

Problem

Data

History

ID - observation id

DATE - observation date

SYSTEM id - system id

SIZE - system size in GB

LOAD_TPD - number of transactions

ACCOUNTS_ALL - number of accounts

ACCOUNTS_ACTIVE - number of active

accounts

Non_kept_size - data sent to warehouse

Backup_size - size of system backup

LongOps_min - time of long operations in minutes

Kept_size - size of system after sending data

to retention

Backup_Efficiency - how much of original data is backed up

Systems

ID - observation id

NAME - system name

Stage - system production stage

Description - system description

Type - system type

Size, Gb - current size in GB

Data Keep, years - number of years that data is kept online

Backup retention, month - retention of backups in months

Depreciation period, years

- when data becomes outdated

Data retention, years - retention of data in years

Distribution

FCIM

- 1. Dev Initial Developement stage
- 2. Test Testing stage
- 3. Stage Production imitation (Staging)
- 4. Prod Production
- **5. Stby Standby, backup environment** in case of failures
- 6. Bkp Backup
- 7. Arch Archives

Size: The archives and backups take a lot of space with testing and staging taking the least space

DWH - Data Warehouse

Bkp - Backup

Mixed - Both OLTP and DWH

Correlation

EDAConclusions

EDA helps understanding the dataset better, the attributes and their potential impact: ex. Size Variation across System Stages and Types

EDA helps identify patterns and relationships: The correlation heatmap provided insights into the interdependence between variables, with Accounts and load playing a big role.

Problem: Lack of forecasting ability in banking systems to predict needed memory resources

Workflow

Selecting the right machine learning model for size prediction in banking systems necessitates a balance between accuracy, interpretability, and scalability. Considering factors such as data complexity, feature importance, and computational efficiency aids in identifying the optimal model

Pre-processing data

Original data - if all numerical data is in simial scale, we may use the data as is

Min-Max scaling - For every feature, the minimum value of that feature gets transformed into a 0, the maximum value gets transformed into a 1, and every other value gets transformed into a decimal between 0 and 1.

Z-score (Standardization) - A z-score, or standard score, is used for standardizing scores on the same scale by dividing a score's deviation by the standard deviation in a data set.

One-hot encodig - One hot encoding is a technique that we use to represent categorical variables as numerical values in a machine learning model.

	Stage	Туре	Size, Gb	Data Keep, years	Backup retention, month	Depreciation period, years	Data retention, years
0	Prod	Mixed	8000	2	1	5	7
1	Stby	Mixed	8000	2	0	0	0
2	Stage	Mixed	8000	2	0	0	0
3	Test	Mixed	8000	2	0	0	0
4	Dev	Mixed	8000	2	0	0	0

	Size, Gb	Stage_Arch	Stage_Bkp	Stage_Dev	Stage_Prod	Stage_Stage	Stage_Stby	Stage_Test	Type_Bkp	Type_DWH
0	8000	False	False	False	True	False	False	False	False	False
1	8000	False	False	False	False	False	True	False	False	False
2	8000	False	False	False	False	True	False	False	False	False
3	8000	False	False	False	False	False	False	True	False	False
4	8000	False	False	True	False	False	False	False	False	False

Filetring Methods

- 0.75

- 0.50

- 0.25

- 0.00

Filtering methods - these methods rank features based on certain criteria and select the most relevant ones.

Correlation Matrix - The correlation matrix helps in identifying features that are highly correlated with the target variable or with each other.

SIZE	1.000000
Kept_size	0.999233
ACCOUNTS_ALL	0.994394
ACCOUNTS_ACTIVE	0.993276
LOAD_TPD	0.950841
Backup_size	0.888219
Active_All	0.834463
Non_kept_size	-0.386100
Backup_Efficiency	-0.863575
LongOps_min	-0.868219

											 - 1.00	0
SIZE -	1	0.95	0.99	0.99	-0.39	0.89	0.83	-0.86	1	-0.85	1.00	0
LOAD_TPD -	0.95	1	0.97	0.97	-0.49	0.78	0.78	-0.87	0.96	-0.92	- 0.75	5
ACCOUNTS_ALL -	0.99	0.97	1	1	-0.43	0.86	0.83	-0.88	1	-0.88	- 0.50	0
ACCOUNTS_ACTIVE -	0.99	0.97	1	1	-0.44	0.85	0.84	-0.88	0.99	-0.88	- 0.25	5
Non_kept_size -	-0.39	-0.49	-0.43	-0.44	1	0.08	-0.46	0.79	-0.42	0.63	- 0.00	0
Backup_size -	0.89	0.78	0.86	0.85	0.08	1	0.67	-0.54	0.87	-0.6	- 0.00	J
Active_All -	0.83	0.78	0.83	0.84	-0.46	0.67	1	-0.81	0.84	-0.72	0.:	25
Backup_Efficiency -	-0.86	-0.87	-0.88	-0.88	0.79	-0.54	-0.81	1	-0.88	0.88	o.:	50
Kept_size -	1	0.96	1	0.99	-0.42	0.87	0.84	-0.88	1	-0.86	0.	75
LongOps_min_log -	-0.85	-0.92	-0.88	-0.88	0.63	-0.6	-0.72	0.88	-0.86	1		
	SIZE -	LOAD_TPD -	ACCOUNTS_ALL -	ACCOUNTS_ACTIVE -	Non_kept_size -	Backup_size -	Active_All -	Backup_Efficiency -	Kept_size -	LongOps_min_log -	 	00

We can use a correlation to examine the relationship between a numerical response variable (Y) and onehot encoded categorical predictor variables (X). However, instead of correlation, other techniques can be used to explore these relationships

Feature Selection Filetring Methods

Mutual Information

measures the dependency between two variables. In the context of feature selection, it measures the dependency between each feature and the target variable.

