Approaches Tried and Experiments Conducted for Novelty Assessment

> Guided by: Prof. Balamurugan TA's: Mr. Rahul, Mr. Bheeshm

Course: IE 643-2024-1 — Deep Learning - Theory and Practice Department of Industrial Engineering and Operations Research, IIT Bombay

Introduction

This document outlines the novelty assessment of our project, Feeble Audio-Based Transcript Generation, which focuses on transcribing noisy and feeble audio signals while addressing transcription challenges. The project utilizes pre-trained models, audio distortion handling, and predictive modeling techniques to handle muted sections. Below, we detail the approaches tried, experiments conducted, and solutions implemented.

Problem Statement

The primary issues identified were:

- 1. Only the first pause was handled in audio segmentation.
- 2. Predictions included incorrect languages.
- 3. No built-in denoising mechanism, leading to errors in noisy audio.

Approaches and Solutions

1. Multiple Pauses Handling

Problem: Only the first pause was being detected, limiting the transcription's completeness. **Solution:**

- Spectrogram analysis was used to identify multiple pauses by analyzing low-amplitude regions.
- Each pause was processed independently using OpenAI Whisper for transcription.
- Predictions for missing words in each pause were generated separately to ensure accuracy.

Methodology:

$$S(f,t) = |STFT(x(t))|^2 \tag{1}$$

where S(f,t) is the spectrogram, and STFT represents the Short-Time Fourier Transform.

2. Language Mismatch in Predictions

Problem: The model sometimes predicted non-English words due to pre-trained weights. Solution:

- A customized dataset based on Mozilla's Common Voice was used for fine-tuning.
- The training focused on English-only recordings, ensuring consistent language predictions.

Dataset Details:

- Dataset: Mozilla's Common Voice (200,000 samples, 3-7 seconds each).
- Preprocessing: Clipping and noise augmentation using librosa and numpy.

3. Noise Resilience

Problem: Excessive noise caused transcription errors due to missing denoising capabilities. Solution:

- Gaussian noise $(\eta(t) \sim N(0, \sigma^2))$ and white noise were added to simulate distortions.
- A noise addition function was implemented to create distorted audio for training and testing:

$$y(t) = x(t) + \eta(t) \tag{2}$$

where x(t) is the original audio, y(t) is the distorted audio, and $\eta(t)$ is Gaussian noise.

• Spectrogram decomposition was used to separate noise from useful signals.

Experimental Results

Dataset Testing:

• Input: Then I got a hold of some dough and went goofy.

• Predicted: Then got a hold of some joe and went goofy.

Real-Time Testing:

• Input: Sun from East.

• Predicted: Sun rises from East.

Metrics:

Metric	Baseline Model	Proposed Model
Accuracy (%)	65%	85%
Noise Resilience (%)	50%	78%

Conclusion

The proposed solutions successfully addressed the identified inefficiencies:

- 1. Spectrogram analysis and pause-wise processing improved transcription accuracy across multiple pauses.
- 2. Fine-tuning on an English-only dataset eliminated language mismatches.
- Spectrogram decomposition enhanced noise resilience, improving predictions under distorted conditions.

The integration of these solutions represents a significant advancement in handling feeble and noisy audio transcription challenges.