

Aula 13 Ressonância magnética nuclear. Ressonância paramagnética eletrônica

Jiří Borecký CCNH 2014

Ressonância magnética nuclear

Jiří Borecký CCNH 2014

NMR - introdução

NMR e EPI

➢ Ressonância magnética nuclear (NMR)

- Um efeito, onde os núcleos com spin magnético em um campo magnético absorvem e re-emitem energia eletromagnética.
- Esta energia emitida ocorre em frequências de ressonância específicas que dependem da força do campo magnético, entre outros fatores.
- O efeito permite a observação das propriedades mecânicas e magnéticas quânticas dos núcleos de átomos.
- O fenômeno de NMR pode ser usado nos estudos da física molecular, nos cristais e materiais não cristalinos pela espectroscopia de NMR
- Técnicas médicas de imaging também usam NMR em imagens por ressonância magnética (magnetic resonance imaging - MRI).

NMR - introdução

NMR e EPF

- Ressonância magnética nuclear tem várias categorias:
 - Modo de alta resolução em soluções homogêneas
 - Modo de alta potência em núcleos com alto relaxamento (polímeros)
 - Estudo de sólidos usando técnicas de rotação em Ângulo Mágico
 - NMR 3D *imaging* com resoluções de ~ 1 μm.
- Único método espectroscópico, em que é possível análise e interpretação total de espectro
- ➤NMR é não destrutiva
- >Amostras com quantidade (enorme) de miligramas são necessárias
- ➤Usa-se um campo magnético enorme de 1 a 20 T (tesla). Para comparação, o campo magnético na superfície da Terra é ~10-4 T
- Usam-se ondas de rádio com frequências de dezenas a centenas de MHz

Universidade Federal do ABC BC-1308 Biofísica

NMR e EPR

- Núcleos de muitos isótopos de átomos tem um spin característico (I) que pode ser
 - Fracional (número de prótons ou nêutrons ímpar):
 - I = 1/2 (¹H, ³H, ¹³C, ¹⁷N, ¹⁹F e ³¹P)
 - $I = 3/2 (^{11}B)$
 - $I = 5/2 (^{17}O)$
 - Integral (número de prótons e nêutrons ímpar): I = 1 (²H ou D, ¹⁴N, fóton), I = 2 (graviton)
 - Nulo (número de prótons ou nêutrons par): I = 0 (¹²C, ¹⁶O, ³²S,)
- Número quântico de spin (s) pode ser igual a n/2, (n = integer). Assim, os valores permitidos do s são 0, 1/2, 1, 3/2, 2, etc. O valor do s depende somente do tipo da partícula e não pode ser mudado por nenhuma maneira conhecida (contrário à direção do spin).
- ➤ Momento angular intrínseco de spin (S) de cada sistema físico é quantizado. Os valores permitido do S são:

$$S = \hbar \sqrt{s(s+1)}$$

≻Onde ħ é constante de Planck reduzida (ħ = h/2π)

Spin de isótopos

			Momento	Razão
	Abundance		Magnético	Giromagnético
Isótopo	Natural (%)	Spin (I)	(µ)*	(γ)†
$^{1}\mathrm{H}$	99,9844	1/2	2,7927	26,753
^{2}H	0,0156	1	0,8574	4,107
$^{11}\mathbf{B}$	81,1700	3/2	2,6880	
¹³ C	1,1080	1/2	0,7022	6,728
¹⁷ O	0,0370	5/2	-1,8930	-3,628
$^{19}\mathbf{F}$	100,0000	1/2	2,6273	25,179
²⁹ Si	4,7000	1/2	-0,5555	-5,319
$^{31}\mathbf{P}$	100,0000	1/2	1,1305	10,840

^{*} μ em unidades de magnetons nucleares = 5.05078•10⁻²⁷ JT⁻¹ † γ em unidades de 10⁷ rad T⁻¹ s⁻¹

