Institute of Science and Technology

2066

Bachelor Level/ Second Year/ Third Semester/ Science

Computer Science and Information Technology (CSc. 204)

(Numerical Method)

Full Marks: 60 Pass Marks: 24 Time: 3 hours

(8)

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all questions:

- 1. Define the fixed-point iteration method. Given the function $f(x) = x^2 2x 3 = 0$, rearrange the function in such a way that the iteration method converses to its roots. (2+3+3)
- 2. What do you mean by interpolation problem? Define divided difference table and construct the table from the following data set. (2+2+4)

X_{i}	3.2	2.7	1.0	4.8	5.6
F_{i}	22.0	17.8	14.2	38.3	51.7

OR

Find the least squares line that fits the following data.

X	1	2	3	4	5	6
Y	5.04	8.12	10.64	13.18	16.20	20.04

What do you mean by linear least square approximation?

- 3. Derive the composite formula for the trapezoidal rule with its geometrical figure. Evaluate $I = \int_0^1 e^{-x^2} dx$ using this rule with n=5, upto 6 decimal places. (4+4)
- 4. Solve the following system of algebraic linear equations using Jacobi or Gauss-Seidel iterative

$$6x_1 - 2x_2 + x_3 = 11$$

 $-2x_1 + 7x_2 + 2x_3 = 5$
 $X_1 + 2x_2 - 5x_3 = -1$

- 5. Write an algorithm and computer program to fit a curve $y = ax^2 + bx + c$ for given sets of $(x_i, y_i, g. 0 = 1, ..., x)$ values by least square method. (4+8)
- 6. Derive a difference equation to represent a Poison's equation. Solve the Poison's equation $\nabla^2 f = 2x^2y^2$ over the domain $0 \le x \le 3$, $0 \le y \le 3$ with f = 0 on the boundary and h = 1. (3+5)
- 7. Define ordinary differential equation of the first order. What do you mean by initial value problem? Find by Taylor's series method, the values of y at x = 0.1 and x = 0.2 to find places of decimal form

$$\frac{dy}{dx} = x^2y - 1$$
, when y(0) = 1 (2+6)

Institute of Science and Technology

2067

Bachelor Level/ Second Year/ Third Semester/ Science

Computer Science and Information Technology (CSc. 204)

(Numerical Method)

Full Marks: 60 Pass Marks: 24 Time: 3 hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all questions:

- 1. Discuss methods of Half Interval and Newton's for solving the nonlinear equation f(x) = 0. Illustrate the methods by figure and compare them stating their advantages and disadvantages.
- 2. Derive the equation for Lagrange's interpolating polynomial and find the value of f(x) at x = 1 for the following:

(8)

X	-1	-2	2	4
F(x)	-1	-9	11	69

- 3. Write Newton-cotes integration formulas in basic form for x = 1, 2, 3 and give their composite rules. Evaluate $I = \int_{2}^{1.5} e^{-x^2} dx$ using the Gaussian integration three point formula. (4+4)
- 4. Solve the following algebraic system of linear equations by Gauss-Jordan algorithm.

$$\begin{bmatrix} 0 & 2 & 0 & 1 \\ 2 & 2 & 3 & 2 \\ 4 & -3 & 0 & 1 \\ 6 & 1 & -6 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -7 \\ 6 \end{bmatrix}$$

- 5. Write an algorithm and program to solve system of linear equations using Gauss-Seidel iterative method. (4+8)
- 6. Explain the Picard's proves of successive approximation. Obtain a solution upto the fifth approximation of the equation

$$\frac{dy}{dx} = y + x \text{ such that } y = 1 \text{ when } x = 0$$
using Picard's process of successive approximations .

