SOME ATOMIC PARAMETERS FOR ULTRAVIOLET LINES

CARLOS M. VARSAVSKY

Physics Department, University of Colorado* Received February 1, 1960; revised October 31, 1960

ABSTRACT

With the advent of rocket-borne and satellite-borne spectrographs, it is becoming possible to study celestial objects in the hitherto inaccessible ultraviolet. The spectroscopic analysis will require the knowledge of the basic atomic parameters of the lines observed. In the present paper the screening method of Layzer and Varsavsky is applied to the computation of electric dipole matrix elements for many lines of interest. The method is especially suitable for the treatment of a particular transition along an isoelectronic sequence. Numerical results are given for allowed transitions in the sequences from helium through chlorine (except neon). The L-S coupling scheme is used to go from matrix elements to transition probabilities; the Bethe approximation is used to compute excitation cross-sections.

I. INTRODUCTION

When studying stellar atmospheres with instruments placed on the earth's surface, we must work within a spectral range limited, on the short-wave-length side, to about 3000 A. Since 1946, however, rockets have been able to carry spectrographs and other detectors above most of the atmosphere, so that we now possess a considerable amount of information about the far ultraviolet spectrum of the sun. It is to be expected that in the near future satellites, placed in an orbit well above the atmospheric absorbing layers and capable of staying aloft for several months—as compared with a few minutes in the case of rockets—will enormously enlarge our knowledge of the far ultraviolet spectra of celestial objects.

Up to the present time the only known ultraviolet spectrum is that of the sun. Identification of the observed emission lines is far from complete, but it is quite obvious that many of these lines must originate in the upper chromosphere and in the corona. Violett and Rense (1959), for example, give ample evidence to prove this assertion.

Let us consider the lines of elements other than H and He (for a treatment of the ultraviolet spectra of these two elements see Athay 1960). They are suitable for the solution of three problems:

- 1. The lines of C, N, and O will permit, in principle, the direct determination of the chemical abundances of these three elements, which, so far, have had to be inferred from molecules. Lines of C I through IV, N I through V, and O I through VI have been identified. A line of Ne VIII has been tentatively identified, and so we may be in a position to determine the abundance of this element also.
- 2. The lines of moderately and highly ionized atoms can be used to study the physical conditions in the upper chromosphere and corona. In regions of the atmosphere where the effective temperature is greater than about 2×10^5 degrees, H and He are completely ionized; hence we can obtain information about the physical conditions in these layers only from a study of the lines of other elements.
- 3. A systematic study of the radiation of all ions that are present in the solar chromosphere and corona will enable us to settle the important question of the amount of far ultraviolet radiation emitted by the sun and also the related problem of the energy balance in these two regions.

Furthermore, ultraviolet lines also open up the possibility of detecting coronas in other stars; a study of the presence and characteristics of stellar coronas along the spectral sequence would be extremely interesting.

* Present address: Facultad de Ciencias Exactas, Perú 222, Buenos Aires, Argentina.

To make effective use of the ultraviolet data, we need the values of certain atomic parameters. Atoms are ionized or excited by photointeractions or collisons; therefore, we require a knowledge of transition probabilities and of cross-sections for different processes, such as photoionization and collisional ionization, collisonal excitation, photorecombination, and three-body recombination.

The aim of the present paper is to describe a method which allows the computation of certain matrix elements that, in some specific cases, can be related to transition probabilities and cross-sections for excitation by electronic impact, thus providing us with some of the atomic parameters needed for the analysis of ultraviolet spectra. The method is amply illustrated with tables and examples.

II. THE SCREENING METHOD

a) Transition Probabilities

A method has been recently proposed that allows the calculation of the quantity

$$\sigma^2 = \frac{1}{4l > -1} \left| \int_0^\infty R_i R_f r dr \right|^2,$$

where R_i/r and R_f/r are the initial and final radial wave functions, and $l_>$ is the larger of the two orbital quantum numbers, in a large number of cases with considerable accuracy. The theoretical basis of the method and its application to the eigenvalue problem have been described by Layzer (1959); Varsavsky (1958) discusses its application to the calculation of σ^2 (a more refined method will be presented in a future paper by Layzer and Varsavsky). Here we apply the technique developed by Varsavsky to the computation of line strengths for transitions of interest in the ions that belong to the isoelectronic sequences of He I through Cl I, with the exception of Ne I (this element is omitted because it departs considerably from L-S coupling). To illustrate the mechanics of the method, we work out in detail a few examples of increasing complexity, covering all the possibilities that may arise in practice.

According to Varsavsky (1958), transitions that do not involve a change in the principal quantum number can be treated successfully by means of an imcomplete first-order approximation that neglects the interactions between different configurations belonging to the same complex, and also the effects of external screening, in the computation of ΔE_1 . Let us recall that the screening constant, \mathfrak{S} , is given by (Varsavsky 1958, eqs. [3]-[5])

$$\mathfrak{S}=n^2\Delta E_1$$
,

where n is the principal quantum number of the active electron, and ΔE_1 is defined as the electrostatic energy of the atom or ion in question in a given state of a given configuration minus the electrostatic energy of the parent state that results when the active electron is removed. After computing \mathfrak{S} and \mathfrak{S}' for the initial and final states of the transition, the quantity σ^2 can be obtained by substituting these parameters in the transition integrals (several of these integrals are listed by Varsavsky 1958, Table 5; notice that $z = Z - \mathfrak{S}, z' = Z - \mathfrak{S}'$).

Let us now consider four actual cases that will help the reader in applying the method to any case of interest.

The easiest situation is that of one electron outside closed shells. For example, let us compute the screening constant of the ground state of lithium. The electronic configuration is $(1s)^2$ 2s, and the only possible state is 2 S. Its total electrostatic energy is equal to the energy of the $(1s)^2$ shell plus the energy of the interaction between the 2s electron and the $(1s)^2$ shell. Symbolically,

$$E[(1s)^{2}2s^{2}S] = \{1s - 1s\} + \{(1s)^{2} - 2s\}.$$
 (1)

The parent ion is (1s)² S. Its electrostatic energy is

$$E[(1_S)^{2_1}S] = \{1_S - 1_S\},$$
 (2)

Subtracting equation (9) from equation (8), we obtain

$$\Delta E_1 [2s^2S]_{Li} = \{ (1s)^2 - 2s \}.$$
 (3)

The electrostatic interaction between an electron and a closed shell is given by Condon and Shortley (1951, eq. [96 11]). In the case under consideration,

$$\Delta E_1 [2s^2S]_{T_i} = 2F^{\circ} (1s, 2s) - G^{\circ} (1s, 2s) = 0.397805$$

(for the numerical values of Slater integrals see Varsavsky 1958, Table 6).

Now consider the calculation of \mathfrak{S} for the ground state of carbon $(1s)^2 (2s)^2 (2p)^2$ ³P, when one of the 2p electrons makes a jump. In this case the parent ion is $(1s)^2 (2s)^2 2p$ ²P.

$$\Delta E_{1} [(2p)^{2} {}^{3}P] = \{1s - 1s\} + \{2s - 2s\} + 4\{1s - 2s\} + 4\{1s - 2p\} + \{2p - 2p {}^{3}P\} + 4\{2s - 2p\} + \{2p - 2p {}^{3}P\} - \{1s - 1s\} - \{2s - 2s\} - 4\{1s - 2s\} - 2\{1s - 2p\} - 2\{2s - 2p\} + \{2p - 2p {}^{3}P\}.$$

$$= 2\{1s - 2p\} + 2\{2s - 2p\} + \{2p - 2p {}^{3}P\}.$$

From Varsavsky (1958, Table 7), and Condon and Shortley (1951, p. 198) we have

$$\Delta E_1[(2p)^{2} {}^{3}P] = 0.927511$$
 or $\mathfrak{S} = 3.710045$.

Next let us consider the ${}^{2}P$ state of the ground configuration of nitrogen. If we remove one 2p electron, we have left a carbon-like ion with possible states ${}^{3}P$, ${}^{1}S$, and ${}^{1}D$. All three can give rise to the ${}^{2}P$ state in nitrogen; hence, in calculating ΔE_{1} [(2p) 3 ${}^{2}P$], we must subtract from the nitrogen atom a linear combination of the possible parents:

$$\Delta E_1 [(2p)^{3} {}^{2}P] = E [(2p)^{3} {}^{2}P] - aE [(2p)^{2} {}^{3}P] - bE [(2p)^{2} {}^{1}S] - cE [(2p)^{2} {}^{1}D],$$
(5)

where a, b, and c are the coefficients of fractional parentage defined by Racah (1943). In this particular case

$$a = \frac{1}{2}, \qquad b = \frac{2}{9}, \qquad c = \frac{5}{18}.$$
 (6)

So far, we have treated cases where one of the outermost electrons makes the transition. Consider, however, the transition

(1s)
2
 (2s) 2 2p $^2P \rightarrow$ (1s) 2 2s (2p) 2 2S .

In this case the active electron is 2s, and the parent ion is (1s)² 2s 2p ^{1, 3}P; hence

$$\Delta E_1 [(2s)^2 2p^2P] = E [(2s)^2 2p^2P] - aE [2s2p^4P] - bE [2s2p^3P].$$
 (7)

In most of the transitions considered in our tables, the active electron is indeed an inner one. Our method can handle these transitions without ambiguity, whereas most other methods are inapplicable.

There are few experimental or theoretical data concerning the transitions presented in the tables that could be used to check the accuracy of our results. In the few cases where such data exist—for some neutral or singly ionized atoms—the agreement is very

satisfactory. Such agreement is encouraging because, as the ions become more hydrogenic along the isoelectronic sequence, the accuracy of the method is progressively higher. When using the tables, it should be kept in mind that in no case can the expected accuracy be better than 10 per cent.

b) Collisional Cross-Sections

The total excitation cross-sections are given by (Mott and Massey 1949)

$$Q_{nl, n'l'}(v) = \int_{K_{\min}}^{K_{\max}} I_{nl, n'l'}(K) dK,$$
 (8)

where $I_{nl, n'l'}$ is the differential cross-section, K the change in momentum of the colliding electron, and v its velocity. If the energy of the incident electron is large compared with the excitation energy of the line, we may calculate $I_{nl, n'l'}(K)$ by means of the first Born approximation. Furthermore, if we can assume that $I_{nl,n'l'}(K)$ decreases quickly with K, we can obtain for $Q_{nl, n'l'}$, an expression which is known as the Bethe approximation (see, for example, Seaton 1955):

$$Q_{nl, n'l'} = \frac{8E_0}{3\varpi_n} \frac{I^2}{W} \ln \frac{K_{\text{max}}}{K_{\text{min}}}.$$
 (9)

Here E_0 is the ionization potential of hydrogen in electron volts, $\varpi_n = 2L + 1$ for the lower level, W is the kinetic energy of the incident electron in electron volts, $I^2 = (4l_>^2 - 1)\sigma^2$, where σ^2 was defined in the previous section,

$$K_{\min} = \frac{E_{n'l'} - E_{nl}}{(2W)^{1/2}},$$
(10)

expressed in atomic units, and, according to Bates, Fundaminsky, and Massey (1950), we can take

$$K'_{\text{max}} = (E_{n'l'} - E_{nl})^{1/2}$$
 (11)

Substituting equations (10) and (11) in equation (9), we have

$$Q_{nl, n'l'} = \frac{4E_0}{3\varpi_n} \frac{I^2}{W} \ln \frac{2W}{E_{n'l'} - E_{nl}},$$
(12)

with Q given in units of πa_0^2 ($a_0 =$ first Bohr radius). The numbers given in Table 16 should be used with caution. The relative values are probably correct, the absolute values may be somewhat overestimated.

c) Description of the Tables

Tables 1 through 15 give some numerical examples of the application of the screening method. At the head of each table we give the first ion in the isoelectronic sequence and the lower and upper states of the transition. The first column gives the name of the ion; the headings of the remaining columns have the following meaning:

I.P.: ionization potential in electron volts;

 S_M : matrix element for the multiplet, in atomic units;

 $(\varpi f)_M$: oscillator strength of the multiplet times the statistical weight of the multiplet, $\varpi_M = (2S + 1)(2L + 1)$;

 $J_{u, l}$: total angular momentum of the upper (u) or lower (l) states;

(E.P.)_{u, l}: excitation potential in electron volts (subscripts have the same meaning as above);

 λ : wave length corresponding to the transition, in angstroms;

 S_L : matrix element for the line, in atomic units; $(\varpi f)_L$: oscillator strength of the line times the statistical weight of the line, $\varpi_L = 2J + 1$; A: transition probability in \sec^{-1} .

