Tema 1: Sistemas de representación

Contenido

1. Sistemas numéricos

- Sistemas de numeración y cambio de base
- Aritmética binaria
- Sistemas de codificación y representación de los números

2. Codificación binaria

- Representación binaria de datos e instrucciones
- Características de los espacios de representación

Sistemas de numeración y cambio de base

- Un sistema de numeración en base b utiliza para representar los números un alfabeto compuesto por b símbolos o cifras
- Ejemplos:

• El número se expresa mediante una secuencia de cifras:

$$N \equiv ... n_4 n_3 n_2 n_1 n_0 n_{-1} n_{-2} n_{-3} ...$$

 El valor de cada cifra depende de la cifra en sí y de la posición que ocupa en la secuencia

Sistemas de numeración y cambio de base

 El valor del número se calcula mediante el polinomio:

$$\begin{split} N &\equiv ... + n_3 \cdot b^3 + n_2 \cdot b^2 + n_1 \cdot b^1 + n_0 \cdot b^0 + n_{-1} \cdot b^{-1} \\ &+ ... \\ N &\equiv \sum_i n_i \cdot b^i \end{split}$$

• Ejemplos:

$$3278,52_{10} = 3 \cdot 10^{3} + 2 \cdot 10^{2} + 7 \cdot 10^{1} + 8 \cdot 10^{0} + 5 \cdot 10^{-1} + 2 \cdot 10^{-2}$$

$$175,372_8 = 1 \cdot 8^2 + 7 \cdot 8^1 + 5 \cdot 8^0 + 3 \cdot 8^{-1} + 7 \cdot 8^{-2} + 2 \cdot 8^{-3} = 125,4882812_{10}$$

Sistemas de numeración y cambio de base

- Conversión decimal base b
 - Método de divisiones sucesivas entre la base **b**
 - Para números fraccionarios se realizan multiplicaciones sucesivas por la base b.
 - Consideración de restos mayores que 9 y *Error* de truncamiento
- Ejemplos:

$$26_{10} = 11010_2$$

$$0,1875_{10} = 0,0011_2$$

$$26,1875_{10} = 11010,0011_2$$

Sistemas de numeración y cambio de base

• Rango de representación: Conjunto de valores representable. Con **n** cifras en la base **b** podemos formar bⁿ combinaciones distintas. [0..bⁿ-1]

Sistema de numeración en base dos o binario

b = 2 (<i>binario</i>)	Decimal	Binario
(0.4)	0	000
{0,1}	1	001
Números binarios del 0 al 7	2	010
	3	011
	4	100
	5	101
	6	110

111

• Ejemplos:

$$110100_{2} = (1 \cdot 2^{5}) + (1 \cdot 2^{4}) + (1 \cdot 2^{2}) =$$

$$= 2^{5} + 2^{4} + 2^{2} = 32 + 16 + 4 = 52_{10}$$

$$0,10100_{2} = 2^{-1} + 2^{-3} = (1/2) + (1/8) = 0,625_{10}$$

$$10100,001_{2} = 2^{4} + 2^{2} + 2^{-3} = 16 + 4 + (1/8)$$

$$= 20,125_{10}$$

Sistemas de codificación y representación de números

Octal

b = **8** (
$$octal$$
) {0,1,2,3,4,5,6,7}

Correspondencia con el binario

Ejemplos

$$10001101100.11010_2 = 2154.64_8$$
 $537.24_8 = 101011111.010100_2$

Conversión Decimal - Octal

Sistemas de representación y codificación de números

Hexadecimal

Correspondencia con el binario

16 = 2⁴ ⇒ Una cifra en hexadecimal corresponde a 4 binarias

corresponde a + omarias			
Hexadecimal	Decimal	Binario	
0	0	0000	
1	1	0001	
2	2	0010	
3	3	0011	
4	4	0100	
5	5	0101	
6	6	0110	
7	7	0111	
8	8	1000	
9	9	1001	
A	10	1010	
В	11	1011	
C	12	1100	
D	13	1101	
Е	14	1110	
F	15	1111	

Sistemas de representación y codificación de números

Ejemplos

Conversión Decimal - Hexadecimal

$$4373.79_{10} \cong 1115.CA3D_{16}$$

0.79	0.64	0.24	0.84
<u>X</u> 16	<u>_x 16</u>	<u>_x 16</u>	_x 16
12)64	10)24	3.84	13)44

