Vectores:

L. A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

9 de octubre de 2020

Vectores

Escalares y Vectores

Algebra de Vectores

Vectores linealmente independientes

Productos de vectores

Producto escalar

Producto vectorial

Producto triple o mixto

Escalares y Vectores

 Escalares: cantidades las cuales se representan con UN solo número

Escalares y Vectores

- Escalares: cantidades las cuales se representan con UN solo número
- Vectores: requieren de UN número, UNA dirección y UN sentido. Esas características (módulo, dirección y sentido) se preservarán en todos los sistemas de coordenadas. Los vectores son independientes del sistema de coordenadas.
 - Vectores Deslizantes
 - Vectores Atados

Vectores deslizantes

Figura: Vectores deslizantes

Vectores atados

Figura: Vectores atados

Algebra de Vectores

Las propiedades (obvias) del álgebra de vectores son:

- La suma de vectores:
 - ightharpoonup es cerrada $\mathbf{a} + \mathbf{b} = \mathbf{c}$,
 - es conmutativa $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$,
 - es asociativa $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$,
 - ▶ tiene un único elemento neutro $\mathbf{0} + \mathbf{a} = \mathbf{a} + \mathbf{0} = \mathbf{a}$, $\forall \mathbf{a}$,
 - existe un elemento simétrico -a (uno para cada vector) tal que $0 = a a \equiv a + (-a)$,
 - es distributiva respecto a la multiplicación por números: $\alpha (\mathbf{a} + \mathbf{b}) = \alpha \mathbf{a} + \alpha \mathbf{b}$.
- La multiplicación de números por vectores:
 - es conmutativa $\mathbf{a}\alpha = \alpha \mathbf{a}$,
 - es asociativa $\alpha(\beta \mathbf{a}) = (\alpha \beta) \mathbf{a}$,
 - es distributiva $(\alpha + \beta)$ $\mathbf{a} = \alpha \mathbf{a} + \beta \mathbf{a}$.

Vectores linealmente independientes

▶ Tres vectores \mathbf{a} , \mathbf{b} , \mathbf{c} son *linealmente independientes* en \mathbb{R}^3 si se cumple que:

$$\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = \mathbf{0} \quad \Rightarrow \quad \alpha = \beta = \gamma = \mathbf{0}.$$

Vectores linealmente independientes

▶ Tres vectores \mathbf{a} , \mathbf{b} , \mathbf{c} son *linealmente independientes* en \mathbb{R}^3 si se cumple que:

$$\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = \mathbf{0} \quad \Rightarrow \quad \alpha = \beta = \gamma = \mathbf{0}.$$

Si no se cumple lo anterior diremos que uno de los vectores será linealmente dependiente y por lo tanto se podrá expresar como combinación lineal de los otros dos. Si por ejemplo $\gamma \neq 0$, entonces:

$$\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = \mathbf{0} \implies \mathbf{c} = -\frac{\alpha}{\gamma} \mathbf{a} - \frac{\beta}{\gamma} \mathbf{b} \implies \mathbf{c} = \bar{\alpha} \mathbf{a} + \bar{\beta} \mathbf{b}.$$

Vectores linealmente independientes

▶ Tres vectores \mathbf{a} , \mathbf{b} , \mathbf{c} son *linealmente independientes* en \mathbb{R}^3 si se cumple que:

$$\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = \mathbf{0} \quad \Rightarrow \quad \alpha = \beta = \gamma = \mathbf{0}.$$

Si no se cumple lo anterior diremos que uno de los vectores será linealmente dependiente y por lo tanto se podrá expresar como combinación lineal de los otros dos. Si por ejemplo $\gamma \neq 0$, entonces:

$$\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = \mathbf{0} \implies \mathbf{c} = -\frac{\alpha}{\gamma} \mathbf{a} - \frac{\beta}{\gamma} \mathbf{b} \implies \mathbf{c} = \bar{\alpha} \mathbf{a} + \bar{\beta} \mathbf{b}.$$

Cuando un vector c se pueda expresar en términos de dos vectores linealmente independientes, a y b, por ejemplo:
c = ξ¹a + ξ²b, diremos que a y b forman una base para todos los vectores coplanares a éstos.

