

Table des matières

1

Revue littéraire

2

Statistiques descriptives

3

Dimension temporelle

4

Panel

5

Modélisation Spatial

6

Conclusion

Appuis théoriques

Notre réflexion s'appuie sur plusieurs travaux qui éclairent le lien entre immobilier et salaires :

- Le marché immobilier comme miroir de l'attractivité territoriale (Glaeser & Gyourko, 2005)
- Les mutations résidentielles comme révélateur des dynamiques économiques locales (Doeringer & Piore, 2020)
- Lien entre salaires, proximité géographique et structure urbaine (Andersson & Klaesson)

Comportement des séries a échelle nationale :

Comportement des séries a échelle nationale :

Comportement des séries par département :

Comportement des séries par département :

Comportement des séries par zone d'emploi :

Dimension temporelle

Analyse individuelle des séries

Analyse de la cointégration

Modélisation VECM

Analyse des résidus

Fonctions de Réponse Impulsionnelle

Analyse individuelle des séries

- 40 observations trimestrielles
 - 2 séries en base 100 2014
- Tendance haussière visible

- Tests de stationnarité sur les séries en niveau puis en différences premières
 - Séries intégrées d'ordre 1 : I(1)

Comportements propres à chaque série

Salaires

Évolution progressive des salaires

 Dynamique plus irrégulières pour les mutations

Mutations

Analyse de la cointégration

- $r \le 1$: L'hypothèse nulle est qu'il existe au plus une relation de cointégration.
- r = 0 : L'hypothèse nulle est qu'il n'existe aucune relation de cointégration.

Table 2: Test de cointégration de Johansen	(test	de	trace	au
seuil de 5%)				

Hypothèses	Test sans constante ni trend	Test avec constante	Test avec trend
$H_0: r \le 1$	0	4.18	4.27
$H_0: r = 0$	15.68	27.17*	42.8*

^{*} Signifie un rejet de H_0 au seuil de 5%

> 1 relation de cointégration détectée entre nos 2 séries

Modélisation VECM

Modèle VECM

$$\Delta Y_t = \alpha \beta' Y_{t-1} + \Gamma_1 \Delta Y_{t-1} + \dots + \Gamma_{p-1} \Delta Y_{t-p+1} + \Theta D_t + \epsilon_t$$

Relation de cointégration

$$\beta = \begin{pmatrix} 1.00 \\ -0.4697 \\ -57.3551 \end{pmatrix}$$

salaires = $0.4697 \times transactions + 57.3551$

Résultats

$$\begin{split} \Delta \text{salaires}_t &= -0.0158^* \cdot \text{ECT} + 0.1981 \cdot \Delta \text{salaires}_{t-1} \\ &- 0.0129^* \cdot \Delta \text{transactions}_{t-1} + 0.3459 \cdot \Delta \text{salaires}_{t-2} - 0.000043 \cdot \Delta \text{transactions}_{t-2} \end{split}$$

$$\begin{split} \Delta \text{transactions}_t &= -0.1556 \cdot \text{ECT} + 0.5289 \cdot \Delta \text{salaires}_{t-1} \\ &- 0.1706 \cdot \Delta \text{transactions}_{t-1} - 6.7337 \cdot \Delta \text{salaires}_{t-2} - 0.6846^* \cdot \Delta \text{transactions}_{t-2} \end{split}$$

1

2

^{*} Signifie coefficient significatif au seuil de 5%

Fonctions de Réponse Impulsionnelle

- Un choc sur les salaires n'impacte aucune variable
- Effet positif seulement sur les mutations d'un choc sur eux même

Conclusion

• L'analyse temporelle a permis de détecter une relation de long terme entre les 2 séries.

1

• Résultats peu concluants, complexes et parfois contre-intuitifs.

2

• Limites de cette analyse temporelle : nombre limité d'observations, manque de variables supplémentaires pour mieux capter la dynamique.

