Linear dependence

Sarang S. Sane

Vector addition is a binary operation $+: V \times V \to V$, which takes any two vectors v and w of V and assigns to them a third vector denoted by v+w.

Vector addition is a binary operation $+: V \times V \to V$, which takes any two vectors v and w of V and assigns to them a third vector denoted by v + w.

In \mathbb{R}^n vector addition is defined by co-ordinate wise addition:

$$(x_1, x_2, \ldots, x_n) + (y_1, y_2, \ldots, y_n) = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)$$

Vector addition is a binary operation $+: V \times V \to V$, which takes any two vectors v and w of V and assigns to them a third vector denoted by v + w.

In \mathbb{R}^n vector addition is defined by co-ordinate wise addition:

$$(x_1, x_2, \ldots, x_n) + (y_1, y_2, \ldots, y_n) = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)$$

e.g.

$$(1.5, -3.3, 7.2, \frac{1}{2}, 1) + (-4, 5.8, 10, 5\frac{1}{2}, -3.4)$$

= $(-2.5, 2.5, 17.2, 6, -2.4)$.

Scalar multiplication is a function $\cdot : \mathbb{R} \times V \to V$, which take any element $c \in \mathbb{R}$ and $v \in V$ and assigns a new vector denoted by $c \cdot v$.

Scalar multiplication is a function $\cdot : \mathbb{R} \times V \to V$, which take any element $c \in \mathbb{R}$ and $v \in V$ and assigns a new vector denoted by $c \cdot v$.

It is standard to suppress the \cdot and instead of $c \cdot v$, the notation cv is used.

Scalar multiplication is a function $\cdot : \mathbb{R} \times V \to V$, which take any element $c \in \mathbb{R}$ and $v \in V$ and assigns a new vector denoted by $c \cdot v$.

It is standard to suppress the \cdot and instead of $c \cdot v$, the notation cv is used.

In \mathbb{R}^n , scalar multiplication is defined as follows:

$$c(x_1,x_2,\ldots,x_n)=(cx_1,cx_2,\ldots,cx_n)$$

Scalar multiplication is a function $\cdot : \mathbb{R} \times V \to V$, which take any element $c \in \mathbb{R}$ and $v \in V$ and assigns a new vector denoted by $c \cdot v$.

It is standard to suppress the \cdot and instead of $c \cdot v$, the notation cv is used.

In \mathbb{R}^n , scalar multiplication is defined as follows:

$$c(x_1,x_2,\ldots,x_n)=(cx_1,cx_2,\ldots,cx_n)$$

e.g.

$$0.5(1.5, -3.3, 7.2, \frac{1}{2}, 1) = (0.75, -1.65, 3.6, \frac{1}{4}, 0.5).$$

Linear combination of vectors

Let V be a vector space and $v_1, v_2, \ldots, v_n \in V$. The linear combination of v_1, v_2, \ldots, v_n with coefficients $a_1, a_2, \ldots, a_n \in \mathbb{R}$ is the vector $\sum_{i=1}^n a_i v_i \in V$.

Linear combination of vectors

Let V be a vector space and $v_1, v_2, \ldots, v_n \in V$. The linear combination of v_1, v_2, \ldots, v_n with coefficients $a_1, a_2, \ldots, a_n \in \mathbb{R}$ is the vector $\sum_{i=1}^n a_i v_i \in V$.

A vector $v \in V$ is a linear combination of v_1, v_2, \ldots, v_n if there exist some $a_1, a_2, \ldots, a_n \in \mathbb{R}$ so that $v = \sum_{i=1}^n a_i v_i$.

