成都轨道交通 10 号线三期工程土建 1 工区

10 号线人民公园站附属结构 模板支架计算书

中铁广州工程局集团有限公司 成都轨道交通 10 号线三期土建 1 工区项目经理部 二〇二三年六月

目 录

第一章、 梁 1
第1节 FSTZL1 梁模板(盘扣式,梁板立柱不共用)计算书1
第 2 节 FSTZL1 梁侧模板计算书13
第二章、 柱23
第 1 节 KZ7 柱模板(支撑不等间距)计算书23
第 2 节 KZ8 柱模板 (支撑不等间距) 计算书37
第 3 节 KZ9 柱模板(支撑不等间距)计算书51
第三章、 墙65
第1节 侧墙模板支架计算书65
第2节 人防临空墙墙模板(支撑不等间距)计算书73
第四章、 板83
第1节 顶板1板模板(盘扣式)计算书83
第2节 顶板2板模板(盘扣式)计算书93
第 3 节 中板板模板 (盘扣式) 计算书 104

第一章、梁

第1节 FSTZL1 梁模板(盘扣式,梁板立柱不共用)计算书

计算依据:

- 1、《建筑施工承插型盘扣式钢管脚手架安全技术标准》JGJ/T 231-2021
- 2、《混凝土结构设计规范》GB 50010-2010
- 3、《建筑结构荷载规范》GB 50009-2012
- 4、《钢结构设计标准》GB 50017-2017

一、工程属性

新浇混凝土梁名称	FSTZL1	混凝土梁计算截面尺寸(mm×mm)	1100×1800
梁侧楼板计算厚度(mm)	800	模板支架高度H(m)	5.88
模板支架横向长度B(m)	20	模板支架纵向长度L(m)	32

二、荷载设计

	面板		0.1
模板及其支架自重标准值G _{1k} (kN/m ²)			0.3
			0.5
新浇筑混凝土自重标准值G2k(kN/m³)	24		
混凝土梁钢筋自重标准值G3k(kN/m³)	1.5 混凝土板钢筋自重标准值G _{3k} (kN/m ³)		1.1
施工人员及设备荷载标准值	3		
$Q_{1k}(kN/m^2)$	3		
模板支拆环境是否考虑风荷载	否		

三、模板体系设计

结构重要性系数γ0	1.1
脚手架安全等级	一级
新浇混凝土梁支撑方式	梁两侧有板,梁底小梁垂直于梁跨方向
梁跨度方向立杆纵距是否相等	是

	·
梁跨度方向立杆间距la(mm)	1200
梁底两侧立杆横向间距lb(mm)	1200
最大步距h(mm)	1500
顶层步距h'(mm)	1000
可调托座伸出项层水平杆的悬臂长度a(mm)	650
新浇混凝土楼板立杆纵横向间距l'a(mm)、l'b(mm)	1200、1200
混凝土梁距梁底两侧立杆中的位置	自定义
梁底左侧立杆距梁中心线距离(mm)	600
板底左侧立杆距梁中心线距离s ₁ (mm)	900
板底右侧立杆距梁中心线距离s2(mm)	900
梁底增加立杆根数	1
梁底增加立杆布置方式	按梁两侧立杆间距均分
梁底增加立杆依次距梁底左侧立杆距离(mm)	600
梁底支撑主梁最大悬挑长度(mm)	0
每跨距内梁底支撑小梁间距(mm)	200
承载力设计值调整系数γR	1
模板及支架计算依据	《建筑施工承插型盘扣式钢管脚手架安全技术标准》JGJ/T
	231-2021
梁底支撑小梁左侧悬挑长度a1(mm)	0
梁底支撑小梁右侧悬挑长度a2(mm)	0

设计简图如下:

示意图

平面图

本图梁侧支撑构造仅作示意。具体详见梁侧模板设计

立面图

四、面板验算

面板类型	覆面木胶合板	面板厚度t(mm)	15
面板抗弯强度设计值[f](N/mm²)	15	面板抗剪强度设计值[τ](N/mm²)	1.4
面板弹性模量E(N/mm²)	6000	验算方式	三等跨连续梁

按三等跨连续梁计算:

載面抵抗矩: W=bh²/6=1100×15×15/6=41250mm³,截面惯性矩: I=bh³/12=1100×15×15×15/12=309375mm⁴

面板承受梁截面方向线荷载设计值:

 $q_1 =$

 $\gamma_0 \times [1.3 \times (G_{1k} + (G_{2k} + G_{3k}) \times h) + 1.5 \times Q_{1k}] \times b = 1.1 \times [1.3 \times (0.1 + (24 + 1.5) \times 1.8) + 1.5 \times 3] \times 1.1$ = 77.803 kN/m

简图如下:

1、抗弯验算

$$q_{1\#} = \gamma_0 \times 1.3 \times (G_{1k} + (G_{2k} + G_{3k}) \times h) \times b = 1.1 \times 1.3 \times [0.1 + (24 + 1.5) \times 1.8] \times 1.1 =$$

72.358kN/m

$$q_{1\text{H}} = \gamma_0 \times 1.5 \times Q_{1k} \times b = 1.1 \times 1.5 \times 3 \times 1.1 = 5.445 \text{kN/m}$$

$$M_{\text{max}} = 0.1q_{1} + 0.117q_{1} = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 5.445 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 0.2^2 = 0.1 \times 72.358 \times 0.2^2 + 0.117 \times 0.2^2 = 0.1 \times 0.2^2 \times 0$$

0.315kN·m

$$\sigma$$
=M_{max}/W=0.315×10⁶/41250=7.634N/mm²≤[f]/γ_R=15/1=15N/mm² 満足要求!

2、挠度验算

面板承受梁截面方向线荷载标准值:

$$q_2 = [1 \times (G_{1k} + (G_{2k} + G_{3k}) \times h) + 1 \times Q_{1k}] \times b = [1 \times (0.1 + (24 + 1.5) \times 1.8) + 1 \times 3] \times 1.1 = 53.9 \text{kN/m}$$

$$v_{max}$$
=0.677 q_2 L⁴/(100EI)=0.677×53.9×200⁴/(100×6000×309375)=0.315mm≤[v] =min[L/150, 10]=min[200/150, 10]=1.333mm 満足要求!

3、支座反力计算

设计值(承载能力极限状态)

$$R_{\text{max}}$$
=1.1 q_{1} #L+1.2 q_{1} H=1.1×72.358×0.2+1.2×5.445×0.2=17.226kN标准值(正常使用极限状态)

$$R'_{max} = 1.1q_2L = 1.1 \times 53.9 \times 0.2 = 11.858kN$$

五、小梁验算

小梁类型	方木	小梁截面类型(mm)	85×85
------	----	------------	-------

小梁抗弯强度设计值[f](N/mm ²)	13	小梁抗剪强度设计值[τ](N/mm²)	1.3
小梁截面抵抗矩W(cm ³)	102.354	小梁弹性模量E(N/mm ²)	9000
小梁截面惯性矩I(cm ⁴)	435.005	板底左侧立杆距离梁中心线距离	900
		s1(mm)	
板底右侧立杆距离梁中心线距离	900	每跨距内梁底支撑小梁间距(mm)	200
s2(mm)			

1、梁底小梁荷载计算

计算梁底支撑小梁所受荷载,其中梁侧楼板的荷载取板底立杆至梁侧边一 半的荷载。

1) 梁底小梁荷载设计值计算

面板传递给小梁q₁=17.226/1.1=15.66kN/m

小梁自重 $q_2=\gamma_0\times1.3\times G_{1k}\times$ 小梁间距= $1.1\times1.3\times(0.3-0.1)\times0.2=0.057kN/m$ 梁左侧楼板及侧模传递给小梁荷载

 $F_1 = \gamma_0 \times [1.3 \times (G_{1k} + (G_{2k} + G_{3k}) \times h) + 1.5 \times Q_{1k}] \times (s_1 - 梁宽/2)/2 \times 小梁间距$

+y₀×1.3×G_{1k}×(梁高-板厚)×小梁间距=1.1×[1.3×(0.5+(24+1.1)×0.8)+1.5×3]×(0.9-

1.1/2)/2×0.2+1.1×1.3×0.5×(1.8-0.8)×0.2=1.346kN

梁右侧楼板及侧模传递给小梁荷载

 $F_2=\gamma_0\times[1.3\times(G_{1k}+(G_{2k}+G_{3k})\times h)+1.5\times Q_{1k}]\times(s_2- 梁宽/2)/2\times$ 小梁间距 $+\gamma_0\times1.3\times G_{1k}\times(梁高-板厚)\times$ 小梁间距= $1.1\times[1.3\times(0.5+(24+1.1)\times0.8)+1.5\times3]\times(0.9-1.1/2)/2\times0.2+1.1\times1.3\times0.5\times(1.8-0.8)\times0.2=1.346kN$

2) 梁底小梁荷载标准值计算

面板传递给小梁q₁=11.858/1.1=10.78kN/m

小梁自重q2=1×G1k×小梁间距=1×(0.3-0.1)×0.2=0.04kN/m

梁左侧楼板及侧模传递给小梁荷载 F_1 = $(1\times G_{1k}+1\times (G_{2k}+G_{3k})\times h+1\times Q_{1k})\times (s_1- 梁宽/2)/2×小梁间距<math>+1\times G_{1k}\times (梁高- 板厚)\times 小梁间距$

 $=(1\times0.5+1\times(24+1.1)\times0.8+1\times3)\times(0.9-1.1/2)/2\times0.2+1\times0.5\times(1.8-0.8)\times0.2=0.925$ kN

梁右侧楼板及侧模传递给小梁荷载 $F_2=(1\times G_{1k}+1\times (G_{2k}+G_{3k})\times h+1\times Q_{1k})\times (s_2- 梁宽/2)/2×小梁间距<math>+1\times G_{1k}\times (梁高- 板厚)\times 小梁间距$

 $=(1\times0.5+1\times(24+1.1)\times0.8+1\times3)\times(0.9-1.1/2)/2\times0.2+1\times0.5\times(1.8-0.8)\times0.2=0.925$ kN

计算简图如下:

承载能力极限状态

正常使用极限状态

2、抗弯验算

小梁弯矩图(kN·m)

σ= M_{max}/W = $0.731\times10^6/102354$ = $7.141N/mm^2$ ≤[f]/ γ_R =13/1= $13N/mm^2$ 満足要求!

3、抗剪验算

小梁剪力图(kN)

 $V_{max} = 6.013kN$

$$\tau_{max} = 3V_{max}/(2bh_0) = 3 \times 6.013 \times 1000/(2 \times 85 \times 85) =$$

$1.248N/mm^2 \le [\tau]/\gamma_R = 1.3/1 = 1.3N/mm^2$

满足要求!

4、挠度验算

小梁变形图(mm)

 $\nu_{max}\!=\!0.204mm\!\!\leq\!\![\nu]\!=\!min[L/150,\ 10]\!=\!min[600/150,\ 10]\!=\!4mm$

满足要求!

5、支座反力计算

承载能力极限状态

 $R_1=3.98kN$, $R_2=12.026kN$, $R_3=3.98kN$

正常使用极限状态

 $R'_1=2.739kN$, $R'_2=8.278kN$, $R'_3=2.739kN$

六、主梁验算

主梁类型	工字钢	主梁截面类型	10号工字钢
主梁抗弯强度设计值[f](N/mm ²)	205	主梁抗剪强度设计值[τ](N/mm²)	125

主梁截面抵抗矩W(cm ³)	49	主梁弹性模量E(N/mm²)	206000
主梁截面惯性矩I(cm ⁴)	245	主梁计算方式	三等跨连续梁
可调托座内主梁根数	1		

由上节可知P= $\max[R_1, R_2, R_3]=\max[3.98, 12.026, 3.98]=12.026kN$,

 $P = \max[R_1, R_2, R_3] = \max[2.739, 8.278, 2.739] = 8.278kN$

单根主梁自重设计值: q=1.1×1.3×0.113=0.162kN/m

单根主梁自重标准值: q'=1×0.113=0.113kN/m

主梁计算简图一

1、抗弯验算

主梁弯矩图一(kN·m)

 $\sigma=M_{max}/W=8.444\times10^6/49000=172.327N/mm^2\leq[f]/\gamma_R=205/1=205N/mm^2$ 満足要求!

2、抗剪验算

主梁剪力图一(kN)

 $V_{max}=37.2kN$

 $\tau_{max} = V_{max}/(8I_z\delta)[bh_0^2 - (b-\delta)h^2] = 37.2 \times 1000 \times [68 \times 100^2 - (68 - 100)] \times [68 \times 100] \times [68 \times$

4.5)×84.8²]/(8×2450000×4.5)=94.21N/mm² \leq [τ]/ γ R=125/1=125N/mm² 满足要求!

3、挠度验算

主梁变形图一(mm)

跨中v_{max}=1.153mm≤[v]=min[l₁/150, 10]=min[1200/150, 10]=8mm 满足要求!

4、支座反力计算

图一: R_{max}=79.388kN

用小梁的支座反力分别代入可得:

承载能力极限状态

图一

立杆1: R₁=26.416kN, 立杆2: R₂=79.388kN, 立杆3: R₃=26.416kN

七、可调托座验算

荷载传递至立杆方式	可调托座	可调托座承载力设计值[N](kN)	100
-----------	------	-------------------	-----

可调托座最大受力N=max[R₁, R₂, R₃]=79.388kN \leq [N]/ γ _R=100/1=100kN 满足要求!

八、立杆验算

立杆钢管截面类型(mm)	Ф60×3.2	立杆钢管计算截面类型(mm)	Ф60×3.2
钢材等级	Q355	立杆截面面积A(mm ²)	571
回转半径i(mm)	20.1	立杆截面抵抗矩W(cm ³)	7.7
支架立杆计算长度修正系数η	1.05	悬臂端计算长度折减系数k	0.6
支撑架搭设高度调整系数βH	1	架体项层步距修正系数γ	0.9
抗压强度设计值[f](N/mm ²)	300	支架自重标准值q(kN/m)	0.15
步距h(mm)	1500	顶层步距h'(mm)	1000
可调托座伸出顶层水平杆的悬臂长度	650		
a(mm)			

1、长细比验算

 $h_{max} = max(\beta_H \eta h, \beta_H \gamma h' + 2ka) = max(1 \times 1.05 \times 1500, 1 \times 0.9 \times 1000 + 2 \times 0.6 \times 650) = 1680mm$

 $\lambda = h_{max}/i = 1680/20.1 = 83.582 \le [\lambda] = 150$

长细比满足要求!

