# Analyse d'un modèle de risque en temps discret avec un processus INAR(1)

#### Achille Rostan Fossouo Tadjuidje

École d'actuariat Université Laval, Québec, Canada

18 février 2022



Faculté des sciences et de génie École d'actuariat

#### Table des matières

- 1 Quelques outils préliminaires
- 2 Contexte de l'article et définitions
- $\blacksquare$  Modèle de risque à travers un processus INAR(1)
- 4 Exemple numérique



- 1 Quelques outils préliminaires
  - Binomial thinning operations
  - Lois mélanges d'Erlang : Premiers pas
  - Propriétés importantes sur les lois mélanges d'Erlang
  - Primes et mesures de risques
- 2 Contexte de l'article et définitions
- 3 Modèle de risque à travers un processus INAR(1)
- 4 Exemple numérique



### Définition - Binomial thinning

#### Binomial thinning (Weiß, 2008)

Considérons une variable aléatoire discrète X à valeurs dans  $\{{\bf 0,\,1,\,\ldots,\,n}\},$  et  $\lambda\in[0;1]$ 

On définit une nouvelle variable aléatoire à l'aide d'une binomial thinning operation par :

$$\lambda \circ X = \sum_{i=1}^{X} Y_i$$

où les  $Y_i$  sont i.i.d, indépendants à X et  $Y_i \sim Y \sim Bernouilli(\lambda)$ 

### Interprétation (Weiß, 2008)

- Considérons une population de taille X au temps t
- lacksquare La même population au temps t+1 aura une taille différente dûe aux décès survenus entre t et t+1
- Supposons l'indépendance entre les décès individuels sur la période  $[t;\ t+1]$ , et notons  $\lambda$  la probabilité de survie pour chaque individu durant cette période.
- lacksquare Alors le nombre de survivants au temps t+1 est donné par  $\lambda\,\circ\, X$



### Définition - Distribution d'Erlang

#### Notations:

- ullet  $\psi_k(x;eta)$  : Fonction de densité d'une distribution d'Erlang d'ordre k
- $\Psi_k(x;\beta)$ : Fonction de répartition d'une distribution d'Erlang d'ordre k où  $x>0,\ \beta>0$  (paramètre d'échelle) et  $k=1,2,\ldots$

#### Formules:

$$\psi_k(x;\beta) = \frac{\beta^k}{(k-1)!} x^{k-1} e^{-\beta x}$$

$$\Psi_k(x;\beta) = 1 - e^{-\beta x} \sum_{i=0}^{k-1} \frac{(\beta x)^j}{j!}$$

Remarque : Lien avec la distribution  $Gamma(\alpha, \beta)$  !!!



### Définition - Mélange d'Erlang I

#### Définition - Mélange d'Erlang

Soit une variable aléatoire Y suivant une loi mélange d'Erlang de paramètres  $\underline{q}=\{q_j\}_{j=1}^\infty$  et  $\beta$ .

Alors ses fonctions de densité et de répartition s'écrivent comme suit :

$$f_Y(x) = \sum_{j=1}^{\infty} q_j \psi_j(x; \beta)$$

$$F_Y(x) = \sum_{j=1}^{\infty} q_j \Psi_j(x; \beta)$$

Notation :  $Y \sim MixErl(q, \beta)$ 



### Définition - Mélange d'Erlang II

#### Remarques:

■ Dans le cas où il y a une masse de probabilité non nulle en 0, la fonction de répartition s'écrit :

$$F_Y(x) = q_0 + \sum_{j=1}^{\infty} q_j \Psi_j(x; \beta)$$

- $lacksq q_j$  est un poids positif attribué à la distribution d'Erlang d'ordre j

On peut donc définir une variable aléatoire discrète J dont la masse de probabilité est  $f_J(j) = \Pr[J = j] = q_j, j \in \mathbb{N}$ 



### Autre remarque (Cossette et collab., 2012, 2013)

On peut également représenter une distribution de mélange d'Erlang par une somme aléatoire. En effet, si  $Y \sim MixErl(q,\beta)$ , alors :

$$Y = \begin{cases} \sum_{j=1}^{J} C_j &, J > 0 \\ 0 &, J = 0 \end{cases}$$

avec :

