4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

25

26

Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

SUM MY

1 (Currently Amended). A protection switching method for a passive optical network (PON) system including

an optical line terminal for switching between a first active-system transmission/reception section and a first standby-system transmission/reception section by using a switch,

a plurality of network unit units for selectively connecting second active-system transmission/reception sections and second standby-system transmission/reception sections to subscriber terminals upon switching said sections through selectors in the event of a communication abnormality, and

transmission paths for star-connecting said second active-system transmission/reception sections to said first active-system transmission/reception section, and also star-connecting said second standby-system transmission/reception sections to said first standby-system transmission/reception section, characterized by comprising the steps of:

detecting a communication abnormality in at least one activesystem virtual path established between said optical line terminal and said subscriber terminal through said transmission path and said network unit; and

upon detection of a communication abnormality in the activesystem virtual path, causing said switch to switch only the transmission paths to establish a standby-system virtual path between said optical line terminal and said subscriber terminal serving as a communication partner, without affecting communication through normal virtual paths in the PON system.

A

COPT A

	2 (Original). A method according to claim 1, wherein
2	the method further comprises the step of simultaneously
3	transmitting warning signals indicating communication abnormalities from
4	said network units, and
5	the step of establishing comprises the step of simultaneously
6	switching a plurality of active-system virtual paths between said optical
7	line terminal and said subscriber terminals to a plurality of standby-system
8	virtual paths by simultaneously swiftching/controlling all ports of said
9	switch in said optical line terminal upon reception of the warning signals.
1	3 (Original). A method according to claim 1, wherein
2	the method further comprises the step of simultaneously
3	transmitting warning signals indicating communication abnormalities from
4	said network units which have accessed signals distributed from said
5	optical line terminal, and
6	the step of establishing comprises the step of simultaneously
7	switching a plurality of active-system virtual paths between said optical
8	line terminal and said subscriber terminals to a plurality of standby-system
9	virtual paths by simultaneously switching/controlling predetermined ports
10	of said switch in said optical line terminal upon reception of the warning
11	signals.
1	4 (Original). A method according to claim 1, further comprising the steps
2	of:
3	transmitting a selector switching signal from said optical line
4	terminal to said network unit when a communication abnormality in the
5	active-system virtual path is detected; and
6	selectively switching said active-system transmission/reception
7	section and said standby-system transmission/reception section in said

8	network unit when the selector switching signal is received.
1	5 (Original). A method according to claim 1, further comprising the step of
2	setting an active-system virtual path and standby-system virtual path
3	between said optical line terminal and said subscriber terminal in different
4	bands.
1 4 1	
bull 10 1	6 (Original). A method according to claim 1, wherein
2	the method further comprises the step of setting, in different bands,
3	a plurality of first active-system virtual paths running through said first and
4	second active-system transmission/reception sections, a plurality of second
1 5	active-system virtual paths running through said first and second standby-
6	system transmission/reception sections, first standby-system virtual paths
7	running through said first and second active-system transmission/reception
8	sections, and second standby-system virtual paths running through said
9	first and second standby-system transmission/reception sections, and
10	the step of establishing comprises the step of switching the virtual
11	path to one of the first and second standby-system virtual paths through
12	said switch when a communication abnormality is detected in one of the
13	first and second active-system virtual paths.
1	7 (Original). A method according to claim 6, further comprising the step of
2	resetting the second active-system virtual path and the second standby-
3	system virtual path to share a band assigned to said first active-system
4	transmission/reception/section when communication abnormalities are
5	detected in all said first active-system virtual paths.
1	8 (Original). A method according to claim 6, further comprising the step of
2	resetting the first active-system virtual path and the first standby-system
3	virtual path to share a band assigned to said first active-system

