Геометрическая оптика (4.1.1 + 4.1.2)

Манро Эйден

25 апреля 2025 г.

Цель работы: Изучить модели зрительных труб (Кеплера и Галилея) и микроскопа, определить их увеличения

В работе используются: оптическая скамья, набор линз, экран, осветитель со шкалой, зрительная труба, диафрагма, линейка

Теоретическое введение

Оптическая ячейка - сферическая граница раздела двух оптически однородных сред Центрированная оптическая система - система, состоящая из нескольких оптических ячеек, расположенных последовательно на одной оптической оси

1.1 Микроскоп

Микроскоп состоит из **объектива** и **окуляра**, расположенные в трубе - **тубусе**. Ход лучей в микроскопе показан на (1).

Рис. 1: Ход лучей в микроскопе

Здесь Л1 - объектив, Л2 - окуляр. Объектив Л1 даёт действительное перевёрнутое увеличенное изображение А предмета Р, которое рассматривается через окуляр Л2, действующий как лупа. Лупа даёт увеличенное изображение малого предмета, находящегося на небольшом расстоянии от глаза. Соответственно, изображение В получается мнимым, перевёрнутым и увеличенным.

Увеличение $N_{\rm M}=N_1N_2=\frac{L}{f_M}$, где $L=25{\rm cm}$ - расстояние наилучшего зрения, а $f_M{\rm cm}$ - фокусное расстояние микроскопа как сложной системы:

$$f_M = -\frac{f_1 f_2}{\Delta}$$

 $\Delta = F_2 - F_1' = l_{12} - f_1 - f_2$ - оптический интервал - расстояние от заднего фокуса первой системы до переднего фокуса второй системы.

Величина

$$N_M = N_1 N_2, \ N_1 = -\frac{\Delta}{f_1}, \ N_2 = \frac{L}{f_2}$$

 N_1 - увеличение объектива, N_2 - дополнительное увеличение окуляра

1.2 Зрительные трубы

Зрительные трубы предназначены для наблюдения удалённых объектов. Устройство схоже с микроскопом. Ход лучей показан на рисунке (10) и (3). Объектив даёт уменьшенное обратное изображение в фокальной плоскости, а окуляр даёт мнимое изображение на расстоянии d (изображение A находится почти в вокальной плоскости). При этом задний фокус объектива совпадает с передним фокусом окуляра для фокусировки на бесконечность. Это описывает принцип телескопических систем.

Рис. 2: Ход лучей в трубе Кеплера

Угловое увеличение определяется из следующего отношения:

Рис. 3: Ход лучей в трубе Галилея

$$N_T = \frac{\alpha'}{\alpha} = \frac{y}{y'} = \frac{f_1'}{f_2} = -\frac{f_1}{f_2} = \pm \frac{\mathbf{D_1}}{\mathbf{D_2}}$$
 (1)

Равно отношению фокусов объектива и означает, во сколько раз угол, под которым виден бесконечно удалённый предмет больше угла, под которым он виден невооружённым глазом. Он так же равен отношению ширины падающего пучка к ширине выходящего, где ширина определяется как диаметр соответствующей оправы. Это иллюстрирует рисунок (??).

Отличительная особенность трубы Кеплера - собирающая линза на месте окуляра, у *трубы Галилея* она рассеивающая, поэтому последняя даёт *прямое изображение*.

Когда диаметр зрачка совпадает с выходным диаметром пучка $\mathbf{D_2}$, то увеличение называется нормальным и освещённость сетчатки достигает максимума.

1.3 Определение фокусных расстояний с помощью подзорной трубы

Перемещением линзы добиваемся, чтобы в подзорной трубе наблюдалось чёткое изображение. Предварительно труба настраивается на бесконечно далёкий предмет, тогда при попадании в фокус после линзы лучи выйдут параллельными.

Для измерения фокуса рассеивающей линзы предварительно получим изображение с помощью собирающей линзы на экране используем его в качестве мнимого предмета для рассеивающей линзы. Между экраном и положительной линзой встаёт рассеивающая, а впоследствии убирается экран и ставится подзорная труба, настроенная на бесконечность. фокусное расстояние линзы будет: $f = l - a_0$, где l - расстояние между линзами, a_0 - расстояние от положительной линзы до экрана

Методика эксперимента

С помощью предоставленного оборудования моделируются зрительные трубы и микроскоп по указанным схемам, определяются фокусы и увеличения систем. Приборам требуется

Рис. 4: Определение фокуса положительной линзы с помощью подзорной трубы

юстировка - тонкая настройка оптики (может понадобиться и-за уменьшения резкости, контрастности, аберраций). В телескопах для получение качественного изображения звёзд необходимо выровнять Π 1 и Π 2 по одной оси и совместить соответствующие фокусы.

