ASCON

Authenticated Encryption CAESAR and NIST LWC Winner

Rithvika Pervala

Department of EECS Indian Institute of Technology Bhilai

May 1, 2023

T4 - Automated Analysis

- T1 Construction
- T3 Verilog
- T4 Automated Analysis

Abstract

Abstract. Authenticated encryption satisfies the basic need for authenticity and confidentiality in our information infrastructure. In this paper, we provide the specification of Ascon-128 and Ascon-128a. Both authenticated encryption algorithms provide efficient authenticated encryption on resource-constrained devices and on high-end CPUs. Furthermore, they have been selected as the "primary choice" for lightweight authenticated encryption in the final portfolio of the CAESAR competition. In addition, we specify the hash function Ascon-Hash, and the extendable output function Ascon-Xof. Moreover, we complement the specification by providing a detailed overview of existing cryptanalysis and implementation results.

Abstract

Abstract. Authenticated encryption satisfies the basic need for authenticity and confidentiality in our information infrastructure. In this paper, we provide the specification of Ascon-128 and Ascon-128a. Both authenticated encryption algorithms provide efficient authenticated encryption on resource-constrained devices and on high-end CPUs. Furthermore, they have been selected as the "primary choice" for lightweight authenticated encryption in the final portfolio of the CAESAR competition. In addition, we specify the hash function Ascon-Hash, and the extendable output function Ascon-Xof. Moreover, we complement the specification by providing a detailed overview of existing cryptanalysis and implementation results.

Key Points

- Authentication AEAD, Single Pass, Online
- Device Versatility High End CPU, Small Devices
- Primitive Options Encryption, Hash, XOF
- Cryptanalysis Linear, Differential, Zero-Sum, Integral

Cipher Specifications

Recommended parameters for ASCON authenticated encryption

Cimbon.			Bit size	of		Rou	nds
Cipher	key	nonce	tag	rate	capacity	p ^a	pb
Ascon-128	128	128	128	64	256	12	6
Ascon-128a	128	128	128	128	192	12	8

Sponge Construction

- State (s) The sponge operates on a state of 320 bits
- Rate (r) Rate at which message is consumed
- Capacity (c) Encryption, Hash, XOF
- Tag (t)- Associated with Authentication.
- a, b Number of Rounds in **End** and **Core** Permutations

State (S)

State (S)

- Rate (r) 64 Bits Block
- Capacity (c) 256 Bits

- Rate (r) 128 Bits Block
- Capacity (c) 192 Bits

Initialization

Duplex-Sponge Construction

• Initialization - Initialize the 320-Bit State S with Initialization Vector IV, key K, and Nonce N. Run it through **End Permutation** p^a and inject padded K.

Initialization Associated Data

Duplex-Sponge Construction

- Initialization Initialize the 320-Bit State S with Initialization Vector IV, key K, and Nonce N. Run it through **End Permutation** p^a and inject padded K.
- Associated Data Processing Inject S with Associated Data blocks A_i and and digest through Core Permutation p^b .

Duplex-Sponge Construction

- Initialization Initialize the 320-Bit State S with Initialization Vector IV, key K, and Nonce N. Run it through **End Permutation** p^a and inject padded K.
- Associated Data Processing Inject S with Associated Data blocks A_i and and digest through Core Permutation p^b .
- **Encryption** Inject *S* with plaintext blocks P_i and extract ciphertext blocks C_i after each run of p_b .

Duplex-Sponge Construction

- Initialization Initialize the 320-Bit State S with Initialization Vector IV, key K, and Nonce N. Run it through **End Permutation** p^a and inject padded K.
- Associated Data Processing Inject S with Associated Data blocks A_i and and digest through Core Permutation p^b .
- **Encryption** Inject *S* with plaintext blocks P_i and extract ciphertext blocks C_i after each run of p_b .
- **Finalization** Inject padded K again and extract the Tag T for authentication after running through p^a .

Initialization and Associated Data Processing

Initialization

$$\begin{aligned} IV_{k,r,a,b} &\leftarrow k||r||a||b||0^{160-k} \\ S &\leftarrow IV||K||V \\ S &\leftarrow p^{a}(S) \oplus \left(0^{320-k}||K\right) \end{aligned}$$

- |*IV*| 64, |*K*| 128, |*N*| 128
- ASCON-128 80400c0600000000
- ASCON-128a 80800c0800000000

Initialization and Associated Data Processing

Initialization

$$\begin{aligned} IV_{k,r,a,b} &\leftarrow k||r||a||b||0^{160-k} \\ S &\leftarrow IV||K||V \\ S &\leftarrow p^{a}(S) \oplus \left(0^{320-k}||K\right) \end{aligned}$$

- |*IV*| 64, |*K*| 128, |*N*| 128
- ASCON-128 80400c0600000000
- ASCON-128a 80800c0800000000

Associated Data Processing

 Padding the Associated Data A and splitting s r-Bit Blocks

$$A_1, \dots, A_s \leftarrow A||1||0^{r-1-(|A| \mod r)}$$

 Digesting Associated Data Blocks

$$S \leftarrow p^b \left((S_r \oplus A_i) || S_c \right), \ 1 \leq i \leq s$$

 Adding 1-bit Domain Separation Constant

$$S \leftarrow S \oplus \left(0^{319}||1\right)$$

Encryption and Finalisation

Encryption

 Padding the Plaintext P and splitting t r-Bit Blocks

$$P_1, \dots, P_t \leftarrow P||1||0^{r-1-(|P| \mod r)}$$

 Injecting Plaintext and Extracting Ciphertext

$$C_{i} \leftarrow S_{r} \oplus P_{i} \quad 1 \leq i \leq t$$

$$S \leftarrow \begin{cases} \rho^{b} (C_{i}||S_{c}) & \text{if } 1 \leq i < t \\ C_{i}||S_{c} & \text{if } i = t \end{cases}$$

