AUG 1 6-2004 STEP TRIBETOR Listing]

amended Sequence Listing.txt

<110>	CJ Corporatio	on													
<120>	An alkaline l nucleotide se	An alkaline lipase from Vibrio metschnikovii RH530 and a nucleotide sequence encoding the same													
<160>	7	7													
<170>	KopatentIn 1.	KopatentIn 1.71													
<210> <211> <212> <213>	1 2578 DNA Vibrio metsch	2578													
<400>	1 cact ttatcagcca	atacttqcat	caataactca	acagacactt	atacccaata	60									
_	gcta cgtacttcag					120									
	cgta ccttgaatgg					180									
	aatt tgccgatcgg					240									
						300									
	atga ggtgcatgct					360									
_	ctga ttgatttctt					420									
	aatc aattcatagc					480									
	gatt ttataggcat					540									
	gctc atgatgatgc														
	gttg ctaactttgg					600									
	ccta gtcagtcgtt					660									
cgtagt	cata acaacaatta	cagtactctt	gttatctgag	ttatgtttgt	cacaaagtct	720									
tattta	catt tgaccatcat	catgcactta	cctaaaataa	gcccgttgtt	tattagggaa	780									
gccatt	atga ttgtcactat	cgatatgatt	tgtctgcgtc	ttgcgccgaa	atctatccag	840									
gtttta	ctgg tgaaacgctc	taatccaaat	cggccagatt	gtggtaaatg	ggcattgcct	900									
ggcggg	atag tgtatgacga	agatatgacc	gctcatggtg	gagaacctgt	cgatgaggat	960									
tttgat	gcag cgagacgacg	tatttgtcgg	caaaaagtcc	atacttatcc	taattttatc	1020									
agcgat	ccgc tggttgatgg	caaccccaaa	cgcgatccga	atggttggag	tgtcagtatt	1080									
tcccat	tacg ctttattaaa	cccgtggaat	gtcaaacaaa	tagaagattt	tggtatcgac	1140									
cccgag	cgcg ctaattggtt	tgatcttcat	actttactca	aagaagaaat	gccgctggct	1200									
tttgat	catg tcgcgcaaat	tcagcatgcg	tggcaaaaat	tacgcgctgc	ggttgaatac	1260									
acatcc	gtgg tactattttc	attagaaaaa	gagtttttag	tggcggatat	tattgatgcc	1320									
tacgcc	aaat ttggcgtcga	agttaatcgc	atgaccatta	aacgccgctt	gatcaatacc	1380									

