Planning Under Uncertainty: Decision Theory 2 (Sequential Decisions)

Shafiq Joty

Nanyang Technological University srjoty@ntu.edu.sg

April 24, 2019

Overview

- Recap
 - One-off Decisions
 - Decision Variables
 - Decision Networks
- Sequential Decision Problem
 - Sequential Decisions
 - Decision Functions
 - Policy
- Optimal policy
 - Possible worlds satisfying a policy
 - Expected Utility of a Policy
 - Computing Optimal Policy

One-off Decisions

- One-off Decisions: Seq. of primitive decisions that can be treated as a single macro decision to be made before acting.
 - ⇒ Pick the sequence with the maximum expected utility.

Decision Variables

- Decision variables are like random variables that an agent gets to choose the value of.
- A possible world specifies a value for each decision variable and for each random variable.
- For each assignment of values to all decision variables, the measures of the worlds satisfying that assignment sum to 1.
- The probability of a proposition is undefined unless you condition on the values of all decision variables.

Decision Networks

- A decision network is a graphical representation of a finite sequential decision problem.
- Decision networks extend belief networks to include decision variables and utility.
- A decision network specifies what information is available when the agent has to act (decision nodes).
- A decision network specifies which variables the utility depends on.

Sequential Decisions

- Agent doesn't make a multi-step decision and carry it out blindly. It takes new observations it makes into account.
- It does the following three steps iteratively in an environment.
 - Makes observations
 - ② Decides on an action
 - Carries out the action
- Subsequent actions can depend on what is observed
 - What is observed often depends on previous actions
 - Often the sole reason for carrying out an action is to provide information for future actions.

Sequential Decision Problem

- A sequential decision problem consists of a sequence of decision variables: (D_1, \ldots, D_T) .
- Each D_t has an information set of variables pD_t (parents of D_t), whose value is known at the time decision D_t is made.

Sequential Decision Problem

- A sequential decision problem consists of a sequence of decision variables: (D_1, \ldots, D_T) .
- Each D_t has an information set of variables pD_t (parents of D_t), whose value is known at the time decision D_t is made.

 General Decision networks: Just like single-stage decision networks, with one exception: the parents of decision nodes can include random variables

Sequential Decision Problem: One-Decision Example

• Early morning, I listen to the weather forecast, shall I take my umbrella today? (I'll have to go for a long walk at noon)

Sequential Decision Problem: One-Decision Example

- Early morning, I listen to the weather forecast, shall I take my umbrella today? (I'll have to go for a long walk at noon)
- A reasonable decision network (for a single-decision):

- Decision node (rectangle): Agent decides
- Chance node (circle): Chance decides

A more "Complete" Example

- Decision node (rectangle): Agent decides
- Chance node (circle): Chance decides

What should an agent do?

- What an agent should do now depends on what it will decide to do in the future; e.g., agent only needs to check for smoke if that will affect whether it calls
- What an agent does in the future depends on what it did before; e.g., when making the decision on whether to call, it needs to know whether it checked for smoke

What should an agent do?

- What an agent should do now depends on what it will do in the future
- What an agent does in the future depends on what it did before

We will get around this problem as follows

- The agent maintains a conditional plan of what it will do in the future
- We will formalize this conditional plan as a policy or a sequence of decision functions.

Decision Functions

- A decision function specifies what an agent should do (i.e., its action) under each circumstance (parents' values)
- It is a function $\delta: \mathcal{D}(pD) \to \mathcal{D}(D)$, meaning that when the agent has observed $o \in \mathcal{D}(MF)$, it will do $\delta(o)$.

- Morning Forecast can be {Cloudy, Sunny, Rainy}, and Take
 Umbrella can be {True, False}.
- How many decision functions are there?

Decision Functions

How many decision functions?

Morning Forecast can be {Cloudy, Sunny, Rainy}; Take Umbrella can be {True, False}.

- How many instantiation of parents? $|\mathcal{D}(MF)| = 3$
- How many possible values for TU? $|\mathcal{D}(TU)| = 2$
- How many different decision functions? $|\mathcal{D}(TU)|^{|\mathcal{D}(MF)|} = 2^3$ because for each instantiation of the parent, the decision function could pick any of the 2 values

A policy (π) is a sequence of (applied) **decision functions** $(\delta_1, \ldots, \delta_T)$, where each $\delta_t(D_t|pD_t) = \mathcal{D}(pD_t) \to \mathcal{D}(D_t)$, i.e., when the agent has observed $o \in \mathcal{D}(pD_t)$, it will do $\delta_t(o)$

- How many decision functions?
 - $\Rightarrow 2^2$ (for CheckSmoke) and 2^8 (for Call)

• 2² decision functions for Check Smoke

$$\begin{array}{c|ccccc} R & \delta_{CS}^1 & \delta_{CS}^2 & \delta_{CS}^3 & \delta_{CS}^4 \\ \hline T & T & F & T & F \\ F & T & F & F & T \\ \end{array}$$

Similarly, there are 2⁸ different decision functions for Call

How many different policies are there?

- 2² decision functions for Check Smoke
- 2⁸ decision functions for Call
 - \Rightarrow total # of policies: $2^8 \times 2^2$

If there are d decision variables, each with k binary parents and b possible actions, how many policies are there?

- # of parent assignments for each decision variable: 2^k
- # of decision functions for each decision variable: b^{2^k}
 - \Rightarrow total # of policies: $(b^{2^k})^d$

A possible world ω specifies a value for each random variable and decision variable.

A possible world satisfies a policy π (written $\omega \models \pi$), if the world assigns the value to each decision node that the policy specifies.

A possible world ω specifies a value for each random variable and decision variable.

A possible world satisfies a policy π (written $\omega \models \pi$), if the world assigns the value to each decision node that the policy specifies.

- Consider the following policy:
 - Check smoke (i.e. CheckSmoke=true) iff Report=true
 - Call iff Report=true, CheckSmoke=true, SeeSmoke=true

A possible world ω specifies a value for each random variable and decision variable.

A possible world satisfies a policy π (written $\omega \models \pi$), if the world assigns the value to each decision node that the policy specifies.

- Consider the following policy:
 - Check smoke (i.e. CheckSmoke=true) iff Report=true
 - Call iff Report=true, CheckSmoke=true, SeeSmoke=true

Does the following possible worlds satisfy this policy?

• \neg tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call \Rightarrow Yes

A possible world ω specifies a value for each random variable and decision variable.

A possible world satisfies a policy π (written $\omega \models \pi$), if the world assigns the value to each decision node that the policy specifies.

- Consider the following policy:
 - Check smoke (i.e. CheckSmoke=true) iff Report=true
 - Call iff Report=true, CheckSmoke=true, SeeSmoke=true

Does the following possible worlds satisfy this policy?

- ¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call ⇒ Yes
- ② ¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, ¬call \Rightarrow No

A possible world ω specifies a value for each random variable and decision variable.

A possible world satisfies a policy π (written $\omega \models \pi$), if the world assigns the value to each decision node that the policy specifies.

- Consider the following policy:
 - Check smoke (i.e. CheckSmoke=true) iff Report=true
 - $\bullet \ \, \mathsf{Call} \ \, \mathsf{iff} \ \, \mathsf{Report} \!\!=\!\! \mathsf{true}, \ \, \mathsf{CheckSmoke} \!\!=\!\! \mathsf{true}, \ \, \mathsf{SeeSmoke} \!\!=\!\! \mathsf{true}$

Does the following possible worlds satisfy this policy?

- ¬tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call ⇒ Yes
- ¬tampering, fire, alarm, leaving, ¬report, ¬smoke,
 ¬checkSmoke, ¬seeSmoke, ¬call ⇒ Yes,
 ¬checkSmoke, ¬chec

Expected Utility of a Policy

For X_1, \ldots, X_n random variables and D_1, \ldots, D_m decision variables:

• The expected utility of policy π is

$$\mathbb{E}(U|\pi) = \sum_{\omega \models \pi} p(\omega)U(\omega)$$

$$\mathbb{E}(U|\pi) = \sum_{X_1,...,X_n;D_1,...,D_m} \prod_{i=1}^n p(X_i|pX_i) \prod_{j=1}^m \delta_j^{\pi}(D_j|pD_j) U(pU)$$

 $\delta_{j}^{\pi}(D_{j}|pD_{j})=1$ if the possible world satisfies π else 0.

Expected Utility of a Policy

For X_1, \ldots, X_n random variables and D_1, \ldots, D_m decision variables:

• The expected utility of policy π is

$$\mathbb{E}(U|\pi) = \sum_{\omega \models \pi} p(\omega)U(\omega)$$

$$\mathbb{E}(U|\pi) = \sum_{X_1,...,X_n;D_1,...,D_m} \prod_{i=1}^n p(X_i|pX_i) \prod_{j=1}^m \delta_j^{\pi}(D_j|pD_j) U(pU)$$

 $\delta_i^{\pi}(D_j|pD_j)=1$ if the possible world satisfies π else 0.

• An optimal policy is the one with the highest expected utility. $\pi^* = \operatorname{argmax}_{\pi} \mathbb{E}(U|\pi)$

Maxing out vs. Summing out

Maxing out a variable is similar to marginalization (summing out), but instead of taking the *sum* of some values, we take the *max*.

- Summing out X_i : $\sum_{i \in \mathcal{D}(X_i)} f(X_1, \dots, X_i = j, \dots, X_n)$
- Maxing out X_i : $\max_{j \in \mathcal{D}(X_i)} f(X_1, \dots, X_i = j, \dots, X_n)$

Maxing out vs. Summing out

Maxing out a variable is similar to marginalization (summing out), but instead of taking the *sum* of some values, we take the *max*.

- Summing out X_i : $\sum_{i \in \mathcal{D}(X_i)} f(X_1, \dots, X_i = j, \dots, X_n)$
- Maxing out X_i : $\max_{j \in \mathcal{D}(X_i)} f(X_1, \dots, X_i = j, \dots, X_n)$

			1	$\max_{B} f_3(A,B,C) = f_4(A,C)$				
В	Α	С	f ₃ (A,B,C)	Παλ _Β (λ, Δ, Ο) – 1 ₄ (λ, Ο)				
t	t	t	0.03		Α	С	f ₄ (A,C)	
t	t	f	0.07		-			
f	t	t	0.54		t	t	0.54	
f	t	f	0.36		t	f	0.36	
t	f	t	0.06		f	t	?	
t	f	f	0.14		f	f		
f	f	t	0.48					
f	f	f	0.32					
				0.32	0.06	0.48	0.14	

Maxing out vs. Summing out

Maxing out a variable is similar to marginalization (summing out), but instead of taking the *sum* of some values, we take the *max*.

- Summing out X_i : $\sum_{i \in \mathcal{D}(X_i)} f(X_1, \dots, X_i = j, \dots, X_n)$
- Maxing out X_i : $\max_{j \in \mathcal{D}(X_i)} f(X_1, \dots, X_i = j, \dots, X_n)$

В	l a	lс	f ₃ (A,B,C)	$\max_{B} f_3(A,B,C) = f_4(A,C)$				
			-					
t	t	t	0.03		Α	С	$f_4(A,C)$	
t	t	f	0.07		t	t	0.54	
f	t	t	0.54		ı	ı	0.54	
f	t	f	0.36		t	f	0.36	
t	f	t	0.06		f	t	?	
t	f	f	0.14		f	f		
f	f	t	0.48					
f	f	f	0.32					
				0.32	0.06	0.48	0.14	

 \Rightarrow 0.48, 0.32

Optimal Policies with VE: Overall Idea

Dynamic programming: precompute optimal future decisions

- Consider the last decision D (e.g., Call) to be made
 - Find optimal decision D=d for each instantiation of pD. (For each instantiation of pD, this is just a single-stage decision problem)
 - Create a factor of these maximum values: max out D (i.e., for each instantiation of the parents, what is the best utility I can achieve by making this last decision optimally?)
- Recurse to find optimal policy for the reduced network (now with one less decision node)

Optimal Policies with VE: More Formally

Dynamic programming:

- Oreate a factor for each CPT and a factor for the utility.
- While there are still decision variables
 - Sum out random variables that are not parents of a decision node (e.g., Tampering, Fire, Alarm, Smoke, Leaving)
 - **2** Max out last decision variable *D* in the total ordering (keep track of decision functions).
- Sum out any remaining random variables. This is the maximum expected utility. By keeping track of the decision functions, we can get the optimal policy.

Optimal Policies with VE: Complexity

- For d decision variables (each with k binary parents and b possible actions), there are $(b^{2^k})^d$ policies
- VE saves the final exponent
 - Dynamic programming: consider each decision functions only once
 - 2 Resulting complexity: $O(d * b^{2^k})$
- Much faster than enumerating policies (or search in policy space), but still doubly exponential.
- CS422: approximation algorithms for finding optimal policies.

Big Picture: Planning Under Uncertainty

Learning Goals

- Sequential decision networks
 - Represent sequential decision problems as decision networks
- Policies
 - Verify whether a possible world satisfies a policy
 - Define the expected utility of a policy
 - Compute the number of policies for a decision problem
 - Compute the optimal policy by Variable Elimination

The End