

VIBRATION OF STRING IN TENSION

Samson Mano

saminnx@gmail.com

https://sites.google.com/site/samsoninfinite/ https://github.com/Samson-Mano

Wave Equation

The vibration of a string in tension is governed by the one-dimensional wave equation.

$\frac{\partial^2 y}{\partial t^2} = \frac{T}{\rho} \frac{\partial^2 y}{\partial x^2}$	1.0
Where, c the speed of waves is given by, $c = \sqrt{\frac{T}{\rho}}$	2.0
$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$	3.0
where, $0 \le x \le L$ $t \ge 0$	
End Boundary condition, $y(0,t) = y(L,t) = 0 \ \forall \ t \ge 0$	
Initial Boundary condition, $y(x,0) = f(x)$ $\frac{\partial y}{\partial x}(x,0) = g(x)$	

Wave equation with an external force

$\rho \frac{\partial^2 y}{\partial t^2} - T \frac{\partial^2 y}{\partial x^2} = F(x, t)$	1.0
Where, $F(x, t)$ is the external excitation force.	

Galerkin weighted residual method.

Galrekin method is a member of the larger class of methods known as the methods of weighted residuals. The weighted residual method is the method of converting a partial differential equation into a system of ordinary differential equation.

For wave equation	
1 or wave equation	
$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$	
with exact solution $y(x,t)$.	
Let $\tilde{y}(x,t)$ be an approximate solution, the residual R is the deviation from the exact solution.	
$R(x,t) = \frac{\partial^2 \tilde{y}(x,t)}{\partial t^2} - c^2 \frac{\partial^2 \tilde{y}(x,t)}{\partial x^2}$	
Galerkin method choose a family of weighting function in evaluating the residual. The weighted average of the approximate solution should be zero,	
$\int R(x,t)w_i(x)dx=0$	
A good approximate solution to make the residual small is to consider x and t to be discrete variables. Then the approximate solution is of the form	
$\tilde{y}(x,t) = \sum_{i} a_{i}(t)\varphi_{i}(x)$	
In Galerkin method the common chose for the weighting function is the basic function itself. This is called Bubnov-Galerkin method or sometimes just the Galerkin method.	
$w_i(x) = \frac{\partial \tilde{y}(x,t)}{\partial a_i(t)} = \varphi_i(x)$	

Fourier-Galerkin method is a method of using Fourier expansion as the basis function.

Linear Interpolation function

$R(x,t) = \frac{\partial^2 \tilde{y}(x,t)}{\partial t^2} - c^2 \frac{\partial^2 \tilde{y}(x,t)}{\partial x^2}$	
Applying the discrete sum of approximate solution $ \tilde{y}(x,t) = \sum_i a_i(t) \varphi_i(x) $	
$R(x,t) = \sum_{i} \frac{\partial^{2}(a_{i}(t)\varphi_{i}(x))}{\partial t^{2}} - c^{2} \frac{\partial^{2}(a_{i}(t)\varphi_{i}(x))}{\partial x^{2}}$	

