(19) 日本国特許庁 (JP)

①特許出願公開

⑫公開特許公報(A)

昭59—46252

Int. Cl. ³	識別記号	庁内整理番号	砂公開 昭和59年(1984)3月15日
C 07 C 103/44		7375—4H	
B 01 F 17/28		8317—4G	発明の数 1
C 07 C 103/64		7375—4H	審査請求 未請求
103/737		73754H	
103/82		73754H	
143/74		6667—4H	
143/77		6667—4H	
143/78		6667—4H	(全 10 頁)

図含フツ素アミノカルボキシレートおよびその 製法

②特

願 昭57-155887

20出

願 昭57(1982)9月9日

仰発 明 者 橋本豊

浦和市上木崎2-7-34

⑫発 明 者 亀井政之

浦和市鹿手袋112-24

①出 願 人 大日本インキ化学工業株式会社 東京都板橋区坂下3丁目35番58

号

⑪出 願 人 財団法人川村理化学研究所

浦和市上木崎2丁目7番8号

का स्था र

1. 発明の名称

言フツ塞アミノカルポキシレートおよびその製法

- 2. 特許請求の範囲
 - 1. 一般武

$$R_{f} - Z - Q - N$$

$$Q_{s} - C O O M_{s}$$

$$Q_{s} - C O O M_{s}$$
(1)

但し、R₁は炭素数が1~12なるアルキル基、ア ルケニル基もしくは芳香煤を含む一個の基、または ←CII₂CII₂ナ_jR₂

/但し、R₂は水素原子または炭素数が1~6)
なるアルキル基を扱わすものとし、 jは1~

6なる蛇数であるものとする。

なる基を扱わすものとし、iは1~3なる軽数である ものとする。

なる三個の連結基を、Qは $+ CH_2 + g$ 、 $- CH_2 CH CH_2 + c$ ののののはなが、Qは $+ CH_2 + g$ の $+ CH_2 + g$ の $+ CH_2 + g$ なたは $+ CH_2 + g$ の $+ CH_2 + g$ の $+ CH_2 + g$

但し、 6 は 1 ~ 6 なる遊紋であり、 in および n はそ れぞれ 2 ~ 6 なる整数であり、 p および q はそれぞれ 2 または 3 であるものとする。

なる二師の連結基を、Q」およびQ。はそれぞれ

+ C H2+ または+ C H2+n

低し、rおよび B はそれぞれ1~3 なる整数である(4のとする。

なる二個の連結基を、M,およびM,はそれぞれ水糸原子または無機もしくは有機のカチオンを扱わすものとする。

で示される含フツ索アミノカルポキシレート化合物。

2. 一般式

$$^{**} R_{f} - Z + Q - N < H. \tag{II}$$

但し、式中のR_fは酸素原子を含んでいてもよい炭素数が 3~2 0 なるポリフロロアルキル基、ポリフロロアルケニル基、ポリフロロシクロへキシル基、ポリフロロシクロへキシクロへキシル・アルキンル・アルケニル基を、 2 は一 S O₂ N、一C O N へ、R₁ R₁ + C H₂ C H₂ + j S O₂ N へ、 C C H₂ C H₂ + j C O N へ、 R₁ R₁

なる二個の連結基を表わすものとする。

で示される含フツ案アミン化合物にカルボキシル化剤を反応させ、さらに必要により中和せしめることを特徴とする、 前配一般式[1]で示される含フツ案アミノカルボキシレー ト化合物の製法。

8. 前記カルボキシル化剤が、一般式

$$X \leftarrow C H_2 \rightarrow C O O M_1$$
 (III)

