WE CLAIM:

1. A method for inhibiting β -secretase activity, comprising exposing said β -secretase to an effective inhibitory amount of a hydroxyethylene compound of the formula

where R₁ is:

- (I) C_1 - C_6 alkyl, unsubstituted or substituted with one, two or three C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, $-NH_2$, $-C\equiv N$, $-CF_3$, or $-N_3$,
- (II) $-(CH_2)_{1-2}$ -S-CH₃,
- (III) -CH2-CH2-S-CH3,
- (IV) -CH₂-(C₂-C₆ alkenyl) unsubstituted or substituted by one -F,
- (V) -(CH₂)₀₋₃-(R_{1-aryl}) where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl, tetralinyl unsubstituted or substituted on the aryl ring with one or two of the following substituents which can be the same or different:
 - (A) C_1 - C_3 alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br and -I,
 - (D) C_1 - C_3 alkoxy,
 - (E) –O-CF₃,
 - (F) -NH₂,
 - (G) -OH, or
 - (H) -C≡N,
- (VI) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is 0, 1, 2, or 3 and R_{1-heteroaryl} is: (A) pyridinyl,

- (B) pyrimidinyl,
- (C) quinolinyl,
- (D) indenyl,
- (E) indanyl,
- (F) benzothiophenyl,
- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,

- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β-carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{0\text{-}3}$ - by any ring atom of the parent $R_{N\text{-}}$ heteroaryl group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_3 alkyl,
- $(2) CF_3$,
- (3) -F, Cl, -Br, or -I,
- (4) C_1 - C_3 alkoxy,
- (5) –O-CF₃,
- $(6) NH_2,$
- (7) -OH, or
- (8) -C≡N,

with the proviso that when n_1 is zero $R_{1-heteroaryl}$ is not bonded to the carbon chain by nitrogen, or

(VII) -(CH₂)_{n1}-(R₁-heterocycle) where n_1 is as defined above and

R₁-heterocycle is:

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,
- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,
- (K) tetrahydrofuranyl, or
- (L) tetrahydrothiophenyl,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heterocycle is unsubstituted or substituted with one or two:

- (1) = 0,
- (2) C_1 - C_3 alkyl,
- $(3) CF_3$,
- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_3 alkoxy,
- (6) –O-CF₃,
- $(7) NH_2$
- (8) -OH, or
- (9) -C≡N,

with the proviso that when n_1 is zero $R_{1\text{-heterocycle}}$ is not bonded to the carbon chain by nitrogen;

where R₂ is:

- (I) -H,
- (II) C_1 - C_6 alkyl, or
- (III) -(CH₂)₀₋₄-R₂₋₁ where R_{2-1} is (C₃-C₆)cycloalkyl, R_{1-aryl} or $R_{1-heteroaryl}$ where R_{1-aryl} and $R_{1-heteroaryl}$ are as defined above,

where R_N is:

- (I) R_{N-1} - X_N where X_N is:
 - (A) –CO-,
 - (B) $-SO_2$ -,
 - (C) -(CR'R")₁₋₆ where R' and R" are the same or different and are -H or C_1 - C_4 alkyl,
 - (D) $-\text{CO-}(\text{CR'R''})_{1-6}\text{-}X_{N-1}$ where X_{N-1} is -O-, -S- and -NR'R''- and where R' and R'' are as defined above,
 - (E) a single bond;

where R_{N-1} is:

- (A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl and 2-naphthyl unsubstituted or substituted with one, two, three or four of the following substituents which can be the same or different and are:
 - (1) C_1 - C_6 alkyl,
 - (2) –F, -Cl, -Br, or -I,
 - (3) -OH,
 - $(4) -NO_2,$
 - (5) -CO-OH,
 - (6) -C≡N,
 - (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or

- (ii) $-NH_2$,
- (c) -C₁-C₆ alkyl unsubstituted or substituted with one to three –F, -Cl, -Br, or -I,
- (d) -C₃-C₇ cycloalkyl,
- (e) -(C_1 - C_2 alkyl)-(C_3 - C_7 cycloalkyl), ••
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₁-C₆ alkenyl with one or two double bonds,
- (h) -C₁-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) -R_{1-aryl} where R_{1-aryl} is as defined above, or
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (8) -CO-(C₃-C₁₂ alkyl),
- (9) -CO-(C3-C6 cycloalkyl),
- (10) -CO- $R_{1\text{-heteroaryl}}$ where $R_{1\text{-heteroaryl}}$ is as defined above,
- (11) -CO- $R_{1\text{-heterocycle}}$ where $R_{1\text{-heterocycle}}$ is as defined above,
- (12) -CO- R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C_1 - C_3 alkyl,
- (13) -CO-O- R_{N-5} where R_{N-5} is:
 - (a) C₁-C₆ alkyl, or
 - (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
- (14) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined above,
- (15) -SO- $(C_1-C_8 \text{ alkyl})$,
- (16) -SO₂-(C₃-C₁₂ alkyl),
- (17) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C_1 - C_3 alkyl)₂,
- (19) -N-CS-N(C_1 - C_3 alkyl)₂,

- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,
- (23) -O-CO- $(C_1$ - C_6 alkyl),
- (24) -O-CO-N(C₁-C₃ alkyl)₂,
- (25) -O-CS-N(C₁-C₃ alkyl)₂,
- (26) $-O-(C_1-C_6 \text{ alkyl})$,
- (27) -O-(C2-C5 alkyl)-COOH,
- (28) $-S-(C_1-C_6 \text{ alkyl})$,
- (29) C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 –F,
- (30) -O-(C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F, or
- $(31) O \phi$,
- (B) $-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pyridazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,

- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β-carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,

- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{N\text{-heteroaryl}}$ group is bonded by any atom of the parent $R_{N\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{N\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_6 alkyl,
- (2) -F, -Cl, -Br, or I,
- (3) OH,
- $(4) NO_2,$
- (5) -CO-OH,
- (6) -C≡N,
- (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H
 - (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) $-NH_2$,
 - (c) $-C_1-C_6$ alkyl unsubstituted or substituted with 1, 2, or 3 -F, $-C_1$, $-B_7$, or -I,
 - (d) -C₃-C₇ cycloalkyl,
 - (e - $(C_1-C_2 \text{ alkyl})$ - $(C_3-C_7 \text{ cycloalkyl})$,
 - (f) -(C_1 - C_6 alkyl)-O-(C_1 - C_3 alkyl),
 - (g) $-C_1-C_6$ alkenyl with one or two double bonds,

- (h) -C₁-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, or
- (k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above.
- (8) $-CO-(C_3-C_{12} \text{ alkyl}),$
- (9) -CO-(C₃-C₆ cycloalkyl),
- (10) -CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (11) -CO-R_{1-heterocycle} where R_{1-heterocycle} is as defined above,
- (12) -CO- R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C_1 - C_3 alkyl,
- (13) -CO-O- R_{N-5} where R_{N-5} is:
 - (a) C_1 - C_6 alkyl, or
 - (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above,
- (14) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above,
- (15) -SO- $(C_1$ - C_8 alkyl),
- (16) $-SO_2$ -(C₃-C₁₂ alkyl),
- (17) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C₁-C₃ alkyl)₂,
- (19) -N-CS-N(C_1 - C_3 alkyl)₂,

- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,
- (23) –O-CO- $(C_1$ - C_6 alkyl),
- (24) -O-CO-N(C₁-C₃ alkyl)₂,
- (25) -O-CS-N(C₁-C₃ alkyl)₂,
- (26) $-O-(C_1-C_6 \text{ alkyl})$,
- (27) -O- $(C_2$ - C_5 alkyl)-COOH, or
- (28) -S- $(C_1$ - C_6 alkyl),
- (C) $-R_{N-aryl}-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (D) $-R_{N-aryl}-R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (E) $-R_{N-heteroaryl}-R_{N-aryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (F) $-R_{N-heteroaryl}-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (G) $-R_{N-aryl}$ -O- R_{N-aryl} where $-R_{N-aryl}$ is as defined above,
- (H) -R_{N-aryl}-S-R_{N-aryl} where -R_{N-aryl} is as defined above,
- (I) -R $_{\text{N-heteroaryl}}$ -O-R $_{\text{N-heteroaryl}}$ where R $_{\text{N-heteroaryl}}$ is as defined above,
- (J) $-R_{N-heteroaryl}$ -S- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (K) $-R_{N-aryl}$ -CO- R_{N-aryl} where $-R_{N-aryl}$ is as defined above,
- (L) $-R_{N-aryl}$ -CO- $R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $R_{N-heteroaryl}$ are as defined above,
- (M) $-R_{N-aryl}-SO_2-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (N) $-R_{N-heteroaryl}$ -CO- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (O) - $R_{N\text{-heteroaryl}}$ - SO_2 - $R_{N\text{-heteroaryl}}$ where $R_{N\text{-heteroaryl}}$ is as defined above,
- (P) $-R_{N-aryl}$ -O-(C₁-C₈ alkyl)- ϕ where R_{N-aryl} is as defined above,
- (Q) $-R_{N-aryl}$ -S-(C_1 - C_8 alkyl)- φ where R_{N-aryl} is as defined above,

- (R) $-R_{N-heteroaryl}$ -O-(C₁-C₈ alkyl)- φ where $R_{N-heteroaryl}$ is as defined above, or
- (S) $-R_{N-heteroaryl}$ -S-(C₁-C₈ alkyl)- φ where $R_{N-heteroaryl}$ is as defined above,

(II) A- X_N - where X_N is –CO-,

wherein A is

(A)
$$-T-E-(Q)_{m'}$$
,
(1) where $-T$ is

where

- (a) x = 1 when y = 1 and x = 2 when y = 0,
- (b) m is 0, 1, 2 or 3,
- (c) the values of x and y vary independently on each carbon when m is 2 and 3, and
- (d) R''' varies independently on each carbon and is H, (C_1-C_2) alkyl, phenyl, or phenyl (C_1-C_3) alkyl;

(2)-E is

- (a) C_1 - C_5 alkyl, but only if m' does not equal 0,
- (b) methylthioxy(C_2 - C_4)alkyl,
- (c) an aryl group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (d) a heterocyclic group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (e) a mono or fused ring cycloalkyl group having 5 to 10 carbon atoms,

- (f) biphenyl,
- (g) diphenyl ether,
- (h) diphenylketone,
- (i) phenyl(C_1 - C_8)alkyloxyphenyl, or
- (j) C_1 - C_6 alkoxy;
- (3) -Q is
 - (a) C_1 - C_3 alkyl,
 - (b) C₁-C₃ alkoxy,
 - (c) C_1 - C_3 alkylthioxy,
 - (d) C₁-C₆ alkylacylamino,
 - (e) C₁-C₆ alkylacyloxy,
 - (f) amido (including primary, C₁-C₆ alkyl and phenyl secondary and tertiary amino moieties),
 - (g) C₁-C₆ alkylamino
 - (h) phenylamino,
 - (i) carbamyl (including C₁-C₆ alkyl and phenyl amides and esters),
 - (j) carboxyl (including C_1 - C_6 alkyl and phenyl esters),
 - (k) carboxy(C2-C5)alkoxy,
 - (l) carboxy(C₂-C5)alkylthioxy,
 - (m) heterocyclylacyl,
 - (n) heteroarylacyl, or
 - (o) hydroxyl;
- (4) m' is 0, 1, 2 or 3;
- (B) $-E(Q)_{m"}$ wherein E and -Q are as defined as above and m" is 0, 1, 2, or 3;
- (C) -T-E wherein -E and -Q are as defined as above; or
- (D) -E wherein -E is as defined as above;

- (III) -CO-(C₁-C₆ alkyl) where alkyl is unsubstituted or substituted with one or two:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{\text{N-2}}\text{R}_{\text{N-3}}$ where $\text{R}_{\text{N-2}}$ and $\text{R}_{\text{N-3}}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
 - (H) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} is the same or different and are as defined above, or
 - (O) -O- $(C_1$ - C_5 alkyl)-COOH,
- (IV) –CO-(C₁-C₃ alkyl)-O-(C₁-C₃ alkyl) where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{\text{N-2}}\text{R}_{\text{N-3}}$ where $\text{R}_{\text{N-2}}$ and $\text{R}_{\text{N-3}}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),

- (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (I) -NH-CO-(C_1 - C_6 alkyl),
- (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
- (K) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above.
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO-(C_1 - C_6 alkyl),
- (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or
- (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (V) –CO-(C₁-C₃ alkyl)-S-(C₁-C₃ alkyl) where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{\text{N-2}}R_{\text{N-3}}$ where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or

- (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (VI) $-\text{CO-CH}(-(\text{CH}_2)_{0\text{-}2}\text{-O-R}_{\text{N-}10})$ - $(\text{CH}_2)_{0\text{-}2}\text{-R}_{\text{N-aryl}}/R_{\text{N-heteroaryl}})$ where $R_{\text{N-aryl}}$ and $R_{\text{N-heteroaryl}}$ are as defined above, where $R_{\text{N-}10}$ is:
 - (A) H,
 - (B) C_1 - C_6 alkyl,
 - (C) C₃-C₇ cycloalkyl,
 - (D) C₂-C₆ alkenyl with one double bond,
 - (E) C₂-C₆ alkynyl with one triple bond,
 - (F) R_{1-aryl} where R_{1-aryl} is as defined above, or
 - (G) $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above;

where B is -O-, -NH-, or -N(C_1 - C_6 alkyl)-; where R_C is:

- (I) $-(C_1-C_{10})$ alkyl $-K_{1-3}$ in which:
 - (A) the alkyl chain is unsubstituted or substituted with one –OH,
 - (B) the alkyl chain is unsubstituted or substituted with one C_1 - C_6 alkoxy unsubstituted or substituted with 1-5 -F,
 - (C) the alkyl chain is unsubstituted or substituted with one $-0-\phi$,
 - (D) the alkyl chain is unsubstituted or substituted with 1-5 –F,
 - (E) the alkyl chain is unsubstituted or substituted with a combination of up to three atoms of oxygen and sulfur each such atom replacing one carbon,
 - (F) each K is:
- (1) H
- (2) C_1 - C_3 alkyl,
- (3) C_1 - C_3 alkoxy,
- (4) C_1 - C_3 alkylthioxy,
- (5) C₁-C₆ alkylacylamino,
- (6) C₁-C₆ alkylacyloxy,
- (7) amido
- (8) C_1 - C_6 alkylamino

- (9) phenylamino,
- (10) carbamyl
- (11) carboxyl
- (12) $\operatorname{carboxy}(C_2-C_5)\operatorname{alkoxy}$,
- (13) carboxy(C₂-C5)alkylthioxy, .
- (14) heterocyclylacyl,
- (15) heteroarylacyl,
- (16) amino unsubstituted or substituted with C_1 - C_6 alkyl,
- (17) hydroxyl, or
- (18) carboxyl methyl ester;
- (II)-(CH₂)₀₋₃-J-[(-(CH₂)₀₋₃-K]₁₋₃ where K is as defined above and J is:
 - (A) a 5 to 7 atom monocyclic aryl group,
 - (B) a 8 to 12 atom multicyclic aryl group,
 - (C) a 5 to 7 atom heterocyclic group,
 - (D) a 8 to 12 atom multicyclic heterocyclic group, or
 - (E) a 5 to 10 atom monocyclic or multicyclic cycloalkyl group;
- (III) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl can be unsubstituted or substituted with one, two or three
 - (A) C_1 - C_3 alkyl unsubstituted or substituted with 1, 2, 3, or 4 –F, -Cl, -Br, or -I,
 - (B) -CO-OH,
 - (C) -CO-O-(C_1 - C_4 alkyl),
 - (D) -OH, or
 - (E) C_1 - C_6 alkoxy,
- (IV) - $(CH_2)_{2-6}$ -OH,
- (V) -($CR_{C-x}R_{C-y}$)₀₋₄- R_{C-aryl} where R_{C-x} and R_{C-y} are -H, C_1 - C_4 alkyl and ϕ and R_{C-aryl} is the same as R_{N-aryl} ,
- (VI) -(CH₂)₀₋₄-R_{C-heteroaryl} where $R_{C\text{-heteroaryl}}$ is:
 - (A) pyridinyl,

- (B) pyrimidinyl,
- (C) quinolinyl,
- (D) indenyl,
- (E) indanyl,
- (F) benzothiophenyl,
- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) isoxazolyl,
- (Q) pyrazolyl,
- (R) indolizinyl,
- (S) indazolyl,
- (T) benzothiazolyl,
- (U) benzimidazolyl,
- (V) benzofuranyl,
- (W) furanyl,
- (X) thienyl,
- (Y) pyrrolyl,
- (Z) oxadiazolyl,
- (AA) thiadiazolyl,
- (BB) triazolyl,
- (CC) tetrazolyl,
- (DD) 1, 4-benzodioxan
- (EE) purinyl,
- (FF) oxazolopyridinyl,

- (GG) imidazopyridinyl,
- (HH) isothiazolyl,
- (II) naphthyridinyl,
- (JJ) cinnolinyl,
- (KK) carbazolyl,
- (LL) β-carbolinyl,
- (MM) isochromanyl,
- (NN) chromanyl,
- (OO) furazanyl,
- (PP) tetrahydroisoquinoline,
- (QQ) isoindolinyl,
- (RR) isobenzotetrahydrofuranyl,
- (SS) isobenzotetrahydrothienyl,
- (TT) isobenzothiophenyl,
- (UU) benzoxazolyl, or
- (VV) pyridopyridinyl,
- (VII) -(CH₂)₀₋₄-R_{C-heterocycle} where $R_{\text{C-heterocycle}}$ is the same as $R_{\text{1-heterocycle}},$
- (VIII) -C(R_{C-1})(R_{C-2})-CO-NH- R_{C-3} where R_{C-1} and R_{C-2} are the same or different and are:
 - (A) -H,
 - (B) $-C_1-C_6$ alkyl,
 - (C) -(C₁-C₄ alkyl)-R_{C'-aryl} where R_{C'-aryl} is as defined above for R_{1-aryl} ,
 - (D) -(C_1 - C_4 alkyl)- $R_{C\text{-heteroaryl}}$ where $R_{C\text{-heteroaryl}}$ is as defined above,
 - (E) -(C_1 - C_4 alkyl)- R_{C -heterocycle</sub> where R_{C -heterocycle} is as defined above,
 - (F) $-R_{C\text{-heteroaryl}}$ where $R_{C\text{-heteroaryl}}$ is as defined above,
 - (G) $-R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
 - $(H) (CH_2)_{1-4} OH,$
 - (I) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C'-aryl} where R_{C-4} is -O-, -S-, -NH- or

- $-NHR_{C-5}$ where R_{C-5} is C_1 - C_6 alkyl, and where R_{C' -aryl</sub> is as defined above,
- (J) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C-heteroaryl} where R_{C-4} and R_{C-heteroaryl} are as defined above, or
- (K) $-R_{C'\text{-aryl}}$ where $R_{C'\text{-aryl}}$ is as defined above, and where $R_{C\text{-3}}$ is:
 - (A) -H
 - (B) $-C_1-C_6$ alkyl,
 - (C) $-R_{C'-aryl}$ where $R_{C'-aryl}$ is as defined above,
 - (D) $-R_{C\text{-heteroaryl}}$ where $R_{C\text{-heteroaryl}}$ is as defined above,
 - (E) $-R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
 - (F) -(C_1 - C_4 alkyl)- R_{C' -aryl</sub> where R_{C' -aryl</sub> is as defined above,
 - (G) -(C1-C4 alkyl)-R_C-heteroaryl where $R_{\text{C-heteroaryl}}$ is as defined above, or
 - (H) -(C_1 - C_4 alkyl)- R_{C -heterocycle</sub> where R_{C -heterocycle} is as defined above,
 - (IX) -CH(ϕ)₂,
 - (X) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are unsubstituted or substituted with one, two or three:
 - (A) C₁-C₃ alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br and -I,
 - (D) C₁-C₃ alkoxy,
 - (E) $-OCF_3$,
 - (F) -NH₂,
 - (G) -OH, or
 - (H) -C≡N,
 - (XI) – CH_2 - $C\equiv CH$;
 - (XII) $-(CH_2)_{0-1}$ - CHR_{C-5} - $(CH_2)_{0-1}$ - ϕ where R_{C-5} is:
 - (A) –OH, or

(B)-CH₂-OH;
(XIII) -CH(-
$$\phi$$
)-CO-O(C₁-C₃ alkyl);

(XIV) -CH(-CH₂-OH)-CH(-OH)- ϕ -NO₂;

 $(XV) - (CH_2)_2 - O - (CH_2)_2 - OH;$

(XVI) – CH_2 -NH- CH_2 -CH(-O- CH_2 - $CH_3)_2$;

(XVII) - $(C_2$ - $C_8)$ alkynyl; or

(XVIII) -H; or a pharmaceutically acceptable salt thereof.

