0.1 Structure of Euclidean Reflection Groups

This section follows [?].

Let W be an affine reflection group, naturally acting on the Euclidean space V, with fixed set of affine hyperplanes \mathcal{H} . We fix an arbitrary chamber C as our fundamental chamber, S be the set of reflection with respect to its walls. For an n-dimensional Euclidean space V, we have the isomorphism $\mathrm{AO}(V) \cong V \rtimes \mathrm{O}(V)$. Every element $\mathrm{AO}(V)$ represents the composition of an orthogonal linear map with a transition τ_v sending x to x+v. Note W can be taken as a subgroup of $\mathrm{AO}(V)$.

From Section ??, we recall some facts of affine reflection groups:

- 1. *W* is generated by *S*.
- 2. *W* is simply transitive on chambers.
- 3. $H \in \mathcal{H}$ if and only if $s_H \in W$
- 4. $\langle e_{s_i}, e_{s_j} \rangle = -\cos(\frac{\pi}{m_{i,j}})$, where e_{s_i}, e_{s_j} are two unit vectors normal to some walls of C, pointing into C from the walls.

Theorem 0.1.1. 1. The hyperplanes $H \in \mathcal{H}$ fall into finitely many classes under parallelism;

2. Let \overline{W} be the image of W under the projection $\eta : AO(V) \to O(V)$, then \overline{W} is finite.

Proof. (1) Let $\Phi:=\{\pm e_H: H\in \mathcal{H}\}$, where e_H is the unit vector normal to H. We will show $\angle(e_1,e_2)$ can take finitely many values. Let $H_1,H_2\in\mathcal{H}$ normal to e_1,e_2 . If they are parallel, then $\angle(e_1,e_2)=\pi$. So we may assume they intersect and take $x\in H_1\cap H_2$. Since W is transitive on chambers, and by the fact that chambers D,D' is separated by wall H' if and only if wD,wD' is separated by wH', we can choose $w\in W$ with $wx\in \overline{C}$. Then \overline{C} intersects with wH_1 and wH_2 , with vectors $\overline{w}e_1,\overline{w}e_2$ normal to them, where $\overline{w}=\eta(w)$. $\angle(e_1,e_2)=\angle(\overline{w}e_1,\overline{w}e_2)$ since \overline{w} is an isometry. From the inner product formula we can deduce the angle between two distinct vectors cannot be smaller than $\pi/2$, so C has finitely many walls. Then there are only finitely many possibilities for angles between two vectors in Φ , hence it is finite as we are in a finite-dimensional space.

(2) Note Φ we defined is stable under action of \overline{W} and reflection with respect to the hyperplanes they are perpendicular to generates \overline{W} . We show the natural homomorphism $\sigma:\overline{W}\to S(\Phi)$ is injective. Suppose $w\in\ker(\sigma),w$ fixes all vectors of Φ . But then $V_0=\operatorname{Span}(\Phi)$ is also fixed by w. Write the vector space V as $V_0\oplus V_1$ for V_1 some subspace of V. Then since every reflection s_e fixes every point of V_1 and W is generated by reflection of walls of C, so does w. We then conclude w is identity hence \overline{W} is finite.

Definition 0.1.2. We say W is essential if intersection of hyperplanes H $s_H \in \overline{W}$ is a singleton.

Definition 0.1.3. A Coxeter group is irreducible if its Coxeter diagram is connected.

For a general affine reflection group, we can reduce it to essential, irreducible cases. If it is irreducible, then there are sets of hyperplanes \mathcal{H}_i , each hyperplane in \mathcal{H}_i is orthogonal to the ones in other \mathcal{H}_j 's. We can decompose the space into direct sum $V_1 \oplus \cdots \oplus V_n$, where each V_i corresponds to \mathcal{H}_i , and the corresponding reflection group W_i is irreducible in V_i . If W_i is not essential, we can quotient the intersection of all hyperplanes out to get an essential one.

Theorem 0.1.4. Assume W is essential and irreducible in n-dimensional vector space V, then one of the following is true:

1. W is finite, C has n walls;

2. W is infinite, C has n+1 walls, and vectors perpendicular to any n walls form a basis. \overline{C} is compact.

Proof. We first count the number of walls. Suppose the walls of C are H_1, \ldots, H_k , with corresponding normal vectors e_1, \ldots, e_k pointing to C. Since W is essential, e_1, \ldots, e_k is a spanning set hence $k \ge n$.

