

Colles de Mathématiques

GUILLAUME DALLE

2016-2017

Table des matières

Ι	Algèbre	2
1	Structures algébriques	2
2	Arithmétique des entiers	5
3	Polynômes et fractions rationnelles	7
4	Espaces vectoriels, dimension	8
5	Applications linéaires	10
6	Matrices	13
7	Groupe symétrique et déterminants	15
8	Espaces préhilbertiens réels, isométries	18
ΙΙ	Analyse	20
9	Etude de fonctions, fonctions usuelles	20
10	Calcul intégral, équations différentielles	21
11	Suites numériques	25
12	Limites, études locales ou asymptotiques	29
13	Continuité	30
14	Dérivabilité	32
15	Approximations polynômiales	34
16	Intégrale de Riemann	36
17	Séries numériques	38
III	Probabilités	40
	Dénombrement	40
	Espaces probabilisés	42
	Variables aléatoires	44
IV	Fondements	46
21	Logique et ensembles	46
22	Applications et relations	47
23	Sommes et calculs algébriques	49
24	Rationnels et réels	51
25	Nombres complexes, trigonométrie	53

Algèbre

1. Structures algébriques

Exercice 1.1:

Soit G =]-1,1[muni de la loi \land définie p ar $\forall (x,y) \in G^2, x \land y = \frac{x+y}{1+xy}$. Montrer que (G,\land) est un groupe abélien.

Exercice 1.2:

Soit E un ensemble muni d'une loi de composition interne \star associative. Pour tout $a \in E$ on définit les applications g_a et d_a de E dans lui-même par : $\forall x \in E, g_a(x) = a \star x$ et $d_a(x) = x \star a$.

- 1. Montrer que s'il existe $a \in E$ tel que g_a et d_a soient surjectives, alors E possède un élément neutre.
- 2. Montrer que si pour tout $a \in E$, g_a et d_a sont surjectives, alors tout élément de E admet un inverse.

Exercice 1.3:

Soit E un ensemble fini muni d'une loi de composition interne \star associative. Montrer l'existence de $x \in E$ tel que $x \star x = x$.

Indication 1.3:

Considérer la suite définie par $x_1 = x \in E$ et $x_{n+1} = x_n \star x_n$.

Exercice 1.4:

Soient E et F deux ensembles, on considère l'ensemble G des fonctions de E vers F, que l'on munit de la loi \circ . S'agit-il d'un groupe? Quels sont les éléments réguliers à gauche? A droite?

Exercice 1.5:

Soit p un nombre premier. On note $\mathcal{G} = \{z \in \mathbb{C}, \exists n \in \mathbb{N}, z^{p^n} = 1\}$. Montrer que \mathcal{G} est un sous-groupe de (\mathbb{C}, \times) . A quoi ressemblent ses sous-groupes?

Indication 1.5:

Soit H un sous-groupe de G. Soit $A = \{n \in \mathbb{N}, \mathbb{U}_{p^n} \subset G\}.$

- Si A est infini, montrons que A = G.
- Si A est fini, soit $N = \max A$: montrons que $A = \mathbb{U}_{p^N}$ En effet, si $\exists z \in A \cap (\mathbb{U}_{p^M} \setminus \mathbb{U}_{p^N})$ avec M > N, on obtient une contradiction car $\mathbb{U}_{p^{N+1}} \subset A$.

Exercice 1.6:

Montrer que les groupes $(\mathbb{Z},+)$, $(\mathbb{Q},+)$ et (\mathbb{Q}^*,\times) sont non isomorphes deux à deux.

Exercice 1.7:

Montrer qu'un groupe est fini si et seulement si il n'admet qu'un nombre fini de sous-groupes.

Indication 1.7:

Soit G un groupe avec un nombre fini de sous-groupes. Si $x \in G$, $\langle x \rangle = \{x^k, k \in \mathbb{Z}\}$ est fini, sans quoi il serait isomorphe à \mathbb{Z} avec une infinité de sous-groupes. Et $G = \bigcup_{n \in \mathbb{Z}} \langle x \rangle$ d'où le résultat.

Exercice 1.8:

Montrer qu'un groupe ne possédant aucun sous-groupe propre est fini et que son ordre est premier.

Indication 1.8:

Considérer le sous-groupe engendré par un élément.

Exercice 1.9:

Soit $j = e^{\frac{2i\pi}{3}}$. Dessiner d'abord le sous groupe de $(\mathbb{C}, +)$ engendré par (i, j) puis le sous-groupe de (\mathbb{C}^*, \times) engendré par (i, j).

Exercice 1.10:

Soit G un groupe fini (multiplicatif) de cardinal pair. En considérant $E = \{x \in G, x^2 \neq e\}$, prouver l'existence de $y \in G \setminus \{e\}$ vérifiant $y^2 = e$.

Exercice 1.11:

Soit G un groupe fini dont l'ensemble des automorphismes est trivial.

- 1. Montrer que G est abélien.
- 2. Montrer qu'on peut munir G d'une structure d'espace vectoriel sur \mathbb{F}_2 .
- 3. En déduire que G est isomorphe au groupe trivial ou à \mathbb{F}_2 .

Exercice 1.12:

Soient H et K deux groupes finis.

- 1. Montrer que si h et k sont des éléments de H et K d'ordres respectifs q et p, alors (h,k) est d'ordre $\operatorname{ppcm}(q,p)$ dans $H\times K$.
- 2. Supposons H et K cycliques. Montrer que $H \times K$ est cyclique ssi p et q sont premiers entre eux.

Exercice 1.13:

Soient A et B deux parties d'un groupe fini G telles que |A| + |B| > |G|. Montrer que AB = G.

Exercice 1.14:

Soit G un groupe fini non abélien, on note $Z = \{x \in G, \forall y \in G, xy = yx\}$ et $C = \{(x, y) \in G^2, xy = yx\}$.

- 1. Soit H un sous-groupe de G. On définit la relation \sim_H sur G par $x \sim_H y \iff xy^{-1} \in H$. Montrer qu'il s'agit d'une relation d'équivalence. En déduire le théorème de Lagrange : |H| divise |G|.
- 2. On tire au hasard un élément de G. Montrer que la probabilité qu'il appartienne à Z est inférieure à 1/4.
- 3. On tire au hasard deux éléments de G. Montrer que la probabilité qu'ils commutent est inférieure à 5/8.

Exercice 1.15:

Soit G un groupe. On dit que H est un sous-groupe distingué si $\forall h \in H, \forall a \in G, aha^{-1} \in H$.

- 1. Montrer que le noyau d'un morphisme de groupes au départ de G est distingué.
- 2. Soient H, K deux ssg de G. On suppose H distingué. Montrer que HK est un sous-groupe de G.

Exercice 1.16:

Lagrange commutatif.

Exercice 1.17:

Soit $f: G \to H$ morphisme de groupes, avec G fini. Montrer que $|\operatorname{Ker} f| \cdot |\operatorname{Im} f| = |G|$.

Exercice 1.18:

Sous-groupes finis de (\mathbb{C}^*, \times)

Exercice 1.19:

Soit G un groupe fini (multiplicatif) dans lequel tout élément x vérifie $x^2 = e$.

- 1. Montrer que G est commutatif.
- 2. On fixe un élément a de G différent du neutre. Pour tout $x \in G$ on pose $\overline{x} = \{x, ax\}$. On définit sur G la relation \mathcal{R} par $x\mathcal{R}y \iff y \in \overline{x}$. Montrer que \mathcal{R} est une relation d'équivalence.
- 3. On note $H = \{\overline{x}, x \in G\}$ l'ensemble des classes d'équivalence sous \mathcal{R} . Quel est le cardinal de H?
- 4. Montrer qu'on définit une loi de groupe sur H en posant $\overline{x} \star \overline{y} = \overline{xy}$. Montrer que H muni de cette loi vérifie la même propriété que G.
- 5. Conclure que le cardinal de G est une puissance de 2.

Exercice 1.20:

Soit E un ensemble. Ici Δ désigne la différence symétrique : $A\Delta B = (A \cup B) \setminus (A \cap B)$.

- 1. Montrer que $(\mathfrak{P}(E), \Delta, \cap)$ est un anneau commutatif. Est-ce un corps?
- 2. Soit I un idéal de A. Montrer que $\forall X \in I, \forall Y \subset X, Y \in I$ et $\forall X, Y \in I, X \cup Y \in I$.
- 3. En déduire que $I = \mathfrak{P}(E')$ avec $E' \subset E$.
- 4. Etudier la réciproque dans le cas où E est fini.
- 5. Dans le cas où E est infini, soit $I = \{\text{parties finies de } E\}$. Montrer que I est un idéal qui n'est pas de cette forme là.

Exercice 1.21:

Montrer qu'un anneau commutatif intègre et fini est un corps.

Indication 1.21:

Soit $a \in A$: pour trouver son inverse, prouver la surjectivité de l'application $x \in A \mapsto ax$ via son injectivité.

Exercice 1.22:

Soit A un anneau commutatif dont les idéaux I vérifient : $\forall (x,y) \in A^2, xy \in I \implies x \in I$ ou $y \in I$. Montrer que A est intègre, puis que $x \in x^2A$ pour tout $x \in A$. En déduire que A est un corps.

Exercice 1.23:

Soit ψ un morphisme de corps de $\mathbb R$ dans lui-même.

- 1. Montrer que $\psi_{|\mathbb{Q}} = \mathrm{id}_{\mathbb{Q}}$.
- 2. Montrer que ψ est croissant sur \mathbb{R} .
- 3. En déduire que $\psi = id_{\mathbb{R}}$.

Exercice 1.24:

Soit $\mathfrak F$ l'ensemble des fonctions de $\mathbb N^*$ dans $\mathbb C$.

Pour deux fonctions $(a,b) \in \mathfrak{F}^2$ on définit $(a \star b)$ par :

$$\forall n \in \mathbb{N}^*, \quad (a \star b)(n) = \sum_{d|n} a(d)b\left(\frac{n}{d}\right)$$

- 1. Montrer que $(\mathfrak{F}, +, \star)$ est un anneau commutatif. Quel est son élément nul?
- 2. Montrer que $a \in \mathfrak{F}$ est inversible si et seulement si $a(1) \neq 0$.
- 3. On définit la fonction μ de Möbius par :

$$\mu(n) = \begin{cases} 1 \text{ si } n = 1\\ (-1)^k \text{ si } n = p_1...p_k \text{ avec } p_1,...,p_k \text{ des nombres premiers distincts} \\ 0 \text{ sinon} \end{cases}$$

Calculer $\mu \star 1$ où 1 est la fonction constante égale à 1.

4. Soient f,g deux éléments de \mathfrak{F} . On suppose que :

$$\forall n \in \mathbb{N}, \quad f(n) = \sum_{d|n} g(d)$$

Exprimer g en fonction de f par une formule similaire.

2. Arithmétique des entiers

Exercice 2.1:

Notons d_n le nombre de diviseurs positifs de l'entier n. Montrer que $\sum_{k=1}^n d_k = \sum_{p=1}^n \left\lfloor \frac{n}{p} \right\rfloor$.

Exercice 2.2:

Montrer que si a et b sont deux entiers premiers entre eux, il en va de même des entiers a + b et ab.

Exercice 2.3:

Soit p un nombre premier ≥ 5 . Montrer que $p^2 - 1$ est divisible par 24.

Exercice 2.4:

On divise un cercle en n arcs égaux et on joint les points de division de p en p jusqu'à ce qu'on revienne au point de départ. Quel est le nombre de côtés du polygone construit?

Exercice 2.5:

Soit $n=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$. Calculer le nombre de diviseurs de n, noté d_n , puis les quantités $P_n=\prod_{d\mid n}d$ et $S_n=\sum_{d\mid n}d$

Indication 2.5:

$$d_n = (\alpha_1 + 1) \cdots (\alpha_k + 1), \ P_n = \sqrt{n}^{d_n} \ et \ S_n = \prod_{i=1}^k \frac{p_i^{\alpha_i + 1} - 1}{p_i - 1}$$

Exercice 2.6:

Soient $n, a, b \in \mathbb{N}^*$. Montrer que $(n^a - 1) \wedge (n^b - 1) = n^{a \wedge b} - 1$.

Exercice 2.7:

On note φ l'indicatrice d'Euler, définie par : $\varphi(n) = \operatorname{card}\{k \in [\![1,n]\!], k \wedge n = 1\}$. En partitionnant le groupe $\mathbb{Z}/n\mathbb{Z}$ selon les ordres de ses éléments, prouver la formule : $\sum_{d|n} \varphi(d) = n$.

Exercice 2.8:

Résoudre dans \mathbb{Z} l'équation $x \wedge y = x + y - 1$.

Exercice 2.9:

Résoudre, avec $(m, n) \in \mathbb{N}^*$, l'équation $n^m = m^n$.

Exercice 2.10:

Montrer que dans n'importe quelle base de numération, un nombre formé d'un système différent de "1" répété au moins deux fois ne peut pas être premier.

Exercice 2.11:

- 1. Soit p un entier premier. Montrer que $(p-1)! \equiv -1$ [p].
- 2. Soit n un entier non premier. Calculer le reste dans la division euclidienne de (n-1)! par n.

Exercice 2.12:

Soient a et b des entiers non nuls. Montrer que si $a^n + b^n$ est un nombre premier, alors n est une puissance de 2.

Exercice 2.13:

Montrer qu'il n'existe pas de couple (x, y) d'entiers non nuls tels que $y^2 = x(x+1)(x+2)$.

Exercice 2.14:

Soient $a_1, ..., a_n$ des entiers naturels non nuls, et pour $i \in [1, n]$ soit $b_i = \prod_{i \neq i} a_i$.

Montrer que :
$$(a_1 \vee \cdots \vee a_n)(b_1 \wedge \cdots \wedge b_n) = (a_1 \wedge \cdots \wedge a_n)(b_1 \vee \cdots \vee b_n) = \prod_{i=1}^n a_i$$

Exercice 2.15:

Soit A une partie de [1, 2n] de cardinal n + 1. Montrer que A contient deux entiers a et b premiers entre eux.

Exercice 2.16:

Soient a, b deux entiers premiers entre eux.

- 1. Montrer que ab a b n'est pas de la forme au + bv avec $(u, v) \in \mathbb{N}^2$.
- 2. Montrer que tous les entiers n > ab a b + 1 sont de cette forme.
- 3. Montrer que si $n \le ab a b$ s'écrit de cette façon, alors sa décomposition est unique. Trouver le nombre d'entiers n qui ne s'écrivent pas de cette façon.

Exercice 2.17:

On note \mathcal{P} l'ensemble des nombres premiers, et pour tout entier $n \geq 1$ on définit $\pi(n)$ comme le cardinal de $\mathcal{P} \cap [\![1,n]\!]$.. On veut obtenir une minoration de $\pi(n)$.

- 1. On note $m_n = \text{ppcm}(1, 2, ..., n)$ et $\alpha(p)$ l'exposant du nombre premier p dans la décomposition de m_n .
 - (a) Montrer que $p^{\alpha} \leq n < p^{\alpha+1}$.
 - (b) En déduire que $m_n = \prod_{p \in \mathcal{P}, p \le n} p^{\left\lfloor \frac{\ln m_n}{\ln p} \right\rfloor}$.
 - (c) Conclure que $\pi(n) \ge \frac{\ln(m_n)}{\ln(n)}$.
- 2. On cherche maintenant une minoration de m_n . Considérons $I_n = \int_0^1 t^n (1-t)^n dt$ pour $n \in \mathbb{N}$.
 - (a) Montrer que $I_n = \sum_{k=0}^{n} \frac{(-1)^k}{n+k+1} \binom{n}{k}$.
 - (b) En déduire que $\frac{1}{m_{2n+1}} \leq I_n$.
 - (c) Montrer que $I_n \leq \frac{1}{4^n}$, en déduire $m_n \geq 2^{2n-2}$.
- 3. Montrer l'inégalité suivante : $\pi(n) \ge \ln(2) \frac{n-2}{\ln(n)}$.

3. Polynômes et fractions rationnelles

Exercice 3.1:

Soient $n \in \mathbb{N}^*$ et A_n l'ensemble des solutions de l'inéquation $\sum_{k=1}^n \frac{k}{x-k} \ge 1$. Montrer que A_n est une réunion finie d'intervalles disjoints. Caculer sa longueur totale.

Exercice 3.2:

Soit $P \in \mathbb{R}[X]$ simplement scindé sur \mathbb{R} .

- 1. Montrer que toutes ses dérivées sont également simplement scindées sur \mathbb{R} .
- 2. Montrer que P ne peut pas avoir deux coefficients consécutifs nuls.

Exercice 3.3:

Déterminer les polynômes $P \in \mathbb{C}[X]$ vérifiant $P(X^2) = P(X)P(X+1)$.

Exercice 3.4:

Soit $A \in \mathbb{R}[X]$ non constant. Montrer que pour tout polynôme P, il existe un unique entier k et une unique famille de polynômes $(P_0, ..., P_k)$ telle que $\forall i \in [0, k]$, deg $P_i < \deg A$ et $P = P_0 + P_1A + ... + P_nA^n$.

Exercice 3.5:

Trouver un polynôme P_n tel que $P_n - P'_n = X^n$

Exercice 3.6:

Trouver les polynômes $P \in \mathbb{C}[X]$ vérifiant $P(\mathbb{U}) \subset \mathbb{U}$.

Exercice 3.7:

Soit $P \in \mathbb{R}[X]$: montrer l'équivalence entre :

- i) $\forall x \in \mathbb{R}, P(x) \ge 0$
- ii) $\exists A, B \in \mathbb{R}[X], P = A^2 + B^2$

Commencer pour cela par les polynômes irréductibles, puis montrer la stabilité de la seconde propriété par produit.

Exercice 3.8:

Soit E_n l'ensemble des polynômes unitaires de degré n à coefficients dans \mathbb{Z} et à racines de module 1. Montrer que E_n est fini et donner une majoration de son cardinal.

Exercice 3.9:

Soit $P \in \mathbb{Q}[X]$ un polynôme de degré n.

- 1. Montrer que si P est irréductible dans $\mathbb Q$ alors il n'a que des racines simples dans $\mathbb C.$
- 2. Soit λ une racine de P, de multiplicité > n/2. Montrer que $\lambda \in \mathbb{Q}$.

Exercice 3.10:

Résoudre le système d'équations suivant :
$$\begin{cases} x+y+z=1\\ x^2+y^2+z^2=9\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1 \end{cases}$$

Exercice 3.11:

Montrer que le polynôme P(X) - X divise le polynôme P(P(X)) - X.

Exercice 3.12:

Soient P, Q deux éléments de $\mathbb{Z}[X]$ sans racine complexe commune. On définit pour tout entier $n \in \mathbb{Z}z$, $u_n = P(n) \wedge Q(n)$. Montrer que cette suite est périodique.

Exercice 3.13:

Déterminer le résultat de la division euclidienne de $(X\cos t + \sin t)^n$ par $X^2 + 1$.

Exercice 3.14:

Factoriser
$$P_n = \sum_{k=0}^n X^k$$
. En déduire la valeur de $\prod_{k=1}^{n+1} \sin\left(\frac{k\pi}{n+1}\right)$.

Exercice 3.15:

Soit
$$P = \sum_{k=0}^{n} a_k X^k$$
 avec $a_n = 1$. Montrer que si χ est une racine de P , alors $|\chi| \le 1 + \max_{0 \le k \le n-1} |a_k|$.

