Intro				
den 10 oktober 2018 22:16				
ldag ska vi räkna några (ganska svåra) uppgifter jag valt ut från gamla tentor.				
Nämn att det finns en sista jättesvår hemuppgift som kan innebära kaffe och bulle!				
Namin att det innis en sista jattesvar nemuppgitt som kan innebara kane och bulle:				

6. En matris A kallas för *skevsymmetrisk* om $A^T = -A$. Antag att A är en skevsymmetrisk $n \times n$ -matris. Bestäm alla vektorer \vec{v} i \mathbb{R}^n så att $(A\vec{v}) \cdot \vec{v} = 0$.

$$(A\vec{v}) \cdot \vec{v} = (A\vec{v})^T \vec{v} = \vec{v}^T A^T \vec{v} = \vec{v} (A) \vec{v} = -\vec{v}^T A \vec{v},$$

$$\vec{v} \cdot A \vec{v} = \vec{v}^T A \vec{v}$$

- 6. Multiplikationstabellen M definieras som den 9×9 -matris vars element ges av formeln $M_{ij} = i \cdot j$, där $i, j = 1, 2, \dots, 9$.
 - a) Bestäm rangen av matrisen M.

(2 p)

b) Visa att talet $1^2 + 2^2 + \cdots + 9^2 = 285$ är ett egenvärde till matrisen M. Vad är motsvarande egenvektorer? Bestäm därefter alla övriga egenvärdena till M (egenvektorer behöver inte anges). (4 p)

$$M = \begin{cases} 1 & 2 & 3 & 4 & --- \\ 2 & 4 & 6 & 8 & --- \\ 3 & 6 & 9 & 12 & --- \\ 4 & 9 & 12 & 16 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \end{pmatrix}$$

- a) haze raet às en une fixel au den forstaz vangen ar 1.
- b) Behalder veldam

$$\bar{V} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

Part

$$M_{V}^{-2} = \begin{cases} 1^{2} + 2^{2} + 3^{2} + \dots \\ 2 \cdot (1^{2} + 2^{2} + 3^{2} + \dots) \end{cases} = 2 + 5 \cdot V.$$

$$3 \cdot (1^{2} + 2^{2} + 3^{2} + \dots)$$

Ni votatt · dim uull (M) + rang (M) = 9, on dimensiones atsen.

Di ar $E_0 = \alpha u U(M)$ 8 · dimensionellt .=) E_1 ar endimensionell.

Lat $R:=\{\bar{u}_1,...,\bar{u}_8\}$ nor an bos for $E_0 = u u U(M)$, celt lit $c:=\{\bar{v}\}$. Da ar BUC on bos for R^q ethereus examplement

willhorande o h'u	equivoir	or rugart	o sew thate.	
		<u>*</u>		

5. Delrummet V i \mathbb{R}^3 ges av ekvationen x-2y+z=0. Låt $T\colon \mathbb{R}^3\to \mathbb{R}^3$ vara den linjära avbildningen

$$T\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = \begin{bmatrix}x-2y+3z\\2x-4y+6z\\3x-6y+9z\end{bmatrix}$$

- a) Hitta en bas $\mathcal{B} = \{\vec{u}, \vec{v}, \vec{w}\}$ till \mathbb{R}^3 sådan att V är det linjära höljet av \vec{u} och \vec{v} .
- b) Visa att $T(\vec{x})$ ligger i V för alla \vec{x} som ligger i V.
- c) Bestäm en matrisrepresentation för avbildningen T med avseende på basen \mathcal{B} av \mathbb{R}^3 .

I Nunet gäller

Believer en ligat d'ocroevell veletor lill voch v. T.ex [0].

$$T(\bar{x}) = \begin{cases} x - 2y + 3z \\ 2x - 4y + 6z \\ 3x - 6z + 9z \end{cases} = \begin{bmatrix} -2a + 4b \\ 2(-2a + 4b) \\ 3(-2a + 4b) \end{bmatrix} = (-2a + 4b) = (-2a + 4b) \begin{cases} 1 \\ 2 \\ 3 \end{cases} \in V, \ ty \ |-2 \cdot 2 + 3 = 0.$$

(2 p)

(2 p)

c) Az
$$\left[T(\bar{u}_{1}) + T(\bar{u}_{2}) + T(\bar{u}_{3})\right] = \begin{bmatrix} -z & 4 & 3 \\ -4 & 8 & 6 \\ -6 & 12 & 9 \end{bmatrix}$$

5. Låt Q vara den kvadratiska form på \mathbb{R}^{2n} som är definierad genom

$$Q(x_1, \dots, x_{2n}) = x_1 x_{2n} + x_2 x_{2n-1} + \dots + x_n x_{n+1}.$$

a) Bestäm den symmetriska matrisen som tillhör Q.