Most of the data on ionization and excitation potentials and wave lengths were obtained from Charlotte Moore (1949, 1952). Ionization potentials not available in Moore's work were taken from Finkelnburg and Humbach (1955). Excitation potentials and wave lengths not given by Moore were taken from Rohrlich (1959) and from extrapolation of the experimental data.

Table 16 gives the total excitation cross-section by electronic impact for energies such that $W \ge 6\Delta E$ (in a few cases $5\Delta E \le W \le 6\Delta E$; these cases are shown in script). We include only those ions that are likely to be present in the solar corona. The cross-sections are computed for two values of W_1 within the range of energies to be expected in the corona.

I wish to express my thanks to Dr. W. A. Rense for having invited me to spend the necessary time at the University of Colorado to carry out the work here reported, and to the National Science Foundation, who made this invitation possible. The computations are based on a method developed while I was a student at Harvard University. My deep thanks go to Dr. D. Layzer, who supervised the work, and to Dr. D. H. Menzel, who gave it his fullest support.

REFERENCES

Athay, R. G. 1960, Ap. J., 131, 705.

Bates, D. R., Fundaminsky, A., and Massey, H. S. W. 1950, *Phil. Trans. R. Soc. London, A*, 243, 93. Condon, E. U., and Shortley, G. H. 1951, *The Theory of Atomic Spectra* (Cambridge: Cambridge University Press).

Finkelnburg, W., and Humbach, W. 1955, Naturwiss., 42, 35.

Layzer, D. 1959, Ann. Phys., 8, 271.

Moore, C. 1949, Atomic Energy Levels, Vol. 1 (Washington: National Bureau of Standards).

. 1952, ibid., Vol. 2.

Mott, N. F., and Massey, H. S. W. 1949, The Theory of Atomic Collisions (2d ed.; Oxford: Oxford University Press).

Racah, G. 1943, Phys. Rev., 63, 367.

Rohrlich, F. 1959, private communication.

Seaton, M. J. 1955, Proc. Phys. Soc. London, A, 68, 457. Varsavsky, C. M. 1958, thesis, Harvard University. Violett, T., and Rense, W. A. 1959, Ap. J., 130, 954.

Table 1

Helium I Sequence $1s^2 \binom{1}{S_0} - 1s 2p \binom{1}{1} P_1^0$

Ion	I.P.	(E.P.) _u	λ	${f s}_{f L}$	$(\overset{\circ}{\omega}_{\mathrm{f}})_{\mathrm{L}}$	$A \times 10^{-11}$
He I	24.580	21.212	584.4	0.846	0.44	0.03
Li II	75.619	62,202	199.3	0.412	0.63	0.37
Be III	217.657	123.64	100.2	0.230	0.70	1.5
B IV	259.30	205.5	60,31	0.146	0.74	4.7
C V	391.99	307.8	40.27	0.100	0.75	10
N VI	551.9	430.6	28.79	0.073	0.77	21
o vii	739.1	573.8	21.60	0.055	0.70	37

2	
Ģ	
abl	
Ľ	
-	

				2 27 27 1	1				
			Γ,	Lithium I	Sequence	,			
			$1s^2 2s \left(^2 \right)$	$S_{1/2}$ - 1	1 s 2 2p $\left(^{2}$ P $_{1/2}^{o}$.	$\cdot 3/2$			
Ion	I, P.	$^{ m S}_{ m M}$	$(\omega^{\uparrow}_{\mathbf{M}})_{\mathbf{M}}$	Ju	(E. P.)	γ	$^{ m S}_{ m L}$	$(\omega^{\rm t})_{ m L}$	A x 10
Lil	5,390	35,94	1,63	1/2	1,847	6709.8	11,98	_	0.40
				3/2	1.847		23,96		0.40
Ве П	18,206	11,12	1,08		3, 958	3132,0	3, 706	0,36	1,22
į	1		1	3/2	3,958	3131,3	7,414	0,72	1,22
ВЩ	37.920	767°C	0. /8	7/T 3/9	0.884 5.008	2001.8	1. 164 3 598	0.40	20.03
C IV	64,476	3,078	09 0		7, 993		1,026		2,77
				3/2	8,006	1548,2	2,052	0.40	2,78
N V	97.863	2,004	0.49	1/2	9.974	1242,8	0.668	0,16	3,45
				3/2	10,006	1238,8	1,336	0,33	3,47
O VI	138,080	1,410	0.41	1/2	11,95	1037,6	0.470	0,14	4.34
				3/2	12,01	1031,9	0.940	0.27	4.38
F VII	185,139	1,044	0,36	1/2	13,91	890.8	0,348	0,12	4.99
				3/2	14,04	883, 1	0.696	0.24	5,11
Ne VIII	239.1	0.804	0,31	1/2	15,88	792.5	0,268	0,10	5.84
				3/2	16,11	782.4	0.536	0,21	5,99
Na IX	299,78	0.642	0.28			694.3	0.214	0,09	6,56
				3/2	18, 18	681,7	0.429	0,19	6,82
Mg X	367,36	0.522	0.26	1/2	19,82	625,3	0.174	0,09	7,22
1					20,33	8 609	0,348	0,17	7,60
A1 XI	441.9	0,432	0.23	1/2	21,80	568,5	0.144	0.08	7.74
				3/2	22,54	550,0	0.288	0,15	8,25
Si XII	523,2	0,366	0.22	1/2	23,79	521,1	0.122	0.07	8,60
	1			3/2	24.83	499,3	0.244	0,15	9, 35
P XIII	611,45	0,312	0.20	1/2	5.	481.4	0,104	0.07	_
				3/2	27,18	456,1	0,208	0,13	10.4

Table 3

Beryllium I Sequence

$$1s^2 2s^2 \binom{1}{S_o} - 1s^2 2s2p \binom{1}{P_1^o}$$

Ion	L.P.	(E.P.) _u	λ	$^{ m S}_{ m L}$	$(\omega^{\uparrow})_{ m L}$	A x 10 ⁻⁹
Be I	9.320	5.276	2349.3	22.81	3. 92	1.6
ви	25.149	9,098	1362.4	8.64	1.93	2.3
CIII	47.864	12.687	977.0	4.45	1.38	3.2
N IV	77.450	16.200	765.1	2.70	1.07	4.1
o v	113.873	19.684	629.7	1.81	0.87	5.0
F VI	157.117	23,160	535.2	1.29	0.73	5.7
Ne VII	207.3	26.654	473.1	0.98	0.63	6.5
Na VIII	264.155	30.148	411.1	0.76	0.56	7.3
Mg IX	327.90	33,677	368.1	0.61	0.50	8.0
Al X	398.5	37.236	332.9	0.49	0.45	9.0
Si XI	476.0	40.830	303.6	0.41	0.41	10
P XII	560.3	44.480	278.7	0.35	0.38	11

TABLE 4

Boron I Sequence

			$1s^2$	282	2p(² P ₀ , 3/2) - 1s ²		2s 2p ² (² D _{3/2,5/2})	5/2)			
Ion	I. P.	$^{S}_{\mathbf{M}}$	$(\widetilde{\omega}_{\mathbf{f}})_{\mathbf{M}}$	J n	(E. P.)	ي ح	(E. P.)	~	$_{\rm S}^{\rm T}$	$(\widetilde{\omega}_{\mathrm{f}})_{\mathrm{L}}$	$\widetilde{\omega}$ A x 10 ⁻⁹
BI	8,296	22,57	3,28	5/2,3/2	5,932	3/2	0,002	2090.2	15,05	2,19	3,34
				3/2		1/2	0	2089.6	7,52	1,09	1,66
CII	24,376	10,17	2, 32	5/2,3/2	9,288	3/2	0,008	1335, 7	6. 78	1,55	5, 79
				3/2		1/2	0	1334,5	3, 39	0.77	2,88
III N	47,426	5.40	1,66	5/2,3/2	12,523	3/2	0,022	991,5	3,60	1,11	7,53
				3/2		1/2	0		1,80	0,55	3,74
O IV	77,394	3,67	1,41	5/2,3/2	15,736	3/2	0.048	790.1	2,45	0.94	10,0
				3/2		1/2	0	787.7	1,22	0.47	5,05
FV	114,214	2.54	1,18	5/2,3/2	18,952	3/2	0.092	657.2	1,69	0, 79	12,2
				3/2		1/2	0	654.0	0.85	0,39	80*9
Ne VI	157,91	1.86	1,01	5/2,3/2	22,190	3/2	0.163	562,8	1.24	0.67	14.1
				3/2		1/2	0	558.6	0,62	0,34	7,26
Na VII	208.444	1,43	0°89	5/2,3/2	25,466	3/2	0.265	491.9	0,95	0,59	16,3
				3/2		1/2	0	486.7	0.48	0.30	8,44
Mg VIII	265,957	1,12	0, 78	5/2,3/2	28,795	3/2	0.410	436.7	0,75	0,52	18,2
١				3/2		1/2	0	430.5	0.37	0.26	9, 35
Al IX	330, 1	0.91	0,71	5/2,3/2	32,19	3/2	909.0	392.4	0,61	0.47	20,3
				3/2		1/2	0	385,0	0.30	0.24	10.8
Si X	401.3	0,75	0,65	5/2,3/2	35,-68	3/2	0.866	356, 1	0.50	0.43	22.6
				3/2		1/2	0	347.4	0.25	0,22	12,2
P XI	479.4	0.63	09.0	5/2,3/2	39, 32	3/2	1,202	325.2	0.42	0.40	25,2
				3/2		1/2	0	315,3	0,21	0.20	13,4
S XII	567	0.54	0,55	5/2,3/2	42.7	3/2	1,644	302	0,36	0.37	27.0
				3/2		1/2	0	2 90	0, 18	0,18	14,3
C1 XIII	299	0.46	0,51	5/2,3/2	46.3	3/2	2,16	281	0,31	0,34	28.7
				3/2		1/2	0	268	0,15	0,17	16,4
A XIV	754	0.40	0.47	5/2,3/2	4.0.8	3/2	2,843	264	0.27	0,31	29.8
				3/2		1/2	0	249	0,13	0,16	17.3

