NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
NAVAL APPLICATIONS: TEN ALGORITHMS FOR THE HEWLETT-PACKARD HP-6--ETC(U)
FEB 79 R H SHUDDE
NPS55-79-04
NL AD-A068 633 UNCLASSIFIED 1 OF 2 AD A068633

NPS55-79-04

NAVAL POSTGRADUATE SCHOOL Monterey, California

NAVAL APPLICATIONS:

TEN ALGORITHMS FOR THE HEWLETT-PACKARD HP-67 AND HP-97 CALCULATORS

edited by

R. H. Shudde

February 1979

Approved for public release; distribution unlimited.

NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

Rear Admiral T. F. Dedman Superintendent Jack R. Borsting Provost

Reproduction of all or part of this report is authorized.

This report was prepared by:

R. H. Shudde, Associate Professor Department of Operations Research

Reviewed by:

Released by:

Michael G. Sovereign, Chairman

Department of Operations Research

William M. Tolles Dean of Research SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DO	CUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
ALACAL MUMBER	ESSION NO. 3. RECIPIENT'S CATALOG NUMBER	
NP655-79-64		
TITLE (and Subtitle)		TYPE OF REPORT & PERIOD COVERS
Naval Applications:	Ten Algorithms for the	ne / Technical rept. Oct-
	67 and HP-97 Calculato	rs .
	The same fall was the first and an extension of the same of the sa	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)		S. CONTRACT OR GRANT NUMBER(+)
Edited by R. H./Shu	dde	(2) 162p.
9. PERFORMING ORGANIZATION	NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TAS
Naval Postgraduate	School	
Monterey, Californi	a 93940	
11. CONTROLLING OFFICE NAME	AND ADDRESS	DEPOST DATE
Naval Postgraduate	School School	repression 79
Monterey, Californi	a 93940	169
14. MONITORING AGENCY NAME	& ADDRESS(II different from Controll	
		Unclassified
		184. DECLASSIFICATION DOWNGRADING
16. DISTRIBUTION STATEMENT	of this Report)	
17. DISTRIBUTION STATEMENT (Sonar	of the abetract entered in Block 20, if	different from Report)
18. SUPPLEMENTARY NOTES		
		·
19. KEY WORDS (Continue on rever	so side if necessary and identify by b	
Sonar	Crew Management	Normal Mode Programmable
Active Sonar	Target Motion Analysis	
Sonar Acquisition P-3 Aircraft	Golden Section Search Transmission Loss	NGFS HP-67 Calculator
Mission Planning		Simulation Bearings-Only Calculator Tracking
	e aids if necessary and identify by bi	ock number)
Ten algorithms pert P-3 mission planning	aining to underwater a g, flight crew managem ented along with progr	coustics target motion analysis, ent, and naval gunfire support ams for Hewlett-Packard HP-67
	79	05 11 005

DD 1 FORM 1473 EDITION OF 1 NOV 68 IS OBSOLETE UNCLASSIFIED

S/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

NAVAL APPLICATIONS: TEN ALGORITHMS FOR THE HEWLETT-PACKARD HP-67 AND HP-97 CALCULATORS

edited by

R. H. Shudde

The programs in this report are for use within the Department of the Navy, and they are presented without representation or warranty of any kind.

TABLE OF CONTENTS

T THEROPHOMEON	1
I. INTRODUCTION	_
II. ACTIVE SONAR ACQUISITION. Mr. R. F. Fish and LT M. H. Trent	3
III. THREE ENGINE AVAILABLE RANGE REMAINING: P-3(B) AIRCRAFT CONFIGURATION "B". LT R. J. Knight	25
IV. MISSION PLANNING: P-3(B) AIRCRAFT CONFIGURATION "B". LT M. D. Thomas	33
V. USER-CONTROLLED SIMULATION OF APPROACH AND LANDING FOR THE P-3 AIRCRAFT. LT J. Aiken	41
VI. FLIGHT CREW MANAGEMENT USING THE HP-97. LT K. W. Peters	57
VII. TARGET MOTION ANALYSIS (TMA) OF A BEARINGS- ONLY TARGET FROM A MOVING PLATFORM. LT P. W. Marzluff and LT R. C. Pilcher	73
TIII. NAVAL GUNFIRE SUPPORT GRID SPOT CONVERSIONS, TRUE WIND, AND TIME OF FLIGHT/MAXIMUM ORDINATE COMPUTATIONS FOR 5-INCH/54 PROJECTILE. LT K. P. Curtis	99
IX. NORMAL MODE THEORY. LT J. M. Stone 11	11
X. NORMAL MODE TRANSMISSION LOSSES. LT M. D. Clary	23
XI. GOLDEN SECTION SEARCH. LT J. K. McDermott 13	

NTIS	White Section
DOC	Buff Section
UNANNOUSC	TD O
JUSTIFICATI	N
BISTRIB	MANAGARITY COOES
Dist. A	and or SPECIAL
Dist. A	or SPECIAL

ABSTRACT

Ten algorithms pertaining to underwater acoustics, target motion analysis, P-3 mission planning, flight crew management, and naval gunfire support conversions are presented along with programs for Hewlett-Packard HP-67 and HP-97 programmable calculators.

I. INTRODUCTION

This report contains a collection of programs which were submitted by officers in partial fulfillment of the requirements of the course Tactical Design and Analysis (OA 4658) conducted at the Naval Postgraduate School during the period of October through December 1978.

All programs were listed using an HP-97 with HP-97 key codes. The corresponding HP-67 key codes may be found on pages 324 through 331 of the "HP-67 Owner's Handbook and Programming Guide."

II. ACTIVE SONAR ACQUISITION by Mr. R. F. Fish and LT M. H. Trent

A. Problem Statement

A sonar at a depth (SD) has the possiblity of detecting a target at a depth TD at a slant range r'. Detection can only occur if the target lies within the beam pattern and the signal excess is at least equal to the detection threshold. Whether or not the system is noise or reverberation limited depends on the geometry and doppler frequency shift. The problem is to determine the acquisition range of the sonar with various geometries and acoustic parameters.

B. Operational Analysis

The analysis uses a 0 dB detection threshold because of the limited number of storage registers (26) and program steps (224) in the calculator.

In using the program it should be noted that calculations do not include the effect of shadow zones. Acquisition ranges computed must be considered with this in mind. In addition, once the target and surface signals are outside the beam pattern (+ 3db) they are assumed to abruptly disappear respectively. The analysis also assumes the water is deep with no bottom effects.

Considering the above caveats the source and target can be placed as desired in the medium and the appropriate sonar equation parameters will be computed. In doing so, several tests will be made to determine which equations will be used.

The program will terminate before acquisition if one of the following occurs:

Slant range

r' < 0,

Angle-to-target

 $\theta_1 > \phi/2 + \gamma$, or $\theta_1 > \phi/2 - \gamma$ (if target is below source),

Angle-to-surface at r'

$$\theta_2 > \phi/2 + \gamma$$
,

where

 γ = pitch angle range.

These terminations and signal excess $SE \ge 0$ will finish with a "1" printed as an output at the end of the calculations.

After calculation of the surface reverberation level, RL_s, there is a program stop where the appropriate correction can be input for off-axis transmission and reception. The same event occurs when SE is calculated so that the sonar equation can be corrected.

The output listing is as follows:

Doppler	No Doppler
r'	r'
θ1	θ1
θ2	θ_{2}
TL	TL
NLs	RL _s displays but not printed
SE	Total of RL _s + RL _v + NL _s combined and SE

C. Computational Algorithm

1. Input

- --Sound speed, c (m/sec)
- -- Listening time between transmit pulses, t (sec)
- -- Source depth, SD (m)
- -- Target depth, TD (m)
- --Horizontal (and vertical) half-beam width, \$\phi/2\$ (degrees)
- -- Sonar pitch angle, y (degrees)
- -- Mixed layer depth, D (meters)
- --Absorption coefficient, α (dB/meter)
- -- Frequency, f (kHz)
- -- Sea state, S.S.
- --Column scattering coefficient, S
- -- Constant, 10
- --Sonar self-noise level, NL (dB)
- -- Target strength, TS (dB)
- -- Range decrement (meters)
- --[Pulse length, τ (sec) $\times \phi$ (radians)] ÷ 2
- --Surface scattering coefficient, S (dB)
- -- Sonar source level, SL (dB)
- 2. For doppler set Flag 0; for no doppler clear Flag 0.

3. Output

r', θ_1 , θ_2 , TL, RL, RL, total level, SE. For doppler, RL, RL, and total level are included in NL.

D. HP-67/97 Calculator Program

1. User Instructions

1. Enter program card 2. Enter data in primary a. Sound speed (m/sec) b. Listening time (sec) c. Source depth (m) d. Target depth (m) e. Half-beam width (deg) f. Sonar pitch angle (deg g. Mixed layer depth (m) h. Absorption coefficient i. Frequency (kH _Z) j. Sea state k. Source level (db) 3. Enter data in secondar a. Column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [\tau(sec) \times \psi(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range	stage: c t SD	STO 0 STO 1	
a. Sound speed (m/sec) b. Listening time (sec) c. Source depth (m) d. Target depth (m) e. Half-beam width (deg) f. Sonar pitch angle (deg g. Mixed layer depth (m) h. Absorption coefficient frequency (kHz) j. Sea state k. Source level (db) 3. Enter data in secondar a. Column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [t(sec) × \$\phi\$ (radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range	c t		
a. Sound speed (m/sec) b. Listening time (sec) c. Source depth (m) d. Target depth (m) e. Half-beam width (deg) f. Sonar pitch angle (deg g. Mixed layer depth (m) h. Absorption coefficient i. Frequency (kHz) j. Sea state k. Source level (db) 3. Enter data in secondar a. Column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [t(sec) × \$\phi\$ (radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range	c t		
c. Source depth (m) d. Target depth (m) e. Half-beam width (deg) f. Sonar pitch angle (deg g. Mixed layer depth (m) h. Absorption coefficient Frequency (kHz) j. Sea state k. Source level (db) 3. Enter data in secondar column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [t(sec) × \$\phi\$(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range		STO 1	
d. Target depth (m) e. Half-beam width (deg) f. Sonar pitch angle (deg g. Mixed layer depth (m) h. Absorption coefficient i. Frequency (kHz) j. Sea state k. Source level (db) 3. Enter data in secondar column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [t(sec) × \$\phi\$(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range	SD		
e. Half-beam width (deg) f. Sonar pitch angle (deg g. Mixed layer depth (m) h. Absorption coefficient i. Frequency (kHz) j. Sea state k. Source level (db) 3. Enter data in secondar column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [t(sec) × \$\phi\$ (radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range		STO 3	
f. Sonar pitch angle (deg g. Mixed layer depth (m) h. Absorption coefficient Frequency (kHz) j. Sea state k. Source level (db) 3. Enter data in secondar Column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [t(sec) × \$\phi\$(radians)]/2 g. Surface scattering coefficient for No doppler 5. Doppler or No doppler 6. Start computations 7. Printed output: Slant range	TD	STO 4	
 g. Mixed layer depth (m) h. Absorption coefficient i. Frequency (kH_Z) j. Sea state k. Source level (db) 3. Enter data in secondar a. Column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [τ(sec) × φ(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range 	Φ/2	STO 7	
h. Absorption coefficient i. Frequency (kH _Z) j. Sea state k. Source level (db) 3. Enter data in secondar a. Column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [t(sec) × \$\phi\$(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range) Y	STO 8	
 i. Frequency (kH_Z) j. Sea state k. Source level (db) 3. Enter data in secondar a. Column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [τ(sec) × φ(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 5. Start computations 7. Printed output: slant range 	D	STO A	
j. Sea state k. Source level (db) 3. Enter data in secondar a. Column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [τ(sec) × φ(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range	(dB/m) a	STO B	
k. Source level (db) 3. Enter data in secondar a. Column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [τ(sec) × φ(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 5. Start computations 7. Printed output: Slant range	f	STO C	
3. Enter data in secondar a. Column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [τ(sec) × φ(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: slant range	s.s.	STO D	
 a. Column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [τ(sec) × φ(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: Slant range 	SL	h STI	
 a. Column scattering coef b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [τ(sec) × φ(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range 	y storage:*	P Z S	
b. Constant c. Sonar self-noise level d. Target strength e. Range decrement (m) f. [τ(sec) × φ(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 5. Start computations 7. Printed output: a. Slant range		STO 0	
 d. Target strength e. Range decrement (m) f. [τ(sec) × φ(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range 	10	STO 2	
 e. Range decrement (m) f. [τ(sec) × φ(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range 	NLs	STO 3	
 e. Range decrement (m) f. [τ(sec) × φ(radians)]/2 g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: slant range 	TS	STO 4	
g. Surface scattering coe 4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range	r.d.	STO 5	
4. Primary/Secondary exch 5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range	τφ/2	STO 6	
5. Doppler or No doppler 6. Start computations 7. Printed output: a. Slant range		STO 8	
No doppler Start computations Printed output: a. Slant range	ange*	P ≠ S	
Start computationsPrinted output:a. Slant range		SF 0	dopple
7. Printed output: a. Slant range		CF 0	no dopple:
a. Slant range		A	See Step
L			r'
b. Angle-to-target			θ_1
c. Angle-to-surface at ra	ige r'		θ_2
d. Transmission Loss	STATE OF THE STATE		TL
e. If Flag 2 is set, self-	noise		
is printed.			NLs

Step	Instruction	Input	Key(s)	Output
8. a. b.	If Flag 2 is set, go to Step 9. Otherwise: Display surface reverberation level Enter two-way beam pattern correction in db (0 if no correction) Print total corrected level. Stop and display SE. To change range decrement, execute Step a. Other- wise go to Step b.	Correction	R/S	RL _S Total RL _S SE
a. b.	Key in new range decrement Enter two-way beam pattern	r.d.	STO 5 R ↓	SE
υ.	correction in db (0 if no correction) Display corrected SE	Correction	R/S	Corrected SE
10a. b.	If SE < 0, execution continues from Step 7. If SE > 0, termination occurs			1.00

The primary and secondary registers <u>must</u> be exchanged before (Step 3) and after (Step 4) entering data into the secondary storage registers.

2. Sample Problems

a. Sonar and target are in the mixed layer in a "doppler" situation, so that acquisition is noise limited by NL_s (Figure 1).

Source depth = 30 meters Target depth = 60 meters Mixed Layer depth = 75 meters

FIGURE 1. Geometry of Sample Problem 1.

Input.

RO:	1500	m/sec	S0:	-50	dE
RO:	1500	m/sec	S0:	-50	

Set Flag 0. No corrections are made to SE.

Output

The results are shown on the Sample Problem output.

At acquisition

$$\theta_1 = .47$$

$$\theta_2 = .47$$

$$TL = 85.9 dB (layer)$$

$$NL_s = 65 \text{ dB re } 1\mu\text{Pa}$$

$$SE = .21 dB$$

1500.00 STC0 6.70 STC1 30.00 STC7 10.00 STC7 5.00 STC5 75.00 STC5 75.00 STC5 25.00 STC0 227.00 STC1 Primary Storage Registers

Primary Storage Registers

10.00 STC0 227.00 STC0 10.00 STC0 10.00 STC0 10.00 STC0 10.00 STC0 10.00 STC0 17 STC0 -30.00 STC0 17 STC0 -30.00 STC0

SAMPLE PROBLEM 1. Input Data

```
SFC
                  Set for doppler
       GSEA
                  Start
5025.00 ***
                  r'
  0.34
       ***
                  \theta_1
  0.34 ***
                  \theta_2
 93.76 ***
                  TL
 65.00 ***
                  RLs
  0.00 R/S
                  Correction to SE
 -15.52
       ***
                  Corrected SE
4525.00
       ***
  0.38
       ***
  0.38
        ***
  90.95
        ***
  65.00 ***
  0.00 R S
  -9.90 ***
4025.00 ***
  8.43 ***
  0.43 ***
  88.09 ***
  65.00 ***
 300.00 $705 ]
                  Change range decrement
         R4
                  to 300 meters
  0.00 R/S
 -4.17 ***
3725.00 ***
  0.46 ***
  0.46 ***
  86.34 ***
  65.00 ***
  50.00 STOS
                  Change range decrement
         R4 J
  0.00 R.S
  -0.67
        ***
3675.00 ***
  8.47 ***
  0.47 ***
  86.04 ***
  65.00 ***
  25.00 ST05
                  Change range decrement
         RI J
  0.00 R/S
  -0.09 ***
                  r'
3650.00 ***
   0.47
        ***
                  θ1
       ***
  0.47
                  θ2
  85.96 ***
                  TL (layer)
  65.00 ***
                  NL_S
   0.00 R/S
                  SE = 0.21
   0.21
        ***
   1.00
                  Terminate
```

SAMPLE PROBLEM 2. Output

b. Sample Problems 2 and 3. The sonar and target configuration are shown in Figure 2.

Source depth = 600 meters

Target depth = 600 meters

Mixed Layer depth = 75 meters

FIGURE 2. Geometry of Sample Problems 2 and 3.

Input for Problems 2 and 3:

Same as for Problem 1 except

R3: 600 meters Flag 0: set for problem 2;

R4: 600 meters clear for problem 3

R8: 0°

0 entered as correction factors to $\operatorname{RL}_{\mathbf{S}}$ and SE .

Output for Problem 2:

r' = 4125 meters

 $\theta_1 = 0^{\circ}$

θ₂ = 8.36°

SE = .32 dB

Sonar acquired the target at about 4125 meters.

Output for Problem 3:

r' = 3025 meters

 $\theta_1 = 0$ °

 $\theta_2 = 11.44$

SE = 0.85 dB

Sonar acquired at 3025 meters.

```
SFC
        ESEA
5025.00 ***
   8.08 ***
   6.86
         ***
  90.50
         ***
  65.00
         ***
   0.00
         RS
  -9.01
         ***
4525.00
         ***
   0.00
         ***
  7.62
87.95
         ***
         ***
  65.00
        ***
 100.00 STO5 ]
                 Change range decrement to
          R4
                 100 meters
  6.00 R/S
  -3.91
         ***
4425.00
         ***
   8.86 ***
  7.79 ***
  87.43
        ***
  65.00
        ***
  0.00
         R/S
  -2.86
         ***
4325.00
         ***
  0.00
        ***
  7.97
        ***
  86.91
        ***
  65.00
        ***
  0.00 R/S
  -1.81 ***
4225.88 ***
  0.00 ***
  8.16 ***
 86.37
        ***
 65.00
        ***
  6.86
        R/S
 -8.75
        ***
4125.00
                 r'
        ***
  8.00
                 01
        ***
  8.36
        ***
                 \theta_2
 85.84
        ***
                 TL
 65.00
        ***
                 NLS
  0.00
        R.S
  0.32
        ***
                 SE
  1.00
                 Terminate
```

SAMPLE PROBLEM 2. Output

```
CFO
                    No doppler
         GSEA
                    Start
 5025.00 ***
                    r'
    0.00 ***
                   01
    6.86 ***
                    02
   98.50 ***
                    TL
   77.07 ***
                    RLS
   0.60 R S
                    No correction to RLs
  77.37
         ***
                   Total RL<sub>S</sub>
No correction to SE
   0.00 R/S
 -21.38
         ***
                   Corrected SE
 4525.00
         ***
   0.00
         ***
  7.62
87.95
          ***
         ***
  81.71
         ***
   0.00 R/S
  81.85 ***
   0.00 R/S
 -20.76 ***
4025.00 ***
   0.00 ***
   8.57 ***
  85.38 ***
  86.52 ***
   0.00
         R. S
  86.59 ***
   0.00 R/S
 -20.19 ***
3525.00 ***
   0.00 ***
   9.88 ***
  82.51 ***
  91.53 ***
   0.00 R/S
  91.58 ***
  0.00 R/S
 -19.59 ***
                    r'
3025.00 ***
                    01
  0.00 ***
                    \theta_2
  11.44 ***
 79.54 ***
 77.08 ***
  6.85 ***
  8.88 R/S
  0.85
                    SE
        ***
  1.00
                    Termination
```

SAMPLE PROBLEM 3. Output

3. Program Storage Allocations and Program Listings

Registers

- R0: c (m/sec) S0: $S_c (dB)$
- R1: t (sec) and S1: RL_V (dB)
 - SL 2TL + 10 log r' S2: 10
- R2: R_{max} and r' S3: NL $(dB_{\text{rel}}_{\mu\text{Pa}})$
- R3: SD (m) S4: TS (dB)
- R4: TD (m) S5: Range decrement (m)
- R5: θ_1 (deg) (500 m default)
- R6: θ_2 (deg) S6: τ (sec) \times $\phi/2$ (AD)
- R7: $\phi/2$ (deg) S7: 10 log($\phi\tau c/2$)
- R8: γ (deg) S8: S_{ϵ} (dB)
- R9: $\phi/2 + \gamma$ (deg) S9: RL_s (dB)
- RA: D (meters)
- RB: a (dB/meter)
- RC: f (kHz)
- RD: S.S.
- RE: TL (dB)
- RI: SL (dB_{relµPa} @ lm)
 - or consistent with NL

Initial Flag Status and Use:

- 0: ON for doppler,
- 1, 2, 3: OFF, unused
- OFF for no doppler

User control keys:

 A: Start program
 a:

 B:
 b:

 C:
 c:

 D:
 d:

 E:
 e:

							•																					_	-							
16-34	32 €€	16 32	6:	23	-35	36 62	16 32	6:	69	-35	-55	36 12	36 62	-35	5	36 13	i,	36 14	-35	6:	7	33	ė,	-32-	36 35	-35	36 1.	7.5	29	64	23	19	+2-	22-	35 15	22 13
X) Y?	9019	907	-	00	×	PCL2	907	-	90	7	•	FCLE	RCL2	×	•	RCLC	25	RCLD	×	-		0	4	34	RCL2	х	FCLA	×	œ	4	ø	×	.1.	+	STOE	2019
975	928	220	828	628	686	188	682	683	684	689	980	289	888	688	969	160	692	663	694	652	960	260	369	660	166	101	162	163	164	165	166	167	168	185	116	111
16-34	22 66	21 01	36 67	36 68	-45	36 65	16-34	25 62	36 1:	26 63	16-34	22 66	-4;	36 64	16-34	22 66	36 63	36 94	16-35	`;	-22	36 11	33-	16-43	22 66	52	36 11	23	-32	54	61	35	6.5	-32	36 6	7-
\$	6100	*LBL1	RCL 7	RCL8		RCL5	27 Y	6100	RCLA	PCL3	X> Y?	9019	XXX	RCL 4	27.79	9019	PC13	PC14	6AFX	X::X	CHS	PCLA	•	1.=97	9019	1/%	RCLA	2%	×	Z.	•••	ø	5	×	PCLZ	× × ×
838	628	949	641	642	643	644	645	946	847	648	646	929	951	652	653	654	622	920	250	628	658	999	199	862	699	964	696	950	667	896	699	676	971	872	673	674
21 11	36 36	36 91	-35	97	-24	35 62	21 12	36 62	16-45	22 00	-14	52	36 65	36 64	-45	16 3:	155-	16 4:	35 65	-14	36 93	36 92	-24	16 41	35 95	-14	36 87	36 68	400	35 69	36 64	36 63	16-75	22 81	26 80	36 65
*IBLA	BCLO	PCL1	×	2	4	5102	*LBLB	RCL2	2602	6108	X144	1/%	FC13	PCL4	•	AES	×	SIN	2013	F. 72.	5173	FCLZ	4.	SIN-	3018	PRTX	FCL7	8774		8109	FCL4	FC13	647%	5701	61.4	500
991	682	883	984	995	986	200	966	600	919	611	612	613	614	615	916	617	618	619	958	126	622	623	924	625	959	627	828	629	838	931	932	633	A34	675	936	622

-55	16-51	21 15	16-5;	36 63	36 62	-53	36 82	-41	31	-55-	16 32	36 62	-35	-11-	-22-	3€ 4€	-55	36 15	62	-35	35-	36 64	:5.	.;	-45	-14	16-45	55 63	20 17	61	-14	5.5	21 63	36 65	19-91	35-45 82	22 12
•	52d	37874	P.25	FCL3	RC.2		PCL2	XEX	×5.	•	90.7	RCL2	×	FRTX	CHS	PC.1	٠	RCLE	2	×		RCL4		£/5		PRTX	2.60	6019	91874		KLAd	PTR	11819	\$10A	F:5	21-2	9019
187	168	189	196	161	192	193	194	195	961	197	198	199	588	291	202	263	264	265	505	287	288	502	216	211	212	213	214	215	312	217	218	219	328	221	222	223	524
22 15	36 69	36 66	16-34	22 14	36 6:	16-51	36 87	100	36 98	-55	35 63	::	3,-	22 16 :1	51 15	16-51	99	35 63	21 16 1:	36 66	36 67	-55	16-5:	36 81	u i	16-5:	35 61	36 62	36 63	36 62	-24	13	36 82	36 61	36 62	+7-	22
3019	6738	RCL6	X	2015	FCL 1	51.6	RCL7	٠	BCL8	+	5109	8/3	•	670a	41810	5:4	æ	8109	*LELa	FCL6	RCL7	•	P15	1734	+	P 25	8101	FC12	6703	PCL2	45	1.	2734	RCL1	FCL2	4	
149	158	151	152	153	154	155	156	157	158	159	168	191	162	163	164	165	166	167	168	169	176	171	172	173	174	175	176	177	178	179	186	181	182	183	184	185	981
21 86	36 62	16 32	62	99	-35	36 12	36 62	-22	-55	35 15	21 13	-14	36 46	36 15	29	-35	-45	36 62	16 32	6.	99	-35	25-	35 6:	36 66	16-51	36 66	-32	16 32	6:	23	35 80	122	35.67	16-51	16 23 33	
*LB16	RCL2	907	2	Œ,	×	RCLE	PCL2	×		STOE	*IBIC	FRTX	FCL1	RCLE	2	×		PCL2	907		D	~	٠	3101	9734	44	PCLE	×	997	-	d)	5102	×	2107	P.18	684	
112	113	114	115	116	1117	118	119	128	121	122	123	124	125	126	127	128	123	139	131	132	133	134	175	136	137	138	139	4	141	142	143	144	145	146	147	148	

E. Computational Analysis

The active sonar equation is

SL - 2TL + TS -
$$(NL - DI) \ge DT$$
 , NL_s RL

where

 $SL = source level for the sonar (dB_{rel\mu Pa} @ lm),$

TL = transmission loss (dB),

RL = reverberation level (dB)

DT = system detection threshold (0dB assumed),

TS = target strength (dB),

and NL_s = Self-noise (dB_{reluPa}).

The only terms not known in the equation, TL and RL $_{\rm S}$, are calculated at various ranges (decrements) until the signal excess (SE) > DT(0).

The TL is calculated for two conditions:

a. When both source and target are in the layer (Reference 1)

$$TL = 10 \log r_t + 10 \log r' + \alpha r' + \frac{br'}{rs}$$
,

where

$$r_t = 105\sqrt{\frac{D^2}{D-z_s}}$$
 is the transition range (meters),

 $\alpha = absorption (dB/meters),$

 $b = 1.04 \times SS \times \sqrt{f}$ bounce factor (dB/bounce) valid between (3-25 kHz)(3-14 dB/bounce),

 $r_{g} = 840 \sqrt{D} ,$

z = larger of source or receiver depths (meters),

and D = layer thickness (meters).

b. When both source and target are not in the layer the TL is

TL = 20 log r' + α r' (for r' < r_t also when in layer).

After using the proper TL formula it must be decided whether or not there is sufficient doppler to be able to disregard reverberation (i.e., $RL_{_{\rm S}}$ and $RL_{_{\rm V}}$). If there is enough doppler then the $NL_{_{\rm S}}$ term dominates and the sonar equation can be solved. If there is no doppler the appropriate reverberation must be considered and combined with $NL_{_{\rm S}}$. Then the sonar equation can be solved. By successive decrements of r', there may be a point where $SE \geq DT$ and thus detection has occurred.

The reverberation equations are (Reference 2),

$$RL_{s} = SL - 2TL + 10 log r' + S_{s} + 10 log (\frac{\phi C\tau}{2})$$
,

where

S_s = surface scattering parameter (dB) for the particular
conditions (wind speed, grazing angle),

φ = sonar horizontal beam width (radians),

c = wave propagation time

and T = transmit pulse width (seconds);

and

$$RL_{v} = SL - 2TL + 10 \log r' + S_{c} + 10 \log (\frac{\phi C_{T}}{2})$$
,

where

S_c = column scattering coefficient (dB) for the particular
environmental conditions.

At each range decrement θ_1 and θ_2 are calculated to determine if they are inside the beam pattern. If θ_1 is not, acquisition cannot occur. If θ_2 is not, then RL_s is not important. The formulae for these quantities are (Figure 3):

$$\theta_1 = \sin^{-1} \left| \frac{SD - TD}{r'} \right|$$
 and $\theta_2 = \sin^{-1} \frac{SD}{r'}$,

where

SD = source depth,

and TD = target depth.

In addition, depending on the values of these angles, corrections can be made to the RL_s and sonar equation to compensate for off-axis (beam pattern) transmission and reception.

To get an initial value of $r' = R_{max}$ the equation $R_{max} = ct/2$ is used where t = the sonar "listening" time or time between successive pulse transmission.

 ϕ = sonar beam pattern (3dB points)

 θ_1 = angle to target at range r'

 θ_2 = angle to surface at rnage r'

r' = slant range

D = layer depth

FIGURE 3. Source and Target Geometry

F. References

- A. B. Coppens and J. V. Sanders, "An Introduction to the Sonar Equations with Applications," Technical Report NPS-61Sd76071, July 1976, Naval Postgraduate School, Monterey, CA 93940.
- R. J. Urick, <u>Principles of Underwater Sound</u>, 2nd Edition
 McGraw-Hill Book Co., 1975.

III. THREE ENGINE AVAILABLE RANGE REMAINING: P-3(B) AIRCRAFT CONFIGURATION "B" by LT R. J. Knight

A. Problem Statement

Aircraft total fuel remaining, outside air temperature, and aircraft altitude data are available. Determine the aircraft's available range remaining.

This program allows a pilot or copilot to rapidly and efficiently provide a quick estimate of available range remaining in an emergency situation (three engine flight).

B. Operational Analysis

The aircraft's available range remaining can be extracted from the table listed on pages 12-189 of the P-3(B) aircraft NATOPS manual.

- C. Computational Algorithm
- 1. Input fuel remaining (pounds).
- Input outside temperature (°C).
- Input altitude (feet)
- 4. Calculate the three-engine available range remaining.

D. HP-67/97 Calculator Program

1. <u>User Instructions</u>

Step	am .
Load program magnetic card side #1 and side #2 Input fuel remaining, * Input Out	Input Key(s) Output
Input outside air temperature for specific altitude 4. Input altitude Press A to	Pounds ENT Pounds ENT Pounds
Press A to calculate the three engine available range remaining Note: Fuel	feet / feet /
Note: Fuel remaining must be entered as #10,000 "Error" will display otherwise. Sample problem Calo	Po, #20,000
Sample Problem Calculate the	#30,000, #40,000

2. <u>Sample Problem</u>

Calculate the three-engine available range remaining if the remaining fuel is 10,000 pounds, the outside temperature is 11°C, and the altitude is 2000 feet. (ANSWER: 295 n.mi.)

16000. ENT! 11. ENT! 2000. 65EA 295. 111

D. HP-67/97 Calculator Program

1. User Instructions

Step	Instruction	Input	Key(s)	Output
1.	Load program magnetic card side #1 and side #2			0.00000000
2.	Input fuel remaining,* press enter	pounds	ENT	pounds
3.	Input outside air temperature for specific altitude press enter	°C	ENT	°C
4.	Input altitude	feet		feet
5.	Press A to calculate the three engine available range remaining		А	range in NM

Note: Fuel remaining must be entered as #10,000, #20,000, #30,000, #40,000 or #50,000. "Error" will display otherwise.

2. Sample Problem

Calculate the three-engine available range remaining if the remaining fuel is 10,000 pounds, the outside temperature is 11°C, and the altitude is 2000 feet. (ANSWER: 295 n.mi.)

10000. ENT! 11. ENT! 2000. GSEA 295. ***

3. Program Storage Allocation, Permanent Data, and Program Listing

Registers:

RO: a₀ SO: A: Fuel

R1: b₀ S1: B: Altitude

R2: a₁ S2: C: Temperature

R3: b₁ S3: D: Temperature deviation

R4: a₂ S4: E: Uncorrected range.

R5: b₂ S5:

R6: a₃ S6:

R7: b₃ S7:

R8: a₄ S8:

R9: b₄ S9:

Flags: OFF, unused.

User Control Keys:

A: Compute a.

B: b:

C: C:

D: d:

E: e:

Permanent Data

The following permanent data are stored in the primary storage registers RO through R9.

ee:	.LELA	- 21 11	START	1058	RCL4	36 é4	COMPUTE RANGE
682	STOR	35 12	STO ALTITUDE	055	RCLE	36 12	W/O TEMP CORRECTION
5.99	E.	-31		868	RCL6	30 00	F = 40,000 lbs
166	STEE	35 13	STO TEMP	861	-	-45	
285	F.	-3:		862	RCL7	36 07	
006	STOR	35 1:	STO FUEL	863	÷	-24	
007	EEX	-23		864	STOE	35 15	
999	4	04	TEST FUEL	055	GTOe		
699	+	24	= 10,000 lbs?	866	*LBL5	21 05	COMPUTE RANGE
010	1	ě:		867	RELB	36 12	W/O TERMP CORRECTION
811	-	-45		868	RCLB	36 88	F = 50,000 lbs
012	X=0?	16-43		869	-	-45	1 30,000 123
813	GT01	22 01		878	RCL9	36 83	
814	1	81	TEST FUEL	071	÷	-24	
815	-	-45	= 20,000 lbs?	072	STOE	35 15	
016	X=0?	16-43	= 20,000 IBS?	073	*LBLe	21 16 15	
017	GTOE	22 02		874	RCLB	36 12	COMPTIME WITH
818	1	01	TEST FUEL	875	EEX	-23	COMPUTE TEMP
019	-	-45	= 30,000 lbs?	076	3	03	CORRECTION
828	X=0?	16-43	- 30,000 Ibs.	077	+	-24	
821	6103	22 03		078	2	62	
022	1	01	TEST FUEL	879	CHS	-22	
023		-45	= 40,000 lbs	888	X	-35	
024	X=0?	16-43	= 40,000 lbs	881	1	81	
825	6104	22 04		083	5	05	
026	1	01		083	,	-55	
027		-45	TEST FUEL	884	ROLO	36 13	
828	X=0?	16-43	= 50,000 lbs	085	KULC.	-45	
829	ST05	22 05					
030	XZY	-4:		886	8700	35 14	
	A-1	88	TEST FUEL	087	X#8?	16-42	IF TEMP = STD
031	_	-24	> 50,000 lbs	888	GTON	22 16 14	DISPLAY RANGE
832	+			889	RCLE	36 15	
033	*LEL1	21 81		098	DSPO	-63 88	
834	RCLB	36 12	COMPUTE RANGE	091	RTH	24	
035	RCLO	36 80	W/O TEMP CORRECTION	092	*LBLd	21 16 14	
036	-	-45	F = 10,000 lbs	093		-62	
037	RCL1	36 01		094	0	90	TEMP ≠ STD
838	+	-24		095	8	ec	DISPLAY RANGE
839	STOE	35 15		096	2	92	
646		22 16 15		097	X	-35	
841	*LBL2	21 02	COMPUTE RANGE	098	RCLE	36 15	
842	RCLB	36 12	W/O TEMP CORRECTION	699	N.	-35	
043	RCLZ	36 62	F = 20,000 lbs	100	CHS	-23	
844	-	-45		101	ROLE	36 15	
045	RCL3	36 83		102	+	-55	
846	÷	-24		103	DSPO	-63 68	
847	STOE	35 15		184	R/S	51	END
848	GTOe	22 16 15					
049	*LBL3	21 63	COMPUTE RANGE				
050	RCLB	36 12	W/O TEMP CORRECTION				
051	RCL4	36 04	F = 30,000 lbs				
852	-	-45					
053	RCL5	36 05					
854	÷	-24					
855	STOE	35 15					
		22 16 15					
856	GTOE	22 10 13					

E. Mathematical Analysis

A linear curve fit was performed using the HP-67/97 standard pack SD-03A program. Five "fits" were preformed. For a constant fuel weight, X represented the range and Y represented the altitude. Resulting outputs provided the following:

Fuel (pounds)	R ²	a	b
10,000	.998615613	-34,302.26904	122.9065370
20,000	.998739204	-35,846,62839	43.18615709
30,000	.999756772	-36,857.62093	27.00641670
40,000	.999823326	-38,068.60561	20.18918143
50,000	.999802631	-39,482.60271	16.50293201

For a constant fuel the range X could be obtained as follows:

$$X = \frac{Y - a}{b}$$

or

Temperature correction:

increase range 1% per 5°C above standard decrease range 1% per 5°C below standard.

Based on a lapse rate of -2°/1000ft the standard temperature for a specified altitude is obtained by:

$$-2 \times \frac{\text{altitude}}{1000} + 15 = \text{standard temperature (for altitude)}$$

Subtracting the input temperature from the computed standard temperature yielded the difference in °C from standard.

A correction factor could be obtained for each difference times .002/degree times uncorrected range. The range could then be computed by summing the correction factor and the uncorrected range value.

F. Program Flowchart

IV. MISSION PLANNING: P-3(B) AIRCRAFT CONFIGURATION "B"

LT M. D. Thomas.

A. Problem Statement

In order to carry out the various operational missions assigned the P3-B Aircraft, effective utilization of the platform is essential. All aspects of the mission must be carefully planned. Fuel planning directly influences endurance and the effectiveness of the mission. The NATOPS manual provides charts for this purpose. Two vital charts for planning are:

- 1. four engine maximum range operating table; used in proceeding to the operational area.
- three engine loiter operating table; used while onstation for minimum fuel consumption.

The pilot or flight engineer enters with the aircraft's altitude and gross weight and finds the correct indicated airspeed (IAS) to fly.

This program is a user's program in that it translates these two charts onto an HP-67/97 magnetic card and allows calculation of IAS without the charts. Most missions are flown in configuration 'B' therefore the program presented here is for that case.

B. Operational Analysis

None.

C. Computational Algorithm

- 1. Enter altitude and gross weight in packed form: AAAAA.WWWW where AAAAA denotes the altitude in feet, and WWWW is the gross weight divided by 100,000. The leading zeroes, if any, in the value of WWW must be entered. For example, 18,000 feet and 76,500 pounds are entered as AAAAA = 18,000 and WWWW = 0765, that is 18,000.0765.
- 2. Compute the maximum range IAS or the three-engine loiter IAS.

D. HP-67/97 Calculator Program

1. User Instructions

Step	Instruction	Input	Key(s)	Output
1.	Enter program card			ro ott
2.	Enter altitude and gross weight. G.W. must be at least a three digit number. Compute four engine max range IAS.	ALT.GW	A	IAS (max range)
3a.	Enter altitude and gross weight. G.W. must be at least a three digit number. Compute three		atta cast	IAS
	engine loiter range IAS	ALT.GW	В	(Loiter)
b.	Optional: Compute the four engine max range IAS without re-entering the altitude and weight		R/S	IAS (max temp)

	2. Sample Problems	A Max Range IAS	B Loiter IAS
1.	130,000 lbs at 18,000 ft 18000.130	252	220
2.	86,000 lbs at 6,000 ft 6000.086*	241	175
3.	76,500 lbs at 10,000 ft 10000.0765	232	165
4.	50,000 lbs at 3,000 ft 3000.050	Error	Error
5.	130,000 lbs at 30,000 ft 30000.130	Error	Error

*Gross weight must be at least a three digit number (IE)

130,000 .130 76,000 .076 82,500 .0825

3. Program Storage Allocation and Listing

Registers

R0:	altitude	S0:	RA:
Rl:	max range constant	sl:	:
R2:	loiter airspeeds	S2:	
:		:	RE:
R9:		S9:	RI:

Initial Flag Status and Use:

0: OFF, unused 2: OFF, unused

OFF, unused
 OFF, unused.

User Control Keys:

A: Compute four engine IAS a:

B: Compute three engine IAS b:

C: c:

D: d:

E: e:

						COMPUTE MAX RANGE IAS											CONDITIONAL TEST OF		GROSS WEIGHT CATEGORY		INCREMENTS CONSTANTS							CONDITIONAL TEST OF		GROSS WEIGHT CATEGORY		INCREMENTS CONSTANTS			
16-35	23 66	36 86	36 0.	-23	63	-35	-45	-23	63	-24	-22		21 64	16-35	22 6:	79-	99	63	35-45 61	15-		35-45 62		22 65	+2	21 65		22 61	29-	66	62	35-45 61	:5		35-45 62
S 57.3%	6586	RCLB	RCL 1	EEX	N)	×	•	EEX	3	.1.	CHS	KIN	#1814	X4Y?	610;	•	8	מו	57-1	*	10	2-15	•	6105	NIN	*LBL5	6A5%	6701	•	æ	2	57-1	*	S	5-15
938	848	041	942	643	844	645	646	647	648	649	659	120	655	653	654	655	626	657	628	628	999	199	290	663	900	965	990	290	890	690	929	971	672	673	874
		UNPACK ALTITUDE AND		GROSS WEIGHT						STORE MAX RANGE	CONSTANT				STORE LOITER	CONSTANT				SET INITIAL GROSS		WEIGHT BRACKET			SET GENTO! STRIGHTON	COFF OIL LOILEN INS				CHECK ALTITUDE		RESTRICTIONS			
27 27 28 28 29 29	-2:	16 34	32 66	-31	16 44	-53-	633	135-	95	79-	75 67	10.00	7	29	95	35	35 62	13	30	7 .	e c	79-	3	55 64	21 12	23 11	36 62	57	21 6:	23 67	-31	61	ë.	6.7	79-
MLBLA DSF8	ENT	INI	8100	*	FRC	EEX	3	×	~	•	7020	1010	7.5%	7	~		2018	*	0	"	,	. u		6104	*LBLE	H959	KC12	Z :	*LEL!	6387	*	-	-	2	
																						•													

					;	CHECKS ALTITUDE IF ILLEGAL,		ERROR DISPLAY										CHECKS GROSS WEIGHT CATEGORY		IF ILLEGAL, ERROR DISPLAY						
-45	22 64	57	21 66	36 86	20	30	27-	63	16-34	. 24	-4:	-14	22 13	21 67	-31	6.	29	79-	65	16-35	1.7	-4:	-14	22 13	54	51
•	6104	RTN	*LB16	BC19	2	00	EEX	2	SYCK	FTN	XXX	PETX	2019	*1617	*	7	2	•	un.	24.75	FIN	X.2.X	PPTX	2019	PTN	878
675	920	229	828	620	680	130	280	683	684	685	980	289	999	688	360	691	260	260	634	358	350	260	960	660	166	101

E. Computational Analysis

Using the HP-67 standard curve fitting program, a good linear fit was obtained on the four engine maximum range data. There is a linear relationship between altitude and indicated airspeed for each gross weight category. The coefficient of determination was equal to 1.00 in all cases, indicating a good fit. The following equations were used; loiter airspeeds are constant for each category.

