F20T2A5

Untersuchen Sie für jeden Parameterwert a $\in \mathbb{R}$ die Stabilitätseigenschaften der Ruhelage x=y=0 des Differentialgleichungssystems

$$x' = ax + y + (a+1)x^2$$

 $y' = x + ay$

Lösung:

Das DGL-System hat die Form $\binom{x'}{y'} = f_a \binom{x}{y}$ mit $f_a : \mathbb{R}^2 \to \mathbb{R}^2$; $\binom{x}{y} \to \binom{ax+y+(a+1)x^2}{x+ay} \in C^1(\mathbb{R}^2\mathbb{R}^2)$ $(Jf_a) \binom{x}{y} = \binom{a+2(a+1)x}{1} \binom{1}{a}$ ist die Jacobi-Matrix von f_a . In der Ruhelage (0,0) hat $(Jf_a) \binom{0}{0} = \binom{a-1}{1}$ das charakteristische Polynom det $\binom{a-z}{1} \binom{1}{a-z} = (a-z)^2 - 1$ mit Nst.en $a \pm 1$.

- i) Für a > -1 gilt RE(a+1) = a+1 > 0, also hat $(Jf_a)_0^0$ einen Eigenwert mit positivem Realteil, deshalb ist (0,0) eine instabile Ruhelage des Systems.
- ii) Für a < -1 gilt RE(a+1) = a+1 < 0 und RE(a-1) = a-1 < 0, also haben alle Eigenwerte einen negativen Realteil, deshalb ist (0,0) eine asymptotisch stabile Ruhelage.
- Für a = -1 gilt RE(a+1) = 0, was keine Aussage zulässt. Jedoch reduziert sich das lineare System zu $\binom{x'}{y'} = \binom{-x+y}{x-y} = \binom{-1}{1} \binom{x}{y} =: A \binom{x}{y}$.

 Aus det $\binom{-1-z}{1} \binom{1}{1} = z(z+1)$ erhält man 0 und -2 als Eigenwerte von A und, da 0 als einfacher Eigenwert dieselbe algebraische und geometrische Vielfachheit besitzt, ist (0,0) eine stabile Ruhelage.