Pavages périodiques apériodiques du plan

Matteo Wei et Nathan Boyer

22 décembre 2023

1 Introduction

Définition 1. Un ensembles de Wang est un triplet (H,V,T) où H et V sont respectivement les couleurs horizontales et verticales et où $T \subseteq H^2 * V^2$ est l'ensemble des dominos

2 Indécidabilité du problème du domino

2.1 Le problème du domino

Définition 2 (Problème du domino). Existe-t-il un algorithme qui, étant donné un ensemble fini de tuiles de Wang, décide s'il existe un pavage du plan avec ces tuiles?

Proposition 1. La conjecture de Wang implique que le problème du domino est décidable.

Lemme 1 (compacité). Soit T un ensemble fini de tuiles de Wang. Alors T pave le plan si, et seulement si, pour tout $n \in \mathbb{N}$, T pave un carré de taille $n \times n$.

Preuve 1 (lemme 1). Le sens direct est trivial. Pour le sens réciproque, supposons que pour tout $n \in \mathbb{N}$, T pave un carré de taille $n \times n$.

On fixe un ensemble dénombrable de variables V et considère le langage contenant un symbole de constante O, deux symboles de relations binaires \mathcal{H} et \mathcal{V} , ainsi que, pour chaque tuile $t \in T$, un symbole de relation unaire aussi noté t.

On note $T_{\mathcal{H}}$ l'ensemble des couples de tuiles $(t,u) \in T^2$ tels que la couleur de droite de t est la couleur de gauche de u. De même, on note $T_{\mathcal{V}}$ l'ensemble des couples de tuiles $(t,u) \in T^2$ tels que la couleur du haut de t est la couleur du bas de u.

On propose l'axiomatisation Th du premier ordre suivante pour les T-pavages :

$$\forall x \forall y (x \mathcal{H} y \to \forall z ((x \mathcal{H} z \to y = z) \land (z \mathcal{H} y \to x = z))) \tag{$\varphi_{\mathcal{H}}$}$$

$$\forall x \forall y (x \ \mathcal{V} \ y \to \forall z ((x \ \mathcal{V} \ z \to y = z) \land (z \ \mathcal{V} \ y \to x = z))) \tag{$\varphi_{\mathcal{V}}$}$$

$$\forall x \bigvee_{t \in T} \left(t(x) \land \bigwedge_{u \in T \setminus \{t\}} \neg u(x) \right) \tag{$\psi_{\rm un}$}$$

$$\forall x \forall y \Big(x \,\mathcal{H} \, y \to \bigvee_{(t,u) \in T_{\mathcal{H}}} (t(x) \land u(y)) \Big) \qquad (\psi_{\mathcal{H}})$$

$$\forall y \Big(x \,\mathcal{V} \, y \to \bigvee_{(t,u) \in T_{\mathcal{V}}} (t(x) \land u(y)) \Big) \qquad (\psi_{\mathcal{V}})$$

$$\forall y \Big(x \, \mathcal{V} \, y \to \bigvee_{(t,u) \in T_{\mathcal{V}}} (t(x) \land u(y)) \Big) \tag{$\psi_{\mathcal{V}}$}$$

Les variables s'incarnent en des positions sur lesquelles les tuiles sont placées. Les formules φ , axiomatisent le réseau entier du plan, et les formules ψ , correspondent au placement des tuiles sur les cases.

Soit $n \in \mathbb{N}$. Considérons

$$x_{0,0} = O \wedge \bigwedge_{i=-n}^{n} \bigwedge_{j=-n}^{n-1} x_{i,j} \mathcal{H} x_{i,j+1} \wedge \bigwedge_{i=-n}^{n-1} \bigwedge_{j=-n}^{n} x_{i,j} \mathcal{V} x_{i+1,j}$$
 (θ_n)

et notons $\theta'_n = \exists (x_{i,j})_{-n \leqslant i,j \leqslant n} \theta_n$.

L'hypothèse que T pave des carrés de taille arbitrairement grande donne en particulier que pour tout $n \in \mathbb{N}$, Th $\cup \{\theta'_n\}$ admet un modèle (il suffit de prendre un pavage d'un carré C_n de taille $2n + 1 \times 2n + 1$ et de prendre pour O^{C_n} le centre du carré). On en déduit que Th \cup { $\theta'_n \mid n \in \mathbb{N}$ } est finiment consistante, donc consistante par compacité de la logique du premier ordre. Fixons-en donc un modèle \mathfrak{M} , dont on note M l'ensemble sous-jacent.

