Task #1

Vectors \vec{A} and \vec{B} are shown below.

(a) Find the components of \vec{A} and \vec{B} . ROTATE MARKER

Solution:

$$A_x = 9.21\,\mathrm{m/s}$$

$$A_y = 3.91\,\mathrm{m/s}$$

$$B_x = 5.36 \,\mathrm{m/s}$$

$$B_y = -4.49\,\mathrm{m/s}$$

(b) Sketch out what $\vec{R} = \vec{A} - 2\vec{B}$ would look like. ROTATE MARKER

Solution:

(c) Calculate the magnitude and direction of \vec{R}

Solution:

$$R_x = -1.51 \,\mathrm{m/s}$$

$$R_y = 12.89 \,\mathrm{m/s}$$

$$\vec{R} = 12.98 \,\mathrm{m/s} \,\,83.3^{\circ} \,\,\mathrm{N} \,\,\mathrm{of} \,\,\mathrm{W}$$

$$\vec{A}$$
 10 m
 $|S|$
 23°
 \vec{A}
 40°
 \vec{B}

Task #2

The summit of a mountain, 2450 m above base camp, is measured on a map to be 4580 m horizontally from the camp in a direction 38.4° west of north.

(a) Find the x-, y-, and z- components of the displacement vector from camp to summit. (Use +x as east, +y as north and +z as up.) ROTATE MARKER

Solution:

$$D_x = -2844.9 \,\mathrm{m}$$

$$D_y = 3589.3 \,\mathrm{m}$$
 $D_z = 2450 \,\mathrm{m}$

$$D_z = 2450 \, \text{m}$$

(b) Find the magnitude of the displacement vector.

Solution:

$$D = 5194.1 \,\mathrm{m}$$

Task #3

You are at a location 3600 meters at a direction 35° south of east from a watchtower. Your endpoint is 2300 meters due west of the watchtower. How far and in what direction should you travel to get to your endpoint?

Solution:

$$B = 2300 \text{ m}$$

$$\vec{A} + \vec{R} = \vec{B}$$

$$\vec{R} = \vec{B} - \vec{A}$$

$$A_x = 2948.9$$

$$A_y = -2064.9$$

$$B_x = -2300$$

$$B_y = 0$$

$$R_x = -5248.9$$

$$R_y = 2064.9$$

$$\vec{R} = 5640.5 \text{ m} @ 21.5 ^{\circ} \text{ W of N}$$