Unpadding Last Ciphertext C_t

$$C'_t \leftarrow |C_t|_{|P| \mod r}$$

Encryption and Finalisation

Encryption

 Padding the Plaintext P and splitting t r-Bit Blocks

$$P_1, \dots, P_t \leftarrow P||1||0^{r-1-(|P| \mod r)}$$

 Injecting Plaintext and Extracting Ciphertext

$$C_{i} \leftarrow S_{r} \oplus P_{i} \quad 1 \leq i \leq t$$

$$S \leftarrow \begin{cases} p^{b} (C_{i}||S_{c}) & \text{if } 1 \leq i < t \\ C_{i}||S_{c} & \text{if } i = t \end{cases}$$

Unpadding Last Ciphertext C_t

$$C'_t \leftarrow \lfloor C_t \rfloor_{|P| \mod r}$$

Finalization

Adding Padded Key to State

$$S \leftarrow S \oplus \left(0^r ||K|| 0^{c-k}\right)$$

End Permutation

$$S \leftarrow p^a(S)$$

 Extracting Tag T from the Least Significant 128 Bits after adding Key

$$T \leftarrow \lceil S \rceil^{128} \oplus \lceil K \rceil^{128}$$

Hash

Round Constant (p_c)

Permutation $(p = p_L \circ p_S \circ p_C)$

- $x_2 := x_2 \oplus c_r$
- 12 Round Constants
- $p^a \rightarrow c_r$ and $p^b \rightarrow c_{a-b+r}$

Round Constant (p_c)

Permutation $(p = p_L \circ p_S \circ p_C)$

1 Byte Constant

- $x_2 := x_2 \oplus c_r$
- 12 Round Constants

•
$$p^a \rightarrow c_r$$
 and $p^b \rightarrow c_{a-b+r}$

p^{12}	p^8	p^6	Constant	p^{12}	p^8	p^6	Constant
0			00000000000000000000000000000000000000	6	2	0	00000000000000000096
1			00000000000000000000e1	7	3	1	00000000000000000087
2			000000000000000000d2	8	4	2	00000000000000000078
3			000000000000000000c3	9	5	3	00000000000000000069
4	0		000000000000000000b4	10	6	4	0000000000000000005a
5	1		000000000000000000a5	11	7	5	0000000000000000004b

Sbox (p_S) and Linear Layer (p_L)

Permutation ($p = p_L \circ p_S \circ p_C$)

Sbox (p_S) and Linear Layer (p_L)

Permutation $(p = p_L \circ p_S \circ p_C)$

	х	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f	10	11	12	13	14	15	16	17	18	19	la	1b	1c	1d	le	1f
S	(x)	4	b	1f	14	1a	15	9	2	1b	5	8	12	1d	3	6	1c	le	13	7	е	0	d	11	18	10	С	1	19	16	a	f	17

Sbox (p_s) and Linear Layer (p_t)

Permutation $(p = p_L \circ p_S \circ p_C)$

T1 - Construction

000000000

Linear Layer

$$x_0 := x_0 \oplus (x_0 \gg 19) \oplus (x_0 \gg 28)$$

$$x_1 := x_1 \oplus (x_1 \gg 61) \oplus (x_1 \gg 39)$$

$$x_2 := x_2 \oplus (x_2 \gg 1) \oplus (x_2 \gg 6)$$

$$x_3 := x_3 \oplus (x_3 \gg 10) \oplus (x_3 \gg 17)$$

$$x_4 := x_4 \oplus (x_4 \gg 7) \oplus (x_4 \gg 41)$$

Outline

- 1 T1 Construction
- 2 T2 Cryptanalysis
- 3 T3 Verilog
- 4 T4 Automated Analysis
- 5 Conclusion

DDT

	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f	10	11	12	13	14	15	16	17	18	19	1a	1b	1c	1d	1e	1f
0	32																															
1										4		4		4		4									4		4		4		4	.
2																		4		4		4		4		4		4		4		4
3		4				4				4				4			4				4				4				4			.
4							8								8								8								8	.
5																		4		4	4		4		4		4			4		4
6		2		2		2		2		2		2		2		2		2		2		2		2		2		2		2		2
7			4	4			4	4			4	4			4	4																.
8							4	4							4	4							4	4							4	4
9		2		2	2		2		2		2			2		2	2		2			2		2		2		2	2		2	.
10		2	2		2			2		2	2		2			2		2	2		2			2		2	2		2			2
11			2	2			2	2			2	2			2	2			2	2			2	2			2	2			2	2
12		8							8								8									8						
13		2		2		2		2	2		2		2		2		2		2		2		2			2		2		2		2
14		4	4		4			4										4	4		4			4								.
15	١.								4	4			4	4											4	4			4	4		·
16										8		8													8		8					.
17																		8		8		8		8								.
18	١.	2		2		2		2		2		2		2		2	2		2		2		2		2		2		2		2	·
19	· ·		8		8						8		8																			·
20					4	4	4	4					4	4	4	4																
21						4		4		4		4						4		4										4		4
22	· ·																2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
23			4		4						4		4						4		4						4		4			
24					2	2	2	2					2	2	2	2					2	2	2	2					2	2	2	2
25				4			4		4					4			4					4						4			4	
26		2	2			2	2		2			2	2			2		2	2			2	2		2			2	2			2
27	· ·		2	2	2	2					2	2	2	2					2	2	2	2					2	2	2	2		·
28		4		4					4		4						4		4							4		4				·
29				4		4			4						4		4						4					4		4		.
30									2	2	2	2	2	2	2	2									2	2	2	2	2	2	2	2
31			4	4	4	4													4	4	4	4										.

LAT

	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f	10	11	12	13	14	15	16	17	18	19	1a	1b	1c	1d	1e	1f
0	16																															-
1							8			4	4			-4	4				4	4			4	-4	4		-4		-4		-4	
2							-8	8			4	4			4	4			4	4			-4	-4								
3		8								4		4		4		-4	-8								4		4		4		-4	
4				4		-4					4			4	-4	-4			4		-4					-8		-4	-4		4	-4
5				4		4				-4						-4				-4	4		-4	-4	4		-4	4		-8		-4
6				4		-4						-4		4						-4	-4		-4	-4		8		-4	-4		-4	4
7				-4		-4				4	4	4			-4				-4		-4				-4		-4	4		-8		4
8											4	4			-4	-4										8	-4	4		8	4	-4
9								-8		-4		4		4		4			4	4			-4	4	4			4	-4			4
10																			4	4			4	4		8	4	-4		-8	4	-4
11		8								-4	4			-4	-4		8								4			-4	4			4
12			-8	4	-8	-4						4		-4					-4		4						4		-4			
13				-4	-8	4				4	-4	-4			-4					4	-4		-4	-4	4						4	
14				-4	8	-4					-4			-4	-4	-4				4	4		-4	-4			4		-4			
15			8	-4	-8	-4				-4						-4			4		4				-4						-4	
16							-8			4		-4	-4		-4						4	-4	4	4	4		-4		-4		-4	
17									-8		-4	4	-4	-4				8	4	-4	-4	-4										
18		-8								-4	4		-4			-4			-4	4	-4	-4			4		4		4		-4	
19							-8	-8					4	-4	4	-4					-4	4	4	-4								
20				4		4				4	4	-4	-4	-4		-4			4			4	-4	4	-4		4	4				4
21				4		-4						-4	4		-4	4		8		4		4						4	4		-4	-4
22				-4		-4				4			-4	4	4		8			-4		4			4		4	4				-4
23				4		-4			8		-4		-4						4			-4	4	-4				4	4		4	4
24								-8		4	4		-4			4					4	-4	-4	-4	-4			-4	4			-4
25													4	-4	-4	4		-8	4	-4	-4	-4					4	4			-4	-4
26		8								-4		-4	-4		4				-4	4	-4	-4			-4			4	-4			-4
27									8		-4	4	-4	-4							-4	4	-4	4			-4	-4			-4	-4
28			8	4		-4				4			4	-4	4				-4			-4	-4	4	4						4	
29				-4		4			8		4		4					8		-4		-4					4		-4			
30				4		4				4	-4	4	4	4		-4	8			4		-4			-4						-4	
31			8	4		4						4	-4		-4	4			-4			4	4	-4			4		-4			

BCT

	0	1	2	3	4	5	6	7	8	9	а	b	С	d	e	f	10	11	12	13	14	15	16	17	18	19	1a	1b	1c	1d	1e	1f
0	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
1	32						8			4		4		4	8	4		4		4	4		12		8		8		4	4	12	4
2	32	12	4		4			4	8								8	8	4	4	4	4		8		12		4		4		4
3	32	4	8		8	4				12	8	8	8	4			4				4				12		8		4			
4	32				4	8	12	8		16		16	4	8	12	8		16		16	4	8	12	8	16		16		4	8	12	8
5	32						8			4		4		4	8	4		4		4	4		12		8		8		4	4	12	4
6	32	2		2		2		2		2		2		2		2		2		2		2		2		2		2		2		2
7	32		8	4	4		4	4		8	8	12	4		4	4			4		4				8		12		4			
8	32			4			8	4	4					4	4	4	4	8		8		12	4	12				4			8	4
9	32	2		2	2		2		2		2			2		2	2		2			2		2		2		2	2		2	
10	32	2	2		2			2		2	2		2			2		2	2		2			2		2	2		2			2
11	32		2	2			2	2			2	2			2	2			2	2			2	2			2	2			2	2
12	32	12	16	8	16	8		4	12		8		8		4		12	16	8	16	8	16	4	16		12		8		8		4
13	32	2		2		2		2	2		2		2		2		2		2		2		2			2		2		2		2
14	32	12	4		4			4	8								8	8	4	4	4	4		8		12		4		4		4
15	32	4	8	4	8				8	4	12		12	4			4		4						4	8		4	4	4		
16	32	4	16	4	16	8	16	8		12	16	12	16	8	16	8	4		4		8		8		12		12		8		8	
17	32	8		8		8	16	8	16	4		4		4	16	4	16	12		12		12	16	12		8		8		8	16	8
18	32	2		2		2		2		2		2		2		2	2		2		2		2		2		2		2		2	
19	32	16	12	8	12	8			16	16	12	8	12	8			16		8	4	8	4			16	16	8	4	8	4		
20	32				4	4	12	4		8		8	4	4	12	4							8		8		8				8	
21	32					4	8	4		4		4			8			12		12		8	8	8						4	8	4
22	32																2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
23	32		8	4	4		4	4		8	8	12	4		4	4			4		4				8		12		4			
24	32				2	2	2	2					2	2	2	2					2	2	2	2					2	2	2	2
25	32			4			8	4	4					4	4	4	4	8		8		12	4	12				4			8	4
26	32	2	2			2	2		2			2	2			2		2	2			2	2		2			2	2			2
27	32		2	2	2	2					2	2	2	2					2	2	2	2					2	2	2	2		
28	32	4	8	4	8				8	4	12		12	4			4		4						4	8		4	4	4		
29	32	8		4		4			12						4		12	8		8		8	4	8		8		4		4		
30	32								2	2	2	2	2	2	2	2									2	2	2	2	2	2	2	2
31	32	8	12	4	12	4			8		8		8				8		4	4	4	4				8						

