3장

분류

MNIST dataset

- 머신러닝분야의'Hello world'문제
- 미국 고등학생과 인구조사국 직원들이 쓴 손글씨 숫자 70,000개

```
from sklearn.datasets import fetch mldata
                                              mldata.org 사이트에서 매트랩형식의 파일을다운로드해서
mnist = fetch mldata('MNIST original') <=</pre>
                                              ~/scikit_learn_data/mldata/ 에 저장함
mnist
{'DESCR': 'mldata.org dataset: mnist-original',
 'COL NAMES': ['label', 'data'],
 'target': array([0., 0., 0., ..., 9., 9., 9.]),
 'data': array([[0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, \ldots, 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0]], dtype=uint8)}
```

mnist preview

```
X, y = mnist["data"], mnist["target"]
X.shape
(70000, 784)
y.shape
(70000,)
                                      28
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
some_digit = X[36000]
some_digit_image = some_digit.reshape(28, 28)
plt.imshow(some_digit_image, cmap = matplotlib.cm.binary,
 interpolation="nearest")
plt.axis("off")
plt.show()
>>> y[36000]
5.0
```

```
0000000000
111111111
2222222
333333333
55555555
6666666666
 フクチフワクフフ
888888888
999999999
```

Train, Test set 준비

- MNIST 데이터셋은60,000개를 훈련세트로10,000개를 테스트세트로 나누어 놓았음
- mnist는 숫자 순서대로 데이터가 나열되어 있습니다. 학습데이터를 무작위로 섞어 놓기 (SGDclassifier경우는 시작 전에 섞어 놓지만 다른 알고리즘은 안 그러니 속 편하게 미리 섞어 놓자)

```
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
```

```
import numpy as np
shuffle_index = np.random.permutation(60000)
X_train, y_train = X_train[shuffle_index], y_train[shuffle_index]
```

이진(5vs not-5) 분류:데이터준비+훈련

sgd_clf.predict([some_digit])

array([True])

```
0~9까지 타깃을 False(not-5) 혹은 True(5)로 변경
y train 5 = (y train == 5)
y \text{ test } 5 = (y \text{ test } == 5)
                                                               False: 54,5797 True: 5,4217
from sklearn.linear model import SGDClassifier
sgd clf = SGDClassifier(max iter=5, random state=42)
                                                         확률적 경사 하강법 분류 모델로 분류
sgd clf.fit(X train, y train 5)
SGDClassifier(alpha=0.0001, average=False, class weight=None, epsilon=0.1,
       eta0=0.0, fit intercept=True, l1 ratio=0.15,
       learning rate='optimal', loss='hinge', max iter=5, n iter=None,
       n jobs=1, penalty='12', power t=0.5, random state=42, shuffle=True,
       tol=None, verbose=0, warm start=False)
                                                                    some_digit = X[36000]
```

some_digit를 학습한 모델로 추론

추론 결과. 맞았나?

생측정: 교차 검증

- 훈련 세트 중 일부를 검증(개발) 세트로 사용하여 모델의 성능을 추정함.
- 일반화성능을 왜곡하지 않으려고 테스트 세트를 사용하지 않음
 (테스트 세트에 과대적합을 피하려고 혹은 테스트 세트의 정보 누설을 막으려고)

생충교차검증구현: cross_val_score()

```
from sklearn.model_selection import cross_val_score
cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([0.9502 , 0.96565, 0.96495])
```

cross_validate() 3개 폴드 SGD 분류기는 대략 95% 성능 인식기가 언제나 0을 출력해도 약 90% (0인 것이 90%이므로 : 불균형 데이터셋)

```
from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone
skfolds = StratifiedKFold(n_splits=3, random_state=42)
for train_index, test_index in skfolds.split(X_train, y_train_5):
    clone_clf = clone(sgd_clf)
    X_train_folds = X_train[train_index]
    y_train_folds = (y_train_5[train_index])
    X_test_fold = X_train[test_index]
    y_test_fold = (y_train_5[test_index])
    clone_clf.fit(X_train_folds, y_train_folds)
    y_pred = clone_clf.predict(X_test_fold)
    n_correct = sum(y_pred == y_test_fold)
    print(n_correct / len(y_pred)) # prints 0.9502, 0.96565 and 0.96495
```

생학으로 (confusion matrix)

- 불균형 데이터셋은 정확도만으로 평가하기 어려움
- 오차행렬(confusion matrix)은 분류모델의성능을 평가하기위해 사용됨

```
from sklearn.metrics import confusion_matrix
```

```
y_train_pred_no_cv = sgd_clf.predict(X_train)
confusion_matrix(y_train_5, y_train_pred_no_cv)
```

```
array([[53470, 1109], [ 1003, 4418]])
```


