逻辑回归 & 决策树

Illusionna[™]

19:58, Thursday 14th September, 2023

概述

L ogistic Regression 和 Decision Tree 都可以用于样本分类任务,但两者原理不同,本次作业选用"乳腺癌"权威数据集,编写 Python

脚本,以准确率和查全率为重要指标, 以 F₁ 分数为综合指标,采用多种抽 样方式划分数据集,较为全面地对比 不同途径得到的结果.

相关代码:

https://gitee.com/Illusionna/OnlineSharing/tree/master/LogisticRegression_DecisionTree

I. 数据集

1.1 数据集来源

https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original

Figure 1.1: 乳腺癌数据集视图

1.2 数据集描述

乳腺癌数据集一共收录 4024 条样本,包括 15 列属性,以及对应的状态标签 "Alive" "Dead",同时注意到存在"Undifferentiated" "anaplastic" "Grade IV" "Regional"属性值的一类异常标签(非"Alive" "Dead").

1.3 数据预处理

1.3.1 删除异常标签

一共筛选出 19 条异常样本,直接删除.

$_{ m Age}$	Race	Marital Status	T Stage	N Stage	6th Stage	differentiate	Grade	A Stage	Tumor Size	Estrogen Status	Progesterone Status	Regional Node Examined	Reginol Node Positive	Survival Months	Status
52	Black	Single	Т3	N3	HIC	Undifferentiated	anaplastic	Grade IV	Regional	100	Positive	Positive	23	17	16
38	White	Married	Т3	N1	IIIA	Undifferentiated	anaplastic	Grade IV	Regional	70	Positive	Positive	10	1	102
37	Black	Married	Т3	N1	IIIA	Undifferentiated	anaplastic	Grade IV	Regional	60	Positive	Positive	5	2	97
69	White	Married	Т1	N1	IIA	Undifferentiated	anaplastic	Grade IV	Regional	20	Positive	Positive	17	3	85
59	White	Single	T2	N2	IIIA	Undifferentiated	anaplastic	Grade IV	Regional	40	Negative	Negative	10	9	33
67	White	Married	Т2	N3	HIC	Undifferentiated	anaplastic	Grade IV	Regional	21	Positive	Positive	25	17	75
39	White	Single	Т3	N2	IIIA	Undifferentiated	anaplastic	Grade IV	Regional	70	Positive	Positive	14	4	79
69	White	Widowed	Т2	N3	HIC	Undifferentiated	anaplastic	Grade IV	Regional	28	Positive	Positive	14	13	13
58	White	Single	Т1	N2	IIIA	Undifferentiated	anaplastic	Grade IV	Regional	19	Negative	Negative	47	7	9
43	White	Married	Т3	N2	IIIA	Undifferentiated	anaplastic	Grade IV	Regional	75	Negative	Negative	10	5	59
62	Black	Separated	T4	N3	HIC	Undifferentiated	anaplastic	Grade IV	Regional	70	Positive	Positive	10	10	34
63	White	Married	Т2	N1	IIB	Undifferentiated	anaplastic	Grade IV	Regional	25	Negative	Positive	10	2	27
50	White	Married	Т3	N1	IIIA	Undifferentiated	anaplastic	Grade IV	Regional	55	Positive	Positive	12	1	89
57	White	Married	Т1	N1	IIA	Undifferentiated	anaplastic	Grade IV	Regional	18	Positive	Positive	5	1	98
40	White	Single	Т3	N1	IIIA	Undifferentiated	anaplastic	Grade IV	Regional	52	Positive	Positive	11	9	88
43	White	Married	T4	N3	HIC	Undifferentiated	anaplastic	Grade IV	Regional	59	Negative	Positive	16	10	55
54	White	Divorced	Т1	N1	IIA	Undifferentiated	anaplastic	Grade IV	Regional	16	Positive	Negative	19	2	101
45	White	Married	Т1	N1	IIA	Undifferentiated	anaplastic	Grade IV	Regional	13	Positive	Positive	5	1	93
49	White	Married	T2	N1	IIB	Undifferentiated	ananlastic	Grade IV	Regional	28	Positive	Positive	12	3	71

Table 1.1 异常样本

1.3.2 字符标签编码

数据编码视图如 Figure 1.2 所示.

Figure 1.2: 字符属性值编码

给字符型分类变量按照 0-1-2-3-... 顺序编码,约定:

Table 1.2 编码规定

Encoding Attribute	0	1	2	3	4
Race	White	Other	Black		
Marital Status	Married	Single	Divorced	Widowed	Separated
T Stage	Т2	T1	Т3	T4	
N Stage	N1	N2	N3		
6th Stage	IIA	IIB	IIIA	IIIC	IIIB
differentiate	Moderately	Poorly	Well		
A Stage	Regional	Distant			
Estrogen Status	Positive	Negative			
Progesterone Status	Positive	Negative			
Status	Alive	Dead			

1.3.3 选择性标准化、归一化

标准化:

$$f(x) = \frac{x - \mu}{\sigma}$$

归一化:

$$f(x) = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

其中,x 为某个属性下的样本值, μ 为属性相应的样本均值, σ 为属性对应的样本标准差, x_{\min} 为属性相应的样本最小值, x_{\max} 为属性相应的样本最大值.

