LAPORAN CASE BASED 1 SUPERVISED LEARNING

Mata Kuliah: Pembelajaran Mesin

Dosen Pengampu: Bedy Purnama, S.Si, M.T, Doctor of Philosophy

Kode Dosen: BDP

Disusun Oleh : Johannes Raphael Nandaputra (1301204243) IF-44-01

PROGRAM STUDI INFORMATIKA FAKULTAS INFORMATIKA

2022

Tugas ini dikerjakan dengan cara yang tidak melanggar aturan perkuliahan dan kode etik akademisi Kata Pengantar

Puji syukur penulis ucapkan kepada Tuhan Yang Maha Esa atas berkat-Nya penulis dapat

menyelesaikan Laporan Case Based 1 ini sebagai hasil dari pembelajaran supervised learning

dimana penulis dapat menjelaskan, mengimplementasikan, menganalisis, dan mendesain teknik

pembelajaran mesin supervised learning.

Dalam pengerjaan laporan ini, penulis mengerjakan tugas ini dengan cara yang tidak

melanggar aturan perkuliahan dan kode etik akademisi. Meski begitu, penulis merasa masih

banyak kekurangan-kekurangan baik pada penulisan maupun materi, mengingat kememampuan

yang dimiliki penulis. Untuk itu, kritik dan saran dari semua pihak sangat penulis harapkan demi

penyempurnaan laporan ini.

Bandung, 31 Oktober 2022

Johanes Raphael Nandaputra

1

A. Ikthisar Kumpulan Data yang Dipilih

Data yang digunakan dalam pengerjaan tugas ini adalah data *audit_risk.csv*, dimana data ini merupakan data non-rahasia satu tahun yang lengkap pada tahun 2015 hingga 2016 dari perusahaan yang dikumpulkan dari Kantor Auditor India untuk membangun prediktor untuk mengklasifikasikan perusahaan yang mencurigakan. Berikut informasi data yang digunakan:

- Lima data teratas:

	Sector	_score I	LOCATIO	N_ID I	PARA_A	Scor	e_A	Risk_	A PARA_E	Score_	B Risk	B \
0		3.89		23	4.18	0	.6	2.508	2.50	0.2	0.500)
1		3.89		6	0.00	0	1.2	0.000	4.83	0.2	0.966	5
2		3.89		6	0.51	0	.2	0.102	0.23	0.2	0.046	5
3		3.89		6	0.00	0	1.2	0.000	10.80	0.6	6.486	•
4		3.89		6	0.00	0	1.2	0.000	0.08	0.2	0.016	5
	TOTAL	numbers	Score	_B.1	Risk_C	Mone	y_Va	lue So	ore_MV	Risk_D	\	
0	6.68	5.0		0.2	1.0		3	.38	0.2	0.676		
1	4.83	5.0		0.2	1.0		0	.94	0.2	0.188		
2	0.74	5.0		0.2	1.0		0	.00	0.2	0.000		
3	10.80	6.0		0.6	3.6		11	.75	0.6	7.050		
4	0.08	5.0		0.2	1.0		0	.00	0.2	0.000		
	Distric	t_Loss	PROB	RiSk_E	Histo	ry P	rob	Risk_F	Score	Inherer	nt_Risk	\
0		2	0.2	0.4		0	0.2	0.6	2.4		8.574	
1		2	0.2	0.4		0	0.2	0.6	2.0		2.554	
2		2	0.2	0.4		0	0.2	0.6	2.0		1.548	
3		2	0.2	0.4		0	0.2	0.6	4.4		17.530	
4		2	0.2	0.4		0	0.2	0.6	2.0		1.416	
	CONTROL	_RISK [Detecti	on_Ris	k Audi	t_Ris	k R	isk				
0		0.4		0.	5	1.714	8	1				
1		0.4		0.	5	0.510	8	0				
2		0.4		0.	5	0.309	16	0				
3		0.4		0.	5	3.506	0	1				
4		0.4		0.	5	0.283	2	0				

- Informasi dataset:

Rang	eIndex: 776 entr	ies, 0 to 775		14	Risk D	776 non-null	float64
Data	columns (total	27 columns):		15	District Loss	776 non-null	int64
#	Column	Non-Null Count	Dtype		PROB —	776 non-null	float64
					RiSk E	776 non-null	float64
0	Sector_score	776 non-null	float64				
1	LOCATION_ID	776 non-null	object		History	776 non-null	int64
2	PARA A	776 non-null	float64	19	Prob	776 non-null	float64
3	Score_A	776 non-null	float64	20	Risk_F	776 non-null	float64
4	Risk_A	776 non-null	float64	21	Score	776 non-null	float64
5	PARA_B	776 non-null	float64	22	Inherent_Risk	776 non-null	float64
6	Score_B	776 non-null	float64	23	CONTROL RISK	776 non-null	float64
7	Risk_B	776 non-null	float64		Detection Risk		float64
8	TOTAL	776 non-null	float64		_		
9	numbers	776 non-null	float64		Audit_Risk	776 non-null	float64
10	Score B.1	776 non-null	float64	26	Risk	776 non-null	int64
11	Risk_C	776 non-null	float64	dtype	s: float64(23),	int64(3), object	t(1)
12	Money_Value	775 non-null	float64	memor	y usage: 163.8+	KB	
13	Score_MV	776 non-null	float64	None			

- Statistik deskriptif:

	Sector_score	e PARA_A	A Score_A	\ Risk_#	A PARA_B	\
count	776.000000	776.000000	776.000000	776.000000	776.000000	
mean	20.184536	2.450194	0.351289	1.351029	10.799988	
std	24.319017	5.678870	0.174055	3.440447	50.083624	
min	1.850000	0.000000	0.200000	0.000000	0.000000	
25%	2.370000	0.210000	0.200000	0.042000	0.000000	
50%	3.890000	0.875000	0.200000	0.175000	0.405000	
75%	55.570000	2.480000	0.600000	1.488000	4.160000	
max	59.850000	85.000000	0.600000	51.000000	1264.630000	
	Score_B	Risk_B	TOTAL	numbers	Score_B.1 \	
count	776.000000	776.000000	776.000000	776.000000	776.000000	
mean	0.313144	6.334008	13.218481	5.067655	0.223711	
std	0.169804	30.072845	51.312829	0.264449	0.080352	
min	0.200000	0.000000	0.000000	5.000000	0.200000	
25%	0.200000	0.000000	0.537500	5.000000	0.200000	
50%	0.200000	0.081000	1.370000	5.000000	0.200000	
75%	0.400000	1.840500	7.707500	5.000000	0.200000	
max	0.600000	758.778000 1	1268.910000	9.000000	0.600000	

	Risk_C	Money_Value	Score_MV	Risk_D	District_Lo	oss \	
count	776.000000	775.000000	776.000000	776.000000	776.0000	900	
mean	1.152964	14.137631	0.290979	8.265434	2.5051	155	
std	0.537417	66.606519	0.159745	39.970849	1.2286	578	
min	1.000000	0.000000	0.200000	0.000000	2.0000	900	
25%	1.000000	0.000000	0.200000	0.000000	2.0000	900	
50%	1.000000	0.090000	0.200000	0.018000	2.0000	900	
75%	1.000000	5.595000	0.400000	2.235000	2.0000	900	
max	5.400000	935.030000	0.600000	561.018000	6.0000	900	
	PROB	RiSk_E	History	Prob	Risk_F	Score	\
count	776.000000	776.000000	776.000000	776.000000	776.000000	776.000000	
mean	0.206186	0.519072	0.104381	0.216753	0.053608	2.702577	
std	0.037508	0.290312	0.531031	0.067987	0.305835	0.858923	
min	0.200000	0.400000	0.000000	0.200000	0.000000	2.000000	
25%	0.200000	0.400000	0.000000	0.200000	0.000000	2.000000	
50%	0.200000	0.400000	0.000000	0.200000	0.000000	2.400000	
75%	0.200000	0.400000	0.000000	0.200000	0.000000	3.250000	
max	0.600000	2.400000	9.000000	0.600000	5.400000	5.200000	