Universidade Federal do ABC BC-1308 Biofísica

- ➤ Uma carga girando gera um campo magnético
- >O spin resultante tem um momento magnético (μ) proporcional ao spin.
- Na presença de campo magnético externo (B₀), existem dois estados do spin,
 - estado com menor energia +1/2 alinhado com o campo externo
 - estado com maior energia -1/2 que é é oposto ao campo.
- A diferença da energia entre os dois estados do spin é dependente na força do campo magnético externo e sempre é bastante pequena.
- ➢Os dois estados do spin têm a mesma energia quando o campo externo é zero mas diverge quando o campo aumenta.

Fig. 15.1 The interactions between the m_s states of an electron and an external magnetic field may be visualized as the precession of the vectors representing the angular momentum.

- A amostra pode ser exposta a radiação de frequência ω
- ➤A absorção de energia correspondente a transição entre os níveis de spin ½ e -½ ocorre quando se satisfaz a condição de ressonância
- A diferença de energia se expressa como frequência de Larmor v
- ➤O núcleo do átomo de hidrogênio (o próton) que foi mais estudado até agora tem momento magnético μ = 2.7927 magnetons nucleares = $1.410531331 \times 10^{-26} \text{ JT}^{-1}$

$$\omega = 2\pi v = \mu B_0$$

$$v = \frac{\mu B_0}{2\pi}$$

NMR e EPR

>O pulso de radiofrequência gera um campo rotante (B₁) com frequência ω₀. A interação entre B₁ e o momento magnético total M desloca este vetor da direção z de um pequeno ângulo θ . Dado que B_1 roda em torno de B_0 com frequência ω_0 na condição de ressonância, M terá um movimento de precessão em torno de B₀.

$$\omega = 2\pi \nu = \mu B_0$$

$$\nu = \frac{\mu B_0}{2\pi}$$

30F5542Fd01.swf AAC30134d01.swf

NMR - espectrômetro

- >Esquema de um espectrômetro de onda contínua
- ➤ Hoje são usados ímãs de supracondutores que geram campos magnéticos maiores de 21 T

NMR - espectrômetro

NMR e EPR

- > espectrômetro de onda contínua precisa muito tempo para excitar cada conjunto de núcleos separadamente aumentando devagar a frequência para atingir a alta resolução
- > espectrômetro de transformação de Fourier do pulso excita todos os átomos de vez por um pulso de 10 a 100 µs com força 10.000 vezes maior que espectrômetro de onda contínua
- ➤Ondas de todas frequências emitidas por ressonância se mesclam num padrão de relaxamento

► A onda complexa é transformada por transformação de Fourier em um espectro de frequências separadas

NMR - sinal

NMR e EPR

▶Para o spin de 1/2, a diferença entre os estados de spin no dado campo magnético (2,35 T) será proporcional a seus momentos magnéticos.

$$v = \frac{\mu B_0}{hI}$$

NMR - sinal

- Todos os prótons tem o mesmo momento magnético seria esperado que tem o mesmo sinal
- Felizmente, não é o caso. O sinal de núcleo de hidrogênio ligado a outros átomos difere por causa de campo magnético secundário gerado por elétrons que o circundam em moléculas com ligações covalentes ou em íons
- Elétrons vão criar um campo oposto ao nuclear, "protegendo-o"
- ➤O escudo magnético depende da densidade eletrônica em volta do núcleo, que depende da presença de grupos eletropositivos ou eletronegativos

NMR - sinal

BC-1308 Biofísica

NMR e EPR

- ➤ Diferentemente da IV ou UV/VIS espectroscopia, onde os picos de absorção são localizados unicamente por frequência ou comprimento de onda, a localização dos sinais da ressonância NMR depende:
 - na força do campo magnético externo
 - na frequência do rádio

Por causa que nenhum dos dois ímãs terá exatamente o mesmo campo, as frequências da ressonância vão variar entre aparelhos → precisa-se um método alternativo para caracterizar
 OS picos