II. 抽样划分数据集

2.1 Random

乳腺癌数据集随机三七开,即 70% 的训练集,30% 的测试集.

2.2 Hierarchical

将乳腺癌数据集按照标签"Alive""Dead"先划分开,再各从两者中取 70% 当训练集, 30% 当测试集.

2.3 Leave-One-Out

乳腺癌数据集只留一个样本作测试集,剩余样本全部作训练集.

2.4 K-Fold Cross Validation

乳腺癌数据集留若干(假设 s 个)样本作测试集,剩余样本全部作训练集, 使得 K 轮次循环后, $s \times K = N$,其中 N = 4005.

2.5 Bootsrap

一类非参数 Monte Carlo 方法概率密度抽样,从数据集中有放回的抽取样本N次,把每次抽到的样本构成训练集,剩下没被抽到的构成测试集.

$$\lim_{N \to +\infty} \frac{\mathrm{Test}}{\mathrm{Dataset}} \times 100\% = \lim_{N \to +\infty} (1 - \frac{1}{N})^N = \frac{1}{e}$$

III. 定义指标

由于精确率和召回率此消彼长,当两者出现矛盾时,此时无法确定以哪个评估指标为准,譬如,一个模型精确率高但召回率低,而另一个模型精确率低但召回率高.因此,需要定义诸多综合型指标.

虚警率:
$$FPrate = \frac{FP}{N} \times 100\%$$
准确度: $Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \times 100\%$

$$F_1 = (1 + \delta^2) \times \frac{\frac{TP}{TP + FP} \times \frac{TP}{TP + FN}}{\delta^2 \times \frac{TP}{TP + FP} + \frac{TP}{TP + FN}}$$

$$G - Mean = \sqrt{\frac{TP}{TP + FN}} \times \frac{TN}{TN + FP}$$
 $MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + TN)(TP + FN)(TN + FP)(TN + FN)}}$

IV. 逻辑回归

4.1 Logistic Regression Results

Table 4.1 逻辑回归比对结果

Processing	Shuffle	Epoch	Precision	Recall	Accuracy	F_1	MCC
		10	70.103%	41.975%	89.767%	52.510%	14.731%
	Random	100	80.412%	40.415%	88.852%	53.793%	15.652%
		1000	75.424%	46.354%	89.018%	57.419%	17.780%
		10	72.072%	43.716%	88.861%	54.422%	16.266%
None	Hierarchical	100	72%	39.344%	88.446%	50.883%	14.596%
		1000	81.818%	44.262%	$90.025\%^{\dagger\ddagger}$	57.447%	16.792%
		10	77.5%	39.574%	88.882%	52.394%	14.973%
	Bootsrap	100	74.265%	48.792%	$90.195\%^{\dagger\ddagger}$	58.892%	17.849%
		1000	79.464%	46.809%	$91.964\%^{\dagger\ddagger}$	57.329%	16.223%
		10	56.757%	10.995%	84.526%	18.421%	3.802%
	Random	100	76.190%	15.920%	85.108%	26.337%	6.144%
		1000	82.609%	20.321%	86.938%	32.618%	7.742%
		10	76.667%	12.568%	86.118%	21.596%	4.657%
Standardize	Hierarchical	100	75%	19.672%	86.783%	31.169%	7.277%
		1000	$100\%^{\dagger\ddagger}$	20.765%	87.947%	34.379%	8.081%
		10	62.162%	11.005%	86.254%	18.699%	3.780%
	Bootsrap	100	77.419%	23.645%	88.673%	36.226%	8.390%
		1000	84.746%	24.510%	88.828%	38.023%	8.937%
		10	76.923%	35.928%	89.601%	48.980%	12.919%
	Random	100	74.419%	51.892%	89.850%	61.146%	19.602%
		1000	82.022%	39.891%	89.517%	53.676%	15.121%
	Hierarchical	10	77.647%	36.066%	88.695%	49.254%	13.530%
Normalize		100	79.048%	45.355%	89.859%	57.639%	17.131%
		1000	82.828%	44.809%	$90.191\%^{\dagger\ddagger}$	58.156%	17.030%
	Bootsrap	10	80.531%	42.130%	89.890%	55.319%	15.762%
		100	74.603%	44.762%	89.772%	55.952%	16.409%
		1000	78.814%	44.286%	$90.444\%^{\dagger\ddagger}$	56.707%	16.159%
		10	72.917%	37.838%	88.270%	49.822%	14.127%
	Random	100	80.734%	45.833%	89.601%	58.472%	17.759%
		1000	80%	41.212%	$90.183\%^{\dagger\ddagger}$	53.543%	14.757%
		10	77.528%	37.705%	88.861%	50.735%	14.151%
Both	Hierarchical	100	75.258%	39.891%	88.861%	52.143%	14.915%
		1000	82.609%	41.530%	89.776%	55.273%	15.762%
		10	76.364%	38.898%	89.215%	51.334%	14.366%
	Bootsrap	100	80.357%	41.667%	89.821%	54.878%	15.581%
		1000	83.495%	40.376%	$90.184\%^{\dagger\ddagger}$	54.430%	15.012%

