Esfera de Bloch: algumas propriedades

Valéria S. Motta

Departamento de Ciências Fundamentais, Radiações e Meio Ambiente,
Instituto Militar de Engenharia - IME,
Praça General Tibúrcio, 80, Praia Vermelha,
22290-270, Rio de Janeiro, RJ.
E-mail: valeria@ime.eb.br.

Luiz Mariano Carvalho

Laboratório de Algoritmos Quânticos, Departamento de Matemática Aplicada,
Instituto de Matemática e Estatística,
Universidade do Estado do Rio de Janeiro - UERJ,
Rua São Francisco de Xavier, 524, sala 6026, bloco D, Maracanã,
20550-013, Rio de Janeiro, RJ.
E-mail: luizmc@ime.uerj.br.

Nelson Maculan

Programa de Engenharia de Sistemas e Computação – COPPE, Universidade Federal do Rio de Janeiro - UFRJ, C. P. 68511, 21945-970, Rio de Janeiro – RJ. E-mail: maculan@cos.ufrj.br.

1 Introdução

Alguns livros da área de computação quântica dão um tratamento pouco aprofundado à construção da esfera de Bloch [4] e ao estudo de suas propriedades (por exemplo, ([9], p. 15) e ([11], p. 54)). Outros nem mesmo o fazem ([5], [6]). Apresentamos uma descrição matemática detalhada da esfera de Bloch na seção 3. Na seção 2, introduzimos definições preliminares (maiores detalhes em [10]). Esse trabalho é um desenvolvimento de artigos de dois dos autores [2, 3], principalmente através do detalhamento de algumas passagens. Para uma visão mais abrangente sobre computação quântica, sugerimos o livro de Nielsen e Chuang [9].

2 Modelos para um q-bit

Em computação clássica, a menor porção de informação disponível é o bit, que pode assumir apenas dois valores, por exemplo, 0 e 1. Em computação quântica, utilizam-se estados quânticos no lugar de estados clássicos. O bit é substituído pelo bit quântico, o q-bit, e os valores 0 e 1 de um bit são subs-

tituídos pelos vetores $|0\rangle$ e $|1\rangle$, representados por

$$|0\rangle = \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \quad {\rm e} \quad |1\rangle = \left[\begin{array}{c} 0 \\ 1 \end{array} \right].$$

Essa notação, utilizada em mecânica quântica, é conhecida por notação de Dirac.

A principal diferença entre um bit e um q-bit é que um q-bit genérico $|\psi\rangle$ é uma combinação linear dos vetores $|0\rangle$ e $|1\rangle$, ou seja,

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix},$$

onde α e β são números complexos. Note que os vetores $|0\rangle$ e $|1\rangle$ pertencem ao espaço vetorial complexo $\mathbb{C}^2(\mathbb{C})$ e formam uma base ortonormal para esse espaço vetorial. Em computação quântica, essa base é chamada de base computacional e o vetor $|\psi\rangle$ é denominado de superposição dos vetores $|0\rangle$ e $|1\rangle$, com amplitudes α e β . Em mecânica quântica, vetor é também chamado de estado.

A interpretação física de um q-bit é que ele está simultaneamente nos estados $|0\rangle$ e $|1\rangle$. Isso faz com que a quantidade de informação armazenada no estado $|\psi\rangle$ possa ser infinita. Entretanto, essa quantidade infinita de informação está no nível quântico. Para torná-la acessível, no nível clássico, precisamos

fazer uma medida. A mecânica quântica diz que o processo de medida altera o estado de um q-bit, fazendo-o assumir o estado $|0\rangle$, com probabilidade $|\alpha|^2$, ou o estado $|1\rangle$, com probabilidade $|\beta|^2$. Com apenas duas possibilidades, $|0\rangle$ ou $|1\rangle$, temos então que

$$|\alpha|^2 + |\beta|^2 = 1.$$

Calculando a norma de $|\psi\rangle$, obtemos:

$$\||\psi\rangle\| = \sqrt{|\alpha|^2 + |\beta|^2} = 1.$$

Como conseqüência imediata, podemos estabelecer o primeiro modelo para um q-bit.

Proposição 2.1

Um vetor unitário de $\mathbb{C}^2(\mathbb{C})$ é um modelo matemático para um q-bit.

Um outro modelo é dado na proposição abaixo.

