> In [1]: %matplotlib inline

탐색

기본 정보

```
# -*- codina : utf-8 -*-
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        drinks = pd.read_csv('C:/Users/sungwonKim/Desktop/SAM/이것이 데이터분석이다 with 파이
        print(drinks.info())
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 193 entries, 0 to 192
       Data columns (total 6 columns):
        # Column
                                        Non-Null Count Dtype
        0
           country
                                         193 non-null
                                                       object
                                         193 non-null
            beer_servings
                                                       int64
         1
            spirit_servings
        2
                                        193 non-null
                                                       int64
           wine_servings
                                        193 non-null
        3
                                                       int64
           total_litres_of_pure_alcohol 193 non-null
                                                       float64
        4
                                        170 non-null
           continent
                                                       object
        dtypes: float64(1), int64(3), object(2)
       memory usage: 9.2+ KB
       None
In [4]:
        # 다른 변수와 continent 개수 보면 23개의 차이가 있음.
```

In [5]:	drinks.head(10)

Out[5]:		country	beer_servings	spirit_servings	wine_servings	total_litres_of_pure_alcohol	continent
	0	Afghanistan	0	0	0	0.0	AS
	1	Albania	89	132	54	4.9	EU
	2	Algeria	25	0	14	0.7	AF
	3	Andorra	245	138	312	12.4	EU
	4	Angola	217	57	45	5.9	AF
	5	Antigua & Barbuda	102	128	45	4.9	NaN
	6	Argentina	193	25	221	8.3	SA
	7	Armenia	21	179	11	3.8	EU
	8	Australia	261	72	212	10.4	OC
	9	Austria	279	75	191	9.7	EU

나라 / 맥주 소비량 / 스피릿 소비량 / 와인 소비량 / 알콜 섭취량 / 대륙

```
In [6]: # 숫자정보 drinks.describe()
```

Out[6]:		beer_servings	spirit_servings	wine_servings	total_litres_of_pure_alcohol
	count	193.000000	193.000000	193.000000	193.000000
	mean	106.160622	80.994819	49.450777	4.717098
	std	101.143103	88.284312	79.697598	3.773298
	min	0.000000	0.000000	0.000000	0.000000
	25%	20.000000	4.000000	1.000000	1.300000
	50%	76.000000	56.000000	8.000000	4.200000
	75%	188.000000	128.000000	59.000000	7.200000
	max	376.000000	438.000000	370.000000	14.400000

탐색 및 시각화

피처(열) 간의 상관관계 탐색

```
# 'beer_servings(소비량)', 'wine_servings' 두 피처간의 상관계수를 계산.
                            # pearson은 상관계수를 구하는 계산 방법 중 하나를 의미
                            # 가장 널리 쓰이는 방법입니다.
                            corr = drinks[['beer_servings', 'wine_servings']].corr(method = 'pearson')
                            print(corr)
                                                                    beer_servings wine_servings
                          beer_servings
                                                                                   1.000000
                                                                                                                             0.527172
                                                                                   0.527172
                                                                                                                             1.000000
                         wine_servings
                            # 피처간의 상관계수 행렬을 구하기.
                            cols = ['beer_servings', 'spirit_servings', 'wine_servings', 'total_litres_of_pure_ale
                            corr = drinks[cols].corr(method = 'pearson')
                            print(corr)
                                                                                                               beer_servings spirit_servings wine_servings ₩
                         beer_servings
                                                                                                                             1.000000
                                                                                                                                                                             0.458819
                                                                                                                                                                                                                        0.527172
                                                                                                                             0.458819
                          spirit_servings
                                                                                                                                                                             1.000000
                                                                                                                                                                                                                        0.194797
                                                                                                                             0.527172
                                                                                                                                                                             0.194797
                                                                                                                                                                                                                        1.000000
                         wine_servings
                                                                                                                             0.835839
                                                                                                                                                                             0.654968
                                                                                                                                                                                                                        0.667598
                          total_litres_of_pure_alcohol
                                                                                                               total_litres_of_pure_alcohol
                         beer_servings
                                                                                                                                                                        0.835839
                                                                                                                                                                        0.654968
                          spirit_servings
                                                                                                                                                                        0.667598
                         wine_servings
                                                                                                                                                                        1.000000
                          total_litres_of_pure_alcohol
  In [9]:
                            type(corr)
 Out[9]: pandas.core.frame.DataFrame
In [10]:
                            !pip install seaborn
                         Requirement already satisfied: seaborn in c:\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\users\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\undern\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\unders\und
                         ges (0.11.1)
```

