University of Sharjah Tutorials 3

EXPLORATORY DATA ANALYSIS

AHMED HOSSAIN, PhD

Exploratory Data Analysis

Biostatistics

DATA SUMMARIES

- Tabular: Frequencies, relative frequencies etc.
- Graphical: Line graph/ diagram, Bar charts/ plot, histograms, scatter plots, box plots, pie chart etc.

DATA SUMMARIES

FREQUENCY TABLES Frequency Tables used to summarize

- Nominal or ordinal data having natural categories
- Discrete or continuous data, usually after data have been grouped into categories
 - . tabulate gender

gender	Freq.	Percent	Cum.
Female Male		57.07 42 .93	57.07 100.00
Total	1,691	100.00	

. tabulate smoke

smoke	1	Freq.	Percent	Cum.
No Yes	! !	1,270 421	75.10 24.90	75.10 100.00
Total	1	1,691	100.00	

DATA SUMMARIES: BIVARIATE TABLE

. tabulate gender smoke, row

+		+
Ke	Y	١
		1
1 :	frequency	١
ro	w percentage	١
+		+

1	smoke				
gender	No	Yes	Total		
Female	731	234	965		
I	75.75 	24.25	100.00		
Male	539	187	726		
 	74.24 	25.76	100.00		
Total	1,270	421	1,691		
1	75.10	24.90	100.00		

DATA SUMMARIES: LINE GRAPH/ DIAGRAM

- Used for categorical variables to show frequency or proportion in each category.
- Translate the data from frequency tables.

DATA SUMMARIES: BAR CHART/ DIAGRAM

- Used for categorical variables to show frequency or proportion in each category.
- Translate the data from frequency tables.

DATA SUMMARIES: BAR CHART AND LINE GRAPH

DATA SUMMARIES: LINE GRAPH

Interpreting data correctly is Important.

WHAT IS WRONG HERE?

DATA SUMMARIES: BARPLOT

• Find a limitation of this barplot. It is in terms of interpretation.

Studetns with Visual Acuity corresponds to Parents myopia

DATA SUMMARIES: BARPLOT

Always display bar graphs with percentages.

% Studetns with visual acuity corresponds to parents myopia

DATA SUMMARIES: PIE CHART

- Used to to express information from frequency summary table of categorical data.
- Circle divided into slices- number of slices corresponds to the number of categories
- Relative frequency percent make it easier to create a proportional pie chart.

Distribution of genotypes

DATA SUMMARIES: LIMITATIONS OF PIE CHARTS

It is hard to follow the data summaries with pie charts when a categorical variable has many categories or bi-variate table provides many categories.

STEM-AND-LEAF PLOTS (STEMPLOTS)

 Used to visualize distribution (shape, center, range, variation) of continuous variables and small data.

Plot all data points and rearrange in rank order:

```
0|5
1|1
2|1478
3|0
4|2
5|02
x10

Here is the plot horizontally: ----
0 1 2
```

Here is the plot horizontally:
 (for demonstration purposes)

DATA SUMMARIES: HISTOGRAM

- Used to visualize distribution (shape, center, range, variation) of continuous variables and large data.
- "Bin size" is important.

DATA SUMMARIES: HISTOGRAM

Positive skew: The right tail is longer; the mass of the distribution is concentrated on the left of the figure. The distribution is said to be right-skewed, right-tailed, or skewed to the right.

DATA SUMMARIES: HISTOGRAM

Negative skew: The left tail is longer; the mass of the distribution is concentrated on the right of the figure. The distribution is said to be left-skewed, left-tailed, or skewed to the left.

DATA SUMMARIES: SKEWNESS

EFFECT OF BIN SIZE ON HISTOGRAM

Length of time of service calls at a bank

DATA SUMMARIES: LOCATION AND SHAPE

MEASURES OF CENTRAL TENDENCY Mean, Median and Mode.

MEASURES OF SPREAD Range, Interquartile range, variance and standard deviation.

CENTRAL LOCATION: MEAN AND MEADIAN

MEAN:

To calculate the average $\ \overline{x}$ of a set of observations, add their value and divide by the number of observations:

$$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

MEDIAN is the exact middle value.

- If there are an odd number of observations, find the middle value
- If there are an even number of observations, find the middle two values and average them

Example

Some data:

$$Median = (22+23)/2 = 22.5$$

QUESTION

Which of the following orders correctly represents the measures of central tendency for the distribution shown here?

- a. A: mean, B: median, C: mode
- b. A: mode, B: mean, C: median
- c. A: median, B: mode, C: mean
- d. A: median, B: mean, C: mode
- e. A: mode, B: median, C: mean
- f. None of these orders are correct.

SPREAD: VARIANCE AND STANDARD DEVIATION

- The term spread is an informal way to refer to the dispersion or variability of data points. The following Figure shows distributions with different variability.
- Populations 1 and 2 have the same central locations, but population 2 has greater spread (variability).

SPREAD: VARIANCE AND STANDARD DEVIATION

VARIANCE Average of squared deviations of values from the mean.

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

 Increasing contribution to the variance as you go farther from the mean.

STANDARD DEVIATION Standard deviations are simply the square root of the variance.

- Roughly 68% of the observations in the list of data lie within 1 standard deviation of the average.
- 95% of the observations lie within 2 standard deviations of the average.

VARIANCE: WHICH ONE HAS LESS STANDARD DEVIATION?

SPREAD: QUARTILES AND INTER QUARTILE RANGE

- Q1 The first quartile, Q1, is the value for which 25% of the observations are smaller and 75% are larger.
- Q2 Q2 is the same as the median (50% are smaller, 50% are larger)
- Q3 Only 25% of the observations are greater than the third quartile.
- IQR It is the difference between third and first quartile.
- EXAMPLE Graduate student ages: 27, 28, 31, 35, 35, 40, 42, 43, 50, 52.
 - $P_{50} = Q_2$ = average of the middle two observations = (35+40)/2 = 37.5 years.
 - $P_{25} = Q_1$ = middle observation of the lower 5 observations = 31 years.
 - $P_{75} = Q_3$ = middle observation of the upper 5 observations = 43 years.

DATA SUMMARIES: BOX PLOT

DATA SUMMARIES: BOX PLOT

QUESTION: COMPARE THE BOX PLOTS?