Proposição 2.2

Um vetor unitário de $\mathbb{C}^2(\mathbb{R})$ é um modelo matemático para um q-bit.

Prova. Seja $|\psi\rangle$ um q-bit, pela proposição 2.1, temos que existem $\alpha,\,\beta\in\mathbb{C},$ tais que:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
, com $|\alpha|^2 + |\beta|^2 = 1$.

Vamos considerar $\alpha = a + i^1$ b e $\beta = c + i$ d, onde a,b,c,d \in R, então:

$$|\psi\rangle = (a+ib)\begin{bmatrix} 1\\0 \end{bmatrix} + (c+id)\begin{bmatrix} 0\\1 \end{bmatrix}$$

podemos escrever $|\psi\rangle$ da seguinte forma:

$$|\psi\rangle = a \left[\begin{array}{c} 1 \\ 0 \end{array}\right] + b \left[\begin{array}{c} \imath \\ 0 \end{array}\right] + c \left[\begin{array}{c} 0 \\ 1 \end{array}\right] + d \left[\begin{array}{c} 0 \\ \imath \end{array}\right]$$

Observe que $|\psi\rangle$ é combinação linear dos vetores da base $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \imath \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ \imath \end{bmatrix} \right\}$, que é uma base de $\mathbb{C}^2(\mathbb{R})$, pois tomamos os escalares a,b,c e d no conjunto dos números reais. Assim verificamos que $|\psi\rangle\in\mathbb{C}^2(\mathbb{R})$. Pela proposição 2.1, sabemos que:

$$|\alpha|^2 + |\beta|^2 = 1$$

substituindo os valores de α e β na igualdade acima:

$$a^2 + b^2 + c^2 + d^2 = 1$$

Logo, podemos concluir que um vetor unitário de $\mathbb{C}^2(\mathbb{R})$ é um modelo matemático para um q-bit.

Proposição 2.3

Um vetor unitário de $\mathbb{R}^4(\mathbb{R})$ é um modelo matemático para um q-bit e a esfera unitária \mathcal{S}^3 é o lugar geométrico dos q-bits.

Prova. Considere a seguinte transformação linear entre $\mathbb{C}^2(\mathbb{R})$ e $\mathbb{R}^4(\mathbb{R})$, dada por:

$$T \left[\begin{array}{c} 1 \\ 0 \end{array} \right] = \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right] \;, \qquad T \left[\begin{array}{c} \imath \\ 0 \end{array} \right] = \left[\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} \right]$$

$$T\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \qquad T\begin{bmatrix} 0 \\ i \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

É fácil ver que T dada dessa forma é um isomorfismo entre $\mathbb{C}^2(\mathbb{R})$ e $\mathbb{R}^4(\mathbb{R})$. Da Proposição 2.2, segue que um q-bit $|\psi\rangle$ pode ser representado por:

$$|\psi\rangle = a \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} i \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 1 \end{bmatrix} + d \begin{bmatrix} 0 \\ i \end{bmatrix}, \text{ com}$$

$$a^2 + b^2 + c^2 + d^2 = 1$$

Aplicando T à igualdade acima, temos:

$$T\left(\left|\psi\right\rangle\right)=a\begin{bmatrix}1\\0\\0\\0\end{bmatrix}+b\begin{bmatrix}0\\1\\0\\0\end{bmatrix}+c\begin{bmatrix}0\\0\\1\\0\end{bmatrix}+d\begin{bmatrix}0\\0\\0\\1\end{bmatrix}$$

Vamos usar indistintamente $T(|\psi\rangle)$ ou $|\psi\rangle$, visto que T é um isomorfismo. Então:

$$|\psi\rangle = a \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} + b \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} + c \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} + d \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

Ainda pela proposição 2.2, podemos concluir que $|||\psi\rangle||=1$. Assim, concluímos que um q-bit pode ser representado por um vetor unitário de $\mathbb{R}^4(R)$ e \mathcal{S}^3 é o lugar geométrico de todos os q-bits.

Poderíamos, também, modelar um q-bit por um quatérnio (veja [1], p. 211 e [8]) ou por um elemento do grupo SU(2) (veja [7], p. 263). Neste artigo, restringiremos nossa atenção aos modelos de vetores unitários de $\mathbb{C}^2(\mathbb{C})$ e $\mathbb{R}^4(\mathbb{R})$; essas duas representações e ainda outras estão sendo desenvolvidas em outros trabalhos.

