Preaching Pandas Power for Python Programming Progress

An Introduction to Pandas and Spatial Operations

Jacob Adams, UGRC UGIC 2023

Woodruff

Jupyter notebook available at gis.utah.gov/presentations

Why Use pandas?

Easy to Reference Data

pandas uses a series of **labels** for both rows and columns so that we can refer to spefic values in a table, like a spreadsheet's row number and column name, or a feature class' ObjectID and field name. These labels are a fundamental part of pandas.

No more trying to remember what the "i th element of the j th row" refers to (and heaven help you if you're in a nested cursor).

Less Overhead for Data Managment than arcpy

Calling geoprocessing tools in arcpy requires setting up input and output layers, either on disk or in memory. The code is constantly jumping back and forth from python to the underlying geoprocessing libraries.

pandas data structures are native python structures kept in memory and are easily modified. No more creating a new feature layer just to change field names.

In addition, most non-spatial table operations are highly optimzied to run against a collection of data at the same time rather than operating element-by-element.

Potentially More Readable Code

As a consequence of not having to deal with feature layer management and verbose geoprocessing tool calls, pandas code can be much shorter and more concise. Once you're familiar with pandas syntax and programming patterns, you can create brief, expressive statements that perform several operations all in one go.

And again, no more nested cursors. Seriously.

Easy Interoperabilty with Other Data Sources and Processing Libraries

As one of (if not the) main go-to python libraries for data science, the pandas ecosystem is vast.

You can easily pull in data from spreadsheets, databases, web-based sources like (well-formatted) json and xml, and cloud-based tables like Google BigQuery.

Once you've got your data, there's a vast body of tutorials, examples, and production code to build off of (or just shamelessly steal). Other libraries have been written to extend pandas or accept data from pandas data structures, like geopandas and the ArcGIS API for Python's spatially-enabled dataframes.

Laying Our Foundation

Get Our Imports Out of the Way

```
In [105]: import numpy as np
   import pandas as pd
   import arcgis
   from arcgis import GeoAccessor, GeoSeriesAccessor
   from pathlib import Path
```

Scalars and Vectors

A **scalar** is just a single value.

Me: I think I want to stay single

Inner me: Like you have a choice


```
In [2]: #: Most python variables can be considered scalars
foo = 5
bar = 'Midway'
baz = True
```

A vector is a collection of scalars or other vectors	

No, not that.

Or that.

```
In [3]: #: python lists and tuples
spam = [1, 2, 3]
eggs = ('foo', 'bar', 'baz')
ham = [foo, 1.7, 'zen']
[spam, eggs, ham] #: a 2-dimensional vector
```

Out[3]: [[1, 2, 3], ('foo', 'bar', 'baz'), [5, 1.7, 'zen']]

A **series** is a collection of scalars. Normally it should have the same data type, but it can be mixed.

```
In [4]: #: Build a series from a python list
    pd.Series(['a', 'b', 'c'])

Out[4]: 0     a
        1     b
        2     c
        dtype: object

In [5]: #: Series have an index, which allows you to reference individual elements with arbitrar
        y labels
    pd.Series([1, 2, 3], index=['foo', 'bar', 'baz'])

Out[5]: foo     1
        bar     2
        baz     3
        dtype: int64
```

A **dataframe** is a two-dimensional collection of vectors with labels for both rows and columns. Basically, a spreadsheet in code.

```
In [6]: #: Build a dataframe from a dictionary, where each key is a column name and each value i
s a list of values for that column
pd.DataFrame({
    'foo': [1, 2, 3],
    'bar': ['a', 'b', 'c'],
    'baz': [True, 1.7, 'zen']
})
```

Out[6]:

		foo	bar	baz		
	0	1	а	True		
•	1	2	b	1.7		
	2	3	С	zen		

Under the hood, a dataframe is stored in memory as a collection of vectors (numpy arrays), one for each column. Thus, a lot of pandas operations occur on a column-by-column basis, like adding two columns together and storing the result in a third:

```
Out[7]:

a b c

0 1 4 5

1 2 5 7

2 3 6 9
```

Vectorized Operations

The key to understanding pandas operations is to think in terms of operations that are applied to every element in a vector, rather than extracting each element and passing it to the operation one by one.

- 1.0
- 1.4142135623730951
- 1.7320508075688772

dtype: float64

for loops in python are **computationally expensive** and require extra resources to set up the iteration. In addition, the function has to be called multiple times, requirin even more work behind the scenes for each call.

In contrast, vectorized operations are **optimized to perform the same operation on multiple pieces of data**. In addition to avoiding the overhead from iteration and multiple function calls, the processor has special logic and routines for parallelizing many operations. However, to use these it needs to know the operation and the data type ahead of time, which it generally can't with python for loops.

Think about sending a set of data to an operation, not operating on data one piece at a time.

Let's load a dataframe

```
In [11]: counties_df = pd.DataFrame.spatial.from_featureclass(r'data/county_boundaries.gdb/Counti
    es')
    counties_df.set_index('FIPS_STR', inplace=True) #: Replace the default index with one o
    f our columns
    counties_df.head()
```

Out[11]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIM
FIPS_STR									
49005	1	03	2.010031e+09	2010.0	CACHE	5.0	North	133154	140173
49013	2	07	2.010071e+09	2010.0	DUCHESNE	13.0	Central	19596	20161
49011	3	06	2.010061e+09	2010.0	DAVIS	11.0	North	362679	369948
49027	4	14	2.010141e+09	2010.0	MILLARD	27.0	Central	12975	13330
49051	5	26	2.010261e+09	2010.0	WASATCH	51.0	Central	34788	36619

A dataframe has rows and columns, and each of these has a collection of labels informally called an index. The row labels are considered the main DataFrame *index*, while the column labels are just called *columns*.

Each row and column in a dataframe can be extracted as an individual series.

```
In [14]:
         #: Column- series name is column name, series index is the main dataframe index
          counties_df.loc[:, 'NAME'].head()
          FIPS STR
Out[14]:
          49005
                      CACHE
          49013
                   DUCHESNE
          49011
                      DAVIS
          49027
                    MILLARD
          49051
                    WASATCH
          Name: NAME, dtype: object
In [15]:
         #: Row- series name is the row index label, series index is the column set
          counties df.loc['49005', :]
          OBJECTID
                                                                                1
Out[15]:
          COUNTYNBR
                                                                               03
          ENTITYNBR
                                                                    2010031010.0
          ENTITYYR
                                                                          2010.0
          NAME
                                                                           CACHE
          FIPS
                                                                              5.0
          STATEPLANE
                                                                           North
          POP LASTCENSUS
                                                                          133154
          POP CURRESTIMATE
                                                                          140173
          GlobalID
                                          {AD3015BE-B3C9-4316-B8DC-03AFBB56B443}
          COLOR4
                                                                                2
                              {'rings': [[[-12485167.954, 5160638.807099998]...
          SHAPE
          Name: 49005, dtype: object
```

Data Types

Every column has a data type, just like fields in a feature class.

Most data types come from the numpy library (which, at least currently, provides a lot of the backend data structures for python).

```
In [16]:
        # .info() gives us an overview of the dataframe, including the column types
         counties df.info()
         <class 'pandas.core.frame.DataFrame'>
        Index: 29 entries, 49005 to 49049
        Data columns (total 12 columns):
                              Non-Null Count
             Column
                                             Dtype
             OBJECTID
                              29 non-null
                                             int64
             COUNTYNBR 29 non-null
                                             object
                           29 non-null
             ENTITYNBR
                                             float64
                                          float64
                           29 non-null
         3
             ENTITYYR
         4
                            29 non-null
                                             object
             NAME
          5
             FIPS
                             29 non-null
                                             float64
                        29 non-null
             STATEPLANE
                                             object
             POP LASTCENSUS 29 non-null
                                             int64
             POP CURRESTIMATE 29 non-null
                                             int64
             GlobalID
                              29 non-null
                                             object
                           29 non-null
         10 COLOR4
                                             int64
         11
             SHAPE
                              29 non-null
                                             geometry
        dtypes: float64(3), geometry(1), int64(4), object(4)
        memory usage: 4.0+ KB
```

Strings are a special case. By default, pandas uses the object dtype for columns that contain text. However, it could also contain multiple types.

