1 Noam Chomsky

- born 1928 -
- a linguist
- studied grammars
- among others: context free grammars
- studied languages as purely syntactical objects: sets of strings derived by a grammar.
- at the time this was a sensational abstraction

2 Grammars

like context free grammars but:

def: grammar

$$G = (N, T, P, S)$$

- N finite set, alphabet of non terminals
- T finite set with $N \cap T = \emptyset$. Alphabet of terminals.
- more general

$$P \subset (N \cup T)^+ \times (N \cup T)^*$$

finite set of productions. We write

$$u \rightarrow_G v$$
 instead of $(u, v) \in P$

For $u \to v_1, \dots, u \to v_s$ we write

$$u \rightarrow v_1 | \dots | v_s$$

• $S \in N$ start symbol

to put it mildly, as we shall see..

2 Grammars

like context free grammars but:

def: grammar

$$G = (N, T, P, S)$$

- N finite set, alphabet of non terminals
- T finite set with $N \cap T = \emptyset$. Alphabet of terminals.

•

$$P \subset (N \cup T)^+ \times (N \cup T)^*$$

finite set of productions. We write

$$u \rightarrow_G v$$
 instead of $(u, v) \in P$

For $u \to v_1, \dots, u \to v_s$ we write

$$u \rightarrow v_1 | \dots | v_s$$

• $S \in N$ start symbol

def: extend productions to strings For $a,b \in (N \cup T)^*$ we define a directly derives b in grammar G

$$a \rightarrow_{G} b$$

if we can decompose

$$a = xuy$$
 , $b = xvy$

and

$$u \rightarrow_G v$$

like context free grammars but:

def: grammar

$$G = (N, T, P, S)$$

- N finite set, alphabet of non terminals
- T finite set with $N \cap T = \emptyset$. Alphabet of terminals.

•

$$P \subset (N \cup T)^+ \times (N \cup T)^*$$

finite set of productions. We write

$$u \rightarrow_G v$$
 instead of $(u, v) \in P$

For $u \to v_1, \dots, u \to v_s$ we write

$$u \rightarrow v_1 | \dots | v_s$$

• $S \in N$ start symbol

def: extend productions to strings For $a,b \in (N \cup T)^*$ we define a directly derives b in grammar G

$$a \rightarrow_G b$$

if we can decompose

$$a = xuy$$
 , $b = xvy$

and

$$u \rightarrow_G v$$

def: derivation A sequence of words $(w_1, ..., w_n)$ with $w_i \in (N \cup T)^*$ is a derivation from w_1 to w_n in G if for all i < n:

$$w_i \rightarrow_G w_{i+1}$$

We write

$$w_1 \rightarrow_G^* w_n$$

def: language generated by *G*:

$$L(G) = \{ w \in T^* : S \to_G^* w \}$$

as for cfg's

example (a known context free grammar G)

$$N = \{S\}$$

 $T = \{a,b\}$
 $S = S$
 $S \rightarrow ab|aSb$

$$S \to aSb \to aaSbb \to aaaSbbb$$

 $L(G) = \{a^nb^n : n \in \mathbb{N}\}$

def: extend productions to strings For $a,b \in (N \cup T)^*$ we define a directly derives b in grammar G

$$a \rightarrow_G b$$

if we can decompose

$$a = xuy$$
 , $b = xvy$

and

$$u \rightarrow_G v$$

def: derivation A sequence of words $(w_1, ..., w_n)$ with $w_i \in (N \cup T)^*$ is a derivation from w_1 to w_n in G if for all i < n:

$$w_i \rightarrow_G w_{i+1}$$

We write

$$w_1 \rightarrow_G^* w_n$$

def: language generated by G:

$$L(G) = \{ w \in T^* : S \to_G^* w \}$$

as for cfg's

def: extend productions to strings For $a,b \in (N \cup T)^*$ we define a directly derives b in grammar G

$$a \rightarrow_{G} b$$

if we can decompose

$$a = xuy$$
 , $b = xvy$

and

$$u \rightarrow_G v$$

def: grammar

$$G = (N, T, P, S)$$

- N finite set, alphabet of non terminals
- T finite set with $N \cap T = \emptyset$. Alphabet of terminals.

