Programming in Base R

Task 1: Basic Vector practice

1.Create two vectors

```
pre_bp <-c(130,128,116,124,133,134,118,126,114,127,141,138,128,140,137,131,120,128,139,135)
post_bp <-c(114,98,113,99,107,116,113,111,119,117,101,119,130,122,106,106,124,102,117,113)
```

2. Assign names to the vector elements

```
paste("Subject", 1:20,sep="_")

[1] "Subject_1" "Subject_2" "Subject_3" "Subject_4" "Subject_5"
[6] "Subject_6" "Subject_7" "Subject_8" "Subject_9" "Subject_10"
[11] "Subject_11" "Subject_12" "Subject_13" "Subject_14" "Subject_15"
[16] "Subject_16" "Subject_17" "Subject_18" "Subject_19" "Subject_20"

names(pre_bp) <-c(paste("Subject", 1:20,sep="_"))
names(post_bp) <-c(paste("Subject", 1:20,sep="_"))</pre>
```

3. Calculate the change in blood pressure

```
diff_bp <- c(pre_bp - post_bp)</pre>
```

4. Calculate the average decrease in blood pressure

```
mean(diff_bp)
```

[1] 17

5. Determine positive change

```
which(diff_bp>0)
```

```
      Subject_1
      Subject_2
      Subject_3
      Subject_4
      Subject_5
      Subject_6
      Subject_7

      1
      2
      3
      4
      5
      6
      7

      Subject_8
      Subject_10
      Subject_11
      Subject_12
      Subject_14
      Subject_15
      Subject_16

      8
      10
      11
      12
      14
      15
      16

      Subject_18
      Subject_19
      Subject_20

      18
      19
      20
```

6. Subset the vector of differences only return positive change

```
positive_change <- diff_bp[c(which(diff_bp>0))]
```

7. Calculate average decrease in blood pressure

```
mean(positive_change)
```

[1] 20.64706

Task 2: Basic Data Frame practice

1. Create a data frame object with 4 columns

```
patient <-c(paste("Subject", 1:20,sep="_"))
bp_df <-data.frame(patient,pre_bp,post_bp,diff_bp,row.names=NULL)</pre>
```

2. Return only rows with negative diff_bp

```
`[`(bp_df,bp_df$diff_bp<0,)
      patient pre_bp post_bp diff_bp
    Subject_9
                 114
                         119
                                   -5
13 Subject_13
                 128
                         130
                                   -2
17 Subject_17
                 120
                         124
                                   -4
bp_df[bp_df$diff_bp<0, ]</pre>
      patient pre_bp post_bp diff_bp
    Subject_9
9
                 114
                         119
                                   -5
13 Subject_13
                 128
                         130
                                   -2
17 Subject_17
                 120
                         124
                                   -4
subset(bp_df,diff_bp<0)</pre>
```

```
patient pre_bp post_bp diff_bp
9 Subject_9 114 119 -5
13 Subject_13 128 130 -2
17 Subject_17 120 124 -4
```

3. Add a new column (TRUE if post_bp<120)

```
bp_df$post_bp_less_120 <-ifelse(bp_df$post_bp<120,TRUE,FALSE)</pre>
```

4. Print the data frame out

```
knitr::kable(bp_df,align='c',"simple")
```

patient	pre_bp	post_bp	diff_bp	post_bp_less_120
Subject_1	130	114	16	TRUE
$Subject_2$	128	98	30	TRUE

patient	pre_bp	$post_bp$	$\operatorname{diff_bp}$	post_bp_less_120
Subject_3	116	113	3	TRUE
$Subject_4$	124	99	25	TRUE
$Subject_5$	133	107	26	TRUE
$Subject_6$	134	116	18	TRUE
$Subject_7$	118	113	5	TRUE
$Subject_8$	126	111	15	TRUE
$Subject_9$	114	119	-5	TRUE
$Subject_10$	127	117	10	TRUE
Subject_11	141	101	40	TRUE
$Subject_12$	138	119	19	TRUE
$Subject_13$	128	130	-2	FALSE
$Subject_14$	140	122	18	FALSE
$Subject_15$	137	106	31	TRUE
Subject_16	131	106	25	TRUE
$Subject_17$	120	124	-4	FALSE
Subject_18	128	102	26	TRUE
Subject_19	139	117	22	TRUE
Subject_20	135	113	22	TRUE