Handling Missing Data

1 2.0

2 NaN six

None

```
In [18]:
         #: Numeric Nones convert to np.nan, strings stay as None
         none df = pd.DataFrame({
              'foo': [1, 2, None],
              'bar': ['four', None, 'six']
          })
          print(none_df.info())
          none df
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 3 entries, 0 to 2
         Data columns (total 2 columns):
              Column Non-Null Count Dtype
              foo 2 non-null
                                      float64
                      2 non-null
              bar
                                      object
         dtypes: float64(1), object(1)
         memory usage: 176.0+ bytes
         None
Out[18]:
             foo
                  bar
          0 1.0
                four
```

```
In [19]:
         #: Convert to nullable types; note capitalized Int64
          converted df = none df.convert dtypes()
          print(converted df.info())
          converted df
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 3 entries, 0 to 2
         Data columns (total 2 columns):
              Column Non-Null Count Dtype
                      2 non-null
                                       Int64
              foo
                       2 non-null
              bar
                                       string
         dtypes: Int64(1), string(1)
         memory usage: 179.0 bytes
         None
Out[19]:
              foo
                   bar
           0 1
                  four
           1 2
                  <NA>
          2 <NA> six
```

df[]: selecting columns and rows

The [] operator on DataFrames is overloaded and will do different things depending on what you pass to it:

- 1. **string**: returns all rows in the indicated **column** as a series
- 2. **list of strings**: returns all rows the indicated **columns** as a single data frame.
- 3. **python-esque slices**: select **rows** (either by label or by index)
- 4. **sequence of booleans**: all *rows* whose index matches the sequence index of a true value. This is where magic happens, because we can put conditional statements as the boolean sequence. The condition is evaluated on each row in the given column, and the resulting true/false value is passed to the indexing operator [] to select specific rows. The length of the sequence must match the number of rows in the dataframe.

```
In [20]: #: 1: single string gives a single column as a series
    counties_df['NAME'].head()
```

Out[20]: FIPS_STR

49005 CACHE 49013 DUCHESNE 49011 DAVIS 49027 MILLARD 49051 WASATCH

Name: NAME, dtype: object

Out[21]:

	INAIVIE	POP_LASTCENSUS
FIPS_STR		
49005	CACHE	133154
49013	DUCHESNE	19596
49011	DAVIS	362679
49027	MILLARD	12975
49051	WASATCH	34788

NAME DOD LASTCENSUS

Out[22]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIM#
FIPS_STR									
49027	4	14	2.010141e+09	2010.0	MILLARD	27.0	Central	12975	13330
49051	5	26	2.010261e+09	2010.0	WASATCH	51.0	Central	34788	36619

4: sequence of booleans

In [23]: head_df = counties_df.head().copy()
 head_df

Out[23]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIM
FIPS_STR									
49005	1	03	2.010031e+09	2010.0	CACHE	5.0	North	133154	140173
49013	2	07	2.010071e+09	2010.0	DUCHESNE	13.0	Central	19596	20161
49011	3	06	2.010061e+09	2010.0	DAVIS	11.0	North	362679	369948
49027	4	14	2.010141e+09	2010.0	MILLARD	27.0	Central	12975	13330
49051	5	26	2.010261e+09	2010.0	WASATCH	51.0	Central	34788	36619

In [24]:

head_df[[True, False, True, True, False]] #: Note the list is the same Length as our dataframe index

Out[24]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIMAT
FIPS_STR									
49005	1	03	2.010031e+09	2010.0	CACHE	5.0	North	133154	140173
49011	3	06	2.010061e+09	2010.0	DAVIS	11.0	North	362679	369948
49027	4	14	2.010141e+09	2010.0	MILLARD	27.0	Central	12975	13330

Let's filter our dataframe down to counties with population greater than 100,000

```
In [25]:
         pop series = head df['POP LASTCENSUS'].copy()
         pop series
        FIPS STR
Out[25]:
         49005
                  133154
         49013
                19596
               362679
         49011
         49027
                12975
         49051
                   34788
         Name: POP LASTCENSUS, dtype: int64
In [26]:
         #: Performing a comparison on a series returns a new series with the result of each comp
         arison
         pop gt 100k = pop series > 100000
         pop gt 100k
        FIPS_STR
Out[26]:
         49005
                   True
                False
         49013
               True
         49011
               False
         49027
         49051
                False
         Name: POP_LASTCENSUS, dtype: bool
```

In [27]: #: Pass our new boolean series as a boolean indexer head_df[pop_gt_100k]

Out[27]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIMATE
FIPS_STR									
49005	1	03	2.010031e+09	2010.0	CACHE	5.0	North	133154	140173
49011	3	06	2.010061e+09	2010.0	DAVIS	11.0	North	362679	369948

In [28]: #: All the previous steps, just in one line of code head_df[head_df['POP_LASTCENSUS'] > 100000]

Out[28]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIMATE
FIPS_STR									
49005	1	03	2.010031e+09	2010.0	CACHE	5.0	North	133154	140173
49011	3	06	2.010061e+09	2010.0	DAVIS	11.0	North	362679	369948

In [29]: #: Use .isin() to filter based on membership in a sequence
 head_df[head_df['COLOR4'].isin([2, 3])]

0	u ⁻	t	2	29	9	:
			-			٠.

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIM#
FIPS_STR									
49005	1	03	2.010031e+09	2010.0	САСНЕ	5.0	North	133154	140173
49011	3	06	2.010061e+09	2010.0	DAVIS	11.0	North	362679	369948
49027	4	14	2.010141e+09	2010.0	MILLARD	27.0	Central	12975	13330
49051	5	26	2.010261e+09	2010.0	WASATCH	51.0	Central	34788	36619

In [30]: head_df['COLOR4'].isin([2, 3])

Out[30]: FIPS_STR

49005 True 49013 False 49011 True 49027 True 49051 True

Name: COLOR4, dtype: bool

.loc and .iloc: Selecting by Label/Index

.loc: Label-based

```
In [31]:
         #: Single value: index label
          counties df.loc['49051']
                                                                                 5
Out[31]:
          OBJECTID
          COUNTYNBR
                                                                               26
          ENTITYNBR
                                                                     2010261010.0
                                                                           2010.0
          ENTITYYR
          NAME
                                                                          WASATCH
          FIPS
                                                                             51.0
                                                                          Central
          STATEPLANE
          POP LASTCENSUS
                                                                            34788
          POP_CURRESTIMATE
                                                                            36619
          GlobalID
                                          {3D0C5C1E-2650-458E-B322-2B86AA473441}
          COLOR4
                               {'rings': [[[-12400515.3909, 4966751.283200003...
          SHAPE
          Name: 49051, dtype: object
```

```
In [32]:
         #: Two values: index label, column label
          counties_df.loc['49051', 'NAME']
          'WASATCH'
Out[32]:
In [33]:
         #: Two values with everything slice: column as series
          counties_df.loc[:, 'NAME'].head()
          FIPS_STR
Out[33]:
          49005
                      CACHE
          49013
                   DUCHESNE
          49011
                      DAVIS
          49027
                    MILLARD
          49051
                    WASATCH
          Name: NAME, dtype: object
```

Out[34]:

	NAME	POP_LASTCENSUS
FIPS_STR		
49005	CACHE	133154
49013	DUCHESNE	19596
49011	DAVIS	362679
49027	MILLARD	12975
49051	WASATCH	34788

Out[35]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIMATI
FIPS_STR									_
49001	15	01	2.010011e+09	2010.0	BEAVER	1.0	South	7072	7327
49003	6	02	2.010021e+09	2010.0	BOX ELDER	3.0	North	57666	61498

.iloc: Position-based

```
In [36]:
         #: Get the first row:
          counties_df.iloc[0]
                                                                                1
Out[36]:
          OBJECTID
          COUNTYNBR
                                                                               03
          ENTITYNBR
                                                                     2010031010.0
                                                                           2010.0
          ENTITYYR
                                                                            CACHE
          NAME
          FIPS
                                                                              5.0
                                                                            North
          STATEPLANE
          POP_LASTCENSUS
                                                                           133154
          POP_CURRESTIMATE
                                                                           140173
          GlobalID
                                          {AD3015BE-B3C9-4316-B8DC-03AFBB56B443}
          COLOR4
                               {'rings': [[[-12485167.954, 5160638.807099998]...
          SHAPE
          Name: 49005, dtype: object
```

```
In [37]:
          #: Use slicing to get the first column for the first five rows:
          counties df.iloc[:5, 0]
          FIPS STR
Out[37]:
          49005
                   1
          49013
          49011
                   3
          49027
          49051
                   5
          Name: OBJECTID, dtype: int64
In [38]:
          #: investigate the last row
          counties df.iloc[-1]
          OBJECTID
                                                                                29
Out[38]:
                                                                                25
          COUNTYNBR
          ENTITYNBR
                                                                     2010251010.0
          ENTITYYR
                                                                           2010.0
          NAME
                                                                             UTAH
          FIPS
                                                                             49.0
                                                                          Central
          STATEPLANE
          POP_LASTCENSUS
                                                                           659399
          POP CURRESTIMATE
                                                                           702434
          GlobalID
                                          {8DF99710-DCB1-4C52-8EAD-E9555C83618F}
          COLOR4
          SHAPE
                               {'rings': [[[-12422592.7433, 4950159.090400003...
          Name: 49049, dtype: object
```

