Scilab Textbook Companion for Electronic Devices and Circuits by J. Paul¹

Created by S. Prashanth BE

Electrical Engineering
BANNARI AMMAN INSTITUTE OF TECHNOLOGY, TAMIL NADU

College Teacher Dr. V. Parthiban Cross-Checked by Chaya Ravindra

June 18, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronic Devices and Circuits

Author: J. Paul

 ${\bf Publisher:}\ {\rm New}\ {\rm Age}\ {\rm International}$

Edition: 1

Year: 2003

ISBN: 812241415X

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Semiconductor Physics	5
2	Semiconductor Diodes	22
3	special semiconductor diodes	36
4	Biplolar Junction Transistor	40
5	BJT Amplifier	68
6	BJT at high frequency	90
7	Field Effect Transistor	94
8	FET Amplifier	99
9	Multistage Amplifier	103
10	Negative Feedback Amplifiers	108
11	Sinusoidal Oscillators	112
12	Power Electronic Devices	118
13	Cathode Ray Oscilloscope	123

List of Scilab Codes

Exa 1.1	Minority carrier concentration	5
Exa 1.2	example 2	6
Exa 1.3	example 3	6
Exa 1.4	example 4	7
Exa 1.5	example 5	8
Exa 1.6	example 6	9
Exa 1.7	example 7	9
Exa 1.8	example 8	10
Exa 1.9	example 9	11
Exa 1.10	example 10	11
Exa 1.11	example 11	12
Exa 1.12	example 12	12
Exa 1.13	example 13	13
Exa 1.14	example 14	13
Exa 1.15	example 15	14
Exa 1.16	example 16	15
Exa 1.17	example 17	16
Exa 1.18	example 18	16
Exa 1.19	example 19	17
Exa 1.20	example 20	18
Exa 1.21	example 21	18
Exa 1.22	example 22	19
Exa 1.23	example 23	20
Exa 1.24	example 24	20
Exa 2.1	example 1	22
Exa 2.2	example 2	23
Exa 2.3	example 3	23
Eva 2.4	example 4	24

Exa 2.6	example 6	25
Exa 2.7	example 7	25
Exa 2.8	example 8	26
Exa 2.11	example 11	26
Exa 2.12	example 12	27
Exa 2.14	example 14	27
Exa 2.15	example 15	28
Exa 2.16	example 16	29
Exa 2.17	example 17	30
Exa 2.18	example 18	30
Exa 2.19	example 19	31
Exa 2.20	example 20	32
Exa 2.21	example 21	32
Exa 2.22	example 22	32
Exa 2.23	example 23	33
Exa 2.24	example 24	33
Exa 2.25	example 25	34
Exa 3.1	example 1	36
Exa 3.2	example 2	37
Exa 3.3	example 3	37
Exa 3.4	example 4	38
Exa 3.6	example 6	38
Exa 3.7	example 7	39
Exa 4.1	example 1	40
Exa 4.2	example 2	41
Exa 4.5	example 5	41
Exa 4.6	example 6	42
Exa 4.7	example 7	43
Exa 4.9	example 9	43
Exa 4.10	example 10	44
Exa 4.11	example 11	45
Exa 4.12	example 12	45
Exa 4.13	example 13	46
Exa 4.14	example 14	47
Exa 4.15	example 15	47
Exa 4.16	example 16	48
Exa 4.17	example 17	49
Eva 4.18	ovemble 18	40

Exa 4.19	example 19											50
Exa 4.21	example 21											50
Exa 4.22	example 22											51
Exa 4.23	example 23											51
Exa 4.24	example 24											51
Exa 4.25	example 25											52
Exa 4.26	example 26											52
Exa 4.27	example 27											53
Exa 4.28	example 28											54
Exa 4.29	example 29											55
Exa 4.30	example 30											56
Exa 4.31	example 31											56
Exa 4.32	example 32											57
Exa 4.33	example 33											57
Exa 4.34	example 34											58
Exa 4.35	example 35											59
Exa 4.36	example 36											60
Exa 4.37	example 37											61
Exa 4.38	example 38											61
Exa 4.39	example 39											62
Exa 4.40	example 40											63
Exa 4.41	example 41											64
Exa 4.42	example 42											64
Exa 4.43	example 43											65
Exa 4.45	example 45											65
Exa 4.46	example 46											66
Exa 4.47	example 47											66
Exa 5.1	example 1.											68
Exa 5.2	example 2.											69
Exa 5.3	example 3.											69
Exa 5.4	example 4.											71
Exa 5.5	example 5.											71
Exa 5.6	example 6.											72
Exa 5.7	example 7.											72
Exa 5.8	example 8.											73
Exa 5.9	example 9.											74
Exa 5.10	example 10											74
Exa 5 11	example 11	-										75

Exa 5.12	example 12 .		 							75
Exa 5.13	example 13 .		 							76
Exa 5.14	example 14 .		 							77
Exa 5.15	example 15 .		 							77
Exa 5.16	example 16 .		 							78
Exa 5.17	example 17 .		 							79
Exa 5.18	example 18 .		 							80
Exa 5.19	example 19 .		 							81
Exa 5.20	example 20 .		 							82
Exa 5.21	example 21 .		 							82
Exa 5.22	example 22 .		 							83
Exa 5.23	example 23 .		 							84
Exa 5.24	example 24 .		 							84
Exa 5.25	example 25 .		 							85
Exa 5.26	example 26 .		 							86
Exa 5.27	example 27 .		 							86
Exa 5.28	example 28 .		 							87
Exa 5.29	example 29 .		 							88
Exa 5.30	example 30 .		 							88
Exa 6.1	example 1		 							90
Exa 6.2	example 2		 							91
Exa 6.3	example 3		 							92
Exa 6.6	example 6									92
Exa 6.8	example 8		 							93
Exa 7.1	example 1		 							94
Exa 7.2	example 2		 							95
Exa 7.4	example 4		 							95
Exa 7.5	example 5 .		 							96
Exa 7.6	6		 							96
Exa 7.7	example 7		 							97
Exa 7.8	example 8		 							97
Exa 7.9	example 9		 							98
Exa 8.1	example 1									99
Exa 8.2	example 2		 							100
Exa 8.3	example 3		 							100
Exa 8.6	example 6									101
Exa 8.7	example 7		 							101
Exa. 8.9	example 9									102

Exa 9.1	example 1	103
Exa 9.2	example 2	104
Exa 9.3	example	104
Exa 9.4	example 4	105
Exa 9.5	example 5	105
Exa 9.6	example 6	106
Exa 9.8	example 8	107
Exa 10.1	example 1	108
Exa 10.2	example 2	108
Exa 10.3	example 3	109
Exa 10.5	example 5	110
Exa 10.6	example 6	110
Exa 11.2	example 2	112
Exa 11.3	example 3	113
Exa 11.5	example 5	113
Exa 11.6	example 6	114
Exa 11.7	example 7	115
Exa 11.8	example 8	116
Exa 11.9	example 9	116
Exa 12.1	example 1	118
Exa 12.2	example 2	118
Exa 12.3	example 3	119
Exa 12.4	example 4	119
Exa 12.5	example 5	120
Exa 12.6	example 6	120
Exa 12.7	example 7	121
Exa 12.9	example 9	121
Exa 12.10	example 10	122
Exa 13.1	example 1	123
Exa 13.2	example 2	123
Exa 13.3	example 3	124
Exa 13.4	example 4	125
Exa 13.5	example 5	125
Exa 13.7	example 7	126
Exa 13.8	example 8	126
Exa 13.9	example 9	127
Eva 13 10	evample 10	127

Chapter 1

Semiconductor Physics

Scilab code Exa 1.1 Minority carrier concentration

```
1 //pagenumber 24 example 1
2 clear
3 incaco=1.5*10^16; // cubic metre
4 resist=2*10^3; //ohm metre
5 dopcon=10^20; //metre
6 q=26*10^-3; //electron volt
7 / (1)
8 w=2.25*10^32/dopcon;
10 shifer=q*log(dopcon/incaco);//shift in fermi level
11 ni = 9 * 10^32;
12 / (3)
13 w1=ni/dopcon;
14 disp("minority concentration = "+string((w))+"
     per metre square");
15 disp("shift in fermi = "+string((shifer))+"volt"
     );
16 disp("minority concentration when n doubled = "+
     string((w1))+"per cubic metre");
```

Scilab code Exa 1.2 example 2

```
1 //pagenumber 25 example 2
2 clear
3 format(12)
4 numfre=7.87*10^28; //per cubic metre
5 molity=34.8; //square centimetre/velocity second
6 e=30;//volt per centimetre
7 / (1)
8 molity=molity*10^-4; q=1.6*10^-19;
9 conduc=numfre*q*molity;
10 //(2)
11 e=e*10^2;
12 veloci=(molity*e);
13 curden=conduc*e;
14 disp("conductivity = "+string((conduc))+" second
     per metre");
15 disp("drift velocity = "+string((veloci))+"metre
      per second");
16 disp("density = "+string((curden))+"ampere per
     cubic metre");
```

Scilab code Exa 1.3 example 3

```
1 //pagenumber 26 example 3
2 clear
3 ni=2.5*10^13; //per square centimetre
```

```
4 moe=3800//square centimetre/velocity second
5 mo1=1800; //square centimetre/velocity second
6 num=4.51*10^22; //number of atoms
7 q=1.6*10^-19;
8 conduc=ni*q*(moe+mo1);
9 num=num/10^7;
10 impura=(ni^2)/num;
11 ni=5*10<sup>14</sup>;
12 condu1=ni*q*moe;
13 disp ("conductivity
                       = "+string((conduc))+"second
     per centimetre");
14 disp("conductivity at extent of 1 impurity =
     string((condu1))+"second per centimetre");//there
       is mistake in book as 3.04 s/cm
15 conduc=num*q*mo1;
16 disp ("conductivity acceptor to extent of 1 impurity
            "+string((conduc))+"second per centimetre"
     );
```

Scilab code Exa 1.4 example 4

```
//pagenumber 27 example 4
clear
ni=1.5*10^10; // per cubic centimetre
moe=1300; // square centimetre / velocity second
mo1=500; // square centimetre / velocity second
w=5*10^22; // atoms per cubic centimetre
q=1.6*10^-19;
//(a) conductivity intrinise at 300 kelvin
conduc=ni*q*(moe+mo1); // conductivity
u=((ni)/(5*10^14));
ni=5*10^14;
//(b) conductivity when donor atom added to extent of
```

```
1 impurity
13 condu1=ni*q*moe;
14 disp("conductivity intrinisc at 300 kelvin
     string((conduc))+"second per centimetre");
15 disp ("conductivity when donor atom added to extent
                         "+string((condu1))+" second
     of 1 impurity
                     =
     per centimetre");
16 //conductivity when acceptor added to extent of 1
     impurity
17 conduc=ni*q*mo1;
18 disp("conductivity when acceptor added to extent of
     1 impurity
                       "+string((conduc))+"second per
     centimetre");
```

Scilab code Exa 1.5 example 5

```
1 //pagenumber 28 example 5
2 clear
3 ni=2.5*10^13; //per cubic centimetre
4 moe=3800; //square centimetre/velocity second
5 mo1=1800; //square centimetre/velocity second
6 w=4.5*10^22; //atoms per cubic centimetre
7 q=1.6*10^-19;
8 //(1) conductivity intrinisc at 300 \,\mathrm{kelvin}
9 conduc=ni*q*(moe+mo1);
10 u = 10^6;
11 u = ((w)/(u));
12 //(2) conductivity with donor impurity 1
13 \quad condu1 = u * q * moe;
14 disp ("conductivity intrinisc at 300 kelvin
                                                       " +
      string((conduc))+"second per centimetre");
15 disp ("conductivity with donor impurity 1
      string((condu1))+"second per centimetre");
```

Scilab code Exa 1.6 example 6

```
//pagenumber 29 example 6
clear
ferlev=0.3;//electron volt
u=300;//kelvin
u1=330;//kelvin
ferlev=ferlev*u1/u;
disp("fermi = "+string((ferlev))+"electron volt");
disp("fermi below the conduction band");
```

Scilab code Exa 1.7 example 7

```
//pagenumber 29 example 7
clear
ferlev=0.02;//electron volt
q=4;//donor impurity added
```

```
5 w=0.025; // electron volt
6 ferlev=-((log(q)-8))/40;
7 disp("fermi = "+string((ferlev))+"electron volt"
    );
```

Scilab code Exa 1.8 example 8

```
1 //pagenumber 30 example 8
2 clear
3 area=1.5*10^-2; //centimetre square
4 w=1.6; // centimetre
5 resist=20;//ohm centimetre
6 durati=60*10^-6;//second in book given as mili
7 quanti=8*10^15; //photons per second
8
10 //(1) resistance at each photon gives a electron
     hole pair
11 up=1800; //centimetre square per velocity second
12 un=3800; //centimetre square per velocity second
13 q=1.6*10^-19; //coulomb
14 ni=2.5*10^13; //per cubic centimetre
15 sigma1=1/resist;
16 z1 = 3800;
17 z=-sigma1/q;
18 u=ni^2/up;
19 n=poly([(z1) z u], 'n');
20 roots(n);
21 n=7.847*10^13; //n>ni taken so it is admissible
22 p1=ni^2/n;
23 volume=w*area;
24 nchang=quanti*durati/volume;
25 pchang=nchang;
```

Scilab code Exa 1.9 example 9

```
//pagenumber 31 example 9
clear
moe=1350;//square centimetre/velocity second
mo1=450;//square centimetre/velocity second
ni=1.5*10^10;//per cubic centimetre
concn1=ni*((sqrt(mo1/moe)));//concentration
concne=((ni^2)/(concn1));

disp("concentration of electron = "+string((concn1))+"per cubic centimetre");
disp("concentration of holes = "+string((concne))+"per cubic centimetre");
```

Scilab code Exa 1.10 example 10

```
//pagenumber 32 example 10
clear
resist=0.12;//ohm metre
q=1.6*10^-19;
```

```
5 concn1=((1/resist)/(0.048*q));//concentration of
    hole
6 concne=((1.5*10^16)^(2))/concn1;//concentration of
    electron
7 disp("concentration of hole = "+string((concn1))
    +"per cubic centimetre");
8 disp("concentration of electron = "+string((
    concne))+"per cubic centimetre");
```

Scilab code Exa 1.11 example 11

```
//pagenumber 32 example 11
clear
resist=1*10^3; //ohm
w=20*10^-6; // wide metre
w1=400*10^-6; // long metre
mo1=500; // square centimetre / velocity second
q=1.6*10^-19;
conduc=(resist*w*4*10^-6) / w1;
concentration=((1) / (conduc*mo1*q));
disp("concentration of acceptor atoms = "+string ((concentration))+" per cubic metre"); // correction in the book
```

Scilab code Exa 1.12 example 12

```
1 //pagenumber 32 example 12
2 clear
3 w=0.026;
```

