

Outline

- Spark Structured API
- Resilient Distributed Datasets (RDD)
- Distributed shared variables

Spark Structured API

Spark Structured APIs

- The collection of structured APIs is a tool for manipulating all sorts of data.
- Three core types of distributed collection APIs include

Datasets

DataFrames (DF)

SQL Tables and Views

Most APIs apply to both batch and streaming computation.

DataFrames and Datasets

- DataFrrames/Datasets are distributed table-like collections with well-defined rows and columns.
 - Each column must have the same number of rows and its type must be consistent for every row in the collection.
- They represent immutable and lazily evaluated plans
 - A plan defines what operations to apply to the data residing at a location to generate some output.

Tables: Columns and Rows

- Column serves a simple type, a complex type or a null value.
 - Simple type: integer or string. Complex type: array or map.
- Row is nothing more than a record of data.
 - It is either created manually from scratch or obtained from SQL,
 RDDs, or data sources.

+----+

```
| Category | ID | Truth | Value | |
|-- Category: string (nullable = true) | A | 1 | true | 121.44 |
|-- ID: long (nullable = true) | B | 2 | false | 300.01 |
|-- Truth: boolean (nullable = true) | C | 3 | null | 10.99 |
|-- Value: double (nullable = true) | E | 4 | true | 33.87 |
|-- Truth: boolean (nullable = true) | E | 4 | true | 33.87 |
|-- Truth: boolean (nullable = true) | E | 4 | true | 33.87 |
|-- Truth: boolean (nullable = true) | E | 4 | true | 33.87 |
```

A schema defines the name and type for every column.

Structured Spark types

- Spark uses Catalyst that maintains its own type information through the planning and processing of work.
 - An expression written in an input language is converted to its corresponding internal Catalyst representation.

Structured Spark types

- Spark types map directly to the different language APIs, using a lookup table for each of these.
 - Available for Scala, Java, Python, SQL, and R.

```
// in Scala
val df = spark.range(500).toDF("number")
df.select(df.col("number") + 10)

They actually perform addition purely in Spark.

The following code segments do not perform addition in Scala or Python.

# in Python

df = spark.range(500).toDF("number")

df.select(df["number"] + 10)
```

Various execution optimizations of significant differences

Spark DataFrames

- DataFrame APIs organizes the data into named columns like a table in relational database.
 - Programmers define schemas on a distributed collection of data.
- Each row in a DataFrame is of object type Row.
 - Each column must have same number of rows.
 - Row type: Spark's internal representation of its optimized in-memory format → highly specialized and efficient computation.
- An immutable collection, lazily evaluated plan
- Same efficiency gains to all language APIs

Spark DataFrames

- In-built optimization: Significantly improve the performance with Catalyst
- Fully Hive compatible
 - Access all hive data, queries, UDFs, etc. using Spark SQL from hive MetaStore; and execute queries against these hive databases
- Structured, semi-structured, and highly structured data support
- Multi-language support: Available in Python, R, Scala, and Java
- Schema support
 - A schema can be defined manually or read from a data source which defines the column names and their data types.
- Type safety: Not strictly typed. Compile time safety is not supported.

Spark Datasets

- A combination of RDD and DataFrame
 - It enables functional programming like RDD APIs and relational queries and execution optimization like DataFrame APIs.
- Type-safe: Datasets conforms the specification at compile time
 - It conforms the specification using defined case classes (for Scala) or Java beans (for Java).
- Limited language support: Only available in JVM-based languages, like Java and Scala
 - Python and R are not supported because these are dynamically typed languages.
- High garbage collection
 - JVM types can cause high garbage collection and object instantiation cost.

Spark DataFrames vs. Datasets

- DataFrame is considered as an alias for a collection of generic objects Dataset[Row].
 - A Row is a generic untyped JVM object.
- Dataset is a collection of strongly-typed JVM objects, dictated by a case class defined in Scala or a class in Java.

Structured API Execution

Structured API execution

 The execution of a single structured API query from user code to executed code

Logical planning

Take user code and convert it into a logical plan

- A logical plan represents a set of abstract transformations that do not refer to executors or drivers.
 - It purely converts user's expressions into the most optimized version.

Logical planning

- Convert user code into an unresolved logical plan
 - Unresolved: although the code might be valid, the tables or columns that it refers to might or might not exist.
- Use Catalog to resolve columns and tables in the analyzer
 - Catalog: a repository of all table and DataFrame information
 - The analyzer might reject the unresolved logical if the required table or column name does not exist in the Catalog.
- Apply rule-based optimizations the logical plan
 - Constant folding, predicate pushdown, projection pruning, etc.
- Pass the resolved plan through the Catalyst Optimizer
 - This uses a collection of rules that attempt to optimize the logical plan by pushing down predicates or selections.

