# Introduction to PyTorch

Yifei Liu

March, 2022



## **Outline**

- Set up working environment
  - Coding platform
  - Create conda environment
- Introduction to PyTorch framework
- Deep learning with PyTorch
- Additional resources



# Coding platform

### Jupyter Notebook / Lab

### On your own computer:

- Open <u>Anaconda</u> Prompt
- Run jupyter notebook

#### On HPC resources from MSI:

- Need to be in a research group
- <u>UMN VPN</u> (off-campus only)
- Visit notebooks.msi.umn.edu
- Choose and start a server

Alternative choice: Colab Notebook

#### **VS** Code

- Install the <u>Python extension</u>
- Check <u>here</u> for:
  - Path configuration
  - Autocompletion and hints
  - Debugging ...

### To use VS Code from a remote host:

Remote development extension

#### Other choices:

PyCharm, Spyder, Sublime ...



# **Create a conda environment for your Python project**



- An alternative way to Virtualenv
- Manage dependencies (different versions of Python and some libraries) within an isolated project
  - An example: Python library <u>foolbox</u>
- Key commands:
  - conda create -n <envname> python=3.8.3
  - conda activate <envname>
  - conda install <package>=<version>
  - conda deactivate
- Check <u>Conda Cheat Sheet</u>



#### A hands-on exercise



- Log in to <u>notebooks.msi.umn.edu</u>
- We want to create a conda environment called "8056ex":
  - Python (version 3.8.3)
  - NumPy (version 1.18.1)
- Some commands
  - conda create -n 8056ex python=3.8.3
  - conda activate 8056ex
  - conda install numpy=1.18.1
- Specific to Jupyter Notebook / Lab:
  - conda install ipykernel
  - python -m ipykernel install --user --name 8056ex --display-name "8056ex"



## **Installation of PyTorch**

Install PyTorch from <a href="http://pytorch.org/">http://pytorch.org/</a>





# UMN computing resources

## MSI: <a href="https://www.msi.umn.edu/">https://www.msi.umn.edu/</a>

| Introduction to Minnesota<br>Supercomputing Institute (MSI)                    | This tutorial is geared to new MSI users and will provide a highlevel introduction to the facilities and computational resources at MSI.                                                          | 02/01/2022 |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Introduction to Linux                                                          | This tutorial will provide an introduction to the Linux operating system, with particular attention paid to working from the command line                                                         | 02/03/2022 |
| Programming with Python                                                        | Introduction to fundamentals of programming using the python language.                                                                                                                            | 02/08/2022 |
| Job Submission and Scheduling at MSI                                           | This tutorial will introduce users to MSI supercomputers, and provide an overview of how to submit calculations to the job schedulers                                                             | 02/10/2022 |
| Interactive Computing at MSI                                                   | This two part tutorial will introduce you to the concept of interactive high performance computing, and provide attendees hands-on experience running interactive parallel jobs on the Mesabi HPC | 02/15/2022 |
| <u>Data Storage Systems and Data</u><br><u>Analysis Workflows for Research</u> | In this tutorial you will learn about the data storage systems available for academic research at the University of Minnesota                                                                     | 02/17/2022 |
| Compiling and Debugging at MSI                                                 | This tutorial will help users learn the basics of compiling and debugging their code on MSI systems                                                                                               | 02/24/2022 |
| Python for Scientific Computing                                                | This session includes efficient data processing with NumPy and Scipy, data visualization, and techniques for using python to drive parallel supercomputing tasks.                                 | 03/01/2022 |
| RNA-Seq Analysis                                                               | This tutorial covers the basics of differential expression analysis and touches on other RNA-seq topics such as transcriptome assembly.                                                           | 03/03/2022 |
| Parallel Computing On Agate                                                    | This tutorial will help users learn the basics of parallel computation methods, including strategies for collecting calculations together for parallel execution.                                 | 03/31/2022 |

## LATIS: <a href="https://latisresearch.umn.edu/">https://latisresearch.umn.edu/</a>

| Feb. 18th   10:00am-noon                  | Creating Publication Worthy Visualizations without Code            | Registration |
|-------------------------------------------|--------------------------------------------------------------------|--------------|
| Feb. 25th   10:00am-noon                  | Introduction to Computational Text<br>Analysis                     | Registration |
| Mar. 4th   10:00am-noon                   | Reproducible research practices in Excel (yes, Excel)              | Registration |
| Mar. 9th   10:00am-noon                   | Data Management in transition:<br>Strategies for when you graduate | Registration |
| Mar. 18th   10:00am-noon<br>[RESCHEDULED] | Advanced Nvivo                                                     | Registration |
| Mar. 25th   10:00am-noon                  | Introduction to parallel computing                                 | Registration |
| April 1st   10:00am-noon                  | Introduction to SQL and Research  Databases                        | Registration |



## **Outline**

- Set up working environment
- Introduction to PyTorch framework
  - Tensor, gradient and computation graph
  - Tensor manipulation on GPU
  - Use PyTorch as a general ML framework
- Deep learning with PyTorch
- Additional resources



# Overview of PyTorch

### A fancy version of NumPy but can:

- Trace gradient via autograd
- Accelerate via GPU
- Accommodate a bunch of machine learning functionalities including but not limited to neural network

### More importantly,

- Easy interface compared to others
- Easy to debug and understand codes
- Check this <u>Google Trends</u>





2013 2014 2015 2016 2017

Credit: "Gluon: new MXNet interface to accelerate research"



