$$\begin{split} \mathbb{E}\|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^{2} &= \|\boldsymbol{\theta}^{\star} - \mathbb{E}(\widehat{\boldsymbol{\theta}})\|^{2} + \mathbb{E}\|\mathbb{E}(\widehat{\boldsymbol{\theta}}) - \widehat{\boldsymbol{\theta}}\|^{2} \\ \mathbb{E}\|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^{2} &= \mathbb{E}\|\mathbb{E}(\widehat{\boldsymbol{\theta}}) - \widehat{\boldsymbol{\theta}}\|^{2} \end{split}$$

1. Analyse de performance

Biais

Variance

- 2. Impact du niveau de bruit
- 3. Aparté

Définition

Soit $A \in \mathbb{R}^{n \times n}$ une matrice carrée. La **trace** de A, notée tr(A) vaut la somme des éléments diagonaux de A:

$$\operatorname{tr}(A) = \sum_{i=1}^n A_{i,i}$$

•
$$\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$$

Définition

Soit $A \in \mathbb{R}^{n \times n}$ une matrice carrée. La **trace** de A, notée tr(A) vaut la somme des éléments diagonaux de A:

$$\mathsf{tr}(A) = \sum_{i=1}^n A_{i,i}$$

- $\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$
 - Pour toutes matrices $A, B \in \mathbb{R}^{n \times n}$, et tout $\alpha \in \mathbb{R}$, $\operatorname{tr}(\alpha A + B) = \alpha \operatorname{tr}(A) + \operatorname{tr}(B)$ (linéarité)

Définition

Soit $A \in \mathbb{R}^{n \times n}$ une matrice carrée. La **trace** de A, notée tr(A) vaut la somme des éléments diagonaux de A:

$$\operatorname{tr}(A) = \sum_{i=1}^n A_{i,i}$$

- $\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$
- Pour toutes matrices $A, B \in \mathbb{R}^{n \times n}$, et tout $\alpha \in \mathbb{R}$, $\operatorname{tr}(\alpha A + B) = \alpha \operatorname{tr}(A) + \operatorname{tr}(B)$ (linéarité)
- $\operatorname{tr}(A^{\top}A) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j}^{2} := \|A\|_{F}^{2}$

Définition

Soit $A \in \mathbb{R}^{n \times n}$ une matrice carrée. La **trace** de A, notée tr(A) vaut la somme des éléments diagonaux de A:

$$\operatorname{tr}(A) = \sum_{i=1}^n A_{i,i}$$

- $\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$
- Pour toutes matrices $A, B \in \mathbb{R}^{n \times n}$, et tout $\alpha \in \mathbb{R}$, $\operatorname{tr}(\alpha A + B) = \alpha \operatorname{tr}(A) + \operatorname{tr}(B)$ (linéarité)
- $\operatorname{tr}(A^{\top}A) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j}^{2} := \|A\|_{F}^{2}$
- Pour toutes matrices $A, B \in \mathbb{R}^{n \times n}$, tr(AB) = tr(BA)

Définition

Soit $A \in \mathbb{R}^{n \times n}$ une matrice carrée. La **trace** de A, notée tr(A) vaut la somme des éléments diagonaux de A:

$$\operatorname{tr}(A) = \sum_{i=1}^n A_{i,i}$$

- $\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$
- Pour toutes matrices $A, B \in \mathbb{R}^{n \times n}$, et tout $\alpha \in \mathbb{R}$, $\operatorname{tr}(\alpha A + B) = \alpha \operatorname{tr}(A) + \operatorname{tr}(B)$ (linéarité)
- $\operatorname{tr}(A^{\top}A) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j}^{2} := \|A\|_{F}^{2}$
- Pour toutes matrices $A, B \in \mathbb{R}^{n \times n}$, tr(AB) = tr(BA)
- $tr(PAP^{-1}) = tr(A)$, donc si A est diagonalisable, sa trace est la somme de ses valeurs propres

