Ayrık Matematik Tanıtlama

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2010

Lisans

©2001-2010 T. Uyar, A. Yayımlı, E. Harmancı

You are free:

- to Share to copy, distribute and transmit the work
- to Remix to adapt the work

Under the following conditions:

- Attribution You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial You may not use this work for commercial purposes.
- Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Legal code (the full license):

http://creativecommons.org/licenses/by-nc-sa/3.0/

Konular

- 1 Temel Teknikler
 - Giriş
 - Doğrudan Tanıt
 - Çelişkiyle Tanıt
 - Eşdeğerlilik Tanıtı
- 2 Tümevarım
 - Giriş
 - Güçlü Tümevarım

Kaba Kuvvet Yöntemi

olası bütün durumları teker teker incelemek

Kaba Kuvvet Yöntemi Örneği

Teorem

{2,4,6,...,26} kümesinden seçilecek her sayı en fazla 3 tamkarenin toplamı şeklinde yazılabilir.

Temel Kurallar

Evrensel Özelleştirme (US)

$$\forall x \ p(x) \Rightarrow p(a)$$

Evrensel Genelleştirme (UG)

rasgele seçilen bir a için $p(a) \Rightarrow \forall x \ p(x)$

Evrensel Özelleştirme Örneği

Örnek

Bütün insanlar ölümlüdür. Sokrates bir insandır. O halde Sokrates ölümlüdür.

- U: bütün insanlar
- p(x): x ölümlüdür
- $\forall x \ p(x)$: bütün insanlar ölümlüdür
- a: Sokrates, $a \in \mathcal{U}$: Sokrates bir insandır
- o halde, p(a): Sokrates ölümlüdür

Evrensel Özelleştirme Örneği

Örnek

Offick				
$\frac{\forall x \ [j(x) \lor s(x) \to \neg p(x)]}{p(m)}$ $\therefore \neg s(m)$	1.	$\forall x \ [j(x) \lor s(x) \to \neg p(x)]$	Α	
	2.	p(m)	Α	
	3.	$j(m) \vee s(m) \rightarrow \neg p(m)$	<i>US</i> : 1	L
	4.	$\neg(j(m) \lor s(m))$	MT:	3, 2
	5.	$\neg j(m) \wedge \neg s(m)$	DM :	4

 $\neg s(m)$

AndE:5

6.

Evrensel Genelleştirme Örneği

Örnek

$$\frac{\forall x \ [p(x) \to q(x)]}{\forall x \ [q(x) \to r(x)]}$$
$$\therefore \forall x \ [p(x) \to r(x)]$$

- 1. $\forall x [p(x) \rightarrow q(x)] A$
- 2. $p(c) \rightarrow q(c)$ US: 1
- 3. $\forall x [q(x) \rightarrow r(x)] A$
- 4. $q(c) \rightarrow r(c)$ US: 3
- 5. $p(c) \to r(c)$ HS: 2, 4
- 6. $\forall x [p(x) \rightarrow r(x)] \quad UG:5$

Boş Tanıt

boş tanıt

 $P\Rightarrow Q$ tanıtı için P'nin yanlış olduğunu göstermek

Boş Tanıt Örneği

Teorem

 $\forall S \ [\emptyset \subseteq S]$

$$\emptyset \subseteq S \Leftrightarrow \forall x \ [x \in \emptyset \to x \in S]$$

$$\forall x [x \notin \emptyset]$$

Değersiz Tanıt

değersiz tanıt

 $P \Rightarrow Q$ tanıtı için Q'nun doğru olduğunu göstermek

Değersiz Tanıt Örneği

Teorem

$$\forall x \in \mathbb{R} \ [x \ge 0 \Rightarrow x^2 \ge 0]$$

$$\forall x \in \mathbb{R} \ [x^2 \ge 0]$$

Doğrudan Tanıt

doğrudan tanıt

 $P\Rightarrow Q$ tanıtı için Pdoğru olduğunda Q'nun doğru olduğunu göstermek

Doğrudan Tanıt Örneği

Teorem

$$\forall a \in \mathbb{Z} \ [3|(a-2) \Rightarrow 3|(a^2-1)]$$

$$3|(a-2)$$
 $\Rightarrow a-2=3k$
 $\Rightarrow a+1=a-2+3=3k+3=3(k+1)$
 $\Rightarrow a^2-1=(a+1)(a-1)=3(k+1)(a-1)$

