Data Science: Getting Value out of Data

Dr. Ilkay Altintas and Dr. Leo Porter

Twitter: #UCSDpython4DS

By the end of this video, you will be able:

- Describe what modern data science is
- Explain why data science is the key to getting value out of data and where the growing interest for it comes from
- List a recommended set of skills for a data scientist

Data Science turns data into insights or even actions.

Data Science can be thought of as the basis of empirical research, for data is used to inform our hypotheses and provide observations.

Insight Data Product

Data

Analysis

Question

Insight

Insight is exhaded from a diverse amount of data through a combination of explorating data analysis and modeling.

Data Product Analysis Question Insight Question

nota a are time product Improve insights by acating insights using insights.

Book Recommendations

Customer Demographic

Previous Purchases

Book reviews

What kind of books does this customer like?

Book recommendations

amazon.com°

Find Potential Audience for a Book

Model of customer's book preferences

New book information

Who is likely to like this book?

Prediction Model

Market a New Book

Who is likely to like this book?

Action to market the book to the right audience

Market a New Book

Who is likely to like this book?

Action to market the book to the right audience

Action

Action

Action

Action

Actionable Information

Historical data

Near real-time data

Prediction

Prediction

Action

Why the Increased Interest in Data Science?

ability to collect

data in real

time

New era of data science!

COMPUTING AT SCALE

Many dynamic data-driven applications

Computer-Aided Drug Discovery

Smart Cities

Disaster Resilience and Response

BIG DATA

Smart Manufacturing

Personalized Precision Medicine

Smart Grid and Energy Management

How Much Data Is Big Data?

2016 What happens in an INTERNET MINUTE?

Image Source: http://www.marketwatch.com/story/one-chart-shows-everything-that-happens-on-the-internet-in-just-one-minute-2016-04-26

Every minute...

204 Million emails

200,000 photos

facebook

1.8 Million likes

2.78 Million video views

72 hours of video uploads

Scientific Data Management and Analysis

- HPWREN: hpwren.ucsd.edu
 - 30 TB of data annually
- MODIS: modis.gsfc.nasa.gov
 - 219 TB of data annually
- Precision Medicine
 - 4 EB (10¹⁸ bytes) of data in 2016 (www.fastcompany.com)
- LIGO, Deep Space Network, Protein Data Bank, ...

100 MBs ~= couple of volumes of Encyclopedias

A DVD ~= 5 GBs

1 TB ~= 300 hours of good quality video

LHC ~= 15 PBs a year

The Digital Universe 2009-2020

Lata at astronomical scale.

Exponential data growth!

This IDC graph predicts exponential growth of data from around 3 zettabytes in 2013 to approximately 40 zettabytes by 2020. An exabyte equals 1,000,000,000,000,000,000,000 bytes and 1,000 exabytes equals one zettabyte. Source: IDC's Digital Universe Study, December 2012, http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf.

Data Deluge

"We are drowning in information and starving for knowledge"

John Naisbitt

Source: Megatrends, 1982

Challenges

17 Information overload

How do we find the connections?

duta managemend, duta driven methods, Scalable tools for dynamic coordinations, and Scalable execution, and a skilled interdisciplinary worthforce.

Modern Data Science Skills

- Programming in Python
- Statistics
- Machine Learning
- Scalable Big Data Analysis

Application

drug effectiveness analysis,

Crime pattern detection,

Self-driving cons

Data Science

The sum is bigger than the parts!

Big Data

Actionable Insight

Modern Data
Science Skills

Python Programming

Statistical Analysis

Machine Learning

Scalable Big Data Analysis

The Role of Python Programming in Data Science

Dr. Ilkay Altintas and Dr. Leo Porter

Twitter: #UCSDpython4DS

By the end of this video, you will be able:

- List some of the traits of modern data scientists
- Explain why Python is a good programming language for data science
- Recite four major Python modules that are useful for data analysis

MODERN DATA SCIENTIST

Data Scientist, the sexiest job of 21th century requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist really is.

