# What Makes a Great Wine?



Analyzing 6,000 Red and White Wines to see if the same attributes make them great wines

### Objective: Determine What Makes a Great Wine

- -We will build a ML classifier that can predict if a wine is high quality or not.
- -If the model is accurate, we will then compare the most impactful coefficients to determining the wine's quality.
- Finally, we will assess if the same attributes contribute to high quality red and white wine.

### About the Datasets:

#### -Red Wine: 1599 rows about distinct Portuguese red wines.

|   | fixed acidity | volatile acidity | citric acid | residual sugar | chlorides | free sulfur dioxide | total sulfur dioxide | density | рН   | sulphates | alcohol | quality |
|---|---------------|------------------|-------------|----------------|-----------|---------------------|----------------------|---------|------|-----------|---------|---------|
| 0 | 7.4           | 0.70             | 0.00        | 1.9            | 0.076     | 11.0                | 34.0                 | 0.9978  | 3.51 | 0.56      | 9.4     | 5       |
| 1 | 7.8           | 0.88             | 0.00        | 2.6            | 0.098     | 25.0                | 67.0                 | 0.9968  | 3.20 | 0.68      | 9.8     | 5       |
| 2 | 7.8           | 0.76             | 0.04        | 2.3            | 0.092     | 15.0                | 54.0                 | 0.9970  | 3.26 | 0.65      | 9.8     | 5       |
| 3 | 11.2          | 0.28             | 0.56        | 1.9            | 0.075     | 17.0                | 60.0                 | 0.9980  | 3.16 | 0.58      | 9.8     | 6       |
| 4 | 7.4           | 0.70             | 0.00        | 1.9            | 0.076     | 11.0                | 34.0                 | 0.9978  | 3.51 | 0.56      | 9.4     | 5       |

#### -White Wine: 4898 rows about distinct Portuguese white wines.

|   | fixed acidity | volatile acidity | citric acid | residual sugar | chlorides | free sulfur dioxide | total sulfur dioxide | density | рН   | sulphates | alcohol | quality |
|---|---------------|------------------|-------------|----------------|-----------|---------------------|----------------------|---------|------|-----------|---------|---------|
| 0 | 7.0           | 0.27             | 0.36        | 20.7           | 0.045     | 45.0                | 170.0                | 1.0010  | 3.00 | 0.45      | 8.8     | 6       |
| 1 | 6.3           | 0.30             | 0.34        | 1.6            | 0.049     | 14.0                | 132.0                | 0.9940  | 3.30 | 0.49      | 9.5     | 6       |
| 2 | 8.1           | 0.28             | 0.40        | 6.9            | 0.050     | 30.0                | 97.0                 | 0.9951  | 3.26 | 0.44      | 10.1    | 6       |
| 3 | 7.2           | 0.23             | 0.32        | 8.5            | 0.058     | 47.0                | 186.0                | 0.9956  | 3.19 | 0.40      | 9.9     | 6       |
| 4 | 7.2           | 0.23             | 0.32        | 8.5            | 0.058     | 47.0                | 186.0                | 0.9956  | 3.19 | 0.40      | 9.9     | 6       |

### Variables in Datasets

#### Red Wine Info:

| Data | columns (total 12 col | umns):         |         |
|------|-----------------------|----------------|---------|
| #    | Column                | Non-Null Count | Dtype   |
|      |                       |                |         |
| 0    | fixed acidity         | 4898 non-null  | float64 |
| 1    | volatile acidity      | 4898 non-null  | float64 |
| 2    | citric acid           | 4898 non-null  | float64 |
| 3    | residual sugar        | 4898 non-null  | float64 |
| 4    | chlorides             | 4898 non-null  | float64 |
| 5    | free sulfur dioxide   | 4898 non-null  | float64 |
| 6    | total sulfur dioxide  | 4898 non-null  | float64 |
| 7    | density               | 4898 non-null  | float64 |
| 8    | рн                    | 4898 non-null  | float64 |
| 9    | sulphates             | 4898 non-null  | float64 |
| 10   | alcohol               | 4898 non-null  | float64 |
| 11   | quality               | 4898 non-null  | int64   |
|      |                       |                |         |

#### White Wine Info:

| Data | columns (total 12 col | umns):         |         |
|------|-----------------------|----------------|---------|
| #    | Column                | Non-Null Count | Dtype   |
|      |                       |                |         |
| 0    | fixed acidity         | 4898 non-null  | float64 |
| 1    | volatile acidity      | 4898 non-null  | float64 |
| 2    | citric acid           | 4898 non-null  | float64 |
| 3    | residual sugar        | 4898 non-null  | float64 |
| 4    | chlorides             | 4898 non-null  | float64 |
| 5    | free sulfur dioxide   | 4898 non-null  | float64 |
| 6    | total sulfur dioxide  | 4898 non-null  | float64 |
| 7    | density               | 4898 non-null  | float64 |
| 8    | рн                    | 4898 non-null  | float64 |
| 9    | sulphates             | 4898 non-null  | float64 |
| 10   | alcohol               | 4898 non-null  | float64 |
| 11   | quality               | 4898 non-null  | int64   |

-All columns are continuous numeric variables except for 'quality', which is a discrete ordinal numeric variable.

