## Mistura de Normais com Variância Contaminada

Caio Gabriel Barreto Balieiro Taiguara Melo Tupinambás Walmir dos Reis Miranda Filho

Programa de Pós-Graduação em Estatística Departamento de Estatística - UFMG

02 de dezembro de 2019

## Sumário

- Introdução
- Método de Quadratura de Riemann
- 3 Reamostragem por importância sequêncial(SIR)
- Integração via Monte Carlo em cadeias de Markov
- Considerações finais

- O presente trabalho tem como objetivo obter, dada uma densidade a posteriori conjunta dos parâmetros de um modelo probabilístico para uma amostra previamente observada, as densidades a posteriori marginais de cada parâmetro.
- Obter as estatísticas de média; variância; assimetria e curtose associadas as densidades a posteriori marginais de cada parâmetro, a partir da implementação de três métodos numéricos.
- Sendo eles: (i) integração via quadratura de Riemann; (ii) reamostragem por importância sequencial (em inglês, Sequential Importance Resampling, ou SIR);
   e (iii) integração via Monte Carlo em cadeias de Markov (em inglês, Markov Chain Monte Carlo, ou MCMC) com inovações dadas pelo algoritmo de Metropolis-Hastings (MH).

• Sejam  $X_1,\ldots,X_n$  amostras aleatórias independentes, condicionalmente a um vetor de parâmetros  $\boldsymbol{\theta}=(\mu,\sigma^2,\nu)$ , e identicamente distribuídas com função densidade dada por

$$f(x|\mu, \sigma^2, \nu) = \nu \phi(x|\mu, 100\sigma^2) + (1 - \nu)\phi(x|\mu, \sigma^2), \ x \in \mathbb{R},$$
 (1)

onde  $\phi(x|\mu,\sigma^2)=(2\pi\sigma^2)^{-1}\exp[-(x-\mu)^2/(2\sigma^2)]$  denota a função densidade da distribuição normal com média  $\mu$  e variância  $\sigma^2$  avaliada no ponto x. Para o suporte de cada parâmetro, tem-se que  $\mu\in\mathbb{R},\sigma^2\in\mathbb{R}_+$  e  $\nu\in(0,1)$ .

• Para os parâmetros  $\mu$ ,  $\sigma^2$  e  $\nu$ , será pressuposto que cada um segue uma distribuição a priori:  $\mu|\sigma^2 \sim N(m,V\sigma^2)$ , onde  $N(\cdot)$  denota a distribuição normal com média  $m \in \mathbb{R}$  e variância  $V\sigma^2$ , V>0;  $\sigma^2 \sim GI(a,d)$ , onde  $GI(\cdot)$  denota a distribuição gama inversa com parâmetros de forma a>0 e de taxa d>0 (inverso da escala); e  $\nu \sim U(0,1)$ , a distribuição uniforme contínua padrão.

 E então, propôs-se independência entre as prioris, portanto assumem a forma dada por

$$p(\theta) = p(\mu|\sigma^2)p(\sigma^2)p(\nu). \tag{2}$$

Para gerar uma amostra aleatória do modelo em (1), foi utilizada uma representação hierárquica (Lachos et al., 2013) tal que

$$X_i|\mu,\sigma^2, U_i = u_i \sim N(\mu,\sigma^2u_i^{-1}), \quad U_i|\mu \sim p_d(1,100) : P(U_i = 100) = \nu,$$
(3)

onde  $p_d(a, b)$  denota uma função de probabilidade (discreta) que atribui massa probabilística apenas aos pontos  $a \in b$ .



Com isto, nossa posteriori será defina da seguinte forma

$$\rho(\mu, \sigma^{2}, \nu | \mathbf{x}) = \frac{f(\mathbf{x} | \mu, \sigma^{2}, \nu) \times \rho(\mu, \sigma^{2}, \nu)}{f(\mathbf{x})} \propto \prod_{i=1}^{n} f(x_{i}) \times \rho(\mu | \sigma^{2}) \times \rho(\sigma^{2}) \times \rho(\nu)$$

$$\propto \prod_{i=1}^{n} \left[ \nu \phi(x_{i} | \mu, 100\sigma^{2}) + (1 - \nu) \phi(x_{i} | \mu, \sigma^{2}) \right] \times$$

