Compare 2 losses on two discriminator (D_1,D_2) on a small fake batch {x1,x2}

	x1	x2	min sum log(1-d)	min sum -log(d)
D_1(x)	0,5	5 0,8	-1	0,397940009
D_2(x)	0,6	0,7	-0,920818754	0,37675071
D_3(x)	0,01	L 0,99	-2,004364805	2,004364805
D_4(x)	0,99	0,99	-4	0,008729611

Blue loves if any D(x_i)~1 "GOOD" Red hates if any D(x_i)~0 "BAD"

minimize log(1-x) minimize - log(x)

0,0	0,1	0,2	0,3	0,4
-4,34297E-06	-0,04576	-0,09691	-0,1549	-0,22184875
5	1	0,69897	0,522879	0,397940009

0,5	0,6	0,7	0,8	0,9	1,0
-0,301029996	-0,39794	-0,52288	-0,7	-1	-7
0,301029996	0,221849	0,154902	0,1	0	0