Tests paramétriques à deux échantillons (m ou n_1 : taille du 1^{er} échantillon | n ou n_2 : taille du 2^e échantillon)

Test	H_0	Statistique	Formule additionnelle	H ₁ **	On rejette H_0 si :
Deux moyennes	$\mu_X - \mu_Y = \Delta$	$Z_0 = \frac{\bar{X} - \bar{Y} - \Delta}{\sqrt{\frac{\sigma_X^2}{2} + \frac{\sigma_Y^2}{2}}}$	Voir ci-dessous pour	$\mu_X - \mu_Y \neq \Delta$	$ Z_0 > z_{\alpha/2}$
(var. connues)	μ_{Λ} $\mu_{\Upsilon} = \Delta$	$\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}$	erreur de 2 ^e type et taille d'éch.*	$\mu_X - \mu_Y > \Delta$	$Z_0 > z_{\alpha}$
Deux moyennes	$\mu_X - \mu_Y = \Delta$	$T_0 = \frac{\bar{X} - \bar{Y} - \Delta}{S_p \sqrt{\frac{1}{m} + \frac{1}{n}}}$	$S_p = \sqrt{\frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}}$	$\mu_X - \mu_Y \neq \Delta$	$ T_0 > t_{\alpha/2, m+n-2}$
$(\sigma_X^2 = \sigma_Y^2)$				$\mu_X - \mu_Y > \Delta$	$T_0 > t_{\alpha, m+n-2}$
Deux moyennes	$\mu_X - \mu_Y = \Delta$	$T_0^* = \frac{\bar{X} - \bar{Y} - \Delta}{\sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}}}$	$\nu = \frac{\left(\frac{S_X^2}{m} + \frac{S_Y^2}{n}\right)^2}{\frac{1}{m-1}\left(\frac{S_X^2}{m}\right)^2 + \frac{1}{n-1}\left(\frac{S_Y^2}{n}\right)^2}$	$\mu_X - \mu_Y \neq \Delta$	$ T_0^* > t_{\alpha/2,\nu}$
$(\sigma_X^2 \neq \sigma_Y^2)$		·	arrondi à l'entier inférieur	$\mu_X - \mu_Y > \Delta$	$T_0^* > t_{\alpha,\nu}$
Observations	$\mu_D = \Delta$	$T_0 = \frac{\bar{D} - \Delta}{S_D / \sqrt{n}}$	$D_i = X_i - Y_i \text{ pour } i = 1, \dots, n$	Voir test d'une moyenne	
appariées				avec variance inconnue	
Deux variances	$\sigma_X^2 = \sigma_Y^2$	$F_0 = \frac{S_X^2}{S_Y^2}$	$F_{1-\alpha,n_1,n_2} = \frac{1}{F_{\alpha}, n_2, n_1}$	$\sigma_X^2 eq \sigma_Y^2$	$F_0 > F_{\alpha/2, m-1, n-1}$ ou
					$F_0 < F_{1-\alpha/2, m-1, n-1}$
				$\sigma_X^2 > \sigma_Y^2$	$F_0 > F_{\alpha, m-1, n-1}$
Deux proportions	$p_1 = p_2$	$Z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$	$p_1 \neq p_2$	$ Z_0 > z_{\alpha/2}$
				$p_1 > p_2$	$Z_0 > z_{\alpha}$

^{*}On a $\beta(\delta) = \Phi\left(z_{\alpha/2} - \delta\right) - \Phi\left(-z_{\alpha/2} - \delta\right)$ si $H_1: \mu_X - \mu_Y \neq \Delta$ et $\beta(\delta) = \Phi\left(z_{\alpha} - \delta\right)$ si $H_1: \mu_X - \mu_Y > \Delta$, avec $\delta = \frac{\mu_X - \mu_Y - \Delta}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}$.

On a $m = n = \frac{(z_{\alpha/2} + z_{\beta})^2 (\sigma_X^2 + \sigma_Y^2)}{(\mu_X - \mu_Y - \Delta)^2}$ si $H_1 : \mu_X - \mu_Y \neq \Delta$ (on remplace $\alpha/2$ par α si $H_1 : \mu_X - \mu_Y > \Delta$).

^{**}Pour effectuer un test avec la contre-hypothèse $H_1: \mu_X - \mu_Y < \Delta$, on peut intervertir les échantillons respectifs de X et de Y, et utiliser $H_1: \mu_Y - \mu_X > \Delta'$ avec $\Delta' = -\Delta$. Pour effectuer un test avec les contre-hypothèse $H_1: \sigma_X^2 < \sigma_Y^2$ ou $H_1: p_1 < p_2$, on peut intervertir le 1^{er} et le 2^e échantillon.