Scilab code Exa 1.13 example 13

Scilab code Exa 1.14 example 14

```
//pagenumber 33 example 14
clear
up=1800;//centimetre square per velocity second
un=3800;//centimetre square per velocity second

//(1) resistivity is 45 ohm
q=1.6*10^-19;//coulomb
ni=2.5*10^13;
sigma1=(un+up)*q*ni;
resist=1/sigma1;
```

Scilab code Exa 1.15 example 15

```
1 //pagenumber 34 example 15
2 clear
3 nd=4*10^14; //atoms per cubic centimetre
4 na=5*10^14; //atoms per cubic centimetre
5/(1) concentration
6 ni=2.5*10^13;
7 np=ni^2;
8 / p1 = n + 10^14
9 z = 1;
10 z1=10^14;
11 u=-ni^2;
12 n=poly([z z1 u],'q');
13 roots(n); //n taken as
14 n=1.05*10^4;
15 disp("concentration of the a free electrons =
     string((n)));
16 p1=n+10^14;
```

```
17 disp("concentration of the a free holes = "+
     string((p1)));
18 //(2)
19 disp("sample p");
20 a=ni^2/(300^3*exp(-(0.785/0.026)));
21 w=400; //kelvin
22 ni = sqrt(a*w^3*exp(-0.786/(8.62*10^-5*w)));
23 ni = ((n)*(n+10^14))/10^3;
24 n=ni-0.05*10^15;
25 disp("n = "+string((n))+"electrons per cubic
      centimetre");
26 p1=n+10^14;
27 \text{ disp}("p = "+string((p1))+"holes per cubic
      centimetre");
28
29
30 disp("essentially intrinsic");
```

Scilab code Exa 1.16 example 16

```
//pagenumber 35 example 16
clear
w=300;//kelvin
conduc=300;//ohm centimetre inverse
u=1800;
p=conduc/(u*1.6*10^-19);//concentration holes
n=(2.5*10^13)^2/(p);
disp("concentration of n = "+string((n))+"
electrons per cubic centimetre");

disp("concentration of holes = "+string((p))+"
holes per cubic centimetre");
```

Scilab code Exa 1.17 example 17

```
1 //pagenumber 35 example 17
2 clear
3 nd=10^14;//atoms per cubic centimetre
4 na=5*10^13; //atoms per cubic centimetre
5 un = 3800;
6 \text{ up} = 1800;
7 q=1.6*10^-19;//coulomb
8 resist=80;//ohm metre
9 e1=5;//volt per metre
10 \text{ w=nd-na};
11 ni=(un+up)*q*resist;
12 p1=poly([1 w -ni^2], 'q');
13 roots(p1); //p1 = taken as 3.65*19^12
14 p1=3.65*10^12;
15 n = p1 + w;
16 j = (n*un+p1*up)*q*e1;
17 disp("current density = "+string((j))+"ampere
      per square centimetre");
```

Scilab code Exa 1.18 example 18

```
5 un=0.13*10^4; // centimetre square per velocity second
6 u=0.05*10^4; // centimetre square per velocity second
7 n=ni^2/na;
8 q=1/(1.6*10^-19*(un*n+(u*na)));
9 disp("resistivity = "+string((q))+"ohm centimetre");
```

Scilab code Exa 1.19 example 19

```
1 //pagenumber 37 example 19
2 clear
3 e1=750; // volt per metre
4 b=0.05; //metre square per velocity second
5 un=0.05; //metre square per velocity second
6 up=0.14; //metre square per velocity second
7 //(1) voltage
8 \text{ w=1.25*10^--2;}//\text{metre}
9 v1 = e1 * w;
10 disp("voltage across sample = "+string((v1))+"
      volt");
11 //(2) drift velocity
12 \text{ vd=un*e1};
13 disp("drift velocity = "+string((vd))+"metre per
       second");
14 //transverse force per coulomb
15 f1=vd*b;
16 disp("transverse force per coulomb = "+string((
     f1))+"newton per coulomb");
17 //(4) transverse electric field
18 \text{ e1=vd*b};
19 disp("transverse electric field = "+string((e1))
     +"volt per metre");
20 //(5) hall voltage
```

```
21 q=0.9*10^-2;
22 vh=e1*q;
23 
24 disp("hall voltage = "+string((vh))+" volt");
```

Scilab code Exa 1.20 example 20

```
1 //pagenumber 37 example 20
2 clear
3 un=1300; //centimetre square per velocity second
4 //at 300 kelvin
5 ni=1.5*10<sup>10</sup>;
6 u=500;//centimetre square per velocity second
7 conduc=1.6*10^-19*1.5*10^10*(un+u);
8 q=1/conduc;
9 //impurity of 1 atom included per 10<sup>5</sup> atoms
10 disp("resistivity at 300 kelvin = "+string((q))+"
     ohm centimetre");
11 n=5*10^2/10^5;
12 p=ni^2/n;
13 q=1/(1.6*10^-19*(un*n+(u*p)));
14
15
16 disp("resistivity at impurity of 1 atom included per
       10<sup>5</sup> atoms = "+string((q))+"ohm centimetre")
```

Scilab code Exa 1.21 example 21

```
1 //pagenumber 38 example 21
2 clear
3 n=4.4*10^22;
4 nd=n/10<sup>7</sup>;
5 \text{ w=300; } // \text{kelvin}
6 nc=4.82*10^15*w^(3/2)/1/sqrt(8);
7 ec_ef1=-0.026*log((nc/(nd)));
8 \operatorname{disp}("ec-ef = "+string((ec_ef1)));
9 //(2) impurities included in atio 1 to 10^3
10 n=4.4*10^22;
11 nd=n/(10^3);
12 ec_ef1=-0.026*\log(nc/nd);
13 \text{ disp}(\text{"ec-ef}) = \text{"+string}((\text{ec_ef1})) + \text{"electron volt}
         ef above ec");
14 q = log 10 (nd/nc) / log 10 (10);
15 disp ("impurities included per germanium atoms
      0.0002");
```

Scilab code Exa 1.22 example 22

```
//pagenumber 39 example 22
clear
n=5*10^22; //atoms per cubic centimetre
//(1) 1 atom per 10^6
m=0.8; //metre
na=n/10^6;
w=300; // kelvin
nv=4.82*10^15*(m)^(3/2)*w^(3/2);
ef_ec=0.026*log(nv/na);
disp("ef-ec = "+string((ef_ec))+"electron volt");
//(2) impurity included 10*10^3 per atom
na=n/(10*10^3);
```

```
13 ef_ec=0.026*log(nv/na);
14 disp("ef-ec = "+string((ef_ec))+"electron volt")
    ;
15 //(3) condition to concide ec=ef
16 na=4.81*10^15;
17 w=(nv/na)^(2/3);
18 disp("temperature = "+string((w))+"kelvin");//
    correction in the book
```

Scilab code Exa 1.23 example 23

```
//pagenumber 40 example 23 //figure is not given in
the book

clear
nd=10^7;//per cubic centimetre
na=10^17;//per cubic centimetre
voltag=0.1*3800*10^-4*1500*3*10^-3;
disp("hall voltage = "+string((voltag))+"volt");
disp("remains the same but there change in polarity");
);
```

Scilab code Exa 1.24 example 24

```
1 //pagenumber example 24
2 clear
3 vh=60*10^-3; //volt
4 w=6*10^-3; //metre
5 bz=0.1; //weber per metre square
6 i1=10*10^-6; //ampere
```

```
7 resist=300000*10^-2; //ohm metre
8 //(1)
9 //mobility
10 rh=vh*w/(bz*i1);
11 u1=rh/resist;
12 disp("mobilty = "+string((u1))+"metre square per velocity second");
```

Chapter 2

Semiconductor Diodes

Scilab code Exa 2.1 example 1

```
1 //pagenumber 99 example 1
2 clear
3 q=0.01; //centimetre
4 sigma1=1;//ohm centimetre inverse
5 q1=0.01; //centimetre
6 sigm11=0.01;//ohm centimetre inverse
7 iratio = (0.0224^2*2.11*20)*3.6^2/((3.11*(4.3^2*10^-6))
      ^2*2.6*20*10^3));
8 for q=1:2
9
       if q==1 then
10
           un = 3800;
           up = 1500;
11
12
            q=1.6*10^-19;
           ni=2.5*10;
13
14
       else
15
           q=1.6*10^-19;
           up = 500
16
17
           un = 1300;
18
           ni=1.5*10
```

```
19 end
20
21    b=un/up;
22    sigmai=(un+up)*q*ni;
23 end
24 disp("ratio of reverse saturation current = "+
    string((iratio)));//correction in the book
```

Scilab code Exa 2.2 example 2

```
//pagenumber 100 example 2
clear
sigma1=0.01;//ohm centimetre inverse
area11=4*10^-3;//metre square
q=0.01*10^-2;//metre
un=1300;
up=500;
ni=1.5*10^15;//per cubic centimetre
sigma1=(un+up)*1.6*10^-19*ni;
iratio=(4*10^-10*0.026*sigma1^2*2.6*2/10^-4)/3.6^2;
disp("reverse current ratio = "+string((iratio)));//correction in the book
```

Scilab code Exa 2.3 example 3

```
//pagenumber 100 example 3
clear
a=4*10^-4;//metre square
sigmap=1;
```

```
5 sigman=0.1;
6 de=0.15;
7 vtem=26*10^-3;
8 i=(a*vtem*((2.11)*(0.224))/((3.22)^(2)))*((1/de*sigman)+(1/de*sigmap));
9 disp("reverse saturation current = "+string(i)+"ampere");//correction in the book
```

Scilab code Exa 2.4 example 4

```
1 //pagenumber 101 example 4
2 clear
3 w = 0.9;
4 voltaf = 0.05; //volt
5 revcur=10*10^-6; //ampere
6 //(1) \text{ voltage}
7 volrev=0.026*(log((-w+1)));//voltage at which the
      reverse saturation current at saturate
8 resacu=((exp(voltaf/0.026)-1)/((exp(-voltaf/0.026)
      -1)));//reverse saturation current
9 disp ("voltage at which the reverse saturation
      current at saturate
                                 "+string((volrev))+"
      volt");
10 disp("reverse saturation current = "+string((
     resacu))+"ampere");
11 u=0.1;
12 for q=1:3
           reverc=revcur*(\exp((u/0.026))-1)
13
           disp("reverse saturation current "+string((u
14
              ))+" = "+string((reverc))+"ampere");
15
           u=u+0.1;
16 \text{ end}
```

Scilab code Exa 2.6 example 6

```
//pagenumber 103 example 6
clear
a=1*10^-6; //metre square
w=2*10^-6; //thick centimetre
re=16;
eo=8.854*10^-12;
c=(eo*re*a)/w;
disp("capacitance = "+string(c)+"farad");
```

Scilab code Exa 2.7 example 7

```
//pagenumber 105 example 7
volbar=0.2;//barrier voltage for germanium volt
na=3*10^20;//atoms per metre
//(1) width of depletion layer at 10 and 0.1 volt

for q=[-10 -0.1 0.1]
    w=2.42*10^-6*sqrt((0.2-(q)));
    disp("width of depletion layer at "+string((q))+" = "+string((w))+"metre");//for -0.1 volt correction in the book
end
//(d) capacitance
for q=[-10 -0.1]
capaci=0.05*10^-9/sqrt(0.2-q);
```

Scilab code Exa 2.8 example 8

```
//pagenumber 104 example 8
clear
p=2;//watts
voltaf=900*10^-3;//volt
i1=p/voltaf;
r1=voltaf/i1;
disp("maximum forward current = "+string(i1)+" ampere");

disp("forward diode resistance = "+string(r1)+" ohm");
```

Scilab code Exa 2.11 example 11

```
1 //pagenumber 108 example 11
2 clear
3 r=250; //ohm
4 c=40*10^-6; //farad
5 alpha1=180-atand(377*r*c);
6 disp("alpha = "+string(alpha1)+"degre");
```

Scilab code Exa 2.12 example 12

```
//pagenumber 109 example 12
clear
i1=0.1;//current in ampere
wms=40;//rms voltage in volts
c=40*10^-6;//capacitance in farad
fr1=50;//resistance in ohms
ripple=0.0001;
induct=((1.76/c)*sqrt(0.472/ripple));//inductance
outv=(2*sqrt(2)*vms)/3.14-i1*r1;//output voltage
disp("inductance = "+string(induct)+"henry");//
correction in the book
disp("output voltage = "+string(outv)+"volt");
```

Scilab code Exa 2.14 example 14

```
//pagenumber 109 example 14
clear
voltag=40;//volt
i1=0.2;//ampere
cl=40*10^-6;//farad
c2=c1;
induct=2;//henry
//(1) ripple
vdc=2*sqrt(2)*voltag/3.14;
r1=vdc/i1;
induc1=r1/1130;
```

Scilab code Exa 2.15 example 15

```
1 //pagenumber 111 example 15
2 clear
3 \text{ voltag=375; } //\text{volt}
4 r1=2000; //ohm
5 induct=20; //henry
6 c1=16*10^-6; //farad
7 \text{ r11=100; //ohm}
8 r = 200; //ohm
9 //(1) voltage and ripple with load
10 disp("voltage and ripple with load");
11 r=r+r11+400;
12 vdc=((2*sqrt(2)*voltag/3.14))/1.35;
13 ripple=r1/(3*sqrt(2)*(377)*induct*2);
14 disp("vdc = "+string((vdc))+"volt");
15 disp("ripple = "+string((ripple)));
16 / (2) capacitance connected across load
17 disp("capacitance connected across load");
18 vdc=sqrt(2)*voltag/(1+1/(4*(60)*r1*2*c1));
19 ripple=1/(4*sqrt(3)*(60)*r1*2*c1);
```

```
20 \operatorname{disp}("\operatorname{vdc} = "+\operatorname{string}((\operatorname{vdc}))+"\operatorname{volt}");
21 disp("ripple = "+string((ripple)));
22 //(3) filter containing two inductors and capacitors
       in parallel
23 disp("filter containing two inductors and capacitors
       in parallel");
24 vdc=250; //volt
25 ripple=0.83*10^-6/(2*induct*2*c1); // correction in
      the book
26 disp("vdc = "+string((vdc))+"volt");
27 disp("ripple
                    = "+string((ripple)));
28 //(4) two filter
29 disp("two filter");
30 \text{ vdc} = 250;
31 ripple=sqrt(2)/(3*16*3.14^2*60^2*induct*c1)^2;//
      correction in the book
               = "+string((vdc))+"volt");
32 disp("vdc
33 disp("ripple = "+string((ripple)));
34 \text{ vdc} = \frac{\text{sqrt}}{2} * \text{voltag} / (1 + (4170/(r1*16)) + (r/r1));
35 ripple=3300/(16<sup>2</sup>*2*20*r1);
36 \text{ disp}("vdc = "+string((vdc))+"volt");
37 disp("ripple = "+string((ripple)));
```