Exercice 3.16:

Soit
$$f: x \mapsto \frac{1}{\cos x}$$
. Montrer qu'il existe des polynômes P_n tels que $\forall n, f^{(n)}(x) = \frac{P_n(\sin x)}{(\cos x)^{n+1}}$

Exercice 3.17:

Soit
$$P \in \mathbb{R}[X]$$
 simplement scindé sur \mathbb{R} , on note ses racines $x_1, ..., x_n$. Calculer $\sum_{i=1}^n \frac{P''(x_i)}{P'(x_i)}$

Exercice 3.18:

Soit $F \in \mathbb{C}(X)$. On suppose qu'existe $n \in \mathbb{N}^*$ tel que $F(e^{\frac{2i\pi}{n}}X) = F(X)$. Montrer l'existence de $G \in \mathbb{C}(X)$ telle que $F(X) = G(X^n)$.

Exercice 3.19:

Montrer que pour tout $n \in \mathbb{N}^*$, il existe un unique polynôme P_n vérifiant $X^n + \frac{1}{X^n} = P_n \left(X + \frac{1}{X} \right)$. Décomposer la fraction $\frac{1}{P_n}$ en éléments simples dans $\mathbb{C}(X)$.

Exercice 3.20:

Soit $P \in \mathbb{C}[X]$ et $z \in \mathbb{C}$ une racine de P'. Montrer qu'il existe $\lambda_1, ..., \lambda_k$ des réels positifs et $z_1, ..., z_k$ des racines de P vérifiant :

$$z = \sum_{i=1}^{k} \lambda_i z_i$$
 et $\sum_{i=1}^{k} \lambda_i = 1$

Exercice 3.21:

Soit $F \in \mathbb{C}(X)$: F est-elle surjective?

4. Espaces vectoriels, dimension

Exercice 4.1:

Parmi ces ensembles, quels sont ceux qui sont des sous-espaces vectoriels de l'ensemble des fonctions réelles $\mathcal{F}(\mathbb{R},\mathbb{R})$?

- les fonctions bornées
- les fonctions monotones
- les fonctions s'annulant en 0
- les fonctions impaires
- les fonctions paires
- les fonctions convergentes en $+\infty$
- les fonctions affines

Exercice 4.2:

Soient F, G, H trois sous-espaces vectoriels. Comparer:

- 1. $F + (G \cap H)$ et $(F + G) \cap (F + H)$
- 2. vice-versa

Exercice 4.3:

Soient $F = \{ f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}), f(0) = f'(0) = 0 \}$ et $G = \{ f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}), \forall x \in \mathbb{R}, f''(x) = 0 \}$. Montrer que F et G sont supplémentaires.

Exercice 4.4:

Même exercice avec $F = \{(x_1, ..., x_n) \in \mathbb{R}^n, x_1 + ... + x_n = 0\}$ et $G = \{(x_1, ..., x_n) \in \mathbb{R}^n, x_1 = ... = x_n\}$

Exercice 4.5:

Trouver un supplémentaire de $\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}), f(0) + f(1) = 0\}$ dans $\mathcal{F}(\mathbb{R}, Rr)$.

Exercice 4.6:

Soit $0 = x_0 < x_1 < ... < x_{n-1} < x_n = 1$ une subdivision de [0,1] et A l'ensemble des fonctions $f:[0,1] \to \mathbb{R}$ continues et telles que $\forall i \in [0,n-1]$, $f_{|[x_i,x_{i+1}]}$ soit affine. Montrer que A est de dimension finie et en déterminer une base.

Exercice 4.7:

Montrer qu'un sev de $\mathbb{R}^{\mathbb{R}}$ ne contenant que des applications de signe constant est de dimension ≤ 1 .

Exercice 4.8:

Soit $(e_1, ..., e_p)$ une famille libre de vecteurs de E, et $a \notin \text{vect}(e_1, ..., e_p)$. Montrer que $(e_1 + a, ..., e_p + a)$ est libre.

Exercice 4.9:

Montrer que la famille $(f_a: x \mapsto |x-a|)_{a \in \mathbb{R}}$ est libre dans $\mathcal{F}(\mathbb{R}, Rr)$.

Exercice 4.10:

On dit qu'une matrice $A = (a_{i,j})$ de $\mathcal{M}_n(\mathbb{R})$ est centrosymétrique si $\forall (i,j) \in [\![1,n]\!]^2$, $a_{i,j} = a_{n+1-i,n+1-j}$. Montrer que l'ensemble des matrices centrosymétriques est un sev de $\mathcal{M}_n(\mathbb{R})$, en déterminer la dimension et une base.

Exercice 4.11:

Soient H et K deux sev de E de dim finie. Montrer que H et K sont de même dimension ssi ils ont un supplémentaire commun (par récurrence sur la codimension).

Exercice 4.12:

Soit $E = \mathbb{R}_n[X]$ et $P \in E$. On note $F_P = P\mathbb{R}[X] \cap E$.

1. Montrer que \mathcal{F}_P est un sev de E, déterminer sa dimension.

2. Soit $Q \in E$ un polynôme sans racine commune avec P, et tel que $\deg P + \deg Q = n + 1$. Montrer que $F_P \oplus F_Q = E$.

3. En déduire l'existence de deux polynômes U et V tels que UP + VQ = 1.

Exercice 4.13:

Soit $f: \mathbb{R} \to \mathbb{R}$. On définit l'epace vectoriel $E_f = \text{Vect}\{f_t: x \mapsto f(x+t), t \in \mathbb{R}\}$. Déterminer E_f et sa dimension pour f définie successivement par $f(x) = e^x$, $f(x) = \sin(x)$, $f(x) = x^2$, $f(x) = xe^x$. Montrer que si $f(x) = e^{x^2}$, E_f est de dimension infinie.

Exercice 4.14:

Pour toute fonction $f: \mathbb{R} \to \mathbb{R}$ on définit $\sigma_a^b(f) = \sup \left\{ \sum_{i=0}^{n-1} |f(x_{i+1}) - f(x_i)| \right\}$, où le sup est pris sur toutes les subdivisions $a = x_0 < x_1 < \dots < x_{n_1} < x_n = b$.

- 1. Montrer que $b \mapsto \sigma_a^b(f)$ et $b \mapsto \sigma_a^b(f) f(b)$ sont des fonctions croissantes.
- 2. En déduire que l'ensemble des fonctions pour lesquelles $\sigma_a^b(f)$ est fini quels que soient a et b (fonctions à variations bornées) est exactement l'espace vectoriel engendré par les fonctions croissantes.

Exercice 4.15:

Soit (f_n) la suite de fonctions définie par $\forall x \in \mathbb{R}, f_0(x) = x$ et $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f_{n+1}(x) = \ln f(x)$. Montrer que cette famille est libre.

Exercice 4.16:

Soient $a_1, ..., a_n$ des réels non nuls 2 à 2 distincts. On note F_j l'application de $\mathbb{R}_n[X]$ dans \mathbb{R} définie par $F_j(P) = \int_0^{a_j} P(t)dt$. Montrer que $(F_0, ..., F_n)$ est une base de $(\mathbb{R}_n[X])^*$.

Exercice 4.17:

 \mathbb{R} est-il un \mathbb{Q} -espace vectoriel de dimension finie? On pourra étudier la famille $\{\ln(p), p \in \mathcal{P}\}$ ou bien les puissances successives d'un réel transcendant, dont on prouvera auparavant l'existence.

Exercice 4.18:

Soit E un \mathbb{R} -ev de dimension finie n. On dit qu'une famille $(x_1,...,x_n)$ est positivement génératrice si $E = \left\{ \sum_{k=1}^n \lambda_k x_k, (\lambda_1,...,\lambda_n) \in \mathbb{R}^n_+ \right\}$. Quel est le cardinal minimal d'une famille positivement génératrice?

Exercice 4.19:

Soient $(E_i)_{i \in [\![1,n]\!]}$ et $(F_i)_{i \in [\![1,n]\!]}$ des sous-espaces vectoriels de E tels que $\forall i, E_i \subset F_i$ et vérifiant

$$\bigoplus_{i=1}^{n} E_i = \bigoplus_{i=1}^{n} F_i$$

Montrer que $\forall i, E_i = F_i$.

Exercice 4.20:

Soit $(u_1, ..., u_n)$ une famille de vecteurs, $v_i = u_1 + ... + u_i$. Montrer que la famille u est libre (resp. génératrice) ssi v l'est aussi.

5. Applications linéaires

Exercice 5.1:

Soient E, F 2 ev, $f \in \mathcal{L}(E, F)$ et A, B deux sev de E. Montrer que $f(A) \subset f(B) \implies A + \text{Ker } f \subset B + \text{Ker } f$.

Exercice 5.2:

Soit $u \in \mathcal{L}(E)$ et F un sev de E. Exprimer $u(u^{-1}(F))$ et $u^{-1}(u(F))$ en fonction de F, Ker u et Im u.

Exercice 5.3:

Soit $f \in \mathcal{L}(E)$ tel que $f^2 - 3f + 2id = 0$. Montrer que f est inversible. Montrer que $E = \text{Ker } (f - id) \oplus \text{Ker } (f - 2id)$.

Exercice 5.4:

Soit E un \mathbb{K} -ev et $f, g \in \mathcal{L}(E)$ tels que $f \circ g = \mathrm{id}$. Montrer que $g \circ f$ est une projection, déterminer son noyau et son image.

Exercice 5.5:

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ tel que $f^2 = 0$. Montrer qu'il existe une forme linéaire $\phi \in (\mathbb{R}^3)^*$ et un vecteur $a \in \mathbb{R}^3$ tels que $\forall x \in \mathbb{R}^3$, $f(x) = \phi(x)a$.

Exercice 5.6:

Soit $f \in \mathcal{L}(E)$ nilpotent. Montrer que id -f est inversible.

Exercice 5.7:

Soient u, v tels que $u + v = \mathrm{id}$ et $\mathrm{rg}(u) + \mathrm{rg}(v) \le n$. Montrer que u et v sont des projecteurs.

Exercice 5.8:

Soient p,q deux projecteurs de E qui commutent. Montrer que $p\circ q$ est un projecteur, déterminer noyau et image.

Exercice 5.9:

Ex 93 Delaunay Commutant

Exercice 5.10:

Soient $f, g \in \mathcal{L}(E)$ avec E de df. Montrer que si E = Im f + Ker g, alors $\text{rg}(g \circ f) = \text{rg}(g)$.

Exercice 5.11:

Soit E un \mathbb{K} -ev de dimension $n, u, v \in \mathcal{L}(E)$ vérifiant $v \circ u = 0$ et $u + v \in \mathcal{GL}(E)$. Montrer que $\operatorname{rg} u + \operatorname{rg} v = n$.

Exercice 5.12:

Soit E un \mathbb{K} -ev de dimension n. Montrer que $u \in \mathcal{L}(E)$ est un projecteur ssi $\operatorname{rg} u + \operatorname{rg}(\operatorname{id} - u) = n$.

Exercice 5.13:

Soient E, F deux ev, $f \in \mathcal{L}(F, E)$. Calculer la dimension de $\{g \in \mathcal{L}(E, F), f \circ g \circ f = 0\}$.

Exercice 5.14:

Soit E un \mathbb{K} -ev de dimension finie, $f \in \mathcal{L}(E)$ vérifiant $\forall x \in E, \exists n_x \in \mathbb{N}, f^{n_x}(x) = 0$ (l'exposant désignant bien sûr l'itération de l'endomorphisme). Montrer que f est nilpotent. Cela marche-t-il encore en dimension infinie?

Exercice 5.15:

Soit E un \mathbb{K} -ev de dimension finie, $u \in \mathcal{L}(E)$. On définit $\phi_u \in \mathcal{L}(\mathcal{L}(E))$ par $\forall v \in \mathcal{L}(E)$, $\phi_u(v) = v \circ u - u \circ v$. Pour tout $i \in \mathbb{N}$ on note $c_i = \text{Ker } (\phi_u)^i$.

- 1. Pour $v, w \in \mathcal{L}(E)$, calculer $\phi_u(v \circ w)$ en fonction de $v, w, \phi_u(v), \phi_u(w)$.
- 2. Montrer que $C = \bigcup_{i \in \mathbb{N}} c_i$ est une sous-algèbre de $\mathcal{L}(E)$.

Exercice 5.16:

Soient E et F deux \mathbb{K} -ev, $f \in \mathcal{L}(E,F)$, U et V deux sev de E. Montrer que $f(U) \subset f(V) \iff (U + \operatorname{Ker} f) \subset (V + \operatorname{Ker} f)$

Exercice 5.17:

Soient $E = \mathbb{R}[X]$, $a \in \mathbb{R}$ et $\phi : E \to E$ définie par $\phi(P) = P(X) + (aX + 1)P'(X)$. Montrer que ϕ est linéaire. Est-elle injective? Surjective?

Exercice 5.18:

Soit E un \mathbb{R} -ev.

- 1. Soit $f \in \mathcal{L}(E)$ vérifiant $f^5 = f$: montrer que $E = \text{Im } (f) \oplus \text{Ker } (f)$.
- 2. Soit $P \in \mathbb{R}[X]$ vérifiant P(0) = 0, P'(0) = 0, soit $f \in \mathcal{L}(E)$ telle que $P(f) = 0_{\mathcal{L}(E)}$. Montrer que $E = \text{Im } (f) \oplus \text{Ker } (f)$.

Exercice 5.19:

Soit $E = \mathbb{R}^n$ et $f \in \mathcal{L}(E)$. Montrer que les propositions suivantes sont équivalentes :

- i) $E = \operatorname{Ker} f \oplus \operatorname{Im} f$
- ii) Ker $f = \text{Ker } f^2 \text{ et Im } f = \text{Im } f^2$

Exercice 5.20:

Soit E un \mathbb{K} -ev de dimension n, et $f \in \mathcal{L}(E)$ vérifiant $f^2 = -\mathrm{id}_E$. Montrer que n = 2p et qu'il existe p sous-espaces de dimension $2 E_1, ..., E_p$ stables par f et tels que $E = \bigoplus_{i=1}^p E_i$.

Exercice 5.21:

Soient E un K-ev, f et g deux endomorphismes de E vérifiant $f \circ g \circ f = f$ et $g \circ f \circ g = g$.

- 1. Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Im} g = \operatorname{Ker} g \oplus \operatorname{Im} f$.
- 2. Montrer que $f(\operatorname{Im} g) = \operatorname{Im} f$.

Exercice 5.22:

Soit E un espace vectoriel de dimension finie, G un sous-groupe de cardinal m de $\mathcal{GL}(E)$. Montrer l'égalité :

$$\dim\left(\bigcap_{g\in G}\operatorname{Ker}\left(g-\operatorname{id}_{E}\right)\right)=\frac{1}{m}\sum_{g\in G}\operatorname{Tr}(g). \text{ Utiliser pour cela l'application }p=\frac{1}{m}\sum_{g\in G}g.$$

Exercice 5.23:

Soient E et F des \mathbb{K} -ev de dimension finie, $u \in \mathcal{L}(E)$, $v \in \mathcal{L}(F)$ et $f \in \mathcal{L}(E, F)$.

- 1. Montrer qu'il existe $g \in \mathcal{L}(E, F)$ telle que $f = g \circ u$ si et seulement si Ker $u \subset \text{Ker } f$.
- 2. Montrer qu'il existe $g \in \mathcal{L}(E, F)$ telle que $f = v \circ g$ si et seulement si Im $f \subset \operatorname{Im} v$.

Exercice 5.24:

(ex 123 Delaunay)

Exercice 5.25:

Soient E un \mathbb{K} -ev de dimension finie et $u \in \mathcal{L}(E)$ non injectif. Montrer que u s'écrit comme la composée de deux projecteurs.

Exercice 5.26:

Soient E un K-ev, $p_1, ..., p_k$ des projecteurs de E. On définit $P = p_1 + ... + p_k$.

- 1. On suppose que P est un projecteur. Montrer que Im $P = \bigoplus_{i=1}^{k} \operatorname{Im} p_i$.
- 2. Montrer que P est un projecteur si et seulement si $\forall (i,j) \in [1,k]^2, p_i \circ p_j = \delta_{i,j}p_i$.

6. Matrices

Exercice 6.1:

Déterminer les matrices de $\mathcal{M}_n(\mathbb{R})$ commutant avec toutes les matrices symétriques. Puis avec toutes les matrices inversibles.

Exercice 6.2:

Soit $D = \operatorname{diag}(\lambda_1, ..., \lambda_n)$. Déterminer image et noyau de $\phi : M \mapsto DM - MD$. Préciser dans le cas où les λ_i sont deux à deux distincts.

Exercice 6.3:

Soit $\omega = e^{2i\pi/n}$. On définit $A = (\omega^{(i-1)(j-1)})_{i,j}$. Calculer $A\bar{A}$. En déduire que A est inversible.

Exercice 6.4:

Soient A, B, C telles que ABC = 0. Montrer qu'au moins deux ne sont pas inversibles.

Exercice 6.5:

Calculer l'inverse de $A=(a_{i,j})$ où $a_{i,j}=1$ si i=j et α si i=j+1.

Exercice 6.6:

Etudier l'application linéaire $z \in \mathbb{C} \mapsto z + a\bar{z} \in \mathbb{C}$, où $a \in \mathbb{C}^*$, grâce à une représentation matricielle.

Exercice 6.7:

Quand le produit de deux matrices symétriques est-il encore symétrique?

Exercice 6.8:

- 1. Montrer que l'ensemble des matrices centro-symétriques est un sev de $\mathcal{M}_n(\mathbb{R})$.
- 2. Donner sa dimension
- 3. Montrer qu'il est stable par produit
- 4. Soit A centrosymétrique inversible. Montrer que A^{-1} l'est aussi. On pourra considérer $X \in C \mapsto AX \in C$.

Exercice 6.9:

Donner la matrice de $\phi: P \in \mathbb{R}_n[X] \mapsto P(X-1)$ dans la base canonique. Montrer qu'elle est inversible.

Exercice 6.10:

Soit $a \in \mathbb{C}^*$ et $f: z \in \mathbb{C} \mapsto z + a\bar{z}$. Donner sa matrice dans la base (1, i). Déterminer image et noyau.

Exercice 6.11:

Soit E de dimension n et $f \in \mathcal{L}(E)$ vérifiant $f^n = 0$ et $f^{n-1} \neq 0$.

- 1. Montrer qu'il existe $x \in E$ tel que $(x, f(x), ..., f^{n-1}(x))$ forme une base de E.
- 2. Donner la matrice de f dans cette base.
- 3. Montrer que $\{g \in \mathcal{L}(E) | g \circ f = f \circ g\} = \text{Vect}(\text{id}, f, f^2, ..., f^{n-1}).$

Exercice 6.12:

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans la base canonique est $A = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$.

- 1. Calculer A^2 . Qu'en déduire sur f?
- 2. Déterminer une base de Im f et Ker f.
- 3. Dans une base adaptée à Im $f \oplus \text{Ker } f$, donner la matrice de f.

Exercice 6.13:

Soit $A \in \mathcal{M}_n(\mathbb{R})$ de rang 1. Montrer que $A^2 \in \mathbb{R}A$.

Exercice 6.14:

Soit $A = (\mathbf{1}_{i \geq j})_{i,j}$. Majorer les coefficients de A^k . Calculer A^{-1} .

