Московский Физико-Технический Институт

Микроархитектура современных микропроцессоров

Branch Predictors

Автор:

Овсянников Михаил

Предсказатели переходов

В качестве первого задания необходимо было исследовать различные предсказатели переходов (branch predictors). Для бенчмаркинга использовался симулятор ChampSim и некоторый набор трасс SPEC CPU 2017 из DPC-3, предназначенный специально для него.

Для оценки производительности предсказателей использовались показатели IPC (Instructions Per Cycle) и MPKI (Mispredictions Per Kilo Instruction), усредненный по всем используемым трассам с помощью геометрического среднего.

Всего сравнивались три предсказателя: Bimodal Predictor, Markov Predictor и Markov Probability Predictor. Ниже представлены результаты замеров IPC бенчмарков. Заметно, что Bimodal лучше Markov, а он в свою очередь – лучше Markov Probability.

Рис. 1. ІРС предсказателей

Увеличим масштаб, чтобы более детально рассмотреть отличия.

Рис. 2. ІРС предсказателей (увеличено)

Mispredictions Per Kilo Instruction 4.37989 3.04608 2.33439 Bimodal Markov Probability Predictor

Рис. 3. МРКІ предсказателей

Здесь видим ту же картину с точки зрения производительности: Bimodal лучше Markov, а тот – лучше Markov Probability.

Одно из объяснений, почему так происходит, заключается в том, что Bimodal Predictor в реализации имеет счётчики с насыщением. Причём, количество состояний этих счётчиков довольно мало. Благодаря этому данный предсказатель имеет низкую инерционность — он быстро подстраивается под новую фазу программы с новым поведением переходов. В то же время Markov и Markov Probability предсказатели оперируют обычными счётчиками, ничем не ограниченными, поэтому при изменении поведения переходов в программе они дольше будут подстраиваться под них.

Markov Probability выдаёт показатели хуже, чем просто Markov, потому, что периодически он предсказывает противоположный от него результат. В период перестройки счётчиков, когда программа меняет поведение, это оправдано, поскольку таким образом снижается негативный эффект инерционности Markov предсказателя. Однако в остальное время данное свойство лишь ухудшает картину.

Вывод

В этом задании были исследованы различные предсказатели переходов. Проведено сравнение следующих трёх: Bimodal Predictor, Markov Predictor и Markov Probability Predictor. По результатам бенчмаркинга оказалось, что Bimodal лучше Markov, а он в свою очередь — лучше Markov Probability.

Приложение

Ниже представлены графики IPC и MPKI для каждой трассы для более детального рассмотрения результатов. Номер по оси абсцисс – это номер трассы.