但し、大中のXは塩素原子、異素原子またはヨウ素原子を扱わすものとし、 はは1~3なる整数であるものとし、▲M」は前出の辿りである。

で示される化合物であることを特敵とする、特許層水の範 団第2項に記載の方法。

- 前記カルボキシル化剤がアクリル酸であることを特徴と する、特許弱米の範囲第2項に配載の方法。
- 5. 前記カルボキシル化剤が、炭素数が3または4なるアル

-0-\$02N-\$tit-0-\$-con-\$

但し、R₁は炭素数が1~12なるアルキル基、アルケニル基もしくは芳香環を含む一価の基、または + CH₂CH₂→₁ R₂

但し、R₂は水素原子または炭素数が1~6 なるアルキル基を扱わすものとし、jは1~ 6なる監数であるものとする。

なる基を扱わすものとし、 i は 1 ~ 3 なる廃奴である ものとする。

なる二個の連結基を、Qは+CH₂+_ℓ、-CH₂CH CH₂-、
OH
+CH₂+_m O+CH₂+_n または+CH₂+_p O+CH₂+₂ O+CH₂+_n

但し、 ℓは 1 ~ 6なる整数であり、 πおよび n はそれれれ 2 ~ 6なる整数であり、 p および q はそれぞれ 2 または 3 であるものとする。

カノラクトン類であることを特徴とする、特許請求の範囲 第2項に配量の方法。

3. 発明の詳細な説明

本発明は新規にして有用なる含フツ紫アミノカルボキシレート化合物と、それら新規化合物の製造法とに関し、さらに評価には、優れた昇面活性特性を有する、分子中にポリフロロアルキル基を必須の基として含有し、かつ、2 値のカルボキシル基を含有した新規化合物に関するものであり、そしてそれら新規化合物を製造する方法に関するものである。

両性界面括性剤は、一般に耐硬水性に優れ、なおかつイ オン性を異にした他種の界面括性剤との相密性にも富んで いることから、汎用性のある界面括性剤として、近年とみ に社目を集めている。

パーフロロアルキル基の如き、フツ素化脂肪族基を有す

特開昭59-46252(3)

る含フツ衆国性界面括性剤も上記の特長と共化、暑しい表面張力低下記および起泡性などの、いわゆる界面括性特性を有する処から、その高付加価値性を生かして、泡沫消火剤、保調剤、液油削および浸透剤など種々の用途へと利用がはかられつつある。

しかしながら、 $C_1F_{17}SO_2N_1(CH_2)_1$ $N^{\oplus}(CH_3)_1COO^{\ominus}$ で表わされるベタイン想調性活性剤のような従来の含フッ 素調性弁面活性部は、等電点の近份(pH5~8)と強敵性の領域とにおいて、水への結解性が低下し、その結果は 表面張力低下記および起泡性などの結界面活性特性が著しく分化するという東大な欠点を有している。

本第明者らは、上述の如き観点から観意研究を重ねた結果、後掲する如き分子中に 2 幅のカルボキシル基を有する 特定の言フツ素両性昇而活性剤が、表面張力低下能、起泡 性、計硬水性ならびに強度性の領域における水溶解性など の他々の特性の点で、公知の含フッ素ペタイン製画性弁面 活性剤よりも格別に優れていることを見出し、本発明を完 成させるに至つた。

すなわち、本発明は一般式

$$R_1 - Z - Q - N \qquad Q_1 - COOM_1$$
 (1)

グニル港もしくは労者原を含む一価の港、または $+ \mathrm{CH_2CH_2} +_{\mathrm{j}} \mathrm{R}_2$

(但し、 R₂は水塩原子または炭素酸が1~6なるす\ ルキル基を表わすものとし、jは1~6なる整数 であるものとする。

なる基を表わすものとし、iは1~3なる整数である ものとする。

なる二価の連結基を、Qは+CH2CH2→ℓ、

+СИ2+p0+СИ2+2 0+СИ2+q

但し、 8は1~6なる遊紋であり、 m および n はそれ ぞれ2~6なる遊紋であり、 p および g はそれぞれ2 または3であるものとする。

なる三値の遅結基を、Q₁およびQ₂はそれぞれそCH₂本 またはモCH₂)。 他し、rおよび s はそれぞれ 1~3 なる監督である ものとする。

なる二価の連結基を、M₁およびM₂はそれぞれ水素原子ま

たは無嵌もしくは有板のカチォンを装わすものとする。 で示される、分子中に 2 個のカルボキシル基を有する含フ ツ業アミノカルボキシレート化合物を提供するものであり、 さらにかかる新規化合物を製造する方法をも提供するもの である。

