Model Architecture

What We Built

To classify crop diseases from RGB images, we used a **Convolutional Neural Network (CNN)** based on **MobileNetV2**, a lightweight and efficient deep learning model. Instead of training everything from scratch, we used a technique called **transfer learning**, which allows us to reuse a model that's already learned how to recognize general features in images (like edges, textures, and shapes).

How the Model Is Structured

Here's a breakdown of the architecture we used:

Base Model – MobileNetV2

We started with MobileNetV2, a model that's been trained on millions of images from the ImageNet dataset. This model is great for mobile or embedded applications because it's fast and doesn't require much memory.

We **froze** the base model so it keeps the useful features it already knows.

• Global Average Pooling

Instead of flattening the data, which can add too many parameters, we used **GlobalAveragePooling2D**. This layer reduces the size of the data in a smart way by taking the average of each feature map — it's simple and helps avoid overfitting.

Fully Connected Layer

We added a **Dense layer with 256 neurons** and ReLU activation. This acts as a bridge between the pretrained features and our custom output layer, helping the model learn patterns specific to crop diseases.

Output Layer

The final layer has as many neurons as there are disease classes in our dataset. We used **Softmax activation**, so the model gives probabilities for each class.

• Compilation

We used the **Adam optimizer**, which adapts the learning rate during training, and a **categorical cross-entropy** loss function, which is standard for multi-class classification problems.

Why We Chose This Setup

- Transfer learning helps us get high accuracy without needing a huge dataset.
- **MobileNetV2** is ideal because it's lightweight and still powerful perfect for real-time use in the field or on mobile devices.
- By freezing the base model and only training the top layers, we make training faster and avoid overfitting.
- The model is simple, efficient, and accurate a good balance for practical deployment in agriculture.