第十章

第五爷

第二型曲面积分

- 一、有向曲面及曲面元素的投影
- 二、第二型曲面积分的概念与性质
- 三、第二型曲面积分的计算法
- 四、两类曲面积分的联系

一、有向曲面及曲面元素的投影

曲面分内侧和 外侧

莫比乌斯带 (单侧曲面的典型)

曲面分左侧和 右侧

曲面分上侧和 下侧

•指定了侧的曲面叫有向曲面, 其方向用法向量指向表示:

方向余弦	$\cos \alpha$	$\cos \beta$	$\cos \gamma$	封闭曲面
侧的规定	> 0 为前侧	> 0 为右侧	> 0 为上侧	外侧
	< 0 为后侧	< 0 为左侧	<0为下侧	内侧

•设 Σ 为有向曲面, 其面元 ΔS 在 xoy 面上的投影记为 $(\Delta S)_{xy}$, $(\Delta S)_{xy}$ 的面积为 $(\Delta \sigma)_{xy} \ge 0$, 则规定

$$\Delta S \cos \gamma = (\Delta S)_{xy} = \begin{cases}
(\Delta \sigma)_{xy}, & \exists \cos \gamma > 0 \text{ b} \\
-(\Delta \sigma)_{xy}, & \exists \cos \gamma < 0 \text{ b} \\
0, & \exists \cos \gamma \equiv 0 \text{ b}
\end{cases}$$

类似可规定 $\Delta S \cos \alpha = (\Delta S)_{yz}, \Delta S \cos \beta = (\Delta S)_{zx}$

2. **定义**. 设 Σ 为光滑的有向曲面, 在 Σ 上定义了一个向量场 $\overrightarrow{A} = (P(x, y, z), Q(x, y, z), R(x, y, z))$,若对 Σ 的任意分割和在局部面元上任意取点, 下列极限都存在

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} \left[P(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{yz} + Q(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{zx} + R(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{xy} \right]$$

则称此极限为向量场承在有向曲面上对坐标的曲面积

分,或第二型曲面积分.记作

$$\iint_{\Sigma} P \, \mathrm{d} y \, \mathrm{d} z + Q \, \mathrm{d} z \, \mathrm{d} x + R \, \mathrm{d} x \, \mathrm{d} y$$

P, Q, R 叫做被积函数; Σ 叫做积分曲面.

三、第二型曲面积分的计算法

定理: 设光滑曲面 $\Sigma : z = z(x,y), (x,y) \in D_{xy}$ 取上侧. R(x,y,z)是 Σ 上的连续函数,则

说明: 如果积分曲面 Σ 取下侧,则

$$\iint_{\Sigma} R(x, y, z) dx dy = -\iint_{D_{xy}} R(x, y, z(x, y)) dx dy$$

• 若 Σ : $x = x(y,z), (y,z) \in D_{yz}$,则有

$$\iint_{\Sigma} P(x, y, z) \, \mathrm{d} y \, \mathrm{d}z = \pm \iint_{D_{yz}} P(x(y, z), y, z) \, \mathrm{d} y \, \mathrm{d}z$$
(前正后负)

• 若 $\sum : y = y(z,x), (z,x) \in D_{zx}$,则有

$$\iint_{\Sigma} Q(x, y, z) dz dx = \pm \iint_{D_{zx}} Q(x, y(z, x), z) dz dx$$
(右正左负)

例1. 计算曲面积分 $\iint_{\Sigma} xyz \, \mathrm{d}x \, \mathrm{d}y$,其中 Σ 为球面 $x^2 + y^2 + z^2 = 1$ 外侧在第一和第五卦限部分.