Physical planning

- Specify how the logical plan will execute on the cluster
 - Generate different physical execution strategies and compare them through a cost model
 - E.g., choose how to perform a given join by looking at the physical attributes of the table (how big the table is or how big its partitions are).
- Result in a series of RDDs and transformations

Execution

- With a physical plan, Spark runs all the code over RDDs.
 - RDD = the lower-level programming interface of Spark
- Generate native Java bytecode and possibly perform further optimizations at runtime
- Finally, the result is returned to the user.

Plan optimization: An example

Spark intermix DataFrame with custom Python, Java, R, or Scala code.

 Optimizations take place as late as possible → Spark SQL can optimize even across functions.

Basic DataFrame operations

Creating a DataFrame

A DataFrame can be created manually or from a data

```
# create a DataFrame from a JSON file df = spark.read.format("json").load("/data/flight-data/json/2015-summary.json")
```

```
# create a DataFrame from an existing RDD named somerdd df = somerdd.toDF()
```

```
| DEST_COUNTRY_NAME | ORIGIN_COUNTRY_NAME | count |
| United States | Romania | 15 |
| United States | Croatia | 1 |
| United States | Ireland | 344 |
| Egypt | United States | 15 |
| United States | India | 62 |
| United States | India | 62 |
```

Looking at the schema

- A schema defines the name and type of data in each column, and thus tie everything together.
- Use the schema property or printSchema function

```
StructType(List(StructField(DEST_COUNTRY_NAME,StringType,true),
StructField(ORIGIN_COUNTRY_NAME,StringType,true),
StructField(count,LongType,true)))
```

```
# a schema can be displayed by either of the two functions df.schema df.printSchema()
```

```
root
|-- DEST_COUNTRY_NAME: string (nullable = true)
|-- ORIGIN_COUNTRY_NAME: string (nullable = true)
|-- count: long (nullable = true)
```

Columns and Expressions

- A column represents a computation expression that can be performed on each individual record.
 - It is like Excel spreadsheet, R DataFrame, or pandas DataFrame.
- There are different ways to refer to columns.
- Use col, column,
 expr, or [] brackets

```
# use functions from Spark SQL
from pyspark.sql.functions import col, column
col("someColumnName")
column("someColumnName")
from pyspark.sql.functions import expr
expr("someColumnName")

# explicit column references
df["someColumnName"]
df.DESC_COUNTRY_NAME
```

Columns and Expressions

- An expression is a set of transformations on one or more values in a record in a DataFrame.
- The expr function applies expressions to input columns to create a single value for each record.

Records and Rows

- Each row is a single record, which is an object of type Row.
 - It does not have any schema, which is unlike DataFrame.
- The values must be specified in the same order as in the schema of the DataFrame to which they might be appended

```
# create a row as a tuple of specified values
from pyspark.sql import Row
myRow = Row("Hello", None, 1, False)

# access elements in a row
myRow[0]
myRow[2]
```

 You cannot access a row in a typical procedural way since DataFrames are distributed.

Transformation and Actions

- A transformation reads a DataFrame, manipulates some of the columns, and eventually returns another DataFrame.
- Transformations are evaluated in a lazy fashion.
 - No Spark jobs are triggered, no matter the number of transformations are scheduled.
- An action either returns a result or writes to the disc.
- All actions are executed in an eager manner.
 - All unevaluated transformations are executed prior to the action.

Transformation and Actions

A sample DataFrame

id	name	gender	age
1111	simon jones	male	32
2222	joan hurt	female	21

A Spark transformation that creates a new column named group

id	name	gender	age
1111	simon jones	male	32
2222	joan hurt	female	21

id	name	gender	age	group
1111	simon jones	male	32	3
2222	joan hurt	female	21	2

A Spark action that counts the number of rows

id	name	gender	age
1111	simon jones	male	32
2222	joan hurt	female	21

select does the DF equivalent of SQL queries on a table.

```
# in Python
                                                       |DEST_COUNTRY_NAME|
   df.select("DEST_COUNTRY_NAME").show(2)
                                                            United States
  I -- in SQL
                                                            United States
   SELECT DEST_COUNTRY_NAME FROM dfTable LIMIT 2
                             |DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|
                                  United States
                                                           Romania
                                  United States
                                                           Croatia
# in Python
df.select("DEST_COUNTRY_NAME", "ORIGIN_COUNTRY_NAME").show(2)
-- in SQL
SELECT DEST_COUNTRY_NAME, ORIGIN_COUNTRY_NAME FROM dfTable LIMIT 2
```

 expr is the most flexible reference that it refers to a plain column or a string manipulation of a column.

```
# in Python
df.select(expr("DEST_COUNTRY_NAME AS destination")).show(2)
-- in SQL
SELECT DEST_COUNTRY_NAME as destination FROM dfTable LIMIT 2
```

```
# expr can do more inside a select statement df.select(expr("DEST_COUNTRY_NAME as destination")\
.alias("DEST_COUNTRY_NAME")).show(2)
```

 selectExpr helps build up complex expressions that create new DataFrames.

```
# in Python
I df.selectExpr("*", "(DEST COUNTRY NAME = ORIGIN COUNTRY NAME)
                                              as withinCountry").show(2)
                |DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|withinCountry|
                    United States | Romania | 15 | false |
                    United States | Croatia | 1 | false |
-- in SQL
SELECT *, (DEST_COUNTRY_NAME = ORIGIN_COUNTRY_NAME) as withinCountry
FROM dfTable LIMIT 2
```

• selectExpr can also specify aggregations over the entire DataFrame by taking advantage of the available functions.