Exercice 6.15:

Donner une expression explicite des suites (u_n) , (v_n) et (w_n) définies par $(u_0, v_0, w_0) \in \mathbb{R}^3$

et les relations
$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = v_n + w_n - 2u_n \\ v_{n+1} = u_n + w_n - 2u_n \\ w_{n+1} = u_n + v_n - 2w_n \end{cases}$$
.

Exercice 6.16:

On note $\mathcal{M}_n(\mathbb{R}_+)$ l'ensemble des matrices réelles à coefficients positifs. On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est de type M si A est inversible et $A^{-1} \in \mathcal{M}_n(\mathbb{R}_+)$. Montrer que A est de type M si et seulement si pour tout vecteur $X \in \mathbb{R}^n$, $(AX \ge 0 \implies X \ge 0)$.

Exercice 6.17:

Soient $A_1, ..., A_n$ des points du plan complexe. Existe-t-il un polygone à n sommets dont les milieux des côtés soient les points A_i ?

Exercice 6.18:

- 1. Montrer qu'une matrice est non inversible ssi elle est équivalente à une matrice nilpotente.
- 2. Soit $f: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ telle que f(0) = 0, $f(I_n) \neq 0$ et $\forall A, B, f(AB) = f(A)f(B)$. Montrer que A est inversible ssi $f(A) \neq 0$.

Exercice 6.19:

Montrer que tout hyperplan de $\mathcal{M}_n(\mathbb{R})$ contient au moins une matrice inversible.

Exercice 6.20:

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Trouver toutes les matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que $M + {}^TM = \text{Tr}(M)A$.

Exercice 6.21:

Déterminer $Z(\mathcal{M}_n(\mathbb{K})) = \{M \in \mathcal{M}_n(\mathbb{K}), \forall A \in \mathcal{M}_n(\mathbb{K}), AM = MA\}$. Que dire du centre de $\mathcal{GL}_n(E)$ si E est un \mathbb{K} -ev de dimension quelconque?

Exercice 6.22:

Montrer que $\mathcal{M}_n(\mathbb{C}) = \text{Vect } \mathcal{GL}_n(\mathbb{C}).$

Exercice 6.23:

On définit $\mathcal{SL}_n(\mathbb{C}) = \{ M \in \mathcal{M}_n(\mathbb{C}), \det M = 1 \}$. Montrer que c'est un sous-groupe de $\mathcal{GL}_n(\mathbb{C})$ engendré (multiplicativement) par les matrices de la forme $I_n + \lambda E_{i,j}$ pour $(i,j) \in [1,n]$ et $\lambda \in \mathbb{C}$.

Exercice 6.24:

- 1. Soit $A \in \mathcal{M}_n(\mathbb{Z})$. Montrer que A admet un inverse dans $\mathcal{M}_n(\mathbb{Z})$ si et seulement si det $A = \pm 1$.
- 2. Notons $\mathcal{SL}_n(\mathbb{Z}) = \{M \in \mathcal{M}_n(\mathbb{Z}), \det M = 1\}$. Soit $A \in \mathcal{SL}_n(\mathbb{Z})$. Calculer le PGCD des coefficients d'une ligne de A.

Exercice 6.25:

On appelle idéal bilatère de l'anneau $(\mathcal{M}_n(\mathbb{K}), +, \times)$ tout sous-ensemble I de $\mathcal{M}_n(\mathbb{K})$ tel que :

- i) (I, +) est un groupe
- ii) $\forall A \in I, \forall M \in \mathcal{M}_n(\mathbb{K}), AM \in I \text{ et } MA \in I$

Déterminer tous les idéaux bilatères de l'anneau $\mathcal{M}_n(\mathbb{K})$.

7. Groupe symétrique et déterminants

Exercice 7.1:

- 1. Soit $\sigma = (a_1 \ a_2 \dots a_k)$ un cycle de \mathfrak{S}_n et $\tau \in \mathfrak{S}_n$: calculer $\tau \circ \sigma \circ \tau^{-1}$.
- 2. En déduire $Z(\mathfrak{S}_n) = \{ \tau \in \mathfrak{S}_n, \forall \sigma \in \mathfrak{S}_n, \tau \circ \sigma = \sigma \circ \tau \}.$
- 3. En déduire une condition nécessaire et suffisante pour que deux permutations soient conjuguées dans \mathfrak{S}_n .

Exercice 7.2:

Soient $(x_k)_{k \in [\![1,n]\!]}$ et $(y_k)_{k \in [\![1,n]\!]}$ deux suites strictement croissantes de réels > 0. Montrer que pour tout $\sigma \in \mathfrak{S}_n, \sum_{k=1}^n x_k y_k \ge \sum_{k=1}^n x_k y_{\sigma(k)}$.

Exercice 7.3:

Trouver tous les morphismes de groupe de (\mathfrak{S}_n, \circ) dans (\mathbb{C}, \cdot) .

Exercice 7.4:

Soient σ une permutation et $\tau = (a_1 \dots a_p)$ un p-cycle. Montrer que $\sigma \circ \tau \circ \sigma^{-1}$ est aussi un p-cycle, que l'on précisera.

Exercice 7.5:

Soit G un groupe de cardinal n. Montrer que G est isomorphe à un sous-groupe de \mathfrak{S}_n .

Exercice 7.6:

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que si $\forall M \in \mathcal{M}_n(\mathbb{K})$, $\det(A + M) = \det(M)$, alors A est la matrice nulle.

Exercice 7.7:

Soit $V = \{x \mapsto e^x P(x), P \in \mathbb{R}_n[X]\}$. Montrer que l'application $D : f \in V \mapsto f'$ est un endomorphisme de V dont on calculera le déterminant.

Exercice 7.8:

Soit
$$A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$$
 vérifiant $\forall i \in [1, n], |a_{i,i}| > \sum_{j \neq i} |a_{i,j}|.$

- 1. Montrer que A est inversible.
- 2. Montrer que si de plus $\forall i \in [1, n], a_{i,i} > 0$, alors det A > 0.

Exercice 7.9:

Soit $A \in \mathcal{M}_n(\mathbb{Z})$. On dit que $A \in GL_n(\mathbb{Z})$ si $A \in GL_n(\mathbb{C})$ et $A^{-1} \in \mathcal{M}_n(\mathbb{Z})$.

- 1. Montrer que si $A \in GL_n(\mathbb{Z})$, det $A = \pm 1$.
- 2. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que $\forall k \in [0, 2n], A + kB \in GL_n(\mathbb{Z})$. Calculer det A et det B.

Exercice 7.10:

Soient A, H dans $\mathcal{M}_n(\mathbb{R})$ avec $\operatorname{rg} H = 1$. Montrer que $\det(A + H) \det(A - H) \leq \det(A^2)$.

Exercice 7.11:

Soit $A \in \mathcal{M}_n(\mathbb{C})$, et $\phi_A : M \in \mathcal{M}_n(\mathbb{C}) \to MA$. Calculer det ϕ_A et $\operatorname{tr} \phi_A$.

Exercice 7.12:

Calculer le déterminant d'ordre n suivant, où a est un complexe fixé :

$$D_n = \begin{vmatrix} 2a & a+1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ a-1 & 2a & a+1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & a-1 & 2a & a+1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a-1 & 2a & a+1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & a-1 & 2a \end{vmatrix}$$

Exercice 7.13:

Calculer le déterminant de Zorro :

Exercice 7.14:

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ définie par $a_{i,j} = a + \delta_{i,j}\lambda_i$, où les x_i sont des réels distincts. Calculer det A.

Exercice 7.15:

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ définie par $a_{i,j} = 1 + x_i^j$, où les x_i sont des réels distincts. Calculer det A.

Exercice 7.16:

Soit $A=(a_{i,j})\in\mathcal{M}_n(\mathbb{K})$ définie par $a_{i,j}=\delta_{i,j}+x_iy_j,$ où $x_1,...,x_n,y_1,...,y_n$ sont des réels. Calculer det A.

Exercice 7.17:

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ définie par $a_{i,j} = |i-j|$ sont des réels. Calculer det A.

Exercice 7.18:

Soit $P \in \mathbb{K}[X]$. Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ définie par $(a_{i,j}) = P(i+j)$. Calculer det A.

Exercice 7.19:

Calculer le déterminant de $A=(a_{i,j})$ où $a_{i,j}=\begin{cases} a_1 & \text{si } i\leq j\\ a_j & \text{sinon} \end{cases}$

Exercice 7.20:

Soit $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ telle que C et D commutent.

- 1. Supposons D inversible. Montrer que $\det M = \det(AD BC)$.
- 2. Généraliser au cas D non inversible.

Exercice 7.21:

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que $rgA = n \implies rgcomA = n$
- 2. Montrer que $rgA = n 1 \implies rgcomA = 1$
- 3. Montrer que $rgA \le n-2 \implies rgcomA = 0$
- 4. Montrer que $\det \operatorname{com} A = (\det A)^{n-1}$.

Exercice 7.22:

On se place dans $\mathcal{M}_{2n}(\mathbb{R})$. Soit J la matrice pleine de 1, A une matrice antisymétrique. Montrer que $\forall x \in \mathbb{R}$, $\det(A + xJ) = \det A$. On commencera par montrer qu'il s'agit d'une fonction affine.

Exercice 7.23:

Soit $A=(a_{i,j})\in\mathcal{M}_n(\mathbb{K})$ avec $a_{i,j}=\begin{cases} x & \text{si }i=j\\ y & \text{sinon} \end{cases}$. On définit J la matrice constante égale à 1 et u

l'endomorphisme de \mathbb{R}^n canoniquement associé à J. En montrant qu'il existe une base \mathscr{B} telle que la matrice de u dans \mathscr{B} soit diagonale, calculer det A.

Exercice 7.24:

Soit E un \mathbb{K} -ev de dimension $n, f \in \mathcal{L}(E)$, \mathscr{B} une base de E. Montrer que pour toute famille $(x_1, ..., x_n)$ de vecteurs de $E : \sum_{k=1}^n \det(x_1, ..., x_{k-1}, f(x_k), x_{k+1}, ..., x_n) = \operatorname{Tr}(f) \det(x_1, ..., x_n)$.

Exercice 7.25:

- 1. Montrer que $\mathcal{GL}_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer que si $A \in \mathcal{GL}_n(\mathbb{R})$ et $B \in \mathcal{M}_n(\mathbb{R})$, alors il existe $\varepsilon_0 > 0$ tel que pour tout $\varepsilon \in [0, \varepsilon_0[$, $A + \varepsilon B \in \mathcal{GL}_n(\mathbb{R})$. Déterminer pour cela les termes de plus haut et plus bas degré de la fonction polynômiale $\lambda \mapsto \det(A + \lambda B)$.

Exercice 7.26:

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $\forall X \in \mathcal{M}_n(\mathbb{C})$, $\det(A + X) = \det A + \det X$.

- 1. Montrer que $\det A = 0$.
- 2. Montrer que A = 0.

8. Espaces préhilbertiens réels, isométries

Exercice 8.1:

On note $E = \mathscr{C}^2([0,1],\mathbb{R})$, et pour $f,g \in E$ on pose $\langle f,g \rangle = \int_0^1 (fg + f'g')$. On définit également $V = \{f \in E, f'' = f\}$ et $W = \{f \in E, f(0) = f(1) = 0\}$. Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur E, et que V et W sont supplémentaires orthogonaux.

Exercice 8.2:

Soit E un espace euclidien et p une projection de E.

- 1. Montrer que p est une projection orthogonale si et seulement si pour tout $x \in E$, $||p(x)|| \le ||x||$
- 2. On suppose désormais que p est orthogonale, et on note $F = \operatorname{Im} p$. Montrer que pour tout $x \in E$, $\|p(x)\| = \|x\| \iff x \in F$.
- 3. Pour $x \in E$ on définit la distance de x à F par $d(x, F) = \inf_{y \in F} ||x y||$. Montrer que p(x) est l'unique vecteur vérifiant d(x, F) = ||x p(x)||.

Exercice 8.3:

Soit E un espace euclidien muni d'une base orthonormée \mathscr{B} , et $x_1,...,x_n$ une famille de vecteurs de E. En décomposant, pour tout $i \in \llbracket 1,n \rrbracket$, $x_i=y_i+z_i$ avec y_i la projection orthogonale de x_i sur $\mathrm{Vect}(x_1,...,x_{i-1})$, montrer que $|\det(x_1,...,x_n)| \leq \prod_{i=1}^n \|x_i\|$. A quoi cela correspond-il dans le cas n=2?

Exercice 8.4:

Soient E un espace préhilbertien réel et A une partie de E. Montrer que A^{\perp} est une partie fermée de E.

Exercice 8.5:

Montrer que la fonction $(a,b) \in \mathbb{R}^2 \mapsto \int_0^1 (t \ln t - at - b)^2 dt$ atteint un minimum global, et le calculer.

Exercice 8.6:

On note \mathcal{T}_n l'ensemble des polynômes trigonométriques de degré au plus n, i.e. des fonctions $T: \mathbb{R} \to \mathbb{R}$ de la forme

$$T(x) = a_0 + \sum_{k=1}^n a_k \cos(kx) + b_k \sin(kx)$$
, où $a_0, ..., a_n, b_1, ..., b_n$ sont des réels. On le munit du produit scalaire $\langle f, g \rangle = \int_{-\pi}^{\pi} f(t)g(t)dt$.

- 1. Montrer que \mathcal{T}_n est un espace préhilbertien réel.
- 2. Pour $i \in [0, n]$ et $j \in [1, n]$, on définit $f_i : x \mapsto \cos(ix)$ et $g_i : x \mapsto \sin(jx)$. Montrer que la famille $(f_0, ..., f_n, g_1, ..., g_n)$ est une base de \mathcal{T}_n .

Exercice 8.7:

Soit E un espace préhilbertien réel (de dimension a priori quelconque) et $(e_1, ..., e_n)$ une famille de vecteurs unitaires vérifiant $\forall x \in E$, $||x||^2 = \sum_{i=1}^n \langle e_i, x \rangle^2$. Montrer que $(e_1, ..., e_n)$ est une base orthonormée de E.

Exercice 8.8:

Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que $\operatorname{rg}(M) = \operatorname{rg}({}^t MM)$.

Exercice 8.9:

Soient $x_1, ..., x_n$ des vecteurs d'un espace euclidien E vérifiant $\forall (i, j) \in [1, n]^2, ||x_j - x_i|| \ge 2$. Trouver un réel k_n tel que $\min_{x \in E} \left(\max_{i \in [1, n]} ||x - x_i|| \right) \ge k_n$. Par exemple $k_2 = 1$.

Indication:
$$\sum_{i < j} ||y_i - y_j||^2 = n \sum_i ||y_i||^2 - \left\| \sum_i y_i \right\|^2$$
.

Exercice 8.10:

On munit \mathbb{R}^n du produit scalaire usuel, noté "·". Si $A \subset \mathbb{R}^n$, on définit $A^o = \{y \in \mathbb{R}^n, \forall x \in A, x \cdot y \leq 1\}$.

- 1. Soit $f \in \mathcal{L}(\mathbb{R}^n)$ l'homothétie de rapport λ et B = f(A). Que dire de B^o ?
- 2. On se place dans \mathbb{R}^2 . Déterminer A^o si A est :
 - (a) le disque de centre O et de rayon 1
 - (b) le carré de centre O et de côté 2
 - (c) un parallélogramme

Exercice 8.11:

On pose
$$A = \left\{ \sum_{k=1}^{n} x_k \cdot \sum_{k=1}^{n} \frac{1}{x_k}, (x_1, ..., x_n) \in (\mathbb{R}_+^*)^n \right\}$$
. Déterminer inf A et $\sup A$.

Exercice 8.12:

Soit $w:[a,b]\to\mathbb{R}$ une fonction continue strictement positive. On munit l'espace $\mathbb{R}[X]$ du produit scalaire $\langle P,Q\rangle=\int_a^b PQw$ et on orthonormalise la famille $(X^n)_{n\in\mathbb{N}}$ par la méthode de Gram-Schmidt. On obtient une suite de polynômes échelonnée en degrés, notée (P_n) . Soit $k\in\mathbb{N}^*$ fixé.

- 1. Montrer que P_k possède k racines distinctes, que nous noterons $a_1, ..., a_k$.
- 2. Montrer qu'il existe des réels $\lambda_1, ..., \lambda_k$ tels que pour tout polynôme Q de degré $\leq 2k-1$,

$$\int_{a}^{b} Qw = \sum_{i=1}^{k} \lambda_{i} Q(a_{i}).$$

Exercice 8.13:

Soit
$$A = (a_{i,j}) \in \mathcal{O}_n(\mathbb{R})$$
. Montrer que $\left| \sum_{i,j} a_{i,j} \right| \leq n$.

Exercice 8.14:

Soit $M \in \mathcal{GL}_n(\mathbb{R})$.

- 1. Montrer qu'il existe $O \in \mathcal{O}_n(\mathbb{R})$ et $T \in \mathcal{M}_n(\mathbb{R})$ triangulaire supérieure à coefficients diagonaux strictement positifs telles que M = OT.
- 2. Montrer que cette décomposition est unique.

Exercice 8.15:

Soient E un espace euclidien et $f \in \mathcal{O}(E)$. On considère un sous-espace V de E stable par f. Montrer que f(V) = V et $f(V^{\perp}) = V^{\perp}$.

Analyse

9. Etude de fonctions, fonctions usuelles

Exercice 9.1:

Etudier les fonctions suivantes (ensemble de définition, d'arrivée, limites et asymptotes, continuité, dérivabilité, variations, convexité, tracé approximatif du graphe) :

1.
$$x \mapsto \ln(1 + e^x)$$

2.
$$x \mapsto x^2 \sin\left(\frac{1}{x}\right)$$

$$3. \ x \mapsto \frac{1}{\lfloor 1/x \rfloor}$$

4.
$$x \mapsto (x-1)e^{\frac{x}{x-1}}$$

$$5. \ x \mapsto x\sqrt{\frac{x-1}{3x+1}}$$

6.
$$x \mapsto \ln(\sqrt{x^2 + 1} - x)$$

Exercice 9.2:

Simplifier les expressions des fonctions suivantes :

1.
$$x \mapsto \ln\left(\sqrt{\frac{1 + \operatorname{th}(x)}{1 - \operatorname{th}(x)}}\right)$$

$$2. \ x \mapsto \arccos\left(\frac{1-x^2}{1+x^2}\right) - \arcsin\left(\frac{2x}{1+x^2}\right)$$

3.
$$x \mapsto \cot(x) - 2\cot(2x)$$

4.
$$x \mapsto \arcsin(2x\sqrt{1-x^2})$$

Exercice 9.3:

Résoudre les équations suivantes :

1.
$$2^{x^3} = 3^{x^2}$$

2.
$$\arctan(x) + \arctan(\sqrt{3}x) = \frac{7\pi}{12}$$

3.
$$x^{\sqrt{x}} = \sqrt{x}^x$$

4.
$$arccos(x) = arcsin(2x)$$

$$5. \frac{\ln(x)}{\ln(a)} = \frac{\ln(a)}{\ln(x)}$$

Exercice 9.4:

Montrer que $\forall x \in]0,1[, x^x(1-x)^{1-x} \ge 1/2.$

Exercice 9.5:

Déterminer des expressions explicites des fonctions hyperboliques réciproques.

Exercice 9.6:

On considère un cône dont la base est de rayon R et la hauteur vaut H.

