CLAIMS

What is claimed is:

1	1.	A process comprising:
2		in a substrate, forming a first isolation structure spaced-apart from a
3	second	d isolation structure;
4	,	forming an emitter stack between the first and second isolation
5	structu	ıres;
6		in the substrate, forming a self-aligned recess between the emitter
7	stack and the first isolation structure; and	
8		forming a bipolar junction transistor between the first and second
9	isolation structures.	
1	2.	The process according to claim 1, further including:
2		implanting a self-aligned collector tap in the self-aligned recess.
1	3.	The process according to claim 1, wherein forming a self-aligned
2	recess further	includes:
3		patterning a mask that exposes a portion of the first isolation
4	structi	are, a portion of the emitter stack, and a portion of the substrate located
5	between the first isolation structure and the emitter stack; and	
6		etching the self-aligned recess with an etch recipe that is more
7	selective to the first isolation structure and the emitter stack than to the	
8	substr	ate.
1	4.	The process according to claim 1, wherein forming a self-aligned
2	recess further includes:	
3		patterning a mask that exposes a portion of the first isolation
4	structi	are, a portion of the emitter stack, and a portion of the substrate located
5	hatura	en the first isolation structure and the emitter stack: and

5	anisotropically etching the self-aligned recess with an etch recipe that		
7	is more selective to the first isolation structure and the emitter stack than to		
8	the substrate.		
1	5. The process according to claim 1, wherein implanting a self-aligned		
2	collector tap in the self-aligned recess includes:		
3	patterning a mask that exposes at least a portion of the first isolation		
4	structure and the emitter stack; and		
5	implanting a dopant into the substrate that is exposed by the self-		
6	aligned recess.		
1	6. The process according to claim 1, wherein implanting a self-aligned		
2	collector tap in the self-aligned recess includes:		
3	patterning a mask that exposes at least a portion of the first isolation		
4	structure and the emitter stack; and		
5	implanting a dopant into the substrate that is exposed by the recess,		
6	wherein implanting results in a P collector tap, a P- collector tap, a P		
7	collector tap, a P+ collector tap, a P++ collector tap, an N collector tap, an		
8	N- collector tap, an N collector tap, an N+ collector tap, and an N++		
9	collector tap.		
1	7. The process according to claim 1, wherein forming the bipolar		
2	junction transistor between the first and second isolation structures includes:		
3	in the substrate, forming an epitaxial layer;		
4	forming a polysilicon film above the epitaxial layer; and		
5	patterning the polysilicon film into emitter polysilicon.		
1	8. The process according to claim 1, wherein forming the bipolar		
2	junction transistor between the first and second isolation structures includes:		
3	in the substrate, forming an epitaxial layer;		
4	forming a polysilicon film above the epitaxial layer;		

5	5 patterning th	e polysilicon film into emitter polysilicon; and
6	6 forming a sp	acer on the emitter stack.
1	1 9. The process	according to claim 1, wherein forming the bipolar
2	2 junction transistor between	the first and second isolation structures includes:
3	in the substra	ate, implanting a collector structure;
4 -	in the substra	ate, forming an epitaxial layer;
5	forming a po	lysilicon film over the epitaxial layer; and
6	6 patterning th	e polysilicon film into emitter polysilicon, wherein the
7	7 emitter polysilicon i	s disposed above the collector structure.
1	1 10. The process	according to claim 1, wherein forming an emitter stack
2	2 includes:	
3	in the substra	ate, forming an epitaxial layer;
4	4 forming a po	lysilicon film above the epitaxial layer;
5	5 patterning th	e polysilicon film into emitter polysilicon, wherein
6	6 patterning the polysi	licon film into emitter polysilicon further includes:
7	7 patte	ming a hard mask above the polysilicon film.
1	1 11. The process	according to claim 1, wherein forming an emitter stack
2	2 includes:	
3	in the substra	ate, forming an epitaxial layer;
4	4 forming a di-	electric layer above the epitaxial layer;
5	forming an e	mitter cut in the dielectric layer;
6	6 forming a po	lysilicon film above the epitaxial layer; and
7	7 patterning th	e polysilicon film into emitter polysilicon.
1	1 12. The process	according to claim 1, further including:
2	2 in the substr	ate forming a huried layer

