

TFG del Grado en Ingeniería Informática

Development of a Chatbot for Tourist Recommendations Technical Documentation

Presentado por Jasmin Wellnitz en Universidad de Burgos — June 17, 2017 Tutor: Bruno Baruque Zanón

Contents

Conter	nts	i
List of	Figures	iii
List of	Tables	iv
Appen	dix A Plan de Proyecto Software	1
A.1	Introducción	1
A.2	Planificación temporal	1
A.3	Estudio de viabilidad	1
Appen	dix B Software Requirement Specification	2
B.1	Introduction	2
B.2	General Objectives	2
B.3	Software Requirement Catalogue	3
B.4	Requirement Specification	4
Appen	dix C Especificación de diseño	15
C.1	Introducción	15
C.2	Diseño de datos	15
C.3	Diseño procedimental	15
C.4	Diseño arquitectónico	15
Appen	dix D Technical Programming Documentation	16
D.1	Introduction	16
D.2	Directory Structure	16
D.3	Developer Manual	17
D.4	Program Compilation, Installation and Execution	25
D.5	Tests	25
Appen	dix E. Documentación de usuario	29

CONTENTS		ii
----------	--	----

Bibliog	graphy	30
E.4	Manual del usuario	29
E.3	Instalación	29
E.2	Requisitos de usuarios	29
E.1	Introducción	29

List of Figures

B.1	General Use Cases	5
B.2	Use Case - "Get Recommendation"	6
D.1	pgadmin3: A server connection is added	18
D.2	The Botfather is used to create the Telegram Bot	20
D.3	api.ai agent creation interface	21
D.4	Heroku Web App Creation	23
D.5	Code Coverage Analysis Result	26

List of Tables

B.1	UC01 - Chat About Preferences	7
B.2	UC02 - Get Recommendation	8
B.3	UC-03 - Rate Recommendation	9
B.4	UC-04 - Specify Recommendation Radius	10
B.5	UC-05 - Rate First Impression	11
B.6	UC-06 - Show Past Recommendations	12
B.7	UC-07 - Help	13
B.8	UC-07 - Show User Information	14
D.1	F-Measures of the recommenders using different similarity and neighborhood functions	27
	IIOISIIDOI IIOOG IGIIOOODO	

Appendix A

Plan de Proyecto Software

- A.1 Introducción
- A.2 Planificación temporal
- A.3 Estudio de viabilidad

Viabilidad económica

Viabilidad legal

Appendix B

Software Requirement Specification

B.1 Introduction

The following chapter provides a specification of the software's overall requirements. Showing its functions, limitations and user interaction, the catalogue can be considered as a contract between clients and developers. Aside from giving textual descriptions, use case diagrams help to clarify the requirements and interactions in more detail.

B.2 General Objectives

The following steps and objectives are related to the software's requirements:

- Design of a conversational interface: the conversation flow between user and chatbot is mapped to the natural language processing platform api.ai which then parses the user input into formalized data. The parsed input is interpreted by the chatbot and triggers the desired behaviour, such as recommendation or storage of important user information.
- A recommender system must be implemented to provide personalized tourist recommendations. The recommender is based on data the user has shared with the chatbot and additional data of similar users. To overcome the problem of initially sparse user data, different recommendation methods are combined as well as retrieving existing user data from other sources and/or generating data.

• Extracting tourist data from a spatial information database based on OpenStreetMap: the data is filtered so that only data of touristic importance is evaluated by the recommender and presented to the user.

B.3 Software Requirement Catalogue

This section outlines the software requirements. At first, the participating actors are introduced. Then, the requirements are examined, dividing them into functional and non-functional requirements.

Participating actors

This software has only one main actor, the user. Using the Telegram messenger, users interact with the chatbot. There are no different user roles, so each user has the same range of features to use.

