

LOG1810 STRUCTURES DISCRÈTES

TD 13: MODÉLISATION COMPUTATIONNELLE A2023

SOLUTIONNAIRE

Soit M_T la machine de Turing dont l'état initial est S_0 et définie par les huit quintuples suivants :

- $(S_0, 0, S_1, 0, R)$
- $(S_0, 1, S_1, 0, L)$
- $\bullet \quad (S_0, B, S_1, 1, R)$
- $(S_1, 0, S_2, 1, R)$

- $(S_1, 1, S_1, 1, R)$
- (S₁, B, S₂, 0, R)
 (S₂, B, S₃, 0, R)
 (S₃, 0, S₂, 1, L)

En considérant le ruban initial donné, déterminez le ruban final lorsque M_T s'arrête. On suppose que M_T commence en position initiale.

Solution:

Donnez la grammaire G qui génère le langage reconnu par l'automate suivant. Vous devez préciser l'alphabet V, l'ensemble des symboles terminaux T, l'axiome S et l'ensemble des règles de production P.

Solution:

Soit les symboles non terminaux associés aux états comme suit :

- État 0 : Symbole non terminal *S*, axiome de la grammaire
- État 1 : Symbole non terminal A
- État 2 : Symbole non terminal B
- État 3 : Symbole non terminal C
- État 4 : Symbole non terminal D
- État 5 : Symbole non terminal *E*
- État 7 : Symbole non terminal F
- État 8 : Symbole non terminal H

Nous avons les ensembles suivants :

```
V = \{a, b, c, S, A, B, C, D, E, F, H\}
T = \{a, b, c\}
Les productions de P sont :
S \to aA \mid bC \mid cD \mid a \mid b \mid c
A \to aB \mid bA \mid cD \mid a \mid b \mid c
B \to aB \mid bB \mid cD \mid a \mid b \mid c
C \to aC \mid bC \mid cD \mid a \mid b \mid c
D \to aC \mid bE \mid cD \mid a \mid c
E \to aH \mid bF \mid cD \mid c
F \to aE \mid bH \mid cD \mid c
H \to aF \mid bE
```

Minimisez l'automate ci-dessous. Donnez la table d'états-transition et précisez les états finaux. Présentez toutes les étapes de votre démarche. Enfin, construisez l'automate que vous proposez.

Solution:

1.
$$A = \{S_2\}, B = \{S_0, S_1, S_3, S_4, S_5, S_6, S_7\}$$

2.
$$A = \{S_2\}, B = \{S_0, S_5, S_7\}, C = \{S_1, S_3, S_4, S_6\}$$

3.
$$A = \{S_2\}, B = \{S_5\}, C = \{S_1, S_6\}, D = \{S_0, S_7\}, E = \{S_3, S_4\}$$

est la suivante. Les états initiaux et finaux sont marqués des signes \rightarrow et \leftarrow , respectivement. Entrée États 0 1 $\leftarrow A$ D A В В D $\boldsymbol{\mathcal{C}}$ В A $\longrightarrow D$ \mathbf{C} E E A В

La table d'états-transition de l'automate minimisé

L'automate est :

En utilisant le lemme d'Arden, trouvez le langage reconnu par la machine à états finis suivante. Présentez toutes les étapes de votre démarche.

Solution:

Soient X_1, X_2, X_3 et X_4 les étiquettes associées aux états 1, 2, 3 et 4, respectivement.

Le système d'équations décrivant les états de l'automate est :

$$\begin{cases} X_1 = aX_1 + bX_4 + \epsilon \\ X_2 = aX_1 + aX_3 + \epsilon \\ X_3 = bX_1 \\ X_4 = bX_2 \end{cases}$$

En substituant X_3 dans X_2 , on a :

$$X_2 = aX_1 + a(bX_1) + \epsilon$$

= $aX_1 + a(bX_1) + \epsilon$
= $(a + ab)X_1 + \epsilon$

En substituant le résultat obtenu pour X_2 dans X_4 , on obtient :

$$X_4 = b((a+ab)X_1 + \epsilon)$$

= $(ba + bab)X_1 + b$

En substituant le résultat obtenu pour X_4 dans X_1 , on obtient :

$$X_1 = aX_1 + b((ba + bab)X_1 + b) + \epsilon$$

= $(a + bba + bbab)X_1 + bb + \epsilon$
= $(a + bba + bbab)^*(bb + \epsilon)$ lemme d'Arden

Le langage reconnu par cette machine à état est donc $(a + bba + bbab)^*(bb + \epsilon)$.

Montrez que le langage L n'est pas régulier.

$$L = \{0^n \mid n \text{ est un nombre premier}\}\$$

Solution:

Raisonnons par l'absurde.

Supposons que le langage $m{L}$ est régulier. Il vérifie donc le lemme de pompage.

Soit p un nombre premier supérieur au seuil de pompage.

Considérons le mot $w = 0^p$, qui appartient à L.

Par le lemme de pompage, il existe une décomposition w=xyz tel que $x=0^q$, $y=0^r$ et $z=0^{p-q-r}$ avec $q+r \le p$ (car $|xy| \le p$) et r>0 (car $y\ne \varepsilon$).

Selon le lemme de pompage, $\forall i \geq 0, xy^iz \in \mathbf{L}$.

Ainsi, le mot $xy^{(p+1)}z$ devrait également être dans L.

Pour
$$i = p + 1$$
, nous avons : $xy^iz = 0^q (0^r)^{(p+1)} 0^{p-q-r}$
= $0^q 0^{r(p+1)} 0^{p-q-r}$
= $0^{p+r(p+1)-r}$

Simplifiant, cela donne $0^{p(1+r)}$

Cependant, p(1+r) n'est pas un nombre premier, puisque r > 0.

