CS 314 Principles of Programming Languages

Lecture 19: Parallelism and Dependence Analysis

https://powcoder.com

Add WeChat powcoder

Prof. Zheng Zhang

Review: Dependence Definition

Bernstein's Condition: — There is a data dependence from statement (instance) S_1 to statement S_2 (instance) if

- Both statements (instances) access the same memory location(s)
- One of them is a write
- There is a run-time execution path from S_1 to S_2

Assignment Project Exam Help

Example:

https://powcoder.com S_2 S_1 : pi = 3.14Add WeChat powcoder S_2 : R = 5 S_3 : Area = pi * R^2

 S_3

Data Dependence Classifications

"S₂ depends on S₁" — (S₁ δ S₂)

True (flow) dependence

occurs when S1 writes a memory location that S2 later reads (RAW).

Anti dependence

Assignment Project Exam Help occurs when S1 reads a memory location that S2 later writes (WAR).

https://powcoder.com

Output dependence

Add WeChat powcoder

occurs when S1 writes a memory location that S2 later writes (WAW).

Input dependence

occurs when S1 reads a memory location that S2 later reads (RAR).

Review: Dependence Testing

Single Induction Variable (SIV) Test

• Single loop nest with constant lower (LB) and upper (UB) bound, and step 1.

• Two array references as affine function of loop induction variable https://powcoder.com

for
$$i = LB$$
, $UBd WeChat powcoder$
 $R1: X(a*i+c1) = ...$
 $R2: ... = X(a*i+c2)$
endfor

Question: Is there a true dependence between R1 and R2?

Review: Dependence Testing

for
$$i = LB$$
, UB , 1
 $R1: X(a*i + c1) = ...$
 $R2: ... = X(a*i + c2)$
endfor

There is a dependence between R1 and R2 iff

$$\exists i, i': LB \leq Aissigns eh Brangle (a Fixon) Help*i'+c_2)$$

where i and i' represent https://paviondeinche iteration space. This means that in both iterations the same element of array X is accessed.

So let's just solve the equation:

$$(a * i + c_1) = (a * i' + c_2)$$
 $(c_1 - c_2)/a = i' - i = \Delta d$

There is a dependence iff

- Δd is an integer value
- UB LB $\geq \Delta d \geq 0$

• Examples:

```
for (i = 1; i \le 100; i++) { float Z[100]; 
S1: A[i] = ... for (i = 0; i \le 12; i++) { 
S2: ... = A[i - 1] S: Z[i+10] = Z[i]; 
Assignment Project Exam Help
```

https://powcoder.com

- 1. Is there dependence? dd WeChat powcoder
- 2. If so, what type of dependence?
- 3. From which statement (instance) to which statement (instance)?

• Examples:

```
float Z[100];
for (i = 1; i \le 100; i++)
                                      for (i = 0; i < 12; i++)
 S1: A[i] = ...
 S2: ...= A[i - 1]
                                         S: Z[i+10] = Z[i];
                 Assignment Project Exam Help
```


(read after write): Wt: Z[i+10] in $S \rightarrow$ Rd: Z[i'] in S

$$i' = i + 1$$

$$i' = i + 10$$
$$\Delta d = 1$$
$$\Delta d = 10$$

• More Examples:

```
for (i = 1; i \le 100; i++) {

R1: X(i) = ...

R2: ... = X(i + 2)

for (i = 3; i \le 15, i++) {

S1: X(2 * i) = ...

S2: ... = X(2 * i - 1)
}
```

Assignment Project Exam Help

https://powcoder.com

- 1. Is there dependence? dd WeChat powcoder
- 2. If so, what type of dependence?
- 3. From which statement (instance) to which statement (instance)?

• More Examples:

```
for (i = 1; i \le 100; i++) {
    R1: X[i] = ...
    R2: ... = X[i+2]
}

for (i = 3; i \le 15, i++) {
    S1: X[2 * i] = ...
    S2: ... = X[2 * i - 1]
}
```

Assignment Project Exam Help

Review: Automatic Parallelization

We will use **loop analysis** as an example to describe automatic dependence analysis and parallelization.