Increasing Frequency at Fixed Magnetic Field

Increased Shielding by Extranuclear electrons

ClaC

HaC

ClaC

shift químico δ

NMR e EPR

Método do padrão como referência:

- Padrão tem que ser não reativo, fácil de remover da amostra e tem que ter sinal agudo que não interfere com ressonâncias normalmente observadas para compostos orgânicos
- Tetrametilsilano, (CH₃)₄Si, abreviado como TMS, tem estas características e ficou como o composto referente para NMR de hidrogênio e carbono
- Para evitar a dependência do sinal ao campo magnético, a diferença dos sinais (amostra - referência) é dividida pela frequência da referência correspondente ao campo resultando em um shift (deslocamento) químico δ

Increasing Magnetic Field at Fixed Frequency ----- Increasing Frequency at Fixed Magnetic Field Chemical Shift 215 Hz 530 Hz $B_0 = 2.34 \text{ T}$ 734 Hz 1075 Hz 2650 Hz $B_0 = 11.75 \text{ T}$ 3670 Hz 7.34 5.30 2.15 0.0 10

shift químico δ

NMR e EPR

Assim cada composto terá seu sinal único e característico

shift químico δ

NMR e EPR

➤ Para cada grupo funcional, é possível determinar as faixas do *shift* químico que refletem as mudanças do ambiente estrutural do grupo

Interação spin-spin

NMR e EPR

- ➤O sinal pode apresentar divisões em dublete, triplete, quartete, etc. A divisão é pequena (0,1 a 20 Hz) e é denominada como constante de coupling (J).
- O fenômeno é baseado na interação se spins de núcleos de hidrogênio adjacentes e fornece informação detalhada sobre conectividade de átomos da molécula

➤ Triplete de CH₃(A)

2 núcleos de H(C) equivalentes (spin 1/2) -Pelo Triângulo de Pascal, 2MI + 1 = 2(2)(1/2) + 1 = 3 linhas comrazão 1:2:1

➤ Quartete de CH₃(C)

3 núcleos de H(A) equivalentes (spin 1/2) -Pelo Triângulo de Pascal, 2MI + 1 = 2(3)(1/2) + 1 = 4 linhas

NMR e EPF

>Amostras:

- Solução aquosa de proteína altamente purificada
- 300-600 µl de proteína com concentração de 0,1–3 mM.
 - 300 µl de fibrina (200 kDa) 0,1 mM → 6 mg
 - 600 µl de BSA (60 kDa) 3 mM → 108 mg
- Proteína pode ser natural ou recombinante
- Proteínas recombinantes são mais fáceis de preparar em quantidades grandes e permitem marcação isotópica, porém o enovelamento pode ser comprometido (expressão bacteriana de proteína de eucarionte)
- ➤Os isótopos abundantes de carbono e oxigênio, ¹²C e ¹6O, não têm o spin nuclear
- ➢O isótopo abundante de nitrogênio, ¹⁴N, tem o spin nuclear I=1 com um grande momento quadrupolar – isso previne obtenção de informação de alta resolução
- ► Raros isótopos, ¹³C e ¹⁵N, tem o spin nuclear I=1/2
- Marcação isotópica pode ser feita através de crescimento da cultura recombinante em meios mínimos contendo somente uma fonte de carbono ¹³C (glicose, glicerol ou metanol) e uma fonte de ¹⁵N [NH₄Cl ou (NH₄)₂SO₄].
- Organismos usados: bactéria Escherichia coli e levedura Pichia pastoris.