TABLE 5

				Carbon I Sequence	Sequence				
			$1s^{2} 2s^{2} 2p^{2}$	$\begin{pmatrix} ^3 \mathbf{P}_{\mathbf{o}, 1, 2} \end{pmatrix}$	- 1s ² 2s	$^{2p^3} \binom{^3p^o}{^{1,2,3}}$			
Ion	on $S_{\mathbf{M}}$ (Gf) $_{\mathbf{M}}$	(Of)	J n	(E.P.) _u	J.	×	$^{ m S}_{ m L}$	T(JØ)	$\alpha_{\rm A~x~10^{-10}}$
CI	24.40	4.69	က	•	7	1561.4		2.46	0,59
		78.	2,1	7,945	2	1561,3	2.17	0.42	0,11
			2,1		-	1560,7	8, 13	1,58	0.43
			H		0	1560,3	2,71		0, 15
ПN	12,21	3, 43	က	11,43	2	1085,7	5, 70		06 0
			2,1	11,44	2	1085, 5	1,09		0,18
			2,1		- -1	1084,6	4.07		0,65
			Н		0	1084.0	1,36		0.22
田〇	7,23	2,63	က	14.88	2	835, 3	3,37	1,23	1,18
			2,1	14,88	2	835, 1	0.64		0,22
			2,1			833, 7	2,41		0,84
			H		0	832.9	08.0	0.29	0.28
F IV	4.82	2,16	ന	18,33	2	679.2	2,25	1,01	1,46
			2,1	18,33	2	679.0	0.43	0,19	0.27
			2,1		Н	677.2	1,61	0,72	1,05
			H		0	676.1	0.54	0.24	0,35
Ne V	3,40	1,79	က	21,80	2	572,3	1.59	0.84	1,71
			2,1	21,81	2	572.1	0° 30	0,15	0,31
			2,1		-	569.8	1,13	09 0	1,23
			н		0	568.4	0,38	0.20	
Na VI	2,55	1.57	က	25,30	2	494.4	1,19	0,73	1,99
			2,1	25, 32	2	494.1	0.23	0.14	0,38
			2,1		П	491,3	0,85	0.53	1,46
			П		0	489,5	0.28	0.17	0.47
Mg VII	1,98	1,40	က	28,86	2	435,3	0,92	0.64	2
			2,1		2	434.7	\leftarrow	0.13	0.46
			2,1		П	431,3	99.0	4	1,68
			-		0	429.1	0,22	0, 16	0.58

TABLE 5 (Cont.)

Ion	$^{ m S}_{ m M}$	$(\widetilde{\omega}^{\mathrm{f}})_{\mathrm{M}}$	Ju	(E. P.) _u	J	×	$^{ m S}_{ m L}$	$(\widetilde{\omega}_{\mathbf{f}})_{\mathrm{L}}$	$\widetilde{\omega} \text{A} \times 10^{-10}$
Al VIII	1,58	1,25	က	32,50	7	388.0	0,74	0.58	2.57
			2,1	32,52	2	387,7	0.14	0,11	0.49
			2,1		П	383, 7	0.53	0.42	1.90
					0	381, 1	0,18	0.14	0.64
Si IX	1,28	1,12	က	2	2	350,0	09 0	0,52	2,83
			2,1	36,24	2	349, 7	0, 11	0,10	0.54
			2,1		7	345.0	0.43	0,38	2,13
					0	342.0	0,14	0,12	0.68
ΡX	1,06	1,02	က		7	318,2	0.49	0.47	3,09
			2,1	40.05	2		60.0	60.0	0,59
			2,1		П	312,8	0,35	0,34	2,32
			1		0	309,4	0, 12	0,12	0.83
SXI	0.90	0,95	က		2	293	0.42	0,44	3, 42
			2,1	43.9	2	292	0.08	0.08	0,63
			2,1		-	287	0,30	0,32	2,59
			—		0	282	0,10	0,11	0,92
C1 XII	0,76	0.86	က		2	272	0,35	0,40	3, 60
			2,1	47.6	2	272	0.07	0.07	29.0
			2,1		Н	265	0,25	0.29	2,75
					0	260	0,08	0,10	66 °0
A XIII	99.0	0.80	က	51,3	2	255	0,31	0,37	3, 79
			2,1	51.4	2	254	90.0	0.07	0,72
			2,1		Н	247	0.22	0.27	2,95
			-		0	241	0.07	60 ° 0	1,03
K XIV	0,58	0, 75	က	55, 1	2	240	0.27	0,35	4,05
			2,1	55,2	2	240	0,05	0.07	0.78
			2,1		-	231	0,19	0.25	3,12
			1		0	224	90.0	0.08	1,09
Ca XV	0,51	0, 70	က	ထံ	2	228	0.24	0,32	
			2,1	59.0	7	227	0.05	0.07	0.84
			2,1			218	0.17	0.23	
			-4		0	210	0	80*0	1,16