- $f_J(j) = \Pr[J=j] = q_j, \ j \in \mathbb{N}$
- les variables  $C_i$  sont i.i.d et indépendantes à J
- $C_j \sim C \sim Exp(\beta), j = 1, 2, \dots$

On a donc que :  $\mathcal{L}_{Y}(z) = P_{J}\left(\mathcal{L}_{C}(z)\right) = P_{J}\left(\frac{\beta}{\beta+z}\right)$ 



### Propriétés importantes (Cossette et collab., 2012, 2013) I

#### Propriété 1 : Somme de deux Mélanges d'Erlang indépendants

Soient  $X_1$  et  $X_2$  deux variables aléatoires indépendantes avec

- $\blacksquare X_i \sim MixErl(q^{(i)}, \beta) \text{ pour } i = 1, 2$
- $\quad \qquad \Pr[J_i=j]=q_j^{(i)} \text{ pour } i=1,2$

On pose  $Y = X_1 + X_2$ . Alors :

$$Y \sim MixErl(\underline{\nu}, \beta)$$

avec 
$$\underline{\nu}=\{\nu_j\}_{j=0}^\infty$$
 tel que  $\Pr[J_1+J_2=j]=\nu_j$ 



### Propriétés importantes (Cossette et collab., 2012, 2013) II

**Preuve** : La Transformée de Laplace de Y est

$$\mathcal{L}_{Y}(z) = E\left[e^{-zY}\right] = \prod_{i=1}^{2} E\left[e^{-zX_{i}}\right] = \prod_{i=1}^{2} P_{J_{i}}\left(\mathcal{L}_{C}(z)\right)$$

$$= E\left[\left(\mathcal{L}_{C}(z)\right)^{J_{1}}\right] \times E\left[\left(\mathcal{L}_{C}(z)\right)^{J_{2}}\right] = E\left[\left(\mathcal{L}_{C}(z)\right)^{J_{1}+J_{2}}\right]$$

$$= P_{J_{1}+J_{2}}\left(\mathcal{L}_{C}(z)\right)$$

où 
$$P_{J_1+J_2}(z) = \sum_{j=0}^{\infty} \nu_j z^j$$
.

On conclut donc que  $Y \sim MixErl(\underline{\nu}, \beta)$  où  $\underline{\nu} = \{\nu_j\}_{j=0}^{\infty}$  peut être obtenu à l'aide d'un produit de convolution ou de l'algorithme FFT.



### Propriétés importantes (Cossette et collab., 2012, 2013) III

#### Remarque : Somme de n Mélanges d'Erlang indépendants

On peut étendre le résultat précédent à  $Y_n = \sum_{i=1}^n X_i$  où  $X_1, \ldots, X_n$  est une suite de variables aléatoires indépendantes avec  $X_i \sim MixErl(\underline{q}^{(i)}, \beta)$  pour  $i=1,\ldots,n$ .

Dans ce cas : 
$$Y_n \sim MixErl(\underline{\nu},\beta)$$
 et  $\mathcal{L}_{Y_n}(z) = P_{M_n}\left(\mathcal{L}_C(z)\right)$  où  $P_{M_n}(z) = P_{J_1+\ldots+J_n}(z) = \sum_{j=0}^{\infty} \nu_j z^j$ .

lci encore,  $\underline{\nu}=\{\nu_j\}_{j=0}^{\infty}$  peut être obtenu à l'aide d'un produit de convolution ou de l'algorithme FFT.



#### Propriétés importantes (Cossette et collab., 2012, 2013) IV

#### Propriété 2 : Somme aléatoire de Mélanges d'Erlang indépendants

Soit une variable aléatoire X qui obéit à une loi composée telle que

$$X = \begin{cases} \sum_{k=1}^{M} B_k & , M > 0 \\ 0 & , M = 0 \end{cases}$$

où  $B_k \sim B \sim MixErl(q, \beta)$ .

