

IIC1253 — Matemáticas Discretas — 1' 2020

## PAUTA TAREA 6

# Pregunta 1

### Pregunta 1.1

Es evidente que  $\mathcal{C}$  es infinito. Supongamos que  $\mathcal{C}$  es numerable. Entonces existe una biyección  $g: \mathbb{N} \to \mathcal{C}$ , de manera que podemos definir

$$f_0 := g(0)$$
$$f_1 := g(1)$$
$$\vdots$$

tal que  $\forall i, j \in \mathbb{N}$ .  $i \neq j \implies f_i \neq f_j$ ,  $\forall f \in \mathcal{C} \ \exists n \in \mathbb{N}$ .  $f_n = f$  y  $\forall n \in \mathbb{N}$ .  $f_n \in \mathcal{C}$ . Esto es, podemos formar una lista  $\{f_i\}_{i \in \mathbb{N}}$  tal que  $\{f_i\}_{i \in \mathbb{N}} = \mathcal{C}$ .

Sea ahora  $f^*: \mathbb{N} \to \mathbb{N}$  definido según  $f^*(0) = f_0(0) + 1$ , y para todo n > 0,

$$f^*(n) = \max\{f_n(n) + 1, f^*(n-1) + 1\}.$$

Se sigue directo de esta definición que, para todo  $n \in \mathbb{N}$ ,  $f^*(n) \neq f_n(n)$  y por lo tanto  $f^* \notin \{f_i\}_{i \in \mathbb{N}}$ . Es trivial que  $\forall n \in \mathbb{N}$ .  $n < 0 \implies f^*(0) > f^*(n)$ . Supongamos que  $k \in \mathbb{N}$  estal que  $\forall n \in \mathbb{N}$ .  $n < k \implies f^*(n) < f^*(k)$ . Notemos que como f(k) = f(k), esto implica que  $\forall n \leq k$  se tiene que  $f(n) \leq f(k)$ . Sea m < k + 1. Entonces,

$$f^*(k+1) > f^*(k)$$
$$\geq f^*(m)$$

ya que  $m \leq k$ . Por lo tanto,

$$f^*(k+1) > f^*(m)$$
.

Luego,  $\forall m < k+1$  se tiene que  $f^*(k+1) > m$ . Por inducción, podemos concluir que  $\forall m \in \mathbb{N}$ .  $\forall n \in \mathbb{N}$ .  $m > n \implies f^*(m) > f^*(n)$ . Por lo tanto,  $f^* \in \mathcal{C}$ . Sin embargo teníamos que  $f^* \notin \{f_i\}_{i \in \mathbb{N}}$  y  $\{f_i\}_{i \in \mathbb{N}} = \mathcal{C}$ . Por contradicción, queda demostrado que  $\mathcal{C}$  no es numerable.

Alternativamente, sea  $h^*: \mathbb{N} \to \mathbb{N}$  definido por

$$h^*(n) = \sum_{i=0}^{n} f_i(i) + 1$$

Notemos que, para todo  $i \in \mathbb{N}$ ,

$$h^*(i) = \sum_{j=0}^{i} f_j(j) + 1 > f_i(i)$$
$$\therefore h^*(i) \neq f_i(i)$$

por lo que  $h^* \notin \{f_i\}_{i \in \mathbb{N}} = \mathcal{C}$ . Veamos que

$$h^*(0) = f_0(0) + 1 < f_0(0) + f_1(1) + 1 = h^*(1)$$

debido a que  $\forall f_i \in \mathcal{C}. \ n > 0 \implies f_i(n) > 0$  pues de lo contrario,  $f_i$  no sería creciente. Sean ahora  $n, m \in \mathbb{N}$  tales que m > n. Entonces,

$$h^*(m) = \sum_{i=0}^{m} f_i(i) + 1$$

$$= \sum_{i=0}^{n} f_i(i) + \sum_{n+1}^{m} f_i(i) + 1$$

$$> \sum_{i=0}^{n} f_i(i) + 1$$

$$= h^*(n) + 1$$

donde la desigualdad se debe a que  $\sum_{n+1}^m f_i(i) \ge f_{n+1}(n+1) > 0$  por el mismo argumento anterior (n+1) es mayor a cero). De esto concluimos que  $h^* \in \mathcal{C}$ . Sin embargo teníamos que  $h^* \notin \{f_i\}_{i \in \mathbb{N}}$  y  $\{f_i\}_{i \in \mathbb{N}} = \mathcal{C}$ . Por contradicción, queda demostrado que  $\mathcal{C}$  no es numerable.

