Mutual Exclusions Insertion Formalisation

Quentin Nivon, Gwen Salaün

September 16, 2025

Based on the definitions of mutual exclusions presented in the paper, one can now add to G the mutually exclusive tasks not already belonging to it. The tasks not already belonging to G are $\overline{V} = \bigcup_{T \in S_T} \{v \in \mathtt{tasks}(T) \mid v \notin G\}$. To perform the insertion, we must consider the set of mutually

exclusive tasks of each task $t \in \overline{V}$, that is M_t . Let us then consider two possible cases: either (i) the set only contains tasks that do not belong to G, i.e., $M_t \cap V = \emptyset$, or (ii) the set contains at least one task belonging to G, i.e., $M_t \cap V \neq \emptyset$.

For case (i), the solution is rather simple: t and each task of M_t are added to the graph, without any connection, as initial nodes. By doing so, \mathcal{P}_G^0 now contains $|M_t| + 1$ new paths, containing each a single task of M_t , or t. By construction, there is no path of G containing both t and a task of M_t . Thus, they are mutually exclusive, as desired.

For case (ii), the solution is slightly more complex. Let us break M_t into two sets: the set of tasks already belonging to G called \widetilde{M}_t , and the set of tasks not belonging to G called \overline{M}_t . We have that $\widetilde{M}_t \cup \overline{M}_t = M_t$. A simple—yet naive—way of inserting t and the tasks belonging to \overline{M}_t into G would be to do just as in case (i), that is, adding them to G without any connection, as initial nodes. However, unlike in case (i), t is, by definition, constrained with regards to some tasks of the graph (the \widetilde{M}_t). Consequently, inserting these tasks as performed in case (i) would create many unspecified mutual exclusions. To avoid this, the proposed method consists in connecting t and the tasks belonging to \overline{M}_t to a particular node of G while preserving the existing mutual exclusions and limiting the number of unspecified mutual exclusions. This particular node is one of the closest inevitable common ancestors of the tasks belonging to \widetilde{M}_t , and of the mutually exclusive tasks of the tasks of \overline{M}_t already belonging to G.

Definition 1 (Closest Inevitable Common Ancestors). Let $G = (V, E, \Sigma)$ be a BPMN process. $\forall v_1, ..., v_n \in V$, the closest inevitable common ancestors of $(v_1, ..., v_n)$ are all the nodes $v_C \in V$ such that:

- $-\forall p_{v_C} = (v_C, v_b, ..., v_m) \in \mathcal{P}_G(v_C), \; \nexists j \in [b...m] \; such \; that \; v_j \; is \; a \; common \; ancestor \; of \; (v_1, ..., v_n) \; (closeness).$

Among the eventual multiple closest inevitable common ancestors, one of them is selected, and t and the tasks belonging to $\overline{M_t}$ are inserted to G as children of this ancestor. As desired, task t is now mutually exclusive of the tasks of M_t .

Proposition 1 (Validity of the Closest Inevitable Common Ancestors). Let $G = (V, E, \Sigma)$ be a BPMN process, let M_t be the set of mutually exclusive tasks of a task $t \in V^1$, let $\tilde{M}_t = M_t \cap V$, let $\overline{M}_t = M_t \setminus \tilde{M}_t$, and let V_C be the set of closest inevitable common ancestors of the tasks belonging to $\tilde{M}_t \cup \bigcup_{\overline{t} \in \overline{M}_t} \bigcup_{m \in G} \bigcup_{m$

¹One could take $t \notin V$ without changing the validity of the statement.

 $v_C \in V_C$ make t weakly mutually exclusive of the tasks M_t .

Proof. Let $G=(V, E, \Sigma)$ be a BPMN process, let M_t be the set of mutually exclusive tasks of a task $t \in V^2$, let $\tilde{M}_t = M_t \cap V$, let $\overline{M}_t = M_t \setminus \tilde{M}_t$, and let V_C be the set of closest inevitable common ancestors of the tasks belonging to $\tilde{M}_t \cup \bigcup_{\overline{t} \in \overline{M}_t} \bigcup_{m \in \mathtt{mutex}(\overline{t})}$. We will show that, $\forall v_C \in V_C$,

adding t and the tasks of \overline{M}_t as children of v_c make t weakly mutually exclusive of the tasks belonging to M_t .

Adding t and the tasks \overline{M}_t as children of v_C creates a BPMN process $G' = (V', E', \Sigma')$, where:

$$\begin{split} & - \ V' = V \ \cup \ \overline{M}_t \ \cup \ \{t\}; \\ & - \ E' = E \ \cup \ \bigcup_{\overline{t} \in \overline{M}_t} \{v_C \to \overline{t}\} \ \cup \ \{v_C \to t\}; \\ & - \ \Sigma' = \Sigma \ \cup \ \bigcup_{\overline{t} \in \overline{M}_t} \{\sigma(\overline{t})\} \ \cup \ \{\sigma(t)\}. \end{split}$$

Consequently, we have that

$$\widehat{\mathcal{P}}_{G'}^0 = \widehat{\mathcal{P}}_G^0 \cup \bigcup_{\overline{t} \in \overline{M_t}} \bigcup_{p \in \widehat{\mathcal{P}}_G^0} \{ (p[:v_C], \overline{t}) \mid v_C \in p \} \ \cup \ \bigcup_{p \in \widehat{\mathcal{P}}_G^0} \{ (p[:v_C], t) \mid v_C \in p \}$$

By construction, there is no $p \in \widehat{\mathcal{P}}_{G'}^0$ containing both t and a task $\overline{t} \in \overline{M_t}$. Moreover, by definition of v_C , we have that $\forall \tilde{t} \in \tilde{M}_t$, $\forall p \in \widehat{\mathcal{P}}_{G'}^0$, $\tilde{t} \in p \Rightarrow p = (v_1, ..., v_C, ..., \tilde{t}, ..., v_z)$. Thus, by construction of G', there is no $p \in \widehat{\mathcal{P}}_{G'}^0$ containing both t and a task $\tilde{t} \in \tilde{M}_t$. Consequently, t is weakly mutually exclusive of all $\tilde{t} \in \tilde{M}_t$, and of all $\bar{t} \in \overline{M_t}$, which corresponds to all the tasks of M_t .

Remark 1. It is worth mentioning that considering the closest inevitable common ancestor of (the barbarian expression) $\tilde{M}_t \cup \bigcup_{\overline{t} \in \overline{M_t}} \bigcup_{\substack{m \in \mathtt{muttex}(\overline{t}) \\ m \in G}} \cup_{\substack{i \in \overline{M_t} \\ m \in G}} \cup_{\substack{m \in C}} \cup_$

exclusions. Indeed, adding the tasks of $\overline{M_t}$ as children of the closest inevitable common ancestor of \tilde{M}_t only could potentially prevent a task $\bar{t} \in \overline{M_t}$ from being mutually exclusive of one of its mutually exclusive tasks, in the case where such a task is a predecessor of the closest inevitable common ancestor of \tilde{M}_t .

²One could take $t \notin V$ without changing the validity of the statement.