IVs

Ricardo Pasquini

Universidad Austral

2023

Intro

- Seguimos en el contexto de datos observacionales, donde existen factores que pueden que confundir (sesgar) un efecto causal de interés.
- El método de Variables Instrumentales (IVs) propone una nueva técnica para la identificación de un efecto causal de interés.
- ► El método se basa en contar con una variable adicional, "la variable instrumental", que se utilizará para aproximar el efecto. Esta variable debe cumplir dos condiciones, y estas no son siempre fáciles de conseguir.
- Veremos que utilizar un DAG es una buena forma de entender cuáles son las condiciones necesarias para esta variable.

Intro

- Supongamos una situación en donde nos interesa conocer el efecto de una variable T sobre una variable Y, pero existe un factor U, no observable, que podría generar una correlación entre T e Y, sesgando la medición del efecto de interés (e.g., hay un sesgo de selección).
- Podemos representar esta relación en el siguiente DAG:

- Llamemos al efecto de interés de estimación β .
- El método de VI propone la identificación del efecto de β cuando contamos con una variable Z que tiene las siguientes características:
 - 1. Z tiene un efecto (no nulo) sobre T. Llamemos a este efecto α .
 - 2. U y Z no están directamente relacionados.
- Podemos representar esta relación en el siguiente DAG:

Estimación de la primera etapa

- ▶ Es importante notar que el efecto causal α se puede estimar sin sesgos ya que, en el DAG supuesto, no hay nada extra que afecte esa relación.
 - A este efecto se le suele llamar "first stage".
 - ► En un contexto donde Z es una dummy, el efecto se podría estimar simplemente como una diferencia:

$$\hat{\alpha} = E[T|Z=1] - E[T|Z=0]$$

Estimación del efecto reducido

- ▶ También es importante notar que el efecto γ también se puede estimar sin sesgos.
 - La razón es que no hay ningún sendero alternativo (back-door path) entre Z e Y.
 - ▶ A este efecto se le suele llamar "reduced form".
 - En un contexto donde T es una dummy, el efecto se podría estimar simplemente como una diferencia:

$$\hat{\gamma} = E[Y|Z=1] - E[Y|Z=0]$$

Estimador LATE

Por último notemos que el efecto reducido γ se puede descomponer como la multiplicación de ambos efectos:

$$\gamma = \alpha \beta$$

De aquí se sigue que podemos estimar el efecto de interés βcomo :

$$\hat{\beta}_{\mathsf{LATE}} = \frac{\hat{\gamma}}{\alpha}$$

 Este estimador se conoce como Local Average Treatment Effect (LATE)