	Feature	Mutual_Information
8	Kept_size	2.507539
1	ACCOUNTS_ALL	2.442205
2	ACCOUNTS_ACTIVE	2.374539
3	Non_kept_size	2.206586
0	LOAD_TPD	1.773067
4	Backup_size	1.634102
6	Active_All	1.013875
5	LongOps_min	0.907988
7	Backup_Efficiency	0.677698

	Feature	Mutual_Information
10	Type_OLTP	0.570966
9	Type_Mixed	0.409793
7	Type_Bkp	0.310595
12	Data Keep, years_20	0.215579
17	Depreciation period, years_7	0.178916
13	Backup retention, month_0	0.125105
15	Depreciation period, years_0	0.119153
18	Data retention, years_0	0.115846
14	Backup retention, month_1	0.113862
3	Stage_Prod	0.110844
8	Type_DWH	0.091077
0	Stage_Arch	0.068194
1	Stage_Bkp	0.056263
4	Stage_Stage	0.044917
11	Data Keep, years_2	0.041137
19	Data retention, years_7	0.026873
20	Data retention, years_20	0.020820
6	Stage_Test	0.000000
5	Stage_Stby	0.000000
16	Depreciation period, years_5	0.000000
2	Stage_Dev	0.000000

SelectKBest

selects the K most informative features based on statistical tests like ANOVA, chi-squared, or mutual information

dtype='object')

Feature Selection Wrapper and Tree-based Methods

Wrapper Methods

These methods select subsets of features based on the performance of a specific machine learning algorithm.

Recursive Feature Elimination (RFE)

It works by recursively fitting the model and eliminating the least significant features based on their importance ranking

Random Forest Feature Importance (Tree-based Method)

Random Forests can measure feature importance by analyzing how much each feature contributes to decreasing impurity (Gini/entropy) in decision trees within the forest.

	Feature	Importance
1	ACCOUNTS_ALL	0.269816
0	LOAD_TPD	0.229871
2	ACCOUNTS_ACTIVE	0.179556
8	Kept_size	0.152755
6	Active_All	0.044308
7	Backup_Efficiency	0.036282
3	Non_kept_size	0.033193
5	LongOps_min	0.030932
4	Backup_size	0.023287

	Feature	Importance
0	Stage_Arch	0.550354
10	Type_OLTP	0.176526
19	Data retention, years_7	0.066221
7	Type_Bkp	0.043870
1	Stage_Bkp	0.039255
8	Type_DWH	0.031555
17	Depreciation period, years_7	0.029509
9	Type_Mixed	0.027740
11	Data Keep, years_2	0.010710
3	Stage_Prod	0.005689
20	Data retention, years_20	0.005473
16	Depreciation period, years_5	0.005208
13	Backup retention, month_0	0.003724
12	Data Keep, years_20	0.003005
14	Backup retention, month_1	0.000576
15	Depreciation period, years_0	0.000408
18	Data retention, years_0	0.000178
6	Stage_Test	0.000000
5	Stage_Stby	0.000000
4	Stage_Stage	0.000000
2	Stage_Dev	0.000000

Feature Selection

Embedded Methods

Lasso, Ridge, Elastic Net
These are regularization
techniques used in linear models.
They introduce penalties to the
model's coefficients during
training by shrinking or
eliminating the coefficients of less
important features.

Lasso

Lasso (L1 regularization) penalizes the absolute size of coefficients, effectively performing feature selection by shrinking some coefficients to zero.

Ridge (L2 regularization) penalizes the squared size of coefficients, limiting their overall size, but rarely setting them to zero.

Elastic Net combines both L1 and L2 regularization. It works well when you have a large number of features and/or some of them are correlated.

Ridge

Elastic Net

```
Mean RMSE: 124.00440267745985
Standard Deviation of RMSE: 25.968418499514115
Elastic Net Alpha (Regularization Parameter):
16580600.0000000002
Elastic Net L1 Ratio (Mixing Parameter): 0.5
Elastic Net Coefficients:
             Feature Coefficient
        ACCOUNTS ALL 0.0014149449
     ACCOUNTS ACTIVE 0.0003410720
       Non kept size 0.00000000000
         Backup size 0.00000000000
         LongOps min 0.00000000000
          Active All 0.00000000000
  Backup Efficiency -0.00000000000
           Kept size 0.00000000000
            LOAD TPD -0.0000053243
Elastic Net Intercept: 3598.2722311385273
```


Feature Selection Conclusions

It's better to focus on accounts (all and active), on load, and backup or kept size

The general data about systems (types, stages) may not be appropriate for predictions

Models should be tested on both selected and all features for comparison

Multiple Linear Regression (MLR)

Ridge Regression Model

Lasso Regression Model

Elasting-Net Regression Model

Random Forest Regression Model

K Neighbours Regressor Model

from K-Nearest Neighbors (KNN) family

Rsquare-Score: 0.97134

Gradient Boosting Regressor

Root Mean Squared Error (RMSE): 0.088

Rsquare-Score: 0.996

Metrics comparison

Best Models according to low RMSE: Ridge, Lasso, Random Forest and Multiple Linear Regression

Best Models according to high Rsquare score: Ridge, Lasso, Multiple Linear Regression and Random Forest

Conclusions

Based on model comparison, according to sum of factors like (Rsquare, RMSE, residual destribution and prediction on new data), best models are Multiple Linear Regression, Lasso and Ridge