- 1. Quel est le volume maximal d'un cylindre intérieur à ce cône et de même génératrice?
- 2. Quel est le volume maximal d'une boule intérieure à ce cône et dont le centre se trouve sur la génératrice?

Exercice 9.7:

Soient 0 < a < b. Montrer que $\forall x > 0$, $ae^{-bx} - be^{-ax} > b - a$.

Exercice 9.8:

Etudier l'existence de solutions pour le système

$$\begin{cases} \cosh x + \cosh y = a \\ \sinh x + \sinh y = b \end{cases}$$

Exercice 9.9:

Soient
$$y \in]-\pi/2, \pi/2[$$
 et $x = \ln(\tan(y/2 + \pi/4))$. Montrer que $\cosh x = \frac{1}{\cos y}$.

CALCUL INTÉGRAL, ÉQUATIONS DIFFÉRENTIELLES

Exercice 10.1:

Trouver une primitive pour chacune des fonctions suivantes sur des intervalles à préciser :

$$1. \ x \mapsto \sqrt{\frac{1-x}{1+x}}$$

2.
$$x \mapsto x \tan^2 x$$

$$3. \ x \mapsto \frac{\ln x}{x + x(\ln x)^2}$$

$$4. \ x \mapsto \frac{1}{\sqrt{x^2 + x + 1}}$$

$$5. \ x \mapsto \frac{1}{\sinh x}$$

5.
$$x \mapsto \frac{1}{\sinh x}$$
6. $x \mapsto \frac{1}{1 + \cosh x}$

7.
$$x \mapsto \frac{x^2}{1+x^3}$$

8.
$$x \mapsto \exp\left(-x^{\frac{1}{3}}\right)$$

9.
$$x \mapsto \sin^3 x \cos^3 x$$

10.
$$x \mapsto \frac{1}{x} \sqrt{\frac{1+x}{1-x}}$$

11.
$$x \mapsto \frac{1}{\cos(x)}$$

12.
$$x \mapsto \frac{1}{x-z}$$
, où $z \in \mathbb{C}$

Exercice 10.2:

Calculer
$$\int_0^{\sqrt{3}} \arcsin\left(\frac{2t}{1+t^2}\right) dt$$
.

Exercice 10.3:

Trouver une primitive de $\frac{1}{x^2+x+1}$ puis $\frac{1}{x^2+x-1}$ puis $\frac{1}{\sqrt{x^2+x+1}}$

Exercice 10.4:

1. Calculer
$$\int_0^{\pi/2} \frac{\cos t}{\cos t + \sin t} dt \text{ et } \int_0^{\pi/2} \frac{\sin t}{\cos t + \sin t} dt.$$

2. En déduire la valeur de
$$\int_0^1 \frac{\mathrm{d}t}{\sqrt{1-t^2}+t}$$
.

Exercice 10.5:

Soit, pour
$$n \in \mathbb{N}$$
, $u_n = \frac{1}{n!} \int_0^1 (1-t)^n e^t dt$

1. Trouver une relation de récurrence entre u_n et u_{n+1} .

2. Montrer que
$$e = \sum_{k=0}^{+\infty} \frac{1}{k!}$$
.

Exercice 10.6:

1. Calculer
$$I_n = \int_0^1 (1 - t^2)^n dt$$

2. En déduire
$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \binom{n}{k}.$$

Exercice 10.7:

Soit
$$u_n = \int_0^1 \frac{\mathrm{d}x}{1 + x^n}$$
.

- 1. Montrer que u_n est bien définie et strictement croissante.
- 2. Montrer que $u_n \to 1$.
- 3. Montrer que $u_n = 1 \frac{\ln 2}{n} + o(1/n)$.

Exercice 10.8:

On pose
$$I = \int_0^{\pi/2} \ln(\cos x) dx$$
 et $J = \int_0^{\pi/2} \ln(\sin x) dx$. Calculer I et J .

Exercice 10.9:

Calculer pour tout
$$a > 0$$
 l'intégrale $\int_{1/a}^{a} \frac{\ln t}{1+t^2} dt$.

Exercice 10.10:

Calculer
$$\int_{1/4}^1 \sqrt{\frac{1-\sqrt{x}}{\sqrt{x}}} dx$$
. On pourra poser les changements de variable $y=\sqrt{x}$ et $z=\sqrt{\frac{1-y}{y}}$.

Exercice 10.11:

Simplifier l'expression de la fonction $f: x \to \int_{\sin^2 x}^{\cos^2 x} \arcsin(\sqrt{t}) dt$ sur son domaine de définition.

Exercice 10.12:

1. Etudier la fonction
$$f_{\lambda}: x \mapsto \frac{\sin(x)}{\sqrt{1 - 2\lambda \cos(x) + \lambda^2}}$$

2. Calculer
$$\int_0^{\pi} f_{\lambda}(x) dx$$
.

Exercice 10.13:

Soit
$$\phi: x \in \mathbb{R}^* \mapsto \frac{\operatorname{sh}(x)}{x}$$
, avec $\phi(0) = 1$.
Soit $f: x \in \mathbb{R} \mapsto \int_x^{2x} \phi(t) dt$

- 1. Montrer que f est bien définie et étudier sa parité.
- 2. Justifier que f est dérivable et calculer f'.
- 3. Dresser le tableau de variations de f.
- 1. f est l'intégrale d'une fonction continue, elle est paire.

2.
$$f(x) = \Phi(2x) - \Phi(x)$$
 si Φ est une primitive de ϕ , donc $f'(x) = 2\phi(2x) - \phi(x) = \frac{\sinh(2x) - \sinh(x)}{x}$

3. Par croissance de sh, f' est toujours positive sur \mathbb{R}_+ .

Exercice 10.14:

Pour
$$x \in]0,1[$$
 on pose $\varphi(x) = \int_x^{x^2} \frac{\mathrm{d}t}{\ln(t)}.$

1. Montrer que φ est bien définie, qu'elle se prolonge par continuité en 0 et en 1.

2. Calcular
$$\int_0^1 \frac{t-1}{\ln(t)} dt$$

Exercice 10.15:

Soit, pour
$$n \in \mathbb{N}$$
, l'intégrale $I_n = \int_0^{\pi/2} \cos^n(t) \mathrm{d}t$

- 1. Trouver une relation entre I_n et I_{n+2} .
- 2. En déduire I_{2k} et I_{2k+1} en fonction de k.
- 3. Montrer que $nI_nI_{n-1}=\pi/2$.

Indication 10.15:

- 1. On trouve $nI_n = (n-1)I_{n-2}$.
- 2. Raisonner par récurrence.

Exercice 10.16:

Soit, pour
$$n \in \mathbb{N}^*$$
, $I_n = \int_0^1 (1 - t^2)^n$.

- 1. Trouver une relation de récurrence pour la suite I_n
- 2. En déduire une expression explicite de ces intégrales

3. Calculer
$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \binom{n}{k}$$

Exercice 10.17:

Soit
$$I_n = \int_0^{\pi/4} (\tan x)^n dx$$
.

- 1. Calculer $I_{n+2} + I_n$ pour tout n.
- 2. Trouver la limite de la suite (I_n) (séparer pour cela l'intervalle d'intégration en $[0, \frac{\pi}{4} \varepsilon] \cup [\frac{\pi}{4} \varepsilon, \frac{\pi}{4}]$.

3. En déduire les valeurs respectives de $\sum_{k=1}^{+\infty} \frac{(-1)^k}{k}$ et $\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1}$.

Exercice 10.18:

Si $f:[0,+\infty[\to\mathbb{R} \text{ est continue, on dit que } f \text{ est intégrable sur } \mathbb{R}^+ \text{ si la fonction } a\to \int_0^a f(t)dt$ admet une limite lorsque $a \to \infty$. On note alors $\int_0^\infty f(t)dt$ cette limite.

- 1. Montrer que $\forall x > -1$, $\ln(1+x) \le x$.
- 2. Pour $n \in \mathbb{N}^*$, montrer que $\forall x \in [0, n], \left(1 \frac{x}{n}\right)^n \leq e^{-x} \leq \left(1 + \frac{x}{n}\right)^{-n}$
- 3. En déduire que : $\int_0^{\sqrt{n}} \left(1 \frac{t^2}{n}\right)^n dt \le \int_0^{\sqrt{n}} e^{-t^2} dt \le \int_0^{\sqrt{n}} \left(1 + \frac{t^2}{n}\right)^{-n} dt$
- 4. On rappelle que l'étude des intégrales de Wallis donne : $I_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt \sim \sqrt{\frac{\pi}{2n}}$ Montrer que $\int_{0}^{\infty} e^{-t^2} dt \text{ existe et vaut } \frac{1}{2} \sqrt{\pi}.$

Exercice 10.19:

Résoudre les équations différentielles suivantes sur des intervalles à préciser :

1.
$$y' + y = \frac{1}{1 + e^x}$$

2.
$$y' - (\ln x)y = x^x$$

3.
$$y' - 2xy = e^{x^2} \sin(x)$$

4.
$$x^2y' + 2xy = \frac{1}{1+x}$$

5.
$$y'' + y = (\cos x)^2$$

6.
$$y'' + 5y' + 6y = x(x+2)$$

Exercice 10.20:

Trouver les applications $f: \mathbb{R} \to \mathbb{R}$ vérifiant : $\forall x \in \mathbb{R}, \ f'(x) = f(x) + \int_0^1 f(t) dt$ et f(0) = 1.

Exercice 10.21:

Résoudre le système $\begin{cases} x' = x - y \\ y' = x + y \end{cases}$ avec les conditions initiales x(0) = 0 et y(0) = 1.

Exercice 10.22:

Résoudre le problème de Cauchy $y'(x) + y(x) = xe^{-x}$, y(0) = 0.

Exercice 10.23:

Soit $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ vérifiant $\lim_{x \to \infty} (f(x) + f'(x)) = 0$. Montrer que $\lim_{x \to \infty} f(x) = 0$.

Exercice 10.24:

Soit $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ vérifiant :

$$-x \mapsto f(x) + f'(x)$$
 décroissante et positive

—
$$\lim (f(x) + f'(x)) = 0$$

— $\lim_{x\to\infty} (f(x)+f'(x))=0$ En résolvant une équation différentielle, montrer que $\lim_{x\to\infty} f(x)=0$.

Exercice 10.25:

Résoudre l'équation différentielle $y' - (\ln x)y = x^x$

Exercice 10.26:

Résoudre l'équation différentielle $y'(x) + \frac{1}{x}y(x) = \frac{1}{x-1}$.

Exercice 10.27:

Résoudre dans \mathbb{R} l'équation différentielle $y''(x) - 2y'(x) + 2y(x) = e^x \cos(x)$

Exercice 10.28:

Résoudre dans \mathbb{R} puis dans \mathbb{C} l'équation différentielle y''(x) + y'(x) + y(x) = 0.

Exercice 10.29:

Résoudre l'équation différentielle $y'' + y = (\cos x)^2$

Exercice 10.30:

On cherche les solutions sur \mathbb{R}_+^* de l'équation $(E): x^2y'' + 3xy' + y = \frac{1}{x^2}$

- 1. Soit $f \in \mathcal{D}^2(\mathbb{R}_+^*, \mathbb{R})$ et $g : t \mapsto f(e^t)$. Montrer que f est solution de (E) si et seulement si g est solution d'une équation différentielle (E') que l'on précisera.
- 2. Résoudre l'équation (E') et en déduire l'ensemble des solutions de (E). Montrer qu'il existe une unique solution f de (E) telle que f(1) = f'(1) = 0.

Exercice 10.31:

Trouver les solutions f de classe \mathscr{C}^2 sur \mathbb{R} de l'équation différentielle $f''(x) + f(x) = \max(e^x, 1)$ vérifiant f(0) = f'(0) = 0.

Exercice 10.32:

Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = e^x f(y) + e^y f(x)$$

Indication 10.32:

Dériver en utilisant le taux d'accroissement et se ramener à une équa diff usuelle.

Exercice 10.33:

- 1. Une population de y(t) individus (au temps t) évolue de la façon suivante : sur un intervalle de temps dt, un nombre ny(t) d'individus naissent et un nombre my(t) d'individus meurent. Etudier son évolution.
- 2. Résoudre l'équation logistique $\frac{dy}{dt} = ay\left(1 \frac{y}{K}\right)$. Etudier la fonction obtenue.

Indication 10.33:

Par changement de variable z = 1/y ou en séparant les variables.

On trouve
$$y(t) = \frac{K}{1 + \left(\frac{K}{y_0} - 1\right)e^{-at}}$$
.

11. Suites numériques

Exercice 11.1:

Etudier les suites récurrentes suivantes :

1.
$$u_0 \in \mathbb{R}_+ \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2}(1 + u_n^2)$$

2.
$$u_0 \in]0,2[$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n + (-1)^n}$

3.
$$u_0 \in \mathbb{R}_+^*$$
 et $u_{n+1} = \frac{1}{u_n} + \frac{1}{n}$

Exercice 11.2:

Soient (a_n) et (b_n) deux suites complexes convergentes, de limites respectives a et b. Etudier la suite définie par $u_n = \frac{a_0b_n + a_1b_{n-1} + ... + a_{n-1}b_1 + a_nb_0}{n+1}$.

Exercice 11.3:

Soit $\lambda > 1$. A toute suite (u_n) on associe la suite (v_n) définie par $v_n = \lambda u_{n+1} + u_n$. Montrer que (u_n) converge si et seulement si (v_n) converge.

Exercice 11.4:

- 1. Montrer que pour tout $x \in \mathbb{R}_+$, $x \frac{1}{2}x^2 \le \ln(1+x) \le x$.
- 2. En déduire la limite de $\prod_{k=1}^{n} \left(1 + \frac{k}{n^2}\right)$.

Exercice 11.5:

Soit pour $n \in \mathbb{N}^*$, $z_n = e^{i \ln n}$. Montrer que l'ensemble des valeurs d'adhérence de la suite (z_n) est \mathbb{U} tout entier.

Exercice 11.6:

Soit (u_n) une suite convergente. On se donne ϕ une bijection de \mathbb{N} dans \mathbb{N} , et on définit, pour tout n, $v_n = u_{\phi(n)}$. Montrer que (v_n) converge vers la même limite que (u_n) .

Exercice 11.7:

Etudier la suite définie par $u_0 = 1$ et $u_{n+1} = 2 + \ln u_n$

Exercice 11.8:

Etudier la suite définie par $u_0 = 1$ et $u_{n+1} = \cos(u_n)$

Exercice 11.9:

Etudier la suite définie par $u_0 = a > 0$ et $u_{n+1} = \sqrt{\sum_{k=0}^{n} u_k}$

Exercice 11.10:

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1$ et $u_{n+1}=u_n-u_n^2$.

- 1. Montrer que la suite converge et trouver sa limite.
- 2. Chercher un réel α tel que $u_{n+1}^{\alpha} u_n^{\alpha}$ admette une limite finie.
- 3. En déduire grâce au théorème de Cesaro un équivalent de u_n .

Exercice 11.11:

La suite définir par $u_{n+1} = 1 - 1/u_n$ converge-t-elle?

Exercice 11.12:

On pose, pour tout $n \in \mathbb{N}$, $u_n = \sin(\pi(2+\sqrt{3})^n)$. Montrer que $u_n \to 0$.

Exercice 11.13:

Soit $(x_n)_{n\in\mathbb{N}}$ une énumération des rationnels de l'intervalle [0,1]. Montrer que cette suite diverge.

Exercice 11.14:

Donner un exemple de suite (u_n) divergente telle que pour tout entier $k \geq 2$, la suite (u_{kn}) converge.

Exercice 11.15:

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite vérifiant $\forall (p,q)\in\mathbb{N}^2,\ u_{p+q}\leq u_p+u_q$. Supposons que la suite $\left(\frac{u_n}{n}\right)$ soit minorée. Montrer qu'elle converge alors vers $\inf_{n\in\mathbb{N}^*}\frac{u_n}{n}$.

Exercice 11.16:

Réciproque du théorème de Cesaro dans le cas où la suite est croissante.

Exercice 11.17:

Soit (x_n) une suite bornée de réels. On pose pour tout $n \in \mathbb{N}$: $\begin{cases} y_n = \sup_{p \geq n} x_p \\ z_n = \inf_{p > n} x_p \end{cases}$

- 1. Montrer que les suites (y_n) et (z_n) convergent.
- 2. Montrer que (x_n) converge si et seulement si elles ont même limite.

Exercice 11.18:

Soit (u_n) une suite croissante, on définit $v_n = \frac{u_1 + \dots + u_n}{n}$.

- 1. Que dire de la monotonie de u_n ?
- 2. Montrer que si u_n converge, v_n aussi. Indication : on prouvera l'inégalité $v_{2n} \geq \frac{u_n + v_n}{2}$.
- 3. Montrer que si v_n converge, u_n converge.

Exercice 11.19:

Soit
$$I_n = \int_0^{\pi/4} (\tan x)^n dx$$
.

- 1. Calculer $I_{n+2} + I_n$ pour tout n.
- 2. Trouver la limite de la suite (I_n) (séparer pour cela l'intervalle d'intégration en $[0, \frac{\pi}{4} \varepsilon] \cup [\frac{\pi}{4} \varepsilon, \frac{\pi}{4}]$.
- 3. En déduire les valeurs respectives de $\sum_{k=1}^{+\infty} \frac{(-1)^k}{k}$ et $\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1}$

Exercice 11.20:

Soient
$$\alpha > 0$$
 et $u_n = \sum_{k=1}^n \frac{1}{n^{\alpha} + k^{\alpha}}$.

- 1. Montrer que si $\alpha > 1$, $u_n \to 0$ et si $\alpha < 1$, $u_n \to +\infty$.
- 2. Montrer que si $\alpha = 1$, u_n admet une limite. On utilisera l'encadrement $\ln(1+x) \le x \le -\ln(1-x)$ valable pour tout réel $x \in [0,1[$.

Exercice 11.21:

Soit
$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$
. On pose $u_n = S_n - 2\sqrt{n}$ et $v_n = S_n - 2\sqrt{n+1}$.

- 1. Montrer que u_n et v_n convergent vers une limite commune. En déduire la limite de $\frac{1}{2\sqrt{n}}S_n$.
- 2. Retrouver ce résultat par une comparaison somme-intégrale.

Exercice 11.22:

Soient 0 < a < b des réels. On définit par récurrence deux suites (u_n) et (v_n) en posant $u_0 = a, v_0 = b$ et pour tout $n \in \mathbb{N}, \begin{cases} u_{n+1} = \sqrt{u_n v_n} \\ v_{n+1} = \frac{1}{2}(u_n + v_n) \end{cases}$. Montrer que ces deux suites convergent vers une limite commune $l \in]a,b[$. Donner une expression simple de l.

Exercice 11.23:

Etudier la suite (z_n) définie par $z_0 \in \mathbb{C}$ et $z_{n+1} = \frac{z_n + |z_n|}{2}$.

Exercice 11.24: Bolzano-Weierstrass revisité

- 1. Soit (u_n) une suite réelle. Montrer qu'on peut extraire de (u_n) une suite monotone. Considérer pour cela l'ensemble $E = \{n \in \mathbb{N}, \forall p \geq n, x_p < x_n\}$.
- 2. Soit (u_n) une suite réelle bornée. Montrer qu'on peut extraire de (u_n) une suite convergente.
- 3. Que dire d'une suite réelle bornée n'admettant qu'une seule valeur d'adhérence?
- 4. Soit (u_n) une suite réelle bornée telle que $u_n + \frac{u_{2n}}{2} \to l \in \mathbb{R}$. Montrer que (u_n) converge.

