

Introduction to Cryptography

0. Course information
Manuel – Summer 2021

Teaching team:

- Instructor: Manuel (charlem@sjtu.edu.cn)
- Teaching assistants:
 - Hanyu (whynull@sjtu.edu.cn)
 - Yichao (wangyichao1304@sjtu.edu.cn)

Teaching team:

- Instructor: Manuel (charlem@sjtu.edu.cn)
- Teaching assistants:
 - Hanyu (whynull@sjtu.edu.cn)
 - Yichao (wangyichao1304@sjtu.edu.cn)

Important rules:

- When contacting a TA for an important matter, CC the instructor
- Add the tag [VE475] to the subject, e.g. Subject: [VE475] Grades
- Use SJTU jBox service to share large files (> 2 MB)

Teaching team:

- Instructor: Manuel (charlem@sjtu.edu.cn)
- Teaching assistants:
 - Hanyu (whynull@sjtu.edu.cn)
 - Yichao (wangyichao1304@sjtu.edu.cn)

Important rules:

- When contacting a TA for an important matter, CC the instructor
- Add the tag [VE475] to the subject, e.g. Subject: [VE475] Grades
- Use SJTU jBox service to share large files (> 2 MB)

Never send large files by email

Course arrangements:

- Lectures:
 - Tuesday 14:00 15:40
 - Thursday 14:00 15:40
 - Friday 12:10 13:50 (even weeks)
- Office hours:
 - Anytime (Piazza)
 - On appointment (Zoom)

Primary goals:

- Understand the basics of cryptology and security
- Become familiar with the most common cryptographic protocols
- Be able to relate theory and practice in cryptology

Primary goals:

- Understand the basics of cryptology and security
- Become familiar with the most common cryptographic protocols
- Be able to relate theory and practice in cryptology

Decide on the validity and security of given cryptographic solutions

Learning strategy:

- Course side:
 - 1 Understand the basic concepts of cryptography
 - 2 Know the most common problems and their solutions
 - 3 Get an overview of many subfields of cryptography

Learning strategy:

- Course side:
 - 1 Understand the basic concepts of cryptography
 - 2 Know the most common problems and their solutions
 - 3 Get an overview of many subfields of cryptography
- Personal side:
 - Perform extra research
 - 2 Relate known strategies to new problems
 - 3 Read and write some code

Detailed goals:

- Know the most common symmetric key cryptography protocols
- Know the most common public key cryptography protocols
- Understand the importance of true randomness in cryptography
- Understand the basics on hash functions in cryptography
- Know the various security levels and be able to derive their corresponding key length depending on the most efficient attacks available
- Know the basic algorithms to solve real life problems such as digital signatures, secret sharing, or traitor tracing
- Be able to perform basic programming in a cryptographic context, i.e. using large numbers or low level logical operations
- Get a high level overview of the various sub-fields of cryptography
- Understand the mathematics used in cryptography

Homework:

• Total: 10

• Content: basic concepts, coding, mathematics

Projects:

• Total: 2

Content: discover new areas of cryptology

Challenges:

• Total: 3

Content: code breaking

Grade weighting:

• Homework: 15%

• Projects: 25%

• Final exam: 30%

• Midterm exam: 30%

Grade weighting:

• Homework: 15%

Projects: 25%

• Final exam: 30%

Midterm exam: 30%

Assignment submissions:

• Bonus: +10% for a work fully written in LATEX, limited to 100%

ullet Penalty: -10% for a work not written in a neat and legible fashion

• Late policy: -10% per day, not accepted after three days

Grade weighting:

Homework: 15%

Projects: 25%

• Final exam: 30%

Midterm exam: 30%

Assignment submissions:

• Bonus: +10% for a work fully written in LATEX, limited to 100%

ullet Penalty: -10% for a work not written in a neat and legible fashion

ullet Late policy: -10% per day, not accepted after three days

Grades will be curved with the median in the range [B, B+]

General rules:

- Not allowed:
 - Reuse the code or work from other students or groups
 - Reuse the code or work from the internet
 - Share too many details on how to complete a task

General rules:

- Not allowed:
 - Reuse the code or work from other students or groups
 - Reuse the code or work from the internet
 - Share too many details on how to complete a task
- Allowed:
 - Reuse part the course or textbooks and quoting the source
 - Share ideas and understandings on the course
 - Provide hints on where or how to find information

Documents allowed during the exams:

- Part A: a mono or bilingual dictionary
- Part B:
 - The lecture slides with notes on them (paper or electronic)
 - A mono or bilingual dictionary

Group works:

- Every student in a group is responsible for his group's submission
- If a student breaks the Honor Code, the whole group is guilty

Contact us as early as possible when:

- Facing special circumstances, e.g. full time work, illness
- Feeling late in the course
- Feeling to work hard without any result

Contact us as early as possible when:

- Facing special circumstances, e.g. full time work, illness
- Feeling late in the course
- Feeling to work hard without any result

Any late request will be rejected

Information and documents available on the Canvas platform:

- Course materials:
 - Syllabus
 - Lecture slides
 - Homework
- Course information:
 - Announcements
 - Notifications

- Projects
- Challenges

- Grades
- Polls

Useful places where to find information:

- Introduction to Modern Cryptography (J. Katz and Y. Lindell)
- Cryptography, theory and practice (D. Stinson)
- Search information online, i.e. $\{websites \setminus \{non-English \ websites\}\}$

- Work regularly, do not wait the last minute/day
- Respect the Honor Code
- Go beyond what is taught
- Do not learn, understand
- Keep in touch with us
- Advice and suggestions are always much appreciated

Thank you!