Functional Requirements

This section describes the software's full range of features:

- Using the Telegram interface, messages to the chatbot can be introduced which are answered accordingly.
- Using the Telegram interface, a location can be introduced which is used as the basis for the chatbot recommendations.
- The proximity of the recommendations can be specified by the user. If no radius is entered, the default value of 1 km is used as a distance between the user location and examined point of interests.
- The chatbot provides a recommended point of interest within the chosen proximity. The recommendation result contains the name, location, point of interest category as well as an additional picture retrieved from Foursquare (if available).
- Recommended points of interests are rated by the users. The rating is saved and used as a basis for future recommendations.
- The user can access the information the chatbot has collected about him, such as already recommended points of interests or saved interests.
- To refine recommendations, user chat messages are evaluated using natural language processing and saved in the user profile.

Non-functional Requirements

This section describes the so-called non-functional requirements which contain technical as well as operational requirements.

- To use the chatbot, the Telegram messenger app has to be installed on a smart device (smartphones or tablets). Although Telegram is also available as a desktop application, these versions do not support sending locations and are therefore not suitable.
- The device must be connected to the internet to use the chatbot.
- The device must be capable of receiving GPS information to calculate its current location.
- The conversational interface should be intuitive, so the user is able to communicate with the chatbot without previously reading an exhaustive tutorial. To facilitate user decisions, mutually exclusive keyboard buttons are used.
- The chatbot should be able to handle user requests adequately. Questions and demands concerning travelling are understood and answered satisfyingly. Other requests are rejected politely.

Limitations

There are multiple limitations present due to the fact that the software can be still considered as a prototype. In a future enhancement, most of these limitations should be remedied.

- The used OpenStreetMap data was downloaded once and then used offline. To keep the data up-to-date, an automatic update mechanism should be set up.
- Due to performance reasons and sparse user rating data, the prototype only gives recommendations for the city of *Barcelona*, Spain. In a future enhancement, a bigger OSM region should be covered.

B.4 Requirement Specification

Use Case Diagrams

General Use Case Diagram

Figure B.1: General Use Cases

The shown use case diagram contains the six main interactions the user performs using the chatbot. The use case "Help" is used to show the user the main features of the chatbot. In "Chat about Preferences" the chatbot collects information about the user by chatting with him. This data is used to complete the user profile for recommendations. On the other hand, "Rate Recommendation" shows how the user rates previously recommended points of interests.

The use cases "Show Past Recommendations" and "Show User Information" both aim to provide the user an understanding of the data the chatbot has already collected of the user.

The use case "Get Recommendation" represents the interactions between user and chatbot that lead to the delivery of user adapted recommendations. Because of its complexity, this use case is shown in more detail in the following section.

Chatbot Set Recommendation Radius Get Recommendation Rate First Impression

Use Case Diagram - "Get Recommendation"

Figure B.2: Use Case - "Get Recommendation"

This use case shows the involved components in providing the user with recommendations. In order to get recommendations, the user is able to specify a recommendation radius to set the maximal distance between himself and the point of interest. This step is optional. After showing the user the recommended point of interest, he is asked to give a first impression of the point of interest in order to refine future recommendations.

Use Case Templates

The previously defined use cases are explained in the following templates, showing the circumstances in which a use case is handled. Additionally to the given description, the flow of events will be shown in detail in the Design Specification, illustrated by sequence diagrams.

Use Case ID	UC-01			
Use Case Name	Chat About Preferences			
Description	The user	The user chats with the chatbot about his		
Description	preference			
	User conn	ects to the chatbot for the first time		
Trigger	or shows	proactively the intention to chat		
		preferences.		
	The chath	oot is in a state in which the user		
Precondition	is allowed	to type messages independently,		
1 recondition	meaning t	hat the user does not conduct an-		
	other pred	lefined conversation.		
	Step	Action		
		Chatbot: "So, tell me, what are you		
	1	interested in when you visit a new		
		place?"		
Flow of Events	2	User answers and interest is filtered		
Tiow of Events		The interest is saved and the user is		
	3	told to repeat the process whenever		
		he likes.		
Alternate Flow	Step	Action		
71100111auc 1 10W	3a	User response is not understood, so		
		the user is asked to rephrase his an-		
		swer.		
		oot is in a state in which the user is		
	allowed to type messages independently.			
Postcondition				
	The user profile is updated with user inter-			
	ests.			
Exceptions	Step	Action		
	2	User answers "No", so the use case		
		is aborted.		
Frequency of Use	Medium			
Importance High				

