

Tarea 1

Profesores: Andrés Abeliuk - Jocelyn Simmonds

Auxiliares: Carlos Antil - Blaz Korecic - Diego Salas - Lucas Torrealba

Instrucciones.-

- La tarea debe ser resuelta en grupos de a los más 3 integrantes. No olviden especificar claramente sus nombres y secciones en el informe.
- Deberá entregar un único archivo en formato .zip, que deberá contener 4 archivos: P1.pdf,
 P2.pdf, P3.pdf, P3.{py,java,cpp}
- Procure que sus demostraciones sean claras, sin ambigüedades y ordenadas. Se recomienda, aunque no es obligatorio, que elabore sus informes usando L^AT_EX.

P1: Lógica proposicional.-

1. (3 pt) Suponga que le entregan un algoritmo de "caja negra" de resolución SAT - es decir, un dispositivo que toma una fórmula de lógica proposicional ϕ y devuelve si ϕ es o no satisfactible. Usted no sabe nada sobre el funcionamiento de este algoritmo. Vamos a denotar este algoritmo A, por lo que $A(\phi)$ es verdadero si ϕ es satisfacible.

Esta pregunta plantea qué más se puede hacer con un algoritmo de resolución SAT.

- a) (1 pt) Cree un algoritmo que utilice A como subrutina para determinar si ϕ es una tautología. Demuestre que su algoritmo es correcto. No se limite a enumerar todas las posibles asignaciones y comprobar cada una individualmente
- b) (1 pt) Suponga que tiene dos fórmulas proposicionales ϕ y ψ . Te interesa determinar si $\varphi \equiv \psi$; es decir, si ϕ y ψ tienen siempre los mismos valores de verdad. Crea un algoritmo que utilice A como subrutina para responder a esta pregunta, y demuestra que tu algoritmo es correcto.
- c) (1 pt) Suponga que tiene una fórmula proposicional ϕ con n variables que sabe que es satisfacible. Cree un algoritmo que utilice A como subrutina para obtener una asignación satisfactoria para ϕ utilizando como máximo n llamadas a A. Demuestre que su respuesta es correcta.
- 2. (3 pt) En esta pregunta usted construirá fórmulas de la lógica proposicional que definen como sumar números binarios.

Considere el conjunto de variables proposicionales $P = \{a_0, a_1, ..., a_{n-1}, b_0, b_1, ..., b_{n-1}\}$. Podemos suponer que cada valuación $\sigma: P \to \{0,1\}$ define un par de números binarios X_1^{σ} y X_2^{σ} dados por la evaluación de σ sobre las secuencias de variables $a_{n-1}...a_1a_0$ y $b_{n-1}...b_1b_0$. Por ejemplo, si n = 3 y σ es tal que, $\sigma(a_2) = \sigma(a_1) = \sigma(b_1) = 0$ y $\sigma(a_0) = \sigma(b_2) = \sigma(b_0) = 1$ entonces $X_1^{\sigma} = 001$ y $X_2^{\sigma} = 101$.

Tarea 1

Construya fórmulas (solamente con los conectivos $\{\vee, \neg\}$) $\phi_0, \phi_1, ..., \phi_{n-1}, \phi_n$ en $\mathcal{L}(P)$ tales que para toda valuación σ se cumpla que $\sigma(\phi_i) = 1$, si y solo si, el bit en la posición i de $X_1^{\sigma} + X_2^{\sigma}$ es 1.

Sus fórmulas las deben dejar en función de $\{\neg, \lor\}$, en caso de que usen algún otro conectivo lógico $(\{\land, \Longrightarrow, \oplus, etc\})$, **<u>DEBEN</u>** definirlo en base a $\{\neg, \lor\}$, por más trivial que sea (esto es por enunciado solamente).

P2: Lógica de predicados.-

Considere la estructura de la lógica relacional definida como $\mathcal{A} = (\mathbb{N}; +; \times)$. Es decir, el dominio de \mathcal{A} son los números naturales y tenemos accesos a las relaciones ternarias de adición (+) y multiplicación (×) sobre tal dominio, respectivamente. Formalice los siguientes enunciados, definiendo los predicados que sean apropiados.

Importante: En esta pregunta nuestro dominio son los naturales, es decir, **NO** pueden realizar x^{-1} para representar $\frac{1}{x}$ ni tampoco pueden hacer -x, al menos que se definan una relación de esa manera con los elementos en los naturales. Además denotaremos +(a,b,c) que equivale a a+b=c, mientras que $\times(a,b,c)$ equivale a $a\cdot b=c$. Tampoco pueden usar constantes como 1,2... sin antes definirlas como relaciones.

- 1. (1.5 pt) El conjunto de todos los triples (m, n, p) tal que $n \neq 0$ y $p = \lfloor \frac{m}{n} \rfloor$.
- 2. (1.5 pt) El conjunto de los triples (m, n, p) tal que $m \ge n$ y $m \equiv n \mod p$, es decir, m n es divisible por p.
- 3. (1 pt) El conjunto de todos los n que son de la forma 2^p , para algún $p \ge 0$.
- 4. (1 pt) El conjunto de todos los pares (p,q) de números primos gemelos. Donde los números primos (p,q) son números primos gemelos si, siendo q > p, se cumple q p = 2.
- 5. (1 pt) El conjunto de los números racionales. Para este problema, suponga que la definición de número racional significa que p y q no deben tener factores en común distintos de 1 y -1.

P3: Diseño de Algoritmos por Inducción.-

Considere el problema de la galleta: Se le entrega una lista de n galletas donde la galleta i-ésima tiene $-A \le a_i \le A$ como valor de satisfacción. Usted quiere escoger un conjunto de galletas tal que para todo par de galletas escogidas, estas no estaban adyacentes en la lista, y quiere que la suma de satisfacción de las galletas escogidas sea la máxima posible.

Se tiene la función $F:[n] \to \mathbb{N}$ tal que F(i) es la solución considerando solo las primeras i galletas. Además consideraremos que todo número $n \cdot A$ puede guardarse en memoria usando O(1) de memoria.

- 1. (1 pt) Entregue una fórmula recursiva para F y demuestre su correctitud.
- 2. (1 pt) Diseñe un algoritmo que calcule F de forma recursiva con O(1) de memoria extra (es decir memoria constante). Indique la complejidad del algoritmo.

Tarea 1 2

- 3. (1 pt) Mejore el algoritmo anterior a uno iterativo que calcule F(n) con O(1) de memoria extra e indique la complejidad.
- 4. (3 pts) Programe un algoritmo P3.{py, cpp, java} que reciba n en la entrada y una lista de n números enteros y entregue el índice de las galletas a escoger para maximizar la satisfacción junto con la satisfacción máxima. El algoritmo debe usar la relación encontrada en la parte (2). Ejemplo:

Entrada	Salida
5	$1\ 3\ 5$
1 2 3 4 7	11

Tarea 1