Scilab code Exa 2.16 example 16

```
1 //pagenumber 112 example 16
2 clear
3 capaci=4; // farad
4 induct=20; // henry
5 i1=50*10^-3; // ampere
6 resist=200; // ohm
7 maxvol=300*sqrt(2);
8 vdc=maxvol-((4170/capaci)*(i1))-(i1*resist);
```

```
9 ripple=(3300*i1)/((capaci^2)*(induct)*353);
10 disp("output voltage = "+string((vdc))+"volt");
11 disp("ripple voltage = "+string((ripple)));
```

Scilab code Exa 2.17 example 17

```
1 //pagenumber 113 example 17
2 clear
3 \text{ voltag=25; } // \text{volt}
4 c1=10*10^-6; //farad
5 i1=100*10^-3;//ampere
6 ripple=0.001;
7 \text{ w=} 754; // \text{radians}
8 //(1) inductance and resistance
9
10
11 r1=voltag/i1;
12 induct = 40/(sqrt(2)*w^2*(c1));
13 disp("inductance of filter
                                      "+string((induct))+
      "henry");//correction in the book
14 disp("resistance of filter
                                        "+string((r1))+"ohm
      ");
```

Scilab code Exa 2.18 example 18

```
1 //pagenumber 113 example 18
2 clear
3 resacu=0.1*10^-12; //ampere
4 u=20+273; //kelvin
```

```
5 voltaf = 0.55; // volt
6 w=1.38*10^-23;
7 q=1.6*10^-19;
8 \text{ for } z=1:2
9
       if z==2 then
10
            u = 100 + 273:
            disp("current at 100 celsius rise");
11
12
       end
13
       voltag=w*u/q;
       i1=(10^-13)*(exp((voltaf/voltag))-1);
14
15
       if z==2 then
16
            i1=(256*10^-13)*((exp(voltaf/voltag)-1));
17
       end
       disp("current = "+string((i1))+"ampere");
18
19 end
```

Scilab code Exa 2.19 example 19

Scilab code Exa 2.20 example 20

```
1 //pagenumber 114 example 20
2 clear
3 i1=2*10^-7; //ampere
4 voltag=0.026; // volt
5 i=i1*((exp(0.1/voltag)-1));
6 disp("current = "+string((i))+"ampere");
```

Scilab code Exa 2.21 example 21

```
//pagenumber 115 example 21
clear
resacu=1*10^-6; //ampere
voltaf=150*10^-3; //volt
w=8.62*10^-5;
voltag=0.026; //volt
u=300; //kelvin
uw=u*w;
resist=(uw)/((resacu)*exp(voltaf/voltag));
disp("resistance at 150 mvolt = "+string((resist))+"ohm"); // correction in the book
```

Scilab code Exa 2.22 example 22

```
1 //pagenumber 115 example 22
2 clear
3 dopfac=1000;
4 w=300; //kelvin
5 q=0.026*log(dopfac);
6 disp("change in barrier = "+string((q))+"volt");
```

Scilab code Exa 2.23 example 23

```
1 //pagenumber 116 example 23
2 clear
3 area12=1*10^-8; //metre square
4 volre1=-1;//reverse voltage
5 capac1=5*10^-12; // farad
6 volbu1=0.9; // volt
7 voltag=0.5; // volt
8 i1=10*10^-3; //ampere
9 durmin=1*10^-6; //ssecond
10 //(1) capacitance
11 capac1=capac1*sqrt((volre1-volbu1)/(voltag-volbu1));
12 disp("depletion capacitance = "+string((capac1))
     +" farad");
13 //(2) capacitance
14 capac1=i1*durmin/(0.026);
15
16 disp("capacitance = "+string((capac1))+"farad");
```

Scilab code Exa 2.24 example 24

```
1 //pagenumber 116 example 24
2 quantg=4*10^22; //atoms per cubic centimetre
3 quants=5*10^22; //atoms per cubic centimetre
4 w=2.5*10^13; //per cubic centimetre
5 w1=1.5*10^10;//per cubic centimetre
6 for q=[quantg quants]
7
       na=2*q/(10^8);
       nd=500*na;
8
       if q==quantg then
9
10
           w = w;
           voltag=0.026*log(na*nd/w^2);
11
           disp("potential germanium = "+string((
12
              voltag))+"volt");
13
       end
       if q==quants then
14
15
           w = w1;
           voltag=0.026*log(na*nd/w^2);
16
17
           disp("potential silicon = "+string((
              voltag))+"volt");
18
       end
19
20 \text{ end}
```

Scilab code Exa 2.25 example 25

```
//pagenumber 117 example 25
clear
u=0.05;//metre square per velocity second correction
    in the book
un=0.13;//metre square per velocity second
condun=20;//second per metre conductivity of n
    region
condup=1000;//second per metre conductivity of p
```

```
region
7 p=condup/(1.6*10^-19*u);
8 no=condun/(1.6*10^-19*un);
9 disp("electrons density = "+string((no))+"per cubic metre");
10 disp("holes density = "+string((p))+"per cubic metre");//others to find is not in the book
```

Chapter 3

special semiconductor diodes

Scilab code Exa 3.1 example 1

```
1 //pagenumber 138 example 1
2 clear
3 //zener diode
4 voltag=5.2; // volts
5 w = 260*10^{-3}; //watts
6 appv=15; // voltsw1 = 50; // watts
7 imax=w/voltag*0.1;
8 //to maitain a constant voltage
9 imax1=(w/voltag)-imax;
10 resmin=(appv-voltag)/(w/voltag);
11 resmax=(appv-voltag)/imax1;
12 // load 50
13 resmax1 = ((9.8)/(45*10^-3)) - 50;
14 resmin1=((9.8)/(50*10^-3))-50;
15 res50=resmax1-resmin1;
16 disp("resistance range from "+string(resmin)+" to "+
     string(resmax) + "ohms");
17 disp("resistance range at 50 from "+string(resmin1)+
     " to "+string(resmax1)+"ohms");
```

Scilab code Exa 3.2 example 2

```
1 //pagenumber 139 example 2
2 clear
3 i1=20*10^-3; //ampere
4 i=30*10^-3; //ampere
5 v1=5.6; // volts
6 v=5.65; // volts
7 //condition
8 u=35*10^-3; //ampere
9 voltag=5*u+5.5;
10 disp("voltage drop = "+string(voltag)+"volts");
```

Scilab code Exa 3.3 example 3

```
1 //example 3 pagenumber 139
2 clear
3 v=4.3;//volt
4 q=4;//volt
5 dop=10^17;//per cubic centimetre
6 fi0=0.254*log(dop/(5.1*10^10));
7 fi01=0.407+q+0.55;
8 disp('fi0 = '+string(fi01));
```

Scilab code Exa 3.4 example 4

```
//example 4 pagenumber 140
clear
v1=20;//volt
i1=((v1)/(200+1))*10^-3;
disp('current = '+string(i1)+'ampere');
//greater than 20
vone=16;
r=vone/i1;
r1=r-1*10^3;
r11=200*10^3-r1;
disp('resistance = '+string(r)+'ohm');
disp("r1 = "+string((r1))+"ohm");
disp("r2 = "+string((r11))+"ohm");
```

Scilab code Exa 3.6 example 6

```
1 //example 6 pagenumber 142
2 clear
3 v1=150; // volt
4 vone=300 // volt
5 idmax=40*10^-3; //ampere
6 idmin=5*10^-3; //ampere
7 r=(vone-v1)/idmax;
8 imax=idmax-idmin;
9 disp('maximum current = '+string(imax)+'ampere')
;
10 //minimum
11 zq=1;
12 while (zq<=2)
13 if zq==1 then
14 ione=25*10^-3;</pre>
```

```
15
           i1=ione+idmin;
           vmin=(i1*r)+v1;
16
           disp('v1 minimum = '+string(vmin)+'volt'
17
              );
18
           else
           ione=25*10^-3;
19
           i1=ione+idmax;
20
           vmin=(i1*r)+v1;
21
           disp('v1 maximum = '+string(vmin)+'volt')
22
              );
23
24
       end
25
       zq=zq+1;
26
27
28
29
30 end
```

Scilab code Exa 3.7 example 7

```
//example 7 pagenumber 142
clear
q=4.5*10^22; //atoms per cubic metre
na=q/(10^4);
eo=0.026*24.16;
e=1.6*10^-19;
W=sqrt((4*16*0.628)/(36*3.14*10^9*na*10^6*e));
disp('width = '+string(W)+'metre');
```

Chapter 4

Biplolar Junction Transistor

Scilab code Exa 4.1 example 1

```
1 //page number 201 example 1
2 clear
3 alpha=0.98;
4 vbe=0.7;//base emitter voltage volt
5 ie=-4*10^-3; //emitter current
6 vc=12; //colector voltage volt
7 colr=3.3*10^3; //ohms
8 colCurrent=ie*(-alpha);
9 baseCurrent=0.02*ie;
10 vbn=vbe+(-4*10^-3*100);
11 i2 = -vbn/(10*10^3);
12 i1=-(baseCurrent+i2);
13 vcn=(vc-((colCurrent+i1)*colr));
14 v1 = vcn - 0.9;
15 r1=v1/i1;
16 disp("r1
            = "+string(abs(r1))+"ohm");
```

Scilab code Exa 4.2 example 2

```
1 //pagenumber 202 example 2
2 clear
3 colvoltag=12; // volts
4 vbe=5; //volts
5 colcur=10*10^-3;//ampere
6 vce=5; // volts
7 beta1=50;
8 ib=colcur/beta1;
9 \text{ rb} = (\text{vbe} - 0.7)/\text{ib};
10 rc=(12-vbe)/colcur;
11 //when 100ohm included
12 disp("rb
                   "+string(rb)+"ohm");
             =
13 disp("rc
            = "+string(rc)+"ohm");
14 rb=(vce-0.7-(colcur+ib)*beta1)/ib;
15
16 disp("rb at emitter resistance 100ohm
                                                   "+string
      (rb)+"ohm");//correction in the book
```

Scilab code Exa 4.5 example 5

```
1 //pagenumber 205 example 5
2 clear
3 //given
4 reveri=2*10^-6; //ampere at 25
5 icb=2*10^-6*2^5; //ampere at 75
6 basevoltag=5; //volt
```

Scilab code Exa 4.6 example 6

```
1 //pagenumber 205 example 6
2 clear
3 //given
4 vbe=0.8; // volt
5 beta1=100;
6 vce=0.2; // volt
7 rb=200*10^3; //ohm
8 bascur=(6-vbe)/rb;
9 colres=(10-vce)/(beta1*bascur);
10 disp("min resistance = "+string((colres))+"ohm");
```

Scilab code Exa 4.7 example 7

```
1 //pagenumber 206 example 7
2 clear
3 beta1=100;
4 colres=3*10^3; // collector resistance //ohm
5 rb=8*10^3; //ohm
6 \text{ r1} = 500; //\text{ohm}
7 voltag=5; // volt
8 //(1)
9 ib=(-voltag+0.7)/((1+beta1)*r1+(rb));
10 ic=beta1*ib;
11 vce=(-10-ic*(colres)+r1*(ib+ic));
12 \text{ vcb=vce+0.7};
13 / (2)
14 volmin=-0.2+abs(ib+ic)*r1;
15 re=-(0.7+rb*ib+voltag)/((1+(beta1))*ib);
16 disp("in saturation mode")
17 disp("vo = "+string((volmin))+"volt");//
      correction in the book
18 disp("emitter resistance < "+string((re))+"ohm")
```

Scilab code Exa 4.9 example 9

```
1 //example 9
2 clear
3 vcc=12;//volt
4 rb=12*10^3;//ohm
5 colres=2*10^3;//ohm
6 beta1=100;
7 vb=0.7;//volt
8 vce=0.1;//volt
```

```
9
10 for q=1:2
11
       if q==1 then
12
           vbb=1;
13
       else
14
           vbb=12;
15
       end
16
       ib=(vbb-vb)/rb;
17
       ic=beta1*ib;
18
       ie=ic+ib;
19
       vce=vcc-ic*colres;
20
       if q==2 then
21
           ic=(vcc-0.1)/colres;
22
       end
23
       disp("the operating point at vbb = "+string
24
         ((vbb))+"volt ic = "+string((ic))+"ampere
          vce = "+string((vce))+" volt");
25 end
26 beta1=ic/ib;
27
28 disp("beta at saturation = "+string((beta1)));
```

Scilab code Exa 4.10 example 10

```
1 //example 10
2 clear
3
4
5
6 disp("rb/re<<1");</pre>
```

Scilab code Exa 4.11 example 11

```
1 //example 11
2 clear
3 vbe=0.65; // volt
4 colres=2*10^3; //ohm
5 voltag=10; // volt
6 i1=voltag/10;
7 q=(1.65-vbe)/(1*10^3);
8
9
10 disp("current = "+string((q))+"ampere");
```

Scilab code Exa 4.12 example 12

```
1 //example 12
2 clear
3 vcc=12; // volt
4 r1=10*10^3; //ohm
5 colres=1*10^3; //ohm
6 re=5*10^3; //ohm
7 rb=5*10^3; //ohm
8 beta1=100;
9 vbe=0.7; // volt
10 basvol=vcc*10/20;
11 ib=((basvol-vbe)/(rb+beta1*rb));
12 ic=beta1*ib;
13 vce=vcc-ic*(colres+re);
```

```
14 disp("vce = "+string((vce))+"volt");
15 disp("collector current = "+string((ic))+"ampere
");
```

Scilab code Exa 4.13 example 13

```
1 // \text{example } 13
 2 clear
 3 colres=330;//ohm
4 re=0.1*10^3; //ohm
5 \text{ vcc=12; } //\text{volt}
6 vce=0.2; //volt
 7 revcur=18*10^-3//ampere
8 ib=0.3*10^{-3}; //ampere
9 stability=10;
10 beta1=100;
11 colres=0.330;//ohm
12 re=0.1*10^3;//ohm
13 vbe=0.2;
14 \text{ rb} = (((1+\text{beta1})*\text{re})/10-((1+\text{beta1})*\text{re}))/(1-10.1);
15 \text{ vb=2+ib*rb};
16 \text{ w=vcc/vb};
17 q = w - 1;
18 r1=1.2*10<sup>3</sup>;
19 r=q*1.2*10^3;
20 disp("r1 = "+string((q))+"times r2");
21 disp("if r2 is 1200ohm");
22 \ disp("r1 = "+string((r))+"ohm");
23
24 \text{ disp}("r2 = "+string((r1))+"ohm");
```

Scilab code Exa 4.14 example 14

```
1 // example 14
2 clear
3 alpha1=0.99;
4 ib=25*10^-6; //ampere
5 icb=200*10^-9; //ampere
6 beta1=alpha1/(1-alpha1);
7 ic=beta1*ib+(beta1+1)*icb;
8 disp("collector current = "+string((ic))+"ampere
     ");
9 ie1=(ic-icb)/alpha1;
10 disp("emitter current = "+string((ie1))+"ampere"
     );
11 ic=beta1*ib;
12 disp("collector current with ib = "+string((ic))
     +"ampere");
13 ie=ic/alpha1;
14 disp("emitter current = "+string((ie))+"ampere")
15 \text{ w=(ie1-ie)/ie1};
16 disp("error = "+string((w)));
```

