《计算机网络》

一、概述

ISP 互联网服务供应商

IXP 互联网交换点

C/S 方式 Client Server

P2P方式 Peer-to-Peer

电路交换 报文交换 分组交换

速率

带宽 最高数据率 bit/s

吞吐量 实际数据量

时延 delay/latency

发送时延 数据发送时间

发送时延=数据帧长度 (bit) 发送速率 (bit/s)

传播时延 数据传播时间

传播时延 = 信道长度(m) 电磁波在信道上的传播速率(m/s)

处理时延

排队时延

加起来就是总时延

时延带宽积 以bit为单位我的链路长度

往返时间 RTT

利用率

1. 协议体系结构

应用层 应用进程间通信和交互的规则 DNS HTTP SMTP 报文message 运输层 提供数据传输服务 UDP TCP

网络层 不同主机间通信服务 IP 链路层 组装成帧 控制信息 (同步信息, 地址信息, 差错控制) 物理层 比特 01

图 1-19 数据在各层之间的传递过程

协议水平,服务竖直

二、物理层

- 1. 物理层协议 物理层规程procedure 串行传输
- 2. 数据通信系统

源系统/发送端 传输系统 目的系统/接收方

源系统: 源点 发送器 接收器 终点

- 单向通信/单工通道 双向交替通信/半双工通道 双向同时通信/全双工通道 基带信号 调制 基带调制 编码 载波 带通信号 带通调制
- 4. 编码方式

不归零制 归零制 曼彻斯特编码(自同步能力) 差分曼彻斯特编码

5. 奈奎斯特准则,信道传输频率上限

$$f_s > 2 * f_N$$

信噪比

信噪比(dB) = $10 \log_{10}(S/N)$ (dB)

香农公式

在 1948 年,信息论的创始人香农(Shannon)推导出了著名的**香农公式**。香农公式指出: 信道的极限信息传输速率 C 是

$$C = W \log_2(1+S/N) \quad \text{(bit/s)} \tag{2-2}$$

式中,W为信道的带宽(以 Hz 为单位); S 为信道内所传信号的平均功率; N 为信道内部的高斯噪声功率。香农公式的推导可在通信原理教科书中找到。这里只给出其结果。

信道的带宽或者信噪比越大,信息的极限传输速率就越高

6. 传输媒介 双绞线 同轴电缆 光缆

7. 信道复用技术

频分复用 FDM

时分复用 TDM 等时信号

统计时分复用 STDM 异步时分复用

波分复用 光的频分复用

码分复用 CDM 码分多址 CDMA 码片序列正交 伪随机码序列

三、链路层

1. 点对点信道

广播信道

2. 帧 网络层交下来的数据构成帧

封装成帧 framing 最大传送单元MTU 控制字符 SOH EOT

透明传输 传输帧中 SOH EOT 进行转义操作

差错检测 误码率 Bit Error Rate 循环冗余检验 CRC 帧检测序列FCS Frame Check

Sequence

无差错接收!=可靠传输

帧丢失 帧重复 帧失序 通过上层,例如运输层的TCP协议完成

3. 点对点协议 PPP

F 标志位 进制

A 规定为0xFF

C 规定为0x03

第四个 两个字节的协议字段

尾部的第一个字段(2字节)是使用CRC的FCS

字节填充 转义字符 信息字段修改出现的标志字段 异步传输

零比特填充 五个连续的1就加个0 转义

4. PPP协议状态图

鉴别 Authenticate

口令鉴别协议 PAP

口令握手鉴别协议 CHAP

5. 广播信道的链路层

CSMA/CD协议 载波监听多点接入/碰撞检测

多点接入 总线型网络

载波监听 发送前发送中都在检测信道

碰撞检测 边发送边监听

不能同时发送或者接收,双向交替通信/半双工通信 截断而二进制指数退避 争用期为512bit

可见当重传次数不超过 10 时,参数 k 等于重传次数; 但当重传次数超过 10 时,k 就不 再增大而一直等于10。

(3) 当重传达 16 次仍不能成功时(这表明同时打算发送数据的站太多,以致连续发生 冲突),则丢弃该帧,并向高层报告。

使重传需要推迟的平均时间随着重传次数而增大 动态退避

人为干扰信号

根据以上所讨论的,可以把 CSMA/CD 协议的要点归纳如下:

- (1) 准备发送:适配器从网络层获得一个分组,加上以太网的首部和尾部(见后面的 3.4.3 节), 组成以太网帧, 放入适配器的缓存中。但在发送之前, 必须先检测信道。
- (2) 检测信道: 若检测到信道忙,则应不停地检测,一直等待信道转为空闲。若检测到 信道空闲,并在96比特时间内信道保持空闲(保证了帧间最小间隔),就发送这个帧。
- (3) 在发送过程中仍不停地检测信道,即网络适配器要边发送边监听。这里只有两种可 能性:
- ①发送成功:在争用期内一直未检测到碰撞。这个帧肯定能够发送成功。发送完毕 后,其他什么也不做。然后回到(1)。
- ②发送失败: 在争用期内检测到碰撞。这时立即停止发送数据,并按规定发送人为干 扰信号。适配器接着就执行指数退避算法,等待 r 倍 512 比特时间后,返回到步骤(2),继 续检测信道。但若重传达 16 次仍不能成功,则停止重传而向上报错。

以太网每发送完一帧,一定要把已发送的帧暂时保留一下。如果在争用期内检测出发 生了碰撞,那么还要在推迟一段时间后再把这个暂时保留的帧重传一次。

6. 集线器工作在物理层

从图 3-21 可看出,要提高以太网的信道利用率,就必须减小 τ 与 T_0 之比。在以太网中 定义了参数 a,它是以太网单程端到端时延 τ 与帧的发送时间 T_0 之比:

$$a = \frac{\tau}{T_0} \tag{3-2}$$

7.

当 $a\rightarrow 0$ 时,表示只要一发生碰撞,就立即可以检测出来,并立即停止发送,因而信道 资源被浪费的时间非常非常少。反之,参数 a 越大,表明争用期所占的比例越大,这就使得 每发生一次碰撞就浪费了不少的信道资源,使得信道利用率明显降低。因此,以太网的参数

使得单程传播时间尽可能的短

极限信道利用率

$$S_{\text{max}} = \frac{T_0}{T_0 + \tau} = \frac{1}{1 + a}$$

8. MAC层 硬件地址/物理地址

无效MAC帧

IEEE 802.3 标准规定凡出现下列情况之一的即为无效的 MAC 帧:

- (1) 帧的长度不是整数个字节;
- (2) 用收到的帧检验序列 FCS 查出有差错;
- (3) 收到的帧的 MAC 客户数据字段的长度不在 46~1500 字节之间。考虑到 MAC 帧首部和尾部的长度共有 18 字节,可以得出有效的 MAC 帧长度为 64~1518 字节之间。

对于检查出的无效 MAC 帧就简单地丢弃。以太网不负责重传丢弃的帧。

9. 交换机工作在链路层

交换表 生成树协议 STP 记录MAC地址和端口

10. VLAN 虚拟局域网 利用VLAN标记 增加了四个字节

四、网络层

1. 网络层不提供服务质量的承诺

网际协议IP

图 4-2 网际协议 IP 及其配套协议

- 地址解析协议 ARP (Address Resolution Protocol)
- 网际控制报文协议 ICMP (Internet Control Message Protocol)
- 网际组管理协议 IGMP (Internet Group Management Protocol)

2. 中间设备

- (1) 物理层使用的中间设备叫做转发器(repeater)。
- (2) 数据链路层使用的中间设备叫做网桥或桥接器(bridge)。
 - (3) 网络层使用的中间设备叫做路由器(router)®。
- (4) 在网络层以上使用的中间设备叫做**网关**(gateway)。用网关连接两个不兼容的系统需要在高层进行协议的转换。

互联网可以由多种异构网络互联而成

3. IP地址

A、B、C都为单播地址

D类地址用于多播

点分十进制记法

4. 常用网络IP

A类网络 7位: 126个

全0 this 本网络

127 环回测试

B类中 128.0.0.0不使用

C类中 192.0.0.0不使用

网络 类别	最大可指派的 网络数	第一个可指派的 网络号	最后一个可指派的 网络号	每个网络中的 最大主机数	
A 126 (2 ⁷ – 2)		CISHLAND IN	126	16777214	
В	16383 (2 ¹⁴ – 1)	128.1	191.255	65534	
C 2097151 (2 ²¹ – 1)		192.0.1	223.255.255	254	

不使用网络

网络号	主机号	源地址使用	目的地址使用	代表的意思	
0	0	可以	不可	在本网络上的本主机 (见 6.6 节 DHCP 协议)	
0	host-id	可以	不可	在本网络上的某台主机 host-id	
全1	全1	不可	可以	只在本网络上进行广播 (各路由器均不转发)	
net-id	全1	不可	可以	对 net-id 上的所有主机进行广播	
127	非全0或全1 的任何数	可以	可以	用于本地软件环回测试	

5. IP地址和MAC地址区别

IP层上只能看到IP数据报 路由器只根据目的站的IP地址的网络号进行路由选择 局域网的链路层,只能看见MAC帧

6. ARP协议 地址解析协议构建IP到硬件地址的映射(因为硬件地址多种多样,所以进行IP编址简化

7. IP数据报

版本 4位

首部长度 4位

区分服务 8位

总长度 16位 最大长度为2^16-1 字节

MTU 最大传送单元 以太网规定MTU为1500字节 分片处理

总长度为分片后每个分片首部长度与该分片数据长度的总和

标识 16位 每产生一个数据报 计数器+1

标志 3位 后两位有意义

最低位MF MF=1 表示后面还有分片 MF=0表示是最后一个

中间位DF DF=1 不能分片 反之亦然

片位移 13位 分片后某片的相对位置 8个字节为偏移单位 所以分片长度一定是8字节整数倍

生存时间 8位 TTL 转发一次就是一跳 跳数限制 最大255 协议 8位

首部检验和 16位 只检验数据报首部 不包括数据部分 每路过一个路由器重新计算

源地址 32位

目的地址 32位

可变部分 1-40字节 增加功能 在IPv6中首部长度固定

8. 分组转发流程

路由器表: (目的网络地址,下一跳地址)

特定主机路由

默认路由 (只要是其他网络就发送)

分组转发算法

- (1) 从数据报的首部提取目的主机的 IP 地址 D, 得出目的网络地址为 N。
- (2) 若 N 就是与此路由器直接相连的某个网络地址,则进行**直接交付**,不需要再经过其他的路由器,直接把数据报交付目的主机(这里包括把目的主机地址 D 转换为具体的硬件地址,把数据报封装为 MAC 帧,再发送此帧);否则就是间接交付,执行(3)。
- (3) 若路由表中有目的地址为 D 的特定主机路由,则把数据报传送给路由表中所指明的下一跳路由器;否则,执行(4)。
- (4) 若路由表中有到达网络 N 的路由,则把数据报传送给路由表中所指明的下一跳路由器: 否则,执行(5)。
- (5) 若路由表中有一个默认路由,则把数据报传送给路由表中所指明的默认路由器; 否则,执行(6)。
- (6) 报告转发分组出错。

9. 子网划分

{<网络号>,<子网号>,<主机号>}

子网掩码 逐位与 AND

子网分组转发

目的网络地址、子网掩码、下一跳地址

- (1) 从收到的数据报的首部提取目的 IP 地址 D。
- (2) 先判断是否为直接交付。对路由器直接相连的网络逐个进行检查:用各网络的子网掩码和 D 逐位相"与"(AND操作),看结果是否和相应的网络地址匹配。若匹配,则把分组进行直接交付(当然还需要把 D 转换成物理地址,把数据报封装成帧发送出去),转发任务结束。否则就是间接交付,执行(3)。
- (3) 若路由表中有目的地址为 D 的特定主机路由,则把数据报传送给路由表中所指明的下一跳路由器;否则,执行(4)。
- (4) 对路由表中的每一行(目的网络地址,子网掩码,下一跳地址),用其中的子网掩码和 D 逐位相"与"(AND操作),其结果为 N。若 N 与该行的目的网络地址匹配,则把数据报传送给该行指明的下一跳路由器;否则,执行(5)。
- (5) 若路由表中有一个默认路由,则把数据报传送给路由表中所指明的默认路由器;否则,执行(6)。
 - (6) 报告转发分组出错。

10. 无分类编址CIDR

消除ABC类地址和划分子网的概念 使用网络前缀 无分类两级编址 {<网络前缀>,<主机号>}

斜线记法

128.14.35.7/20 = **10000000 00001110 0010**0011 00000111

网络前缀相同的最为CIDR地址块

32位地址掩码

路由聚合 构成超网

最长前缀匹配 在路由匹配中选择具有最长网络前缀的路由

11. 路由表查找

二叉线索 先找出唯一前缀

12. ICMP 网际控制报文协议

报文种类

ICMP 报文种类	类型的值	ICMP 报文的类型	
日本世界所が開発	3	终点不可达	
AN 40 40 AV 40 AV	11 时间超过		
差错报告报文	12	参数问题	
	5	改变路由(Redirect)	
Market Miller	8或0	回送(Echo)请求或回答	
询问报文	13 或 14	时间戳(Timestamp)请求或回答	

差错报文格式

不应该发送ICMP差错报文的情况

- 对 ICMP 差错报告报文,不再发送 ICMP 差错报告报文。
- 对第一个分片的数据报片的所有后续数据报片,都不发送 ICMP 差错报告报文。
- 对具有多播地址的数据报,都不发送 ICMP 差错报告报文。
- 对具有特殊地址(如127.0.0.0或0.0.0.0)的数据报,不发送ICMP差错报告报文。

13. ICMP应用

分组网间监测PING 没有通过运输层TCP或UDP

Traceroute/Tracert 追踪路径

经过路由器数量 —— 花费时间 有关但是不绝对 因为拥塞程度随时变化

14. 路由算法选择

静态路由选择策略 非自适应路由选择 动态路由选择策略 自适应路由选择

自治系统 AS

路由选择协议

内部网关协议IGP RIP和OSPF协议 外部网关协议EGP BGP-4 边界网关协议

域间路由选择 自治系统之间的路由选择

域内路由选择 白治系统内部的路由选择

15. 内部网关协议 RIP 实现简单 开销小

基于距离向量的路由选择协议 适用于小型互联网

距离: 跳数

- 1) 仅和相邻路由器交换信息
- 2) 交换路由表 即为本路由器知道的所有信息
- 3) 按固定时间间隔交换路由信息

距离向量算法: 弗洛伊德算法

超过3min没有收到相邻路由器更新 记为不可达 距离16

报文格式

运输层 使用UDP 端口520

路由信息需要20字节

一个RIP报文最多包括25个路由

RIP最大长度为4+20*25=504字节

问题: 网络出现故障 传递信息过慢

好消息传的快 坏消息传的慢

16. OSPF协议