Machine Learning 2020-21 Makeup Exam

12 February 2021

Name:
Question 1: 2 points Solve the following constrained optimization problem:
$\max_{x,y} \ y - x^2$
s.t. $y + 2x = 1$.
Indicate the optimal values of x , y and the objective.
Question 2: 2 points Describe the three basic learning paradigms in machine learning (i.e. the three types
of learning), and explain how they differ from each other.

		1 point que works		techniques	for unsuper	vised learning	ng and briefly	describe how each
Quest	ion 4:	1 point	Describe thro	ee difference	es between li	near regressi	ion and logistic	e regression.
	ion 5: ral nety		Name three d	lifferences b	etween feed	forward neur	al networks and	d convolutional neu-

NT																				
Name:	 	 	 	 . . .	 															

Question 6: 3 point Consider the Bayesian network in the following figure

- 1. Write down the corresponding factorization of the joint probability distribution.
- 2. Are the following independence statements true or false? Justify your answer.
 - (a) $H \perp C$
 - (b) $H \perp C|F$
 - (c) $D \perp G|A$
 - (d) $A \perp H|F$
 - (e) $A \perp D|B$
- 3. Draw a possible factor graph that can represent the same probability distribution. Indicate for each factor which function it represents.

Name:	
with a determinant all states $x \in$	In discounted Markov decision processes, the action-value function Q^{π} associated inistic policy $\pi: \mathcal{X} \to \mathcal{A}$ is defined as $Q^{\pi}(x,a) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r_t \middle x_0 = x, a_0 = a \right]$ for \mathcal{X} and actions $a \in \mathcal{A}$. Using this notation, give the definition of an optimal policy π^* al action-value function Q^* . Additionally, explain the relationship between Q^* and the function V^* .
	For a discounted MDP $(\mathcal{X}, \mathcal{A}, P, \gamma, r)$, define the Bellman optimality operator T^* ctions in $\mathbb{R}^{\mathcal{X}}$ to functions in $\mathbb{R}^{\mathcal{X}}$. Specifically, for a function $f: \mathcal{X} \to \mathbb{R}$, how is the T^*f defined?
$r_t + \gamma \theta \phi(x_{t+1})$	The LSTD algorithm takes as input a sequence of observations $(x_t, a_t, r_t)_{t=1}^T$ and nation $\frac{1}{T} \sum_{t=1}^T \delta_t(\theta_T) \phi(x_t) = 0$, where $\phi : \mathcal{X} \to \mathbb{R}^d$ is a feature map and $\delta_t(\theta) = 0$, $\theta(x_t)$ is the t -th temporal difference associated with θ . Derive the expression of θ_T above equation!