Aritmética binaria

Operaciones básicas

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	0 (1)

Α	В	A*B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	A – B
0	0	0
0	1	1 (1)
1	0	1
1	1	0

Α	В	A/B
0	0	
0	1	0
1	0	
1	1	1

Aritmética binaria

- Ejemplos
 - Sumas y restas

Multiplicaciones

División

Sistemas de representación y codificación de números

Código Gray

- Código no ponderado, continuo y cíclico
- Basado en un sistema binario
- Dos números sucesivos sólo varían en un bit

		TOBBOTO VOIT	
2 bits	3 bits	4 bits	Decimal
0 0	000	0000	0
0.1	001	0001	1
1 1	0 1 1	0011	2
10	010	0010	3
	1 1 0	0110	4
	111	0111	5
	101	0101	6
	100	0100	7
		1100	8
		1101	9
		1111	10
		1110	11
		1010	12
		1011	13
		1001	14
		1000	15

Sistemas de representación y codificación de números

- Código BCD Binary Coded Decimal
- Dígitos decimales codificados en binario

Decimal	BCD natural	BCD exceso 3	BCD Aiken	BCD 5421
0	0 0 0 0	0 0 1 1	0000	0000
1	0001	0 1 0 0	0001	0001
2	0 0 1 0	0 1 0 1	0 0 1 0	0010
3	0 0 1 1	0 1 1 0	0 0 1 1	0 0 1 1
4	0 1 0 0	0 1 1 1	0 1 0 0	0 1 0 0
5	0 1 0 1	1000	1011	1000
6	0110	1001	1100	1001
7	0 1 1 1	1010	1 1 0 1	1010
8	1000	1011	1110	1011
9	1001	1 1 0 0	1111	1 1 0 0

- BCD natural tiene pesos 8421
- BCD Aiken tiene pesos 2421
- Ejemplo

$$98325_{10} = 10011000001100100101_{BCD-natural}$$

9 8 3 2
$$5_{10}$$
 = 1111 1110 0011 0010 $1011_{BCD-Aiken}$

Sistemas de representación y codificación de números

- Representación de números enteros
 - Es necesario la representación del signo
 - > Se utiliza una cantidad determinada de bits (n)
- Signo y magnitud (SM)
 - El signo se representa en el bit más a la izquierda del dato. Bit (n-1)
 - ➤ En el resto de los bits se representa el valor del número en binario natural. Bits (n-2)..0
 - Doble representación del 0.

$$n = 6$$

$$10_{10} = 001010_{SM}$$
 $-4_{10} = 100100_{SM}$

$$O_{10} = 000000_{SM}$$
 $O_{10} = 100000_{SM}$

$$n = 4$$

$$-7_{10} = 1111_{SM}$$
 $-14_{10} = no representable$

Sistemas de representación y codificación de números

- Complemento a la base menos uno
 - Los valores positivos se representan en SM.
 - Los valores negativos se obtienen restando la magnitud del número a la base elevada al número de dígitos, menos uno.
 - Convierte las restas en sumas.
 - Doble representación del 0.
 - ► Ejemplos **Base 10**

$$n = 3$$
 $-63_{10} = 936_{C9} \Rightarrow 936 = 999 - 63$ $-16_{10} = 983_{C9} \Rightarrow 983 = 999 - 16$ $n = 4$ $-16_{10} = 9983_{C9} \Rightarrow 9983 = 9999 - 16$

Operación: 77 - 63

Sistemas de representación y codificación de números

Base 2

- Se intercambian ceros por unos y unos por ceros
- Rango: $[-2^{n-1} + 1, 2^{n-1} 1]$
- Ejemplos:

$$n = 6 C_1 de -10010_2 = 101101_{C1} -010010$$

$$111111$$

$$-010010$$

$$101101$$

$$C_1$$
 de -100111₂ = no representable
 C_1 de 0 = {000000_{C1}, 111111_{C1}}

Operación: 1000111₂ - 10010₂

Restando en binario natural

$$\begin{array}{r}
 1000111_{2} \\
 - 0010010_{2} \\
 \hline
 0110101_{2}
 \end{array}$$

