

ITECH1400 Foundations of Programming

Logarithms, Benford's Law and Fraudulent Data

Overview

In this assignment you will write an application in Python that will apply Benford's Law to a given set of your own data. This is an individual assignment.

Timelines and Expectations

Percentage Value of Task: 20%

Due: Friday 5 June 2020 @17:00 (week 11)

Minimum time expectation: 20 hours

Learning Outcomes Assessed

The following course learning outcomes are assessed by completing this assessment:

- K1. Identify and use the correct syntax of a common programming language.
- K2. Recall and use typical programming constructs to design and implement simple software solutions.
- K3. Reproduce and adapt commonly used basic algorithms.
- K4. Explain the importance of programming style concepts (documentation, mnemonic names, indentation)
- S2. Write and implement a solution algorithm using basic programming constructs.
- S3. Demonstrate debugging and testing skills whilst writing code.
- A1. Develop self-reliance and judgement in adapting algorithms to diverse contexts.
- A2. Design and write program solutions to identified problems using accepted design constructs.

Assessment Details

Background

At the turn of the century, if you wanted to do some serious calculating you usually used a book of logarithms¹ to help you do the arithmetic; the pages in the book of logarithms were arranged in numerical order.

A sample logarithms page, from the link below, is shown here on the right.

An astronomer, Simon Newcomb, noticed that the pages at the beginning of the book were much more worn than those at the back of the book - which were hardly used at all – much like that shown in the picture of a well-thumbed book below.

Newcomb noticed that the leading digits, of all the numbers used in his calculations, were more likely to be small digits rather than large digits.

Newcomb published a note² about this and nothing more was heard about it – this was in 1881.

TABLE 1 Logarithms of Numbers																							
1000–1500																							
No.	0	đ	1	d	2	d	3	d	4	d	5	d	6	d	7	d	8	d	9	đ	Pro	p. p	arts
100 101 102 103 104		43 43 42	00475 00903 01326	43 42 42	00518 00945 01368	43 43 42	00561 00988 01410	47 42 42	00604 01030 01452	43 42 42	00647 01072 01494	42 43 42	01536	43 42 42	00732 01157 01578	43 42 42	00775 01199 01620	42 43 42	00817 01242 01662	43 42 41	3	44 9 13 18	4 9 13 17
105 106 107 108 109		41 41	02572	40	02612	41	02653	41 40	02694	41 41	02735	41	02776	40 41	02816	41 40	02857	41 40	02898	40 40	8	22 26 31 35 40	34 39
110 111 112 113 114	04139 04532 04922 05308 05690	39 39 38 39	04571 04961 05346 05729	39 38 39 38	04610 04999 05385 05767	40 30 38 38	04650 05038 05423 05805	39 30 38 38	04689 05077 05461 05843	38 38 39 38	04727 05115 05500 05881	39 39 38 37	04766 05154 05538 05918	38 38 38	04805 05192 05576 05956	39 39 38 38	04844 05231 05614 05994	39 38 38 38	04883 05269 05652 06032	39 38 38	34567	4 8 13 17 21 25 29 34	4 8 12 16 20 25 29 33
119	06070 06446 06819 07188 07555	37 37 37 36	06483 06856 07225 07591	38 37 37 37	06521 06893 07262 07628	37 37 36 36	06558 06930 07298 07664	37 37 37 36	06595 06967 07335 07700	38 37 37 37	06633 07004 07372 07737	37 37 36 36	06670 07041 07408 07773	37 37 37 36	06707 07078 07445 07809	37 37 37 37	06744 07115 07482 07846	37 36 36 36	06781 07151 07518 07882	38 37 37 36	1 2 3	34 38 40 4 8 12 16	39
120 121 122 123 124	08279 08636 08991 09342	35 36 35 35	08314 08672 09026 09377	36 35 35 35 35	08350 08707 09061 09412	36 36 35 35	08386 08743 09096 09447	36 35 36 35	08422 08778 09132 09482	36 35 35	08458 08814 09167 09517	35 35 35 35	08849 09202 09552	36 35 35 35	08529 08884 09237 09587	36 36 35 34	08565 08920 09272 09621	35 35 35	08600 08955 09307 09656	36 36 35 35	5678	20 24 28 32 36	20 23 27 31 35
125 126 127 128 129	10037 10380 10721 11059	35 35 34 34	10072 10415 10755 11093	34 34 34 33	10106 10449 10789 11126	34 34 34 34	10140 10483 10823 11160	35 34 34 33	10175 10517 10857 11193	34 33 34	10209 10551 10890 11227	34 34 34 34	09899 10243 10585 10924 11261	35 34 34 33	10278 10619 10958 11294	34 34 34 33	10312 10653 10992 11327	34 33 34	10346 10687 11025 11361	34 34 34 33	23456	4 8 11 15 19 23	4 7 11 15 18 22
130 131 132 133 134	11727 12057 12385 12710	33 33 33 33	11760 12090 12418 12743	33 33 32 32	11793 12123 12450 12775	33 33 33 33	11826 12156 12483 12808	34 33 33 32	11860 12189 12516 12840	33 32 32 32	11893 12222 12548 12872	33 32 33 33	11594 11926 12254 12581 12905	33 33 32 32	11959 12287 12613 12937	33 33 33 32	11992 12320 12646 12969	32 32 32 32	12024 12352 12678 13001	33 32 32	9	36 34 36 7	26 30
135 136 137 138 139	13354 13672 13988 14301	32 32 31 32	13386 13704 14019 14333	32 31 32 31	13418 13735 14051 14364	32 32 31 31	13450 13767 14082 14395	31 32 32 31	13481 13799 14114 14426	32 31 31 31	13513 13830 14145 14457	32 32 31 32	13226 13545 13862 14176 14489	32 31 32 31	13577 13893 14208 14520	32 32 31 31	13609 13925 14239 14551	31 31 31 31	13640 13956 14270 14582	32 32 31 31	3 4 5 6 7 8	11 14 18 22 25 29	18 21 24 28
140 141 142 143 144	14922 15229	31 30 30	14953 15259 15564	30 31 30	14983 15290 15594	31 30 31	15014 15320 15625	31 31 30	15045 15351 15655	31 30 30	15076 15381 15685	30 31 30	14799 15106 15412 15715 16017	31 30 31	15137 15442 15746	31 31 30	15168 15473 15776	30 30	15198 15503 15806	31 31 30	1 2 3	34 3 7 10	3 7 10
145 146 147 148 149	16435 16732 17026	30 29 30	16465 16761 17056	30 30 29	16495 16791 17085	29 29 29	16524 16820 17114	30 30 29	16554 16850 17143	30 29 30	16584 16879 17173	29 30 29	16316 16613 16909 17202 17493	30 29 29	16643 16938 17231	30 29 29	16673 16967 17260	29 30 29	16702 16997 17289	30 29 30	7 8		16 20
150 No.	17609 0	29 d	17638 1	29 d	17667 2	29 d	17696 3	29 d	17725 4	29 d	17754 5	28 d	17782 6	29 d	17811 7	29 d	17840 8	29 d	17869 9	29 d			

