

人工智能与机器学习

Artificial

Intelligence

Machine

Learning

章节:实验6-逻辑回归之信用卡逾期情况预测

教师: 刘重

学院: 计算机学院

厚德 博学 力行 致逐

一、实验目的

- (1) 逻辑回归算法原理;
- (2) 精确率和召回率;
- (3) 实例应用—信用卡逾期情况预测。

二、实验内容

- 一、问题描述
- 二、实验步骤
 - 1.加载数据集
 - 2. 绘制数据的散点图, 查看数据分布情况
 - 3.定义Sigmoid、损失函数,使用梯度下降确定模型参数
 - 4、初始化模型,并对模型进行训练
 - 5、根据得到的参数,绘制模型分类线
 - 6、绘制损失函数变化曲线
- 三、实验结果分析

逻辑回归模型原理与推导

- 线性模型如何执行分类任务呢?只需要找到一个单调可微函数将分类任务的真实标签y与线性回归模型的预测值进行映射。在线性回归中,模型的学习目标是直接逼近真实标签y,但在逻辑回归中,我们需要找到一个映射函数将线性回归模型的预测值转化为0/1值。
- sigmoid函数正好具备上述条件,单调可微、取值范围为(0,1),且具有较好的求导特性。

$$y = \frac{1}{1 + e^{-z}}$$

三、实验原理

• 线性回归模型的公式为:

$$z = \mathbf{w}^{\mathrm{T}} \mathbf{x} + b$$

• 将上式代入到sigmoid函数中:

$$y = \frac{1}{1 + \mathrm{e}^{-(w^{\mathrm{T}}x + b)}}$$

• 两边取对数并转换为:

$$\ln \frac{y}{1-y} = \mathbf{w}^{\mathrm{T}} \mathbf{x} + b$$

- 如果将y看作样本x作为正例的可能性,那么1-y即为样本作为反例的概率。 $\frac{y}{1-y}$ 也称"几率"(odds),对几率取对数则得到对数几率,所以上式为对数几率回归建模公式。
- 为了确定上式中的模型参数w和b,我们需要推导逻辑回归的损失函数,然后对损失函数进行最小化,得到w和b的估计值。给定训练数据集 $\{(x_i,y_i)\}_{i=1}^m$,将式中的y视作类后验概率估计p(y=1|x),则逻辑回归模型的表达式可重写为:

$$\ln \frac{p(y=1|x)}{p(y=0|x)} = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b$$

三、实验原理

• 对上式展开:

$$p(y = 1|x) = \frac{e^{w^{T}x+b}}{1+e^{w^{T}x+b}} = \hat{y}$$

$$p(y = 0|x) = \frac{1}{1 + e^{w^{T}x + b}} = 1 - \hat{y}$$

• 综合两式:

$$p(y|x) = \hat{y}^y + (1 - \hat{y})^{1-y}$$

- 两边取对数,改为求和式,并取负号: $-\ln p(y|x) = -\frac{1}{m}\sum_{i=1}^{m}[y\ln \hat{y} + (1-y)\ln(1-\hat{y})]$ 该式即为经典的交叉熵损失函数,其中 $\hat{y} = \frac{1}{1+e^{-(w^Tx+b)}}$ 。
- 令 $L = -\ln p(y|x)$, 基于L分别对w和b求偏导, 有:

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{x}(y - \hat{y})$$

$$\frac{\partial L}{\partial b} = y - \hat{y}$$

四、问题描述

- 某银行搜集了用户贷款、收入和信用卡是否逾期的信息。 使用这些数据建立一个能预测信用卡逾期情况的逻辑回归 模型。使用梯度下降法确定模型参数,并绘图显示损失函 数的变化过程。
- 使用由credit-overdue.csv素材文件提供的数据集

1	debt	income	overdue	
2	1.86	4.39	0	
3	0.42	4.91	0	
4	2.07	1.06	1	
5	0.64	1.55	0	
6	1.24	2.48	0	
7	2.21	1.55	1	
8	2.43	4.4	0	
9	0.96	4.35	0	
10	0.3	1.76	0	
11	2.29	4.64	0	
12	0.68	1.92	0	
13	1.96	0.09	1	
14	0.14	1.12	0	
15	2.5	4.79	0	
16	0.83	3.23	0	
17	1.07	0.36	1	
18	0.71	1.99	0	
19	0.2	1.52	0	
20	2.12	2.43	0	
21	1.52	4.16	0	
22	1.8	2.99	0	
23	2.14	4.05	0	
24	2.05	0.97	1	
25	2.14	2.87	0	
26	0.15	3.46	0	
27	2.1	4.45	0	
28	1.08	2.52	0	
29	0.86	2.78	0	
30	1.04	2.65	0	

• 1、加载数据集

```
8 import·numpy·as·np
9 import·pandas·as·pd
10 df·=·pd.read_csv("credit-overdue.csv",·header=0)·#·加载数据集
11 df.head()··#查看前5行数据
```

	debt	income	overdue
0	1.86	4.39	0
1	0.42	4.91	0
2	2.07	1.06	1
3	0.64	1.55	0
4	1.24	2.48	0

