2016

Implementasi Fuzzy untuk User Knowledge Modeling

Laporan Tugas Program Kecerdasan Artifisial

Dosen Pengampu: Mahmud Dwi Sulistiyo, ST., MT.

Nama: Putu Eka Budi Pradnyana

NIM: 1301144350

1. Deskripsi Kasus

Diberikan data tentang pemodelan pengetahuan user (user knowledge modeling) terhadap sebuah mata kuliah pada suatu perkuliahan di Program Studi tertentu. Data terdiri dari 3 kolom atribut input dan 1 kolom atribut output, dengan keterangan untuk setiap kolom sebagai berikut.

- a. Tingkat waktu studi untuk mata kuliah tersebut (STG); nilai dari 0 1
- Tingkat pengulangan untuk mata kuliah tersebut di luar waktu perkuliahan (SCG); nilai dari
 0-1
- c. Performansi user untuk mata kuliah tersebut (PEG); nilai dari 0 1
- d. Tingkat pengetahuan user (user knowledge level/UNS); nilai kategorikal (very_low, low, middle, high)

Tingkat waktu studi untuk mata kuliah tersebut (STG)	Tingkat pengulangan untuk mata kuliah tersebut di luar waktu perkuliahan (SCG)	Performansi user untuk mata kuliah tersebut (PEG)	Tingkat pengetahuan user (user knowledge level/UNS)	
0	0	0	very_low	
0.08	0.08	0.9	High	
0.06	0.06	0.33	Low	
0.1	0.1	0.3	Middle	

2. Data yang Digunakan

Data yang digunakan pada tugas program ini sebagai data input berupa data STG, SCG, PEG. Sedangkan untuk data target terdiri dari 4 kategori yaitu Very Low, Low, Middle dan High. Data tersebut kemudian diletakan di excel (.xls) lalu dibaca menggunakan bantuan library jxl.jar yang tersedia untuk Java.

Rancangan data input dan outputnya adalah sebagai berikut :

Input	Data STG, SCG, PEG dan target. Data STG, SCG, PEG berbentuk numerik sedangkan
	data target berbentuk string.
Output	Menampilkan data STG, SCG, PEG, target dan output dari Fuzzy Systems untuk setiap baris data. Lalu menampilkan akurasi dari program dengan cara menghitung jumlah kesamaan antara output dari Fuzzy System dengan target.

3. Desain Metode dan Implementasi Algoritma

Dalam desain metode dan implementasi algoritma ada beberapa hal yang perlu diperhatikan, diantaranya :

a. Rancangan fuzzy set dan fungsi keanggotaan Rancangan fuzzy set dan fungsi keanggotaan untuk data input yaitu STG, SCG dan PEG menggunakan 4 fuzzy set yang sama yaitu Low, Mid dan High. Target memiliki 4 fuzzy set yaitu Very low, Low, Middle, High. Semuanya menggunakan fungsi segitiga. Untuk model inferensi digunakan model sugeno.Berikut gambar fungsi keanggotaan baik untuk STG, SCG, PEG, TARGET dan Model Sugeno.

Gambar 1 Fungsi Keanggotaan STG, SCG

Gambar 2 Fungsi Keanggotaan PEG, TARGET

Gambar 3 Model Sugeno

b. Fuzzy Rules

Adapun rancangan fuzzy rules yang diterapkan dalam tugas program ini adalah sebagai berikut :

IF antecendent THEN				consequent
NO	STG	SCG	PEG	
1	LOW	LOW	LOW	VERY LOW
2	LOW	LOW	MIDDLE	LOW
3	LOW	LOW	HIGH	HIGH
4	LOW	MIDDLE	LOW	LOW
5	LOW	MIDDLE	MIDDLE	MIDDLE
6	LOW	MIDDLE	HIGH	HIGH
7	LOW	HIGH	LOW	LOW
8	LOW	HIGH	MIDDLE	MIDDLE
9	LOW	HIGH	HIGH	HIGH
10	MIDDLE	LOW	LOW	LOW
11	MIDDLE	LOW	MIDDLE	MIDDLE
12	MIDDLE	LOW	HIGH	HIGH
13	MIDDLE	MIDDLE	LOW	LOW
14	MIDDLE	MIDDLE	MIDDLE	MIDDLE
15	MIDDLE	MIDDLE	HIGH	HIGH
16	MIDDLE	HIGH	LOW	MIDDLE
17	MIDDLE	HIGH	MIDDLE	MIDDLE
18	MIDDLE	HIGH	HIGH	HIGH
19	HIGH	LOW	LOW	LOW
20	HIGH	LOW	MIDDLE	MIDDLE
21	HIGH	LOW	HIGH	HIGH
22	HIGH	MIDDLE	LOW	MIDDLE
23	HIGH	MIDDLE	MIDDLE	MIDDLE
24	HIGH	MIDDLE	HIGH	HIGH
25	HIGH	HIGH	LOW	MIDDLE
26	HIGH	HIGH	MIDDLE	MIDDLE
27	HIGH	HIGH	HIGH	HIGH

c. Contoh Perhitungan

Misalnya crisp value: STG = 0.08, SCG = 0.08, PEG = 0.9.