TABLE 6

Nitrogen I Sequence

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0	; ; ; ; ; , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;				
I.P. S_M $(\overline{ab}f)_M$ J_u $(E.F.)_u$ λ S_L $(\overline{ab}f)_L$ $A \times 10^\circ$ 14.54 15.66 4.20 1/2 10.93 1134.1 2.61 0.70 1.8 35.146 8.45 3.08 1/2 14.87 833.3 2.82 1.40 1.8 62.646 5.22 2.40 1/2 14.87 833.3 2.82 1.91 1.8 62.646 5.22 2.40 1/2 18.89 656.1 0.87 0.40 3.14 62.646 5.22 2.40 1/2 18.89 656.1 0.87 0.40 3.14 62.646 5.22 2.40 1/2 18.89 656.9 1.74 0.80 3.1 96.77 3.53 1.97 1/2 22.81 542.1 1.74 0.80 3.7 138.60 2.54 1.67 1/2 22.81 542.1 1.16 0.32 0.59 0.59 0.59			σΩ	$_{2s}^{2}$ $_{2p}^{3}$ ($S_{3/2}^{o}$	2s 2p	1/2,3/2,5/2			
14.54 15.66 4.20 1/2 10.93 1134.1 2.61 0.70 1.1 3/2 10.93 1134.3 5.22 1.40 1. 35.146 8.45 3.08 1/2 10.92 1135.0 7.83 2.10 1. 35.146 8.45 3.08 1/2 14.86 832.8 1.41 0.51 2.10 1. 62.646 5.22 2.40 1/2 14.87 656.9 1.74 0.40 3. 96.77 3.53 1.97 1/2 18.89 656.1 0.87 0.40 3. 96.77 3.53 1.97 1/2 18.83 658.3 2.61 1.20 3. 138.60 2.54 1.67 1/2 22.77 542.1 1.18 0.66 3. 18.86 6 2.54 1.67 1/2 22.77 543.9 0.78 0.86 4. 18.87 6 6.89 461.0	Ion	I. P.	$^{\rm S}_{ m M}$. ~ :	Ju	P.)	γ	$^{\mathrm{T}}_{\mathrm{S}}$		x 10
35.146 8.45 3.08 10.92 1134,3 5.22 1.40 1.5 35.146 8.45 3.08 1/2 14.88 832,8 1.41 0.51 2.10 1.5 62.646 5.22 2.40 1/2 14.85 834,5 4.22 1.54 2.10 1.5 96.77 3.53 1.97 1/2 18.89 65.83 2.61 0.40 3.5 138.60 2.54 1.97 1/2 22.81 542.1 1.20 3.5 138.60 2.54 1.67 1/2 22.77 542.1 1.18 0.66 3.5 186.86 1.91 1.45 1/2 22.77 542.1 1.18 0.66 3.5 186.86 1.91 1.45 1/2 22.70 543.9 0.42 0.28 4.5 186.86 1.91 1.45 1/2 26.95 459.9 0.42 0.28 4.5 186.86 1.91 1.45 1.4 1.40 0.86 0.24 5.5 186.86 1.91	I N	14,54	15,66	4.20	_	<u>ග</u>		2,61		
35.146 8.45 3.08 1/2 10.92 1135.0 7.83 2.10 1. 35.146 8.45 3.08 1/2 14.88 832.8 1.41 0.51 2. 62.646 5.22 2.40 1/2 14.87 833.3 2.82 1.03 2. 96.77 3.53 1.97 1/2 18.89 656.1 0.87 0.40 3. 96.77 3.53 1.97 1/2 18.87 656.9 1.74 0.80 3. 138.60 2.54 1.97 1/2 22.77 542.1 1.18 0.66 3. 186.86 1.91 1.48 5/2 22.77 543.9 1.76 0.98 3. 186.86 1.91 1.46 1.57 1.2 26.95 459.9 0.42 0.28 4. 186.86 1.91 1.46 1.72 26.95 461.0 0.85 0.24 5. 186.86 1.91 1.46 1.49 39.93 0.42 0.24 5. 241.93					\sim			5,22	1,40	
35.146 8.45 3.08 1/2 14.88 832.8 1.41 0.51 2.82 3/2 14.87 833.3 2.82 1.03 2.82 62.646 5.22 2.40 1/2 18.89 656.1 0.87 0.40 3.5 96.77 3.53 1.97 1/2 18.83 656.9 1.74 0.80 3.5 138.60 2.54 1.97 1/2 22.81 541.1 0.59 0.33 3.5 138.60 2.54 1.67 1/2 22.77 542.9 1.76 0.98 3.5 188.60 2.54 1.67 1/2 22.77 543.9 0.42 0.66 3.5 186.86 1.91 1.45 1/2 26.89 461.0 0.85 0.22 4.4 186.86 1.91 1.45 1/2 26.89 461.0 0.85 0.24 5. 241.93 1.88 1.28 1.27 0.84 400.7 0.84 6.69 0.25 0.22 0.24 6.69 0.25 0.24<					. ~~	10,92	_	7,83	2,10	
82.646 5.22 2.40 1/2 14.85 834.5 4.22 1.03 2.82 62.646 5.22 2.40 1/2 18.89 656.1 0.87 0.40 3.5 96.77 3.53 1.97 1/2 18.83 658.3 2.61 1.20 3.5 138.60 2.54 1.97 1/2 22.77 542.1 1.18 0.66 3.5 186.86 1.91 1.67 1/2 22.70 543.9 1.76 0.98 3.5 186.86 1.91 1.45 1/2 26.95 459.9 0.42 0.28 4.5 186.86 1.91 1.45 1/2 26.95 461.0 0.85 0.28 4.5 186.86 1.91 1.45 1/2 26.95 461.0 0.85 0.28 4.5 186.86 1.91 1.45 1/2 30.94 400.7 0.64 0.49 5. 241.93 1.49 1.28 1.28 30.73 40.95 0.25 0.25 5. 241.93	по	35, 146	8,45	•	. ~	14,88	_	1,41	0,51	
62, 646 5, 22 2, 40 1/2 18, 89 656, 1 0, 87 0, 40 3, 3/2 18, 89 656, 1 0, 87 0, 40 3, 3/2 18, 87 656, 9 1, 74 0, 80 3, 3/2 18, 87 656, 9 1, 74 0, 80 3, 3/2 18, 87 656, 9 1, 74 0, 80 3, 3/2 22, 81 541, 1 0, 59 0, 33 3, 3/2 22, 77 542, 1 1, 18 0, 66 3, 3/2 22, 77 542, 1 1, 18 0, 66 3, 3/2 22, 77 542, 1 1, 18 0, 66 3, 3/2 22, 77 542, 1 1, 18 0, 66 3, 3/2 26, 89 461, 0 0, 85 0, 56 4, 40, 7 0, 84 0, 3/2 30, 94 400, 7 0, 64 0, 49 5, 3/2 30, 94 400, 7 0, 64 0, 49 5, 3/2 30, 94 403, 3 0, 95 0, 24 6, 3/2 30, 94 403, 3 1, 49 1, 28 1/2 30, 73 40, 35, 20 0, 25 0, 22 5, 3/2 31, 32 32, 32 32, 32 32, 32 32, 32 32, 34, 73 35, 9 0, 74 0, 63 5, 5					. ~	14,87		2,82	1,03	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					_	14,85		4.22	1.54	
3/2 18.87 656.9 1.74 0.80 3. 5/2 18.83 658.3 2.61 1.20 3. 96.77 3.53 1.97 1/2 22.81 541.1 0.59 0.33 3. 3/2 22.77 542.1 1.18 0.66 3. 5/2 22.77 543.9 1.76 0.98 3. 138.60 2.54 1.67 1/2 26.95 459.9 0.42 0.28 4. 186.86 1.91 1.45 1/2 26.89 461.0 0.85 0.56 4. 186.86 1.91 1.45 1/2 26.76 463.3 0.32 0.56 4. 5/2 26.76 463.3 0.32 0.32 0.24 5. 241.93 1.49 1.28 1/2 30.94 400.7 0.64 0.49 5. 241.93 1.49 1.28 1/2 35.04 352.2 0.25 0.22 5. 241.93 3/2 35.04 355.8 0.74 0.6	FIII	62,646	5,22	2,40	_	18,89		0.87	0.40	
96,77 3,53 1,97 1/2 22,81 541,1 0,59 0,33 3,5 138,60 2,54 1,97 1/2 22,77 542,1 1,18 0,66 3,5 138,60 2,54 1,67 1/2 22,70 543,9 1,76 0,98 3,5 186,86 1,91 1,45 1/2 26,89 461,0 0,42 0,28 4,4 186,86 1,91 1,45 1/2 31,04 399,3 0,32 0,24 5,4 186,86 1,91 1,45 1/2 31,04 399,3 0,32 0,24 5,4 241,93 1,28 1,2 30,34 400,7 0,64 0,49 5,5 241,93 1,28 1,28 1/2 35,20 352,2 0,25 0,25 5,5 241,93 1,49 1,28 1/2 35,04 353,8 0,50 0,43 5,5 241,93 1,49 1,28 1,28 35,04 355,9 0,74 0,63 0,50 0,73 0,64 0,6	•				· ~	18,87	656.9	1,74	0.80	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. ~~	18,83	658,3	2,61	1.20	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ne IV	96,77	3, 53	1,97	_	22,81		0.59	0,33	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. ~~	22,77	542,1	1,18	0.66	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					\sim	22,70	543.9	1,76	0.98	
3/2 26.89 461.0 0.85 0.56 4. 5/2 26.76 463.3 1.27 0.83 4. 186.86 1,91 1,45 1/2 31.04 399.3 0.32 0.24 5. 3/2 30.94 400.7 0.64 0.24 5. 5/2 30.73 403.3 0.95 0.72 4. 241.93 1,28 1/2 35.20 0.25 0.25 0.22 5. 3/2 35.04 353.8 0.50 0.43 5. 5/2 34.73 356.9 0.74 0.63 5.	Na V	138,60	2,54	1,67	_	26.95	459.9	0.42	0.28	
5/2 26,76 463.3 1,27 0.83 4.83 186.86 1,91 1,45 1/2 31,04 399.3 0.32 0.24 5. 3/2 30,94 400.7 0.64 0.49 5. 5/2 30,73 403.3 0.95 0.72 4. 241.93 1,28 1/2 35.20 352.2 0.25 0.25 5. 3/2 35.04 353.8 0.50 0.43 5. 5/2 34.73 356.9 0.74 0.63 5.	•				_	26,89	-	0,85	0.56	
186.86 1,91 1,45 1/2 31,04 399.3 0,32 0,24 5. 3/2 30,94 400,7 0,64 0,49 5. 5/2 30,73 403.3 0,95 0,72 4. 241.93 1,28 1/2 35,20 352.2 0,25 0,22 5. 3/2 35,04 353.8 0,50 0,43 5. 5/2 34.73 356.9 0,74 0,63 5.					_	26,76		1,27	0.83	
3/2 30,94 400,7 0,64 0,49 5. 5/2 30,73 403,3 0,95 0,72 4. 241,93 1,28 1/2 35,20 352,2 0,25 0,22 5. 3/2 3/2 35,04 353,8 0,50 0,43 5. 5/2 34,73 356,9 0,74 0,63 5.	Mg VI	186,86	1,91	1,45	_	31,04	399, 3	0,32	0.24	
5/2 30,73 403,3 0,95 0,72 4. 241,93 1,49 1,28 1/2 35,20 352,2 0,25 0,22 5. 3/2 35,04 353,8 0,50 0,43 5. 5/2 34,73 356,9 0,74 0,63 5.					3/2	30.94	400.7	0.64	0.49	
241.93 1.49 1.28 1/2 35.20 352.2 0.25 5. 3/2 35.04 353.8 0.50 0.43 5. 5/2 34.73 356.9 0.74 0.63 5.					5/2	30,73		0.95	0.72	
3/2 35.04 353.8 0.50 0.43 5. 5/2 34.73 356.9 0.74 0.63 5.	Al VII	241,93	1,49	1,28	1/2	35,20	~	0.25	0.22	
2 34,73 356,9 0,74 0,63 5,					3/2	5.	ကိ	0°20	4	
					5/2	_	56.	0.74	9	

TABLE 6 (Cont.)

	Ion	I.P.	S M	(Œf) _M	Ju	(E. P.)	γ	$^{\mathrm{T}}_{\mathrm{s}}$	$(\widetilde{\omega}_{\mathbf{f}})_{\mathbf{L}}$	A x 10 9
3/2 39,20 316,2 0,40 0. 5/2 38,76 319,8 0,60 0. 60 0,98 1,03 1/2 43,76 283,2 0,16 0. 448,2 0,82 0,95 1/2 42,81 289,5 0,16 0. 448,2 0,82 0,95 1/2 46,9 264 0,49 0. 530,9 0,70 0,88 1/2 52,1 288 0,14 0. 620,4 0,60 0,88 1/2 51,7 240 0,27 0. 620,4 0,60 0,82 1/2 50,9 244 0,10 0. 620,4 0,60 0,82 1/2 50,9 244 0,10 0. 620,4 0,60 0,82 1/2 56,3 220 0,10 0. 1 716,7 0,52 0,76 1/2 60,5 205 0,20 0. 1 1/2 6,48 191 0,09 0,17 0,17 0,17 0,17	і упп	303, 87	1,20	1,13	1/2	39, 44	314,3	0.20	0.19	6.47
372.62 0.98 1.03 1/2 43.76 319.8 0.60 0.90 448.2 0.98 1.03 1/2 43.44 285.4 0.16 0.90 448.2 0.82 0.95 1/2 42.81 289.5 0.16 0.90 530.9 0.82 0.95 1/2 48.0 258 0.14 0.049 0.07 530.9 0.70 0.88 1/2 52.1 280 0.14 0.07 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.020 0.028 0.020					3/2	39,20	316,2	0.40	0.38	6, 35
372,62 0,98 1,03 1/2 43,76 283,2 0,16 0,0 3/2 43,44 285,4 0,33 0,0 0 0,33 0,0 0					5/2	38, 76	319,8	09.0	0.57	6, 14
3/2 43,44 285,4 0,33 0,0 5/2 42,81 289,5 0,49 0,0 1/2 48,0 258 0,14 0,0 3/2 47,6 260 0,14 0,0 5/2 46,9 264 0,14 0,0 5/2 46,9 264 0,41 0,0 3/2 5/2 46,9 264 0,41 0,0 620,4 0,60 0,88 1/2 50,9 244 0,23 0,0 620,4 0,60 0,82 1/2 56,3 220 0,13 0,0 620,4 0,60 0,82 1/2 56,3 220 0,10 0,0 620,4 0,60 0,82 1/2 56,3 220 0,0 0,0 6,16,7 1/2 60,3 226 0,20 0,20 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	X	372,62	0,98	1,03	1/2	43,76	283,2	0.16	0.17	7,28
5/2 42,81 289,5 0,49 0,9 448,2 0,82 0,95 1/2 48,0 258 0,14 0,0 530,9 0,70 0,88 1/2 52,1 238 0,27 0,0 620,4 0,70 0,88 1/2 52,1 238 0,41 0,0 620,4 0,60 0,82 1/2 50,9 244 0,23 0,2 620,4 0,60 0,82 1/2 56,3 220 0,23 0,0 620,4 0,60 0,82 1/2 56,3 220 0,10 0,23 6,20 0,60 0,82 1/2 55,8 226 0,30 0,20 6,72 1/2 60,5 205 0,09 0,09 0,09 0,00 7 1/2 60,0 207 0,09 0,09 0,00 0,00 8 1,2 64,8 191 0,08 0,00 0,00 0,00 1 6,4 0,46 0,72 1/2 64,8 191 <		•	,	i	3/2	43,44	285.4	0,33	0.35	7,12
448.2 0.82 0.95 1/2 48.0 258 0.14 0. 3/2 47.6 260 0.27 0. 0. 0.27 0. 5/30.9 0.70 0.88 1/2 52.1 238 0.12 0. 620.4 0.60 0.82 1/2 50.9 244 0.23 0. 620.4 0.60 0.82 1/2 56.3 220 0.10 0. 1 716.7 0.60 0.82 1/2 55.8 222 0.20 0. 5/2 54.8 226 0.20 0.30 0. 0. 0. 6.0 76 1/2 60.5 205 0.09 0. 0. 7 819.8 0.46 0.72 1/2 64.8 191 0.08 0. 8 19.8 0.46 0.72 1/2 64.8 191 0.08 0. 9 20.2 0.20 0.09 0.09 0.09 0. 0. 0. 0.09 0. 0.					5/2	42,81	289, 5	0.49	0,51	6.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	×	448,2	0,82	0,95	1/2	48.0	258	0.14	0,16	8,01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					3/2	47.6	260	0.27	0,32	7,89
530.9 0.70 0.88 1/2 52.1 238 0.12 0.0 3/2 51.7 240 0.23 0.23 0.0 5/2 50.9 244 0.23 0.0 620.4 0.60 0.82 1/2 56.3 220 0.10 0.0 3/2 55.8 222 0.20 0.20 0.20 0.0 0.0 6 716.7 0.52 0.76 1/2 60.5 205 0.09 0.0 7 819.8 0.46 0.72 1/2 64.8 191 0.08 0.0 8 19.8 0.46 0.72 1/2 64.8 191 0.08 0.0 9 5/2 62.8 197 0.25 0.08 0.0 0.0					5/2	46.9	264	0.41	0.47	7.49
3/2 51,7 240 0,23 0,0 5/2 50,9 244 0,35 0,0 620,4 0,60 0,82 1/2 56,3 224 0,35 0,0 3/2 55,8 222 0,10 0,0 0 0 0 0 6/2 54,8 226 0,30 0,30 0 0 0 0 0 7 716,7 0,52 0,76 1/2 60,5 207 0,09 0	IX I	530,9	0.70	0,88	1/2	52,1	238	0.12	0, 15	8, 82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					3/2	51,7	240	0.23	0.29	8,39
620,4 0,60 0,82 1/2 56,3 220 0,10 0, 30 3/2 55,8 222 0,20 0, 30 0,					5/2	50,9	244	0,35	0.44	8,21
3/2 55.8 222 0,20 0,0 5/2 54.8 226 0,30 0,0 716.7 0,52 0,76 1/2 60,5 205 0,09 0,0 3/2 60,0 207 0,17 0,1 0,26 0,0 V 819.8 0,46 0,72 1/2 64.8 191 0,08 0,0 5/2 64.2 197 0,23 0,23 0,23 0,0	IX	620.4	09 0	0,82	1/2	56,3	220	0,10	0.14	9,64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					3/2	55,8	222	0.20	0.27	9,13
716.7 0.52 0.76 $1/2$ 60.5 205 0.09 0. 3/2 60.0 207 0.17 0. 5/2 58.8 211 0.26 0. 0. 17 0. 0. 17 0. 0. 17 0. 0. 17 0. 0. 17 0. 1/2 64.8 191 0.08 0. 15 0. 15 0. 15/2 62.8 197 0.23 0. 15					5/2	54.8	226	0°30	0.41	8, 92
3/2 60.0 207 0.17 0. 5/2 58.8 211 0.26 0. V 819.8 0.46 0.72 1/2 64.8 191 0.08 0. 3/2 64.2 193 0.15 0. 5/2 62.8 197 0.23 0.	пх	716,7	0,52	0,76	1/2	60, 5	205	0.09	0,13	10,3
5\forall 2 5\forall 2 5\forall 8 211 0,26 0. 819,8 0,46 0,72 1/2 64,8 191 0,08 0, 3/2 64,2 193 0,15 0, 5/2 62,8 197 0,23 0,					3/2	0.09	207	0.17	0.25	9, 72
819,8 0,46 0,72 1/2 64,8 191 0,08 0,3/2 64,2 193 0,15 0,5/2 62,8 197 0,23 0,0					5/2	58,8	211	0.26	0.38	9, 48
3/2 64.2 193 0.15 0. 5/2 62.8 197 0.23 0.	a XIV	819,8	0,46	0,72	1/2	64.8	191	0.08	0.12	11.0
62,8 197 0,23 0,					3/2	64.2	193	0,15	0.24	10,7
					5/2	62,8	197	0.23	0,36	10,3