Table B.1: UC-01 - Chat About Preferences

Use Case ID	UC-02			
Use Case Name	Get Recommendation			
	The user asks for a recommended point of			
D		Based on the user information, the		
Description	recommender returns points of interests close			
	to the use	_		
	The user types in a message that is inter-			
Trigger		a "recommendation" intent by the		
1118801	language processing platform.			
		oot is in a state in which the user		
		to type messages independently,		
Precondition		hat the user does not conduct an-		
		lefined conversation.		
	Step	Action		
	Біер	Chatbot asks for the user's current		
	1	location.		
	2	User enters his location		
	3			
	3	Chatbot presents user a recom-		
	4	mended point of interest.		
El f E t	4	Use Case \rightarrow Rate First Impression		
Flow of Events	-	(see B.5)		
	5	Chatbot: "Do you want to see an-		
		other recommendation?"		
	6	User enters No.		
	Step	Action		
	1a	User starts recommendation pro-		
A1. T21		cess by entering its current location		
Alternate Flow		which is followed by step 3.		
	6a	User enters Yes, so steps 3-5 are re-		
	(F)	peated.		
	The chatbot is in a state in which the user is			
	allowed to	type messages independently.		
Postcondition				
	Recommended points of interests the user			
	liked are saved and marked as unrated.			
Exceptions	Step	Action		
	3	Chatbot does not find any (more)		
		points of interests for the user and		
		cancels recommendation process.		
Frequency of Use	High			
Importance	High			

Table B.2: UC-02 - Get Recommendation

Use Case ID	UC-03		
Use Case Name	Rate Recommendation		
Description	The user rates a points of interest that was		
Description	previously	recommended to him.	
	The user	greets the chatbot or wants to see	
Trigger	past recor	past recommendations and has unrated rec-	
	ommendat	tions.	
Precondition	The user v	vas given a recommendation before	
Frecondition	that he ha	as not rated yet.	
	Step	Action	
		Chatbot asks how the user liked the	
	1	first unrated recommended point of	
		interest.	
	2	User chooses from mutually exclu-	
Flow of Events		sive rating buttons (e.g. 1 stars to 5	
Flow of Events		stars rating)	
	3	Chatbot: "Thanks for the rating!"	
	Step	Action	
Alternate Flow	-	-	
	The chatb	ot is in a state in which the user is	
	allowed to	type messages independently.	
Postcondition			
	The maximal radius for that user is saved and		
	used for the	ne next recommendations.	
Exceptions	Step	Action	
Exceptions	2	The user states he does not want to	
		rate the point of interest, so the use	
		case is aborted.	
Frequency of Use	Medium		
Importance	High		

Table B.3: UC-03 - Rate Recommendation

Use Case ID	e Case ID UC-04		
Use Case Name	Specify Recommendation Radius		
Description	The user sets the radius in which he wants the		
Description	recommen	ded points of interests to be in.	
	User enter	rs messages which is identified as a	
Trigger	distance intent by the natural language pro-		
Trigger	cessing platform (e.g. "I don't want to walk		
		"Let me set the distance")	
		oot is in a state in which the user	
Precondition		to type messages independently,	
1 recondition	_	hat the user does not conduct an-	
		lefined conversation.	
	Step	Action	
		Chatbot asks the user about his pre-	
	1	ferred maximal recommendation ra-	
		dius.	
	2	User answers with a positive nu-	
Flow of Events		meric value.	
	3	Chatbot repeats: "Fine, I set the	
		maximal radius to (repeat value)".	
	Step	Action	
Alternate Flow	-	-	
	The chatbot is in a state in which the user is		
	allowed to	type messages independently.	
Postcondition	TD1		
	The rating is saved in the ratings file and the		
	corresponding recommendation is marked as		
	rated.		
Exceptions	Step	Action	
	1	User doesn't answer with a positive	
		numeric value, so the chatbot asks	
	Т	again or aborts the use case.	
Frequency of Use	Low		
Importance	Medium		