NMR e EPF

➤ Metodologia:

- Grandes moléculas de proteínas o número de ressonâncias pode ser tipicamente miliares e assim, o espectro uni-dimensional terá inevitavelmente sobreposições acidentais
- espectros multi-dimensionais diminuem perigo de sobreposições
- Magnetização é feita em sequências de pulsos
 - Transferência da magnetização pelas ligações covalentes (shift químico)
 - Transferência da magnetização espacial sem respeito da estrutura
- Arranjo de experimentos:
 - Heteronuclear single quantum correlation HSQC
 - bi-dimensional homonuclear NMR com espectroscopia correlacional (COSY)
 - Nuclear Overhauser effect NOE
 - ¹³C NMR
 - 17N NMR

BC-1308 Biofísica

NMR e EPR

➤ Espectros bi-dimensionais:

- varia-se tempo de evolução (t₁, t₁+Δt, t₁+2.Δt, ...)
- tempo de aquisição t₂ também pode ser variado

NMR e EPR

Cetas azuis representam orientação de ligação N - H peptídica. Com a determinação de orientação de quantidade suficiente de ligações relativas ao campo magnético externo, a estrutura de proteína pode ser determinada.

Aula 14 Ressonância paramagnética eletrônica

Jiří Borecký CCNH 2014

EPR – introdução

- A espectroscopia de ressonância paramagnética eletrônica ou de ressonância de spin eletrônico (EPR, do inglês electron paramagnetic resonance ou ainda ESR, do inglês *electron spin resonance*):
 - detecta espécies contendo elétrons desemparelhados
 - espécies paramagnéticas.
- Em geral, esta condição verifica-se quando a espécie é:
 - um radical livre, se é uma molécula orgânica
 - metais de transição em complexos inorgânicos ou metaloproteínas.
- A teoria subjacente à técnica é análoga à de NMR, havendo lugar à excitação dos spins dos elétrons, ao invés dos spins dos núcleos atômicos.
- Campos magnéticos menos intensos e frequências mais elevadas são usadas em EPR que em NMR devido à diferença de massa entre núcleos e elétrons. Para elétrons em um campo magnético de 0,3 T, a ressonância de spin ocorre cerca de 10 GHz.

EPR – introdução

- Esta técnica é menos usada nas medições diretas que a espectroscopia de ressonância magnética nuclear porque a maioria das moléculas possui uma configuração eletrônica de valência completa, sem elétrons desemparelhados.
- ➤ Maior uso da espectroscopia da ressonância paramagnética de elétrons é através das sondas de spin.

EPR – espectrômetro

EPR – princípio

NMR e EPR

➤ Origem do sinal da EPR:

- Elétrons desaparelhados têm spin I=1/2
- Na presença do campo magnético externo o momento magnético dos elétrons se alinha paralelamente com o campo ($m_s = -1/2$) ou antiparalelamente (m_s = +1/2) e cada estado tem energia diferente. A diferença de energia é dada

$$\Delta E = g_e \mu_B B_0$$

$$\epsilon = h \nu$$

$$\epsilon = \Delta E$$

$$h \nu = g_e \mu_B B_0$$

Onde $g_{_{\rm B}}$ é g-fator do elétron e $\mu_{_{\rm B}}$ é magneton de Bohr e E é energia da radiação eletromagnética.

População: depende basicamente do campo aplicado B e da temperatura.

Distribuição de Maxwell / Boltzmann

$$\frac{N_{+1/2}}{N_{-1/2}} = e^{-\frac{\Delta E}{kT}}$$

EPR – estrutura fina/superfina

- >estrutura fina ocorre por causa de:
 - Interação entre momentos magnéticos associados ao spin de elétron e momento orbital angular de elétron
- > estrutura superfina ocorre por causa de:
 - Energia do momento de dipolo nuclear magnético em campo magnético gerado por elétrons
 - Energia do momento de quadrupolo nuclear elétrico em gradiente do campo elétrico por causa de distribuição da carga dentro do átomo

EPR – estrutura superfina acoplamento

- ➤ Alguns núcleos tem spin (I) que também perdem degenerescência na presença de um campo magnético B
- ➤ Spin eletrônico e nuclear e se acoplam (se somam e subtraem) gerando diferentes níveis de energia.