Columns: withColumn and drop

withColumn: add a column

```
| DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|numberOne| |
| United States| Romania| 15| 1|
| # in Python | United States| Croatia| 1| 1|
| df.withColumn("numberOne", lit(1)).show(2)
| -- in SQL | SELECT *, 1 as numberOne FROM dfTable LIMIT 2
```

Columns: withColumn and drop

withColumn can also be used to replicate a column

```
df.withColumn("Destination", expr("DEST_COUNTRY_NAME")).columns
['DEST_COUNTRY_NAME', 'ORIGIN_COUNTRY_NAME', 'count', 'Destination']
```

withColumnRenamed: rename a column

```
df.withColumnRenamed("DEST_COUNTRY_NAME", "dest").columns
[dest', 'ORIGIN_COUNTRY_NAME', 'count']
```

drop: remove a column

```
# drop a single column

df.drop("ORIGIN_COUNTRY_NAME")

# drop multiple columns at a time

df.drop("ORIGIN_COUNTRY_NAME", "DEST_COUNTRY_NAME")
```

Columns: size and array_contains

size tells the number of elements in an array column.

create a new column that show the number of actors in each movie df.withColumn("actors", f.size(df.cast)).show()

1		L	4 1
cast	genres	title	actors
[The Three Stooges]	[Comedy, Short]	An Ache in Every Stake	1
[Ingrid Bergman, Warner Baxter, Susan Hayward]	[Drama]	Adam Had Four Sons	3
[Herbert Marshall, Virginia Bruce]	[]	Adventure in Washington	2
[Tom Tyler, Frank Coghlan Jr., Louise Currie]	[]	Adventures of Captain Marvel	3
[Merle Oberon, Rita Hayworth]	[Comedy]	Affectionately Yours	2
+	+	+	++

array_contains checks if an element is in the array

select only rows in which the field 'cast' includes 'Tom Tyler' as an element df.filter(f.array_contains(df.cast, "Tom Tyler")).show()

Rows: filter, where, and distinct

filter and where: select rows according some criteria

distinct: get unique rows

```
# in Python
df.select("ORIGIN_COUNTRY_NAME", "DEST_COUNTRY_NAME").distinct().count()
-- in SQL
SELECT COUNT(DISTINCT(ORIGIN_COUNTRY_NAME, DEST_COUNTRY_NAME))
FROM df
```

Rows: sort and orderBy

sort and orderBy sort the specified columns in ascending

order by default

```
DEST_COUNTRY_NAME | ORIGIN_COUNTRY_NAME | count |
              Malta | United States |
                                            1
Saint Vincent and... United States
      United States
                             Croatia
      United States
                             Gibraltar
      United States
                             Singapore
DEST_COUNTRY_NAME | ORIGIN_COUNTRY_NAME | count |
    Burkina Faso
                       United States
   Cote d'Ivoire
                       United States
                       United States
          Cyprus
        Djibouti|
                       United States
                       United States
       Indonesia
```

sort a single column df.sort("count").show(5)

sort multiple column

df.orderBy("count", "DEST_COUNTRY_NAME").show(5) i

Rows: asc and desc

The ordering is defined by using asc and desc.

```
# in Python
from pyspark.sql.functions import desc, asc
df.orderBy(col("count").desc(), col("ORIGIN_COUNTRY_NAME").asc()).show()
                             DEST_COUNTRY_NAME | ORIGIN_COUNTRY_NAME | count
                                        Guyana
                                                      United States
                                                                       64
                                 United States
                                                            Austrial
                                                                       63
                                 United States
                                                             Guyana|
                                                                       63
                                 United States
                                                            Grenadal
                                 United States
                                                              India
-- in SQL
                                       Austria
                                                      United States
SELECT * FROM dfTable
ORDER BY count DESC, ORIGIN_COUNTRY_NAME ASC
```

Note: expr("count desc") seems not working.

Rows: limit and show

• limit: get top N rows in the original DataFrame

```
# in Python
DEST_COUNTRY_NAME | ORIGIN_COUNTRY_NAME | count |
                                        df.limit(5).show()
   United States
                         Romania
                                   15
                                        # or
                     Croatia|
   United States
                                        df.show(5)
                   Ireland| 344|
   United States
          Egypt | United States | 15
                                        -- in SQL
  United States
                      India 62
                                        SELECT * FROM df LIMIT
```

- take and collect: return lists instead of DataFrames.
- show with argument is used to limit how many rows shown.

Rows manipulation

 Just chain many filters sequentially instead of putting them in the same expression, and let Spark handle the optimization

Rows: sample and randomSplit

 sample: randomly select a fraction of records from the original DataFrame.

```
# sample with replacement until 50% the total number of rows is reached seed = 5
withReplacement = False
fraction = 0.5
df.sample(withReplacement, fraction, seed)
```

 randomSplit: randomly split the original DF into two different ones according to a predefined ratio.

```
# split the original DF into two subsets with ratio 1:3
dataFrames = df.randomSplit([0.25, 0.75], seed)
dataFrames[0].count() > dataFrames[1].count() # False
```

Rows: explode

[Merle Oberon, Ri...

explode returns a new row for each element in the array.

```
# a separate row is reserved for each element in the field 'cast'
df.withColumn("individual", f.explode(df.cast)).show()
                            genres
                                                   title
                                                                individual
                cast
 [The Three Stooges] [Comedy, Short] An Ache in Every ... | The Three Stooges
[Ingrid Bergman, ...
                                                            Ingrid Bergman
                            [Drama]| Adam Had Four Sons
                                                             Warner Baxter
[Ingrid Bergman, ...|
                             [Drama]| Adam Had Four Sons
                             [Drama] Adam Had Four Sons
[Ingrid Bergman, ...|
                                                             Susan Hayward
[Herbert Marshall...|
                                 []|Adventure in Wash..
                                                          Herbert Marshall
[Herbert Marshall...|
                                 []|Adventure in Wash...
                                                           Virginia Bruce
                                 [] Adventures of Cap...
[Tom Tyler, Frank...|
                                                                 Tom Tyler
[Tom Tyler, Frank...
                                 []|Adventures of Cap...|Frank Coghlan Jr.|
                                 [] Adventures of Cap...
                                                             Louise Currie
[Tom Tyler, Frank...|
[Merle Oberon, Ri...|
                           [Comedy] Affectionately Yours
                                                             Merle Oberon
```

[Comedy] | Affectionately Yours

Rita Hayworth

Aggregation functions

- Aggregation is the act of collecting something together over one or more columns in a table.
- That needs a key (or grouping) and an aggregation function.
 - The function specifies how to transform the columns, which must produce one result for each group, given multiple input values.

Aggregation functions

- count gets the number of values in one or more columns.
 - countDistinct gives the number of unique values.

```
from pyspark.sql.functions import count
df.select(count("ORIGIN_COUNTRY_NAME")).show()
df.select(countDistinct("ORIGIN_COUNTRY_NAME")).show()
```

- sum adds all the values in a column
 - sumDistinct consider distinct values.
- Similar for

- from pyspark.sql.functions
 import sum
 df.select(sum("count"))
 df.select(sumDistinct("count"))
- avg: calculate average by dividing sum by count
- first and last: get the first and last values from a DF (based on rows, not values)
- min and max: extract the minimum and maximum values from a DF

Joins

There are a variety of different join types available in Spark.

Joining two big tables

A broadcast join

Finally, our Word Count!

```
linesDF = spark.read.text("ppap.txt")
linesDF.show(linesDF.count(),truncate = False)
from pyspark.sql import functions as f
wordsDF = linesDF.withColumn("word", f.explode(f.split(f.col("value"), " ")))\
   .groupBy("word")\
   .count()\
   .sort("count", ascending = False)
                                                                     word | count |
wordsDF.show()
                                                                      pen
                               value
                                                                     have
                               ppap
                                                                    apple
                               i have a pen
                               i have an apple
                                                               pineapple|
                               ah apple pen
                                                                     ppap
                               i have a pen
                                                                       ah l
                               i have a pineapple
                                                                       an
                               ah pineapple pen
                               ppap pen pineapple apple pen
                                                                                45
```


Resilient Distributed Datasets

What are low-level APIs?

Resilient Distributed Datasets (RDDs)

Manipulating distributed data

Broadcast variables and accumulators

Distributing and manipulating distributed shared variables

When to use low-level APIs?

- Need some functionality not available in higher level APIs
 - E.g., very tight control over physical data placement across cluster
- Maintain some legacy codebase written using RDDs
- Do some custom shared variable manipulation

DataFrame is more efficient, stable, and expressive than **RDDs** for the vast majority of use cases.

Why to understand low-level APIs?

All Spark workloads compile down to fundamental primitives.

A DataFrame transformation is converted into a set of RDD transformations.

Java, Scala, Python, R

How to use the low-level APIs?

- SparkContext is the entry point for low-level API functionality
 - It can be accessed through SparkSession, the tool for computation across a Spark cluster.

