

策略梯度算法回顾

■ 蒙特卡洛策略梯度(REINFORCE)算法 initialize θ arbitrarily for each episode $\{s_1,a_1,r(s_1,a_1),...,s_T,a_T,r(s_T,a_T)\}\sim\pi_\theta$ do for t=1 to T do $\theta\leftarrow\theta+\alpha\frac{\partial}{\partial\theta}\log\pi_\theta(a_t|s_t)G_t$ end for end for

相关定义

return θ

- \square s_t , a_t , $r(s_t, a_t)$: t 时刻的状态 , 动作和奖励
- \square π_{θ} , θ : 使用的策略 , 表示策略所使用的参数
- \square G_t :累计奖励
- □ α:歩长

策略梯度的缺点

步长

- □ 步长难以确定
 - 采集到的数据的分布会随策略的更新而变化。
 - 较差的步长产生的影响大。

策略梯度的优化目标

- □ 优化目标的两种形式
 - 第一种: $J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\sum_{t} \gamma^{t} r(s_{t}, a_{t})]$
 - 因为 $V^{\pi_{\theta}}(s) = \mathbb{E}_{a \sim \pi_{\theta}(s)}[Q^{\pi_{\theta}}(s, a)] = \mathbb{E}_{a \sim \pi_{\theta}(s)}[\mathbb{E}_{\tau \sim p_{\theta}(\tau)}[\sum_{s_k = s, a_k = a} \sum_{t = k}^{\infty} \gamma^{t k} r(s_t, a_t)]]$ 。
 - 所以优化目标的第二种形式是: $J(\theta) = \mathbb{E}_{s_0 \sim p_{\theta}(s_0)}[V^{\pi_{\theta}}(s_0)]$

相关定义

- τ:轨迹
- $\square s_0$:初始状态
- □ π_{θ} :使用的策略
- □ θ:表示策略所使用的参数
- \square $Q^{\pi_{\theta}}$ 和 $V^{\pi_{\theta}}$: 策略 π_{θ} 下的 Q 值与状态值函数

优化目标的优化量

$$J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [\sum_{t} \gamma^{t} r(s_{t}, a_{t})]$$

$$J(\theta) = \mathbb{E}_{s_{0} \sim p_{\theta}(s_{0})} [V^{\pi_{\theta}}(s_{0})]$$

$$J(\theta') - J(\theta) = J(\theta') - \mathbb{E}_{s_0 \sim p(s_0)}[V^{\pi_{\theta}}(s_0)]$$

$$= J(\theta') - \mathbb{E}_{\tau \sim p_{\theta'}(\tau)}[V^{\pi_{\theta}}(s_0)]$$
初始状态的分布
$$= J(\theta') - \mathbb{E}_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t V^{\pi_{\theta}}(s_t) - \sum_{t=1}^{\infty} \gamma^t V^{\pi_{\theta}}(s_t) \right]$$

$$= J(\theta') + \mathbb{E}_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t (\gamma V^{\pi_{\theta}}(s_{t+1}) - V^{\pi_{\theta}}(s_t)) \right]$$

$$= \mathbb{E}_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] + \mathbb{E}_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t (\gamma V^{\pi_{\theta}}(s_{t+1}) - V^{\pi_{\theta}}(s_t)) \right]$$

$$= \mathbb{E}_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t (r(s_t, a_t) + \gamma V^{\pi_{\theta}}(s_{t+1}) - V^{\pi_{\theta}}(s_t)) \right]$$

$$= \mathbb{E}_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_{\theta}}(s_t, a_t) + \gamma V^{\pi_{\theta}}(s_t, a_t) \right]$$

$$= \mathbb{E}_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_{\theta}}(s_t, a_t) - V^{\pi_{\theta}}(s_t, a_t) \right]$$

$$= \nabla^{\pi_{\theta}}(s_t, a_t)$$

$$= Q^{\pi_{\theta}}(s_t, a_t) - V^{\pi_{\theta}}(s_t)$$

$$= \nabla^{\pi_{\theta}}(s_t, a_t) - V^{\pi_{\theta}}(s_t)$$

使用重要性采样

■ 使用重要性采样 (Importance Sampling)

$$J(\theta') - J(\theta)$$

$$= \mathbb{E}_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_{\theta}}(s_t, a_t) \right]$$

$$= \sum_{t} \mathbb{E}_{s_t \sim p_{\theta'}(s_t)} \left[\mathbb{E}_{a_t \sim \pi_{\theta'}(a_t|s_t)} [\gamma^t A^{\pi_{\theta}}(s_t, a_t)] \right]$$

$$= \sum_{t} \mathbb{E}_{s_t \sim p_{\theta'}(s_t)} \left[\mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)} \left[\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \gamma^t A^{\pi_{\theta}}(s_t, a_t) \right] \right]$$

$$\mathcal{D}$$

$$\mathcal{$$

忽略状态分布的差异

- □ 当策略更新前后的变化较小时,可以令 $p_{\theta}(s_t) \approx p_{\theta'}(s_t)$ 。
 - 假设使用确定性策略, 当 $\pi_{\theta'}(s_t) \neq \pi_{\theta}(s_t)$ 的概率小于 ϵ 时
 - 或者假设使用随机策略 , 当 $a' \sim \pi_{\theta'}(\cdot | s_t) \neq a \sim \pi_{\theta}(\cdot | s_t)$ 的概率小于 ϵ 时
 - $p_{\theta'}(s_t) = (1 \epsilon)^t p_{\theta}(s_t) + (1 (1 \epsilon)^t) p_{mistake}(s_t)$

