Eine Woche, ein Beispiel 2.16 lines passing a point

Ref:

[Huy23]: Huybrechts, Daniel. The Geometry of Cubic Hypersurfaces. [Kr16, cubic threefold]: Krämer, Thomas. Cubic Threefolds, Fano Surfaces and the Monodromy of the Gauss Map. Manuscripta Mathematica 149,

These are perhaps too well-known. But I should record it.

Typical question:

In a hypersurface $X \subset \mathbb{P}^n$, how many lines $l \cong \mathbb{P}'$ pass a given point $p \in X$?

Affine version:

In a (conical) hypersurface $X \subset \mathbb{C}^{n+1}$, how many planes $1 \cong \mathbb{C}^2$ contain a given line $p \cong \mathbb{C} \subseteq X$?

- 1. Method
- 2. Lines on cubic threefold
- 3. Lines on quadrics
- 4. Lines passing through lines

1. Method

Slogan. Write down the coordinates explicitly.

w.l.o.g. let
$$p = [1:0:\dots:0]$$
 and $X = \{f = 0\}$, where
$$f(z_0, \dots, z_n) = \sum_{i=0}^d g_{d-i}(z_1, \dots, z_n) \ z_0^i$$

$$g_{d-i}(z_1, \dots, z_n) \in C[z_1, \dots, z_n] \quad \text{are homo of degree } d-i,$$
 and $g_0(z_1, \dots, z_n) = 0$.

Suppose that
$$(= \langle (1,0,...,0), (0,x_1,...,x_n) \rangle_{C-v.s.}$$
, then $(\subseteq X)$
 $\Leftrightarrow f(t,x_1,...,x_n) \equiv 0$ $\forall t \in C$
 $\Leftrightarrow g_i(x_1,...,x_n) \equiv 0$ $\forall i \in \{1,...,d\}$

Therefore,
$$\begin{cases}
l \cong \mathbb{C}^{2} \subseteq \mathbb{C}^{n+1} \mid p \in l \subseteq X \\
\cong \int [x_{1}, \dots, x_{n}] \in \mathbb{ClP}^{n-1} \mid g_{d}, (x_{1}, \dots, x_{n}) = 0 \quad \forall i
\end{cases}$$

$$\cong \int [x_{1}, \dots, x_{n}] \in \mathbb{ClP}^{n-1} \mid \frac{\partial f}{\partial z_{0}^{i}}(o, x_{1}, \dots, x_{n}) = 0 \quad \forall i
\end{cases}$$
Here, $\mathbb{ClP}^{n-1} = \mathbb{C}_{r}(p^{\perp}, 1)$.

$$\begin{cases} T_p X = \{z_n = 0\} \cong \mathbb{C}^n \\ g_1(z_1, ..., z_n) = z_n \end{cases}$$

In ptc, $p \in l \subseteq X \Rightarrow l \subseteq T_p X$.

2. Lines on cubic threefold

https://math.stackexchange.com/questions/3605767/number-of-lines-passing-a-point-on-a-cubic-threefold

Prop. Generically, there are 6 lines in a cubic threefold passing a given pt.

Proof. w.l.o.g. suppose
$$p = [1:0:0:0:0]$$
, $T_pX = \{z_4 = 0\}$, then
$$\{l \mid p \in l \leq X \}$$

has generically 6 pts. (will we get g2/g3 all the time) for some specific cubic threefold?)

Rmk Generically, passing a given pt, there are 24 lines in a quartic fourfold, 5! lines in a quintic fivefold,

n! lines in a degree n n-fold

Thes in a degree n n-join.								
dim dim d	1	2	3	4	5	6	·	
0	•		••					
1	IP'	twistor IP'	9=1	9=6	9=10	g=15	$g = \frac{d(d-1)}{2}$	
2	ΙΡ°	conical of ≥ p'x P'	cubic Surface	K} surface				
3	IP³	Conical	cubic threefold					
4	IP*	conical					general type	
<u> </u>	1Ps	:						
							1 - 11 - 12	

