Computer Engineering Department
Faculty of Engineering
Cairo University
Image Processing & Computer Vision - CMP(N)446

Tutorial 8

Texture Analysis

Quiz Time

Algorithms Review

GLCM & LBP

Gray Level Co-occurrence Matrix

Goal

 Get a quantitative measure of the texture present in an image (statistical texture analysis approach)

Image

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

GLCM 0 1 2 0 1 0 1 1 0 1 1 0 1 0 1 2 0 0 1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

0	1	2	1
0	0	0	2
2	1	1	2
1	1	2	1

Converting GLCM to a Compact Representation

Since the matrix is often huge and sparse, it is further processed to get a more compact measure (like homogeneity).

$$Energy = \sum_{i} \sum_{j} N_d^2(i,j) \tag{7.7}$$

$$Entropy = -\sum_{i} \sum_{j} N_d(i,j) log_2 N_d(i,j)$$
 (7.8)

$$Contrast = \sum_{i} \sum_{j} (i-j)^2 N_d(i,j)$$
 (7.9)

$$Homogeneity = \sum_{i} \sum_{j} \frac{N_d(i,j)}{1+|i-j|}$$
 (7.10)

$$Correlation = \frac{\sum_{i} \sum_{j} (i - \mu_{i})(j - \mu_{j}) N_{d}(i, j)}{\sigma_{i} \sigma_{j}}$$
 (7.11)

where μ_i , μ_j are the means and σ_i , σ_j are the standard deviations of the row and column

Local Binary Pattern

LBP Algorithm

- For each pixel, we will create an 8-bit number that represents its relationship to its neighbors.
- Then, we will make a histogram from the output 2D matrix.

Lab Time