Ejercicios de CTC):

(Hoja no. 1 Octubre 2018).

- 1. Encontrar un número de cinco cifras que de restos 3, 5, y 9, cuando se divide por 7, 11 y 17 respectivamente
- 2. (i) Calcular el órden multiplicativo de 7 mod 601. (Indic. Si $7^a=1 \text{mod} 601$ entonces a divide a 600/2 ó 600/3 ó 600/5.
 - (ii) Idem de 3 mod 65537.
- 3. Sea $m = 2^4.3^3.5^2.7.11.13.19.31.37.41.61.73.181.$
 - (a) Calcular $8993^{1082} (\mod m)$.
 - (b) Si a es un entero positivo primo con m y menor que m, encontrar la menor potencia con exponente positivo de a que nos da a^{-1} .
- 4. Enunciar y demostrar un criterio de divisibilidad entre 4. Idem entre 11. Idem entre 7.
- 5. Sea $m, e \in \mathbb{N}$ dados, y supongamos que m no divide a e. Probar que el siguiente algoritmo encuentra un α tal que $\alpha \mid m$ y $\operatorname{mcd}(\alpha, e) = 1$. ¿Es la solución encontrada con el algoritmo dado la mayor posible?. Calcular la complejidad del algoritmo.

ALGORITMO: $g_0 := m; h_0 := \operatorname{mcd}(m, e)$. Para todo $i \ge 1 : g_i := g_{i-1}/h_{i-1}; h_i := (g_i, h_{i-1}),$ hasta $h_l = 1$. Entonces $\alpha := g_l$. (Indicación. Probar que en cada etapa: $\prod_{j=0}^{i-1} h_j g_i = m$)

- 6. Dar un algoritmo de complejidad $O((\log n)^4)$ para averiguar si un entero $n \in \mathbb{Z}^+$ es potencia pura , y si lo es escribirlo como tal: $n = r^k$, para ciertos $r, k \in \mathbb{Z}^+$. (Indicación: Utilícese la misma idea que para calcular la parte entera de la raíz cuadrada de n.)
- 7. Sea n un entero positivo. Demostrar que si $2^n 1$ es primo, entonces n es primo, y que si $2^n + 1$ es primo, entonces n es una potencia de 2. Un primo del primer tipo se lama " primo de Mersenne", y uno del segundo "primo de Fermat". Escribir cuatro ejemplos de cada tipo.
- 8. Utilizando TCR,
 - i) Calcular las raíces cuadradas de 1, mod 35, mod 55, mod 30.
 - ii) Calcular si existen las raíces cuadradas de : 16mod 21, 53mod 77.
- 9. Sea p un número primo impar y $p-1=2^st'$ donde t' es impar, y sean $s,t \in \mathbb{N}$ y t también número impar . Demostrar que el número de soluciones en $\mathbb{Z}/^*$ de la ecuación : $x^{2^rt} = -1 \mod p$ (x es la incógnita) es: 0 si $r \geq s$, y es igual a $2^r \gcd(t,t')$ si r < s.
- 10. Utilizando el ejercicio anterior , encontrar las soluciones de :

$$x^6 \equiv -1 \mod 25 \times 13$$

(Indic. Calcular separadamente $x^6 \equiv -1 \mod 25$ (resp. $\mod 13$) , aplicando el ejercicio mencionado, y luego usar TCR)

- 11. Usar el algoritmo de Euclides para encontrar mcd(f,g) y los coeficientes de una identidad de Bezout para f, $gF_p[X]$ en cada uno de los ejemplos siguientes:
 - (a) $f = X^3 + X + 1, g = X^2 + X + 1, p = 2$
 - (b) $f = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1, q = X^4 + X^2 + X + 1, p = 2$
 - (c) $f = X^3X + 1$, $g = X^2 + 1$, p = 3. $(d) f = X^5 + X^4 + X^3X^2X + 1$, $g = X^3 + X^2 + X + 1$, p = 3