Table B.4: UC-04 - Specify Recommendation Radius

Use Case ID	UC-05		
Use Case Name	Rate First Impression		
	When the	When the user is given a recommended point	
Description	of interest	, he is immediately asked of his first	
	impression	to refine future recommendations.	
Trigger	-		
Precondition	The user	has just received a recommended	
1 recondition	point of ir	nterest (see B.2)	
	Step	Action	
		Chatbot asks the user about his	
	1	first impression of the recommended	
		point of interest.	
Flow of Events		User chooses from mutually exclu-	
	3	sive buttons (e.g. "Sounds good!"	
		or "Don't like it").	
	Step	Action	
Alternate Flow	-	-	
	The chatbot is in a state in which the user is		
	allowed to type messages independently.		
Postcondition			
	The rating is saved in the ratings file and the		
	corresponding recommendation is marked as		
	rated.		
Exceptions	Step	Action	
r	1	User does not answer accordingly, so	
		the point of interest is discarded and	
		no rating is saved.	
Frequency of Use	High		
Importance	Medium		

Table B.5: UC-05 - Rate First Impression

Use Case ID	UC-06			
Use Case Name	Show Past Recommendations			
	The chatbot provides the user with informa-			
Description	tion abou	t the points of interests that were		
	recommen	ded to him previously.		
	The user	types in a message that is inter-		
Trigger	preted as	a "past recommendations" intent		
	by the lan	guage processing platform.		
	The chath	oot is in a state in which the user		
Precondition	is allowed	to type messages independently,		
Precondition	meaning t	that the user does not conduct an-		
	other pred	other predefined conversation.		
	Step	Action		
Flow of Events		The chatbot lists the past recom-		
r low of Events	1	mendations the user was interested		
		in.		
Alternate Flow	Step	Action		
Alternate Flow	2	When there are unrated items left,		
		the user is asked to rate a previously		
		recommended point of interest (see		
		B.3)		
Postcondition	The chatbot is in a state in which the user is			
1 Ostcollation	allowed to type messages independently.			
Exceptions	Step	Action		
Exceptions	1	There are no past recommendations		
		so far, so the user is told to ask for		
		a recommendation first in order to		
		use this feature.		
Frequency of Use	Medium			
Importance	Medium			

Table B.6: UC-06 - Show Past Recommendations

Use Case ID	UC-07		
Use Case Name	Help		
Description	The user	asks for help and gets an overview	
Description	of the cha	tbot features.	
	The user	types in a message that is inter-	
Trigger	preted as	a "help" intent by the language	
	processing	g platform.	
	The chath	oot is in a state in which the user	
Precondition	is allowed	to type messages independently,	
1 recondition	meaning that the user does not conduct an-		
	other predefined conversation.		
	Step	Action	
Flow of Events		The chatbot gives an overview of the	
I low of Livelius	1	chatbot features (rating, chatting,	
		recommendations).	
Alternate Flow	Step	Action	
THICH HAVE I TOW	-	-	
Postcondition	The chatbot is in a state in which the user is		
1 Ostcollation	allowed to type messages independently.		
Exceptions	Step	Action	
LACCPUOIS	-	-	
Frequency of Use	Low		
Importance	Low		

Table B.7: UC-07 - Help

Use Case ID	UC-08			
Use Case Name	Show User Information			
Description	The user is provided with the personal infor-			
Description	mation the chatbot has collected so far.			
	The user types in a message that is inter-			
Trigger	preted as a "show user information" intent			
	by the language processing platform.			
	The chatbot is in a state in which the user			
Precondition	is allowed to type messages independently,			
	meaning that the user does not conduct an-			
	other predefined conversation.			
Flow of Events	Step	Action		
	1	The chatbot shows the user his		
		stored interests and the current		
		specified recommendation radius.		
Alternate Flow	Step	Action		
	-	-		
Postcondition	The chatbot is in a state in which the user is			
	allowed to type messages independently.			
Exceptions	Step	Action		
	-	-		
Frequency of Use	Low			
Importance	Low			

Table B.8: UC-07 - Show User Information

Appendix ${\cal C}$

Especificación de diseño

- C.1 Introducción
- C.2 Diseño de datos
- C.3 Diseño procedimental
- C.4 Diseño arquitectónico

Appendix D

Technical Programming Documentation

D.1 Introduction

This section contains the technical programming documentation, describing the directory structure of the presented CD, an installation guide as well as a documentation of the realized tests to measure the code quality.

