Digital Image Processing (CSE 478) Lecture5: Geometric operations

Vineet Gandhi

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Image Transformations

Image Transformations

Applications

- Align images
- Correct images for lens distortion
- Correct effects for camera orientation
- Image morphing
- Create interesting image effects

Geometric operations

 Geometric operation transforms image I to new image I' by modifying coordinates of image pixels:

$$I(x,y) \to I'(x',y')$$

Intensity value (x,y) moved to a new position x',y'

Simple mappings (Translation)

• Shift by a vector (dx, dy)

$$T_x : x' = x + d_x$$
$$T_y : y' = y + d_y$$
 or

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} d_x \\ d_y \end{pmatrix}$$

Simple mappings (Scaling)

Contracting or Stretching along x or y axis by a factor of sx or sy

$$T_x: x' = s_x \cdot x$$

 $T_y: y' = s_y \cdot y$
or

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Simple mappings (Shearing)

Along x and y axis by factor bx and by

$$T_x: x' = x + b_x \cdot y$$

 $T_y: y' = y + b_y \cdot x$
or

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & b_x \\ b_y & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Simple mappings (Rotation)

$$T_x : x' = x \cdot \cos \alpha - y \cdot \sin \alpha$$

 $T_y : y' = x \cdot \sin \alpha + y \cdot \cos \alpha$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Image flipping and rotation by 90 degrees

- Basic idea: look up a transformed pixel address instead of the current one
- To flip an image upside down
 - At pixel location (x,y), look up the color at location (x,1-y)
- For horizontal flip
 - At pixel location (x,y), look up the color at location (1-x,y)

Rotation by 90 degrees!

Forward mapping (iterate over source image)


```
for (int x=0; x<W; x++)

for(int y=0; y<H; y++)

float x' = f_x(x,y);

float y' = f_y(x,y);

dst(x',y') = source(x,y);

}
```

Transformed points may not fall on exact grid!!

Forward mapping (iterate over source image)

Courtesy: Thomas Funkhouser

Reverse mapping (iterate over destination image)

Reverse mapping (iterate over destination image)

Interpolation

Reverse mapping (may not be exact integer)

Bilinear Interpolation

Image Warping (Example Scaling)

 $T_x : x' = s_x \cdot x$ $T_y : y' = s_y \cdot y$

```
for (int x'=0; x'<W; x'++)

for(int y'=0; y'<H; y'++)

float x = x'/s_x;

float y = y'/s_y;

dst(x',y') = resample_src(x,y,w);

}
```

Image Warping (Example Rotation)


```
for (int x'=0; x'<W; x'++)

for(int y'=0; y'<H; y'++)

float x = x'\cos(\alpha) + y'\sin(\alpha);

float y = -x'\sin(\alpha) + y'\cos(\alpha);

dst(x',y') = resample_src(x,y,w);

}
```

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha - \sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Homogeneous coordinates and Affine Transformation

• Using homogenous coordinates. We can write translation, scaling, rotation etc. as a vector matrix multiplication

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Example

Courtesy: wikipedia

Affine transformation

Affine transformation

- Preserves collinearity (all points on a line, remain on a line)
 - Parallel lines remain parallel
 - Does not necessarily preserve angles between lines or distances between points (any triangle can be transformed into another using affine transformation)
 - Preserve ratios of distances between points lying on a straight line
- Desired transformation as combination of simpler ones

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Affine transformation

Desired transformation as combination of simpler ones

$$M = T_{(3,2)}R_{45^{\circ}} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos 45^{\circ} & -\sin 45^{\circ} & 0 \\ \sin 45^{\circ} & \cos 45^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \cos 45^{\circ} & -\sin 45^{\circ} & 3 \\ \sin 45^{\circ} & \cos 45^{\circ} & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 3 \\ \sqrt{2}/2 & \sqrt{2}/2 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

2D Projective transformation (homography)

Preserves collinearity (parallel lines not parallel)

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

2D Projective transformation (homography)

Important for image stitching application

- Planar
 - Rigid
 - Similarity
 - Affine
 - Projective

	Rotate	Translate	Scale	Skew/shear
Rigid	\checkmark	\checkmark	-	-
Similarity	\checkmark	\checkmark	\checkmark	-
Affine	√	\checkmark	\checkmark	\checkmark
Projective	\checkmark	\checkmark	\checkmark	\checkmark