ここにおいて、本発明の含フツ紫アミノカルボキシレート化合物とは前掲の一般式[I]で示されるものであつて、 式[I]中の、まずR_Iは炭素数が3~20、好ましくは4~18なるボリフロロアルキル基やボリフロロアルケニル 基などを指标するものであるが、それらの基としては値鎖状、分岐状もしくは環状(たとえばシクロヘキシル基のような基を含んだもの)またはそれらを適宜組み合わせた形 のいずれでもよく、さらにはこれらの主鎖中に酸素原子を 含み、かつ、この酸素原子が各ポリフロロアルキル基およ び!またはポリソロロアルケニル基などを連結させた形の もの、たとえば(CFs)2CFOCF2CF2- であつてもよい。 より好ましくは直鎖のものが適当であり、とくに好ましく はパーフロロアルギル基またはパーフロロアルケニル基で ある。

は無傚もしくは有傚のカチオンであるが、そのうちでも代 姿的なものとしては H、 Li *、 Na *、 K*、 Ca **、 Mg ** ま たは一般式

$$\left(N\left(H\right)_{g}\left(R_{s}\right)_{h}\right)^{+}$$
 [IV] 但し、次中の R_{s} は炭素似が $1\sim4$ なるアルギル基、またはヒドロキシエテル進を扱わすものとし、 g および h はそれの ~4 なる軽紋であつて、かつ、 $g+h=4$ を納

CH2COON a
C F15 S O2 NC H2 CH2 CH2 N
CH2 COON a 次に、式[1]中のM,およびM2はそれぞれ水素原子また C 4 F 17 C H2 C H2 S O2 N + C H2 + N C H2 C H2 C OOK C₂F₁₇CH₂CH₂CONCH₂CH₂CH₂CH₂COONa H

足するものである。

ては、次の如きものを挙げることができる。

$$C_0F_{17}O \longrightarrow CON-CH_2CHCII_2N \ CH_2CH_2COONa$$

$$C_0F_{17}SO_2N+CII_2)_3O+CII_2)_3N \ CH_2CH_2COONa$$

$$C_0F_{13}SO_2N-CII_2CHCH_2N \ CH_2CH_2COONa$$

$$CH_2CH_2CH_2COONa$$

$$CH_2CH_2CH_2COONa$$

$$CH_2CH_2CH_2COONa$$

$$CH_2CH_2CH_2COONa$$

$$CH_2CH_2CH_2COONa$$

$$CH_2CH_2CH_2COONa$$

$$CH_2CH_2COONa$$

$$CH_2CH_2CH_2COONA$$

$$CH_2CH_2CH_2COONA$$

$$CH_2CH_2C$$

本発明に係る言フツ岩アミノカルポキシレート化合物は、 次の製造方法により高収率かつ経済的に製造することがで

$$R_{I}-Z-Q-N$$
(II)

CH2CH2COOL

但し、式中の R_f 、 Zおよび Qはすべて前出の通りで

で示される含フツ素アミン化合物に、一般式

$$X \leftarrow CH_2 \rightarrow_1 COOM_1$$
 (III)

但し、式中のXは塩素原子、臭素原子またはヨウ素原 子を吹わすものとし、よは1~3なる整数であるものと し、Miは前出の辿りである。

で示される化合物、アクリル酸、および炭素数が3または 4なるアルカノラクトン動よりなる群から選ばれる1棟ま たは2種類のカルボキシル化剤を反応させることにより得 られる。

ここで、上掲の式 (jul) で示される化合物として代表的な ものにはモノクロル作成ナトリウム、βープロモーブロピ オン似ナトリウムまたはアークロロー路酸ナトリウムなど かある。

本発明方法を実施するに当つて、前掲の式 (II) で示される化合物に、カルボキシル化剤としての前掲の式 (III) で示される化合物を反応させる場合に用いられる反応搭媒としては通常、メタノール、エタノール、インプロビルアルコール、メチルセロソルプ、エチルセロソルプ、プチルセロソルプ、プチルセロソルプ、プチルカルビトール、ジメテルスルホキンド、ジメチルホルムアミド、アセトニトリルなどの水に可裕性の有機結剤と水との社合条が挙げられ、特にイソプロビルアルコールあるいはプチルカルビトールと水との混合系が適している。反応融級および反応時間としては 60~140