## **Tensor**

#### What is a tensor?

- A multidimensional array
- Some examples:
  - 0D-tensor: scalar
  - 1D-tensor: vector
  - 2D-tensor: matrix; non-RGB image
  - 3D-tensor: RGB image (3 channels)
  - 4D-tensor: one RGB video clip
  - 5D-tensor: a collection of RGB video clips
  - 6D-tensor: ???
- Tensor in PyTorch:
  - Just like arrays in Numpy
  - t.numpy() and torch.from\_numpy(a)

### np.array versus torch.tensor

- Similar object creations:
  - All-ones, all-zeros, identity matrix, random...
  - Check <u>PyTorch tensor creations</u>
- Similar math operations:
  - Indexing, slicing, reshape, transpose, tensor product, element-wise operation...
  - Check <u>PyTorch tensor math operations</u>

```
import numpy as np
myarray = np.ones(3)
print(myarray)
print(myarray + 1.5)

[1. 1. 1.]
[2.5 2.5 2.5]
```

```
import torch
mytensor = torch.ones(3)
print(mytensor)
print(mytensor + 1.5)

tensor([1., 1., 1.])
tensor([2.5000, 2.5000, 2.5000])
```



# Tensor (cont.)

- Enable gradient tracing:
  - Upon any tensor creation, setrequires\_grad = True
  - For any existent tensor t, callt.requires\_grad\_(True)
- Calculate gradient:
  - Do some calculation from t and get f
  - Call f.backward() for calculation
  - Call t.grad to access the gradient
- Disable gradient tracing:
  - (Permanently) t = t.detach()
  - (Temporarily) with torch.no\_grad():

enable do some call access the gradient calculation backward()

```
# create tensors
c = torch.tensor(1.)
t = torch.tensor(3., requires grad = True)
print(c)
print(t)
# do your calculation based on t
s = t**2
f = 3 * s + c
# calculate the gradient w.r.t. t
f.backward()
# access the gradient
t.grad
tensor(1.)
tensor(3., requires grad=True)
tensor(18.)
```







enable gradient do some calculation

call .backward()

access the gradient

```
# create tensors
c = torch.tensor(1.)
t = torch.tensor(3., requires_grad = True)
print(c)
 print(t)
 # do your calculation based on t
 s = t**2
f = 3 * s + c
 # calculate the gradient w.r.t. t
f.backward()
 # access the gradient
 t.grad
tensor(1.)
tensor(3., requires_grad=True)
tensor(18.)
```



enable gradient do some calculation

call .backward()

access the gradient

```
**2 S
```

C

```
# create tensors
c = torch.tensor(1.)
t = torch.tensor(3., requires_grad = True)
print(c)
print(t)
# do your calculation based on t
s = t**2
f = 3 * s + c
# calculate the gradient w.r.t. t
f.backward()
# access the gradient
t.grad
tensor(1.)
tensor(3., requires_grad=True)
tensor(18.)
```







enable gradient do some call access the gradient salculation backward()

The graph structure is destroyed Once you call .backward()









```
# create tensors
c = torch.tensor(1.)
t = torch.tensor(3., requires grad = True)
print(c)
print(t)
# do your calculation based on t
s = t**2
f = 3 * s + c
# calculate the gradient w.r.t. t
f.backward()
# access the gradient
t.grad
tensor(1.)
tensor(3., requires_grad=True)
tensor(18.)
```



1. **t c** 

2. t \*\*2 S C

3. t \*\*2 S x3 t f

4. t s

enable gradient do some call access the gradient sackward()

```
# create tensors
c = torch.tensor(1.)
t = torch.tensor(3., requires_grad = True)
print(c)
print(t)
# do your calculation based on t
s = t**2
f = 3 * s + c
# calculate the gradient w.r.t. t
f.backward()
# access the gradient
t.grad
tensor(1.)
tensor(3., requires_grad=True)
tensor(18.)
```



# Why should we understand PyTorch computation graph?

- Essentially, PyTorch is using chain rule to calculate the gradient
- A computation graph defines how the chain rule applies to your calculation
- Some potential MISTAKES:
  - Retrieve gradient of non-leaf nodes
  - Call .backward() when there is no graph
  - Gradient accumulation. To solve this issue,
     call t.grad.zero\_() before building graph

```
# first back propagation
t = torch.tensor(3., requires grad = True)
s = t**2
s.backward()
print(t.grad)
# second propagation (WITHOUT RE-CREATING t)
f = 5 * t + 1
f.backward()
print(t.grad)
tensor(6.)
tensor(11.)
```

```
t.grad.zero_() # zero out the gradient
f = 5 * t + 1
f.backward()
print(t.grad)

tensor(5.)
```



## Calculation on GPU

 Neural network dated back to 1950s, but became popular only recently due to huge improvements in computation



Credit: CSCI 5980/8980: Think Deep Learning offered by Ju Sun, UMN

- GPU allows faster large-scale matrix multiplication (or tensor product)
- Use GPU on PyTorch:
  - torch.cuda.is\_available() # GPU?
  - t = t.cuda() # move to GPU
  - -t = t.cpu() # move to CPU
  - t.device # cpu or cuda: index
  - The transmission time can be long
  - Make sure all tensor manipulations are performed on the same device
- Advanced: <u>train on multiple GPUs</u>



