NUME:	
PRENUME:	
GRUPA:	

INSTRUCŢIUNI

- 1. Toate problemele sunt obligatorii.
- 2. Problemele vor fi rezolvate pe coli de hârtie numerotate corespunzător, menționându-se explicit numărul problemei și subpunctul acesteia.
- 3. Pe prima pagină a rezolvării fiecarei probleme, vor fi scrise **cu litere de tipar numele** și prenumele studentului, precum și grupa acestuia.
- 4. Fiecare problemă trebuie să aibă cel puţin o pagină alocată rezolvării sale chiar dacă respectiva problemă nu se poate rezolva.
- 5. TIMP DE LUCRU: 150 minute, i.e. 11:00-13:30.
- 6. Rezolvările problemelor corespunzătoare acestui examen vor fi trimise prin email:
 - ca fişier PDF, împreună cu fişierul cu subiectele examenului la adresa andreea.grecu@fmi.unibuc.ro (Drd. Andreea GRECU);
 - vor avea următoarea linie de subiect:
 Examen AnNum Nume si prenume student, Grupa 3XX
- 7. Termenul limită de trimitere prin email a rezolvărilor problemelor: joi, 28 ianuarie 2021, orele 14:00.

Analiză Numerică Examen – Anul III – Subiectul#2

- I. Care este viteza de convergență a metodei Newton-Raphson pentru determinarea rădăcinii $x^*=2$ a următoarelor ecuații neliniare:
 - (a) $f(x) := (x-1)(x-2)^2 = 0$, $x \in [1,3]$;
 - (b) $f(x) := (x-1)^2(x-2) = 0, x \in [1,3]$?
- II. Fie nodurile de interpolare $x_j = j, j = \overline{0,3}$. Dacă

$$P_{0,1}(x) = x + 1$$
, $P_{1,2}(x) = 3x - 1$, $P_{1,2,3}(1,5) = 4$, (1)

să se determine $P_{0,1,2,3}(1,5)$.

- III. Determinați formula de aproximare cu diferențe finite descendente de ordin $O(h^2)$ pentru f'(x) și eroarea aproximării folosind polinomul de interpolare Lagrange corespunzător asociat lui f.
- IV. Determinați cea mai bună aproximare polinomială $p_2 \in \mathbb{P}_2$ a funcției x^3 în raport cu $\|\cdot\|_{2,w}$, unde ponderea este dată de $w:(0,2) \longrightarrow \mathbb{R}$, w(x)=x.

EXAMEN ANALIZA NUMERICA

II. Five modurile de interpolare
$$x_j = j$$
, $j = 0,3$.

Daca $P_{0,1}(x) = x+1$

$$P_{1,2}(x) = 3x-1$$

$$f(x_0) = P_{0,1}(x_0) = x_0 + 1$$

 $f(x_1) = P_{0,1}(x_1) = x_1 + 1$
 $= P_{1,2}(x_1) = 3x_1 - 1$

$$f(x_1) = P_{1,2}(x_2) = 3x_2 - 1$$

Formula de recurenta

Atunci
$$P_{0,\dots,K}(x) = \frac{1}{x_i - x_j} \cdot \begin{vmatrix} f_{0,\dots,j-1}j+1,\dots,K(x) \\ x_{i-1}x_{j-1}y_{j$$

 $\chi_1+1=3\chi_1-1$

$$P_{0,14;2,3}(X) = \frac{1}{\chi_0 - \chi_3}$$

$$P_{0,14;2,3}(X) = \frac{1}{\chi_0 - \chi_2}$$

$$P_{0,14;2}(X) = \frac{1}{\chi_0 - \chi_2}$$

$$P_{0,14}(X) = \frac{1}{\chi_0 - \chi_2}$$

$$P_{0,14;2,3}(X) = \frac{1}{\chi_0 - \chi_2}$$

$$P_{0,14;2,3}(X) = \frac{1}{\chi_0 - \chi_2}$$

$$P_{0,14;2,3}(X) = \frac{1}{\chi_0 - \chi_2}$$

$$P_{1,12,3}(X) = \frac{1}{\chi_1 - \chi_3}$$

CABALAU

RAZVAN

GRUPA 312

P1,213 (x) =
$$\frac{1}{x_1-x_3}$$

P2,3 (x) $\frac{1}{x_2-x_3}$

P0,112 (x) = $\frac{1}{x_2-x_2}$ (- 2x2- x x2 + 2x - x2 - x0+3xx0)

P0,112 (1/5) = $\frac{1}{1-5}$ (- 2x2-x.5 + 2x-5 - 1 + 2x3x)

= $\frac{1}{-4}$ (- 2x2-5x+2x - 6 + 3x)

