hw07

March 7, 2021

0.1 This Jupyter notebook answers HW07 questions for PHY 981 Nuclear Structure.

Author: Jacob Davison Date: 03/05/2021

0.1.1 HW07 question 5

The first bound state for (0,2,5/2) does not appear until VN=1.24. The first bound state for (1,0,1/2) does not appear until VN=1.25. Below, we tabulate the results for each neutron orbit per change in VN.

Neutron orbit (1,0,1/2)

VN	s-p energy (MeV)	rms radius (fm)
	b p chergy (wev)	
1.25	-0.479	7.344
1.26	-0.544	7.044
1.28	-0.684	6.546
1.29	-0.760	6.338
1.30	-0.838	6.150
1.31	-0.919	5.980
1.32	-1.004	5.825
1.33	-1.092	5.684
1.34	-1.182	5.555
1.35	-1.275	5.436
1.36	-1.371	5.326
1.37	-1.470	5.223
1.38	-1.572	5.128
1.39	-1.676	5.039
1.40	-1.782	4.956
1.41	-1.891	4.878
1.42	-2.003	4.805
1.72	2.000	1.000

Neutron orbit (0,2,5/2)

VN	s-p energy (MeV)	rms radius (fm)
1.24	-0.255	4.230
1.25	-0.400	4.118

VN	s-p energy (MeV)	rms radius (fm)
1.26	-0.548	4.032
1.27	-0.697	3.961
1.28	-0.850	3.900
1.29	-1.004	3.847
1.30	-1.160	3.799
1.31	-1.318	3.756
1.32	-1.478	3.717
1.33	-1.640	3.681
1.34	-1.803	3.647
1.35	-1.969	3.616
1.36	-2.136	3.586
1.37	-2.304	3.559
1.38	-2.475	3.532
1.39	-2.646	3.507
1.40	-2.819	3.484
1.41	-2.994	3.461
1.42	-3.170	3.440

Maximum single particle energy for the (1,0,1/2) orbit to be a halo state is around -1.676 MeV, at which point the RMS radius is 5.039 fm. This is computed at a VN=1.39. At single particle energies below this point (closer to zero) the bound states are considered halo states; above this point, the bound states are not halo states.

```
[8]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

data1 = pd.read_csv('1-0-1.txt', sep=' ')
data2 = pd.read_csv('0-2-5.txt', sep=' ')

fig = plt.figure(figsize=(16,8))
sns.lineplot(x='SP-energy', y='RMS-radius', data=data1)
plt.title('Neutron orbit (1,0,1/2)')

fig = plt.figure(figsize=(16,8))
sns.lineplot(x='SP-energy', y='RMS-radius', data=data2)
plt.title('Neutron orbit (0,2,5/2)')
```

```
[8]: Text(0.5, 1.0, 'Neutron orbit (0,2,5/2)')
```


Change VN to make deeper well to get bound states proton decay width will not depend on potential depth (change e.g. diff,radius instead)

0.1.2 HW07 question 6

One neutron separation energy for 25O is -0.757 MeV

Here is the output I get from wspot for 25O in the 0d3 state, fixing the energy at 0.757 and varying VN to find a resonance.

```
ws paramters, v0,v1,r0,a0,vs,rc:
-51.000 -33.000
                  1.270
                          0.670
                                 22.000
                                          1.200
input: iat,izt,iap,izp = 25 8
input: emin,emax,vnmin,vnmax =
                                    0.757
                                              0.757
                                                        0.500
                                                                  2.000
          vn,adif,rr0,vnls,r0c =
                                                    1.2700 1.0000
defaults:
                                    1.0000
                                            0.6700
                                                                    1.2000
input:
           vn,adif,rr0,vnls,r0c =
                                    0.0000
                                            0.0000 0.0000 0.0000 0.0000
                    1.062
resonance at vn =
resonance at vn =
                    1.063
                    1.063
resonance at vn =
                   0.757 with G =
                                       0.08516 MeV
                                                      half-life (ps) =
resonance at ei =
0.5354E-08
resonance at ei =
                    0.755 with G =
                                       0.07835 MeV
                                                      half-life (ps) =
0.5820E-08
                    0.755 with G =
resonance at ei =
                                       0.07835 MeV
                                                      half-life (ps) =
0.5820E-08
```

The decay width is 78.35 keV. I can't find the experimental data to compare with because I don't have access to this paper (behind APS paywall).

0.1.3 HW07 question 7

[]:

I think that the Γ I should be looking for is 101 keV, but I can't seem to find it. The closest I come is with VN=1.910, adiff=4.5, and rr0=0.85, which gives me a G=62.76 keV.

```
ws paramters, v0,v1,r0,a0,vs,rc:
-51.000 -33.000
                1.270
                        0.670 22.000
                                         1,200
input: iat,izt,iap,izp = 19 11 1 1
input: emin,emax,vnmin,vnmax =
                                   0.745
                                             0.745
                                                       0.500
                                                                 2.000
                                           0.6700 1.2700 1.0000 1.2000
defaults: vn,adif,rr0,vnls,r0c =
                                   1.0000
                                   0.0000 4.5000 0.8500 0.0000 0.0000
input:
          vn,adif,rr0,vnls,r0c =
resonance at vn =
                   1.910
resonance at vn =
                   1.910
resonance at vn =
                   1.910
                   0.745 with G =
                                      0.08381 MeV
                                                     half-life (ps) =
resonance at ei =
0.5441E-08
resonance at ei =
                   0.743 with G =
                                      0.06035 MeV
                                                     half-life(ps) =
0.7557E-08
resonance at ei =
                   0.745 with G =
                                      0.06276 MeV
                                                     half-life (ps) =
0.7266E-08
                   0.745 with G =
                                      0.06276 MeV
                                                     half-life (ps) =
resonance at ei =
0.7266E-08
```