Common Problem: Chained Indexing and SettingWithCopyWarning

```
In [143]: #: Create a copy so we don't mess with our original
    test_df = counties_df.copy()

#: "get the rows that have a Central state plane and set the foo column to 3"
    test_df[test_df['STATEPLANE'] == 'Central']['foo'] = 3 #: The [] calls are chained- do
    the first, then do the second
    test_df.head()

<ipython-input-143-e4d3b8d8f772>:2: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
```

er guide/indexing.html#returning-a-view-versus-a-copy

test df['stateplane'] == 'Central']['foo'] = 3

Out[143]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIM
FIPS_STR									_
49005	1	03	2.010031e+09	2010.0	CACHE	5.0	North	133154	140173
49013	2	07	2.010071e+09	2010.0	DUCHESNE	13.0	Central	19596	20161
49011	3	06	2.010061e+09	2010.0	DAVIS	11.0	North	362679	369948
49027	4	14	2.010141e+09	2010.0	MILLARD	27.0	Central	12975	13330
49051	5	26	2.010261e+09	2010.0	WASATCH	51.0	Central	34788	36619

```
In [139]: #: Fix one: use .loc[] to perform the row and column indexing in one call
    test_df.loc[test_df['STATEPLANE'] == 'Central', 'foo'] = 3
    test_df.head()
```

Out[139]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIM
FIPS_STR									
49005	1	03	2.010031e+09	2010.0	CACHE	5.0	North	133154	140173
49013	2	07	2.010071e+09	2010.0	DUCHESNE	13.0	Central	19596	20161
49011	3	06	2.010061e+09	2010.0	DAVIS	11.0	North	362679	369948
49027	4	14	2.010141e+09	2010.0	MILLARD	27.0	Central	12975	13330
49051	5	26	2.010261e+09	2010.0	WASATCH	51.0	Central	34788	36619

```
In [146]: #: Fix two: create an explicit copy to break up the chain
    central_df = test_df[test_df['STATEPLANE'] == 'Central'].copy()
    central_df['foo'] = 3
    central_df.head()
```

Out[146]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIM
FIPS_STR									
49013	2	07	2.010071e+09	2010.0	DUCHESNE	13.0	Central	19596	20161
49027	4	14	2.010141e+09	2010.0	MILLARD	27.0	Central	12975	13330
49051	5	26	2.010261e+09	2010.0	WASATCH	51.0	Central	34788	36619
49023	8	12	2.010121e+09	2010.0	JUAB	23.0	Central	11786	12567
49039	9	20	2.010201e+09	2010.0	SANPETE	39.0	Central	28437	29724

Working With Columns

Pandas makes working with columns really easy. Whether renaming, re-ordering, or re-calculating, it's usually just a single line of code.

Let's take our counties dataset and calculate the population density, creating a new dataframe with just the relevant columns.

```
In [39]: #: Create a copy to avoid altering the original
density_df = counties_df.copy()
```

In [40]: #: Create a new column by assigning the results of a calculation against another column # density df['sq km'] = density df['SHAPE Area'] / 1000000 #: shapely density df['sq km'] = density df['SHAPE'].apply(lambda x: x.area / 1000000) #: arcpy density df['density'] = density df['POP LASTCENSUS'] / density df['sq km'] density df.head()

Out[40]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIM
FIPS_STR									
49005	1	03	2.010031e+09	2010.0	CACHE	5.0	North	133154	140173
49013	2	07	2.010071e+09	2010.0	DUCHESNE	13.0	Central	19596	20161
49011	3	06	2.010061e+09	2010.0	DAVIS	11.0	North	362679	369948
49027	4	14	2.010141e+09	2010.0	MILLARD	27.0	Central	12975	13330
49051	5	26	2.010261e+09	2010.0	WASATCH	51.0	Central	34788	36619

```
In [41]: #: Change dtype of FIPS column
    density_df['FIPS'] = density_df['FIPS'].astype(int)
    density_df.head()
```

Out[41]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIM
FIPS_STR									
49005	1	03	2.010031e+09	2010.0	CACHE	5	North	133154	140173
49013	2	07	2.010071e+09	2010.0	DUCHESNE	13	Central	19596	20161
49011	3	06	2.010061e+09	2010.0	DAVIS	11	North	362679	369948
49027	4	14	2.010141e+09	2010.0	MILLARD	27	Central	12975	13330
49051	5	26	2.010261e+09	2010.0	WASATCH	51	Central	34788	36619

In [42]: #: Rename columns with .rename() and a dictionary density_df.rename(columns={'density': 'population_per_sq_km', 'POP_LASTCENSUS': 'pop_202 0'}, inplace=True) density_df.head()

Out[42]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	pop_2020	POP_CURRESTIMATE	
FIPS_STR										
49005	1	03	2.010031e+09	2010.0	CACHE	5	North	133154	140173	(AI B3 B8 03
49013	2	07	2.010071e+09	2010.0	DUCHESNE	13	Central	19596	20161	{7F 13 A1 03
49011	3	06	2.010061e+09	2010.0	DAVIS	11	North	362679	369948	{21 CC 91 28
49027	4	14	2.010141e+09	2010.0	MILLARD	27	Central	12975	13330	{B(75 84 29
49051	5	26	2.010261e+09	2010.0	WASATCH	51	Central	34788	36619	{3I 26 B3 2B

```
#: Subset down to just the desired columns; reindex doesn't have inplace option
density_df = density_df.reindex(columns=['population_per_sq_km', 'NAME', 'ENTITYYR', 'ST
ATEPLANE'])
density_df.head()
```

Out[43]:

	population_per_sq_km	NAME	ENTITYYR	STATEPLANE
FIPS_STR				
49005	24.401572	CACHE	2010.0	North
49013	1.352432	DUCHESNE	2010.0	Central
49011	125.495779	DAVIS	2010.0	North
49027	0.440997	MILLARD	2010.0	Central
49051	6.446839	WASATCH	2010.0	Central

In [44]:

#: Another way to delete individual columns
del density_df['STATEPLANE']
density_df.head()

Out[44]:

	population_per_sq_km	NAME	ENTITYYR
FIPS_STR			
49005	24.401572	CACHE	2010.0
49013	1.352432	DUCHESNE	2010.0
49011	125.495779	DAVIS	2010.0
49027	0.440997	MILLARD	2010.0
49051	6.446839	WASATCH	2010.0

In [45]:

#: Or .drop, which returns a new dataframe
density_df.drop('NAME', axis='columns').head()

Out[45]:

		population_per_sq_km	ENTITYYR
	FIPS_STR		
	49005	24.401572	2010.0
-	49013	1.352432	2010.0
	49011	125.495779	2010.0
	49027	0.440997	2010.0
	49051	6.446839	2010.0

In [46]: #: Update ENTITYYR density_df['ENTITYYR'] = 2020 density_df.head()

Out[46]:

	population_per_sq_km	NAME	ENTITYYR
FIPS_STR			
49005	24.401572	CACHE	2020
49013	1.352432	DUCHESNE	2020
49011	125.495779	DAVIS	2020
49027	0.440997	MILLARD	2020
49051	6.446839	WASATCH	2020

In [47]: density_df.info()

```
<class 'pandas.core.frame.DataFrame'>
Index: 29 entries, 49005 to 49049
Data columns (total 3 columns):
                          Non-Null Count Dtype
    Column
                                          float64
    population_per_sq_km 29 non-null
                          29 non-null
                                          object
 1
    NAME
                          29 non-null
 2
     ENTITYYR
                                          int64
dtypes: float64(1), int64(1), object(1)
memory usage: 2.0+ KB
```

Working with strings

```
In [48]: #: Use .str to access string methods of a series
    density_df['NAME'] = density_df['NAME'].str.title() + ' County'
    density_df.head()
```

Out[48]:

	population_per_sq_km	NAME	ENTITYYR
FIPS_STR			
49005	24.401572	Cache County	2020
49013	1.352432	Duchesne County	2020
49011	125.495779	Davis County	2020
49027	0.440997	Millard County	2020
49051	6.446839	Wasatch County	2020

```
In [49]: #: Chain multiple .str calls together to get the first result from a split operation
    density_df['NAME'].str.split().str[0].head()
```

Out[49]: FIPS_STR

49005 Cache 49013 Duchesne 49011 Davis 49027 Millard 49051 Wasatch

Name: NAME, dtype: object

Example: Cleaning Up Addresses for Geocoding

We have a CSV of school names and addresses that we want to geocode using the UGRC API Client.

The address field contains the entire address as a single string, but the API Client requires separate street and city/zip fields.

Some addresses use a newline character \n in between the street address and the city/state/zip address, while others just use a comma.