Alors on a également  $X \sim MixErl(\underline{\nu}, \beta)$ 

**Preuve** : Puisque  $B \sim MixErl(\underline{q},\beta)$ , alors on peut représenter B par une somme aléatoire :

$$B = \begin{cases} \sum_{j=1}^{J} C_j & , J > 0 \\ 0 & , J = 0 \end{cases}$$



Avec  $f_J(j) = \Pr[J=j] = q_j$  et  $C_j \sim C \sim Exp(\beta)$ . On a donc :

$$\mathcal{L}_X(z) = P_M \left( \mathcal{L}_B(z) \right) = P_M \left( P_J \left( \mathcal{L}_C(z) \right) \right)$$
  
=  $P_K \left( \mathcal{L}_C(z) \right)$ 

où  $P_K(z) = P_M\left(P_J(z)\right)$  est la fonction génératrice des probabilités d'une variable aléatoire K discrète.

Cela permet donc de conclure que  $X \sim MixErl(\underline{\nu}, \beta)$  avec :

$$X = \begin{cases} \sum_{k=1}^{K} C_k & , K > 0 \\ 0 & , K = 0 \end{cases}$$

et  $f_K(k)=\Pr[K=k]=\nu_k,\ k\in\mathbb{N}.$  Comme toujours, le célèbre algorithme FFT pourra être utilisé pour trouver les  $\nu_k$ 

Soit Y une variable aléatoire. Soient r et d deux éléments de  $\mathbb{R}_+$ 

#### Définition: La prime stop-loss

La prime stop-loss de Y avec priorité d est l'espérance de la fonction  $m(y)=\max(y-d,0).$ 

Elle est notée  $\pi_d^{st}(Y)$  et on a  $\pi_d^{st}(Y) = E(\max(Y-d,0))$ 

#### Définition : La prime exponentielle

La prime exponentielle de Y avec aversion au risque r est définie par :

$$\pi_r^{exp}(Y) = \frac{1}{r}logE\left(e^{rY}\right)$$



### Mesures de risques - Définition (Denuit et collab., 2006)

Mesures de risques à définir : Value at Risk (VaR) et Tail Value at Risk (TVaR).

Soit Y une variable aléatoire avec fonction de répartition  $F_Y$  et fonction quantile  $F_Y^{-1}$ . Alors la VaR et la TVaR de Y au niveau  $\kappa,\ 0 \le \kappa < 1$  sont définies par :

$$VaR_{\kappa}(Y) = F_{Y}^{-1}(\kappa) = \inf \left\{ x \in \mathbb{R} : F_{Y}(x) \ge \kappa \right\}$$

$$et$$

$$TVaR_{\kappa}(Y) = \frac{1}{\kappa - 1} \int_{\kappa}^{1} VaR_{u}(Y) du$$

$$= VaR_{\kappa}(Y) + \frac{1}{\kappa - 1} \pi_{VaR_{\kappa}(Y)}^{st}(Y)$$



## Contexte de l'article et définitions

- 2 Contexte de l'article et définitions
  - Contexte (Guan et Hu, 2021)
  - Propriétés



### Contexte et notations (Guan et Hu, 2021) I

L'une des tâches les plus importantes dans le secteur de l'assurance est d'évaluer le montant total des sinistres agrégés découlant d'un portefeuille de risques.

**Objectif de l'article** : Etudier la distribution des montants agrégés (actualisées et non) des réclamations durant une période fixée.

Pour une période k donnée,  $k=1,2,\ldots$ , considérons les informations suivantes pour un portefeuille d'assurance :

- $W_k$ : le montant agrégé des réclamations durant la période k. Les  $W_k$  identiquement distribuées mais pas nécessairement indépendantes.
- lacksquare  $N_k$ : le nombre de réclamations enregistrées durant la période k.



- La séquence des variables aléatoires strictement positives  $\{B_{k,j}\}_{j=1}^{\infty}$  qui représentent les montants individuels des réclamations durant la période k.
- Les  $B_k$  sont i.i.d et on a  $B_{k,j} \sim B$
- Les  $B_k$  et indépendants aux  $N_k$ ,

À partir de ces informations, on peut donc définir  ${\cal W}_k$  comme la somme aléatoire suivante :

$$W_k = \sum_{j=1}^{N_k} B_{k,j}$$

### Contexte et notations (Guan et Hu, 2021) III

On peut également définir le montant agrégé global (actualisé ou non) des réclamations au cours des n premières périodes :



- Somme non actualisée :  $S_n = W_1 + \ldots + W_t + \ldots + W_n$
- Somme actualisée :  $Z_n = vW_1 + \ldots + v^tW_t + \ldots + v^nW_n$

où  $v^t$  correspond à la valeur actualisée de  $1\$  due au temps t.

Dans la suite de l'exposé, nous nous attarderons à étudier uniquement la distribution de la somme  $S_n$ 

### Contexte et notations (Guan et Hu, 2021) IV

#### Postulats énoncés dans l'article :

- Il existe une structure de dépendance temporelle entre les fréquences des réclamations.
- Un processus INAR(1) (en anglais : first-order integer-valued autoregressive process) est adopté pour modéliser la dépendance temporelle entre les nombres de réclamations  $N_k$ .
- La classe des distributions de Mélange d'Erlang sera utilisée pour modélisée les montants des réclamations individuelles B

**Remarque** : les distributions exponentielles et Erlang sont des cas particulier de la classe des Mélanges d'Erlang. Elles peuvent donc également être utilisées pour modéliser B :)



### Contexte et notations (Guan et Hu, 2021) V

#### Définition d'un processus INAR(1)

Soit  $\{\varepsilon_k\}_{k=1}^\infty$  une séquence de variables aléatoires i.i.d discrètes avec pour support  $\mathbb{N}=\{0,1,\ldots\}$ ,  $E[\varepsilon_k]=\mu_\varepsilon$  et  $Var[\varepsilon_k]=\sigma_\varepsilon^2$ .

Un processus  $\{N_k\}_{k=1}^{\infty}$  est un processus INAR(1) s'il suit la formule de récursivité suivante :

$$N_k = \alpha \circ N_{k-1} + \varepsilon_k$$
 pour  $\alpha \in (0, 1)$ 

Comme expliqué dans les préliminaires,  $\alpha \circ N_{k-1} = \sum_{j=1}^{N_{k-1}} \delta_{k-1,j}$  où  $\delta_{k-1,j} \sim \delta \sim Bernouilli(\alpha)$ .



#### Contexte et notations (Guan et Hu, 2021) VI

#### Interprétation :



 $N_k = Nombre de réclamations à la période <math>k$ 

$$= \begin{cases} \alpha \mathrel{\circ} N_{k-1} & \text{: Proportion des r\'eclamations durant la p\'eriode } k-1 \\ + \\ \varepsilon_k & \text{: Nombre de r\'eclamations nouvelles entre } k-1 \text{ et } k \end{cases}$$

### Propriété importante I

#### Propriété

La condition  $\alpha \in (0,\ 1)$  implique que le processus INAR(1)  $\{N_k\}_{k=1}^\infty$  est un processus stationnaire. Et de là, on peut tirer la relation suivante :

$$P_N(z) = P_N(1 - \alpha + \alpha z)P_{\varepsilon}(z)$$

**Preuve** : On sait que  $N_k = \alpha \circ N_{k-1} + \varepsilon_k$ . Donc :

$$P_{N_k}(z) = E\left[z^{N_k}\right] = E\left[z^{\alpha \circ N_{k-1} + \varepsilon_k}\right] = E\left[z^{\alpha \circ N_{k-1}}\right] E\left[z^{\varepsilon_k}\right]$$
$$= E\left[z^{\alpha \circ N_{k-1}}\right] P_{\varepsilon}(z)$$



### Propriété importante II

Or

$$E\left[z^{\alpha \circ N_{k-1}}\right] = E\left[E\left[z^{\alpha \circ N_{k-1}} | N_{k-1}\right]\right]$$

$$= E\left[E\left[z^{Bin(N_{k-1}, \alpha)} | N_{k-1}\right]\right]$$

$$= E\left[(1 - \alpha + \alpha z)^{N_{k-1}}\right]$$

$$= P_{N_{k-1}}(1 - \alpha + \alpha z)$$

on a donc 
$$P_{N_k}(z) = P_{N_{k-1}}(\alpha z + 1 - \alpha)P_{\varepsilon}(z)$$
.

