* IP주소는 공인IP와 사설IP로 나눌 수 있다

공인 IP주소	사설 IP주소	
돈이 든다	돈이들지 않는다	
인터넷이 된다	인터넷이 안된다	
A, B, C 클래스에서 사설IP를 제외한 대역	A, B, C 클래스에 각각 한 대역씩 있음 (공인 IP 대역대의 중간에 있음) A: 10.X.X.X B: 172.16.0.0 ~ 172.31.255.255 C: 192.168.X.X	
서비스를 제공받기 위함	같은 네트워크에서 우리끼리 사용할 때	

ex) 공유기가 없는 경우 (ISP - 인터넷망 - 모뎀 - PC)

200.1.1.1

공유기가 있는 경우 (ISP - 인터넷망 - 모뎀 - 공유기 - PC여러대) 200.1.1.1 <-> 192.168.X.X

- NAT : 사설 IP가 인터넷에 연결하도록 제공해주는 서비스

(PC가 몇 대든지 외부에선 모름)

- 공유기 : NAT를 사용하는 대표적인 장비

* 데이터 전송 타입

종류	목적	방법	장점	단점
유니	데이터	해당장비	네트웍상에 부하없음	많은장비에게 전송시
캐스트	전달	에게만 전송		비효율적
브로드캐 스트	정보 수집용	브로드캐스트 주소 사용	한번에 여러호스트 전달	호스트의 성능저하
멀티	주로	멀티캐스트 주소	유니 + 브로드	-
캐스트	방송용	사용	(들을 사람에게만 전달)	

- => MAC 주소 알아올 때
- 모를 때 알기위해서 브로트캐스트, 해당 호스트는 유니캐스트로 전달
- * Subneting:
- 1) What : 네트워크를 쪼개는 것
- 2) Why
- 브로드캐스트 트래픽을 줄이기 위해서 ex) C class (256 -> 128 -> 64 ...)
- IP의 낭비를 줄이기 위해서
- 보안을 강화하기 위해
- -> 하나의 네트워크를 4개로 쪼개면 네트워크 이름도 4개, 브로드캐스트 주소도 4개
- 3) How?
- (1) 네트워크의 개수로 나누는 방법
- (2) 필요한 호스트의 개수로 나누는 방법

- * 네트워크의 개수로 나누는 방법 ex) 어떤 기업에서 10.0.0.0 255.0.0.0를 할당받았을 때. 8개의 부서별로 네트워크를 나누어라
- 1) 네트워크 이름과 서브넷 마스크를 이진수로 표시하고 NetID와 HostID 범위 확인

- 3) 변경된 서브넷 마스크를 네트워크 이름에 적용시키고 변경된 네트워크가 가지는 모든수를 구함
- => 8개의 네트워크
- 3) 나누어진 네트워크(subnet)가 가지는 IP의 개수는?
- 4) 서브넷 마스크는?
- 5) 사용가능한 3번째 서브넷의 IP범위를 적으시오
- 6) 사용가능한 서브넷중에서 5번째 서브넷의 네트워크 이름과 브로드캐스트 주소는?
- 1. 어떤 기업이 192.168.10.0 네트워크 대역을 할당 받았을 때 16개의 네트워크로 나누고, 사용가능한 3번째 서브넷의 IP 범위와 host에 할당가능한 개수, 네트워크이름과 브로드캐스트 주소를 구하시오
- 2. 어떤 기업이 80.0.0.0 네트워크 대역을 할당 받았을 때 256개의 네트워크로 나누고, 사용가능한 2번째 서브넷의 IP 범위와 host에 할당가능한 개수, 네트워크 이름과 브로드캐스트 주소를 구하시오
- * 필요한 호스트의 개수로 나누는 방법 (각 네트워크는 호스트의 개수가 동일)
- ex) 어떤 기업에서 192.32.32.0 255.255.255.0를 할당받았을 때, 각 부서에서 30개의 호스트가 필요하다
- 2) 주어진 조건에 맞춰서 서브넷 마스크를 변경 할당된 네트워크는 변하지 않으므로 NetID는 변하지 않음, HostID에서 조정 2진수 5자리로 32개의 호스트를 표현할 수 있음 (뒤에서 HostID를 5자리 끊음) 11111111 . 111111111 . 111 00000 = 255.255.255.224

3) 변경된 서브넷 마스크를 네트워크 이름에 적용시키고 변경된 네트워크가 가지는 모든수를 구함

11111111 . 11111111 . 11111111 . 111 00000 = 255.255.255.224

11000000 . 00100000 . 00100000 . 000 = 192.32.32.0

001 = 192.32.32.32

010 = 192.32.32.64

011 = 192.32.32.96

100

101

110

111

- 3) 나눠진 네트워크의 개수는?
- => 8
- 4) 서브넷 마스크는?
- => 255.255.255.224
- 5) 3번째 서브넷의 IP범위를 적으시오
- => 192.32.32.64 ~ 192.32.32.95
- 6) 서브넷중에서 2번째 서브넷의 이름과 브로드캐스트 주소는?
- => 192.32.32.32 192.32.32.63
- 3. 어떤 기업이 130.25.0.0 네트워크 대역을 받았을 때 한 부서에서 1000개의 host가 필요하다. 서브넷팅을 했을 때 사용가능한 4번째 서브넷의 IP 범위와 네트워크 이름, 브로드캐스트 주소를 구하시오
- 4. 5.0.0.0 대역의 네트워크 대역을 받았을 때, 한 부서에서 2048개의 host가 필요하다. 서브넷팅을 했을 때 몇 개의 네트워크로 나누어 지는가와 사용가능한 5번째 서브넷의 IP범위와 네트워크 이름, 브로드캐스트 주소를 구하시오
- * VLSM : 서브넷팅을 여러번 했을 때,

원래의 클래스풀한 네트워크에 여러길이의 서브넷마스크가 생김

- 라우터 라우터 : 가장작은 네트워크 구간
- * CIDR (Classless) : 클래스에 기반하지 않는 주소표기
 - 32bit 모든 구간에서 서브넷팅하여 필요한 수만큼 IP를 할당