$$\times \phi(\mu | m, V \sigma^{2}) \times \frac{d^{a}}{\Gamma(a)} \left( \frac{1}{\sigma^{2}} \right)^{a+1} \exp\left( -\frac{d}{\sigma^{2}} \right)$$

$$\propto \left( \frac{1}{\sigma^{2}} \right)^{(n+1)/2+a+1} \exp\left\{ -\frac{\left[ (\mu - m)^{2}/(2V) + d \right]}{\sigma^{2}} \right\} \times A(\mathbf{x} | \mu, \sigma^{2}, \nu),$$
(4)

onde

$$\mathrm{A}(\mathbf{x}|\mu,\sigma^2,\nu) = \prod_{i=1}^n \left\{ \frac{\nu}{10} \exp\left[-\frac{(x_i-\mu)^2}{200\sigma^2}\right] + (1-\nu) \exp\left[-\frac{(x_i-\mu)^2}{2\sigma^2}\right] \right\}.$$



- Para o presente trabalho, foram considerados uma amostra de tamanho n=500, da mistura finita de normais com variância contaminada parametrizada de tal forma que  $\mu=11$ ;  $\sigma^2=0.64$  e  $\nu=0.2$ .
- Os valores escolhidos para os hiperparâmetros são m = 11; V = 1; a = 7 e
   d = 4 nas distribuições a priori.
- Como não se tem uma expressão fechada para  $p(\mu, \sigma^2, \nu | \mathbf{x})$ , mas apenas de seu núcleo, para obter as densidades *a posteriori* marginais de  $\mu$ ,  $\sigma^2$  e  $\nu$  dado  $\mathbf{x}$ , bem como as estatísticas associadas a cada uma delas, é necessário aproximálas por algum método numérico.



Figura 1: Histograma da amostra gerada do modelo



(a)  $I_{\mu}=$  (10.85, 11.13), dados  $\sigma^2=$  0.64, u= 0.2

Figura 2: Intervalos de massa probabilística para cada parâmetro (variável aleatória) do núcleo de  $p(\mu, \sigma^2, \nu | \mathbf{x})$ 





Figura 3: Intervalos de massa probabilística para cada parâmetro (variável aleatória) do núcleo de  $p(\mu, \sigma^2, \nu | \mathbf{x})$ 

- Antes de aproximar as densidades a posteriori marginais de cada parâmetro, é necessário aproximar o inverso da constante de proporcionalidade.
- Dados três parâmetros  $(\alpha_1, \alpha_2, \alpha_3)$  e uma amostra dos dados **y**, quaisquer, suponha que se deseja aproximar a densidade *a posteriori* marginal de  $\alpha_3$  dados os pontos  $r_i, s_j, t_k$  da grade formada por todos os subintervalos de integração,  $i, j, k \in \{1, \dots, L\}$ . Temos pela quadratura de Riemann que

$$p(\alpha_{3}|\mathbf{y}) = \iint p(\alpha_{1}, \alpha_{2}, \alpha_{3}|\mathbf{y}) d\alpha_{1} d\alpha_{2}$$

$$\Rightarrow p(t_{k}|\mathbf{y}) = \iint p(\alpha_{1}, \alpha_{2}, t_{k}|\mathbf{y}) d\alpha_{1} d\alpha_{2} \approx \sum_{i=1}^{L} \sum_{j=1}^{L} p(r_{i}, s_{j}, t_{k}|\mathbf{y}) \Delta_{i} \Delta_{j}$$

$$= \sum_{i=1}^{L} \sum_{i=1}^{L} c \cdot h(r_{i}, s_{j}, t_{k}|\mathbf{y}) \Delta_{i} \Delta_{j}.$$
(5)

- Como c, a constante de proporcionalidade, é dada pelo inverso da densidade a priori preditiva f(y), a qual é obtida integrando-se em todo o espaço paramétrico o produto entre a função de verossimilhança  $f(y|\alpha_1,\alpha_2,\alpha_3)$  e as densidades (ou funções de probabilidade) a priori para  $\alpha_1$ ,  $\alpha_2$  e  $\alpha_3$ , também é possível aproximar c pela quadratura de Riemann
- Neste caso,  $c^{-1} \approx \sum_{i=1}^{L} \sum_{j=1}^{L} \sum_{k=1}^{L} h(r_i, s_j, t_k | \mathbf{y}) \Delta_i \Delta_j \Delta_k$ . Com o valor aproximado para c, é possível calcular (5) nos limites superior e inferior de todos os subintervalos de um dado parâmetro e enfim obter uma aproximação da densidade *a posteriori* marginal deste mesmo parâmetro através de uma curva gráfica que liga todos os valores calculados



