Solutions 10

Dans les exercices qui suivent on pourra utiliser avec profit le fait que l'application partie lineaire

$$\lim : \frac{\operatorname{Isom}(\mathbb{R}^2)}{\phi} \quad \mapsto \quad \frac{\operatorname{Isom}(\mathbb{R}^2)_0}{\phi_0}$$

est un morphisme de groupe.

On rappelle que

$$\operatorname{Isom}(\mathbb{R}^2)^+$$
 et $\operatorname{Isom}(\mathbb{R}^2)^-$

designent les ensembles d'isometries du plan dont la partie lineaire est contenue dans $\operatorname{Isom}(\mathbb{R}^2)_{\mathbf{0}}^+$ et $\operatorname{Isom}(\mathbb{R}^2)_{\mathbf{0}}^-$ respectivement.

Le premier ensemble est appelle ensemble des rotations affines, le second l'ensemble des symetries affines. On a vu en cours que $\text{Isom}(\mathbb{R}^2)^+$ est un sous-groupe distingue de $\text{Isom}(\mathbb{R}^2)$.

Exercice 1. Montrer que

- 1. l'ensemble $\text{Isom}(\mathbb{R}^2)^-$ est le translate (a gauche ou a droite) de $\text{Isom}(\mathbb{R}^2)^+$ par un element quelconque de $\text{Isom}(\mathbb{R}^2)^-$.
- 2. Montrer que l'ensemble $\operatorname{Isom}(\mathbb{R}^2)^-$ est "distingue" dans $\operatorname{Isom}(\mathbb{R}^2)$ au sens suivant : pour toute symetrie affine $s \in \operatorname{Isom}(\mathbb{R}^2)^-$ et toute isometrie affine $\phi \in \operatorname{Isom}(\mathbb{R}^2)$ le conjugue

$$\phi \circ s \circ \phi^{-1}$$

est encore une symetrie affine.

3. Le groupe $\operatorname{Isom}(\mathbb{R}^2)$ est engendre par $\operatorname{Isom}(\mathbb{R}^2)^-$: tout element de $\operatorname{Isom}(\mathbb{R}^2)$ s'ecrit comme le compose de 1 ou 2 symetries affines (utiliser le resultat analogue pour $\operatorname{Isom}(\mathbb{R}^2)_{\mathbf{0}}$)

Exercice 2. Soit $P \in \mathbb{R}^2$ et $\text{Isom}(\mathbb{R}^2)_P$, $\text{Isom}(\mathbb{R}^2)_P^+$, $\text{Isom}(\mathbb{R}^2)_P^-$ l'ensemble des isometries ϕ (rotations, symetries) affines qui fixent P, i.e.

$$\phi(P) = P$$
.

1. Trouver une translation t telle que

$$\operatorname{Isom}(\mathbb{R}^2)_P = t \circ \operatorname{Isom}(\mathbb{R}^2)_{\mathbf{0}} \circ t^{-1}.$$

- 2. Montrer que $\operatorname{Isom}(\mathbb{R}^2)_P$ est un sous-groupe de $\operatorname{Isom}(\mathbb{R}^2)$ et que $\operatorname{Isom}(\mathbb{R}^2)_P^+$ est un sous-groupe commutatif et distingue dans $\operatorname{Isom}(\mathbb{R}^2)_P$.
- 3. Montrer que l'ensemble $\text{Isom}(\mathbb{R}^2)_P^-$ est le translate (a gauche ou a droite) de $\text{Isom}(\mathbb{R}^2)_P^+$ par un element quelconque de $\text{Isom}(\mathbb{R}^2)_P^-$.
- 4. Montrer que le groupe $\operatorname{Isom}(\mathbb{R}^2)_P^+$ n'est pas distingue dans $\operatorname{Isom}(\mathbb{R}^2)$ (bien qu'il le soit dans $\operatorname{Isom}(\mathbb{R}^2)_P$).
- 5. Montrer que le groupe $\text{Isom}(\mathbb{R}^2)^+$ n'est pas commutatif (bien que $\text{Isom}(\mathbb{R}^2)_P^+$ le soit).

