Machine Learning

An Introduction

08/08/2019

Machine Learning (ML)

Learn from experience

Follow instructions

Terminology

ML algorithms

Supervised Learning

$$f: x \to y$$

$$f: x \to y$$
$$y = f(x)$$

Regression

Regression

$$f: x \to y$$
$$y = f(x)$$

$$y = ax^2 + bx + c$$

Typical ML Pipeline

Typical ML Pipeline

Model Fitting

 $f: x \to y \qquad \qquad y = ax + b$

3

- Loss=g(a,b) MSE= $1/n \sum i=1 \uparrow n = (y \downarrow i y)$
 - optimization algorithm ———— gradient descent

Model Fitting

2 Model (estimator) selection

linear regression

y = ax + b

$$y = ax^2 + bx + c$$

polynomial regression

multi-layer perceptron (ANN)

3 loss (cost) function

mean squared error =
$$\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$

mean absolute error =
$$\frac{1}{n}\sum_{i=1}^{n}|y_i - \hat{y}_i|$$

$$\max \operatorname{error} = \max(|y_i - \widehat{y_i}|)$$

explained var. =
$$1 - \frac{Var(y - \hat{y})}{Var(y)}$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})}$$

Gradient Descent

Optimization of model parameters!

Gradient Descent

Initialize model parameters (*a*, *b*) randomly Iterate between:

- 1) Compute loss (mean square error MSE)
- 2) Update model parameters (a, b) in direction of gradient

$$y = ax + b$$

Training data

Typical ML Pipeline

Model Validation

score function

mean squared error = $\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$

mean absolute error = $\frac{1}{n}\sum_{i=1}^{n}|y_i-\widehat{y}_i|$

$$\max \operatorname{error} = \max(|y_i - \widehat{y_i}|)$$

explained var. =
$$1 - \frac{Var(y - \hat{y})}{Var(y)}$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})}$$

Houston ... we have a problem!

Initialize model parameters (*a*, *b*) randomly Iterate between:

- 1) Compute loss (mean square error MSE)
- 2) Update model parameters (a, b) in direction of gradient

$$y = ax + b \leftarrow$$

How many TE?

Typical ML Pipeline

WHY CV?

- Avoid overfitting
- Improve model generalizability
- Provide a more accurate performance measure
- Hyper-parameter tuning

[k-fold] Cross-Validation (CV)

Hyper-parameter tuning!

- 1) Train model parameters on **training** set
- 2) Evaluate training with the **validation** set
- 3) Report error on test set

Overfitting

How many TE?

Bias-Variance Trade-Off

Test set

Training set

Bias-Variance Trade-Off

model complexity (~ number of features)

Typical ML Pipeline

WHY DR?

 Curse of dimensionality (more features than samples)

Intrinsic dimension may actually be small rained model

- Extract "salient" features
- Remove noisy and redundant features
- VISUALIZATION!!!!

Tip 1: Dimensionality Reduction

- Compact representation of the data
- Maps input features into a lower dimensional space

e.g. If features are
$$X=[x \downarrow 1, x \downarrow 2, x \downarrow 3, x \downarrow 4]$$

then $Z=T(X)=[c \downarrow 1, x \downarrow 1+c \downarrow 2, x \downarrow 2, x \downarrow 3*x \downarrow 4]$

- Selection of a subset of input features
- Features are still in original space

e.g.
$$Z=S(X)=[x \downarrow 2, x \downarrow 3]$$

Tip 1: Dimensionality Reduction

Tip 2: Regularization

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p$$

Penalties on the *LOSS* function to prevent overfitting!

1) L1/Lasso: constrains parameters to be sparse

$$MSE = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

2) L2/Ridge: constrains parameters to be small

$$MSE = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Tip 3: Ensemble Methods

Sources of Bias

Type	DO NOT	8	Sexy name	DO	
<i>k</i> -hacking	Try many k's in k-fold CV (or different training %) and report only the best		<i>k</i> -hacking	Pick k=10, repeat It many times (>200 or as many as possible!), and report the full distribution (NOT boxplots!)	
<i>metric</i> -hacking	Try different performance metrics (e.g., accuracy, F1, AUC, error rate, etc.) and report the best		<i>m</i> -hacking	Choose the most appropriate and recognized metric for the problem (e.g., AUC for binary classification)	
feature/dataset-hacking	Try subsets of feature(s) or subsamples of dataset(s), but report only the best		<i>d</i> -hacking	Use and report on everything: all analyses on all datasets	

Classification

Classification

- Artificial Neural Networks
- Logistic regression
- **Decision Trees**
- **Random Forests**

probabilistic classifiers

Performance Metrics – Binary Classification

confusion matrix

score function

$$accuracy = T \downarrow p + T \downarrow n / T \downarrow p + T \downarrow n + F \downarrow p + F \downarrow n$$

$$\begin{array}{c} \textit{precision} = T \downarrow p \ / T \downarrow p + F \downarrow p \\ \\ \textit{Appropriate} \\ \textit{when classes} \\ \textit{recall} = T \downarrow p \ / T \downarrow p + F \downarrow n \end{array}$$

$$F1 \ score = 2T \downarrow p / 2T \downarrow p + F \downarrow p + F \downarrow n$$

Performance Metrics – Binary Classification

 $FNR = F \downarrow n / P = F \downarrow n / T \downarrow p + FNP = T \downarrow n / N = T \downarrow n / T \downarrow n + F \downarrow p$

Performance Metrics – Binary Classification

(probabilistic classifiers)

ROC curve

precision-recall curve

Multiclass Prediction (≠ Multilabel Prediction)

		True class				
		CAT	DOG	BIRD		
Predicted class	CAT	13	0	0		
	DOG	0		6		
	BIRD	0	0	9		

- To extend a binary metric to multiclass problems, the data is treated as a collection of binary problems, one for each class.
- The binary metric is then averaged across the set of classes, each of which may be useful in some scenario.

Clustering

- *K*-means
- Hierarchical clustering
- Mixture of Gaussians

Inference vs Prediction – Linear Model $Y=\beta X+\epsilon$

statistical inference

Goal:

• Identify significant contributing variables (statistical null-hypothesis testing, *p*-values)

Uses:

- Scientific discovery. Ideal to uncover characteristics or true properties of the biological processes of the studied phenomenon.
- Useful to judge the individual relevance of each quantitative measure in impacting the response of interest.

pattern recognition

Goal:

 Identify most predictive variable sets (out-of-sample prediction performance)

Uses:

- Pragmatic forecasting of biological processes.
- Tends to concern less regarding the data-generating process.

Diagnosing Features (≈ Interpretability)

Local Interpretable Model-Agnostic Explanations [LIME]

