

Анализ и прогнозирование временных рядов с применением ARIMA и Holt-Winters

R

Понятие временного ряда

Временной ряд представляет собой последовательность наблюдений, сделанных через равные промежутки времени. Характеризуется наличием определенных закономерностей и используется в различных областях анализа данных и прогнозирования.

Основные элементы временных рядов

Сезонность

Устойчивая тенденция изменений данных

Регулярные колебания

Случайные, нерегулярные отклонения значений

Области применения временных рядов

Метеорология

Финансы

Производство и логистика

Маркетинг

Энергетика

Примеры применения временных рядов

Фондовый рынок

Анализ котировок акций для выявления трендов и прогнозирования будущих движений цен.

Энергопотребление

Отслеживание почасового и сезонного потребления электроэнергии для оптимизации ресурсов.

Метеорологич еские наблюдения

Прогнозирование погодных условий на основе исторических данных о температуре и осадках.

Розничные продажи

Выявление сезонности и планирование товарных запасов на основе исторических данных.

Особенности финансовых временных рядов

Высокая волатильность Наличие резких скачков

Сильное влияние внешних факторов

Аномалии

Значительная нестационарность

Простое и экспоненциальное сглаживание

Простое сглаживание

Усреднение значений за определенный период. Одинаковые веса для всех наблюдений в окне.

Больший вес недавним наблюдениям. Веса убывают экспоненциально с "возрастом" данных.

Применение

Уменьшает случайные колебания. Выявляет основной тренд в данных временного ряда.

Линейная регрессия:

О Суть метода:

Моделирование линейной зависимости между временем и значением ряда

Формула:

 $Y = a + b \times X$, где X - время, Y прогнозируемое значение

Преимущества:

Простота реализации и интерпретации результатов

Ограничения:

Предполагает линейную зависимость и постоянство тренда

Машинное обучение

Включают решающие деревья, случайные леса и градиентный бустинг.

Эффективны для сложных нелинейных временных рядов.

Автоматически выявляют скрытые закономерности в данных.

Требуют значительного объема обучающих данных.

Нейросети глубокого обучения

1 Многослойная архитектура:

Множество скрытых слоев между входом и выходом.

2 Автоматическое извлечение признаков:

Самостоятельно определяет важные характеристики данных.

3 Высокая вычислительная сложность:

Требует значительных ресурсов для обучения.

4 Применение:

Распознавание изображений, речи, обработка естественного языка.

Общая характеристика модели ARIMA ®

Модель ARIMA (авторегрессионная интегрированная модель скользящего среднего) используется для анализа и прогнозирования временных рядов, позволяя описать автокорреляцию данных и устранить нестационарность временного ряда.

Параметры модели ARIMA (p, d, q)

Порядок авторегрессии (р)

Использование предыдущих значений

Степень дифференцирования (d)

Устранение нестационарности

Порядок скользящего среднего (q)

Учёт предыдущих ошибок прогнозирования

Принцип выбора модели ARIMA

Критерий Акаике (AIC) используется для выбора лучшей модели ARIMA путем сравнения точности прогнозов и сложности модели.

Минимальное значение AIC указывает на оптимальную модель для данных.

Общая характеристика модели Holt-Winters

Метод Holt-Winters представляет собой экспоненциальное сглаживание, учитывающее уровень, тренд и сезонность данных. Он хорошо прогнозирует временные ряды с ярко выраженной сезонной и трендовой компонентой.

Holt-Winters filtering

Компоненты Holt-Winters

Параметры модели Holt-Winters

Параметр	Функция	Влияние
Alpha	Отвечает за сглаживание уровня	Влияет на точность прогноза
Beta	Управляет реакцией модели на тренд	Влияет на точность прогноза
Gamma	Регулирует влияние сезонности	Влияет на точность прогноза

Различия ARIMA и Holt-Winters

ARIMA

- Предпочтителен для данных с менее выраженной сезонностью
- Позволяет устранить нестационарность

Holt-Winters

- Предпочтителен при явной сезонности
- Эффективен при плавном долгосрочном тренде временного ряда

Особенности работы с временными рядами в RapidMiner

Визуализация

Настройка моделей

В Автоматизация анализа данных

Удобное взаимодействие с различными типами операторов

Этап предварительной обработки В данных

Загрузка данных

Проверка на пропуски и ошибки

Установка корректных типов данных

Определение целевых и временных атрибутов

Предварительный просмотр и подготовка данных

На этапе импорта данных в RapidMiner можно просмотреть выгруженные данные. Например, в рассматриваемом датасете два столбца: дата торгов и числовые значения цены.

Установка ролей атрибутов

B RapidMiner важно правильно задать роли атрибутам:

Временная метка

Обозначается как «metadata»

Целевая переменная

Определяется как «label»

Корректная установка ролей гарантирует точность модели и надежность полученных результатов прогнозирования.

Настройка оператора ARIMA в RapidMiner

Выбор атрибута прогнозирования

Порядок авторегрессии (р)

Интегрирование

Критерий отбора оптимальной модели

Скользящее среднее (q)

(d)

Parameters ×			
™ ARIMA			
time series attribute		Price Close ▼	1
has indices			(i)
p: order of the autoregressiv	re model	1	1
d: degree of differencing		0	i
q: order of the moving-avera	ge model	1	1
✓ estimate constant			i
main criterion		aic •	1
error handling		use default forecast ▼	1
Show advanced parame	<u>eters</u>		

Настройка оператора Holt-Winters в RapidMiner

Hастройки Holt-Winters включают выбор параметров сглаживания:

- Alpha (α) Уровень
- **Beta** (β) Тренд
- Gamma (у) Сезонность

Также задается период и тип сезонности.

Формирование прогноза в RapidMiner ® (Apply Forecast)

Прогнозирование будущих значений

≤ Сравнительный анализ

Оператор позволяет прогнозировать значения на несколько шагов вперед с заданным горизонтом прогнозирования

Отображение прогнозируемых данных вместе с реальными значениями для удобного визуального сравнения

Визуализация прогнозируемых результатов

RapidMiner предоставляет удобные инструменты визуализации результатов прогнозирования. Вкладка Visualizations помогает графически сравнить реальные и прогнозируемые данные для оценки точности.

Оценка и интерпретация точности прогнозов

Точность прогнозирования оценивается путем сравнения предсказанных значений с реальными.

Анализ графиков позволяет выявить отклонения, тренды и динамику прогнозных данных относительно реальных значений.

Преимущества и ограничения ARIMA и **® Holt-Winters**

Преимущества методов

Эффективный учет трендов и сезонности, простота реализации.

Ограничения

Чувствительность к шумам и необходимость точного подбора параметров для конкретных данных.

Направления совершенствования прогнозировая

Применение гибридных моделей, совмещающих преимущества нескольких методов (например, ARIMA, Holt-Winters и нейросети)

Учитывание дополнительных факторов и данных.