Для этого необходимо настроиться на удалённый предмет,лучи от которого можно считать параллельно идущими. Для этого используется коллиматор — устройство, предназначенное для выравнивания световых лучей таким образом, чтобы они шли параллельно друг другу: в фокальной плоскости расположен предмет (шкала осветителя).

Для определения фокусного расстояния положительной линзы используется вспомогательная зрительная труба. А для рассеивающей линзы предметом служит изображение от собирающей. Собирающие линзы в эксперименте *плосковыпуклые*. Для улучшения чёткости используется диафрагма, которая крепится к оправе линзы и делает лучи *параксиальными*

Рис. 5: Схема устройства крепления линз: 1 - прижимающий винт, 2 - винт фиксации вертикального смещения, 3 - винт фиксации поворота вокруг вертикальной оси, 4 - регулировка поперечного смещения

Обработка и обсуждение результатов

3.1 Определение фокусных расстояний линз с помощью зрительной трубы

Предварительно оценим фокусное расстояние, получая изображение удалённого источника (лампа на потолке) на столе. Подзорную трубу настраиваем на бесконечность (дверь ректората в другом конце коридора). Предварительно центрируем источник, линзы, трубу, экран. Размещаем перед источником линзу на расстоянии, примерно равном фокусному, и перемещением вблизи этого положения добиваемся чёткой картины при наблюдении глазом через трубу. Для определения фокусного расстояния рассеивающей линзы прислоним её вплотную к собирающей линзе с известным фокусным расстоянием. Оптическая сила такой системы равна сумме оптических сил линз, отсюда находим фокусное расстояние рассеивающей линзы.

Линза	Среднее (см)	Стандартное отклонение (см)
6.1	7,30	0,21
6.2	12,44	0,31
6.3	$17,\!66$	0,69
6.4	$25,\!40$	1,30
6.5 (-)	-13,85	3,45
6.6	5,14	$0,\!40$

Таблица 1: Измерение фокусов линз

Для более точного определения фокусного расстояния рассеивающей линзы сначала получим на экране увеличенное изображение сетки при помощи одной короткофокусной положительной линзы и используем изображение в качестве мнимого предмета для рассеивающей линзы. Расстояние между линзой и экраном $a_0=20,8\,$ см. Перемещая рассеивающую линзу вместо экрана, находим изображение сетки. Расстояние между линзами $l=10,4\,$ см. Находим фокусное расстояние как $f=l-a_0$

3.2 Измерение фокусных расстояний линз по формуле тонкой линзы и методом Бесселя

Возьмем линзу 2. Поставим экран от источника на расстояние порядка $1.2 \cdot 4F_2 = 71.5$ см. Поместим линзу в 2 положения на расстояниях s_1 и s_2 . Получаем $s_1 = 38.0$ см, $s_2 = 66.5$ см.

Тогда
$$l = s_2 - s_1 = 28.5$$
 см

Тогда по приближенной формуле Бесселя:

$$f = \frac{L^2 - l^2}{4L} = 15.0 \text{ cm}$$

При переворачивании линзы получим точно такой же результат.

3.3 Измерение фокусных расстояний методом Аббе

Установим линзу 2 между осветителем и транспорантом в соответствии со схемой. В качестве физического предмета будем рассматривать изображение квадрата с линейным размером y_0 . При изначальной установке размер изображения y_1 . Отодвинем осветитель на некоторое расстояние $\Delta x = 4.8$ см от линзы. Затем передвинем экран к линзе на расстояние $\Delta x' = 15.9$ см до получения сфокусированного изображения с линейным размером y_2 .

y_0 , cm	0.5	1.3	1.9
y_1 , cm	1.0	3.2	4.4
y_2 , cm	0.5	1.7	2.4

Тогда вычислить фокусное расстояние можно по формуле (возьмём размер большего квадратика для лучшей точности):

$$f = \frac{\Delta x'}{y_1/y_0 - y_2/y_0} = 15.1 \text{ cm}$$

Или, если считать размер предмета неизвестным, то:

$$f^2 = \Delta x \cdot \Delta x' \cdot \frac{y_2 y_1}{(y_2 - y_1)^2} \quad \Rightarrow \quad f = 14.2 \text{ cm}$$

3.4 Моделирование трубы Кеплера

Для получения параллельного пучка используем самую длиннофокусную линзу в качестве коллиматора. Оценим увеличение трубы Кеплера по формуле (1). Экспериментальное определение увеличения системы проводим с помощью наблюдения числа укладываемых ячеек сетки при наблюдении в окуляр трубы.

