Computational Solid Mechanics Final Project Report

12110908 黄锦松

1. Problem Description Strong form:

Given
$$f_i: \Omega \rightarrow \mathbb{R}$$
, $g_i: I_{g_i} \rightarrow \mathbb{R}$ $f_i: I_{g_i}$

determine $u_i: \Omega \rightarrow \mathbb{R}$ s.t.

Où $j + f_i = 0$
 $u_i = g_i$ on Γg_i

Où $G_j = h_i$ on Γg_i

Weak form

$$S_i = \{U_i : U_i \in H' \cdot U_i = g_i \text{ on } [g] \}$$
 $V_i := \{W_i : W_i \in H' \cdot W_i = 0 \text{ on } [g] \}$

Given ..., find that $U_i \in S_i$, s.t.

 $A(\vec{W}, \vec{U}) = (\vec{W}, \vec{f}) + (\vec{W}, \vec{f})_{in}$

where $a(\vec{W}, \vec{u}) = \int_{\Omega} W_i f_i d\Omega$
 $(\vec{W}, \vec{f}) = \int_{\Omega} W_i f_i d\Omega$
 $(\vec{W}, \vec{f})_{ii} = \int_{\Omega} W_i f_i d\Omega$

Galerkin formulation

Boundary condition

equations below

For the outer surface, there are Dirichlet BC (e.g. g = 0) and Neumann BC (e.g. h = T). For inner hole, the BC is h = 0. For symmetry surface, the BC is like this

- 2. The implementation of the element stiffness matrix I choose $B_a^T D B_b$ implementation. Calculate B matrix first, then get k^e by matrix calculation.
- 3. Manufactured solution
 With given Tx = 10kpa, I calculate 3 stresses at each nodes as manufactured solution, then transfer the polar coordinates into Cartesian coordinates with

$$\begin{split} &\sigma_{rr}(r,\theta) = \frac{T_x}{2} \bigg(1 - \frac{R^2}{r^2} \bigg) + \frac{T_x}{2} \bigg(1 - 4\frac{R^2}{r^2} + 3\frac{R^4}{r^4} \bigg) cos2\theta, \\ &\sigma_{\theta\theta}(r,\theta) = \frac{T_x}{2} \bigg(1 + \frac{R^2}{r^2} \bigg) - \frac{T_x}{2} \bigg(1 + 3\frac{R^4}{r^4} \bigg) cos2\theta, \\ &\sigma_{r\theta}(r,\theta) = -\frac{T_x}{2} \bigg(1 + 2\frac{R^2}{r^2} - 3\frac{R^4}{r^4} \bigg) sin2\theta. \\ &\sigma_x = \frac{\sigma_r + \sigma_\theta}{2} + \frac{\sigma_r - \sigma_\theta}{2} \cos 2\theta - \tau_{r\theta} \sin 2\theta \\ &\sigma_y = \frac{\sigma_r + \sigma_\theta}{2} - \frac{\sigma_r - \sigma_\theta}{2} \cos 2\theta + \tau_{r\theta} \sin 2\theta \\ &\tau_{xy} = \frac{\sigma_r - \sigma_\theta}{2} \sin 2\theta + \tau_{r\theta} \cos 2\theta \\ &\sin 2\theta + \tau_{r\theta} \cos 2\theta \end{split}$$

4. The codes are in driver.m

sigma_12 = (sigma_rr - sigma_tt)./2.*sin(2.*theta) + sigma_rt.*cos(2.*theta);