Étude d'une corde

On considère une corde suspendue entre deux points fixes de même hauteur y = 0, situés à x = -D/2 et x = +D/2. La corde a une masse volumique μ et on note y(x) sa hauteur à l'abscisse x.

Cas statique La corde est supposée dans un premier temps statique. On considère le cas général, c'est-à-dire le cas où l'angle α (défini entre la tangeante de la corde et l'horizontale) n'est pas nécessairement petit. On notera respectivement T_0 et α_0 la tension de la corde et l'angle α en x = -D/2.

 \star En appliquant le principe fondamental de la statique sur un élément de corde, montrer que y(x) vérfie l'équation différentielle :

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{1}{l_c} \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

On explicitera l'expression de l_c , dont on précisera la dimension.

★ Résoudre cette équation différentielle. Trouver la solution à l'aide des conditions aux limites. On donne :

$$\int \frac{dx}{\sqrt{1+x^2}} = \operatorname{argsh}(x)$$

- \star Déterminer la tension T(x) le long de la corde. A quelle endroit est-elle maximale ? Minimale ? Commenter.
- * Exprimer la longueur L et la flèche h (la hauteur entre le point le plus haut et le plus bas) de la chaîne en fonction du paramètre l_c . Comment connaître alors la tension dans une chaîne suspendue simplement à partir d'une photographie de celle-ci et de sa masse linéique ?

Cas dynamique On considère maintenant que la corde est fortement tendue ($\alpha \ll 1$) mais qu'elle n'est plus statique. On cherche à comprendre sa dynamique. On négligera les frottements.

- Que se passe t-il lorsque la corde devient extrêmement tendue? Que peut-on négliger par rapport au cas statique?
- \diamond Déterminer l'équation régissant y(x,t) le long de la corde. Comment s'appelle cette équation ? Quelles sont ses solutions ? Commenter.
- \diamond Sachant que la corde est ancrée en x=0 et x=L, donner l'expression générale de y(x,t) dans le cas de solutions stationnaires.
- \diamond On excite la corde avec une excitation dessinée ci-dessous. Donner l'expression de y(x,t) dans ce cas-là.

1

Corde pendue verticalement

On considère une corde attachée au plafond à un point fixe et laissée verticalement à elle-même dans le vide. On prendra pour origine z=0 le bout de la corde. Elle n'est soumise qu'à la gravité. On notera $\Psi(z,t)$ l'écart de la corde à la verticale à la hauteur z à l'instant t, que l'on supposera très petit par rapport à la longueur L de la corde.

* En appliquant le principe fondamental de la dynamique, trouver une équation différentielle en $\Psi(z,t)$.

On cherche des solutions sous la forme $\Psi(z,t) = \alpha(z)\cos(\omega t) + \beta(z)\sin(\omega t)$.

- * Comment s'appellent ce type de solutions ? Déterminer l'équation différentielle vérifiée par α et β .
- * En posant $Z = \frac{z\omega^2}{g}$, trouver un nouveau système d'équation différentielle en $A(Z) = \alpha(z)/\alpha(0)$.
- * On cherche la solution sous la forme d'une série entière $A(Z) = \sum_k A_k Z^K$. Déterminer les coefficients K.
- * Comment pourrait-on trouver une relation de dispersion $\omega(k)$?

Propagation sur une ligne électrique

On considère une ligne électrique composée d'une suite de cellules identiques, constituées d'une inductance L et d'une capacité C comme indiqué sur le schéma ci-dessous. Dans la cellule n, on note V_n la tension au bornes de la capacité et I_n le courant traversant l'inductance.

 \spadesuit En établissant des relations entre les courants et les tensions des cellules n-1, n et n+1, montrer que la tension V_n vérifie la relation suivante :

$$\frac{\mathrm{d}^2 V_n}{\mathrm{d}t^2} = \omega_0^2 (V_{n+1} + V_{n-1} - 2V_n) \tag{1}$$

On précisera l'expression de ω_0 .

 \spadesuit Calculer la quantité $\frac{d}{dt} \left(\frac{1}{2} C V_n^2 + L I_n^2 \right)$. Interpréter physiquement l'ensemble des termes.

On cherche une solution sinusoïdale pour $V_n(t)$ de l'équation 3 (on prendra la notation complexe $V_n(t) = A_n \exp(j\omega t)$) de sorte à ce que l'effet après le passage dans une cellule soit un déphasage α fixé : $V_{n+1} = V_n \exp(-j\alpha)$, avec $\alpha > 0$.

