

16th International Conference on Wind Engineering

Ruihong Xie*, Lin Zhao, Shuyang Cao, Yaojun Ge

Aerodynamic characteristics of a streamlined box girder under velocity shear flow with turbulence

College of Civil Engineering, Tongji University 2023/08/28

Contents

1. Background

- 2. Experimental design and numerical simulation
- 3. Pressure distribution and aerodynamic forces
- 4. Aerodynamic spectrum and vortex shedding
- 5. Conclusions

State Key Lab of Disaster Reduction in Civil Engineering

Background

Characteristics of non-synoptic wind

Strong turbulence and large velocity shear rate

Typhoon

Long-span bridge structures under non-synoptic wind

Increasing span and frequent non-synoptic wind

Number of typhoons generated annually

Typhoon landings per year

Structural aerodynamic characteristics

Bluff structure under shear flow

S. Cao, et al. 2007

Circular cylinder

S. Cao, et al. 2014

Square / Rectangular cylinder

Structural styles

H. K. Richards and J. B. Morton. 1976

Quadratic mean-velocity

A. Lankadasu and S. Vengadesan. 2009

Planar shear flow

R. Ma et al. 2021

Sinusoidal streamwise stream

Velocity profiles

Aerodynamic force

Low-velocity side

S. Cao, et al. 2014

Instantaneous dynamic wake

Investigation interests

State Key Lab of Disaster Reduction in Civil Engineering

Experimental design and numerical simulation

Experimental design

Velocity shear and turbulence simulation

Inlet section

Streamlined box girder

Shear flow over streamlined box girder

Velocity shear simulation

Turbulence simulation

Experimental design

Uncertainty analysis

Numerical simulation

LES method and model

Computational domain and boundary

Structural grid

$$Re = \frac{U_{mean}B}{v} = 2.6 \times 10^5$$

$$L_1 = 12.5D$$
 $H = 21D$

$$L_2 = 27.5D$$
 $L = 2.94B$

Boundary size

$$\Delta x^+ = 42 \qquad \quad y^+ = 0.3$$

$$\Delta z^+ = 12$$
 $\Delta d/D < 0.1/\sqrt{Re}$

Mesh resolution

Numerical simulation

Validation of LES method

Grid and time step independence

Mean pressure distribution

Fluctuating pressure distribution

阿藤大学 SLDRCE TONGJI UNIVERSITY State Key Lab of Disaster Reduction in Civil Engineering

Pressure distribution and aerodynamic forces

Pressure distribution

Pressure distribution under shear flow without oncoming turbulence

Shear flow without oncoming turbulence

Pressure distribution

❖ Pressure distribution under shear flow with oncoming turbulence

Aerodynamic forces

❖ Aerodynamic forces under shear flow with oncoming turbulence

 Lift force increased with shear rate and turbulence intensity

Aerodynamic forces influenced by velocity shear and turbulence intensity

Moment force decreased with shear parameter

 Weak influence of integral scale on aerodynamic forces

Aerodynamic forces

Empirical relationship

$$\begin{cases} C_d = \alpha_0 + \alpha_1 \beta + \alpha_2 I_u + \alpha_3 \beta I_u + \alpha_4 I_u \left(\frac{L_u}{D}\right) + \alpha_5 I_u^2 + \alpha_6 \left(\frac{L_u}{D}\right)^2 + \alpha_7 \beta I_u^2 \\ C_l (or) C_m = \alpha_0 + \alpha_1 \beta + \alpha_2 \left(\frac{L_u}{D}\right) + \alpha_3 I_u^2 \end{cases}$$

Fitted parameter	C_d ($R^2 = 0.9621$)	C_l ($R^2 = 0.9750$)	C_m ($R^2 = 0.9840$)
$lpha_0$	(0.2212 ± 0.0478)	(-0.0294 ± 0.0054)	(0.0210 ± 0.0013)
$lpha_1$	(3.3085 ± 1.0019)	(-1.1887 <u>+</u> 0.1378)	(-0.2312 ± 0.0263)
α_2	(7.2230 ± 1.8905)	(-0.002 ± 0.0002)	(-1.41E-05 ± 3.48E-05)
α_3	(-67.0307 ± 30.0376)	(-2.0069 <u>+</u> 0.5199)	(-0.1394 <u>+</u> 0.0642)
$lpha_4$	(0.0360 ± 0.0168)		
$lpha_5$	(-77.5930 <u>+</u> 17.0623)		
$lpha_6$	(-2.51E-05 ± 1.59E-05)		
α_7	(830.8719 ± 227.2152)		

- Drag force dominantly affected by βI_u , I_u^2 , and βI_u^2 term
- Lift force dominantly affected by β and I_u^2 term
- Dominant terms of moment force are similar to lift force

Aerodynamic spectrum and vortex shedding

Aerodynamic spectrum

❖ Aerodynamic spectrum under different shear parameters

- Weak influence of velocity shear on dominant frequency
- Large shear parameter results in increased amplitude of aerodynamic forces at high-frequency band

Instantaneous dynamic wake

Instantaneous dynamic wake under initial period

- Velocity shear suppresses the generation of vortex structures at high-speed side, and the suppression effect increases with the increase in shear parameters
- Vortices always generate, develop, and detach from the low-speed side to the downstream side in velocity shear flow

Instantaneous dynamic wake

❖ Three-dimensional instantaneous dynamic wake vortex under shear flow

Instantaneous vortex on the high-speed side (t=0.225s) Instantaneous vortex on the low-speed side (t=0.225s)

- Counterclockwise (red) vortex dominates on the windward side, corresponding to the positive pressure measured in MFWT
- The vortex on the high-speed side of the box girder is suppressed, forming a "vacuum" zone by double vortex isolation
- The low-speed side vortex of the box girder changes from alternating regular Karman vortices to fragmented irregular vortex structures with increasing shear parameters

Instantaneous pressure distribution

❖ Instantaneous pressure distribution in uniform flow and velocity shear flow

- The pressure distribution in uniform flow field is relatively stable
- Instantaneous local extreme negative pressure occurs in the velocity shear flow due to the generation and drift of vortex on the low-speed side

同僚大学 SLDRCE TONGJI UNIVERSITY

State Key Lab of Disaster Reduction in Civil Engineering

Conclusions

- The **fluctuating pressure** significantly increases with the increase in shear parameters, indicating that the velocity shear flow is self accompanied by **turbulence effect**
- The **turbulence intensity** only increases the mean pressure of the streamlined box girder when the shear parameters are high; the **turbulence integral scale** has almost no contribution to the pressure distribution
- The turbulence intensity exhibits **strong nonlinearity** in the drag force of the box girder; the integration scale has a **weak influence** on the aerodynamic forces
- The velocity shear **suppresses** the generation of vortex structures of the high-speed side, and the vortex structures always first generate and develop from the low-speed side

XRH@tongji.edu.cn

Tongji Wind Engineering