= $\frac{-2x^2-6}{-4(x^2+3)}$ = $\frac{x^2+3}{2}$ (x-5) - 4x+4

4 x-5

CABALAU RA ZVAN 312 III. Determinati formula de aproximare su diferent, e finite descendente de ordin O(h²) pentru f'(x) si croarea aproximarii folonind Polinoum Rugrange corlsp. asseral len f. Fie de C2[a,b], I f"(3), 43 E (a,b) · Jeorema lui Taylor pentru h>0: $f(x+h) = f(x) + f'(x) h + f''(x) = \frac{h^2}{2}$ $+ f'''(x) = \frac{h^2}{6} + \frac{h^2}{6} + \frac{h^2}{2}$ $f(x-h) = f(x) - f'(x) h + f''(x) \frac{h^2}{2}$ - f"(2) h, 3 + [x-h,x] Obtimem f(x+h) - f(x-h) = 2h f(x) + [f"(3+)+f"(3-)] h3 > $f'(x) = \frac{f(x+h) - f(x-h)}{2h} \left[f'''(\frac{3}{3}) + f'''(\frac{3}{3}) \right] \frac{h^2}{12}$

Cum
$$f \in C^3 [a, b]$$
, $f''' \in C[a, b]$ so deci
 $\exists m := max | f'''(x)|$:
 $x \in [a,b]$
 $m = f'''(g) \in M$.
 $f''' \in C[a,b]$
 $f''' \in C[a,b]$

CABALAH RAZVAN 312 I. Care este vitera de convergent à a metodei Newton Rystron pentru deter. rodocimi x* = 2 a urnoto arelor ecuati Melinate: (a) f(x): = $(x-1)(x-2)^2 = 0$, $x \in [1,3]$ (b) $f(x) := (x-1)^2 (x-2) = 0, x \in \{1,3\}$? q) $\chi^* \simeq \chi_0 - \frac{f(\chi_0)}{f(\chi_0)} = : \chi_1$ $f'(x_0) = ((x_0-1)(x_0-2)^2) = ((x_0-1)(x_0-4x_0+4))'$ 2 2x-x+2) $= \left(x_0^3 - 2 x_0^2 + 2 x - x_0^2 + 4 x_0 - 4 \right)$ = (3x3-3x02+6x0-4) = 3x6- 6x6 +6 X = X0= 6X0 14

20 =
$$\frac{(x_0-1)(x_0-2)^2}{3x_0^2-6x_0+6}$$

20 = $\frac{x_0^3-3x_0^2+6x_0-4}{3x_0^2-6x_0+6}$

21 = $\frac{x_0^3-6x_0+6}{3x_0^2-6x_0+6}$

22 = $\frac{x_0^3-6x_0+6}{3x_0^2-6x_0+4}$

23 = $\frac{2x_0^3-3x_0^2+4x_0-x_0+3x_0^2-4x_0+2}{3x_0^2-6x_0+4}$

24 = $\frac{2x_0^3-3x_0^2+4x_0}{3x_0^2-6x_0+4}$

25 = $\frac{2x_0^3-3x_0^2+4x_0}{3x_0^2-6x_0+4}$

26 = $\frac{2x_0^3-3x_0^2+4x_0}{3x_0^2-6x_0+4}$

27 = $\frac{2x_0^3-3x_0^2+4x_0}{3x_0^2-6x_0+4}$

28 = $\frac{2x_0^3-3x_0^2+6x_0-4}{3x_0^2-6x_0+4}$

29 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0+4}$

20 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0+4}$

20 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0+4}$

20 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0+4}$

21 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0+4}$

22 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0+4}$

23 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0+4}$

24 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0+4}$

25 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0+4}$

26 = $\frac{2x_0-3x_0^2-6x_0-4}{3x_0^2-6x_0+4}$

27 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0+4}$

28 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0+4}$

29 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0+4}$

20 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

21 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

22 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

23 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

24 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

22 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

23 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

24 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

25 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

26 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

26 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

28 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

29 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

20 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^2-6x_0-4}$

20 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^3-6x_0-4}$

20 = $\frac{2x_0^3-3x_0^2-6x_0-4}{3x_0^3-6x$

$$2a = \frac{x_0^3 - 4x_0^2 + 5x_0 - 2}{3x_0^2 - 8x_0^2 + 5x_0 - x_0^3 + 4x_0^2 + 5x_0 + 2}$$

$$2a = \frac{2x_0^2 - 4x_0^2 + 2}{3x_0^2 - 8x_0 + 4}$$

$$2a = \frac{2x_0^2 - 4x_0^2 + 2}{3x_0^2 - 8x_0 + 4}$$

$$2 = \frac{2x_0^2 - 4x_0^2 + 2}{3x_0^2 - 8x_0 + 4}$$

$$2 = \frac{2x_0^2 - 4x_0^2 + 2}{3x_0^2 - 8x_0 + 4}$$

$$2 = \frac{2x_0^2 - 4x_0^2 + 2}{3x_0^2 - 4x_0^2 + 2}$$

$$2 = \frac{2x_0^2 - 4x_0^2 + 2}{3x_0^2 - 4x_0^2 + 2}$$

$$2 = \frac{2x_0^2 - 4x_0^2 + 2}{3x_0^2 - 8x_0 + 4}$$

CA CABAL AU Seterminati cea mai buna aproximare polinomialà pz E1/2 a functiei X3 in raport au 11. 11 2, w, unde panderea exte data de $w:(0,2) \rightarrow 1R$, w(x) = x· Problema color mai mici patrate. f∈ L2 (0,2) m mein Sa re détermine P2 EP2 a.1. 119 - Pall 21W = inf [17-211 21W 11 e112 2 w = = 11 f - P211 2 w = [(f(x) - Pm(x)) dx