

Open Source Toolkit for Parsing-based Machine Translation

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane Schwartz, Wren Thornton, Jonathan Weese, and Omar Zaidan

Highlights

- Fully-featured decoder
 - SCFG decoder in the style of Hiero Chiang (2007)
 - n-gram language model integration
- Attempts to minimize external dependencies
 - Implemented our own MERT and grammar extraction
 - Currently only requires Giza++ and SRILM
- Written in Java
- Goals are to be scalable, easy to extend

Synchronous CFGs

- Generalize context free grammars so they generate pairs of related strings
- Useful for specifying relationship between languages
- Formal definition:
 - T_s: a set of source-language terminal symbols
 - T_t: a set of target-language terminal symbols
 - N: a shared set of nonterminal symbols
 - A set of rules of the form $X \to \langle \alpha, \beta, \sim, w \rangle$
 - X ∈ N
 - α is a sequence source terminals and non-terminals
 - β is a sequence of target terminals and non-terminals
 - is a one-to-one correspondence between the non-terminals
 - w is a weight or probability assigned to the rule

Example SCFG

Japanese

English

 $S \rightarrow NP1VP2$

NP1 VP2

 $S' \rightarrow S1 COMP2$

COMP2 S1

 $VP \rightarrow NP V2$

V2 **N**P1

NP → gakusei-ga

student

NP → sensei-ga

teacher

/ → odotta

danced

→ itta

said

COMP → to

that

Hiero-style rules

- Currently, only support Hiero-style rules with single non-terminal
- Not as nice as linguistically motivated rules, but useful for things like reordering

^{*}Thanks to David Chiang for Hiero slides

Extracting Hiero rules

(与 北 韩 有 邦交, have diplomatic relations with North Korea)

(邦交, diplomatic relations)

(北韩, North Korea)

 $X \rightarrow 5 X_1 \hat{A} X_2$, have X_2 with X_1

Extracting Hiero rules

澳是与北韩有邦的少国之 (与北韩有邦交,

Australia is one of the few countries that have diplomatic X_2 relations with North Korea

(与 北 韩 有 邦交, have diplomatic relations with North Korea)

(邦交, diplomatic relations)

(北韩, North Korea)

 $X \rightarrow 5 X_1 \hat{q} X_2$, have X_2 with X_1

Some challenges with Hiero

- Large number of rules
 - Decreases time/space efficiency
- Spurious ambiguity
 - Decreases time efficiency
 - Pollutes n-best lists

• Ad hoc constraints:

- Initial phrases ≤ 10 words, rules ≤ 6 symbols
- Require an aligned terminal
- Limit to two nonterminals, nonadjacent

Some challenges with SCFGs

- Integration of an n-gram language model is difficult under SCFGs
 - Using an n-gram LM generally makes translation quality much better
 - We do not construct a translation in a left-to-right fashion as in phrase-based SMT

n-gram language model

n-gram language model

n-gram language model

LM state in chart parsing

- Decoding takes place via chart parsing
- Chart parsing
 - Decoder maintains a chart, which contains an array of cells
 - A cell maintains a list of items
 - Derivations are stored in a structure called a hypergraph.
- State of an Item
 - Source span
 - Left hand side nonterminal symbol
 - Left/right LM state

Example Derivation

Other Bells and Whistles

- Beam and cube pruning Huang and Chiang (2007)
- Built in minimum error rate training Och and Ney (2003)
 - Modular, so easily allows optimization to objective functions other than Bleu Zaidan (2009)
- Suffix array indexing of the parallel corpus Lopez (2007)
 - Allows on-the-fly look up of translation rules
- *n*-best extraction from hypergraphs chiang (2007)
- Equivalent LM state maintenance Li and Khudanpur (2008)
- Support for parallel decoding

Decoding Speed

- Training data
 - Task: Chinese to English translation
 - Sub-sampled from parallel corpus containing approx 3M sentence pairs
 - obtained 570k sentence pairs
 - Number of translation rules: 3M
 - LM data: Gigaword and English side of the parallel
 - Number of n-grams in LM: 49M

38 times faster than the baseline!

Speed and translation quality comparison:

Decoder	Speed (sec/sent)	BLEU-4		
		/	MT03	MT03
Python	26.5		34.4%	32.7%
Java	1.2	34.5%		32.9%
Java (parallel)	0.7			

Current directions

- Recreating Syntax-Augmented Machine Translation Zollmann and Venugopal (2006)
 for more linguistically motivated translation rules
- Implementing Bloom Filter Language Models Talbot and Osborne (2007)
 to allow much larger LMs to be used with less memory
- Integrating Minimum Bayes Risk Re-ranking
 Kumar and Byrne (2004)
 of n-best translations extracted from hypergraphs
- Scaling to a 1,000,000,000 word parallel corpus Callison-Burch (2009)

Where to get the software

- Subversion repository at
 - http://sourceforge.net/projects/joshua
- Quick installation instructions are in
 - joshua/trunk/INSTALL.txt
- Instructions on running with sample grammar are in
 - joshua/trunk/README.txt
- For support write to
 - Joshua_support@googlegroups.com

Thanks!

Happy hacking!