查表得, φ=0.607

 $R_1 = 26.416 \text{kN}, R_2 = 79.388 \text{kN}, R_3 = 26.416 \text{kN}$

立杆最大受力N= $\max[R_1, R_2, R_3]+\gamma_0\times 1.3\times$ 每米立杆自重×(H-梁高)=

 $\max[26.416, 79.388, 26.416] + 1.1 \times 1.3 \times 0.15 \times (5.88 - 1.8) = 80.263 \text{kN}$

 $f=N/(\phi A)=80.263\times10^3/(0.607\times571)=$

 $231.574N/mm^2\!\!\leq\!\![f]/\gamma_R\!\!=\!\!300/1\!\!=\!\!300N/mm^2$

满足要求!

九、高宽比验算

根据《建筑施工承插型盘扣式钢管脚手架安全技术标准》JGJ/T 231-2021 第6.2.1: 支撑架的高宽比宜控制在3以内

H/B=5.88/20=0.294<3

满足要求!

第2节 FSTZL1 梁侧模板计算书

计算依据:

- 1、《建筑施工模板安全技术规范》JGJ162-2008
- 2、《混凝土结构设计规范》GB50010-2010
- 3、《建筑结构荷载规范》GB 50009-2012
- 4、《钢结构设计标准》GB 50017-2017

一、工程属性

新浇混凝梁名称	FSTZL1	混凝土梁截面尺寸(mmxmm)	1100×1800
新浇混凝土梁计算跨度(m)	6		

二、荷载组合

侧压力计算依据规范	《建筑施工模板安 全技术规范》 JGJ162-2008	混凝土重力密度γc(kN/m ³)	24
新浇混凝土初凝时间t0(h)	5		
外加剂影响修正系数β1	1	混凝土坍落度影响修正系数β2	0.85
混凝土浇筑速度V(m/h)	2.5		
梁下挂侧模,侧压力计算位置距梁项面高度H _{下挂} (m)		1.8	
梁左上翻侧模,侧压力计算位置距梁顶面高度H _{左上翻} (m)		0.7	
梁右上翻侧模,侧压力计算位置距梁顶	面高度H _{右上翻} (m)	0.7	
新浇混凝土对模板的侧压力标准值	梁下挂侧模G4k	$\begin{aligned} &\min\{0.22\gamma_{c}t_{0}\beta_{1}\beta_{2}v^{1/2},\ \gamma_{c}H\} = \\ &\min\{0.22\times24\times5\times1\times0.85\times2.5^{1/2},\ 24\times1.8\} = \min\{35.481,\\ &43.2\} = 35.481kN/m^{2} \end{aligned}$	
G4 _k (kN/m ²)	左上翻侧模G4k	$\begin{aligned} &\min\{0.22\gamma_{c}t_{0}\beta_{1}\beta_{2}v^{1/2},\ \gamma_{c}H\} = \\ &\min\{0.22\times24\times5\times1\times0.85\times2.5^{1/2},\ 24\times0.7\} = \min\{35.481,\end{aligned}$	

		16.8 }= 16.8 kN/m ²
		$\begin{aligned} &\min\{0.22\gamma_{c}t_{0}\beta_{1}\beta_{2}v^{1/2},\ \gamma_{c}H\} = \\ &\min\{0.22\times24\times5\times1\times0.85\times2.5^{1/2},\ 24\times0.7\} = \min\{35.481,\\ &16.8\} = 16.8kN/m^{2} \end{aligned}$
振捣混凝土时对垂直面模板荷载标准值	$Q_{2k}(kN/m^2)$	4

下挂部分: 承载能力极限状态设计值 $S_{\#}$ =0.9max[1.2 G_{4k} +1.4 Q_{2k} ,

 $1.35G_{4k}+1.4\times0.7Q_{2k}$]=0.9max[1.2×35.481+1.4×4, 1.35×35.481+1.4×0.7×4]=

 $0.9 \text{max}[48.177, 51.819] = 0.9 \times 51.819 = 46.637 \text{kN/m}^2$

左上翻部分: 承载能力极限状态设计值 $S_{\#}$ =0.9max[1.2 G_{4k} +1.4 Q_{2k} ,

 $1.35G_{4k}+1.4\times0.7Q_{2k}$ = 0.9max[1.2×16.8+1.4×4, 1.35×16.8+1.4×0.7×4] =

 $0.9 \text{max}[25.76, 26.6] = 0.9 \times 26.6 = 23.94 \text{kN/m}^2$

同理可得:右上翻部分:承载能力极限状态设计值 $S_{\mathbb{A}}=23.94$ kN/m²

下挂部分: 正常使用极限状态设计值 $S_{\mathbb{H}} = G_{4k} = 35.481 \text{ kN/m}^2$

左上翻部分: 正常使用极限状态设计值 $S_{\mathbb{H}} = G_{4k} = 16.8 \text{ kN/m}^2$

右上翻部分: 正常使用极限状态设计值 $S_{\mathbb{H}} = G_{4k} = 16.8 \text{ kN/m}^2$

三、支撑体系设计

小梁布置方式	水平向布置	主梁间距(mm)	500
主梁合并根数	2	小梁最大悬挑长度(mm)	0
结构表面的要求	结构表面外露		

	梁左侧	梁右侧
楼板厚度(mm)	800	800
梁下挂侧模高度(mm)	300	300
小梁道数(上翻)	3	3
小梁道数(下挂)	3	3

左侧支撑表:

第i道支撑	距梁底距离(mm)	支撑形式
1	0	固定支撑
2	300	固定支撑
3	1100	固定支撑
4	1800	固定支撑

右侧支撑表:

第i道支撑	距梁底距离(mm)	支撑形式
1	0	固定支撑
2	300	固定支撑
3	1100	固定支撑
4	1800	固定支撑

设计简图如下:

模板设计剖面图

四、面板验算

模板类型	覆面木胶合板	模板厚度(mm)	15
模板抗弯强度设计值[f](N/mm ²)	15	模板抗剪强度设计值[τ](N/mm²)	1.4

6000

1、下挂侧模

梁截面宽度取单位长度,b=1000mm。 $W=bh^2/6=1000\times15^2/6=37500$ mm³, $I=bh^3/12=1000\times15^3/12=281250$ mm³。面板计算简图如下:

2、抗弯验算

$$q_1 = bS_{\pi} = 1 \times 46.637 = 46.637 \text{kN/m}$$

$$q_{1\#} = 0.9 \times 1.35 \times G_{4k} \times b = 0.9 \times 1.35 \times 35.481 \times 1 = 43.109 \text{kN/m}$$

$$q_{1$$
活 $=0.9 \times 1.4 \times 0.7 \times Q_{2k} \times b = 0.9 \times 1.4 \times 0.7 \times 4 \times 1 = 3.528 kN/m$

$$M_{max} = 0.125q_1L^2 = 0.125 \times 46.637 \times 0.15^2 = 0.131kN \cdot m$$

$$\sigma \! = \! M_{max} \! / \! W \! = \! 0.131 \! \times \! 10^6 \! / \! 37500 \! = \! 3.498 N \! / \! mm^2 \! \! \leq \! \! [f] \! = \! 15 N \! / \! mm^2$$

满足要求!

3、挠度验算

$$q = bS_{\mathbb{E}} = 1 \times 35.481 = 35.481 kN/m$$

$$\nu_{max} = 0.521 qL^4 / (100EI) = 0.521 \times 35.481 \times 150^4 / (100 \times 6000 \times 281250) =$$

0.055mm<150/400=0.375mm

满足要求!

4、最大支座反力计算

承载能力极限状态

$$R_{\text{F}\#\text{max}} = 1.25 \times q_1 \times l_{\text{f}} = 1.25 \times 46.637 \times 0.15 = 8.745 \text{kN}$$

正常使用极限状态

$$R'_{\text{F}\pm\text{max}} = 1.25 \times l_{\text{E}} \times q = 1.25 \times 0.15 \times 35.481 = 6.653 \text{kN}$$

5、上翻侧模

梁截面宽度取单位长度, b=1000mm。W=bh²/6=1000×15²/6=

37500mm³, I=bh³/12=1000×15³/12=281250mm⁴。面板计算简图如下:

6、抗弯验算

$$q_1 = bS_{\text{A}} = 1 \times 23.94 = 23.94 \text{kN/m}$$

$$q_{1\#} = 0.9 \times 1.35 \times G_{4k} \times b = 0.9 \times 1.35 \times 16.8 \times 1 = 20.412 \text{kN/m}$$

$$q_{1$$
活 $=$ 0.9×1.4×0.7× Q_{2k} × b =0.9×1.4×0.7×4×1=3.528kN/m

$$M_{max} = 0.125q_1L^2 = 0.125 \times 23.94 \times 0.35^2 = 0.367kN \cdot m$$

$$\sigma = M_{max}/W = 0.367 \times 10^6/37500 = 9.776N/mm^2 \le [f] = 15N/mm^2$$

满足要求!

7、挠度验算

$$q = bS_{\mathbb{E}} = 1 \times 16.8 = 16.8 \text{kN/m}$$

$$v_{\text{max}} = 0.521 \text{qL}^4 / (100 \text{EI}) = 0.521 \times 16.8 \times 350^4 / (100 \times 6000 \times 281250) =$$

0.778mm $\leq 350/400 = 0.875$ mm

满足要求!

8、最大支座反力计算

承载能力极限状态

$$R_{\perp \oplus max} = 1.25 \times q_1 \times l_{\pm} = 1.25 \times 23.94 \times 0.35 = 10.474 \text{kN}$$

正常使用极限状态

$$R'_{\pm mmax} = 1.25 \times l_{\pm} \times q = 1.25 \times 0.35 \times 16.8 = 7.35 \text{kN}$$

五、小梁验算

小梁最大悬挑长度(mm)	0	小梁计算方式	三等跨连续梁
小梁类型	方木	小梁截面类型(mm)	85×85
小梁弹性模量E(N/mm ²)	9000	小梁抗剪强度设计值[τ](N/mm²)	1.3

小梁截面抵抗矩W(cm ³)	102.354	小梁抗弯强度设计值[f](N/mm ²)	13
小梁截面惯性矩I(cm ⁴)	435.005		

1、下挂侧模

计算简图如下:

2、抗弯验算

q = 8.745 kN/m

$$M_{max} = 0.1 \times q \times l^2 = 0.1 \times 8.745 \times 0.5^2 = 0.219 \text{kN} \cdot \text{m}$$

$$\sigma \! = \! M_{max}/W \! = \! 0.219 \times 10^6/102354 \! = \! 2.136 N/mm^2 \! \le \! [f] \! = \! 13N/mm^2$$

满足要求!

3、抗剪验算

$$V_{max} = 0.6 \times q \times l = 0.6 \times 8.745 \times 0.5 = 2.623 \text{kN}$$

$$\tau_{max}$$
=3 V_{max} /(2bh₀)=3×2.623×1000/(2×85×85)=0.545N/mm²≤[τ]=1.3N/mm² 満足要求!

4、挠度验算

q = 6.653 kN/m

$$v_{max} = 0.677 qL^4/(100EI) = 0.677 \times 6.653 \times 500^4/(100 \times 9000 \times 4350050) =$$

0.072mm $\leq 500/400 = 1.25$ mm

满足要求!

5、最大支座反力计算

承载能力极限状态

$$R_{\text{F}\pm\text{max}} = 1.1 \times 8.745 \times 0.5 = 4.809 \text{kN}$$

正常使用极限状态

$$R'_{\text{F#max}} = 1.1 \times 6.653 \times 0.5 = 3.659 \text{kN}$$

6、上翻侧模

计算简图如下:

7、抗弯验算

q = 10.474 kN/m

$$M_{max} = 0.1 \times q \times l^2 = 0.1 \times 10.474 \times 0.5^2 = 0.262 \text{kN} \cdot \text{m}$$

$$\sigma \! = \! M_{max}/W \! = \! 0.262 \! \times \! 10^6 \! / 102354 \! = \! 2.558 N / mm^2 \! \le \! [f] \! = \! 13N / mm^2$$

满足要求!

8、抗剪验算

$$V_{max} = 0.6 \times q \times l = 0.6 \times 10.474 \times 0.5 = 3.142 \text{kN}$$

$$\tau_{max}\!\!=\!\!3V_{max}\!/(2bh_0)\!\!=\!\!3\times\!3.142\times1000/(2\times85\times85)\!=\!0.652N/mm^2\!\!\leq\!\![\tau]\!=\!1.3N/mm^2$$

满足要求!

9、挠度验算

$$q=7.35kN/m$$

$$v_{max} = 0.677 qL^4/(100EI) = 0.677 \times 7.35 \times 500^4/(100 \times 9000 \times 4350050) =$$

 $0.079 \text{mm} \le 500/400 = 1.25 \text{mm}$

满足要求!

10、最大支座反力计算

承载能力极限状态

$$R_{\perp \text{mmax}} = 1.1 \times 10.474 \times 0.5 = 5.761 \text{kN}$$

正常使用极限状态

$$R'_{\perp mmax} = 1.1 \times 7.35 \times 0.5 = 4.043 \text{kN}$$

六、主梁验算

主梁类型	钢管	主梁截面类型(mm)	Ф48×3
------	----	------------	-------

主梁计算截面类型(mm)	Ф48×3	主梁合并根数	2
主梁弹性模量E(N/mm ²)	206000	主梁抗弯强度设计值[f](N/mm²)	205
主梁抗剪强度设计值[τ](N/mm²)	125	主梁截面惯性矩I(cm ⁴)	10.78
主梁截面抵抗矩W(cm ³)	4.49	主梁受力不均匀系数	0.6

1、下挂侧模

因主梁2根合并,验算时主梁受力不均匀系数为0.6。

同前节计算过程,可依次解得:

承载能力极限状态: R_1 =0.877kN, R_2 =2.886kN, R_3 =0.877kN

正常使用极限状态: R'_1 =0.659kN, R'_2 =2.195kN, R'_3 =0.659kN

计算简图如下:

2、抗弯验算

主梁弯矩图(kN·m)

 $\sigma_{max} = M_{max}/W = 0.217 \times 10^6/4490 = 48.227 N/mm^2 \le [f] = 205 N/mm^2$ 満足要求!

3、抗剪验算

主梁剪力图(kN)

 $τ_{max}$ =2 V_{max} /A=2×1.443×1000/424=6.807N/mm²≤[τ]=125 N/mm² 満足要求!

4、挠度验算

主梁变形图(mm)

 $v_{max} = 0.056 mm \le 300/400 = 0.75 mm$

满足要求!

5、最大支座反力计算

 $R_{\text{F}\#\text{max}} = 2.32/0.6 = 3.867 \text{kN}$

6、上翻侧模

因主梁2根合并,验算时主梁受力不均匀系数为0.6。

同前节计算过程,可依次解得:

承载能力极限状态: R_1 =1.062kN, R_2 =3.456kN, R_3 =1.062kN 正常使用极限状态: R'_1 =0.728kN, R'_2 =2.425kN, R'_3 =0.728kN 计算简图如下:

7、抗弯验算

主梁弯矩图(kN·m)

 σ_{max} = M_{max}/W = $0.605\times10^6/4490$ = $134.723N/mm^2$ \leq [f]= $205~N/mm^2$ 满足要求!