unitaled by IP' unitaled by conics

3. Lines on quadrics.

In this case,

$$\begin{cases} \left\{ \begin{array}{c} \left\{ p \in \left\{ \subseteq X \right\} \right\} \\ \cong \left\{ \left[x_{1} : \dots : x_{n-1} \right] \in \mathbb{C}[p^{n-1}] \right\} \\ \Rightarrow \left\{ \left[x_{1} : \dots : x_{n-1} \right] \in \mathbb{C}[p^{n-2}] \right\} \\ \end{cases} \qquad g_{2}\left(x_{1}, \dots, 0 \right) = 0 \end{cases}$$

is again a quadric of dim n-3. (generically) $n \ge 3$

F,(X) = [L = X lines]

Cor. For n=3,

$$d_{im} F_{i}(X) = n-3 + n-1 - 1 = 2n-5$$

= $2(n-1)-3$

dim dim d	1	2	3	4	ځ	6	
0			•				
1	° IP'	twistor IP'	9=1	9=6	9=10	g=15	$g = \frac{d(d-1)}{2}$
2	2 IP2	2onical ≥ 1p' × 1p'	Cubic Surface				
3	4 IP3	Conical	² cubic threefold				
4	6 IP4	conical	-	3			general type
	8 1bz	7			4		
	•					Fano=	Calabi-Yau

univuled by IP' unimited by conics

dimc Fi(X)

In general, one can compute r-planes ($\cong \mathbb{P}^r$) on X passing P.

 \Rightarrow when $F_{r-1}(X') \neq \emptyset$ generically,

$$dim \ F_{r}(X) = dim \ F_{r-1}(X') + dim^{proj}X - r$$

$$= dim \ F_{r-1}(X') + (n-1) - r$$

$$= dim \ F_{r-1}(X') + n-r-1$$

$$= n-r-1 + ((n-2) - (r-1)-1) + \cdots + ((n-2(r-1)) - (r-(r-1))-1) + dim \ F_{o}(X'^{(r)})$$

$$= n-r-1 + (n-r-2) + \cdots + (n-2r) + dim^{proj}X^{(r)}$$

$$= \frac{1}{2}(2n-3r-1) r + n-2r-1$$

$$= \frac{1}{2}(2n-3r-2)(r+1)$$

 $=\frac{1}{2}(2n-3r-2)(r+1)$

dim dim d	1	2	3	4	5	6	٠	
0			•	::				
1	× IP'	twistor P'	9=1	9=6	9=10	g=15	9= 9	$\frac{d(d-1)}{2}$
2	o IP²	Conical ? ≈ 1p'×1p' ?	oubic Surface					
3	3 P3	PConical	cubic threefold					
4	6 IP*	3 conical		ø				general type
<u></u>	9 1Ps	6 ;			Ø			
								Calabi - You

3((n-1)-3)

univuled by IP' unimited by conics

4. Lines passing through lines

Typical question:

In a hypersurface $X \subset \mathbb{P}^n$, how many lines $l \cong \mathbb{P}'$ pass a given line $l_0 \subseteq X$?

Affine version:

In a (conical) hypersurface $X \subset \mathbb{C}^{n+1}$, how many planes $l \cong \mathbb{C}^2$ intersect a given plane $l_0 \cong \mathbb{C} \subseteq X$ non-trivially?

w.l.o.g. let $l_0 = [****:0:...:0]$ and $X = \{f = 0\}$, where $f(z_0, ..., z_n) = \sum_{\substack{i,j \\ i \neq j \leq d}} a_{ij}(z_2, ..., z_n) \ z_0^i \ z_0^j$ $a_{ij}(z_1, ..., z_n) \in \mathbb{C}[z_1, ..., z_n] \quad \text{are homo of degree } d-i-j$ and $l_0 \subseteq X \iff a_{ij}(z_1, ..., z_n) = 0 \quad \text{when } d=i+j$

There fore, $f(z_0, ..., z_n) = \sum_{\substack{i,j\\i+j < d}} a_{ij}(z_2, ..., z_n) \ z_i^{i} z_i^{j}.$

