NOM - PRÉNOM:

GROUPE:

DEUG SCIENCES M.I.A.S. première année

Informatique - S.I.M.E. Devoir surveillé du 24 mars 2004

durée : 1 heure

Sans document, ni calculatrice portables (micro, messagerie et téléphone) interdits

AVERTISSEMENT : Tous les exercices sont totalement indépendants. Toute réponse non justifiée sera considérée comme fausse.

Sur la conjecture de Syracuse

Exercice 1: Question de cours

Quelle différence y-a-t-il entre un théorème et une conjecture ?

Exercice 2: Une proposition

La proposition suivante est-elle vraie ou fausse? Pour tout n naturel non nul, il existe un entier u_0 tel que le vol de u_0 atteigne une altitude égale ou supérieure à nu_0

Exercice 3: Sur l'algorithme de Floyd

Q 1. Considérons la suite numérique définie par $u_0=13$ et la relation de récurrence $u_n=f(u_{n-1})$ pour n>0 (f étant une fonction quelconque) et dont les valeurs successives sont : 13, 17, 25, 11, 3, 37, 2, 5, 7, 12, 8, 2, 5, 7, 12, 8, 2, 5, 7, 12, 8, 2, 5, 7, 12, 8, ... puis une répétition de 2, 5, 7, 12, 8. Décrivez sur cette suite l'algorithme de Floyd.

Q 2. Pour une autre suite (v_n) , avec l'algorithme de Floyd, on a trouvé que $v_{62} = v_{124}$. Que peut-on en déduire quant à la période de la suite (v_n) ?

Sur le thème du Casino

Exercice 4	:	Question	de	cours

En quoi consiste la martingale $g\'{e}om\'{e}trique$? Pourquoi, en th\'eorie, est-elle infaillible ? Pourquoi ne l'est-elle pas en pratique ?

Exercice 5: Probabilités

 ${f Q}$ 1 . Calculez la probabilité s de tripler sa fortune en utilisant la technique du jeu hardi à un jeu où la probabilité de gagner est p.

 ${\bf Q}$ ${\bf 2}$. Quelle est cette probabilité si on joue n'importe comment à pile ou face

Un peu de MAPLE

Exercice 6: Codez en Maple, sans utiliser la fonction log la fonction

$$\begin{array}{cccc} log_binaire: & \mathbb{N}^* & \longrightarrow & \mathbb{N} \\ & n & \longmapsto & \lfloor log_2(n) \rfloor \end{array}$$

 $(Rappel: c'est le plus grand entier k tel que <math>2^k \le n$, exemple $log_binaire(9) = 3)$