$R(x,t) = \sum_{i} \varphi_i(x) \frac{d^2 a_i(t)}{dt^2} - c^2 a_i(t) \frac{d^2 \varphi_i(x)}{dx^2}$	
Applying the above equation in the Galerkin expansion $\sum_i \int_0^1 \left(\varphi_i(x) \frac{d^2 a_i(t)}{dt^2} - c^2 a_i(t) \frac{d^2 \varphi_i(x)}{dx^2} \right) w_j(x) dx = 0$	
$\sum_{i} \int_{0}^{1} \left(\varphi_i(x) \varphi_j(x) \frac{d^2 a_i(t)}{dt^2} - c^2 a_i(t) \varphi_j(x) \frac{d^2 \varphi_i(x)}{dx^2} \right) dx = 0$	
$\sum_{i} \frac{d^2 a_i(t)}{dt^2} \int_0^1 \varphi_i(x) \varphi_j(x) dx$ $+ \sum_{i} a_i(t) \int_0^1 \left(-c^2 \varphi_j(x) \frac{d^2 \varphi_i(x)}{dx^2} \right) dx = 0$	
The second term can be integrated by parts, $\sum_{i} \frac{d^{2}a_{i}(t)}{dt^{2}} \int_{0}^{1} \varphi_{i}(x)\varphi_{j}(x)dx \\ + \sum_{i} a_{i}(t) \int_{0}^{1} \left(c^{2} \frac{d\varphi_{i}(x)}{dx} \frac{d\varphi_{j}(x)}{dx}\right) dx \\ - c^{2}\varphi_{j}(x) \frac{d\varphi_{i}(x)}{dx} \bigg _{0}^{1} = 0$	
Simplifying the above equation $\sum_i \frac{d^2 a_i}{dt^2} \int_0^1 \varphi_i \varphi_j dx + \sum_i a_i \int_0^1 \left(c^2 \frac{d\varphi_i}{dx} \frac{d\varphi_j}{dx} \right) dx \\ - c^2 \varphi_j \frac{d\varphi_i}{dx} \bigg _0^1 = 0$	

$A_{ij}\frac{d^2a}{dt^2}_i + B_{ij}a_i = 0$	
where,	
$A_{ij} = \int_0^1 \varphi_i \varphi_j dx$	
$B_{ij} = \int_0^1 \left(c^2 \frac{d\varphi_i}{dx} \frac{d\varphi_j}{dx} \right) dx - c^2 \varphi_j \frac{d\varphi_i}{dx} \Big _0^1$	
	<u>-</u>

Piecewise linear basis interpolation function

The piecewise linear basis function can be written as	
$\varphi_{i}(x) = \begin{cases} \frac{x - x_{i}}{x_{i} - x_{i-1}} \ \forall \ x_{i-1} \le x \le x_{i} \\ \frac{x_{i+1} - x}{x_{i+1} - x_{i}} \ \forall \ x_{i} \le x \le x_{i+1} \end{cases}$	
for i =1,2,3 N-1	
The functions for the ends are,	

$$\varphi_0(x) = \frac{x_1 - x}{x_1 - x_0} \ \forall \ x_0 \le x \le x_1$$

$$\varphi_N(x) = \frac{x - x_N}{x_N - x_{N-1}} \ \forall \ x_{N-1} \le x \le x_N$$

Finite element formulation of wave equation

$y_i(x) = \varphi_i(x)y_i + \varphi_{i+1}(x)y_{i+1}$	Eq. C3
Where $\varphi_i(x)$ and φ_{i+1} are the shape functions	

Shape function for a single element

$A_{ij} = \int_0^1 \varphi_i \varphi_j dx$	
For a single element, $[A]_{i,i+1} = \int_{x_i}^{x_{i+1}} \begin{bmatrix} \frac{(x_{i+1} - x)^2}{l^2} & \frac{(x_{i+1} - x)(x - x_i)}{l^2} \\ \frac{(x - x_i)(x_{i+1} - x)}{l^2} & \frac{(x - x_i)^2}{l^2} \end{bmatrix} dx$	

