LAPORAN TUGAS BESAR I IF2123 ALJABAR LINEAR DAN GEOMETRI

Sistem Persamaan Linear, Determinan, dan Aplikasinya

Disusun oleh : Christian Justin Hendrawan (13522135) Farrel Natha Saskoro (13522145) Jason Fernando (13522156)

Program Studi Teknik Informatika Institut Teknologi Bandung 2023

Daftar Isi

Daftar Isi	1
Bab I Deskripsi Masalah	2
I. Tujuan	2
II. Spesifikasi	2
Bab II Teori Singkat.	4
2.1. Eliminasi Gauss	4
2.2. Eliminasi Gauss-Jordan	5
2.3. Determinan Matriks	5
2.4. Matriks Balikan	7
2.5. Matriks Kofaktor	9
2.6. Kaidah Cramer	9
2.7. Interpolasi Polinom	10
2.8. Regresi Linear Berganda	11
Bab III Implementasi Pustaka	12
Folder userinterference	12
Folder functions	14
Folder Main	20
Bab IV Eksperimen	22
Bab V Kesimpulan, Saran, dan Refleksi	28
I. Kesimpulan	28
II. Saran	28
III. Refleksi	28
Bab VI Daftar Pustaka	29

Bab I Deskripsi Masalah

I. Tujuan

Tujuan dari pembuatan tugas besar ini adalah sebagai berikut.

- 1. Membuat pustaka (*library* atau *package*) dalam **Bahasa Java** untuk menemukan solusi SPL dengan metode eliminasi Gauss, metode Eliminasi Gauss-Jordan, metode matriks balikan, dan kaidah *Cramer* (kaidah *Cramer* khusus untuk SPL dengan *n* peubah dan *n* persamaan), menghitung determinan matriks dengan reduksi baris dan dengan ekspansi kofaktor, dan menghitung balikan matriks.
- 2. Dengan memanfaatkan pustaka yang telah dibuat, membuat program penyelesaian berbagai persoalan dalam bentuk SPL, menyelesaikan persoalan interpolasi dan regresi linier, menghitung matriks balikan, menghitung determinan matriks dengan berbagai metode (reduksi baris dan ekspansi kofaktor).

II. Spesifikasi

Sistem persamaan linier (SPL) banyak ditemukan di dalam bidang sains dan rekayasa. Anda sudah mempelajari berbagai metode untuk menyelesaikan SPL, termasuk menghitung determinan matriks. Sembarang SPL dapat diselesaikan dengan beberapa metode, yaitu metode eliminasi Gauss, metode eliminasi Gauss-Jordan, metode matriks balikan (x = A-1b), dan kaidah Cramer (khusus untuk SPL dengan n peubah dan n persamaan). Solusi sebuah SPL mungkin tidak ada, banyak (tidak berhingga), atau hanya satu (unik/tunggal).

$$\begin{bmatrix} 0 & \mathbf{2} & 1 & -1 \\ 0 & 0 & \mathbf{3} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \quad \begin{bmatrix} 0 & \mathbf{1} & 0 & -\frac{2}{3} \\ 0 & 0 & \mathbf{1} & \frac{1}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Gambar 1. Eliminasi Gauss dilakukan dengan matriks eselon baris dan eliminasi Gauss-Jordan dengan matriks eselon baris tereduksi.

Di dalam Tugas Besar 1 ini, Anda diminta membuat satu atau lebih library aljabar linier dalam Bahasa Java. Library tersebut berisi fungsi-fungsi seperti eliminasi Gauss, eliminasi Gauss-Jordan, menentukan balikan matriks, menghitung determinan, kaidah Cramer (kaidah Cramer khusus untuk SPL dengan n peubah dan n persamaan). Selanjutnya, gunakan library tersebut di dalam program Java untuk menyelesaikan

berbagai persoalan yang dimodelkan dalam bentuk SPL, menyelesaikan persoalan interpolasi, dan persoalan regresi. Persoalan interpolasi yang harus diselesaikan berupa persoalan interpolasi polinom dan persoalan interpolasi bicubic spline. Sedangkan, persoalan regresi yang harus diselesaikan berupa persoalan regresi linier berganda. Serta, ada persoalan yang dapat menjadi nilai bonus yakni image processing menggunakan pendekatan bicubic spline.