EPR – espectrômetro de onda contínua

- ➤ Na espectroscopia de EPR se usa mais a frequência de radiação constante com mudança de campo magnético
- ➤ Quanto o B₀ é mais próximo da transição maior sinal é emitido
- ➤ Na prática se usa 1ª derivada do sinal para que é possível registrar picos bastante próximos que ficariam ocultos no espectro bruto

- Estrutura hiperfina divide os picos em um conjunto de picos que depende em:
 - Spin do núcleo ajacente
 - Presença de um ou vários elétrons idênticos
 - Nas moléculas, o sinal pode ser afetado por proximidade de outros núcleos
- Diferentes núcleos tem diferentes spins
 - $I = \frac{1}{2} \rightarrow m_1 = \frac{1}{2}$; $-\frac{1}{2}$ (H, P, 13 C)
 - $I = 1 \rightarrow m_1 = 1; 0; -1 (^{14}N)$

NMR e EPR

>Sinal de CH₃ • radical:

3 núcleos de H equivalentes (spin 1/2) – Pelo Triângulo de Pascal, 2MI + 1 = 2(3)(1/2) + 1 = 4 linhascom razão 1:3:3:1

➤ Sinal de •H₂C-O-CH₃ radical:

- 2 núcleos de H equivalentes (spin 1/2) – Pelo Triângulo de Pascal, 2MI + 1 = 2(2)(1/2) + 1 = 3 linhascom razão 1.2.1
- 3 núcleos de H equivalentes (spin 1/2) – Pelo Triângulo de Pascal, 2MI + 1 = 2(3)(1/2) + 1 = 4 linhascom razão 1:3:3:1
- O total será 3×4 => 12 linhas, um triplete de quartetos

NMR e EPR

➤ Sinal de TEMPOL (4-hidroxi-2,2,6,6-tetrametilpiperidina-1-oxil) — um radical estável

EPR - uso

NMR e EPR

► A espectroscopia de EPR é usada:

- na física do estado sólido
- em química na identificação e quantificação de radicais e na identificação de vias de reação química
- em biologia e medicina na marcação de moléculas com sondas de spin
- em bioquímica na identificação e caracterização estrutural de centros metálicos em metaloproteínas.

Typical EPR spectrum of nitroxyl spin label

BC-1308 Biofísica

NMR e EPR

- ➤ Técnica de spin trapping
- ➤ Classes de *spin trappings* mais comuns:
 - Nitronas: radical se adiciona no Cα
 - Nitroso: radical se adiciona no N

$$H \xrightarrow{R'}_{O} R \xrightarrow{\bullet X} H \xrightarrow{R'}_{X} N \xrightarrow{\bullet}_{O} R$$

$$R-N=0$$
 $\xrightarrow{\bullet X}$ \xrightarrow{X} $N \stackrel{\bullet}{=} C$

 $(X = OR, OH, SR, CR_3, ROO, O_2^-)$

NMR e EPR

Escolha do spin trapping

>Critérios:

- cinética com o radical de interesse;
- estabilidade do radical derivado (tempo de vida);
- facilidade para interpretar o espectro de EPR do radical derivado;
- solubilidade do spin trapping em meio aquoso e meio hidrofóbico.

эуэнсти		
Name	Abbreviation	Structure
tert-Nitrosobutane (nitroso-tert-butane)	tNB (NtB)	CH ₃ H ₃ C−C−N=O CH ₃
α-Phenyl- <i>tert</i> -butylnitrone	PBN	$CH = N$ $C(CH_3)_3$
5,5-Dimethylpyrroline- <i>N</i> -oxide	DMPO	$H_{3}C$ C C C C C C C C C
tert-Butylnitrosobenzene	BNB	$(CH_3)_3C$ $C(CH_3)_3$ $C(CH_3)_3$
α-(4-Pyridyl-1-oxide)- <i>N-tert</i> -butylnitrone	4-POBN	CH=N-C(CH ₃) ₃
3,5-Dibromo-4-nitroso- benzenesulphonic acid	DBNBS	$-O_3S \longrightarrow Br$ Br Br

Spin traps also vary in their hydrophobicity; for example, DMPO (octanol: water partition coefficient 0.08) or POBN (0.09) will be much less useful in trapping radicals within membranes or lipoproteins than such species as PBN (partition coefficient 10.4).