- 12. El cuerpo \mathbb{F}_{32} puede describirse como $\mathbb{Z}/<2>[X]/< X^5+X^2+1>, x:=X \mod X^5+X^2+$. (i) Calcular $(x^3+x^2)^{-1}$. (ii) Calcular x^{25} en \mathbb{F}_{32} escribiéndolo en función de la base como $\mathbb{Z}/<2>$ espacio vectorial $1,x,x^2,x^3,x^4$. (iii) ¿Es X^5+X^2+1 primitivo? Expresar $(x^{20}+x^{10})$ como potencia de x.
- 13. Sea un LFSR con m=5 y polinomio asociado $f=X^5+X^2+1\in\mathbb{F}_2$. Considérese el estado inicial 1,1,0,1,0. Se pide: (i) Calcular un polinomio u(X) con $\deg(u)\leq 4$ t.q. denotando S(X) a la función generatriz de la sucesión obtenida por el LFSR se tenga, $S(X)=u/f^*$ (ii) Calcular el periodo de dicha sucesión. ¿Es una sucesión PN?
- 14. Para cada uno de los cuerpos enumerados abajo, \mathbb{F}_q , donde $q = p^r$, p primo, representarlo utilizando un polinomio irreducible con coeficientes en \mathbb{F}_p cuya raíz α sea generador del grupo cíclico \mathbb{F}_q^* . Escribir todas las potencias de α como polinomios en α de grado menor que r: (a) \mathbb{F}_4 , (b) \mathbb{F}_8 , (c) \mathbb{F}_{27} , (d) \mathbb{F}_{25} .
- 15. Sea el cuerpo $K = \mathbb{F}_2[x]/\langle f(x) \rangle$, donde $f(x) = x^6 + x + 1$. Sea $\alpha = x \mod f$. (i) Calcular los órdenes multiplicativos de α y $\beta := \alpha^3$ en K^* . (ii) Demostrar que el polinomio mínimo de β sobre \mathbb{F}_2 es $m(x) := x^6 + x^4 + x^2 + x + 1$.
- 16. i) En los siguientes polinomios irreducibles sobre $\mathbb{F}_2[x]$, cual es el menor n tal que el polinomio f(x) es divisor de $x^n 1$: (a) $f(x) = x^6 + x^3 + 1$; (b) $f(x) = x^6 + x^5 + 1$
 - ii) Calcular, para cada uno de los dos valores de f(x) anteriores (a) y (b)), una raíz del polinomio $f(T) = x^3 + x^2 + 1$ en el cuerpo $\mathbb{F}_2^6 = \mathbb{F}_2[x]/\langle f(x) \rangle$ en función de la base $\{1, x, ..., x^5\}$ (en cada caso).
 - iii) Calcular, para cada uno de los dos valores de f(x) anteriores (a) y (b) (si las hay), las raíces primitivas novenas de la unidad en el cuerpo $\mathbb{F}_2[x]/< f(x)>$ en función de la base $\{1, x, ..., x^5\}$
- 17. Si $f \in \mathbb{F}_2[x]$ es un polinomio primitivo ¿Lo es tambien su recíproco f^* ?
- 18. Dados $f = x^6 + x + 1$, $g = x^6 + x^3 + 1 \in \mathbb{F}_2[x]$, ¿Son primitivos? ¿Son irreducibles?
 - (ii) Consideremos una secuencia cifrante producida por un LFSR que tiene polinomio característico f, ¿que periodo tendrá esa secuencia en función del valor inicial $(z_0, \ldots, z_5) \in \mathbb{F}_2^6$ que tomemos. Misma pregunta para g.
 - (iii) Considérese un sistema de cifrado en flujo que utiliza éste LFSR con distintos valores iniciales para producir secuencias cifrantes de bits, y un criptoanalísta que intenta atacarlo, es decir desconoce el polinomio y el valor inicial usado. Cuántos bits consecutivos del texto original tendrá que descifrar para esperar romper completamente el sistema; es decir, encontrar el polinomio, respectivamente en los dos casos f y g anteriores?
- 19. Ayudándose del Maple, probar si son primitivos los siguiente polinomios de $\mathbb{F}_2[x]$ que son usados en la actualidad en el algoritmo A5 de cifrado de voz en algunos sistemas de teléfonía móvil : $x^{22} + x + 1$, $x^{23} + x^{15} + x^2 + x + 1$, $x^{17} + x^5 + 1$. En cada caso estudiar, según los valores iniciales cuál será el periodo de una sucesión binaria generada por el LFSR que tiene como polinomio característico cada uno de ellos .