Рис. 6: Сетка на осветителе

Наблюдаемый угловой размер ячейки - величина, обратная числу укладывающихся ячеек, если принять размер окулярной риски за единицу:

$$\gamma_{\text{эксп.}} = \frac{\alpha}{\alpha_0} = \frac{0,1}{0,07} \approx 1,4$$

(а) Без трубы Кеплера

Рис. 7: Изображение сетки осветителя

Увеличение оптической системы определяется как отношение размера изображения без системы к размеру изображения, полученному после прохождения оптической системы. Также увеличение можно измерить по диаметру входного и выходного пучков с помощью листа бумаги и линейки.

$$\gamma_K = \frac{D_{\text{o6.}}}{D_{\text{oK.}}} = \frac{4,5}{2,6} = 1,46$$

Теоретическое значение $\gamma_{\text{теор.}}$ ввиду использованных линз 6.3 и 6.2 для объектива и окуляра соответственно равно отношению фокусов

$$\gamma_{\text{teop.}} = \frac{f_{\text{ob.}}}{f_{\text{ok.}}} = \frac{17,66}{12,44} = 1,42$$

Рис. 8: Установка для изучения трубы Кеплера

3.5 Моделирование трубы Галилея

Труба Галилея получается из трубы Кеплера заменой собирающей линзы окуляра рассеивающей (6.2 -> 6.5). Формулы для увеличения, соответственно, остаются теми же.

Наблюдаемый угловой размер ячейки - величина, обратная числу укладывающихся ячеек, если принять размер окулярной риски за единицу. Тогда

$$\gamma_{\text{эксп.}} = \frac{\alpha}{\alpha_0} = \frac{0,1}{0,083} \approx 1,2$$

Увеличение оптической системы:

$$\gamma_K = \frac{D_{\text{o6.}}}{D_{\text{ok.}}} = \frac{4}{4} = 1,25$$

Теоретическое значение $\gamma_{\text{теор.}}$ ввиду использованных линз 6.3 и 6.5 для объектива и окуляра соответственно равно отношению фокусов

$$\gamma_{\text{Teop.}} = \left| \frac{f_{\text{o6.}}}{f_{\text{ok.}}} \right| = \frac{17,66}{13,85} = 1,28$$

(а) Без трубы Галилея

Рис. 9: Изображение сетки осветителя

Рис. 10: Установка для изучения трубы Галилея

3.6 Моделирование микроскопа

Соберём проекционный микроскоп, отобрав две короткофокусные собирающие линзы 6.1 и 6.2 для объектива и окуляра соответственно. Его увеличение считается по формуле, где Δ - оптический интервал:

$$\gamma_{\rm np} = \frac{L - f_{\rm ok.}}{f_{\rm ok.}} \cdot \frac{\Delta}{f_{\rm o6.}} \tag{2}$$

Рис. 11: Установка для изучения проекционного микроскопа

При L=45 - расстояние от окуляра до экрана, получаем увеличение $\gamma_M\approx 5,7$

Проверим по изображению на экране:

Изображение имеет слишком большое увеличение для такого экрана, однако по этому уже можно оценить увеличение системы. Для лучшей наглядности рассмотрим изображение в полном масштабе, заменив этот экран листом бумаги:

Оцениваем увеличение по размеру стороны квадратика:

$$\gamma_{\text{эксп.}} \approx 6$$

Рис. 12: Изображение сетки на экране

Рис. 13: Изображение сетки на листе бумаги

Вывод

Средние значения фокусов линз и стандартные отклонения согласуются с номинальными значениями в пределах $1-2\,\sigma$. Наибольшие расхождения (до $3-4\,\sigma$) наблюдались для самой длиннофокусной линзы (6.4) и рассеивающей линзы (6.5).

Экспериментально определённые значения увеличения для трубы Кеплера (1,46) и трубы Галилея (1,25) хорошо согласуются с расчётными. Разница с измерениями не превышает 3-4%, что находится внутри оценочной погрешности, обусловленной неточностями измерения диаметров пучков и влиянием центровки линз. Расхождение величин увеличения на $\Delta \gamma \approx 0.03-0.04$ лежит в пределах одной-двух σ .

При моделировании проекционного микроскопа получено теоретическое увеличение порядка 5,7. Разница с практическим $\gamma=6$ около 5-6%, что можно считать удовлетворительным попаданием в один-два σ с учётом погрешностей позиционирования тубуса, расстояния до экрана и допущений об идеальной точечной фокусировке (дополнительная диафрагма помимо диафрагмы осветителя не использовалась. Она даёт более чёткое изображение, но уменьшает освещённость).

Малейшее смещение или наклон линз относительно оси даёт заметное расхождение; Ручные настройки и измерения по листочку с линейкой дают ошибки порядка нескольких миллиметров; Ограниченный диаметр диафрагмы и экрана; Неточность при подсчёте клеточек изображения при рассматривании в подзорную трубу. В данной работе, по большей части, можно модельно изучить принцип работы оптических приборов и их устройство.