	Inherent_Risk	CONTROL_RISK	Detection_Risk	Audit_Risk	Risk
count	776.000000	776.000000	776.0	776.000000	776.000000
mean	17.680612	0.572680	0.5	7.168158	0.393041
std	54.740244	0.444581	0.0	38.667494	0.488741
min	1.400000	0.400000	0.5	0.280000	0.000000
25%	1.583500	0.400000	0.5	0.316700	0.000000
50%	2.214000	0.400000	0.5	0.555600	0.000000
75%	10.663500	0.400000	0.5	3.249900	1.000000
max	801.262000	5.800000	0.5	961.514400	1.000000

- Korelasi:

B. Ringkasan Pra-Pemrosesan Data yang Diusulkan

1. Handling Missing Value

Pada *handling missing value*, ditemukan 1 datum dengan tipe data NaN pada kolom "Money_Value". Langkah yang dilakukan adalah menghapus/mendrop baris dimana datum tersebut berada supaya saat kita menerapkan algoritma yang dipilih untuk membuat model prediksi tidak terjadi error saat prosesnya,seperti gambar dan kode yang ditunjukkan berikut:

```
Sector_score
                   0
LOCATION_ID
                   0
PARA_A
                   0
                   0
Score_A
Risk A
                   0
PARA B
                   0
                   0
Score B
Risk_B
                   0
TOTAL
                   0
numbers
                   0
Score_B.1
                   0
Risk_C
                   0
Money Value
Score MV
                   0
Risk D
                   0
District Loss
                   0
PROB
                   0
RiSk E
                   0
History
                   0
                   0
Prob
Risk_F
                   0
                   0
Score
                   0
Inherent_Risk
CONTROL RISK
                   0
Detection_Risk
                   0
Audit_Risk
                   0
Risk
                   0
```

```
# menghilangkan row dari missing value
dataset = dataset.dropna()
```

2. Redundant Data

Pada *redundant data* akan didrop tiap baris data yang *redundant*. Meskipun *redundant data* tidak terlalu berpengaruh jika dihilangkan, tetapi jika banyak data yang *redundant* tentunya berpengaruh dengan dimensi data dan kecepatan dalam proses prediksi modelnya juga. Didapat 13 baris data yang redundant seperti yang ditunjukkan gambar dan kode sebagai berikut:

menghilangkan data redundant
dataset = dataset.drop_duplicates()

3. Outliers

Berdasarkan korelasi yang telah dicari, terdapat 4 kolom data yang korelasinya tinggi, yaitu:

- Score_A (0.619726)
- Score_B (0.635768)
- Score MV (0.688367)
- Score (0.785995)

Dari ke-4 kolom diatas, ditemukan *outliers* di kolom Score dengan visualisasi boxplot dan daftar *outliers* pada kolom *Score* sebagai berikut:


```
93 5.2
190 5.2
241 5.2
495 5.2
Name: Score, dtype: float64
```

```
# mendrop row outliers berada
dataset = dataset.drop([93, 190, 241, 495])
```

C. Menerapkan Algoritma yang Dipilih

Algoritma yang digunakan pada tugas ini adalah algoritma ANN (Artificial Neural Network) yang merupakan bagian dari Supervised Learning dimana kita akan memiliki input serta output yang sesuai yang ada di dalam *dataset*. Tujuan disini adalah mencari cara untuk memetakan input ke output masing-masing dan ANN dapat digunakan untuk memecahkan masalah regresi dan klasifikasi, seperti pada data yang diberikan pada tugas ini. Berikut ilustrasi algoritma ANN yang digunakan:

1. Import Library

```
# import library
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.pyplot as mp
import seaborn as sns
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```

Diimport 7 library untuk mendukung pra-pemrosesan dan ANN yang akan dilakukan.

2. Import Dataset

