CSc 110 Computer Programming I

Biol Sci West, Rm 301, MoWeFr 2:00pm-2:50pm

Course Description

An introduction to programming with an emphasis on solving problems drawn from a variety of domains. Topics include basic control and data structures, problem solving strategies, and software development tools and techniques.

Instructor and Contact Information

Professor Hudson Lynam, GS Room 823, 775-750-5038, hlynam@arizona.edu

Office Hours: Monday & Wednesday, 12:50pm-1:50pm Course D2L: https://d2l.arizona.edu/d2l/home/1658797

Course Gradescope: https://www.gradescope.com/courses/1092416

Course website: https://professorlynam.github.io/csc110/ Piazza: https://piazza.com/arizona/fall2025/csc110002

(Access code: glxonh1ytum)

Course Format and Teaching Methods

This course is scheduled to be an in-person course, meeting in-person three times a week. Your meeting time should be:

Biol Sci West, Rm 301, Monday, Wednesday, and Friday 2:00pm-2:50pm

This is a four-unit course, meeting in the lecture room three times a week. The weekly in-person lab sessions are flexible, meaning students have a number of time slots to choose from. To schedule your lab session go to the weekly lab session spreadsheet.

Attendance is expected and required.

If you need an exception due to a medical or visa issue, please reach out to the DRC or instructor.

Course Objectives

By the end of the semester, you should be able to write complete, well-structured programs in python.

Expected Learning Outcomes

A successful CSc 110 student will be able to:

- Use variables, control structures, basic data types, lists, dictionaries, file I/O, and functions to write correct 100 200 line programs.
- Decompose a problem into an appropriate set of functions, loops, conditionals, and/or other control flow.
- Find bugs when code is not working as expected using print statements and computational thinking skills, and will be able to understand and resolve errors.
- Write clean, well-structured, and readable code.
- Follow a provided style guide to write clean, well-structured, and readable code.
- Explain the conceptual memory model underlying the data types covered in class, and demonstrate the ability to convert integers and text to and from binary.

1

(These learning outcomes are derived from those developed by Allison Obourn, Ben Dicken, Adriana Picoral and other faculty at the UA).

8/7/25

Transferable Career Skills

National Association of Colleges and Employers (NACE) Career Readiness:

Career readiness is a foundation from which to demonstrate requisite core competencies that broadly prepare the college-educated for success in the workplace and lifelong career management. For new college graduates, career readiness is key to ensuring successful entrance into the workforce.

There are eight career readiness competencies, each of which can be demonstrated in a variety of ways." (NACE, 2025)

- Career & Self Development
- Communication
- Critical Thinking
- Equity & Inclusion
- Leadership
- Professionalism
- Teamwork
- Technology

In this course, we will focus on the following competencies:

- **Technology**: Students will use technology to design and write complete, well-structured programs in Python.
- **Teamwork**: The course will include lectures, in-class discussions, and activities, with a strong emphasis on teamwork through group work that requires collaboration with other students during class.
- Communication: Students are encouraged to emphasize communication by interacting with teaching assistants and using various channels, such as office hours, Gradescope, class discussions, and Piazza, to stay updated on course materials.

Makeup Policy for Students Who Register Late

If you register after the first class meeting you may make up missed assignments within your first week of attendance.

Course Communications

All online communication will be conducted through my official UA e-mail address (hlynam@arizona.edu), D2L, and Piazza. Ask questions on Piazza when you have questions about assignments, quizzes, and exams (has private options). Email the instructor only when you have logistics-related questions.

Required Texts or Readings

All readings, videos, and assignment instructions will be available in the course website.

Course D2L: https://d2l.arizona.edu/d2l/home/1658797

Course Gradescope: https://www.gradescope.com/courses/1092416

Course website: https://professorlynam.github.io/csc110/ Piazza: https://piazza.com/arizona/fall2025/csc110002

(Access code: glxonh1ytum)

Assignments and Examinations: Schedule/Due Dates

The breakdown of grades in this course is as follows:

45% exams

20% weekly quizzes 10% programming problems 10% short programming projects 15% programming projects

There will be three exams (each 15%) throughout the course (including two midterms and one final exam), for a total of 45%. These exams may cover material from class, the programming assignments, the projects, and the readings. If you score higher on Midterm 2 than on Midterm 1, we will use your Midterm 2 grade for both. However, we will not do the reverse — a higher Midterm 1 grade will not replace a lower Midterm 2 grade. If you would like an exam regraded, we reserve the right to regrade the entire exam, not only the parts you might question.

The midterm exams will be on:

Midterm Exam 1 - Wed, Oct 08 Midterm Exam 2 - Wed, Nov 05

You must keep theses dates available. Do not schedule any flights, travel plans, or other conflicts with these exams.