Example in \mathbb{R}^2 : 2(1,2) + (2,1) = (4,5)

$$2(1,2) + (2,1) = (2,4) + (2,1) = (4,5)$$

$$2(1,2) + (2,1) = (2,4) + (2,1) = (4,5)$$

$$2(1,2) + (2,1) = (2,4) + (2,1) = (4,5)$$

$$\tfrac{1}{2}(4,5) - \tfrac{1}{2}(2,1) = (1,2)$$

$$2(1,2) + (2,1) = (2,4) + (2,1) = (4,5)$$

Moreover, each of the vectors in the expression is a linear combination of the other two vectors.

$$\frac{1}{2}(4,5) - \frac{1}{2}(2,1) = (1,2)$$

(4,5) - 2(1,2) = (2,1)

Note further that we can re-write these expressions as follows :

$$2(1,2) + (2,1) = (2,4) + (2,1) = (4,5)$$

Moreover, each of the vectors in the expression is a linear combination of the other two vectors.

$$\frac{1}{2}(4,5) - \frac{1}{2}(2,1) = (1,2)$$

(4,5) - 2(1,2) = (2,1)

Note further that we can re-write these expressions as follows :

$$2(1,2) + (2,1) - (4,5) = (0,0)$$

$$2(1,2) + (2,1) = (2,4) + (2,1) = (4,5)$$

Moreover, each of the vectors in the expression is a linear combination of the other two vectors.

$$\frac{1}{2}(4,5) - \frac{1}{2}(2,1) = (1,2)$$

(4,5) - 2(1,2) = (2,1)

Note further that we can re-write these expressions as follows :

$$2(1,2) + (2,1) - (4,5) = (0,0)$$

Observe : the 0 vector is a linear combination of (1,2),(2,1),(4,5) with non-zero coefficients.

Another example in \mathbb{R}^2 : 3(2,1) + 2(-2,3) = (2,9)

$$3(2,1) + 2(-2,3) = (6,3) + (-4,6) = (2,9)$$

$$3(2,1) + 2(-2,3) = (6,3) + (-4,6) = (2,9)$$

$$3(2,1) + 2(-2,3) = (6,3) + (-4,6) = (2,9)$$

$$\frac{1}{3}(2,9) - \frac{2}{3}(-2,3) = (2,1)$$

$$3(2,1) + 2(-2,3) = (6,3) + (-4,6) = (2,9)$$

$$\begin{array}{l} \frac{1}{3}(2,9) - \frac{2}{3}(-2,3) = (2,1) \\ \frac{1}{2}(2,9) - \frac{3}{2}(2,1) = (-2,3) \end{array}$$

$$3(2,1) + 2(-2,3) = (6,3) + (-4,6) = (2,9)$$

Moreover, each of the vectors in the expression is a linear combination of the other two vectors.

$$\begin{array}{l} \frac{1}{3}(2,9) - \frac{2}{3}(-2,3) = (2,1) \\ \frac{1}{2}(2,9) - \frac{3}{2}(2,1) = (-2,3) \end{array}$$

Note further that we can re-write these expressions as follows:

$$3(2,1) + 2(-2,3) = (6,3) + (-4,6) = (2,9)$$

Moreover, each of the vectors in the expression is a linear combination of the other two vectors.

$$\begin{array}{l} \frac{1}{3}(2,9) - \frac{2}{3}(-2,3) = (2,1) \\ \frac{1}{2}(2,9) - \frac{3}{2}(2,1) = (-2,3) \end{array}$$

Note further that we can re-write these expressions as follows :

$$3(2,1) + 2(-2,3) - (2,9) = (0,0)$$

$$3(2,1) + 2(-2,3) = (6,3) + (-4,6) = (2,9)$$

Moreover, each of the vectors in the expression is a linear combination of the other two vectors.

$$\begin{array}{l} \frac{1}{3}(2,9) - \frac{2}{3}(-2,3) = (2,1) \\ \frac{1}{2}(2,9) - \frac{3}{2}(2,1) = (-2,3) \end{array}$$

Note further that we can re-write these expressions as follows :

$$3(2,1) + 2(-2,3) - (2,9) = (0,0)$$

Observe: the 0 vector is a linear combination of (2,1), (-2,3), (2,9) with non-zero coefficients.

