KOMPARASI MODEL TRANSFORMER UNTUK DETEKSI METASTASIS KANKER PROSTAT BERDASARKAN CITRA MRI

SKRIPSI

Kimi Axel Wijaya 00000062800

PROGRAM STUDI SISTEM INFORMASI FAKULTAS TEKNIK DAN INFORMATIKA UNIVERSITAS MULTIMEDIA NUSANTARA TANGERANG

2024

KOMPARASI MODEL TRANSFORMER UNTUK DETEKSI METASTASIS KANKER PROSTAT BERDASARKAN CITRA MRI

Diajukan sebagai Salah Satu Syarat untuk Memperoleh

Gelar Sarjana Komputer (S.Kom.)

Kimi Axel Wijaya 00000062800

PROGRAM STUDI SISTEM INFORMASI
FAKULTAS TEKNIK DAN INFORMATIKA
UNIVERSITAS MULTIMEDIA NUSANTARA
TANGERANG

2024

HALAMAN PERNYATAAN TIDAK PLAGIAT

Dengan ini saya,

Nama : Kimi Axel Wijaya

Nomor Induk Mahasiswa : 00000062800

Program Studi : Sistem Informasi

Skripsi dengan judul:

"KOMPARASI MODEL TRANSFORMER UNTUK DETEKSI METASTASIS KANKER PROSTAT BERDASARKAN CITRA MRI"

Merupakan hasil karya saya sendiri bukan plagiat dari laporan karya tulis ilmiah yang ditulis oleh orang lain, dan semua sumber, baik yang dikutip maupun dirujuk, telah saya nyatakan dengan benar serta dicantumkan di Daftar Pustaka.

Jika di kemudian hari terbukti ditemukan kecurangan/penyimpangan, baik dalam pelaksanaan maupun dalam penulisan laporan karya tulis ilmiah, saya bersedia menerima konsekuensi dinyatakan TIDAK LULUS untuk Tugas Akhir yang telah saya tempuh.

Tangerang, 29 November 2024

IA

Kimi Axel Wijaya

HALAMAN PERSETUJUAN PUBLIKASI KARYA ILMIAH

Yang bertanda tangan di bawah ini:

Nama	: Kimi Axel Wijaya
NIM	: 00000062800
Program Studi	: Sistem Informasi
Jenjang	: D3 /S1/ S2 * (pilih salah satu)
Judul Karya Ilmiah UNTUK DETEKSI METAS CITRA MRI	: KOMPARASI MODEL TRANSFORMER STASIS KANKER PROSTAT BERDASARKAN
Menyatakan dengan sesung	guhnya bahwa saya bersedia* (pilih salah satu):
Nusantara untuk m repositori Knowled Akademika UMN/Pa	perikan izin sepenuhnya kepada Universitas Multimedia nempublikasikan hasil karya ilmiah saya ke dalam dge Center sehingga dapat diakses oleh Sivitas ublik. Saya menyatakan bahwa karya ilmiah yang saya ang data yang bersifat konfidensial.
repositori Knowled	n mempublikasikan hasil karya ilmiah ini ke dalam lge Center, dikarenakan: dalam proses pengajuan konferensi nasional/internasional (dibuktikan dengan).
☐ Lainnya, pilih salah	satu:
	sses secara internal Universitas Multimedia Nusantara si karya ilmiah dalam kurun waktu 3 tahun.
	Tangerang, 29 November 2024
	LTIMEDIA
	(Kimi Axel Wijaya)
k Dilih coloh cotu	

Jika tidak bisa membuktikan LoA jurnal/HKI, saya bersedia mengizinkan penuh karya ilmiah saya untuk dipublikasikan ke KC UMN dan menjadi hak institusi UMN.

KATA PENGANTAR

Puji dan syukur kepada Tuhan Yang Maha Esa atas segala berkat, rahmat, dan kasih-Nya, penulis dapat menyelesaikan skripsi yang berjudul "Komparasi Model Transformer untuk Deteksi Metastasis Kanker Prostat Berdasarkan Citra MRI". Skripsi ini disusun untuk memenuhi salah satu persyaratan kelulusan Program Strata 1 Jurusan Sistem Informasi, Fakultas Teknik dan Informatika, Universitas Multimedia Nusantara. Penulis menyadari bahwa penyelesaian skripsi ini dapat tercapai tepat waktu berkat dukungan dan bantuan yang diberikan dari berbagai pihak. Oleh karena itu, penulis ingin mengucapkan terima kasih kepada:

- 1. Bapak Dr. Ninok Leksono, selaku Rektor Universitas Multimedia Nusantara.
- 2. Bapak Dr. Eng. Niki Prastomo, ST, M.SC, selaku Dekan Fakultas Teknik dan Informatika, Universitas Multimedia Nusantara.
- 3. Ibu Ririn Ikana Desanti, S.Kom., M.Kom., selaku Ketua Program Studi Sistem Informasi, Universitas Multimedia Nusantara.
- 4. Ibu Monika Evelin Johan, S.Kom., M.M.S.I., selaku pembimbing yang telah memberikan bimbingan, arahan, dan motivasi sehingga terselesainya tugas akhir ini.
- 5. Ibu Dr. Irmawati, S.Kom., M.M.S.I, selaku pembimbing lapangan MBKM penelitian yang telah memberikan bimbingan, arahan, dan motivasi sehingga terselesainya tugas akhir ini.
- 6. Keluarga penulis yang telah memberikan banyak bantuan dukungan material dan moral, sehingga penulis dapat menyelesaikan tugas akhir ini.
- 7. Teman-teman yang senantiasa memberikan motivasi, dukungan, dan semangat sepanjang proses penyusunan skripsi ini.

Penulis menyadari bahwa tugas akhir ini masih jauh dari sempurna. Oleh karena itu, penulis membuka diri terhadap segala kritik dan saran yang membangun. Harapan penulis, penelitian ini dapat memberikan manfaat, khususnya dalam pengembangan teknologi di bidang deteksi kanker prostat, serta menjadi referensi bagi penelitian selanjutnya.

Akhir kata, semoga karya ilmiah ini dapat bermanfaat bagi semua pihak yang membutuhkan baik sebagai referensi informasi maupun sebagai sumber inspirasi bagi para pembaca, dan dapat memberikan kontribusi positif bagi kemajuan ilmu pengetahuan.

Tangerang, 29 November 2024

(Kimi Axel Wijaya)

UNIVERSITAS MULTIMEDIA NUSANTARA

KOMPARASI MODEL TRANSFORMER UNTUK

DETEKSI METASTASIS KANKER PROSTAT

BERDASARKAN CITRA MRI

(Kimi Axel Wijaya)

ABSTRAK

Kanker prostat adalah penyebab kematian terkait kanker peringkat kelima di dunia dan menjadi tantangan kesehatan signifikan di Indonesia. Metode diagnostik tradisional, seperti pengujian *Prostate Specific Antigen* dan biopsi, sering kali gagal mendeteksi kanker prostat stadium awal atau metastasisnya secara akurat, yang dapat menyebabkan overtreatment. Deteksi metastasis yang akurat sangat penting untuk mendukung pengobatan yang efektif. Penelitian ini bertujuan untuk mengembangkan dan membandingkan model *Vision Transformer* (ViT) dan *Data-efficient Image Transformer* (DeiT) dalam mendeteksi metastasis kanker prostat berdasarkan citra MRI, dengan menggunakan kerangka kerja CRISP-DM serta teknik pemrosesan gambar seperti *thresholding Otsu* untuk meningkatkan kinerja model.

Penelitian ini menggunakan *dataset* MRI berlabel dengan enam kelas metastasis (Mx, M0, M1, M1a, M1b, M1c). Model dilatih menggunakan augmentasi gambar, *tuning hyperparameter*, dan pemrosesan gambar biner. Kinerja dievaluasi dengan membandingkan akurasi, metrik validasi, dan *loss* pelatihan pada berbagai konfigurasi.

Hasil eksperimen menunjukkan bahwa DeiT mengungguli ViT dalam mendeteksi metastasis, terutama pada *dataset* kecil berisi 6087 gambar. DeiT mencapai akurasi tinggi yang mencapai 99.67% dan *loss* yang rendah sebesar 0.0082 saat dilatih dengan gambar MRI biasa menggunakan *hyperparameter* yang sudah dioptimalkan. Meskipun *thresholding Otsu* dapat meningkatkan efisiensi komputasi, dampaknya terhadap akurasi tidak terlalu signifikan. Temuan ini menunjukkan bahwa DeiT, dengan efisiensi pelatihan dan performanya yang baik, lebih cocok untuk deteksi metastasis kanker prostat pada *dataset* yang terbatas.

