inverteerbare elementen in Z/m

Een element $r \in Z/m$ bezit een invers element voor de vermenigvuldiging $x \in Z/m$ indien $rx = [1]_m$ in Z/m m.a.w. $r'x' \equiv 1 \pmod{m}$ met r' en x' willekeurige representanten uit r en x.

Zij $r \in Z$. dan is het element [r] van Z/m inverteerbaar als en slechts als r en m onderling ondeelbaar zijn. In het bijzonder zal in Z/p met p een priemgetal elk element verschillend van [0] inverteerbaar zijn.

bewijs

veronderstel dat [r] inverteerbaar is. Dan bestaat er een geheel getal x, zodanig dat rx \equiv 1(mod m). Bijgevolg bestaat er een k \in Z zodanig dat rx-1=km, of rx -km = 1

Elke gemene deler van r en van m is dus bijgevolg ook een delr van 1, of met andere woorden gcd(r,m)=1.

Omgekeerd, veronderstel dat r en m onderling ondeelbaar zijn, dan bestaan er gehele getallen x en y , zodanig dat rx + my= 1 gevolgen stelling bézout hetgeen gelijkwaardig is met $xr \equiv 1 \pmod{m}$

stelling van Euler

Als $y \in Z$ met gcd (y, m) = 1, dan geldt $y^{\phi(m)} \equiv 1 \pmod{m}$

afleiding naar kleine stelling van fermat

als m=p een priemgetal is en dus ϕ (p) = p-1, wordt de stelling van euler als p \nmid y, dan is y $^{p-1} \equiv$ 1 (mod p)