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) Por demostrar correctamente que  $\mathcal{C}$  no es numerable.
- (3 Puntos) Por tener un error o descuido pequeño que no afecte sustancialmente la conclusión de la demostración.
- (**0 Puntos**) En otro caso.

#### Pregunta 1.2

Demostraremos lo pedido por contradicción. Sean A, B tales que  $A \subseteq B, A$  es no numerable y B es numerable. Si B es finito, la conclusión es trivial, por lo que no trataermos este caso. Como B es numerable, existe una lista completa, sin repeticiones, de B dada por  $\{b_i\}_{i\in\mathbb{N}}=B$ . De tal forma, podemos definir una biyección  $f:B\to\mathbb{N}$  según

$$f(b_i) = i$$

para todo  $i \in \mathbb{N}$ . Sea  $S = \mathbb{N} \setminus f(A^c)$  donde

$$f(A^c) = \{n \in \mathbb{N} \mid \exists b \in A^c. \ f(b) = n\}$$

es la imagen de f restringida a  $A^c$ . Notemos que  $S\subseteq \mathbb{N}$  por definición. Definamos ahora  $f':A\to S$  según

$$f'(a) = f(a)$$

para todo  $a \in A$ . Como  $A \subseteq B$ , y B es el dominio de f, f' está bien definida. Como f es una biyección, es inyectiva. Esto es,  $\forall a_1, a_2 \in B. a_1 \neq a_2 \implies f(a_1) \neq f(a_2)$ . En particular,

$$\forall a_1, a_2 \in A.a_1 \neq a_2 \implies f(a_1) \neq f_{a_2}$$

y luego f' es inyectiva.

Sea finalmente  $n \in S$ . Como  $n \notin f(A^c)$  y f es sobreyectiva, debe existir  $a \in A$  tal que f(a) = n = f'(a). Por esto,  $\forall n \in S$ .  $\exists a \in A$ . f'(a) = n, y f' es sobreyectiva. Deducimos entonces que f' es una biyección entre A y S con  $S \subseteq \mathbb{N}$ , por lo que A es numerable. Esto contradice nuestra premisa, y concluimos que si  $A \subseteq B$  y A no es numerable, entonces B tampoco lo es.

Sea ahora  $f \in \mathcal{C}$ . Sean  $n, m \in \mathbb{N}$  tales que  $n \neq m$ . Sin pérdida de generalidad, asuma m > n. Luego f(m) > f(n) y, en particular,  $f(m) \neq f(n)$ . De esto se sigue que  $\mathcal{C} \subseteq \mathcal{F}$ . De lo anteriormente demostrado, como  $\mathcal{C}$  es no numerable,  $\mathcal{F}$  tampoco lo es.

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) Por demostrar correctamente la primera parte de la pregunta, notar que  $C \subseteq \mathcal{F}$  y concluir lo pedido.
- (3 Puntos) Por tener un error o descuido pequeño que no afecte sustancialmente la conclusión de la demostración.
- (**0 Puntos**) En otro caso.

## Pregunta 2

#### Pregunta 2.1

Asuma que  $f \in o(g)$  y demostraremos que  $f \in O(g)$  y  $g \notin O(f)$ .

1.  $f \in O(g)$ . Por definición, para que  $f \in O(g)$ , se debe cumplir que:

$$\exists c > 0. \exists n_0. \forall n > n_0. f(n) < c \cdot q(n)$$

Dado que  $f \in o(g)$ , si escogemos c = 1, tenemos que  $\exists n_0 . \forall n \geq n_0 . f(n) \leq c \cdot g(n)$  dado que  $f \in o(g)$  significa que esto se cumple para todo c. Por lo tanto, vemos que se cumple que  $f \in O(g)$ .