4.2 逻辑回归代码执行结果

Figure 4.1: main.py 执行效果 (epoch=100)

V. 决策树

5.1 Decision Tree Results

Table 5.1 决策树比对结果

Shuffle	Precision	Recall	Accuracy	FPrate	F_1	G-Mean	MCC
Random	75.862%	49.162%	90.100%	2.329%	59.661%	7.690%	18.318%
Hierarchical	77.869%	51.913%	90.441%	2.244%	62.295%	7.635%	19.626%
Bootsrap	83.333%	53.488%	91.180%	1.534%	63.889%	7.046%	19.895%

决策树选取 Gini 系数作为评判指标,树的最大深度 maxDepth = 4,从决策树比对结果表格窥见: Bootsrap > Hierarchical > Random,即采用自助抽样得到的决策树不论是 Precision 还是 Recall 乃至 Accuracy 都较高. 并且综合性指数 $F_1 = 63.889\%$ 胜过其余两个 Shuffle.

5.2 决策树代码执行结果

Figure 5.1: 决策树结果

VI. 结果分析

Logistic Regression 的比对结果 **Table 3.1** 反映,只对起源数据集进行编码处理,不进行标准化或归一化操作,采用 Bootsrap 抽样迭代 1000 次,逻辑回归结果 Accuracy 可达 91.964%,综合回归的结果:

None > Both > Normalize > Standardize

Bootsrap > Hierarchical > Random

一个有趣结果是, Standardize 处理采用 Hierarchical 抽样, 训练迭代 1000次, 测试集的 Precision 居然满达 **100**%, 测试集全部查准, 笔者已将对应的训练集和测试集上传至文章概述提供的链接.

决策树祖先结点 SurvivalMonths \leq 47.5, 其 Gini 系数仅有 0.247, 这意味分类的纯粹度相当高,决策树分类十分有效.

综上所述,逻辑回归和决策树对于分类问题(乳腺癌数据集)的预测结果效果都非常良好,最高可达 90% 左右的 Accuracy.

Code. 代码

Code1(Logistic): main.py

```
from utils. Processing import PROCESSING
   from utils. LogisticRegression import LOGISTIC
   \operatorname{def} \operatorname{cls}() \longrightarrow \operatorname{None}:
      os.system('clear')
19
   cls()
20
21
22
   # 加载乳腺癌数据集.
   io = './OriginalData/BreastCancer.xlsx'
25
   lor = LOADER(io)
26
   pro = PROCESSING(
       data = lor.data,
29
       labels = lor. labels,
       attribute = lor.attribute
31
32
33
   # 删除异常标签值.
   pro. Abnormal Processing (mode="int")
36
   #字符值编码.
37
   pro.EncodeData()
38
39
   #数据标准化、归一化处理.
40
   pro.Standardize()
   pro.Normalize()
43
   # 生成训练集、测试集.
  pro. Shuffle (rule='bootsrap')
```

```
#加载训练集、测试集.
   train = LOADER('./tempData/Train.xlsx')
   test = LOADER('./tempData/Test.xlsx')
49
   lgs = LOGISTIC(
51
      trainData = train.data,
52
       trainLabels = train. labels,
      testData = test.data,
54
      testLabels = test. labels,
55
      epoch = 1000
57
58
   #逻辑回归.
   lgs . Logistic ()
60
   lgs.Score()
61
```

