Notation	Meaning
Т	True
F	False
\oplus	XOR
↓ ↓	NOR
†	NAND
\mathbb{E}	Set of all even integers
0	Set of all odd integers
	Indicates the end of proof/solution
$\stackrel{d}{\equiv}$	Equivalent by definition

1.

(i) The formula $P \to Q$ is **neither** a tautology nor identically false.

X	Y	$P = X \vee Y$	$Q = \neg(X \land Y)$	$P \to Q$
T	Т	T	F	F
T	F	T	T	Τ
F	Τ	T	${ m T}$	${ m T}$
F	F	F	T	Τ

(ii) The formula $P \to Q$ is **neither** a tautology nor identically false.

X	Y	$P = X \vee Y$	$Q = \neg X \wedge \neg Y$	$P \rightarrow Q$
Т	Т	T	F	F
Τ	F	T	F	F
F	Т	T	F	F
F	F	F	Т	Т

(iii) The formula $P \to Q$ is a **tautology**. Note that the second part of Q $(\neg X \lor X)$ is also a tautology.

X	Y	$P = X \to Y$	$Q = (\neg X \lor Y) \land (\neg X \lor X)$	$P \rightarrow Q$
Т	Т	T	T	Т
T	F	F	F	T
F	Т	T	T	T
F	F	Т	T	Т

(iv) The formula $P \to Q$ is a **tautology**.

X	Y	$P = X \to \neg Y$	$Q = Y \rightarrow \neg X$	$P \rightarrow Q$
Т	Τ	F	F	Т
T	F	${ m T}$	T	Т
F	Т	${ m T}$	m T	Т
F	F	T	Т	Т

(v) The formula $P \to Q$ is a **tautology**.

X	Y	Z	$P = X \land (Y \lor Z)$	$Q = (X \vee Y) \wedge (X \vee Z)$	$P \rightarrow Q$
Т	Т	Т	Τ	T	Т
T	Т	F	${ m T}$	${ m T}$	Τ
Т	F	Т	${ m T}$	${ m T}$	T
Т	F	F	${ m F}$	${ m T}$	Т
F	Т	Т	F	${ m T}$	T
F	Т	F	F	${ m F}$	Т
F	F	Т	F	${ m F}$	Т
F	F	F	${ m F}$	F	Т

(vi) The formula $P \to Q$ is **neither** a tautology nor identically false.

X	Y	$P = X \to Y$	$Q = \neg X \to \neg Y$	$P \to Q$
Т	Т	T	T	Τ
T	F	F	${ m T}$	${ m T}$
F	Τ	${ m T}$	F	F
F	F	T	${ m T}$	${ m T}$

(vii) The formula $P \to Q$ is **neither** a tautology nor identically false.

X	Y	$P = X \to Y$	$Q = \neg(Y \to X)$	$P \to Q$
Т	Т	T	F	F
Т	F	F	${ m F}$	${ m T}$
F	Т	T	${ m T}$	${ m T}$
F	F	T	${ m F}$	F

(viii) The formula $P \to Q$ is a **tautology**.

X	\overline{Y}	Z	$P = (Y \to Z) \land (X \to Y)$	$Q = X \to Z$	$P \rightarrow Q$
Т	Т	Т	T	F	Т
T	Τ	F	F	F	T
Т	F	Т	F	brack	T
Т	F	F	${ m F}$	F	T
F	Т	Т	${ m T}$	brack	T
F	Τ	F	${ m F}$	Т	Т
F	F	Τ	m T	brack T	T
F	F	F	m T	Γ	T

2.

