Linear Programming

Chongnan Li 16271221@bjtu.edu.cn

Lecture 6 Interior Point Method

Outline:

1.Motivation

2.Basic concepts

3.Primal affine scaling algorithm

4.Dual affine scaling algorithm

• How to find an initial feasible solution?

(LP)
$$\begin{cases} \min & c^T x \\ \text{s.t.} & Ax = b \\ & x \ge 0 \end{cases}$$

Idea: add an artificial variable with a big penalty.

(big-M)
$$\begin{cases} \min & \mathbf{c}^T \mathbf{x} + M \mathbf{x}^a \\ \text{s.t.} & A \mathbf{x} + (\mathbf{b} - A \mathbf{e}) \mathbf{x}^a = \mathbf{b} \\ \mathbf{x} \ge \mathbf{0}, \ \mathbf{x}^a \ge 0 \end{cases}$$

Properties of (big-M) problem:

- (1) It is a standard form LP with n + 1 variables and m constraints.
- (2) $e = (1,1,\dots,1)^T \in \mathbb{R}^{n+1}$ is an interior feasible solution of (big-M).
- (3) If $(x^a)^* > 0$ in $(x^*, (x^a)^*)$ then (LP) is infeasible. Otherwise, either (LP) is **unbounded below** or x^* is optimal to (LP).
- (4) Not like big-M method in simplex, $b \ge 0$ is not required!

(LP)
$$\begin{cases} \min & c^T x \\ \text{s.t.} & Ax = b \\ & x \ge 0 \end{cases}$$
Choose any $x^0 > 0$, calculate $v = b - Ax^0$. If $v = 0$, then x^0 is interior feasible.

Otherwise, conside

(Phase - I)
$$\begin{cases} \min & u \\ \text{s.t.} & Ax + vu = b \\ & x \ge 0, u \ge 0 \end{cases}$$

Properties of (Phase - I) problem:

(1) (Phase - I) is a standard form LP with n + 1 variables and m constraints.

(2)
$$\hat{x}^0 = \begin{pmatrix} x^0 \\ u^0 \end{pmatrix} = \begin{pmatrix} x^0 \\ 1 \end{pmatrix}$$
 is interior feasible for (Phase - I).

(3) (Phase - I) is bounded below by 0.

(4) Apply primal-affine scaling to (Phase - I) will generate
$$\begin{pmatrix} x^* \\ u^* \end{pmatrix}$$
 for (Phase - I).

(5) If $u^* > 0$, (LP) is infeasible. Otherwise, x^* is an initial feasible solution for (LP).

• Facts of the primal affine scaling algorithm

(1) The convergency proof, i.e.,

$$\{\boldsymbol{x}^k\} \to \boldsymbol{x}^*$$

 $\{x^k\} \to x^*$ under Non-degeneracy assumption (Theorem 7.2) is given by Vanderbei/Meketon/ Freedman in (1985).

- (2) Convergence proof without Non-degeneracy assuption, T. Tsuchiya (1991), P.Tseng/Z.Luo(1992).
- (3) The computational bottleneck is to find $(AX_k^2A^T)^{-1}$.
- (4) No polynomial-time proof.
- -J.Lagarias showed primal affine is only of super-linear rate.
- -N.Megiddo/M.Shub showed that primal affine scaling might visit all vertices if it moves too close to the boundary.
- "Although in practice the primal affine scaling algorithm performs very well, no proof shows the algorithm is a polynomial-time algorithm. Actually, N.Megiddo and M.Shub showed that the affine scaling algorithm might visit the neighborhoods of all the vertices of the Klee-Minty cube when a starting point is pushed to the boundary."

(5) In practice, VMF reported

	# of iterations
Simplex	$0.7159m^{0.9522}n^{0.3109}$
Affine Scaling	$7.3385m^{-0.0187}n^{0.1694}$

2

- (6) It may lose primal feasibility due to machine accuracy (Phase I again).
- (7) Maybe sensitive to primal degeneracy.