Code2(Decision): main.py

```
1 '''
2 # System --> Windows & Python3.8.0
3 # File ----> main.py
4 # Author --> Illusionna
5 # Create --> 2023/09/14 03:41:34
6 '''
7 # -*- encoding: UTF-8 -*-
8
9
10 import os
11 from utils . Loader import LOADER
```

```
from utils. Processing import PROCESSING
  from utils.DecisionTree import DECISION
   \operatorname{def} \operatorname{cls}() \longrightarrow \operatorname{None}:
     os.system('cls')
17
   cls()
18
19
20
  # 加载乳腺癌数据集.
   io = './OriginalData/BreastCancer.xlsx'
   # # -----
23
   lor = LOADER(io)
   # # -----
  pro = PROCESSING(
      data = lor.data,
27
      labels = lor. labels,
      attribute = lor. attribute
29
30
31
   # 删除异常标签值.
   pro. Abnormal Processing (mode="int")
   #字符值编码.
35
   pro.EncodeData()
36
37
   #数据标准化、归一化处理.
38
   # pro.Standardize()
39
   # pro.Normalize()
41
   # 生成训练集、测试集.
pro. Shuffle (rule='bootsrap')
```

```
45
   {\rm train} \ = {\rm LOADER('./tempData/Train.xlsx')}
46
   test = LOADER('./tempData/Test.xlsx')
   tree = DECISION(
49
       trainData = train.data,
50
       trainLabels = train. labels,
      testData = test.data,
      testLabels = test. labels
54
55
   tree.Decision()
56
   tree.Score()
58
   tree.Chart(test.attribute)
```

Code3: Loader.py

```
1 '''
2 # System --> Linux & Python3.8.0
3 # File ----> Loader.py
4 # Author --> Illusionna
5 # Create --> 2023/09/12 19:19:06
6 '''
7 # -*- encoding: utf-8 -*-
8
9
10 import pandas as pd
11
```

```
class LOADER:
13
        数据加载类.
14
        22 22 22
15
        def \underline{\quad} init\underline{\quad} (self, io: str) \rightarrow None:
16
             self.io = io
17
            LOADER.Loader(self)
18
        def Loader(self) \rightarrow None:
20
21
            Load the original data.
22
            22 22 22
23
            try:
24
                 df = pd.read_excel(self.io, header=None)
                 self.attribute = df.loc [0].tolist ()
26
                 self . labels = df.loc [:, (df.shape[1]-1)].drop(index=0).
27
                     tolist ()
                 self.data = df.loc [:,[i for i in range(0, (df.shape])]
28
                     [1]-1, 1) ]]. drop(index=0).values. tolist ()
            except:
                 print ("Failed to load data.")
30
                 print ("数据加载失败.")
31
                 print("Check Excel table format and path.")
32
                 print("检查表格格式和路径.")
33
                 print("Reference link of picture format.")
34
                 print ("参考格式图片链接.\n")
                 print(r"https://gitee.com/Illusionna/OnlineSharing/raw
36
                     /master/View_of_Excel.png")
                 print("\n")
37
```

Code4: Processing.py

```
# System --> Linux & Python3.8.0
   # File ----> Processing.py
   # Author --> Illusionna
   \# Create --> 2023/09/12 19:20:00
   \# -*- encoding: utf-8 -*-
9
   import os
10
   import random
11
   import numpy as np
12
   import pandas as pd
13
   from typing import Literal
14
15
   COLOURS = \{
16
       'default': '033[39m',
17
        'green': '\033[32m',
18
        'pink': '\033[35m',
19
        'red': '\sqrt{033}[31m'],
20
       'orange': '\033[33m'
21
   }
22
23
   class PROCESSING:
24
       ,, ,, ,,
25
       数据预处理类.
26
       ,, ,, ,,
27
       def ___init___(self, data: list , labels : list , attribute : list ) ->
28
           None:
            self.data = data
29
            self.label = labels
30
            self.attribute = attribute
31
```

```
32
       RULE = Literal['int', 'float']
33
       def AbnormalProcessing(self, mode:RULE) -> None:
34
35
           异常值函数:处理标签异常的样本,视 mode 为正常.
36
           ,, ,, ,,
37
           remarkList = []
38
           for i in range(0, len(self.label), 1):
               if isinstance (self.label[i], eval(mode)) == True:
40
                   remarkList.append(i)
41
           print(COLOURS['red'], end='')
42
           print('Abnormal Samples:')
43
           print(COLOURS['orange'])
44
           dictionary = \{\}
45
           for i in range(0, len(remarkList), 1):
46
               temp = self.data[remarkList[i]]
47
               dictionary [f'Error{i+1}] = temp
48
           df = pd.DataFrame(dictionary).T
49
           print (df)
50
           transformerD = pd.DataFrame(self.data)
51
           transformerD.drop(remarkList, inplace=True)
52
           transformerL = pd.DataFrame(self.label)
53
           transformerL.drop(remarkList, inplace=True)
54
           print(COLOURS['green'])
55
           print ('Abnormal samples removed...\n')
56
           print(COLOURS['default'])
            self.data = transformerD.values.tolist()
            self.label = transformerL.T.values.tolist()[0]
59
       def EncodeData(self) -> None:
61
           22 22 22
62
           属性值编码函数:将字符型值按照 0,1,2,... 编码.
63
```

```
,, ,, ,,
64
            matrix = []
            for i in range(0, len(self.label), 1):
66
                temp = list(self.data[i])
67
                temp.append(self.label[i])
                matrix.append(temp)
69
            transformer = pd.DataFrame(matrix).T
70
             statisticsList = []
            write = []
72
            for i in range(0, len(transformer), 1):
73
                column = transformer.values. tolist ()[i]
74
                judge = (
75
                     isinstance (column[0], int)
76
                     isinstance (column[0], float)
78
                )
79
                 if judge:
80
                     pass
81
                 else:
82
                     temp = pd.value_counts(column)
83
                     pos = 0
84
                     for j in range (0, len(temp), 1):
85
                         temp[j] = pos
86
                         pos = -\sim pos
87
                     write.append(dict(temp))
88
                      statisticsList .append((i, dict(temp)))
            print(COLOURS['red'], end='')
90
            print('Annotation:')
91
            print(COLOURS['orange'])
            for i in range(0, len(write), 1):
93
                print ( write [ i ])
94
            print(COLOURS['default'])
95
```

```
data = []
96
            pos = 0
            for i in range(0, len(matrix), 1):
98
                sample = []
99
                for j in range(0, len(matrix[i]), 1):
100
                     if j == statisticsList [pos][0]:
101
                        sample.append(write[pos][matrix[i][j]])
102
                        pos = -\sim pos
103
                    else:
104
                        sample.append(matrix[i][j])
105
                pos = 0
106
                data.append(sample)
107
            dictionary = \{\}
108
            for i in range(0, len(self.attribute), 1):
109
                dictionary [self.attribute [i]] = pd.DataFrame(data).T.
110
                    values.tolist()[i]
            os.makedirs('./tempData', exist_ok=True)
111
            pd.DataFrame(dictionary).to_excel('./tempData/
112
                NumericData.xlsx', index=None)
            print(COLOURS['green'])
113
            print ('Processed result saved...\n')
114
            print (COLOURS['default'])
115
            for i in range (0, len(data), 1):
116
                 self.label[i] = data[i][-1]
117
                del data[i][-1]
118
            self.data = data
120
        def Standardize(self) -> None:
121
122
            功能: 数据标准化.\n
123
            函数: Z-score 法则.\n
124
            参数: 要求 "纯" 数据矩阵, 不含表头属性和表格索引, 类
125
```

```
型 list.
126
             self.data = pd.DataFrame(self.data).T.values. tolist ()
127
            temp = []
128
            for i in range(0, len(self.data), 1):
129
                 tempList = []
130
                 avg = np.average(self.data[i])
131
                 var = np.var(self.data[i])
132
                 for j in range(0, len(self.data[i]), 1):
133
                     value = (self.data[i][j]-avg) / var
134
                     tempList.append(value)
135
                 temp.append(tempList)
136
             self.data = temp
137
             self.data = pd.DataFrame(self.data).T.values. tolist()
138
139
        def Normalize(self) -> None:
140
            11 11 11
141
            功能: 数据归一化.\n
142
            范围: 归一化后数据区间 [0, 1].\n
143
             参数: 要求 "纯" 数据矩阵, 不含表头属性和表格索引, 类
144
                型 list.
            11 11 11
145
             self.data = pd.DataFrame(self.data).T.values. tolist ()
146
            temp = []
147
             for i in range(0, len(self.data), 1):
148
                 tempList = \lceil \rceil
                 for j in range(0, len(self.data[i]), 1):
150
                     value = (self.data[i][j] - min(self.data[i])) / (
151
                         \max(\text{self.data[i]}) - \min(\text{self.data[i]})
                     tempList.append(value)
152
                 temp.append(tempList)
153
             self.data = temp
154
```

```
self.data = pd.DataFrame(self.data).T.values. tolist ()
155
156
        MODE = Literal['random', 'hierarchical', 'LOO', 'KFCV', '
157
           bootsrap']
        def Shuffle (self, rule: MODE="random", num:int=4) -> None
158
           or list:
159
            数据洗牌: 打乱数据集, 划分训练集和测试集.\n
160
            rule = {
161
                "random": RandomShuffle()\n
162
                "hierarchical": HierarchicalShuffle ()\n
163
                "LOO" --> LeaveOneOut: LOOShuffle()\n
164
