平成21年度 京都大学大学院理学研究科(数学・数理解析専攻)

数学系 入学試験問題 数学 II

- ⊗ 問題は8題あり、次の4つの分野群に分かれる.分野群 [A] の問題は $\boxed{1}$ と $\boxed{2}$ の 2 題,分野群 \boxed{B} の問題は $\boxed{3}$ と $\boxed{4}$ の 2 題,分野群 \boxed{C} の問題は $\boxed{5}$ から $\boxed{7}$ の $\boxed{3}$ 題,分野群 \boxed{D} の問題は $\boxed{8}$ の $\boxed{1}$ 題である.
- ⊗ この8問題中、3問題を2つ以上の分野群から選択して解答せよ.
- ⊗ 解答時間は 4時間 である.
- ⊗ 参考書・ノート類の持ち込みは禁止する.

「注意]

- 1. 指示のあるまで開かぬこと.
- 2. 解答用紙・計算用紙のすべてに、受験番号・氏名を記入せよ。
- 3. 解答は各問ごとに別の解答用紙を用い、問題番号を各解答用紙の枠内に記入せよ.
- 4. 1 間を 2 枚以上にわたって解答するときは、つづきのあることを用紙下端に明示して次の用紙に移ること。
- 5. 提出の際は、解答用紙を問題番号順に重ね、計算用紙をその下に揃え、選択表を上におき、記入した面を外にして一括して二つ折にして提出すること。
- 6. この問題用紙は持ち帰ってよい.

[記号]

以下の問題で \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} はそれぞれ, 自然数の全体, 整数の全体, 有理数の全体, 実数の全体, 複素数の全体を表す.

- **1** K は虚 2 次体とする。すなわち, $K = \mathbb{Q}(\sqrt{-d})$ で,d は正の有理数であるとする。このとき, \mathbb{Q} の 4 次の巡回拡大体 L で K を含むものは存在しないことを示せ。ただし, L/\mathbb{Q} が巡回拡大であるとは, L/\mathbb{Q} が Galois 拡大であって,Galois 群 $Gal(L/\mathbb{Q})$ が巡回群となっていることをいう。
- $m{2}$ p を奇素数とする。G を位数が p^3 の有限群で、単位元以外の各元の位数が p であるようなものとする。このとき、G は \mathbb{C} 上の 2 次一般線型群 $\mathrm{GL}_2(\mathbb{C})$ の 部分群と同型ではないことを示せ、
- D^2 を複素平面内の境界を含めた単位円板 $\{z \in \mathbb{C} \mid |z| \leq 1\}$ とし, S^1 をその境界 $\{z \in \mathbb{C} \mid |z| = 1\}$ とする.n を 2 以上の整数とし,

$$X_1 = X_2 = D^2 \times \underbrace{S^1 \times \cdots \times S^1}_{n-1 \text{ fill}}$$

とおき、 X_1 と X_2 の境界を

$$\partial X_1 = \partial X_2 = \underbrace{S^1 \times \cdots \times S^1}_{n \text{ fill}}$$

と表わす。 σ を n 次の置換とするとき、

$$f_{\sigma}(z_1,\ldots,z_n)=(z_{\sigma(1)},\ldots,z_{\sigma(n)})$$

によって写像

$$f_{\sigma}: \partial X_1 \to \partial X_2$$

- (1) n=2で、 σ が1と2の互換の場合
- (2) n=3 で、 σ が一般の置換の場合
- $oxed{4}$ 3次元球面 S^3 を $\{(z_1,z_2)\in\mathbb{C}^2\mid |z_1|^2+|z_2|^2=1\}$ と同一視する. S^3 から S^3 への C^∞ 写像 f を

$$f(z_1, z_2) = (z_1^2 - |z_2|^2, z_1 z_2 + \overline{z_1} z_2)$$

で定義する. このとき f の臨界点を求めよ.