Soit $n \in \mathbb{N}$. Remarquons que $\varphi_{\mathcal{H}}$ et $\varphi_{\mathcal{V}}$ impliquent que pour $n \in \mathbb{N}$ il n'y a qu'un seul $(a_{i,j}^n)_{-n\leqslant i,j\leqslant n}\in M^{(2n+1)^2}$ tel que $\mathfrak{M}\vdash \theta_n\left((a_{i,j})_{-n\leqslant i,j\leqslant n}\in M^{(2n+1)^2}\right)$, et de plus que pour $m\geqslant n$, et $-n\leqslant i,j\leqslant n$, on a $a_{i,j}^n=a_{i,j}^m$. Il s'agit en effet de l'unique position ilignes au dessus et j colonnes à droite de $O^{\mathfrak{M}}$; on note donc $a_{i,j}$ cet élément.

On en déduit également que pour tout $(i,j) \in \mathbb{Z}^2$, $\mathfrak{M} \vdash a_{i,j} \mathcal{H} \ a_{i,j+1} \land a_{i,j} \mathcal{V} \ a_{i+1,j}$. On déduit alors des trois derniers axiomes de Th que placer à la position $(i,j) \in \mathbb{Z}^2$ l'unique tuile t telle que $\mathfrak{M} \vdash t(a_{i,j})$ donne un T-pavage du plan, ce qui conclut.

Preuve 2 (proposition 1). Supposons que la conjecture de Wang est vrai.

Considérons l'algorithme, étant donné un ensemble fini T de tuiles de Wang, consistant à tester, pour chaque $n \in \mathbb{N}$, tous les T-coloriages possibles de $[0, n]^2$, jusqu'à soit trouver un T-pavage prolongeable en T-pavage périodique du plan, auquel cas on accepte, soit trouver un n tel qu'aucun des T-coloriages de $[0, n]^2$ n'est un T-pavage, auquel cas on rejette.

Soit T un ensemble fini de tuiles. Il y a deux cas de figures possibles :

- Soit T ne pave pas le plan, auquel cas le lemme 1 assure que l'algorithme rejette.
- Soit T pave le plan, auquel cas la conjecture de Wang assure qu'il existe un T-pavage périodique, et l'algorithme accepte.

Ainsi, cet algorithme décide le problème du domino.

3 Pavage apériodique pour 11 tuiles et 4 couleurs

Définition 3 (Transducteur). Un transducteur τ est un automate qui lit une bande d'entrée bifinie et écrit sur une bande de sortie bifinie

On peut voir un pavage comme un transducteur.

En effet, $\forall t = (w, e, s, n) \in T$, on dit qu'il y a une transition de l'état w vers l'état e qui lit n et écrit s

Définition 4 $(w\tau w')$. On dit que $w\tau w'$ si w' est une bande de sortie pour la bande d'entrée w et le transducteur τ

Définition 5 (Run). Une run d'un transducteur τ sur I un intervalle de \mathbb{Z} est une suite de mots bifinis $(w_i)_{i\in I}$ telle que $\forall i\in I, w_i\tau w_{i+1}$

On définit également la composition de 2 transducteurs de manière naturelle On peut alors reformuler le problème initial de la façon suivante :

Proposition 2. Un ensemble de Wang admet un pavage périodique si et seulement si $\exists w \ mot \ bifini \ , k \in \mathbb{N}, \ avec \ w\tau^k w'$

Définition 6 (Equivalence de 2 ensembles de Wang). On ne s'intéresse plus aux ensembles de Wang que sous le point de vue des transducteurs

Ainsi, 2 ensembles de Wang sont équivalents ssi leurs transducteurs définissent la même relation

càd ssi $\forall w, w', w\tau w' \iff w\tau' w'$

Définition 7 (Simulation d'un transducteur). Soit $\tau = (H, V, T)$ un transducteur Une simulation R est une relation sur H telle que

 $uRu' \iff \forall v \in H, a, b \in V \text{ avec } (u, v, a, b) \in T, \exists v' \in V, (u', v', a, b) \in T$

Une bisimulation est simulation R telle que R^{-1} soit une relation

La relation de bisimilarité (qui est la plus grande bisimulation) est une relation d'équivalence.