

중 2 과정

5-6-3.삼각형과 사다리꼴의 중점을 연결한 선분의 성질

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2016-08-25

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 삼각형의 두 변의 중점을 연결한 선분의 성질

1) 삼각형 \overline{ABC} 에서 \overline{AB} , \overline{AC} 의 두 중점을 \overline{M} , \overline{N} 이라 하면

- $\Rightarrow \overline{AM} = \overline{MB}, \overline{AN} = \overline{NC}$ 이면 $\overline{BC}//\overline{MN}, \overline{MN} = \frac{1}{2}\overline{BC}$
- 2) 삼각형 ABC에서 \overline{AB} 의 중점을 지나고 \overline{BC} 에 평행한 직선과 \overline{AC} 의 교점을 N이라 하면
- \Rightarrow $\overline{AM} = \overline{MB}$, $\overline{BC} / / \overline{MN}$ 이면 $\overline{AN} = \overline{NC}$, $\overline{MN} = \frac{1}{2}\overline{BC}$

··· 참고

삼각형의 두 변의 중점을 연결한 선분의 성질을 중점 연결 정리라 한다.

2. 사다리꼴의 중점을 연결한 선분의 성질

 \overline{AD} $//\overline{BC}$ 인 사다리꼴 ABCD에서 점 M, N이 각각 \overline{AB} , \overline{DC} 의 중점일 때

- 1) $\overline{\rm AD}//\overline{\rm MN}//\overline{\rm BC}$
- 2) $\overline{MN} = \overline{MG} + \overline{GN} = \frac{1}{2} (\overline{AD} + \overline{BC})$
- 3) $\overline{PQ} = \overline{MQ} \overline{MP} = \frac{1}{2}(\overline{BC} \overline{AD})$ (단, $\overline{BC} > \overline{AD}$ 일 때)

B

삼각형의 중점을 연결한 선분의 성질

ightharpoonup 다음 그림의 \triangle ABC에서 \overline{AB} , \overline{AC} 의 중점을 각각 M, N이 라고 할 때, x의 값을 구하여라.

1.

2.

3.

5.

10.

6.

11.

7.

12.

8.

13.

□ 다음 그림의 △ABC에서 $\overline{\rm AM} = \overline{\rm BM}$ 이고 $\overline{\rm MN}//\overline{\rm BC}$ 일 때, x, y의 값을 각각 구하여라.

14.

15.

16.

17.

 \square 다음 그림의 $\triangle ABC$ 에서 x+y의 값을 구하여라.

18. \overline{AB} , \overline{BC} 의 중점을 각각 M, N이라 할 때,

19. 점 M은 \overline{AB} 의 중점이고 \overline{MN} // \overline{BC} 일 때,

20. $\overline{AM} = \overline{MB}$, $\overline{MN} // \overline{BC}$ ol $\overline{AN} = 6 \text{ cm}$, $\overline{BC} = 12 \text{ cm}$ $\underline{\textbf{9}}$

21. \overline{AB} 의 중점 M과 \overline{AC} 위의 한 점 N에 대하여 $\overline{MN}//\overline{BC}$ 일 때

22. \overline{AB} 의 중점 \overline{MS} 지나 \overline{BC} 에 평행하게 선분 \overline{MNS} 그을 때

☑ 다음 그림을 보고, 알맞은 길이를 구하여라.

- DG **의 길이** 23.
- 24. BF **의 길이**
- 25. BE **의 길이**

☑ 다음 그림을 보고, 알맞은 길이를 구하여라.

- 26. EF 의 길이
- 27. BF **의 길이**
- BE**의 길이** 28.
- Arr 다음 그림에서 $Arr AM = \overline{MB}$, $Arr MD = \overline{DE}$ 이고 $Arr MN //\overline{BC}$ 일 때, x의 값을 구하여라.

29.

30.

31.

ightharpoonup 다음 그림의 ightharpoonup ightharpoonup 다음 그림의 ightharpoonup ighthD, E, F라 할 때, $\triangle DEF$ 의 둘레의 길이를 구하여라.

33.

34.

35.

36.

37.

38.

39.

40.

41. (△ABC의 둘레의 길이)=24 cm

42. (△ABC의 둘레의 길이)=18

 \square 다음 그림의 $\triangle ABC$ 에서 $\overline{AB}, \overline{BC}, \overline{CA}$ 의 중점을 각각 D, E, F라 할 때, $\triangle ABC$ 의 둘레의 길이를 구하여라.

43.

44.

45. (△DEF의 둘레의 길이)=12

46.

47.

