Integer Fraction 1256.932 Decimal point

10³10²10¹10⁰ . 10⁻¹10⁻²10⁻³ weights

Powers increase by 1. Powers decrease by 1

This number can also be represented as a polynomial:

$$1 \times 10^{3} + 2 \times 10^{2} + 5 \times 10^{1} + 6 \times 10^{0} + 9 \times 10^{-1} + 3 \times 10^{-2} + 2 \times 10^{-3}$$

tem. The general positional notation of a number N is We can thus generalize these two representations to any number sys-

$$N = (a_n \cdots a_3 a_2 a_1 a_0 \cdot a_{-1} a_{-2} a_{-3} \cdots a_{-m})_r \tag{1.1}$$

digits such that $0 \le a_i \le (r-1)$ for all i; a_n is the most significant digit (MSD), and a_{-n} is the least significant digit (LSD). The *polynomial* representation of the above number is where r is the radix of the number systems; a_{-1} , a_0 , a_1 , a_2 , and so on, are

$$N = \sum_{i=-m}^{n} a_i r^i {1.2}$$

There are n+1 integer digits and m fraction digits in the number shown

corresponds to each digit of the n-digit integer being equal to 0. When each digit corresponds in value to r=1, the highest digit in the number systems. We will discuss binary, octal, and hexadecimal systems next. system, the *n*-digit number attains the highest value in the range. This value is equal to $r^n = 1$. Table 1.1 lists the first few numbers in various represented by this integer. The smallest value in this range is 0 and Consider an integer with n digits. A finite range of values can be

1.2.1 Binary System

positional notation in the following example. digiT is abbreviated as BIT. A typical binary number is shown in the In this system, the radix is 2 and the two allowed digits are 0 and 1. BInary

Table 1.1 Number Systems 1.2 Number Systems 5

	0.0	3 -	0		1/	i 5	; ,	7	<u>, 7</u>	بد	12	Ξ	: =	5 \	9	00	7	0		4 . n		٠, ١		۔ د	,	(r = 10)	7
	10100	10011	10011		10001	10000	1111	1110		1101	100	1011	0101	1001	1001	1000	Ξ	110	101		=	0	_	0		Binary $(r=2)$	
	202	107	100	300	122	121	120	1112	=	- :	=	102	101	100	100	23	21	20	12	=	0	2	-	0		Ternary $(r = 3)$	
	=0	103	102		101	<u>1</u> 00	33	32	5	2 0	20	23	22	21		30	<u></u>	12	=	10	ų,	2	_	0		Quaternary $(r = 4)$	
!	24	23	22	<u>!</u>	21	20	17	16	15	14			12	=	10		7	ς.	S	4	(L)	2	_	0	3	Octal $(r = 8)$	
1	Z ;	<u></u>	12	-	- 3	<u>.</u>	মা	T.	D	C	0	ם ב	Δ,	9	00	÷ ~	10	,	л.	4	ا بر	٠.	_ <	0	0 - 10)	Hexadecimal	

Example 1.2

In polynomial form, this number is

$$N = 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4} = 16 + 8 + 0 + 2 + 0 + \frac{1}{2} + \frac{1}{4} + 0 + \frac{1}{16} \text{ (decimal)}$$

$$= 26 + \frac{1}{2} + \frac{1}{4} + \frac{1}{16} \text{ (decimal)}$$

$$= (26\frac{13}{6})_{10}$$