Assumptions:

- 1. We only have scalar and subscripted variables (no pointers and no control dependence) for loop dependence analysis.
- 2. We focus on affine trappet to the Joop Examille and memory references are affine functions of loop induction variables.

Add WeChat powcoder

A function $f(x_1, x_2, ..., x_n)$ is **affine** if it is in such a form:

$$\mathbf{f} = c_0 + c_1 * x_1 + c_2 * x_2 + ... + c_n * x_n$$
, where c_i are all constants

Review: Affine Loops

Three spaces

- Iteration space
 - ▶ The set of dynamic execution instances
 - i.e. the set of value vectors taken by loop indices
 - ▶ A *k*-dimensional space for a *k*-level loop nest
- Data space
 Assignment Project Exam Help
 - ▶ The set of array elements accessed
 - https://powcoder.com
 An *n*-dimensional space for an *n*-dimensional array
- Processor space
 Add WeChat powcoder
 - ▶ The set of processors in the system
 - In analysis, we may pretend there are unbounded # of virtual processors

Iteration Space

• Example

for (i=0; i<=5; i++)
for (j=i; j<=7; j++)
$$Z[j, i] = 0;$$

$$0 <= i <= 5$$

$$i <= j <= 7$$
Assignment Project Exam Help
$$i <= 5$$

$$https://powcoder.com$$

$$Add WeChat powcoder$$

$$i$$

$$0 <= i$$

Lexicographical Order

- Order of sequential loop executions
- Sweeping through the space in an ascending lexicographic order:

 $(i, j) \le (i', j')$ iff one of the two conditions is satisfied

1. i <= i'

2. $i = i' \& j \le j'$ Assignment Project Exam Help

for (i = 1; i <= 5; i++)
Add WeChat powcoder
for (j = 1; j <= 6 - i; j++) Z[j, i] = 0;

Dependence Test

Given

```
do i_1 = L_1, U_1 ... do \ i_n = L_n, U_n S1: \quad A[\ f_1(\ i_1, \ldots, i_n), \ldots, f_m(i_1, \ldots, i_n)\ ] = \ldots S2: \quad \ldots \text{ Assign[req(it_l Project) ExameHelp..., i_n)}\ ]
```

https://powcoder.com

A dependence between statement (instance) S_1 and S_2 , denoted S_1 δ S_2 , indicates that the S_1 instance, the source, the source, must be executed before S_2 instance, the sink on some iteration of the loop nest.

Let $\alpha \& \beta$ be a vector of n integers within the ranges of the lower and upper bounds of the n loops.

Does $\exists \alpha$, β in the loop iteration space, s.t.

$$f_k(\alpha) = g_k(\beta)$$
 $\forall k, 1 \le k \le m$?

Dependence Test

Given

```
\begin{array}{c} \text{do } i_1 = L_1, \! U_1 \\ \\ \dots \\ \text{do } i_n = L_n, \! U_n \\ \\ \text{S1 : } A[\ f_1(\ i_1, \ \dots, \ i_n), \ \dots, \ f_m(i_1, \dots, \ i_n)\ ] = \dots \\ \\ \text{S2 : } \dots \text{ Assign[req(it_l, Project_l)]ExameHeip} \ \dots, \ i_n)\ ] \end{array}
```

Example: consider the two memory references X[i, j] and X[i, j-1]

for (i=1; i<=100; i++)

for (j=1; j<=100; j++){

S1: X[i,j] = X[i,j] + Y[i-1, j];

S2: Y[i,j] = Y[i,j] + X[i, j-1];

}

For X|

For X[i,j]:
$$f_1(i,j) = i$$
,
 $f_2(i,j) = j$;
For X[i,j-1]: $g_1(i,j) = i$,
 $g_2(i,j) = j - 1$;

Dependence Test as Integer Linear Programming Problem

Does $\exists \alpha, \beta$ in the loop iteration space, s.t.

