딥러닝 이해하기

leejeyeol92@gmail.com

Transfer Learning

Transfer learning

Pretrained model

Transfer learning

Autoencoder

Autoencoder

Transposed convolution

CNN Autoencoder 만들고 weight 저장하기

colab + 구글드라이브

링크 클릭 후 로그인. 로그인 이후 나오는 코드를 아래쪽 빈칸에 입력. Mounted at /content/gdrive/ 라고 나오면 성공

colab + 구글드라이브

import os	
#os.mkdir("/content/gdrive/My Drive/AI") #폴더를 만드는 코드이니 한번만 실행하셔	세요. 구글드라이브에서 직접 폴더 만들어도 됩니다.
with open('/content/gdrive/My Drive/Al/hello.txt', 'w') as f:	
f.write('Hello Google Drive colab!') # 테스트용 텍스트파일 생성	
!cat /content/gdrive/My₩ Drive/Al/hello.txt #텍스트 파일 내용 출력하기	

```
class MNIST_CNN_Encoder(nn.Module):
    def __init__(self):
        super().__init__()
        self.encoder = nn.Sequential(
            nn.Conv2d(1, 16, 3, stride=3, padding=1),
           nn.ReLU(True),
           nn.MaxPool2d(2, stride=2).
           nn.Conv2d(16, 8, 3, stride=2, padding=1),
           nn.ReLU(True).
           nn.MaxPool2d(2, stride=1)
    def forward(self, x):
        z = self.encoder(x)
        return z
class MNIST_CNN_Decoder(nn.Module):
    def __init__(self):
        super().__init__()
        self.decoder = nn.Sequential(
           nn.ConvTranspose2d(8, 16, 3, stride=2),
           nn.ReLU(True),
           nn.ConvTranspose2d(16, 8, 5, stride=3, padding=1),
           nn.ReLU(True).
           nn.ConvTranspose2d(8, 1, 2, stride=2, padding=1),
           nn.Tanh()
    def forward(self, z):
        x_{=} = self.decoder(z)
        return x_
```

-1~1 scaling으로 normalize하였으며 test loader도 이렇게 만들어줍시다.

```
encoder = MNIST_CNN_Encoder().cuda()
encoder.apply(weight_init)

decoder = MNIST_CNN_Decoder().cuda()
decoder.apply(weight_init)

net_params = list(encoder.parameters())+list(decoder.parameters())
optimizer = optim.Adam(net_params, betas=(0.5, 0.999), lr=learning_rate)
```

```
train_loss_list = []
val_loss_list = []
encoder.train()
decoder.train()
for epoch in range(epochs):
    for i, (X, _) in enumerate(train_loader):
       X = X.cuda()
       z = encoder(X)
       recon_X = decoder(z)
       loss = loss_function(recon_X, X)
       optimizer.zero grad()
       loss.backward()
       optimizer.step()
       # validation loss 계산.
       if i % 100 == 0:
           with torch.no_grad():
               val_100_loss = []
               for (X, _) in valid_loader:
                   X = X.cuda()
                    z = encoder(X)
                   recon_X = decoder(z)
                    loss = loss function(recon X. X)
                    val 100 loss.append(loss)
               train_loss_list.append(loss)
               val_loss_list.append(np.asarray(val_100_loss).sum() / len(valid_loader))
       print("[%d/%d] [%d/%d] loss : %f" % (i, len(train_loader), epoch, epochs, loss))
```

```
# 학습된 모델의 weight를 저장하는 코드
project_root_path = '/content/gdrive/My Drive/Al'
encoder_save_path = '%s/pretrained_encoder.pth' % (project_root_path)
torch.save(encoder.state_dict(), encoder_save_path)
```

```
print("testing")
encoder.eval()
decoder.eval()
correct = 0
with torch.no_grad():
    for i, (X, _) in enumerate(test_loader):
       X = X.cuda()
       z = encoder(X)
       recon_X = decoder(z)
       print("오토인코더 테스트 결과")
        for i in range(5):
           plt.imshow(X[i].cpu().reshape(28, 28))
           plt.gray()
           plt.show()
           plt.imshow(recon_X[i].cpu().reshape(28, 28))
           plt.gray()
           plt.show()
       break
plt.plot(np.column_stack((train_loss_list, val_loss_list)))
```