水酸化ナトリウム、水酸化カリウムまたはアミン類などの 塩基性物質が適している。

他方、前抱の式[II]で示される化合物は、別のカルボキシル化剤としてのアクリル酸あるいは炭素紋3または4のアルカノラクトン類を反応させる場合に用いられる反応

がとしては、ジオキサン、テトラヒドロフラン、アセトン、メチルエチルケトン、クロロホルム、ジクロルエタン、アセトニトリル、酢酸メチル、酢酸エチル、ジメチルホルムアミドまたはジメチルスルホキシドなどの非プロトン供剤

なが適しており、反応温度としては0~140℃、好ましくは10~80℃が適当であり、反応時間としては5~20時間が適当である。

上記した如き方法によつて、特に式(1)中のQ」とQ」とが相異なれる目的を製造する場合には、前指の式(II)で示される化合物に対して、前記した各タイプから返ばれる1

極知のカルボキシル化剤を 1.0~1.2 倍モル当量の割合で 反応させ、しかるのちに別のタイプのカルボキシル化剤を 1.0~1.2 倍モル当前の割合で反応させればよく、これと は遊に、Q1=Q2であるような目的化合物を製造する場合 には、前桁の式(用)で深される化合物に対して、2.0~ 2.2 倍モル当量のカルボキシル化剤を一時に反応させれば よい。

ここで、本発明の含フツ案アミノカルボキシレート化合物の水高液化ついての発泡性(起泡性)と表面張力とをま とのて選1級に示すことにする。

		O.		液
4. 务则化合物	pН		E *1) (sa)	安面 版力 * 2) (p H 7.5)
		蒸留水稻液	海水裕被	(dyne/cm)
$C_{n} F_{13} S O_{2} N \leftarrow C H_{2} \rightarrow N \begin{pmatrix} C H_{2} COON_{0} \\ C H_{3} COON_{0} \end{pmatrix}$	2.0 7.5	2 4 0 2 6 8	2 3 8 2 5 5	1 8.2
Cu Lia z Os M-C H5 3. M CH5 COONs	1 0.0	270	262	1 6. 2
/CH ₂ COONa	2.0	251	. 2 5 0	4 0 7
Co Fit SOz NCHz CH CH2N CHz COONa Collo Ull	7.5 1 0.0	273	2 7 8 2 8 0	1 8. 3
OH (CH ₂), COONs	2.0 7.5	2 3 1 2 5 7	234	1 9. 6
OH C ₀ F ₁₃ S O ₂ NC H ₂ CH C H ₂ N CH ₂ CH ₂ CH CH ₂ N CH ₂ CH ₂ COON a	1 0.0	2 6 1	266	, ,, ,
l e e e e e e e e e e e e e e e e e e e	2.0	2 6 7	2 6 2 2 7 0	1 7. 7
$C_{6} F_{17} C \Pi_{2} C \Pi_{2} C O N + C H_{2} + N \begin{pmatrix} C \Pi_{2} C H_{2} C O O N a \\ C \Pi_{2} C H_{2} C O O N a \end{pmatrix}$	1 0.0	2 8 1 2 8 0	280	' ' '
CHI CHI COOLI	2.0	2 2 2	216	4 0 4
$C_{\bullet} F_{17} O = C_{\bullet} P_{1} C_{\bullet} C_{\bullet} P_{1} C_{\bullet} C_{\bullet} P_{1} C_{\bullet} C_{\bullet}$	7.5 1 0.0	2 4 8 2 5 1	2 4 2 2 5 7	1 8.1
CH2CH2COONs	2.0	2 2 7	2 2 9	4 0 5
C ₈ F ₁₇ S O ₂ N+C II ₂ -); O+C H ₂ -); N CH ₂ CH ₂ CH ₂ CH ₂ COOK	7.5 1 0.0	2 4 8 2 4 7	2 4 3 2 4 9	1 8.5

- *1) ロスマイルス法による胸下直後の値。
- *2) ウイルヘルミ法により蒸留水裕板を用いて25℃で制定。

第1表に示したように、本発明の含フツ楽アミノカルボ キシレートは、幅広いpH領域で純水にも海水にも安定に 裕辨し、酸性、中性およびアルカリ性のいずれのpH領域 でも界面活性を被じないものであり、こうした特性は実用 上級めて有用なものである。

