

© EPODOC / EPO

PN - JP7201579 A 19950804

TI - NOISE FILTER

FI - H01F17/06&D

PA - KITAGAWA IND CO LTD

IN - IKEDA HIROYUKI; OHASHI YOSHIAKI

CT - JP5038831B B []; JP32001478 A []

AP - JP19930334693 19931228

PR - JP19930334693 19931228

I - TO

© WPI / DERWENT

AN - 1995-305580 [40]

- Noise filter for removing noise from signal line in electrical or electronic device has U-shaped ferrite core with signal line being arranged in hollow part of core, and attenuates noise flowing in signal line NoAbstract
- NOISE FILTER REMOVE NOISE SIGNAL LINE ELECTRIC ELECTRONIC DEVICE SHAPE FERRITE CORE
 SIGNAL LINE ARRANGE HOLLOW PART CORE ATTENUATE NOISE FLOW SIGNAL LINE NOABSTRACT
- PN JP7201579 A 19950804 DW199540 H01F17/06 007pp

IC - H01F17/06

MC - V02-F01J W02-H01

DC - V02 W02

PA - (KITA-N) KITAGAWA KOGYO KK

AP - JP19930334693 19931228

PR - JP19930334693 19931228

© PAJ / JPO

PN - JP7201579 A 19950804

TI - NOISE FILTER

- AB PURPOSE: To obtain an attenuation effect equal to or higher than one with a circular core against high-frequency noises, by arranging a signal line in the hollow part of a specific ferrite core.
 - CONSTITUTION: The U-shaped ferrite core 10 of the noise filter has a U-shaped construction of a constant thickness. A ratio a/b is set to be 9 to 60, where (a) represents the distance from the bottom 12 of the U-shaped inside up to this free ends 14 and 16, and (b) represents the distance between both free ends 14 an 16. A signal line SL is arranged in the hollow part 18, at the bottom 12 for example. As a result, a bad influence against signals being in a relatively low-frequency band is made extremely small and made to pass, and it becomes possible to obtain an attenuation effect equal to or higher than one with a circular core against high-frequency noises.
- H01F17/06
- PA KITAGAWA IND CO LTD
- IN OHASHI YOSHIAKI; others: 01

ABD - 19951226

ABV - 199511

AP - JP19930334693 19931228

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号

特開平7-201579

(43)公開日 平成7年(1995)8月4日

(51) Int.Cl.6

識別記号 庁内整理番号

FΙ

技術表示箇所

H01F 17/06

D 8123-5E

審査請求 未請求 請求項の数2 OL (全 7 頁)

(21)出願番号

特顏平5-334693

(71)出願人 000242231

北川工業株式会社

(22)出顯日

平成5年(1993)12月28日

愛知県名古屋市中区千代田2丁目24番15号

(72)発明者 大橋 良紀

愛知県名古屋市中区千代田2丁目24番15号

北川工業株式会社内

(72)発明者 池田 浩之

愛知県名古屋市中区千代田2丁目24番15号

北川工業株式会社内

(74)代理人 弁理士 足立 勉

(54) 【発明の名称】 ノイズフィルタ

(57) 【要約】

[目的] 相対的に低周波数帯となる信号に対する悪影 鬱は極力小さくして通過させ、高周波数のノイズに対し ては環状コアを用いた場合と同等あるいはそれ以上の減 食効果が得られるノイズフィルタを提供すること。

【構成】 U型フェライトコアは、「U字」内側の底部 から自由端までの距離を「a」、両自由端の間の距離を 「b」としてその比 (a/b) が9~21となるように 設定されている。 a/b=24の曲線及び環状コアの曲 **線共に周波数の増加と共にインピーダンスも増加する** が、両曲線は約30MHz付近で交差し、それ以下では a/b=24の場合の方が小さくなっている。すなわ ち、ノイズの発生し易い100MHz以上の周波数帯で は環状コアよりもインピーダンスが大きくなり、信号帯 域である数10MH2付近においては、環状コアよりも 減少している.