G.W. (1000 lbs)	Max range IAS	Loiter IAS
132.5-127.5	y = 270 - x/1000	220
127.5-122.5	y = 267 - x/1000	215
122.5-117.5	y = 265 - x/1000	210
117.5-112.5	y = 262 - x/1000	205
112.5-107.5	y = 260 - x/1000	200
107.5-102.5	y = 257 - x/1000	195
102.5- 97.5	y = 255 - x/1000	190
97.5- 92.5	y = 252 - x/1000	185
92.5- 87.5	y = 250 - x/1000	180
87.5- 82.5	y = 247 - x/1000	175 .
82.5- 77.5	y = 245 - x/1000	170
77.5- 72.5	y - 242 - x/1000	165

x =altitude in feet and y =maximum range IAS.

V. <u>USER-CONTROLLED SIMULATION OF APPROACH AND LANDING FOR</u> THE P-3 AIRCRAFT by LT J. Aiken

A. Problem Statement

This program simulates an aircraft approach and landing. Specifically, it is a time-step simulation of the final five miles of a precision approach for a Lockheed P-3 ORION aircraft. The simulation is user-controlled which allows the user to act as pilot and make the decisions which control the movement of the airplane during its final approach phase. The purpose of the program is to simulate accurately the flight of the aircraft and display to the operator his rate of movement and position resulting from his manipulation of the controls.

B. Operation Analysis

Relevant information on the airfield is as follows:

Runway 8000 ft (length

200 ft (width)

180 degrees magnetic heading

SEA LEVEL elevation

Approach TOUCHDOWN POINT 1000ft beyond approach

threshold

GLIDE SLOPE 2.83 degrees

2 min 18 sec time required at 135 kts

ground speed

FINAL APPROACH FIX: 5 miles, 1500ft (starting point)

The aircraft weighs 90,000 lbs with approach speeds 135/121 kts (approach flaps/land flaps). Note however that no provision is made for changing the gear/flap configuration so it is essentially an "approach-flap" landing. The simulation starts with the aircraft in motion: 1500 feet MSL, 135 kts IAS, 650 ft/min descent rate, landing gear down and approach flaps. The simulation allows the user to select horsepower settings, nose attitude, heading, wind direction, wind velocity, and time interval. At the end of a time interval the simulation is halted and the critical flight information is displayed to the operator, allowing him to alter controlling parameters and continue the flight. The simulation continues in this manner until the aircraft lands. Vital landing parameters are displayed and the simulation is complete. The simulation realistically responds to control changes provided the aircraft is flown in a somewhat reasonable fashion. Extreme deviations and maneuvers other than those required during an approach are not designed into the program.

- C. Computational Algorithm
- 1. Initialize the aircraft at the starting point.
- 2. Input time step, wind direction and wind velocity.
- Input horsepower, nose attitude, heading, and number of time steps desired.
- 4. Compute course deviation.
- 5. Compute horizontal acceleration.
- 6. Compute vertical acceleration.
- 7. Compute final velocity and average vertical velocity.
- 8. Compute altitude.
- 9. Compute final and average horizontal velocity.
- 10. Compute distance remaining based on ground speed.
- 11. Compute glide slope height and deviation from glide slope.
- 12. Check altitude less than 0.
- 13. DSZ (number of time steps is the counter) GTO 4 above.
- 14. Display approach parameters after completing desired time steps.
- 15. Display landing parameters upon landing.
- 16. Clear primary and secondary registers, GTO 1 for new problem.

D. HP-67 Calculator Program

1. User Instructions

Step	Instruction	Input	Key(s)	Output
1.	Enter program card	The second		e facus at e
2.	Clear primary and secondary registers			10.000
3.	Initialize	10101014	f e	30384
4.	Enter time step	seconds	sto с	
5.	Enter wind direction	degrees	STO D	
6.	Enter wind velocity	knots	STO E	7. COMpacte
7.	Enter horsepower	нр	A	НР
8.	Enter nose attitude	+ degrees	В	Nose attitude
9.	Enter heading	degress	С	Heading
10.	Enter number of time steps	integer	D	flashing
	Output Altitude. Airspeed (Packed)			Alt. airspeed
	Descent rate (ft/min)		R/S	Descent rate
	Above (+) or below (-) glide slope		R/S	Feet hi/lo
	Distance to go Airborne (miles) Landed (feet)		R/S	+ Distance to
	Right (+) or left (-) of of course		R/S	ft right/left
11.	If altitude GT zero go to Step 4; make new entries only if change desired. Step 10 must be re-entered.			

2. Sample Problem

			Input						Ou	tput		
Time Step	Wind Direction	Wind Velocity	Horsepower	Nose Attitude	Heading	Steps	Altitude	Airspeed	Descent Rate	Above/Below Glide Slope	Distance To Go	Right/Left of Course
20	210	20	800	1.5	185	1	1295	133	-570	-1	4.4	63
					183	1	1108	132	-552	2.4	3.7	-34
			790		184	1	922	132	-560	6.9	3.1	-51
			775		185	1	732	132	-580	6.3	2.4	11
					184	1	538	132	-584	1.6	1.8	- 6
10			790		184	1	441	132	-575	0	1.5	-14
					184.8	1	346	132	-574	-1	1.2	9
			795	2	184.3	1	252	131	-555	-1	. 85	13
5			700	3.5	184	1	205	129	-559	-1	.7	8
				4		1	159	127	-552	-2	.5	4
					184.1	1	113	127	-552	-2	.4	2
				4.3	184	1	67	127	-547	-3	.24	- 2
				4.8		1	22	126	-538	-3	.08	- 7
2				6		1	4	126	-530	-3	.02	- 8
				8	182.5	1	0	125	-516	-2	40	-22

Sample Problem Keystroke Sequence

GSBe			<u> </u>	 	
38384.00 *** 20.00 \$TCC 21.00 \$TCC 20.00 \$TCC	•	63Ba		-580.08 **	
20.00 STCC 210.00 STCC 20.00 SSEC 11.00 SSEC 11.00 SSEC 1.00 SSEC	70794 66				S
210.00 STOC					
20.00 STOE 800.00 GSEA 1.50 GSEC 1.50 GSEC 1.00 GSEC					
### ### ### ### #### #### #### #### ####					
1.50 655E 185.00 658C 1.00 658C 1.00 658C 1.00 658C 1.00 658C 1.00 658C 1.295.133 ***	The second of the second				
185.00 GSEC 1.00 GSEC					
1.00 GSBC 1295.133 *** -570.00 *** -570.00 *** -750.00 GSBC -790.00 GSBC -790.00 GSBC -790.00 GSBC -790.00 GSBC -790.00 GSBC -790.00 GSBC -750.00 *** -750.00 GSBC					
1295.135 *** R/S -570.00 *** R/S -1.02 *** R/S -1.00 *** R/S -5.66 *** 10.00 \$550 183.00 \$550 190.00 \$550 190.00 \$550 190.00 \$550 190.00 \$550 190.00 \$550 190.00 \$550 100.00 \$550	185.00	6SEC			
R/S -570.00 *** -584.02 *** R/S -584.02 *** R/S -1.02 *** R/S -1.61 *** R/S R/S -1.61 *** R/S -1.61 *** R/S R/S -1.61 *** R/S R/S -1.80 *** R/S -1.80 *** R/S R/S -1.62 *** R/S -1.62 *** R/S -1.00 \$550 1.80 \$650 1.80 \$650 -1.80 \$650 <	1.00	GSBI			
-570.00 *** R/S -1.02 *** R/S 4.35 *** 62.92 *** 62.92 *** 10.00 STDC 183.00 GSBC 1.00 GSBC 1.00 GSBC 1.00 GSBC 1.00 GSBC 1.00 GSBC 2.42 *** R/S -552.00 *** R/S -575.41 *** R/S R/S -34.34 *** 790.00 GSBA 164.00 GSBC 1.00 GSBC	1295.133	444			
-570.00 ***		R/3		R/S	
R/S	-570.00	***		-584.02 ***	
-1.02 *** R/S 4.35 *** R/S 62.92 *** 62.92 *** 1.00 GSEC	0.000			R/S	3
R/S 4.35 **** R/S 62.92 **** 183.00 GSEC 1.00 GSED 441.132 *** R/S -552.00 *** R/S 2.42 *** R/S 2.42 *** R/S 3.71 *** R/S -34.34 *** 790.00 GSED 184.00 GSED 1.00 GSED	-1 62				
4.35 *** R/S R/S 62.92 *** 183.00 GSEC 1.00 GSED 1.00 GSED 1108.132 *** R/S 1.00 -552.00 *** R/S -575.41 R/S -575.41 R/S -6.35 3.71 *** R/S -6.35 3.71 *** R/S 1.49 R/S 1.00 GSBD 1.00 GSBD 3.68 R/S -1.42 R/S -573.69 R/S -1.40 R/S -1.40 R/S -1.40 R/S -1.40 R/S -1.40 R/S	-1.02	- 5 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6			
R/S 62.92 *** 62.92 *** 10.00 STDC 183.00 GSBC 1.00 GSBD 1108.132 *** -552.00 *** -552.00 *** R/S R/S 2.42 *** R/S 3.71 *** R/S R/S -34.34 *** 790.00 GSBA 184.00 GSBC 1.00 GSBC 1.49 *** R/S -34.34 *** 790.00 GSBA 184.00 GSBC 1.00 GSBC 1.00 GSBC 1.00 GSBC 1.00 GSBC 3.6.132 *** R/S -560.40 *** R/S -573.69 *** R/S -51.46 *** 775.00 GSBA 185.00 GSBA 185.00 GSBC 1.00 GSBC	4 75				
-5.66 *** 10.00 STOC 183.00 GSSC	4.35				
183.00 GSSC 790.00 GSSA 1.00 GSSD 184.00 GSSD 1108.132 *** -552.00 *** R/S R/S R/S R/S R/S R/S R/S					
183.00 GSBC 1.00 GSBD 1108.132 *** -552.00 *** -552.00 *** R/S R/S R/S -755.41 *** R/S -755.41 *** R/S -8.35 *** R/S -8.37 *** R/S -8.37 *** R/S -9.35 *** R/S -9.35 *** R/S -1.49 *** R/S -34.34 *** -34.34 ** -34.34 *** -3	62.92	***			
1.00 GSBD 1108.132 *** R/S -552.00 *** R/S R/S R/S R/S R/S R/S R/S					
1108.132 *** R/S -552.00 *** R/S R/S R/S -575.41 *** R/S R/S -0.35 *** R/S -0.35 *** R/S -0.35 *** R/S -1.49 *** 790.00 GSED 1.00 GSED 1.00 GSED 1.00 GSED 1.00 GSED 922.132 *** R/S -560.40 *** R/S -573.69 *** R/S -1.40 ** R/S -1.40 *	183.00	<i>GSBC</i>			
R/S -552.06 *** R/S R/S R/S R/S -575.41 *** R/S R/S -6.35 *** R/S -6.32 *** R/S -6.66 *** R/S -6.67 *** R/S -6.68 *** R/S -6.69 *** R/S -51.46 *** R	1.00	ESBD			
### ### ### ### #### #### #### #### ####	1108.132	***		1.00 GSB3	
-552.00 *** R/S R/S 2.42 *** R/S R/S -0.35 *** R/S -1.49 *** R/S -14.22 *** 184.80 GSEC 1.00 GSED 1.00 GSED 1.00 GSED 2.100 GSED -573.69 *** R/S -1.40 *** R/S -1.40 *** R/S -51.46 *** -575.00 GSEA 185.00 GSEC 1.00 GSEC 1.00 GSEC				441.132 ***	(
R/S -575.41 *** R/S -0.35 *** 3.71 *** R/S R/S 1.49 *** -34.34 *** R/S 790.00 GSEA -14.22 *** 164.00 GSEC 1.00 GSEC 1.00 GSED 1.00 GSED 922.132 *** R/S -560.40 *** R/S 6.89 *** R/S 6.89 *** R/S 3.08 *** 1.17 *** R/S R/S 1.17 *** 775.00 GSEA 795.00 GSEA 185.00 GSEC 2.00 GSEC 1.00 GSEC 184.30 GSEC	-552.00	-		R/S	
2.42 *** R/S R/S 3.71 *** R/S -0.35 *** R/S 1.49 *** 790.00 GSEA 184.00 GSEC 1.00 GSED 922.132 *** R/S -560.40 *** R/S 6.89 *** R/S -1.40 GSEC 1.00 GSEC 1.00 GSEC 1.00 GSEC 1.00 GSEC	552.00				
R/S 3.71 *** R/S 1.49 *** -34.34 *** -390.60 GSEA 184.80 GSEC 1.00 GSED 922.132 *** R/S -560.40 *** R/S 6.89 *** R/S 3.08 *** R/S -51.46 *** 775.00 GSEA 185.00 GSEC 1.00 GSEC	2 42				
3.71 *** R/S 1.49 *** 790.00 GSEA 184.00 GSEC 1.00 GSED 922.132 *** R/S -560.40 *** R/S 6.89 *** R/S 3.08 *** R/S -51.46 *** 775.00 GSEC 1.00 GSEC 1.00 GSEC 1.00 GSEC 1.20 GSEC 1.32 *** R/S -1.40 *** R/S 1.17 *** R/S -51.46 *** 795.00 GSEA 185.00 GSEC 1.00 GSEC 1.00 GSEC	2.72				
R/S -34.34 *** 790.00 GSEA 184.00 GSEC 1.00 GSED 922.132 *** R/S -560.40 *** R/S 6.89 *** R/S 3.08 *** R/S -51.46 *** 775.00 GSEA 185.00 GSEC 1.00 GSEC 1.00 GSEC 1.00 GSEC 1.00 GSEC 1.00 GSEC 1.00 GSEC	7 71				
-34.34 *** 790.00 G5EA 184.00 G5EC 1.00 G5ED 1.00 G5ED 922.132 *** R/S -560.40 *** R/S 6.89 *** R/S 3.08 *** R/S -51.46 *** 775.00 G5EA 185.00 G5EC 1.00 G5EC 1.00 G5EC 1.00 G5EC	3.71			the state of the s	
790.00 GSEA 164.00 GSEC 1.00 GSED 1.00 GSED 922.132 *** R/S -560.40 *** R/S 6.89 *** R/S 3.08 *** R/S -51.46 *** 775.00 GSEC 1.00 GSEC 1.00 GSEC 1.00 GSEC 1.00 GSEC 1.00 GSEC					
184.80 GSBC 1.00 GSBD 922.132 *** R/S -560.40 *** R/S 6.89 *** R/S 3.08 *** R/S -51.46 *** 775.00 GSBA 185.00 GSBC 1.00 GSBC 1.00 GSBC 1.00 GSBC 1.00 GSBC 1.00 GSBC 1.00 GSBC				The state of the s	
1.00 GSBD 922.132 *** R/S -560.40 *** R/S 6.89 *** R/S 3.08 *** R/S -51.46 *** 775.00 GSBA 185.00 GSBC 1.00 GSBC 1.00 GSBC 1.00 GSBC					
922.132 *** R/S -560.40 *** R/S 6.89 *** R/S 3.08 *** R/S -51.46 *** 775.00 GSBA 185.00 GSBC 1.00 GSBC 1.00 GSBC 184.30 GSBC	184.00	6SBC		The state of the s	
R/S -560.40 *** R/S 6.89 *** R/S 3.08 *** R/S -51.46 *** 775.00 GSBA 185.00 GSBC 1.00 GSBC 1.00 GSBC 1.00 GSBC 1.00 GSBC	1.00	<i>GSBD</i>			
-560.40 *** R/S 6.89 *** R/S 3.08 *** R/S -1.40 *** R/S 3.08 *** 751.46 *** 775.00 GSBA 185.00 GSBC 1.00 GSBC	922.132	***		746.132 ***	
R/S 6.89 *** -1.40 *** R/S 3.08 *** 1.17 *** R/S -51.46 *** 9.24 *** 775.00 GSBA 795.00 GSBA 185.00 GSBC 2.00 GSEC 1.00 GSBC		R. 3		R/3	
R/S 6.89 *** R/S 7.5	-560.40	***		-573.69 ***	
6.89 ***				R/3	
R/S 3.08 *** 1.17 *** R/S -51.46 *** 9.24 *** 775.00 GSBA 795.00 GSBA 185.00 GSBC 2.00 GSBC 184.30 GSBC	6 69			-1.40 ***	
3.08 *** R/S -51.46 *** 775.00 GSBA 185.00 GSBC 1.00 GSBC 1.00 GSBC 184.30 GSBC	0.05				
R/S -51.46 *** 9.24 *** 775.00 GSBA 795.00 GSBA 185.00 GSBC 2.00 GSBE 1.00 GSBC 184.30 GSBC	7 00				
-51.46 *** 9.24 *** 775.00 GSBA 795.00 GSBA 185.00 GSBC 2.00 GSBE 1.00 GSBC 184.30 GSBC	3.65				
775.00 GSBA 795.00 GSBA 185.00 GSBC 2.00 GSBE 1.00 GSBC 184.30 GSBC					
185.00 GSEC 2.00 GSEE 184.30 GSEC 184.30 GSEC					
1.00 GSEC 184.30 GSEC					
				1.00 GSEI	
R/S 252.131 ***				252.131 **	*

Sample Problem Keystroke Sequence (cont.)

	R/S	1.00 6582
555.34	***	67.127 444
333.34	R/S	R/5
-1 25		-546.74 ***
-1.25	*** D +0	R/S
0.05	R/3	-2.72 ***
0.85		R/S
	R- 5	0.24 ***
12.69		6.24 AAA
	STOC .	
700.00		-2.43 ***
	6368	4.80 GSEE
84.00	6SBC	1.00 GSED
1.00	GSBD	22.126 ***
5.129	***	R/S
	R/S	-538.29 ***
559.51	***	R/S
	R/S	-2.76 ***
-1.27	***	R/E
	R/S	6.08 ***
0.69	***	R/S
0.05	R/S	-6.71 ***
0 41		2.00 STUC
8.41	***	6.00 GS8E
4.00		1.00 6582
1.00		
9.127	***	4.126 ***
	R/S	R/E
52.84	***	-530.41 ***
	R/S	R/S
-1.85	***	-2.61 ***
	R/S	R/S
0.54	***	0.62 ***
	R-S	R/S
4.13	***	-8.42 ***
84.10	6560	8.00 GSBE
1.00		182.50 GSBC
3.127	***	1.00 6350
	R/S	0.125 ***
51.51	***	R. S
01.01	R/S	-516.84 ***
-2.35	***	R/S
2.30	R/8	-2.24 ***
0 70		R/S
0.39	### .	40.50 ***
	R/S	40.50 *** R/S
1.85		
4.30		-22.16 ***
84.00	GSEC	

3. Program Storage Allocations and Program Listing

Registers:

- RO: Right/left of course S1: Hortizonal force
- R1: Horsepower S2: Vertical force
- R2: Nose attitude
- R3: Horizontal velocity
- R4: Vertical velocity
- R5: Altitude
- R6: Horizontal acceleration
- R7: Vertical acceleration
- R8: Distance remaining
- R9: Glide Slope Altitude
- RA: DELH
- RB: Heading
- RC: Time step
- RD: Wind direction
- RE: Wind velocity
- RI: Number of time steps

Initial Flag Status:

- 0: OFF, Unused 2: OFF, Set ON upon landing
- 1: OFF, Unused 3: OFF, Unused

User Control Keys:

- A: Horsepower a:
- B: Nose attitude b:
- C: Heading c:
- D: Time steps, start computation d:
- E: e: Initialize

002	*LELH STJ1	21 11 35 01	INPUT	061 062	GSB1 5106	23 01 35 06	COMPUTE HORIZONTAL ACCE
003	R/S	51		863	GSB2	23 02	COMPUTE
004	*LELB	21 12	HORSEPOWER	864	5107	35 07	VERTICAL ACCEL
605	\$102	35 02	NOSE ATTITUDE	865	RCL4	36 04	
006	RIS	5:	NOSE ATTITUDE	066	RCL7	36 07	COMPUTE
007	*LBLC	21 13	HEADING	867	RCLC	36 13	
		35 12	*	968	X	35	VERTICAL
809	STOB			069	ST+4	35-55 64	
009	R.S	51		070		-41	VELOCITY
010	*LBLe	21 16 15			XZY	36 04	
011	2	82		071	RCL4		
012	2	02		072	+,	-55	
013	8	02		073	. 2	02	COMPTIME
814	ST03	35 63		074	÷	-24	COMPUTE
015	1	. 01		075	RCLC	36 13	
016	1	81	THIMTHIRE	076	X	-35	ALTITUDE
017	CHS	-22	INITIALIZE	077	ST+5	35-55 05	
618	ST04	35 84		078	RCL3	36 03	COMPUTE
019	1	61	SPEEDS	879	RCL6	36 06	HORIZONTAL
020	5	05		080	RCLC	36 13	HORIBONIAL
021	0	00	ALTITUDE	081	X	-35	VIDEOCEMY
022	0	00		082	57+3	35-55 03	VELOCITY
023	ST05	35 85	DISTANCE	083	XZY	-41	
024	3	03		884	RCL3	36 03	
025	0	66		885	+	-55	
026	3	03		086	2	82	
827	8	66		087	÷	-24	COMPLUME
028	4	84		088	RCLD	36 14	COMPUTE
029	STOS	35 86		089	1	01	
				890	8	88	GROUND
636	RIS	51			8	00	
031	*LBLD	21 14		091		1000	SPEED
032	STOI	35 45		092	100	-45	
033	*LBL8	21 08		093	ABS	16 31	AND
834	ROLB	36 12		894	cos	42	
035	1	01		095	RCLE	36 15	DISTANCE
036	8	08		096	1	01	
037	0	00		097		-62	TO GO
038	-	-45		098	6	06	
039	SIN	41		099	9	05	
848	2	02		100	X	-35	
041	3	03	COMPUTE	101	X	-35	
842	0	00		102	-	-45	
843	X	-35	DRIFT RATES	103	RCLC	36 13	
044	1	01		184	N'	-35	
045	8	08	AND	105	CHS	-22	
046	0	00		106	RCL8	36 88	COMPUTE
847	RCLD	36 14	COURSE	107	+	-55	GLIDE-SLOPE
848	-	-45		108	STOS	35 08	GLIDE-SHOPE
049	SIN	41	DEVIATION	109		-62	HEIGHT
050	RCLE	36 15	DEVIRTION	110	ė	60	
851		91		111	4	04	AND
	1			112	9	09	DEVIATION
052	:	-62					
053	6	86		113	erae.	-35	FROM
054	9	69		114	\$109	35 63	CT TDE-CLODE
055	×	-35		115	CHS	-22	GLIDE-SLOPE
056	X	-35		116	RCL5	36 05	
057	+	-55		117	+	-55	
858	ROLE	36 13		118	STOR	35 11	
059	X	-35		119	RCL5	36 05	
060	57+0	35-55 00		120	X (0?	16-45	CHECK ALT < 0
				121	GTOS	22 89	CHIER ALI
			49	122	DSZI	16 25 46	LOOP CONTROL