•

$$P \subset (N \cup T)^+ \times (N \cup T)^*$$

finite set of productions. We write

$$u \rightarrow_G v$$
 instead of $(u, v) \in P$

For $u \to v_1, \dots, u \to v_s$ we write

$$u \rightarrow v_1 | \dots | v_s$$

• $S \in N$ start symbol

def: grammar

$$G = (N, T, P, S)$$

- N finite set, alphabet of non terminals
- T finite set with $N \cap T = \emptyset$. Alphabet of terminals.

•

$$P \subset (N \cup T)^+ \times (N \cup T)^*$$

finite set of productions. We write

$$u \rightarrow_G v$$
 instead of $(u, v) \in P$

For $u \to v_1, \dots, u \to v_s$ we write

$$u \rightarrow v_1 | \dots | v_s$$

• $S \in N$ start symbol

Restriction on productions $u \rightarrow v$:

- type-0: no restriction
- type-1 (context sensitive grammar, csg)

$$|u| \leq |v|$$

right hand sides is not get shorter than left hand side

• type-2 (context free grammar, cfg)

$$u \in N \land |u| \leq |v|$$

left hand side is single non terminal, right hand side is not empty

• type-3 (regular grammar, rg)

$$u \in N \land (u \rightarrow aB \lor u \rightarrow a)$$
 with $a \in T$, $B \in N$

def: grammar

$$G = (N, T, P, S)$$

- N finite set, alphabet of non terminals
- T finite set with $N \cap T = \emptyset$. Alphabet of terminals.

•

$$P \subset (N \cup T)^+ \times (N \cup T)^*$$

finite set of productions. We write

$$u \rightarrow_G v$$
 instead of $(u, v) \in P$

For $u \to v_1, \dots, u \to v_s$ we write

$$u \rightarrow v_1 | \dots | v_s$$

• $S \in N$ start symbol

Restriction on productions $u \rightarrow v$:

- type-0: no restriction
- type-1 (context sensitive grammar, csg)

$$|u| \leq |v|$$

right hand sides is not get shorter than left hand side

• type-2 (context free grammar, cfg)

$$u \in N \land |u| \leq |v|$$

left hand side is single non terminal, right hand side is not empty

• type-3 (regular grammar, rg)

$$u \in N \land (u \rightarrow aB \lor u \rightarrow a)$$
 with $a \in T$, $B \in N$

def: grammar

$$G = (N, T, P, S)$$

- N finite set, alphabet of non terminals
- T finite set with $N \cap T = \emptyset$. Alphabet of terminals.

•

$$P \subset (N \cup T)^+ \times (N \cup T)^*$$

finite set of productions. We write

$$u \rightarrow_G v$$
 instead of $(u, v) \in P$

For $u \to v_1, \dots, u \to v_s$ we write

$$u \rightarrow v_1 | \dots | v_s$$

• $S \in N$ start symbol

Restriction on productions $u \rightarrow v$:

- type-0: no restriction
- type-1 (context sensitive grammar, csg)

$$|u| \leq |v|$$

right hand sides is not get shorter than left hand side

• type-2 (context free grammar, cfg)

$$u \in N \land |u| \le |v|$$

left hand side is single non terminal, right hand side is not empty

• type-3 (regular grammar, rg)

for the time being

$$u \in N \land (u \rightarrow aB \lor u \rightarrow a)$$
 with $a \in T$, $B \in N$

def: grammar

$$G = (N, T, P, S)$$

- N finite set, alphabet of non terminals
- T finite set with $N \cap T = \emptyset$. Alphabet of terminals.

