Problem 1

Theorem:

The set F of all functions from N to N is uncountable.

Proof:

The proof is by contradiction. Suppose that F is countable, then there exists a correspondence between N and F. Each member f in F can be represented by a string of natural numbers. For example, f = "10, 4, 8, 55, ..." means that f(1) = 10, f(2) = 4, f(3) = 8, f(4) = 55, and so on. The following table shows a few entries of a hypothetical correspondence g between N and F:

n	g(n)				
1	10,	4,	8,	55,	
2	2,	7,	99,	40,	
3	4,	7,	20,	35,	
4	32,	56,	126,	24,	

However, a function f* can be found in F that is not paired with any n in N. It can be constructed in a way that it is different from all the functions in the correspondence g. For example,

- $f^*(1) = 11$ that is greater than (g(1))(1) by 1
- $f^*(2) = 8$ that is greater than (g(2))(2) by 1
- $f^*(3) = 21$ that is greater than (g(3))(3) by 1
- $f^*(4) = 25$ that is greater than (g(4))(4) by 1

In other words, $f^*(i)$ is greater than (g(i))(i) by 1 for all i in N. It is different from all the functions in the correspondence g. A contradiction results and there does not exist a correspondence between N and F. Hence, the set F of all functions from N to N is uncountable.