

高中数学习题册

作者: Johnny Tang 组织: DEEP Team

时间: January 21, 2022

请:相信时间的力量,敬畏概率的准则

目录

第一部	3分 一试与强基部分	2
第 1 章 1.1	集合 集合及其运算	3
1.2	集合元素的个数	4
第2章	函数	7
第3章	三角函数	8
第4章	平面向量	9
第5章	复数	10
第6章	数列	11
第7章	极限与导数	12
第8章	不等式	13
第9章	概率统计与计数	14
第 10 章	全解析几何	15
第 11 章	立体几何	16
第二部	3分 二试与冬令营部分	17
第1章	代数部分	18
1.1	不等式问题	18
第2章	几何部分	19
第3章	组合部分	20
第4章	数论部分	21

第一部分

一试与强基部分

第1章 集合

1.1 集合及其运算

填空题

例题 1.1.1 设集合 $M = \{-1,0,1\}, N = \{2,3,4,5,6\}$, 映射 $f: M \to N$, 则对任意的 $x \in M$, 使得 x+f(x)+xf(x) 恒为奇数的映射 f 的个数为

提示 分类讨论.

例题 1.1.2 称有限集 S 的所有元素的乘积为 S 的"积数",给定数集 $M = \{\frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{100}\}$,则集合 M 的所有含偶数个元素的子集的"积数"之和为______.

提示 举例分析.

解答题

例题 1.1.3 (2015 高联)设 a_1, a_2, a_3, a_4 是 4 个有理数,使得 $\{a_i a_j | 1 \le i < j \le 4\} = \{-24, -2, -\frac{3}{2}, -\frac{1}{8}, 1, 3\}$. 求 $a_1 + a_2 + a_3 + a_4$ 的值.

提示 通过大小关系将 $a_1a_2, a_1a_3, a_1a_4, a_2a_3, a_2a_4, a_3a_4$ 与这六个数字对应.

例题 1.1.4 (2017 清华 THUSSAT) 已知集合 $A = \{a_1, a_2, a_3, a_4\}$,且 $a_1 < a_2 < a_3 < a_4$, $a_i \in \mathbb{N}^*$ (i = 1, 2, 3, 4). 记 $a_1 + a_2 + a_3 + a_4 = S$,集合 $B = \{(a_i, a_j) : (a_i + a_j) | S, a_i, a_j \in A, i < j\}$ 中的元素个数为 4 个,求 a_1 的值. 提示 通过大小关系得出不能被 S 整除的两项.

例题 1.1.5 X 是非空的正整数集合,满足下列条件: (i) 若 $x \in X$,则 $4x \in X$; (ii) 若 $x \in X$,则 $[\sqrt{x}] \in X$. 求证: X 是全体正整数的集合.

提示 将两种关于X的性质结合起来看.

例题 **1.1.6** 设 S 为非空数集,且满足: (i)2 $\notin S$; (ii) 若 $a \in S$, 则 $\frac{1}{2-a} \in S$. 证明:

(1) 对一切 $n \in \mathbb{N}^*$, $n \ge 3$,有 $\frac{n}{n-1} \notin S$; (2) S 或者是单元素集,或者是无限集.

提示 数学归纳法.

例题 1.1.7 以某些整数为元素的集合 P 具有下列性质: (i) P 中的元素有正数,有负数; (ii) P 中的元素有奇数,有偶数; (iii) $-1 \notin P$; (iv) 若 $x,y \in P$,则 $x+y \in P$. 试证明:

 $(1)0 \in P$; $(2)2 \notin P$.

提示 第一问:构造;第二问:反证法.

例题 1.1.8 已知数集 A 具有以下性质: (i) $0 \in A, 1 \in A$; (ii) 若 $x, y \in A$, 则 $x - y \in A$; (iii) 若 $x \in A, x \neq 0$, 则 $\frac{1}{x} \in A$.

求证: 当 $x,y \in A$ 时,则 $xy \in A$.

提示 只需证明 $\frac{1}{xy} \in A$, 然后构造.

1.2 集合元素的个数

定理 1.1 (容斥原理 1——容斥公式)

设 $A_i(i=1,2,\cdots,n)$ 为有限集,则

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \le i < j \le n} |A_{i} \cap A_{j}| + \dots + (-1)^{n-1} |\bigcap_{i=1}^{n} A_{i}|$$

可以使用数学归纳法证明.