```
# import dataset
dataset = pd.read_csv(
    'https://github.com/johanesraphaeln/case-based-1-supervised-learning/blob/main/dataset/audit_risk.csv?raw=true'
)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
```

Dataset yang telah disimpan di github (dalam bentuk link) akan diimport/dibaca dengan bantuan library pandas dan disimpan ke dalam variabel *dataset*.

3. Split Dataset into Training and Testing Dataset

```
# split dataset
X = dataset.iloc[:, 2:26].values
Y = dataset.iloc[:, -1].values
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.2,random_state=0)
```

Menggunakan method iloc dari pandas untuk mengambil value dari kolom yang diinginkan di dataset. Variabel X diisi dengan *independent* variabel dari kolom PARA_A hingga kolom Audit_Risk, lalu variabel Y diisi dengan *dependent* variabel yaitu kolom Risk. Setelah itu, akan displit menggunakan bantuan library sklearn dengan konfigurasi 80% data train dan 20% data test.

4. Performing Feature Scaling

```
# feature scaling
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.fit_transform(X_test)
```

Ada kemungkinan bahwa selama pembuatan model, variabel yang memiliki nilai sangat tinggi mendominasi variabel yang memiliki nilai sangat rendah. Karena itu, ada kemungkinan bahwa variabel-variabel dengan nilai rendah tersebut dapat diabaikan oleh mode;, dan karenanya *feature scaling* diperlukan. Saat melakukan *feature scaling*, kita menggunakan teknik *Standardization* dengan bantuan libary sklearn pada class StandardScaler.

5. Initialize ANN

```
# init ANN
ann = tf.keras.models.Sequential()
```

Disini kita akan membuat objek ANN dengan bantuan kelas Keras bernama Sequential dari library tensorflow.

6. Create Hidden Layer

```
# first hidden layer
ann.add(tf.keras.layers.Dense(
    units=6,
    activation="relu"
))
```

```
# second hidden layer
ann.add(tf.keras.layers.Dense(
    units=6,
    activation="relu"
))
```

Setelah menginisiasi ANN, akan dibuat 2 hidden layer dengan bantuan kelas Dense dari library tensorflow yang menerima 2 input, yaitu:

- units: jumlah neuron di masing lapisan
- activation: fungsi aktivasi yang akan digunakan

Optimal value dari units yang ditemukan berdasarkan pengalaman adalah 6, dan untuk activation akan selalu menggunakan relu (rectified linear unit) sebagai fungsi aktivasi untuk hidden layer.

7. Create Output Layer

```
# output layer
ann.add(tf.keras.layers.Dense(
    units=1,
    activation="sigmoid"
))
```

Disini kita akan membuat output layer untuk ANN dengan bantuan kelas Dense dari library tensorflow. Pada units diberi 1 karena pada binary classification dimana kita hanya punya 2 kelas sebagai output (1 dan 0) kita akan mengalokasi hanya 1 neuron ke output layer. Dan pada fungsi aktivasi selalu menggunakan sigmoid untuk masalah binary classification.

8. Compile ANN

```
# compile ANN
ann.compile(
    optimizer="adam",
    loss="binary_crossentropy",
    metrics=['accuracy']
)
```

Pada compilling ANN akan menerima input sebagai berikut:

- optimizer: menentukan pengoptimal yang akan digunakan untuk melakukan *stochastic gradient descent*. Optimizer 'adam' dapat digunakan dengan *neural network* manapun.
- loss: menentukan *loss function* yang akan digunakan. Untuk *binary classification* menggunakan *binary_crossentropy*.
- metrics: *performance metrics* mana yang akan digunakan untuk menghitung performa. Disini menggunakan 'accuracy' sebagai *performance metrics*-nya.

9. Fitting ANN

