COMPLEX VARIABLES

Show that $f(z) = z + 2\overline{z}$ is not analytic anywhere in the complex plane.

66. Find the image of |z-2i|=2 under the mapping $w=\frac{1}{z}$. |+4V=0|Find the image of |z-2i|=2 under the mapping $w=\frac{1}{z}$, |+4V=0| (AKTU 2020) |-4V=0| |-4V=0| (AKTU 2020) |-4V=0| |-4V=0| (AKTU 2020) |-4V=0| |-4V

 $f\left(\frac{\pi}{2}\right) = \frac{3-i}{2}. \qquad \cot \frac{2}{2} + \frac{1}{2}\left(1-i\right)$

70. Evaluate by contour integration: $\int_0^{2\pi} e^{-\cos\theta} \cos(n\theta + \sin\theta) d\theta; n \in I. \quad \frac{2\pi}{n!} (-1)^{\infty} (AKTU 2019)$

rove that $w = \frac{z}{1-z}$ maps the upper half of the z-plane onto upper half of the w-plane. What

is the image of the circle |z| = 1 under this tranformation? $\partial u + 1 = 0$

Find a bilinear transformation which maps the point i, -i, 1 or the z-prane size i, i with i plane respectively. $\frac{c^2}{-2Z+2}$ (aktru 2019)

73. Evaluate $\oint_C \frac{c^2}{z(1-z)^3} dz$, where c is $(i) |z| = \frac{1}{2}$ (ii) $|z-1| = \frac{1}{2}$ (iii) |z| = 2 (aktru 2021)

R₁ at (z=0) = 1, R_2 at $z=1=-\frac{e}{2}$ $2\pi i$ $\sqrt{-\pi}i$ $\sqrt{-\pi}i$ $\sqrt{-\pi}i$ $\sqrt{-\pi}i$ when $\sqrt{1+3}$ $\sqrt{-\pi}i$ $\sqrt{-\pi}$

6. Find the points of invariant of the transformation $w = \frac{2z+3}{z+2}$, $z = \pm \sqrt{3}$

72 Sate Cauchy integral theorem. (AKTU 2020)

78. Discuss the singularity of $\sin\left(\frac{1}{z-a}\right)$. z=a is non-isolated (AKTU 2021) essential singularity

79. Examine the nature of the function

 $f(z) = \begin{cases} \frac{x^2 y^5 (x+iy)}{x^4 + y^{10}}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ in the region including the origin. $f(z) = \begin{cases} \frac{x^2 y^5 (x+iy)}{x^4 + y^{10}}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ in the region including the origin. C-R eurs au satisfiéd at

80. Evaluate, $\frac{1}{2\pi i} \oint_C \frac{z^2 - z + 1}{z - a} dz$, where $C = |z - 1| = \frac{1}{2}$. If a tie inside (AKTU 2020) action then $J = a^2 - a + 1$ and if a tie ordinal like $I = a^2 - a + 1$ and if a tie ordinal like $I = a^2 - a + 1$ and if $I = a^2 - a + 1$ and $I = a^2 - a + 1$ and

Ans: - et C (AKTU 2017) $u-v=e^{x}(\cos v-\sin v).$

82. Find the image of circle |z-1|=1 in the complex plane under the mapping $w=\frac{1}{z}$.

(AKTU 2020) 11=1

- 83. Find Laurent series expansion of $\frac{1-\cos z}{z^2}$ about the point z=0 is. (AKTU 2021)
- 84. Find residue at each pole of the function and hence using Cauchy residue theorem evaluate integral $\frac{4+3z}{(z-2)(z-3)}dz$, where C: |z|=1. $\frac{R_1=-l^2}{R_2=13}$ $\int b(z)dz=0$ (AKTU 2020)
- 85. Show that the function defined by $f(z) = \sqrt{|xy|}$ is not regular at the origin, although the Cauchy-Riemann equations are satisfied there. (AKTU 2018)
- 86. Show that complex function $f(z) = z^3$ is analytic. (AKTU 2018)
- 87. Define Conformal mapping. (AKTU 2018)
- 88. Evaluate $\int_0^{1+i} (x^2 iy) dz$ along the path y = x. $\frac{5}{6} \frac{L}{6}$ (AKTU 2018)
- 89. Find residue of $f(z) = \frac{\cos z}{z(z+5)}$ at z=0. (AKTU 2018)
- 90. Show that $u = x^4 6x^2y^2 + y^4$ is harmonic function. Find complex function f(z) whose u is a real part. $\xi(z) = z^4 + C$ (AKTU 2018)
- 91. Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in regions $(z) \frac{1}{2} \sum_{n \ge 0}^{\infty} (\frac{z}{z})^n \frac{1}{z} \sum_{n \ge 0}^{\infty} (\frac{1}{z})^n \frac{1}{z} \sum_$
- 92. Let $f(z) = \frac{x^2 y^5 (x + iy)}{x^4 + y^{10}}$ when $z \neq 0$, f(z) = 0 when z = 0. Prove that Cauchy Riemann satisfies at z = 0 but function is not differentiable at z = 0.
- 93. Find Mobius transformation that maps point z = 0, -i, 2i into the points w = 5i, ∞ , $-\frac{i}{3}$ respectively. $\omega = \frac{37-5i}{i2-1}$ (AKTU 2018)
- 94. Using Cauchy Integral formula evaluate $\int_{c} \frac{\sin z}{(z^{2}+25)^{2}} dz \text{ where } c \text{ is circle } |z| = 8.$ $\boxed{1 \quad \left(\frac{\sin \zeta \, i 5i \cos \zeta}{125}\right)}$
- 95. Apply residue theorem to evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)} = 11/3$ (AKTU 2018)