8、抗剪验算

主梁剪力图(kN)

 $τ_{max}$ =2 V_{max} /A=2×1.728×1000/424=8.151N/mm²≤[τ]=125 N/mm² 満足要求!

9、挠度验算

主梁变形图(mm)

 $v_{max} = 0.781 \text{mm} \le 700/400 = 1.75 \text{mm}$

满足要求!

10、最大支座反力计算

 $R_{\perp mmax} = 2.79/0.6 = 4.65 kN$

第二章、柱

第1节 KZ7 柱模板(支撑不等间距)计算书

计算依据:

- 1、《建筑施工模板安全技术规范》JGJ162-2008
- 2、《混凝土结构设计规范》GB50010-2010
- 3、《建筑结构荷载规范》GB 50009-2012
- 4、《钢结构设计标准》GB 50017-2017

一、工程属性

新浇混凝土柱名称	KZ7	新浇混凝土柱的计算高度(mm)	7050
新浇混凝土柱长边边长(mm)	1000	新浇混凝土柱短边边长(mm)	900

二、支撑体系设计

柱长边小梁根数	5	柱短边小梁根数	5
柱箍两端设置对拉螺栓	是	柱长边对拉螺栓根数	2
柱短边对拉螺栓根数	2	对拉螺栓布置方式	均分
柱长边对拉螺栓间距(mm)	416,416,416	柱短边对拉螺栓间距(mm)	382,382,382

柱箍搭设			
序号	柱箍距柱底距离hi(mm)	柱箍依次间距(mm)	
1	200	200	
2	700	500	
3	1200	500	
4	1700	500	
5	2200	500	
6	2700	500	
7	3200	500	
8	3700	500	
9	4200	500	
10	4700	500	
11	5200	500	
12	5700	500	
13	6200	500	
14	6700	500	
15	7200	500	

示意图:

平面图:

立面图:

立面图

三、荷载组合

侧压力计算依据规范	《建筑施工模板安 全技术规范》 JGJ162-2008	混凝土重力密度γc(kN/m ³)	24
新浇混凝土初凝时间to(h)	5	外加剂影响修正系数β1	1
混凝土坍落度影响修正系数β2	0.85	混凝土浇筑速度V(m/h)	2.5
混凝土侧压力计算位置处至新浇混凝土顶面总高度H(m)		7.05	
		$\begin{aligned} &\min\{0.22\gamma_{c}t_{0}\beta_{1}\beta_{2}v^{1/2},\ \gamma_{c}H\} = \\ &\min\{0.22\times24\times5\times1\times0.85\times2.5^{1/2},\ 24\times7.05\} = \min\{35.481,\\ &169.2\} = 35.481kN/m^{2} \end{aligned}$	
倾倒混凝土时对垂直面模板荷载标准值Q3k(kN/m²)		2	

有效压头高度 $h=G_{4k}/\gamma_c=35.481/24=1.478m$ 承载能力极限状态设计值

$$S_{max} = 0.9 max[1.2G_{4k} + 1.4Q_{3k}, 1.35G_{4k} + 1.4 \times 0.7Q_{3k}] =$$

 $0.9 \max[1.2 \times 35.481 + 1.4 \times 2, 1.35 \times 35.481 + 1.4 \times 0.7 \times 2] = 0.9 \max[45.377, 49.859] = 0.9 \times 49.859 = 44.873 \text{kN/m}^2$

 $S_{min} = 0.9 \times 1.4 Q_{3k} = 0.9 \times 1.4 \times 2 = 2.52 kN/m^2$

正常使用极限状态设计值

 $S'_{max} = G_{4k} = 35.481 \text{ kN/m}^2$

 $S'_{min} = 0 \text{ kN/m}^2$

四、面板验算

面板类型	覆面木胶合板	面板厚度t(mm)	15
面板抗弯强度设计值[f](N/mm²)	15	面板弹性模量E(N/mm²)	6000

根据《建筑施工模板安全技术规范》(JGJ162-2008), 面板截面宽度取单位宽度即b=1000mm。

 $W=bh^2/6=1000\times15^2/6=37500mm^3$, $I=bh^3/12=1000\times15^3/12=281250mm^4$ 考虑到工程实际和验算简便,不考虑有效压头高度对面板的影响。

1、强度验算

最不利受力状态如下图,按【四等跨连续梁】验算简图:

静载线荷载 q_1 =0.9×1.35×b G_{4k} =0.9×1.35×1.0×35.481=43.109kN/m 活载线荷载 q_2 =0.9×1.4×0.7×b Q_{3k} =0.9×1.4×0.7×1.0×2=1.764kN/m M_{max} =-0.107 q_1 l²-0.121 q_2 l²=-0.107×43.109×0.25²-0.121×1.764×0.25²=-

 $0.302kN\cdot m$

 σ = M_{max}/W = $0.302\times10^6/37500$ = $8.053N/mm^2\leq [f]$ = $15N/mm^2$ 满足要求!

2、挠度验算

作用线荷载q'=bS'_{max}=1.0×35.481=35.481kN/m 简图:

$$v = 0.632 \text{ q'l}^4/(100\text{EI}) = 0.632 \times 35.481 \times 250^4/(100 \times 6000 \times 281250) = 0.519 \text{mm} \le [v]$$

=1/400=250/400=0.625mm

满足要求!

五、小梁验算

小梁材质及类型	方木	小梁截面类型(mm)	85×85
小梁截面惯性矩I(cm ⁴)	435.005	小梁截面抵抗矩W(cm ³)	102.354
小梁抗弯强度设计值[f](N/mm ²)	13	小梁弹性模量E(N/mm²)	9000
小梁抗剪强度设计值[τ](N/mm²)	1.3		

1、强度验算

$$q_{max}$$
= $1S_{max}$ = 0.25×44.873 = 11.218 kN/m q_{min} = $1S_{min}$ = 0.25×2.52 = 0.63 kN/m 简图:

弯矩图:

(kN.m)

 $M_{max}=0.238kN\cdot m$

$$\sigma\!=\!M_{max}/W\!=\!0.238\!\!\times\!\!10^6/102354\!\!=\!\!2.325N/mm^2\!\!\leq\!\![f]\!\!=\!\!13~N/mm^2$$

满足要求!

2、挠度验算

变形图:

(mm)

 v_{max} =0.041mm \leq [v]=L/400=500/400=1.25mm

满足要求!

3、支座反力计算

1) 承载能力极限状态

剪力图:

(kN)

 $R_1 = 5.024 kN$

 $R_2 = 5.639 kN$

 $R_3 = 5.601 kN$

 $R_4 = 5.611kN$

 $R_5 = 5.608 kN$

 $R_6 = 5.609 kN$

 $R_7 = 5.609 kN$

 $R_8 = 5.608 kN$

 $R_9 = 5.613kN$

 $R_{10}=5.595kN$

 $R_{11} = 5.662 kN$

 $R_{12}=5.16kN$

 $R_{13} = 3.366 kN$

 $R_{14} = 1.539 kN$

 $R_{15}=0.032kN$

2) 正常使用极限状态

剪力图:

(kN)

R'1=3.973kN

R'2=4.459kN

R'₃=4.429kN

R'4=4.437kN

R'5=4.435kN

R'6=4.435kN

R'7=4.435kN

R'₈=4.434kN

R'9=4.438kN

R'10=4.423kN

 $R'_{11}=4.48kN$

R'12=4.056kN

 $R'_{13}=2.565kN$

R'14=0.99kN

 $R'_{15} = -0.078 kN$

4、抗剪验算

由承载能力极限状态的剪力图知

 $V_{max}=2.846kN$

τ=3V_{max}/(2bh)=3×2.846×10³/(2×85×85)=0.591N/mm²≤[τ]=1.3N/mm² 满足要求!

六、柱箍验算

柱箍材质及类型	钢管	柱箍截面类型(mm)	Ф48×3
柱箍计算截面类型(mm)	Ф48×3	柱箍截面面积A(cm²)	4.24
柱箍截面惯性矩I(cm ⁴)	10.78	柱箍截面抵抗矩W(cm ³)	4.49
柱箍抗弯强度设计值[f](N/mm ²)	205	柱箍弹性模量E(N/mm ²)	206000
柱箍合并根数	2	柱箍受力不均匀系数η	0.5

由上节小梁"验算"的"支座反力计算"知,柱箍取小梁对其反力最大的那道 验算

连续梁中间集中力取小梁最大支座;两边集中力取小梁荷载取半后,最大 支座反力的一半。

1) 长边柱箍

取小梁计算中I=1000/(5-1)=250mm=0.25m代入小梁计算中得到: 承载能力极限状态:

5.613, 5.595, 5.662, 5.16, 3.366, 1.539, 0.032]= 0.5×5.662 =2.831kN

 $R_{\text{max}} = \eta \text{Max}[5.024, 5.639, 5.601, 5.611, 5.608, 5.609, 5.609, 5.608,$

正常使用极限状态:

 $R'_{max} = \eta Max[3.973, 4.459, 4.429, 4.437, 4.435, 4.435, 4.435, 4.434,$

4.438, 4.423, 4.48, 4.056, 2.565, 0.99, -0.078]= $0.5 \times 4.48 = 2.24$ kN

2) 短边柱箍

取小梁计算中I=900/(5-1)=225mm=0.225m代入小梁计算中得到: 承载能力极限状态:

 $R_{\text{max}} = \eta \text{Max} [4.522, 5.075, 5.041, 5.05, 5.047, 5.048, 5.048, 5.047,$

5.051, 5.035, 5.096, 4.644, 3.029, 1.386, 0.029]=0.5×5.096=2.548kN 正常使用极限状态: $R'_{max} = \eta Max[3.575, 4.013, 3.986, 3.993, 3.991, 3.992, 3.992, 3.991, 3.994, 3.981, 4.032, 3.65, 2.309, 0.891, -0.07] = 0.5 \times 4.032 = 2.016kN$

1、强度验算

长边柱箍计算简图:

长边柱箍计算弯矩图:

长边柱箍计算剪力图:

 M_{max} =0.161kN·m $\sigma = M_{max}/W = 0.161 \times 10^6/4490 = 35.857 N/mm^2 \le [f] = 205 N/mm^2$ 满足要求!

短边柱箍计算简图:

短边柱箍计算弯矩图:

短边柱箍计算剪力图:

 $M_{max} = 0.131 kN \cdot m$

 σ = M_{max}/W = $0.131\times10^6/4490$ = $29.176N/mm^2$ ≤[f]= $205N/mm^2$ 满足要求!

2、支座反力计算

长边柱箍支座反力:

 R_{c1} =0.892/ η =0.892/0.5=1.784kN

 R_{c2} =4.769/ η =4.769/0.5=9.538kN

 R_{c3} =4.769/ η =4.769/0.5=9.538kN

 $R_{c4} = 0.892/\eta = 0.892/0.5 = 1.784kN$

短边柱箍支座反力:

 $R_{d1} = 0.747/\eta = 0.747/0.5 = 1.494kN$

 R_{d2} =4.349/ η =4.349/0.5=8.698kN

 R_{d3} =4.349/ η =4.349/0.5=8.698kN

 $R_{d4} = 0.747/\eta = 0.747/0.5 = 1.494kN$

3、挠度验算

长边柱箍计算简图:

长边柱箍计算变形图:

 $v_{max} = 0.045 mm \le [v] = 1/400 = 416/400 = 1.04 mm$

满足要求!

短边柱箍计算简图:

短边柱箍计算变形图:

 $v_{max} = 0.03 \text{mm} \le [v] = 1/400 = 382/400 = 0.955 \text{mm}$

满足要求!

七、对拉螺栓验算

对拉螺栓类型	M14	轴向拉力设计值Nt ^b (kN)	17.8
扣件类型	3形26型	扣件容许荷载(kN)	26

N=Max[R_{c1}, R_{c2}, R_{c3}, R_{c4}, R_{d1}, R_{d2}, R_{d3}, R_{d4}]=9.538kN \leq N_t^b=17.8kN 满足要求!

 $N = 9.538kN \le 26kN$

满足要求!

第2节 KZ8 柱模板(支撑不等间距)计算书

计算依据:

- 1、《建筑施工模板安全技术规范》JGJ162-2008
- 2、《混凝土结构设计规范》GB50010-2010
- 3、《建筑结构荷载规范》GB 50009-2012
- 4、《钢结构设计标准》GB 50017-2017

一、工程属性

新浇混凝土柱名称	KZ8	新浇混凝土柱的计算高度(mm)	7334
新浇混凝土柱长边边长(mm)	1100	新浇混凝土柱短边边长(mm)	800

二、支撑体系设计

柱长边小梁根数	6	柱短边小梁根数	5
柱箍两端设置对拉螺栓	是	柱长边对拉螺栓根数	2
柱短边对拉螺栓根数	2	对拉螺栓布置方式	均分
柱长边对拉螺栓间距(mm)	449,449,449	柱短边对拉螺栓间距(mm)	349,349,349

工 区经711至数411回	E(IIIII)	777,777,777	1工/灰火4/1		377,377,377	
柱箍搭设						
序号	柱箍距柱底距离hi(mm)		柱箍依次间距(mm)		
1	200			200		
2	700			500		
3	1200			500		
4	1700			500		
5	2200		500			
6	2700			500		
7	3200		500			
8	3700		500			
9	4200			500		
10	4700			500		
11	5200		500			
12	5700		500			
13	6200		500			
14	6700			500		

15	7200	500

示意图:

平面图:

立面图:

立面图

三、荷载组合

侧压力计算依据规范	《建筑施工模板安 全技术规范》 JGJ162-2008	混凝土重力密度γc(kN/m ³)	24
新浇混凝土初凝时间to(h)	5	外加剂影响修正系数β1	1
混凝土坍落度影响修正系数β2	0.85	混凝土浇筑速度V(m/h)	2.5
混凝土侧压力计算位置处至新浇混凝土顶面总高度H(m)		7.334	
		$\begin{aligned} &\min\{0.22\gamma_{c}t_{0}\beta_{1}\beta_{2}v^{1/2},\ \gamma_{c}H\} = \\ &\min\{0.22\times24\times5\times1\times0.85\times2.5^{1/2},\ 24\times7.33\\ &176.016\} = 35.481kN/m^{2} \end{aligned}$	34}=min{35.481,
倾倒混凝土时对垂直面模板荷载标准值Q3k(kN/m²)		2	

有效压头高度 $h=G_{4k}/\gamma_c=35.481/24=1.478m$ 承载能力极限状态设计值

$$S_{max} = 0.9 max[1.2G_{4k} + 1.4Q_{3k}, 1.35G_{4k} + 1.4 \times 0.7Q_{3k}] =$$

 $0.9 \max[1.2 \times 35.481 + 1.4 \times 2, 1.35 \times 35.481 + 1.4 \times 0.7 \times 2] = 0.9 \max[45.377, 49.859] = 0.9 \times 49.859 = 44.873 \text{kN/m}^2$

 $S_{min} = 0.9 \times 1.4 Q_{3k} = 0.9 \times 1.4 \times 2 = 2.52 kN/m^2$

正常使用极限状态设计值

 $S'_{max} = G_{4k} = 35.481 \text{ kN/m}^2$

 $S'_{min} = 0 \text{ kN/m}^2$

四、面板验算

面板类型	覆面木胶合板	面板厚度t(mm)	15
面板抗弯强度设计值[f](N/mm ²)	15	面板弹性模量E(N/mm²)	6000

根据《建筑施工模板安全技术规范》(JGJ162-2008), 面板截面宽度取单位 宽度即b=1000mm。

 $W=bh^2/6=1000\times15^2/6=37500mm^3$, $I=bh^3/12=1000\times15^3/12=281250mm^4$ 考虑到工程实际和验算简便,不考虑有效压头高度对面板的影响。

1、强度验算

最不利受力状态如下图,按【四等跨连续梁】验算简图:

静载线荷载 q_1 =0.9×1.35×b G_{4k} =0.9×1.35×1.0×35.481=43.109kN/m 活载线荷载 q_2 =0.9×1.4×0.7×b Q_{3k} =0.9×1.4×0.7×1.0×2=1.764kN/m M_{max} =-0.107 $q_1 l^2$ -0.121 $q_2 l^2$ =-0.107×43.109×0.22²-0.121×1.764×0.22²=-

0.234kN·m

σ=M_{max}/W=0.234×10⁶/37500=6.24N/mm²≤[f]=15N/mm² 满足要求!

