Winter 22 – STAT206B Homework 3

Due: 5pm, February 18th Friday

1. Let X_1, \ldots, X_n be an i.i.d. sample such that $X_i \mid \theta, \sigma^2 \stackrel{iid}{\sim} N(\theta, \sigma^2)$, where σ^2 is known and θ is unknown. Also, let your prior for θ be a mixture of conjugate priors, i.e.,

$$\pi(\theta) = \sum_{\ell=1}^{K} w_{\ell} \phi(\theta \mid \mu_{\ell}, \tau^{2})$$

where $\phi(\theta \mid \mu_{\ell}, \tau^2)$ denotes the Gaussian density with mean μ_{ℓ} and variance τ^2 and mixture weights $0 < w_{\ell} < 1$ for all $\ell = 1, \dots, K$ with $\sum_{\ell=1}^{K} w_{\ell} = 1$.

Note: This questions is challenging. Use the results from the class example with $X_i \mid \theta \stackrel{iid}{\sim} N(\theta, \sigma^2)$ and $\theta \sim N(\mu, \tau^2)$.

- (a) Find the posterior distribution for θ based on this prior.
- (b) Find the posterior mean.
- (c) Find the prior predictive distribution associated with this model (i.e., the marginal distribution of data).
- (d) Find the posterior predictive distribution associated with this model.
- (e) Simulate n=50 i.i.d. observations from N(4,10). Let K=3, $\tau^2=1$, $(\mu_1,\mu_2,\mu_3)=(-3,0,3)$ and $(\mu_1,\mu_2,\mu_3)=(1/3,1/3,1/3)$, and fit the above model to the simulated data. (i) draw samples of θ and make a histogram of the samples. (ii) draw samples of an unknown observable X from the posterior predictive distribution and make a histogram of the samples overlaid with the density of N(4,1). Choose option 'probability = TRUE' to make the histogram and the density plot comparable.
- (f) Simulate n = 50 i.i.d. observations from N(1.5, 10). Let K = 3, $\tau^2 = 1$, $(\mu_1, \mu_2, \mu_3) = (-3, 0, 3)$ and $(\mu_1, \mu_2, \mu_3) = (1/3, 1/3, 1/3)$, and fit the above model to the simulated data. (i) draw samples of θ and make a histogram of the samples. (ii) draw samples of an unknown observable X from the posterior predictive distribution and make a histogram of the samples overlaid with the density of N(-1.5, 1).

Note: The histograms are to approximate the posterior distribution of θ and the posterior predictive distribution of an unknown observable X.

- 2. Let X be $N(0, \sigma^2)$. Assume that the unknown $\sigma^2 \sim IG(r/2, r/2)$, where r is a positive integer. Show that the marginal distribution of X is a t-distribution with r degrees of freedom.
- 3. Let (X_1, X_2, X_3) have trinomial distribution with density

$$f(x_1, x_2, x_3 | \theta_1, \theta_2) \propto \theta_1^{x_1} \theta_2^{x_2} (1 - \theta_1 - \theta_2)^{x_3}.$$

1

Derive Jeffreys prior for (θ_1, θ_2) .

- 4. (Robert Problem 3.9) Let $x \mid \theta \sim \text{Bin}(n, \theta)$ and $\theta \sim \text{Be}(\alpha, \beta)$. Determine whether there exits values of α , β such that $\pi(\theta \mid x)$ is the uniform posterior on [0, 1], even for a single value of x.
- 5. (Robert Problem 3.10) Let $x \mid \theta \sim \text{Pa}(\alpha, \theta)$, a Pareto distribution, and $\theta \sim \text{Be}(\mu, \nu)$. Show that if $\alpha < 1$ and x > 1, a particular choice of μ and ν gives $\pi(\theta \mid x)$ as the uniform posterior on [0,1].
- 6. (Part of Robert Problem 3.31) Consider $x \mid \theta \sim N(\theta, \theta)$ with $\theta > 0$. Determine the Jeffreys prior $\pi^{J}(\theta)$.
- 7. Consider a model of the form $x \mid \theta \sim \text{Bin}(n, \theta)$ and $\theta \sim \text{Be}(1/2, 1/2)$. Assume that you observe n = 10 and x = 1.
 - (a) Report an exact 95% (symmetric) posterior credible interval for θ (for example, you can use the qbeta function in R).
 - (b) Report an approximate credible interval for θ using the Laplace approximation.
 - (c) Report an approximate credible interval for θ using Monte Carlo simulation.
 - (d) Repeat the previous calculations with n = 100, x = 10 and with n = 1000, x = 100. Comment on the difference between all 9 situations.
- 8. Let x_1, \ldots, x_n be an i.i.d. sample from a Gumbel type-II distribution with density

$$p(x \mid \alpha, \beta) = \alpha \beta x^{-\alpha - 1} \exp(-\beta x^{-\alpha}),$$

with $\alpha, \beta > 0$. Let $\pi(\alpha, \beta) = 1$ for $\alpha, \beta > 0$ be the prior distribution. Simulate n = 500 i.i.d. observations from the Gumbel type-II distribution with $\alpha = \beta = 5$ (may use the inverse CDF method to generate random draws).

