Algoritmos para Juegos con Información Incompleta y No Determinismo

Rubmary Rojas

Universidad Simón Bolívar, Caracas, Venezuela

Enero 2020

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Ciencias sociales

conomía

Matemática

Computación

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Ciencias sociales

conomía

Matemática

Computación

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Ciencias sociales

Economía

Matemática

Computación

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Ciencias sociales

Economía

Matemática

Computaciór

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Ciencias sociales

conomía

Matemática

Computaciór

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Ciencias sociales

conomía

Matemática

Computación

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Ciencias sociales

Economía

Matemática

Computación

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Aplicaciones

Ciencias sociales

conomía

Matemática

Computación

Definición

- Estudio de modelos matemáticos de conflicto y cooperación.
- Agentes que toman decisiones de forma racional e inteligente.

Ciencias sociales

conomía

Matemática

Computación

No determinismo

Incertidumbre probabilística:

- Lanzar dados
- Repartir cartas

Información incompleta

Información parcial sobre algunas de las acciones que fueron tomadas previamente

No determinismo

Incertidumbre probabilística:

- Lanzar dados
- Repartir cartas

Información incompleta

Información parcial sobre algunas de las acciones que fueron tomadas previamente

No determinismo

Incertidumbre probabilística.

- Lanzar dados
- Repartir cartas

Información incompleta

Información parcial sobre algunas de las acciones que fueron tomadas previamente.

No determinismo

Incertidumbre probabilística:

- Lanzar dados
- Repartir cartas

Información incompleta

Información parcial sobre algunas de las acciones que fueron tomadas previamente

Interrogantes

No determinismo

Información incompleta

Interrogantes

• ¿Qué significa que un juego sea resuelto?

No determinismo

Incertidumbre probabilística:

- Lanzar dados
- Repartir cartas

Información incompleta

Información parcial sobre algunas de las acciones que fueron tomadas previamente

Interrogantes

- ¿Qué significa que un juego sea resuelto?
- ¿Cuándo un jugador juega de forma óptima?

Objetivo General

Comprender los conceptos en el área de juegos de dos personas que involucran información incompleta y no determinismo, así como implementar los algoritmos para resolverlos, realizando experimentos sobre distintos juegos que son capturados por el modelo.

Piedra, papel o tijera

	${\mathcal R}$ (piedra)	${\mathcal P}$ (papel)	${\mathcal S}$ (tijera)
${\mathcal R}$ (piedra)	0,0	-1, 1	1, -1
${\mathcal P}$ (papel)	1, -1	0,0	-1, 1
${\mathcal S}$ (tijera)	[-1, 1]	1,-1	0,0

Piedra, papel o tijera

	\mathcal{R} (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
\mathcal{R} (piedra)	0,0	-1, 1	1, -1
${\cal P}$ (papel)	1, -1	0,0	-1, 1
$\setminus \mathcal{S}$ (tijera) $/$	-1, 1	1,-1	0,0

jugador 1

Piedra, papel o tijera

	\mathcal{R} (piedra)	${\mathcal P}$ (papel)	\mathcal{S} (tijera)	jugador 2
${\cal R}$ (piedra)	0,0	-1, 1	1, -1	
${\mathcal P}$ (papel)	1, -1	0,0	-1, 1	
${\cal S}$ (tijera)	-1, 1	1,-1	0,0	

Piedra, papel o tijera

	\mathcal{R} (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
\mathcal{R} (piedra)	0,0	-1, 1	1, -1
${\mathcal P}$ (papel)	1, -1	0,0	-1, 1
${\cal S}$ (tijera)	-1, 1	(1,-1)	0,0
	•		-

primer jugador **gana** 1

Piedra, papel o tijera

	\mathcal{R} (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
${\mathcal R}$ (piedra)	0,0	-1, 1	1, -1
${\mathcal P}$ (papel)	1, -1	0,0	-1, 1
${\cal S}$ (tijera)	-1, 1	(1,-1)	0,0
			1 1

segundo jugador **pierde** 1

Piedra, papel o tijera

\mathcal{R}	(piedra)
\mathcal{D}	(nanel)

 \mathcal{S} (tijera)

\mathcal{R} (piedra)	${\cal P}$ (papel)	\mathcal{S} (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

- Jugadores
- 2 Acciones o estrategias puras $\mathcal{R}, \mathcal{P}, \mathcal{S}$.
- § Función de pago o utilidades.

Piedra, papel o tijera

\mathcal{R}	(piedra)
\mathcal{P}	(nanel)

\mathcal{R} (piedra)	${\cal P}$ (papel)	\mathcal{S} (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

- Jugadores.
- 2 Acciones o estrategias puras $\mathcal{R}, \mathcal{P}, \mathcal{S}$.
- 3 Función de pago o utilidades.

Piedra, papel o tijera

\mathcal{R}	(piedra)
\mathcal{P}	(papel)

 \mathcal{S} (tijera)

${\cal R}$ (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

- Jugadores.
- 2 Acciones o estrategias puras: \mathcal{R} , \mathcal{P} , \mathcal{S} .
- 3 Función de pago o utilidades

Piedra, papel o tijera

\mathcal{R}	(piedra)
	(papel)

\mathcal{R} (piedra)	${\cal P}$ (papel)	\mathcal{S} (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

- Jugadores
- 2 Acciones o estrategias puras $\mathcal{R}, \mathcal{P}, \mathcal{S}$.
- 3 Función de pago o utilidades.

Piedra, papel o tijera

\mathcal{R} (piedra)	\mathcal{R}	(piedra)
------------------------	---------------	---------	---

 \mathcal{P} (papel) \mathcal{S} (tijera)

${\cal R}$ (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

Elementos

- Jugadores
- 2 Acciones o estrategias puras $\mathcal{R}, \mathcal{P}, \mathcal{S}$.
- § Función de pago o utilidades

- Estrategias puras: siempre se elige la misma acción.
- Estrategias mixtas: cada acción se elige con cierta probabilidad.

Piedra, papel o tijera

\mathcal{R}	(piedra)	١
	(10.000.00)	•

\mathcal{P}	(papel)
${\cal S}$	(tijera)

${\cal R}$ (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

Elementos

- Jugadores
- 2 Acciones o estrategias puras \mathcal{R} , \mathcal{P} , \mathcal{S} .
- § Función de pago o utilidades

- 1 Estrategias puras: siempre se elige la misma acción.
- Estrategias mixtas: cada acción se elige con cierta probabilidad.

Piedra, papel o tijera

\mathcal{R}	(pied	ra)
		,

n	(hieura
\mathcal{P}	(papel)
\mathcal{S}	(tijera)

${\cal R}$ (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
0,0	-1, 1	1, -1
1, -1	0,0	-1, 1
-1, 1	1,-1	0,0

Elementos

- Jugadores.
- 2 Acciones o estrategias puras $\mathcal{R}, \mathcal{P}, \mathcal{S}$.
- 3 Función de pago o utilidades

- Estrategias puras: siempre se elige la misma acción.
- 2 Estrategias mixtas: cada acción se elige con cierta probabilidad.

Piedra, papel o tijera

\mathcal{R}	(piedra)
\mathcal{P}	(papel)

 \mathcal{S} (tijera)

${\cal R}$ (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tij
0,0	-1, 1	1, -
1, -1	0,0	-1
-1, 1	1,-1	0,

Elementos

- 1 Jugadores.
- 2 Acciones o estrategias puras: \mathcal{R} . \mathcal{P} . \mathcal{S} .
- 3 Función de pago o utilidades.

- Estrategias puras: siempre se elige la misma acción.
- 2 Estrategias mixtas: cada acción se elige con cierta probabilidad.

Batalla de los sexos

		José		
		ballet	béisbol	
María	ballet	2,1	0,0	
	béisbol			

Batalla de los sexos

		José		
		ballet	béisbol	
María	ballet	2,1	0,0	
	béisbol	0,0	1,2	

1....

Batalla de los sexos

		Jose		
		ballet	béisbol	
María	ballet	2, 1	0,0	
	béisbol	0,0	1, 2	

• Ninguno obtiene ganancia.

Batalla de los sexos

н			/
п	\sim	c	Δ

 María obtiene una ganancia mayor que José.

Batalla de los sexos

			/
	\sim	c	Δ
J	u		c

María bállet béisbol

ballet	béisbol
2, 1	0,0
0, 0	(1,2)

 José obtiene una ganancia mayor que María.

Batalla de los sexos

		José		
		ballet	béisbol	
María	ballet	2,1	0,0	
	béisbol	0,0	1, 2	

Conceptos

- Ganancia Esperada
- Mejor Respuesta
- Equilibrio de Nash
- 4 Equilibrio Correlacionado

Batalla de los sexos

		Jose		
		ballet	béisbol	
María	ballet	2,1	0,0	
	béisbol	0,0	1, 2	

Conceptos

- 1 Ganancia Esperada
- 2 Mejor Respuesta
- Equilibrio de Nash
- 4 Equilibrio Correlacionado

Valor promedio que un determinado jugador obtendría si jugara infinitas veces y cada jugador utiliza una estrategia dada.

1....

Batalla de los sexos

		Jose		
		ballet	béisbol	
María	ballet	2,1	0,0	
IVIAIIA	béisbol	0,0	1, 2	

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- 3 Equilibrio de Nash
- 4 Equilibrio Correlacionado

La mejor forma en que puede jugar un jugador dadas las estrategias seleccionadas de sus oponentes.

Batalla de los sexos

 Si María siempre elige ballet.

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- Equilibrio de Nash
- 4 Equilibrio Correlacionado

La mejor forma en que puede jugar un jugador dadas las estrategias seleccionadas de sus oponentes.

1.../

Batalla de los sexos

		Jose		
		ballet	béisbol	
María	ballet	(2,1)	0,0	
iviaiia	béisbol	0, 0	1, 2	

 Lo mejor para José es siempre elegir ballet.

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- Equilibrio de Nash
- 4 Equilibrio Correlacionado

La mejor forma en que puede jugar un jugador dadas las estrategias seleccionadas de sus oponentes.

béisbol

0.0

1, 2

Batalla de los sexos

 $\begin{array}{c|c} & & \text{Jos\'e} \\ & & \text{ballet} \\ \hline \text{Mar\'ia} & \text{ballet} & 2,1 \\ \text{b\'eisbol} & 0,0 \\ \hline \end{array}$

Conceptos

- Ganancia Esperada
- Mejor Respuesta
- 3 Equilibrio de Nash
- 4 Equilibrio Correlacionado

Batalla de los sexos

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- 3 Equilibrio de Nash
- 4 Equilibrio Correlacionado

Land

Batalla de los sexos

		Jose		
		ballet	béisbol	
María	ballet	(2,1)	0,0	
	béisbol	0,0	1, 2	

 María no tiene motivos para cambiar su estrategia.

Conceptos

- Ganancia Esperada
- Mejor Respuesta
- 3 Equilibrio de Nash
- 4 Equilibrio Correlacionado

Batalla de los sexos

José ballet béisbol María béisbol 0.0 1.2

 José no tiene motivos para cambiar su estrategia.

Conceptos

- Ganancia Esperada
- Mejor Respuesta
- 3 Equilibrio de Nash
- 4 Equilibrio Correlacionado

Batalla de los sexos

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- 3 Equilibrio de Nash
- 4 Equilibrio Correlacionado

Batalla de los sexos

		Jose		
		ballet	béisbol	
María	ballet	2,1	0,0	
ivialia	béisbol	0,0	1, 2	

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- 3 Equilibrio de Nash
- 4 Equilibrio Correlacionado

Puede haber cooperación entre los jugadores.

Batalla de los sexos

María ballet báisbol 0

1 11 .	1 /: 1 1
ballet	béisbol
2, 1	0,0
0,0	1,2

José

Lanzar una moneda

- $\mathbf{0}$ cara \implies ballet
- 2 sello \implies béisbol

Conceptos

- Ganancia Esperada
- 2 Mejor Respuesta
- 3 Equilibrio de Nash
- 4 Equilibrio Correlacionado

Puede haber cooperación entre los jugadores.

	\mathcal{R} (piedra)	${\mathcal P}$ (papel)	${\cal S}$ (tijera)
${\mathcal R}$ (piedra)	0, 0	-1, 1	1,-1
${\cal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0, 0

	${\cal R}$ (piedra)	${\mathcal P}$ (papel)	${\mathcal S}$ (tijera)
\mathcal{R} (piedra)	0, 0	-1, 1	1,-1
${\cal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0, 0

\mathcal{R} (piedra)	\mathcal{P} (papel)	${\cal S}$ (tijera)

\mathcal{R}	(piedra)
\mathcal{D}	(nanel)

	ν,		
\mathcal{S}	(ti	jera	1)

λ (pieura)	(paper)	o (tijera)
0, 0	-1, 1	1,-1
1,-1	0, 0	-1, 1
-1, 1	1,-1	0, 0

\mathcal{R}	(piedra)
\mathcal{P}	(papel)
S	(tiiera)

\mathcal{R} (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
0, 0	-1, 1	1,-1
1,-1	0, 0	-1, 1
-1, 1	1,-1	0, 0

\mathcal{R} (piedra)	
${\cal P}$ (papel)	ľ
$\mathcal S$ (tijera)	ſ

\mathcal{R} (piedra)	${\cal P}$ (papel)	\mathcal{S} (tijera)
0, 0	-1, 1	1,-1
1,-1	0, 0	-1, 1
-1 , 1	1,-1	0, 0

\mathcal{R}	(piedra)
\mathcal{P}	(papel)

٠,٠		
\mathcal{S} (t	ijera	a)

\mathcal{R} (piedra)	\mathcal{P} (papel)	S (tijera)
0, 0	-1, 1	1,-1
1,-1	0, 0	-1, 1
-1, 1	1,-1	0, 0

\mathcal{R} (piedra)	
${\mathcal P}$ (papel)	ľ
\mathcal{S} (tijera)	ľ

${\mathcal R}$ (piedra)	${\mathcal P}$ (papel)	\mathcal{S} (tijera)
0, 0	-1, 1	1,-1
1,-1	0, 0	(-1, 1)
-1, 1	1,-1	0, 0

Piedra, papel o tijera

	${\cal R}$ (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
\mathcal{R} (piedra)	0, 0	-1, 1	1,-1
${\cal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0, 0

No todos los juegos tienen un equilibrio de Nash en estrategias puras.

Piedra, papel o tijera

	${\cal R}$ (piedra)	${\cal P}$ (papel)	${\cal S}$ (tijera)
\mathcal{R} (piedra)	0, 0	-1, 1	1,-1
${\cal P}$ (papel)	1,-1	0, 0	-1, 1
${\cal S}$ (tijera)	-1, 1	1,-1	0, 0

No todos los juegos tienen un equilibrio de Nash en estrategias puras.

Teorema de Nash

Todo juego finito tiene al menos un equilibrio de Nash (en estrategias mixtas).

Observaciones previas

Observaciones previas

 En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.

Observaciones previas

- En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.
- Diferentes equilibrios de Nash Ilevan a diferentes ganancias esperadas.

Observaciones previas

- En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.
- Diferentes equilibrios de Nash llevan a diferentes ganancias esperadas.

Observaciones previas

- En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.
- Diferentes equilibrios de Nash Ilevan a diferentes ganancias esperadas.

Equilibrio de Nash en Juegos de Dos Jugadores de Suma Cero

Solución satisfactoria.

Observaciones previas

- En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.
- Diferentes equilibrios de Nash Ilevan a diferentes ganancias esperadas.

- Solución satisfactoria.
- 2 Valor del juego u: ganancia esperada del primer jugador cuando ambos jugadores utilizan **cualquier** equilibrio de Nash.

Observaciones previas

- En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.
- Diferentes equilibrios de Nash Ilevan a diferentes ganancias esperadas.

- Solución satisfactoria.
- 2 Valor del juego u: ganancia esperada del primer jugador cuando ambos jugadores utilizan **cualquier** equilibrio de Nash.
- f 3 El primer jugador puede garantizar una ganancia esperada de **al menos** u independientemente de la estrategia de su oponente.

Observaciones previas

- En el juego batalla de los sexos los equilibrios de Nash no son soluciones satisfactorias.
- Diferentes equilibrios de Nash Ilevan a diferentes ganancias esperadas.

- Solución satisfactoria.
- **2** Valor del juego u: ganancia esperada del primer jugador cuando ambos jugadores utilizan **cualquier** equilibrio de Nash.
- **3** El primer jugador puede garantizar una ganancia esperada de **al menos** u independientemente de la estrategia de su oponente.
- 4 El segundo jugador puded garantizar una ganancia esperada de al menos -u independientemente de la estrategia de su oponente.

- Juegos de dos jugadores de suma cero.
- $oldsymbol{0}$ Se juega de forma repetida a través del tiempo t=1,2,3,...
- 2 A tiempo t+1 cada jugador elige una acción siguiente una estrategia mixta determinada.
- Se La estrategia empírica converge a un equilibrio de Nash.

- Juegos de dos jugadores de suma cero.
- f 1 Se juega de forma repetida a través del tiempo $t=1,2,3,\ldots$
- 2 A tiempo t+1 cada jugador elige una acción siguiente una estrategia mixta determinada.
- 3 La estrategia empírica converge a un equilibrio de Nash.

- Juegos de dos jugadores de suma cero.
- f 1 Se juega de forma repetida a través del tiempo $t=1,2,3,\ldots$
- 2 A tiempo t+1 cada jugador elige una acción siguiente una estrategia mixta determinada.
- 3 La estrategia empírica converge a un equilibrio de Nash.

- Juegos de dos jugadores de suma cero.
- f 0 Se juega de forma repetida a través del tiempo t=1,2,3,....
- 2 A tiempo t+1 cada jugador elige una acción siguiente una estrategia mixta determinada.
- 3 La estrategia empírica converge a un equilibrio de Nash.

Algoritmos para calcular un Equilibrio de Nash

- Juegos de dos jugadores de suma cero.
- f 1 Se juega de forma repetida a través del tiempo $t=1,2,3,\ldots$
- 2 A tiempo t+1 cada jugador elige una acción siguiente una estrategia mixta determinada.
- 3 La estrategia empírica converge a un equilibrio de Nash.

¿Cómo calcular la distribución de probabilidad?

 Diferentes formas de calcular la distribución de probabilidad conducen a diferentes algoritmos.

Algoritmos para calcular un Equilibrio de Nash

- Juegos de dos jugadores de suma cero.
- f 1 Se juega de forma repetida a través del tiempo t=1,2,3,...
- 2 A tiempo t+1 cada jugador elige una acción siguiente una estrategia mixta determinada.
- 3 La estrategia empírica converge a un equilibrio de Nash.

¿Cómo calcular la distribución de probabilidad?

 Diferentes formas de calcular la distribución de probabilidad conducen a diferentes algoritmos.

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

Algoritmos para calcular un Equilibrio de Nash

- Juegos de dos jugadores de suma cero.
- f 1 Se juega de forma repetida a través del tiempo t=1,2,3,...
- 2 A tiempo t+1 cada jugador elige una acción siguiente una estrategia mixta determinada.
- 3 La estrategia empírica converge a un equilibrio de Nash.

¿Cómo calcular la distribución de probabilidad?

 Diferentes formas de calcular la distribución de probabilidad conducen a diferentes algoritmos.

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- Regret condicional.
- Vector invariante de probabilidad de la matriz de regret condicional.
- Regret incondicional.

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- Regret condicional.
- Vector invariante de probabilidad de la matriz de regret condicional.
- Regret incondicional.

\mathcal{R},\mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- 1 Regret condicional.
- Vector invariante de probabilidad de la matriz de regret condicional.
- Regret incondicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- 1 Regret condicional.
- Vector invariante de probabilidad de la matriz de regret condicional.
- 3 Regret incondicional.

\mathcal{R},\mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

\mathcal{S},\mathcal{S}	\mathcal{S},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
0	1	0	$\frac{1}{3}$

$$R_1(\mathcal{R}, \mathcal{S}) = \frac{1}{3} - 0 = \frac{1}{3}$$

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- 1 Regret condicional.
- Vector invariante de probabilidad de la matriz de regret condicional.
- 3 Regret incondicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

$$R_1(\mathcal{R}, \mathcal{P}) = -\frac{1}{3} - 0 = -\frac{1}{3}$$

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- Regret condicional.
- Vector invariante de probabilidad de la matriz de regret condicional.
- Regret incondicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- Regret condicional.
- Vector invariante de probabilidad de la matriz de regret condicional.
- 3 Regret incondicional.

\mathcal{R}, \mathcal{S}	\mathcal{R}, \mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- Regret condicional.
- 2 Vector invariante de probabilidad de la matriz de regret condicional.
- 3 Regret incondicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

\mathcal{S},\mathcal{S}	\mathcal{S},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
0	1	0	$\frac{1}{3}$

$$R_1(\mathcal{S}) = \frac{1}{3} - 0 = \frac{1}{3}$$

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- Regret condicional
- Vector invariante de probabilidad de la matriz de regret condicional.
- 3 Regret incondicional.

\mathcal{R}, \mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

$$\begin{array}{c|cccc} \mathcal{P}, \mathcal{S} & \mathcal{P}, \mathcal{P} & \mathcal{P}, \mathcal{S} & \bar{u} \\ \hline -1 & 0 & -1 & -\frac{2}{3} \\ \end{array}$$

$$R_1(\mathcal{P}) = -\frac{2}{3} - 0 = -\frac{2}{3}$$

Regret

Métrica de arrepentimiento de no haber elegido una acción en particular.

- 1 Regret condicional.
- Vector invariante de probabilidad de la matriz de regret condicional.
- 3 Regret incondicional.

\mathcal{R},\mathcal{S}	\mathcal{R},\mathcal{P}	\mathcal{S},\mathcal{S}	\bar{u}
1	-1	0	0

$$\begin{array}{c|cccc} \mathcal{P}, \mathcal{S} & \mathcal{P}, \mathcal{P} & \mathcal{P}, \mathcal{S} & \bar{u} \\ \hline -1 & 0 & -1 & -\frac{2}{3} \end{array}$$

$$R_1(\mathcal{P}) = -\frac{2}{3} - 0 = -\frac{2}{3}$$

Observaciones

1 Las probabilidades son elegidas proporcional a los regrets positivos.

- 1 Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret va a cero cuando el número de juegos va a infinito.

- 1 Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret va a cero cuando el número de juegos va a infinito.
- 3 Supongamos que el regret incondicional de cualquier acción es menor que $\varepsilon>0$.

- 1 Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret va a cero cuando el número de juegos va a infinito.
- 3 Supongamos que el regret incondicional de cualquier acción es menor que $\varepsilon>0$.
 - La estrategia empírica es una aproximación a un equilibrio de Nash que se encuentra una distancia no mayor que ε .

- 1 Las probabilidades son elegidas proporcional a los regrets positivos.
- 2 El regret va a cero cuando el número de juegos va a infinito.
- 3 Supongamos que el regret incondicional de cualquier acción es menor que $\varepsilon>0$.
 - La estrategia empírica es una aproximación a un equilibrio de Nash que se encuentra una distancia no mayor que ε .
 - \triangleright ε -equilibrio de Nash.

Evaluación y Correctitud

 Gráficas del regret incondicional con respecto al número de iteraciones.

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 3 Explotabilidad.

- Equilibrio de Nash $\sigma^* = (\sigma_1^*, \sigma_2^*)$
- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 3 Explotabilidad.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 3 Explotabilidad.

Equilibrio de Nash $\sigma^* = (\sigma_1^*, \sigma_2^*)$

 Primer jugador garantiza una ganancia esperada de al menos u.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- § Explotabilidad.

Equilibrio de Nash $\sigma^* = (\sigma_1^*, \sigma_2^*)$

- Primer jugador garantiza una ganancia esperada de al menos u.
- Segundo jugador garantiza una ganancia esperada de al menos -u.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- Problema equivalente de programación lineal.
- 3 Explotabilidad.

Equilibrio de Nash $\sigma^* = (\sigma_1^*, \sigma_2^*)$

- Primer jugador garantiza una ganancia esperada de al menos u.
- Segundo jugador garantiza una ganancia esperada de a lo sumo u para el primer jugador.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones
- 2 Problema equivalente de programación lineal.
- 8 Explotabilidad.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- Problema equivalente de programación lineal.
- 3 Explotabilidad.

Aproximación $\sigma' = (\sigma'_1, \sigma'_2)$

• Primer jugador garantiza una ganancia esperada de al menos $u - \varepsilon_1$.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 3 Explotabilidad.

Aproximación $\sigma' = (\sigma'_1, \sigma'_2)$

• Primer jugador garantiza una ganancia esperada de al menos $u - \varepsilon_1$.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- Problema equivalente de programación lineal.
- § Explotabilidad.

- Primer jugador garantiza una ganancia esperada de al menos $u \varepsilon_1$.
- Segundo jugador garantiza una ganancia esperada de a lo sumo $u + \varepsilon_2$ para el primer jugador.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- 3 Explotabilidad.

- Primer jugador garantiza una ganancia esperada de al menos $u \varepsilon_1$.
- Segundo jugador garantiza una ganancia esperada de a lo sumo $u+\varepsilon_2$ para el primer jugador.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- Problema equivalente de programación lineal.
- **3** Explotabilidad: $\varepsilon = \varepsilon_1 + \varepsilon_2$.

- Primer jugador garantiza una ganancia esperada de al menos $u-\varepsilon_1$.
- Segundo jugador garantiza una ganancia esperada de a lo sumo $u+\varepsilon_2$ para el primer jugador.

Evaluación y Correctitud

- Gráficas del regret incondicional con respecto al número de iteraciones.
- 2 Problema equivalente de programación lineal.
- **3** Explotabilidad: $\varepsilon = \varepsilon_1 + \varepsilon_2$.

- Primer jugador garantiza una ganancia esperada de al menos $u \varepsilon_1$.
- Segundo jugador garantiza una ganancia esperada de a lo sumo $u+\varepsilon_2$ para el primer jugador.