Définition

Soit $A \in \mathbb{R}^{n \times n}$ une matrice carrée. La **trace** de A, notée tr(A) vaut la somme des éléments diagonaux de A:

$$\operatorname{tr}(A) = \sum_{i=1}^n A_{i,i}$$

- $\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$
- Pour toutes matrices $A, B \in \mathbb{R}^{n \times n}$, et tout $\alpha \in \mathbb{R}$, $\operatorname{tr}(\alpha A + B) = \alpha \operatorname{tr}(A) + \operatorname{tr}(B)$ (linéarité)
- $\operatorname{tr}(A^{\top}A) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j}^{2} := \|A\|_{F}^{2}$
- Pour toutes matrices $A, B \in \mathbb{R}^{n \times n}$, tr(AB) = tr(BA)
- $tr(PAP^{-1}) = tr(A)$, donc si A est diagonalisable, sa trace est la somme de ses valeurs propres
- Si H est un projecteur orthogonal tr(H) = rang(H)

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon \epsilon^{\top}) = \sigma^2 \operatorname{\mathsf{Id}}_n$

Risque d'estimation $\mathbb{E}\|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^2$

Si le modèle est homoscéda
stique et que \boldsymbol{X} est de plein rang

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \operatorname{tr}\left[(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\right]$$

<u>Démonstration</u>:

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})^{\top}(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})\right]$$

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon \epsilon^{\top}) = \sigma^2 \operatorname{\mathsf{Id}}_n$

Risque d'estimation $\mathbb{E}\|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^2$

Si le modèle est homoscéda
stique et que \boldsymbol{X} est de plein rang

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \operatorname{tr}\left[(X^{\top}X)^{-1}\right]$$

$\underline{\text{D\'emonstration}}$:

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})^{\top}(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})\right]$$
$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})\right]$$

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon \epsilon^{\top}) = \sigma^2 \operatorname{\sf Id}_n$

Risque d'estimation $\mathbb{E}\|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^2$

Si le modèle est homoscéda
stique et que \boldsymbol{X} est de plein rang

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \operatorname{tr}\left[(X^{\top}X)^{-1}\right]$$

<u>Démonstration</u>:

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})^{\top}(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})\right]$$

$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})\right]$$

$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})^{\top}((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})\right] = \mathbb{E}(\boldsymbol{\epsilon}^{\top}X(X^{\top}X)^{-2}X^{\top}\boldsymbol{\epsilon})$$

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon \epsilon^{\top}) = \sigma^2 \operatorname{\sf Id}_n$

Risque d'estimation $\mathbb{E}\|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^2$

Si le modèle est homoscédastique et que X est de plein rang

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \operatorname{tr}\left[(X^{\top}X)^{-1}\right]$$

$$\begin{split} R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) &= \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})^{\top}(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})\right] \\ &= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})\right] \\ &= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})^{\top}((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})\right] = \mathbb{E}(\boldsymbol{\epsilon}^{\top}X(X^{\top}X)^{-2}X^{\top}\boldsymbol{\epsilon}) \\ &= \text{tr}\left[\mathbb{E}(\boldsymbol{\epsilon}^{\top}X(X^{\top}X)^{-1}(X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})\right] \end{split}$$

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon \epsilon^{\top}) = \sigma^2 \operatorname{\mathsf{Id}}_n$

Risque d'estimation $\mathbb{E}\|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^2$

Si le modèle est homoscédastique et que X est de plein rang

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \operatorname{tr}\left[(X^{\top}X)^{-1}\right]$$

<u>Démonstration</u>:

$$\begin{split} R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) &= \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})^{\top}(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})\right] \\ &= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})\right] \\ &= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})^{\top}((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})\right] = \mathbb{E}(\boldsymbol{\epsilon}^{\top}X(X^{\top}X)^{-2}X^{\top}\boldsymbol{\epsilon}) \\ &= \text{tr}[\mathbb{E}(\boldsymbol{\epsilon}^{\top}X(X^{\top}X)^{-1}(X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})] \\ &= \mathbb{E}\left(\text{tr}\left[(X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}X(X^{\top}X)^{-1}\right]\right) \end{split}$$

