

Rank Regression for Analyzing Environmental Data

You-Gan Wang & Liya Fu

CSIRO Mathematics, Informatics and Statistics 120 Meiers Road, Indooroopilly, QLD 4068, Australia

Acknowledgements

Data were kindly provided by Seqwater, Queensland, Australia.

Outline

- Background
- Descriptive Analysis
- Linear Mixed-Effects Model
- Rank Regression Model
- Results

Two digging tools

Which one to use?

Data Description

Data Collection

Wivenhoe Dam, 1997-2002

Indicators (Responses)

Chlorophyll.a (continuous data), Total Cyanophytes (count data)

Covariates

Days, Dam Level, Level Change, Rainfall

Purpose of this talk

Find robust and efficient parameter estimation

Time Series of Chlorophyll.a

Box-Plots Chlorophyll.a

Q-Q Plots Chlorophyll.a

Chlorophy.a Val Normal Q-Q Plot

Chlorophy.a log(Val) Normal Q-Q Plot

Time Series of Total Cyanophytes

Box-Plots Total Cyanophytes

Q-Q Plots Total Cyanophytes

Total Cyanophytes Val Normal Q-Q Plot

Total Cyanophytes log(Val) Normal Q-Q Plot

Linear Mixed Effects Model

Suppose observations for the i-th site are

$$Y_i = (y_{i1}, \cdots, y_{in_i}), i = 1, ..., N,$$

taken at times $T_i = (t_{i1}, t_{i2}, ..., t_{in_i})$. The linear mixed effects model is

$$\log(Y_i) = X_i \beta + Z_i \alpha_i + \epsilon_i,$$

where $X_i = (x_{i1}, ..., x_{in_i})'$ and $Z_i = (z_{i1}, ..., z_{in_i})'$ are known design matrices respectively; β are fixed effects, α_i and ϵ_i are random effects and random errors, respectively.

Linear Mixed Effects Model

- Assumption: $\alpha_i \sim N(0, \Psi)$ and $\epsilon_i \sim N(0, \Lambda_i)$
- Estimation Method: REML
- Correlation Structure: Gaussian spatial correlation

Rank Methods

- Robust
- Censored data (below detection limits)
- More efficient when errors have heavy-tailed distributions. To alleviate
- computational issues
- Interpretation?

Rank Regression Model

The rank regression model is $\log(Y_{ik}) = X_{ik}^{\mathrm{T}}\beta + \epsilon_{ik}$.

- Assumption: $median(\epsilon_{ik} \epsilon_{jl}) = 0$, for any i, j.
- Estimation: Residuals $e_{ik}=Y_{ik}-X_{ik}^{\rm T}\beta$, Jung and Ying (2003, Biometrika) regarded (Y_{i1},\cdots,Y_{in_i}) as independent observations, and proposed minimizing the total loss function

$$\hat{\beta}_{JY} = \arg\min_{\beta} \left\{ N^{-2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{n_i} \sum_{l=1}^{n_j} |e_{ik} - e_{jl}| \right\},$$

Incorporating Cluster Correlations

Wang and Zhu (2006, Biometrika) suggested decomposing ranks into between- and within-site ranks, and hence obtained two types of estimates.

$$\hat{\beta}_{B} = \arg\min_{\beta} \left\{ N^{-2} \sum_{i \neq j=1}^{N} \sum_{k=1}^{n_{i}} \sum_{l=1}^{n_{j}} |e_{ik} - e_{jl}| \right\},$$

$$\hat{\beta}_{W} = \arg\min_{\beta} \left\{ N^{-1} \sum_{i=1}^{N} \sum_{k=1}^{n_{i}} \sum_{l=1}^{n_{i}} |e_{ik} - e_{il}| \right\}.$$

Incorporating Cluster Correlations

Combine corresponding between- and within-site estimating functions $U_B(\beta)$ and $U_W(\beta)$,

$$U_C(\beta) = (D_B, D_W) \Sigma^{-1} \begin{pmatrix} U_B(\beta) \\ U_W(\beta) \end{pmatrix},$$

where

$$\Sigma = \begin{pmatrix} U_B(\beta) \\ U_W(\beta) \end{pmatrix}.$$

How to Obtain $\hat{\Sigma}$

Method 1: Perturbation method of Wang & Zhu (2006, Biometrika)

$$\tilde{U}_{B}(\beta) = N^{-2} \sum_{i \neq j} \sum_{k} \sum_{l} \omega_{i} \omega_{j} (X_{ik} - X_{jl}) (e_{ik} - e_{jl}),
\tilde{U}_{W}(\beta) = N^{-1} \sum_{i} \sum_{k \neq l} \omega_{i} (X_{ik} - X_{il}) (e_{ik} - e_{il}),$$

