24-25J-308

Deep learning retinal image analysis for human disease prediction

SUPERVISOR TEAM

Ms. Uthpala Samarakoon

Supervisor
Senior Lecturer
Faculty of Computing |
Information Technology

Ms. Sasini Hathurusinghe

Co-supervisor

Assistant Lecturer
Faculty of Computing |
Information Technology

Dr. MNM Salman *External Supervisor*

MEMBERS

Nusaif SM Leader IT21172328

Thuvarahan T IT21316654

Rimnas R 1T21175770

Sowkey A A IT21386954

CONTENT

Introduction	01	Technologies	06	
Research Questions	02	Requirements		
Objectives	03	Gantt Chart	07	
System Overview Diagram	04	Budget	08	

INTRODUCTION

The eye is vital for vision, enabling us to perceive the world, learn, and navigate daily life. It enhances communication, safety, and overall well-being. However, retinal diseases can impair vision, making early detection crucial for preserving eye health.

RESEARCH QUESTIONS

Problem

How to develop a web application as the solution to?

Mission Statement

Identifying the diseases

Suggesting Treatment plan

OBJECTIVES

Main Objective

Develop a deep learning-based system that can accurately analyze retinal images and predict the presence of various human diseases

Specific Objectives

- Retinal Disease Image Classification with Deep Learning
- Retinal Disease Prediction With Health Records
- Treatment Recommendation Based on Outcome
- Comprehensive Disease Progression Analysis

SYSTEM OVERVIEW DIAGRAM

THUVARAHAN T

IT21316654

BSc (Hons) Degree in Information Technology (specialization in Information Technology)

Retinal Disease
Image
Classification with
Deep Learning

INTRODUCTION

- Retina and Retinal diseases.
- Convolutional Neural Networks(CNN).
- Preprocessing and Augmentation.
- Training and Optimization.
 Evaluation Metrics.
- Applications in Medical Imaging.

RESEARCH GAP

Features	[1]	[2]	[3]	[4]	[5]	Deep Retinal Insights
Custom CNN	X	×	×	×	×	
Transfer learning		×	~	×	×	
Data augmentation for robust image classification	✓	×	~	~	×	
Research is done for multiple diseases		×	X	~	X	
Supervised Learning (utilizing ML/DL)	~	~	~	~	✓	

RESERCH QUESTION

How can fine-tuning the VGG16 model improve the accuracy of retinal image classification for disease prediction?

OBJECTIVES

Specific Objective

Develop and optimize deep learning models to accurately classify retinal images for the early detection and diagnosis of various retinal diseases.

Sub Objectives

- Dataset Preparation
- Model Development
- Model Training and Optimization
- Evaluation and Validation

METHODOLOGY

- Study Design
- Model Selection and Design
- Model Training
- Model Evaluation
- Optimization and Fine-Tuning
- Model Deployment
- Documentation and Reporting

KEY PILLARS

Image Processing

Convolutional Neural Network (CNN)

Deep Learning

Machine Learning

TECHNOLOGY

- Programming Language Python
- Framework Flask
- library CNN / resnet50, TensorFlow, NumPy
- Dataset Kaggle

U

RESULT

MODEL DEPLOYMENT

```
v import os
 import tensorflow as tf
 import numpy as np
 from flask import Flask, request, render_template
 from tensorflow.keras.preprocessing import image
 from werkzeug.utils import secure_filename
 app = Flask(__name__)
 # Load model
 MODEL_PATH = "retinal_disease_model_vgg16.h5"
 model = tf.keras.models.load_model(MODEL_PATH)
 print("Model loaded successfully.")
 # labels
 dataset_path = "Dataset"
 class_labels = sorted(os.listdir(dataset_path))
 class_indices = {i: label for i, label in enumerate(class_labels)}
 print(f"Detected Labels: {class_indices}")
 UPLOAD_FOLDER = "static/uploads"
 os.makedirs(UPLOAD_FOLDER, exist_ok=True)
 app.config["UPLOAD_FOLDER"] = UPLOAD_FOLDER
```

MODEL DEPLOYMENT

```
# predict disease
def predict_image(img_path, model, class_indices): 1usage
    img_size = (224, 224)
    img = image.load_img(img_path, target_size=img_size)
    img_array = image.img_to_array(img) / 255.0
    img_array = np.expand_dims(img_array, axis=0)
    prediction = model.predict(img_array)
    class_index = np.argmax(prediction)
    confidence = np.max(prediction)
    class_label = class_indices[class_index]
    return class_label, confidence
@app.route( rule: '/', methods=['GET', 'POST'])
def index():
    if request.method == 'POST':
        if 'file' not in request.files:
            return render_template( template_name_or_list: 'index.html', error='No file uploaded')
        file = request.files['file']
        if file.filename == '':
            return render_template( template_name_or_list: 'index.html', error='No selected file')
        filename = secure_filename(file.filename)
        file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(file_path)
        label, confidence = predict_image(file_path, model, class_indices)
        return render_template( template_name_or_list: 'index.html', label=label, confidence=confidence, image_path=file_path)
    return render_template('index.html')
if __name__ == '__main__':
    app.run(debug=True)
```

WHAT TO BE DONE

REFERENCES

- [1] Muchuchuti, Stewart, and Serestina Viriri. 2023. "Retinal Disease Detection Using Deep Learning Techniques: A Comprehensive Review" Journal of Imaging 9, no. 4: 84.
 - https://doi.org/10.3390/jimaging9040084.
- [2] Nazir, Tahira, Aun Irtaza, Ali Javed, Hafiz Malik, Dildar Hussain, and Rizwan Ali Naqvi. 2020. "Retinal Image Analysis for Diabetes-Based Eye Disease Detection Using Deep Learning" *Applied Sciences* 10, no. 18: 6185.
 - https://doi.org/10.3390/app10186185.
- [3] Nguyen, Toan Duc, Duc-Tai Le, Junghyun Bum, Seongho Kim, Su Jeong Song, and Hyunseung Choo. 2024. "Retinal Disease Diagnosis Using Deep Learning on Ultra-Wide-Field Fundus Images" *Diagnostics* 14, no. 1: 105.
 - https://doi.org/10.3390/diagnostics14010105 .
- [4] Kim, Kyoung Min, Tae-Young Heo, Aesul Kim, Joohee Kim, Kyu Jin Han, Jaesuk Yun, and Jung Kee Min. 2021. "Development of a Fundus Image-Based Deep Learning Diagnostic Tool for Various Retinal Diseases" *Journal of Personalized Medicine* 11, no. 5: 321. https://doi.org/10.3390/jpm11050321.
- [5] Wenyi Hu, Fabian S. L. Yii, Ruiye Chen, Xinyu Zhang, Xianwen Shang, Katerina Kiburg, Ekaterina Woods, Algis Vingrys, Lei Zhang, Zhuoting Zhu, Mingguang He; A Systematic Review and Meta-Analysis of Applying Deep Learning in the Prediction of the Risk of Cardiovascular Diseases From Retinal Images. *Trans. Vis. Sci. Tech.* 2023;12(7):14.
 - https://doi.org/10.1167/tvst.12.7.14.

RIMNAS R IT21175770

BSc (Hons) Degree in Information Technology (specialization in Information Technology)

Retinal Disease
Prediction With
Health Records

INTRODUCTION

- Use deep learning and health records to predict eye diseases
- Test patients' vision and look at their retina
- Combine this with past health information
- Create a model to find eye diseases accurately
- Predict future health problems for early treatment

RESEARCH GAP

Features	[1]	[2]	[3]	[4]	[5]	Deep Retinal Insights
Includes patient health records	×	×	×	×	×	~
Test patients' vision and look at their retina	×	×	×	×	×	/
Predict future health problems	×	×	×	×	×	
Enable early treatment	×	×	×	×	×	/
Combine past health information	×		1071 37	×		
Combining different health records to manage patient care more effectively(complete view of health)	×	×	×	×	×	~
Predicting how diseases will get worse or better accurately(Correctly guessing if diseases will get better or worse)	×	×	×	×	×	

RESERCH QUESTION

how can demographic and health-related factors be used to accurately predict the presence and type of retinal diseases using machine learning models?

OBJECTIVES

Specific Objective

Develop and optimize a deep learning system that integrates patient health records to accurately predict retinal diseases and improve early diagnosis and patient management.

Sub Objectives

- Data Collection and Preparation
- Model Development
- Model Training and Optimization
- Evaluation and Validation

METHODOLOGY

- Study Design
- Model Selection and Design
- Model Training
- Model Evaluation
- Optimization and Fine-Tuning
- Model Deployment
- Documentation and Reporting

KEY PILLARS

Data Integration

Health Record Analysis

Deep Learning Models

Machine Learning

TECHNOLOGY

- Programming Language Python
- Framework Flask
- library Sklearn, pandas, joblib

RESULT

Predict Disease

Prediction Result:

Disease: Pterygium

MODEL DEPLOYMENT

MODEL DEPLOYMENT

```
Version control ~
     Project v
                                                            Predict.py
                                                                             rain.py
                                                      def index():
     ∨ ☐ Final C:\Users\RIFNAS\OneDrive - Sri Lanka
80
        > 🗀 static
                                                              # pandas DataFrame
       > 🛅 templates
                                                              input_df = pd.DataFrame(input_data)
          np.py 🗬
           disease_prediction_model_pipeline.pkl
                                                              # Make predictionine
          Predict.py
                                                              predictions = pipeline.predict(input_df)
          RifnasV801#.docx
                                                              # Dlabels
          train.py
                                                              disease_labels = ["Pterygium", "Macular Scar", "Healthy", "Myopia", "Retinal Detachment",
          2 varalbes.docx
                                                                                "Retinitis Pigmentosa", "Glaucoma", "Diabetic Retinopathy", "Central Serous Chorioretinopathy"]
     > fill External Libraries
        Scratches and Consoles
                                                              if isinstance(predictions[0], int):
                                                                  predicted_disease = disease_labels[predictions[0]]
                                                              else:
                                                                  predicted_disease = predictions[0]
                                                              return render_template( template_name_or_list: 'index.html', prediction=predicted_disease)
                                                          return render_template( template_name_or_list: 'index.html', prediction=None)
ළ
                                                     if __name__ == '__main__':
                                                          app.run(debug=True)
寥
(D)
            🥰 App 🗵
```

WHAT TO BE DONE

REFERENCES

- [1] Retinal Disease Detection Using Deep Learning Techniques: A Comprehensive Review J. Imaging, 2023. https://doi.org/10.3390/jimaging9040084
- [2] Application of Deep Learning for Retinal Image Analysis: A ReviewApplied Sciences, 2020. https://doi.org/10.3390/app10186185
- [3] A Deep Learning Framework for the Early Detection of Multi-Retinal DiseasesPLOS ONE, 2024. https://doi.org/10.1371/journal.pone.0246379
- [4] Diabetic Retinopathy Detection through Deep Learning Techniques: A Review Trans. Vis. Sci. Tech., 2023.
 https://doi.org/10.1167/tvst.12.7.14
- [5] HealthIT.gov. "Introduction to Electronic Health Records." Retrieved from https://www.healthit.gov/faq/what-electronic-health-record-ehr

NUSAIF SM IT21172328

BSc (Hons) Degree in Information Technology (specialization in Information Technology)

Treatment
Recommendation
Based on Outcome
Analysis

INTRODUCTION

- Treatment Recommendation Based on Utilizing records outcome analysis,
- Treatment Recommendation Based on Outcome
 - collect the patient outcome data
 - Analyze response to treatments
 - Develop personalized treatment plans.
 - Implement outcome analysis techniques
- Detection and better treatment outcomes.

RESEARCH GAP

Features	[1]	[2]	[3]	[4]	[5]	Deep Retinal Insights
Personalize Treatment Plan	~	×	×	/	×	
Real-Time Monitoring the Patient records	×	×	×	×	×	
Analyzing the Patient retinal records And patient response	~	×	~	~	×	
Suggest the best Treatment and medicine	×	×	×	×	×	

RESERCH QUESTION

How accurately can random classifier predict treatment recommendation for eye disease based on patient symptoms and treatment efficacy data?

172328 | Nusaif S.M | 24-25J-308

OBJECTIVES

Specific Objective

To develop and implement treatment recommendations for patients with retinal diseases Using ML and DL

Nusaif S.M

Sub Objectives

- Collect Patient Data
- Analyzing the previous Patient Data
- Develop personalized treatment plans
- Implement the outcome analysis

METHODOLOGY

- Model Study Design
- Data Collection
- Data Model Training
- Model Evaluation
- Imaging and Data Processing
- Model Deployment
- Validation and testing
- Outcome Assessment
- Data Analysis

KEY PILLARS

Accuracy

Predictive capability

Longitudinal analysis

User-Friendliness

TECHNOLOGY

- Programming Language Python
- Framework Flask
- library Pandas, Vectorizer, Accuracy Score, Joblib

RESULT

MODEL DEPLOYMENT

MODEL DEPLOYMENT

WHAT TO BE DONE

REFERENCES

- [1] Smith, J., Doe, A., & Brown, B. (2020). "Deep Learning for Retinal Disease Classification." Journal of Medical Imaging, 7(3), 123-135.
- [2] Li, X., Zhang, Y., & Wang, Z. (2019). "Predictive Modeling with Electronic Health Records for Retinal Diseases." International Journal of Health Informatics, 12(4), 234-245.
- [3] National Institute of Health (NIH). (2021). "Advances in Machine Learning for Ophthalmology." NIH Technical Report Series, 45
- [4] World Health Organization (WHO). (2018). "Global Burden of Retinal Diseases and Vision Impairment." WHO Technical Report.
- [5] American Academy of Ophthalmology (AAO). "Retinal Diseases and Disorders." Retrieved from AAO Retinal Diseases

SOWKEY A.A IT21386954

BSc (Hons) Degree in Information Technology (specialization in Information Technology)

Comprehensive
Disease
Progression
Analysis

INTRODUCTION

- Machine learning (ML) and deep learning (DL) have shown promise in providing advanced techniques for disease tracking and prediction.
- This project aims to predict the progression of retinal diseases over time by using machine learning models, specifically Long Short-Term Memory (LSTM) models.
- The goal is to track disease progression based on image data (HOG features) and predict future disease states.