Solution 2. 1. Soit t_P la translation par le vecteur \overrightarrow{OP} . Nous allons montrer que

$$\operatorname{Isom}(\mathbb{R}^2)_P = t_P \circ \operatorname{Isom}(\mathbb{R}^2)_{\mathbf{0}} \circ t_P^{-1}.$$

Soit donc $\phi \in \text{Isom}(\mathbb{R}^2)_P$. Nous avons alors

$$t_P^{-1} \circ \phi \circ t_P(O) = t_P^{-1} \phi(P) = t_P^{-1}(P) = O,$$

et donc $t_P^{-1} \circ \phi \circ t_P \in \text{Isom}(\mathbb{R}^2)_{\mathbf{0}}$. De même, soit $\varphi \in \text{Isom}(\mathbb{R}^2)_{\mathbf{0}}$. Alors,

$$t_P \circ \varphi \circ t_P^{-1}(P) = t_P \circ \varphi(O) = t_P(O) = P,$$

et donc $t_P \circ \varphi \circ t_P^{-1} \in \text{Isom}(\mathbb{R}^2)_P$.

2. Soit $\phi_1, \phi_2 \in \text{Isom}(\mathbb{R}^2)_P$. Nous vérifions que

$$\phi_1^{-1} \circ \phi_2(P) = \phi_1^{-1}(P) = P.$$

En effet, ϕ_1 étant une isomètrie est bijective, et comme $\phi_1(P) = P$, nous avons $\phi_1^{-1}(P) = P$. Ceci montre que $\mathrm{Isom}(\mathbb{R}^2)_P$ est un sous-groupe de $\mathrm{Isom}(\mathbb{R}^2)$. Soit $\phi_1, \phi_2 \in \mathrm{Isom}(\mathbb{R}^2)_P^+$. Il existe alors $\varphi_1, \varphi_2 \in \mathrm{Isom}(\mathbb{R}^2)_0^+$ tels que $\phi_i = t_P \circ \varphi_i \circ t_P^{-1}$ pour i = 1, 2. Comme $\mathrm{Isom}(\mathbb{R}^2)_0^+$ est commutatif nous avons

$$\phi_1 \circ \phi_2 = t_P \circ \varphi_1 \circ \varphi_2 \circ t_P^{-1} = t_P \circ \varphi_2 \circ \varphi_1 \circ t_P^{-1} = \phi_2 \circ \phi_1,$$

et donc Isom(\mathbb{R}^2) $_P^+$ est commutatif. Finalement, nous montrons que Isom(\mathbb{R}^2) $_P^+$ est distingué. Soit donc $\phi \in \text{Isom}(\mathbb{R}^2)_P^+$ et $\psi \in \text{Isom}(\mathbb{R}^2)_P$. Nous avons alors

$$\det(\psi \circ \phi \circ \psi^{-1}) = \det(\phi) = 1,$$

et donc $\psi \circ \phi \circ \psi^{-1} \in \text{Isom}(\mathbb{R}^2)_P^+$.

3. Soit $\phi \in \text{Isom}(\mathbb{R}^2)_P^-$. Il existe alors $\varphi \in \text{Isom}(\mathbb{R}^2)_0^-$ tel que $\phi = t_P \circ \varphi \circ t_P^{-1}$. Comme $\varphi \cdot \text{Isom}(\mathbb{R}^2)_0^+ = \text{Isom}(\mathbb{R}^2)_0^-$, nous avons

$$\phi \cdot \operatorname{Isom}(\mathbb{R}^2)_P^+ = t_P \circ \varphi \circ \operatorname{Isom}(\mathbb{R}^2)_0^+ \circ t_P^{-1} = t_P \circ \operatorname{Isom}(\mathbb{R}^2)_0^- \circ t_P^{-1} = \operatorname{Isom}(\mathbb{R}^2)_P^-,$$