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon \epsilon^{\top}) = \sigma^2 \operatorname{\sf Id}_n$

Risque d'estimation $\mathbb{E}\|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^2$

Si le modèle est homoscéda
stique et que \boldsymbol{X} est de plein rang

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \operatorname{tr}\left[(X^{\top}X)^{-1}\right]$$

$$\begin{split} R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) &= \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})^{\top}(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})\right] \\ &= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})\right] \\ &= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})^{\top}((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})\right] = \mathbb{E}(\boldsymbol{\epsilon}^{\top}X(X^{\top}X)^{-2}X^{\top}\boldsymbol{\epsilon}) \\ &= \operatorname{tr}\left[\mathbb{E}(\boldsymbol{\epsilon}^{\top}X(X^{\top}X)^{-1}(X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})\right] \\ &= \mathbb{E}\left(\operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon}\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}X(X^{\top}X)^{-1}\right]\right) \\ &= \operatorname{tr}[(X^{\top}X)^{-1}X^{\top}\mathbb{E}(\boldsymbol{\epsilon}\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top})X(X^{\top}X)^{-1}] \end{split}$$

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon \epsilon^{\top}) = \sigma^2 \operatorname{\sf Id}_n$

Risque d'estimation $\mathbb{E}\|\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{\theta}}\|^2$

Si le modèle est homoscédastique et que X est de plein rang

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \operatorname{tr}\left[(X^{\top}X)^{-1}\right]$$

<u>Démonstration</u>:

$$R(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})^{\top}(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})\right]$$

$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})\right]$$

$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})^{\top}((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})\right] = \mathbb{E}(\boldsymbol{\epsilon}^{\top}X(X^{\top}X)^{-2}X^{\top}\boldsymbol{\epsilon})$$

$$= \operatorname{tr}\left[\mathbb{E}(\boldsymbol{\epsilon}^{\top}X(X^{\top}X)^{-1}(X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})\right]$$

$$= \mathbb{E}\left(\operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}X(X^{\top}X)^{-1}\right]\right)$$

$$= \operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\mathbb{E}(\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top})X(X^{\top}X)^{-1}\right]$$

$$= \sigma^{2}\operatorname{tr}\left[(X^{\top}X)^{-1}\right]$$

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon\epsilon^\top) = \sigma^2 \operatorname{\sf Id}_n$

Risque de prédiction (normalisé) $\mathbb{E}||X\theta^* - \hat{\mathbf{y}}||^2/n$ Si le modèle est homoscédastique

$$R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \frac{\mathbb{E}\|X\boldsymbol{\theta}^{\star} - \widehat{\mathbf{y}}\|^2}{n} = \frac{\text{rang}(X)}{n}\sigma^2$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(X\widehat{\boldsymbol{\theta}} - X\boldsymbol{\theta}^{\star})^{\top} (X\widehat{\boldsymbol{\theta}} - X\boldsymbol{\theta}^{\star}) \right]$$

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon\epsilon^{\top}) = \sigma^2 \operatorname{\sf Id}_n$

Risque de prédiction (normalisé) $\mathbb{E}||X\theta^* - \hat{\mathbf{y}}||^2/n$ Si le modèle est homoscédastique

$$R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \frac{\mathbb{E}\|X\boldsymbol{\theta}^{\star} - \widehat{\mathbf{y}}\|^2}{n} = \frac{\text{rang}(X)}{n}\sigma^2$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(X\widehat{\boldsymbol{\theta}} - X\boldsymbol{\theta}^{\star})^{\top} (X\widehat{\boldsymbol{\theta}} - X\boldsymbol{\theta}^{\star}) \right]$$
$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(H_{X}\mathbf{y} - X\boldsymbol{\theta}^{\star})^{\top} (H_{X}\mathbf{y} - X\boldsymbol{\theta}^{\star}) \right]$$