$$f_k(\alpha) = g_k(\beta)$$

$$f_k(\alpha) = g_k(\beta)$$
 $\forall k, 1 \le k \le m$?

```
for (i=1; i \le 100; i++)
  for (j=1; j <= 100; j++){
     S1: X[i,j] = X[i,j] + Y[i-1,j];
     S2: Y[i,j] = Y[i,j] + X[i, j-1];
Assignment Project Exam Help
```

$$\begin{vmatrix} \alpha : (i_1, j_1) \\ \beta : (i_2, j_2) \end{vmatrix}$$

https://powcoder.com
Consider the two memory references:

 $S1(\alpha)$: X[i₁, j₁], $S2(\beta)$: X[i₂, j₂] powcoder Do such (i₁, j₁), (i₂, j₂)

exist?

If there is dependence, then

$$i_1 = i_2$$
 $j_1 = j_2 - 1$

And
$$(i_1, j_1)$$
: $1 <= i_1 <= 100$, $1 <= j_1 <= 100$, (i_2, j_2) : $1 <= i_2 <= 100$, $1 <= j_2 <= 100$,

Dependence Test as Integer Linear Programming Problem

Does $\exists \alpha, \beta$ in the loop iteration space, s.t.

$$f_k(\alpha) = g_k(\beta)$$
 $\forall k, 1 \le k \le m$?

```
for (i=1; i<=100; i++)
  for (j=1; j <= 100; j++){
     S1: X[i,j] = X[i,j] + Y[i-1,j];
     S2: Y[i,j] = Y[i,j] + X[i, j-1];
Assignment Project Exam Help
```

$$\alpha: (i_1, j_1)$$

 $\beta: (i_2, j_2)$

Consider the two memory references:

 $S1(\alpha)$: $X[i_1,j_1]$, $S2(\beta)$: $A[i_1,j_2]$ but powcode Po such (i_1,j_1) , (i_2,j_2) exist?

Does there exist a solution to this integer linear programming (ILP) problem?

Back to this Example

```
for (i=1; i<=100; i++)
  for (j=1; j <= 100; j++){
     S1: X[i, j] = X[i, j] + Y[i-1, j];
     S2: Y[i, j] = Y[i, j] + X[i, j-1];
  }
```

Dependence in the "i" loop

```
True Dependence
        (RAW)
    Wt: Y[i, j] in S2
\rightarrow Rd: Y[i'-1, j'] in S1
```


True Dependence (RAW) Wt: X[i, j] in $S1 \rightarrow$

(Only showing the ILP problem for the dependence marked in red.)

Dependence in the "j" loop

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from S2(1,1) to S1(2,1)

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from S2(1,1) to S1(2,1) for Y[,] memory reference

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from S2(1,1) to S1(2,1) for Y[,] memory reference

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from S1(1,1) to S2(1,2) for X[,] memory reference

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

Dependence from S1(1,1) to S2(1,2) for X[,] memory reference

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially

- Dependence in affine loops modeled as a hyperplane
- Iterations along the same hyperplane must execute sequentially
- Iterations on different hyperplanes can execute in parallel

The hyperplane is j + i = "a constant"

Distance Vector

The number of iterations between two accesses to the same memory location, usually represented as a distance vector.

do I = 1, N
do J = 1, N
$$S_1$$
: A(I, J) = A(I+1, J-1)

$$j = 4$$

$$j = 3$$

Write After Read

Assignment Project Exam Help\

https://powcoder.com

Read in S₁(1,2) to Write in S₁(2,1) Add WeChat ipowcoder

$$S_1(i, j)$$
 to $S_1(i+1, j-1)$

3 4

Distance vector from read to write: (1, -1)

Processing Space: Affine Partition Schedule

- <C, c> to represent a partition
 - \mathbf{C} is a n by m matrix
 - m = d (the loop level)

Notation:

bold fonts for container variables; normal fonts for scalar variables.

