ALGORITMO DE CRIPTOGRAFIA DES

- Princípios da criptografia;
- Componentes criptográficos;
- Criptografia de chaves privadas ou simétricas (algoritmo DES);
- Outros algoritmos.

CRIPTOGRAFIA - ALGORITMOS

- Criptografia
 - O algoritmo de criptografia recebe uma chave secreta e o texto limpo produzindo o texto criptografado.

CRIPTOGRAFIA - ALGORITMOS

Decriptografia

 O algoritmo de criptografia recebe uma chave secreta (igual ou não a primeira) e o texto criptografado, produzindo o texto original.

CRIPTOGRAFIA - ALGORITMOS

CRIPTOGRAFIA SIMÉTRICA

- Algoritmos de chaves simétricas utilizam somente uma chave secreta;
- Chaves simétricas possuem comprimento em geral de 56 à 256 bits;
- A chave secreta é escolhida aleatoriamente;
- Quanto maior for a aleatoriedade da chave maior será a sua segurança.

CRIPTOGRAFIA SIMÉTRICA

- Desvantagens da criptografia simétrica:
 - Todos os pontos em comunicação precisam conhecer a chave secreta;
 - Surge o problema do gerenciamento e distribuição das chaves;
- Exemplos de algoritmos:
 - DES (proteção de arquivos de usuários e senhas), 3DES (sistemas de pagamento eletrônico), AES (sistemas de arquivos criptografados, tais como NTFS, criptografia em HD);
 - RC4 (Rivest Cipher) no WEP;
 - IDEA (International Data Encryption Algorithm) no PGP.

ESTRUTURA TRADICIONAL DE CIFRA DE BLOCO

- Uma cifra de fluxo é aquela que encripta um fluxo de dados digital um bit ou um byte por vez.
- Uma cifra de bloco é aquela em que um bloco de texto claro é tratado como um todo e usado para produzir um de texto cifrado com o mesmo tamanho.

CIFRA DE FEISTEL

- É uma estrutura simétrica usada na construção de cifras de bloco, o nome é uma homenagem ao físico e criptógrafo alemão Horst Feistel, que foi o pioneiro na pesquisa enquanto trabalhava na IBM (EUA); esta cifra é comumente conhecida como rede de Feistel.
- Em particular, Feistel propôs o uso de uma cifra que alterna substituições e permutações:
 - **Substituição**: cada elemento de texto claro ou grupo de elementos é substituído exclusivamente por um elemento ou grupo de elementos de texto cifrado correspondente.
 - Permutação: uma sequência de elementos de texto claro é substituída por uma permutação dessa sequência. Ou seja, nenhum elemento é acrescentado, removido ou substituído na sequência, mas a ordem em que os elementos aparecem nela é mudada.

CIFRA DE FEISTEL

Encriptação e decriptação de Feistel (16 rodadas):

CIFRA DE FEISTEL

- A execução exata de uma rede de Feistel depende da escolha dos seguintes parâmetros e recursos de projeto:
 - Tamanho de bloco: tamanhos de bloco maiores significam maior segurança (mantendo as outras coisas iguais), mas velocidade de encriptação/decriptação reduzida para determinado algoritmo.
 - **Tamanho de chave**: tamanho de chave maior significa maior segurança, mas pode diminuir a velocidade de encriptação/decriptação.
 - Número de rodadas: a essência da cifra de Feistel é que uma única rodada oferece segurança inadequada, mas várias proporcionam maior segurança. Um tamanho típico é de 16 rodadas.
 - Algoritmo de geração de subchave: maior complexidade nesse algoritmo deverá levar a maior dificuldade de criptoanálise.
 - Função F: novamente, maior complexidade geralmente significa

maior resistência à criptoanálise.

