

LOGIC LEVEL TRIACS

FEATURES

- LOW I_{GT} = 10mA max
- HIGH EFFICIENCY SWITCHING ON COMMUTATION
- BTA Family: INSULATING VOLTAGE = 2500V(RMS) (UL RECOGNIZED: E81734)

DESCRIPTION

The BTA/BTB12 SW Triac family are high performance products glass passivated PNPN devices. These parts are suited for low power trigger circuit (integrated circuits, microcontroller, microprocessors.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter			Value	Unit
I _{T(RMS)}	RMS on-state current	ВТА	Tc = 70 °C	12	Α
	(360° conduction angle)	втв	Tc = 75 °C		
ITSM	ITSM Non repetitive surge peak on-state current (Tj initial = 25°C)		tp = 8.3 ms	126	Α
			tp = 10 ms	120	
l ² t	I ² t value	value		72	A ² s
dl/dt	Critical rate of rise of on-state current Gate supply: I _G = 50mA di _G /dt = 0.1A/μs		Repetitive F = 50 Hz	20	A/μs
	Non Repetitive			100	
Tstg Tj	Storage and operating junction temperature range			- 40 to + 150 - 40 to + 110	°C °C
TI	Maximum lead temperature for soldering during 10 s at 4.5 mm from case			260	°C

Symbol	Parameter		BTA / BTB12-				
		400 SW	600 SW	700 SW			
VDRM VRRM	Repetitive peak off-state voltage Tj = 110 °C	400	600	700	V		

March 1995

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit	
Rth (j-a)	Junction to ambient	60	°C/W	
Rth (j-c) DC	Junction to case for DC	вта	3.3	°C/W
		втв	2.7	
Rth (j-c) AC	Junction to case for 360° conduction angle	ВТА	2.5	°C/W
(F= 50 Hz)		втв	2	

GATE CHARACTERISTICS (maximum values)

 $PG~(AV) = 1W~~PGM = 10W~(tp = 20~\mu s)~~I_{GM} = 4A~(tp = 20~\mu s)~~V_{GM} = 16V~(tp = 20~\mu s).$

ELECTRICAL CHARACTERISTICS

Symbol	Test Conditions		Quadrant		Suffix	Unit
					sw	
l _{GT}	$V_D=12V$ (DC) $R_L=33\Omega$	Tj=25°C	1-11-111	MAX	10	mA
V _{GT}	$V_D=12V$ (DC) $R_L=33\Omega$	Tj=25°C	1-11-111	MAX	1.5	V
V _{GD}	V _D =V _{DRM} R _L =3.3kΩ	Tj=110°C	1-11-111	MIN	0.2	V
tgt	$V_D=V_{DRM}$ $I_G=40$ mA $dI_G/dt=0.5$ A/ μ s	Tj=25°C	1-11-111	TYP	2	μs
IL	IG=1.2 IGT	Tj=25°C	1-111	TYP	15	mA
			II		25	
lH *	IT= 100mA gate open	Tj=25°C		MAX	25	mA
VTM *	I _{TM} = 17A tp= 380μs	Tj=25°C		MAX	1.75	V
!DRM	VDRM Rated	Tj=25°C		MAX	0.01	mA
IRRM	V _{RRM} Rated	Tj=110°C		MAX	1	
dV/dt *	Linear slope up to VD=67%VDRM gate open	Tj=110°C		MIN	50	V/μs
(dl/dt)c *	dV/dt= 0.1V/μs	Tj=110°C		MIN	5.3	A/ms
	dV/dt= 20V/μs			MIN	3.5	

 $^{^{\}star}$ For either polarity of electrode A_2 voltage with reference to electrode $A_1.$

 $\label{eq:Fig.1} \textbf{Fig.1:} \ \, \text{Maximum RMS power dissipation versus RMS} \\ \text{on-state current (F=50Hz)}.$

(Curves are cut off by (dl/dt)c limitation)

Fig.3: Correlation between maximum RMS power dissipation and maximum allowable temperatures (T_{amb} and T_{case}) for different thermal resistances heatsink + contact (BTB).

Fig.5: Relative variation of thermal impedance versus pulse duration.

Fig.2: Correlation between maximum RMS power dissipation and maximum allowable temperatures (T_{amb} and T_{case}) for different thermal resistances heatsink + contact (BTA).

Fig.4: RMS on-state current versus case temperature.

Fig.6: Relative variation of gate trigger current and holding current versus junction temperature.

Fig.7: Non Repetitive surge peak on-state current versus number of cycles.

Fig.9: On-state characteristics (maximum values).

Fig.8 : Non repetitive surge peak on-state current for a sinusoidal pulse with width : $t \le 10ms$, and corresponding value of I^2t .

 $\label{eq:Fig.10:Relative variation} \textbf{Fig.10:} Relative variation of $(dI/dt)c$ versus junction temperature.$

PACKAGE MECHANICAL DATA

TO220AB Plastic

REF.	DIMENSIONS				
	Millimeters		Inc	hes	
	Min. Max.		Min.	Max.	
Α	10.20	10.50	0.401	0.413	
В	14.23	15.87	0.560	0.625	
С	12.70	14.70	0.500	0.579	
D	5.85	6.85	0.230	0.270	
F		4.50		0.178	
G	2.54	3.00	0.100	0.119	
Н	4.48	4.82	0.176	0.190	
- 1	3.55	4.00	0.140	0.158	
J	1.15	1.39	0.045	0.055	
L	0.35	0.65	0.013	0.026	
М	2.10	2.70	0.082	0.107	
N	4.58	5.58	0.18	0.22	
0	0.80	1.20	0.031	0.048	
Р	0.64	0.96	0.025	0.038	

Cooling method: C Marking: type number

Weight: 2.3 g

Recommended torque value : 0.8 m.N. Maximum torque value : 1 m.N.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