Resilient Distributed Datasets

- The building blocks of any Spark application
- A layer of abstracted data over the distributed collection
- Great power but not without potential issues.
- ✓ These objects can store anything in any format.
- Every manipulation and interaction between values must be defined by hand.
- Optimizations are going to require much more manual work.
 - Spark does not understand the inner structure of the records as it does with the Structured APIs

Resilient Distributed Datasets

- Immutable partitioned collection distributed on different nodes
 - A partition is a basic unit of parallelism in Spark, distributing the workload to different nodes in the cluster.
 - The immutability helps to achieve fault tolerance and consistency.
- Lazy evaluation
 - The defined transformations do not get evaluated until an action is called so that they can be generally optimized in one go.
- Fault tolerant
 - RDD can be recomputed in case of any failure using DAG of transformations defined for that RDD.
- Multi-language support: Available in Python, R, Scala, and Java
- No in-built optimization engine
 - Programmers need to write their own code to minimize the memory usage and improve execution performance.

RDDs properties

 These properties determine all of Spark's ability to schedule and execute the user program.

Required	A list of partitionsA function for computing each split
	A list of dependencies on other RDDs
Optional	A Partitioner for key-value RDDs
	A list of preferred locations on which to compute each split (e.g., block locations of a HDFS file)

 Different kinds of RDDs implement their own versions of RDD properties, allowing to define new data sources.

Types of RDDs

- There are lots of subclasses of RDDs, most of which are for DataFrame APIs to create optimized physical execution plans.
- Users will likely only be creating two types of RDDs

Generic RDD

Key-value RDD

- Key-value RDDs have special operations and a concept of custom partitioning by key.
 - A correct customized Partitioner gives significant improvements on performance and stability.

Types of RDDs

#

Apache

Spark

processing

distributed and partitioned RDD

RDD: Logical partitions

 Each dataset in RDD is divided into logical partitions, which may be computed on different nodes of the cluster.

RDD: Transformations and Actions

 Transformations and actions in RDDs work similarly to those in DataFrames and DataSets.

- Transformations: lazily evaluated, actions: eagerly evaluated
 - Spark remembers the transformations applied to some base dataset and computes them when an action requires a result to be returned.

Basic RDD operations

Create an RDD from a DataFrame

- Create an RDD from an existing DataFrame or Dataset
 - Scala and Java: from Dataset[T] to RDD[T]
 - E.g., Dataset[Long] → RDD[Long]
 - Python: only from DataFrames to RDDs of type Row
 - To operate on this data, you need to convert the Row object to the correct data type or extract values out of it.

```
rdd = spark.range(10).rdd
# extract the value
rdd = rdd.map(lambda row: row[0])
```

- toDF: create a DataFrame from an RDD [df = rdd.toDF()]
- name: give a name to the RDD to display in Spark UI

```
rdd.setName("myRdd")
rdd.name()
```

Create RDD from a local collection

parallelize: turn a single-node collection into a parallel one

```
# turn a string into a list of words, from which a new RDD is created myCollection = "Spark The Definitive Guide: Big Data Processing Made Simple".split(" ") words = spark.sparkContext.parallelize(myCollection, 2)
```

glom: show the content of every partition in an RDD

Transformations: filter

 filter: work on each record individually and see which ones match some predicate function

```
# define the filter function, which could be in pure Python

def startsWithS(individual):
    return individual.startswith("S")

# apply the defined function onto each record of the rdd

words.filter(lambda word: startsWithS(word))
```

map: define functions completely inline using lambda syntax

```
[('Spark', 'S', True),
('The', 'T', False),
('Definitive', 'D', False),
.....
('Made', 'M', False),
('Simple', 'S', True)]
```

Transformations: flatMap

- flatMap: map an element of source RDD to one or more elements of target RDD.
 - The object in consideration must be **iterable** to be expanded.

```
# perform on a collection of words
rdd = spark.sparkContext.parallelize(['Hello', 'Spark', 'Hello', 'Python'], 2)
rddFlatten = rdd.flatMap(lambda word: list(word))
```

```
['H', 'e', 'l', 'l', 'o', 'S', 'p', 'a', 'r', 'k', 'H', 'e', 'l', 'l', 'o', 'P', 'y', 't', 'h', 'o', 'n']
```

```
# perform on a collection of lists

rdd = spark.sparkContext.parallelize([['Hello', 'Spark'], ['Hello', 'Python']], 2)

rddFlatten = rdd.flatMap(lambda word: list(word))
```

```
['Hello', 'Spark', 'Hello', 'Python']
```

Transformations: Some other functions

- Many RDD transformations mirror the functionality found in the Structured APIs.
- distinct: remove duplicates from the RDD

```
words.distinct()
```

 sortBy: specify a function to extract a value from objects in the RDD and then sort based on that

```
# sort by the word's length in decreasing order words.sortBy(lambda word: len(word) * -1).take(5)
```

['Definitive', 'Processing', 'Simple', 'Spark', 'Guide']

randomSplit: split an RDD into an array of RDDs

```
# split the original RDD into two subsets with ratio 1:1 fiftyFiftySplit = words.randomSplit([0.5, 0.5])
```

Actions: reduce

reduce: collect an RDD of any kind of value to one value.

```
# sum up the value in every entry of the RDD
                                                                          210
spark.sparkContext.parallelize(range(1, 21)).reduce(lambda x, y: x + y)
# udf: return the word whose length is greater
def wordLengthReducer(leftWord, rightWord):
   if len(leftWord) > len(rightWord):
                                                                  'Processing'
     return leftWord
   else:
                                                                       or
                                                                   'Definitive'
     return rightWord
# return the word whose length is greatest (undeterministic)
words.reduce(wordLengthReducer)
```

Actions: count and countByValue

• count: give the number of rows in the RDD

- countApprox returns a potentially incomplete result within a timeout, even if not all tasks have finished.
- countApproxDistinct
- countByValue: give the number of values in an RDD.
 - The entire thing is loaded into the driver's memory
 - Use in scenarios that either the total number of rows or the number of distinct items is low
 - countByValueApprox

```
words.countByValue()
```

```
defaultdict(int,
{'Spark': 1,
'The': 1,
'Definitive': 1,
.....
'Processing': 1,
'Made': 1,
'Simple': 1})
```

Actions: first, max, min and take

max and min: return the maximum and minimum values,
 respectively | rdd = spark.sparkContext.parallelize([11, 1, 20, 19, 21], 2)

```
rdd = spark.sparkContext.parallelize([11, 1, 20, 19, 21], 2)
rdd.first()
rdd.min()
rdd.max()
first: 11, min: 1, max: 21
```

- first: return the first value in the dataset
- takeSample: specify a fixed-size random sample

```
# sample 6 elements with replacement
withReplacement = True
numberToTake = 6
randomSeed = 100
words.takeSample(withReplacement, numberToTake, randomSeed)

['Data', 'Definitive', 'Data', 'The', 'Definitive', 'Spark']
or ['The', ':', 'Simple', 'Spark', 'Data', 'Big']
```

Actions: take, takeOrdered, and top

- take and its variants take several values from the RDD.
 - They first scan one partition and then use the results to estimate the number of additional partitions needed to satisfy the limit.
- take: grab the first N items from the RDD
- takeOrdered: grab the first N items from the RDD, following the lexicographic order
- top: grab the first N items from the RDD, following the reversed lexicographic order

```
words.take(5)
words.takeOrdered(5)
words.top(5)
```

```
['Spark', 'The', 'Definitive', 'Guide', ':']
[':', 'Big', 'Data', 'Definitive', 'Guide']
['The', 'Spark', 'Simple', 'Processing', 'Made']
```

Saving RDD to files

- A RDD cannot be conventionally "saved" to a data source.
 - It must iterate over the partitions to save the contents of each partition to some external database.
- Write to a plain-text file

words.saveAsTextFile("file:/tmp/bookTitle")

 To set a compression codec: import the proper codec from Hadoop – org.apache.hadoop.io.compress library

```
codec = "org.apache.hadoop.io.compress.GzipCodec"
words.saveAsTextFile("file:/tmp/bookTitle", codec)
```

Write to a sequence file

```
words.saveAsObjectFile("/tmp/my/sequenceFilePath")
```

A variety of different Hadoop file formats are also supported.

Cache and Persist

- The same principles for RDDs, DataFrames and Datasets.
- cache: persist the RDD with the default storage level (MEMORY_ONLY)

```
words.cache()
words.getStorageLevel()

words.persist()
StorageLevel(False, False, False, False, 1)
```

- persist: set the RDD's storage level to persist its values across operations after the first time it is computed
- getStorageLevel: get the information of the storage level
 - pyspark.StorageLevel(useDisk, useMemory, useOffHeap, deserialized, replication=1)

Cache and Persist

Cache and Persist

• Caching can improve the performance of an application to a great extent.

Checkpointing

 Save an RDD to disk → future references point to those intermediate partitions rather than recomputing the RDD from its original source

```
# set a checkpoint of the rdd to the designated location spark.sparkContext.setCheckpointDir("/some/path/for/checkpointing") words.checkpoint()
```

- Helpful optimization
- Similar to caching except that it is stored only in disk
- Feature not available in the DataFrame API

Finally, our Word Count!

```
linesRdd = sc.textFile("ppap.txt")
wordsRdd = linesRdd.flatMap(lambda line: line.split(" ")) \
    .map(lambda word: (word, 1)) \
    .reduceByKey(lambda a, b: a + b)\
    .sortBy(lambda pair:-1*pair[1])
wordsRdd.collect()
```



```
linesDF = spark.read.text("ppap.txt")
wordsDF = linesDF.withColumn("word", f.explode(f.split(f.col("value"), " ")))\
    .groupBy("word")\
    .count()\
    .sort("count", ascending = False)
wordsDF.show()
```