2、挠度验算

作用线荷载q'=bS'_{max}=1.0×35.481=35.481kN/m 简图:

$$v = 0.632 \text{ q'l}^4/(100\text{EI}) = 0.632 \times 35.481 \times 220^4/(100 \times 6000 \times 281250) = 0.311 \text{mm} \le [v]$$

$$= 1/400 = 220/400 = 0.55 \text{mm}$$

满足要求!

五、小梁验算

小梁材质及类型	方木	小梁截面类型(mm)	85×85
小梁截面惯性矩I(cm ⁴)	435.005	小梁截面抵抗矩W(cm ³)	102.354
小梁抗弯强度设计值[f](N/mm ²)	13	小梁弹性模量E(N/mm ²)	9000
小梁抗剪强度设计值[τ](N/mm²)	1.3		

1、强度验算

$$q_{max}$$
= $1S_{max}$ = 0.22×44.873 = 9.872 kN/m q_{min} = $1S_{min}$ = 0.22×2.52 = 0.554 kN/m 简图:

弯矩图:

(kN.m)

 $M_{max}=0.208kN\cdot m$

$$\sigma\!=\!M_{max}/W\!=\!0.208\!\times\!10^6/102354\!\!=\!\!2.032N/mm^2\!\!\leq\!\![f]\!\!=\!\!13~N/mm^2$$

满足要求!

2、挠度验算

变形图:

(mm)

 v_{max} =0.035mm \leq [v]=2L/400=2×200/400=1mm

满足要求!

3、支座反力计算

1) 承载能力极限状态

剪力图:

(kN)

 $R_1 = 4.422kN$

R₂=4.962kN

R₃=4.929kN

 $R_4 = 4.938 kN$

R₅=4.935kN

R₆=4.936kN

R7=4.936kN

 $R_8 = 4.936 kN$

R₉=4.936kN

R₁₀=4.938kN

R₁₁=4.929kN

 $R_{12}=4.952kN$

 $R_{13} = 3.902 kN$

 $R_{14} = 2.331kN$

 $R_{15} = 0.533 kN$

2) 正常使用极限状态

剪力图:

(kN)

R'1=3.496kN

R'2=3.924kN

 $R'_3 = 3.897kN$

R'4=3.905kN

R'5=3.903kN

 $R'_6 = 3.903 kN$

R'7=3.903kN

R'8=3.903kN

R'9=3.903kN

R'10=3.904kN

R'11=3.898kN

R'12=3.915kN

R'13=3.041kN

 $R'_{14}=1.703kN$

R'15=0.282kN

4、抗剪验算

由承载能力极限状态的剪力图知

 $V_{max} = 2.489 kN$

τ=3V_{max}/(2bh)=3×2.489×10³/(2×85×85)=0.517N/mm²≤[τ]=1.3N/mm² 满足要求!

六、柱籍验算

柱箍材质及类型	钢管	柱箍截面类型(mm)	Ф48×3
柱箍计算截面类型(mm)	Ф48×3	柱箍截面面积A(cm²)	4.24
柱箍截面惯性矩I(cm ⁴)	10.78	柱箍截面抵抗矩W(cm ³)	4.49
柱箍抗弯强度设计值[f](N/mm²)	205	柱箍弹性模量E(N/mm²)	206000
柱箍合并根数	2	柱箍受力不均匀系数η	0.5

由上节小梁"验算"的"支座反力计算"知,柱箍取小梁对其反力最大的那道 验算

连续梁中间集中力取小梁最大支座;两边集中力取小梁荷载取半后,最大 支座反力的一半。

1) 长边柱箍

取小梁计算中I=1100/(6-1)=220mm=0.22m代入小梁计算中得到: 承载能力极限状态:

 $R_{max} = \eta Max[4.422, 4.962, 4.929, 4.938, 4.935, 4.936, 4.936, 4.936,$

4.936, 4.938, 4.929, 4.952, 3.902, 2.331, 0.533]=0.5×4.962=2.481kN 正常使用极限状态:

 $R'_{max} = \eta Max[3.496, 3.924, 3.897, 3.905, 3.903, 3.903, 3.903, 3.903,$

3.903, 3.904, 3.898, 3.915, 3.041, 1.703, 0.282]= 0.5×3.924 =1.962kN

2) 短边柱箍

取小梁计算中I=800/(5-1)=200mm=0.2m代入小梁计算中得到: 承载能力极限状态:

 $R_{\text{max}} = \eta \text{Max} [4.02, 4.512, 4.481, 4.489, 4.487, 4.488, 4.487, 4.488]$

4.487, 4.489, 4.481, 4.502, 3.547, 2.12, 0.484]=0.5×4.512=2.256kN 正常使用极限状态: $R'_{max} = \eta Max[3.178, 3.567, 3.543, 3.549, 3.548, 3.548, 3.548, 3.548, 3.548, 3.548, 3.549, 3.549, 3.543, 3.559, 2.765, 1.548, 0.256] = 0.5 \times 3.567 = 1.784 kN$

1、强度验算

长边柱箍计算简图:

长边柱箍计算弯矩图:

(kN.m)

长边柱箍计算剪力图:

 $M_{max}{=}0.226kN{\cdot}m$

 σ = M_{max}/W = $0.226\times10^6/4490$ = $50.334N/mm^2$ ≤[f]= $205N/mm^2$ 満足要求!

短边柱箍计算简图:

短边柱箍计算弯矩图:

短边柱箍计算剪力图:

 $M_{max} = 0.104 \text{kN} \cdot \text{m}$

 σ = M_{max}/W = $0.104\times10^6/4490$ = $23.163N/mm^2$ ≤[f]= $205N/mm^2$ 満足要求!

2、支座反力计算

长边柱箍支座反力:

 $R_{c1} = 0.979/\eta = 0.979/0.5 = 1.958kN$

 $R_{c2} = 5.223/\eta = 5.223/0.5 = 10.446kN$

 $R_{c3} = 5.223/\eta = 5.223/0.5 = 10.446 kN$

 $R_{c4} = 0.979/\eta = 0.979/0.5 = 1.958kN$

短边柱箍支座反力:

 $R_{d1} = 0.596/\eta = 0.596/0.5 = 1.192kN$

 $R_{d2}\!\!=\!\!3.916/\eta\!\!=\!\!3.916/0.5\!\!=\!\!7.832kN$

 $R_{d3}\!\!=\!\!3.916/\eta\!\!=\!\!3.916/0.5\!\!=\!\!7.832kN$

 $R_{d4} = 0.596/\eta = 0.596/0.5 = 1.192kN$

3、挠度验算

长边柱箍计算简图:

长边柱箍计算变形图:

 $v_{max} = 0.07 mm \le [v] = 1/400 = 449/400 = 1.123 mm$

满足要求!

短边柱箍计算简图:

短边柱箍计算变形图:

 $v_{max} = 0.02 mm \le [v] = 1/400 = 349/400 = 0.873 mm$

满足要求!

七、对拉螺栓验算

对拉螺栓类型	M14	轴向拉力设计值Nt ^b (kN)	17.8
扣件类型	3形26型	扣件容许荷载(kN)	26

N=Max[R_{c1}, R_{c2}, R_{c3}, R_{c4}, R_{d1}, R_{d2}, R_{d3}, R_{d4}]=10.446kN \leq N_t^b=17.8kN 满足要求!

 $N = 10.446kN \le 26kN$

满足要求!

第3节 KZ9 柱模板(支撑不等间距)计算书

计算依据:

- 1、《建筑施工模板安全技术规范》JGJ162-2008
- 2、《混凝土结构设计规范》GB50010-2010
- 3、《建筑结构荷载规范》GB 50009-2012

4、《钢结构设计标准》GB 50017-2017

一、工程属性

新浇混凝土柱名称	KZ9	新浇混凝土柱的计算高度(mm)	7334
新浇混凝土柱长边边长(mm)	1000	新浇混凝土柱短边边长(mm)	1000

二、支撑体系设计

柱长边小梁根数	5	柱短边小梁根数	5
柱箍两端设置对拉螺栓	是	柱长边对拉螺栓根数	2
柱短边对拉螺栓根数	2	对拉螺栓布置方式	均分
柱长边对拉螺栓间距(mm)	416,416,416	柱短边对拉螺栓间距(mm)	416,416,416

柱箍搭设				
序号	柱箍距柱底距离hi(mm)		柱箍依次间距(mm)	
1	200		200	
2	700		500	
3	1200		500	
4	1700		500	
5	2200		500	
6	2700		500	
7	3200		500	
8	3700		500	
9	4200		500	
10	4700		500	
11	5200		500	
12	5700		500	
13	6200		500	

14	6700	500
15	7200	500

示意图:

平面图:

立面图:

立面图

三、荷载组合

侧压力计算依据规范	《建筑施工模板安 全技术规范》 JGJ162-2008	混凝土重力密度γc(kN/m ³)	24
新浇混凝土初凝时间to(h)	5	外加剂影响修正系数β1	1
混凝土坍落度影响修正系数β2	0.85	混凝土浇筑速度V(m/h)	2.5
混凝土侧压力计算位置处至新浇混凝土顶面总高度H(m)		7.334	
新浇混凝土对模板的侧压力标准值G4k(kN/m²)		$\begin{aligned} &\min\{0.22\gamma_{c}t_{0}\beta_{1}\beta_{2}v^{1/2},\ \gamma_{c}H\} = \\ &\min\{0.22\times24\times5\times1\times0.85\times2.5^{1/2},\ 24\times7.334\} = \min\{35.481,\\ &176.016\} = 35.481kN/m^{2} \end{aligned}$	
倾倒混凝土时对垂直面模板荷载标准值Q3k(kN/m²)		2	

有效压头高度 $h=G_{4k}/\gamma_c=35.481/24=1.478m$ 承载能力极限状态设计值

$$S_{max} = 0.9 max[1.2G_{4k} + 1.4Q_{3k}, 1.35G_{4k} + 1.4 \times 0.7Q_{3k}] =$$

 $0.9 \max[1.2 \times 35.481 + 1.4 \times 2, 1.35 \times 35.481 + 1.4 \times 0.7 \times 2] = 0.9 \max[45.377, 49.859] = 0.9 \times 49.859 = 44.873 \text{kN/m}^2$

 $S_{min} = 0.9 \times 1.4 Q_{3k} = 0.9 \times 1.4 \times 2 = 2.52 kN/m^2$

正常使用极限状态设计值

 $S'_{max} = G_{4k} = 35.481 \text{ kN/m}^2$

 $S'_{min} = 0 \text{ kN/m}^2$

四、面板验算

面板类型	覆面木胶合板	面板厚度t(mm)	15
面板抗弯强度设计值[f](N/mm ²)	15	面板弹性模量E(N/mm ²)	6000

根据《建筑施工模板安全技术规范》(JGJ162-2008), 面板截面宽度取单位 宽度即b=1000mm。

 $W=bh^2/6=1000\times15^2/6=37500mm^3$, $I=bh^3/12=1000\times15^3/12=281250mm^4$ 考虑到工程实际和验算简便,不考虑有效压头高度对面板的影响。

1、强度验算

最不利受力状态如下图,按【四等跨连续梁】验算简图:

静载线荷载 q_1 =0.9×1.35×b G_{4k} =0.9×1.35×1.0×35.481=43.109kN/m 活载线荷载 q_2 =0.9×1.4×0.7×b Q_{3k} =0.9×1.4×0.7×1.0×2=1.764kN/m M_{max} =-0.107 $q_1 l^2$ -0.121 $q_2 l^2$ =-0.107×43.109×0.25²-0.121×1.764×0.25²=-

0.302kN·m

σ=M_{max}/W=0.302×10⁶/37500=8.053N/mm²≤[f]=15N/mm² 满足要求!

2、挠度验算

作用线荷载q'=bS'_{max}=1.0×35.481=35.481kN/m 简图:

$$v = 0.632 \text{ q'l}^4/(100\text{EI}) = 0.632 \times 35.481 \times 250^4/(100 \times 6000 \times 281250) = 0.519 \text{mm} \le [v]$$

$$= 1/400 = 250/400 = 0.625 \text{mm}$$

满足要求!

五、小梁验算

小梁材质及类型	方木	小梁截面类型(mm)	85×85
小梁截面惯性矩I(cm ⁴)	435.005	小梁截面抵抗矩W(cm ³)	102.354
小梁抗弯强度设计值[f](N/mm ²)	13	小梁弹性模量E(N/mm²)	9000
小梁抗剪强度设计值[τ](N/mm²)	1.3		

1、强度验算

$$q_{max}$$
= $1S_{max}$ = 0.25×44.873 = 11.218 kN/m q_{min} = $1S_{min}$ = 0.25×2.52 = 0.63 kN/m 简图:

弯矩图:

(kN.m)

$$M_{max}=0.236kN\cdot m$$

$$\sigma\!=\!M_{max}/W\!=\!0.236\!\times\!10^6/102354\!=\!2.306N/mm^2\!\leq\![f]\!=\!13~N/mm^2$$

满足要求!

