

AOD516/AOI516/AOY516

30V N-Channel AlphaMOS

General Description

- Latest Trench Power MOSFET technology
- Very Low R_{DS(on)} at 4.5V V_{GS}
- Low Gate Charge
- High Current Capability
- RoHS and Halogen-Free Compliant

Application

- DC/DC Converters in Computing
- Isolated DC/DC Converters in Telecom and Industrial

Product Summary

30V I_D (at V_{GS} =10V) 46A $R_{DS(ON)}$ (at V_{GS} =10V) $< 5 \text{m}\Omega$ $R_{DS(ON)}$ (at $V_{GS} = 4.5V$) $< 10 \text{m}\Omega$

100% UIS Tested 100% R_q Tested

Units

TO252 DPAK: AOD516 TO-251B IPAK: AOI516/AOY516 Top View **Bottom View Bottom View**

Absolute Maximum Ratings T_A=25℃ unless otherwise noted Parameter Symbol Maximum Drain-Source Voltage V_{DS}

Gate-Source Voltage V_{GS} ±20 ٧ T_C=25℃ 46 Continuous Drain I_D Current G T_C=100℃ 36 Α Pulsed Drain Current C 170 I_{DM} T_A=25℃ 18 Continuous Drain Α I_{DSM} T_A=70℃ 14 Current Avalanche Current C 29 I_{AS} Avalanche energy L=0.1mH ^C 42 mJ E_AS 36 V_{DS} Spike 100ns V V_{SPIKE} T_C=25℃ 50 P_D W Power Dissipation B T_C=100℃ 25 T_A=25℃ 2.5 W P_{DSM} Power Dissipation A T_A=70℃ 1.6 T_J, T_{STG} Junction and Storage Temperature Range -55 to 175 \mathcal{C}

Thermal Characteristics									
Parameter		Symbol Typ		Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	D	16	20	€/M				
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	41	50	€/W				
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	2.5	3	€/M				

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Parameter Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		30			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V				1	μА
	Zero Gate Voltage Drain Current	T _J				5	μΑ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		1.8	2.2	2.6	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =20A			4	5	mΩ
			T _J =125℃		5.4	6.8	
		V_{GS} =4.5V, I_D =20A			7.1	10	mΩ
g _{FS}	Forward Transconductance	V _{DS} =5V, I _D =20A			83		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.7	1	V
Is	Maximum Body-Diode Continuous Current ^G					46	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			1333		pF
C _{oss}	Output Capacitance				512		pF
C_{rss}	Reverse Transfer Capacitance			42		pF	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		0.8	1.7	2.6	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge	-V _{GS} =10V, V _{DS} =15V, I _D =20A			18.3	33	nC
Q _g (4.5V)	Total Gate Charge				8.5	17	nC
Q_{gs}	Gate Source Charge				4.8		nC
Q_{gd}	Gate Drain Charge				2.5		nC
t _{D(on)}	Turn-On DelayTime	V_{GS} =10V, V_{DS} =15V, R_L =0.75 Ω , R_{GEN} =3 Ω			7.5		ns
t _r	Turn-On Rise Time				4.8		ns
t _{D(off)}	Turn-Off DelayTime				23.3		ns
t _f	Turn-Off Fall Time				4.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs			14.1		ns
Q _{rr}	Body Diode Reverse Recovery Charge I _F =20A, dI/dt=500A/μs			16.2		nC	

A. The value of $R_{a|a}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_a =25° C. The Power dissipation P_{DSM} is based on R _{8JA} and the maximum allowed junction temperature of 150° C. The value in any given application depends

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

B. The power dissipation P_D is based on T_{J(MAX)}=175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature T_{J(MAX)}=175° C.

D. The $R_{0,L}$ is the sum of the thermal impedance from junction to case $R_{0,C}$ and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

E. The static characteristics in Figures 1 to 8 are obtained using color: blue; of the static characteristics in Figures 1 to 8 are obtained using color: blue; of the static characteristics in Figures 1 to 8 are obtained using color: blue; of the static characteristics in Figures 1 to 8 are obtained using color: blue; of the static characteristics in Figures 1 to 8 are obtained using color: blue; of the static characteristics in Figures 2. The static characteristics 2. The static

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Temperature (℃) Figure 4: On-Resistance vs. Junction Temperature (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 14: Single Pulse Power Rating Junction-toAmbient (Note H)

Pulse Width (s)
Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)

Rev.5.0: July 2013 **www.aosmd.com** Page 5 of 6

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