• Improving performance - potential push

To avoid being trapped by the boundary behavior, a recentering method called *potential push* is introduced. The idea is to push a current solution x^k to a new interior solution \hat{x}^k which is away from the positivity walls but without increasing its objective value. Then continue the iterations from \hat{x}^k .

Idea(Potential push method):

-Stay away from the boundary by adding a potential push. The mechanism is showed in the following figure.

In the figure, we move from \mathbf{x}^{k-1} to a new solution \mathbf{x}^k along the direction \mathbf{d}_x^{k-1} provided by the primal affine scaling algorithm. Then we recenter \mathbf{x}^k to $\hat{\mathbf{x}}^k$ by a "potential push" along the direction $\hat{\mathbf{d}}_x^k$ such that \mathbf{x}^k and $\hat{\mathbf{x}}^k$ have the same objective value but $\hat{\mathbf{x}}^k$ is away from the boundary.

To achieve this goal, we define a potential function p(x), for each x > 0:

$$p(x) = -\sum_{j=1}^{n} \log_e x_j$$

The value of the potential function p(x) becomes larger when x is closer to a positivity wall $x_j = 0$. Hence it creates a force to "push" x away from too close an approach to a boundary by minimizing p(x). With the potential function, we focus on solving the following "potential push" problem:

(potential push)
$$\begin{cases} & \text{Minimize} \quad p(x) \\ & \text{subject to} \quad Ax = b, \ x > 0 \\ & c^T x = c^T x^k \end{cases}$$

• Improving performance - logarithmic barrier function

Another way to stay away from the positivity walls is to incorporate a barrier function, with extremely high values along the boundaries

$$\{x \in R^n | x_j = 0, \text{ for some } 1 \le j \le n\}$$

into the original objective function. Minimizing this new objective function will automatically push a solution away from the positivity walls. The logarithmic barrier method considers the following nonlinear optimization problem:

Minimize
$$F_{\mu}(\mathbf{x}) = \mathbf{c}^T \mathbf{x} - \mu \sum_{j=1}^n \log_e x_j$$

subject to $A\mathbf{x} = \mathbf{b}, \mathbf{x} > \mathbf{0}$ (7.46)

where $\mu > 0$ is a scalar. If $x^*(\mu)$ is an optimal solution to problem (7.46), and if $x^*(\mu)$ tends to a point x^* as μ approaches zero, then it follows that x^* is an optimal solution to the original linear programming problem. Also notice that the positivity constraint x > 0 is actually embedded in the definition of the logarithmic function. Hence, for any fixed $\mu > 0$, the Newton search direction d_{μ} at a given feasible solution x is obtained by solving the following quadratic optimization problem:

Minimize
$$\frac{1}{2} \boldsymbol{d}^T \nabla^2 F_{\mu}(\boldsymbol{x}) \boldsymbol{d} + [\nabla F_{\mu}(\boldsymbol{x})]^T \boldsymbol{d}$$
subject to $\boldsymbol{A} \boldsymbol{d} = \boldsymbol{0}$

where $\nabla F_{\mu}(\mathbf{x}) = \mathbf{c} - \mu \mathbf{X}^{-1} \mathbf{e}$ and $\nabla^2 F_{\mu}(\mathbf{x}) = \mu \mathbf{X}^{-2}$.