Exercice 11.25: Suites de Cauchy

Soit (u_n) une suite réelle. On dit que (u_n) est "de Cauchy" si :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p, q \geq N, |u_p - u_q| \leq \varepsilon$$

- 1. Montrer qu'une suite convergente est de Cauchy.
- 2. Montrer qu'une suite de Cauchy est bornée.
- 3. Montrer qu'une suite de Cauchy admettant une valeur d'adhérence l converge vers cette valeur.
- 4. Conclure que dans \mathbb{R} , (u_n) converge ssi (u_n) est de Cauchy.

Exercice 11.26:

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=1$ et $u_{n+1}=u_n-u_n^2$.

- 1. Montrer que la suite converge et trouver sa limite.
- 2. Chercher un réel α tel que $u_{n+1}^{\alpha} u_n^{\alpha}$ admette une limite finie.
- 3. En déduire grâce au théorème de Cesaro un équivalent de u_n .

Exercice 11.27:

Soit $x \in \mathbb{R}_+^*$. Montrer qu'il existe une unique suite d'entiers positifs, strictement croissante, telle que $x = \frac{1}{x_1} + \frac{1}{x_1 x_2} + \frac{1}{x_1 x_2 x_3} + \dots$

Exercice 11.28:

Soit $f: x \in \mathbb{R}_+^* \mapsto x + \ln x$.

- 1. Montrer que f réalise une bijection de \mathbb{R}_+^* dans \mathbb{R} . On pose $u_n = f^{-1}(n)$ pour $n \in \mathbb{N}^*$. Etudier la monotonie de (u_n) et sa limite.
- 2. Montrer que pour tout $n \in \mathbb{N}^*$, $n \ln n \le u_n \le n$, en déduire un équivalent de u_n . On définit pour $n \in \mathbb{N}^*$: $v_n = u_n n$. Montrer que $v_n \sim -\ln n$.

3. Conclure que
$$u_n = n - \ln n - \frac{\ln n}{n} + o\left(\frac{1}{n}\right)$$

Exercice 11.29:

On note x_n l'unique solution réelle de l'équation $x^n = x + n$. Montrer que x_n est bien définie, qu'elle converge vers une limite l, puis donner un équivalent de $x_n - l$.

Exercice 11.30:

Montrer que pour tout entier n, l'équation $e^x = n - x$ admet une unique solution réelle x_n . Donner un développement asymptotique à trois termes de x_n .

Exercice 11.31:

Soit $f: x \mapsto (\cos x)^{1/x}$ et \mathcal{C} la courbe de f.

- 1. Montrer l'existence d'une suite $(x_n)_{n\in\mathbb{N}}$ vérifiant :
 - (x_n) est croissante positive
 - la tangente à C au point $(x_n, f(x_n))$ passe par O
- 2. Trouver un développement asymptotique à deux termes de x_n

Exercice 11.32:

Soit $(u_n)_{n\in\mathbb{N}}$ la suite prenant une fois la valeur 1, deux fois la valeur 2, trois fois la valeur 3, et ainsi de suite. Donner un équivalent de u_n .

Exercice 11.33:

- 1. Chercher toutes les suites (u_n) de la forme Aq^n puis de la forme Bn^{α} vérifiant la relation $u_{n+1} u_n \sim \frac{1}{\sqrt{u_n}}$.
- 2. Montrer que la suite définie par $v_0 = 1$ et $\forall n \in \mathbb{N}, v_{n+1} = v_n + \frac{1}{\sqrt{v_n}}$ diverge.

Exercice 11.34:

Donner un équivalent de $u_n = \sum_{k=1}^n k^{\alpha}$ avec $\alpha > -1$.

Exercice 11.35:

Notons d(n) le nombre de diviseurs de l'entier n. En montrant l'égalité $\sum_{k=1}^{n} d(k) = \sum_{m=1}^{n} \left\lfloor \frac{n}{k} \right\rfloor$, justifier qu'un entier de $[\![1,n]\!]$ a "en moyenne" $\ln(n)$ diviseurs.

12. Limites, études locales ou asymptotiques

Exercice 12.1:

Donner la limite des suites ci-dessous :

1.
$$u_n = \left(\prod_{k=1}^n (n+k)\right)^{\frac{1}{n}}$$

2.
$$u_n = \sum_{k=0}^n \frac{1}{\binom{n}{k}}$$

Exercice 12.2:

Donner un équivalent des fonctions suivantes :

1.
$$x \mapsto \frac{\sqrt{1 + \tan^2(x)} - 1}{\sin(x)}$$
 en 0

2.
$$x \mapsto \left(\frac{\ln(x)}{x}\right)^{\frac{1}{x}} \text{ en } +\infty$$

3.
$$x \mapsto \frac{\sqrt{1+x^2}}{\sin\left(\frac{1}{x}\right)} \ln\left(\frac{x}{x+2}\right) \text{ en } +\infty$$

Exercice 12.3:

Est-ce que la fonction $x \mapsto \frac{x^{\lfloor x \rfloor}}{\lfloor x \rfloor^x}$ admet une limite en $+\infty$?

Exercice 12.4:

Soit $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ vérifiant :

— $x \mapsto f(x) + f'(x)$ décroissante et positive — $\lim_{x \to \infty} (f(x) + f'(x)) = 0$

-
$$\lim (f(x) + f'(x)) = 0$$

En résolvant une équation différentielle, montrer que $\lim_{x\to a} f(x) = 0$.

Indication 12.4:

Si on écrit f+f'=q avec q décroissante de limite nulle, on se retrouve à résoudre cette équation différentielle par la variation de la constante, pour arriver à une expression du style :

$$f(x) = f(0)e^{-x} + e^{-x} \int_0^x e^t g(t)dt$$

Et on veut montrer $f(x) \to 0$.

Pour cela, écrire l'intégrale de droite comme $\int_0^x \mathrm{e}^{t-x} g(t) dt$ incite à distinguer :

- La zone où t est "grand" et où g sera petite
- La zone où t est "petit" et où e^{t-x} sera petite

Autrement dit, une séparation judicieuse de l'intervalle d'intégration peut nous amener par des majorations séparées de chaque côté au résultat souhaité.

13. Continuité

Exercice 13.1:

Trouver les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues et vérifiant $\forall x \in \mathbb{R}, f(2x) = -f(x)$

Exercice 13.2:

Trouver les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues et vérifiant $\forall (x,y) \in \mathbb{R}^2$, $f(x+y)f(x-y) = f(x)^2 f(y)^2$.

Exercice 13.3:

Etudier la continuité sur \mathbb{R} de $x \mapsto \lfloor x \rfloor + \sqrt{x - \mapsto \lfloor x \rfloor}$.

Exercice 13.4:

Montrer que $f: x \mapsto \sup_{n \in \mathbb{N}} \frac{x^n}{n!}$ est continue sur \mathbb{R} .

Exercice 13.5:

Soit $f: \mathbb{R} \to \mathbb{R}$ continue décroissante. Montrer que f admet un unique pt fixe.

Exercice 13.6:

Soient $f, g : \mathbb{R} \to \mathbb{R}$ avec g périodique, f + g monotone et $\lim_{x \to +\infty} f(x) = 0$. Montrer que g est constante.

Exercice 13.7:

Soient f et g deux fonctions continues. Montrer que la fonction $\max(f,g)$ est continue.

Exercice 13.8:

Soit f continue en 0 et telle que $\forall (x,y) \in \mathbb{R}^2$, f(x+y) + f(x-y) = 2(f(x) + f(y))

- 1. Etudier la parité de f
- 2. Montrer que f(nx) = nf(x) pour tout $n \in \mathbb{Z}$.
- 3. Montrer que f(rx) = rf(x) pour tout $r \in \mathbb{Q}$.
- 4. Conclure.

Exercice 13.9:

Soit $f: \mathbb{R} \to \mathbb{R}$ injective vérifiant la propriété des valeurs intermédiaires. Montrer que f est continue.

Exercice 13.10:

Soit $f:[0,1] \to [0,1]$ continue telle que f(0) = f(1). Montrer que pour tout $n \in \mathbb{N}^*$, il existe $x_n \in \left[0,1-\frac{1}{n}\right]$ tel que $f(x_n) = f\left(x_n + \frac{1}{n}\right)$.

Exercice 13.11:

Soit $f: x \in \mathbb{R} \mapsto \frac{x}{1+|x|}$. Montrer que f se restreint en une bijection. Donner une expression de la bijection réciproque.

Exercice 13.12:

Soit f croissante sur [a,b] et prenant toutes les valeurs entre f(a) et f(b). Montrer que f est continue.

Exercice 13.13:

Déterminer les applications $f : \mathbb{R} \to \mathbb{R}$ telles que $\forall (x,y) \in \mathbb{R}^2$, |f(x) - f(y)| = |x - y|. On montrera qu'il s'agit des applications $x \mapsto a \pm x$, $a \in \mathbb{R}$.

Exercice 13.14:

Soient f et g deux fonctions réelles que $\forall x \in \mathbb{R}, |f(x)| = |g(x)| \neq 0$. Montrer que f = g ou f = -g.

Exercice 13.15:

Soient $f, g : \mathbb{R} \to \mathbb{R}$ avec g périodique, f + g monotone et $\lim_{x \to +\infty} f(x) = 0$. Montrer que g est constante.

Exercice 13.16:

Montrer qu'une fonction continue périodique est bornée sur \mathbb{R} .

Exercice 13.17:

Soit $f: \mathbb{R} \to \mathbb{R}$ telle que $f(x) \to +\infty$ quand $x \to \pm \infty$. Montrer que f admet un minimum global.

Exercice 13.18:

Soit $f: \mathbb{R} \to \mathbb{R}$ uniformément continue. Montrer l'existence de constantes A et B telles que $\forall x \in \mathbb{R}, |f(x)| \leq A|x| + B$.

Exercice 13.19:

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ vérifiant : pour tout $x \in \mathbb{R}_+$, il existe $\varepsilon > 0$ tel que $f_{|]x-\varepsilon,x+\varepsilon[}$ soit croissante. Montrer que f est croissante. Etudier pour cela $E = \{x \in \mathbb{R}_+, f_{|[0,x]} \text{ est croissante}\}$

Exercice 13.20:

Une fonction $f: \mathbb{R} \to \mathbb{R}$ est dite eunit noc au point x_0 si elle vérifie : $\forall \varepsilon > 0, \exists \eta > 0, \forall x \in \mathbb{R}, |x - x_0| \leq \varepsilon \implies |f(x) - f(x_0)| \leq \eta$

- 1. Montrer que les fonctions affines sont enuitnoc en tout point de \mathbb{R} .
- 2. Montrer que si f est enuitnoc en x_0 , alors elle l'est en tout point de \mathbb{R} .
- 3. Montrer que les fonctions $x \mapsto \sqrt{x}$ et $x \mapsto x^2$ sont enuitnoc en 0.
- 4. Soit $g: x \mapsto \begin{cases} 0 & \text{si } x \equiv \frac{\pi}{2}[\pi] \\ \tan(x) & \text{sinon} \end{cases}$. Cette fonction est-elle enuitnoc en $\frac{\pi}{2}$?

Exercice 13.21:

- 1. Donner une fonction continue sur \mathbb{R}_+ , de limite nulle en $+\infty$ mais non uniformément continue.
- 2. Donner une fonction dérivable sur \mathbb{R}_+ telle que $f(x) \xrightarrow[x \to \infty]{} 0$, $f'(x) \xrightarrow[x \to \infty]{} 0$ mais f ne soit pas uniformément continue.

Exercice 13.22:

Soit $f \in \mathcal{C}^0([a,b],\mathbb{R})$. Montrer que pour tout $\varepsilon > 0$, il existe $\alpha > 0$ tel que $\forall (x,y) \in [a,b]^2$, $|f(y) - f(x)| \le \varepsilon + \alpha(y-x)^2$.

14. Dérivabilité

Exercice 14.1:

Soient f et g deux fonctions continues de [a,b] dans \mathbb{R} . Montrer que la fonction $h:t\mapsto \sup_{x\in [a,b]} (f(x)+tg(x))$ est lipschitzienne.

Exercice 14.2:

Pour toute partie A de \mathbb{R} , on définit la fonction "distance à A" par $d(x,A) = \inf_{y \in A} |x-y|$. Montrer que cette fonction est lipschitzienne.

Exercice 14.3:

Soit $f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^+)$. Montrer qu'il existe une suite (x_n) de réels telle que $f'(x_n) \to 0$.

Exercice 14.4:

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction T-périodique dérivable. Montrer que pour tout a réel, il existe $c \neq d \in [a, a + T[$ tels que f'(c) = f'(d) = 0.

Exercice 14.5:

Calculer la dérivée n-ième de $f: x \mapsto x^{n-1} \ln x$.

Exercice 14.6:

Trouver les zéros de la dérivée n-ième de $f(x) = \frac{1}{1+x^2}$.

Exercice 14.7:

Soit $f(x) = \exp\left(\frac{x-1}{x^2}\right)$. Montrer que f est \mathscr{C}^1 sur \mathbb{R} .

Exercice 14.8:

Soit $f: \mathbb{R} \to \mathbb{R}$ que l'on suppose continue, dérivable en 0 et telle que :

$$\forall (x,y) \in \mathbb{R}^2, f(x+y) = \frac{f(x) + f(y)}{1 - f(x)f(y)}$$

- 1. Calculer f(0). Montrer qu'il existe un intervalle]-a,a[sur lequel |f(x)|<1/2.
- 2. Montrer que f est continue sur]-a,a[. Montrer qu'elle y est même dérivable.
- 3. En déduire l'expression de f. Commentaire?

Exercice 14.9:

Montrer que pour tout $x \in \mathbb{R}_+^*$, $\left(x + \frac{1}{x}\right) \arctan(x) > 1$.

Exercice 14.10:

Calculer la dérivée n-ième de $f: x \mapsto x^{n-1} \ln x$.

Exercice 14.11:

Appliquer l'égalité des accroissements finis à une fonction trinôme. Que remarque-t-on?

Exercice 14.12:

Justifier que $f: x \in [0, \pi/2] \mapsto \sqrt{\sin x} + x$ réalise une bijection sur un intervalle à préciser, puis que sa réciproque est dérivable sur cet intervalle.

Exercice 14.13:

Théorème de Rolle itéré.

Exercice 14.14:

Soient a > 0, f une fonction réelle continue et dérivable sur [0, a]. On suppose f(0) = 0 et f(a)f'(a) < 0. Montrer qu'il existe $c \in]0, a[$ tel que f'(c) = 0.

Exercice 14.15:

Déterminer
$$\lim_{x \to +\infty} \left((x+1)e^{\frac{1}{x+1}} - xe^{\frac{1}{x}} \right)$$
.

Exercice 14.16:

Soit $f:[a,b]\to\mathbb{R}$ dérivable, non constante et telle que f(a)=f(b)=0. Montrer que pour tout $c\in\mathbb{R}\setminus[a,b]$, il existe un point d de [a,b] tel que la tangente au graphe de f en d coupe l'axe des abscisses au point c.

Indication 14.16:

Soit $d \in \mathbb{R} \setminus [a, b]$, par exemple d > b. On cherche un point $c \in [a, b]$ tel que $(d, 0) \in T_c \mathcal{C}_f$, autrement dit f(c) + f'(c)(d-c) = 0.

Soit $h: x \mapsto \frac{f(x)}{x-d}$. h est bien définie et dérivable sur [a,b] puisque d>b>a.

On a de plus :
$$h'(x) = \frac{f'(x)(x-d) - f(x)}{(x-d)^2}$$
.

Puisque h(a) = h(b) = 0, il existe $c \in [a, b]$ tel que h'(c) = 0, ie. f'(c)(c-d) - f(d) = -(f(c) + f'(c)(d-c)) = 0. D'où le résultat.

Exercice 14.17:

Soit $f: I \to \mathbb{R}$ où I est un intervalle ouvert de \mathbb{R} . Soit $a \in I$. On appelle dérivée centrale de f au point a, s'il existe, le réel $f'_c(a) = \lim_{\begin{subarray}{c} h \to 0 \\ h \neq 0 \end{subarray}} \frac{f(a+h) - f(a-h)}{2h}$. Montrer que si f est dérivable à gauche et à droite en a, alors $f(a) = \lim_{\begin{subarray}{c} h \to 0 \\ h \neq 0 \end{subarray}} \frac{f(a) - f(a)}{2h}$.

elle y admet une dérivée centrale. Montrer par des exemples que f peut admettre une dérivée centrale sans être continue en a, ou bien en étant continue mais dérivable ni à gauche, ni à droite.

Exercice 14.18:

Trouver toutes les applications $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que $\begin{cases} \forall x \in \mathbb{R}, \ f'(x)f'(f(x)) = 1 \\ f(0) = 0 \text{ et } f'(0) > 0 \end{cases}$

Exercice 14.19:

Soit $f \in \mathscr{C}^n(\mathbb{R}, \mathbb{R})$, on définit $g: x \mapsto f(x^2)$. Calculer la dérivée n-ième de g en fonction des dérivées successives de f.

Exercice 14.20:

Soit $f: I \to \mathbb{R}$ où I est un intervalle de \mathbb{R} . On suppose qu'existent deux réels $K \ge 0$ et $\alpha > 1$ tels que $\forall x, y \in I, |f(x) - f(y)| \le K|x - y|^{\alpha}$. Montrer que f est identiquement nulle.

Exercice 14.21:

Soit
$$f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$$
 vérifiant $\lim_{x \to \infty} f(x) + f'(x) = 0$. Montrer que $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f'(x) = 0$.

Exercice 14.22:

Soit $f:[0,1] \to \mathbb{R}$ dérivable telle que f(0)=0 et f(1)=1. Montrer que pour tout entier n, il existe des réels $0 < x_1 < \ldots < x_n < 1$ tels que $\frac{1}{n} \sum_{k=1}^n f'(x_k) = 1$.

15. Approximations polynômiales

Exercice 15.1:

Montrer qu'il n'existe pas de polynôme $P \in \mathbb{Z}[X]$ non constant tel que P(n) soit un nombre premier pour tout entier n. On écrira pour cela P(n+P(n)) à l'aide d'une formule de Taylor.

Indication 15.1:

L'indication permet d'intuiter, puis de démontrer formellement, que P(n + kP(n)) est divisible par P(n) pour tout $k \in \mathbb{N}$.

Exercice 15.2:

Soient $f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et $P \in \mathbb{R}[X]$ de degré impair. On suppose que $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, |f^{(n)}(x)| \leq |P(x)|$. Montrer que f est identiquement nulle.

Exercice 15.3:

Soit $f \in \mathscr{C}^2(\mathbb{R}, \mathbb{R}_+)$. On suppose que $\sup_{x \in \mathbb{R}} |f''(x)| \le M$.

1. Montrer que
$$\forall (x,y) \in \mathbb{R}^2$$
, $f(x) + yf'(x) + \frac{y^2}{2}M \ge 0$

- 2. En déduire que $\forall x \in \mathbb{R}, |f'(x)| \leq \sqrt{2Mf(x)}$
- 3. Que dire du cas d'égalité?