TABLE 7
Oxygen I Sequence

			27	4 /3	(35)	i c	5.5				
			20 1	dy	2,1,0) 1	3	^{2P} (F _{2,1,0} /	1,0/			
Ion	I.P.	$\mathbf{w}^{\mathbf{S}}$	(Œf)	'n	(E. P.) _u	J.	(E. P.)	~	$^{\rm S}_{ m L}$	$(\mathfrak{A}\mathfrak{f})_{\mathrm{L}}$	A x 10 9
10	13,614	18,83	7,22	2	15,65	2	0	792.0	7, 85	3,01	6, 40
				-	15,66	7		791,5	2, 62	1,01	3, 58
				7		1	0.02	793.0	2,62	1,00	2, 12
				1		-		792.5	1,57	09.0	2,12
				0	15,67	-		792.2	2,09	0.80	8,50
				-		0	0,03	792,9	2,09	0.80	2,83
FII	34,84	10,30	5,15	2	20.34	7	0	8.909	4,29	2,15	7, 78
				₩.	20,38	7		605,7	1,43	0,72	4,36
				2		-	0.04	608, 1	1,43	0,71	2,56
				Н		-		6.909	0.86	0.43	2,59
				0	20.40	-		606.3	1,14	0,57	10,3
				-		0	90.0	607.5	1,14	0.57	2,92
Ne III	63, 5	6.70	4.16	2	25.22	7	0	489,5	2,79	1,73	9,62
				П	25.29	7		488,1	0,93	0.58	5,41
				2		-	0.08	491.0	0,93	0,58	3, 22
				Н				489.6	0,56	0,35	3,24
				0	25,33	1		488.9	0,74	0.46	12.8
				-		0	0,11	490.3	0.74	0.46	4.25
Na IV	98.88	4.66	3,46	2	30,21	7	0	410.4	1,94	1,44	11,4
				-	30,33	7		408.7	0,65	0.48	6,38
				2		1	0.14	412.2	0.65	0.48	3,77
				-		Н		410,5	0,39	0,29	3,82
				0	30,40	-		409.6	0,52	0,39	15,5
				1		0	0.20	411,3	0,52		4.99

TABLE 7 (Cont.)

Ion	I.P.	S	(Öf)	ئ ت	(E. P.) _u	J	(E, P,)	γ	$^{ m S}_{ m \Gamma}$	(Øf)	$A \times 10^{-9}$
Mg V	141,23	3,44	2,97	2	35,11	23	0	353, 1	1,43		13,1
)				Н	35, 31	2			0.48		7.57
				2		-	0,22	355, 3	0.48		4,33
				Н		-		353, 3	0.29		4,43
				0	35,41	-			0,38	0,33	17,7
				Н		0	0,31	354,2	0,38		5,84
Al VI	190,42	2,63	2.60	2	40.04	2	0	_	1,10		15.0
				Н	40.34	2		307.2	0,37	0,37	8,71
				2		-	0,34		0.37	0,36	4, 92
				7				309.8	0,22	0,22	5,08
				0	40,51				0.29	0.29	16,1
				П		0	0.47	310,9	0.29	0.28	6,44
Si VII	246,41	2.07	2,28	2	45.02	2	0	`-	0,86	0,95	16,7
				-	45.46	7		272.6	0.29	0,32	9,57
				2		-	0.50	278.4	0.29	0.32	5, 50
				П		-		275.7	0.17	0,19	5,53
				0	45, 71	7		274.2	0,23	0,25	22,2
	,			-		0	0.69	276.8	0.23	0.25	7,24
P VIII	309,26	1,68	2,07	2	50.05	2	0	247.6	0.70	0,86	18,7
				 1	50.69	2		244.6	0.23	0.29	10,8
				2		-	0,71	251,2	0.23	0,29	6,12
				-		Н		248.0	0,14	0,17	6,13
				0	51,04			246.3	0,19	0.23	25, 3
•						0	0.97	249,3	0.19	0.23	8,22
SIX	378,95	1,38	1,86	2	55, 3	7	0	224	0,58	0.78	20.7
				Н	55.8	7		222	0,19	0,25	11,3
				2			0° 0	228		0.25	
						Н		226	0,11	0,16	94.9
				0	56.4			224	0,15	0.21	
						0	1,32	227	0,15	0,21	9,05

TABLE 7 (Cont.)

Ion	I. P.	$^{\mathrm{S}}$	$(\mathfrak{O}^{\mathrm{f}})_{\mathrm{M}}$	J u	(E. P.) _u	٦	(E. P.)	~	$^{ m S}_{ m \Gamma}$	$(\widetilde{\omega}^{\mathrm{f}})_{\mathrm{L}}$	$A \times 10^{-9}$
C1 X	455.3	1,16	1,70	2		2	0	206	0.48	0,71	22.3
				-	60.9	2		204	0.16	0.23	12,3
				2		Н	1,35	210	0,16	0.23	7,35
				H		Н		208	0,10	0,15	7.60
				0	61.7	1		206	0,13	0,19	29.8
				Н		0	1,72	209	0,13	0,19	99 6
A XI	538.6	0,99	1,57	7	65,4	2	0	190	0,41	99 0	24,4
				1	66,1	2		188	0.14	0.22	13,8
				2		-	1,78	195	0,14	0,22	7, 71
				1		1		193	0.08	0,13	7.75
				0	67.0	-		190	0,11	0.17	31,4
				1		0	2,22	194	0,11	0.17	10.0
K XII	628.7	0,85	1,45	2	70.5	2		176	0,35	0,61	26.2
				Н	71.2	2		174	0,12	0.20	14.6
				2		-	2,34	182	0,12	0.20	8,02
				1		-		180	0,07	0,12	8,23
				0	72.2	1		177	60 ° 0	0,16	34.0
				7		0	2,82	181	0.09	0,16	10.8
Ca XIII	725.7	0,74	1,35	2	75.6	2	0	164	0,31	0,56	27.8
				1	76.4	2		162	0,10	0.19	16,1
				2		-	3,03	171	0,10	0.19	8, 56
				-		-		169	90 0	0, 11	9 ° 8
				0	77.5	1		166	0.08	0.15	36, 3
						0	3,56	170	0.08	0.15	11,5