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon\epsilon^{\top}) = \sigma^2 \operatorname{\sf Id}_n$

Risque de prédiction (normalisé) $\mathbb{E}||X\theta^* - \hat{\mathbf{y}}||^2/n$ Si le modèle est homoscédastique

$$R_{\mathrm{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \frac{\mathbb{E}\|X\boldsymbol{\theta}^{\star} - \widehat{\mathbf{y}}\|^2}{n} = \frac{\mathrm{rang}(X)}{n}\sigma^2$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(X\widehat{\boldsymbol{\theta}} - X\boldsymbol{\theta}^{\star})^{\top} (X\widehat{\boldsymbol{\theta}} - X\boldsymbol{\theta}^{\star}) \right]$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(H_{X}\mathbf{y} - X\boldsymbol{\theta}^{\star})^{\top} (H_{X}\mathbf{y} - X\boldsymbol{\theta}^{\star}) \right]$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(H_{X}\varepsilon)^{\top} (H_{X}\varepsilon) \right]$$

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon\epsilon^{\top}) = \sigma^2 \operatorname{\sf Id}_n$

Risque de prédiction (normalisé) $\mathbb{E}||X\theta^* - \hat{\mathbf{y}}||^2/n$ Si le modèle est homoscédastique

$$R_{\mathrm{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \frac{\mathbb{E}\|X\boldsymbol{\theta}^{\star} - \widehat{\mathbf{y}}\|^2}{n} = \frac{\mathrm{rang}(X)}{n}\sigma^2$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(X\widehat{\boldsymbol{\theta}} - X\boldsymbol{\theta}^{\star})^{\top} (X\widehat{\boldsymbol{\theta}} - X\boldsymbol{\theta}^{\star}) \right]$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(H_{X}\mathbf{y} - X\boldsymbol{\theta}^{\star})^{\top} (H_{X}\mathbf{y} - X\boldsymbol{\theta}^{\star}) \right]$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(H_{X}\varepsilon)^{\top} (H_{X}\varepsilon) \right]$$

$$= \mathbb{E}(\boldsymbol{\epsilon}^{\top} H_{X}^{2} \boldsymbol{\epsilon}) = \mathbb{E}(\boldsymbol{\epsilon}^{\top} H_{X} \boldsymbol{\epsilon})$$

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon\epsilon^{\top}) = \sigma^2 \operatorname{\sf Id}_n$

Risque de prédiction (normalisé) $\mathbb{E}||X\theta^* - \hat{\mathbf{y}}||^2/n$ Si le modèle est homoscédastique

$$R_{\mathrm{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \frac{\mathbb{E}\|X\boldsymbol{\theta}^{\star} - \widehat{\mathbf{y}}\|^2}{n} = \frac{\mathrm{rang}(X)}{n}\sigma^2$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(X\widehat{\boldsymbol{\theta}} - X\boldsymbol{\theta}^{\star})^{\top} (X\widehat{\boldsymbol{\theta}} - X\boldsymbol{\theta}^{\star}) \right]$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(H_{X}\mathbf{y} - X\boldsymbol{\theta}^{\star})^{\top} (H_{X}\mathbf{y} - X\boldsymbol{\theta}^{\star}) \right]$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(H_{X}\varepsilon)^{\top} (H_{X}\varepsilon) \right]$$

$$= \mathbb{E}(\boldsymbol{\epsilon}^{\top} H_{X}^{2}\boldsymbol{\epsilon}) = \mathbb{E}(\boldsymbol{\epsilon}^{\top} H_{X}\boldsymbol{\epsilon})$$

$$= \text{tr}[\mathbb{E}(H_{X}\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top} H_{X}^{\top})] = \text{tr}(H_{X}\mathbb{E}(\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}) H_{X}^{\top})$$

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon \epsilon^{\top}) = \sigma^2 \operatorname{\mathsf{Id}}_n$

Risque de prédiction (normalisé) $\mathbb{E}||X\theta^{\star} - \hat{\mathbf{y}}||^2/n$

