Supervised Machine Learning

AIMA Chapter 18, 20

More classification methods

- Naive Bayes
- Perceptron / Neural networks
- Decision trees / Random forest
- Support Vector Machines
- Nearest neighbors
- Model ensembles: bagging, boosting, etc.
- •••••

Linear Classifiers

Feature Vectors

f(x)# free : 2
YOUR_NAME : 0
MISSPELLED : 2 Hello, **SPAM** Do you want free printr or cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1

Some (Simplified) Biology

Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

BIAS : -3
free : 4
money : 2

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

BIAS : -3
free : 4
money : 2

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

BIAS : -3
free : 4
money : 2

Weight Updates

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

■ If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0 \\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Before: wfAfter: wf + y*ffff>=0

Examples: Perceptron

Separable Case

Multiclass Decision Rule

- If we have multiple classes:
 - A weight vector for each class:

$$w_y$$

Score (activation) of a class y:

$$w_y \cdot f(x)$$

Prediction highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} \ w_y \cdot f(x)$$

Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = \arg \max_{y} w_{y} \cdot f(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$

$$w_{y^*} = w_{y^*} + f(x)$$

Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

$$\mathsf{mistakes} < \frac{k}{\delta^2}$$

Separable

Non-Separable

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Non-Separable Case: Probabilistic Decision

How to get probabilistic decisions?

- Perceptron scoring: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

A 1D Example

Best w?

Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

$$P(y^{(i)} = +1|x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

$$P(y^{(i)} = -1|x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

= Logistic Regression

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

The Soft Max

$$P(\text{red}|x) = \frac{e^{w_{\text{red}} \cdot x}}{e^{w_{\text{red}} \cdot x} + e^{w_{\text{blue}} \cdot x}}$$

Multiclass Logistic Regression

Recall Perceptron:

- lacktriangledown A weight vector for each class: w_y
- Score (activation) of a class y: $w_y \cdot f(x)$
- Prediction highest score wins $y = rg \max_{y} w_y \cdot f(x)$

How to make the scores into probabilities?

$$z_1,z_2,z_3 \to \frac{e^{z_1}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_2}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}$$
 original activations

Optimization

• i.e., how do we solve:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Hill Climbing

Recall from CSPs lecture: simple, general idea

Start wherever

Repeat: move to the best neighboring state

If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
 - Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?

1-D Optimization

- ullet Could evaluate $g(w_0+h)$ and $g(w_0-h)$
 - Then step in best direction
- Or, evaluate derivative: $\frac{\partial g(w_0)}{\partial w} = \lim_{h \to 0} \frac{g(w_0 + h) g(w_0 h)}{2h}$
 - Tells which direction to step into

2-D Optimization

Gradient Ascent

- Perform update in uphill direction for each coordinate
- The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate
- E.g., consider: $g(w_1, w_2)$
 - Updates:

$$w_1 \leftarrow w_1 + \alpha * \frac{\partial g}{\partial w_1}(w_1, w_2)$$

$$w_2 \leftarrow w_2 + \alpha * \frac{\partial g}{\partial w_2}(w_1, w_2)$$

Updates in vector notation:

$$w \leftarrow w + \alpha * \nabla_w g(w)$$

with:
$$\nabla_w g(w) = \begin{bmatrix} \frac{\partial g}{\partial w_1}(w) \\ \frac{\partial g}{\partial w_2}(w) \end{bmatrix}$$
 = gradient

Gradient Ascent

- Idea:
 - Start somewhere
 - Repeat: Take a step in the gradient direction

Figure source: Mathworks

What is the Steepest Direction?

$$\max_{\Delta: \Delta_1^2 + \Delta_2^2 \le \varepsilon} g(w + \Delta)$$

First-Order Taylor Expansion:

$$g(w + \Delta) \approx g(w) + \frac{\partial g}{\partial w_1} \Delta_1 + \frac{\partial g}{\partial w_2} \Delta_2$$

Steepest Ascent Direction:

$$\max_{\Delta: \Delta_1^2 + \Delta_2^2 \le \varepsilon} g(w) + \frac{\partial g}{\partial w_1} \Delta_1 + \frac{\partial g}{\partial w_2} \Delta_2$$

$$\Delta = \varepsilon \frac{a}{\|a\|}$$

• Hence, solution: $\Delta = \varepsilon \frac{\nabla g}{\|\nabla g\|}$

$$\Delta = \varepsilon \frac{\nabla g}{\|\nabla g\|}$$

Gradient direction = steepest direction!

