Probability and Statistics

Solutions 3

- 1. For $X \sim B(10, 0.3)$,
 - (i) $Pr(X < 4) = F_4 = 0.8497$.
 - (ii) $Pr(X > 4) = 1 F_4 = 1 0.8497 = 0.1503.$
 - (iii) $Pr(X = 4) = F_4 F_3 = 0.8497 0.6496 = 0.2001.$
 - (iv) $E(X) = np = 10 \times 0.3 = 3$.
 - (v) $var(X) = npq = 10 \times 0.3 \times 0.7 = 2.1$.
- **2.** (i) B(n, 1/5).
 - (ii) $(4/5)^n$.
 - (iii) We require

$$1 - \left(\frac{4}{5}\right)^n \ge \frac{19}{20}$$
 i.e. $\left(\frac{4}{5}\right)^n \le \frac{1}{20}$ i.e. $\left(\frac{5}{4}\right)^n \ge 20$.

Thus we require

$$n \ge \frac{\ln(20)}{\ln(1.25)} = \frac{2.9957}{0.2231} = 13.43.$$

The smallest value of n that satisfies the required condition is 14.

(iv) Using the B(14,0.2) distribution for the number X of left-handed people in the sample, we have

$$Pr(X > 1) = 1 - F_0 = 1 - 0.0440 = 0.9560.$$

3. (i) Using the Poisson distribution with parameter 2.5,

$$p_3 = F_3 - F_2 = 0.7576 - 0.5438 = 0.2138.$$

(ii)

$$1 - p_0 = 1 - F_0 = 1 - 0.0821 = 0.9179.$$

(iii) Using the Poisson distribution with parameter 10,

$$1 - F_5 = 1 - 0.0671 = 0.9329.$$

- **4.** (i) $X \sim B(300, 0.02)$.
 - (ii) $E(X) = 300 \times 0.02 = 6$, $var(X) = 300 \times 0.02 \times 0.98 = 5.88$.
 - (iii) The Poisson distribution with parameter 6.
 - (iv) Comparing the B(300, 0.02) distribution with the Poisson distribution with mean 6,

r	F_r	F_r
	binomial	Poisson
0	0.0023	0.0025
1	0.0166	0.0174
2	0.0602	0.0620
3	0.1485	0.1512
4	0.2824	0.2851
5	0.4441	0.4457
6	0.6063	0.6063
7	0.7454	0.7440
8	0.8493	0.8472
9	0.9182	0.9161
10	0.9590	0.9574

The values for the binomial distribution are not available from tables. R (or Excel) may be used. The required values of the cumulative distribution functions are obtained in the R output below.

```
r < -0:10
BinomialFr <- pbinom(r, 300, 0.02)
PoissonFr <- ppois(r, 6)
cbind(r, BinomialFr, PoissonFr)
##
            BinomialFr
                          PoissonFr
##
    [1,]
          0 0.002332506 0.002478752
##
    [2,]
          1 0.016613153 0.017351265
##
    [3,]
          2 0.060183698 0.061968804
##
    [4,]
          3 0.148510382 0.151203883
##
    [5,]
         4 0.282352346 0.285056500
##
    [6,] 5 0.444055291 0.445679641
##
    [7,]
         6 0.606308246 0.606302782
    [8,]
         7 0.745382207 0.743979760
##
   [9,] 8 0.849332897 0.847237494
## [10,]
         9 0.918161926 0.916075983
## [11,] 10 0.959037941 0.957379076
```

(v)

$$Pr(X \ge 5) = 1 - F_4$$

(a): = 1 - 0.2824 = 0.7176 (exact binomial)
(b): = 1 - 0.2851 = 0.7149 (approximating Poisson)

- **5.** Let X denote the number of bacteria in a sample.
 - (i) X has the Poisson distribution with mean 500/1000 = 0.5.
 - (ii) $Pr(X \ge 1) = 1 F_0 = 1 0.6065 = 0.3935.$
 - (iii) Now X has the Poisson distribution with mean 5. $\Pr(X \le 3) = F_3 = 0.2650$.
- **6.** (i) Clearly $p_r > 0$ (r = 0, 1, 2, ...). We need to check that $\sum_{r=0}^{\infty} p_r = 1$. Recall the formula for the sum of a geometric series: for |x| < 1,

$$\sum_{r=0}^{\infty} x^r = \frac{1}{1-x}.$$

It follows that

$$\sum_{r=0}^{\infty} p_r = \sum_{r=0}^{\infty} q^r p = \frac{p}{1-q} = \frac{p}{p} = 1.$$

(ii)

$$G(t) = \sum_{r=0}^{\infty} p_r t^r = \sum_{r=0}^{\infty} p \ q^r t^r = p \ \sum_{r=0}^{\infty} (qt)^r = \frac{p}{1 - qt},$$

provided that t satisfies |qt| < 1, i.e., |t| < 1/q.

(iii) Differentiating the p.g.f. twice,

$$G'(t) = \frac{pq}{(1-qt)^2}$$
 and $G''(t) = \frac{2pq^2}{(1-qt)^3}$.

Hence

$$\mu = G'(1) = \frac{pq}{(1-q)^2} = \frac{pq}{p^2} = \frac{q}{p}$$

and

$$\begin{split} \sigma^2 &= G''(1) + \mu - \mu^2 \\ &= \frac{2pq^2}{(1-q)^3} + \frac{q}{p} - \left(\frac{q}{p}\right)^2 \\ &= \frac{2pq^2}{p^3} + \frac{q}{p} - \frac{q^2}{p^2} \\ &= \frac{q^2}{p^2} + \frac{q}{p} = \frac{q^2 + qp}{p^2} = \frac{q(q+p)}{p^2} = \frac{q}{p^2} \;. \end{split}$$