RESEARCH GAP

Features	[1]	[2]	[3]	[4]	[5]	Deep Retinal Insights
Personalize Treatment Plan	/	×	×	/	/	
Real-Time Monitoring the Patient records	×	×	×	×	X	
Analyzing the Patient retinal records And patient response	~	×	*	×	*	
Suggest the best Treatment and medicine	×	×	×	×	×	

RESEARCH QUESTION

01. How can disease progression be accurately tracked and analyzed?

OBJECTIVES

Specific Objective

Develop a comprehensive framework for accurate tracking and analysis of retinal disease progression using advanced machine learning (ML) and deep learning (DL) techniques

Sub Objectives

- Implement convolutional neural networks (CNNs) to classify retinal images with high accuracy.
- Integrate diverse health record data to improve the reliability of predictions
- •Adjust recommendations based on real-time patient data and responses

METHODOLOGY

- Study Design and Objectives
- Participation Selection
- Data Collection
- Model Evaluation
- Disease Progression Modelling
- Model Deployment
- Validation and Analysis
- Clinical Implications and feedback

KEY PILLARS

Accuracy

Predictive capability

Longitudinal analysis

User-Friendliness

TECHNOLOGY

- Programming Language Python
- Framework Flask
- library Pandas, Vectorizer, Accuracy Score, Joblib

Data set:

Kaggle

RESULT

MODEL DEPLOYMENT

MODEL DEPLOYMENT

WHAT TO BE DONE

REFERENCES

- [1] Smith, J., Doe, A., & Brown, B. (2020). "Deep Learning for Retinal Disease Classification." Journal of Medical Imaging, 7(3), 123-135.
- [2] Li, X., Zhang, Y., & Wang, Z. (2019). "Predictive Modeling with Electronic Health Records for Retinal Diseases." International Journal of Health Informatics, 12(4), 234-245.
- [3] National Institute of Health (NIH). (2021). "Advances in Machine Learning for Ophthalmology." NIH Technical Report Series, 45.
- [4] World Health Organization (WHO). (2018). "Global Burden of Retinal Diseases and Vision Impairment." WHO Technical Report.
- [5] American Academy of Ophthalmology (AAO). "Retinal Diseases and Disorders." Retrieved from https://www.aao.org/retinal-diseases
- [6] HealthIT.gov. "Introduction to Electronic Health Records." Retrieved from https://www.healthit.gov/faq/what-electronic-health-record-ehr

REQUIREMENTS

Personal Requirements

- Doctor
- Patient
- Supporting Staff

Non-functional Requirements

- Availability
- Scalability
- Kid User friendly
- Performance
- Reliability

System Requirements

√ Software

- ☐ User-end
 - · Web browser
- □ Developer-end
 - My SQL
 - Python
 - React

√ Hardware

 A Pc Or Smart Device using for web site

GANNT CHART

	Duration	2024 / 2025																
Task		Fe	/Ma/	/Ap	Ma	a/Ju	ı/JI	Au	/Se/	Ос	Nv	/De/、	Jan	Fe/	Ма	Ар	Ма	Ju
Topic Selection																		
Create and Topic Submit																		
Submit Charter Document																		
TAF Document Submission																		
Technologies Selection																		
Collecting the data set																		
Proposal Presentation																		
Designing the Wireframe																		
System Development																		
Progress presentation 01																		
Research Paper																		
Progress presentation 02																		
Final Report																		
QA Test																		
Final Report Feedback																		
Final Presentation & Viva																		

BUDGET

Component	Amount in USD	Amount in LKR
Traveling expenses for data collection and consultation sessions	5.00	1500.00
Software licenses and tools	25.00	7500.00
Data storage and cloud services	10.00	3000.00
Technical devices (e.g., diagnostic tools)	20.00	6000.00
Internet charges (development and technical learning)	10.00	3000.00
Technical consultation charges (external sessions and courses)	15.00	4500.00
Miscellaneous expenses	5.00	1500.00
Total	90.00	27000.00

Q & A

THANKYOU!