amended Sequence Listing.txt ggggtgatcg tcagtaccaa taaaatggcc gcatcttgta aaggcaaagg agccaaacca	1440
gccaccgttt atcgtcttgc cagtcatgaa gtcacctatt ttcaaacctg tttacgaggt	1500
taactgttcg aaaatcgtgt acagtaggtg atgatgtcaa ttgatgatag gtaggaagca	1560
atgcagatta ttcttgttca tggactctat atgcatggct tggtaatgca tccgcttagt	1620
catcgtctgc ataaattggg ttatcgtact caaaccatta gctacaactc actcgctatc	1680
gatgatgagg ccatttttcg ccgccttgac cgatcgctca ctcatgcctc gcctaatgct	1740
ttagtcggac acagtttggg cggattggtg atcaaacgtt atctagaatc gcgcgcaccg	1800
tcctgtgaaa ccctctccca tgtcgtcgcc atcggctcac ctttgcaagg agcttccatt	1860
gtcaataaaa ttgagcaatt aggtttaggg gtggcactag gtaattcagc agaatttggg	1920
ttaaaagaac acgacgacga atcccgctat ccacaaaaat caggcagtat tgcaggaacg	1980
atacctttag ggctgcgcag ccttttactg cgcgatccac tggactccga tggtaccgtc	2040
acagtagaag aaaccaaaat agctggcatg acagatcata tcgcgatatc caccacttca	2100
tacgagaatg ctgtttaatc attccgttgc cgagcaaatc gaccactttc ttcgttatga	2160
ccgcttccgg cgctaaagcc gtttaaactt cagatgatag tgtacttcgt atcaaaccga	2220
tggtgattga aaacataccc accattcatt cagaataaga cgttgccatc atcagagctt	2280
tcccatgcaa taaacaatcc gcgactttac gtctggccgc tttaactaaa ttggcaagtg	2340
tctgccgcga tacgctgatg ccgcatagtt aagccagccc cgacacccgc caacacccgc	2400
tgacgcgccc tgacgggctt gtctgctccc ggcatccgct tacagacaag ctgtgaccgt	2460
ctccgggagc tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg cgagacgaaa	2520
gggcctcgtg atacgcctat ttttataggt taatgtcatg ataataatgg tttcttag	2578
<210> 2 <211> 798 <212> DNA <213> Vibrio metschnikovii RH530	
<220> <221> CDS <222> (1)(798) <223> valL1 gene	
<pre><400> 2 atg ttt gtc aca aag tct tat tta cat ttg acc atc atg cac tta Met Phe Val Thr Lys Ser Tyr Leu His Leu Thr Ile Ile Met His Leu 1</pre>	48
cct aaa ata agc ccg ttg ttt att agg gaa gcc att atg att gtc act Pro Lys Ile Ser Pro Leu Phe Ile Arg Glu Ala Ile Met Ile Val Thr 20 25 30	96
atc gat atg att tgt ctg cgt ctt gcg ccg aaa tct atc cag gtt tta Ile Asp Met Ile Cys Leu Arg Leu Ala Pro Lys Ser Ile Gln Val Leu Page 2	144

							_ •			~-+	+~+	aat	222	+aa	aca	192
ctg Leu	gtg Val 50	aaa Lys	cgc Arg	tct Ser	aat Asn	cca Pro 55	aat Asn	cgg Arg	Pro	Asp	Cys 60	Gly	Lys	Trp	Ala	192
ttg Leu 65	cct Pro	ggc Gly	ggg Gly	ata Ile	gtg Val 70	tat Tyr	gac Asp	gaa Glu	gat Asp	atg Met 75	acc Thr	gct Ala	cat His	ggt Gly	gga Gly 80	240
gaa Glu	cct Pro	gtc Val	gat Asp	gag Glu 85	gat Asp	ttt Phe	gat Asp	gca Ala	gcg Ala 90	aga Arg	cga Arg	cgt Arg	att Ile	tgt Cys 95	cgg Arg	288
caa Gln	aaa Lys	gtc val	cat His 100	act Thr	tat Tyr	cct Pro	aat Asn	ttt Phe 105	atc Ile	agc Ser	gat Asp	ccg Pro	ctg Leu 110	gtt Val	gat Asp	336
ggc Gly	aac Asn	ccc Pro 115	aaa Lys	cgc Arg	gat Asp	ccg Pro	aat Asn 120	ggt Gly	tgg Trp	agt Ser	gtc Val	agt Ser 125	att Ile	tcc Ser	cat His	384
tac Tyr	gct Ala 130	tta Leu	tta Leu	aac Asn	ccg Pro	tgg Trp 135	aat Asn	gtc Val	aaa Lys	caa Gln	ata Ile 140	gaa Glu	gat Asp	ttt Phe	ggt Gly	432
atc Ile 145	gac Asp	ccc Pro	gag Glu	cgc Arg	gct Ala 150	aat Asn	tgg Trp	ttt Phe	gat Asp	ctt Leu 155	cat His	act Thr	tta Leu	ctc Leu	aaa Lys 160	480
gaa Glu	gaa Glu	atg Met	ccg Pro	ctg Leu 165	gct Ala	ttt Phe	gat Asp	cat His	gtc Val 170	gcg Ala	caa Gln	att Ile	cag Gln	cat His 175	gcg Ala	528
tgg Trp	caa Gln	aaa Lys	tta Leu 180	cgc Arg	gct Ala	gcg Ala	gtt Val	gaa Glu 185	tac Tyr	aca Thr	tcc Ser	gtg Val	gta Val 190	cta Leu	ttt Phe	576
tca Ser	tta Leu	gaa Glu 195	aaa Lys	gag Glu	ttt Phe	tta Leu	gtg Val 200	gcg Ala	gat Asp	att Ile	att Ile	gat Asp 205	gcc Ala	tac Tyr	gcc Ala	624
aaa Lys	ttt Phe 210	ggc Gly	gtc Val	gaa Glu	gtt Val	aat Asn 215	cgc Arg	atg Met	acc Thr	att Ile	aaa Lys 220	cgc Arg	cgc Arg	ttg Leu	atc Ile	672
aat Asn 225	acc Thr	ggg Gly	gtg Val	atc Ile	gtc Val 230	agt Ser	acc Thr	aat Asn	aaa Lys	atg Met 235	gcc Ala	gca Ala	tct Ser	tgt Cys	aaa Lys 240	720
ggc Gly	aaa Lys	gga Gly	gcc Ala	aaa Lys 245	cca Pro	gcc Ala	acc Thr	gtt Val	tat Tyr 250	Arg	ctt Leu	gcc Ala	agt Ser	cat His 255	gaa Glu	768
gtc Val	acc Thr	tat Tyr	ttt Phe 260	caa Gln	acc Thr	tgt Cys	tta Leu	cga Arg 265	ggt Gly							798