10

【特許請求の範囲】

【鯖求項1】 略U字状に形成されたフェライトコアで あって、その内底部から自由端までの距離をa、両自由 端間の距離をbとして、それらの比a/bが9~60に 構成されたフェライトコアを用い、該フェライトコアの 中空部分に信号線を配置することによって該信号線を流 れるノイズを減衰させることを特徴とするノイズフィル 夕。

1

【請求項2】 略C字状に形成されたフェライトコアで あって、その両自由端間における平均磁路上の距離が、 平均磁路長の1~25%に構成されたフェライトコアを 用い、該フェライトコアの中空部分に信号線を配置する ことによって該信号線を流れるノイズを減衰させること を特徴とするノイズフィルタ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、例えば電子機器の信号 線を内部に通すことで、電気機器内部で発生したノイ ズ、或いは外部で発生し信号線を通して電子機器へ流れ 込むノイズを除去若しくは抑制するノイズフィルタに関 20 する。

[0002]

【従来の技術】従来より、信号線に流れるノイズを除去 若しくは抑制する方法として、信号線の周囲にフェライ トを外嵌させ、このフェライトにより信号線を流れるノ イズを減衰させる技術が知られている。その場合は、例 えばフェライトのみで環状の閉磁路を形成するように構 成された非分割のフェライトコアや分割タイプのフェラ イトを用いるものであった。

[0003] そして、それらのノイズフィルタにおいて 30 は、フェライトで形成された閉磁路内に信号線を流れる 電流により発生した磁束のループができることによっ て、電気的エネルギを熱エネルギに変換して減衰させる 作用が得られるため、ノイズフィルタでは、フェライト のみで閉磁路を形成するように構成することが一般的で あった。従って、特に分割タイプのものでは、フェライ トの分割面同士を磁気的に結合させることに対する工夫 が盛んになされてきた。例えば分割面をいかにして密着 させるかについて種々の提案がなされてきた。

[0004]

【発明が解決しようとする課題】しかしながら、従来の 環状タイプのフェライトコアを用いたノイズフィルタに おいては、フェライトコアによって形成される閉磁路に よって所定のノイズ減衰効果は得られるが、同時に信号 帯域である数10MHzの低周波数帯においてもインピ ーダンスが大きくなり、信号線を流れる信号に対しても 悪影響を及ぼす場合もあった。但し、従来のものはノイ ズ除去を主眼としていたため、信号への悪影響に対する 考慮については犠牲にしても、ノイズ減衰効果の高いフ

してしたのである。

【0005】今回、本願出願人は、従来考慮されていな かったギャップ (隙間) を有する状態におけるフェライ トコアも、所定の条件で用いることによりフェライトの みで閉磁路を形成させていた従来のギャップなしの構成 によるものとは異なるインピーダンスー周波数特性を得 ることができることを見い出した。そしてさらに、その インピーダンスー周波数特性が、相対的に低周波数帯と なる信号に対しては滅衰させることなく通過させ、高周 波数のノイズに対しては環状コアを用いたものと同等あ るいはそれ以上の減衰効果が得られることを見い出し た。

【0006】そこで本発明は、上配の、相対的に低周波 数帯となる信号に対する悪影響は極力小さくして通過さ せ、高周波数のノイズに対しては環状コアを用いた場合 と同等あるいはそれ以上の減衰効果が得られるノイズフ ィルタを提供することを目的とする。

[0007]

【課題を解決するための手段】かかる目的を達成すべ く、本発明は課題を解決するための手段として次の構成 を取った。即ち、請求項1記載のノイズフィルタは、略 U字状に形成されたフェライトコアであって、その内底 部から自由端までの距離をa、両自由端間の距離をbと して、それらの比a/bが9~60に構成されたフェラ イトコアを用い、該フェライトコアの中空部分に信号線 を配置することによって該信号線を流れるノイズを減衰 させることを特徴とする。

【0008】また、請求項2記載のノイズフィルタは、 **略C字状に形成されたフェライトコアであって、その両** 自由端間の平均磁路上の距離が、平均磁路長の1~25 %に構成されたフェライトコアを用い、該フェライトコ アの中空部分に信号線を配置することによって該信号線 を流れるノイズを減衰させることを特徴とする。

[0009]