Puisque les  $N_k$  sont identiquement distribués, on obtient donc :

$$P_N(z) = P_N(1 - \alpha + \alpha z)P_{\varepsilon}(z)$$



#### Définition - Processus Poi-INAR(1)

Un processus INAR(1)  $\{N_k\}_{k=1}^{\infty}$  est un processus de poisson INAR(1) si la séquence des innovations  $\{\varepsilon_k\}_{k=1}^{\infty}$  sont i.i.d et suivent une distribution de Poisson.

Dans ce cas, si  $\varepsilon_k \sim \varepsilon \sim Pois(\lambda)$ , alors  $N \sim Pois\left(\frac{\lambda}{1-\alpha}\right)$ 

**Preuve :** Supposons que  $N \sim Pois(\lambda_N)$  et déterminons  $\lambda_N$  en utilisant la relation  $P_N(z) = P_N(1-\alpha+\alpha z)P_\varepsilon(z)$ 



On a les égalités suivantes :  $P_N(z) = e^{\lambda_N(z-1)}$  et  $P_{\varepsilon}(z) = e^{\lambda(z-1)}$ .

Donc:  $P_N(1 - \alpha + \alpha z) = e^{\lambda_N(-\alpha + \alpha z)}$ .

Et on a:

$$e^{\lambda_N(z-1)} = e^{\lambda_N(-\alpha+\alpha z)}e^{\lambda(z-1)}$$

$$e^{\lambda_N(z-\alpha z-(1-\alpha))} = e^{\lambda(z-1)}$$

$$e^{\lambda_N(1-\alpha)(z-1)} = e^{\lambda(z-1)}$$

$$\lambda_N(1-\alpha)(z-1) = \lambda(z-1)$$

$$\lambda_N = \frac{\lambda}{1-\alpha}$$



#### Modèle de risque à travers un processus INAR(1)

- 1 Quelques outils préliminaires
- 2 Contexte de l'article et définitions
- Modèle de risque à travers un processus INAR(1)
  - **Expression** de  $\mathcal{L}_{S_n}$
- 4 Exemple numérique



#### Expression de $\mathcal{L}_{S_n}$ - Développement I

#### Proposition

La transformée de Laplace de  $S_n$  est donnée par :

$$\mathcal{L}_{S_n}(z) = P_{N_1} \left( G_n \left( \mathcal{L}_B(z) \right) \right) \prod_{k=2}^n P_{\varepsilon_k} \left( G_{n-k+1} \left( \mathcal{L}_B(z) \right) \right)$$

où  $G_n:[0,1]\to[0,1]$  est la fonction polynôme de degré n satisfaisant la relation suivante :

$$\begin{cases} G_1(x) = x \\ G_n(x) = x \left(\alpha G_{n-1}(x) + 1 - \alpha\right) & \text{, pour } n = 2, 3, \dots \end{cases}$$



#### Expression de $\mathcal{L}_{S_n}$ - Développement II

**Preuve :** On rappelle les relations suivantes :

- $W_k = \sum_{j=1}^{N_k} B_{k,j}$
- $\blacksquare B_{k,j} \sim B \sim MixErl(q,\beta)$

On peut donc écrire  $S_n = \sum_{j=1}^{M_n} \tilde{B}_j$  où  $M_n = N_1 + \ldots + N_n$  et  $\tilde{B}_j \sim B$ .

On a donc : 
$$\mathcal{L}_{S_n}(z) = P_{M_n}\left(\mathcal{L}_B(z)\right)$$

Le but est donc de déterminer l'expression de  $P_{M_n}(z)$ . La tâche n'étant pas facile, nous prendrons quelques cas particuliers de n :

Pour 
$$n=1$$
, on a  $P_{M_1}(z)=P_{N_1}(z)=P_{N_1}(G_1(z))$  où  $G_1(z)=z$ 



#### Expression de $\mathcal{L}_{S_n}$ - Développement III

Pour n=2, on a :

$$P_{M_2}(z) = E\left[z^{M_2}\right] = E\left[z^{N_1+N_2}\right] = E\left[z^{N_1+\alpha \circ N_1 + \varepsilon_2}\right]$$
$$= E\left[z^{N_1+\alpha \circ N_1}\right] E\left[z^{\varepsilon_2}\right] = P_{N_1+\alpha \circ N_1}(z)P_{\varepsilon_2}(z)$$