Bab II

Teori Singkat

2.1. Eliminasi Gauss

Merupakan sebuah metode matematika yang digunakan untuk menyelesaikan sistem persamaan linear. Metode ini bertujuan untuk mengubah matriks augmented sistem persamaan linear menjadi bentuk baris tereduksi atau bentuk eselon baris.

Langkah-langkah eliminasi gauss:

- 1. Membentuk matriks augmented dari persamaan linear yang diberikan
- 2. Membuat bentuk eselon baris, ini dilakukan dengan melakukan operasi matematika sampai mendapatkan 0 pada elemen di bawah diagonal utama
- 3. Mengurangkan baris dengan mengurangi dengan faktor yang membuat elemen di bawah diagonal utama menjadi 0

Misalkan persamaan linear:

$$2x_1 + 3x_2 - x_3 = 5$$

 $4x_1 + 4x_2 - 3x_3 = 3$
 $-2x_1 + 3x_2 - x_3 = 1$

Buat matriks augmented:

$$\begin{bmatrix} 2 & 3 & -1 & 5 \\ 4 & 4 & -3 & 3 \\ -2 & 3 & -1 & 1 \end{bmatrix}$$

Ubah menjadi matriks eselon baris:

$$\begin{bmatrix} 1 & 3/2 & -1/2 & 5/2 \\ 0 & 1 & 1/2 & 7/2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Diperoleh persamaan:

$$x_1 + 3/2x_2 - 1/2x_3 = 5/2$$
 (i)
 $x_2 + 1/2x_3 = 7/2$ (ii)
 $x_3 = 3$ (iii)

Maka nilai $X_1 = 1$, $X_2 = 2$, $X_3 = 3$

2.2. Eliminasi Gauss-Jordan

Merupakan sebuah metode matematika dimana eliminasi gauss-jordan ini merupakan pengembangan dari eliminasi yang hasilnya lebih sederhana. Metode matematika ini membuat sebuah matriks augmented menjadi matriks eselon baris tereduksi.

Langkah-langkah eliminasi gauss-jordan:

- 1. Membentuk matriks augmented dari persamaan linear yang diberikan
- 2. Membuat bentuk eselon baris, ini dilakukan dengan melakukan operasi matematika sampai mendapatkan 0 pada elemen di bawah diagonal utama
- 3. Mengurangkan baris dengan mengurangi dengan faktor yang membuat elemen di bawah diagonal utama menjadi 0
- 4. Setelah menjadi eselon baris langkah selanjutnya adalah membuat eselon baris tereduksi dimana dilakukan operasi matematika hingga mendapatkan 0 pada elemen diatas diagonal utama

Misalkan persamaan liner:

$$2x_1 + 3x_2 - x_3 = 5$$

 $4x_1 + 4x_2 - 3x_3 = 3$
 $-2x_1 + 3x_2 - x_3 = 1$

Buat matriks augmented:

$$\begin{bmatrix} 2 & 3 & -1 & 5 \\ 4 & 4 & -3 & 3 \\ -2 & 3 & -1 & 1 \end{bmatrix}$$

Ubah menjadi matriks eselon baris tereduksi:

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Maka nilai $X_1 = 1$, $X_2 = 2$, $X_3 = 3$

2.3. Determinan Matriks

Determinan matriks adalah sebuah nilai atau bilangan skalar yang dapat dihitung dari suatu matriks persegi (matriks dengan jumlah baris dan kolom yang sama). Determinan matriks sendiri dapat dihitung dengan berbagai metode, tergantung pada ukuran matriks dan preferensi perhitungan.

Metode umum determinan matriks:

1. Metode Ekspansi Kofaktor

Metode ini melibatkan ekspansi determinan matriks ke dalam penjumlahan produk elemen-elemen matriks dengan tanda positif dan negatif berdasarkan kofaktor masing-masing elemen.

