<u>Decimal Number System</u> 0-9 (base 10)

$$\begin{array}{r} 2 \mid 0 \\ 3 \mid 4 \mid 2 \\ = 300 + 40 + 2 \\ = 3 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{6} \end{array}$$

$$3210$$

$$2563 = 2000 + 500 + 60 + 3$$

$$= 2 \times 10^{3} + 5 \times 10^{2} + 6 \times 10^{1} + 3 \times 10^{2}$$

Birary Number System

O-1 (base 2)

high voltage, on, true

low voltage, off, false

$$110 = 1 + 2^{2} + 1 + 2^{1} + 0 + 2^{0}$$
$$= 4 + 2 + 0 = 6$$

$$3210 \\ |0|1| = 1*2 + 0*2 + 1*2 + 1*2$$

$$= 8 + 0 + 2 + 1 = 11$$

Binary to Decimal

Decimal to Birary

irt = 5; decimal store in birry

remaindes

_2	(20)	0.
2	10	0
2	.5	1
2	2.	0
2	1	1
	0	

101101 (Ans)

Addition of Decimal Numbers

Addition of Birary Numbers

$$1+1=2 \longrightarrow 10$$

2)
$$20 | 45$$
 $20 \rightarrow 10101$
 $45 \rightarrow 101101$
 $2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{0} = 32 + 16 + 8 + 4 + 1$
 $= 61 \text{ (Ans.)}$
3) $20 \land 45$ $20 \rightarrow 10101$
 $45 \rightarrow 101101$
 $111001 \rightarrow 32 + 16 + 8 + 1 = 57 \text{ (Ans.)}$

Birary Representation of Negative Numbers

45
$$\rightarrow$$
 1 0 1 1 0 1
int $x = 45$;
4 By tee \rightarrow 32 bite 00...0101101

$$a \rightarrow \text{ what is birary for } -3 \text{ in } 8 \text{ bit system.}$$

$$3 \rightarrow 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1$$

$$a \rightarrow$$
 what is birary for -10 in 8 bit system.

$$flip \to 1 1 1 1 0 1 0 1$$
Add 1 \to \frac{1}{1} 1 1 1 0 1 1 0 \to \frac{1}{1} 0 \to \frac{1}{1} 0

Range of Datatypes

min
$$\rightarrow$$
 100 - - - 0 \rightarrow -2 = -2147483648
 $-\frac{2 \times 10^{9}}{4}$ (aprex.)

mose \rightarrow 011 - . . . $1 \rightarrow 2^{30} + 2^{39} + . . . 2^{1} + 2^{30}$
 $= 2^{31} - 1 = 2147483647$
 $= 2^{31} - 1 = 2147483647$

Range
$$\rightarrow \left[-2^{31} (2^{-1})\right]$$

$$\simeq \left[-2*10^{9} 2*10^{9}\right]$$

long → 8 bytes → 64 bits

$$\begin{array}{l}
\text{min} \to -2^{63} \approx -\frac{9 \times 10^{18}}{2} \\
\text{mox} \to 2^{62} + 2^{61} + 2^{60} + \dots + 2^{6} = 2^{63} - 1 \approx \frac{9 \times 10^{18}}{2} \\
\text{Rarge} \to \left[-2^{63} \left(2^{63} - 1\right)\right] \approx \left[-9 \times 10^{18} \quad 9 \times 10^{18}\right]
\end{array}$$

Constraints

int
$$a = 10^5$$
, $b = 10^6$;
int $c = a * b$;
 $10^5 * 10^6 = 10^{11}$ Integer overflow-
long $c = \underbrace{a * b}_{int}$;
 10^{11} Integer overflow-

long
$$c = long_{(a \times b)}$$
;

 $10^{"}$ Integer overflow

 $10^{"}$ Song $10^{"}$ long $10^{"}$ int $10^{"}$ long $10^{"}$ long $10^{"}$ long $10^{"}$ int $10^{"}$ long $10^$

Q → Giver ar integer array, find sum of elements.

int sum = 0

for
$$i \rightarrow 0$$
 to $(N-1)$ of

 $1 <= N <= 10^5$
 $1 <= A Li] <= 10^6$
 $1 <= A Li] <= A Li] <= 10^6$
 $1 <= A Li] <= A Li$