考试课程: 概率论与数理统计 学年学期: 2019-2020-2

题 号	_	=	Ξ	四	五	六	七	八	总 分
得 分									
2年 7									

本题

一、单项选择题(从下列各题四个备选答案中选出一个正确答案, 并将其字母代号写在该题【 】内。答案错选或未选者,该题不得分。 每小题 2 分, 共 10 分。)

1. 设随机变量 X 的分布密度 $p(x) = \frac{1}{\pi(1+x^2)}$, 则 Y = 2X 的分布密度为____.

ľ 1

(a)
$$\frac{1}{\pi(1+4x^2)}$$
; (b) $\frac{2}{\pi(4+x^2)}$; (c) $\frac{1}{\pi(1+x^2)}$; (d) $\frac{1}{\pi}\arctan x$.

(b)
$$\frac{2}{\pi(4+x^2)}$$

(c)
$$\frac{1}{\pi(1+x^2)}$$

(d)
$$\frac{1}{\pi} \arctan x$$
.

2. 设随机变量序列 x1, x2,..., xn...相互独立,并且都服从参数为 1/2 的指数分布,则

当 n 充分大时,随机变量 $Y_n = \frac{1}{n} \sum_{i=1}^{n} x_i$ 的概率分布近似服从_____.

- (a) N(2,4)
- (b) N(2,4/n) (c) N(1/2,1/4n)
- (d) N(2n,4n)

3. 设总体 x 服从正态分布 $N(\mu, \sigma^2)$,其中 μ 已知, σ^2 未知, X_1, X_2, X_3 是总体 x 的

一个简单随机样本,则下列表达式中不是统计量的是______.

(a)
$$X_1 + X_2 + X_3$$
;

(a)
$$X_1 + X_2 + X_3$$
; (b) $\min(X_1, X_2, X_3)$; (c) $\sum_{i=1}^3 \frac{X_i^2}{\sigma^2}$; (d) $X + 2\mu$.

(c)
$$\sum_{i=1}^{3} \frac{X_i^2}{\sigma^2}$$

(d)
$$X+2\mu$$
.

4. 在假设检验问题中,检验水平α意义是 _____.

ľ 1

1

- (a) 原假设 Ho成立, 经检验被拒绝的概率;
 - (b) 原假设 Ho成立, 经检验不能拒绝的概率;
 - (c) 原假设 Ho不成立, 经检验被拒绝的概率;
 - (d) 原假设 Ho不成立,经检验不能拒绝的概率.

5. 在线性回归分析中,以下命题中,错误的是___

ľ 1

- (a) SSR 越大, SSE 越小;
- (b) SSE 越小,回归效果越好:
- (c) |r| 越大, 回归效果越好; (d) |r| 越小, SSR 越大.

× × ×

姓名

本题 二、填空题 (将答案写在该题横线上。答案错选或未选者,该题不得分。 得分 每小题 2 分,共 10 分。)
1. 设离散型随机变量 X 只取 x_1 和 x_2 两个可能值(且 $x_1 < x_2$),又已知 $P\{X = x_1\} = 0.2$, $E(X) = 2.6$,
方差 D(X)=0.64,则 x ₁ =, x ₂ =。
2. 从 10 个数字 0,1,2,3,,9 中任取两个数字,其和大于 10 的概率为
3. 设 A,B 为两个事件, P(A)=0.5, P(B)=0.6, P(B/A)=0.8, 则 P(A ∩ B)=
4. 在单因素方差分析中,试验因素 A 的 r 个水平的样本总容量为 n ,则当原假设 H_0 成
立时,SSA/σ² 服从分布, MSA/MSE 服从分布.
5. 在线性回归分析中,回归平方和的含义是
本题 三、(10 分,要求写清步骤及结果). 假设一条自动生产线生产的产品 的合格率是 0.8.要使一批产品的合格率达到 76%与 84%之间的概率不
小于 90%,问:这批产 品至少要生产多少件?
(附: Ф(1 64)=0.05。其中Ф(c)是标准正态分布函数。)

本題 得分 四、(10分,要求写清步骤及结果)为估计鱼池内的鱼数,第一次捕了 2000 尾,做了记号再放回鱼池内,充分混和后再捕 2000 尾,结果发现

500 尾有记号,试用极大试然法估计鱼池内的鱼数。

(提示:用 $X_{i}=$ $\begin{cases} 1$, 混合后从鱼池内捕出的第i条鱼有记号,i=1,2,...,2000.

