Simulation Topology and Important Parameters

This document provides the topology diagram of the modified IEEE 10-machine 39-bus system, as well as important parameters for the physical system, control and KA&EL-EA algorithm, data-driven training, and high and low wind speed scenarios.

The topology diagram of the modified IEEE 10-machine 39-bus system is shown in Fig. 1:

Fig. 1 IEEE 39-bus test system with three wind farms.

The system and control parameters are shown in Table I:

TABLE I
SYSTEM AND CONTROL PARAMETERS

Parameter Name	Value
PFR Optimization period	20 s
Sampling period	0.01 s
System nominal frequency	50 Hz
the maximum frequency deviation limit	0.5 Hz
the maximum RoCoF limit	0.6 Hz/s
the maximum QSSFD limit	0.25 Hz
The security range of node voltage	[0.92, 1.08] p.u.
the upper limit of branch power	0.133 p.u.
the PFR energy compensation price of WF1	\$50/MWh
the PFR energy compensation price of WF2	\$100/MWh

the PFR energy compensation price of WF3	\$150/MWh
the inertia coefficient compensation price of WF1	$0.04/(MW \cdot s/Hz)$
the inertia coefficient compensation price of WF2	$0.1/(MW \cdot s/Hz)$
the inertia coefficient compensation price of WF3	\$0.15/(MW·s/Hz)

The parameters of the conventional thermal generators are shown in Table II: $$^{\rm TABLE\,II}$$

PARAMETERS OF THE CONVENTIONAL THERMAL GENERATORS

Generator Node	Output Power	$H_{ m g}$	$R_{ m g}$	$T_{\rm g}({ m S})$	$F_{ m g}$	$K_{\rm g}$	D
Location	Output I ower	11g	Λg	1 g(3)	I g	Λg	<i>D</i>
31	92 MW	4.4	0.0891	4.0719	0.2185	1	2.8508
32	93.6 MW	4.4	0.0658	5.0300	0.2070	1	2.8508
34	94.4 MW	4.4	0.0891	4.3115	0.2875	1	2.8508
35	88 MW	4.4	0.0891	2.8743	0.3450	1	2.8508
36	84 MW	4.4	0.0802	6.7067	0.3565	1	2.8508
37	89.6 MW	4.4	0.0668	5.7486	0.3680	1	2.8508
39	99.726 MW	4.4	0.0608	5.7486	0.3680	1	2.8508

The parameters of WT are shown in Table III:

TABLE III

PARAMETERS OF WT

Parameter Name	Value
Rated power	6 MW
Maximum limit speed	1.3 p.u.
Minimum limit speed	0.7 p.u.
Maximum power output	6.3 MW
Rotational inertia	$192000000 \; kg{\cdot}m^2$
Blade pitch angle	0°
Swept area of WT blades	12076 m ²
Converter response time	1.2 s

The parameters of the KA&EL-EA algorithm are shown in Table IV:

TABLE IV

PARAMETERS OF KA&EL-EA ALGORITHM

Parameter	Value
n_p	50
MaxIt	100
$\mathcal{W}_{ ext{max}}$	0.9
$w_{ m min}$	0.2
δ '	0.1
\overline{u}	[50,50,50,30,30,30]
<u>u</u>	[0,0,0,0,0,0]
n_{mut}	50
σ'	1e-5

The wind speeds of three WFs under low wind speed and high wind speed test scenarios are shown in Table V to Table. VII:

TABLE V

WIND SPEED DATA OF WIND FARM 1

Scenarios	Anemometer tower 1	Anemometer tower 2	Anemometer tower 3
Low wind speed	8.8712	8.9152	8.8421
High wind speed	10.0033	10.0411	10.0358

TABLE VI

WIND SPEED DATA OF WIND FARM 2

Scenarios	Anemometer	Anemometer	Anemometer	Anemometer
Scenarios	tower 1	tower 2	tower 3	tower 4
Low wind speed	8.7211	8.5947	8.3774	8.2400
High wind speed	10.002	10.0883	10.0032	10.0542

TABLE VII

WIND SPEED DATA OF WIND FARM 3

Scenarios	Anemometer tower 1	Anemometer tower 2	Anemometer tower 3	Anemometer tower 4	Anemometer tower 5
Low wind speed	8.4145	8.3891	8.4523	8.1056	8.2357
High wind speed	10.60211	10.6964	10.4502	10.3812	10.5229

The requirements of data-driven training are shown in Table VIII:

TABLE VIII

REQUIREMENTS OF DATA QUALITY

Number of historical samples	1599
Number of augmented dimensions	100

WT output power

The 12 data-driven performance test scenarios with different wind speeds and PFR characteristics of WFs are shown in Fig. 2 to Fig. 3:

Fig. 2. The PFR characteristics of three WFs in 12 test scenarios

(a) Droop coefficient (b) Inertia coefficient

Fig. 3. The wind speeds of three WFs in 12 test scenarios

(a) Wind farm 1 (b) Wind farm 2 (c) Wind farm 3