In other words, the Newton direction is in the null space of matrix A and it minimizes the quardratic approximation of $F_{\mu}(x)$. We let λ_{μ} denote the vector of Lagrange multipliers, then d_{μ} and λ_{μ} satisfy the following system of equations(KKT matrix form, if you do not understand, please see the relevant textbook like Convex Optimization):

$$\begin{pmatrix} \mu X^{-2} & A^T \\ A & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mu} \\ \lambda_{\mu} \end{pmatrix} = -\begin{pmatrix} \mathbf{c} - \mu X^{-1} \mathbf{e} \\ \mathbf{0} \end{pmatrix}$$

Letting $\phi_{\mu} = X^{-1} \mu d_{\mu}$, we have

$$\begin{pmatrix} I & XA^T \\ AX & \mathbf{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\phi}_{\mu} \\ \boldsymbol{\lambda}_{\mu} \end{pmatrix} = -\begin{pmatrix} Xc - \mu e \\ \mathbf{0} \end{pmatrix}$$

It follows that

$$\phi_{\mu} = -[I - XA^{T}(AX^{2}A^{T})^{-1}AX](Xc - \mu e)$$

and

$$d_{\mu} = \frac{1}{\mu} X \phi_{\mu} = -\frac{1}{\mu} X [I - XA^{T} (AX^{2}A^{T})^{-1}AX](Xc - \mu e)$$
 (7.49)

$$\Rightarrow d_{\mu}^{k} = \frac{1}{\mu} X_{k} \phi_{\mu} = -\frac{1}{\mu} X_{k} [I - X_{k} A^{T} (A X_{k}^{2} A^{T})^{-1} A X_{k}] (X_{k} c - \mu e)$$
Taking the given solution to be $x = x^{k}$ and comparing d_{μ} with the primal

Taking the given solution to be $\mathbf{x} = \mathbf{x}^k$ and comparing \mathbf{d}_{μ} with the primal affine scaling moving direction \mathbf{d}_{x}^k , we see that

$$\boldsymbol{d}_{\mu}^{k} = \frac{1}{\mu} \boldsymbol{d}_{x}^{k} + \boldsymbol{X}_{k} [\boldsymbol{I} - \boldsymbol{X}_{k} \boldsymbol{A}^{T} (\boldsymbol{A} \boldsymbol{X}_{k}^{2} \boldsymbol{A}^{T})^{-1} \boldsymbol{A} \boldsymbol{X}_{k}] \boldsymbol{e}$$

The derivation in detail:

$$\begin{aligned} d_{\mu}^{k} - X_{k}[I - X_{k}A^{T}(AX_{k}^{2}A^{T})^{-1}AX_{k}]e \\ &= -\frac{1}{\mu}X_{k}[I - X_{k}A^{T}(AX_{k}^{2}A^{T})^{-1}AX_{k}](X_{k}c - \mu e) - X_{k}[I - X_{k}A^{T}(AX_{k}^{2}A^{T})^{-1}AX_{k}]e \\ &= \frac{1}{\mu}X_{k}[I - X_{k}A^{T}(AX_{k}^{2}A^{T})^{-1}AX_{k}](-X_{k}c + \mu e) - X_{k}[I - X_{k}A^{T}(AX_{k}^{2}A^{T})^{-1}AX_{k}]e \\ &= \frac{1}{\mu}X_{k}[I - X_{k}A^{T}(AX_{k}^{2}A^{T})^{-1}AX_{k}](-X_{k}c) + X_{k}[I - X_{k}A^{T}(AX_{k}^{2}A^{T})^{-1}AX_{k}]e - X_{k}[I - X_{k}A^{T}(AX_{k}^{2}A^{T})^{-1}AX_{k}]e \\ &= \frac{1}{\mu}X_{k}[I - X_{k}A^{T}(AX_{k}^{2}A^{T})^{-1}AX_{k}](-X_{k}c) \\ &= \frac{1}{\mu}X_{k}[I - X_{k}A^{T}(AX_{k}^{2}A^{T})^{-1}AX_{k}](-X_{k}c) \\ &= \frac{1}{\mu}X_{k}d_{y}^{k} \\ &= \frac{1}{\mu}d_{x}^{k} \end{aligned}$$

The additional component $X_k[I - X_k A^T (A X_k^2 A^T)^{-1} A X_k] e = X_k P_k e$ can be viewed as a force which pushes a solution away from the boundary. Hence some people call it a "centering force", and call the logarithmic barrier method a "primal affine scaling algorithm with centering force".

