Procesos Estocásticos: Demostraciones Capitulo 1

Alejandro Daniel José Gómez Flórez

Teorema:

$$P^{(n)} = P^{(m)} \cdot P^{(n-m)}$$
, en particular $P^{(n)} = P \cdot P \cdots P$ (n veces) $= P^n$.

Demostración:

Sea
$$P_{ij}^{(n)} = P(X_n = j \mid X_0 = i)$$
. Para $0 \le m \le n$:

$$\begin{split} P_{ij}^{(n)} &= P(X_n = j \mid X_0 = i) \\ &= \sum_{k \in S} P(X_n = j, X_m = k \mid X_0 = i) \quad \text{(partición de la probabilidad total respecto a } X_m) \\ &= \sum_{k \in S} P(X_n = j \mid X_m = k, X_0 = i) \cdot P(X_m = k \mid X_0 = i) \\ &= \sum_{k \in S} P(X_n = j \mid X_m = k) \cdot P(X_m = k \mid X_0 = i) \quad \text{(propiedad de Markov)} \\ &= \sum_{k \in S} P_{kj}^{(n-m)} \cdot P_{ik}^{(m)} \\ &= \sum_{k \in S} P_{ik}^{(m)} P_{kj}^{(n-m)} = [P^{(m)} \cdot P^{(n-m)}]_{ij} \end{split}$$

Por tanto $P^{(n)} = P^{(m)} \cdot P^{(n-m)}$.

Teorema: Para una cadena de Markov con matriz de transición $P = (P_{ij})$:

- $\sum_{n=0}^{\infty} P_{ii}^{(n)} = \infty$ si, y solo si el estado i es recurrente
- $\sum_{n=0}^{\infty}P_{ii}^{(n)}<\infty$ si, y solo si el estado i es transitorio

Demostración:

Sea $N_i = \sum_{n=0}^{\infty} \mathbf{1}_{\{X_n = i\}}$ el número de visitas al estado i y $\mathbf{1}_{\{X_n = i\}}$ la función indicadora de que el estado X_n es i.

Sea $f_{ii}^{(n)} = P(X_n = i, X_{n-1} \neq i, \dots, X_0 \neq i)$ la probabilidad retornar a i en n pasos. Sea $f_i = \sum_{n=0}^{\infty} f_{ii}^n$ la probabilidad regresar al estado i eventualmente.

El número de visitas N_i sigue:

• Con probabilidad $(1 - f_i)$: exactamente 1 visita (no regresa)

- Con probabilidad $f_i(1-f_i)$: exactamente 2 visitas (regresa una vez)
- Con probabilidad $f_i^2(1-f_i)$: exactamente 3 visitas (regresa dos veces)

• :

Por tanto:

$$\mathbb{E}_{i}[N_{i}] = 1(1 - f_{i}) + f_{i}(1 - f_{i}) + f_{i}^{2}(1 - f_{i}) + \cdots$$

$$= \frac{1}{1 - f_{i}} < \infty \quad \text{(serie geométrica)}$$

Como $\mathbb{E}_i[N_i] = \sum_{n=0}^{\infty} P_{ii}^{(n)}$, tenemos:

- Si *i* es recurrente: $f_i = 1 \Rightarrow \mathbb{E}_i[N_i] = \infty \Rightarrow \sum_{n=0}^{\infty} P_{ii}^{(n)} = \infty$
- Si *i* es transitorio: $f_i < 1 \Rightarrow \mathbb{E}_i[N_i] = \frac{1}{1-f_i} < \infty \Rightarrow \sum_{n=0}^{\infty} P_{ii}^{(n)} < \infty$

Teorema: Si la cadena de Markov es irreducible y sus estados son recurrentes positivos, entonces la medida estacionaria π existe y es única. Además:

$$\pi_i = \frac{1}{m_i}, \quad i \in S$$

donde m_i es el **tiempo medio de retorno** al estado i, es decir,

 $m_i = E_i[T_i]$ (esperanza del tiempo hasta regresar a i partiendo de i)

Demostración:

Para una cadena irreducible y recurrente positiva, consideremos la fracción de tiempo que la cadena pasa en cada estado. La fracción de tiempo en el estado j hasta el tiempo n es:

$$\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{\{X_k = j\}} \to \pi(j) \quad \text{cuando } n \to \infty$$

Por otro lado, si $N(j) = \sum_{k=1}^{n} \mathbf{1}_{\{X_k = j\}}$ es el número de visitas al estado j hasta el tiempo n, entonces $\frac{n}{N(j)}$ converge al tiempo promedio entre visitas sucesivas a j, que es $m_j = E_j[T_j]$.

Por tanto:

$$\lim_{n \to \infty} \frac{N(j)}{n} = \lim_{n \to \infty} \frac{1}{n/N(j)} = \frac{1}{m_j}$$

Definimos $\pi_j = \frac{1}{m_j}$. Para verificar que π satisface $\pi P = \pi$:

Consideremos un ciclo de retorno al estado i. Durante este ciclo, el número esperado de visitas a cualquier estado j es finito (pues la cadena es recurrente positiva). La suma de todas las visitas esperadas durante el ciclo debe ser igual a la longitud esperada del ciclo m_i .

Por la propiedad de Markov y la irreducibilidad, la proporción de tiempo en cada estado es independiente del estado inicial, lo que garantiza que π es la única distribución que satisface $\pi P = \pi$ con $\sum_j \pi_j = 1$.

Teorema: Sea X_n una cadena de Markov $\{X_n\}_{n\geq 0}$ cuyos estados son irreducibles; recurrentes positivos y aperiódicos. Entonces:

$$\lim_{n \to \infty} P^n(x, y) = \pi(y)$$

Demostración:

Por ser la cadena irreducible y recurrente positiva, existe una única distribución estacionaria π tal que $\pi P = \pi$ y $\sum_y \pi(y) = 1$.

Sea $\mu_n^{(x)}$ la distribución de X_n dado $X_0 = x$, entonces $\mu_n^{(x)}(y) = P^n(x, y)$. La distancia en variación total:

$$\|\mu_n^{(x)} - \pi\|_{TV} = \frac{1}{2} \sum_{y \in S} |P^n(x, y) - \pi(y)|$$

Por la aperiodicidad, existe N tal que para todo $n \ge N$ se tiene $P^n(x,x) > 0$ para todo x.

Usando acoplamiento, para cadenas irreducibles, recurrentes positivas y aperiódicas, existe $\rho < 1$ tal que:

$$\|\mu_n^{(x)} - \pi\|_{TV} \le C\rho^n$$

Por tanto:

$$|P^n(x,y) - \pi(y)| \le 2\|\mu_n^{(x)} - \pi\|_{TV} \le 2C\rho^n \to 0$$

Así: $\lim_{n\to\infty} P^n(x,y) = \pi(y)$.