- ightharpoonup 다음 그림의 $\triangle ABC$ 에서 x+y의 값을 구하여라.
- 48. 세 점 D, E, F는 각각 세 변 AB, BC, CA의 중점일 때

49. $\overline{AB} = \overline{AD}$, $\overline{AE} = \overline{CE}$ ol $\overline{DF} = 12$, $\overline{CF} = 3$ $\overline{EF} = 3$

50. 점 D는 BC의 중점이고, 두 점 E, F는 AB의 삼등분점이다. 점 P가 AD와 EC의 교점이고, PC=6cm, PD=4cm일때

51. \triangle ABC에서 점 D는 \overline{BC} 의 중점이고, $\overline{AG} = \overline{GF} = \overline{FC}$ 이다. \overline{AB} 와 \overline{FD} 의 연장선의 교점을 E라 하고, $\overline{DF} = 4 \mathrm{cm}$ 일 때

☑ 다음 물음에 답하여라.

52. 다음 그림의 $\triangle ABC$ 에서 \overline{BC} 의 중점을 D, \overline{AD} 의 중점을 E라 하자. \overline{CF} // \overline{DG} 일 때, \overline{CE} 의 길이를 구하여라.

53. 다음 그림에서 세 점 D, E, F는 각각 세 변 AB, BC, CA의 중점일 때, □DECF의 둘레의 길이를 구하여라.

54. 다음 그림에서 $\overline{AE} = \overline{EB}$, $\overline{EF} = \overline{FD}$ 이고 \overline{EG} // \overline{BD} 일 때, \overline{CD} 의 길이를 구하여라.

55. 다음 그림에서 M, N은 각각 \overline{AB} , \overline{AC} 의 중점이고, R, Q는 각각 \overline{DB} , \overline{DC} 의 중점이다. $\overline{MN} = 8 \text{cm}$, $\overline{PQ} = 6 \text{cm}$ 일 때, \overline{PR} 의 길이를 구하여라.

56. 점 M, N, P, Q는 각각 AB, AC, DB, DC의 중점이다. MN=5cm일 때. PQ의 길이를 구하여라.

58. 다음 그림과 같은 △ABC에서 변 BA의 연장선 위에 $\overline{AB} = \overline{AD}$ 인 점 D를 잡고, 점 D와 변 AC의 중점 E를 연결한 직선이 변 BC와 만나는 점을 F라고 하자. 점 A를 지나고 \overline{BC} 와 평행한 직선이 \overline{DF} 와 만나는 점을 G라 하고 $\overline{BC} = 12 \, \mathrm{cm}$ 일 때, \overline{BF} 의 길이를 구하여라.

59. \triangle ABC 에서 점 D는 변 AC의 중점, $\overline{\rm ED}//\overline{\rm BC}$ 일 때, $\overline{\rm AF}$: $\overline{\rm FG}$ 를 구하여라.

- ☐ 다음 그림의 사각형 ABCD에서 AB, BC, CD, DA의 중점 을 각각 E, F, G, H라 할 때, $\square EFGH$ 가 어떤 사각형인지 말하고, 그 둘레의 길이를 구하여라.
- 60. □ABCD**는 사각형**

□ABCD**는 직사각형**

□ABCD**는 직사각형** 62.

□ABCD**는 평행사변형** 63.

□ABCD**는 정시각형**

65. □ABCD**는 마름모**

□ABCD는 등변사다리꼴 66.

- ☐ 다음 □ABCD에서 점 P, Q, R, S는 각각 AB, BC, CD, DA의 중점일 때,색칠된 도형의 둘레의 길이를 구하여라.
- 67.

사다리꼴의 중점을 연결한 선분의 성질

☐ 다음 그림과 같이 AD // BC 인 사다리꼴 ABCD에서 \overline{AB} , \overline{DC} 의 중점을 각각 M, N 이라 할 때, 다음 그림에 알맞 은 길이를 구하여라.

- MP 의 길이 69.
- 70. PN **의 길이**
- 71. MN 의 길이
- ☐ 다음 그림과 같이 AD//BC인 사다리꼴 ABCD에서 점 M, N이 각각 \overline{AB} , \overline{CD} 의 중점일 때, x의 값을 구하여라.

72.

73.

74.

75.

76.

□ 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 \overline{ABCD} 에서 점 M, N이 각각 \overline{AB} , \overline{CD} 의 중점이고, \overline{BD} , \overline{AC} 가 \overline{MN} 과 만나는 점을 P, Q라 할 때, x의 값을 구하여라.

78.

79.

80.

81.

82.