# Time comparison: matrix multiplication on CPU and GPU

- We want to perform matrix multiplication C = AB where both A and B are 3000 x 3000 matrices
- Enable GPU on <u>Google Colab</u> (free!)
  - 1. Runtime
  - 2. Change runtime type
  - Hardware Accelerator: GPU
  - 4. Runtime -> Restart Runtime

```
# C = A B with numpy on CPU
A = np.random.rand(d, d)
B = np.random.rand(d, d)
begin = time.time()
C = A.dot(B)
print(f"CPU time (numpy): {time.time() - begin} s")
\# C = A B with torch on CPU
A t cpu = torch.tensor(A)
B t cpu = torch.tensor(B)
begin = time.time()
C = torch.mm(A t cpu, B t cpu)
print(f"CPU time (torch): {time.time() - begin} s")
\# C = A B with torch on GPU
# make sure GPU is available
A t gpu = torch.tensor(A).cuda()
B t gpu = torch.tensor(B).cuda()
begin = time.time()
C = torch.mm(A t gpu, B t gpu)
print(f"GPU time (torch): {time.time() - begin} s")
CPU time (numpy): 1.604166030883789 s
CPU time (torch): 1.5383508205413818 s
GPU time (torch): 0.0011920928955078125 s
```



# GPU not always better

- Calculation on GPU should be optimized smartly since
  - GPU has limited memory compared to CPU
  - Transmission time from CPU to GPU can be large

```
d = 3000
begin = time.time()
A = torch.rand((d, d)).cuda()
B = torch.rand((d, d)).cuda()
print(f"Time from CPU to GPU: {time.time() - begin} s")
begin = time.time()
C = torch.mm(A, B)
print(f"GPU time (torch): {time.time() - begin} s")
Time from CPU to GPU: 0.15282464027404785 s
GPU time (torch): 0.0008263587951660156 s
```

| NVID             | IA-SMI       | 440.1     | 00 Driv                        | er Version: | : 440.100                     | CUDA Ve | <br>rsion: 10.2                     |
|------------------|--------------|-----------|--------------------------------|-------------|-------------------------------|---------|-------------------------------------|
| GPU<br>Fan       |              |           |                                |             |                               |         | ile Uncorr. ECC  <br>til Compute M. |
| 0                | TITAN<br>56C |           | <br>Off<br>129W / 280          |             | 00:1A:00.0 O<br>MiB / 24220Mi |         | N/A  <br>N/A  <br>1% Default        |
| 1<br>  41%       | TITAN<br>55C | RIA<br>P2 | 0 <del>f1</del><br>127.! / 286 |             | 00:1B:00.0 O                  |         | N/A  <br>0% Default                 |
| <br>  2<br>  41% | TITAN<br>48C | RTX<br>P2 | 0 <del>f1</del><br>121W / 286  |             | 00:3D:00.0 O                  |         | N/A  <br>2% Default                 |
| 3<br>  41%       | TITAN<br>56C | RTX<br>P2 | 0 <del>f1</del><br>121W / 286  |             | 00:3E:00.0 O                  |         | N/A  <br>1% Default                 |
| 4<br>  41%       | TITAN<br>53C | RTX<br>P2 | 0 <del>f1</del><br>162W / 286  |             | 00:88:00.0 O<br>11B / 24220M  |         | N/A  <br>2% Default                 |
| <br>  5<br>  41% | TITAN<br>59C |           | 0 <del>f1</del><br>155W / 286  |             | 00:89:00.0 O                  |         | N/A  <br>1% Default                 |
| 6<br>  41%       | TITAN<br>55C |           | 0 <del>f1</del><br>169W / 280  |             | 00:B1:00.0 O                  |         | N/A  <br>8% Default                 |
| <br>  7<br>  41% | TITAN<br>56C |           | 0 <del>f1</del><br>109W / 286  |             | 00:B2:00.0 O                  |         | N/A  <br>1% Default                 |



# ML in PyTorch

- PyTorch provides a framework for general ML algorithm including but not limited to deep learning
- How does a ML algorithm work?
  - Prepare your dataset
  - Choose a training model
  - Choose a loss function
  - Optimization (calculation; gradient)
  - Evaluation and inference

- The go-to optimization: SGD
  - Instead of using gradient calculated from all training samples, we only use the gradient from a randomly chosen sample
- Practical one: (Mini-) Batch SGD
  - Use gradient from a batch of samples
  - Batch size: # samples in one batch
  - Epoch: a full pass of all training samples
  - Special cases:
    - Batch size = 1: vanilla SGD
    - Batch size = n: GD



## **Linear regression with SGD**

## The naive way

- The true model: y = 2 \* x + 1
- Some other setups:
  - $n = 2000, x \sim Uniform(0, 1)$
  - Number of epochs: 10
  - Batch size: 200 (10 batches per epoch)
  - Learning rate: 0.05
  - Initialize both intercept and slope with Uniform(0, 1)

```
n = 2000
x = torch.rand(n)
# create dataset with true model
a0 = 2
b0 = 1
y = a0 * x + b0
# set up optimization parameter of SGD
a = torch.rand(1, requires grad = True)
b = torch.rand(1, requires grad = True)
nepochs = 10
batch size = 200
1r = 0.5
```



```
for epoch in range(nepochs):
  for batch in range(round(n / batch size)):
    start = batch * batch size
    end = start + batch_size
    # perform update on a batch
    x batch = x[start:end]
    y batch = y[start:end]
    # build computation graph
    y hat = a * x batch + b
    myloss = torch.mean((y batch - y hat)**2)
    # gradient calculation
    myloss.backward()
    # SGD update
    with torch.no grad():
      a -= lr * a.grad
      b -= lr * b.grad
    # avoid gradient accumulation
    a.grad.zero ()
    b.grad.zero ()
  print(f"Epoch: {epoch + 1} / {nepochs}")
  print(f"MSE: {myloss: .2e}; a: {a.item():.4f}; b: {b.item():.4f}")
```