Requirement already satisfied: scipy>=1.0 in c:\users\unders\unders\users\users\users\unders\users\unders\users\users\users\users\unders\users\users\unders\

Requirement already satisfied: matplotlib>=2.2 in c:\u00edusers\u00fcsungwonkim\u00fcanaconda3\u00fclib\u00fcsite-packages (from seaborn) (3.3.4)

Requirement already satisfied: numpy>=1.15 in c:\users\unders\u

Requirement already satisfied: pandas>=0.23 in c:\u00edusers\u00fcsungwonkim\u00fcanaconda3\u00fclib\u00fcsite-packages (from seaborn) (1.2.4)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in c:\u00cdusers\u00fcsus ungwonkim\u00fcanaconda3\u00fclib\u00fcsite-packages (from matplotlib>=2.2->seaborn) (2.4.7)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\u00edusers\u00fcsungwonkim\u00fcanaconda3\u00fclib \u00dcsite-packages (from matplotlib>=2.2->seaborn) (1.3.1)

Requirement already satisfied: pillow>=6.2.0 in c:\users\unders\un

Requirement already satisfied: python-dateutil>=2.1 in c:\u00c8users\u00f8sungwonkim\u00fcanaconda3\u00fcllib\u00e4lib\u00e4setzers\u00e4sungwonkim\u00fcanaconda3\u00fcllib\u00e4lib\u00e4setzers\u00e4setzers\u00e4sungwonkim\u00fcanaconda3\u00fcllib\u00e4lib\u00e4setzers\u00e4setzerz\u00e4setzers\u00e4setzers\u00e4setzers\u00e4setzerz\u00e4setzerz\u00e4setzers\u00e4setzerz\u00e4s\u00e4setzerz\u00e4setzerz\u00e4setzerz\u00e4setzerz\u00e4setzerz\

Requirement already satisfied: cycler>=0.10 in c:\u00ccusers\u00fcsungwonkim\u00fcanaconda3\u00fclib\u00fcsite-packages (from matplotlib>=2.2->seaborn) (0.10.0)

Requirement already satisfied: six in c:\u00e4users\u00fcsungwonkim\u00fcanaconda3\u00fclib\u00fcsite-packages (from cycler>=0.10->matplotlib>=2.2->seaborn) (1.15.0)

Requirement already satisfied: pytz>=2017.3 in c:\users\unders\unders\users\users\users\users\users\users\users\users\users\users\users\users\users\users\unders\unders\users\users\users\unders\unders\unders\users\unders

```
In [11]:
```



```
In [12]
```

```
annot_kws={'size': 15},
    yticklabels=cols_view,
    xticklabels=cols_view)

plt.tight_layout()
plt.show()
```


탐색적 분석

결측 데이터

```
In [14]:
          print(drinks.isnull().sum())
          print("--
          print(drinks.dtypes)
         country
                                            0
                                            0
         beer_servings
                                            0
         spirit_servings
                                            0
         wine_servings
         total_litres_of_pure_alcohol
                                            0
                                           23
         continent
         dtype: int64
                                            object
         country
                                             int64
         beer_servings
                                             int64
         spirit_servings
                                             int64
         wine_servings
                                           float64
         total_litres_of_pure_alcohol
                                            object
         continent
         dtype: object
```

```
In [15]:
          # 결측데이터를 처리 : 기타 대륙으로 통합 -> 'OT'
          drinks['continent'] = drinks['continent'].fillna('OT')
          # continent 열에 결측값이 있다면 OT로 채워주기.
          drinks['continent'].isnull().sum()
Out[16]: 0
          drinks.head(10)
               country beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol continent
                                  0
            Afghanistan
                                                0
                                                                                     0.0
                                                                                               AS
          1
                Albania
                                 89
                                              132
                                                             54
                                                                                     4.9
                                                                                               EU
          2
                                                0
                Algeria
                                 25
                                                             14
                                                                                     0.7
                                                                                               ΑF
          3
                Andorra
                                245
                                              138
                                                            312
                                                                                    12.4
                                                                                               EU
          4
                Angola
                                217
                                               57
                                                             45
                                                                                     5.9
                                                                                               ΑF
              Antigua &
          5
                                102
                                              128
                                                             45
                                                                                     4.9
                                                                                               OT
               Barbuda
          6
              Argentina
                                193
                                               25
                                                            221
                                                                                     8.3
                                                                                               SA
                                                                                               EU
          7
               Armenia
                                              179
                                 21
                                                            11
                                                                                     3.8
          8
               Australia
                                261
                                               72
                                                            212
                                                                                    10.4
                                                                                               OC
          9
                Austria
                                279
                                               75
                                                            191
                                                                                     9.7
                                                                                               EU
          drinks['continent'].value_counts()
         AF
                53
                45
         EU
          AS
                44
          0T
                23
          00
                16
          SA
                12
         Name: continent, dtype: int64
          labels = drinks['continent'].value_counts().index.tolist()
          fracs1 = drinks['continent'].value_counts().values.tolist()
          explode = (0, 0, 0, 0.25, 0, 0) # 빠져나오는 간격
          # pie 차트
          plt.pie(fracs1, explode=explode, labels=labels, autopct='%.0f%%', shadow=True)
          # fracs1, labels 자리는 꼭 입력해줘야하는 parameter
          plt.title('null data to ₩'OT₩'')
          plt.show()
```

