Chapter 1: Introduction

Haixia Peng

CECS 474 Computer Network Interoperability

Week 2 _ Tuesday

Chapter 1: introduction

Chapter goal:

- Get "feel," "big picture," introduction to terminology
 - more depth, detail *later* in course

Overview/roadmap:

- What is the Internet? What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Protocol layers, service models
- Security
- History

The Internet: a "nuts and bolts" view

Billions of connected computing *devices*:

- hosts = end systems
- running network apps at Internet's "edge"

Packet switches: forward packets (chunks of data)

routers, switches

Communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

Networks

collection of devices, routers, links: managed by an organization

"Fun" Internet-connected devices

bikes

College of Engineering

Amazon Echo

IP picture frame

Internet refrigerator

Pacemaker & Monitor

cars

Remote control cable TV

Security Camera

Internet phones

Gaming devices

scooters

The Internet: a "services" view

- Internet: "network of networks"
 - Interconnected ISPs
- protocols are everywhere
 - control sending, receiving of messages
 - e.g., HTTP (Web), streaming video, Skype, TCP, IP, WiFi, 5G, Ethernet
- Internet standards
 - IETF: Internet Engineering Task Force (developed by)
 - RFCs: Request for Comments

What's a protocol?

Human protocols:

- "what's the time?"
- "I have a question"
- introductions

Rules for:

- ... specific messages sent
- ... specific actions taken when message received, or other events

Network protocols:

- computers (devices) rather than humans
- all communication activity in Internet governed by protocols

Protocols define the format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

What's a protocol?

A human protocol and a computer network protocol:

Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History

A closer look at Internet structure

Network edge:

- end systems
- hosts: clients and servers
- servers often in data centers

A closer look at Internet structure

Network edge:

- end systems
- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

A closer look at Internet structure

Network edge:

- end systems
- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

Network core:

- interconnected routers
- network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks (WiFi, 4G/5G)

Access network classification? (based on the physical media)

Week 2 _ Thursday

Access networks: cable-based access

frequency division multiplexing (FDM): different channels transmitted in different frequency bands

Access networks: digital subscriber line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- 24-52 Mbps dedicated downstream transmission rate
- 3.5-16 Mbps dedicated upstream transmission rate

Access networks: home networks

Wireless access networks

Shared wireless access network connects end system to router

via base station aka "access point"

Wireless local area networks (WLANs)

- typically within or around building (~100 ft)
- 802.11b/g/n (WiFi): 11, 54, 450Mbps transmission rate

Wide-area cellular access networks

- provided by mobile, cellular network operator (10's km)
- 10's Mbps
- 5G cellular networks (6G coming)

Host: sends *packets* of data

Host sending function:

- takes application message
- breaks into smaller chunks,
 known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

packet time needed to transmission = transmit
$$L$$
-bit = $\frac{L}{R}$ (bits/sec)

Links: physical media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10Gbps Ethernet

Links: physical media

Coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple frequency channels on cable
 - 100's Mbps per channel

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (10's-100's Gbps)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

Links: physical media

Wireless radio

- signal carried in various "bands" in electromagnetic spectrum
- no physical "wire"
- broadcast, multicast, "halfduplex" (sender to receiver)
- propagation environment effects:
 - reflection
 - obstruction by objects
 - Interference/noise

Radio link types:

- Wireless LAN (WiFi)
 - 10-100's Mbps; 10's of meters
- wide-area (e.g., 5G cellular)
 - 10's Mbps over ~10 Km
- Bluetooth: cable replacement
 - short distances, limited rates
- terrestrial microwave
 - point-to-point; 45 Mbps channels
- satellite
 - up to 45 Mbps per channel
 - 270 msec end-end delay

Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History

The network core

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
 - network forwards packets from one router to the next, across links on path from source to destination
- circuit-switching: dedicated circuit per call, a path is reserved

Two key network-core functions

- aka "switching"
- local action: move arriving packets from router's input link to appropriate router output link

Routing:

- global action: determine sourcedestination paths taken by packets
- routing algorithms

Week 3 _ Tuesday

LONG BEACH STATE UNIVERSITY

College of Engineering

LONG BEACH

STATE UNIVERSITY

College of Engineering

Packet-switching: store-and-forward

- store and forward: entire packet must arrive at router before it can be transmitted on next link
- packet transmission delay: takes L/R seconds to transmit (push out) L-bit packet into link at R bps

One-hop numerical example:

- *L* = 10 Kbits
- *R* = 100 Mbps
- one-hop transmission delay= 0.1 msec

Packet-switching: queueing

Queueing occurs when work arrives faster than it can be serviced:

Packet-switching: queueing

Packet queuing and loss: if arrival rate (in bps) to link exceeds transmission rate (bps) of link for some period of time:

- packets will queue, waiting to be transmitted on output link
- packets can be dropped (lost) if memory (buffer) in router fills up

Alternative to packet switching: circuit switching

- end-end resources allocated to, reserved for "call" between source and destination
- in diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
 - commonly used in traditional telephone networks

Circuit switching: FDM and TDM

Frequency Division Multiplexing (FDM)

- optical, electromagnetic frequencies divided into (narrow) frequency bands
- each call allocated its own band, can transmit at max rate of that narrow band

Time Division Multiplexing (TDM)

- time divided into slots
- each call allocated periodic slot(s), can transmit at maximum rate of (wider) frequency band (only) during its time slot(s)

Packet switching versus circuit switching

example:

- 1 Gb/s link
- each user:
 - 100 Mb/s when "active"
 - active 10% of time

Q: how many users can use this network under circuit-switching and packet switching?