さらに、本発明の化合物はカルシウムイオンに対しての 安定性もよく、耐海水性にも極めて使れていることが確認 された。すなわち、改良ハルツ(Hardt)法によりカルシ ウムイオン安定性を耐べた処を一例として示すと、本発明 の含フツ素アミノカルボキシレート化合物は、pH 7.5 な る場合において健康が 5,0 U 0 ppm(Ca CO₂ 依例)以上と なつても完全に搭解しているのに対して、従来のベタイン 型外価估性剤、例えば C_aF_{17} SO $_2N$ (CH $_2$)。O (CH $_3$)。 CH $_2$ COO にあつては、既に 1,3 0 0 ppm で相分離が認められ、 遂には外価估性を失うに到る。 以上の点からも明らかなように、本発明の含フッ紫アミノカルボキシレート知は、海水溶液での起泡性および泡安 定性に優れていること、炎血張力低下能にも使れているこ と、しかも耐硬水性に優れ、かつpHに対する安定性にも 優れていることなどの界面活性特性を具備するものであり、 かかる話特性のゆえに海深消火剤、水成膜形成性油火災用 消火剤、起泡剤、洗剤剤および湿潤剤への応用に特に適し ている。またレベリング剤、強料添加剤、防汚剤、樹油剤、 プラスチック添加剤、衍電防止剤または離型剤などへの応 用にも好濁である。

次に、本発明を実施例により具体的に説明する。

突施例 1

治却用コンデンサーおよび提拌器を備えた300m60)4

つ口丸底フラスコに、Nー(3ーTミノブロビル)パーフロロへキシルスルポンTミド10g(0.0219モル)、
モノクロル酢酸ソーダ5.4g(0.0460モル)、イソブロビルアルコール30gおよび水40gを秤収し、そこへ水酸化ナトリウム194g(0.0460モル)を溶解した水裕液の20mを、85~90℃で提拌しながら、2時間かけて滴下した。核下終了後、90℃でお時間設施させた。
イソブロビルアルコールおよび水を留去させて固体致値をエタノールから再結晶せしめた処、収損は93gであつた。

元素分析				
	C	н	N	F
分析值(4)	2 5. 5	2. 0	4. 4	4 0. 1
計算値(%)	2 5.3	1. 8	4. 5	4 0. 1

NMRスペクトル(D2O俗妹、DSS基準)

1 8 3 ppm (m, 2 H), 3.1 5 ppm (m, 4 H)

4.2 U ppm (s, 4 H)

夹加例2

冷却用コンデンサーおよび操粋器を備えた300 MO 4
つ口丸経ソラスコに、N-(2-ヒドロキシーN'-nプロビルーN'ーパープロロオクチルスルホニルーアーTミ
ノフロビル)グリシン・ナトリウム塩15g(0.0216
モル)、ダークロルプロビオン酸ナトリウム 31g
(0.0238モル)およびインプロヒルブルコール30g、
水40gを秤取し、そこへ水槽化ナトリウム10g
(0.0238モル)を宿解した水積酸の20mを、85~
90℃で強力に提择しながら、2時間かけて腐下した。腐
下終了後、90℃で8時間遠疏させた。インプロビルアルコールおよび水を留去させて関体残流をメタノールから内
結晶せしめた。収量は13.8gであつた。

元素分析				
	С	H	N	F
分析值似	2 8.4	2. 5	5. 6	4 0. 9
At 3 min (16)	2 8. 9	2. 4	3. 6	4 1. 0

NMRスペクトル(DzO裕媒、DSS 基準)

0.9 5 ppm (t, 3 H), 1.6 3 ppm (m, 2 H)
2.1 6 ppm (t, 2 H), 3.1 0 ppm (t, 2 H)
3.3 0 ppm (m, 6 H), 3.8 3 ppm (m, 1 H)

4.21) ppm (s. 2H)

火油烟3

Clt COON a

Ca F₁₇ SO₂ N CH₂ CHCH₂ N

Ca H₄ OH

Ch₃ Clt COON a

冷却用コンデンサーおよび投择器を備えた30 (1 min) 4
つ口丸底フラスコに、N-(2-ヒドロキシーN'-n-プロピルーN'-パーフロロオクチルスルホニルーγ-下ミノブロピル) クリシンナトリウム塩158(0.0216モル)

