

Steganographic Communication Using TCP Inter Burst Delays

Florian Kemmer

TÜBIX

13. Juni 2015

Who am I?

About me

2014 MSc Network Systems Engineering
Plymouth, UK

2012 BSc Computer Networking

Furtwangen, Germany

misc one term in Austria in IT-Security

worked one year in Academia

Contact

mail@fkemmer.de http://www.fkemmer.de

TOC

- Introduction
- Network Steganography
- MSc Project
- 4 Conclusion

Introduction

- Introduction
 - The Problem
 - Cryptography
 - Steganography
- Network Steganography
- MSc Project
- 4 Conclusion

The Problem

Cryptography doesn't work

"Conventional cryptography is like shipping a safe in an armored car with a regiment of soldiers around it.

Everyone knows that theres something secret inside" [14]

Metadata gets you killed...literally

"We kill people based on metadata"

—former NSA/CIA director General Michael Hayden [13]

Hidden in plain sight

- From greek: "Hidden text"
- Information embedded into carrier data
- Hidden within texts, images, videos, ...

Hidden in plain sight

(a) sha512: 20e37f[...]16aeae

(b) sha512: 27f6fb[...]65e956

Figure 1: outguess -d message.txt -p100 angel_noSteg.jpg angel_steg.jpg

Use cases

- Watermarking
- Hidden Communication
- Information Leakage

Network Steganography

- Introduction
- Network Steganography
 - Classic Steganography
 - Header Modification
 - Covert Timing Channels
- MSc Project
- 4 Conclusion

General advantages

- Pictures/other media stored "forever" on the Internet
- thus available for forensic investigation
- Network traffic is rather volatile

Classic Steganography

[Eth][IP][UDP/TCP][PAYLOAD]

- Payload gets modified as described before
- Protocols producing much traffic preferred
- Widely used with VoIP [11]
- Capacity depending on generated traffic

Header Modification

[Eth][IP][UDP/TCP][PAYLOAD]

- Using unused or unspecified data fields
- Capacity depending on number of packets
- Easily defeated by traffic normalisation [16]
- Hardly used

Covert Timing Channels

- Retransmissions [8, 9]
- Reordering [1]
- Delays

Inter-arrival times/Inter Packet Delays

[Packet] Δt [Packet]

```
/usr/sbin/tcpdump -n -ttt -r ...
00.00.01 125810
                   192.168.0.12.32822 > 141.28.100.151.21:
00:00:00.040138
                   141.28.100.151.21 > 192.168.0.12.32822:
00.00.00 000100
                   192.168.0.12.32822 > 141.28.100.151.21:
00:00:00.038057
                   141.28.100.151.21 > 192.168.0.12.32822:
00:00:00.000195
                   192.168.0.12.32822 > 141.28.100.151.21:
00.00.01 494845
                   192.168.0.12.32822 > 141.28.100.151.21:
00:00:00.038338
                   141.28.100.151.21 > 192.168.0.12.32822:
00:00:00.000304
                   141.28.100.151.21 > 192.168.0.12.32822:
00.00.00 000104
                   192.168.0.12.32822 > 141.28.100.151.21:
```

On/Off timing channels

Figure 2: On/Off timing channel [4].

"Morse codes"

(a) Ordinary traffic pattern.

(b) Modified traffic pattern.

Figure 3: "Morse codes" [2]

Timing is everything

- Very sensitive constructs
- Many things can happen on the way through the Internet

Figure 4: Arrival Distribution of packet sent at t = 0 [16].

Summary

- Networks offer plenty of options to hide messages
- Varying channel capacity
- Typically hard to detect
- Mainly researched in "Information Leakage"

MSc Project

- Introduction
- 2 Network Steganography
- MSc Project
 - Scenario
 - Design
 - Evaluation
- 4 Conclusion

Scenario description

- We're the good guys now!
- Fight censorship/surveillance
- Cryptography still doesn't work here
- Store hidden information in inter-arrival times

Differences to previous scenarios

- Two-way communication desired
- Control over both sending and receiving host
- Ability to generate traffic
- Use TCP based protocol (for fun and profit)

Selection Criteria for cover protocol

- TCP based
- 4 High volume (packet count)
- Commonly used
- User independent
- Bi-directional data flow
- Timely asymmetric

Comparison of protocols (simplified)

Architecture

Sender

- Converts text into binary
- Applies Error-correcting Codes
- Delays outgoing packets accordingly

Receiver

- Observes IPDs of incoming packets
- Converts them back
- Doesn't have to be real-time recording with tcpdump in first place is sufficient

TCP's bursty nature

- Multiple packets combined into burts
- Within bursts: IPDs defined by bottleneck bandwidth; not by sender
- Muss less packets usable for hiding information

TCP's bursty nature

Figure 6: Usable IPDs intervals with TCP.