$$2(0,2,1) + \frac{3}{2}(2,2,0) = (0,4,2) + (3,3,0) = (3,7,2)$$

$$2(0,2,1) + \frac{3}{2}(2,2,0) = (0,4,2) + (3,3,0) = (3,7,2)$$

$$2(0,2,1) + \frac{3}{2}(2,2,0) = (0,4,2) + (3,3,0) = (3,7,2)$$

$$\tfrac{1}{2}(3,7,2) - \tfrac{3}{4}(2,2,0) = (0,2,1)$$

$$2(0,2,1) + \frac{3}{2}(2,2,0) = (0,4,2) + (3,3,0) = (3,7,2)$$

$$\begin{array}{l} \frac{1}{2}(3,7,2) - \frac{3}{4}(2,2,0) = (0,2,1) \\ \frac{2}{3}(3,7,2) - \frac{4}{3}(0,2,1) = (2,2,0) \end{array}$$

$$2(0,2,1) + \frac{3}{2}(2,2,0) = (0,4,2) + (3,3,0) = (3,7,2)$$

Moreover, each of the vectors in the expression is a linear combination of the other two vectors.

$$\begin{array}{l} \frac{1}{2}(3,7,2) - \frac{3}{4}(2,2,0) = (0,2,1) \\ \frac{2}{3}(3,7,2) - \frac{4}{3}(0,2,1) = (2,2,0) \end{array}$$

Note further that we can re-write these expressions as follows :

$$2(0,2,1) + \frac{3}{2}(2,2,0) = (0,4,2) + (3,3,0) = (3,7,2)$$

Moreover, each of the vectors in the expression is a linear combination of the other two vectors.

$$\begin{array}{l} \frac{1}{2}(3,7,2) - \frac{3}{4}(2,2,0) = (0,2,1) \\ \frac{2}{3}(3,7,2) - \frac{4}{3}(0,2,1) = (2,2,0) \end{array}$$

Note further that we can re-write these expressions as follows :

$$2(0,2,1) + \frac{3}{2}(2,2,0) - (3,7,2) = (0,0,0)$$

$$2(0,2,1) + \frac{3}{2}(2,2,0) = (0,4,2) + (3,3,0) = (3,7,2)$$

Moreover, each of the vectors in the expression is a linear combination of the other two vectors.

$$\begin{array}{l} \frac{1}{2}(3,7,2) - \frac{3}{4}(2,2,0) = (0,2,1) \\ \frac{2}{3}(3,7,2) - \frac{4}{3}(0,2,1) = (2,2,0) \end{array}$$

Note further that we can re-write these expressions as follows :

$$2(0,2,1) + \frac{3}{2}(2,2,0) - (3,7,2) = (0,0,0)$$

Observe: the 0 vector is a linear combination of (0,2,1),(2,2,0),(3,7,2) with non-zero coefficients.

The plane of the two vectors (0,2,1) and (2,2,0) can be expressed by the equation 2x - 2y + 4z = 0.

The plane of the two vectors (0,2,1) and (2,2,0) can be expressed by the equation 2x - 2y + 4z = 0.

Let us choose a vector which is not on the plane, say (1, 2, 0).

The plane of the two vectors (0,2,1) and (2,2,0) can be expressed by the equation 2x - 2y + 4z = 0.

Let us choose a vector which is not on the plane, say (1,2,0). We claim that, (1,2,0) cannot be written as a linear combination of (0,2,1) and (2,2,0).

$$a(0,2,1) + b(2,2,0) = (1,2,0)$$

$$a(0,2,1) + b(2,2,0) = (1,2,0)$$

which implies, 2b = 1, 2a + 2b = 2 and a = 0.

$$a(0,2,1) + b(2,2,0) = (1,2,0)$$

which implies, 2b=1, 2a+2b=2 and a=0. Clearly these three equations simultaneously cannot have a solution. Hence our assumption was false.

$$a(0,2,1) + b(2,2,0) = (1,2,0)$$

which implies, 2b = 1, 2a + 2b = 2 and a = 0. Clearly these three equations simultaneously cannot have a solution. Hence our assumption was false.

We can use the discussion above to conclude that

$$a(0,2,1) + b(2,2,0) + c(1,2,0) = (0,0,0)$$
 if and only if $a = b = c = 0$.

$$a(0,2,1) + b(2,2,0) = (1,2,0)$$

which implies, 2b = 1, 2a + 2b = 2 and a = 0. Clearly these three equations simultaneously cannot have a solution. Hence our assumption was false.

We can use the discussion above to conclude that

$$a(0,2,1) + b(2,2,0) + c(1,2,0) = (0,0,0)$$
 if and only if $a = b = c = 0$.

i.e. the only way the 0 vector is a linear combination of (0,2,1),(2,2,0),(1,2,0) is if the coefficients are 0.

