

NCS12 Series

Isolated 12W 4:1 Input Single & Dual Output DC/DC Converters

FEATURES

- UL 60950 recognition pending
- 4:1 Wide range voltage input
- Operating temperature range -40°C to 85°C
- Typical load regulation from 0.05%
- 1.5kVDC Isolation
- 3.3V, 5V, 12V & 15V outputs
- UL 94V-0 Package materials
- No electrolytic capacitors
- Thermal shutdown
- Under voltage lock out
- Current fold back

PRODUCT OVERVIEW

The NCS12 series of DC/DC converters offers single & dual output voltages from input voltage ranges of 9-36V and 18-75V. The NCS12 is housed in an industry standard package with a standard pinout. The NCS12 is packaged in a metal case for improved EMI shielding and is also encapsulated for superior thermal performance.

Applications include telecommunications, battery powered systems, process control and distributed power systems.

SELECTION GUIDE										
				Load Regulation						
Order Code		Output Voltage	Output Current	Positive Output	Negative Output	Positive Output	Negative Output	Effici	ency	MTTF ¹
	Nom.			Тур	ical	M	ax	Min.	Тур.	
	V	V	Α	%	%	%		%	%	Hrs
NCS12S1203C	12	3.3	3.64	1		1.5		78	83.5	269,492
NCS12S1205C	12	5	2.40	0.5		1		84	88	313,578
NCS12S1212C	12	12	1.00	0.1		0.3		83	84.5	230,569
NCS12S1215C	12	15	0.80	0.1		0.3		83	85.5	195,596
NCS12S4803C	48	3.3	3.64	1.2		2		81	85.5	341,943
NCS12S4805C	48	5	2.40	0.5		1		84	87.5	418,117
NCS12S4812C	48	12	1.00	0.1		0.3		82	84.5	296,593
NCS12S4815C	48	15	0.80	0.1		0.3		84	85	259,485
NCS12D1205C	12	±5	±1.2	0.15	0.3	0.3	2	80	81.5	182,655
NCS12D1212C	12	±12	±0.5	0.05	0.2	0.3	1.5	83	85	158,750
NCS12D1215C	12	±15	±0.4	0.05	0.1	0.3	1.5	84	86	140,435
NCS12D4805C	48	±5	±1.2	0.15	0.5	0.3	2	78	80	165,931
NCS12D4812C	48	±12	±0.5	0.05	0.4	0.3	1.5	83	85	215,533
NCS12D4815C	48	±15	±0.4	0.05	0.4	0.3	1.5	83	85	146,257

SELECTION GUIDE (Continued)						
		Input Current	Dinnlo o	nd Noine		
Order Code	10% Load	10% Load	100% Load	пірріе а	e and Noise	
Order Gode	Typ. 12/48V	Typ. 24V	Typ. 12/48V	Тур.	Max	
	Α	Α	Α	mVp/p	mVp/p	
NCS12S1203C	0.15	0.1	1.2	60	125	
NCS12S1205C	0.1	0.16	1.1	50	125	
NCS12S1212C	0.1	0.06	1.2	80	125	
NCS12S1215C	0.06	0.1	1.2	100	125	
NCS12S4803C	0.05	0.08	0.3	100	125	
NCS12S4805C	0.05	0.08	0.3	90	125	
NCS12S4812C	0.03	0.06	0.3	75	125	
NCS12S4815C	0.03	0.06	0.3	90	125	
NCS12D1205C	0.04	0.07	1.25	35	100	
NCS12D1212C	0.04	0.07	1.2	40	100	
NCS12D1215C	0.05	0.07	1.5	55	100	
NCS12D4805C	0.03	0.07	0.3	70	100	
NCS12D4812C	0.03	0.07	0.3	84	100	
NCS12D4815C	0.03	0.07	0.4	55	100	

INPUT CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Voltage range	12V input types	9	24	36	V	
	48V input types	18	48	75	V	
Under voltage lock out	Turn on threshold 12V input types		8.5			
	Turn off threshold 12V input types		7.5		٧	
	Turn on threshold 48V input types		16.7			
	Turn off threshold 48V input types		15.8			
Power consumption at	NCS12X12		10		Mm	
shutdown	NCS12X48		100		mW	
Reflected ripple current	48V dual output types		15		m A n n	
	All other types		10		mA p-p	

 $\textbf{All specifications typical at TA=25\,^\circ\text{C}, nominal input voltage and rated output current unless otherwise specified.}$