- et donc $\operatorname{Isom}(\mathbb{R}^2)_P^-$ est le translaté à gauche de $\operatorname{Isom}(\mathbb{R}^2)_P^+$ par un élément quelconque de $\operatorname{Isom}(\mathbb{R}^2)_P^-$. Le résultat pour le translaté à droite est identique, en utilisant que $\operatorname{Isom}(\mathbb{R}^2)_0^+ \cdot \varphi = \operatorname{Isom}(\mathbb{R}^2)_0^-$.
- 4. Soit $\phi \in \text{Isom}(\mathbb{R}^2)_P^+$. Il existe alors $\varphi \in \text{Isom}(\mathbb{R}^2)_0^+$ tel que $\phi = t_P \circ \varphi \circ t_P^{-1}$. Afin de voir que $\text{Isom}(\mathbb{R}^2)_P^+$ n'est pas distingué dans $\text{Isom}(\mathbb{R}^2)$, il suffit de prendre la translation t_P^{-1} , et de constater que

$$t_P^{-1} \circ \phi \circ t_P = t_P^{-1} \circ t_P \circ \varphi \circ t_P^{-1} \circ t_P = \varphi \notin \mathrm{Isom}(\mathbb{R}^2)_P^+,$$

- si $P \neq O$. Si P = O, le même argument marche, en prenant n'importe quelle translation par un point $Q \neq O$; c'est en effet le point 1 de la question.
- 5. Afin de voir que $\text{Isom}(\mathbb{R}^2)^+$ n'est pas commutatif, nous prenons la translation $t_{(1,0)}$, par le point (1,0), et la rotation linéaire r d'angle π . Nous avons alors

$$r \circ t_{(1,0)}(0) = r((1,0)) = (-1,0) \neq (1,0) = t_{(1,0)}(0) = t_{(1,0)} \circ r(0).$$

Exercice 3. Etant donne une rotation r, montrer qu'il existe deux rotations $r^{1/2}$, $-r^{1/2}$ telles que

$$(r^{1/2})^2 = (-r^{1/2})^2 = r;$$

on dira que la paire $\{r^{1/2}, -r^{1/2}\}$ est l'angle moitie.

Solution 3. Quitte à placer le centre de rotation à l'origine du plan, il est suffisant de considérer les rotations linéaires. Soit donc r un rotation affine et la matrice associée,

$$A = \left(\begin{array}{cc} c & -s \\ s & c \end{array}\right).$$

Nous cherchons à présent une matrice orthogonale

$$B = \left(\begin{array}{cc} c' & -s' \\ s' & c' \end{array}\right),$$

telle que $B^2 = A$. Nous devons donc résoudre le système

$$\begin{cases} c'^2 - s'^2 = c \\ 2c's' = s \end{cases}.$$

Or comme $c'^2 + s'^2 = 1$, la première équation est équivalente à $2c'^2 = c + 1$, soit

$$c' = \pm \sqrt{\frac{c+1}{2}}.$$

Nous notons que cette racine est bien définie comme $c \ge -1$. En remplaçant la valeur de c' dans la deuxième équation, nous trouvons

$$s' = \frac{s}{\sqrt{2(c+1)}},$$

si $c \neq -1$. Si c = -1, alors la matrice originale est

$$A = \left(\begin{array}{cc} -1 & 0\\ 0 & -1 \end{array}\right),$$

et les matrices

$$\pm B = \pm \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right),$$

sont tels que $(\pm B)^2 = A$.

Exercice 4. 1. Donner la matrice de la symetrie s d'axe la droite d'equation

$$3x + 4y = 0$$
?

2. Quelle est la nature (et donner les points fixes) de la composee $\phi \circ s$ ou ϕ est l'application lineaire de matrice

$$\begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}.$$

3. Meme question avec la matrice

$$\begin{pmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}.$$

Exercice 5. Quelle est l'angle ¹ entre la demi-droite $\mathbb{R}_{\geq 0}(1,1)$ et la demi-droite $\mathbb{R}_{\geq 0}(-\sqrt{3},-1)$ (on commencera par chercher les matrices des rotations envoyant $\mathbb{R}(1,0)$ sur respectivement, $\mathbb{R}_{\geq 0}(1,1)$ et $\mathbb{R}_{\geq 0}(-\sqrt{3},-1)$).