- História do DES (Data Encryption Standard)
 - Início dos anos 70: O Governo americano abre uma licitação para um padrão de criptografia para uso civil.
 - Em 15 de Maio de 1973, durante o *reinado* de Richard Nixon, o National Bureau of Standards (NBS) solicitou formalmente propostas de algoritmos criptográficos para proteger transmissões e armazenamento de dados.
 - 1977: O NSA (National Security Agency) altera a proposta da IBM (Lucifer), reduzindo o tamanho da chave de 128 bits para 56 bits e torna o algoritmo DES como padrão.

- Especificação para o padrão DES
 - Deve prover alto nível de segurança;
 - Deve ser completamente especificado;
 - Deve ser de fácil compreensão;
 - A segurança do algoritmo deve residir na chave.
 - Deve estar disponível a todos os usuários;
 - Deve ser adaptável a diversas aplicações;
 - Deve ser de uso eficiente;
 - Deve ser economicamente implementável em equipamentos eletrônicos.

- Características do DES:
 - Blocos cifrados de 64 bits;
 - Chave secreta de 56 bits (64 bits com 8 de verificação);
 - Mesma chave para cifrar/decifrar;
 - Facilmente implementável;
 - hardware ou software;
 - transposições e substituições;
 - Altamente não linear;
 - Saída é função muito complexa da entrada e da chave;
 - 56 bits resulta em 7.2x10^16 chaves;
 - Simulador:
 - http://des.online-domain-tools.com

- Força do DES:
 - Tempo médio exigido para uma busca exaustiva no espaço de chaves:

Tamanho de chave (bits)	Cifra	Número de chaves alternativas	Tempo exigido a 10 ⁹ decriptações/s	Tempo exigido a 10 ¹³ decriptações/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	2 ⁵⁵ ns = 1,125 ano	1 hora
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	2^{127} ns = 5,3 × 10^{21} anos	5,3 × 10 ¹⁷ anos
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	2^{167} ns = 5,8 × 10^{33} anos	5,8 × 10 ²⁹ anos
192	AES	$2^{192} \approx 6.3 \times 10^{57}$	2^{191} ns = 9,8 × 10^{40} anos	9,8 × 10 ³⁶ anos
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	2^{255} ns = 1,8 × 10^{60} anos	1,8 × 10 ⁵⁶ ano

- Considerações iniciais do DES
 - O DES trabalha com bits ou números binários (0s e 1s). Cada grupo de 4 bits corresponde a um valor hexadecimal, cuja base é 16. O binário "0001" corresponde ao número hexadecimal "1", o binário "1000" é igual ao número hexadecimal "8", "1001" é igual ao hexadecimal "9", "1010" é igual a o hexadecimal "A" e "1111" é igual ao hexadecimal "F".
 - O DES funciona encriptando grupos de 64 bits de mensagem, o que significa 16 números hexadecimais. Para realizar a encriptação, o DES utiliza "chaves" com comprimento aparente de 16 números hexadecimais, ou comprimento aparente de 64 bits. Entretanto, no algoritmo DES, cada oitavo bit da chave é ignorado, de modo que a chave acaba tendo o comprimento de 56 bits. Mas, para todos os efeitos, o DES é organizado baseando-se no número redondo de 64 bits (16 dígitos hexadecimais).

Considerações iniciais do DES

hexadecimais, ou 64 bits).

- Por exemplo, se tomarmos a mensagem clara hexadecimal 8787878787878787 e a encriptarmos com a chave DES hexadecimal 0E329232EA6D0D73, obteremos o texto cifrado hexadecimal 0000000000000000. Se o criptograma for decifrado com a mesma chave secreta, o resultado será o texto claro original 87878787878787 hexadecimal.
- Considere agora a seguinte mensagem: "Criptologia sempre NumaBoa". Esta mensagem clara possui 28 bytes (56 dígitos hexadecimais) de comprimento. Neste caso, para encriptar a mensagem, seu comprimento precisa ser ajustado com a adição de alguns bytes extras no final. Depois de decifrar a mensagem, estes bytes extras são descartados. É lógico que existem vários esquemas diferentes para adicionar bytes. Aqui nós iremos adicionar apenas zeros no final, de modo que a mensagem total seja um/múltiplo de 8 bytes (ou 16 dígitos).