Si le modèle est homoscédastique

$$R_{\mathrm{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \frac{\mathbb{E}\|X\boldsymbol{\theta}^{\star} - \widehat{\mathbf{y}}\|^2}{n} = \frac{\mathrm{rang}(X)}{n}\sigma^2$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(X\widehat{\boldsymbol{\theta}} - X\boldsymbol{\theta}^{\star})^{\top} (X\widehat{\boldsymbol{\theta}} - X\boldsymbol{\theta}^{\star}) \right]$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(H_{X}\mathbf{y} - X\boldsymbol{\theta}^{\star})^{\top} (H_{X}\mathbf{y} - X\boldsymbol{\theta}^{\star}) \right]$$

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \mathbb{E}\left[(H_{X}\varepsilon)^{\top} (H_{X}\varepsilon) \right]$$

$$= \mathbb{E}(\epsilon^{\top} H_{X}^{2} \epsilon) = \mathbb{E}(\epsilon^{\top} H_{X} \epsilon)$$

$$= \text{tr}[\mathbb{E}(H_{X}\epsilon\epsilon^{\top} H_{X}^{\top})] = \text{tr}\left(H_{X}\mathbb{E}(\epsilon\epsilon^{\top}) H_{X}^{\top}\right)$$

$$= \sigma^{2} \text{tr}(H_{X}) = \sigma^{2} \text{rang}(H_{X}) = \sigma^{2} \text{rang}(X)$$

Hypothèse de modèle homoscédastique : $\mathbb{E}(\epsilon\epsilon^{\top}) = \sigma^2 \operatorname{\sf Id}_n$

Risque de prédiction (normalisé) $\mathbb{E}||X\theta^* - \hat{\mathbf{y}}||^2/n$ Si le modèle est homoscédastique

$$R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \widehat{\boldsymbol{\theta}}) = \frac{\mathbb{E}\|\boldsymbol{X}\boldsymbol{\theta}^{\star} - \widehat{\boldsymbol{y}}\|^{2}}{n} = \frac{\text{rang}(\boldsymbol{X})}{n}\sigma^{2}$$

- l'erreur est proportionnelle au niveau de bruit σ^2
- l'erreur est proportionnelle à 1/n (n: taille échantillon)
- l'erreur est proportionnelle à rang(X) (rang(X) : nombre de variables explicatives indépendantes);

Attention si rang(X) $\approx n$, l'erreur n'est pas petite...

Terme de variance/covariance

Matrice de variance/covariance des moindres carrés Si le modèle est homoscédastique et que X est de plein rang

$$\mathbb{C}\mathrm{ov}(\widehat{\boldsymbol{\theta}}) = \sigma^2(\boldsymbol{X}^\top \boldsymbol{X})^{-1}$$

$$\underline{\text{D\'emonstration}}: \text{notons } V = \mathbb{C}\text{ov}(\widehat{\boldsymbol{\theta}})$$

$$V = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})^{\top}\right] = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}\right]$$

Terme de variance/covariance

Matrice de variance/covariance des moindres carrés Si le modèle est homoscédastique et que X est de plein rang

$$\mathbb{C}\mathrm{ov}(\widehat{\boldsymbol{\theta}}) = \sigma^2(\boldsymbol{X}^\top \boldsymbol{X})^{-1}$$

$$\begin{split} & \underline{\text{D\'emonstration}} : \text{notons } V = \mathbb{C}\text{ov}(\widehat{\boldsymbol{\theta}}) \\ & V = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})^{\top}\right] = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}\right] \\ & = \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})^{\top}\right] \end{split}$$

Terme de variance/covariance

Matrice de variance/covariance des moindres carrés Si le modèle est homoscédastique et que X est de plein rang

$$\mathbb{C}\mathrm{ov}(\widehat{\boldsymbol{\theta}}) = \sigma^2 (\boldsymbol{X}^\top \boldsymbol{X})^{-1}$$

$$\begin{split} & \underline{\text{D\'emonstration}} : \text{notons } V = \mathbb{C}\text{ov}(\widehat{\boldsymbol{\theta}}) \\ & V = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})^{\top}\right] = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}\right] \\ & = \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})^{\top}\right] \\ & = \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})^{\top}\right] \end{split}$$