83.

ightharpoonup 다음 그림과 같이 $ightharpoonup \overline{AD}//\overline{BC}$ 인 사다리꼴 ightharpoonup ABCD에서 점 $ightharpoonup \overline{E}$, F는 각각 $ightharpoonup \overline{AB}$, $ightharpoonup \overline{DC}$ 의 중점일 때, $ightharpoonup \overline{PQ}$ 의 길이를 구하여 라.

84.

85.

- $oldsymbol{\square}$ 다음 그림과 같이 $\overline{\mathrm{AD}}//\overline{\mathrm{BC}}$ 인 사다리꼴 $\overline{\mathrm{ABCD}}$ 에서 점 M, N는 각각 \overline{AB} , \overline{DC} 의 중점일 때, 물음에 알맞은 길이를 구하여라.
- 87. BC 의 길이

BC **의 길이** 88.

BC **의 길이** 89.

BC **의 길이** 90.

91. MN 의 길이

92. BC 의 길이

93. MN 의 길이

94. PQ 의 길이

95. PQ 의 길이

99.

96. PQ 의 길이

100

□ 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 \overline{ABCD} 에서 점 M, N이 각각 \overline{AB} , \overline{CD} 의 중점일 때, x+y의 값을 구하여라.

97.

정답 및 해설

- 1) 7
- $\Rightarrow \overline{MN} = \frac{1}{2}\overline{BC} = 7$
- 2) :
- $\Rightarrow x = \frac{1}{2}\overline{BC} = \frac{1}{2} \times 10 = 5$
- 3) 6
- $\Rightarrow x = \frac{1}{2}\overline{BC} = \frac{1}{2} \times 12 = 6$
- 4) 8
- $\Rightarrow \overline{AC} = 2\overline{AN} = 8$
- 5) 24
- $\Rightarrow x = 2\overline{\text{MN}} = 2 \times 12 = 24$
- 6) 6
- 7) 8
- 8) 10
- 9) 6
- \Rightarrow 1:2=x:12 \therefore x=6
- 10) 6
- 11) 60
- 12) 8
- 13) 2
- $\Rightarrow \overline{\text{MN}} = \frac{1}{2}\overline{\text{BC}} = \frac{1}{2} \times 10 = 5 \text{ (cm)}$ 이므로 $x = \overline{\text{MN}} \overline{\text{PN}} = 5 3 = 2$
- 14) x = 5, y = 5
- 15) x = 6, y = 10
- 16) x = 4, y = 10
- 17) x = 12, y = 6
- \Rightarrow $\overline{\mathrm{AM}} = \overline{\mathrm{MB}}$, $\overline{\mathrm{MN}}//\overline{\mathrm{BC}}$ 이므로 $x = 2\overline{\mathrm{AN}} = 2 \times 6 = 12$ $\overline{\mathrm{MN}} = \frac{1}{2}\overline{\mathrm{BC}} = \frac{1}{2} \times 18 = 9$ (cm)이므로 y + 3 = 9 $\therefore y = 6$
- 18) 81
- ⇒ 삼각형의 중점 연결 정리에 의해

$$x = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 12 = 6$$

- 또, \overline{MN} // \overline{AC} 이므로 $\angle C = \angle BNM = 75$ °
- $\therefore y = 75$
- $\therefore x+y=81$
- 19) 17
- Arr Arr Arr Arr Arr Arr Arr 이므로 Arr Arr Arr 이므로 Arr Arr Arr Arr Arr 이므로 Arr Arr
- 20) 18
- $\Rightarrow x = 12, y = 6$
- 21) 17
- 22) 9
- 23) 4
- \Rightarrow \triangle ADG에서 $\overline{\text{DG}} = 2\overline{\text{EF}} = 2 \times 2 = 4$
- 24) 8
- \Rightarrow \triangle BCF에서 $\overline{BF} = 2\overline{DG} = 2 \times 4 = 8$
- 25) 6
- $\Rightarrow \overline{BE} = \overline{BF} \overline{EF} = 8 2 = 6$
- 26) 3
- $\Rightarrow \Delta ADG \text{ of } \overline{EF} = \frac{1}{2} \overline{DG} = \frac{1}{2} \times 6 = 3$
- 27) 12
- \Rightarrow \triangle BCF에서 $\overline{BF} = 2\overline{DG} = 2 \times 6 = 12$
- 28) (
- $\Rightarrow \overline{BE} = \overline{BF} \overline{EF} = 12 3 = 9$
- 29) 15