Task 3: List practice

1. Create a new data frame

```
patient <-paste("Subject", 1:10,sep="_")
pre_placebo <-c(138,135,147,117,152,134,114,121,131,130)
post_placebo <-c(105,136,123,130,134,143,135,139,120,124)
diff_placebo <- pre_placebo - post_placebo
placebo_df <-data.frame(patient,pre_bp=pre_placebo,post_bp=post_placebo,diff_bp=diff_placebo
placebo_df$post_bp_less_120 <-ifelse(placebo_df$post_bp<120,TRUE,FALSE)</pre>
```

2. Create and store a list with two elements

```
my_list <- list(treatment=bp_df, placebo=placebo_df)</pre>
```

3. Access the first list element using three different types of syntax

my_list[1]

\$treatment

	patient	pre_bp	post_bp	${\tt diff_bp}$	post_bp_less_120
1	Subject_1	130	114	16	TRUE
2	Subject_2	128	98	30	TRUE
3	Subject_3	116	113	3	TRUE
4	Subject_4	124	99	25	TRUE
5	Subject_5	133	107	26	TRUE
6	Subject_6	134	116	18	TRUE
7	Subject_7	118	113	5	TRUE
8	Subject_8	126	111	15	TRUE
9	Subject_9	114	119	-5	TRUE
10	${\tt Subject_10}$	127	117	10	TRUE
11	Subject_11	141	101	40	TRUE
12	${\tt Subject_12}$	138	119	19	TRUE
13	${\tt Subject_13}$	128	130	-2	FALSE
14	${\tt Subject_14}$	140	122	18	FALSE
15	Subject_15	137	106	31	TRUE
16	Subject_16	131	106	25	TRUE
17	Subject_17	120	124	-4	FALSE
18	Subject_18	128	102	26	TRUE
19	Subject_19	139	117	22	TRUE
20	${\tt Subject_20}$	135	113	22	TRUE

my_list[[1]]

	patient	pre_bp	post_bp	diff_bp	post_bp_less_120
1	Subject_1	130	114	16	TRUE
2	Subject_2	128	98	30	TRUE
3	Subject_3	116	113	3	TRUE
4	Subject_4	124	99	25	TRUE
5	Subject_5	133	107	26	TRUE
6	Subject_6	134	116	18	TRUE
7	Subject_7	118	113	5	TRUE
8	Subject_8	126	111	15	TRUE
9	Subject_9	114	119	-5	TRUE
10	${\tt Subject_10}$	127	117	10	TRUE

11 Subject_11	141	101	40	TRUE
12 Subject_12	138	119	19	TRUE
13 Subject_13	128	130	-2	FALSE
14 Subject_14	140	122	18	FALSE
15 Subject_15	137	106	31	TRUE
16 Subject_16	131	106	25	TRUE
17 Subject_17	120	124	-4	FALSE
18 Subject_18	128	102	26	TRUE
19 Subject_19	139	117	22	TRUE
20 Subject_20	135	113	22	TRUE

my_list\$treatment

	patient	pre_bp	post_bp	${\tt diff_bp}$	post_bp_less_120
1	Subject_1	130	114	16	TRUE
2	Subject_2	128	98	30	TRUE
3	Subject_3	116	113	3	TRUE
4	Subject_4	124	99	25	TRUE
5	Subject_5	133	107	26	TRUE
6	Subject_6	134	116	18	TRUE
7	Subject_7	118	113	5	TRUE
8	Subject_8	126	111	15	TRUE
9	Subject_9	114	119	-5	TRUE
10	Subject_10	127	117	10	TRUE
11	Subject_11	141	101	40	TRUE
12	Subject_12	138	119	19	TRUE
13	Subject_13	128	130	-2	FALSE
14	${\tt Subject_14}$	140	122	18	FALSE
15	Subject_15	137	106	31	TRUE
16	Subject_16	131	106	25	TRUE
17	Subject_17	120	124	-4	FALSE
18	Subject_18	128	102	26	TRUE
19	Subject_19	139	117	22	TRUE
20	Subject_20	135	113	22	TRUE

4. In one line, access the placebo data frame, pre_bp column

my_list\$placebo\$pre_bp

[1] 138 135 147 117 152 134 114 121 131 130

Task 4: Control Flow Practice

1.create a new column called status

```
my_list$treatment$status <- character(20)
my_list$placebo$status <-character(10)</pre>
```

