

Instituto Tecnológico de Aeronáutica

Relatório da disciplina CM-202: Planejamento e Controle para Robótica Móvel

Laboratório 5: Controle de robôs diferenciais

Guilherme Müller Bertolino

1. Introdução

Nesse laboratório, foram implementadas algumas ferramentas de controle de postura para robôs diferenciais da categoria IEEE Very Small Size. Em particular, serão usadas as técnicas de *dynamic feedback linearization* (DFL) e a estratégia do "pontinho", testando-as para seguir uma trajetória pré-determinada - Figura 1 - em que o robô deve navegar de uma posição inicial até uma posição alvo, evitando um obstáculo.

Figura 1: Trajetória utilizada para testar as implementações de técnicas de controle

2. Metodologia

2.1. DFL

Foi implementada uma lei de controle PD com feedforward, conforme a Equação 1.

$$u(t) = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} = \begin{bmatrix} \overline{a}_x + K_P(\overline{x}(t) - x(t)) + K_d(\overline{v}_x(t) - v_x(t)) \\ \overline{a}_y + K_P(\overline{y}(t) - y(t)) + K_d(\overline{v}_y(t) - v_y(t)) \end{bmatrix}$$
(1)

Aqui, usamos o mesmo valor de K_P e K_d para a lei de controle em x e em y, isso é razoável porque as dinâmicas nas direções x e y devem ser equivalentes. O uso da lei de controle PD com feedforward fornece um controle mais robusto, onde o feedforward permite compensar diretamente distúrbios previsíveis, enquanto o controle PD suaviza variações bruscas no sinal do erro e reduz o tempo de estabilização. A linearização fornecida pelo compensador não remove a necessidade e as vantagens de se usar a lei de controle selecionada.

2.2. Estratégia do "pontinho"

Com a estratégia do "pontinho", foi implementada uma lei de controle proporcional com feed-forward, conforme a Equação 2.

$$u(t) = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix} = \begin{bmatrix} \overline{v}_x + K_P(\overline{x}(t) - x(t)) \\ \overline{v}_y + K_P(\overline{y}(t) - y(t)) \end{bmatrix}$$
(2)

E para converter em velocidades:

$$\begin{bmatrix} \overline{\nu}(t) \\ \overline{\nu}(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1/l \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$
(3)

3. Resultados

3.1. DFL

A técnica de DFL foi testada usando diferentes ganhos K_P e K_d

$$K_P = 0$$
 ; $K_d = 0$

Figura 2: Seguimento de trajetória usando DFL e $K_P=0$ e $K_d=0$

$K_P = 1$; $K_d = 0$

Figura 3: Seguimento de trajetória usando DFL e $K_P=1$ e $K_d=0$

$$K_P = 0$$
 ; $K_d = 1$

Figura 4: Seguimento de trajetória usando DFL e $K_P=0$ e $K_d=1\,$

Figura 5: Seguimento de trajetória usando DFL e $K_P=3$ e $K_d=3$

Usando apenas o feedforward, vemos que há um erro em regime apreciável e um tempo alto de acomodação quando há mudanças bruscas na direção. O principal efeito do ganho K_P foi o de reduzir o erro em regime e o do ganho K_d foi de aumentar a velocidade da resposta quando há a mudança de direção. Com $K_P = K_d = 3$, a lei de controle conseguiu seguir muito bem a trajetória desejada.

3.2. Estratégia do "pontinho"

A técnica da estratégia do "pontinho" foi testada usando diferentes ganhos K_P e valores de l.

$$K_P = 0$$
 ; $l = 0.1$

Figura 6: Seguimento de trajetória usando estratégia do "pontinho" e $K_P=0$ e $l=0.1\,$

$$K_P = 1$$
 ; $l = 0.1$

Figura 7: Seguimento de trajetória usando estratégia do "pontinho" e $K_P=1$ e l=0.1

$$K_P = 1$$
 ; $l = 0.05$

Figura 8: Seguimento de trajetória usando estratégia do "pontinho" e $K_P=1$ e l=0.05

$$K_P = 1$$
 ; $l = 0.01$

Figura 9: Seguimento de trajetória usando estratégia do "pontinho" e $K_P=0$ e $l=0.1\,$

Figura 10: Seguimento de trajetória usando estratégia do "pontinho" e $K_P=1$ e l=2

Aqui, a melhor resposta do controlador foi obtida com ganho $K_P = 1$ e l = 0.1. Observa-se que utilizar um valor l muito baixo instabiliza a malha de controle, vendo que a dinâmica fica bem oscilatória com l = 0.05 e instável em l = 0.01, o ganho K_P teve o efeito de reduzir o erro em regime e utilizar um valor muito alto para l também não foi uma boa estratégia, visto que o sistema ficou muito atrasado em relação ao esperado.