1

Random Numbers

Mannem Charan - AI21BTECH11019

1

2

CONTENTS

1	Uniform	Random	Numbers

2 Central Limit Theorem

3 From Uniform to Other

Abstract—This manual provides solutions for random numbers assignment.

1 Uniform Random Numbers

Let U be a uniform random variable between 0 and 1.

1.1 Generate 10^6 samples of U using a C program and save into a file called uni.dat .

Solution: Download the following files.

wget https://github.com/Charanyash/Random-Numbers-/blob/main/codes/uniform.c wget https://github.com/Charanyash/Random-Numbers-/blob/main/codes/coeffs.h

Then use the following commands in linux terminal,

1.2 Load the uni.dat file into python and plot the empirical CDF of *U* using the samples in uni.dat. The CDF is defined as

$$F_U(x) = \Pr\left(U \le x\right) \tag{1.1}$$

Solution: Use the following code to plot Fig. 1.2

wget https://github.com/Charanyash/Random-Numbers-/blob/main/codes/ uniform_cdf_plot.py

Run the following command in the linux terminal,

python3 uniform cdf plot.py

Fig. 1.2: The CDF of U

1.3 Find a theoretical expression for $F_U(x)$.

Solution: Given that, random variable U is uniformly distributed in interval (0,1). So we can write that, the probability density function

$$f_U(x) = \frac{1}{1 - 0}$$
 (1.2)
= 1 (1.3)

So for $x \in (0, 1)$, the probability distribution function $F_U(x)$ can be calculated as,

$$F_U(x) = \int_0^x f_x(x) dx \qquad (1.4)$$

$$= \int_0^x 1 dx \tag{1.5}$$

$$= x \tag{1.6}$$

For x < 0,

$$F_U(x) = \Pr(U \le x) = 0 \ (\because f_U = 0) \ (1.7)$$

And for x > 1

$$F_U(x) = \Pr(U \le x) = 1 (:: f_U = 0)$$
 (1.8)

Overall,

$$F_{U}(x) = \begin{cases} 0 & , x \le 0 \\ x & , 0 < x < 1 \\ 1 & , x \ge 1 \end{cases}$$

1.4 The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i$$
 (1.9)

and its variance as

$$var[U] = E[U - E[U]]^2$$
 (1.10)

Write a C program to find the mean and variance of U.

Solution: Download the following code,

wget https://github.com/Charanyash/Random-Numbers-/blob/main/codes/ mean_var_uniform.c

wget https://github.com/Charanyash/Random-Numbers-/blob/main/codes/coeffs.h

Run the following command,

We will get output as,

$$mean = 0.500007$$
 (1.11)

$$variance = 0.083301$$
 (1.12)

1.5 Verify your result theoretically given that

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x) \tag{1.13}$$

Solution: Already we know that,

$$F_x(x) = \begin{cases} 0 & , x \le 0 \\ x & , 0 < x < 1 \\ 1 & , x \ge 1 \end{cases}$$

So, the given integral solves down to,

$$E\left[U^{k}\right] = \int_{0}^{1} x^{k} dx \tag{1.14}$$

Since $F_x(x)$ is constant w.r.t x for $x \ge 1$ amd $x \le 0$.

For mean,

$$E[U] = \int_0^1 x dx$$
 (1.15)

$$= \left\{ \frac{x^2}{2} \right\}_0^1 \tag{1.16}$$

$$= 0.5$$
 (1.17)

Now for variance, we know that

$$Var[U] = E[U - E[U]]^{2}$$
 (1.18)

$$= E \left[U^2 + E \left[U \right]^2 - 2E \left[U \right] U \right] \quad (1.19)$$

(1.20)

Since expected value is a linear operator, we can write

$$= E[U^{2}] + E[U]^{2} - 2E[U]^{2}$$
 (1.21)

$$= E\left[U^2\right] - E\left[U\right]^2 \tag{1.22}$$

To get variance we will find,

$$E[U^2] = \int_0^1 x^2 dx$$
 (1.23)

$$= \left\{ x^3 / 3 \right\}_0^1 \tag{1.24}$$

$$=\frac{1}{3}$$
 (1.25)

Therefore,

$$Var[U] = \frac{1}{3} - \left(\frac{1}{2}\right)^2$$
 (1.26)

$$=\frac{1}{3}-\frac{1}{4}\tag{1.27}$$

$$=\frac{1}{12}$$
 (1.28)

$$= 0.0833$$
 (1.29)

2 Central Limit Theorem

2.1 Generate 10⁶ samples of the random variable

$$X = \sum_{i=1}^{12} U_i - 6 \tag{2.1}$$

using a C program, where U_i , i = 1, 2, ..., 12 are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat.

Solution: Download the code below

wget https://github.com/Charanyash/Random-Numbers-/blob/main/codes/gaussian.c

Fig. 2.2: The CDF of X

wget https://github.com/Charanyash/Random-Numbers-/blob/main/codes/coeffs.h

Run the following command

cc gaussian.c ./a.out

2.2 Load gau.dat in python and plot the empirical CDF of *X* using the samples in gau.dat. What properties does a CDF have?

Solution: Download the below code,

wget https://github.com/Charanyash/Random-Numbers-/blob/main/codes/ gaussian cdf plot.py

Run the following command to get CDF plot,

python3 gaussian_cdf_plot.py

The CDF of X is plotted in Fig. 2.2.