$= \begin{bmatrix} \int_{x_i}^{x_{i+1}} (x_{i+1}^2 - 2x_{i+1}x + x^2) dx & \int_{x_i}^{x_{i+1}} (x_{i+1}x - x_{i+1}x_i - x^2 + xx_i) dx \\ l^2 & l^2 \\ sym & \frac{\int_{x_i}^{x_{i+1}} (x^2 - 2x_ix + x_i^2) dx}{l^2} \end{bmatrix}$	
$[A_{0,0}] = \frac{1}{l^2} \int_0^l (l^2 - 2lx + x^2) dx$ $= \frac{1}{l^2} \left(l^2 x - lx^2 + \frac{x^3}{3} \right)_0^l = \frac{l}{3}$	
$[A_{0,1}] = \frac{1}{l^2} \int_0^l (lx - x^2) dx$	
$= \frac{1}{l^2} \left(\frac{lx^2}{2} - \frac{x^3}{3} \right)_0^l = \frac{l}{6}$	
$[A_{1,1}] = \frac{1}{l^2} \int_0^l x^2 dx$ $= \frac{1}{l^2} \left(\frac{x^3}{3}\right)_0^l = \frac{l}{3}$	
The A matrix for single element is given by $[A] = \begin{bmatrix} \frac{l}{3} & \frac{l}{6} \\ \frac{l}{6} & \frac{1}{3} \end{bmatrix}$	
Similarly	

$B_{ij} = \int_0^1 \left(c^2 \frac{d\varphi_i}{dx} \frac{d\varphi_j}{dx} \right) dx - c^2 \varphi_j \frac{d\varphi_i}{dx} \Big _0^1$	
$= \int_{x_{i}}^{x_{i+1}} c^{2} \begin{bmatrix} \frac{d(x_{i+1} - x)}{dx} \frac{d(x_{i+1} - x)}{dx} & \frac{d(x_{i+1} - x)}{dx} \frac{d(x - x_{i})}{dx} \\ \frac{d(x - x_{i})}{dx} \frac{d(x_{i+1} - x)}{dx} & \frac{d(x - x_{i})}{dx} \frac{d(x - x_{i})}{dx} \end{bmatrix} dx$ $- c^{2} \left(\begin{bmatrix} \frac{(x_{i+1} - x)}{l} & \frac{(x_{i+1} - x)}{l} \\ \frac{(x - x_{i})}{l} & \frac{(x - x_{i})}{l} \end{bmatrix} \begin{bmatrix} \frac{d(x_{i+1} - x)}{dx} & \frac{d(x_{i+1} - x)}{dx} \\ \frac{d(x - x_{i})}{l} & \frac{d(x - x_{i})}{l} \end{bmatrix} \right)_{0}^{1}$	
$[B]_{i,i+1} = \int_{x_i}^{x_{i+1}} c^2 \begin{bmatrix} \frac{1}{l^2} & \frac{-1}{l^2} \\ -\frac{1}{l^2} & \frac{1}{l^2} \end{bmatrix} dx$ $-c^2 \left(\begin{bmatrix} \frac{(x_{i+1} - x)}{l} & \frac{(x_{i+1} - x)}{l} \\ \frac{(x - x_i)}{l} & \frac{(x - x_i)}{l} \end{bmatrix} \begin{bmatrix} \frac{-1}{l} & \frac{-1}{l} \\ \frac{1}{l} & \frac{1}{l} \end{bmatrix} \right)_0^1$	
$[B]_{i,i+1} = \int_{x_i}^{x_{i+1}} c^2 \begin{bmatrix} \frac{1}{l^2} & -\frac{1}{l^2} \\ -\frac{1}{l^2} & \frac{1}{l^2} \end{bmatrix} dx$	
The B matrix for single element is given by $[B] = c^2 \begin{bmatrix} \frac{1}{l} & -1 \\ -1 & \frac{1}{l} \end{bmatrix}$	
Substituting in the original equation	

$A_{ij}\frac{d^2a}{dt^2}_i + B_{ij}a_i = 0$	
For a single element, $\begin{bmatrix} \frac{l}{3} & \frac{l}{6} \\ \frac{l}{l} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{d^2a}{dt^2i} \\ \frac{d^2a}{dt^2i+1} \end{bmatrix} + c^2 \begin{bmatrix} \frac{1}{l} & \frac{-1}{l} \\ \frac{-1}{l} & \frac{1}{l} \end{bmatrix} \begin{bmatrix} a_i \\ a_{i+1} \end{bmatrix} = 0$	
	_