2. A method for inhibiting β -secretase activity according to 1 where R_1 is:

$$(V)$$
 - $(CH_2)_{0-3}$ - (R_{1-aryl}) , or

$$(VI)$$
 - $(CH_2)_{n1}$ - $(R_{1-heteroaryl})$

where R_N is:

(I) R_{N-1} - X_N - where X_N is:

$$(A)$$
 – CO -, or

(B)
$$-SO_{2}$$
-,

where R_{N-1} is:

- (A) R_{N-aryl} , or
- (B) -R_{N-heteroaryl},

$$(VI)$$
 -CO-CH(-(CH₂)₀₋₂-O-R_{N-10})-(CH₂)₀₋₂-R_{N-arvl}/R_{N-heteroarvl})

where R_C is:

- (I)- C_1 - C_8 alkyl,
- (III) $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl,
- (IV) $-(CH_2)_{0-3}-OH$,
- $(V) (CR_{C-x}R_{C-y})_{0-4} R_{C-aryl},$
- (VI) - $(CH_2)_{0-4}$ - $R_{C-heteroaryl}$,
- (VII) -(CH₂)₀₋₄-R_{C-heterocycle},
- (VIII) -C(R_{C-1})(R_{C-2})-CO-NH-R_{C-3}, or
- (X) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are unsubstituted or substituted with one or two:

(A)
$$C_1$$
- C_3 alkyl,

- (B) – CF_3 ,
- (C) -F, Cl, -Br or -I,
- (D) C_1 - C_3 alkoxy, or
- (E) -OCF₃
- 3. A method for inhibiting $\beta\mbox{-secretase}$ activity according to claim 85 $\,\cdot\,\,$ where R_1 is:

$$(V)$$
 -CH₂- (R_{1-aryl}) , or

(VI) -CH₂-(
$$R_{1-heteroaryl}$$
);

where R₂ is -H;

where R_N is:

(I) R_{N-1} - X_N - where X_N is:

where R_{N-1} is:

- (A) R_{N-aryl}, or
- (B) -R_{N-heteroaryl},

where R_C is:

- (III) $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl,
- (V) -($CR_{C-x}R_{C-y}$)₀₋₄- R_{C-aryl} ,
- (VI) -(CH₂) $_{0-4}$ -R_{C-heteroaryl},
- (VII) -(CH_2)₀₋₄- R_{C -heterocycle</sub>,
- (VIII) $-C(R_{C-1})(R_{C-2})-CO-NH-R_{C-3}$, or
- (X) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring.
- 4. A method for inhibiting β -secretase activity according to claim 3 where $R_{\rm C}$ is:
 - (V) -($CR_{C-x}R_{C-y}$)₀₋₄- R_{C-aryl} ,
 - (VI) -(CH₂)₀₋₄-R_{C-heteroaryl}, or
 - (X) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring.
- 5. A method for inhibiting β -secretase activity according to claim 1 where R_1 is:
 - -CH₂-(R_{1-aryl}) where R_{1-aryl} is phenyl.
- 6. A method for inhibiting β -secretase activity according to claim 5 where R_1 is:

-CH₂-(R_{1-aryl}) where R_{1-aryl} is phenyl substituted with two -F.

- 7. A method for inhibiting β -secretase activity according to claim 6 where phenyl is substituted with two –F in the 3- and 5- positions giving 3,5-difluorophenyl.
- 8. A method for inhibiting β -secretase activity according to claim 1 where R_2 is:
 - (I) -H,
 - (II) C₁-C₆ alkyl, or
 - (III) -(CH₂)₀₋₄-R₂₋₁ where R_{2-1} is R_{1-aryl} .
- 9. A method for inhibiting β -secretase activity according to claim 1 where R_2 is:
 - (II) C_1 - C_6 alkyl, or
 - (III) benzyl.
- 10. A method for inhibiting β -secretase activity according to claim 1 where R_N is $R_{N-1}-X_N$ where X_N is -CO-, where R_{N-1} is R_{N-aryl} where R_{N-aryl} is phenyl substituted with one $-CO-NR_{N-2}R_{N-3}$ where the substitution on phenyl is 1,3-.
- 11. A method for inhibiting β -secretase activity according to claim 1 where R_{N-2} and R_{N-3} are the same and are C_3 alkyl.
- 12. A method for inhibiting β -secretase activity according to claim 1 where R_N is $R_{N\text{-}1}\text{-}X_N\text{-} \text{ where } X_N \text{ is--CO-, where } R_{N\text{-}1} \text{ is } R_{N\text{-}aryl} \text{ where } R_{N\text{-}aryl} \text{ is phenyl}$ substituted with one C_1 alkyl and with one -CO-NR_{N-2}R_{N-3} where the substitution on the phenyl is 1,3,5-.
- 13. A method for inhibiting β -secretase activity according to claim 12 where R_{N-2} and R_{N-3} are the same and are C_3 alkyl.
- 14. A method for inhibiting β -secretase activity according to claim 1 where R_N is

 R_{N-1} - X_N - where X_N is -CO-, where R_{N-1} is $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is substituted with one -CO- $NR_{N-2}R_{N-3}$.

- 15. A method for inhibiting β -secretase activity according to claim 1 where R_{N-2} and R_{N-3} are the same and are $-C_3$ alkyl.
- 16. A method for inhibiting β -secretase activity according to claim 1 where R_N is:

A- X_N - where X_N is -CO-, where A is:

- (C) $C_{10}H_7$ -CH(OH)-, or
- (D) t-butoxy.
- 17. A method for inhibiting β -secretase activity according to claim 1 where R_C is:
 - (V) -($CR_{C-x}R_{C-y}$)₀₋₄- R_{C-aryl} ,
 - (VI) -(CH₂) $_{0\text{--}4}$ -R_{C-heteroaryl},
 - (VII) -(CH_2)₀₋₄- R_{C -heterocycle</sub>,
- (X) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are unsubstituted or substituted with one or two:
 - (A) C₁-C₃ alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br or -I,
 - (D) C₁-C₃ alkoxy,
 - (E) $-OCF_3$, or

(XVIII) -H.

- 18. A method for inhibiting β -secretase activity according to claim 17 where R_C is:
 - (V) -($CR_{C-x}R_{C-y}$)₀₋₄- R_{C-aryl} where R_{C-aryl} is phenyl.
- 19. A method for inhibiting β -secretase activity according to claim 18 where phenyl substituted in the 3-position or 3,5-positions.
- 20. A method for inhibiting β -secretase activity according to claim 17 where R_C is:

- 21. A method for inhibiting β -secretase activity according to claim 17 where R_C is:
 - (VII) -CH₂-R_{C-heterocycle}.
- 22. A method for inhibiting β -secretase activity according to claim 17 where R_C is:
 - (X) -cyclohexyl ring fused to a phenyl ring.
- 23. A method for inhibiting β -secretase activity according to claim 1 where R_C is:
 - (I) $-(C_1-C_{10})$ alkyl $-K_{1-3}$ where each K is:
 - (1) H
 - (11) carboxyl,
 - (16) amino unsubstituted or substituted with C₁-C₆ alkyl; or
 - (18) carboxyl methyl ester;
 - (II) $-(CH_2)_{0-3}$ -J-[-K]₁₋₃, where J is:
 - (A) a 5 to 7 atom monocyclic aryl group, or
 - (B) a 5 to 10 atom multicyclic cycloalkyl group,

and each K is:

- (1) H
- (3) C_1 - C_3 alkoxy, or
- (11) carboxyl,
- (III) $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl where cycloalkyl can be unsubstituted or substituted with one, two or three:
 - (B) -CO-OH,
 - (C) -CO-O-(C_1 - C_4 alkyl), or
 - (E) C_1 - C_6 alkoxy,
- (IV) - $(CH_2)_{2-6}$ -OH,
- $(V) (CH_2)_{0-4} R_{C-arvl}$
- (VI) -(CH₂)₀₋₄-R_{C-heteroaryl},
- (VII) -(CH₂)₀₋₄- $R_{C\text{-heterocycle}}$, or
- (XVIII) $-(C_2-C_8)$ alkynyl.

- 24. A method for inhibiting β -secretase activity according to claim 1 where R_C is:
 - (I) -(C_1 - C_{10})alkyl-K where K is H, carboxyl, carboxyl methyl ester, amino unsubstituted or substituted with C_1 - C_6 alkyl,
 - (II) a benzyl or phenylpropyl group substituted with a carboxyl group,
 - (III) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl is cyclohexyl, cyclohexyl substituted with 1 or 2 carboxyl groups, or cyclohexyl substituted with 1 or 2 alkoxy groups,
 - (V) -(CH₂)₀₋₄-phenyl substituted or unsubstituted with F,
 - (VI) -(CH₂) $_{0-4}$ -heteroaryl, or
 - (VII) selected from -(CH₂)₀₋₄-morpholinyl and -(CH₂)₀₋₄-tetrahydrofuryl.
- 25. A method for inhibiting β -secretase activity according to claim 1 where R_C is:
 - (I) C₅H₁₀-K or C₇H₁₄-K where K is carboxyl or carboxyl methyl ester,
 - (II) a benzyl or phenylpropyl group substituted with a carboxyl group at the 5-position, or
 - (III) a cyclohexyl ring substituted at the 3- and 5- positions or at the 4-position with a carboxyl group.
- 26. A method for inhibiting β -secretase activity according to claim 1 where R_1 is:
 - (I) C_1 - C_5 alkyl,
 - (II) -(CH₂)₁₋₂-S-CH₃,
 - (IV) C_1 - C_5 alkenyl,
 - (V) -(CH₂)₀₋₃-(R_{1-aryl}) where R_{1-aryl} is as defined above, and
 - (VI) -(CH₂) $_{0-3}$ -(R_{1-heteroaryl}) where R_{1-heteroaryl} is as defined above, wherein any of the above are unsubstituted or substituted with up to two C₁-C₃ alkyl, -F, -Cl, -Br, -I, or -CF₃;

where R₂ is:

- (I) -H,
- (II) C_1 - C_6 alkyl, or

(III) -(CH₂)₀₋₃-R₂₋₁ where R₂₋₁ is (C₃-C₆)cycloalkyl, R_{1-aryl} or R_{1-heteroaryl} where R₁₋aryl is a 5 or 6-membered aryl group and R_{1-heteroaryl} is as defined above;

where R_N is:

(II) A- X_N - where X_N is -CO-,

wherein A is

(A)
$$-T-E-(Q)_{m'}$$
,
(1) where $-T$ is

where

- (a) x = 1 when y = 1 and x = 2 when y = 0,
- (b) m is 0, 1, 2 or 3,
- (c) the values of x and y vary independently on each carbon when m is 2 and 3, and
- (d) R''' varies independently on each carbon and is H, (C_1-C_2) alkyl, phenyl, or phenyl (C_1-C_3) alkyl;

(2) -E is

- (a) C₁-C₅ alkyl, but only if m' does not equal 0,
- (b) methylthioxy(C_2 - C_4)alkyl,
- (c) an aryl group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (d) a heterocyclic group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (e) a mono or fused ring cycloalkyl group having 5 to 10 carbon atoms,
- (f) biphenyl,
- (g) diphenyl ether,

- (h) diphenylketone,
- (i) phenyl(C₁-C₈)alkyloxyphenyl, or
- (j) C_1 - C_6 alkoxy;

(3) -Q is

- (a) C_1 - C_3 alkyl,
- (b) C_1 - C_3 alkoxy,
- (c) C₁-C₃ alkylthioxy,
- (d) C₁-C₆ alkylacylamino,
- (e) C₁-C₆ alkylacyloxy,
- (f) amido (including primary, C₁-C₆ alkyl and phenyl secondary and tertiary amino moieties),
- (g) C₁-C₆ alkylamino
- (h) phenylamino,
- (i) carbamyl (including C_1 - C_6 alkyl and phenyl amides and esters),
- (j) carboxyl (including C₁-C₆ alkyl and phenyl esters),
- (k) $carboxy(C_2-C_5)alkoxy$,
- (l) carboxy(C₂-C5)alkylthioxy,
- (m) heterocyclylacyl,
- (n) heteroarylacyl, or
- (o) hydroxyl;
- (4) m' is 0, 1, 2 or 3;
- (B) $-E(Q)_{m''}$ wherein E and -Q are as defined as above and m'' is 0, 1, 2, or 3;
- (C) -T-E wherein -E and -Q are as defined as above; or
- (D) -E wherein -E is as defined as above;

where R_C is:

(I) $-(C_1-C_{10})$ alkyl $-K_{1-3}$

- (E) the alkyl chain optionally contains a combination of up to three atoms of oxygen and sulfur each such atom replacing one carbon,
- (F) each K is:
- (2) C_1 - C_3 alkyl,
- (3) C_1 - C_3 alkoxy,
- (4) C₁-C₃ alkylthioxy,
- (5) C₁-C₆ alkylacylamino,
- (6) C₁-C₆ alkylacyloxy,
- (7) amido,
- (8) C₁-C₆ alkylamino
- (9) phenylamino,
- (10) carbamyl,
- (11) carboxyl,
- (12) $\operatorname{carboxy}(C_2-C_5)\operatorname{alkoxy}$,
- (13) carboxy(C₂-C5)alkylthioxy,
- (14) heterocyclylacyl,
- (15) heteroarylacyl,
- (16) amino unsubstituted or substituted with C_1 - C_6 alkyl,
- (17) hydroxyl, or
- (18) carboxyl methyl ester;
- (II) $-(CH_2)_{0-3}$ -J-[(-(CH₂)₀₋₃-K]₁₋₃ where K is:
 - (2) C_1 - C_3 alkyl,
 - (3) C_1 - C_3 alkoxy,
 - (4) C₁-C₃ alkylthioxy,
 - (5) C₁-C₆ alkylacylamino,
 - (6) C₁-C₆ alkylacyloxy,
 - (7) amido,
 - (8) C_1 - C_6 alkylamino
 - (9) phenylamino,
 - (10) carbamyl,

- (11) carboxyl,
- (12) $\operatorname{carboxy}(C_2-C_5)\operatorname{alkoxy}$,
- (13) carboxy(C₂-C5)alkylthioxy,
- (14) heterocyclylacyl,
- (15) heteroarylacyl,
- (16) amino unsubstituted or substituted with C_1 - C_6 alkyl,
- (17) hydroxyl, or
- (18) carboxyl methyl ester;

J is:

- (A) a 5 to 7 atom monocyclic aryl group,
- (B) a 8 to 12 atom multicyclic aryl group,
- (C) a 5 to 7 atom monocyclic heterocyclic group,
- (D) a 8 to 12 atom multicyclic heterocyclic group, or
- (E) a 5 to 10 atom monocyclic or multicyclic cycloalkyl group;

and where B is O or NH.

- 27. A method for inhibiting β-secretase activity according to claim 1 where the pharmaceutically acceptable salt is a salt of hydrochloric, hydrobromic, hydroiodic, nitric, sulfuric, phosphoric, citric, methanesulfonic, CH₃-(CH₂)_n-COOH where n is 0 thru 4, HOOC-(CH₂)n-COOH where n is as defined above, HOOC-CH=CH-COOH and φ-COOH acid or triethanolamine, N-methylglucamine, diethanolamine, ethanolamine, tris(hydroxymethyl)aminomethane (TRIS), ammonia, or carbonate, bicarbonate, phosphonate, or hydroxide salts of an alkali or alkaline earth metal.
- 28. A method for inhibiting β -secretase activity according to claim 1 wherein said compound is:

N-[(1*S*, 2*S*, 4*R*)-1-(3,5-Difluorobenzyl)-4-(*syn*, *syn*)-(3,5-dimethoxycyclohexylcarbamoyl)-2-hydroxyhexyl]-*N*,*N*-dipropylisophathalamide,

- 6-[6-(3,5-Difluorophenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxyhexanoylamino]-hexanoic acid,
- 5-[6-(3,5-Difluorophenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxyhexanoylamino]-pentanoic acid,
- 4-[6-(3,5-Difluorophenyl)-5-(S)-(3-dipropylcarbamoylbenzoylamino)-2-(R)-ethyl-4-(S)-hydroxyhexanoylamino]-butyric acid,
- 3-[6-(3,5-Difluorophenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxyhexanoylamino]-propionic acid,
- 8-[6-(3,5-Difluorophenyl)-5-(*S*)-(3-dipropylcarbamoylbenzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxyhexanoylamino]-octanoic acid,
- 8-[6-(3,5-Difluoro-phenyl)-5-(*S*)-(3-dipropylcarbamoyl-benzoylamino)-2-(*R*)-ethyl-4-(*S*)-hydroxy-hexanoylamino]-octanoic acid methyl ester,
- N-[4-(R)-Butylcarbamoyl-1-(S)-(3,5-difluoro-benzyl)-2-(S)-hydroxy-hexyl]-N, N-dipropyl-isophthalamide,
- $N-[1-(S)-(3,5-\text{Difluoro-benzyl})-2-(S)-\text{hydroxy-}4-(R)-\text{isobutylcarbamoyl-hexyl}]-N,N-dipropyl-isophthalamide,}$
- N-[4-(R)-Benzylcarbamoyl-1-(S)-(3,5-difluoro-benzyl)-2-(S)-hydroxy-hexyl]-N,N-dipropyl-isophthalamide,
- N-[4-(R)-(Cyclohexylmethyl-carbamoyl)-1-(S)-(3,5-difluoro-benzyl)-2-(S)-hydroxy-hexyl]-N,N-dipropyl-isophthalamide,
- N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-(piperidine-1-carbonyl)-hexyl]-N,N-dipropyl-isophthalamide,
- N-[1-(S)-(3,5-Difluoro-benzyl)-4-(R)-(2-dimethylamino-ethylcarbamoyl)-2-(S)-hydroxy-hexyl-N,N-dipropyl-isophthalamide,
- N-[4-(R)-(Butyl-methyl-carbamoyl)-1-(S)-(3,5-difluoro-benzyl)-2-(S)-hydroxy-hexyl]-N,N-dipropyl-isophthalamide,
- N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-(3-hydroxy-propylcarbamoyl)-hexyl]-N,N-dipropyl-isophthalamide,
- 4-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-2-(R)-ethyl-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid methyl ester,

```
N-[1-(S)-(3,5-\text{Difluoro-benzyl})-4-(R)-(3-\text{dimethylamino-propylcarbamoyl})-2-(S)-hydroxy-hexyl]-N,N-dipropyl-isophthalamide,
```

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-2-(R)-ethyl-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-4-(S)-

hydroxy-2-(R)-methyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

hydroxy-2-(R)-propyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-4-(S)-

hydroxyl-2-(R)-isobutyl-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-benzoylamino)-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

benzoylamino)-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-5-methyl-benzoylamino)-

2-(R)-ethyl-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid,

4-(anti)-([6-(3,5-Difluoro-phenyl)-5-(S)-(3-dipropylcarbamoyl-5-methyl-benzoylamino)-

2-(R)-ethyl-4-(S)-hydroxy-hexanoylamino]-methyl)-cyclohexanecarboxylic acid methyl ester,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-2-(*S*)-hydroxy-4-(*R*)-(2-morpholin-4-yl-ethylcarbamoyl)-pentyl]-5-methyl-*N*,*N*-dipropyl-isophthalamide,

N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-isobutylcarbamoyl-pentyl]-5-methyl-N,N-dipropyl-isophthalamide,

N-[4-(R)-(2-Diethylamino-ethylcarbamoyl)-1-(S)-(3,5-difluoro-benzyl)-2-(S)-hydroxypentyl]-5-methyl-N,N-dipropyl-isophthalamide,

N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-[(tetrahydro-furan-2-ylmethyl)-carbamoyl]-pentyl)-5-methyl-<math>N,N-dipropyl-isophthalamide,

N-[4-(*R*)-(Adamantan-2-ylcarbamoyl)-1-(*S*)-(3,5-difluoro-benzyl)-2-(*S*)-hydroxy-pentyl]-5-methyl-*N*,*N*-dipropyl-isophthalamide,

N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-methyl-5-morpholin-4-yl-5-oxo-pentyl]-5-methyl-N,N-dipropyl-isophthalamide,

N-[4-(R)-Benzylcarbamoyl-1-(S)-(3,5-difluoro-benzyl)-2-(S)-hydroxy-pentyl]-5-methyl-N,N-dipropyl-isophthalamide,

N-[1-(*S*)-(3,5-Difluoro-benzyl)-4-(*R*)-(4-fluoro-benzylcarbamoyl)-2-(*S*)-hydroxy-pentyl]-5-methyl-*N*,*N*-dipropyl-isophthalamide,

N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-phenethylcarbamoyl-pentyl]-5-methyl-N,N-dipropyl-isophthalamide,

N-[1-(S)-(3,5-Difluoro-benzyl)-4-(R)-[(furan-2-ylmethyl)-carbamoyl]-2-(S)-hydroxy-pentyl)-5-methyl-<math>N,N-dipropyl-isophthalamide, or

N-[1-(S)-(3,5-Difluoro-benzyl)-2-(S)-hydroxy-4-(R)-(prop-2-ynylcarbamoyl)-pentyl]-5-methy-N,N-dipropyl-isophthalamide.