•

$$P \subset (N \cup T)^+ \times (N \cup T)^*$$

finite set of productions. We write

$$u \rightarrow_G v$$
 instead of $(u, v) \in P$

For $u \to v_1, \dots, u \to v_s$ we write

$$u \rightarrow v_1 | \dots | v_s$$

• $S \in N$ start symbol

Restriction on productions $u \rightarrow v$:

- type-0: no restriction
- type-1 (context sensitive grammar, csg)

$$|u| \leq |v|$$

right hand sides is not get shorter than left hand side

• type-2 (context free grammar, cfg)

$$u \in N \land |u| \leq |v|$$

left hand side is single non terminal, right hand side is not empty

• type-3 (regular grammar, rg)

$$u \in N \land (u \rightarrow aB \lor u \rightarrow a)$$
 with $a \in T$, $B \in N$

def: grammar

$$G = (N, T, P, S)$$

- *N* finite set, alphabet of non terminals
- T finite set with $N \cap T = \emptyset$. Alphabet of terminals.

•

$$P \subset (N \cup T)^+ \times (N \cup T)^*$$

finite set of productions. We write

$$u \rightarrow_G v$$
 instead of $(u, v) \in P$

For $u \to v_1, \dots, u \to v_s$ we write

$$u \rightarrow v_1 | \dots | v_s$$

• $S \in N$ start symbol

Restriction on productions $u \rightarrow v$:

- type-0: no restriction
- type-1 (context sensitive grammar, csg)

$$|u| \leq |v|$$

right hand sides is not get shorter than left hand side

• type-2 (context free grammar, cfg)

$$u \in N \land |u| \leq |v|$$

left hand side is single non terminal, right hand side is not empty

• type-3 (regular grammar, rg)

$$u \in N \land (u \rightarrow aB \lor u \rightarrow a)$$
 with $a \in T$, $B \in N$

Very special case of cfg

Lemma 1. Let G be a cfg, $B \in N$ and $w \in (N \cup T)^+$. Then there is a derivation tree for G with root B and border word w if and only if (iff)

$$B \to_G^* w$$

Proof. exercise

Thus definition of L(G) with derivation trees and with derivations give the same result.

4 Deriving the empty word

- so far only possible for type-0 grammars
- we wish to characterize classes of languages L by machine models, which accept L, i.e. with L(M) = L.
- if start state z_0 of machine M is accepting ($z_0 \in Z_A$), then M accepts the empty word:

$$\varepsilon \in L(M)$$

4 Deriving the empty word

- so far only possible for type-0 grammars
- we wish to characterize classes of languages L by machine models, which accept L, i.e. with L(M) = L.
- if start state z_0 of machine M is accepting ($z_0 \in Z_A$), then M accepts the empty word:

$$\varepsilon \in L(M)$$

extending csg, cfg,rg for this purpose

Lemma 2. Let G = (N, T, P, S) be a csg, cfg or rg. Then G can be transformed to grammar G' such that the start symbol never appears on the right hand side of a production and such that L(G) = L(G').

Proof. • new start symbol S'

• add production $S' \to S$.

4 Deriving the empty word

- so far only possible for type-0 grammars
- we wish to characterize classes of languages L by machine models, which accept L, i.e. with L(M) = L.
- if start state z_0 of machine M is accepting ($z_0 \in Z_A$), then M accepts the empty word:

$$\varepsilon \in L(M)$$

extending csg, cfg,rg for this purpose

Lemma 2. Let G = (N, T, P, S) be a csg, cfg or rg. Then G can be transformed to grammar G' such that the start symbol never appears on the right hand side of a production and such that L(G) = L(G').

Proof. • new start symbol S'

• add production $S' \to S$.

new production allowed: If start symbol S' does not appear on right hand side of any production allow

$$S' \to \varepsilon$$

exciting ... however:

Finite automata accept exactly the languages generated by regular grammars

Lemma 3. If L is generated by a regular grammar, then it is accepted by an nfa M

Let

$$G = (N, T, P, S)$$

be a regular grammar generating L, i.e. L = L(G). Derivation trees of words $a_1 \dots a_n$ have the form shown in figure 1.

Figure 1: Derivation tree for $w = a_1 \dots w_n$ in a regular grammar G

Lemma 3. If L is generated by a regular grammar, then it is accepted by an nfa M

Let

$$G = (N, T, P, S)$$

be a regular grammar generating L, i.e. L = L(G). Derivation trees of words $a_1 \dots a_n$ have the form shown in figure 2.

Construct $M = (Z, T, \delta, z_0, Z_A)$ by $Z = N \cup \{A\} \quad \text{(new accepting state)}, A \notin N$ $z_0 = S$ $Z_A = \begin{cases} \{A\} & \varepsilon \notin L \\ \{S,A\} & \varepsilon \in L \end{cases}$ $B \in \delta(N,a) \iff N \to aB$ $\forall N \to a \land B = A$

Lemma 3. If L is generated by a regular grammar, then it is accepted by an nfa M

Let

$$G = (N, T, P, S)$$

be a regular grammar generating L, i.e. L = L(G). Derivation trees of words $a_1 \dots a_n$ have the form shown in figure 2.

Construct $M = (Z, T, \delta, z_0, Z_A)$ by $Z = N \cup \{A\} \quad \text{(new accepting state)}, A \notin N$ $z_0 = S$ $Z_A = \begin{cases} \{A\} & \varepsilon \notin L \\ \{S,A\} & \varepsilon \in L \end{cases}$ $B \in \delta(N,a) \iff N \to aB$ $\forall N \to a \land B = A$

Let $w = a_1 \dots a_n$

• if $w \in L(G)$, then there is derivation tree as in figure 2 and an accepting computation of M with input w and states

$$(S,B_1,\ldots,B_{n-1},A)$$

thus $w \in L(M)$.

Lemma 3. If L is generated by a regular grammar, then it is accepted by an nfa M

Let

$$G = (N, T, P, S)$$

be a regular grammar generating L, i.e. L = L(G). Derivation trees of words $a_1 \dots a_n$ have the form shown in figure 2.

Construct
$$M = (Z, T, \delta, z_0, Z_A)$$
 by
$$Z = N \cup \{A\} \quad \text{(new accepting state)}, A \notin N$$

$$z_0 = S$$

$$Z_A = \begin{cases} \{A\} & \varepsilon \notin L \\ \{S,A\} & \varepsilon \in L \end{cases}$$

$$B \in \delta(N,a) \leftrightarrow N \rightarrow aB$$

$$\vee N \rightarrow a \land B = A$$

Let $w = a_1 \dots a_n$

• if $w \in L(G)$, then there is derivation tree as in figure 2 and an accepting computation of M with input w and states

$$(S,B_1,\ldots,B_{n-1},A)$$

thus $w \in L(M)$.

• If $w \in L(M)$, then there is an accepting computation of M with input w and states $S, B_1, \ldots, B_{n-1}, A$. Then figure 2 is a derivation tree for w in G. Thus $w \in L(G)$.

Lemma 4. If $M = (Z, T, \delta, z_0, Z_A)$ be a dfa accepting L, i.e. L = L(M). Then there is a regular grammar G with L(M) = L(G).

Lemma 4. If $M = (Z, T, \delta, z_0, Z_A)$ be a dfa accepting L, i.e. L = L(M). Then there is a regular grammar G with L(M) = L(G).

Construct regular grammar $G = (Z, T, P, z_0)$ by

$$B \to aC \leftrightarrow \delta(B,a) = C$$

 $B \to a \leftrightarrow \delta(B,a) = C \land C \in Z_A$

- claim $L(M) = L(G) \setminus \{\varepsilon\}$. Proof: exercise.
- if $z_0 \in Z_A$ we have $\varepsilon \in L$. Transform above grammar as in lemma 2 and then add production $S' \to \varepsilon$.

Lemma 4. If $M = (Z, T, \delta, z_0, Z_A)$ be a dfa accepting L, i.e. L = L(M). Then there is a regular grammar G with L(M) = L(G).

Construct regular grammar $G = (Z, T, P, z_0)$ by

$$B \to aC \leftrightarrow \delta(B,a) = C$$

 $B \to a \leftrightarrow \delta(B,a) = C \land C \in Z_A$

- claim $L(M) = L(G) \setminus \{\varepsilon\}$. Proof: exercise.
- if $z_0 \in Z_A$ we have $\varepsilon \in L$. Transform above grammar as in lemma 2 and then add production $S' \to \varepsilon$.

6 Bottom stage of hierarchy

Lemma 5. There is a context free language L, which is not regular

•

$$L = \{a^n b^n : n \in \mathbb{N}\}$$

- context free: above.
- not regular by pumping lemma for regular languages.

Lemma 6. For every context free grammar G there is a constant n_0 such that every word in $W \in L(G)$ with $|w| > n_0$ can be decomposed as

$$W = uvwxy$$

such that

$$vx \neq \varepsilon$$

and

$$\forall i \in \mathbb{N}_0. \quad uv^i wx^i y \in L(G)$$

Lemma 6. For every context free grammar G there is a constant n_0 such that every word in $W \in L(G)$ with $|w| > n_0$ can be decomposed as

$$W = uvwxy$$

such that

$$vx \neq \varepsilon$$

and

$$\forall i \in \mathbb{N}_0. \quad uv^i w x^i y \in L(G)$$

Let G = (N, T, P, S) and let s be the length of the longest right hand side of a production in P

• set

$$n_0 = s^{\#N}$$

• a derivation tree for G with $|W| > n_0$ leaves has depth > #N

• pidgeon hole argument: there is a path from S to a leaf where a non terminal n is repeated as shown in figure 2. Define vwx as the border word generated by the lower occurrence and w the border word generated by the higher occurrence of n

Lemma 6. For every context free grammar G there is a constant n_0 such that every word in $W \in L(G)$ with $|w| > n_0$ can be decomposed as

$$W = uvwxy$$

such that

$$vx \neq \varepsilon$$

and

$$\forall i \in \mathbb{N}_0$$
. $uv^i wx^i y \in L(G)$

Let G = (N, T, P, S) and let s be the length of the longest right hand side of a production in P

• set

$$n_0 = s^{\#N}$$

• a derivation tree for G with $|W| > n_0$ leaves has depth > #N

• pidgeon hole argument: there is a path from S to a leaf where a non terminal n is repeated as shown in figure 2. Define vwx as the border word generated by the lower occurrence and w the border word generated by the higher occurrence of n

• repeat the portion of the tree generated by the path from n to n exactly i times. For i = 0 delete that portion.

Lemma 6. For every context free grammar G there is a constant n_0 such that every word in $W \in L(G)$ with $|w| > n_0$ can be decomposed as

$$W = uvwxy$$

such that

$$vx \neq \varepsilon$$

and

$$\forall i \in \mathbb{N}_0. \quad uv^i wx^i y \in L(G)$$

Let G = (N, T, P, S) and let s be the length of the longest right hand side of a production in P

• set

$$n_0 = s^{\#N}$$

• a derivation tree for G with $|W| > n_0$ leaves has depth > #N

• pidgeon hole argument: there is a path from S to a leaf where a non terminal n is repeated as shown in figure 2. Define vwx as the border word generated by the lower occurrence and w the border word generated by the higher occurrence of n

• repeat the portion of the tree generated by the path from n to n exactly i times. For i = 0 delete that portion.

Exercise: fix the argument such that

$$vx \neq \epsilon$$
 follows

Lemma 6. For every context free grammar G there is a constant n_0 such that every word in $W \in L(G)$ with $|w| > n_0$ can be decomposed as

$$W = uvwxy$$

such that

$$vx \neq \varepsilon$$

and

$$\forall i \in \mathbb{N}_0. \quad uv^i wx^i y \in L(G)$$

Let G = (N, T, P, S) and let s be the length of the longest right hand side of a production in P

• set

$$n_0 = s^{\#N}$$

• a derivation tree for G with $|W| > n_0$ leaves has depth > #N

• pidgeon hole argument: there is a path from S to a leaf where a non terminal n is repeated as shown in figure 2. Define vwx as the border word generated by the lower occurrence and w the border word generated by the higher occurrence of n

• repeat the portion of the tree generated by the path from n to n exactly i times. For i = 0 delete that portion.

Lemma 7. The language

$$L = \{a^n b^n c^n : n \in N\}$$

is not context free

Proof. exercise

Lemma 8. The language

$$L = \{a^n b^n c^n : n \in N\}$$

is context sensitive

Lemma 8. The language

$$L = \{a^n b^n c^n : n \in N\}$$

is context sensitive

$$N = \{S, T, A, B, C\}, T = \{a, b, c\}$$

Productions:

• special case *abc*:

$$S \rightarrow abc | ABCT$$

Lemma 8. The language

$$L = \{a^n b^n c^n : n \in N\}$$

is context sensitive

$$N = \{S, T, A, B, C\}, T = \{a, b, c\}$$

Productions:

• special case *abc*:

$$S \rightarrow abc | ABCT$$

• creating $i - 1 \ge 0$ groups of *ABC* followed by *ABc*

$$T \rightarrow ABCT \mid ABc$$

Lemma 8. The language

$$L = \{a^n b^n c^n : n \in N\}$$

is context sensitive

$$N = \{S, T, A, B, C\}, T = \{a, b, c\}$$

Productions:

• special case *abc*:

$$S \rightarrow abc | ABCT$$

• creating $i-1 \ge 0$ groups of ABC followed by ABC

$$T \rightarrow ABCT \mid ABc$$

• shifting C's right of A's and B's:

$$CA \rightarrow AC$$
, $CB \rightarrow BC$

• shifting *B*'s right of *A*'s:

$$BA \rightarrow AB$$

• converting non terminals to terminals from right to left

$$Cc \rightarrow cc$$
, $Bc \rightarrow bc$, $Bb \rightarrow bb$, $Ab \rightarrow ab$, $Aa \rightarrow aa$

Lemma 8. The language

$$L = \{a^n b^n c^n : n \in N\}$$

is context sensitive

$$N = \{S, T, A, B, C\}, T = \{a, b, c\}$$

Productions:

• special case *abc*:

$$S \rightarrow abc | ABCT$$

• creating $i-1 \ge 0$ groups of ABC followed by ABC

$$T \rightarrow ABCT \mid ABc$$

• shifting C's right of A's and B's:

$$CA \rightarrow AC$$
, $CB \rightarrow BC$

• shifting *B*'s right of *A*'s:

$$BA \rightarrow AB$$

• converting non terminals to terminals from right to left

$$Cc \rightarrow cc$$
, $Bc \rightarrow bc$, $Bb \rightarrow bb$, $Ab \rightarrow ab$, $Aa \rightarrow aa$

this is kind of computing with the grammar

Lemma 8. The language

$$L = \{a^n b^n c^n : n \in N\}$$

is context sensitive

$$N = \{S, T, A, B, C\}, T = \{a, b, c\}$$

Productions:

• special case *abc*:

$$S \rightarrow abc | ABCT$$

• creating $i-1 \ge 0$ groups of ABC followed by ABC

$$T \rightarrow ABCT \mid ABc$$

• shifting C's right of A's and B's:

$$CA \rightarrow AC$$
, $CB \rightarrow BC$

• shifting *B*'s right of *A*'s:

$$BA \rightarrow AB$$

• converting non terminals to terminals from right to left

$$Cc \rightarrow cc$$
, $Bc \rightarrow bc$, $Bb \rightarrow bb$, $Ab \rightarrow ab$, $Aa \rightarrow aa$

this is kind of computing with the grammar

L(G) = L: exercise. interesting

Lemma 8. The language

$$L = \{a^n b^n c^n : n \in N\}$$

is context sensitive

$$N = \{S, T, A, B, C\}, T = \{a, b, c\}$$

Productions:

• special case *abc*:

$$S \rightarrow abc | ABCT$$

• creating $i-1 \ge 0$ groups of ABC followed by ABC

$$T \rightarrow ABCT \mid ABc$$

• shifting C's right of A's and B's:

$$CA \rightarrow AC$$
, $CB \rightarrow BC$

• shifting *B*'s right of *A*'s:

$$BA \rightarrow AB$$

• converting non terminals to terminals from right to left

$$Cc \rightarrow cc$$
, $Bc \rightarrow bc$, $Bb \rightarrow bb$, $Ab \rightarrow ab$, $Aa \rightarrow aa$

this is kind of computing with the grammar

L(G) = L: exercise. interesting

finding a type-0 language which is not context sensitive:

a different world!