STG 0.08 berada pada nilai linguistik Low(1)

SCG 0.08 berada pada nilai linguistik Low(1)

PEG 0.9 berada pada nilai linguistic High(1)

If SRG=Low(1) & SCG=Low(1) & PEG=High(1) then High(1)

Dengan menggunakan inferensi model sugeno dengan fungsi singleton dimana Very Low = 0.2, Low = 0.4, Middle = 0.67 dan High = 0.8

Diperoleh nilai Center Of Gravity = $1 \times 0.8 = 0.8$.

Dengan menggunakan fungsi keanggotaan output yang menggunakan fungsi segitiga dengan nilai 0.07, 0.46, 0.7, 0.8 untuk Very Low, Low, Middle dan High maka dari nilai Center Of Gravity = 0.8 didapatkan output High (sesuai target).

d. Screenshot Output

```
Jumlah Benar : 269.0
Total Sample : 403
Akurasi : 66.74937965260546 %
```

Gambar 4 Akurasi program

4. Petunjuk Penggunaan Program

Untuk penggunaan program yang dibuat, pertama pengguna perlu mengcopy file data_uns.xls ke drive D:\ lalu buka project menggunakan netbeans/IDE java lainnya. Selanjutnya pengguna harus mengimport file jxl.jar ke libraries project kemudian pilih/klik class Main.java lalu run dengan menekan Shift + F6 (pada netbeans) atau klik ikon yang ada pada toolbar.

5. Luaran Program

Output yang akan ditampilkan setelah program dijalankan adalah menampilkan data dengan format tabel dengan kolom No, STG, SCG, PEG, OUTPUT, TARGET yang ditampilkan dengan iterasi sesuai banyak baris data. Lalu data STG, SCG, PEG dan TARGET ditampilkan sesuai data yang ada di excel, sedangkan data OUTPUT didapatkan melalui proses fuzzy system.

Saat iterasi sudah selesai, maka akan ditampilkan jumlah benar (kesamaan antara OUTPUT dengan TARGET), total sample/baris data dan akurasi dari program.

6. Screenshot Program

```
//read data dari excel
public void ReadData() throws IOException, BiffException{
    w = Workbook.getWorkbook(new File("D:/data_uns.xls"));
    Sheet sheet = w.getSheet(0);
    file_input = new double[sheet.getRows()][sheet.getColumns()-1];
    file_output = new String[sheet.getRows()];
    for (int i = 0; i < sheet.getRows(); i++) {
        for(int j=0; j<sheet.getColumns()-1; j++) {
            Cell data = sheet.getCell(j, i);
            file_input[i][j] = Double.parseDouble(data.getContents());
        }
    }
    for (int i = 0; i < sheet.getRows(); i++) {
        Cell data = sheet.getCell(3, i);
        file_output[i] = data.getContents();
    }
    max_sample = file_input.length;
}</pre>
```

Gambar 5 Proses membaca data dari Excel

No	STG	SCG	PEG	OUTPUT	TARGET
1	0.0	0.0	0.0	Very Low	Very Low
2	0.08	0.08	0.9	Low	High
3	0.06	0.06	0.33	Low	Low
4	0.1	0.1	0.3	Low	Middle
5	0.08	0.08	0.24	Very Low	Low
6	0.09	0.15	0.66	Middle	Middle
7	0.1	0.1	0.56	Low	Middle
8	0.15	0.02	0.01	Low	Very Low
9	0.2	0.14	0.25	Very Low	Low
10	0.0	0.0	0.85	High	High
11	0.18	0.18	0.81	High	High
12	0.06	0.06	0.3	Low	Low
13	0.1	0.1	0.34	Low	Middle
14	0.1	0.1	0.9	Middle	High
15	0.2	0.2	0.6	Middle	Middle
16	0.12	0.12	0.8	High	High
17	0.05	0.07	0.05	Low	Very Low
18	0.1	0.25	0.33	Low	Low
19	0.15	0.32	0.29	Low	Low
20	0.2	0.29	0.56	Middle	Middle
21	0.12	0.28	0.2	Low	Low
22	0.18	0.3	0.66	Middle	Middle
23	0.1	0.27	0.65	Middle	Middle
24	0.18	0.31	0.28	Low	Low

Gambar 6 Baris hasil output fuzzy system

390	0.61	0.38	0.3	Low	Low
391	0.78	0.47	0.59	Middle	High
392	0.58	0.4	0.24	Low	Low
393	0.68	0.43	0.55	Middle	Middle
394	0.57	0.37	0.32	Low	Low
395	0.62	0.56	0.22	Middle	Low
396	0.64	0.58	0.21	Middle	Low
397	0.64	0.59	0.24	Low	Low
398	0.68	0.61	0.23	Low	Low
399	0.9	0.78	0.89	High	High
400	0.85	0.82	0.83	High	High
401	0.56	0.6	0.32	Middle	Low
402	0.66	0.68	0.57	Middle	Middle
403	0.68	0.64	0.24	Low	Middle

Jumlah Benar : 269.0

Total Sample : 403 Akurasi : 66.74937965260546 %

Gambar 7 Akurasi program