Assessment Schedule - 2017

Scholarship Calculus (93202)

Evidence Statement

Q	Solution
ONE(a)	$(x^2 + y)(x^2 - y) = 71$ But has factors ± 1 and ± 71 . Since x and y are integers, possible solutions are: A: $x^2 + y = 1$ and $x^2 - y = 71$ B: $x^2 + y = 71$ and $x^2 - y = 1$ C: $x^2 + y = -1$ and $x^2 - y = -71$ D: $x^2 + y = -71$ and $x^2 - y = -1$ Consider A and B. Adding in each case gives $2x^2 = 72 \Rightarrow x = \pm 6$. Doing the same with C and D gives $2x^2 = -72$ which has no real solution. Solutions from A and B are the only solutions. Using $x = \pm 6$ in the original equation gives $y = \pm 35$. The four solutions are $(6,35)$, $(-6,35)$, $(6,-35)$, $(-6,-35)$.
(b)	$(x^{2}-bx)(p+1) = (p-1)(ax+c)$ $px^{2}-bpx+x^{2}-bx = apx+pc-ax-c$ $(p+1)x^{2}+(a-ap-bp-b)x+c(1-p) = 0 \mathbf{Eqn A}$ Let roots of equation \mathbf{A} be α and β . Since $\alpha + \beta = 0$, $\frac{-(a-ap-bp-b)}{(p+1)} = 0$, i.e. $a-ap-bp-b = 0 \mathbf{Eqn B}$ $\alpha\beta < 0 \text{ since roots are of opposite sign i.e.}$ $\frac{c(1-p)}{p+1} < 0$ $\mathbf{From Eqn B}, -p(a+b) = b-a \text{ or}$ $p = \frac{a-b}{a+b}$ So $\frac{c(1-p)}{(p+1)} = \frac{c\left(1-\frac{a-b}{a+b}\right)}{\left(\frac{a-b}{a+b}+1\right)} < 0$ and then $\frac{c(a+b-(a-b))}{a-b+a+b} < 0$ $\Leftrightarrow \frac{2cb}{2a} < 0$ $\Leftrightarrow \frac{bc}{a} < 0$

(c)

As shown in the diagram, choose point Z on the x-axis on the positive side of F.

 \angle ZFA = \angle FAB alternate angles, CZ || BA.

Coordinates of A are $(x_0, y_0) = (x_0, 2\sqrt{ax_0})$

Length FA =
$$\sqrt{(a-x_0)^2 + (0-2\sqrt{ax_0})^2}$$

 $= a + x_0$

Gradient of AC:
$$2y \frac{dy}{dx} = 4a$$
 so $\frac{dy}{dx} = \frac{2a}{y}$

at
$$(x_0, 2\sqrt{ax_0})$$
, $\frac{dy}{dx} = \sqrt{\frac{a}{x_0}}$

Equation of AC:
$$y - 2\sqrt{ax_0} = \sqrt{\frac{a}{x_0}}(x - x_0)$$

To find x-coordinate of C, let y = 0

$$-2\sqrt{ax_0} = \sqrt{\frac{a}{x_0}}(x - x_0)$$

$$\Rightarrow$$
 $-2x_0 = x - x_0 \Rightarrow -x_0 = x$

$$\Rightarrow -2x_0 = x - x_0 \Rightarrow -x_0 = x$$
Length FC = $\sqrt{(a - x_0)^2 + (0 - 0)^2} = a + x_0 = \text{FA}$

Hence $\triangle AFC$ is isosceles.

Since ∠ZFA is the external angle of triangle FAC,

$$\angle FAC + \angle FCA = \angle ZFA = \theta$$
, i.e. $\angle FCA = \frac{1}{2}\theta$

OR alternate angles FCA and CAB – no need for point Z.

Alternate method

Using $(at^2,2at)$ for point and gradient

$$\tan(ACF) = \frac{1}{t}$$

$$\tan \vartheta = \frac{2t}{t^2 - 1}$$

Double angle formula to show one is double the other.

METHOD ONE

AX = AF dist from A to directrix

= dist from A to focus

 $\therefore \angle AXF = \angle AFX$ base \angle 's isos \triangle

Slope of AC =
$$\frac{2a}{y_0}$$
 (grad tangent)

Slope of XF =
$$\frac{-y_0}{2a}$$
 (rise/run)

$$\frac{2a}{y_0} \times \frac{-y_0}{2a} = -1 \Rightarrow \angle AQF = \angle AQX = 90^{\circ}$$

 $\therefore \Delta AXQ$ and ΔAFQ are similar, and hence the tangent bisects $\angle BAF$

METHOD TWO

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$
Angle BAC
$$\tan(BAC) = \left| \frac{0 - \frac{2a}{y_0}}{1 + 0} \right| = \left| \frac{2a}{y_0} \right|$$

Angle CAF
$$\tan(\text{CAF}) = \frac{\frac{2a}{y_0} - \frac{y_0}{x_0 - a}}{1 + \frac{2a}{y_0} \left(\frac{y_0}{x_0 - a}\right)}$$

$$= \frac{\frac{2a(x_0 - a) - y_0^{-1}}{y_0(x_0 - a)}}{\frac{x_0 - a + 2a}{(x_0 - a)}}$$

$$= \frac{\left| \frac{2a(x_0 - a) - y_0^2}{y_0(x_0 + a)} \right|}{y_0^2 = 4ax_0}$$

$$= \frac{\left| \frac{2a(x_0 - a) - 4ax_0}{y_0(x_0 + a)} \right|}{y_0(x_0 + a)}$$

$$= \left| \frac{-2a(a+x_0)}{y_0(x_0+a)} \right| = \frac{2a}{y_0}$$

$$\angle BAC = \angle CAF$$

Q	Solution	
TWO (a)(i)	Since $\angle SPD = \theta$, $\angle SPQ = (\pi - 2\theta)$	
	In $\triangle APQ$ and $\triangle BRQ$, $\angle A = \angle B = \frac{\pi}{2}$, since ABCD is a rectangle.	
	\angle AQP = \angle BQR so \angle APQ = \angle QRB = θ (Sum of angles of Δ) The opposite angles of SPQR are equal so SPQR is a parallelogram 2(PQ + PS).	with perimeter
	But PQ = $\frac{x}{\cos \theta}$ and PS = $\frac{3-x}{\cos \theta}$	
	Perimeter = $2\left(\frac{x}{\cos\theta} + \frac{3-x}{\cos\theta}\right) = \frac{6}{\cos\theta}$, i.e. does not depend on x .	
(a)(ii)	Using Cosine Rule $PR^2 = PQ^2 + QR^2 - 2PQ.QR.cos(\angle PQR)$	
	$\angle AQP = \frac{\pi}{2} - \theta = \angle BQR \Rightarrow \angle PQR = 2\theta$	
	$PR^{2} = \left(\frac{2}{\cos\frac{\pi}{3}}\right)^{2} + \left(\frac{3-2}{\cos\frac{\pi}{3}}\right)^{2} - 2\frac{2}{\cos\frac{\pi}{3}} \cdot \frac{3-2}{\cos\frac{\pi}{3}} \cdot \cos\left(2\frac{\pi}{3}\right)$	
	$PR^2 = 16 + 4 + 8 = 28$ i.e. $PR = 2\sqrt{7}$ units	
(b)	From (1)	
	$x + y = 1 + z$ $(x + y)^{2} = 1 + 2z + z^{2}$ (A)	
	$(x+y)^2 = 1 + 2z + z^2 $ From (2)	
	$x^2 + 2xy + y^2 = 5 + z^2 (B)$	
	(B) – (A) gives: $0 = 4 - 2z \Rightarrow z = 2$	
	This gives $x + y = 3$ and $(x + y)^3 = 27$	
	Also	
	$x^{3} + 3x^{2}y + 3xy^{2} + y^{3} = x^{3} + y^{3} + 3xy(x + y) = x^{3} + y^{3} + 9xy$ So $x^{3} + y^{3} + 9xy = 27$ or $x^{3} + y^{3} = 27 - 9xy$ (C)	
	From (3) and using $z = 2$, we have $x^3 + y^3 = 51 - 3xy$ (D)	
	(D) - (C) gives: $0 = 24 + 6xy$	
	xy = -4 In summary, we have $x + y = 3$, $z = 2$, and $xy = -4$	
	The solutions are:	
	(1) $x = 4, y = -1, \text{ and } z = 2$	
	(2) $x = -1$, $y = 4$, and $z = 2$	

Q	Solution
THREE (a)	$\ln y = \ln x^{(x^{x})} = x^{x} \ln x$ $\ln(\ln y) = \ln(x^{x} \ln x) = \ln x^{x} + \ln(\ln x)$ $\frac{1}{\ln y} \frac{1}{y} \frac{dy}{dx} = \ln x + x \frac{1}{x} + \frac{1}{\ln x} \frac{1}{x}$ And substituting: when $x = 2$, $y = 16$ $\frac{1}{\ln 16} \frac{1}{16} \frac{dy}{dx} = \ln 2 + 1 + \frac{1}{\ln 2} \times \frac{1}{2}$ $\frac{dy}{dx} = 64 \ln 2 \left(\ln 2 + 1 + \frac{1}{2 \ln 2} \right) = 107.1$
(b)(i)	$\frac{d}{dx} \left(e^x \sin x \right) = e^x \left(\sin x + \cos x \right)$ $= \sqrt{2} e^x \left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right)$ $= 2^{\frac{1}{2}} e^x \sin \left(x + \frac{\pi}{4} \right)$
(b)(ii)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(2^{\frac{1}{2}} \mathrm{e}^x \sin\left(x + \frac{\pi}{4}\right) \right)$ $= 2^{\frac{1}{2}} \mathrm{e}^x \left(\sin\left(x + \frac{\pi}{4}\right) + \cos\left(x + \frac{\pi}{4}\right) \right)$ $= 2^{\frac{1}{2}} \mathrm{e}^x \sqrt{2} \left(\frac{1}{\sqrt{2}} \sin\left(x + \frac{\pi}{4}\right) + \frac{1}{\sqrt{2}} \cos\left(x + \frac{\pi}{4}\right) \right)$ $= 2^{2 \times \frac{1}{2}} \mathrm{e}^x \left(\sin\left(x + 2\frac{\pi}{4}\right) \right)$
(b)(iii)	Similarly $\frac{d^3y}{dx^3} = 2^{3\times\frac{1}{2}}e^x\left(\sin\left(x+3\frac{\pi}{4}\right)\right)$ and so $\frac{d^ny}{dx^n} = 2^{n\times\frac{1}{2}}e^x\left(\sin\left(x+n\frac{\pi}{4}\right)\right)$ $n \text{ is even } \Rightarrow \left(\frac{d^ny}{dx^n}\right)_{x=0} = 2^{\frac{n}{2}}\left(\sin\left(n\frac{\pi}{4}\right)\right)$ which evaluates to: $2^{\frac{n}{2}} \text{ if } n = 2,10,18 \dots \text{ or } \left\{n = 8k+2, k = \{0,1,2\dots\}\right\}$ $0 \text{ if } n = 4,8,12 \dots \text{ or } \left\{n = 4k, k = \{1,2,3\dots\}\right\}$ $-2^{\frac{n}{2}} \text{ if } n = 6,14,22 \dots \text{ or } \left\{n = 8k+6, k = \{0,1,2\dots\}\right\}$ n is odd: $2^{\frac{n}{2}} \times \frac{1}{\sqrt{2}} = 2^{\frac{n-1}{2}} \text{ if } n = 1,3,9,11 \dots \text{ or } \left\{n = 2+8k\pm1, k = \{0,1,2\dots\}\right\}$ $-2^{\frac{n}{2}} \times \frac{1}{\sqrt{2}} = -2^{\frac{n-1}{2}} \text{ if } n = 5,7,13,15 \dots \text{ or } \left\{n = 6+8k\pm1, k = \{0,1,2\dots\}\right\}$

(c) Let
$$y = \sinh^{-1}x \Rightarrow \sinh y = x$$

$$x = \frac{1}{2}(e^{x} - e^{-y}) \Rightarrow$$

$$1 = \frac{1}{2}(e^{x} \frac{dy}{dx} + e^{-y} \frac{dy}{dx})$$

$$\frac{dy}{dx}(\frac{1}{2}(e^{x} - e^{-y})) = 1 \Rightarrow$$

$$\frac{dy}{dx} \cosh y = 1 \Rightarrow \frac{dy}{dx} = \frac{1}{\cosh y}$$
From the definition: $\sinh^{2}y - \cosh^{2}y$

$$= \left(\frac{1}{2}(e^{x} - e^{-y})\right)^{2} - \left(\frac{1}{2}(e^{x} - e^{-y})\right)^{2} = -1$$

$$\frac{dy}{dx} = \frac{1}{\cosh y} = \frac{1}{\sqrt{(\sinh y)^{2} + 1}} = \frac{1}{\sqrt{x^{2} + 1}}$$
METHOD ONE
$$y = \sinh x = \frac{1}{2}(e^{x} - e^{-x})$$