Para introduzirmos a esfera de Bloch, precisamos do seguinte resultado.

Proposição 2.4

Um q-bit pode ser escrito na forma polar

$$|\psi\rangle = e^{i\gamma}[\cos(\xi)|0\rangle + e^{i\varphi} sen(\xi)|1\rangle],$$
 (1)

onde $0 \le \gamma < 2\pi$, $0 \le \varphi < 2\pi$ e $0 \le \xi \le \pi/2$.

Prova. ver [2].

 $^{^{1}}$ onde i é a unidade imaginária.

3 A esfera de Bloch

Em computação quântica, o escalar $e^{i\gamma}$, em (1), é denominado fator de fase global (veja [9], p. 93). Note que dois q-bits quaisquer $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ e $e^{i\zeta}|\psi\rangle$ têm as mesmas probabilidades de, ao serem medidos, produzirem os estados $|0\rangle$ e $|1\rangle$, pois

$$\begin{split} \mathrm{e}^{\imath\zeta} \left| \psi \right\rangle &= \mathrm{e}^{\imath\zeta} \,\alpha |0\rangle + \mathrm{e}^{\imath\zeta} \,\beta |1\rangle \;\mathrm{e} \\ \\ \left| \,\mathrm{e}^{\imath\zeta} \,\alpha \right| &= \left| \,\mathrm{e}^{\imath\zeta} \, ||\alpha| = |\alpha|. \end{split}$$

Sabemos, também, que a evolução de um q-bit é descrita, matematicamente, pela aplicação sucessiva de operadores unitários (veja [9], p. 81). Ao aplicarmos uma matriz unitária U em um q-bit $|\psi\rangle = \mathrm{e}^{\imath\gamma}[\cos(\xi)|0\rangle + \mathrm{e}^{\imath\varphi}\sin(\xi)|1\rangle]$, obtemos

$$U|\psi\rangle = e^{i\gamma} U[\cos(\xi)|0\rangle + e^{i\varphi} \sin(\xi)|1\rangle].$$

Note que o fator de fase global não se modifica pela aplicação de um operador unitário. Usando essas propriedades, podemos desprezar o fator $e^{i\gamma}$ e, a partir daí, tentar encontrar uma representação geométrica para um q-bit em \mathbb{R}^3 .

Proposição 3.1

Os vetores da forma $|\psi\rangle_R = \cos(\xi)|0\rangle + e^{i\varphi} \sin(\xi)|1\rangle$, com $0 \le \xi \le \pi/2$ e $0 \le \varphi < 2\pi$, pertencem a um subespaço vetorial de $\mathbb{C}^2(\mathbb{R})$ de dimensão três.

Prova. Reescrevendo o vetor $|\psi\rangle_R$, temos

$$\begin{aligned} |\psi\rangle_R &= \cos(\xi)|0\rangle + \mathrm{e}^{\imath\varphi} \operatorname{sen}(\xi)|1\rangle \\ &= \cos(\xi)|0\rangle + \cos(\varphi) \operatorname{sen}(\xi)|1\rangle \\ &+ \imath \operatorname{sen}(\varphi) \operatorname{sen}(\xi)|1\rangle. \end{aligned}$$

Ou seja, o vetor $|\psi\rangle_R$ pode ser visto como

$$|\psi\rangle_R = \begin{bmatrix} a \\ c + id \end{bmatrix},$$

com $a, b, c \in \mathbb{R}$.

O espaço vetorial real $\mathbb{C}^2(\mathbb{R})$ tem dimensão quatro e uma de suas bases ortonormais é o conjunto

$$\left\{ \left[\begin{array}{c} 1 \\ 0 \end{array}\right], \left[\begin{array}{c} \imath \\ 0 \end{array}\right], \left[\begin{array}{c} 0 \\ 1 \end{array}\right], \left[\begin{array}{c} 0 \\ \imath \end{array}\right] \right\}.$$

Entretanto, podemos representar o vetor $|\psi\rangle_R$ utilizando apenas três vetores dessa base, ou seja,

$$|\psi\rangle_{R} = \cos(\xi) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \cos(\varphi)sen(\xi) \begin{bmatrix} 0 \\ 1 \end{bmatrix} + sen(\varphi)sen(\xi) \begin{bmatrix} 0 \\ i \end{bmatrix}.$$

Isso conclui a demonstração.