# Linear regression with SGDThe naive way

```
Г→ Epoch: 1 / 10
   MSE: 3.69e-02; a: 1.4460; b: 1.2822
    Epoch: 2 / 10
   MSE: 9.24e-03; a: 1.7226; b: 1.1413
    Epoch: 3 / 10
   MSE: 2.32e-03; a: 1.8611; b: 1.0707
    Epoch: 4 / 10
   MSE: 5.81e-04; a: 1.9305; b: 1.0354
   Epoch: 5 / 10
   MSE: 1.46e-04; a: 1.9652; b: 1.0177
    Epoch: 6 / 10
   MSE: 3.65e-05; a: 1.9826; b: 1.0089
    Epoch: 7 / 10
   MSE: 9.15e-06; a: 1.9913; b: 1.0044
    Epoch: 8 / 10
   MSE: 2.29e-06; a: 1.9956; b: 1.0022
    Epoch: 9 / 10
   MSE: 5.75e-07; a: 1.9978; b: 1.0011
    Epoch: 10 / 10
   MSE: 1.44e-07; a: 1.9989; b: 1.0006
```



```
0
```

```
for epoch in range(nepochs):
 for batch in range(round(n / batch size)):
   start = batch * batch size
   end = start + batch size
   # perform update on a batch
   x batch = x[start:end]
   y batch = y[start:end]
   # build computation graph
   y hat = a * x batch + b
   myloss = torch.mean((y batch - y hat)**2)
    # gradient calculation
   myloss.backward()
   # SGD update
   with torch.no grad():
     a -= lr * a.grad
      b -= lr * b.grad
   # avoid gradient accumulation
   a.grad.zero ()
    b.grad.zero ()
 print(f"Epoch: {epoch + 1} / {nepochs}")
  print(f"MSE: {myloss: .2e}; a: {a.item():.4f}; b: {b.item():.4f}")
```

# Linear regression with SGD – The naive way

```
Г→ Epoch: 1 / 10
   MSE: 3.69e-02; a: 1.4460; b: 1.2822
    Epoch: 2 / 10
   MSE: 9.24e-03; a: 1.7226; b: 1.1413
    Epoch: 3 / 10
   MSE: 2.32e-03; a: 1.8611; b: 1.0707
    Epoch: 4 / 10
   MSE: 5.81e-04; a: 1.9305; b: 1.0354
   Epoch: 5 / 10
   MSE: 1.46e-04; a: 1.9652; b: 1.0177
    Epoch: 6 / 10
   MSE: 3.65e-05; a: 1.9826; b: 1.0089
    Epoch: 7 / 10
   MSE: 9.15e-06; a: 1.9913; b: 1.0044
    Epoch: 8 / 10
   MSE: 2.29e-06; a: 1.9956; b: 1.0022
    Epoch: 9 / 10
   MSE: 5.75e-07; a: 1.9978; b: 1.0011
    Epoch: 10 / 10
   MSE: 1.44e-07; a: 1.9989; b: 1.0006
```



```
0
```

```
for epoch in range(nepochs):
 for batch in range(round(n / batch size)):
   start = batch * batch size
   end = start + batch size
   # perform update on a batch
   x batch = x[start:end]
   y batch = y[start:end]
   # build computation graph
   y hat = a * x batch + b
   myloss = torch.mean((y batch - y hat)**2)
    # gradient calculation
   myloss.backward()
   # SGD update
   with torch.no grad():
     a -= lr * a.grad
      b -= lr * b.grad
   # avoid gradient accumulation
   a.grad.zero ()
    b.grad.zero ()
 print(f"Epoch: {epoch + 1} / {nepochs}")
  print(f"MSE: {myloss: .2e}; a: {a.item():.4f}; b: {b.item():.4f}")
```

# Linear regression with SGD – The naive way

```
Γ→ Epoch: 1 / 10
   MSE: 3.69e-02; a: 1.4460; b: 1.2822
    Epoch: 2 / 10
   MSE: 9.24e-03; a: 1.7226; b: 1.1413
    Epoch: 3 / 10
   MSE: 2.32e-03; a: 1.8611; b: 1.0707
    Epoch: 4 / 10
   MSE: 5.81e-04; a: 1.9305; b: 1.0354
    Epoch: 5 / 10
   MSE: 1.46e-04; a: 1.9652; b: 1.0177
    Epoch: 6 / 10
   MSE: 3.65e-05; a: 1.9826; b: 1.0089
    Epoch: 7 / 10
   MSE: 9.15e-06; a: 1.9913; b: 1.0044
    Epoch: 8 / 10
   MSE: 2.29e-06; a: 1.9956; b: 1.0022
    Epoch: 9 / 10
   MSE: 5.75e-07; a: 1.9978; b: 1.0011
    Epoch: 10 / 10
   MSE: 1.44e-07; a: 1.9989; b: 1.0006
```



```
for epoch in range(nepochs):
  for batch in range(round(n / batch size)):
    start = batch * batch size
   end = start + batch size
   # perform update on a batch
   x batch = x[start:end]
   y batch = y[start:end]
   # build computation graph
    y hat = a * x batch + b
   myloss = torch.mean((y batch - y hat)**2)
    # gradient calculation
    myloss.backward()
   # SGD update
   with torch.no grad():
      a -= lr * a.grad
      b -= lr * b.grad
    # avoid gradient accumulation
    a.grad.zero ()
    b.grad.zero ()
```

print(f"MSE: {myloss: .2e}; a: {a.item():.4f}; b: {b.item():.4f}")

print(f"Epoch: {epoch + 1} / {nepochs}")