Scilab code Exa 4.15 example 15

```
1 //example 15
2 clear
3 vcc=26;//volt
```

```
4 colres=20*10^3; //ohm
5 re=470; //ohm
6 beta1=45;
7 vce=8; // volt
8 ib=(vcc-vce)/((1+beta1)*(colres+re));
9 ic=beta1*ib;
10 r1=((vcc-colres*(ib+ic)-re*(ib+ic)-(0.7)))/ib;
11 disp("resistance = "+string((r1))+"ohm");
12 stability=(1+beta1)/(1+(beta1*re)/(re+colres));
13 disp("stability = "+string((stability))); // correction in the book
```

Scilab code Exa 4.16 example 16

```
1 // \text{example } 16
2 clear
3 vcc=1.5//volt in book should be changed as 1.5
4 colres=1.5*10^3;//ohm
5 emresi=0.27*10^3;//ohm
6 r1=2.7*10^3; //ohm
7 r=2.7*10^3; //ohm
8 beta1=45;
9 basre1=690; //ohm
10 voltag=r*vcc/(r*r1);
11 basres=(r*r1)/(r+r1);
12 vbe=0.2;
13 for q= 1:2
       if q==2 then
14
           disp("resistance = "+string((basre1))+"
15
              ohm");
16
           basres=basres+basre1;
17
       bascur=(((voltag+vbe)))/(basres+(45*(emresi)));
18
```

```
colcur=beta1*bascur;
vce=(vcc+colcur*colres+(bascur+colcur)*emresi);
disp("current = "+string((colcur))+"ampere");
;
disp("vce = "+string((vce))+"volt");
end
```

Scilab code Exa 4.17 example 17

```
//example 17
clear
beta1=25;
colres=2.5*10^3;//ohm
vcc=10;//volt
vce=-5;//volt
ic=-(vcc+vce)/colres;
b=ic/beta1;
rb=vce/ib;
stability=(1+beta1)/((1+beta1)*((colres)/(colres+rb)));
disp("base resistance = "+string((rb))+"ohm");//correction in book
disp("stability = "+string((stability)));
```

Scilab code Exa 4.18 example 18

```
1 //example 18
2 clear
3 therre=8;//celsius per watts
```

```
4 tepera=27; // celsius ambient temperature
5 potran=3; // watt
6 tejunc=tepera+(therre*potran);
7 disp("junction temperature = "+string((tejunc))+" celsius");
```

Scilab code Exa 4.19 example 19

```
1 //example.19
2 clear
3 ambtep=40; // celsius
4 juntep=160; // celsius
5 hs_a=8;
6 j_c=5;
7 c_a=85;
8 j_a=(j_c)+(c_a*hs_a)/(c_a+hs_a);
9 podiss=(juntep-ambtep)/j_a;
10 disp("dissipation = "+string((podiss))+"watt");
```

Scilab code Exa 4.21 example 21

```
1  //example 21
2  clear
3  emicur=1*10^-3; //ampere
4  colcur=0.995*10^-3; //ampere
5  alpha1=colcur/emicur;
6  beta1=alpha1/(1-alpha1);
7  disp("alpha = "+string((alpha1)));
8  disp("beta = "+string((beta1)));
```

Scilab code Exa 4.22 example 22

```
1 //example 22
2 clear
3 beta1=100;
4 alpha1=beta1/(beta1+1);
5
6 disp("alpha = "+string((alpha1)));
```

Scilab code Exa 4.23 example 23

```
1 //example.23
2 rb=200*10^3; //ohm
3 rc=2*10^3; //ohm
4 vcc=20; // volt
5 ib=(vcc)/(rb+200*rc);
6 ic=200*ib;
7 disp("ic = "+string((ic))+"ampere"); // correction in book
```

Scilab code Exa 4.24 example 24

```
1 // example 24
```

```
2 clear
3 alpha1=0.98;
4 revcur=1*10^-6; //ampere
5 emicur=1*10^-3; //ampere
6 colcur=alpha1*emicur+revcur;
7 bascur=emicur-colcur;
8 disp("collector current = "+string((colcur))+" ampere");
9 disp("base current = "+string((bascur))+"ampere");
```

Scilab code Exa 4.25 example 25

```
1 //example 25
2 clear
3 colcur=100*10^-3; //ampere
4 ouresi=20; //ohm
5 r=200; //ohm
6 r1=100; //ohm
7 vcc=15; // volt
8 basvol=((r1)/(r+r1))*vcc;
9 em1res=basvol/colcur;
10 vce=vcc-(ouresi+em1res)*colcur;
11 disp("vce = "+string((vce))+"volt");
12 disp("emitter resistance = "+string((em1res))+"ohm");
```

Scilab code Exa 4.26 example 26

```
1 // example 26
2 colres=1*10^3; //ohm
3 \text{ beta1=50};
4 vbe=0.3; //volt
5 \text{ vcc=6; //volt}
6 rb=10*10^3; //ohm
7 \text{ re} = 100; //ohm
8 em1cur=((vcc-vbe)*(beta1+1))/((rb+((beta1+1)*re)));
9 \text{ for } q=1:2
       if q==2 then
10
            colres=1*10^3;
11
12
            vce=vcc-(colres+re)*em1cur;
13
            ic=vcc/(colres+re);
            disp("collector to emitter = "+string((
14
               vce))+"volt");
            disp("collector current
                                      = "+string((ic))
15
               +"ampere");
16
       end
       if q==1 then
17
18
            colres=50;
19
            rb=100;
20
            vce=vcc-(colres+rb)*em1cur;
            disp("emitter current
21
                                          "+string((em1cur
                                    =
               ))+"ampere");
            disp("collector to emitter = "+string((
22
               vce))+"volt");
23
       end
24 end
```

Scilab code Exa 4.27 example 27

```
1 //example 27
2 clear
```

```
3 \text{ beta1=99};
4 stability=5;
5 vbe=0.2;//volt
6 colres=2.5*10^3;//ohm
7 vce=6; // volt
8 \text{ ven=5.5;} // \text{volt}
9 vcc=15; //volt
10 \text{ vcn=vce+ven};
11 colvol=vcc-vcn; // voltage across collector resistance
12 ic=colvol/colres;
13 ib=ic/beta1;
14 colre1=ven/ic;
15 rb=stability*colre1/(1-(stability/(1+beta1)));//
       correction in the book taken collector resistance
        as 3.13*10^3ohm but it is 3.93*10^3ohm
16 v1=(ib*rb)+(vbe)+((ib+ic)*colre1);
17 \text{ r=rb*vcc/v1};
18 r1=r*v1/(vcc-v1);
19 disp("resistance = "+string((colre1))+"ohm");
20 \operatorname{disp}("\operatorname{resistance} r1 = "+\operatorname{string}((r))+"\operatorname{ohm}");
21 \operatorname{disp}("\operatorname{resistance} r2 = "+\operatorname{string}((r1))+"\operatorname{ohm}");
```

Scilab code Exa 4.28 example 28

```
1 //example 28
2 clear
3 beta1=50;
4 vbb=5; // volt
5 rb=10*10^3; //ohm
6 colres=800; //ohm
7 re=1.8*10^3; //ohm
8 vcc=5; // volt
9 ib=(0.7-vbb)/((rb)+(beta1+1)*re); // correction in
```

```
book

10 re=beta1*ib;
11 ie=(ib+re);
12 vce=vcc-colres*re-re*ie;
13 vcb=(vce-0.7);
14 disp("base current = "+string((ib))+"ampere");
15 disp("collector current = "+string((re))+"ampere");
16 disp("emitter current = "+string((ie))+"ampere");
17 disp("vcb = "+string((vcb))+"volt");//correction in book
18 disp("the collector base junction is reverse biased the transistor in active region");
```

Scilab code Exa 4.29 example 29

```
1 // \text{example } 29
2 clear
3 r=40*10^3; //ohm
4 r1=5*10^3; //ohm
5 colres=r1;
6 beta1=50;
7 em1res=1*10^3; //ohm
8 \text{ vcc=12; //volt}
9 rth=r*r1/(r+r1);
10 v1=r1*vcc/(r1+r);
11 bascur=(v1-0.3)/(rth+(beta1*em1res));
12 colcur=beta1*bascur;
13 vce=vcc-(colres+em1res)*colcur;
14 disp("collector current = "+string((colcur))+"
     ampere");
15 disp("collector emitter voltage = "+string((vce)
```

```
)+" volt");
```

Scilab code Exa 4.30 example 30

```
1 //example 30
2 colcur=8*10^-3; //ampere
3 re=500; //ohm
4 vce=3; // volt
5 beta1=80;
6 vcc=9; // volt
7 ib=colcur/beta1;
8 rb=(vcc-(1+beta1)*(ib*re))/ib;
9 disp(" base resistance = "+string((rb))+"ohm");
```

Scilab code Exa 4.31 example 31

```
1 //example 31
2 clear
3 vcc=10; // volt
4 basres=1*10^6; //ohm
5 colres=2*10^3; //ohm
6 em1res=1*10^3; //ohm
7 beta1=100;
8 bascur=vcc/(basres+(beta1+1)*(em1res));
9 colcur=beta1*bascur;
10 em1cur=colcur+bascur;
11 disp("base current = "+string((bascur))+"ampere");
```

```
12 disp("collector current = "+string((colcur))+"
        ampere");//correction in book
13 disp("emitter current = "+string((em1cur))+"
        ampere");//correction in book
```

Scilab code Exa 4.32 example 32

```
1 // \text{example } 32
2 alpha1=0.99;
3 rebacu=1*10^-11; //ampere
4 colres=2*10^3;//ohm
5 \text{ vcc=10}; //\text{volt}
6 bascur=20*10^-6; //ampere
7 beta1=alpha1/(1-alpha1);
8 i1=(1+beta1)*rebacu;
9 colcur=beta1*bascur+i1;
10 em1cur = - (bascur + colcur);
11 vcb=vcc-colcur*colres;
12 \text{ vce=vcb-0.7};
13 disp("collector current = "+string((colcur))+"
      ampere");
14 disp("emitter current = "+string((em1cur))+"
      ampere");
15 disp("collector emitter voltage = "+string((vce)
      )+" volt");
```

Scilab code Exa 4.33 example 33

```
1 //pagenumber 220 example 33
```

```
2 clear
3 beta1=100;
4 revcur=20*10^-9; //ampere
5 colres=3*10^3;//ohm
6 rb=200*10^3; //ohm
7 vbb=5; // volt
8 \text{ vcc=11; } //\text{volt}
9 em1res=2*10^3; //ohm
10 ib = (vbb - 0.7) / rb;
11 ic=beta1*ib;
12 ie=ib+ic;
13 disp("base current = "+string((ib))+"ampere");
14 disp("collector current = "+string((ic))+"ampere
     ");
15 disp("emitter current = "+string((ie))+"ampere")
     ;//question asked only currents
16 / 2*10^3 ohm added to emitter
17 ib=-(0.7-vcc)/(rb+((1+beta1)*em1res));
18 ic=beta1*ib;
19 ie=ib+ic;
20 disp("base current =
                            "+string((ib))+"ampere");//
     correction in book
21 disp("collector current = "+string((ic))+"ampere
     ");
22 disp("emitter current = "+string((ie))+"ampere")
     ;//question asked only currents
```

Scilab code Exa 4.34 example 34

```
1 //pagenumber 221 example 34
2 clear
3 em1cur=2*10^-3; //ampere
4 v1=12; //volt
```

```
5 vcc=12;//volt
6 format(12);
7 colres=5*10^3;//ohm
8 em1res=v1/em1cur;
9 colcur=em1cur;
10 voltag=colcur*colres;//ic*r
11 v1=vcc-(colres*colcur);
12 disp("emitter current = "+string((em1cur))+" ampere");
13 disp("collector current = "+string((colcur))+" ampere");
14 disp("voltage = "+string((voltag))+"volt");
15 disp("vcb = "+string(abs(v1))+"volt");
16 disp("emitter resistance = "+string((em1res))+" ohm");
```

Scilab code Exa 4.35 example 35

```
1 // \text{example } 35
2 clear
3 \text{ vbb=4}; //\text{volt}
4 ib=50*10^-6; //ampere
5 \text{ for } q = [0 \ 0.7 \ 4 \ 12];
6
        if q==0 then
7
             rb=(vbb-q)/ib;
             disp("resistance at "+string((q))+"volt
                                                               "+
                string((rb))+"ohm");
9
        elseif q==0.7
             rb=(vbb-q)/ib;
10
             disp("resistance at "+string((q))+"volt
                                                               " +
11
                string((rb))+"ohm");
        elseif q==4
12
             disp("vbb at 12volt");
13
```

```
14
            q=0;
15
            vbb=12;
16
            rb=(vbb-q)/ib;
            disp("resistance at "+string((q))+"volt
                                                              " +
17
               string((rb))+"ohm");
18
        else
19
            q = 0.7;
20
            vbb=12;
21
            rb=(vbb-q)/ib;
22
23
            disp("resistance at "+string((q))+"volt
                                                              " +
24
                string((rb))+"ohm");
25
        end
26 \, \text{end}
```

Scilab code Exa 4.36 example 36

```
//example 36
clear
clear
ic=5.2*10^-3; //ampere
ib=50*10^-6; //ampere
icb=2*10^-6; //ampere
beta1=(ic-icb)/(ib+icb);
disp("beta = "+string((beta1)));
ie=ib+ic;

disp("ie = "+string((ie))+"ampere");
alpha1=(ic-icb)/ic;
disp("alpha = "+string((alpha1)));
disp("alpha = "+string((alpha1)));
```

Scilab code Exa 4.37 example 37

```
1 // \text{example } 37
2 clear
3 beta1=160;
4 vb = -0.8; //volt
5 \text{ re}=2.5*10^3; //ohm
6 vcc=10; //volt
7 for q=[160 80]
       ib=(vcc-vb)*10^2/((re)*(1+q)*400);
9
       ic=q*ib;
       colres=1.5*10^3;//ohm
10
       disp("collector current at beta "+string((q))+"
11
            = "+string((ic))+"ampere");//correction
          in the book
12
       ie=(1+beta1)*ib;
       vce=-(vcc-colres*ic-re*ie);
13
       disp("vce at beta "+string((q))+" = "+string
14
          ((vce))+"volt");//correction in the book
15 end
```

Scilab code Exa 4.38 example 38

```
1 //pagenumber 222 example 38
2 clear
3 \text{ vb=0.7; } // \text{volt}
4 vce=7; //volt
5 ic=1*10^-3; //ampere
6 vcc=12;//volt
7 beta1=100;
8 colres=(vcc-vce)/ic;
9 ib=ic/beta1;
10 / rb
11 rb=(vcc-vb-ic*colres)/ib;
12 disp("rb
            = "+string((rb))+" ohm");
13 //stability
14 stability=(1+beta1)/(1+beta1*(colres/(colres+rb)));
15 disp("stability = "+string((stability)));
16 / beta = 50
17 beta1=50;
18 disp("new point");
19 ib=(vcc-vb)/(beta1*colres+rb);
20 \text{ ic=beta1*ib};
21 disp("ic = "+string((ic))+" ampere");
22 vce=vcc-(ic*colres);
23 disp("vce = "+string((vce))+"volt");
```

Scilab code Exa 4.39 example 39

```
1 //pagenumber 223 example 39
2 clear
3 vcc=16; // volt
4 colres=3*10^3; //ohm
5 re=2*10^3; //ohm
6 r1=56*10^3; //ohm
7 r2=20*10^3; //ohm
```

```
8 alpha1=0.985;
9 vb=0.3; // volt
10 // coordinates
11 beta1=alpha1/(1-alpha1);
12 v1=vcc*r2/(r1+r2);
13 rb=r2/(r1+r2);
14 ic=(v1-vb)/((rb/beta1)+(re/beta1)+re);
15 disp("new point");
16 disp("vce = "+string((v1))+" volt");
17 disp("ic = "+string((ic))+" ampere");
```

Scilab code Exa 4.40 example 40

```
1 //pagenumber 224 example 40
2 clear
3 \text{ vce=12; //volt}
4 ic=2*10^-3; //ampere
5 \text{ vcc}=24; //\text{volt}
6 vb = 0.7; // volt
7 beta1=50;
8 colres=4.7*10^3;//ohm
9 / re
10 re=((vcc-vce)/(ic))-colres;
11 disp("re = "+string((re))+" ohm");
12 / r1
13 ib=ic/beta1;
14 v1=ib*3.25*10^3+vb+(ib+1.5*10^3);
15 r1=3.25*18*10^3/2.23;
16 \ disp("r1 = "+string((r1))+" ohm");
17 / r2
18 r2=26.23*2.23*10^3/(18-2.3);
19 disp("r2 = "+string((r2))+" ohm");
```

Scilab code Exa 4.41 example 41

```
1 //pagenumber 225 example 41
2 clear
3 colres=3*10^3; //ohm
4 rb=150*10^3; //ohm
5 beta1=125;
6 vcc=10; // volt
7 \text{ v1=5}; // \text{volt}
8 \text{ vb=0.7; } //\text{volt}
9 ib=(v1-vb)/rb;
                    "+string((ib))+" ampere");
10 disp("ib
11 ic=beta1*ib;
12 ie=ic+ib;
                   "+string((ic))+" ampere");
13 disp("ic
                    "+string((ie))+" ampere");//
14 disp("ie
      correction in the book in question to find only
      currents
```

Scilab code Exa 4.42 example 42

```
1 //pagenumber 226 example 42
2 clear
3 beta1=50;
4 vb=0.6; // volt
5 vcc=18; // volt
6 colres=4.3*10^3; //ohm
7 ic=1.5*10^-3; //ampere
```

```
8 vce=10;//volt
9 stability=4;
10 r1=(vcc-vce)/ic;
11 re=r1-colres;
12 w=(beta1+1)*(stability)*re/(1+beta1-stability);
13 disp("re = "+string((re))+"ohm");
14 disp("rb = "+string((w))+"ohm");//correction in the book
```

Scilab code Exa 4.43 example 43

```
1 //pagenumber 226 example 43
2 re=100; //ohm
3 beta1=100;
4 rb=1*10^3; //ohm
5 stability=(1+beta1)/(1+beta1*(re/(re+rb)));
6 r1=3.8//r2
7 disp("r1 = 3.8*r2"); // correction in the book not given in question
```

Scilab code Exa 4.45 example 45

```
1 //pagenumber 228 example 45
2 clear
3 icb=2*10^-6; //ampere
4 vbb=1; //volt
5 r1=50*10^3; //ohm
6 //current increases every 10 celsius rb at 75 celsius
7 vb=-0.1; // volt
```

```
8 icb=2^6*10^-6; //at 75 celsius
9 rb=(vb+vbb)/icb;
10 disp("rb at 75 celsius = "+string((rb))+"ohm");
11 icb=(vb+vbb)/r1;
12 disp("icb = "+string((icb))+"ampere");
13 w=(log10(icb*10^6)*20/log10(2))-25;
14 disp("temperature at which current till max = "+string((w))+"celsius");
```

Scilab code Exa 4.46 example 46

```
//pagenumber 228 example 46
clear
vb=0.8;//volt
beta1=100;
vce=0.2;//volt
vcc=10;//volt
rb=200*10^3;//ohm
//collector resistance
bi=(5-0.7)/rb;
colres=(vcc-vce)/(beta1*ib);
disp("min collector resistance = "+string((colres))+"ohm");
```

Scilab code Exa 4.47 example 47

```
1 //pagenumber 229 example 47
2 clear
3 alpha1=0.98;
```

```
4 alph11=0.96;
5 \text{ vcc}=24; //\text{volt}
6 colres=120;//ohm
7 ie=100*10^{-3}; //ampere
8 beta1=alpha1/(1-alpha1);
9 bet11=alph11/(1-alph11);
10 ib2=ie/(1+bet11);
11 ie1=-ib2;
                    "+string((ib2))+"ampere");
12 disp("ib2
13 disp("ie1 = "+string((ie1))+"ampere");
14
15
16 ic2=bet11*ib2;
17 ib1=ib2/(1+beta1);
18 ic1=beta1*ib1;
                    "+string((ic2))+"ampere");
19 disp("ic2
20 disp("ib1
                    "+string((ib1))+"ampere");
               =
21 disp("ic1
                    "+string((ic1))+"ampere");
22 ic=ic1+ic2;
23 vce=vcc-ic*colres;
24 ib=ib1;
25 \text{ w=ic/ib};
26 q=-ic/ie;
                  "+string((ic))+"ampere");
27 disp("ic
28 disp("ic/ib
                 = "+string((w)));
                 = "+string((q)));//correction in the
29 disp("ic/ie
      book
                    "+string((vce))+"volt");
30 disp("vce
```

Chapter 5

BJT Amplifier

Scilab code Exa 5.1 example 1

```
1 //pagenumber 283 example 1
2 clear
3 \text{ ic=1*10^--3;} // \text{ampere}
4 vcc=5; //volt
5 colres=2*10^3;//ohm
6 r1=1.4*10^3; //ohm
7 re=100; //ohm
8 beta1=100;
9 \text{ rb} = 100; //\text{ohm}
10 \text{ v1} = 0.026;
11 c1=25*10^-6; //farad
12 g1=ic/v1;
13 freque=10*10^3; // hertz
14 \text{ xc=1/(2*freque*3.14*c1)};
15 volgai=-beta1*colres/(r1+0.1*10^3+2.5*10^3);
16 disp("voltage gain = "+string((volgai)));
17 ri=(0.1+2.5)*10^3-imag((xc)*(1+beta1));
18 disp("input resistance = "+string((ri))+"ohm");
19 //ce removed
```

Scilab code Exa 5.2 example 2

```
1 //pagenumber 285 example 2
2 clear
3 \text{ ic=1.3*10^--3;} // \text{ampere}
4 colres=2*10^3; //ohm
5 \text{ re} = 500; //\text{ohm}
6 v1=0.026; //volt
7 beta1=100;
8 \text{ vcc}=15; // \text{volt}
9 c1=10*10^-6; //farad
10 ib=ic/beta1;
11 ri=0.01/ib;
12 volgai=beta1*colres*ib/0.01;
13 disp("voltage gain = "+string((volgai))+"<180");
14 disp("voltage gain reduced ce removed");
15 disp ("when cb is short circuited the voltage gain
      increased");
```

Scilab code Exa 5.3 example 3

```
1 //pagenumber 286 example 3
```

```
2 clear
3 colres=4*10^3; //ohm
4 r1=4*10^3; //ohm
5
6 rb=20*10^3; //ohm
7 r=1*10^3; //ohm
8 hie=1.1*10^3;//ohm
9
10 //current gain
11 ri=rb*hie/(rb+hie);
12 curgai = (1/2.04)*(rb/(rb+(hie)))*(-50*colres/(colres)
     +(r1)));
13 disp ("current gain
                            "+string((curgai)));
14 //voltage gain
15 volgai=curgai*r1/r;
16 disp("voltage gain
                            "+string((volgai)));
17 //transconductance
18 conduc=volgai/r1;
19 disp ("transconductance
                                "+string((conduc))+"
                            =
     ampere per volt");
20 //transresistance
21 resist=volgai*r;
22 disp("transresistance = "+string((resist))+"ohm"
     );
23 //input resistance
24 disp("input resistance = "+string((ri))+"ohm");
25 //output resistance
26 resist=40*10^3*colres/(40*10^3+colres);
27
28
29
30 disp("output resistance = "+string((resist))+"
     ohm");
```

Scilab code Exa 5.4 example 4

```
1 //pagenumber 287 example 4
2 clear
3 \text{ ib=}20*10^-6; //ampere
4 beta1=500;
5 re=10; //ohm correction in the book
6 r1=4.7*10^2;//ohm correction in the book
7 ic=ib*beta1;
8 voltag=ic*r1;//voltage drop at 4.7*10^3ohm
9 vc = (10 - voltag);
10 rb = (vc - 0.6) / ib;
11 disp("rb
              =
                   "+string((rb))+"ohm");
12 //re included
13 voltag=ic*re;//voltage drop at re
14 vb=(0.6+voltag);
15 rb = (vc - vb) / ib;
16 disp("rb including emitter resistance = "+string
      ((rb))+"ohm");
```

Scilab code Exa 5.5 example 5

```
//pagenumber 288 example 5
clear
av=12480;
fedbac=8;//decibel
volgai=20*log10(av);//gain without fedback
volga1=volgai-fedbac;
beta1=((av/5000)-1)/av;

disp("voltage gain with fedback = "+string((volga1))+"decibel");
disp("beta = "+string((beta1)));
```

Scilab code Exa 5.6 example 6

```
//pagenumber 288 example 6
beta1=100;
r1=1.5*10^3; //ohm
vcc=10; // volt
r=100*10^3; //ohm
vb=((vcc)/(r+10*10^3))*10*10^3;
ie=0.3/100;
ib=ie/beta1;
disp("collector current = "+string((ie))+"ampere");
disp("emitter current = "+string((ie))+"ampere");
disp("base current = "+string((ib))+"ampere");
```

Scilab code Exa 5.7 example 7

```
1 //pagenumber 268 example 7
2 clear
3 hie=800; //ohm
4 he=50*10^-6; //mho
5 hfe=-55;
6 z1=2*10^3; //ohm
7 curgai=hfe/(1+he*z1);
8 zi=hie
9 volgai=curgai*z1/zi;
```

```
10 powgai=volgai*curgai;
11 //if hoe neglected
12 av=137.5;
13 hfe=-55;
14 w=((av-abs(volgai))*100)/abs(volgai);
15 ap=hfe*(-av);
16 w1=((ap-powgai)*100)/powgai;
17 disp("voltage gain = "+string((volgai)));
18
19
20 disp("power gain = "+string((powgai)));
21 disp("error without hoe = "+string((w)));
22 disp("error = "+string((w1)));
```

Scilab code Exa 5.8 example 8

```
1 //pagenumber 289 example 8
2 clear
3 rb=5*10^3;//ohm
4 \text{ vcc}=20; //\text{volt}
5 r=10*10^3; //ohm
6 colres=5*10^3; //ohm
7 vb=vcc*r/(r+r);
8 beta1=50;
9 v1 = 0.6; //volt
10 ib=(vb-v1)/(1+beta1*colres);
11 ic=beta1*ib;
12 vc=vcc-ic*1*10^3;
13 \text{ vce=vc-rb*(ic+ib)};
14 disp("emitter current = "+string((ic+ib))+"
      ampere");
15 disp("vc = "+string((vc))+"volt");
16 disp("collector emitter voltage = "+string((vce)
```

```
)+" volt");
```

Scilab code Exa 5.9 example 9

```
//pagenumber 290 example 9
clear
hib=25;//ohm
hfb=0.999;
hob=10^-6;//ohm
colres=10*10^3;//ohm
//voltage gain
curgai=hfb/(1+hob*colres);
zi=hib+hob*colres*curgai;
volgai=curgai*colres/(zi);
disp("voltage gain = "+string((volgai)));//correction in the book
```

Scilab code Exa 5.10 example 10

```
1 //pagenumber 290 example 10
2 clear
3 re=1*10^3; //ohm
4 hie=100; //ohm
5 hfe=100;
6 //voltage gain
7 volgai=1/((1+(hie/(2*(1+hfe)*re))));
8 //ri
9 ri=(hie/2)+(1+hfe)*re;
10 disp("voltage gain = "+string((volgai)));
```

```
11 disp("input resistance = "+string((ri))+"ohm");
```

Scilab code Exa 5.11 example 11

```
//pagenumber 292 example 11
clear
beta1=90;
re=2*10^3; //ohm
rb=240*10^3; //ohm
vcc=20;
ib=(vcc-0.7)/(rb+(1+beta1)*(re));
ic=beta1*ib;
vce=vcc-(ib+ic)*re;
disp("emitter current = "+string((ib+ic))+" ampere");
disp("vce = "+string((vce))+"volt");
```

Scilab code Exa 5.12 example 12

```
1 //pagenumber 292 example 12
2 clear
3 hfe=110;
4 hie=1.6*10^3; //ohm
5 hoe=20*10^-6; //ohm
6 colres=4.7*10^3; //ohm
7 hre=2*10^-4;
8 r1=470*10^3; //ohm
9 curgai=-hfe/(1+hoe*colres);
10 ri=hie+hre*curgai*colres;
```

Scilab code Exa 5.13 example 13

```
//pagenumber 293 example 13
clear
re=1*10^3; //ohm
hie=1000; //ohm
hfe=99;
//inptut resistance
ri=hie+((1+hfe)*(hie+1+hfe*re));

disp("input resistance = "+string((ri))+"ohm");
//correction in the book
//voltage gain
volgai=((1+hfe)*(1+hfe)*re)/ri;
disp("voltage gain = "+string((volgai)));
```

```
15
16  //current gain
17  curgai = -((1+hfe)*(1+hfe));
18
19
20  disp("current gain = "+string((curgai)));
```

Scilab code Exa 5.14 example 14

```
//pagenumber 294 example 14
clear
hie=2*10^3;//ohm
beta1=100;
colres=5*10^3;//ohm
volgai=beta1*colres/hie;
disp("voltage gain = "+string((volgai))+"<180");
disp("input impedance = "+string((hie))+"ohm");
disp("current gain = "+string((beta1)));</pre>
```