- \spadesuit Quelle est la signification de la grandeur α en terme de propagation ? Exprimer A_n en fonction de A_0 , n et α . En déduire une relation de "dispersion" entre ω et α .
- \spadesuit Montrer que ces solutions n'existent que si ω est inférieur à une certaine fréquence ω_c , que l'on exprimera. Si cette condition est vérifiée, pourquoi peut-on parler de propagation de la phase ? Préciser la "vitesse" de propagation v_{ω} correspondante.
- ♠ On suppose maintenant que $ω ≪ ω_c$. En explicitant α en fonction de ω, exprimer $v_φ$. Que constate t-on? En déduire l'effet d'une cellule sur un signal électrique, composé de fréquence suffisamment basses, se traduit par un retard temporel τ que l'on exprimera en fonction de $ω_0$. Application numérique : C = 10nF et L = 25μH, calculer $ω_0$ et τ. Combien de cellules doit-on mettre pour obtenir un retard de 0.1ms?
- \spadesuit On se place dans le cas où $\omega < \omega_c$ et $\alpha > 0$. Rappeler la définition et l'interprétation de la vitesse de groupe. En donner l'expression en fonction de ω_0 et α et donner son allure de son graphe en fonction de α . Que se passe t-il pour $\alpha = \pi$?
- \spadesuit En notation complexe, l'intensité I_n est de la forme $I_n(t) = B_n \exp(j\omega t)$. Exprimer B_n en fonction de A_n , L, ω_0 et α . Calculer la moyenne temporelle de l'énergie de la cellule $n E = \langle \frac{1}{2}CV_n^2 + \frac{1}{2}LI_n^2 \rangle$, ainsi que celle de la puissance P reçue de la cellule n-1. En déduire le rapport P/E. Commenter.

Question supplémentaire

On suppose que l'inductance L et la capacité C sont remplacées respectivement par une inductance linéique Λ et une capacité linéique Γ .

- \heartsuit En substituant judicieusement l'indice n par la dimension spatiale x le long du câble coaxial, montrer que l'équation 3 devient une équation d'Alembert.
- \heartsuit Dans ce cas-là, par quelle quantité substituer α ? Sur quel type de solutions sur V retombe t-on? Que devient l'équation de dispersion? Justifier.

Propagation dans une ligne coaxiale dissipative

On considère une ligne électrique composée d'une suite de cellules identiques, chacunes constituées d'une inductance L, d'une capacité C, d'une résistance R et d'une conductance G, comme indiqué sur le schéma ci-dessous. Dans la cellule n, on note V_n la tension au bornes de la capacité et I_n le courant traversant l'inductance. Le câble s'étend sur l'axe x et on suppose que chaque cellule a une longueur a.

- \spadesuit En établissant judiscieusement des relations entre les courants et les tensions des cellules n-1, n et n+1, trouver une équation reliant V_{n-1} , V_n et V_{n+1} et les dérivées temporelles de V_n .
- \spadesuit Calculer la quantité $\frac{d}{dt} \left(\frac{1}{2} C V_n^2 + \frac{1}{2} L I_n^2 \right)$ en fonction de I_n , V_n , V_{n-1} et V_{n+1} (et les grandeurs caractéristiques du circuit). Interpréter physiquement l'ensemble des termes, puis la signification physique de l'équation obtenue.

On souhaite décrire la ligne non plus par le paramètre discret n mais avec le paramètre spatial x, qui est continu. La longueur des cellules étant a, la cellule n se situe à l'absisse x = na, la tension aux bornes du condensateur est $V_n(t) \leftarrow V(x,t)$ et l'intensité à travers la bobine est $I_n(t) \leftarrow I(x,t)$. On suppose de plus que les variations de I et V d'une cellule à l'autre sont très faibles de sorte qu'on peut écrire $a \simeq dx$.

- ♠ Dans cette nouvelle modélisation continue, les caractéristiques du circuit C, L, G et R sont désormais remplacées par respectivement les capacités, inductances, conductances et résistances linéiques notées respectivement c, l, g et r. Donner l'expression de c, l, g et r à partir de a et C, L, G et R.
- \spadesuit Montrer que $V_{n\pm 1}(t) = V(x \pm dx, t)$. A partir de l'équation trouvée dans la première question, en déduire une équation différentielle sur V(x,t).
- \spadesuit En supposant que le milieu n'est pas dissipatif, quelles seraient les solutions de cette équation différentielle? On donnera la vitesse de propagation correspondante, notée c_0 .
- \spadesuit On cherche des solutions propagative du type $V(x,t) = V_0 \exp[j(\omega t kx)]$. Montrer que la relation dite de dispersion reliant k et ω s'écrit :

$$k^2 = lc\omega^2 - j(lg + rc)\omega - rg \tag{2}$$

 \spadesuit On suppose que la dissipation est faible, c'est-à-dire que $r \ll l\omega$ et $g \ll c\omega$. En faisant un développement limité à l'ordre 2, écrire k sous la forme k = k' + jk'', en précisant les expression de k' et k''. Donner alors l'expression de V(x,t) et expliciter une longueur caractéristique δ sur laquelle l'onde se propage. Sous quelle condition la propagation n'est pas dispersive ?