(a) Densidade a posteriori de  $\mu$ 



Figura 4: Densidades a posteriori marginais pela quadratura de Riemann com L=15

(c) Densidade a posteriori de  $\nu$ 

4 D > 4 D > 4 E > 4 E >

(b) Densidade a posteriori de  $\sigma^2$ 



(a) Densidade a posteriori de  $\mu$ 



Figura 5: Densidades a posteriori marginais pela quadratura de Riemann com L=50

(c) Densidade a posteriori de  $\nu$ 

4 D > 4 D > 4 E > 4 E >

(b) Densidade a posteriori de  $\sigma^2$ 



(a) Densidade a posteriori de  $\mu$ 



Figura 6: Densidades a posteriori marginais pela quadratura de Riemann com L=100

(b) Densidade a posteriori de  $\sigma^2$ 

(c) Densidade a posteriori de  $\nu$ 

Tabela 1: Estatísticas a posteriori para  $(\mu,\sigma^2,\nu)$  pela quadratura de Riemann

| Cenário        | Parâmetro  | Média   | Variância | Assimetria | Curtose |
|----------------|------------|---------|-----------|------------|---------|
| <i>L</i> = 15  | $\mu$      | 10.9847 | 0.0017    | 0.0022     | 2.9603  |
|                | $\sigma^2$ | 0.6222  | 0.0022    | 0.2230     | 2.9984  |
|                | $\nu$      | 0.1918  | 0.0004    | 0.1572     | 2.9348  |
| <i>L</i> = 50  | $\mu$      | 10.9848 | 0.0017    | 0.0056     | 2.9346  |
|                | $\sigma^2$ | 0.6222  | 0.0021    | 0.2149     | 2.9625  |
|                | $\nu$      | 0.1918  | 0.0004    | 0.1523     | 2.8995  |
| <i>L</i> = 100 | $\mu$      | 10.9848 | 0.0017    | 0.0064     | 2.9284  |
|                | $\sigma^2$ | 0.6222  | 0.0021    | 0.2131     | 2.9542  |
|                | $\nu$      | 0.1918  | 0.0004    | 0.1512     | 2.8913  |

- Proposto por Gordon et al. (1993), o método SIR utiliza uma função de amostragem por importância g para aproximar (sem perda de generalidade) uma densidade de interesse p.
- Sejam  $\theta_1, \ldots, \theta_k$  uma amostra aleatória de g e  $\mathbf{y} = (y_1, \ldots, y_n)$  uma amostra do modelo para os dados observados. Para cada ponto  $\theta_j$ ,  $j=1,\ldots,k$ , os pesos são dados por

$$w_j(\theta_j) = \frac{p(\theta_j|\mathbf{y})/q(\theta_j)}{\sum_{j=1}^k p(\theta_j|\mathbf{y})/q(\theta_j)}.$$
 (6)

em que g é uma densidade conhecida e da qual se sabe gerar uma amostra aleatória.

• Como feito em muitos trabalhos, para g será escolhida uma densidade normal trivariada  $N_3(\mu, \Sigma)$ , cujas componentes têm, cada uma, suporte em toda a reta real.

- Note que para 2 parâmetros,  $\sigma^2$  e  $\nu$ , o respectivo espaço paramétrico não é a reta real ( $\Theta_{\sigma^2}=\mathbb{R}_+$  e  $\Theta_{\nu}=[0,1]$ , respectivamente). logo será feita uma reparametrização.
- Para a reparametrização, consideram-se as transformações  $\theta_1=\mu,\theta_2=\log(\sigma^2)$  e  $\theta_3=\log[\nu/(1-\nu)]$ . Logo, a expressão do núcleo reparametrizado é dada por

