

Phrase Mining: Can We Reduce Annotation Cost?

- Phrase mining: Originated from the NLP community—"Chunking"
 - Model it as a sequence labeling problem (B-NP, I-NP, O, ...)
- Need annotation and training
 - Annotate hundreds of documents as training data
 - Train a supervised model based on part-of-speech features
- Recent trend:
 - □ Use distributional features based on web n-grams (Bergsma et al., 2010)
 - State-of-the-art performance: ~95% accuracy, ~88% phrase-level F-score
- Limitations
 - High annotation cost, not scalable to a new language, a new domain/genre
 - May not fit domain-specific, dynamic, emerging applications
 - Scientific domains, query logs, or social media (e.g., Yelp and Twitter data)

2

Unsupervised Phrase Mining and Topic Modeling

- Many studies of unsupervised phrase mining are linked with topic modeling
- Topic modeling
 - Represents documents by multiple topics in different proportions
 - Each topic is represented by a word distribution
 - Does not require any prior annotations or labeling of the documents
- Statistical topic modeling algorithms
 - ☐ The most common algorithm: LDA (Latent Dirichlet Allocation) [Blei, et al., 2003]
- Three strategies on phrase mining with topic modeling
 - Strategy 1: Generate bag-of-words → generate sequence of tokens
 - Strategy 2: Post bag-of-words model inference, visualize topics with n-grams
- Strategy 3: Prior bag-of-words model inference, mine phrases and impose on the bag-of-words model

=9760

Strategy 1: Simultaneously Inferring Phrases and Topics

- Bigram Topic Model [Wallach'06]
 - Probabilistic generative model that conditions on previous word and topic when drawing next word
- Topical N-Grams (TNG) [Wang, et al.'07] (a generalization of Bigram Topic Model)
 - Probabilistic model that generates words in textual order
 - Create n-grams by concatenating successive bigrams
- Phrase-Discovering LDA (PDLDA) [Lindsey, et al.'12]
 - Viewing each sentence as a time-series of words, PDLDA posits that the generative parameter (topic) changes periodically
 - Each word is drawn based on previous m words (context) and current phrase topic
- Comments on this strategy
 - High model complexity: Tends to overfitting
 - High inference cost: Slow

Strategy 2: Post Topic-Modeling Phrase Construction (I): TurboTopics

- □ TurboTopics [Blei & Lafferty'09] Phrase construction as a post-processing step to Latent Dirichlet Allocation
 - Latent Dirichlet Allocation

 | 122 | Topic mode ling
 | Perform Latent Dirichlet Allocation on corpus to assign each token a topic label
 - Merge adjacent unigrams with the same topic label by a distribution-free permutation test on arbitrary-length back-off model
 - End recursive merging when all significant adjacent unigrams have been merged

Annotated documents

What is phase₁₁ transition₁₁? Why is there phase₁₁ transitions₁₁? These is are old₁₂₇ questions₁₂₇ people₁₇₀ have been asking₁₉₅ for many years₁₂₇ but get₁₅₃ few answers₁₂₇ We established₁₂₇ one general₁₁ theory₁₂₇ based₁₅₃ on game₁₅₃ theory₁₂₇ and topology₈₅ it provides₁₁ a basic₁₂₇ understanding₁₂₇ to phase₁₁ transitions₁₁ We proposed₁₁ a modern₁₂₇ definition₁₁₇ of phase₁₁ transition₁₁ based₁₅₃ on game₁₅₃ theory₁₂₇ and topology₈₅ of symmetry₁₁ group₁₈₄ which unified₁₃₅ Ehrenfests definition₁₁₇ A spontaneous₁₁ result₆₈ of this topological₈₅ phase₁₁ transition₁₁ theory₁₂₇ is the universal₁₄ equation₁₁₇ of coexistence₁₉₅ curve₁₉₅ in phase₁₁ diagram₁₁ it holds₁₅₃ both for classical₁₂₂ and quantum₁₁ phase₁₁ transition₁₁ This

LDA topic #11

phase, transitions, phases, transition, quantum, critical, symmetry, field, point, model, order, diagram, systems, two, theory, system, study, breaking, spin, first

Turbo topic #11

phase transitions, model, symmetry, point, quantum, systems, phase transition, phase diagram, system, order, field, order, parameter, critical, two, transitions in, models, different, symmetry breaking, first order, phenomena

Post Topic-Modeling Phrase Construction (II): KERT

KERT [Danilevsky et al.'14] – Phrase construction as a post-processing step to LDA
Perform frequent pattern mining to extract candidate phrases within each topic
Perform phrase ranking based on four different criteria
Popularity: e.g., "information retrieval" vs. "cross-language information retrieval"
□ Concordance -纵性、两数和引发
 "powerful tea" vs. "strong tea" "active learning" vs. "learning classification" Informativeness: e.g., "this paper" (frequent but not discriminative, not
□ "active learning" vs. "learning classification" ス分後、淡な代格
Informativeness: e.g., "this paper" (frequent but not discriminative, not
informative)
Completeness: e.g., "vector machine" vs. "support vector machine"

Comparability property: directly compare phrases of mixed lengths