Producto escalar

Denominaremos producto escalar de dos vectores $\bf a$ y $\bf b$ a un escalar cuyo valor será igual al producto de los módulos multiplicado por el coseno del ángulo que ellos forman:

$$\zeta = \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \, |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}$$
.

▶ El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.

- ▶ El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.
- ▶ El producto escalar es conmutativo: $\zeta = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$,

- ▶ El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.
- ▶ El producto escalar es conmutativo: $\zeta = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$,
- ▶ El producto escalar es distributivo: $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$.

- ▶ El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.
- ▶ El producto escalar es conmutativo: $\zeta = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$,
- ▶ El producto escalar es distributivo: $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$.
- ► La multiplicación por un número: $\bar{\zeta} = \alpha \zeta = |\alpha| (\mathbf{a} \cdot \mathbf{b}) = (\alpha \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\alpha \mathbf{b}) = |\alpha \mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} = |\mathbf{a}| |\alpha \mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}.$

- ► El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.
- ▶ El producto escalar es conmutativo: $\zeta = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$,
- ▶ El producto escalar es distributivo: $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$.
- ► La multiplicación por un número: $\bar{\zeta} = \alpha \zeta = |\alpha| (\mathbf{a} \cdot \mathbf{b}) = (\alpha \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\alpha \mathbf{b}) = |\alpha \mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} = |\mathbf{a}| |\alpha \mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}.$
- ▶ Designaldad de Cauchy-Schwarz: $\mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}|$, $(\mathbf{a} \cdot \mathbf{b})^2 = (|\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle})^2 \Rightarrow (\mathbf{a} \cdot \mathbf{b})^2 \leq |\mathbf{a}|^2 |\mathbf{b}|^2 \Leftrightarrow \mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}|$, ya que: $0 \leq \cos^2(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} \leq 1$.

- ▶ El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.
- ▶ El producto escalar es conmutativo: $\zeta = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$,
- ▶ El producto escalar es distributivo: $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$.
- ► La multiplicación por un número: $\bar{\zeta} = \alpha \zeta = |\alpha| (\mathbf{a} \cdot \mathbf{b}) = (\alpha \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\alpha \mathbf{b}) = |\alpha \mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} = |\mathbf{a}| |\alpha \mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}.$
- ▶ Designaldad de Cauchy-Schwarz: $\mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}|$, $(\mathbf{a} \cdot \mathbf{b})^2 = (|\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle})^2 \Rightarrow (\mathbf{a} \cdot \mathbf{b})^2 \leq |\mathbf{a}|^2 |\mathbf{b}|^2 \Leftrightarrow \mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}|$, ya que: $0 \leq \cos^2(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} \leq 1$.
- ► El teorema del coseno. Si $\mathbf{c} = \mathbf{a} + \mathbf{b} \Rightarrow$ $\mathbf{c} \cdot \mathbf{c} = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) \Rightarrow |\mathbf{c}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2|\mathbf{a}| |\mathbf{b}| \cos(\theta),$

