Low ESR

MARKING

A, B, C, D, E, F, S, T, V, W, X, Y CASE

P, R CASE

FEATURES

- Low ESR Series of Robust Mn0₂ Solid Electrolyte Capacitors
- · 100% Surge Current Tested
- CV Range: 0.15-1500µF / 2.5-50V
- 14 Case Sizes Available
- **Power Supply Applications**

APPLICATIONS

General Medium Power DC/DC Convertors

LEAD-FREE COMPATIBLE COMPONENT

SnPb termination option is not RoHS compliant.

CASE DIMENSIONS:

millimeters (inches)

B 1210 3528-21 3.50 (0.138) 2.80 (0.110) 1.90 (0.075) 2.20 (0.087) 0.80 (0.031) 1 C 2312 6032-28 6.00 (0.236) 3.20 (0.126) 2.60 (0.102) 2.20 (0.087) 1.30 (0.051) 2 D 2917 7343-31 7.30 (0.287) 4.30 (0.169) 2.90 (0.114) 2.40 (0.094) 1.30 (0.051) 4 E 2917 7343-43 7.30 (0.287) 4.30 (0.169) 4.10 (0.162) 2.40 (0.094) 1.30 (0.051) 4 F 2312 6032-20 6.00 (0.236) 3.20 (0.126) 2.00 (0.079) max 2.20 (0.087) 1.30 (0.051) 2 P 0805 2012-15 2.05 (0.081) 1.35 (0.053) 1.50 (0.059) max 1.00 ±0.10 (0.039) 0.50 (0.020) 0	1.10 (0.043) 1.40 (0.055) 2.90 (0.114) 4.40 (0.173) 4.40 (0.173)
C 2312 6032-28 6.00 (0.236) 3.20 (0.126) 2.60 (0.102) 2.20 (0.087) 1.30 (0.051) 2 D 2917 7343-31 7.30 (0.287) 4.30 (0.169) 2.90 (0.114) 2.40 (0.094) 1.30 (0.051) 4 E 2917 7343-43 7.30 (0.287) 4.30 (0.169) 4.10 (0.162) 2.40 (0.094) 1.30 (0.051) 4 F 2312 6032-20 6.00 (0.236) 3.20 (0.126) 2.00 (0.079) max 2.20 (0.087) 1.30 (0.051) 2 P 0805 2012-15 2.05 (0.081) 1.35 (0.053) 1.50 (0.059) max 1.00 ±0.10 (0.039 ±0.004) 0.50 (0.020) 0 R 0805 2012-13 2.05 (0.021) 1.30 (0.051) 1.20 (0.047) max 1.00 ±0.10 0.50 (0.020) 0	2.90 (0.114) 4.40 (0.173)
D 2917 7343-31 7.30 (0.287) 4.30 (0.169) 2.90 (0.114) 2.40 (0.094) 1.30 (0.051) 4 E 2917 7343-43 7.30 (0.287) 4.30 (0.169) 4.10 (0.162) 2.40 (0.094) 1.30 (0.051) 4 F 2312 6032-20 6.00 (0.236) 3.20 (0.126) 2.00 (0.079) max 2.20 (0.087) 1.30 (0.051) 2 P 0805 2012-15 2.05 (0.081) 1.35 (0.053) 1.50 (0.059) max 1.00 ±0.10 (0.039 ±0.004) 0.50 (0.020) 0 R 0805 2012-13 2.05 (0.091) 1.30 (0.051) 1.20 (0.047) max 1.00 ±0.10 (0.040) 0.50 (0.020) 0	4.40 (0.173)
E 2917 7343-43 7.30 (0.287) 4.30 (0.169) 4.10 (0.162) 2.40 (0.094) 1.30 (0.051) 4 F 2312 6032-20 6.00 (0.236) 3.20 (0.126) 2.00 (0.079) max. 2.20 (0.087) 1.30 (0.051) 2 P 0805 2012-15 2.05 (0.081) 1.35 (0.053) 1.50 (0.059) max. 1.00 ±0.10 (0.039 ±0.004) 0.50 (0.020) 0 P 0805 2012-13 2.05 (0.091) 1.20 (0.051) 1.20 (0.047) max. 1.00 ±0.10 (0.050) 0.50 (0.020) 0	
F 2312 6032-20 6.00 (0.236) 3.20 (0.126) 2.00 (0.079) max. 2.20 (0.087) 1.30 (0.051) 2 P 0805 2012-15 2.05 (0.081) 1.35 (0.053) 1.50 (0.059) max. 1.00 ±0.10 (0.039 ±0.004) 0.50 (0.020) 0 P 0805 2012-13 2.05 (0.081) 1.30 (0.051) 1.30 (0.047) max 1.00 ±0.10 (0.030) 0.50 (0.020) 0	4.40 (0.173)
P 0805 2012-15 2.05 (0.081) 1.35 (0.053) 1.50 (0.059) max. 1.00 ±0.10 (0.039 ±0.004) 0.50 (0.020) 0	
P 0805 2012-15 2.05 (0.081) 1.35 (0.053) 1.50 (0.059) max. (0.039 ±0.004) 0.50 (0.020) 0	2.90 (0.114)
	0.85 (0.033)
	0.85 (0.033)
S 1206 3216-12 3.20 (0.126) 1.60 (0.063) 1.20 (0.047) max. 1.20 (0.047) 0.80 (0.031) 1	1.10 (0.043)
T 1210 3528-12 3.50 (0.138) 2.80 (0.110) 1.20 (0.047) max. 2.20 (0.087) 0.80 (0.031) 1	1.40 (0.055)
V 2924 7361-38 7.30 (0.287) 6.10 (0.240) 3.55 (0.140) 3.10 (0.122) 1.30 (0.051) 4	4.40 (0.173)
W 2312 6032-15 6.00 (0.236) 3.20 (0.126) 1.50 (0.059) max. 2.20 (0.087) 1.30 (0.051) 2	2.90 (0.114)
X 2917 7343-15 7.30 (0.287) 4.30 (0.169) 1.50 (0.059) max. 2.40 (0.094) 1.30 (0.051) 4	4.40 (0.173)
Y 2917 7343-20 7.30 (0.287) 4.30 (0.169) 2.00 (0.079) max. 2.40 (0.094) 1.30 (0.051) 4	4.40 (0.173)

W, dimension applies to the termination width for A dimensional area only

HOW TO ORDER

Capacitance Code pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

M **Tolerance** $K = \pm 10\%$

Rated DC Voltage $M = \pm 20\%$

002 = 2.5Vdc 004 = 4Vdc 006 = 6.3 Vdc010 = 10 Vdc016 = 16Vdc 020 = 20 Vdc025 = 25Vdc 035 = 35Vdc 050 = 50Vdc

010

R

Packaging R = Pure Tin 7" Reel S = Pure Tin 13" Reel A = Gold Plating 7" Reel B = Gold Plating 13" Reel H = Tin Lead 7" Reel

(Contact Manufacturer) K = Tin Lead 13" Reel (Contact Manufacturer) H, K = Non RoHS

0100

ESR in mΩ

Additional characters may be added for special requirements V = Dry pack Option (selected ratings only)

TECHNICAL SPECIFICATIONS

Technical Data:		All techn	ical data	relate to	an ambie	nt tempe	rature of	+25°C			
Capacitance Range:		0.15 µF t	ο 1500 μ	F							
Capacitance Tolerance:		±10%; ±2	0%								
Rated Voltage (V _R)	≤ +85°C:	2.5	4	6.3	10	16	20	25	35	50	T
Category Voltage (V _C)	≤ +125°C:	1.7	2.7	4	7	10	13	17	23	33	T
Surge Voltage (V _s)	≤ +85°C:	3.3	5.2	8	13	20	26	32	46	65	T
Surge Voltage (V _S)	≤ +85 °C: 3.3 3.2 8 13 20 20 32 40 63 ≤ +125 °C: 2.2 3.4 5 8 13 16 20 28 40										Т
Temperature Range:		-55°C to	+125°C								
Environmental Classification:		55/125/5	6 (IEC 6	8-2)							
Reliability:		1% per 1	000 hour	s at 85°C	, V _R with (0.1Ω/V se	eries impe	edance,			
Reliability.		60% conf	fidence le	evel							
Termination Finished:		Sn Platin	g (stand	ard), Gold	and SnP	b Plating	upon req	uest			
		For AEC-	Q200 ava	ailability,	olease co	ntact AV	X				

Low ESR

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capa	citance				F	Rated Voltage DC (V	.) to 85°C			
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)
0.15	154								1(1000)	A(9000)
0.22	224 334								A(6000) A(6000)	A(7000) A(7000)
0.47	474							A(7000)	A(6000)	A(6500), B(6000)
0.68	684							A(6000)	B(4000) A(6000)	C(2300) B(4000)
1.0	105				R(9000)	A(6200)	A(3000), R(6000) S(6000), T(2000)	A(4000) R(2500,4000)	A(3000) B(2000)	B(3000) C(2500)
1.5	155						A(3000)	A(3000) B(1800)	A(3000) B(2500)	C(1500,2000)
2.2	225			R(7000)	A(1800)	A(1800,3500) T(2000)	A(3000) B(1700)	A(2500) B(900,1200,2500)	A(1500) B(750,1500, 2000) C(1000)	C(1500) D(1200)
3.3	335			A(2100)	T(1500)	A(3500) B(2500)	A(2500) B(1300)	A(1000,1500) B(750,1500,2000)	B(1000) C(700)	C(1000) D(800)
4.7	475			S(4000)	A(1400), B(1400) R(3000,5000)	A(2000) B(800,1500)	A(1800) B(750,1000)	B(700,900,1500) C(700)	B(700,1500) C(600), D(700)	C(800) D(250,300,500,700) X(500)
6.8	685			A(1800)	A(1800), B(1300) T(1800)	A(1500) B(600,1200)	A(1000) B(600,1000 C(700)	B(700) C(500,600,700)	C(350) D(150,400,500)	D(200,300, 500,600)
10	106		R(3000)	A(1500), B(1500) R(1000,1500,3000) T(1000)	A(900,1800), B(1000) P(2000) ^(M) , S(900) T(1000,2000)	A(1000), B(500,800) C(500), T(800,1000) W(500,600)	B(500,1000) C(500,700) W(250, 500)	B(1800) C(300,500) D(500)	C(600) D(125,300) E(100,150,200)Y(250)	D(500) E(250,300, 400,500)
15	156			A(700,1500)	A(1000) B(450,600), C(700) T(1200)	B(500,800) C(300,700)	B(500) C(400,450)	C(220,300) D(100,300)	C(350,450) D(100,300) Y(250)	E(250) V(250)
22	226			A(300,500,900) B(375,600) C(500), S(900)	A(900) B(400,500,700) C(300), T(800)	B(400,600) C(150,250,300,375) D(700), W(500)	B(400,600) C(100,150,400) D(200,300)	C(275,400) D(100,200,300) F(300)	D(125,200,300,400) E(125,200,300) Y(200)	
33	336			A(600) B(250,350,450,600) T(800)	A(700) B(250,425,500,650) C(150,375,500) W(350)	B(350,500) C(100,150,225,300) D(200), W(140,175, 250,400,500) Y(300,400)	C(300) D(100,200)	C(400) D(100,200,300) E(100,175,200,300) F(150,200,400) Y(200)	D(200,300) E(100,250,300) V(200)	
47	476		A(500)	A(800) B(250,350,500) C(300), T(1200)	B(250,350,500,650) C(200,350) D(100,300) W(125,150,250)	C(110,350) D(80,100,150,200) W(200) X(180), Y(250)	D(75,100,200) E(70,125,150, 200,250), X(200)	D(125,150,250 E(80,100,125) (Y250)	D(300), E(200,250) V(150,200)	
68	686			B(250,350,500) C(150,200) W(110,125,250)	B(600) C(80,100,200,300) D(100,150), W(100,150) Y(100,200)	C(125,200) D(70,100,150) F(200), X(150) Y(150,200,250)	D(70,150, 200,300) E(125,150,200) Y(200)	D(150,200,300) E(125,200) V(80,95,150,200)	V(150,200)	
100	107	B(200)	B(200,250, 350,500) T(500) ^(M) W(100)	B(250,400) C(75,150), D(300) W(100,150), Y(100)	B(400) C(75,100,150,200) D(50,65,80,100,125, 150), E(125), W(150) X(85,150,200) Y(100,150,200)	C(200) D(60,100,125,150) E(55,100,125,150) F(150,200)(M) Y(100,150,200)	D(85,100,150) E(100,150,200) V(60,85,100,200)	E(150), V(100)		
150	157	B(150)	B(250) C(70,80)	C(50,90,150,200,250) D(50,125) Y(40,50)	C(150), D(50,85,100) E(100), F(200) X(100)(M) Y(100,150,200)	D(60,85,100,125,150) E(50,100), V(45,75) Y(200) ^(M)	V(80)	V(150) ^(M)		
220	227	B(150, 200,600) D(45)	D(40,50,100) Y(40,50,75)	C(70,100,125,250) D(50,100,125) E(100), F(200) Y(100,150)	D(40,50,100,150) E(50,60,70,100, 125,150) Y(100,150,200)	D(200) ^(M) E(50,100,150) V(50,75,100,150)				
330	337	Y(40)	C(100) D(35,45,100) F(200) X(100)	C(80,100) D(45,50,70,100) E(50,100,125,150) V(100), Y(75,100,150)	D(50,65,100,150) E(40,50,60,100) V(40,60,100)	E(200) ^(M)				
470	477	D(35) F(200) Y(100)	D(45,100) E(35,45,100)	D(45,60,100,200) E(45,50,60,100,200) V(40,55,100), Y(150)	E(45,50,60,100,200) V(40,60,100)					
680	687	D(35,50) E(35,50) Y(100)	D(45,60,100) E(40,60,100)	E(45,60,100) V(35,40,50)	E(150) ^(M) V(100) ^(M)					
1000	108	E(30,40) Y(100) ^(M)	E(40,60) V(25,35,40,50)	E(100)(M), V(40,50)(M)						
1500	158	D(100) E(50) V(30,40) ^(M)	E(50,75) V(50,75) ^(M)							