Misalkan A adalah matriks berukuran n x n

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Didefinisikan:

 M_{ii} = minor entri a_{ii}

= determinan upa-matriks (*submatrix*) yang elemen-elemennya tidak berada pada baris *i* dan kolom *j*

$$C_{ij} = (-1)^{i+j} M_{ij} = \text{kofaktor entri } a_{ij}$$

Misalkan A adalah matriks sebagai berikut: $A = \begin{bmatrix} 6 & -3 & 1 \\ 2 & 2 & -4 \\ 1 & 5 & 3 \end{bmatrix}$

Maka, untuk menghitung M₁₁ tidak melibatkan elemen pada baris ke-1 dan kolom ke-1:

$$A = \begin{bmatrix} 6 & -3 & 1 \\ 2 & 2 & -4 \\ 1 & 5 & 3 \end{bmatrix} \qquad M_{11} = \begin{vmatrix} 2 & -4 \\ 5 & 3 \end{vmatrix} = (2)(3) - (-4)(5) = 26$$

$$C_{11} = (-1)^{1+1} M_{11} = M_{11} = 26$$

Untuk Mencari determinan dapat dilakukan dengan cara berikut.

dapat dihitung dengan salah satu dari persamaan berikut:

$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$$

$$\det(A) = a_{21}C_{21} + a_{22}C_{22} + \dots + a_{2n}C_{2n}$$

$$\det(A) = a_{21}C_{11} + a_{22}C_{22} + \dots + a_{n2}C_{n2}$$

$$\det(A) = a_{12}C_{12} + a_{22}C_{22} + \dots + a_{n2}C_{n2}$$

$$\vdots$$

$$\det(A) = a_{n1}C_{n1} + a_{n2}C_{n2} + \dots + a_{nn}C_{nn}$$

$$\det(A) = a_{1n}C_{1n} + a_{2n}C_{2n} + \dots + a_{nn}C_{nn}$$

2. Metode Reduksi Baris

Metode ini melibatkan melakukan operasi baris pada matriks untuk mengubahnya menjadi bentuk segitiga atas atau bentuk eselon baris, untuk mempermudah perhitungan determinan.

$$[A] \sim [\text{matriks segitiga bawah}]$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \overset{\mathsf{OBE}}{\sim} \begin{bmatrix} a'_{11} & a'_{12} & \dots & a'_{1n} \\ 0 & a'_{22} & \dots & a'_{2n} \\ \vdots & \vdots & \dots & a'_{3n} \\ 0 & 0 & 0 & a'_{nn} \end{bmatrix}$$

Sifat-sifat determinan:

- 1. Jika determinan matriks sama dengan 0, maka matriks tersebut merupakan matriks singular (tidak memiliki invers).
- 2. Jika determinan matriks tidak sama dengan 0, maka matriks tersebut merupakan matriks nonsingular (memiliki invers).
- 3. Dalam teori SPL, determinan digunakan untuk menentukan apakah sistem persamaan memiliki solusi unik atau tidak.

2.4. Matriks Balikan

Matriks balikan atau yang lebih dikenal dengan matriks invers merupakan matriks yang dapat menggantikan matriks asal sehingga ketika matriks asal dikalikan dengan matriks balikan tersebut, hasilnya adalah matriks identitas.

Secara formal, jika A adalah matriks persegi, maka matriks balikan A dinotasikan sebagai A⁻¹, dan syarat utama untuk matriks A memiliki matriks balikan adalah :

$$A * A^{-1} = A^{-1} * A = I$$

Di mana I adalah matriks identitas berukuran n x n yang memiliki elemen-elemen diagonal utama bernilai 1 dan elemen-elemen lainnya bernilai 0.

Berikut merupakan tahapan pencarian matriks balikan menggunakan metode eliminasi gauss-jordan.

Misalnya diberikan matriks seperti:

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

Susun matriks menjadi seperti di bawah :

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{pmatrix}$$

Sehingga matriks balikannya:

Berikut merupakan tahapan pencarian matriks balikan menggunakan metode matriks Adjoin.