Propagation des ondes sonores dans un solide

Dans un solide, on modélise les atomes du cristal comme une succession de masses m espacées d'une distance a selon l'axe x, et reliées entre elles par un ressort de raideur k. Ce ressort modélise l'intérection électromagnétique entre deux atomes successifs du réseau cristallin. Lorsque le solide est soumis à un choc extérieur, chaque atome s'écarte de sa position d'équilibre. L'écart à la position d'équilibre du $ni\`eme$ atome est noté u_n . On cherche à décrire la propagation de l'onde qui résulte de ce choc.

On note dans la suite v_n la vitesse du $ni\`eme$ atome et F_n la force qu'exerce sur lui l'atome n+1 suivant.

 \spadesuit Montrer que la tension V_n vérifie la relation suivante :

$$\frac{\mathrm{d}^2 v_n}{\mathrm{d}t^2} = \omega_0^2 (v_{n+1} + v_{n-1} - 2v_n) \tag{3}$$

On précisera l'expression de ω_0 .

 \spadesuit Calculer, en fonction de v_n , F_n et F_{n+1} , la quantité :

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{1}{2} k(u_n - u_{n+1})^2 + \frac{1}{2} m v_n^2 \right]$$

Interpréter physiquement l'ensemble des termes.

On cherche une solution sinusoïdale pour $V_n(t)$ de l'équation 3 (on prendra la notation complexe $V_n(t) = A_n \exp(j\omega t)$) de sorte à ce que l'effet après le passage dans une cellule soit un déphasage α fixé : $V_{n+1} = V_n \exp(-j\alpha)$, avec $\alpha > 0$.

- \spadesuit Quelle est la signification de la grandeur α en terme de propagation ? Exprimer A_n en fonction de A_0 , n et α . En déduire une relation de "dispersion" entre ω et α .
- \spadesuit Montrer que ces solutions n'existent que si ω est inférieur à une certaine fréquence ω_c , que l'on exprimera. Si cette condition est vérifiée, pourquoi peut-on parler de propagation de la phase ? Préciser la "vitesse" de propagation v_{φ} correspondante.
- ♠ On suppose maintenant que $ω ≪ ω_c$. En explicitant α en fonction de ω, exprimer $v_φ$. Que constate t-on? En déduire l'effet d'une cellule sur un signal électrique, composé de fréquence suffisamment basses, se traduit par un retard temporel τ que l'on exprimera en fonction de $ω_0$. Application numérique : C = 10nF et L = 25μH, calculer $ω_0$ et τ. Combien de cellules doit-on mettre pour obtenir un retard de 0.1ms?
- \spadesuit On se place dans le cas où $\omega < \omega_c$ et $\alpha > 0$. Rappeler la définition et l'interprétation de la vitesse de groupe. En donner l'expression en fonction de ω_0 et α et donner son allure de son graphe en fonction de α . Que se passe t-il pour $\alpha = \pi$?
- ♠ En notation complexe, l'intensité I_n est de la forme $I_n(t) = B_n \exp(j\omega t)$. Exprimer B_n en fonction de A_n , L, $ω_0$ et α. Calculer la moyenne temporelle de l'énergie de la cellule $n = (\frac{1}{2}CV_n^2 + \frac{1}{2}LI_n^2)$, ainsi que celle de la puissance P reçue de la cellule n-1. En déduire le rapport P/E. Commenter.

Question supplémentaire

On suppose que l'inductance L et la capacité C sont remplacées respectivement par une inductance linéique Λ et une capacité linéique Γ .

- \heartsuit En substituant judicieusement l'indice n par la dimension spatiale x le long du câble coaxial, montrer que l'équation 3 devient une équation d'Alembert.
- \heartsuit Dans ce cas-là, par quelle quantité substituer α ? Sur quel type de solutions sur V retombe t-on ? Que devient l'équation de dispersion ? Justifier.