Released ratings^(M tolerance only) (ESR ratings in mOhms in parentheses)

NOTE: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Low ESR

AVX Part No.	Case	Capacitance	Rated	Rated	Category	Category	DCL	DF	ESR Max.	100kH	z RMS Cur	rent (A)	MS
Part No.	Size	· (μ F)	Voltage (V)	Temperature (°C)	Voltage (V)	Temperature (°C)	Max. (μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVIS
					2.5 Volt	@ 85°C			(11122)				
PSB107*002#0200	В	100	2.5	85	1.7	125	2.5	8	200	0.652	0.587	0.261	1
TPSB157*002#0150	В	150	2.5	85	1.7	125	3	10	150	0.753	0.677	0.301	1
TPSB227*002#0150	В	220	2.5	85	1.7	125	4.4	16	150	0.753	0.677	0.301	1
TPSB227*002#0200	В	220	2.5	85	1.7	125	4.4	16	200	0.652	0.587	0.261	1
TPSB227*002#0600	В	220	2.5	85	1.7	125	4.4	16	600	0.376	0.339	0.151	1
TPSD227*002#0045	D	220	2.5	85	1.7	125	5.5	8	45	1.826	1.643	0.730	1
TPSY337*002#0040	Υ	330	2.5	85	1.7	125	8.2	8	40	1.768	1.591	0.707	1
TPSD477*002#0035	D	470	2.5	85	1.7	125	11.6	8	35	2.070	1.863	0.828	1
TPSF477*002#0200	F	470	2.5	85	1.7	125	11.8	12	200	0.707	0.636	0.283	1
TPSY477*002#0100	Υ	470	2.5	85	1.7	125	11	12	100	1.118	1.006	0.447	1
TPSD687*002#0035	D	680	2.5	85	1.7	125	17	16	35	2.070	1.863	0.828	1
TPSD687*002#0050	D	680	2.5	85	1.7	125	17	16	50	1.732	1.559	0.693	1
TPSE687*002#0035	Е	680	2.5	85	1.7	125	17	10	35	2.171	1.954	0.868	1
TPSE687*002#0050	E	680	2.5	85	1.7	125	17	10	50	1.817	1.635	0.727	1
TPSY687*002#0100	Y	680	2.5	85	1.7	125	17	12	100	1.118	1.006	0.447	1
TPSE108*002#0030	Ė	1000	2.5	85	1.7	125	25	14	30	2.345	2.111	0.938	1
TPSE108*002#0040	E	1000	2.5	85	1.7	125	25	14	40	2.031	1.828	0.812	1
TPSY108M002#0100	Y	1000	2.5	85	1.7	125	25	30	100	1.118	1.006	0.447	1
TPSD158*002#0100	D	1500	2.5	85	1.7	125	37.5	60	100	1.116	1.102	0.447	-
TPSE158*002#0050	E	1500	2.5	85	1.7	125	37.5	20	50	1.123	1.635	0.490	1
FPSV158M002#0030	V	1500	2.5	85	1.7	125	30	20	30	2.887	2.598	1.155	1
FPSV158M002#0040	V	1500	2.5	85	1.7	125	30	20	40	2.500	2.250	1.000	1
					4 Volt (
TPSR106*004#3000	R	10	4	85	2.7	125	0.5	6	3000	0.135	0.122	0.054	
TPSA476*004#0500	Α	47	4	85	2.7	125	1.9	8	500	0.387	0.349	0.155	
TPSB107*004#0200	В	100	4	85	2.7	125	4	8	200	0.652	0.587	0.261	
TPSB107*004#0250	В	100	4	85	2.7	125	4	8	250	0.583	0.525	0.233	
TPSB107*004#0350	В	100	4	85	2.7	125	4	8	350	0.493	0.444	0.197	
TPSB107*004#0500	В	100	4	85	2.7	125	4	8	500	0.412	0.371	0.165	
TPST107M004#0500	T	100	4	85	2.7	125	4	14	500	0.400	0.360	0.160	
TPSW107*004#0100	W	100	4	85	2.7	125	4	6	100	0.949	0.854	0.379	
TPSB157*004#0250	В	150	4	85	2.7	125	6	10	250	0.583	0.525	0.233	
TPSC157*004#0070	С	150	4	85	2.7	125	6	6	70	1.254	1.128	0.501	
TPSC157*004#0080	С	150	4	85	2.7	125	6	6	80	1.173	1.055	0.469	
TPSD227*004#0040	D	220	4	85	2.7	125	8.8	8	40	1.936	1.743	0.775	
TPSD227*004#0050	D	220	4	85	2.7	125	8.8	8	50	1.732	1.559	0.693	
TPSD227*004#0100	D	220	4	85	2.7	125	8.8	8	100	1.225	1.102	0.490	
TPSY227*004#0040	Y	220	4	85	2.7	125	8.8	8	40	1.768	1.591	0.707	1
TPSY227*004#0050	Ý	220	4	85	2.7	125	8.8	8	50	1.581	1.423	0.632	1
TPSY227*004#0075	Y	220	4	85	2.7	125	8.8	8	75	1.291	1.162	0.516	1
TPSC337*004#0100	C	330	4	85	2.7	125	13.2	8	100	1.049	0.944	0.420	
TPSD337*004#0035	D	330	4	85	2.7	125	13.2	8	35	2.070	1.863	0.420	
TPSD337*004#0045	D	330	4	85	2.7	125	13.2	8	45	1.826	1.643	0.730	
TPSD337*004#0100	D	330	4	85	2.7	125	13.2	8	100	1.225	1.102	0.490	
TPSF337*004#0200	F	330	4	85	2.7	125	13.2	10	200	0.707	0.636	0.283	
TPSX337*004#0100	X	330	4	85	2.7	125	13.2	8	100	1.000	0.900	0.400	1
TPSD477*004#0100		470	4										
	D D	470		85	2.7	125	18.8	12	45 100	1.826	1.643	0.730	
TPSD477*004#0100			4	85		125	18.8	12		1.225	1.102	0.490	
TPSE477*004#0035	E	470	4	85	2.7	125	18.8	10	35	2.171	1.954	0.868	1
TPSE477*004#0045	E	470	4	85	2.7	125	18.8	10	45	1.915	1.723	0.766	1
TPSE477*004#0100	E	470	4	85	2.7	125	18.8	10	100	1.285	1.156	0.514	1
TPSD687*004#0045	D	680	4	85	2.7	125	27.2	14	45	1.826	1.643	0.730	
TPSD687*004#0060	D	680	4	85	2.7	125	27.2	14	60	1.581	1.423	0.632	
TPSD687*004#0100	D	680	4	85	2.7	125	27.2	14	100	1.225	1.102	0.490	
TPSE687*004#0040	E	680	4	85	2.7	125	27.2	10	40	2.031	1.828	0.812	1
TPSE687*004#0060	E	680	4	85	2.7	125	27.2	10	60	1.658	1.492	0.663	1
TPSE687*004#0100	E	680	4	85	2.7	125	27.2	10	100	1.285	1.156	0.514	1
TPSE108*004#0040	E	1000	4	85	2.7	125	40	14	40	2.031	1.828	0.812	1
TPSE108*004#0060	E	1000	4	85	2.7	125	40	14	60	1.658	1.492	0.663	1
TPSV108*004#0025	V	1000	4	85	2.7	125	40	16	25	3.162	2.846	1.265	1
TPSV108*004#0035	V	1000	4	85	2.7	125	40	16	35	2.673	2.405	1.069	1
TPSV108*004#0040	V	1000	4	85	2.7	125	40	16	40	2.500	2.250	1.000	1
TPSV108*004#0050	V	1000	4	85	2.7	125	40	16	50	2.236	2.012	0.894	1
TPSE158*004#0050	E	1500	4	85	2.7	125	60	30	50	1.817	1.635	0.727	1
TPSE158*004#0075	E	1500	4	85	2.7	125	60	30	75	1.483	1.335	0.593	1
PSV158M004#0050	V	1500	4	85	2.7	125	60	30	50	2.236	2.012	0.894	1
PSV158M004#0075	V	1500	4	85	2.7	125	60	30	75	1.826	1.643	0.730	1
				, ,,,	6.3 Volt		, ,,,	, ,,,,,					
TPSR225*006#7000	R	2.2	6.3	85	4	125	0.5	6	7000	0.089	0.080	0.035	
					4								_
TPSA335*006#2100	A	3.3	6.3	85		125	0.5	6	2100	0.189	0.170	0.076	
TPSS475*006#4000	S	4.7	6.3	85	4	125	0.5	6	4000	0.127	0.115	0.051	
TPSA685*006#1800	A	6.8	6.3	85	4	125	0.5	6	1800	0.204	0.184	0.082	
TPSA106*006#1500	Α	10	6.3	85	4	125	0.6	6	1500	0.224	0.201	0.089	
TPSB106*006#1500	В	10	6.3	85	4	125	0.6	6	1500	0.238	0.214	0.095	
TPSR106*006#1000	R	10	6.3	85	4	125	0.6	8	1000	0.235	0.211	0.094	
TPSR106*006#1500	R	10	6.3	85	4	125	0.6	8	1500	0.191	0.172	0.077	
TPSR106*006#3000	R	10	6.3	85	4	125	0.6	8	3000	0.135	0.122	0.054	
TPST106*006#1000	Т	10	6.3	85	4	125	0.6	6	1000	0.283	0.255	0.113	
TPSA156*006#0700	A	15	6.3	85	4	125	0.9	6	700	0.327	0.295	0.131	
	A	15	6.3	85	4	125	0.9	6	1500	0.224	0.201	0.089	-
TPSA156*006#1500													

Low ESR

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category	DCL Max.	DF Max.	ESR Max.	100kH:	z RMS Cur	rent (A)	MSL
Part No.	Size	΄ (μ F)	(V)	(°C)	(V)	Temperature (°C)	(µA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	IVIOL
TPSA226*006#0500	Α	22	6.3	85	4	125	1.4	6	500	0.387	0.349	0.155	1
TPSA226*006#0900 TPSB226*006#0375	A B	22 22	6.3 6.3	85 85	4	125 125	1.4	6	900 375	0.289 0.476	0.260 0.428	0.115 0.190	1
TPSB226*006#0375	В	22	6.3	85	4	125	1.4	6	600	0.476	0.428	0.190	1
TPSC226*006#0500	C	22	6.3	85	4	125	1.4	6	500	0.469	0.422	0.131	1
TPSS226*006#0900	S	22	6.3	85	4	125	1.3	10	900	0.269	0.242	0.107	1
TPSA336*006#0600	A	33	6.3	85	4	125	2.1	8	600	0.354	0.318	0.141	1
TPSB336*006#0250 TPSB336*006#0350	B B	33 33	6.3 6.3	85 85	4	125 125	2.1	6	250 350	0.583 0.493	0.525 0.444	0.233	1
TPSB336*006#0450	В	33	6.3	85	4	125	2.1	6	450	0.435	0.391	0.174	1
TPSB336*006#0600	В	33	6.3	85	4	125	2.1	6	600	0.376	0.339	0.151	1
TPST336*006#0800	T	33	6.3	85	4	125	2.1	10	800	0.316	0.285	0.126	1
TPSA476*006#0800 TPSB476*006#0250	A B	47 47	6.3 6.3	85 85	4	125 125	2.8	10	800 250	0.306 0.583	0.276 0.525	0.122	1
TPSB476*006#0350	В	47	6.3	85	4	125	3	6	350	0.493	0.444	0.233	1
TPSB476*006#0500	В	47	6.3	85	4	125	3	6	500	0.412	0.371	0.165	1
TPSC476*006#0300	С	47	6.3	85	4	125	3	6	300	0.606	0.545	0.242	1
TPST476*006#1200 TPSB686*006#0250	T B	47 68	6.3 6.3	85 85	4	125 125	2.8	10 8	1200 250	0.258 0.583	0.232 0.525	0.103 0.233	1
TPSB686*006#0250	В	68	6.3	85	4	125	4	8	350	0.363	0.323	0.233	1
TPSB686*006#0500	В	68	6.3	85	4	125	4	8	500	0.412	0.371	0.165	1
TPSC686*006#0150	С	68	6.3	85	4	125	4.3	6	150	0.856	0.771	0.343	1
TPSC686*006#0200	C	68	6.3	85	4	125	4.3	6	200	0.742	0.667	0.297	1
TPSW686*006#0110 TPSW686*006#0125	W	68 68	6.3 6.3	85 85	4	125 125	4.3	6	110 125	0.905 0.849	0.814 0.764	0.362	1
TPSW686*006#0250	W	68	6.3	85	4	125	4.3	6	250	0.600	0.540	0.240	1
TPSB107*006#0250	В	100	6.3	85	4	125	6.3	10	250	0.583	0.525	0.233	1
TPSB107*006#0400	В	100	6.3	85	4	125	6.3	10	400	0.461	0.415	0.184	1
TPSC107*006#0075 TPSC107*006#0150	C	100 100	6.3	85 85	4	125 125	6.3	6	75 150	1.211 0.856	1.090 0.771	0.484	1
TPSD107*006#0300	D	100	6.3	85	4	125	6.3	6	300	0.707	0.636	0.283	1
TPSW107*006#0100	W	100	6.3	85	4	125	6.3	6	100	0.949	0.854	0.379	1
TPSW107*006#0150	W	100	6.3	85	4	125	6.3	6	150	0.775	0.697	0.310	1
TPSY107*006#0100 TPSC157*006#0050	Y C	100 150	6.3	85 85	4	125 125	6.3 9.5	6	100 50	1.118 1.483	1.006 1.335	0.447	1 ¹⁾
TPSC157*006#0090	C	150	6.3	85	4	125	9.5	6	90	1.483	0.995	0.593	1
TPSC157*006#0150	C	150	6.3	85	4	125	9.5	6	150	0.856	0.771	0.343	1
TPSC157*006#0200	С	150	6.3	85	4	125	9.5	6	200	0.742	0.667	0.297	1
TPSC157*006#0250	С	150	6.3	85	4	125	9.5	6	250	0.663	0.597	0.265	1
TPSD157*006#0050 TPSD157*006#0125	D D	150 150	6.3 6.3	85 85	4	125 125	9.5 9.5	6	50 125	1.732 1.095	1.559 0.986	0.693 0.438	1
TPSY157*006#0040	Υ	150	6.3	85	4	125	9.5	6	40	1.768	1.591	0.707	1 ¹⁾
TPSY157*006#0050	Υ	150	6.3	85	4	125	9.5	6	50	1.581	1.423	0.632	1 ¹⁾
TPSC227*006#0070	С	220	6.3	85	4	125	13.9	8	70	1.254	1.128	0.501	1
TPSC227*006#0100 TPSC227*006#0125	C	220 220	6.3 6.3	85 85	4	125 125	13.9 13.9	8	100 125	1.049 0.938	0.944	0.420	1
TPSC227*006#0250	C	220	6.3	85	4	125	13.9	8	250	0.663	0.597	0.265	1
TPSD227*006#0050	D	220	6.3	85	4	125	13.9	8	50	1.732	1.559	0.693	1
TPSD227*006#0100	D	220	6.3	85	4	125	13.9	8	100	1.225	1.102	0.490	1
TPSD227*006#0125 TPSE227*006#0100	D E	220 220	6.3	85 85	4	125 125	13.9 13.9	8	125 100	1.095	0.986 1.156	0.438 0.514	1 1 ¹⁾
TPSF227*006#0100	F	220	6.3	85	4	125	13.9	10	200	1.285 0.707	0.636	0.514	1 1
TPSY227*006#0100	Y	220	6.3	85	4	125	13.9	8	100	1.118	1.006	0.447	1 ¹⁾
TPSY227*006#0150	Υ	220	6.3	85	4	125	13.9	8	150	0.913	0.822	0.365	1 ¹⁾
TPSC337*006#0080	С	330	6.3	85	4	125	19.8	12	80	1.173	1.055	0.469	1
TPSC337*006#0100 TPSD337*006#0045	C D	330 330	6.3 6.3	85 85	4	125 125	19.8 20.8	12 8	100 45	1.049 1.826	0.944 1.643	0.420	1
TPSD337*000#0045	D	330	6.3	85	4	125	20.8	8	50	1.732	1.559	0.730	1
TPSD337*006#0070	D	330	6.3	85	4	125	20.8	8	70	1.464	1.317	0.586	1
TPSD337*006#0100	D	330	6.3	85	4	125	20.8	8	100	1.225	1.102	0.490	1
TPSE337*006#0050 TPSE337*006#0100	E	330 330	6.3 6.3	85 85	4	125 125	20.8	8	50 100	1.817 1.285	1.635 1.156	0.727 0.514	1 ¹⁾
TPSE337*006#0100	E	330	6.3	85	4	125	20.8	8	125	1.285	1.034	0.460	11)
TPSE337*006#0150	E	330	6.3	85	4	125	20.8	8	150	1.049	0.944	0.420	1 ¹⁾
TPSV337*006#0100	V	330	6.3	85	4	125	20.8	8	100	1.581	1.423	0.632	11)
TPSY337*006#0075	Y	330	6.3	85	4	125	20.8	12	75	1.291	1.162	0.516	11)
TPSY337*006#0100 TPSY337*006#0150	Y	330 330	6.3	85 85	4	125 125	20.8	12 12	100 150	1.118 0.913	1.006 0.822	0.447	1 ¹⁾
TPSD477*006#0045	D	470	6.3	85	4	125	28	12	45	1.826	1.643	0.303	1
TPSD477*006#0060	D	470	6.3	85	4	125	28	12	60	1.581	1.423	0.632	1
TPSD477*006#0100	D	470	6.3	85	4	125	28	12	100	1.225	1.102	0.490	1
TPSD477*006#0200 TPSE477*006#0045	D E	470 470	6.3 6.3	85 85	4	125 125	28	12 10	200 45	0.866 1.915	0.779 1.723	0.346	1 1 ¹⁾
TPSE477*006#0045	E	470	6.3	85	4	125	28	10	50	1.915	1.635	0.766	11)
TPSE477*006#0060	E	470	6.3	85	4	125	28	10	60	1.658	1.492	0.663	1 ¹⁾
TPSE477*006#0100	E	470	6.3	85	4	125	28	10	100	1.285	1.156	0.514	1 ¹⁾
TPSE477*006#0200	E V	470 470	6.3	85	4	125	28	10 10	200 40	0.908	0.817	0.363	1 ¹⁾
TPSV477*006#0040 TPSV477*006#0055	V	470	6.3	85 85	4	125 125	28	10	55	2.500 2.132	2.250 1.919	1.000 0.853	11)
TPSV477*000#0035	V	470	6.3	85	4	125	28	10	100	1.581	1.423	0.632	1 ¹⁾
TPSY477*006#0150	Υ	470	6,3	85	4	125	28.2	20	150	0.913	0.822	0.365	1 ¹⁾
TPSE687*006#0045	E	680	6.3	85	4	125	42.8	10	45	1.915	1.723	0.766	11)
TPSE687*006#0060	E	680	6.3	85	4	125	42.8	10	60	1.658	1.492	0.663	11)

