

Image operations

- (Digital) images are discrete (both in time, space and information)
 - Processing is performed for each pixel
- The whole image is not processed (or available) at the same time (even though it might seem so)
 - It can be thought of as sliding over the image with a operational window (or looking glass)

Smoothing

Monadic operators

• Output pixel is a function of the corresponding input pixel

$$O[u,v] = f(I[u,v]), \forall (u,v) \in I$$

Monadic operators - Segmentation

- Single out single component (color)
 - Simple if distinct
 - Use the histogram to find threshold (T)
- Background removal
- Blob (object) extraction

 $f(x) = \begin{cases} 1 & x > T \\ 0 & otherwise \end{cases}$

Assuming a color depth of 8-bits, what is the representation of red?

Spatial Operators

 Each pixel in the output image is a function of all pixels in a region surrounding the corresponding pixel in the input image.

$$O[u,v] = f(I[u+i,v+j]), \forall (i,j) \in \mathcal{W}, \forall (u,v) \in I$$

Spatial Operators - Region

- Note that the region has odd side length (h=2)
- Image boundaries, W does not fit?
- Extensively used smoothing, feature detection, filtering, matching, ...

Spatial Operator Example - Filtering

Lowpass filtered image

Highpass filtered image

© R. Siegwart , D. Scaramuzza and M.Chli, ETH Zurich - ASL

Convolution

1D convolution from signal processing:

$$(fst g)(t) riangleq\int_{-\infty}^{\infty}f(au)g(t- au)\,d au$$

Digital images are discrete

$$(fst g)[n] = \sum_{m=-\infty}^\infty f[m]g[n-m]$$

- Convolution vs Cross-correlation
 - Confusion: conv2, imfilter
- However, images are 2D

Convolution

$$\mathbf{O} = K \otimes \mathbf{I}$$

$$\mathbf{O}[u,v] = \sum_{(i,j)\in\mathcal{W}} I[u+i,v+j]K[i,j], \ \ \forall (u,v)\in\mathbf{I}$$
 $K\in\mathbb{R}^{w\times w}$ is the convolution kernel

• A window of pixels, from the input image, are multiplied element-wise with the kernel, to generate a single output pixel => loop over all pixels

Convolution

- A linear spatial operator
- The **kernel** is also referred to as a **filter**
- Use kernel of odd width and height
- Requires padding to produce same size output
- Examples:
 - Smoothing: Kernel of unit volume (sums to 1).

$$K = ones(N, N) \cdot \frac{1}{N^2}$$
 Mean of the N by N neighborhood

- edges: Kernel weights sum to o
- Convolution: A weighted sum of pixels where the weights and size are defined by the kernel.

K

I

0	=	K	\otimes	I
			_	_

1	-1	-1
1	2	-1
1	1	1

2	2	2	3
	<u> </u>		3
2	1	3	3
2	2	1	2
1	3	2	2

→ ?	7	7	7
•	•	•	•
?	?	?	?
?	?	?	?
?	?	?	?

	· · · · · · · · · · · · · · · · · · ·	
1	1	1
-1	2	1
-1	-1	1

Rotate

Apply

What is the value of O(0,0)? Consider pixels outside the image as 0.

Remember:

$$O[u,v] = \sum_{(i,j)\in\mathcal{W}} I[u+i,v+j]K[i,j], \ \forall (u,v)\in I$$

What is *u*, *v*? What is *i*, *j*?

_		
1	-1	-1
1	2	-1
1	1	1

K

1	1	1		
-1	2 2	1 2	2	3
-1	-1 2	1	3	3
	2	2	1	2
	1	3	2	2

₂ 5	→ ?	?	?
	•	•	•
?	?	?	?
?	?	?	?
?	?	?	?

 $\mathbf{O} = K \otimes \mathbf{I}$

Rotate

$$2*2+1*2+(-1)*2+1*1=?^{5}$$

What is the value of O(1,0)?

K

1	-1	-1
1	2	-1
1	1	1

5	I
Rotate	Į

1	1	1
-1	2	1
-1	-1	1

1	1	1	
-1 2	2 2	1 2	3
-1 2	-1 1	1 3	3
2	2	1	2
1	3	2	2

$$\mathbf{O} = K \otimes \mathbf{I}$$

5	4	?	?
?	?	?	?
?	?	?	?
?	?	?	?

$$2*2+1*2+(-1)*2+1*1=5$$

-1*2+2*2+1*2-1*2-1*1+1*3=4

1	-1	-1
1	2	-1
1	1	1

Rotate

1	1	1
-1	2	1
-1	-1	1

	1	1	1
2	-1 2	2 2	1 3
2	-1 1	-1 3	1 3
2	2	1	2
1	3	2	2

$$\mathbf{O} = K \otimes \mathbf{I}$$

5	4	4	?
?	?	?	?
?	?	?	?
?	?	?	?

$$2*2+1*2+(-1)*2+1*1=5$$
 $-1*2+2*2+1*2-1*2-1*1+1*3=4$
 $-1*2+2*2+1*3-1*1-1*3+1*3=4$

K
17

1	-1	-1
1	2	-1
1	1	1

Rotate	
--------	--

/	1
	vlaaA

		1	1	1
2	2	-1 2	2 3	1
2	1	-1 3	-1 3	1
2	2	1	2	

$$\mathbf{O} = K \otimes \mathbf{I}$$

5	4	4	-2
?	?	?	?
?	?	?	?
?	?	?	?

$$-1*2+2*2+1*3-1*1-1*3+1*3=4$$

$$-1*2+2*3-1*3-1*3 = -2$$

K

I

0	=	K	\otimes	I
			_	_

1	-1	-1	1
1	2	-1	-1
1	1	1	$\begin{bmatrix} -1 \end{bmatrix}$
	-		

1	1 2	1 2	2	3
-1	2 2	1	3	3
-1	-1 2	1 2	1	2
	1	3	2	2

5	4	4	-2
9	?	?	?
?	?	?	?
?	?	?	?

Rotate

Apply

$$2*2+1*2+(-1)*2+1*1=5$$
 $-1*2+2*2+1*2-1*2-1*1+1*3=4$
 $-1*2+2*2+1*3-1*1-1*3+1*3=4$
 $-1*2+2*3-1*3-1*3=-2$
 $1*2+1*2+2*2+1*1-1*2+1*2=9$

K

~ ~ ~ ~	0	=	K	\otimes]
---------	---	---	---	-----------	---

1	-1	-1
1	2	-1
1	1	1

1 2	$\frac{1}{2}$	1 2	3
-1 2	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	1 3	3
-1 2	-1 2	1	2
1	3	2	2

5	4	4	-2
9	6	?	?
?	?	?	?
?	?	?	?

Rotate

/ Apply

$$2*2+1*2+(-1)*2+1*1=5$$
 $-1*2+2*2+1*2-1*2-1*1+1*3=4$
 $-1*2+2*2+1*3-1*1-1*3+1*3=4$
 $-1*2+2*3-1*3-1*3=-2$
 $1*2+1*2+2*2+1*1-1*2+1*2=9$

Convolution – Smoothing

Mean of neighborhood

$$K = ones(N, N) \cdot \frac{1}{N^2}$$

1	1	1	
1	1	1	
1	1	1	

Convolution maps – Gaussian kernel

$$\mathbf{G}(u,v) = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{2\sigma^2}}$$

The spread of the Gaussian function is controlled by the standard deviation σ

Convolution – Smoothing

Mean of neighborhood

Gaussian Kernel

Better smoothing: Central pixels weight more!!

Image filtering | examples

What does blurring take away?

original image

smoothed (5x5)

detail

Autonomous Mobile Robots Margarita Chli, Martin Rufli, Roland Siegwart

Perception III | 30

Image filtering | examples

Let's add it back:

Autonomous Mobile Robots Margarita Chli, Martin Rufli, Roland Siegwart

Perception III | 31

- Edges are useful characteristics of an image. Why?
 - They denote significant change; boundaries.
- Edge intensity profile

- Edges are useful characteristics of an image. Why?
 - They denote significant change; boundaries.
- Edge intensity profile
- Investigation on the T shows a clear edge
 - Or actually two edges