TABLE'8

Fluorine I Sequence

			18 28	2p $^{\prime}$ $^{\prime}$ $^{P_{1/2}}$	1/2,3/2) - 18 ²	$2s 2p' ("S_{1/2})$	1/2 /			
Ion	I.P.	S	(Ğf)	(E. P.)	J	(E. P.)	~	$_{\Gamma}^{S}$	$(\widetilde{\omega}^{\mathrm{f}})_{\mathrm{L}}$	$A \times 10^{-10}$
Ħ	17,42	5,011	2,59	20,89	3/2	0	593	3,341	1.74	1,67
					1/2	0,050	595	1,670	0.85	0.80
Ne II	41,07	2,991	1,98	26,90	3/2	0	460.7	1,994	1,32	2,07
					1/2	0,097	462,4	0.997	99 0	1,03
Na III	71,65	1,977	1,59	32,78	3/2	0	378,1	1,318	1,06	2,47
					1/2	0,169	380, 1	0,659	0,53	1,23
Mg IV	109,29	1,400	1,32	38, 62	3/2	0	321,0	0,933	0.88	2,85
)					1/2	0,276	323, 3	0.467	0.44	1,40
A1 V	153,77	1,042	1,13	44.48	3/2	0	278.7	0,695	94.0	3,26
					1/2	0,426	281.4	0,347	0,37	1,56
Si VI	205,11	0,805	96°0	50,39	3/2	0	246.0	0,537	99 0	3,64
					1/2	0,632	249,1	0,268	0,33	1,77
P VII	263, 31	0.640	0.88	56,37	3/2	0	219,9	0.427	0.59	4,07
					1/2	0,901	223,5	0,213	0.29	1,94
S VIII	328,80	0,521	0.79	62, 42	3/2	0	198,6	0,347	0,53	4,48
					1/2	1,256	202,6	0.174	0.26	2,11
C1 IX	400.7	0.432	0,72	68.6	3/2	0	181	0,288	0.48	4,88
					1/2	1,686	185	0,144	0.24	2,34
ΑX	479.0	0.364	99.0	74.6	3/2	0	166	0,243	0.44	5, 32
					1/2	2,239	171	0,121	0.22	2,51
X X	562.7	0,311	09 0	80.7	3/2	0	154	0,207	0.40	5,62
					1/2	2,910	159	0,104	0.20	2,64
Ca XII	656.9	0.269	0,56	86.7	3/2	0	143	0.179	0,37	6,03
					1/2	3, 722	149	060 0	0,19	2,85

	•	, ,
Table 9	I Sequence	/
Ta	Sodium	ر،
	W	ď
		c

									•
Ion	I.P.	$\mathbf{S}_{\mathbf{M}}$	$(\widetilde{\omega}^{\mathbf{f}})_{\mathbf{M}}$	r n	(E. P.)	γ	$^{\rm S}_{ m L}$	$(\widetilde{\omega}_{\mathbf{f}})_{\mathrm{L}}$	$A \times 10^{-9}$
Na I	5, 12	37,30	1,92	3/2	2,102	5897.6	24,87	1,28	0,061
				1/2	2,104	5891.6	12,43	0.64	0,061
Mg II	14,97	21,64	2,34	3/2	4.40	2802.7	14,43	1,56	0,33
)				1/2	4.41	2795.5	7,21	0.78	0,33
Al III	28,33	13,90	2,27	3/2	6,63	1862.8	9.27	1,51	0.73
				1/2	99.9	1854.7	4.63	0.76	0.74
Si IV	44.95	9,636	2,12	3/2	8.80	1402.7	6.42	1.42	1.20
				1/2	8.86	1393, 7	3,21	0.70	1.20
ΡV	65,01	7,044	1,90	3/2	10,99	1128.0	4,69	1.26	1,65
				1/2	11,09	1118.0	2,35	0.64	1,71
S VI	87,67	5, 36	1,73	3/2	13,07	944.5	3,57	1,15	2,15
				1/2	13,23	933, 4	1,79	0.58	2,22
C1 VII	114,27	4,23	1,59	3/2	15,25	813,0	2,82	1,05	2,65
				1/2	15.48	800.7	1,41	0.54	2,81
A VIII	143,46	3,41	1,46	3/2	17,36	714.0	2,27	0.97	3,17
				1/2	17,70	700.4	1,14	0.49	3, 33
K IX	175,94	2,81	1,35	3/2	19,48	636,3	1.87	0,89	3,66
				1/2	19,95	621.4	0.94	0.46	3,97
Ca X	211,29	2,35	1,26	3/2	21,59	574.0	1.57	0.83	4.20
				1/2	22,22	557.7	0.78	0.43	4.61
Sc XI	249.76	2,00	1,17	3/2	23,68	523,5	1,33	0.77	4.68
				1 10	0.4 m.1	0 11	7.0	•	Ĺ

Table 9 (cont.)

Ion	I. P.	S	(Řf)	J.	(E. P.)	ν	S	(jæj)	$A \times 10^{-9}$
		IM	IM	3	3		1	1	
Ti XII	291,47	1,72	1,10	3/2	25.82	480,1	1,15	0.72	5,21
				1/2	26.89	460.9	0.57	0,38	5,96
N XIII	336,29	1,49	1.04	3/2	27.93	443.8	0°0	0.68	
				1/2	29,31	423,0	0.50	0, 36	
Cr XIV	384,20	1,31	0,98	3/2	30,05	412.5	0.87	0,64	
				1/2	31,77	390, 1	0.44	0,34	
Mn XV	435	1,16	0.94	3/2	32,16	385,4	0,77	0,61	
				1/2	34,29	361,5	0.39	0,33	
Fe XVI	489	1,03	0.89	3/2	34.27	361,7	0,69	0,58	
				1/2	36,87	336.2	0,34	0,31	
Co XVII	547	0,930	0.85	3/2	36,39	340,6	0,62	0,55	
				1/2	39, 53	313,5	0,31	0.30	
Ni XVIII	209	0,834	0,81	3/2	38,5	322	0,55	0.52	
				1/2	42.3	293	0.28	0.29	11,25
Cu XIX	671	0,756	0.79	3/2	40.6	305	0,51	0,51	
				1/2	45.1	275	0,25	0.28	12,34

TABLE 10

Magnesium I Sequence $1s^{2} 2s^{2} 2p^{6} 3s^{2} {\binom{1}{S_{0}}} - 3s 3p {\binom{1}{P_{1}^{0}}}$

		-	\ 0/	1	,	
Ion	I, P,	(E, P,) _u	λ	$^{ m S}_{ m L}$	(ῶf) _L	A x 10 ⁻⁹
Mg I	7.61	4.33	2852.1	29.27	3, 12	0.85
Al II	18.75	7.39	1670.1	18.09	3.29	2.62
Si III	33.32	10.23	1206.5	12.11	3,05	4,66
P IV	51.15	12.99	950.7	8.60	2.75	6.76
s v	72.2	15.70	786.5	6.41	2.48	8.91
Cl VI	96.7	18.46	671.4	4.95	2.24	11.0
A VII	124.0	21.16	585.8	3.94	2.04	13.2
K VIII	155	23.87	519.4	3.20	1.87	15.4
Ca IX	188	26,59	466.2	2.65	1.73	17.7
Sc X	225.5	29.31	422.8	2.24	1.61	20.0
Ti XI	266	32.1	386	1.91	1.50	22.4
V XII	309	34.8	356	1.65	1.41	24.7
Cr XIII	355	37.6	330	1.43	1.32	26.9
Mn XIV	404	40.3	308	1.27	1.25	29.3
Fe XV	457	43.0	288	1.12	1.18	31.6
Co XVI	512	45.8	271	1.00	1.12	33.9
Ni XVII	529	48.6	255	0.89	1.06	36.2

TABLE 11

Aluminum I Sequence

			1s ² 2s	s 2p ⁶ 3s 3p	$3p \left({}^{2}P_{1/2,3/2}^{o} \right) - 3s 3p^{2}$	2) -3s	$^{3p}^{2} \left(^{2}_{D_{3/2,5/2}}\right)$	2,5/2)			
Ion	I.P.	$^{\rm S}_{ m M}$	(Æf)	Ju	(E. P.) _u	J	(E, P.)	χ	$^{1}_{\Gamma}$	$(\widetilde{\omega}_{\mathrm{f}})_{\mathrm{L}}$	© A × 10 ^{−10}
Al I	5,984	37.81	37.81 4.1?	5/2;3/2	4.4?	3/2	0.014	2800?	25,21	2,73	0,237
Si	16, 34	24, 49	4.10	3/25/2/3/2	98	3/2	0 036	1817 2	12, 60 16, 33	1.4?	0.12? 0.55
	1) •	•	•	3/2	•	$\frac{2}{1}$	• 0	1808.0	8, 16	1,37	0.28
P III	30,16	16,61	3, 76	5/2;3/2	9,29	3/2	0,069		11,07	2,50	0,92
				3/2		1/2	0	1334.9	5, 54	1,26	0.47
S IV	47.29	12,17	3,46	5/2;3/2	11.7	3/2	0,118	1073,3	8,11	2,30	1,33
				3/2		1/2	0	1062,7	4,06	1,16	0.68
CI V	67.80	9,24	3,15	5/2;3/2	14.0	3/2	0,185		6,16	2,09	1.74
				3/2		1/2	0	883, 1	3,08	1,06	0,91
A VI	91,3	7.25	2,88	5/2;3/2	16.4	3/2	0.274	769	4.83	1,91	2, 15
				3/2		1/2	0	756	2.42	0.97	1,13
K VII	118	5,84	2.66	5/2;3/2	18,8	3/2	0,388	671.9	3,89	1,76	2,60
				3/2		1/2	0	658,4	1,95	0.90	1,38
Са VIII	147	4,80	2,46	5/2;3/2	21.3	3/2	0,533	597.4	3,20	1,63	3,04
				3/2		1/2	0	582.8	1,60	0,83	1,63
Sc IX	180	4.01	2,30	5/2;3/2	23, 7	3/5	0.714	538	2,67	1,51	3,48
				3/2		1/2	0	522	1,34	0.79	1,91
Ti X	217	3, 40	2,14	5/2;3/2	26,1	3/2	0.93	492	2,27	1,41	3,88
				3/2		1/2	0	475	1,13	0,73	2,16
\ \ \	260	2, 92	2,00	5/2;3/2	28.6	3/2	1,20	452	1,95	1,31	4.27
				3/2		1/2	0	433	0.97	69 0	2,45
Cr XII	299	2,54	1,88	5/2;3/2	31.0	3/5	1,52	420	1,69	1,23	4.65
				3/2		1/2	0	400	0,85	0,65	2,71
Mn XIII	344	2,22	1.76	5/2;3/2	33, 4	3/5	1,89	394	1.48	1,15	4,94
				3/2		1/2	0	371	0.74	0,61	2,95
Fe XIV	392	1, 97	1,66	5/2;3/2	35, 8	3/5	2,337	370	1,31	1,08	5,26
				3/2		1/2	0	346	99 0	0,58	3,23
Co XV	444	1,75	1,56	5/2;3/2	38, 2	3/5	2,85	351	1,17	0	5.46
				3/2		1/2	0	324	0,58	0.55	3,49

TABLE 12

				Silicon ;	Silicon Sequence				
		188	2 2 6	$3s^2 3p^2 \left(^3 P_0\right)$	1,2)-	$^{3s} ^{3p} \binom{^{3} ^{0}}{^{3}_{3,2,1}}$			
Ion	$\mathbf{S}_{\mathbf{M}}$	(<i>Œ</i> f)	Ju	(E. P.) _u	J	γ	${\bf T_S}$	$^{ m T}$ ($ec{\omega}$ t) $^{ m T}$	$\tilde{\omega}$ A x 10 ⁻¹⁰
Si I	47.08	6.95	~		0	2065.5	5.23	0.77	0.12
			2,1	6,01	7	2061,2	15,69	2,31	0,36
			2,1		2	2067,4	4.19	0.62	0,10
			ന	90 • 9	7	2054.8	21,97	3,25	0,51
P II	30.45	6,01	-		0	1532,6	3, 38	0.67	0,19
			2,1	8,09		1536,2	10,15	2,01	0,57
			2,1		2	1543,4	2,71	0.53	0,15
			က	8,10	2	1542.3	14.21	2,80	0.78
S III	21,56	5.47	H		0	1190,2	2.40	0.61	0,29
			2,1	10,42	-	1194.2	7,19	1,83	0,87
			2,1		2	1201.9	1,92	0.49	0,23
			က	10.42	7	1201,0	10,06	2,54	1,17
C1 IV	16,05	4.97	H		0	973,2	1,78	0.56	0,39
			2,1	12,74		977.7	5, 35	1,66	1,16
			2,1		2	985.9	1.43	0.44	0° 30
			က	12,75	2	984.9	7.49	2,31	1,59
ΑV	12,39	4.53	⊣		0	822.2	1,38	0,51	0.50
			2,1	15,08		827.2	4,13	1,52	1,48
			2,1		2	836.0	1,10	0.40	0,38
			က	15,10	2	834.9	5, 78	$2_{\bullet}10$	2,01
K VI	9,84	4.15			0	710.5	1,09	0.47	0,62
			2,1	17,45	1	716.1	3,28	1,39	1,81
			2,1		2	725.4	0.87	0,36	0.46
			က	17.47	2	724.4	4, 59	1,93	2,45

TABLE 12 (Cont.)

