操作系统作业2

王子骏 9222127970152

第一题:银行家算法

1:银行家算法

	<u>Allocation</u>			<u>Max</u>			<u>Need</u>			<u>Available</u>		
	A	В	C	A	В	C	A	B	C	A	В	C
Po	0	1	0	7	5	3	7	4	3	2	3	0
P ₁	3	0	2	3	2	2	0	2	0			
P ₂	3	0	2	9	0	2	6	0	0			
P_3	2	1	1	2	2	2	0	1	1			
P ₄	0	0	2	4	3	3	4	3	1			

- · 接下来进程P4请求资源(3,3,0)能够满足它吗?
- · 若是进程Po请求资源 (0, 2, 0)能满足它吗?

接下来进程 P_4 请求资源 (3,3,0) 能够满足它吗?

当前Available=(2,3,0),而请求资源(3,3,0),**只有2个**A**资源而** P_4 请求了3个,无法满足。

若是进程 P_0 请求资源 (0,2,0)能满足它吗?

1. 判断是否能够尝试分配:

当前Available = (2,3,0),而请求资源(0,2,0),资源足够可以分配。

- 2. 尝试分配: 此时 $Allocation[P_0] = (0,3,0)$, $Need[P_0] = (7,1,3)$, Available = (2,1,0)
- 3. 执行安全性算法:
 - i. 首先构造Work = Available = (2,1,0), Finish = (F,F,F,F,F), 其中F表示False, T表示True。
 - ii. 对于 $P_i(i \in [0, 4])$ 判断是否有 $Work = (2, 1, 0) > Need[p_i]$ 。
 - iii. 可以发现,Work=(2,1,0)无法满足 P_0 的A,C需求;无法满足 P_1 的B需求;无法满足 P_2 的A需求;无法满足 P_3 的C需求;无法满足 P_4 的ABC需求;
 - iv. 此时发现Finish向量全为False,进入死锁状态。
- 4. 安全性算法发现,若分配(0,2,0)给 P_0 会进入不安全状态,不分配。

在某个采用页式存储管理的系统中,某作业有4个页面,分别装入3、4、6、8块中,设页面大小为1024字节,主存容量为10K。

- (1) 写出该作业的页面映像表
- (2) 该作业运行时执行到其地址空间500号处遇到一条传送指令

MOV [2100], [3100]

请计算MOV指令中两个操作数的物理地址

由于页面大小为 $1024=2^{10}$ 字节,主存容量为 $10K=5\times2^{11}$ 字节,所以物理页框数量为 $\frac{5\times2^{11}}{500}=10$ 个,且逻辑地址后10位表示页内偏移,前4位表示页号。

写出该作业的页面映像表

逻辑页号	物理页框号
0	3
1	4
2	6
3	8

请计算MOV指令中两个操作数的物理地址

- $1.2100 = 0010\ 0000110100,\ 3100 = 0011\ 0000011100$
- 2. 第一个操作数[2100]的逻辑页号为0010=2,页内偏移为0000110100=52;第二个操作数[3100]的逻辑页号为0011=3,页内偏移为0000011100=28
- 3. **查询页面映像表可知**,第一个操作数对应的物理页框号为6,该页框的起始地址为 $1024 \times 6 = 6144$,则**第一个操作数实际地址为**6144 + 52 = 6196
- 4. **查询页面映像表可知**,第二个操作数对应的物理页框号为8,该页框的起始地址为 $1024 \times 8 = 8192$,则**第二个操作数实际地址为**8192 + 28 = 8220