Chapter 11: Computations in a functor context III Monad transformers

Sergei Winitzki

Academy by the Bay

2019-01-05

Computations within a functor context: Combining monads

Programs often need to combine monadic effects

- "Effect" \equiv what else happens in $A \Rightarrow M^B$ besides computing B from A
- Examples of effects for some standard monads:
 - ▶ Option computation will have no result or a single result
 - ▶ List computation will have zero, one, or multiple results
 - ► Either computation may fail to obtain its result, reports error
 - ▶ Reader computation needs to read an external context value
 - ▶ Writer some value will be appended to a (monoidal) accumulator
 - ► Future computation will be scheduled to run later
- How to combine several effects in the same functor block (for/yield)?

- The code will work if we "unify" all effects in a new, larger monad
- Need to compute the type of new monad that contains all given effects

Combining monadic effects I. Trial and error

There are several ways of combining two monads into a new monad:

- If M_1^A and M_2^A are monads then $M_1^A \times M_2^A$ is also a monad
 - lacktriangle But $M_1^A imes M_2^A$ describes two separate values with two separate effects
- ullet If M_1^A and M_2^A are monads then $M_1^A+M_2^A$ is usually not a monad
 - ▶ If it worked, it would be a choice between two different values / effects
- ullet If M_1^A and M_2^A are monads then one of $M_1^{M_2^A}$ or $M_2^{M_1^A}$ is often a monad
- Examples and counterexamples for functor composition:
 - ▶ Combine $Z \Rightarrow A$ and List^A as $Z \Rightarrow List^A$
 - ► Combine Future [A] and Option [A] as Future [Option [A]]
 - ▶ But Either[Z, Future[A]] and Option[Z \Rightarrow A] are not monads
 - ► Neither Future[State[A]] nor State[Future[A]] are monads
- The order of effects matters when composition works both ways:
 - ▶ Combine Either $(M_1^A = Z + A)$ and Writer $(M_2^A = W \times A)$
 - * as $Z + W \times A$ either compute result and write a message, or all fails
 - * as $(Z + A) \times W$ message is always written, but computation may fail
- Find a general way of defining a new monad with combined effects
- Derive properties required for the new monad

Combining monadic effects II. Lifting into a larger monad

If a "big monad" BigM[A] somehow combines all the needed effects:

```
// This could be valid Scala... // If we define the various
val result: BigM[Int] = for { // required "lifting" functions:
                                        def lift_1[A]: Seq[A] \Rightarrow BigM[A] = ???
    i \leftarrow lift_1(1 \text{ to } n)
   j \leftarrow lift_2(Future\{ q(i) \})
                                        def lift_2[A]: Future[A] \Rightarrow BigM[A] = ???
                                        def lift<sub>3</sub>[A]: Try[A] \Rightarrow BigM[A] = ???
   k \leftarrow lift_3(maybeError(j))
} yield f(k)
```

• Example 1: combining as BigM[A] = Future[Option[A]] with liftings:

```
def lift<sub>1</sub>[A]: Option[A] ⇒ Future[Option[A]] = Future.successful(_)
def lift<sub>2</sub>[A]: Future[A] \Rightarrow Future[Option[A]] = _.map(x \Rightarrow Some(x))
```

Example 2: combining as BigM[A] = List[Try[A]] with liftings:

```
def lift_1[A]: Try[A] \Rightarrow List[Try[A]] = x \Rightarrow List(x)
def lift<sub>2</sub>[A]: List[A] \Rightarrow List[Try[A]] = _.map(x \Rightarrow Success(x))
```

Remains to be understood:

- Finding suitable laws for the liftings; checking that the laws hold
- Building a "big monad" out of "smaller" ones, with lawful liftings
 - ▶ Is this always possible? Unique? Are there alternative solutions?
- Ways of reducing the complexity of code; make liftings automatic

Laws for monad liftings I. Identity laws

Whatever identities we expect to hold for monadic programs must continue to hold after lifting M_1 or M_2 values into the "big monad" BigM

• We assume that M_1 , M_2 , and BigM already satisfy all the monad laws Consider the various functor block constructions containing the liftings:

```
    Left identity law after lift<sub>1</sub>

       // Anywhere inside a for/yield:
                                                    // Must be equivalent to...
       i \leftarrow lift_1(M_1.pure(x))
       j \leftarrow bigM(i) // Any BigM value. j \leftarrow bigM(x)
lift_1(M_1.pure(x)).flatMap(b) = b(x) — in terms of Kleisli composition (\diamond):
(\mathsf{pure}_{\mathsf{M}}, \circ \mathsf{lift}_1)^{:X \Rightarrow \mathsf{BigM}^X} \diamond b^{:X \Rightarrow \mathsf{BigM}^Y} = b \text{ with } f^{:X \Rightarrow \mathsf{M}^Y} \diamond g^{:Y \Rightarrow \mathsf{M}^Z} \equiv x \Rightarrow f(x).\mathsf{flatMap}(g)

    Right identity law after lift<sub>1</sub>

       // Anywhere inside a for/yield: // Must be equivalent to...
       x \leftarrow bigM // Any BigM value. x \leftarrow bigM
       i \leftarrow lift_1(M_1.pure(x))
                                                                  i = x
b.flatMap(M_1.pure andThen lift<sub>1</sub>) = b — in terms of Kleisli composition:
                               b^{:X \Rightarrow BigM^Y} \diamond (pure_{M_*} \circ lift_1)^{:Y \Rightarrow BigM^Y} = b
```