                "KFCV" --> KFoldCrossValidation: KFCVShuffle()\n
165
                "bootsrap": BootsrapShuffle()
166
167
168
            os.makedirs("./tempData", exist_ok=True)
169
            self.matrix = []
170
            for i in range(0, len(self.data), 1):
171
                temp = self.data[i]
172
                temp.append(self.label[i])
173
                self .matrix.append(temp)
174
            if rule == "random":
175
                PROCESSING.___RandomShuffle(self)
176
            elif rule == "hierarchical":
177
                PROCESSING.___HierarchicalShuffle(self)
            elif rule == "LOO":
179
                PROCESSING.__LOOShuffle(self, testSetIndex=num)
180
            elif rule == "KFCV":
181
                print ("Shuffled ...\ n")
182
                return PROCESSING. KFCVShuffle(self, K=num)
183
            elif rule == "bootsrap":
184
```

```
PROCESSING.___BootsrapShuffle(self)
185
            else:
186
                PROCESSING. RandomShuffle(self)
187
            print(COLOURS['pink'])
188
            print ("Shuffled result is saved to './tempData'...\n")
189
            print(COLOURS['default'])
190
            self.data = pd.DataFrame(self.data).drop([len(self.data[0])])
191
               -1], axis=1)
            self.data = self.data.values.tolist()
192
193
        def ___SaveTempData(self, trainSet:list, testSet: list) -> None:
194
            ,, ,, ,,
195
            洗牌划分后的训练集和测试集寄存在'./tempData'文件夹下.
196
            trainSet = pd.DataFrame(trainSet).T.values.tolist()
198
            testSet = pd.DataFrame(testSet).T.values.tolist()
199
            trainDictionary = dict(zip(self.attribute, trainSet))
200
            testDictionary = dict(zip(self.attribute, testSet))
201
            dfTrain = pd.DataFrame(trainDictionary)
202
            dfTest = pd.DataFrame(testDictionary)
203
            dfTrain.to_excel('./tempData/Train.xlsx', index=False)
204
            dfTest.to_excel('./tempData/Test.xlsx', index=False)
205
206
        def ___RandomShuffle(self) -> None:
207
208
            留出法抽样:数据集随即划分,默认 ratio = 0.7,即传统的前
                后七三随机开.
            22 22 22
210
            random.shuffle(self.matrix)
            sampleNumber = len(self.matrix)
212
            ratio = 0.7
213
            trainNumber = int(sampleNumber*ratio)
214
```

```
del ratio
215
            trainSet = []
            testSet = []
217
            for i in range(0, trainNumber, 1):
218
                trainSet.append(self.matrix[i])
219
            for i in range(trainNumber, sampleNumber, 1):
220
                testSet.append(self.matrix[i])
221
            PROCESSING.___SaveTempData(self, trainSet, testSet)
222
223
        def ___HierarchicalShuffle( self ) -> None:
224
            ,, ,, ,,
225
            分层抽样: 默认 ratio = 0.7, 从正样本中 70% 放到训练集,
226
                再从反样本中抽 70% 放到训练集,测试集是剩余 30% 的
                正反样本.
            ,, ,, ,,
227
            ratio = 0.7
228
            trainSet = []
229
            testSet = []
230
            positiveSet = []
231
            negativeSet = []
232
            sampleNumber = len(self.matrix)
233
            for i in range(0, sampleNumber, 1):
234
                if self.matrix[i][-1] == 1:
235
                     positiveSet .append(self.matrix[i])
236
                else:
237
                    negativeSet.append(self.matrix[i])
            random.shuffle(positiveSet)
239
            random.shuffle(negativeSet)
240
            for i in range(0, int(len(positiveSet)*ratio), 1):
241
                trainSet.append(positiveSet[i])
242
            for i in range(0, int(len(negativeSet)*ratio), 1):
243
                trainSet.append(negativeSet[i])
244
```

```
for i in range(int(len(positiveSet)*ratio), len(positiveSet)
245
                , 1):
                testSet.append(positiveSet[i])
246
            for i in range(int(len(negativeSet)*ratio), len(negativeSet)
247
                , 1):
                testSet.append(negativeSet[i])
248
            random.shuffle(trainSet)
249
            random.shuffle(testSet)
            PROCESSING. SaveTempData(self, trainSet, testSet)
251
252
        def ___LOOShuffle(self, testSetIndex:int=0) -> None:
253
            ,, ,, ,,
254
            留一法抽样:参数 num/testSetIndex 是选取一个测试样本的
255
                索引.
            ,, ,, ,,
256
            sampleNumber = len(self.matrix)
257
            trainSet = []
258
            testSet = []
259
            testSet.append(self.matrix[testSetIndex])
260
            L = list (
261
                set ([i for i in range(0, sampleNumber, 1)])
262
263
                set ([testSetIndex])
264
            )
265
            for i in L:
266
                trainSet.append(self.matrix[i])
            PROCESSING.___SaveTempData(self, trainSet, testSet)
268
269
               _KFCVShuffle(self, K:int=4) -> list:
        def
            ,, ,, ,,
271
            K-折交叉验证抽样:参数 num/K 为数据集划分成子集的个
272
                数.
```

```
273
           random.shuffle(self.matrix)
           sampleNumber = len(self.matrix)
275
           tensor = []
276
           trainSet = []
           testSet = []
278
           pos = 0
279
           step = np.floor(sampleNumber/K)
           for i in range(0, (K-1), 1):
281
               matrix = []
282
               while pos < (step*(i+1)):
283
                   matrix.append(self.matrix[pos])
284
                   pos = -\sim pos
285
               tensor.append(matrix)
           matrix = []
287
           for t in range(pos, sampleNumber, 1):
288
               matrix.append(self.matrix[pos])
289
               pos = -\sim pos
290
           tensor.append(matrix)
291
           return tensor
292
293
       def ___BootsrapShuffle(self) -> None:
294
            自助法概率抽样:数据集较小、难以有效划分训练集和测试集
296
               时有效,但会改变起源数据集的分布,引入估计偏差,数
               据量大时建议使用留出法和 K 折交叉验证法.
           ,, ,, ,,
297
           sampleNumber = len(self.matrix)
298
           indexList = []
299
           for i in range(0, sampleNumber, 1):
300
               random.seed(random.random())
301
               index = random.randint(0, (sampleNumber-1))
302
```

```
indexList.append(index)
303
             indexListTrain = list(set(indexList))
             indexListTest = list(
305
                 set ([i for i in range(0, sampleNumber, 1)])
306
                 set(indexListTrain)
308
309
             trainSet = []
             testSet = []
311
             for i in indexListTrain:
312
                 trainSet.append(self.matrix[i])
313
             for i in indexListTest:
314
                 testSet.append(self.matrix[i])
315
             PROCESSING.___SaveTempData(self, trainSet, testSet)
316
```