Sbox Analysis

- Differential Branch Number -3
- Differential Uniformity 8

DDT Frequency Analysis

$f(\Delta_i, \Delta_o)$	S
0	707
2	176
4	120
6	0
8	20

Sbox Analysis

- Differential Branch Number 3
- Differential Uniformity 8

- Linear Branch Number 3
- Maximum Absolute Linear
 Bias 8

DDT Frequency Analysis

$f(\Delta_i, \Delta_o)$	S
0	707
2	176
4	120
6	0
8	20

LAT Frequency Analysis

ϵ	S
-8	18
-4	174
0	647
4	162
8	22

BCT BDT

Sbox Analysis

• Boomerang Uniformity - 16

BCT Frequency Analysis

$f(\Delta_i, \nabla_o)$	S
0	445
2	176
4	150
8	110
12	50
16	30

BDT Frequency Analysis

$f(\Delta_i, \Delta_o, \nabla_o)$	S
0	31624
2	352
4	720
8	40
32	32

Differential and Linear Cryptanalysis

- **Linear Layer** (Σ_i) Differential and Linear Branch Number is 4.
- The minimum number of active S-boxes after 3 rounds (p^3)
 - Differential Characteristics 15
 - Linear Characteristics 13

Differential and Linear Cryptanalysis

- **Linear Layer** (Σ_i) Differential and Linear Branch Number is 4.
- The minimum number of active S-boxes after 3 rounds (p^3)
 - Differential Characteristics 15
 - Linear Characteristics 13

Rounds (R)	1	2	3	4	5
Minimum # Active Sboxes (Differential)	1	4	15	≤ 44	≤ 78
Minimum # Active Sboxes (Linear)	1	4	13	\leq 43	≤ 67

Differential and Linear Cryptanalysis

- **Linear Layer** (Σ_i) Differential and Linear Branch Number is 4.
- The minimum number of active S-boxes after 3 rounds (p^3)
 - Differential Characteristics 15
 - Linear Characteristics 13

Rounds (R)	1	2	3	4	5
Minimum # Active Sboxes (Differential)	1	4	15	≤ 44	≤ 78
Minimum # Active Sboxes (Linear)	1	4	13	≤ 43	≤ 67

Collision Producing Differentials - Forgery Attack

• Differentials with differences in the rate part (S_r) of State at the input (Δ_l^r) and output (Δ_0^r) of p^b .

$$\Delta_I^r \xrightarrow{p^b} \Delta_O^r$$

• Might be useful in Forgery attack on the AEAD scheme.

Truncated Differential over Sbox

Undisturbed Bits

For a specific input difference Δ_i of an S-box, if some bits of the output difference Δ_o^* remain invariant, then we call such bits **undisturbed**.

$$Pr\left[\Delta_i \xrightarrow{S} \Delta_o^*\right] = 1$$

Truncated Differential over Sbox

Undisturbed Bits

For a specific input difference Δ_i of an S-box, if some bits of the output difference Δ_a^* remain invariant, then we call such bits **undisturbed**.

$$Pr\left[\Delta_i \xrightarrow{S} \Delta_o^*\right] = 1$$

Δ_i	Δ_o^*
00001	*1***
00010	1***1
00011	***0*
00100	**110
00101	1****
01111	*1*0*

Δ_i	Δ_o^*
10000	*10**
10001	10**1
10011	0***0
10100	0*1**
10101	****1
10110	1****

Δ_i	Δ_o^*
00110	****1
00111	0**1*
01000	**11*
01011	***1*
01100	**00*
01110	*0***

Δ_i	Δ_o^*
10111	****0
11000	**1**
11100	**0**
11110	*1***
11111	*0***

Truncated Differential over Sbox

Undisturbed Bits

For a specific input difference Δ_i of an S-box, if some bits of the output difference Δ_0^* remain invariant, then we call such bits **undisturbed**.

$$Pr\left[\Delta_i \xrightarrow{S} \Delta_o^*\right] = 1$$

Note - Inverse S-Box only has 2 undisturbed bits.

Δ_i	Δ_o^*
00001	*1***
00010	1***1
00011	***0*
00100	**110
00101	1****
01111	*1*0*

Δ_i	Δ_o^*
10000	*10**
10001	10**1
10011	0***0
10100	0*1**
10101	****1
10110	1****

Δ_i	Δ_o^*
00110	****1
00111	0**1*
01000	**11*
01011	***1*
01100	**00*
01110	*0***

Δ_i	Δ_o^*
10111	****0
11000	**1**
11100	**0**
11110	*1***
11111	*0***

3.5 Round Truncated Differential Distinguisher

3.5 Round Truncated Differential Distinguisher

	100000000000000000000000000000000000000
	000000000000000000000000000000000000000
1	000000000000000000000000000000000000000
i	100000000000000000000000000000000000000
i	100000000000000000000000000000000000000
	000000000000000000000000000000000000000
İ	*00000000000000000000000000000000000000
S_1	*00000000000000000000000000000000000000
i	*00000000000000000000000000000000000000
ĺ	000000000000000000000000000000000000000
-	

	100000000000000000000000000000000000000
	000000000000000000000000000000000000000
1	000000000000000000000000000000000000000
	100000000000000000000000000000000000000
	100000000000000000000000000000000000000
	000000000000000000000000000000000000000
	*00000000000000000000000000000000000000
S_1	*00000000000000000000000000000000000000
İ	*00000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
P ₁	*0000000000000000000000000000000000000
	**0000*00000000000000000000000000000000
	*00000000*00000*0000000000000000000000
	000000000000000000000000000000000000000

	100000000000000000000000000000000000000
	000000000000000000000000000000000000000
1	000000000000000000000000000000000000000
	100000000000000000000000000000000000000
	100000000000000000000000000000000000000
	000000000000000000000000000000000000000
	*00000000000000000000000000000000000000
S ₁	*00000000000000000000000000000000000000
	*00000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	*0000000000000000000000000000000000000
P_1	**0000*00000000000000000000000000000000
	*00000000*00000*0000000000000000000000
	000000000000000000000000000000000000000
	**0000*000*000000000000000000000000000
S ₂	**0000*000*000000000000000000000000000
	**0000*000*0000*0000000000000000000000
	**0000*000*000000000000000000000000000
	*00000000*00000*0000000000000000000000