Considerações iniciais do DES

Binário	Decimal	Hexa	Glifo
0010 0000	32	20	
0010 0001	33	21	1
0010 0010	34	22	
0010 0011	35	23	#
0010 0100	36	24	\$
0010 0101	37	25	%
0010 0110	38	26	&
0010 0111	39	27	2.4.0
0010 1000	40	28	(
0010 1001	41	29)
0010 1010	42	2A	*
0010 1011	43	2B	+
0010 1100	44	2C	
0010 1101	45	2D	873
0010 1110	46	2E	1
0010 1111	47	2F	1
0011 0000	48	30	0
0011 0001	49	31	1
0011 0010	50	32	2
0011 0011	51	33	3
0011 0100	52	34	4
0011 0101	53	35	5
0011 0110	54	36	6
0011 0111	55	37	7
0011 1000	56	38	8
0011 1001	57	39	9
0011 1010	58	3A	
0011 1011	59	3B	- ;
0011 1100	60	3C	<
0011 1101	61	3D	=
0011 1110	62	3E	>
0011 1111	63	3F	?

Binário	Decimal	Hexa	Glifo
0100 0000	64	40	@
0100 0001	65	41	Α
0100 0010	66	42	В
0100 0011	67	43	С
0100 0100	68	44	D
0100 0101	69	45	E
0100 0110	70	46	F
0100 0111	71	47	G
0100 1000	72	48	Н
0100 1001	73	49	1
0100 1010	74	4A	J
0100 1011	75	4B	K
0100 1100	76	4C	L
0100 1101	77	4D	M
0100 1110	78	4E	N
0100 1111	79	4F	0
0101 0000	80	50	P
0101 0001	81	51	Q
0101 0010	82	52	R
0101 0011	83	53	S
0101 0100	84	54	Т
0101 0101	85	55	U
0101 0110	86	56	V
0101 0111	87	57	W
0101 1000	88	58	Х
0101 1001	89	59	Y
0101 1010	90	5A	Z
0101 1011	91	5B	1
0101 1100	92	5C	1
0101 1101	93	5D	1
0101 1110	94	5E	A
0404 4444	0.5	rr	

Binário	Decimal	Hexa	Glifo
0110 0000	96	60	
0110 0001	97	61	а
0110 0010	98	62	b
0110 0011	99	63	С
0110 0100	100	64	d
0110 0101	101	65	е
0110 0110	102	66	f
0110 0111	103	67	g
0110 1000	104	68	h
0110 1001	105	69	i
0110 1010	106	6A	j
0110 1011	107	6B	k
0110 1100	108	6C	T
0110 1101	109	6D	m
0110 1110	110	6E	n
0110 1111	111	6F	0
0111 0000	112	70	р
0111 0001	113	71	q
0111 0010	114	72	r
0111 0011	115	73	s
0111 0100	116	74	t
0111 0101	117	75	u
0111 0110	118	76	v
0111 0111	119	77	w
0111 1000	120	78	х
0111 1001	121	79	У
0111 1010	122	7A	z
0111 1011	123	7B	{
0111 1100	124	7C	1
0111 1101	125	7D	}
0111 1110	126	7E	~

- Texto claro "Criptologia sempre NumaBoa" é, em hexadecimal.
- Cifrando a mensagem clara em blocos de 64 bits (16 dígitos hexadecimais), usando a chave DES "0E329232EA6D0D73", obtem-se o seguinte texto cifrado:
- al bf 4c 8c 1f 44 6a 4c ca 4d e4 28 6e de 99 50 f5 59 66 2b b5 09 d9 3c 45 e6 0a b2 5c 67 e5 85