weight 저장된 weight 이용하여 모델 초기화하고 finetuning 하기


```
fcn = MNIST_FCN(class_num=10).cuda()
fcn.apply(weight_init)

# 저장해둔 weight를 불러와 해당 weight로 초기화 시킨다.
pretrained_encoder = MNIST_CNN_Encoder().cuda()
project_root_path = '/content/gdrive/My Drive/Al'
encoder_save_path = '%s/pretrained_encoder.pth' % (project_root_path)
saved_weights = torch.load(encoder_save_path)
pretrained_encoder.load_state_dict(saved_weights)
#pretrained_encoder.apply(weight_init) # 처음부터 학습하는 것을 테스트하고 싶을 경우
```

```
epochs = 5
learning_rate = 0.01
batch_size = 100
loss_function = nn.BCELoss()

optimizer = optim.Adam(list(fcn.parameters())+list(pretrained_encoder.parameters()), betas=(0.5, 0.999), lr=learning_rate)
#optimizer = optim.Adam(fcn.parameters(), betas=(0.5, 0.999), lr=learning_rate) # Adam optimizer로 변경. betas =(0.5, 0.999) # encoder는 고정하고 fcn만 학습하는 코드
```

```
train_loss_list = []
fcn.train()
for epoch in range(epochs):
    for i, (X, t) in enumerate(train_loader):
       X = X.cuda()
       t = one_hot_embedding(t, 10).cuda()
       z = pretrained_encoder(X)
       Y = fcn(z)
        loss = loss_function(Y, t)
       train_loss_list.append(loss)
       optimizer.zero_grad()
        loss.backward()
       optimizer.step()
       print("[%d/%d][%d/%d] loss : %f"%(i,len(train_loader),epoch,epochs, loss))
```

test 부분도 이런 구조로 짜줘야합니다!

Deep Convolutional Neural Networks

legends

Layers

Convolutional operations, in red conv 3×3

avg-pool 2×2 Pooling operations, in grey

Merge operations eg. concat, concat add in purple

Dense layer, blue

Activation Functions

Tanh

ReLU

Other Functions

Batch normalisation

Softmax

Modules/Blocks

Modules (groups of convolutional, pooling and merge operations), in yellow, green, or orange.

The operations that make up these modules will also be shown.

Repeated layers or modules/blocks

Lenet-5

Alexnet

VGG-16

Inception-V1

Inception-V3

Resnet-50

Xception

$$\begin{bmatrix} 3 & 6 & 9 \\ 4 & 8 & 12 \\ 5 & 10 & 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

Simple Convolution

Spatial Separable Convolution

Spatial Separable Convolution

Inception-V4 299×299×3 Inception-A Inception-B Inception-C

Reduction-B

Reduction-A

Inception-Resnet-V2

ResNeXt-50

田교

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
VGG16	528 MB	0.713	0.901	138,357,544	23
InceptionV3	92 MB	0.779	0.937	23,851,784	159
ResNet50	98 MB	0.749	0.921	25,636,712	-
Xception	88 MB	0.790	0.945	22,910,480	126
InceptionResNetV2	215 MB	0.803	0.953	55,873,736	572
ResNeXt50	96 MB	0.777	0.938	25,097,128	

The top-1 and top-5 accuracy refers to the model's performance on the ImageNet validation dataset.

Depth refers to the topological depth of the network. This includes activation layers, batch normalization layers etc.

AutoML and NAS(Neural Architecture Search)

머신러닝 구조 찾는 머신러닝 방법

Automated Feature Learning

Architecture Search => 강화학습(2017), 유전알고리즘, DARTS...NASnet

Hyperparameter Optimization

NAS

NASnet

- h_i
- h_{i-1}
- $h_{i,0}$
- $h_{i,1}$
- $h_{i,2}$
- $h_{i,3}$

- Identity
- conv 1x7 + 7x1

add

concat

- conv 1x3 + 3x1
- avg 3x3
- max 3x3
- max 5x5
- max 7x7
- conv 1x1
- conv 3x3
- sep 3x3
- sep 5x5
- sep 7x7
- dilated 3x3

NASnet

NASnet

Model	image size	# parameters	Mult-Adds	Top 1 Acc. (%)	Top 5 Acc. (%)
Inception V2 [29]	224×224	11.2 M	1.94 B	74.8	92.2
NASNet-A (5 @ 1538)	299×299	10.9 M	2.35 B	78.6	94.2
Inception V3 [59]	299×299	23.8 M	5.72 B	78.0	93.9
Xception [9]	299×299	22.8 M	8.38 B	79.0	94.5
Inception ResNet V2 [57]	299×299	55.8 M	13.2B	80.4	95.3
NASNet-A (7 @ 1920)	299×299	22.6 M	4.93 B	80.8	95.3
ResNeXt-101 (64 x 4d) [67]	320×320	83.6 M	31.5 B	80.9	95.6
PolyNet [68]	331×331	92 M	34.7 B	81.3	95.8
DPN-131 [8]	320×320	79.5 M	32.0B	81.5	95.8
SENet [25]	320×320	145.8 M	42.3 B	82.7	96.2
NASNet-A (6 @ 4032)	331×331	88.9 M	23.8 B	82.7	96.2

AutoML - activation function

Swish is defined as $x \cdot \sigma(\beta x)$, where $\sigma(z) = (1 + \exp(-z))^{-1}$

Figure 4: The Swish activation function.

Figure 5: First derivatives of Swish.

```
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet = models.mobilenet_v2(pretrained=True)
resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
wide resnet50 2 = models.wide resnet50 2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)
```

pretrained resnet-18 Weights

finetuning

resnet-18

dataset link:

https://download.pytorch.org/tutorial/hymenoptera_data.zip

받아서 구글드라이브에 저장해주세요. 저는 dataset 폴더를 만들어 그 안에 저장했습니다.

```
# License: BSD
# Author: Sasank Chilamkurthy
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import Ir_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
plt.ion() # interactive mode
```

```
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip().
        transforms. IoTensor().
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
   ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224).
        transforms.ToTensor().
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
   1),
data_dir = '/content/gdrive/My Drive/Al/dataset/hymenoptera_data'
image_datasets = {x: datasets.lmageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is available() else "cpu")
```

```
def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0,001) # pause a bit so that plots are updated
# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))
# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
```

```
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
   since = time.time()
   best_model_wts = copy.deepcopy(model.state_dict())
   best_acc = 0.0
   for epoch in range(num epochs):
       print('Epoch {}/{}'.format(epoch, num_epochs - 1))
       print('-' * 10)
       # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
           if phase == 'train':
               model.train() # Set model to training mode
           else:
               model.eval() # Set model to evaluate mode
           running_loss = 0.0
           running_corrects = 0
           # Iterate over data.
           for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
               labels = labels.to(device)
               # zero the parameter gradients
               optimizer.zero_grad()
```

```
# zero the parameter gradients
           optimizer.zero_grad()
           # forward
           # track history if only in train
           with torch.set_grad_enabled(phase == 'train'):
               outputs = model(inputs)
               _, preds = torch.max(outputs, 1)
               loss = criterion(outputs, labels)
               # backward + optimize only if in training phase
               if phase == 'train':
                   loss.backward()
                   optimizer.step()
           # statistics
           running_loss += loss.item() * inputs.size(0)
           running_corrects += torch.sum(preds == labels.data)
       if phase == 'train':
           scheduler.step()
       epoch_loss = running_loss / dataset_sizes[phase]
       epoch_acc = running_corrects.double() / dataset_sizes[phase]
       print('{} Loss: {:.4f} Acc: {:.4f}'.format(
           phase, epoch_loss, epoch_acc))
       # deep copy the model
       if phase == 'val' and epoch acc > best acc:
           best acc = epoch acc
           best_model_wts = copy.deepcopy(model.state_dict())
   print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
   time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
```

```
def visualize_model(model, num_images=6):
    was training = model.training
    model.eval()
    images so far = 0
    fig = plt.figure()
    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)
            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)
            for i in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title('predicted: {}'.format(class_names[preds[i]]))
                imshow(inputs.cpu().data[j])
                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)
```

```
model ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
model ft.fc = nn.Linear(num ftrs. 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer ft = optim.SGD(model ft.parameters(), Ir=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_Ir_scheduler = Ir_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model ft = train model(model ft. criterion, optimizer ft. exp lr scheduler.
                       num epochs=25)
```

pretrained resnet-18 Weights


```
model_conv = models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param, requires grad = False
# Parameters of newly constructed modules have requires grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2) # 마지막 fc 레이어 초기화.
model_conv = model_conv.to(device)
criterion = nn.CrossEntropvLoss()
# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), Ir=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
model_conv = train_model(model_conv, criterion, optimizer_conv,
                         exp_lr_scheduler, num_epochs=25)
```

```
visualize_model(model_conv)
plt.ioff()
plt.show()
```