 $\overline{AM} = \overline{MB}$, $\overline{MN}//\overline{BC}$ 이므로

 $\overline{BC} = 2\overline{MN} = 2 \times 5 = 10 \text{ (cm)}$

 Δ MDN $\equiv \Delta$ EDC(ASA 합동)이므로

 $\overline{CE} = \overline{MN} = 5 \text{ (cm)}$ $\therefore x = \overline{BC} + \overline{CE} = 10 + 5 = 15$

30) 7

 $\overline{AM} = \overline{MB}$, $\overline{MN}//\overline{BC}$ 이므로

$$\overline{MN} = \frac{1}{2}\overline{BC} = \frac{1}{2} \times 14 = 7 \text{ (cm)}$$

 Δ MDN = Δ EDC(ASA 합동)이므로 $x = \overline{\text{MN}} = 7$

31) 8

 Δ MDN = Δ EDC(ASA 합동)이므로

$$\overline{MN} = \overline{CE} = 4(cm)$$

 $\overline{AM} = \overline{MB}$, $\overline{MN} / / \overline{BC}$ 이므로 $x = 2\overline{MN} = 2 \times 4 = 8$

32) 6

 $\overline{AM} = \overline{MB}$. $\overline{MN}//\overline{BC}$ 이므로 $\overline{BC} = 2\overline{MN} = 2x(cm)$

 Δ MDN = Δ EDC(ASA 합동)이므로

$$\overline{CE} = \overline{MN} = x(cm)$$

이때 $\overline{BE} = \overline{BC} + \overline{CE}$ 이므로

$$18 = 2x + x \qquad \therefore x = 6$$

33) 18

34) 10

$$\Rightarrow \overline{DF} // \overline{BC}, \ \overline{DF} = \frac{1}{2} \overline{BC} = 40 | \text{CF}.$$

$$\overline{\rm DE}\,//\,\overline{\rm AC}\,,\ \overline{\rm DE}\!=\!\frac{1}{2}\overline{\rm AC}\!=\!\frac{7}{2}\,{\rm OICF}.$$

$$\overline{\mathrm{EF}}//\overline{\mathrm{AB}}, \ \overline{\mathrm{EF}} = \frac{1}{2}\overline{\mathrm{AB}} = \frac{5}{2}\,\mathrm{Olch}.$$

 \therefore (\triangle DEF의 둘레의 길이)= $4+\frac{7}{2}+\frac{5}{2}=10$

35) 19cm

$$\Rightarrow \overline{DE} = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 10 = 5 \text{ (cm)}$$

$$\overline{\text{EF}} = \frac{1}{2} \overline{\text{AB}} = \frac{1}{2} \times 12 = 6 \text{ (cm)}$$

$$\overline{DF} = \frac{1}{2}\overline{BC} = \frac{1}{2} \times 16 = 8 \text{ (cm)}$$

∴(△DEF의 둘레의 길이)=5+6+8=19(cm)

36) 34

$$\Rightarrow \overline{DE} / / \overline{AC}, \ \overline{DE} = \frac{1}{2} \overline{AC} = \frac{19}{2} \text{cm} \ \text{Olch}.$$

$$\overline{\rm EF}$$
 // $\overline{\rm AB}$, $\overline{\rm EF}$ = $\frac{1}{2}\overline{\rm AB}$ = $\frac{25}{2}$ cm or ch.

$$\overline{\rm DF}//\overline{\rm BC}, \ \overline{\rm DF} = \frac{1}{2}\overline{\rm BC} = 12{\rm cm} \ {\rm Olch}.$$

∴ (△DEF의 둘레의 길이)=
$$\frac{19}{2}$$
+ $\frac{25}{2}$ + 12 = 34 (cm)

- 37) 17
- 38) 11
- 39) 15

$$\Rightarrow \overline{\mathrm{DF}}//\overline{\mathrm{BC}}, \overline{\mathrm{DF}} = \frac{1}{2}\overline{\mathrm{BC}} = 601\overline{\mathrm{D}},$$

$$\overline{\rm DE}//\overline{\rm AC}, \ \overline{\rm DE} = \frac{1}{2}\overline{\rm AC} = 501$$
,

$$\overline{\mathrm{EF}} / / \overline{\mathrm{AB}}, \ \overline{\mathrm{EF}} = \frac{1}{2} \overline{\mathrm{AB}} = 40 | \mathrm{CH}.$$

∴ (△DEF의 둘레의 길이)=6+5+4=15

- 40) 12 cm
- 41) 12 cm
- □ 삼각형의 중점 연결 정리에 의해

(△DEF의 둘레의 길이)

$$=\frac{1}{2}(\Delta ABC의 둘레의 길이)=\frac{1}{2} imes 24=12(cm)$$

- 42) 9
- 43) 26
- 44) 36
- $ightharpoonup \overline{DF}//\overline{BC}, \ \overline{BC} = 2\overline{DF}$ 이므로 $\overline{BC} = 12$ 이다. $\overline{DE}//\overline{AC}, \ \overline{AC} = 2\overline{DE}$ 이므로 $\overline{AC} = 14$ 이다. $\overline{EF}//\overline{AB}, \ \overline{AB} = 2\overline{EF}$ 이므로 $\overline{AB} = 10$ 이다.

