Como matar a la Hidra

y el teorema de Goodstein.

Lucas Polymeris

13 de abril de 2021

¡Quiero ganaaar!!

Definición

Una estrategia de juego es una función que, dado una Hidra \mathcal{H} , devuelve un nodo maximál de \mathcal{H} que representa que "cabeza" cortar.

Una estrategia f es ganadora, si dado cualquier Hidra \mathcal{H} existe un $n \in \mathbb{N}$ tal que $f^n(\mathcal{H}) =$ la Hidra de solo un nodo.

¡Quiero ganaaar!!

Definición

Una estrategia de juego es una función que, dado una Hidra \mathcal{H} , devuelve un nodo maximál de \mathcal{H} que representa que "cabeza" cortar.

Una estrategia f es ganadora si dado cualquier Hidra \mathcal{H} existe un $n \in \mathbb{N}$ tal que $f^n(\mathcal{H}) =$ la Hidra de solo un nodo.

Teorema (Kirby and Paris 1982)

Cualquier estrategia gana.

Sucesiones de Goodstein: Cambio de base hereditario

$$266 = 2^{8} + 2^{3} + 2^{1} = 2^{2^{3}} + 2^{2^{1}+1} + 2^{1} = 2^{2^{2^{1}+1}} + 2^{2^{1}+1} + 2^{1}$$
$$266 = 3^{5} + 2 \cdot 3^{2} + 3^{1} + 2 = 3^{3^{1}+2} + 2 \cdot 3^{2} + 3^{1} + 2$$

Sucesiones de Goodstein: Un ejemplo

$$\begin{split} G_0(266) &= 2^{2^{2+1}} + 2^{2+1} + 2^1 \\ G_1(266) &= 3^{3^{3+1}} + 3^{3+1} + 3^1 - 1 = 3^{3^{3+1}} + 3^{3+1} + 2 \\ G_2(266) &= 4^{4^{4+1}} + 4^{4+1} + 2 - 1 = 4^{4^{4+1}} + 4^{4+1} + 1 \\ G_3(266) &= 5^{5^{5+1}} + 5^{5+1} + 1 - 1 = 5^{5^{5+1}} + 5^{5+1} \\ G_4(266) &= 6^{6^{6+1}} + 6^{6+1} - 1 \\ &= 6^{6^{6+1}} + 5 \cdot 6^6 + 5 \cdot 6^5 + 5 \cdot 6^4 + 5 \cdot 6^3 + 5 \cdot 6^2 + 5 \cdot 6 + 5 \\ &\sim 10^{217833} \\ &\vdots \end{split}$$

| □ ▶ ◀ ∰ ▶ ◀ 볼 ▶ ◀ 볼 ▶ ¶ Q (~

Sucesiones de Goodstein

Definimos $\mathcal{G}: \mathbb{N} \to \mathbb{N}$, donde $\mathcal{G}(n)$ es el primer natural i tal que $G_i(n) = 0$. Es decir, la cantidad de iteraciones que toma la suceción de Goodstein partiendo con el número n en llegar a 0.

Sucesiones de Goodstein: Teorema de Goodstein

Definimos $\mathcal{G}: \mathbb{N} \to \mathbb{N}$, donde $\mathcal{G}(n)$ es el primer natural i tal que $G_i(n) = 0$. Es decir, la cantidad de iteraciones que toma la suceción de Goodstein partiendo con el número n en llegar a 0.

Teorema (Goodstein 1944)

G es bien definida. Es decir, para todo natural n la sucesión de Goodstein partiendo en n eventualmente llega a 0.

Sucesiones de Goodstein: Algunos valores

n			$\mathcal{G}(n)$		
1	2^{0}	2 - 1	$H_{\omega}(1)-1$	$f_0(3)-2$	2
2	2^1	$2^1 + 1 - 1$	$H_{\omega+1}(1)-1$	$f_1(3)-2$	4
3	2^1+2^0	$2^2 - 1$	$H_{\omega^{\omega}}(1)-1$	$f_1(f_0(3))-2$	6
4	2^{2}	$2^2 + 1 - 1$	$H_{\omega^\omega+1}(1)-1$	$f_{\omega}(3)-2$	$3 \cdot 2^{402653211} - 2 \approx 6.895080803 \times 10^{121210694}$
5	2^2+2^0	$2^2 + 2 - 1$	$H_{\omega^\omega+\omega}(1)-1$	$f_{\omega}(f_0(3))-2$	$> A(4,4) > 10^{10^{10^{19728}}}$
6	2^2+2^1	$2^2 + 2 + 1 - 1$	$H_{\omega^\omega+\omega+1}(1)-1$	$f_{\omega}(f_1(3))-2$	> A(6,6)
7	$2^2 + 2^1 + 2^0$	$2^{2+1}-1$	$H_{\omega^{\omega+1}}(1)-1$	$f_\omega(f_1(f_0(3)))-2$	> A(8,8)
8	2^{2+1}	$2^{2+1}+1-1$	$H_{\omega^{\omega+1}+1}(1)-1$	$f_{\omega+1}(3)-2$	$> A^{3}(3,3) = A(A(61,61),A(61,61))$
:					
12	$2^{2+1}+2^2$	$2^{2+1} + 2^2 + 1 - 1$	$H_{\omega^{\omega+1}+\omega^{\omega}+1}(1)-1$	$f_{\omega+1}(f_\omega(3))-2$	$> f_{\omega+1}(64) > Graham's number$
:					
19	$2^{2^2} + 2^1 + 2^0$	$2^{2^2}+2^2-1$	$H_{\omega^{\omega^{\omega}}+\omega^{\omega}}(1)-1$	$f_{\omega^\omega}(f_1(f_0(3)))-2$	

(ロ) (個) (差) (差) (差) (の)

Resultados de independencia

Teorema (Kirby and Paris 1982)

El teorema de Goodstein es independiente de la Aritmética de Peano.

Resultados de independencia

Teorema (Kirby and Paris 1982)

El teorema de Goodstein es independiente de la Aritmética de Peano.

Teorema (Kirby and Paris 1982)

La afirmación "Toda estrategia recursiva del Juego de la hidra es ganadora" es independiente de la aritmética de Peano.

Recursos/Referencias

- Programa para jugar: https://github.com/Average-user/hydra-game.
- Una demostración del Teorema de Goodstein:
 https://www.sas.upenn.edu/~htowsner/GoodsteinsTheorem.pdf.
- Accessible independence results for peano arithmetic. L. Kirby and J. Paris. 1982