## CLAIMS 1, 2, 4 AND 6 WITH WITH AMENDMENTS SHOWN

1. A method of treating a mammal having precancerous lesions comprising administering a pharmacologically effective amount of a compound of the following formula [I] or pharmaceutically acceptable salt thereof:[general formula,]

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

wherein R<sub>1</sub> is a hydrogen atom or a halogen atom; R<sub>2</sub> is a phenyl-lower alkyl group; R<sub>3</sub> is a heterocyclic group selected from the group consisting of an indolyl group, indolinyl group, 1H-indazolyl group, 2(1H)-quinolinonyl group, 3,4-dihydro-2(lH)-quinolinonyl group and 3.4-dihydro- 1.4(2H)-benzoxazinyl group, said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a group of the formula -B-R<sup>4</sup>, ([.a] wherein B is a lower alkylene group; R<sup>4</sup> is a 5-to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group) or a group of the formula -NR<sup>5</sup>R<sup>6</sup> (wherein R<sup>5</sup> and R<sup>6</sup> are each the same or different, and a hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridylcarbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group or an amino-substituted lower alkyl group which may have a lower alkyl group as the substituent; further R<sup>5</sup> and R<sup>6</sup> may form 5- to 6-membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)[)]; a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group;

A is a lower alkylene group; and n is 0 or 1.

The method according to Claim 1, wherein R<sup>3</sup> is an indolyl group, said indolyl 2. group may have 1 to 3 substituents selected from the group consisting of: a group of the formula -B-R<sup>4</sup>, (wherein B is a lower alkylene group; R<sup>4</sup> is a 5- to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group) or a group of the formula -NR<sup>5</sup>R<sup>6</sup> (wherein R<sup>5</sup> and R<sup>6</sup> are each the same or different, and a hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridylcarbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group or an amino-substituted lower alkyl group which may have a lower alkyl group as the substituent; further R<sup>5</sup> and R<sup>6</sup> may form 5- to 6membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group.

may have 1 to 3 substituents selected from the group consisting of: a group of the formula -B-R<sup>1</sup>. (wherein B is a lower alkylene group; R<sup>4</sup> is a 5- to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group) or a group of the formula -NR<sup>5</sup>R<sup>6</sup> (wherein R<sup>5</sup> and R<sup>6</sup> are each the same or different, and a hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridylcarbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group or an amino-substituted lower alkyl group which

4. The method according to Claim 3, wherein R<sup>3</sup> is an indolyl group, said indolyl group

Pondid

B

may have a lower alkyl group as the substituent; further R<sup>5</sup> and R<sup>6</sup> may form 5- to 6membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group.

The method according to Claim 5, wherein R<sup>3</sup> is an indolyl group, said indolyl 6. group may have 1 to 3 substituents selected from the group consisting of: a group of the formula -B-R<sup>4</sup>, (wherein B is a lower alkylene group; R<sup>4</sup> is a 5- to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group) or a group of the formula -NR<sup>5</sup>R<sup>6</sup> (wherein R<sup>5</sup> and R<sup>6</sup> are each the same or different, and a hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridylcarbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group or an amino-substituted lower alkyl group which may have a lower alkyl group as the substituent; further R<sup>5</sup> and R<sup>6</sup> may form 5- to 6membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group.

## CLAIMS 1, 2, 4 AND 6 WITH WITH AMENDMENTS NOT SHOWN

1. A method of treating a mammal having precancerous lesions comprising administering a pharmacologically effective amount of a compound of the following formula [I] or pharmaceutically acceptable salt thereof:[general formula,]

wherein  $R_1$  is a hydrogen atom or a halogen atom;  $R_2$  is a phenyl-lower alkyl group; R<sub>3</sub> is a heterocyclic group selected from the group consisting of an indolyl group, indolinyl group, 1H-indazolyl group, 2(1H)-quinolinonyl group, 3,4-dihydro-2(lH)-quinolinonyl group and 3.4-dihydro- 1,4(2H)-benzoxazinyl group, said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a group of the formula -B-R<sup>4</sup>, (wherein B is a lower alkylene group: R<sup>4</sup> is a 5-to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group) or a group of the formula -NR<sup>5</sup>R<sup>6</sup> (wherein R<sup>5</sup> and R<sup>6</sup> are each the same or different, and a hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridylcarbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group or an amino-substituted lower alkyl group which may have a lower alkyl group as the substituent; further R<sup>5</sup> and R<sup>6</sup> may form 5- to 6-membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)[)]; a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group;

A is a lower alkylene group; and n is 0 or 1.

- The method according to Claim 1, wherein R<sup>3</sup> is an indolvl group, said indolvl 2. group may have 1 to 3 substituents selected from the group consisting of: a group of the formula -B-R<sup>4</sup>, (wherein B is a lower alkylene group; R<sup>4</sup> is a 5- to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group) or a group of the formula -NR<sup>5</sup>R<sup>6</sup> (wherein R<sup>5</sup> and R<sup>6</sup> are each the same or different, and a hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridylcarbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group or an amino-substituted lower alkyl group which may have a lower alkyl group as the substituent; further R<sup>5</sup> and R<sup>6</sup> may form 5- to 6membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group.
- 4. The method according to Claim 3, wherein R³ is an indolyl group, said indolyl group may have 1 to 3 substituents selected from the group consisting of: a group of the formula -B-R¹, (wherein B is a lower alkylene group; R⁴ is a 5- to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group) or a group of the formula -NR⁵R⁶ (wherein R⁵ and R⁶ are each the same or different, and a hydrogen atom, a lower alkyl group. a cycloalkyl group, a pyridylcarbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group or an amino-substituted lower alkyl group which

may have a lower alkyl group as the substituent; further R<sup>5</sup> and R<sup>6</sup> may form 5- to 6membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group.

The method according to Claim 5, wherein R<sup>3</sup> is an indolyl group, said indolyl 6. group may have 1 to 3 substituents selected from the group consisting of: a group of the formula -B-R<sup>4</sup>, (wherein B is a lower alkylene group; R<sup>4</sup> is a 5- to 11-membered saturated or unsaturated heterocyclic group of single ring or binary ring, having 1 to 4 hetero atoms selected from the group consisting of a nitrogen atom, oxygen atom and sulfur atom, (said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a halogen atom, a lower alkyl group, a lower alkoxy group and oxo group) or a group of the formula -NR<sup>5</sup>R<sup>6</sup> (wherein R<sup>5</sup> and R<sup>6</sup> are each the same or different, and a hydrogen atom, a lower alkyl group, a cycloalkyl group, a pyridylcarbonyl group, an isoxazolylcarbonyl group which may have 1 to 3 lower alkyl groups as the substituents, a pyrrolylcarbonyl group or an amino-substituted lower alkyl group which may have a lower alkyl group as the substituent; further R<sup>5</sup> and R<sup>6</sup> may form 5- to 6membered saturated heterocyclic group by combining to each other, together with the adjacent nitrogen atom being bonded thereto, further with or without other nitrogen atom or oxygen atom; said heterocyclic group may have 1 to 3 substituents selected from the group consisting of a hydroxy group and a phenyl group)); a lower alkenyl group; a lower alkoxycarbonyl group; a phenoxy-lower alkyl group which may have cyano group as the substituents; a halogen-substituted lower alkyl group; and a lower alkoxycarbonyl-substituted lower alkyl group.