Modal Superposition Solution of String in Tension

The natural frequency and mode shapes of string in tension is well known.	
$\omega_n = \frac{n\pi}{L} \sqrt{\frac{T}{\rho}}$	
The radian frequency of the n th normal mode is given by.	
$\omega_n = \frac{n\pi c}{L}$	
The mode shape of the nth normal mode is given by.	
$\phi_n = \sin\left(\frac{n\pi x}{L}\right)$	

Generalized Solution

The solution for the partial differential wave equation can be obtained by the modal superimposed solution of the ordinary differential equation of individual nodes.	
$\ddot{a}_i + \omega_n^2 a_i = 0$	
The solution is given by.	
$y_i(x,t) = \sum_{i=1}^N \phi_i a_i(t)$	
Let the following be the modal matrix, where the column matrix contains the individual modes shapes.	
$\Phi = \begin{pmatrix} \phi_{11} & \phi_{12} & \cdots & \phi_{1N} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{N1} & \phi_{N2} & \cdots & \phi_{NN} \end{pmatrix}$	
$y(x,t) = \begin{pmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_N(t) \end{pmatrix} = \begin{pmatrix} \phi_{11} & \phi_{12} & \cdots & \phi_{1N} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{N1} & \phi_{N2} & \cdots & \phi_{NN} \end{pmatrix} \begin{pmatrix} a_1(t) \\ a_2(t) \\ \vdots \\ a_N(t) \end{pmatrix}$	
Initial Boundary condition,	
y(x,0) = f(x)	
$\frac{\partial y}{\partial x}(x,0) = g(x)$	
Transform the initial condition to the modal co-ordinates,	
$a(x,0) = \Phi^{-1}f(x)$	
$\frac{\partial a}{\partial x}(x,0) = \Phi^{-1}g(x)$	

The solution to the initial condition is,	
$a(t)_i = a_0 \cos \omega_n t + \frac{\partial a}{\partial x_0} \frac{1}{\omega_n} \sin \omega_n t$	

Forced Response Solution

Where	$\rho \frac{\partial^2 y}{\partial t^2} - T \frac{\partial^2 y}{\partial x^2} = F(x, t)$ e, $F(x, t)$ is the external excitation force.	1.0
	$y = [\Phi][a]$	
	$\frac{\partial^2 y}{\partial t^2} = [\Phi] \frac{d^2 a}{dt^2}$	2.0
	$\frac{\partial^2 y}{\partial x^2} = -\frac{n^2 \pi^2}{L^2} [\Phi][a]$	3.0
Substi	itute in the PDE gives,	
	teate in the 122 gives,	
	$\rho[\Phi] \frac{d^2a}{dt^2} + T \frac{n^2 \pi^2}{L^2} [\Phi] a = F(x, t)$	
Divide	e by $\rho[\Phi]$ gives,	
	$\frac{d^{2}a}{dt^{2}} + \frac{n^{2}\pi^{2}c^{2}}{L^{2}}a = \left(\frac{1}{\rho}\right)[\Phi]^{-1}F(x,t)$	
The ed	quation becomes (for a particular mode),	
	$\frac{d^2a}{dt^2}_i + \omega_i^2 a_i = f(t)_i$	