 $oxed{5}$ $f\in C^1(\mathbb{R})\cap L^2(\mathbb{R})$ と $t\in\mathbb{R}$ に対し

$$I_t(f) = \frac{1}{t^2} \int_{\mathbb{R}} |f(x+t) - f(x)|^2 dx$$

とする。このとき次の問に答えよ.

- (1) $f' \in L^2(\mathbb{R})$ ならば極限値 $\lim_{t\to 0} I_t(f)$ が存在し、その値は $\int_{\mathbb{R}} |f'(x)|^2 dx$ に等しいことを示せ、
- (2) もし $\sup_{t>0} I_t(f) < +\infty$ ならば $f' \in L^2(\mathbb{R})$ であることを示せ.
- $m{6}$ H を可分 Hilbert 空間として,その内積を $(\ ,\)$ で表わす。H の完全正規直 交系 $\{\varphi_k\}_{k\in\mathbb{N}}$ を取り,H 上の函数列 $\{f_n\}_{n\in\mathbb{N}}$ を

$$f_n(x) = \sum_{k=1}^n |(x, \varphi_k)|^2$$

で定める。このとき,H 内の有界集合 A が相対コンパクトであることと, $\{f_n\}_{n\in\mathbb{N}}$ が A 上で一様収束することが同値であることを示せ.

「 常に 1 以上の値を取る 2 つの実数値函数 $p \in C^1([0,1]), q \in C([0,1])$ に対し、実数値函数列 $\{u_n\}_{n\in\mathbb{N}}$ $(u_n \in C^2([0,1]))$ は

$$\begin{cases} -\{p(x)u'_n(x)\}' + q(x)u_n(x) = f_n(x), & x \in [0, 1] \\ u'_n(0) = u'_n(1) = 0 \end{cases}$$

を満たし、 $\sup_{n\in\mathbb{N}}\int_0^1\{f_n(x)\}^2dx<+\infty$ が成り立つと仮定する.このとき、

$$\int_0^1 \{u_n'(x)\}^2 dx + \frac{1}{2} \int_0^1 \{u_n(x)\}^2 dx \le \frac{1}{2} \int_0^1 \{f_n(x)\}^2 dx$$

が成り立つことを示し、 $\{u_n\}_{n\in\mathbb{N}}$ から [0,1] 上で一様収束する部分列を選ぶことができることを示せ.

- 8 $A = \{a, b\}$ を文字の集合, A^* を A に属する文字からなる有限長の文字列全体の集合とする。以下,空文字列(長さ 0 の文字列)を ε で表わし,二つの文字列 x,y を連結して得られる文字列を xy で表わす。E を定数記号,N を 2 引数の関数記号とし,T を以下の性質を満たす最小の集合とする。
 - (a) E は T の元である.
 - (b) l, r がT の元ならば、N(l, r) はT の元である.

関数 $F: T \to A^*$ を以下のように帰納的に定義する.

$$F(t) = egin{cases} arepsilon & (t = E \, \mathcal{O} \, \ensuremath{\mathfrak{E}} \, \ensuremath{\mathfrak{E}}) \ \mathrm{a} F(l) \mathrm{b} F(r) & (t = N(l,r) \, \mathcal{O} \, \ensuremath{\mathfrak{E}} \, \ensuremath{\mathfrak{E}}) \end{cases}$$

以下の間に答えよ.

(1) 次のような性質

$$F(G(t_1, t_2)) = F(t_1)F(t_2)$$

を満たすような関数 $G: T \times T \to T$ を帰納的に定義し、その G が実際この 性質を満たすことを示せ.

(2) 文字列xが含む a および b の数をそれぞれL(x) およびR(x) と書くとき、次のような性質

$$D(t) = \max\{L(x) - R(x) \mid x, y \in A^*$$
かつ $F(t) = xy\}$

を満たすような関数 $D: T \to \mathbb{Z}_{\geq 0}$ ($\mathbb{Z}_{\geq 0}$ は非負整数の全体) を帰納的に定義し、その D が実際この性質を満たすことを示せ.