Congestion Control III

Performance improvements: TCP Reno, TCP NewReno

TCP Tahoe

- On timeout or triple duplicate ack (implies lost packet)
 - ► Set threshold to congestion window/2 —
 - Set congestion window to I
 - ► Enter slow start state

TCP Reno

- Same as Tahoe on timeout
- On triple duplicate ack
 - ► Set threshold to congestion window/2 ≤
 - ► Set congestion window to congestion window/2 (fast recovery)
 - ► Retransmit missing segment (fast retransmit)
 - ► Stay in congestion avoidance state

TCP Reno

time

TCP Reno Example

TCP NewReno

- Same as Tahoe/Reno on timeout
- During fast recovery
 - Keep track of last unacknowledged packet when entering fast recovery
 - ▶ On every duplicate ack, inflate congestion window by maximum segment size
 - ▶ When last packet acknowledged, return to congestion avoidance state, set cwnd back to value set when entering fast recovery
 - Start sending out new packets while fast retransmit is in flight

TCP NewReno Behavior

Congestion Control

- One of the hardest problems in robust networked systems
- Basic approach: additive increase, multiplicative decrease
- Tricks to keep pipe full, improve throughput
 - ► Fast retransmit (don't wait for timeout to send lost data)
 - ► Congestion window inflation (don't wait an RTT before sending more data)