	100000000000000000000000000000000000000
,	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	100000000000000000000000000000000000000
	100000000000000000000000000000000000000
	000000000000000000000000000000000000000
	*00000000000000000000000000000000000000
S ₁	*00000000000000000000000000000000000000
	*00000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	*00000000000000000000000000000000000000
P ₁	**0000*00000000000000000000000000000000
	*00000000000000000000000000000000000000
	000000000000000000000000000000000000000
	**0000*000*0000*00000000000000000000000
	**0000*000*00000*0000000000000000000000
S ₂	**0000*000*000000000000000000000000000
	**0000*0000000000000000000000000000000
	*00000000*00000*0000000000000000000000
	**0*00*0000000000000000000000000000000
	0*0000*00*00*0000000000000000000000
P ₂	****00**00***000***0000*00000000000**0000
	000000**00**0**0***0*00*0000*0000*0000
	*000*00*00*00000**000000*0000000000**0*0

	100000000000000000000000000000000000000
	000000000000000000000000000000000000000
1	000000000000000000000000000000000000000
	100000000000000000000000000000000000000
	100000000000000000000000000000000000000
	000000000000000000000000000000000000000
	*00000000000000000000000000000000000000
S_1	*00000000000000000000000000000000000000
	*00000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	*00000000000000000000000000000000000000
P_1	**0000*00000000000000000000000000000000
	*00000000*00000*0000000000000000000000
	000000000000000000000000000000000000000
	**0000*000*000000000000000000000000000
	**0000*000*000000000000000000000000000
S ₂	**0000*000*000000000000000000000000000
	**0000*000*0000000000000000000000000000
	*000000000*00000*000000000000000000000
	0*00*000*000000**00000**0**00000000
	0*0000*000*00*000000000000000000000
P ₂	****00**00***000***0000*00000000000**0000
	000000**00**0**0***0*00*0000*0000*0000
	*000*00*000000**000000*000000000000**0*0

S ₃	***************************************
	*****0**00***0*0******00****00*****00****
	00**00**00*0*****00***0**0*****000****

1	100000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	100000000000000000000000000000000000000
	100000000000000000000000000000000000000
	000000000000000000000000000000000000000
	*00000000000000000000000000000000000000
S_1	*00000000000000000000000000000000000000
	*00000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	*0000000000000000000000000000000000000
P_1	**0000*00000000000000000000000000000000
	*00000000*00000*0000000000000000000000
	000000000000000000000000000000000000000
	**0000*000*000000000000000000000000000
	**0000*000*000000000000000000000000000
S ₂	**0000*000*000000000000000000000000000
	**0000*000*000000000000000000000000000
	*000000000*00000*000000000000000000000
	0*00*00000**0**00000**0**0000**00000
	0*0000*00*00*000000000000000000000
P ₂	****00***000***0000**00000000000000000
	000000**00**0***0*00*0000*0000*00000
	*000*00*00*00000**000000000000000**0*0000

S_3	*****0**00***0*0**0**00*00000*0****000*0*
	*****0**00***0*0***0******000*0*0*0*****
	00**00**00*0******00****000*0*0*0**00**00*0*

P ₃	***************************************

$\overline{}$	100000000000000000000000000000000000000
	000000000000000000000000000000000000000
1	000000000000000000000000000000000000000
	100000000000000000000000000000000000000
	100000000000000000000000000000000000000
	000000000000000000000000000000000000000
	*0000000000000000000000000000000000000
S_1	*0000000000000000000000000000000000000
	*0000000000000000000000000000000000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
	*0000000000000000000000000000000000000
P_1	**0000*0000000000000000000000000000000
	*000000000*00000*0000000000000000000000
İ	000000000000000000000000000000000000000
	**0000*000*000000000000000000000000000
	**0000*000*000000000000000000000000000
S ₂	**0000*000*000000000000000000000000000
	**0000*000*0000000000000000000000000000
İ	*00000000*00000*0000000000000000000000
	0*00*000*000000**0000**0**0000*0*0000
	0*0000*00*00*00*0000000000000000000
P_2	****00**000***000***0000*000000000000**0000
	000000*000*000000000000000000000000
	*000*00*00*00000**000000*0000000000**0*0
	*****0**00***0*0*****00***00*0*0*0*0****
	*****0**00***0*0******00***000*0*0*0****
S ₃	*****0**00***0*0**0**00*000000*0*0****000*0*
	*****0**00***0*0******00***000*0*0*0****
	00**00**00*0*****00***000*0*0*0****00**00*0*

İ	***************************************
P ₃	***************************************

ĺ	***************************************
S ₄	***************************************

<i>X</i> ₀	00000000000000000		
<i>x</i> ₁	000000000000000000		
<i>x</i> ₂	000000000000000000		
<i>X</i> ₃	000000000000000000		
X4	80000000000000000		
<i>→</i>			
	/ -		
<i>x</i> ₀	010000000100002		
x ₀ x ₁	010000000100002		
<i>x</i> ₁	00000000000000000		

5 Round Impossible Truncated Differential
3.5 Truncated Differential Distinguisher

```
XΩ
    00000000000000000
X_1
    00000000000000000
X2
    00000000000000000
X3
    8000000000000000
    0100000000100002
x_0
    00000000000000000
X<sub>1</sub>
    00000000000000000
X_2
    00000000000000000
X_3
    00000000000000000
Χл
```

<i>X</i> ₀	00000000000000000			
<i>x</i> ₁	00000000000000000			
X2	00000000000000000			
<i>X</i> ₃	00000000000000000			
X4	80000000000000000			
	<i>→</i>			
<i>x</i> ₀	0100000000100002			
<i>x</i> ₁	00000000000000000			
<i>x</i> ₂	00000000000000000			
<i>X</i> ₃	00000000000000000			
<i>X</i> ₄	00000000000000000			

5 Round Impossible Truncated Differential				
3.5 Truncated Differential Distinguisher				

S_4	***************************************			

1.5 Round Impossible Backward Differential				

<i>x</i> ₀	00000000000000000		
X ₁	00000000000000000		
<i>x</i> ₂	00000000000000000		
<i>X</i> ₃	00000000000000000		
<i>X</i> ₄	80000000000000000		
<i>→</i>			
<i>X</i> ₀	0100000000100002		
<i>x</i> ₁	00000000000000000		
<i>x</i> ₂	00000000000000000		
<i>X</i> ₃	00000000000000000		

_			
	5 Round Impossible Truncated Differential		
	3.5 Truncated Differential Distinguisher		

S ₄	***************************************		

1.5 Round Impossible Backward Differential			

S_4	************************************		
	1110000101100010110011111011111101010101		

	0**0*0**0*0000**00****0****0****0****00***000*00*0*		
	0**0*0**0*0000**00*********************		
P ₄	0**0*0*0*0000**00**0****0****0****00*0*0		
	0110101101001000011001111011110111011100101		
	0**0*0*0*0000**000**00****0***0****00*0*		
	000000000000000000000000000000000000000		
	000000000000000000000000000000000000000		
S ₅	000000000000000000000000000000000000000		
	0110101101001000011001111011110111011100101		
	000000000000000000000000000000000000000		
	000000000000000000000000000000000000000		
	000000000000000000000000000000000000000		
P ₅	000000000000000000000000000000000000000		
	100000000000000000000000000000000000000		
1			

Zero Sum Distinguisher

ASCON Sbox - χ Keccak Mapping

- \bullet χ has branch number 2, Fix Point at 0, Outputs depend on 3 Inputs
- ASCON S-box is designed by adding lightweight affine transformations to the input and output of .

Zero Sum Distinguisher

ASCON Sbox - χ Keccak Mapping

- \bullet χ has branch number 2, Fix Point at 0, Outputs depend on 3 Inputs
- ASCON S-box is designed by adding lightweight affine transformations to the input and output of .

Algebraic Degree

• ASCON S-box (S) \rightarrow ASCON Permutation (p)

$$d(S) = 2 \rightarrow d(p) < 2 \rightarrow d(p^r) < 2^r$$

• ASCON S-Box Inverse $(S^{-1}) \rightarrow \text{ASCON Permutation Inverse } (p^{-1})$

$$d(S^{-1}) = 3 \rightarrow d(p^{-1}) \le 3 \rightarrow d((p^{-1})^r) = 3^r$$

12 Round (p^a) - Zero Sum Distinguisher (2^d)

Backward Rounds

7 Forward Rounds

Basic Distinguisher (2²⁴⁴)

- 5 Backward Rounds (3⁵)
- 7 Forward Rounds (2⁷)

$$d = \max\{3^5, 2^7\} + 1 = 243 + 1 = 244$$

12 Round (p^a) - Zero Sum Distinguisher (2^d)

Backward Rounds

Free Middle Round

7 Forward Rounds

Basic Distinguisher (2²⁴⁴)

- 5 Backward Rounds (3⁵)
- 7 Forward Rounds (2⁷)

$$d = \max\{3^5, 2^7\} + 1 = 243 + 1 = 244$$

Free Middle Round (2¹³⁰)

- d is a multiple of 5-Bit Sbox
- All d variables positioned in S-box
- S-Box Output also contains d variable and 320 — d constant bits
- 4 Backward, 7 Forward Rounds

$$d = \max\{3^4, 2^7\} + 1 = 128 + 1 = 129 \rightarrow 130$$

Outline

- 1 T1 Construction
- 2 T2 Cryptanalysis
- 3 T3 Verilog
- 4 T4 Automated Analysis
- Conclusion

LuT	ANF	K-MAP
43.920	42.480	39.240

	a: . = /	00115			
Component	Slice LuT (Logic)	OBOL	IBUF	LU15	LU14
Number Used	3	5	5	3	2

Linear Diffusion - 1958.400 GE

Linear Diffusion - 1958.400 GE

Components	Number Used
Slice LuT (Logic)	169
OBUF	320
LUT3	320
IBUF	320

Round Constant - 321.840 GE

Round Constant - 321.840 GE

Components	Slice LuT (Logic)	Slice Register (Flip Flop)	FDRE	FDRE	OBUF	LUT1	LUT6	IBUF	LUT4	LUT2	LUT3	FDSE	LUT5	BUFG (Clock)
Number Used	29	14	12	10	9	7	7	7	6	5	3	2	1	1

Permutation

Permutation

• LuT Sbox - 9148.320 GE

Components	Slice LuT (Logic)	Slice Registers (Flip Flop)	LUT3	FDRE	IBUF	OBUF	LUT5	LUT4	LUT6	LUT	1LUT2	BUFG (Clock)
Number Used	740	334	862	334	326	320	196	110	99	9	5	1

• KMAP Sbox - 8848.800 GE

Components	Slice LuT (Logic)	Slice Registers (Flip Flop)	LUT3	FDRE	IBUF	OBUF	LUT5	LUT6	LUT4	LUT1	LUT2	BUFG (Clock)
Number Used	777	334	955	334	326	320	196	134	13	9	5	1

ANF Sbox - 9056.160 GE

Components	Slice LuT (Logic)	Slice Registers (Flip Flop)	LUT3	FDRE	IBUF	OBUF	LUT6	LUT5	LUT4	LUT1	LUT2	BUFG (Clock)
Number Used	883	334	955	334	326	320	246	140	13	9	5	1

Test Bench - p^{12} , p^8 , p^6

Test Bench - p^{12} , p^8 , p^6

	permutation,th,be	han, sortig													
	9 2 9	9 22 8 8 8 8 8 8 6 6 6 6 6													
1															
8	Nane	We		111.00		#80.100					301.00				
1		0			П			$\overline{}$	П	П			П		٦
1		1													
1		,													
2		0				_									
=		•	-			•									•
1	- Wromegag - Windfeld	8 8040000000000555541/Thehoustiches/19784/5504693887494/T5-00896256													
3	Hogins	NATIONAL PROPERTY AND AND AND AND AND AND AND AND AND AND		_			ermet sc							-	
6	> Select input	TOTAL PRODUCTION OF THE PROPERTY OF			_	-		_		•		****			
3	1 Million														
-	2.91 feet														

Test Bench - p^{12} , p^8 , p^6

Outline

- 1 T1 Construction
- 2 T2 Cryptanalysis
- 3 T3 Verilog
- 4 T4 Automated Analysis
- 5 Conclusion

MILP

Number of Active Sboxes - Basic

MILP

Number of Active Sboxes - Basic

Variables

• $x_{r,w,b} \in \{0,1\}$ - S-box input Bit b ($0 \le b \le 63$) of word X_w ($0 \le w \le 4$) of round r active or not.

Variables

- $X_{r,w,b} \in \{0,1\}$ S-box input Bit $b \ (0 \le b \le 63)$ of word $X_w \ (0 \le w \le 4)$ of round r active or not.
- $y_{r,w,b} \in \{0,1\}$ S-box output Bit b ($0 \le b \le 63$) of word X_w (0 < w < 4) of round r active or not.

Variables

- $x_{r,w,b} \in \{0,1\}$ S-box input Bit b ($0 \le b \le 63$) of word X_w ($0 \le w \le 4$) of round r active or not.
- $y_{r,w,b} \in \{0,1\}$ S-box output Bit b ($0 \le b \le 63$) of word X_w (0 < w < 4) of round r active or not.
- $d_{r,b} \in \{0,1\}$ b^{th} ($0 \le b \le 63$) S-box of round r is active

Variables

- $X_{r,w,b} \in \{0,1\}$ S-box input Bit $b \ (0 \le b \le 63)$ of word $X_w \ (0 \le w \le 4)$ of round r active or not.
- $y_{r,w,b} \in \{0,1\}$ S-box output Bit b ($0 \le b \le 63$) of word X_w (0 < w < 4) of round r active or not.
- $d_{r,b} \in \{0,1\}$ b^{th} (0 $\leq b \leq$ 63) S-box of round r is active
- $u_{r,w,b} \in \{0,1\}$ Linear layer model in word x_w ($0 \le w \le 4$) of round r.

MILP

Number of Active Shoxes - Basic

Variables

- $X_{r,w,b} \in \{0,1\}$ S-box input Bit $b \ (0 \le b \le 63)$ of word $X_w \ (0 \le w \le 4)$ of round r active or not.
- $y_{r,w,b} \in \{0,1\}$ S-box output Bit b ($0 \le b \le 63$) of word X_w (0 < w < 4) of round r active or not.
- $d_{r,b} \in \{0,1\}$ b^{th} (0 $\leq b \leq$ 63) S-box of round r is active
- $u_{r,w,b} \in \{0,1\}$ Linear layer model in word x_w ($0 \le w \le 4$) of round r.

Objective Function

Minimize the Active S-boxes

$$\min \sum_{r=1}^{R} \sum_{b=0}^{63} d_{r}$$

MILP

Number of Active Sboxes - Basic

Constraints

• Non-Triviality - At least 1 Active Input Bit at Start $\sum_{w=0}^4 \sum_{b=0}^{63} x_{0,w,b} \geq 1$

Constraints

- Non-Triviality At least 1 Active Input Bit at Start $\sum_{w=0}^4 \sum_{b=0}^{63} \chi_{0,w,b} \geq 1$
- Active S-box Minimum 1 and Maximum 5 Active Input and Output Bit(s).

$$d_{r,b} \le \sum_{w=0}^{4} x_{r,w,b} \le 5d_{r,b}$$
 $d_{r,b} \le \sum_{w=0}^{4} y_{r,w,b} \le 5d_{r,b}$

Constraints

- Non-Triviality At least 1 Active Input Bit at Start $\sum_{w=0}^4 \sum_{b=0}^{63} x_{0,w,b} \geq 1$
- Active S-box Minimum 1 and Maximum 5 Active Input and Output Bit(s).

$$d_{r,b} \le \sum_{w=0}^{4} x_{r,w,b} \le 5d_{r,b}$$
 $d_{r,b} \le \sum_{w=0}^{4} y_{r,w,b} \le 5d_{r,b}$

• S-box Branch Number - 3. $\sum_{w=0}^{4} (x_{r,w,b} + y_{r,w,b}) \ge 3d_{r,b}$

Constraints

- Non-Triviality At least 1 Active Input Bit at Start $\sum_{u=n}^4 \sum_{b=n}^{63} x_{0,w,b} \ge 1$
- Active S-box Minimum 1 and Maximum 5 Active Input and Output Bit(s).

$$d_{r,b} \le \sum_{w=0}^{4} x_{r,w,b} \le 5d_{r,b}$$
 $d_{r,b} \le \sum_{w=0}^{4} y_{r,w,b} \le 5d_{r,b}$

- $\sum_{n=0}^{4} (x_{r.w,b} + y_{r.w,b}) \ge 3d_{r,b}$ • S-box Branch Number - 3.
- Linear Layer XOR Operation Model

$$\begin{aligned} y_{r,0,b} + y_{r,0,b-19} + y_{r,0,b-28} + x_{r+1,0,b} &= 2u_{r,0,b} \\ y_{r,1,b} + y_{r,1,b-61} + y_{r,1,b-39} + x_{r+1,1,b} &= 2u_{r,1,b} \\ \end{aligned} \qquad \begin{aligned} y_{r,2,b} + y_{r,2,b-1} + y_{r,2,b-6} + x_{r+1,2,b} &= 2u_{r,2,b} \\ y_{r,3,b} + y_{r,3,b-10} + y_{r,3,b-17} + x_{r+1,3,b} &= 2u_{r,3,b} \end{aligned}$$

$$y_{r,4,b} + y_{r,4,b-7} + y_{r,4,b-41} + x_{r+1,4,b} = 2u_{r,4,b}$$

MILP

Logical Conditional Modelling

$$\begin{aligned} x_{r,0,b}, x_{r,1,b}, x_{r,2,b}, x_{r,3,b}, x_{r,4,b}) &= (\delta_0, \delta_1, \delta_2, \delta_3, \delta_4) \Rightarrow y_{r,w,b} &= \delta \\ \sum_{w'=0}^4 (-1)^{\delta_i} x_{r,w',b} + (-1)^{\delta+1} y_{r,w,b} - \delta + \sum_{w'=0}^4 \delta_i &\geq 0 \end{aligned}$$