2、挠度验算

变形图:

(mm)

 $v_{max}\!\!=\!\!0.04mm\!\!\leq\!\! [\nu]\!\!=\!\!2L/400\!\!=\!\!2\!\!\times\!\!200/400\!\!=\!\!1mm$

满足要求!

3、支座反力计算

1) 承载能力极限状态

剪力图:

(kN)

 $R_1 = 5.024 kN$

 $R_2 = 5.639 kN$

R₃=5.601kN

 $R_4 = 5.611kN$

 $R_5 = 5.608 kN$

 $R_6 = 5.609 kN$

 $R_7 = 5.609 kN$

 $R_8 = 5.609 kN$

 $R_9 = 5.608 kN$

 $R_{10}=5.611kN$

 $R_{11}=5.601kN$

 $R_{12} = 5.627 kN$

 $R_{13} = 4.434 kN$

 $R_{14}=2.65kN$

 $R_{15}=0.605kN$

2) 正常使用极限状态

剪力图:

(kN)

R'1=3.973kN

R'2=4.459kN

R'3=4.429kN

R'4=4.437kN

R'5=4.435kN

R'6=4.435kN

R'7=4.435kN

R'₈=4.435kN

R'9=4.435kN

R'10=4.437kN

R'11=4.429kN

 $R'_{12} = 4.449 kN$

R'13=3.456kN

 $R'_{14}=1.936kN$

R'15=0.32kN

4、抗剪验算

由承载能力极限状态的剪力图知

 $V_{max}=2.828kN$

τ=3V_{max}/(2bh)=3×2.828×10³/(2×85×85)=0.587N/mm²≤[τ]=1.3N/mm² 满足要求!

六、柱籍验算

柱箍材质及类型	钢管	柱箍截面类型(mm)	Ф48×3
柱箍计算截面类型(mm)	Ф48×3	柱箍截面面积A(cm²)	4.24
柱箍截面惯性矩I(cm ⁴)	10.78	柱箍截面抵抗矩W(cm ³)	4.49
柱箍抗弯强度设计值[f](N/mm ²)	205	柱箍弹性模量E(N/mm ²)	206000
柱箍合并根数	2	柱箍受力不均匀系数η	0.5

由上节小梁"验算"的"支座反力计算"知,柱箍取小梁对其反力最大的那道 验算

连续梁中间集中力取小梁最大支座;两边集中力取小梁荷载取半后,最大支座反力的一半。

1) 长边柱箍

取小梁计算中I=1000/(5-1)=250mm=0.25m代入小梁计算中得到: 承载能力极限状态:

R_{max}=ηMax[5.024, 5.639, 5.601, 5.611, 5.608, 5.609, 5.609, 5.609, 5.608, 5.611, 5.601, 5.627, 4.434, 2.65, 0.605]=0.5×5.639=2.82kN 正常使用极限状态:

 $R'_{max} = \eta Max[3.973, 4.459, 4.429, 4.437, 4.435, 4.435, 4.435, 4.435, 4.435, 4.435, 4.435, 4.437, 4.429, 4.449, 3.456, 1.936, 0.32] = 0.5 \times 4.459 = 2.229 kN$

2) 短边柱箍

取小梁计算中I=1000/(5-1)=250mm=0.25m代入小梁计算中得到: 承载能力极限状态:

 R_{max} = η Max[5.024, 5.639, 5.601, 5.611, 5.608, 5.609, 5.609, 5.609, 5.609, 5.608, 5.611, 5.601, 5.627, 4.434, 2.65, 0.605]=0.5×5.639=2.82kN 正常使用极限状态:

 $R'_{max} = \eta Max[3.973, \ 4.459, \ 4.429, \ 4.437, \ 4.435, \ 4.435, \ 4.435, \ 4.435, \ 4.435, \ 4.435, \ 4.435, \ 4.459 = 2.229kN$

1、强度验算

长边柱箍计算简图:

长边柱箍计算弯矩图:

长边柱箍计算剪力图:

 M_{max} =0.16kN·m $\sigma = M_{max}/W = 0.16 \times 10^6/4490 = 35.635 N/mm^2 \le [f] = 205 N/mm^2$ 满足要求!

短边柱箍计算简图:

短边柱箍计算弯矩图:

短边柱箍计算剪力图:

 $M_{max} = 0.16 kN \cdot m$

σ=M_{max}/W=0.16×10⁶/4490=35.635N/mm²≤[f]=205N/mm² 满足要求!

2、支座反力计算

长边柱箍支座反力:

 $R_{c1} = 0.889/\eta = 0.889/0.5 = 1.778kN$

 R_{c2} =4.751/ η =4.751/0.5=9.502kN

 $R_{c3}\!\!=\!\!4.751/\eta\!\!=\!\!4.751/0.5\!\!=\!\!9.502kN$

 $R_{c4} = 0.889/\eta = 0.889/0.5 = 1.778kN$

短边柱箍支座反力:

 $R_{d1} = 0.889/\eta = 0.889/0.5 = 1.778kN$

 $R_{d2}\!\!=\!\!4.751/\eta\!\!=\!\!4.751/0.5\!\!=\!\!9.502kN$

 $R_{d3}\!\!=\!\!4.751/\eta\!\!=\!\!4.751/0.5\!\!=\!\!9.502kN$

 $R_{d4} = 0.889/\eta = 0.889/0.5 = 1.778kN$

3、挠度验算

长边柱箍计算简图:

长边柱箍计算变形图:

 $\nu_{max}\!=\!0.044mm\!\!\leq\!\![\nu]\!\!=\!\!1\!/400\!\!=\!\!416\!/400\!\!=\!\!1.04mm$

满足要求!

短边柱箍计算简图:

短边柱箍计算变形图:

(mm)

 $\nu_{max}\!=\!0.044mm\!\!\leq\!\![\nu]\!\!=\!\!1/\!400\!\!=\!\!416/\!400\!\!=\!\!1.04mm$

满足要求!

七、对拉螺栓验算

对拉螺栓类型	M14	轴向拉力设计值Nt ^b (kN)	17.8
扣件类型	3形26型	扣件容许荷载(kN)	26

 $N\!\!=\!\!Max[R_{c1}\text{, }R_{c2}\text{, }R_{c3}\text{, }R_{c4}\text{, }R_{d1}\text{, }R_{d2}\text{, }R_{d3}\text{, }R_{d4}]\!=\!9.502kN\!\!\leq\!\!N_t^b\!\!=\!17.8kN$

满足要求!

 $N=9.502kN\leq 26kN$

满足要求!

第三章、墙

第1节 侧墙模板支架计算书

- (1)设计计算指标采用值
- 1) 钢材物理性能指标

弹性模量 $E=2.06\times105 N/mm^2$; 质量密度 $\rho=7850 kg/m^3$;

2) 钢材强度设计值

抗拉、抗压、抗弯 f=215N/mm²; 抗剪 fv=125N/mm²;

3) 容许挠度

钢模板板面〔 δ 〕 ≤ 1.0 mm, $\leq L_1/400$:

模板主肋 〔δ〕≤1.5mm, L₂/500;

背楞 〔δ〕≤1.5mm, L₃/1000。

- (2) 衬砌模板台车设计计算
- 1) 荷载计算

水平荷载统计:

新浇混凝土对模板的水平侧压力标准值。

按照(JGJ74-2003)附录 B,模板荷载及荷载效应组合 B.0.2 规定: F=Min (F_1 , F_2)

$$F_2 = \gamma_c H$$
 $h = \frac{F}{\gamma_c} = \frac{65}{25} = 2.6$

本计算书各工艺参数:

 t_0 ——新浇混凝土的初凝时间 (h),可按实测确定。当缺乏实验资料时,可采用 t=200/(T+15) 计算:所以 t=200/(20+15)=5.71:

V------浇筑速度为 1m/h;

H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m); 取 5.9m;

 eta_1 ——外加剂影响修正系数,不掺外加剂时取 1.0;掺具有缓凝作用的外加剂时取 1.2

 eta_2 ——混凝土塌落度影响系数,当塌落度小于 100mm 时,取 1.1; 不小于 100mm 时,取 1.15。

则砼侧压力标准值 F 为:

$$F_1 = 0.22 \times 25.5 \times 4 \times 1.1 \times 1.15 \times 1^{1/2} = 28.39 \text{kN/m}^2$$

 $F_2 = 25 \times 8 = 200 \text{kN/m}^2$

有效压头高度为:
$$h = \frac{F}{\gamma_c} = \frac{28.39}{25} = 1.14$$
米

取二者中的较小值,F=28.39kN/m²作为模板侧压力的标准值,并考虑倾倒混凝土时产生的荷载标准值 2kN/m²,及振捣混凝土产生的水平载荷标准值 4kN/m²,分别取荷载分项系数 1.35 和 1.4,则作用于模板的总荷载设计值为:

 $q = 28.39 \times 1.35 + (2+4) \times 1.4 = 46.73 \text{kN/m}^2$

单侧支架主要承受混凝土侧压力,侧压力取为 F=46.73KN/m²。

2) 面板计算

计算所用软件为《ANSYS》16.0版本。

 $F = 46.73 kN/m^2 = 0.04673 N/mm^2$

取 1mm 为计算单元。

材料	截面积A (mm²)	Ix(mm ⁴)	Wx(mm ³)	ix(mm)
δ 8	8	42.6	10.6	2.3

模板结构形式为: 面板为 8mm 钢板, 竖向主肋用[10, 间距为 300mm。

① 承载力验算

图3.1-1 受力简图

图3.1-2 面板弯矩图

由图及表可以查出:

弯矩最大值为: 327.602N.mm

计算此处应力: $\sigma = M/w = 327.602/10.6 = 30.91 MPa < [\sigma] = 215 MPa$ 面板强度满足要求。

② 刚度校核

强度线荷载 q=0.04673N/mm

图3.1-3 面板挠度变形图

由图可知:面板最大变形为: 0.083mm

面板刚度满足要求

2) 模板竖向主肋校核

材料	截面积A (mm²)	Ix(mm ⁴)	Wx(mm ³)	ix(mm)
[10	1278.4	1980000	39700	39.5

① 强度校核 q=46.73KN/m²×0.3m=14.02N/mm

背楞间距为 750mm

图3.1-4 背楞受力简图

图3.1-5 背楞受力弯矩图

由图可知最大弯矩值为: 328594N.mm

 σ max=Mmax / w=328594/39700=8.28N/mm²<f=215N/mm² 所以竖筋[10 强度满足要求。

4) 纵向背楞计算:

材料	截面积A (mm²)	Ix(mm ⁴)	Wx(mm ³)	ix(mm)
[12	1536.2	3460000	57700	47.5

- 三角架间距 0.95 米,纵向背楞间距 0.75 米
- ① 强度校核 q=46.73KN/m²×0.75m/2=17.52N/mm

图3.1-6 计算模型简图

图3.1-7 计算模型弯矩图

由图可知最大弯矩值为: 711993N.mm

 σ max=Mmax / w=711993 / 57700=12.34N/mm²<f=215N/mm² 所以槽钢强度满足要求。

② 刚度校核

 $q\!\!=\!\!46.73KN/m^2\!\!\times\!\!0.75m/2\!\!=\!\!17.52N/mm$

图3.1-8 位移变形图:

由图可知:最大变形量为 0.06mm

 $V_{max} < [v] = 3mm$

因此刚度满足要求。

4) 三角架计算:

|--|

工 16	2613	11300000	141000	65.8
工 18	3075.6	16600000	185000	73.6
工 20	3557.8	23700000	237000	81.5

- 三角架间距 0.95 米/根, 背楞间距 0.75 米。
- ① 强度校核 F=46.73KN/m²×0.95m×0.75m= 31542N

图3.1-9 三角架受力简图

从上图可知,最大应力为 157.496Mpa<f=215N/mm² 桁架处于安全状态。

② 刚度校核

图3.1-10 三角架变形图

从图上可以看出,最大变形为 7.5mm

因此安计三角架时,顶部可稍向内斜 10mm,可以抵消三角架变形造成的模板变形量。

拐角处即点 404 为锚地拉杆受力:

FX = -0.2209E + 06N

FY = -0.18496E + 06N

F 合力=288109N

工地选用 HRB400 螺纹钢筋: 抗拉强度 540Mpa

 $\forall s = F/\sigma = 288109/540 = 533 \text{mm}^2$

而 φ 25 螺纹钢,螺纹处最小直径为 φ 19,截面积为: 283.5287 mm²

一品三角架需螺纹钢根数: 682.63/283.5=3 根

考虑安全系统以及纵向槽钢的受力情况,地锚螺纹钢间距300mm设置1道。

由以上的结计算结果可以得出结论,此模板系统设计强度和刚度满足施工要求,并且用料合理。

第2节人防临空墙墙模板(支撑不等间距)计算书

计算依据:

- 1、《建筑施工模板安全技术规范》JGJ162-2008
- 2、《混凝土结构设计规范》GB50010-2010
- 3、《建筑结构荷载规范》GB 50009-2012
- 4、《钢结构设计标准》GB 50017-2017

一、工程属性

砼墙特性	人防临空墙	砼墙厚度(mm)	400
砼墙高度(mm)	7461		

二、支撑构造

小梁布置方式	水平	小梁间距l(mm)	200
小梁最大悬挑长度d(mm)	0	主梁间距L(mm)	500
主梁固定方式	对拉螺栓	对拉螺栓水平间距s(mm)	500
	支撑	构造	
支撑序号	Ξ	主梁上支撑点距墙底距离hi(mm	n)
第1道		200	
第2道	700		
第3道	1200		
第4道	1700		
第5道	2200		
第6道	2700		
第7道	3200		
第8道	3700		
第9道	4200		
第10道	4700		

第11道	5200
第12道	5700
第13道	6200
第14道	6700
第15道	7200

简图如下:

示意图

墙模板(支撑不等间距)_剖面图

墙模板(支撑不等间距)_正立面图

三、荷载组合

侧压力计算依据规范	《建筑施工模板安 全技术规范》 JGJ162-2008	混凝土重力密度γc(kN/m ³)	24
新浇混凝土初凝时间to(h)	5	外加剂影响修正系数β1	1
混凝土坍落度影响修正系数β2	0.85	混凝土浇筑速度V(m/h)	2.5
混凝土侧压力计算位置处至新浇混凝土顶面总高度H(m)		7.461	
新浇混凝土对模板的侧压力标准值G4k(kN/m ²)		$\begin{aligned} &\min\{0.22\gamma_{c}t_{0}\beta_{1}\beta_{2}v^{1/2},\ \gamma_{c}H\} = \\ &\min\{0.22\times24\times5\times1\times0.85\times2.5^{1/2},\ 24\times7.46\\ &179.064\} = 35.481kN/m^{2} \end{aligned}$	51}=min{35.481,
倾倒混凝土时对垂直面模板荷载标准值Q3k(kN/m²)		2	

有效压头高度 $h=G_{4k}/\gamma_c=35.481/24=1.478m$ 承载能力极限状态设计值

$$S_{max} = 0.9 max[1.2G_{4k} + 1.4Q_{3k}, 1.35 G_{4k} + 1.4 \times 0.7Q_{3k}] =$$

$$0.9 \max[1.2 \times 35.481 + 1.4 \times 2.000, 1.35 \times 35.481 + 1.4 \times 0.7 \times 2.000] = 44.87 \text{kN/m}^2$$

$$S_{min} = 0.9 \times 1.4 Q_{3k} = 0.9 \times 1.4 \times 2.000 = 2.52 kN/m^2$$

正常使用极限状态设计值

$$S'_{max} = G_{4k} = 35.481 \text{kN/m}^2$$

$$S'_{min} = 0kN/m^2$$

四、面板验算

面板类型	覆面木胶合板	面板厚度(mm)	15
面板抗弯强度设计值[f](N/mm ²)	15	面板弹性模量E(N/mm ²)	6000

根据《规范》JGJ162, 面板验算按简支梁。梁截面宽度取单位宽度即b=1000mm

 $W=bh^2/6=1000\times15^2/6=37500mm^3$, $I=bh^3/12=1000\times15^3/12=281250mm^4$ 考虑到工程实际和验算简便,不考虑有效压头高度对面板的影响。

1、强度验算

$$q = bS_{max} = 1.0 \times 44.87 = 44.87 \text{kN/m}$$

验算简图

$$M_{max}$$
= $ql^2/8$ = $44.87\times0.200^2/8$ = 0.22 kN·m σ = M_{max}/W = $0.22\times10^6/37500$ = 5.983 N/mm 2 ≤[f]= 15.000 N/mm 2 满足要求!

