Problem 3

Part a

MapReduce for finding max integer (n_i) of a set of integers N:

Map 1: Hash the integers into g buckets of size $\frac{N}{g}$ integers, find max in each bucket. Group buckets into k groups of size $\frac{g}{k}$ buckets. Output the value of the max integer with key = group id of each bucket

```
Input: N
```

Output: (d, max n in j^{th} bucket) where $d \in \mathbb{Z}$, $d \in [1, k]$ and $j \in \mathbb{Z}$, $j \in [1, g]$

Reduce 1: Group results by group of buckets (d) per reducer, find max in that group of buckets and output it

Input:

```
(1, (max n in bucket_{1,1}, max n in bucket_{1,2}, ..., max n in bucket_{1,j}, ..., max n in bucket_{1,g/k})) group 1
```

```
(2, (max n in bucket_{2,1}, max n in bucket_{2,2}, ... , max n in bucket_{2,j}, ... , max n in bucket_{2,g/k})) group 2
```

...

(d, (max n in $bucket_{d,1}$, max n in $bucket_{d,2}$, ..., max n in $bucket_{d,j}$, ..., max n in $bucket_{d,g/k}$)) group d

. . .

(k, (max n in $bucket_{k,1},$ max n in $bucket_{k,2},$... , max n in $bucket_{k,j},$... , max n in $bucket_{k,g/k}))$ group k

Output:

```
(1, \max in group_1)
```

 $(2, \max in group_2)$

. . .

 $(d, \max in group_d)$

 $(k, \max in group_k)$

Map 2:

Pool all outputs of Reduce 1, assign same key to all key-value pairs, keep value same.

Input: output of Reduce 1

Output: $(0, \max in group_1)$

 $(0, \max in group_2)$

. . .

 $(0, \max in group_d)$

...

 $(0, \max in group_k)$

Reduce 2: Collect all in one reducer and return max integer

Input: $(0, (\max in group_1, \max in group_2, \max in group_3,...))$ Output: $n_i (\max n in N)$

Part b

Similarly to part a, except instead of max value, return a tuple of average value \bar{X}_i and size of the population n_i that this average was created from. To combine N averages \bar{X}_1 , \bar{X}_2 , \bar{X}_3 , etc that were calculated for n_1 , n_2 , n_3 ... n_N values respectively:

$$\frac{\bar{X}_1 \times n_1 + \bar{X}_2 \times n_2 + \dots + \bar{X}_N \times n_N}{n_1 + n_2 + \dots + n_N}$$

Part c

Map:

Input: Multiset of N integers

Output: key-value pairs: (n_i, n_i) - same key and value

Reduce: Collect non distinct integers per reducer and discard all but one instances.

Input: $(n_i, (n_i, n_i, n_i, ...))$

Output: n_i

Part d

Map 1:

Input: Multiset of N integers

Output: key-value pairs: $(n_i, 1)$

Reduce 1: Collect by integer keys per reducer and discard all but one values.

Input: $(n_i, (1, 1, 1, ...))$

Output: $(n_i, 1)$

Map 2:

Input: Set $S \subseteq N$ of distinct integers.

Output: key-value pairs: $(1, n_i)$

Reduce 2:

Collect all words and return size of the value tuple:

Input: $(1, (n_1, n_2, ...n_S))$

Output: |S|

If reducer size is not large enough - can partition words into buckets similar to part a.