1) Calutian to Half Cina mulas famos	
1) Solution to Half – Sine pulse force	
Fright Half – cycle sine pulse force $P_0 t$ t_d	
The solution to half – Sine pulse force of form as shown below.	
$F(x,t) = \begin{pmatrix} F_1(t) \\ F_2(t) \\ \vdots \\ F_N(t) \end{pmatrix} sin(\omega_d t)$	
Where ω_d is the angular frequency of the pulse force time period t_d .	
After modal transformation	
$f(t)_i = f_i sin(\omega_d t)$	
Where f_i is the modal amplitude.	
Now, the modal solution a_i is given by,	
$a_i(t)_{t \le t_d} = \frac{f_i}{\omega_i^2} \left(\frac{\left(\sin\left(\frac{\pi t}{t_d}\right) - \frac{\pi}{\omega_i t_d}\sin(\omega_i t)\right)}{\left(1 - \frac{\pi^2}{\omega_i^2 t_d^2}\right)} \right)$	
$a_i(t)_{t>t_d} = \frac{f_i}{\omega_i^2} \frac{\left(\frac{2\pi}{\omega_i t_d}\right)}{\left(\frac{\pi^2}{\omega_i^2 t_d^2} - 1\right)} \left(\sin\left[\omega_i\left(t - \frac{t_d}{2}\right)\right] \cos\left(\frac{\omega_i t_d}{2}\right)\right)$	
The above solutions are not valid for $\frac{t_d}{T_n} = 0.5$ resonant case. Below solution is for the resonant case	
$a_i(t)_{t \le t_d} = \frac{f_i}{2\omega_i^2} (\sin(\omega_i t) - \omega_i t \cos(\omega_i t))$	

$f_{:}\pi$	
$a_i(t)_{t>t_d} = \frac{f_i \pi}{2\omega_i^2} (\cos(\omega_i t - \pi))$	
$2\omega_i$	
2) Solution to Rectangular pulse force	
F♠ Rectangular pulse force	
P_0	
t	
t_d	
The modal solution a_i is given by,	
$f_{:}$	
$a_i(t)_{t \le t_d} = \frac{f_i}{\omega_i^2} [1 - \cos \omega_i t]$	
ω_i	
f_{i}	
$a_i(t)_{t>t_d} = \frac{f_i}{\omega_i^2} (\cos \omega_i(t - t_d) - \cos \omega_i t)$	
3) Solution to Triangular pulse force	
F_{\uparrow} Triangular pulse force	
P_0	
t	
t_d	
The modal solution a_i is given by,	
The modal solution ui is given by,	
$2f_i \Gamma t = \sin \omega_i t$	
$a_i(t)_{t \leq \frac{t_d}{2}} = \frac{2f_i}{\omega_i^2} \left[\frac{t}{t_d} - \frac{\sin \omega_i t}{t_d \omega_i} \right]$	
2 501 4 54 54 5	
$a_i(t)_{t_d > t > \frac{t_d}{2}} = \frac{2f_i}{\omega_i^2} \left(1 - \frac{t}{t_d} + \frac{1}{t_d \omega_i} \left[2 \sin \omega_i \left(t - \frac{t_d}{2} \right) - \sin \omega_i t \right] \right)$	
$(t - \frac{t_d}{t_d}) t_d > t > \frac{t_d}{2} - \frac{t_d}{\omega_i^2} \left(1 - \frac{t_d}{t_d} + \frac{t_d\omega_i}{t_d\omega_i} \left[2 \sin \omega_i \left(t - \frac{1}{2}\right) - \sin \omega_i t\right]\right)$	

$a_i(t)_{t>t_d} = \frac{2f_i}{\omega_i^2} \left(\frac{1}{t_d \omega_i} \left(2\sin \omega_i \left(t - \frac{t_d}{2} \right) - \sin[\omega_i (t - t_d)] - \sin \omega_i t \right) \right)$	
4) Solution to Step Force with finite rise	
F↑ Step force with finite rise time	
P_0	
t	
t_r	
The modal solution a_i is given by,	
i J	
$a_i(t)_{t \le t_d} = \frac{f_i}{\omega_i^2} \left[\frac{t}{t_d} - \frac{\sin \omega_i t}{t_d \omega_i} \right]$	
$\left(\frac{u_i(t)_{t \leq t_d} - \overline{\omega_i^2}}{\overline{\omega_i^2}} \left[\frac{t_d}{t_d} - \frac{t_d \omega_i}{\overline{t_d \omega_i}} \right] \right)$	
$a_i(t)_{t>t_d} = \frac{f_i}{\omega_i^2} \left(1 + \frac{1}{\omega_i t_d} \left[\sin \omega_i (t - t_d) - \sin \omega_i t \right] \right)$	
$\omega_i^2 \setminus \omega_i t_d^2 $	
5) Solution to Harmonic/ Periodic excitation	
$t_f = \frac{2\pi}{\omega_f}$	
The modal solution a_i is given by,	
$a_i(t) = \frac{f_i}{\omega_i^2} \left[\frac{1}{1 - {\omega_f/\omega_i}} \right] \left(\sin(\omega_f t) - {\omega_f/\omega_i} \right) \sin(\omega_i t) $	
Resonant modal solution when $\binom{\omega_f}{\omega_i} = 1.0$	
<u> </u>	1