NMR e EPR

Spin trapping de superóxido e radical hidroxil

TABLE 2. APPARENT SECOND ORDER RATE CONSTANTS (K_{APP}) FOR THE TRAPPING OF SUPEROXIDE OR HYDROXYL RADICALS, PARTITION COEFFICIENTS (K_{D}), AND TOXICITY OF COMMONLY USED NITRONE SPIN TRAPS, AND HALF-LIVES (T10) OF THEIR CORRESPONDING SPIN ADDUCTS

Spin traps	O_2 trapping *		$\cdot OH\ trapping^{\dagger}$		Partition	Toxicity	
	$k_{app} (\mathbf{M}^{-1} s^{-1})$	t _{1/2} (min)	$k_{app} (/10^{-9} \ { m M}^{-1} \ s^{-1})$	$t_{1/2}(min)$	coefficient $(K_p)^{\sharp}$	Cells [IC ₅₀ (mM)]	Animals (mg/100 g)§
DMPO	50(86)-60(18)	1(86)	1.9(87)-3.4(18)	55(87)	0.1(34)	138(29)	<200(71)
EMPO		8.6(77, 98)	5.0(87)	127(87)	0.15(77)	_	
DEPMPO	60(86)-90(19)	14(86)	4.8(87)-7.8(19)	132(87)	$0.06^{(1)}$	<25(45)	 -
DIPPMPO	<u> </u>	~23(7)	4.6(87)	158(87)	2.1(7)	32 <u>- 10</u> -	<u></u> 0
PBN	N/A	N/A	6.1-8.5(65)	0.8(33)	15(34)	9.4(29)	<100(71)
4-PyOBN	N/A	N/A	4.0(65)	$0.2^{(33)}$	0.15(34)	5.4(29)	<100(71)

References are given as superscripts. A dash indicates data not reported. N/A, not applicable.

^{*}Using a riboflavin-lightradical generating system in phosphate buffer, pH 7.0.

[†]Radical sources: Janzen et al. (33) and Villamena et al. (87) with UV photolysis of H₂O₂; Rosen et al. (65) with ionizing radiation-N₂O; Finkelstein et al. (18) and Frejaville et al. (19) with Fe²⁺-H₂O₂.

[‡]In 1-octanol/phosphate buffer system, pH 7.4.

[§]On Sprague-Dawley rats as lethal doses.

BC-1308 Biofísica

- ➤A espectroscopia de EPR de proteína marcada por armadilha de spin (3,5dibromo-4-nitrosobenzenosulfonato – DBNBS)
- ➤ DBNBS se liga a tirosina formando um radical estável

Fig. 2. Schematic representation of the spin-trapping of a protein radical and of analytical techniques employed to characterize the trapped radical. In the example, a protein-tyrosyl radical is trapped with the spin-trap DBNBS (DBNBS-N=O). The resulting P-radical adduct can be detected by EPR and/or MS spectra. To identify the trapped amino acid residue(s), the P-radical adduct is submitted to proteolysis and further EPR and LC/MS/peptide mapping analysis

BC-1308 Biofísica

- A proteína pode ser marcada por uma sonda de spin de derivado de metanotiosulfato
- ➤ Diferentes sondas têm tamanhos e flexibilidades diferentes
- ➤ Enovelamento da proteína vai definir espaço de movimentos restritos da marcação

Fig. 1 a Reaction of the methanethiosulfonate spin label (MTSSL) with the sulfhydryl group of a cysteine side chain, generating the spin label side chain R1. **b** Flexible bonds within the R1 side chain are indicated. **c** Chemical structure of the MTS-4-oxyl spin label. **d** Reaction of a maleimide spin label *N*-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)maleimide with the sulfhydryl group of a cysteine side chain

