Question 1

1) Probability of a Positive Result for a Sick Person

From the table: P(+10) = 0.007 a positive result for a sick person is 0.009 08 0.9%.

2) Probability of Having the Disease Given a Positive Test Result.

We calculate this using Bayer Feorem P(D(+)=? P(D|+) = P(+|D) . P(D)

Where.

$$P(D) = P(+1D) + P(-1D)$$

= 0.009 + 0.001 = 0.01

$$P(+) = P(+|D) \cdot P(D) + P(+|D) \cdot P(D)$$

$$= (0.009 \cdot 0.01) + (0.099 \cdot 0.99)$$

$$= 0.00009 + 0.09801$$

= 0.0981

Nowe, we can calculate

= 0.000917 So, the probability that you have the disease given !

D) Milage

P(milarge = 11) = 20/40 = 05

Milage	Probability	
Hi:	0.5	
low	0.5	

2) Air Conditioner

Boken = 1+2+0+4+5+1+0+1= 25

P(working) = 25/40 = 0.625

P(Booken) = 15/40 = 0.375

Air Cond-	Pro	
worling	0.625	
Booken	0-375	

. 3) Engine

P(Hi, Good) = 3+1442 = 10 = 10/20 = 0.5
P(Hi, Bod) = 1101544 = 10 - 10/20 = 0.5
P(Lo, Good) = 9+5+011 = 15 - 15/20 = 0.75
P(Lo, Bad) = 2+2+1+0 = 5 = 5/20 = 0.25

Milage	Engine	P(Engine)	
He'	Gad	0.5	
μi	Bad	0.5	
LO	Good	27.0	
Lo	Bool	0.25	

Engine	Air- Conditioner	Car-	P(car-wha)
Good	isorting	H.,	12/11 = 0-75
Good	working	10	4/16 = 0.25
Good	Broken	H.	619=0.667
Good	Briteen	Lo	3/9= 6.377
Bad	Luorlang	H.	2/9:0-227
Bad	working	L·	719-0.716
Bod	Bordeen	Hi	6/6 = 0
Bad	Broken	Lo	6/6 = 1.00

Duestion no 3

Training Set =
$$\{(1,1,1,1+1), (1,0,1,-1), (0,1,0,-1)\}$$

(o, 0, +, -) $\{(0,0,1,-1), (0,1,0,-1), (0,1,0,-1)\}$

the if a

for hi:

al = 1

probability hi = $\{(1,1,1,1+1), (1,0,1,-1), (0,1,0,-1)\}$
 $\{(0,0,1,-1), (0,1,0,-1), (0,1,0,-1)\}$
 $\{(0,0,1,-1), (0,1,0,-1), (0,1,0,-1)\}$
 $\{(0,0,1,-1), (0,1,0,-1), (0,1,0,-1), (0,1,0,-1)\}$
 $\{(0,0,1,-1), (0,1,0,-1), (0,1,0,-1), (0,1,0,-1), (0,1,0,-1)\}$
 $\{(0,0,1,-1), (0,1,0$

$$h_3: P(+|h_3) = \frac{3}{4}, P(-|h_3) = \frac{2}{3}$$

$$P(+) = P(h_1) \cdot P(+|h_1) \times P(h_2) \times P(+|h_2) \times P(h_3) \times P(+|h_3)$$

$$\times P(\mu_3) \times P(-|\mu_3)$$