124	+LELT	21 07		169	*LBL1	21 6:	
125	RCL5	36 05		170	PCL2	36 62	
126	INT	16 34		171		-62	
127	FCL3	36 03	100000000000000000000000000000000000000	172	4	6+	
128	1	0.	ALTITUDE	173	EHS	-22	COMPUTE
129	6	86	DECIMAL	174	X	-35	
130	8	63	. DECIMAL	175	EEN	-23	HORIZONTAL
131	8	38	AIRSPEED	176	3	03	
132	÷	-24	(PACKED)	177	CHS	-22	FORCE
133	+	-55	(PACKED)	178	PCL1	36 81	
134	DSF3	-63 03		179	X	-35	
135	RIS	51		180	+	-55	
136	DSP2	-63 02		181		-62	
137	RCL4	36 84	RATE	182	4	04	
138	6	06	000	183	-	-45	
139	0	60	OF	184	FIS	16-51	
140	X	-35	DESCENT	185	RCL1	36 01	
141	RS	51		186	XZY	-41	
142	RCLA	36 11		187	STOI	35 01	COMPUTE
143	R/S	51	HIGH/LOW	188	XZY	-41	
144	RCLE	36 08		189	-	-45	HORIZONTAL
145	F2?	16 23 02		198	FIS	16-5:	HORIZONIAL
146	ET05	22 85	DISTANCE TO GO	191	RCL6	36 86	ACCELERATION
147	6	86		192	5	85	Reconstruction
148	8	80	(FEET IF	193	÷	-24	
149	7	8.7	LANDED)	194	•	-55	
150	7	87		195	RTN	24	
151	+	-24		196	*LBL2	21 62	
152	*LBL5	21 65		197		-62	
153	R/S	51		198	0	96	
154	RCLO	36 60	LEFT/RIGHT	199	0	00	
155	R/S	5:	227 17 10 0111	200	1	e:	COMPUTE
156	*LBL9	21 09		201	RCL1	36 61	COMPUTE
157	RCLS	36 08		202	λ	-35	VERTICAL
158	RCL5	36 05	LANDED	203		-62	VERTICAL
159	CHS	-22		284	8	08	PODGE
168	2	92	ADJUST DISTANCE	205	•	-45	FORCE
161	0	00	TO ZERO ALT.	206	RCL2	36 82	
162	1	-35	TO MINO ALIT.	207		-62	
163		-55		208	0	90	
164	ST08	35 €€		209	5	65	
165	0	99		210	N	-35	
166	ST05	35 85	SET ALT = 0	211	+	-55	
167	SF2	16 21 02	SET FLAG 2	212	F25	16-51	
l€S	eto?	22 07		213	RCL2	36 62	
				214	XXY	-41	
				215	STO2	35 02	COMPUTE
				216	XZY	-41	
				217	•	-45	VERTICAL
				218	FZS	16-51	VIIIII
				219	RCL7	36 87	ACCELERATION
				220	5	05	ACCESSES IN TON
				221	+	-24	
				222	+	-55	
				223	RTH	24	
				224	R.S	54	

E. Mathematical Analysis

The variable names used are:

VX Horizontal Velocity

VY Vertical Velocity

VW Wind Velocity

DRA Drift Rate Due to A/C HDG

DRW Drift Rate Due to Wind

TDR Total Drift Rate

GS Ground Speed

AX Horizontal Velocity

AY Vertical Velocity

D Distance to go

H Glide Slope Altitude

DELH Deviation from Glide Slope

ALT Altitude

t Time Step

COURSE DEVIATION COMPUTATION

DISTANCE, GROUNDSPEED, GLIDE SLOPE

Avg HOR Velocity = $\frac{1}{2}$ (VX₀ + VX₁) (for one time step)

Distance travelled = GS(t)

GS = VX - VW cos wind dir - 180

D = prior remaining - distance travelled

 $H = D \tan \theta$

DELH = ALT - H

LANDING DISTANCE ADJUSTMENT

Two situations are illustrated above.

- Aircraft above glide slope (lands long).
- 2. Aircraft below glide slope (lands short).

An adjustment is required because the aircraft is allowed to descend until the end of the time step. On the landing time step the aircraft will have descended below zero altitude. The adjustment in either case is: adjustment = $H/(\tan \theta)$.

FORCES, ACCELERATIONS, AND VELOCITIES

Although the author is not an aeronautical engineer, it was felt that his understanding of the basic laws of physics complemented by considerable pilot experience would serve sufficiently to accomplish the goals of this project. The formulae for force and acceleration were arrived at after testing several trial formulae on experienced P-3 pilots. The unanimous opinion was that the current program enables the simulation to closely model the actual flight characteristics of the aircraft.

VI. FLIGHT CREW MANAGEMENT USING THE HP-97 by LT Kenneth W. Peters

A. Problem Statement

A flight crew's most recent landing day and time is known. Using requirements for crew rest and postflight and preflight duration, compute when the flight crew will be available for take-off again. For planning and scheduling purposes, list crews in order of availability. For required onstation times compute takeoff, onstation, offstation and landing times for a given number of flights. Determine if flight crews will be available to meet this schedule.

B. Operational Analysis

When planning an operation requiring scheduling of several flight crews, crew availability must be considered.

Accurate and easily understood crew records are necessary to meet both operational and safety requirements.

C. Computational Algorithm

- 1. Flight crew availability
 - a. Enter required postflight to preflight crew rest time.
 - b. Enter crew number and their most recent landing day and time.
 - c. Compute the crew's earliest possible takeoff day and time using one hour for postflight and three hours for preflight.

- 2. List crews in order of availability
 - a. Enter number of flight crews = N.
 - b. Compare crew N availability with crew (N-1) availability. Store crew number and availability of crew which can takeoff soonest. Compare this crew with crew (N-x), (x = 1,2,3,4,...,(N-1)), and store the crew which isavailable the soonest.
 - c. When most available crew has been determined, add 10,000 days to its takeoff availability date and increment counter.
 - d. Repeat Steps b and c until all crews have been listed, i.e. counter = N.
 - e. Restore crew availability data by subtracting 10,000 days from each crew's availability date.
- 3. Operational schedule.
 - a. Enter required number of flights from a particular base and the gap (+) desired for onstation coverage.
 - b. Compute takeoff day and time, onstation day and time, offstation day and time, and landing day and time.
 - c. Check number of flights versus counter. Repeat b as required.
 - d. Compare print-out of required takeoff times with crew availability listing (see Part 2 above).

D. <u>HP-67/97 Calculator Program</u>

1. <u>User Instructions</u>

Step	Instruction	Input	Key(s)	Output
1.	Enter program card			
2. a. b.	Compute flight crew availability Enter crew rest time Enter crew rest data:	нн.мм	fA	
"	Crew # Postflight time	1 <u>< # <</u> 19 HH.MM	†	
	Preflight time Landing Julian day and time	HH.MM DAY.HHMM	↑ A	Crew # Availability DAY.HHM
	NOTE: If change in year will occur, Julian date can be entered as: YRDAY.HHMM			
3.	List crews in order of availability.	1 4 11 4 10		Crew # Availability
	Enter # of crews = N	1 < N < 19	В	DAY.HHMM (re- peated N times)
4.	Compute operational flight schedule			
а.	Enter # of flights and gap in onstation coverage:			
	<pre># of flights = N gap in coverage</pre>	1 <u>< N < 25</u> HH. MM	↑ fC	
b.	Compute schedule onstation day and time	DAY. HHMM	†	
	one-way transit time mission time	HH.MM HH.MM	† C	Flight # Takeoff DAY.HHMM
	04.40.0 . -256.0.3	o d		Onsta DAY.HHMM Offsta DAY.HHMM Land DAY.HHMM
5.	(Optional) Store crew availability data on magnetic card: Set W/PRGM-RUN switch to RUN		f W/DATA	,
	To reload data: Set W/PRGM-RUN switch to RUN and load data card obtained above			

2. Sample Problem

a. Input the following data:

Crew rest = 15 hours

Crew #	Postflight	Preflight	Landing
1	1	3	2.2330
2	1	3	1.1200
3	1	3	2.1800
4	1	3	1.1532

b. Compute crew availability.

Answer:

Crew #	Availability
1	3.1830
2	2.0700
3	3.1300
4	2.1032

c. Input the following crew status:

Crew #	(in) Register #	Availability
1	1	3.1830
2	2	2.0700
3	3	3.1300
4	4	2.1032
5	5	2.0958
6	6	2,2020
7	7	3.1930
8	8	5.0730
9	9	4.0930
10	10	6.0430
11	11	4.0345
12	12	2.0730
13	13	8.0130
14	14	5.0315
15	15	3.0545
16	16	3.1300
17	17	9.0955
18	18	2.1030

- d. Output listing of crews in order of availability.

 Answer: 2, 12, 5, 18, 4, 6, 15, 3, 16, 1, 7, 11, 9,

 14, 8, 10, 13, 17.
- e. Develop an operational flight schedule consisting of six (6) flights with a zero (0) gap in onstation coverage. The first onstation time is 2.1830, it takes one (1) hour and fifty (50) minutes for a one-way transit, and a flight from this base has nine (9) hours of total mission time.

Answer:

Flight #	Takeoff	Onsta	Offsta	Land
1	2.1640	2.1830	2.2350	3.0140
2	2.2200	2.2350	3.0510	3.0700
3	3.0320	3.0510	3.1030	3.1220
4	3.0840	3.1030	3.1550	3.1740
5	3.1400	3.1550	3.2110	3.2300
6	3.1920	3.2110	4.0230	4.0420

f. Develop an operational flight schedule consisting of two (2) flights with a two (2) hour gap in onstation coverage. The first onstation time is 2.1830, with the same transit and mission time as in (e).

Answer:

Flight #	Takeoff	Onsta	Offsta	Land
1	2.1640	2.1830	2.2350	3.0140
2	3.0000	3.0150	3.0710	3.0900

g. Develop an operational flight schedule with the same parameters as in (f), except with a negative two (-2) hour gap in onstation coverage.

Answer:

Flight #	Takeoff	Onsta	Offsta	Land
1	2.1640	2.1830	2.2350	3.0140
2	2.2100	2.2250	3.0410	3.0600

h. With one flight from Base A with the first onstation time as above and one flight from Base B to the same operational area, compute the flight schedule. One-way transit time from Base B is two (2) hours, but mission time is now ten (10) hours. Zero (0) gap in coverage is desired.

Answer:

Flight #	Takeoff	Onsta	Offsta	Land
1	2.1640	2.1830	2.2350	3.0140
2	2.2120	2.2350	3.0450	3.0720

i. With four (4) flight crews with crew availability as follows:

Crew #	Availability
1	3.1830
2	2.0700
3	3.1300
4	3,1700

determine if they are available to meet an operational flight schedule with the following conditions:

- 4 flights
- 2 hour gap in onstation coverage
- 3.0100 is the first onstation time
- 1 hour and 30 minute one-way transit
- 10 hour mission time

Answer: No, a crew is not available to meet the second scheduled takeoff time.

Examples a, b

:5.0000	6564
1.0000	EhT:
1.0000	ENTI
3.0000	ENTT
2.2330	üSEn
1.	***
3.1830	***
2.0000	ENT!
1.0000	ENTI
3.0000	ENT:
1.1200	656A
2.	***
2.0700	***

3.0000	ENT1
1.0000	ENTT
3.0000	ENT:
2.1800	GSEA
3.	***
3.1300	***
4.0000	ENT:
1.0000	ENT:
3.0000	ENT1
1.1532	635h
4.	***
2.1032	***

Examples c, d

18.0000 GSBE	15. ***	9. ***
2. *** 2.0700 ***	3.0545 ***	4.0930 ***
12. *** 2.0730 ***	3. *** 3.1300 ***	14. *** 5.0315 ***
5. *** 2.0958 ***	16. *** 3.1300 ***	6. *** 5.0730 ***
18. *** 2.1030 ***	3.1830 ***	10. *** 6.0430 ***
4. *** 2.1032 ***	7. *** 3.1930 ***	13. *** 8.0130 ***
6. *** 2.2020 ***	11. *** 4.0345 ***	9.0955 ***

Example e

Example f

6.0000	ENT
0.0000	6330
2.1836	
1.5000	ENT1
9.0000	GSBC
1.00000000	***
2.1640	***
2.1830	***
2.1830 2.2350	. * * *
3.0140	***
2.00000000	***
2.2200	***
2.2350	***
3.0510	***
3.0700	***
3.00000000	***
3.0320	***
3.0010	***
3.1030	
3.1220	***
4.00000000	***
3.0840	***
3.1030	***
3.1550	***
3.1740	***
5.00000000	***
3.1400	***
3.1550	***
3.2110	***
3.2300	***
6.00000000	
3.1920	
3.2110	***
4.0230	***
4.0420	

2.0000	ENT:
2.0000	6360
2.1830	EKT:
1.5000	ENT:
9.0000	655C
1.60000000	***
2.1640	***
2.1830	***
2.2350	***
3.0140	***
2.00000000	***
3.0000	***
3.0150	***
3.0710	***
3.0900	***

Example g

2.0000	ENT
-1.0000	€3E¢
2.1830	ENT:
1.5000	ENT:
9.0000	GSEC
1.00000000	***
2.1646	***
2.1830	***
2.2350	***
3.0140	
2.00000000	***
2.2100	***
2.2250	***
3.0410	***
3.0600	***

Example h

1.0000 ENT! 0.0000 GSE: 2.1830 ENT! 1.5000 ENT! 9.0000 GSBC 1.00000000 *** 2.1640 *** 2.1830 *** 2.2350 *** 3.8148 *** 1.0000 ENT: 0.0000 GSBc 2.2350 ENT: 2.3000 ENT1 10.0000 GSBC 1.000000000 *** 2.2120 *** 2.2350 *** 3.0450 *** 3.0720 ***

Example i

4.0000 6586 2. *** 2.0700 *** 3. *** 3.1300 *** 4. *** 3.1700 ***

4.0000 ENT: 2.0000 GS6: 3.0100 ENT: 1.3000 ENT: 10.0000 GSEC 1.000000000 *** 2.2330 *** 3.0100 *** 3.0800 *** 3.0930 *** 2.000000000 *** 3.0830 *** 3.1000 *** 3.1700 *** 3.1830 *** 3.00000000 *** 3.1730 *** 3.1900 *** 4.0200 *** 4.0330 *** 4.000000000 *** 4.0230 *** 4.0400 *** 4.1100 *** 4.1230 ***

3. Program Storage Allocation and Listing

Registers:

- R0: Crew rest S0: Crew 10 availability Sl: Crew 11 availability R1: Crew 1 availability S2: Crew 12 availability R2: Crew 2 availability R3: Crew 3 availability S3: Crew 13 availability Crew 4 availability Crew 14 availability R4: S4: R5: Crew 5 availability S5: Crew 15 availability S6: Crew 16 availability Crew 6 availability R6: R7: Crew 7 availability S7: Crew 17 availability R8: Crew 8 availability S8: Crew 18 availability R9: Crew 9 availability S9: Crew 19 availability
- RA: Landing data; # of crews
- RB: First onsta time; crew #; takeoff time
- RC: Mission time; flight counter
- RD: Gap between onstation periods; ith availability
- RE: Flight counter; crew counter; one-way transit

Initial Flag Status and Use

0: Unused 2: OFF, day correction 1: Unused d: OFF, hour correction

User Controlled Keys

- A: Crew # ↑, postflight ↑, preflight ↑, land ⇒ compute availability
- B: crew # +; compute listing
- C: onsta +, one-way transit +, mission time → flight schedule
- D: unused
- E: unused
- a: crew rest d: unused
- b: unused e: unused
- c: flight t, gap

001	*LELC	21 16 13	Input and Store # of flights and desired gap
882	STOD		man A man and resolute source of our part of
003	R↓		
884	STOR		
885			CONTRACTOR SERVICE CONTRACTOR CON
886			
807		16 22 82	Compute flight schedule
808	CF3		Input and store onstation day and time
809	STOC	35 13	Input and store one-way transit time
818			Input and store total mission time
811			input and store total mission time
812	RI	-31	
013			
014	GSB0		
			Improde ddd hhmm to bh mm
015	RCLE		Unpack ddd.hhmm to hh.mm
016	CHS		
017			Compute takeoff time
018			Check for time greater than 24 hours
019	65Be		
020	EEX	-23	
021	2	02	
022	+	-24	
023	RCLB		
824	INT		
025	F3?		
0 26	GSBd		
827	+	-55	Takeoff ddd.hhmm
828	STOB		
829	1	01	
838	*LEL9		
031	STOI		Start loop
032	DSF8		
63 3	PRTX	-14	Print flight #
834	RCLB	36 12	
035	F2?		
036	6 5 B 2	23 02	
037	DSF4		
8 38	FRTX	-14	Print takeoff ddd.hhmm
039	STOB		
848	STOO	35 66	
041	6SB0	23 00	
042	RCLE	36 15	
843	HMS+	16-55	Compute and print onstation ddd.hhmm .
844	GSBD	23 14	
845	ESBE	23 15	
846	esbo	23 00	
047	RCLE	36 15	
848	RCLE	36 15	
849	HMS+	16-55	
850	CHS	-22	
851	RCLC	36 13	
05 2	HM5+	16-55	
65 3	HMS+	16-55	Compute and print offstation ddd.hhmm
854	GSBD	23 14	
055	GSBE	23 15	
055 056	GSBE GSB0	23 15 23 00	
		23 15 23 00 36 15	
056	6SB0	23 00	Compute and print landing ddd.hhmm
0 56 0 57	GSB0 RCLE	23 00 36 15	Compute and print landing ddd.hhmm
0 56 0 57 0 58	GSB0 RCLE HMS+	23 00 36 15 16-55	Compute and print landing ddd.hhmmm

062 PCLB 36 12	
063 6380 23 00	
064 FCLC 36 13	
065 HMS+ 16-55	
066 ROLE 36 15	
067 RCLE 36 15	
868 HMS+ 16-55	
069 CHS -22	
070 HMS+ 16-55 Compute next takeoff ddd.hhmm	,
071 RCLD 36 14	
072 HNS+ 16-55	
073 GSED 23 14	
076 + -55	
077 STOB 35 12	
078 RCLA 36 11 Increase counter	
079 1 01	
080 + -55	
081 1 01	
082 RCLI 36 46	
083 + -55	
084 X=Y? 16-33 Check for exit from loop	
085 R/S 51	
086 GT09 22 09	
087 *LBLD 21 14	
088 2 62	
089 4 64 Subroutine to correct for time	me greater
090 X4Y? 16-35 than 24 hours	
091 GSB8 23 08	
092 XZY -41	
093 EEX -23	
094 2 02	
095 ÷ -24	
096 RTN 24	
097 *LBL8 21 08	
098 CHS -22 Subroutine to correct time	
899 HMS+ 16-55 Subfourthe to correct time	
100 SF2 16 21 02	
101 X2Y -41	
102 RTN 24	
103 *LBLE 21 15	
104 RCLO 36 00 Output subroutine	
105 INT 16 34 Print onstation, offstation,	and land
106 F2? 16 23 02	
107 GSB2 23 02	
108 + -55	
109 PRTX -14	
110 STOO 35 00	
111 RTN 24	
112 *LBL2 21 02	
113 1 81 Subroutine to correct date	
114 + -55 Subroutine to correct date	
115 RTN 24	
116 *LBL0 21 00	
110 500 16 11	
118 EEX -23 Subroutine to change .hhmm to	hh.mm
119 2 02	
119 × -35	
120 1	

-			
121	PTN	24	Subroutine to correct for negative time
122	*LELe	21 16 15	
123	. 2	02	
124	4	. 64	
125	HME+	16-55	
126	9F3	16 21 03	
127	RTN	24	
128	#LELd	21 16 14	
129	1	8:	Subroutine to correct date
130	-	-45	
131	RTN	24	
132	*LELa	21 16 11	Store crew postflight to preflight rest time
133	STOO	35 00	
134	CF2	16 22 62	
135	RTN	24	
136	*LBLA	21 11	
137	STOA	35 11	Compute crew's earliest possible takeoff
138	RT	16-31	Store latest landing: ddd.hhmm
139	STOI	35 46	Store crew #
140	£1	-31	
141	FRC	16 44	
142	EEX	-23	
143	2	62	er meet process and second in the Second Second
144	X	-35	
145	HMS+	16-55	
146	HMS+	16-55	
147	RCLO	36 00	
148	HMS+	16-55	Compute crew I's takeoff availability
149	GSBD	23 14	
150	STO	35 45	
151	RCLA	36 11	
152	INT	16 34	
153	F2?	16 23 02	
154	6SB2	23 02	
155	ST+i	35-55 45	
156	RCLI	36 46	1981 1831 1891
157	DSPO	-63 00	200
158	FRTX	-14	Print crew #
159	FCL :	36 45	18 15 H 196 194
160	DSP4	-63 64	
161	PRIX	-14	Print crew's ddd.hhmm takeoff availability
162	SPC	16-11	
163	RTH	24	5.119 191 19 19 19 19 19 19 19 19 19 19 19

-			
164	*LBLE	21 12	List flight crews in order of availability
			Store # of crews = N
165			
166	0	60	Zero counter
		35 13	
168		21 07	
169	FCLA	36 11	Begin loop
170	STOI	35 46	
171	STOB	35 12	
172	ROL:	36 45	Recall crew # N availability
		35 14	Recall clew # N availability
		21 16 12	
174			
175		16 25 46	Recall crew # N-1 availability
176	6101	22 61	
177	eTO4	22 64	
178	*LBL1	21 01	
179	RCLD	36 14	Compare availability
188		36 45	Compare availability
181	X1 V2	16-34	
182	CCD7	16-34 23 03	
	CTAR	35 14	Store earliest ddd.hhmm
183	5100	35 14	Store earriest dud. Hillim
184		36 4€	
185	STOB		
186		22 16 12	
187	*LBL3 XZY	21 03	
188	XZY	-41	Swap registers
189	STOD	35 14	
190		22 16 12	
191	*LBL4		Output routine
192	KLLB	36 12	Print crew #
193	DSPO	-63 00 -14	Print crew #
194	PRTX	-14	
195	STOI	35 46	
196	DSP4	-63 04	
197	RCL:	36 45	Print crew availability ddd.hhmm
198	PRIX		Time of a district day in the
199	SPC		
100000000000000000000000000000000000000	SPC		
200	one	16-11	
	SPC		
202	SPC	16-11	
203	EEX	-23	
204	4	64	
205	ST+i	35-55 45	Add 1000 to dayi.e. create an artificially
206	1	01	large date
207	RCLC	36 13	
208	+	-55	
209	STOC	35 13	
210	RCLA	36 11	
211	X=Y?	16-33	Check for end of loop
212	6T05	22 05	
213	GT07	22 07	
214	*LBL5	. 21 65	
215	STOI	35 46	
216	*LBL6	21 06	
		-23	
217	EEX		Subtract 10,000 from datei.e. correct
218	4	04	artificially
219	ST-i		
220	DSZI	16 25 4€	
221	GT06	22 06	
222	R/S	51	

VII. TARGET MOTION ANALYSIS (TMA) OF A BEARINGS-ONLY TARGET FROM A MOVING PLATFORM by LT P. W. Marzluff and LT R. C. Pilcher

A. Problem Statement

Bearings to a target either stationary or moving with constant course and speed are available from a non-stationary tracking platform. Determine the target's range, course and speed.