D.2 Directory Structure

This report is handed in along with a CD containing the essential data to examine the application in more depth. The presented CD contains the following directories:

Documentation Contains the project's documentation, saved as both .pdf and .doc format.

Software Contains the executables of the tools needed to run the virtual machine.

Application Contains all essential data of the developed software, subdivided in the following directories:

Virtual Machine The virtual machine image containing the infrastructure that was set up in the course of the project

Source Code The source code of the application

Javadoc The source code's documentation in Javadoc format.

Agent Contains the exported api.ai agent as .zip

Data Contains the raw geographic data and dumps of the initial database

D.3Developer Manual

This section serves as an installation guide describing which steps to take to set up the application.

Database Setup

The geographic database is used by the chatbot application to retrieve and manage geographical data. In this project, the database runs on a Virtual Machine using Ubuntu 16.0.4 LTS. Therefore, Ubuntu's terminal is used to install most of the software. In order to make sure Ubuntu has access to the current package index, it is advised to execute an update command before installing the software:

```
sudo apt-get update
```

Set up PostgreSQL and PostGis

The first step is to install the data management system, PostgreSQL. To install the version used in this project, the following command is used:

```
sudo apt-get install -y postgresql=9.5+173
   postgresql-contrib=9.5+173
```

Then, the database "touristdb" is created as well as the managing user, which is called "touristuser". The createuser command will prompt for a password which can be chosen by the developers.

```
sudo -u postgres createuser -P touristuser
sudo -u postgres createdb -owner touristuser touristDB
```

Now we have set up the database, the PostGIS extension is installed and added to prepare the database for geospatial data.

```
sudo apt-get install -y postgis
   postgresql-9.5-postgis-2.2
sudo -u postgres psql -c "CREATE_EXTENSION_postgis; _
  CREATE_EXTENSION_postgis_topology; "touristDB
```

The next step is optional, but seems convenient if the developers want to manage their database with the help of a user interface. The managing tool pgadmin facilates running and editing SQL queries and viewing the stored data.

sudo apt-get install pgadmin3

To access the database in pgadmin3, a connection to the server must be added, which can be realized by clicking the plug button in the upper toolbar and then entering the following values.

Figure D.1: pgadmin3: A server connection is added

In the object browser, the database schemas can be viewed accessing TouristChatbot -; databases -; touristDB.

Import Data into Database

Now that we have set up the database, it needs to be filled with geospatial data. In this project, the recommendations are based on test data of Barcelona. The required data is downloaded as a .pbf file from the website https://download.bbbike.org/osm/bbbike/Barcelona/. After that, the tool Osmosis is used to import the OSM data which can be installed using the following command:

sudo apt-get install osmosis

The next commands prepares the database for the osmosis import. It sets the hstore extension and the pgsnapshot database schema which causes that all relevant tag data are stored in a hstore column.

```
sudo -u postgres psql -c "CREATE_EXTENSION_hstore;"
   touristDB
psql -U touristuser -d touristDB -f
   /usr/share/doc/osmosis/examples/pgsnapshot_schema_0.6.sql
```

After that, the import itself is realized. Remember to execute this command in the folder where the downloaded .pbf file is situated and to add the corresponding password (which is set by the developer in the previous step of this manual).

```
osmosis --read-pbf file="Barcelona.osm.pbf"
   --write-pgsql host="localhost" database="touristDB"
   user="touristuser" password=password
```

In order to see if the import was successful, pgadmin3 can be used to take a look at the now imported data. Again, this step is optional. In the object browser on the left hand side of the user interface, the database tables can be viewed accessing $TouristChatbot \rightarrow databases \rightarrow touristDB \rightarrow Schemas \rightarrow$ $public \rightarrow Tables.$