思考: 下述解法是否正确:

根据对称性
$$\iint_{\Sigma} xyz \, \mathrm{d} x \, \mathrm{d} y = 0$$

 \mathbf{m} : 把 Σ 分为上下两部分

$$\begin{cases}
\Sigma_1 : z = -\sqrt{1 - x^2 - y^2} \\
\Sigma_2 : z = \sqrt{1 - x^2 - y^2}
\end{cases}$$

$$(x, y) \in D_{xy} : \begin{cases}
x^2 + y^2 \le 1 \\
x \ge 0, y \ge 0
\end{cases}$$

$$\therefore \iint_{\Sigma} xyz \, \mathrm{d}x \, \mathrm{d}y = \iint_{\Sigma_{1}} xyz \, \mathrm{d}x \, \mathrm{d}y + \iint_{\Sigma_{2}} xyz \, \mathrm{d}x \, \mathrm{d}y \\
= -\iint_{D_{xy}} xy \left(-\sqrt{1 - x^{2} - y^{2}} \right) \, \mathrm{d}x \, \mathrm{d}y \\
+ \iint_{D_{xy}} xy \sqrt{1 - x^{2} - y^{2}} \, \mathrm{d}x \, \mathrm{d}y \\
= 2\iint_{D_{xy}} xy \sqrt{1 - x^{2} - y^{2}} \, \mathrm{d}x \, \mathrm{d}y \\
= 2\iint_{D_{xy}} r^{2} \sin\theta \cos\theta \sqrt{1 - r^{2}} r \, \mathrm{d}r \, \mathrm{d}\theta \\
= \int_{0}^{\pi/2} \sin 2\theta \, \mathrm{d}\theta \int_{0}^{1} r^{3} \sqrt{1 - r^{2}} \, \mathrm{d}r \\
= \frac{2}{15}$$

计算第二型曲面积分也可以利用对称性:

设有向曲面 Σ 关于xOy平面对称(包括曲面方向对称), 当 f(x, y, z) 是 z 的<u>奇函数</u>时,

$$\iint_{\Sigma} f(x, y, z) dx dy = 2 \iint_{\Sigma_{1}} f(x, y, z) dx dy$$

其中 Σ_1 为 Σ 中 $z \ge 0$ 的部分; 当f(x, y, z)是z的偶函数时, $\iint_{\Sigma} f(x, y, z) dx dy = 0.$

在有向曲面Σ关于zOx 及关于yOz 对称时, 有类似的结果.

特别注意,由于曲面的方向性,对称性与以往是不同的!

例2. 计算 $I = \iint_{\Sigma} (x + y^2 + z^3) dy dz$, 其中Σ是球面 $x^2 + y^2 + z^2 = R^2$, 取外侧.

解:因 Σ 关于yOz 平面对称, y^2 , z^3 关于 x 都是偶函数, 所以 $\bigoplus_{\Sigma} (y^2 + z^3) dy dz = 0$. 设 Σ_1 为 Σ 中 $x \ge 0$ 的部分, D_{yz} 为 Σ_1 在 yOz 上的投影,根据对称性,有 $\oint_{\Sigma} (x + y^2 + z^3) dy dz = 2 \iint_{\Sigma} x dy dz$ $=2\iint_{D} \sqrt{R^{2}-y^{2}-z^{2}} \, dy \, dz = 2\int_{0}^{2\pi} d\theta \int_{0}^{R} \sqrt{R^{2}-r^{2}} r \, dr$ $=\frac{4}{3}\pi R^3$

例3. 设S 是球面
$$x^2 + y^2 + z^2 = 1$$
 的外侧, 计算

$$I = \iint \frac{2 \,\mathrm{d} y \,\mathrm{d} z}{x \cos^2 x} + \frac{\mathrm{d} z \,\mathrm{d} x}{\cos^2 y} - \frac{\mathrm{d} x \,\mathrm{d} y}{z \cos^2 z}$$

解: 易证
$$\iint_{S} \frac{\mathrm{d}z\,\mathrm{d}x}{\cos^{2}y} = 0$$

$$\iint_{S} \frac{2 d y d z}{x \cos^{2} x} = \iint_{S} \frac{2 d x d y}{z \cos^{2} z},$$

$$\therefore I = \iint_{S} \frac{\mathrm{d}x \,\mathrm{d}y}{z \cos^{2} z} = 2 \iint_{x^{2} + y^{2} \le 1} \frac{\mathrm{d}x \,\mathrm{d}y}{\sqrt{1 - x^{2} - y^{2}} \cos^{2} \sqrt{1 - x^{2} - y^{2}}}$$

$$=2\int_{0}^{2\pi} d\theta \int_{0}^{1} \frac{r dr}{\sqrt{1-r^{2} \cos^{2} \sqrt{1-r^{2}}}} = -4\pi \int_{0}^{1} \frac{d\sqrt{1-r^{2}}}{\cos^{2} \sqrt{1-r^{2}}}$$

$$=4\pi \tan 1$$

例4. 计算 $\iint_{\Sigma} (x+y) dy dz + (y+z) dz dx + (z+x) dx dy$ 其中 Σ 是以原点为中心,边长为 a 的正立方体的整个表面的外侧.