【作用】上述したように、ギャップを有する状態でのフ ェライトコアも、後述する所定の条件で用いることによ りフェライトのみで閉磁路を形成させていた従来のギャ ップなしの構成によるものとは異なるインピーダンスー 周波数特性を得ることができ、そのインピーダンス-周 40 波数特性が、相対的に低周波数帯となる信号に対する悪 影響は極力小さくして通過させ、髙周波数のノイズに対 しては環状コアと同等あるいはそれ以上の滅衰効果が得 られることが判った。

【0010】そして、その所定の条件として、上記請求 項1及び2に示すように、略U字状のフェライトコアを 用いた場合及び略C字状のフェライトコアを用いた場合 によるものを提案する。まず、請求項1記載の、略U字 状に形成されたフェライトコアを用いた場合には、内底 部から自由端までの距離をaと両自由端間の距離をbと アの中空部分に信号線を配置した場合に、相対的に低周 波数帯となる個号線を流れる信号に対しては減衰度合を 小さくして通過させ、髙周波数のノイズに対しては閉磁 路と同等あるいはそれ以上の減衰効果が得られる。

[0011] 上述した比a/bの範囲(9~60) 内で は、比a/bが小さくなると全体的にインピーダンスが 低下してくるが、比a/bが9程度であっても、商周波 **数帯におけるインピーダンスは、ギャップなしの場合の** 80%程度まで得られるため、低周波数帯のインピーダ ンスをより低くして信号線を流れる信号への悪影響をさ 10 らに低減したい場合には比a/bを低めに設定するのが 望ましい。また、比a/bが24付近まで大きくなる と、高周波数帯においては、ギャップなしの環状コアの ときよりもインピーダンスが大きくなることも確認され た。従って、比 a / b が 2 4 以上では低周波数帯で低イ ンピーダンス、高周波数帯で高インピーダンスの特徴が より良く得られる。但し、比a/bが60程度になる と、製造上の困難度が高くなるので、その程度までの範 囲を提案することとする。

れたフェライトコアを用いた場合には、両自由端間の平 均磁路上の距離(すなわち磁路ギャップ)を、平均磁路 長の1~25%に構成すれば、上記略U字状のフェライ トコアを用いた場合と同様に、相対的に低周波数帯とな る信号線を流れる信号に対しては減衰度合が小さく悪影 響を極力小さくして通過させ、髙周波数のノイズに対し てはC字の切欠がない環状のコア、すなわちリング状の コアと同等あるいはそれ以 F.の減衰効果が得られる。

【0013】この場合、上配磁路ギャップの平均磁路長 に対する比率の範囲内であれば、磁路ギャップなしの場 30 合(すなわちリング状フェライトコア)に対して、特に 数十MH2辺りでのインピーダンスが低下が顕著とな る。従って、信号線を流れる信号に対する悪影響の防止 の点から観ると非常に効果がある。また、上記1~25 %という磁路ギャップの平均磁路長に対する比率の範囲 内では、その比率が大きくなるほど全体的にインピーダ ンスが低下するが、比率が25%程度であっても、高周 波数帯 (例えば100MH2以上) におけるインピーダ ンスは、ギャップなしの場合の80%程度まで得られる ため、低周波数帯のインピーダンスをより低くして信号 40 線を流れる信号への悪影響をさらに低減したい場合には 比a/bを低めに設定するのが望ましい。また、比率が 4%程度まで下がると、例えば100MHz以上の高周 波数帯においては、ギャップなしのときよりもインピー ダンスが大きくなることも確認された。比率が4%より も下がるとますます特性は良くなる。

[0 0 1 4]

【実施例】以下本発明の実施例を図面に基づいて詳細に

るノイズフィルタに用いるU型フェライトコア10を示 す斜視図、(B) は側面図である。本U型フェライトコ ア10は、厚さ一定でU字形状に形成されており、「U 字」内側の底部12から自由端14,16までの距離を 「a」、両自由端14、16の間の距離を「b」として その比 (a/b) が1~24となるように設定されてい る。そして、中空部18内、本実施例では底部12に信 号線SLが配置される。