Terme de variance/covariance

Matrice de variance/covariance des moindres carrés Si le modèle est homoscédastique et que X est de plein rang

$$\mathbb{C}\mathrm{ov}(\widehat{\boldsymbol{\theta}}) = \sigma^2(\boldsymbol{X}^\top \boldsymbol{X})^{-1}$$

$$\underline{\text{D\'emonstration}} : \text{notons } V = \mathbb{C}\text{ov}(\widehat{\boldsymbol{\theta}}) \\
V = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})^{\top}\right] = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})^{\top}\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})^{\top}\right] \\
= (X^{\top}X)^{-1}X^{\top}\mathbb{E}\left[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}\right]X(X^{\top}X)^{-1}$$

Terme de variance/covariance

Matrice de variance/covariance des moindres carrés Si le modèle est homoscédastique et que X est de plein rang

$$\mathbb{C}\mathrm{ov}(\widehat{\boldsymbol{\theta}}) = \sigma^2(\boldsymbol{X}^\top \boldsymbol{X})^{-1}$$

$$\underline{\text{D\'emonstration}} : \text{notons } V = \mathbb{C}\text{ov}(\widehat{\boldsymbol{\theta}}) \\
V = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})^{\top}\right] = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})^{\top}\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})^{\top}\right] \\
= (X^{\top}X)^{-1}X^{\top}\mathbb{E}\left[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}\right]X(X^{\top}X)^{-1} \\
= (X^{\top}X)^{-1}X^{\top}(\sigma^{2}\operatorname{Id}_{n})X(X^{\top}X)^{-1}$$

Terme de variance/covariance

Matrice de variance/covariance des moindres carrés Si le modèle est homoscédastique et que X est de plein rang

$$\mathbb{C}\mathrm{ov}(\widehat{\boldsymbol{\theta}}) = \sigma^2(X^\top X)^{-1}$$

$$\underline{\text{D\'emonstration}} : \text{notons } V = \mathbb{C}\text{ov}(\widehat{\boldsymbol{\theta}}) \\
V = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})(\widehat{\boldsymbol{\theta}} - \mathbb{E}\widehat{\boldsymbol{\theta}})^{\top}\right] = \mathbb{E}\left[(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}) - \boldsymbol{\theta}^{\star})^{\top}\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})((X^{\top}X)^{-1}X^{\top}\boldsymbol{\epsilon})^{\top}\right] \\
= (X^{\top}X)^{-1}X^{\top}\mathbb{E}\left[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}\right]X(X^{\top}X)^{-1} \\
= (X^{\top}X)^{-1}X^{\top}(\sigma^{2}\operatorname{Id}_{n})X(X^{\top}X)^{-1} \\
= \sigma^{2}(X^{\top}X)^{-1}$$

11/24

Analyse de performance Biais Variance

2. Impact du niveau de bruit Estimation du niveau de bruit Cas hétéroscédastique

3. Aparté Variables qualitatives Grande dimension p > r

- 1. Analyse de performance
- 2. Impact du niveau de bruit Estimation du niveau de bruit Cas hétéroscédastique
- 3. Aparté

Estimateur du niveau de bruit

• On peut construire un estimateur de le variance σ^2 du bruit :

$$\widehat{\sigma}^2 = \frac{1}{n} \|\mathbf{y} - X\widehat{\boldsymbol{\theta}}\|_2^2$$

ou si l'on souhaite un estimateur sans biais :

$$\widehat{\sigma}^2 = \frac{1}{n - \operatorname{rang}(X)} \|\mathbf{y} - X\widehat{\boldsymbol{\theta}}\|_2^2 \quad \text{si } \operatorname{rang}(X) < n$$

