

舵机转向小车电路设计

小车的控制板采样模块化设计,小车在使用的之后还可以回收各个模块,用 于其他的项目,模块包括 STM32 最小系统板、稳压模块、电池电量测量模块等。

1. STM32 最小系统板

我们设计的 Forest S1 最小系统板广泛应用于我们的平衡小车、倒立摆等产品,舵机转向小车也使用了该系统板。系统板集成了 USB 串口一键下载电路,和相关的保护电路,有较强的可靠性。

1.1 单片机和外围电路

包括了 STM32F103C8T6 的外围电路,包括晶振电路、复位电路等,电源引脚接滤波电容,避免高频干扰。其中 PC14、PC15 引脚因为没有外接晶振,可以用作普通 IO。

1.2 人机交互部分

人机交互部分包括一个用户按键,一个 LED 指示灯,一个电源指示灯和一个 OLED 显示屏接口,其中按键外接了 10k 的上拉电阻,LED 灯接 1k 的限流电阻。 在调试的过程中,一般按键可以用于设置状态,OLED 可以观察各个参数,LED 可以指示系统运行的状态。

1.3 一键下载电路

我们的 STM32F103C8T6 系统板的程序下载有多种方法: 串口、SWD 等, 不过, 最简单也是最经济的, 就是通过串口给系统板下载代码。

STM32 的串口下载一般是通过串口 1 下载的,也就是通过自带的 USB 串口来下载。看起来像是 USB 下载(只需一根 USB 线,并不需要串口线)的,实际上,是通过 USB 转成串口,然后再下载的,下图是相关电路:

常规的串口下载需要我们自己设置 BOOT0 的电平为高,然后通过手动复位,STM32 就会加载 ISP 代码(固化存储在内部),从而进入 ISP 模式,此时便可以通过串口下载程序了。下载结束之后如果没有设置编程后执行,则还需要设置 BOOT0 为低电平,然后复位,程序才能运行,步骤较为繁琐。

一键下载电路的具体实现过程: 首先,DTR_N、TS_N 的输出和 DTR、RTS 的设置是相反的,必须先记下这个前提。Mcuisp(或者 FlyMcu)控制 DTR 输出低电平,则 DTR N 输

出高,然后 RTS 置高,则 RTS_N 输出低,这样 Q2 导通了,BOOT0 被拉高,即实现设置 BOOT0 为 1,同时 Q1 也会导通,STM32 的复位脚被拉低,实现复位。然后,延时 100ms 后,mcuisp 控制 DTR 为高电平,则 DTR_N 输出低电平,RTS 维持高电平,则 RTS_N 继续 为低电平,此时 STM32 的复位引脚,由于 Q1 不再导通,变为高电平,STM32 结束复位,但是 BOOT0 还是维持为 1,从而进入 ISP 模式,接着 mcuisp 就可以开始连接 STM32,下载代码了,从而实现一键下载。

1.4 电源部分

通过 AMS1117—3.3 实现 5V 到 3.3V 电压的转换。D1 和 D2 这两个 TVS 管,用于保护系统板,防止外部高压或者静电损坏系统板。

2. 稳压模块

一般我们的小车使用 3s 或者 2s 航模电池供电,而系统板是 5V 供电的,所以,我们需要通过降压模块进行 12V 到 5V 的电压转换,这里使用的芯片是 LM2596S-5.0,下面是我们根据芯片手册设计的外围电路,另外还有一个外接的 AMS1117-3.3,这个我们实际中没有使用,大家在 DIY 其他产品的时候可能用到。

4. 电量测量模块

本模块使用高精度电阻分压的方式对电池电压进行测量,根据我们的经验,一般航模电池的电量是和电压相关的,比如 2S 满电的时候是 8.4V,过放(电压低于 6.4V)必然导致电

池永久过放,所以我们有必要通过监控电池电压的变化,近似表示电池的电量,在电池电量 比较低的情况下,提醒我们充电。

下面是模块的原理图,简单分析可知,电池电压经过电阻分压,衰竭为原来的 1/11 之后,送单片机 ADC 检测,以 12 位 ADC 的 STM32 举例,Get_Battery 为 ADC 采集的变量,那么很容易计算得到电池的电量

$$Battery_Voltage = \frac{Get_Battery*11*3.3}{4096}$$

其中 OUT 引脚可以直接接到单片机的 ADC 引脚采集。下面是我们的采集代码:

函数功能: 读取电池电压

入口参数: 无

返回 值: 电池电压

```
int Get_battery_volt(void)
```

{

int Volt;//电池电压

Volt=Get_Adc(Battery_Ch)*3.3*11*100/4096;//放大 100 倍便于使用 return Volt;

}

5. 电机驱动模块

电机驱动的选型是一个重要的学问,一般我们要考量电压、电流、控制方式、成本等。 对扫地机器人行业有了解的同学可能会知道,很多扫地机器人都使用了这款芯片。翻看手册 可知,A4950最高峰值可以输出 3.5A 的电流,正常使用不堵转的情况下,这款芯片基本可

以满足了,另外需要说明的是,一个 A4950 芯片,需要 2 路 PWM 才能控制正反转和调速。

Description

Designed for pulse width modulated (PWM) control of DC motors, the A4950 is capable of peak output currents to ± 3.5 A and operating voltages to 40 V.

然后,下面是外围电路的设计,可以参考芯片手册提供的样式。其中 R_s 是设置最大限制电流的电阻,计算公式如下:

$$I_{TripMAX} = \frac{V_{REF}}{10 \times R_S}$$

电阻最终选取了 0.25 Ω, 也就是最大限制电流 2A。最终设计的模块原理图如下:

