# CZ4041: Tutorial Week 11&12

Due on April 8, 2021 at 8:30am

Assoc Prof Pan, Sinno Jialin - CS4

Pang Yu Shao U1721680D

08/04/2021

### Problem 1

Suppose a dataset of four 3-dimensional instances is shown in Table 1. Estimate the sample mean and covariance matrix (unbiased).

Table 1: Data set for Question 1.

| ID | $X_1$ | $X_2$ | $X_3$ |
|----|-------|-------|-------|
| P1 | 3     | 5     | -1    |
| P2 | -1    | 8     | 3     |
| P3 | 2     | -4    | -4    |
| P4 | 0     | -1    | -6    |

### Solution

Calculate sample mean (unbiased):

$$\begin{split} \hat{\mu} &= \frac{1}{N} \sum_{i=1}^{N} x_i \\ &= \frac{1}{4} \begin{bmatrix} (3-1+2) & (5+8-4-1) & (3-1-4-6) \end{bmatrix} \\ &= \begin{bmatrix} 1 & 2 & -2 \end{bmatrix} \end{split}$$

Therefore, centered data matrix:

$$\tilde{X} = \begin{bmatrix} 2 & 3 & 1 \\ -2 & 6 & 5 \\ 1 & -6 & -2 \\ -1 & -3 & -4 \end{bmatrix}$$

Calculate sample covariance (unbiased):

$$\tilde{\Sigma} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu}) (x_i - \hat{\mu})^T$$

$$= \frac{1}{3} \tilde{X}^T \tilde{X}$$

$$= \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 & -1 \\ 3 & 6 & -6 & -3 \\ 1 & 5 & -2 & -4 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ -2 & 6 & 5 \\ 1 & -6 & -2 \\ -1 & -3 & -4 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 10 & -9 & -6 \\ -9 & 90 & 57 \\ -6 & 57 & 46 \end{bmatrix}$$

$$= \begin{bmatrix} 3.33 & -3 & -2 \\ -3 & 30 & 19 \\ -2 & 19 & 15.33 \end{bmatrix}$$

### Problem 2

Suppose a dataset of 5 1-dimensional instances is shown in Table 2. Use histogram estimator with an origin of 0 and a width of 3, naive estimator with a width of 3, and 3-NN estimator to estimate the density function  $\hat{p}(x)$  and compute the value of  $\hat{p}(2.6)$  at 2.6, respectively.

Table 2: Data set for Question 2.

| rubic 2. Buttu set for Question 2. |     |    |    |    |     |  |
|------------------------------------|-----|----|----|----|-----|--|
|                                    | P1  | P2 | P3 | P4 | P5  |  |
|                                    | 1.2 | 2  | 10 | -6 | 3.5 |  |

### Solution

For histogram estimator:

Window:  $0 \le x_i < 3$ 

$$\hat{p}(2.6) = \frac{2}{5*3} = 0.133$$

For **naive estimator**:

Window:  $1.1 \le x_i < 4.1$ 

$$\hat{p}(2.6) = \frac{3}{5 * 3} = 0.2$$

For **K-NN** estimator:

Distance from x=2.6:

P2: 0.6 P5: 0.9

P1: 1.4 (3rd nearest neighbour)

P3: 7.4 P4: 8.6

$$\hat{p}(2.6) = \frac{3}{5 * (2 * 1.4)}$$
$$= 0.214$$

## Problem 3

A dataset of five 4-dimensional instances is given in Table 1. Suppose a SVD is performed on the data matrix X (5-by-4) via  $X = VDU^T$ , and the matrices U, D and V are shown in Tables 2-4, respectively. Use principal component analysis to project the 5 datapoints in Table 1 to 2-dimensional space.

Table 1: Data set for Ouestion 1.

| Data Points | $X_1$ | $X_2$ | $X_3$ | $X_4$ |
|-------------|-------|-------|-------|-------|
| P1          | 2     | 4     | 1     | 3     |
| P2          | 1     | 2     | 3     | 5     |
| P3          | -2    | -4    | -4    | -1    |
| P4          | 0     | -1    | -2    | -6    |
| P5          | -1    | -1    | 2     | -1    |

Table 2: The matrix  $\mathbf{V}$  (5-by-5) obtained by SVD ( $\mathbf{X} = \mathbf{V}\mathbf{D}\mathbf{U}^{\top}$ )

| -0.4577 | 0.2550  | -0.5536 | 0.4680  | 0.4472 |
|---------|---------|---------|---------|--------|
| -0.5612 | -0.2150 | 0.1896  | -0.6348 | 0.4472 |
| 0.4497  | -0.7183 | -0.2749 | 0.0787  | 0.4472 |
| 0.5206  | 0.6063  | -0.1153 | -0.3849 | 0.4472 |
| 0.0486  | 0.0720  | 0.7542  | 0.4730  | 0.4472 |

Table 3: The matrix  $\mathbf{D}$  (5-by-4) obtained by SVD ( $\mathbf{X} = \mathbf{V}\mathbf{D}\mathbf{U}^{\top}$ )

| 0      | 0      | 0        |
|--------|--------|----------|
| 4.8385 | 0      | 0        |
| 0      | 3.3973 | 0        |
| 0      | 0      | 0.3867   |
| 0      | 0      | 0        |
|        | 0      | 0 3.3973 |

Table 4: The matrix  $\mathbf{U}$  (4-by-4) obtained by SVD (  $\mathbf{X} = \mathbf{V}\mathbf{D}\mathbf{U}^{\top})$ 

| -0.2224 | 0.3430  | -0.3302 | -0.8508 |  |  |
|---------|---------|---------|---------|--|--|
| -0.4880 | 0.5756  | -0.4046 | 0.5166  |  |  |
| -0.4479 | 0.2924  | 0.8400  | -0.0911 |  |  |
| -0.7154 | -0.6823 | -0.1473 | -0.0309 |  |  |

#### Solution

First, we center the datapoints in X

$$X = \begin{bmatrix} 2 & 4 & 1 & 3 \\ 1 & 2 & 3 & 5 \\ -2 & -4 & -4 & -1 \\ 0 & -1 & -2 & -6 \\ -1 & -1 & 2 & -1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$$

Therefore, datapoints are already centered.

2. Calculate the covariancematrix  $\tilde{\Sigma}$ ,

$$\begin{split} \tilde{\Sigma} &= \frac{1}{5-1} X^T X \\ &= U \tilde{D} U^T, \tilde{D} = \frac{1}{4} D^T D \end{split}$$

3. Find Eigenvalues/ Eigenvectors of the Covariance matrix. Since  $U^T U = I$ ,

$$\tilde{\Sigma}U = \tilde{D}U$$
 
$$\tilde{D} = \frac{1}{4} \begin{bmatrix} 10.90^2 & 0 & 0 & 0\\ 0 & 4.84^2 & 0 & 0\\ 0 & 0 & 3.40^2 & 0\\ 0 & 0 & 0 & 0.39^2 \end{bmatrix}$$

Therefore, the first two columns of the U matrix correspond to the top two eigenvectors with the highest eigenvalues. We select the first 2 columns to construct the top 2 principal components.

$$XU = \begin{bmatrix} 2 & 4 & 1 & 3 \\ 1 & 2 & 3 & 5 \\ -2 & -4 & -4 & -1 \\ 0 & -1 & -2 & -6 \\ -1 & -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} -0.2224 & 0.3430 \\ -0.4880 & 0.5756 \\ -0.4479 & 0.2924 \\ -0.7154 & -0.6823 \end{bmatrix}$$
$$= \begin{bmatrix} -4.99 & 1.23 \\ -6.12 & -1.04 \\ 4.90 & -3.48 \\ 5.68 & 2.93 \\ 0.53 & 0.35 \end{bmatrix}$$