Kata kunci: Deep Learning, Deteksi Metastasis, MRI, Kanker Prostat, Transformer

COMPARISON OF TRANSFORMER MODELS FOR

PROSTATE CANCER METASTASIS DETECTION

BASED ON MRI IMAGES

(Kimi Axel Wijaya)

ABSTRACT (English)

Prostate cancer is the fifth leading cause of cancer-related deaths worldwide and poses a significant health challenge in Indonesia. Traditional diagnostic methods, such as Prostate Specific Antigen testing and biopsies, often fail to accurately detect early-stage prostate cancer or its metastasis, leading to potential overtreatment. Accurate detection of metastasis is crucial for guiding effective treatments. This study aims to develop and compare Vision Transformer (ViT) and Data-efficient Image Transformer (DeiT) models for detecting prostate cancer metastasis from MRI images, using the CRISP-DM framework and image preprocessing techniques like Otsu's thresholding to enhance model performance.

The study employs a labeled MRI dataset with six metastasis classes (Mx, M0, M1, M1a, M1b, M1c). Models were trained with image augmentations, hyperparameter tuning, and binary image preprocessing. Performance was evaluated by comparing accuracy, validation metrics, and training loss across different configurations.

The experiment results revealed that DeiT outperforms ViT in metastasis detection, particularly on a small dataset consisting of 6,087 images. DeiT achieved a high accuracy of 99.67% and a low loss of 0.0082 when trained on standard MRI images using optimized hyperparameters. Although Otsu thresholding can enhance computational efficiency, its impact on accuracy was minimal. These findings suggest that DeiT, with its superior training efficiency and performance, is better suited for prostate cancer metastasis detection on limited datasets.

Keywords: Deep Learning, Metastasis Detection, MRI, Prostate Cancer, Transformer

DAFTAR ISI

HALAMAN PERNYATAAN TIDAK PLAGIAT	ii
HALAMAN PERSETUJUAN PUBLIKASI KARYA ILMIAH	iii
KATA PENGANTAR	iv
ABSTRAK	vi
ABSTRACT (English)	vii
DAFTAR ISI	viii
DAFTAR TABEL	xi
DAFTAR GAMBAR	xii
DAFTAR RUMUS	XV
DAFTAR LAMPIRAN	xvi
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	7
1.3 Batasan Masalah	7
1.4 Tujuan dan Manfaat Penelitian	7
1.4.1 Tujuan Penelitian	7
1.4.2 Manfaat Penelitian	8
1.5 Sistematika Penulisan	
BAB II LANDASAN TEORI	
2.1 Penelitian Terdahulu	
2.2 Tinjauan Teori	18
2.2.1 Kanker Prostat	18
2.2.2 Prostate Cancer Staging	18
2.2.3 Deep Learning	
2.2.4 Transformer	22
2.2.5 Image Processing	22
2.3 Tinjauan Framework/Algoritma yang Digunakan	23
2.3.1 CRISP-DM	23
2.3.2 Vision Transformer (ViT)	25
2.3.3 Data-efficient Image Transformer (DeiT)	27

	2.3.4	Thresholding	. 29
	2.3.5	Confusion Matrix	. 31
	2.3.6	ROC Curve	. 33
	2.4 T	injauan Tools/Software yang Digunakan	. 35
	2.4.1	Python	. 35
	2.4.2	Jupyter Notebook	. 35
В		ETODOLOGI PENELITIAN	
	3.1 G	ambaran Umum Objek Penelitian	. 36
	3.2 N	letode Penelitian	. 37
	3.2.1	Alur Penelitian	. 37
	3.2.2	Metode Data Mining	. 39
	3.3 T	eknik Pengumpulan Data	. 40
	3.4 T	eknik Analisis Data	. 40
	3.4.1	Business Understanding	. 40
	3.4.2	Data Understanding	
	3.4.3	Data Preparation	. 43
	3.4.4	Modeling	
	3.4.5	Evaluation	. 46
	3.4.6	Deployment	. 47
В	AB IV A	NALISIS DAN HASIL PENELITIAN	. 48
	4.1 B	usiness Understanding	. 48
	4.2 D	ata Understanding	. 49
	4.2.1	Deskripsi Dataset	. 49
	4.2.2	Proses Pembentukan Dataset	. 49
	4.2.3	Konversi DICOM menjadi PNG	
	4.2.4	Exploratory Data Analysis (EDA)	. 52
	4.3 D	ata Preparation	. 55
	4.3.1	Pembagian Dataset (Split Dataset)	
	4.3.2	Image Processing (Thresholding)	. 57
	4.3.3	Pengubahan Ukuran (Resizing) dan Normalisasi Data	. 58
	4.4 M	lodeling	. 59
	<i>44</i> 1	Eksperimen 1: Model Transformer Tanna Tuning	59