(2 p)

b) Avgör karaktären av Q: positivt/negativt (semi)definit eller indefinit?

(4 p)

5. a) Symmetriska matrisen ges av:

$$A = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & \frac{1}{2} \\ 0 & 0 & 0 & \cdots & \frac{1}{2} & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \frac{1}{2} & \cdots & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \cdots & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

dvs
$$A=(a_{ij})$$
, där $a_{ij}=1/2$ för

$$(i,j) = (2n,1), (2n-1,2), (2n-2,3), \cdots, (2,2n-1), (1,2n)$$

Inde

b) Man kan enkelt konstatera att

$$4x_i x_j = [(x_i + x_j)^2 - (x_i - x_j)^2]$$

och att

$$4Q(x) = [(x_1 + x_{2n})^2 - (x_1 - x_{2n})^2] + \dots + [(x_n + x_{n+1})^2 - (x_n - x_{2n})^2] + \dots + [(x_n + x_{2$$

Dvs efter en rotation med ansatsen $y_1=x_1+x_{2n}$, ... $y_n=x_n+x_{n+1}$, samt $y_{n+1}=x_1-x_{2n}$, ... $y_{2n}=x_n-x_{n+1}$, har vi att kvadratiska formen är indefinit, då den skrivs som

$$4Q(y) = \sum_{i=1}^{n} y_i^2 - \sum_{i=n+1}^{2n} y_i^2.$$

Midigun

och med × menas kryssprodukten.

- a) Bestäm standardmatris till $L \colon \mathbb{R}^3 \to \mathbb{R}^3$. (2 p)
- b) L transformerar planet $x_3=0$ till sig själv. Beskriv geometrisk hur vektorer i detta plan transformeras. (1 p)
- c) Bestäm alla egenvärden och tillhörande egenvektorer till L. (3 ${\bf p}$)
- 4. a) Kryssprodukten beräknas och vi får

$$L(x) = \vec{e}_3 \times x = \begin{bmatrix} -x_2 \\ x_1 \\ 0 \end{bmatrix}$$

6

Standardmatrisen ges då av hur L verkar på standardbasen i rummet

$$L(\vec{e}_1) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad L(\vec{e}_2) = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \qquad L(\vec{e}_3) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

och därmed är dess matris

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

b) Avbildningen skickar alla vektorer till planet $x_3=0$, eftersom tredje komponenten i Lx är lika med noll. Vektorer i planet $x_3=0$ ges av $(x_1,x_2,0)$ som avbildas på $(-x_2,x_1,0)$ dvs (x_1,x_2) avbildas på $(-x_2,x_1)$ som tydligen är en rotation och vi kan skriva

$$\begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \cos \pi/2 & -\sin \pi/2 \\ \sin \pi/2 & \cos \pi/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

som är en rotation med 90°, dvs $\pi/2$.

c)

$$\det\begin{bmatrix} -\lambda & -1 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & -\lambda \end{bmatrix} = \lambda(\lambda^2 + 1) = 0 \quad \text{ger} \quad \lambda = 0,$$

så L har bara ett egenvärde $\lambda=0$. Det betyder att motsvarande egenvektorer ges av de nollskilda vektorerna i ker(L). Matrisen till L har rang 2, som ger att ker(L) har dimension 1. Vi kan konstatera att egenvektorer till L ges av $\alpha \vec{e}_3$ där α är en nollskild skalär.

En sista skitsvår tentauppgift

den 10 oktober 2018 20:51

8. (5p) Låt $f: \mathbb{R}^n \to \mathbb{R}^n$ vara en avbildning. Vi säger att $\vec{x}_0 \in \mathbb{R}^n$ är en $fixpunkt$ om $f(\vec{x}_0) = \vec{x}_0$. En kvadratisk matris \mathbf{A} med egenskapen att $ \mathbf{A}\vec{x} > \vec{x} $ för alla $\vec{x} \neq \vec{0}$ säges vara $expansiv$. Givet $\vec{b} \in \mathbb{R}^n$ och en expansiv $n \times n$ -matris \mathbf{A} , definiera en avbildning $f: \mathbb{R}^n \to \mathbb{R}^n$ genom att låta $f(\vec{x}) = \mathbf{A}\vec{x} + \vec{b}$. Visa att f har en fixpunkt.
are and many and are
Maile seis aus ui läasu das a ⁸ blis dat haffa ash bullal
Maila mig om ni löser den så blir det kaffe och bulle!