- circuit-switching: 10 users
- packet switching: at least 10 users

Packet switching versus circuit switching

Item	Circuit switching	Packet switching
Dedicated path	Yes*	No
Bandwidth available	Fixed	Dynamic*
Potentially wasted	Yes	No*
Store-and-forward trans.	No	Yes*
Call setup	Yes*	Not needed
When can congestion occur	At setup time*	On every packet
Charging	Per minute	Per packet*
Each packet follows the same	Yes*	No
route		

Internet structure: a "network of networks"

College of Engineering

- hosts connect to Internet via access Internet Service Providers (ISPs)
- access ISPs in turn must be interconnected
 - so that *any* two hosts (anywhere!) can send packets to each other
- resulting network of networks is very complex
 - evolution driven by economics, national policies

Let's take a stepwise approach to describe current Internet structure

Question: given millions of access ISPs, how to connect them together?

Question: given millions of access ISPs, how to connect them together?

Option: connect each access ISP to one global transit ISP? Customer and provider ISPs have economic agreement.

But if one global ISP is viable business, there will be competitors

But if one global ISP is viable business, there will be competitors who will want to be connected

Week 3 _ Thursday

At "center": small # of well-connected large networks

- "tier-1" commercial ISPs, national & international coverage
- content provider networks (e.g., Google, Facebook): private network connects its data centers to Internet, often bypassing tier-1, regional ISPs

Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History

How do packet delay and loss occur?

- packets queue in router buffers, waiting for turn for transmission
 - queue length grows when arrival rate to link (temporarily) exceeds output link capacity
- packet loss occurs when memory to hold queued packets fills up

Packet delay: four sources

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < microsecs</p>

d_{queue}: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Packet delay: four sources

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{trans} : transmission delay:

- L: packet length (bits)
- R: link transmission rate (bps)

$$\frac{d_{trans} = L/R}{d_{trans}} \text{ and } \frac{d_{prop}}{very \text{ different}}$$

d_{prop} : propagation delay:

- d: length of physical link
- s: propagation speed (~2x10⁸ m/sec)

$$d_{\text{prop}} = d/s$$

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

Throughput

- throughput: rate (bits/time unit) at which bits are being sent from sender to receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Throughput

 $R_s < R_c$ What is average end-end throughput?

 $R_s > R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: network scenario

10 connections (fairly) share backbone bottleneck link *R* bits/sec

- per-connection endend throughput: $min(R_c, R_s, R/10)$
- in practice: R_c or R_s is often bottleneck

Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History

Network security

- Internet not originally designed with (much) security in mind
 - original vision: "a group of mutually trusting users attached to a transparent network" ☺
 - Internet protocol designers playing "catch-up"
 - security considerations in all layers!
- We now need to think about:
 - how bad guys can attack computer networks
 - how we can defend networks against attacks
 - how to design architectures that are immune to attacks

Week 4 _ Tuesday

Bad guys: packet interception

packet "sniffing":

- broadcast media (shared Ethernet, wireless)
- Packet sniffer (C) reads/records all packets (e.g., including passwords!) passing by its interface

Bad guys: denial of service

Denial of Service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

- 1. select target
- 2. break into hosts around the network (see botnet)
- 3. send packets to target from compromised hosts

Lines of defense:

- authentication: proving you are who you say you are
 - cellular networks provides hardware identity via SIM card; no such hardware assist in traditional Internet
- confidentiality: via encryption
- integrity checks: digital signatures prevent/detect tampering
- access restrictions: password-protected VPNs
- firewalls: specialized "middleboxes" in access and core networks:
 - off-by-default: filter incoming packets to restrict senders, receivers, applications
 - detecting/reacting to DOS attacks

Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History

Protocol "layers" and reference models

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question: is there any hope of organizing structure of network?

and/or our discussion of networks?

Example: organization of air travel

end-to-end transfer of person plus baggage

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

airplane routing

How would you define/discuss the system of airline travel?

a series of steps, involving many services

Example: organization of air travel

ticket (purchase)	ticketing service	ticket (complain)	
baggage (check)	baggage service	baggage (claim)	
gates (load)	gate service	gates (unload)	
runway takeoff	runway service	runway landing	
airplane routing	routing service	airplane routing	

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Layered Internet protocol stack

- application: supporting network applications
 - HTTP, SMTP.....
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi)
- physical: bits "on the wire"

application transport network link physical

source

Application exchanges messages to implement some application service using services of transport layer

Transport-layer protocol transfers M (e.g., reliably) from one *process* to another, using services of network layer

- transport-layer protocol encapsulates application-layer message, M, with transport layer-layer header H_t to create a transport-layer segment
 - H_t used by transport layer protocol to implement its service

Transport-layer protocol transfers M (e.g., reliably) from one process to another, using services of network layer

H_n H_t M

Network-layer protocol transfers transport-layer segment [H_t | M] from one host to another, using link layer services

network-layer protocol encapsulates

- network-layer protocol encapsulates transport-layer segment [H_t | M] with network layer header H_n to create a network-layer datagram
 - H_n used by network layer protocol to implement its service

application transport network link physical destination

Encapsulation: an end-end view

Chapter 1: roadmap

- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History

Internet history

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packet-switching
- 1964: Baran packet-switching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- **1972**:
 - ARPAnet has 15 nodes
 - ARPAnet public demo
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program

Internet history

1972-1980: Internetworking, new and proprietary networks

- 1970: ALOHAnet satellite network in Hawaii
- 1979: ARPAnet has 200 nodes

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1988: TCP congestion control

Internet history

1990, 2000s: commercialization, the Web, new applications

- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - late 1990s: commercialization of the Web

2005-present: scale, SDN, mobility, cloud

- 2008: software-defined networking (SDN)
- increasing ubiquity of high-speed wireless access: 4G/5G, WiFi

