InverseForm: A Loss Function for Structured Boundary-Aware Segmentation

• Author: Shubhankar Borse et al.

• Institution: Qualcomm Al Research

• Published: CVPR 2021 (Oral)

• Arxiv: https://arxiv.org/abs/2104.02745

Contribution

- 1. Proposed boundary distance-based measure, InverseForm.
 - o Significantly more capable of capturing the spatial boundary transform than cross-entropy based beasure.
- 2. The scheme is agnostic to the backbone architecture choice.
 - o Plug-and-play property.
 - o Can fit into multi-task learning frameworks.
- 3. SOTA in both single-task (on NYU-Depth-v2), and multi-task settings (on PASCAL).

Figure 1. Left: Images from Cityscapes val benchmark. Middle: Segmented prediction for an HRNet-48-OCR baseline. Right: Same backbone trained using our InverseForm boundary loss.

3. Proposed Scheme: InverseForm

3.1. Motivation for distance-based metrics

Figure 2. Cross-entropy(XE) based distance fails for spatial transformations of boundaries.

- Pixel-wise cross-entropy or balanced cross-entropy losses take into account the pixel-wise features (intensity, etc.)
- but not spatial distance between object boundaries and ground-truth boundaries.
- They are insufficient for imposing boundary alignment for segmentation. (Ilustrated in Figure 2.)
- Accordingly, boundary detection networks trained with pixel-based losses produce thicker and distorted boundaries.
- Some works use Hausdorff distance to model this measure between boundaries,
- but this loss cannot be efficiently applied in a semantic segmentation settings.

3.2. Inverse transformation network

(a) Spatial transformer network

(b) Inverse transformation network

Figure 3. Spatial transformer (a) and our inversetransformation network (b).

- Assume that two boundary maps are related to each other through a homography transformation.
- Need to build Spatial Transformer Network. In this paper, θ is 3×3 matrix. (STN [21], Figure 3(a).)
- Create a network that inputs two boundary maps and predicts the "homography change" as its output. (Figure 3(b).)

- This network is called inverse transformation network, because it performs the inverse operation of STN, theoretically.
- The outputs of the inverse transformation network are the coefficients of the homography matrix.
- There are numerous methods to formulate a distance metric from these values. In this paper, two distance metrices are choosed.
- One may also attempt to directly regress on the distance instead of estimating the transformation coefficients.
- However, such an approach would not allow optimization of the boundary-aware segmentation network. (?)

3.3. Measuring distances from homography

- If there is a perfect match between input boundary maps, the network should estimate an identity matrix.
- Euclidean distance:
 - \circ Train the inverse-transformation network by reducing $d_{if}(x,t_{ heta}(x))=\left\|\hat{ heta}- heta
 ight\|_{r}$.
 - $\circ~$ At inference time, $d_{if}(x,t_{ heta}(x))=\left\|\hat{ heta}-I_{3}
 ight\|_{F}.$
- Geodesic distance: (not sure)
 - o Homography transformations reside on an analytical manifold instead of a flat Euclidean space.
 - Figure 1: The deviation between two transformations should be measured along the curved manifold (Lie group) of transformations rather than through the forbidden Euclidean space of transformations.

$$d_{if}(x,t_{ heta}(x)) = \left\|rac{\operatorname{Log}(heta^{-1}\hat{ heta})}{\operatorname{Log}(I_3)}
ight\|_F$$

- Above equation need Riemannian logarithm to calculate gradient, which does not have a closed-form solution.
- \circ In [27], project the homography Lie group onto a subgroup SO(3) [41] where the calculation of geodesic distance does not need the Riemannian logarithm.
- o Now, the formulation is given by,

$$d_{if}(x,t_{ heta}(x)) = rccosigg[rac{\mathrm{Tr}(P)-1}{2}igg] + \lambda \mathrm{Tr}(R_{\pi}^T R_{\pi})$$

- Weighting parameter: $\lambda = 0.1$.
- ${\color{red} \bullet}$ Projection P onto the rotation group SO(3): $P=Udiag\{1,1,det(UV)^T\}V^T$
- lacksquare Projection residual: $R_\pi = heta^{-1} \hat{ heta} P$
- \circ During inference, $\theta=I_3$

3.4. Using InverseForm as a loss function

- At first, train the inverse-transformation network using boundary maps of images sampled from the target dataset.
- Apply the STN [21] to generate the transformed versions of boundary images. It leads greater realistic transformations than randomly sampling transformation parameters.
- Before feeding boundary maps to the network, images are split into smaller tiles.
- Ideally, the best tiling dimension should provide a balance between local and global contexts. (The effect of tiling dimension in the Appendix.)
- Assume the predicted boundary b_{pred} is a transformed version of the ground truth boundary label b_{gt} . i.e. $b_{pred} = t_{\theta}(b_{gt})$.

$$L_{if}(b_{pred},b_{gt}) = \sum_{j=1}^{N} d_{if}(b_{pred,j},b_{gt,j})$$

3.5. Boundary-aware segmentation setup

Figure 4. Overall framework for our proposed boundary-aware segmentation.

