Entendendo Estatística Divertidamente

Profa. Adriana Silva

Seja bem vindX!!!

Câmera ligada e

Microfone mutado sempre
que não estiver falando

Tipos de Medidas

Estatisticamente existem inímeras medidas que nos norteiam sobre nossas análises. Estas medidas são divididas em classes:

- Medidas de Posição
- Medidas de Dispersão
- Análise Gráfica
- Medidas de Assimetria
- Medidas de Associação

Medidas de Assimetria

- Essas medidas procuram caracterizar como e quanto a distribuição de frequências se afasta da condição de simetria. As distribuições alongadas à direita são ditas positivamente assimétricas e as alongadas à esquerda são ditas negativamente assimétricas.
- As medidas de assimetria conforme sejam positivas, negativas ou aproximadamente nulas procuram indicar o tipo de distribuição (seja ela: assimétrica à direita, assimétrica à esquerda e simétrica).

Medidas de Assimetria

Distribuição Simétrica

Média = Mediana = Moda

Assimetria = 0

Assimetria à direita ou positiva

Assimetria >0

Cauda à direita mais pesada (valores acima da média)

Assimetria à esquerda ou negativa

Assimetria < 0

Cauda à esquerda mais pesada (valores abaixo da média)

Medidas de Assimetria

Curtose

É o grau de achatamento de uma distribuição.

Mesocúrtica

Curtose = 0

Leptocúrtica

(pontuda)

Curtose >0

Platicúrtica

(achatada)

Curtose < 0

Tipos de Medidas

Estatisticamente existem inímeras medidas que nos norteiam sobre nossas análises. Estas medidas são divididas em classes:

- Medidas de Posição
- Medidas de Dispersão
- Análise Gráfica
- Medidas de Assimetria
- Medidas de Associação

Medidas de Associação

Medidas de Associação entre duas variáveis

Até aqui examinamos métodos numéricos para sintetizar dados correspondentes a uma única variável por vez mas, em algumas situações pode ser útil analizar o relacionamento entre duas variáveis.

Mede a associação linear entre duas variáveis. Estatística Descritiva

Medidas de Associação

Semana	N° de Comerciais	Vendas (\$100)
1	2	50
2	5	57
3	1	41
4	3	54
5	4	54
6	1	38
7	5	63
8	3	48
9	4	59
10	2	46

Medidas de Associação

Diagrama de Dispersão

Medidas de Associação

Covariância Amostral

Dado que \bar{x} =3 e \bar{y} =51 temos:

x_i	Уi	x_i - \overline{x}	y_i - \overline{y}	$(x_i-\overline{x})(y_i-\overline{y})$
2	50	-1	-1	1
5	57	2	6	12
1	41	-2	-10	20
3	54	0	3	0
4	54	1	3	3
1	38	-2	-13	26
5	63	2	12	24
3	48	0	-3	0
4	59	1	8	8
2	46	-1	-5	5
30	510	0	0	99

A Covariância Amostral é dada por:

$$S_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n - 1} = \frac{99}{9} = 11$$

Esta métrica, apesar de ser bastante eficaz é afetada pelas unidades de medidas de x e y.

Por isto é mais conveniente trabalharmos com o Coeficiente de Correlação.

Medidas de Associação

Coeficiente de Correlação de Pearson

O Coeficiente de Correlação de Pearson, r, é calculado como

$$r_{xy} = \frac{S_{xy}}{S_x S_y},$$

onde

 r_{xy} é o coef. de Correlação amostral,

 S_{xy} é a Covariância amostral e

 $S_x S_y$ é o produto do Desvio Padrão de x e o Desvio Padrão de y respectivamente.

Temos que $-1 \le r \le 1$ onde r = 0 nos indique ausência de relacionamento linear entre x e y.

Medidas de Associação

Coeficiente de Correlação de Pearson

O coeficiente de correlação varia entre -1 e 1. Valores que se aproximam de -1 ou +1 indicam uma forte relação linear. Quanto mais próxima a correlação estiver de zero, mais fraca será esta relação.