2.  $g \notin O(f)$ . Sabemos que  $f \in o(g)$ , esto es,  $\forall c > 0. \exists n_0. \forall n \geq n_0. f(n) \leq c \cdot g(n)$ . Para demostrar que  $g \notin O(f)$ , lo haremos por contradicción. Suponga entonces que  $g \in O(f)$ , esto es:

$$\exists c' > 0. \exists n'_0. \forall n \geq n'_0. \ g(n) \leq c' \cdot f(n).$$

Sean c' y  $n_0'$  los números que cumplen la definición anterior, o sea:

$$\forall n \ge n'_0. \ g(n) \le c' \cdot f(n).$$
 (1)

Como  $f \in o(g)$  se tiene que para todo  $c^*$ :

$$\exists n_0 . \forall n > n_0. \ f(n) < c^* \cdot q(n).$$

Si escogemos  $c^* = 1/(c'+1)$ , sabemos que hay un  $n_0^*$  tal que  $f(n) \le c^* \cdot g(n)$  para todo  $n \ge n_0^*$ . En particular,  $(c'+1)f(n) \le g(n)$  (2). Por último, dado que f(n) > 0 se tiene que  $c' \cdot f(n) < (c'+1) \cdot f(n)$  para todo g(n) (3). Juntando todas las piezas (1), (2), y (3) concluimos que para todo  $g(n) \ge \max\{n_0', n_0^*\}$ :

$$g(n) \leq c' \cdot f(n) < (c'+1) \cdot f(n) \leq g(n)$$

Como g(n) < g(n) es una contradicción, concluimos que  $g \notin O(f)$ .

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) Por tener ambas demostraciones correctas.
- (3 Puntos) Por tener al menos una demostración correcta.
- (**0 Puntos**) En otro caso.

[NUEVO] Algunas consideraciones adicionales que se tuvieron durante la corrección:

- Se dio (3 Puntos) por tener errores menores en ambas demostraciones simultáneamente.
- Se dio (0 Puntos) si no se no considera el comportamiento de  $n_0$  o c.

### Pregunta 2.2

Sea  $p(x) = a_k x^k + \ldots + a_1 x + a_0$  y  $\epsilon > 0$ . Para demostrar que  $p(x) \in o(x^{k+\epsilon})$  tomaremos un c > 0 cualquiera, y demostraremos que existe  $n_0$ , tal que para todo  $n > n_0$ , se cumple que  $p(x) \le c \cdot x^{k+\epsilon}$ .

Primero, como  $n^{\varepsilon}$  es una función creciente (tiende a infinito), sabemos que existe  $n_c \in \mathbb{N}$  tal que para todo  $n \geq n_c$  se tiene que:

$$\frac{1}{c} \cdot \sum_{i=0}^{k} |a_i| \le n^{\varepsilon}$$

Ahora para todo  $n \ge max\{n_c, 1\}$ , se deduce que:

$$p(n) = a_k n^k + \dots + a_0 \leq |a_k| n^k + |a_{k-1}| n^{k-1} + \dots + |a_0| \\ \leq |a_k| n^k + |a_{k-1}| n^k + \dots + |a_0| n^k \\ = \sum_{i=0}^k |a_i| \cdot n^k \\ \leq c \cdot n^{\varepsilon} \cdot n^k \\ = c \cdot n^{k+\varepsilon}$$

Como esto se cumple para cualquier c > 0, por lo tanto  $p(x) \in o(x^{k+\varepsilon})$ .

Dado lo anterior el puntaje asignado es el siguiente:

- (4 Puntos) Por tener la demostración correcta.
- (3 Puntos) Por tener la lógica del procedimiento correcta, pero errores menores.
- (0 Puntos) En otro caso.

[NUEVO] Algunas consideraciones adicionales que se tuvieron durante la corrección:

1. Se dio (4 Puntos) en el caso de usar límites correctamente, esto es, calcular un limite a partir de p(x) y  $x^k$  (el cálculo de este límite no era necesario demostrarlo) y después demostrar la pregunta usando la definición de límite. Acá era necesario explicar cómo el  $\epsilon$  y  $\delta$  demuestran que  $p(x) \in o(x^{k+\epsilon})$ . En particular, no bastaba calcular un límite y argumentar directamente que  $p(x) \in o(x^{k+\epsilon})$ .