Stat 5309 Midterm Project

Tom Wilson Mar 21, 2019

1

The effective life of insulating luids at an accelerated load of 35 kV is being studied. Test fluid_data have been obtained for four types of fluids. The results were as follows:

\mathbf{a}

Either read fluid_data into R or create the fluid_dataframe.

lifetime
17.6
18.9
16.3
17.4
20.1
21.6
16.9
15.3
18.6
17.1
19.5
20.3
21.4
23.6
19.4
18.5
20.5
22.3
19.3
21.1
16.9
17.5
18.3
19.8

Build a linear model, using aov. Is there a significant difference among treatment means? which fluid gives the longer life?

Given that there is no difference in lifetime between fluid types, we would expect a result at least this extreme 5.25% of the time. At a confidence level of 95% we fail to reject the null hypothesis and conclude that any difference observed is due to chance.

 \mathbf{c}

Construct a 95% Confidence Interval for themean life of fluid 2.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
anova_of_insulation_life <- anova(insulation_life_model)</pre>
MSError=anova_of_insulation_life$`Mean Sq`[2]
LSD.test(insulation_life_model, "fluid", MSerror = MSError,console = TRUE)
##
## Study: insulation_life_model ~ "fluid"
##
## LSD t Test for lifetime
##
## Mean Square Error: 3.299667
## fluid, means and individual ( 95 %) CI
##
##
     lifetime
                   std r
                              LCL
                                        UCL Min Max
## 1 18.65000 1.952178 6 17.10309 20.19691 16.3 21.6
## 2 17.95000 1.854454 6 16.40309 19.49691 15.3 20.3
## 3 20.95000 1.879096 6 19.40309 22.49691 18.5 23.6
## 4 18.81667 1.554885 6 17.26975 20.36358 16.9 21.1
## Alpha: 0.05; DF Error: 20
## Critical Value of t: 2.085963
##
## least Significant Difference: 2.187666
## Treatments with the same letter are not significantly different.
##
##
     lifetime groups
## 3 20.95000
## 4 18.81667
                  ab
## 1 18.65000
                   b
## 2 17.95000
                   b
```

16.40 to 19.50 is a 95% confidence interval for the mean of fluid type 2.

Construct a 99% Confidence Interval for the difference between the lives of Fluids 2 and 3.

```
TukeyHSD(insulation_life_model, conf.level=0.99)
```

```
Tukey multiple comparisons of means
##
##
       99% family-wise confidence level
##
## Fit: aov(formula = lifetime ~ fluid, data = fluid_data)
##
## $fluid
                                           p adj
##
             diff
                         lwr
                                  upr
## 2-1 -0.7000000 -4.4212724 3.021272 0.9080815
        2.3000000 -1.4212724 6.021272 0.1593262
        0.1666667 -3.5546057 3.887939 0.9985213
        3.0000000 -0.7212724 6.721272 0.0440578
## 4-2 0.8666667 -2.8546057 4.587939 0.8413288
## 4-3 -2.1333333 -5.8546057 1.587939 0.2090635
```

The difference between type 4 and type 1 is between -0.7213 and 6.7213 with 99% confidence.

\mathbf{d}

Perform a complete 3-part residuals check.

```
plot(insulation_life_model)
```


Independence

Based on a plot of standardized residual vs factor level (in this case, fluid type) the residuals are independent of fluid type.

Normality

Based on a quantile-quantile plot te residuals are very close to normally distributed with a mean of zero.

homoscedasticity

based on a plot of residual vs fitted values, variation in residual is constant.

 \mathbf{e}

Calculate the number of replicates for a power of 0.99

```
##
##
        Balanced one-way analysis of variance power calculation
##
##
            groups = 4
##
                 n = 16.45871
##
       between.var = 1.675833
##
        within.var = 3.299667
         sig.level = 0.05
##
##
             power = 0.99
##
## NOTE: n is number in each group
```

$\mathbf{2}$

\mathbf{a}

Either read data into R or create the dataframe.

17 replicates are needed to achieve a power of 0.99.

```
oils <- c("1","2","3")
trucks <- c("1","2","3","4","5")
fuel_data <- expand.grid(truck=trucks,oil=oils)</pre>
fuel_data <- cbind(fuel_data,fuel_consumption = c(0.5,</pre>
                                           0.634,
                                           0.487,
                                           0.329,
                                           0.512,
                                           0.535,
                                           0.675,
                                           0.52,
                                           0.435,
                                           0.54,
                                           0.513,
                                           0.595,
                                           0.488,
                                           0.4,
                                           0.51))
fuel_data
```

```
truck oil fuel_consumption
##
## 1
         1
                          0.500
             1
## 2
         2
             1
                          0.634
## 3
         3
            1
                          0.487
## 4
         4
            1
                          0.329
## 5
         5
             1
                          0.512
## 6
         1
            2
                          0.535
         2 2
## 7
                          0.675
## 8
         3 2
                          0.520
            2
## 9
         4
                          0.435
## 10
         5 2
                          0.540
## 11
         1 3
                          0.513
             3
## 12
         2
                          0.595
```

```
## 13 3 3 0.488
## 14 4 3 0.400
## 15 5 3 0.510
```

Build a linear model. Is there any significant difference of means about the oil types? Which oil type gies the lowest fuel consumption?

```
fuel_consumption_model <- aov(formula = fuel_data$fuel_consumption ~ oil+truck,data=fuel_data)
summary(fuel_consumption_model)</pre>
```

 \mathbf{c}

Is the blocking approach effective?

d

Do a complete residual assumption check.

3

Suppose that in in Problem 4-15, the engineer suspects that the workplaces used by the four operators may represent an additional source of variation. Analyze the data from this experiment (use $\alpha = 0.05$) and draw conclusions.

\mathbf{a}

Set up a dataframe with 2 blocking factors (order and operator) and treatment (A,B,C,D)

```
workplace_data %>% kable()
```

operator	$order_of_assembly$	workplace	observation
op1	1st	С	11
op2	1st	В	10
op3	1st	D	14
op4	1st	A	8
op1	2nd	В	8
op2	2nd	\mathbf{C}	12
op3	2nd	A	10
op4	2nd	D	12
op1	3rd	A	9
op2	3rd	D	11
op3	3rd	В	7
op4	3rd	\mathbf{C}	15
op1	$4 ext{th}$	D	9
op2	4th	A	8
op3	$4 ext{th}$	\mathbf{C}	18
op4	4th	В	6

Use Latin Square to analyze the treatment means.

\mathbf{c}

Which level combination brings the lowest time?

4

The factors that influence the breaking strength of a synthetic fiber are being studied. Four production machines and three operators are chosen and a factorial experiment is run using fiber from the same production batch. The results follow.

\mathbf{a}

Either read data into R or create the dataframe.

```
)
fiber_data %>% kable()
```

machine	operator	strength
1	o1	109
2	o1	110
3	o1	108
4	o1	110
1	o1	110
2	o1	115
3	o1	109
4	o1	108
1	02	110
2	02	110
3	o2	111
4	o2	114
1	o2	112
2	o2	111
3	o2	109
4	02	112
1	03	116
2	03	112
3	03	114
4	o3	120
1	o3	114
2	o3	115
3	o3	119
4	03	117

Build a linear model. Any interaction between operator and machine?

```
fiber_model <- aov(formula = strength ~ operator+machine ,data=fiber_data)
summary(fiber_model)</pre>
```

 \mathbf{c}

Build a reduced model.

```
fiber_model_reduced <- aov(formula = strength ~ operator ,data=fiber_data)
summary(fiber_model_reduced)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
```

```
## operator 2 160.3 80.17 16.4 5.12e-05 ***
## Residuals 21 102.6 4.89
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

\mathbf{d}

Do a complete 3-part residual assumption check.

5

An experiment is conducted to study the influence of operating temperature and three types of face-plate glass in the light output of an oscilloscope tube. The following data are collected.