MATH & STATISTICS

- Supervised learning decision trees, random forests, logistic regression
- Optimization gradient descent and variants

DOMAIN KNOWLEDGE & SOFT SKILLS

- ☆ Influence without authority

- Strategic preactive, creative, innovative and collaborative

COMMUNICATION & VISUALIZATION

PROGRAMMING

& DATABASE

☆ Relational alcebra

☆ Hadoop and Hive/Pig.

- ☆ Translate data-driven insights into decisions and actions.

- ☆ Knowledge of any of visualization tools e.g. Flare, D3.js. Tableau

MODERN DATA SCIENTIST

Data Scientist, the sexiest job of the 20th century, requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist really is.

MATH & STATISTICS

- Supervised learning: decision trees, random forests, logistic regression
- ◆ Optimization gradient descent and variants

PROGRAMMING & DATABASE

- Databases: SQL and NoSQL

- ☆ Experience with xaaS like AWS

DOMAIN KNOWLEDGE & SOFT SKILLS

- ☆ Strategic, proactive, creative, innovative and collaborative

- ☆ R packages like copiet or lattice.
- ☆ Knowledge of any of visualization tools e.g. Flare. D3 js. Tableau

MarketingDistillery.com is a group of practitioners in the area of e-commerce marketing. Our fields of expertise include marketing strategy and optimization: customer tracking and on-site analytics: predictive analytics and econometrics: data warehousing and big data systems: marketing channel insights in Paid Search, SEO, Social, CRM and brand.

MarketingDistillery.com is a group of practitioners in the area of e-commerce marketing. Our fields of expertise include marketing strategy and optimization: customer tracking and on site analytics; predictive analytics and econometrics; data warehousing and big data systems: marketing channel insights in Paid Search, SEO, Social, CRM and brand.

Are data scientists unicorns?

Data science is team sport!

Data scientists...

Have passion for data

Relate problems to analytics

Care about engineering solutions

Exhibit curiosity

Communicate with teammates

http://www.kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.html

Why Python for Data Science?

- Easy-to-read and learn
- Vibrant community
- Growing and evolving set of libraries
 - Data management
 - Analytical processing
 - Visaualization
- Applicable to each step in the data science process
- Notebooks

What to look forward to!

- Jupyter notebooks
- NumPy
- Pandas
- Matplotlib
- Scikit-Learn
- BeautifulSoup

Case Study: Soccer Data Analysis

Dr. Ilkay Altintas and Dr. Leo Porter

Twitter: #UCSDpython4DS

By the end of this video, you will be able:

- Talk about the "Big Picture" of data science through a soccer case study
- Generate statistics about a soccer data set
- Summarize how data cleaning and correlations were applied to an existing dataset
- Recite the data visualization techniques employed in this study
- Explain how clustering similar groups and plotting these clusters helped the case study
- Recall what was used to drawing conclusion based on data analysis

Week 1 Case Study: Soccer Data Analysis

- Form meaningful player groups
- Discover other players that are similar to your favorite athlete
- Form strong teams by using analytics

Understanding the Benefits

Ask yourself:

"What insights do I expect to get!"

INSIGHTS

- Better understanding and insights on
 - player strengths
 - enhancing performance
 - critical attributes for a player's performance

ACTIONS

Coach can design programs that improve these areas in teams

Basic Steps in a Data Science Project

ACQUIRE • Import raw dataset into your analytics platform

PREPARE • Explore & Visualize

Perform Data Cleaning

• Feature Selection

Model Selection

Analyze the results

REPORT • Present your findings

• Use them

Data Collection from Diverse Sources

- Databases
 - Relational
 - Non-relational (NoSQL)
- Text files
 - CSV files
 - Text files
- Live feeds
 - Sensors
 - Online Platforms
 - Twitter
 - Live feeds of weather observations

