8: State Space modeller og Kalman Filteret

Tidsrækkeanalyse

Kasper Rosenkrands

State space modeller

Tanken bag **state space modeller** er, at vi har en skjult (latent) proces x_t som ikke er observerbar. (*Denne antages ofte af være en markovkæde*).

Grundet Markov vil der være afhængighed mellem x'erne.

Vi er interesserede i at modellere x_t , dette er dog ikke direkte muligt.

Man kan **inddirekte observere** x_t gennem en lineær transformeret version y_t , hvor der er tilføjet støj.

Betinget på $\{x_t\}_{pprox \in \mathbb{Z}}$ er

Måleligning og tilstandsligning

Generelt skrives en state space model ud fra to ligninger.

$$\begin{aligned} & \boldsymbol{x}_t &= \boldsymbol{\Phi} & \boldsymbol{x}_{t-1} + \boldsymbol{w}_t \\ & _{p \times 1} & _{p \times p} & _{p \times 1} & _{p \times 1} \end{aligned} \end{aligned}$$
 (Tilstandsligningen)
$$\begin{aligned} & \boldsymbol{y}_t &= \boldsymbol{A}_t & \boldsymbol{x}_t + \boldsymbol{v}_t \\ & _{q \times 1} & _{q \times p} & _{p \times 1} & _{q \times 1} \end{aligned}$$
 (Måleligningen)

AR(1) med støj

I en $\mathsf{AR}(1)$ med observationel støj har henholdsvis state-ligningen og observationsligningen formen

$$x_t = \phi x_{t-1} + w_t$$
$$y_t = x_t + v_t,$$

hvor $\{w_t\}_{t\in\mathbb{Z}}$ og $\{v_t\}_{t\in\mathbb{Z}}$ er to uafhængige hvide støje. Da er $\pmb{\Phi}=\phi$, $\pmb{A}_t=1$.

Filtrering, udjævning og forecast

Formålet med at studere en state space model er at få estimeret den underliggende uobserverede proces \mathbf{x}_t givet data $Y_s = \{\mathbf{y}_1, \dots, \mathbf{y}_s\}$ til tid s.

- ▶ Når t > s så kaldes problemet forecasting
- Når t = s kaldes problemet filtrering
- Når t < s så kaldes probelmet smoothing