$a_i(t) = \frac{f_i}{2\omega_i^2}(\omega_i t \cos(\omega_i t) - \sin(\omega_i t))$	

Natural frequency and mode shapes of various configurations

Mode shap	
	$\Phi^{-1} = \frac{2}{(N+1)} \begin{pmatrix} \phi_{11} & \phi_{12} & \cdots & \phi_{1N} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{N1} & \phi_{N2} & \cdots & \phi_{NN} \end{pmatrix}$
Model 2: S	tring in Fixed – Free Configuration
Mode: 1	
Mode: 2	
Mode. 2	
Mode: 3	
Mode: 4	
Mode. 4	
Angular n	atural frequency
	$(2n-1)=\sqrt{\frac{1}{3}}$
	$\omega_n = \frac{(2n-1)\pi}{2L} \sqrt{\frac{T}{\rho}} = \frac{\pi c}{2L} \begin{pmatrix} 1\\ 3\\ 5\\ \vdots\\ 2N & 1 \end{pmatrix}$
	$\sqrt{\frac{\mu}{\mu}} = \sqrt{\frac{\mu}{\mu}} = \sqrt{\frac{\mu}{2N-1}}$
	\ZIV — 1/
Mode shap	pe e

$\Phi = \sin \frac{(2n-1)\pi x}{2L} = \begin{pmatrix} \phi_{11} & \phi_{12} & \cdots & \phi_{1N} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{N1} & \phi_{N2} & \cdots & \phi_{NN} \end{pmatrix}$ $= \begin{pmatrix} \sin \frac{\pi x}{2L} & \sin \frac{3\pi x}{2L} & \cdots & \sin \frac{(2N-1)\pi x}{2L} \\ \vdots & \vdots & \ddots & \vdots \\ \sin \frac{\pi L}{2L} & \sin \frac{3\pi L}{2L} & \cdots & \sin \frac{(2N-1)\pi L}{2L} \end{pmatrix}$	
Mode shape inverse	
Model 3: Circular String Free – Free Configuration Physically achieve this configuration is tedious. Assume a circular string is spun around the center and the centrifugal force is acting as tension along the circular string trying to expand the string. The other way is to imagine the string is kept circularly taut by springs normal to the string away from its center. Both the case needs inertial force or spring force to keep the string in tension. This external force will be responsible for the wave motion of the circular string.	

M	ode	sha	ne
1.1	ouc	JIIU	\sim

$$\Phi = \begin{cases} \Phi_{2n-1} = r\cos(n\theta) \\ \Phi_{2n} = r\sin(n\theta) \end{cases} = \begin{pmatrix} \phi_{11} & \phi_{12} & \cdots & \phi_{1N} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{N1} & \phi_{N2} & \cdots & \phi_{NN} \end{pmatrix}$$
$$= \begin{pmatrix} \vdots & \vdots & \vdots & \cdots & \vdots \\ r\cos\theta & r\sin\theta & r\cos 2\theta & \cdots & r\sin N\theta & or r\cos N\theta \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$