# Linear regression with SGD – The naive way

```
Г→ Epoch: 1 / 10
   MSE: 3.69e-02; a: 1.4460; b: 1.2822
    Epoch: 2 / 10
   MSE: 9.24e-03; a: 1.7226; b: 1.1413
    Epoch: 3 / 10
   MSE: 2.32e-03; a: 1.8611; b: 1.0707
    Epoch: 4 / 10
   MSE: 5.81e-04; a: 1.9305; b: 1.0354
    Epoch: 5 / 10
   MSE: 1.46e-04; a: 1.9652; b: 1.0177
    Epoch: 6 / 10
   MSE: 3.65e-05; a: 1.9826; b: 1.0089
    Epoch: 7 / 10
   MSE: 9.15e-06; a: 1.9913; b: 1.0044
    Epoch: 8 / 10
   MSE: 2.29e-06; a: 1.9956; b: 1.0022
    Epoch: 9 / 10
   MSE: 5.75e-07; a: 1.9978; b: 1.0011
    Epoch: 10 / 10
   MSE: 1.44e-07; a: 1.9989; b: 1.0006
```



```
for epoch in range(nepochs):
  for batch in range(round(n / batch size)):
    start = batch * batch size
   end = start + batch size
   # perform update on a batch
   x batch = x[start:end]
   y batch = y[start:end]
   # build computation graph
    y hat = a * x batch + b
   myloss = torch.mean((y batch - y hat)**2)
    # gradient calculation
   myloss.backward()
    # SGD update
    with torch.no grad():
      a -= lr * a.grad
      b -= lr * b.grad
    # avoid gradient accumulation
    a.grad.zero ()
```

print(f"MSE: {myloss: .2e}; a: {a.item():.4f}; b: {b.item():.4f}")

b.grad.zero ()

print(f"Epoch: {epoch + 1} / {nepochs}")

# Linear regression with SGDThe naive way

```
Γ→ Epoch: 1 / 10
   MSE: 3.69e-02; a: 1.4460; b: 1.2822
    Epoch: 2 / 10
   MSE: 9.24e-03; a: 1.7226; b: 1.1413
    Epoch: 3 / 10
   MSE: 2.32e-03; a: 1.8611; b: 1.0707
    Epoch: 4 / 10
   MSE: 5.81e-04; a: 1.9305; b: 1.0354
    Epoch: 5 / 10
   MSE: 1.46e-04; a: 1.9652; b: 1.0177
    Epoch: 6 / 10
   MSE: 3.65e-05; a: 1.9826; b: 1.0089
    Epoch: 7 / 10
   MSE: 9.15e-06; a: 1.9913; b: 1.0044
    Epoch: 8 / 10
   MSE: 2.29e-06; a: 1.9956; b: 1.0022
    Epoch: 9 / 10
   MSE: 5.75e-07; a: 1.9978; b: 1.0011
    Epoch: 10 / 10
   MSE: 1.44e-07; a: 1.9989; b: 1.0006
```



#### **Built-in functionalities**

- Dataset preparation:
  - torch.utils.data
  - Check Datasets & DataLoaders
- Define training model:
  - Check <u>torch.nn</u> for all kinds of components to build your own model
- Optimization algorithms:
  - Check <u>torch.optim</u> for various opt methods

```
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
```

```
class SimpleLinear(Dataset):
   def init (self, n, a, b):
     self.n = n
     self.x = torch.rand(n, 1)
     self.y = a * self.x + b
   def len (self):
       return self.n
   def getitem (self, idx):
       return self.x[idx], self.y[idx]
# create a training model
# (cont.) also initializes a and b
mymodel = nn.Sequential(nn.Linear(1, 1))
# prepare dataset and dataloaders
mydata = SimpleLinear(n = 2000, a = 2, b = 1)
mydataloader = DataLoader(mydata, batch size = 200)
# set up optimization with SGD
criterion = nn.MSELoss()
optimizer = optim.SGD(mymodel.parameters(), lr = 0.5)
```



### Prepare our datasets

- Dataset (a Python class)
  - \_\_init\_\_\_: initialize the dataset
  - \_\_\_len\_\_\_: sample size of the dataset
  - \_\_getitem\_\_: fetch a sample with idx
  - As the input of DataLoader function
- DataLoader (a Python function)
  - Divide the dataset into batches
  - Check <u>this</u> for more advanced usages

```
class SimpleLinear(Dataset):
    def init (self, n, a, b):
      self.n = n
      self.x = torch.rand(n, 1)
      self.y = a * self.x + b
    def len (self):
        return self.n
    def getitem (self, idx):
        return self.x[idx], self.y[idx]
# create a training model
# (cont.) also initializes a and b
mymodel = nn.Sequential(nn.Linear(1, 1))
# prepare dataset and dataloaders
mydata = SimpleLinear(n = 2000, a = 2, b = 1)
mydataloader = DataLoader(mydata, batch size = 200)
# set up optimization with SGD
criterion = nn.MSELoss()
optimizer = optim.SGD(mymodel.parameters(), lr = 0.5)
```



Create the training model:

- nn.Sequential
  - Build a model with sequential operations
  - nn.Linear(m, n)
    - A linear operator of shape n x m
    - A bias vector of shape n x 1 (default)
  - All parameters are initialized automatically upon creation
  - Check <u>torch.nn</u> for other operations

```
class SimpleLinear(Dataset):
   def init (self, n, a, b):
     self.n = n
     self.x = torch.rand(n, 1)
     self.y = a * self.x + b
   def len (self):
       return self.n
   def getitem (self, idx):
       return self.x[idx], self.y[idx]
# create a training model
# (cont.) also initializes a and b
mymodel = nn.Sequential(nn.Linear(1, 1))
# prepare dataset and dataloaders
mydata = SimpleLinear(n = 2000, a = 2, b = 1)
mydataloader = DataLoader(mydata, batch size = 200)
# set up optimization with SGD
criterion = nn.MSELoss()
optimizer = optim.SGD(mymodel.parameters(), lr = 0.5)
```