3

4

Panel

Choix du panel

2 Spécification du modèle

Variables de contrôle

Salaires comme variable d'intérêt

Mutations comme variable d'intérêt

Choix du Panel

Départements

- Approche Dynamique 2014-2022
- 93 départements x 9 = 837
 observations (manque Alsace)
- Bénéfice effets individuels et temporels
- Approche Spatiale

Choix du Panel

- Différences rurales non-rurales
- Lien année après année
- Des évolutions spatiales au fil du temps

Corrélation salaire - mutations

annee	corr
2014	0.6480573
2015	0.6417096
2016	0.6157390
2017	0.6310054
2018	0.6317443
2019	0.6260169
2020	0.6028587
2021	0.6033588
2022	0.6091275

Spécification du modèle

Modele de base

FEM, REM, Simple?

Test de Fisher:

$$\begin{cases} H_0: \ \sigma_{\alpha}^2 = 0 \ \ Il \ n'y \ a \ pas \ d'effet \ individuel \ H_1: \ \sigma_{\alpha}^2 > 0 \ \ Il \ y \ a \ de \ l'effet \ individuel \end{cases}$$

Stat.F P.Value 85.735 0 17.890 0

Test de Hausman:

$$\begin{cases} H_0: Plim \frac{1}{NT} X'\alpha = 0 & Effet individuel corrélé aux explicatives \\ H_1: Plim \frac{1}{NT} X'\alpha \neq 0 & Non corrélé \end{cases}$$

Spécification du modèle

Test sur la dépendance transversale des erreurs

 $S_{i,t} = \beta m_{i,t} + \alpha_i + \delta_t + u_{i,t}$ Modèle FEM retenu

Test de Pesaran:

$$\begin{cases} H_0: Cor(u_{i,t}, u_{j,t}) = 0 & Erreurs I.I.D \\ H_1: Cor(u_{i,t}, u_{j,t}) \neq 0 & Erreurs corrélées \end{cases}$$

Test de Wooldridge:

$$\begin{cases} H_0: Cor(u_{i,t}, u_{i,j}) = 0 & Pas \ d'autocorrelation \\ H_1: Cor(u_{i,t}, u_{i,j}) \neq 0 & Autocorrelation \end{cases}$$

P-Value
$$\simeq 0$$

Si l'hypothèse n'est pas respectée alors notre estimateur sera toujours convergent mais ne sera plus efficace.

Nos inférences seront impactées donc nous choisissons de corriger nos SE via la méthode Driscoll and Kraay

Variables de contrôle

Marché du travail:

- Taux de chômage
- Total d'emplois

Démographie:

- Part de la population jeune
- Part de la population « Agée »
- Variable Dichotomique Ruralité

Composition Sectorielle:

- Part d'emplois salariés dans le secteur Agricole
- Tertiaire
- Industrie
- Construction

Variables de contrôle

Bloc immobilier:

- Surface Moyenne des logements
- Le prix au m² moyen
- La proportion de logement étant des maisons

Manque de données « Base tous salariés » sur l'ensemble des années couvrant notre panel.

	x
log_sal	5.529090
$p_{Industrie}$	2.620452
$p_Tertiaire$	9.955771
$p_Agriculture$	1.509477
p_Construction	1.782141
Chomage	2.113665
part_25_39	4.210680
propmaison	6.603258
\log_{prixm2}	9.476971
log_pop	78.352840
log_tout_emploi	97.091487

Vérification multi-colinéarité

	sal	mutations	SurfaceMoy	Prixm2Moyen	propmaison
sal	1.00	0.64	-0.31	0.83	-0.68
mutations	0.64	1.00	-0.21	0.61	-0.47
SurfaceMoy	-0.31	-0.21	1.00	-0.63	0.76
Prixm2Moyen	0.83	0.61	-0.63	1.00	-0.91
propmaison	-0.68	-0.47	0.76	-0.91	1.00

Salaires comme variable d'intérêt

Coefficient	Estimate	Std. Error	p-value	Modele
log_mutations				•
\log _mutations	0.0041954	0.0046018	0.3622786	FE diff

Des résultats surprenants

Estimations

Quel effet domine?

