Projeções

Prof. Dr. Bianchi Serique Meiguins Prof. Dr. Carlos Gustavo Resque dos Santos

Projeções (Álgebra Linear)

- É uma transformação linear que reduz a dimensão dos pontos. Ex: ${m P}^{n} o {m P}^{n-1}$
- Mais especificamente:
 - Projeta os pontos em um hiperplano.

Na geometria, um hiperplano pode ser um espaço vetorial, transformação afim ou o sub-espaço de dimensão n-1.

Em particular, num espaço tridimensional um hiperplano é um plano habitual. Num espaço bidimensional, um hiperplano é uma reta. Num espaço unidimensional, um hiperplano é um ponto.

Projeções Geométricas

- Também conhecida como Projeções Gráficas
- Objetiva as projeções do tipo: ${\it P}^3
 ightarrow {\it P}^2$
- Permite que objetos 3D sejam desenhados na tela 2D

Projeções planares

• Centro de Projeção

Projeção Paralela Ortográfica

- Centro de Projeção no infinito
- Linhas de projeção paralelas
- Linhas de projeção perpendiculares ao plano de projeção.

Projeção Paralela Ortográfica

Projeção Paralela Ortográfica

• Projeção no Plano XY (
$$z = 0$$
)
• [x' y' 0 1] $^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

• Projeção no Plano XY
$$(z = T_z)$$

• $[x' \ y' \ T_z \ 1]^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

Projeção Paralela Ortográfica

- Projeção no Plano YZ ($\mathbf{x} = T_x$)
 $[T_x \quad y' \quad z' \quad 1]^T = \begin{bmatrix} 0 & 0 & 0 & T_x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$
- Projeção no Plano XZ $(y = T_y)$ $[x' \quad T_y \quad z' \quad 1]^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & T_y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

Projeções Paralelas Axométricas

- Os planos do objeto são inclinados com relação ao plano de projeção
 - Isométrica: três eixos terão a mesma redução
 - Dimétrica: apenas dois eixos terão a mesma redução
 - Trimétrica: cada eixo sofrerá uma transformação de escala própria

Projeções Paralelas Axométricas

Trimétrica e Comparações

Axonometric Projections

Projeção Axométrica

- Matriz de Projeção
 - $[x' \quad y' \quad 0 \quad 1]^T = PO_z R_x R_y \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$
 - Para isométrica
 - $Ry(\alpha) \rightarrow \alpha = 45^{\circ}$
 - $Rx(\theta) \rightarrow \theta = 35.264^{\circ}$
 - Para dimétrica
 - $Ry(\alpha) \rightarrow \alpha = 45^{\circ}$
 - $Rx(\theta) \rightarrow \theta = pode \ variar$

Projeção Paralela Oblíqua

- Centro de Projeção no infinito
- Linhas de projeção paralelas
- Linhas de projeção possuem um ângulo de projeção

 O ângulo de projeção é medido em relação à normal do plano de projeção

Projeção Paralela Oblíqua

- Quando:
 - Ângulo de Projeção = 45º ou 30º
 - Os pontos projetados preservam suas medidas originais.

Esta projeção é chamada de Cavaleira ou *Cavalier*

Projeção Paralela Oblíqua

- Para manter uma noção de profundidade podemos considerar a profundidade com metade da sua medida original.
 - Temos a projeção Cabinet

Projeção Paralela Oblíqua

- Matriz de projeção Oblíqua
 - $[x' \ y' \ 0 \ 1]^T = \begin{bmatrix} 1 & 0 & \delta \cos(\theta) & 0 \\ 0 & 1 & \delta \sin(\theta) & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

 θ é o ângulo da projeção

 δ é um fator que estabelece a relação de profundidade em 3D com a elevação vertical da projeção.

 $\delta = 1$: Cavalier $\delta = 1/2$: Cabinet

Projeções

- Projeções Perspectivas:
 - A distância do centro de projeção para o plano de projeção é finita.
- Projeções Paralelas:
 - A distância do centro de projeção para o plano de projeção é <u>infinita</u>.

Projeção Perspectiva

- Representam a cena a partir de um ponto a uma distância <u>finita</u>
- Baseia-se no número de pontos de fuga
- Geram cenas mais realistas (aproximação com a visão humana)
- Não reproduzem as medidas reais do objeto

Perspectiva com 1 Ponto de Fuga

- 1 ponto de fuga: Na perspectiva com 1 ponto de fuga, objeto ou uma paisagem tridimensional é projetando um plano a partir de um ponto o ponto de fuga, que se encontra sobre a linha de horizonte imaginária.
- Todas as linhas de projeção do desenho convergem para esse ponto, que, apesar de poder não estar representado, tem uma relevante presença na estrutura do objetou paisagem.
- Os elementos mais distantes do olho são os que se encontram mais próximos do eixo de visão.

- C é o centro de projeção, f é a distância focal (C ao plano-imagem).
- C esta em Z=0

$$x_p = \frac{x \cdot d}{z} \qquad x_p = \frac{x}{z/d}$$

$$\Rightarrow z \qquad y_p = \frac{y \cdot d}{z} \qquad y_p = \frac{y}{z/d}$$

P(x,y,z)

Projeção Perspectiva – Caso mais Simples

$$x_p = \frac{x \cdot a}{z}$$
$$y_p = \frac{y \cdot d}{z}$$

$$x_p = \frac{x \cdot d}{z}$$

$$y_p = \frac{y \cdot d}{z}$$

$$P_{PER} = \begin{bmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & d & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{P_{PER}} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \cdot d \\ y \cdot d \\ z \cdot d \\ z \end{bmatrix} \qquad \begin{bmatrix} x \cdot d \\ y \cdot d \\ z \cdot d \\ z \end{bmatrix} / z = \begin{bmatrix} \frac{x \cdot d}{z} \\ \frac{y \cdot d}{z} \\ d \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \cdot d \\ y \cdot d \\ z \cdot d \\ z \end{bmatrix} / z = \begin{bmatrix} \frac{x \cdot d}{z} \\ \frac{y \cdot d}{z} \\ d \\ 1 \end{bmatrix}$$

Projeção Perspectiva – Caso mais Simples

$$\mathbf{C} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ -1 & -1 & -1 & -1 & -2 & -2 & -2 & -2 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{P_{PER} \cdot C} = \left[\begin{array}{ccccc} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right] \cdot \mathbf{C} = \left[\begin{array}{ccccccc} 0 & -1 & -1 & 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & -1 & 0 & 0 & -1 & -1 \\ 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 \\ -1 & -1 & -1 & -1 & -2 & -2 & -2 & -2 \end{array} \right]$$

Projeção Perspectiva – Caso mais Simples

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ -1 & -1 & -1 & -1 & -1 & -1 & -1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Projeção Perspectiva – Caso mais Simples

Projeção Perspectiva – Caso mais Simples

Projeção Perspectiva ou Cônica

• Pode-se utilizar as transformações de translação e translação inversa para utilizar o caso simples

Projeção Perspectiva - Outro Modelo

Perspectiva com 2 e 3 Pontos de Fuga

p=1/dx, q=1/dy, r=1/dz

Câmera Virtual

• A o gerar imagens de cenas 3D em computação gráfica, é comum fazermos uma analogia com uma máquina fotográfica.

 Posição do câmera, sua orientação, foco, tipo de projeção e a posição dos planos que limitam a visibilidade da cena.

