Control y Sistemas

Trabajo práctico: Control en espacio de estados

Resuelva los siguientes ejercicios en MATLAB o SIMULINK.

1) Ubicación de polos por respuesta en el tiempo.

Considere el caso donde se desea diseñar un controlador para el siguiente polinomio característico deseado,

$$p(s)=s^2+2\zeta\omega_n s+\omega_n^2$$

Con las siguientes especificaciones:

Medida de desempeño	Caso A	Caso B
Settling time, T_s	2.0 s	4.0 s
Overshoot, M_p	0 %	10 %

- a) ¿Cuáles son los valores de ω_n y ζ para el caso A?
- b) ¿Cuáles son los valores de ω_n y ζ para el caso B?
- 2) Ubicación de polos por respuesta en el tiempo.

Se propone el control por ubicación de polos de un sistema de velocidad constante o velocidad crucero. El objetivo del control es seguir la velocidad de referencia proporcionada. La perturbación del sistema está dada por un cambio en el ángulo del terrero (a).

El modelo matemático de la planta está dado por:

Valores del modelo:

m	1000	Vehicle mass [kg]
g	9.82	Gravitational constant [m/s^2]
а	200	Throttle gain [N/rad]
b	10000	Resistance [Ns/m]

En el siguiente modelo de control de velocidad crucero,

- a) Verifique si el sistema es controlable.
- b) Encuentre el valor de la matriz K para $\omega_n = 0.6$ y $\zeta = \frac{1}{\sqrt{2}}$.
- c) Encuentre el valor de kr.
- d) Agregue una perturbación de 2 grados de inclinación en el terreno a los 20 segundos de simulación. Analice la respuesta del sistema. ¿Es satisfactoria?.
- e) Cambie el valor de la masa a 1500 kg. Analice nuevamente la respuesta del sistema, incluida la perturbación ¿Es satisfactoria?
- f) Qué conclusiones se derivan de la simulación de este modelo?

3) Acción integral.

Aplique acción integral al sistema del ejercicio 2. Analice los puntos del a) al f).

4) Ubicación de polos por fórmula de Ackermann.

Aplique ubicación de polos por fórmula de Ackermann al sistema del ejercicio 3. Analice los puntos del a) al f). Use el mismo criterio del ejercicio 2. Para el tercer polo considere $p_3 = -3\omega_n \zeta$.

5) Control óptimo.

El siguiente sistema de suspensión activa se puede modelar como,

$$egin{bmatrix} \dot{x}_1 \ \dot{x}_2 \ \dot{x}_3 \ \dot{x}_4 \ \dot{x}_5 \end{bmatrix} = egin{bmatrix} 0 & 1 & 0 & 0 & 0 \ -rac{c_w+c_s}{m_w} & -rac{d_s}{m_w} & rac{c_s}{m_w} & rac{d_s}{m_w} & -rac{1}{m_w} \ 0 & 0 & 1 & 0 \ rac{c_s}{m_c} & rac{d_s}{m_c} & -rac{c_s}{m_c} & -rac{d_s}{m_c} & rac{1}{m_c} \ 0 & 0 & 0 & -rac{1}{ au} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \ x_5 \end{bmatrix} + egin{bmatrix} 0 \ 0 \ 0 \ 0 \ rac{1}{ au} \end{bmatrix} u + egin{bmatrix} 0 \ rac{c_w}{m_w} \ 0 \ 0 \ 0 \end{bmatrix} d$$

$$y = egin{bmatrix} -1 & 0 & 1 & 0 & 0 \ rac{c_s}{m_c} & rac{d_s}{m_c} & -rac{c_s}{m_c} & -rac{d_s}{m_c} & rac{1}{m_c} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \ x_5 \end{bmatrix} + egin{bmatrix} 0 \ 0 \end{bmatrix} u$$

donde x_1 es la posición de la rueda, x_2 es la velocidad de la rueda, x_3 es la posición del chasis, x_4 es la velocidad del chasis y x_5 es la fuerza del actuador. d es la perturbación del sistema, la posición de la superficie del terreno.

Description	Parameter	Value [unit]
Quarter car chassis mass	m_c	401 [kg]
Wheel mass	m_w	48 [kg]
Suspension damping coefficient	d_s	2200 [N/m]
Suspension spring coefficient	c_s	23000 [N/m]
Wheel spring coefficient	c_w	250000 [N/m]
Actuator time constant	τ	0.001 [s]

El ejercicio propone encontrar una solución de compromiso entre confort al andar y seguridad.

Considere las siguientes ecuaciones,

$$J = \int_0^\infty \left(y^T Q_y y + u^T Q_u u
ight) dt \ J = \int_0^\infty \left(x^T C^T Q_y C x + u^T Q_u u
ight) dt = \int_0^\infty \left(x^T Q_x x + u^T Q_u u
ight) dt \ Q_x = C^T Q_y C \ Q_y = egin{bmatrix} rac{lpha_1}{y_{1,max}^2} & 0 \ 0 & rac{lpha_2}{y_{2,max}^2} \end{bmatrix} \qquad Q_u = rac{
ho}{u_{max}^2} \ \end{pmatrix}$$

Se fijan $y_{1,max}$ =0,05 m, $y_{2,max}$ =5 m/s^2, como la distancia entre la rueda y la aceleración del chasis; y u_{max} =1000 N. Estos números dan una buena relación entre desplazamiento de la suspensión y aceleración del chasis. Además,

- a) Verifique si el sistema es controlable.
- b) Encuentre el valor de la matriz K para $\alpha_1 = \alpha_2 = 1$ y $\rho = 1$.
- c) Encuentre el valor de kr.
- d) Utilice el modelo en Simulink para analizar la respuesta del sistema a una perturbación de 5 cm al pasar por arriba de un reductor de velocidad.