

Understanding Probability

Consider the following statements. How do you interpret "probability" in each one of those? And how is it computed?

Coin Toss – Probability of Head

Weather – Probability of thunderstorm tomorrow is 25 %

Probability vs Statistics

Probability – Predict the likelihood of a future event.

Statistics – Analyze the past events

Probability – What will happen in a given ideal world?

Statistics – How ideal is the world?

Applications

- Gamming Industry Establish charges and payoffs
- Manufacturing Prevent Major breakdowns
- Business Deciding on a business proposal based on probability of success vs cost
- Risk Evaluation

Classical Method – A priori or Theoretical

Probability can be determined prior to conducting any experiment.

$$P(E) = \frac{No. of outcomes in which the even occures}{total possible no. of outcomes}$$

Eg. Tossing a fair dice.

$$P(H) = ?$$

of possibilities that meet my conditions

of equal likely possibility

- If I roll a die, what are the possible outcomes I can get?
 - Exactly "1"
 - Exactly "2"
 - Exactly "3"
 - Exactly "4"
 - Exactly "5"
 - Exactly "6"
- Only "Six" outcomes
- P(1) = 1/6
- P(2 or 6) = 2/6
- P(2 and 6) = 0/6

Find the probability of pulling a yellow marble from a bag with 3 yellow, 2 red, 3 green and 1 blue.

```
P (yellow) = ?
P (red) = ?
P (green) = ?
P(blue) = ?
```


We have a bag with 9 red marbles, 2 blue marbles, and 3 green marbles in it. What is the probability of randomly selecting a **non-blue** marble from bag?

The circumference of a circle is 36π . Contained in that circle is a smaller circle with an area of 16π .

A point is selected at random fro inside the larger circle. What is probability that the point also in the same circle.

Area of smaller circle = 16π

Area of larger circle $= \pi * (36 \pi / 2 \pi)^2$

 $= 324 \pi$

Prob of point in same circle = 16 / 324

Monty Hall Problem

Probability of Switch?

Probability of not switch?

Probability with counting outcomes

Find the probability of flipping exactly two heads on three coins?

$$P = 3 / 8$$

What is the probability of a baby begin born on Wednesday?

A-priori probability = 1/7 = 14.3 %

Empirical Method – A Posteriori or Frequentist

Probability can be determined post conducting a thought experiment

• This is most used method in statistical inference

Experimental probability:

"Is to get estimate of something based on data and experience the we had in the past."

What is probability of that for next game you will have a score greater than 600?

Ans: total games =
$$110$$

p (score > = 600) = $(16 + 2) / 110$

•

Making Prediction with Probability

Predict number of times we will get "FREE GIFT" if I rotate roulette for 1200 times.

P (free gift) =
$$2/12$$

No. of time we might get free gift = 1200 * 2/12

Subjective Method

Probability based on feelings, insights, knowledge, etc. of a person.

What is the probability of India wining upcoming World Cup- 2019

Random Variable

Random Variables

- Random variables is the ways to measure Random process numbers.
 - Like flipping coin
 - Rolling a die
- Mapping outcomes to numbers

Random Variables

Discrete Random Variable

- Distinct / separate value

Continuous Random Variable

- Any value in interval

Discrete vs Continuous Random Variable

$$X = \begin{cases} 1 & Head \\ 0 & Tail \end{cases}$$

2. Year that a random student was born

1992, 1990, 2000, 2005

1. Exact Mass of a random animal selected at zoo

2. Exact Winning time men's 100 m race

9.56819849819189512546

Discrete Random Variable

Discrete Random Variable Probability

Let 1 through 6 represent the outcomes for a die roll. So our discrete random variable X is described as:

$$x = 1,2,3,4,5,6$$

What will be our probability distribution look like? What will our probability function P(x) values look like?

X	P(X)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

Uniform Probability Distribution

DIE ROLL PROBABILITY P(X)

Conditions for Discrete Probabilities

$$0 \le P(x) < 1$$

$$\sum P(x) = 1$$

Compound Probabilities

What is the probability of rolling a 2 or a 5 during a die roll?

$$X = 2, 5$$

$$P(x) = 1/6 + 1/6 = 1/3$$

Expected Value

Problem

On your Psychology 101 syllabus it states that your final grade will be determined in the following manner:

ASSIGNMENT	FINALE GRADE
Home work	30 %
Quizzes	20 %
Midterm	25 %
Final	25 %

Problem

In your Psychology 101 class you received the following grades:

ASSIGNMENT	GRADE %	WEIGHT	SUBSCORE
Home work	89 %	0.30	26.7
Quizzes	79 %	0.20	15.8
Midterm	84 %	0.25	21.0
Final	92 %	0.25	23.0
			86.5 %

Expected Value?

The expected value is simply the mean of a random variable; the average expected outcome. It does not have to be a value the discrete random variable can assume

•
$$E(x) = \mu = \sum x P(x)$$

• μ is the mean

Question 1

If I roll a die many times and then average my rolls, what should I expect for μ . ?