Low ESR

AVX Part No.	Case Size	Capacitance (µF)	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max. @ 100kHz		z RMS Cur		MS
raitino.	Size	(μι-)	(V)	(°C)	(V)	(°C)	(µA)	(%)	(mΩ)	25°C	85°C	125°C	
TPSV687*006#0035	V	680	6.3	85	4	125	42.8	10	35	2.673	2.405	1.069	11
PSV687*006#0040	V	680	6.3	85	4	125	42.8	10	40	2.500	2.250	1.000	11
PSV687*006#0050	V	680	6.3	85	4	125	42.8	10	50	2.236	2.012	0.894	11
PSE108M006#0100	E	1000	6.3	85	4	125	60	20	100	1.285	1.156	0.514	11
PSV108M006#0040	V	1000	6.3	85	4	125	60	16	40	2.500	2.250	1.000	11
PSV108M006#0050	V	1000	6.3	85	4	125	60	16	50	2.236	2.012	0.894	11
TPSR105*010#9000		1 1	10	0.5	7 7	@ 85°C	0.5	4	9000	0.078	0.070	0.031	1 1
TPSA225*010#9000	R	2.2	10	85 85	7	125 125	0.5	6	1800	0.078	0.070	0.031	1
TPST335*010#1500	T	3.3	10	85	7	125	0.5	6	1500	0.204	0.184	0.082	1
TPSA475*010#1400	A	4.7	10	85	7	125	0.5	6	1400	0.231	0.208	0.092	1
TPSB475*010#1400	В	4.7	10	85	7	125	0.5	6	1400	0.231	0.222	0.093	1
TPSR475*010#1400	R	4.7	10	85	7	125	0.5	6	3000	0.135	0.122	0.054	1
TPSR475*010#5000	R	4.7	10	85	7	125	0.5	6	5000	0.105	0.094	0.042	1
TPSA685*010#1800	A	6.8	10	85	7	125	0.7	6	1800	0.204	0.184	0.042	1
TPSB685*010#1300	В	6.8	10	85	7	125	0.7	6	1300	0.256	0.230	0.102	1
TPST685*010#1800	T	6.8	10	85	7	125	0.7	6	1800	0.211	0.190	0.084	1
TPSA106*010#0900	A	10	10	85	7	125	1	6	900	0.289	0.260	0.115	1
TPSA106*010#1800	A	10	10	85	7	125	1	6	1800	0.204	0.184	0.082	1
ΓPSB106*010#1000	В	10	10	85	7	125	1	6	1000	0.292	0.262	0.117	1
PSP106M010#2000	P	10	10	85	7	125	1	8	2000	0.173	0.156	0.069	1
TPSS106*010#0900	S	10	10	85	7	125	1	8	900	0.269	0.242	0.107	1
TPST106*010#1000	T	10	10	85	7	125	1	6	1000	0.283	0.255	0.113	1
TPST106*010#2000	Т	10	10	85	7	125	1	6	2000	0.200	0.180	0.080	1
ΓPSA156*010#1000	Α	15	10	85	7	125	1.5	6	1000	0.274	0.246	0.110	1
ΓPSB156*010#0450	В	15	10	85	7	125	1.5	6	450	0.435	0.391	0.174	1
ΓPSB156*010#0600	В	15	10	85	7	125	1.5	6	600	0.376	0.339	0.151	1
ΓPSC156*010#0700	С	15	10	85	7	125	1.5	6	700	0.396	0.357	0.159	1
TPST156*010#1200	T	15	10	85	7	125	1.5	8	1200	0.258	0.232	0.103	1
ΓPSA226*010#0900	Α	22	10	85	7	125	2.2	8	900	0.289	0.260	0.115	1
TPSB226*010#0400	В	22	10	85	7	125	2.2	6	400	0.461	0.415	0.184	1
TPSB226*010#0500	В	22	10	85	7	125	2.2	6	500	0.412	0.371	0.165	1
TPSB226*010#0700	В	22	10	85	7	125	2.2	6	700	0.348	0.314	0.139	1
FPSC226*010#0300	C	22	10	85	7	125	2.2	6	300	0.606	0.545	0.242	1
FPST226*010#0800	T		10 10	85	7	125	3.3	8	700	0.316	0.285 0.295	0.126 0.131	1
FPSA336*010#0700 FPSB336*010#0250	A B	33 33	10	85 85	7	125 125	3.3	6	250	0.327 0.583	0.295	0.131	1
TPSB336*010#0425	В	33	10	85	7	125	3.3	6	425	0.363	0.323	0.233	
TPSB336*010#0425	В	33	10	85	7	125	3.3	6	500	0.447	0.402	0.179	
TPSB336*010#0650	В	33	10	85	7	125	3.3	6	650	0.362	0.325	0.145	
TPSC336*010#0150	C	33	10	85	7	125	3.3	6	150	0.856	0.771	0.343	
TPSC336*010#0375	C	33	10	85	7	125	3.3	6	375	0.542	0.487	0.217	1
TPSC336*010#0500	C	33	10	85	7	125	3.3	6	500	0.469	0.422	0.188	1
TPSW336*010#0350	W	33	10	85	7	125	3.3	6	350	0.507	0.456	0.203	1
TPSB476*010#0250	В	47	10	85	7	125	4.7	8	250	0.583	0.525	0.233	1
TPSB476*010#0350	В	47	10	85	7	125	4.7	8	350	0.493	0.444	0.197	1
TPSB476*010#0500	В	47	10	85	7	125	4.7	8	500	0.412	0.371	0.165	1
TPSB476*010#0650	В	47	10	85	7	125	4.7	8	650	0.362	0.325	0.145	1
ΓPSC476*010#0200	С	47	10	85	7	125	4.7	6	200	0.742	0.667	0.297	1
ΓPSC476*010#0350	С	47	10	85	7	125	4.7	6	350	0.561	0.505	0.224	1
TPSD476*010#0100	D	47	10	85	7	125	4.7	6	100	1.225	1.102	0.490	1
TPSD476*010#0300	D	47	10	85	7	125	4.7	6	300	0.707	0.636	0.283	
PSW476*010#0125	W	47	10	85	7	125	4.7	6	125	0.849	0.764	0.339	_ '
PSW476*010#0150	W	47	10	85	7	125	4.7	6	150	0.775	0.697	0.310	
PSW476*010#0250	W	47	10	85	7	125	4.7	6	250	0.600	0.540	0.240	
FPSB686*010#0600	В	68	10	85	7	125	6.8	8	600	0.376	0.339	0.151	
FPSC686*010#0080 FPSC686*010#0100	C	68	10 10	85	7	125 125	6.8	6	80 100	1.173 1.049	1.055 0.944	0.469 0.420	
TPSC686*010#0100	C	68 68	10	85 85	7	125	6.8	6	200	0.742	0.944	0.420	
TPSC686*010#0300	C	68	10	85	7	125	6.8	6	300	0.606	0.545	0.242	
TPSD686*010#0100	D	68	10	85	7	125	6.8	6	100	1.225	1.102	0.490	
TPSD686*010#0150	D	68	10	85	7	125	6.8	6	150	1.000	0.900	0.490	
TPSY686*010#0100	Y	68	10	85	7	125	6.8	6	100	1.118	1.006	0.447	1
TPSY686*010#0200	Y	68	10	85	7	125	6.8	6	200	0.791	0.712	0.316	1
PSW686*010#0100	W	68	10	85	7	125	6.8	6	100	0.949	0.854	0.379	
PSW686*010#0150	W	68	10	85	7	125	6.8	6	150	0.775	0.697	0.310	
ΓPSB107*010#0400	В	100	10	85	7	125	10	8	400	0.461	0.415	0.184	
TPSC107*010#0075	С	100	10	85	7	125	10	8	75	1.211	1.090	0.484	
TPSC107*010#0100	С	100	10	85	7	125	10	8	100	1.049	0.944	0.420	
TPSC107*010#0150	С	100	10	85	7	125	10	8	150	0.856	0.771	0.343	
ΓPSC107*010#0200	С	100	10	85	7	125	10	8	200	0.742	0.667	0.297	
ΓPSD107*010#0050	D	100	10	85	7	125	10	6	50	1.732	1.559	0.693	
TPSD107*010#0065	D	100	10	85	7	125	10	6	65	1.519	1.367	0.608	
TPSD107*010#0080	D	100	10	85	7	125	10	6	80	1.369	1.232	0.548	
FPSD107*010#0100	D	100	10	85	7	125	10	6	100	1.225	1.102	0.490	
	D	100	10	85	7	125	10	6	125	1.095	0.986	0.438	
TPSD107*010#0125	D	100	10	85	7	125	10	6	150	1.000	0.900	0.400	<u> </u>
FPSD107*010#0125 FPSD107*010#0150		100	10	85	7	125	10	6	125	1.149	1.034	0.460	1
TPSD107*010#0125 TPSD107*010#0150 TPSE107*010#0125	E	100	10										
PSD107*010#0125 PSD107*010#0150 PSE107*010#0125 PSW107*010#0150	W	100	10	85	7	125	10	6	150	0.775	0.697	0.310	
FPSD107*010#0125 FPSD107*010#0150 FPSE107*010#0125 FPSW107*010#0150 FPSX107*010#0085	W X	100 100	10 10	85 85	7 7	125 125	10 10	6 8	150 85	0.775 1.085	0.697 0.976	0.310 0.434	1
FPSD107*010#0125 FPSD107*010#0150	W	100	10	85	7	125	10	6	150	0.775	0.697	0.310	1 1