Model 4: Circular membrane vibration mode

For a circular membrane with radius R and a uniform radial tensile force T, the natural frequencies are,

$$\omega_{mn} = \frac{k_{mn}}{R} \sqrt{\frac{T}{\mu}}$$

The mode shape is given by the following relation, where Jm is the Bessel function of order m and kmn is the root of Bessel function.

$$\phi_{mn}(r,\theta) = J_m \left(k_{mn} \frac{r}{R}\right) * \cos m\theta$$

Besse	el function	Jm in integ	gral form				
	$J_m(x)$	$c(x) = \frac{1}{c} \int c$	os(xsinθ -	$-m\theta)d\theta$,	x > 0, m	$\in Z$	
		πJ_0					
The re	oots of the	Bessel fun	ctions Jm is	given in th	e followin	g table.	
Zero	J ₀ (x)	J ₁ (x)	J ₂ (x)	J ₃ (x)	J ₄ (x)	J ₅ (x)	
1	2.4048	3.8317	5.1336	6.3802	7.5883	8.7715	
2	5.5201	7.0156	8.4172	9.7610	11.0647	12.3386	
3	8.6537	10.1735	11.6198	13.0152	14.3725	15.7002	
4	11.7915	13.3237	14.796	16.2235	17.616	18.9801	
5	14.9309	16.4706	17.9598	19.4094	20.8269	22.2178	
If m is		nou for can	culating the	e Bessei iui	nction.		
J	$J_m(x) \approx \frac{1}{n}$	$\frac{1}{n}\sum_{k=0}^{n-1}\sin\left(x\right)$	$ \cos\left(\frac{\pi}{2n}\right) $	$\left(k + \frac{1}{2}\right)$	$\sin\left(\frac{m\pi}{2n}\right)$	$\left(k + \frac{1}{2}\right)$	
If m is	even						
		n 1					
I	$_m(\mathbf{x}) \approx \frac{1}{n}$	$\sum_{k=0}^{n-1} \cos\left(\lambda\right)$	$c\cos\left(\frac{\pi}{2n}\right)$	$\left(k + \frac{1}{2}\right)$	$\cos\left(\frac{m\pi}{2n}\right)$	$\left(k + \frac{1}{2}\right)$	
, , ,		70					
	shapes:						

Hypothesis:

The inverse of the mode vector, denoted as $[\Phi]^{-1}$, can be represented as the product of a scalar factor and the transpose of the mode vector, expressed as $f^*[\Phi]^T$.

$$[\Phi]^{-1} = f * [\Phi]^T$$

This finding holds significant utility as it reduces computation time, particularly within the context of 3D global models characterized by non-ordered nodes. In such scenarios, the eigen vectors matrix is also non-ordered. Consequently, attempting to invert a non-ordered eigen vectors matrix would yield erroneous results. Conversely, utilizing the transpose of the eigen vector ensures accurate calculations even in cases where the eigen vectors matrix lacks ordering.

Model 6: Spherical Harmonics

$(R^{l}(\cos \theta)\sin m \cos m < 0$	
$Y_m^l = \begin{cases} P_m^l(\cos\theta)\sin m \varphi, & m < 0\\ P_m^l(\cos\theta)\cos m\varphi, & m \ge 0 \end{cases}$	
The first few Associated Legendre polynomials $P_m^l(\cos \theta)$ are	
$P_1^0 = \cos \theta$	
$P_1^1 = -\sin\theta$	
$P_2^0 = \frac{1}{2}(3\cos^2\theta - 1)$	
$P_2^1 = -3\cos\theta\sin\theta$	
$P_2^2 = 3\sin^2\theta$	
$P_3^0 = \frac{1}{2}\cos\theta \left(5\cos^2\theta - 3\right)$	
$P_3^1 = -\frac{3}{2}\sin\theta \left(5\cos^2\theta - 1\right)$	
$P_3^2 = 15\cos\theta\sin^2\theta$	
$P_3^3 = -15\sin^3\theta$	