We want to restrict f to a plane $e = IP^2$ containing l. Suppose $e = \{z_i = k_i w \mid i = 2,..., n \}$ for some $k_i \in \mathbb{C}$, then

$$fle = \sum_{\substack{i \neq j \\ i \neq j < d}} a_{ij}(k_{2}\omega, ..., k_{n}\omega) z_{o}^{i} z_{i}^{j}$$

$$= \sum_{\substack{i \neq j \\ i \neq j < d}} a_{ij}(k_{2}, ..., k_{n}) z_{o}^{i} z_{i}^{j} \omega^{d-i-j}$$

$$= \omega \left(\sum_{\substack{i,j,k\\i+j+k=d-1}} \alpha_{ij}(k_1,\ldots,k_n) \, Z_o^i Z_i^j \, \omega^k \right)$$

That means, $X \cap e = U \cap C$ for some curve e of degree d-1.

When d=3, t is a conic, and

$$\sum_{\substack{i,j,k\\i+j+k=d-1}} a_{ij}(k_1,\ldots,k_n) z_o^i z_i^j w^k = (z_o,z_i,\omega) \begin{pmatrix} a_{2o} & \frac{a_{1i}}{2} & \frac{a_{1o}}{2} \\ \frac{a_{1i}}{2} & a_{01} & \frac{a_{0i}}{2} \\ \frac{a_{0i}}{2} & \frac{a_{0i}}{2} & a_{00} \end{pmatrix} \begin{pmatrix} z_o \\ z_i \\ w \end{pmatrix}$$

More over,

C is singular
$$\iff$$
 det $A = 0$
C splits as two distinct lines \iff rk $A = 2$
C splits as two identity lines \iff rk $A = 1$

Notice that $\det A \in \mathbb{C}[k_1, ..., k_n]$ is a homo poly of degree t, so gives a hyperplane in $\mathbb{C}[P^{n-2}]$ with degree t.

For a smooth cubic threefold, would we find a plane, such that the intersection is a union of line and two identified line.

No. Since the cubic threefold is smooth, all its plane sections must be reduced curves.

arith genus 19

Q: Let f:X-Y be a map of algbraic curves (maybe singular), where f is a unramified covering of degree 2. The arithmetic genus of f is 10, so what is the range of the arithmetic genus of f is 20.

A: (guess) still 19. A geometrical intuition may confirm the RH formula still applys.

A by chatgpt: The arithmetic genus of X can be any integer between 9 and 19 (in particular, if Y is smooth then $p_a(X) = 19$, while for a maximally nodal Y one may have $p_a(X) = 9$).

However, when Y is allowed to be singular the situation is a bit subtler. (Here we assume Y is an irreducible projective curve with only nodal singularities, so that $p_a(Y) = g(\tilde{N}) + \delta$ where δ is the number of nodes and \tilde{N} is the normalization.) An "admissible" unramified double cover $f: X \to Y$ will then lift to an étale double cover of the normalizations (so that the geometric genus of X is $2g(\tilde{N}) - 1$). Moreover, over a node of Y there are two possibilities. In local terms one may have either "non-splitting" – so that a node of Y gives rise to a single node in X – or "splitting" – so that the pre-image consists of two nodes. Writing r for the number of nodes of Y that split (with $0 \le r \le \overline{\delta}$) one can show that

 $p_a(X) = 2p_a(Y) - 1 - \delta + r$. Since for an (irreducible) nodal curve one always has $\delta \le 10$ and r can vary between 0 and δ , the highest value is obtained when $\delta = 0$ (or when every node splits, so $r = \delta$) giving $p_a(X) = 19$, while the lowest occurs when Y is as singular as possible (e.g. $\delta = 0$).

10) with no splitting (r = 0), so that $p_a(X) = 19 - 10 = 9$.

When {det A=0} is sm, This ramified at 46 pts (counted with multiplicity)

Q: Is Cio connected?

 \overline{V} In [Huy23, $E \times 1.16$], it is claimed that $g(C_{lo}) = 11$. Therefore, we must have computed something wrong.