We need to pull out the street address from both types, and then grab the zip code as well.

```
In [50]: #: Read a csv in, reanme the columns
    in_df = pd.read_csv('data/schools.csv').rename(columns={'School name ': 'school', 'School address ': 'address'})
    in_df.head()
```

Out[50]:

	school	address
0	Academy Park Elementary School	4580 W Westpoint Drive (4575 S)\nWest Valley,
1	Arcadia Elementary	3461 W 4850 S, Salt Lake City, UT 84129
2	Beehive Elementary School	5655 South 5220 West\nKearns, UT 84118-7500
3	Bennion Jr. High	6055 S 2700 W, Salt Lake City, UT 84129
4	Bonneville Junior High	5330 Gurene Dr, Holladay, UT 84117

```
In [51]: #: First, work on addresses that use newlines
    newline_df = in_df[in_df['address'].str.contains(r'\n')].copy()
    print(len(newline_df))

#: Split on newline, then split on "(" to remove alternative street names, then strip wh
    itespace
    newline_df['street_addr'] = newline_df['address'].str.split(r'\n').str[0].str.split
    (r'(').str[0].str.strip()
    newline_df.head()
```

49

Out[51]:

	school	address	street_addr_
0	Academy Park Elementary School	4580 W Westpoint Drive (4575 S)\nWest Valley,	4580 W Westpoint Drive
2	Beehive Elementary School	5655 South 5220 West\nKearns, UT 84118-7500	5655 South 5220 West
6	Churchill Junior High	3450 E Oakview Drive (4275 S)\nSalt Lake City,	3450 E Oakview Drive
8	Cottonwood Elementary School	5205 S Holladay Boulevard (2600 E)\nHolladay,	5205 S Holladay Boulevard
10	Crestview Elementary School	2100 E Lincoln Lane (4350 S)\nHolladay, UT 841	2100 E Lincoln Lane

```
In [52]: #: Now operate on all the addresses that don't have a newline
    #: The ~ is panda's negating operator (similar to !). We wrap the whole expression to be
    negated in ().
    comma_df = in_df[~(in_df['address'].str.contains(r'\n'))].copy()
    print(len(comma_df))

#: Just split on comma, taking the first piece
    comma_df['street_addr'] = comma_df['address'].str.split(',').str[0]
    comma_df.head()
```

35

Out[52]:

	school	address	street_addr_
1	Arcadia Elementary	3461 W 4850 S, Salt Lake City, UT 84129	3461 W 4850 S
3	Bennion Jr. High	6055 S 2700 W, Salt Lake City, UT 84129	6055 S 2700 W
4	Bonneville Junior High	5330 Gurene Dr, Holladay, UT 84117	5330 Gurene Dr
5	Calvin S. Smith Elementary	2150 W 6200 S, Taylorsville, UT 84129	2150 W 6200 S
7	Copper Hills Elementary School	7635 W Washington Rd, Magna, UT 84044	7635 W Washington Rd

```
In [53]: #: Combine them back together with pd.concat (more on this later)
    recombined_df = pd.concat([newline_df, comma_df])

#: The zip code is always the text after the last space
    recombined_df['zip'] = recombined_df['address'].str.split(' ').str[-1]
    recombined_df.sort_index().head()
```

Out[53]:

	school	address	street_addr	zip
0	Academy Park Elementary School	4580 W Westpoint Drive (4575 S)\nWest Valley,	4580 W Westpoint Drive	84120-5920
1	Arcadia Elementary	3461 W 4850 S, Salt Lake City, UT 84129	3461 W 4850 S	84129
2	Beehive Elementary School	5655 South 5220 West\nKearns, UT 84118-7500	5655 South 5220 West	84118-7500
3	Bennion Jr. High	6055 S 2700 W, Salt Lake City, UT 84129	6055 S 2700 W	84129
4	Bonneville Junior High	5330 Gurene Dr, Holladay, UT 84117	5330 Gurene Dr	84117

Working with Rows: .apply()

The Wrong Way to Get Row Values

```
In [55]: #: Get the values of each row as a named tuple- "fastest" iteration if you absolutely ha
    ve to iterate
    #: Find the FIPS value of all counties with population over 200,000
    for row in counties_df.itertuples():
        if row.POP_LASTCENSUS > 200000:
            print(row.FIPS)
```

11.0

57.0

35.0

49.0

Iterating over the rows of a dataframe is like using using a a set of pliers to drive in a nail. It can be done, but it's slow and everyone will tell you to use a hammer instead.

Instead, change your thought process. Think about how your output could be expressed as a **function of other columns** within the dataframe. Using pandas' built-in vectorized functions is much faster and ultimately more readable.

```
In [56]: #: use filtering and lists
    list(counties_df[counties_df['POP_LASTCENSUS'] > 200000]['FIPS'])
```

Out[56]: [11.0, 57.0, 35.0, 49.0]

Use .apply Instead

The .apply() method can be used to perform an aribtrary operation against data in a DataFrame. This is a shift in thinking: instead of extracting the data *from* the dataframe to pass to another function, you pass the *function* to the dataframe. This is much faster than iterating over the rows to get individual elements.

.apply sends a series of data to the specified function and combines the resulting data. If called directly on a series, it just sends that data. If called on a DataFrame, it either sends each column as the series of values in each row or each row as the series of values in each column.

The function passed via .apply can either **aggregate** the data (create a new output that is a function of the inputs) or **transform** the data (create a new element for eact input element).

```
In [57]: #: Get some numeric data to work on
    county_pop_df = counties_df[['POP_LASTCENSUS', 'POP_CURRESTIMATE']]
    county_pop_df.head()
```

Out[57]:

POP_LASTCENSUS POP_CURRESTIMATE

	_	_			
FIPS_STR					
49005	133154	140173			
49013	19596	20161			
49011	362679	369948			
49027	12975	13330			
49051	34788	36619			

Aggrevating Aggregation

An **agregation** function takes a set of data and computes a value for each set. The output will have one dimension less than the input. Applying to a dataframe will result in a series, like taking the average of values:

```
In [58]:
         county pop df.apply(np.mean) #: default is axis='rows', which applies the function to e
         very row in a column
        POP LASTCENSUS
                              112814.344828
Out[58]:
          POP CURRESTIMATE
                              116579.310345
          dtype: float64
In [59]:
         county pop df.apply(np.mean, axis='columns').head() #: change to pass columns (applied
         along the columns)
         FIPS STR
Out[59]:
          49005
                   136663.5
          49013
                    19878.5
          49011
                   366313.5
          49027
                    13152.5
          49051
                    35703.5
          dtype: float64
```

Note the differences with axis='columns' in aggregating functions. This parameter controls the contents of the series that is passed to the function.

The default (axis='rows') sends a series containing all the row values in a column to the function, repeating for however many columns there are. Thus, the function is applied along the rows.

Using axis='columns' instead sends a series containing all the columns to the function, repeating for however many rows are in the dataframe. Thus, the function is applied along the columns.

Transcontinental Transformations

A **transformation** function returns an output for every input and thus has the same dimensions as the input, such as taking the square root of all the values in the dataframe:

In [60]: county_pop_df.apply(np.sqrt).head()

Out[60]:

POP_LASTCENSUS POP_CURRESTIMATE

		<u>-</u>	
FIPS_STR	!		
49005	364.902727	374.396848	
49013	139.985714	141.989436	
49011	602.228362	608.233508	
49027	113.907857	115.455619	
49051	186.515415	191.360916	

Using lambda Functions for Arbitrary Operations

lambda functions are small, one-line functions that don't use the normal def function_name(args): syntax.

They are useful for creating simple bits of code you can use with .apply without having to declare a normal function elsewhere in your code.

lambda s are callable objects meant to be passed to another function imediately after creation, instead of the normal behavior of assigning them a name for later reference.

```
In [61]:
         #: Calculate the square kilometers of a geometry
         def get sq km(geometry):
             return geometry.area / 1000000
         counties df['SHAPE'].apply(get sq km).head()
          FIPS STR
Out[61]:
          49005
                   5456,779633
          49013
                  14489.452124
          49011 2889.969718
         49027
                  29421,994253
          49051
                   5396,133031
          Name: SHAPE, dtype: float64
In [62]:
         #: Access the `.area` property of each geometry in the SHAPE column by applying a lambda
         function instead
         counties_df['SHAPE'].apply(lambda x: x.area / 1000000).head()
         FIPS_STR
Out[62]:
         49005
                   5456,779633
          49013
                  14489.452124
          49011 2889.969718
         49027
                  29421.994253
          49051
                   5396.133031
          Name: SHAPE, dtype: float64
```

lambda syntax

lambda functions are defined with the statement lambda var_name: <operations on var_name>.

var_name is a name you choose to refer to the input; x is used by convention but you can choose another name that is more applicable to your problem.

The body of the statement, everything after : , is what you want to do with the input

Rather than explicitely using a return statement, it implicitely returns whatever the operation creates.

Out[63]: FIPS_STR

49005 136663.5 49013 19878.5 49011 366313.5 49027 13152.5 49051 35703.5 dtype: float64 Groupby: Aggregation and Summarization by Category

.groupby **splits** a dataframe by the values of a column, **applies** an operation on that each chunk's sub-frame, and then **combines** the results into a data structure based on the type of operation performed.