<210> 3 <211> 266 <212> PRT <213> Vibrio metschnikovii RH530

```
<400>
Met Phe Val Thr Lys Ser Tyr Leu His Leu Thr Ile Ile Met His Leu 1 5 15
Pro Lys Ile Ser Pro Leu Phe Ile Arg Glu Ala Ile Met Ile Val Thr
20 25 30
Ile Asp Met Ile Cys Leu Arg Leu Ala Pro Lys Ser Ile Gln Val Leu 35 40 45
Leu Val Lys Arg Ser Asn Pro Asn Arg Pro Asp Cys Gly Lys Trp Ala 50 60
Leu Pro Gly Gly Ile Val Tyr Asp Glu Asp Met Thr Ala His Gly Gly 65 70 75 80
Glu Pro Val Asp Glu Asp Phe Asp Ala Ala Arg Arg Ile Cys Arg
85 90 95
Gln Lys Val His Thr Tyr Pro Asn Phe Ile Ser Asp Pro Leu Val Asp
100 105 110
Gly Asn Pro Lys Arg Asp Pro Asn Gly Trp Ser Val Ser Ile Ser His
115 120 125
    Ala Leu Leu Asn Pro Trp Asn Val Lys Gln Ile Glu Asp Phe Gly 130 140
Ile Asp Pro Glu Arg Ala Asn Trp Phe Asp Leu His Thr Leu Leu Lys 145 150 155 160
Glu Glu Met Pro Leu Ala Phe Asp His Val Ala Gln Ile Gln His Ala
165 170 175
Trp Gln Lys Leu Arg Ala Ala Val Glu Tyr Thr Ser Val Val Leu Phe
180 185 190
Ser Leu Glu Lys Glu Phe Leu Val Ala Asp Ile Ile Asp Ala Tyr Ala
195 200 205
    Phe Gly Val Glu Val Asn Arg Met Thr Ile Lys Arg Arg Leu Ile 210 220
Asn Thr Gly Val Ile Val Ser Thr Asn Lys Met Ala Ala Ser Cys Lys
225 230 235 240
Gly Lys Gly Ala Lys Pro Ala Thr Val Tyr Arg Leu Ala Ser His Glu
245 250 255
Val Thr Tyr Phe Gln Thr Cys Leu Arg Gly 260 265
<210>
          555
<211>
<212>
          DNA
```

<211> 555 <212> DNA <213> Vibrio metschnikovii RH530 <220> <221> CDS <222> (1)..(555) <223> valL2 gene

	<400 atg Met 1	caq	4 att Ile	att Ile	ctt Leu 5	gtt Val	cat His	gga Gly	ctc Leu	tat Tyr 10	atg Met	cat His	ggc Gly	ttg Leu	gta Val 15	atg Met		48
	cat His	ccg Pro	ctt Leu	agt Ser 20	cat His	cgt Arg	ctg Leu	cat His	aaa Lys 25	ttg Leu	ggt Gly	tat Tyr	cgt Arg	act Thr 30	caa Gln	acc Thr		96
	att Ile	agc Ser	tac Tyr 35	aac Asn	tca Ser	ctc Leu	gct Ala	atc Ile 40	gat Asp	gat Asp	gag Glu	gcc Ala	att Ile 45	ttt Phe	cgc Arg	cgc Arg		144
	ctt Leu	gac Asp 50	cga Arg	tcg Ser	ctc Leu	act Thr	cat His 55	gcc Ala	tcg Ser	cct Pro	aat Asn	gct Ala 60	tta Leu	gtc val	gga Gly	cac His		192
	agt Ser 65	ttg Leu	ggc Gly	gga Gly	ttg Leu	gtg Val 70	atc Ile	aaa Lys	cgt Arg	tat Tyr	cta Leu 75	gaa Glu	tcg Ser	cgc Arg	gca Ala	ccg Pro 80		240
	tcc Ser	tgt Cys	gaa Glu	acc Thr	ctc Leu 85	tcc Ser	cat His	gtc val	gtc Val	gcc Ala 90	atc Ile	ggc Gly	tca Ser	cct Pro	ttg Leu 95	caa Gln		288
	gga Gly	gct Ala	tcc Ser	att Ile 100	gtc Val	aat Asn	aaa Lys	att Ile	gag Glu 105	caa Gln	tta Leu	ggt Gly	tta Leu	ggg Gly 110	gtg Val	gca Ala		336
	cta Leu	ggt Gly	aat Asn 115	tca Ser	gca Ala	gaa Glu	ttt Phe	ggg Gly 120	tta Leu	aaa Lys	gaa Glu	cac His	gac Asp 125	gac Asp	gaa Glu	tcc Ser		384
	cgc Arg	tat Tyr 130	cca Pro	caa Gln	aaa Lys	tca Ser	ggc Gly 135	agt Ser	att Ile	gca Ala	gga Gly	acg Thr 140	ata Ile	cct Pro	tta Leu	ggg Gly		432
	ctg Leu 145	cgc Arg	agc Ser	ctt Leu	tta Leu	ctg Leu 150	cgc Arg	gat Asp	cca Pro	ctg Leu	gac Asp 155	tcc Ser	gat Asp	ggt Gly	acc Thr	gtc Val 160		480
	aca Thr	gta Val	gaa Glu	gaa Glu	acc Thr 165	aaa Lys	ata Ile	gct Ala	ggc Gly	atg Met 170	aca Thr	gat Asp	cat His	atc Ile	gcg Ala 175	ata Ile		528
								gct Ala										555
<210> 5 <211> 185 <212> PRT <213> Vibrio metschnikovii RH530																		
	<400 Met 1		Ile	Ile	Leu 5	۷al	His	Gly	Leu	туг 10	Met	His	Gly	Leu	val 15	Met		
	His	Pro	Leu	Ser 20	His	Arg	Leu	His	Lys 25	Leu	Gly	Tyr	Arg	Thr 30	Gln	Thr		

Page 5

<210> 6 <211> 117 <212> PRT <213> Pseudomonas aluma

<213> Pseudomonas glumae

\$\frac{4400}{\text{val}} \text{Ala} & \text{Asn} & \text{Leu} & \text{Ser} & \text{Gly} & \text{Phe} & \text{Gln} & \text{Ser} & \text{Asp} & \text{Asp} & \text{Asp} & \text{Gly} & \text{Pro} & \text{Asn} & \text{Gly} & \text{Arg} & \text{Gln} & \text{Val} & \text{Leu} & \text{Ala} & \text{Thr} & \text{Gly} & \text{Arg} & \text{Gln} & \text{Asn} & \text{Thr} & \text{Ser} & \text{Arg} & \text{Thr} & \text{Asp} & \text{Val} & \text{Ala} & \text{