Машинное обучение

Лекция 5

Логистическая регрессия и SVM

План лекции

- Бинарная классификация
- Предсказание вероятностей
- Логистическая регрессия
- Метод опорных векторов

• Решаем задачу бинарной классификации:

$$\mathbb{Y} = \{-1, +1\}$$

• Линейная модель:

$$a(x) = \operatorname{sign}(\langle w, x \rangle - t)$$

• Функция потерь:

$$Q(w,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle w, x_i \rangle < 0]$$

• Разные верхние оценки => разные модели

• Свойства модели => верхняя оценка

- Кредитный скоринг
- Стратегия: выдавать кредит только клиентам с вероятностью возврата > 0.9
- 10% невозвращенных кредитов нормально

- Реклама в интернете:
 - \circ b(x) вероятность клика
 - \circ c(x) прибыль в случае клика
 - \circ c(x)b(x)— хотим оптимизировать

• Решаем задачу бинарной классификации:

$$Y = \{-1, +1\}$$

• Линейная модель:

$$a(x) = sign(b(x)) = sign(\langle w, x \rangle)$$

• Может использовать $b(x) = \langle w, x \rangle$ как оценку вероятности?

• Давайте переведем выход модели на отрезок [0, 1]

• Например, с помощью сигмоиды

$$\sigma(\langle w, x \rangle) = 1/(1 + \exp(-\langle w, x \rangle))$$

Сигмоида

- Предсказание вероятностей

$$P(y_i=1)=\sigma(\langle w, x_i \rangle)$$

Теперь мы можем использовать метод максимального правдоподобия

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \sigma(\langle w, x_i \rangle) + [y_i = -1] \log (1 - \sigma(\langle w, x_i \rangle)) \right\} = \sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \frac{1}{1 + \exp(-\langle w, x \rangle)} + [y_i = -1] \log \left(1 - \frac{1}{1 + \exp(-\langle w, x \rangle)}\right) \right\} = \sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \frac{1}{1 + \exp(-\langle w, x \rangle)} + [y_i = -1] \log \left(\frac{1}{1 + \exp(\langle w, x \rangle)}\right) \right\} = \sum_{i=1}^{\ell} \left\{ [y_i = 1] \log(1 + \exp(-\langle w, x \rangle)) + [y_i = -1] \log(1 + \exp(\langle w, x \rangle)) \right\} = \sum_{i=1}^{\ell} \log(1 + \exp(-\langle w, x \rangle)) + [y_i = -1] \log(1 + \exp(\langle w, x \rangle)) = \sum_{i=1}^{\ell} \log(1 + \exp(-\langle w, x \rangle))$$

• Немало задач, где нужно предсказывать вероятности

• Можно применить сигмоиду к линейной модели, чтобы получать числа от 0 до 1

 Логистическая функция максимизирует отступы — то есть приближает вероятности к 1 или 0 в зависимости от класса

Логистическая регрессия и друзья

Метод опорных векторов

Какой классификатор лучше?

Отступ классификатора

Вспомним, что линейный классификатор задает гиперплоскость

$$\langle w, x \rangle = 0$$

Расстояние от любой точки х до этой гиперплоскости

$$\frac{|\langle w, x \rangle|}{\|w\|}$$

Отступ классификатора — расстояние от гиперплоскости до ближайшего объекта

Какой классификатор лучше?

Какой классификатор лучше? имеет больший отступ?

Какой классификатор лучше? имеет больший отступ?

Отступ классификатора

• Будем максимизировать отступ классификатора — расстояние от гиперплоскости до ближайшего объекта

• При этом будет стараться сделать поменьше ошибок

 По сути, делаем как можно меньше предположений о модели, и верим, что это снизит вероятность переобучения

Простой случай

• Будем считать, что выборка линейно разделима

• Существует линейный классификатор, не допускающий ни одной ошибки

Линейно разделимый случай

Линейно разделимый случай

Требование 1: максимальный отступ

$$\min_{\mathfrak{D}} \frac{|\langle w, x_i \rangle|}{\|w\|}$$

Требование 2: Нет ошибок

$$y_i\langle w, x_i\rangle > 0, i = 1\dots l$$

Небольшое предположение

Линейный классификатор:

$$a(x_i) = \operatorname{sign}(\langle w, x_i \rangle)$$

Если мы поделим w на число a > 0, то выходы классификатора никак не поменяются:

$$a(x_i) = \operatorname{sign}\left(\frac{\langle w, x_i \rangle}{a}\right) = \operatorname{sign}\left(\langle w, x_i \rangle\right)$$

Небольшое предположение

Если мы поделим w на число a > 0, то выходы классификатора никак не поменяются:

$$a(x_i) = \operatorname{sign}\left(\frac{\langle w, x_i \rangle}{a}\right) = \operatorname{sign}\left(\langle w, x_i \rangle\right)$$