解: 利用对称性.

原式 =
$$3\iint_{\Sigma} (z+x) \, dx \, dy$$
 $\left[\sum \text{的顶部 } \Sigma_1 : z = \frac{a}{2} \, (|x| \le \frac{a}{2}, |y| \le \frac{a}{2}) \, \text{取上侧} \right]$
 $\left[\sum \text{的底部 } \Sigma_2 : z = -\frac{a}{2} \, (|x| \le \frac{a}{2}, |y| \le \frac{a}{2}) \, \text{取下侧} \right]$
 $= 3\left[\iint_{\Sigma_1} (z+x) \, dx \, dy + \iint_{\Sigma_2} (z+x) \, dx \, dy \right]$
 $= 3\left[\iint_{D_{xy}} (\frac{a}{2} + x) \, dx \, dy - \iint_{D_{xy}} (-\frac{a}{2} + x) \, dx \, dy \right]$
 $= 3a\iint_{D_{xy}} dx \, dy = 3a^3$

四、两类曲面积分的联系

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy$$
$$= \iint_{\Sigma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) dS$$

$$dS \cos \gamma = dxdy$$
$$dS \cos \beta = dzdx$$
$$dS \cos \alpha = dydz$$

$$\Rightarrow \frac{dydz}{\cos\alpha} = \frac{dxdz}{\cos\beta} = \frac{dxdy}{\cos\gamma}$$

例5. 设 $\Sigma : z = \sqrt{1 - x^2 - y^2}$, γ 是其外法线与 z 轴正向

夹成的锐角, 计算 $I = \iint_{\Sigma} z^2 \cos \gamma \, dS$.

解:
$$I = \iint_{\Sigma} z^2 \cos \gamma \, dS$$

$$= \iint_{\Sigma} z^2 \, dx \, dy$$

$$= \iint_{D_{xy}} (1 - x^2 - y^2) \, dx \, dy$$

$$= \int_0^{2\pi} d\theta \int_0^1 (1 - r^2) r \, dr$$

$$= \frac{\pi}{2}$$

例6. 计算曲面积分 $\iint_{\Sigma} (z^2 + x) dy dz - z dx dy, 其中\Sigma$

旋转抛物面 $z = \frac{1}{2}(x^2 + y^2)$ 介于平面 z = 0

及 z=2 之间部分的下侧.

解: 利用两类曲面积分的联系, 有

$$\iint_{\Sigma} (z^{2} + x) dy dz$$

$$= \iint_{\Sigma} (z^{2} + x) \cos \alpha dS$$

$$= \iint_{\Sigma} (z^{2} + x) \frac{\cos \alpha}{\cos \gamma} dx dy$$

$$\cos \alpha = \frac{x}{\sqrt{1 + x^2 + y^2}}$$
$$\cos \gamma = \frac{-1}{\sqrt{1 + x^2 + y^2}}$$

$$\therefore 原式 = \iint_{\Sigma} \left[\left(z^2 + x \right) \left(-x \right) - z \right] \mathrm{d}x \, \mathrm{d}y$$

将
$$z = \frac{1}{2}(x^2 + y^2)$$
代入,得

原式 = $-\iint_{D_{xy}} \{ \left[\frac{1}{4}(x^2 + y^2)^2 + x \right] (-x) - \frac{1}{2}(x^2 + y^2) \} dx dy$

= $\iint_{D_{xy}} \left[x^2 + \frac{1}{2}(x^2 + y^2) \right] dx dy$

= $\int_0^{2\pi} d\theta \int_0^2 (r^2 \cos^2 \theta + \frac{1}{2}r^2) r dr$
= 8π