Ion	S	$(\widetilde{\omega} f)_{\mathbf{M}}$	J n	(E. P.) _u	r	~	$^{ m S}_{ m \Gamma}$	$(\mathfrak{F})_{\mathrm{L}}$	$\widetilde{\omega} A \times 10^{-10}$
Ca VII	8.00	3,83	~		0			0.43	
			2,1	19,86	-	630.6		1,29	
			2,1		2	640.5	0,71	0,34	0,55
			က	19,90	2	639,2		1,77	
Sc VIII	6,63	3, 54	Н		0	556		0.40	
			2,1		-	563		1,19	
			3,2,1	22,3	2	574	3,68	1,95	
Ti IX	5,58	3, 30			0	502		0,38	
			2,1		 1	510	1,86	1,11	2,84
			3,2,1	24.7	2	521	3,10	1,81	4,44
ΛX	4.77	3,08	~		0	456	0,53	0,35	1,12
			2,1			464	1,59	1,04	3,22
			3,2,1	27.2	2	477	2,65	1,69	4.95
Cr XI	4.11	2,87	Н		0	419	0.46	0,33	1,25
			2,1			429	1,37	0,97	3,51
			3,2,1	29,6	2	441	2,28	1,57	5,38
Mn XII	3,60	2,71	—		0	387	0.40	0,31	1,38
			2,1			398	1,20	0.92	3,87
			3,2,1	32,0	2	412	2,00	1,48	5,81
Fe XIII	3, 15	2,53	H		0	360	0,35	0.29	1.49
			2,1			373	1,05	0, 86	4.12
			3,2,1	34.4	2	386	1,75	1,38	
Co XIV	2.79	2,37			0	337	0,31	0.28	1,64
			2,1			351	0,93	0.80	4,33
			3,2,1	36, 8	2	364	1,55	1,29	
Ni XV	2.49	2,24	-		0	316	0,28	0.27	1,80
			2,1			333	0.83	0.76	
			3,2,1	39,2	7	346	1,38	1,21	6,74

TABLE 13

Phosphorus Sequence

Ion	I.P. S _M	$_{ m M}^{ m S}$	(Øf)	Ju	(E. P.) _u	χ	$^{ m S}_{ m \Gamma}$	$(\widetilde{\omega}^{\mathrm{f}})_{\mathrm{L}}$	A x 10 9
ΡΙ	10.9	P I 10.9 30.70	5,57	1/2		1671,7			1.11
						1674.7	10.23		1,10
				5/2	7,35	1679,7	15,35	2, 78	1,09
S II	23,3	21,30	5, 15			1250,5	3, 55		•
				3/2		1253,8	7,10	1.72	1,82
						1259,5	10,65		1,80
Cl III	39, 7	15,52	4,66	1/2	12,28	1005,3	2,59	0.78	2,57
				\sim		1008,8	5,17	1,56	2,56
				5/2	12,16	1015.0	7.76	2,32	2,54
A IV	59, 6	11,76	4.22	1/2	14,70	840.0	1,96	0,71	3, 35
				3/2	14,63	843,8	3, 92	1.41	3,30
				5/2	14,51	850.6	5,88	2,10	3,22
ΚV	82.6	9.20	3, 85	1/2	17,21	720.4	1,53	0,65	4.17
				3/2	17,11	724.4	3,07	1.29	4.10
				5/2	16,94	731.8	4.60	1,91	3,96
Ca VI	109	7,38	3, 52	1/2	19,69	629,6	1.23		4.96
				3/2	19,56	633,8	2,46	1,18	4.89
				5/2	19,31	641.9	3,69		4.72
Sc VII	139	6,05	3,25	1/2	22,21	558.0	1.01		5.89
				3/2	22,03	562,6	2.02	1,09	5.74
				5/2	21,70	571.3	3,02	1,61	5.48
Ti VIII	172	5.04	3,01	1/2	24.8	200	0.84	0.51	6. 80
				3/2	24.6	504	1.68	1,01	6,63
				6/2		717		1 40	000

TABLE 13 (Cont.)

Ion	I. P.	$^{ m S}$	(Œf)	Ju	(E. P.)	~	$^{\rm S}_{ m \Gamma}$	$(\widetilde{\omega}^{ m f})_{ m L}$	$A \times 10^{-3}$
/ IX	206	4.27	2,80	1/2	27.3	454	0,71	0.48	7,76
				3/2	27.0	459	1.42	0,94	7.44
				5/2	26.5	468	2,13	1,38	7,00
Cr X	246	3,66	2,62	1/2	29.8	416	0.61	0.44	8,47
				3/2	29.4	422	1,22	0.88	8,23
				5/2	28.9	429	1.83	1,30	7,85
Mn XI	288	3,17	2,46	1/2	32,3	384	0.53	0,42	9.49
				3/2	31.9	388	1,06	0.83	9,19
				5/2	31,3	396	1,58	1,21	8, 57
Fe XII	333	2,77	2,31	1/2	34.8	356	0.46	0,39	10,3
				3/2	34.4	360	0,92	0.78	10.0
				5/2	33,6	369	1,38	1,14	9,30
Co XIII	381	2,45	2,19	1/2	37.2	333	0.41	0,37	11,1
				3/2	36.8	337	0.82	0.74	10.9
				5/2	36.0	344	1,22	1,08	10,1
Ni XIV	432	2,17	2,06	1/2	39.8	311	0,36	0,35	12,0
				3/2	39,3	315	0,72	0,69	11,6
				5/2	38, 4	323	1,08	1,02	10.9

TABLE 14

58 2 2 2 2 2 2
11, 65
11.69
14,05 14,17 14,24
16,63 16,82 16,91

TABLE 14 (Cont.)

Ion	I.P.	$^{\rm S}_{ m M}$	$(\mathfrak{G}_{\mathrm{f}})_{\mathrm{M}}$	r n	(E. P.)	٠٠	(E. P.)	γ	$^{\rm S}_{ m L}$	$(\mathfrak{F})_{\mathbf{L}}$	A x 10 9
Ca V	84.39	12,35	5,81	7	-	2	0	646.6		2,42	7,72
				1	စ်	2		637.9		0.82	4.48
				2		-	0,30	656,8	1,72	0.80	2.47
				Н		-		647.9		0,48	2,54
				0	19,57	-		643,1	1,37	0,65	10.5
				Н		0	0.41	651,6	1,37	0.64	3, 35
Se VI	111.1	10,04	5, 35	2	21,73	7	0	570.3	4.18	2,23	9, 14
				-	22.09	2		561,2	1,39	0,75	5,29
				7		-	0.42	581,4	1,39	0.73	2,88
				Н		-		571,9	0.84	0.45	3,06
	,			0	22,28	-		566,8	1,12	09 0	12,5
				Н		0	0,55	575.6	1,12	0.59	3,96
Ti VII	140.8	8,32	4.96	7	24.33	2	0	509, 5	3,47	2.07	10,6
				Н	24.80	2		499.8	1,16	0.71	6,31
				7		-	0,56	521,6	1,16	0,68	3, 33
				Н		-		511.4	0.69	0.41	3,48
				0	25,06			505,9	0.92	0.55	14.3
				-		0	0,73	515.0	0.92	0.54	4.52
V VIII	173,7	7,00	4.60	2	26.8	7	0	462	2,92	1,92	12.0
				Н	27.4	7		452	0.97	0,65	7.07
				2		Н	0,74	475	0.97	0,62	3,66
				Н		1		464	0,58	0,38	3,92
				0	27.8	1		457	0.78	0.52	16,6
				1		0	0.94	468	0.78	0,51	5,17
Cr IX	209.6	5,96	4.28	7	29.4	2		422	2.48	1,78	13, 3
				-	30, 1	2		412	0.83	0,61	
				7		-	0.97	436	0.83	0.58	
				Н		-		426	0.50	0,36	4.41
				0	30,6	-		419	99.0	0.48	
				1		0	1,19	429	99.0	0.47	17.0

TABLE 14 (Cont.)

	A x 10 3	15,0	9,02	4,43	4,77	20.0	6,26	16,4	9, 79	4.72	5, 11	21,1	6, 52	17.9	10.5	5. 06	5,48	23, 5	7, 32	19,3	11,5	5, 32	5.75	24.5	7,62
	l					.,		• •				. 7								, -1	, -,				
	$(\mathfrak{F})_{\mathrm{L}}$	1,68	0,58	0,54	0,33	0,45	0.44	1,58	0,54	0.50	0,31	0.41	0.40	1,49	0.50	0.47	0.29	0.40	0,39	1,41	0.48	0.44	0.27	0,37	0,36
***************************************	$^{\Gamma}_{\Gamma}$	2,14	0.72	0,72	0.43	0,57	0.57	1,86	0,62	0,62	0,37	0.49	0.49	1,63	0.54	0.54	0,33	0.44	0.44	1,45	0.48	0,48	0.29	0,39	0,39
	~	387	378	403	392	387	395	358	350	376	367	360	369	333	325	352	343	337	344	312	304	332	323	317	324
	(E. P.)	0		1,24			1,45	0		1,57			1.79	0		1,96			2,12	0		2,42			2,50
	J	2	7	-			0	2	2		7	П	0	2	2	-	Н	7	0	2	2	-	-	-	0
	(E. P.)		32,8			33, 3		34.6	35,4			36.0		37.2	38, 1			38.8		39, 7	40.8			41,5	
	Ju	2	-	2	Н	0	-	7	-	2	-	0	Н	2	Н	7	-	0	Н	2	Н	2	Н	0	
	(Õf)	4,02						3, 74						3,54						3, 33					
	$\mathbf{S}_{\mathbf{M}}$	5, 13						4,46						3, 92						3,47					
	I.P.	248						290						337						385					
	Ion	Mn X						Fe XI						Co XII						Ni XIII					