- Effet d'accommodance
- La pression de l'offre

Salaires comme variable d'intérêt

Variable	FEM1	FEM2	FEM3	FEM4
log_mutations	-0.014 (0.189)	-0.015 (0.147)	-0.016 (0.095)	-0.019 (0.048)
Chomage	$0.004 \ (0.059)$	$0.004 \ (0.059)$	0.003 (0.036)	$0.001 \ (0.543)$
log_tout_emploi	$0.139\ (0.000)$	$0.139\ (0.000)$	0.147 (0.000)	NA
part_25_39	NA	-0.063 (0.892)	-0.133 (0.777)	-0.266 (0.584)
part_65_plus	NA	0.003 (0.988)	-0.088 (0.673)	-0.464 (0.028)
log_pop	NA	-0.000 (0.973)	-0.000 (0.988)	NA
$p_Industrie$	NA	NA	$0.002 \ (0.132)$	0.003 (0.002)
$p_Construction$	NA	NA	-0.007 (0.066)	-0.005 (0.158)
$p_Agriculture$	NA	NA	-0.009 (0.046)	-0.010 (0.022)
p_Tertiaire	NA	NA	-0.001 (0.628)	NA

$$S_{i,t} = \beta X_{i,t} + \alpha_i + \delta_t + u_{i,t}$$

Modèle en Niveau

4

5

Modèle en différence

Variable	FEM1	FEM2	FEM3	FEM4
log_mutations	0.005 (0.265)	0.006 (0.183)	0.006 (0.243)	0.006 (0.241)
Chomage	0.003(0.055)	0.003(0.026)	0.003(0.027)	0.003 (0.035)
log_tout_emploi	-0.019 (0.561)	-0.018 (0.563)	0.049(0.500)	NA
part_25_39	NA	-0.577 (0.062)	-0.581 (0.060)	-0.572 (0.065)
part_65_plus	NA	$0.433\ (0.508)$	$0.467 \ (0.477)$	$0.456 \ (0.477)$
log_pop	NA	0.001(0.268)	0.001(0.272)	NA
p_Industrie	NA	NA	0.001(0.875)	0.002 (0.525)
p_Construction	NA	NA	0.001 (0.806)	0.003 (0.241)
p_Agriculture	NA	NA	-0.001 (0.936)	0.000(0.962)
p_Tertiaire	NA	NA	-0.002 (0.549)	NA

Salaires comme variable d'intérêt

Parameter Estimates							
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI	
equilibre_LT	-0.7633	0.1194	-6.3917	0.0000	-0.9978	-0.5288	
d_log_mut ========	-0.0110 =======	0.0037 ======	-2.9628 =======	0.0032 ======	-0.0182 =======	-0.0037 =====	

Estimation Panel ECM simple

$$\Delta S_{i,t} = \gamma (S_{i,t} - \beta' X_{i,t-1}) + \phi' X_{i,t} + \alpha_i + \delta_t + u_{i,t}$$

	empirical	standardized
nipanel	6.620158	-15.598354
rhopanel	-105.240056	3.728268
tpanelnonpar	-38.512807	-15.621773
tpanelpar	-5305.192173	-6355.958658
rhogroup	-113.101739	6.664652
tgroupnonpar	-43.481086	-21.187754
tgrouppar	-41.931063	-19.107140

Table 7:	Estimation	Panel	ECM	${\bf R}^2 =$	0.4538

Variables	Coefficient	P_value
equilibre_LT	-0.8833	0.0000
d_{\log} mutations	-0.0012	0.6826
d _Chomage	0.0031	0.0182
d_{\log_prixm2}	0.0401	0.0008
d_part_25_39	-0.8715	0.0246
$d_part_65_plus$	-0.2482	0.6613
$d_p_Agriculture$	-0.0058	0.5077
$d_p_Industrie$	0.0034	0.0683
d_p_Construction	-0.0090	0.0085

Estimation du modèle

1

2

3

4

Mutations comme variable d'intérêt

Coefficient	Estimate	Std. Error	p-value	Modele
log_sal	-1.2412644	0.5540661	0.0253706	FE simple
\log_{sal}	0.1464592	0.1768917	0.4080005	FE diff

$$m_{i,t} = \beta S_{i,t} + \alpha_i + \delta_t + u_{i,t}$$

Un effet négatif des salaires sur les mutations dans le modèle des variables en niveau.

Un résultat tout aussi surprenant.