N表示鱼池的鱼数, $P\{X_i=x_i\}=(2000/N)^{x_i}(1-2000/N)^{1-x_i}$)

本题 得分 五、(12分,要求写清步骤及结果) 已知某树种的木材横纹抗压力 遵从正态分布,随机抽取该中木材的试件 9个,做横纹抗压力试验,获得下列数据(单位 kg/cm2):

482, 493, 457, 510, 446, 435, 418, 394, 469.

试求: 该木材的平均横纹抗压力**的** 95%的置信区间. (附: t_{0.975}(9-1)=2.306)

本题	
得分	

六、(15分,要求写清步骤及结果) 在施以底肥与不施底肥的两块苗床上,分别抽取 10 株苗木,测得苗高数据(单位:cm)如下表:

	TWI.						行和
施肥	77. 3	79. 1	81.0	79. 1	82. 1	77. 3	475. 9
不施肥	75. 5	76. 2	78. 1	72. 4	77.4	76. 7	456. 3

设苗木的苗高服从正态分布, 且为重复抽样. (取显著水平 α =0.05) 问:

- 1. 检验施肥苗床的苗木的苗高的方差是否一样?
- 2. 问施肥苗床的苗木的苗高是否显著高于不施肥苗床上苗木的苗高.

(
$$/\!\!/ f_{0.975}$$
 (6-1, 6-1) =7.15 , $t_{0.95}$ (6+6-2)=1.812)

七、(15分,要求写清步骤及结果)设在育苗试验中有3种不同的处理方法,每种方法做6次重复试验,一年后,苗高数据如下表:

处理 方法	苗高 y _{ij} (cm)	行 和	
1	39.2 29.0 25.8 33.5 41.7 37.2	T ₁ . =206.4	
2	37. 3 27. 7 23. 4 33. 4 29. 2 35. 6	T ₂ . =186.6	
3	20. 8 33. 8 28. 6 23. 4 22. 7 30. 9	T3. =160.2	

- 1. 试问不同的处理方法是否有显著差异?
- 2. 请列出方差分析表.
- 3. 哪种处理方法最好? (附:α =0.05, F_{0.95}(3-1,18-3)=3.68)

狱

...... ü

本题 得分 八、 $(18 \, \mathcal{G})$,要求写清步骤及结果)为研究某种商品的单位家庭的月需求量 Y 与该商品的价格 x 之间的关系,得数据如下: $(\alpha = 0.05)$

											行和
价格 X _i (元)	1.0	2.0	2.0	2.3	2.5	2.6	2.8	3.0	3.3	3.5	25
月需求量 Yi	5.0	3.5	3.0	2.7	2.4	2.5	2.0	1.5	1.3	1.2	25.1
(500克)											

- 1. 试求: \bar{x} , \bar{y} , l_{xx} , l_{xy} , l_{yy} :
- 2. 试求:对x的一元线性之经验回归方程;
- 3. 对此一元线性回归方程进行显著性检验.
- 4. 求当 x=1.5 时,需求量 y₀ 的估计值和 y₀ 的 95%的置信区间.

(附:
$$\mathbf{t}_{0.975}(10-2)=2.306$$
 , $\mathbf{r}_{0.05}(10-2)=0.6319$, $\mathbf{F}_{0.95}(1,10-2)=5.32$)

(提示: 预测公式
$$t=(y_0-\hat{y_0})/\sqrt{\frac{SSE}{n-2} \bullet [1+\frac{1}{n}+\frac{(x_0-\bar{x})^2}{l_{xx}}]} \sim t(n-2)$$
)