I	13. A dipolar junction transistor comprising:		
2	in a substrate, a first isolation structure spaced apart from a second		
3	isolation structure;		
4	an emitter stack disposed above the substrate and between the first		
5	isolation structure and the second isolation structure;		
6	a recess disposed adjacent and between the emitter stack and the firs		
7	isolation structure, wherein the recess exposes a collector tap.		
1	14. The bipolar junction transistor according to claim 13, further		
2	ncluding:		
3	a spacer disposed on the emitter stack, wherein the spacer extends or		
4	one side thereof into the recess between the emitter stack and the first		
5	isolation structure.		
1	15. The bipolar junction transistor according to claim 13, further		
2	ncluding:		
3	a spacer disposed on the emitter stack, wherein the spacer extends or		
4	one side thereof into the recess between the emitter stack and the first		
5	isolation structure, and wherein the spacer is selected from an oxide, a		
6	nitride, an oxide first layer and a nitride second layer, a nitride first layer and		
7	an oxide second layer, an oxide first layer and an oxide second layer, and a		
8	nitride first layer and a nitride second layer.		
1	16. The bipolar junction transistor according to claim 13, further		
2	ncluding:		
3	a spacer disposed on the emitter stack, wherein the spacer extends or		
4	one side thereof into the recess between the emitter stack and the first		
5	isolation structure, and wherein the spacer is further disposed on the first		
6	isolation structure and extends into the recess.		

I	17.	The dipolar junction transistor according to claim 13, further
2	including:	
3		a buried layer disposed in the substrate between the first isolation
4	structu	re and the second isolation structure.
1	18.	The bipolar junction transistor according to claim 13, further
2	including:	
3	•	in the substrate, an epitaxial base layer disposed below the emitter
4	stack;	
5		a collector structure disposed in the substrate below the emitter stack;
6	and	
7		an intrinsic base structure disposed between the emitter stack and the
8	collect	for structure.
1	19.	The bipolar junction transistor according to claim 13, further
2	including:	
3		in the substrate, an epitaxial base layer disposed below the emitter
4	stack;	
5		a collector structure disposed in the substrate below the emitter stack;
6		a dielectric layer disposed above the substrate and below the emitter
7	stack,	wherein the dielectric layer includes an emitter cut disposed above the
8	collect	for structure; and
9		an intrinsic base structure disposed between the emitter cut and the
10	collect	for structure.
1	20.	The bipolar junction transistor according to claim 13, further
2	including:	
3		in the substrate, a collector tap disposed in the recess, wherein the
4	collect	tor tap is selected from a P collector tap, a P- collector tap, a P
5	collect	tor tan a P+ collector tan a P++ collector tan an N collector tan an

6	N- collector tap, an N collector tap, an N+ collector tap, and an N++
7	collector tap.

- 1 21. The bipolar junction transistor according to claim 13, wherein the substrate includes a bipolar-complementary metal oxide semiconductor (BiCMOS) structure.
- 1 22. The bipolar junction transistor according to claim 13, wherein the 2 BJT is selected from a monojunction BJT device and a heterojunction BJT device.
- 23. A bipolar junction transistor (BJT) layout comprising:
 an epitaxial base layer perimeter;
 an emitter stack perimeter disposed above the base layer perimeter;
 and
 a collector tap perimeter, wherein the emitter stack perimeter and the
 collector tap perimeter share a co-linear first boundary.
- 1 24. The BJT layout according to claim 23, wherein the emitter stack 2 perimeter and the epitaxial base layer perimeter intersect.
- 1 25. The BJT layout according to claim 23, wherein the collector tap 2 perimeter shares a co-linear second boundary and a co-linear third boundary with 3 the epitaxial base layer perimeter.
- 1 26. The BJT layout according to claim 23, further including:
 2 a base tap perimeter, wherein the base tap perimeter is enclosed by
 3 the epitaxial base layer perimeter.