$$2y = e^{x} - e^{-x}$$

$$e^{x} \cdot 2y = e^{2x} - 1$$

$$(e^{x})^{2} - e^{x} \cdot 2y - 1 = 0$$

$$e^{x} = \frac{2y \pm \sqrt{4y^{2} + 4}}{2}$$

$$e^{x} = y \pm \sqrt{y^{2} + 1}$$

$$x = \ln(y + \sqrt{y^{2} + 1}) \text{ as } y - \sqrt{y^{2} + 1} < 0$$

$$\therefore y = \sinh^{-1}(x) = \ln(x + \sqrt{x^{2} + 1})$$

$$\frac{d}{dx}(\sinh^{-1}(x)) = \frac{1}{x + \sqrt{x^{2} + 1}} \cdot \left[1 + \frac{2x}{2\sqrt{x^{2} + 1}}\right]$$

$$= \frac{1}{x^{2} + 1} \cdot \left[\frac{\sqrt{x^{2} + 1} + x}{\sqrt{x^{2} + 1}}\right]$$

$$= \frac{1}{\sqrt{x^{2} + 1}}$$

Q	Solution
FOUR (a)	$\tan 3x = \tan(x+2x) = \frac{\tan x + \tan 2x}{1 - \tan x \tan 2x} \text{ and}$ $\tan 3x - \tan x \tan 2x \tan 3x = \tan x + \tan 2x$ $\tan x \tan 2x \tan 3x = -\tan x - \tan 2x + \tan 3x$ $\int \tan x \tan 2x \tan 3x dx = \int (-\tan x - \tan 2x + \tan 3x) dx$ And since $\int \tan x dx = \int \frac{\sin x}{\cos x} dx$, by substitution with $u = \cos x$ $\int \frac{\sin x}{u} \frac{du}{-\sin x} = -\ln \cos x + c$ $\int \tan x \tan 2x \tan 3x dx = \ln \cos x + \frac{1}{2} \ln \cos 2x - \frac{1}{3} \ln \cos 3x + K$
(b)	The portions of the curve defined by $0 \le \theta \le \pi$ and $\pi \le \theta \le 2\pi$ are symmetric. $S = 2\int_0^\pi \sqrt{\left\{r^2 + \left(\frac{dr}{d\theta}\right)^2\right\}} d\theta$ $r^2 + \left(\frac{dr}{d\theta}\right)^2 = a^2(1 - \cos\theta)^2 + (a\sin\theta)^2$ $= a^2 - 2a^2\cos\theta + a^2\cos^2\theta + a^2\sin^2\theta$ $= 2a^2(1 - \cos\theta)$ $= 2a^2\left(1 - \left(\cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2}\right)\right)$ $= 2a^2\left(2\sin^2\frac{\theta}{2}\right)$ $S = 2\int_0^\pi \sqrt{2a^2\left(2\sin^2\frac{\theta}{2}\right)} d\theta$ $= 4a\int_0^\pi \sin\frac{\theta}{2} d\theta$ $= 4a\left[-2\cos\frac{\theta}{2}\right]_0^\pi = -8a\left[\cos\frac{\pi}{2} - \cos\theta\right] = 8a$

METHOD ONE

$$1 - \cos\theta = \frac{r}{a}$$

$$\sin\theta \, d\theta = \frac{1}{a} dr$$

$$d\theta = \frac{dr}{a\sin\theta}$$

$$\sin\theta = \sqrt{1 - \cos^2\theta}$$

$$= \sqrt{1 - \left(1 - \frac{r}{a}\right)^2}$$

$$= \sqrt{\frac{2ar - r^2}{a^2}}$$

$$so \, I = 2 \times \int_0^{2a} \sqrt{2} \cdot a \cdot \sqrt{\frac{r}{a} \cdot \frac{1}{a}} \cdot \frac{a}{\sqrt{2ar - r^2}} dr$$

$$= 2\sqrt{2a} \cdot \int_0^{2a} \sqrt{\frac{r}{2ar - r^2}} dr$$

$$= 2\sqrt{2a} \cdot \int_0^{2a} (2a - r)^{-\frac{1}{2}} dr$$

$$= 2\sqrt{2a} \left[-2(2a - r)^{\frac{1}{2}} \right]_0^{2a} = 2\sqrt{2a} \left(0 + 2\sqrt{2a}\right) = 8$$

METHOD TWO

Note:
$$1 - \cos \theta = 2 \sin^2 \left(\frac{\theta}{2}\right)$$

$$I = \sqrt{2}a \int_0^{2\pi} \sqrt{2 \sin^2 \frac{\theta}{2}} d\theta$$

$$= 4a \int_0^{\pi} \sin \frac{\theta}{2} d\theta$$

$$= 4a \left[-2 \cos \frac{\theta}{2}\right]_0^{\pi} = 4a \left(0 - (-2)\right)$$

Q	Solution
FIVE (a)(i)	$\cos 5\theta = Re(\cos \theta + i\sin \theta)^5$
	$(\cos\theta + i\sin\theta)^5 = \cos^5\theta + {5 \choose 1}(\cos^4\theta)(i\sin\theta) + {5 \choose 2}(\cos^3\theta)(i\sin\theta)^2$
	$+ {5 \choose 3} (\cos^2 \theta) (i\sin \theta)^3 + {5 \choose 4} (\cos \theta) (i\sin \theta)^4 + (i\sin \theta)^5$
	$= \cos^5 \theta + 5i(\cos^4 \theta)\sin \theta - 10(\cos^3 \theta)\sin^2 \theta - 10i\cos^2 \theta \sin^3 \theta + 5\cos \theta \sin^4 \theta + i\sin^5 \theta$
	Taking the real part only:
	$\cos 5\theta = \cos^5 \theta - 10(\cos^3 \theta)\sin^2 \theta + 5\cos \theta \sin^4 \theta$
	$= \cos^5 \theta - 10(\cos^3 \theta)(1 - \cos^2 \theta) + 5\cos \theta (1 - \cos^2 \theta)^2$
	$=16\cos^5\theta-20\cos^3\theta+5\cos\theta$
	Or using trig identities
	$\cos(5\theta) = \cos(4\theta + \theta)$
	$= \cos 4\theta \cos \theta - \sin 4\theta \sin \theta$ $= (2\cos^2 2\theta - 1)\cos \theta - 2\sin 2\theta \cos 2\theta \sin \theta$
	$= \left(2\left(2\cos^2\theta - 1\right)^2 - 1\right)\cos\theta - 4\sin^2\theta\cos\theta\cos2\theta$
	$= (8\cos^4\theta - 8\cos^2\theta + 1)\cos\theta - 4(1-\cos^2\theta)\cos\theta\cos2\theta$
	$= 8\cos^{5}\theta - 8\cos^{3}\theta + \cos\theta + 4(\cos^{3}\theta - \cos\theta)(2\cos^{2}\theta - 1)$
	$= 8\cos^5\theta - 8\cos^3\theta + \cos\theta + 8\cos^5\theta - 12\cos^3\theta + 4\cos\theta$ $= 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$
(a)(ii)	$\cos 5\theta = \cos 4\theta$ has solns $5\theta = 2k\pi \mp 4\theta$, i.e. $\theta = 2k\pi$ or $9\theta = 2n\pi$, k and n integers. Also $\cos 5\theta - \cos 4\theta = 0$ will give a degree five polynomial which can be factored to a quadratic and a cubic. It is the cubic that will yield the roots required.
	$\cos 4\theta = Re(\operatorname{cis}\theta)^4$
	$=\cos^4\theta - 6\cos^2\theta\sin^2\theta + \sin^4\theta$
	$= \cos^4 \theta - 6\cos^2 \theta \left(1 - \cos^2 \theta\right) + \left(1 - \cos^2 \theta\right)^2$
	$=8\cos^4\theta-8\cos^2\theta+1$
	so: $\cos 5\theta - \cos 4\theta = 16\cos^5\theta - 8\cos^4\theta - 20\cos^3\theta + 8\cos^2\theta + 5\cos\theta - 1 = 0$
	Using $\theta = 2k\pi$ or $9\theta = 2n\pi$, k and n integers the roots are:
	$\cos 0$, $\cos \frac{2\pi}{9}$, $\cos \frac{4\pi}{9}$, $\cos \frac{6\pi}{9}$ and $\cos \frac{8\pi}{9}$
	But $\cos 0 = 1$ and $\cos \frac{6\pi}{9} = \cos \frac{2\pi}{3} = -\frac{1}{2}$
	$\cos \theta - 1$ and $2\cos \theta + 1$ are factors: using equating coefficients
	$(2\cos^2\theta - \cos\theta - 1)(A\cos^3\theta + B\cos^2\theta + C\cos\theta + D)$
	$= 16\cos^{5}\theta - 8\cos^{4}\theta - 20\cos^{3}\theta + 8\cos^{2}\theta + 5\cos\theta - 1$
	So $D = 1$, $A = 8$, $-8\cos^4\theta + 2B\cos^4\theta = -8\cos^4\theta \Rightarrow B = 0$
	$-8\cos^{3}\theta + 2B\cos^{3}\theta = -8\cos^{3}\theta \Rightarrow B = 0$ $-8\cos^{3}\theta + 2C\cos^{3}\theta = -20\cos^{3}\theta \Rightarrow C = -6$
	The equation is: $(2\cos^2\theta - \cos\theta - 1)(8\cos^3\theta - 6\cos\theta + 1)$
	The polynomial with roots $\cos \frac{2\pi}{9}$, $\cos \frac{4\pi}{9}$, and $\cos \frac{8\pi}{9}$ is $(8\cos^3\theta - 6\cos\theta + 1)$