생작으자 행렬. 정확도(accuracy)

정확도 =
$$\frac{TN + TP}{TN + TP + FN + FP}$$
 = $\frac{53272 + 4344}{53272 + 4344 + 1077 + 1307} = \frac{57616}{60000} = 0.96$

y_train_pred_dummy = cross_val_predict(never_5_dummy, X_train, y_train_5)
confusion_matrix(y_train_5, y_train_pred_dummy)

$$array([[54579, 0], 0])$$
 정확도= $\frac{54579}{54579+5421} = \frac{54579}{60000} = 0.91$

오차행렬은 많이 다른데 정확도는 비슷 →불균형 데이터셋에서 정확도는 좋은 지표가 아님

생정의도와재현율

정밀도 =
$$\frac{TP}{TP + FP}$$
 precision = 예측양성비율(PPR) 양성이라고 예측한 것 중에 정확도

재현율 =
$$\frac{TP}{TP + FN}$$
 recall=민감도(sensitivity)=진짜양성비율(TPR) 양성인 샘플들 중에 정확도

정밀도 =
$$\frac{4344}{4344+1307} = \frac{4344}{5651} = 0.7687$$
 [[53272, 1307],
$$\text{대현율} = \frac{4344}{4344+1077} = \frac{4344}{5421} = 0.8013$$

from sklearn.metrics import precision_score, recall_score precision_score(y_train_5, y_pred) #0.7687135 recall_score(y_train_5, y_train_pred) #0.8013281

[[54579, 0], [5421, 0]]

정밀도? 재현율? 정확도?

생생:f1-score, 특이도(specificity)

• f1-점수: 정밀도와 재현율의 조화 평균.

$$F_1 = \frac{2}{\frac{1}{495} + \frac{1}{\frac{1}{\frac{1}{495}}}} = 2 \times \frac{8095 \times \frac{1}{\frac{1}{495}}}{895 \times \frac{1}{\frac{1}{\frac{1}{495}}}} = 2 \times \frac{8095 \times \frac{1}{\frac{1}{495}}}{895 \times \frac{1}{\frac{1}{495}}}$$

from sklearn.metrics import f1_score
f1_score(y_train_5, y_train_pred)

0.7846820809248555

정확도는 95% 정도지만 f1-점수는 낮음

아 FPR =
$$\frac{FP}{TN + FP}$$
 False Positive Rate 거짓양성비율 = $1 - \frac{TN}{FP + TN} = 1 - \text{TNR}$ \$\text{specificity} \text{Specificity} \text{TNR(특이도)}

생학정밀도/재현율 트레이드오프

- 정밀도를 올리면 재현율이 줄고 그 반대도 마찬가지임.
- 예)감시카메라:
 - 재현율 높아야 됨 : 모든 도둑은 반드시 잡는다. (실제로 도둑이면 모두 검출된다)
 - 정밀도는 낮아도 됨 : 도둑이라고 해서 출동해 보았더니 도둑이 아닌 경우도 있다.
- 예) 안전한 동영상 분류기:
 - 정밀도 높아야 됨: 안전하다고 판단했으면 정말 안전한 것이다
 - 재현율 낮아도 됨 : 실제로는 안전한 것인데 안전하지 않은 것으로 분류되는 경우도 있다.

임계치를 낮춤:

- 재현율을 높임 더 많이 검출되므로 진짜가 많이 들어감 (재현율이 같거나 증가함)
- 정밀도(검출된 것 중에서 진짜인 것)는 낮아질 가능성이 커짐 (꼭 낮아지는 것은 아님)

생물정: decision_function()

- decision_function(): 예측값 반환.
- 양성 예측에 대한 확신이 높을수록 decision_function()의 값이 높음

```
y scores = sgd clf.decision function([some digit])
y scores
array([161855.74572176])
threshold = 0
                                                  결정함수 값이 0보다 클 때 양성으로 판단
y some digit pred = (y scores > threshold)
y some digit pred
array([ True])
threshold = 200000
                                               결정함수 값이 200,000보다 클 때 양성으로 판단
y_some_digit_pred = (y_scores > threshold)
y some digit pred
                                               음성으로 예측
array([False])
```

생성: precision_recall_curve()

• 모든 샘플에 대한 예측값을 구함

method='predict' 기본값, 'predict_proba'도 가능

임계값에 따라 정밀도와 재현율 값을 반환함 → 그래프로그릴수 있음

```
from sklearn.metrics import precision_recall_curve
precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)
```