Inter Burst Delays

RAW Sockets

- First attempt to create sending proxy
- Incoming TCP SYN never reached proxy
- Kernel killed handshake with TCP RST before

RAW Sockets

nfqueues

- In combination with iptables
- At the cost of platform independence
- Used to redirect packets internally /sbin/iptables -A OUTPUT -p tcp --sport 21 -j NFQUEUE --queue-num 21

nfqueues

The Internet: It's dangerous to go alone

- Many things can happen to packets on the way through the Internet
- Dealing with corrupted information
- Automatic Repeat Request (ARQ) (e.g. TCP)
- Embed Parity Information (e.g. Hamming Codes)

The Internet: It's dangerous to go alone

- Two basic things can happen:
- Bits get substituted:
 0010 0110 ⇒ 0011 0100
- Bits get lost:
 0010 0110 ⇒ 0010 011

Substitution Errors

- Long known problem; intensively researched
- Hamming [6], LDPC [5], Turbo Codes [3]
- Parity information to counter bit flips
- Hamming Codes for Prototype

Insertion/Deletion Errors

- "Potentially catastrophic" [17]
- One bit lost in the beginning and the rest is scrambled
- "Lack of good codes" and "not adequately understood" [10]

Sellers Markers

- Defined by Sellers Jr [12]
- Appending known Sequence to each block, e.g. 001
- On receiver side: Compare actual value to expected value

Evaluation

Let's see how we've done

Metrics

- Robustness
- Speed & Efficiency
- Stealthiness

Connection Robustness

id	concealed bits	bit deletions	bit insertions	0 o 1	1 ightarrow 0
35217	(698b):	0.00%	0.00%	0.14%	0.00%
37228	(714b):	0.00%	0.14%	0.14%	0.00%
37914	(687b):	0.00%	0.00%	0.87%	0.00%
39671	(176b):	0.00%	0.57%	0.57%	0.00%
42046	(691b):	0.00%	2.60%	0.14%	0.14%
43247	(226b):	0.00%	0.00%	0.44%	0.00%
43712	(675b):	0.89%	0.00%	0.15%	0.44%
44906	(1383b):	0.00%	0.00%	0.07%	0.00%
48102	(1380b):	2.10%	0.07%	0.07%	1.96%
48693	(690b):	0.00%	0.14%	0.14%	0.00%
		0.30%	0.35%	0.27%	0.25%

Table 1: Sample robustness of a wired connection (experimentally obtained)

Channel Robustness

Channel Robustness

Speed & Efficiency

- Hidden bits per second [15]
- Hidden bits per transferred byte
- Transferred bytes per second

Speed & Efficiency

FTP					Steganographic Proxy			
	No Proxy		With Proxy					
bytes	duration	bytes/s	duration	bytes/s	hidden bits	bytes/bit	bits/s	
10485760	6.58 s	1556.1 kB	15.88s	644.7 kB	165	63,550.06	10.39	
10485760	6.71 s	1525.2 kB	14.78s	693.1 kB	149	70,374.23	10.08	
10485760	6.80 s	1506.8 kB	14.54s	704.3 kB	148	70,849.73	10.18	
10485760	6.75 s	1517.6 kB	15.91s	643.7 kB	165	63,550.06	10.37	
10485760	6.70 s	1529.4 kB	16.57s	618.1 kB	167	62,788.98	10.08	
10485760	10.12 s	1011.9 kB	14.82s	691.0 kB	151	69,442.12	10.19	
10485760	6.94 s	1475.3 kB	16.65s	615.1 kB	161	65,128.94	9.6	
10485760	7.10 s	1442.4 kB	14.78s	692.9 kB	148	70,849.73	10.03	
10485760	6.87 s	1489.7 kB	14.98s	683.6 kB	155	67,650.06	10.3	
10485760	6.70 s	1528.3 kB	15.00s	682.6 kB	149	70,374.23	9.9	

Table 2: Evaluation of FTP transmission speeds and steganographic performance.

Stealthiness

Conclusion

- Introduction
- 2 Network Steganography
- MSc Project
- 4 Conclusion

Conclusion

• Hooray, it works!

Conclusion

- Hooray, it works!
- ...sort of
 - Better/more efficient ECC
 - Better code
 - Support for active FTP
 - ...

Thank you!

Questions?

- mail@fkemmer.de
- https://tuebix2015.titanpad.com/ kemmer-network-steganography-pad

References I

Adel El-Atawy and Ehab Al-Shaer. "Building covert channels over the packet reordering phenomenon". In: INFOCOM 2009, IEEE. IEEE, 2009, 2186-2194. URL: http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5062143 (visited on 22/08/2014).