$$p(\theta_{1}, \theta_{2}, \theta_{3} | \mathbf{x}) = p(\theta_{1} = \mu, \theta_{2} = \log(\sigma^{2}), \theta_{3} = \log[\nu/(1 - \nu)] | \mathbf{x})$$

$$= p(\mu = \theta_{1}, \sigma^{2} = \exp(\theta_{2}), \nu = 1/[1 + \exp(-\theta_{3})] | \mathbf{x}) \times |J(\theta_{1}, \theta_{2}, \theta_{3})|$$

$$\propto [\exp(\theta_{2})]^{-[(n+1)/2 + a + 1]} \times \exp\left\{-\frac{[(\theta_{1} - m)^{2}/(2V) + d]}{\exp(\theta_{2})}\right\}$$

$$\times A^{*}(\mathbf{x}|\theta_{1}, \theta_{2}, \theta_{3}) \times \frac{\exp(\theta_{2}) \exp(\theta_{3})}{[1 + \exp(-\theta_{3})]^{-2}}$$

$$\propto \left(\frac{1}{\sigma^{2}}\right)^{\frac{n+1}{2+a+1}} \times \exp\left\{-\frac{[(\mu - m)^{2}/(2V) + d]}{\sigma^{2}}\right\} \times A(\mathbf{x}|\mu, \sigma^{2}, \nu)$$

$$\times \sigma^{2} \nu^{3} (1 - \nu)^{-1}, \tag{7}$$

- em que  $|J(\theta_1, \theta_2, \theta_3)|$  é o determinante da matriz jacobiana das derivadas parciais de  $(\mu, \sigma^2, \nu)$  com respeito a  $(\theta_1, \theta_2, \theta_3)$ .
- Para a amostra de tamanho n=500 da mistura finita de normais com variância contaminada tal que  $\mu=11;~\sigma^2=0.64;~\nu=0.2;~m=11;~V=1;~a=7$  e d=4 (Figura 1).
- Para as médias das componentes desta distribuição, será fixado  $\mu = (\theta_1, \theta_2, \theta_3) = (\mu, \log(\sigma^2), \log[\nu/(1-\nu)]) = (11, \log(0.64), \log[0.2/0.8]).$
- Para a matriz de covariância  $\Sigma$ , cada elemento da diagonal principal será dado pelo quadrado de 1/6 do intervalo de massa probabilística do parâmetro correspondente.
- Esta escolha se justifica pelo fato de que as distribuições mostradas de 2a a 3b têm comportamento próximo à normalidade.





Figura 7: Histograma das densidades a posteriori marginais pela método SIR com k = 500





Figura 8: Histograma das densidades *a posteriori* marginais pela método SIR com k=5000





Figura 9: Histograma das densidades *a posteriori* marginais pela método SIR com k = 50000

Tabela 2: Estatísticas a posteriori para  $(\mu, \sigma^2, \nu)$  pelo método SIR

| Cenário   | Parâmetro  | Média   | Variância | Assimetria | Curtose |
|-----------|------------|---------|-----------|------------|---------|
| k = 500   | $\mu$      | 11.0003 | 0.0023    | -0.0610    | 3.0351  |
|           | $\sigma^2$ | 0.6422  | 0.0026    | 0.1261     | 3.1453  |
|           | $\nu$      | 0.2028  | 0.0006    | 0.3510     | 3.5475  |
| k = 5000  | $\mu$      | 11.0006 | 0.0022    | 0.0216     | 3.0234  |
|           | $\sigma^2$ | 0.6418  | 0.0027    | 0.2349     | 3.0118  |
|           | $\nu$      | 0.2013  | 0.0005    | 0.2485     | 3.1646  |
| k = 50000 | $\mu$      | 11.0002 | 0.0022    | -0.0081    | 3.0451  |
|           | $\sigma^2$ | 0.6420  | 0.0027    | 0.2353     | 3.1153  |
|           | $\nu$      | 0.2009  | 0.0005    | 0.2608     | 3.0849  |