null data to 'OT'

drinks['continent'].value_counts().index.tolist()

drinks['continent'].value_counts().values.tolist()

어떤 값을 도출할까?

그룹 단위

```
# 대륙별 spirit_servings의 평균, 최소, 최대, 합계를 계산.
result = drinks.groupby('continent').spirit_servings.agg(['mean', 'min', 'max', 'sum'
# 같은 문법
# result = drinks.groupby('continent')['spirit_servings'].agg(['mean', 'min', 'max',
# 함수 agg : 그룹별로 list로 정의해놓은 연산을 각각 적용해서 리턴해줌.
result.head()
```

Out [22]: mean min max sum

continent AF 16.339623 152 866 0 AS 60.840909 326 2677 132.555556 EU 373 5965 0 OC 58.437500 254 935 **OT** 165.739130 438 3812 68

```
drinks.total_litres_of_pure_alcohol.mean()
```

Out [23]: 4.717098445595855

```
drinks.groupby('continent')['total_litres_of_pure_alcohol'].mean()
```

```
Out[24]: continent
        AF
              3.007547
         AS
              2.170455
         EU
              8.617778
         00
              3.381250
         0T
              5.995652
         SA
              6.308333
        Name: total_litres_of_pure_alcohol, dtype: float64
         # 전체 평균보다 많은 알코올을 섭취하는 대륙 출력.
         total_mean = drinks.total_litres_of_pure_alcohol.mean() # 데이터 전체 평균
         continent_mean = drinks.groupby('continent')['total_litres_of_pure_alcohol'].mean() #
         continent_over_mean = continent_mean[continent_mean >= total_mean]
         print(continent_over_mean)
         continent
         EU
              8.617778
         0T
              5.995652
              6.308333
        Name: total_litres_of_pure_alcohol, dtype: float64
         # 평균 beer_servings이 가장 높은 대륙 출력.
         beer_continent = drinks.groupby('continent').beer_servings.mean().idxmax()
         # groupby 의 index는 대륙이다.
         # idxmax : 가장 큰 값의 index를 뽑으면 대륙이 나오겠다.
         print(beer_continent)
```

EU

시각화

```
n_groups = len(result.index)
means = result['mean'].tolist() # 값들을 list로
mins = result['min'].tolist() # 값들을 list로
maxs = result['max'].tolist() # 값들을 list로
sums = result['sum'].tolist() # 값들을 list로
index = np.arange(n\_groups) # : 0, 1, 2, 3
bar width = 0.1
rects1 = plt.bar(index, means, bar_width, # 막대 두께
                color='r', # red
                label='Mean') # mean 막대 그래프
rects2 = plt.bar(index + bar_width, mins, bar_width,
                color='g',
                 label='Min')
rects3 = plt.bar(index + bar_width * 2, maxs, bar_width,
                color='b'.
                 label='Max')
rects4 = plt.bar(index + bar_width * 3, sums, bar_width,
                color='y',
                label='Sum')
# plt.xticks(index, result.index.tolist())
# plt.legend()
plt.show()
```



```
# 대륙별 spirit_servings의 평균, 최소, 최대, 합계를 시각화.
# result = 대륙별 spirit_servings의 평균, 최소, 최대, 합계를 계산한 list
n_groups = len(result.index)
means = result['mean'].tolist() # 값들을 list로
mins = result['min'].tolist() # 값들을 list로
maxs = result['max'].tolist() # 값들을 list로
sums = result['sum'].tolist() # 값들을 list로
index = np.arange(n\_groups) # : 0, 1, 2, 3
bar_width = 0.1
rects1 = plt.bar(index, means, bar_width, # 막대 두께
               color='r', # red
               label='Mean') # mean 막대 그래프
rects2 = plt.bar(index + bar_width, mins, bar_width,
               color='g',
               label='Min')
rects3 = plt.bar(index + bar_width * 2, maxs, bar_width,
               color='b',
               label='Max')
rects4 = plt.bar(index + bar_width * 3, sums, bar_width,
               color='y',
               label='Sum')
plt.xticks(index, result.index.tolist()) # x 축에 대륙 이름 넣기
plt.legend() # 우측 상단 legend
plt.show()
```



```
# 대륙별 beer_servings의 평균, 최소, 최대, 합계를 시각화.
# result = 대륙별 beer_servings의 평균, 최소, 최대, 합계를 계산한 list
n_groups = len(result.index)
result2 = drinks.groupby('continent').beer_servings.agg(['mean', 'min', 'max', 'sum']
means = result2['mean'].tolist() # 값들을 list로
mins = result2['min'].tolist() # 값들을 list로
maxs = result2['max'].tolist() # 값들을 list로
sums = result2['sum'].tolist() # 값들을 list로
index = np.arange(n\_groups) # : 0, 1, 2, 3
bar_width = 0.1
rects1 = plt.bar(index, means, bar_width, # 막대 두께
                color='r', # red
                label='Mean') # mean 막대 그래프
rects2 = plt.bar(index + bar_width, mins, bar_width,
                color='g',
                label='Min')
rects3 = plt.bar(index + bar_width * 2, maxs, bar_width,
                color='b',
                label='Max')
rects4 = plt.bar(index + bar_width * 3, sums, bar_width,
                color='y',
                label='Sum')
plt.xticks(index, result.index.tolist()) # x 축에 대륙 이름 넣기
plt.legend() # 우측 상단 legend
plt.show()
```



```
# 대륙별 wine_servings의 평균, 최소, 최대, 합계를 시각화.
# result = 대륙별 wine_servings의 평균, 최소, 최대, 합계를 계산한 list
n_groups = len(result.index)

result3 = drinks.groupby('continent').wine_servings.agg(['mean', 'min', 'max', 'sum'])

means = result3['mean'].tolist() # 값들을 list로
mins = result3['min'].tolist() # 값들을 list로
maxs = result3['max'].tolist() # 값들을 list로
sums = result3['sum'].tolist() # 값들을 list로
index = np.arange(n_groups) # : 0, 1, 2, 3
bar_width = 0.1
```

```
rects1 = plt.bar(index, means, bar_width, # 막대 두께 color='r', # red label='Mean') # mean 막대 그래프

rects2 = plt.bar(index + bar_width, mins, bar_width, color='g', label='Min')

rects3 = plt.bar(index + bar_width * 2, maxs, bar_width, color='b', label='Max')

rects4 = plt.bar(index + bar_width * 3, sums, bar_width, color='y', label='Sum')

plt.xticks(index, result.index.tolist()) # x 축에 대륙 이름 넣기 plt.legend() # 우측 상단 legend plt.show()
```



```
# 대륙별 total_servings의 평균, 최소, 최대, 합계를 시각화.
# result = 대륙별 total_servings의 평균, 최소, 최대, 합계를 계산한 list
n groups = len(result.index)
drinks['total_servings'] = drinks['beer_servings'] + drinks['wine_servings'] + drinks
result4 = drinks.groupby('continent').total_servings.agg(['mean', 'min', 'max', 'sum'
means = result4['mean'].tolist() # 값들을 list로
mins = result4['min'].tolist() # 값들을 list로
maxs = result4['max'].tolist() # 값들을 list로
sums = result4['sum'].tolist() # 값들을 list로
index = np.arange(n\_groups) # : 0, 1, 2, 3
bar_width = 0.1
rects1 = plt.bar(index, means, bar_width, # 막대 두께
                color='r', # red
                label='Mean') # mean 막대 그래프
rects2 = plt.bar(index + bar_width, mins, bar_width,
                color='g'.
                label='Min')
rects3 = plt.bar(index + bar_width * 2, maxs, bar_width,
                color='b'.
```

```
label='Max')

rects4 = plt.bar(index + bar_width * 3, sums, bar_width, color='y', label='Sum')

plt.xticks(index, result.index.tolist()) # x 축에 대륙 이름 넣기
plt.legend() # 우측 상단 legend
plt.show()
```



```
# 대륙별 total_litres_of_pure_alcohol을 시각화.
continents = continent_mean.index.tolist() # index = 대륙 이름
continents.append('mean')
x_pos = np.arange(len(continents))
alcohol = continent_mean.tolist()
alcohol.append(total_mean)

bar_list = plt.bar(x_pos, alcohol, align='center', alpha=0.5)
bar_list[len(continents) - 1].set_color('r') # 마지막 거 빨간색으로 만들기
plt.plot([0., 6], [total_mean, total_mean], "k--") # 점선
plt.xticks(x_pos, continents)

plt.ylabel('total_litres_of_pure_alcohol')
plt.title('total_litres_of_pure_alcohol by Continent')

plt.show()
```



```
# 대륙별 beer_servings을 시각화.
beer_group = drinks.groupby('continent')['beer_servings'].sum()
```

```
continents = beer_group.index.tolist()
y_pos = np.arange(len(continents))
alcohol = beer_group.tolist()

bar_list = plt.bar(y_pos, alcohol, align='center', alpha=0.5)
bar_list[continents.index("EU")].set_color('r')
plt.xticks(y_pos, continents)
plt.ylabel('beer_servings')
plt.title('beer_servings by Continent')

plt.show()
```



```
means = result['mean'].tolist()
print(means)
mins = result['min'].tolist()
print(mins)
maxs = result['max'].tolist()
print(maxs)
sums = result['sum'].tolist()
print(sums)
```