Misalnya diberikan matriks:

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

Matriks kofaktornya:

Dibagi dengan determinan:

```
A^(-1) = (1/26) * | 40 13 -5 |
| 13 5 -3 |
| -5 -2 6 |
```

Maka hasil balikannya adalah:

2.5. Matriks Kofaktor

Matriks kofaktor merupakan suatu matriks yang berisi kofaktor dari setiap elemen di dalam matriks tersebut. Kofaktor setiap elemen dinyatakan sebagai

$$C_{ij} = (-1)^{i+j} M_{ij}$$

Dengan

 C_{ij} : Kofaktor elemen matriks baris ke-i dan kolom ke-j M_{ij} : Minor dari matriks M pada baris ke-i dan kolom ke-j

Misalkan matriks M:

$$\begin{bmatrix} 3 & 6 & 4 \\ -1 & 5 & 2 \\ 4 & 10 & 9 \end{bmatrix}$$

Matriks kofaktor dari M:

$$\begin{bmatrix} 30 & 17 & -30 \\ -14 & 11 & -6 \\ -8 & -10 & 21 \end{bmatrix}$$

2.6. Kaidah Cramer

Kaidah Cramer merupakan formula yang dipakai untuk menyelesaikan SPL dengan menggunakan determinan dari matriks augmented.

Misalkan SPL:

$$a_{11}x + a_{12}y + a_{13}z = c_1$$

 $a_{21}x + a_{22}y + a_{23}z = c_2$
 $a_{31}x + a_{32}y + a_{33}z = c_3$

Cari determinan:

$$D = egin{array}{cccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ \end{array}.$$

Mengganti setiap entri setiap kolom menjadi konstanta SPL dan cari determinannya:

Solusi:

$$x=rac{D_x}{D}$$
 $y=rac{D_y}{D}$ $z=rac{D_z}{D}$

2.7. Interpolasi Polinom

Interpolasi polinom merupakan suatu teknik interpolasi dengan asumsi pola yang kita miliki mengikuti pola polinomial baik berderajat satu maupun berderajat tinggi. Interpolasi polinom digunakan untuk mencari titik-titik antara n buah titik, dengan menggunakan pendekatan :

$$y = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1}$$

Diperoleh persamaan simultan:

$$y_1 = a_0 + a_1 x_1 + a_2 x_1^2 + a_3 x_1^3 + \dots + a_{n-1} x_1^{n-1}$$

$$y_2 = a_0 + a_1 x_2 + a_2 x_2^2 + a_3 x_2^3 + \dots + a_{n-1} x_2^{n-1}$$

$$y_3 = a_0 + a_1 x_3 + a_2 x_3^2 + a_3 x_3^3 + \dots + a_{n-1} x_3^{n-1}$$

$$y_n = a_0 + a_1 x_n + a_2 x_n^2 + a_3 x_n^3 + \dots + a_{n-1} x_n^{n-1}$$

Masukan nilai x dari titik yang dicari ke fungsi polinomial, maka didapatkan nilai y :

$$P_n(x) = a_0 + a_1 x + a_2 x_2 + ... + a_n x^n$$

2.8. Regresi Linear Berganda

Regresi linear merupakan suatu metode untuk memprediksi nilai fungsi dengan banyak perubah. Diperlukan sebuah persamaan yang memuat $(x_1, x_2, x_3, ..., x_k, y)$. Menggunakan Normal Estimation Equation for Multiple Linear Regression:

$$nb_0 + b_1 \sum_{i=1}^n x_{1i} + b_2 \sum_{i=1}^n x_{2i} + \dots + b_k \sum_{i=1}^n x_{ki} = \sum_{i=1}^n y_i$$

$$b_0 \sum_{i=1}^n x_{1i} + b_1 \sum_{i=1}^n x_{1i}^2 + b_2 \sum_{i=1}^n x_{1i} x_{2i} + \dots + b_k \sum_{i=1}^n x_{1i} x_{ki} = \sum_{i=1}^n x_{1i} y_i$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$b_0 \sum_{i=1}^n x_{ki} + b_1 \sum_{i=1}^n x_{ki} x_{1i} + b_2 \sum_{i=1}^n x_{ki} x_{2i} + \dots + b_k \sum_{i=1}^n x_{ki}^2 = \sum_{i=1}^n x_{ki} y_i$$

Setelah SPL selesai akan diperoleh b_0 , b_1 , b_2 , ..., b_k . Untuk memprediksi nilai suatu fungsi dapat dilakukan dengan persamaan :