O subespaço \mathbb{V} de $\mathbb{C}^2(\mathbb{R})$, gerado pelos elementos

Figura 1: Semi-esfera que é o local geométrico de todos os q-bits $|\psi\rangle_R$.

$$\left\{ \left[\begin{array}{c} 1\\0 \end{array}\right], \left[\begin{array}{c} 0\\1 \end{array}\right], \left[\begin{array}{c} 0\\i \end{array}\right] \right\},$$

tem dimensão três. Como esse subespaço está definido sobre o corpo dos reais, ele é isomorfo a \mathbb{R}^3 . Considere, então, um isomorfismo \mathcal{T} entre \mathbb{V} e \mathbb{R}^3 , tal que

$$\mathcal{T}\left(\left[\begin{array}{c}0\\1\end{array}\right]\right)=\left[\begin{array}{c}1\\0\\0\end{array}\right],\quad \mathcal{T}\left(\left[\begin{array}{c}0\\i\end{array}\right]\right)=\left[\begin{array}{c}0\\1\\0\end{array}\right],$$

$$\mathcal{T}\left(\left[\begin{array}{c}1\\0\end{array}\right]\right)=\left[\begin{array}{c}0\\0\\1\end{array}\right].$$

Usando esse isomorfismo, podemos escrever

$$\mathcal{T}(|\psi\rangle_R) = \cos(\varphi) \operatorname{sen}(\xi) \begin{bmatrix} 1\\0\\0 \end{bmatrix} + \operatorname{sen}(\varphi) \operatorname{sen}(\xi) \begin{bmatrix} 0\\1\\0 \end{bmatrix} + \cos(\xi) \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

Podemos então imaginar que, quando desprezamos o fator de fase global de um q-bit, ele é "projetado" em um subconjunto de \mathbb{R}^3 . Observamos que o lugar geométrico determinado por $|\psi\rangle_R$ (a partir do isomorfismo, podemos usar indistintamente $\mathcal{T}(|\psi\rangle_R)$ e $|\psi\rangle_R)$ é uma semi-esfera de \mathbb{R}^3 , denominada SE^2 , com centro na origem e raio unitário (ou seja, $x^2+y^2+z^2=1$ e $z\geq 0$). Note que $0\leq \xi\leq \pi/2$ e $0\leq \varphi<2\pi$, como representamos na Figura 1.

Para chegarmos à esfera de Bloch, vamos enunciar dois lemas.

Lema 1 Sejam $\overline{SE}^2 = SE^2 - \{(0,0,1),(x,y,0)^2\}$ (a semi-esfera na Figura 1 sem o equador e o pólo norte) e $Q = (0,\pi/2) \times [0,2\pi)$. A função

$$f: Q \rightarrow \overline{SE}^2$$

 $(\xi, \varphi) \mapsto (\cos(\varphi) \sin(\xi), \sin(\varphi) \sin(\xi), \cos(\xi))$

é uma bijeção.

2
Com $x^{2} + y^{2} = 1$.

Figura 2: Esfera de Bloch com representação de um q-bit genérico $|\psi\rangle$ e dos q-bits $|0\rangle$ e $|1\rangle$.

Prova. ver [2].

Lema 2 Sejam $\overline{S}^2=S^2-\{(0,0,1),(0,0,-1)\}$ (a esfera na Figura 2 sem os pólos norte e sul) e $Q=(0,\pi/2)\times[0,2\pi)$. A função

$$g: Q \rightarrow \overline{S}^2$$

 $(\xi, \varphi) \mapsto (\cos(\varphi) \sin(2\xi), \sin(\varphi) \sin(2\xi), \cos(2\xi))$

é uma bijeção.

Prova. ver [2].

Proposição 3.2

Sejam f e g as funções definidas nos Lemas 1 e 2, respectivamente. A função

$$\begin{array}{cccc} \mathcal{V}: SE^2 & \to & S^2 \\ (x,y,z) & \mapsto & g(f^{-1}(x,y,z)) & & ((x,y,z) \in \overline{SE}^2) \\ (0,0,1) & \mapsto & (0,0,1) \\ (x,y,0) & \mapsto & (0,0,-1) \end{array}$$

é uma função sobrejetora e, para $z \neq 0$, também é injetora.