생충 ROC curve

- Receiver Operating Cureve(수신기 조작곡선)
- FPR(거짓양성비율) vs. TPR(진짜양성비율, 재현 율)
- 왼꼭위꼭지점에근접할수록좋음

```
from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)

결정함수 값
```

• AUC(Area Under Curve) : 클수록 좋음

```
from sklearn.metrics import roc_auc_score
roc_auc_score(y_train_5, y_scores)
```

0.9624496555967155

재현율 =
$$\frac{TP}{TP + FN}$$

생충:ROC curve 비교

```
from sklearn.ensemble import RandomForestClassifier
forest_clf = RandomForestClassifier(random_state=42)
y_probas_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3, method="predict_proba")
y_scores_forest = y_probas_forest[:, 1] # score = proba of positive class
```

fpr_forest, tpr_forest, thresholds_forest = roc_curve(y_train_5,y_scores_forest) plt.plot(fpr, tpr, "b:", label="SGD") # 앞에서 한 SGD Classifier 결과 plot plot_roc_curve(fpr_forest, tpr_forest, "Random Forest") # random forest 결과 plot

plt.legend(loc="bottom right")

plt.show()

어떤 것이 더 좋은가?

AUC는 어떤 것이 더 클까?

다중 분류

- 다중 분류 : 두 개 이상의 클래스를 구별하는 것
- 다중 분류 가능한 모델 : 결정트리, 랜덤포리스트, 나이브베이즈, 로지스틱 회기, 신경 회로망, 딥러닝
- 2진 분류만 가능한 모델 : 선형분류기, SVM(Support Vector Machine)
- 2진 분류기 여러 개로 다중 분류를 구현하는 방법: OvA, OvO
- ✓ OvA :One-versus-All, One-versus-Rest 클래스 하나와 나머지를 분류하는 방법: N개 분류기
 - Output class = arg $\max_i C_i$, C_i : classification score of class i over non_i
 - · 대부분 분류기의 default 값
- ✓ OwO: One-versus-One 두 개의 클래스 마다 분류기를 훈련하는 방법: N x (N-1) / 2 개 분류기

 - · SVM의 default 값

다중분류: One-versus-All

다중분류: SGDClassfier: OvA

```
원본 타깃 데이터 사용
sgd_clf.fit(X_train, y_train)
sgd clf.predict([some digit])
array([5.])
some digit scores = sgd clf.decision function([some digit])
some digit scores
                                                              클래스마다 결정함수 값이 계산됨
array([[-311402.62954431, -363517.28355739, -446449.5306454 ,
       -183226.61023518, -414337.15339485, 161855.74572176,
                                                              default : OvA
       -452576.39616343, -471957.14962573, -518542.33997148,
       -536774.63961222]])
np.argmax(some digit scores)
                                                             가장 큰 인덱스가 예측에 사용됨
5
sgd clf.classes
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
                                                            인덱스로부터 클래스 값.
sgd clf.classes [5]
                                                            클래스의 인덱스는 클래스 값이 아님
5.0
```

다중분류: One Vs One Classifier

```
from sklearn.multiclass import OneVsOneClassifier
ovo clf = OneVsOneClassifier(SGDClassifier(max iter=5, random state=42))
ovo clf.fit(X train, y train)
ovo clf.predict([some digit])
array([5.])
len(ovo clf.estimators )
                                                                                   \begin{pmatrix} 10 \\ (2) \end{pmatrix} = \frac{10!}{2!(10-2)!} = 45
45
forest_clf.fit(X_train, y_train)
forest clf.predict([some digit])
                                                                            predict() 메서드는 클래스 값을 반환합니다
array([5.])
forest clf.predict_proba([some_digit])
array([[0.1, 0. , 0. , 0.1, 0. , 0.8, 0. , 0. , 0. , 0. ]])
                                                                                 예측 신뢰도를 확인할 수 있습니다
```

다중분류: RandomForest: 원래 다중분류

```
from sklearn.ensemble import RandomForestClassifier forest_clf = RandomForestClassifier(random_state=42) forest_clf.fit(X_train, y_train) forest_clf.predict([some_digit]) # array([5.])
```

마중분류: 다중 분류 교차 검증

```
cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring="accuracy") 기본적으로 OvA. SVM은 OvO array([0.84063187, 0.84899245, 0.86652998]) 정확도

from sklearn.preprocessing import StandardScaler scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train.astype(np.float64))
cross_val_score(sgd_clf, X_train_scaled, y_train, cv=3, scoring="accuracy")

array([0.91011798, 0.90874544, 0.906636 ])
```