• 2、绘制数据的散点图,查看数据分布情况

```
from matplotlib import pyplot as plt
plt.figure(figsize=(10, 6))
map_size = {0: 20, 1: 100}
size = \list(map(lambda x: map_size[x], df['overdue']))
plt.scatter(df['debt'], df['income'], s=size, c=df['overdue'], marker='v')
```


• 3、定义Sigmoid、损失函数,使用梯度下降确定模型参数

```
#定义Sigmoid函数
     def sigmoid(z):
20
         sigmoid = 1 / (1 + np.exp(-z))
     ····return sigmoid
22
     #定义对数损失函数
23
     def loss(h, y):
     -\cdot\cdot\cdot\log s = (-y \cdot *\cdot np.\log(h) \cdot -\cdot (1 \cdot -\cdot y) \cdot *\cdot np.\log(1 \cdot -\cdot h)).mean()
25
     ···return loss
26
     #定义梯度下降函数
27
     def gradient(X, h, y):
28
      gradient = np.dot(X.T, (h - y)) / y.shape[0]
29
      ····return gradient
30
```


• 3、定义Sigmoid、损失函数,使用梯度下降确定模型参数

```
32
    # 逻辑回归过程
    def Logistic Regression(x, y, lr, num_iter):
33
    ····intercept·=·np.ones((x.shape[0],·1))··#·初始化截距为·1
34
35
    x = np.concatenate((intercept, x), axis=1)
    ····w·=·np.zeros(x.shape[1])··#·初始化参数为·0
36
37
    ····for·i·in·range(num_iter):··#·梯度下降迭代
38
    ·····z·=·np.dot(x,·w)····-#·线性函数
39
    ·······h·=·sigmoid(z)·····#·sigmoid·函数
40
41
    ·····g·=·gradient(x,·h,·y)··#·计算梯度
42
    ·····w·-=·lr·*·g····#·通过学习率·lr·计算步长并执行梯度下降
43
    \cdots \cdots z = np.dot(x, w) \cdots # 更新参数到原线性函数中
44
    ······h·=·sigmoid(z)·····#·计算·sigmoid·函数值
    45
46
    ····return·l,·w·····-#·返回迭代后的梯度和参数
```


• 4、初始化模型,并对模型进行训练

```
逻辑回归模型为:
(0.19383368371859122, array([ 0.05603937, 0.9925221 , -1.3325938 ]))
```


• 5、根据得到的参数,绘制模型分类线

```
plt.figure(figsize=(10, 6))
map size = \{0: 20, 1: 100\}
size = list(map(lambda x: map_size[x], df['overdue']))
plt.scatter(df['debt'],df['income'], s=size,c=df['overdue'],marker='v')
x1_{min}, x1_{max} = df['debt'].min(), <math>df['debt'].max(),
x2 min, x2 max = df['income'].min(), df['income'].max(),
xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
grid = np.c_[xx1.ravel(), xx2.ravel()]
probs = (np.dot(grid, np.array([L[1][1:3]]).T) + L[1][0]).reshape(xx1.shape)
plt.contour(xx1, xx2, probs, levels=[0], linewidths=1, colors='red');
```

• 6、绘制损失函数变化曲线

```
def Logistic Regression(x, y, lr, num iter):
70
71
    ····intercept·=·np.ones((x.shape[0],·1))··#·初始化截距为·1
72
    x = np.concatenate((intercept, x), axis=1)
73
    ····w·=·np.zeros(x.shape[1])······#·初始化参数为·1
74
75
    76
    ····for·i·in·range(num iter):····#·梯度下降迭代
77
    78
    ·······h·=·sigmoid(z)······#·sigmoid·函数
79
80
    ······g·=·gradient(x,·h,·y)····#·计算梯度
81
    ·····w·-=·lr·*·g····-#·通过学习率·lr·计算步长并执行梯度下降
82
83
    ······z·=·np.dot(x,·w)··#·更新参数到原线性函数中
    ······h·=·sigmoid(z)···#·计算·sigmoid·函数值
85
86
    87
    ······l list.append(l)
    ···return l_list
88
89
    lr·=·0.01······#·学习率
90
91
    num iter·=·30000··#·迭代次数
    l_y = Logistic_Regression(x, y, lr, num_iter) · # 训练
92
93
94
   # 绘图
95
    plt.figure(figsize=(10, 6))
96
    plt.plot([i for i in range(len(l y))], l y)
97
    plt.xlabel("Number of iterations")
98
    plt.ylabel("Loss function")
```


六、实验报告要求

- 1、实验目的
- 2、实验内容
- 3、实验原理
- 4、实验代码
- 5、运行结果与分析
- 6、实验小结

- 说明:每个学生都要交电子版的实验报告,命名格式:
- 01/02-XXXXX (学号) -XXXX (姓名)

