Wednesday, November 7, 2018

In the previous lecture we defined the free product of groups &G.3.

 $X:= \coprod G_i$, $\overline{\mathcal{F}}(X):= \mathcal{L}(X)/_{\sim}$. We discussed why $\overline{\mathcal{F}}(X)$ is a

group. We denote it by * G;.

The universal property of free product of groups.

(Warning. In category theory, this is called the coproduct of these objects.)

Suppose G is a group and fig. Gi-G are group homomorphisms

Then there is a unique group homomorphism $f: \star G_i \rightarrow G$

such that $\tilde{f}| = f$. Alternatively

Hom $(*G_i, G_j) \longrightarrow \prod Hom (G_i, G_i)$ $i \in I$ $f \mapsto (F|_{G_i})$ $i \in I$

is a bijection.

Pf. Let X be the disjoint union of G;'s; and L(X) be

the free monoid generated by X. Let $f: X \to G$, $f(x) := f_i(x)$ if $x \in G_i$.

Since LOX) is the free monoid generated by X, there is a monoid

homomorphism $\hat{f}: \mathcal{L}(X) \longrightarrow G$ such that $\hat{f}|_{X} = f$. That means

Wednesday, November 7, 2018 4:03

fl=f; is a group homomorphism; and so

• $f(e_{G_i}) = e_G$ where e_{G_i} is the neutral element of G_i and e_G is the neutral element of G.

• $\uparrow(x_3) = \uparrow(x_1) \uparrow(x_2)$ if $x_1, x_2 \in G_1$ and $x_3 = x_1 \cdot x_2$.

Next we show $\omega_1 \sim \omega_2 \Rightarrow \hat{f}(\omega_1) = \hat{f}(\omega_2)$.

Since ~ is generated by the following relations, weginz ~wz ~ww

and $\omega_1 \times_1 \times_2 \omega_2 \sim \omega_1 \times_3 \omega_2$ if $\times_1, \times_2 \in G_1$ and $\times_3 = \times_1 \cdot \times_2$, it is

enough to show

 $\hat{\uparrow}(\omega_1 e_{G_i} \omega_2) = \hat{\uparrow}(\omega_1 \omega_2) \quad \text{and} \quad \hat{\uparrow}(\omega_1 x_1 x_2 \omega_2) = \hat{\uparrow}(\omega_1 x_3 \omega_2)$ $\text{if } x_1 x_2 e_{G_i} \quad \text{and } x_3 = x_1 x_2.$

1) $\hat{f}(\omega_1 e_{G_1}, \omega_2) = \hat{f}(\omega_1) \hat{f}(e_{G_1}) \hat{f}(\omega_2)$ \hat{f} is a monorid homomorphism $= \hat{f}(\omega_1) e_{G_1} \hat{f}(\omega_2)$ \hat{f}_{G_1} is a gp hom.

 $=\hat{\uparrow}(\omega_1)\hat{\uparrow}(\omega_2)$

 $= \hat{\uparrow}(\omega_1\omega_2)$

f is a monorid homo.

2) $\hat{f}(\omega_1 x_1 x_2 \omega_2) = \hat{f}(\omega_1) \hat{f}(x_1) \hat{f}(x_2) \hat{f}(\omega_2)$ monoid hom.

 $= \widehat{f}(\omega_1) \widehat{f}(\alpha_3) \widehat{f}(\omega_2) \qquad \widehat{f}_{G_1} \in \text{Hom } (G_1) G$

Wednesday, November 7, 2018

$$= \widehat{\dagger}(\omega_1 \times_3 \omega_2)$$

monoid hom.

Let $\widehat{f}([\omega]) := \widehat{f}(\omega)$. The previous claim shows that \widehat{f} is

well-defined.

Claim. Fe Hom (*G;,G).

 $\frac{\mathcal{P}}{\mathcal{P}}$. $f([\omega_1][\omega_2]) = \hat{f}([\omega_1\omega_2]) = \hat{f}(\omega_1\omega_2) = \hat{f}(\omega_1)\hat{f}(\omega_2)$ = $\tilde{\uparrow}([\omega_1])\tilde{\uparrow}([\omega_2])$

 $\mathcal{F}([\varnothing]) = \hat{f}(\varnothing) = e_{G}$

 $f([x, x, x_n]^{-1}) = f([x_n^{-1} - x_n^{-1}]) = f(x_n^{-1} - x_n^{-1})$

 $=\hat{\uparrow}(x_{n-1}^{-1})\hat{\uparrow}(x_{n-1}^{-1})...\hat{\uparrow}(x_{n-1}^{-1})$

monoid hom.

 $= \hat{f}(x_n)^{-1} \hat{f}(x_{n-1})^{-1} - \hat{f}(x_1)^{-1} \hat{f}(x_n)$

 $= \left(\hat{\uparrow}(x_1) \hat{\uparrow}(x_2) \dots \hat{\uparrow}(x_n) \right)^{-1}$

 $= \hat{f}(x_1 x_2 \dots x_n)^{-1}$

 $= \widetilde{f}([x_1 \cdots x_n])^{-1}$

Claim . f| = f.

 $\underline{\mathcal{P}}$ \forall $x \in G_i$, $\widehat{f}([x]) = \widehat{f}(x) = \widehat{f}_i(x)$.

Wednesday, November 7, 2018 4:10

We have proxed the existence of FEHom (* G;,G)

s.t. $f|_{G_i} = f_i$. The uniqueness is clear as * G_i is

generated by X=UG.

Ex. Suppose a group G is generated by two elements a and

b of order 2. Then $\exists (\mathbb{Z}/_{2\mathbb{Z}}) * (\mathbb{Z}/_{2\mathbb{Z}}) \xrightarrow{\Phi} G$ which is an

onto group homomorphism.

Pf. Let $\phi: \mathbb{Z}_{2\mathbb{Z}} \to G$, $\phi_{b}: \mathbb{Z}_{2\mathbb{Z}} \to G$. Then by the

universal property of free products $\exists \varphi : \mathbb{Z}_{2\mathbb{Z}} * \mathbb{Z}_{2\mathbb{Z}} \longrightarrow G$

s.t. & restricted to $\mathbb{Z}_{2\mathbb{Z}}$'s gives us ϕ and ϕ . In parti.

a, be Im +; and so + is onto.

Remark . Later you will show Z/2/2 x Z/2/2 is solvable; and using

the above example you can deduce $\langle a,b \rangle$ is solvable if $a^2b^2=1$.

Def. For any non-empty set X, the free group generated by

X is denoted by F(X) and it is the free product of

Friday, November 9, 2018 4:29 P

|X| copies of \mathbb{Z} ; F(X) = *Z. To make these \mathbb{Z} $x \in X$

groups related to X, we write $F(X) = * \langle x \rangle$ where $\underset{x \in X}{\text{ex}}$

 $\langle \chi \rangle = \{ \chi^n \mid n \in \mathbb{Z} \}.$

Universal Property of free groups

Suppose $X \neq \emptyset$, G is a group, and $f: X \rightarrow G$ is a function. Then

ヨ! fe Hom (F(X), G) s.t. fl =f.

i F(X) X Z J G

Pt. For $x \in X$, let $f_x : \langle x \rangle \longrightarrow G$, $f_x(x^n) := f(x)^n$.

Then fx = Hom (<x>, G). So by the universal property of

free product of groups, I! fe Hom (F(X), G) s.t. flx=fx

for any x; and so fx=f.

Uniqueness follows from the fact that X generates F(X).