Scilab code Exa 5.15 example 15

```
1 //pagenumber 294 example 15
2 clear
3 colres=4.7*10^3; //ohm
4 beta1=150;
5 r1=12*10^3; //ohm
6 vcc=15; // volt
7 re=1.2*10^3; //ohm
8 rac=colres*r1/(colres+r1);
```

```
9 r = 2*10^3; //ohm
10 //voltage gain
11 volgai=beta1*rac/r;
12 disp("voltage gain
                       = "+string((volgai)));
13 r1=75*10^3; //ohm
14 r2=7.5*10^3; //ohm
15 //input impedance
16 zin=(r1*r2)/(r1+r2);
17 zin=zin*r/(zin+r);
18 disp("input impedance = "+string((zin)));
19 //coordinates
20 \text{ vb=vcc*r2/(r1+r2)};
21 ie=vb/re;
22 vce=vcc-((colres+re)*(ie));
23 disp("coordinates ic = "+string((ie))+"ampere
     vce = "+string((vce))+"volt");
```

Scilab code Exa 5.16 example 16

```
//pagenumber 296 example 16
clear
r1=2000;//ohm
r=900;//ohm
hie=1200;//ohm
hre=2*10^-4;
hfe=60;
hoe=25*10^-6;//ampere per volt
curgai=(hfe)/(1+hoe*r1);
disp("current gain = "+string((curgai)));
ri=hie+(curgai*r1);
disp("input impedance = "+string((ri))+"ohm");
volgai=curgai*r1/ri;
disp("voltage gain = "+string((volgai)));
```

```
15 admita=1/ri;
16 admita=hoe-(-hfe*hre)/(hie+r);
17 r=1/admita;
18 disp("output resistance = "+string((r))+"ohm");
```

Scilab code Exa 5.17 example 17

```
1 //pagenumber 296 example 17
2 clear
3 \text{ hfe=60};
4 hie=500; //ohm
5 ic=3*10^-3; //ampere
6 zi=hie;
7 rb=220*10^3; //ohm
8 colres=5.1*10^3;//ohm
9 z=colres;
10 volgai = -hfe * colres/hie;
11 curgai = -hfe;
12 vcc=12; // volt
13 ib = (vcc - 0.6)/rb;
14 ie=hfe*ib;
15 \text{ re=0.026/ie};
16 zi=hfe*re;
17 z=colres;
18 volgai = - colres/re;
19 curgai = - hfe;
20 disp ("voltage gain
                              "+string((volgai)));
                          =
21 disp("current gain
                          = "+string((curgai)));
22 disp("input impedance
                             = "+string((zi))+"ohm");
23 disp("output impedance
                                   "+string((z))+"ohm");
```

Scilab code Exa 5.18 example 18

```
1 //pagenumber 297 example 18
2 clear
3 hie=3.2*10^3; //ohm
4 hfe=100;
5 r=40*10^3; //ohm
6 r1=4.7*10^3; //ohm
7 colres=4*10^3;//ohm
8 rb=r*r1/(r+r1);
9 zi=hie*rb/(hie+rb);
10 z=colres;
11 re=1.2*10^3;//ohm
12 volgai = -hfe * colres/hie;
13 disp("input impedance = "+string((zi))+"ohm");
14 disp("output impedance = "+string((z))+"ohm");
15 disp("voltage gain =
                               "+string((volgai)));
16 curgai = -hfe * rb/(rb + hie);
17 disp("current gain
                               "+string((curgai)));
18 hie=833;
19 //(1) load open
20 \text{ vi=1};
21 ib=vi/hie;
22 volgai=hfe*ib*1.5*10^3;
23 //load closed
24 \text{ hoe} = 50;
25 \text{ r2} = 2*10^3; //\text{ohm}
26 \text{ ib=vi/(r2+hie)};
27 \text{ vb}=1.682;
28 ib=(vb-0.6)/(rb+(1+hfe)*(re));
29 ic=hfe*ib;
30 ie=ic+ib;
```

```
31 re=0.026/ie;
32 zi=rb*hfe*re/((rb)+(hfe*re));
33 disp("parameters in re");
34 disp("input impedance = "+string((zi))+"ohm");
35 z=colres;
36 disp("output impedance = "+string((z))+"ohm");
37 volgai=colres/(-re);
38 disp("voltage gain = "+string((volgai)));
39 curgai=-hfe*rb/(rb+hfe*re);
40 disp("current gain = "+string((curgai)));
```

Scilab code Exa 5.19 example 19

```
1 //pagenumber 299 example 19
2 clear
3 hfe=120;
4 hie=0.02; //ohm
5 r1=5.8*10^3; //ohm
6 r=27*10^3; //ohm
7 colres=1.5*10^3; //ohm
8 re=330*10^3; //ohm
9 vcc=10; // volt
10 vb=vcc*r1/(r1+r);
11 rb=(r*r1)/(r+r1);
12 ib=(vb-0.7)/(rb+((1+hfe)*re));
13 volgai=-hfe*ib*2*10^3;
14 disp("voltage gain = "+string((volgai))); // correction in the book
```

Scilab code Exa 5.20 example 20

```
1 //pagenumber 300 example 20
2 clear
3 freque=6*10^6; //hertz
4 \text{ hfe=50};
5 \text{ r1=500; } //\text{ohm}
6 g = 0.04
7 rbb=100; //ohm
9
10 c1=10*10^-12; //farad
11 r = 1000; //ohm
12 rbe=hfe/g;
13 ce=g/(2*3.14*freque);
14 c1=ce+c1*(1+g*r);
15 hie=rbb+rbe;
16 resist=(r1+rbb)*rbe/(r1+rbb+rbe);
17 frequ2=1/(2*3.14*resist*c1);
18 curgai = -hfe * r1/(r1 + hie);
19 volgai=(-hfe*r)/(r1+hie);
20 q=volgai*frequ2;
21 disp("upper frequency voltage gain = "+string(
      abs(q))+"hertz");//correction in the book
22 q=curgai*frequ2;
23 disp("upper current gain = "+string(abs(q))+"
      hertz");
```

Scilab code Exa 5.21 example 21

```
1 //pagenumber 301 example 21
2 clear
3 hie=1*10^3;//ohm
```

```
4 hre=2*10^-4;
5 hoe=25*10^-6; //ampere per volt
6 \text{ hfe} = 50;
7 colres=1*10^3;//ohm
8 curgai = -hfe/(1+hoe*colres);
9 disp("current gain = "+string((curgai)));
10 ri=hie-hfe*hre/(hoe+1/colres);
11 disp("input resistance = "+string((ri))+"ohm");
12 volgai=curgai*colres/ri;
13 disp("voltage gain = "+string((volgai)));
14 y1=hoe-((hfe*hre)/(hie+800));
15 \text{ r1=1/y1};
16 disp("output resistance = "+string((r1))+"ohm");
17 //approximate
18 disp("approximate");
19 curgai = -hfe;
20 disp("current gain = "+string((curgai)));
21 ri=hie;
22 disp ("input resistance
                                "+string((ri))+"ohm");
23 volgai=-hfe*colres/hie;
24 disp("voltage gain =
                            "+string((volgai)));
```

Scilab code Exa 5.22 example 22

```
1 //example 22
2 clear
3 rb1=7.5*10^3; //ohm
4 rb2=6.8*10^3; //ohm
5
6 rb3=3.3*10^3; //ohm
7 re=1.3*10^3; //ohm
8 colres=2.2*10^3; //ohm
9 beta1=120;
```

```
10  vcc=18; // volt
11  vb1=rb3*vcc/(rb3+rb2+rb1);
12  ie1=(vb1-0.7)/(re);
13  re1=0.026/ie1;
14  re2=0.026/ie1;
15  volgai=colres/re2;
16  disp("voltage gain = "+string((volgai)));
```

Scilab code Exa 5.23 example 23

```
1 //pagenumber 302 example 23
2 clear
3 \text{ vcc=5}; // \text{volt}
4 colres=250; //ohm
5 \text{ v1=5}; // \text{volt}
6 rb=25*10^3;//ohm
7 beta1=200;
8 vbs=0.8; //volt
9 \text{ vcon=0.3; } //\text{volt}
10 icon=(vcc-vcon)/colres;
11 ibon=icon/beta1;
12 ibs=(v1-vbs)/rb;
13 ic=(vcc-0.2)/colres;
14 beta1=ic/ibs;
15 disp("forced beta
                                "+string((beta1)));
```

Scilab code Exa 5.24 example 24

```
1 //pagenumber 303 example 24
```

```
2 clear
3 \text{ vb=0.6; } //\text{volt}
4 beta1=100;
5 ic=1*10^-3; //ampere
6 vce=2.5;//volt
7 re=300; //ohm
8 \text{ vcc=5}; // \text{volt}
9 ib=ic/beta1;
10 ie=ic+ib;
11 ve=ie*re;
12 vce=vce+ve;
13 \text{ r3=(vcc-vce)/ic};
14 vb = ve + vb;
15 r1=(vcc-vb)/(vb/(10*10^3)+(ib));
16 disp("resistance r1 = "+string((r1))+"ohm");
17 \operatorname{disp}("\operatorname{resistance} r3 = "+\operatorname{string}((r3))+"\operatorname{ohm}");
```

Scilab code Exa 5.25 example 25

```
14 disp("input impedance q2 = "+string((z1))+"ohm");
```

Scilab code Exa 5.26 example 26

```
1 //pagenumber 305 example 26
2 clear
3 beta1=99;
4 r1=1*10^3; //ohm
5 g=beta1/r1;
6 r=r1*((r1+r1)/(100))/((r1+((r1+r1)/(100))));
7 disp("make input = 0");
8 disp("ground dc");
9
10
11 disp("output resistance = "+string((r))+"ohm");
```

Scilab code Exa 5.27 example 27

```
1 //pagenumber 305 example 27
2 clear
3 ic=0.5*10^-3; //ampere
4 rb=100*10^3; //ohm
5 v1=0.026; // volt
6 r1=50; //ohm
7 colres=1*10^3; //ohm
8 g=ic/v1;
9 volgai=g*colres;
```

```
10 disp("output resistance = "+string((colres))+"
        ohm");
11 disp("input resistance very low");//not given in the
        book
12 disp("voltage gain = "+string((volgai)));
```

Scilab code Exa 5.28 example 28

```
1 //pagenumber 306 example 28
2 clear
3 \text{ re}=4*10^3; //ohm
4 \text{ r1}=4*10^3; //ohm
5 hie=1.1*10^3;//ohm
6 resist=10*10^3;//ohm
7 hfe=50;
8 rb=10*10^3; //ohm
9 r=1*10^3; //ohm
10 colres=5*10^3; //ohm
11 //(1) current gain
12 ri=rb*hie/(rb+hie);
13 curgai = (1/2.04)*((rb)/(rb+hie))*((-hfe*colres)/(
      colres+r1));
14 disp ("current gain
                             "+string((curgai)));
15 //(2) voltage gain
16 volgai=curgai*r1/r;
17 disp ("voltage gain
                             "+string((volgai)));
18 //(3) tranconductance
19 conduc=volgai/r1;
                                  "+string((conduc))+"
20 disp ("transconductance
                             =
      ampere per volt");
21 //transresistance
22 resist=resist*volgai;
23 disp ("transresistance
                            = "+string((resist))+"ohm"
```

```
);
24 disp("input resistance = "+string((ri))+"ohm");
25 r=(40*10^3*colres)/(40*10^3+colres);
26 disp("output resistance = "+string((r))+"ohm");
```

Scilab code Exa 5.29 example 29

```
1 //pagenumber 307 example 29
2 clear
3 \text{ beta1=500};
4 ib=20*10^-6; //ampere
5 \text{ re} = 100; //\text{ohm}
6 ic=beta1*ib;
7 vc=ic*0.47*10^3; //voltage drop across collector
      resistance
8 v1 = (10 - vc);
9 \text{ vb}=\text{v1}-0.6;
10 \text{ rb=vc/ib};
11 disp("base resistance = "+string((rb))+"ohm");
12 ve=re*ic;
13 disp("base resistance with re");
14 b=0.6+0.1;
15 rb = (v1 - b) / ib;
16 disp("base resistance = "+string((rb))+"ohm");
```

Scilab code Exa 5.30 example 30

```
1 //pagenumber 308 example 30
2 clear
```

```
3 beta1=100;
4 re=100;//ohm
5 vcc=10;//volt
6 colres=1.5*10^3;//ohm
7 r=100*10^3;//ohm
8 r1=10*10^3;//ohm
9 vb=vcc*r1/(r1+r);
10 ie=0.3/re;
11 ib=ie/beta1;
12 disp("collector current = "+string((ie))+"ampere");
13 disp("base current = "+string((ib))+"ampere");
14 disp("emitter current = "+string((ie))+"ampere");
15 ;
```

Chapter 6

BJT at high frequency

Scilab code Exa 6.1 example 1

```
1 //pagenumber 337 example 1
2 clear
3 colcur=10*10^-3; //ampere
4 vce=10; //volt
5 \text{ hie} = 500; //\text{ohm}
6 hoe=4*10^-5;
7 hfe=100;
8 hre=1*10^-4;
9 fqu=50*10^6; // hertz
10 q=3*10^12; // farad
11 voltag = 26*10^-3; //volt
12 g=colcur/voltag;
13 gbe=g/hfe;
14 gbc=gbe*hre;
15 \text{ rbb=hie-}260;
16 oucond=hoe-(1+hfe)*gbc;
17 cbe=g/(2*3.14*fqu);
18 rbc=1/gbc;
19 rce=1/oucond;
```

```
20 disp("transconductance g = "+string((g))+"ampere
     /volt");
21 disp("input conductance gbe = "+string((gbe))+"
     ampere/volt");
22 disp("feedback conductance gbc = "+string((gbc))
     +"ampere/volt");
23 disp("base spread resistance rbb = "+string((rbb
     ))+"ohm");
24 disp("output conductance = "+string((oucond))+"
     ampere/volt");
25 disp("transition capacitance cbe = "+string((cbe
     ))+"farad");
26 disp("rbc
               = "+string((rbc))+"ohm");//correction
      as 2.6 mega ohm
27 \text{ disp}("rce = "+string((rce))+"ohm");
```

Scilab code Exa 6.2 example 2

```
//pagenumber 337 example 2
clear
colcur=5*10^-3; //ampere
vce=10; //volt
hfe=100;
hie=600; //ohm
cugain=10;
fqu=10*10^6; // hertz

tracat=3*10^-12; // farad
voltag=26*10^-3; // volt
fbeta1=((((hfe^2)/(cugain^2))-1)/fqu^2)^(1/2);
fbeta1=1/fbeta1;
fq1=hfe*fbeta1;
cbe=colcur/(2*3.14*fq1*voltag);
```

```
16  rbe=hfe/(colcur/voltag);
17  rbb=hie-rbe;
18  disp("fbeta = "+string((fbeta1))+"hertz");
19  disp("f = "+string((fq1))+"hertz");
20  disp("cbe = "+string((cbe))+"farad");
21  disp("rbe = "+string((rbe))+"ohm");
22  disp("rbb = "+string((rbb))+"ohm");
```

