Exercise 3

1) N = 400 A : (300, 100) (100, 300) B : (200, 0) (200, 400)

miss dossification rate:

gini impurity:

$$= 1 - \left(\left(\frac{3}{4} \right)^2 + \left(\frac{1}{4} \right)^2 \right)$$

B:
$$H_1 = 1 - (1^2 + 0^2) = 0$$
 $H_2 = 1 - (\frac{2}{6})^2 + (\frac{4}{6})^2$
 $= 1 - \frac{4}{36} - \frac{16}{36}$
 $= \frac{1}{36} = \frac{4}{9}$
 $H_8 = \frac{200}{900} \cdot 0 + \frac{600}{800} \cdot \frac{4}{9}$
 $= \frac{1}{3} = \frac{1}{3}$

Entropy:

A: $H_1 = \frac{3}{3} \cdot (09)(\frac{3}{4}) - \frac{1}{4} \log(\frac{1}{4})$
 $\approx \frac{0.56}{0}$

B: $H_1 = 0$
 $H_2 = -1 \cdot \log(1) - 2 \cdot \log(2)$
 $\approx 0.64 \cdot 0.75$
 $= 0.64 \cdot 0.75$
 $= 0.48$

Answer	for both and the shan sha	chassification rate is the splits. But the givi in enhapp of split B a se of split A. hy we should consider	npority x better
2) a)_			
	00	0 0.1+0.1-0,5=	-0,5=70
	0 1	7 0.1+1.1-015=	0.5=71
	10	1 1.0 + 0.0 - 0.5 =	0,5=71
	1	7 n. 0 + 1. 0 - 0,5 =	0.5=71
	veight = [$1_n, 1_2, \dots 1_n$	
k	pias = -	205	
6/_			
	00	0 0.1 + 0.1 -2	= -2=70
	0 1	0 0-1 + 1-1 -2	= -1 =70
	10	0 1.1+0-1-2	= -1=70
	111	1 1.1+1.1-2	= 0 = 71
lu b	leight = [h,	12, (n)	

C										
	ruf	1	0	0	1.	(-1,) +	0-(-	11+0	5-05
	Grin	Ô	0	1	0-6-	1)	+0.	(-1)	FOr5	0,5
	gelto	0	1	0	0-(-	1)	+ 1	(-1,) +0,5=	-OcT
	blau	1	1	Ô	1.(-	-1) -	+ 1((-1)	+00	=-115
	Wei	9hts	= [-1,	1)					
	61	105		05						
d)	ruf	1	0	1	1.	(1,) +	0-(-	11-0	J-5= 005
	grin	Ô	0	0	0-0	1)	+0.	(-1)	- Or5 =	-0,5
	gelso	0	1	0	0.(1)	+ 1	(-1,) - O, J=	-1,5
	blan	1	1	0	1.(1) -	+ 1(-1)	015	= -0,5
	Wli	ights .	- [1	,-1]	7					
	bion)	(05						

3) a)
$$\frac{d}{dt} h (f(x_1, w), g(x_2, w)) = \frac{dh}{dw}$$

$$\frac{dh}{dt} \cdot \frac{df}{dw} + \frac{dh}{df} \cdot \frac{dg}{dw}$$
b) Chain rule

c)
$$\frac{dh}{dt} = \frac{d}{dt} (f \cdot g) = g$$

$$\frac{dh}{dw} = \frac{d}{dw} (x_1 \cdot w) = \frac{x_1}{x_2}$$

$$\frac{dh}{dw} = \frac{d}{dw} (x_2 \cdot w) = \frac{x_2}{x_2}$$

$$\frac{dh}{dw} = \frac{g}{dw} (x_2 \cdot w) = \frac{x_2}{x_2}$$

$$\frac{dh}{dw} = \frac{x_2}{x_2}$$

$$\frac{dh}{dw} = \frac{x_2}{x_2}$$

$$\frac{dh}{dw} = \frac{x_2}{x_2}$$

$$\frac{dh}{dw} = \frac{x_2}{x_2}$$

	$\frac{\partial}{\partial w} = \frac{\partial}{\partial w} (x_1 + w) = 1$
	$\frac{d}{dg}(f^9) = \frac{f^9 \cdot \ln(f)}{dg}$
	$\frac{\partial}{\partial w} = \frac{\partial}{\partial w} (x_2 + w) = 1$
dh dw	$\frac{1}{2}g \cdot f(g-n) + fg \cdot \ln(f)$
	$= (X_2 + \omega) \cdot (X_1 + \omega) + (X_1 + \omega) \cdot (X_2 + \omega) \cdot \ln(x_1 + \omega)$ $= (X_2 + \omega) \cdot (X_1 + \omega) + (X_1 + \omega) \cdot (X_2 + \omega) \cdot \ln(x_1 + \omega)$ $= (X_2 + \omega) \cdot (X_1 + \omega) + (X_1 + \omega) \cdot (X_2 + \omega) \cdot \ln(x_1 + \omega)$ $= (X_1 + \omega) \cdot (X_1 + \omega) + (X_1 + \omega) \cdot (X_2 + \omega) \cdot \ln(x_1 + \omega)$
	$= (X_1 + \omega) \cdot \left(\frac{X_2 + \omega}{X_1 + \omega} + (n(x_1 + \omega)) \right)$