While classical barrier function theory requires that x^k solves problem (7.46) explicitly before $\mu = \mu_k$ is reduced. C.Gonzaga has pointed out that there exists $\mu_0 > 0$, $0 < \rho < 1$, and $\alpha > 0$ so that choosing d_{μ}^k by (7.49), $x^{k+1} = x^k + \alpha d_{\mu}^k$ and $\mu_{k+1} = \rho \mu_k$ yields convergence to an optimal solution x^* to the original linear programming problem in $O(\sqrt{nL})$ iterations. This could result in a polynomial-time affine scaling algorithm with complexity $O(n^3L)$. A simple and elegant proof is due to C.Roos and J.-Ph.Vial, similar to the one proposed by R.Monteiro and I.Adler for the primal-dual algorithm.

Dual affine scaling algorithm Affine scaling method applied to the dual LP

(D)
$$\begin{cases} \max & \boldsymbol{b}^T \boldsymbol{w} \\ \text{s.t.} & \boldsymbol{A}^T \boldsymbol{w} + \boldsymbol{s} = \boldsymbol{c} \\ \boldsymbol{s} \ge \boldsymbol{0} \end{cases}$$

Idea: given (w^k, s^k) dual interior feasible, i.e.,

$$A^T w^k + s^k = c$$
$$s^k > 0$$

Objective: find $(\boldsymbol{d}_{w}^{k}, \boldsymbol{d}_{s}^{k})$ and step-length $\beta_{k} > 0$ such that

$$\mathbf{w}^{k+1} = \mathbf{w}^k + \beta_k \mathbf{d}_w^k$$

$$\mathbf{s}^{k+1} = \mathbf{s}^k + \beta_k \mathbf{d}_s^k$$

is still dual interior feasible and $\boldsymbol{b}^T \boldsymbol{w}^{k+1} \ge \boldsymbol{b}^T \boldsymbol{w}^k$.

• Key knowledge

Dual scaling (centering)

Dual feasible direction

Dual good direction - increase the dual objective value

Dual step-length

Primal estimate for stopping rule

Observation 1

Dual scaling (centering)

 $\mathbf{w}^k \in \mathbb{R}^m$: no scaling needed.

 $s^k > 0$: scale to $e = (1,1,\cdots,1)^T \in \mathbb{R}^n$

$$S_k = \operatorname{diag}(s_i^k) = \begin{pmatrix} s_1^k & 0 & \cdots & 0 \\ 0 & s_2^k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_n^k \end{pmatrix}$$

$$u^{k} = S_{k}^{-1} s^{k} \qquad d_{u}^{k} = S_{k}^{-1} d_{s}^{k}$$

$$s^{k} = S_{k} u^{k} \qquad d_{s}^{k} = S_{k} d_{u}^{k}$$

Observation 2

Dual feasibility (feasible direction)
$$\underbrace{A^T w^{k+1} + s^{k+1}}_{c} = A^T (w^k + \beta_k d_w^k) + (s^k + \beta_k d_s^k)$$

$$= \underbrace{(A^T w^k + s^k)}_{c} + \underbrace{\beta_k (A^T d_w^k + d_s^k)}_{>0}$$

 $\Rightarrow A^T d_w^k + d_s^k = 0$ is required!

$$\iff \mathbf{S}_k^{-1} \mathbf{A}^T \mathbf{d}_w^k + \underbrace{\mathbf{S}_k^{-1} \mathbf{d}_s^k}_{k} = \mathbf{0}$$

(NOTE: $S_{l}^{-1}A^{T}$ is not a square matrix thus it does not have inverse matrix!)