Operação do DES

- permutação inicial
- 16 rodadas idênticas de função de substituição, cada uma usando uma diferente chave de 48 bits
- permutação final

Operação do DES

- permutação inicial
- 16 rodadas idênticas de função de substituição, cada uma usando uma diferente chave de 48 bits
- permutação final

■ Exemplo: Seja M o texto claro da mensagem M = 0123456789ABCDEF, onde M está no formato hexadecimal (base 16). Reescrevendo M em formato binário obtemos o bloco de texto de 64 bits:

```
M = 0000 \ 0001 \ 0010 \ 0011 \ 0100 \ 0101 \ 0110 \ 0111 \ 1000 \ 1001 \ 1010 \ 1011 \ 1100 \ 1101 \ 1110 \ 1111 
 L = 0000 \ 0001 \ 0010 \ 0011 \ 0100 \ 0101 \ 0110 \ 0111 
 R = 1000 \ 1001 \ 1010 \ 1011 \ 1100 \ 1101 \ 1110 \ 1111
```

Exemplo: seja K a chave hexadecimal K = 133457799BBCDFF1. Isto nos dá a chave binária (substituindo 1 = 0001, 3 = 0011, etc, agrupados em oito bits):

Transformação na chave

					((a) I	Inpu	it Ke	У							
	1		2		3		4		5		6		7		8	
	9		10		11		12		13		14		15		16	
	17		18		19		20		21		22		23		24	
	25		26		27		28		29		30		31		32	
	33		34		35		36		37		38		39		40	
	41		42		43		44		45		46		47		48	
	49		50		51		52		53		54		55		56	
	57		58		59		60		61		62		63		64	
			(b) Pe	rmu	ited	Cho	ice (One	(PC	-1)					
		57		49		41		33		25		17		9		
		1		58		50		42		34		26		18		
		10		2		59		51		43		35		27		
		19		11		3		60		52		44		36		
		63		55		47		39		31		23		15		
		7		62		54		46		38		30		22		
		14		6		61		53		45		37		29		
		21		13		5		28		20		12		4		
			(c) Pe	rmu	ted	Cho	ice 1	wo	(PC	-2)					
	14		17		11		24		1		5		3		28	
	15		6		21		10		23		19		12		4	
	26		8		16		7		27		20		13		2	
	41		52		31		37		47		55		30		40	
	51		45		33		48		44		49		39		56	
	34		53		46		42		50		36		29		32	
				(d)) Scł	nedu	ıle o	f Le	ft Sh	nifts						
Round number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bits rotated	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

A partir da chave de 56 bits, criar 16 subchaves de 48 bits

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

- **Exemplo**: Da chave original de 64 bits

 - Obtem-se a permutação de 56 bits
 - **K**+ = $1111000\ 0110011\ 0010101\ 0101111\ 0101010\ 1011001\ 1001111\ 0001111$
 - A seguir, dividimos esta chave em duas metades, esquerda C0 e direita D0, onde cada metade tem 28 bits.
- **Exemplo**: Da chave permutada **K**+ obtem-se
 - $\mathbf{C0} = 1111000 \ 0110011 \ 0010101 \ 0101111$