4.4.2 Eksperimen 2: Model Transformer dengan menggunakan	augmentasi
dan tuning hyperparameter	66
4.5 Evaluation	74
4.5.1 Hasil Eksperimen	74
4.5.2 ROC Curve	76
4.5.3 Confusion Matrix	79
4.6 Deployment	85
4.7 Pembahasan Hasil dan Diskusi	88
BAB V SIMPULAN DAN SARAN	90
5.1 Simpulan	90
5.2 Saran	91
DAFTAR PUSTAKA	92
LAMPIRAN	99

DAFTAR TABEL

Tabel 2.1 Penelitian Terdahulu	10
Tabel 2.2 Penelitian Terdahulu terkait Image Processing	12
Tabel 2.3 Tabel Staging TNM	19
Tabel 3.1 Perbandingan Metodologi Data Mining	39
Tabel 3.2 Contoh Gambar Mri Prostat dalam Format PNG dengan Setiap Kelas	
Metastasis	41
Tabel 4.1 Metadata Dataset MRI Spine	52
Tabel 4.2 Hasil Akhir Pembagian Dataset	56
Tabel 4.3 Hasil Eksperimen Model Transformer Tanpa Tuning	65
Tabel 4.4 Hasil Eksperimen Model Transformer dengan Tuning	73
Tabel 4.5 Tabel Hasil Keseluruhan Eksperimen Model Transformer	74
Tabel 4.6 Perbandingan Hasil Penelitian dengan Penelitian Terdahulu	89

DAFTAR GAMBAR

Gambar 1.1 Jenis Kanker Penyebab Kematian di Seluruh Dunia Tahun 2022	
Gambar 1.2 Jenis Kanker Penyebab Kematian pada Pria di Seluruh Dunia Tahu	
2022	
Gambar 2.1 Alur CRISP-DM	
Gambar 2.2 Arsitektur Vision Transformers	
Gambar 2.3 Prosedur Distilasi pada Model DeiT	
Gambar 2.4 Teknik Thresholding untuk Mengubah Gambar Menjadi Biner	
Gambar 2.5 Confusion Matrix	
Gambar 2.6 Contoh Kurva ROC	
Gambar 3.1 Diagram Alur Penelitian	37
Gambar 3.2 MRI Prostat dengan kelas M0 dari sudut tulang belakang (spine)	42
Gambar 3.3 MRI Prostat dengan kelas M1 dari sudut tulang belakang (spine)	42
Gambar 3.4 MRI Prostat dengan kelas M1a dari sudut tulang belakang (spine)	42
Gambar 3.5 MRI Prostat dengan kelas M1b dari sudut tulang belakang (spine).	42
Gambar 3.6 MRI Prostat dengan kelas M1c dari sudut tulang belakang (spine)	42
Gambar 3.7 MRI Prostat dengan kelas Mx dari sudut tulang belakang (spine)	43
Gambar 4.1 Contoh Dataset Pasien dalam Format DICOM	
Gambar 4.2 Alur proses pembentukan dataset	
Gambar 4.3 Contoh Lembar Data Rekam Medis	
Gambar 4.4 Distribusi Jenis Metastasis	
Gambar 4.5 Distribusi Lokasi Metastasis	
Gambar 4.6 Distribusi Jumlah Gambar pada Setiap Kelas	
Gambar 4.7 Import Library untuk Pembagian Dataset	
Gambar 4.8 Parameter untuk Pembagian Dataset	
Gambar 4.9 Fungsi untuk Melakukan Pembagian Dataset	
Gambar 4.10 Penerapan Teknik Otsu Thresholding pada Tahap Image Processii	
Gambar 4.11 Contoh Gambar MRI Biasa Sebelum Dibinarisasi	
Gambar 4.12 Gambar MRI yang Menjadi Biner Setelah Diterapkan Teknik Otsu	
Thresholding	
Gambar 4.13 Proses Resizing dan Normalisasi	
Gambar 4.14 Import Library dan Inisiasi CUDA untuk Modeling	
Gambar 4.15 Load Dataset untuk Modeling	60
Gambar 4.16 Inisiasi Model Vision Transformer	
Gambar 4.17 Hasil Modeling Vision Transformer pada Data MRI Biasa	62
Gambar 4.18 Hasil Modeling Vision Transformer pada Data MRI Biner	62
Gambar 4.19 Inisiasi Model Data-efficient Image Transformer	63
Gambar 4.20 Hasil Modeling Data-efficient Image Transformer pada Data MRI]
Biasa	64
Gambar 4.21 Hasil Modeling Data-efficient Image Transformer pada Data MRI]
Biner	64