• Method 2: $\hat{\Sigma} = ??$ (analytic expression)

How to Obtain \hat{eta}_C

Brown and Wang (Biometrika, 2005) put forward induced smoothing method. Here we investigate this approach for rank regression.

The versions of D_B and D_W :

$$|\tilde{D}_B - D_B| \xrightarrow{a.s.} 0$$
 and $|\tilde{D}_W - D_W| \xrightarrow{a.s.} 0$

Parameter Estimation:

$$(\tilde{D}_B, \tilde{D}_W)\hat{\Sigma}^{-1} \begin{pmatrix} U_B(\beta) \\ U_W(\beta) \end{pmatrix} = 0$$

Model of Water Quality Data

$$log(Val) \sim Intercept + H(Days, k = 2) + (Level) + (Cha.Level) + (Rain)$$

- Days: the number of days (27/08/1997– 26/06/2002)
- Level: the dam level when the observation is collected
- Cha.Level: 30 days change on the dam level
- Rain: 14 days cumulative rainfall;
- H(Days, k): is a harmonic function, and defined by following: $H(x,2) = \sum_{k=1}^{2} (\sin(2k\pi x/365.25) + \cos(2k\pi x/365.25)).$

Comparison of parameter estimation for Chlorophyll.a

	^	^	
	eta_{lme}	\hat{eta}_C	
H(Days, 2)1	-0.387	-0.439	
(SE)	(0.070)	(0.017)	
H(Days, 2)2	-0.352	-0.258	
(SE)	(0.071)	(0.009)	
H(Days, 2)3	0.207	0.207	
(SE)	(0.058)	(0.036)	
H(Days, 2)4	0.059	0.103	
(SE)	(0.056)	(0.011)	
Level	-0.0141	-0.015	
(SE)	(0.053)	(0.012)	
Cha.Level	-0.112	-0.156	
(SE)	(0.040)	(0.022)	
Rain	0.026	0.103	
(SE)	(0.049)	(0.008)	

Comparison of parameter estimation for Total Cyanophytes

	All Data		Outliers Removed	
	\hat{eta}_{lme}	\hat{eta}_C	$-\hat{eta}_{lme}$	\hat{eta}_C
H(Days, 2)1	-0.100	-0.025	-0.087	-0.028
(SE)	(0.109)	(0.067)	(0.087)	(0.055)
H(Days, 2)2	-1.667	-1.472	-1.345	-1.265
(SE)	(0.110)	(0.055)	(0.090)	(0.041)
H(Days, 2)3	-0.342	-0.167	-0.298	-0.116
(SE)	(0.106)	(0.059)	(0.086)	(0.056)
H(Days, 2)4	-0.017	-0.073	0.081	0.019
(SE)	(0.107)	(0.028	(0.086)	(0.017)
Level	-0.136	0.015	0.089	0.045
(SE)	(0.083)	(0.044)	(0.067)	(0.041)
Cha.Level	-0.098	-0.319	-0.184	-0.270
(SE)	(0.081)	(0.051)	(0.072)	(0.036)
Rain	-0.308	-0.096	-0.229	-0.063
(SE)	(0.079)	(0.030)	(0.066)	(0.021)

Conclusions

- LME model is not always appropriate, although it is good when the data are generated from normal distributions.
- LME is much more sensitive to the outliers than rank estimation.
- Rank method is robust, and produces smaller standard errors.
- Rank methodology is computationally more intensive, but very doable in practice.

CSIRO Mathematics, Informatics and Statistics 120 Meiers Road, Indooroopilly, QLD 4068, Australia

You-Gan Wang

Phone: +61 7 3214 2816

Email: you-gan.wang@csiro.au

Web: www.cmis.csiro.au

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176

Email: enquiries@csiro.au Web: www.csiro.au