Store User Information

In order to store information of the users or of the ratings they made, the existing users table must be modified. To do so, the following POSTGRESQL queries are executed so that new columns are added to our table. These modifcations can either be made using the psql command via bash or pgamin3's query tool.

```
alter table users add column recommendations bigint[];
alter table users add column unrated bigint[];
alter table users add column radius integer;
alter table users add column name;
```

The ratings are stored in a newly created table:

```
create table ratings (
userId bigint,
pointId bigint,
ratings integer,
PRIMARY KEY(userId, pointId))
```

Access to External Services

In the following, it is described how to set up and access the external services used in this project: To access the conversational interface, the messenger Telegram as well as our natural language parsing platform api.ai are used. Additionally, the FourSquare API is used to retrieve images for recommended Points of Interests.

Telegram Bot

The messenger Telegram is used to provide an interface to our tourist bot. After installing Telegram on a mobile device and setting up an account, the bot can be created using Telegram's BotFather. The Botfather can be accessed using the messenger's search function. After that, the creation of the bot is triggered by entering /newbot in the input field.

Figure D.2: The *Botfather* is used to create the Telegram Bot

After choosing a name and a username, the BotFather provides you with the authorization token for your bot. This authorization token is needed to access the Telegram bot from our web service. To do so, the token is saved as an environment variable (see System Environment Variables). After saving the token, the web service is able to receive updates from and send messages to the Telegram bot via a webhook.

api.ai agent

In order to use the NLU platform api.ai, we need to set up an account. After doing so, the api.ai agent modeling interface can be accessed. First, we need to create a new agent and enter an agent name.

Figure D.3: api.ai agent creation interface

If the creation is successful, the entered agent name will appear on the left sidebar. In order to access the agent from our web service, api.ai's HTTP API is used. Therefore, the agent's API key is needed which can be accessed by clicking on the gear icon right to the agent name. The client access token is be copied and, again, introduced into the system environment variables (see System Environment Variables).

To restore the agent created in the course of this project, a zip file containing the modeled agent can be found in the project's documents (Application/Agent). By clicking on the already mentioned gear icon right to the agent name, a subtab called "Export and Import" provides the possibility to import the agent from zip.

Foursquare

To retrieve images using the Foursquare API, a Foursquare account has to be created first. After that, the application has to be registered. If the registration is successful, the API access token can be found in the application overview. Again, these tokens are saved in the System Environment Variables).

Web Service Setup

Prerequisites

This project runs on Java 8 which is a requirement for the web service framework Java Spark as well as the used cloud service Heroku. The JDK can be downloaded from Oracle. Git is used to manage the project's source code as well as to deploy the code to the Platform as a Service application. In order to manage a Git repository, you have to sign up on GitHub and install Git using the following command.

```
sudo apt-get install git-all
```

On top of it, all libraries used during this project are included using the buildmanagement tool Apache Maven. This program is installed by executing the following command in Ubuntu's command line. Maven is also needed for deploying a Java application to Heroku.

```
sudo apt-get install maven
```

Deployment to Heroku

The web service is deployed using Heroku, a cloud Platform as a Service (PaaS). In order to use the application, an account has to be created previously, following https://signup.heroku.com. At first, the Heroku command line interface has to be installed. Using Ubuntu, this is achieved executing the following commands:

```
sudo add-apt-repository "deb_
   https://cli-assets.heroku.com/branches/stable/apt_./"
curl -L https://cli-assets.heroku.com/apt/release.key |
   sudo apt-key add -
sudo apt-get update
sudo apt-get install heroku
```

After installing the command line, execute the following command and enter the Heroku credentials when asked.

```
heroku login
```

In Ubuntu's file system, change into the project directory touristbot and execute the following command in order to create a Heroku app.

heroku create

As we can see, a random application name is assigned, in this case e.g. https://arcane-fjord-43759.herokuapp.com/. This name has to be copied and inserted as our HEROKU _ URL to the System Environment Variables). In doing so, the Telegram bot is hooked to the Heroku app later.

```
reating app... done, ● arcane-fjord-43759
ttps://arcane-fjord-43759.herokuapp.com/ | https://git.heroku.com/arcane-fjord
ouristchatbot@touristchatbot--virtualbox:~/tourist-chatbot$
```

