Homework #5 (Due date Nov. 9.)

- 1. Derive Eq. 2.64 and Eq. 2.65 in the main textbook.
- 2. Problem 2.7 of the main text book (Quantum Electronics for Atomic Physics).
- 3. Can you explain the procedure #4 at page 32 of the main text book. How much do you need to separate the distance between two lens from f_1+f_2 ? Estimate the distance for the following two cases.
- 1) The mode matching to the following confocal cavity of R = 10 cm with the laser beam of $\lambda=1~\mu m$. The waist of the input beam is $\omega_1=1~mm$. Here you assume the beam waist is located at the position of lens f_1 , wherever it is. What are your choices of d_0 , f_1 , f_2 , and d for the proper mode matching? How much different the distance d from f_1+f_2 ?

2) The mode matching to the fiber, which requires the beam waist $\omega_0=20~\mu m$ at the surface of the fiber for $\lambda=0.532~\mu m$. The waist of the input beam is $\omega_1=1~mm$. Here you assume the beam waist is located at the position of lens f_1 , wherever it is. What are your choices of d_0 , f_1 , f_2 , and d for the proper mode matching? How much different the distance d from f_1+f_2 ?