Scilab code Exa 6.3 example 3

```
//pagenumber 338 example 3
clear
w=1*10^-4; //centimetre
em1cur=2*10^-3; //ampere
q=47;
voltag=26*10^-3; //volt
cde=(em1cur*w^2)/(voltag*2*q);
fq1=(em1cur)/(2*3.14*cde*voltag);
disp("cde = "+string((cde))+"farad");
disp("frequency = "+string((fq1))+"hertz");
```

Scilab code Exa 6.6 example 6

```
1 //pagenumber 339 example 6
2 clear
3 w=5*10^-4; //centimetre
4 em1cur=2*10^-3; //ampere
5 q=47;
6 voltag=26*10^-3; // volt
```

```
7 re=voltag/em1cur;
8 fq1=2*q/(w^2*2*3.14);
9 cde=(em1cur*w^2)/(voltag*2*q);
10 w=(w^2)/(2*q);
11 disp("re = "+string((re))+"ohm");
12 disp("falpha = "+string((fq1))+"hertz");
13 disp("cde = "+string((cde))+"farad");
14
15
16 disp("w = "+string((w))+"second");
```

Scilab code Exa 6.8 example 8

```
1 //pagenumber example 8
2 clear
3 w=10^-6; // centimetre
4 em1cur=4*10^-3; // ampere
5 voltag=26*10^-3; // volt
6 q=47;
7 cde=(em1cur*w^2)/(voltag*2*q);
8 fq1=(em1cur)/(2*3.14*cde*voltag);
9 disp("f = "+string((fq1))+"hertz");
10 disp("cde = "+string((cde))+"farad"); // correction in book 0.0016 pico farad
```

Chapter 7

Field Effect Transistor

Scilab code Exa 7.1 example 1

```
1 //pagenumber 370 example 1
2 clear
3 rd=12*10^3; //ohm
4 r=1*10^6; //ohm
5 resour = 470; //ohm
6 vdd=30; // volt
7 idss=3*10^-3;//ampere
8 \text{ vd=} 2.4; // \text{volt}
10 vgs = [0.24 \ 2.175 \ 1.41];
11 vgs=roots(vgs);
12 \text{ vgs} = 0.7;
13 id=idss*((1-(vgs/vd)))^2;
14 vds=vdd-id*(rd+resour);
15 g=(2*idss/vd)*(1-((vgs/vd)));
16 volgai=-g*rd;
17 disp("vgs = "+string((vgs))+"volt");
18 disp("id = "+string((id))+"ampere");
19 disp("vds = "+string((vds))+"volt");
```

```
20 disp("voltage gain = "+string((volgai)));
```

Scilab code Exa 7.2 example 2

```
//pagenumber 371 example 2
clear
idss=1*10^-3; //ampere
pinvol=1; //volt
q=10; //volt
rd=56*10^3; //ohm
vdd=24; //volt
dracur=(vdd-q)/rd;
vgs=0.5;
r1=vgs/dracur;
disp("r1 = "+string((r1))+"ohm");
```

Scilab code Exa 7.4 example 4

```
1 //pagenumber 372 example 4
2 clear
3 ids=4*10^-3; //ampere
4 vp=4; // volt
5 r=1.3*10^3 //ohm
6 r1=200*10^3; //ohm
7 vdd=60; // volt
8 drares=18*10^3; //ohm
9 soresi=4*10^3; //ohm
10 rth=(r*r1)/(r+r1);
11 vth=r1*(1-vdd)/(1500*10^3);
```

```
12 id=-2.25*10^-3;
13 vds=-vdd-(drares+soresi)*id;
14 disp("id = "+string(abs(id))+"ampere");
15 disp("vds = "+string(abs(vds))+"volt");
```

Scilab code Exa 7.5 example 5

```
//pagenumber 373 example 5
clear
idss=10*10^-3; //ampere
pinvol=-1; //volt
ids=6.4*10^-3; //ampere
vgs=-(sqrt(ids/idss)-(1))*pinvol;
r=pinvol/ids;

disp("source resistance = "+string(abs(r))+"ohm");
```

Scilab code Exa 7.6 6

```
1 //pagenumber 374 example 6
2 clear
3 v1=2; // volt
4 vgs=4; // volt
5 voltag=5; // volt
6 q=5*10^-3; // ampere per volt square
7 id=q*(vgs-v1);
8 durati=10^-7*log(4);
```

```
9
10 disp("duration = "+string((durati))+"second");
```

Scilab code Exa 7.7 example 7

```
1 //pagenumber 7 example 7
2 clear
3 idss=1*10^-3; //ampere
4 pinvol=-5; //volt
5 tracon=(2*idss)/abs(pinvol);
6 disp("max transconductance = "+string((tracon))+"mho");
```

Scilab code Exa 7.8 example 8

```
1 //pagenumber 376 example 8
2 clear
3 vdd=10; // volt
4 beta1=10^-4; // ampere per square volt
5 ids=0.5*10^-3; // ampere
6 voltag=1; // volt
7 vgs=(sqrt(ids/beta1)+(1));
8 rd=(vdd-vgs)/ids;
9
10 disp("vgs = "+string((vgs))+"volt");
11 disp("rd = "+string((rd))+"ohm");
```

Scilab code Exa 7.9 example 9

```
1 //pagenumber 376 example 9
2 clear
3 v1=2; //volt
4 ids=4*10^-3; //ampere
6 rd = 910; //ohm
7 r1=3*10^3;//ohm
8 r = 12*01^6; //ohm
9 r11=8.57*10<sup>6</sup>;//ohm
10 vdd=24; //volt
11 vg=vdd*(r11/(r+(r11)));
12 id=3.39*10^-3;
13 vgsq=vg-id*r1;
14 vdsq=vdd-id*(rd+r1);
15 vdgq=vdsq-vgsq;
16 disp("point "+string(vdsq)+">"+string(v1)+" volt");
17 disp("vds greater than 2 volt the point in pinch");
```

Chapter 8

FET Amplifier

Scilab code Exa 8.1 example 1

```
1 //pagenumber 399 example 1
2 clear
3 freque=5*10^3; //hertz
4 //(1)
5 \text{ g=2*10^-3;//ampere per volt}
6 rd=10*10^3; //ohm
7 r1=30*10^3; //ohm
8 r12=r1*r1/(r1+r1);
9 volgai = -(g*r12*rd)/(r12+rd);
10 disp("voltage gain = "+string((volgai)));//
      correction r12 should be taken as 15*10^3ohm in
11 //(2) capacitance included
12 c=0.025*10^-6; //farad
13 frequ1=1/((2*3.14*(((rd*r1)/(rd+r1))+r1))*c);
14 volgai=(volgai/(sqrt((1+(frequ1/freque)^2))));
15
16 disp("voltage gain
                             "+string((volgai)));
```

Scilab code Exa 8.2 example 2

```
1 //pagenumber 400 example 2
2 clear
3 rd=80*10^3; //ohm
4 r1=8*10^3; //ohm
5 rd12=5*10^3; //ohm
6 rd1=rd*r1/(rd+r1);
7 u=30;
8 volgai=-(u*rd1)/(rd1+rd12);
9
10 disp("voltage gain "+string((volgai)));
```

Scilab code Exa 8.3 example 3

```
1 //pagenumber 401 example 3
2 clear
3 r1=60*10^3; //ohm
4 volgai=-17.7;
5 rg=80*10^3; //ohm
6 volgai=((volgai*rg)/(1-volgai))/((rg/(1-volgai))+r1);
7 disp("voltage gain = "+string((volgai)));
```

Scilab code Exa 8.6 example 6

```
1 //pagenumber 405 example 6
2 clear
3 \text{ vds}=14; // \text{volt}
4 idq=3*10^-3;//ampere
5 vdd=20; // volt
6 g=2*10^-2;
7 rd=50*10^3; //ohm
8 \text{ vgs} = -1.5; // \text{volt}
9 \text{ w=(vdd-vds)/idq;}
10 \text{ r1=-vgs/idq};
11 r2=w-r1;
12 inpres=1/(1-(0.8*((r1)/(r1+r2))));
13 volgai = (r1+r2)/(r1+r2+(1/(g)));
14 \quad disp("r1 = "+string((r1))+"ohm");
15 disp("effective input resistance = "+string((
      inpres))+"r3ohm");
             = "+string((r2))+"ohm");
16 disp("r2
17
18
19 disp("voltage gain = "+string((volgai))+"av'");
```

Scilab code Exa 8.7 example 7

```
1 //pagenumber 405 example 7
2 clear
3 rg=40*10^3; //ohm
4 voltag=(1-6*50)*3.3*10^3/(5.3*10^3);
5
6 disp("output voltage = "+string((voltag))+" volt" ); // correction in the book
```

Scilab code Exa 8.9 example 9

```
1 //pagenumber 406 example 9
2 clear
3 u=50;
4 rd=10*10^3; //ohm
5 \text{ cgs} = 5*10^-12; //farad
6 cgd=2*10^-12; //farad
7 cds = 2*10^-12; //farad
8 freque=3; //decibel
9 \text{ g=u/rd};
10 volgai=-u*rd/(rd+rd);
11 req=rd*rd/(rd+rd);
12 frequ1=1/(2*3.14*cgd*req);
13 disp("voltage gain = "+string((volgai)));//
      correction in book
14 disp("frequency = "+string((frequ1))+"hertz");
15 capac1=cgd*(1+g);
16 disp("output capacitance = "+string((capac1))+"
     farad");
17
18
19
20 disp("req = "+string((req))+"ohm");
```

Chapter 9

Multistage Amplifier

Scilab code Exa 9.1 example 1

```
1 //pagenumber 424 example 1
2 clear
3/(1) frequency
4 freque=100*10^3*sqrt(2^(1/3)-(1));
5 frequ2=100*10^3/\sqrt{(2^{(1/3)}-(1))};
6 disp("frequency1 = "+string((freque))+"hertz");
7 disp("frequency2 = "+string((frequ2))+"hertz");
8/(2) frequency
9 freq11=100*10^6; //hertz
10 freq12=150*10^6; //hertz
11 freq13=200*10^6; //hertz
12 freq21=100*10^3; // hertz
13 freq22=150*10^3; // hertz
14 freq23=200*10^3; // hertz
15 frequ1=sqrt(freq11^2+freq12^2+freq13^2);
16 disp("frequency = "+string((frequ1))+"hertz");//
     correction in the book 269.25 mega hertz
17 frequ1=1/sqrt((1/(freq21^2))+(1/(freq22^2))+(1/(
     freq23^2)));
```

Scilab code Exa 9.2 example 2

```
1 //pagenumber 424 example 2
2 clear
3 freque=60; // hertz
4 frequ1=freque*0.484;
5 cb=1/(frequ1*2*3.14*10^3);
6 disp("coupling capacitance = "+string((cb))+"/r'
");
```

Scilab code Exa 9.3 example

```
//pagenumber 425 example 3
clear
g=10*10^-3; //ampere per volt
rd=5.5*10^3; //ohm
rg=1*10^6; //ohm
//(1) cb frequency 1 decibel to 10 hertz
ri=rg;
r1=(rd*8*10^3) / (rd+8*10^3);
cb=10^-6/(3.14*5.07);
disp("cb = "+string((cb))+"farad");
//(2) cb
cb=(cb*(5)/(3.52));
```

Scilab code Exa 9.4 example 4

```
//pagenumber 427 example 4
clear
freque=40*10^3; // hertz
frequ1=freque/0.507;
disp("upper frequency = "+string((frequ1))+" hertz");
frequ1=freque/1.96;
disp("lower frequency = "+string((frequ1))+" hertz");
```

Scilab code Exa 9.5 example 5

```
1 //pagenumber 427 example 5
2 clear
3 g=2.6*10^-3; //ampere per volt
4 rd=7.7*10^3; //ohm
5 rd1=12*10^3; //ohm
6 cb=0.005*10^-6; //farad
7 //(1) voltage gain
8 volgai=g*((1/rd)+1/rd1+1/(1*10^3));
9 volgai=(20*(log10(10.8)))*3;
```

Scilab code Exa 9.6 example 6

```
1 //pagenumber 429 example 6
2 clear
3 \text{ hfe} = 50;
4 hie=1.1*10^3;//ohm
5 //(1) gain
6 r1=2*10^3; //ohm
7 volgai=-hfe*r1/(hie);
8 \text{ r11=25*10^3*hie/(25*10^3+hie)};
9 r11=r1*r11/(r1+r11);
10 volga1=-hfe*r11/hie;
11 volgai=volgai*volga1;
12 disp("voltage gain = "+string((volgai)));
13 freque=20; // hertz
14 ri=25*10^3*hie/(25*10^3+hie);
15 cb=1/(2*3.14*(ri+r1)*(freque));
16 \quad disp("cb = "+string((cb)) + "farad");
17 cb=1/(2*3.14*3.05*10^3*10/3.14);
18 disp("cb <= "+string((cb))+"farad");
```

Scilab code Exa 9.8 example 8

```
1 //pagenumber 432 example 8
2 clear
3 theta1=atand(0.1);
4 disp("theta1 = "+string((theta1)));
5 disp("phase constant 10f1<=f<=0.1f11");</pre>
```

Chapter 10

Negative Feedback Amplifiers

Scilab code Exa 10.1 example 1

```
//pagenumber 467 example 1
clear
av=1000;
change in voltage gain
beta1=1/((chvoga)/(100/av))-1;
beta1=beta1/av;
fegain=(av)/(1+(av*(beta1)));
disp("reverse transmission = "+string((beta1)));
disp("gain with feedback = "+string((fegain)));
```

Scilab code Exa 10.2 example 2

```
1 //pagenumber 467 example 2 2 clear
```

```
voltag=36; // volt
v=0.07; // harmonic distortion
inpvol=0.028; // volt
beta1=0.012;
a=voltag/inpvol;
fegain=a/(1+beta1*a); // correction in book
volta1=fegain*inpvol;
disp("output voltage = "+string((volta1)));
// decrease of gain 9
inpvol=9*inpvol;
disp("input voltage = "+string((inpvol))+" volt")
;
```

Scilab code Exa 10.3 example 3

```
//pagenumber 468 example 3
clear
volgain=2000;//voltage gain
outpower=20;//watts
inpsig=10*10^-3;//volts
fedbac=40;//decibel
fedgai=volgain/100;
outvol=volgain*inpsig;//output voltage
inpvol=outvol/fedgai;//required input
//10 second harmonic distortion
distor=(10/100);
disp("required input = "+string((inpvol))+" volt");
);
```

```
15
16 disp("harmonic distortion = "+string((distor)));
```

