Segunda Avaliação (P2) - 2022/1

Disciplina:	Cálculo I Data: 07/07/2022	NOTA
Professor:	Yoisell Rodríguez Núñez	
Aluno(a):		

1. (2,0 pontos) Considere o gráfico da derivada da função $f: \mathbb{R} \to \mathbb{R}$, derivável em até 2^a ordem, representado abaixo e as cinco afirmativas que seguem.

Sobre a função f é **INCORRETO** afirmar que:

- II) f tem **mínimo local** em x = 2.
- III) f tem ponto de inflexão no intervalo (-2,0).

2. (3,0 pontos) Seja a função $g: \mathbb{R} \setminus \{-2,2\} \to \mathbb{R}$ contínua e derivável duas vezes em seu domínio, que verifique as seguintes propriedades:

I)
$$q(x) = 0 \Leftrightarrow x = 0$$

V)
$$g''(x) < 0$$
, $\forall x \in (-\infty, -2) \cup (0, 2)$

II)
$$g(3) = 2$$
 e $g(-3) = -2$

VI)
$$\lim_{x \to +\infty} g(x) = 0 = \lim_{x \to -\infty} g(x)$$

III)
$$g'(x) < 0$$
, $\forall x \in (-\infty, -2) \cup (-2, 2) \cup (2, +\infty)$

III)
$$g'(x) < 0$$
, $\forall x \in (-\infty, -2) \cup (-2, 2) \cup (2, +\infty)$ VII) $\lim_{x \to 2^+} g(x) = +\infty$ e $\lim_{x \to 2^-} g(x) = -\infty$

IV)
$$g''(x) > 0$$
, $\forall x \in (-2, 0) \cup (2, +\infty)$

VIII)
$$\lim_{x \to -2^+} g(x) = +\infty$$
 e $\lim_{x \to -2^-} g(x) = -\infty$

- a) Comente, com suas palavras, o significado de cada uma das propriedades acima.
- b) Esboce um possível gráfico de q, que satisfaça todas as propriedades listadas.

3. (1,0 ponto) Uma pesquisa de opinião revela que x meses após anunciar sua candidatura, certo político do município Recursolândia terá o apoio de $S(x) = \frac{1}{29}(-x^3 + 6x^2 + 63x + 1080)\%$ dos eleitores, sendo $0 \le x \le 12.$

- a) Se a eleição estiver marcada para novembro, qual o **melhor mês** para anunciar a candidatura?
- b) Se o político necessita de pelo menos 50% dos votos para vencer, quais são as chances de ser eleito?

4. (3,0 pontos) Calcule as seguintes **integrais**:

I)
$$\int_0^{\pi} (\operatorname{sen}(t) - t^2 + e^{5t}) dt$$
 II)
$$\int e^{\beta} \cos(e^{\beta}) d\beta$$

II)
$$\int e^{\beta} \cos(e^{\beta}) \ d\beta$$

III)
$$\int_{1}^{2} x \ln(x) dx$$

5. (2,0 pontos) Assinale com a letra ${\bf V}$ para VERDADEIRA ou a letra ${\bf F}$ para FALSA, as afirmações abaixo, justificando cada resposta dada:

I) ___ A função
$$H(x) = \frac{e^{x^2}}{2}(x^2 - 1)$$
 não é uma **primitiva** da função $h(x) = x^3 e^{x^2}$

II) ____
$$\int \frac{8x^7}{x^8 + 1} dx = \ln(x^8 + 1) + C$$
, onde $C \in \mathbb{R}$

III) ___
$$\int_{2022}^{2022} \cos(\pi x) \ln(\sin(\pi x)) dx = \frac{3\pi}{2}$$

IV) ___ Da figura abaixo, podemos concluir que:

$$A(R_1) + A(R_2) = \int_0^2 (x^3 - 7x^2 + 10x) \ dx - \int_2^5 (7x^2 - 10x - x^3) \ dx$$

onde $A(R_1)$ e $A(R_2)$ representam, respectivamente, as **áreas** das **regiões do plano** R_1 e R_2 :

Observação:

 Todas as respostas devem ser justificadas, isto é, acompanhadas dos argumentos e/ou cálculos usados para obtê-las.

> As conquistas humanas compõem-se de 1% de inspiração e 99% de transpiração. Thomas Edison

> > **BOA PROVA!!!**