STAT 4010 Bayesian Learning

Tutorial 8

Spring 2022

Cheuk Hin (Andy) CHENG (Email | Homepage)

Di SU (Email | Homepage)

1 Theoretical Justification

This section shows that the Bayesian methods studied in previous chapters are theoretically sensible.

Definition 1. Given any DGP $f_{\star}(x)$ and model $\mathscr{F} = \{f(x \mid \theta) : \theta \in \Theta\}$. Denote the expectation and variance under the DPG $f_{\star}(x)$ by E_{\star} and Var_{\star} . Define

$$\theta_{\star} = \underset{\theta \in \Theta}{\operatorname{arg max}} \operatorname{E}_{\star} \left\{ \log f \left(x_1 \mid \theta \right) \right\},$$

and

$$I_{\star} = \left[\operatorname{Var}_{\star} \left\{ \frac{\mathrm{d}}{\mathrm{d}\theta} \log f \left(x_{1} \mid \theta \right) \right\} \right]_{\theta = \theta_{\star}} \quad J_{\star} = \left[-\operatorname{E}_{\star} \left\{ \frac{\mathrm{d}^{2}}{\mathrm{d}\theta^{2}} \log f \left(x_{1} \mid \theta \right) \right\} \right]_{\theta = \theta_{\star}},$$

provided that the expectations exist. The quantities I_{\star} and J_{\star} are called Fisher information. If \mathscr{F} well specifies f_{\star} , then $\theta_{\star} = \theta_0$ and $I_{\star} = J_{\star}$, where θ_0 is the true DGP parameter.

Theorem 1.1. (Consistency of posterior). Assume regularity conditions (RCs). If n is large enough, then

$$\widehat{\theta}_{\mathrm{MLE}} \approx \theta_{\star} \quad and \quad [\theta \mid x_{1:n}] \approx \theta_{\star}.$$

Theorem 1.2. (Asymptotic distributions of posterior). Assume RCs. If n is large enough, then

$$\widehat{\theta}_{\text{MLE}} \approx \mathrm{N}\left(\theta_{\star}, \frac{J_{\star}^{-1} I_{\star} J_{\star}^{-1}}{n}\right) \quad and \quad [\theta \mid x_{1:n}] \approx \mathrm{N}\left(\widehat{\theta}_{\text{MLE}}, \frac{J_{\star}^{-1}}{n}\right).$$

If the model is well-specified, the precision of Bayesian framework and frequentist framework are consistent.

Theorem 1.3. (Asymptotic representation of posterior mean). Assume RCs. If n is large enough, then

 $E(\theta \mid x_{1:n}) \approx \widehat{\theta}_{MLE}.$

Remark 1.1. Some remark on the sign " \approx ".

- We have different modes of convergence for random variables (rvs). Let A_n and B be two rvs. Consider when n goes to infinity.
 - 1. (Convergence in distribution) $A_n \stackrel{\mathrm{d}}{\to} B \Leftrightarrow F_{A_n} \to F_B$ for all continuity points of F_B , where F is the cdf.
 - 2. (Convergence in probability) $A_n \stackrel{\text{pr}}{\to} B \Leftrightarrow \Pr(|A_n B| > \epsilon) \to 0$ for some $\epsilon > 0$.
 - 3. (Convergence in L^p) $A_n \stackrel{L^p}{\to} B \Leftrightarrow (\mathsf{E} A_n^p)^{1/p} \to (\mathsf{E} B^p)^{1/p}$.

- 4. (Convergence almost surely/with probability one) $A_n \stackrel{a.s.}{\to} B \Leftrightarrow \text{for any } \omega \in \Omega$ the Sigma-field, $\Pr(\lim_{n\to\infty} A_n(\omega) \to B(\omega)) = 1$.
- Strength of the mode of convergences is different. We have $\xrightarrow{L^p}$, $\xrightarrow{a.s.} \Rightarrow \xrightarrow{pr} \Rightarrow \xrightarrow{d}$ for $p \ge 1$. However $\xrightarrow{L^p}$ and $\xrightarrow{a.s.}$ do not imply each other.
- For Theorem 1.1, $\widehat{\theta}_{\text{MLE}} \stackrel{\text{pr}}{\to} \theta_{\star}$ and $\theta \stackrel{\text{pr}}{\to} \theta^{*}$ (given x).
- Let $Z \sim N(0,1)$. Theorem 1.2 means that $\widehat{\theta}_{\text{MLE}} \theta_{\star} \frac{J_{\star}^{-1}I_{\star}J_{\star}^{-1}}{n}Z \stackrel{\text{d}}{\to} 0$ and $\theta \widehat{\theta}_{\text{MLE}} \frac{J_{\star}^{-1}}{n}Z \stackrel{\text{d}}{\to} 0$ (given x).

Theorem 1.4. We have the following bi-directional relation

 $x_{1:n}$ are exchangeable with joint density $f(x_{1:n})$

$$\iff \exists \theta \in \Theta, f(x \mid \theta), \pi(\theta) \text{ s.t. } \begin{cases} [x_{1:n} \mid \theta] \stackrel{IID}{\sim} f(x_{1:n} \mid \theta) \\ \theta \sim \pi(\theta). \end{cases}$$

The direction " \Longrightarrow " is stated in theorem 6.5. De Finiti Theorem, and the direction " $\Leftarrow=$ " is given in proposition 6.4.

Example 1.1. Consider the true DGP, $x_{1:n} \stackrel{\text{IID}}{\sim} Ga(a)/b$ where a=4 and b=2. We consider the model, $x_{1:n} \stackrel{\text{IID}}{\sim} \theta \text{Exp}(1)$ where $\theta > 0$.

- 1. Compute the MLE. Discuss its asymptotic behaviour.
- 2. Propose a prior and compute its posterior. Discuss its asymptotic behaviour.
- 3. Produce a plot of the exact and asymptotic distributions of the MLE and the posterior.

SOLUTION:

1. Let $S_n = \sum_{i=1}^n x_i$. We can compute directly,

$$f(x_{1:n}, \theta) = \frac{1}{\theta^n} e^{-S_n/\theta},$$

$$\ell_{1:n}(\theta) := \log f(x_{1:n}, \theta) = -n \log \theta - \frac{S_n}{\theta},$$

$$\ell'_{1:n}(\theta) := \frac{\partial \log f(x_{1:n}, \theta)}{\partial \theta} = \frac{-n}{\theta} + \frac{S_n}{\theta^2} = 0,$$

$$\ell''_{1:n}(\theta) = \frac{n}{\theta^2} - \frac{2S_n}{\theta^3}.$$

By setting $\ell'_{1:n}(\theta) = 0$, we can see that $\widehat{\theta}_{MLE} = S_n/n$ and $\ell''_{1:n}(\widehat{\theta}_{MLE}) < 0$. Next, we want to compute θ_{\star} , I_{\star} and J_{\star} . For simplicity, let $\ell_{1:1}(\theta) = \ell(\theta)$. Firstly,

$$\theta_{\star} = \arg\max_{\theta} \mathsf{E}_{\star} \ell(\theta) = \arg\max_{\theta} \left[-log(\theta) - \frac{\mathsf{E}_{\star} x_1}{\theta} \right] = \left[-log(\theta) - \frac{2}{\theta} \right].$$

Similarly to the derivation of the MLE (take n = 1 and $S_n = 2$), we have $\theta_* = 2$. Next by some computation,

$$\begin{split} I_{\star} &= \left[\mathsf{Var}_{\star} \ell'(\theta) \right]_{\theta = \theta_{\star}} = \left[\mathsf{Var}_{\star} \left(-\frac{1}{\theta} + \frac{x_{1}}{\theta^{2}} \right) \right]_{\theta = \theta_{\star}} = \frac{1}{\theta_{\star}^{4}} \mathsf{Var}_{\star}(x_{1}) = \frac{a}{b^{2} \theta_{\star}^{4}} = \frac{1}{2^{4}}, \\ J_{\star} &= \left[-\mathsf{E} \ell''(\theta) \right]_{\theta = \theta_{\star}} = \left[-\mathsf{E} \left(\frac{1}{\theta^{2}} - \frac{2x_{1}}{\theta^{3}} \right) \right]_{\theta = \theta_{\star}} = -\frac{1}{\theta_{\star}^{2}} + \frac{2\mathsf{E}_{\star} x_{1}}{\theta_{\star}^{3}} = -\frac{1}{\theta_{\star}^{2}} + \frac{2a}{b\theta_{\star}^{3}} = \frac{1}{4}. \end{split}$$

Note that $J_{\star}^{-1}I_{\star}J_{\star}^{-1}=1$. By theorem 1.1 and 1.2, we have

$$\widehat{\theta}_{MLE} \approx \theta_{\star} = 2$$
 and $[\widehat{\theta}_{MLE}] \approx N(2, 1/n)$.

2. Consider the conjugate prior for θ , $\theta \sim k/\text{Ga}(h)$. The posterior is $\theta \mid x_{1:n} \sim k_n/\text{Ga}(h_n)$ where $h_n = h + n$ and $k_n = k + S_n$. By theorem 1.2, we have

$$[\theta \mid x_{1:n}] \approx N(\widehat{\theta}_{MLE}, 4/n).$$

3. Set h = 2 and k = 1. We have the following plot.

Comparison


```
1 ##Truth
_{2} a = 4
_{3} b = 2
5 ##Frequentist MLE
_{6} theta0 = a/b
_{7} I = a/(b<sup>2</sup>*theta0<sup>4</sup>)
_8 J = -1/theta0^2+2*a/(b*theta0^3)
  varF = I/J^2
10
##Plot setting
12 set.seed(100)
par (mfrow=c(1,1), mar=c(4.5,5,3,2))
14 col = c("red4", "blue4")
15 lty = c(1,2)
n = 1000
nRep = 2^12
18 theta = seq(1, 3, length.out=2000) ##grid of theta for the density plot
19
20 # Frequentist
21 ##Step 2: simulate the exact distribution for the MLE
22 out = rep(NA, nRep)
23 for (iRep in 1:nRep) {
   x = rgamma(n,a,b) ##Simulate data from the DGP
24
25
   out[iRep] = mean(x) ##theta_MLE
26 }
27 deF = density(out, kernel="epanechnikov")
28 ##Step 1: Compute the asymp. distribution of the MLE
29 daF = dnorm(theta, theta0, sqrt(varF/n)) #asymptotic
30
31
32 # Bayesian model
_{33} h = 2
_{34} k = 1
post = function(theta, x, h, k) {
  hn = a+n
  kn = b + sum(x)
37
   logd = (-hn-1)*log(theta)-kn/theta
38
   d = exp(logd-max(logd))
39
40
    d/sum(d)/(theta[2]-theta[1])
41 }
42
43 ##theory
44 set.seed(4010)
_{45} x = rgamma(n,h,k) #fix a realization using DGP for the posterior
46 ##Step 3 compute the exact posterior distribution
deB = post(theta, x, alpha, beta)
48 ##Step 4 compute the asymp. posterior distribution
theta_mle = mean(x)
varB = 1/J
daB = dnorm(theta, theta_mle, sqrt(varB/n))
52
53 ##Plot
plot (deF, type="1", col=col[1], lty=lty[1],
       main="Comparison", ylab="density", xlab=bquote(theta),
       vlim=c(0, max(daF)+2))
56
points (theta, daF, type="1", col=col[1], lty=lty[2])
58 legend("topright", c("Exact", "Asymptotic"), col="black", lty=lty, cex=.8)
```

```
text(theta[which.max(daF)], max(daF), "Frequentist", pos=4, col=col[1])
abline(v=theta0, col=col[1])
text(theta0, 0, expression(theta["*"]), pos=2, col=col[1], cex=1.4)
points(theta, deB, type="1", col=col[2], lty=lty[1])
points(theta, daB, type="1", col=col[2], lty=lty[2])
text(theta[which.max(daB)], max(daB), "Bayesian", pos=4, col=col[2])
abline(v=theta_mle, col=col[2])
text(theta_mle, 0, expression(widehat(theta)), pos=4, col=col[2], cex=1.4)
```

2 Posterior Computation

We are interested in following tasks.

- 1. Draw sample $\theta_1, \ldots, \theta_J \sim \pi(\theta)$.
- 2. Compute the integral $\mathsf{E}_{\pi}g(\theta) = \int_{\Theta} g(\theta)\pi(\theta)\mathrm{d}\theta = \frac{\int_{\Theta} g(\theta)\pi_u(\theta)\mathrm{d}\theta}{\int_{\Theta} \pi_u(\theta)\mathrm{d}\theta}$, where $\pi_u(\theta)$ is the unnormalized density.

2.1 Classic Methods

Algorithm 1: Trapezoidal rule.

Input: (i) knot number J; (ii) bound a, b; (iii) unnormalized target density $\pi_u(\cdot)$; and (iv) function $g(\cdot)$.

begin

- (1) Compute the grid points $\theta_j = a + hj$ for j = 0, ..., J and h = (b a)/J.
- (2) Compute $\hat{I}_{Trap} = \hat{U}_{Trap}/\hat{L}_{Trap}$, where

$$\hat{U}_{Trap} := \sum_{j=1}^{J} \frac{G(\theta_j) + G(\theta_{j-1})}{2} h,$$

$$\hat{z} \qquad \sum_{j=1}^{J} \pi_u(\theta_j) + \pi_u(\theta_{j-1}) ,$$

$$\hat{L}_{Trap} := \sum_{j=1}^{J} \frac{\pi_u(\theta_j) + \pi_u(\theta_{j-1})}{2} h,$$

$$G(\theta) := g(\theta)\pi_u(\theta).$$

end

Output: \hat{I}_{Trap}

Algorithm 2: Inverse Probability transform.

Input: Inverse function of the CDF, i.e., $F^{-1}(\cdot)$.

begin

(1) Generate $U \sim \text{Unif}(0,1)$. (2) Compute $\theta = F^{-1}(U)$.

end

Output: θ

Remark 2.1. In practice, the bound [a, b] can be infinite. Suppose \hat{I}_{Trap} is monotone with respect to the width of the interval. We can try Trapezoidal rule several time by enlarging the range (at the same time increase J as well) until the absolute change in \hat{I}_{Trap} is less than certain tolerance level.

Theorems below justify the use of the trapezoidal rule and the inverse probability transformation.

Theorem 2.1. (Justification of trapezoidal rule) Assume $\Theta = [a, b]$ is a bounded interval. If $g(\cdot)$ is twice differentiable on [a, b], then as $J \to \infty$

$$\hat{I}_{Trap} - I = O\left(\frac{1}{J^2}\right).$$

Theorem 2.2. (Justification of inverse probability transform) Let $U \sim Unif(0,1)$ and $F(\cdot)$ be the CDF of θ . Assume the inverse function of CDF exists. Then,

$$\Pr(F^{-1}(U) < c) = \Pr(F(F^{-1}(U)) < F(c)) = \Pr(U < F(c)) = F(c).$$

That is θ and $F^{-1}(U)$ has the same CDF. Thus, they have the same distribution.

Example 2.1. Consider $\theta \sim F(\theta)$ and $f(\theta) \propto \exp\{-|\theta|/3\}\mathbb{1}(\theta \in \mathbb{R})$. Simulate $\mathsf{E}\theta^2$ using Trapezoidal rule and Inverse Probability transform.

SOLUTION: Note that $\theta \sim \text{Laplace}(3)$ and $\mathsf{E}\theta^2 = 18$. For Trapezoidal rule,

```
target_den <- function(theta,b=3) {</pre>
  log_d = -abs(theta)/b
  exp(log_d - max(log_d))
target_g <- function(theta) {
  theta<sup>2</sup>
##Trapezoidal rule
trap <- function(J,a,b) {</pre>
  theta_grid = seq(a,b,length.out = J)
  h = (b-a+1)/J
  pi_u = target_den(theta_grid)
  G = target q(theta grid) *pi u
  L = sum((pi_u[2:J] + pi_u[1:(J-1)])/2*h)
  U = sum((G[2:J] + G[1:(J-1)])/2*h)
  U/L
trap(2^10,-10,10)
[1] 12.08103
trap(2^10, -20, 20)
[1] 17.33751
trap(2^10, -40, 40)
[1] 17.99753
trap(2^10, -80, 80)
[1] 18.00204
```

Note that,

$$F(\theta) = \begin{cases} \frac{1}{2}e^{\theta/3}, & \theta \le 0; \\ 1 - \frac{1}{2}e^{-\theta/3}, & \theta > 0. \end{cases}$$

Therefore,

$$F^{-1}(U) = \begin{cases} 3\log(2U), & U \le 1/2; \\ -3\log(2\{1-U\}), & U > 1/2. \end{cases}$$

For Inverse Probability transform,

```
##Inverse Probability transform
inv_cdf <- function(U, b=3) {
   b*log(2*U)*(U <=0.5) + -b*log(2*(1-U))*(U>0.5)
set.seed(100)
theta_sim = inv_cdf(runif(nRep))
```

3 Basic Monte Carlo/Importance Sampling

In importance sampling, we slightly modified our target,

$$I = \int_{\Theta} g(\theta) \pi_u(\theta) d\theta = \int_{\Theta} g(\theta) \frac{\pi_u(\theta)}{p(\theta)} p(\theta) d\theta = \int_{\Theta} g(\theta) w(\theta) p(\theta) d\theta,$$

where $w(\theta) = \pi_u(\theta)/p(\theta)$. Note, the above equation is valid when $p(\theta) = 0$ implies $\pi_u(\theta) = 0$ or $\pi(\cdot)$ is absolutely continuous with respect to $p(\cdot)$.

```
Algorithm 3: Importance Sampling.
```

Input: (i) simulation size J; (ii) proposed PDF $p(\cdot)$; (iii) (unnormalized) target density $\pi_u(\cdot)$.

begin

- (1) Generate $\tilde{\theta}_1, \dots, \tilde{\theta}_J \stackrel{\text{IID}}{\sim} p(\cdot)$. (2) Compute $w_j = \pi_u(\tilde{\theta}_j)/p(\tilde{\theta}_j)$, for $j = 1, \dots, J$.
- (3) Compute $\hat{I}_{IS} = \hat{U}_{IS}/\hat{L}_{IS}$, where $\hat{U}_{IS} = J^{-1} \sum_{i=1}^{J} g(\tilde{\theta}_i) w_i$ and

end

Output: \hat{I}_{IS}

Theorem 3.1. (Justification of the importance sampling) If $Var_p(g(\theta)w(\theta)) < \infty$ and $\operatorname{Var}_{p}(w(\theta)) < \infty$, then as $J \to \infty$,

$$\sqrt{J}\left(\hat{I}_{IS} - I\right) \stackrel{\mathrm{d}}{\to} N(0, \sigma_{IS}^2) \quad and \quad \sigma_{IS}^2 = \int_{\Theta} \{g(\theta) - I\} \frac{\pi^2(\theta)}{p(\theta)} \mathrm{d}\theta.$$

Remark 3.1. For the choice of $p(\cdot)$, there is one restriction and two criteria:

- 1. The support of $p(\cdot)$ covers $\pi(\cdot)$.
- 2. The shape of $p(\cdot)$ is similar to $\pi(\cdot)$ or $\pi_u(\cdot)$.
- 3. It is easy to draw samples from $p(\cdot)$.

Example 3.1. Continue from example 2.1. Use importance sampling to simulate $\mathsf{E}\theta^2$. Solution: The density plot suggests that we should use $\mathsf{N}(0,\sigma^2)$ as the proposal.

Density plot: Target(Black) vs Proposal (Red)


```
##Step 1 visualize the target density and proposal density
theta_grid = seq(-10,10,length.out = 2^10+1)
tar_den = target_den(theta_grid)
plot(theta_grid,tar_den,type = '1')
proposal_den = dnorm(theta_grid,0,4)
points(theta_grid,proposal_den,type = '1',col='red')

##step 2
importance_sampling <- function(J,sd = 4,b=3) {
    tilde_theta = rnorm(J,0,sd)
    w = target_den(tilde_theta,b)/dnorm(tilde_theta,0,sd)
    U = sum(tilde_theta^2*w)/J
    L = sum(w)/J
    U/L</pre>
```

```
set.seed(4010)
importance_sampling(2^14,sd = 2)
importance_sampling(2^14,sd = 3)
importance_sampling(2^14,sd = 3)
importance_sampling(2^14,sd = 4)
importance_sampling(2^14,sd = 4)
importance_sampling(2^14,sd = 5)
importance_sampling(2^14,sd = 6)
importance_sampling(2^14,sd = 6)
importance_sampling(2^14,sd = 7)
importance_sampling(2^14,sd = 7)
importance_sampling(2^14,sd = 8)
importance_sa
```