Suppose k = n. Then the intersection of all H_i 's is a singleton. By shifting the planes we may assume x = 0. Hence all H_i 's are linear and W is a finite reflection group.

Suppose k > n, then the list of vectors must be linearly dependent. Choose an index set I such that

$$\sum_{i \in I} \lambda_i e_i = 0$$

such that $\lambda_i \neq 0$ for all $i \in I$. We show $I = \{1, \dots, k\}$. Suppose not, then let $J = \{1, \dots, k\} \setminus I$. Starting from $\sum_{i \in I} \lambda_i e_i = 0$, move the negative coefficients terms to the right

$$\sum_{i \in K} \lambda_i e_i = \sum_{i \in L} -\lambda_i e_i$$

where K, L is a partition of I. Then consider the inner product of left with right, since $\langle e_i, e_j \rangle$, it is non-positive. But it is also an inner product of two same vectors, then the summation is the 0 vector.

Choose $j \in J$ and take inner product

$$\sum_{i \in K} \lambda_i \langle e_i, e_j \rangle = 0$$

For $i \in K$ λ_i are positive and $\langle e_i, e_j \rangle$ are non-positive, we must have the case that $\langle e_i, e_j \rangle = 0$, which implies $s_{e_i} s_{e_j}$ has order 2. Then same thing holds for index set L. We then conclude the graph of I and J in Coxeter diagram are disconnected, contradicting irreducibility.

C now has n+1 walls, so C is a bounded set. In particular \overline{C} is compact. Since W is simply transitive, $\bigcup_{w \in W} w\overline{C}$ is compact if W is finite, but this union covers V so W is infinite. \square

Definition 0.1.5. A Euclidean reflection group is an essential, infinite, irreducible, affine reflection group.

For the rest of this section, let W be a Euclidean reflection group. Let T be the kernel of the projection above restricted on W, then we have a short exact sequence

$$1 \to T \to W \to \overline{W} \to 1$$

Proposition 0.1.6. There exists point $x \in V$ such that its group of stabilizers W_x is isomorphic to \overline{W} . In particular, $W \cong T \rtimes W_x$.

Proof. By Theorem 0.1.1, let $\overline{\mathcal{H}}$ be the set of linear hyperplanes parallel to some affine planes of \mathcal{H} . \overline{W} is generated by reflection about these hyperplanes. In fact W is generated by $\{s_{\overline{H_1}},\ldots,s_{\overline{H_n}}\}$, with $\overline{H_1},\ldots,\overline{H_n}\in\overline{\mathcal{H}}$. Choose affine hyperplanes H_1,\ldots,H_n from \mathcal{H} , H_i parallel to $\overline{H_i}$, and take their intersection, which is a single point x by Theorem 0.1.4. Linear parts of $s_{H_1},\ldots s_{H_n}$ generates \overline{W} and since translations have no fixed points, W_x bijects to \overline{W} . \square

By Proposition 0.1.6, with possibly shifting we can assume 0 is a special point and hence $W \cong T \rtimes W_0 \cong T \rtimes \overline{W}$. We can then identify T by

$$L := \{ v \in V : \tau_v \in W \}$$

as a additive group.

We then have $W \cong L \rtimes \overline{W} \leq V \rtimes \mathrm{O}(V) \cong \mathrm{AO}(V)$ We next show L is a lattice i.e. L is in the form of $\mathbb{Z}e_1 \oplus \cdots \oplus \mathbb{Z}e_n$ for $\{e_i\}_{1 \leq i \leq n}$ a basis of V

Lemma 0.1.7. Non-identity elements of L are bounded away from 0, i.e. L is a discrete subgroup of V as a topological group.

Proof. Pick $x \in C$ of the fundamental chamber. Since W is simply transitive on chambers, so is L. Let

$$U = \{v \in V : x + v \in C\}$$

U is a neighbourhood of 0 since C is open. Thus $U \cap L = \{0\}$, L is bounded away from 0. \square

The next lemma is from theory of topological groups:

Lemma 0.1.8. If L is a discrete subgroup of the additive group of a finite-dimensional \mathbb{R} -vector space, then $L = \mathbb{Z}e_1 \oplus \cdots \oplus \mathbb{Z}e_r$ for some linearly independent vectors e_1, \ldots, e_r .

