Лабораторная работа 4.3.2 "Дифракция света на ультразвуковой волне в жидкости"

22 марта 2021 г.

Цель работы: изучение дифракции света на синусоидальной акустической решетке и наблюдение фазовой решетки методом темного поля.

Оборудование: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

1 Теоретическое введение

В работе используются оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, горизонтальная нить на рейтере, микроскоп.

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m\ll 1$).

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k=2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Рис. 1: Дифракция световых волн на акустической решетке

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых волн в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

Определение скорости ультразвука по дифракционной картине

Рис. 2: Схема для наблюдения дифракции на акустической решетке

Измерим координаты полос для разных частот:

ν , М Γ ц	1.3			2			4.3			1						
m	-2	-1	0	1	2	-1	0	1	-1	0	1	-2	-1	0	1	2
x_m , 4mkm	224	180	142	101	62	210	150	85	279	146	13	220	178	145	114	85

Построим графики для разных частот и по углу наклона найдем l_m/m

Рис. 3: максимумы для разных частот

В итоге мы знаем параметры установуки: F=28 см. Возьмем $\lambda=(6400\pm200)~A$ и $\sigma_x=12$ мкм и с помощью формул $l_m=\frac{mf\lambda}{\Lambda},~v=\Lambda\nu$ расчитаем скорость звука

ν МГц	$\frac{x_m}{m}$ MKM	Λ MM	σ_{Λ} MM	$v_{\frac{M}{c}}$	σ_v
1.3	40.3	1.11	0.04	1450	60
2	62.5	0.71	0.03	1430	60
4.3	133	0.34	0.02	1450	60
1	33.4	1.34	0.05	1340	50

Таким образом взяв среднее получим конечный результат:

$$v = (1420 \pm 70) \frac{M}{c}$$

Определение скорости ультразвука методом темного поля

Рис. 4: Схема для наблюдения дифракции методом темного поля

С помощью калибровочной сетки найдем что при измерении длины волны нужно считать для микроскопа 1 ед. изм. $=(2.4\pm0.1)$ мм померим зависимость длины волны от частоты

ν	y_1	y_2	n	Λ	σ_{Λ}
2	0.6	2.5	12	15.8	0.6
1.14	2.9	1.0	7	23	1
1.04	2.9	1.0	6	26	1
0.98	1.0	3.1	7	36.2	1.4
1.34	1.1	2.5	6	20	0.8

теперь с помощью графика $\Lambda(\frac{1}{\nu})$ найдем v

Рис. 5: максимумы для разных частот

Таким образом $v=(1500\pm60)$ $\frac{\mathrm{M}}{\mathrm{c}}$

Вывод

Мы с неплохой точностью померили длину звуковой волны в жидкости, в сборнике физических величин $v_{\rm табл}=1482,$ также изучили метод темного поля.