•
$$|p_{\theta'}(s_t) - p_{\theta}(s_t)| = (1 - (1 - \epsilon)^t)|p_{mistake}(s_t) - p_{\theta}(s_t)| \le 2(1 - (1 - \epsilon)^t) \le 2\epsilon t$$

$$(1 - \epsilon)^t \ge 1 - \epsilon t \text{ for } \epsilon \in [0, 1]$$

$$J(\theta') - J(\theta) \approx \sum_{t} \mathbb{E}_{s_t \sim p_{\theta}(s_t)} \left[\mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)} \left[\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \gamma^t A^{\pi_{\theta}}(s_t, a_t) \right] \right]$$

约束策略的变化

□ 使用KL散度约束策略更新的幅度

$$\begin{split} \theta' \leftarrow \arg\max_{\theta'} \sum_{t} \mathbb{E}_{s_t \sim p_{\theta}(s_t)} [\mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)} [\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \gamma^t A^{\pi_{\theta}}(s_t, a_t)]] \\ such \ that \ \mathbb{E}_{s_t \sim p(s_t)} [D_{KL} \big(\pi_{\theta'}(a_t|s_t) \parallel \pi_{\theta}(a_t|s_t) \big)] \leq \epsilon \end{split}$$

□ 实际多使用constraint violate as penalty

$$\theta' \leftarrow \arg\max_{\theta'} \sum_{t} \mathbb{E}_{s_t \sim p_{\theta}(s_t)} \left[\mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)} \left[\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \gamma^t A^{\pi_{\theta}}(s_t, a_t) \right] \right] \\ -\lambda \left(D_{KL}(\pi_{\theta'}(a_t|s_t) \parallel \pi_{\theta}(a_t|s_t)) - \epsilon \right)$$

- 1. 优化上式,更新 θ'
- 2. 更新 $\lambda \leftarrow \lambda + \alpha(D_{KL}(\pi_{\theta'}(a_t|s_t) \parallel \pi_{\theta}(a_t|s_t)) \epsilon)$

TRPO的原理

Line search (like gradient ascent)

Optimization in Trust Region

训练曲线

"Trust Region Policy Optimization", John Schulman, et al. (2017)

结果比较

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random Human (Mnih et al., 2013)	354 7456	1.2 31.0	0 368	$-20.4 \\ -3.0$	157 18900	110 28010	179 3690
Deep Q Learning (Mnih et al., 2013)	4092	168.0	470	20.0	1952	1705	581
UCC-I (Guo et al., 2014)	5702	380	741	21	20025	2995	692
TRPO - single path TRPO - vine	1425.2 859.5	10.8 34.2	534.6 430.8	20.9 20.9	1973.5 7732.5	1908.6 788.4	568.4 450.2

推荐阅读

PPO

- TRPO的不足
 - 近似带来误差
 - 求解约束优化问题的困难
- PPO算法
 - 理论更简洁,操作更简单,实验效果更好
 - 推荐阅读 Proximal Policy Optimization Algorithms, John Schulman, et al. (2017)

✓ FOLLOW

John Schulman

Research Scientist, OpenAl Verified email at openai.com - <u>Homepage</u> Artificial Intelligence Robotics Neuroscience

TITLE	CITED BY	YEAR
Proximal policy optimization algorithms J Schulman, F Wolski, P Dhariwal, A Radford, O Klimov arXiv preprint arXiv:1707.06347	7028	2017
Trust region policy optimization J Schulman, S Levine, P Abbeel, M Jordan, P Moritz International conference on machine learning, 1889-1897	4720	2015

近端策略优化 Proximal Policy Optimization

回顾TRPO

□ TRPO使用KL散度约束策略更新的幅度

$$\theta' \leftarrow \arg\max_{\theta'} \sum_{t} \mathbb{E}_{s_t \sim p_{\theta}(s_t)} [\mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)} [\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \gamma^t A^{\pi_{\theta}}(s_t, a_t)]]$$
such that $D_{KL}(\pi_{\theta'}(a_t|s_t) \parallel \pi_{\theta}(a_t|s_t)) \leq \epsilon$

