Solution for Statistical analysis of network data - Sheet 3

- 1. Is the graph C_4 the cycle graph on 4 nodes strictly balanced?
 - * Define $\bar{d} = 2e/n$. Define the maximum average degree of a graph F as

$$m(F) = \max_{H \subset F} \{\bar{d}(H)\}.$$

H is strictly balanced if $F \subset H$ and d(F) = m(H) imply that F = H. The subgraphs of C_4 is P_2 , P_3 and C_4 itself. $\bar{d} = 24/4 = 2$. On the other hand \bar{d} for these subgraphs is 2/2 = 1, 4/3 = 1.333... and C_4 is 8/4 = 2. Equality implies the latter case, hence

- 2. Is the graph of a tadpole of a cycle with 5 nodes joined to a 3-node tail, e.g. a graph on 5+3-1 vertices strictly balanced?
 - * Define $\bar{d}=2e/n=14/7=2$. Subgraphs are $S_3,\,P_4,\,P_7...$ \bar{d} is $6/4=3/2,\,6/4$ and 12/7<2... Thus it follows that it is not strictly balanced.
- 3. Count the number of triangles in the graph below, excluding the large connected components of the biggest connected component.
 - * The edges have nil triangles. The triangles have one each. K_4 has $4 \times 3 \times 2/6 = 4$. K_5 has $5 \times 4 \times 3/6 = 10$. The lollipop graph has the same as K_4 has $4 \times 3 \times 2/6 = 4$.
- 4. Assume that G is an Erdos-Renyi graph on n nodes. Determine the large sample approximation to the distribution of $X_{C_4}(G)$. Chose the success probability of the Erdos-Renyi graph so that a known limit arises.
 - * Suppose that H is a fixed strictly balanced graph with k vertices and $l \geq 2$ edges, and its automorphism group has a members. Let c > 0 be a constant and set $p = cn^{-k/l}$. For G generated as an Erdos–Renyi graph with success probability p denote by $X_H(G)$ the number of copies of H in G. Then $X_H(G)$ asymptotically becomes a Poisson random variable with mean c^l/a . Here we recognise l = 4.
- 5. Assume that G is a Stochastic Blockmodel with 2 groups on n nodes. Determine the large sample approximation to the distribution of $X_{C_4}(G)$.

We use the Theorem provided in the lecture. We denote the four probabilities θ_{11} , θ_{12} , θ_{21} , θ_{22} . Then take

$$\lambda = EX_H(G_n) = \binom{n}{4} \frac{4!}{8} \mu(H),$$

with

$$\mu(H) = \sum_{c_1, c_2}^{Q} h_{c_1} h_{c_2} \prod_{uv} \theta_{c_u c_v}.$$

It has been shown by Coulson et al (2015) that the distribution of $X_H(G_n)$ becomes Poisson with mean λ .

6. What is the automorphosm group of K_4 ? How large it is?

The automorphism group on K_n symmetric group S_n of degree n is the group of all permutations on n symbols.