Review:

- 1) Avg. value of $V_o = \frac{2V_m}{\pi} \cos \alpha$ provided
- 'i_L' is continuous.
- 2) For $'i_L'$ to be continuous for $90 < \alpha < 180$, load should be R-L-E.
- 3) For regenerative braking, armature terminals should be reversed for 'i_a' reversal.
- $\Rightarrow i_a >> I_F$
- ⇒ Inductive circuit
- ⇒ momentarily this circuit is broken
- \Rightarrow arcing will occur.

- ⇒ In a 2-quadrant converter,
 'V' can be reversed, but not 'i'.
- ⇒ use one more bridge.
- ⇒ Dual converter connect them back to back.
- ⇒ 'i' can be reversed and flows back to the source through the 2nd bridge.
- ⇒ All 4 quadrant operation.

- \Rightarrow o/p 'V' of the converter is pulsating. In order to reduce the current pulsation, generally the inductor is connected in series with the load and the converter. (current cannot change instantaneously) $T = k\phi I_{\alpha}$
- ⇒ Torque pulsation depends on ripple in 'I_a' and not on the o/p 'V' of the bridge.

Assume that both bridges are ON Let α_1 be the triggering angle for bridge-1 Let α_2 be the triggering angle for bridge-2

$$\therefore V_{01} = \frac{2V_{m}}{\pi} \cos \alpha_{1}$$

$$V_{02} = \frac{2V_{m}}{\pi} \cos \alpha_{2}$$

$$KVL gives V_{01} + V_{02} = 0$$

$$[\because (L \frac{di}{dt})_{avg} = 0]$$

$$\therefore \alpha_2 = \pi - \alpha_1$$

 V_{01} is the voltage w.r.t Bus Y and V_{02} is the voltage w.r.t Bus X. Assume that L_2 is combined with L_1 .

$$V_{L} = V_{01} + V_{02}$$

If both are w.r.t Bus Y, then

$$V_{L} = V_{01} - V_{02}$$

- ⇒ Average voltage across L = 0, but not instantaneous voltage.
- ⇒ If both bridges are ON, there will be a circulating current.

Assume that the motor is rotating at 'ω' in the clockwise direction and corresponding

$$E_b = 90 V \& V_{01} = -V_{02} = 95 V.$$

Let
$$\alpha_1 \approx 45^{\circ} (\alpha_2 \approx 135^{\circ})$$

 V_{01} is supplying power to the m/c.

I_a is positive which means

'T' is also +ve.

Now, $\uparrow \alpha_1$ to 60° or ($\downarrow \alpha_2$ to 120°) \Rightarrow $V_{01} \downarrow$

E_b cannot change instantaneously

: ' ω ' cannot change instantaneously.

$$E_b > V_{01}$$
 generative action

 i_{α} reverses and flows through bridge 2.

- \Rightarrow E_b is still +ve, i_a is -ve. \therefore T is -ve.
- ⇒ Regenerative braking
- ⇒ M/c is still running in clockwise.
- \Rightarrow II quadrant operation.
- $\Rightarrow \omega \downarrow$.
- \Rightarrow continue $\uparrow \alpha_1$ towards 90° ($\alpha_2 \downarrow$ towards 90°).

At
$$\alpha_1$$
 = 90°, V_{01} = 0 (ω approaches 0)

 \uparrow α_1 beyond 90° (α_2 \downarrow below 90°).

Bridge $1 \rightarrow$ Inverter and

Bridge 2 \rightarrow Converter.

Bridge 2 supplies power, m/c starts rotating in -ve direction.

'E_b' reverses, ∴ III quadrant (reverse motoring)

Problem 1.1

Armature current $I_a = 30 A$

EMF constant = 0.17 V/rpm

Assume large L

I is constant in arm. ckt.

In rectifier operation

Determine speed & supply P.F.