B. Operational Analysis

The four bearing TMA technique used in this program requires a minimum of four target bearing observations taken during a minimum of two tracking legs. A target bearing observation must be made and entered for the time corresponding to the initiation of own ship course or speed change. Exact target bearing observations of 090° and 270° require the addition of 0.1° to the observed value to avoid infinite computational values. When the tracking problem carries into a new day, the previous day's time scale must be continued (i.e. a time of 0010 on the second day must be enetred as 2410).

Own ship and target information is entered on card 1.

Estimation of target parameters begins on card 1 and is completed on card 2. Entering supplemental target or own ship information and generating a new estimate again requires the use of card 1 and then card 2.

The accuracy of the estimates are dependent on the accuracy of the inputs, principally the target bearing, the magnitude

of course or speed change, and the number of observations made. For a more complete examination of the character of the estimates, see Reference 1.

C. Computational Algorithm

- Input own ship's course and speed. Calculate and store velocity components.
- Input time, t_i, and observed target bearing, B_i.
 Calculate elasped time since the first observation,
 Δt_i, and tan B_i. Calculate and store the matrix values.
- 3. When own ship changes course or speed enter t_i and B_i observed at the time the course or speed change was made. Enter new own ship course and speed prior to entering the next bearing observation.
- 4. When at least four target bearing observations have been entered (bearings taken on a minimum of two tracking legs), estimation of target range, course, and speed can be made.
- Additional target and own ship information can be entered and new estimates made.

D. HP-67/97 Calculator Program

1. User Instructions

Step	Instruction	Input	Key(s)	Output
1.	Enter program card 1			
2.	Initialize		fe	0.00
3.	Enter own ship course	C ₀ (degrees)	1	
	and speed	S ₀ (knots)	fa	ŵ
4.	Enter the time and the	t _i (HH.MM)	†	
	observed bearing	B _i (degrees)	С	i
5.	If estimation criteria is met go to Step 8; other-wise continue.			
6.	If own ship has changed course or speed go to Step 3; otherwise continue.			
7.	Go to Step 4.			
8.	Compute target range A. Start calculation B. Enter program Card 2 C. Continue calculation		E	t _i ; R _m (yds)
9.	Compute target course		С	C _T (degrees)
10.	Compute target speed		E	S _T (knots)
11.	If additional observations are to be entered, read program card 1 and go to Step 6.			

NOTE: ESTIMATION CRITERIA: A minimum of four bearing observations taken on a minimum of two own ship tracking legs must be entered prior to making estimates of target parameters.

2. Sample Problems

a. Exact Bearing Information.

Own ship tracks on course 000° at 15 knots for 10 minutes and turns to 057° at 15 knots. Three bearing observations are made on the first leg, with the fourth observation made on the second leg. Exact bearing information is assumed available. The contact is tracked as follows:

Time	Bearing	
1000	150.0	
1005	148.2	
1010	146.9	
1020	154.7	

Estimate the target's range, course and speed at time 1020. (Answers: 12,920 yds, 045°, and 10.0 knots.)

The following additional observations are made:

Time	Bearing
1025	158.8
1030	163.0
1035	167.2

Estimate the target's range, course and speed at time 1035.

(Answers: 12540 yds, 045°, 10.0 knots.)

	€S8è	Initialize
000.60 15.00		Own ship's course and speed
1 0. 00 150.00		Observation #1 time and bearing
10.05 148.20 CARD 1		Observation #2 time and bearing
card 10.10 146.90		Observation #3 time and bearing
957.00 15.00		New own ship course and speed
10.20 154.70		Observation #4 time and bearing
	ESBE	Start estimation
1 0. 20 12901.01		Continue estimation Time of estimate Estimated target range in yards
CARD 2 48.37	283	Estimated target course in degrees
9.86	€SBE ***	Estimated target speed in knots
10.25 158.80	The state of the s	Observation #5 time and bearing
CARD 1 10.30 163.60		Observation #6 time and bearing
10.35 167.20		Observation #7 time and bearing .
	GSBE	Start estimation
10.35 12540.49		Continue estimation Time of revised estimate Revised estimated target range
CARD 2 46.22	1489	Revised estimated target course
9.95	GSBE ***	Revised estimated target speed

b. Inaccurate Bearing Information

Own ship tracks on course 000° at 15 knots for 10 minutes and turns to 056° at 15 knots. Three bearing observations are made on the first leg, with the fourth observation made on the second leg. The true target bearings have been altered by normal random variable with mean zero and variance 0.5 degrees squared. The contact is tracked as follows:

Time	Bearing
1000	150.0
1005	148.7
1010	146.0
1020	155.2

Estimate the target's range, course and speed at time 1020. (Answers: 12,920 yds, 045°, and 10.0 knots.)

The following additional observations are made:

Time	Bearing
1025	159.7
1030	163.0
1035	166.4

Estimate the target's range, course and speed at time 1035. (Answers: 12,740 yds, 045°, and 10.0 knots.)

GSEe	Initialize
000.00 ENT:	Own ship's course and speed
15.00 658a	
10.00 ENT:	Observation #1 time and bearing
150.00 GSBC	
10.05.5071	Observation #2 time and beauting
10.05 ENT: 148.70 6560	Observation #2 time and bearing
CARD 1	
10.10 ENT!	Observation #3 time and bearing
146.00 6560	A THE RESERVE AND A SECOND SECOND
056.00 ENT:	New own ship course and speed
15.00 GSBa	
10.20 ENT!	Observation #4 time and bearing
155.20 GSBC	0
ESBE	Start estimation
•002	
GSBA	Continue estimation
10.20 ***	Continue estimation Time of estimate
5757.14 ***	Estimated target range in yards
CARD 2 GSBC	
338.26 ***	Estimated target course in degrees
2025	
6SBE 83.67 ***	Estimated target speed in knots
00.01	Estimated target speed in Anots
10.25 ENT!	45 12 45
159.70 GSBC	Observation #5 time and bearing
42 72 5074	at a second and the s
10.30 ENT1 163.00 GSEC	Observation #6 time and bearing
CARD 1	
10.35 ENT1 166.40 GSEC	Observation #7 time and bearing
100.40 6350	
ESBE	Start estimation
C SBA	Continue estimation
10.35 ***	Time of revised estimate
12945.90 ***	Revised estimated target range
CARD 2 GSSC	
68.64 ***	Revised estimated target course
GSBE	
9.87 ***	Revised estimated target speed

3. Program Storage Allocation and Listing

Registers

- R0: t₁
- R1: $\Sigma W_i \Sigma Z_i$ tan B_i
- R2: $-\Sigma W_i$ tan $B_i + \Sigma Z_i$ tan² B_i
- R3: $\Sigma W_i \Delta t_i \Sigma Z_i \Delta t_i$ tan B_i
- R4: $-\Sigma W_{i} \Delta t_{i} \tan B_{i} + \Sigma Z_{i} \Delta t_{i} \tan^{2} B_{i}$
- R5: t_{i-1}
- R6: t_i
- R7: W_i
- R8: Zi
- R9: PS11; PS12; $\hat{\mathbf{v}}$; $\Delta \mathbf{t}$,

- S0: PS1; PS3; PS10
- S1: $\Sigma \Delta t_i \tan^2 B_i$
- S2: $\Sigma \Delta t_i^2 \tan^2 B_i$
- S3: $-\Sigma\Delta t_i^2 \tan B_i$
- S4: SAt;
- S5: $\Sigma \Delta t_i^2$
- S6: Σ tan B_i
- S7: $\Sigma \tan^2 B_i$
- S8: $\Sigma \Delta t_i$ tan B_i
- S9: i = N

- RA: W
- RB: 2
- RC: Δt_i ; PS4; \hat{u}
- RD: tan B_i ; PS7; \hat{v}
- RE: Z_i tan B_i ; PS13; \hat{X}_1
- RI: i; PS2; PS5; PS6; PS8; PS9; \hat{Y}_1

NOTE: All summations are over the range of i = 1,...,N.

PS denotes 'partial-sum'.

Initial Flag Status and Use:

0: OFF, Unused

2: OFF, Unused

1: OFF, Used

3: OFF, Used

User Control Keys; Card 1:

A:

a: $C_0 + S_0 \rightarrow$

B:

b:

C: $t_i \uparrow B_i \rightarrow$

C:

D:

d:

E: Start →

Initialize > e:

User Control Keys; Card 2:

→ t_i; R_{Ti}

a:

B:

b:

C:

C:

d:

D: E: → \hat{s}_{T_i}

e:

Card 1

001	*LBL:	21 81	Change initial time to few funther use
002	STOO		Stores initial time, t ₁ , for further use
	ST05	35 85	
003		33 63	
004	RTN		
005	*TRL6	21 16 15	Initialization
006	CLRG	16-53	
. 007	P‡S CLRG	16-51	
300	CLRG	16-53	
009	CLX		
010	SF2	16 21 02	
011	RTN	24	
012	*LBLa	21 16 11	Calculates and stores own ship velocity
013	→R		components
014	STOB		
015	R↓		
016	STOA		
017	RTN		
018	*LBLC		Input observation and bearing
			input observation and bearing
019	TAN		
020	STOD		Fills the matrix values
021	XZY		
822	HMS→		
023	ST06	35 0€	
824		16 23 02	
025	GSB1		Branches to store initial time
026	RCL0		
027		-45	
028	STOC		
029	Σ+	56	
030	STOI	35 46	
031	R↓		
832	RCLC		
033	Χz	53	
034	×	-35	
935	P#S		
036		35-45 03	
637	RCLD		
038	X	-35	
039		35-55 02	
940	RCLC		
	RCLD	36 14	
041		53	
842	. Xs	-35	
043	X		
044	ST+1	35-55 01	
845	P2S	16-51	
046	RCL6	36 06	
047	RCL5	36 05	
048	-	-45	
049	ENTT	-21	
050	ENT †	-21	

Card 1

051	RCLA	35 11	NEX EXECUTES ASSESSED TO THE PROPERTY OF THE P
052		-35	
053	ST+7	35-55 67	
854	R.	-31	
055	RCLB	36 12	
856	×	-35	
057	57+8	35-55 08	
858	RCL6	36 86	
059	ST05	35 05	
969	RCL7	36 07	
061	ST+1	35-55 01	
062	RCLD	36 14	nation and successful that is a second of the second of th
063	X	-35	
864	ST-2	35-45 02	
865	RCLC	36 13	
866	X	-35	
067	ST-4	35-45 04	
068	RCL7	36 07	
069	RCLC	36 13	
070	X	-35	
871	ST+3	35-55 03	
872	RCL8	36 0€	
073	RCLD	36 14	
074	X	-35	
075	STOE	35 15	
076	ST-1	35-45 01	
977	RCLD	36 14	
078	×	-35	
079	ST+2	35-55 02	
989	RCLC	36 13	
081	X	-35	
882	ST+4	35-55 04	
083	RCLE	36 15	
084	RCLC	36 13	
085	×	-35	
886	ST-3	35-45 03	
887	RCLI	36 46	
880	RTN	24	
089	*LBLE	21 15	Start estimate calculations
090	F#S	16-51	
091	1	01	Changes the sign of two matrix elements
092	CHS	-22	
093	ST×6	35-35 06	
094	ST×8	35-35 08	
095	RCL8	36 08	
896	RCL7	36 07	(Partial sums stored throughout; PS)
097	×	-35	
098	RCL6	36 06	
899	RCL1	36 61	
100	×	-35	

Card 1

101		-45		
102	RCL4	36 04		
103	Xs	53		
104	RCL9	36 09		
185	RCL5	36 05		
106	X	-35		
107	-	-45 -75		
108	CTOO	-35 35 00		
109 110	STOO RCL6	36 0E		
111	RCL4	36 04		
112	X X	-35		
113	RCL9	36 69		
114	RCLS	36 08		
115	X	-35		
116	_	-45		
117	RCL8	36 08		
118	Xs	53		
119	RCL6	36 06		
120	RCL3	36 03		
121	X	-35		
122	-	-45		
123	x	-35		
124	ST-0	35-45 00		
125	RCL6	36 06		
126	X2	53		
127	RCL9	36 09		
128	RCL7	36 07		
129	X.	-35		
130	-	-45		
131	RCL8	36 68		
132	P2S	16-51		
133	RCL3	36 03		
134	X	-35		
135	RCL4	36 04		
136	P2S	16-51		
137	RCL4	36 04		
138	X	-35		
139	-	-45		
140	×	-35		
141	STOI	35 46		
142	RCL8	36 08		
143	X2	53		
144	RCL4	3€ 04		
145	RCL1	36 81		
146	×	-35		
147		-45 76 03		
148 149	RCL6 P≇S	36 86		
150	RCL1	16-51 36 01		
136	KCLI	30 01		

Card 1

1			
151	X	-35	
152	RCL2	36 62	
153	F2S	16-51	
154	RCL9	36 05	
155	×	-35	
156	-	-45	
157	x	-35	
	RCLI	36 4€	
158	ACL!	-45	
159			
160	STOC	35 13	
161	RCLO	36 00	
162	X	-35	
163	P2S	16-51	
164	ST09	35 69	
165	P2S	16-51	
166	RCL6	36 86	
167	X.5	53	
168	RCL9	36 89	
169	RCL7	36 07	
170	X	-35	
171	-	-45	
172	RCLS	36 08	
173	RCL5	36 05	
174	X	-35	
	RCL4	36 84	
175			
176	RCL3	36 03	
177	x	-35	
178	-	-45	
179	X	-35	
180	STOI	35 46	
181	RCLS	36 08	
182	Xs	53	
183	RCL4	36 04	
184	RCL1	36 01	
185	×	-35	
186	-	-45	
187	RCL6	36 86	
188	RCL4	36 84	
189	X	-35	
190	RCL9	36 89	
191	RCL8	36 88	
192	X	-35	
193		-45	
194	×	-35	
195	RCLI	36 46	
196		-45	
197	STOD	35 14	
198	RCL6	36 86	
199	RCL4	36 84	
200	X	-35	

Card 1

201	RCL9	36 03		
202	RCL8	36 08		
203	X	-35		
284	-	-45		
205	RCL8	36 08		
206	P2S	16-51		
207	RCL2	36 02		
208	×	-35		
209	RCL4	36 04		
210	P#S	16-51		
211	RCL6	36 06		
212	X.	-35		
213	-	-45		
214	x	-35		
215	STOI	35 46		
216	RCL8	36 08		
217	RCL7	36 87		
218	X	-35		
219	RCL6	36 06 .		
220	RCL1	36 01		
221	X	-35		
222	-	-45		
223	R/S	51		

Card 2

1 601	#L5LH	21 11 1	Calculation of estimates
002	RCL4	36 34	
993	P#S	16-51	
664	FCL1	36 81	
805	X	-35	
806	RCL3	36 63	
007	F#S	16-51	
008	RCL9	36 85	
009	X	-35	MCG 1.59 1.55
016	-	-45	
011	","	-35	
012	RCLI	36 46	
013	-	-45	
014	RCLD	36 14	
815	x	-35	
016	PIS	16-51	
017	RCL9	36 09	
818	XZY	-41	
019	-	-45	
020	ST09	35 09	
021	P#S	16-51	
022	RCL6	36 86	
023	,X2	53	
824	RCL9	36 05	
025	RCL7	36 07	
826	X	-35	
027	-	-45	
828	RCLS	36 es	
029	RCL3	36 83	
030	X	-35	
031	RCL4	36 04	
032	RCL2	36 02	
033	X	-35	
034	-	-45	
035	x	-35	
036	STOI	35 46	
037	RCL8	36 88	
038	X5	53	
039	RCL4	36 64	
848	RCL1	36 81	
041	X	-35	
842	-	-45	
843	RCL6	36 86	
844	RCLS	36 €€	
045	X	-35	
046	RCL9	36 09	
847	RCL1	36 81	
848	X	-35	
049		-45	
050	X	-35	

Card 2

.051 RCLI 36 46	
05245 053 STOE 35 15	
054 RCL0 36 00	
055 × −35 05€ ST00 35 00	
05€ STO0 35 00	- 302
057 RCL6 36 06	
058 RCL4 36 04	
059 x -35	
060 RCL9 36 09	
06: RCLS 36 0S	
062 x -35	
06345	
064 RCLS 36 08	
065 RCL1 36 01	
866 × -35	
068 RCL2 36 02	
069 x -35	
07045	
071 × -35	
072 ST01 35 46	
073 RCL8 36 08	
074 RCL7 36 87	
075 × -35	
076 RCL6 36 06	
077 RCL1 36 01	
078 × -35	
67 945	
080 RCL4 36 04	
081 RCL8 36 08	
082 × -35	
083 RCL9 36 09	
084 RCL3 36 02	
085 × -35	
08645	
087 × -35	
088 RCLI 36 46	11.00
88945	•
090 RCLD 36 14	
0 91 x -35	
092 RCL0 36 00	
093 X2Y -41	
09445	
095 P#S 16-51	
096 RCL9 36 09	
097 XZY -41	
00024	
098 ÷ -24	7312
099 ST09 35 05 A	M. Carl
100 RCLE 36 15 V	

Card 2

-					
101	X	-35			
102	RCLC	36 13			
103	YZY	-4!			
104	-	-45			
105	RCLD	36 14	^		
106	÷	-24	u		
107	STOC	35 13			
108	RCL9	36 09			
109	STOD	35 14			
110	F#S	16-51			
111	RCL6	36 06			
112	RCL8	36 08			
113	X	-35 36 8 9			
114	PCL9	36 89			
115	RCL1	36 01			
116	7	-35			
116 117	-	-45			
118	λ	-35			
119	CHS	-22			
120	RCL6	36 0€		•	
121	RCL4	36 84			
122	X	-35			
123	RCL9	36 89			
124	RCL8	36 08			
125	x .	-35			
126	-	-45			
127	RCLC	36 13			
128	x	-35			
129	-	-45			
130	RCL6	36 06			
131	P#S	16-51			
1 132	RCL1	36, 61			
133	X	-35			
134	RCL2	36 02			
135	P#S	16-51			
136	RCL9	36 85			
137	×	-35			
138	-	-45			
139	+	-55			
140	RCL6	36 06			
141	XS	53			
142	RCL9	36 09			
143	RCL7	36 87			
144	X	-35			
145	-	-45	^		
146	÷	-24	Ŷ		
147	STOI	35 46	1		
148	PZS	16-51			
149	RCL1	36 01			
150	PZS	16-51			
-				 	

Card 2

15:	RCLS	36 08	
15: 152	RCLD	36 14	
153	X	-35	
154	_	-45	
155	RCL4	36 04	
156	ROLO	36 13	
157	X	-35	
158	-	-45	
159	RCLE	36 06	
160	RCLI	36 46	
161	X	-35	
162	-	-45	
163	RCL9	36 05	^
164	÷	-24	x ₁
165	STOE	35 15	1
166	1	0:	Change sign of two matrix elements
167	CHS	-22	
168	STX6	35-35 65	
169	ST×8	35-35 08	
170	P#S	16-51	
171	RCL6	36 86	
172	→HMS	16 35	t _i
173	PRTX	-14	
174	RCL6	36 86	
175	RCLO	36 00	
176	- CT00	-45 75 00	
177	STO9	35 09	
178	RCLC	36 13 -35	
179 180	RCLE	36 15	
181	KLLE +	-55	
182	RCL7	36 07	
183	- KULT	-45	
184	χz	53	
185	RCL9	36 09	
186	RCLD	36 14	
187	X	-35	
188	RCLI	36 46	
189	+	-55	
190	RCLS	36 08	
191	-	-45	
192	X2	53	
193	+	-55	^
194	4X	54	$\hat{R}_{T} = ((X_1 + u, t_i - W_i)^2 + (Y_1 + v, t_i - Z_i)^2)^{1/2}$
195	2	53 -55 54 02	Tliiiii
196	EEX	-23	(in nautical miles)
197	3	63	^
198	×	-35	R _m in yards
199	FRTX	-14	
200	SF1	16 21 0:	