- (a) Find the posterior $p(\alpha, \beta \mid x_1, \dots, x_n)$. Use the simulated dataset and evaluate the posterior density in the grid of (α, β) . You may find the normalizing constant numerically.
- (b) Find the Laplace approximation to the posterior $p(\alpha, \beta \mid x_1, \dots, x_n)$. Observe the mode can be found using some numerical method. Use the same simulated data and evaluate the approximated posterior on the grid of (α, β) .
- (c) Compare (a) and (b) and comment.
- 9. Let x_1, \ldots, x_n be an i.i.d. sample such that $x_i \mid \theta, \sigma^2 \sim N(\theta, \sigma^2)$ with θ and σ^2 unknown. Assume a conjugate normal-inverse-gamma prior on (θ, σ^2) such that $\theta \mid \sigma^2 \sim N(\theta_0, \kappa_0 \sigma^2)$ and $\sigma^2 \sim IG(a, b)$ with θ_0, κ_0, a and b known.

Note: The lecture covered Parts (a)-(d). Also, see HW1 solution for Q11-1. You may repeat for practice or you use the results of the lecture directly.

- (a) Find the joint posterior $p(\theta, \sigma^2 \mid \boldsymbol{x})$ (up to proportionality).
- (b) Find $p(\theta \mid \sigma^2, \boldsymbol{x})$.
- (c) Find $p(\sigma^2 \mid \boldsymbol{x})$.
- (d) Find $p(\theta \mid \boldsymbol{x})$.

- (e) Simulate n = 1000 i.i.d. observations from a N(5,1). Fit the above model to these data assuming the following prior scenarios: (i) fairly informative priors around the true values of both parameters, (ii) informative prior on θ and vague on σ^2 (iii) informative prior on σ^2 and vague on θ (iv) vague on both parameters. Specify the form of your posteriors in each case.
- (f) Assume that you are interested in estimating $\eta = \theta/\sigma$. Develop a Monte Carlo algorithm for computing the posterior mean and a 95% credible interval for η . Use the algorithm to compute such quantities under all the prior scenarios described above.
- 10. Consider the usual regression model, $y_i = \mathbf{x}_i' \mathbf{\beta} + \epsilon_i$, where $\epsilon_i \stackrel{iid}{\sim} \mathrm{N}(0, \sigma^2)$, covariates $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})'$ and a coefficient vector $\mathbf{\beta} \in \mathbb{R}^p$.

Fact: a sufficient statistic is $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^t \boldsymbol{X})^{-1} \boldsymbol{X}^t \boldsymbol{y}$, where \boldsymbol{X} is a $n \times p$ matrix whose *i*th row is \boldsymbol{x}_i , and \boldsymbol{y} is the n-dimensional column vector of (y_1, \ldots, y_n) . It is also the maximum likelihood estimator and the least-squares estimator of $\boldsymbol{\beta}$.

(a) Consider the following priors on (β, σ^2) ;

$$oldsymbol{eta} \mid \sigma^2 \sim \mathrm{N}_p \left(oldsymbol{eta}_0, rac{\sigma^2}{n_0} (oldsymbol{X}^t oldsymbol{X})^{-1}
ight), \ \ ext{and} \ \ \sigma^2 \sim \mathrm{IG}(
u/2, s_0^2/2),$$

where β_0 , n_0 , ν and s_0^2 are fixed.

i. Find an expression of the joint posterior distribution as follows;

$$\pi(\boldsymbol{\beta}, \sigma^2 \mid \boldsymbol{y}, \boldsymbol{X}) = \pi_1(\boldsymbol{\beta} \mid \sigma^2, \boldsymbol{y}, \boldsymbol{X}) \pi_2(\sigma^2 \mid \boldsymbol{y}, \boldsymbol{X}).$$

Also, identify $\pi_1(\boldsymbol{\beta} \mid \sigma^2, \boldsymbol{y}, \boldsymbol{X})$ and $\pi_2(\sigma^2 \mid \boldsymbol{y}, \boldsymbol{X})$

- ii. Is the prior conjugate? Explain.
- (b) Consider the following priors on (β, σ^2) ;

$$\boldsymbol{\beta} \sim N_p \left(\boldsymbol{\beta}_0, \boldsymbol{\Sigma}_0 \right), \text{ and } \sigma^2 \sim IG(\nu/2, s_0^2/2),$$

where β_0 , Σ_0 , ν and s_0^2 are fixed.

- i. Find the conditional posterior distribution of $\boldsymbol{\beta}$ given σ^2 , $\pi_1(\boldsymbol{\beta} \mid \sigma^2, \boldsymbol{y}, \boldsymbol{X})$.
- ii. Find the conditional posterior distribution of σ^2 given $\boldsymbol{\beta}$, $\pi_2(\sigma^2 \mid \sigma^2, \boldsymbol{y}, \boldsymbol{X})$.