The same identity laws must hold for M2 and lift2 as well

Laws for monad liftings II. Simplifying the laws

 $(pure_{M_1}; lift_1)$ is a unit for the Kleisli composition \diamond in the monad BigM

- But the monad BigM already has a unit element: pureBigM,
- The two-sided unit element is always unique: $id = id \diamond id' = id'$
- So the two identity laws for $(pure_{M_1}, lift_1)$ can be reduced to one law:

$$\mathsf{pure}_{\mathit{M}_{\mathbf{1}}} \circ \mathsf{lift}_{\mathbf{1}} = \mathsf{pure}_{\mathsf{BigM}}$$

Refactoring a portion of a monadic program under lift1 gives another law:

```
// Anywhere inside a for/yield: // Must be equivalent to...
i \leftarrow lift_1(p) // Any M_1 \text{ value.}
j \leftarrow lift_1(q(i)) // Any M_1 \text{ value.}
j \leftarrow lift_1(pq) // Now lift it.
```

```
lift_1(p).flatMap(q andThen lift_1) = lift_1(p flatMap q)
```

- Rewritten equivalently through $\mathsf{flm}_M: (A\Rightarrow M^B) \Rightarrow M^A \Rightarrow M^B$ as $\mathsf{lift_1} \circ \mathsf{flm}_{\mathsf{BigM}} (q \circ \mathsf{lift_1}) = \mathsf{flm}_{\mathsf{M_1}} q \circ \mathsf{lift_1}$
- Rewritten in terms of Kleisli composition:

```
\left(b^{:X\Rightarrow M_{\mathbf{1}}^{Y}},\mathsf{lift}_{\mathbf{1}}\right) \diamond \left(c^{:Y\Rightarrow M_{\mathbf{1}}^{Z}},\mathsf{lift}_{\mathbf{1}}\right) = \left(b \diamond c\right),\mathsf{lift}_{\mathbf{1}}
```

- ullet Liftings lift₁ and lift₂ must obey an identity law and a composition law
- The laws say that the liftings **commute with** the monads' operations

Laws for monad liftings III. The naturality law

Show that $lift_1: M_1^A \Rightarrow BigM^A$ is a natural transformation

- ullet It maps $\operatorname{pure}_{M_1}$ to $\operatorname{pure}_{\operatorname{BigM}}$ and flm_{M_1} to $\operatorname{flm}_{\operatorname{BigM}}$
 - ▶ lift₁ is a **monadic morphism** between monads M_1^{\bullet} and BigM[•]

The (functor) naturality law:

$$\mathsf{lift}_1 ^{\circ} , \mathsf{fmap}_B f^{:X \Rightarrow Y} = \mathsf{fmap}_{\mathcal{M}_1} f^{:X \Rightarrow Y} ^{\circ} ; \mathsf{lift}_1$$

Derivation of the naturality law:

- Express fmap as fmap_M $f = \text{flm}_M(f_{?}, \text{pure}_M)$ for both monads
- Given $f: X \Rightarrow Y$, use the law $\mathsf{flm}_{M_1} q_{\circ} \mathsf{lift}_1 = \mathsf{lift}_1 \circ \mathsf{flm}_{\mathsf{BigM}} (q_{\circ} \mathsf{lift}_1)$ to compute $\mathsf{flm}_{M_1} (f_{\circ} \mathsf{pure}_{M_1}) \circ \mathsf{lift}_1 = \mathsf{lift}_1 \circ \mathsf{flm} (f_{\circ} \mathsf{pure}_{M_1}) \circ \mathsf{lift}_1 = \mathsf{lift}_1 \circ \mathsf{flm} (f_{\circ} \mathsf{pure}_{\mathsf{BigM}}) = \mathsf{lift}_1 \circ \mathsf{fmap}_{\mathsf{BigM}} f$
- So, a monadic morphism is always also a natural transformation

Monad transformers I

- Combining $Z \Rightarrow A$ and 1 + A works only as $Z \Rightarrow 1 + A$
- It is not possible to combine two monads via a natural bifunctor
- ullet But we can fix M_1^ullet (base monad) and to let M_2^ullet (foreign monad) vary
- The result is a monad transformer $T_{M_1}^{M_2,A}$ a natural functor in M_2

Definition: A monad transformer for a base monad L^{\bullet} is a type constructor $T_L^{M,\bullet}$ having the following properties, for any monad M^{\bullet} :

- $T_L^{M,\bullet}$ is a monad (the monad M transformed with T_L)
- There exists a monadic morphism lift $_L^M: M^A \leadsto T_L^{M,A}$
- ullet There exists a monadic morphism inj : $L^A \leadsto T_L^{M,A}$
- $T_L^{M,\bullet}$ is monadically natural in M^{\bullet}
 - ▶ For any monad N^{\bullet} and a monadic morphism $f: M^{\bullet} \leadsto N^{\bullet}$ we need to obtain a monadic morphism $T_L^{M, \bullet} \leadsto T_L^{N, \bullet}$ for the transformed monads
 - ▶ This will hold if $T_L^{M, \bullet}$ is implemented only via M's monad methods

Exercises

- **1** Show that the method pure: $A \Rightarrow M^A$ is a monadic morphism between monads $\operatorname{Id}^A \equiv A$ and M^A .
- ② Show that $M_1^A + M_2^A$ is *not* a monad when $M_1^A \equiv 1 + A$ and $M_2^A \equiv Z \Rightarrow A$.