TABLE 15

Chlorine Sequence

			$1s^2 2s^2 2p^6$	3s 3p	(2Po 3/2	$\frac{1}{2}$ - 3s 3p ⁶	$\left({^2}_{1/2} \right)$			
Ion I.P. S _M	I. P.	$_{ m M}^{ m S}$	$(\widetilde{\omega}_{\mathbf{f}})_{\mathbf{M}}$	(E. P.)	J.	(E. P.)	ν	$^{\rm S}_{ m L}$	$(\mathfrak{F}_{\mathbf{f}})_{\mathbf{L}}$	A x 10 9
C1 I	13,01	11,53	3,017	10,79	3/2	0	1160?	7,69	2,01?	4.94?
					1/2	0,11	1170?	3,84	1,003	2,44?
Ап	27,62	8,30	2,73	13,42	3/2	0	919,8	5, 53	1,83	7,21
					1/2	0.18	932.0	2,77	0.90	3,50
K 111	46	6,23	2,46	16, 12	3/2	0	765.6	4,15	1,65	9,38
					1/2	0.27	778.5	2,08	0.81	4,46
Ca IV	29	4.84	2,23	18,89	3/2	0	656.0	3,23	1,50	11,6
					1/2	0.39	669, 7	1,61	0,73	5,43
Sc V	92	3,85	2.02	21,62	3/2		573.4	2,57	1,36	13,8
					1/2	0.54	587,9	1,28	99 0	6, 36
Ti VI	120	3, 15	1,86	24,37	3/2	0	508.6	2,10	1,25	16,1
					1/2	0, 72	524.2	1,05	0,61	7.40
N VII	151	2,62	1,72	27,17	3/2	0	456.2	1, 75	1,16	
					1/2	0,95	472.8	0,87	0.56	8, 35
Cr VIII	185	2,21	1,60	30,01	3/2	0	413.0	1,47	1,08	21,1
					1/2	1,23	430.6	0.74	0.52	9, 35
Mn IX	222	1,88	1.49	32,88	3/2	0	376.9	1,25	1.01	23,7
					1/2	1,55	395.6	0,63	0.48	10.2
Fe X	262	1,63	1,40	35, 7	3/2	0	347	1,09	0.95	26.3
		ı			1/2	1,94	367	0,54	0.45	11,1
CoX	305	1,42	1,32	38, 5	3/2	0	322	0,95	0°0	28.9
					1/2	2,39	343	0.47	0.42	11,9
Ni XII	352	1,25	1,24	41.4	3/2	0	299	0,83	0.84	31,3
					1/2	2.93	322	0.42	0.40	12.8

TABLE 16

	nits of πa_0^2	300 ev	0.020	0.016	0,013	0,010	800 0	0.007	900 0	0,032	0.024	0,018	0,014	0.012	600.0	0.008	900 0	0,0055	0.005	
	Q (E) in units of πa	150 ev	0,031							0.050	0.037									
ronic Impact	Transition		2s ² 2p ² Po-2s 2p ² D							$2 \text{s}^2 2 \text{p}^2 3 \text{P-}2 \text{s} 2 \text{p}^3 3 \text{D}^0$,
Excitation Cross-sections by Electronic Impact	Ion		Mg VIII	Al IX	Si X	P XI	S XII	C1 XIII	A XIV	Na VI	Mg VII	Al VIII	Si IX	ΡX	S XI	C1 XII	A XIII	K XIV	Ca XV	
Cross-secti	nits of πa_0^2	300 ev	0.17	0, 12	0,087	0,068	0,053	0.043	0,035	0.029	0,13	0,091	0,068	0,052	0,041	0,033	0.027	0.037	0.027	
Excitation	Q (E) in units of	150 ev	0.28	0.19	0,14	0.11	0,085	0.068	0,055	0.048	0.20	0,14	0.10					0,058	0.042	
	Transition		2s ² S-2p ² P ^o								$2s^2 1_{S-2s} 2p 1_{P^0}$							$2s^{2} 2p^{2} P^{0} - 2s 2p^{2} D$		
	Ion		O VI	F VII	Ne VIII	Na IX	Mg X	A1 XI	IX IS	IIIX d	F VI	Ne VII	Na VIII	Mg IX	A1 X	Si XI	P XII	Ne VI	Na VII	

(Cont.)
16
ABLE
H

	Q (E) in units of πa_o^2	300 ev	0.23	0.19	0.16	0.14	0.12	0.10	0.087	0.077	0.067	0,31	0,25	0.20	0.17	0.14	0.12	0.10	0.089	0.078	0.067	
	Q (E) ii	150 ev	0.37	0.30	0.25	0.21						0.49	0,39	0,31								
	Transition		3s ² S-3p ² P ^o									$3s^2$ 1 S-3s 3 P 0										
ABLE to (Cont.)	Ion		Ca X	Sc XI	Ti XII	V XIII	Cr XIV	Mn XV	Fe XVI	Co XVII	Ni XVIII	к ип	Ca IX	Sc X	Ti XI	v XII	Cr XIII	Mn XIV	Fe XV	Co XVI	Ni XVII	
. जनत्या	Q (E) in units of πa_0^2	300 ev	0.12	0,085	0,063	0,049	0,039	0,031	0,025	0,021	0,018	0,033	0.024	0,018	0,014	0,011	0.027	0.020	0,015	0,36	0.29	
	n uj (E) ව	150 ev	0,18																	0.58	0.46	
	Transition		2s 2p 34So-2s 2p 4 4P									$2s^{2} 2p^{4} ^{3} P-2s 2p^{5} ^{3} P^{o}$					28 2p 2 P -28 2p 2 S			38 2-3p 2Po		
	Ion		Na V	Mg VI	A1 VII	Si viii	P IX	S X	C1 XI	A XII	к хп	Mg V	Al VI	Si VII	P VIII	SIX	Al V	Si VI	P VII	А УІП	K IX	

Q (E) in units of πa_0^2 300 ev 0.088 0.039 0.072 090°0 0,050 0.0420.036990.0 0,055 0,046 0,033 0,081 0,031 0.10 0.09 0.20 0.14 0,12 0,17 150 ev 0,092 0.26 0,14 0,11 0.13 $3s^2 3p^4 3p_{-3s 3p}^5 3p^0$ 3p³ 4S^o-3s 3p⁴ 4P $^{3s}^{2}$ $^{3p}^{5}$ 2 2 0 $^{-3s}$ 3p 6 2 S Transition TABLE 16 (Cont.) Cr VIII Ni XIV Fe XII Ni XIII Mn XI Co XIII Ti VII Co XII V VIII Mn IX Ni XII Cr IX Fe XI Co XI Mn X V VII Fe X V IX Ion Q (E) in units of πa_0^2 300 ev 0,096 0,053 0,033 0.064 0.045 0,038 0.029 0.025 0.0590.049 0.042 0,036 0,087 0,071 0,031 0.027 0,30 150 ev 0,082 0,092 0.076 0,12 0.10 0.14 0, 11 0,38 0.47 $3s^{2} 3p^{2} ^{3} P - 3s 3p^{3} ^{3} D^{O}$ $^2_{
m D}$ $3s^2 3p^2 P^{0} - 3s 3p^2$ Transition Ca VIII **Fe XIV** Fe XIII Co XIV Sc VIII Mn XIII Co XV Ti VIII Ni XVI Mn XII Cr XII Ni XV Sc VII Cr XISc IX Ti IX V XI Ti X Ion X

NOTES TO TABLES

Extrapolation.—The experimental data listed by Moore (1949, 1952) do not cover the entire range of our tables. To obviate the lack of such data, we have made use of extrapolations. When the ground state splits into two or more levels, the magnitude of the splitting was computed by Rohrlich (1959), who kindly put his results at our disposal. The excitation potential of the upper state was calculated in two ways: (1) by linear extrapolation of the experimental data and (2) by applying the method described by Layzer (1959). Discrepancies greater than 3 per cent were very seldom observed. We should point out, however, that both methods neglect those relativistic corrections that shift the position of the center of gravity of the entire term; as a result, our predicted wave lengths are always too long. The relativistic corrections were not applied for two reasons: (1) our primary interest was the computation of f-values, where errors of a few per cent are negligible; (2) Dr. C. Pecker, of the Institut d'Astrophysique in Paris, is carrying out a detailed calculation that we did not wish to duplicate. In addition, from a practical point of view, the neglect of the relativistic corrections has the advantage of assuring us that the error

is always in the same direction, as indicated above.

Line blending.—Sometimes the splitting between two or more levels with different values of J is so small that lines originating from these levels have wave lengths differing by less than 1 A. It is likely that such lines will be observed as a blend, and hence we decided to give the strength, ϖf -value, and ϖA for the blend; to derive the individual intensities of each line we simply need to remember that

$$\varpi A (1+2) = \varpi A (1) + \varpi A (2)$$

(the same relationship applies to ϖf), where 1 and 2 refer to the two lines in the blend, and also we must know the ratio of the strengths of the two lines. Consider the following examples:

In Table 2 we combine the transitions $J_u=2\to J_l=1$ and $J_u=1\to J_l=1$ into a blend. For Si I we list $S_L=15.69$, $\varpi f=2.31$, and $\varpi A=36\times 10^8$ sec⁻¹. In the note to Table 12 we remark that $S(2\to 1)/S(1\to 1)=3$. This means that $S_L(2\to 1)=11.77$ and $S_L(1\to 1)=3.92$; furthermore, $\varpi f(2\to 1)=1.73$, $\varpi f(1\to 1)=0.58$; $\varpi A(2\to 1)=27\times 10^8$, $\varpi A(1\to 1)=9\times 10^8$. Notes to the individual tables:

Table 4: extrapolation begins at S xII; $S(5/2 \rightarrow 3/2)/S(3/2 \rightarrow 3/2) = 9$. Table 5: extrapolation begins at S xI; $S(2 \rightarrow 2)/S(1 \rightarrow 2) = 15$, $S(2 \rightarrow 1)/S(1 \rightarrow 1) = 3$. Table 6: extrapolation begins at S x. Table 7: extrapolation begins at S ix.

Table 8: extrapolation begins at A x.

Table 10: extrapolation begins at Sc x.

Table 11: extrapolation begins at SCA. Table 11: extrapolation begins at SCA. Table 12: extrapolation begins at SC VIII; $S(5/2 \rightarrow 3/2)/S(3/2 \rightarrow 3/2) = 9$. Table 12: extrapolation begins at SC VIII; $S(2 \rightarrow 2)/S(1 \rightarrow 2) = 15$, $S(2 \rightarrow 1)/S(1 \rightarrow 1) = 3$. Table 13: extrapolation begins at Ti VIII. Table 15: extrapolation begins at $S(3/2 \rightarrow 3/2)/S(3/2 \rightarrow 3/2) = 9$.

Table 15: extrapolation begins at Fe x.

Table 16: numbers in italics indicate that $5E_0 \le W \le 6E_0$; in all other cases $W > 6E_0$.