Harmonic Analysis: Recitations

Aakash Jog

2015-16

Contents

1	Instructor Information	2
Ι	Fourier Series	3
1	Fourier Series	3
2	Bessel's Inequality	5
3	Riemann-Lebesgue's Lemma	5
1	Dirichlet's Kernel	6

© (P) (S) (D)

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

1 Instructor Information

Yaron Yeger

Office: Shenkar Physics 201 E-mail: yaronyeg@mail.tau.ac.il

Part I

Fourier Series

1 Fourier Series

Definition 1 (Real Fourier series). Let $f:[-L,L]\in\mathbb{C}$ be a piecewise continuous function.

The series

$$f(x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right)$$

is called the Fourier series of f(x), where

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(nx) dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(nx) dx$$

Theorem 1. If f(x) is an even function, then the appropriate Fourier series is

$$f(x) \approx \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx)$$

If f(x) is an odd function, then the appropriate Fourier series is

$$f(x) \approx \sum_{n=1}^{\infty} a_n \sin(nx)$$

Definition 2 (Complex Fourier series). Let $f:[-L,L]\in\mathbb{C}$ be a piecewise continuous function.

The series

$$f(x) \approx \sum_{n=-\infty}^{\infty} c_n e^{inx}$$

If f(x) is odd, its graph always passes through the origin. Therefore, it can be represented by a summation of sine functions, which also pass through the origin, and there is no need for a term, i.e. $\frac{a_0}{2}$, to change its position at the origin.

is called the complex Fourier series of f(x), where

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(x)e^{-inx} dx$$

Recitation 1 – Exercise 1.

Calculate the real Fourier series of

$$f(x) = 2x - 2\pi$$

Recitation 1 – Solution 1.

As x is an odd function, the real Fourier series of x, in the interval $[-\pi, \pi]$ is

$$x \approx \sum_{n=1}^{\infty} b_n \sin(nx)$$

where

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) dx$$

$$= \frac{1}{\pi} \left(x \int \sin(nx) dx - \int 1 \left(\int \sin(nx) dx \right) dx \right) \Big|_{-\pi}^{\pi}$$

$$= \frac{1}{\pi} \left(-\frac{x \cos(nx)}{n} \right) \Big|_{-\pi}^{\pi} + \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\cos(nx)}{n} dx$$

$$= \frac{1}{\pi} \left(-\frac{\pi \cos(n\pi) + \pi \cos(-n\pi)}{n} \right) + \frac{1}{\pi} \frac{\sin(nx)}{n^2} \Big|_{-\pi}^{\pi}$$

$$= -\frac{\cos(n\pi) + \cos(n\pi)}{n}$$

$$= -2 \frac{\cos(n\pi)}{n}$$

$$= -2 \frac{(-1)^n}{n}$$

Therefore,

$$x \approx 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)$$

Therefore,

$$2x - 2\pi \approx \left(4\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\sin(nx)\right) - 2\pi$$

2 Bessel's Inequality

Definition 3 (Piecewise continuous functions). $f : \mathbb{R} \to \mathbb{R}$ is said to be piecewise continuous if, for every finite interval [a, b] there is a finite number of discontinuity points, and the one-sided limits at each of these points are also finite.

Definition 4 (Piecewise continuously differentiable functions). $f : \mathbb{R} \to \mathbb{R}$ is said to be piecewise continuously differentiable if it is piecewise continuous, and

$$\lim_{h \to 0^+} \frac{f(x+h) - f(x^+)}{h} < \infty$$

and

$$\lim_{h \to 0^-} \frac{f(x+h) - f(x^-)}{h} < \infty$$

Theorem 2 (Bessel's Inequality). Let f(x) be a piecewise continuous function defined on [-L, L]. Then

$$\frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} a_n^2 + b_n^2 \le \frac{1}{L} \int_{-L}^{L} f(x)^2 dx$$

3 Riemann-Lebesgue's Lemma

Theorem 3 (Riemann-Lebesgue's Lemma). If f(x) is piecewise continuous on [-L, L], then

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$$

4 Dirichlet's Kernel

Definition 5 (Dirichlet kernel).

$$D_m(t) = \frac{1}{2} \sum_{n=1}^{m} \cos(nt)$$

is called the Dirichlet kernel of order m.

