Multi-Task Graph Autoencoders

Phi Vu Tran | tran_phi@bah.com

Autoencoder Architecture for Link Prediction and Node Classification

We present the multi-task graph autoencoder (MTGAE) architecture, a *simple, yet versatile and effective* neural network with parameter sharing that can combine optional side node features for improved graph representation learning:

- 1. Learns from complex graph structures: bipartite, sparse, weighted, directed;
- 2. Performs efficient end-to-end simultaneous, multi-task learning of link prediction and node classification;
- 3. Yields superior predictive performances over three strong baselines across five benchmark relational datasets.

Layer

Decoder

Network

Empirical Evaluation

Nodes

19,717

MTGAE (this work)

MTGAE - 20% Edges Missing

MTGAE - 40% Edges Missing

MTGAE - 60% Edges Missing

Learning

Dataset

Pubmed

Table 1: Summary statistics of datasets used in empirical evaluation.

 $|O^{+}|$: $|O^{-}|$

Ratio

1:4384

Node

Features

500

Node

Classes

Label

Rate

0.003

 $\mathcal{L}_{\text{BCE}} = -\mathbf{a}_i \log \left(\sigma\left(\hat{\mathbf{a}}_i\right)\right) \cdot \zeta - \left(1 - \mathbf{a}_i\right) \log \left(1 - \sigma\left(\hat{\mathbf{a}}_i\right)\right),$

 $\mathcal{L}_{ ext{MBCE}} = rac{\sum_{i} \mathbf{m}_{i} \odot \mathcal{L}_{ ext{BCE}}}{\sum_{i} \mathbf{m}_{i}}.$

Average

Degree

4.5

Citeseer	3,327	2.8	1:1198	3,703	6	0.036
Cora	2,708	3.9	1: 694	1,433	7	0.052
Arxiv-GRQC	5,242	5.5	1: 947	_	_	_
BlogCatalog	10,312	64.8	1: 158	_	_	_
Precision@ k	Arxiv-GRQC		1.0 0.8 0.0 0.4	BlogCatalog		

Figure 1: Comparison of network reconstruction performances.

0.2

Table 2: Related deep graph embedding baselines.

 $\mathcal{L}_{ ext{MULTI-TASK}} = \mathcal{L}_{ ext{MBCE}} + \mathcal{L}_{ ext{SSC}}$

 $\mathcal{L}_{\text{SSC}} = -\text{MASK}_i \sum \mathbf{y}_{ic} \log(\hat{\mathbf{y}}_{ic}).$

Multi-Task Learning

Baseline	Evaluation Task	Metric
SDNE [1]	Reconstruction	Precision@k
VGAE [2]	Link Prediction	AUC, AP
GCN [3]	Node Classification	Accuracy

Table 3: Comparison of link prediction and node classification performances.

Method	Cora	Citeseer	Pubmed			
Link Prediction						
MTGAE	0.946	0.949	0.944			
VGAE [2]	0.920	0.914	0.965			
Node Classification						
MTGAE	0.790	0.718	0.804			
GCN [3]	0.815	0.703	0.790			
Planetoid [4]	0.757	0.647	0.772			

Discussion

0.2

8.0

- MTGAE model produces non-linear node embeddings optimized for both link prediction and node classification tasks;
- Multi-task learning improves semi-supervised node classification on datasets with extremely low label rate;

MTGAE - 20% Edges Missing

MTGAE - 40% Edges Missing MTGAE - 60% Edges Missing

MTGAE - 80% Edges Missing

- Parameter sharing between the encoder and decoder significantly boosts representation learning and generalization;
- Future work will explore inductive reasoning on out-of-network nodes and mitigate O(N) complexity for enhanced scalability on large, dynamic graphs.

References

- [1] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. KDD 2016.
- [2] T.N. Kipf and M. Welling. Variational graph auto-encoders. Bayesian Deep Learning Workshop, NeurIPS 2016.
- [3] T.N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. *ICLR 2017*.
- [4] Z. Yang, W. Cohen, and R. Salakhutdinov. Revisiting semi-supervised learning with graph embeddings. *ICML 2016*.

0.2