1. Cuatro cargas en azul se encuentran situadas fijas como se muestran en la figura, siendo $q=2\times 10^{-6}~C$ y d=40~cm.

- (a) Determinar el campo eléctrico en el origen de coordenadas.
- (b) Explique que le pasaría a una carga de magnitud $\pm q$ ubicada en el origen.
- (c) De una buena estimación del campo eléctrico $\vec{E}(\vec{r})$ para r >> d.
- (d) Calcular la fuerza \vec{F} que sentirá la carga añadida en rojo, mostrada en la figura.
- 2. Un espectrómetro de masas (ver figura a continuación) separa los iones de acuerdo a la relación m/q (masa/carga). La primera parte se conoce como selector de velocidad y se compone de un campo magnético $\vec{B_0}$ y un campo eléctrico $\vec{E_0}$ perpendiculares entre sí. Este selector permite "elegir" aquellas partículas que se mueven con la "misma" velocidad. En función de esto, determine:
 - (a) ¿Qué velocidad poseen aquellas partículas que pasan sin ser deflectadas? Estas partículas son las que ingresan por la rendija y se encuentran con un segundo campo magnético \vec{B}_0 .
 - (b) Al entrar al segundo campo magnético, definir cual debe ser la relación m/q para que la partícula impacte sobre el detector A a una distancia P respecto del orificio de ingreso.
 - (c) Como se modifica la trayectoria en función del signo de la carga de la partícula.

3. Considere el circuito que se muestra en la figura. Inicialmente se sabe que $R_1 = 30\Omega$ y que pasa por ella una corriente de 100mA, siendo que fem = 12V. Por otra parte tenemos que las cargas en los capacitores son $Q_1 = 10\mu C$ y $Q_2 = 0$; $R_3 = 10\Omega$ y $C_1 = 10mF$.

Hallar:

- (a) Las caídas de potencial eléctrico sobre todos los elementos eléctricos para el instante inicial.
- (b) El valor de la resistencia R_2 .
- (c) Las corrientes que circulan sobre todos los elementos eléctricos para instante inmediatamente posterior al cierre de la llave.
- (d) Los valores de I_{R1} , C_2 y Q_2 para un tiempo muy posterior al cerrado de la llave, sabiendo que $Q_1=30\mu C$