2、挠度验算

$$q' = bS'_{max} = 1.0 \times 35.48 = 35.48 \text{kN/m}$$

挠度验算,ν_{max}=

 $5q'1^4/(384EI) = 5 \times 35.48 \times 200^4/(384 \times 6000 \times 281250) = 0.44 \\ mm \leq [v] = 1/250 = 200/250 = 0.80 \\ mm$

满足要求!

五、小梁验算

小梁类型	方木	小梁截面类型(mm)	85×85
小梁抗弯强度设计值[f](N/mm ²)	13	小梁弹性模量E(N/mm ²)	9000
小梁截面抵抗矩W(cm ³)	102.354	小梁截面惯性矩I(cm ⁴)	435.005
小梁抗剪强度设计值[τ](N/mm²)	1.3	小梁计算方式	三等跨梁

显然最低处的小梁受力最大,以此梁为验算对象。

1、强度验算

$$q_{max} = 1S_{max} = 0.2 \times 44.873 = 8.975 \text{kN/m}$$

弯矩图(kN.m)

$$M_{max} = 0.224 kN \cdot m$$

$$\sigma\!=\!M_{max}\!/W\!=\!0.224\!\!\times\!\!10^6\!/102354\!\!=\!\!2.191N\!/mm^2\!\!\leq\!\![f]\!\!=\!\!13.00\ N\!/mm^2$$

满足要求!

2、挠度验算

$$q'_{max} = 1S'_{max} = 0.2 \times 35.481 = 7.096 kN/m$$

变形图(mm)

 $v_{max} = 0.078 mm \le [v] = L/250 = 500/250 = 2.0 mm$

满足要求!

3、支座反力计算

承载能力极限状态

剪力图(kN)

 $R_{max} = 4.934 = 4.934 = 4.934 kN$

正常使用极限状态

剪力图(kN)

 $R'_{max} = 3.905 = 3.905 = 3.91kN$

4、抗剪验算

 $V_{max}=2.69kN$

 $\tau \! = \! 3V_{max}/(2bh) \! = \! 3 \times 2.69 \times 10^3/(2 \times 85 \times 85) \! = \! 0.56 N/mm^2 \! \le \! [\tau] \! = \! 1.3\ N/mm^2$

满足要求!

六、主梁验算

主梁类型	钢管	主梁截面类型(mm)	Ф48×3
主梁计算截面类型(mm)	Ф48×3	主梁抗弯强度设计值[f](N/mm²)	205
主梁抗剪强度设计值[τ](N/mm²)	125	主梁弹性模量E(N/mm²)	206000
主梁截面抵抗矩W(cm ³)	4.49	主梁截面惯性矩I(cm ⁴)	10.78
主梁合并根数m	2	主梁受力不均匀系数ζ	0.5

将考虑有效压头高度后,各道小梁的承载能力及正常使用最大支座反力分别带入主梁验算中,当主梁合并根数为2时,乘以主梁受力不均匀系数ζ

1、强度验算

验算简图

弯矩图(kN.m)

 $M_{max} {=} 0.419 kN {\cdot} m$

σ=M_{max}/W=0.42×10⁶/4490=93.405N/mm²[f]≤205.000 N/mm² 满足要求!

2、支座反力计算

剪力图(kN)

第1道支撑所受主梁反力 $R_{max(1)}$ =6.85/ ζ =6.85/0.50=13.703kN

第2道支撑所受主梁反力 $R_{max(2)}$ =5.61/ ζ =5.61/0.50=11.222kN 第3道支撑所受主梁反力 $R_{max(3)}$ =6.32/ ζ =6.32/0.50=12.642kN 第4道支撑所受主梁反力 $R_{max(4)}$ =6.12/ ζ =6.12/0.50=12.245kN 第5道支撑所受主梁反力 $R_{max(5)}$ =6.18/ ζ =6.18/0.50=12.367kN 第6道支撑所受主梁反力 $R_{max(6)}$ =6.16/ ζ =6.16/0.50=12.318kN 第7道支撑所受主梁反力 $R_{max(7)}$ =6.17/ ζ =6.17/0.50=12.348kN 第8道支撑所受主梁反力 $R_{max(9)}$ =6.17/ ζ =6.17/0.50=12.324kN 第9道支撑所受主梁反力 $R_{max(9)}$ =6.17/ ζ =6.17/0.50=12.334kN 第10道支撑所受主梁反力 $R_{max(10)}$ =6.17/ ζ =6.17/0.50=12.333kN 第11道支撑所受主梁反力 $R_{max(11)}$ =6.16/ ζ =6.16/0.50=12.312kN 第12道支撑所受主梁反力 $R_{max(11)}$ =6.22/ ζ =6.22/0.50=12.445kN 第13道支撑所受主梁反力 $R_{max(12)}$ =5.32/ ζ =5.32/0.50=10.649kN 第14道支撑所受主梁反力 $R_{max(14)}$ =3.28/ ζ =3.28/0.50=6.550kN

3、挠度验算

变形图(mm)

v_{max}=0.353mm≤[v]=2L/250=2×200/250=1.6mm 满足要求!

七、对拉螺栓验算

对拉螺栓计算依据	最不利荷载传递方	对拉螺栓类型	M14
	式		
轴向拉力设计值Nt ^b (kN)	17.8		

同主梁验算过程,可知对拉螺栓受力:

 $N = 13.703 \text{kN} \le N_t^b = 17.8 \text{kN}$

满足要求!

第四章、板

第1节 顶板 1 板模板(盘扣式)计算书

计算依据:

- 1、《建筑施工模板安全技术规范》JGJ162-2008
- 2、《建筑施工承插型盘扣式钢管脚手架安全技术标准》JGJ/T 231-2021
- 3、《混凝土结构设计规范》GB 50010-2010
- 4、《建筑结构荷载规范》GB 50009-2012
- 5、《钢结构设计标准》GB 50017-2017

一、工程属性

新浇混凝土楼板名称	顶板1	新浇混凝土楼板计算厚度(mm)	600
模板支架高度H(m)	12.119	模板支架纵向长度L(m)	30
模板支架横向长度B(m)	20		

二、荷载设计

模板及其支架自重标准值G _{lk} (kN/m ²)	面板	0.1
	面板及小梁	0.3
	楼板模板	0.5

混凝土自重标准值G2k(kN/m ³)	24	钢筋自重标准值G3k(kN/m ³)	1.1
施工人员及设备产生的荷载标准值 Q1k(kN/m ²)	2.5		
模板支拆环境是否考虑风荷载	否		

三、模板体系设计

结构重要性系数γ0	1.1	脚手架安全等级	一级
主梁布置方向	平行立杆纵向方向	立杆纵向间距la(mm)	1200
立杆横向间距lb(mm)	1200	步距h(mm)	1500
顶层步距h'(mm)	1000	支架可调托座支撑点至项层水平杆中	650
		心线的距离a(mm)	
小梁间距s(mm)	200	小梁最大悬挑长度l ₁ (mm)	0
主梁最大悬挑长度l ₂ (mm)	0	承载力设计值调整系数γR	1

设计简图如下:

示意图

模板设计平面图

纵向剖面图

横向剖面图

四、面板验算

面板类型	覆面木胶合板	面板厚度t(mm)	15
面板抗弯强度设计值[f](N/mm ²)	15	面板抗剪强度设计值[τ](N/mm²)	1.4
面板弹性模量E(N/mm²)	6000	面板计算方式	三等跨连续梁

按三等跨连续梁,取1m单位宽度计算。

 $W = bh^2/6 = 1000 \times 15 \times 15/6 = 37500 mm^3, I = bh^3/12 = 1000 \times 15 \times 15 \times 15/12 = 281250 mm^4$

1、荷载计算

面板承受的单位宽度线荷载设计值: q1=

 $\gamma_0 \times [1.3 \times (G_{1k} + (G_{2k} + G_{3k}) \times h) + 1.5 \times Q_{1k}] \times b = 1.1 \times [1.3 \times (0.1 + (24 + 1.1) \times 0.6) + 1.5 \times 2.5] \times 1 = 25.804 kN/m$

计算简图如下:

2、强度验算

$$\begin{split} q_{1\#} = & \gamma_0 \times [\gamma_G(G_{1k} + (G_{2k} + G_{3k})h)]b = 1.1 \times [1.3 \times (0.1 + (24 + 1.1) \times 0.6)] \times 1 = 21.679 kN/m \\ q_{1\#} = & \gamma_0 \times (\gamma_Q \times Q_{1k}) \times b = 1.1 \times (1.5 \times 2.5) \times 1 = 4.125 kN/m \\ M_{max} = & 0.1 q_{1\#} L^2 + 0.117 q_{1\#} L^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 21.679 \times 0.2^2 + 0.117 \times 0.2^2 \times 0.2^$$

0.106kN·m

$$\sigma = M_{max}/W = 0.106 \times 10^6/37500 = 2.827 N/mm^2 \le [f]/\gamma_R = 15/1 = 15 N/mm^2$$
 満足要求!

3、挠度验算

面板承受的单位宽度线荷载标准值: $q=(1\times(G_{1k}+(G_{2k}+G_{3k})\times h)+1\times Q_{1k})\times b$ = $(1\times(0.1+(24+1.1)\times0.6)+1\times2.5)\times1=17.66kN/m$ $\nu_{max}=0.677ql^4/(100EI)=0.677\times17.66\times200^4/(100\times6000\times281250)=0.113mm$ $\nu_{max}=0.113mm\leq \min\{200/150,\ 10\}=1.333mm$ 满足要求!

五、小梁验算

小梁类型	方木	小梁截面类型(mm)	85×85
小梁抗弯强度设计值[f](N/mm ²)	13	小梁抗剪强度设计值[τ](N/mm²)	1.3
小梁截面抵抗矩W(cm ³)	102.354	小梁弹性模量E(N/mm²)	9000
小梁截面惯性矩I(cm ⁴)	435.005	小梁计算方式	三等跨连续梁
小梁间距s(mm)	200		

1、荷载计算

小梁承受的线荷载设计值: $q_1 = \gamma_0 \times [1.3 \times (G_{1k} + (G_{2k} + G_{3k}) \times h) + 1.5 \times Q_{1k}] \times s = 1.1 \times [1.3 \times (0.3 + (24 + 1.1) \times 0.6) + 1.5 \times 2.5] \times 0.2 = 5.218 kN/m$

计算简图如下:

2、强度验算

 $q_{1} = \gamma_0 \times 1.3 \times (G_{1k})$

 $+(G_{2k}+G_{3k})\times h)\times s=1.1\times1.3\times(0.3+(24+1.1)\times0.6)\times0.2=4.393kN/m$

 $q_{1\mathrm{l}} = \gamma_0 \times 1.5 \times Q_{1k} \times s = 1.1 \times 1.5 \times 2.5 \times 0.2 = 0.825 kN/m$

$$M_1 \! = \! 0.1 q_{1\#} L^2 \! + \! 0.117 q_{1\#} L^2 \! = \! 0.1 \times 4.393 \times 1.2^2 \! + \! 0.117 \times 0.825 \times 1.2^2 \! = \! 0.772 kN \cdot m$$

 $M_{max} = 0.772 kN \cdot m$

 $\sigma = M_{max}/W = 0.772 \times 10^6/102354 = 7.538 N/mm^2 \leq [f]/\gamma_R = 13/1 = 13 N/mm^2$

满足要求!

3、抗剪验算

$$V_1 = 0.6q_{1#}L + 0.617q_{1/2}L = 0.6 \times 4.393 \times 1.2 + 0.617 \times 0.825 \times 1.2 = 3.774kN$$

 $V_{max}=3.774kN$

$$\tau_{\text{max}} = 3V_{\text{max}}/(2bh_0) = 3 \times 3.774 \times 1000/(2 \times 85 \times 85) =$$

 $0.783 N/mm^2 \le [\tau]/\gamma_R = 1.3/1 = 1.3 N/mm^2$

满足要求!

4、挠度验算

小梁承受的线荷载标准值q: q=(1×(G_{1k}

$$+(G_{2k}+G_{3k})\times h)+1\times Q_{1k})\times s=(1\times (0.3+(24+1.1)\times 0.6)+1\times 2.5)\times 0.2=3.572kN/m$$

挠度,跨中 ν_{max} =

$$0.677qL^4/(100EI) = 0.677 \times 3.572 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 1.281 \text{mm} \le [v] = \min(L/150, 10) = \min(1200/150, 10) = 8 \text{mm}$$

满足要求!