 $\mathbf{C}_0 = 1111000011001100101010101111$ $\mathbf{p}_0 = 0101010101100110011110001111$ $\mathbf{C_1} = 1110000110011001010101011111$ $\mathbf{D_1} = 1010101011001100111100011110$ $\mathbf{C}_2 = 1100001100110010101010111111$ $\mathbf{D}_2 = 0101010110011001111000111101$ $\mathbf{c}_3 = 000011001100101010111111111$ $\mathbf{p}_3 = 0101011001100111100011110101$ $\mathbf{C_4} = 00110011001010101011111111100$ $\mathbf{D}_{4} = 0101100110011110001111010101$ $\mathbf{c}_{5} = 11001100101010101111111110000$ $\mathbf{D}_{5} = 0110011001111000111101010101$ $\mathbf{C}_6 = 00110010101010111111111000011$ $\mathbf{p}_6 = 1001100111100011110101010101$ $\mathbf{C}_{7} = 110010101010111111111100001100$ $\mathbf{D}_{2} = 011001111000111101010101010$ $\mathbf{C}_{8} = 00101010101111111110000110011$ $\mathbf{p}_{a} = 1001111000111101010101011001$ \mathbf{c}_9 = 0101010101111111100001100110 $\mathbf{D}_9 = 0011110001111010101010110011$ $\mathbf{C}_{10} = 0101010111111110000110011001$ $\mathbf{p}_{10} = 1111000111101010101011001100$ $\mathbf{C}_{11} = 01010111111111000011001100101$ $\mathbf{D}_{11} = 1100011110101010101100110011$ $\mathbf{C}_{12} = 01011111111100001100110010101$ $\mathbf{p}_{12} = 00011110101010110011001111$ $\mathbf{C}_{13} = 01111111110000110011001010101$ $\mathbf{D_{13}} = 0111101010101011001100111100$ $C_{14} = 11111111000011001100101010101$ $\mathbf{D}_{14} = 11101010101011001100111110001$ $C_{15} = 1111100001100110010101010111$

D₁₅ = 10101010101100110011111000111 **C**₁₆ = 11110000110011001010101111 **D**₁₆ = 01010101011100111110001111

Transformação na chave

					1	(a)	Inpu	ıt Ke	y							
	1		2		3		4		5		6		7		8	
	9		10		11		12		13		14		15		16	
	17		18		19		20		21		22		23		24	
	25		26		27		28		29		30		31		32	
	33		34		35		36		37		38		39		40	
	41		42		43		44		45		46		47		48	
	49		50		51		52		53		54		55		56	
	57		58		59		60		61		62		63		64	
			(b) Pe	rmu	ited	Cho	ice (One	(PC	-1)					
		57		49		41		33		25		17		9		
		1		58		50		42		34		26		18		
		10		2		59		51		43		35		27		
		19		11		3		60		52		44		36		
		63		55		47		39		31		23		15		
		7		62		54		46		38		30		22		
		14		6		61		53		45		37		29		
		21		13		5		28		20		12		4		
			(c) Pe	rmu	ited	Cho	ice 7	۲wo	(PC	-2)					
	14		17		11		24		1		5		3		28	
	15		6		21		10		23		19		12		4	
	26		8		16		7		27		20		13		2	
	41		52		31		37		47		55		30		40	
	51		45		33		48		44		49		39		56	
	34		53		46		42		50		36		29		32	
				(d) Scl	hedu	ıle o	f Le	ft Sh	nifts						
Round number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bits rotated	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

■ São montadas as chaves **Kn**, para 1<=**n**<=16, aplicando a tabela de permutação em cada um dos pares concatenados **CnDn**. Cada par possui 56 bits, porém **PC**-2 usa apenas 48 deles.

		PC	-2		
 14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

- Portanto, o primeiro bit de **Kn** é o 14° bit de **CnDn**, o segundo bit o 17°, e assim sucessivamente, terminando com o 48° bit de **Kn** sendo o 32° de **CnDn**.
- **Exemplo**: Para a primeira chave tem-se:
 - **C1D1** = 1110000 1100110 0101010 1011111 1010101 0110011 0011110 0011110
 - a qual, após aplicar a permutação **PC-2** transforma-se em
 - **K1** = 000110 110000 001011 101111 111111 000111 000001 110010