Code5: LogisticRegression.py

```
2 # System --> Linux & Python3.8.0
3 # File ----> LogisticRegression.py
4 # Author --> Illusionna
5 # Create --> 2023/09/12 19:19:32
6 '''
7 # -*- encoding: utf-8 -*-
8
9
10 from numpy import sqrt
11 from sklearn.linear_model import LogisticRegression
12
13 class LOGISTIC:
14 def __init__(self, trainData: list , trainLabels: list , testData: list , testLabels: list , epoch:int=100) -> None:
```

```
self.trainX = trainData
15
             self.trainY = trainLabels
16
             self.testX = testData
17
             self.testY = testLabels
18
             self.epoch = epoch
20
        def Logistic (self) -> None:
21
            model = LogisticRegression(
22
                multi\_class = "auto",
23
                 solver = "lbfgs",
24
                \max_{\text{iter}} = \text{self.epoch}
25
            )
26
            lgs = model.fit(self.trainX, self.trainY)
27
            prediction = lgs.predict(self.testX)
28
             self.TP = 0
29
             self.FN = 0
30
             self.FP = 0
31
             self.TN = 0
32
            for i in range(0, len(prediction), 1):
33
                 if ((prediction[i] == 1) \text{ and } (self.testY[i] == 1)):
34
                     self.TP = -\sim self.TP
35
                 elif ((prediction [i] == 0) and (self.testY[i] == 1):
36
                     self.FN = -\sim self.FN
37
                 elif ((prediction [i] == 1) and (self.testY[i] == 0)):
38
                     self.FP = -\sim self.FP
39
                 elif ((prediction [i] == 0) and (self.testY[i] == 0):
                     self.TN = -\sim self.TN
41
42
        def Score(self, delta: float=1) -> None:
            print('Logistic Regression:\n')
44
            print(f'TP: {self.TP}')
45
            print(f'FN: {self.FN}')
46
```

```
print(f'FP: { self . FP}')
47
                                                             print(f'TN: {self.TN}')
                                                              print(',')
49
                                                               self. precision = self. TP/(self. TP+self. FP)
50
                                                               self. recall = self. TP/(self. TP+self. FN)
                                                               self.accuracy = (self.TP+self.TN)/ (self.TP+self.TN+self.
52
                                                                                FP+self.FN)
                                                               self.FPrate = self.FP / len(self.testY)
53
                                                               self.F1 = (1+delta**2) * (self.precision*self.recall)/((
54
                                                                                 delta**2)*self.precision+self.recall)
                                                               self.GMean = sqrt((self.TP + self.TN) / ((self.TP + self.FN) *
55
                                                                                (self.TN+self.FP)))
                                                               self.MCC = (self.TP*self.TN-self.FP*self.FN) / sqrt((self.TP*self.FN)) / sqrt((self.TP*self.TN-self.FP*self.FN)) / sqrt((self.TP*self.TN-self.TN-self.FP*self.FN)) / sqrt((self.TP*self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-self.TN-sel
56
                                                                                TP+self.TN)*(self.TP+self.FN)*(self.TN+self.FP)*(self.TP+self.FN)*(self.TN+self.FP)*(self.TP+self.FN)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.FP)*(self.TN+self.TN+self.FP)*(self.TN+self.TN+self.FP)*(self.TN+self.TN+self.FP)*(self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.TN+self.
                                                                                TN+self.FN))
                                                              print('Precision: {:.3 f} %'.format(100*self.precision))
57
                                                             print('Recall:
                                                                                                                                                              \{:.3 f\} %'.format(100*self.recall))
58
                                                              print ('Accuracy: {:.3 f} %'.format(100*self.accuracy))
59
                                                                                                                                                             \{:.3 f\} %'.format(100*self.FPrate))
                                                             print('FPrate:
60
                                                                                                                                                              \{:.3 f\} %'.format(100*self.F1))
                                                             print ('F1:
61
                                                             print ('G-Mean: {:.3 f} %'.format(100*self.GMean))
62
                                                                                                                                                               \{:.3 f\} %'.format(100*self.MCC))
                                                              print ('MCC:
63
                                                              print('')
```