水酸化ナトリウム 0.9 g (0.0 2 1 6 モル) およびアセト ニトリル 1 0 0 9 を押取し、3 0 ℃で搅拌したがら、アク リル酸 1.5 7 g (0.0 2 1 6 モル) を溶解したアセトニト リルの溶液 2 0 9 を、3 時間かけて腐下した。腐下終了後、 4 0 ℃でさらに 3 時間撹拌した。アセトニトリルを破圧下 で留去させて固体気値をメタノールから供給品せしめた。 収量は 1 4.1 g であつた。

元治分析、NMRスペクトルを検討した結果、実施例2 の化合物と回等のものが得られていることが確認された。 実施例4

CaFitSONCH2CHCHN CH2CHCH2CHCH2COONa の合体

冷却用コンデンサーおよび微拌器を備えた300mcの3つ口丸底フラスコに、N-(2-ヒドロキシーN'-n-ブロビル-N'-パーフロロオクチルスルホニルーケーアミノ

特開昭59-46252(8)

プロピル)グリシン・ナトリウム塩15g(0.0216モル)、水酸化ナトリウム0.9g(0.0216モル)、βープロピオラクトン1.5 4g(0.0216モル)およびアセトニトリル100gを秤取し、30℃で20時間提择した。アセトニトリルを留去させてペースト状效値をインプロピルアルコールから円結晶せしめて、128gなる収益で目的化合物を得た。

元素分析、NMRスペクトルの検討の結果、実施例2 および3の化合物と同等のものが得られていることが確認された。

火施例5

冷却用コンデンサーおよび促拌器を備えた300mcの3 つ口丸近フラスコ化、N-(2-ヒドロキシエチル)-N 一(2ーヒドロキシー3ーアミノプロビル)パーフロロへキシルスルホンアミド10g(0.0194モル)、水酸化カリウム22g(0.0388モル)、アープチロラクトン3.3g(0.0388モル)およびアセトニトリル100gを秤収し、30°Cで20時間優拌した。アセトニトリルを留去させ、ペースト状效液をイソプロビルアルコールから円結晶せしめた。収損は7.8gであつた。

元素分析				
	С	H	N	F
分析值图	27.6	3. 2	3. 7	3 2.6
群为4位(2)	27.6	3. 1	3. 8	5 2 3

NMRスペクトル(DzO裕県、DSS基準)

1.53 ppm (m, 4 H), 2.1 tl ppm (t, 4 H)
5.2~3.4 ppm (m, 10 H), 3.60 ppm (t,
2 H), 5.8 6 ppm (m, 1 H)

奖施例 6

の合成

元架分析				F
分析值(%)	5 0. 7	2.7	3. 7	4 1. 7
2134 iii(S)	3 0.4	2. 5	3. 7	4 1. 8

NMRスペクトル(D20密媒、DSS基準)

1.71 ppm (m, 2H), 1.86 ppm (L, 3H)

2.20 ppm (t, 4 H), 3.09 ppm (t, 2 H)

3.29 ppm (m, 8 H)

災施例 7

の台域

商却用コンデンサーおよび操降器を備えた300mlの4 つ目丸底フラスコに、N−(3−アミノブロビル)−P− パーフロロノオニルオギシベンゼンカルボアミド10g (0016セル)、水球化リチウム038g(0016セル)、

待開昭59-46252(9)

およびアセトニトリル100gを秤収し、30℃で提择しながら、アクリル酸12g(0016モル)を溶解したアセトニトリルの溶液10៧を、2時間かけて腐下した。腐下核了液、40℃でさらに3時間投件した。内容物を取り出すことなく、水酸化リチウム038g(0016モル)およびアープチロラクトン14g(0016モル)を加えて40℃で20時間提件した。アセトニトリルを留去させ、次いでペースト状残渣をエタノール/アセトン社合溶媒から刊結晶せしめた処、85gなる収量で目的化合物が得られた。