(b)(i)	1,
	$a_{n+1} - a_n = \frac{1}{2} (a_n + a_{n-1}) - a_n$
	$=\left(-\frac{1}{2}\right)\left[a_{n}-a_{n-1}\right]$
	$= \left(-\frac{1}{2}\right) \left[\frac{1}{2}(a_{n-1} + a_{n-2}) - a_{n-1}\right]$
	$= \left(-\frac{1}{2}\right)^2 \left[a_{n-1} - a_{n-2}\right]$
	$= \left(-\frac{1}{2}\right)^3 \left[a_{n-2} - a_{n-3}\right]$
	Continuing
	$= \left(-\frac{1}{2}\right)^{n-1} \left[a_2 - a_1\right] = \left(-\frac{1}{2}\right)^{n-1} \times 5$
	(Candidate may instead exhaustively calculate terms for $n \ge 2$
	and arrive at the same equation. Acceptable!)
	So: $a_n - a_{n-1} = 5 \times \left(-\frac{1}{2}\right)^{n-2}$
	$a_{n-1} - a_{n-2} = 5 \times \left(-\frac{1}{2}\right)^{n-3}$
	$a_3 - a_2 = 5 \times \left(-\frac{1}{2}\right)^1$
	$a_2 - a_1 = 5 \times \left(-\frac{1}{2}\right)^0$
	Adding these equations gives
	$a_n - a_1 = 5 \left[1 + \left(-\frac{1}{2} \right)^1 + \left(-\frac{1}{2} \right)^2 \dots + \left(-\frac{1}{2} \right)^{n-2} \right]$
	$= \frac{5\left[1 - \left(-\frac{1}{2}\right)^{n-1}\right]}{\left(-\frac{1}{2}\right)^n} \text{ and }$
	$1-\left(-\frac{1}{2}\right)$
	$a_n = \frac{10}{3} \left[1 - \left(-\frac{1}{2} \right)^{n-1} \right] + 2$
	$= \frac{1}{3} \left[16 - 10 \left(-\frac{1}{2} \right)^{n-1} \right]$
(b)(ii)	$\lim_{n \to \infty} \frac{1}{3} \left[16 - 10 \left(-\frac{1}{2} \right)^{n-1} \right] = \frac{16}{3}$

Further solution

(b)(i) First, generate some terms

The differences alternate by multiple $-\frac{1}{2}$

So, difference D_i follow a geometric pattern

With $t_1 = 5$ $r = -\frac{1}{2}$

Each D_i has value $5\left(-\frac{1}{2}\right)^{i-1}$ [t_n for geometric progression]

So in main sequence:

$$T_{2} = T_{1} + D_{1}, T_{3} = T_{2} + D_{2} = T_{1} + D_{1} + D_{2}, T_{4} = T_{3} + D_{3}, = T_{1} + D_{1} + D_{2} + D_{3}$$

$$\therefore T_{n} = T_{1} + \sum_{i=1}^{n-1} D_{i}$$

$$5\left(1 - \left(-\frac{1}{2}\right)^{n-1}\right)$$

$$= 2 + \frac{5\left(1 - \left(-\frac{1}{2}\right)\right)}{1.5}$$
 [sum of geometric progression]

(ii)
$$\lim_{n \to \infty} T_n = \lim_{n \to \infty} 2 + \frac{5\left(1 - \left(-\frac{1}{2}\right)^{n-1}\right)}{1.5}$$
$$= 2 + \frac{5}{1.5} = \frac{16}{3}$$