### Set up optimization:

- The loss function
- The optimization method
- Optimization parameters

```
class SimpleLinear(Dataset):
   def init (self, n, a, b):
     self.n = n
     self.x = torch.rand(n, 1)
     self.y = a * self.x + b
   def len (self):
       return self.n
   def getitem (self, idx):
       return self.x[idx], self.y[idx]
# create a training model
# (cont.) also initializes a and b
mymodel = nn.Sequential(nn.Linear(1, 1))
# prepare dataset and dataloaders
mydata = SimpleLinear(n = 2000, a = 2, b = 1)
mydataloader = DataLoader(mydata, batch size = 200)
# set up optimization with SGD
criterion = nn.MSELoss()
optimizer = optim.SGD(mymodel.parameters(), lr = 0.5)
```



```
Epoch: 1 / 10
MSE: 3.52e-02; a: 1.3904; b: 1.3368
Epoch: 2 / 10
MSE: 9.21e-03; a: 1.6882; b: 1.1722
Epoch: 3 / 10
MSE: 2.41e-03; a: 1.8406; b: 1.0881
Epoch: 4 / 10
MSE: 6.30e-04; a: 1.9185; b: 1.0450
Epoch: 5 / 10
MSE: 1.65e-04; a: 1.9583; b: 1.0230
Epoch: 6 / 10
MSE: 4.31e-05; a: 1.9787; b: 1.0118
Epoch: 7 / 10
MSE: 1.13e-05; a: 1.9891; b: 1.0060
Epoch: 8 / 10
MSE: 2.95e-06; a: 1.9944; b: 1.0031
Epoch: 9 / 10
MSE: 7.71e-07; a: 1.9971; b: 1.0016
Epoch: 10 / 10
MSE: 2.02e-07; a: 1.9985; b: 1.0008
```



```
nepochs = 10
for epoch in range(nepochs):
   for x_batch, y_batch in mydataloader:
     # build computation graph
     yhat = mymodel(x_batch)
     myloss = criterion(y_batch, yhat)

# optimization
     optimizer.zero_grad() # zero out gradient
     myloss.backward() # back propagation
     optimizer.step() # updata parameters
```

The whole optimization part

```
Epoch: 1 / 10
MSE: 3.52e-02; a: 1.3904; b: 1.3368
Epoch: 2 / 10
MSE: 9.21e-03; a: 1.6882; b: 1.1722
Epoch: 3 / 10
MSE: 2.41e-03; a: 1.8406; b: 1.0881
Epoch: 4 / 10
MSE: 6.30e-04; a: 1.9185; b: 1.0450
Epoch: 5 / 10
MSE: 1.65e-04; a: 1.9583; b: 1.0230
Epoch: 6 / 10
MSE: 4.31e-05; a: 1.9787; b: 1.0118
Epoch: 7 / 10
MSE: 1.13e-05; a: 1.9891; b: 1.0060
Epoch: 8 / 10
MSE: 2.95e-06; a: 1.9944; b: 1.0031
Epoch: 9 / 10
MSE: 7.71e-07; a: 1.9971; b: 1.0016
Epoch: 10 / 10
MSE: 2.02e-07; a: 1.9985; b: 1.0008
```



# Linear regression with SGDComparison of two ways

### The PyTorch way

```
nepochs = 10
for epoch in range(nepochs):
    for x_batch, y_batch in mydataloader:
        # build computation graph
        yhat = mymodel(x_batch)
        myloss = criterion(y_batch, yhat)

# optimization
        optimizer.zero_grad() # zero out gradient
        myloss.backward() # back propagation
        optimizer.step() # updata parameters
```

Agnostic to datasets, models, losses and optimization methods!

### The naive way

```
for epoch in range(nepochs):
 for batch in range(round(n / batch size)):
    start = batch * batch size
    end = start + batch size
    # perform update on a batch
    x batch = x[start:end]
    y batch = y[start:end]
    # build computation graph
    y hat = a * x batch + b
   myloss = torch.mean((y_batch - y_hat)**2)
    # gradient calculation
    myloss.backward()
    # SGD update
    with torch.no grad():
     a -= lr * a.grad
     b -= lr * b.grad
    # avoid gradient accumulation
    a.grad.zero ()
    b.grad.zero ()
```



# ML workflow in PyTorch

Credit: HPRC Short Course by Jian Tao, TAMU





## **Outline**

- Set up working environment
- Introduction to PyTorch framework
- Deep learning with PyTorch
  - Regression using shallow ReLU net
  - Image classification with CNN
- Additional resources



## From linear model to shallow ReLU network

## Simple linear model

```
# linear model
LinearModel = nn.Sequential(nn.Linear(1, 1))
print(f"Slope: {mymodel[0].weight.item(): .4f}")
print(f"Intercept: {mymodel[0].bias.item(): .4f}")

Slope: 0.0941
Intercept: -0.2586
```

#### Shallow ReLU neural net

```
# shallow ReLU net
ReLUnn2 = nn.Sequential(
    nn.Linear(1, 3),
    nn.ReLU(),
    nn.Linear(3, 1)
for param in ReLUnn2.parameters():
  print(type(param.data), param.size())
<class 'torch.Tensor'> torch.Size([3, 1])
<class 'torch.Tensor'> torch.Size([3])
<class 'torch.Tensor'> torch.Size([1, 3])
<class 'torch.Tensor'> torch.Size([1])
```