OUTPUT CHARACTERIS	STICS					
Parameter	Conditions		Min.	Тур.	Max.	Units
Rated power	All output types				12	W
Minimal load to meet datas	sheet specification		10			%
Positive outputs					±2	
Voltage set point accuracy	Negative outputs	legative outputs			±3	%
Line regulation	Low line to high line	Positive outputs		0.04	0.1	%
		Negative outputs		0.3	1	
D1205 & D4805				±4	±6.5	0/
Cross Regulation	D1212, D1215 ,D4812	D1212, D1215 ,D4812, D4815		±2	±5	%
	Peak deviation (12.5-3)	7.5% & 37.5-12.5% swing)			5	%V _{out}
Transient response	Settling time Single output types			500		
	(within 1% Vout Nom.)	Dual output types		250		μs

ISOLATION CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Isolation test voltage	Flash tested for 1 seconds	1500			VDC		
Resistance	Viso = 1kVDC	1			GΩ		
Canacitanaa	S1203, S1205, S4803, S4805		600		pF		
Capacitance	All other types		230		μг		

ABSOLUTE MAXIMUM RATINGS	
Short-circuit protection (for SELV input voltages)	30 minutes
Control pin input voltage	18V Max
Lead temperature 1.0mm from case for 10 seconds (to JEDEC JESD22-B106 ISS C)	260°C
Input voltage, NCS12 12V input types	40V
Input voltage, NCS12 48V input types	80V

GENERAL CHARACTERISTICS ¹					
Parameter	Conditions	Min.	Тур.	Max.	Units
Curitohina fraguanay	S1203, S1205, S4803 & S4805		340		kHz
Switching frequency	All other types		220		КПZ
Control pin input	Module on, pin unconnected or open collector floating				
Control pill input	Module off			0.8	V

TEMPERATURE CHARACTERISTICS							
Parameter	Conditions	Conditions			Max.	Units	
Operation	With derating - see derat	With derating - see derating graph			85		
Storage					125		
	1000/ 1 1 11 1/	NCS12S1203C		65		°C	
Case temperature above ambient	100% Load, Nom V _{IN} , Still Air	NCS12S1215C, NCS12D1205C, NCS12D4805C		60			
	Suii Aii	All other types		44			
Thermal shutdown	0	Single 3.3V & 5V outputs		135			
	Case Temperature	All other types		120			

APPLICATION NOTES

Output Capacitance and start-up times

The NCS12 series does not require output capacitors to meet datasheet specification. To meet datasheet specification, total output capacitance should not exceed:

Part No.	Maximun Load Capacitance (per output)	Start-up times
raitinu.	μF	ms
NCS12S1203C	470	16
NCS12S1205C	470	22
NCS12S1212C	220	7
NCS12S1215C	220	8.5
NCS12S4803C	470	14
NCS12S4805C	470	22
NCS12S4812C	220	8
NCS12S4815C	220	8.5
NCS12D1205C	220	5
NCS12D1212C	100	8
NCS12D1215C	100	9
NCS12D4805C	220	5
NCS12D4812C	100	7.5
NCS12D4815C	100	7

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specifi ed time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions NCS12 series of DC/DC converters are all 100% production tested at their stated isolation voltage. This is 1.5kVDC for 1 second.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

For a part holding no specifi c agency approvals, such as the NCS12 series, both input and output should normally be maintained within SELV limits i.e. less than 42.4V peak, or 60VDC. The isolation test voltage represents a measure of immunity to transient voltages and the part should never be used as an element of a safety isolation system. The part could be expected to function correctly with several hundred volts offset applied continuously across the isolation barrier; but then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage and further isolation/insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The NCS12 series has an ER ferrite core, with no additional insulation between primary and secondary windings of enameled wire. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the wire insulation. Any material, including this enamel (typically polyure-thane) is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

This consideration equally applies to agency recognized parts rated for better than functional isolation where the wire enamel insulation is always supplemented by a further insulation system of physical spacing or barriers.