Exercice 15.4:

Soit $f \in \mathscr{C}^{\infty}(\mathbb{R}_+, \mathbb{R})$ telle que f(0) = 1 et $\forall x \geq 1/2, f(x) = 0$. Montrer que $\sup_{x \in \mathbb{R}_+} |f^{(n)}(x)| \geq 2^n n!$ pour tout $n \in \mathbb{N}$.

Exercice 15.5:

Soit f de classe \mathscr{C}^2 telle que $f''(0) \neq 0$.

- 1. Montrer que $\forall x, \exists \theta, f(x) = f(0) + xf'(\theta x)$.
- 2. Montrer que pour x assez petit, θ est unique.
- 3. Calculer $\lim_{x\to 0} \theta$.

Exercice 15.6:

Soit f de classe \mathscr{C}^2 . Supposons $f \to 0$ et $f'' \to 0$ en $+\infty$. Montrer que $f' \to 0$.

Exercice 15.7:

Donner une valeur approchée de sin(3.15) et estimer la marge d'erreur.

Exercice 15.8:

Soit f de classe \mathscr{C}^{∞} vérifiant

$$-- \forall n \in \mathbb{N}, f^{(n)}(0) = 0$$

$$--\exists \lambda > 0, \forall n \in \mathbb{N}, \sup |f^{(n)}| \le \lambda^n n!$$

Exercice 15.9:

Déterminer les dérivées d'ordre 0 à 4 de la fonction $f: x \mapsto \sqrt{\frac{x}{\tanh x}}$

Exercice 15.10:

Donner un développement limité en 0 des fonctions suivantes :

- 1. $(1 + \sin x)^{\frac{1}{x}}$
- $2. \exp\left(\frac{\ln x}{x^x 1}\right)$
- 3. $(\cos x)^{(\cot x)^2}$
- 4. $\frac{1}{e^x 1} \frac{1}{x(x+1)}$
- 5. $\sqrt{1+\sqrt{1+x^2}}$
- 6. $\frac{\ln\left(\tan\left(\frac{\pi}{4}+x\right)\right)}{\sin x}$

Exercice 15.11:

Calculer les limites suivantes :

- 1. $\lim_{x \to +\infty} \tan \left(\frac{\pi x}{2x+1} \right)$
- $2. \lim_{x \to 0^+} (\cos \sqrt{x})^{\frac{1}{x}}$

3.
$$\lim_{x \to \frac{\pi}{2}} \frac{\ln(\sin x)}{(\pi - 2x)^2}$$

4.
$$\lim_{x \to 0^+} \frac{(1+x)^{\frac{\ln x}{x}} - 1}{x(x^x - 1)}$$

Exercice 15.12:

Former le DL3 en 0 de $x \mapsto \arctan(e^x)$.

Exercice 15.13:

Déterminer le DL en 0 de $x \mapsto x^n \sin(1/x)$.

Exercice 15.14:

Etudier l'asymptote en $+\infty$ et la position relative de la courbe pour les fonctions suivantes :

$$x \mapsto \sqrt{\frac{x^3}{x-1}}$$
 $x \mapsto x^2 \arctan\left(\frac{1}{1+x}\right)$

Exercice 15.15:

Montrer que pour tout entier n, l'équation $e^x = n - x$ admet une unique solution réelle x_n . Donner un développement asymptotique à deux termes de x_n .

Exercice 15.16:

On définit x_n comme l'unique solution dans l'intervalle $]n\pi - \frac{\pi}{2}, n\pi + \frac{\pi}{2}[$ de l'équation $\tan x = x$. Donner un développement asymptotique à trois termes de x_n .

Exercice 15.17:

Soit (u_n) une suite de réels telle que pour tout n on ait $u_n^5 + nu_n - 1 = 0$. Trouver un développement asymptotique à deux termes de u_n .

Exercice 15.18:

Soit $f: x \in \mathbb{R} \mapsto x + x^3$. Montrer qu'elle est bijective de \mathbb{R} dans lui-même, donner un développement limité de f^{-1} en 0.

Exercice 15.19:

Déterminer le DL de f^{-1} , si $f: x \mapsto xe^{x^2}$.

16. Intégrale de Riemann

Exercice 16.1:

Calculer l'aire intérieure de l'ellipse d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Exercice 16.2:

Calculer la limite de $\sum_{j=n+1}^{kn} \frac{1}{j}$ lorsque $n \to \infty$, avec k entier fixé.

Exercice 16.3:

Calculer la limite de $u_n = \sum_{k=1}^n \sin \frac{k}{n} \sin \frac{k}{n^2}$ lorsque $n \to \infty$.

Exercice 16.4:

Formule de la moyenne.

Exercice 16.5:

Soit $\alpha \in \mathbb{R}_+^* \setminus \{1\}$. Calculer $I = \int_0^{2\pi} \ln(1 - 2\alpha \cos t + \alpha^2) dt$ en utilisant les sommes de Riemann

Exercice 16.6:

Soit $f \in \mathscr{C}^0([0,1],\mathbb{R})$ telle que $\int_0^1 f(t)dt = 0$. Posons $a = \min f$ et $b = \max f$. Montrer que $\int_0^1 f(t)^2 dt \le -ab$.

Exercice 16.7:

Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$. Montrer que la suite $u_n = \int_0^1 f(t^n)dt$ converge vers f(0).

Exercice 16.8:

Pour $x \in \mathbb{R}$, $xneq \pm 1$, on pose $I(x) = \int_0^{2\pi} \ln|x - e^{it}| dt$. En utilisant les sommes de Riemann, calculer I(x).

Exercice 16.9:

Soit, pour $n \in \mathbb{N}$, $I_n = \int_0^1 \frac{dx}{1+x^n}$. Etudier la suite (I_n) et en trouver un développement asymptotique à la précision o $\left(\frac{1}{n}\right)$.

Exercice 16.10:

Trouver toutes les applications $f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ vérifiant $\forall (x, y) \in \mathbb{R}^2$, $f(x)f(y) = \int_{x-y}^{x+y} f(t)dt$.

Exercice 16.11:

Soient $f \in \mathscr{C}^0([a,b],\mathbb{R})$ et $\varphi \in \mathscr{C}^0(\mathbb{R},\mathbb{R})$ convexe. Montrer : $\varphi\left(\frac{1}{b-a}\int_a^b f(t)dt\right) \leq \frac{1}{b-a}\int_a^b \varphi(f(t))dt$

Exercice 16.12:

Soit $f \in \mathcal{C}^0([a,b],\mathbb{C})$. A quelle condition sur f a-t-on:

$$\int_{a}^{b} |f(t)|dt = \left| \int_{a}^{b} f(t)dt \right|$$

Exercice 16.13:

Soit $f \in \mathscr{C}^0([0,1],\mathbb{R})$ telle que $\int_0^1 f(t)dt = \frac{1}{2}$. Montrer que f admet un point fixe.

Exercice 16.14:

Soit $\sigma \in \mathfrak{S}_n$. Soit $f:[0,1] \to [0,1]$ qui échange les n premières décimales d'un réel selon la permutation σ . Montrer que f est continue par morceaux et calculer son intégrale dans le cas n=2.

Exercice 16.15:

Soit
$$f \in \mathscr{C}^2([0,1],\mathbb{R})$$
. On pose $u_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) - \int_0^1 f(t)dt$. Montrer que $u_n \sim \frac{f(1) - f(0)}{2n}$.

Exercice 16.16:

On dit qu'une partie A de $\mathbb R$ est négligeable si, pour tout réel $\varepsilon > 0$, il existe une famille $(I_n)_{n \in \mathbb N}$ d'intervalles $]a_n, b_n[$ telle que $A \subset \bigcup_{n \in \mathbb N} I_n$ et $\sum_{n=0}^{+\infty} (b_n - a_n) < \varepsilon$.

- 1. Montrer qu'une réunion dénombrable d'ensembles négligeables est négligeable.
- 2. Montrer qu'une fonction bornée $f:[a,b]\to\mathbb{R}$ est intégrable au sens de Riemann si et seulement si l'ensemble des points de [a,b] où f est discontinue est négligeable.

Exercice 16.17:

Soient $f:[a,b]\to\mathbb{R}$ continue et soit $n\in\mathbb{N}^*$. On suppose que $\forall k\in[0,n]$, $\int_a^b t^k f(t)dt=0$. On veut montrer que f s'annule au moins n+1 fois sur [a,b].

- 1. Si P est un polynôme de degré $\leq n,$ que dire de $\int_a^b f(t) P(t) dt$?
- 2. Supposons par l'absurde que f s'annule seulement en m points de [a,b] avec $m \le n$. Construire à l'aide de f (en particulier avec certains zéros bien choisis) une fonction g telle que $\forall x \in [a,b], g(x) \ge 0$ et telle que $\int_a^b g(t)dt = 0$. Conclure.

Exercice 16.18:

Soit ϕ une fonction continue positive, $a \in \mathbb{R}_+$ et y une fonction réelle de classe \mathscr{C}^1 . On suppose que

$$\forall x \in \mathbb{R}_+, \quad y(x) \le a + \int_0^x y(t)\phi(t)dt$$

Montrer que :

$$\forall x \in \mathbb{R}_+, \quad y(x) \le a \exp\left[\int_0^x \phi(t)dt\right]$$

17. SÉRIES NUMÉRIQUES

Exercice 17.1:

Donner la nature des séries dont les termes généraux sont donnés ci-dessous :

1.
$$u_n = f\left(\frac{1}{n}\right)$$
 avec $f \in \mathscr{C}^2([0,1], \mathbb{R})$

2.
$$u_n = \frac{(-1)^{\binom{n}{2}}}{n}$$

3.
$$u_n = \frac{1 + 1/2 + \dots + 1/n}{\ln(n!)}$$

$$4. \ u_n = \ln\left(1 + \frac{(-1)^n}{n^\alpha \ln n}\right)$$

5.
$$u_n = \frac{d_n}{n^2}$$
 où d_n est le nombre de diviseurs de n

6.
$$u_n = \frac{x_n(k)}{n}$$
 où $x_n(k)$ vaut 1 si $n|k$, 0 sinon

7.
$$u_n = \frac{1! + 2! + \dots + n!}{(n+p)!}$$
 avec $p \in \mathbb{Z}$

Exercice 17.2:

Soit $\sum u_n$ une série à terme positifs. On pose $v_n = \frac{u_n + \dots + u_{2n-1}}{n}$. Montrer que $\sum v_n$ est de même nature que $\sum u_n$.

Exercice 17.3:

Soit $\sum u_n$ une série convergente à termes positifs. Etudier la convergence de la série de terme général $v_n = \frac{1}{n^2} \sum_{k=1}^n k u_k$.

Exercice 17.4:

Soit $a_n = \max\{p \in \mathcal{P}, p|n\}$. Etudier la convergence de la série $\sum \frac{1}{na_n}$ grâce à une transformation d'Abel.

Exercice 17.5:

Soit (a_n) une suite de réels positifs tels que $\sum a_n$ converge. On définit $b_n = a_n^{1-\frac{1}{n}}$. Montrer que $\sum b_n$ converge également. On distinguera les cas $b_n > 2a_n$ et $b_n \le 2a_n$.

Exercice 17.6:

- 1. Soient (u_n) et (v_n) deux suites réelles strictement positives. Pour $n \in \mathbb{N}$, on pose $U_n = \sum_{k=0}^n u_k$ et $V_n = \sum_{k=0}^n v_k$. Montrer que si $u_n \sim v_n$ et $V_n \to +\infty$ alors $U_n \sim V_n$.
- 2. Application : que dire d'une suite (u_n) telle que $u_nU_n \to 1$?

Exercice 17.7:

Soit $a \in]0,1[,(u_n)$ une suite de réels positifs et (x_n) la suite définie par $x_0>0$ et $\forall n\in\mathbb{N},\ x_{n+1}=ax_n+(1-a)\sqrt{u_n+x_n^2}$. Montrer que la série $\sum u_n$ et la suite (x_n) sont de même nature.

Exercice 17.8:

Soit (z_n) une suite complexe. A quelle condition existe-t-il une extractrice ϕ telle que $\sum z_{\phi(n)}$ converge?

Exercice 17.9:

Soit (u_n) une suite de réels positifs tendant vers 0. On pose $U_n = \sum_{k=1}^n u_k$ et on suppose l'existence d'une constante $M \ge 0$ bornant la suite $(U_n - nu_n)$ en valeur absolue. Montrer que $\sum u_k$ converge.

On pourra s'aider de l'inégalité suivante, préalablement démontrée : $\left| \frac{\overline{U_n}}{n} - \frac{\overline{U_{n-1}}}{n-1} \right| \le M \left(\frac{1}{n-1} - \frac{1}{n} \right)$.

Exercice 17.10:

Soit f une application de \mathbb{R} dans \mathbb{R} telle que pour toute suite (u_n) de réels tels que $\sum u_n$ converge, $\sum f(u_n)$ converge aussi. Montrer que f est continue en 0 et vérifie, pour x et y suffisamment proches de 0, l'équation f(x+y)=f(x)+f(y). Caractériser alors f.

PROBABILITÉS

18. Dénombrement

Exercice 18.1:

Un jeu de poker comporte 32 cartes, une main est composée de 5 cartes non ordonnées.

- 1. Combien y-a-t-il de mains possibles?
- 2. Combien y a-t-il de mains contenant une paire? une double paire? un brelan? un carré?
- 3. Combien y-a-t-il de flush? de quintes?
- 4. Combien de mains contiennent au plus deux carreaux?
- 5. Combien de mains contiennent au moins un coeur ou une dame?

Exercice 18.2:

On dispose r boules dans n urnes, $r \leq n$. Quelle est la probabilité d'avoir au plus une boule dans chaque urne?

Exercice 18.3:

Soit S(n,k) le nombre de surjections d'un ensemble à n éléments vers un ensemble à k éléments. Montrer que le nombre de partitions d'un ensemble à n éléments est $P_n = \sum_{k=1}^n \frac{S(n,k)}{k!}$.

Exercice 18.4:

On définit a_n le nombre d'involutions d'un ensemble fini A de cardinal n, ie le nombre de fonctions $f:A\to A$ vérifiant $f^2=\mathrm{id}_A$. Trouver une relation de récurrence satisfaite par la suite (a_n) . Montrer qu'elle s'exprime par la formule $a_n=\sum_{k=0}^n \binom{n}{k} k^{n-k}$.

Exercice 18.5:

Soient $n \in \mathbb{N}^*$ points du plan tels que trois quelconques ne soient pas alignés. Combien de triangles définissentils?

Exercice 18.6:

Nombre de partitions d'un ensemble fini en deux ensembles? En trois ensembles?

Exercice 18.7:

On note S(m, n) le nombre de surjections d'un ensemble de car- dinal m sur un ensemble de cardinal n $(m \ge n)$.

- 1. Démontrer S(m, n) = n(S(m, n 1) + S(m 1, n 1))
- 2. Démontrer $p^m = \sum_{k=0}^{p} \binom{p}{p-k} S(m,k)$

Exercice 18.8:

Soit E un ensemble fini de cardinal n. Combien y a-t-il de couples $(A, B) \in \mathfrak{P}(E)^2$ tels que $A \subset B$?

Exercice 18.9:

On définit a_n le nombre d'involutions d'un ensemble fini A de cardinal n, ie le nombre de fonctions $f:A\to A$ vérifiant $f^2=\mathrm{id}_A$. Trouver une relation de récurrence satisfaite par la suite (a_n) . Montrer qu'elle s'exprime par la formule $a_n=\sum_{k=0}^n \binom{n}{k} k^{n-k}$.

Exercice 18.10:

On se place dans le plan \mathbb{R}^2 et on considère n droites $\Delta_1, ..., \Delta_n$ en position générale : elles ne sont pas concourantes, et il n'y en a pas deux parallèles. Donner le nombre R_n de régions découpées par ces droites.

Exercice 18.11:

- 1. Soit, pour $n \in \mathbb{N}$, c_n le nombre de façons de trianguler un polynôme convexe à n+2 sommets. Trouver une relation de récurrence satisfaite par (c_n) .
- 2. Montrer que la suite $\frac{1}{n+1} \binom{2n}{n}$ vérifie la même relation de récurrence que a_n et b_n .

Exercice 18.12:

Soient $x_1, ..., x_n$ des réels. Montrer la formule :

$$\sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_n \le n} \min\{x_1, \dots, x_n\} = \max\{x_1, \dots, x_n\}$$

Exercice 18.13:

Soit E un ensemble de cardinal n.

- 1. Trouver le nombre de lois de composition interne sur E qui sont commutatives et admettent un élément neutre.
- 2. Enoncer une relation de récurrence donnant le nombre de relations d'équivalence qu'on peut définir sur E.

Exercice 18.14:

Etant donné E un ensemble de cardinal n, on appelle famille intersectante de E un sous-ensemble \mathcal{F} de $\mathfrak{P}(E)$ tel que si F_1, F_2 sont des parties de E qui appartiennent à \mathcal{F} , elles ont au moins un élément en commun.

- 1. Soit $F \in \mathcal{F}$: que dire de \overline{F} ? En déduire que $|\mathcal{F}| \leq 2^{n-1}$.
- 2. Déterminer toutes les familles intersectantes de cardinal maximal.

Exercice 18.15:

Soit S(n,k) le nombre de surjections d'un ensemble à n éléments vers un ensemble à k éléments. Montrer que le nombre de partitions d'un ensemble à n éléments est $P_n = \sum_{k=1}^n \frac{S(n,k)}{k!}$.

Exercice 18.16:

Montrer que dans une assemblée de n personnes il y en a toujours deux qui ont exactement le même nombre d'amis au sein du groupe.

Exercice 18.17:

Soit $\sigma \in \mathfrak{S}_n$. Déterminer le nombre de parties de [1, n] stables par σ .

Exercice 18.18:

On note $d_{n,k}$ le nombre de sous-ensembles de [1, n] de cardinal k ne contenant pas deux entiers consécutifs.

- 1. Trouver une relation de récurrence pour $d_{n,k}$.
- 2. Exprimer $D_n = \sum_{k=0}^n d_{n,k}$ à l'aide de nombres de Fibonacci.
- 3. En déduire une expression des nombres de Fibonacci à l'aide d'une somme de coefficients binomiaux.

Exercice 18.19:

On appelle antichaı̂ne de $\mathfrak{P}(\llbracket 1,n \rrbracket)$ toute partie \mathcal{A} non vide de $\mathfrak{P}(\llbracket 1,n \rrbracket)$ vérifiant la propriété suivante : $\forall X,Y\in\mathcal{A},X\neq Y\implies X\not\subset Y.$ On se propose de montrer le lemme de Sperner : toute antichaı̂ne de $\mathfrak{P}(\llbracket 1,n \rrbracket)$ a un cardinal majoré par $\binom{n}{\lfloor n/2 \rfloor}$.

- 1. Donner un exemple d'antichaı̂ne de cardinal $\binom{n}{\lfloor n/2 \rfloor}$.
- 2. Si $k \in [0, n]$, comparer $\binom{n}{k}$ et $\binom{n}{\lfloor n/2 \rfloor}$.
- 3. Soit B une partie de $[\![1,n]\!]$ de cardinal k. Si $\sigma \in \mathfrak{S}_n$, on dit que σ commence par B si $B = \{\sigma(1),...,\sigma(k)\}$. A l'aide de cette notion, montrer, si A est une antichaîne de $\mathfrak{P}([\![1,n]\!])$, l'inégalité : $\sum_{B \in \mathcal{A}} |B|!(n-|B|)! \le n!$.
- 4. Conclure.