Para outras chaves tem-se:

```
\mathbf{K}_2 = 011110 011010 111011 011001 110110 111100 100111 100101
\mathbf{K}_3 = 010101 \ 011111 \ 110010 \ 001010 \ 010000 \ 101100 \ 111110 \ 011001
\mathbf{K_4} = 011100 \ 101010 \ 110111 \ 010110 \ 110110 \ 110011 \ 010100 \ 011101
\mathbf{K}_{5} = 011111 001110 110000 000111 111010 110101 001110 101000
\mathbf{K}_6 = 011000 111010 010100 111110 010100 000111 101100 101111
\mathbf{K}_7 = 111011 001000 010010 110111 111101 100001 100010 111100
\mathbf{K}_8 = 111101 111000 101000 111010 110000 010011 101111 111011
\mathbf{K}_9 = 111000 001101 101111 101011 111011 011110 011110 000001
\mathbf{K}_{12} = 011101 010111 000111 110101 100101 000110 011111 101001
\mathbf{K}_{13} = 100101 111100 010111 010001 111110 101011 101001 000001
\mathbf{K_{14}} = 010111 \ 110100 \ 001110 \ 110111 \ 111100 \ 101110 \ 011100 \ 111010
\mathbf{K_{15}} = 101111 111001 000110 001101 001111 010011 111100 001010
\mathbf{K}_{16} = 110010 110011 110110 001011 000011 100001 011111 110101
```

- Codificar cada bloco de 64 bits de dados (mensagem)
- Tabelas de permuta

		(a) Ini	tial Per	mutatio	on (IP)		
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7
	(b) I	nverse	Initial	Permu	tation (IP ¹)	
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25
	(0	:) Ехра	nsion F	ermut	ation (I	Ξ)	
	32	1	2	3	4	5	
	4	5	6	7	8	9	
	8	9	10	11	12	13	
	12	13	14	15	16	17	
	16	17	18	19	20	21	
	20	21	22	23	24	25	
	24	25	26	27	28	29	
	28	29	30	31	32	1	
	(d) Peri	mutatio	n Func	tion (P)	
16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Permutação inicial (IP)

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

- Antes
 - M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110
- Depois
 - IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010 1010 1111

Obtem-se **L0** e **R0** de **IP**

```
\mathbf{L}_0 = 1100 1100 0000 0000 1100 1100 1111 1111 \mathbf{R}_0 = 1111 0000 1010 1010 1111 0000 1010 1010
```

- Codificar cada bloco de 64 bits de dados (mensagem)
- Tabelas de permuta

		(a) Ini	tial Per	mutatio	on (IP)		
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7
	(b) I	nverse	Initial	Permu	tation (IP ¹)	
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25
	10.51	:) Ехра	nsion F		ation (E	17.50	
	32	1	2	3	4	5	
	4	5	6	7	8	9	
	8	9	10	11	12	13	
	12	13	14	15	16	17	
	16	17	18	19	20	21	
	20	21	22	23	24	25	
	24	25	26	27	28	29	
	28	29	30	31	32	1	
	(d) Peri	nutatio	n Func	tion (P)	
16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Esquema de uma iteração do DES

■ Para i=1:

```
\mathbf{K_1} = 000110 110000 001011 101111 111111 000111 000001 110010 
 \mathbf{L_1} = \mathbf{R_0} = 1111 0000 1010 1010 1111 0000 1010 1010 
 \mathbf{R_1} = \mathbf{L_0} + \mathbf{f}(\mathbf{R_0}, \mathbf{K_1})
```

Tabela de expansão (E)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

A entrada R possui 32 bits. Essa entrada é primeiro expandida em 48 bits usando permutação mais uma duplicação de 16 bits dos R bits.

 $\mathbf{R}_0 = 1111 \quad 0000 \quad 1010 \quad 1010 \quad 1111 \quad 0000 \quad 1010 \quad 1010$ $\mathbf{R}_0 = 011110 \quad 100001 \quad 010101 \quad 010101 \quad 011110 \quad 100001 \quad 010101 \quad 010101$

Esquema de uma iteração do DES

- Cálculo de F(R,K)
 - A seguir, no cálculo de f, é feito um XOR na saída E(Rn-1) com a chave Kn.
 O motivo de se utilizar o XOR lógico é porque este é reversível. Se A xor B = C, então A xor C = B e B xor C = A. A reversibilidade é importante para reverter o processo quando quiser decifrar a mensagem cifrada.

