4. Limits, Limits at Infinity, Continuity, and I.V.T.

Lec 3 mini review.

slope of secant: $\frac{f(b)-f(a)}{b-a}$

average rate of change (AROC): $\frac{f(b)-f(a)}{b-a}$

goal: instantaneous rate of change (IROC) at a:

goal: slope of tangent at a:

 $\frac{f(a+h)-f(a)}{b}$ want $h \to 0$ $\frac{f(a+h)-f(a)}{b}$ want $h \to 0$

limits: the intuitive definition $\lim_{x\to a} f(x) = L$

one-sided limits: $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$

why some limits DNE:

infinite limits (vertical asymptotes) no unique real number ${\cal L}$ different or DNE from left/right

ways to evaluate limits:

numerically graphically with **Limit Laws** and algebraic tricks (factoring, rationalizing,...)

SQUEEZING LIMITS

Example 4.1. Recall from last class that $\lim_{x\to 0} \sin\left(\frac{\pi}{x}\right)$ DNE.

What about the limit $\lim_{x\to 0} x^2 \sin\left(\frac{\pi}{x}\right)$?

^{*} These notes are solely for the personal use of students registered in MAT1320.

THE SQUEEZE THEOREM.

Let f, g, and h be functions.

If

$$f(x) \le g(x) \le h(x)$$

and

$$\left[\lim_{x \to a} f(x)\right] = L = \left[\lim_{x \to a} h(x)\right]$$

then

when x is *near* a, except possibly at a, for some unique real number L,

Going back to $\lim_{x\to 0} x^2 \sin\left(\frac{\pi}{x}\right)$

CONTINUITY

A function f is **CONTINUOUS** AT A **NUMBER** a if

In order for $\lim_{x\to a} f(x) = f(a)$, three things must be true (by definition of this limit's existence):

 \Diamond

 \Diamond

<

If f is defined $near\ a$, but f fails to be continuous at a, then f is called **DISCONTINUOUS AT** a, or we say that f has a discontinuity at a.

REASONS WHY A FUNCTION COULD BE DISCONTINUOUS

Example 4.2. Consider the graph of f below.

a	Is f continuous at $x = a$?	Explain why or why not.
a = -1.5		
a = -1		
a = 0		
a = 0.5		
a=2		
$a = \sqrt{7}$		
a = 3.5		
a=4		
a=5		

Summary of possible reasons why f could be discontinuous at x=a.

- a is not in the domain of f(e.g. hole, vertical asymptote)
- o limit of f(x) as $x \to a$ DNE (e.g. infinite limit, no unique limit L, different one-sided limits, one-sided limit DNE)
- o limit of f(x) as $x \to a$ exists, but isn't equal to f(a) (e.g. jump in the graph of f at x = a)
- ► For discontinuities, look for holes, jumps, and vertical asymptotes.

ONE-SIDED CONTINUITY

▶ A function f(x) is **CONTINUOUS...**

...FROM THE LEFT AT A NUMBER a IF

...FROM THE RIGHT AT A NUMBER a IF

Example 4.3. Reconsider the function f given in Example 4.2.

a	Is f continuous at $x = a$ from the left, from the right, or neither? Explain.
a = -1.5	
a = -1	
a = 0	
a = 0.5	
a=2	
$a = \sqrt{7}$	
a = 3.5	
a=4	

CONTINUOUS ON AN INTERVAL

- \blacktriangleright A function f is **CONTINUOUS ON AN INTERVAL** if f is continuous at every number in the interval.
- ightharpoonup If f is defined only on one side of an endpoint of the interval, we understand continuous at the endpoint to mean continuous from the right, or continuous from the left.
- ▶ Informally, *f* is **CONTINUOUS ON AN INTERVAL** if we can trace the graph of *f* along the entire interval, without needing to lift our pencil off the paper.

Theorem 4.4. Let k be a constant.

If f and g are continuous at a number a, then the following functions are also continuous at a:

Theorem 4.5. The following types of functions are continuous at every real number <u>in their</u> domains:

A LIMIT LAW FOR COMPOSITIONS OF CONTINUOUS FUNCTIONS

Theorem 4.6. Let f and g be functions.

If f is continuous at b and $\lim_{x\to a}g(x)=b$, then

Example 4.7. Evaluate $\lim_{x\to 1} \sin\left(\frac{\pi - \pi\sqrt{x}}{1-x}\right)$

INTERMEDIATE VALUE THEOREM

Suppose that f is continuous on the closed interval [a,b] and $f(a) \neq f(b)$. If N is any number between f(a) and f(b), then

The Intermediate Value Theorem may seem obvious, but don't forget that it relies on the fact that f is **continuous** on the interval [a, b].

Exercise 4.8. Think about the ways in which a function can have a discontinuity. Then draw several possibilities in which a function f has the property that f(3) = -1, f(5) = 1, but there is no point $c \in [3, 5]$ such that f(c) = 0.

Example 4.9. Use the **Intermediate Value Theorem** to prove that the equation

$$x^5 - x^4 + x^3 - x - 1 = 0$$

has a root in the interval [1, 2].

LIMITS AT INFINITY & HORIZONTAL ASYMPTOTES

• Let f be a function defined on some interval (a, ∞) . Then

means that the values of f(x) can be made arbitrarily close to a unique real number L so long as x is sufficiently large.

• Let f be a function defined on some interval $(-\infty, a)$. Then

means that the values of f(x) can be made arbitrarily close to a unique real number L so long as x is a sufficiently large negative number.

• The line y=L is called a Horizontal Asymptote if $\lim_{x\to -\infty} f(x)=L$ or $\lim_{x\to \infty} f(x)=L$.

7

Useful Fact (Theorem)

- If r > 0 is a rational number, then
- If r > 0 is a rational number such that x^r is defined for all $x \in \mathbb{R}$, then

Example 4.10. $\lim_{x \to \infty} \frac{8x^3 - x^2}{1 + x - x^3}$

Example 4.11. $\lim_{x \to -\infty} \frac{x}{|x|}$

Example 4.12. $\lim_{x \to \infty} \frac{\sin(x)}{x}$

Example 4.13. $\lim_{x \to \infty} \sqrt{9x^2 + x} - 3x$

Example 4.14. $\lim_{x\to\infty} x^2$

Example 4.15. $\lim_{x \to -\infty} \cos(x)$

STUDY GUIDE

Important terms and concepts:

- $\diamond \ \ The \ Squeeze \ Theorem$
- \diamond **Continuity** continuous at x = a continuous on an interval
- Discontinuity hole jump vertical asymptote
- ♦ Intermediate Value Theorem
- ♦ Limits At Infinity & Horizontal Asymptotes