Data Ingestion to Analytics Platform

Data Preparation: Explore using Statistics

df.describe().transpose()

	count	mean	std	min	25%	50%	75%	max
id	183978.0	91989.500000	53110.018250	1.0	45995.25	91989.5	137983.75	183978.0
player_fifa_api_id	183978.0	165671.524291	53851.094769	2.0	155798.00	183488.0	199848.00	234141.0
player_api_id	183978.0	135900.617324	136927.840510	2625.0	34763.00	77741.0	191080.00	750584.0
overall_rating	183142.0	68.600015	7.041139	33.0	64.00	69.0	73.00	94.0
potential	183142.0	73.460353	6.592271	39.0	69.00	74.0	78.00	97.0
crossing	183142.0	55.086883	17.242135	1.0	45.00	59.0	68.00	95.0
finishing	183142.0	49.921078	19.038705	1.0	34.00	53.0	65.00	97.0
heading_accuracy	183142.0	57.266023	16.488905	1.0	49.00	60.0	68.00	98.0
short_passing	183142.0	62.429672	14.194068	3.0	57.00	65.0	72.00	97.0
volleys	181265.0	49.468436	18.256618	1.0	35.00	52.0	64.00	93.0
dribbling	183142.0	59.175154	17.744688	1.0	52.00	64.0	72.00	97.0

Data Cleaning

- Why do we need to clean data?
 - Missing entries
 - Garbage values
 - NULLs
- How do we clean data?
 - Remove the entries
 - Impute these entries with a counterpart
 - Ex. Average values of the column
 - Ex. Assign 0, -1, etc

```
#is any row NULL ?
rows = df.shape[0]
df.isnull().any().any(), df.shape

# Fix it
df = df.dropna()
```

Data Visualization

Convey more in less space and time
Use Graphs when possible

http://seaborn.pydata.org/examples/

Analysis and Modeling

- Supervised Learning
- Unsupervised Learning
- Semi supervised Learning

scikit-learn for Machine Learning in Python

scikit-learn

Machine Learning in Python

- . Simple and efficient tools for data mining and data analysis
- · Accessible to everybody, and reusable in various contexts
- . Built on NumPy, SciPy, and matplotlib
- · Open source, commercially usable BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recog-

Algorithms: SVM, nearest neighbors, random forest, ... - Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso,

- Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering,

mean-shift, ... - Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased effi-

Algorithms: PCA, feature selection, nonnegative matrix factorization. — Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tun-

ing Modules: grid search, cross validation, met-

rics. - Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction.

- Examples

http://scikit-learn.org

Soccer Data Analysis: Feature Selection

What are intrinsic attributes on which 'you' would group players?

Agility
Reaction Time
Shot Power
Sprint Speed

Hair Style Movies the player likes

You can also build complex features

f (shot power, reaction time)

Denctits

1. models that are casicarto
interporet
2. Models get bained much fister.
3. Jeneralize rever scenarios.

Clustering in Python: sklearn.cluster

Method name	Parameters	Scalability	Usecase	Geometry (metric used)	
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters	Distances between points	
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)	
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Distances between points	
Spectral clustering	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)	
Ward hierarchical clustering	number of clusters	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points	
Agglomerative clustering	number of clusters, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance	
DBSCAN	neighborhood size	Very large n_samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between nearest points	
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers	
Birch	branching factor, threshold, optional global clusterer.	Large n_clusters and n_samples	Large dataset, outlier removal, data reduction. http://scikit-learn	Euclidean distance between points n.org/stable/modules/clustering.html	

K-Means clustering in Python

```
from sklearn.cluster import Kmeans
...
Y = KMeans(n_clusters=3,random_state=random_state).fit_predict(X)
...
```

How to choose the right algorithm?

Image Source: http://4.bp.blogspot.com/-o0vLxYf6YZ4/UQVO9K2jxDI/AAAAAAAACt8/Z5w0bSgqkxw/s1600/machine_learning.png

Interpreting Clustering Results

- How many players per cluster?
 - Too many in few clusters?
 - Too few?

- Look at distribution of features in each cluster
 - Investigate the values for each cluster
 - If few clusters → Plot for comparative analysis

Presenting Data Science Outcomes

ACQUIRE

PREPARE

ANALYZE

REPORT

ACT

INSIGHTS

- Better understanding and insights on
 - player strengths
 - enhancing performance
 - critical attributes for a player's performance

ACTIONS

Coach can design programs that improve these areas in teams