29. A method for inhibiting β -secretase activity according to claim 1 wherein said compound is:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

$$\begin{array}{c} F \\ O \\ H \\ O \\ CO_2H \\$$

- 30. The method of claim 1, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 0.1nM to about 200μM.
- 31. The method of claim 30, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 10nM to about 100µM.
- 32. The method of claim 31, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 100nM to about 50µM.
- 33. The method of claim 32, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 1μM to about 10μM.
- 34. The method of claim 1, wherein said β -secretase is exposed to said compound *in vitro*.
- 35. The method of claim 1, wherein said β -secretase is exposed to said compound in a cell.
- 36. The method of claim 35, wherein said cell is in an animal.
- 37. The method of claim 36, wherein said animal is a human.
- 38. A method for inhibiting amyloid precursor protein (APP) cleavage in a reaction mixture at a site between Met596 and Asp597, numbered for the APP-695 amino acid isotype; or at a corresponding site of an isotype or mutant thereof, comprising exposing said reaction mixture to an effective inhibitory amount of a hydroxyethylene compound of the formula

$$R_N$$
 N
 H
 OH
 R_2
 R_c
 R_c

where R₁ is:

- (I) C_1 - C_6 alkyl, unsubstituted or substituted with one, two or three C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, $-NH_2$, $-C\equiv N$, $-CF_3$, or $-N_3$,
- (II) $-(CH_2)_{1-2}$ -S-CH₃,
- (III) -CH₂-CH₂-S-CH₃,
- (IV) $-CH_2$ -(C_2 - C_6 alkenyl) unsubstituted or substituted by one -F,
- (V) -(CH₂)₀₋₃-(R_{1-aryl}) where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl, tetralinyl unsubstituted or substituted on the aryl ring with one or two of the following substituents which can be the same or different:
 - (A) C_1 - C_3 alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br and -I,
 - (D) C_1 - C_3 alkoxy,
 - (E) –O-CF₃,
 - (F) -NH₂,
 - (G) -OH, or
 - (H) -C≡N,
- (VI) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is 0, 1, 2, or 3 and R_{1-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,

- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,

- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β-carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{0\text{-}3}$ - by any ring atom of the parent R_{N^-} heteroaryl group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_3 alkyl,
- $(2) CF_3$,
- (3) -F, Cl, -Br, or -I,
- (4) C_1 - C_3 alkoxy,
- (5) –O-CF₃,
- $(6) NH_2,$
- (7) -OH, or
- (8) -C≡N,

with the proviso that when n_1 is zero $R_{1\text{-heteroary}}$ is not bonded to the carbon chain by nitrogen, or

(VII) -(CH₂)_{n1}-(R₁-heterocycle) where n_1 is as defined above and

R₁-heterocycle is:

(A) morpholinyl,

- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,
- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,
- (K) tetrahydrofuranyl, or
- (L) tetrahydrothiophenyl,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heterocycle is unsubstituted or substituted with one or two:

- (1) = 0,
- (2) C₁-C₃ alkyl,
- $(3) CF_3$,
- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_3 alkoxy,
- (6) -O-CF₃,
- $(7) NH_2,$
- (8) -OH, or
- (9) -C \equiv N,

with the proviso that when n_1 is zero $R_{1-heterocycle}$ is not bonded to the carbon chain by nitrogen;

where R₂ is:

- (I) -H,
- (II) C₁-C₆ alkyl, or
- (III) -(CH₂)₀₋₄-R₂₋₁ where R_{2-1} is (C₃-C₆)cycloalkyl, R_{1-aryl} or $R_{1-heteroaryl}$ where R_{1-aryl} and $R_{1-heteroaryl}$ are as defined above,

where R_N is:

- (I) R_{N-1} - X_N where X_N is:
 - (A) –CO-,
 - (B) $-SO_{2}$ -,
 - (C) -(CR'R")₁₋₆ where R' and R" are the same or different and are -H or C_1 - C_4 alkyl,
 - (D) –CO-(CR'R") $_{1\text{-}6}$ -X $_{N\text{-}1}$ where X $_{N\text{-}1}$ is –O-, -S- and –NR'R"- and where R' and R" are as defined above,
 - (E) a single bond;

where R_{N-1} is:

- (A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl and 2-naphthyl unsubstituted or substituted with one, two, three or four of the following substituents which can be the same or different and are:
 - (1) C_1 - C_6 alkyl,
 - (2) –F, -Cl, -Br, or -I,
 - (3) OH,
 - $(4) -NO_2$,
 - (5) -CO-OH,
 - (6) -C≡N,
 - (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) $-NH_2$,
 - (c) -C₁-C₆ alkyl unsubstituted or substituted with one to three -F, -Cl, -Br, or -I,
 - (d) -C3-C7 cycloalkyl,
 - (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,

- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₁-C₆ alkenyl with one or two double bonds,
- (h) $-C_1-C_6$ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, or
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (8) $-CO-(C_3-C_{12} \text{ alkyl}),$
- (9) -CO-(C₃-C₆ cycloalkyl),
- (10) -CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (11) -CO- $R_{1-heterocycle}$ where $R_{1-heterocycle}$ is as defined above,
- (12) -CO-R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C₁-C₃ alkyl,
- (13) -CO-O- R_{N-5} where R_{N-5} is:
 - (a) C₁-C₆ alkyl, or
 - (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above.
- (14) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above,
- (15) -SO- $(C_1$ - C_8 alkyl),
- $(16) -SO_2 (C_3 C_{12} \text{ alkyl}),$
- (17) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C_1 - C_3 alkyl)₂,
- (19) -N-CS-N(C_1 - C_3 alkyl)₂,
- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above.
- (21) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,

- (23) –O-CO- $(C_1$ - C_6 alkyl),
- (24) -O-CO-N(C₁-C₃ alkyl)₂,
- (25) -O-CS-N(C_1 - C_3 alkyl)₂,
- $(26) O (C_1 C_6 \text{ alkyl}),$
- (27) -O-(C2-C5 alkyl)-COOH,
- (28) -S- $(C_1$ - C_6 alkyl),
- (29) C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 –F,
- (30) -O-(C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F, or
- $(31) O \phi$,
- (B) -R_{N-heteroaryl} where R_{N-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pyridazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,
 - (O) phthalazinyl,
 - (P) imidazolyl,
 - (Q) isoxazolyl,
 - (R) pyrazolyl,
 - (S) oxazolyl,

- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β -carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or

(YY) pyridopyridinyl,

where the $R_{N\text{-heteroaryl}}$ group is bonded by any atom of the parent $R_{N\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{N\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_6 alkyl,
- (2) –F, -Cl, -Br, or I,
- (3) -OH,
- $(4) NO_2$,
- (5) -CO-OH,
- (6) -C≡N,
- (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) $-NH_2$,
 - (c) $-C_1-C_6$ alkyl unsubstituted or substituted with 1, 2, or 3 -F, -Cl, -Br, or -I,
 - (d) -C₃-C₇ cycloalkyl,
 - (e - $(C_1-C_2 \text{ alkyl})$ - $(C_3-C_7 \text{ cycloalkyl})$,
 - (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
 - (g) $-C_1-C_6$ alkenyl with one or two double bonds,
 - (h) -C₁-C₆ alkynyl with one or two triple bonds,
 - (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
 - (j) -R_{1-aryl} where R_{1-aryl} is as defined above, or

- (k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above,
- (8) -CO-(C_3 - C_{12} alkyl),
- (9) $-CO-(C_3-C_6 \text{ cycloalkyl})$,
- (10) -CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (11) -CO- $R_{1-heterocycle}$ where $R_{1-heterocycle}$ is as defined above,
- (12) -CO- R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C_1 - C_3 alkyl,
- (13) -CO-O- R_{N-5} where R_{N-5} is:
 - (a) C₁-C₆ alkyl, or
 - (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above,
- (14) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined above,
- (15) -SO-(C_1 - C_8 alkyl),
- (16) -SO₂-(C₃-C₁₂ alkyl),
- (17) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C₁-C₃ alkyl)₂,
- (19) -N-CS-N(C_1 - C_3 alkyl)₂,
- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,
- (23) –O-CO- $(C_1$ - C_6 alkyl),
- (24) -O-CO-N(C₁-C₃ alkyl)₂,

- (25) -O-CS-N(C₁-C₃ alkyl)₂,
- (26) $-O-(C_1-C_6 \text{ alkyl})$,
- (27) -O-(C2-C5 alkyl)-COOH, or
- (28) -S-(C₁-C₆ alkyl),
- (C) $-R_{N-aryl}-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (D) $-R_{N-aryl}-R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (E) $-R_{N-heteroaryl}-R_{N-aryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (F) $-R_{N-heteroaryl}-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (G) -R_N-aryl-O-R_N-aryl where -R_N-aryl is as defined above,
- (H) $-R_{N-aryl}-S-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (I) $-R_{N-heteroaryl}$ -O- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (J) - $R_{N\text{-}heteroaryl}$ -S- $R_{N\text{-}heteroaryl}$ where $R_{N\text{-}heteroaryl}$ is as defined above,
- (K) $-R_{N-aryl}$ -CO- R_{N-aryl} where $-R_{N-aryl}$ is as defined above,
- (L) $-R_{N-aryl}$ -CO- $R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $R_{N-heteroaryl}$ are as defined above,
- (M) $-R_{N-aryl}-SO_2-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (N) - $R_{N\text{-heteroaryl}}$ -CO- $R_{N\text{-heteroaryl}}$ where $R_{N\text{-heteroaryl}}$ is as defined above,
- (O) - $R_{N-heteroaryl}$ -SO₂- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (P) $-R_{N\text{-aryl}}$ -O-(C₁-C₈ alkyl)- φ where $R_{N\text{-aryl}}$ is as defined above,
- (Q) $-R_{N-aryl}$ -S-(C₁-C₈ alkyl)- ϕ where R_{N-aryl} is as defined above,
- (R) $-R_{N\text{-heteroaryl}}$ -O-(C₁-C₈ alkyl)- φ where $R_{N\text{-heteroaryl}}$ is as defined above, or
- (S) $-R_{N-heteroaryl}$ -S-(C₁-C₈ alkyl)- ϕ where $R_{N-heteroaryl}$ is as defined above,
- (II) A- X_N where X_N is –CO-, wherein A is

(A)
$$-T-E-(Q)_{m'}$$
,
(1) where $-T$ is

where

- (a) x = 1 when y = 1 and x = 2 when y = 0,
- (b) m is 0, 1, 2 or 3,
- (c) the values of x and y vary independently on each carbon when m is 2 and 3, and
- (d) R''' varies independently on each carbon and is H, (C_1-C_2) alkyl, phenyl, or phenyl (C_1-C_3) alkyl;

(2) -E is

- (a) C₁-C₅ alkyl, but only if m' does not equal 0,
- (b) methylthioxy(C₂-C₄)alkyl,
- (c) an aryl group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (d) a heterocyclic group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (e) a mono or fused ring cycloalkyl group having 5 to 10 carbon atoms,
- (f) biphenyl,
- (g) diphenyl ether,
- (h) diphenylketone,
- (i) $phenyl(C_1-C_8)alkyloxyphenyl$, or
- (j) C₁-C₆ alkoxy;

(3) -Q is

(a) C_1 - C_3 alkyl,

- (b) C₁-C₃ alkoxy,
- (c) C₁-C₃ alkylthioxy,
- (d) C₁-C₆ alkylacylamino,
- (e) C₁-C₆ alkylacyloxy,
- (f) amido (including primary, C₁-C₆ alkyl and phenyl secondary and tertiary amino moieties),
- (g) C₁-C₆ alkylamino
- (h) phenylamino,
- (i) carbamyl (including C_1 - C_6 alkyl and phenyl amides and esters),
- (j) carboxyl (including C_1 - C_6 alkyl and phenyl esters),
- (k) $carboxy(C_2-C_5)alkoxy$,
- (l) carboxy(C2-C5)alkylthioxy,
- (m) heterocyclylacyl,
- (n) heteroarylacyl, or
- (o) hydroxyl;
- (4) m' is 0, 1, 2 or 3;
- (B) $-E(Q)_{m''}$ wherein E and -Q are as defined as above and m'' is 0, 1, 2, or 3;
- (C) -T-E wherein -E and -Q are as defined as above; or
- (D) -E wherein -E is as defined as above;
- (III) $-CO-(C_1-C_6 \text{ alkyl})$ where alkyl is unsubstituted or substituted with one or two:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) –CO-O- R_{N-8} where R_{N-8} is –H, C_1 - C_6 alkyl or - φ ,

- (E) $-CO-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (F) -CO-R_{N-4} where R_{N-4} is as defined above,
- (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
- (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (I) -NH-CO-(C_1 - C_6 alkyl),
- (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
- (K) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO-(C_1 - C_6 alkyl),
- (N) -O-CO-NR $_{N-8}$ R $_{N-8}$ where the R $_{N-8}$ is the same or different and are as defined above, or
- (O) -O-(C₁-C₅ alkyl)-COOH,
- (IV) $-CO-(C_1-C_3 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$ where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{\text{N-2}}\text{R}_{\text{N-3}}$ where $\text{R}_{\text{N-2}}$ and $\text{R}_{\text{N-3}}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2$ -(C₁-C₈ alkyl),
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,

- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO- $(C_1$ - C_6 alkyl),
- (N) -O-CO-NR $_{N-8}$ R $_{N-8}$ where the R $_{N-8}$ are the same or different and are as defined above, or
- (O) -O-(C₁-C₅ alkyl)-COOH,
- (V) -CO-(C₁-C₃ alkyl)-S-(C₁-C₃ alkyl) where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{\text{N-2}}\text{R}_{\text{N-3}}$ where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are the same or different and are as defined above,
 - (F) -CO-R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO-(C_1 - C_6 alkyl),
 - (N) -O-CO-NR $_{\text{N-8}}$ R $_{\text{N-8}}$ where the R $_{\text{N-8}}$ are the same or different and are as defined above, or
 - (O) -O-(C_1 - C_5 alkyl)-COOH,
- $$\label{eq:co-chi} \begin{split} \text{(VI)} &\text{CO-CH}(\text{-}(CH_2)_{0\text{-}2}\text{-}O\text{-}R_{N\text{-}10})\text{-}(CH_2)_{0\text{-}2}\text{-}R_{N\text{-}aryl}/R_{N\text{-}heteroaryl}) \text{ where } R_{N\text{-}aryl} \\ &\text{and } R_{N\text{-}heteroaryl} \text{ are as defined above, where } R_{N\text{-}10} \text{ is:} \end{split}$$
 - (A) -H,
 - (B) C_1 - C_6 alkyl,
 - (C) C3-C7 cycloalkyl,

- (D) C₂-C₆ alkenyl with one double bond,
- (E) C₂-C₆ alkynyl with one triple bond,
- (F) R_{1-arvl} where R_{1-arvl} is as defined above, or
- (G) R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above;

where B is -O-, -NH-, or -N(C_1 - C_6 alkyl)-; where R_C is:

- (I) $-(C_1-C_{10})$ alkyl $-K_{1-3}$ in which:
 - (A) the alkyl chain is unsubstituted or substituted with one -OH,
 - (B) the alkyl chain is unsubstituted or substituted with one C_1 - C_6 alkoxy unsubstituted or substituted with 1-5 -F,
 - (C) the alkyl chain is unsubstituted or substituted with one $-0-\phi$,
 - (D) the alkyl chain is unsubstituted or substituted with 1-5 -F,
 - (E) the alkyl chain is unsubstituted or substituted with a combination of up to three atoms of oxygen and sulfur each such atom replacing one carbon,
 - (F) each K is:
- (1) H,
- (2) C_1 - C_3 alkyl,
- (3) C_1 - C_3 alkoxy,
- (4) C₁-C₃ alkylthioxy,
- (5) C₁-C₆ alkylacylamino,
- (6) C₁-C₆ alkylacyloxy,
- (7) amido
- (8) C_1 - C_6 alkylamino
- (9) phenylamino,
- (10) carbamyl
- (11) carboxyl
- (12) $\operatorname{carboxy}(C_2-C_5)\operatorname{alkoxy}$,
- (13) carboxy(C₂-C5)alkylthioxy,
- (14) heterocyclylacyl,

- (15) heteroarylacyl,
- (16) amino unsubstituted or substituted with C_1 - C_6 alkyl,
- (17) hydroxyl, or
- (18) carboxyl methyl ester;
- (II)-(CH₂)₀₋₃-J-[(-(CH₂)₀₋₃-K]₁₋₃ where K is as defined above and J is:
 - (A) a 5 to 7 atom monocyclic aryl group,
 - (B) a 8 to 12 atom multicyclic aryl group,
 - (C) a 5 to 7 atom heterocyclic group,
 - (D) a 8 to 12 atom multicyclic heterocyclic group, or
 - (E) a 5 to 10 atom monocyclic or multicyclic cycloalkyl group;
- (III) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl can be unsubstituted or substituted with one, two or three
 - (A) C₁-C₃ alkyl unsubstituted or substituted with 1, 2, 3, or 4 –F, -Cl, -Br, or -I,
 - (B) -CO-OH,
 - (C) -CO-O-(C_1 - C_4 alkyl),
 - (D) -OH, or
 - (E) C_1 - C_6 alkoxy,
- (IV) $-(CH_2)_{2-6}$ -OH,
- (V) -($CR_{C-x}R_{C-y}$)₀₋₄- R_{C-aryl} where R_{C-x} and R_{C-y} are -H, C_1 - C_4 alkyl and Φ and R_{C-aryl} is the same as R_{N-aryl} ,
- (VI) -(CH₂)₀₋₄-R_{C-heteroaryl} where R_{C-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,

- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) isoxazolyl,
- (Q) pyrazolyl,
- (R) indolizinyl,
- (S) indazolyl,
- (T) benzothiazolyl,
- (U) benzimidazolyl,
- (V) benzofuranyl,
- (W) furanyl,
- (X) thienyl,
- (Y) pyrrolyl,
- (Z) oxadiazolyl,
- (AA) thiadiazolyl,
- (BB) triazolyl,
- (CC) tetrazolyl,
- (DD) 1, 4-benzodioxan
- (EE) purinyl,
- (FF) oxazolopyridinyl,
- (GG) imidazopyridinyl,
- (HH) isothiazolyl,
- (II) naphthyridinyl,
- (JJ) cinnolinyl,
- (KK) carbazolyl,
- (LL) β-carbolinyl,

- (MM) isochromanyl,
- (NN) chromanyl,
- (OO) furazanyl,
- (PP) tetrahydroisoquinoline,
- (QQ) isoindolinyl,
- (RR) isobenzotetrahydrofuranyl,
- (SS) isobenzotetrahydrothienyl,
- (TT) isobenzothiophenyl,
- (UU) benzoxazolyl, or
- (VV) pyridopyridinyl,
- (VII) -(CH₂)₀₋₄-R_{C-heterocycle} where R_{C-heterocycle} is the same as R_{1-heterocycle},
- (VIII) -C(R_{C-1})(R_{C-2})-CO-NH- R_{C-3} where R_{C-1} and R_{C-2} are the same or different and are:
 - (A) H,
 - (B) $-C_1-C_6$ alkyl,
 - (C) -(C₁-C₄ alkyl)- $R_{C'-aryl}$ where $R_{C'-aryl}$ is as defined above for R_{1-aryl} ,
 - (D) -(C₁-C₄ alkyl)-R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above,
 - (E) -(C₁-C₄ alkyl)-R_{C-heterocycle} where R_{C-heterocycle} is as defined above,
 - (F) -R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above,
 - (G) -R_{C-heterocycle} where R_{C-heterocycle} is as defined above,
 - (H) $(CH_2)_{1-4}$ -OH,
 - (I) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C'-aryl} where R_{C-4} is -O-, -S-, -NH- or -NHR_{C-5}- where R_{C-5} is C₁-C₆ alkyl, and where R_{C'-aryl} is as defined above,
 - (J) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C-heteroaryl} where R_{C-4} and $R_{C-heteroaryl}$ are as defined above, or
 - (K) -R_{C'-aryl} where R_{C'-aryl} is as defined above,

and where R_{C-3} is:

(A) -H,

- (B) $-C_1-C_6$ alkyl,
- (C) -R_{C'-aryl} where R_{C'-aryl} is as defined above,
- (D) -R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above,
- (E) $-R_{C-heterocycle}$ where $R_{C-heterocycle}$ is as defined above,
- (F) $-(C_1-C_4 \text{ alkyl})-R_{C_2-alyl}$ where R_{C_2-alyl} is as defined above.
- (G) -(C_1 - C_4 alkyl)- R_{C -heteroaryl</sub> where R_{C -heteroaryl} is as defined above, or
- (H) -(C₁-C₄ alkyl)-R_{C-heterocycle} where R_{C-heterocycle} is as defined above,
- (IX) -CH $(\phi)_2$,
- (X) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are unsubstituted or substituted with one, two or three:
 - (A) C_1 - C_3 alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br and -I,
 - (D) C_1 - C_3 alkoxy,
 - (E) -OCF₃,
 - (F) -NH₂,
 - (G) -OH, or
 - (H) -C≡N,
- (XI) $-CH_2-C\equiv CH$;
- (XII) $-(CH_2)_{0-1}$ -CHR_{C-5}-(CH₂)₀₋₁- ϕ where R_{C-5} is:
 - (A) –OH, or
 - (B)-CH₂-OH;
- (XIII) $-CH(-\phi)-CO-O(C_1-C_3 \text{ alkyl});$
- (XIV) –CH(-CH₂-OH)-CH(-OH)- ϕ -NO₂;
- $(XV) (CH_2)_2 O (CH_2)_2 OH;$
- (XVI) -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂;
- (XVII) $-(C_2-C_8)$ alkynyl; or
- (XVIII) -H; or a pharmaceutically acceptable salt thereof.

