Brought to you by ...

Logic Circuits

Professor

P G Department of Computer Science, Sardar Patel University, Vidyanagar-388 120, Gujarat, India.

PS01CMCA02
Course Content

Tutorial Practice Material

Acknowldgement References

Website pritisajja.info

Basic gates and Universal gates Boolean algebra and Truth table DeMorgan's Theorems Circuit Equivalence

Logic Gates

- Logic gates are the fundamental building blocks of digital systems.
- Gate is a logic circuit with one or more inputs but only one output.
- Gate is a logic circuit in which voltage levels represent logic 1 and logic 0.
- A table which contains all possible alternatives of input variables and corresponding output, is called a truth table.

AND Gate

An **AND** gate has two or more input signals but only one output signal. <u>If all inputs are high then output is high.</u>

OR Gate

An **OR** gate has two or more input signals but only one output signal. <u>If any input is high then output is high.</u>

A	ВС	A OR B OR C(A+B+C) A OR B (A+B)
0	$0^{\mathbf{A}} 0^{\mathbf{B}}$	$ \oint \mathbf{OR} \mathbf{B} (\mathbf{A} + \mathbf{B}) $
0	$0 \ 0 \ 1 \ 0$	1 0
0	$egin{smallmatrix} 1 & 0 & 0 & 1 \end{smallmatrix}$	1 1
0	1 1 0	1 1 A
1	$\begin{smallmatrix} 1 & 0 \end{smallmatrix}$	1 1 BA OR B OR C
1	0 1	1 C
1	1 🐧 🧫	1 AORB
1_	1 1	HOND
	В	

NOT Gate

A **NOT** gate has one input signal and output signal complement to the input signal. If the input is high then output is low.

A Complement A (A)

0 1

1 0

A NAND gate means NOT followed by AND.

A NAND gate means NOT followed by AND.

A NOR gate means NOT followed by OR.

A	B	A OR B(A+B)	A NOR $B(A+B)$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Bubbled Gates

Universal Gate

A NAND gate is equivalent to an inverted-input OR gate.

An AND gate is equivalent to an inverted-input NOR gate.

A NOR gate is equivalent to an inverted-input AND gate.

An OR gate is equivalent to an inverted-input NAND gate.

Two NOT gates in series are same as a buffer because they cancel each other as A'' = A.

http://faculty.kfupm.edu.sa/COE/abouh/Lesson2_6.pdf

Implement F = (X+Z) (Y'+Z) (X'+Y+Z)

Implement F = (ZX+Y'Z +X'YZ)'

$$F = (X+Z).(\overline{Y}+Z).(\overline{X}+Y+Z) \text{ or }$$

$$\overline{F} = (X+Z)(\overline{Y}+Z)(\overline{X}+Y+Z)$$

Decimal to Binary encoder

1 of 10 decoder

XOR Gate

Α	В	AB-	+AB	A XOR B(A ⊕ B)		
0	0	0	0	0		
0	1	1	0	1		
1	0	0	1	1		
1	1	0	0	0		

$A \oplus B \oplus C = \overline{A} \overline{B} C + A \overline{B} \overline{C} + \overline{A} B \overline{C} + A B C$

- Draw logic circuit and truth table for the same.
- If number of 1's are odd what will be the output?

odd parity generator for a six bit word

Can you draw odd parity tester for six bit word?

Draw logic circuits for followings:

$$-A$$
 OR B or $A+B$

$$-A$$
 AND \overline{B}

Check
$$A + B = A B$$
 using truth table.

De Morgan's Theorem 1

- A+B= A B
- Prove with help of truth table and draw logic circuits fro LHS and RHS.
- This can be extended for any number of variable eg.
- A+B+C+D = A B C D
- A+BC+DEF = A BC DEF

De Morgan's Theorem 2

- \bullet AB = A + B
- Prove with help of truth table and draw logic circuits fro LHS and RHS.
- This can be extended for any number of variable eg.
- \bullet ABCD = A + B + C + D
- (A) (BC) (DEF) = (A) + (BC) + (DEF)

Realization of AND using NAND

- Try to realize OR gate and NOT gate using NAND gate
- Try to realize AND, OR gate and NOT gate using NOR gate

Expressions ...

Boolean Relations

Commutative Law:

$$-A+B=B+A$$

Associative Law:

$$- A+ (B+C) = (A+B) + C$$

$$-A(BC) = (AB)C$$

- Distributive Law:
 - -A(B+C)=AB+AC

Expressions ...

Boolean Relations

$$\overline{A} = A$$

Prove that A+BC=(A+B)(A+C)

- RHS=
- (A+B)(A+C)
- AA +AC+AB+BC
- A +AC+AB + BC
- A(1+C+B) + BC (adding 1 into anything is 1)
- A(1) + BC
- A+BC
- =LHS

Prove that A(B+C)=AB+AC with help of truth table

Α	В	С	B+C	A(B+C)	АВ	AC	AB+AC
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1