\mathbf{a}

Either read data into R or create the dataframe.

temperature	glass	output
100	t1	580
125	t1	1090
150	t1	1392
100	t1	568
125	t1	1087
150	t1	1380
100	t1	570
125	t1	1085
150	t1	1386
100	t2	550
125	t2	1070
150	t2	1328
100	t2	530
125	t2	1035
150	t2	1312

temperature	glass	output
100	t2	579
125	t2	1000
150	t2	1299
100	t3	546
125	t3	1045
150	t3	867
100	t3	575
125	t3	1053
150	t3	904
100	t3	599
125	t3	1066
150	t3	889

Build a linear model. Any interaction between glass type and temperature?

```
light_output_model <- aov(formula = output~temperature+glass,data=glass_data)
summary(light_output_model)</pre>
```

```
##
                  Sum Sq Mean Sq F value
                                           Pr(>F)
## temperature
              1 1779756 1779756 83.932 3.89e-09 ***
                                   3.557
## glass
               2
                  150865
                           75432
                                           0.0451 *
## Residuals
              23
                  487710
                           21205
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

 \mathbf{c}

Build a reduced model.

```
light_output_model <- aov(formula = output~temperature,data=glass_data)
summary(light_output_model)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## temperature 1 1779756 1779756 69.68 1.07e-08 ***
## Residuals 25 638575 25543
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

d

Do a complete 3-part residual assumption check.

6

Sludge is the dried product remaining from processed sewage. It can be used as fertilizer on crops. However, it contains heavy metals. They hypothesized the concentration of certain heavy metals in sludge differ among

the metropolitan areas from which the sludge is obtained. The sludge was aded to the sand at 3 different rates: 0.5, 1.0, 1.5 metric tons/acre. The zinc levels were recorded.

\mathbf{a}

Set up a dataframe named metals. Use factos city (A,B,C), rate (0.5,1.0,1.5), and zinc for the observations.

rate	city	zinc
0.5	A	26.4
1.0	A	25.2
1.5	A	26.0
0.5	В	30.1
1.0	В	47.7
1.5	В	73.8
0.5	В С С	19.4
1.0	\mathbf{C}	23.2
1.5	\mathbf{C}	18.9
0.5	\mathbf{A}	23.5
1.0	A	39.2
1.5	\mathbf{A}	44.6
0.5	В	31.0
1.0	В	39.1
1.5	В	71.1
0.5	\mathbf{C}	19.3
1.0	$_{\mathrm{C}}^{\mathrm{C}}$	21.3
1.5	\mathbf{C}	19.8
0.5	\mathbf{A}	25.4
1.0	\mathbf{A}	25.5
1.5	\mathbf{A}	35.5
0.5	В	30.8
1.0	В	55.3
1.5	В	68.4
0.5	\mathbf{C}	18.7
1.0	\mathbf{C}	23.2
1.5	\mathbf{C}	19.6
0.5	A	22.9
1.0	A	31.9
1.5	A	38.6
0.5	В	32.8
1.0	В	50.7
1.5	В	77.1
0.5	\mathbf{C}	19.0

rate	city	zinc
1.0	С	19.9
1.5	\mathbf{C}	21.9

Build an aov model, using zinc as the response. Which factors are significant? Interaction is significant? Perform an interaction plot.

```
zinc_model <- aov(formula = zinc ~ rate+city ,data=zinc_data)
summary(zinc_model)</pre>
```

```
##
              Df Sum Sq Mean Sq F value
                                          Pr(>F)
## rate
               1
                   1944 1944.0
                                  26.71 1.22e-05 ***
               2
                         2860.3
                                  39.30 2.41e-09 ***
## city
                   5721
## Residuals
              32
                   2329
                           72.8
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

\mathbf{c}

List all the factor means and effects. using tapply() or model.table().

\mathbf{d}

calculate the interaction sum squares from scratch.

1.

The yield of a chemical process is being studied. The two most important variables are thought of be the pressure and the temperature. Three levels of each factor are selected and a factorial experiment with two replicates is performed. The yield data follows.

a

Set up the dataframe.

pressure	temperature	yield
200	150	90.4
215	150	90.7
230	150	90.2
200	150	90.2
215	150	90.6
230	150	90.4
200	160	90.1
215	160	90.5
230	160	89.9
200	160	90.3
215	160	90.6
230	160	90.1
200	170	90.5
215	170	90.8
230	170	90.4
200	170	90.7
215	170	90.9
230	170	90.1

Build a linear model using aov(). Are the pressure means significant? Are the temp means significant? Is the interaction significant?