- n is the dimension of the processor grid
- c is a n-element constant vector
- p = C*i + c Assignment Project Exam Help
- Examples

https://powcoder.com

Add WeChat powcoded processor grid

$$C = [1], c = [0], p = i$$

for (i=1; i<=N; i++)
for (j=1; j<=N; j++)

$$Y[i,j] = Z[i,j];$$

 $C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $p = i, q = j$

- Two memory references as $\langle F_1, f_1, B_1, b_1 \rangle$ and $\langle F_2, f_2, B_2, b_2 \rangle$
- Let $\langle C_1, c_1 \rangle$ and $\langle C_2, c_2 \rangle$ represent their respective processor schedule
- To be synchronization-free
 - For all i_1 in \mathbf{Z}_{d1} (d1-dimension integer vectors) and i_2 in \mathbf{Z}_{d2} such that
 - 1. $B_{1*}i_1 + b_1 \stackrel{\text{Assignment Project Exam Help}}{= 0}$, and
 - 2. $B_{2*}i_2 + b_2 >= 0$, https://powcoder.com
 - 3. $\mathbf{F}_{1*}i_1 + f_1 = \mathbf{F}_{2*}i_2 + f_0$, where $\mathbf{F}_{1*}i_1 + f_1 = \mathbf{F}_{2*}i_2 + f_0$, where $\mathbf{F}_{1*}i_1 + f_1 = \mathbf{F}_{2*}i_2 + f_0$
 - 4. It must be the case that $C_{1*}i_1 + c_1 = C_{2*}i_2 + c_2$.

 $\mathbf{F_1}$, $\mathbf{f_1}$ is for memory reference, i.e., $\mathbf{F_1} * \mathbf{x} + \mathbf{f_1}$

 $\mathbf{B_1}$, $\mathbf{b_1}$ is for loop bound constraints, i.e., $\mathbf{B_1}^*\mathbf{x} + \mathbf{b_1}$

- To be synchronization-free
 - For all i_1 in \mathbf{Z}_{d1} (d1-dimension integer vectors) and i_2 in \mathbf{Z}_{d2} such that j=4
 - ▶ $\mathbf{B}_{1}*i_{I} + b_{I} >= \mathbf{0}$, and
 - ▶ $\mathbf{B}_{2}*i_{2}+b_{2}>=\mathbf{0}$, and
 - F_{1*i₁} + f_1 = F_{2*i_A+s f_2 nancht Project Exam Help}
 - It must be the case that https://powcoder.com $C_1*i_1 + c_1 = C_2*i_2 + c_2$. j = 1 Add WeChat powcoder

```
for (i=1; i<=100; i++)

for (j=1; j<=100; j++){

   S1: X[i,j] = X[i,j] + Y[i-1, j];

   S2: Y[i,j] = Y[i,j] + X[i, j-1];

}
```


j = 3

$$1 <= i_{3} <= 100, \quad 1 <= j_{3} <= 100,$$

$$1 <= i_{4} <= 100, \quad 1 <= j_{4} <= 100,$$

$$i_{3} -1 = i_{4}, \qquad j_{3} = j_{4},$$

$$[C_{11} \quad C_{12}] \begin{bmatrix} i_{3} \\ j_{3} \end{bmatrix} + [c_{1}] = [C_{21} \quad C_{22}] \begin{bmatrix} i_{4} \\ j_{4} \end{bmatrix} + [c_{2}]$$

$$1 <= i_{1} <= 100, \quad 1 <= j_{1} \text{Assignment Project Exam Help}$$

$$1 <= i_{2} <= 100, \quad 1 <= j_{2} <= 100,$$

$$i_{1} = i_{2}, \quad j_{1} = j_{2} - 1, \quad \text{https://powcoder.com}$$

$$[C_{11} \quad C_{12}] \begin{bmatrix} i_{1} \\ j_{1} \end{bmatrix} + [c_{1}] = [C_{21} \quad C_{22}] \begin{bmatrix} A \text{dd} \\ j_{2} \end{bmatrix} + [c_{2}] \text{exam Help}$$

