Tutorial 1

EC31003 – Digital Electronics Circuits

Questions

- 1. (a) Find the minimum number of 2-input NOR gates required to realize the following expression: $A' \cdot B' + X \cdot Y$
 - (b) Find the minimum number of 2-input NAND gates required to realize the following expression: (W' + X')(Y + Z)
- 2. The following is an internal schematic of a TTL logic gate. Based on your analysis of the transistor circuit determine the truth table for output Y and obtain the minimized expression for Y using DeMorgan's Theorem. $v_{cc = +5 \text{ V}}$

Questions

- 3. For a given logic family, consider $V_{OL} = 0.9 \text{ V}$ and $V_{OH} = 4.5 \text{ V}$. For a given circuit, $V_{IL} = 1.2 \text{ V}$ and $V_{IH} = 3.2 \text{ V}$. Find the noise margins (NML, NMH), transition width and logic swing. Is it functionally better than a circuit with $V_{IL} = 1.5 \text{ V}$ and $V_{IH} = 3 \text{ V}$?
- 4. (a) Reduce the Boolean expression: Y=A'B(D'+C'D)+B(A+A'CD)
 - (b) In the circuit shown in the following figure, if C=0, find the expression for Y?

Questions

Q.5. For the 2-input TTL NAND gate, $V_{cc} = 5 \, V$ and a $100 \, \Omega$ load is connected to its output. Consider $V_{CE(sat)} = 0.3 \, V$ and the current gain $h_{FE} = 50$ for any of the transistors. Consider the diode drop in forward bias $V_D = 0.7 \, V$. The output voltage when both inputs are 0V is (i) _____ and when both inputs are 5V is (ii) _____ respectively.

Solution 1(a)

Find the minimum number of 2-input NOR gates required to realize the following expression: A'.B'+X.Y

⇒ 4 NOR gates required

Solution 1(b)

Find the minimum number of 2-input NAND gates required to realize the following expression: (W'+X')(Y+Z)

$$(W'+X')(Y+Z)$$
= $(W'+X')Y+(W'+X')Z$ (Distributive law)
= $[((W'+X')Y+(W'+X')Z)']'$
= $[((W'+X')Y)'.((W'+X')Z)']'$ (De Morgan's theorem)
= $[((WX)'Y)'.((WX)'Z)']'$

⇒ 4 NAND gates required

Solution 2

	A	B	C	D	Y
	0	0	0	0	1
	0	0	0	1	1
	0	0	1	0	
	0	0	1		. 0
	0	Į	0	0	1.
	0	1	0	1	1
	0	1	1	0	1
	0	1	1		0
	\$ 1	0	0	0	1
•	1	0	0	1	1
٠	1	0	1	D	
	$\overline{}$	0	1	1	0
	1	-1	0	0	0
	1	1	0)	0
	. 1	J	1	0	0
2 **	1	1	1	ф	0

$$Y = \overline{ABCD} + \overline{ABCD} +$$

Solution 3

Given, $V_{OL} = 0.9 \text{ V}$ and $V_{OH} = 4.5 \text{ V}$

For 1st circuit, $V_{IL} = 1.2 \text{ V}$ and $V_{IH} = 3.2 \text{ V}$

 $NM_L = V_{IL} - V_{OL} = 1.2 - 0.9 = 0.3 V$

 $NM_H = V_{OH} - V_{IH} = 4.5 - 3.2 = 1.3 V$

Transition width = $V_{IH} - V_{IL} = 3.2 - 1.2 = 2 \text{ V}$

Logic swing = $V_{OH} - V_{OL} = 4.5 - 0.9 = 3.6 \text{ V}$

For 2^{nd} circuit, $V_{IL} = 1.5 \text{ V}$ and $V_{IH} = 3 \text{ V}$

 $NM_L = V_{IL} - V_{OL} = 1.5 - 0.9 = 0.6 V$

 $NM_H = V_{OH} - V_{IH} = 4.5 - 3 = 1.5 V$

No, the 2nd circuit is functionally better than the 1st circuit due to its higher noise margins.

Solution 4 (a)

```
Y = A'B(D'+C'D)+B(A+A'CD)
 = A'B(D'+C')+B(A+CD)
 = B[A'(D'+C')+(A+CD)]
 = B[A'D'+(A'C'+A)+CD]
 = B[A'D'+(A+C')+CD]
 =B[(A'D'+A)+(C'+CD)]
 = B[(A+D')+(C'+D)]
 = B[A+(D'+D)+C']
 = B[A+1+C']
 = B
```

Solution 4 (b)

```
Y = (1.((A+B)'+AB))'

APPLY DE MORGANS LAW

Y=(A'B'+AB)'

Y=(A XNOR B)'

Y=(A XOR B)

Y=AB'+A'B
```

Solution 5

When both inputs are LOW, the output is HIGH (Q3 is ON but Q2 and Q4 are OFF).

Applying KVL,

$$V_{CC} = I_L R_4 + V_{CE(sat)} + V_D + I_L R_L$$

$$I_L = \frac{V_{CC} - V_{CE(sat)} - V_D}{R_L + R_4}$$

Substituting the values, we get $I_L = 17.39 \, mA$

Hence,
$$V_0 = I_L R_L = 1.739 \,\text{V}$$

When both inputs are HIGH, i.e. 5V:

For open load,

Q3 is OFF.Q2 and Q4 in saturation. For open load, $I_{C4} \approx 0$. That makes Q_4 go deep in saturation i.e. $V_0 = V_{CE} \approx 0$.

For resistive load, R_L

If a voltage drop exists across R_L (i.e. $V_0>0$), then a current has to flow through it. This current has to be sourced by the Q4 transistor, i.e. the current has to flow out of the collector terminal through R_L . However, this is not possible since Q4 is an npn transistor and its collector can only sink current. Hence, the output voltage V_0 is maintained at 0, i.e. $V_0=0$.