Probability Theorems and Metrics

Basics of Machine Learning

Jul 20, 2023 Thu 4 PM

Kwangwoon University MI:RU

Kwangwoon Intelligence Study

Artificial Intelligence

In this course, you will learn

Part 1 – Metrics for Performance check

- Performance Metrics
 - Regression
 - Mean Absolute Error (MAE)
 - Mean Squared Error (MSE)
 - Root Mean Squared Error (RMSE)
 - Classification
 - Confusion Matrix
 - Accuracy
 - Precision
 - Sensitivity
 - Specificity
 - F1 Score
 - ROC and AUC

Part 2 – Probability Theorems

- Concept of Likelihood
- Bayes Theorem

Classification and Regression

Classification

Discrete Problem!(0 or 1)

Classification

Continuous Problem!

Garbage In Garbage Out

Regression

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

Where,

ŷ – predicted value of y

 \bar{y} – mean value of y

Regression

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

Common Problems

Loss is positive Scale dependant

Regression

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

	MAE	MSE	RMSE
PROS	Intuitive	Good for big errors	Good for big errors
CONS	Not differentiable at 0	Hard to deal with large value, Not robust	Not Intuitive

Regression

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

Strategy

Use RMSE as Loss function
And
Use MAE for performance check only!

Classification

Confusion matrix

Classification

A simple example - Cat and dog

Classification

PREDICTED VALUES
Positive Negative

TP

TN

Negative

Negative

TN

Accuracy (ACC), 정확도

Precision, 정밀도 Positive Predictive Value (PPV)

PREDICTED VALUES

Precision =
$$\frac{TP}{TP + FP}$$
 = $\frac{Predictions Actually Positive}{Total Predicted positive}$ = $\frac{6}{6 + 2}$ = 0.75

PREDICTED VALUES

Sensitivity(Recall), 민감도 True Positive Rate (TPR)

Specificity, 특이도 True Negative Rate (TNR)

F1-score

PREDICTED VALUES

$$F1_score = 2 \cdot \frac{1}{\frac{1}{Sensitivity} + \frac{1}{Precision}} = 2 \cdot \frac{Precision \cdot Sensitivity}{Precision + Sensitivity}$$

F1-score

AUC and ROC

ROC curve (receiver operating characteristic curve)

AUC (Area Under Curve)

Why/When do we need to perform scaling?

PCA Clustering (k-NN, K-means, DBSCAN, ...) Deep Neural Network

Tree based model (Decision Tree, Random Forest, Boosting, ...)

Distance-dependent Need to be scaled!

Distance-independent Doesn't need to be scaled!

Normalization

Normalization

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$
Minmax scaling

$$z = \frac{x - \mu}{\sigma}$$

Standard scaling

Probability vs Likelihood

$$Probability = P(X|D)$$

X: Observed

value

D: Distribution

 $P(weight\ between\ 32\ and\ 34\ grams|mean=32\ and\ stdev=2.5)$

Probability vs Likelihood

 $P(weight\ between\ 32\ and\ 34\ grams|mean=32\ and\ stdev=2.5)$

Probability
Area under distribution (probability that SOMETHING will be observed)
with 'specified distribution'

== Distribution is fixed & Observation is variable!

Probability vs Likelihood

$$Likelihood = L(D|X)$$

D: Distribution

X: Observed

value

$$L(mean = 34 \text{ and } stdev = 2.5|weight = 34)$$

Probability vs Likelihood

Likelihood

A probability that the value sampled from a given observation came from that probability distribution

L(mean = 32 and stdev = 2.5|weight = 34)

== Observation is fixed& Distribution is variable!

Summary

Probability: Observation given Distribution (Distribution is fixed)

Likelihood: Distribution given Observation (Data is fixed)

[8] An animation for explanation of Likelihood

Conditional Probabilistic approach

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

Prior Probability of H

P(H)

Don't have any information about

E

Posterior Probability given E P(H|E)

Conditional Probability

L(H|E) = P(E|H) is a likelihood of H given

Е

H: Hypothesis (가설, 사건)

E: Evidence (새로운 정보)

Conditional Probabilistic approach

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

Let's assume that we want to know H, but what we have is only E and P(E|H).

We can get P(H|E) using Bayes Theorem!

H: Hypothesis (가설, 사건)

E: Evidence (새로운 정보)

Example

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

Incidence of disease A(발병률): 0.1% (0.001)
Probability of detecting the disease when the disease actually exists(민감도): 99% (0.99)
Probability of not detecting the disease when the disease is not present(특이도): 98% (0.98)

What is P(H|E) = ?

H: Actually having a disease

Example

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

Incidence of disease A(발병률): 0.1% (0.001)

Probability of detecting the disease when the disease actually exists(민감도): 99% (0.99)

Probability of not detecting the disease when the disease is not present(특이도): 98% (0.98)

 $P(H) = 0.001 = Incidence \ of \ getting \ disease \ A$ $P(E|H) = 0.99 = Actually \ having \ a \ disease, \ determined \ to \ have \ a \ disease \ (True \ Positive)$ $P(E^c|H^c) = 0.98 = Actually \ not \ having \ a \ disease, \ determined \ not \ to \ have \ a \ disease \ (True \ Negative)$

H: Actually having a disease

Example

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

P(H) = 0.001 = Incidence of getting disease A

P(E|H) = 0.99 = Actually having a disease, determined to have a disease (True Positive)

 $P(E^c|H^c) = 0.98 = Actually \ not \ having \ a \ disease, determined \ not \ to \ have \ a \ disease (True \ Negative)$

H: Actually having a disease

Example

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E|H^c)P(H^c)}$$

P(H) = 0.001 = Incidence of getting disease A

 $P(H^c) = 0.999 = Incidence of not getting disease A$

P(E|H) = 0.99 = Actually having a disease, determined to have a disease (True Positive)

 $P(E^c|H^c) = 0.98 = Actually not having a disease, determined not to have a disease (True Negative)$

 $P(E|H^c) = 0.02 = Actually having a disease, determined not to have a disease (False Positive)$

H: Actually having a disease

Example

 $P(H) = 0.001 = Incidence \ of \ getting \ disease \ A$ $P(H^c) = 0.999 = Incidence \ of \ not \ getting \ disease \ A$ $P(E|H) = 0.99 = Actually \ having \ a \ disease, \ determined \ to \ have \ a \ disease \ (True \ Positive)$ $P(E^c|H^c) = 0.98 = Actually \ not \ having \ a \ disease, \ determined \ not \ to \ have \ a \ disease \ (False \ Positive)$ $P(E|H^c) = 0.02 = Actually \ having \ a \ disease, \ determined \ not \ to \ have \ a \ disease \ (False \ Positive)$

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E|H^c)P(H^c)} = \frac{0.99 \times 0.001}{0.99 \times 0.001 + 0.02 \times 0.999}$$

$$\approx 0.047 = 4.7\% = Determined \ to \ have \ a \ disease, actually \ having \ a \ disease$$

$$\neq P(H) \times P(E) = 0.001998\%$$

H: Actually having a disease

Practice

If a person who has already tested positive is tested again and tested positive again, what is the probability that this person will actually get the disease?

 $P(H) = 0.047 = Incidence \ of \ getting \ disease \ A - Posterior \ changed \ to \ Prior!$ $P(H^c) = 0.953 = Incidence \ of \ not \ getting \ disease \ A$ $P(E|H) = 0.99 = Actually \ having \ a \ disease, \ determined \ to \ have \ a \ disease \ (True \ Positive)$ $P(E^c|H^c) = 0.98 = Actually \ not \ having \ a \ disease, \ determined \ not \ to \ have \ a \ disease \ (False \ Positive)$ $P(E|H^c) = 0.02 = Actually \ having \ a \ disease, \ determined \ not \ to \ have \ a \ disease \ (False \ Positive)$

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E|H^c)P(H^c)} = \frac{0.99 \times 0.047}{0.99 \times 0.047 + 0.02 \times 0.953}$$
$$\approx 0.709 \approx 71\%$$

H: Actually having a disease

$$x' = rac{x - \min(x)}{\max(x) - \min(x)}$$

Min-max scaling

 $z=rac{x_i-\mu}{\sigma}$

Standard scaling

Data: [-1, 1, 3, 5, 7, 9]

Hint
Mean: 4

Variance(sigma^2): 12

Calculate the scaled result

$$x' = rac{x - \min(x)}{\max(x) - \min(x)}$$

Min-max scaling

 $z=rac{x_i-\mu}{\sigma}$

Standard scaling

Data: [-1, 1, 3, 5, 7, 9]

Hint
Mean: 4

Variance(sigma^2): 12

Calculate the scaled result

$$x' = rac{x - \min(x)}{\max(x) - \min(x)}$$

Min-max scaling

Data: [-1, 1, 3, 5, 7, 9]

$$z=rac{x_i-\mu}{\sigma}$$

Standard scaling

Hint

Mean: 4

Variance(sigma^2): 12

Data: [-1, 1, 3, 5, 7, 9]