Dolaylı Tanıt

dolaylı tanıt

 $P\Rightarrow Q$ tanıtı için Qyanlış olduğundaP'nin yanlış olduğunu göstermek

Dolaylı Tanıt Örnekleri

Teorem

$$\forall x, y \in \mathbb{N} \ [x \cdot y > 25 \Rightarrow (x > 5) \lor (y > 5)]$$

- $Q \Leftrightarrow (0 \le x \le 5) \land (0 \le y \le 5)$
- $0 = 0 \cdot 0 \le x \cdot y \le 5 \cdot 5 = 25$

Dolaylı Tanıt Örnekleri

Teorem

$$(\exists k \ a, b, k \in \mathbb{N} \ [ab = 2k]) \Rightarrow (\exists i \in \mathbb{N} \ [a = 2i]) \lor (\exists j \in \mathbb{N} \ [b = 2j])$$

$$\Rightarrow (\exists x \in \mathbb{N} [a = 2x + 1]) \land (\exists y \in \mathbb{N} [b = 2y + 1])$$

$$\Rightarrow ab = (2x + 1)(2y + 1)$$

$$\Rightarrow ab = 4xy + 2(x + y) + 1$$

$$\Rightarrow \neg(\exists a, b, k \in \mathbb{N} [ab = 2k])$$

Çelişkiyle Tanıt

çelişkiyle tanıt

P tanıtı için $\neg P \Rightarrow Q \land \neg Q$ olduğunu göstermek

Çelişkiyle Tanıt Örnekleri

Teorem

En büyük asal sayı yoktur.

- ¬P: En büyük asal sayı vardır.
- Q: en büyük asal sayı S
- asal sayılar: $2, 3, 5, 7, 11, \dots, S$
- $lacksquare 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot \cdot \cdot S + 1$ sayısı, 2..S aralığındaki hiçbir asal sayıya kalansız bölünmez
 - 1 ya asaldır: $\neg Q$
 - 2 ya da S'den büyük bir asal sayıya bölünür: ¬Q

Çelişkiyle Tanıt Örnekleri

Teorem

$$\neg \exists a, b \in \mathbb{Z}^+ \ [\sqrt{2} = \frac{a}{b}]$$

- $P: \exists a, b \in \mathbb{Z}^+ \ [\sqrt{2} = \frac{a}{b}]$
- Q: obeb(a, b) = 1

$$\Rightarrow 2 = \frac{a^2}{b^2}$$
$$\Rightarrow a^2 = 2b^2$$

$$\Rightarrow \exists i \in \mathbb{Z}^+ \ [a^2 = 2i]$$

$$\Rightarrow \exists j \in \mathbb{Z}^+ \ [a=2j]$$

$$\Rightarrow 4j^2 = 2b^2$$

$$\Rightarrow b^2 = 2j^2$$

$$\Rightarrow \exists k \in \mathbb{Z}^+ [b^2 = 2k]$$

$$\Rightarrow \exists I \in \mathbb{Z}^+ [b=2I]$$

$$\Rightarrow$$
 obeb(a, b) $\geq 2 : \neg Q$

Eşdeğerlilik Tanıtı

- $lackbox{ }P\Leftrightarrow Q$ tanıtı için hem $P\Rightarrow Q$, hem de $Q\Rightarrow P$ tanıtlanmalı
- $P_1 \Leftrightarrow P_2 \Leftrightarrow \cdots \Leftrightarrow P_n$ tanıtı $P_1 \Rightarrow P_2 \Rightarrow \cdots \Rightarrow P_n \Rightarrow P_1$ şeklinde yapılabilir