6

$$\iff A S_k^{-1} (S_k^{-1} A^T d_w^k + d_u^k) = \mathbf{0}$$

$$\iff (A S_k^{-2} A^T) d_w^k + A S_k^{-1} d_u^k = \mathbf{0}$$

$$\iff d_w^k = -(A S_k^{-2} A^T)^{-1} A S_k^{-1} d_u^k$$

Observation 3

Increase dual objective function (good direction) $\boldsymbol{b}^T \boldsymbol{w}^{k+1} = \boldsymbol{b}^T \boldsymbol{w}^k + \beta_k \boldsymbol{b}^T \boldsymbol{d}_w^k \ge \boldsymbol{b}^T \boldsymbol{w}^k$

$$\boldsymbol{b}^T \boldsymbol{w}^{k+1} = \boldsymbol{b}^T \boldsymbol{w}^k + \beta_k \boldsymbol{b}^T \boldsymbol{d}_w^k \geq \boldsymbol{b}^T \boldsymbol{w}^k$$

Thus

$$\boldsymbol{b}^T \boldsymbol{d}_w^k = -\boldsymbol{b}^T \boldsymbol{Q}_k \boldsymbol{d}_u^k \geq \boldsymbol{0}$$

Choose $d_u^k = -Q_k^T b$, then

$$\boldsymbol{b}^T \boldsymbol{d}_w^k = \boldsymbol{b}^T \boldsymbol{Q}_k \boldsymbol{Q}_k^T \boldsymbol{b} = \|\boldsymbol{Q}_k^T \boldsymbol{b}\|^2 \ge 0$$

According to $\mathbf{d}_{u}^{k} = -\mathbf{Q}_{k}^{T}\mathbf{b}$ and $\mathbf{d}_{u}^{k} = -\mathbf{Q}_{k}\mathbf{d}_{u}^{k}$,

$$d_{w}^{k} = -Q_{k}d_{u}^{k} = Q_{k}Q_{k}^{T}b$$

$$\Rightarrow \underbrace{(AS_{k}^{-2}A^{T})^{-1}AS_{k}^{-1}}_{Q_{k}}\underbrace{S_{k}^{-1}A^{T}(AS_{k}^{-2}A^{T})^{-1}b}_{Q_{k}}$$

$$= (AS_{k}^{-2}A^{T})^{-1}b$$

According to $\mathbf{A}^T \mathbf{d}_w^k + \mathbf{d}_s^k = \mathbf{0}$, $\Rightarrow \mathbf{d}_s^k = -\mathbf{A}^T \mathbf{d}_w^k = -\mathbf{A}^T (\mathbf{A} \mathbf{S}_k^{-2} \mathbf{A})^{-1} \mathbf{b}$

Observation 4

Dual step-length

$$\mathbf{s}^{k+1} = \underbrace{\mathbf{s}^k}_{> \mathbf{0}} + \beta_k \mathbf{d}_s^k > \mathbf{0}$$

(i) $d_s^k = 0$, problem (D) has a constant objective value and (w^k, s^k) are dual optimal.

(ii) $\mathbf{d}_s^k \ge \mathbf{0}$ (but $\ne \mathbf{0}$), $\beta_k \in (0, +\infty)$, problem (D) is unbounded above.

(iii) some $(\boldsymbol{d}_{s}^{k})_{i} < 0$

$$\beta_k = \min_i \{ \frac{\alpha s_i^k}{-(d_s^k)_i} | (d_s^k)_i < 0 \} \text{ where } 0 < \alpha < 1.$$

Observation 5

Primal estimate

We define $\mathbf{x}^k \stackrel{\text{def}}{=} -\mathbf{S}_k^{-2} \mathbf{d}_s^k$

then

$$Ax^{k} = -AS_{k}^{-2}d_{s}^{k} = -AS_{k}^{-2}[-A^{T}(AS_{k}^{-2}A^{T})^{-1}b]$$

$$= AS_{k}^{-2}A^{T}(AS_{k}^{-2}A^{T})^{-1}b$$

$$= b$$

Hence x^k is a primal estimate, once $x^k \ge 0$, then x^k is primal feasible.