$$\mathbf{K_n} + \mathbf{E}(\mathbf{R_{n-1}})$$

```
\mathbf{K_1} = 000110 110000 001011 101111 111111 000111 000001 110010 \mathbf{E}(\mathbf{R}_0) = 011110 100001 010101 010101 011110 100001 010101 010101 \mathbf{K_1} + \mathbf{E}(\mathbf{R}_0) = 011000 010001 011110 111010 100001 100110 010100 100111
```

Cálculo de F(R,K)

S-boxes

- Supondo que o primero grupo (S1) seja composto dos seguintes bits (110010) na entrada.
- A linha é (1,0)=2 terceira
 linha e a coluna é (1001)=9
 décima coluna.
- A saída do grupo (S1) será
 12 (1100).

S_1	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
		1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
S_2	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
	3	13	4	7	15	2	8	14	12	O	1	10	6	9	11	5
	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
S ₃	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
3	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
S_4	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
S_5	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
S ₆	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
- 25	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
S ₇	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
-4	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
S_8	1 7	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
		11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
	2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

- Exemplo: Para a primeira rodada, obtem-se como saída das oito caixas S:
 - **K1** + $\mathbf{E}(\mathbf{R0})$ = 011000 010001 011110 111010 100001 100110 010100 100111
 - **S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)** = 0101 1100 1000 0010 1011 0101 1001 0111

Permutação (P)

Permutação (P)

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

- Exemplo: Da saída das oito caixas S
 - **S1**(**B1**)**S2**(**B2**)**S3**(**B3**)**S4**(**B4**)**S5**(**B5**)**S6**(**B6**)**S7**(**B7**)**S8**(**B8**) = 0101 1100 1000 0010 1011 0101 1001 0111
 - Obtem-se

Esquema de uma iteração do DES

Agora já se tem todos os elementos necessários para calcular R1, ou seja, $\mathbf{R1} = \mathbf{L0} + \mathbf{f}(\mathbf{R0}, \mathbf{K1})$

```
L_0 = 1100 1100 0000 0000 1100 1100 1111 1111 f(R_0, K_1) + 0010 0011 0100 1010 1010 1001 1011 1011 R_1 = 1110 1111 0100 1010 0110 0101 0100 0100
```

Na próxima rodada obtem-se L2 = R1, que é o sub-bloco que foi calculado, e depois calcular R2 = L1 + f(R1, K2) e assim sucessivamente por 16 rodadas. No final da décima sexta rodada tem-se os sub-blocos L16 e R16. Invertendo então a ordem dos dois sub-blocos num bloco de 64 bits, ou seja, R16L16, e aplica-se permutação final IP-1.

- Codificar cada bloco de 64 bits de dados (mensagem)
- Tabelas de permuta

(a) Initial Permutation (IP)													
58	50	42	34	26	18	10	2						
60	52	44	36	28	20	12	4						
62	54	46	38	30	22	14	6						
64	56	48	40	32	24	16	8						
57	49	41	33	25	17	9	1						
59	51	43	35	27	19	11	3						
61	53	45	37	29	21	13	5						
63	55	47	39	31	23	15	7						
(b) Inverse Initial Permutation (IP1)													
40	8	48	16	56	24	64	32						
39	7	47	15	55	23	63	31						
38	6	46	14	54	22	62	30						
37	5	45	13	53	21	61	29						
36	4	44	12	52	20	60	28						
35	3	43	11	51	19	59	27						
34	2	42	10	50	18	58	26						
33	1	41	9	49	17	57	25						
	(0	:) Ехра	nsion F	ermut	ation (I	Ξ)							
	32	1	2	3	4	5							
	4	5	6	7	8	9							
	8	9	10	11	12	13							
	12	13	14	15	16	17							
	16	17	18	19	20	21							
	20	21	22	23	24	25							
	24	25	26	27	28	29							
	28	29	30	31	32	1							
(d) Permutation Function (P)													
16	7	20	21	29	12	28	17						
1	15	23	26	5	18	31	10						
2	8	24	14	32	27	3	9						
19	13	30	6	22	11	4	25						

