1.1 Meta-analysis

It was demonstrated for *S. caripense* genotypes that the number of leaves (mean \pm S.E.) in proliferation stage is statistically different between treatments among biotechnological (Morales y Vaca 2016), and other methods; the experimental point TM1 = 16.13 ± 1.35 (D) is statistically different from GPa1c1w = 8.92 ± 1.10 (ABC), and from GPa.5c2wo = 7.47 ± 0.64 (A); the higher number of leaves obtained through *in vitro* technics was using $0.5 \text{ mg} \cdot \text{L}^{-1}$ BAP, through physiology *in vitro* was with $1.0 \text{ mg} \cdot \text{L}^{-1}$ AIA and $1.0 \text{ mg} \cdot \text{L}^{-1}$ BAP, and finally without plastic seal (Figure 5), with p-value < 0.0001 (Table 5), and C.V. = 35.20%. Additionally, GPa0c0w (AB) is different from TM0 (ABCD) in two letters. Homogeneity of variances exists in the improved genotypes.

Figure 5. Number of leaves (mean \pm S.E.) in GP (double hybrid) and tzímbalo genotypes treated with different phytohormonal concentrations in proliferation stage. Different letters demonstrate significant differences using Tukey's test (p-value < 0.05).

Table 5. ANOVA of steam height in in GP (double hybrid) and tzimbalo genotypes.

Source of variation	D.F.	M.S.	F-value	p-value
Treatment	11	95.69	6.53	< 0.0001
Residuals	144	14.64		

The plantlet height (mean \pm S.E.) in climatization stage was statistically different between treatments among biotechnological (Morales y Vaca 2016), and other methods; the experimental point TE3 = 34.17 cm \pm 1.49 (C) is statistically different from GPa1c1w = 12.12 cm \pm 1.72 (A), and from GPa.5c2wo = 9.37 cm \pm 0.99 (A); the largest plantlets through *ex vitro* rooting were obtained using 2.0 mg·L⁻¹ IBA, through physiology *in vitro* with 2.0 mg·L⁻¹ IBA, and finally without plastic seal (Figure 6), with p-value < 0.0001 (Table 6), and C.V. = 26.54%. In addition, GPa0c0w (A) is different from TE0 (B).

Figure 6. Plantlet height (mean \pm S.E.) in GP (double hybrid) and tzimbalo genotypes treated with different phytohormonal concentrations in climatization stage. Different letters demonstrate significant differences using Tukey's test (p-value < 0.05).

Table 6. ANOVA of plantlet height in GP (double hybrid) and tzimbalo genotypes.

Source of variation	D.F.	M.S.	F-value	p-value
Treatment	7	1929.08	54.54	< 0.0001
Residuals	120	35.37		

Finally, through this method based on interspecific and intraspecific crosses, integrated to biotechnological procedures (Blas et al. 2010; Camarena et al. 2014; Morales and Chiluisa-Utreras 2022; Morales and Andrade 2023), the fruit weight of triple hybrid with *S. muricatum* x *S. caripense* (NG = 8.55-53.55 g; > 20 t/ha) is comparatively higher than that of their wild parents (FG = 5.58-6.60 g), as mentioned before with this species and *S. muricatum* x *S. tabanoense* (40-60 g; 30-40 t/ha) (Rodríguez-Burruezo et al. 2003; 2011); and this triple hybrid with *S. muricatum* x *S. caripense* have high soluble solids (SSC) content (6.5-10.0%), at least 8 °Brix to be acceptable (Prohens et al. 2003; Rodríguez-Burruezo et al. 2003; 2011), this suggest that these varieties are also distinct from other exotic fruits in the Andean region, as example, uchuva (*Physalis peruviana* L.) with fruit weights (\pm S.D.) of 5.62 g \pm 0.92 (heterogeneous collection), 4.8 g (Regional Nariño), 2.77 g \pm 0.67 (golden berry), 6.79 g (Colombia), and 6.95 g \pm 1.49 (American Southern) (Morales and Andrade 2023).