2. create a for loop and use if/then/else logic to create status values for non-placebo data frame

```
# my_list$treatment$status <- ifelse(my_list$treatment$post_bp<=120,"optimal",ifelse(my_list$
for (i in 1:20){
   if (my_list$treatment$post_bp[i] <=120) {
      my_list$treatment$status[i]<-"optimal"
   } else if (my_list$treatment$post_bp[i] >130) {
      my_list$treatment$status[i]<-"high"
   } else {
      my_list$treatment$status[i]<-"borderline"
   }
}
my_list$treatment$status</pre>
```

```
[1] "optimal"
                   "optimal"
                                "optimal"
                                              "optimal"
                                                            "optimal"
 [6] "optimal"
                   "optimal"
                                "optimal"
                                              "optimal"
                                                            "optimal"
[11] "optimal"
                  "optimal"
                                "borderline" "borderline" "optimal"
[16] "optimal"
                   "borderline" "optimal"
                                              "optimal"
                                                            "optimal"
```

3.create a for loop and use if/then/else logic to create status values for placebo data frame

```
for (i in 1:10) {
  if (my_list$placebo$post_bp[i]<=120){
    my_list$placebo$status[i]<-"optimal"
} else if (my_list$placebo$post_bp[i]>130) {
    my_list$placebo$status[i]<-"high"
} else {my_list$placebo$status[i]<-"borderline"</pre>
```

```
}
my_list$placebo$status
```

```
[1] "optimal" "high" "borderline" "borderline" "high" [6] "high" "high" "optimal" "borderline"
```

Task 5: Function Writing

1. Write a function that

*takes in a list with two data frames in it

```
take_in_list <- function(data_frame1,data_frame2){
   list(treatmnet=data_frame1,placebo=data_frame2)
}</pre>
```

*takes in an R function find a summary of a numeric column (default set to "mean")

```
summary_mean <- function(column){
  if(!is.numeric(column)){
    stop("Not numeric column")
  }
  mean(column)
}
summary_mean(positive_change)</pre>
```

[1] 20.64706

• find statistic of interest for the pre, post, diff columns of both data frames

```
find_stat <- function(stat){
   my_fun <-get(stat)
   bp_pre<-my_fun(bp_df$pre_bp)
   bp_post<-my_fun(bp_df$post_bp)
   bp_diff<-my_fun(bp_df$diff_bp)
   pla_pre<-my_fun(placebo_df$pre_bp)
   pla_post<-my_fun(placebo_df$post_bp)
   pla_diff<-my_fun(placebo_df$diff_bp)
   return(list(bp_pre,bp_post,bp_diff,pla_pre,pla_post,pla_diff))</pre>
```

```
#return six values as a named list
  value_list<-find_stat(stat)</pre>
  #create a vector of names
   if (mean) {
   vec_name=c(paste("mean","_",1:6,sep=''))
  } else if (var) {
  vec_name=c(paste("var","_",1:6,sep=''))
  } else if (sd) {
  vec_name=c(paste("sd","_",1:6,sep=''))
  } else if (min) {
  vec_name=c(paste("min","_",1:6,sep=''))
  } else if (max) {
   vec_name=c(paste("max","_",1:6,sep=''))
  #create a vector of stat values
  vec_value<-c(value_list[1], value_list[2], value_list[3],</pre>
               value_list[4], value_list[5], value_list[6])
  #assign names() to the vector
  names(vec_value)=c(vec_name)
}
#apply function (var,sd,min,max)
find_stat("mean")
[[1]]
[1] 129.35
[[2]]
[1] 112.35
[[3]]
[1] 17
[[4]]
[1] 131.9
[[5]]
[1] 128.9
```

```
[[6]]
[1] 3
find_stat('var')
[[1]]
[1] 64.55526
[[2]]
[1] 74.76579
[[3]]
[1] 153.6842
[[4]]
[1] 149.8778
[[5]]
[1] 124.9889
[[6]]
[1] 341.3333
find_stat('sd')
[[1]]
[1] 8.034629
[[2]]
[1] 8.646721
[[3]]
[1] 12.39694
[[4]]
[1] 12.24246
[[5]]
[1] 11.17984
[[6]]
```

[1] 18.47521

find_stat("min") [[1]] [1] 114 [[2]] [1] 98 [[3]] [1] -5 [[4]] [1] 114 [[5]] [1] 105 [[6]] [1] -21 find_stat("max") [[1]] [1] 141 [[2]] [1] 130 [[3]] [1] 40 [[4]][1] 152 [[5]] [1] 143 [[6]]

[1] 33