关系幂运算的性质

定理 设A为n元集,R为A上的关系,则存在自 然数S和t,使得 R^s = R^t 。

 $\forall m \in \mathbb{N}, R^m \subseteq A \times A, R^m \in P(A \times A)$

定理 设R为A上的关系, m,n是自然数. 则

- 1. $R^m \circ R^n = R^{m+n}$
- 2. $(R^{m})^{n} = R^{mn}$

关系幂运算的性质

- 定理 设R为A上的关系,若存在自然数s,t(s< t)使 得 $R^s = R^t$,则
- 1. 对任意i∈N, 有R^{s+i}=R^{t+i};
- 2. 对任意 $k,i \in N$,有 $R^{s+kp+i} = R^{s+i}$,其中p=t-s;
- 3. 令 $S=\{R^0,R^1,...,R^{t-1}\}$,则对于任意的 $q\in N$ 有 $R^q\in S_o$

关系的性质

- 1) 自反性
- 2) 反自反性
- 3) 对称性
- 4) 反对称性
- 5) 传递性

定义 设R为A上的关系,

- 1. 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \in R)$,则称R在A上是自 反的。
- 2. 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \notin R)$, 则称R在A上是反自反的。
- 例, A上的关系, E_A, I_A, L_A, D_A, R_⊆ "<", "⊂", Ø

R的关系矩阵与关系图:

$$M_R = \begin{bmatrix} 110 \\ 010 \\ 001 \end{bmatrix}$$

R的关系矩阵与关系图:

$$M_R = \begin{bmatrix} 010 \\ 100 \\ 000 \end{bmatrix}$$

例: 设A={a,b,c}, R₁,R₂,R₃是A上的关系, 其中, R₁={<a,a>, <b,b>} R₂={<a,a>, <b,b>, <c,c>, <b,c>} R₃={<a,b>} 是否具有自反性或反自反性?

定义 设R为A上的关系,

- 1. 若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \rightarrow \langle y,x \rangle \in R)$,则称R在A上是对称的。
- 2. 若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \land \langle y,x \rangle \in R \rightarrow x = y)$,则称R在A上是反对称的。
- 例,A上的关系, E_A , I_A , \emptyset ; I_A , \emptyset , L_A , D_A , R_{\subset} , "<", " \subset "。

$$R = \{ <1,1>, <1,2>, <2,1>, <2,3>, <3,2> \}$$

则R是对称的关系。

R的关系矩阵与关系图:

$$M_R = \begin{bmatrix} 110 \\ 101 \\ 010 \end{bmatrix}$$

例: 设A={a,b,c},R={<a,b>, <b,c>, <c,a>} 则R是反对称的关系。

R的关系矩阵与关系图:

$$\boldsymbol{M}_{R} = \begin{bmatrix} 010\\001\\100 \end{bmatrix}$$

传递性

定义 设R为A上的关系。若

 $\forall x \forall y \forall z (x,y,z \in A \land \langle x,y \rangle \in R \land \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R$, 则称R为A上的传递关系。

例. A上的关系.

 E_A , I_A , \varnothing , L_A , D_A , R_{\subseteq} , "<", " \subset " \circ

传递性

例: $\mathrm{id}A=\{a,b,c\}$, R_1,R_2,R_3 是A上的关系,其中

$$R_1$$
={, }
 R_2 ={, }
 R_3 ={}
 是否具有传递性?

关系的性质

定理 设R是A上的关系,则

- 1) R在A上自反当且仅当I_A⊆R;
- 2) R在A上反自反当且仅当 $R \cap I_A = \emptyset$;
- 3) R在A上对称当且仅当R=R-1;
- 4) R 在A上反对称当且仅当 $R \cap R^{-1} \subseteq I_A$;
- 5) R在A上传递当且仅当R∘R⊆R 可用于判断关系的性质。

关系的性质

- (1)自反的
- ②反自反的
- ③既不是自反的也不是反自反的

2. 对称性与反对称性:设A为非空集合, A上的关系可以是

- ①对称的
- ②反对称的
- ③既是对称的又是反对称的
- ④既不是对称的也不是反对称的

例如:
$$A = \{1,2,3\}$$
,令

$$R = \{<1,2>,<2,1>,<3,3>\}$$

$$R = \{<1,2>,<1,3>\}(2)$$

$$R = \{<1,1>\}$$

$$R = \{<1,2>,<2,1>,<1,3>\}$$

例 试判断下图中关系的性质

关系的性质与运算

设 R_1 , R_2 是A上的关系,如果经过某种运算后仍保持原来的性质,则在相对应的格内划 $\sqrt{}$,否则划 \times 。

原有性质 运算	自反性	反自反性	对称性	反对称性	传递性
R^{-1}	√	√	√	4	√
$R_1 \cap R_2$	1	√	4	√ .	√
$R_1 \bigcup R_2$. 1	4	J	×	, x ,
R_1-R_2	X·	4	√	√	×
$R_1 \cdot R_2$	√	×	Х.	×	×

关系的性质与运算

例:设 R_1 , R_2 为A上的对称关系,证明 R_1 $\cap R_2$ 也是A上的对称关系。

证明:

对于任意的<x,y>

$$\langle x,y \rangle \in R_1 \cap R_2$$

$$\Leftrightarrow \langle x,y \rangle \in \mathbb{R}_1 \land \langle x,y \rangle \in \mathbb{R}_2$$

$$\Leftrightarrow \langle y, x \rangle \in \mathbb{R}_1 \land \langle y, x \rangle \in \mathbb{R}_2$$

$$\Leftrightarrow \langle y, x \rangle \in R_1 \cap R_2$$

所以, $R_1 \cap R_2$ 在A上是对称的。

关系的性质与运算

例: R_1 , R_2 是A上的反对称关系,证明 $R_1 \cup R_2$ 不一定具有反对称性。

证明:

令A=
$$\{a,b\}$$
,
$$R_1=\{\langle a,b\rangle\},\ R_2=\{\langle b,a\rangle\}$$

$$R_1\cup R_2=\{\langle a,b\rangle,\langle b,a\rangle\}$$
 不是A上的反对称关系。

习题七

1,3,4

10,13,14,20

21,22