### What dose the data look like?



 x is 5-dimensional, but only the first coordinate x1 is relevant to y (sparse)

## What is our training model?

 A shallow ReLU neural network with 256 hidden nodes



### Trained model on TRAINING data





### Trained model on **TESTING** data





## Trained model on TESTING data and with REGULARIZATION



Code: optimizer = optim.Adam(train\_model.parameters(), lr = 0.001, weight\_decay = 0.01)



## Regularization of neural net

## - To achieve better generalization

Explicit regularization:

$$\min_{\boldsymbol{W}} \frac{1}{m} \sum_{i=1}^{m} \ell\left(\boldsymbol{y}_{i}, \text{DNN}_{\boldsymbol{W}}\left(\boldsymbol{x}_{i}\right)\right) + \frac{\lambda \Omega\left(\boldsymbol{W}\right)}{2}$$

- Norms of weight matrices
- Norms of gradients / Jacobians
- **–** ...
- Miscellaneous: A neural net structure can also induce regularization. E.g. The convolutional neural net (CNN)

- Implicit regularization:
  - The regularization that is not built in the objective function (the loss)
  - Regularization induced by an optimization algorithm: SGD tends to find a solution with small norm (regularized solution)
  - Early stopping; batch normalization; dropout



Credit: CSCI 5980/8980: Think Deep Learning offered by Ju Sun, UMN



#### **Dataset: MNIST**

- One of the benchmark datasets of deep learning for image classification
- Classifying digits as 0, 1, ..., 9



```
def forward(self, x):
   x = self.conv1(x)
    x = F.relu(x)
   x = self.conv2(x)
    x = F.relu(x)
    x = F.max pool2d(x, 2)
    x = self.dropout1(x)
    x = torch.flatten(x, 1)
    x = self.fc1(x)
   x = F.relu(x)
    x = self.dropout2(x)
    x = self.fc2(x)
    output = F.log softmax(x, dim=1)
    return output
```







```
def forward(self, x):
                                                     x = self.conv1(x)
                                                     x = F.relu(x)
One max-pooling layer
                                                     x = self.conv2(x)
                                                     x = F.relu(x)
                                                     x = F.max_pool2d(x, 2)
                                                     x = self.dropout1(x)
                                                     x = torch.flatten(x, 1)
                                                     x = self.fc1(x)
                                                     x = F.relu(x)
                                                     x = self.dropout2(x)
                                                     x = self.fc2(x)
                                                     output = F.log_softmax(x, dim=1)
                                                     return output
```



```
def forward(self, x):
                                                        x = self.conv1(x)
                                                        x = F.relu(x)
                                                        x = self.conv2(x)
                                                        x = F.relu(x)
                                                        x = F.max pool2d(x, 2)
                                                         x = self.dropout1(x)
                                                        x = torch.flatten(x, 1)
                                                        x = self.fc1(x)
                                                        x = F.relu(x)
Two fully connected layers
                                                         x = self.dropout2(x)
                                                        x = self.fc2(x)
                                                         output = F.log_softmax(x, dim=1)
                                                         return output
```



### **Our CNN model**

def forward(self, x): x = self.conv1(x)x = F.relu(x)x = self.conv2(x)ReLU activations x = F.relu(x) $x = F.max_pool2d(x, 2)$ x = self.dropout1(x)x = torch.flatten(x, 1)x = self.fc1(x)x = F.relu(x)x = self.dropout2(x)x = self.fc2(x)output = F.log\_softmax(x, dim=1) return output



## Dropout for regularization:

 randomly kills inner neurons with some probability p



(a) Standard Neural Net



(b) After applying dropout.

Credit: Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958.

```
def forward(self, x):
    x = self.conv1(x)
    x = F.relu(x)
    x = self.conv2(x)
    x = F.relu(x)
    x = F.max pool2d(x, 2)
    x = self.dropout1(x)
    x = torch.flatten(x, 1)
    x = self.fc1(x)
    x = F.relu(x)
    x = self.dropout2(x)
    x = self.fc2(x)
    output = F.log softmax(x, dim=1)
    return output
```



The total trainable parameters is 1,199,882!

| Layer (type)                                                                | Input Shape                                                                                   | <br>Param #                                   | Tr. Param #                                       |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| Conv2d-1 Conv2d-2 Dropout-3 Linear-4 Dropout-5 Linear-6                     | <br>[1, 1, 28, 28]<br>[1, 32, 26, 26]<br>[1, 64, 12, 12]<br>[1, 9216]<br>[1, 128]<br>[1, 128] | 320<br>18,496<br>0<br>1,179,776<br>0<br>1,290 | <br>320<br>18,496<br>0<br>1,179,776<br>0<br>1,290 |
| Total params: 1,199,882 Trainable params: 1,199,882 Non-trainable params: 0 |                                                                                               |                                               |                                                   |



## **Check GPU availability**

cuda

```
# check device availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

cpu

# check device availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
```



# Download and preprocess the MNIST training / testing dataset

Other transforms: cropping, translation, rotation, padding...

```
# define image transformation
transform=transforms.Compose([
                              transforms.ToTensor(),
                              transforms.Normalize((0.1307,), (0.3081,))
                              ])
# import MNIST dataset
dataset1 = datasets.MNIST('../data', train = True, download = True, transform = transform)
dataset2 = datasets.MNIST('../data', train = False, transform = transform)
# only use 2000 training images and 20 testing images
train index = np.random.choice(range(60000), 2000, replace = False)
test_index = np.random.choice(range(10000), 20, replace = False)
train data = Subset(dataset1, train index)
test data = Subset(dataset2, test index)
```