Low ESR

AVX Port No	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max. @ 100kHz	100kH	z RMS Cur	rent (A)	MS
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(µA)	(%)	(mΩ)	25°C	85°C	125°C	
TPSY107*010#0150	Υ	100	10	85	7	125	10	6	150	0.913	0.822	0.365	1 ¹
TPSY107*010#0200	Y	100	10	85	7	125	10	6	200	0.791	0.712	0.316	11
TPSC157*010#0150	С	150	10	85	7	125	15	8	150	0.856	0.771	0.343	1
TPSD157*010#0050	D	150	10	85	7	125	15	8	50	1.732	1.559	0.693	1
TPSD157*010#0085	D	150	10	85	7	125	15	8	85	1.328	1.196	0.531	1
TPSD157*010#0100	D	150	10	85	7	125	15	8	100	1.225	1.102	0.490	1
TPSE157*010#0100	E	150	10	85	7	125	15	8	100	1.285	1.156	0.514	1
TPSF157*010#0200	F	150	10	85	7	125	15	10	200	0.707	0.636	0.283	1
TPSX157M010#0100	X	150	10	85	7	125	15	6	100	1.000	0.900	0.400	1
TPSY157*010#0100	Y	150	10	85	7	125	15	6	100	1.118	1.006	0.447	1
TPSY157*010#0150	Y	150	10	85	7	125	15	6	150	0.913	0.822	0.365	1
TPSY157*010#0200	Y	150	10	85	7	125	15	6	200	0.791	0.712	0.316	1
TPSD227*010#0040	D	220	10	85	7	125	22	8	40	1.936	1.743	0.775	1
TPSD227*010#0050	D	220	10	85	7	125	22	8	50	1.732	1.559	0.693	1
TPSD227*010#0100	D	220	10	85	7	125	22	8	100	1.225	1.102	0.490	1
TPSD227*010#0150	D	220	10	85	7	125	22	8	150	1.000	0.900	0.400	1
TPSE227*010#0050	E	220	10	85		125	22	8	50	1.817	1.635	0.727	1
TPSE227*010#0060	E	220	10	85	7	125	22	8	60	1.658	1.492	0.663	1
TPSE227*010#0070	E	220	10	85	7	125	22	8	70	1.535	1.382	0.614	1
TPSE227*010#0100	E	220	10	85	7	125	22	8	100	1.285	1.156	0.514	1
TPSE227*010#0125	E	220	10	85	7	125	22	8	125	1.149	1.034	0.460	1
TPSE227*010#0150	E Y	220 220	10 10	85	7	125	22	8 10	150 100	1.049	0.944 1.006	0.420	1
TPSY227*010#0100	Y	220	10	85	7	125	22	10		1.118 0.913	0.822		1
TPSY227*010#0150	Y	220	10	85 85	7	125 125	22	10	150 200	0.913	0.822	0.365 0.316	1
TPSY227*010#0200 TPSD337*010#0050	D	330	10	85	7	125	33	8	50	1.732	1.559	0.693	1
TPSD337*010#0050	D	330	10	85	7	125	33	8	65	1.732	1.367	0.693	-
TPSD337*010#0065	D	330	10	85	7	125	33	8	100	1.225	1.102	0.608	-
TPSD337*010#0100	D	330	10	85	7	125	33	8	150	1.000	0.900	0.490	1
TPSE337*010#0150	E	330	10	85	7	125	33	8	40	2.031	1.828	0.400	1
TPSE337*010#0040	E	330	10	85	7	125	33	8	50	1.817	1.635	0.812	1
TPSE337*010#0060	E	330	10	85	7	125	33	8	60	1.658	1.492	0.663	1
TPSE337*010#0100	E	330	10	85	7	125	33	8	100	1.285	1.156	0.514	1
TPSV337*010#0040	V	330	10	85	7	125	33	10	40	2.500	2.250	1.000	1
TPSV337*010#0040	V	330	10	85	7	125	33	10	60	2.041	1.837	0.816	1
TPSV337*010#0100	V	330	10	85	7	125	33	10	100	1.581	1.423	0.632	1
TPSE477*010#0045	E	470	10	85	7	125	47	10	45	1.915	1.723	0.766	1
TPSE477*010#0050	E	470	10	85	7	125	47	10	50	1.817	1.635	0.727	1
TPSE477*010#0060	Ē	470	10	85	7	125	47	10	60	1.658	1.492	0.663	1
TPSE477*010#0100	Ē	470	10	85	7	125	47	10	100	1.285	1.156	0.514	1
TPSE477*010#0200	E	470	10	85	7	125	47	10	200	0.908	0.817	0.363	1
TPSV477*010#0040	V	470	10	85	7	125	47	10	40	2.500	2.250	1.000	1
TPSV477*010#0060	V	470	10	85	7	125	47	10	60	2.041	1.837	0.816	1
TPSV477*010#0100	V	470	10	85	7	125	47	10	100	1.581	1.423	0.632	1
TPSE687M010#0150V	Е	680	10	85	7	125	68	18	150	1.049	0.944	0.420	3
TPSV687M010#0100V	V	680	10	85	7 16 Volt	125 @ 85°C	68	18	100	1.581	1.423	0.632	3
TPSA105*016#6200	A	1	16	85	10	125	0.5	4	6200	0.110	0.099	0.044	1
TPSA225*016#1800	Α	2.2	16	85	10	125	0.5	6	1800	0.204	0.184	0.082	1
TPSA225*016#3500	Α	2.2	16	85	10	125	0.5	6	3500	0.146	0.132	0.059	1
TPST225*016#2000	Т	2.2	16	85	10	125	0.5	6	2000	0.200	0.180	0.080	1
TPSA335*016#3500	Α	3.3	16	85	10	125	0.5	6	3500	0.146	0.132	0.059	1
TPSB335*016#2500	В	3.3	16	85	10	125	0.5	6	2500	0.184	0.166	0.074	1
TPSA475*016#2000	Α	4.7	16	85	10	125	0.8	6	2000	0.194	0.174	0.077	
TPSB475*016#0800	В	4.7	16	85	10	125	0.8	6	800	0.326	0.293	0.130	1
TPSB475*016#1500	В	4.7	16	85	10	125	0.8	6	1500	0.238	0.214	0.095	1
TPSA685*016#1500	Α	6.8	16	85	10	125	1.1	6	1500	0.224	0.201	0.089	Ε.
TPSB685*016#0600	В	6.8	16	85	10	125	1.1	6	600	0.376	0.339	0.151	
TPSB685*016#1200	В	6.8	16	85	10	125	1.1	6	1200	0.266	0.240	0.106	1
TPSA106*016#1000	Α	10	16	85	10	125	1.6	6	1000	0.274	0.246	0.110	
TPSB106*016#0500	В	10	16	85	10	125	1.6	6	500	0.412	0.371	0.165	_ ′
TPSB106*016#0800	В	10	16	85	10	125	1.6	6	800	0.326	0.293	0.130	
TPSC106*016#0500	С	10	16	85	10	125	1.6	6	500	0.469	0.422	0.188	<u> </u>
TPST106*016#0800	T	10	16	85	10	125	1.6	8	800	0.316	0.285	0.126	
TPST106*016#1000	T	10	16	85	10	125	1.6	8	1000	0.283	0.255	0.113	
ED-011/4-0-4-1-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	W	10	16	85	10	125	1.6	6	500	0.424	0.382	0.170	
TPSW106*016#0500	l w	10	16	85	10	125	1.6	6	600	0.387	0.349	0.155	
TPSW106*016#0600		15	16	85	10	125	2.4	6	500	0.412	0.371	0.165	1
TPSW106*016#0600 TPSB156*016#0500	В	1.5	1.			125	2.4	6	800	0.326	0.293	0.130	1
TPSW106*016#0600 TPSB156*016#0500 TPSB156*016#0800	B B	15	16	85	10	105			300	0.606	0.545	0.242	1
TPSW106*016#0600 TPSB156*016#0500 TPSB156*016#0800 TPSC156*016#0300	B B C	15	16	85	10	125	2.4	6		0.001	0 0 -	0.450	1
TPSW106*016#0600 TPSB156*016#0500 TPSB156*016#0800 TPSC156*016#0300 TPSC156*016#0700	B B C C	15 15	16 16	85 85	10 10	125	2.4	6	700	0.396	0.357	0.159	
TPSW106*016#0600 TPSB156*016#0500 TPSB156*016#0800 TPSC156*016#0300 TPSC156*016#0700 TPSB226*016#0400	B B C C	15 15 22	16 16 16	85 85 85	10 10 10	125 125	2.4 3.5	6 6	700 400	0.461	0.415	0.184	_
TPSW106*016#0600 TPSB156*016#0500 TPSB156*016#0800 TPSC156*016#0800 TPSC156*016#0300 TPSC156*016#0700 TPSB226*016#0400 TPSB226*016#0600	B B C C B B	15 15 22 22	16 16 16 16	85 85 85 85	10 10 10 10	125 125 125	2.4 3.5 3.5	6 6 6	700 400 600	0.461 0.376	0.415 0.339	0.184 0.151	-
TPSW106*016#0600 TPSB156*016#0500 TPSB156*016#0800 TPSC156*016#0300 TPSC156*016#0700 TPSB226*016#0400 TPSB226*016#0400 TPSC226*016#0500 TPSC226*016#0150	B B C C C B B	15 15 22 22 22 22	16 16 16 16 16	85 85 85 85 85	10 10 10 10 10	125 125 125 125	2.4 3.5 3.5 3.5	6 6 6	700 400 600 150	0.461 0.376 0.856	0.415 0.339 0.771	0.184 0.151 0.343	-
TPSW106*016#0600 TPSB156*016#0500 TPSB156*016#0800 TPSC156*016#0300 TPSC156*016#0700 TPSB226*016#0400 TPSB226*016#0600 TPSC226*016#0500 TPSC226*016#0500 TPSC226*016#0500	B B C C C B B C	15 15 22 22 22 22 22	16 16 16 16 16 16	85 85 85 85 85 85	10 10 10 10 10 10	125 125 125 125 125 125	2.4 3.5 3.5 3.5 3.5	6 6 6 6	700 400 600 150 250	0.461 0.376 0.856 0.663	0.415 0.339 0.771 0.597	0.184 0.151 0.343 0.265	-
TPSW106*016#0600 TPSB156*016#0500 TPSB156*016#0800 TPSC156*016#0300 TPSC156*016#0700 TPSB226*016#0400 TPSB226*016#0400 TPSB226*016#0500 TPSC226*016#050 TPSC226*016#050 TPSC226*016#0300	B B C C C C C C	15 15 22 22 22 22 22 22 22	16 16 16 16 16 16 16	85 85 85 85 85 85 85	10 10 10 10 10 10 10	125 125 125 125 125 125 125	2.4 3.5 3.5 3.5 3.5 3.5 3.5	6 6 6 6 6	700 400 600 150 250 300	0.461 0.376 0.856 0.663 0.606	0.415 0.339 0.771 0.597 0.545	0.184 0.151 0.343 0.265 0.242	
TPSW106*016#0600 TPSB156*016#0500 TPSB156*016#0800 TPSC156*016#0300 TPSC156*016#0700 TPSB226*016#0400 TPSB226*016#0400 TPSC226*016#0150 TPSC226*016#0250 TPSC226*016#0300 TPSC226*016#0375	B B C C C C C C C	15 15 22 22 22 22 22 22 22 22 22	16 16 16 16 16 16 16 16	85 85 85 85 85 85 85 85	10 10 10 10 10 10 10 10	125 125 125 125 125 125 125 125	2.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5	6 6 6 6 6 6	700 400 600 150 250 300 375	0.461 0.376 0.856 0.663 0.606 0.542	0.415 0.339 0.771 0.597 0.545 0.487	0.184 0.151 0.343 0.265 0.242 0.217	
TPSW106*016#0600 TPSB156*016#0500 TPSB156*016#0800 TPSC156*016#0300 TPSC156*016#0700 TPSB226*016#0400 TPSC226*016#0600 TPSC226*016#0500 TPSC226*016#0300 TPSC226*016#0300 TPSC226*016#0375 TPSC226*016#0700	B B C C C C C C D	15 15 22 22 22 22 22 22 22 22 22 22 22	16 16 16 16 16 16 16 16	85 85 85 85 85 85 85 85 85	10 10 10 10 10 10 10 10 10	125 125 125 125 125 125 125 125 125	2.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	6 6 6 6 6 6 6	700 400 600 150 250 300 375 700	0.461 0.376 0.856 0.663 0.606 0.542 0.463	0.415 0.339 0.771 0.597 0.545 0.487 0.417	0.184 0.151 0.343 0.265 0.242 0.217 0.185	1 1 1 1
TPSW106*016#0600 TPSB156*016#0500 TPSB156*016#0800 TPSC156*016#0300 TPSC156*016#0700 TPSB226*016#0400 TPSB226*016#0600 TPSC226*016#0500 TPSC226*016#0300 TPSC226*016#0300 TPSC226*016#0375 TPSC226*016#0375 TPSD226*016#0700 TPSW226*016#0500	B B B C C C C C C D W	15 15 22 22 22 22 22 22 22 22 22 22 22 22	16 16 16 16 16 16 16 16 16	85 85 85 85 85 85 85 85 85	10 10 10 10 10 10 10 10 10 10	125 125 125 125 125 125 125 125 125 125	2.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	6 6 6 6 6 6 6	700 400 600 150 250 300 375 700 500	0.461 0.376 0.856 0.663 0.606 0.542 0.463 0.424	0.415 0.339 0.771 0.597 0.545 0.487 0.417 0.382	0.184 0.151 0.343 0.265 0.242 0.217 0.185 0.170	1 1 1 1
TPSW106*016#0600 TPSB156*016#0500 TPSB156*016#0800 TPSC156*016#0300 TPSC156*016#0700 TPSB226*016#0400 TPSB226*016#0400 TPSB226*016#0150 TPSC226*016#0250 TPSC226*016#0370 TPSC226*016#0375 TPSD226*016#0375 TPSD226*016#0375	B B B C C C C C C D W B B	15 15 22 22 22 22 22 22 22 22 22 22 22 22 33	16 16 16 16 16 16 16 16 16 16 16	85 85 85 85 85 85 85 85 85 85 85 85	10 10 10 10 10 10 10 10 10 10 10	125 125 125 125 125 125 125 125 125 125	2.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	6 6 6 6 6 6 6 6 6 8	700 400 600 150 250 300 375 700 500	0.461 0.376 0.856 0.663 0.606 0.542 0.463 0.424 0.493	0.415 0.339 0.771 0.597 0.545 0.487 0.417 0.382 0.444	0.184 0.151 0.343 0.265 0.242 0.217 0.185 0.170 0.197	1 1 1 1 1 1 1
TPSW106*016#0600 TPSB156*016#0500 TPSB156*016#0800 TPSC156*016#0300 TPSC156*016#0700 TPSB226*016#0400 TPSB226*016#0600 TPSC226*016#0500 TPSC226*016#0300 TPSC226*016#0375 TPSC226*016#0375 TPSD226*016#0700 TPSW226*016#0500	B B B C C C C C C D W	15 15 22 22 22 22 22 22 22 22 22 22 22 22	16 16 16 16 16 16 16 16 16	85 85 85 85 85 85 85 85 85	10 10 10 10 10 10 10 10 10 10	125 125 125 125 125 125 125 125 125 125	2.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	6 6 6 6 6 6 6	700 400 600 150 250 300 375 700 500	0.461 0.376 0.856 0.663 0.606 0.542 0.463 0.424	0.415 0.339 0.771 0.597 0.545 0.487 0.417 0.382	0.184 0.151 0.343 0.265 0.242 0.217 0.185 0.170	1 1 1 1 1 1 1 1 1 1

