Compressão e Manipulação de Imagens com PHP

PHP com rapadura in Quixadá

Quem é esse mago véi ?

- Hilderjares vem do chinês, que significa difícil para kario;
- Graduando em Sistemas de Informação UFC;
- Se amarra em uns sounds do Megadeth;
- Nas horas vagas brinca com o PHP;
- Linux Entusiasta;
- Dockerizador;

Let's bora os caba

Lema 1 Seja N>0 inteiro e $n\in\mathbb{N}$. Então

$$\sum_{k=0}^{N-1} \cos\left(\frac{n\pi}{N}\left(k+\frac{1}{2}\right)\right) = \begin{cases} N, & n=0, \\ 0, & n\neq 0. \end{cases}$$

Prova: O caso
$$n=0$$
 é trivial. Suponha $n\neq 0$. Recordando as identidades
$$\cos\theta=\mathrm{Re}\,e^{i\theta},$$

$$\mathrm{Re}\,\bar{w}=\mathrm{Re}\,w\implies\mathrm{Re}(\bar{w}-w)=0,\quad\forall w\in\mathbb{C},$$

 $z^{N}-1=(z-1)(1+z+z^{2}+\cdots+z^{N-1}), \quad \forall z \in \mathbb{C},$

$\sum_{k=0} \cos\left(\frac{1}{N}\left(k+\frac{1}{2}\right)\right) = \operatorname{Re}\sum_{k=0} \exp\left(\frac{1}{N}\left(k+\frac{1}{2}\right)\right)$
$=\operatorname{Re}\sum_{k=0}^{N-1} \underbrace{\expigg(rac{in\pi}{2N}igg)} egin{matrix} \expigg(rac{in\pi}{N}kigg) \end{matrix}$
$=\operatorname{Re} w(1+z+z^2+\cdots+z^{N-1})=\operatorname{Re} wrac{z^n-1}{z-1}$
$=\operatorname{Re} w \frac{(z^{N}-1)}{(z^{N}-1)} = \frac{(-1)^{N}-1}{(z^{N}-1)} \operatorname{Re} w(\bar{z})$

e definindo os números complexos $w=\exp\left(\frac{in\pi}{2N}\right)$ e $z=\exp\left(\frac{in\pi}{N}\right)=w^2$, de forma que $z^N=e^{iN\pi}=(-1)^N$ e |w|=1, obtemos

 $= \operatorname{Re} w \frac{(z^{N} - 1)}{(z - 1)} \frac{(z - 1)}{(\bar{z} - 1)} = \frac{(-1)^{N} - 1}{|z - 1|^{2}} \operatorname{Re} w(\bar{z} - w)$ $= \frac{(-1)^{N} - 1}{|z - 1|^{2}} \operatorname{Re} (\underbrace{w\bar{w}}_{|w|^{2} - 1} \bar{w} - w) = \frac{(-1)^{N} - 1}{|z - 1|^{2}} \operatorname{Re} (\bar{w} - w) = 0.$

 $\sum_{n=1}^{N-1} (n\pi(1)) = \sum_{n=1}^{N-1} (in\pi(1))$

c.q.d.

Calma minha autarquia

O problema :-(

O que é uma imagem digital?

- função bidimensional f (x, y)
 - f é a intensidade de cinza
 - x e y são coordenadas são coordenadas espaciais
- números finitos e discretos
- elementos da imagem(vulgo pixel)

Processamento digital de imagens

Esse negócio aí da compressão vinga mermu?

Sem perda vs Com perda

- Com perda
 - o formato JPEG e GIF usado
 - o não pode ser usado na área médica(DICOM)
 - o garante uma compressão melhor
- Sem perda
 - PNG
 - Qualidade e a fidelidade da imagem são importantes

PHP e compressão de imagens ? An!

Ferramentas, Libs, Serviços e API's

- GD
- Imagine
- Image Optimizer
- Imagehash
- Intervention Image

E como brinca desse negócio aí?

Valeu meus consagrados, Hilderjares só agradece ;-)

- Links
 - https://hilderjares.github.io
 - https://imagine.readthedocs.io/en/1.2.0/usage/introduction.html
 - https://www.php.net
 - https://packagist.org
 - https://github.com/jenssegers/imagehash
 - https://github.com/psliwa/image-optimizer
 - https://github.com/hilderjares/guetzli