COPT A

4	transmission/reception section when communication abnormalities are		
5	detected in all said second active-system virtual paths.		
1	9 (Original). A method according to claim 1, wherein		
2	the method further comprises the step of setting a plurality of		
3	active-system virtual paths in different bands, and		
4	the step of establishing comprises the step of, when a		
5	communication abnormality occurs in one of the active-system virtual		
6	paths, limiting a band set for the remaining normal active-system virtual		
7	paths and using a surplus band as a standby-system virtual path.		
1	10 (Currently Amended). A method according to claim 1, wherein		
2	the method further comprises the step of setting a plurality of		
3	active-system virtual paths and a plyrality of standby-system virtual paths,		
4	and /		
5	the step of establishing further comprises the step of switching		
6	active-system virtual paths, except for an active-system virtual path		
7	assigned to a specific subscriber terminal for which no protection is		
8	required, to standby-system virtual paths, except for a standby-system		
9	virtual path assigned to said specific subscriber terminal, in the even event		
10	of communication abnormalities in the active-system virtual paths except		
11	for the active-system virtual path assigned to said specific subscriber		
12	terminal.		
	. /		
1	11 (Currently Amended). A method according to claim 1, wherein		
2	the method further comprises the steps of:		
3	setting a plurality of active-system virtual paths between said		
4	subscriber terminal and a plurality of first transmission/reception means		
5	corresponding to said active-system transmission/reception section; and		
6	setting a standby-system virtual path between said subscriber		

Cop1

7 terminal and second transmission/reception means corresponding to said 8 stanby standby-system transmission/reception section, and 9 the step of establishing comprises the step of, when an abnormality 10 is detected in an active-system virtual path, switching the active-system virtual path in which the abnormality is detected to/a standby-system 11 12 virtual path by using a band held by said second transmission/reception 13 means. 1 12 (Currently Amended). A protection switching apparatus for a passive 2 optical network (PON) system characterized by comprising: 3 an optical line terminal having a first active-system 4 transmission/reception section and a first/standby-system 5 transmission/reception section for transmitting/receiving signals and 6 detecting communication abnormalities in transmission paths; 7 a plurality of network units each having a second active-system 8 transmission/reception section and a second standby-system 9 transmission/reception section respectively connected to said first active-10 system transmission/reception section and said standby-system 11 transmission/reception section through the transmission paths, said 12 network units being star-connected to said optical line terminal through the 13 transmission paths; 14 selectors which are respectively arranged in said network units to select said second active-system transmission/reception section and said 15 16 second standby-system transmission/reception section connected to normal 17 transmission paths, one of said selected second active-system 18 transmission/reception section and said selected second standby-system 19 transmission/reception/section being connected to subscriber terminals; 20 a switch which is arranged in said optical line terminal to establish a virtual path between said optical line terminal and said network unit by 21

switching and connecting the transmission path between said first active-

	4
23	system transmission/reception section and said first standby-system
24	transmission/reception; and
25	a first control section which is arranged in said optical line terminal
26	to control said switch, upon detection of a communication abnormality in
27	the transmission path, so as to switch only the abnormal transmission path
28	to a normal transmission path without affecting communication through
29	normal virtual paths in the PON system, thereby reestablishing a virtual
30	path to said subscriber terminal in which the communication abnormality
31	has occurred, the virtual path being constituted by an active-system virtual
32	path and a standby-system virtual path.
1	13 (Original). An apparatus according to claim 12, wherein the
2	transmission path is formed from a metal line.
1	14 (Original). An apparatus according to claim 12, wherein the
2	transmission path is formed from a coaxial cable.
1	15 (Original). An apparatus according to claim 12, wherein the
2	transmission path is an optical/transmission path, and said network unit is
3	an optical network unit.
1	16 (Original). An apparatus according to claim 15, wherein the optical
2	transmission paths respectively star-connect said second active-system
3	transmission/reception section and said second standby-system
4	transmission/reception section to said first active-system
5	transmission/reception section and said first standby-system
6	transmission/reception/section through photocouplers.
1	17 (Currently Amended). An apparatus according to claim 12, wherein
2	said switch outputs an ATM (Asymphronous Transmission Mode) cell to