Low ESR

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cur	rent (A)	MSL
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(µA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	
TPSC336*016#0225	С	33	16	85	10	125	5.3	6	225	0.699	0.629	0.280	1
TPSC336*016#0300	С	33	16	85	10	125	5.3	6	300	0.606	0.545	0.242	1
TPSD336*016#0200 TPSW336*016#0140	D W	33 33	16 16	85 85	10 10	125 125	5.3 5.3	6	200 140	0.866	0.779 0.722	0.346	1
TPSW336*016#0175	W	33	16	85	10	125	5.3	6	175	0.802	0.722	0.321	1
TPSW336*016#0250	W	33	16	85	10	125	5.3	6	250	0.600	0.540	0.240	1
TPSW336*016#0400	W	33	16	85	10	125	5.3	6	400	0.474	0.427	0.190	1
TPSW336*016#0500	W	33	16	85	10	125	5.3	6	500	0.424	0.382	0.170	1
TPSY336*016#0300 TPSY336*016#0400	Y	33 33	16 16	85 85	10 10	125 125	5.3 5.3	6	300 400	0.645	0.581 0.503	0.258	1 ¹⁾
TPSC476*016#0110	C	47	16	85	10	125	7.5	6	110	1.000	0.900	0.400	1
TPSC476*016#0350	С	47	16	85	10	125	7.5	6	350	0.561	0.505	0.224	1
TPSD476*016#0080	D	47	16	85	10	125	7.5	6	80	1.369	1.232	0.548	1
TPSD476*016#0100	D	47	16	85	10	125	7.5	6	100	1.225	1.102	0.490	1
TPSD476*016#0150 TPSD476*016#0200	D D	47 47	16 16	85 85	10 10	125 125	7.5 7.5	6	150 200	1.000 0.866	0.900 0.779	0.400	1
TPSW476*016#0200	W	47	16	85	10	125	7.5	6	200	0.671	0.604	0.268	1
TPSX476*016#0180	X	47	16	85	10	125	7.5	6	180	0.745	0.671	0.298	1 ¹⁾
TPSY476*016#0250	Y	47	16	85	10	125	7.5	6	250	0.707	0.636	0.283	1 ¹⁾
TPSC686*016#0125	С	68	16	85	10	125	10.9	6	125	0.938	0.844	0.375	1
TPSC686*016#0200	C D	68	16 16	85 85	10 10	125 125	10.9 10.9	6	200 70	0.742 1.464	0.667 1.317	0.297	1
TPSD686*016#0070 TPSD686*016#0100	D	68 68	16	85	10	125	10.9	6	100	1.404	1.102	0.386	1
TPSD686*016#0150	D	68	16	85	10	125	10.9	6	150	1.000	0.900	0.490	1
TPSF686*016#0200	F	68	16	85	10	125	10.9	10	200	0.707	0.636	0.283	1
TPSX686*016#0150	Х	68	16	85	10	125	10.9	8	150	0.816	0.735	0.327	1 ¹⁾
TPSY686*016#0150	Y	68	16	85	10	125	10.9	6	150	0.913	0.822	0.365	11)
TPSY686*016#0200 TPSY686*016#0250	Y	68 68	16 16	85 85	10 10	125 125	10.9 10.9	6	200 250	0.791 0.707	0.712 0.636	0.316	1 ¹⁾
TPSC107*016#0200	C	100	16	85	10	125	16	8	200	0.707	0.667	0.283	1
TPSD107*016#0060	D	100	16	85	10	125	16	6	60	1.581	1.423	0.632	1
TPSD107*016#0100	D	100	16	85	10	125	16	6	100	1.225	1.102	0.490	1
TPSD107*016#0125	D	100	16	85	10	125	16	6	125	1.095	0.986	0.438	1
TPSD107*016#0150	D	100	16	85	10	125	16	6	150	1.000	0.900	0.400	1
TPSE107*016#0055 TPSE107*016#0100	E	100 100	16 16	85 85	10 10	125 125	16 16	6	55 100	1.732	1.559 1.156	0.693 0.514	1 ¹⁾
TPSE107*016#0105	E	100	16	85	10	125	16	6	125	1.149	1.034	0.460	11)
TPSE107*016#0150	Ē	100	16	85	10	125	16	6	150	1.049	0.944	0.420	11)
TPSF107M016#0150	F	100	16	85	10	125	16	10	150	0.816	0.735	0.327	1
TPSF107M016#0200	F	100	16	85	10	125	16	10	200	0.707	0.636	0.283	1
TPSY107*016#0100	Y	100	16	85	10	125	16	8	100	1.118	1.006	0.447	11)
TPSY107*016#0150 TPSY107*016#0200	Y	100 100	16 16	85 85	10 10	125 125	16 16	8	150 200	0.913	0.822 0.712	0.365 0.316	1 ¹⁾
TPSD157*016#0060	D	150	16	85	10	125	24	6	60	1.581	1.423	0.632	1
TPSD157*016#0085	D	150	16	85	10	125	24	6	85	1.328	1.196	0.531	1
TPSD157*016#0100	D	150	16	85	10	125	24	6	100	1.225	1.102	0.490	1
TPSD157*016#0125	D	150	16	85	10	125	24	6	125	1.095	0.986	0.438	1
TPSD157*016#0150 TPSE157*016#0050V	D E	150 150	16 16	85 85	10 10	125 125	24 24	6 8	150 50	1.000 1.817	0.900 1.635	0.400	3
TPSE157*016#0100	E	150	16	85	10	125	24	8	100	1.285	1.156	0.727	1 ¹⁾
TPSV157*016#0045	V	150	16	85	10	125	24	8	45	2.357	2.121	0.943	11)
TPSV157*016#0075	V	150	16	85	10	125	24	8	75	1.826	1.643	0.730	1 ¹⁾
TPSY157M016#0200	Υ	150	16	85	10	125	24	15	200	0.791	0.712	0.316	11)
TPSD227M016#0200V	D	220	16	85	10	125	35.2	10	200	0.866	0.779	0.346	3
TPSE227*016#0050V TPSE227*016#0100	E	220 220	16 16	85 85	10 10	125 125	35.2 35.2	10	50 100	1.817 1.285	1.635 1.156	0.727 0.514	3 1 ¹⁾
TPSE227*016#0100	E	220	16	85	10	125	35.2	10	150	1.285	0.944	0.420	11)
TPSV227*016#0050	V	220	16	85	10	125	35.2	8	50	2.236	2.012	0.894	1 ¹⁾
TPSV227*016#0075	V	220	16	85	10	125	35.2	8	75	1.826	1.643	0.730	1 ¹⁾
TPSV227*016#0100	V	220	16	85	10	125	35.2	8	100	1.581	1.423	0.632	1 ¹⁾
TPSV227*016#0150	V E	220	16 16	85	10 10	125 125	35.2	30	150	1.291	1.162	0.516	1 ¹⁾ 1 ¹⁾
TPSE337M016#0200	-	330	10	85		@ 85°C	52.8	30	200	0.908	0.817	0.363	1.7
TPSA105*020#3000	A	1	20	85	13	125	0.5	4	3000	0.158	0.142	0.063	1
TPSR105*020#6000	R	1	20	85	13	125	0.5	4	6000	0.096	0.086	0.038	1
TPSS105*020#6000	S	1	20	85	13	125	0.5	4	6000	0.104	0.094	0.042	1
TPST105*020#2000	T	1	20	85	13	125	0.5	4	2000	0.200	0.180	0.080	1
TPSA155*020#3000 TPSA225*020#3000	A	1.5	20	85	13 13	125	0.5	6	3000 3000	0.158	0.142 0.142	0.063	1
TPSB225*020#3000	B	2.2	20 20	85 85	13	125 125	0.5	6	1700	0.158 0.224	0.142	0.089	1
TPSA335*020#2500	A	3.3	20	85	13	125	0.7	6	2500	0.224	0.201	0.069	1
TPSB335*020#1300	В	3.3	20	85	13	125	0.7	6	1300	0.256	0.230	0.102	1
TPSA475*020#1800	Α	4.7	20	85	13	125	0.9	6	1800	0.204	0.184	0.082	1
TPSB475*020#0750	В	4.7	20	85	13	125	0.9	6	750	0.337	0.303	0.135	1
TPSB475*020#1000	В	4.7	20	85	13	125	0.9	6	1000	0.292	0.262	0.117	1
TPSA685*020#1000 TPSB685*020#0600	A B	6.8	20 20	85 85	13 13	125 125	1.4	6	1000 600	0.274	0.246 0.339	0.110 0.151	1
TPSB685*020#1000	В	6.8	20	85	13	125	1.4	6	1000	0.376	0.339	0.131	1
TPSC685*020#0700	C	6.8	20	85	13	125	1.4	6	700	0.396	0.357	0.117	1
		10	20	85	13	125	2	6	500	0.412	0.371	0.165	1
TPSB106*020#0500	В												
TPSB106*020#0500 TPSB106*020#1000 TPSC106*020#0500	B B	10 10 10	20	85 85	13 13	125 125	2	6	1000 500	0.292	0.262	0.117 0.188	1

Low ESR

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cui	rent (A)	MS
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(µA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C] ""C
TPSC106*020#0700	С	10	20	85	13	125	2	6	700	0.396	0.357	0.159	1
TPSW106*020#0250	W	10	20	85	13	125	2	6	250	0.600	0.540	0.240	1
TPSW106*020#0500	W	10	20	85	13	125	2	6	500	0.424	0.382	0.170	1
TPSB156*020#0500	В	15	20	85	13	125	3	6	500	0.412	0.371	0.165	1
TPSC156*020#0400	С	15	20	85	13	125	3	6	400	0.524	0.472	0.210	1
TPSC156*020#0450	С	15	20	85	13	125	3	6	450	0.494	0.445	0.198	1
TPSB226*020#0400	В	22	20	85	13	125	4.4	6	400	0.461	0.415	0.184	1
TPSB226*020#0600	В	22	20	85	13	125	4.4	6	600	0.376	0.339	0.151	1
TPSC226*020#0100	C	22	20	85	13	125	4.4	6	100	1.049	0.944	0.420	1
TPSC226*020#0150 TPSC226*020#0400	C	22	20	85	13	125	4.4	6	150	0.856	0.771	0.343	1
	C	22	20	85	13	125	4.4	6	400	0.524	0.472	0.210	1
TPSD226*020#0200 TPSD226*020#0300	D D	22	20 20	85 85	13 13	125 125	4.4 4.4	6	200 300	0.866 0.707	0.779 0.636	0.346	1
TPSC336*020#0300	C	33	20	85	13	125	6.6	6	300	0.606	0.545	0.242	1
TPSD336*020#0300	D	33	20	85	13	125	6.6	6	100	1.225	1.102	0.490	1
TPSD336*020#0100	D	33	20	85	13	125	6.6	6	200	0.866	0.779	0.490	1
TPSD476*020#0200	D	47	20	85	13	125	9.4	6	75	1.414	1.273	0.566	1
TPSD476*020#0075	D	47	20	85	13	125	9.4	6	100	1.225	1.102	0.490	1
TPSD476*020#0100	D	47	20	85	13	125	9.4	6	200	0.866	0.779	0.346	1
TPSE476*020#0200	E	47	20	85	13	125	9.4	6	70	1.535	1.382	0.346	1
TPSE476*020#0070	E	47	20	85	13	125	9.4	6	125	1.535	1.382	0.614	1
TPSE476*020#0150	E	47	20	85	13	125	9.4	6	150	1.149	0.944	0.460	1
TPSE476*020#0150	E	47	20	85	13	125	9.4	6	200	0.908	0.944	0.420	1
TPSE476*020#0200	E	47	20	85	13	125	9.4	6	250	0.908	0.817	0.303	1
TPSX476*020#0200	X	47	20	85	13	125	9.4	6	200	0.707	0.636	0.323	1
TPSD686*020#0200	D	68	20	85	13	125	13.6	6	70	1.464	1.317	0.283	
TPSD686*020#0070	D	68	20	85	13	125	13.6	6	150	1.000	0.900	0.400	-
TPSD686*020#0200	D	68	20	85	13	125	13.6	6	200	0.866	0.779	0.346	1
TPSD686*020#0300	D	68	20	85	13	125	13.6	6	300	0.707	0.636	0.283	-
TPSE686*020#0125	E	68	20	85	13	125	13.6	6	125	1.149	1.034	0.460	1
TPSE686*020#0150	Ē	68	20	85	13	125	13.6	6	150	1.049	0.944	0.420	1
TPSE686*020#0200	E	68	20	85	13	125	13.6	6	200	0.908	0.817	0.363	1
TPSY686*020#0200	Y	68	20	85	13	125	13.6	6	200	0.791	0.712	0.316	1
TPSD107*020#0085	D	100	20	85	13	125	20	6	85	1.328	1.196	0.531	1
TPSD107*020#0100	D	100	20	85	13	125	20	6	100	1.225	1.102	0.490	1
TPSD107*020#0150	D	100	20	85	13	125	20	6	150	1.000	0.900	0.400	1
TPSE107*020#0100	E	100	20	85	13	125	20	6	100	1.285	1.156	0.514	1
TPSE107*020#0150	E	100	20	85	13	125	20	6	150	1.049	0.944	0.420	1
TPSE107*020#0200	E	100	20	85	13	125	20	6	200	0.908	0.817	0.363	1
TPSV107*020#0060	V	100	20	85	13	125	20	8	60	2.041	1.837	0.816	1
TPSV107*020#0085	V	100	20	85	13	125	20	8	85	1.715	1.543	0.686	1
TPSV107*020#0100	V	100	20	85	13	125	20	8	100	1.581	1.423	0.632	1
TPSV107*020#0200	V	100	20	85	13	125	20	8	200	1.118	1.006	0.447	1
TPSV157*020#0080	V	150	20	85	13	125	30	8	80	1.768	1.591	0.707	1
					25 Volt	@ 85°C							
TPSA474*025#7000	A	0.47	25	85	17	125	0.5	4	7000	0.104	0.093	0.041	1
TPSA684*025#6000	Α	0.68	25	85	17	125	0.5	4	6000	0.112	0.101	0.045	1
TPSA105*025#4000	A	1	25	85	17	125	0.5	4	4000	0.137	0.123	0.055	1
TPSR105*025#2500	R	1	25	85	17	125	0.5	4	2500	0.148	0.133	0.059	1
TPSR105*025#4000	R	1	25	85	17	125	0.5	4	4000	0.117	0.106	0.047	<u> </u>
TPSA155*025#3000	A	1.5	25	85	17	125	0.5	6	3000	0.158	0.142	0.063	1
TPSB155*025#1800	В	1.5	25	85	17	125	0.5	6	1800	0.217	0.196	0.087	_ ′
TPSA225*025#2500	A	2.2	25	85	17	125	0.6	6	2500	0.173	0.156	0.069	
TPSB225*025#0900	В	2.2	25	85	17	125	0.6	6	900	0.307	0.277	0.123	
TPSB225*025#1200	В	2.2	25	85	17	125	0.6	6	1200	0.266	0.240	0.106	1
TPSB225*025#2500	В	2.2	25	85	17	125	0.6	6	2500	0.184	0.166	0.074	
TPSA335*025#1000	A	3.3	25	85	17	125	0.8	6	1000	0.274	0.246	0.110	
TPSA335*025#1500	A	3.3	25	85	17	125	0.8	6	1500	0.224	0.201	0.089	
TPSB335*025#0750	В	3.3	25	85	17	125	0.8	6	750	0.337	0.303	0.135	
TPSB335*025#1500	В	3.3	25	85	17	125	0.8	6	1500	0.238	0.214	0.095	'
TPSB335*025#2000 TPSB475*025#0700	B	3.3 4.7	25	85 85	17 17	125	0.8 1.2	6	700 700	0.206	0.186 0.314	0.082	-
TPSB475*025#0700 TPSB475*025#0900	B	4.7	25 25	85	17	125 125	1.2	6	900	0.348	0.314	0.139	
TPSB475*025#0900 TPSB475*025#1500	B	4.7	25	85	17	125	1.2		1500	0.307	0.277	0.123	-
TPSC475*025#1500	C	4.7	25	85	17	125	1.2	6	700	0.238	0.214	0.095	-
TPSB685*025#0700	В	6.8	25	85	17	125	1.7	6	700	0.348	0.357	0.139	
TPSC685*025#0700	C	6.8	25	85	17	125	1.7	6	500	0.469	0.314	0.139	1
TPSC685*025#0500	C	6.8	25	85	17	125	1.7	6	600	0.409	0.422	0.166	1
TPSC685*025#0700	C	6.8	25	85	17	125	1.7	6	700	0.428	0.357	0.171	-
TPSB106*025#1800	В	10	25	85	17	125	2.5	6	1800	0.390	0.337	0.139	-
TPSC106*025#0300	C	10	25	85	17	125	2.5	6	300	0.606	0.190	0.087	-
TPSC106*025#0300	C	10	25	85	17	125	2.5	6	500	0.469	0.422	0.242	-
TPSD106*025#0500	D	10	25	85	17	125	2.5	6	500	0.469	0.422	0.100	-
TPSC156*025#0300	C	15	25	85	17	125	3.8	6	220	0.707	0.493	0.219	٠.
TPSC156*025#0220	C	15	25	85	17	125	3.8	6	300	0.606	0.545	0.242	<u> </u>
TPSD156*025#0300	D	15	25	85	17	125	3.8	6	100	1.225	1.102	0.490	-
	D	15	25	85	17	125	3.8	6	300	0.707	0.636	0.490	-
	C	22	25	85	17	125	5.5	6	275	0.632	0.569	0.253	-
TPSD156*025#0300 TPSC226*025#0275		. 44		1 00									-
TPSC226*025#0275		22	25	25	17	125	5 5		71110		1 () 1/2		
TPSC226*025#0275 TPSC226*025#0400	С	22	25 25	85 85	17 17	125 125	5.5 5.5	6	400 100	0.524 1.225	0.472	0.210	_
TPSC226*025#0275		22 22 22	25 25 25	85 85 85	17 17 17	125 125 125	5.5 5.5 5.5	6	100 200	1.225 0.866	0.4/2 1.102 0.779	0.210 0.490 0.346	-