# Download and preprocess the MNIST training / testing dataset

Most popular benchmark datasets can be loaded via <u>torchvision</u> library

```
# define image transformation
transform=transforms.Compose([
                              transforms.ToTensor(),
                              transforms.Normalize((0.1307,), (0.3081,))
                              1)
# import MNIST dataset
dataset1 = datasets.MNIST('../data', train = True, download = True, transform = transform)
dataset2 = datasets.MNIST('../data', train = False, transform = transform)
# only use 2000 training images and 20 testing images
train index = np.random.choice(range(60000), 2000, replace = False)
test_index = np.random.choice(range(10000), 20, replace = False)
train data = Subset(dataset1, train index)
test_data = Subset(dataset2, test_index)
```

and don't forget to prepare DataLoader for training



## Define a training utils function

```
# a utils function for training
def train(model, device, train loader, optimizer, epoch):
    model.train() # enable dropout
   correct = 0
   for batch_idx, (data, target) in enumerate(train_loader):
        # transfer batches of data to specified device
        data, target = data.to(device), target.to(device)
        # build computation graph
       output = model(data)
        loss = F.nll loss(output, target)
        # the optimization part
        optimizer.zero grad()
        loss.backward()
        optimizer.step()
        # count the corrected classified cases
        pred = output.argmax(dim = 1, keepdim = True) # get the index of the max log-probability
        correct += pred.eq(target.view as(pred)).sum().item()
    print(f"Epoch {epoch + 1}:")
    print(f"Training accuracy: {100. * correct / len(train loader.dataset): .2f} %")
```



#### Train our CNN

```
model = Net().to(device)
optimizer = optim.Adam(model.parameters(), lr = 0.005)
nepochs = 10
for epoch in range(nepochs):
  train(model, device, train loader, optimizer, epoch)
  test(model, device, test loader)
Epoch 1: Training accuracy: 67.10 %; Testing accuracy: 19/20 (95%)
Epoch 2: Training accuracy: 88.30 %; Testing accuracy: 20/20 (100%)
Epoch 3: Training accuracy: 92.85 %; Testing accuracy: 20/20 (100%)
Epoch 4: Training accuracy: 94.75 %; Testing accuracy: 20/20 (100%)
Epoch 5: Training accuracy: 94.90 %; Testing accuracy: 20/20 (100%)
Epoch 6: Training accuracy: 95.95 %; Testing accuracy: 20/20 (100%)
Epoch 7: Training accuracy: 96.30 %; Testing accuracy: 20/20 (100%)
Epoch 8: Training accuracy: 96.70 %; Testing accuracy: 20/20 (100%)
Epoch 9: Training accuracy: 97.20 %; Testing accuracy: 19/20 (95%)
Epoch 10: Training accuracy: 97.10 %; Testing accuracy: 19/20 (95%)
```



### Save / load the trained model

State dictionary method: only save parameter values:

```
# save parameter values
torch.save(model.state dict(), "model dict.pt")
# load parameter values
model1 = Net()
model1.load state dict(torch.load("model dict.pt"))
model1.eval()
Net(
  (conv1): Conv2d(1, 32, kernel size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(32, 64, kernel size=(3, 3), stride=(1, 1))
  (dropout1): Dropout(p=0.25, inplace=False)
  (dropout2): Dropout(p=0.5, inplace=False)
  (fc1): Linear(in features=9216, out features=128, bias=True)
  (fc2): Linear(in features=128, out features=10, bias=True)
```



### Save / load the trained model

Checkpoint method: save for resuming training later

```
# save checkpoint for resuming training
torch.save({
            'epoch': epoch,
            'model state dict': model.state dict(),
            'optimizer state dict': optimizer.state dict()
            }, "model checkpoint.pt")
# initialize class and optimizer
model new = Net()
optimizer new = optim.Adam(model new.parameters(), lr = 0.005)
# load checkpoint
checkpoint = torch.load("model checkpoint.pt")
model new.load state dict(checkpoint['model state dict'])
optimizer new.load state dict(checkpoint['optimizer state dict'])
epoch = checkpoint['epoch']
# do whatever you like :)
model new.eval()
model new.train()
```

Check saving and loading models for more details



## **Robustness issue of CNN**

#### Solution: data augmentation!



## **Robustness issue of CNN**

#### Solution: adversarial training!



$$+.007 \times$$



 $\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$  "nematode"

8.2% confidence



 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

x
"panda"
57.7% confidence

Credit: Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572.



## Outline

- Set up working environment
- Introduction to PyTorch framework
- Deep learning with PyTorch
- Other resources



### Visualization with TensorBoard

- Track and visualize:
  - Metrics such as loss and accuracy
  - The model graph
  - Histograms, images and much more
- Some resources:
  - How to use TensorBoard with PyTorch
  - Visualizing models, data, and training with TensorBoard
  - PyTorch TensorBoard support





### **Tutorials and courses:**

#### **Books and tutorials:**

- <u>Dive into Deep Learning</u> (livebook)
- <u>Deep Learning</u> by Ian Goodfellow
- Official PyTorch tutorial
- Deep learning with Python (livebook)
- UvA DL Notebooks

#### Courses:

- DL/ML tutorial by Hung-Yi Lee
- <u>Deep learning</u> course by Yann LeCun
- Deep learning with Pytorch
- Stanford STAT385 series
- Think Deep Learning by Ju Sun





## University of Minnesota

## **Driven to Discover®**

Crookston Duluth Morris Rochester Twin Cities

The University of Minnesota is an equal opportunity educator and employer.