Figure D.4: Heroku Web App Creation

The source code can be now deployed using the command:

```
git push heroku master
```

Heroku Postgres Setup

In order to access our geospatial database online, Heroku Postgres is used to set up a productive PostgreSQL database. The following commands are executed from the Heroku repository:

```
heroku addons:create heroku-postgresql:hobby-dev
```

After that, the psql command is used in Heroku to enable sending POST-GRESQL queries:

```
PGUSER=postgres heroku pg:psql
```

The following queries are executed to enable the PostGis support in the PostgreSQL database.

```
CREATE EXTENSION postgis;
CREATE EXTENSION hstore;
CREATE EXTENSION postgis_topology;
```

The touristdb that was set up in the Database Setup is then pushed to the just created database:

PGUSER=postgres heroku pg:push touristdb DATABASE_URL

System Environment Variables

In order to manage the access tokens of our external components and not push them publically into a repository, system environment variables are used. These are set differently according to whether tests are run locally on the virtual machine or the application runs productively in Heroku. To set the system environment variables locally, the file /etc/environment is modified to contain the following variables:

HEROKU_URL=INSERT HEROKU URL

DATABASE_URL="postgres://touristuser:password@localhost:5432/touristdb" TELEGRAM_TOKEN=INSERT_TELEGRAM_TOKEN API_AI_ACCESS_TOKEN=INSERT API.AI CLIENT ACCESS TOKEN F_CLIENT_ID=INSERT FOURSQUARE CLIENT ID F_CLIENT_SECRET=INSERT FOURSQUARE CLIENT SECRET

The placeholders are replaced with the respective tokens from the external services. Concerning the variable DATABASE _ URL, the POSTGRESQL password has to be entered that was set in the Database Setup). For the productive runtime environment, the bash is used to set the environment variables on Heroku, entering the following command:

heroku config:set TOKENPARAMETER=VALUE

This command's execution is repeated for all of the above mentioned tokens with the exception of the variable DATABASE _ URL as it is an already predefined environment variable.

Integrated Development Environment

The project is developed using Eclipse Neon as an IDE. The 64-bit installer can be downloaded from Eclipse's website. After installing Mayen and Eclipse, start Eclipse in order to import the source code. This can be easily done by importing a Maven project, executing $File \rightarrow Import \rightarrow Existing Maven$ *Projects* and then choosing the project's source folder.

The project's source code can now be accessed and modified using Eclipse. Additionally, Eclipse is used to run the Junit tests for this project.

D.4 Program Compilation, Installation and Execution

The presented application was designed for online usage and is deployed to the Platform as a Service Heroku. Therefore, no further compilation, installation or execution steps are needed as this is managed by the PaaS. Changes to the previous source code are published by using the Git workflow, meaning to commit the changes and then push them to Heroku using the command:

git push heroku master

D.5Tests

Tests were made during this project to ensure the project's quality. For this reason, several measures were taken to concentrate on different aspects of quality assurance.

Automation Testing using JUnit

Java's unit testing framework JUnit is used to design automated tests. Using JUnit, the test-driven development paradigm was applied in this project to ensure the code's correctness constantly during development. The tests can be found in the project folder tree navigating to src/test/java. The folder is subdivided into the packages bot, dataAccess, poiRecommendation which match the main components in the project. In this project, two different kinds of tests were designed:

Unit tests that concentrate on ensuring the proper functioning of the code on a class level.