```
# fitting ANN
ann.fit(
    X_train,
    Y_train,
    batch_size = 32,
    epochs = 100
)
```

Untuk melatih ANN pada training dataset akan digunakan fit method yang menerima 4 input, yaitu:

- X train: matriks fitur untuk dataset train
- Y train: vektor vairable dependent untuk dataset train
- batch_size: berapa banyak pengamatan yang harus ada dalam batch, umumnya 32 observasi.
- epochs: berapa kali neural networks akan dilatih, optimalnya 100.

D. Evaluasi Hasil

Setelah fitting ANN dijalankan, berikut output yang diberikan dengan keterangan loss dan accuracy sebagai berikut:

Epoch 1/100		Epoch 30/100
] - 2s 3ms/step - loss: 0.7814 - accuracy: 0.6419	19/19 [====================================
Epoch 2/100	======================================	19/19 [====================================
Epoch 3/100	======================================	Epoch 32/100
	======================================	19/19 [====================================
Epoch 4/100		Epoch 33/100
		19/19 [] - 0s 5ms/step - loss: 0.0790 - accuracy: 0.9752
Epoch 5/100		Epoch 34/100
19/19 [======= Epoch 6/100] - 0s 5ms/step - loss: 0.6156 - accuracy: 0.8366	19/19 [====================================
	======================================	19/19 [====================================
Epoch 7/100] 03 mills/seep 10331 013300 decal dey! 010301	Epoch 36/100
19/19 [======	=========] - 0s 4ms/step - loss: 0.5624 - accuracy: 0.8680	19/19 [====================================
Epoch 8/100		Epoch 37/100
] - 0s 3ms/step - loss: 0.5339 - accuracy: 0.8795	19/19 [====================================
Epoch 9/100	======================================	Epoch 38/100 19/19 [====================================
Epoch 10/100	======================================	Epoch 39/100
	======================================	19/19 [====================================
Epoch 11/100		Epoch 40/100
		19/19 [] - 0s 11ms/step - loss: 0.0658 - accuracy: 0.9785
Epoch 12/100		Epoch 41/100
19/19 [======= Epoch 13/100	========] - 0s 3ms/step - loss: 0.3981 - accuracy: 0.9224	19/19 [====================================
	======================================	19/19 [====================================
Epoch 14/100] 03 3m3, seep 2033, 013023 decardey, 013307	Epoch 43/100
19/19 [] - 0s 3ms/step - loss: 0.3277 - accuracy: 0.9340	19/19 [====================================
Epoch 15/100		Epoch 44/100
] - 0s 4ms/step - loss: 0.2937 - accuracy: 0.9455	19/19 [====================================
Epoch 16/100	======================================	Epoch 45/100 19/19 [====================================
Epoch 17/100		Epoch 46/100
		19/19 [=========================] - 0s 8ms/step - loss: 0.0576 - accuracy: 0.9785
Epoch 18/100		Epoch 47/100
	======================================	19/19 [====================================
Epoch 19/100	======================================	Epoch 48/100 19/19 [====================================
Epoch 20/100] 03 3m3/3ccp 20331 012003 accai acyt 013033	Epoch 49/100
19/19 [======	======================================	19/19 [==================] - 0s 8ms/step - loss: 0.0557 - accuracy: 0.9802
Epoch 21/100		Epoch 50/100
	======================================	19/19 [====================================
Epoch 22/100	======================================	Epoch 51/100 19/19 [====================================
Epoch 23/100		Epoch 52/100
		19/19 [====================================
Epoch 24/100		Epoch 53/100
		19/19 [============] - 0s 6ms/step - loss: 0.0519 - accuracy: 0.9802
Epoch 25/100	3 0 42 / 1 3 0 4422 0 0 7740	Epoch 54/100
19/19 [====== Epoch 26/100] - 0s 13ms/step - loss: 0.1133 - accuracy: 0.9719	19/19 [====================================
	======================================	19/19 [====================================
Epoch 27/100		Epoch 56/100
] - 0s 16ms/step - loss: 0.1013 - accuracy: 0.9719	19/19 [=================] - 0s 8ms/step - loss: 0.0500 - accuracy: 0.9802
Epoch 28/100		Epoch 57/100
] - 0s 14ms/step - loss: 0.0963 - accuracy: 0.9736	19/19 [====================================
Epoch 29/100	======================================	Epoch 58/100 19/19 [====================================
13/13 [=====		19/19 [====================================

