

6 静电屏蔽、磁屏蔽及电磁屏蔽的仿真研究

电工电子教学实验中心 2020年5月20日

任务1:在ANSYS Maxwell 2D静电场模块求解下,在金属空腔分别由铜、铁两种不同金属材料制成时,场域电场分布以及空腔中心的电场强度及电位值。

金属空腔材料	空腔中心的电场强度	空腔中心的电位
铜		
铁		

注意:设置源和边界条件,外边框为气球边界"balloon"; 上面的矩形金属条的初始电位为100V;下面的矩形金属条 的初始电位为0V。注意,要将矩形金属腔设置为悬浮导体。 选择金属腔的外导体,选择Assign Excitation → Floating → OK,将金属腔设置为悬浮导体。

ANSYS Maxwell 2D模型

任务2-1:在ANSYS Maxwell 2D静磁场模块求解下,两有限大恒定电流片之间 放置不同材料制成的圆柱管时,仿真场域的磁场分布以及管内某点的磁场强度H, 圆柱管材料的磁导率分别取下表中的值。(相对磁导率:Relative Permeability)

	圆柱管材料的磁 导率 $\mu = 500 \mu_0$	圆柱管材料的磁 导率 $\mu = 1000 \mu_0$
圆柱管中心的 磁场强度H		

结论:圆柱管内的磁场强度H与圆柱管材料的磁导率成____。(正比/反比)

注意:设置材料,求解域Region的材料为空气air,上下恒定大电流片的材料为铜,圆柱管材料的磁导率 $\mu = \mu_0$ 时,选择Assign Material \rightarrow Add Material \rightarrow 相对磁导率栏输入数字"1" \rightarrow OK \rightarrow 金属腔的材料变为Material1,其相对磁导率为1。

任务2-2:在ANSYS Maxwell 2D静磁场模块求解下,两有限大恒定电流片之间放置铁材料制成的圆柱管时,圆柱管的厚度变化时管内的磁场强度H。

	圆柱管	圆柱管	圆柱管
	外径R1=12cm	外径R1=12cm	外径R1=12cm
	内径R2= <mark>6cm</mark>	内径R2= <mark>8cm</mark>	内径R2= <mark>10cm</mark>
圆柱管中心的 磁场强度H			

结论:圆柱管内的磁场强度H与圆柱管的厚度成____。(正比/反比)

注意:建模时,在工程树栏双击内圆Circle下的CreateCircle,打开属性窗口,修改Radius属性即可修改内圆半径,重新仿真计算,不必重新建模。

任务3:若图3.2.2-3中的两个金属极板为两平行的汇流排,其中通有大小相等方向相反的交变电流 i(t),用ANSYS Maxwell 2D涡流场模块分别求解金属腔材料的相对磁导率 μ_r ,以及电导率 γ 改变时,屏蔽系数S与 μ_r 和 γ 的关系。

1) 研究S与 μ_r 的关系。 $S = \frac{H}{H_0} = \frac{4}{\frac{\mu}{\mu_0} \times \left(1 - \frac{R_2^2}{R_1^2}\right)}$

	金属腔材料的磁	金属腔材料的磁	金属腔材料的磁
	导率 $\mu = \mu_0$	导率 $\mu = 500 \mu_0$	导率 $\mu = 1000 \mu_0$
金属腔中心的 磁场强度H			

结论:S与材料的相对磁导率 μ_r 关系成。(正比/反比)

任务3:2) 研究S与 γ 的关系。(电导率:bulk conductivity)

在3-1)仿真的基础上, $\mu = \mu_0$, 改变材料的电导率分别为 $\gamma = 1e7$ $\gamma = 1e8$ $\gamma = 1e9$

	金属腔材料的电	金属腔材料的电	金属腔材料的电
	导率 $\gamma = 1e7$	导率 $\gamma = 1e8$	导率 γ = 1e9
金属腔中心的 磁场强度H			

结论:S与材料的电导率 γ 关系成____。(正比/反比)

本次实验不用交报告,要求现场完成仿真内容并将仿真结果填入电子版报告中,以便教师验收。