 \mathcal{O}

定理 1.2 (容斥原理 2——筛法公式)

设 $A_i(i=1,2,\cdots,n)$ 为全集 I 的子集,则

$$|\bigcap_{i=1}^{n} C_{I} A_{i}| = |I| - \sum_{i=1}^{n} |A_{i}| + \sum_{1 \le i < j \le n} |A_{i} \cap A_{j}| - \dots + (-1)^{n} |\bigcap_{i=1}^{n} A_{i}|$$

可以通过摩根律证明. 这个公式常常用来计算不满足任意给定性质的子集个数.

 \bigcirc

填空题

例题 1.2.1 设 $\{b_n\}$ 是集合 $\{2^t + 2^s + 2^r | 0 \le r < s < t, r, s, t \in \mathbb{Z}\}$ 中所有的数从小到大排列成的数列,已知 $b_k = 1160$,则 k 的值为______.

提示 分段考虑.

例题 1.2.2 $A = \{z|z^{18} = 1\}$, $B = \{w|w^{48} = 1\}$ 都是 1 的复单位根的集合, $C = \{zw|z \in A, w \in B\}$ 也是 1 的复单位根的集合. 则集合 C 中含有元素的个数为_____.

提示 复数的三角表示.

例题 1.2.3 已知集合 $\{1,2,\cdots,3n\}$ 可以分为 n 个互不相交的三元组 $\{x,y,z\}$,其中 x+y=3z,则满足上述要求的两个最小的正整数 n 是

提示 从条件 x + y = 3z 入手变形消元.

例题 1.2.4 集合 $M = \{x | \cos x + \lg \sin x = 1\}$ 中元素的个数是 .

提示 有没有可能无解?

解答题

例题 **1.2.5** 设集合 $M = \{1, 2, \dots, 1995\}$, $A \in M$ 的子集且满足条件: 当 $x \in A$ 时, $15x \notin A$,求 A 中元素个数的最大值.

提示 先构造最大值情况, 再证明这是最大值.

例题 **1.2.6** 求最大的正整数 n,使得 n 元集合 S 同时满足: (i)S 中的每个数均为不超过 2002 的正整数; (ii) 对于 S 的两个元素 a 和 b(可以相同),它们的乘积 ab 不属于 S.

提示 先构造最大值情况, 再证明这是最大值.

例题 1.2.7 我们称一个正整数的集合 A 是"一致"的,是指:删除 A 中任何一个元素之后,剩余的元素可以分成两个不相交的子集,而且这两个子集的元素之和相等. 求最小的正整数 n(n>1),使得可以找到一个具有 n 的元素的"一致"集合 A.

提示 将 A 中元素分奇偶讨论.

例题 1.2.8 设 n 是正整数,我们说集合 $\{1,2,\cdots,2n\}$ 的一个排列 (x_1,x_2,\cdots,x_{2n}) 具有性质 P ,是指在 $\{1,2,\cdots,2n-1\}$ 中至少有一个 i,使得 $|x_i-x_{i+1}|=n$,求证:对于任何 n,具有性质 P 的排列比不具有性质 P 的排列的个数多.

提示 只需证明具有性质 P 的排列个数大于全部排列数的一半. 利用容斥原理放缩.

例题 1.2.9 设 $S \subseteq \mathbb{R}$ 是一个非空的有限实数集,定义 |S| 为 S 中的元素个数,

$$m(S) = \frac{\sum_{x \in S} x}{|S|}$$

已知 S 的任意两个非空子集的元素的算术平均值都不相同. 定义

$$\dot{S} = \{ m(A) | A \subseteq S, \ A \neq \emptyset \}$$

证明: $m(\dot{S}) = m(S)$.

提示 贡献法.

1.3 子集的性质

第2章 函数

第3章 三角函数

第4章 平面向量

第5章 复数

第6章 数列

第7章 极限与导数

第8章 不等式

第9章 概率统计与计数

第10章 解析几何

第11章 立体几何

第二部分

二试与冬令营部分

第1章 代数部分

- 1.1 不等式问题
- 1.1.1 切线放缩

第2章 几何部分

第3章 组合部分

第4章 数论部分