化学中的数学

蒋然 王崇斌

2021年2月20日

目录

4 目录

Chapter 1

Hamilton 运动方程

1.1 20200925: 正则方程

经典力学中常用的独立变量为位置 x 和动量 p, 且满足关系

$$\dot{x} = \frac{p}{m}$$

$$\dot{p} = -\frac{\partial V}{\partial x}$$

首先研究 HCl 分子。每个原子的坐标有 3 个自由度,总共是 6 个自由度。而这个分子总体有 3 个平动自由度,2 个转动自由度,还剩余 1 个振动自由度。振动自由度的能量由**势能** 面来描述。势能面是两个原子的距离 r 的函数,且

$$\lim_{r \to \infty} V(r) = 0$$

当 r 减小时,势能逐渐减小,有一个极小值,对应的两原子距离称为平衡位置 r_{eq} , 然后再减小 r 时,势能增大,最后达到

$$\lim_{r \to 0^+} V(r) = +\infty$$

实际上在平衡位置附近,我们把这个振动自由度近似为谐振子模型。通过改变势能零点的定义,我们总可以把势能写为

$$V(r) = \frac{1}{2}k(r - r_{\rm eq})^2$$

根据势能的形式可以写出力的形式

$$F = -\frac{\partial V}{\partial r} = -k(r - r_{\rm eq})$$

做变换 $x = r - r_{eq}$,可以将势能写为

$$V(x) = \frac{1}{2}kx^2$$

也可以将位置和动量对时间导数写为

$$\dot{x} = \frac{p}{m}$$

$$\dot{p} = -kx$$

现在求解这个运动方程:

$$\ddot{x} = \frac{\dot{p}}{m} = -\frac{kx}{m}$$

这是一个二阶常微分方程, 求解得到通解

$$x = A\cos\omega t + B\sin\omega t$$
$$p = -Am\omega\sin\omega t + Bm\omega\cos\omega t$$

其中 $\omega = \sqrt{\frac{k}{m}}$. 如果给定初始条件

$$x(0) = x_0$$
$$p(0) = p_0$$

将这两个方程代入到通解中,得到

$$x = x_0 \cos \omega t + \frac{p_0}{m\omega} \sin \omega t$$
$$p = p_0 \cos \omega t - m\omega x_0 \sin \omega t$$

体系的 Hamilton 函数为

$$H(x, p, t) = \frac{p^2}{2m} + V(x)$$

现在希望验算

$$H(x, p, t) = H(x, p, 0), \quad \forall t$$

3

为了证明这个成立,首先可以推导正则方程:

$$\begin{split} \frac{\partial H}{\partial x} &= \frac{\partial V}{\partial x} = -\dot{p} \\ \frac{\partial H}{\partial p} &= \frac{p}{m} = \dot{x} \end{split}$$

因此

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\partial H}{\partial x}\dot{x} + \frac{\partial H}{\partial p}\dot{p} + \frac{\partial H}{\partial t} = \frac{\partial H}{\partial t}$$

这个结论对任意正则方程成立的体系都成立。在谐振子模型中,Hamilton 函数不显含时间, 故

$$\frac{\mathrm{d}H}{\mathrm{d}t} = 0$$

这个体系可以在**相空间**中描述,即把它的状态画在一个 (x,p) 的二维空间中,观察它随时间的变化。显然地谐振子体系在相空间中的轨迹应该是一个椭圆。

$$\frac{p^2}{2m} + \frac{1}{2}kx^2 = E_0$$

其周期为

$$T = \frac{2\pi}{\omega}$$

但是,对于任意的满足能量守恒的体系,其在相空间中的轨迹不一定是一条封闭的曲线,在一些情况下有可能充满相空间的某个区域。[?]

作业1 第 1 次作业第 1 题: 一维四次势的周期轨道

现在考虑质量是 x, p 的函数 $m_{\text{eff}}(x, p)$, 在这种情况下 Hamilton 函数为

$$H(x,p) = \frac{p^2}{2m_{\text{eff}}(x,p)} + V(x)$$

在这种情况下的运动方程为

$$\begin{split} \dot{x} &= \frac{\partial H}{\partial p} = \frac{p}{2m_{\rm eff}} - \frac{p^2}{2m_{\rm eff^2}} \frac{\partial m_{\rm eff}}{\partial p} \\ \dot{p} &= -\frac{\partial H}{\partial x} = \frac{p^2}{2m_{\rm eff}^2} \frac{\partial m_{\rm eff}}{\partial x} + \frac{\partial V}{\partial x} \end{split}$$

这种情况下能量仍然守恒,因为 Hamilton 函数不显含时间,且正则方程成立。

作业2 第1次作业第2题:竖立粉笔的问题