5、支座反力计算

承载能力极限状态

中间支座的最大支座反力设计值: $R_{max} = (1.1q_{1\#} + 1.2q_{1\%})L =$

$1.1\times4.393\times1.2+1.2\times0.825\times1.2=6.987$ kN

正常使用极限状态

中间支座的最大支座反力标准值: R'max=1.1qL=1.1×3.572×1.2=4.715kN

六、主梁验算

主梁类型	工字钢	主梁截面类型	10号工字钢
主梁抗弯强度设计值[f](N/mm²)	205	主梁抗剪强度设计值[τ](N/mm²)	125
主梁截面抵抗矩W(cm ³)	49	主梁弹性模量E(N/mm ²)	206000
主梁截面惯性矩I(cm ⁴)	245	主梁计算方式	三等跨连续梁
可调托座内主梁根数	1		

承载能力极限状态

单根主梁所受小梁支座反力设计值: R=R_{max}=6.987kN;

单根主梁自重设计值: q=1.1×1.3×0.113=0.162kN/m

正常使用极限状态

单根主梁所受小梁支座反力标准值: R'=R'max=4.715kN;

单根主梁自重标准值: q'=1×0.113=0.113kN/m

计算简图如下:

主梁计算简图一

1、抗弯验算

主梁弯矩图一(kN·m)

 $\sigma=M_{max}/W=4.916\times10^6/49000=100.323N/mm^2\leq[f]/\gamma_R=205/1=205N/mm^2$ 満足要求!

2、抗剪验算

主梁剪力图一(kN)

 $\tau_{max} = V_{max}/(8I_z\delta)[bh_0^2 - (b-\delta)h^2] = 21.662 \times 1000 \times [68 \times 100^2 - (68 + 100)] \times [68 \times 100] \times [68$

4.5)×84.8²]/(8×2450000×4.5)=54.859N/mm²≤[τ]/γ_R=125/1=125N/mm² 满足要求!

3、挠度验算

主梁变形图一(mm)

跨中 ν_{max} =0.658mm \leq [ν]=min{1200/150, 10}=8mm

满足要求!

4、支座反力计算

承载能力极限状态

图一

支座反力依次为 R_1 = 20.455kN, R_2 = 46.213kN, R_3 = 46.212kN, R_4 =

20.457kN

因此主梁传递至立杆的集中力:

 $R_{max}=Max[R_1, R_2, R_3, R_4]=46.213kN$

七、可调托座验算

荷载传递至立杆方式	可调托座	可调托座承载力设计值[N](kN)	100
-----------	------	-------------------	-----

按上节计算可知,可调托座受力N=R_{max}=46.213kN≤[N]/γ_R=100/1=100kN 满足要求!

八、立杆验算

支架可调托座支撑点至顶层水平杆中	650	立杆钢管截面类型(mm)	Ф60×3.2
心线的距离a(mm)			
立杆钢管计算截面类型(mm)	Ф60×3.2	钢材等级	Q355
立杆截面面积A(mm²)	571	立杆截面回转半径i(mm)	20.1
立杆截面抵抗矩W(cm ³)	7.7	抗压强度设计值[f](N/mm ²)	300
支架自重标准值q(kN/m)	0.15	支架立杆计算长度修正系数η	1.05
悬臂端计算长度折减系数k	0.6	支撑架搭设高度调整系数βH	1.05
架体项层步距修正系数γ	0.9	步距h(mm)	1500
顶部步距h'(mm)	1000		

1、长细比验算

 $l_{01} \! = \! \beta_H \gamma h' \! + \! 2ka \! = \! 1.05 \! \times \! 0.9 \! \times \! 1000 \! + \! 2 \! \times \! 0.6 \! \times \! 650 \! = \! 1725mm$

 $l_0\!\!=\!\!\beta_H \eta h\!\!=\!\!1.05\!\!\times\!\!1.05\!\!\times\!\!1500\!\!=\!\!1653.75mm$

 $\lambda \!\!=\!\! max[l_{01},\ l_0]/i \!\!=\!\! 1725/20.1 \!\!=\!\! 85.821 \!\!\leq\!\! [\lambda] \!\!=\!\! 150$

满足要求!

2、立杆稳定性验算

顶部立杆段:

 $\lambda_1 = l_{01}/i = 1725.000/20.1 = 85.821$

查表得, φ=0.591

不考虑风荷载:

 $N_1 = R_{max} = 46.213kN$

 $f{=}N_1/(\Phi A){=}46213.102/(0.591\times571){=}136.944N/mm^2{\le}[f]/\gamma_R{=}300/1{=}300N/mm^2$

满足要求!

非顶部立杆段:

 $\lambda = l_0/i = 1653.750/20.1 = 82.276$

查表得, φ1=0.615

不考虑风荷载:

 $N=N_1+\gamma_0\times\gamma_G\times q\times H=46.213+1.1\times1.3\times0.15\times12.119=48.813kN$

 $f=N/(\phi_1 A)=48.813\times 10^3/(0.615\times 571)=139.002N/mm^2\le [f]/\gamma_R=300/1=300N/mm^2$ 满足要求!

第2节 顶板 2 板模板 (盘扣式) 计算书

计算依据:

- 1、《建筑施工模板安全技术规范》JGJ162-2008
- 2、《建筑施工承插型盘扣式钢管脚手架安全技术标准》JGJ/T 231-2021
- 3、《混凝土结构设计规范》GB 50010-2010
- 4、《建筑结构荷载规范》GB 50009-2012
- 5、《钢结构设计标准》GB 50017-2017

一、工程属性

新浇混凝土楼板名称	顶板2	新浇混凝土楼板计算厚度(mm)	800
模板支架高度H(m)	6.18	模板支架纵向长度L(m)	30
模板支架横向长度B(m)	20		

二、荷载设计

	面板		0.1
模板及其支架自重标准值G _{1k} (kN/m ²)	面板及小梁		0.3
	楼板模板		0.5
混凝土自重标准值G2k(kN/m³)	24	钢筋自重标准值G3k(kN/m ³)	1.1
施工人员及设备产生的荷载标准值 Q1k(kN/m ²)	2.5		
模板支拆环境是否考虑风荷载	否		

三、模板体系设计

结构重要性系数γ0	1.1	脚手架安全等级	一级
主梁布置方向	平行立杆纵向方向	立杆纵向间距la(mm)	1200
立杆横向间距lb(mm)	1200	步距h(mm)	1500
顶层步距h′(mm)	1000	支架可调托座支撑点至项层水平杆中	650
		心线的距离a(mm)	
小梁间距s(mm)	200	小梁最大悬挑长度l ₁ (mm)	0
主梁最大悬挑长度l ₂ (mm)	0	承载力设计值调整系数γR	1

设计简图如下:

示意图

模板设计平面图

纵向剖面图

横向剖面图

四、面板验算

面板类型	覆面木胶合板	面板厚度t(mm)	15
面板抗弯强度设计值[f](N/mm ²)	15	面板抗剪强度设计值[τ](N/mm²)	1.4
面板弹性模量E(N/mm²)	6000	面板计算方式	三等跨连续梁

按三等跨连续梁,取1m单位宽度计算。

 $W = bh^2/6 = 1000 \times 15 \times 15/6 = 37500 mm^3, I = bh^3/12 = 1000 \times 15 \times 15 \times 15/12 = 281250 mm^4$

1、荷载计算

面板承受的单位宽度线荷载设计值: q1=

 $\gamma_0 \times [1.3 \times (G_{1k} + (G_{2k} + G_{3k}) \times h) + 1.5 \times Q_{1k}] \times b = 1.1 \times [1.3 \times (0.1 + (24 + 1.1) \times 0.8) + 1.5 \times 2.5] \times 1 = 32.982 kN/m$

计算简图如下:

2、强度验算

$$\begin{split} q_{1\#} = & \gamma_0 \times [\gamma_G(G_{1k} + (G_{2k} + G_{3k})h)]b = 1.1 \times [1.3 \times (0.1 + (24 + 1.1) \times 0.8)] \times 1 = 28.857 kN/m \\ q_{1\#} = & \gamma_0 \times (\gamma_Q \times Q_{1k}) \times b = 1.1 \times (1.5 \times 2.5) \times 1 = 4.125 kN/m \\ M_{max} = & 0.1 q_{1\#} L^2 + 0.117 q_{1\#} L^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.1 \times 28.857 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.117 \times 4.125 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.117 \times 4.125 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.117 \times 4.125 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 + 0.117 \times 4.125 \times 0.2^2 = 0.125 \times 0.2^2 \times 0.2$$

0.135kN·m

$$\sigma = M_{max}/W = 0.135 \times 10^6/37500 = 3.593 N/mm^2 \le [f]/\gamma_R = 15/1 = 15 N/mm^2$$
 満足要求!

3、挠度验算

面板承受的单位宽度线荷载标准值: $q=(1\times(G_{1k}+(G_{2k}+G_{3k})\times h)+1\times Q_{1k})\times b$ = $(1\times(0.1+(24+1.1)\times0.8)+1\times2.5)\times1=22.68kN/m$ $\nu_{max}=0.677ql^4/(100EI)=0.677\times22.68\times200^4/(100\times6000\times281250)=0.146mm$ $\nu_{max}=0.146mm\leq \min\{200/150,\ 10\}=1.333mm$ 满足要求!

五、小梁验算

小梁类型	方木	小梁截面类型(mm)	85×85
小梁抗弯强度设计值[f](N/mm ²)	13	小梁抗剪强度设计值[τ](N/mm²)	1.3
小梁截面抵抗矩W(cm ³)	102.354	小梁弹性模量E(N/mm ²)	9000
小梁截面惯性矩I(cm ⁴)	435.005	小梁计算方式	三等跨连续梁
小梁间距s(mm)	200		

1、荷载计算

小梁承受的线荷载设计值: $q_1 = \gamma_0 \times [1.3 \times (G_{1k} + (G_{2k} + G_{3k}) \times h) + 1.5 \times Q_{1k}] \times s = 1.1 \times [1.3 \times (0.3 + (24 + 1.1) \times 0.8) + 1.5 \times 2.5] \times 0.2 = 6.654 \text{kN/m}$

计算简图如下:

2、强度验算

 $q_{1\#}=\gamma_0\times 1.3\times (G_{1k})$

 $+(G_{2k}+G_{3k})\times h)\times s=1.1\times1.3\times (0.3+(24+1.1)\times0.8)\times0.2=5.829kN/m$

$$M_1 \! = \! 0.1 q_{1\#} L^2 \! + \! 0.117 q_{1\#} L^2 \! = \! 0.1 \times 5.829 \times 1.2^2 \! + \! 0.117 \times 0.825 \times 1.2^2 \! = \! 0.978 kN \cdot m$$

 $M_{max} = 0.978 \text{kN} \cdot \text{m}$

 $\sigma \!\!=\!\! M_{max}/W \!\!=\!\! 0.978 \times \! 10^6/102354 \!\!=\!\! 9.558N/mm^2 \!\! \leq \!\! [f]/\gamma_R \!\!=\!\! 13/1 \!\!=\!\! 13N/mm^2$

满足要求!

3、抗剪验算

$$V_1 = 0.6q_{1#}L + 0.617q_{1/2}L = 0.6 \times 5.829 \times 1.2 + 0.617 \times 0.825 \times 1.2 = 4.807kN$$

 $V_{max} = 4.807 kN$

$$\tau_{\text{max}} = 3V_{\text{max}}/(2bh_0) = 3 \times 4.807 \times 1000/(2 \times 85 \times 85) =$$

 $0.998N/mm^2 \le [\tau]/\gamma_R = 1.3/1 = 1.3N/mm^2$

满足要求!

4、挠度验算

小梁承受的线荷载标准值q: q=(1×(G_{1k}

 $+(G_{2k}+G_{3k})\times h)+1\times Q_{1k})\times s=(1\times (0.3+(24+1.1)\times 0.8)+1\times 2.5)\times 0.2=4.576kN/m$ 挠度,跨中 ν_{max} =

 $0.677qL^4/(100EI) = 0.677 \times 4.576 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 1.641 mm \leq [\nu] = 0.677qL^4/(100EI) = 0.677 \times 4.576 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 1.641 mm \leq [\nu] = 0.677 \times 4.576 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 1.641 mm \leq [\nu] = 0.677 \times 4.576 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 1.641 mm \leq [\nu] = 0.677 \times 4.576 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 1.641 mm \leq [\nu] = 0.677 \times 4.576 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 1.641 mm \leq [\nu] = 0.677 \times 4.576 \times 10^4/(100 \times 9000 \times 435.005 \times 10^4) = 0.641 mm \leq [\nu] = 0.677 \times 10^4/(100 \times 9000 \times 435.005 \times 10^4) = 0.641 mm \leq [\nu] = 0.677 \times 10^4/(100 \times 9000 \times 10^4) = 0.677 \times 10^4/(100 \times 10^4)$

 $\min(L/150, 10) = \min(1200/150, 10) = 8 \text{mm}$

满足要求!

5、支座反力计算

承载能力极限状态

中间支座的最大支座反力设计值: $R_{max} = (1.1q_{1\#} + 1.2q_{1\%})L =$

$1.1 \times 5.829 \times 1.2 + 1.2 \times 0.825 \times 1.2 = 8.882$ kN

正常使用极限状态

中间支座的最大支座反力标准值: R'max=1.1qL=1.1×4.576×1.2=6.04kN

六、主梁验算

主梁类型	工字钢	主梁截面类型	10号工字钢
主梁抗弯强度设计值[f](N/mm ²)	205	主梁抗剪强度设计值[τ](N/mm²)	125
主梁截面抵抗矩W(cm ³)	49	主梁弹性模量E(N/mm ²)	206000
主梁截面惯性矩I(cm ⁴)	245	主梁计算方式	三等跨连续梁
可调托座内主梁根数	1		

承载能力极限状态

单根主梁所受小梁支座反力设计值: R=R_{max}=8.882kN;

单根主梁自重设计值: q=1.1×1.3×0.113=0.162kN/m

正常使用极限状态

单根主梁所受小梁支座反力标准值: R'=R'max=6.04kN;

单根主梁自重标准值: q'=1×0.113=0.113kN/m

计算简图如下:

主梁计算简图一

1、抗弯验算

主梁弯矩图一(kN·m)

 $\sigma=M_{max}/W=6.243\times10^6/49000=127.403N/mm^2\leq[f]/\gamma_R=205/1=205N/mm^2$ 満足要求!

2、抗剪验算

主梁剪力图一(kN)

4.5)×84.8²]/(8×2450000×4.5)=69.658N/mm² \leq [τ]/ γ_R =125/1=125N/mm² 満足要求!

3、挠度验算

主梁变形图一(mm)

跨中 ν_{max} =0.842mm \leq [ν]=min{1200/150, 10}=8mm

满足要求!

4、支座反力计算

承载能力极限状态

图一

支座反力依次为R₁= 25.981kN, R₂= 58.689kN, R₃= 58.687kN, R₄=

25.984kN

因此主梁传递至立杆的集中力:

 $R_{max}=Max[R_1, R_2, R_3, R_4]=58.689kN$

七、可调托座验算

荷载传递至立杆方式	可调托座	可调托座承载力设计值[N](kN)	100
-----------	------	-------------------	-----

按上节计算可知,可调托座受力N=R_{max}=58.689kN≤[N]/γ_R=100/1=100kN 满足要求!