Mutations comme variable d'intérêt

Variable	FEM1	FEM2	FEM3	FEM4
log_sal	-0.718 (0.152)	-0.666 (0.101)	-0.726 (0.049)	-0.591 (0.111)
Chomage	-0.033 (0.029)	-0.008 (0.569)	-0.010 (0.481)	NA
log_tout_emploi	-0.789 (0.000)	-0.290 (0.077)	-0.245 (0.098)	NA
part_25_39	NA	-1.916 (0.404)	-3.509 (0.089)	-2.774 (0.155)
part_65_plus	NA	7.091 (0.000)	5.471 (0.000)	5.663 (0.000)
$p_Industrie$	NA	NA	$0.020 \ (0.039)$	$0.021 \ (0.020)$
p_Construction	NA	NA	-0.040 (0.061)	-0.036 (0.057)
$p_Agriculture$	NA	NA	0.069 (0.248)	NA
\log_{prixm2}	NA	NA	NA	-0.214 (0.011)
log(SurfaceMoy)	NA	NA	NA	$0.388 \; (0.004)$

$$m_{i,t} = \beta X_{i,t} + \alpha_i + \delta_t + u_{i,t}$$

Modèle en Niveau

Modèle en différence

Variable	FEM1	FEM2	FEM3	FEM4
log_sal	0.173 (0.341)	0.210 (0.263)	0.198 (0.320)	0.114 (0.465)
Chomage	-0.029 (0.155)	-0.033 (0.112)	-0.034 (0.078)	NA
log_tout_emploi	$0.188 \; (0.551)$	$0.182\ (0.534)$	0.335 (0.234)	NA
part_25_39	NA	1.978 (0.579)	2.102(0.547)	-2.587 (0.337)
part_65_plus	NA	-8.137 (0.070)	-8.172 (0.067)	-3.616 (0.218)
$p_Industrie$	NA	NA	$0.026 \ (0.143)$	$0.016 \ (0.372)$
$p_Construction$	NA	NA	-0.012 (0.676)	-0.015 (0.683)
$p_Agriculture$	NA	NA	$0.108 \; (0.067)$	NA
$\log_{ m prixm}2$	NA	NA	NA	0.218 (0.129)
log(SurfaceMoy)	NA	NA	NA	0.002 (0.701)

Mutations comme variable d'intérêt

Parameter Estimates						
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
equilibre_LT	-0.5340 -0.1554	0.1229	-4.3460 -1.0000	0.0000 0.3177		-0.2927
d_log_sal	-0.1554 	0.1554 	-1.0000 	0.3177 	-0.4606 	0.1498

Estimation Panel ECM simple

	empirical	standardized
nipanel	1.641074	-10.925464
tpanelnonpar	-35.668767	-14.946034
tpanelpar	-4360.954809	-4420.254429
rhogroup	-93.898108	4.302249
tgroupnonpar	-37.438752	-17.532573
tgrouppar	-35.960682	-15.652387

Test de cointégration

 $\Delta m_{i,t} = \gamma (m_{i,t} - \beta' X_{i,t-1}) + \phi' X_{i,t} + \alpha_i + \delta_t + u_{i,t}$

Table 11: Estimation Panel ECM $R^2 = 0.3779$

Parameter	Estimate	P_value
equilibre_LT	-0.6899	0.0000
d_{\log_sal}	-0.0440	0.7709
d _Chomage	-0.0170	0.1058
d_{\log_prixm2}	0.1801	0.0432
$d_part_25_39$	0.3665	0.8911
$d_part_65_plus$	-4.7035	0.0688
$d_p_Agriculture$	0.0864	0.2094
$d_p_Industrie$	-0.0002	0.9892
$d_p_{Construction}$	0.0088	0.6986
d_{\log_pop}	-0.0022	0.3766

Estimation du modèle

Modélisation Spatial

Matrice de Pondération Spatiale

L'indice de Moran

Choix du modèle

Résultats

Analyse des Résidus

Matrice de Pondération Spatiale

Matrice de distances

Matrice des KNN

Matrice de contiguïté

Matrice de Pondération Spatiale

Matrice de distances

Matrice des KNN

Matrice de contiguïté

L'indice de Moran

 $\left\{ H_0 : Absence\ d'autocorrélation\ spatiale\ H_1 : Présence\ d'autocorrélation\ spatiale\
ight.$

SDM SEM OLS SAR • Test de Moran sur les

Table 2: Coefficient, R² et AIC pour chaque modèle

Statistique	OLS	SAR	SEM	SDM
Coefficient	0.0616	0.0476	0.0521	0.0528
R.	0.3030	0.6042	0.6428	0.6430
AIC	-636.8000	-763.6700	-778.7800	-778.1700

- résidus des OLS
- Rejet de H_0
- Violation de l'hypothèse classique d'indépendance des erreurs.