				Card 2	 	
201	RTN	24				
202	*LBLC	21 13				
203	RCLC	36 13				
284	PCLD	36 14				
205	→F	34				
206	XZY	-41				
207	X(0?	16-45				
288	65B2	23 02	^			
209	PRTX	-14	$\hat{c}_{_{\mathbf{T}}}$			
210	CF1	16 22 81	•			
211	FTH	24				
212	*LBL2	21 82				
213	3	21 82 83 86				
214	6	86				
215	Ü	80				
216	+	-55				
217	RTN	24				
218	*LBLE	21 15				
219	F1?	16 23 61				
220	6709	22 89				
221	R↓	-31	^			
222	PRTX	-14	ST			
223	SPC	16-11				
224	RTN	24				

E. Mathematical Analysis

a. Assumptions

All calculations use a rectangular coordinate system as defined below. Additionally it is assumed the following quantities are accurately known (although the accuracy of the observed bearing varies):

- (1) time
- (2) target bearings
- (3) observer course and speed
- (4) observer initial position.

b. Symbology

- (1) Observer
 - (a) W: East-West position
 - (b) Z: North-South position
 - (c) (W_i,Z_i): position at ith observation.
- (2) Target
 - (a) X: East-West position
 - (b) Y: North-South position
 - (c) (X_i, Y_i) : position at $i \pm h$ observation
 - (d) u: East-West velocity component
 - (e) v: North-South velocity component.
- (3) Other
 - (a) B_i: measured bearing from observer to target at the ith observation.
 - (b) t_i: time of the ith observation
 - (c) Δt_i : elapsed time between $i\underline{th}$ and first observation.
 - (d) i = 1 is the initial observation.

c. Development

The geometry for a two leg TMA is shown in Figure 1. The target motion/position at any time can be described in terms of its initial position (X_1,Y_1) , and its velocity components (u and v), which are unknown and the elapsed time, Δt_i , which is known by: $X_i = X_1 + u\Delta t_i$ and $Y_i = Y_1 + v\Delta t_i$. Knowledge of the target bearing leads to the following:

$$\tan B_{i} = \frac{X_{i} - W_{i}}{Y_{i} - Z_{i}} = \frac{X_{1} + v\Delta t_{i} - W_{i}}{Y_{1} + v\Delta t_{i} - Z_{i}}$$

or

$$X_1 - Y_1 \tan B_i + u\Delta t_i - v\Delta t_i \tan B_i = W_i - Z_i \tan B_i$$
 (1)

Equation (1) has four known variables $(W_i, Z_i, \Delta t_i, B_i)$ and the four unknown target variables (X_1, Y_1, u, v) . Define estimates for the four unknowns as $\hat{X}_1, \hat{Y}_1, \hat{u}$, and \hat{v} and define an error, e_i , that represents the errors due to the use of estimates in Equation (1) at each observation:

$$e_i = \hat{x}_1 - \hat{y}_1 \tan B_i + \hat{u}\Delta t_i - \hat{v}\Delta t_i \tan B_i - W_i + Z_i \tan B_i$$

The least squares estimates of the variables X_1 , Y_1 , u and v are those values which minimize the expression

$$\sum_{i=1}^{n} e_{i}^{2} = E(X_{1}, Y_{1}, u, v)$$

where n is the number of observations.

FIGURE 1. TMA Geometry

To minimize, take the partial derivatives of E with respect to each variable and set each partial derivative equal to zero. The resulting set of four linear equations in four unknowns (Figure 2) can be solved at each bearing observation if $i \geq 4$ and an observer course or speed change has occurred during the TMA period.

The following target parameters can then be calculated at each successive observation:

Target Range =
$$\sqrt{(\hat{x}_i - w_i)^2 + (\hat{y}_i - z_i)^2}$$

Target Speed = $\sqrt{\hat{u}^2 + \hat{v}^2}$

Target Course = $\arctan(\hat{u}/\hat{v})$ with appropriate logic to select the correct coordinate quadrant.

When calculating these parameters appropriate constants are required to insure proper units.

F. Reference.

 P. W. Marzluff and R. C. Pilcher, "Basic Calculator Methods of Bearings-Only Target Motives Analyses for a Moving Sensor (U). Naval Postgraduate School Thesis, December 1978.

 $\begin{bmatrix} -\sum\limits_{i=1}^{n} w_i \Delta t_i & \tan B_i + \sum\limits_{i=1}^{n} z_i \Delta t_i & \tan^2 B_i \end{bmatrix}$ $\begin{vmatrix} -\sum_{i=1}^{n} w_i \tan B_i + \sum_{i=1}^{n} z_i \tan^2 B_i \end{vmatrix}$ $\sum_{i=1}^{n} w_i \Delta t_i - \sum_{i=1}^{n} z_i \Delta t_i \text{ tan } B_i$ $\begin{bmatrix} -\sum\limits_{i=1}^n \Delta t_i \text{ tan } B_i \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{x}_1 \end{bmatrix} \begin{bmatrix} \sum\limits_{i=1}^n w_i - \sum\limits_{i=1}^n z_i \text{ tan } B_i \end{bmatrix}$ $-\sum_{i=1}^{n} \Delta t_i \ \tan B_i \quad \sum_{i=1}^{n} \Delta t_i \ \tan^2 B_i \quad -\sum_{i=1}^{n} \Delta t_i^2 \ \tan B_i \quad \sum_{i=1}^{n} \Delta t_i^2 \ \tan^2 B_i \right] \left[\begin{array}{c} \hat{v} \\ \end{array} \right]$ \[\langle \Delta tan^2 B_i \] $-\sum_{j=1}^{n} \Delta t_j^2 \tan B_j$ $-\sum_{j=1}^{n} \Delta t_{j} \tan B_{j}$ $\sum_{i=1}^{n} \Delta t_i^2$ $-\int\limits_{i=1}^{n} \Delta t_{i} \ \text{tan B}_{i}$ $\sum_{i=1}^{n} \tan^2 B_i$ $-\sum_{j=1}^{n} \tan B_{j}$ $-\sum_{j=1}^{n} \tan B_{j}$

FOUR BEARING TMA NORMAL EQUATIONS

VIII. NAVAL GUNFIRE SUPPORT GRID SPOT CONVERSIONS, TRUE WIND, AND TIME OF FLIGHT/MAXIMUM ORDINATE COMPUTATIONS FOR 5-INCH/54 PROJECTILE by LT Keith P. Curtis

A. Problem Statement

The success of Naval Gunfire Support operations in the Combat Information Center (CIC) is a function of rapid information processing and relay. Specifically, substantial error can be introduced by inaccurate grid spot conversions and to a lesser degree by improper computations of true wind. Also, commencement of a fire mission can be delayed waiting for Time of Flight (TOF) and/or Maximum Ordinate (Max Ord) information.

The inherent error of rapid calculations can be minimized by the use of the handheld programmable calculator. This paper addresses the use of the Hewlett Packard HP-67 to perform gridspot conversions; compute true wind, TOF, and Max Ord.

B. Operational Analysis

The objective of this program is to provide a one-card program to accommodate the following:

- 1. Correct for magnetic variance for a geographic area.
- Accept the Observer Target Line (OTL) in either mils magnetic or degree magnetic.
- Perform precise grid spot conversion.
- 4. Provide Time of Flight information.

- 5. Provide Maximum Ordinate information.
- 6. Compute true wind.
- C. Computational Algorithm
- 1. Enter magnetic variance.
- 2. Enter OTL either in mils magnetic or degree magnetic.
- 3. Enter observer "spots": left-right, add-drop (in yards).
- 4. Convert spots to East-West, North-South.
- 5. Enter range of shot and compute TOF and max ord.
- Enter own ship course and speed, and relative wind to compute true wind.
- 7. Repeat Steps 3 through 6 as necessary.

D. HP-67 Calculator Program

1. User Instructions

Step	Instruction	Input	Key(s)	Output
1.	Read program card (both sides)	167 -C-17173		
2.	<pre>Enter magnetic variation (+ for East, - for West). If no variation is entered, 0 is used.</pre>	mag.var.	f b	
3. a. b.	Enter Observer Target Line in either: degrees magnetic, or mils magnetic		A f a	OTL °T OTL °T
4 a.	Enter Left/Right spot (- for left, + for right) Enter Add/Drop spot	L/R	+	
c. d.	<pre>(- for drop, + for add) Display E/W spot (+ E, - W) Display N/S spot (+ N, - S)</pre>	A/D	В	E/W spot N/S spot
е.	Optional: Recover the E/W spot Repeat Step 4 as required until OTL changes		h x \$ y	E/W spot
5. a. b. c.	Compute TOF and max ord Enter target range, display: Time of Flight Max Ord	range	C C	TOF Max ord
	Optimal: Recover TOF		h R ↑	
6. a.	Compute true wind. Enter own ship's course and speed in the form SS.CCC where SS is the speed in integer knots and CCC is a			
b. c.	three-digit course Enter relative wind True wind is displayed	ss.ccc ss.ccc	† D	ss.ccc

Note: Use of the keys C or D do not require an OTL input.

2. Sample Problem

Own ship: 035T 12KTS

Relative wind: 225R 6KTS

Magnetic variance: 7E

OTL: 1930 mils mag

Spot: Left 250, Drop 150

Range: 9600 yds

West 27, North 290

TOF: 16 seconds

Max Ord: 1050ft

True Wind: 230T 17KTS

7. 6884 1938. 685a

116. *** -250. ENT!

-150. GSBE

-27. ***

290. ***

9600. ESEC

16. ***

1050. ***

12.035 ENT: 6.225 6560 17.236 444

3. Program Storage Allocation and Listings

Registers

RO: OTL °T	S0:	RA: log ₁₀ range
R1:]	Sl:	RB: Ship's heading
R2:	S2:	RC: L-R spot
R3:	S3:	RD: A-D spot
R4: TOF/	S4: ΣX	RE:
R5: Max Ord Coeff	S5:	RI: Control
R6:	S6: ΣΥ	
R7:	S7:	
R8: J	S8:	
R9: mag.var.	S9:	

Initial Flag Status and Use

0:	OFF,	Unused	2:	OFF,	Unused
1:	OFF,	Unused	3:	OFF,	Unused

User Control Keys

A:	OTL (degrees)	a: OTL (mils)
B:	L-R spot, A-D spot	b: mag.var.
C:	Range	c:
D:	O/S c/S rel wind	d:
E:		e:

0.000000000 0 0 0 0.777500000 1				
0.000000000	633	*LBLC	21 17 -63 00	
0.777500000 1 M	034	DSF8	-63 (10	
2.166600000 2 0	035	EEX	-23	
2.166600000 2 0 -0.267100000 3 0 6.261700000 4 0 0.072100000 5 0 0.168300000 6 XX 0.850500000 7 X 0.283160000 8 0 0.283160000 8 0	036	3	63	F
e.261700000 4 A	037	÷	-24	FLIGHT
0.072100000 5	938	LOG	16 32 35 11	3
0.109300000 6 Z	039	STOR	35 11	五
0.850500000 7 2	040	RCL6	36 06	OF
e.2831€0000 5 €	041	RCL7	36 07	0
0.00000000 9 A	842	RCLS	36 08	Ã
0.000000000 A 2	843	RCLA	36 11	COMPUTE TIME
6.008000000 A E 6.000000000 C D 6.000000000 C D 6.000000000 D LL 6.000000000 E LL 6.000000000 E	844	X	-35	6.0
e. 000000000 6 E	045	÷	-55	E
0.000000000 C B				a a
0.000000000 D E	846	RCLA	36 11	ò
0.000000000 E	847	X	-35	0
0.000000000 I S	848	+	-55	
	049	10×	16 33 .	
PRESTORED DATA	050	PRTX	-14	
	851	4	84	E
	852	5701	35 46	COMPUTER MAX ORDINATE
	853	RCL5	36 05	Id
	854	*LELC	21 16 13	32
	855	RCLA	36 11	<u> </u>
	656	X	-35	ŝ
*** **** ** *** ***	057	RCLi	36 45	2
001 *L5Lb 21 16 12 W 002 DSP0 -63 00 W S 003 ST09 35 09 Q 9 004 R/S 51 5	957			a a
002 DSP0 -63 00 BES 003 ST09 35 09 E 9	958	+	-55	5
003 ST09 35 09 8 9	859	DSZI	16 25 46	4
	868	6TOc	22 16 13	Ö
005 \$LBLa 21 16 11	961	10×	16 33	0
00662 SI S	962	R/S	51 21 14	
007 0 60 HH	963	*LBLD	21 14	
006	964	DSP0	-63 00	
909 6 66 XX	065	P#S	16-51	
010 2 02 20	866	CLRG	16-53	
010 2 02 NO	867	PIS	16-51	
012 x -35	968	XZY	-4:	
013 *LBLA 21 11	969	GSBd	23 16 14	
914 DSF0 -63 00 € ½	878	2-	16 56	
	071	Rt	16-31	
			76 12	
016 + -55 H M H H H H H H H H H H H H H H H H H	872	RCLB	36 12 -55	WIND
017 X(0? 16-45 E E 018 GSSe 23 16 15 X O	873	+	-55	3
010 este 53 10 10 0	874	esed	23 16 14	
•••	975	Σ+	56	TRUE
020 R/S 51	976	RCLZ	36 56	
021 *LBL6 21 12	877	46	34	13
022 DSP0 -63 00	878	RND	16 24	COMPUTE
	879	INT	16 34	X
024 →P 34 % C €	989	INT	-41	8
024	081	X<0?	16-45	
025 XZY -4: XX QQ	882	65Be	23 16 15	
02745 O SS	883	EEX	-23	
828 X2Y -41 H Q	084	3	83	
020 Ael -41 & O	684	÷	-5.1	
and the Mark		-	-24	
029 +F 44 8 8 3	085		FF	
024 +P 256 825 826 825 427 926 826 826 826 826 826 826 826 826 826 8	086	+	-24 -55	
023 X2Y -41 024 +P -41 025 X2Y -41 026 RCL0 36 62 -41 027 - 42 028 X2Y -41 029 +R -41 030 PRIX -14 030 PRIX -14 031 X2Y -41 031 X2Y -41 032 RAS SPOTS TO REPORTS TO RESERVE WAS A SPOTS TO RESERVE	085 086 087 088	DSP3 R/S	-55 -63 03 51	

089	*LBLd	21	16 14
898	INT		16 34
09!	LSTX		16-63
092	FRC		16 44
893	STOR		35 12
094	. EEX		-23
095	3		03
895	X		-35
097	XZY		-41
898	→R		44
899	RTN		24
100	*LBLe	21	16 15
101	3		03
102	6		Øċ
103	0		90
104	+		-55
105	RTN		24
106	R/S		5:

E. Geometric/Mathematical Analysis

1. Grid-Spot Conversion

The conversion of grid spots oriented to an Observer Target Line to an East-West, North-South orientation for input to a shipboard GFCS can be accomplished by a rotation of the OTL counterclockwise to 000 degree True after the OTL has been corrected to true bearing (Figure 1).

The rotation formulas are

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix} ,$$

or

$$x' = x \cos \theta + y \sin \theta$$
 and $y' = -x \sin \theta + y \cos \theta$,

where

$$\theta = OTL \circ T$$

$$x = L/R Spot,$$

$$y = A/D$$
 Spot,

$$x' = E-W Spot,$$

FIGURE 1: Rotation Geometry

2. TOF and Maximum Ordinate

This information is tabulated for the 5"/54 Projectile in BuOrd Publication OP1182 (Range Table for 5"/54). To find an equation which would best fit the tabulated data, a log transformation was made followed by a parabolic curve fit.

The time of Flight Equation is

$$f(x) = 10^{(0.1083 + 0.8505 \log x + 0.2831(\log x)^2)}$$

This equation generates solutions within 1 second of the tabulated values for ranges under 22,000 yds. The same approach was made in determining an equation for maximum ordinate.

The Maximum Ordinate Equation is

$$f(x) = 10^{(0.7775 + 2.1666log x - 0.2071(log x)^2 + 0.2617(log x)^3 + 0.0721(log x)^4)}$$

This equation generates solutions within 55ft of the tabulated values for ranges less than 19,000 yds. (Within 10ft for range less than 13,000 yds, and with 1 ft for ranges less than 7000 yds.)

The algorithm uses a nested polynomial to preserve accuracy in the calculation of the exponent. For example, Time of Flight is computed as follows:

$$f(x) = 10((0.2831 \log x + 0.8505)\log x + 0.1083)$$

3. True Wind.

This computation is simple vector arithmetic. Relative wind is converted to Apparent wind by adding the ship's heading to the relative bearing, then converted to rectangular coordinates. Own ship's course and speed are then converted to rectangular coordinates and subtracted from apparent wind vector. The result is true wind which is converted to polar coordinates (Figure 2).

 α = ship's heading

 β = relative wind bearing

Y = apparent wind bearing

FIGURE 2. Wind vectors

IX. NORMAL MODE THEORY by LT J. M. Stone

A. Problem Statement

This program determines the number of normal modes that will propagate in a given ocean model. The ocean model must have either a rigid bottom or pressure release bottom. Also provided with each mode is the cutoff frequency (f_c) , group velocity (C_g) , and phase velocity (C_p) . The user provides the speed of sound in water in m/sec (C_0) , water depth in m(d), and frequency of the source in Hz(f).

B. Operational Analysis

None.

C. Computational Algorithm

Not submitted.

D. HP-67/07 Calculator Program

1. User Instructions

Step	Instruction	Input	Key(s)	Output
1.	Read program card			
2.	Initialize	al elinose	f e	1.00
3.a.	Sound velocity (m/sec)	c _o	†	decim
b.	Water depth (m) Source frequency (Hz)	d f	Sat Averag	oul/
4.	Bottom type: Either	4.5)	riekies .	2070
a. b.	Rigid Bottom, or Pressure release bottom	none	A B	obly .
5.	Output sequence	marily at	Sms (Ed)	
a.	Mode number			n
b.	Cutoff frequency for mode n Group velocity for mode n			fc
d.	Phase velocity for mode n			Çg
e.	Display mode number	Leve Lande Ta		f _C C _g C _p
6.	Continue from Step 4a or 4b depending upon original bottom type.		T. ono.s	
	This process continues until the highest mode that will propagate for the given con-			
	ditions has been displayed when A or B is pressed and the next mode will not	Tople Thor	is surges	
	propagate then the program displays the mode number of			
	the last mode that will propagate.			

2. Sample Problems

Example 1.

 $C_0 = 1500 \text{ m/sec}$ Rigid bottom d = 15 mf = 150 Hz

	656e	Initial	zes	Progr	am			
1500.00	ERT:							
15.00	ENT:							
150.00	GSEA							
1.00	***	Flashes	mode	numb	er	(r	1)	
25.00	***	Flashes	fc	for	n	=	1	
1479.02	***		Cg					
1521.28		Flashes	C _p	for	n	=	1	(Stops, displaying mode no.)
	ESBA 1		P					
2.06		Flashes	n					
75.00		Flashes		for	n	=	2	
1299.04		Flashes		for				
1732.05		Flashes						(Stops, displaying mode no.)
	6SB6	riasies	$c_{\mathbf{p}}$	101	**		-	(Stops, displaying mode no.
3.00		Flashes						
125.00				£		_	2	
829.16		Flashes	C	for	n	-	3	
2713.68		Flashes	Cg	for	n	=	3	(0)
2110.00	CSBA	Flashes	$c_{\mathbf{p}}$	for	n	=	3	(Stops, displaying mode no.)
3.00		Mode 4 w	.:11 .	not n	roi	220	+=+	te under
3.00	ESBA							
7 00								ardless of how many times A
3.00	***	is press	sed, i	mode	3 :	LS	d1	isplayed.

Example 2:

 $C_0 = 1500 \text{ m/sec}$

Pressure Release Bottom

d = 15 m

f = 150 Hz

	SSEe	Initiali	zes l	Prog	ram					
1500.00 i	ENT?									
15.00 8	ENT1									
150.00	SSEE .									
1.00	***	Flashes	mode	no.						
50.00	***	Flashes	fc	for	mode	1				
1414.21	***	Flashes								
1590.99	***	Flashes	C2	for	mode	1	(Stops,	displaying	mode	no.)
	3882		P							
2.00	***	Flashes	mode	no.						
180.00	***	Flashes	fc	for	mode	2				
1118.03	***	Flashes								
2012.46	*** \$368						(Stops,	displaying	mode	no.)
2.00	SSEE	Only two	mode	es w	ill p	ror	agate			
2.00	***									

NOTE: If such conditions exist such that no modes will propagate, 0.00 is displayed.

The program stops between modes and requires the user to initiate the next mode in order to allow the user sufficient time to write down the information presented.