Scilab code Exa 10.5 example 5

```
//pagenumber 469 example 5
clear
fedgai=60;//decibel
outimp=10*10^3;//ohm
outim1=500;//ohm modified impedance
fedgai=1000;
fedbac=((outimp/outim1)-(1))/fedgai;
//10 change in gain
overga=1/((1+(fedgai*fedbac))/0.1);//over gain
disp("feedback factor = "+string((fedbac)));
disp("over gain = "+string((overga)));
```

Scilab code Exa 10.6 example 6

```
1 //pagenumber 470 example 6
2 clear
3 colres=4*10^3; //ohm
4 r=4*10^3; //ohm
5 basres=20*10^3; //ohm
6 r1=1*10^3; //ohm
7 hie=1.1*10^3;
8 hfe=50;
9 hoe=(40*10^3);
10 ri=basres*hie/(basres+hie);
```

```
11 curgai = ((r1/(r1+ri)))*((basres/(basres+hie)))*((-hfe
     *colres)/(colres+r));
12 volgai=curgai*r/r1;
13 tranco=volgai/r;
14 tranre=r1*volgai;
15 outres=hoe*colres/(hoe+colres);
16 disp ("current gain
                            "+string((curgai)));
                      =
17 disp("voltage gain
                            "+string((volgai)));
18 disp ("transconductance
                            = "+string((tranco))+"
     ampere per volt");
                               "+string((tranre))+"ohm"
19 disp ("transresistance
     );
20 disp("input resistance = "+string((ri))+"ohm");
21 disp ("output resistance
                            = "+string((outres))+"
     ohm");
```

Chapter 11

Sinusoidal Oscillators

Scilab code Exa 11.2 example 2

```
1 //pagenumber 514 example 2
2 clear
3 \text{ macapa} = 900 * 10^- - 12; // farad
4 micapa=90*10^-12; // farad
5 r=100*10^3; //ohm
6 //(a) frequency range
7 fremin=1/(2*3.14*r*macapa);
8 disp("min frequency = "+string((fremin))+"hertz"
     );
9 fremax=1/(2*3.14*r*micapa);
10 disp("max frequency = "+string((fremax))+"hertz"
     );
11 //(b) r3
12 r=10*10^3; //ohm
13 r3 = 2 * r;
14 disp("resistance r3 = "+string((r3))+"ohm");
```

Scilab code Exa 11.3 example 3

```
//pagenumber 516 example 3
clear
cl=0.004*10^-6; //farad
c2=0.03*10^-6; //farad
induct=4*10^-3; //henry
//min voltage
mivolt=c2/c1;
disp("min voltage >= "+string((mivolt))+"volt");
//frequency
freque=(((1/(2*3.14)))*sqrt((c1+c2)/(induct*c1*c2)))
;
disp("frequency = "+string((freque))+"hertz");
```

Scilab code Exa 11.5 example 5

```
1 //pagenumber 517 example 5
2 clear
3 induct=500*10^-6; //henry
4 induc1=5000*10^-6; //henry
5 mutuin=300*10^-6; //henry
6 c1=150*10^-12; //farad
7 //(a) frequency
8 indcto=induct+induc1+2*mutuin;
9 freque=1/((2)*3.14*sqrt(indcto*c1));
10 //(b) condition
11 r=10*10^3; //ohm
```

```
12 conduc=8*10^-3; //ampere per volt
13 r1=50*10^3; //ohm
14 r'=r*r1/(r+r1);
15 volgai=conduc*r';
16 disp("frequency = "+string((freque))+"hertz");
17 ratio1=(induc1+mutuin)/(induct+mutuin);
18 ratio1=ratio1*volgai;
19 disp("ratio1 greater than 1 so oscillations possible ");
```

Scilab code Exa 11.6 example 6

```
1 //pagenumber 518 example 6
2 clear
3 \text{ cgs} = 5*10^-12; //farad
4 cds=1*10^-12; // farad
5 conduct=10*10^-3; //ampere per volt
6 rd=50*10^3; //ohm
7 r=10*10^6; //ohm
8 \text{ induct=0.5;} // \text{henry}
9 c1=0.05*10^-12; //farad
10 rse=1*10^3; //ohm
11 c=1*10^-12; //farad
12 //(1) c11
13 c11 = ((((cds*cgs)/(cds+cgs))+1)*c1)/(((cds*cgs)/(cds+cgs))
      cgs))+1+c1);
14 disp("resonanting capacitance = "+string((c11))+
     "farad");
15 //(2) frequency
16 freque=((sqrt(2))/(2*3.14*sqrt(induct*c11)));
17 disp("resonant frequency = "+string((freque))+"
      hertz");
18 //(3) frequency parallel
```

```
19
20 freque=1/(2*3.14*sqrt(((induct*c*c1))/(c+c1)));
21 disp("parallel resonant frequency = "+string((
     freque))+"hertz");
22 //frequency series
23 freque=1/((2*3.14*sqrt(induct*c1)));
24 disp("series resonant frequency = "+string((
     freque))+"hertz");
25 qualit=((induct/c1)^(0.5))/rse;
26 disp("quality factor = "+string((qualit)));//
     correction in book
27 //(4) loop gain
28 abeta1=conduct*rd*cds/cgs;
29 disp("loop gain = "+string((abeta1)));
30 / (5)
31 \text{ w=r*(cds+cgs)};
32 \text{ disp}("bias = "+string((w))+"second");
```

Scilab code Exa 11.7 example 7

```
1 //pagenumber 519 example 7
2 clear
3 c=200*10^-12; //farad
4 c1=1000*10^-12; //farad
5 induct=100*10^-6; //henry
6 //(1) frequency
7 ceq=(c*c1)/(c+c1);
8 freque=1/(2*3.14*(sqrt(induct*ceq)));
9 disp("frequency = "+string((freque))+"hertz"); //correction in the book
10 gaimin=c1/c;
11 disp("gain = "+string((gaimin)));
```

Scilab code Exa 11.8 example 8

```
//pagenumber 520 example 8
clear
induc1=0.4*10^-3; //henry
c=0.004*10^-6; //farad
freque=120*10^3; //hertz
induct=((1/(4*3.14^2*freque^2*c)))-induc1;
disp("inductance = "+string((induct))+"henry");
```

Scilab code Exa 11.9 example 9

```
1 //pagenumber 520 example 9
2 clear
3 \text{ induct=0.33; //henry}
4 c=0.065*10^-12; //farad
5 c1=1*10^-12; //farad
6 r=5.5*10^3; //ohm
7 //(1) series resonant frequency
8 freque=(1/(2*(3.14)))*sqrt(1/((induct)*c));
9 disp("frequency = "+string((freque))+"hertz");
10 //(2) exceed of frequency
11 ratio1=sqrt((1+(c/c1)))
12 disp("ratio parallel series
                                      "+string((ratio1))
     );//correction in the book
13 //(3) quality factor
14 qualit=(1/r)*sqrt(induct/c);
15
```

```
16 disp("quality factor = "+string((qualit)));
```

Chapter 12

Power Electronic Devices

Scilab code Exa 12.1 example 1

```
1 //pagenumber 553 example 1
2 clear
3 slope1=130;
4 trivol=15; // volt
5 d=0.5; // watts
6 ig=sqrt(d/slope1);
7 vg=slope1*ig;
8 r=(trivol-vg)/ig;
9
10 disp("source resistance = "+string((r))+"ohm");
```

Scilab code Exa 12.2 example 2

```
1 //pagenumber 553 example 2 2 clear
```

```
3 latcur=50*10^-3; //ampere
4 durpul=50*10^-6; //second
5 induct=0.5; //henry
6 r=20; //ohm
7 voltag=100; // volt
8 w=induct/r;
9 inpcur=-(voltag/r)*((1)-exp(-durpul/w));
10 disp("current = "+string(abs(inpcur))+"ampere");
11 disp("input current less than required current");
```

Scilab code Exa 12.3 example 3

```
//pagenumber 554 example 3
clear
latcur=4*10^-3;//ampere
induct=0.1;//henry
voltag=100;//volt
durmin=induct*latcur/voltag;
disp("min duration = "+string((durmin))+"second");
```

Scilab code Exa 12.4 example 4

```
1 //pagenumber 554 example 4
2 clear
3 slope1=3*10^3;
4 egs=10;//volt
5 d=0.012;//watts
6 ig=sqrt(d/slope1);
```

Scilab code Exa 12.5 example 5

```
1 //pagenumber 554 example 5
2 clear
3 slope1=16;
4 durmax=4*10^-6; // second
5 curmin=500*10^-3;//ampere
6 voltag=15;//volt
7 //(1) resistance
8 vg=slope1*curmin
9 r=(voltag-vg)/curmin;
10 //(2)
11 d=vg*curmin;
12 freque=0.3/(d*durmax);
13 disp("resistance = "+string((r))+"ohm");
14
15
16 disp("frequency = "+string((freque))+"hertz");
```

Scilab code Exa 12.6 example 6

```
1 //pagenumber 555 example 6
2 clear
```

Scilab code Exa 12.7 example 7

```
1 //pagenumber 555 example 7
2 clear
3 ratcur=3000; //ampere
4 freque=50; //hertz
5 i=sqrt(ratcur^2/2);
6 disp("current = "+string((i))+"ampere");
7 i=((ratcur)/sqrt(2))^2/(2*freque);
8 disp("current = "+string((i))+"ampere square second");
```

Scilab code Exa 12.9 example 9

```
1 //pagenumber 556 example 9
2 clear
3 voltag=30; // volt
4 w=0.51;
5 i1=10*10^-6; //ampere
6 v1=3.5; // volt
7 curen1=10*10^-3; //ampere
8 freque=60; // hertz
9 tridun=50*10^-6; // second
```

```
10 pinvol=w*voltag+0.6;
11 r=(voltag-pinvol)/i1;
12 disp("max limit resistance = "+string((r))+"ohm");
13 r=(voltag-v1)/(curen1);
14 disp("min limit resistance = "+string((r))+"ohm");
15 capac1=0.5*10^-6;//farad
16 r=(1/freque)*(1/(capac1*log(1/(1-w))));
17 disp("resistance = "+string((r))+"ohm");
18 rb2=10^4/(w*voltag);
19 rb1=tridun/capac1;
20 disp("rb1 = "+string((rb1))+"ohm");
21 disp("rb2 = "+string((rb2))+"ohm");
22 disp("peak voltage = "+string((pinvol))+"volt");
```

Scilab code Exa 12.10 example 10

```
//pagenumber 557 example 10
clear
re=1*10^3;//ohm
i1=5*10^-3;//ampere

voltag=re*i1+2;
disp("voltage = "+string((voltag))+"volt");

disp("this voltage makes to off");
```

Chapter 13

Cathode Ray Oscilloscope

Scilab code Exa 13.1 example 1

```
//pagenumber 578 example 1
clear
quanti=3*10^17;
voltag=10*10^3; // volt
distan=40*10^-3; // metre per minute
w=quanti*1.6*10^-19*voltag
w=w/60; // per second

disp("power to electrons = "+string((w))+" watts");
```

Scilab code Exa 13.2 example 2

```
1 //pagenumber 578 example 2
2 clear
3 sensit=5;// per centimetre
4 q=50*10^-6; //second per centimetre
5 petope=5.4; //centimetre
6 horiax=8.4;//centimetre
7 voltag=petope*sensit;
8 voltag=voltag/((2)*sqrt(2));
9 //one cycle
10 horiax=(horiax/2)*q;
11 freque=1/horiax;
12 disp("input voltage = "+string((voltag))+"volt")
13 disp("frequency = "+string((freque))+"hertz");
14
15
16 disp("vm1coswt vm2sinwt squaring and adding gives
     ellipse");
```

Scilab code Exa 13.3 example 3

```
1 //pagenumber 579 example 3
2 clear
3 voltag=1000; // volt
4 //(1) velocity
5 vx=sqrt(2*1.6*10^-19*(voltag)/(9.11*10^-31));
6 disp("velocity x = "+string((vx))+"metre per second");
7 vox=1*10^5; // metre per second intial velocity
8 vx=sqrt((vox)+((2*1.6*10^-19*voltag) /(2.01*1.66*10^-27)));
9
10 disp("velocity x = "+string((vx))+"metre per
```

Scilab code Exa 13.4 example 4

```
//pagenumber 580 example 4
clear
voltag=2000;//volt
d=15;//centimetre
f=1=((d^2+d1^2)/(6))*10^-2;//centimetre to metre
vox=sqrt(2*1.6*10^-19*(voltag)/(9.11*10^-31));
b=vox/((1.6*10^-19*r1)/(9.11*10^-31));

disp("transverse magnetic field = "+string((b))+"weber per metre square");
```

Scilab code Exa 13.5 example 5

```
1 //pagenumber 581 example 5
2 clear
3 voltag=2000; // volt
4 d=2*10^-2; // metre
5 //(1) frequency
6 vx=sqrt(2*1.6*10^-19*(voltag)/(9.11*10^-31));
7 durati=d/vx;
8 freque=1/(2*durati);
9 disp("max frequency "+string((freque))+"hertz");
10 //(2)
11 durati=60*durati;
```

```
12 disp("duration electron between the plates = "+
string((durati))+"second");//correction in book
```

Scilab code Exa 13.7 example 7

```
1 //pagenumber 582 example 7
2 clear
3 voltag=800; // volt
4
5
6 q=1.6*10^-19; // coulomb
7 m=9.11*10^-31; // kilogram
8 vox=sqrt(2*q*voltag/m);
9
10 disp("max velocity "+string((vox))+" metre per second");
```

Scilab code Exa 13.8 example 8

```
1 //pagenumber 582 example 8
2 clear
3 voltag=2000; // volt
4 d=1.5*10^-2; // centimetre
5 d1=5*10^-3; // metre
6 distan=50*10^-2; // metre
7 //(1) velocity
8 vox=sqrt(2*1.6*10^-19*(voltag)/(9.11*10^-31));
9 //(2) sensitivity
10 defsen=distan*d/(2*d1*voltag);
```

```
//deflection factor
g=1/defsen;
disp("velocity = "+string((vox))+"metre per second");
disp("sensitivity = "+string((defsen))+"metre per volt");
disp("deflection factor = "+string((g))+"volt per metre");//correction in the book
```

Scilab code Exa 13.9 example 9

```
1 //pagenumber 582 example 9
2 clear
3 voltag=2000; // volt
4 d=50*10^-3; // metre
5 //(1) velocity
6 vox=sqrt(2*1.6*10^-19*(voltag)/(9.11*10^-31));
7 disp("velocity = "+string((vox))+" metre per second");
8 //(2) fc
9 fc=vox/(4*d);
10
11 disp("fc = "+string((fc))+" hertz");
```

Scilab code Exa 13.10 example 10

```
1 //pagenumber 582 example 10
2 clear
```

```
3 y=2.5; // divisions
4 y1=1.25; // divisions
5 y=y1/y;
6 w=asind(y);
7 disp("phase angle = "+string((w))+"degre");
```