Furthermore, if $\mathbf{c}^T \mathbf{x} - \mathbf{b}^T \mathbf{w} = 0$, then $\mathbf{x}^k \leftarrow \mathbf{x}^*, \mathbf{w}^k \leftarrow \mathbf{w}^*, \mathbf{s}^k \leftarrow \mathbf{s}^*$.

Key steps of dual affine scaling algorithm:

Step 1: Set k = 0, $\epsilon > 0$ (small enough) and find $(\mathbf{w}^0, \mathbf{s}^0)$, s.t. $\mathbf{A}^T \mathbf{w}^0 + \mathbf{s}^0 = \mathbf{c}$, $\mathbf{s}^0 > \mathbf{0}$.

Step 2: Set $S_k = \operatorname{diag}(s_i^k)$.

Compute $d_w^k = (AS_k^{-2}A^T)^{-1}b$, $d_s^k = -A^Td_w^k$. Step 3: If $d_s^k = \mathbf{0}$, STOP! $w^k \leftarrow w^*$, $s^k \leftarrow s^*$. If $d_s^k \ge \mathbf{0}$ (but $\ne \mathbf{0}$), STOP! (D) is unbounded above.

Otherwise,

Step 4: Compute

$$x^k = -S_k^{-2} d_s^k$$

If $x^k \ge 0$ and $c^T x - b^T w \le \epsilon$, STOP! $x^k \leftarrow x^*$, $w^k \leftarrow w^*$, $s^k \leftarrow s^*$.

Otherwise,

Step 5: Compute

$$\beta_k = \min_i \{ \frac{\alpha s_i^k}{-(d_s^k)_i} | (d_s^k)_i < 0 \} \text{ where } 0 < \alpha < 1.$$

Step 6: Update

$$\mathbf{w}^{k+1} = \mathbf{w}^k + \beta_k \mathbf{d}_w^k$$

$$\mathbf{s}^{k+1} = \mathbf{s}^k + \beta_k \mathbf{d}_s^k$$

$$\mathbf{s}^{k+1} = \mathbf{s}^k + \beta_k \mathbf{d}_s^k$$

Set $k \leftarrow k + 1$, go to Step 2.

• Find an initial interior feasible solution

Find $(\mathbf{w}^0, \mathbf{s}^0)$, s.t.

$$A^T w^0 + s^0 = c$$
$$s^0 > 0$$

If c > 0, then $w^0 = 0$, $s^0 = c$ will do.

• Big-M method:

Define
$$\mathbf{p} \in \mathbb{R}^n$$
, $p_i = \begin{cases} 1, & \text{if } c_i \leq 0 \\ 0, & \text{if } c_i > 0 \end{cases}$

Consider, for a large M > 0,

(Big - M)
$$\begin{cases} \max & \boldsymbol{b}^T \boldsymbol{w} + M w^a \\ \text{s.t.} & \boldsymbol{A}^T \boldsymbol{w} + \boldsymbol{p} w^a + \boldsymbol{s} = \boldsymbol{c} \\ & \boldsymbol{s} \ge \boldsymbol{0} \end{cases}$$

Properties of (Big - M) problem:

- (a) (Big M) is a standard LP with n constraints and m + 1 + n variables.
- (b) Define $\bar{c} = \max |c_i|$ and $\theta > 1$, then

$$\mathbf{w} = \mathbf{0}, \mathbf{w}^a = -\theta \bar{c}, \ \mathbf{s} = \mathbf{c} + \theta \bar{c} \mathbf{p} > \mathbf{0}$$

is an initial interior feasible solution for problem (D).

(c)
$$(w^a)^0 = -\theta \bar{c} < 0$$
.

Since M > 0 is large, $(w^a)^k \to 0$ as $k \to +\infty$.

If $(w^a)^k$ does not approach or cross zero, then problem (D) is infeasible.