Weekly quizzes will be held every Wednesday (unless otherwise noted). There will be a total of 12 quizzes. Make-up quizzes will not be offered, however, your 2 lowest quiz scores will be dropped when calculating your final grade.

For programming problems, short projects and long projects, late work is NOT accepted.

Up to 1 point of extra credit will be awarded to students who come to office hours in person. Check our office hours schedule on the website TAs and Office Hours and ask the TA or instructor to submit your points to gradescope.

You are required to ask a question and/or work on an assignment or practice problem with the TA or instructor to receive 0.5 points for each office hour attendance. It is your responsibility to ensure the TA or instructor enter your 0.5 points on gradescope during the session. Instructors will not award you these points at a later date, do not email instructors about getting points at a later date (for example, if you forget to ask the TA to enter your office hour points on gradescope).

Your first TA office visit should take place before the Midterm 1 date, and the second visit should take place before the Midterm 2 date.

Final Examination

The final exam is worth 15%.

The final exam date, time and room is: 12/12/25, 6:00pm-8:00pm, Room TBA.

You must keep this time available. Do not schedule any flights, travel plans, or other conflicts with this exam.

See also: Final Exam Regulations and Final Exam Schedule: https://registrar.arizona.edu/faculty-staff-resources/room-class-scheduling/schedule-classes/final-exams

Grading Scale and Policies

The instructor and teaching staff will do their best to have grades back to students within 1 week. This includes, but is not limited to, grades for exams, projects, programming assignments, attendance, and quizzes. Once a grade has been entered for a particular item on the digital grade-book, students have **at most 5 days** to dispute the grade. This includes disputes related to excuses such as sickness, personal matters, dean's excuses, etc. If 5 days pass and there has not been such a request, the grade is final. Appeals submitted after this period will not be considered by the instructor or teaching staff under any circumstances. Please review your grades promptly and plan accordingly.

The correspondence between percentage grade and numeric grade is as follows:

Greater or equal to 90% at least an A

Greater or equal to 80% at least a B

Greater or equal to 70% at least a C

Greater or equal to 60% at least a D

Anything less, at least an E / F

Department of Computer Science Grading Policy:

Instructors will explicitly promise when every assignment and exam will be graded and returned to students. These promised dates will appear in the syllabus, associated with the corresponding due dates and exam dates.

Graded homework will be returned before the next homework is due.

Exams will be returned "promptly", as defined by the instructor (and as promised in the syllabus).

Grading delays beyond promised return-by dates will be announced as soon as possible with an explanation for the delay.

Incomplete (I) or Withdrawal (W):

Requests for incomplete (I) or withdrawal (W) must be made in accordance with University policies, which are available at https://catalog.arizona.edu/policy/courses-credit/grading/grading-system.

Honors Credit

Students wishing to contract this course for Honors Credit should e-mail me to set up an appointment to discuss the terms of the contact and to sign the Honors Course Contract Request Form. The form is available at http://www.honors.arizona.edu/honors-contracts

4

Scheduled Topic and Activities

Week	Start Date	Module	Topic	
1	Aug 25	Module 1	Python Basics (constants, variables, comments, strings, print)	
2	Sep 01	Module 2	Operators and Expressions, functions	
3	Sep 08	Module 3	Functions, decomposition	
4	Sep 15	Module 4	Functions, input from user, decomposition	
5	Sep 22	Module 5	Control Flow (if statements)	
6	Sep 29	Module 6	Control Flow (while)	
7	Oct 06	Module 7	Data Structures (lists)	
8	Oct 13	Module 8	Control Flow (for loops), mutability, random	
9	Oct 20	Module 9	Control Flow (for loops), Dictionaries	
10	Oct 27	Module 10	Files and strings	
11	Nov 03	Module 11	Data Structures (tuples)	
12	Nov 10	Module 12	2D lists, nested for loops	
13	Nov 17	Module 13	Data Structures (sets)	
14	Nov 24	Module	Mutability	

8/7/25

Week	Start Date	Module	Topic
		14	
15	Dec 01	Module 15	Control Flow + Data Structures

Assignment Due Dates

Assignment Due Dates Assessment	Date	Time/Location
Quiz 01	Wednesday, August 27, 2025	in class
Quiz 02	Wednesday, September 03, 2025	in class
Module 1 Programming Problems	Friday, September 05, 2025	9pm
Quiz 03	Wednesday, September 10, 2025	in class
Module 2 Programming Problems	Wednesday, September 10, 2025	9pm
Short Programming Project 1	Wednesday, September 10, 2025	9pm
Programming Project 1	Friday, September 12, 2025	9pm
Quiz 04	Wednesday, September 17, 2025	in class
Module 3 Programming Problems	Wednesday, September 17, 2025	9pm
Short Programming Project 2	Wednesday, September 17, 2025	9pm
Programming Project 2	Friday, September 19, 2025	9pm
Quiz 05	Wednesday, September 24, 2025	in class
Module 4 Programming Problems	Wednesday, September 24, 2025	9pm
Short Programming Project 3	Wednesday, September 24, 2025	9pm
Programming Project 3	Friday, September 26, 2025	9pm
Quiz 06	Wednesday, October 1, 2025	in class
Module 5 Programming Problems	Wednesday, October 01, 2025	9pm
Short Programming Project 4	Wednesday, October 01, 2025	9pm
Programming Project 4	Friday, October 03, 2025	9pm
Midterm 1	Wednesday, October 08, 2025	in class
Module 6 Programming Problems	Friday, October 10, 2025	9pm
Short Programming Project	Friday, October 10, 2025	9pm

Assessment	Date	Time/Location
5		
Programming Project 5	Monday, October 13, 2025	9pm
Quiz 07	Wednesday, October 15, 2025	in class
Module 7 Programming Problems	Wednesday, October 15, 2025	9pm
Short Programming Project 6	Wednesday, October 15, 2025	9pm
Programming Project 6	Friday, October 17, 2025	9pm
Quiz 08	Wednesday, October 22, 2025	in class
Module 8 Programming Problems	Wednesday, October 22, 2025	9pm
Short Programming Project 7	Wednesday, October 22, 2025	9pm
Programming Project 7	Friday, October 24, 2025	9pm
Quiz 09	Wednesday, October 29, 2025	in class
Module 9 Programming Problems	Wednesday, October 29, 2025	9pm
Midterm 2	Wednesday, November 05, 2025	
Module 10 Programming Problems	Wednesday, November 05, 2025	
Short Programming Project 8	Wednesday, November 05, 2025	9pm
Programming Project 8	Friday, November 07, 2025	9pm
Module 11 Programming Problems	Wednesday, November 12, 2025	
Short Programming Project 9	Wednesday, November 12, 2025	9pm
Programming Project 9	Friday, November 14, 2025	9pm
Quiz 10	Wednesday, November 19, 2025	
Module 12 Programming Problems	Wednesday, November 19, 2025	•
Short Programming Project 10	Wednesday, November 19, 2025	9pm
Programming Project 10	Friday, November 21, 2025	9pm
Quiz 11	Wednesday, November 26, 2025	
Module 13 Programming Problems	Wednesday, November 26, 2025	9pm
Short Programming Project	Wednesday, November 26,	9pm

Assessment	Date	Time/Location
11	2025	
Programming Project 11	2025	9pm
Quiz 12	Wednesday, November 03, 2025	in class
Module 14 Programming Problems	Friday, December 05, 2025	9pm
Short Programming Project 12	Friday, December 05, 2025	9pm
Programming Project 12	Monday, December 08, 2025	9pm
Final Exam	Friday, December 12, 2025	6:00pm-8:00pm, Room TBA

Classroom Behavior Policy

To foster a positive learning environment, students and instructors have a shared responsibility. We want a safe, welcoming, and inclusive environment where all of us feel comfortable with each other and where we can challenge ourselves to succeed. To that end, our focus is on the tasks at hand and not on extraneous activities (e.g., texting, chatting, reading a newspaper, making phone calls, web surfing, etc.).

Students are asked to refrain from disruptive conversations with people sitting around them during lecture. Students observed engaging in disruptive activity will be asked to cease this behavior. Those who continue to disrupt the class will be asked to leave lecture or discussion and may be reported to the Dean of Students.

Safety on Campus and in the Classroom

For a list of emergency procedures for all types of incidents, please visit the website of the Critical Incident Response Team (CIRT): https://cirt.arizona.edu/case-emergency/overview

Also watch the video available at

https://arizona.sabacloud.com/Saba/Web spf/NA7P1PRD161/app/me/ledetail;spf-url=common%2Flearningeventdetail%2Fcrtfy0000000003841

University-wide Policies link

Links to the following UA policies are provided here: https://catalog.arizona.edu/syllabus-policies

- Absence and Class Participation Policies
- Threatening Behavior Policy
- Accessibility and Accommodations Policy
- Code of Academic Integrity
- Nondiscrimination and Anti-Harassment Policy
- Class Recordings
- Additional Resources
- Preferred Names and Pronouns

Department-wide Syllabus Policies and Resources link

Links to the following departmental syllabus policies and resources are provided here, https://www.cs.arizona.edu/cs-course-syllabus-policies:

- Department Code of Conduct
- Illnesses and Emergencies
- Obtaining Help
- Confidentiality of Student Records
- Land Acknowledgement Statement

Subject to Change Statement

Information contained in the course syllabus, other than the grade and absence policy, may be subject to change with advance notice, as deemed appropriate by the instructor.