Intuitively most people still felt that the digits 1 - 9 were evenly distributed in all numbers.

However, in 1937, a physicist by the name of Frank Benford, discovered Newcomb's idea and set about testing this idea using over 20,000 different sets of data such as: lengths of rivers, street addresses, death rates,

2

CRICOS Provider No. 00103D 1400 Assig 2, 2020-07

¹ https://www.wikiwand.com/en/Common logarithm

² Newcomb, S. (1881). Note on the Frequency of Use of the Different Digits in Natural Numbers. *American Journal of Mathematics*, *4*(1), 39-40.

sports statistics, molecular weights and so on – and it is base and scale invariant – the length of rivers could be in miles, kilometres, metres or even cubits.

Theory

Although you do not need to know the derivation³ or proof of Benford's law, all you need to know is how to apply it to a set of data.

Benford's law states4:

$$Pr(D_1 = d_1) = \log_{10}(1 + \frac{1}{d_1})$$
 $d_1 = \{1, 2, ..., 9\}$ (Equation 1)

So that, for the first digit in a number, the probability that this digit is a '1' is:

$$Pr(D_1 = 1) = \log_{10}(1 + \frac{1}{1})$$
$$= \log_{10}(2)$$
$$= 0.3010$$

or about 30.1%.

Similarly for the remaining digits 2-9.

If we do this for all the digits and plot them as a bar graph, we get:

CRICOS Provider No. 00103D

1400 Assig 2, 2020-07

³ See, for example, Miller, S. J. (2015). A Quick Introduction to Benford's Law. In S. J. Miller (Ed.), *Benford's Law* (pp. 3-22): Princeton University Press.

⁴ Nigrini, M. J., & ProQuest (Firm). (2012). *Benford's law applications for forensic accounting, auditing, and fraud detection, Wiley corporate F & A*, p.5

Your Task

Develop a Python program which will load up a set of data, determine the frequencies of the leading digits and compare them with the predicted distribution of Benford's law. Display this in a bar chart and a table of values. For example:

Digit 1: Observed = 0.321 Expected = 0.301

Digit 2: Observed = 0.153 Expected = 0.176 and so on up till digit 9.

We shall look at three cases.

An Excel spreadsheet has been taken from Office-Watch: Benford's Law and Excel⁵ to let you quickly visualize the Python application that we need make.