使用constraint violate as penalty

$$\theta' \leftarrow \arg\max_{\theta'} \sum_{t} \mathbb{E}_{s_t \sim p_{\theta}(s_t)} [\mathbb{E}_{a_t \sim \pi_{\theta}(a_t|s_t)} [\frac{\pi_{\theta'}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} \gamma^t A^{\pi_{\theta}}(s_t, a_t)]]$$
$$-\lambda (D_{KL}(\pi_{\theta'}(a_t|s_t) \parallel \pi_{\theta}(a_t|s_t)) - \epsilon)$$

- 1. 优化上式,更新 θ'
- 2. 更新 $\lambda \leftarrow \lambda + \alpha(D_{KL}(\pi_{\theta'}(a_t|s_t) \parallel \pi_{\theta}(a_t|s_t)) \epsilon)$

TRPO的不足

- □ 重要性比例带来的大方差
- □ 求解约束优化问题的困难

PPO: Proximal Policy Optimization

PPO在TRPO基础上的改进

1. 截断式优化目标

conservative policy iteration

$$L^{CPI}(\theta) = \widehat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)} \hat{A}_t \right] = \widehat{\mathbb{E}}_t \left[r_t(\theta) \hat{A}_t \right]$$

$$L^{CLIP}(\theta) = \widehat{\mathbb{E}}_t \left[\min \left(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right]$$

构建下界

$$L^{CLIP}(\theta) \le L^{CPI}(\theta)$$

在
$$r = 1$$
附近相等
$$L^{CLIP}(\theta) = L^{CPI}(\theta)$$

PPO: Proximal Policy Optimization

PPO在TRPO基础上的改进

1. 截断式优化目标

conservative policy iteration

$$L^{CPI}(\theta) = \widehat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta} \text{old}}(a_t|s_t)} \hat{A}_t \right] = \widehat{\mathbb{E}}_t \left[r_t(\theta) \hat{A}_t \right]$$

$$L^{CLIP}(\theta) = \widehat{\mathbb{E}}_t \left[\min \left(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right]$$

2. 优势函数Â_t选用多步时序差分

$$\hat{A}_t = -V(s_t) + r_t + \gamma r_{t+1} + \dots + \gamma^{T-t+1} r_{T-1} + \gamma^{T-t} V(s_T)$$

- 在每次迭代中,并行N个actor收集T步经验数据
- 计算每步的 \hat{A}_t 和 $L^{CLIP}(\theta)$, 构成mini-batch
- 更新参数heta,并更新 $heta_{ ext{old}} \leftarrow heta$

PPO: Proximal Policy Optimization

PPO在TRPO基础上的改进

3. 自适应的KL惩罚项参数

$$L^{KLPEN}(\theta) = \widehat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)} \hat{A}_t - \beta \text{KL}[\pi_{\theta_{\text{old}}}(\cdot|s_t)|\pi_{\theta}(\cdot|s_t)] \right]$$

动态调整β方法

- 计算KL值 $d = \widehat{\mathbb{E}}_t \left[\text{KL} \left[\pi_{\theta_{\text{old}}}(\cdot | s_t) \middle| \pi_{\theta}(\cdot | s_t) \right] \right]$
 - a) 如果 $d < d_{\text{targ}}/1.5$,更新 $\beta \leftarrow \beta/2$
 - b) 如果 $d > d_{\text{targ}} \times 1.5$,更新 $\beta \leftarrow \beta \times 2$

注:这里1.5和2是经验参数,算法效能和它们并不是很敏感

PPO实验对比

No clipping or penalty:

$$L_t(\theta) = r_t(\theta)\hat{A}_t$$

Clipping:

$$L_t(\theta) = \min(r_t(\theta)\hat{A}_t, \operatorname{clip}(r_t(\theta)), 1 - \epsilon, 1 + \epsilon)\hat{A}_t$$

KL penalty (fixed or adaptive) $L_t(\theta) = r_t(\theta) \hat{A}_t - \beta \text{ KL}[\pi_{\theta_{\text{old}}}, \pi_{\theta}]$

- 7个连续控制的环境
- 3个random seed
- 每个算法跑100个 episode,跑21遍,做平 均值计算
- 最佳score归一化为1

-1:41	1:1
algorithm	avg. normalized score
No clipping or penalty	-0.39
Clipping, $\epsilon = 0.1$	0.76
Clipping, $\epsilon = 0.2$	0.82
Clipping, $\epsilon = 0.3$	0.70
Adaptive KL $d_{\text{targ}} = 0.003$	0.68
Adaptive KL $d_{\text{targ}} = 0.01$	0.74
Adaptive KL $d_{\text{targ}} = 0.03$	0.71
Fixed KL, $\beta = 0.3$	0.62
Fixed KL, $\beta = 1$.	0.71
Fixed KL, $\beta = 3$.	0.72
Fixed KL, $\beta = 10$.	0.69

PPO实验对比