٠.				
77	725	2	H	

J. J	c	11	N	F
分析值(%)	3 9. 6	2.8	3. 4	3 9. 4
計分值(名	3 9. 3	2. 6	3. 5	3 9. 4

NMRスペクトル(D,O裕媒、DSS基準)

1.70 ppm (m, 2 H), 1.83 ppm (m, 2 H)

NMRスペクトル(DzO裕媒、DSS基準)

7.0~7.4 ppm (m, 4H)

1.88 ppm (m, 4 H), 2.27 ppm (t, 4 H), 5.0,9 ppm (m, 6 H), 5.4 1 ppm (t, 2 H),

尖加例 9

C₇F₁₅CON+CH₂+₃O+CH₂+₃O+CH₂+₃N+CH₂CH₂COOK)₂U) 谷成

奇却用コンデンサーおよび批拌器を備えた 3 0 () ■ の 3 つ 口丸底フラスコに、

C₇F₁₅CON+CH₂+3 O+CH₂+3 O+CH₂+3 NH₂ 1 1 1 1 g
(U 0 1 9 4 モル)、水磁化カリウム 2 2 g (0.0 3 8 8
モル)、アープチロラクトン 3.3 g (0.0 3 8 8 モル) お

2.2 () ppm (m, 4 II), 5.0~3.3 ppm (m, 8 H)
7. ()~7.5 ppm (m, 4 II)

实施例8

 $C_0F_{11}O = CH_2O_2 N + CH_2O_3 O + CH_2O_3 N + CH_2CH_2COONa)_2$ $O + OH_2$ $O + OH_2$

寄却用コンデンサーおよび複種器を備えた3 0 0 me/O 4 つ口刃がフラスコゼ、

CoFinO SON+CM+, O+CM+, NH 12.58 (0.0171モル)水酸化ナトリウム1.449(0.03428)、アセトニトリル1008を枠取し、次いでアクリル酸2.499(0.0542モル)を溶解したアセトニトリル溶液20以を、30℃で放拌しながら3時間放拌した。アセトニトリルな放比下で留去させ、次いで固体致疲をエタノールから判結晶せしめた。収量は14.69であつた。

よびアセトニトリル100gを秤収し、次いで30℃で 20時間振拝した。アセトニトリルを留去させ、ペースト 状況店をイソプロビルアルコールから再結晶せしめた。 収掛は12.7gであつた。

元素分析				
	C	H	N	F
分机值(%)	3 5.2	3. 6	3. 4	3 5.8
rit 1.4. (n) (96)	3 5. 1	3. 5	3. 4	3 5. 8

NMRスペクトル(D.O格媒、DSS基準)

1.87 ppm (m, 4 H), 1.93 ppm (m, 4 H),
2.29 ppm (t, 4 H), 5.10 ppm (m, 6 H),
3.3~5.4 ppm (m, 8 H), 3.52 ppm (t, 2 H)

头施例 1 0

OH C₆F₁₃SO₂NCH₂CH₂CH₂NCH₂CH₂CH₂COOK)₂の合成 CH₂CH₂OCH₃ 冷却用コンテンサーおよび提择器を備えた 3 0 0 m²の 3

つ口丸底フラスコ化、

.

特問昭 59- 46252 (10)

C₆F₁₂S O₂N CH₂CHCH₂NH₂ 10.38 (0.0194±n). CIFCHO CH

水酸化カリウム22g(00388モル)、1ープナロラ クトン339(00388モル)およびアセトニトリル 100分を秤収し、次いで30℃で20時間提拌した。ア セトニトリルを留去させ、しかるのちペースト状效应をイ ソプロピルアルコールから再結晶せしめた処、13.5gな る収録で目的化合物が得られた。

光索分析

	c	Н	N	F'
分小(何(必)	3 1. 0	3. 3	3. 6	3 1.5
計到值(20	3 0.8	3. 2	3. 6	3 1 . 7

NMRスペクトル(D2O俗媒、DSS基準) 1.79 ppin (in, 4 H), 2.20 ppm (a, 3 H), 2.3 1 ppm (m, 6H), 3.1 9 ppm (m, 6H), 3.48 ppm (ra, 4H), 3.64 ppm (m, 1 ff)

特許出願人 大日本インキ化学工業株式会社

財団法人 川村理化学研究所

m