Vincent Berk, Annarita Giani and George Cybenko. *Detection of Covert Channel Encoding in Network Packet Delays.* Tech. rep. Department of Computer Science, Dartmouth College, Nov. 2005. URL: http://www.ists.dartmouth.edu/library/149.pdf.

C. Berrou, A. Glavieux and P. Thitimajshima. "Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1". In: vol. 2. IEEE, 1993, pp. 1064–1070. ISBN: 0-7803-0950-2. DOI: 10.1109/ICC.1993.397441. URL: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=397441 (visited on 22/08/2014).

References II

Serdar Cabuk, Carla E Brodley and Clay Shields. "IP covert timing channels: design and detection". In: *Proceedings of the 11th ACM conference on Computer and communications security.* 2004, pp. 178–187.

Robert G. Gallager. "Low-density parity-check codes". In: *Information Theory, IRE Transactions on* 8.1 (1962), 21–28. URL: http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=1057683 (visited on 22/08/2014).

Richard W Hamming. "Error detecting and error correcting codes". In: Bell System technical journal 29.2 (1950), pp. 147–160.

Wojciech Mazurczyk, Krzysztof Cabaj and Krzysztof Szczypiorski. "What are suspicious VoIP delays?" In: *Multimedia Tools and Applications* 57.1 (2012), pp. 109–126.

Wojciech Mazurczyk, Milosz Smolarczyk and Krzysztof Szczypiorski. "Hiding Information in Retransmissions". In: *CoRR* abs/0905.0363 (2009).

References III

Wojciech Mazurczyk, Miłosz Smolarczyk and Krzysztof Szczypiorski. "On information hiding in retransmissions". In: *Telecommunication Systems* (Sept. 2011). ISSN: 1018-4864, 1572-9451. DOI: 10.1007/s11235-011-9617-y. URL: http://link.springer.com/10.1007/s11235-011-9617-y (visited on 26/11/2013).

Michael Mitzenmacher. "A Survey of results for deletion channels and related synchronization channels". en. In: *Probability Surveys* 6 (2009), pp. 1–33. ISSN: 1549-5787. DOI: 10.1214/08-PS141. URL: http://www.i-journals.org/ps/viewarticle.php?id=141%5C&layout=abstract (visited on 24/06/2014).

Rainer Poisel. Mobile VoIP Steganography. Vienna, Oct. 2010. URL: https://deepsec.net/docs/Slides/2010/DeepSec%5C_2010%5C_Mobile% 5C_VoIP%5C_Steganography.pdf (visited on 05/06/2014).

F. Sellers Jr. "Bit loss and gain correction code". In: *Information Theory, IRE Transactions on* 8.1 (1962), 35-38. URL: http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=1057684 (visited on 24/06/2014).

References IV

The Johns Hopkins Foreign Affairs Symposium Presents: The Price of Privacy: Re-Evaluating the NSA. Apr. 2014. URL:

https://www.youtube.com/watch?v=kV2HDM86XgI (visited on 19/06/2014).

Peter Wayner. Disappearing cryptography: information hiding: steganography & watermarking. 3rd ed. Amsterdam; Boston: Morgan Kaufmann Publishers, 2009. ISBN: 9780123744791

Jingzheng Wu et al. "Improving performance of network covert timing channel through Huffman coding". In: *Mathematical and Computer Modelling* 55.1-2 (Jan. 2012), pp. 69-79. ISSN: 08957177. DOI: 10.1016/j.mcm.2011.01.051. URL: http://linkinghub.elsevier.com/retrieve/pii/S0895717711000690 (visited on 23/02/2014).

Lihong Yao et al. "A study of on/off timing channel based on packet delay distribution". In: Computers & Security 28.8 (Nov. 2009), pp. 785–794. ISSN: 01674048. DOI: 10.1016/j.cose.2009.05.006. URL: http://linkinghub.elsevier.com/retrieve/pii/S0167404809000510 (visited on 12/12/2013).

References V

Raman Yazdani and Masoud Ardakani. "Reliable Communication over Non-Binary Insertion/Deletion Channels". In: IEEE Transactions on Communications 60.12 (Dec. 2012), pp. 3597—3608. ISSN: 0090-6778. DOI: 10.1109/TCOMM.2012.100812.110547. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6334504 (visited on 24/06/2014).

Xiaochao Zi et al. "Implementing a passive network covert timing channel". In: Computers & Security 29.6 (Sept. 2010), pp. 686-696. ISSN: 01674048. DOI: 10.1016/j.cose.2009.12.010. URL: http://linkinghub.elsevier.com/retrieve/pii/S0167404809001485 (visited on 12/12/2013).