Advanced RDD operations

Key-value RDDs

- There are many cases that require data in key-value format.
- <some-operation>ByKey can only perform on PairRDD.
- A key-value structure can be achieved by mapping.

```
# map each entry in the RDD to a tuple (key, 1)
words.map(lambda word: (word.lower(), 1))
```

```
[('spark', 1), ('the', 1), ('definitive', 1), ('guide', 1), ..., ('made', 1), ('simple', 1)]
```

 keyBy provides similar results by specifying a function that creates the key from a current value.

```
# create a key-value RDD by keying by the first letter in the word keyword = words.keyBy(lambda word: word.lower()[0])
```

```
[('s', 'Spark'), ('t', 'The'), ('d', 'Definitive'), ..., ('m', 'Made'), ('s', 'Simple')]
```

Transformations: keys, values, lookup

keys and values extract the keys and values, respectively

```
keyword.values()
['Spark', 'The', 'Definitive', 'Guide', ':', 'Big', 'Data', 'Processing', 'Made', 'Simple']
keyword.keys()
['s', 't', 'd', 'g', ':', 'b', 'd', 'p', 'm', 's']
```

- lookup: provide the result for a particular key in the RDD
 - There is no enforcement mechanism with respect to there being only one key for each input keyword.lookup('s') ['Spark', 'Simple']

Transformations: Map over values

- In a tuple, the first element is considered as a key and the second as the corresponding value.
- mapValues: explicitly map over the values and ignore the individual keys

 -----keyword.mapValues(lambda word: word.upper())

```
[('s', 'SPARK'), ('t', 'THE'), ('d', 'DEFINITIVE'),..., ('m', 'MADE'), ('s', 'SIMPLE')]
```

 flatMapValues: expand the number of rows so that each row represents a character.

```
keyword.flatMapValues(lambda word: word.upper())
[('s', 'S'), ('s', 'P'), ('s', 'A'), ('s', 'R'), ('s', 'K'),..., ('s', 'P'), ('s', 'L'), ('s', 'E')]
```

Aggregations functions

 Aggregations can be done on plain RDDs or on PairRDDs, depending on the method being used.

Let's define some preliminaries

```
chars = words.flatMap(lambda word: word.lower())
KVcharacters = chars.map(lambda letter: (letter, 1))

def maxFunc(left, right):
    return max(left, right)

def addFunc(left, right):
    return left + right

nums = spark.sparkContext.parallelize(range(1,31), 5)
```

Aggregations by keys

 countByKey: give the number of elements for each key, collecting the results to a local Map.

- There are several ways to create key—value PairRDD.
- The implementation is important for job stability.
- groupByKey and reduceByKey are similar functions.

```
KVcharacters.groupByKey().map(lambda row: (row[0], reduce(addFunc, row[1])))

KVcharacters.reduceByKey(addFunc)

[('s', 4), ('p', 3), ('r', 2), ('h', 1), ..., (':', 1), ('o', 1), ('m', 2)]
```

groupByKey vs. reduceByKey

- groupByKey is a wrong approach for most cases.
 - Each executor must hold all values for a given key in memory before applying the function to them.
 - With massive key skew, some partitions might be overloaded.
 - When to use? Each key has consistent value sizes and fits in the memory of a given executor
- reduceByKey is preferred for additive use cases.
 - Within each partition, everything in memory not required
 - No incurred shuffle during this operation, everything at each worker individually before performing a final reduce
 - When to use? The workload is associative
 - When not to use? The order matters

Aggregations: aggregate

- aggregate requires a function that aggregate within partitions and another for across partitions.
 - It performs the final aggregation on the driver → failed if the results from the executors are too large.

```
# sum the maximum values of every partition nums.aggregate(0, maxFunc, addFunc)
```

- treeAggregate "pushes down" some sub-aggregations before performing the final aggregation on the driver.

```
depth = 3
nums.treeAggregate(0, maxFunc, addFunc, depth)
```

Aggregations: combineByKey

- A combiner operates on a given key and merges the values according to some function
- It then merges different outputs of combiners for result.

```
# user-defined functions for the combiner
def valToCombiner(value):
  return [value]
                                                [ [('s', [1, 1, 1, 1]), ('d', [1, 1, 1, 1]), ...
def mergeValuesFunc(vals, valToAppend):
                                                  [('v', [1]), (':', [1])],
  vals.append(valToAppend)
                                                  [('p', [1, 1, 1]), ('r', [1, 1]), ('c', [1])],
  return vals
                                                  [('k', [1]), ('t', [1, 1, 1]), ...
def mergeCombinerFunc(vals1, vals2):
                                                  [('h', [1]), ('i', [1, 1, 1, 1, 1, 1, 1]), ...
  return vals1 + vals2
                                                  [('a', [1, 1, 1, 1]), ...
# trigger the aggregation with given udf
outputPartitions = 6
KVcharacters.combineByKey(valToCombiner, mergeValuesFunc,\
         mergeCombinerFunc, outputPartitions)
                                                                                      82
```