Integration tests covering the essential use cases of the chatbot (including all of the system's relevant components and therefore demonstrating the proper interaction of the components). These integration tests can be found in the JUnit test class src/test/java/bot/TouristChatbotTest

The code coverage tool EclEmma is used to show how much of the source code is actually tested by the JUnit tests. EclEmma is integrated into the IDE Eclipse. The following results are obtained by executing all of the project's JUnit tests:

java (Jun 9, 2017 5:06:57 PM)							
Element	Coverage	Covered Instructions	Missed Instructions				
▼	80.0 %	5,220	1,304				
▼ 怹 src/main/java	80.0 %	5,220	1,304				
+ # chatbot	76.5 %	1,796	553				
• # model	77.4%	1,496	437				
+ # dataAccess	85.7 %	1,408	235				
• # recommender	86.8 %	520	79				

Figure D.5: Code Coverage Analysis Result

As we can see, 80 % of the productive source code is tested. The test coverage mainly centers on the proper functioning of the service classes of the chatbot, meaning the classes that provide important functionalities and are error prune due to their complex structure. On the other hand, model classes are not as extensively tested as most of them follow a simple design, providing only getter, setter and field-based equals implementations. Furthermore, classes using code from external libraries are not a focus of the tests as it is assumed that their proper functioning is ensured by the developers of the respective libraries (e.g. hooking the application to the Telegram bot by using a third party Telegram library).

Recommender Evaluation

To ensure that the computed recommendations of the chatbot are actually adjusted the users' preferences, an evaluation is made using the Mahout framework. The evaluation is limited to the user-based part of the recommender which is based on user ratings. The reason for this is that the content-based mechanism is used as a fallback that provides recommendation when the user data is too sparse for the user-based recommender to perform properly. In fact, the content-based mechanism is not really a recommender but rather a similarity measure. The proper functioning of this mechanism is tested using unit tests (see the JUnit test class RecommenderTest).

The actual recommender evaluation can be found in src/test/java/poiRecommendation/Recommender Evaluation. Mahout's Recommender IRS tats Evaluator is used which splits the available user data automatically into training and test sets. To evaluate the recommender performance, information retrieval metrics are computed. More precisely, the metrics precision and recall are examined as well as the F-Measure which is a harmonic mean of the other mentioned metrics [1].

$$Precision = \frac{|\text{relevant items retrieved}|}{|\text{items retrieved}|}$$
(D.1)

$$Recall = \frac{|\text{relevant items retrieved}|}{|\text{relevant items in collection}|}$$
 (D.2)

$$F - Measure = 2 * \frac{\text{precision} * \text{recall}}{\text{precision} + \text{recall}}$$
 (D.3)

During the recommender development, Mahout provides a variety of similarity and neighborhood functions to choose from. Depending on the applied functions, the recommender computes the similarity between two items differently and considers different items to be suitable for a similarity measure. Using the evaluation results, the combinations of the following similarity and neighborhood functions can be tested to determine which one of them performs best on the given data. The following table shows the f-measures of the 16 investigated combinations:

	Threshold User	Nearest 2 User	Nearest 5 User	Nearest 10 User
Euclidean Distance	0.5	0.4	0.5	0.5
Pearson Correlation	NaN	NaN	NaN	NaN
Loglikelihood	0.55	0.29	0.73	0.5
Spearman Correlation	NaN	NaN	NaN	NaN

Table D.1: F-Measures of the recommenders using different similarity and neighborhood functions

It quickly becomes clear that the Pearson Correlation Similarity and Spearman Correlation Similarity are not suitable for this recommender as they do not output valid performance results at all. A reason for this is that the applied user data is too sparse to achieve significant results using these similarity functions. The best f-measure is achieved by a recommender using Loglike-lihood Similarity and Nearest-5-User as neighborhood function. Examining this recommender's performance in detail, we see that it achieves a precision value of 0.8 and a recall of 0.67. As we can see, the precision value is higher than the recall value. The precision tells us the fraction of retrieved items that are relevant whereas the recall tells us the fraction of relevant items that are retrieved. In this project, the precision value is considered as more important than the recall value as the user has to be provided with recommendations that fit his interests. Yet, the fact that the user-based recommender may not find all possible recommendations for the user, is rather negligible as the

content-based mechanism is used as a fallback in this case. Also it is assumed that the overall performance of the recommender will rise with increasing data as more users use the chatbot (cold start problem of a recommender).

Appendix E

Documentación de usuario

- E.1 Introducción
- E.2 Requisitos de usuarios
- E.3 Instalación
- E.4 Manual del usuario

Bibliography

[1] C. J. van Rijsbergen. Information Retrieval. Butterworths, 1979.