• Motivation "débiaisage" : théorie des tests

$$\|\mathbf{y} - \widehat{\mathbf{y}}\|_{2}^{2} = \mathbf{y}^{\top} (\operatorname{Id}_{n} - H_{X}) \mathbf{y} = \boldsymbol{\epsilon}^{\top} (\operatorname{Id}_{n} - H_{X}) \boldsymbol{\epsilon} = \sum_{i=1}^{n-\operatorname{rang}(X)} \widetilde{\varepsilon}_{i}^{2}$$

Cas gaussien : si $\varepsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$, alors $\|\mathbf{y} - \widehat{\mathbf{y}}\|_2^2$ suit une loi du χ^2 à $n - \mathsf{rang}(X)$ degrés de liberté

<u>Rem</u>: implicitement on fait donc encore l'hypothèse n > p

Estimateur du niveau de bruit (II)

$$\widehat{\sigma^2} = \frac{1}{n - \operatorname{rang}(X)} \|\mathbf{y} - X\widehat{\boldsymbol{\theta}}\|_2^2 \quad \text{si } \operatorname{rang}(X) < n$$

Preuve:

$$\begin{split} &\|\mathbf{y} - X\widehat{\boldsymbol{\theta}}\|_2^2 = &\mathbf{y}^\top (\mathsf{Id}_n - H_X)\mathbf{y} \\ &\mathbb{E}(\|\mathbf{y} - X\widehat{\boldsymbol{\theta}}\|_2^2) = &\mathbb{E}\left[(X\boldsymbol{\theta}^* + \boldsymbol{\epsilon})^\top (\mathsf{Id}_n - H_X)(X\boldsymbol{\theta}^* + \boldsymbol{\epsilon})\right] \end{split}$$

Comme $(\operatorname{Id}_n - H_X)X = 0$ et $\mathbb{E}(\epsilon^\top X \theta^*) = 0$ on obtient :

$$\mathbb{E}(\|\mathbf{y} - X\widehat{\boldsymbol{\theta}}\|_{2}^{2}) = \mathbb{E}\left[\boldsymbol{\epsilon}^{\top}(\operatorname{Id}_{n} - H_{X})\boldsymbol{\epsilon}\right]$$
$$= \sigma^{2}\operatorname{tr}(\operatorname{Id}_{n} - H_{X})$$
$$= \sigma^{2}(n - \operatorname{rang}(X))$$

- 1. Analyse de performance
- 2. Impact du niveau de bruit Estimation du niveau de bruit Cas hétéroscédastique
- 3. Aparté

Cas hétéroscédastique

L'estimateur MCO $\widehat{\boldsymbol{\theta}}$ postule <u>implicitement</u> que les variables y_1, \dots, y_n ont même niveau de bruit

Rem: pour cela reprendre le calcul du maximum de vraisemblance d'un modèle gaussien avec variance σ^2 fixée / connue

Modèle hétéroscédastique : on suppose que le niveau de bruit diffère pour chaque y_i et on note σ_i^2 la variance associée

$$\widehat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{argmin}} \sum_{i=1}^{n} \left(\frac{y_i - \langle \boldsymbol{\theta}, x_i \rangle}{\sigma_i} \right)^2 = \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{argmin}} (\mathbf{y} - X\boldsymbol{\theta})^{\top} \Omega(\mathbf{y} - X\boldsymbol{\theta})$$

avec
$$\Omega = \mathrm{diag}\left(\frac{1}{\sigma_1^2}, \dots, \frac{1}{\sigma_n^2}\right)$$

Exo: donner une formule explicite si $X^{\top}\Omega X$ est de plein rang

Analyse de performance Biais Variance

2. Impact du niveau de bruit Estimation du niveau de bruit Cas hétéroscédastique

3. Aparté

Variables qualitatives Grande dimension p > n

- 1. Analyse de performance
- 2. Impact du niveau de bruit

3. Aparté

Variables qualitatives

Grande dimension p > n

Variables qualitatives

On parle de variable **qualitative**, quand une variable ne prend que des modalités discrètes et/ou non-numériques.