(D)
$$\begin{cases} \max & \boldsymbol{b}^T \boldsymbol{w} \\ \text{s.t.} & \boldsymbol{A}^T \boldsymbol{w} + \boldsymbol{s} = \boldsymbol{c} \\ & \boldsymbol{s} \ge \boldsymbol{0} \end{cases}$$

Choose any \mathbf{w}^0 and $\mathbf{s}^0 > \mathbf{0}$, calculate $\mathbf{v} = \mathbf{c} - \mathbf{A}^T \mathbf{x}^0 - \mathbf{s}^0$. If v = 0, then (w^0, s^0) is dual interior feasible.

Otherwise, conside

(Phase - I)
$$\begin{cases} \min & u \\ \text{s.t.} & A^T w + s + v u = c \\ s \ge 0, u \ge 0 \end{cases}$$

Properties of (Phase - I) problem:

(1) (Phase - I) is a standard form LP with m + n + 1 variables and n constraints.

(2)
$$\begin{pmatrix} \mathbf{w}^0 \\ \mathbf{s}^0 \\ u^0 \end{pmatrix} = \begin{pmatrix} \mathbf{w}^0 \\ \mathbf{s}^0 \\ 1 \end{pmatrix}$$
 is dual interior feasible for (Phase - I).

- (3) (Phase I) is bounded below by 0.
- (4) Apply dual-affine scaling to (Phase I) will generate $\begin{pmatrix} w^* \\ s^* \end{pmatrix}$ for (Phase I).
- (5) If $u^* > 0$, (D) is infeasible. Otherwise, (w^*, s^*) is an initial feasible solution for (D).

Performance of dual affine scaling No polynomial-time poof!

Computational bottleneck $(AS_k^{-2}A)^{-1}$.

Less sensitive to primal degeneracy and numerical errors but sensitive to dual degeneracy.

Improve dual objective value very fast, but attains primal feasibility slowly.

Improving performance

Logarithmic barrier function method

Similar to that of the primal affine scaling algorithm, we can incorporate a barrier function, with extremely high values along the boundaries $\{(w; s) | s_i = 0, \text{ for some } 1 \le j \le n\}$, into the original objective function. Now, consider the following the nonlinear programming problem:

9

$$\max \quad F_{\mu}(\mathbf{w}, \mu) = \mathbf{b}^{T} \mathbf{w} + \mu \sum_{j=1}^{n} \log_{e}(c_{j} - \mathbf{A}_{j}^{T} \mathbf{w})$$
s.t. $\mathbf{A}^{T} \mathbf{w} < \mathbf{c}$ (7.72)

where $\mu > 0$ is a scalar and A_j^T is the transpose of the *j*th column vector of matrix A. Note that if $\mathbf{w}^*(\mu)$ is an optimal solution to problem (7.72), and if $\mathbf{w}^*(\mu)$ tends to a point \mathbf{w}^* as μ approaches zero, then it follows that \mathbf{w}^* is an optimal solution to the original dual linear programming problem.

The Lagrangian of problem (7.72) becomes

$$L(\mathbf{w}, \lambda) = \mathbf{b}^T \mathbf{w} + \mu \sum_{j=1}^n \log_e(c_j - \mathbf{A}_j^T \mathbf{w}) + \lambda^T (\mathbf{c} - \mathbf{A}^T \mathbf{w})$$

where λ is a vector of Lagarangian multipliers. Since $c_j - A_j^T w > 0$, the complementary slackness condition requires that $\lambda = 0$, and the associated K-K-T conditions become

$$b - \mu A S^{-1} e = 0$$
 (stationary & $\lambda = 0$) and $s > 0$

Assuming that \mathbf{w}^k and $\mathbf{s}^k = \mathbf{c} - \mathbf{A}^T \mathbf{w}^k > \mathbf{0}$ form a current dual feasible solution, we take one Newton step of the K-K-T conditions. This results in a moving direction

$$\Delta w = \frac{1}{\mu} \underbrace{(AS_k^{-2}A^T)^{-1}b}_{d_w^k} - (AS_k^{-2}A^T)^{-1}AS_k^{-1}e$$
We see that $-(AS_k^{-2}A^T)^{-1}AS_k^{-1}e$ is an additional term in the logarithmic barrier