Et:

$$P_{N_1+\alpha \circ N_1}(z) = E\left[z^{N_1}z^{\alpha \circ N_1}\right] = E\left[z^{N_1}E\left[z^{\alpha \circ N_1}|N_1\right]\right]$$
$$= E\left[z^{N_1}(\alpha z + 1 - \alpha)^{N_1}\right] = P_{N_1}(G_2(z))$$

où 
$$G_2(z) = z(\alpha z + 1 - \alpha) = z(\alpha G_1(z) + 1 - \alpha)$$



#### Expression de $\mathcal{L}_{S_n}$ - Développement IV

On obtient donc  $P_{M_2}(z) = P_{N_1}(G_2(z)) P_{\varepsilon_2}(G_1(z))$ 

Pour n=3, on a :

$$\begin{split} P_{M_3}(z) &= E\left[z^{N_1}z^{N_2}z^{N_3}\right] = E\left[z^{N_1}z^{\alpha\circ N_1 + \varepsilon_2}z^{\alpha\circ N_2 + \varepsilon_3}\right] \\ &= E\left[z^{N_1}z^{\alpha\circ N_1 + \varepsilon_2}z^{\alpha\circ (\alpha\circ N_1 + \varepsilon_2) + \varepsilon_3}\right] \\ &= E\left[z^{N_1}z^{\alpha\circ N_1 + \varepsilon_2}z^{\alpha^2\circ N_1 + \alpha\circ\varepsilon_2 + \varepsilon_3}\right] \\ &= E\left[z^{N_1+\alpha\circ N_1 + \alpha^2\circ N_1}z^{\alpha\circ\varepsilon_2 + \varepsilon_2}z^{\varepsilon_3}\right] \\ &= P_{N_1+\alpha\circ N_1 + \alpha^2\circ N_1}(z)P_{\alpha\circ\varepsilon_2 + \varepsilon_2}(z)P_{\varepsilon_3}(z) \end{split}$$

Puisque  $P_{N_1+\alpha\circ N_1}(z)=P_{N_1}(G_2(z))$ , alors  $P_{\varepsilon_2+\alpha\circ\varepsilon_2}(z)=P_{\varepsilon_2}(G_2(z))$ 



### Expression de $\mathcal{L}_{S_n}$ - Développement V

De plus,

$$\begin{split} P_{N_{1}+\alpha \circ N_{1}+\alpha^{2} \circ N_{1}}(z) &= E\left[z^{N_{1}}z^{\alpha \circ N_{1}}z^{\alpha^{2} \circ N_{1}}\right] = E\left[z^{N_{1}}z^{\alpha \circ N_{1}}z^{\alpha \circ (\alpha \circ N_{1})}\right] \\ &= E\left[z^{N_{1}}z^{\alpha \circ N_{1}}E\left[z^{\alpha \circ (\alpha \circ N_{1})} \mid \alpha \circ N_{1}\right]\right] \\ &= E\left[z^{N_{1}}z^{\alpha \circ N_{1}}\left(\alpha z + 1 - \alpha\right)^{\alpha \circ N_{1}}\right] \\ &= E\left[z^{N_{1}}\left(G_{2}(z)\right)^{\alpha \circ N_{1}}\right] \\ &= E\left[z^{N_{1}}\left(\alpha G_{2}(z) + 1 - \alpha\right)^{N_{1}}\right] = P_{N_{1}}\left(G_{3}(z)\right) \end{split}$$

où 
$$G_3(z)=z(\alpha G_2(z)+1-\alpha)$$
 On a donc  $P_{M_3}(z)=P_{N_1}\left(G_3(z)\right)P_{\varepsilon_2}\left(G_2(z)\right)P_{\varepsilon_3}(G_1(z))$ 



### Expression de $\mathcal{L}_{S_n}$ - Développement VI

Ce résultat peut donc être généralisé pour n>3 et on retrouvera donc l'expression :

$$\mathcal{L}_{S_n}(z) = P_{N_1} \left( G_n \left( \mathcal{L}_B(z) \right) \right) \prod_{k=2}^n P_{\varepsilon_k} \left( G_{n-k+1} \left( \mathcal{L}_B(z) \right) \right)$$

