# TErSLA: The Evolutionary and Reinforcement based Self-Learning vehicle Approach

Course: Introduction to Intelligent Vehicles



楊敦捷 (R10922147)



李勝維 (R11944004)



廖金億 (R11944021)

## **Abstracts**

- Motivation:
  - 台大校園罕見重大車禍「限速20公里」博士生被撞進加護病房 | 社會新聞
- Goals:
  - Employs a deep neural-network-based autonomous car with a focus on obstacle and pedestrian avoidance.
- Approach:
  - Deploys a self-learning framework empowered by
    - Reinforcement Learning(DQN)
    - Genetic Algorithm



## Scenario

Playground: the beloved lane 118(118 巷)



## Reinforcement Learning: Deep Q Network(DQN)

- A deep learning model learns to control policies directly from sensory input using reinforcement learning. [Playing Atari with Deep Reinforcement Learning]
  - o Similar to Q-learning[Christopher JCH Watkins and Peter Dayan. Q-learning. 1992]
    - State: A agent will observes its current state  $S_n$  from the environment
    - Action: Selects and performs an action  $A_n$
    - Reward: Receive an rewards R depends on the sequent state  $S_{n+1}$  after action  $A_n$
- Key components of DQN
  - How to compute the *Reward*?
    - With a discount parameter  $\gamma$  that ensures the reward sum converges, we can compute a discounted, cumulative reward which is less important from the uncertain far future but having more impact in the near future.

$$R_{t0} = sum(x^t, R_t)$$
 for t from  $t_0$  to  $\infty$ 

- How to select an *Action*?
  - Training a function Q that could tell us what our return would be, if we were to take an action in a given state, then we could construct a policy that maximizes our rewards.

*Q*: State 
$$\times$$
 Action  $\rightarrow$ Reward

$$Action = \pi^*(state) = argmax_{action} Q(state, action)$$

## Training a Deep Q Network(DQN)

#### • Q-network

- o Q function obeys the Bellman equation[Bellman & Dreyfus, 1962; Ross, 1983)]
  - Bellman equation
    - It assures us that there is at least one optimal stationary policy  $\pi^*$  which is such that:

$$Q(s_n, a) = reward_n + r. Q(s_{n+1}, \pi^*(s_{n+1}))$$

■ *Difference error* 

• 
$$\delta = Q(s_n, a) - reward_n + \gamma \cdot Q(s_{n+1}, \pi^*(s_{n+1}))$$

- *Model*:
  - We will construct a neural network(Q network) as Q by minimizing the difference error  $\delta$ , which regard as mean square loss(MSE) in our case

#### Training a Q-network

• In order to improve stability, we will add an additional *target network* to serve as *Q network* itself and update it after every *k* iterations.



# Deep Q Network(DQN) in our case



## Problems in our case

The model is hard to converge(time-consuming) while training, the figure shows how bumpy it is.





#### Feasible solutions:

- Loss  $\rightarrow$  Huber Loss (Q-Model)
- Redefine the reward function (distance  $\rightarrow$  living time)

## **Evolutionary Learning: Genetic Algorithm**

- Genetic algorithm was first proposed by John Holland in 1975. [Adaptation in Natural and Artificial Systems.]
  - Concept is similar to simulated annealing
- Genetic algorithm is a search metaheuristic algorithm inspired by theory of natural evolution.
  - Genetic algorithm
    - *Population*: A collection of solutions to a problem.
    - *Fitness*: Measure of how well a given solution to a problem performs.
- Key point of Genetic Algorithm



# **Genetic Algorithm**

#### In our case



Initial a larger of population size



If the car is able to travel a **long distance**, it would have a **high fitness** and be more likely to survive and reproduce.

# **Genetic Algorithm**

### • In our case (performance)





## **Future Development**

- More hyperparameter tuning / more advanced methods
  - The RL algorithm suffers from unstable learning curve
  - GA is often trapped at a local minimum

- Add pedestrians that interact with the environment and our vehicle
  - Redesigning reward/fitness function
  - Changing the map layout
  - More precise action control