Coeficiente de Correlação Amostral

$$r_{xy} = \frac{S_{xy}}{S_x S_y}$$

 $au_{\chi \gamma}$ Coeficiente de Correlação da amostra

$$S_{xy}$$
 Covariância da amostra $S_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n-1}$

$$S_{x}$$
 Desvio padrão da amostra de x $S_{x} = \sqrt{rac{\sum (x_{i} - ar{x})^{2}}{n-1}}$

$$S_y$$
 Desvio padrão da amostra de y $S_y = \sqrt{rac{\sum (y_i - \overline{y})^2}{n-1}}$

Coeficiente de Correlação Populacional

$$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

 ho_{xy} Coeficiente de Correlação da amostra

 $\sigma_{\chi y}$ Covariância da amostra

 $\sigma_{arkappa}$ Desvio padrão da amostra de x

 $\sigma_{
m v}$ Desvio padrão da amostra de y

Medidas de Associação

Coeficiente de Correlação de Pearson

O coeficiente de correlação é uma medida descritiva da força da associação linear entre duas variáveis.

$$-1 \le r \le 1$$

r=0 Não existe correlação entre as variáveis

r=1 Existe correlação linear positiva perfeita entre as variáveis

r=-1 Existe correlação linear negativa perfeita entre as variáveis

 $r \ge 0.70$ Existe uma forte correlação linear positiva entre as variáveis

0 < r < 0.70 Existe uma fraca correlação linear entre as variáveis

Medidas de Associação

Correlação

Medidas de Associação

Correlação

Fonte: http://www.tylervigen.com/spurious-correlations

Medidas de Associação

Correlação

Fonte: http://www.tylervigen.com/spurious-correlations

Medidas de Associação

Correlação Espúria

Fonte: http://www.tylervigen.com/spurious-correlations

Medidas de Associação

- A Correlação constitui uma medida de associação linear e não necessariamente uma medida de causação. Uma correlação elevada entre duas variáveis não significa que alterações havidas em uma variável provocarão alterações na outra variável.
- Por exemplo, podemos descobrir que a avaliação da qualidade e o preço típico das refeições em restaurantes estão positivamente correlacionados. Entretanto, simplesmente aumentar o preço em um restaurante não fará com que a avaliação da qualidade se eleve.

Tipos de Medidas

Estatisticamente existem inímeras medidas que nos norteiam sobre nossas análises. Estas medidas são divididas em classes:

- Medidas de Posição
- Medidas de Dispersão
- Análise Gráfica
- Medidas de Assimetria
- Medidas de Associação

Guerra Política

- Político A: "Nossas escolas estão ficando piores!! Sessenta por centos das nossas escolas tiveram resultados de teste inferiores aos do ano passado"
- Político B: "Nossas escolas estão ficando melhores!! Oitenta por centos dos nossos alunos tiveram resultados de teste mais altos que ano passado"

Resumo ilustrado

Média

Resumo ilustrado

Média

+ Mediana

entendendo

Resumo ilustrado

Média + Mediana + Desvio Padrão

Resumo ilustrado

Média + Mediana + Desvio Padrão + Histograma

EXERCÍCIO EM GRUPO

- Empresa de Software
- Produto já finalizado
- Estratégia de vendas

Tipos de Medidas

Estatisticamente existem inímeras medidas que nos norteiam sobre nossas análises. Estas medidas são divididas em classes:

- Medidas de Posição
- Medidas de Dispersão
- Análise Gráfica
- Medidas de Assimetria
- Medidas de Associação

Não esqueça de deixar seu feedback!

=]

Referência

- Moore, D., McCabe, G., Duckworth, W., Sclove, S. *A prática da Estatística Empresarial*. LTC, Rio de Janeiro, 2006.
- Anderson, D., Sweeney, D., Williams, T. *Estatística Aplicada à Administração e Economia*. Segunda Edição. Cengage Learning, São Paulo, 2011.
- www.asn.rocks
- <u>www.curso-r.com</u>

It's kind of fun to do the IMPOSSIBLE

