Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Робототехники и комплексной автоматизации (РК)			
КАФЕЛРА	Системы автоматизированного проектирования (РК-6)			

<u>OTHET</u>	<u>ПО ЛАБОРАТОРНО</u>	<u>и работе</u>			
	по дисциплине: «Схемоте	хника»			
Студент	Журавлев Никол	Журавлев Николай Вадимович			
Группа	РК6-62Б	РК6-62Б			
Тип задания	Лабораторная ра	Лабораторная работа №4			
Название последовательных схет	«Разработка VHD) м с регулярной структурой»	L-описания			
Студент	подпись, дата	Журавлев Н.В. фамилия, и.о.			
Преподаватель	подпись, дата	Берчун Ю.В. фамилия, и.о.			
Оценка					

Оглавление

Цель работы	3
Задание	3
Схема	3
Программный код построения	3
Построение временных диаграмм	6
Заключение	7

Цель работы

Ознакомиться с системой VHDL, построить модель счётчика и построить временные диаграммы в данной системе.

Задание

Требуется синтезировать функциональный узел ЭВМ с памятью. Тип узла указывается в варианте задания (синхронный реверсивный счётчик на синхронных двухступенчатых ЈК-триггерах с запрещающими связями).

Схема

Схема представлена на рис. 1.

Рисунок 1. Схема узла ЭВМ

Программный код построения

В листинге 1 описан программный код, в результате исполнения которого будет построен нужный счётчик.

Листинг 1. Реализация логического элемента и-не

```
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity s_counter is
generic (
LENGTH: natural := 3
```

```
);
     port (
           clk : in STD_LOGIC;
           reset : in STD_LOGIC;
           set : in STD_LOGIC;
           add : in STD_LOGIC;
           substraction: in STD_LOGIC;
           q: out STD_LOGIC_vector(LENGTH downto 1)
     );
end s_counter;
architecture s_counter of s_counter is
     component JK_trigger
           port (
                nS : in STD_LOGIC;
                J: in STD_LOGIC;
                C: in STD_LOGIC;
                K: in STD_LOGIC;
                nR : in STD_LOGIC;
                Q: out STD_LOGIC;
                nQ: out STD_LOGIC
                );
     end component;
     component and 2
           port (
                x1: in STD_LOGIC;
                x2: in STD_LOGIC;
```

```
y: out STD_LOGIC
);
end component;
component and_3
     port (
           x1: in STD_LOGIC;
           x2: in STD_LOGIC;
           x3: in STD_LOGIC;
           y: out STD_LOGIC
);
end component;
component or_2
     port (
           x1: in STD_LOGIC;
           x2: in STD_LOGIC;
           y: out STD_LOGIC
);
end component;
signal A1n, A2n, ORn, Qn, nQn: std_logic_vector(LENGTH downto 1);
begin
     GEN_COUNTER:
     TRIGGER1: if I = 1 generate
           A1: and_2
           port map (Qn(I), add, A1n(I));
           A2: and_2
```

```
OR1
                  port map (nQn(I), substraction, A2n(I));
                  : or_2
                  port map (A1n(I), A2n(I), ORn(I));
                                                               EI:
                  JK_trigger
            port map (set, '1', clk, '1', reset, Qn(I), nQn(I));
                                                              end
            generate TRIGGER1;
            for I in 1 to LENGTH generate
                        And1n: and_3
                        port map (Qn(I), add, Qn(I - 1), A1n(I));
                        And2n: and_3
                        port map (nQn(I), substraction, nQn(I - 1), A2n(I));
                        OR1: or_2
                        port map (A1n(I), A2n(I), ORn(I));
                        EI: JK_trigger
                        port map (set, ORn(I - 1), clk, oRn(I - 1), reset, Qn(I),
nQn(I);
                  end generate TRIGGER_OTHER;
                  q(I) \leq Qn(I);
            end generate GEN_COUNTER;
end s_counter;
```

Построение временных диаграмм

Для построения временной диаграммы, привяжем изменение сигнала с клавишей на клавиатуре. Выберем в разделе Stimulators вкладку Туре, где выбираем Hotkey, в котором выбираем сигнал и кнопку, которая с ним будет ассоциироваться.

Рисунок 2.Временная диаграмма сложения

Рисунок 3. Временная диаграмма вычитания

Заключение

В ходе лабораторной работы были изучены возможности VHDL по моделированию функциональных узлов ЭВМ с памятью. Так же были построены временные диаграммы для них.