Properties Of CDF:

- CDF is monotonically increasing from -∞ <
 x < ∞
- Let us define the Q(x) function as, Q(x) = Pr(X > x)
- The CDF, $F_X(x) = 1 Q(x) = Q(-x)$
- 2.3 Load gau.dat in python and plot the empirical PDF of *X* using the samples in gau.dat. The PDF of *X* is defined as

$$p_X(x) = \frac{d}{dx} F_X(x) \tag{2.2}$$

What properties does the PDF have?

Solution: The PDF of X is plotted in Fig. 2.3 using the code below

Fig. 2.3: The PDF of X

wget https://github.com/Charanyash/Random-Numbers-/blob/main/codes/ gaussian pdf plot.py

Run the following command,

python3 gaussian_pdf_plot.py

Properties of PDF:

- a) $\forall x \in \mathbb{R}, \ p_X(x) \ge 0$
- b) PDF is symmetric about the mean, in this case at x = 0
- c) The maxima of the curve is observed at mean of distribution.
- 2.4 Find the mean and variance of *X* by writing a C program.

Solution: Download the C code from the links below,

wget https://github.com/Charanyash/Random-Numbers-/blob/main/codes/ mean_var_gauss.c wget https://github.com/Charanyash/Random-Numbers-/blob/main/codes/coeffs.h

Then run the following command in linux terminal

cc mean_var_gauss.c -lm ./a.out

we will get *mean* = 0.000326, *variance* = 1.000906

2.5 Given that

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty, \quad (2.3)$$

repeat the above exercise theoretically.

Solution: Given that,

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty, \quad (2.4)$$

We know,

$$E[x] = \int_{-\infty}^{\infty} x p_X[x] dx \qquad (2.5)$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} x \exp\left(-\frac{x^2}{2}\right) dx \qquad (2.6)$$

Since $\frac{1}{\sqrt{2\pi}}x \exp\left(-\frac{x^2}{2}\right)$ is an odd function. We can write,

$$E[x] = 0 \tag{2.7}$$

Consider the following expression,

$$E\left[x^{2}\right] = \int_{-\infty}^{\infty} x^{2} p_{X}[x] dx \qquad (2.8)$$

$$=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}x^2e^{\left(-\frac{x^2}{2}\right)}dx\tag{2.9}$$

To solve the above integral, we will use integration by parts, i.e,

$$\int uvdx = u \int vdx - \int u' \left(\int vdx \right) dx$$
(2.10)

$$E\left[x^{2}\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \left(xe^{-\frac{x^{2}}{2}}\right) dx \qquad (2.11)$$
$$= \frac{1}{\sqrt{2\pi}} \left(x \int xe^{-\frac{x^{2}}{2}} dx - \int \left(\int xe^{-\frac{x^{2}}{2}} dx\right)\right) \qquad (2.12)$$

For the integral $\int x \exp\left(-\frac{x^2}{2}\right) dx$ let us take,

$$t = \frac{x^2}{2}$$
 (2.13)

$$dt = xdx (2.14)$$

$$\int x \exp\left(-\frac{x^2}{2}\right) dx = \int \exp\left(-t\right) dt \qquad (2.15)$$

$$= -\exp(-t) + c \qquad (2.16)$$

$$\implies = -\exp\left(-\frac{x^2}{2}\right) + c \quad (2.17)$$

Using (2.17), we can write

$$E\left[x^{2}\right] = \frac{1}{\sqrt{2\pi}} \left(-xe^{-\frac{x^{2}}{2}} + \int e^{\frac{-x^{2}}{2}} dx\right) \quad (2.18)$$

And we know that,

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} = 1 \tag{2.19}$$

Now putting limits and using (2.7),(2.19),

$$E\left[x^2\right] = 1\tag{2.20}$$

Using (1.22) we can write,

$$Var[x] = 1 - 0$$
 (2.21)

$$= 1 \tag{2.22}$$

3 From Uniform to Other

3.1 Generate samples of

$$V = -2\ln(1 - U) \tag{3.1}$$

and plot its CDF.

Solution: Download the C code from the link below to generate samples of V from uni.dat file.

wget https://github.com/Charanyash/Random-Numbers-/blob/main/codes/V.c

Run the following command,

Then download the below python file to get CDF

wget https://github.com/Charanyash/Random-Numbers-/blob/main/codes/V_cdf_plot. py

Then run the following command

3.2 Find a theoretical expression for $F_V(x)$.

Solution: Given

$$V = -2\ln(1 - U) \tag{3.2}$$

$$F_V(x) = \Pr(V \le x) \tag{3.3}$$

Fig. 3.1: The CDF of V

we will use (3.3)

$$F_V(x) = \Pr(-2\ln(1-U) \le x)$$
 (3.4)

$$=\Pr\left(\ln\left(1-U\right) \ge \frac{-x}{2}\right) \tag{3.5}$$

$$= \Pr\left(1 - U \ge \exp\left(\frac{-x}{2}\right)\right) \tag{3.6}$$

$$= \Pr\left(U \le 1 - \exp\left(\frac{-x}{2}\right)\right) \tag{3.7}$$

$$=F_U\left(1-\exp\left(\frac{-x}{2}\right)\right) \tag{3.8}$$

$$F_V(x) = \begin{cases} 0 & x \le 0\\ 1 - \exp\left(\frac{-x}{2}\right) & x > 0 \end{cases}$$
 (3.9)