OLS SAR SDM SEM

Table 2: Coefficient, R² et AIC pour chaque modèle

Statistique	OLS	SAR	SEM	SDM
Coefficient	0.0616	0.0476	0.0521	0.0528
R. AIC	0.3030 -636.8000	0.6042 -763.6700	0.6428 -778.7800	0.6430 -778.1700

Test LM

 H_0 : Le modele restreint est vrai H_1 : Le modele non restreint est vrai

- Rejet de H_0
- Conserver le modèle SDM

1

2

3

4

OLS SAR SDM SEM

Table 2: Coefficient, R² et AIC pour chaque modèle

Statistique	OLS	SAR	SEM	SDM
Coefficient	0.0616	0.0476	0.0521	0.0528
R.	0.3030	0.6042	0.6428	0.6430
AIC	-636.8000	-763.6700	-778.7800	-778.1700

- Comparaison des résidus SDM et SEM
- $\rho = 0.9975$
- AIC et R^2 presque similaire
- SDM plus adapté

1

2

3

4

OLS SAR SDM SEM

Table 2: Coefficient, R² et AIC pour chaque modèle

Statistique	OLS	SAR	SEM	SDM
Coefficient	0.0616	0.0476	0.0521	0.0528
R.	0.3030	0.6042	0.6428	0.6430
AIC	-636.8000	-763.6700	-778.7800	-778.1700

- Comparaison des résidus SDM et SEM
- $\rho = 0.9975$
- AIC et R^2 presque similaire
- SDM plus adapté

1

2

3

4

$Log(salaire) \sim \gamma + \log(transaction)$

Table 1: Coefficients estimés du modèle SDM

	Matrice de voisinage				
Variable	KNN 5	KNN 8	Contiguïté	Distance	
Constante	0.5487***(7.1e-07)	0.4891***(0.00018)	0.5427***(1.2e-06)	0.5766***(2.3e-06)	
log(Trans)	0.0498***(0)	0.0516***(0)	0.0528***(0)	0.0528***(0)	
W log(Trans)	-0.0196*(0.016)	-0.0243*(0.012)	-0.0314***(1.8e-05)	-0.0201*(0.025)	
Rho	0.7077	0.7379	0.737	0.6908	
\$R^2\$	0.6559	0.6229	0.643	0.5954	
AIC	-795.44	-779.12	-778.17	-754.32	

$Log(salaire) \sim \gamma + \log(transaction) + \log(emploi) + chomage$

Table 4: Coefficients estimés et diagnostics du modèle SDM

	Matrice de voisinage				
Variable	KNN 5	KNN 8	Contiguïté	Distance	
(Intercept)	0.4238***(1e-04)	0.3765**(0.003)	0.3897***(0.00034)	0.3826**(0.0016)	
log_trans	0.001(0.93)	0(1)	0.0086(0.49)	-0.001(0.93)	
log_emploi	0.0477***(1.2e-06)	0.0504***(7.4e-07)	0.0434***(3.9e-05)	0.0528***(8.5e-08)	
Chomage	-0.0114***(7.7e-06)	-0.0126***(4.4e-06)	-0.0139***(3.2e-08)	-0.0122***(7.9e-06)	
$\mathbf{W}.\mathbf{log_trans}$	-0.0047(0.8)	0.007(0.75)	-0.0152(0.45)	-0.0076(0.68)	
$\mathbf{W}.\mathbf{log}_{\mathbf{emplo}}$	-0.0073(0.67)	-0.018(0.36)	-0.0087(0.64)	-0.0011(0.95)	
\mathbf{W} . Chomage	0.0085*(0.014)	0.0094*(0.017)	0.0125***(0.00029)	0.0084*(0.027)	
Rho \$R^2\$ AIC	0.698 0.7201 -846.04	0.7168 0.6942 -831.26	0.7391 0.7153 -832.8	0.6845 0.677 -809.6	