```
yield_model <- aov(yield ~ temperature * pressure, data=process)
summary(yield_model)</pre>
```

```
## temperature 2 0.3011 0.1506 8.469 0.008539 **

## pressure 2 0.7678 0.3839 21.594 0.000367 ***

## temperature:pressure 4 0.0689 0.0172 0.969 0.470006

## Residuals 9 0.1600 0.0178

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The interaction between temperature and pressure is not significant. The main effects of temperature and pressure are significant.

```
yield_model <- aov(yield ~ temperature + pressure, data=process)
summary(yield_model)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)

## temperature 2 0.3011 0.1506 8.551 0.00426 **

## pressure 2 0.7678 0.3839 21.803 7.03e-05 ***

## Residuals 13 0.2289 0.0176

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

 \mathbf{c}

Create a boxplot of

yield vs temp

boxplot(yield~temperature, data=process)

yield vs pressure

boxplot(yield~pressure, data=process)

yield vs temp and pressure

boxplot(yield~temperature*pressure, data=process)

\mathbf{d}

Perform a residuals assumption check

```
qqnorm(yield_model$residuals)
qqline(yield_model$residuals)
```

Normal Q-Q Plot

The residuals are consistent with a normal distribution centered on zero with constant variance.

$\mathbf{2}$

Johnson an dLeone describe an experiment to investigate warping of copper plates. The two factors studied were the temperature and the copper content of the plates. The response variable was a meaure of the amont of warping. The data were as follows.

\mathbf{a}

Set up the dataframe

17,21,22,31))

copperplate %>% kable()

copper_content	temperature	warping
40	50	17
60	50	16
80	50	24
100	50	28
40	50	20
60	50	21
80	50	22
100	50	27
40	75	12
60	75	18
80	75	17
100	75	12
40	75	9
60	75	13
80	75	12
100	75	31
40	100	16
60	100	18
80	100	25
100	100	30
40	100	12
60	100	21
80	100	23
100	100	23
40	125	21
60	125	23
80	125	23
100	125	29
40	125	17
60	125	21
80	125	22
100	125	31

\mathbf{b}

##

##

build a response model surface (RSM) with warpage as response, use rsm().

rsm(formula = response ~ SO(temp_nums, cu_nums), data = copperplate)

Estimate Std. Error t value Pr(>|t|)

```
temp_nums <- copperplate$temperature %>% as.numeric()
cu_nums <- copperplate$copper_content %>% as.numeric()
response <- copperplate$warping
copper_model<- rsm(response ~ SO(temp_nums, cu_nums), data=copperplate)
summary(copper_model)
##</pre>
```

```
20
```

```
6.63925 3.5678 0.001427 **
## (Intercept)
                     23.68750
## temp_nums
                    -10.33750
                                 3.90821 -2.6451 0.013670 *
## cu nums
                      0.57500
                                 3.90821 0.1471 0.884167
                                 0.57274 0.2794 0.782181
## temp_nums:cu_nums
                      0.16000
## temp_nums^2
                      2.18750
                                 0.71593 3.0555 0.005142 **
## cu nums^2
                      0.50000
                                 0.71593 0.6984 0.491131
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared: 0.6165, Adjusted R-squared: 0.5427
## F-statistic: 8.358 on 5 and 26 DF, p-value: 8.125e-05
## Analysis of Variance Table
##
## Response: response
                          Df Sum Sq Mean Sq F value
##
                                                       Pr(>F)
## FO(temp_nums, cu_nums)
                           2 523.03 261.513 15.9442 3.027e-05
## TWI(temp_nums, cu_nums) 1 1.28
                                      1.280 0.0780
                                                       0.7822
## PQ(temp_nums, cu_nums)
                          2 161.12 80.562 4.9118
                                                       0.0155
## Residuals
                          26 426.45 16.402
## Lack of fit
                          10 145.44 14.544
                                            0.8282
                                                       0.6093
## Pure error
                          16 281.00 17.563
##
## Stationary point of response surface:
## temp_nums
                cu nums
## 2.3979170 -0.9586667
##
## Eigenanalysis:
## eigen() decomposition
## $values
## [1] 2.1912841 0.4962159
##
## $vectors
##
                               [,2]
                    [,1]
## temp_nums -0.99888317 0.04724851
## cu_nums -0.04724851 -0.99888317
```