TM1637

特性描述

TM1637 是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用电路,内部集成有MCU 数字 接口、数据锁存器、LED 高压驱动、键盘扫描等电路。本产品性能优良,质量可靠。主要应用于电磁炉、微波 炉及小家电产品的显示屏驱动。采用DIP20/SOP20的封装形式。

功能特点

- 采用功率CMOS 工艺
- ▶ 显示模式(8 段×6 位),支持共阳数码管输出
- ▶ 键扫描(8×2bit),增强型抗干扰按键识别电路
- ▶ 辉度调节电路(占空比 8 级可调)
- 两线串行接口(CLK, DIO)
- 振荡方式:内置RC 振荡
- ▶ 内置上电复位电路
- 内置自动消隐电路
- 封装形式: DIP20/SOP20

管脚信息

管脚功能

符号	管脚名称	管脚号	说明
DIO	数据输入/输出	17	串行数据输入/输出,输入数据在 SLCK 的低电平变化,在 SCLK 的高电平被传输,每传输一个字节芯片内部都将在第 八个时钟下降沿产生一个 ACK
CLK	时钟输入	18	在上升沿输入/输出数据
K1~K2	键扫数据输入	19-20	输入该脚的数据在显示周期结束后被锁存
SG1~SG8	输出(段)	2-9	段输出(也用作键扫描), N 管开漏输出
GRID6~GRID1	输出(位)	10-15	位输出,P管开漏输出
VDD	逻辑电源	16	接电源正
GND	逻辑地	1	接系统地

在干燥季节或者干燥使用环境内,容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的 集成电路预防处理措施,如果不正当的操作和焊接,可能会造成ESD损坏或者性能下降,芯片无法正常工作。

读键扫数据

键扫矩阵为8×2bit,如下所示

在有按键按下时,读键数据如下: (低位在前,高位在后)

	SG1	SG2	SG3	SG4	SG5	SG6	SG7	SG8
K1	1110_1111	0110_1111	1010_1111	0010_1111	1100_1111	0100_1111	1000_1111	0000_1111
K2	1111_0111	0111_0111	1011_0111	0011_0111	1101_0111	0101_0111	1001_0111	0001_0111

注意: 在无按键按下时,读键数据为: 1111_1111, 低位在前,高位在后。由于在电磁炉等厨房电器应用中,由于干扰较强,为 改善这个问题, TM1637 采用负沿触发方式解决误触发现象, 即所谓"跳键"现象, TM1637 不支持组合按键。

LED 驱动控制专用电路

TM1637

显示寄存器地址和显示模式

该寄存器存储通过串行接口从外部器件传送到TM1637的数据,地址00H-05H共6个字节单元,分别与芯片SGE和GRID管脚所接的LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	
X	xHL (们	氐四位)			xxHU(i	高四位))	
ВО	В1	B2	В3	B4	B5	В6	В7	
	00	HL			00	GRID1		
	01	HL			01	GRID2		
	02	HL			02	HU		GRID3
	03	HL			03	GRID4		
	04	HL			04		GRID5	
	05	HL			05	HU		GRID6

接口说明

微处理器的数据通过两线总线接口和 TM1637 通信,在输入数据时当 CLK 是高电平时,DIO 上的信号必须保持不变;只有 CLK 上的时钟信号为低电平时,DIO 上的信号才能改变。数据输入的开始条件是 CLK 为高电平时,DIO 由高变低;结束条件是 CLK 为高时,DIO 由低电平变为高电平。

TM1637 的数据传输带有应答信号 ACK, 当传输数据正确时, 会在第八个时钟的下降沿, 芯片内部会产生一个应答信号 ACK 将 DIO 管脚拉低, 在第九个时钟结束之后释放 DIO 口线。

1、指令数据传输过程如下图(读按键数据时序)

Command:读按键指令; S0、S1、S2、K1、K2 组成按键信息编码,S0、S1、S2 为 SGn 的编码,K1、K2 为 K1 和 K2 键的编码,读按键时,时钟频率应小于 250K,先读低位,后读高位。

3

LED 驱动控制专用电路

TM1637

2、写 SRAM 数据地址自动加 1 模式

Command1: 设置数据 Command2: 设置地址 Data1~N: 传输显示数据 Command3: 控制显示

3、写 SRAM 数据固定地址模式

Command1: 设置数据 Command2: 设置地址 Data1~N: 传输显示数据 Command3: 控制显示

数据指令

指令用来设置显示模式和LED 驱动器的状态。

在CLK下降沿后由DIO输入的第一个字节作为一条指令。经过译码,取最高B7、B6两位比特位以区别不同的指令。

	B7	В6	指令					
1	0	1	数据命令设置					
	1	0	显示控制命令设置					
	1	1	地址命令设置					

如果在指令或数据传输时发送STOP命令,串行通讯被初始化,并且正在传送的指令或数据无效(之前传送的指令或数据保持有效)

1、数据命令设置

该指令用来设置数据写和读,B1和B0位不允许设置01或11。

W2R							r2R		
В7	В6	B5	B5 B4		B2	В1	во	功能	说明
0	1					0	0	数据读写模式设置	写数据到显示寄存器
0	1					1	0		读键扫数据
0	1	无关项	页,填		0				自动地址增加
0	1	()		1			地址培加侯入反直	固定地址
0	1			0				测试模式设置(内	普通模式
0	1			1				部使用)	测试模式

TM1637

2、地址命令设设置

MSB	}				LSB					
В7	В6	B5 B4		В3	B2	В1	во	显示地址		
1	1			0	0	0	0	C0H		
1	1			0	0	0	1	C1H		
1	1	无关项	页,填	0	0	1	0	C2H		
1	1	()	0	0	1	1	СЗН		
1	1			0	1	0	0	C4H		
1	1			0	1	0	1	C5H		

该指令用来设置显示寄存器的地址;如果地址设为C6H 或更高,数据被忽略,直到有效地址被设定;上 电时,地址默认设为C0H。

3、显示控制

MSB

LSB

В7	В6	B5	B4	В3	B2	В1	ВО	功能	说明
1	0				0	0	0		设置脉冲宽度为 1/16
1	0				0	0	1		设置脉冲宽度为 2/16
1	0	-			0	1	0	消光数量设置	设置脉冲宽度为 4/16
1	0				0	1	1		设置脉冲宽度为 10/16
1	0	无关项	页,填			0	0	月兀	设置脉冲宽度为 11/16
1	0	()		1	0	1		设置脉冲宽度为 12/16
1	0				1	f	0		设置脉冲宽度为 13/16
1	0				1	1	7		设置脉冲宽度为 14/16
1	0			0		显示开关设置		日二五子沁翠	显示关
1	0							亚小丌大以直	显示开

5

©Titan Micro Electronics

程序流程图

1、采用地址自动加一模式的程序流程图

7

2、采用固定地址的程序设计流程图

硬件连接图

电路图中所接数码管为共阳数码管

注意: 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1637芯片放置,加强滤波效果。

- 2、 连接在DIO、 CLK通讯口上下拉100pF电容可以降低对通讯口的干扰。
- 3、 因蓝光数码管的导通压降压约为3V, 因此TM1637供电应选用5V。

8

©Titan Micro Electronics www.titanmec.com V2.4

9

电气参数:

1、极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ~+7.0	V
逻辑输入电压	VII	-0.5 ~ VDD + 0.5	V
LED SEG 驱动灌电流	IO1	50	mA
LED GRID 驱动拉电流	IO2	200	mA
功率损耗	PD	400	mW
工作温度	Topt	-40 ~ +85	°C
储存温度	Tstg	-65 ~ +150	°C

2、正常工作范围 (Ta = -40~+85℃, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD		5		٧	-
高电平输入电压	VIH	0.7 VDD	-	VDD	٧	-
低电平输入电压	VIL	0	-	0.3 VDD	٧	-

3、电气特性 (Ta = -40~+85℃, VDD = 4.5 ~ 5.5 V, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
GRID驱动拉电流	loh1	80	120	180	mA	GRID1~GRID6, Vo=vdd-2V
	loh2	80	140	200	mA	GRID1~GRID6, Vo=vdd-3V
SEG驱动灌电流	IOL1	20	30	50	mA	SEG1~SEG8 Vo=0.3V
DOUT脚输出低电平电流	Idout	4	-	-	mA	Vo = 0.4V, dout
高电平输出电流容许量	Itolsg	-	-	5	%	Vo=VDD - 3V, GRID1∼GRID6

TM1637

输出下拉电阻	RL		10		ΚΩ	K1~K2
输入电流	II	-	-	±1	μΑ	VI = VDD / VSS
高电平输入电压	VIH	0.7 VDD	-		٧	CLK, DIN
低电平输入电压	VIL	-	-	0.3 VDD	V	CLK, DIN
滞后电压	VH	-	0.35	-	V	CLK, DIN
动态电流损耗	IDDdyn	-	-	5	mA	无负载,显示关

4、开关特性 (Ta = -40~+85℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测	试条件
振荡频率	fosc	-	450	-	KHz		
	†PLZ	-	-	300	ns	CLK	(→ DIO
传输延迟时间	†PZL	-	-	100	ns	CL = 15p	oF, RL = 10K Ω
	TTZH 1		1	2	μs	CL =	GRID1∼ GRID6
上升时间	TTZH 2	-	7	0.5	μs	300p F	SEG1~ SEG8
下降时间	TTHZ		-	120	μs	CL = 300pF, Segn, Gridn	
最大时钟频率	Fmax	-	-	500	KHz	占空比50%	
输入电容	CI	-	-	15	pF		-

5、时序特性 (Ta = -40 ~+85℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	-	-	ns	-
数据建立时间	tSETUP	100	-	-	ns	-
数据保持时间	†HOLD	100	-	-	ns	-
等待时间	tWAIT	1	-	-	μs	CLK ↑ →CLK ↓

IC封装示意图 DIP20

符号	单位: 毫米			
何写	最小值	典型值	最大值	
A	3.71	4.00	4.31	
A1	0.50	0.60	0.80	
A2	3.20	3.40	3.60	
В	0.33	0.45	0.53	
B1		1.525(TYP)		
C	0.20	0.28	0.36	
D	25.70	26.00	26.54	
E	6.20	6.40	6.75	
E1	7.32	7.78	8.25	
e		2.54(TYP)		
L	3.00	3.30	3.60	
E2	8.20	8.70	9.10	
B2	0.87	1.02	1.17	

SOP20

Symbol	Dimensions In Millmeters			Dimensions In Inches			
	Min	Nom	Max	Min	Nom	Max	
Α	2.15	2.35	2.55	0.085	0.093	0.100	
A1	0.05	0.15	0.25	0.002	0.006	0.010	
b		0.40			0.016		
С	-	0.25	_	_	0.010		
D	12.40	12.70	13.00	0.488	0.500	0.512	
E	7.40	7.65	7.90	0.291	0.301	0.311	
е		1.27 —		_	0.050	_	
Н	10.15	10.45	10.75	0.400	0.411	0.423	
K		0.50		222	0.020		
L	0.60	0.80	80 1.00 0.024 - 8 0		0.031	0.039	
α	0	_				8°	
β	_	45	_		45°	_	