1

2

3

4

$Log(salaire) \sim \gamma + \log(transaction) + \log(emploi) + chomage$

Table 1: Effets directs, indirects et totaux du modèle SDM

fet direct	Effet indirect	Effet total
$0.0002 \\ 0.0534$	-0.0122 0.0803	-0.0120 0.1337 -0.0097
	0.0002	0.0002 -0.0122 0.0534 0.0803

- Effet direct :Reflète son impact au sein d'un territoire sur ses propres niveaux de salaires
- <u>Effet indirect:</u> les effets de débordement spatial qui influencent les salaires des territoires voisins.
- <u>Effet total:</u> Représente l'impact global en intégrant les effets locaux et diffusés.

$log(transaction) \sim \gamma + Log(salaire)$

Table 5: Coefficients estimés et diagnostics du modèle SDM

Variable	Matrice de voisinage					
	KNN 5	KNN 8	Contiguïté	Distance		
(Intercept)	-0.8646(0.54)	-0.3533(0.82)	-0.0222(0.99)	-0.1978(0.9)		
log_salaire	6.5913***(0)	6.3773***(0)	6.6672***(0)	6.3161***(0)		
W.log_salaire	e -4.6098***(9.1e-09)	-4.7752***(4.6e-09)	-4.9993***(2.2e-09)	-4.3852***(3.4e-07)		
Rho \$R^2\$	0.4356 0.432	0.5011 0.4191	$0.4325 \\ 0.4277$	0.3679 0.3938		
AIC	538.84	543.79	541.89	553.27		

* (
$$\alpha = 5\%$$
)

$\log(transaction) \sim \gamma + Log(salaire) + \log(emploi) + chomage$

Table 3: Coefficients estimés et diagnostics du modèle SDM

Variable	Matrice de voisinage					
	KNN 5	KNN 8	Contiguïté	Distance		
(Intercept)	-0.6233(0.31)	-0.5174(0.42)	-0.3477(0.57)	-1.0781(0.14)		
log_salaire	-0.0084(0.98)	0.0636(0.84)	0.1715(0.58)	-0.0739(0.82)		
log_emploi	0.8016***(0)	0.8016***(0)	0.7942***(0)	0.8055***(0)		
Chomage	0.0609***(8.3e-06)	0.0689***(9.6e-07)	0.064***(4.6e-07)	0.0656***(5.7e-06)		
lag.log_salaiı	re 0.091(0.82)	-0.2921(0.49)	-0.1537(0.72)	0.1519(0.74)		
W.log_emplo	oi -0.4994***(1.6e-15)	-0.4788***(1.2e-10)	-0.5473***(0)	-0.3803***(7.2e-07)		
W.Chomage	-0.0442*(0.017)	-0.0637**(0.0016)	-0.0533**(0.002)	-0.0544**(0.0065)		
Rho	0.6206	0.6946	0.6886	0.5148		
\$R^2\$	0.8999	0.8982	0.9106	0.8869		
AIC	77.74	79.2	56.32	102.11		

Analyse des Résidus

Les résidus sont-ils normaux ?

<u>Test de normalité de Shapiro-Wilk</u>

 H_0 : Les données suivent une loi normale H_1 : Les données ne suivent pas une loi normale

Analyse des Résidus

Les résidus sont-ils hétéroscédastique ?

Test de Breusch--Pagan

 H_0 : Homoscédasticité des résidus H_1 : Hétéroscédasticité des résidus

Modèle	Statistique	Degrés de liberté	p-value	Conclusion
SDM (KNN = 5)	6.0408	3	0.1096	Pas d'hétéroscédasticité significative

Analyse des Résidus

Cartographie des résidus et qualité du modèle

Conclusion

• La modélisation spatiale permet d'identifier les disparités salariales en tenant compte des effets locaux et de voisinage.

 Nos résultats confirment l'existence d'un lien structurel à long terme, mais une faible sensibilité à court terme.

• La relation entre mutations immobilières et salaires reste complexe et dépend fortement du contexte territorial.