다중분류: 오차 행렬(Confusion Matrix)

y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3)

conf mx = confusion matrix(y train, y train pred)

conf_mx

```
3, 24, 9, 10, 49, 50, 10,
array([[5725,
                                              39,
                                                    4],
         2, 6493, 43, 25, 7, 40, 5,
                                         10, 109, 8],
        51, 41, 5321, 104, 89, 26, 87,
                                          60, 166, 13],
        47, 46, 141, 5342, 1, 231, 40,
                                          50, 141, 92],
             29, 41, 10, 5366, 9,
                                     56,
                                         37, 86, 189],
        73, 45, 36, 193, 64, 4582, 111,
                                          30, 193, 94],
        29,
             34, 44, 2, 42, 85, 5627,
                                          10,
                                              45,
                                                    0],
        25,
             24, 74, 32, 54, 12, 6, 5787,
                                               15, 2361,
            161, 73, 156, 10, 163, 61, 25, 5027, 123],
             35, 26, 92, 178, 28, 2, 223, 82, 5240]])
row sums = conf mx.sum(axis=1, keepdims=True)
norm conf mx = conf mx / row sums
                                  오차율
                                  대각선 0으로 만들고 그림
np.fill_diagonal(norm_conf_mx, 0)
plt.matshow(norm_conf_mx, cmap=plt.cm.gray)
plt.show()
```


3를 5로 오인식하는 비율과 5를 3로 오인식하는 비율 어떤 것이 큰가?

다중분류: 다중 분류 리포트

print(classification_report(y_train, y_train_pred))

	precision	recall	f1-score	support	
0.0	0.94	0.97	0.96	5923	
1.0	0.94	0.96	0.95	6742	
2.0	0.91	0.89	0.90	5958	
3.0	0.90	0.87	0.88	6131	
4.0	0.92	0.92	0.92	5842	
5.0	0.88	0.85	0.86	5421	
6.0	0.93	0.95	0.94	5918	
7.0	0.93	0.92	0.93	6265	
8.0	0.85	0.86	0.86	5851	
9.0	0.87	0.88	0.88	5949	
avg / total	0.91	0.91	0.91	60000	

다중분류: 인식결과 보기


```
cl_a, cl_b = 3, 5
X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)]
X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)]
X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)]
X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)]
plt.figure(figsize=(8,8))
plt.subplot(221); plot_digits(X_aa[:25], images_per_row=5)
plt.subplot(222); plot_digits(X_ab[:25], images_per_row=5)
plt.subplot(223); plot_digits(X_ba[:25], images_per_row=5)
plt.subplot(224); plot_digits(X_bb[:25], images_per_row=5)
plt.show()
```

```
3333
3 3 3 3 8
3 3 3 3 3 3 3 3
33333 33333
33333333333
33333
      33333
      55555
55555
55555 5555
 5535 55555
55555 5555
5555 55555
```

다중 레이블 분류(Multilabel Classification)

• 여러개의 이진 레이블을 출력(ex, 사진에 밥, 앨리스, 찰리 등장 여부)

```
from sklearn.neighbors import KNeighborsClassifier
                                                               DecisionTreeClassifier, RandomForestClassifier,
                                                               MLPClassifier, KNeighborsClassifier: 다중레이블 지원
y_train_large = (y_train >= 7)
y train odd = (y train % 2 == 1)
                                                                            두 개의 레이블: 7보다 큰지와 홀수 여부
y multilabel = np.c [y train large, y train odd]
knn clf = KNeighborsClassifier()
knn clf.fit(X train, y multilabel)
KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
          metric params=None, n jobs=1, n neighbors=5, p=2,
          weights='uniform')
knn_clf.predict([some_digit])
array([[False, True]])
                                                     두 개의 레이블을 예측
```

다중출력분류(Multioutput Classification)

• 다중 출력 다중 클래스 분류라고도 부릅니다. 다중 레이블 분류에서 이진 클래스를 다 중 클래스로 확장한 것입니다

```
noise = np.random.randint(0, 100, (len(X_train), 784))
X_train_mod = X_train + noise
noise = np.random.randint(0, 100, (len(X_test), 784))
X_test_mod = X_test + noise

Y_train_mod = X_train
Y_test_mod = X_test

H스트 데이터: 원본 이미지
```

다중 레이블: 784개 픽셀 다중 출력: 0~255 픽셀 값

```
knn_clf.fit(X_train_mod, y_train_mod)
clean_digit = knn_clf.predict([X_test_mod[some_index]])
```


DecisionTreeClassifier, RandomForestClassifier

감사합니다