

LM2576/LM2576HV 系列 3A 开关型降压稳压器

概述

LM2576系列的稳压器是单片集成电路,能提供降压开关稳压器(buck)的各种功能,能驱动3A的负载,优异的线性和负载调整能力。这些器件的固定输出电压有3.3V,5V,12V,15V,还有可调整输出的型号。

这些稳压器内部含有频率补偿器和一个固定频率振荡器,将外部元件的数目减到最少,使用简便。

LM2576的效率比流行的三段线性稳压器要高的多,是理想的替代。一般情况下不需要或只要很小尺寸的外加散热片。已经优化可和LM2576一起使用的标准系列电感由好几个不同的电感生成商提供。此特征大大简化了开关电源的设计。 其它特征包括:在指定输入电压和输出负载条件下保证输出电压的±4%误差,以及振荡器频率的±10%误差。还包括外部的关断电路,特征有50µA(典型值)待机电流。

输出开关包括逐周限流,以及在故障状态下提供完全保护的热关断功能。

特点

- 3.3V, 5V, 12V, 15V 和可调节输出电压型号
- 可调节输出型号输出电压范围在线性和负载条件下 1.23~37V(HV型号57V)最大±4%
- 保证 3A输出电流
- 输入电压范围广,40V至HV型号的60V
- 只需4个外部器件支持
- 52kHz固定频率内部振荡器
- TTL关断能力,低功耗待机模式
- 高效率
- 使用现成可用的标准电感
- 热关断及电流限制保护

管脚定义

应用

- 简单高效的降压(Buck)稳压器
- 线性稳压器的高效预稳压器
- 卡上开关稳压器
- 正到负的变换器(Buck-Boost)
- 负升压变换器
- 为电池充电器做电源
- 与National Semi.、On Semi.的LM2576完全互换

典型应用(固定输出电压型号)

框图

3.3V R2 = 1.7k 5V, R2 = 3.1k 12V, R2 = 8.84k 15V, R2 = 11.3k 可调节型号 R1 = 开路, R2 = 0Ω

绝对最大额定值(注 1)

LM2576HV 60V 最小静电放电额定值

通/断管脚输入电压 -0.3V ≤ V ≤ +V_{IN} (C = 100 pF, R = 1.5 kΩ) 2kV

对地输出电压 (稳态) -1V 引线温度

功耗 内部限定 (焊接, 10 秒) 260°C

工作额定值

电源电压 工作结温范围 电源电压 LM2576/LM2576HV/ 40°C < T < 1125°C LM2576

LM2576/LM2576HV $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le +125^{\circ}\text{C}$ LM2576 $+125^{\circ}\text{C}$ LM2576HV 60V

LM2576-3.3, LM2576HV-3.3 电气特性

标准字体的指标值是在 T_J= 25°C, **粗体字**适用于整个工作结温范围.

符号	特性	条件	LM2576-3.3 LM2576HV-3.3		单位
			典型值	极限值 (注 2)	(极限)
系统参数 (注	3) 测试电路 图 2				
V _{OUT}	输出电压	V _{IN} = 12V, I _{负载} = 0.5A 电路图 2	3.3	3.234 3.366	V V(最小) V(最大)
V _{OUT}	输出电压 LM2576	6V ≤V _{IN} ≤40V, 0.5A ≤ I _{负载} ≤ 3A 电路图 2	3.3	3.168/ 3.135 3.432/ 3.465	V V(最小) V(最大)
V _{OUT}	输出电压 LM2576HV	6V ≤V _{IN} ≤60V, 0.5A ≤ I _{负载} ≤ 3A 电路图 2	3.3	3.168/ 3.135 3.450/ 3.482	V V(最小) V(最大)
η	效率	V _{IN} = 12V, I _{负载} = 3A	75		%

LM2576-5.0, LM2576HV-5.0 电气特性

标准字体的指标值是在 $T_J = 25^{\circ}C$,**粗体字**适用于整个工作结温范围.

符号	特性	条件	LM2576-5.0 LM2576HV-5.0		单位
			典型值	极限值 (注 2)	(极限)
系统参数 (注	3) 测试电路 图 2				
V _{OUT}	输出电压	V _{IN} = 12V, I _{负载} = 0.5A 电路图 2	5.0	4.900 5.100	V V(最小) V(最大)
V _{OUT}	输出电压 LM2576	8V ≤V _{IN} ≤40V, 0.5A ≤ I _{魚戦} ≤ 3A 电路图 2	5.0	4.800/ 4.750 5.200/ 5.250	V V(最小) V(最大)
V _{OUT}	输出电压 LM2576HV	8V ≤V _{IN} ≤60V, 0.5A ≤ I _{負戦} ≤ 3A 电路图 2	5.0	4.800/ 4.750 5.225/ 5.275	V V(最小) V(最大)
η	效率	V _{IN} = 12V, I _{∮,ψ} = 3A	77		%

LM2576-12, LM2576HV-12 电气特性 标准字体的指标值是在 T_J= 25°C, **粗体字**适用于整个工作结温范围

符号	特性	he til.	LM2576-12 LM2576HV-12		单位			
		条件	典型值	极限值 (注 2)	(极限)			
系统参数 (注 3) 测试电路 图 2								
V _{OUT}	输出电压	V _{IN} = 25V, I _{负载} = 0.5A 电路图 2	12	11.76 12.24	V V(最小) V(最大)			
V _{OUT}	输出电压 LM2576	15V ≤V _{IN} ≤40V, 0.5A ≤ I _{负载} ≤ 3A 电路图 2	12	11.52/ 11.40 12.48/ 12.60	V V(最小) V(最大)			
V _{OUT}	输出电压 LM2576HV	15V ≤V _{IN} ≤60V, 0.5A ≤ I _{魚戦} ≤ 3A 电路图 2	12	11.52/ 11.40 12.54/ 12.66	V V(最小) V(最大)			
η	效率	V _{IN} = 15V, I _{负载} = 3A	88		%			

LM2576-15, LM2576HV-15 电气特性 标准字体的指标值是在 T_J= 25°C, **粗体字**适用于整个工作结温范围.

符号	特性	条件	LM2576-15 LM2576HV-15		单位
			典型值	极限值 (注 2)	(极限))
系统参数 (注	3) 测试电路 图 2				
V _{OUT}	输出电压	V _{IN} = 25V, I _{负载} = 0.5A 电路图 2	15	14.70 15.30	V V(最小) V(最大)
V _{OUT}	输出电压 LM2576	18V ≤V _{IN} ≤40V, 0.5A ≤ I _{魚敷} ≤ 3A 电路图 2	15	14.40/ 14.25 15.60/ 15.75	V V(最小) V(最大)
V _{OUT}	输出电压 LM2576HV	18V ≤V _{IN} ≤60V, 0.5A ≤ I _{魚戦} ≤ 3A 电路图 2	15	14.40/ 14.25 15.68/ 15.83	V V(最小) V(最大)
η	效率	V _{IN} = 18V, I _{负载} = 3A	88		%

LM2576-ADJ, LM2576HV-ADJ 电气特性

标准字体的指标值是在 $T_i = 25^{\circ}C$. **粗体字**适用于整个工作结温范围

符号	特性	条件	LM2576-ADJ LM2576HV-ADJ		单位		
			典型值	极限值 (注 2)	(极限)		
系统参数 (注 3) 测试电路 图 2							
V_{OUT}	反馈电压	V _{IN} = 12V, I _{负载} = 0.5A V _{OUT} = 5V 电路图 2	1.230	1.217 1.243	V V(最小) V(最大)		
V _{OUT}	反馈电压 LM2576	8V ≤V _{IN} ≤40V, 0.5A ≤ I _{负载} ≤ 3A V _{OUT} = 5V 电路图 2	1.230	1.193/ 1.180 1.267/ 1.280	V V(最小) V(最大)		
V _{OUT}	反馈电压 LM2576HV	8V ≤V _{IN} ≤60V, 0.5A ≤ I _{负载} ≤ 3A V _{OUT} = 5V 电路图 2	1.230	1.193/ 1.180 1.273/ 1.286	V V(最小) V(最大)		
η	效率	V _{IN} = 12V, I _{∮\\$} = 3A, V _{OUT} = 5V	77		%		

所有输出电压器件的电气特性

标准字体的指标值是在 $T_J = 25^{\circ}$ C,**粗体字**适用于整个工作结温范围. 除非另有说明,对3.3V,5V和可调节型号 $V_{IN} = 12V$: 对12V型号 $V_{IN} = 25V$,对15V型号 $V_{IN} = 30V$ 。 $I_{负载} = 500$ mA.

符号	- 外 ISV 空号 V _{IN} = 3UV。I _{魚蔵} = 特性			LM2576-XX LM2576HV-XX			
		条件	典型值	极限值 (注 2)	单位 (极限)		
器件参	数						
I _b	反馈偏置电流	V _{OUT} = 5V (只对可调节型号)	50	100/ 500	nA		
f _O	振荡器频率	(注 11)	52	47/ 42 58/ 63	kHz kHz(最小) kHz(最大)		
V_{SAT}	饱和电压	I _{OUT} = 3A (注 4)	1.4	1.8/ 2.0	V V(最大)		
DC	最大占空比 (导通)	(注 5)	98	93	% %(最小)		
I _{CL}	电流极限	(注 4, 11)	5.8	4.2/ 3.5 6.9/ 7.5	A A(最小) A(最大)		
ΙL	输出漏电流	(注 6, 7): 输出 = 0V 输出 = -1V 输出 = -1V	7.5	2 30	mA(最大) mA mA(最大)		
IQ	静态电流	(注 6)	5	10	mA mA(最大)		
I _{STBY}	待机静态电流	通 / 断 管脚= 5V (截止断)	50	200	μA μA(最大)		
θ _{JA} θ _{JC} θ _{JA}	热阻	T 形封装, 结至环境 (注 8) T 形封装, 结至环境 (注 9) T 形封装, 结至外壳 S 形封装, 结至环境 (注 10)	65 45 2 50		°C/W		
 通 / 断	通 / 断控制 测试电路 图 2						
V_{IH}		V _{OUT} = 0V	1.4	2.2/ 2.4	V(最小)		
V_{IL}	逻辑输入电平	Vout = 标称输出电压	1.2	1.0/ 0.8	V(最大)		
I _{IH}	通 / 断 管脚	通 / 断 管脚= 5V (断)	12	30	μA μA(最大)		
I _{IL}	输入电流	通 / 断 管脚= 0V (通)	0	10	μA μA(最大)		

- 注 1: 绝对最大额定值表示为极限值,若超过此范围则有可能损坏器件。工作额定值指在此情况下器件应该能工作、但并不保证规定的性能极限值。 对保证的指标和测试条件,见电气特性。
- 注 2: 所有的极限值保证的是在室温下(标准字体),和整个工作结温范围(**粗体字**)。
- 注 3: 外部元件如箝位二级管、电感、输入输出电容会影响开关稳压器系统性能。当LM2576/LM2576HV应用于如图2的测试电路,系统性能将如电气特性中的系统参数部分所示。
- 注 4: 输出拉电流。输出脚上不接二极管,电感或电容。
- 注 5: 反馈脚与输出断开,接至 OV。
- 注 6: 反馈脚与输出断开,对可调节型号及 3.3V, 5.0V型号接 +12V, 对 12V, 15V型号接 +25V, 以使输出晶体管 "截止"。
- 注 7: V_{IN} = 40V (高压型号是60V)。
- 注 8: 垂直安装5脚TO-220封装件至热阻材料上(无外接散热片),采用1/2英吋引脚接入管座,或接入铜面积最少的PCB板上。
- 注 9: 垂直安装5脚TO-220封装件至热阻材料上(无外接散热片),采用1/4英吋引脚焊接至引脚周围有约4平方英吋铜面积的PCB板上。
- **注10**: 如果使用TO-263封装,可通过增加PCB板与封装件热合在一起的铜面积来降低热阻。0.5平方英吋的铜面积,θ_{JA} 是 50°C/W; 1平方英吋的铜面积,θ_{JA} 是 32°C/W。
- 注11: 当输出短路或过载时稳压输出电压会下降约标称输出电压的40%,此时振荡频率下降到约11kHz,这一自我保护特性将最小占空比从5%降到大约2%来减小集成电路的平均损耗。

测试电路和PCB布局原则

在任何开关稳压器中,印刷电路板的布局都很重要。由于引线电感,快速切换的电流会引起电压瞬变,造成许多问题。 要使电感和接地回路最小,就要使用粗线标出的引线尽量短。

要获得最好的结果,应使用单点接地(如图示)或接地平面结构。当使用可调节型号的稳压器时,应把调节电阻尽可能靠近稳压器,让敏感的反馈接线尽量短。

 C_{IN} — 100 μ F, 75V, 铝电解 C_{OUT} — 1000 μ F, 25V, 铝电解 D_1 — 肖特基,MBR360 L_1 — 100 μ H, 脉冲 . PE-92108 R_1 — 2k, 0.1% R_2 — 6.12k, 0.1%

$$egin{align*} V_{OUT} &= V_{REF} \left(1 + rac{R_2}{R_1}
ight) \ \\ R_2 &= R_1 \left(rac{V_{OUT}}{V_{REF}} - 1
ight) \ \\ \\$$
 其中, $V_{REF} = 1.23V$,R1 在 $1.0k\Omega$ 和 $5.0k\Omega$ 之间