Definition of Linear dependence

A set of vectors v_1, v_2, \ldots, v_n from a vector space V is said to be linearly dependent, if there exist scalars a_1, a_2, \ldots, a_n , not all zero, such that

$$a_1v_1+a_2v_2+\ldots+a_nv_n=0$$

Definition of Linear dependence

A set of vectors v_1, v_2, \ldots, v_n from a vector space V is said to be linearly dependent, if there exist scalars a_1, a_2, \ldots, a_n , not all zero, such that

$$a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0$$

Equivalently, the 0 vector is a linear combination of v_1, v_2, \ldots, v_n with non-zero coefficients.

Consider the following two vectors in \mathbb{R}^3 , $(2,3,7) \text{ and } (\tfrac{5}{3},\tfrac{5}{2},\tfrac{35}{6}).$

Consider the following two vectors in \mathbb{R}^3 ,

$$(2,3,7)$$
 and $(\frac{5}{3},\frac{5}{2},\frac{35}{6})$.

It is easy to check that

$$5(2,3,7) - 6(\frac{5}{3},\frac{5}{2},\frac{35}{6}) = (0,0,0)$$

Consider the following two vectors in \mathbb{R}^3 ,

$$(2,3,7)$$
 and $(\frac{5}{3},\frac{5}{2},\frac{35}{6})$.

It is easy to check that

$$5(2,3,7) - 6(\frac{5}{3},\frac{5}{2},\frac{35}{6}) = (0,0,0)$$

Hence these two vectors are linearly dependent.

Consider the following two vectors in \mathbb{R}^3 ,

$$(2,3,7)$$
 and $(\frac{5}{3},\frac{5}{2},\frac{35}{6})$.

It is easy to check that

$$5(2,3,7) - 6(\frac{5}{3},\frac{5}{2},\frac{35}{6}) = (0,0,0)$$

Hence these two vectors are linearly dependent. Also observe that one is a scalar multiple of the other.

Consider the following three vectors in \mathbb{R}^3 ,

$$(2,1,2)$$
, $(3,0,1)$ and $(10,-4,-2)$

Consider the following three vectors in \mathbb{R}^3 ,

$$(2,1,2)$$
, $(3,0,1)$ and $(10,-4,-2)$

It is easy to check that

$$2(2,1,2) - 3(3,0,1) + \frac{1}{2}(10,-4,-2) = (0,0,0)$$

Consider the following three vectors in \mathbb{R}^3 ,

$$(2,1,2)$$
, $(3,0,1)$ and $(10,-4,-2)$

It is easy to check that

$$2(2,1,2) - 3(3,0,1) + \frac{1}{2}(10,-4,-2) = (0,0,0)$$

(4,2,4) - (9,0,3) + (5,-2,1)

Hence these three vectors are linearly dependent.

Add one more vector (2,3,7) to the set of vectors in the previous slide. Hence we have the following set of vectors in \mathbb{R}^3 .

$$\{(2,1,2), (3,0,1), (10,-4,-2), (2,3,7)\}$$

Add one more vector (2,3,7) to the set of vectors in the previous slide. Hence we have the following set of vectors in \mathbb{R}^3 .

$$\{(2,1,2), (3,0,1), (10,-4,-2), (2,3,7)\}$$

It is easy to check that

$$2(2,1,2) - 3(3,0,1) + \frac{1}{2}(10,-4,-2) + 0(2,3,7) = (0,0,0)$$

Add one more vector (2,3,7) to the set of vectors in the previous slide. Hence we have the following set of vectors in \mathbb{R}^3 .

$$\{(2,1,2), (3,0,1), (10,-4,-2), (2,3,7)\}$$

It is easy to check that

$$2(2,1,2) - 3(3,0,1) + \frac{1}{2}(10,-4,-2) + 0(2,3,7) = (0,0,0)$$

It still satisfies the definition of linear dependence as all the scalars are not zero. Hence these four vectors are also linearly dependent.

Important remark

The previous example points to the following fact :

Important remark

The previous example points to the following fact :

If a set is linearly dependent, then so is every superset of it.

Thank you