Out[64]: STATEPLANE

Central 163228.076923 North 109227.375000 South 34479.000000

Name: POP_LASTCENSUS, dtype: float64

Each groupby chunk is its own DataFrame, and any operation that can be done on a DataFrame can be done to the chunk. .groupby() returns a groupby object that handles the iteration over the DataFrames, and it also gives you access to the individual groups' **DataFrames**

```
In [66]: #: Get a groupby object and list the groups
    grouped = counties_df.groupby('STATEPLANE')
    grouped.groups
```

Out[66]: {'Central': ['49013', '49027', '49051', '49023', '49039', '49019', '49007', '49041', '49045', '49047', '49015', '49035', '49049'], 'North': ['49005', '49011', '49003', '49057', '49033', '49009', '49043', '49029'], 'South': ['49053', '49001', '49017', '49031', '49021', '49025', '49037', '49025']}

In [67]: #: Access an individual group's dataframe
 grouped.get_group('South').head()

Out[67]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRES
FIPS_STR									_
49053	10	27	2.010271e+09	2010.0	WASHINGTON	53.0	South	180279	197680
49001	15	01	2.010011e+09	2010.0	BEAVER	1.0	South	7072	7327
49017	17	09	2.010091e+09	2010.0	GARFIELD	17.0	South	5083	5281
49031	20	16	2.010161e+09	2010.0	PIUTE	31.0	South	1438	1487
49021	22	11	2.010111e+09	2010.0	IRON	21.0	South	57289	62429

.groupby and .apply

Because .groupby creates dataframes and iterates an operation on each one, we can use .apply to perform any arbitrary function on each dataframe.

The function passed by .apply operates on the rows or columns of each chunk sub-frame just like it would when you use .apply on a normal dataframe, and the results from each group are combined back together.

If you use a **tranformation** function that returns a value for each input value, .apply thus returns a dataframe. The groubpy combine step then concats all the dataframes together into a new dataframe with the same index as the original.

This can be useful if you want to compare a value to the group's average, or apply a different correction value to each group.

```
In [68]: #: calculate the percent contribution of each county's population to the group's total
    plane_pop_df = counties_df[['STATEPLANE', 'POP_LASTCENSUS', 'POP_CURRESTIMATE']]
    plane_pop_df.groupby('STATEPLANE').apply(lambda x: x/x.sum()).head()
```

Out[68]:

	POP_LASTCENSUS	POP_CORRESTIMATE
FIPS_STR		
49005	0.152382	0.155628
49013	0.009235	0.009245
49011	0.415050	0.410738
49027	0.006115	0.006113
49051	0.016394	0.016793

DOD LACTCENICIES DOD CUIDDECTIMATE

If you use an aggregation function that returns a series for each group, the combine step concats these series into a new dataframe.

This can be useful for running the same operation on multiple columns in each group, like a descriptive statistic.

In [69]: | #: Get the average for each column by group. The apply acts across two series for each g roup dataframe and returns #: a series for each, and then these are added as columns of our new dataframe plane pop df.groupby('STATEPLANE')[['POP LASTCENSUS', 'POP CURRESTIMATE']].apply(np.mea n)

Out[69]:

Central	163228.076923	167744.230769
STATEPLANE		

POP_LASTCENSUS POP_CURRESTIMATE

HOLLII	107227.373000	112300.230000
South	34479.000000	37429.375000

Finally, if you use an **aggregation function that returns a single value** for each group, they are combined into a series.

A commone use case is to get the total value for each group, like summing populations.

Name: POP_LASTCENSUS, dtype: int64

	ent recombinat ss more compli		l, it's important	to understand

groupby Example: Broadband Data

The FCC has released new broadband availability data based on individual Broadband Servicable Locations (BSLs). While the BSL locations themselves are protected by license, we can download the available service info from broadbandmap.gov (broadbandmap.gov) and analyze it.

The data are available for download by technology type, and there can be multiple records per location id within any technology types—one per provider that serves that location.

We'll take a folder of the downloaded CSVs, load and combine them into a single dataframe, classify the speeds into the FCC's three service levels (served, underserved, and unserved), and use . groupby to apply a classification function to determine which locations are served based on a subset of technologies.

```
Out[112]: GSO-Satellite 2922195
Licensed-Fixed-Wireless 1651885
Unlicensed-Fixed-Wireless 1537818
NGSO-Satellite 974146
Cable 819488
Copper 658352
Fiber-to-the-Premises 569896
Name: technology name, dtype: int64
```

In [135]:

all_df.groupby('location_id').get_group(1010272409)

Out[135]:

	provider_id	frn	brand_name	location_id	block_fips	h3index_hex8	technology_code	max_advertised_d
0	131310	22516330	TDS Telecom	1010272409	490211105022030	882991ca17fffff	40	1000
8557	130228	18626853	CenturyLink	1010272409	490211105022030	882991ca17fffff	10	0
229718	131219	1607175	SC BROADBAND	1010272409	490211105022030	882991ca17fffff	50	1000
13	130627	12369286	HughesNet	1010272409	490211105022030	882991ca17fffff	60	25
974185	290111	4963088	Viasat, Inc.	1010272409	490211105022030	882991ca17fffff	60	10
974186	290111	4963088	Viasat, Inc.	1010272409	490211105022030	882991ca17fffff	60	10
108	130403	6945950	T-Mobile US	1010272409	490211105022030	882991ca17fffff	71	0
1298375	170054	31777865	InfoWest	1010272409	490211105022030	882991ca17fffff	71	100
13	430076	26043968	Starlink	1010272409	490211105022030	882991ca17fffff	61	350
141850	170054	31777865	InfoWest	1010272409	490211105022030	882991ca17fffff	70	100

```
In [115]:
          def get location id status(location df):
               if (location df['classification'] == 'above 100/20').any():
                   return 'served'
               if (location df['classification'] == 'between 100/20 and 25/3').any():
                   return 'underserved'
               if (location df['classification'] == 'under 25/3').any():
                   return 'unserved'
In [133]: #: Subset to the desired techs
          reliable techs = ['Cable', 'Copper', 'Fiber-to-the-Premises', 'Licensed-Fixed-Wireless']
           reliable techs df = all df[all df['technology name'].isin(reliable techs)]
           #: Groupby individual locations (location id) and apply our classification function
           reliable service df = reliable techs df.groupby('location id').apply(get location id sta
          tus)
           reliable service df.head()
          location id
Out[133]:
           1010272362
                           served
           1010272363
                           served
           1010272364
                       unserved
           1010272365
                           served
```

1010272370

dtype: object

unserved

Joing Datasets: concat and merge

pd.concat: Adding rows or columns

Mainly useful when an operation creates another dataframe with the same column labels (ie, adding rows with the same schema) or the same index labels (ie, creating new columns for existing data).

Out[71]:

	name	type
0	Main Street Trail	sidewalk
1	Benches	paved
2	Beltway	paved

```
In [72]: #: Add another row
    new_trail_df = pd.DataFrame({
        'name': ['Provo Express'],
        'type': ['paved']
    })
    combined_df = pd.concat([bike_routes_df, new_trail_df])
    combined_df
```

Out[72]:

	Hanne	гуре
0	Main Street Trail	sidewalk
1	Benches	paved
2	Beltway	paved
0	Provo Express	paved

```
In [73]: #: Add a pair of new columns, which are added according to the index
    new_columns_df = pd.DataFrame({
        'status': ['open', 'open', 'open', 'planned'],
        'condition': ['good', 'poor', 'failed', None]
    })
    print(combined_df.index)
    print(new_columns_df.index)
    new_combined_df = pd.concat([combined_df, new_columns_df], axis='columns') #: Note axis
    =1 to append columns instead of rows
```

Int64Index([0, 1, 2, 0], dtype='int64')
RangeIndex(start=0, stop=4, step=1)

```
InvalidIndexError
                                          Traceback (most recent call last)
<ipython-input-73-9b53eda5ce76> in <module>
      6 print(combined df.index)
      7 print(new columns df.index)
----> 8 new combined df = pd.concat([combined df, new columns df], axis='columns')
#: Note axis=1 to append columns instead of rows
~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\pandas\ut
il\ decorators.py in wrapper(*args, **kwargs)
    309
                            stacklevel=stacklevel,
    310
                    return func(*args, **kwargs)
--> 311
    312
    313
                return wrapper
~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\pandas\co
re\reshape\concat.py in concat(objs, axis, join, ignore index, keys, levels, names, v
erify integrity, sort, copy)
    305
    306
--> 307
            return op.get result()
    308
    309
~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\pandas\co
re\reshape\concat.py in get result(self)
                            obi labels = obi.axes[1 - ax]
    526
                            if not new labels.equals(obj labels):
    527
                                indexers[ax] = obj labels.get indexer(new labels)
--> 528
    529
    530
                        mgrs indexers.append((obj. mgr, indexers))
~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\pandas\co
re\indexes\base.py in get indexer(self, target, method, limit, tolerance)
```