19. Espaces probabilisés

Exercice 19.1:

Soint A, B deux évènements. Montrer que $\max\{0, \mathbb{P}(A) + \mathbb{P}(B) - 1\} \leq \mathbb{P}(A \cap B) \leq \min\{\mathbb{P}(A), \mathbb{P}(B)\}$.

Exercice 19.2:

Une urne contient des boules blanches et noires en proportion p et q (avec p+q=1). On opère à des tirages successifs avec remise.

- 1. Quelle est la probabilité que la première boule blanche tirée apparaisse lors du n-ième tirage?
- 2. Quelle est la probabilité que la k-ième boule blanche tirée apparaisse lors du n-ième tirage?

Exercice 19.3:

Un championnat de football rassemble n équipes de L1 et n équipes de L2, chacune jouant un match et un seul. Calculer la probabilité p_n que tous les matchs soient mixtes, la probabilité q_n qu'aucun ne le soit, et trouver leurs limites quand $n \to \infty$.

Exercice 19.4:

Des joueurs en nombre infini $(J_k)_{k\in\mathbb{N}^*}$ s'affrontent de la manière suivante : chaque manche oppose deux concurrents qui ont chacun la probabilité 1/2 de gagner. La première manche oppose J_1 et J_2 et, à l'étape n, si elle a lieu, le gagnant de l'épreuve précédente affronte le joueur A_{n+1} . Le jeu s'arrête lorsque, pour la première fois, un joueur gagne deux manches consécutives.

- 1. Quelle est la probabilité que l'étape n ait lieu?
- 2. En déduire que le jeu s'arrête presque sûrement.
- 3. Quelle est la probabilité que le joueur A_n gagne?

Exercice 19.5:

Une succession d'individus se transmet une information binaire de proche en proche, qui bascule à chaque fois avec probabilité p. Quelle est la probabilité que l'individu de fin reçoive la bonne information?

Exercice 19.6:

Soit A un évènement indépendant de tous les autres. Calculer $\mathbb{P}(A)$.

Exercice 19.7:

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé, $(A_n)_{n \in \mathbb{N}}$ une suite d'évènements. On note $\overline{\lim} A_n$ l'ensemble des $\omega \in \Omega$ qui appartiennent à une infinité de A_n .

- 1. Justifier que $\overline{\lim} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$ et en déduire que $\overline{\lim} A_n \in \mathcal{T}$.
- 2. On suppose que $\sum_{n=0}^{\infty} \mathbb{P}(A_n) < +\infty$. Montrer que $\mathbb{P}(\overline{\lim} A_n) = 0$.
- 3. On suppose que $\sum_{n=0}^{\infty} \mathbb{P}(A_n) = +\infty$ et que les A_n sont mutuellement indépendants. Montrer que $\mathbb{P}(\overline{\lim}A_n) = 1$.
- 4. Application: singe dactylographe.

Exercice 19.8:

Un étudiant fait face à un QCM de n questions, chacune avec 4 réponses possibles. Pour chacune il connaît la réponse avec probabilité p, sinon il répond au hasard. Quelle est l'espérance de sa note?

Exercice 19.9:

Dans cet exercice toutes les variables sont à valeurs dans un sous-ensemble fini de \mathbb{Z} . On appelle fonction caractéristique d'une variable aléatoire X la fonction $\phi_X : u \in \mathbb{R} \mapsto \mathbb{E}[e^{iuX}] \in \mathbb{C}$.

- 1. Montrer que ϕ_X est bien définie, 2π -périodique et de classe \mathscr{C}^{∞} . Calculer $\phi_X(0)$, $\phi_X'(0)$.
- 2. Soit X suivant une loi de Bernouilli : calculer ϕ_X .
- 3. Montrer que si X et Y sont indépendantes, $\phi_{X+Y}(u) = \phi_X(u)\phi_Y(u)$.
- 4. En déduire ϕ_X pour X de loi binomiale.

Exercice 19.10:

- 1. Soit X une variable aléatoire à valeurs dans [1, n]. Exprimer $\mathbb{E}[X]$ en fonction des $\mathbb{P}(X \geq k)$.
- 2. Soient X, Y deux variables aléatoires uniformes dans [1, n]. Calculer $\mathbb{E}[\max(X, Y)], \mathbb{E}[\min(X, Y)], \mathbb{E}[|X Y|]$.

Exercice 19.11:

On munit [1, n] de la probabilité uniforme. Existe-t-il deux évènements indépendants de probabilité $p \in]0, 1[$?

Exercice 19.12:

On choisit n points au hasard sur un cercle. Quelle est la probabilité que lorsqu'on les relie en un polygone convexe, le centre du cercle appartienne à ce polygone?

Exercice 19.13:

Pour tout sous-ensemble A de \mathbb{N} , on note $a_n = \frac{\operatorname{card}(A \cap \llbracket 1, n \rrbracket)}{n}$ et $\mu(A)$ la limite de a_n lorsque celle-ci existe, appelée mesure de A. On note \mathbb{L} l'ensemble des parties de \mathbb{N} pour lesquelles μ est définie.

- 1. Soit $x \in [0,1]$. Trouver une infinité de parties de \mathbb{N} de mesure x.
- 2. Montrer que $\mathbb{L} \neq \mathfrak{P}(\mathbb{N})$. \mathbb{L} est-elle une tribu?

3. La mesure μ est-elle σ -additive?

Exercice 19.14:

Soit $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ un entier ≥ 2 . On note \mathbb{P} la probabilité uniforme sur $\Omega = [1, n]$.

- 1. Que définit la fonction d'Euler $\varphi(n)$?
- 2. Soit d un diviseur de n, et M(d) l'ensemble de ses multiples dans Ω . Calculer $\mathbb{P}(M(d))$.
- 3. Montrer que $\varphi(n) = \operatorname{card} \bigcap_{i=1}^{r} \overline{M(p_i)}$
- 4. En déduire la valeur de $\varphi(n)$

Exercice 19.15:

Soit
$$s \in]1, +\infty[$$
. On note $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ et on définit, pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(\{n\}) = \frac{1}{\zeta(s)n^s}$.

- 1. Vérifier que cela définit une probabilité sur \mathbb{N}^* . Si $k \in \mathbb{N}^*$, exprimer $\mathbb{P}(k\mathbb{N}^*)$.
- 2. Montrer que les évènements $\{p\mathbb{N}^*, p \in \mathcal{P}\}$ forment une famille mutuellement indépendante.

3. Etablir la formule :
$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{\prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p^s}\right)}.$$

20. Variables aléatoires

Exercice 20.1:

- 1. (a) Pour t réel et $x \in [-1, 1]$, montrer que $e^{tx} \le \frac{1 x}{2} e^{-t} + \frac{1 + x}{2} e^{t}$
 - (b) Soit X une variable aléatoire centrée bornée par 1. Montrer que pour tout t, la variable e^{tX} est d'expérance finie, et que $\mathbb{E}(e^{tX}) \le \operatorname{ch}(t) \le e^{t^2/2}$
- 2. Soient $(X_i)_{i \in [\![1,n]\!]}$ des variables aléatoires mutuellement indépendantes centrées et bornées. On note $c_i = \sup_{\omega \in \Omega} |X_i(\omega)|$ et $S_n = \sum_{i=1}^n X_i$
 - (a) Montrer que $\mathbb{E}(e^{tS_n}) \le \exp\left[\frac{t^2}{2}\sum_{i=1}^n c_i^2\right]$
 - (b) On suppose désormais t>0. En utilisant l'inégalité de Markov, montrer que pour tout $\alpha>0$, $\mathbb{P}(S_n>\alpha)\leq \exp\left[-t\alpha+\frac{t^2}{2}\sum_{i=1}^n c_i^2\right]$
 - (c) En déduire que $\mathbb{P}(|S_n| > \alpha) \le 2 \exp\left[-\frac{\alpha^2}{2\sum_{i=1}^n c_i^2}\right]$

Exercice 20.2:

Soit X une variable aléatoire suivant la loi uniforme sur \mathfrak{S}_n .

- 1. Soit $A \subset [1, n]$ de cardinal k. Calculer la probabilité de l'évènement " $X_{|A}$ est croissante".
- 2. Soit ψ l'application qui à $\sigma \in \mathfrak{S}_n$ associe le cardinal du plus grand ensemble sur lequel σ est croissante. Montrer que pour $k \in [\![1,n]\!]$ on a : $\mathbb{P}(\psi(X) \geq k) \leq \frac{1}{k!} \binom{n}{k}$.
- 3. Montrer que si c > e on a pour n assez grand : $\mathbb{E}(\psi(X)) \le c\sqrt{n}$.

Exercice 20.3:

Soient X et Y deux variables aléatoires prenant respectivement m et n valeurs. Montrer que X et Y sont indépendantes si et seulement si $\forall (k,l) \in [\![1,m]\!] \times [\![1,n]\!], \mathbb{E}(X^kY^l) = \mathbb{E}(X^k)\mathbb{E}(Y^l).$

Exercice 20.4:

Soit X une variable aléatoire suivant la loi géométrique de paramètre p décalée : $\forall n \in \mathbb{N}$, $\mathbb{P}(X = n) = (1-p)^n p$. On note Q et R respectivement le quotient et le reste de la division euclidienne de X par un entier d fixé. Déterminer la loi de (Q,R). Ces deux variables sont-elles indépendantes?

Exercice 20.5:

Soient $n \in \mathbb{N}^*$, $X_{1,n},...,X_{n,n}$ des variables aléatoires mutuellement indépendantes telles que $\forall i \in [\![1,n]\!]$, $X_{i,n} \sim \mathcal{G}\left(\frac{n-i+1}{n}\right)$. On pose $T_n = \sum_{i=1}^n X_{i,n}$.

- 1. Expliquer en quoi la variable aléatoire T_n modélise le problème du collectionneur de coupons.
- 2. Déterminer $\mathbb{E}(T_n)$. En donner un développement asymptotique à la précision o(n).

3. Si
$$t \in \mathbb{N}^*$$
, montrer : $\mathbb{P}(T_n > t) = \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} \left(1 - \frac{k}{n}\right)^t$.

Exercice 20.6:

Soit $(X_{i,j})_{(i,j)\in[\![1,n]\!]}$ une famille de variables aléatoires centrées réduites mutuellement indépendantes. On note M la variable aléatoire à valeurs matricielles dont les coefficients sont les $X_{i,j}$. Calculer espérance et variance de la variable aléatoire det M.

Exercice 20.7:

On munit \mathfrak{S}_n de la probabilité uniforme. Déterminer espérance et variance du nombre d'inversions d'une permutation.

Exercice 20.8:

On considère un graphe aléatoire à n sommets, modélisé comme un ensemble de $\binom{n}{2}$ variables aléatoires indépendantes suivant la loi $\mathcal{B}(p)$. On note X_n le nombre de sommets isolés.

- 1. Déterminer $\mathbb{E}(X_n)$.
- 2. Montrer que si $p = p_n = \frac{\ln n}{n} + \frac{c}{n} + o\left(\frac{1}{n}\right)$ où c est une constante, $\mathbb{E}(X_n)$ admet une limite que l'on déterminera.
- 3. Montrer que si $p = p_n$ avec $n(p_n \ln n) \to -ty$, alors $\mathbb{P}(X_n \ge 1) \to 0$.

Exercice 20.9:

Soient X une variable aléatoire et a un réel.

- 1. Montrer que pour tout $t \in \mathbb{R}_+$, $\mathbb{P}(X \mathbb{E}(X) \ge a) \le \frac{t^2 + \mathbb{V}(X)}{(t+a)^2}$.
- 2. En déduire que $\mathbb{P}(|X \mathbb{E}(X)| \ge a) \le \frac{\mathbb{V}(X)}{\mathbb{V}(X) + a^2}$.

FONDEMENTS

21. Logique et ensembles

Exercice 21.1:

Soit $f: \mathbb{R} \to \mathbb{R}$. Traduire avec des quantificateurs les assertions suivantes puis les nier :

- f n'est pas constante
- f est monotone
- f ne prend jamais deux fois la même valeur
- f est bornée sur \mathbb{R}_+
- -f est périodique
- f prend une infinité de fois chaque valeur réelle

Exercice 21.2:

Soient A, B et C trois parties d'un même ensemble E. On suppose que $A \cup B = A \cup C$ et $A \cap B = A \cap C$. Montrer que B = C.

Indication 21.2:

Combiner double inclusion et disjonction de cas.

Exercice 21.3:

Soit E un ensemble, et A, B des parties de E. Discuter et résoudre les équations $A \cup X = B$ et $A \cap X = B$, d'inconnue $X \in \mathfrak{P}(E)$

Exercice 21.4:

Soient A et B deux parties non vides d'un ensemble E. On considère l'application $f: \mathfrak{P}(E) \to \mathfrak{P}(A) \times \mathfrak{P}(B)$ définie par : $f(X) = (X \cap A, X \cap B)$.

- 1. A quelle condition f est-elle injective?
- 2. A quelle condition f est-elle surjective?

Indication 21.4:

- 1. Ssi $A \cup B = E$.
- 2. Ssi $A \cap B = \emptyset$.

Exercice 21.5:

Soit $f: \mathbb{R} \to \mathbb{R}$, on se donne $T \in \mathbb{R}_+^*$. Montrer que f s'écrit de façon unique sous la forme g + h avec g fonction T-périodique et h fonction nulle sur [0, T].

Exercice 21.6:

Déterminer les fonctions $f: \mathbb{Q} \to \mathbb{Q}$ telles que $\forall (x,y) \in \mathbb{Q}^2$, f(x+y) = f(x) + f(y).

Exercice 21.7:

Montrer que pour tout entier $n \ge 3$, il existe des entiers naturels strictement positifs $u_1 < u_2 < ... < u_n$ tels que $\frac{1}{u_1} + \cdots + \frac{1}{u_n} = 1$.

Exercice 21.8:

Déterminer toutes les fonctions $f: \mathbb{N} \to \mathbb{N}$ injectives et telles que $\forall n \in \mathbb{N}, f(n) \leq n$.

Exercice 21.9:

Montrer que $\forall n \in \mathbb{N}, \exists (p,q) \in \mathbb{N}^2, n = 2^p(2q+1).$

Exercice 21.10:

Soit $(E_k)_{k \in [\![1,n]\!]}$ une famille finie d'ensembles 2 à 2 distincts. Montrer qu'il existe $i \in [\![1,n]\!]$ tel que E_i ne contienne aucun des E_j pour $j \neq i$.

Exercice 21.11:

On colore tous les points du plan arbitrairement soit en bleu, soit en rouge. Montrer qu'il existe au moins un triangle équilatéral dont les trois sommets sont de la même couleur.

Exercice 21.12:

Soit $f: \mathfrak{P}(E) \to \mathfrak{P}(E)$ une fonction croissante (pour l'inclusion). Montrer qu'elle admet un point fixe.

22. Applications et relations

Exercice 22.1:

Soient E et F deux ensembles. Montrer qu'il existe une injection de E dans F si et seulement si il existe une surjection de F dans E.

Indication 22.1:

1. Soit f une injection de E dans F. On définit g par

$$\forall y \in F, g(y) = \begin{cases} \text{l'unique ant\'ec\'edent de } y \text{ par } f & \text{si } y \in \text{Im}(f) \\ \text{un \'el\'ement quelconque de } E & \text{sinon} \end{cases}$$

On vérifie que g est bien surjective.

2. Soit q une surjection de F dans E. On définit f par

$$\forall x \in E, f(x) = \text{ un des éléments de } g^{\langle -1 \rangle}(\{x\})$$

On vérifie que f est bien injective.

Exercice 22.2:

Soit E un ensemble.

- 1. Montrer qu'il existe une injection de E dans $\mathfrak{P}(E)$.
- 2. Montrer qu'il n'existe pas de surjection f de E dans $\mathfrak{P}(E)$. Considérer pour cela l'ensemble $A=\{x\in E, x\notin f(x)\}$

Indication 22.2:

- 1. Prendre $x \in E \mapsto \{x\} \in \mathfrak{P}(E)$
- 2. Montrer que si f est une fonction de E dans $\mathfrak{P}(E)$, A ne peut pas être dans l'image de f. En effet s'il existe $x \in E$ tel que A = f(x) on a une contradiction.

Exercice 22.3:

Soit $f: E \to F$. On définit $\hat{f}: X \in \mathfrak{P}(E) \mapsto f(X) \in \mathfrak{P}(F)$ et $\hat{f}^{-1}: Y \in \mathfrak{P}(F) \mapsto f^{-1}(Y) \in \mathfrak{P}(E)$. Montrer que f injective $\iff \hat{f}$ injective $\iff \hat{f}^{-1}$ surjective.

Exercice 22.4:

Soient E, F et G trois ensembles, $f: E \to F, g: E \to G$. On définit $h: E \to F \times G$ par $\forall x \in E, h(x) = (f(x), g(x))$.

- 1. Montrer que si f ou g est injective, h l'est aussi.
- 2. On suppose maintenant f et g surjectives : h l'est elle nécessairement?

Exercice 22.5:

Soit E un ensemble et $f: E \to E$. Montrer que f est bijective si et seulement si pour toute partie A de E, $f(\overline{A}) = \overline{f(A)}$.

Exercice 22.6:

Soient A,B,C des ensembles. Exhiber une bijection entre $A^{B\times C}$ et $(A^B)^C$.

Indication 22.6:

Laisser couler les notations.

Exercice 22.7:

Montrer que E est infini ssi toute fonction $f: E \to E$ admet une partie stable non triviale.

Indication 22.7:

Examiner les ensembles $\{f^n(x)|x\in E\}.$

Exercice 22.8:

Soit $\sigma: \mathbb{N} \to \mathbb{N}$ une injection. Montrer que $\{n \in \mathbb{N} | \sigma(n) \ge n\}$ est infini.

Indication 22.8:

Par l'absurde.

Exercice 22.9:

Soit $f:E\to F$ une application, et G un troisième ensemble ayant au moins deux éléments. On définit les applications :

$$f_{\star}: \phi \in E^G \mapsto f \circ \phi \in F^G$$
 $f^{\star}: \psi \in G^F \mapsto \psi \circ f \in G^E$

- 1. Montrer que f injective $\iff f_{\star}$ injective $\iff f^{\star}$ surjective
- 2. Enoncé correspondant pour f surjective

Exercice 22.10:

Soit E un ensemble, $f: E \to E$. Soit A une partie de E. On note, pour $n \in \mathbb{N}$, $f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ fois}}$ et

 $A_n = f^n(A)$. Posons $B = \bigcup_{n \in \mathbb{N}} A_n$. Montrer que B est la plus petite partie de E (au sens de l'inclusion) stable par f (c'est-à-dire telle que $f(B) \subset B$) et contenant A.

Exercice 22.11:

On dit qu'un ensemble partiellement ordonné est bien ordonné si toute partie non vide admet un plus petit élément. Montrer qu'un bon ordre est forcément total. Que dire de la réciproque?

Exercice 22.12:

On définit sur \mathbb{R}^2 la relation \leq par $(x_1, y_1) \leq (x_2, y_2) \iff |x_2 - x_1| \leq y_2 - y_1$.

- 1. Montrer qu'il s'agit d'une relation d'ordre.
- 2. Soit $(x,y) \in \mathbb{R}^2$. Dessiner l'ensemble des majorants et minorants de (x,y) pour \leq .
- 3. L'ordre est-il total?
- 4. Soit $A = \{(x, y) \in \mathbb{R}^2, \ x^2 + y^2 \le 1\}$. Déterminer $\sup A$.

Indication 22.12:

L'ensemble des majorants de (x, y) est un cône de \mathbb{R}^2 , de sommet (x, y), pointe vers le bas, et dont les côtés ont des pentes respectives -1 et +1. L'ensemble des minorants de (x, y) est son symétrique par rapport à la droite horizontale passant par (x, y).

On montrera que sup A est le point $(0, \sqrt{2})$.

Exercice 22.13:

Soit E un ensemble muni d'une opération \cdot commutative et associative vérifiant $\forall x \in E, \ x \cdot x = x$. On définit la relation \leq sur E par $x \leq y \iff x \cdot y = x$

- 1. Reconnaître \leq quand $E = \mathfrak{P}(X)$ où X est un ensemble, et \cdot correspond à \cup (ou \cap)
- 2. Montrer que \leq est une relation d'ordre.
- 3. Montrer que $\forall x, y \in E, x \cdot y = \inf \{x, y\}$

Exercice 22.14:

Soit E un ensemble muni d'une relation d'équivalence \sim , pour laquelle la classe d'équivalence de x sera notée \bar{x} . Pour $A \subset E$ on définit $s(A) = \bigcup_{x \in A} \bar{x}$.

- 1. Comparer A et s(A). Simplifier s(s(A)).
- 2. Montrer que pour tout $x \in E$, on a l'équivalence entre $[x \in s(A)]$ et $[\bar{x} \cap s(A) \neq \emptyset]$. En déduire $s(E) \setminus s(A)$.
- 3. Soit $(A_i)_{i\in I}$ une famille de parties de E. Montrer que $s(\bigcup_{i\in I}A_i)=\bigcup_{i\in I}s(A_i)$ et $s(\bigcap_{i\in I}A_i)\subset\bigcap_{i\in I}s(A_i)$ (donner un exemple d'inclusion stricte).

Exercice 22.15:

- 1. On définit sur le corps $\mathbb C$ la relation $\mathscr R$ par $z_1\mathscr R z_2 \iff \mathfrak{Im}(z_1\overline{z_2})=0$. Montrer qu'il s'agit d'une relation d'équivalence. A quoi correspond l'ensemble quotient $\mathbb C/\mathscr R$?
- 2. Soit $p \in \mathbb{N}$, $p \geq 2$. Même question pour la relation $z_1 \mathscr{S} z_2 \iff z_i^p = z_2^p$.

Exercice 22.16:

Soit E un ensemble. On définit sur l'ensemble $\mathfrak{P}(E)$ la différence symétrique par $A\Delta B=(A\cup B)\backslash(A\cap B)$. On définit la relation \mathscr{R} sur $\mathfrak{P}(E)$ par $A\mathscr{R}B\iff A\Delta B$ est un ensemble fini de cardinal pair. Est-ce une relation d'équivalence?

23. Sommes et calculs algébriques

Exercice 23.1:

Montrer que la suite $u_n = \sum_{k=1}^n \frac{1}{n+k}$ est strictement monotone.

Indication 23.1:

Calculer $u_{n+1} - u_n$ et reconnaître une somme téléscopique.

Exercice 23.2:

Soit E un ensemble de cardinal n. Combien E a-t-il de parties de cardinal pair? impair?

Indication 23.2:

Relier cela aux sommes $A_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k}$ et $B_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k+1}$. Calculer ensuite $A_n + B_n$ et $A_n - B_n$.

Exercice 23.3:

Calculer les sommes
$$S_n = \sum_{k=0}^n k \binom{n}{k}$$
 et $T_n = \sum_{k=0}^n \frac{1}{k+1} \binom{n}{k}$.

Indication 23.3:

On trouve
$$S_n = n2^{n-1}$$
 et $T_n = \frac{2^{n+1} - 1}{n+1}$.

Exercice 23.4:

- 1. Ecrire $\binom{n}{k}\binom{n-k}{p-k}$ sous la forme d'un autre produit de coefficients binômiaux.
- 2. En déduire une formule simple pour : $\sum_{k=0}^{p} \binom{n}{k} \binom{n-k}{p-k}$

Exercice 23.5:

Soit E un ensemble à n éléments. Déterminer le nombre de couples $(A, B) \in \mathfrak{P}(E)^2$ tels que $A \subset B$.

Indication 23.5:

Leur nombre est:

$$u_n = \sum_{\substack{A,B \subset E \\ A \subset B}} 1 = \sum_{B \subset E} \sum_{A \subset B} 1 = \sum_{B \subset E} 2^{|B|} = 3^n$$

Exercice 23.6:

En calculant de deux manières la somme $\sum_{i=1}^{n} \sum_{k=i}^{n} k$, retrouver la formule donnant la somme des premiers carrés.

Indication 23.6:

Intervertir les signes somme.

Exercice 23.7:

Calculer les sommes :

1.
$$S_n = \sum_{k=1}^n \frac{k}{(k+1)!}$$

2.
$$U_n = \sum_{1 \le i, j \le n} |i - j|$$

Exercice 23.8:

Soit
$$x \in \mathbb{R}^*$$
 tel que $x + \frac{1}{x} \in \mathbb{Z}$. Montrer que $\forall n \in \mathbb{N}^*, \ x^n + \frac{1}{x^n} \in \mathbb{Z}$

Exercice 23.9:

Prouver que pour tout
$$n \in \mathbb{N}^*$$
, $\sum_{k=1}^n \frac{(-1)^{k-1}}{k} \binom{n}{k} = \sum_{j=1}^n \frac{1}{j}$

Exercice 23.10:

On définit $u_n = \sum_{k=0}^{\lfloor n/2 \rfloor} 2^k \binom{n}{2k}$. En calculant $\frac{(1+x)^n + (1-x)^n}{2}$, déterminer une expression de u_n .

Exercice 23.11:

Montrer que pour
$$n \in \mathbb{N}^*$$
 : $\binom{2n}{n} > \frac{4^n}{2n+1}$

Exercice 23.12:

Calculer les sommes
$$E_n = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{2k}$$
 et $F_n = \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} (-1)^k \binom{n}{2k+1}$.

Exercice 23.13:

- 1. Montrer que si $n \in \mathbb{N}^*$, $n! = \prod_{\substack{1 \leq i,j \leq n \\ i+j=n+1}} \sqrt{ij}$
- 2. Montrer que si $i, j \ge 1$, alors $i + j 1 \le ij \le \left(\frac{i+j}{2}\right)^2$.
- 3. En déduire que $n^{\frac{n}{2}} \le n! \le \left(\frac{n+1}{2}\right)^2$.

Exercice 23.14:

En calculant de deux manières $(1+x)^a(1+x)^b$, montrer l'égalité :

$$\sum_{k=0}^{c} \binom{a}{k} \binom{b}{c-k} = \binom{a+b}{c}$$

Indication 23.14:

De chaque côté, identifier les termes de degré c en x.

24. Rationnels et réels

Exercice 24.1:

Montrer que pour tout $n \ge 2$, $H_n = \sum_{k=1}^n \frac{1}{k}$ n'est pas un entier. Indication : prouver par récurrence forte qu'il s'agit du rapport d'un entier impair sur un entier pair.

Exercice 24.2:

- 1. Montrer que si x est un réel dont le développement décimal est périodique à partir d'un certain rang, alors x est rationnel.
- 2. Soit $x = \frac{a}{b}$ un rationnel. En étudiant les divisions euclidiennes $10^k a = bq_k + r_k$ pour $k \in [0, b]$, montrer l'existence de deux indices p et q tels que $\frac{10^p a}{b} \frac{10^q a}{b} \in \mathbb{N}$.
- 3. Conclure que le développement décimal de x est périodique à partir d'un certain rang.

Exercice 24.3:

Soit A une partie de $\mathbb R$ vérifiant : A n'est bornée ni à droite ni à gauche et $\forall a,b\in A,\ \frac{a+b}{2}\in A$. Montrer que A est dense dans $\mathbb R$

Exercice 24.4:

Montrer que l'ensemble $\{\sqrt{n} - \sqrt{m}, (n, m) \in \mathbb{N}^2\}$ est dense dans \mathbb{R}^+ .

Exercice 24.5:

Soient I et J des intervalles de \mathbb{R} . Montrer que $I+J=\{x+y,x\in I \text{ et } y\in J\}$ et $I\cdot J=\{x\cdot y,x\in I \text{ et } y\in J\}$ sont également des intervalles de \mathbb{R} .

Exercice 24.6:

Résoudre dans \mathbb{R} l'équation $\lfloor \sqrt{x^2 + 1} \rfloor = \lfloor x \rfloor$.

Exercice 24.7:

Soient $x_1, ..., x_n$ une famille de réels. Déterminer $\inf_{a \in \mathbb{R}} \sum_{k=1}^n |a - x_k|$.

Exercice 24.8:

Soit $f: \mathbb{R} \to \mathbb{R}$ une application telle que

$$\begin{cases} \forall (x,y) \in \mathbb{R}^2, f(x+y) = f(x) + f(y) \\ \forall (x,y) \in \mathbb{R}, f(xy) = f(x)f(y) \\ f(1) = 1 \end{cases}$$

- 1. Montrer que $f_{|\mathbb{Q}} = \mathrm{id}_{\mathbb{Q}}$.
- 2. Montrer que f est croissante.
- 3. En déduire $f = id_{\mathbb{R}}$.

Exercice 24.9:

- 1. Montrer l'existence et l'unicité de deux suites d'entiers vérifiant $\forall n \in \mathbb{N}, (1+\sqrt{2})^n = a_n + b_n \sqrt{2}$.
- 2. Montrer $a_n^2 2b_n^2 = (-1)^n$.
- 3. Montrer que $\forall n \in \mathbb{N}, \exists ! p \in \mathbb{N}, (1+\sqrt{2})^n = \sqrt{p} + \sqrt{p-1}$.

Exercice 24.10:

Soient $A = \left\{\frac{n}{nm+1}, n \in \mathbb{N}^*\right\}$, $B = \{\lfloor x \rfloor + \lfloor 1/x \rfloor | x \in \mathbb{R}^*\}$ Ces ensembles admettent-ils une borne supérieure? une borne inférieure? un maximum? un minimum?

Exercice 24.11:

Soient $(x_k)_{k \in [\![1,n]\!]}$ et $(y_k)_{k \in [\![1,n]\!]}$ deux familles de réels. En étudiant la fonction $\lambda \mapsto \sum_{k=1}^n (x_k + \lambda y_k)^2$, montrer

que
$$\left(\sum_{k=1}^{n} x_k y_k\right)^2 \le \sum_{k=1}^{n} x_k^2 \sum_{k=1}^{n} y_k^2$$

Exercice 24.12:

1. Montrer que pour tout réel x, $\lfloor 2x \rfloor = \lfloor x \rfloor + \left\lfloor x + \frac{1}{2} \right\rfloor$

2. En déduire une expression simple, pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, de : $S_n(x) = \sum_{k=0}^n \left\lfloor \frac{x+2^k}{2^{k+1}} \right\rfloor$

Exercice 24.13:

Soit $f: \mathbb{R} \to \mathbb{R}$ une application telle que

$$\begin{cases} \forall (x,y) \in \mathbb{R}^2, f(x+y) = f(x) + f(y) \\ \forall (x,y) \in \mathbb{R}, f(xy) = f(x)f(y) \\ f(1) = 1 \end{cases}$$

- 1. Montrer que $f_{|\mathbb{Q}} = \mathrm{id}_{\mathbb{Q}}$.
- 2. Montrer que f est croissante.
- 3. En déduire $f = id_{\mathbb{R}}$.

Exercice 24.14:

Déterminer tous les triplets d'entiers tels que $x^x + y^y = z^z$.

Exercice 24.15:

Soit A une partie bornée de \mathbb{R} . Exprimer $\sup_{x,y\in A}|x-y|$ en fonction de $\sup A$ et inf A.

Exercice 24.16:

Soit $(x_{i,j})_{1 \le i,j \le n}$ une famille de n^2 éléments de \mathbb{R} . Comparer les deux quantités suivantes : sup inf $x_{i,j}$ et $\inf \sup x_{i,j}$

Exercice 24.17: Sous-groupes de \mathbb{R}

Soit G un sous-ensemble de \mathbb{R} tel que $\forall (a,b) \in G^2$, $-a \in G$ et $a+b \in G$. Notons $\alpha = Indication 24.17 : (G \cap G)$ \mathbb{R}_{+}^{*}).

- 1. Montrer que si $\alpha > 0$, alors $G = \alpha \mathbb{Z} = \{\alpha n, n \in \mathbb{Z}\}.$
- 2. Montrer que si $\alpha = 0$, alors G est dense dans \mathbb{R} .

Exercice 24.18:

Soit $A = \left\{ \frac{n - \frac{1}{n}}{n + \frac{1}{n}}, \ n \in \mathbb{N}^* \right\}$. Cet ensemble admet-il une borne supérieure? une borne inférieure? un maximum? un minimum?

Nombres complexes, trigonométrie

Exercice 25.1:

Résoudre dans \mathbb{C} l'équation $z^4 = \overline{z}$, puis l'équation $z^4 = z + \overline{z}$.

Exercice 25.2:

Soit $x \in \mathbb{R}$. Calculer $e^{i \arctan(x)}$.

Exercice 25.3:

Calculer
$$\sum_{k=0}^{n} \binom{n}{k} \cos(a+kb)$$
.

Exercice 25.4:

Trouver dans \mathbb{C} les points d'affixe z vérifiant $\bar{z}(z-1) = z^2(\bar{z}-1)$.

Indication 25.4:

Passer l'équation au conjugué, et trouver une condition nécessaire portant sur |z|, puis finir le raisonnement.

Exercice 25.5:

Soit
$$z \in \mathbb{C} \setminus \mathbb{R}^-$$
. Montrer que $\arg(z) \equiv 2 \arctan\left(\frac{\Im \mathfrak{m}(z)}{|z| + \Re \mathfrak{e}(z)}\right) [2\pi]$

Indication 25.5:

Attention à la définition de la tangente : se placer dans un demi-cercle adéquat pour calculer.

Exercice 25.6:

Montrer que pour
$$n \in \mathbb{N}^*$$
, $2\cos\left(\frac{\pi}{2^{n+1}}\right) = \underbrace{\sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}_{n \text{ radicaux}}$

Exercice 25.7:

Soient $P=\{z\in\mathbb{C},\mathfrak{Im}(z)>0\}$ et $D=\{z\in\mathbb{C},|z|<1\}.$ Montrer que $f:z\mapsto\frac{z-i}{z+i}$ est une bijection de P sur D.

Exercice 25.8:

On considère dans \mathbb{C} l'équation (E) suivante, où a est un paramètre réel : $z^2 - (1+a)(1+i)z + (1+a^2)i = 0$

- 1. Déterminer en fonction de a les valeurs des deux solutions z_1 et z_2 .
- 2. On note M(a) le milieu des deux points d'affixes z_1 et z_2 pour une valeur du paramètre donnée. Tracer la courbe du plan complexe décrite par M lorsque a parcourt \mathbb{R} .

Exercice 25.9:

Soit $P \in \mathbb{C}_{n-1}[X]$. On note $M = \max\{|P(z)|, z \in \mathbb{U}_n\}$. Montrer que tous les coefficients de P sont bornés par M.

Indication 25.9:

Ecrire
$$P(X) = \sum_{k=0}^{n-1} a_k X^k$$
 et calculer pour $m \in [0, n-1]$ la somme : $\sum_{j=0}^{n-1} P(\omega^j) \omega^{-jm}$, où $\omega = e^{\frac{2i\pi}{n}}$.

Exercice 25.10:

Soient $n \in \mathbb{N}^*$ et $\omega_k = e^{\frac{2ik\pi}{n}}$. Calculer la somme $T_n = \sum_{k=0}^{n-1} \frac{1}{1-\omega_k}$ de deux façons différentes :

- 1. à l'aide d'une symétrie de la cotangente.
- 2. à l'aide du polynôme $P_n = (X-1)^n X^n$.

Indication 25.10:

On montrera que $T_n = (n-1)/2$

Exercice 25.11:

Soient
$$n \in \mathbb{N}^*$$
, $\omega = e^{\frac{2i\pi}{n}}$ et $Z = \sum_{k=0}^{n-1} |\omega^k - 1|^2$. Calculer Z .

Exercice 25.12:

Montrer que pour
$$\theta$$
 réel et p entier positif :
$$\sum_{k=0}^{2p-1} \cos^{2p} \left(\theta + \frac{k\pi}{2p} \right) = \frac{p\binom{2p}{p}}{2^{2p-1}}$$

Indication 25.12:

Développer à l'aide des formules d'Euler et du binôme, intervertir les sommes et enlever les termes nuls.

Exercice 25.13:

Soit
$$n \in \mathbb{N}$$
, $n \ge 2$. On note $\omega = \exp\left(\frac{2i\pi}{n}\right)$.

- 1. Montrer que pour tout $z \in \mathbb{C} \setminus \{1\}$: $\prod_{k=1}^{n-1} (z \omega^k) = \sum_{p=0}^{n-1} z^p$ On admet que l'égalité reste valable pour z = 1.
- 2. En déduire l'égalité : $\prod_{k=1}^{n-1} \frac{\sin(k\pi)}{n} = \frac{n}{2^{n-1}}$

Exercice 25.14:

- 1. Déterminer deux complexes z_1 et z_2 vérifiant $\begin{cases} z_1+z_2=r\in\mathbb{R}\\ \arg(z_1)=\alpha_1\\ \arg(z_2)=\alpha_2 \end{cases}$
- 2. Application : un traîneau est tiré par deux chiens reliés à lui par deux cordes attachées en un même point. Le mouvement est rectiligne ; la première corde fait un angle de 20° avec l'axe du traîneau, la deuxième un angle de 30°. La résultante des forces de traction a une intensité de 300 N, calculer les intensités des forces de traction de chacun des chiens.

Exercice 25.15:

Montrer que la fonction $f: z \mapsto z \exp(z)$ est surjective de \mathbb{C} dans lui-même.

Indication 25.15:

Expliciter puis bidouiller le système d'équations correspondant à f(z) = Z.

Exercice 25.16:

CNS sur $z \in \mathbb{C}$ pour que z, z^2, z^3 forment un triangle équilatéral?

Exercice 25.17:

Soit $z \in \mathbb{C}^*$ et $\theta \in]-\pi,\pi]$ son argument principal.

- 1. Montrer que $|z\theta| \ge |z |z||$.
- 2. En déduire que $|z-1| \le ||z|-1| + |z\theta|$
- 3. Interpréter le résultat géométriquement : tracer le cercle \mathcal{C} de centre 0 et de rayon |z|, placer les points M d'affixe z et A d'affixe 1.

Exercice 25.18:

Soient a, b, z trois points de z. Calculer l'affixe du symétrique de Z par rapport à la droite AB.

Exercice 25.19:

Quelle est l'image du cercle unité de $\mathbb C$ par l'application $z\mapsto \frac{1}{1-z}$?

Exercice 25.20:

Montrer que $a,b,c\in\mathbb{C}$ sont alignés ssi $a\bar{b}+b\bar{c}+c\bar{a}\in\mathbb{R}.$