Logical Conditional Modelling

MILP

$$\begin{aligned} x_{r,0,b}, x_{r,1,b}, x_{r,2,b}, x_{r,3,b}, x_{r,4,b}) &= (\delta_0, \delta_1, \delta_2, \delta_3, \delta_4) \Rightarrow y_{r,w,b} = \delta \\ \sum_{w'=0}^{4} (-1)^{\delta_i} x_{r,w',b} + (-1)^{\delta+1} y_{r,w,b} - \delta + \sum_{w'=0}^{4} \delta_i \geq 0 \end{aligned}$$

Recall - Undisturbed Bits

Δ_i	Δ_o^*
00001	*1***
00011	***0*
00101	1****
11111	*0***
01011	***1*

Δ_i	Δ_o^*
10101	****1
10110	1****
11110	*1***
01110	*0***

Δ_i	Δ_o^*
10111	****0
11000	**1**
11100	**0**
00110	****1

Gurobi Implementation

	Rounds	Active S-Boxes	Variables (Real)	Variables (Binary)	Inequalities	Time Taken
ſ	1	1	960	384	2561	0.03 s
	2	4	1920	448	5121	0.51 s
	3	12	2880	512	7681	2 min 52.47 s

Table: Basic MILP

Rounds	Active S-Boxes	Variables (Real)	Variables (Binary)	Inequalities	Time Taken
1	1	965	384	3393	0.02 s
2	4	1925	448	6785	1.32 s
3	12	2885	512	10177	3 min 28.54 s

Table: Logical Conditional Modeling

Convex Hull

MILP

```
ascon hull = list(Polyhedron(vertices=generate vertices(Ascon)).inequality generator())
ascon hull
[An inequality (-1, 0, 0, 0, 0, 0, 0, 0, 0, 0) \times + 1 >= 0,
 An inequality (0, -1, 0, 0, 0, 0, 0, 0, 0, 0) \times + 1 >= 0,
 An inequality (0, 0, -1, 0, 0, 0, 0, 0, 0, 0) \times + 1 >= 0,
 An inequality (0, 0, 0, -1, 0, 0, 0, 0, 0, 0) \times + 1 >= 0.
 An inequality (-1, 0, 0, -1, -1, 0, 0, -1, -1, 0) \times + 4 >= 0,
 An inequality (0, -1, 0, -1, -1, 0, 1, 1, 1, 0) \times + 2 >= 0,
 An inequality (0, 0, 0, 0, -1, 0, 0, 0, 0, 0) \times + 1 >= 0,
 An inequality (1, -1, -1, -1, -1, 0, 1, 0, 0, 0) \times + 3 >= 0,
 An inequality (0, 0, 0, 0, 0, 0, 1, 0, 0, 0) \times + 0 >= 0,
 An inequality (-1, 0, 0, -1, -1, 0, 0, 1, 1, 0) \times + 2 >= 0.
 An inequality (0, 0, -1, -1, -1, 0, 1, 1, 1, 0) \times + 2 >= 0,
 An inequality (-3, -2, -3, -4, -6, -1, -3, -3, -3, -1) \times + 23 >= 0,
 An inequality (-1, -1, -1, -1, -1, 0, -1, 0, 0, 0) \times +5 >= 0,
 An inequality (-1, -1, -1, -2, -2, 0, -1, -1, -1, 0) \times + 8 >= 0,
 An inequality (-1, -1, -1, -1, 1, 0, 1, 0, 0, 0) \times + 3 >= 0,
 An inequality (0, -1, -1, -1, -1, 0, 0, -1, -1, 0) \times + 5 >= 0
 An inequality (-2, -2, -2, -1, 1, 0, 2, -1, -1, 0) \times + 7 >= 0,
 An inequality (-1, -1, -1, -2, -1, 0, 1, -2, -2, 0) \times + 8 >= 0,
 An inequality (-1, -1, -1, -2, -1, 0, 1, 2, 2, 0) \times + 4 >= 0,
 An inequality (-1, -1, -1, -3, -2, 0, 2, 3, 3, 0) \times + 5 >= 0,
 An inequality (-1, -1, -1, -1, 0, 0, 1, 1, 1, 0) \times + 3 >= 0,
 An inequality (1, -1, -1, -2, -2, 0, 2, 1, 1, 0) \times + 4 >= 0,
 An inequality (0, 0, 0, -1, -1, -1, 1, 1, 1, -1) \times + 3 >= 0,
 An inequality (0, 0, 0, 0, 0, 0, 0, 0, 0, -1) \times + 1 >= 0,
 An inequality (0, 0, -1, -1, -1, -1, 0, -1, -1, 0) \times +5 >= 0,
```

Figure: Number of Inequalities generated - 2415

Outline

- 1 T1 Construction
- 2 T2 Cryptanalysis
- 3 T3 Verilog
- 4 T4 Automated Analysis
- Conclusion

References

- https://ascon.iaik.tugraz.at
- [DEMS15] Cryptanalysis of Ascon Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. IACR -2015/030 (pp. 28, 31–33, 35).
- **[Tez16]** Truncated, Impossible, and Improbable Differential Analysis of Ascon Cihangir Tezcan. **IACR** 2016/490 (pp. 28, 33).

Thanks

Brownie Points - LaTeX-Tikz Block Diagrams

- State Design
- Authenticated Encryption
- Zero Sum Distinguisher

Implementation Info

• Github Link: https://github.com/highgroundmaster/ASCON