Par conséquent, lorsque i=p+1, $xy^iz\notin \textbf{\textit{L}}$. Le lemme de pompage n'est pas vérifié. D'où le langage $\textbf{\textit{L}}$ n'est pas régulier. CQFD

Exercice 6

On considère :

- Le vocabulaire $V = \{a, b, S, A, B, C, D, E\}$
- L'ensemble des symboles terminaux $T = \{a, b\}$
- L'axiome S
- a) Soit la grammaire $G_1 = (V, T, S, P_1)$ avec P_1 l'ensemble des règles de production suivant :

$$S \rightarrow aA \mid bS$$

$$A \rightarrow aA \mid bB$$

$$B \rightarrow aC \mid bS \mid a$$

$$C \rightarrow aC \mid bE \mid a \mid b$$

$$D \rightarrow aC \mid bD \mid a \mid b$$

$$E \rightarrow aC \mid bD \mid a \mid b$$

Construisez l'automate M_1 tel que $L(G_1) = L(M_1)$.

Solution:

b) Soit la grammaire $G_2 = (V, T, S, P_2)$ avec P_2 l'ensemble des règles de production suivant :

$$S \rightarrow aA \mid bC \mid bD$$

$$A \rightarrow aB \mid bS$$

$$B \rightarrow aS$$

$$C \rightarrow aC \mid bC \mid bE \mid a$$

$$D \rightarrow aC \mid aD \mid aE \mid bD \mid b$$

$$E \rightarrow bE \mid a$$

Construisez l'automate M_2 tel que $L(G_2) = L(M_2)$.

Solution:

Exercice 7

Considérez l'ensemble des symboles terminaux $I = \{a, b, c\}$.

a) Construisez un automate fini reconnaissant l'expression :

$$a^*(b+c)^+(a+c)^+b^*$$

Solution:

- S_0 est l'état initial de l'automate.
- S_2 et S_3 sont les états d'acceptation, finaux ou terminaux de l'automate.
- Automate fini non déterministe

Automate fini déterministe

b) Construisez un automate fini déterministe à 6 états reconnaissant l'expression :

$$((a+b+c)^2)^* + ((a+b+c)^3)^*$$

Solution:

- S_0 est l'état initial de l'automate.
- S_0 , S_2 , S_3 et S_4 sont les états d'acceptation, finaux ou terminaux de l'automate.
- Automate

Construisez une machine de Turing qui reconnaît l'ensemble de toutes les chaînes de bits qui contiennent au moins deux « 1 ». Justifiez votre réponse.

Solution:

Nous pouvons rester dans S_0 jusqu'à ce que nous atteignions le premier « 1 » et puis rester dans l'état S_1 jusqu'à ce que nous atteignions le deuxième « 1 ». À ce stade, nous pouvons entrer dans l'état S_2 qui sera un état d'acceptation.

Si nous arrivons au dernier blanc alors que nous sommes toujours dans les états S_0 ou S_1 , nous n'accepterons pas cette chaîne de bits.

Ainsi, les quintuples sont donc :

- $(S_0, 0, S_0, 0, R)$
- $(S_0, 1, S_1, 1, R)$
- $(S_1, 0, S_1, 0, R)$
- $(S_1, 1, S_2, 1, R)$

Exercice 9 (Facultatif)

Montrez que le langage L n'est pas régulier.

$$\mathbf{L} = \{0^{n!} \mid n \in \mathbb{N}\}$$

Solution:

Raisonnons par l'absurde.

Supposons que le langage ${\it L}$ est régulier. Il vérifie donc le lemme de pompage.

Soit p le seuil de pompage.

Le mot $w=0^{p!}$ est un mot de \boldsymbol{L} (sauf si p<3, auquel cas nous choisirons $0^{3!}$). Il existe une décomposition w=xyz tel que $x=0^q$, $y=0^r$ et $z=0^{p!-q-r}$ avec $q+r\leq p$ (car $|xy|\leq p$) et r>0 (car $y\neq \varepsilon$).

D'après le lemme de pompage, $\forall i \geq 0, xy^iz \in L$.

Ainsi, le mot xy^0z devrait être aussi un mot de L.

Pour
$$i = 0$$
, on a:

$$xy^{i}z = 0^{q}(0^{r})^{0}0^{p!-q-r}$$
$$= 0^{q}0^{p!-q-r}$$
$$= 0^{p!-r}$$

Pour que $0^{p!-r}$ soit un mot de L, il doit y avoir un entier s tel que s!=p!-r. Cependant, cela n'est pas possible puisque lorsque $p \ge 3$ et $r \le p$, on a :

$$p! - p \le p! - r \tag{I}$$

Or,
$$p! - p = p \cdot (p-1)! - p = p((p-1)! - 1)$$

Et
$$(p-1)! < p((p-1)!-1)$$
, $car p \ge 3$

Soit

$$(p-1)! < p! - p \tag{II}$$

Par (I) et (II), on obtient :

$$(p-1)! < p! - p < p! - r$$

Soit

$$(p-1)! < p! - r \tag{III}$$

Aussi, lorsque $p \ge 3$ et $r \le p$, on a :

$$p! - r < p! \tag{IV}$$

Avec (III) et (IV), on obtient :

$$(p-1)! < p! - r < p!$$

Ainsi, on en déduit que p! - r ne peut être factoriel d'un entier.

Donc lorsque i=0, $xy^iz\not\in \textbf{\textit{L}}$. Le lemme de pompage n'est pas vérifié. D'où le langage $\textbf{\textit{L}}$ n'est pas régulier. CQFD