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + \epsilon_i$$

Bab III Implementasi Pustaka

Folder userinterference

1. Class InputMatrix

• Attributes

Nama	Tipe	Deskripsi
scan	Public static Scanner	Scanner untuk input yang digunakan dalam class InputMatrix

Nama	Tipe	Parameter	Deskripsi
InputKeyboard	Public static double[][]	-	Fungsi untuk input matriks sesuai dengan row dan column yang diinput dan mengembalikan matriksnya (double[][])
InputInterpolasi	Public static double[][]	-	Fungsi untuk input matriks dengan row adalah banyaknya titik yang diinput dan column 2, lalu mengembalikan matriksnya (double[][])
InputRegresi	Public static double[][]	-	Fungsi untuk input matriks dengan row adalah banyaknya sample yang diinput dan column adalah jumlah peubah x yang diinput lalu ditambah 1, lalu mengembalikan matriksnya

			(double[][])
InputFile	Public static double[][]	-	Fungsi yang membaca file .txt yang diinput lalu mengembalikan matriks yang berada di file tersebut.
InputFileReg	Public static double[][]	-	Fungsi yang membaca file .txt yang diinput lalu mengembalikan matriks yang berada di file tersebut.
InputFileInterpl	Public static double[][]	-	Fungsi yang membaca file .txt yang diinput lalu mengembalikan matriks yang berada di file tersebut.
InputFileInterBc	Public static double[][]	-	Fungsi yang membaca file .txt yang diinput lalu mengembalikan matriks yang berada di file tersebut.

2. Class outputMatrix

• Attributes Class ini tidak memiliki attributes

Nama	Tipe	Parameter	Deskripsi
OutString	Public static void	Double[][] matrix	Fungsi untuk menampilkan output hasil fungsi yang lain ke dalam terminal.
outFile	Public static void	String s	Fungsi untuk menampilkan

file .txt baru yang akan dibuat.

Folder functions

3. Class Matrix

• Attributes

Nama	Tipe	Deskripsi
scan	Public static Scanner	Scanner untuk input yang digunakan dalam class Matrix

Nama	Tipe	Parameter	Deskripsi
OutputMatrix	Public static void	Double[][] matrix	Menampilkan matrix
CreateIdentityMatri x	Public static double[][]	Double[][] matrix Int n	Membuat matrix identitas dengan n baris dan n kolom
IsSquare	Public static boolean	Double [][] matrix	Cek apakah suatu matrix persegi, matrix persegi adalah matrix dengan jumlah baris dan kolom sama
CopyMatrix	Public static double[][]	Double [][] matrix	Mengcopy keseluruhan matrix dan disimpan ke matrix baru
TransposeMatrix	Public static double[][]	Double[][] matrix	Men-transpose kan suatu matrix dan mengembalikan matrix transposenya
DeterminanOBE	Public static double	Double[][] matrix	Mengembalikan nilai determinan

			dari suatu matrix dengan menggunakan OBE
GetMinorMatrix	Public static double[][]	Double[][] matrix Int row Int col	Mengembalikan matrix minor suatu matrix dari kolom dan baris yang diinput
DeterminanKofakto r	Public static double	Double [][] matrix	Mengembalikan nilai determinan dari suatu matrix dengan menggunakan ekspansi kofaktor
MatrixKofaktor	Public static double [][]	Double [][] matrix	Mengembalikan matrix yang semua elemennya merupakan kofaktor dari matrix
BikinKanan	Public static double [][]	Double [][] matrix	Membuat kolom paling kanan menjadi array baru yang terpisah dari matrix sebelumnya
BikinKiri	Public static double[][]	Double [][] matrix	Membuat matrix baru yang terdiri dari kolom paling awal sampai kolom n - 1 (n= jumlah kolom)