八、立杆验算

支架可调托座支撑点至项层水平杆中	650	立杆钢管截面类型(mm)	Ф60×3.2
心线的距离a(mm)			
立杆钢管计算截面类型(mm)	Ф60×3.2	钢材等级	Q355
立杆截面面积A(mm²)	571	立杆截面回转半径i(mm)	20.1
立杆截面抵抗矩W(cm ³)	7.7	抗压强度设计值[f](N/mm ²)	300
支架自重标准值q(kN/m)	0.15	支架立杆计算长度修正系数η	1.05
悬臂端计算长度折减系数k	0.6	支撑架搭设高度调整系数βH	1
架体项层步距修正系数γ	0.9	步距h(mm)	1500
顶部步距h'(mm)	1000		

1、长细比验算

 $l_{01} \!\!=\!\! \beta_H \gamma h' \!\!+\!\! 2ka \!\!=\!\! 1 \times\! 0.9 \times\! 1000 \!\!+\!\! 2 \times\! 0.6 \times\! 650 \!\!=\!\! 1680mm$

 $l_0\!\!=\!\!\beta_H \eta h\!\!=\!\!1\!\!\times\!\!1.05\!\!\times\!\!1500\!\!=\!\!1575mm$

 $\lambda \!\!=\!\! max[l_{01},\ l_0]/i \!\!=\!\! 1680/20.1 \!\!=\!\! 83.582 \!\!\leq\!\! [\lambda] \!\!=\!\! 150$

满足要求!

2、立杆稳定性验算

顶部立杆段:

 $\lambda_1 = l_{01}/i = 1680.000/20.1 = 83.582$

查表得, φ=0.607

不考虑风荷载:

 $N_1 = R_{max} = 58.689 kN$

 $f{=}N_1/(\Phi A){=}58688.929/(0.607\times571){=}169.329N/mm^2{\le}[f]/\gamma_R{=}300/1{=}300N/mm^2$

满足要求!

非顶部立杆段:

 $\lambda = l_0/i = 1575.000/20.1 = 78.358$

查表得, φ1=0.648

不考虑风荷载:

 $N=N_1+\gamma_0\times\gamma_G\times q\times H=58.689+1.1\times1.3\times0.15\times6.18=60.015kN$

 $f=N/(\phi_1A)=60.015\times 10^3/(0.648\times 571)=162.198N/mm^2\le [f]/\gamma_R=300/1=300N/mm^2$ 満足要求!

第3节中板板模板(盘扣式)计算书

计算依据:

- 1、《建筑施工模板安全技术规范》JGJ162-2008
- 2、《建筑施工承插型盘扣式钢管脚手架安全技术标准》JGJ/T 231-2021
- 3、《混凝土结构设计规范》GB 50010-2010
- 4、《建筑结构荷载规范》GB 50009-2012
- 5、《钢结构设计标准》GB 50017-2017

一、工程属性

新浇混凝土楼板名称	中板	新浇混凝土楼板计算厚度(mm)	500
模板支架高度H(m)	8.034	模板支架纵向长度L(m)	30
模板支架横向长度B(m)	20		

二、荷载设计

模板及其支架自重标准值G _{1k} (kN/m²)	面板	0.1
------------------------------------	----	-----

	面板及小梁 楼板模板		0.3
			0.5
混凝土自重标准值G2k(kN/m³)	24 钢筋自重标准值G _{3k} (kN/m ³)		1.1
施工人员及设备产生的荷载标准值	2.5		
$Q_{1k}(kN/m^2)$	2.5		
模板支拆环境是否考虑风荷载	否		

三、模板体系设计

结构重要性系数γ0	1.1	脚手架安全等级	一级
主梁布置方向	平行立杆纵向方向	立杆纵向间距la(mm)	1200
立杆横向间距lb(mm)	1200	步距h(mm)	1500
项层步距h'(mm)	1000	支架可调托座支撑点至项层水平杆中	650
		心线的距离a(mm)	
小梁间距s(mm)	200	小梁最大悬挑长度l ₁ (mm)	0
主梁最大悬挑长度l ₂ (mm)	0	承载力设计值调整系数γR	1

设计简图如下:

示意图

模板设计平面图

纵向剖面图

横向剖面图

四、面板验算

面板类型	覆面木胶合板	面板厚度t(mm)	15
面板抗弯强度设计值[f](N/mm ²)	15	面板抗剪强度设计值[τ](N/mm²)	1.4
面板弹性模量E(N/mm²)	6000	面板计算方式	三等跨连续梁

按三等跨连续梁,取1m单位宽度计算。

 $W = bh^2/6 = 1000 \times 15 \times 15/6 = 37500 mm^3, I = bh^3/12 = 1000 \times 15 \times 15 \times 15/12 = 281250 mm^4$

1、荷载计算

面板承受的单位宽度线荷载设计值: q1=

 $\gamma_0 \times [1.3 \times (G_{1k} + (G_{2k} + G_{3k}) \times h) + 1.5 \times Q_{1k}] \times b = 1.1 \times [1.3 \times (0.1 + (24 + 1.1) \times 0.5) + 1.5 \times 2.5] \times 1 = 22.215 kN/m$

计算简图如下:

2、强度验算

$$q_{1}$$
 = $\gamma_0 \times [\gamma_G(G_{1k} + (G_{2k} + G_{3k})h)]b = 1.1 \times [1.3 \times (0.1 + (24 + 1.1) \times 0.5)] \times 1 = 18.09 \text{kN/m}$ q_{1} = $\gamma_0 \times (\gamma_Q \times Q_{1k}) \times b = 1.1 \times (1.5 \times 2.5) \times 1 = 4.125 \text{kN/m}$ $M_{max} = 0.1 q_{1}$ 是 $Q_{1k} + 0.117 q_{1}$ 是 $Q_$

3、挠度验算

面板承受的单位宽度线荷载标准值: $q=(1\times(G_{1k}+(G_{2k}+G_{3k})\times h)+1\times Q_{1k})\times b$ = $(1\times(0.1+(24+1.1)\times0.5)+1\times2.5)\times1=15.15$ kN/m $\nu_{max}=0.677$ ql⁴/(100EI)= $0.677\times15.15\times200^4$ /(100×6000×281250)=0.097mm $\nu_{max}=0.097$ mm $\leq min\{200/150, 10\}=1.333$ mm 满足要求!

五、小梁验算

小梁类型	方木	小梁截面类型(mm)	85×85
小梁抗弯强度设计值[f](N/mm ²)	13	小梁抗剪强度设计值[τ](N/mm²)	1.3
小梁截面抵抗矩W(cm ³)	102.354	小梁弹性模量E(N/mm²)	9000
小梁截面惯性矩I(cm ⁴)	435.005	小梁计算方式	三等跨连续梁
小梁间距s(mm)	200		

1、荷载计算

小梁承受的线荷载设计值: $q_1 = \gamma_0 \times [1.3 \times (G_{1k})]$

 $+(G_{2k}+G_{3k})\times h)+1.5\times Q_{1k}]\times s=1.1\times [1.3\times (0.3+(24+1.1)\times 0.5)+1.5\times 2.5]\times 0.2=4.5kN/m$ 计算简图如下:

2、强度验算

 $q_{1\#} = \gamma_0 \times 1.3 \times (G_{1k})$

 $+(G_{2k}+G_{3k})\times h)\times s=1.1\times1.3\times(0.3+(24+1.1)\times0.5)\times0.2=3.675kN/m$

 $q_{1f} = \gamma_0 \times 1.5 \times Q_{1k} \times s = 1.1 \times 1.5 \times 2.5 \times 0.2 = 0.825 kN/m$

 $M_1 \! = \! 0.1q_{1\#}L^2 \! + \! 0.117q_{1\#}L^2 \! = \! 0.1 \times 3.675 \times 1.2^2 \! + \! 0.117 \times 0.825 \times 1.2^2 \! = \! 0.668 kN \cdot m$

 $M_{max} = 0.668 \text{kN} \cdot \text{m}$

 $\sigma \!\!=\!\! M_{max}/W \!\!=\!\! 0.668 \times 10^6/102354 \!\!=\!\! 6.528N/mm^2 \!\! \leq \!\! [f]/\gamma_R \!\!=\!\! 13/1 \!\!=\!\! 13N/mm^2$

满足要求!

3、抗剪验算

 $V_1 = 0.6q_{1#}L + 0.617q_{1#}L = 0.6 \times 3.675 \times 1.2 + 0.617 \times 0.825 \times 1.2 = 3.257kN$

 $V_{max} = 3.257 kN$

 $\tau_{\text{max}} = 3V_{\text{max}}/(2bh_0) = 3 \times 3.257 \times 1000/(2 \times 85 \times 85) =$

 $0.676N/mm^2 \le [\tau]/\gamma_R = 1.3/1 = 1.3N/mm^2$

满足要求!

4、挠度验算

小梁承受的线荷载标准值 $q: q=(1\times (G_{1k}))$

 $+(G_{2k}+G_{3k})\times h)+1\times Q_{1k})\times s=(1\times (0.3+(24+1.1)\times 0.5)+1\times 2.5)\times 0.2=3.07kN/m$ 挠度,跨中 ν_{max} =

 $0.677qL^4/(100EI) = 0.677 \times 3.07 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 1.101 mm \leq [\nu] = 0.677qL^4/(100EI) = 0.677 \times 3.07 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 1.101 mm \leq [\nu] = 0.677 \times 3.07 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 1.101 mm \leq [\nu] = 0.677 \times 3.07 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 1.101 mm \leq [\nu] = 0.677 \times 3.07 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 1.101 mm \leq [\nu] = 0.677 \times 3.07 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 1.101 mm \leq [\nu] = 0.677 \times 3.07 \times 1200^4/(100 \times 9000 \times 435.005 \times 10^4) = 0.001 \times 10^4/(100 \times 9000 \times 10^4) = 0.001 \times 10^4/(100 \times 10^4)$

 $\min(L/150, 10) = \min(1200/150, 10) = 8 \text{mm}$

满足要求!

5、支座反力计算

承载能力极限状态

中间支座的最大支座反力设计值: $R_{max} = (1.1q_{1i} + 1.2q_{1i})L =$

 $1.1\times3.675\times1.2+1.2\times0.825\times1.2=6.039$ kN

正常使用极限状态

中间支座的最大支座反力标准值: R'max=1.1qL=1.1×3.07×1.2=4.052kN

六、主梁验算

主梁类型	工字钢	主梁截面类型	10号工字钢
主梁抗弯强度设计值[f](N/mm²)	205	主梁抗剪强度设计值[τ](N/mm²)	125
主梁截面抵抗矩W(cm ³)	49	主梁弹性模量E(N/mm ²)	206000
主梁截面惯性矩I(cm ⁴)	245	主梁计算方式	三等跨连续梁
可调托座内主梁根数	1		

承载能力极限状态

单根主梁所受小梁支座反力设计值: R=R_{max}=6.039kN;

单根主梁自重设计值: q=1.1×1.3×0.113=0.162kN/m

正常使用极限状态

单根主梁所受小梁支座反力标准值: R'=R'max=4.052kN;

单根主梁自重标准值: q'=1×0.113=0.113kN/m

计算简图如下:

主梁计算简图一

1、抗弯验算

主梁弯矩图一(kN·m)

 σ = M_{max} /W=4.252×10⁶/49000=86.775N/mm²≤[f]/γ_R=205/1=205N/mm² 満足要求!

2、抗剪验算

主梁剪力图一(kN)

 $\tau_{max} = V_{max}/(8I_z\delta)[bh_0^2 - (b-\delta)h^2] = 18.739 \times 1000 \times [68 \times 100^2 - (68 + 100)] \times [68 \times 100] \times [68$

4.5)×84.8²]/(8×2450000×4.5)=47.456N/mm²≤[τ]/γ_R=125/1=125N/mm² 满足要求!

3、挠度验算

主梁变形图一(mm)

跨中 ν_{max} =0.566mm \leq [ν]=min{1200/150, 10}=8mm

满足要求!

4、支座反力计算

承载能力极限状态

图一

支座反力依次为 R_1 = 17.69kN, R_2 = 39.972kN, R_3 = 39.971kN, R_4 =

17.692kN

因此主梁传递至立杆的集中力:

 $R_{max}=Max[R_1, R_2, R_3, R_4]=39.972kN$

七、可调托座验算

荷载传递至立杆方式	可调托座	可调托座承载力设计值[N](kN)	100
-----------	------	-------------------	-----

按上节计算可知,可调托座受力N=R_{max}=39.972kN≤[N]/γ_R=100/1=100kN 满足要求!

八、立杆验算

支架可调托座支撑点至项层水平杆中	650	立杆钢管截面类型(mm)	Ф60×3.2
心线的距离a(mm)			
立杆钢管计算截面类型(mm)	Ф60×3.2	钢材等级	Q355
立杆截面面积A(mm ²)	571	立杆截面回转半径i(mm)	20.1
立杆截面抵抗矩W(cm ³)	7.7	抗压强度设计值[f](N/mm ²)	300
支架自重标准值q(kN/m)	0.15	支架立杆计算长度修正系数η	1.05
悬臂端计算长度折减系数k	0.6	支撑架搭设高度调整系数βH	1.05
架体项层步距修正系数γ	0.9	步距h(mm)	1500
顶部步距h'(mm)	1000		

1、长细比验算

 $l_{01} = \beta_H \gamma h' + 2ka = 1.05 \times 0.9 \times 1000 + 2 \times 0.6 \times 650 = 1725 mm$

 $l_0 = \beta_H \eta h = 1.05 \times 1.05 \times 1500 = 1653.75 mm$

 $\lambda \!\!=\!\! max[l_{01},\ l_0]/i \!\!=\!\! 1725/20.1 \!\!=\!\! 85.821 \!\!\leq\!\! [\lambda] \!\!=\!\! 150$

满足要求!

2、立杆稳定性验算

顶部立杆段:

 $\lambda_1 \!\!=\!\! l_{01}/i \!\!=\!\! 1725.000/20.1 \!\!=\!\! 85.821$

查表得, φ=0.591

不考虑风荷载:

 $N_1 = R_{max} = 39.972kN$

 $f = N_1/(\Phi A) = 39971.897/(0.591 \times 571) = 118.449 N/mm^2 \le [f]/\gamma_R = 300/1 = 300 N/mm^2$

满足要求!

非顶部立杆段:

 $\lambda = l_0/i = 1653.750/20.1 = 82.276$

查表得, φ1=0.615

不考虑风荷载:

 $N = N_1 + \gamma_0 \times \gamma_G \times q \times H = 39.972 + 1.1 \times 1.3 \times 0.15 \times 8.034 = 41.695 kN$

 $f=N/(\phi_1 A)=41.695\times 10^3/(0.615\times 571)=118.734 N/mm^2 \le [f]/\gamma_R=300/1=300 N/mm^2$ 満足要求!