Федеральное государственное автономное образовательное учреждение высшего профессионального образования ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра информационных систем и компьютерного моделирования

УТВЕРЖДЕНО	РЕКОМЕНДОВАНО
УЧЕНЫМ СОВЕТОМ ИМИТ	КАФЕДРОЙ ИСКМ
Протокол № 1	Протокол № (
от « <u>28</u> » <u>О</u> (2013	от « <u>24</u> » <u>01</u> 2013
директор института	заведующий кафедрой
математики и информационных	ИСКМ
технологий	Mong
А.Г. Лосев	А.В. Хоперсков
«28» 06 2013	« <u>24</u> » <u>01</u> 2013
венный	
РАБОЧАЯ І	ПРОГРАММА

по дисциплине «Инженерная и компьютерная графика» для студентов, обучающихся по направлению 230100 «Информатика и вычислительная техника» (квалификация — бакалавр техники и технологии)

(1 курс, 2 семестр)

Количество зачетных единиц – 5 (180)

Составитель рабочей программы к.ф.-м.н., доц. Конобеева Н.Н.

Волгоград, 2013

Рабочая программа составлена в соответствии с Федеральным государственным образовательным стандартом высшего профессионального образования по направлению подготовки бакалавров 230100.62 «Информатика и вычислительная техника» (№ 553 от 9 ноября 2009 г.)

Зам. председателя учебно-методической комиссии по направлению «Информатика и вычислительная техника» к.т.н., доцент

Е.В.Верстаков

Зав. каф. Информационных систем и компьютерного моделирования проф., д.ф.-м.н.

А.В. Хоперсков

1. Цели и задачи учебной дисциплины

Целью дисциплины является изучение основ компьютерной графики и подготовка к работе с современными графическими системами.

Задачами дисциплины является изучение основных понятий компьютерной графики, принципов построения современных графических систем, наиболее распространенных графических устройств, основных этапов обработки графической информации в конвейерах её ввода и вывода в графических системах, современных алгоритмов обработки и преобразования графической информации, способов её создания и форматов хранения.

Дисциплина входит в базовую часть профессионального цикла образовательной программы бакалавра. Изучение данной дисциплины базируется на следующих курсах: «Аналитическая геометрия», «Информатика», «Операционные системы».

Дисциплина является предшествующей для выполнения квалификационной работы бакалавра.

В результате изучения дисциплины студент должен:

Знать: области применения компьютерной графики, историю её развития, представление о геометрической модели проектируемого объекта, понятия векторной и растровой компьютерной графики, принципы работы основных устройств ввода и вывода графической информации, базовые алгоритмы обработки графической информации, способы её создания, сжатия и хранения.

Уметь: классифицировать графические системы по их назначению, применять графические системы на практике, использовать графические системы для решения инженерных задач.

Владеть: подключением графических устройств к базовому компьютеру.

Дисциплина включает следующие разделы:

- Введение;
- Устройства ввода и вывода графической информации;
- Классификация и принципы построения графических систем;
- Основные алгоритмы обработки графической информации;

Форматы создания, сжатия и хранения графической информации. Лабораторный практикум включает работы по освоения графических систем плоской графики.

Курс «**Инженерная и компьютерная графика**» должен обеспечить следующие **компетенции**:

- имеет навыки работы с компьютером как средством управления информацией (ОК-12);
- разрабатывать модели компонентов информационных систем, включая модели баз данных (ПК-4);

 разрабатывать компоненты программных комплексов и баз данных, использовать современные инструментальные средства и технологии программирования (ПК-5).

Виды контроля:

- 1) текущий (контрольные опросы, сдача допуска к выполнению лабораторной работы, сдача лабораторной работы);
- 2) промежуточный по результатам выполнения модулей бально-рейтинговой системы (контрольные работы, компьютерное тестирование);
- 3) итоговый по результатам зимней зачетно-экзаменационной сессии (зачет, экзамен).

