TD3 SUPPLÉMENT

Exercice 1. (Fausses intégrales généralisées)

- 1. Soient a < b deux réels, $f : [a, b] \to \mathbb{R}$ une fonction bornée qui est intégrable (au sens de Riemann) sur [c, b] pour tout réel c tel que $a < c \le b$. Prenons $M := \sup_{x \in [a, b]} |f(x)|$. Fixons un positif $\varepsilon > 0$ assez petit.
 - i. Montrer qu'il existe deux fonctions en escalier φ_1, φ_2 sur $[a + (4M)^{-1}\varepsilon, b] \to \mathbb{R}$, telles que $\varphi_1(x) \leq f(x) \leq \varphi_2(x)$ pour tout $x \in [a + (4M)^{-1}\varepsilon, b]$, et que $\int_{a+(4M)^{-1}\varepsilon}^{b} (\varphi_1(x) \varphi_2(x)) dx < \varepsilon/2$.
 - ii. En déduire que la fonction f est intégrable sur [a,b]. [Indication: choisissons deux fonctions $\tilde{\varphi}_1, \tilde{\varphi}_2$ en escalier sur [a,b] telles que $\tilde{\varphi}_1 \leq f \leq \tilde{\varphi}_2, \int_a^b (\varphi_2 \varphi_1) < \varepsilon$ et que $\tilde{\varphi}_i = \varphi_i$ sur l'intervalle $[a + (4M)^{-1}\varepsilon, b]$.]
- 2. Soient a < b deux réels, $f:]a,b] \to \mathbb{R}$ une fonction bornée qui est intégrable sur [c,b] pour tout réel c tel que $a < c \le b$. Définissons une famille de fonctions $(g_{\theta})_{\theta \in \mathbb{R}}$ par $g_{\theta}(a) = \theta$ et $g_{\theta}(x) = f(x)$ pour tout $x \in]a,b]$. Montrer que $\int_a^b g_{\theta}(x) \, \mathrm{d}x = \lim_{c \to a^+} \int_c^b f(x) \, \mathrm{d}x$ pour tout $\theta \in \mathbb{R}$. [Cela explique pourquoi l'intégrale $\int_a^b f$ est appelée une «fausse» intégrale généralisée.]
- 3. Montrer que $\int_0^1 \sin(1/x) dx$ est une fausse intégrale généralisée.

Exercice 2. Soit $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$ une fonction réelle. Supposons que $\int_0^{+\infty} f(x) dx$ converge.

- 1. Montrer que pour tout $\varepsilon > 0$, il existe un positif $S \ge 0$ tel que pour tout réels s, t > S, l'intégrale $|\int_s^t f(x) \, \mathrm{d}x| < \varepsilon$.
- 2. Supposons que la fonction f est périodique de période T > 0, c'est-à-dire, pour tout $x \in \mathbb{R}_{\geq 0}$, on a f(x+T) = f(x).
 - i. Soit a,b deux positifs. Montrer que pour tout $n\in\mathbb{N},$ $\int_{a+nT}^{b+nT}f(x)\,\mathrm{d}x=\int_a^bf(x)\,\mathrm{d}x.$ En déduire que $\int_a^bf(x)\,\mathrm{d}x=0.$
 - ii. Si la fonction f est continue en $x_0 \in \mathbb{R}_{\geq 0}$. Montrer que $f(x_0) = 0$. [Indication: considérons $F(x) = \int_0^x f(t) dt$ et la dérivée $F'(x_0)$.] En déduire que si la fonction f est continue, alors f(x) = 0 pour tout $x \in \mathbb{R}_{\geq 0}$.