4. Class operations

Attributes
 Class ini tidak memiliki attributes

Methods

Nama	Tipe	Parameter	Deskripsi
extendMatrix	Public static double[][]	Double[][] Matrix1, Double[][] Matrix2	Membesarkan atau meng-extend

			matrix1 dengan menambahkan matrix2
MultiplyMatrix	Public static double[][]	Double[][] matrix1 Double[][] matrix2	Mengembalikan hasil kali matrix1 dengan matrix2
multiplyConst	Public static double[][]	Double[][] matrix Double k	Mengembalikan hasil perkalian dari suatu matrix dengan suatu angka
cekHasil	Public static string	Double [][] matrix	Mengecek hasil dari suatu penyelesaian SPL lalu mengembalikan string hasil, hasil dapat berupa solusi unik, solusi banyak, dan tidak ada solusi
solusiUnik	Public static string	Double [][] matrix	Mengeluarkan string berupa solusi unik dan menampilkan nilai x1,x2,xn dari suatu SPL
solusiTidakAda	Public static string	Double [][] matrix	Mengeluarkan string berupa solusi tidak ada dari suatu SPL
solusiBanyak	Public static string	Double [][] matrix	Mengeluarkan string berupa solusi banyak (parametrik) dari suatu SPL
UpdateHasil	Public static double[][]	Double [][] matrix	Melakukan update pada matriks hasil agar tidak ada hasil yang -0
doubletoStr	Public static string	Double[][] matrix	Fungsi yang mengubah struktur data double menjadi

			string
IsZero	Public static boolean	Double [][] matrix	Mengecheck apakah suatu row semua elemennya adalah zero atau nol
SwapRow	Public static double[][]	Double [][] matriks Int row1 Int row2	Menukar suatu baris dengan baris lainnya pada suatu matrix
OBE	Public static double[][]	Double[][] matriks	Melakukan operasi baris elementer terhadap suatu matriks sampai menghasilkan matriks eselon baris
OBE_Tereduksi	Public static double[][]	Double[][] matriks	Melakukan operasi baris elementer kepada suatu matriks sampai menghasilkan matriks eselon baris tereduksi

5. Class Inverse

• Attributes Class ini tidak memiliki attributes

Nama	Tipe	Parameter	Deskripsi
InverseCofactor	Public static double[][]	Double [][] matrix	Mengembalikan balikan suatu matriks dengan metode kofaktor
InverseOBE	Public static double[][]	Double [][] matrix	Mengembalikan balikan suatu matriks dengan metode eliminasi Gauss-Jordan

6. Class SPL

• Attributes Class ini tidak memiliki attributes

Methods

Nama	Tipe	Parameter	Deskripsi
gaussElim	Public static double[][]	Double[][] matrix	Mengoperasikan suatu matriks augmented untuk mendapatkan solusinya menggunakan metode eliminasi Gauss
gaussJordanElim	Public static double[][]	Double[][] matrix	Mengoperasikan suatu matriks augmented untuk mendapatkan solusinya menggunakan metode eliminasi Gauss-Jordan
matrixBalikan	Public static double [][]	Double[][] matrix	Mengoperasikan suatu matriks augmented untuk mendapatkan solusinya menggunakan metode eliminasi inverse matriks atau matriks balikan
kaidahCramer	Public static double[][]	Double[][] matrix	Mengoperasikan suatu matriks augmented untuk mendapatkan solusinya menggunakan metode kaidah Cramer

7. Class InterpolasiPolinom

• Attributes

Class ini tidak memiliki attributes

• Methods

Nama	Tipe	Parameter	Deskripsi
Interpolate	Public static double[]	Double [][] matrix	Menyelesaikan persoalan interpolasi polinomial dan mengembalikan solusi yang diperoleh dalam bentuk array
estimasi	Public static double	Double [] matrix Double x	Mengembalikan estimasi dari masukan x dengan cara memasukan x ke persamaan polinomial yang diperoleh
OutputInterpolasi	Public static string	Double[] matrix	Menampilkan persamaan interpolasi polinomial dari array solusi yang sudah diperoleh

8. Class RegresiLinier

• Attributes
Class ini tidak memiliki attributes

Nama	Tipe	Parameter	Deskripsi
Regresiganda	Public static double[]	Double[][] matrix Double [] hasily	Mengembalikan array berisi solusi koefisien dalam persamaan regresi (B0,B1,B2,Bn)
FungsiRegresi	Public static double	Double[] function Double[] input	Mengembalikan estimasi nilai y

			dengan input yang memenuhi x1,x2,x3,xn
OutputRegresi	Public static string	Double[] matrix	Menampilkan hasil dari regresi linier berganda dalam bentuk umum model regresi linier berganda