- 39. The method of claim 38, wherein said cleavage site is between Met652 and Asp653, numbered for the APP-751 isotype; between Met 671 and Asp 672, numbered for the APP-770 isotype,; between Leu596 and Asp597 of the APP-695 Swedish Mutation; between Leu652 and Asp653 of the APP-751 Swedish Mutation; or between Leu671 and Asp672 of the APP-770 Swedish Mutation.
- 40. The method of claim 38, wherein said reaction mixture is exposed in vitro.
- 41. The method of claim 38, wherein said reaction mixture is exposed in a cell.
- 42. The method of claim 41, wherein said cell is in an animal.
- 43. The method of claim 42, wherein said animal is a human.
- 44. A method for inhibiting production of amyloid beta peptide $(A\beta)$ in a cell, comprising administering to said cell an effective inhibitory amount of a hydroxyethylene compound of the formula

$$R_N$$
 N
 H
 OH
 R_2
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c

where R₁ is:

- (I) C_1 - C_0 alkyl, unsubstituted or substituted with one, two or three C_1 - C_2 alkyl, -F, -Cl, -Br, -I, -OH, -NH₂, -C \equiv N, -CF₃, or -N₃,
- (II) (CH₂)₁₋₂-S-CH₃,
- (III) – CH_2 - CH_2 -S- CH_3 ,
- (IV) -CH₂-(C₂-C₆ alkenyl) unsubstituted or substituted by one –F,
- (V) -(CH₂)₀₋₃-(R_{1-aryl}) where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl, tetralinyl unsubstituted or

substituted on the aryl ring with one or two of the following substituents which can be the same or different:

- (A) C_1 - C_3 alkyl,
- (B) – CF_3 ,
- (C) -F, Cl, -Br and -I,
- (D) C_1 - C_3 alkoxy,
- (E) -O-CF₃,
- (F) -NH₂,
- (G) -OH, or
- (H) -C≡N,

(VI) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is 0, 1, 2, or 3 and R_{1-heteroaryl} is:

- (A) pyridinyl,
- (B) pyrimidinyl,
- (C) quinolinyl,
- (D) indenyl,
- (E) indanyl,
- (F) benzothiophenyl,
- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,

- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β-carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{0\cdot3}$ - by any ring atom of the parent R_N . heteroaryl group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_3 alkyl,
- $(2) CF_3$,
- (3) -F, Cl, -Br, or -I,
- (4) C_1 - C_3 alkoxy,
- (5) -O-CF₃,
- (6) $-NH_2$,
- (7) -OH, or
- (8) -C≡N,

with the proviso that when n_1 is zero $R_{1-heteroaryl}$ is not bonded to the carbon chain by nitrogen, or

(VII) -(CH₂)_{n1}-(R₁-heterocycle) where n_1 is as defined above and

R₁-heterocycle is:

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,
- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,
- (K) tetrahydrofuranyl, or
- (L) tetrahydrothiophenyl,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heterocycle is unsubstituted or substituted with one or

two:

- (1) = 0,
- (2) C_1 - C_3 alkyl,
- $(3) CF_3$,
- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_3 alkoxy,
- $(6) O-CF_3$,
- $(7) NH_2,$
- (8) -OH, or
- (9) -C≡N,

with the proviso that when n_1 is zero $R_{1-heterocycle}$ is not bonded to the carbon chain by nitrogen;

where R2 is:

- (I) -H,
- (II) C_1 - C_6 alkyl, or
- (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is (C₃-C₆)cycloalkyl, R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above,

where R_N is:

- (I) R_{N-1} - X_N where X_N is:
 - (A) –CO-,
 - (B) $-SO_2$ -,
 - (C) -(CR'R")₁₋₆ where R' and R" are the same or different and are -H or C₁-C₄ alkyl,
 - (D) $-\text{CO-}(\text{CR'R''})_{1-6}\text{-}X_{N-1}$ where X_{N-1} is -O-, -S- and -NR'R''- and where R' and R'' are as defined above,
 - (E) a single bond;

where R_{N-1} is:

(A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl and 2-naphthyl unsubstituted or substituted with one, two, three or four of the following substituents which can be the same or different and are:

- (1) C_1 - C_6 alkyl,
- (2) -F, -Cl, -Br, or -I,
- (3) OH,
- $(4) -NO_2,$
- (5) -CO-OH,
- (6) -C≡N,
- (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) $-NH_2$,
 - (c) -C₁-C₆ alkyl unsubstituted or substituted with one to three -F, -Cl, -Br, or -I,
 - (d) -C₃-C₇ cycloalkyl,
 - (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
 - (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
 - (g) -C₁-C₆ alkenyl with one or two double bonds,
 - (h) -C₁-C₆ alkynyl with one or two triple bonds,
 - (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
 - (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, or
 - (k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above,
- (8) -CO-(C₃-C₁₂ alkyl),
- (9) -CO-(C3-C6 cycloalkyl),
- (10) -CO- $R_{1\text{-heteroaryl}}$ where $R_{1\text{-heteroaryl}}$ is as defined above,
- (11) -CO- $R_{1\text{-heterocycle}}$ where $R_{1\text{-heterocycle}}$ is as defined above,
- (12) -CO- R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each

group is unsubstituted or substituted with one or two C_1 - C_3 alkyl,

- (13) -CO-O- R_{N-5} where R_{N-5} is:
 - (a) C₁-C₆ alkyl, or
 - (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl}-is as defined above,
- (14) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined above,
- (15) -SO-(C_1 - C_8 alkyl),
- (16) -SO₂-(C₃-C₁₂ alkyl),
- (17) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C₁-C₃ alkyl)₂,
- (19) -N-CS-N(C_1 - C_3 alkyl)₂,
- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,
- (23) -O-CO- $(C_1$ - C_6 alkyl),
- (24) -O-CO-N(C_1 - C_3 alkyl)₂,
- (25) -O-CS-N(C₁-C₃ alkyl)₂,
- (26) -O-(C₁-C₆ alkyl),
- (27) -O-(C_2 - C_5 alkyl)-COOH,
- (28) -S-(C₁-C₆ alkyl),
- (29) C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 –F,
- (30) -O-(C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F, or
- (31) –O-φ,
- (B) $-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is:
 - (A) pyridinyl,

- (B) pyrimidinyl,
- (C) quinolinyl,
- (D) indenyl,
- (E) indanyl,
- (F) benzothiophenyl,
- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,

- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β-carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{N\text{-heteroaryl}}$ group is bonded by any atom of the parent $R_{N\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{N\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_6 alkyl,
- (2) -F, -Cl, -Br, or I,
- (3) OH,
- $(4) NO_2$
- (5) -CO-OH,
- (6) -C≡N,
- (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:

- (a) -H,
- (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) -NH₂,
- (c) $-C_1-C_6$ alkyl unsubstituted or substituted with 1, 2, or 3 -F, $-C_1$, $-B_7$, or -I,
- (d) -C₃-C₇ cycloalkyl,
- (e - $(C_1-C_2 \text{ alkyl})$ - $(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₁-C₆ alkenyl with one or two double bonds,
- (h) -C₁-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above,
- (k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above,
- (8) -CO-(C₃-C₁₂ alkyl),
- (9) -CO-(C₃-C₆ cycloalkyl),
- (10) -CO- $R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above,
- (11) -CO-R_{1-heterocycle} where R_{1-heterocycle} is as defined above,
- (12) -CO-R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C₁-C₃ alkyl,
- (13) -CO-O- R_{N-5} where R_{N-5} is:

- (a) C₁-C₆ alkyl, or
- (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
- (14) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above,
- (15) -SO-(C_1 - C_8 alkyl),
- (16) -SO₂-(C₃-C₁₂ alkyl),
- (17) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C₁-C₃ alkyl)₂,
- (19) -N-CS-N(C₁-C₃ alkyl)₂,
- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,
- (23) -O-CO-(C₁-C₆ alkyl),
- (24) -O-CO-N(C_1 - C_3 alkyl)₂,
- (25) -O-CS-N(C_1 - C_3 alkyl)₂,
- (26) -O- $(C_1$ - C_6 alkyl),
- (27) -O-(C_2 - C_5 alkyl)-COOH, or
- (28) -S- $(C_1-C_6 \text{ alkyl})$,
- (C) $-R_{N\text{-aryl}}-R_{N\text{-aryl}}$ where $-R_{N\text{-aryl}}$ is as defined above,
- (D) $-R_{N-aryl}-R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (E) $-R_{N-heteroaryl}-R_{N-aryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (F) - $R_{N\text{-heteroaryl}}$ - $R_{N\text{-heteroaryl}}$ where $R_{N\text{-heteroaryl}}$ is as defined above,
- (G) $-R_{N-aryl}$ -O- R_{N-aryl} where $-R_{N-aryl}$ is as defined above,
- (H) -R_{N-aryl}-S-R_{N-aryl} where -R_{N-aryl} is as defined above,
- (I) $-R_{N-heteroaryl}$ -O- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,

- (J) $-R_{N-heteroaryl}$ $-S-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (K) -R_{N-aryl}-CO-R_{N-aryl} where -R_{N-aryl} is as defined above,
- (L) $-R_{N-aryl}$ -CO- $R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $R_{N-heteroaryl}$ are as defined above,
- (M) -R_{N-aryl}-SO_2-R_{N-aryl} where -R_{N-aryl} is as defined above,
- (N) $-R_{N-heteroaryl}$ -CO- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above.
- (O) - $R_{N-heteroaryl}$ - SO_2 - $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (P) $-R_{N-aryl}$ -O-(C₁-C₈ alkyl)- φ where R_{N-aryl} is as defined above,
- (Q) $-R_{N-aryl}$ -S-(C₁-C₈ alkyl)- φ where R_{N-aryl} is as defined above,
- (R) $-R_{N-heteroaryl}$ -O-(C₁-C₈ alkyl)- φ where $R_{N-heteroaryl}$ is as defined above, or
- (S) $-R_{N-heteroaryl}$ -S-(C_1 - C_8 alkyl)- φ where $R_{N-heteroaryl}$ is as defined above.

(II) A- X_N - where X_N is –CO-,

wherein A is

(A)
$$-T-E-(Q)_{m'}$$
,
(1) where $-T$ is

where

- (a) x = 1 when y = 1 and x = 2 when y = 0,
- (b) m is 0, 1, 2 or 3,
- (c) the values of x and y vary independently on each carbon when m is 2 and 3, and
- (d) R''' varies independently on each carbon and is H, (C_1-C_2) alkyl, phenyl, or phenyl (C_1-C_3) alkyl;

(2) -E is

- (a) C_1 - C_5 alkyl, but only if m' does not equal 0,
- (b) methylthioxy(C_2 - C_4)alkyl,
- (c) an aryl group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (d) a heterocyclic group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (e) a mono or fused ring cycloalkyl group having 5 to 10 carbon atoms,
- (f) biphenyl,
- (g) diphenyl ether,
- (h) diphenylketone,
- (i) phenyl(C_1 - C_8)alkyloxyphenyl, or
- (j) C_1 - C_6 alkoxy;

(3) -Q is

- (a) C_1 - C_3 alkyl,
- (b) C₁-C₃ alkoxy,
- (c) C₁-C₃ alkylthioxy,
- (d) C₁-C₆ alkylacylamino,
- (e) C₁-C₆ alkylacyloxy,
- (f) amido (including primary, C₁-C₆ alkyl and phenyl secondary and tertiary amino moieties),
- (g) C₁-C₆ alkylamino
- (h) phenylamino,
- (i) carbamyl (including C₁-C₆ alkyl and phenyl amides and esters),
- (j) carboxyl (including C_1 - C_6 alkyl and phenyl esters),
- (k) carboxy(C₂-C₅)alkoxy,

- (l) carboxy(C₂-C5)alkylthioxy,
- (m) heterocyclylacyl,
- (n) heteroarylacyl, or
- (o) hydroxyl;
- (4) m' is 0, 1, 2 or 3;
- (B) $-E(Q)_{m''}$ wherein E and -Q are as defined as above and m'' is 0, 1, 2, or 3;
- (C) -T-E wherein -E and -Q are as defined as above; or
- (D) -E wherein -E is as defined as above;
- (III) –CO-(C₁-C₆ alkyl) where alkyl is unsubstituted or substituted with one or two:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} is the same or different and are as defined above, or

- (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (IV) –CO-(C₁-C₃ alkyl)-O-(C₁-C₃ alkyl) where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{\text{N-2}}\text{R}_{\text{N-3}}$ where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or
 - (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (V) –CO-(C₁-C₃ alkyl)-S-(C₁-C₃ alkyl) where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) -CO-O-R_{N-8} where R_{N-8} is -H, C₁-C₆ alkyl or - φ ,
 - (E) $-\text{CO-NR}_{\text{N-2}}\text{R}_{\text{N-3}}$ where $\text{R}_{\text{N-2}}$ and $\text{R}_{\text{N-3}}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,

- (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
- (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (I) -NH-CO-(C_1 - C_6 alkyl),
- (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
- (K) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO- $(C_1$ - C_6 alkyl),
- (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or
- (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (VI) –CO-CH(-(CH₂)₀₋₂-O-R_{N-10})-(CH₂)₀₋₂-R_{N-aryl}/R_{N-heteroaryl}) where R_{N-aryl} and $R_{N-heteroaryl}$ are as defined above, where R_{N-10} is:
 - (A) H
 - (B) C₁-C₆ alkyl,
 - (C) C₃-C₇ cycloalkyl,
 - (D) C₂-C₆ alkenyl with one double bond,
 - (E) C_2 - C_6 alkynyl with one triple bond,
 - (F) R_{1-aryl} where R_{1-aryl} is as defined above, or
 - (G) R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above;

where B is -O-, -NH-, or -N(C_1 - C_6 alkyl)-; where R_C is:

- (I) $-(C_1-C_{10})$ alkyl $-K_{1-3}$ in which:
 - (A) the alkyl chain is unsubstituted or substituted with one -OH,
 - (B) the alkyl chain is unsubstituted or substituted with one C_1 - C_6 alkoxy unsubstituted or substituted with 1-5 -F,
 - (C) the alkyl chain is unsubstituted or substituted with one $-O-\phi$,
 - (D) the alkyl chain is unsubstituted or substituted with 1-5 -F,

- (E) the alkyl chain is unsubstituted or substituted with a combination of up to three atoms of oxygen and sulfur each such atom replacing one carbon,
- (F) each K is:
- (1) H
- (2) C_1 - C_3 alkyl,
- (3) C_1 - C_3 alkoxy,
- (4) C₁-C₃ alkylthioxy,
- (5) C₁-C₆ alkylacylamino,
- (6) C₁-C₆ alkylacyloxy,
- (7) amido
- (8) C₁-C₆ alkylamino
- (9) phenylamino,
- (10) carbamyl
- (11) carboxyl
- (12) $\operatorname{carboxy}(C_2-C_5)\operatorname{alkoxy}$,
- (13) carboxy(C₂-C5)alkylthioxy,
- (14) heterocyclylacyl,
- (15) heteroarylacyl,
- (16) amino unsubstituted or substituted with C_1 - C_6 alkyl,
- (17) hydroxyl, or
- (18) carboxyl methyl ester;
- (II)-(CH₂)₀₋₃-J-[(-(CH₂)₀₋₃-K]₁₋₃ where K is as defined above and J is:
 - (A) a 5 to 7 atom monocyclic aryl group,
 - (B) a 8 to 12 atom multicyclic aryl group,
 - (C) a 5 to 7 atom heterocyclic group,
 - (D) a 8 to 12 atom multicyclic heterocyclic group, or
 - (E) a 5 to 10 atom monocyclic or multicyclic cycloalkyl group;

- (III) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl can be unsubstituted or substituted with one, two or three
 - (A) C₁-C₃ alkyl unsubstituted or substituted with 1, 2, 3, or 4 –F, -Cl, -Br, or -I,
 - (B) -CO-OH,
 - (C) -CO-O-(C_1 - C_4 alkyl),
 - (D) -OH, or
 - (E) C_1 - C_6 alkoxy,
- (IV) - $(CH_2)_{2-6}$ -OH,
- (V) -($CR_{C-x}R_{C-y}$)₀₋₄- R_{C-aryl} where R_{C-x} and R_{C-y} are -H, C_1 - C_4 alkyl and φ and R_{C-aryl} is the same as R_{N-aryl} ,
- (VI) -(CH₂)₀₋₄- $R_{C-heteroaryl}$ where $R_{C-heteroaryl}$ is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pyridazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,
 - (O) phthalazinyl,
 - (P) isoxazolyl,
 - (Q) pyrazolyl,
 - (R) indolizinyl,
 - (S) indazolyl,

- (T) benzothiazolyl,
- (U) benzimidazolyl,
- (V) benzofuranyl,
- (W) furanyl,
- (X) thienyl,
- (Y) pyrrolyl,
- (Z) oxadiazolyl,
- (AA) thiadiazolyl,
- (BB) triazolyl,
- (CC) tetrazolyl,
- (DD) 1, 4-benzodioxan
- (EE) purinyl,
- (FF) oxazolopyridinyl,
- (GG) imidazopyridinyl,
- (HH) isothiazolyl,
- (II) naphthyridinyl,
- (JJ) cinnolinyl,
- (KK) carbazolyl,
- (LL) β-carbolinyl,
- (MM) isochromanyl,
- (NN) chromanyl,
- (OO) furazanyl,
- (PP) tetrahydroisoquinoline,
- (QQ) isoindolinyl,
- (RR) isobenzotetrahydrofuranyl,
- (SS) isobenzotetrahydrothienyl,
- (TT) isobenzothiophenyl,
- (UU) benzoxazolyl, or
- (VV) pyridopyridinyl,
- (VII) -(CH₂)₀₋₄-R_{C-heterocycle} where $R_{\text{C-heterocycle}}$ is the same as $R_{\text{1-heterocycle}},$

- (VIII) -C(R_{C-1})(R_{C-2})-CO-NH- R_{C-3} where R_{C-1} and R_{C-2} are the same or different and are:
 - (A) -H,
 - (B) $-C_1-C_6$ alkyl,
 - (C) -(C_1 - C_4 alkyl)- R_{C' -aryl</sub> where R_{C' -aryl</sub> is as defined above for $R_{1\text{-aryl}}$,
 - (D) -(C1-C4 alkyl)-R_{C-heteroaryl} where $R_{\text{C-heteroaryl}}$ is as defined above,
 - (E) -(C_1 - C_4 alkyl)- R_{C -heterocycle</sub> where R_{C -heterocycle} is as defined above,
 - (F) $-R_{C\text{-heteroaryl}}$ where $R_{C\text{-heteroaryl}}$ is as defined above,
 - (G) $-R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
 - $(H) (CH_2)_{1-4} OH,$
 - (I) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C'-aryl} where R_{C-4} is -O-, -S-, -NH- or $-NHR_{C-5}- \text{ where } R_{C-5} \text{ is } C_1-C_6 \text{ alkyl, and where } R_{C'-aryl} \text{ is as defined above,}$
 - (J) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C-heteroaryl} where R_{C-4} and R_{C-heteroaryl} are as defined above, or
 - (K) $-R_{C'-aryl}$ where $R_{C'-aryl}$ is as defined above,
- and where R_{C-3} is:
 - (A) H,
 - (B) $-C_1-C_6$ alkyl,
 - (C) $-R_{C'-aryl}$ where $R_{C'-aryl}$ is as defined above,
 - (D) $-R_{C\text{-heteroaryl}}$ where $R_{C\text{-heteroaryl}}$ is as defined above,
 - (E) $-R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
 - (F) -(C1-C4 alkyl)-RC'-aryl where RC'-aryl is as defined above,
 - (G) -(C1-C4 alkyl)-R_{C-heteroaryl} where $R_{\text{C-heteroaryl}}$ is as defined above, or
 - (H) -(C_1 - C_4 alkyl)- $R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
 - (IX) -CH(ϕ)₂,

- (X) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are unsubstituted or substituted with one, two or three:
 - (A) C_1 - C_3 alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br and -I,
 - (D) C_1 - C_3 alkoxy,
 - (E) -OCF₃,
 - (F) -NH₂,
 - (G) -OH, or
 - (H) -C≡N,
- (XI) -CH₂-C≡CH;
- (XII) $-(CH_2)_{0-1}$ -CHR_{C-5}-(CH₂)₀₋₁- ϕ where R_{C-5} is:
 - (A) –OH, or
 - (B)- CH_2 -OH;
- (XIII) $-CH(-\phi)-CO-O(C_1-C_3 \text{ alkyl});$
- (XIV) -CH(-CH₂-OH)-CH(-OH)- ϕ -NO₂;
- $(XV) (CH_2)_2 O (CH_2)_2 OH;$
- (XVI) -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂;
- (XVII) $-(C_2-C_8)$ alkynyl; or
- (XVIII) -H; or a pharmaceutically acceptable salt thereof.
- 45. The method of claim 44, wherein said administering is to and animal.
- 46. The method of claim 45, whererin said administering is to a human.
- 47. A method for inhibiting the production of beta-amyloid plaque in an animal, comprising administering to said animal an effective inhibitory amount of a hydroxyethylene compound of the formula

$$R_N$$
 N
 H
 OH
 R_2
 R_c
 R_c

where R₁ is:

- (I) C_1 - C_6 alkyl, unsubstituted or substituted with one, two or three C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, $-NH_2$, $-C\equiv N$, $-CF_3$, or $-N_3$,
- (II) $-(CH_2)_{1-2}$ -S-CH₃,
- (III) -CH₂-CH₂-S-CH₃,
- (IV) -CH₂-(C₂-C₆ alkenyl) unsubstituted or substituted by one -F,
- (V) -(CH₂)₀₋₃-(R_{1-aryl}) where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl, tetralinyl unsubstituted or substituted on the aryl ring with one or two of the following substituents which can be the same or different:
 - (A) C_1 - C_3 alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br and -I,
 - (D) C_1 - C_3 alkoxy,
 - (E) $-O-CF_3$,
 - (F) -NH₂,
 - (G) -OH, or
 - (H) -C≡N,
- (VI) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is 0, 1, 2, or 3 and R_{1-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,

- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,

- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β -carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{0\text{-}3}$ - by any ring atom of the parent $R_{N\text{-}}$ heteroaryl group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_3 alkyl,
- $(2) CF_3$,
- (3) -F, Cl, -Br, or -I,
- (4) C_1 - C_3 alkoxy,
- (5) –O-CF₃,
- $(6) NH_2$
- (7) -OH, or
- (8) -C \equiv N,

with the proviso that when n_1 is zero $R_{1-heteroaryl}$ is not bonded to the carbon chain by nitrogen, or

(VII) $-(CH_2)_{n_1}-(R_1-heterocycle)$ where n_1 is as defined above and

R₁-heterocycle is:

(A) morpholinyl,

- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,
- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,
- (K) tetrahydrofuranyl, or
- (L) tetrahydrothiophenyl,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heterocycle is unsubstituted or substituted with one or two:

- (1) = 0,
- (2) C_1 - C_3 alkyl,
- $(3) CF_3$,
- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_3 alkoxy,
- (6) -O-CF₃,
- $(7) NH_2,$
- (8) -OH, or
- (9) -C≡N.

with the proviso that when n_1 is zero $R_{1-heterocycle}$ is not bonded to the carbon chain by nitrogen;

where R₂ is:

- (I) -H,
- (II) C_1 - C_6 alkyl, or
- (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is (C₃-C₆)cycloalkyl, R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above,

where R_N is:

- (I) R_{N-1} - X_N where X_N is:
 - (A) –CO-,
 - (B) $-SO_2$ -,
 - (C) -(CR'R")₁₋₆ where R' and R" are the same or different and are -H or C₁-C₄ alkyl,
 - (D) $-\text{CO-}(\text{CR'R''})_{1-6}\text{-}X_{N-1}$ where X_{N-1} is -O-, -S- and -NR'R''- and where R' and R'' are as defined above,
 - (E) a single bond;

where R_{N-1} is:

- (A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl and 2-naphthyl unsubstituted or substituted with one, two, three or four of the following substituents which can be the same or different and are:
 - (1) C_1 - C_6 alkyl,
 - (2) -F, -Cl, -Br, or -I,
 - (3) -OH,
 - $(4) -NO_2$,
 - (5) -CO-OH,
 - (6) -C≡N,
 - (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) $-NH_2$,
 - (c) -C₁-C₆ alkyl unsubstituted or substituted with one to three –F, -Cl, -Br, or -I,
 - (d) -C₃-C₇ cycloalkyl,
 - (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,

- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₁-C₆ alkenyl with one or two double bonds,
- (h) $-C_1-C_6$ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, or
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (8) $-CO-(C_3-C_{12} \text{ alkyl})$,
- (9) -CO-(C_3 - C_6 cycloalkyl),
- (10) -CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (11) -CO- $R_{1-heterocycle}$ where $R_{1-heterocycle}$ is as defined above,
- (12) -CO-R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C₁-C₃ alkyl,
- (13) -CO-O- R_{N-5} where R_{N-5} is:
 - (a) C₁-C₆ alkyl, or
 - (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
- (14) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above,
- (15) -SO-(C₁-C₈ alkyl),
- (16) -SO₂- $(C_3$ - C_{12} alkyl),
- (17) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C_1 - C_3 alkyl)₂,
- (19) -N-CS-N(C_1 - C_3 alkyl)₂,
- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,

- (23) –O-CO- $(C_1$ - C_6 alkyl),
- (24) -O-CO-N(C₁-C₃ alkyl)₂,
- (25) -O-CS-N(C₁-C₃ alkyl)₂,
- (26) -O- $(C_1$ - C_6 alkyl),
- (27) -O-(C2-C5 alkyl)-COOH,
- (28) $-S-(C_1-C_6 \text{ alkyl})$,
- (29) C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 –F,
- (30) -O-(C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F, or
- $(31) O \phi$,
- (B) -R_{N-heteroaryl} where R_{N-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pyridazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,
 - (O) phthalazinyl,
 - (P) imidazolyl,
 - (Q) isoxazolyl,
 - (R) pyrazolyl,
 - (S) oxazolyl,

- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β -carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or

(YY) pyridopyridinyl,

where the $R_{N\text{-heteroaryl}}$ group is bonded by any atom of the parent $R_{N\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{N\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_6 alkyl,
- (2) -F, -Cl, -Br, or I,
- (3) -OH,
- $(4) NO_2$,
- (5) -CO-OH,
- (6) -C \equiv N,
- (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) -NH₂,
 - (c) $-C_1-C_6$ alkyl unsubstituted or substituted with 1, 2, or 3 -F, $-C_1$, $-B_7$, or -I,
 - (d) -C₃-C₇ cycloalkyl,
 - (e -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl),
 - (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
 - (g) -C₁-C₆ alkenyl with one or two double bonds,
 - (h) -C₁-C₆ alkynyl with one or two triple bonds,
 - (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
 - (j) -R_{1-aryl} where R_{1-aryl} is as defined above, or

- (k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above,
- (8) $-CO-(C_3-C_{12} \text{ alkyl})$,
- (9) -CO-(C₃-C₆ cycloalkyl),
- (10) -CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (11) -CO- $R_{1\text{-heterocycle}}$ where $R_{1\text{-heterocycle}}$ is as defined above,
- (12) -CO-R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C₁-C₃ alkyl,
- (13) -CO-O- R_{N-5} where R_{N-5} is:
 - (a) C_1 - C_6 alkyl, or
 - (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above,
- (14) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above,
- (15) -SO-(C_1 - C_8 alkyl),
- (16) $-SO_2$ -(C₃-C₁₂ alkyl),
- (17) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C_1 - C_3 alkyl)₂,
- (19) -N-CS-N(C_1 - C_3 alkyl)₂,
- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,
- (23) -O-CO- $(C_1$ - C_6 alkyl),
- (24) -O-CO-N(C₁-C₃ alkyl)₂,

- (25) -O-CS-N(C₁-C₃ alkyl)₂,
- (26) -O- $(C_1$ - C_6 alkyl),
- (27) -O-(C_2 - C_5 alkyl)-COOH, or
- (28) -S- $(C_1$ - C_6 alkyl),
- (C) $-R_{N-aryl}-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (D) $-R_{N-aryl}-R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (E) $-R_{N-heteroaryl}-R_{N-aryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (F) $-R_{N-heteroaryl}-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (G) -R_{N-aryl}-O-R_{N-aryl} where -R_{N-aryl} is as defined above,
- (H) -R_{N-aryl}-S-R_{N-aryl} where -R_{N-aryl} is as defined above,
- (I) -R_{N-heteroaryl}-O-R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above,
- (J) -R_{N-heteroaryl}-S-R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above,
- (K) $-R_{N-aryl}$ -CO- R_{N-aryl} where $-R_{N-aryl}$ is as defined above,
- (L) $-R_{N-aryl}$ -CO- $R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $R_{N-heteroaryl}$ are as defined above,
- (M) $-R_{N-aryl}-SO_2-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (N) $-R_{N-heteroaryl}$ -CO- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (O) -R_{N-heteroaryl}-SO₂-R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above,
- (P) $-R_{N-aryl}$ -O-(C₁-C₈ alkyl)- ϕ where R_{N-aryl} is as defined above,
- (Q) $-R_{N-aryl}$ -S-(C₁-C₈ alkyl)- ϕ where R_{N-aryl} is as defined above,
- (R) $-R_{N-heteroaryl}$ -O-(C₁-C₈ alkyl)- ϕ where $R_{N-heteroaryl}$ is as defined above, or
- (S) $-R_{N-heteroaryl}$ -S-(C₁-C₈ alkyl)- ϕ where $R_{N-heteroaryl}$ is as defined above,
- (II) A- X_N where X_N is –CO-,

wherein A is

(A)
$$-T-E-(Q)_{m'}$$
,
(1) where $-T$ is

where

- (a) x = 1 when y = 1 and x = 2 when y = 0,
- (b) m is 0, 1, 2 or 3,
- (c) the values of x and y vary independently on each carbon when m is 2 and 3, and
- (d) R''' varies independently on each carbon and is H, (C_1-C_2) alkyl, phenyl, or phenyl (C_1-C_3) alkyl;

(2)-E is

- (a) C₁-C₅ alkyl, but only if m' does not equal 0,
- (b) methylthioxy(C₂-C₄)alkyl,
- (c) an aryl group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (d) a heterocyclic group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (e) a mono or fused ring cycloalkyl group having 5 to 10 carbon atoms,
- (f) biphenyl,
- (g) diphenyl ether,
- (h) diphenylketone,
- (i) $phenyl(C_1-C_8)alkyloxyphenyl$, or
- (j) C₁-C₆ alkoxy;

(3) -Q is

(a) C_1 - C_3 alkyl,

- (b) C_1 - C_3 alkoxy,
- (c) C₁-C₃ alkylthioxy,
- (d) C₁-C₆ alkylacylamino,
- (e) C₁-C₆ alkylacyloxy,
- (f) amido (including primary, C₁-C₆ alktyl and phenyl secondary and tertiary amino moieties),
- (g) C₁-C₆ alkylamino
- (h) phenylamino,
- (i) carbamyl (including C_1 - C_6 alkyl and phenyl amides and esters),
- (j) carboxyl (including C_1 - C_6 alkyl and phenyl esters),
- (k) carboxy(C₂-C₅)alkoxy,
- (l) carboxy(C₂-C5)alkylthioxy,
- (m) heterocyclylacyl,
- (n) heteroarylacyl, or
- (o) hydroxyl;
- (4) m' is 0, 1, 2 or 3;
- (B) $-E(Q)_{m''}$ wherein E and -Q are as defined as above and m'' is 0, 1, 2, or 3;
- (C) -T-E wherein -E and -Q are as defined as above; or
- (D) -E wherein -E is as defined as above;
- (III) -CO-(C₁-C₆ alkyl) where alkyl is unsubstituted or substituted with one or two:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,

- (E) $-\text{CO-NR}_{\text{N-2}}\text{R}_{\text{N-3}}$ where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are the same or different and are as defined above,
- (F) -CO-R_{N-4} where R_{N-4} is as defined above,
- (G) -SO₂- $(C_1$ - C_8 alkyl),
- (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (I) -NH-CO-(C_1 - C_6 alkyl),
- (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
- (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO- $(C_1$ - C_6 alkyl),
- (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} is the same or different and are as defined above, or
- (O) -O- $(C_1$ - C_5 alkyl)-COOH,
- (IV) -CO-(C₁-C₃ alkyl)-O-(C₁-C₃ alkyl) where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{N-2}\text{R}_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,

- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO- $(C_1$ - C_6 alkyl),
- (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or
- (O) -O-(C₁-C₅ alkyl)-COOH,
- (V) –CO-(C₁-C₃ alkyl)-S-(C₁-C₃ alkyl) where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{N-2}\text{R}_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or
 - (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (VI) –CO-CH(-(CH₂)₀₋₂-O-R_{N-10})-(CH₂)₀₋₂-R_{N-aryl}/R_{N-heteroaryl}) where R_{N-aryl} and R_{N-heteroaryl} are as defined above, where R_{N-10} is:
 - (A) -H
 - (B) C_1 - C_6 alkyl,
 - (C) C₃-C₇ cycloalkyl,

- (D) C₂-C₆ alkenyl with one double bond,
- (E) C₂-C₆ alkynyl with one triple bond,
- (F) R_{1-aryl} where R_{1-aryl} is as defined above, or
- (G) R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above;

where B is -O-, -NH-, or -N(C_1 - C_6 alkyl)-; where R_C is:

- (I) $-(C_1-C_{10})$ alkyl $-K_{1-3}$ in which:
 - (A) the alkyl chain is unsubstituted or substituted with one -OH,
 - (B) the alkyl chain is unsubstituted or substituted with one C_1 - C_6 alkoxy unsubstituted or substituted with 1-5 -F,
 - (C) the alkyl chain is unsubstituted or substituted with one $-O-\phi$,
 - (D) the alkyl chain is unsubstituted or substituted with 1-5 -F,
 - (E) the alkyl chain is unsubstituted or substituted with a combination of up to three atoms of oxygen and sulfur each such atom replacing one carbon,
 - (F) each K is:
- (1) H,
- (2) C₁-C₃ alkyl,
- (3) C_1 - C_3 alkoxy,
- (4) C₁-C₃ alkylthioxy,
- (5) C₁-C₆ alkylacylamino,
- (6) C₁-C₆ alkylacyloxy,
- (7) amido
- (8) C₁-C₆ alkylamino
- (9) phenylamino,
- (10) carbamyl
- (11) carboxyl
- (12) $carboxy(C_2-C_5)alkoxy$,
- (13) carboxy(C2-C5)alkylthioxy,
- (14) heterocyclylacyl,

- (15) heteroarylacyl,
- (16) amino unsubstituted or substituted with C_1 - C_6 alkyl,
- (17) hydroxyl, or
- (18) carboxyl methyl ester;
- (II)- $(CH_2)_{0-3}$ -J- $[(-(CH_2)_{0-3}$ - $K]_{1-3}$ where K is as defined above and J is:
 - (A) a 5 to 7 atom monocyclic aryl group,
 - (B) a 8 to 12 atom multicyclic aryl group,
 - (C) a 5 to 7 atom heterocyclic group,
 - (D) a 8 to 12 atom multicyclic heterocyclic group, or
 - (E) a 5 to 10 atom monocyclic or multicyclic cycloalkyl group;
- (III) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl can be unsubstituted or substituted with one, two or three
 - (A) C_1 - C_3 alkyl unsubstituted or substituted with 1, 2, 3, or 4 –F, -Cl, -Br, or -I,
 - (B) -CO-OH,
 - (C) -CO-O-(C_1 - C_4 alkyl),
 - (D) -OH, or
 - (E) C_1 - C_6 alkoxy,
- (IV) -(CH₂)₂₋₆-OH,
- (V) -($CR_{C-x}R_{C-y}$)₀₋₄- R_{C-aryl} where R_{C-x} and R_{C-y} are -H, C_1 - C_4 alkyl and Φ -and R_{C-aryl} is the same as R_{N-aryl} ,
- (VI) -(CH₂)₀₋₄-R_{C-heteroaryl} where R_{C-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,

- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) isoxazolyl,
- (Q) pyrazolyl,
- (R) indolizinyl,
- (S) indazolyl,
- (T) benzothiazolyl,
- (U) benzimidazolyl,
- (V) benzofuranyl,
- (W) furanyl,
- (X) thienyl,
- (Y) pyrrolyl,
- (Z) oxadiazolyl,
- (AA) thiadiazolyl,
- (BB) triazolyl,
- (CC) tetrazolyl,
- (DD) 1, 4-benzodioxan
- (EE) purinyl,
- (FF) oxazolopyridinyl,
- (GG) imidazopyridinyl,
- (HH) isothiazolyl,
- (II) naphthyridinyl,
- (JJ) cinnolinyl,
- (KK) carbazolyl,
- (LL) β-carbolinyl,

- (MM) isochromanyl,
- (NN) chromanyl,
- (OO) furazanyl,
- (PP) tetrahydroisoquinoline,
- (QQ) isoindolinyl,
- (RR) isobenzotetrahydrofuranyl,
- (SS) isobenzotetrahydrothienyl,
- (TT) isobenzothiophenyl,
- (UU) benzoxazolyl, or
- (VV) pyridopyridinyl,
- (VII) -(CH₂)₀₋₄-R_{C-heterocycle} where R_{C-heterocycle} is the same as R_{1-heterocycle},
- (VIII) -C(R_{C-1})(R_{C-2})-CO-NH- R_{C-3} where R_{C-1} and R_{C-2} are the same or different and are:
 - (A) H,
 - (B) $-C_1-C_6$ alkyl,
 - (C) -(C₁-C₄ alkyl)- $R_{C'-aryl}$ where $R_{C'-aryl}$ is as defined above for R_{1-aryl} ,
 - (D) -(C₁-C₄ alkyl)-R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above,
 - (E) -(C_1 - C_4 alkyl)- $R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
 - (F) $-R_{C-heteroaryl}$ where $R_{C-heteroaryl}$ is as defined above,
 - (G) -R_{C-heterocycle} where R_{C-heterocycle} is as defined above,
 - $(H) (CH_2)_{1-4} OH$
 - (I) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C'-aryl} where R_{C-4} is -O-, -S-, -NH- or -NHR_{C-5}- where R_{C-5} is C₁-C₆ alkyl, and where R_{C'-aryl} is as defined above,
 - (J) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C-heteroaryl} where R_{C-4} and R_{C-heteroaryl} are as defined above, or
- (K) $-R_{C'-aryl}$ where $R_{C'-aryl}$ is as defined above,

and where R_{C-3} is:

(A) - H,

- (B) $-C_1-C_6$ alkyl,
- (C) $-R_{C'-aryl}$ where $R_{C'-aryl}$ is as defined above,
- (D) -R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above,
- (E) $-R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
- (F) -(C₁-C₄ alkyl)-R_{C'-aryl} where R_{C'-aryl} is as defined above,
- (G) -(C_1 - C_4 alkyl)- R_{C -heteroaryl</sub> where R_{C -heteroaryl} is as defined above, or
- (H) -(C_1 - C_4 alkyl)- $R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
- (IX) -CH $(\phi)_2$,
- (X) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are unsubstituted or substituted with one, two or three:
 - (A) C_1 - C_3 alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br and -I,
 - (D) C₁-C₃ alkoxy,
 - (E) -OCF₃,
 - (F) -NH₂,
 - (G) -OH, or
 - (H) -C≡N,
- (XI) – CH_2 - $C\equiv CH$;
- (XII) –(CH₂)₀₋₁-CHR_{C-5}-(CH₂)₀₋₁- ϕ where R_{C-5} is:
 - (A) –OH, or
 - (B)- CH_2 -OH;
- (XIII) $-CH(-\phi)-CO-O(C_1-C_3 \text{ alkyl});$
- (XIV) –CH(-CH₂-OH)-CH(-OH)- ϕ -NO₂;
- $(XV) (CH_2)_2 O (CH_2)_2 OH;$
- (XVI) -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂;
- (XVII) $-(C_2-C_8)$ alkynyl; or
- (XVIII) -H; or a pharmaceutically acceptable salt thereof.

- 48. The method of claim 47, wherein said animal is a human.
- 49. A method for treating or preventing a disease characterized by beta-amyloid deposits in the brain comprising administering to a patient an effective therapeutic amount of a hydroxyethylene compound of the formula

$$R_N$$
 N
 H
 OH
 R_2
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c

where R₁ is:

- (I) C_1 - C_6 alkyl, unsubstituted or substituted with one, two or three C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, $-NH_2$, $-C\equiv N$, $-CF_3$, or $-N_3$,
- (II) $-(CH_2)_{1-2}$ -S-CH₃,
- (III) -CH2-CH2-S-CH3,
- (IV) -CH₂-(C₂-C₆ alkenyl) unsubstituted or substituted by one –F,
- (V) -(CH₂)₀₋₃-(R_{1-aryl}) where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl, tetralinyl unsubstituted or substituted on the aryl ring with one or two of the following substituents which can be the same or different:
 - (A) C₁-C₃ alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br and -I,
 - (D) C_1 - C_3 alkoxy,
 - (E) -O-CF₃,
 - (F) -NH₂,
 - (G) -OH, or
 - (H) -C≡N,
- (VI) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is 0, 1, 2, or 3 and R_{1-heteroaryl} is:
 (A) pyridinyl,

- (B) pyrimidinyl,
- (C) quinolinyl,
- (D) indenyl,
- (E) indanyl,
- (F) benzothiophenyl,
- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,

- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β-carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{0\cdot3}$ - by any ring atom of the parent $R_{N\cdot}$ heteroaryl group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_3 alkyl,
- $(2) CF_3$,
- (3) -F, Cl, -Br, or -I,
- (4) C_1 - C_3 alkoxy,
- (5) -O-CF₃,
- $(6) NH_2,$
- (7) -OH, or
- (8) -C≡N,

with the proviso that when n_1 is zero $R_{1-heteroaryl}$ is not bonded to the carbon chain by nitrogen, or

(VII) -(CH₂)_{n1}-(R₁-heterocycle) where n_1 is as defined above and

R₁-heterocycle is:

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,
- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,
- (K) tetrahydrofuranyl, or
- (L) tetrahydrothiophenyl,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heterocycle is unsubstituted or substituted with one or two:

- (1) = 0,
- (2) C_1 - C_3 alkyl,
- $(3) CF_3,$
- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_3 alkoxy,
- (6) -O-CF₃,
- $(7) NH_2$,
- (8) -OH, or
- (9) -C≡N,

with the proviso that when n_1 is zero $R_{1-heterocycle}$ is not bonded to the carbon chain by nitrogen;

where R₂ is:

- (I) -H,
- (II) C₁-C₆ alkyl, or
- (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is (C₃-C₆)cycloalkyl, R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above,

where R_N is:

- (I) R_{N-1} - X_N where X_N is:
 - (A) -CO-,
 - (B) $-SO_2$ -,
 - (C) -(CR'R")₁₋₆ where R' and R" are the same or different and are -H or C_1 - C_4 alkyl,
 - (D) $-\text{CO-}(\text{CR'R''})_{1-6}\text{-}X_{N-1}$ where X_{N-1} is -O-, -S- and -NR'R''- and where R' and R'' are as defined above,
 - (E) a single bond;

where R_{N-1} is:

- (A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl and 2-naphthyl unsubstituted or substituted with one, two, three or four of the following substituents which can be the same or different and are:
 - (1) C_1 - C_6 alkyl,
 - (2) -F, -Cl, -Br, or -I,
 - (3) OH,
 - $(4) -NO_2,$
 - (5) -CO-OH,
 - (6) -C≡N,
 - (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or

- (ii) -NH₂,
- (c) -C₁-C₆ alkyl unsubstituted or substituted with one to three -F, -Cl, -Br, or -I,
- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₁-C₆ alkenyl with one or two double bonds,
- (h) -C₁-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, or
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (8) $-CO-(C_3-C_{12} \text{ alkyl})$,
- (9) -CO-(C_3 - C_6 cycloalkyl),
- (10) -CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (11) -CO-R_{1-heterocycle} where R_{1-heterocycle} is as defined above,
- (12) -CO-R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C₁-C₃ alkyl,
- (13) -CO-O- R_{N-5} where R_{N-5} is:
 - (a) C₁-C₆ alkyl, or
 - (b) $-(CH_2)_{0-2}-(R_{1-aryl})$ where R_{1-aryl} is as defined above.
- (14) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined above,
- (15) -SO- $(C_1$ - C_8 alkyl),
- (16) -SO₂- $(C_3$ - C_{12} alkyl),
- (17) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C_1 - C_3 alkyl)₂,
- (19) -N-CS-N(C_1 - C_3 alkyl)₂,

- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,
- (23) –O-CO- $(C_1$ - C_6 alkyl),
- (24) -O-CO-N(C₁-C₃ alkyl)₂,
- (25) -O-CS-N(C₁-C₃ alkyl)₂,
- (26) -O- $(C_1$ - C_6 alkyl),
- (27) -O- $(C_2$ - C_5 alkyl)-COOH,
- (28) -S- $(C_1$ - C_6 alkyl),
- (29) C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F,
- (30) -O-(C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F, or
- $(31) O \phi$,
- (B) -R_{N-heteroaryl} where R_{N-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pyridazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,

- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β-carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,

- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{N\text{-heteroaryl}}$ group is bonded by any atom of the parent $R_{N\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{N\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_6 alkyl,
- (2) -F, -Cl, -Br, or I,
- (3) OH,
- $(4) -NO_2,$
- (5) -CO-OH,
- (6) -C≡N,
- (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) $-C_1-C_6$ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) -NH₂,
 - (c) $-C_1-C_6$ alkyl unsubstituted or substituted with 1, 2, or 3 –F, -Cl, -Br, or -I,
 - (d) -C₃-C₇ cycloalkyl,
 - (e - $(C_1-C_2 \text{ alkyl})$ - $(C_3-C_7 \text{ cycloalkyl})$,
 - (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
 - (g) -C₁-C₆ alkenyl with one or two double bonds,

- (h) -C₁-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, or
- (k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above.
- (8) $-CO-(C_3-C_{12} \text{ alkyl}),$
- (9) -CO-(C₃-C₆ cycloalkyl),
- (10) -CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (11) -CO-R_{1-heterocycle} where R_{1-heterocycle} is as defined above,
- (12) -CO- R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C_1 - C_3 alkyl,
- (13) -CO-O- R_{N-5} where R_{N-5} is:
 - (a) C_1 - C_6 alkyl, or
 - (b) - $(CH_2)_{0-2}$ - (R_{1-aryl}) where R_{1-aryl} is as defined above,
- (14) -SO₂-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are as defined above,
- (15) -SO- $(C_1$ - C_8 alkyl),
- $(16) -SO_2 (C_3 C_{12} \text{ alkyl}),$
- (17) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C₁-C₃ alkyl)₂,
- (19) -N-CS-N(C_1 - C_3 alkyl)₂,

- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,
- (23) –O-CO- $(C_1$ - C_6 alkyl),
- (24) -O-CO-N(C₁-C₃ alkyl)₂,
- (25) -O-CS-N(C₁-C₃ alkyl)₂,
- (26) $-O-(C_1-C_6 \text{ alkyl})$,
- (27) -O- $(C_2$ - C_5 alkyl)-COOH, or
- (28) $-S-(C_1-C_6 \text{ alkyl})$,
- (C) -R_{N-aryl}-R_{N-aryl} where -R_{N-aryl} is as defined above,
- (D) $-R_{N-aryl}-R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (E) $-R_{N-heteroaryl}-R_{N-aryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (F) $-R_{N-heteroaryl}-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (G) -R_{N-aryl}-O-R_{N-aryl} where -R_{N-aryl} is as defined above,
- (H) $-R_{N-aryl}-S-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (I) $-R_{N-heteroaryl}$ -O- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (J) - $R_{N\text{-heteroaryl}}$ -S- $R_{N\text{-heteroaryl}}$ where $R_{N\text{-heteroaryl}}$ is as defined above,
- (K) $-R_{N-aryl}$ -CO- R_{N-aryl} where $-R_{N-aryl}$ is as defined above,
- (L) $-R_{N-aryl}$ -CO- $R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $R_{N-heteroaryl}$ are as defined above,
- (M) -R_{N-aryl}-SO₂-R_{N-aryl} where -R_{N-aryl} is as defined above,
- (N) - $R_{N-heteroaryl}$ -CO- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (O) $-R_{N-heteroaryl}$ $-SO_2$ $-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (P) $-R_{N-aryl}$ -O-(C₁-C₈ alkyl)- φ where R_{N-aryl} is as defined above,
- (Q) $-R_{N-aryl}$ -S-(C₁-C₈ alkyl)- ϕ where R_{N-aryl} is as defined above,

- (R) $-R_{N-heteroaryl}$ -O-(C₁-C₈ alkyl)- φ where $R_{N-heteroaryl}$ is as defined above, or
- (S) $-R_{N-heteroaryl}$ -S-(C_1 - C_8 alkyl)- φ where $R_{N-heteroaryl}$ is as defined above.

(II) A- X_N - where X_N is -CO-,

wherein A is

(A)
$$-T-E-(Q)_{m'}$$
,
(1) where $-T$ is

where

- (a) x = 1 when y = 1 and x = 2 when y = 0,
- (b) m is 0, 1, 2 or 3,
- (c) the values of x and y vary independently on each carbon when m is 2 and 3, and
- (d) R''' varies independently on each carbon and is H, (C_1-C_2) alkyl, phenyl, or phenyl (C_1-C_3) alkyl;

(2) -E is

- (a) C_1 - C_5 alkyl, but only if m' does not equal 0,
- (b) methylthioxy(C2-C4)alkyl,
- (c) an aryl group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (d) a heterocyclic group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (e) a mono or fused ring cycloalkyl group having 5 to 10 carbon atoms,

- (f) biphenyl,
- (g) diphenyl ether,
- (h) diphenylketone,
- (i) phenyl(C₁-C₈)alkyloxyphenyl, or
- (j) C_1 - C_6 alkoxy;
- (3) Q is
 - (a) C_1 - C_3 alkyl,
 - (b) C₁-C₃ alkoxy,
 - (c) C₁-C₃ alkylthioxy,
 - (d) C₁-C₆ alkylacylamino,
 - (e) C₁-C₆ alkylacyloxy,
 - (f) amido (including primary, C₁-C₆ alkyl and phenyl secondary and tertiary amino moieties),
 - (g) C₁-C₆ alkylamino
 - (h) phenylamino,
 - (i) carbamyl (including C₁-C₆ alkyl and phenyl amides and esters),
 - (j) carboxyl (including C_1 - C_6 alkyl and phenyl esters),
 - (k) $carboxy(C_2-C_5)alkoxy$,
 - (1) $carboxy(C_2-C_5)$ alkylthioxy,
 - (m) heterocyclylacyl,
 - (n) heteroarylacyl, or
 - (o) hydroxyl;
- (4) m' is 0, 1, 2 or 3;
- (B) $-E(Q)_{m''}$ wherein E and -Q are as defined as above and m'' is 0, 1, 2, or 3;
- (C) -T-E wherein -E and -Q are as defined as above; or
- (D) -E wherein -E is as defined as above;

- (III) –CO-(C₁-C₆ alkyl) where alkyl is unsubstituted or substituted with one or two:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above.
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above.
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} is the same or different and are as defined above, or
 - (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (IV) –CO-(C₁-C₃ alkyl)-O-(C₁-C₃ alkyl) where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above.
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,

- (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (I) -NH-CO-(C_1 - C_6 alkyl),
- (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
- (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO- $(C_1$ - C_6 alkyl),
- (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or
- (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (V) –CO-(C₁-C₃ alkyl)-S-(C₁-C₃ alkyl) where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{N-2}\text{R}_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or

- (O) -O- $(C_1$ - C_5 alkyl)-COOH,
- (VI) –CO-CH(-(CH₂)₀₋₂-O-R_{N-10})-(CH₂)₀₋₂-R_{N-aryl}/R_{N-heteroaryl}) where R_{N-aryl} and R_{N-heteroaryl} are as defined above, where R_{N-10} is:
 - (A) H
 - (B) C_1 - C_6 alkyl,
 - (C) C₃-C₇ cycloalkyl,
 - (D) C2-C6 alkenyl with one double bond,
 - (E) C₂-C₆ alkynyl with one triple bond,
 - (F) R_{1-aryl} where R_{1-aryl} is as defined above, or
 - (G) R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above;

where B is -O-, -NH-, or -N(C_1 - C_6 alkyl)-; where R_C is:

- (I) $-(C_1-C_{10})$ alkyl $-K_{1-3}$ in which:
 - (A) the alkyl chain is unsubstituted or substituted with one -OH,
 - (B) the alkyl chain is unsubstituted or substituted with one C₁-C₆ alkoxy unsubstituted or substituted with 1-5 -F,
 - (C) the alkyl chain is unsubstituted or substituted with one $-O-\phi$,
 - (D) the alkyl chain is unsubstituted or substituted with 1-5 –F,
 - (E) the alkyl chain is unsubstituted or substituted with a combination of up to three atoms of oxygen and sulfur each such atom replacing one carbon,
 - (F) each K is:
- (1) H,
- (2) C₁-C₃ alkyl,
- (3) C_1 - C_3 alkoxy,
- (4) C_1 - C_3 alkylthioxy,
- (5) C₁-C₆ alkylacylamino,
- (6) C₁-C₆ alkylacyloxy,
- (7) amido
- (8) C₁-C₆ alkylamino

- (9) phenylamino,
- (10) carbamyl
- (11) carboxyl
- (12) $\operatorname{carboxy}(C_2-C_5)\operatorname{alkoxy}$,
- (13) carboxy(C₂-C5)alkylthioxy,
- (14) heterocyclylacyl,
- (15) heteroarylacyl,
- (16) amino unsubstituted or substituted with C_1 - C_6 alkyl,
- (17) hydroxyl, or
- (18) carboxyl methyl ester;
- (II)- $(CH_2)_{0-3}$ -J- $[(-(CH_2)_{0-3}$ - $K]_{1-3}$ where K is as defined above and J is:
 - (A) a 5 to 7 atom monocyclic aryl group,
 - (B) a 8 to 12 atom multicyclic aryl group,
 - (C) a 5 to 7 atom heterocyclic group,
 - (D) a 8 to 12 atom multicyclic heterocyclic group, or
 - (E) a 5 to 10 atom monocyclic or multicyclic cycloalkyl group;
- (III) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl can be unsubstituted or substituted with one, two or three
 - (A) C_1 - C_3 alkyl unsubstituted or substituted with 1, 2, 3, or 4 –F, -Cl, -Br, or -I,
 - (B) -CO-OH,
 - (C) -CO-O-(C_1 - C_4 alkyl),
 - (D) -OH, or
 - (E) C_1 - C_6 alkoxy,
- (IV) $-(CH_2)_{2-6}$ -OH,
- (V) -($CR_{C-x}R_{C-y}$)₀₋₄- R_{C-aryl} where R_{C-x} and R_{C-y} are -H, C_1 - C_4 alkyl and φ and R_{C-aryl} is the same as R_{N-aryl} ,
- (VI) -(CH₂)₀₋₄- R_{C -heteroaryl</sub> where R_{C -heteroaryl is:
 - (A) pyridinyl,

- (B) pyrimidinyl,
- (C) quinolinyl,
- (D) indenyl,
- (E) indanyl,
- (F) benzothiophenyl,
- (G) indolyl,
- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) isoxazolyl,
- (Q) pyrazolyl,
- (R) indolizinyl,
- (S) indazolyl,
- (T) benzothiazolyl,
- (U) benzimidazolyl,
- (V) benzofuranyl,
- (W) furanyl,
- (X) thienyl,
- (Y) pyrrolyl,
- (Z) oxadiazolyl,
- (AA) thiadiazolyl,
- (BB) triazolyl,
- (CC) tetrazolyl,
- (DD) 1, 4-benzodioxan
- (EE) purinyl,
- (FF) oxazolopyridinyl,

- (GG) imidazopyridinyl,
- (HH) isothiazolyl,
- (II) naphthyridinyl,
- (JJ) cinnolinyl,
- (KK) carbazolyl,
- (LL) β-carbolinyl,
- (MM) isochromanyl,
- (NN) chromanyl,
- (OO) furazanyl,
- (PP) tetrahydroisoquinoline,
- (QQ) isoindolinyl,
- (RR) isobenzotetrahydrofuranyl,
- (SS) isobenzotetrahydrothienyl,
- (TT) isobenzothiophenyl,
- (UU) benzoxazolyl, or
- (VV) pyridopyridinyl,
- (VII) -(CH₂)₀₋₄-R_{C-heterocycle} where $R_{\text{C-heterocycle}}$ is the same as $R_{\text{1-heterocycle}},$
- (VIII) -C(R_{C-1})(R_{C-2})-CO-NH- R_{C-3} where R_{C-1} and R_{C-2} are the same or different and are:
 - (A) H,
 - (B) $-C_1-C_6$ alkyl,
 - (C) -(C₁-C₄ alkyl)-R_{C'-aryl} where R_{C'-aryl} is as defined above for $R_{1\text{-aryl}},$
 - (D) -(C1-C4 alkyl)-R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above,
 - (E) -(C_1 - C_4 alkyl)- $R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
 - (F) $-R_{C\text{-heteroaryl}}$ where $R_{C\text{-heteroaryl}}$ is as defined above,
 - (G) $-R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
 - (H) -(CH₂)₁₋₄-OH,
 - (I) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C'-aryl} where R_{C-4} is -O-, -S-, -NH- or

- –NHR_{C-5}- where R_{C-5} is C_1 - C_6 alkyl, and where R_{C' -aryl</sub> is as defined above,
- (J) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C-heteroaryl} where R_{C-4} and R_{C-heteroaryl} are as defined above, or
- $(K) R_{C'\text{-aryl}} \text{ where } R_{C'\text{-aryl}} \text{ is as defined above,}$ and where $R_{C\text{-3}}$ is:
 - (A) -H,
 - (B) $-C_1-C_6$ alkyl,
 - (C) -R_{C'-arvl} where R_{C'-arvl} is as defined above,
 - (D) -R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above,
 - (E) -R_{C-heterocycle} where R_{C-heterocycle} is as defined above,
 - (F) -(C₁-C₄ alkyl)-R_{C'-aryl} where R_{C'-aryl} is as defined above,
 - (G) -(C_1 - C_4 alkyl)- $R_{C\text{-heteroaryl}}$ where $R_{C\text{-heteroaryl}}$ is as defined above, or
 - (H) -(C_1 - C_4 alkyl)- $R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
 - (IX) -CH(ϕ)₂,
 - (X) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are unsubstituted or substituted with one, two or three:
 - (A) C_1 - C_3 alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br and -I,
 - (D) C_1 - C_3 alkoxy,
 - (E) -OCF₃,
 - (F) -NH₂,
 - (G) -OH, or
 - (H) -C≡N,
 - (XI) – CH_2 - $C\cong CH$;
 - (XII) $-(CH_2)_{0-1}$ -CHR_{C-5} -(CH₂)₀₋₁ - ϕ where R_{C-5} is:
 - (A) -OH, or

(B)-CH₂-OH; .

(XIII) -CH(-φ)-CO-O(C₁-C₃ alkyl);

(XIV) -CH(-CH₂-OH)-CH(-OH)-φ-NO₂;

(XV) -(CH₂)₂-O-(CH₂)₂-OH;

(XVI) -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂; .

(XVII) -(C₂-C₈) alkynyl; or

(XVIII) -H; or a pharmaceutically acceptable salt thereof.

- 50. The method of claim 49, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 0.1nM to about 200μM.
- 51. The method of claim 50, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 10nM to about 100µM.
- 52. The method of claim 51, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about 100nM to about 50µM.
- 53. The method of claim 52, wherein said compound inhibits 50% of the enzyme's activity at a concentration of from about $1\mu M$ to about $10\mu M$.
- 54. The method of claim 49, wherein said thereapeutic amount is in the range of from about 0.1 to about 1000 mg/day.
- 55. The method of claim 49, wherein said thereapeutic amount is in the range of from about 15 to about 1500 mg/day.
- 56. The method of claim 55, wherein said thereapeutic amount is in the range of from about 1 to about 100 mg/day.
- 57. The method of claim 56, wherein said thereapeutic amount is in the range of from about 5 to about 50 mg/day.

- 58. The method of claim 49, wherein said disease is Alzheimer's disease.
- 59. The method of claim 49, wherein said disease is Mild Cognitive Impairment, Down's Syndrome, or Hereditary Cerebral Hemmorrhage with Amyloidosis of the Dutch Type.
- 60. A composition comprising β -secretase complexed with a hydroxyethylene compound of the formula

$$R_N$$
 N
 H
 OH
 R_2
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c

where R₁ is:

- (I) C_1 - C_6 alkyl, unsubstituted or substituted with one, two or three C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, $-NH_2$, $-C\equiv N$, $-CF_3$, or $-N_3$,
- (II) $-(CH_2)_{1-2}$ -S- CH_3 ,
- (III) -CH₂-CH₂-S-CH₃,
- (IV) -CH₂-(C₂-C₆ alkenyl) unsubstituted or substituted by one -F,
- (V) -(CH₂)₀₋₃-(R_{1-aryl}) where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl, tetralinyl unsubstituted or substituted on the aryl ring with one or two of the following substituents which can be the same or different:
 - (A) C₁-C₃ alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br and -I,
 - (D) C_1 - C_3 alkoxy,
 - (E) –O-CF₃,
 - (F) -NH₂,
 - (G) -OH, or

- (H) -C≡N,
- (VI) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n_1 is 0, 1, 2, or 3 and R_{1-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pyridazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,
 - (O) phthalazinyl,
 - (P) imidazolyl,
 - (Q) isoxazolyl,
 - (R) pyrazolyl,
 - (S) oxazolyl,
 - (T) thiazolyl,
 - (U) indolizinyl,
 - (V) indazolyl,
 - (W) benzothiazolyl,
 - (X) benzimidazolyl,
 - (Y) benzofuranyl,
 - (Z) furanyl,
 - (AA) thienyl,
 - (BB) pyrrolyl,
 - (CC) oxadiazolyl,

- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β-carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{0\cdot3}$ - by any ring atom of the parent R_{N-} heteroaryl group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_3 alkyl,
- $(2) CF_3$,
- (3) -F, Cl, -Br, or -I,
- (4) C_1 - C_3 alkoxy,
- $(5) O CF_3$,

- $(6) NH_2,$
- (7) -OH, or
- (8) -C≡N,

with the proviso that when n_1 is zero $R_{1-heteroaryl}$ is not bonded to the carbon chain by nitrogen, or

(VII) -(CH2)n1-(R1-heterocycle) where n1 is as defined above and

R₁-heterocycle is:

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,
- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,
- (K) tetrahydrofuranyl, or
- (L) tetrahydrothiophenyl,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heterocycle is unsubstituted or substituted with one or two:

- (1) = 0,
- (2) C_1 - C_3 alkyl,
- $(3) CF_3$,
- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_3 alkoxy,
- $(6) O CF_3$,
- $(7) NH_2$
- (8) -OH, or

(9) -C≡N,

with the proviso that when n_1 is zero $R_{1-heterocycle}$ is not bonded to the carbon chain by nitrogen;

where R₂ is:

- (I) -H,
- (II) C_1 - C_6 alkyl, or
- (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is (C₃-C₆)cycloalkyl, R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above,

where R_N is:

- (I) R_{N-1} - X_N where X_N is:
 - (A) –CO-,
 - (B) $-SO_2$ -,
 - (C) -(CR'R")₁₋₆ where R' and R" are the same or different and are -H or C₁-C₄ alkyl,
 - (D) –CO-(CR'R")₁₋₆- X_{N-1} where X_{N-1} is –O-, -S- and –NR'R"- and where R' and R" are as defined above,
 - (E) a single bond;

where R_{N-1} is:

- (A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl and 2-naphthyl unsubstituted or substituted with one, two, three or four of the following substituents which can be the same or different and are:
 - (1) C_1 - C_6 alkyl,
 - (2) -F, -Cl, -Br, or -I,
 - (3) -OH,
 - $(4) -NO_2,$
 - (5) -CO-OH,
 - (6) -C≡N,
 - (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,

- (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) -NH₂,
- (c) -C₁-C₆ alkyl unsubstituted or substituted with one to three –F, -Cl, -Br, or -I,
- (d) -C₃-C₇ cycloalkyl,
- (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₁-C₆ alkenyl with one or two double bonds,
- (h) -C₁-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) -R_{1-aryl} where R_{1-aryl} is as defined above, or
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (8) $-CO-(C_3-C_{12} \text{ alkyl}),$
- (9) -CO-(C_3 - C_6 cycloalkyl),
- (10) -CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (11) -CO-R_{1-heterocycle} where R_{1-heterocycle} is as defined above,
- (12) -CO-R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C₁-C₃ alkyl,
- (13) -CO-O- R_{N-5} where R_{N-5} is:
 - (a) C₁-C₆ alkyl, or
 - (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
- (14) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above,
- (15) -SO-(C₁-C₈ alkyl),
- (16) -SO₂-(C₃-C₁₂ alkyl),

- (17) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C_1 - C_3 alkyl)₂,
- (19) -N-CS-N(C_1 - C_3 alkyl)₂,
- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,
- $(23) O-CO-(C_1-C_6 \text{ alkyl}),$
- (24) -O-CO-N(C₁-C₃ alkyl)₂,
- (25) -O-CS-N(C₁-C₃ alkyl)₂,
- (26) -O- $(C_1$ - C_6 alkyl),
- (27) -O- $(C_2$ - C_5 alkyl)-COOH,
- (28) -S- $(C_1$ - C_6 alkyl),
- (29) C₁-C₆ alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 –F,
- (30) -O-(C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F, or
- $(31) O \phi$,
- (B) -R_{N-heteroaryl} where R_{N-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pyridazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,

- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β -carbolinyl,
- (PP) isochromanyl,

- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{N\text{-heteroaryl}}$ group is bonded by any atom of the parent $R_{N\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{N\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_6 alkyl,
- (2) -F, -Cl, -Br, or I,
- (3) OH,
- $(4) NO_2$
- (5) -CO-OH,
- (6) -C≡N,
- (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) -NH₂,
 - (c) $-C_1-C_6$ alkyl unsubstituted or substituted with 1, 2, or 3 -F, -Cl, -Br, or -I,
 - (d) -C₃-C₇ cycloalkyl,
 - (e - $(C_1-C_2 \text{ alkyl})$ - $(C_3-C_7 \text{ cycloalkyl})$,
 - (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,

- (g) -C₁-C₆ alkenyl with one or two double bonds,
- (h) -C₁-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, or
- (k) $-R_{1-heteroaryl}$ where $R_{1-heteroaryl}$ is as defined above,
- (8) -CO-(C₃-C₁₂ alkyl),
- (9) -CO-(C3-C6 cycloalkyl),
- (10) -CO- $R_{1\text{-heteroaryl}}$ where $R_{1\text{-heteroaryl}}$ is as defined above,
- (11) -CO- $R_{1\text{-heterocycle}}$ where $R_{1\text{-heterocycle}}$ is as defined above,
- (12) -CO- R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C_1 - C_3 alkyl,
- (13) -CO-O- R_{N-5} where R_{N-5} is:
 - (a) C₁-C₆ alkyl, or
 - (b) -(CH_2)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,
- (14) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above,
- (15) -SO-(C₁-C₈ alkyl),
- (16) -SO₂-(C₃-C₁₂ alkyl),
- (17) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C_1 - C_3 alkyl)₂,

- (19) -N-CS-N(C_1 - C_3 alkyl)₂,
- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,
- (23) –O-CO- $(C_1$ - C_6 alkyl),
- (24) -O-CO-N(C₁-C₃ alkyl)₂,
- (25) -O-CS-N(C₁-C₃ alkyl)₂,
- (26) -O- $(C_1$ - C_6 alkyl),
- (27) -O-(C_2 - C_5 alkyl)-COOH, or
- (28) $-S-(C_1-C_6 \text{ alkyl})$,
- (C) -R_{N-aryl}-R_{N-aryl} where -R_{N-aryl} is as defined above,
- (D) $-R_{N-aryl}-R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (E) $-R_{N-heteroaryl}-R_{N-aryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (F) $-R_{N-heteroaryl}-R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (G) -R_{N-aryl}-O-R_{N-aryl} where -R_{N-aryl} is as defined above,
- (H) $-R_{N-aryl}-S-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (I) - $R_{N\text{-heteroaryl}}$ -O- $R_{N\text{-heteroaryl}}$ where $R_{N\text{-heteroaryl}}$ is as defined above,
- (J) $-R_{N-heteroaryl}$ -S- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (K) -R_{N-aryl}-CO-R_{N-aryl} where -R_{N-aryl} is as defined above,
- (L) $-R_{N-aryl}$ -CO- $R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $R_{N-heteroaryl}$ are as defined above,
- (M) - $R_{N\text{-aryl}}$ - SO_2 - $R_{N\text{-aryl}}$ where - $R_{N\text{-aryl}}$ is as defined above,
- (N) $-R_{N-heteroaryl}$ -CO- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (O) $-R_{N-heteroaryl}$ -SO₂- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (P) $-R_{N\text{-aryl}}$ -O-(C₁-C₈ alkyl)- φ where $R_{N\text{-aryl}}$ is as defined above,

- (Q) $-R_{N-aryl}$ -S-(C₁-C₈ alkyl)- ϕ where R_{N-aryl} is as defined above,
- (R) $-R_{N-heteroaryl}$ -O-(C₁-C₈ alkyl)- φ where $R_{N-heteroaryl}$ is as defined above, or
- (S) $-R_{N-heteroaryl}$ -S-(C₁-C₈ alkyl)- φ where $R_{N-heteroaryl}$ is as defined above,

(II) A- X_N - where X_N is –CO-,

wherein A is

(A)
$$-T-E-(Q)_{m'}$$
,
(1) where $-T$ is

where

- (a) x = 1 when y = 1 and x = 2 when y = 0,
- (b) m is 0, 1, 2 or 3,
- (c) the values of x and y vary independently on each carbon when m is 2 and 3, and
- (d) R''' varies independently on each carbon and is H, (C_1-C_2) alkyl, phenyl, or phenyl (C_1-C_3) alkyl;

(2)-E is

- (a) C₁-C₅ alkyl, but only if m' does not equal 0,
- (b) methylthioxy(C_2 - C_4)alkyl,
- (c) an aryl group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (d) a heterocyclic group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,

- (e) a mono or fused ring cycloalkyl group having 5 to 10 carbon atoms,
- (f) biphenyl,
- (g) diphenyl ether,
- (h) diphenylketone,
- (i) phenyl(C₁-C₈)alkyloxyphenyl, or
- (j) C_1 - C_6 alkoxy;
- (3) -Q is
 - (a) C_1 - C_3 alkyl,
 - (b) C₁-C₃ alkoxy,
 - (c) C₁-C₃ alkylthioxy,
 - (d) C₁-C₆ alkylacylamino,
 - (e) C_1 - C_6 alkylacyloxy,
 - (f) amido (including primary, C₁-C₆ alkyl and phenyl secondary and tertiary amino moieties),
 - (g) C₁-C₆ alkylamino
 - (h) phenylamino,
 - (i) carbamyl (including C₁-C₆ alkyl and phenyl amides and esters),
 - (j) carboxyl (including C_1 - C_6 alkyl and phenyl esters),
 - (k) $carboxy(C_2-C_5)alkoxy$,
 - (l) carboxy $(C_2\text{-}C5)$ alkylthioxy,
 - (m) heterocyclylacyl,
 - (n) heteroarylacyl, or
 - (o) hydroxyl;
- (4) m' is 0, 1, 2 or 3;
- (B) $-E(Q)_{m''}$ wherein E and -Q are as defined as above and m'' is 0, 1, 2, or 3;
- (C) -T-E wherein -E and -Q are as defined as above; or

- (D) -E wherein -E is as defined as above;
- (III) -CO-(C₁-C₆ alkyl) where alkyl is unsubstituted or substituted with one or two:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) –CO-O- R_{N-8} where R_{N-8} is –H, C_1 - C_6 alkyl or - φ ,
 - (E) $-CO-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR $_{N-2}$ R $_{N-3}$ where R $_{N-2}$ and R $_{N-3}$ are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO-(C_1 - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where the $R_{\text{N-8}}$ is the same or different and are as defined above, or
 - (O) -O-(C_1 - C_5 alkyl)-COOH,
- (IV) $-CO-(C_1-C_3 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$ where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) –CO-O- R_{N-8} where R_{N-8} is –H, C_1 - C_6 alkyl or - φ ,
 - (E) $-\text{CO-NR}_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,

- (F) -CO- R_{N-4} where R_{N-4} is as defined above,
- (G) -SO₂- $(C_1$ - C_8 alkyl),
- (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (I) -NH-CO-(C_1 - C_6 alkyl),
- (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
- (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO- $(C_1$ - C_6 alkyl),
- (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or
- (O) -O- $(C_1$ - C_5 alkyl)-COOH,
- (V) –CO-(C₁-C₃ alkyl)-S-(C₁-C₃ alkyl) where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{\text{N-2}}R_{\text{N-3}}$ where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),

- (N) -O-CO-NR $_{\text{N-8}}R_{\text{N-8}}$ where the $R_{\text{N-8}}$ are the same or different and are as defined above, or
- (O) -O-(C_1 - C_5 alkyl)-COOH,
- (VI) –CO-CH(-(CH₂)₀₋₂-O-R_{N-10})-(CH₂)₀₋₂-R_{N-aryl}/R_{N-heteroaryl}) where R_{N-aryl} and $R_{N-heteroaryl}$ are as defined above, where R_{N-10} is:
 - (A) H,
 - (B) C_1 - C_6 alkyl,
 - (C) C₃-C₇ cycloalkyl,
 - (D) C₂-C₆ alkenyl with one double bond,
 - (E) C2-C6 alkynyl with one triple bond,
 - (F) R_{1-aryl} where R_{1-aryl} is as defined above, or
 - (G) $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above;

where B is -O-, -NH-, or -N(C_1 - C_6 alkyl)-; where R_C is:

- (I) $-(C_1-C_{10})$ alkyl- K_{1-3} in which:
 - (A) the alkyl chain is unsubstituted or substituted with one -OH,
 - (B) the alkyl chain is unsubstituted or substituted with one C_1 - C_6 alkoxy unsubstituted or substituted with 1-5 -F,
 - (C) the alkyl chain is unsubstituted or substituted with one –O-φ,
 - (D) the alkyl chain is unsubstituted or substituted with 1-5 -F,
 - (E) the alkyl chain is unsubstituted or substituted with a combination of up to three atoms of oxygen and sulfur each such atom replacing one carbon,
 - (F) each K is:
- (1) H,
- (2) C_1 - C_3 alkyl,
- (3) C_1 - C_3 alkoxy,
- (4) C₁-C₃ alkylthioxy,
- (5) C₁-C₆ alkylacylamino,
- (6) C₁-C₆ alkylacyloxy,

- (7) amido
- (8) C₁-C₆ alkylamino
- (9) phenylamino,
- (10) carbamyl
- (11) carboxyl
- (12) carboxy(C₂-C₅)alkoxy,
- (13) carboxy(C₂-C5)alkylthioxy,
- (14) heterocyclylacyl,
- (15) heteroarylacyl,
- (16) amino unsubstituted or substituted with C_1 - C_6 alkyl,
- (17) hydroxyl, or
- (18) carboxyl methyl ester;
- (II)- $(CH_2)_{0-3}$ -J- $[(-(CH_2)_{0-3}-K]_{1-3}$ where K is as defined above and J is:
 - (A) a 5 to 7 atom monocyclic aryl group,
 - (B) a 8 to 12 atom multicyclic aryl group,
 - (C) a 5 to 7 atom heterocyclic group,
 - (D) a 8 to 12 atom multicyclic heterocyclic group, or
 - (E) a 5 to 10 atom monocyclic or multicyclic cycloalkyl group;
- (III) -(CH₂)₀₋₃-(C₃-C₇) cycloalkyl where cycloalkyl can be unsubstituted or substituted with one, two or three
 - (A) C₁-C₃ alkyl unsubstituted or substituted with 1, 2, 3, or 4 –F, -Cl, -Br, or -I,
 - (B) -CO-OH,
 - (C) -CO-O-(C_1 - C_4 alkyl),
 - (D) -OH, or
 - (E) C_1 - C_6 alkoxy,
- (IV) - $(CH_2)_{2-6}$ -OH,
- (V) -($CR_{C-x}R_{C-y}$)₀₋₄- R_{C-aryl} where R_{C-x} and R_{C-y} are -H, C_1 - C_4 alkyl and φ and R_{C-aryl} is the same as R_{N-aryl} ,

- (VI) -(CH₂)₀₋₄-R_{C-heteroaryl} where $R_{\text{C-heteroaryl}}$ is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pyridazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,
 - (O) phthalazinyl,
 - (P) isoxazolyl,
 - (Q) pyrazolyl,
 - (R) indolizinyl,
 - (S) indazolyl,
 - (T) benzothiazolyl,
 - (U) benzimidazolyl,
 - (V) benzofuranyl,
 - (W) furanyl,
 - (X) thienyl,
 - (Y) pyrrolyl,
 - (Z) oxadiazolyl,
 - (AA) thiadiazolyl,
 - (BB) triazolyl,
 - (CC) tetrazolyl,
 - (DD) 1, 4-benzodioxan

- (EE) purinyl,
- (FF) oxazolopyridinyl,
- (GG) imidazopyridinyl,
- (HH) isothiazolyl,
- (II) naphthyridinyl,
- (JJ) cinnolinyl,
- (KK) carbazolyl,
- (LL) β-carbolinyl,
- (MM) isochromanyl,
- (NN) chromanyl,
- (OO) furazanyl,
- (PP) tetrahydroisoquinoline,
- (QQ) isoindolinyl,
- (RR) isobenzotetrahydrofuranyl,
- (SS) isobenzotetrahydrothienyl,
- (TT) isobenzothiophenyl,
- (UU) benzoxazolyl, or
- (VV) pyridopyridinyl,
- (VII) -(CH₂)₀₋₄-R_{C-heterocycle} where $R_{\text{C-heterocycle}}$ is the same as $R_{\text{1-heterocycle}},$
- (VIII) -C(R_{C-1})(R_{C-2})-CO-NH- R_{C-3} where R_{C-1} and R_{C-2} are the same or different and are:
 - (A) H,
 - (B) $-C_1-C_6$ alkyl,
 - (C) -(C₁-C₄ alkyl)-R_{C'-aryl} where R_{C'-aryl} is as defined above for R_{1-aryl} ,
 - (D) -(C1-C4 alkyl)-R_C-heteroaryl where $R_{\text{C-heteroaryl}}$ is as defined above,
 - (E) -(C_1 - C_4 alkyl)- R_{C -heterocycle</sub> where R_{C -heterocycle} is as defined above,
 - (F) $-R_{C\text{-heteroaryl}}$ where $R_{C\text{-heteroaryl}}$ is as defined above,
 - (G) $-R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
 - $(H) (CH_2)_{1-4} OH,$

- (I) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C'-aryl} where R_{C-4} is -O-, -S-, -NH- or -NHR_{C-5}- where R_{C-5} is C_1 - C_6 alkyl, and where R_{C'-aryl} is as defined above,
- (J) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C-heteroaryl} where R_{C-4} and R_{C-heteroaryl} are as defined above, or
- (K) -R_{C'-arvl} where R_{C'-arvl} is as defined above,

and where R_{C-3} is:

- (A) -H,
- (B) $-C_1-C_6$ alkyl,
- (C) -R_{C'-aryl} where R_{C'-aryl} is as defined above,
- (D) -R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above,
- (E) -R_{C-heterocycle} where R_{C-heterocycle} is as defined above,
- (F) -(C₁-C₄ alkyl)-R_{C'-aryl} where R_{C'-aryl} is as defined above,
- (G) -(C₁-C₄ alkyl)-R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above, or
- (H) -(C_1 - C_4 alkyl)- $R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
- (IX) -CH(ϕ)₂,
- (X) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are unsubstituted or substituted with one, two or three:
 - (A) C_1 - C_3 alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br and -I,
 - (D) C_1 - C_3 alkoxy,
 - (E) -OCF₃,
 - (F) -NH₂,
 - (G) -OH, or
 - (H) -C≡N,
- (XI) –CH₂-C≡CH;
- (XII) $-(CH_2)_{0-1}$ -CHR_{C-5}-(CH₂)₀₋₁- ϕ where R_{C-5} is:

- (A) –OH, or
- (B)-CH₂-OH;
- (XIII) $-CH(-\phi)-CO-O(C_1-C_3 \text{ alkyl});$
- (XIV) $-CH(-CH_2-OH)-CH(-OH)-\phi-NO_2$;
- $(XV) (CH_2)_2 O (CH_2)_2 OH;$
- (XVI) -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂;
- (XVII) $-(C_2-C_8)$ alkynyl; or
- (XVIII) -H; or a pharmaceutically acceptable salt thereof.
- 61. A method for producing a β -secretase complex comprising exposing β -secretase to a hydroxyethylene compound of the formula

$$R_N$$
 N
 H
 OH
 R_2
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c
 R_c

where R₁ is:

- (I) C_1 - C_6 alkyl, unsubstituted or substituted with one, two or three C_1 - C_3 alkyl, -F, -Cl, -Br, -I, -OH, $-NH_2$, $-C \equiv N$, $-CF_3$, or $-N_3$,
- (II) $-(CH_2)_{1-2}$ -S-CH₃,
- (III) -CH₂-CH₂-S-CH₃,
- (IV) -CH₂-(C₂-C₆ alkenyl) unsubstituted or substituted by one -F,
- (V) -(CH₂)₀₋₃-(R_{1-aryl}) where R_{1-aryl} is phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydronaphthyl, tetralinyl unsubstituted or substituted on the aryl ring with one or two of the following substituents which can be the same or different:
 - (A) C_1 - C_3 alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br and -I,
 - (D) C_1 - C_3 alkoxy,

- (E) –O-CF₃,
- (F) -NH₂,
- (G) -OH, or
- (H) -C≡N,
- (VI) -(CH₂)_{n1}-(R_{1-heteroaryl}) where n₁ is 0, 1, 2, or 3 and R_{1-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pyridazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,
 - (O) phthalazinyl,
 - (P) imidazolyl,
 - (Q) isoxazolyl,
 - (R) pyrazolyl,
 - (S) oxazolyl,
 - (T) thiazolyl,
 - (U) indolizinyl,
 - (V) indazolyl,
 - (W) benzothiazolyl,
 - (X) benzimidazolyl,
 - (Y) benzofuranyl,
 - (Z) furanyl,

- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,
- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β-carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{1\text{-heteroaryl}}$ group is bonded to $-(CH_2)_{0\text{-}3}$ - by any ring atom of the parent R_{N} heteroaryl group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group
replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted
with one or two:

- (1) C_1 - C_3 alkyl,
- $(2) CF_3$,

- (3) -F, Cl, -Br, or -I,
- (4) C₁-C₃ alkoxy,
- (5) –O-CF₃,
- (6) -NH₂,
- (7) -OH, or
- (8) -C≡N,

with the proviso that when n_1 is zero $R_{1\text{-heteroary}1}$ is not bonded to the carbon chain by nitrogen, or

(VII) - $(CH_2)_{n_1}$ - $(R_1$ -heterocycle) where n_1 is as defined above and

R₁-heterocycle is:

- (A) morpholinyl,
- (B) thiomorpholinyl,
- (C) thiomorpholinyl S-oxide,
- (D) thiomorpholinyl S,S-dioxide,
- (E) piperazinyl,
- (F) homopiperazinyl,
- (G) pyrrolidinyl,
- (H) pyrrolinyl,
- (I) tetrahydropyranyl,
- (J) piperidinyl,
- (K) tetrahydrofuranyl, or
- (L) tetrahydrothiophenyl,

where the $R_{1\text{-heterocycle}}$ group is bonded by any atom of the parent $R_{1\text{-heterocycle}}$ group substituted by hydrogen such that the new bond to the $R_{1\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heterocycle is unsubstituted or substituted with one or two:

- (1) = 0,
- (2) C_1 - C_3 alkyl,
- $(3) CF_3$,
- (4) -F, Cl, -Br and -I,
- (5) C_1 - C_3 alkoxy,

- (6) -O-CF₃,
- $(7) NH_2,$
- (8) -OH, or
- (9) -C≡N,

with the proviso that when n_1 is zero $R_{1-heterocycle}$ is not bonded to the carbon chain by nitrogen;

where R₂ is:

- (I) -H,
- (II) C_1 - C_6 alkyl, or
- (III) -(CH₂)₀₋₄-R₂₋₁ where R₂₋₁ is (C₃-C₆)cycloalkyl, R_{1-aryl} or R_{1-heteroaryl} where R_{1-aryl} and R_{1-heteroaryl} are as defined above,

where R_N is:

- (I) R_{N-1} - X_N where X_N is:
 - (A)-CO-,
 - (B) $-SO_2$ -,
 - (C) -(CR'R") $_{1-6}$ where R' and R" are the same or different and are -H or C_1 - C_4 alkyl,
 - (D) –CO-(CR'R")₁₋₆- X_{N-1} where X_{N-1} is –O-, -S- and –NR'R"- and where R' and R" are as defined above,
 - (E) a single bond;

where R_{N-1} is:

- (A) R_{N-aryl} where R_{N-aryl} is phenyl, 1-naphthyl and 2-naphthyl unsubstituted or substituted with one, two, three or four of the following substituents which can be the same or different and are:
 - (1) C_1 - C_6 alkyl,
 - (2) -F, -Cl, -Br, or -I,
 - (3) -OH,
 - $(4) -NO_2$,
 - (5) -CO-OH,
 - (6) -C≅N,

- (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) $-C_1-C_6$ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) $-NH_2$,
 - (c) -C₁-C₆ alkyl unsubstituted or substituted with one to three –F, -Cl, -Br, or -I,
 - (d) -C₃-C₇ cycloalkyl,
 - (e) $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$,
 - (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
 - (g) -C₁-C₆ alkenyl with one or two double bonds,
 - (h) -C₁-C₆ alkynyl with one or two triple bonds,
 - (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
 - (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, or
 - (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (8) -CO-(C₃-C₁₂ alkyl),
- (9) -CO-(C₃-C₆ cycloalkyl),
- (10) -CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (11) -CO- $R_{1\text{-heterocycle}}$ where $R_{1\text{-heterocycle}}$ is as defined above,
- (12) -CO- R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C_1 - C_3 alkyl,
- (13) -CO-O- R_{N-5} where R_{N-5} is:
 - (a) C₁-C₆ alkyl, or
 - (b) -(CH₂)₀₋₂-(R_{1-aryl}) where R_{1-aryl} is as defined above,