2. Структура изучения дисциплины

Всего часов (общая трудоемкость в ча-	180
cax)	
Аудиторные занятия	68
Лекции	34
Лабораторные занятия (активная форма обучения)	34
Практикумы (на основе интерактивных методов обучения)	
Самостоятельные занятия	112
Изучение основной и дополнительной литературы	36
Подготовка к выполнению лабораторных работ	34
Курсовая работа по дисциплине	
Подготовка к контрольным работам	6
Подготовка к экзамену, экзамен	36

3. Тематический план изучения дисциплины

3.1. Содержание и формы занятий

$N_{\underline{o}}$	Тема	Форма занятий	Кол-во часов
n/n			
1.	Введение в компьютерную	Лекции	2
	графику	Лабораторный практ.	4
2.	Современные графические	Лекции	4
	системы	Лабораторный практ.	4
3.	Графические диалоговые	Лекции	6
	системы	Лабораторный практ.	4
4.	Графические стандарты	Лекции	6
		Лабораторный практ.	4
5.	Геометрическое моделиро-	Лекции	6
	вание	Лабораторный практ.	6
6.	Алгоритмы визуализации	Лекции	4
		Лабораторный практ.	8
7.	Системы автоматизирован-	Лекции	6
	ного проектирования	Лабораторный практ.	4

3.2. Содержание разделов дисциплин

1. Введение в компьютерную графику.

Компьютерная графика, геометрическое моделирование и решаемые ими задачи; области применения компьютерной графики; представление видеоинформации и ее машинная генерация.

2. Современные графические системы.

Классификация и обзор современных графических систем; основные функциональные возможности современных графических систем; архитектура графических терминалов и графических рабочих станций; технические средства компьютерной графики: мониторы, графические адаптеры, плоттеры, принтеры, сканеры; графические процессоры, аппаратная реализация графических функций; реализация аппаратно-программных модулей графической системы; тенденции построения современных графических систем: графическое ядро, приложения, инструментарий для написания приложений; понятие конвейеров ввода и вывода графической информации.

3. Графические диалоговые системы.

Графические диалоговые системы; организация диалога в графических системах; применение интерактивных графических систем; применение интерактивной графики в информационных системах.

4. Графические стандарты.

графические языки; современные стандарты компьютерной графики; стандарты в области разработки графических систем; метафайлы; форматы хранения графической информации; принципы построения «открытых» графических систем.

5. Геометрическое моделирование.

Геометрическое моделирование; проблемы геометрического моделирования; виды геометрических моделей их свойства, параметризация моделей; геометрические операции над моделями; системы координат, типы преобразований графической информации; базовая графика; графические объекты, примитивы и их атрибуты; пространственная графика; 2D и 3D моделирование в рамках графических систем.

6. Алгоритмы визуализации.

алгоритмы визуализации: отсечения, развертки, удаления невидимых линий и поверхностей, закраски; способы создания фотореалистических изображений.

7. Системы автоматизированного проектирования

Современные системы автоматизированного проектирования (САПР), инструментарий, возможности, T-FLEX CAD

3.3. Лабораторный практикум

Номер	Наименование лабораторной работы
1	Растровый графический редактор GIMP
2	Векторный графический редактор Inkscape
3	Трехмерное геометрическое моделирование в пакете Google SketchUp
4	Основы OpenGL
5	Формат хранения графической информации ВМР
6	Обработка растровых изображений
7	Растровые преобразования
8	Алгоритмы удаления невидимых линий и поверхностей

9	Алгоритмы закраски
10	Работа в T-FLEX CAD

4. Экзаменационные вопросы

Контроль изучения дисциплины

- I. Зачет по лабораторному практикуму. Количество баллов за выполнение лабораторных работ учитывается при выставлении итоговой оценки за курс.
- II. Экзаменационные вопросы.

Тематика заданий по текущему контролю

- 1. Представление видеоинформации и ее машинная генерация.
- 2. Классификация современных графических систем.
- 3. Технические средства компьютерной графики.
- 4. Графические диалоговые системы.
- 5. Графические языки и стандарты.
- 6. Форматы хранения графической информации.
- 7. Геометрическое моделирование.
- 8. Алгоритмы визуализации.