Sol: Av
$$V_0 = \frac{2V_m}{\pi} \cos \alpha$$

$$= \frac{2*230*\sqrt{2}}{\pi} \cos 30$$

$$= 179 V$$

 \therefore **E**_b = 179 - 30 * 0.3 = 170 **V**

$$\mathbf{E}_{\mathbf{b}} = \mathbf{K} \boldsymbol{\phi} \boldsymbol{\omega}$$

:: EMF constant is in V/rpm

$$\therefore \mathbf{E}_{\mathbf{b}} = (\mathbf{K}\phi)\mathbf{N}$$

∴**N** =
$$\frac{170}{0.17}$$
 = 1000**rpm**

motor current is constant

and ripple free
$$I_{rms} = 30A$$

$$i/p VA = 230 * 30 = 6900 VA$$

$$o/p Power = V_0 I_{qv} = 179 * 30 W$$

(Neglecting inverter losses)

$$\mathbf{P.F} = \frac{179 * 30}{230 * 30} = 0.77 \text{ lag}$$

Or RMS value of fundamental component

of source current =
$$\frac{2\sqrt{2}}{\pi}$$
30 = 27 A

$$\cos \phi_1 = \cos \alpha$$

∴P.F =
$$\frac{V_1 I_1 Cos\phi_1}{V_{rms}I_{rms}} = \frac{27 * Cos30}{30} = 0.779$$

1.2. Regeneration: Polarity of back emf

is reversed by reversing the ϕ'

Calculate ' α ' and power fed back.

Armature current is maintained at previous

value.

<u>Sol</u>: At the instant of polarity reversal

$$E_{b} = 170 \text{ V}$$

$$\therefore V_0 = -170 + I_a r_a$$

$$= -161 V = \frac{2V_{\rm m}}{\pi} \cos \alpha$$

$$\Rightarrow \alpha = 141^{\circ}$$

Power o/p from generator = 170x30

$$= 5100 W$$

Armature copper loss = $0.3 \times 30^2 = 270 \text{ W}$

:. Power fed back =
$$5100 - 270 = 4800 \text{ W}$$

= $161 \times 30 = 4800 \text{ W}$

Effect of source inductance

In 1- ϕ bridge, when T_3 is triggered, T_1 turns off instantaneously.

- \Rightarrow source L = 0
- \Rightarrow there is always some 'L'
- ⇒ 'i' cannot change instantaneously.

at $\omega t = \alpha$, T_1 is triggered. at $\omega t = \pi + \alpha$, T_2 is triggered.

$$i_{T1} + i_{T2} = I_o$$

$$\frac{di_{T1}}{dt} = -\frac{di_{T2}}{dt}$$

$$V_{an} = -V_{bn} = V_m \sin \omega t$$
Using KVL:

$$V_{an} - V_{bn} = L \frac{di_{T1}}{dt} - L \frac{di_{T2}}{dt}$$

$$\therefore 2V_{m} \sin \omega t = 2L \frac{di_{11}}{dt}$$

$$V_0 = V_{an} - L \frac{di_{T1}}{dt} = 0$$
; during μ

Observation:

Instantaneous V_0 is +ve if L = 0 Instantaneous V_0 is 0 if 'L' is finite.

$$V_m \sin \omega t = L \frac{di_{11}}{dt}$$

$$\frac{V_{m} \sin \omega t}{\omega} d(\omega t) = Ldi_{11}$$

$$\therefore \mathbf{i}_{11} = \int_{\alpha}^{\alpha+\mu} \frac{\mathbf{V}_{m} \sin \omega t \, d(\omega t)}{\omega L}$$

$$\Rightarrow \mathbf{i}_{11} = \frac{\mathbf{V}_{m}}{\omega \mathbf{L}} [\cos \alpha - \cos(\alpha + \mu)] = \mathbf{I}_{0} \text{ at } \mu \dots (1)$$

- \therefore Overlap is complete at μ ,
- $\Rightarrow \mu$ is known as the overlap angle

$$\therefore \text{Avg. } V_0 = \frac{2}{2\pi} \int_{\alpha+\mu}^{\pi+\alpha} V_m \sin \omega t \, d(\omega t)$$

$$= \frac{V_m}{\pi} [\cos \alpha + \cos(\alpha + \mu)]$$

Using Eq.1

$$\frac{V_{m}}{\pi}\cos(\alpha+\mu) = \frac{V_{m}}{\pi}\cos\alpha - \frac{I_{0}\omega L}{\pi}$$

Substituting in the above equation

$$V_0 + \frac{I_0 \omega L}{\pi} = \frac{2V_m}{\pi} \cos \alpha$$

∴Equivalent circuit

$$V_0 = 0$$
 for $\mu = \pi$ or $\pi - 2\alpha$

 $\mu = \pi \implies$ one overlap mode

⇒no powering mode!

⇒Load is a current source

⇒ Magnitude 'I' is independent of terminal 'V'

$$\mu = \pi - 2\alpha$$
 \Rightarrow Load is pure 'L'
 \Rightarrow Possible