Prova. Usando os Lemas 1 e 2 e observando que o domínio da função g é igual ao contra-domínio da função f^{-1} , obtemos uma bijeção entre \overline{SE}^2 e \overline{S}^2 , dada por $g \circ f^{-1}$, já que a composição de bijeções, nessas condições, é uma bijeção. A função \mathcal{V} , definida entre SE^2 e S^2 , é, então, uma função sobrejetora e, para $z \neq 0$, também é injetora, pela sua própria construção.

Corolário 3

A função $\mathcal V$ tem uma formulação analítica explícita dada por

$$\begin{array}{cccc} \mathcal{V}: SE^2 & \to & S^2 \\ (x,y,z) & \mapsto & (2xz,2yz,2z^2-1) \end{array}$$

Prova. ver [2].

Cada elemento da imagem de \mathcal{V} será chamado de $vetor\ de\ Bloch.$

Definição 3.1 (Esfera de Bloch)

A esfera de Bloch é o lugar geométrico de todos os vetores de Bloch.

Observações:

- 1. Os elementos da base computacional $\{|0\rangle, |1\rangle\}$ são representados na esfera de Bloch pelos pólos norte (0,0,1) e sul (0,0,-1), respectivamente.
- 2. \mathcal{V} leva todos os pontos do equador de SE^2 no pólo sul (0,0,-1) de S^2 .
- 3. Fazendo a mudança de variável $\xi \to \frac{\theta}{2}$, na equação (1), chegamos à forma para a representação polar de um q-bit mais comum na literatura da área:

$$|\psi\rangle = \mathrm{e}^{\imath\gamma}[\cos(\frac{\theta}{2})|0\rangle + \mathrm{e}^{\imath\varphi}\sin(\frac{\theta}{2})|1\rangle].$$

E, para o vetor de Bloch, teremos:

$$|\psi\rangle_B = \begin{bmatrix} \cos\varphi \sin\theta \\ \sin\varphi \sin\theta \\ \cos\theta \end{bmatrix},$$

com

$$0 \le \varphi < 2\pi, \ 0 \le \theta \le \pi.$$

4. Cada ponto da esfera de Bloch representa todos os q-bits de formato $e^{i\gamma} |\psi\rangle$, para $|\psi\rangle = [\cos(\theta/2) |0\rangle + e^{i\varphi} \sin(\theta/2) |1\rangle]$ fixado e $0 \le \gamma < 2\pi$.

Na Figura 2, apresentamos uma representação da esfera de Bloch.

Agradecimentos

Os autores agradecem o apoio da FAPERJ e do CNPq.

Referências

- S. L. Altmann. Rotations, Quaternions, and Double Groups. Oxford Science Publications. Oxford University Press, New York, September 1986.
- [2] L. M. Carvalho, C. Lavor, and V. S. Motta. Descrição matemática da esfera de Bloch. In Anais do VII Encontro de Modelagem Computacional, pages 1–9, 2004. CD-ROM.
- [3] L. M. Carvalho, C. Lavor, and V. S. Motta. Portas quânticas e a esfera de Bloch. submetido a TEMA, Agosto 2004.

- [4] R. P. Feynman, F. L. Vernon, and R. W. Hellwarth. Geometrical representation of the Schröedinger equation for solving the MASER problem. *Journal of Applied Physics*, 28(1):49– 52, January 1957.
- [5] M. Hirvensalo. Quantum Computing. Springer, New York, 2001.
- [6] A. Y. Kitaev, A. Shen, and M. Vyalyi. Classical and Quantum Computing, volume 47 of Graduate Studies in Mathematics. American Mathematical Society, 2002.
- [7] A. I. Kostrikin. *Introducción al Algebra*. Editorial MIR, 1978.
- [8] J. B. Kuipers. Quaternions and Rotation Sequences. Princeton University Press, Princeton, December 1999.
- [9] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2000.
- [10] R. Portugal, C. C. Lavor, L. M. Carvalho, and N. Maculan. Uma Introdução à Computação Quântica, volume 8 of Notas em Matemática Aplicada. Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC), São Carlos, 1st edition, 2004. também disponível em http://www.sbmac.org.br.
- [11] J. Preskill. Quantum information and computation. Lecture Notes, California Institute of Technology, unpublished 1998.