Übungen zur Algorithmischen Bioinformatik I

Blatt 10

Xiheng He

Juni 2021

4. Aufgabe: KMP und BM Implementierung (10 Punkte)

Implementieren Sie die Algorithmen (Siehe Aufgabe 1): KMP, BM_next und BM_bad-char.

- (a) Begründen Sie jeweils die Korrektheit des Algorithmus bzw. Ihrer Implementierung.
 - Korrektheit des KMP Algorithmus:

Lemma 1. Gilt $s_k = t_{i+k}$ für alle $k \in [0:j-1]$ und $s_j \neq t_{i+j}$, dann ist der Shift $i \to i+j-border[j]$ sicher. Nach Lemma 1 (Lemma 2.9 auf Skript S.112) ist jede Verschiebung um j-border[j] nicht nur sicher sondern auch zulässig. D.h. Wenn s am Ende nicht mehr verschoben werden kann, steht s nicht in t. Sonst kann s nach mehrmals Verschiebungen gefunden werden und s kann nicht wegen Verschiebung in t übersprungen werden da jede Verschiebung um j-border[j] sicher und zulässig.

• Korrektheit des BM next

Die Shift Tabelle für Good-Suffix-Rule des Boyer-Moore Algorithmus berechnet wesentlich auch die Ränder von Teilwörtern des gesuchten Wortes. Daher ist jede Verschiebungen nach Lemma 1 (Lemma 2.9 auf Skript S.112) auch sicher wenn $s_j \neq t_{i+j}$ und $s_k = t_{i+k}$ für alle $k \in [0:j-1]$ somit ignoriert der Algorithmus nicht wenn ein Match vorkommt.

• Korrektheit des BM_bad-char

Analog ist die jede Verschiebung nach "bad-character-rules" auch sicher. In Boyer-Moore Algorithmus ist Bei einem Mismatch von s_j mit t_{i+j} wird s so verschoben, dass das rechteste Vorkommen von t_{i+j} in s genau unter t_{i+j} zu liegen kommt damit bedeutet dies, dass es keine übereinstimmende Zeichenfolge s übersprungen werden kann da es nur Mismatch von rechtesten Vorkommen bis Position j steht. Ferner, ist die Verschiebung auch sicher wenn s um m verschoben wird da das Zeichen des Mismatch t_{i+j} in s gar nicht gibt. Der Algorithmus

ist damit korrekt wenn jede Verschiebung sicher ist. Das gesuchte s wird entweder nach mehrmals Verschiebungen gefunden oder existiert in t nicht.

- (b) Analysieren Sie die Laufzeit Ihrer Verfahren.
 - Laufzeitanalyse des KMP Algorithmus

Theorem 1. Für die Berechnung der Tabelle border sind maximal 2m1 Zeichenvergleiche notwendig.

Theorem 2. Der Algorithmus von Knuth, Morris und Pratt benötigt maximal 2n + m Zeichenvergleiche, um festzustellen, ob ein Muster s der Länge m in einem Text t der Länge n enthalten ist.

Nach Theorem 1 (Theorem 2.13 auf Skript S.118) und Theorem 2 (Theorem 2.13 auf Skript S.118) beträgt die Laufzeit des KMP Algorithmus in O(n+m).

• Laufzeitanalyse des BM_next

Theorem 3. Der Boyer-Moore Algorithmus benötigt maximal 3(n+m) Zeichenvergleiche, um zu entscheiden, ob eine Zeichenreihe der Länge m in einem Text der Länge n enthalten ist.

Nach Theorem 3 (Theorem 2.22 auf Skript S.141) ist die Laufzeit des BM_next in O(n+m).

• Laufzeitanalyse des BM_bad-char Da eine Konstruktion der Tabelle für bad-character eine Laufzeit mit $O(|\Sigma|)$ benötigt (für Extended-Bad-Character-Rule wird $O(m \cdot |\Sigma|)$) ist die Laufzeit in $O(n + |\Sigma|)$.

(c) Messen Sie die Laufzeit Ihrer Implementierungen und Vergleichen Sie mit dem naiven Algorithmus!

input size	$n = 10^4, m = 10^2$	$n = 10^6, m = 10^2$	$n = 10^7, m = 10^2$	$n = 10^8, m = 10^2$	$n = 10^9, m = 10^3$
Naive	0ms	5ms	22ms	113ms	1688ms
KMP	0ms	5ms	11ms	$37 \mathrm{ms}$	482ms
BM_next	0ms	0ms	4ms	14ms	214ms
BM_bad-char	0ms	4ms	11ms	$46 \mathrm{ms}$	698ms

(d) Zählen Sie wieder die Zeichen-Vergleiche um die theoretischen Analysen zu validieren.

Gegeben sei t= ACACEDAACACBDAA, s= ACACBDA, n=15, m=7

	praktisch	theoritsch (maximal)
Naive	14	63
KMP	16	37
BM_next	14	66
BM_bad-char	9	O(nm)