ConT Al

3	one of a plurality of ports, to which said first active-system
4	transmission/reception section and said first standby-system
5	transmission/reception section are connected, in accordance with a header
6	value added to the ATM cell.
1	18 (Original). An apparatus according to claim 12, wherein said switch
2	determines an output port for data in a synchronous transfer mode in
3	accordance with a time slot of a frame.
1	19 (Original). An apparatus according to claim 12, wherein
2	said network units transmit warning signals indicating
3	communication abnormalities in the transmission paths, and
4	said first control section switches/controls all ports of said switch
5	to simultaneously switch virtual paths between said optical line terminal
6	and said subscriber terminals from active-system virtual paths to standby-
7	system virtual paths upon simultaneously receiving the warning signals
8	from said network units.
1	20 (Original). An apparatus according to claim 12, wherein
2	said network units which have accessed signals distributed from
3	said optical line terminal transmit warning signals indicating
4	communication abnormalifies in the transmission paths, and
5	said first control section switches/controls predetermined ports of
6	said switch to simultaneously switch virtual paths between said optical line
7	terminal and said subscriber terminals from active-system virtual paths to
8	standby-system virtual paths upon simultaneously receiving the warning
9	signals from said network units.
1	21 (Original). An apparatus according to claim 12, wherein
2	said first control section transmits a selector switching signal to

3 said network unit when a communication abnormality is detected in the 4 transmission path, and 5 said network unit comprises a second control section for 6 controlling said selector to selectively switch said second active-system 7 transmission/reception section and said second standby-system 8 transmission/reception section upon reception of the selector switching 9 signal from said optical/line terminal. 22 (Original). An apparatus according to claim 12, wherein the active-1 system virtual path and the standay-system virtual path between said 2 3 optical line terminal and said subscriber terminal are set in different bands. 23 (Original). An apparatus according to claim 12, wherein the virtual path comprises a plurality of first active-system virtual/paths running through 3 said first and second transmission/reception sections, a plurality of second 4 active-system virtual paths running through said first and second standby-5 system transmission/reception sections, a first standby-system virtual path 6 running through said first and second active-system transmission/reception 7 sections, and a second standby-system virtual path running through said 8 first and second standby-system transmission/reception sections, the first 9 and second active-system virtual paths and the first and second standby-10 system virtual paths being set in different bands, and 11 said first control section controls said switch to switch the virtual path to one of the first and second standby-system virtual paths when a 12 communication abnormality is detected in one of the first and second 13 14 active-system virtual paths. 1 24 (Original). An apparatus according to claim 23, wherein when 2 communication abnormalities are detected in all the first active-system 3 virtual paths, a second active-system virtual path and a second standby-

CON 1 A1

A SUBB

1

2

3 4

10

1 2

3

25 (Original). An apparatus according to claim 23, wherein when

system transmission/reception section.

system virtual path are reset to share a band assigned to said first standby-

communication abnormalities are detected in all the second active-system

virtual paths, a first active-system virtual path and a first standby-system

virtual path are reset to share a band assigned to said first active-system

28 (Currently Amended). An apparatus according to claim 12, wherein

a plurality of active-system virtual paths are set between said

subscriber terminals and a plurality of first transmission/reception means

	5	transmission/reception section.
	1	26 (Original). An apparatus according to claim 12, wherein
, 1	2	a plurality of active-system virtual paths are set in different bands,
CaN	3	and /
Corl 1	4	when a communication abnormality is detected in an active-system
//	5	virtual path, a band set for remaining normal active-system virtual paths is
/ r	6	limited, and a surplus band is used as a standby-system virtual path.
	1	27 (Original). An apparatus according to claim 12, wherein
	2	a plurality of active-system virtual paths and a plurality of standby-
	3	system virtual paths are set, and
	4	said first control section controls said switch, in the event of
	5	communication abnormalities in active-system virtual paths except for an
	6	active-system virtual path assigned to a specific subscriber terminal for
	7	which no protection is required, so as to switch. the active-system virtual-
	8	paths in which the communication abnormalities have occurred to standby-
	9	system virtual paths except for a standby-system virtual path assigned to

said specific subscriber terminal.

9

10

11

12

second transmission/reception means.

CONT A!

corresponding to said active-system transmission/reception section	ns,
a standby-system virtual path forming a virtual path is set	between
said subscriber terminal and second transmission/reception means	5
corresponding to said stanby standby-system transmission/recepti	on
section, and	
when an abnormality is detected in an active-system virtua	al path,
the active-system virtual path in which the abnormality has been	detected
is switched to a standby-system virtual path by using a band held	by said