따라서 △ABC의 둘레의 길이는 36이다.

- 45) 24
- 46) 32cm
- $\Rightarrow \overline{\mathrm{DF}}//\overline{\mathrm{BC}}, \overline{\mathrm{BC}} = 2\overline{\mathrm{DF}} = 14\mathrm{cm},$

 $\overline{DE} // \overline{AC}$, $\overline{AC} = 2\overline{DE} = 10$ cm,

 $\overline{EF} // \overline{AB}, \overline{AB} = 2\overline{EF} = 8cm \ O| \Box +$

∴ (△ABC의 둘레의 길이)=14+10+8=32(cm)

- 47) 26cm
- $\Rightarrow \overline{AB} = 2\overline{EF} = 2 \times 6 = 12 \text{ (cm)}$

$$\overline{BC} = 2\overline{DF} = 2 \times 4 = 8 \text{ (cm)}$$

$$\overline{AC} = 2\overline{DE} = 2 \times 3 = 6 \text{ (cm)}$$

- 48) 17
- 49) 15
- 50) 8
- $\Rightarrow x=4, y=4$
- 51) 20cm
- \Rightarrow 삼각형의 중점 연결 정리에 의해 $\overline{GB} = 2\overline{FD}$ 이므로 x = 8이고, $\overline{EF} = 2\overline{BG}$ 이므로 y = 12이다. 따라서 x+y=20이다.
- 52) 12 cm
- ⇒ 삼각형의 중점 연결 정리에 의해

$$\triangle$$
AGD에서 $\overline{FE} = \frac{1}{2}\overline{GD} = \frac{1}{2} \times 8 = 4(cm)$

$$\triangle$$
BCF에서 $\overline{FC} = 2\overline{GD} = 2 \times 8 = 16 (cm)$

- $\therefore \overline{CE} = \overline{FC} \overline{FE} = 16 4 = 12 \text{ (cm)}$
- 53) 14cm
- $\Rightarrow \overline{AF}: \overline{AC} = \overline{DF}: \overline{BC} = 1:20$ 므로 $\overline{DF} // \overline{BC}$ 이다.
 - 이 때, $\overline{BC} = 8 \text{cm}$ 이므로 $\overline{DF} = 4 \text{cm}$ 이다.
 - 또. $\overline{DE}:\overline{AC}=\overline{BE}:\overline{BC}=1:2$ 이므로 $\overline{DE}//\overline{AC}$ 이다.
 - 이 때, □DECF는 평행사변형이므로 DE=FC=3cm이
 - 따라서 □DECF의 둘레의 길이는 14cm이다.
- 54) 6cm
- ⇒ 삼각형의 중점 연결 정리에 의해

$$\triangle ABC \text{ old } \overline{EG} = \frac{1}{2}\overline{BC} = \frac{1}{2} \times 12 = 6 \text{ (cm)}$$

 $\Delta EFG = \Delta DFC(ASA 합동)이므로$

$$\overline{CD} = \overline{EG} = 6$$
 (cm)

- 55) 2cm
- \Rightarrow $\overline{MN} = \frac{1}{2}\overline{BC}$ 이므로 $\overline{BC} = 16$ cm 이다.

또,
$$\overline{RQ} = \frac{1}{2}\overline{BC} = 8 \text{ cm} \text{ 이다.}$$

- 따라서 $\overline{PR} = \overline{RQ} \overline{PQ} = 2 (cm)$ 이다.
- 56) 5cm
- ⇒ MN: BC=1:2이므로 MN=5cm일 때, BC=10cm 또. \overline{PQ} : $\overline{BC} = 1:2$ 이므로 $\overline{PQ} = 5$ cm이다.
- 57) $\frac{7}{2}$ cm

