(CBGS)

SE comp SE IT

Applied Mathematics - III 31 May (CBGS)

QP Code: NP-18619

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No.1 is compulsory.

- (2) Attempt any three questions from Question No.2 to Question No.6.
- (3) Non-programmable calculator is allowed.

1. (a) Find $L^{-1} \left[\frac{Se^{-\pi s}}{S^2 + 2S + 2} \right]$

5

- (b) State true or false with proper justification "There does not exist an analytic function whose real part is $x^3 3x^2y y^3$ ".
- (c) Prove that $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = \frac{(3x^2 1)}{2}$ are orthogonal over (-1, 1).
- (d) Using Green's theorem in the plane, evaluate $\int_{c}^{c} (x^2 y) dx + (2y^2 + x) dy \text{ around}$ the boundary of the region defined by $y = x^2$ and y = 4.
- 2. (a) Find the fourier cosine integral representation of the function $f(x) = e^{-ax}, x > 0$ and hence show that $\int_{0}^{\infty} \frac{\cos ws}{1+w^2} dw = \frac{\pi}{2} e^{-x}, x \ge 0$.
 - (b) Verify laplaces equation for $U = \left(r + \frac{a^2}{r}\right) \cos \theta$ Also find V and f(z).
 - (c) Solve the following eqn. by using laplace transform $\frac{dy}{dt} + 2y + \int_0^t y dt = \sin t \text{ given}$ 8 that y(o) = 1.