PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

Facultad de Matemática

Trabajo

Dr. Claudio Rivera

Resumen: En este documento encontrará ejercicios de longitud de arco. Estos ejercicios fueron tomados en su mayoría del libro guía del curso MAT1620.

Trabajo

Si F(x) es la cantidad de fuerza que actúa sobre un objeto, se define el **trabajo** necesario para mover el objeto desde a hasta b como

$$T = \int_{a}^{b} F(x) \, dx$$

Nota

La ley de Hooke establece que la fuerza requerida para mantener un resorte estirado x unidades más de su longitud natural es proporcional a x, es decir

$$F(x) = kx$$

donde k es una constante positiva, que se denimona constante del resorte.

Determine el trabajo necesario para levantar una bolsa de arena de $40\,kg$ hasta una altura de $1.5\,m.$

Nota. Suponer que la constante de gravedad $g=9.8\,m/seg^2.$

Respuesta.

Una partícula se mueve a lo largo del eje X impulsada por una fuerza que mide $10/(1+x)^2$ Newton en un punto a x metros del origen. Calcule el trabajo realizado al mover la partícula desde el origen a una distancia de 9 metros.

Respuesta.

Se ilustra la gráfica de una función fuerza (en newtons) que se incrementa a su máximo valor y luego permanece constante. ¿Cuánto trabajo realiza la fuerza al mover un objeto hasta una distancia de 8 metros?

Respuesta.

Se requiere una fuerza de 4 Newton para mantener estirado un resorte 8 centímetros más de su longitud natural. ¿Cuánto trabajo se realiza al estirar el resorte desde su longitud natural hasta 12 centímetros más de su longitud natural?

Respuesta.

Suponga que se necesitan 2J de trabajo para estirar un resorte desde su longitu natural de $30\,cm$ hasta una longitud de $42\,cm$.

- 1. ¿Cuánto trabajo se requiere para estirarlo desde 35 hasta 40 cm?
- 2. ¿Cuánto más allá de su longitud natural una fuerza de $30\,N$ mantendrá el resorte estirado?

Respuesta.

1. Joule 2. centímetros

Una pesada cuerda de 20 metros de largo y 10 kilogramos está colgada por un lado de un edificio de 60 metros de altura.

- 1. ¿Cuánto trabajo se efectúa al jalar la cuerda por la parte superior del edificio?
- 2. ¿Cuánto trabajo se efectúa al jalar la mitad de la cuerda por la parte superior del edificio?

Nota. Suponer que la constante de gravedad $g = 9.8 \, m/seg^2$.

Respuesta.

1. Joule 2. Joule

Una cubo de $10 \, kg$ pero con un agujero en la base, se sube desde el suelo hasta una altura de $12 \, mt$ con una rapidez constante por medio de una cuerda $4 \, kg$. Al principio, el cubo contiene $36 \, kg$ de agua, pero el agua sale con rapidez constante y termina de salirse justo cuando el cubo llega a los $12 \, metros$ de altura. ¿Cuánto trabajo se realizó?

Nota. Suponer que la constante de gravedad $g = 9.8 \, m/seg^2$.

Respuesta.

Un estanque de base rectangular, dos tapas en forma de trapecio y dos laterales rectángulares, es llenada con agua hasta $25\,cm$ de profundidad. Calcule el trabajo necesario para sacar el agua fuera del estanque.

Nota. Suponer que la constante de gravedad $g=9.8\,m/seg^2$ y la densidad del agua $\rho=1.000\,kg/m^3$.

Respuesta.