### A Quick Comparison of Red vs. White Features



-It is evident that there are significant differences between the red and white distributions.

## Red vs. White Quality Scores



- -More scores of 5-6 range for Reds. Whites have a few(5) ratings of 9.
- -Overall similar distributions here as well.

### Reclassification

For the purpose of this model, we will classify wine's with ratings 7 and above as a high quality wine with a boolean value of 1 and low quality with 0.

Here is the distribution of our new quality feature:



### Modeling

- For the purpose of this analysis we will will compare out of the box:
  - Logistic Regression
  - Random Forests
  - XGBoost.

Given the unbalanced value counts of the high quality wines, we will use F1-score to evaluate these models.

# Logistic Regression Classification Report

#### **Red Wine**

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.88      | 0.98   | 0.93     | 342     |
| 1            | 0.62      | 0.22   | 0.33     | 58      |
| accuracy     |           |        | 0.87     | 400     |
| macro avg    | 0.75      | 0.60   | 0.63     | 400     |
| weighted avg | 0.84      | 0.87   | 0.84     | 400     |

#### White Wine

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.82      | 0.95   | 0.88     | 968     |
| 1            | 0.53      | 0.21   | 0.31     | 257     |
| accuracy     |           |        | 0.80     | 1225    |
| macro avg    | 0.68      | 0.58   | 0.59     | 1225    |
| weighted avg | 0.76      | 0.80   | 0.76     | 1225    |

# Random Forest Classification Report

#### Red Wine

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.92      | 0.98   | 0.95     | 342     |
| 1            | 0.81      | 0.50   | 0.62     | 58      |
| accuracy     |           |        | 0.91     | 400     |
| macro avg    | 0.86      | 0.74   | 0.78     | 400     |
| weighted avg | 0.90      | 0.91   | 0.90     | 400     |

#### White Wine

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.90      | 0.97   | 0.93     | 968     |
| 1            | 0.83      | 0.58   | 0.68     | 257     |
| accuracy     |           |        | 0.89     | 1225    |
| macro avg    | 0.86      | 0.77   | 0.81     | 1225    |
| weighted avg | 0.88      | 0.89   | 0.88     | 1225    |

# XGBoost Classification Report

#### Red Wine

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.92      | 0.98   | 0.95     | 342     |
| 1            | 0.78      | 0.50   | 0.61     | 58      |
| accuracy     |           |        | 0.91     | 400     |
| macro avg    | 0.85      | 0.74   | 0.78     | 400     |
| weighted avg | 0.90      | 0.91   | 0.90     | 400     |

#### White Wine

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.90      | 0.95   | 0.93     | 968     |
| 1            | 0.78      | 0.61   | 0.68     | 257     |
| accuracy     |           |        | 0.88     | 1225    |
| macro avg    | 0.84      | 0.78   | 0.80     | 1225    |
| weighted avg | 0.88      | 0.88   | 0.88     | 1225    |

### **Evaluation**

- Random Forest had F1 scores of 0.62(red) and 0.68(white) and XGBoost had F1 scores of 0.61(red) and 0.68(white).
- For further analysis and comparison of results we use the Random Forest Model for the next step of evaluation, comparing the the most important features between red and whites at predictioning high quality wine.

# Feature Importance for Predicting Wine Quality



**Analysis**: For red and white models, alcohol is greatest predictor for quality. Beyond that, for reds, sulphates and volatile acidity are the next most important factors. For whites, density and residual sugar are the next most important features.

**Conclusion**: From these results we can conclude that beyond higher alcohol content, there are distinct attributes that determine a high quality wine. However, noting the Recall score for Reds was 0.5 but for Whites was 0.58, perhaps having a larger sample size would have increased model performance and highlighted different features as important.

So next time you're buying a bottle of wine, ask the Sommelier for a red wine high in alcohol, sulphides, and volatile acidity or a white wine high in alcohol,

density, and residual sugar!

# Cheers!

