Solución Examen 1 (temas 2 y 3)

Ejercicio 1 (Objetivo 2.4) (1,5 puntos)

Criterio de valoración:

-1 punto por cada fila con algún error.

(dos o más filas mál es un 0)

X	X (Hexa)	Xu
11101011	EB	235
00111101	3D	61
11011001	D9	217

Ejercicio 2 (Objetivos 3.5, 3.6.1 y 3.13) (2,5 puntos)

Criterio de valoración:

- a) 1,5 puntos
 - +1 punto: Tabla de verdad correcta. Binario.
 - +0,5 puntos: Expresión en suma de minterms correcta. Binario.

b) 1 punto

- +0,75 puntos si camino correcto. Binario. Si camino incorrecto un 0 en el apartado b.
- +0,25 puntos si Tp correcto, pero sólo si el camino es correcto si no 0.

а	b	С	d
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	0

Expresión en suma de minterms de c: !a·b + a·!b + a·b

Camino crírico de a a d: a - Or - Xor - Not- x1 - w0 - And - Xor - d

Tpa-d: 155

Ejercicio 3 (Objetivo 3.11) (1 punto)

Criterio de valoración:

-0,5 puntos por cada fila con algún error.

(dos o más filas mal es un 0)

E1 (3 de marzo de 2013) IC-15-16-Q2

Ejercicio 4 (Objetivos 3.2 y 3.11) (1,5 puntos)

Criterio de valoración:

-0,5 puntos por cada fila incorrecta. Cada fila binario

(3 o más filas mal es un 0).

Ejercicio 5 (Objetivo 3.12) (1,5 puntos)

Criterio de valoración:

- -0,5 puntos primera fila mal. Binario
- -1 punto segunda fila mal. Binario.
- (2 filas o más mal es un 0)

Ejercicio 6 (Objetivo 3.17) (2 puntos)

Criterios de valoración: 1 punto por cada una de las dos funciones minimizadas correctamente (mapa y expresión lógica). 0,5 puntos por cada función que sea equivalente a la expresión mínima pero no sea mínima y 0 puntos si la expresión no es equivalente y/o el mapa no es coherente con la expresión.

Mapa de Karnaugh:

$$\mathbf{w} = !x_2 \cdot !x_0 + !x_2 \cdot x_1 + x_3 \cdot x_1 + x_3 \cdot x_2 \cdot x_0$$

$$\mathbf{g} = !x_2 \cdot !x_1 + !x_3 \cdot x_1 \cdot x_0$$