9. Class InterpolasiBikubik

• Attributes Class ini tidak memiliki attributes

• Methods

Nama	Tipe	Parameter	Deskripsi
bicubicSplineInter polation	Public static void	Double[][] Mat Double a Double b	Mengembalikan nilai interpolasi bikubik

Folder Main

10. Class Main

• Attributes

Nama	Tipe	Deskripsi
scan	Public static Scanner	Scanner untuk input yang digunakan dalam class Main

Nama	Tipe	Parameter	Deskripsi
main	Public static void	String[] args	Menjadi main program, tempat semua program dijalankan, disini juga main menjadi

			input utama dan menampilkan semua fitur dan menu dalam program
SubmenuSPL	Public static void	-	Menampilkan fitur-fitur dengan metode apa solusi SPL ingin didapatkan serta menerima input metode penyelesaian SPL
SubmenuDet	Public static void	-	Menampilkan fitur-fitur dengan metode apa hasil determinan ingin didapatkan serta menerima input metode penyelesaian determinan
SubmenuInverse	Public static void	-	Menampilkan fitur-fitur dengan metode apa hasil invers ingin didapatkan serta menerima input metode penyelesaian inversnya
Clear	Public static void	-	Fungsi untuk melakukan clearing pada program
Exit	Public static void	-	Melakukan exit dari program
batas	Public static void	-	Menampilkan batas-batas pada tampilan design program

Bab IV

Eksperimen

- 1. SPL:
 - a. Studi kasus 1:

$$A = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 2 & 5 & -7 & -5 \\ 2 & -1 & 1 & 3 \\ 5 & 2 & -4 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ -2 \\ 4 \\ 6 \end{bmatrix}$$

Jawaban:

b. Studi kasus 2:

$$\begin{bmatrix}
1 & 1 & 2 & | & 4 \\
2 & -1 & 1 & | & 2 \\
1 & 2 & 3 & | & 6
\end{bmatrix}$$

Jawaban:

c. Studi kasus 3:

$$H = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \dots & \frac{1}{n+1} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \dots & \frac{1}{n+2} \\ \frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+2} & \dots & \frac{1}{2n+1} \end{bmatrix} = b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$n = 6$$

Jawaban:

2. Determinan:

a. Studi kasus 1:

Jawaban:

b. Studi kasus 2:

3 **4.**5 **2.**8 -3 7 **8.**3 **0.**5 -10 -9

Jawaban:

METODE EKSPANSI KOFAKTOR:
Masukkan Nama File: inverse.txt

----Determinan = 31.375

3. Inverse Matrix:

a. Studi kasus 1:

Jawaban:

b. Studi kasus 2:

```
3 4.5 2.8
-3 7 8.3
0.5 -10 -9
```

Jawaban:

4. Interpolasi Polinomial:

a. Studi kasus 1:

```
0.1 0.003
0.3 0.067
0.5 0.148
0.7 0.248
0.9 0.370
1.1 0.518
1.3 0.697
0.2
```

Jawaban:

b. Studi kasus 2:

```
0.1 0.003
0.3 0.067
0.5 0.148
0.7 0.248
0.9 0.370
1.1 0.518
1.3 0.697
0.55
```

Jawaban:

5. Interpolasi Bicubic Spline:

a. Studi kasus 1:

```
21 98 125 153
51 101 161 59
0 42 72 210
16 12 81 96
0 0
```

Jawaban:

6. Regresi Linear Berganda

a. Studi kasus 1:

```
72.4 76.3 29.18 0.90
41.6 70.3 29.35 0.91
34.3 77.1 29.24 0.96
35.1 68.0 29.27 0.89
10.7 79.0 29.78 1.00
12.9 67.4 29.39 1.10
8.3 66.8 29.69 1.15
20.1 76.9 29.48 1.03
72.2 77.7 29.09 0.77
24.0 67.7 29.60 1.07
23.2 76.8 29.38 1.07
47.4 86.6 29.35 0.94
31.5 76.9 29.63 1.10
10.6 86.3 29.56 1.10
11.2 86.0 29.48 1.10
73.3 76.3 29.40 0.91
75.4 77.9 29.28 0.87
96.6 78.7 29.29 0.78
107.4 86.8 29.03 0.82
54.9 70.9 29.37 0.95
50.0 76.0 29.30
```