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \end{bmatrix}$$

Gradient in n dimensions

$$abla g = egin{bmatrix} rac{\partial g}{\partial w_1} \ rac{\partial g}{\partial w_2} \ rac{\partial g}{\partial w_n} \end{bmatrix}$$

Optimization Procedure: Gradient Ascent

```
• init w
• for iter = 1, 2, ... w \leftarrow w + \alpha * \nabla g(w)
```

- ullet α : learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
 - Crude rule of thumb: update changes w about 0.1-1%

Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

$$g(w)$$

- lacktriangledown init w

for iter = 1, 2, ...
$$w \leftarrow w + \alpha * \sum_{i} \nabla \log P(y^{(i)}|x^{(i)};w)$$

What will gradient ascent do?

Stochastic Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

- lacktriangledown init w
- for iter = 1, 2, ...
 - pick random j

$$w \leftarrow w + \alpha * \nabla \log P(y^{(j)}|x^{(j)};w)$$

Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

- lacktriangledown init w
- for iter = 1, 2, ...
 - pick random subset of training examples J

$$w \leftarrow w + \alpha * \sum_{j \in J} \nabla \log P(y^{(j)} | x^{(j)}; w)$$

Neural Networks

Multi-class Logistic Regression

= special case of neural network

Deep Neural Network = Also learn the features!

Deep Neural Network = Also learn the features!

$$z_i^{(k)} = g(\sum_j W_{i,j}^{(k-1,k)} z_j^{(k-1)})$$

g = nonlinear activation function

Deep Neural Network = Also learn the features!

$$z_i^{(k)} = g(\sum_j W_{i,j}^{(k-1,k)} z_j^{(k-1)})$$

g = nonlinear activation function

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Deep Neural Network: Also Learn the Features!

Training the deep neural network is just like logistic regression:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

just w tends to be a much, much larger vector ©

- →just run gradient ascent
- + stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

Theorem (Universal Function Approximators). A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.

- Practical considerations
 - Can be seen as learning the features
 - Large number of neurons
 - Danger for overfitting
 - (hence early stopping!)

How about computing all the derivatives?

Derivatives tables:

$$\frac{d}{dx}(a) = 0$$

$$\frac{d}{dx}[\ln u] = \frac{d}{dx}[\log_e u] = \frac{1}{u}\frac{du}{dx}$$

$$\frac{d}{dx}(au) = a\frac{du}{dx}$$

$$\frac{d}{dx}(au) = a\frac{du}{dx}$$

$$\frac{d}{dx}(u+v-w) = \frac{du}{dx} + \frac{dv}{dx} - \frac{dw}{dx}$$

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{d}{dx}(uv) = \frac{1}{v}\frac{du}{dx} - \frac{u}{v^2}\frac{dv}{dx}$$

$$\frac{d}{dx}(u^v) = vu^{v-1}\frac{du}{dx} + \ln u \quad u^v\frac{dv}{dx}$$

$$\frac{d}{dx}(u^u) = nu^{n-1}\frac{du}{dx}$$

$$\frac{d}{dx}(v^u) = \frac{1}{2\sqrt{u}}\frac{du}{dx}$$

How about computing all the derivatives?

- But neural net f is never one of those?
 - No problem: CHAIN RULE:

If
$$f(x) = g(h(x))$$

Then
$$f'(x) = g'(h(x))h'(x)$$

→ Derivatives can be computed by following well-defined procedures

Automatic Differentiation

- Automatic differentiation software
 - e.g. PyTorch, TensorFlow, JAX
 - Only need to program the function g(x,y,w)
 - Can automatically compute all derivatives w.r.t. all entries in w
 - This is typically done by caching info during forward computation pass of f, and then doing a backward pass = "backpropagation"
 - Autodiff / Backpropagation can often be done at computational cost comparable to the forward pass
- Need to know this exists
- How this is done? -- outside of scope

Summary of Key Ideas

Optimize probability of label given input

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

- Continuous optimization
 - Gradient ascent:
 - Compute steepest uphill direction = gradient (= just vector of partial derivatives)
 - Take step in the gradient direction
 - Repeat (until held-out data accuracy starts to drop = "early stopping")
- Deep neural nets
 - Last layer = still logistic regression
 - Now also many more layers before this last layer
 - = computing the features
 - → the features are learned rather than hand-designed
 - Universal function approximation theorem
 - If neural net is large enough
 - Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
 - But remember: need to avoid overfitting / memorizing the training data → early stopping!
 - Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)