```
Epoch 59/100
19/19 [=====
Epoch 60/100
19/19 [=====
Epoch 61/100
19/19 [=====
                                                                                 0s 14ms/step - loss: 0.0477 - accuracy: 0.980
Epoch 62/100
19/19 [=====
Epoch 63/100
19/19 [=====
Epoch 64/100
                                                                                                           - loss: 0.0463 - accuracy: 0.980
 19/19 [=====
Epoch 65/100
19/19 [=====
0s 5ms/step - loss: 0.0440 - accuracy: 0.9785
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
19/19 [-----
                                                                                                              loss: 0.0422 - accuracy: 0.9785
                                                                                 0s 8ms/step - loss: 0.0419 - accuracy: 0.9785
                                                                                                                                                                                19/19 [==:
                                                                                                                                                                                                                                                              - 0s 3ms/step - loss: 0.0364 - accuracy: 0.9835
                                                                                                                                                                                Epoch 89/100
19/19 [=====
                                                                                                                                                                                                                                                                   0s 3ms/step - loss: 0.0361 - accuracy: 0.9835
                                                                                                                                                                                 Epoch 90/
19/19 [==
                                                                                                                                                                                            90/100
                                                                                                                                                                                 Epoch 91/100
19/19 [=====
Epoch 92/100
                                                                                       4ms/step - loss: 0.0397 - accuracy: 0.9802
                                                                                                                                                                                19/19 [=====
Epoch 93/100
19/19 [=====
Epoch 94/100
Epoch 80/100
19/19 [=====
Epoch 81/100
19/19 [=====
Epoch 82/100
                                                                                                                                                                                Epoch 94/100
19/19 [=====
Epoch 95/100
19/19 [=====
Epoch 96/100
                                                                                                                                                                                                                                                                                               loss: 0.0345 - accuracy: 0.9818
 19/19 [=====
Epoch 83/100
19/19 [=====
                                                                                                              loss: 0.0383 -
                                                                                                                                                                                19/19 [====
Epoch 97/100
                                                                                                                                                                                                                                                                        5ms/step - loss: 0.0341 - accuracy: 0.9835
 19/19 [------
Epoch 84/100
19/19 [------
Epoch 85/100
19/19 [------
Epoch 86/100
19/19 [------
                                                                                                                                                                                .
19/19 [=====
Epoch 98/100
                                                                                                                                                                                                                                                                        5ms/step - loss: 0.0339 - accuracy: 0.9835
                                                                                                                                                                               19/19 [-----
Epoch 99/100
19/19 [-----
Epoch 100/100
                                                                                                                                                                                                                                                                  0s 3ms/step - loss: 0.0336 - accuracy: 0.9818
```

Berdasarkan hasil fitting tersebut, bisa dilihat tiap epoch bahwa loss berkurang dan accuracy bertambah. Dan terlihat bahwa final accuracy yang didapat adalah 98.18 yang dimana cukup luar biasa untuk neural network dengan kesederhanaan ini.

Dengan Confusion Matrix yang didapat sebagai berikut:

		Actual Values		
		Positive	Negative	
Predicted Values	Positive	91	1	
Fredicted values	Negative	4	56	

efbec2

E. Link dan Referensi Link Laporan: https://docs.google.com/document/d/1SBfjvOwP3tECx1F93gmLLDIvhOS-UJDuCxKBl NngI00/edit?usp=sharing Link Slide: https://www.canva.com/design/DAFRafKVnsU/J0OGtYnR0fUNoXr72Q7Ogw/view?ut m content=DAFRafKVnsU&utm campaign=designshare&utm medium=link2&utm so urce=sharebutton Link Video Presentasi: https://youtu.be/0BtG6XtesHE Link Code: https://colab.research.google.com/drive/11Un4xSF4x7Wz6NaGV9wUgQ4gOZ4HGliy?u sp=sharing Referensi: Slide Perkuliahan Pembelajaran Mesin https://www.analyticsvidhya.com/blog/2021/10/implementing-artificial-neural-networkcl assification-in-python-from-scratch/#respond

https://medium.com/@bayysp/predictive-modelling-using-ann-with-python-part-3-a0cbd