Remarque : Le polynôme

$$G_n(x) = \begin{cases} x & , n = 1\\ \sum_{k=1}^n g_{n,k} x^k & , n \ge 2 \end{cases}$$

et

$$g_{n,k} = \begin{cases} \alpha^{k-1}(1-\alpha) & , 1 \le k \ge n-1\\ \alpha^{n-1} & , k = n \end{cases}$$



# Exemple numérique

- 1 Quelques outils préliminaires
- 2 Contexte de l'article et définitions
- 3 Modèle de risque à travers un processus INAR(1)
- 4 Exemple numérique



#### Application - processus Poi-INAR(1)

On suppose que le nombre de réclamations  $N_k$  suit un processus  $\operatorname{Poi-INAR}(1)$  avec  $\lambda=1$ 

Montant des réclamations individuelles :  $B\sim MixErl(\underline{q},\beta)$  où  $q=\{0.4,\ 0.6\}$  et  $\beta=1$ 

On a donc 
$$f_B(x) = 0.4\psi_1(x,1) + 0.6\psi_2(x,1)$$

On s'intéresse à la distribution du montant global  $S_n$  des réclamations sur n=4 périodes.



### 1. Espérance de $S_n$ selon la valeur de $\alpha$ l

#### Espérance de Sn selon la valeur de $\alpha$





#### 1. Espérance de $S_n$ selon la valeur de $\alpha$ II

#### Interprétation :

- lacksquare L'espérance de  $S_n$  croit globalement avec le paramètre de dépendance lpha
- $\blacksquare$  Cependant, le comportement est instable pour des valeurs très élevées de  $\alpha$

Il serait intéressant d'étudier davantage le cas de la forte dépendance entre les fréquences des réclamations.



### 2. Prime stop-loss en fonction de d et $\alpha$ I





#### 2. Prime stop-loss en fonction de d et $\alpha$ II

#### Interprétation :

- **•** pour le cas particulier de d=0, on constate que plus le paramètre de dépendance est élevé, plus l'espérance de  $S_n$ . (Même résultat que précédemment)
- Lorsqu'on compare  $2 \alpha$  (donc 2 courbes), les primes stop loss de la dépendance la plus forte semblent toujours systématiquement plus élevées.



#### prime exponentielle selon la valeur de $\alpha$



#### Conclusion

Dans cette présentation, nous avons étudié un modèle de risque à temps discret dans lequel :

- La structure de dépendance temporelle est modélisée par un processus INAR(1)
- La distribution du montant des réclamations individuelles fait partie de la classe des Mélanges d'Erlang

Cet article nous a également permis de :

- Elargir nos connaissances sur les propriétés liées aux mélanges d'Erlang
- Découvrir d'autres notions de primes telles que la prime exponentielle avec risque d'aversion.



### Bibliographie I

- Cossette, H., M.-P. Côté, E. Marceau et K. Moutanabbir. 2013, « Multivariate distribution defined with farlie–gumbel–morgenstern copula and mixed erlang marginals : Aggregation and capital allocation », Insurance : Mathematics and Economics, vol. 52, n° 3, p. 560–572.
- Cossette, H., M. Mailhot et É. Marceau. 2012, « Tvar-based capital allocation for multivariate compound distributions with positive continuous claim amounts », *Insurance : Mathematics and Economics*, vol. 50, n° 2, p. 247–256.
- Denuit, M., J. Dhaene, M. Goovaerts et R. Kaas. 2006, *Actuarial theory for dependent risks: measures, orders and models*, John Wiley & Sons.
- Guan, G. et X. Hu. 2021, « On the analysis of a discrete-time risk model with inar (1) processes », *Scandinavian Actuarial Journal*, p. 1–24.



Kaas, R., M. Goovaerts, J. Dhaene et M. Denuit. 2008, *Modern actuarial risk theory : using R*, vol. 128, Springer Science & Business Media.

Weiß, C. H. 2008, « Thinning operations for modeling time series of counts—a survey », *AStA Advances in Statistical Analysis*, vol. 92, n° 3, p. 319–341.