- A proteína pode ser marcada por uma sonda de spin TOAC "dentro" da α-hélice
- >A TOAC tem movimentos bastante restritos pela posição – para cima e para baixo, ao longo da hélice

Fig. 2 a TOAC amino acid spin label. Upper panel: chemical structure. Bottom panel: three-dimensional structure of the spin label incorporated into an α -helix. **b** The flip of the six-membered ring as the only possible degree of freedom is shown in shaded representation. c Native and expressed protein ligation (IPL, EPL). The chemical ligation occurs between a C-terminal thioester (peptide 1) and a sulfhydryl group of an N-terminal Cysteine (peptide 2). After rearrangement through an $N \rightarrow S$ acyl shift, a peptide bond is formed

BC-1308 Biofísica

NMR e EPR

Marcação de ácidos nucléicos pode ser feita pela modificação das bases ou do acúcar

Fig. 3 Spin labeling of nucleic acids. a Nitroxide spin-labeled thymidine analog. b Modification of 4-thiouridine with MTSSL. c Modification of the sugar moiety of nucleotides; postsynthetic derivatization of a 2'-amino group introduced into oligonucleotides with the chemically reactive isocyanate derivative of a TEMPO-like moiety (figure modified according to Edwards et al. 2001)

- ➤ Análise da mobilidade de proteínas marcadas por spin
 - Medição da largura da linha central
 - Determinação do 2º momento central (variância)
- Marcação menos restrita tem sinal com a largura da linha central mais estreita e menos divisões por estrutura hiperfina

Fig. 4 Mobility analysis of spin labeled proteins. a Ribbon representation of the NpSRII X-ray structure (Luecke et al. 2001). Ca atoms of spin-labeled sites are depicted as balls (S154R1, K157R1, S158R1, L159R1). b X-band EPR spectra of NpSRII solubilized in DDM (gray) or reconstituted in purple membrane lipids (black). c Mobility map. The values of the inverse second moment, $\langle H^2 \rangle^{-1}$, and of the inverse of the central linewidth, ΔH_0^{-1} , of solubilized (gray circles) and reconstituted NpSRII (black squares) were determined from the spectra shown in panel b. The topological regions of a protein are indicated by boxes according to Isas et al. (2002) and McHaourab et al. (1996)

EPR – sondas de spin

NMR e EPR

A espectroscopia de EPR de ligação de ácido DOXYL-esteárico (sonda de spin) com proteína desacopladora ma mitocôndria de tecido adiposo marrom de hamster. A esquerda: efeito do ATP, à direita efeito do substrato competidor

Fig. 4. EPR spectra of 5-DOXYL-stearic acid bound to the uncoupling protein after addition of ATP. (A) Series of subsequent ATP additions; ATP was added after 5-SASL to the UcP sample at concentrations indicated at each trace. The ATP stock solution contained 2% octylpentaoxyethylene. (B) Re-binding of the 5-SASL in the presence of ATP

Fig. 1. EPR spectra of 5-DOXYL-stearic acid bound to the uncoupling protein and their changes after addition of palmitic acid and hexanesulfonate. Traces from the top: (1) control; (2) 2 mM palmitic acid; (3) 27 mM hexanesulfonate; (4) 2% octylpentaoxyethylene, no protein. 124 μM 5-SASL and 30 μM (2 mg/ml) uncoupling protein were present in 5 mM TEA-TES, 30 mM TEA-SO₄, 0.2 mM TEA-EDTA, pH 7.2. Palmitic acid and hexanesulfonate stock solutions contained 2% octylpentaoxyethylene in order to keep a constant viscosity. The arrows indicate peaks of the immobilized (h₊₁₁ and h₋₁₁) and mobile probe $(h_{+1M}).$