(2+6)

7. Define a difference equation to represent a Laplace's equation. Solve the following Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ within $0 \le x \le 3, 0 \le y \le 3$

For the rectangular plate given as:

OR

Derive a difference equation to represent a Poison's equation. Solve the Poison's equation $\nabla^2 f = 2x^2y^2$

Over the domain
$$0 \le x \le 3$$
, $0 \le y \le 3$ with $f = 0$ on the boundary and $h = 1$. (3+5)

Institute of Science and Technology

2068 ☆

Bachelor Level/ Second Year/ Third Semester/ Science

Computer Science and Information Technology (CSc. 204)

(Numerical Method)

Full Marks: 60 Pass Marks: 24 Time: 3 hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all questions:

- 1. Define the types of errors in numerical calculations. Derive the formula for secant method and illustrate the method by figure. (4+4)
- 2. Define the linear least squares approximations. Give the data set (x_i, y_i) as (20.5, 765), (32.7, 826), (51.0, 873), (73.2, 942), (95.7, 1032) find the linear least square to fit given data. (2+6)
- 3. Evaluate $I = \int_0^1 e^{-x^2} dx$ using trapezoidal rule with n=10. Also evaluate the same integral using Grossion 3 point formula and compare the result. (4+4)
- 4. Solve the following system of linear equations using Gauss-elimination method (use partial pivoting if necessary);

$$2x_{2} + x_{4} = 0$$

$$2x_{1} + 2x_{2} + 3x_{3} + 2x_{4} = -2$$

$$4x_{1} - 3x_{2} + x_{4} = -7$$

$$6x_{1} + x_{2} - 6x_{3} - 5x_{4} = 6$$
OR

What do you mean by eigen -value eigen- vector problems? Find the largest eigen value correct to two significant digits and corresponding eigen vectors of the following matrix using power method.

$$A = \begin{bmatrix} 2 & 4 & 1 \\ 0 & 1 & 3 \\ 1 & 0 & 3 \end{bmatrix} \tag{2+6}$$

- 5. Write an algorithm and program to solve system of linear equations using Gauss- Jordan method. (4+8)
- 6. Apply Runge-Kutta method of second order and fourth order to find an approximate value of y when x = 0.2 given that

$$\frac{\partial y}{\partial x} = x + y \text{ and } y(0) = 1.$$

(8)

7. How can you solve Laplace's equation? Explain. The steady-state two dimensional heat flow in a metal plate is defined by $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$.

A steel plate of size $30 \times 30 \text{cm}$ is given. Two adjacent sides are placed at 100°C and other side held at 0°C . Find the temperature at interior points, assuming the grid size of $10 \times 10 \text{cm}$.

(3+5)

Institute of Science and Technology

2069

Bachelor Level/ Second Year/ Third Semester/ Science

Computer Science and Information Technology (CSc. 204)

(Numerical Method)

Full Marks: 60 Pass Marks: 24 Time: 3 hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all questions:

- 1. Derive the formula to solve nonlinear equation using secant method. Using your formula estimate a real root of following nonlinear equation using secant method correct up to two decimal places $x^2 + \ln x = 3$. (3+5)
- 2. Estimate f(3) from the following data using Cubic Spline interpolation.

, ()		0		
X	1	2.5	4	5.7
f(x)	-2.0	4.2	14.4	31.2

OR

Find the best fitting quadratic polynomial from following data using least square approximation

	ma the cest fitting quadratic performat from fone wing auta using feast square approximation.									
Ī	X	-2	-1.2	0	1	1.2	2.5	3	4.5	6.3
Ī	f(x)	10.39	2.96	-2.0	-2.63	-2.46	0.83	3.1	12.8	30.4

- 3. a) For the function $f(x) = e^x \sqrt{\sin x + \ln x}$ estimate f'(6.3) and f''(6.3) [take h = 0.01]
 - b) Evaluate $\int_{1}^{2} (lnx + x^{2} sinx) dx$ using Gaussian integration 3 point formula. (4)
- 4. Solve the following set of equation using Gauss elimination or Gauss Jordan method

$$3x_1 + 5x_2 - 3x_3 + x_4 = 16$$

$$2x_1 + x_2 + x_3 + 4x_4 = 9$$

$$3x_1 - 4x_2 - x_4 = 1$$

$$2x_1 + x_2 - 3x_3 + 9x_4 = 5$$

(8)

5. How can you solve higher order differential equation? Explain. Solve the following differential within $0 \le x \le 1$ using Heun's method.

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2xy = 1 \text{ with } y(0)=1 \text{ and } y'(0) = 1 \text{ (take } h = 0.5)$$

(3+5)

- 6. a) How can you obtain numerical solution of a partial differential equation? Explain.
 - b) The steady-state two-dimensional heat-flow in a metal plate is defined by $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$. Given the boundary

conditions as shown in figure below, find the temperature at interior points T_1 , T_2 , T_3 and T_4 .

- 7. Write an algorithm and C-program code to solve non-linear equation using Newton's method. Your program should read an initial guess from keyboard and display the followings if the solution is obtained: (5+7)
 - Estimated root of the equation
 - Functional value at calculated root
 - Required number of iterations

Institute of Science and Technology

2070

Bachelor Level/ Second Year/ Third Semester/ Science

Computer Science and Information Technology (CSc. 204)

(Numerical Method)

Full Marks: 60 Pass Marks: 24 Time: 3 hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all questions:

1. What is bracketing and non-bracketing method? Explain with the help of example. Estimate a real root of following nonlinear equation using bisection method correct up to two significant figures

$$x^2 \sin x + e^{-x} = 3. ag{3+5}$$

2. Define interpolation. Find the functional value at x = 3.6 from the following data using forward difference table.

X	2	2.5	3	3.5	4	4.5
f(x)	1.43	1.03	0.76	0.6	0.48	0.39

(2+6)

3. Derive Simpson's 1/3 rule to evaluate numerical integration. Using this formula evaluate

$$\int_{0.2}^{1.2} (x^2 + \ln x - \sin x) dx. \text{ [Take h} = 0.1]$$

4. What is <u>pivoting?</u> Why is it necessary? Explain. Solve the following set of equations using Gauss elimination or Gauss Seidel method.

$$x_1 + 10x_2 + x_3 = 24$$

 $10x_1 + x_2 + x_3 = 15$

$$x_1 + x_2 + 10x_3 = 33$$

(3+5)

5. Compare Euler's method with Heun's method for solving differential equation. Obtain y(1.5) from given differential equation using Runge-Kutta 4th order method.

$$\frac{dy}{dx} + 2x^2y = 1 \text{ with } y(1) = 0 \text{ (take } h = 0.25)$$
(4+4)

OR

Solve the following boundary value problem using shooting method.

$$\frac{d^2y}{dx^2} - 2x^2y = 1, \text{ with } y(0) = 1 \text{ and } y(1) = 1 \text{ [Take h} = 0.5].$$
 (8)

6. Solve the equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 3x^2y$ over the square domain $0 \le x \le 1.5$ and $0 \le y \le 1.5$ with f=0 on the boundary [Take h = 0.5].

7. Write an algorithm and C-program to approximate the functional value at any given x from given n no. of data using Lagrange's interpolation. (5+7)

Institute of Science and Technology

2071

Bachelor Level/ Second Year/ Third Semester/ Science

Computer Science and Information Technology (CSc. 204)

Pass Marks: 24 (Numerical Method) Time: 3 hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all questions:

How is the bisection method convergent to a root of an equation? Apply the bisection method to find a root of the equation

$$xtanx - 1 = 0 (3+5)$$

Define interpolation. Find the Lagrange interpolation polynomial to fit the following data. Estimate the value

i	0	1	2	3
Xi	0	1	2	3
e^{x_i}	0	1.7183	6.3891	19.0855

of $e^{1.9}$ (1+6+1)

3. Derive Simpson's evaluate integration. rule numerical Using this formula evaluate -1) dx with n = 8. (4+4)

What do you mean by ill-conditioned systems? Solve the following system using Dolittle LU decomposition method.

$$3x_1 + 2x_2 + x_3 = 24$$

 $2x_1 + 3x_2 + 2x_3 = 14$
 $x_1 + 2x_2 + 3x_3 = 14$

(2+6)

Full Marks: 60

5. Solve the following boundary value problem using shooting method.

$$\frac{d^2y}{dx^2} - 2x^2y = 1, \text{ with } y(0) = 1 \text{ and } y(1) = 1 \text{ [Take h} = 0.5].$$
 (8)

6. Write the finite difference formula for solving Poisson's equation. Hence solve the Poisson's equation

over the domain
$$0 \le x \le 3$$
 and $0 \le y \le 3$ with $f = 0$ on the boundary and $h = 1$. (1+7)

7. Write an algorithm and a C-program for the fixed point iteration method to find the roots of non-linear equation. (4+8)

OR

Write an algorithm and a C-program for the Lagrange's interpolation to approximate the functional value at any given x from given n data. (4+8)