

OUR EXPERIENCE WITH DEVELOPING RMF FLEET ADAPTER

And some extra tips & tricks with RMF

Overview

- What is RMF?
- Fleet Adapter Template
- Fleet Adapter Development Challenges
- Future plans

What is RMF?

What is RMF?

Fleet Adapter Template

Fleet Adapter Development Challenges

Future plans

What is Robotics Middleware Framework?

RMF is a collection of software modules and tools that facilitate interoperability among:

- Heterogeneous robot fleets
- Building infrastructure

(door, lifts, etc.)

Automated systems

(dispensers, collectors etc.)

Additionally, it incorporate intelligence into the system such as tasks allocation, resource allocation and traffic management.

Traffic Scheduling

- Happens during planning
- Monitor the status of other robots and plan to avoid conflict
 - Delay the plan execution
 - Choose a different path
- Video explanation by Dr Grey (2:30 3:12) https://youtu.be/XPZo_dXIXEY

Traffic Negotiation

- Robot does not always go according to plan. (Delay, obstacle avoidance)
- Resolve additional conflict
- Video explanation by Dr Grey (3:56 8:40) https://youtu.be/XPZo_dXIXEY

Integration - Adapters

Fleet Adapter Template

What is RMF?

Fleet Adapter Template

Fleet Adapter Development Challenges

Future plans

Different Fleet Adapter Design [1/2] – Free Fleet & Simulation A ::: ROS

Full control example

 An example ROS2 node that translate full control fleet adapter API into ROS2 topics.

Slotcar Gazebo Plugin

 A simplified path following plugin to simulate robot motion in Gazebo based on RMF commands.

Free Fleet

- A server and client pair to communicate RMF commands using pure CycloneDDS messages.
- This is plug-and-play for ROS 1 & ROS 2 based robot

Different Fleet Adapter Design [2/2] – Vendor Fleet Adapter

Python Fleet Adapter Wrapper

 Python wrapper over the fleet adapter C++ API to offer better ease-of-use

Vendor Fleet Adapter

 Translate fleet adapter API directly into vendor robot specific communication protocol

Fleet Adapter Template – File Structure [1/3]

Fleet Adapter Template – RobotClientAPI [2/3]

def position(self, robot_name: str):

def check connection (self):

''' Return [x, y, theta] expressed in the robot's coordinate frame or **None** if **any** errors are encountered''

IMPLEMENT YOUR CODE HERE | # ----- | return None

def navigate(self, robot_name: str, pose, map_name: str):

''' Request the robot to navigate to pose: [x, y, theta] where x, y and and theta are in the robot's coordinate convention. This function should return True if the robot has accepted the request,

else False''

----# IMPLEMENT YOUR CODE HERE
#

return False

def start_process(self, robot_name: str, process: str, map_name: str):
 ''' Request the robot to begin a process. This is specific to the robot
 and the use case. For example, load/unload a cart for Deliverybot

or begin cleaning a zone for a cleaning robot.

Return True if the robot has accepted the request, else False''

: ----- #
: IMPLEMENT YOUR CODE HERE #

return False

def stop(self, robot_name: str):
 ''' Command the robot to stop.

Return True if robot has successfully stopped. Else False''

----- # # IMPLEMENT YOUR CODE HERE # # -----

return False

. . .

Fill in the code using

vendor specific client library

Fleet Adapter Template – Configuration [3/3]


```
robots:
  # Here the user is expected to append the configuration for each robot in the
  # fleet.
  # Configuration for first robot in this fleet
 deliverybot1:
    robot config:
     max delay: 10.0 # allowed seconds of delay of the current itinerary before it gets interrupted and replanned
    rmf config:
     robot state update frequency: 0.5
     start:
       map name: "L1"
       # waypoint: "charger deliverybot1" # Optional
       # orientation: 0.0 # Optional, radians
                                                                          Robot specific settings
       waypoint: null
       orientation: null
     charger:
       waypoint: "charger deliverybot1"
                                                                            Coordinate transform between
reference coordinates:
  rmf:
    - [20.33, -3.156]
   - [8.908, -2.57]
                                                                              RMF navigation graph
   - [13.02, -3.601]
    - [21.93, -4.124]
  robot:
                                                                            and
    - [59, 399]
   - [57, 172]
    - [68, 251]
    - [75, 429]
                                                                              the robot internal SLAM map
```

Coordinate transform – How it works

Python Nudged Library

reference_coordinates: rmf: - [20.33, -3.156] - [8.908, -2.57] - [13.02, -3.601] - [21.93, -4.124] robot: - [59, 399] - [57, 172] - [68, 251] - [75, 429]

Alignment point in MiR Map

Alignment Point in RMF Traffic Map

Ready the coordinates from traffic editor

Fleet Adapter Development Challenges

Omron Fleet Adapter Development Lessons Learnt

What is RMF?

Fleet Adapter Template

Fleet Adapter Development Challenges

Future plans

Challenges - Summary

- Robot Orientation
- Redundant robot behavior
- Multi-level navigation
- Customized interaction with workcell
 - Dispenser & Ingestor
 - Docking function

Issue 1: Robot keeps turning to the wrong / same direction after reaching a waypoint

Check against degree to radian conversion in the fleet adapter.

If the robot only accepts Degrees (0 - 360) while the command sent to it is Radians(0 - 3/3.14), the robot might interpret as always heading to the same location.

Issue 1: Robot keeps turning to the wrong / same direction after reaching a waypoint

Check against degree to radian conversion in the fleet adapter.

If the robot only accepts Degrees (0 - 360) while the command sent to it is Radians(0 - 3/3.14), the robot might interpret as always heading to the same location.

Issue 1: Robot keeps turning to the wrong / same direction after reaching a waypoint

Check against degree to radian conversion in the fleet adapter.

If the robot only accepts Degrees (0 - 360) while the command sent to it is Radians(0 - 3/3.14), the robot might interpret as always heading to the same location.

industrial consortium asia pacific

Issue 2: Robot end orientation at each point

If using Loop Task last from A to B, robot heading will be pointing towards the last direction it should be traveling in

industrial consortium asia pacific

Issue 2: Robot end orientation at each point

If using Loop Task last from A to B, robot heading will be pointing towards the last direction it should be traveling in

industrial consortium asia pacific

Issue 2: Robot end orientation at each point

If using Loop Task last from A to B, robot heading will be pointing towards the last direction it should be traveling in

Issue 2: Robot end orientation at each point

If using Loop Task last from A to B, robot heading will be pointing towards the last direction it should be traveling in

Solution / Workaround:

- Change B into a dock and defining a docking action
- Send a GoToPlace task instead of a Loop Task (Re-defining the task sequence)

Challenges – Redundant Motion

Issue: Redundant Robot Motion for point to point navigation

Extra waypoints are sent to the robot for orientation correction.

Waypoint 1 Solution / Workaround: Waypoint 3 for the last one) Waypoint 2

Only Waypoint 3 is needed

Add a point filter capability in follow new path() function to remove waypoint 1 & 2. (filter out waypoints with similar graph index except

> RobotCommandHandle.pv fleet adapter.py init .py config.yaml] setup.pv

Challenges – Multi-Level Navigation

industrial consortium asia pacific

RobotClientAPI.pv

init .pv

____config.yaml ____setup.py

Issue: Not supported by default in the template

Changes are needed in RobotCommandHandle.py and fleet_adapter.py

Below describe the behavior for Omron fleet adapter

- 1. Waypoint with a different level is detected
- 2. Localize the robot to a different location
- Start navigate to the waypoint (using a new set of coordinate transform)

Issue: Robot cannot call customized command to interaction with the workcell

Solution 1:

- 1. Define the required dispenser and ingestor pair.
- 2. Use a dummy dispenser / ingestor if no action is needed.

Issue: Robot cannot call customized command to interaction with the workcell

Solution 1:

- 1. Define the required dispenser and ingestor pair.
- 2. Use a dummy dispenser / ingestor if no action is needed.

Issue: Robot cannot call customized command to interaction with the workcell

Solution 1:

- 1. Define the required dispenser and ingestor pair.
- 2. Use a dummy dispenser / ingestor if no action is needed.

Issue: Robot cannot call customized command to interaction with the workcell

Solution 1:

- 1. Define the required dispenser and ingestor pair.
- 2. Use a dummy dispenser / ingestor if no action is needed.

Issue: Robot cannot call customized command to interaction with the workcell

Solution 1:

- 1. Define the required dispenser and ingestor pair.
- 2. Use a dummy dispenser / ingestor if no action is needed.

Issue: Robot cannot call customized command to interaction with the workcell

Solution 2:

Define a dock

- 1. Change the RMF traffic map
- 2. Define the start_process() function to handle "dock_name" in RobotClientAPI.py
- 3. Update the dock() function if needed.

Issue: Robot cannot call customized command to interaction with the workcell

Solution 2:

Define a dock

Behavior:

- 1. Robot navigate to the waypoint before the "dock" waypoint with a dock_name defined.
- 2. Calls the start_process(do_something) function

Issue: Robot cannot call customized command to interaction with the workcell

Summary:

Using dispenser & ingestor

- No additional changes to fleet adapter
- Cannot control robot orientation
- Workaround such as using a dummy dispenser / ingestor might be needed

Using dock

- Changes to fleet adapter
- Can control robot orientation
- Dock function might be subject to change in the near future

Fleet Adapter Development Challenges

Omron Fleet Adapter Development Lessons Learnt

What is RMF?

Fleet Adapter Template

Fleet Adapter Development Challenges

Future plans

What to expect in the next month

Open Source Release

- Fleet Adapter Omron beta release (date: TBD)
- Kone Lift Cloud API adapter beta release (date: TBD)

More in the future

- EasyFullControl API (OSRC)
- Standardization of fleet adapter capability evaluation

Q&A

Thank You!