Gambar 4.22 Proses Augmentasi	67
Gambar 4.23 Contoh Hasil Augmentasi	68
Gambar 4.24 Distribusi Gambar pada Setiap Kelas Sebelum dan Sesudah	
Augmentasi	68
Gambar 4.25 Hyperparameter Tuning untuk Model ViT	69
Gambar 4.26 Hasil Modeling ViT dengan Tuning pada Data MRI Biasa	70
Gambar 4.27 Hasil Modeling ViT dengan Tuning pada Data MRI Biner	70
Gambar 4.28 Hyperparameter Tuning untuk Model DeiT	71
Gambar 4.29 Hasil Modeling DeiT dengan Tuning pada Data MRI Biasa	72
Gambar 4.30 Hasil Modeling DeiT dengan Tuning pada Data MRI Biner	
Gambar 4.31 Pembuatan Kurva ROC	76
Gambar 4.32 ROC Model ViT dengan Data MRI Biasa	77
Gambar 4.33 ROC Model ViT dengan Data MRI Biner	77
Gambar 4.34 ROC Model DeiT dengan Data MRI Biasa	77
Gambar 4.35 ROC Model DeiT dengan Data MRI Biner	77
Gambar 4.36 ROC Model ViT dengan Tuning pada Data MRI Biasa	78
Gambar 4.37 ROC Model ViT dengan Tuning pada Data MRI Biner	78
Gambar 4.38 ROC Model DeiT dengan Tuning pada Data MRI Biasa	78
Gambar 4.39 ROC Model DeiT dengan Tuning pada Data MRI Biner	
Gambar 4.40 Pembuatan Confusion Matrix dan Classification Report	79
Gambar 4.41 Confusion Matrix Model ViT dengan Data MRI Biasa	80
Gambar 4.42 Classification Report Model ViT dengan Data MRI Biasa	
Gambar 4.43 Confusion Matrix Model ViT dengan Data MRI Biner	
Gambar 4.44 Classification Report Model ViT dengan Data MRI Biner	
Gambar 4.45 Confusion Matrix Model DeiT dengan Data MRI Biasa	
Gambar 4.46 Classification Report Model DeiT dengan Data MRI Biasa	
Gambar 4.47 Confusion Matrix Model DeiT dengan Data MRI Biner	
Gambar 4.48 Classification Report Model DeiT dengan Data MRI Biner	
Gambar 4.49 Confusion Matrix Model ViT dengan Tuning pada Data MRI Bi	
Gambar 4.50 Classification Report Model ViT dengan Tuning pada Data MR	
Biasa	
Gambar 4.51 Confusion Matrix Model ViT dengan Tuning pada Data MRI Bi	
MULTIMEDIA	
Gambar 4.52 Classification Report Model ViT dengan Tuning pada Data MR	
BinerAA	
Gambar 4.53 Confusion Matrix Model DeiT dengan Tuning pada Data MRI F	
Gambar 4.54 Classification Report Model DeiT dengan Tuning pada Data MI	
Biasa	
Gambar 4.55 Confusion Matrix Model DeiT dengan Tuning pada Data MRI E	
	84

Gambar 4.56 Classification Report Model DeiT dengan Tuning pada Data MRI	
Biner	84
Gambar 4.57 Proses Load Model untuk Deployment	86
Gambar 4.58 Proses Inferensi Model	87
Gambar 4.59 Tampilan Website untuk Mendeteksi Metastasis Kanker Prostat	87
Gambar 4.60 Contoh Hasil Prediksi yang Dilakukan pada Website	88

DAFTAR RUMUS

(2.1) Rumus Accuracy	32
(2.2) Rumus Precision	
(2.3) Rumus Recall	
(2.4) Rumus F1-Score	33

DAFTAR LAMPIRAN

Lampiran A Turnitin Similarity Report	99
Lampiran B Form Konsultasi Bimbingan	
Lampiran C Daftar Alat Yang Digunakan	