【0015】このひ型フェライトコア10において比 (a/b) とインピーダンス-周波数特性の関係を検討 した結果を図3に示す。この実験に用いたコアは、a= 7~19mm、b=0.8mmである。図3には、a/ b=24の場合 (a=19mm、b=0.8mm) とa /b=9 ((a=7mm、b=0.8mm) の場合、そ して、比較のために環状コアの場合を破線で示す。な お、本実施例のU型フェライトコア10は、環状コアを カットすることによって形成したものであり、その元の 環状コアを比較に用いたものである。

【0016】まずa/b=24の場合と環状コアの場合 [0012] 一方、請求項2記載の、略C字状に形成さ 20 とを比較して見る。a/b=24の場合、周波数100 MHzにおいて、約108.7オームの数値を得た。こ れは、環状コアよりも大きい値である。そして、a/b =24の曲線及び環状コアの曲線は共に周波数の増加と 共にインピーダンスも増加するが、両曲線は約30MII z付近で交差し、それ以下ではa/b=24の場合の方 が小さくなっている。

【0017】すなわち、a/b=24の場合は、ノイズ の発生し易い100MHz以上の周波数帯では環状コア よりも若干大きくなり、信号帯域である数10MHz付 近においては、環状コアよりもインピーダンスが減少し ている。従って、相対的に低周波数帯となる信号線SL を流れる信号に対しては減衰度合を小さくし、信号への 悪影響を極力小さくして通過させ、髙周波数のノイズに 対しては環状コアと同等あるいはそれ以上の減衰効果が 得られる。

【0018】また、比a/bが小さくなると全体的にイ ンピーダンスが低下してくるが、図3に示すように比a / bが9の場合であっても、高周波数帯におけるインピ ーダンスは、ギャップなしの場合の80%以上まで得ら れる。例えば100MH2の場合におよそ80%であ り、周波数がそれ以上増加するにつれて、両者の差が徐 々に少なくなってくる。

【0019】そして、数10MHz付近では、環状コア の場合よりもインピーダンスが相当低くなる。そのた め、低周波数帯のインピーダンスをより低くして信号線 SLを流れる信号への悪影響をさらに低減したい場合に は比a/bを低めに設定するのが望ましい。

【0020】このように、上配所定の条件を満たすU型 フェライトコア10を用いれば、相対的に低周波数帯と [第1実施例] 図1(A)は、本発明の第1実施例であ 50 なる信号に対する悪影響は極力小さくして通過させ、高

5

周波数のノイズに対しては環状コアを用いた場合と同等 あるいはそれ以上の減衰効果が得られるため、より実用 的なノイズフィルタを実現することができる。

【0021】なお、本第1実施例の別態様を示しておく。図2(A)に示すU型フェライトコア20は、例えば基板上に設置して信号線SLとしてのリード線LLのノイズフィルタとして働くものである。この場合は、図1に示す「U字」の曲面状にされた側(すなわち自由端14,16とは反対側)を平坦に形成し、基板接触面22として構成してある。この基板接触面22を基板に載10 置すれば、安定性がよい。

 $[0\ 0\ 2\ 2]$ また、リード線LLを固定するための工夫 として図 $2\ (B) \sim (D)$ に示すものがある。 (B) 及 び (C) はU型フェライトコア $2\ 0$ の上面図であり、

(B) は、リード線レレを挿通するために底部12から 基板接触面22側へ貫通させた挿通孔24,26を形成 したもの、(C)は、底部12の縁にリード線レレ固定 用の凹部26,27を形成したものである。また、

(D) は、リード線LLを曲げ加工して曲げ部LL1, LL2を形成し、(A) における基板接触面22に係合 するようにしたものである。もちろんこれらの工夫を図 1に示すU型フェライトコア10において採用してもよ い。

[第2実施例] 図4 (A) は、本発明の第2実施例であるノイズフィルタに用いるC型フェライトコア30を示す斜視図、(B) は側面図である。本C型フェライトコア30は、厚さ一定で略C字状に形成されており、詳しくは、(B) に示すように、外径R、内径rの正リング状の一部が切り欠かれて形成された「C字」である。そして、平均磁路(この場合は外径Rと内径rとの中間の20年となる正リング状の磁路)の長さを「L」、上記切り欠かれて形成された両自由端34、36の間の平均磁路上の距離(以下磁路ギャップと呼ぶ)を「Lg」として、磁路ギャップしgが平均磁路長のLの1~25%となるように設定されている。そして、中空部38内には信号線SLが配置される。

