

LABORATÓRIO DE MONTAGEM E MANUTENÇÃO

Experiência 2: Introdução as Portas Lógicas Curso de Informática - 2020

Prof: Wedson Gomes

1. Objetivos

Treinamento prático no módulo didático 8810 utilizando as portas lógicas E, OU e NÃO da família TTL.

2. Equipamento e Material Necessários

Kit didático DataPool 8810

Circuitos Integrados: 7404, 7432 e 7408.

DESCRIÇÃO DA PRÁTICA

O módulo experimental 8810 da Datapool possui uma chave de seleção TTL/CMOS, que quando selecionada em TTL faz com que as chaves de dados, os led's e as pontas de prova operem em 5V. Quando posicionada em CMOS faz com que as chaves, os led's e as pontas de prova operem com níveis lógicos compatíveis com os circuitos CMOS, alimentados com tensão de 15V.

Assim sendo, em todas as experiências de laboratório o aluno deverá ter o cuidado de verificar se a chave de seleção citada está na posição adequado (TTL) para atender ao experimento que será realizado, evitando com isso que os componentes e o próprio módulo possam ser danificados.

Os circuitos TTL são produzidos em duas séries comerciais: a série 74XXX e 54XXX, sendo esta última denominada série militar ou profissional, devido à maior margem de variação nas especificações de alimentação e temperatura, assegurando a confiabilidade no desempenho em condições extremas.

Os catálogos de fabricantes ("data sheets") fornecem valores para diversos parâmetros do componente para uma tensão de alimentação de 5V a 25°C. As

especificações da série comum (74XXX) devem garantir o funcionamento com 5% de tolerância numa faixa de temperatura de 0°C a 70°C.

EXPERIMENTO

- 1. Verificar se o módulo está operando com a chave TTL/CMOS na posição adequada, ou seja, TTL.
- 2. Ligar um diodo emissor de luz à saída de uma porta **E** de duas entradas. Use as chaves para controlar as entradas. Preencha a tabela da verdade desta porta experimentando as quadro combinações lógicas possíveis. Repita para as portas **OU** e **INVERSORA**.

Desenho da porta lógica

Função **E** - 7408

1 unçuo L - 7400			
A	В	S	

Desenho da porta lógica

Função **OU** - 7432

Função O O = 7432		
A	В	S
18		

Desenho da porta lógica

Função NÃO - 7404

A	S
	S 50

3.	Implementar uma porta OU utilizando apenas portas E e INVERSORA.
	Preencha a tabela da verdade.

Desenho do circuito

A	В	S

4. Implementar uma porta **E** utilizando apenas portas **OU** e **INVERSORA.** Preencha a tabela da verdade.

Desenho do circuito

A	В	S