How does text become data?

Rob Speer

Luminoso

rob@luminoso.com

iilega ekki upp vio voigono kki. Margrét stundar nám við ' u af frítíma sínum í fótboltaæfi sé svona heillandi við fótbolt r finnst svo gaman að spila fótl ð fer auðvitað mikill tími í æfin vini mína. ... 'Margrét sér fi Hana langar að fara til

Motivation: Text as data

- Suppose you have a stream of customer support messages coming in.
- What if you consider these messages as a data source?

Classification

- Is this message angry?
- How many angry messages do we receive per day?

Similarity between documents

- How often do we receive messages like this one?
- What's a typical response to messages like this?

Similarity between terms

- Is this a request about accounts, billing, etc?
- ... but not necessarily using those exact words?
- Are we receiving an unexpected number of requests like this?

In this talk

- A tour of useful data-driven NLP techniques
- ... using a small amount of Python code
 - If these solutions seem simplistic, they are!
- Don't worry, code is online:

http://github.com/rspeer/text-as-data

How is the text represented?

Simple word counts

N-gram models

Term-document matrices

	woe	betray	vengeance	death	alas
Julius Caesar	2	1	0	29	8
Hamlet	8	0	2	37	9
Macbeth	2	2	0	20	4

Vector space models

Python example: word splitting and normalizing

Which N-grams are interesting?

Consider this contingency table:

p(vice, president)	p(vice, ~president)
p(~vice,	p(~vice,
president)	~president)

Python example: interesting N-grams

Text classification

from "Natural Language Processing with Python", by Steven Bird, Ewan Klein, and Edward Loper (O'Reilly, 2009)

Text classification

from "Natural Language Processing with Python", by Steven Bird, Ewan Klein, and Edward Loper (O'Reilly, 2009)

Overview of Naïve Bayes classification

- The probability that a document is in class C depends on its features, A_n
- Assume all features are statistically independent

Python example: Classification with NLTK and scikit-learn

What about stopwords?

- Shouldn't we remove common words such as "the" and "of"?
- It could help
- It could be premature optimization

Text similarity

Bags of words can tell us how similar documents are

	woe	betray	vengeance	death	alas
Julius Caesar	2	1	0	29	8
Hamlet	8	0	2	37	9
Macbeth	2	2	0	20	4

Text similarity

Bags of words can tell us how similar documents are

	woe	betray	vengeance	death	alas
Julius Caesar	2	1	0	29	8
Hamlet	8	0	2	37	9
Macbeth	2	2	0	20	4
Alice in Wonderland	0	0	0	1	4

Vector-space similarity

Similar texts have a small angle between them

Dimensionality reduction

 Put terms and documents in a lowerdimensional space where we can easily compare them

 In NLP, this is called Latent Semantic Analysis or Latent Semantic Inference

Python example: Unsupervised text similarity using gensim

Similarity of movie reviews

Similarity of movie reviews

Similarity of movie reviews

Word associations

Word associations

Image source: "WordNet-based semantic similarity measurement" by Troy Simpson and Thanh Dao, on codeproject.com

Python example: Querying WordNet

ConceptNet as a vector space

Python example: Querying ConceptNet

See API documentation at:

http://conceptnet5.media.mit.edu

Many incompatible systems

- Supervised text classification
- Unsupervised document similarity
- Domain-general word associations

Many incompatible systems

- Supervised text classification
- Unsupervised document similarity
- Domain-general word associations

 It would be nice if one model could do all of these.

NLP with "batteries included"

- nltk (the basics)
- scikit-learn (classification)
- gensim (text similarity)
- Interfaces to WordNet and ConceptNet (word associations)

What is Python missing?

A good search index.

What is Python missing?

- A good search index.
- Recommendation: use Lucene, or something that uses Lucene.

That's all

Code and slides:

http://github.com/rspeer/text-as-data

Cool things I work on:

http://conceptnet5.media.mit.edu

http://luminoso.com

Extra slides

TF-IDF normalization

- Some documents are longer than others
- Some words appear more than others

	woe	betray	vengeance	death	alas
Julius Caesar	55.0	32.9	0	0	219.9
Hamlet	38.0	0	73.1	0	171.0
Macbeth	61.4	73.5	0	0	122.7
Alice in Wonderland	0	0	0	0	83.2

(TF-IDF values from NLTK's Project Gutenberg corpus, in micro-bits per word)

TF-IDF normalization

- TF replaces term counts with term frequencies
- IDF tells us how much information we get when a word appears
- In Project Gutenberg:
 - -IDF(the) = 0 bits
 - IDF(vengeance) = 1.36 bits
 - IDF(whale) = 2.17 bits
 - IDF(Ishmael) = 3.17 bits

Dimensionality reduction

Dimensionality reduction

But Naïve Bayes is so naïve!

- Sure, its fundamental assumption is wrong
- Often, it works anyway
- On NLP tasks, NB is blazingly fast and surprisingly effective

(See "The Optimality of Naive Bayes", Harry Zhang, AAAI 2004)