Assignment 5 (4p)

Derive the range of the hold force for a rope of length L around a bollard so that equilibrium is possible. Assume that the rope is inextensible in the direction of the mid-curve and flexible with respect to bending $(Q_n = M_b = 0)$. Consider the fully developed Coulomb friction when the load is about to move up or down. Start with the equilibrium equations of beam in (s,n,b)-system. Hint: External force b_n is the unknown of the problem and $b_s = \pm \mu b_n$ is opposite to the pending motion (μ is the coefficient of friction).

$$\left\{ \begin{aligned} &\frac{dN}{ds} - Q_n \kappa + b_s \\ &\frac{dQ_n}{ds} + N \kappa - Q_b \tau + b_n \\ &\frac{dQ_b}{ds} + Q_n \tau + b_b \end{aligned} \right\} = 0 \; , \; \left\{ \begin{aligned} &\frac{dT}{ds} - M_n \kappa + c_s \\ &\frac{dM_n}{ds} + T \kappa - M_b \tau - Q_b + c_n \\ &\frac{dM_b}{ds} + M_n \tau + Q_n + c_b \end{aligned} \right\} = 0 \; .$$

Solution

For a circular beam, curvature and torsion are $\kappa = 1/R$ (constant) and $\tau = 0$. The distributed external force components b_n and b_s describe interaction with the bollard. Contact force in the normal direction b_n is an unknown of the problem and $b_s = \pm \mu b_n$ in which the sign should be chosen so that the friction force is opposite to the pending motion.

In the problem, $Q_n = M_b = 0$ and the equilibrium equations and the boundary condition at s = 0 simplify to (the remaining are of the form 0 = 0)

$$\frac{dN}{ds} + b_s = 0$$
 and $N\kappa + b_n = 0$ $s \in (0, L)$, $N(0) = F_{load}$

Clearly, b_n needs to be negative. Therefore, assuming that the load is about to move downwards, friction acts in the direction of s, and

$$\frac{dN}{ds} - \mu b_n = 0 \quad \text{and} \quad N\kappa + b_n = 0 \quad s \in (0, L) \,, \quad N(0) = F_{\text{load}} \qquad \Leftrightarrow \qquad N_-(s) = F_{\text{load}} \exp(-\frac{\mu}{R}s) \,.$$

Assuming that the load is about to move upwards, friction acts in the direction opposite to s, and

$$\frac{dN}{ds} + \mu b_n = 0$$
 and $N\kappa + b_n = 0$ $s \in (0, L)$, $N(0) = F_{\text{load}}$ \Leftrightarrow $N_+(s) = F_{\text{load}} \exp(\frac{\mu}{R}s)$.

The corresponding hold forces at s = L

$$F_{\text{hold}}^- = N^-(L) = F_{\text{load}} \exp(-\mu \frac{L}{E})$$
 and $F_{\text{hold}}^+ = N^+(L) = F_{\text{load}} \exp(\mu \frac{L}{E})$.

Slipping does not occur, if the hold force satisfies $F_{\text{hold}}^- \leq F_{\text{hold}} \leq F_{\text{hold}}^+$ or

$$\exp(-\mu \frac{L}{R}) \le \frac{F_{\text{hold}}}{F_{\text{load}}} \le \exp(\mu \frac{L}{R})$$
.

Assuming for example one full circle around the bollard $L/R=2\pi$ and the friction coefficient $\mu=1/2$, one obtains the range $F_{\rm load}\,0.043 \le F_{\rm hold} \le 23F_{\rm load}$.