InvalidIndexError: Reindexing only valid with uniquely valued Index objects

```
In [74]: combined_df.reset_index(inplace=True)
    print(combined_df.index)
    print(new_columns_df.index)
    new_combined_df = pd.concat([combined_df, new_columns_df], axis='columns')
    new_combined_df
```

RangeIndex(start=0, stop=4, step=1)
RangeIndex(start=0, stop=4, step=1)

Out[74]:

		index	name	type	status	condition
	0	0	Main Street Trail	sidewalk	open	good
	1	1	Benches	paved	open	poor
2		2	Beltway	paved	open	failed
	3	0	Provo Express	paved	planned	None

Merge: Joining Two Disparate Datasets

merge allows you to do SQL-style joins on two different dataframes based on a common
This provides much more flexibility than pd.concat on the columns used for the keys and allows you to specify the join type (inner, outer, etc).

```
In [75]: | #: first, let's drop the index column from the previous .reset_index() call
         new combined df.drop(columns=['index'], inplace=True)
          new combined df
```

Out[75]:

	name	type	status	condition
0	Main Street Trail	sidewalk	open	good
1	Benches	paved	open	poor
2	Beltway	paved	open	failed
3	Provo Express	paved	planned	None

```
In [76]: | #: Build our new dataframe of surface types and descriptions
         surface description df = pd.DataFrame({
              'surface_type': ['sidewalk', 'paved', 'gravel'],
              'surface description': ['A shared-use path usually consisting of concrete four to ei
         ght feet wide', 'An asphalt-paved shared-use path at least 10 feet wide', 'A gravel-base
         d natural-surface path'],
         })
         surface_description_df
```

Out[76]:

	surface_type	surface_description
0	sidewalk	A shared-use path usually consisting of concre
1	paved	An asphalt-paved shared-use path at least 10 f
2	gravel	A gravel-based natural-surface path

In [77]: #: Inner merge: only rows whose key is in both dataframes
 new_combined_df.merge(surface_description_df, left_on='type', right_on='surface_type', h
 ow='inner')

Out[77]:

	name	type	status	condition	surface_type	surface_description
0	Main Street Trail	sidewalk	open	good	sidewalk	A shared-use path usually consisting of concre
1	Benches	paved	open	poor	paved	An asphalt-paved shared-use path at least 10 f
2	Beltway	paved	open	failed	paved	An asphalt-paved shared-use path at least 10 f
3	Provo Express	paved	planned	None	paved	An asphalt-paved shared-use path at least 10 f

#: Outer: Keep all rows, no matter if the key is missing in one
new_combined_df.merge(surface_description_df, left_on='type', right_on='surface_type', h
ow='outer', indicator=True)

Out[78]:

	name	type	status	condition	surface_type	surface_description	_merge
0	Main Street Trail	sidewalk	open	good	sidewalk	A shared-use path usually consisting of concre	both
1	Benches	paved	open	poor	paved	An asphalt-paved shared-use path at least 10 f	both
2	Beltway	paved	open	failed	paved	An asphalt-paved shared-use path at least 10 f	both
3	Provo Express	paved	planned	None	paved	An asphalt-paved shared-use path at least 10 f	both
4	NaN	NaN	NaN	NaN	gravel	A gravel-based natural-surface path	right_only

Spatial Joins: Like a Table, but Spatial!

Question: How many people are there per supermarket in each county?

```
In [79]:
         #: Load in the data
          places df = pd.DataFrame.spatial.from featureclass(r'data/open source places.gdb/OpenSou
          rcePlaces')
          new counties df = pd.DataFrame.spatial.from featureclass(r'data/county boundaries.gdb/Co
          unties')
In [80]:
         #: Gives us the frequency of all the unique values in a series
          places df['category'].value counts()
          building
                                  5479
Out[80]:
          restaurant
                                  2352
          christian
                                  1913
          park
                                  1870
          fast food
                                  1681
          greengrocer
                                      3
          jewish
                                      2
                                      2
          embassy
          christian_protestant
                                     1
          hindu
```

Name: category, Length: 105, dtype: int64

```
['airport',
Out[81]:
            'archaeological',
            'arts centre',
            'attraction',
            'bakery',
            'bank',
            'bar',
            'beauty shop',
            'beverages',
            'bicycle rental',
            'bicycle shop',
            'bookshop',
            'buddhist',
            'building',
            'butcher',
            'cafe',
            'camp site',
            'car dealership',
            'car rental',
            'car_wash',
            'caravan site',
            'chemist',
            'christian',
            'christian anglican',
            'christian catholic',
            'christian lutheran',
            'christian methodist',
            'christian_protestant',
            'cinema',
            'clothes',
            'college',
            'community_centre',
            'computer_shop',
            'convenience',
            'courthouse',
```

```
'dentist',
'department_store',
'doctors',
'doityourself',
'embassy',
'fast_food',
'fire_station',
'florist',
'furniture_shop',
'garden_centre',
'general',
'gift_shop',
'golf_course',
'graveyard',
'greengrocer',
'guesthouse',
'hairdresser',
'helipad',
'hindu',
'hospital',
'hostel',
'hotel',
'jeweller',
'jewish',
'kindergarten',
'laundry',
'library',
'mall',
'market_place',
'memorial',
'mobile_phone_shop',
'monument',
'motel',
'museum',
'muslim',
'nightclub',
```

```
'nursing_home',
             optician',
In [82]:
           #: Just supermarkets, make a copy
           supermarkets_df = places_df[places_df['category'] == 'supermarket'].copy()
           supermarkeyts_df.info()
             picnic site',
           <classyg'pandas, core.frame.DataFrame'>
          Int6和Index: 273 entries, 68 to 18846
          Data solumnisc (total 22 columns):
           # pulcolumn
                              Non-Null Count Dtype
           --'railway station',
                              273 non-null
                                               int64
           oresobaltication,
                              179 non-null
                                               float64
            1' ruiqddr_dist
                              273 non-null
                                               object
            2' schoon_id
                              273 non-null
                                               object
            3' she petergory
                              273 non-null
                                               object
           4' shotemethop'.
            5'spogountentre' 273 non-null
                                               object
                              273 non-null
                                               object
           6' sportits shop',
                              273 non-null
                                               object
            7'sta7di#Pum'.
           8' stablizskeriø',
                              273 non-null
                                               object
                              273 non-null
                                               object
           9' suptermandetr',
            10<sub>Swi</sub>ding in 10 273 non-null
                                               object
                              273 non-null
                                               float64
            11thelathe',
            12 touraitst info',
                             273 non-null
                                               float64
            13<sub>tow</sub>amenity
                              273 non-null
                                               object
            14 town issine.
                              273 non-null
                                               object
                              273 non-null
                                               object
            15to/toy/job/m
            16trallep agent',
                              273 non-null
                                               object
                              273 non-null
                                               object
            17un Webstitev',
                              273 non-null
                                               object
            18 verlding any',
                              273 non-null
                                               object
            19<sub>vet</sub>ependours
            20/idest_sattly.
                              273 non-null
                                               object
            <sup>21</sup>vieWeint'
                              273 non-null
                                               geometry
          dtypes:; float64(3), geometry(1), int64(1), object(17)
          memory usage: 49.1+ KB
```

In [83]:

supermarkets_df.head()

Out[83]:

	OBJECTID	addr_dist	osm_id	category	name	county	city	zip	block_id	ugrc_addr	
68	69	NaN	306835249	supermarket	Winegar's	WEBER	OGDEN	84067	490572105133005	None	•••
87	88	22.674714	307362738	supermarket	Kents	WEBER	OGDEN	84067	490572105091021	3535 W 5500 S	
111	112	11.190251	308444242	supermarket	Natural Foods	WEBER	OGDEN	84405	490572105122014	1050 W RIVERDALE RD	
121	122	NaN	308973217	supermarket	Kent's	DAVIS	CLEARFIELD	84015	490111257013011	None	
161	162	NaN	355819779	supermarket	Winegar's Grocery	DAVIS	CLEARFIELD	84015	490111255011027	None	

$5 \text{ rows} \times 22 \text{ columns}$

```
In [84]:
         #: Try the join
         supermarkets df.spatial.join(new counties df)
         Exception
                                                   Traceback (most recent call last)
         <ipython-input-84-e1c3f1afe7cb> in <module>
               1 #: Try the join
         ----> 2 supermarkets df.spatial.join(new counties df)
         ~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\arcgis\fe
         atures\geo\ accessor.py in join(self, right_df, how, op, left_tag, right_tag)
            1552
                         if self.sr != right_df.spatial.sr:
            1553
         -> 1554
                             raise Exception("Difference Spatial References, aborting operatio
         n")
                         index left = "index {}".format(left tag)
            1555
            1556
                         index right = "index_{}".format(right_tag)
```

Exception: Difference Spatial References, aborting operation

Out[86]:

True

```
In [87]: supermarkets_df.spatial.join(new_counties_df, how='inner', op='within')
```

```
KeyError
                                         Traceback (most recent call last)
<ipython-input-87-a0d7db3a0141> in <module>
----> 1 supermarkets df.spatial.join(new counties df, how='inner', op='within')
~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\arcgis\fe
atures\geo\ accessor.py in join(self, right df, how, op, left tag, right tag)
                                check predicates(
   1616
  1617
                                    left df[self.name].apply(lambda x: x)[l idx],
                                    right df[right df.spatial. name][r idx],
-> 1618
   1619
                                ),
   1620
~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\pandas\co
re\series.py in getitem (self, key)
                    return self. get values(key)
    964
    965
--> 966
                return self. get with(key)
    967
    968
            def get with(self, key):
~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\pandas\co
re\series.py in get with(self, key)
                    # (i.e. self.iloc) or label-based (i.e. self.loc)
    999
                    if not self.index. should fallback to positional():
   1000
                        return self.loc[key]
-> 1001
   1002
                    else:
  1003
                        return self.iloc[kev]
~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\pandas\co
re\indexing.py in getitem (self, key)
    929
                    maybe callable = com.apply if callable(key, self.obj)
    930
                    return self. getitem axis(maybe callable, axis=axis)
--> 931
    932
```

```
933
            def is scalar access(self, key: tuple):
~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\pandas\co
re\indexing.py in getitem axis(self, key, axis)
                            raise ValueError("Cannot index with multidimensional ke
   1151
   1152
-> 1153
                        return self. getitem iterable(key, axis=axis)
  1154
  1155
                   # nested tuple slicing
~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\pandas\co
re\indexing.py in getitem iterable(self, key, axis)
   1091
  1092
                # A collection of keys
                keyarr, indexer = self. get listlike indexer(key, axis)
-> 1093
                return self.obj. reindex with indexers(
   1094
  1095
                    {axis: [keyarr, indexer]}, copy=True, allow dups=True
~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\pandas\co
re\indexing.py in get listlike indexer(self, key, axis)
   1312
                    keyarr, indexer, new indexer = ax. reindex non unique(keyarr)
  1313
                self. validate read indexer(keyarr, indexer, axis)
-> 1314
   1315
                if needs i8 conversion(ax.dtype) or isinstance(
   1316
~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\pandas\co
re\indexing.py in validate read indexer(self, key, indexer, axis)
   1375
  1376
                    not found = list(ensure index(key)[missing mask.nonzero()[0]].uni
que())
                    raise KeyError(f"{not found} not in index")
-> 1377
  1378
  1379
```

```
KeyError: '[14081, 8355, 13348, 8259, 13419, 8848, 11120, 882, 18196, 8181, 8183, 863
4, 15324, 1159, 967, 970, 1162, 990, 4480, 10754, 10758, 1547, 11033, 3099, 14329, 11
048, 11689, 3376, 15412, 15546, 11579, 11462, 8134, 17763, 10986, 2286, 9071, 12923,
8062, 16385, 12866, 18821, 14764, 18316, 11475, 950, 13147, 3039, 1166, 4881, 9368, 1
701, 4774, 1194, 12337, 9272, 5949, 11714, 9539, 1093, 7120, 4817, 11730, 982, 4835,
11877, 998, 11753, 1014, 18706, 17705, 5394, 13557, 12906, 5491, 5717, 5625, 5792, 11
86, 5859, 13758, 12843, 13868, 1071, 1075, 6707, 1238, 3225, 2814, 1247, 3467, 1276,
                     2000 40020 42740 4724 46745 6042 46747 2224 4066 47602
     ~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\pandas\core\indexing.py in get listlike indexer(se
     lf, key, axis)
                     keyarr, indexer, new indexer = ax. reindex non unique(keyarr)
       1312
       1313
                 self. validate read indexer(keyarr, indexer, axis)
     -> 1314
       1315
       1316
                 if needs i8 conversion(ax.dtype) or isinstance(
     ~\AppData\Local\Programs\ArcGIS\Pro\bin\Python\envs\arcpy\lib\site-packages\pandas\core\indexing.py in validate read indexer(s
     elf, key, indexer, axis)
       1375
       1376
                     not_found = list(ensure_index(key)[missing_mask.nonzero()[0]].unique())
     -> 1377
                    raise KeyError(f"{not found} not in index")
       1378
       1379
```

KeyError: '[14081, 8355, 13348, 8259, 13419, 8848, 11120, 882, 18196, 8181, 8183, 8634, 15324, 1159, 967, 970, 1162, 990, 4480, 10754, 10758, 1547, 11033, 3099, 14329, 11048, 11689, 3376, 15412, 15546, 11579, 11462, 8134, 17763, 10986, 2286, 9071, 12923, 8062, 16385, 12866, 18821, 14764, 18316, 11475, 950, 13147, 3039, 1166, 4881, 9368, 1701, 4774, 1194, 12337, 9272, 5949, 11714, 9539, 1093, 7120, 4817, 11730, 982, 4835, 11877, 998, 11753, 1014, 18706, 17705, 5394, 13557, 12906, 5491, 5717, 5625, 5792, 11 86, 5859, 13758, 12843, 13868, 1071, 1075, 6707, 1238, 3225, 2814, 1247, 3467, 1276, 1292, 5086, 3694, 3090, 18020, 13718, 173 1, 16745, 6042, 16747, 3324, 1866, 17693, 3314, 15374, 1024, 13601, 5826, 2787, 16123, 9498, 3071, 4243, 6164, 6168, 13730, 160 39, 15296, 12867, 12241, 13820, 13809, 13822, 874, 12288, 7621, 2055, 2572, 2573, 14353, 8212, 8224, 8226, 11300, 3110, 8232, 8 233, 9257, 11309, 15920, 11314, 16947, 17460, 2104, 2556, 8790, 1113, 12892, 16991, 15457, 13924, 1129, 15468, 12402, 11379, 12 420, 11406, 14481, 2195, 9883, 1183, 2213, 12455, 7336, 5805, 9906, 10936, 11453, 18627, 12995, 17101, 5332, 8416, 12521, 1303 4, 17131, 16622, 9457, 8947, 2803, 1790, 8970, 5901, 3854, 5905, 6422, 11548, 12576, 9507, 9003, 2347, 5935, 5936, 13104, 2353, 7988, 2358, 1849, 13120, 13633, 3909, 3913, 5450, 13135, 3920, 9044, 9046, 8546, 12643, 12647, 13168, 6004, 9081, 14714, 15227, 3455, 14722, 6041, 12187, 18846, 16292, 4520, 4533, 16823, 4538, 4550, 7119, 8150, 16343, 12783, 8176, 5105, 11256, 4604, 1740 5, 11911, 10775, 10780, 6519, 12065, 5284, 13989, 12022, 11954, 11317, 11957, 11448, 11321, 11964, 5948, 3266, 7105, 14659, 160 69, 1735, 11978, 15179, 10828, 3024, 15185, 8403, 13658, 1376, 9959, 7024, 10231] not in index'

In [88]: #: Reset the index and call the spatial join again using method chaining
 supermarkets_df.reset_index().spatial.join(new_counties_df, how='inner', op='within').he
 ad()

Out[88]:

	level_0	OBJECTID_left	addr_dist	osm_id	category	name	county	city	zip	block_id	 ENT
0	0	69	NaN	306835249	supermarket	Winegar's	WEBER	OGDEN	84067	490572105133005	 2.010
1	1	88	22.674714	307362738	supermarket	Kents	WEBER	OGDEN	84067	490572105091021	 2.010
2	2	112	11.190251	308444242	supermarket	Natural Foods	WEBER	OGDEN	84405	490572105122014	 2.010
3	10	983	22.493216	490548656	supermarket	Wangsgards	WEBER	OGDEN	84404	490572003013001	 2.010
4	12	999	NaN	509040436	supermarket	Smith's Marketplace	WEBER	OGDEN	84414	490572102041016	 2.010

5 rows × 36 columns

In [89]:

#: Now let's save the join and only get the name and population columns from the countie
s
new_supermarkets_df = supermarkets_df.reset_index(drop=True).spatial.join(new_counties_d
f[['NAME', 'POP_LASTCENSUS', 'SHAPE']], how='inner', op='within')
new_supermarkets_df.head()

Out[89]:

	OBJECTID	addr_dist	osm_id	category	name	county	city	zip	block_id	ugrc_addr		tou
0	69	NaN	306835249	supermarket	Winegar's	WEBER	OGDEN	84067	490572105133005	None		Noı
1	88	22.674714	307362738	supermarket	Kents	WEBER	OGDEN	84067	490572105091021	3535 W 5500 S		Noı
2	112	11.190251	308444242	supermarket	Natural Foods	WEBER	OGDEN	84405	490572105122014	1050 W RIVERDALE RD		Noı
3	983	22.493216	490548656	supermarket	Wangsgards	WEBER	OGDEN	84404	490572003013001	145 HARRISVILLE RD	•••	Noı
4	999	NaN	509040436	supermarket	Smith's Marketplace	WEBER	OGDEN	84414	490572102041016	None		Noı

