

LFN @ LATR: NRA

Detecção de B em materiais tecnológicos por reacções nucleares

N. Catarino, Rui M.C. Silva

DECN-IST, 10 Nov 2023

Detecção de B em materiais tecnológicos por reacções nucleares

A fim de compreender e perspetivar de forma integradora e interligada a Física Nuclear e as suas potenciais aplicações tecnológicas, nas vertentes das reacções nucleares e detecção de elementos leves de grande importÂncia tecnológica, como é o caso do boro, este projecto envolve...

Trabalho e objectivos:

- compreensão da física das dispersões elásticas e inelásticas (reacções nucleares): fundamentação, realização prática e resultados espectáveis – espectros
- separação das contribuições elástica, EBS, e inelástica, NRA
- aplicação à caracterização de materiais a nível microscópico: informação pertinente composição elementar, quantificação, estrutura e espessura e extracção da informação pertinente: análise dos espectros
- familiarização com a cadeia electrónica de detecção: fundamentação e realização prática detectores de radiação, processadores de sinal e analisadores multicanal
- familiarização com o equipamento de produção e transporte de feixes de partículas: acelerador, campos deflectores e linhas de transporte
- montagem das amostras a utilizar com operação (limitada) dos sistemas de vácuo; estabelecimento de condições de operação, irradiação das amostras e recolha de dados

Análise de dados e resultados a atingir:

- análise (sumária) de espectros com calibração (conversão canal-energia) e identificação da composição elementar: identificação de elementos de Z ≥ 11 por EBS, identificação de elementos de ¹¹B, Z < 11 (e.g. ^{6,7}Li e ^{10,11}B) por NRA
- quantificação integral de B detectado a partir de cálculo simples
- apresentação de resultados

Detecção de B em materiais tecnológicos por reacções nucleares

Justificação do B:

o boro – $\sim 20\%$ ¹⁰B e 80% ¹¹B - é um elemento com aplicações relevantes em áreas de grande importância e impacto tecnológico, nomeadamente

- electrónica: semicondutores (o B introduzido no Si em posições substitucionais é um aceitador de electrões, contribui

p/ a condução c/ portadores positivos (buracos), devido à sua valência 3 (falta um electrão p/ saturar

as 4 ligações c/ Si vizinhos da sua posição na rede);

OLEDs azuis ou de cdo ajustável (o B incorporado em moléculas específicas torna-as activas na emissão

de luz, p/ alterações na estrutura electrónica molecular);

energética: electrólitos sólidos para baterias;

armazenamento de hidrogénio;

química: catálise (sequestração de óxidos de N, S, etc.);

– medicina: terapias BNCT/BPCT (o 10B/11B incorporados em moléculas específicas é útil na eliminação de gliomas pela

radiação emitida como resultado de reacções nucleares provocadas por neutrões/protões).

. . .

Justificação das reacções nucleares:

pela sua especificidade – ditada p/ estrutura nuclear dos isótopos envolvidos – são praticamente o único meio de detectar, de forma não destrutiva (preservando qto possível a amostra) isótopos leves (Z < 12) a energias baixas (e.g. < 3-5 MeV, disponíveis em "pequenos" aceleradores): em geral, a razão sinal-ruído é favorável (p/ ausência de fundo significativo), e as interferências de outras reacções (devidas a outros isótopos), qdo existem são pouco significativas.

LATR VG – the place

The machine...!

2.5MV VG

accelerator

control & data acq.

beam lines experiment hall

The 'production' chain...

Display & analytical software...

The experiment layout...

 $N\Delta x$ "wanted"!

$$p + {}^{11}B \rightarrow {}^{12}C^* \rightarrow {}^8Be^* + \alpha \rightarrow ...$$

$$E^*_{.} = 16.62 \text{ MeV}$$

$$I\pi = 2^-, \Gamma = 0.28 \text{ MeV}$$

cf. https://www.tunl.duke.edu/nucldata

p +
11
B \rightarrow (...) \rightarrow 8 Be* + $\alpha \rightarrow$...

$$E^{*}_{.} = 3.03 \text{ MeV}$$

$$I\pi = 2^{+}, \Gamma = 1.513 \text{ MeV}$$

$$p + {}^{11}B \rightarrow (...) \rightarrow {}^{8}Be_{g.s.} + \alpha \rightarrow ...$$
 $I\pi = 0^+, \Gamma = 5.57 \text{ eV}$

cf. https://www.tunl.duke.edu/nucldata

p + ¹¹B
$$\rightarrow$$
 (...) \rightarrow ⁸Be* + $\alpha \rightarrow$...
E* = 3.03 MeV
I π = 2+, Γ = 1.513 MeV

$$p + {}^{11}B \rightarrow (...) \rightarrow {}^{8}Be_{g.s.} + \alpha \rightarrow ...$$
 $I\pi = 0^+, \Gamma = 5.57 \text{ eV}$

cf. https://www.tunl.duke.edu/nucldata

NRA CALCulator

(C) R.C. da Silva (DECN/IST, 2019)

Type reaction as AX(a,b)A'Y: 11B(p,a)8Be

(Target AX taken as stationary in laboratory frame)

PRIMARY ION energy E/MeV = 0.7

EXAMPLES: type ⁹Be(p,α)⁶Li as 9Be(p,a)6Li or 9Be(p,4He)6Li

type 241Am(g,a) for α decay of ²⁴¹Am

type 241Am(g,p/n) for p/n separation energy

type 70Ga(+e,g) for E.C. decay of ⁷⁰Ga

type 70Ga(g,e-/e+) for β -/+ decay of 70Ga

Recoil/Daughter EXCITED STATE energy/MeV = 3.04

SCATTERING ANGLE/ejectile angle θ /degrees = 150

CALC

– LAB OUTPUTS:

ZMF OUTPUTS:

LCulator (C) R.C. da Silva (DECN/IST, 2019)

EXAMPLES: type $^9Be(p,\alpha)^6Li$ as 9Be(p,a)6Li or 9Be(p,4He)6Li

type 241Am(g,a) for α decay of ²⁴¹Am

type 241Am(g,p/n) for p/n separation energy

type 70Ga(+e,g) for E.C. decay of ⁷⁰Ga

type $70Ga(g,e^-/e^+)$ for $\beta^-/+$ decay of ^{70}Ga

Recoil/Daughter EXCITED STATE energy/MeV = 3.04

SCATTERING ANGLE/ejectile angle θ/degrees = 150

CALC

LAB OUTPUTS: ? ZMF OUTPUTS:

Canais possíveis:

$$\begin{array}{c}
I \\
p + {}^{11}B \rightarrow {}^{8}Be_{g.s.} + \alpha_{0} \\
E_{g.s.} = 0 \text{ MeV}
\end{array}$$

$$\begin{array}{c}
E_{g.s.} = 0 \text{ MeV} \\
I\pi = 0^{+}, \Gamma = 6.8 \text{ eV}, \tau = ?
\end{array}$$

59.97 MeV

Calcule
$$T_{\alpha_0}$$
 ($\theta_{lab} = 150^{\circ}$) = ?

{cf. K. Krane, Ch.11 ("Nuclear Reactions")}

$$\begin{array}{c}
II \\
p + {}^{11}B \rightarrow {}^{8}Be^* + \alpha_1 \\
E^* = 3.04 \text{ MeV} \\
I\pi = 0^+, \Gamma = 1.53 \text{ MeV}, \tau = ?
\end{array}$$

Calcule
$$T_{\alpha_1}$$
 ($\theta_{lab} = 150^{\circ}$) = ?

{cf. K. Krane, Ch.11 ("Nuclear Reactions")}

$$\begin{bmatrix}
P + {}^{11}B \rightarrow (...)^* \rightarrow 3\alpha \\
E^* = 3.04 \text{ MeV}
\end{bmatrix}$$

Calcule
$$Q_{III}$$
 = ? ... $(T_{\alpha})_{max}$ = ?

...
$$(T_{\alpha})_{max} = ?$$

- maximo - dois alphas parados e um deles com toda a velocidade

- Assim, a Energia cinética maxima é a energia do protão

As secções eficazes: cf. https://www-nds.iaea.org/exfor/ibandl.htm

As secções eficazes: cf. https://www-nds.iaea.org/exfor/ibandl.htm

As secções eficazes: cf. https://www-nds.iaea.org/exfor/ibandl.htm

$$\begin{bmatrix}
p + {}^{11}B \rightarrow {}^{8}Be_{g.s.} + \alpha_{0} \\
E_{g.s.} = 0 \text{ MeV} \\
I\pi = 0^{+}, \Gamma = 6.8 \text{ eV}
\end{bmatrix}$$

$$(p + {}^{11}B \rightarrow {}^{8}Be^* + \alpha_1) \rightarrow 2\alpha + \alpha_1$$

$$E^* = 3.04 \text{ MeV}$$

$$I\pi = 0^+, \Gamma = 1.53 \text{ MeV}$$

É a energia "correta" para que ocorra a reação (se for a mais os protões passam qause sem interagir e se for de menos não há energia suficiente para que ocorra a reação)

Porquê a escolha da energia p/ o feixe ?

The energy calibration...

Establishing the channel-to-energy conversions

The energy calibration...

Establishing the channel-to-energy conversions

Exemplo

Fonte	Transição		I%	E _n /keV	E/keV
²⁴⁴ Cm (0+)	18,1 <i>a</i>				5901.61
	α_0	0+	76.4	0	5804.82
	α_1	2+	23.6	42.824	5762.70
	α_2	4+	0.022	141.690	5664
²⁴¹ Am (5/2–)	432,2 a				5637.81
	α_0	5/2+	0.34	0	5544.5
	α_1	7/2+	0.20	33.192	5511.47
	QL 2	5/2_	85.2	59.537	5485.56
	α_3	9/2+	0.04	75.89	5469.45
	Q 4	7/2–	12.8	102.96	5442.80
	α_5	11/2+	0.01	130.00	5416.27
	α_6	9/2-	1.40	158.51	5388.23
	α7	13/2+	-	191.5	5355.9
	α_8	11/2-	0.015	225.96	5321.9
²³⁹ Pu (1/2+)	24110 a				5244.50
	α_0	7/2-	0.03	0	5156.72
	α_1	1/2+	73.3	0.0768	5156.59
	α_2	3/2+	15.1	13.040	5144.3
	α3	9/2-	0.03	46.204	5111.2
	α4	5/2+	11.5	51.701	5105.5

The (kind of) primary 'deliverable'...

Exemplo I: espectros de vidros de borossilicato (BSG) não dopado e dopado c/ Li, obtidos no LATR/IST

O que é isto?

Raios x de transições atómicas e raios x emitidos devido à emissão de eletrões de auger

Qual dos vidros tem B ?ambos Qual dos vidros tem Li ? azul

The (kind of) primary 'deliverable'...

Exemplo: espectros de mistura $H_2BO_3 + CaF_2$, publicado em..

Journal of Radioanalytical and Nuclear Chemistry, Vol. 254, No. 1 (2002) 53–57

The results...