Exercice 6. On considere la transformation

$$\phi(x,y) = (X,Y)$$

avec

$$X = \frac{\sqrt{3}}{2}x - \frac{1}{2}y + 1. \ Y = \frac{1}{2}x + \frac{\sqrt{3}}{2}y + 2$$

1. Quelle est la nature de ϕ ?

1. suivant la definition du cours

- 2. Quels sont ses points fixes.
- 3. Quelle est la nature de ϕ^6 (on commencera par calculer la partie lineaire)?

Solution 6. 1. Nous pouvons écrire $\phi = t_{(1,2)} \circ \phi_0$, où ϕ_0 est la partie linéaire de ϕ donnée par

$$\phi_0(x,y) = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

La matrice associée à ϕ_0 étant de déterminant 1, nous concluons que ϕ est une rotation affine.

2. Le point fixe de la rotation se trouve en résolvant $\phi(x,y)=(x,y)$, soit le système

$$\begin{cases} (\sqrt{3} - 2)x - y = -2 \\ x + (\sqrt{3} - 2)y = -4 \end{cases}.$$

Nous trouvons comme solution

$$(x,y) = \left(\frac{-3 - 2\sqrt{3}}{2}, \frac{2\sqrt{3} - 5}{2\sqrt{3} - 4}\right).$$

3. On sait que $\text{Isom}(\mathbb{R}^2)^+$ est un sous-groupe de $\text{Isom}(\mathbb{R}^2)$, et donc ϕ^6 est également une rotation affine. En calculant

$$\left(\begin{array}{cc} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{array}\right)^6 = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right),$$

nous voyons que ϕ^6 correspond à une rotation de paramètre complexe -1 et centrée en $\left(\frac{-3-2\sqrt{3}}{2},\frac{2\sqrt{3}-5}{2\sqrt{3}-4}\right)$.

Exercice 7. On considere les transformations

$$\phi_1(x, y) = (y + 1, x + 1)$$

$$\phi_2(x,y) = (y+1, x-1)$$

- 1. Quelle est la nature de ϕ_1 et de ϕ_2 ?
- 2. Quels sont leurs points fixes respectifs.
- 3. Calculer ϕ_1^2 et ϕ_2^2 .
- 4. Que valent ϕ_1^{2n} et ϕ_2^{2n} pour $n \in \mathbb{Z}$?

Solution 7. 1. Nous pouvons écrire $\phi_1 = t_{(1,1)} \circ \phi_1^0$, où ϕ_1^0 est la partie linéaire de ϕ_1 donnée par

$$\phi_1^0(x,y) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

La matrice associée à ϕ_1^0 étant de déterminant -1, nous concluons que ϕ_1 est une symétrie affine. Nous pouvons écrire $\phi_2 = t_{(1,-1)} \circ \phi_2^0$, où ϕ_2^0 est la partie linéaire de ϕ_2 donnée par

$$\phi_2^0(x,y) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

La matrice associée à ϕ_2^0 étant de déterminant -1, nous concluons que ϕ_2 est une symétrie affine.

2. Afin de déterminer les points fixes de ϕ_1 , nous devons résoudre $\phi_1(x,y) = (x,y)$, soit le système

$$\begin{cases} y - x &= -1 \\ x - y &= -1 \end{cases},$$

qui n'admet aucune solution. Nous concluons que ϕ_1 n'admet aucun point fixe. Afin de déterminer les points fixes de ϕ_2 , nous devons résoudre $\phi_2(x,y) = (x,y)$, soit le système

$$\left\{ \begin{array}{ll} y-x & =-1 \\ x-y & =1 \end{array} \right..$$

Nous trouvons que l'ensemble des points fixes est donné par la droite $\{(x,x-1);x\in\mathbb{R}\}.$

- 3. Nous trouvons $\phi_1^2(x,y) = (x+2,y+2)$ et $\phi_2^2(x,y) = (x,y)$.
- 4. Il est aisé de voir par récurrence que $\phi_1^{2n}(x,y)=(x+2n,y+2n)$ et $\phi_2^{2n}(x,y)=(x,y)$.