Edges

- Edges are useful characteristics of an image. Why?
 - They denote significant change; boundaries.
- Edge intensity profile
- Investigation on the T shows a clear edge
 - Or actually two edges
 - Which can be detected by... the derivative

Derivative (1st order difference)

- The derivative is a very good indicator of an edge
- Convolving with a 1-directional kernel highlights changes in one direction (perpendicular edges)
- Use two separate kernels and combine the output

Derivative (1st order difference)

Gradient magnitude

Sobel kernel

Image

Profile of

First derivative

a horizontal

first order difference

$$p'[\nu] = p[\nu] - p[\nu - 1]$$

$$p'[\nu] = \frac{1}{2}(p[\nu+1] - p[\nu-1])$$

Derivate Operator: SOBEL kernel

$$p'[v] = p[v] - p[v - 1]$$

$$p'[v] = \frac{1}{2}(p[v + 1] - p[v - 1]) \qquad D = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
symmetrical first order difference

Transposing for vertical gradient

$$I_{u} = \frac{\partial I}{\partial u} = \nabla_{u} I = D \otimes I$$

$$I_{v} = \frac{\partial I}{\partial v} = \nabla_{v} I = D^{T} \otimes I$$

Edges

However: gradient operators amplify noise: high pass filters

Solution: apply a Gaussian smoothing: low pass filter

Instead of convolving the image with the Gaussian and *then* the derivative, we exploit the associative property of convolution to write

$$\nabla \mathbf{I} = \mathbf{D} \otimes \left(\mathbf{G}(\sigma) \otimes I \right) = \underbrace{\left(\mathbf{D} \otimes \mathbf{G}(\sigma) \right)}_{\text{DoG}} \otimes \mathbf{I}$$

$$A \otimes B \otimes C = (A \otimes B) \otimes C = A \otimes (B \otimes C)$$

associativity

$$G_{u} = \frac{\partial G}{\partial u} = -\frac{u}{2\pi\sigma^{2}}e^{-\frac{u^{2}+v^{2}}{2\sigma^{2}}}$$

$$G_{v} = \frac{\partial G}{\partial v} = -\frac{v}{2\pi\sigma^{2}}e^{-\frac{u^{2}+v^{2}}{2\sigma^{2}}}$$
 30

Key points on smoothing + derivative masks

Smoothing masks

- Values positive
- Always sum to 1 → constant regions same as input
- Amount of smoothing proportional to mask size

Derivative masks

- Opposite signs used to get high response in regions of high contrast
- Always sum to 0 → no response in constant regions
- High absolute value at points of high contrast

Autonomous Mobile Robots
Margarita Chli, Martin Rufli, Roland Siegwart

Perception III | 45

Spatial Operators – Median Filter

- $\bullet \ \ f(W) = M(W)$
- Non-linear NOT convolution, non-associative
- Requires ordering/sorting = expensive

Median Filter examples

Preserves edges & handles salt and pepper noise

Expensive

```
I = [ones(100,50),zeros(100,50)];
>> k = fspecial('average',15);
>> tic; If = conv2(I,k); toc;
Elapsed time is 0.004001 seconds.
>> tic; Im = medfilt2(I,[15,15]); toc;
Elapsed time is 0.017216 seconds.
```


Spatial Operations – Template matching

Goal: find which parts of the input image are more similar to the template

$$O[u, v] = s(T, W), \forall (u, v) \in I$$
 s – SIMILARITY function, T – template

Template matching – Similarity functions

$$SAD: \geq 0$$

$$s = \sum_{(u,v)\in I} \left| \mathbf{I}_1[u,v] - \mathbf{I}_2[u,v] \right|$$

sum of absolute differences

$$SSD: \geq 0$$

$$s = \sum_{(u,v)\in I} (I_1[u,v] - I_2[u,v])^2$$

sum of square differences

$$NCC: \in [0;1] \quad Good\ Match \approx 0.8$$

normalized cross-correlation

$$s = \frac{\sum_{(u,v)\in I} I_1[u,v] \cdot I_2[u,v]}{\sqrt{\sum_{(u,v)\in I} I_1^2[u,v] \cdot \sum_{(u,v)\in I} I_2^2[u,v]}}$$

Invariant to brightness gain