- Single-task architectures using InverseForm loss.
- Use a simple boundary-aware segmentation setup. (Figure 4.)
- This setup could be used over any backbone.

$$L_{total} = L_{xe}(y_{pred}, y_{qt}) + \beta L_{bxe}(b_{pred}, b_{qt}) + \gamma L_{if}(b_{pred}, b_{qt})$$

4. Experimental Results

4.1. Results on NYU-Depth-v2

Network	Tasks	mIoU	mBA
HRNet-w18	S	33.18	37.46
HRNet-w18 w/ ours	S+E	34.79	40.72
PAD-HRNet18	S+D	32.80	38.10
PAD-HRNet18	S+D+E+N	33.10	42.69
PAD-HRNet18 w/ ours	S+D+E+N	34.70	43.24
MTI-HRNet18	S+D	35.12	42.44
MTI-HRNet18	S+D+E+N	37.49	43.26
MTI-HRNet18 w/ ours	S+D+E+N	38.71	45.59
HRNet-w48	S	45.70	56.01
HRNet-w48 w/ ours	S+E	47.42	59.34

Table 1: Comparing baselines for NYU-Depth-v2 using HRNet-w18 and HRNet-w48 backbones in both single task and multi-task learning using our loss. In multi-task settings, S:Semantic segmentation, D:Depth, E:Edge detection, N:Surface normal estimation. Consistent improvement in segmentation mIoU and boundary mBA is visible.

Network	Tasks	mIoU	mBA
HRNet-w18	S	33.18	37.46
HRNet-w18 w/ ours	S+E	34.79	40.72
PAD-HRNet18	S+D	32.80	38.10
PAD-HRNet18	S+D+E+N	33.10	42.69
PAD-HRNet18 w/ ours	S+D+E+N	34.70	43.24
MTI-HRNet18	S+D	35.12	42.44
MTI-HRNet18	S+D+E+N	37.49	43.26
MTI-HRNet18 w/ ours	S+D+E+N	38.71	45.59
HRNet-w48	S	45.70	56.01
HRNet-w48 w/ ours	S+E	47.42	59.34

Table 1: Comparing baselines for NYU-Depth-v2 using HRNet-w18 and HRNet-w48 backbones in both single task and multi-task learning using our loss. In multi-task settings, S:Semantic segmentation, D:Depth, E:Edge detection, N:Surface normal estimation. Consistent improvement in segmentation mIoU and boundary mBA is visible.

Figure 5: Comparison of mIoU v/s FLOPs and mIou v/s # params for different schemes on NYU-Depth-v2 dataset.

Figure 7: NYU-Depth-v2 results showing visual effect of training SA-Gates [35] baseline with InverseForm loss. Clear improvement is visible in the structure of predicted outputs due to boundary-aware segmentation.

4.2. Results on PASCAL

Network	InverseForm	Seg (†)	Edge (↑)	Saliency (†)	Parts (†)	Normals (↓)	$\Delta_m(\%)$ (†)
SE-ResNet-26+ASTMT		64.61	71.0	64.70	57.25	15.00	-0.11
	✓	65.13	71.4	65.29	57.93	15.07	0.49
SE-ResNet-50+ASTMT		68.00	72.4	66.13	61.10	14.60	-0.04
	✓	68.83	72.5	67.50	61.13	14.55	0.95
SE-ResNet-101+ASTMT		68.51	73.5	67.72	63.41	14.37	-0.6
	✓	70.14	73.7	68.70	64.76	14.55	0.39
ResNet-18+MTI-Net		65.70	73.9	66.80	61.60	14.60	3.84
	✓	65.96	74.2	67.23	61.71	14.52	4.34
HRNet-w18+MTI-Net		64.30	73.4	68.00	62.10	14.80	2.74
	✓	65.12	73.6	68.61	62.53	14.67	3.72

Table 3: Training state-of-the-art multi-task learning methods on PASCAL by adding InverseForm loss over boundary detection. HRNet-18 and SE-Resnet backbones are used in a multi-task setting and mIoU scores for segmentation, saliency, human parts and surface normal tasks as well as F-scores for boundary detection are compared with the original results. InverseForm loss consistently improves results barring a few cases.

4.3. Results on Cityscapes

Figure 6: Cityscapes results showing visual effect of training different baselines with InverseForm loss. The structure of predicted outputs is improved in highlighted regions due to boundary-aware segmentation.

Method	Backbone	Split	F	С	mIoU
Naive-student [4]	WRN41	Test	✓	✓	85.2
GSCNN [39]	WRN38	Test	\checkmark		82.8
HRNet-OCR [50]	HRNet48	Test	\checkmark	\checkmark	84.2
OCR+SegFix [50]	HRNet48	Test	\checkmark	\checkmark	84.5
OCR w/ ours	HRNet48	Test	\checkmark	\checkmark	84.8
HMS [40]	HRNet48	Test	\checkmark	\checkmark	85.1
HMS w/ ours	HRNet48	Test	\checkmark	\checkmark	85.6
GSCNN [39]	WRN38	Val	✓		81.0
GSCNN+SegFix	WRN38	Val	\checkmark		81.5
GSCNN w/ ours	WRN38	Val	\checkmark		82.6
GSCNN w/ ours	WRN38	Val	\checkmark	\checkmark	84.0
HMS	HRNet48	Val	\checkmark	\checkmark	86.7
HMS w/ ours	HRNet48	Val	\checkmark	\checkmark	87.0

Table 4: Our method compared to various state-of-the-art algorithms on Cityscapes. The models reporting on test split are trained using training+validation data. F:Fine annotations, C:Coarse annotations

5. Ablation Studies

• Searching for the best inverse-transformation:

o Compared to the convolutional architecture used in AET [52]

model	Loss net.	$L_{if,geo}$	$L_{if,euc}$	mIoU
	AET	✓		47.19
	Ours	\checkmark		47.28
HRNet-w48	AET		✓	47.03
	Ours		\checkmark	47.42
	AET	✓		33.82
	Ours	✓		34.84
HRNet-w18	AET		✓	33.97
	Ours		✓	34.79

Table 5: Searching for the optimal InverseForm loss

• Distance function:

- There is no clear winner.
- Geodesic distance can lead to exploding gradients easily. This severely limits the search-space for hyperparameters.
- Euclidean distance might not model perspective homography best, but has wider search-space and hence a more consistent improvement.