- (a) There exist 16 different binary logical connectives. There are 4 possible combinations of T and F that a binary connective can take in. Each combination can result in 2 outcomes (T or F), therefore $2^4 = 16$.
- (b) This section will make use of the following identities:

1.
$$X \wedge Y \equiv \neg(\neg X \vee \neg Y)$$

2.
$$X \vee Y \equiv \neg(\neg X \wedge \neg Y)$$

3.
$$X \to Y \equiv \neg X \vee Y$$

(i) Consider the definition of XOR:

$$X \oplus Y \equiv (X \vee Y) \land \neg (X \land Y) \tag{1}$$

Let us transform equation (1) as follows:

$$(X \lor Y) \land \neg (X \land Y) \equiv (X \lor Y) \land (\neg X \lor \neg Y)$$

$$\equiv \neg (\neg X \land \neg Y) \land \neg (X \land Y)$$

(ii) Let us transform equation (1) as follows:

$$(X \lor Y) \land \neg (X \land Y) \equiv (X \lor Y) \land (\neg X \lor \neg Y)$$

$$\equiv \neg (\neg (X \lor Y) \lor \neg (\neg X \lor Y))$$
(2)

(iii) Let us transform equation (2) as follows:

$$\neg(\neg(X \lor Y) \lor \neg(\neg X \lor Y)) \equiv \neg(\neg(\neg X \to Y) \lor \neg(X \to \neg Y))$$
$$\equiv \neg((\neg X \to Y) \to \neg(X \to \neg Y))$$

(c) By definition of NAND:

$$X \wedge Y \equiv \neg (X \uparrow Y)$$

Consider the truth table for NAND:

X	Y	$X \uparrow Y$
Т	Т	F
T	F	Т
F	Τ	Т
F	F	Т

Notice that $X \uparrow X \equiv \neg X$. Hence:

$$\neg(X \uparrow Y) \equiv (X \uparrow Y) \uparrow (X \uparrow Y) \Leftrightarrow X \land Y \equiv (X \uparrow Y) \uparrow (X \uparrow Y)$$

Similarly, using the second and third identities, the remaining two connectives can be expressed as follows:

$$X \lor Y \equiv \neg(\neg X \land \neg Y)$$

$$\equiv \neg((X \uparrow X) \land (Y \uparrow Y))$$

$$\stackrel{d}{\equiv} (X \uparrow X) \uparrow (Y \uparrow Y)$$

$$X \to Y \equiv \neg X \lor Y$$

$$\equiv \neg(X \land \neg Y)$$

$$\stackrel{d}{\equiv} X \uparrow \neg Y$$

$$\equiv X \uparrow (Y \uparrow Y)$$

3

(d) By definition of NOR:

$$X \vee Y \equiv \neg(X \downarrow Y)$$

Consider the truth table for NOR:

X	Y	$X \downarrow Y$
Т	Т	F
$\mid T \mid$	F	F
F	Т	F
F	F	Γ

Notice that $X \downarrow X \equiv \neg X$. Hence:

$$\neg(X \downarrow Y) \equiv (X \downarrow Y) \downarrow (X \downarrow Y) \Leftrightarrow X \lor Y \equiv (X \downarrow Y) \downarrow (X \downarrow Y)$$

Similarly, using the second and third identities, the remaining two connectives can be expressed as follows:

$$X \wedge Y \equiv \neg(\neg X \vee \neg Y)$$

$$\stackrel{d}{\equiv} \neg X \downarrow \neg Y$$

$$\equiv (X \downarrow X) \downarrow (Y \downarrow Y)$$

$$X \to Y \equiv \neg X \vee Y$$

$$\equiv \neg \neg(\neg X \vee Y)$$

$$\stackrel{d}{\equiv} \neg(\neg X \downarrow Y)$$

$$\equiv ((X \downarrow X) \downarrow Y) \downarrow ((X \downarrow X) \downarrow Y)$$

3.

(a)

(i) Let $y = x^2$, then the given predicate transforms into a tautology:

$$x^2 < x^2 + 1 \implies 0 < 1$$

Hence, the given statement is **true**.

(ii) The given statement is **false**. Consider a counterexample. Let y = -1, then:

$$x^2 < -1 + 1 \implies x^2 < 0$$

Since no such integer x exists, the above statement is false.

(iii) The given statement is **false**. Suppose such y exists. Let x = y + 2, then:

$$(y+2)^{2} < y+1$$
$$y^{2} + 4y + 4 < y+1$$
$$y^{2} + 3y + 3 < 0$$

However, the quadratic $y^2 + 3y + 3$ is always positive for all integer numbers y, therefore the assumption leads to a contradiction, and no such y exists.

(iv) Let y = 2x, then:

$$(x < 2x) \to (x^2 < 4x^2)$$

 $(x > 0) \to (x^2 > 0)$

Since the above statement is a tautology, the given statement is **true**.

(b)

(i) Let x = -1, y = -1, then:

$$(-1)^2 < -1 + 1 \Leftrightarrow 1 < 0$$
 is false.

(ii) Let x = 2, y = 2, then:

$$2^2 < 4 + 1 \Leftrightarrow 4 < 5$$
 is true.

(iii) Let y = -1, then:

$$x^2 < -1 + 1 \Leftrightarrow x^2 < 0$$
 is identically false.

(iv) Let x = 0, then:

$$(y>0) \rightarrow (y^2>0)$$
 is a tautology.

4.

(a) This section will make use of the following theorem: $|2^A| = 2^{|A|}$.

$$\begin{split} |2^{\emptyset}| &= 2^{|\emptyset|} = 2^0 = 1 \\ |2^{\{0\}}| &= 2^1 = 2 \\ |2^{\{0\} \cup \{1\}}| &= |2^{\{0,1\}}| = 2^2 = 4 \\ |2^{\{0\} \cap \{1\}}| &= |2^{\emptyset}| = 1 \\ |2^{\{\emptyset,0,1\}}| &= 2^3 = 8 \\ \left|2^{2^{2^{\{0,1\}}}}\right| &= 2^{\left|2^{2^{\{0,1\}}}\right|} = 2^{2^{\left|2^{\{0,1\}}\right|}} = 2^{2^4} = 2^{16} = 65536 \end{split}$$

(b)

(i) Let $B = \{(x, S) | x \in S, S \in 2^A\}$. Consider $P \subset 2^A$, which contains all subsets of $A = \{1, 2, 3, \ldots, n\}$ with cardinality 2:

$$P = \{\{1, 2\}, \{1, 3\}, \dots, \{1, n\}, \{2, 3\}, \{2, 4\}, \dots, \{n - 1, n\}\}\$$

The cardinality of P is $\binom{n}{2}$, representing the number of ways to choose pairs from n elements. For an element of P, such as $S_1 = \{1, 2\}$, two pairs are contributed to B: $(1, S_1)$ and $(2, S_1)$. Similarly, each element of P contributes exactly two pairs to B. Thus, with $\binom{n}{2}$ elements in P, the total contribution to B is $2\binom{n}{2}$.

Likewise, all subsets of A with three elements each, contribute $3\binom{n}{3}$ pairs to B, those with four elements contribute $4\binom{n}{4}$ pairs, etc. Thus, generalizing the patter, the cardinality of B can be calculated as:

$$|B| = \sum_{x=0}^{n} x \binom{n}{x} \tag{3}$$

Notice that the sum starts at 0, since it corresponds to the empty set. When $S = \emptyset$, the statement $x \in S$ is not valid, hence no pair is contributed to B.

Now consider the binomial theorem:

$$(1+a)^n = \sum_{x=0}^n a^x \binom{n}{x}$$

Differentiating with respect to a gives:

$$n(1+a)^{n-1} = \sum_{x=0}^{n} x a^{x-1} \binom{n}{x}$$

Let a = 1, then:

$$n2^{n-1} = \sum_{x=0}^{n} x \binom{n}{x}$$

The right hand side of the above equation is equal to (3), hence the cardinality of B is:

$$|B| = n2^{n-1}$$

5.

(i) For each of the two arguments in the domain, there are three choices of images in the range, therefore there are $3^2 = 9$ maps for the given sets.

(ii) The are 6 injective maps for the given sets.

Function	Image of 1	Image of 2
f_1	1	2
f_2	1	3
f_3	2	1
f_4	2	3
f_5	3	1
f_6	3	$\overline{2}$

- (iii) There are **0** bijective maps for the given sets, since the number of elements in the domain does not match the number of elements in the range.
- (iv) Similar to (i), there are $2^3 = 8$ maps for the given sets.
- (v) There are 6 surjective maps for the given sets.

Function	Image of 1	Image of 2	Image of 3
f_1	1	2	1
f_2	1	2	2
f_3	2	1	1
f_4	2	1	2
f_5	1	1	2
f_6	2	2	1

- **6.**
- 7.
- 8.