Rigid (Isometric) → preserves length, angle, area

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} \epsilon \cos \theta & -\sin \theta & t_x \\ \epsilon \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
 3 DOF (θ, t_x, t_y)

	Rotate	Translate	Scale	Skew/shear
Rigid	\checkmark	\checkmark	-	-
Similarity	\checkmark	\checkmark	\checkmark	-
Affine	\checkmark	\checkmark	\checkmark	\checkmark
Projective	\checkmark	\checkmark	\checkmark	\checkmark

Similarity → parallel lines, angle, ratio between any two points

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
 4 DOF (θ, t_x, t_y, s)

	Rotate	Translate	Scale	Skew/shear
Rigid	\checkmark	\checkmark	-	-
Similarity	\checkmark	\checkmark	\checkmark	-
Affine	\checkmark	\checkmark	\checkmark	\checkmark
Projective	\checkmark	\checkmark	\checkmark	\checkmark

Affine → collinear, parallel lines, ratio between any two points on a line

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
 6 DOF (a_{11} , a_{12} , a_{21} , a_{22} , t_x , t_y)

	Rotate	Translate	Scale	Skew/shear
Rigid	\checkmark	\checkmark	-	-
Similarity	\checkmark	\checkmark	\checkmark	-
Affine	\checkmark	\checkmark	\checkmark	\checkmark
Projective	\checkmark	\checkmark	\checkmark	\checkmark

Projective → collinear, parallel lines not parallel

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
8 DOF

	Rotate	Translate	Scale	Skew/shear
Rigid	\checkmark	\checkmark	-	-
Similarity	\checkmark	\checkmark	\checkmark	-
Affine	\checkmark	\checkmark	\checkmark	\checkmark
Projective	\checkmark	\checkmark	\checkmark	\checkmark

Non Planar

Curved → lines do not map to lines, shapes deform (expressed as

polynomials)

Non Linear image warps

Ripple

Wavelike displace along both x and y directions

$$T_x^{-1}$$
: $x = x' + a_x \cdot \sin\left(\frac{2\pi \cdot y'}{\tau_x}\right)$,
 T_y^{-1} : $y = y' + a_y \cdot \sin\left(\frac{2\pi \cdot x'}{\tau_y}\right)$.

Sample values of parameter: $a_x=10$, $a_y=15$, $\tau_x=120$, $\tau_y=150$

Twirl

- Rotation about center or some anchor point
 - Increasingly rotate as radial distance r from center increases
 - Image unchanged after rmax

$$T_x^{-1}$$
: $x = \begin{cases} x_c + r \cdot \cos(\beta) & \text{for } r \le r_{\text{max}} \\ x' & \text{for } r > r_{\text{max}}, \end{cases}$

$$T_y^{-1}: y = \begin{cases} y_c + r \cdot \sin(\beta) & \text{for } r \leq r_{\text{max}} \\ y' & \text{for } r > r_{\text{max}}, \end{cases}$$

with

$$d_x = x' - x_c,$$
 $r = \sqrt{d_x^2 + d_y^2},$ $d_y = y' - y_c,$ $\beta = \operatorname{Arctan}(d_y, d_x) + \alpha \cdot \left(\frac{r_{\max} - r}{r_{\max}}\right).$

Spherical Transformation

- Imitates viewing image through a lens placed over image
 - Increasingly rotate as radial distance r from center increases
 - Lens center (x_c, y_c) , radius (r_{max}) , refractive index (ρ)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} ntan\theta \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} ntan\theta \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix}$$

Courtesy: Emmanuel Agu

More specific grid based warping

Automatic Cinemagraph Portraits

EGSR 2013

Jiamin Bai¹ Aseem Agarwala² Maneesh Agrawala¹ Ravi Ramamoorthi¹

UC Berkeley¹ Adobe²

Selectively De-Animating Video

Jiamin Bai¹ Aseem Agarwala² Maneesh Agrawala¹ Ravi Ramamoorthi¹

¹University of California, Berkeley ²Adobe

SIGGRAPH 2012