Introduction to Numerical Methods and Applications Homework #1

Student ID: B0930940003 Name: 鄭璟翰

1. (5%)By 3^{th} Order Taylor Approximation

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)h^2}{2!} + R_3^{(1)} \dots (1)$$

$$f(x_{i-1}) = f(x_i) + f'(x_i)(-h) + \frac{f''(x_i)(-h)^2}{2!} + R_3^{(2)} \dots (2)$$
by (1)-(2),
$$f(x_{i+1}) - f(x_{i-1}) = f'(x_i)2h + (R_3^{(1)} - R_3^{(2)})$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} - \frac{R_3^{(1)} - R_3^{(2)}}{2h}$$

$$R_3^{(1)} = f^{(3)}(\xi_1)\frac{h^3}{3!} \text{ and } R_3^{(2)} = f^{(3)}(\xi_2)\frac{(-h)^3}{3!}, \text{ so } \frac{R_3^{(1)} - R_3^{(2)}}{2h} = \overline{O}(h^2)$$

Thus,

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} + O(h^2)$$

2. a. (10%)Graphical method to guess all roots: -2.08, -1.00, -0.35, 0.30, 1.00.

Figure 1: $f(x) = 10\cos(\frac{3\pi}{2}x)e^{-x} + x^6 - 1$

In $(2.5, \infty)$, $\lim_{x\to\infty} 10\cos\left(\frac{3\pi}{2}x\right)e^{-x} = 0$ ($|\cos x| <= 1$) and $\lim_{x\to\infty} x^6 = \infty$. So $\lim_{x\to\infty} f(x) = \infty$, no other root in $(2.5, \infty)$; In $(-\infty, -2.5)$, $\lim_{x\to-\infty} x^6 = 0$, $\lim_{x\to-\infty} e^{-x} = \infty$ and $\lim_{x\to-\infty} 10\cos\left(\frac{3\pi}{2}x\right)$ is oscillatory, so $10\cos\left(\frac{3\pi}{2}x\right)e^{-x}$ may close to 0. Thus, there exits other roots in $(-\infty, -2.5)$.

b. (10%) Bisection Approximation: x=0.3042

Iteration	n xl	xu	xr	er(%)
1	0.0000	0.5000	0.2500	100.000
2	0.2500	0.5000	0.3750	33.333
3	0.2500	0.3750	0.3125	20.000
4	0.2500	0.3125	0.2812	11.111
5	0.2812	0.3125	0.2969	5.263
6	0.2969	0.3125	0.3047	2.564
7	0.2969	0.3047	0.3008	1.299
8	0.3008	0.3047	0.3027	0.645
9	0.3027	0.3047	0.3037	0.322
10	0.3037	0.3047	0.3042	0.161

Figure 2: Each iteration result using bisection in [0, 0.5]

Figure 3: Curves of relative error using bisection in [0, 0.5]

False Position Approximation: x=0.3045

Iteratio	on	xl	xu	xr	er(%)
1	0.	0000	0.5000	0.3153	100.000
2	0.	0000	0.3153	0.3025	4.211
3	0.	3025	0.3153	0.3045	0.647
4	0.	3025	0.3045	0.3045	0.005

Figure 4: Each iteration result using false position in [0, 0.5]

Figure 5: Curves of relative error using false position in [0, 0.5]

c. (10%) Bisection Approximation: x=0.9995

n xl	xu	xr	er(%)
0.5000	2.0000	1.2500	100.000
0.5000	1.2500	0.8750	42.857
0.8750	1.2500	1.0625	17.647
0.8750	1.0625	0.9688	9.677
0.9688	1.0625	1.0156	4.615
0.9688	1.0156	0.9922	2.362
0.9922	1.0156	1.0039	1.167
0.9922	1.0039	0.9980	0.587
0.9980	1.0039	1.0010	0.293
0.9980	1.0010	0.9995	0.147
	0.5000 0.5000 0.8750 0.8750 0.9688 0.9688 0.9922 0.9922	0.5000 2.0000 0.5000 1.2500 0.8750 1.2500 0.8750 1.0625 0.9688 1.0625 0.9688 1.0156 0.9922 1.0156 0.9922 1.0039 0.9980 1.0039	xl xu xr 0.5000 2.0000 1.2500 0.5000 1.2500 0.8750 0.8750 1.2500 1.0625 0.8750 1.0625 0.9688 0.9688 1.0625 1.0156 0.9688 1.0156 0.9922 0.9922 1.0156 1.0039 0.9922 1.0039 0.9980 0.9980 1.0039 1.0010 0.9980 1.0010 0.9995