[16.339622641509433, 60.84090909090909, 132.555555555555554, 58.4375, 165.739130434782 6, 114.75]
[0, 0, 0, 0, 68, 25]
[152, 326, 373, 254, 438, 302]
[866, 2677, 5965, 935, 3812, 1377]

```
# 대륙별 total_litres_of_pure_alcohol 시각화 - 그래프 색상을 변경.
continents = continent_mean.index.tolist()
continents.append('mean')
x_pos = np.arange(len(continents))
alcohol = continent_mean.tolist()
alcohol.append(total_mean)

bar_list = plt.bar(x_pos, alcohol, align='center', alpha=0.5)
bar_list[len(continents) - 1].set_color('green')
plt.plot([0., 6], [total_mean, total_mean], "k--")
plt.xticks(x_pos, continents)

plt.ylabel('total_litres_of_pure_alcohol')
plt.title('total_litres_of_pure_alcohol by Continent')

plt.show()
```



```
# 대륙별 total_litres_of_pure_alcohol 시각화 - 점선을 변경.
continents = continent_mean.index.tolist()
continents.append('mean')
x_pos = np.arange(len(continents))
alcohol = continent_mean.tolist()
alcohol.append(total_mean)

bar_list = plt.bar(x_pos, alcohol, align='center', alpha=0.5)
bar_list[len(continents) - 1].set_color('green')
plt.plot([3., 5], [total_mean + 1.5, total_mean + 1.5], "k--")
plt.xticks(x_pos, continents)

plt.ylabel('total_litres_of_pure_alcohol')
plt.title('total_litres_of_pure_alcohol by Continent')

plt.show()
```


분석

In [37]:

!pip install scipy

Requirement already satisfied: scipy in c:\users\sungwonkim\anaconda3\lib\site-package s (1.6.2)

Requirement already satisfied: numpy<1.23.0,>=1.16.5 in c:\u00edusers\u00fcsungwonkim\u00fcanaconda3 \u00e4lib\u00fcsite-packages (from scipy) (1.20.1)

T - test

```
# 아프리카와 유럽간의 맥주 소비량 차이를 검정합니다.
africa = drinks.loc[drinks['continent']=='AF']
europe = drinks.loc[drinks['continent']=='EU']

# 두 집단의 차이 검정 => t-test

# library : scipy, 모듈 : stats
from scipy import stats
# 함수 ttest_ind 사용해서 t-test 실행
tTestResult = stats.ttest_ind(africa['beer_servings'], europe['beer_servings'])
# 이분산성 parameter 추가 가능!!
tTestResultDiffVar = stats.ttest_ind(africa['beer_servings'], europe['beer_servings'])
print("The t-statistic and p-value assuming equal variances is %.3f and %.3f." % tTest
print("The t-statistic and p-value not assuming equal variances is %.3f and %.3f" % tTest
```

The t-statistic and p-value assuming equal variances is -7.268 and 0.000. The t-statistic and p-value not assuming equal variances is -7.144 and 0.000

어느 나라가 술을 독하게 마실까?