•
$$E(x) = \mu = \sum x P(x)$$

• μ is the mean

X	P(x)	xP(x)
1	1/6	1/6
2	1/6	2/6
3	1/6	3/6
4	1/6	4/6
5	1/6	5/6
6	1/6	6/6
		21/6 = 3.5

$$\mu = (b + a)/2$$

Random Variable Variance

Random Variable Variance

Though the expected value tells us the mean of a random variable oftentimes we need to know that variability, or how spread out, the random variable is from its mean.

• We can use the variance and standard deviation of a random variable to learn about how **dispersed** it is relative to its mean.

$$\sigma^2 = \sum (x - \mu)^2 P(x)$$

Distribution

Bernouli Distribution

Bernouli

• There are two possibilities (pass or fail) with probability p of success and q = 1-p of failure..

Expectation: p Variance:

pq

Bernouli

Expectation,
$$E(x) = \sum x_i P(x_i)$$

= 1 * p + 0 * q
= p

Variance,
$$Var = \sum (x_i - \mu)^2 P(x_i)$$

= $(1 - p)^2 * p + (0 - p)^2 * (1 - p)$
= $p(1 - p)$
= pq

Geometric Distribution

Number of independent and identical Bernoulli trails needed to get ONE success.

Eg. Number of attempts before I pass the exam

Geometric Distribution

- You run a series of independent trail.
- There can be either a success or failure for each trail, and the probability of success is the same for each trail.
- How many trails are needed in order to get the first successful outcome.

Geometric Distribution

• PMF* =
$$P(X = r) = q^{r-1}p$$

•
$$P(X > r) = q^r$$

•
$$CDF^{**}, P(X \le r) = 1 - q^r$$

•
$$E(X) = \frac{1}{p}$$
 $var(x) = \frac{q}{p^r}$

PMF: Probaility Mass Funciton

CDF: Cumulative Distribution Function

Binomial Experiment

- The process consists of a sequence of n trials.
- Only two exclusive outcomes are possible in each trail. One outcome is called "Success" and other a "failure".
- The probability of a success denotes p, does not change from trail to trail. The probability of failure is 1-p and is also fixed from trail to trail.
- The trails are independent; the outcome of previous trail not influence future trail.

Binomial Variable

- Let's consider a coin P(H) = 0.6
- P(T) = 0.4

- X = # of heads after 10 flip of my coin
- Made up of independent trails
- Each trail can be classified as either success or failure
- Probability of success on each trail is constant

- X = # of heads after flipping coin 4 times
- Possible outcomes = 2 * 2 * 2 * 2 = 16

•
$$P(X = 0) = \frac{C_0^4}{32} = \frac{1}{32}$$

•
$$P(X = 1) = \frac{C_1^4}{32} = \frac{5}{32}$$

•
$$P(X = 2) = \frac{C_2^4}{32} = \frac{6}{32}$$

Binomial Probability example

$$P(Score) = 70 \% \text{ or } 0.7$$

 $P(miss) = 30 \% \text{ or } 0.3$

$$=C_2^6 (0.7)^2 (0.3)^4$$

$$= C_k^n (p)^k (1-p)^{n-k}$$

Question

In this area it is expected that 9 cars are passing in a hours. What is the probability that there are exactly 6 cars are passing in this hour

$$E(X) = \lambda = n * p = 9 \text{ cars/hr}$$

Since, 1 hours = 60 minutes
So, n = 60
 $K = 6$ (number of expected cars in hour)

$$P(x = k) = C_k^n (p)^k (1 - p)^{n-k}$$

$$p = \lambda/n = 9 / 60$$

Question

In this area it is expected that 9 cars are passing in a hours. What is the probability that there are exactly 6 cars are passing in this hour

$$p = \frac{\lambda}{n} = 9/60$$

1-p = 51/60

Therefore, probability of exactly 6 cars are passing in an hours is

$$P(x=6) = C_6^{60} \left(\frac{9}{60}\right)^6 \left(\frac{51}{60}\right)^{54}$$

n = 3600 (no. of seconds in an hour)

Poisson Distribution

Poisson

$$E(X) = \tilde{\lambda} = n * p$$

$$P(X = k) = \lim_{n \to \infty} C_k^n (p)^k (1 - p)^{n-k}$$

$$= \frac{\chi^k}{k!} e^{-\chi}$$

$$\lambda = 9$$
 cars pass

$$P(X=2)$$

♥IOTGYAN

Question

Q. Probability that a cars will not pass in n min

$$= \frac{\chi^k}{k!} e^{-\chi}$$

For 1st second:

$$P(x = 0) = \frac{\lambda^{0}}{0!} e^{-\lambda} = e^{-\lambda}$$
 (for 1 sec)

For *n* second:

Probability that a cars will pass for n sec.

$$=e^{-n\lambda}$$

Exponential Distribution

Q. Probability that a cars will pass in n sec

$$1 - e^{-n\lambda}$$

CDF =
$$1 - e^{-n\lambda}$$
 , $n \geq 0$

PDF=
$$\lambda e^{-n\lambda}$$
, $n \geq 0$

Exponential Distribution

- Poisson process
- Continuous analog of Geometric distribution

$$E(X) = \frac{1}{\lambda}$$
 $var(X) = \frac{1}{\lambda^2}$

IOTGYAN