- ⇒ \overline{EF} : \overline{BD} =1:20| \Box = \overline{EF} =1cm 0| \Box 이 때, $\overline{EF}: \overline{DC} = \overline{FP}: \overline{PD} = 1:5$ 이다. $\overline{AD} = 6 \text{cm} \ \underline{\text{G}} \ \underline{\text{MF}} = \overline{\text{FD}} = 3 \text{cm}, \ \overline{\text{FP}} = \frac{1}{6} \times 3 = \frac{1}{2} \text{ (cm)}$
 - $O|\Box + ... \quad \overline{AP} = 3 + \frac{1}{2} = \frac{7}{2} (cm)$
- 58) 8 cm
- \Rightarrow $\overline{AE} = \overline{CE}$, $\angle GAE = \angle FCE()$ $\angle AEG = \angle CEF$ (맞꼭지각)이므로 $\triangle AEG = \triangle CEF(ASA 합동)이다.$ 따라서 $\overline{AG} = \overline{FC}$ 이다. $\overline{AG} = x$ 라 하면 $\overline{BF} = 2x$ 이므로 $\overline{BC} = 12$ cm일 때,

2x + x = 12, x = 40 | \Box | .

- 따라서 BF=8cm이다.
- 59) 8:5
- \Rightarrow $\triangle AGC$ 에서 중점 연결 정리에 의해 $\overline{ED} = \frac{1}{2}\overline{GC} = 1.5$ △FED와 △FGB는 닮음이므로 $\overline{\text{ED}} : \overline{\text{BG}} = \overline{\text{EF}} : \overline{\text{FG}} = 1.5 : 5$ $\overline{AE} = \overline{EG}$ 이므로 $\overline{AE} : \overline{EF} : \overline{FG} = 6.5 : 1.5 : 5$ 따라서 \overline{AF} : \overline{FG} =8:5이다.
- 60) 평행사변형, 28
- $\Rightarrow \overline{EF} = \overline{HG} = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 16 = 8$

$$\overline{EH} = \overline{FG} = \frac{1}{2}\overline{BD} = \frac{1}{2} \times 12 = 6$$

- \therefore (□EFGH의 둘레의 길이)= $2\times(8+6)=28$
- 61) 마름모, 24
- $\Rightarrow \overline{EF} = \overline{FG} = \overline{GH} = \overline{HE} = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 12 = 6$
 - ∴ (□EFGH의 둘레의 길이)=4×6=24
- 62) 16cm
- ⇒ □EFGH는 마름모이고 삼각형의 중점 연결 정리에 의해

$$\overline{EF} = \overline{FG} = \overline{GH} = \overline{HE} = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 8 = 4 \text{ (cm)}$$

- ∴ (□EFGH의 둘레의 길이)=4×4=16(cm)
- 63) 평행사변형, 18
- $\Rightarrow \overline{EF} = \overline{HG} = \frac{1}{2}\overline{AC} = \frac{1}{2} \times 8 = 4$

$$\overline{EH} = \overline{FG} = \frac{1}{2}\overline{BD} = \frac{1}{2} \times 10 = 5$$

- ∴ (□EFGH의 둘레의 길이)=2×(4+5)=18
- 64) 정사각형. 16
- \Rightarrow $\overline{EF} = \overline{FG} = \overline{GH} = \overline{HE} = \frac{1}{2} \overline{AC} = \frac{1}{2} \times 8 = 4$
 - ∴ (□EFGH의 둘레의 길이)=4×4=16

65) 직사각형, 21

$$\Rightarrow \overline{EF} = \overline{HG} = \frac{1}{2} \overline{AC} = \frac{1}{2} \times 9 = \frac{9}{2}$$
$$\overline{EH} = \overline{FG} = \frac{1}{2} \overline{BD} = \frac{1}{2} \times 12 = 6$$

$$\therefore$$
 (□EFGH의 둘레의 길이)= $2 \times \left(\frac{9}{2} + 6\right) = 21$

66) 마름모, 26

$$\Rightarrow \overline{\text{EF}} = \overline{\text{FG}} = \overline{\text{GH}} = \overline{\text{HE}} = \frac{1}{2} \overline{\text{BD}} = \frac{1}{2} \times 13 = \frac{13}{2}$$

$$\therefore$$
 (□EFGH의 둘레의 길이)= $4 \times \frac{13}{2} = 26$

67) 12cm

$$\Rightarrow \overline{\,\mathrm{PS}\,}//\overline{\,\mathrm{BD}\,}//\overline{\,\mathrm{QR}\,}, \ \overline{\,\mathrm{PS}} = \overline{\,\mathrm{QR}} = \frac{1}{2}\,\overline{\,\mathrm{BD}} = \frac{7}{2}\,\mathrm{cm}\,\mathrm{Olch}.$$

또,
$$\overline{PQ}//\overline{AC}//\overline{SR}$$
, $\overline{PQ} = \overline{SR} = \frac{1}{2}\overline{AC} = \frac{5}{2}$ cm이다.

$$\therefore$$
 (\square PQRS의 둘레의 길이)= $2 \times \left(\frac{7}{2} + \frac{5}{2}\right) = 12 \text{ (cm)}$

68) 22cm

$$\Rightarrow \overline{\,PQ}\,//\,\overline{AC}\,//\,\overline{SR}, \ \overline{\,PQ} = \overline{SR} = \frac{1}{2}\,\overline{AC} = 4cm \, \text{oleh}.$$

또,
$$\overline{\mathrm{PS}}//\overline{\mathrm{BD}}//\overline{\mathrm{QR}}$$
, $\overline{\mathrm{PS}} = \overline{\mathrm{QR}} = \frac{1}{2}\overline{\mathrm{BD}} = 7\mathrm{cm}$ 이다.

69) 6

70) 4

71) 10

72) 8

$$\Rightarrow x = \frac{1}{2} \times (6+10) = 8$$

73) 20

$$\Rightarrow 25 = \frac{1}{2}(x+30) \qquad \therefore \quad x = 20$$

74) 7

$$\Rightarrow$$
 \overline{AC} 를 그으면 $\triangle ABC$ 에서

$$\overline{MP} = \frac{1}{2}\overline{BC} = 5 \text{ (cm)}$$

$$\triangle ACD에서 \overline{PN} = \frac{1}{2}\overline{AD} = 2(cm)$$

$$\therefore x = \overline{MP} + \overline{PN} = 5 + 2 = 7$$

75) 12

보조선
$$\overline{AC}$$
를 그어 \overline{MN} 과 만나는 점을 P라 하면 $\overline{PN} = \frac{1}{2}\overline{AD} = \frac{1}{2} \times 6 = 3$, $\overline{MP} = \overline{MN} - \overline{PN} = 9 - 3 = 6$

$$\therefore x = 2\overline{\text{MP}} = 2 \times 6 = 12$$

76) 10

$$\Rightarrow$$
 \overline{AC} 를 그으면 $\triangle ACD$ 에서

$$\overline{PN} = \frac{1}{2}\overline{AD} = 3(cm)$$

$$\overline{\text{MP}} = 8 - 3 = 5 \text{ (cm)}$$
이므로 $\triangle ABC$ 에서 $x = 2\overline{\text{MP}} = 2 \times 5 = 10$

77) 9

78) 2

$$\Rightarrow$$
 \triangle ABC에서 $\overline{MQ} = \frac{1}{2}\overline{BC} = 6(cm)$
 \triangle ABD에서 $\overline{MP} = \frac{1}{2}\overline{AD} = 4(cm)$

$$\therefore x = \overline{MQ} - \overline{MP} = 6 - 4 = 2$$

79) $\frac{3}{2}$

$$\Rightarrow \overline{MP} = \frac{1}{2}\overline{AD} = \frac{1}{2} \times 5 = \frac{5}{2}$$

$$\overline{MQ} = \frac{1}{2}\overline{BC} = \frac{1}{2} \times 8 = 4$$

$$\therefore x = \overline{MQ} - \overline{MP} = 4 - \frac{5}{2} = \frac{3}{2}$$

80) 6

$$\Rightarrow$$
 \triangle ABC에서 $\overline{MQ} = \frac{1}{2}\overline{BC} = 7(cm)$

$$\therefore \overline{MP} = \overline{MQ} - \overline{PQ} = 7 - 4 = 3 \text{ (cm)}$$

$$\triangle$$
ABD에서 $x = 2\overline{\text{MP}} = 6$

81) 12

$$\overrightarrow{MP} = \frac{1}{2} \overrightarrow{AD} = \frac{1}{2} \times 8 = 4$$

$$\overrightarrow{MQ} = \overrightarrow{MP} + \overrightarrow{PQ} = 4 + 2 = 6$$

$$\therefore x = 2\overrightarrow{MQ} = 2 \times 6 = 12$$

82) 12

$$\overrightarrow{MP} = \frac{1}{2}\overrightarrow{AD} = \frac{1}{2} \times 6 = 3$$

$$\overrightarrow{MP} = \overrightarrow{PQ} = 30| 므로 \overrightarrow{MQ} = 6$$

$$\therefore x = 2\overrightarrow{MQ} = 2 \times 6 = 12$$

83) 4

$$\Rightarrow \overline{MP} = \frac{1}{2}\overline{AD} = 3, \ \overline{MQ} = \frac{1}{2}\overline{BC} = 7$$
$$\therefore x = \overline{MQ} - \overline{MP} = 4$$

84) 3cm

$$\overline{\mathrm{EP}} = \frac{1}{2} \overline{\mathrm{AD}} = \frac{7}{2} \mathrm{cm} \,, \ \overline{\mathrm{EQ}} = \frac{1}{2} \overline{\mathrm{BC}} = \frac{13}{2} \mathrm{cm} \, \mathrm{O}$$
다. 따라서
$$\overline{\mathrm{PQ}} = \frac{13}{2} - \frac{7}{2} = 3 \mathrm{cm} \, \mathrm{O}$$
다.