Low ESR

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cur	rent (A)	MS
Part No.	Size	(μF)	(V)	(°C)	(V)	(°C)	(µA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	1
TPSF226*025#0300	F	22	25	85	17	125	5.5	6	300	0.577	0.520	0.231	1
PSC336*025#0400	С	33	25	85	17	125	8.3	6	400	0.524	0.472	0.210	1
PSD336*025#0100	D	33	25	85	17	125	8.3	6	100	1.225	1.102	0.490	1
PSD336*025#0200	D	33	25	85	17	125	8.3	6	200	0.866	0.779	0.346	1
PSD336*025#0300	D	33	25	85	17	125	8.3	6	300	0.707	0.636	0.283	1
PSE336*025#0100	E	33	25	85	17	125	8.3	6	100	1.285	1.156	0.514	1
FPSE336*025#0175	E	33	25	85	17	125	8.3	6	175	0.971	0.874	0.388	1
FPSE336*025#0200	E	33	25	85	17	125	8.3	6	200	0.908	0.817	0.363	1
TPSE336*025#0300	E F	33 33	25 25	85	17 17	125 125	8.3	6	300	0.742	0.667	0.297	1
TPSF336*025#0150 TPSF336*025#0200	F	33	25	85 85	17	125	8.3 8.3	6	150 200	0.816 0.707	0.735 0.636	0.327	1
TPSF336*025#0200	F	33	25	85	17	125	8.3	6	400	0.707	0.636	0.200	1
TPSY336*025#0200	Y	33	25	85	17	125	8.3	6	200	0.500	0.450	0.200	1
TPSD476*025#0125	D	47	25	85	17	125	11.8	6	125	1.095	0.712	0.438	1
TPSD476*025#0150	D	47	25	85	17	125	11.8	6	150	1.000	0.900	0.400	٠
TPSD476*025#0250	D	47	25	85	17	125	11.8	6	250	0.775	0.697	0.310	
TPSE476*025#0080	E	47	25	85	17	125	11.8	6	80	1.436	1.293	0.574	1
TPSE476*025#0100	E	47	25	85	17	125	11.8	6	100	1.285	1.156	0.514	1
TPSE476*025#0125	E	47	25	85	17	125	11.8	6	125	1.149	1.034	0.460	1
PSY476*025#0250	Y	47	25	85	17	125	11.8	6	250	0.707	0.636	0.283	1
TPSD686*025#0150	D	68	25	85	17	125	17	6	150	1.000	0.900	0.400	-
TPSD686*025#0200	D	68	25	85	17	125	17	6	200	0.866	0.779	0.346	
PSD686*025#0300	D	68	25	85	17	125	17	6	300	0.707	0.779	0.340	
PSE686*025#0125	E	68	25	85	17	125	17	6	125	1.149	1.034	0.460	1
PSE686*025#0200	E	68	25	85	17	125	17	6	200	0.908	0.817	0.363	1
PSV686*025#0080	V	68	25	85	17	125	17	6	80	1.768	1.591	0.707	1
PSV686*025#0095	V	68	25	85	17	125	17	6	95	1.622	1.460	0.649	1
PSV686*025#0150	V	68	25	85	17	125	17	6	150	1.291	1.162	0.516	1
PSV686*025#0200	V	68	25	85	17	125	17	6	200	1.118	1.006	0.447	1
PSE107*025#0150	Ė	100	25	85	17	125	25	10	150	1.049	0.944	0.420	1
PSV107*025#0100	V	100	25	85	17	125	25	8	100	1.581	1.423	0.632	1
PSV157M025#0150	V	150	25	85	17	125	37.5	10	150	1.291	1.162	0.516	1
					35 Volt								
PSA224*035#6000	Α	0.22	35	85	23	125	0.5	4	6000	0.112	0.101	0.045	T .
PSA334*035#6000	Α	0.33	35	85	23	125	0.5	4	6000	0.112	0.101	0.045	
PSA474*035#6000	Α	0.47	35	85	23	125	0.5	4	6000	0.112	0.101	0.045	
PSB474*035#4000	В	0.47	35	85	23	125	0.5	4	4000	0.146	0.131	0.058	
PSA684*035#6000	Α	0.68	35	85	23	125	0.5	4	6000	0.112	0.101	0.045	
PSA105*035#3000	Α	1	35	85	23	125	0.5	4	3000	0.158	0.142	0.063	
PSB105*035#2000	В	1	35	85	23	125	0.5	4	2000	0.206	0.186	0.082	
PSA155*035#3000	Α	1.5	35	85	23	125	0.5	6	3000	0.158	0.142	0.063	
PSB155*035#2500	В	1.5	35	85	23	125	0.5	6	2500	0.184	0.166	0.074	
PSA225*035#1500	A	2.2	35	85	23	125	0.8	6	1500	0.224	0.201	0.089	
PSB225*035#0750	В	2.2	35	85	23	125	0.8	6	750	0.337	0.303	0.135	
PSB225*035#1500	В	2.2	35	85	23	125	0.8	6	1500	0.238	0.214	0.095	
TPSB225*035#2000	В	2.2	35	85	23	125	0.8	6	2000	0.206	0.186	0.082	
PSC225*035#1000	С	2.2	35	85	23	125	0.8	6	1000	0.332	0.298	0.133	
PSB335*035#1000	В	3.3	35	85	23	125	1.2	6	1000	0.292	0.262	0.117	
PSC335*035#0700	С	3.3	35	85	23	125	1.2	6	700	0.396	0.357	0.159	<u> </u>
PSB475*035#0700	В	4.7	35	85	23	125	1.6	6	700	0.348	0.314	0.139	
PSB475*035#1500	В	4.7	35	85	23	125	1.6	6	1500	0.238	0.214	0.095	<u> </u>
PSC475*035#0600	С	4.7	35	85	23	125	1.6	6	600	0.428	0.385	0.171	
PSD475*035#0700	D	4.7	35	85	23	125	1.6	6	700	0.463	0.417	0.185	
PSC685*035#0350	С	6.8	35	85	23	125	2.4	6	350	0.561	0.505	0.224	
PSD685*035#0150	D	6.8	35	85	23	125	2.4	6	150	1.000	0.900	0.400	
PSD685*035#0400	D	6.8	35	85	23	125	2.4	6	400	0.612	0.551	0.245	
PSD685*035#0500	D	6.8	35	85	23	125	2.4	6	500	0.548	0.493	0.219	
PSC106*035#0600	C	10	35	85	23	125	3.5	6	600	0.428	0.385	0.171	
PSD106*035#0125	D	10	35	85	23	125	3.5	6	125	1.095	0.986	0.438	
PSD106*035#0300	D	10	35	85	23	125	3.5	6	300	0.707	0.636	0.283	
PSE106*035#0100V	E	10	35	85	23	125	3.5	6	100	1.285	1.156	0.514	
PSE106*035#0150V	E	10	35	85	23	125	3.5	6	150	1.049	0.944	0.420	
PSE106*035#0200 PSY106*035#0250	E Y	10	35	85	23	125	3.5	6	200	0.908	0.817	0.363	1
PSC156*035#0250	C	10 15	35 35	85	23 23	125 125	3.5	6	250	0.707 0.561	0.636 0.505	0.283	_
PSC156*035#0350	C	15	35	85 85	23	125	5.3 5.3	6	350 450	0.494	0.505	0.224	
PSD156*035#0450	D	15	35	85	23	125	5.3	6	100	1.225	1.102	0.198	
PSD156*035#0100	D	15	35	85	23	125	5.3	6	300	0.707	0.636	0.490	
PSY156*035#0300 PSY156*035#0250	Y	15	35	85	23	125	5.3	6	250	0.707	0.636	0.283	1
PSD226*035#0125	D	22	35	85	23	125	7.7	6	125	1.095	0.036	0.283	
PSD226*035#0125	D	22	35	85	23	125	7.7	6	200	0.866	0.986	0.438	
PSD226*035#0200 PSD226*035#0300	D	22	35	85	23	125	7.7	6	300	0.707	0.779	0.346	
PSD226*035#0400	D	22			23		7.7		400	0.707	0.551		
TPSD226*035#0400 TPSE226*035#0125	E	22	35 35	85 85	23	125 125	7.7	6	125	1.149		0.245	1
TPSE226*035#0125 TPSE226*035#0200	E	22	35	85	23	125	7.7	6	200	0.908	1.034 0.817	0.460	1
								6					1
FPSE226*035#0300	E	22	35	85	23	125	7.7	6	300	0.742	0.667	0.297	1
PSY226*035#0200	Y	22	35	85	23	125	7.7	6	200	0.791	0.712	0.316	_
PSD336*035#0200	D	33	35	85	23	125	11.6	6	200	0.866	0.779	0.346	
PSD336*035#0300	D	33	35	85	23	125	11.6	6	300	0.707	0.636	0.283	1
TPSE336*035#0100	E	33	35	85	23	125	11.6	6	100	1.285	1.156	0.514	1
PSE336*035#0250	Е	33	35	85	23	125	11.6	6	250	0.812	0.731	0.325	1

Low ESR

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Rated Temperature	Category Voltage	Category Temperature	DCL Max.	DF Max.	ESR Max.	100kH	z RMS Cur	rent (A)	MSL
Part No.	Size	(μ F)	(V)	(°C)	(V)	(°C)	(μA)	(%)	@ 100kHz (mΩ)	25°C	85°C	125°C	I IIIOL
TPSV336*035#0200	V	33	35	85	23	125	11.6	6	200	1.118	1.006	0.447	1 ¹⁾
TPSD476*035#0300V	D	47	35	85	23	125	16.5	6	300	0.707	0.636	0.283	3
TPSE476*035#0200	E	47	35	85	23	125	16.5	6	200	0.908	0.817	0.363	1 ¹⁾
TPSE476*035#0250	E	47	35	85	23	125	16.5	6	250	0.812	0.731	0.325	1 ¹⁾
TPSV476*035#0150	V	47	35	85	23	125	16.5	6	150	1.291	1.162	0.516	1 ¹⁾
TPSV476*035#0200	V	47	35	85	23	125	16.5	6	200	1.118	1.006	0.447	1 ¹⁾
TPSV686*035#0150	V	68	35	85	23	125	23.8	6	150	1.291	1.162	0.516	1 ¹⁾
TPSV686*035#0200	V	68	35	85	23	125	23.8	6	200	1.118	1.006	0.447	11)
					50 Volt	@ 85°C							
TPSA154*050#9000	Α	0.15	50	85	33	125	0.5	4	9000	0.091	0.082	0.037	1
TPSA224*050#7000	Α	0.22	50	85	33	125	0.5	4	7000	0.104	0.093	0.041	1
TPSA334*050#7000	Α	0.33	50	85	33	125	0.5	4	7000	0.104	0.093	0.041	1
TPSA474*050#6500	Α	0.47	50	85	33	125	0.5	4	6500	0.107	0.097	0.043	1
TPSB474*050#6000	В	0.47	50	85	33	125	0.5	4	6000	0.119	0.107	0.048	1
TPSC474*050#2300	С	0.47	50	85	33	125	0.5	4	2300	0.219	0.197	0.087	1
TPSB684*050#4000	В	0.68	50	85	33	125	0.5	4	4000	0.146	0.131	0.058	1
TPSB105*050#3000	В	1	50	85	33	125	0.5	6	3000	0.168	0.151	0.067	1
TPSC105*050#2500	С	1	50	85	33	125	0.5	4	2500	0.210	0.189	0.084	1
TPSC155*050#1500	С	1.5	50	85	33	125	0.8	6	1500	0.271	0.244	0.108	1
TPSC155*050#2000	С	1.5	50	85	33	125	0.8	6	2000	0.235	0.211	0.094	1
TPSC225*050#1500	С	2.2	50	85	33	125	1.1	8	1500	0.271	0.244	0.108	1
TPSD225*050#1200	D	2.2	50	85	33	125	1.1	6	1200	0.354	0.318	0.141	1
TPSC335*050#1000	С	3.3	50	85	33	125	1.6	6	1000	0.332	0.298	0.133	1
TPSD335*050#0800	D	3.3	50	85	33	125	1.7	6	800	0.433	0.390	0.173	1
TPSC475*050#0800	С	4.7	50	85	33	125	2.4	6	800	0.371	0.334	0.148	1
TPSD475*050#0250	D	4.7	50	85	33	125	2.4	6	250	0.775	0.697	0.310	1
TPSD475*050#0300	D	4.7	50	85	33	125	2.4	6	300	0.707	0.636	0.283	1
TPSD475*050#0500	D	4.7	50	85	33	125	2.4	6	500	0.548	0.493	0.219	1
TPSD475*050#0700	D	4.7	50	85	33	125	2.4	6	700	0.463	0.417	0.185	1
TPSX475*050#0500V	Х	4.7	50	85	33	125	2.4	6	500	0.447	0.402	0.179	3
TPSD685*050#0200	D	6.8	50	85	33	125	3.4	6	200	0.866	0.779	0.346	1
TPSD685*050#0300	D	6.8	50	85	33	125	3.4	6	300	0.707	0.636	0.283	1
TPSD685*050#0500	D	6.8	50	85	33	125	3.4	6	500	0.548	0.493	0.219	1
TPSD685*050#0600	D	6.8	50	85	33	125	3.4	6	600	0.500	0.450	0.200	1
TPSD106*050#0500	D	10	50	85	33	125	5	6	500	0.548	0.493	0.219	1
TPSE106*050#0250	Е	10	50	85	33	125	5	6	250	0.812	0.731	0.325	1 ¹⁾
TPSE106*050#0300	E	10	50	85	33	125	5	6	300	0.742	0.667	0.297	1 ¹⁾
TPSE106*050#0400	E	10	50	85	33	125	5	6	400	0.642	0.578	0.257	1 ¹⁾
TPSE106*050#0500	Ē	10	50	85	33	125	5	6	500	0.574	0.517	0.230	11)
TPSE156*050#0250	E	15	50	85	33	125	7.5	6	250	0.812	0.731	0.325	11)
TPSV156*050#0250	V	15	50	85	33	125	7.5	6	250	1.000	0.900	0.400	1 ¹⁾

 $^{1^{1)}}$ –Dry pack option (see How to order) is recommended for reduction of stress during soldering. Dry pack parts should be treated as MSL 3.

For AEC-Q200 availability, please contact AVX.

Moisture Sensitivity Level (MSL) is defined according to J-STD-020 All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL ismeasured at rated voltage after 5 minutes.

The EIA & CECC standards for low ESR Solid Tantalum Capacitors allow an ESR movement to 1.25 times catalogue limit post mounting.

For typical weight and composition see page 259.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

Low ESR

QUALIFICATION TABLE

TF0T			TPS series (T	emperature range -	55°C to +	125°C)					
TEST		Condition				Characte	eristics				
				Visual examination	no visible	e damage			-	2	
	1	Visual examination no visible damage DCL 1.5 x initial limit AC/C within ±10% of initial value SRR 1.25 x initial limit No visible damage DCL 1.5 x initial limit No visible damage DCL Notes initial limit Notes in the properties of the propertie		DCL	1.5 x initi	ial limit					
Endurance	` '										
		ze at room temperat	ure for 1-2 nours	Visual examination no visible damage DCL 1.5 x initial limit							
	before measuring.			ESR	1.25 x ini	itial limit					
				Visual examination	no visible	e damage					
	Store at 65°C and	95% relative humidit	y for 500 hours,	DCL	1.5 x initi	ial limit					
Humidity	with no applied vol	tage. Stabilize at ro	om temperature	ΔC/C	within ±1	0% of initia	al value				
·	and humidity for 1-	-2 hours before mea	suring.	DF	1.2 x initi	ible damage initial limit ±10% of initial value initial limit c -55°C +20°C +85°C +125°C + n/a L* 10 x L* 12.5 x L* +0/-10% ±5% +10/-0% +12/-0% 1.5 x L* 1.25 x L* 1.25 x L* 2.5 x L* 1.25 x					
				ESR	1.25 x ini	itial limit	itial value :				
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C	
	1	+20	15	DCI	11 *	n/a	11 *	10 v II *	12 5 v II *	11 *	
Temperature					 						
Stability	Stability 3									±5%	
	-			DF	IL*	1.5 x IL*	IL*	1.5 x IL*	2 x IL*	IL*	
			1	ESR	1.25 x IL*	2.5 x IL*	1.25 x IL*	1.25 x IL*	1.25 x IL*	1.25 x IL ³	
				Visual examination	no visible	e damage	I.	ļ.			
	1 1 1 2	, ,		DCL	initial lim	nit					
Surge	1 '	` 5	•	ΔC/C	within ±5	% of initial	value				
Voltage	, , ,	n a cnarge / discnarg	ge resistance of	DF	initial lim	nit					
	10000			ESR	1.25 x ini	itial limit					
				Visual examination	no visible	e damage				2	
				DCL	initial lim	nit					
Mechanical Shock	MIL-STD-202, Meth	nod 213, Condition C)	ΔC/C	within ±5	% of initial	value				
Snock				DF	initial lim	nit				2	
				ESR	initial lim	nit					
				Visual examination	no visible	e damage					
				DCL	initial lim	nit					
Vibration	MIL-STD-202, Meth	nod 204, Condition D)	ΔC/C	within ±5	% of initial	value			-	
				DF	initial lim	nit					
				ESR	initial lim	nit					

^{*}Initial Limit

Low ESR

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: CONVENTIONAL SMD MnO,

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kyocera AVX:

TPSE226M035R0300	TPSE227K010R0050	TPSE227K010R0100	TPSE227M010R0050	TPSE336K025R0300
TPSE336M035R0100	TPSE337K010R0050	TPSE337M010R0050	TPSE337M010R0100	TPSE476K035R0250
TPSE477K006R0045	TPSE477K010R0045	TPSE477K010R0100	TPSE477M010R0045	TPSE477M010R0100
TPSE686K025R0200	TPSE686M020R0125	TPSE686M020R0150	TPSE686M025R0125	TPSV227M016R0050
TPSV227M016R0075	TPSV337M010R0100	TPSV687K006R0035	TPSW336K016R0175	TPSW476K010R0125
TPSW476K010R0150	TPSW686K006R0125	TPSY157K010R0100	TPSY686K016R0200	TPSD107M020R0085
TPSD156K035R0100	TPSD156M025R0100	TPSD156M035R0300	TPSD157K006R0050	TPSD157K010R0085
TPSD157M006R0050	TPSD157M016R0100	TPSD157M016R0125	TPSD157M016R0150	TPSD226K025R0100
TPSD226M025R0100	TPSD227K010R0150	TPSD227M010R0050	TPSD336K035R0300	TPSD336M025R0300
TPSD336M035R0300	TPSD337K006R0045	TPSD337K010R0100	TPSD337K010R0150	TPSD475M050R0700
TPSD686M010R0100	TPSD686M016R0070	TPSE106K050R0400	TPSE107K016R0100	TPSE107K016R0150
TPSE107K020R0150	TPSE107M016R0055	TPSE226K035R0300	TPSA105K035R3000	TPSA105M035R3000
TPSA106K010R0900	TPSA106K010R1800	TPSA226M010R0900	TPSA335M016R3500	TPSA475K020R1800
TPSA476M004R0500	TPSA684K035R6000	TPSB106M016R0800	TPSB106M020R1000	TPSB156K016R0800
TPSB225K025R2500	TPSB225K035R2000	TPSB226K016R0600	TPSB226M016R0600	TPSB476K010R0650
TPSB476M010R0500	TPSC107K006R0150	TPSC107M010R0100	TPSC226K016R0375	TPSC227K006R0070
TPSC227M006R0250	TPSC335M035R0700	TPSC336M016R0300	TPSC475M035R0600	TPSC476K016R0350
TPSC476M010R0350	TPSC685M025R0600	TPSD106M035R0125	TPSD107K016R0125	TPSD107M010R0050
TPSD107M010R0080	TPSD107M010R0100	TPSD107M016R0060	TPSA156M006R1500	TPSA225K010R1800
TPSA225K016R1800	TPSA225M010R1800	TPSA335M020R2500	TPSA336K006R0600	TPSA475M020R1800