软件过程管理

-Ch.6 软件过程的项目管理

闫波 北京理工大学 计算机学院

yanbo@bit.edu.cn

软件过程的项目管理

有效的项目管理是在用来实现项目具体目标 的规定时间内,对组织机构资源进行计划、引导 和控制工作。

——《项目管理知识指南》

软件配置管理概念

● 配置

配置是在技术文档中明确说明最终组成软件产品的功能或物理属性。

● 配置项

在软件生存周期内所产生的各种应纳入管理范围的系统构成成分。包括各种管理文档和技术文档,源程序与目标代码,以及运行所需的各种数据等(配置管理的资源对象)

● 基线

基线是评审过的一个或多个软件配置项,每一个基线都是下一步开发的出发点和基础。

● 配置管理库

配置管理库也称受控库,用于存储软件配置项以及相关配置管理信息。

软件配置管理流程

基线控制

- ◆ 计划基线
- ◆ 需求基线
- ◆ 设计基线

- ◆ 编码基线
- ◆ 测试基线

版本控制

1. 版本的访问和同步控制

版本控制

2. 版本的分支

版本控制

3. 版本的合并

变更控制

项目估算

令人烦恼的项目估算:

- ✓ 这个项目需要多长时间?
- ✓ 这个模块大概多久完成?
- ✓ 需要花费多少人力才能完成这个项目?
- ✓ 项目的总成本大概为多少?
- **√**

项目规模估算的方法

● 常用的规模估算方法:

- (1)代码行方法
- (2)功能点分析方法
- (3)面向对象软件的对象点方法

● 其他估算方法:

德尔菲法(Delphi technique)、COCOMO模型、特征点(feature point)、对象点(object point)、3-D功能点(3-D function points)、Bang度量(DeMarco's bang metric)、模糊逻辑(fuzzy logic)、标准构件法(standard component)等

项目成本的组成

1. 项目成本的组成

- (1) 直接成本
 - ■人力成本
 - 硬件设备
 - * 软件费用
- (2)间接成本
 - ■项目管理成本
 - ■一般管理成本

项目成本的估算方法

- 1. 经验估算法
- 2. 比例法
- 3. 专家估算法
- 4. 工作分解结构表
 - 自上而下
 - 自下而上

项目人力资源管理

1. 确定项目角色

角色	职能
项目经理	项目的整体计划、组织和控制。
需求人员	在整个项目中负责获取、阐述以及维护产品需求及书写文档。
设计人员	在整个项目中负责评价、选择、阐述以及维护产品设计以及书写文档。
编码人员	根据设计完成代码编写任务并修正代码中的错误。
测试人员	负责设计和编写测试用例,以及完成最后的测试执行。
质量保证人员	负责对产品的验收、检查和测试的结果进行计划、引导并做 出报告。
环境维护人员	负责开发和测试环境的开发和维护。
其他	另外的角色,如文档规范人员、硬件工程师等。

项目人力资源管理

2. 团队建设

项目软硬件资源管理

1. 软件资源管理

- 操作系统
- ■编译器
- ■应用软件
- 测试工具
-

2. 硬件资源管理

- ■服务器
- PC
-

项目风险管理

常用的风险识别方法

- 检查单
- 文件审核
- 头脑风暴
- 德尔菲法
- ●访谈
- SWOT分析
- 图表分析

10种常见的风险

No	软件风险	相应对策			
1	人员不足	录用优秀人才;人员应适应岗位需要;全面考虑团队建设;骨干人员工作要协调;实施培训;预先安排关键人员的使用计划			
2	进度计划和预算不准确	详细评估多种资源成本和进度;依成本进行设计;采用渐增式开发;软件复用;纯净需求			
3	开发了错误的软件功能	进行组织分析;实施任务分析;进行用户调查;开发原型;及早编制用户手册			
4	开发了不适用的用户接口 开发原型;制作脚本;作业分析;弄清了用户特征(功能性、风工作负荷)				
5	只追求表面效果,需求中含 有一些不必要的功能(镀金) 纯净需求;开发原型;成本一效益分析;依成本进行设计				
6	需求不断变更	重大变更设限;信息隐蔽;渐进式开发			
7	外供部件不足	制定基准点;检验;参考基准检查;兼容性分析			
8	外包任务问题 参考基准检查;发包前审核;未发包合同;竞标设计或开发原建立团队				
9	实时性能达不到要求 模拟;制定基准;建模;开发原型;安装测量装置;调准				
10	误解计算机科学能力	技术分析;成本一效益分析;开发原型;参考基准检查 19			

定量的风险分析

量化的风险分析通常需要对事实进行更详细的分析,较之主观的风险分析往往更为可靠。

主要的量化分析方法有:

- 比率/范围分析
- 概率分析
- 敏感性分析

WBS-工作分解结构

创建WBS的基本法则

- 每个工作工作单元在WBS只能出现一次
- 概要任务是对其下所有任务的总结
- 每个WBS的条目都有单独的人员负责
- 与实际要做的工作情形保持一致
- 建立WBS时应让项目组员参予
- 每个WBS条目都应备案
- WBS既要灵活又要不失控制

任务排序

项目网络图

- > 箭线图法(ADM)
- ▶ 前导图法(PDM)

箭线图法 (ADM)

注: 设所有历时以天为单位, A=1 表示活动A的历时为1天

前导图法 (PDM)

时间安排-甘特图

摘要任务:由子任务组成并对这些子任务进行汇总的任务

责任矩阵

用距阵的形式列出对某项任务负责的人或资源。

		管理	项目	分析
	人员	经理	人员	
	1.1 确定项目范围	A		
项目范围	1.2 获得项目所需资金	A		
规划	1.3 定义预备资源		A	
	1.4 获得核心资源		A	
	2.1 行为需求分析			A
	2.2 起草初步的软件规范			A
	2.3 制定初步预算		A	
分析/软件	2.4 工作组共同审阅软件规范/			
需求	预算		A	P
而不	2.5 根据反馈修改软件规范			A
	2.6 确定交付期限		A	
	2.7 获得开展后续工作的批准	A	P	
	2.8 获得所需资源		A	

项目跟踪和控制

- 1. 了解成员的工作情况
- 2. 调整工作安排, 合理利用资源
- 3. 促进计划内容的完善
- 4. 促进项目经理对人员的认识
- 5. 促进对项目工作量的估计
- 6. 统计并了解项目总体进度
- 7. 有利于人员考核

项目计划案例: 建造地牢

说明:

- 你是路易**10**世的俘虏。他要给自己的城堡增加三个新地牢, 让你做一个规划。干得好就释放,干不好就终生监禁。
- 小地牢很难设计,要12周,但容易建成,1周即可;中地 牢设计要5周,施工要6周;大地牢设计只要1周,但建造 要用9周。
- 你有一个设计师和一个建筑师,设计师不会建造而建筑师 不会设计。
- 要建好这三个地牢,你规划的工期是几周?

不同的思路

理性的选择

思路一的缺点:

从一开始就关注单个产品这样的细节,容易造成只见树木,不见森林

思路二的关键:

建造可以根据设计的整体安排进行调整,要取得最佳效果必须安排好工作的起点与排序

可行方案甘特图

■ 尽可能让某一地牢的建造在其它地牢设计的过程中进行,以 达到节省时间的目的。

32

作业

第6章 2、3

Q & A

