CSE 574 Introduction to Machine Learning Programming Assignment 2

Roshan Saundankar: 50419577 Sumeet Sahu: 50367891 Mrunmayee Rane: 50417094

HANDWRITTEN DIGITS CLASSIFICATION

Part1: Selecting Hyper Parameters using nnScript:

In this part we will compare the accuracy and time taken for Neural Networks based on different values of hidden units and constant lambda.

Hidden Units	Lambda	Training set Accuracy	Validation set Accuracy	Test Set Accuracy	Time taken in seconds	
2	0	11.272	11.06	11.35	5.59	
4	0	66.884	66.64	66.58	21.56	
8	0	88.354	87.42	88.19	19.2	
16	0	92.068	90.84	91.72	26.5	
32	0	95.056	94.1	94.57	30.09	
64	0	95.762	94.57	95.46	34.62	
128	0	95.148	94.740	94.89	44.79	

Observations:

- As the number of hidden units increases the accuracy increases. The objective function also converges fastly as the number of hidden units increases.
- The best Train, Validation, Test accuracy can be seen at 64 units.
- The time also starts increasing as we add more hidden units.

Conclusions:

• It can be concluded that the neural network performs its best when there are 64 hidden units.

Now we compare the accuracy and time taken for Neural Networks based on different values of lambda and constant best value of hidden units we got previously.

Lambda	Hidden Units	Training set Accuracy	Validation Set Accuracy	Test Set Accuracy	Time taken in seconds	
0	64	95.762	94.57	95.46	34.62	
5	64	95.282	94.38	95.97	33.38	
10	64	95.304	94.72	95.09	34.67	
15	64	94.428	93.86	94.25	32.18	
20	64	94.64	94.320	94.64	33.66	
25	64	94.53	94.14	94.35	34.1	

Conclusions:

- The optimal value obtained of lambda obtained is 5 according to our observation.
- The optimal value for hidden units is 64 and lambda is 5.
- If the lambda value is too large underfitting will happen.

Part 2: Comparison between Deep Neural Network and Neural Network.

In this part the accuracy of a single layer hidden neural network on CelebA using facenn script.

Observations:

• For default values, Lambda 10 and hidden units 256.

Lambda	Hidden	Training set	Validation	Test Set	Time Taken
	Units	Accuracy	set Accuracy	Accuracy	in Seconds
10	256	85.12	84.16	85.69	190.23

• For optimal values obtained previously:

Lambda	Hidden Units	Training Set Accuracy	Validation Set Accuracy	Test Set Accuracy	Time Taken in Seconds
5	64	95.282	94.38	94.99	33.38

Now we will evaluate the accuracy of deep nn on CelebA dataset:

Hidden Layers	Accuracy	Time in Seconds
2	0.824	87.43
3	0.791	91.34
5	0.784	105.42
7	0.747	120.23

Observations:

- It can be seen that as we increase the number of layers the accuracy decreases with it.
- The Time taken also increases with increase in the number of layers.

Comparing the performance of single layer vs deep neural networks in terms of accuracy for test set

- **Accuracy:** It can be concluded from above that the neural network works much better with one hidden layer with accuracy of 94.99 on celeb dataset than with multiple layers with accuracy 82.4 for two hidden layers.
- **Time:** Time required is also less in single layer than deep neural network.

Part 3: Convolution Neural Network:

Iterations	Test Set Accuracy	Time (in seconds)		
1	8.2	2		
100	65.9	3		
1000	92.7	6		
10000	98.7	46		

Observations:

• It can be seen from the above table that as we increase the number of Iterations of the convolutional neural network the accuracy increases with it.

Output:

Confusion Matrix obtained after 10000 iterations.

[[974	0	1	0	0	0	1	0	3	1]
[0	1129	3	0	0	0				0]
[0	1020		0	0	0	2	8	0]
[0	0	2	1000	0	5	0		2	0]
[0	0	2	0	977	0			0	1]
[0		7	0	880				0]
[4	2	0			6	944	0	0	0]
[2	2	7	4	0	0	0	1004	2	7]
[3	0	3	2	0		0	2	962	1]
[4	4	1	3	9	3	0	3	2	980]]