Sumando en C1 (n=8)

Sistemas de representación y codificación de números

- Complemento a la base
 - Los valores positivos se representan en SM.
 - Los valores negativos se obtienen sumado uno a la representación en complemento a la base menos uno
 - Convierte las restas en sumas.
 - Ejemplos Base 10

$$n = 3 - 63_{10} = 937_{C10} \implies 937 = (999 - 63) + 1$$

 $-16_{10} = 984_{C10} \implies 984 = (999 - 16) + 1$
 $n = 4 - 16_{10} = 9984_{C10} \implies 9984 = (9999 - 16) + 1$

Operación: 77 - 63

El acarreo, si existe, no se considera

Sistemas de representación y codificación de números

Base 2

- Se intercambian los ceros y los unos y se suma '1'
- Rango : [-2ⁿ⁻¹, 2ⁿ⁻¹ 1]
- Ejemplos:

$$n = 6 C_2 de -10010_2 = 101110_{C2}$$

 C_2 de -1110010₂ = no representable

Operación:
$$11001_2 - 10010_2 = 111_2$$

Operando en C2
$$+ \frac{011001_{C2}}{101110_{C2}}$$

 $(n=6)$ $- \frac{(1)000111_{C2}}{(1)}$

El acarreo no se considera

Sistemas de representación y codificación de números

Representación sesgada

- La representación se obtiene sumando un sesgo o cantidad al valor del número
- El sesgo suele ser: 2ⁿ⁻¹
- ightharpoonup Rango : [-2ⁿ⁻¹, 2ⁿ⁻¹ 1]
- Ejemplos Base 2

$$n = 8 \Rightarrow Sesgo = 2^{8-1} = 128_{10} = 1000 \ 0000_2$$

 $11010_2 = 10011010_S$

$$-11010_2 = 01100110_S$$

$$0_2 = 1000 \ 0000_S$$

$$n = 4 \implies Sesgo = 2^{4-1} = 8_{10} = 1000_2$$

$$1_2 = 1001_S$$

$$-1_2 = 0111$$

Sistemas de representación y codificación de números

- Representación de los números reales
 - Representación en coma fija
 - Representación en coma flotante

$$N = (s) M \cdot B^{E}$$

$$\mathbf{N} \equiv \text{Valor num\'erico}$$
 $\mathbf{M} \equiv \text{Mantisa}$ $\mathbf{s} \equiv \text{signo}$ $\mathbf{B} \equiv \text{Base}$ $\mathbf{E} \equiv \text{Exponente}$

• Ejemplo en base 10:

$$1.234535 \cdot 10^3 = 1234.535 \cdot 10^0 = 0.1234535 \cdot 10^4$$

= $123453.5 \cdot 10^{-2} = 0.0001234535 \cdot 10^7$

Valores límite

Sistemas de representación y codificación de números

Estándar IEEE754

$$N = (-1)^s M \cdot 2^E$$

Representación S E M

$$N = nS + nE + Nm$$

Siendo nS la cantidad de bits para el signo, nE la cantidad de bits para el exponente y nM la cantidad de bits para la mantisa.

En *simple precisión c*onsta de 32 bits, distribuidos de la siguiente forma:

➤ Campo de signo : 1 bit

$$0 \Longrightarrow +$$

➤ <u>Campo del exponente</u>: 8 bits con representación sesgada, siendo el sesgo:

$$S = 2^{\text{ne-1}} - 1$$

Sistemas de representación y codificación de números Ejemplos:

$$ne = 8 \Rightarrow S = 2^{ne-1} - 1 = 127 = 0111 \ 11111$$

(E)	E+S	(e)
0	127+0=127	0111 1111
+2	127+2=129	1000 0001
+127	127+127=254	1111 1110
-1	127-1=126	0111 1110
-126	127-126=1	0000 0001

- Campo de mantisa : 23 bits, con formato normalizado:
 - $1 \le M < 2$
 - La mantisa siempre tendrá la forma M = [1.m] donde m es el valor que se almacena en el formato.
 - Ejemplos de normalización:

$$N1 = 1001.1100110 \cdot 2^{-5} = 1.0011100110 \cdot 2^{-2}$$

$$N2 = 0.000001101101 \cdot 2^{34} = 1.101101 \cdot 2^{28}$$

Sistemas de representación y codificación de números

Ejercicio:

Supongamos un formato de las mismas características que el IEEE754, pero dotado solo de 16 bits, de los cuales 1 es para el signo y 8 para el exponente. Identifiquemos el número:

 $N = 1001 \ 1111 \ 0001 \ 1101$

$$s = 1 \Rightarrow N < 0$$
 $e = 0011 1110 \Rightarrow E = -65$

$$m = 001 \ 1101 \Rightarrow M = 1.0011101_2 = -1.2265625_{10}$$

$$N = -1.2265625 \cdot 2^{-65} = -3,32440346980633 \cdot 10^{-20}$$

Sistemas de representación y codificación de números

> Situaciones especiales:

Si el en el campo del exponente encontramos e = 0, la mantisa está **desnormalizada**.

El sesgo pasa a ser $2^{\text{ne-1}}$ -2. Y el exponente del número será: $E = e - S = -2^{\text{ne-1}} + 2$

- Si $(e = 0) \land (m = 0) \rightarrow N = 0$
- Si $(e = 11...1) \land (m = 0) \rightarrow N = \infty$
- Si (e = 11...1) \wedge (m \neq 0) \rightarrow N = NaN

> Redondeo:

El redondeo de un número lo podemos realizar por exceso, por defecto, al más cercano o al par. El formato IEEE754 emplea el redondeo al par.

Resultado de la ALU (normalizado)	Acción	Mantisa redondeada
1.01101 10	Sumar 1	1.01110
1.01100 10	Truncar	1.01100
1.01100 11	Sumar 1	1.01101
1.01100 01	Truncar	1.01100
1.01100 00	Truncar	1.01100

Sistemas de representación y codificación de números

Rango de Representación

Números normalizados

$$|b| = M_{max} 2^{Emax}$$
 $M_{max} = 2 - 2^{-nm}$ $E_{max} = 2^{ne-1} - 1$ $|a| = M_{min} 2^{Emin}$ $M_{min} = 1$ $E_{min} = -(2^{ne-1} - 2)$

Números desnormalizados

$$|a'| = M'_{min} 2^{E'min}$$
 $M'_{min} = 2^{-nm}$ $E'_{min} = -(2^{ne-1}-2)$

Sistemas de representación y codificación de números

- Valores límite
 - Si $|N| > |b| \Rightarrow$ desbordamiento a infinito OVERFLOW
 - Si $|N| < |a'| \Rightarrow$ desbordamiento a cero UNDERFLOW
- Precisión:
 - Simple precisión

$$n = 32$$
 bits, $ne = 8$ bits, $nm = 23$ bits

• Doble precisión

$$n = 64$$
 bits, $ne = 11$ bits, $nm = 52$ bits

• Cuádruple precisión:

$$n = 128$$
 bits, $ne = 15$ bits, $nm = 112$ bits

2. Codificación binaria

Representación binaria de datos e instrucciones

- Magnitudes
 - **Analógicas**: toma valores continuos
 - **Digitales**: toma un conjunto de valores discreto
 - La mayoría de las magnitudes físicas son de tipo analógico
- Sistema digital binario
 - ➤ Representación de las magnitudes en base 2
 - Estados de un interruptor [ENCENDIDO, APAGADO]
 - Los dígitos {0, 1} corresponden con niveles de tensión eléctrica.

2. Codificación binaria

Características de los espacios de representación

- Condicionantes
 - Cantidad de estados representables (digital, binario)
 - Cantidad de elementos representables (espacio material finito)
 - Tamaños predefinidos en las unidades del computador
 - Tamaños predefinidos en la comunicación entre unidades del computador

Unidades de codificación

BIT	Byte = 8 bits	Palabra
1 KiloByte	$(KB) = 2^{10} Bytes =$	1024 Bytes
1 MegaByte	$(MB) = 2^{20} Bytes =$	1024 KB
1 GigaByte	$(GB) = 2^{30} Bytes =$	1024 MB
1 TeraByte	$(TB) = 2^{40} Bytes =$	1024 GB
1 PetaByte	$(PB) = 2^{50} Bytes =$	1024 TB ₂₇