5 rows × 25 columns

Now lets use our join results to get the number of supermarkets per county and the total county population

```
In [90]:
         #: Use groupby to get total count of rows in each group, 'category' is arbitrary column
          new supermarkets df.groupby('NAME')['category'].count().head()
          NAME
Out[90]:
          BEAVER
                        1
          BOX ELDER
                        3
          CACHE
                       10
          CARBON
          DAVIS
                       18
          Name: category, dtype: int64
In [91]:
         #: And just get the first population value in each group (they're all the same per grou
          p)
          new_supermarkets_df.groupby('NAME')['POP LASTCENSUS'].first().head()
          NAME
Out[91]:
          BEAVER
                         7072
          BOX ELDER
                        57666
          CACHE
                       133154
          CARBON
                        20412
          DAVIS
                       362679
          Name: POP LASTCENSUS, dtype: int64
```

In [92]:

#: Concat our groupby outputs into a new DataFrame
answer_df = pd.concat([new_supermarkets_df.groupby('NAME')['category'].count(), new_supe
rmarkets_df.groupby('NAME')['POP_LASTCENSUS'].first()], axis=1)
answer_df.head()

Out[92]:

	category	POP_LASTCENSUS
NAME		
BEAVER	1	7072
BOX ELDER	3	57666
CACHE	10	133154
CARBON	2	20412
DAVIS	18	362679

In [93]:

#: Calculate our metric and clean up the column names
answer_df['people_per_supermarket'] = answer_df['POP_LASTCENSUS'] / answer_df['categor
y']
answer_df.rename(columns={'category': 'supermarkets', 'POP_LASTCENSUS': 'pop_last_census'}, inplace=True)
answer_df.head()

Out[93]:

	supermarkets	pop_last_census	people_per_supermarket
NAME			
BEAVER	1	7072	7072.000000
BOX ELDER	3	57666	19222.000000
CACHE	10	133154	13315.400000
CARBON	2	20412	10206.000000
DAVIS	18	362679	20148.833333

Out[94]:

supermarkets	pop last census	people per	supermarket

NAME			
BEAVER	1	7072	7072.000000
BOX ELDER	3	57666	19222.000000
CACHE	10	133154	13315.400000
CARBON	2	20412	10206.000000
DAVIS	18	362679	20148.833333

In [95]:

#: Now let's join our new data back to the geometries using just name and shape columns
merged_df = counties_df[['NAME', 'SHAPE']].merge(answer_df, left_on='NAME', right_on='NA
ME')

merged_df.sort_values(by='people_per_supermarket').head()

Out[95]:

	NAME	SHAPE	supermarkets	pop_last_census	people_per_supermarket
15	GARFIELD	{'rings': [[[-12497349.647300001, 4600620.4720	4	5083	1270.75
21	WAYNE	$\{ \text{'rings':} \\ [[[-12435226.4528, 4651746.087300003 \\$	1	2486	2486.00
11	RICH	$\{ \text{'rings'}; \text{[[[-12361664.9952, 5161235.351800002} \\$	1	2510	2510.00
10	GRAND	{'rings': [[[-12139959.1677, 4793360.2117], [3	9669	3223.00
17	SUMMIT	$\{ \text{'rings':} \hbox{\tt [[[-12245108.298,5011966.523199998]}$	12	42357	3529.75

In [96]: merged_df.spatial.plot()

Let's Get Spatial, the Esri Version

We've already used some aspects of Esri's **spatially-enabled dataframes**, which are an extension to normal pandas dataframe namespace provided by the ArcGIS API for Python.

```
In [97]:
```

from arcgis.features import GeoAccessor, GeoSeriesAccessor

These imports add the .spatial attribute to pd.DataFrame, which provides access to a bunch of spatial methods and attributes. We've already used pd.DataFrame.spatial.from_featureclass(), .project(), .join(), and .sr.

The documentation for all the methods and attributes exposed through .spatial can be found in the GeoAccessor class of the arcgis.features module in the ArcGIS API for Python docs (https://developers.arcgis.com/python/api-reference/arcgis.features.toc.html#geoaccessor)

ArcGIS API for Python / API Reference

GeoAccessor

class arcgis.features. GeoAccessor (obj)							
The GeoAccessor class adds a spatial namespace that performs spatial operations on the given Pandas DataFrame. The							
GeoAccessor class includes visualization, spatial indexing, IO and dataset level properties.							
property area							
The area method retrieves the total area of the GeoAccessor dataframe.							
Returns							
A float							
>>> df.spatial.area							
143.23427							
property bbox							

Because the ArcGIS API for Python does not require ArcGIS Pro/Enterprise, it can use two different geometry engines for spatial data types and operations.

If arcpy **is** available in your python environment via ArcGIS Pro/Enterprise, it uses arcpy 's underlying geometry operations (just without all the feature layer nonsense).

If arcpy **is not** available, it uses the shapely open-source library for geometry operations. The geometry objects will look a little different, and you won't be able to write to File GDBs (though you can still read from them).

Creating Spatially-Enabled DataFrames

In [98]:

#: From a Feature Class

pd.DataFrame.spatial.from_featureclass(r'data/county_boundaries.gdb/Counties').head()

Out[98]:

_		OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIMATE	
	0	1	03	2.010031e+09	2010.0	CACHE	5.0	North	133154	140173	{/ B B
	1	2	07	2.010071e+09	2010.0	DUCHESNE	13.0	Central	19596	20161	{7 1 A 0
	2	3	06	2.010061e+09	2010.0	DAVIS	11.0	North	362679	369948	{2 C 9 2
	3	4	14	2.010141e+09	2010.0	MILLARD	27.0	Central	12975	13330	{E 7 8 2
	4	5	26	2.010261e+09	2010.0	WASATCH	51.0	Central	34788	36619	{3 2 B 2

In [99]: | #: From a hosted feature Layer

feature_layer = arcgis.features.FeatureLayer('https://services1.arcgis.com/99lidPhWCzftI e9K/arcgis/rest/services/UtahCountyBoundaries/FeatureServer/0')

pd.DataFrame.spatial.from_layer(feature_layer).head()

Out[99]:

	OBJECTID	COUNTYNBR	ENTITYNBR	ENTITYYR	NAME	FIPS	STATEPLANE	POP_LASTCENSUS	POP_CURRESTIMATE	
0	1	03	2.010031e+09	2010.0	CACHE	5.0	North	133154	140173	ai bi bi
1	2	07	2.010071e+09	2010.0	DUCHESNE	13.0	Central	19596	20161	7 1 a 0
2	3	06	2.010061e+09	2010.0	DAVIS	11.0	North	362679	369948	2 cr 9 2
3	4	14	2.010141e+09	2010.0	MILLARD	27.0	Central	12975	13330	bi 7. 8. 2
4	5	26	2.010261e+09	2010.0	WASATCH	51.0	Central	34788	36619	3 2 b

Out[100]:

		ugic	latitude	longitude	SHAPE
0		Midway	40.52528	-111.48883	{"spatialReference": {"wkid": 4326}, "x": -111
_	1	Vernal	40.45389	-109.52327	{"spatialReference": {"wkid": 4326}, "x": -109

Exporting Spatially-Enabled DataFrames

SEDFs can be exported to several different forms using the df.spatial.to_* methods.

- to_featurest/to_feature_collection: arcgis.features.FeatureSet or .FeatureCollection objects.
- to_featureclass: Write to a feature class within a GDB or shapefile (depending on file extension and whether arcpy is present)
- to_featurelayer: Create or overwrite a hosted feature layer in a arcgis.gis.GIS (AGOL or Portal organization).

SEDF Tips and Tricks

Sometimes, we perform a .spatial operation only to get a weird error that seems to be related to geometries. We can use .spatial.validate() to make sure the Spatially-Enabled DataFrame is, well, spatially-enabled.

```
In [101]: #: Use .validate to check if all the spatial bits are working
    counties_df.spatial.validate()
Out[101]: True
```

What if this returns False? There are a couple common fixes.

```
In [102]: #: First, make sure it's point to the right geometry column.
    #: Don't try to keep multiple geometry columns in one DataFrame.
    counties_df.spatial.set_geometry('SHAPE')
    counties_df.spatial.name #: The name of the geometry column

Out[102]: 'SHAPE'

In [103]: #: If using shapely, projecting often misnames the .sr property, so set it manually counties_df.spatial.sr = {'wkid': 3857}
```

Resources

pandas User Guide (https://pandas.pydata.org/docs/user_guide/index.html)

pandas API Reference (https://pandas.pydata.org/docs/reference/index.html)

RealPython (https://realpython.com/pandas-dataframe/)

Any of our <u>"skid" repos (https://github.com/search?</u> <u>q=org%3Aagrc+skid&type=repositories)</u>

Oakley

GRC Utah Geospatial Resource Center

<u>jdadams@utah.gov</u> <u>gis.utah.gov/presentations</u>

Hideout

Kamas