Teorem

$$a, b, n, q_1, r_1, q_2, r_2 \in \mathbb{Z}^+$$

 $a = q_1 \cdot n + r_1$

$$b = q_2 \cdot n + r_2$$

$$r_1 = r_2 \Leftrightarrow n | (a - b)$$

$$r_1 = r_2 \Rightarrow n | (a - b).$$

$n|(a-b) \Rightarrow r_1 = r_2.$

$$\begin{array}{rcl}
a - b & = & (q_1 \cdot n + r_1) \\
& - (q_2 \cdot n + r_2) \\
& = & (q_1 - q_2) \cdot n \\
& + (r_1 - r_2) \\
n|(a - b) & \Rightarrow & r_1 - r_2 = 0 \\
& \Rightarrow & r_1 = r_2
\end{array}$$

Teorem

$$A \subseteq B$$

$$\Leftrightarrow A \cup B = B$$

$$\Leftrightarrow$$
 $A \cap B = A$

$$\Leftrightarrow \ \overline{B} \subseteq \overline{A}$$

$A \subseteq B \Rightarrow A \cup B = B$.

$$A \cup B = B \Leftrightarrow A \cup B \subseteq B \land B \subseteq A \cup B$$

$$B \subseteq A \cup B$$

$$x \in A \cup B \implies x \in A \lor x \in B$$

$$A \subseteq B \Rightarrow x \in B$$

$$\Rightarrow A \cup B \subseteq B$$

$$A \cup B = B \Rightarrow A \cap B = A$$
.

$$A \cap B = A \Leftrightarrow A \cap B \subseteq A \land A \subseteq A \cap B$$

$$A \cap B \subseteq A$$

$$y \in A \Rightarrow y \in A \cup B$$

 $A \cup B = B \Rightarrow y \in B$

$$0D - D \rightarrow y \in B$$

$$\Rightarrow$$
 $y \in A \cap B$

$$\Rightarrow A \subseteq A \cap B$$

$$A \cap B = A \Rightarrow \overline{B} \subseteq \overline{A}$$
.

$$z \in \overline{B} \implies z \notin B$$

$$\Rightarrow z \notin A \cap B$$

$$A \cap B = A \implies z \notin A$$

$$\Rightarrow z \in \overline{A}$$

$$\Rightarrow \overline{B} \subseteq \overline{A}$$

$\overline{B} \subseteq \overline{A} \Rightarrow A \subseteq B$.

$$\neg(A \subseteq B) \Rightarrow \exists w \ [w \in A \land w \notin B]$$

$$w \in A \Rightarrow w \notin \overline{A}$$

$$w \notin B \Rightarrow w \in \overline{B}$$

$$\overline{B} \subseteq \overline{A} \Rightarrow w \in \overline{A}$$

$$\Rightarrow A \subseteq B$$

Tümevarım

Tanım

S(n): $n \in \mathbb{Z}^+$ üzerinde tanımlanan bir yüklem

$$S(n_0) \wedge (\forall k \geq n_0 \ [S(k) \Rightarrow S(k+1)]) \Rightarrow \forall n \geq n_0 \ S(n)$$

- \blacksquare $S(n_0)$: taban adımı
- $\forall k \geq n_0 \ [S(k) \Rightarrow S(k+1)]$: tümevarım adımı

Tümevarım

Tümevarım Örnekleri

Teorem

$$\forall n \in \mathbb{Z}^+ \ [1+3+5+\cdots+(2n-1)=n^2]$$

- $n = 1: 1 = 1^2$
- n = k: $1 + 3 + 5 + \cdots + (2k 1) = k^2$ kabul edelim
- n = k + 1:

$$1+3+5+\cdots+(2k-1)+(2k+1)$$
= k^2+2k+1
= $(k+1)^2$

Tümevarım Örnekleri

Teorem

$$\forall n \in \mathbb{Z}^+, n \ge 4 \ [2^n < n!]$$

- n = 4: $2^4 = 16 < 24 = 4$!
- n = k: $2^k < k!$ kabul edelim
- n = k + 1: $2^{k+1} = 2 \cdot 2^k < 2 \cdot k! < (k+1) \cdot k! = (k+1)!$

Tümevarım Örnekleri

Teorem

$$\forall n \in \mathbb{Z}^+, n \geq 14 \ \exists i, j \in \mathbb{N} \ [n = 3i + 8j]$$