Figure 6: Each iteration result using bisection in [0, 0.5]

Figure 7: Curves of relative error using bisection in [0, 0.5]

False Position Approximation: x=0.9969

Iteration	xl	xu	xr	er(%)
1	0.5000	2.0000	0.6182	100.000
2	0.6182	2.0000	0.7443	16.948
3	0.7443	2.0000	0.8432	11.719
4	0.8432	2.0000	0.9060	6.934
5	0.9060	2.0000	0.9433	3.961
6	0.9433	2.0000	0.9655	2.299
7	0.9655	2.0000	0.9789	1.363
8	0.9789	2.0000	0.9870	0.822
9	0.9870	2.0000	0.9920	0.501
10	0.9920	2.0000	0.9950	0.308
11	0.9950	2.0000	0.9969	0.190

Figure 8: Each iteration result using false position in [0, 0.5]

Figure 9: Curves of relative error using false position in [0, 0.5]

3. a. for XY plane rotation:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

for +z-axis to +y-axis(around +x-axis):

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & \cos(-\theta) & -\sin(-\theta) \\ 0 & \sin(-\theta) & \cos(-\theta) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix}$$

c. (20%)

a) Roation Matrix

```
[26] def RotationMatrix (vector, theta):
    return np. array([[0, 0, 0], [0, cos(theta*pi/180), sin(theta*pi/180)], [-sin(theta*pi/180), 0, cos(theta*pi/180)]]). dot(vector)

b) Magnitude Modulation

[27] def magnitudeModulation(t, vector, T1, T2):
    return np. array([vector[0]*exp(-t/T2), vector[1]*exp(-t/T2), vector[2]*exp(-t/T1)]) + np. array([[0], [0], [1-exp(-t/T1)]]))

c) MRI function

S + = f(θ, t, S - , T1, T2)

[28] def MRI function(theta, t, vector, T1, T2):
    S = magnitudeModulation(t, RotationMatrix(vector, theta), T1, T2)
    return (S[0]**2+S[1]**2)**0.5, np. array([[0], [0], S[2]])
```

e. (10%) Graphical method to estimate θ_{opt} : 31°

Figure 10: MRI function with 500 iterations in different θ (thick function)

f. (15%) approximate solution of $g(\theta)$ is 32.2 with h = 0.1

Figure 11: centered finite-difference approach $g(\theta) = f'(\theta)$

g. (15%) Approximate solution of golden-section is 31.1157 (or 32.2884)

Iteration	n x1	xu	er
1	0.0000 9	90.0000	1.000
2	0.0000 5	55. 6231	0.618
3	21. 2461	55.6231	0.191
4	21. 2461	42.4922	0.236
5	29. 3614	42.4922	0.083
6	29. 3614	37.4767	0.090
7	29. 3614	34. 3769	0.059
8	31. 2772	34. 3769	0.022
9	31. 2772	33. 1929	0.023
10	31. 2772	32. 4612	0.014
11	31.7294	32. 4612	0.005
12	32.0089	32. 4612	0.003
13	32.0089	32. 2884	0.003
14	32. 1157	32. 2884	0.001

Figure 12: Each iteration result using Golden-section

h. (5%) Solution by analytical one is roughly 32.16896, and approximate solution from e, f and g is 31, 32.2 and 32.1157 (or 32.2884). Part e(Graphical method), use smell range of to approach may x. Part f(centered finite-difference approach), use smeller h (0.01, 0.001) to approach. Part g(Golden-section), let ϵ_s lower(e.g. 10^{-4}) to increase # of iterations.