Arithmétique dans \mathbb{Z}

QCOP ARI. 1

 \blacksquare Soient $n, k \in \mathbb{N}^*$. Compléter :

$$\cdots \binom{n}{k} = \cdots \binom{n-1}{k-1}.$$

Soient $a, b, c \in \mathbb{Z}$. Montrer que

$$\left. egin{array}{ll} a \mid bc \ a \wedge b = 1 \end{array}
ight\} \;\;\; \Longrightarrow \;\;\; a \mid c \; .$$

Soit p un nombre premier. En déduire que

$$\forall k \in \llbracket 1, p-1
rbracket, \ p \, \Big| \, inom{p}{k} \ .$$

QCOP ARI.2

Soit p un nombre premier. Soient $a, b \in \mathbb{Z}$.

- \blacksquare Rappeler l'expression de $(a+b)^p$.
- Montrer que

$$orall k \in \llbracket 1,
ho - 1
rbracket, \hspace{0.1cm}
ho \, \Big| \, egin{pmatrix}
ho \ k \end{pmatrix} \, .$$

% Montrer que

$$(a+b)^p \equiv a^p + b^p \ [p].$$

QCOP ARI.3

- Énoncer le lemme de Gauss.
- Soit p un nombre premier. Montrer que

$$orall k \in \llbracket 1, p-1
rbracket, \hspace{0.5em} p \, \Big| \, egin{pmatrix} p \ k \end{pmatrix}$$
 .

(a) Montrer, par récurrence, que

$$\forall a \in \mathbb{N}, \ a^p \equiv a \ [p].$$

(b) Soit $a \in \mathbb{N}$ tel que a n'est pas multiple de p. Montrer que

$$a^{p-1} \equiv 1 \ [p]$$
.

QCOP ARI.4

- \blacksquare Énoncer le théorème de Bézout dans \mathbb{Z} .
- Soient $a, b, c \in \mathbb{Z}$. Montrer que

$$a \wedge c = 1$$

 $b \wedge c = 1$ \Longrightarrow $(ab) \wedge c = 1.$

Soient $a, b \in \mathbb{Z}$ tels que $a \wedge b = 1$. Montrer que

$$\begin{cases} \forall k \in \mathbb{N}, & a^k \wedge b = 1 \\ \forall k, \ell \in \mathbb{N}, & a^k \wedge b^\ell = 1. \end{cases}$$