【0023】このC型フェライトコア30において比(Lg/L)とインピーダンスー周波数特性の関係を検討した結果を図5に示す。この実験に用いたコアは、外径R=14mm、内径r=10mmである。図5には、磁路ギャップLg=4%の場合(Lg/L=0.04)と磁路ギャップLg=25%の場合(Lg/L=0.25)の場合、そして、比較のために磁路ギャップLgなしの正リング状コアの場合を破線で示す。なお、本実施例のC型フェライトコア30は、正リング状コアをカットすることによって形成したものであり、その元の正リング状コアを比較に用いたものである。

[0024] 図4 (C), (D) はそれぞれ、磁路ギャップLg=4%の場合及び磁路ギャップLg=25%の場合のC型フェライトコア30の外観を示す側面図であ 50

る。なお、本来は怪方向に切口を設けるべきであるが、 図4 (C) のように、磁路ギャップLgが狭い場合は、 両自由端34、36を平行に形成しても実質的に影響は 少ない。

【0025】図5を参照し、まず磁路ギャップLg=4% (Lg/L=0.04)の場合と正リング状コアの場合とを比較して見る。磁路ギャップLg=4%の場合、周波数100MH2において、約41.0オームの数値を得た。そして、磁路ギャップLg=4%の曲線及び正リング状コアの曲線共に周波数の増加と共にインピーダンスも増加するが、両曲線は周波数が約100MH2付近で交差し、それ以下では磁路ギャップLg=4%の場合の方が小さくなり、それ以上では磁路ギャップLg=4%の方が大きくなっている。すなわち、ノイズの発生し易い100MH2以上の周波数帯では正リング状コアよりも大きくなり、信号帯域である数10MH2付近においては、正リング状コアよりもインピーダンスが減少している。特に、10~60MH2辺りではその減少度合が非常に大きい。

1 【0026】従って、相対的に低周波数帯となる信号線 SLを流れる信号に対しては減衰度合を小さくし、信号 への悪影響を極力小さくして通過させ、高周波数のノイ ズに対しては正リング状コアと同等あるいはそれ以上の 減衰効果が得られる。また、磁路ギャップLgの割合が 大きくなる(つまり比Lg/Lが大きくなる)と全体的 にインピーダンスが低下してくるが、図5に示すように 磁路ギャップLgが25%の場合であっても、高周波数 帯におけるインピーダンスは、磁路ギャップLgなしの 場合の80%以上まで得られる。例えば100MHzの 場合におよそ80%であり、周波数がそれ以上増加する につれて、両者の差が徐々に少なくなってくる。

【0027】そして、数10MHz付近では、正リング 状コアの場合よりもインピーダンスが相当低くなる。そ のため、低周波数帯のインピーダンスをより低くして信 号線SLを流れる信号への悪影響をさらに低減したい場 合には磁路ギャップLgの割合、すなわち比Lg/Lを 低めに設定するのが望ましい。

【0028】このように、上記所定の条件を満たすC型フェライトコア30を用いれば、相対的に低周波数帯と なる信号に対する悪影響は極力小さくして通過させ、高周波数のノイズに対しては正リング状コアを用いた場合と同等あるいはそれ以上の減衰効果が得られるため、より実用的なノイズフィルタを実現することができる。

[0029]次に、上配第1及び第2実施例において説明したU型フェライトコア10及びC型フェライトコア30のためのケースについて説明する。図6(A)~(C)はU型フェライトコア10のための信号線固定用ケース50について示したものであり、(D),(E)はC型フェライトコア30の保持ケース60について示したものである。

【0030】まずU型フェライトコア10のための信号 線固定用ケース50について説明すると、本固定用ケース50は樹脂等を用い、基本的にU型フェライトコア10の外形よりも少し大きな中空形状で、丁度内部にU型フェライトコア10を収納できるようにされている。そして、U型フェライトコア10における中空部18(図1参照)に面する部分には、その一方に、鋸状の段差52が複数形成されている。

