Проєкт з дискретної математики: Алгоритм Борувки

Автори проєкту:

Кирило Шихальов (ДМ 4) та Олексій Степаник (ДМ 4)

1 Формальний опис алгоритму

1.1 Основні задачі

Алгоритм Борувки є жадібним алгоритмом, головною задачею якого є пошук мінімального кістякового дерева в зваженому неорієнтованому графі.

Graph with Minimum Spanning Tree Highlighted

1.2 Вхідні та вихідні дані

Вхідні дані - зважений неорієнтований граф. В нашому випадку представлений списком суміжності або матрицею суміжності.

Вихідні дані - мінімальне кістякове дерево графа.

1.3 Алгоритм

```
function Boruvka(G):
input: graph G with weights on edges
output: minimum spanning tree T
for each vertex v in G:
    create a set {v}
T = empty graph with the same vertices as G
while T has fewer than n-1 edges:
    for each set S in the set of sets:
        find the edge e with the smallest weight that connects S with a vertex outside S
if e does not create a cycle in T:
    add e to T
unite the sets that e connect
```

1.4 Оцінки складності

Часова складність: $O(E \log V)$, де E - кількість ребер, а V - кількість вершин. Просторова складність: O(V+E).

2 Програмна реалізація (коменатарі до неї)

Наш алгоритм працює за принципом створення графу і згодом пошук мінімального кістякового дерева.

Спочатку ми зробили реалізацію неорієнтованого графу з вершинами та ребрами. Кожна вершина має список суміжних вершин, створений, щоб при додаванні ребра перевіряти на наявність ребра, який вже з'єднує ці вершини. Кожне ребро має дві кінцеві вершини та вагу. Оскільки це неорієнтований граф, вони просто названі Vertex1 і Vertex2.

В об'єкті Graph ми зробили список, який містить в собі вершини та ребра. Він має усі методи роботи з графом, наприклад такі, як додавання та видалення вершин, ребер, а також перевірку суміжності двох вершин. Також реалізовані методи для отримання списку суміжності вершини та перетворення графу в матрицю суміжності, також можливий перехід від списку до матриці та навпаки.

Обрано такі рішення та типи даних: Реалізовано власні класи Vertex та Edge для представлення вершин та ребер відповідно. Кожен клас містить необхідні поля та конструктори. Vertex: Репрезентує вершину в графі. Кожна вершина має ім'я та список сусідів. Edge: Репрезентує ребро в неорієнтоаному графі. Кожне ребро з'єднує дві вершини і має вагу. Для представлення графу використано клас Graph, який містить список вершин та ребер. Використання списків дозволяє легко маніпулювати вершинами та ребрами графу.

В ціломую код використовує клас List із .NET Framework для зберігання вершин і ребер, що забезпечує функціональність динамічного масиву та швидкий амортизований час доступу і додавання O(1), звичайно ми також могли зробити і через Set, адже вершини та ребра графа лежать в множинах, але ми вибрали працювати зі списками, бо вони мають більший та кращий як для нас функціонал в C#. У гіршому випадку метод Remove зі

списку має час виконання O(n), але це прийнятно для використання за призначенням.

Також були створені два методи перший з яких це **AdjacencyList** він повертає словник списків сусідів, де ключ це вершина, а значення це список, що містить пари (Сусідня вершина, Вага ребра до неї). Це представлення дозволяє ефективну ітерацію сусідів вершини з часом виконання $O(\deg(v))$ для вершини ступеня $\deg(v)$. Загальна складність буде $O(\sum deg(v))$, тобто сума степенів вершин.

Другий Метод **AdjacencyMatrix** він повертає двовимірний масив, який представляє графік як матрицю суміжності. Це представлення дає змогу ефективно знаходити ваги ребер між вершинами, а час виконання для доступу до одного запису становить O(1). Але час виконання для створення матриці суміжності дорівнює $O(n^2)$, де n - кількість вершин. Загалом, код забезпечує гнучку та ефективну реалізацію структур даних графів.

3 Посилання на GitHub-репозиторій

https://github.com/Oleksii-Stepanyk/DM_Project

4 Експериментальна частина

4.1 Схема експерименту та обрані параметри

Для проведення чисельних експериментів, нам потрібно визначитись з параметрами, а саме зі щільністю та розмірністю графа. Оскільки наш алгоритм шукає мінімальне кістякове дерево графу, найкраще буде перевірити його в алгоритмічно складніших умовах, коли ребер багато і степені вершин ≈ хоча б половині кількості вершин.

Ми обрали 5 щільностей з кроком 12% від 52% до 100%, а саме: 52%, 64%, 76%, 88%, 100%

Для розмірності обрали 10 діапазонів від 20 до 200 з кроком 18: **20-38**, **38-56**, **56-74**, **74-92**, **92-110**, **100-128**, **128-146**, **146-164**, **164-182**, **182-200**.

Для кожної пари розмір-щільність ми провели по 20 експериментальних виконань алгоритм як для матриці суміжності, так і для списку суміжності. Цього повинно бути достатньо, щоб більш точно визначити середній час виконання для цих пар і складність алгоритму в загальному. Схему виконання експерименту детально можна глянути у файлі "Program.cs", але якщо коротко, то:

- Згенерувати граф
- Перевести в матрицю або список суміжності
- Знайти кістякове дерево
- Записати час виконання в список
- Зробити так 20 разів для матриць і для списків
- Знайти середнє значення виконання для пари (Розмір, щільність)
- Вивести в консоль, щоб потім зручно переписати в табличку.