Тематика рефератов

- 1. Компьютерная графика, геометрическое моделирование и решаемые ими задачи.
- 2. Классификация и обзор современных графических систем.
- 3. Основные функциональные возможности современных графических систем.
- 4. Архитектура графических терминалов и графических рабочих станций.
- 5. Реализация аппаратно-программных модулей графической системы.
- 6. Графические диалоговые системы.
- 7. Современные стандарты компьютерной графики.
- 8. 2D и 3D моделирование в рамках графических систем.
- 9. Способы создания фотореалистических изображений.

Тематика контрольных работ

- 1. Компьютерная графика, геометрическое моделирование и решаемые ими задачи.
- 2. Представление видеоинформации и ее машинная генерация.
- 3. Технические средства компьютерной графики: мониторы, графические адаптеры, плоттеры, принтеры, сканеры; графические процессоры, аппаратная реализация графических функций.

- 4. Организация диалога в графических системах
- 5. Метафайлы, форматы хранения графической информации.
- 6. Виды геометрических моделей их свойства, параметризация моделей.
- 7. Системы координат, типы преобразований графической информации.
- 8. Алгоритмы визуализации.

Экзаменационные вопросы.

- 1. Компьютерная графика, геометрическое моделирование и решаемые ими задачи; области применения компьютерной графики; представление видеоинформации и ее машинная генерация.
- 2. Классификация и обзор современных графических систем; основные функциональные возможности современных графических систем.
- 3. Архитектура графических терминалов и графических рабочих станций; технические средства компьютерной графики: мониторы, графические адаптеры, плоттеры, принтеры, сканеры.
- 4. Графические процессоры, аппаратная реализация графических функций; реализация аппаратно-программных модулей графической системы.
- 5. Тенденции построения современных графических систем: графическое ядро, приложения, инструментарий для написания приложений; понятие конвейеров ввода и вывода графической информации.
- 6. Графические диалоговые системы; организация диалога в графических системах; применение интерактивных графических систем; применение интерактивной графики в информационных системах.
- 7. Графические языки; современные стандарты компьютерной графики; стандарты в области разработки графических систем.
- 8. Метафайлы; форматы хранения графической информации; принципы построения «открытых» графических систем.
- 9. Геометрическое моделирование; проблемы геометрического моделирования; виды геометрических моделей их свойства, параметризация моделей; геометрические операции над моделями; системы координат, типы преобразований графической информации.
- 10. Базовая графика; графические объекты, примитивы и их атрибуты; пространственная графика; 2D и 3D моделирование в рамках графических систем.
- 11. Алгоритмы визуализации: отсечения, развертки, удаления невидимых линий и поверхностей, закраски.
- 12. Способы создания фотореалистических изображений.
- 13. Системы автоматизированного проектирования.
- 14. Возможности и инструментарий T-FLEX CAD.

5. Учебно-методическое и программно-аппаратное обеспечения программы

5.1. Список литературы

Основная литература:

1. Сиденко Л.А. Компьютерная графика и геометрическое моделирование. — СПб.: Питер, 2009. — 220 с.(30 экземпляров)

Дополнительная литература:

- 1. Григорьева Е.Г. Компьютерная графика: краткий конспект лекций: в 2 ч. Ч. 1. Волгоград.: Изд-во ВолГУ, 2011. 92 с. (5 экземпляров)
- 2. Григорьева Е.Г. Компьютерная графика: краткий конспект лекций: в 2 ч. Ч. 2. Волгоград.: Изд-во ВолГУ, 2012. 36 с. (5 экземпляров)

5.2. Программно-аппаратное обеспечение

Средства обеспечения освоения дисциплины.

Операционная система Windows XP; локальная сеть; пакет Microsoft Visual Studio 2008; пакеты прикладных программ.

Материально-техническое обеспечение дисциплины.

Персональные ЭВМ, обеспечивающие моделирование, выполнение самостоятельной работы студента. Компьютеры, подключенные к сети INTERNET.

5.3. Электронные ресурсы

Федеральный образовательный портал. Библиотека. Единое окно доступа к образовательным ресурсам:

http://window.edu.ru/library

ФГУП НТЦ Информрегистр - Государственная регистрация обязательного экземпляра электронных изданий: http://www.inforeg.ru/depoz

Hayчная электронная библиотека: http://elibrary.ru