Heuristic Analysis

Three different heuristics have been implemented in this assignment.

Heuristic 1:

This heuristic uses a simple one policy across the game.

- 1. maximise own possible moves
- 2. minimise opponent possible moves with less weight

The motivation behind this heuristic is that it favours a position that our agent have more possible moves. On top of it, it prefers that opponent has fewer possible moves but not as important as the first metric. So a 0.5 parameter is used to lower down the weight of the second metric.

Heuristic 2:

This heuristic divides the game into three stages.

- Early stage: <10% occupied rate on game board
- Mid stage: >=10% and <30% occupied rate on game board
- Final stage: >= 30% occupied rate on game board

In early stage of the game,

- 1. maximise own possible moves
- 2. minimise opponent possible moves
- 3. On top the first two policies, minimise the distance from game board center

In mid stage of the game,

- 1. maximise own possible moves
- 2. minimise opponent possible moves

In final stage of the game,

- 1. maximise own possible moves
- 2. minimise opponent possible moves with less weight

The motivation for this heuristic is same as the first heuristic: we want to have more moves than our opponent. The special part is that at the beginning of a game, we prefer to go closer to the center.

Heuristic 3:

This heuristic divides the game into two stages.

- Early stage: <40% occupied rate on game board
- Final stage: >=40% occupied rate on game board

In early stage of the game

- 1. maximise own possible moves
- 2. minimise opponent possible moves but with a smaller weight

In final stage of the game, which a lots less possible moves exist, search one step deeper.

- 1. For each possible moves, check the difference of own move and opponent move assuming each move is applied
- 2. Use the the max difference value as the heuristic

The motivation for this heuristic is that in the final stage of a game, we go one step deeper in each iteration considering the moves left is much fewer than the beginning of a game. However, this will in turn reduce the level of Iterative Deepening.

Experiment and Results

The three custom heuristics are benchmarked against AB_Improved against 7 different game agents. The test result is listed below.

Match #	Opponent	100	proved Lost	100	ustom Lost		ustom_2 Lost	AB_Cus	stom_3 Lost
1	Random	17	3	20	0	17	3	19	1
2	MM_Open	13	7	15	5	12	8	16	4
3	MM_Center	20	0	19	1	18	2	19	1
4	MM_Improved	15	5	17	3	13	7	13	7
5	AB_Open	9	11	9	11	9	11	9	11
6	AB_Center	8	12	13	7	10	10	11	9
7	AB_Improved	10	10	10	10	10	10	8	12
	Win Rate:	65.7%		73 . 6%		63.6%		67.9%	

Winning rate is calculated as

	AB_Improved	AB_Custom	AB_Custom_2	AB_Custom_3
Random	85.00%	100.00%	85.00%	95.00%
MM_Open	65.00%	75.00%	60.00%	80.00%
MM_Center	100.00%	95.00%	90.00%	95.00%
MM_Improved	75.00%	85.00%	65.00%	65.00%
AB_Open	45.00%	45.00%	45.00%	45.00%
AB_Center	40.00%	65.00%	50.00%	55.00%
AB_Improved	50.00%	50.00%	50.00%	40.00%

When playing with random agent, all three custom heuristics have high winning rate compared with the benchmark AB_Improved. This is expected as random agent does not have logic in choosing moves.

In games with Min-max agents, all three custom heuristics has over 50% winning rate. This is not surprising as all custom agents has alpha-beta search which means they prune nodes that are not useful and therefore can go deeper in Iterative Deepening. Among three custom heuristics, heuristic 1 has higher winning rate with two types of Min-max agents out of three. Heuristic 1 performed close to or higher than benchmark AB_Improved heuristic.

In games with alpha-beta agents, The winning rate of custom agents start dropping as the advantage in alpha-beta pruning no longer exists. The games are solely depends on heuristics. In games against AB_Open and AB_Center, all custom agents performs similar as or better than benchmark AB_Improved heuristic. Custom 1 heuristic performs the best against AB_Center. In games with AB_Improved, both heuristic 1 and 2 perform same as AB benchmark AB_Improved heuristic.

Comparison and Analysis

Heuristic 1 is very simple. It allows the search to go deeper in Iterative Deepening. In our experiment, it produces higher winning rate that the AB Improved benchmark heuristic overall (73.6% vs 65.7%).

Heuristic 2 and 3 are more complex. They uses different policies for different stages in a game. Heuristic 2 favours close-to-center moves at the beginning of a game. However, in the experiment, it does not produce higher winning rate than Heuristic 1 (63.6% vs 73.6%) and a little worse than benchmark heuristic overall (65.7%).

Heuristic 3 searches one step deeper in each iteration in the final stage of a game. As a result, it reduces the level of Iterative Deepening. In the experiment, it does not produce higher winning rate than Heuristic 1 (67.9% vs 73.6%), but better than benchmark heuristic overall (65.7%).

Recommendation

Based on the comparison and analysis, heuristic 1 is the recommended the heuristic. The reasons for this recommendation are

- 1. Heuristic 1 has the best winning rate in the experiment. Heuristic achieved an overall winning rate of 73.6%, which is the highest among benchmark heuristic 65.7%, heuristic 2 63.6% and heuristic 3 67.6%.
- Heuristic 1 has a single policy during the entire game. It does not require additional branching and different calculation like heuristic 2 and 3. Therefore it is very easy to implement and easy to reason about.
- 3. Because heuristic 1 has the lowest time complexity, it allows the Iterative Deepening to search deeper than more complex heuristic like heuristic 3.