$$[C_{11} \quad C_{21}] \begin{bmatrix} i_{1} \\ j_{2} \end{bmatrix} + [c_{1} - c_{2} + C_{21}] = 0$$

$$[C_{11} \quad C_{12}] \begin{bmatrix} i_{1} \\ j_{2} \end{bmatrix} + [c_{1}] = [C_{21} \quad C_{22}] \begin{bmatrix} A \text{dd} \\ j_{2} \end{bmatrix} + [c_{1}] = 0$$

$$[C_{11} - C_{21} \quad C_{12} - C_{22}] \begin{bmatrix} i_1 \\ j_1 \end{bmatrix} + [c_1 - c_2 - C_{22}] = 0$$

S1 to S2 dependence

S2 to S1 dependence

True, i loop, for Y

True, j loop, for X

True, i loop, for Y

True, j loop, for X

Assignment Project Exam Help

$$[C_{11} - C_{21} \quad C_{12} - C_{22}]$$
 $\begin{bmatrix} i_1 \\ j_1 \end{bmatrix}$ + $[c_1 - \text{lettpc.//pewcoler.} C_{22}]$ $\begin{bmatrix} i_2 \\ j_1 \end{bmatrix}$ + $[c_1 - \text{lettpc.//pewcoler.} C_{22}]$

Add WeChat powcoder

$$[C_{11} - C_{21} \quad C_{12} - C_{22}] \begin{bmatrix} i_3 \\ j_3 \end{bmatrix} + [c_1 - c_2 + C_{21}] = 0 \quad \Longrightarrow$$

$$C_{11}$$
- C_{21} =0, C_{12} - C_{22} =0, & c_1 - c_2 + C_{21} =0

$$C_{11} = C_{21} = -C_{22} = -C_{12} = c_2 - c_1$$

Solution

$$j = 4$$

$$j=3$$

Assignment Project Exam Help

$$p(S1)$$
: < $[C_{11} \ C_{12}]$, $[c_1]$ > https://

https://powcoder.com j = 1

 $p(S2): < [C_{21} \ C_{22}], [c_2] > Add W$

Add WeChat powcoder

p: p:

p:

p:

p:

p:

Affine schedule for S1, p(S1):
$$[C_{11} C_{12}] = [1 - 1]$$
, $c_1 = -1$ i.e. (i,j) iteration of S1 to processor $p = i-j-1$;

Affine schedule for S2,
$$p(S2)$$
 [C₂₁ C₂₂]=[1-1], c₂=0 i.e. (i,j) iteration of S2 to processor $p=i-j$.

$$C_{11} = C_{21} = -C_{22} = -C_{12} = c_2 - c_1$$

More Examples

Affine partition schedule

do
$$I = 1, N$$

do $J = 1, N$
 $S_1: A[I, J] = A[I-1, J-1]$

$$j = 4$$

$$j = 3$$

Read After Write

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

The hyperplane is j - i = "a constant"

1 2 3 4 5 6

Affine schedule for S_1 , $p(S_1)$: $C=[C_{11} \ C_{12}]=[1 \ -1], \ c=0$ i.e. (i,j) iteration of S_1 to processor p=i-j;

More Examples

Affine partition schedule

do
$$I = 1, N$$

do $J = 1, N$
 $S_1: A[I, J] = A[I+1, J-1]$

$$j = 4$$

$$j = 3$$

Assignment Project Exam Help\

Write After Read

https://powcoder.com

Read in S₁(1,2) to **Write** in S₁(2,1) we chat joowcoder

$$S_1(i, i)$$
 to $S_1(i+1, i-1)$

The hyperplane is j + i = "a constant"

Affine schedule for S1, p(S1): $C = [C_{11} C_{12}] = [1 \ 1], c = 0$ (i, j) iteration of S1 to processor p = i + j;

Next Class

Reading

• ALSU, Chapter 11.1 - 11.7

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder