

الامتدان الوطني الموحد للبكالوريا

الدورة العادية **2014** الموضوع

المركز الوطنى للتقويم والامتحانات والتوجيه

NS 24

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب)	الشعبة أو المسلك

- مدة إنجاز الموضوع هي أربع ساعات.
- يتكون الموضوع من خمسة تمارين مستقلة فيما بينها .
- يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.

لا يسمح باستعمال الآلة الحاسبة كيفما كان نوعها

لا يسمح باستعمال اللون الأحمر بورقة التحرير

الصفحة 2 NS 24

الامتدان الوطني الموحد للبكالوريا – الدورة العادية 2014 – الموضوع – ماحة : الرياضيات – هعبة العلوم الرياضية (أ) و(بم)

التمرين الأول:(3 نقط)

و ما العددين
$$a_1$$
 و العال. العددين a_2 و العال.

$$3a_n + 7 = 10^{n+1}$$
 : Y^* من n من 2

$$10^{30k+2} \equiv 7$$
 [31] : ¥ من k من 3 | 0.75

$$a_{30k+1}$$
 من a_{30k+1} ، ثم استنتج أن 31 يقسم a_{30k+1} ، ثم استنتج أن 31 يقسم -4 a_{30k+1}

التمرين الثاني: (3.5 نقطة)

$$O=egin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$$
نذکر أن $(M_2(\square),+, imes)$ جسم تبادلي و أن $(M_2(\square),+, imes)$ حلقة واحدية صفر ها

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 و وحدتها

$$E = \left\{ M\left(a,b
ight) / \left(a,b
ight) \in \square^2
ight\}$$
 : فكل $a \in b$ ونعتبر المجموعة $M\left(a,b
ight) = \left(egin{matrix} a & a-b \\ b & a+b \end{matrix}
ight)$ ككل $a \in b$ من ، نضع:

$$(M_2(\square),+)$$
 اـ بين أن E زمرة جزئية للزمرة (0.5

$$\left(M_2\left(\square\right), imes
ight)$$
 حيث: $J=rac{1}{2}$ عيث: $J=rac{1}{2}$ ثم استنتج أن $J=rac{1}{2}$ حيث $J^2=J'$ حيث $J^2=0.7$

$$N=egin{pmatrix} 1 & -1 \ 0 & 1 \end{pmatrix}$$
 : حيث $A*B=A imes N imes B$: بعرف على $M_2\left(\Box\right)$ قانون التركيب الداخلي $M_2\left(\Box\right)$ قانون التركيب الداخلي $M_2\left(\Box\right)$

ونعتبر التطبيق
$$\phi$$
 من * نحو $M_2(\square)$ الذي يربط كل عدد عقدي غير منعدم $a+ib$ و عددان حقيقيان) ونعتبر التطبيق $M_2(\square)$ نحو $M(a,b)$.

$$(M_2(\square),*)$$
نحو (\square^*,\times) من شاکل من (p) نحو (أ

$$arphiig(\Box^*ig)=E^*$$
 بين أن: $E^*=E-\{O\}$ بين أن: 0.25

ج) بين أن
$$\left(E^*,*\right)$$
زمرة تبادلية.

$$(\forall (A,B,C) \in E^3)$$
 $A*(B+C) = A*B+A*C$: بين أن -4

جسم تبادلي.
$$(E,+,*)$$
جسم تبادلي.

24

الامتدان الوحيى الموحد للبكالوريا – الحورة العاحية 2014 – الموضوع ماحة: الرياضيات – شعبة العلوم الرياضية (أ) و(بم) التمرين الثالث:(3.5 نقط)

المستوى العقدي منسوب إلى معلم متعامد ممنظم و مباشر (O, \vec{u}, \vec{v}) .

$$q$$
- $\stackrel{\'e}{\otimes}$, $\frac{p}{2}$ $\stackrel{\i}{\circ}$ $\stackrel{\i}{\circ}$ $\stackrel{\re}{\circ}$ $\stackrel{\re}$

$$(E)$$
 $z^2-\sqrt{2}e^{i heta}z+e^{2i heta}=0$:المعادلة التالية التالية المعادلة التالية -1

$$\mathrm{D} = \left(\sqrt{2}ie^{iq}
ight)^2$$
 هو: (E) هميز المعادلة (E

ب) اكتب على الشكل المثلثي
$$z_1$$
 و z_2 حلي المعادلة (E) في المجموعة z_1 .

$$\sqrt{2}e^{iq}$$
 و $e^{i\xi q\cdot rac{p_{\div}}{4^{\div}}}$ و $e^{i\xi q+rac{p_{\div}}{4^{\div}}}$

. أ) بين أن المستقيمين
$$\left(OA
ight)$$
 و $\left(OA
ight)$ متعامدان

ب)لیکن
$$K$$
 منتصف القطعة T_1 . بین أن النقط T_2 و T_3 مستقیمیة .

.
$$[T_1T_2]$$
 هو واسط القطعة (OA) ج)استنتج أن المستقيم

$$rac{p}{2}$$
 الدوران الذي مركزه T_1 و قياس زاويته r

ران
$$r$$
 أ) اعط الصيغة العقدية للدوران r

$$b=\sqrt{2}e^{iq}+i$$
 جوز النقطة I بالدوران r هوز النقطة B صورة النقطة B صورة النقطة B بالدوران P

ج)بين أن المستقيمين
$$(IJ)$$
 و (AB) متعامدان .

$$\begin{pmatrix} \Gamma \\ -V \end{pmatrix}$$
 النقطة A بالإزاحة التي متجهتها C عدد لحق النقطة C صورة النقطة C

. [
$$BC$$
] بين أن النقطة A هي منتصف القطعة $O.25$

التمرين الرابع: (8 نقط)

$$\int_{\mathcal{L}}^{\mathcal{L}} f(x) = \frac{-x \ln x}{1 + x^2} \; ; \; x > 0$$

$$\int_{\mathcal{L}}^{\mathcal{L}} f(0) = 0$$

ابما يلي:
$$[0,+rac{1}{4}]$$
 بما يلي: الدالم f المعرفة على $[0,+rac{1}{4}]$

$$[0,+rac{1}{2}]$$
 الدالة f متصلة على المجال f أيبين أن الدالة f

$$[0,+rac{1}{4}]$$
 على المجال بائدرس إشارة $f(x)$ على المجال 0.25

$$\left(\forall x \in \square^*_+\right)$$
 $f\left(\frac{1}{x}\right) = -f\left(x\right)$ نين أن: 0.25

$$0.25$$
 بين أن الدالة f قابلة للاشتقاق على المجال 0.25

الامتدان الوطني الموحد للبكالوريا - الحورة العادية 2014 - الموضوع - ماحة : الرياضيات - هعبة العلوم الرياضية (أ) و(بم)	
$ig(\exists lpha \in ig]0,1ig[ig)$ بین أن: $f'(lpha)=0$	رح 0.5
$f'\left(\frac{1}{\alpha}\right) = 0$. ستنتج أن	0.5
$F(x)=\int\limits_{0}^{x}f(t)dt$:بالمعرفة على المجال $Y=[0,+rac{1}{4}]$ بما يلي $t=[0,+rac{1}{4}]$ بما يلي	- II
المنحنى الممثل للدالة F في معلم متعامد ممنظم.	ليكن
$(\forall t \in [1, +\infty[) \frac{1}{2} \le \frac{t^2}{1+t^2} \le 1$) تحقق أن:	(1 -1 0.5
$(\forall x \in [1, +\infty[))$ $F(1) - \frac{1}{2}(\ln x)^2 \le F(x) \le F(1) - \frac{1}{4}(\ln x)^2$) بين أن:	ب)
$(F(x) = \int_0^1 f(t)dt - \int_1^x \frac{t^2}{1+t^2} \cdot \frac{\ln t}{t} dt$ (الاحظ أن:	
أحسب $\lim_{x o +\infty}F(x)$ و $\lim_{x o +\infty}rac{F(x)}{x}$ ثم اعط تأويلا هندسيا للنتيجة المحصل عليها.	رد 1
F'(x) ببين أن الدالة F قابلة للاشتقاق على المجال $+$ [يم أحسب أن الدالة $+$ قابلة للاشتقاق على المجال	(1 -2 0.5
$[0,+rac{4}{3}]$ أدرس تغيرات الدالة F على المجال)	0.25 ب
$ig(orall t\in ig]0,+\inftyig[ig)$ بين أن : $-t\ln t \leq rac{1}{e}$: بين أن (أ -1-	<i>III</i> 0.5
$(\forall t \in [0,+\infty[) f(t) \leq \frac{1}{e}:$ بين أن $(-\infty)$	0.25
("x ightarrow]استنتج أن: $F(x) < x$) استنتج	0.25
$("n otin eta)$ $u_{n+1} = F(u_n)$ و $u_0 otin eta, 1$ المعرفة بما يلي: $[0,1]$ خ $[0,1]$	ن -2
("n otin Y) بین أن: $[0,1[$ $ otin Y]$	() 0.5
. بين أن المتتالية $\left(u_{n} ight)_{n^{3}}$ تناقصية قطعا ثم استنتج أنها متقاربة $\left(u_{n} ight)_{n^{3}}$	0.5 ب

 $\lim_{n \to +\frac{\pi}{2}} u_n \implies (\Xi$

0.5

الصفحة	NO 04
5	NS 24

الامتدان الوطني الموحد للبكالوريا – الدورة العاحية 2014 – الموضوع – ماحة : الرياضيات – شعبة العلوم الرياضية (أ) و(بم)

التمرين الخامس: (2 نقط)

$$\frac{1}{2}g(x) = \frac{1}{x^2}e^{-\frac{1}{x}}; x > 0$$
نعتبر الدالة العددية g المعرفة على $g(0) = 0$:

 $\frac{1}{2}g(x) = \frac{1}{x^2}e^{-\frac{1}{x}}; x > 0$
: نعتبر الدالة العددية g المعرفة على $g(0) = 0$

$$[0,+rac{1}{2}]$$
 متصلة على المجال g متصلة و 0.5

$$L(x)=\int_{-x}^{1}g(x)dt$$
 نضع $(0,\pm 1)$ ، نضع $(0,\pm 1)$ من المجال -2

$$[0,+rac{1}{2}]$$
 أ)بين أن الدالة L متصلة على المجال أ

$$x > 0$$
 من أجل باحسب $L(x)$ باحسب 0.25

$$L(0)$$
 أحسب أ $\lim_{x \circledast 0^+} L(x)$ أحسب (0.5

.
$$s_n=rac{1}{n}$$
 ه g و g g نضع: g نضع اکبر من أو يساوي 1 نضع اکبر من أو يساوي 1 نضع المجتم g عدد صحيح طبيعي g اکبر من أو يساوي 1 نضع

بين أن المتتالية
$$(s_n)_{n-1}$$
 متقاربة ثم حدد نهايتها.

انتهى

التمرين الاول $n \in \mathbb{N}^*; a_n = 333...31$

ا لنتحقق من أن a_1 و و اوليان (1

لدينا 31 مدد أولي $a_1 = 31$

لدينا $a_2 = 331$ و 331 لا يقبل القسمة على الأعداد الأولية التي مربعها أصغر منه أي ($a_2 = 6 - 7 - 1 - 11 - 11 - 11$ و $a_3 = 331$ إذن 331 عدد أولى

و a_2 عددان أوليان a_1

 $(\forall n \in \mathbb{N}^*); 3a_n + 7 = 10^{n+1}$ ننبين أن (2

 $(\forall n \in \mathbb{N}^*); a_n = 1 + 3 \times 10 + 3 \times 10^2 + ... + 3 \times 10^n = 1 + 3(10 + 10^2 + ... + 10^n)$: لدينا

 $\left(\forall n \in \mathbb{N}^*\right); \mathbf{a}_n = 1 + \frac{10^{n+1} - 10}{3} = \frac{10^{n+1} - 7}{3} \quad \text{i.i.} \quad \left(\forall n \in \mathbb{N}^*\right); 10 + 10^2 + \dots + 10^n = 10 \times \frac{1 - 10^n}{1 - 10} = \frac{10^{n+1} - 10}{9} \quad \text{i.i.} \quad \left(\forall n \in \mathbb{N}^*\right); 10 + 10^2 + \dots + 10^n = 10 \times \frac{1 - 10^n}{1 - 10} = \frac{10^{n+1} - 10}{9} \quad \text{i.i.} \quad \left(\forall n \in \mathbb{N}^*\right); 10 + 10^2 + \dots + 10^n = 10 \times \frac{1 - 10^n}{1 - 10} = \frac{10^{n+1} - 10}{9} \quad \text{i.i.} \quad \left(\forall n \in \mathbb{N}^*\right); 10 + 10^2 + \dots + 10^n = 10 \times \frac{1 - 10^n}{1 - 10} = \frac{10^{n+1} - 10}{9} \quad \text{i.i.} \quad \left(\forall n \in \mathbb{N}^*\right); 10 + 10^2 + \dots + 10^n = 10 \times \frac{1 - 10^n}{1 - 10} = \frac{10^{n+1} - 10}{9} \quad \text{i.i.} \quad \left(\forall n \in \mathbb{N}^*\right); 10 + 10^2 + \dots + 10^n = 10 \times \frac{1 - 10^n}{1 - 10} = \frac{10^{n+1} - 10}{9} = \frac{10^{$ $(\forall n \in \mathbb{N}^*)$; $3a_n + 7 = 10^{n+1}$ و منه

 $(\forall n \in \mathbb{N}^*); 3a_n + 7 = 10^{n+1}$

 $(\forall k \in \mathbb{N}); 10^{30k+2} \equiv 7[31]$ ننبين أن (3

 $10^2 \equiv 7[31]$ اذن $10^2 - 7 = 3 \times 31$ (2 لدينا حسب

 $10^2 \equiv 7[31] \Rightarrow 10^3 \equiv 70 \equiv 8[31] \Rightarrow 10^6 \equiv 64 \equiv 2[31] \Rightarrow 10^{30} \equiv 32 \equiv 1[31] \Rightarrow 10^{30k} \equiv 1[31]$ و لدينا

$$\begin{cases} 10^2 \equiv 7[31] \\ 10^{30k} \equiv 1[31] \end{cases} \Rightarrow 10^{30k+2} \equiv 7[31]$$
و أخيرا

 $(\forall k \in \mathbb{N}); 10^{30k+2} \equiv 7[31]$

 a_{30k+1} قسم 31 من ثم نستنتج أن $(\forall n \in \mathbb{N}); 3a_{30k+1} \equiv 0$ (4) نبين أن (4)

 $10^{30k+2} \equiv 7[31]$ (3 و حسب $3a_{30k+1} + 7 = 10^{30k+2}$ و حسب $30k+1 \in \mathbb{N}^*$, \mathbb{N} فكل k من k

 $3a_{30k+1} \equiv 0[31]$ و منه $3a_{30k+1} + 7 \equiv 7[31]$

 a_{30k+1} و بما أن 31 يقسم 31 و $31 \wedge 3 = 1$ و يقسم $31 \wedge 3 = 1$ و بما أن $31 \wedge 3 = 1$

 a_{30k+1} يقسم $31 \ (\forall n \in \mathbb{N}); 3a_{30k+1} \equiv 0[31]$

 \mathbb{Z}^2 لنبين أن المعادلة $a_x + 31y = 1$ لا تقبل حلول في (5

 $(n \in \mathbb{N}^*); n \equiv 1[30] \Rightarrow \exists k \in \mathbb{N}^*; n = 30k + 1$ لدينا

 \mathbb{Z}^2 و منه حسب السؤال 4) 31 يقسم a_n أي أن 31 = 31 و هذا يعني ان المعادلة a_n = 13 لا تقبل حلول في $(a_n \wedge 31 = 1)$ هو \mathbb{Z}^2 هو الشرط اللازم لكي تقبل هذه المعادلة حلول في

 \mathbb{Z}^2 المعادلة $a_x + 31y = 1$ لا تقبل حلول في

الصفحة (1)

التمرين الثاني

$$\forall (a,b) \in \mathbb{R}^2; M(a,b) = \begin{pmatrix} a & a-b \\ b & a+b \end{pmatrix} \quad E = \{M(a,b)/(a;b) \in \mathbb{R}^2\}$$

$$(M_2(\mathbb{R}),+)$$
 انبین أن E زمرة جزئیة للزمرة (1

$$\bullet I = M(1,0) \in E \Rightarrow E \neq \emptyset$$

$$\bullet \Big(\forall \big(M(a,b), M(c,d) \big) \in E^2 \Big); M(a,b) - M(c,d) = \begin{pmatrix} a & a-b \\ b & a+b \end{pmatrix} - \begin{pmatrix} c & c-d \\ d & c+d \end{pmatrix}$$

$$= \begin{pmatrix} a-c & a-b-c+d \\ b-d & a+b-c-d \end{pmatrix} = \begin{pmatrix} a-c & (a-c)-(b-d) \\ b-d & (a-c)+(b-d) \end{pmatrix} = M(a-c,b-d) \in E$$

ر منه حسب الخاصية المميزة للزمرة الجزئية نستنتج أن:

$$\left(M_{2}(\mathbb{R}),+
ight)$$
 زمرة جزئية للزمرة E

: نا الدينا
$$J^2 \notin E$$
 و $J = M(1,0) \in E$ و $J^2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ د نستنتج أن (2)

$$ig(M_2(\mathbb{R}),\! imesig)$$
 جزء غیر مستقر من E

$$ig(M_2ig(\mathbb{R}ig),stig)$$
 نحو نخس شاکل من $ig(\mathbb{C}^*,\! imesig)$ نحو (3

لدينا

$$\Big(\forall \big((a,b),(c,d)\big) \in \Big(\mathbb{R}^2 \setminus \big\{(0,0)\big\}\Big)^2\Big); \varphi\big((a+bi)\times(c+di)\big) = \varphi\big(ac-bd+i\big(ad+bc\big)\big) = M\left(ac-bd,ad+bc\big)$$

$$\varphi(a+bi)*\varphi(c+di) = M(a,b)*M(c,d) = \begin{pmatrix} a & a-b \\ b & a+b \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} c & c-d \\ d & c+d \end{pmatrix}$$

$$= \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \times \begin{pmatrix} c & c-d \\ d & c+d \end{pmatrix} = \begin{pmatrix} ac-bd & ac-ad-bc-bd \\ ad+bc & bc-bd+ac+ad \end{pmatrix} = M \left(ac-bd, ad+bc\right)$$

$$(\forall ((a,b),(c,d)) \in \mathbb{R}^2 \setminus \{(0,0)\}); \varphi((a+bi)\times(c+di)) = \varphi(a+bi)*\varphi(c+di)$$
 إذن

و منه

$$ig(M_2(\mathbb{R}),*ig)$$
 نحو $ig(\mathbb{C}^*,\! imesig)$ نحو $oldsymbol{arphi}$

$$E^*=E\setminus ig\{Oig\}$$
 جيث $oldsymbol{arphi}\left(\mathbb{C}^*
ight)=E^*$ ب) لنبين أن

 $M\left(a,b
ight)\in E^{*}\Leftrightarrow\left(a,b
ight)
eq\left(0,0
ight)\Leftrightarrow a+bi\in\mathbb{C}^{*}\Leftrightarrowarphi\left(a+bi
ight)\inarphi\left(\mathbb{C}^{*}
ight)\Leftrightarrow M\left(a,b
ight)\inarphi\left(\mathbb{C}^{*}
ight)$ لىپنا:

: و منه
$$M\left(a,b
ight)\in E^{st}\Leftrightarrow M\left(a,b
ight)\in arphi\left(\mathbb{C}^{st}
ight)$$
 و منه

$$\varphi\left(\mathbb{C}^{*}\right) = E^{*}$$

ج) لنبين أن
$$\left(E^{*},*
ight)$$
 زمرة تبادلية

$$arphi(\mathbb{C}^*)=E^*$$
 لدينا $(arphi(\mathbb{C}^*),*)$ زمرة تبادلية و $arphi$ تشاكل من (\mathbb{C}^*,\times) نحو (\mathbb{C}^*,\times) إذن (\mathbb{C}^*,\times) زمرة تبادلية و لدينا (\mathbb{C}^*,\times)

الصفحة (2)

ثانوية محمد الخامس التاهيلية بالصويرة

تصحيح الإمتحان الوطني الموحد الدورة العادية 2014 مادة الرياضيات – شعبة العلوم الرياضية- (أ) و (ب)

ذ:ي المغازلي

نستنتج أن

زمرة تبادلية
$$\left(E^{*},*
ight)$$

$$(\forall (A,B,C) \in E^3), A*(B+C) = A*B+A*C$$

لنستنتج مما سبق أن (E,+,*) جسم تبادلي.

لدينا حسب 1) زمرة وحدتها O و لدينا حسب 3) ج) $(E^*,*)$ زمرة تبادلية كما لدينا حسب 4) القانون * توزيعى على القانون (E,+) نستنتج أن

جسم تبادلي
$$(E,+,*)$$

التمرين الثالث

 $\Delta = \left(\sqrt{2}ie^{i heta}
ight)^2$ هو (E) معيز المعادلة (1

 $\Delta = \left(\sqrt{2}e^{i\theta}\right)^2 - 4e^{2i\theta} = 2e^{2i\theta} - 4e^{2i\theta} = -2e^{2i\theta} = \left(\sqrt{2}ie^{i\theta}\right)^2 \ \text{ (i.e. } \ (E): z^2 - \sqrt{2}ie^{i\theta}z + e^{2i\theta} = 0$ و منه

$$\Delta = \left(\sqrt{2}ie^{i\theta}\right)^2$$

ب) لنكتب الحلين z_1 و z_2 على الشكل المثلثي

$$z_1 = \frac{\sqrt{2}e^{i\theta} - \sqrt{2}ie^{i\theta}}{2} = \left[1, -\frac{\pi}{4}\right] \times \left[1, \theta\right] = \left[1, \theta - \frac{\pi}{4}\right] :$$
 علين مختلفين هما (E) علين مختلفين هما $z_2 = \frac{\sqrt{2}e^{i\theta} + \sqrt{2}ie^{i\theta}}{2} = \left[1, \frac{\pi}{4}\right] \times \left[1, \theta\right] = \left[1, \theta + \frac{\pi}{4}\right]$ و منه
$$z_2 = \frac{1, \frac{\pi}{4}}{2} = \left[1, \frac{\pi}{4} - \theta\right] = z_2 = \left[1, \frac{\pi}{4} + \theta\right]$$

: متعامدان (T_1T_2) و (OA) متعامدان (2

$$\frac{e^{i\left(\theta-\frac{\pi}{4}\right)}-e^{i\left(\theta+\frac{\pi}{4}\right)}}{\sqrt{2}e^{i\theta}}=\frac{-2i\sin\frac{\pi}{4}}{\sqrt{2}}=-i=\begin{bmatrix}1,-\frac{\pi}{2}\end{bmatrix}\ \text{o}\ \overline{\left(\overrightarrow{OA},\overrightarrow{T_1T_2}\right)}\equiv Arg\left(\frac{aff\left(\overrightarrow{T_1T_2}\right)}{aff\left(\overrightarrow{OA}\right)}\right)\equiv \left(2\pi\right)\ \text{Limit}$$
 لدينا
$$\overrightarrow{OA}\perp \overrightarrow{T_1T_2}\ \text{o}\ \overrightarrow{OA}, \ \overline{T_1T_2}\ \text{o}\ \overrightarrow{OA}, \ \overline{T_1T_2}\right)\equiv -\frac{\pi}{2}\left(2\pi\right)$$
 بدن
$$(OA)\ \text{o}\ \left(\overrightarrow{T_1T_2}\right)\ \text{o}\ \left(\overrightarrow{OA}\right)$$

ب) لنبين أن النقط O,A و K مستقيمية

$$\frac{aff\left(\overrightarrow{OK}\right)}{aff\left(\overrightarrow{OA}\right)} = \frac{e^{i\left(\theta - \frac{\pi}{4}\right)} + e^{i\left(\theta + \frac{\pi}{4}\right)}}{2\sqrt{2}e^{i\theta}} = \frac{\cos\frac{\pi}{4}}{\sqrt{2}} = \frac{1}{2} = \left[\frac{1}{2}, 0\right] \int_{\overline{OA}, \overrightarrow{OK}} \left(\overrightarrow{OA}, \overrightarrow{OK}\right) = Arg\left(\frac{aff\left(\overrightarrow{OK}\right)}{aff\left(\overrightarrow{OA}\right)}\right) (2\pi)$$
نينا

إذن $(\overrightarrow{OA},\overrightarrow{OK}) \equiv \overrightarrow{OK}$ و \overrightarrow{OA} و أن المتجهتين و منه إذن $(\overrightarrow{OA},\overrightarrow{OK}) \equiv O(2\pi)$

النقط O و A و K مستقيمية

الصفحة (3)

$$\left[T_{1}T_{2}
ight]$$
 هو واسط القطعة (OA) جن انستنتج أن المستقيم

 $K \in (OA)$ و $[T_1T_2]$ لاينا K منتصف القطعة $[T_1T_2]$ و لدينا $K \in (OA)$ نستنتج أن

$$\left[T_{_{1}}T_{_{2}}
ight]$$
 هو واسط القطعة $\left(OA
ight)$

r أ) الصيغة العقدية للدوران r

$$z'=iz+\sqrt{2}e^{i\theta}$$
 لدينا $z'=iz+e^{i\left(\theta+rac{\pi}{4}
ight)}+e^{i\left(\theta+rac{\pi}{4}
ight)}+e^{i\left(\theta+rac{3\pi}{4}
ight)}$ يكافئ $z'-e^{i\left(\theta+rac{\pi}{4}
ight)}=e^{irac{\pi}{2}}\left(z-e^{i\left(\theta+rac{\pi}{4}
ight)}
ight)$ لدينا

الصيغة العقدية للدوران r هي

$$z' = iz + \sqrt{2}e^{i\theta}$$

 $b = \sqrt{2}e^{i\theta} + 1$ هو r بالدوران r هو P انتحقق من أن لحق النقطة P صورة النقطة P صورة النقطة والنقطة Pو منه $b=i\times 1+\sqrt{2}e^{i\theta}=\sqrt{2}e^{i\theta}+i$ لاينا $b=\sqrt{2}e^{i\theta}+1$

$$b = \sqrt{2}e^{i\theta} + 1$$

$$\frac{b-\sqrt{2}e^{i\theta}}{-2} = \frac{-i}{2} = \left[\frac{1}{2}, -\frac{\pi}{2}\right]$$
 و $\left(\overrightarrow{IJ}, \overrightarrow{AB}\right) = Arg\left(\frac{aff\left(\overrightarrow{AB}\right)}{aff\left(\overrightarrow{IJ}\right)}\right) (2\pi)$ لينا (ج

إذن
$$(2\pi) \equiv -\frac{\pi}{2}$$
 إن و بالنالي إذن

المستقيمين (AB) و (IJ) متعامدين

$$t_{-\vec{v}}\left(A
ight)=C\Leftrightarrow \overrightarrow{AC}=-\vec{v}\Leftrightarrow z_{C}-\sqrt{2}e^{i\theta}=-i\Leftrightarrow z_{C}=-i+\sqrt{2}e^{i\theta}$$
 لدينا (4 $-\vec{v}$ لدينا C هورة النقطة C منه لحق النقطة C صورة النقطة C صورة النقطة C هورة النقطة C

$$\frac{z_C+z_B}{2}=\frac{-i+\sqrt{2}e^{i\theta}+i+\sqrt{2}e^{i\theta}}{2}=\sqrt{2}e^{i\theta}=z_A$$
لدينا (5

[BC] هي منتصف القطعة A

التمرين الرابع

$$\begin{cases} f(x) = \frac{-x \ln x}{1+x^2}; x > 0 \\ f(0) = 0 \end{cases}$$
 \tag{0, +\infty} \left[0, +\infty \left[0, +\infty

]0,+∞[و الدالة الدالة الدالة الدالة
$$\mathbb{R}$$
 و الدالة $\frac{-x}{1+x^2}$ متصلة على \mathbb{R} (دالة جدرية معرفة على \mathbb{R}) و بالخصوص على 0 ,+∞[و الدالة 0 ,+∞[و الدالة 0 ,+∞] و بالخصوص على 0 ,+∞[(جداء دالتين متصلة على 0 ,+∞[(دالتين متصلة على 0 ,+∞[(دالتين متصلة على 0 ,+∞[(دا

$$(\lim_{x\to 0^+} x \ln x = 0)$$
 لأن $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{-x \ln x}{1+x^2} = 0 = f(0)$: $\lim_{x\to 0^+} x \ln x = 0$ لأن $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{-x \ln x}{1+x^2} = 0 = f(0)$ لأن $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{-x \ln x}{1+x^2} = 0$

ذ:ي المغازلي

تصحيح الإمتحان الوطني الموحد الدورة العادية 2014 مادة الرياضيات – شعبة العلوم الرياضية- (أ) و (ب) ثانوية محمد الخامس التاهيلية بالصويرة

Ammarimaths

متصلة على $]\infty+,0$ و متصلة على يمين 0 نستنتج أن f

$$[0,+\infty]$$
 متصلة على المجال f

 $[0,+\infty]$ اندرس إشارة f على المجال (ب

لدينا f(x) و لكل f(x) إشارة f(x) هي عكس إشارة f(x) ومنه جدول إشارة f(x) كما يلي:

х	0	1		+∞
$\ln x$	-	-	+	
f(x)	0	+	-	

2) أ) لدينا:

$$(\forall x \in \mathbb{R}_{+}^{*}); f\left(\frac{1}{x}\right) = \frac{-\frac{1}{x}\ln\frac{1}{x}}{1+\frac{1}{x^{2}}} = \frac{\ln x}{x+\frac{1}{x}} = \frac{x\ln x}{x^{2}+1} = -f(x)$$

منه

$$(\forall x \in \mathbb{R}_+^*); f\left(\frac{1}{x}\right) = -f(x)$$

 $]0,+\infty[$ على أن الدالة f قابلة للإشتقاق على بالنبين أن الدالة الم

 $]0,+\infty[$ و الدالة $]0,+\infty[$ و الدالة $]0,+\infty[$ و الدالة $]0,+\infty[$ و الدالة $]0,+\infty[$ و بالخصوص على $]0,+\infty[$ إذن الدالة $[]0,+\infty[$ قابلة للإشتقاق على $]0,+\infty[$ (كجداء دالتين قابلتين للإشتقاق على هذا المجال)

 $f^{'}(\alpha)=0$ يحقق]0,1[يحقق α من المجال جا

lpha الدالة f متصلة على المجال [0,1] و قابلة للإشتقاق على المجال [0,1] وتحقق f(0)=f(1) وتحقق f(0)=f(1) وتحقق f(0)=f(1) وتحقق $f'(\alpha)=0$ وتحقق $f'(\alpha)=0$ وتحقق $f'(\alpha)=0$ وتحقق $f'(\alpha)=0$ وتحقق $f'(\alpha)=0$ وتحقق $f'(\alpha)=0$ وتحقق وت

$$(\exists \alpha \in]0,1[);f'(\alpha)=0$$

$$f'\left(\frac{1}{\alpha}\right) = 0$$
 د) لنستنتج أن

$$\frac{1}{\alpha} \text{ فإن } \frac{1}{\alpha} \in]1, +\infty[$$
 بما أن $]0,1[$ فإن $\alpha \in]0,1[$ إذن f قابلة للاشتقاق عند $\alpha \in]0,1[$ بما أن $[\forall x \in \mathbb{R}^*), f'(x) = -f'\left(\frac{1}{x}\right) \times \frac{-1}{x^2}$ نستنتج أن $[\forall x \in \mathbb{R}^*), f'(x) = -f\left(\frac{1}{x}\right)$ (أ (2 و منه $f'\left(\frac{1}{\alpha}\right) = \frac{1}{\alpha^2} f'(\alpha) = 0$ بنن $[\forall x \in \mathbb{R}^*), f'\left(\frac{1}{x}\right) = f'(x) \times \frac{1}{x^2}$ و منه $[d]$

ثانوية محمد الخامس التاهيلية بالصويرة

Ammarimaths

 $f'\left(\frac{1}{\alpha}\right) = 0$

. دالة معرفة على المجال (C) ب $F(x) = \int_0^x f(t) dt$ ب $[0,+\infty[$ مبيانها في معلم متعامد ممنظم.

$$(\forall t \in [1, +\infty[); \frac{1}{2} \le \frac{t^2}{1+t^2} \le 1)$$
 (ا) (1)

$$(\forall t \in [1, +\infty[); 0 \le 1 \le t^2 \Rightarrow t^2 \le 1 + t^2 \le 2t^2 \Rightarrow \frac{1}{2} \le \frac{t^2}{1+t^2} \le 1$$
 لينا

، منه

$$(\forall t \in [1, +\infty[); \frac{1}{2} \le \frac{t^2}{1+t^2} \le 1$$

$$(\forall x \in [1, +\infty[), F(1) - \frac{1}{2}(\ln x)^2 \le F(x) \le F(1) - \frac{1}{4}(\ln x)^2$$
 ب) نبین آن ($\forall x \in [1, +\infty[), F(1) - \frac{1}{2}(\ln x)^2 \le F(x) \le F(1)$

. انطلاقا من المتفاوتة المزدوجة السابقة لدينا الاستلزامات المتوالية التالية:

$$(\forall t \in [1, +\infty[); \left(\frac{1}{2} \le \frac{t^2}{1+t^2} \le 1\right)^{\left(\frac{\ln t}{t} > 0\right)} \left(\frac{1}{2} \frac{\ln t}{t} \le \frac{t \ln t}{1+t^2} \le \frac{\ln t}{t}\right)^{(x \ge 1)} \left(\int_1^x \frac{1}{2} \frac{\ln t}{t} dt \le \int_1^x \frac{t \ln t}{1+t^2} dt \le \int_1^x \frac{\ln t}{t} dt\right)$$

$$\left(\forall t \in \left[1, +\infty\right[\right); -\frac{\left(\ln x\right)^{2}}{2} \le -\int_{1}^{x} \frac{t \ln t}{1+t^{2}} dt \le -\frac{\left(\ln x\right)^{2}}{4} \quad \text{فإن } \int_{1}^{x} \frac{\ln t}{t} dt = \left\lceil \frac{\left(\ln t\right)^{2}}{2} \right\rceil_{1}^{x} = \frac{\left(\ln x\right)^{2}}{2} \quad \text{otherwise}$$

وبعد إضافة F(1) إلى أطراف المتفاوتة المزدوجة الأخيرة نحصل على

$$(\forall t \in [1, +\infty[); F(1) - \frac{(\ln x)^2}{2} \le F(1) - \int_1^x \frac{t \ln t}{1+t^2} dt \le F(1) - \frac{(\ln x)^2}{4}$$

و بملاحظة أن $F(1) - \int_1^x \frac{t \ln t}{1+t^2} dt = \int_0^1 f(t) dt + \int_1^x f(t) dt = \int_0^x f(t) dt = F(x)$ نحصل على المطلوب:

$$(\forall x \in [1, +\infty[), F(1) - \frac{1}{2}(\ln x)^2 \le F(x) \le F(1) - \frac{1}{4}(\ln x)^2$$

$$\lim_{x\to+\infty}\frac{F(x)}{x}$$
 و $\lim_{x\to+\infty}F(x)$ الحساب و التأويل الهندسي للنهايتين النهايتين

لدينا حسب خاصيات النهايات و الترتيب

$$\begin{cases} \left(\forall x \in [1, +\infty[), F(x) \le F(1) - \frac{1}{4}(\ln x)^{2} \right) & \Rightarrow \lim_{x \to +\infty} F(x) = -\infty \\ \lim_{x \to +\infty} F(1) - \frac{1}{4}(\ln x)^{2} & = -\infty \end{cases}$$

$$\begin{cases} \left(\forall x \in [1, +\infty[), \frac{F(1)}{x} - \frac{1}{2} \frac{(\ln x)^2}{x} \le \frac{F(x)}{x} \le \frac{F(1)}{x} - \frac{1}{4} \frac{(\ln x)^2}{x} \right) \Rightarrow \lim_{x \to +\infty} \frac{F(x)}{x} = 0 \\ \lim_{x \to +\infty} \frac{F(1)}{x} - \frac{1}{2} \frac{(\ln x)^2}{x} = \lim_{x \to +\infty} \frac{F(1)}{x} - \frac{1}{4} \frac{(\ln x)^2}{x} = 0 \end{cases}$$

خلاصة

$$+\infty$$
 جوار بجوار ها الأفاصيل بجوار ها الأفاصيل بجوار $\left(C\right)$ يقبل فر عا شلجميا في إتجاه محور الأفاصيل بجوار $\frac{F\left(x\right)}{x}=0$

ثانوية محمد الخامس التاهيلية بالصويرة

Ammarimaths

F' على المجال $[0,+\infty[$ و حساب F على المجال و حساب أو حساب أو حساب أو حساب المجال المحساب أو حساب أو حساب

 $[0,+\infty[$ المجال على المجال $[0,+\infty[$ فإن $[0,+\infty[$ فإن $[0,+\infty[$ فابلة للاشتقاق على المجال التي تنعدم عند $[0,+\infty[$ $(\forall x \in [0,+\infty[); F'(x) = f(x)]$ و لدينا

$$(\forall x \in [0,+\infty[);F^{'}(x)=f(x)]$$
 و لدينا $[0,+\infty[$ على المجال والمجال $[0,+\infty[$

 $1,+\infty$ ب) نعلم حسب 1) أ) من الجزء الأول أن f(x)>0 على المجال [0,1] و [0,1] على المجال $[0,+\infty]$ اذن جدول تغيرات الدالة F كما يلي

$$\left(\forall\,t\in\ \left]0,+\infty\right[
ight);-t\,\ln\,t\leqrac{1}{e}$$
 لنبين أن (1 (III

 $(\forall t \in]0,+\infty[); \varphi(t)=1+e.t \ln t$ نضع

 $(\forall t \in]0,+\infty[$); $\varphi'(t)=e.(\ln t+1)$ و $\lim_{t \to 0^+} \varphi(t)=1$ و $\lim_{t \to +\infty} \varphi(t)=+\infty$ ليبنا

إذن جدول تغيرات الدالة arphi كما يلي

 $(\forall t \in]0,+\infty[); \varphi(t) \geq 0$ من جدول تغیرات الدالة φ نستنتج أن

$$(\forall t \in]0, +\infty[); -t \ln t \le \frac{1}{e}$$

 $(\forall t \in [0,+\infty[); f(t) \leq \frac{1}{a}: 0)$ لنبين أن $(\forall t \in [0,+\infty[); f(t) \leq \frac{1}{a}: 0)$

$$\left\{ \begin{cases} 0 < -t \ln t \leq \frac{1}{e} \\ \frac{1}{1+t^2} < 1 \end{cases} \Rightarrow \frac{-t \ln t}{1+t^2} < \frac{1}{e} \Rightarrow f\left(t\right) < \frac{1}{e} \right\} \text{ i.i. } 0 < t < 1 \text{ i.i.} 0 < t < 1 \text{ i.i.} 0 < t < 1 \text{ i.i.} 1 \text{ i.i.$$

ومن أجل $f\left(0\right)=0<\frac{1}{e}$: t=0 نستنتج أن $\left(\forall t\in\left[0,+\infty\right[\right);f\left(t\right)<\frac{1}{e}\right)$

$$(\forall t \in [0,+\infty[); f(t) < \frac{1}{e})$$

Ammarimaths

ذي المغازلي

$$(\forall x \in]0, +\infty[); F(x) < x$$
 استثناج أن $(\forall t \in [0, +\infty[); f(t) < \frac{1}{e} \Rightarrow (\forall x > 0); \int_0^x f(t) dt \le \int_0^x \frac{1}{e} dt$ لدينا $\int_0^x \frac{1}{e} dt = \frac{1}{e} [t]_0^x = \frac{x}{e} < x$ و لدينا $(\forall x \in]0, +\infty[); F(x) < x$

(2 $\begin{cases} u_0 \in \]0,1[\\ \left(\forall n \in \mathbb{N}
ight); u_{n+1} = F\left(u_n
ight) \end{cases}$: متتالية معرفة ب $\left(u_n
ight)$ $(\forall n \in \mathbb{N}); u_n \in]0,1[:$ انبين أن n=0 برهان بالترجع : لدينا $u_0\in]0,1[$ اذن العلاقة صحيحة من إجل $u_n \in]0,1[$ ليكن n من \mathbb{N} من n $0 < u_n < 1 \Rightarrow F(0) < F(u_n) < F(1) < 1 \Rightarrow 0 < u_{n+1} < 1$ فإن [0,1] فإن [0,1] فإن [0,1] فإن أن [0,1]

إذن $u_{n+1} \in \left]0,1\right[$ أن . $u_{n+1} \in \left]0,1\right[$

 $(\forall n \in \mathbb{N}); u_n \in]0,1[$

ب) لنبين أن المتتالية تناقصية قطعا ثم نستنتج أنها متقاربة

بما أن $(\forall n \in \mathbb{N}); F(u_n) < u_n$ فإن $(\forall n \in \mathbb{N}); u_n \in [0,1]$ حسب ($\forall n \in \mathbb{N}); u_n \in [0,1]$

 $(\forall n \in \mathbb{N}); u_{n+1} < u_n$ و منه

إذن المتتالية (u_{x}) تناقصية قطعا

تناقصية و مصغورة ب 0 إذن متقاربة (u_n)

متقاربة (u_n)

 (u_n) انحسب نهایة المتتالیة (ج

 $F\left(I
ight)=\left]0,F\left(1
ight)\left[\,\subset\,\left|0,rac{1}{e}
ight|\,\subset\,I\,$ نضع $I=\left]0,I\left[\,\subset\,I\,$ الدالة $I=\left]0,I\left[\,\subset\,I\,
ight]$ متصلة على $I=\left[0,rac{1}{e}
ight]$

$$\begin{cases} u_{0} \in]0,1[\\ (\forall n \in \mathbb{N}); u_{n+1} = F(u_{n}) \Rightarrow \begin{cases} \lim u_{n} = l \\ F(l) = l \\ l \in I \cup \{0\} \end{cases} \end{cases}$$

F(l) = l المعادلة $I \cup \{0\}$ لنحل في

0 نعلم أن F(x) < X و بالتالي حلها الوحيد هو $\{ \forall x \in \]0, +\infty$ نعلم أن

 $\lim u_n = 0$

مادة الرياضيات – شعبة العلوم الرياضية- (أ) و (ب)

Ammarimaths

التمرين الخامس

$$\begin{cases} g(x) = \frac{1}{x^2} e^{-\frac{1}{x}}; x > 0 \\ g(0) = 0 \end{cases}$$
 بمايلي $g(x) = \frac{1}{x^2} e^{-\frac{1}{x}}; x > 0$

 $[0,+\infty]$ لنبين أن الدالة g متصلة على (

 $]0,+\infty[$ و الدالة $x\mapsto e^{\frac{-1}{x}}$ الدالتيان $x\mapsto e^{\frac{-1}{x}}$ متصلة على $x\mapsto e^{\frac{-1}{x}}$ و الدالة exp متصلة على $x\mapsto e^{\frac{-1}{x}}$

 $]0,+\infty[$ و بالتالي الدالة g متصلة على $]0,+\infty[$ متصلة على $x\mapsto \frac{1}{x^2}e^{\frac{-1}{x}}$ و بالتالي الدالة و

0 لندرس اتصال الدالة g على اليمين في

0 لدينا $\lim_{x \to 0^+} g\left(x\right) = \lim_{x \to 0^+} \frac{1}{x^2} e^{-\frac{1}{x} \left(t = \frac{-1}{x}\right)} = \lim_{t \to -\infty} t^2 e^t = 0 = g\left(0\right)$ لدينا

 $[0,+\infty[$ نستنتج أن الدالة g متصلة على

 $\forall (x \in [0, +\infty[); L(x) = \int_0^x g(t) dt)$ (2 [0, +\infty] النبين أن الدالة L متصلة على (أ

 $\int_0^x g(t)dt$ بما أن الدالة g متصلة على g فإنها تقبل دواال أصلية عليه و دالتها الأصلية التي تنعدم عند g متصلة على g فإنها تقبل دواال أصلية g على المجال g على المجال g تحقق g و تحقق g و تحقق g

 $[0,+\infty[$ ما يعني أنها متصلة على $]\infty+,\infty[$ ما يعني أنها متصلة على المنتقاق على المن

 $[0,+\infty[$ الدالة L متصلة على المجال

x>0 من أجل (ب لنحسب L(x)

g اصلية ل G حيث $(\forall x > 0); L(x) = \int_0^x g(t) dt = \left[G(t)\right]_0^x = G(x) - G(0)$ ليينا

$$\left\{ egin{aligned} G\left(x
ight) = e^{rac{-1}{x}}; x > 0 \end{aligned}
ight.$$
و بما أن G متصلة على G فإن G معرفة كما يلي $G\left(0
ight) = \lim_{x o 0^+} e^{rac{-1}{x}} = 0 \end{aligned}
ight.$

نستنتج أن

$$(\forall x > 0); L(x) = e^{\frac{-1}{x}}$$

عادة الإياضية محمد الخامس التاهيلية بالصويرة تصحيح الإمتحان الوطني الموحد الدورة العادية 2014 ذبي المغازلي (ب) و (ب) و (ب) و (ب) مادة الرياضيات — شعبة العلوم الرياضية — (ب) و (ب) و (ب) $\lim_{x\to 0^+} L(x) = \lim_{x\to 0^+} e^{\frac{-1}{x}} = 0$ ليين ان المتتالية الحرم $(s_n)_{n\geq 1}$ متقاربة و لتحدد نهايتها ($(s_n)_{n\geq 1}$ عند الدين ان المتتالية $(s_n)_{n\geq 1}$ على المجال $(s_n)_{n\geq 1}$ فإن المتتالية $(s_n)_{n\geq 1}$ فإن المتتالية $(s_n)_{n\geq 1}$ فإن المتتالية $(s_n)_{n\geq 1}$ متقاربة و لدينا $(s_n)_{n\geq 1}$ فإن المتتالية $(s_n)_{n\geq 1}$

75. . .

L مبیان الدوال f و مبیان الدوال