Proof. We prove by induction on dimV. Assume $L \neq 0$, by discreteness, choose $e \in L$ of minimal length δ . $L \cap \mathbb{R}e$ must contain e. Operation of L is the vector addition so $\mathbb{Z}e \subseteq L \cap \mathbb{R}e$. If $(L \cap \mathbb{R}e) \setminus \mathbb{Z}e$ is nonempty, then we would have a contradiction with minimality of length of e. So $L \cap \mathbb{R}e = \mathbb{Z}e$.

For any element $v \in L \setminus \mathbb{Z}e$, we can find $w \in \mathbb{R}e$ such that distance fo v to $\mathbb{R}e$ equals d(v,w). Let $u \in \mathbb{Z}e$ be of minimal distance to v. Then $d(v,w) \geq |d(v,u) - d(w,v)| \geq |\delta - \delta/2| = \delta/2$ by triangle inequality.

Now we consider the quotient group $L/\mathbb{Z}e$ as the subgroup of additive group of the quotient space $V/\mathbb{R}e$. Since we have the canonical isomorphism $(\mathbb{R}e)^{\perp} \to V/\mathbb{R}e$, define a map $V \to (\mathbb{R}e)^{\perp}$ by $v \mapsto v^{\perp}$. Given any two cosets $[v], [w] \in V/\mathbb{R}e$, define $d([v], [w]) = ||v^{\perp} - w^{\perp}||$, which clearly a metric. The above is actually showing $L/\mathbb{Z}e$ is a discrete subgroup of $V/\mathbb{R}e$. The lemma follows from induction.

We are now left to show the set of linearly independent vectors given in Lemma 0.1.8 is a basis of V.

Lemma 0.1.9. In the context of Lemma 0.1.8, r = n.

Proof. Since for any $v \in V$, there is $w \in W$ and $y \in \overline{C}$ such that v = wy. w is $\tau_v \overline{w}$ for $\overline{w} \in \overline{W}$ and $\tau_v \in L$. Thus v is equivalent to some $y \in \bigcup_{\overline{w} \in \overline{W}} \overline{w}C$ modulo L. It is a compact set since it is a finite union of compact ones. L is a lattice thus r = n.

Combining all these results, we obtain:

Theorem 0.1.10. The Euclidean reflection group W is isomorphic to $\mathbb{Z}^n \rtimes \overline{W}$, where \overline{W} is a finite reflection group.

We end this section by giving some examples of Euclidean reflection groups in low dimension vector spaces.

For \mathbb{R}^1 , there is only one finite reflection group S_2 with hyperplane 0, we can add 1 and these two points generates an affine reflection group, each element corresponds to a reflection about $k \in \mathbb{Z}$. This is called D_{∞} with Coxeter diagram:

This is isomorphic to $\mathbb{Z} \rtimes S_2$.

For \mathbb{R}^2 , for example we can tile the whole space with equilateral triangles. So let it be the chamber and we have a diagram:

This group is isomorphic to $\mathbb{Z}^2 \times D_6$.

We can tile with hexagon but themselves cannot be chambers, we can split each into 12 30-60-90 triangles. Let them be the chambers and we have a diagram \tilde{A}_2 :

which is the group $\mathbb{Z}_2 \rtimes D_{12}$.

In fact, for many finite reflection groups \overline{W} , essential and irreducible, have affine analogous ones. For these groups, let V be the vector space they are acting on of dimension n. We can realise $V \rtimes \mathrm{O}(V)$ as an inner semidirect product of $\mathrm{AO}(V)$. Define L to be the n-rank lattice of V. Then we can define an inner semidirect product $L \rtimes \overline{W}$ which gives us the affine analogue of \overline{W} . An example is the finite reflection groups of type A_n , which can be realised as reflection about planes $x_i - x_j = 0$ ($i \neq j$) in the vector space $V = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : \sum x_i = 0\}$ with $\mathcal{H} := \{x_i - x_j = k : k \in \mathbb{Z}, i \neq j\}$. One can check \mathcal{H} in fact gives a Euclidean reflection group with the Coxeter diagram:

with n nodes in the graph.

A non-example is of type $I_2(m)$ except for some specific m. There is not way to cover the whole plane using reflections using triangle with an angle $< 2\pi/12$ or of $2\pi/7$ for example.

0.2 Some Model Theory of Euclidean Reflection Groups

This section follows [?].

Definition 0.2.1. We say a structure \mathcal{N} is interpretable in \mathcal{M} if:

- 1. The underlying set A is $\{\overline{x} \in M^k : \mathcal{M} \models \phi(\overline{x})\}$ for some formula ϕ .
- 2. For every function symbols $f(\overline{x})$ of \mathcal{N} , there is a formula ϕ such that $\mathcal{M} \models \phi(\overline{x}, \overline{y})$ if and only if $\mathcal{N} \models f(\overline{x}) = \overline{y}$.

Definition 0.2.2. We say the theory of a group G is decidable if there is an algorithm such that for all sentences ϕ , it can decide whether ϕ is true in G.

For a definition of a sentence and an algorithm, see Appendix ??.

Proposition 0.2.3. Euclidean reflection group G is definable in the abelian group \mathbb{Z} with finitely many parameters.

This result follows from the following two lemmas:

Lemma 0.2.4. Let $G \cong \mathbb{Z}^d \rtimes_{\sigma} Q$ where $1 \leq d < \omega$, Q is some finite group, and $\theta : Q \to \operatorname{Aut}(\mathbb{Z}^d)$ a group homomorphism. G is interpretable in the structure $\mathcal{M} = (\mathbb{Z}^d, +, \pi_x)_{x \in Q}$ with finitely many parameters, where + is the normal vector addition and $\pi_x := \sigma(x)$

Proof. We enumerate $\{\pi_x: x\in Q\}$ as t_0,\ldots,t_{n-1} and $t_i:=(i,0,\ldots,0)$ a d-tuple. Let $G=(\mathbb{Z}^d\times Q,\cdot)$. We represent the universe of G by a tuple (a,t_i) where $a\in M$ and $0\le i< n$. We need to define the group operation $(a_i,t_i)\cdot (a_j,t_j)=(a_i+_{\mathbb{Z}^d}t_i(a_j),t_i\cdot_Qt_j)$ in $\mathcal{M}.$ $t_i\cdot_Qt_j$ is definable since Q in finite, we can enumerate all possible product of all elements in Q. $a_i+_{\mathbb{Z}^d}t_i(a_j)$ is definable since Q is a built-in function symbol of \mathcal{M} and Q and Q are some Q and Q are some Q are some Q and Q are some Q are some Q are some Q and Q are some Q are some Q and Q are some Q are some Q are some Q and Q are some Q are some Q and Q are some Q are some Q and Q are some Q are some Q are some Q and Q are some Q and Q are some Q are some Q and Q are some Q are some Q are some Q and Q are some Q are some Q are some Q and Q are some Q and Q are some Q are some Q and Q are some Q are some Q and Q are some Q and Q are some Q and Q are some Q are some Q and Q are some Q are some Q are some Q and Q are some Q are some Q are some Q and Q

Lemma 0.2.5. $(\mathbb{Z}^d, +, \pi_x)_{x \in Q}$ is interpretable in $(\mathbb{Z}, +, 0)$ with finitely many parameters.

Proof. Since there are finitely many π_x 's, it suffices to show we can define π_x in $(\mathbb{Z},+,0)$ for some $x\in Q$. π_x is an automorphism of \mathbb{Z}^d , which is an $d\times d$ invertible matrix A over \mathbb{Z} . $\pi_x(\bar{b})=A\bar{b}$ is a matrix multiplication. We only need to show we can define the element-wise multiplication part is definable. To show this, note that there are only finitely many entries in A. The multiplication of $n\times b$ where n is an entry of A and b is an arbitary integer, can be realised as

$$\underbrace{b+b+\cdots+b}_{n \text{ times}}$$

if n is positive and otherwise minus b-n times.

Theorem 0.2.6. Let W be a Euclidean reflection group. Then Th(W) is decidable.

Proof. W is interpretable in the structure $(\mathbb{Z},+,0)$ with finitely parameters by Proposition 0.2.3. But all these parameters are integers, so it is interpretable in the structure $(\mathbb{Z},+,0,1)$ with no parameters. We then can translate every sentence in W back to a sentence of $(\mathbb{Z},+,0,1)$. Since the Presburger arithmetic $(\mathbb{Z},+,<,0,1)$ is decidable, as a definable structure in its reduct, Th(W) is also decidable.