Permutação final

	101-00	-0101				101111111	- 1-4
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

- **Exemplo**: Se processarmos todos os 16 blocos usando o método definido previamente, obteremos, na 16ª rodada
 - **L16** = 0100 0011 0100 0010 0011 0010 0011 0100
 - **R16** = 0000 1010 0100 1100 1101 1001 1001 0101
- Invertendo a ordem destes dois blocos e aplicando a permutação final em
 - **R16L16** = 00001010 01001100 11011001 10010101 01000011 01000010 00110010 00110100

 - formato hexadecimal, é 85E813540F0AB405.
 - Portanto, a forma cifrada de M = 0123456789ABCDEF é C = 85E813540F0AB405.
- Decifrar é simplesmente o inverso de cifrar, seguindo os mesmos passos acima descritos porém invertendo a ordem das sub-chaves aplicadas.

- Desconfiança do padrão DES?
 - O DES foi adotado oficialmente como padrão de encriptação nos EUA em julho de 1977;
 - A segurança do algoritmo foi questionada por muitos especialistas;
 - Sempre houve muita especulação sobre:
 - Comprimento da chave (56 bits);
 - Chaves fracas (chave inicial é modificada para se obter a sub-chave para cada rodada do algoritmo, certas chaves iniciais são **chaves fracas**), 64 chaves fracas são insignificantes quando comparadas com o conjunto de mais de 72 quatrilhões de chaves possíveis (2^56), mas se uma chave for escolhida ao acaso, é mínima a possibilidade de pegar justamente uma das fracas
 - O número de iterações (16 iterações);
 - A estrutura das caixas S (S-boxes) as caixas S, com todas aquelas constantes sem uma razão aparente para a disposição usada, eram particularmente misteriosas, alguns especialistas temiam que a NSA (National Security Agency) tivesse colocado um

"alçapão" (trapdoor) no algoritmo para que a agência tivesse um meio fácil de decifrar mensagens.

Deep Crack: 27 placas, cada uma com 64 chips, e é capaz de testar 90 bilhões de chaves por segundo.

- Propostas para maior segurança
 - Triple-DES é apenas o DES efetuado três vezes com duas chaves usadas numa determinada ordem.
 - O triple-DES também pode ser feito usando-se três chaves diferentes, ao invés de apenas duas.
 - O espaço das chaves pode ser de 2^{112} ou de 2^{168} .
 - Usar o AES com 128, 192, 256 bits de chave

- Em outubro de 2000, o NIST anunciou que o bloco AES / Rijndael
 - A cifra foi escolhida como substituta do DES.
 - A especificação original do Advanced Encryption Standard (AES) exigia o processamento de blocos de 128 bits, mas o Rijndael excedeu essa especificação, permitindo uso de um tamanho de bloco igual a qualquer um dos três comprimentos de chave. O número de rodadas de criptografia depende do tamanho da chave escolhida:
 - Chaves de 128 bits exigem 10 rodadas de criptografia.
 - Chaves de 192 bits exigem 12 rodadas de criptografia.
 - Chaves de 256 bits requerem 14 rodadas de criptografia.

BIBLIOGRAFIA

Bibliografia:

- STALLINGS, W. Criptografia e Segurança de Redes Princípios e Práticas 6ed., Pearson, 2015.
- DES Simulator. Disponível em: http://des.online-domain-tools.com>. Acesso em: 09.08.2024.
- AES Rijndael Cipher explained as a Flash animation. https://www.youtube.com/watch?reload=9&v=gP4PqVGudtg. Acesso em: 09.08.2024.
- Notas de aula.