Name - Saurabh Rajesh Pande

Roll no - 2447006, batch - A

problem statement - Implement K-Means clustering on Iris.csv dataset. Determine the number of clustersusing the elbow method.

In [5]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 from sklearn.cluster import KMeans
 from sklearn.preprocessing import StandardScaler

In []:
In [7]: df = pd.read_csv('Iris.csv')
In []:

In [8]: **df**

Out[8]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	lris- setosa
	1	2	4.9	3.0	1.4	0.2	lris- setosa
	2	3	4.7	3.2	1.3	0.2	lris- setosa
	3	4	4.6	3.1	1.5	0.2	lris- setosa
	4	5	5.0	3.6	1.4	0.2	Iris- setosa
	•••					···	
	145	146	6.7	3.0	5.2	2.3	lris- virginica
	146	147	6.3	2.5	5.0	1.9	lris- virginica
	147	148	6.5	3.0	5.2	2.0	lris- virginica
	148	149	6.2	3.4	5.4	2.3	lris- virginica
	149	150	5.9	3.0	5.1	1.8	lris- virginica

150 rows × 6 columns

```
In [9]: df.drop('Id',axis=1,inplace=True)
In [10]: df
```

Out[10]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	•••			•••	•••	
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica
	149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

```
In [11]: X = df[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']]
In [12]: scaler = StandardScaler()
         X_scaled = scaler.fit_transform(X)
In [13]: wcss = []
         for i in range(1, 11):
             kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, ran
             kmeans.fit(X_scaled)
             wcss.append(kmeans.inertia_)
         plt.figure(figsize=(8,5))
In [14]:
         plt.plot(range(1, 11), wcss, marker='o')
         plt.title('Elbow Method')
         plt.xlabel('Number of clusters')
         plt.ylabel('WCSS (Within-cluster sum of squares)')
         plt.grid(True)
         plt.show()
```



```
In [16]: df['Cluster'] = y_kmeans
```

```
In [17]: plt.figure(figsize=(8,5))
    plt.scatter(X_scaled[y_kmeans == 0, 0], X_scaled[y_kmeans == 0, 2], s=100, c='re
    plt.scatter(X_scaled[y_kmeans == 1, 0], X_scaled[y_kmeans == 1, 2], s=100, c='bl
    plt.scatter(X_scaled[y_kmeans == 2, 0], X_scaled[y_kmeans == 2, 2], s=100, c='gr
```

Out[17]: <matplotlib.collections.PathCollection at 0x262d35952d0>


```
In [18]: plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 2], s=300,
    plt.title('Clusters of Iris Data (SepalLength vs PetalLength)')
    plt.xlabel('Sepal Length (scaled)')
    plt.ylabel('Petal Length (scaled)')
    plt.legend()
    plt.grid(True)
    plt.show()
```

Clusters of Iris Data (SepalLength vs PetalLength)

In []: