Analysis of Steepest decent

Oscar Dalmau dalmau@cimat.mx

Centro de Investigación en Matemáticas CIMAT A.C. Mexico

February 2018

Outline

Steepest descent Method

2 Global Convergence

3 Rate of convergence

 The method of steepest descent with exact step size or with exact line search is a gradient algorithm where the step size is obtained by solving

$$\alpha_k = \arg\min_{\alpha > 0} \phi(\alpha)$$

with
$$\phi(\alpha) = f(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k), \ \boldsymbol{d}_k = -\boldsymbol{g}_k$$
.

 The previous method moves in orthogonal steps, see next proposition.

Proposition 1.1

(Orthogonality of directions) If $\{x_k\}_{k=1}^{\infty}$ is a steepest descent sequence for a given function $f: \mathbb{R}^n \to \mathbb{R}$, then for each k the vector $x_{k+1} - x_k$ is orthogonal to the vector $x_{k+2} - x_{k+1}$

Remark

- ① Note that $\alpha_k d_k = x_{k+1} x_k$ and $\alpha_{k+1} d_{k+1} = x_{k+2} x_{k+1}$. Therefore, the proposition states that two consecutive directions are orthogonal, i.e. $d_k \perp d_{k+1}$, where $d_k = -g_k$ and $d_{k+1} = -g_{k+1}$ then $g_k \perp g_{k+1}$.
- 2 The solution trajectory of the steepest-descent method with exact line search follows a zig-zag pattern.

Proposition

If $\{x_k\}_{k=1}^\infty$ is a steepest descent sequence for a given function $f:\mathbb{R}^n\to\mathbb{R}$, then for each k the vector $x_{k+1}-x_k$ is orthogonal to the vector $x_{k+2}-x_{k+1}$

Proof.

As
$$\alpha_k$$
 minimizes $\phi(\alpha) = f(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k)$ then $\phi'(\alpha_k) = 0$. Using $\boldsymbol{d}_k = -\boldsymbol{g}_k = -\nabla f(\boldsymbol{x}_k)$,

$$\phi'(\alpha_k) = \nabla f(\boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k)^T \boldsymbol{d}_k = \nabla f(\boldsymbol{x}_{k+1})^T \boldsymbol{d}_k = -\boldsymbol{g}_{k+1}^T \boldsymbol{g}_k$$

then $g_k \perp g_{k+1}$.

Proposition

If $\{x_k\}_{k=1}^\infty$ is a steepest descent sequence for a given function $f:\mathbb{R}^n\to\mathbb{R}$, then for each k the vector $x_{k+1}-x_k$ is orthogonal to the vector $x_{k+2}-x_{k+1}$

Corollary

 $m{g}_k$ is parallel to the tangent plane to the level set $\{m{x}|\ f(m{x})=f(m{x}_{k+1})\}$ at $m{x}_{k+1}.$

Proposition 1.2

If $\{x_k\}_{k=1}^{\infty}$ is a steepest descent sequence for a given function $f: \mathbb{R}^n \to \mathbb{R}$ and if $\nabla f(x_k) \neq \mathbf{0}$ then $f(x_{k+1}) < f(x_k)$.

Proposition

If $\{x_k\}_{k=1}^{\infty}$ is a steepest descent sequence for a given function $f: \mathbb{R}^n \to \mathbb{R}$ and if $\nabla f(x_k) \neq \mathbf{0}$ then $f(x_{k+1}) < f(x_k)$.

Proof.

As α_k minimizes $\phi(\alpha) = f(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k)$ then $\phi(\alpha_k) \leq \phi(\alpha)$ for all α . On the other hand, $\phi'(0) = \nabla f(\boldsymbol{x}_k)^T \boldsymbol{g}_k = -\|\boldsymbol{g}_k\|^2 < 0$ due to $\boldsymbol{g}_k \neq \boldsymbol{0}$.

Therefore, there exists $\hat{\alpha}$ (by the sign preserving theorem) such that $\phi'(\alpha) < 0$ for $\alpha \in (0,\hat{\alpha})$. Using Taylor (or the mean value theorem), there exists $\bar{\alpha}$ such that $\phi(\alpha) - \phi(0) = \phi'(\bar{\alpha})\alpha$ with $\bar{\alpha} \in (0,\alpha)$ then $\phi'(\bar{\alpha})\alpha < 0$ and hence $\phi(\alpha) < \phi(0)$ for $\alpha \in (0,\hat{\alpha})$. Then $\phi(\alpha_k) < \phi(0)$ for $\alpha \in (0,\hat{\alpha})$, i.e., $f(\boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k) < f(\boldsymbol{x}_k)$ or $f(\boldsymbol{x}_{k+1}) < f(\boldsymbol{x}_k)$.

- **1** The previous proposition states that the steepest descent has the property: $f(x_{k+1}) < f(x_k)$ if $g_k \neq 0$.
- 2 If for some k, it holds $\nabla f(x_k) = 0$ then $x_{k+1} = x_k$. We can use this as a stopping criterion for the algorithm, however, the gradient will rarely be identically equal to zero.
- **3** A practical stopping criterion is to check if the norm $\|\nabla f(x_k)\|$ of the gradient is less than a threshold, i.e. $\|\nabla f(x_k)\| \leq \tau$.

Other stopping criteria

$$|f(\boldsymbol{x}_{k+1}) - f(\boldsymbol{x}_k)| \leq \tau$$
 $||\boldsymbol{x}_{k+1} - \boldsymbol{x}_k|| \leq \tau$

We may check the relative values of the above quantities

$$\frac{|f(\boldsymbol{x}_{k+1}) - f(\boldsymbol{x}_k)|}{|f(\boldsymbol{x}_k)|} \leq \tau$$

$$\frac{\|\boldsymbol{x}_{k+1} - \boldsymbol{x}_k\|}{\|\boldsymbol{x}_k\|} \leq \tau$$

The above two (relative) stopping criteria are preferable to the previous (absolute) criteria because the relative criteria are scale-independent.

To avoid dividing by a small number we may use the following modifications

$$\frac{|f(\boldsymbol{x}_{k+1}) - f(\boldsymbol{x}_k)|}{\max\{1, |f(\boldsymbol{x}_k)|\}} \le \tau_f$$

$$\frac{\|\boldsymbol{x}_{k+1} - \boldsymbol{x}_k\|}{\max\{1, \|\boldsymbol{x}_k\|\}} \le \tau_x$$

To avoid dividing by a small number we may use the following modifications

$$\frac{|f(\boldsymbol{x}_{k+1}) - f(\boldsymbol{x}_k)|}{\max\{1, |f(\boldsymbol{x}_k)|\}} \le \tau_f$$

$$\frac{\|\boldsymbol{x}_{k+1} - \boldsymbol{x}_k\|}{\max\{1, \|\boldsymbol{x}_k\|\}} \le \tau_x$$

$$\|\nabla f(\boldsymbol{x}_k)\| \le \tau_g$$
$$k > K_{\text{max}}$$

Exact Steepest descent for a quadratic function

Let
$$f(x) = \frac{1}{2}x^T\mathbf{Q}x - b^Tx$$
, with \mathbf{Q} positive definite. As
$$\alpha_k = \arg\max_{\alpha>0} \phi(\alpha) = f(x_k + \alpha d_k)$$

Exact Step for a quadratic function

$$\phi(\alpha) = \frac{1}{2}(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k)^T \mathbf{Q}(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k) - \boldsymbol{b}^T(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k)$$
 then, from $\phi'(\alpha) = 0$ and $\boldsymbol{g}_k = \mathbf{Q}\boldsymbol{x}_k - \boldsymbol{b} = -\boldsymbol{d}_k$
$$(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k)^T \mathbf{Q} \boldsymbol{d}_k - \boldsymbol{b}^T \boldsymbol{d}_k = 0$$

$$\boldsymbol{d}_k^T \mathbf{Q} \boldsymbol{d}_k \alpha = -(\mathbf{Q}\boldsymbol{x}_k - \boldsymbol{b})^T \boldsymbol{d}_k$$

$$\alpha_k = \frac{-\boldsymbol{g}_k^T \boldsymbol{d}_k}{\boldsymbol{d}_k^T \mathbf{Q} \boldsymbol{d}_k} = \frac{\boldsymbol{g}_k^T \boldsymbol{g}_k}{\boldsymbol{g}_k^T \mathbf{Q} \boldsymbol{g}_k}$$

Exact Steepest descent for a quadratic function

The update formula for the Steepest descent with Exact step size for the quadratic function $f(x) = \frac{1}{2}x^T\mathbf{Q}x - b^Tx$, with \mathbf{Q} positive definite, is:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k$$

with

$$egin{aligned} oldsymbol{d}_k &= -oldsymbol{g}_k \ lpha_k &= rac{oldsymbol{g}_k^T oldsymbol{g}_k}{oldsymbol{g}_k^T oldsymbol{Q} oldsymbol{g}_k} \end{aligned}$$

Steepest descent: elimination of line search

If f(x) is not quadratic but the **Hessian \mathbf{H}_k is available**: then, we can approximate

$$\phi(\alpha) = f(x_k + \alpha \mathbf{d}_k) \approx f(x_k) + \alpha \mathbf{g}_k^T \mathbf{d}_k + \frac{1}{2} \alpha^2 \mathbf{d}_k^T \mathbf{H}_k \mathbf{d}_k$$

from $\phi'(\alpha)=0$ and ${m d}_k=-{m g}_k$

$$lpha = lpha_k ~pprox ~ rac{oldsymbol{g}_k^T oldsymbol{g}_k}{oldsymbol{g}_k^T oldsymbol{H}_k oldsymbol{g}_k}$$

then

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k - rac{oldsymbol{g}_k^T oldsymbol{g}_k}{oldsymbol{g}_k^T oldsymbol{\mathsf{H}}_k oldsymbol{g}_k} oldsymbol{g}_k$$

Steepest descent: elimination of line search

If the Hessian \mathbf{H}_k is not available: suppose we have an estimate $\hat{\alpha}$ of α_k . Then $\hat{f}=f(x_k+\hat{\alpha}\boldsymbol{d}_k)$

$$\phi(\hat{\alpha}) = f(x_k + \hat{\alpha} \boldsymbol{d}_k) \approx f(x_k) + \hat{\alpha} \boldsymbol{g}_k^T \boldsymbol{d}_k + \frac{1}{2} \hat{\alpha}^2 \boldsymbol{d}_k^T \boldsymbol{H}_k \boldsymbol{d}_k$$
$$\boldsymbol{g}_k^T \boldsymbol{H}_k \boldsymbol{g}_k \approx 2 \frac{\hat{f} - f_k + \hat{\alpha} \boldsymbol{g}_k^T \boldsymbol{g}_k}{\hat{\alpha}^2}$$

from $\phi'(\alpha)=0$ and ${m d}_k=-{m g}_k$

$$egin{aligned} lpha_k &= oldsymbol{g}_k^T oldsymbol{g}_k \ oldsymbol{g}_k^T oldsymbol{H}_k oldsymbol{g}_k \end{aligned} pprox rac{oldsymbol{g}_k^T oldsymbol{g}_k \hat{lpha}^2}{2(\hat{f} - f_k + \hat{lpha} oldsymbol{g}_k^T oldsymbol{g}_k) \end{aligned}$$

then

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k - rac{oldsymbol{g}_k^T oldsymbol{g}_k \hat{lpha}^2}{2(\hat{f} - f_k + \hat{lpha} oldsymbol{g}_k^T oldsymbol{g}_k)} oldsymbol{g}_k$$

we can use for example: $\hat{\alpha} = \alpha_{k-1}$.

Steepest descent: with fixed step size

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \boldsymbol{g}_k$$

with $\alpha_k=\alpha$ where $\alpha>0$ is a small value provided by the user, for example, $\alpha=1e-2$

Global Convergence

- An iterative algorithm is globally convergent if for any arbitrary starting point the algorithm is guaranteed to generate a sequence of points converging to a point that satisfies the first order necessary condition for a minimizer.
- When the algorithm is not globally convergent, it may still generate a sequence that converges to a point satisfying the first order necessary condition, if the initial point is sufficiently close to the point. In this case, we say that the algorithm is locally convergent.
- 3 Another issue of interest, for both locally or globally convergent algorithms, is the rate of convergence; i.e., how fast the algorithm converges to a solution point.

Lets start by the Quadratic case.

Let $f(x) = \frac{1}{2}x^T\mathbf{Q}x - b^Tx$, with \mathbf{Q} is a symmetric positive definite matrix.

Note that there is not loss of generality in considering ${\bf Q}$ to be a symmetric matrix, due to, if ${\bf A}$ is not symmetric

$$oldsymbol{x}^T \mathbf{A} oldsymbol{x} = rac{1}{2} (oldsymbol{x}^T \mathbf{A} oldsymbol{x} + oldsymbol{x}^T \mathbf{A}^T oldsymbol{x}) = oldsymbol{x}^T rac{\mathbf{A} + \mathbf{A}^T}{2} oldsymbol{x} := oldsymbol{x}^T \mathbf{Q} oldsymbol{x}$$

where $\mathbf{Q} = \frac{\mathbf{A} + \mathbf{A}^T}{2}$ is symmetric!.

The convergence analysis is more convenient if we consider the following function

$$E(\boldsymbol{x}) = f(\boldsymbol{x}) + \frac{1}{2} (\boldsymbol{x}^*)^T \mathbf{Q} \boldsymbol{x}^*$$

$$= \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}^*)^T \mathbf{Q} (\boldsymbol{x} - \boldsymbol{x}^*)$$

$$= \frac{1}{2} ||\boldsymbol{x} - \boldsymbol{x}^*||_{\mathbf{Q}}^2$$

which differs from f(x) in the constant $\frac{1}{2}(x^*)^T\mathbf{Q}x^*=\frac{1}{2}\|x^*\|_{\mathbf{Q}}^2$, ie

$$E(\boldsymbol{x}) = f(\boldsymbol{x}) + \frac{1}{2} \|\boldsymbol{x}^*\|_{\mathbf{Q}}^2$$

Note: $\|x\|_{\mathbf{Q}}^2 = x^T \mathbf{Q} x$ is the weighted norm.

Lemma 2.1

The iterates $x_{k+1}=x_k-\alpha_k g_k$ with $g_k=\mathbf{Q}x_k-b$ satisfies that if $g_k\neq 0$ then $E(x_{k+1})=(1-\gamma_k)E(x_k)$ where

$$\gamma_k = \alpha_k \frac{\boldsymbol{g}_k^T \mathbf{Q} \boldsymbol{g}_k}{\boldsymbol{g}_k^T \mathbf{Q}^{-1} \boldsymbol{g}_k} \left(2 \frac{\boldsymbol{g}_k^T \boldsymbol{g}_k}{\boldsymbol{g}_k^T \mathbf{Q} \boldsymbol{g}_k} - \alpha_k \right)$$

if additionally $\alpha_k = rac{oldsymbol{g}_k^Toldsymbol{g}_k}{oldsymbol{g}_k^Toldsymbol{Q}oldsymbol{g}_k}$ then

$$\gamma_k = \frac{(\boldsymbol{g}_k^T \boldsymbol{g}_k)^2}{\boldsymbol{g}_k^T \mathbf{Q} \boldsymbol{g}_k \boldsymbol{g}_k^T \mathbf{Q}^{-1} \boldsymbol{g}_k}$$

Note: if $g_k = 0$ we consider $\gamma_k = 1$

$$E(\boldsymbol{x}_{k+1}) = \frac{1}{2} (\boldsymbol{x}_k - \boldsymbol{x}^* - \alpha_k \boldsymbol{g}_k)^T \mathbf{Q} (\boldsymbol{x}_k - \boldsymbol{x}^* - \alpha_k \boldsymbol{g}_k)$$
$$= \frac{1}{2} (\boldsymbol{x}_k - \boldsymbol{x}^*)^T \mathbf{Q} (\boldsymbol{x}_k - \boldsymbol{x}^*) + \frac{1}{2} \alpha_k^2 \boldsymbol{g}_k^T \mathbf{Q} \boldsymbol{g}_k$$
$$- \alpha_k (\boldsymbol{x}_k - \boldsymbol{x}^*)^T \mathbf{Q} \boldsymbol{g}_k$$

On the other hand $oldsymbol{g}_k = \mathbf{Q} oldsymbol{x}_k - oldsymbol{b} = \mathbf{Q} (oldsymbol{x}_k - oldsymbol{x}^*)$ then

$$oldsymbol{x}_k - oldsymbol{x}^* = \mathbf{Q}^{-1} oldsymbol{g}_k$$

and

$$E(\boldsymbol{x}_k) = \frac{1}{2}(\boldsymbol{x}_k - \boldsymbol{x}^*)^T \mathbf{Q}(\boldsymbol{x}_k - \boldsymbol{x}^*) = \frac{1}{2} \boldsymbol{g}_k^T \mathbf{Q}^{-1} \boldsymbol{g}_k$$

$$E(\boldsymbol{x}_{k+1}) = \frac{1}{2} (\boldsymbol{x}_k - \boldsymbol{x}^*)^T \mathbf{Q} (\boldsymbol{x}_k - \boldsymbol{x}^*) + \frac{1}{2} \alpha_k^2 \boldsymbol{g}_k^T \mathbf{Q} \boldsymbol{g}_k - \alpha_k \boldsymbol{g}_k^T \boldsymbol{g}_k$$

$$= E(\boldsymbol{x}_k) + (\frac{1}{2} \alpha_k^2 \boldsymbol{g}_k^T \mathbf{Q} \boldsymbol{g}_k - \alpha_k \boldsymbol{g}_k^T \boldsymbol{g}_k) \frac{E(\boldsymbol{x}_k)}{E(\boldsymbol{x}_k)}$$

$$= [1 - \gamma_k] E(\boldsymbol{x}_k)$$

$$E(\mathbf{x}_{k+1}) = (1 - \gamma_k)E(\mathbf{x}_k) \|\mathbf{x}_{k+1} - \mathbf{x}^*\|_{\mathbf{Q}}^2 = (1 - \gamma_k)\|\mathbf{x}_k - \mathbf{x}^*\|_{\mathbf{Q}}^2$$

with

$$\gamma_k = -\frac{\frac{1}{2}\alpha_k^2 \boldsymbol{g}_k^T \mathbf{Q} \boldsymbol{g}_k - \alpha_k \boldsymbol{g}_k^T \boldsymbol{g}_k}{\frac{1}{2}g_k^T \mathbf{Q}^{-1} g_k}$$
$$= \alpha_k \frac{\boldsymbol{g}_k^T \mathbf{Q} \boldsymbol{g}_k}{\boldsymbol{g}_k^T \mathbf{Q}^{-1} \boldsymbol{g}_k} (2 \frac{\boldsymbol{g}_k^T \mathbf{g}_k}{\boldsymbol{g}_k^T \mathbf{Q} g_k} - \alpha_k)$$

If
$$lpha_k = rac{oldsymbol{g}_k^Toldsymbol{g}_k}{oldsymbol{g}_k^T\mathbf{Q}oldsymbol{g}_k}$$

$$\gamma_{k} = \alpha_{k} \frac{\boldsymbol{g}_{k}^{T} \mathbf{Q} \boldsymbol{g}_{k}}{\boldsymbol{g}_{k}^{T} \mathbf{Q}^{-1} \boldsymbol{g}_{k}} (2 \frac{\boldsymbol{g}_{k}^{T} \boldsymbol{g}_{k}}{\boldsymbol{g}_{k}^{T} \mathbf{Q} \boldsymbol{g}_{k}} - \alpha_{k})
= \frac{\boldsymbol{g}_{k}^{T} \boldsymbol{g}_{k}}{\boldsymbol{g}_{k}^{T} \mathbf{Q} \boldsymbol{g}_{k}} \frac{\boldsymbol{g}_{k}^{T} \mathbf{Q} \boldsymbol{g}_{k}}{\boldsymbol{g}_{k}^{T} \mathbf{Q}^{-1} \boldsymbol{g}_{k}} (2 \frac{\boldsymbol{g}_{k}^{T} \boldsymbol{g}_{k}}{\boldsymbol{g}_{k}^{T} \mathbf{Q} \boldsymbol{g}_{k}} - \frac{\boldsymbol{g}_{k}^{T} \boldsymbol{g}_{k}}{\boldsymbol{g}_{k}^{T} \mathbf{Q} \boldsymbol{g}_{k}})
= \frac{(\boldsymbol{g}_{k}^{T} \boldsymbol{g}_{k})^{2}}{\boldsymbol{g}_{k}^{T} \mathbf{Q} \boldsymbol{g}_{k} \boldsymbol{g}_{k}^{T} \mathbf{Q}^{-1} \boldsymbol{g}_{k}}$$

Remark 2.2

Note that
$$\gamma_k=1-\frac{E(\boldsymbol{x}_{k+1})}{E(\boldsymbol{x}_k)}\geq 0$$
 due to $E(\boldsymbol{x}_{k+1})\leq E(\boldsymbol{x}_k)$ and $\gamma_k\leq 1$ due to $E(\boldsymbol{x})\geq 0$, then $0\leq \gamma_k\leq 1$.

Theorem 2.3

Let $\{x_k\}$ be the sequence resulting from a gradient algorithm $x_{k+1} = x_k - \alpha_k g_k$. Let γ_k be as defined in the previous Lemma, and suppose that $\gamma_k > 0$ for all k. Then, $\{x_k\}$ converges to x^* for any initial condition x_0 if and only if

$$\sum_{k=1}^{\infty} \gamma_k = \infty$$

From $E(\boldsymbol{x}_{k+1}) = (1 - \gamma_k)E(\boldsymbol{x}_k)$ we obtain

$$E(\boldsymbol{x}_k) = \prod_{i=0}^{k-1} (1 - \gamma_i) E(\boldsymbol{x}_0)$$

- **1** If $\gamma_i = 1$ the result is trivial.
- 2 Assume $\gamma_i < 1$ Then, $\boldsymbol{x}_k \to \boldsymbol{x}^*$ if and only if $E(\boldsymbol{x}_k) \to 0$.

Therefore
$$\prod_{i=0}^{\infty} (1-\gamma_i) \to 0$$
, iff $-\sum_{i=0}^{\infty} \log(1-\gamma_i) = \infty$

It remains to proof that $\sum_{i=0}^{\infty} -\log(1-\gamma_i) = \infty$ iff $\sum_{i=0}^{\infty} \gamma_i = \infty$.

 (\Leftarrow) if $\sum_{i=0}^{\infty} \gamma_i = \infty$ and taking into account that

$$\log(x) \le x - 1$$

then

$$-\log(1-x) \ge x$$

and therefore

$$\sum_{i=0}^{\infty} -\log(1-\gamma_i) \ge \sum_{i=0}^{\infty} \gamma_i = \infty$$

.

 (\Rightarrow) (by contradiction) Suppose $\sum_{i=0}^{\infty} \gamma_i < \infty$ therefore $\gamma_i \to 0$, ie

$$1 - \gamma_i \approx 1$$

for all $i \geq j$, for sufficiently large j.

As $\log(x) \ge 2(x-1)$ for x close to 1 then $-\log(1-x) \le 2x$.

Therefore

$$\sum_{i=j}^{\infty} -\log(1-\gamma_i) \le 2\sum_{i=j}^{\infty} \gamma_i < \infty$$

then

$$\sum_{i=0}^{\infty} -\log(1-\gamma_i) < \infty$$

that contradicts the hypothesis that $\sum_{i=0}^{\infty} -\log(1-\gamma_i) = \infty$.

Lemma 2.4

Let \mathbf{Q} be an $n \times n$ real symmetric positive definite matrix. Then, for any $\mathbf{x} \in \mathbb{R}^n$, we have

$$\frac{a}{A} \le \frac{(\boldsymbol{x}^T \boldsymbol{x})^2}{\boldsymbol{x}^T \mathbf{Q} \boldsymbol{x} \boldsymbol{x}^T \mathbf{Q}^{-1} \boldsymbol{x}} \le \frac{A}{a}$$

where a and A are, respectively, the smallest and largest eigenvalues of \mathbf{Q} .

Proof.

Applying Rayleigh's inequality, we get

$$a \leq \frac{\boldsymbol{x}^T \mathbf{Q} \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}} \leq A, \text{ and } \frac{1}{A} \leq \frac{\boldsymbol{x}^T \mathbf{Q}^{-1} \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}} \leq \frac{1}{a}$$

therefore
$$\frac{a}{A} \leq \frac{({m x}^T{m x})^2}{{m x}^T{f Q}{m x}{m x}^T{f Q}^{-1}{m x}} \leq \frac{A}{a}.$$

Proposition 2.5

Kantorovich inequality: Let \mathbf{Q} be a positive definite symmetric $n \times n$ matrix. For any vector \mathbf{x} there holds

$$\frac{(\boldsymbol{x}^T\boldsymbol{x})^2}{\boldsymbol{x}^T\mathbf{Q}\boldsymbol{x}\boldsymbol{x}^T\mathbf{Q}^{-1}\boldsymbol{x}} \geq \frac{4aA}{(a+A)^2}$$

where a and A are, respectively, the smallest and largest eigenvalues of \mathbf{Q} .

Remark 2.6

Note that $\frac{4aA}{(a+A)^2} \geq \frac{a}{A}$ therefore

$$\frac{a}{A} \le \frac{4aA}{(a+A)^2} \le \frac{(\boldsymbol{x}^T \boldsymbol{x})^2}{\boldsymbol{x}^T \mathbf{Q} \boldsymbol{x} \boldsymbol{x}^T \mathbf{Q}^{-1} \boldsymbol{x}} \le \frac{A}{a}$$

Quadratic case: Steepest decent with exact line search

Theorem 2.7

In the steepest decent algorithm $x_{k+1} = x_k - \alpha_k g_k$, with exact line search, i.e. $\alpha_k = \frac{g_k^T g_k}{g_k^T Q g_k}$, we have that $x_k \to x^*$ for any x_0 .

Proof.

As
$$\gamma_k = \frac{(g_k^T g_k)^2}{g_k^T Q g_k g_k^T Q^{-1} g_k} \geq \frac{a}{A} > 0$$
. Therefore $\sum_k^\infty \gamma_k = \infty$ and using Theorem 2.3, the sequence $\{x_k\}$ converges to x^* for any initial condition x_0

Quadratic case: Gradient method with fixed step size

Theorem 2.8

In the steepest decent algorithm $x_{k+1}=x_k-\alpha g_k$, with with fixed step size, i.e. $\alpha_k=\alpha$ for all k, we have that $x_k\to x^*$ for any x_0 iff $0<\alpha<\frac{2}{A}$.

Proof.

(⇐) By Rayleigh's inequality

$$a\boldsymbol{g}_k^T\boldsymbol{g}_k \leq \boldsymbol{g}_k^T\mathbf{Q}\boldsymbol{g}_k \leq A\boldsymbol{g}_k^T\boldsymbol{g}_k$$

$$oldsymbol{g}_k^T \mathbf{Q}^{-1} oldsymbol{g}_k \leq rac{1}{a} oldsymbol{g}_k^T oldsymbol{g}_k$$

As
$$\gamma_k = \alpha \frac{\mathbf{g}_k^T \mathbf{Q} \mathbf{g}_k}{\mathbf{g}_k^T \mathbf{Q}^{-1} \mathbf{g}_k} \left(2 \frac{\mathbf{g}_k^T \mathbf{g}_k}{\mathbf{g}_k^T \mathbf{Q} \mathbf{g}_k} - \alpha \right) \ge \mathbf{a} a \alpha (\frac{2}{A} - \alpha) > 0$$
 then $\sum_k^{\infty} \gamma_k = \infty$ and using Theorem 2.3, the sequence $x_k \to x^*$

Gradient method with fixed step size

Proof.

 (\Rightarrow) (By contradiction) Suppose that $\alpha \leq 0$ or $\alpha \geq \frac{2}{A}$. On the other hand, we select x_0 such that $x_0 - x^*$ is the eigenvector of \mathbf{Q} that corresponds to A.

$$\mathbf{x}_{k+1} - \mathbf{x}^* = \mathbf{x}_k - \alpha \mathbf{g}_k - \mathbf{x}^* = \mathbf{x}_k - \alpha (\mathbf{Q} \mathbf{x}_k - \mathbf{b}) - \mathbf{x}^*$$

$$= \mathbf{x}_k - \mathbf{x}^* - \alpha (\mathbf{Q} \mathbf{x}_k - \mathbf{Q} \mathbf{x}^*) = (\mathbf{I} - \alpha \mathbf{Q})(\mathbf{x}_k - \mathbf{x}^*)$$

$$= (\mathbf{I} - \alpha \mathbf{Q})^{k+1}(\mathbf{x}_0 - \mathbf{x}^*) = (1 - \alpha A)^{k+1}(\mathbf{x}_0 - \mathbf{x}^*)$$

then

$$\|\boldsymbol{x}_{k+1} - \boldsymbol{x}^*\| = \|1 - \alpha A\|^{k+1} \|\boldsymbol{x}_0 - \boldsymbol{x}^*\|$$

For $\alpha \leq 0$ or $\alpha \geq \frac{2}{A}$ we have $|1 - \alpha A| \geq 1$ therefore $\|x_{k+1} - x^*\|$ does not converge to 0 and $\{x_k\}$ does not converge to x^* .

Quadratic case: Steepest decent with exact line search

Theorem 3.1

In the steepest decent algorithm with exact line search, i.e. $\alpha_k = \frac{g_k^T g_k}{a_k^T \mathbf{O} g_k}$, applied to the quadratic function we have

$$E(\boldsymbol{x}_{k+1}) \le \left(1 - \frac{a}{A}\right) E(\boldsymbol{x}_k)$$

Proof.

As
$$\gamma_k=rac{(g_k^Tg_k)^2}{g_k^T\mathbf{Q}g_kg_k^T\mathbf{Q}^{-1}g_k}\geq rac{a}{A}$$
 then $1-\gamma_k\leq 1-rac{a}{A}.$ Therefore

$$E(\boldsymbol{x}_{k+1}) = (1 - \gamma_k) E(\boldsymbol{x}_k) \le \left(1 - \frac{a}{A}\right) E(\boldsymbol{x}_k)$$

Quadratic case: Summary

- The previous theorem is very important for the convergence of the steepest decent algorithm
- The ratio $\kappa := \frac{A}{a} = \|\mathbf{Q}\|_2 \|\mathbf{Q}^{-1}\|_2 = \kappa(\mathbf{Q}) \geq 1$ is the so-called condition number of \mathbf{Q}
- Recall: $\|\mathbf{Q}\|_2 = \sqrt{\lambda_M(\mathbf{Q}^T\mathbf{Q})} = \sigma_M(\mathbf{Q})$. If $\mathbf{Q} \succ 0$ is symmetric then $\sigma_M(\mathbf{Q}) = \lambda_M(\mathbf{Q})$
- The term $1 \frac{a}{A} = 1 \frac{1}{\kappa}$ plays an important role in the convergence of the sequence $\{E(x_k)\}$ (and therefore of the convergence of x_k to x^*).

