MATH547: Stochastic Processes

Matthew He

January 7, 2025

Abstract

1 Introduction

Definition 1 (Probability space).

1.1 Independence

Probability theory is about finding some sort of independence.

Definition 2 (Independence).

Independence of Events

Events $A_1, A_2, A_3, ..., A_n$ are independent if and only if: For any collection $I \subseteq \{1, 2, ..., n\}$

$$P\left(\bigcap_{j\in I}A_j\right)=\prod_{j\in I}P(A_j).$$

Independence of Random Variables

For random variables $X_1, X_2, ... X_n$, taking values in state spaces $S_1, S_2, ... S_n$, these are independent if and only if: for any $E_1 \subseteq S_1, E_2 \subset S_2, ... E_n \subset S_n$ the events $A_j = \{X_j \in E_j\}$ for $1 \le j \le n$ are independent.

1.2 Important theorem

Theorem 1 (Law of large number (weak)). If $\{X_n\}_{n=0}^{\infty}$ are real-valued, independent, identically distributed random variables and $\mathbb{E}(X_i) = \mu < \infty$, then

$$\frac{1}{n}\sum_{j=1}^{n}X_{j}\to_{n\to\infty}^{\mathbb{P}}=\mathbb{E}(Xi)$$

Definition 3 (in-probability concergence).

Theorem 2 (Law of large number (strong)). If $\{X_n\}_{n=0}^{\infty}$ are real-valued, independent, identically distributed random variables and $\mathbb{E}(X_i) = \mu < \infty$, then

$$\frac{1}{n} \sum_{i=1}^{n} X_j \to_{n \to \infty}^{a.s.} = \mathbb{E}(X_i)$$

Large number theorem tells us value will converge to the expected value. Then central limit theorem tells us how close it will be.

Theorem 3 (Central limit theorem). *If* $\{X_n\}_{n=0}^{\infty}$ *are iid. random variables, with* $\mathbb{E}(X_i) = \mu < \infty$ *and* $Var(X_i) = \sigma^2 < \infty$, *then* $\forall t \in \mathbb{R}$,

$$\lim_{n\to\infty} P\left(\frac{\sum_{j=1}^n X_j - n\mu}{\sigma\sqrt{n}} \le t\right) = \Phi(t)$$

where $\Phi(t)$ is the standard normal distribution function.

Stochastic Processes

A stochastic process is a family of random variables indexed by natural numbers (time).

Definition 4 (Stochastic process). A stochastic process is a collection of random variables $\{X_t\}_{t\in\mathbb{N}_0}$ where t represents time.

Definition 5 (Countable state space markov chain). A stochastic process $\{X_j\}_{j\in\mathbb{N}_0}$ satisfies the Markov property.

Basic examples:

- 1. iid. random variables (e.g. iid. dice rolls)
- 2. Random walk

References