- Neste trabalho, será usado o algoritmo de Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970), aqui abreviado por MH.
- Assim como o método SIR, o algoritmo MH também é baseado no uso de uma distribuição auxiliar ou proposta, aqui denotada por q(y, z). Assumindo-se que na interação  $j, j = 1, \ldots, k$  a cadeia está no estado  $y^{(j)}$ , a posição da mesma na iteração j + 1, denotada por  $y^{(j+1)}$ , será dada após:
- Passo 1: Propor uma transição ou movimento para y\*, onde y\* é gerada de q(y<sup>(j)</sup>,·), a distribuição proposta, e, o valor inicial y<sup>(1)</sup>;
- Passo 2: Aceitar a transição proposta com probabilidade

$$\rho(\mathbf{y}^{(j)}, \mathbf{y}^*) = \min\left(1, \frac{p(\mathbf{y}^*)/q(\mathbf{y}^{(j)}, \mathbf{y}^*)}{p(\mathbf{y}^{(j)})/q(\mathbf{y}^*, \mathbf{y}^{(j)})}\right)$$
(8)

e neste caso atribuir  $\mathbf{y}^{(j+1)} = \mathbf{y}^*$  ou rejeitar a transição proposta e atribuir  $\mathbf{y}^{(j+1)} = \mathbf{y}^{(j)}$ , com probabilidade  $1 - \rho(\mathbf{y}^{(j)}, \mathbf{y}^*)$ .

- Para decidir sobre a aceitação ou não de y\* quando amostrada a cada passo j, gere uma amostra u1,..., uk, onde k é o total de iterações prefixadas, da distribuição uniforme padrão U(0,1), independentemente de y\*.
- Se a probabilidade de aceitação  $\rho(\mathbf{y}^{(j)}, \mathbf{y}^*)$  for maior do que ou igual a  $u_j$ , então a transição proposta é aceita. Do contrário, ela é rejeitada.
- Para a distribuição proposta  $q(\cdot)$  também será escolhida uma normal trivariada  $N_3(\mu, \Sigma)$ , com valores do vetor de médias, e será reutilizado a reparametrização  $\mu = (\mu, \log(\sigma^2), \log[\nu/(1-\nu)]) = (11, \log(0.64), \log[0.2/0.8])$  e da matriz de covariância  $\Sigma = \text{diag}\{0.0022, 0.0065, 0.0203\}$ .
- É necessário definir um estado inicial da cadeia, em geral com densidade conjunta muito baixa, escolheu-se o ponto  $y^{(1)} = (10.86, \log(0.50), \log(0.14/0.86))$ .





Figura 10: Histograma das densidades *a posteriori* marginais pelo método MCMC–MH, k = 500





Figura 11: Histograma das densidades *a posteriori* marginais pela método MCMC–MH, k = 5000





Figura 12: Histograma das densidades *a posteriori* marginais pela método MCMC–MH, k = 50000

Tabela 3: Estatísticas a posteriori para  $(\mu, \sigma^2, \nu)$  pelo método MCMC–MH

| Cenário   | Parâmetro  | Média   | Variância | Assimetria | Curtose |
|-----------|------------|---------|-----------|------------|---------|
| k = 500   | $\mu$      | 10.9672 | 0.0018    | -0.3768    | 3.2193  |
|           | $\sigma^2$ | 0.6226  | 0.0020    | -0.0684    | 2.6117  |
|           | $\nu$      | 0.1957  | 0.0006    | -0.3313    | 3.2991  |
| k = 5000  | $\mu$      | 10.9818 | 0.0019    | -0.2466    | 2.9894  |
|           | $\sigma^2$ | 0.6197  | 0.0023    | 0.2372     | 3.0057  |
|           | $\nu$      | 0.1977  | 0.0005    | 0.3878     | 3.2038  |
| k = 50000 | $\mu$      | 10.9852 | 0.0017    | -0.0272    | 2.9451  |
|           | $\sigma^2$ | 0.6188  | 0.0021    | 0.2472     | 3.1088  |
|           | $\nu$      | 0.1978  | 0.0005    | 0.1331     | 2.8971  |



Figura 13: Traço e autocorrelação da cadeia de  $\mu$ ,  $k = \{500, 5000, 50000\}$ , respectivamente



Figura 14: Traço e autocorrelação da cadeia de  $\sigma^2$ ,  $k = \{500, 5000, 50000\}$ , respectivamente



Figura 15: Traço e autocorrelação da cadeia de  $\nu^2$ ,  $k=\{500,5000,50000\}$ , respectivamente

## Considerações finais