Exemple: couleurs, genre, ville, etc.

Encodage classique : variables fictives/indicatrices

(: dummy variables)="encodage à chaud" (: one-hot encoder).

Si la variable $\mathbf{x} = (x_1, \dots, x_n)^\top$ peut prendre K modalités a_1, \dots, a_K on crée K variables : $\forall k \in [1, K], \in \mathbb{R}^n$ définies par

$$\forall i \in \llbracket 1, n
rbracket, \quad ()_i = egin{cases} 1, & \text{if } x_i = a_k \\ 0, & \text{sinon} \end{cases}$$

et on remplace $\mathbf{x} \in \mathbb{R}^n$ par $[, \dots,] \in \mathbb{R}^{n \times K}$

Exemple d'encodage

<u>Cas binaire</u>: M/F, oui/non, j'aime/j'aime pas.

Client	Genre	
1	Н	
2	F	
3	Н	
4	F	
5	F	

Cas général : couleur, villes, etc.

Client	Couleurs	
1	Bleu	
2	Blanc	
3	Rouge	
4	Rouge	
5	Bleu	

$$\longrightarrow$$

	/Bleu	Blanc	Rouge
	1	0	0
,	0	1	0
\longrightarrow	0	0	1
	0	0	1
	\ 1	0	0

Quelques difficultés

Corrélations : $\sum_{k=1}^{K} = \mathbb{1}_{n}!$ On peut enlever une des modalités (e.g. drop_first=True dans get_dummies de pandas)

Interprétation sans constante et avec toutes les modalités : X = [, ...,]. Si $x_{n+1} = a_k$ alors $\hat{y}_{n+1} = \hat{\theta}_k$

<u>Interprétation avec constante et avec une modalité en moins :</u>

 $X = [\mathbb{1}_n, \dots,]$, en enlevant la première modalité

Si
$$x_{n+1} = a_k$$
 alors $\widehat{y}_{n+1} = \begin{cases} \widehat{\theta}_0, & \text{si } k = 1 \\ \widehat{\theta}_0 + \widehat{\theta}_k, & \text{sinon} \end{cases}$

Rem: création possible d'une colonne nulle par validation croisée (CV), difficultés limitées par régularisation (e.g. Lasso, Ridge)

Exo: Calculer l'estimateur des moindres carrés avec X = [, ...,] obtenu par des *dummy variables* avec une seule variable explicative ayant K modalités

- 1. Analyse de performance
- 2. Impact du niveau de bruit
- 3. Aparté Variables qualitatives Grande dimension p > n

Et si n < p?

Beaucoup des choses vues avant ont besoin d'être révisées :

Par exemple : si rang(X) = n, alors $H_X = \operatorname{Id}_n$ et $\widehat{y} = X\widehat{\theta} = y$! En effet, l'espace engendré par les colonnes $[x_0, \dots, x_p]$ est \mathbb{R}^n , et donc le signal observé et le signal prédit sont **identiques**

Rem: c'est un problème inhérent à la grande dimension (grand nombre de variables explicatives p)

 $\underline{\text{Solutions possibles}}:$ sélection de variables, cf.cours sur le Lasso et méthodes gloutonnes (à venir), régularisation, etc.

Sites web et livres pour aller plus loin

- Éléments de pré-traitement en manipulation de données : "Feature Engineering", HJ van Veen
- Packages Python pour les moindres carrés : statsmodels sklearn.linear_model.LinearRegression
- McKinney (2012) concernant python pour les statistiques
- Lejeune (2010) concernant le modèle linéaire (notamment)
- Delyon (2015) cours plus avancé sur la régression : https://perso.univ-rennes1.fr/bernard.delyon/regression.pdf

Références I

- [Del15] B. Delyon. Régression, 2015. https://perso.univ-rennes1.fr/bernard.delyon/regression.pdf.
- [Lej10] M. Lejeune. Statistiques, la théorie et ses applications. Springer, 2010.
- [McK12] W. McKinney. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O'Reilly Media, 2012.