3. Program Storage Allocations and Program Listing

Registers:

- RO; f SO: RA:
- R1: d S1: RB:
- R2: C₀ S2: RC:
- R3: n S3: RD:
- R4: f_C S4: RE:
- R5: $\sqrt{1 (f_C/f)^2}$ S5:
- R6: S6:
- R7: S7:
- R8: S8:
- R9: S9:

Initial Flag Status and Uses

- 0: OFF, Unused 2. OFF, Unused
- 1: OFF, Unused 3: OFF, Unused

User Control Keys

- A: Rigid Bottom a:
- B: Pressure Release Bottom b:
- C: c:
- D: d:
- E: e:

```
00:
     *LBLe 21 16 15
                         Initializes Program
002
                  01
      5703
               35 83
003
       SF2 16 21 02
884
                        Controls storage of inputs on first pass
005
       R/S
                  5:
                         Input parameters at this stop
               21 11
006
     *LBLA
                        Case I -- Rigid Bottom
            16 23 02
887
       F2?
008
      GSE1
               23 01
                        Stores inputs on first pass
009
      RCL3
               36 03
                 -62
818
                  05
811
                 -35
812
013
                 -62
814
                 02
                        Calculates f<sub>C</sub>
015
        5
                 05
                 -45
016
      RCL2
               36 82
817
                -35
018
       X
      RCL1
               36 81
019
828
       ÷
                 -24
021
      RCLB
               36 00
      XZY
                 -41
822
                        Is f_C \ge f
      X#Y?
               16-32
023
024
      X>Y?
               16-34
               22 84
025
      GT04
                        Yes--display last mode # and stop
826
      ST04
               35 84
                        No--continue
827
      RCL3
               36 83
828
      PRTX
                 -14
                        Flash new mode #
829
      RCL4
               36 84
838
      PRIX
                 -14
                        Flash fc
                        Computes C_g and C_p Increments mode no. for next iteration
               23 02
031
      esb2
               21 83
032
     *LBL3
033
                  81
      ST+3 35-55 03
034
      RCL3
035
               36 03
036
                  81
837
                 -45
       R/S
                  51
038
                        Stops, displays mode # of run just completed
839
     *LBLB
               21 12
                        Case II--Pressure Release Bottom
       F2? 16 23 62
848
               23 0:
841
      GSB1
                        Stores inputs on first pass
               36 63
842
      RCL3
843
      RCL2
               36 02
844
       X
                 -35
                        Calculates f
845
      RCL1
               36 01
846
                 -24
        ÷
        2
                  02
847
                 -24
048
               36 00
849
      RCLO
```

000	UAU	-41	
050	XZY	-41	
051	X#Y?	16-32	Is $f_C \geq f$
852	X>Y?	16-34	Display last mode no.
853	GT04	22 04	Yesand stop
854	ST04	35 04	Nocontinue
055	RCL3		
056	FRTX	-14	Flash new mode no.
057	RCL4	36 84	
0 58	PRTX	-14	Flash f _C
859	6882	23 02	Computes Cg and Cp increments mode # for next
868	6103	22 03	iteration
861	*LBL1	21 61	Subroutine 1Stores inputs on first pass only
	STOR	35 00	
063	R4	-31	
064	STOI	35 01	
865		-31	
066	ST02	35 02	
867	RTN		
068	*LBL2		Subrounte 2Calculates C and C
069	RCL4	36 04	g p
070	RCLO		
071	+	-24	
872	Χs	53	
073	CHS	-22	
874		01	$c_g = c_0 \sqrt{1 - (f_C/f)^2}$
075	+	-55	g OV C
876		54	
	ST05	35 65	
878		36 02	
879			
080	PRTX	-14	Flash Cg
081	RCL2		Flash C_g $C_p = C_0 / \sqrt{1 - (f_c/f)^2}$
082	RCL5		$c = c_0 / \sqrt{1 - (f_0 / f)^2}$
083	÷		p 0 . C
884	PRTX	-24 -14	Flash Cp
085		24	p
086	*LBL4	21 04	Allows the last mode number to be displayed
887			after each iteration
888		81	2002000
089		-45	
090	R/S	51	

E. Mathematical Analysis

Consider a shallow water ocean model with depth d.

According to Normal Mode Theory the sound pressure at any point
can be determined by the solution of the wave equation and is
given by

$$p_n = A_n \sin \kappa_{nz} z \exp[i(\omega t - \kappa_{nz} x)]$$

Sound will propagate at different angles and this is what gives rise to the various modes. As θ , in Figure 1 approaches zero, the sound will not propagate because it is merely bouncing up and down off the surface and bottom (no x-direction of travel). This determines the cutoff frequency for mode n.

The cutoff frequency is dependent upon the boundary conditions at the surface and bottom because the solution of the wave equation is dependent upon the boundary conditions. The surface is always considered to be a pressure release boundary. As the mode number increases the cutoff frequency for that mode is higher also. When the cutoff frequency exceeds the frequency of the source then that mode will not propagate, nor will higher modes.

FIGURE 1. Wave Propagation Geometry

Case I: Rigid Bottom

For the rigid bottom, the boundary condition yields a

$$K_{nz} = \frac{(2n-1)\pi}{2d}$$
, $n = 1,2,3$ (mode #)

and

$$f_C = \frac{C_0}{2} \frac{(2n-1)\pi}{2d}$$
.

Case II: Pressure Release Bottom

For the pressure release bottom, the boundary condition yields

$$K_{nz} = \frac{n\pi}{d}$$
, $n = 1, 2, 3, ...$ (mode #)

and

$$f_C = \frac{C_0}{2\pi} \frac{n_\pi}{d} .$$

The remaining values calculated are the group velocity $C_g = C_0 \cos \phi$ and the phase velocity $C_p = C_0/\cos \phi$, where $\cos \phi = [1 - (f_C/f)^2]^{1/2}$, f_C is the cutoff frequency, f is the source frequency, and C_0 is the velocity of sound. The geometry of these quantities is shown in Figure 2.

FIGURE 2. Group and Phase Velocity Geometry

Operator selects either rigid bottom or pressure release bottom

X. NORMAL MODE TRANSMISSION LOSSES by LT Michael D. Clary

A. Problem Statement

As an alternative to Ray Theory, the use of Normal Mode Theory provides a more exact approach to the solution of transmission loss problems. Given source frequency and depth, range to and depth of receiver, and modal values for the speed of sound and the absorption coefficient, the program user may either specify the effective pressure amplitude of the source at one meter and solve for modal effective pressure amplitudes and the resulting transmission losses, or if the modal pressures are input, the value of the one meter effective source pressure amplitude can be obtained.

B. Operational Analysis

Since this program is used primarily as a theoretical problem solver based on give data, no operational analysis is provided.

C. Computational Algorithm HP-67

- Input source frequency, depth, receiver depth, effective pressure amplitude at 1 meter (source) or effective pressure amplitude of given model.
- Input absorption coefficient for given mode, range between source and receiver, and speed of sound for the mode.
- 3. Compute sums required for transmission loss equation.
- Compute and output coherent and/or incoherent transmission losses.

D. HP-67 Calculator Program

1. User Instructions

Step	Instruction	Input	Keys(s)	Output
1.	Load side one and two of program card			
2.	Program the eigenfunction for $z_n(z)$, $z_n(z_0)$ at LBL3 in the W/PGRM MODE. (Assume value of z and z_0 will be in the x-register upon initialization of each computation.) The last two program steps must be STO(i), h RTN. Return calculator to RUN MODE			
3.	Enter computational values		Name of the last	
a.	frequency of source in Hz	f	ENTER	f
b.	depth of source in meters	z ₀	ENTER	z ₀
d.	depth of receiver in meters effective pressure amplitude	Z	ENTER	Z
a.	at 1 m in uPa	P(1)	A	f
	or effective pressure amplitude	- (1)	•	
	of given value	- P _n	A	f
	enter as - Pn		apasy s.	
e.	absorption coefficient for	an	ENTER	α _n
f.	the mode range from source in meters	r	ENTER	
g.	speed of sound for the	c _n	B	P _n or P(1)
3.	mode in meters/sec	n		n or to
	Output will be either the mode value for the effective		i zonik (i	io <u>Habayani</u> Swee Sount
mac	pressure amplitude or the value of the effective pressure amplitude at 1 m. All values are in µPa.	San I	a scurit	

Step	Instruction	Input	Key(s)	Output
4.	Sum the values of	a bd o	С	n
	$P_n \sin(2\pi f_r)/C_n$ and		5.241	
	$P_n \cos(2\pi f_r)/C_n$			
5.	Sum the value of P_n^2		D	P_n^2
6.	Return to Step 2 for additional mode computations. Information for Steps 3a, b,c and d need not be reentered. If all mode computations are completed, go to 7.	02.55 02.55	10 EGI -01 7 5 10 7 - 01 10 5 10 7 - 01	
7.	Compute transmission loss (in dB) for coherence for incoherence	f	E e	T.L. T.L.
8.	For new case go to Step 1			

2. Sample Problem

For a nearly isovelocity layer of water 50 m deep overlying a silt bottom rich in decaying organic matter, the following are found to be good approximate values for a source frequency of 50 Hz:

n	z _n (z)	$z_n(z)$ c_n $f_n($		α _n
1	0.2 sin(0.050z)	1550m/s	25 Hz	1×10^{-4} /m
2	0.2 sin(0.105z)	1630	33	2×10^{-4}
3	0.2 sin(0.189z)	2110	45	4×10^{-4}
4	not excited		55	

a. Evaluate the effective amplitudes $|P_{\Pi}|$ at a receiver at a range of 2 km and at a depth of 20 m. Determine both transmission loss values.

SOLUTION: (given that the source is at a depth of 50m)

- 1. Enter first eigenfunction $z_n(z)$ under label 3. Value of z (or z_0) will be in the X-register.
- 2. Enter f, z_0 , z and $P(1) = 10^7 \mu Pa$ for n = 1 and compute P_1 .
- 3. After recording value P_1 , sum the values for transmission loss calculations.
- Repeat Steps 1-3 for all necessary values of n (three for the given example).
- 5. When all P_n 's have been obtained, calculate transmission loss, both coherent and incoherent cases.
- 6. Numerical answers:

$$P_1 = 2.05 \times 10^4 \mu Pa$$
 $|P_1| = 2.05 \times 10^4 \mu Pa$ $|P_2| = 2.54 \times 10^4 \mu Pa$ $|P_2| = 2.54 \times 10^4 \mu Pa$ $|P_3| = 0.39 \times 10^3 \mu Pa$ $|P_3| = 0.39 \times 10^4 \mu Pa$

TL(coherence) = 53 dB

TL(incoherence) = 50 dB

Keystroke Sequence for Sample Problem a.

		GT03		2.	-04 ENT:
892	*LBL3	21 03	1 2 1 2 1		+03 ENT!
093		-62			30. 6585
894	0	00		2.54	
095	5	85			ESEC
896	X	-35	851 61	2.88	.60 ***
097	SIN	4:			GSBD
898		-62		6.44	*** ?5
099	2	62			6103
100	X	-35	092	*LBL3	21 23
101	STOR	35 45	093		-62
102	RTN	24	094	1	61
	50.	.00 ENT!	095	8	68
	50.	. BB ENT!	096	9	89
	20.	.00 ENT!	097	X	-35
	1.	07 686A	098	SIH	41
	50.	86 ***	059		-62
	1	-04 ENT1	160	2	03
	2.4	103 EKT!	101	×	-35
	1550.	00 6388	102	STO:	35 45
	2.05+	04 ***	103	RTH	24
		GSBC		4.	-04 ENT!
	1.00+	00 ***			103 ENT:
		GSED			0. 6566
	4.224			3.92	
		G103			ESEC
192	*LBL3	21 03		3.00	
193		-62			ESEC
94	1	61		1.54	
195	e	80			GSEE
9€	5	65			3. ***
97	X	-35			€SB€
198	SIN	41			6. ***
199		-62 -			
00	2	02			
01	X	-35			
02	STOI	35 45	1 HB CC		
103	RTN	24			

- b. Using the same table values and the computed values for each P_n , verify that the value for P(1) is in fact $10^7~\mu Pa$.
 - 1. Enter first eigenfunction $Z_n(z)$ under label 3.
 - 2. Enter computational values for n=1 and compute P(1). Note that the values of P_n must be entered as the negative value of the absolute.
 - 3. Calculate P(1). Repeat Steps 1-3 for each value of n.
 - 4. Numerical answers:

$$|P_1| = 2.05 \times 10^4 \mu Pa$$
 $P(1) = 9.98 \times 10^6 \approx 10^7 \mu Pa$ $|P_2| = 2.54 \times 10^4 \mu Pa$ $P(1) = 10^7 \mu Pa$ $|P_3| = 0.39 \times 10^3 \mu Pa$ $P(1) = 9.94 \times 10^6 \approx 10^7 \mu Pa$

Keystroke Sequence for Sample Problem b.

GTO3 50.00 ENT! 50.00 ENT! 20.00 ENT! -2.05+04 6SEH 1.-04 ENT: 2.+03 ENT! 1550.00 GSEE 9.98+06 *** 6103 50. ENT: 58. ENT: 28. ENT: -2.54+84 655A 2. -04 ENT! 2.+63 ENT: 1630. 6565 1.00+07 *** eros 50. ENT! 50. ENT: 20. ENT! -0.39+03 65Em 4. -04 ENT! 2.+83 ENT: 2110. 6SEE 5.94+06 ***

3. Program Storage Allocation and Program Listing

Registers:

- R0: f S0: ΣP_n^2
- R1: z₀ S1:
- R2: z S2:
- R3: C_n S3:
- R4: α_n S4: $\Sigma \sin(2\pi f_r)/C_n$
- R5: r S5:
- R6: P(1) or $-|P_n|$ S6: $\sum \cos(2\pi f_r)/C_n$
- R7: $S7: \Sigma \cos^2(2\pi f_r)/C_n$
- R8: S8: $\Sigma [\sin(2\pi f_r)/C_n][\cos(2\pi f_r)/C_n]$
- R9: S9: n
- RA: P_n or P(1)
- RB: $(2\pi f_r)/C_n$ and $\cos(2\pi f_r)/C_n$
- RC: $\sin(2\pi f_r)/C_n$
- RD: Coherent TL
- RE: Incoherent TL
- RI: Scratch

Initial Flag Status and Use: OFF, Unused

Trig Mode: RAD

User Control Keys:

A:
$$f + z_0 + z + P(1)$$
 or $-|P_n|$ a:

B:
$$\alpha_n + r + C_n + P_n$$
 or P(1) b:

C: Sum sin,
$$\cos(2\pi f_r)/C_n$$
 c:

D: Sum
$$P_n^2$$
 d:

```
001
    *LELA
               21 11
002
      RAD
               16-22
003
      CLRG
               16-53
                          Enter values for f, Z, Z, and either
               16-51
004
      P#S
      CLRG
               16-53
                          P(1) or -|P_n|. Clears all registers,
005
               35 06
006
      ST06
887
       RI
                -31
                          sets radian mode.
               35 02
008
      ST02
889
       RI
                 -31
010
      STOI
               35 01
011
       RI
                -31
               35 00
012
      STOR
013
       RTH
                 24
               21 12
014
     *LBLB
               35 83
015
      ST03
                          Enter values for \alpha_n, r, and c_n
                -31
016
        R+
      ST05
               35 05
017
               -31,-
018
       R1
      ST04
               35 84
                          Determine calculations required.
019
               36 BE
020
      RCL6
                          l is stored in R_9 if P_n is
               16-45
821
      X < 0.2
022
      GT01
               22 01
023
                  01
                          being calculated
       1
               35 69
      ST09
824
               21 62
825
     #LBL2
826
                  6.
      STOI
               35 46
827
                          Set up storage for Z_n(Z_0) and Z_n(z);
028
      RCL 1
               36 01
      6SB3
               23 63
829
                          branches to user-defined function to compute
030
                  80
      STOI
               35 46
031
               36 02
      RCL2
032
               23 83
033
      68B3
834
      REL9
               36 09
               16-45
035
      X (62
                          Returns to Label 1 for calculations of P(1)
       RTN
                  24
036
     #LEL4
               21 84
037
               36 07
038
      RCL7
039
      RCL5
               36 65
                 54
640
       1.X
                 -24
841
               36 08
      RCL8
042
                -35
843
                          Compute Pn.
               36 63
      RCL3
844
               36 00
845
      RCLB
                          *Note that |P_n| is stored in Register A,
                 -24
846
       (X
                  54
847
                          |Pn | is displayed upon completion.
                 -35
048
      RCL6
               36 06
849
                 -35
050
      RCL4
               36 64
051
052
      RCL5
               36 05
853
                  -35
       CHS
054
                  -22
                  33
055
                 -35
856
                35 11
      STOA
```

050	501	-12	
058	SCI		
059	ABS	16 31	
868	RTN	24	
361	*LBL1	21 01	
062	CHS	-22	Stores in $ P_n $ in R_6 .
963 864	ST06	35 0€ 01	
865	CHS	-22	-1 stores in R ₉ to indicate that P(1)
066	ST09	35 89	is being calculated.
067	6SB2	23 02	Calculate $Z_n(z_0)$, $Z_n(z)$
868	RCL5	36 05	
069	1X	54	
878	RCL6	36 €6	
071	×	-35	
072	RCL3	36 63	
873	RCLO	36 00	
874	÷	-24	
875	1X	54	
876	÷	-24	
077	RCL7	36 07	
878	÷	-24	
	RCLS	36 88	Compute P(1)
879		30 00	
989	÷	-24 76 04	
081	RCL4	36 04	
082	RCL5	36 65	
883	×	-35	
084	CHS	-22	
085	e×	33	
086	÷	-24	
887	X<0?	16-45	
889	CHS	-22	
689	STOA	35 11	
090	SCI	-12	
091	RTH	24	
092	*LBL3	21 03	User-defined label to compute
093	STO	35 45	$Z_{z}(z_{0})$ and $Z_{z}(z)$.
894	RTH	24	$\frac{\mathbf{Z}_{\mathbf{n}}(\mathbf{z}_{0})}{\mathbf{n}}$ and $\mathbf{Z}_{\mathbf{n}}(\mathbf{z})$.
895	*LBLC	21 13	
096	RCL5	36 85	
097	RCLO	36 00	
698	X	-35	
099	Pi	16-24	
100	2	82	
101	X	-35	
102	X	-35	Sums and stores the sine and cosine of
103	RCL3	36 03	
104	÷	-24	2π f
105	STOB	35 12	$\frac{2\pi f}{c_n}$
106	SIN	41	C _n
107	STOC	35 13	
108	RCLB	36 12	for use in calculations of T.L. (coherent)
109	cos	42	Tot use in curculations of file (concluse)
110	STOB	35 12	
111	RCLA	36 11	
112	×	-35	
113	RCLC	36 13	
114	RCLA	36 11	

1	115	×	-35	
1	116	Σ+	56	
	117	RTH	24	
	118	*LBLD	21 14	
	119	RELA	36 11	
1	128	Xs	53	
1	121	P2S	16-51	2
	122	ST+0	35-55 00	Computes Pn
1	123	P2S	16-51	
	124	RTH	24	
	125	*LBLE	21 15	
1	126	P#5	16-51	
1	127	RCL4	36 84	
	128	Xs	53	
	129	RCL6	36 0€	
1	130	χ2	53	
	131	+	-55	
	132	18	54	
1	133	P#S	16-51	
	134	RCL6	36 06	Computes T.L.
	135	÷	-24	
	136	LOG	16 32	assuming coherence.
	137	2	02	
1	138	0	00	
	139	x	-35	
	140	CHS	-22	
1	141	FIX	-11	
1		DSFØ	-63 00	
	142		35 14	
	143	STOD	24	
1	144			
	145	*LBLe	21 16 15	
	146	PZS	16-51	
1	147	RCLB	36 00	
1	148	PZS	16-51	
	149	18	54	
	150	RCL6	36 86	
1	151	÷	-24	
	152	LOG	16 32	Computes T.L.
	153	2	02	assuming incoherence.
	154	0	00	
	155	X	-35	
1	156	CHS	-22	
	157	FIX	-11	
	158	DSPO	-63 00	
	159	STOE	35 15	
1	168	RTN	24	
1	161	R/S	51	

E. Mathematical Analysis

The following four formulas are the basis for the mathematical computations (Ref. 1).

1.
$$P_{n} = P(1) \sqrt{\frac{\overline{C_{n}}}{f}} \frac{Z_{n}(z_{0})}{\sqrt{r}} Z_{n}(z) \exp(-\alpha_{n}r)$$

2.
$$P(1) = \frac{P_n \sqrt{r}}{\sqrt{(C_n/f)} Z_n(z_0) Z_n(z) \exp(-\alpha_n r)}$$

Coherent transmission loss

TL = -20 log
$$\left[\left(\sum_{n} P_{n} \sin \frac{2f_{r}}{C_{n}} \right)^{2} + \left(\sum_{n} P_{n} \cos \frac{2f_{r}}{C_{n}} \right)^{2} \right]^{1/2} / P(1)$$

Incoherent transmission loss

TL =
$$-20\log\left[\left(\sum P_n^2\right)^{1/2}/P(1)\right]$$

F. Reference

 A. B. Coppens and J. V. Sanders, "An Introduction to the Sonar Equations with Applications," Technical Report NPS-61Sd76071, July 1976, Naval Postgraduate School, Monterey, CA 93940

XI. GOLDEN SECTION SEARCH by LT J. K. McDermott

A. Problem Statement

The minimum value of a unimodal function of one variable, f(x), for a specified interval is determined by utilizing Golden Section Search Techniques, i.e.

Minimize f(x)Subject to $x \in I$

where I = [a,b] is a closed interval in E_1 space.

B. Operational Analysis

Golden Section Search is a specific type of interval of uncertainty (IOU) method of single variable optimization which requires the selection of a specific interval. Once the interval has been selected, the program locates the value of x which will minimize a unimodal function f(x) being evaluated within this specific interval. If a different interval is selected, a different x with a correspondingly different minimum functional value may be obtained.

Golden Section Search locates a local minimum and not the global minimum. A function which is not unimodal over the specific interval may produce an x value which does not provide the minimum (global) functional value within the interval. The behavior for non-unimodal functions is not predictable.

The functions which may be evaluated are limited to some degree by (i) the number of program steps available for user supplied function program listing (139-224), (ii) functions of one variable preferably unimodal over the IOU to avoid ambiguity, and (iii) user's programming capability and imagination.