country alcohol rate

```
# total_servings 피처를 생성.
drinks['total_servings'] = drinks['beer_servings'] + drinks['wine_servings'] + drinks
# 술 소비량 대비 알콜 비율 피처를 생성.
drinks['alcohol_rate'] = drinks['total_litres_of_pure_alcohol'] / drinks['total_servindrinks['alcohol_rate'] = drinks['alcohol_rate'].fillna(0)
# 순위 정보를 생성.
country_with_rank = drinks[['country', 'alcohol_rate']]
country_with_rank = country_with_rank.sort_values(by=['alcohol_rate'], ascending=0)
country_with_rank.head(50)
```

63	Gambia	0.266667
153	Sierra Leone	0.223333
124	Nigeria	0.185714
179	Uganda	0.153704
142	Rwanda	0.151111
183	Tanzania	0.132558
26	Burkina Faso	0.110256
33	Central African Republic	0.090000
28	Cote d'Ivoire	0.088889
104	Mali	0.085714
162	Sudan	0.080952

Malawi

Burundi

DR Congo

South Korea

Zimbabwe

0.075000

0.071591

0.063889

0.059394

0.054651

101

27

47

138

192

	country	alcohol_rate
164	Swaziland	0.050000
191	Zambia	0.045455
66	Ghana	0.040909
31	Cameroon	0.038158
92	Laos	0.033514
71	Guinea-Bissau	0.031250
58	Ethiopia	0.030435
56	Eritrea	0.027778
15	Belarus	0.025853
95	Lesotho	0.025225
85	Japan	0.023729
34	Chad	0.023529
172	Togo	0.022807
22	Botswana	0.022222
88	Kenya	0.021951
18	Benin	0.021569
159	South Africa	0.021466
121	New Zealand	0.020350
60	Finland	0.020284
98	Lithuania	0.020062
38	Comoros	0.020000
149	Saudi Arabia	0.020000
57	Estonia	0.019916
39	Congo	0.019767
182	United Kingdom	0.019259
81	Ireland	0.019128
8	Australia	0.019083
6	Argentina	0.018907
155	Slovakia	0.018843
93	Latvia	0.018784
115	Mozambique	0.018571
29	Cabo Verde	0.018519
4	Angola	0.018495
161	Sri Lanka	0.018333

In [40]:


```
drinks['alcohol_rate_rank'] = drinks['alcohol_rate'].rank(ascending=False)
drinks['alcohol_rate_rank'] = drinks['alcohol_rate_rank'].apply(np.floor)
drinks.loc[drinks['country'] == 'South Korea'].alcohol_rate_rank
```

```
Out[40]: 138 15.0
Name: alcohol_rate_rank, dtype: float64
```

```
country_with_rank[country_with_rank['country'] == 'South Korea']['alcohol_rate'].value
```

 $0 \cup \{41\}: 0.0593939393939394$

```
In [42]:
         # 국가별 순위 정보를 그래프로 시각화.
         country_list = country_with_rank.country.tolist()
         x_pos = np.arange(len(country_list))
         rank = country_with_rank.alcohol_rate.tolist()
         bar_list = plt.bar(x_pos, rank)
         bar_list[country_list.index("South Korea")].set_color('r')
         plt.ylabel('alcohol rate')
         plt.title('liquor drink rank by contry')
         plt.axis([0, 200, 0, 0.3])
         korea_rank = country_list.index("South Korea") # 14 출력 (0부터 시작이어서.)
         korea_alc_rate = country_with_rank[country_with_rank['country'] == 'South Korea']['al
         plt.annotate('South Korea : ' + str(korea_rank + 1),
                      xy=(korea_rank, korea_alc_rate),
                      xytext=(korea_rank + 10, korea_alc_rate + 0.05), # 글자 위치
                      arrowprops=dict(facecolor='red', shrink=0.05)) # 화살표 색, 길이
         plt.show()
```



```
In [ ]:
```

https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=this_africa&logNo=220342032113

```
drinks[['country', 'beer_servings', 'wine_servings', 'spirit_servings', 'total_servings', 'total_servings', 'spirit_servings', 'total_servings', 'total_serv
```

Out[43]:	3]: country		country beer_servings wine		spirit_servings	total_servings	
	107	Mauritania	0	0	0	0	
	97	Libya	0	0	0	0	

	country	beer_servings	wine_servings	spirit_servings	total_servings
80	Iraq	9	0	3	12
17	Belize	263	8	114	385
192	Zimbabwe	64	4	18	86

In []: