Venti-Kasten 1.6 – Lernlogik und DeepSleep

Imkerei Honey-Comb / Inhaber Jens Buttenschön

Mai 2025

Zielsetzung

Diese Version erweitert den Venti-Kasten um erste konzeptionelle Grundlagen für einen lernenden, energieeffizienten Steueralgorithmus. Ziel ist es, die Lüftung so zu optimieren, dass sie bedarfsgerecht, stromsparend und bietengerecht erfolgt.

Kernpunkte der Version 1.6

1. Taktung und DeepSleep-Strategie:

Die Steuereinheit soll sich in den DeepSleep-Modus versetzen, wenn keine unmittelbaren Mess- oder Steueraufgaben anstehen. Messintervalle (z.B. alle 20 Minuten) werden dynamisch angepasst, um Rechenleistung und Energie zu sparen.

2. Duale Messung:

Sensoren erfassen **Temperatur und Luftfeuchtigkeit** sowohl im Inneren der Beute (z. B. im Honigraumdeckel) als auch außen. Diese Werte dienen als Basis zur Berechnung von relativer und absoluter Feuchte sowie Temperaturgradienten.

3. Lernlogik:

Durch kontinuierliche Speicherung und Analyse von Messwerten entsteht eine Basis, um aus Erfahrungswerten zu lernen. Beispielsweise:

- Wie schnell sinkt die Luftfeuchtigkeit bei bestimmten Lüftungszeiten?
- Wie stark sinkt dabei die Temperatur im Stock?
- Wie lange dauert es, bis sich das Innenklima wieder auf Bienen-Niveau stabilisiert?

4. Limitierung durch Schwellwerte:

Die Steuerlogik achtet auf Mindest- und Maximalwerte, z.B. bei der *Stocktemperatur*. Eine Unterschreitung bestimmter Schwellen (z.B. 33°C) wird vermieden, selbst wenn die Feuchtigkeit hoch ist.

5. Lernalgorithmus:

Ein Regelkreis wertet die Effizienz jeder Lüftungsphase aus. Wenn z.B. 2 Minuten Lüftung bei bestimmten Außenbedingungen zu starker Abkühlung führen, wird zukünftig die Lüftungszeit verkürzt.

6. Zukunft: Approximationen und Vorhersagen:

Mittelfristig sollen die gelernten Daten genutzt werden, um Vorhersagen über das Lüftungsverhalten zu treffen. Ziel ist eine adaptive Vorausschau, z. B. "'wenn Außentemperatur X und Luftfeuchtigkeit Y, dann lüften mit PWM = 30% für 2 Minuten".

7. Langzeiterhebung:

Sämtliche Daten werden in einem kommagetrennten Format (CSV) gespeichert und können regelmäßig per WLAN abgerufen werden.

8. Priorisierung:

Initial werden möglichst viele Daten gesammelt ("'Sammelmodus"), später kann in den "'Effizienzmodus" gewechselt werden.

9. Einbettung der Erkenntnisse:

Das Verhalten der Bienen kann so nachvollzogen und optimiert werden – etwa durch Beobachtung von Fächelverhalten und Anflugmustern in Relation zur Innenklimatik.

Fazit

Diese Version stellt die Weichen für eine intelligente, adaptive Lüftungssteuerung, die sowohl die Bedürfnisse der Bienen respektiert als auch maximale Energieeffizienz anstrebt. Der Venti-Kasten wird damit zur lernenden Einheit.