J. Kiefer, "Sequential Minimax Search for a Maximum," Proc. Amer. Math. Soc., 4, no. 3, June 1953, pp. 502-506. The name traces back to Euclid's discovery that it is possible to divide any given line segment into two parts such that the ratio of the whole to the larger part equals the ratio of the larger part to the smaller. The division of a line in this manner came to be known as the Golden Section, both because it has several rather interesting geometric and numerical properties and because the proportions of the two parts seem pleasing to the eye.

The author (programmer) is indebted to Professor J. K. Hartman of the Naval Postgraduate School whose lectures and class notes form the bases of this HP-67/97 calculator program.

- C. Computational Algorithm

 Basic IOU Algorithm Structure (GSS)
- 1. Given initial IOU I = [a,b] and function f(x). Let K be a function evaluation, iteration counter.
- 2. Compute initial X_1 as

$$x_1 = a + \sigma (b-a)$$
 with $\sigma = (3 - \sqrt{5})/2$

Set $I_1 = 1$ and K = 2.

3. At iteration K, interval I_{K-1} resulting from previous iteration contains best point (one producing smaller function value) thus far and its relative position is σ or $1-\sigma$. Place new point (X_K) symmetrically:

$$X_{K} = ENDL + ENDR - X_{OLD}$$

where $I_{K-1} = [ENDL, ENDR]$ and X_{OLD} provided the smaller function value between previous two evaluated points.

- 4. Compute $f(X_K)$.
- 5. Shorten IOU to $I_K \subseteq I_{K-1}$ with length $L_K \subseteq L_{K-1}$ from information $f(X_K)$ provides. Set K = K+1 and go to step 3 for the next iteration.

STOPPING RULE:

Stop when either K = NMAX (present number of function iterations) or when $L_{K} \leq RIOU$ (preset required interval of uncertainty length).

HP-67 Computational Algorithm

- Input user supplied function program listing in available program steps 139 through 224.
- 2. Input left endpoint of interval of uncertainty (ENDL).
- 3. Input right endpoint of interval of uncertainty (ENDR).
- Input required length of the final interval of uncertainty (RIOU).
- 5. Input maximum number of function evaluations desired (NMAX)
- 6. Output final interval of uncertainty [ENDL, ENDR].
- 7. Output minimum (local) function value in interval.
- 8. Output X value that produces minimum function value.

D. HP-67/97 Calculator Program

1. User Instructions

Step	Instruction	Input	Key(s)	Output
1.	Enter program card	0058 101.7		
2.	Select GTO f e	0.04,01 11	GTO fe	
3.	Slide W/PRGM-RUN switch to W/PRGM	User supplied function program		
4.	Slide W/PRGM-RUN switch to RUN			
5.	Enter left endpoint of interval of uncertainty	ENDL	A	ENDL
6.	Enter right endpoint of interval of uncertainty	ENDL	В	ENDR
7.	Enter required length of interval of uncertainty	RIOU	С	RIOU
8.	Enter maximum number of function evaluations to be performed	NMAX	D	NMAX
9.	Compute final interval of uncertainty, minimum function value, and corresponding X value	NONE	E	
	ENDL displayed when computation complete			ENDL
10.	Press R/S to display ENDR			ENDR
11.	Press R/S again to display f(X)			f(X)
12.	Press R/S once more to display X			х
13.	To repeat program press f CLREG and go to Step 5		f CL REG	

2. Sample Problem

minimize $f(x) = |x^2 - 16|$ subject to $x \in I_0$

 $I_0 = [1,16]$, RIOU = 0.01, NMAX = 25.

SOLUTION: [3.99560, 4.00240] in 17 function evaluations

Function Value = 0.00162

Minimum Point x = 3.99980

User Supplied Program Listing

139	ALRIA I	6T0e 21 16 15	Sec. 10.0 - 0000 10.82.011 -
140	ROLE	36 15	
141	7,5	53	
142	,	01	
143	6	86	Recalls x from Register E.
144	-	-45	
145	ABS	16 31	Emphism makes in last to the
146	RTH	24	Function value is left in the
147	R/S	51	display (x-register).
		R/S 62 ++1	
	3.999	R/S 180 ***	

NOTE: First load provided program (with RUN position).

Select GTO f e. Move switch to W/PRGM. Enter user supplied program for function. Move switch to run position. Enter input and compute.

b. Minimize $f(x) = 20 - x + \frac{1}{(16-x)}$

Subject to $x \in I_0$

 $I_0 = [10,15.9], RIOU = 0.01, NMAX = 25$

SOLUTION: [14.99555, 15.00255] in 15 function evaluations

Function Value = 6.00000

Minimum Point x = 14.99823

User Supplied Program Listing

		CT0e	
139	*LBLe 21	16 15	
146	2	02	
141	8	00	
142		36 -15	Recall x from Register E.
143	•	-45	
144	1 .	61	Result is left in x-register
145	6 .	66	
146	RCLE	36 15	
147	-	-45	
148	1/X	52	
149	5 au • 0 0	-55	
150	RTN	24	
151	R/S	51	
	10.00	GSBA	
		6868	
		GSBC	
	25.08	6SBC	
		ESEE	
	14.99555		
		R/5	
	15.00253		
		R/S	
	6.00000		
		R/S	
	14.99823	***	

NOTE: First load provided program with switch in RUN position.

Select GTO f e. Move switch to W/PRGM. Enter user supplied program for function. Move switch to RUN position. Enter input and compute.

minimize $f(x) = \frac{x}{2} + \sin(\frac{\pi x}{2})$ (x in radians) c.

subject to x f In

 $I_0 = [0,10], RIOU = 0.01, NMAX = 25.$

[2.79094, 2.79827] in 16 function evaluations SOLUTION:

Function value = 0.44890

local minimum
(x = 0.0 is global) Minimum point x = 2.79373

User Supplied Program Listing

	CTO	
170	6T0	
139	*LSLe 21 16 1	
140	RCLE 36 1 2 0	
141 142	÷ -2	
143	ENT! -2	
144	ENTT -2	
145	Pi 16-2	
146	x -3	
147	SIN 4	
148	+ -5	
149	RTN 2	
158	R/S 5	
	10.00 GS5 .01 GSE 25.00 GSE GSE 2.79094 **	
.0	2.79827 4# R	
	8.44898 th	S
	2.79373 **	berting 350 S
		Air end 1990 to the company

NOTE: First load provided program with switch in RUN position Select GTO f e. Move switch to W/PRGM. Enter user supplied program for function. Move switch to RUN position. Enter input and compute.

3. Program Storage Allocation

Registers:

RO: function counter SO: RA:

R1: ENDL S1: RB:

R2: ENDR S2: BC:

R3: RIOU S3: RD:

R4: NMAX S4: RE: Current X

R5: X₁ S5: RI: 4 (decrement)

R6: X₂ S6:

R7: F₁ S7:

R8: F₂ S8:

R9: not used S9:

NOTE: User supplied function can utilize sixteen registers.

Initial Flag Status and Use:

0: OFF, Unused 2: OFF, Unused

1: OFF, Unused 3: OFF, Unused

User Control Keys

A: Left endpoint (ENDL) a:

B: Right endpoint (ENDR) b:

C: Required interval of c: uncertainty (RIOU)

D: Maximum function d: iterations (NMAX)

E: Compute e: User defined function

1	961	*LBLA	21 11	Input:
1	882	ST01	35 61	Left endpoint
1	003	RTN	24	Right endpoint
1	884	*LBLE	21 12	Required interval of uncertainty
1	005	ST02	35 02	Maximum number of function evaluations
1	006	RTN	24	
1	007	*LBLC	21 13	(ENDL, ENDR, RIOU, NMAX)
	800	ST03	35 03	
1	009	RTN	24	
1	810	*LBLD	21 14	
1	011	ST04	35 04	
1	012	3	03	
		ENT †	-21	Calculate Sigma
1	014	5	65	
	015	1%	54	F
	016	-	-45	$\sigma = \frac{(3 - \sqrt{5})}{2}$
1	017	2	82	2
1	018	÷	-24	
1	019	RCL2	36 82	
1	929	RCL1	36 81	
1	821	NOL1	-45	Calculate initial X,
1	822	×	-35	
1	023	RCL1	36 01	
	024	+	-55	$X_1 = ENDL + \sigma(ENDR - ENDL)$
	825	ST05	35 05	
1	025		60	
		eros		Initialize counters
1	027	STOR	33 66 64	iniciatize counters
1	928	4		Set up display
1	025	STOI	35 45 36 04	Require radian calculations
1	030	RCL4		Redatte tantan carentactons
1	031	DSF5	-63 05	
1	032	RAD	-16-22	
1	033		24	
1	034	*LBLE	21 15	
1	035	RCL5	36 05	
1	036	RCL1	36 81	
1	637	-	-45	Calculate initial X
1	038	RCL2	36 02	2
1	039	XZY	-41	
1	848		-45	
1	041	ST06	35 66	
	842	GSB1	23 61	Obtain initial function values
1	043	GSB8	23 08	
	644	GSB2	23 02	$(F_1 \text{ and } F_2)$ from initial X_1 and X_2 .
1	845	esb8	23 88	

1			
846		21 16 11	Determine larger function value. If F
047	RCL8	36 08	
848	RCL7	36 07	larger go to branch two, otherwise go to
849	X>Y?	16-34	branch one.
050	GT03	22 03	
051	FCL6	36 06	X, becomes right endpoint of interval of
052	ST02	35 02	uncertainty
053	RCL1	36 01	
054	-	-45	Compare IOU < RIOU?
055			
056			If yes, print out final results
657	X≤Y?		
858		22 04	
059	RCL5	36 05	Old X ₁ becomes X ₂
868	ST06	35 06	
061	RCL7		Old F ₁ becomes F ₂
862	ST08		
063			Datarminas new V = (V) and store
864	ST05		Determines new $X \Rightarrow (X_1)$ and store.
865	RCL4	36 04	
866	RCLO	30 00	Has NMAX been exceeded? If yes, print error.
867	X>Y?	16-34	
868	GTOO	22 66	
869			
870			Calculate F ₁ and return to compare new
. 071		22 16 11	values of F ₁ and F ₂ .
872			
073		36 02	X, becomes left endpoint of interval
074			1 Decomes fere enaporate of interval
875			of uncertainty
876	-		
877			Company TOU S PLOUS
078			Compare IOU < RIOU?
079			If yes, print out final results
080		22 84	
881	RCL6	36 8€	
082	ST05		Old X ₂ becomes X ₁
883	RCL8	36 08	2 1
884	STO7		Old F ₂ becomes F ₁
885	6586	23 06	
886	5106		Determines new $X \Rightarrow (X_2)$ and store.
	RCL4	36 84	2' and score.
887			Has NMAX been exceeded?
888	RCLB		
089	XXY?	16-34	If yes, print error.
698	GTOE	22 60	

891	6882		Calculate F ₂ and return to compare new
092	esas		values of F, and F ₂
093	610a		1 2
894	*LBL8		
095	1	01	Increments function counter for determination
096	ST+0	35-55 00	of NMAX exceeded.
897	RTN	24	
098	#LBL6	21 06	
099	RCL2		Determines new $X (X_1 \text{ or } X_2 \text{ depending})$
100	RCL5		
101	-	-45	on which branch subroutine called from)
182	RCL1	36 61	
183	+	-55	
184	RTN		
105	*LBL4		
186	RCL8		Determines which function value with
107	RCL7		corresponding ENDL, ENDR, and X should
188	XXY?		be printed. (Smaller function value used.)
169	6105		used.)
118	RCL5		
111	RCL7		Sets up stack for printout if F
112	PCL2	36 62	
113	RCL1		small value.
114	6107	22 67	
115	#LBL5	21 05	
116	PCL6	36 06	Sets up stack for printout if F,
117	RCLS	36 88	smaller value
118	RCL2		Smallel Value
119	RCL1		
120	*LBL?	21 87	
121	R/S	51	
122	R4	-31	
123		16 25 46	Prints out final results.
124	6707	22 67	Transfer Cut Linux Louis Col
125	6100	22 00	
126	RIN	24	
127	*LBL1		
170.00		36 05	
128	RCL5		
129	STOE	35 15	D. Develop
130	GSBe		F ₁ Routine
131	\$107	35 07	
132	RTN	24	
133	*LBL2	21 02	
134	RCL6	36 66	
135	STOE	35 15	F, Routine
136	€S Be	23 16 15	
137	STOS	35 88	
138	RIN	24	
139	*LBLe	21 16 15	
140	RTN	24	Use defined function
141	RS	5:	

E. Mathematical Analysis

For each X the function f(X) is evaluated. By comparing two function values F_1 and, F_2 the interval of uncertainty can be reduced as follows:

The placement of the X's is determined by the Golden Section Search Technique utilizing the "Golden Ratio." Placement of the first X (X_1) determines the placement of all other X's since all remaining points are placed symmetrically with respect to each point remaining in successive intervals of uncertainty.

In order to ensure that each IOU length is predictively independent of the function f(x), X_1 and X_2 are placed symmetrically in the IOU. When the IOU is reduced, the new shorter IOU still contains the best point thus far achieved, so selecting a new X point will allow further reduction. (New X for each iteration.)

Golden Section Search selects X, to satisfy:

The <u>relative position</u> of the X points in the remaining IOU is the same at each iteration.

Explanation:

 $I_1 = I_0$ since no reduction with one point. Relative position of X_1 in I_1 is $GL_0/L_0 = \sigma$. Now place X_2 symmetrically

$$\begin{vmatrix} \frac{\sigma L_0}{a} & \frac{(1-2\sigma)L_0}{x_1} & \frac{\sigma L_0}{x_2} & b \end{vmatrix} \quad I_0 = I_1$$

Suppose $f(X_2) < f(X_1)$ and reduce IOU accordingly

$$\begin{bmatrix} \frac{(1-2\sigma)L_0}{a} & & & \\ & X_2 & & b \\ & & L_2 = (1-\sigma)L_0 \end{bmatrix}$$

Relative position of X_2 is

$$\frac{(1-2\sigma)L_0}{(1-\sigma)L_0} = \frac{1-2\sigma}{1-\sigma}$$

 $\sigma = \frac{1 - 2\sigma}{1 - \sigma} = >$ ("relative position same at each iteration")

$$\sigma^2 - 3\sigma + 1 = 0 \Longrightarrow \sigma = \frac{3 \pm \sqrt{5}}{2}$$
 use root $\sigma = \frac{3 - \sqrt{5}}{2}$

Choose $X_1 = \sigma b + (1-\sigma)a = a + \sigma(b-a)$.

Example: n = 4, $f(x) = (X - .303)^2$, $I_0 = [0,1]$.

K	1 _{K-1}	x _K	f(X _K)	ıĸ	LK
0				[0,1]	1
1	[0,1]	. 382	(.079)2	[0,1]	1
2	[0,1]	.618	$(.315)^2$	[0,.618]	$.618 = (1-\sigma)$
3	[0,.618]	.236	(.067) ²	[0,.382]	$.382 = (1-\sigma)^2$
4	[0,.382]	.146	$(.157)^2$	[.146,.382]	$.236 = (1-\sigma)^3$

FINAL ANSWER: X (OPTIMAL) e[.146,.382];

.146 .236 x₄ x₃ $X_3 = .236$ is best point evaluated thus far.

INITIAL DISTRIBUTION LIST

	10 10 10 10 10 10 10 10 10 10 10 10 10 1	NO. OF COPIES
Defense Documentation Center Cameron Station Alexandria, VA 22314	e office Development Group Two w 86365	2
Library, Code 0212 Naval Postgraduate School Monterey, CA 93940		2
Library, Code 55 Department of Operations Resea Naval Postgraduate School Monterey, CA 93940	rch	2
Dean of Research, Code 012 Naval Postgraduate School Monterey, CA 93940	Aleysian Israel	1
Office of Naval Research Fleet Activity Support Division Code ONR-230 800 North Quincy Street Arlington, VA 22217 Attn: Mr. Robert Miller	n	2
Office of Naval Research Code ONR-434 800 North Quincy Street Arlington, VA 22217	Tellas de la companya de la company	1
Navy Tactical Support Activity P.O. Box 1042 Silver Springs, MD 20910		2
COMPATWINGSPAC Naval Air Station Moffett Field, CA 94035 Attn: Code 51 and Code 532		4
COMPATWING ELEVEN TSC NAS Jacksonville, FL 32212 Attn: LT Jan Smith		1
COMPATWINGSLANT Naval Air Station Brunswick, ME 04011 Attn: Code N7		2
COMSEABASEDASWWINGSLANT Naval Air Station Jacksonville, FL 32228		2
Attn: TD&E Officer	.57 PRE	CEDING PAGE BLANK

Commanding Officer Air Test and Evaluation Squadron 1 (VX-1) Patuxent River, MD 20670 Attn: Code 713	-1
Commanding Officer Submarine Development Group Two Groton, CT 06340	1
Director Strategic Systems Project Office 1931 Jefferson Davis Highway Arlington, VA 20376 Attn: Code SP2021	1
Naval Air Development Center Johnsville, PA 18974 Attn: Code 2022	1
Center for Naval Analysis 1401 Wilson Boulevard Arlington, VA 22209 Attn: Greg Watson	1
Naval Weapons Laboratory Dahlgren, VA 22448	1
Naval Weapons Center China Lake, CA 93555	1
Naval Surface Weapons Center White Oak Silver, Spring, MD 20910	1
Naval Research Laboratory Washington, D.C. 20390	1
David Taylor Naval Ship Research and Development Center Bethesda, MD 20034	
Naval Ocean Systems Center San Diego, CA 92132	1
Naval Intelligence Support Center 4301 Suitland Road Washington, D.C. 20390	1
Naval Electronics Systems Command 2511 Jefferson Davis Highway Arlington, VA 20360	1

	NO. OF COPIES
Naval Underwater Systems Center Code SA33 New London, CT 06320	1
Naval Ship Engineering Center Hyattsville, MD 20782	1
Naval Coastal Systems Laboratory Panama City, FL 32401	1
Naval Air Systems Command Code 370 Washington, D.C. 20361	1
Naval Sea Systems Command Code 03424 Washington, D.C. 20362	1
Naval Underwater Systems Center Newport, Rhode Island 02840	1
Naval Ordnance Station Indian Head, MD 20640	1
Naval Surface Weapons Center Dahlgren, VA 22448	1
Anti-Submarine Warfare Systems Project Office Code ASW-137 Department of the Navy Washington, D.C. 20360	1
Surface Warfare Development Group Naval Amphibious Base Little Creek, VA 23511 Attn: Code N32 and C. Cartledge	2
COMNAVSURFLANT Norfolk, FA 23511 Attn: Code N612	. 1
Deputy Commander Operational Test and Evaluation Force Pacific NAS North Island San Diego, CA 92135 Attn: Code 202	1
VP-24 NAS Jacksonville, FL 32212 Attn: LTJG Kenneth D. Walker	1

Assistent Wing TAC D&E Officer ASW Operations Department NAS	1
Cecil Field, FL 32215 Attn: Code VS-24	
Naval Electromagnetic Spectrum Center Naval Communications Unit Washington, D.C. 20390 Attn: CDR Claude LaVarre	1
VS-Support Unit NAS Cecil Field, FL 32215 Attn: CWO Wentworth	1
PROCAL-Code 18 Fleet Readiness Office NOSC San Diego, CA 92152 Attn: Jim Grant	1
Chief of Naval Materiel MAT 08D1 Department of the Navy Washington, D.C. 20360 Attn: CDR Philip Harvey	1
LCDR James L. Arnold U.S. Naval Facility, Box 7 FPO New York 09571	1
LCDR Richard L. Badger PATRON 50 FPO San Francisco 96601	1
LT Michael P. Bahnmiller USS FREDERICK (LST 1184) FPO San Francisco 96601	1
LT James A. Carlson Commander Fleet Air, Keflavik FPO New York 09571	1
LT Robert A. Drews Surface Warfare Officers School Command Newport, RI 02840	1
LT Richard E. Goldsby Surface Warfare Officers School Command, New Port, RI 02840	1

LT Dean L. Knuth Carrier Group Four FPO New York 09501	1
LCDR William R. Metzer Detachment Cubi Point Patrol Wing 1, FPO San Francisco 96654	1
LCDR Stephen M. Pribula Air Antisubmarine Squadron 37 FPO San Francisco 96601	1
LT Michael D. Redshaw Helicopter Antisubmarine Squadron 7 FPO New York 09501	1
LCDR Michael J. Wojdyla PATRON 46 FPO New York 09501	1
LCDR John C. Auriemma Commander Fleet Air, Keflavik FPO New York 09571	2
Mr. Raymond F. Fish Naval Underwater Systems Center Newport, RI 02840	2
LCDR James S. Holt Helicopter Antisubmarine Squadron Light 36 - HSL 36, NAS Mayport, FL 32228	2
LT David K. Meier Surface Warfare Officers School Newport, RI 02840	2
LT Kenneth W. Peters Commanding Officer, U.S. Naval Air U.S. Naval Air Facility APO New York 09406	2
LT Michael H. Trent Surface Warfare Officers School Newport, RI 02840	2
LT William R. Rubel Surface Warfare Officers School Command Newport, RI 20840	1

LT J. K. McDERMOTT PATWINGONE DET KADENA Fleet Activities/U.S. Naval Air Facility FPO Seattle 98770	2
LCDR Joel W. Aiken USS New Orleans FPO San Francisco 96601	2
LT Peter W. Marzluff Surface Warfare Officer's School Newport, RI 02840	2
LT Ray C. Pilcher, Jr. Surface Warfare Officer's School Newport, RI 02840	2
LT Jeffrey M. Stone Commander Fleet Air, Mediterranean FPO New York 09521	2
Naval Postgraduate School Monterey, Ca. 93940 Attn:	
LT Keith P. Curtis, Code 30	2
LTJG Michael D. Clary, Code 33	2
LT Robert J. Knight, Code 33	2
LT Michael D. Thomas, Code 33	2 2 2 2 2
LT Richard O. White, Jr., Code 33 Prof. R. N. Forrest, Code 55Fo	1
	200
R. J. Stampfel, Code 55	3