ROHS COMPLIANCE INFORMATION

This series is compatible with RoHS soldering systems with a peak wave solder temperature of 260°C for 10 seconds. The pin termination finish on this product series is a Gold flash (0.05-0.10 micron) over Nickel Preplate. The series is backward compatible with Sn/Pb soldering systems. For further information, please visit www.murata-ps.com/rohs

CHARACTERISATION TEST METHODS Ripple & Noise Characterisation Method Ripple and noise measurements are performed with the following test configuration. 1µF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC/DC converter 10µF tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC/DC converter with an ESR of less C2 than $100m\Omega$ at 100 kHzC3 100nF multilayer ceramic capacitor, general purpose R1 450 $\!\Omega$ resistor, carbon film, ±1% tolerance 50Ω BNC termination R2 T1 3T of the coax cable through a ferrite toroid Resistive load to the maximum power rating of the DC/DC converter. Connections should be made via twisted wires **RLOAD** Measured values are multiplied by 10 to obtain the specified values. Differential Mode Noise Test Schematic OSCILLOSCOPE C1 C2 C3 R2

EMC FILTERING AND SPECTRA

C3

The module includes a basic level of filtering, sufficient for many applications. Where lower noise levels are desired, filters can easily be added to achieve any required noise performance.

A DC/DC converter generates noise in two principle forms: that which is radiated from its body and that conducted on its external connections. There are three separate modes of conducted noise: input differential, output differential and input-output.

This last appears as common mode at the input and the output, and cannot therefore be removed by filtering at the input or output alone. The first level of filtering is to connect capacitors between input and output returns, to reduce this form of noise. It typically contains high harmonics of the switching frequency, which tend to appear as spikes on surrounding circuits. The voltage rating of this capacitor must match the required isolation voltage. (Due to the great variety in isolation voltage and required noise performance, this capacitor has not been included within the converter.)

Input ripple is a voltage developed across the internal Input decoupling capacitor. It is therefore measured with a defined supply source impedance. Although simple series inductance will provide filtering, on its own it can degrade the stability. A shunt capacitor is therefore recommended across the converter input terminals, so that it is fed from a low impedance.

If no filtering is required, the inductance of long supply wiring could also cause a problem, requiring an input decoupling capacitor for stability. An electrolytic will perform well in these situations. The input-output filtering is performed by the common-mode choke on the primary. This could be placed on the output, but would then degrade the regulation and produce less benefit for a given size, cost, and power loss.

Radiated noise is present in magnetic and electrostatic forms. The latter is suppressed by the metal case, which is connected to the output return, typically a zero-volt point. Thanks to the small size of these units, neither form of noise will be radiated "efficiently", so will not normally cause a problem. Any question of this kind usually better repays attention to conducted signals.

EMC FILTER AND VALUES TO OBTAIN SPECTRA AS SHOWN

The following filter circuit shows the input filter typically required to meet CISPR22 Quasi-PeakCurve B.

PACKAGE SPECIFICATIONS MECHANICAL DIMENSIONS PIN CONNECTIONS **Function** NCS12S1205C Pin Single Dual **XYYWW** Control Control 0.787 2 $-V_{IN}$ $-V_{\text{IN}}$ (20.0)3 $-V_{IN}$ -VIN 9 No pin 0V 11 N/C -Vout 14 $+V_{\text{OUT}}$ $+V_{\text{OUT}}$ 16 ٥V ΩV 1.26 (32.0) 22 +VIN +V_{IN} 23 $+V_{IN}$ +VIN 0.394 (10.0) TUBE OUTLINE DIMENSIONS 1.00±0.15 (0.04±0.006) L 0.02 (0.5) 0.176-0.208 (4.46-5.27) -- 0.020 (0.50) 8.5 (0.335) 0.200 (5.08) 0.1 (2.54) 20.5 (0.807) Tube length 520 (20.47) All dimensions in mm (inches) ±0.25 (0.010). Quantity: 15 0.600 RECOMMENDED FOOTPRINT DETAILS **Bottom View** (15.24) ⊕ Ø|1.0mm 23 16 0 14 0 -0.100 (2.54) Weight: 17g - 0.166-0.207 (4.21-5.26) All dimensions in inches (mm) \pm 0.020 (0.5) except pin to pin tolerance \pm 0.010 (0.25). All pins on a 0.100 (2.54) pitch and within 0.010 (0.25) of true position. 2 54 (0 1) All dimensions in mm (inches) ±0.25 (± 0.010). The copper case is connected to the OV pin(s). Care is needed in the design of this circuit board on which the converter is mounted. Top side tracks must not contact the edge of the case on the underside of the unit.

Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A. ISO 9001 and 14001 REGISTERED

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>:

Refer to: http://www.murata-ps.com/requirements/

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject hange without notice.