

FWP – ROS Dmitrii Dobriborsc

Maze Escape using Turtlebot3

Milestone 1: Midway Presentation

Group 4:

- Angeles Gil
- Contreras Ruben
- Gatti Felix
- Rojas Felipe

CONTENTS

- 1. PROJECT TOPIC
- 2. PROJECT GOALS / OBJECTIVES
- 3. PROJECT COMPONENTS
- 4. PROJECT STATUS

PROJECT TOPIC

1. DESCRIPTION

- The project aim is to develop and implement a search or navigation algorithm that lets the Turtlebot3 solve different kind of maze configurations effectively in a virtual environment.
- Scenario A)
 - "Random Exploration"
 - Robot has no information of the surrounding maze
 - Initial escape explores maze according to used algorithm
 - Second escape uses learned path to escape
- Scenario B)
 - "Goal Finding"
 - Robot has information about location of exit
 - Initial escape tries to minimize exploration and minimizes escape time
 - Second escape uses learned path to escape

GOALS / OBJECTIVES

1. OBJECTIVES

- a) Create an environment in Gazebo with a Maze that the Turtlebot3 can explore and solve.
- b) Defining a localization/mapping method to navigate the maze in an ordered behaviour.
- c) Implement a search algorithm for the Turtlebot3 so it can get out of the maze in the fastest way possible.
- d) Implement the same algorithm in a Real-world scenario, where a Physical Turtlebot3 is able to solve a simple maze.

PROJECT COMPONENTS

1. COMPONENT: MAZE CREATION

- Generation of random mazes using online generator
- Creation of multiple maze worlds using gazebo

2. COMPONENT: LOCALIZATION / GENERAL NAVIGATION

- Localization / Mapping using SLAM
- General Navigation inside maze
 - Ex. Staying in the middle of maze corridor

3. COMPONENT: ESCAPE ALGORITHM

- Scenario A) (Goal unknown)
 - a) Wall following
 - b) Dead-end filling
- Scenario B) (Goal known)
 - a) A* Path search

PROJECT STATUS

a) Finished

- 2 Maze worlds are already created
- SLAM Implementation from docker running
- Steering of robot using keyboard
- b) Current work
 - Mapping and general navigation
 - Implementation of escape algorithms

THANK YOU!

PROJECT MATERIAL

1. A*

- 1. http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
- 2. https://algorithms.discrete.ma.tum.de/graph-algorithms/spp-a-star/index_en.html
- 3. https://qiao.github.io/PathFinding.js/visual/

MIDWAY

- 1. Midway Presentation: This first presentation is meant to tell the class about your project idea and showcase your initial work towards achieving your project goals. This presentation should include the following slides:
- 2. 1 slide: Team name & team members
- 3. 1 slide: Project topic (please make changes to reflect any changes in the project topic since the initial idea presentation)
- 4. 1 slide: 2-3 overarching goals that your team wants to accomplish through this project
- 5. For each major component of your project (e.g., the ML-based navigation project could be organized into three components 1) perception, 2) robot navigation and 3) the algorithm):
- 6. 1 slide: Description of the component
- 7. 1 slide: Your group's current progress on this component (gifs, screenshots, and/or videos encouraged) -- it's ok if you haven't started on a component yet
- 8. All team members are expected to speak during this midpoint presentation. Also, your presentation should take between 5 and 7 minutes (we will cut you off at 7 minutes).