4.2 Результати експериментів

Дані таблиці та графіки відображають середній час виконання для кожної пари (розмір, щільність). Таблиці та графіки є розподілені за розмірністю графів. Зліва знаходяться таблиці, що описують час виконання алгоритм з допомогою списків суміжності, справа за допомогою матриць суміжності.

Графіки впорядковані з верху в низ, з ліва на право за розмірністю від меншої до більшої

Розмір	Щільність	Середній час
20-38	52%	1.1014
20-38	64%	1.0392
20-38	76%	1.2010
20-38	88%	1.4879
20-38	100%	1.1045

Табл. 1: Списки суміжності

Розмір	Щільність	Середній час
20-38	52%	0.7674
20-38	64%	0.7117
20-38	76%	1.3897
20-38	88%	1.4471
20-38	100%	1.2910

Табл. 2: Матриці суміжності

Розмір	Щільність	Середній час
38-56	52%	2.0117
38-56	64%	2.7527
38-56	76%	2.5989
38-56	88%	2.9797
38-56	100%	4.0538

Табл. 3: Списки суміжності

Розмір	Щільність	Середній час
38-56	52%	1.9418
38-56	64%	2.5784
38-56	76%	2.7865
38-56	88%	3.2306
38-56	100%	3.7311

Табл. 4: Матриці суміжності

Розмір	Щільність	Середній час
56-74	52%	4.9268
56-74	64%	6.3517
56-74	76%	6.9198
56-74	88%	7.4413
56-74	100%	11.0429

Табл. 5: Списки суміжності

Розмір	Щільність	Середній час
56-74	52%	4.9103
56-74	64%	5.9150
56-74	76%	6.6013
56-74	88%	8.9268
56-74	100%	9.6470

Табл. 6: Матриці суміжності

Розмір	Щільність	Середній час
74-92	52%	10.8591
74-92	64%	11.2733
74-92	76%	16.2188
74-92	88%	16.0359
74-92	100%	17.6935

Табл. 7: Списки суміжності

Розмір	Щільність	Середній час
92-110	52%	17.2447
92-110	64%	21.0637
92-110	76%	24.5627
92-110	88%	27.2734
92-110	100%	32.5348

Табл. 9: Списки суміжності

Розмір	Щільність	Середній час
110-128	52%	26.8040
110-128	64%	36.9913
110-128	76%	42.7980
110-128	88%	48.7638
110-128	100%	54.4259

Табл. 11: Списки суміжності

Розмір	Щільність	Середній час
128-146	52%	39.9332
128-146	64%	50.7484
128-146	76%	59.4270
128-146	88%	64.8131
128-146	100%	77.5845

Табл. 13: Списки суміжності

Розмір	Щільність	Середній час
146-164	52%	60.5990
146-164	64%	73.0276
146-164	76%	91.4424
146-164	88%	96.5072
146-164	100%	123.2196

Табл. 15: Списки суміжності

Розмір	Щільність	Середній час
164-182	52%	82.5564
164-182	64%	97.9248
164-182	76%	116.8207
164-182	88%	136.7831
164-182	100%	157.1514

Табл. 17: Списки суміжності

Розмір	Щільність	Середній час
74-92	52%	10.5447
74 - 92	64%	11.5420
74 - 92	76%	14.6333
74 - 92	88%	17.0027
74-92	100%	20.4048

Табл. 8: Матриці суміжності

Розмір	Щільність	Середній час
92-110	52%	15.5890
92 - 110	64%	20.9771
92-110	76%	23.5322
92-110	88%	26.5830
92-110	100%	31.3560

Табл. 10: Матриці суміжності

Розмір	Щільність	Середній час
110-128	52%	28.3031
110-128	64%	37.8035
110-128	76%	39.8457
110-128	88%	49.8018
110-128	100%	49.2711

Табл. 12: Матриці суміжності

Розмір	Щільність	Середній час
128-146	52%	45.9768
128-146	64%	48.7960
128-146	76%	58.7248
128-146	88%	66.2854
128-146	100%	81.5494

Табл. 14: Матриці суміжності

Розмір	Щільність	Середній час
146-164	52%	62.6559
146-164	64%	72.2091
146-164	76%	86.9954
146-164	88%	109.8839
146-164	100%	116.5637

Табл. 16: Матриці суміжності

Розмір	Щільність	Середній час
164-182	52%	88.2309
164-182	64%	110.0523
164-182	76%	122.3699
164-182	88%	135.3454
164-182	100%	171.1403

Табл. 18: Матриці суміжності

Розмір	Щільність	Середній час
182-200	52%	112.8464
182-200	64%	133.5016
182-200	76%	155.0467
182-200	88%	212.4126
182-200	100%	209.2285

Табл. 19: Списки суміжності

Розмір	Щільність	Середній час
182-200	52%	116.9804
182-200	64%	135.0831
182-200	76%	165.0716
182-200	88%	200.4955
182-200	100%	216.8950

Табл. 20: Матриці суміжності

5 Висновки

(Тут ваші висновки)