Code6: DecisionTree.py

```
1 '''
2 # System --> Windows & Python3.8.0
3 # File ---> DecisionTree.py
4 # Author --> Illusionna
5 # Create --> 2023/09/14 04:09:16
6 '''
```

```
\# -*- encoding: UTF-8 -*-
9
   import os
10
   import pydotplus
11
   from numpy import sqrt
12
   from sklearn import tree
13
   from six import StringIO
   from typing import Literal
16
   def cls() -> None:
17
       os.system('cls')
18
       os.environ["PATH"] += os.pathsep + './Graphviz/bin'
19
   cls ()
21
   class DECISION:
22
       def ___init___(self, trainData: list , trainLabels: list , testData:
            list, testLabels: list) -> None:
            self.trainX = trainData
24
            self.trainY = trainLabels
25
            self.testX = testData
26
            self.testY = testLabels
27
       CRITERION = Literal['gini', 'entropy', 'log_loss']
29
       SPLITTER = Literal['best', 'random']
30
       def Decision (self, criterion: CRITERION='gini', splitter:
32
           SPLITTER='best', maxDepth:int=4) -> None:
            clf = tree. DecisionTreeClassifier (
33
                criterion = criterion,
34
                splitter = splitter,
35
                \max_{depth} = \max_{depth}
36
```

```
37
            self. clf = clf. fit (self.trainX, self.trainY)
38
            prediction = self. clf. predict(self.testX)
39
            self.TP = 0
40
            self.FN = 0
            self.FP = 0
42
            self.TN = 0
43
            for i in range (0, len(prediction), 1):
                if ((prediction[i] == 1) \text{ and } (self.testY[i] == 1)):
45
                     self.TP = -\sim self.TP
46
                 elif ((prediction [i] == 0) and (self.testY[i] == 1):
47
                     self.FN = -\sim self.FN
48
                 elif ((prediction [i] == 1) and (self.testY[i] == 0):
49
                     self.FP = -\sim self.FP
50
                 elif ((prediction[i] == 0) and (self.testY[i] == 0)):
51
                     self.TN = -\sim self.TN
52
53
       def Score(self, delta: float =1) -> None:
54
            print('Decision Tree:\n')
55
            print(f'TP: {self.TP}')
56
            print(f'FN: {self.FN}')
57
            print(f'FP: { self . FP}')
58
            print(f'TN: {self.TN}')
59
            print(',')
60
            self. precision = self. TP/(self. TP+self. FP)
61
            self. recall = self. TP/(self. TP+self. FN)
            self.accuracy = (self.TP+self.TN)/ (self.TP+self.TN+self.
63
                FP+self.FN)
            self.FPrate = self.FP / len(self.testY)
64
            self.F1 = (1+delta**2) * (self.precision*self.recall)/((
65
                delta**2)*self.precision+self.recall)
            self.GMean = sqrt((self.TP+self.TN) / ((self.TP+self.FN) *
66
```

```
(self.TN+self.FP)))
            self.MCC = (self.TP*self.TN-self.FP*self.FN) / sqrt((self.
67
                TP+self.TN)*(self.TP+self.FN)*(self.TN+self.FP)*(self.
                TN+self.FN))
            print('Precision: {:.3 f} %'.format(100*self.precision))
                               \{:.3 f\} %'.format(100*self. recall))
            print('Recall:
69
            print('Accuracy: {:.3f} %'.format(100*self.accuracy))
70
            print('FPrate:
                               {:.3 f} %'.format(100*self.FPrate))
71
                               \{:.3 f\} %'.format(100*self.F1))
            print ('F1:
72
                               \{:.3 f\} %'.format(100*self.GMean))
            print ('G-Mean:
73
            print('MCC:
                               \{:.3 f\} %'.format(100*self.MCC))
74
            print('')
75
76
       def Chart(self, attribute: list) -> None:
77
            image = StringIO()
78
            del attribute [-1]
79
            status = ['Alive', 'Dead']
80
            tree.export_graphviz(
81
                self.clf,
82
                out_file = image,
83
                feature\_names = attribute,
84
                class\_names = status,
85
                filled = True,
86
                rounded = True,
87
                special\_characters = True
88
            chart = pydotplus.graph_from_dot_data(image.getvalue())
90
            chart.write_pdf('DecisionTree.pdf')
91
```