We see that $-(AS_k^{-2}A^T)^{-1}AS_k^{-1}e$ is an additional term in the logarithmic barrier method to push a solution away from the boundary. Therefore, sometimes the logarithmic barrier function method is called *dual affine scaling with centering force*.

$$\boldsymbol{b} - \mu \boldsymbol{A} \boldsymbol{S}^{-1} \boldsymbol{e} = \boldsymbol{0}$$

The derivation in detail:

$$\lambda = \mathbf{0} \Rightarrow L(\mathbf{w}, \lambda = \mathbf{0}) = \mathbf{b}^T \mathbf{w} + \mu \sum_{j=1}^n \log_e(c_j - \mathbf{A}_j^T \mathbf{w})$$

$$\frac{\mathrm{d}L(\mathbf{w}, \lambda = \mathbf{0})}{\mathrm{d}w_i} = b_i + \mu \sum_{j=1}^n \frac{-a_{ij}}{c_j - \mathbf{A}_j^T \mathbf{w}} = b_i - \mu \sum_{j=1}^n \frac{a_{ij}}{c_j - \mathbf{A}_j^T \mathbf{w}} = b_i - \mu \sum_{j=1}^n \frac{a_{ij}}{s_j}$$

Appendix(example for primal affine scaling algorithm)

• Example:

min
$$-2x_1 + x_2$$

s.t. $x_1 - x_2 \le 15$
 $x_2 \le 15$
 $x_1, x_2 \ge 0$

Reformulate to standard form:

min
$$-2x_1 + x_2 + 0x_3 + 0x_4$$

s.t. $x_1 - x_2 + x_3 = 15$
 $x_2 + x_4 = 15$
 $x_1, x_2, x_3, x_4 \ge 0$

$$x^0 = \begin{bmatrix} 10 \\ 2 \\ 7 \\ 13 \end{bmatrix}$$
 is feasible, $X_0 = \begin{bmatrix} 10 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 13 \end{bmatrix}$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 15 \\ 15 \end{bmatrix} \qquad \mathbf{c} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Hence

$$\boldsymbol{X}_{0} = \begin{pmatrix} 10 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 13 \end{pmatrix} \text{ and } \boldsymbol{w}^{0} = (\boldsymbol{A}\boldsymbol{X}_{0}^{2}\boldsymbol{A}^{T})^{-1}\boldsymbol{A}\boldsymbol{X}_{0}^{2}\boldsymbol{c} = [-1.33353, -0.00771]^{T}$$

Moreover,

$$\mathbf{r}^0 = \mathbf{c} - \mathbf{A}^T \mathbf{w}^0 = [-0.66647, -0.32582, 1.33353, -0.00771]^T$$

Since some components of \mathbf{r}^0 are nagative and $\mathbf{e}^T \mathbf{X}_0 \mathbf{r}^0 = 2.1187$, we know that the current solution is nonoptimal. Therefore we proceed to synthesize the direction of translation with

$$\boldsymbol{d}_{v}^{0} = -X_{0}\boldsymbol{r}^{0} = [6.6647, 0.6516, -9.3347, 0.1002]^{T}$$

Suppose that $\alpha = 0.99$ is chosen, the step-length

$$\alpha_0 = \frac{0.99}{9.3347} = 0.1061$$

Therefore the new solution is

$$\mathbf{x}^1 = \mathbf{x}^0 + \alpha_0 \mathbf{X}_0 \mathbf{d}_y^0 = [17.07119, 2.13828, 0.06709, 12.86172]^T$$

Notice that the objective function values has been improved from -18 to -32.0041. The reader may continue the iterations further and verify that the iterative process converges to the optimal solution $x^* = [30,15,0,0]^T$ with optimal value -45.