Computer Hardware: Processor

Von Neumann Architecture

Multitasking

Flynn's Taxonomy

A lot of parallel processors use a hybrid of these taxonomy

Single Instruction Stream Single Data Streams

- Also known as a scalar processor
- A standard sequential computer
- Found in:
 - Legacy computers
 - Found in some Internet of Things devices
 - Can be used to control another type of processors

Multiple Instruction Stream Multiple Data Streams

Each CPU core can implement a different instructions on different data

Servers and datacenters typically use multiple cores and multiple computers to run MIMD

Single Instruction Stream Multiple Data Streams

Most modern CPUs now have SIMD extensions to support SIMD in each core

• Typically only supports floating point arithmetic

Also known as a vector processor

Multiple Instruction Stream Single Data Streams

- Very rare
- Famous example is in space shuttle flight control computers

Von Neumann Architecture

Von Neumann Architecture

Analyzes instructions and tells other units what to do

Performs arithmetic (+ - x /) and logic (and, or, xor, not) instructions

Fetch the

Simplified Machine Cycle

How we process information today: The Von Neumann Architecture

for i=0; i<SIZE; i++ for j=0; j<SIZE; j++ for k=0; k<SIZE; k++ r = r + y[i][k] * z[k][j]; x[i][j] = r LOAD temp1, y[i][k] # temp1 ← y[i][k] LOAD r1, y[i][k] # r1 ← y[i][k] LOAD temp2, z[i][k] # temp2 ← z[k][j] LOAD r2, z[i][k] # r2 ← z[k][j] LOAD r2, z[i][k] # r2 ← z[k][j] A hypothetical translation MULT temp3, temp2, temp1 # temp3 ← temp2 + temp1 MULT r3, r2, r1 # r3 ← r2 + r1

ADD r, r, temp3 ADD r4, r4, r3

Can define codes for LOAD, MULT and ADD

Assume LOAD = 111111, MULT = 110011, ADD = 001110 stored program becomes

PC	111111	000001	address of y[i][k]	
PC+4	111111	000010	address of z[k][j]	
PC+8	110011	000011	000010	000001
PC+12	001110	000100	001000	000011

 $\# r \leftarrow r + temp3$

 $\# r4 \leftarrow r4 + r3$

A von Neumann Architecture (in a nutshell)

Moore's Law: The number of transistors on microchips doubles every two years Our World

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Year in which the microchip was first introduced Data source: Wikipedia (wikipedia.org/wiki/Transistor_count)

OurWorldinData.org - Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Commercial Success due to:

- Elimination of assembly language
- Creation of a standardized operating system

RISC: Reduced Instruction Set Architecture

- Instruction Level Parallelism
- Caches

Effects

- Availability
- New classes of computers
- Software development
- Multimedia applications

THANKYOU

Ann Franchesca Laguna

Ann Franchesca Laguna

% Canvas

ann.laguna@dlsu.edu.ph

Copyright

- These slides are created by the following people:
 - Ann Franchesca Laguna