Давайте поделим на $\min_i |\langle w, x_i \rangle|$

$$\tilde{w} = \frac{w}{\min_{i} |\langle w, x_{i} \rangle|}$$

$$\min_{i} |\langle w, x_i \rangle| = 1$$

Небольшое предположение

Давайте поделим на
$$\min_i |\langle w, x_i \rangle|$$

$$\min_i |\langle \tilde{w}, x_i \rangle| = 1$$

Отступ классификатора:

$$\min_{i} \frac{|\langle \tilde{w}, x_i \rangle|}{\|\tilde{w}\|} = \frac{\min_{i} |\langle \tilde{w}, x_i \rangle|}{\|\tilde{w}\|} = \boxed{\frac{1}{\|\tilde{w}\|}}$$

Линейно разделимый случай

Требование 1: максимальный отступ

$$\frac{1}{\|w\|} \to \max_{w}$$

Требование 2: Нет ошибок

$$y_i\langle w, x_i\rangle > 0, i = 1\dots l$$

Требование 3:

Требование 1: максимальный отступ

$$\frac{1}{\|w\|} \to \max_{w}$$

Требование 2: Нет ошибок

$$y_i\langle w, x_i\rangle > 0, i = 1\dots l$$

Требование 3:

$$\min_{i} |\langle w, x_i \rangle| = 1$$

Требование 1: максимальный отступ

Требование 2: Нет ошибок

$$y_i\langle w, x_i\rangle > 0, i = 1\dots l$$

Требование 3:

$$|\langle w, x_i \rangle| \ge 1, \quad i = 1 \dots l$$

Требование 1: максимальный отступ

$$\frac{1}{\|w\|} \to \max_{w}$$

Требование 2: $y_i \langle w, x_i \rangle > 0, i = 1 \dots l$

Требование 3: $|\langle w, x_i \rangle| \ge 1$, $i = 1 \dots l$

Требование 2 + 3:

Требование 1: максимальный отступ

$$\frac{1}{\|w\|} \to \max_{w}$$

Требование 2: $y_i \langle w, x_i \rangle > 0, i = 1 \dots l$

Требование 3: $|\langle w, x_i \rangle| \ge 1$, $i = 1 \dots l$

Требование 2 + 3:

$$y_i\langle w, x_i\rangle \ge 1, \quad i = 1\dots l$$

Требование 1: максимальный отступ

$$\frac{1}{\|w\|} \to \max_{w}$$

Требование 2 + 3:
$$y_i \langle w, x_i \rangle \ge 1, \ i = 1 \dots l$$

Итого:

$$\begin{cases} \min_{w} \|w\| \\ y_i \langle w, x_i \rangle \ge 1 \end{cases}$$

• Любой линейный классификатор допускает хотя бы одну ошибку

$$\begin{cases}
\min_{w} ||w|| \\
y_i \langle w, x_i \rangle \ge 1
\end{cases}$$

• Давайте смягчим условия

$$\begin{cases} \min_{w} \|w\| \\ y_i \langle w, x_i \rangle \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

$$\begin{cases} \min_{w} ||w|| \\ y_i \langle w, x_i \rangle \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

$$\begin{cases} \min_{w} ||w|| \\ y_i \langle w, x_i \rangle \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

$$\begin{cases} \min_{\underline{w},\xi} ||w|| + Q \sum_{i} \xi_{\underline{i}} \\ y_{i} \langle w, x_{i} \rangle \ge 1 - \xi_{\underline{i}} \\ \xi_{\underline{i}} \ge 0 \end{cases}$$

Метод опорных векторов

$$\begin{cases} \min_{w,\xi} ||w|| + C \sum_{i} \xi_{i} \\ y_{i} \langle w, x_{i} \rangle \ge 1 - \xi_{i} \\ \xi_{i} \ge 0 \end{cases}$$

Объединим ограничения

$$\xi_i \ge \max(0, 1 - y_i \langle w, x_i \rangle))$$

Итоговая задача оптимизации

$$\min_{w} \left(\|w\| + C \sum_{i} \max(0, 1 - y_i \langle w, x_i \rangle) \right)$$

Метод опорных векторов

Итоговая задача оптимизации

$$\min_{w} \left(\|w\| + C \sum_{i} \max(0, 1 - y_i \langle w, x_i \rangle) \right)$$

Hingle Loss (верхняя оценка) + L2 регуляризация

$$\min_{w} \left(\sum_{i} \max(0, 1 - y_i \langle w, x_i \rangle) + \lambda ||w|| \right)$$

Сравнение логистической регрессии и SVM

Итого

- Метод опорных векторов основан на идее максимизации отступа классификатора
- В линейно неразделимом случае мы должны выбрать, что важнее, ширина зазора или число ошибок
- По сути, SVM это определённая функция потерь и регуляризация