

EE141-Spring 2010 Digital Integrated Circuits

Lecture 12 Inverter Delay + Energy

EECS141 Lecture #12

Administrativia

- □ HW 4 Due Today. New HW today as well.
- □ Final Lab next week
- □ Project to be launched on Wednesday! Probably is wise to be in class that day.

CMOS Switching Delay

EECS141 Lecture #13 7

MOS Transistor as a Switch

Discharging a capacitor

$$= c i_D = i_D(v_{DS})$$

$$i_D = C \frac{dV_{DS}}{dt}$$

• We modeled this with:

$$t_p = In (2) RC$$

MOS Transistor as a Switch

- □ Real transistors aren't exactly resistors
 - Look more like current sources in saturation
- □ Two questions:
 - Which region of IV curve determines delay?
 - How can that match up with the RC model?

EECS141 Lecture #13

Transistor Discharging a Capacitor

• With a step input:

Switching Delay

• In saturation, transistor basically acts like a current source:

$$V_{OUT} = V_{DD} - (I_{DSAT}/C)t \longrightarrow t_p = C(V_{DD}/2)/I_{DSAT}$$

EECS141 Lecture #13 1

Defining IDSAT

Switching Delay (with Output Conductance)

Including output conductance:

$$V_{OUT} = (V_{DD} + \lambda^{-1}) e^{-t/(C/\lambda I_{DSAT})} - \lambda^{-1}$$

• For "small"
$$\lambda$$
:
$$t_p \approx \frac{C(V_{DD}/2)}{(1+\lambda V_{DD})I_{DSAT}}$$

EECS141 Lecture #13 13

RC Model

- Transistor current not linear on V_{OUT} how is the RC model going to work?
- Look at waveforms:
- · Voltage looks like a ramp for RC too

EECS141

Lecture #13

Finding Req

• Match the delay of the RC model with the actual delay:

$$t_{p} = t_{p,RC}$$

$$\frac{C(V_{DD}/2)}{(1+\lambda V_{DD})I_{DSAT}} = \ln(2)R_{eq}C \longrightarrow R_{eq} = \frac{(V_{DD}/2)}{\ln(2)(1+\lambda V_{DD})I_{DSAT}}$$

- Often just:
- $R_{eq} \approx \frac{1}{2 \cdot \ln(2)} \frac{V_{DD}}{I_{DSAT}}$
- Note that the book uses a different method and gets 0.75 $\cdot V_{DD}/I_{DSAT}$ instead of ~0.72 $\cdot V_{DD}/I_{DSAT}$.

EECS141 Lecture #13

The Book's Method

The Transistor as a Switch

Table 3.3 Equivalent resistance R_{eq} (*WIL*= 1) of NMOS and PMOS transistors in 0.25 μ m CMOS process (with $L = L_{min}$). For larger devices, divide R_{eq} by *WIL*.

V_{DD} (V)	1	1.5	2	2.5
NMOS (kΩ)	35	19	15	13
PMOS (kΩ)	115	55	38	31

Inverter Capacitances

EECS141 Lecture #13 19

Inverter Capacitance Model

- Capacitance models important for analysis and intuition
 - But often need something simpler to work with
- Simpler model:
 - Lump together as effective linear capacitance to (ac) ground
 - In most processes: $Cg = Cd = 1.5 2fF \cdot W(\mu m)$

Lumping the Caps

EECS141 Lecture #13 21

The Miller Effect

- As V_{in} increases, V_{out} drops
 - Once get into the transition region, gain from V_{in} to V_{out} > 1
- So, C_{gd} experiences voltage swing larger than V_{in}
 - Which means you need to provide more charge
 - Makes $C_{\alpha d}$ look larger than it really is
- Known as the "Miller Effect" in the analog world

Model Calibration - Capacitance

- Can calculate C_g, C_d based on tech. parameters
 - But these models are simplified too
- Another approach:
 - Tune (e.g., in spice) the linear capacitance until it makes the simplified circuit match the real circuit
 - Matching could be for delay, power, etc.

EECS141 Lecture #13 23

Model Calibration for Delay

- For gate capacitance:
 - Make inverter fanout 4
 - -Adjust C_{load} until Delay1 = Delay2
- For diffusion capacitance
 - Replace inverter "A" with a diffusion capacitance load

Delay Calibration

Why did we need that last inverter stage?

EECS141 Lecture #13

Propagation Delay

Step Inputs?

- □ Derived RC model assuming input was a step
 - But input is not a step
 - Transistor turns on gradually
- □ Let's look at gate switching more carefully
 - Use our models to understand the effect of input slope

EECS141 Lecture #13 29

Input Slope Dependence

- □ One way to analyze slope effect
 - Plug non-linear IV into diff. equation and solve...
- □ Simpler, approximate solution:
 - Use V_T* model

Slope Analysis

- □ For falling edge at output:
 - For reasonable inputs, can ignore I_{PMOS}
 - Either V_{ds} is very small, or V_{qs} is very small
- \square So, output current ramp starts when $V_{in}=V_T^*$
 - Could evaluate the integral
 - Learn more by using an intuitive, graphical approach

EECS141 Lecture #13 3

Result Summary

□ For reasonable input slopes:

$$egin{aligned} oldsymbol{t}_{p,ramp} &= oldsymbol{t}_{p,step} + rac{oldsymbol{V_T}^*}{oldsymbol{V}_{DD}} \cdot oldsymbol{t}_{p,in} \end{aligned}$$

Where Does Power Go in CMOS?

- □ Switching power
 - Charging/discharging capacitors
- □ Leakage power
 - Transistors are imperfect switches
- □ Short-circuit power
 - Both pull-up and pull-down on during transition
- □ Static currents
 - Biasing currents, in e.g. analog, memory

EECS141 Lecture #13 35

Dynamic Power Consumption

- \Box One half of the energy from the supply is consumed in the pull-up network, one half is stored on C_L
- □ Energy from C_L is dumped during the 1→0 transition

Dynamic Power Consumption

Power = Energy/transition • Transition rate

$$= C_L V_{DD}^2 \cdot f_{0 \to 1}$$

$$= C_L V_{DD}^2 \cdot f \cdot \alpha_{0 \to 1}$$

$$= C_{switched} V_{DD}^2 \cdot f$$

- Power dissipation is data dependent depends on the switching probability
- □ Switched capacitance $C_{switched} = C_L \cdot \alpha_{0\rightarrow 1}$

EECS141 Lecture #13

Transition Activity and Power

 \square Energy consumed in *N* cycles, E_N :

$$E_N = C_L \bullet V_{DD}^2 \bullet n_{0 \to 1}$$

 $n_{0\rightarrow 1}$ – number of 0 \rightarrow 1 transitions in *N* cycles

$$P_{avg} = \lim_{N \to \infty} \frac{E_N}{N} \cdot f = \left(\lim_{N \to \infty} \frac{n_{0 \to 1}}{N} \right) \cdot C_L \cdot V_{DD}^2 \cdot f$$

$$\alpha_{0 \to 1} = \lim_{N \to \infty} \frac{n_{0 \to 1}}{N}$$

$$P_{avg} = \alpha_{0 \to 1} \cdot C_L \cdot V_{DD}^2 \cdot f$$