Jawaban:

Bab V Kesimpulan, Saran, dan Refleksi

I. Kesimpulan

SPL dapat diselesaikan dengan menggunakan berbagai macam metode, diantaranya adalah dengan menggunakan metode-metode yang diproses dalam bentuk matriks. Metode yang disediakan dengan tujuan menyelesaikan suatu SPL diantaranya adalah Eliminasi Gauss, Eliminasi Gauss-Jordan, Matriks Balikan / Inverse Matriks dan Kaidah Cramer. Solusi yang didapat dari penyelesaian SPL tersebut dapat diklasifikasikan menjadi 3 jenis yakni unique solution, multi solution, dan no solution.

Implementasi dari penyelesaian SPL adalah untuk menyelesaikan persoalan-persoalan interpolasi polinomial, regresi linier berganda, dan interpolasi bikubik spline. Pada tugas besar ini, kami telah membuat program dalam bahasa Java yang dapat mengoperasikan matriks untuk menyelesaikan persoalan-persoalan yang telah disebutkan. Library pada tugas besar kami telah diimplementasikan dalam program sebagaimana sudah dijelaskan lebih lanjut pada bab III. Program telah digunakan untuk menyelesaikan berbagai persoalan sebagaimana dijelaskan lebih lanjut pada bab IV.

II. Saran

Saran pengembangan untuk tugas besar kami dapat ditingkatkan dengan mengimplementasikan *graphical user interface* (GUI) untuk meningkatkan kenyamanan dalam menggunakan program. Selain itu, penambahan komentar yang lebih jelas dan terperinci dapat meningkatkan keterbacaan kode kami serta mempermudah proses debugging. Yang terakhir, seharusnya pengecekan test case dilakukan lebih baik dan lebih meng-handle segala jenis input, baik input valid atau invalid.

III. Refleksi

Refleksi yang kami dapatkan dari tugas besar ini adalah kami bisa lebih memperbaiki kinerja kami dalam beberapa hal, dalam hal komunikasi, manajemen waktu, dan kerja sama. Dengan komunikasi yang baik dan jelas sangatlah penting untuk meminimalisir miskomunikasi dan mempercepat pengerjaan. Dengan manajemen waktu, sangatlah penting untuk menerapkan sistem timeline yang terperinci dan jelas. Dengan kerja sama yang baik, maka segala hal dapat lebih terpadu dan sistematis. Di luar dari kekurangan kami, banyak juga pelajaran yang dapat kami ambil dari tugas besar ini untuk lebih improve sebagai individu dan sebagai kelompok.

Bab VI Daftar Pustaka

Berikut adalah daftar refrensi yang dipakai dalam pengerjaan tugas besar ini.

- 1. https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-03-Sis tem-Persamaan-Linier-2023.pdf (Diakses pada 23 September, 2023)
- 2. https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-04-Tiga-Kemungkinan-Solusi-SPL-2023.pdf (Diakses pada 23 September, 2023)
- 3. https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-05-Sis tem-Persamaan-Linier-2023.pdf (Diakses pada 24 September, 2023)
- 4. https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-08-Determinan-bagian1-2023.pdf (Diakses pada 25 September, 2023)
- 5. https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-09-De terminan-bagian2-2023.pdf (Diakses pada 26 September, 2023)
- 6. https://www.youtube.com/watch?v=v73SdwcSM5I&t=900s&pp=ugMICgJpZBABGAHKBRdyZWdyZXNpIGxpbmVhciBiZXJnYW5kYQ%3D%3D (Diakses pada 28 September, 2023)
- 7. https://youtu.be/LaolbjAzZvg?si=b8gdhoDxHjp5d4Bc (Diakses pada 1 oktober, 2023)

Link Repository GitHub:

<u>ChrisCS50X/Algeo01-22135: Tugas Besar 01 IF2123 Aljabar Linear dan Geometri (github.com)</u>