Theorem 4 (Second representation of Dirichlet's kernel). Let $m \in \mathbb{N}$. Then, for $t \neq 2\pi k$, where $k \in \mathbb{Z}$,

$$D_m(t) = \frac{1}{2} + \cos(t) + \cos(2t) + \dots + \cos(mt)$$
$$= \frac{\sin\left(\left(m + \frac{1}{2}\right)t\right)}{2\sin\left(\frac{1}{2}t\right)}$$

Theorem 5. Let

$$S_m(f,x) = \frac{1}{2}a_0 + \sum_{n=1}^{m} a_n \cos(nx) + b_n \sin(nx)$$

Then,

$$S_m(f,x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) \left(\frac{1}{2} \sum_{n=1}^{m} \cos(nt) \right) dt$$

Theorem 6 (Dirichlet Theorem). Let $f: [-\pi, \pi] \to \mathbb{R}$ be a piecewise continuously differentiable function.

Then, $\forall x \in (-\pi, \pi)$,

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx) = \frac{f(x^-) + f(x^+)}{2}$$

and for $x = \pi$ or $x = -\pi$,

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx) = \frac{f(\pi^-) + f(-\pi^+)}{2}$$

Recitation 2 – Exercise 1.

The Fourier series of x^2 of given to be

$$x^{2} \approx \frac{\pi^{2}}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos(nx)$$

Calculate

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

Recitation 2 – Solution 1.

As x^2 is continuous, with a continuous derivative, Dirichlet Theorem is applicable.

Therefore, let

$$x = \pi$$

Therefore, by Dirichlet Theorem,

$$\frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(nx) = \frac{\left(\pi^{-}\right)^2 + \left((-\pi)^{+}\right)^2}{2}$$

$$\therefore \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} (-1)^n = \pi^2$$

$$\therefore \frac{\pi^2}{4} + 4\sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2$$

$$\therefore \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{4} \left(\pi^2 - \frac{\pi^2}{3}\right)$$

$$= \frac{\pi^2}{6}$$

Recitation 2 – Exercise 2.

The Fourier series of

$$f(x) = \begin{cases} x & ; & 0 \le x \le \pi \\ 0 & ; & -\pi \le x \le 0 \end{cases}$$

is given to be

$$f(x) \approx \frac{\pi}{4} + \sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{n} \sin(nx) - \frac{2}{\pi (2n-1)^2} \cos((2n-1)x) \right)$$

Let this Fourier series be denoted by S(x).

Calculate

1.
$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

2.
$$S\left(\frac{\pi}{2}\right)$$

Recitation 2 – Solution 2.

1

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

Therefore, for x = 0, by Dirichlet Theorem,

$$\frac{\pi}{4} + \sum_{n=1}^{\infty} \left(\frac{(-1)^{n+1}}{n} \sin(0) - \frac{2}{\pi (2n-1)^2} \cos(0) \right) = \frac{f(0^-) + f(0^+)}{2}$$

$$\therefore \frac{\pi}{4} - \sum_{n=1}^{\infty} \left(\frac{2}{\pi (2n-1)^2} \right) = 0$$

$$\therefore \frac{\pi}{4} - \frac{2}{\pi} \sum_{n=1}^{\infty} \left(\frac{1}{(2n-1)^2} \right) = 0$$

$$\therefore \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$$

2. By Dirichlet Theorem,

$$S\left(\frac{\pi}{2}\right) = \frac{f\left(\frac{\pi}{2}^{-}\right) + f\left(\frac{\pi}{2}^{+}\right)}{2}$$
$$= \frac{\pi}{2}$$