

FAKULTAS TEKNOLOGI INFORMASI

LOGIKA MATEMATIKA [MI041/ 3 SKS]

FAKULTAS TEKNOLOGI INFORMASI

Pertemuan 14 ALJABAR BOOLEAN

Tujuan Pembelajaran

□ Mahasiswa dapat memahami konsep dasar aljabar boolen sampai dengan gambaran rangkaian logika.

Definisi Aljabar Boolean

☐ Misalkan B merupakan tupel $\langle B, +, ., `, 0, 1 \rangle$ disebut aljabar Boolean jika untuk setiap $a, b, c \in B$ berlaku aksioma (sering dinamakan juga postulat Huntington) berikut :

1. Identitas

(i)
$$a + 0 = a$$

(ii)
$$a \cdot 1 = a$$

2. Komutatif

(i)
$$a + b = b + a$$

(ii)
$$a . b = b . a$$

Definisi Aljabar Boolean

3. Distributif

(i)
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

(ii)
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

4.Komplemen

Untuk setiap $a \in B$ terdapat elemen unik $a' \in B$ sehingga

(i)
$$a + a' = 1$$

(ii)
$$a \cdot a' = 0$$

Definisi Aljabar Boolean

untuk mempunyai sebuah aljabar *Boolean*, harus diperlihatkan:

- 1. elemen-elemen himpuan B,
- 2. kaidah/aturan operasi untuk dua operator biner dan operator uner,
- 3. himpunan *B*, bersama-sama dengan dua operator tersebut, memenuhi keempat aksioma di atas.
- Jika ketiga persyaratan di atas dipenuhi, maka aljabar yang didefinisikan dapat dikatakan sebagai aljabar *Boolean*.

Aljabar Boolean dua-nilai:

$$-B = \{0, 1\}$$

- -operator biner, + dan .
- -operator uner, '
- -Kaidah untuk operator biner dan operator uner:

а	ь	a.b
0	0	0
0	1	0
1	0	0
1	1	1

а	b	a+b
0	0	0
0	1	1
1	0	1
1	1	0

а	a'
0	1
1	0

- □ Harus diperhatikan bahwa keempat aksioma di dalam terpenuhi pada himpunan $B = \{0, 1\}$ dengan dua operator biner dan satu operator uner yang didefinisikan di atas.
- 1. Identitas: jelas berlaku karena dari tabel:

(i)
$$0 + 1 = 1 + 0 = 1$$

(ii)
$$1.0 = 0.1 = 0$$

yang memenuhi elemen identitas 0 dan 1 seperti yang didefinisikan pada postulat *Huntington*.

- 2.Komutatif: jelas berlaku dengan melihat simetri tabel operator biner.
- 3.Distributif: (i) $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

а	b	С	b + c	a.(b+c)	a.b	a.c	(a.b) + (a.c)
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
D	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

- (ii) Hukum distributif $a + (b \cdot c) = (a + b) \cdot (a + c)$ dapat ditunjukkan benar dengan membuat tabel kebenaran dengan cara yang sama seperti (i).
- 4. Komplemen : jelas berlaku karena Tabel 2.4 memperlihatkan bahwa :
- (i)a + a' = 1, karena 0 + 0' = 0 + 1 = 1 dan 1 + 1' = 1 + 0 = 1
- (ii) $a \cdot a = 0$, karena $0 \cdot 0' = 0 \cdot 1$ dan $1 \cdot 1' = 1 \cdot 0 = 0$ Karena keempat aksioma terpenuhi, maka terbukti bahwa $B = \{0, 1\}$ merupakan aljabar *Boolean*.

Ekspresi Boolean

```
Misalkan (B, +, ., `, 0, 1) adalah sebuah aljabar Boolean.

Suatu ekspresi Boolean dalam (B, +, ., `) adalah:

(i)Setiap elemen di dalam B,

(ii)Setiap peubah,

(iii) Jika e<sub>1</sub> dan e<sub>2</sub> adalah ekspresi Boolean maka e<sub>1</sub> + e<sub>2</sub>,

e<sub>1</sub> e<sub>2</sub>, e<sub>2</sub>, e<sub>1</sub>' adalah ekspresi Boolean
```

Contoh lain adalah

1

$$a + b$$

$$a' \cdot (b + c)$$

$$a \cdot b' + a \cdot b$$

$$c + b'$$
, dst

Fungsi Boolean

 Fungsi Boolean (disebut juga fungsi biner) adalah pemetaan dari Bⁿ ke B melalui ekspresi Boolean, kita menuliskannya sebagai

$$f: B^n \to B$$

yang dalam hal ini B^n adalah himpunan yang beranggotakan pasangan terurut ganda-n (ordered n-tuple) di dalam daerah asal B.

 Setiap ekspresi Boolean tidak lain merupakan fungsi Boolean.

Contoh Fungsi Boolean

Misalkan sebuah fungsi Boolean adalah

$$f(x, y, z) = xyz + x'y + y'z$$

Fungsi f memetakan nilai-nilai pasangan terurut ganda-3 (x, y, z) ke himpunan $\{0, 1\}$.

Contohnya, (1, 0, 1) yang berarti x = 1, y = 0, dan z = 1 sehingga $f(1, 0, 1) = 1 \cdot 0 \cdot 1 + 1' \cdot 0 + 0' \cdot 1 = 0 + 0 + 1 = 1$.

Contoh Fungsi Boolean

Contoh-contoh fungsi Boolean yang lain:

1.
$$f(x) = x$$

2.
$$f(x, y) = x'y + xy' + y'$$

3.
$$f(x, y) = x' y'$$

4.
$$f(x, y) = (x + y)^{2}$$

5.
$$f(x, y, z) = xyz'$$

• Setiap peubah di dalam fungsi Boolean, termasuk dalam bentuk komplemennya, disebut **literal**.

Contoh: Fungsi h(x, y, z) = xyz' pada contoh di atas terdiri dari 3 buah literal, yaitu x, y, dan z'.

Contoh Fungsi Boolean dengan Tabel Kebenaran

Diketahui fungsi Booelan f(x, y, z) = xy z', nyatakan h dalam tabel kebenaran.

Penyelesaian:

x	y	Z	f(x, y, z) = xy z'
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Komplemen Fungsi Boolean

1. Cara pertama: menggunakan hukum De Morgan Hukum De Morgan untuk dua buah peubah, x_1 dan x_2 , adalah

Contoh. Misalkan f(x, y, z) = x(y'z' + yz), maka

$$f'(x, y, z) = (x(y'z' + yz))'$$

$$= x' + (y'z' + yz)'$$

$$= x' + (y'z')' (yz)'$$

$$= x' + (y + z) (y' + z')$$

Komplemen Fungsi Boolean

2. Cara kedua: menggunakan prinsip dualitas. Tentukan dual dari ekspresi Boolean yang merepresentasikan *f*, lalu komplemenkan setiap literal di dalam dual tersebut.

Contoh. Misalkan
$$f(x, y, z) = x(y'z' + yz)$$
, maka dual dari f : $x + (y' + z')(y + z)$

komplemenkan tiap literalnya: x' + (y + z)(y' + z') = f'

Jadi,
$$f'(x, y, z) = x' + (y + z)(y' + z')$$

Bentuk Kanonik

- Jadi, ada dua macam bentuk kanonik:
 - 1. Penjumlahan dari hasil kali (sum-of-product atau SOP)
 - 2. Perkalian dari hasil jumlah (product-of-sum atau POS)

Contoh: 1.
$$f(x, y, z) = x'y'z + xy'z' + xyz \rightarrow SOP$$

Setiap suku (*term*) disebut *minterm*

2.
$$g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')$$

 $(x' + y + z')(x' + y' + z) \rightarrow POS$

Setiap suku (term) disebut maxterm

Bentuk Kanonik

• Setiap *minterm/maxterm* mengandung literal lengkap

		M	linterm	Ma	xterm
\boldsymbol{x}	y	Suku	Lambang	Suku	Lambang
0	0	x'y'	m_0	x+y	M_0
0	1	x'y	m_1	x+y	M_1
1	0	xy'	m_2	x' + y	M_2
1	1	xy	m_3	x' + y'	M_3

			Minterm		Max	term
\boldsymbol{x}	y	Z	Suku	Lambang	Suku	Lambang
0	0	0	x'y'z'	m_0	x+y+z	M_0
0	0	1	x'y'z	m_1	x+y+z	M_1
0	1	0	x'yz'	m_2	x+y'+z	M_2
0	1	1	x'yz	m_3	x+y'+z'	M_3
1	0	0	xy'z'	m_4	x'+y+z	M_4
1	0	1	x y'z	m_5	x'+y+z'	M_5
1	1	0	xyz	m_6	x'+y'+z	M_6
1	1	1	xyz	m_7	x'+y'+z'	M_7

Contoh bentuk kanonik

Nyatakan tabel kebenaran di bawah ini dalam bentuk kanonik SOP dan POS.

x	y	z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	O
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Penyelesaian:

(a) SOP

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 1 adalah 001, 100, dan 111, maka fungsi Booleannya dalam bentuk kanonik SOP adalah

$$f(x, y, z) = x'y'z + xy'z' + xyz$$

atau (dengan menggunakan lambang minterm),

$$f(x, y, z) = m_1 + m_4 + m_7 = \sum (1, 4, 7)$$

Contoh bentuk kanonik

(b) POS

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 0 adalah 000, 010, 011, 101, dan 110, maka fungsi Booleannya dalam bentuk kanonik POS adalah

$$f(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')$$
$$(x' + y + z')(x' + y' + z)$$

atau dalam bentuk lain,

$$f(x, y, z) = M_0 M_2 M_3 M_5 M_6 = \prod (0, 2, 3, 5, 6)$$

Disjungsif Normal Form (DNF)

a. Penjelasan

DNF terdiri dari penjumlahan dari beberapa perkalian (sum of products = SOP). Dalam tabel kebenaran, DNF merupakan perkalian-perkalian yang menghasilkan nilai 1. Contoh: xy + x'y Setiap suku (term) disebut minterm

b. Contoh:

Jadikan ekspresi $E = (x \lor yz')(yz)'$ dalam bentuk DNF!

$$(x \lor yz')(yz)' = (x \lor yz') (y' \lor z')$$

$$= x(y' \lor z') \lor (yz') (y' \lor z')$$

$$= (xy' \lor xz') \lor (yz'y' \lor yz')$$

$$= xy' \lor xz' \lor yz'$$