85) 7

$$ightharpoonup \overline{EP} = \frac{1}{2}\overline{AD} = 50|$$
고, $\overline{EQ} = \frac{1}{2}\overline{BC} = 120|$ 다.
따라서 $\overline{PQ} = \overline{EQ} - \overline{EP} = 12 - 5 = 70|$ 다.

86) 4cm

$$ightarrow$$
 $ightarrow$ i

87) 10

$$\Leftrightarrow$$
 $\overline{\mathrm{MP}} = \frac{1}{2} \,\overline{\mathrm{AD}} = 3$ 이고, $\overline{\mathrm{PQ}} = 2$ 이므로 $\overline{\mathrm{BC}} = 2 \overline{\mathrm{MQ}} = 10$ 이다.

88) 18

$$\Rightarrow$$
 $\overline{\text{MP}}//\overline{\text{AD}}, \ \overline{\text{MP}} = \frac{1}{2}\overline{\text{AD}}$ 이므로 $\overline{\text{MP}} = 5$ 이다.
이 때, $\overline{\text{MQ}} = 9$ 이고, $\overline{\text{MQ}} = \frac{1}{2}\overline{\text{BC}}$ 이므로 $\overline{\text{BC}} = 18$ 이다.

89) 20 cm

90) 14cm

$$ightharpoonup \overline{EP} = rac{1}{2} \overline{AD} = 2 \mathrm{cm}$$
 이므로 $\overline{EQ} = 7 \mathrm{cm}$ 이다. 따라서 $\overline{BC} = 2 \overline{EQ} = 14 \mathrm{cm}$ 이다.

91) 12cm

점 A에서 $\overline{\rm DC}$ 에 평행선을 그어 $\overline{\rm MN}$, $\overline{\rm BC}$ 와 만나는 점을 각각 E, F라 할 때, $\overline{\rm ME} = \frac{1}{2}\overline{\rm BF} = 3{\rm cm}$ 이다. 따라서 $\overline{\rm MN} = 12{\rm cm}$ 이다.

- 92) 14
- 93) 16cm

위 그림에서 $\overline{AP}//\overline{DC}$ 일 때, $\overline{AM} = \overline{MB}$ 이므로 $\overline{MQ} = \frac{1}{2}\overline{BP} = 4$ cm이다. 따라서 $\overline{MN} = 16$ cm이다.

94) 4

$$\Rightarrow \overline{MP} = \frac{1}{2}\overline{AD} = 3, \ \overline{MQ} = \frac{1}{2}\overline{BC} = 70|\text{C}|.$$
of the $\overline{PQ} = \overline{MQ} - \overline{MP} = 40|\text{C}|.$

95) 4cm

다
$$\overline{AM}$$
: $\overline{AB} = \overline{MQ}$: \overline{BC} 이므로
 $1:2 = \overline{MQ}: 18$ \therefore $\overline{MQ} = 9 \text{cm}$
또, $\overline{BM}: \overline{AB} = \overline{MP}: \overline{AD}$ 이므로
 $1:2 = \overline{MP}: 10$ \therefore $\overline{MP} = 5 \text{cm}$
 \therefore $\overline{PQ} = 9 - 5 = 4 \text{ (cm)}$

96) 5cm

7) 24 ▷ △ABD에서 x=

$$\Rightarrow$$
 \triangle ABD에서 $x=2\overline{\mathrm{MP}}=2\times5=10$ \triangle DBC에서 $y=2\overline{\mathrm{PN}}=2\times7=14$ $\therefore x+y=10+14=24$

98) 15

 $ightharpoonup \overline{AC}$ 와 \overline{MN} 의 교점을 P라고 하면 $\triangle ABC$ 에서 중점 연결 정리에 의해 $x=\overline{MP}=rac{1}{2}\overline{BC}=7$

△ADC에서 중점 연결 정리에 의해

$$y = \overline{AD} = 2\overline{PN} = 8$$
$$\therefore x + y = 8 + 7 = 15$$

- 99) 11
- 100) 17