Quadratic case: Summary

- The method of steepest descent converges linearly with a ratio no greater than $1 \frac{1}{\kappa}$.
- The smaller the value of κ , the smaller the relative value of $E(\boldsymbol{x}_{k+1})$ with respect to $E(\boldsymbol{x}_k)$ and therefore $\{E(\boldsymbol{x}_k)\}$ converges faster to 0.
- If $\kappa=1$, i.e., the level sets are circulars and A=a, the algorithm converges in one iteration to the minimizer. If κ increases then the rate of convergence decreases.

Quadratic case: Steepest descent with exact line search

Lemma 3.2

In the steepest descent algorithm with exact line search, i.e.

$$lpha_k=rac{m{g}_k^Tm{g}_k}{m{g}_k^Tm{Q}m{g}_k}$$
 , if $m{g}_k
eq m{0}$ then $\gamma_k=1$ iff $m{g}_k$ is an eigenvector of $m{Q}$

Proof.

 (\Leftarrow) if ${\bm g}_k$ is an eigenvector of ${\bf Q}$ then ${\bf Q}{\bm g}_k=\lambda {\bm g}_k$ and ${\bf Q}^{-1}{\bm g}_k=\lambda^{-1}{\bm g}_k$ therefore

$$\gamma_k = \frac{(\boldsymbol{g}_k^T \boldsymbol{g}_k)^2}{\boldsymbol{g}_k^T \mathbf{Q} \boldsymbol{g}_k \boldsymbol{g}_k^T \mathbf{Q}^{-1} \boldsymbol{g}_k} = 1$$

Quadratic case: Steepest descent with exact line search

Proof.

 (\Rightarrow) if $\gamma_k=1$ then $E(\boldsymbol{x}_{k+1})=\frac{1}{2}(\boldsymbol{x}_{k+1}-\boldsymbol{x}^*)^T\mathbf{Q}(\boldsymbol{x}_{k+1}-\boldsymbol{x}^*)=0$ therefore $\boldsymbol{x}_{k+1}=\boldsymbol{x}^*$. Hence,

$$egin{array}{lcl} oldsymbol{x}_{k+1} &=& oldsymbol{x}_k - lpha_k oldsymbol{g}_k \ oldsymbol{x}^* &=& oldsymbol{x}_k - lpha_k oldsymbol{Q}_k \ lpha_k oldsymbol{Q}_k &=& oldsymbol{Q}_k - oldsymbol{b} \ oldsymbol{Q}_k &=& rac{1}{lpha_k} oldsymbol{g}_k \end{array}$$

and then g_k is an eigenvector of \mathbf{Q} .

Quadratic case: Steepest descent with exact line search

Theorem 3.3

In the steepest decent algorithm with exact line search, the error norm $E(\cdot)$ satisfies $E(\boldsymbol{x}_{k+1}) \leq \left(\frac{A-a}{A+a}\right)^2 E(\boldsymbol{x}_k)$

Proof.

Using the Kantorovich inequality: $\gamma_k = \frac{(g_k^T g_k)^2}{g_k^T \mathbf{Q} g_k g_k^T \mathbf{Q}^{-1} g_k} \geq \frac{4aA}{(a+A)^2}$ then $1 - \gamma_k \leq 1 - \frac{4aA}{(a+A)^2} = \left(\frac{A-a}{A+a}\right)^2$. Therefore

$$E(\boldsymbol{x}_{k+1}) = (1 - \gamma_k) E(\boldsymbol{x}_k) \le \left(\frac{A - a}{A + a}\right)^2 E(\boldsymbol{x}_k)$$

Note also that:
$$\left(\frac{A-a}{A+a}\right)^2 = \left(\frac{\kappa-1}{\kappa+1}\right)^2$$

Non-quadratic case

Theorem 3.4

Non-quadratic case Suppose f is defined on \mathbb{R}^n , has continuous second partial derivatives, and has a relative minimum at x^* . Suppose further that the Hessian matrix of f, $\mathbf{H}(x^*)$, has smallest eigenvalue a>0 and largest eigenvalue A>0. If $\{x_k\}$ is a sequence generated by the method of steepest descent that converges to x^* , then the sequence of objective values $\{f(x_k)\}$ converges to $f(x^*)$ linearly with a convergence ratio no greater than $\left(\frac{A-a}{A+a}\right)^2$, i.e., for all k sufficiently large, we have

$$f(\boldsymbol{x}_{k+1}) - f(\boldsymbol{x}^*) \le \left(\frac{A-a}{A+a}\right)^2 \left[f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*)\right]^2$$