Summary Quiz 2

January 24, 2023 21:31

3.1 Well-Defined Operations

An operation \cdot is well defined when if $\begin{cases} x \sim y \\ w \sim z \end{cases} \to (x \cdot w) \sim (y \cdot z)$

Note: $x \sim y \leftrightarrow [x] = [y]$

3.2 Number Theory

- ▶ Any non-empty set $S \subseteq \mathbb{N}$ has a unique $d \in S$ such that $\forall x \in S, \ d \leq x$
- ▶ For $a, b \in \mathbb{Z}$, b > 0, then $\exists ! q, r \in \mathbb{Z}$ such that a = bq + r, $0 \le r < b$

5.1 Divisibility and Modulo

 $m \mid n \text{ means } \exists x \in \mathbb{Z} \text{ such that } n = mx$ $a \equiv b \mod n \text{ means } n \mid (a - b) \to \frac{a - b}{n} \in \mathbb{Z}$

5.2 Properties of Arithmetic Modulo *n*

- Commutative: $a + b \equiv b + a \pmod{n}$
- Commutative: $ab \equiv ba \pmod{n}$
- Associative: $(a + b) + c \equiv a + (b + c) \pmod{n}$
- Association: $(ab)c \equiv a(bc) \pmod{n}$
- Distributive: $a(b+c) \equiv ab + ac \pmod{n}$
- 0 Identity for $+: a + 0 \equiv a \pmod{n}$
- 1 Identity for $\cdot : 1a \equiv a \pmod{n}$
- Additive Inverses: $a + (-a) \equiv 0 \pmod{n}$

+ Theorems

Congruence modulo n is an equivalence relation

5.3 GCD and LCM

- d = GCD(a, b) if and only if:
 - $d \mid a$ and $d \mid b$
 - If $c \mid a$ and $c \mid b$, then $c \mid d$
- m = LCM(a, b) if and only if:
 - $a \mid m$ and $b \mid m$
 - If $a \mid n$ and $b \mid n$, then $m \mid n$

+ Theorems

- ▶ $\forall a, b \in \mathbb{Z}$, $\exists ! GCD d$ and $\exists x, y \in \mathbb{Z}$ such that d = ax + by
- $\forall a, b \in \mathbb{Z}, \exists ! LCM m$
- If GCD(a, b) = 1, then $\exists x, y$ such that ax + by = 1
- ▶ If GCD(a, b) = d, then $\{ax + by : x, y \in \mathbb{Z}\} = d \times \mathbb{Z}$

5.4 Prime and Irreducible

For $p \in \mathbb{Z}$ where p > 1:

- *p* is irreducible if the only divisors of *p* are 1 and *p*
- p is prime if whenever $p \mid ab$, then $p \mid a$ and $p \mid b$

+ Theorems

- p is prime $\leftrightarrow p$ is irreducible
- ▶ For any $n \in \mathbb{Z}$ where n > 1, $\exists! p_1, ..., p_s$ primes, $e_1, ..., e_s$ positive integers such that $n = p_1^{e_1} \times \cdots \times p_s^{e_s}$

6.1 Prime and Irreducible

For some set *S* and an operation \cdot , (S, \cdot) is a group if:

- Closure: $ab \in S$
- Associativity: (ab)c = a(bc)
- Identity: $\exists \epsilon \in S$ such that $x\epsilon = \epsilon x = x$
- Inverses: $\forall x \in S$, $\exists y \in S$ such that $xy = yx = \epsilon$