- (14) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above,
- (15) $-SO-(C_1-C_8 \text{ alkyl})$,
- $(16) -SO_2 (C_3 C_{12} \text{ alkyl}),$
- (17) -NH-CO-O-R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C₁-C₃ alkyl)₂,
- (19) -N-CS-N(C_1 - C_3 alkyl)₂,
- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,
- (23) –O-CO- $(C_1$ - C_6 alkyl),
- (24) -O-CO-N(C₁-C₃ alkyl)₂,
- (25) -O-CS-N(C₁-C₃ alkyl)₂,
- (26) -O- $(C_1$ - C_6 alkyl),
- (27) -O-(C2-C5 alkyl)-COOH,
- (28) $-S-(C_1-C_6 \text{ alkyl})$,
- (29) C_1 - C_6 alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 –F,
- (30) -O-(C₁-C₆ alkyl unsubstituted or substituted with 1, 2, 3, 4, or 5 -F, or
- $(31) O \phi$,
- (B) -R_{N-heteroaryl} where R_{N-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,

- (H) indolinyl,
- (I) pyridazinyl,
- (J) pyrazinyl,
- (K) isoindolyl,
- (L) isoquinolyl,
- (M) quinazolinyl,
- (N) quinoxalinyl,
- (O) phthalazinyl,
- (P) imidazolyl,
- (Q) isoxazolyl,
- (R) pyrazolyl,
- (S) oxazolyl,
- (T) thiazolyl,
- (U) indolizinyl,
- (V) indazolyl,
- (W) benzothiazolyl,
- (X) benzimidazolyl,
- (Y) benzofuranyl,
- (Z) furanyl,
- (AA) thienyl,
- (BB) pyrrolyl,
- (CC) oxadiazolyl,
- (DD) thiadiazolyl,
- (EE) triazolyl,
- (FF) tetrazolyl,
- (GG) 1, 4-benzodioxan
- (HH) purinyl,
- (II) oxazolopyridinyl,
- (JJ) imidazopyridinyl,
- (KK) isothiazolyl,
- (LL) naphthyridinyl,

- (MM) cinnolinyl,
- (NN) carbazolyl,
- (OO) β-carbolinyl,
- (PP) isochromanyl,
- (QQ) chromanyl,
- (RR) furazanyl,
- (SS) tetrahydroisoquinoline,
- (TT) isoindolinyl,
- (UU) isobenzotetrahydrofuranyl,
- (VV) isobenzotetrahydrothienyl,
- (WW) isobenzothiophenyl,
- (XX) benzoxazolyl, or
- (YY) pyridopyridinyl,

where the $R_{N\text{-heteroaryl}}$ group is bonded by any atom of the parent $R_{N\text{-heteroaryl}}$ group substituted by hydrogen such that the new bond to the $R_{N\text{-heteroaryl}}$ group replaces the hydrogen atom and its bond, where heteroaryl is unsubstituted or substituted with one or two:

- (1) C_1 - C_6 alkyl,
- (2) -F, -Cl, -Br, or I,
- (3) -OH,
- $(4) NO_2$,
- (5) -CO-OH,
- (6) -C≡N,
- (7) -CO-NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are:
 - (a) -H,
 - (b) -C₁-C₆ alkyl unsubstituted or substituted with one
 - (i) -OH, or
 - (ii) $-NH_2$,

- (c) $-C_1-C_6$ alkyl unsubstituted or substituted with 1, 2, or 3 -F, $-C_1$, $-B_7$, or -I,
- (d) -C₃-C₇ cycloalkyl,
- (e - $(C_1-C_2 \text{ alkyl})$ - $(C_3-C_7 \text{ cycloalkyl})$,
- (f) $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$,
- (g) -C₁-C₆ alkenyl with one or two double bonds,
- (h) -C₁-C₆ alkynyl with one or two triple bonds,
- (i) -C₁-C₆ alkyl chain with one double bond and one triple bond,
- (j) $-R_{1-aryl}$ where R_{1-aryl} is as defined above, or
- (k) -R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (8) $-CO-(C_3-C_{12} \text{ alkyl})$,
- (9) -CO-(C₃-C₆ cycloalkyl),
- (10) -CO-R_{1-heteroaryl} where R_{1-heteroaryl} is as defined above,
- (11) -CO- $R_{1\text{-heterocycle}}$ where $R_{1\text{-heterocycle}}$ is as defined above,
- (12) -CO- R_{N-4} where R_{N-4} is morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl or pyrrolidinyl where each group is unsubstituted or substituted with one or two C_1 - C_3 alkyl,
- (13) -CO-O- R_{N-5} where R_{N-5} is:
 - (a) C₁-C₆ alkyl, or
 - (b) $-(CH_2)_{0-2}-(R_{1-ary!})$ where $R_{1-ary!}$ is as defined above,
- (14) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are as defined above,

- (15) -SO- $(C_1$ - C_8 alkyl),
- (16) -SO₂- $(C_3$ - C_{12} alkyl),
- (17) -NH-CO-O- R_{N-5} where R_{N-5} is as defined above,
- (18) -NH-CO-N(C_1 - C_3 alkyl)₂,
- (19) -N-CS-N(C_1 - C_3 alkyl)₂,
- (20) $-N(C_1-C_3 \text{ alkyl})-CO-R_{N-5}$ where R_{N-5} is as defined above,
- (21) $-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} can be the same or different and are as defined above,
- (22) $-R_{N-4}$ where R_{N-4} is as defined above,
- (23) -O-CO- $(C_1$ - C_6 alkyl),
- (24) -O-CO-N(C₁-C₃ alkyl)₂,
- (25) -O-CS-N(C₁-C₃ alkyl)₂,
- (26) -O- $(C_1$ - C_6 alkyl),
- (27) -O- $(C_2$ - C_5 alkyl)-COOH, or
- (28) -S- $(C_1$ - C_6 alkyl),
- (C) $-R_{N-aryl}-R_{N-aryl}$ where $-R_{N-aryl}$ is as defined above,
- (D) $-R_{N-aryl}-R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (E) $-R_{N-heteroaryl}-R_{N-aryl}$ where $-R_{N-aryl}$ and $-R_{N-heteroaryl}$ are as defined above,
- (F) -R_{N-heteroaryl}-R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above,
- (G) -R_{N-aryl}-O-R_{N-aryl} where -R_{N-aryl} is as defined above,
- (H) $-R_{N-aryl}$ -S- R_{N-aryl} where $-R_{N-aryl}$ is as defined above,
- (I) $-R_{N-heteroaryl}$ -O- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (J) -R_{N-heteroaryl}-S-R_{N-heteroaryl} where R_{N-heteroaryl} is as defined above,
- (K) $-R_{N-aryl}$ -CO- R_{N-aryl} where $-R_{N-aryl}$ is as defined above,
- (L) $-R_{N-aryl}$ -CO- $R_{N-heteroaryl}$ where $-R_{N-aryl}$ and $R_{N-heteroaryl}$ are as defined above,
- (M) $-R_{N-aryl}$ -SO₂- R_{N-aryl} where $-R_{N-aryl}$ is as defined above,

- (N) $-R_{N-heteroaryl}$ -CO- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (O) - $R_{N-heteroaryl}$ -SO₂- $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above,
- (P) $-R_{N-aryl}$ -O-(C₁-C₈ alkyl)- ϕ where R_{N-aryl} is as defined above,
- (Q) $-R_{N-aryl}$ -S-(C₁-C₈ alkyl)- ϕ where R_{N-aryl} is as defined above,
- (R) $-R_{N-heteroaryl}$ -O-(C₁-C₈ alkyl)- φ where $R_{N-heteroaryl}$ is as defined above, or
- (S) $-R_{N-heteroaryl}$ -S-(C₁-C₈ alkyl)- φ where $R_{N-heteroaryl}$ is as defined above.

(II) A- X_N - where X_N is -CO-,

wherein A is

(A) -T-E-
$$(Q)_{m'}$$
,
(1) where -T is

where

- (a) x = 1 when y = 1 and x = 2 when y = 0,
- (b) m is 0, 1, 2 or 3,
- (c) the values of x and y vary independently on each carbon when m is 2 and 3, and
- (d) R''' varies independently on each carbon and is H, (C_1-C_2) alkyl, phenyl, or phenyl (C_1-C_3) alkyl;

(2) -E is

- (a) C₁-C₅ alkyl, but only if m' does not equal 0,
- (b) methylthioxy(C₂-C₄)alkyl,

- (c) an aryl group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (d) a heterocyclic group having 5 to 7 atoms when monocyclic or having 8 to 12 atoms when fused,
- (e) a mono or fused ring cycloalkyl group having 5 to 10 carbon atoms,
- (f) biphenyl,
- (g) diphenyl ether,
- (h) diphenylketone,
- (i) phenyl(C₁-C₈)alkyloxyphenyl, or
- (j) C_1 - C_6 alkoxy;

(3) - Q is

- (a) C_1 - C_3 alkyl,
- (b) C_1 - C_3 alkoxy,
- (c) C₁-C₃ alkylthioxy,
- (d) C₁-C₆ alkylacylamino,
- (e) C₁-C₆ alkylacyloxy,
- (f) amido (including primary, C₁-C₆ alkyl and phenyl secondary and tertiary amino moieties),
- (g) C₁-C₆ alkylamino
- (h) phenylamino,
- (i) carbamyl (including C₁-C₆ alkyl and phenyl amides and esters),
- (j) carboxyl (including C_1 - C_6 alkyl and phenyl esters),
- (k) $carboxy(C_2-C_5)alkoxy$,
- (l) carboxy(C₂-C5)alkylthioxy,
- (m) heterocyclylacyl,
- (n) heteroarylacyl, or
- (o) hydroxyl;
- (4) m' is 0, 1, 2 or 3;

- (B) $-E(Q)_{m''}$ wherein E and -Q are as defined as above and m'' is 0, 1, 2, or 3;
- (C) -T-E wherein -E and -Q are as defined as above; or
- (D) -E wherein -E is as defined as above;
- (III) –CO-(C₁-C₆ alkyl) where alkyl is unsubstituted or substituted with one or two:
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{\text{N-2}}\text{R}_{\text{N-3}}$ where $\text{R}_{\text{N-2}}$ and $\text{R}_{\text{N-3}}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) $-SO_2$ -(C₁-C₈ alkyl),
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),
 - (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
 - (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (L) $-R_{N-4}$ where R_{N-4} is as defined above,
 - (M) -O-CO- $(C_1$ - C_6 alkyl),
 - (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} is the same or different and are as defined above, or
 - (O) -O-(C_1 - C_5 alkyl)-COOH,
- (IV) –CO-(C₁-C₃ alkyl)-O-(C₁-C₃ alkyl) where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,

- (B) $-C_1-C_6$ alkoxy,
- (C) $-C_1-C_6$ thioalkoxy,
- (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
- (E) $-\text{CO-NR}_{\text{N-2}}R_{\text{N-3}}$ where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are the same or different and are as defined above,
- (F) -CO-R_{N-4} where R_{N-4} is as defined above,
- (G) $-SO_2-(C_1-C_8 \text{ alkyl})$,
- (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (I) -NH-CO-(C_1 - C_6 alkyl),
- (J) -NH-CO-O-R_{N-8} where R_{N-8} is as defined above,
- (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO- $(C_1$ - C_6 alkyl),
- (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or
- (O) -O-(C₁-C₅ alkyl)-COOH,
- (V) –CO-(C₁-C₃ alkyl)-S-(C₁-C₃ alkyl) where alkyl is unsubstituted or substituted with one or two
 - (A) -OH,
 - (B) $-C_1-C_6$ alkoxy,
 - (C) $-C_1-C_6$ thioalkoxy,
 - (D) $-CO-O-R_{N-8}$ where R_{N-8} is -H, C_1-C_6 alkyl or $-\phi$,
 - (E) $-\text{CO-NR}_{\text{N-2}}R_{\text{N-3}}$ where $R_{\text{N-2}}$ and $R_{\text{N-3}}$ are the same or different and are as defined above,
 - (F) -CO- R_{N-4} where R_{N-4} is as defined above,
 - (G) -SO₂- $(C_1$ - C_8 alkyl),
 - (H) $-SO_2-NR_{N-2}R_{N-3}$ where R_{N-2} and R_{N-3} are the same or different and are as defined above,
 - (I) -NH-CO-(C_1 - C_6 alkyl),

- (J) -NH-CO-O- R_{N-8} where R_{N-8} is as defined above,
- (K) -NR_{N-2}R_{N-3} where R_{N-2} and R_{N-3} are the same or different and are as defined above,
- (L) $-R_{N-4}$ where R_{N-4} is as defined above,
- (M) -O-CO-(C_1 - C_6 alkyl),
- (N) -O-CO-NR_{N-8}R_{N-8} where the R_{N-8} are the same or different and are as defined above, or
- (O) $-O-(C_1-C_5 \text{ alkyl})-COOH$,
- (VI) –CO-CH(-(CH₂)₀₋₂-O-R_{N-10})-(CH₂)₀₋₂-R_{N-aryl}/R_{N-heteroaryl}) where R_{N-aryl} and R_{N-heteroaryl} are as defined above, where R_{N-10} is:
 - (A) H,
 - (B) C_1 - C_6 alkyl,
 - (C) C₃-C₇ cycloalkyl,
 - (D) C₂-C₆ alkenyl with one double bond,
 - (E) C₂-C₆ alkynyl with one triple bond,
 - (F) R_{1-aryl} where R_{1-aryl} is as defined above, or
 - (G) $R_{N-heteroaryl}$ where $R_{N-heteroaryl}$ is as defined above;

where B is -O-, -NH-, or -N(C_1 - C_6 alkyl)-; where R_C is:

- (I) $-(C_1-C_{10})$ alkyl $-K_{1-3}$ in which:
 - (A) the alkyl chain is unsubstituted or substituted with one –OH,
 - (B) the alkyl chain is unsubstituted or substituted with one C_1 - C_6 alkoxy unsubstituted or substituted with 1-5 -F,
 - (C) the alkyl chain is unsubstituted or substituted with one $-O-\phi$,
 - (D) the alkyl chain is unsubstituted or substituted with 1-5 –F,
 - (E) the alkyl chain is unsubstituted or substituted with a combination of up to three atoms of oxygen and sulfur each such atom replacing one carbon,
 - (F) each K is:

(1) H,

- (2) C_1 - C_3 alkyl,
- (3) C_1 - C_3 alkoxy,
- (4) C_1 - C_3 alkylthioxy,
- (5) C₁-C₆ alkylacylamino,
- (6) C₁-C₆ alkylacyloxy,
- (7) amido
- (8) C_1 - C_6 alkylamino
- (9) phenylamino,
- (10) carbamyl
- (11) carboxyl
- (12) $\operatorname{carboxy}(C_2-C_5)\operatorname{alkoxy}$,
- (13) carboxy(C₂-C5)alkylthioxy,
- (14) heterocyclylacyl,
- (15) heteroarylacyl,
- (16) amino unsubstituted or substituted with C_1 - C_6 alkyl,
- (17) hydroxyl, or
- (18) carboxyl methyl ester;
- (II)-(CH₂)₀₋₃-J-[(-(CH₂)₀₋₃-K]₁₋₃ where K is as defined above and J is:
 - (A) a 5 to 7 atom monocyclic aryl group,
 - (B) a 8 to 12 atom multicyclic aryl group,
 - (C) a 5 to 7 atom heterocyclic group,
 - (D) a 8 to 12 atom multicyclic heterocyclic group, or
 - (E) a 5 to 10 atom monocyclic or multicyclic cycloalkyl group;
- (III) $-(CH_2)_{0-3}-(C_3-C_7)$ cycloalkyl where cycloalkyl can be unsubstituted or substituted with one, two or three
 - (A) C_1 - C_3 alkyl unsubstituted or substituted with 1, 2, 3, or 4 –F, -Cl, -Br, or -I,
 - (B) -CO-OH,
 - (C) -CO-O-(C_1 - C_4 alkyl),

- (D) -OH, or
- (E) C_1 - C_6 alkoxy,
- (IV) -(CH₂)₂₋₆-OH,
- (V) -($CR_{C-x}R_{C-y}$)₀₋₄- R_{C-aryl} where R_{C-x} and R_{C-y} are -H, C_1 - C_4 alkyl and φ and R_{C-aryl} is the same as R_{N-aryl} ,
- (VI) -(CH₂)₀₋₄-R_{C-heteroaryl} where R_{C-heteroaryl} is:
 - (A) pyridinyl,
 - (B) pyrimidinyl,
 - (C) quinolinyl,
 - (D) indenyl,
 - (E) indanyl,
 - (F) benzothiophenyl,
 - (G) indolyl,
 - (H) indolinyl,
 - (I) pyridazinyl,
 - (J) pyrazinyl,
 - (K) isoindolyl,
 - (L) isoquinolyl,
 - (M) quinazolinyl,
 - (N) quinoxalinyl,
 - (O) phthalazinyl,
 - (P) isoxazolyl,
 - (Q) pyrazolyl,
 - (R) indolizinyl,
 - (S) indazolyl,
 - (T) benzothiazolyl,
 - (U) benzimidazolyl,
 - (V) benzofuranyl,
 - (W) furanyl,
 - (X) thienyl,
 - (Y) pyrrolyl,

- (Z) oxadiazolyl,
- (AA) thiadiazolyl,
- (BB) triazolyl,
- (CC) tetrazolyl,
- (DD) 1, 4-benzodioxan
- (EE) purinyl,
- (FF) oxazolopyridinyl,
- (GG) imidazopyridinyl,
- (HH) isothiazolyl,
- (II) naphthyridinyl,
- (JJ) cinnolinyl,
- (KK) carbazolyl,
- (LL) β-carbolinyl,
- (MM) isochromanyl,
- (NN) chromanyl,
- (OO) furazanyl,
- (PP) tetrahydroisoquinoline,
- (QQ) isoindolinyl,
- (RR) isobenzotetrahydrofuranyl,
- (SS) isobenzotetrahydrothienyl,
- (TT) isobenzothiophenyl,
- (UU) benzoxazolyl, or
- (VV) pyridopyridinyl,
- (VII) -(CH₂)₀₋₄-R_{C-heterocycle} where $R_{\text{C-heterocycle}}$ is the same as $R_{\text{1-heterocycle}},$
- (VIII) -C(R_{C-1})(R_{C-2})-CO-NH- R_{C-3} where R_{C-1} and R_{C-2} are the same or different and are:
 - (A) -H,
 - (B) $-C_1-C_6$ alkyl,
 - (C) -(C1-C4 alkyl)-RC'-aryl where RC'-aryl is as defined above for $R_{1\text{-aryl}}, \label{eq:R1-aryl}$
 - (D) -(C_1 - C_4 alkyl)- $R_{C\text{-heteroaryl}}$ where $R_{C\text{-heteroaryl}}$ is as defined above,

- (E) -(C_1 - C_4 alkyl)- R_{C -heterocycle</sub> where R_{C -heterocycle} is as defined above,
- (F) $-R_{C-heteroaryl}$ where $R_{C-heteroaryl}$ is as defined above,
- (G) $-R_{C-heterocycle}$ where $R_{C-heterocycle}$ is as defined above,
- $(H) (CH_2)_{1-4} OH,$
- (I) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C'-aryl} where R_{C-4} is -O-, -S-, -NH- or $-NHR_{C-5}- \text{ where } R_{C-5} \text{ is } C_1\text{-}C_6 \text{ alkyl, and where } R_{C'\text{-aryl}} \text{ is as defined above,}$
- (J) -(CH₂)₁₋₄-R_{C-4}-(CH₂)₁₋₄-R_{C-heteroaryl} where R_{C-4} and R_{C-heteroaryl} are as defined above, or
- (K) $-R_{C'\text{-aryl}}$ where $R_{C'\text{-aryl}}$ is as defined above,

and where R_{C-3} is:

- (A) H,
- (B) $-C_1-C_6$ alkyl,
- (C) $-R_{C'\text{-aryl}}$ where $R_{C'\text{-aryl}}$ is as defined above,
- (D) -R_{C-heteroaryl} where R_{C-heteroaryl} is as defined above,
- (E) $-R_{C\text{-heterocycle}}$ where $R_{C\text{-heterocycle}}$ is as defined above,
- (F) -(C_1 - C_4 alkyl)- R_{C' -aryl</sub> where R_{C' -aryl</sub> is as defined above,
- (G) -(C₁-C₄ alkyl)-R_{C-heteroaryl} where $R_{C\text{-heteroaryl}}$ is as defined above, or
- (H) -(C_1 - C_4 alkyl)- R_{C -heterocycle</sub> where R_{C -heterocycle} is as defined above,

(IX) -CH(ϕ)₂,

- (X) -cyclopentyl or -cyclohexyl ring fused to a phenyl or heteroaryl ring where heteroaryl is as defined above and phenyl and heteroaryl are unsubstituted or substituted with one, two or three:
 - (A) C_1 - C_3 alkyl,
 - (B) – CF_3 ,
 - (C) -F, Cl, -Br and -I,
 - (D) C_1 - C_3 alkoxy,
 - (E) -OCF₃,

- (F) -NH₂,
- (G) -OH, or
- (H) -C≡N,
- (XI) – CH_2 - $C\equiv CH$;
- (XII) $-(CH_2)_{0-1}$ - CHR_{C-5} - $(CH_2)_{0-1}$ - φ where R_{C-5} is:
 - (A) –OH, or
 - (B)-CH₂-OH;
- (XIII) $-CH(-\phi)-CO-O(C_1-C_3 \text{ alkyl});$
- (XIV) – $CH(-CH_2-OH)$ -CH(-OH)- ϕ - NO_2 ;
- (XV) – $(CH_2)_2$ -O- $(CH_2)_2$ -OH;
- (XVI) -CH₂-NH-CH₂-CH(-O-CH₂-CH₃)₂;
- (XVII) -(C2-C8) alkynyl; or
- (XVIII) -H; or a pharmaceutically acceptable salt thereof.

in a reaction mixture under conditions suitable for the production of said complex.

- 62. The method of claim 61, where said exposing is in vitro.
- 63. The method of claim 61, wherein said reaction mixture is a cell.