- n = 14: $14 = 3 \cdot 2 + 8 \cdot 1$
- n = k: k = 3i + 8j kabul edelim
- n = k + 1:
 - $k = 3i + 8j, j > 0 \Rightarrow k + 1 = k 8 + 3 \cdot 3$ ⇒ k + 1 = 3(i + 3) + 8(i - 1)
 - $\Rightarrow k + 1 = 3(i + 3) + 8(j 1)$
 - $k = 3i + 8j, j = 0, i \ge 5 \Rightarrow k + 1 = k 5 \cdot 3 + 2 \cdot 8$ ⇒ k + 1 = 3(i - 5) + 8(j + 2)

Güçlü Tümevarım

Tanım

$$S(\textit{n}_0) \land (\forall \textit{k} \geq \textit{n}_0 \ [(\forall \textit{i} \leq \textit{k} \ S(\textit{i})) \Rightarrow S(\textit{k} + 1)]) \Rightarrow \forall \textit{n} \geq \textit{n}_0 \ S(\textit{n})$$

Güçlü Tümevarım Örnekleri

Teorem

 $\forall n \in \mathbb{Z}^+, n \geq 2$ n asal sayıların çarpımı şeklinde yazılabilir

- n = 2: 2 = 2
- $\forall i \leq k$ için doğru kabul edelim
- n = k + 1:
 - 1 asalsa: n = n
 - 2 asal değilse: $n = u \cdot v$: $u < k \land v < k \Rightarrow u$ ve v asal sayıların çarpımı şeklinde yazılabilir

Güçlü Tümevarım Örnekleri

Teorem

$$\forall n \in \mathbb{Z}^+, n \ge 14 \ \exists i, j \in \mathbb{N} \ [n = 3i + 8j]$$

- $n = 14: 14 = 3 \cdot 2 + 8 \cdot 1$ $n = 15: 15 = 3 \cdot 5 + 8 \cdot 0$ $n = 16: 16 = 3 \cdot 0 + 8 \cdot 2$
- $n \le k$: k = 3i + 8j kabul edelim
- n = k + 1: k + 1 = (k 2) + 3

Teorem

$$\forall n \in \mathbb{Z}^+ \ [1+2+3+\cdots+n=\frac{n^2+n+2}{2}]$$

Taban adıma dikkat

- n = k: $1 + 2 + 3 + \cdots + k = \frac{k^2 + k + 2}{2}$ kabul edelim
- n = k + 1:

$$1+2+3+\cdots+k+(k+1)$$

$$= \frac{k^2+k+2}{2}+k+1=\frac{k^2+k+2}{2}+\frac{2k+2}{2}$$

$$= \frac{k^2+3k+4}{2}=\frac{(k+1)^2+(k+1)+2}{2}$$

$$n = 1: 1 \neq \frac{1^2 + 1 + 2}{2} = 2$$

Teorem

Bütün atlar aynı renktir.

A(n): n atlı kümelerdeki bütün atlar aynı renktir.

 $\forall n \in \mathbb{N}^+ A(n)$

n üzerinden hatalı tümevarım

- n = 1: A(1)1 atlı kümelerdeki bütün atlar aynı renktir.
- n = k: A(k) doğru kabul edelim k atlı kümelerdeki bütün atlar aynı renktir.
- $A(k+1) = \{a_1, a_2, \dots, a_k\} \cup \{a_2, a_3, \dots, a_{k+1}\}$
 - $\{a_1, a_2, \dots, a_k\}$ kümesindeki bütün atlar aynı renk (a_2)
 - $lacksquare \{a_2,a_3,\ldots,a_{k+1}\}$ kümesindeki bütün atlar aynı renk (a_2)

Kaynaklar

Okunacak: Grimaldi

- Chapter 2: Fundamentals of Logic
 - 2.5. Quantifiers, Definitions, and the Proofs of Theorems
- Chapter 4: Properties of Integers: Mathematical Induction
 - 4.1. The Well-Ordering Principle: Mathematical Induction

Yardımcı Kitap: O'Donnell, Hall, Page

Chapter 4: Induction