- ► El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.
- ▶ El producto escalar es conmutativo: $\zeta = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$,
- ▶ El producto escalar es distributivo: $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$.
- ► La multiplicación por un número: $\bar{\zeta} = \alpha \zeta = |\alpha| (\mathbf{a} \cdot \mathbf{b}) = (\alpha \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\alpha \mathbf{b}) = |\alpha \mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} = |\mathbf{a}| |\alpha \mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}.$
- ▶ Designaldad de Cauchy-Schwarz: $\mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}|$, $(\mathbf{a} \cdot \mathbf{b})^2 = (|\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle})^2 \Rightarrow (\mathbf{a} \cdot \mathbf{b})^2 \leq |\mathbf{a}|^2 |\mathbf{b}|^2 \Leftrightarrow \mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}|$, ya que: $0 \leq \cos^2(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} \leq 1$.
- ► El teorema del coseno. Si $\mathbf{c} = \mathbf{a} + \mathbf{b} \Rightarrow$ $\mathbf{c} \cdot \mathbf{c} = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) \Rightarrow |\mathbf{c}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2|\mathbf{a}| |\mathbf{b}| \cos(\theta),$
- ► Perpendicularidad: $\mathbf{a} \perp \mathbf{b} \Rightarrow \theta_{\langle \mathbf{a}, \mathbf{b} \rangle} = \frac{\pi}{2}$ $\Rightarrow \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} = 0$.

Producto vectorial

el producto vectorial tiene como resultado otro vector: $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ (realmente un pseudovector) con:

- ▶ El módulo de **c**, será: $|\mathbf{c}| = |\mathbf{a}| \, |\mathbf{b}| \, \text{sen}(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}$. El módulo de **c** representa el área del paralelogramo cuyos lados están formados por **a** y **b**.
- tendrá como dirección la perpendicular al plano que forman a y b, y con sentido positivo cuando la multiplicación de a x b corresponda al sentido antihorario.
- ▶ El producto vectorial es anticonmutativo. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$,
- ► El producto vectorial es distributivo respecto a la suma. $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$.
- Dos vectores serán colineales si su producto vectorial se anula.

$$\mathbf{a} \parallel \mathbf{b} \ \Rightarrow \ \theta_{\langle \mathbf{a}, \mathbf{b} \rangle} = 0 \ \Rightarrow \ |\mathbf{c}| = |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| \, |\mathbf{b}| \, \mathrm{sen}(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} = 0 \, .$$

Si el módulo del vector es cero, obvio que es el vector nulo. Ahora bien, también de aquí deducimos que:

$$\mathbf{c} = \mathbf{a} \times \mathbf{b} \ \Rightarrow \ \mathbf{c} \cdot \mathbf{a} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \mathbf{c} \cdot \mathbf{b} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = \mathbf{0} \,.$$

Producto triple o mixto

El número (pseudoescalar) que proviene de la multiplicación:

$$V = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = |\mathbf{c}| |(\mathbf{a} \times \mathbf{b})| \cos(\theta)_{\langle \mathbf{c}, \mathbf{a} \times \mathbf{b} \rangle}.$$

- ▶ Representa el volumen del paralelepípedo cuyos lados son los vectores \mathbf{a} , \mathbf{b} y \mathbf{c} . Donde $|\mathbf{a} \times \mathbf{b}|$ es el área de la base y la altura la proyección del vector \mathbf{c} sobre la perpendicular al plano de la base que es, $|\mathbf{c}|\cos(\theta)_{\langle \mathbf{c},\mathbf{a}\times\mathbf{b}\rangle}$.
- ► Es cíclico respecto a sus factores. $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b} = (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a}$.
- Se anula cuando se repite alguno de sus factores.
- Se anula cuando se repite alguno de sus factores. $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = (\mathbf{a} \times \mathbf{a}) \cdot \mathbf{c} = (\mathbf{b} \times \mathbf{b}) \cdot \mathbf{c} = 0 .$ Claramente, si $(\mathbf{a} \times \mathbf{b}) \perp \mathbf{a} \Rightarrow (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = 0.$
- ▶ Si los tres vectores \mathbf{a} , \mathbf{b} y \mathbf{c} son coplanares (linealmente dependientes) entonces: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 0$.
- ► Tres vectores $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \neq 0$, son linealmente independientes y forman una base levógira (contraria al giro de las manecillas del reloj) si $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} < 0$ y dextrógira (la convencional base de la mano derecha) si $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} > 0$.