[0031] 使用方法としては、もちろん内部にU型フェライトコア10を収納して使うのであるが、図6(B)のように、単線の信号線SLの場合には、最も奥(すなわち図1に示すU型フェライトコア10の底部付近)に配置するのが望ましい。また、図6(C)に示すように、フラットケーブルFCを用いた場合でも、鋸状段差52がフラットケーブルFCの平坦面に対して好適にずれを阻止する。

【0032】次にC型フェライトコア30のための保持ケース60について説明する。本保持ケース60は樹脂等を用い、基本的にC型フェライトコア30の外形よりも少し大きな中空形状で、丁度内部にC型フェライトコ20ア30を収納できるようにされている。そして、C型フェライトコア30における磁路ギャップLg(すなわち両自由端34,36間)に対応する部分には、先端同士が当接する凸部64,66が、図6(E)に示すように、両側に1組ずつ形成されている。

【0033】使用方法としては、もちろん内部にC型フェライトコア30を収納して使うのであるが、信号線SLを内部に入れるには、凸部64,66を押し分けるようにして挿入する。保持ケース60自体は樹脂等でできているので凸部64,66を変形させて挿入することが30できる。そして、信号線SLを一旦内部に配置させれば、凸部64,66同士が当接しているので、簡単には外部に移動しない。

【0034】これら、信号線固定用ケース50皮び保持ケース60は、磁路ギャップLgの存在を積極的に認めたU型フェライトコア10あるいはC型フェライトコア30のためのものなので、従来の分割タイプのように蓋を設ける必要がなく、また分割面同士を密着させる必要がないので、ばね機構等を設ける必要がない。従って、ケースの簡略化が可能である。また、当然基本的なケー40スの効果として、フェライトコアのもつ機械的強度の不足を補うことができる。

【0035】以上本発明はこの様な実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得る。例えば、上配第2実施例として説明したC型フェライトコア30は、外径R及び内径rがそれぞれ各部で一定である正リング状の一部

8 を切り欠いた「C字」であったが、例えば図7に示すような形状でも本発明の「略C字」の範囲である。

【0036】図7(A)のC型フェライトコア130は、楕円形の長軸側において一部を切り欠いたもの、

(B) のC型フェライトコア132は、楕円形の短軸側において一部を切り欠いたものである。また、(C) に示すC型フェライトコア134は、長方形に近い環状のものの一部. 詳しくは長方形のある1辺の中央付近を切り欠いたものである。それぞれの磁路ギャップをLgで10 示してある。

[0037]

【発明の効果】以上詳述したように、上記額求項1及び2に示すように、略U字状のフェライトコアを用いた場合のノイズフィルタ及び略C字状のフェライトコアを用いた場合のノイズフィルタは共に、相対的に低周波数帯となる信号に対する悪影響は極力小さくして通過させ、高周波数のノイズに対しては環状コアを用いた場合と同等あるいはそれ以上の滅衰効果が得られ、より実用的な作用を果たすという今までにない優れた効果を奏する。

) 【図面の簡単な説明】

【図1】 本発明の第1実施例であるノイズフィルタに 用いるU型フェライトコアを示し、(A)は斜視図、

(B) は側面図である。

[図2] 第1実施例の別態様を示す説明図である。

【図3】 U型フェライトコアにおいて比(a/b)とインピーダンスー周波数特性の関係を検討した結果を示すグラフである。

【図4】 第2実施例であるノイズフィルタに用いるC型フェライトコアを示し、(A)は斜視図、(B)~(D)は側面図である。

【図5】 C型フェライトコアにおいて比(レg/L) とインピーダンスー周波数特性の関係を検討した結果を 示すグラフである。

【図6】 (A) ~ (C) はU型フェライトコアのための信号線固定用ケースについて示した側面図であり、

(D), (E)はC型フェライトコアの保持ケースについて示した側面図及び正面図である。

【図7】 第2実施例の別態様を示す説明図である。 【符号の説明】

10,20…U型フェライトコア、 12…底部、14,16…自由端、18…中空部、 22…基板接触面、24…排通孔、26…凹部、30,130,132,134…C型フェライトコア、34,36…自由端、50…信号線固定用ケース、 52…鋸状段差、60…保持ケース、 64…凸部、

S L …信号線

【図3】

[図5]

60

-34

-66