Aggregations: inner join

- join: perform an inner join.
 - The number of output partitions can be specified by outputPartitions.

```
# sum the maximum values of every partition

x = spark.sparkContext.parallelize([("a", 1), ("b", 4), ("c", 6)])

y = spark.sparkContext.parallelize([("a", 2), ("a", 3), ("b", 5)])

x.join(y).collect()

[('b', (4, 5)), ('a', (1, 2)), ('a', (1, 3))]
```

- Other joins all follow the same basic format
 - fullOuterJoin, leftOuterJoin, rightOuterJoin
 - cartesian (This is very dangerous! It does not accept a join key and can have a massive output.)
- Basic format: the two RDDs to join and (optionally) either the number of output partitions or the customer partition function

Aggregations: cogroup and zip

cogroup: result in a group with the given key on one side, and all the relevant values on the other side.

```
# perform cogroup on two given RDDs
x = spark.sparkContext.parallelize([("foo", 1), ("bar", 4)])
y = spark.sparkContext.parallelize([("foo", -1)])
                                                    [('foo', [1, -1]), ('bar', [4])]
grp = x.cogroup(y)
# printing the content of a co-grouped RDD is not straightforward
grp.mapValues(lambda val: [i for e in val for i in e]).collect()
```

- zip: combine two RDDs of the same length
 - The two RDDs must further have the same number of partitions

```
numRange = sc.parallelize(range(10), 2)
words.zip(numRange).collect()
```

```
[('Spark', 0), ('The', 1), ('Definitive', 2),..., ('Processing', 7), ('Made', 8), ('Simple',
```

Controlling partitions

- Control over how data is exactly physically distributed across the cluster
 - Same as in the Structured APIs, but additionally specify a partitioning function (formally a custom Partitioner)
- coalesce: collapse partitions on the same worker in order to avoid a shuffle of the data when repartitioning

```
# this gives us 1 partition

words.coalesce(1).getNumPartitions() # this gives us 1 partition

words.repartition(10)
```

 repartition: partition the data up or down but performs a shuffle across nodes in the process.

Distributed shared variables

Broadcast variables

- Shared and immutable variables that are cached on every machine in the cluster
 - E.g., pass around a large lookup table that fits in memory on the executors and use that in a function

Broadcast variables

- Share immutable values efficiently around the cluster without encapsulating it in a function closure
 - Depend on the amount of data and the number of executors
 - For very small data (low KBs) on small clusters, it might not be
- Broadcasting can be used in the context of an RDD, a UDF or a Dataset and achieve the same result.

Broadcast variables: An example

- Consider the RDD of words, words, shown in previous example.
- Let's supplement the list of words with other information (right join)
 - This may be many KBs, MBs, or potentially even GBs in size.
 supplementalData = {"Spark":1000, "Definitive":200, "Big":-300, "Simple":100} !
- Broadcast the structure across Spark and reference it
 - This value is immutable and is lazily replicated across all nodes when trigger an suppBroadcast = spark.sparkContext.broadcast(supplementalData)}

suppBroadcast.value

- Reference this variable via
- Transform the given RDD using this value

```
words.map(lambda word: (word,\
    suppBroadcast.value.get(word, 0)))\
    .sortBy(lambda wordPair: wordPair[1])
```

```
[('Big', -300),
('The', 0),
...
('Definitive', 200),
('Spark', 1000)]
```

Accumulators

 A mutable variable that a Spark cluster can safely update on a per-row basis

E.g., debugging, low-level aggregation, implement counters (as in MapReduce) or sums

 Spark natively supports accumulators of numeric types, and programmers can add support for new types.

90

Accumulators: An example

· Read the flight data stored in a Parquet-formatted file

```
flights = spark.read.parquet("/data/flight-data/parquet/2010-summary.parquet")
```

- Create an accumulator to count the number of flights to or from China accChina = spark.sparkContext.accumulator(0)
- Define how to add to the accumulator

```
def accChinaFunc(flight_row):
    destination = flight_row["DEST_COUNTRY_NAME"]
    origin = flight_row["ORIGIN_COUNTRY_NAME"]
    if destination == "China":
        accChina.add(flight_row["count"])
    if origin == "China":
        accChina.add(flight_row["count"])
    flights.foreach(lambda flight_row: accChinaFunc(flight_row))
```

Accumulators: An example

Summary Metrics for 1 Completed Tasks

Metric	Min	25th percentile Median		75th percentile	Max
Duration	0.5 s	0.5 s	0.5 s	0.5 s	0.5 s
GC Time	0 ms	0 ms	0 ms	0 ms	0 ms

Aggregated Metrics by Executor

Executor ID ▲	Address	Task Time	Total Tasks	Failed Tasks	Succeeded Tasks
driver	10.172.238.229:44026	0.5 s	1	0	1

Accumulators

Accumulable	Value
China	953

Tasks (1)

Index •	ID	Attempt	Status	Locality Level	Executor ID / Host		Duration	GC Time	Accumulators	Errors
0	210	0	SUCCESS	PROCESS_LOCAL	driver /	2017/01/17	0.5 s		China: 953	
					localhost	21:33:27				

...the end.