GATE 2022 IN.53

EE23BTECH11010 - VENKATESH BANDAWAR*

Question: In a unity-gain feedback control system, the plant $P(s) = \frac{0.001}{s(2s+1)(0.01s+1)}$ is controlled by a lag compensator $C(s) = \frac{s+10}{s+0.1}$ The slope (in dB/decade) of the asymptotic Bode magnitude plot of the loop gain at $\omega = 3 \text{rad/s}$ is _____ (in integer)

Solution:

Parameter	Description	Value
P(s)	Plant Transfer Function	$\frac{0.001}{s(2s+1)(0.01s+1)}$
C(s)	Lag Compensator	$\frac{s+10}{s+0.1}$
L(s)	Loop gain= $P(s) \times C(s)$	$\frac{0.001(s+10)}{s(2s+1)(0.01s+1)(s+0.1)}$
ω	Angular Frequency	3rad/s

TABLE I: Given Parameters list

let
$$j\omega = s$$

The slope of the asymptotic Bode magnitude plot of the loop gain= $20 \log_{10} |L(j\omega)|$

$$\omega = 3 \tag{1}$$

$$L(j\omega) = \frac{0.001(3j+10)}{3j(6j+1)(0.03j+1)(3j+0.1)}$$
 (2)

$$slope \approx 20 \log_{10} \frac{0.001 \times \sqrt{109}}{3 \times \sqrt{37} \times 1 \times 3}$$
 (3)

$$\approx -74dB/decade$$
 (4)

Fig. 1: Bode magnitude plot of loop gain