Case 1 - Fibonacci series⁶

This series begins with two numbers 1,1 – these two numbers are added to continue the series giving rise to the following (only the first 8 terms of the series are shown here):

There are many examples of this pattern in Nature and the series is closely related to the Golden⁷ ratio.

Using the Excel spreadsheet generate a Fibonacci series up to the 24th term and see if the first digits obey Benford's Law. Does it get better if you add more terms?

The Chi-test⁸ measures how close an actual value is to the expected value – the closer it is to 100% the closer the actual value is to the expected value. In our case, we are testing how close the frequency of each digit in our dataset is to Benford's prediction for that digit.

What is the value of the ChiTest comparison for this Fibonacci series? Does it get better if we add more terms to the series?

Case 2 – Fibonacci numbers & Benford's law using Python

In this case you are to repeat the analysis in Case 1 but using you Python code.

-

⁵ https://office-watch.com/2012/benfords-law-and-excel/

⁶ https://en.wikipedia.org/wiki/Fibonacci_number

⁷ https://en.wikipedia.org/wiki/Golden_ratio

⁸ Also written as χ^2 -test

5

Case 3 - Length of Rivers⁹ in the World

In this case, use your Python code to see whether the lengths of rivers in the world follow Benford's law.

Fraud detection using Benford's Law

One use of Benford's Law is to detect cases of Fraud. Consider the 1993 case of State of Arizona v Nelson. The accused diverted nearly \$2M to fake vendors in an attempt to defraud the State. The frequency of first digits in the written cheques clearly violates Benford's Law leading to a conviction.

Another case is that of Enron in its posting of revenue for the year 2000. Comparison of the frequency of first digits versus the expected frequency shows large discrepancies. The company went bankrupt the following year – one of the greatest financial failures in history.

⁹ https://en.wikipedia.org/wiki/List_of_rivers_by_length

CRICOS Provider No. 00103D 1400 Assig 2, 2020-07

6

Submission

A report is to be submitted in this assignment. There is a discussion section in the report in which you can apply step 6 in the six-step problem solving process and ask the four questions often used in evaluating a solution.

More details on academic reports are available - please refer to this link:

https://federation.edu.au/current-students/learning-and-study/online-help-with/guides-to-your-assessments

There are three important parts at the link above:

1. General Guide to Writing and Study Skills

This section describes the content of a report – refer to page 34 – Abstract, Table of Contents, Introduction and Conclusion and so on.

2. General Guide to Referencing

APA referencing style is described in this section - EndNote is also available to students

3. Assignment Layout and Appearance Guidelines

This section describes how the report should appear: margin sizes, fonts, how diagrams and tables are presented and so on.

You must supply your program source code files and your documentation, together **with any files** required to run your application, as a single zip file named as follows:

<YOUR-NAME>_<YOUR-STUDENT-ID>.zip

e.g. Ada_LOVELACE_30331815.zip

You may supply your word processed documentation in either Microsoft Word or LibreOffice/OpenOffice formats only – no proprietary Mac specific formats, please.

Assignments will be marked on the basis of fulfilment of the requirements and the quality of the work.

In addition to the marking criteria, marks may be deducted for failure to comply with the assignment requirements, including (but not limited to):

- · Incomplete implementation(s), and
- · Incomplete submissions (e.g. missing files), and
- Poor spelling and grammar.

You might be asked to demonstrate and explain your work.

Marking Criteria/Rubric

	Task	Mark
1	Pseudo-code for all Python scripts	10
2	Final Python code (Exceptions 2 marks), annotated with author details and with comments throughout the code (2 marks), consistent with pseudo-code	10
3	Tests to check that Python code is working correctly	10
4	Case 1 - Fibonacci numbers using example Excel sheet	5
5	Case 2 - Fibonacci numbers using your Python script – bar chart (10) & table (5)	15
6	Case 3 - Lengths of Rivers using your Python script – bar chart (10) & table (5)	15
7	Discussion (including 4 Questions in Step 6)	15
8	Report: Abstract, Title Page, Table of Contents (including Figures & Tables), Introduction, Method, Results, Discussion (including the 4 Questions in Step 6 of problem solving), Acknowledgements & Statement of Authorship, References	20
	TOTAL	100
	Final Grade	/20

Feedback

Ongoing feedback will be given in lectures and labs/tutes online classes and in arranged meeting. Feedback will also be given in Moodle.

Plagiarism

Plagiarism is the presentation of the expressed thought or work of another person as though it is one's own without properly acknowledging that person. You must not allow other students to copy your work and must take care to safeguard against this happening. More information about the plagiarism policy and procedure for the university can be found at http://federation.edu.au/students/learning-and-study/online-help-with/plagiarism.