

1.8 Vollständige Induktion

Die Menge der natürlichen Zahlen ist wie folgt definiert.

- $(1) \ 0 \in \mathbb{N}$
- $(2) \quad \forall \, n \in \mathbb{N} : n' \in \mathbb{N}$
- (3) $\forall n \in \mathbb{N} : n' \neq 0$
- (4) $\forall n, m \in \mathbb{N} : (n' = m' \implies n = m)$
- (5) $\forall X : (0 \in X \land \forall n \in \mathbb{N} : (n \in X \implies n' \in X)) \implies \mathbb{N} \subseteq X$

Hierbei bezeichnet n' den Nachfolger von $n \in \mathbb{N}$.

Hieraus leitet sich das Prinzip der vollständigen Induktion ab. Falls nun

- Die Aussage A(0) wahr ist und
- Für jedes $n \in \mathbb{N}$ gilt: A(n) ist wahr $\implies A(n+1)$ ist wahr,

so ist A(n) wahr für jedes $n \in \mathbb{N}$.

Satz 1.1. für alle $n \in \mathbb{N}$ ist die Summe der ersten n ungeraden Zahlen n^2 :

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

Beweis mittels vollständiger Induktion: Induktionsanfang (n = 0):

$$\sum_{i=1}^{0} (2i - 1) = 0 = 0^2$$

gilt.

Induktions schluss $(n \to n+1)$:

Für ein beliebiges, aber festes $n \in \mathbb{N}$ gelte $\sum_{i=1}^{n} (2i-1) = n^2$. Daraus folgt

$$\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + 2(n+1) - 1$$
$$= n^2 + 2n + 1$$
$$= (n+1)^2$$

Satz 1.2. Für alle $n \in \mathbb{N}$ und $q \in \mathbb{R} \setminus \{1\}$ ist die geometrische Summe

$$\sum_{i=0}^{n-1} q^i = \frac{q^n - 1}{q - 1}$$

Induktion

Beweis mittels vollständiger Induktion: Induktionsanfang (n = 0):

$$\sum_{i=0}^{-1} q^i = 0 = \frac{q^0 - 1}{q - 1}$$

Induktions schluss $(n \to n+1)$:

Für ein beliebiges, aber festes $n \in \mathbb{N}$ gelte

$$\sum_{i=0}^{n-1} q^i = \frac{q^n - 1}{q - 1}$$

Dann gilt:

$$\sum_{i=0}^{n} q^{i} = \sum_{i=0}^{n-1} q^{i} + q^{n}$$

$$= \frac{q^{n} - 1}{q - 1} + q^{n}$$

$$= \frac{q^{n} - 1}{q - 1} + \frac{q^{n}(q - 1)}{q - 1}$$

$$= \frac{q^{n} - 1 + q^{n+1} - q^{n}}{q - 1}$$

$$= \frac{q^{n+1} - 1}{q - 1}$$

1.9 Verallgemeinerte Induktion

- (i) Es sei $n_0 \in \mathbb{Z}$ und für jede ganze Zahl $n \geq n_0$ sei A(n) eine Aussage, die wahr oder falsch ist. Falls nun
 - die Aussage $A(n_0)$ wahr ist und
 - für alle $n \ge n_0$ gilt A(n) ist wahr $\implies A(n+1)$ ist wahr,

so ist A(n) wahr für alle $n \geq n_0$.

- (ii) Induktionsprinzip zweiter Art ("starke Induktion"): Es sei $n_0 \in \mathbb{Z}$ und für jede ganze Zahl $n \geq n_0$ sei A(n) eine Aussage, die wahr oder falsch ist. Falls nun
 - die Annahme $A(n_0)$ wahr ist und
 - Für alle $n \ge n_0$ gilt:

$$(A(k) \text{ ist wahr } \forall n_0 < k < n \implies A(n+1) \text{ ist wahr})$$

so ist die A(n) wahr für alle $n \geq n_0$.

Satz 1.3. Jede nicht-leere Teilmenge $X \subseteq N$ enthält ein kleinstes Element.

- 2 of 4 -

Induktion

Beweis. Es sei $X \subseteq \mathbb{N}$ und X enthalte kein kleinstes Element. Wir zeigen mittels Induktionsprinzip 2. Art, dass $X = \emptyset$, d. h. $n \notin X \forall n \in \mathbb{N}$

Induktionsanfang (n = 0): $0 \notin X$, da sonst 0 kleinstes Element von X.

Induktionsschluss $(n \to n+1)$: Für ein beliebiges, aber festes $n \in \mathbb{N}$ gelte: $k \notin X \ \forall k \le n$. Dann ist $n+1 \notin X$, da sonst (n+1) kleinstes Element von X wäre.

2 Darstellung ganzer Zahlen

2.1 Modulo-Rechnung

Satz 2.1. Zu $a \in \mathbb{Z}$ und $m \in \mathbb{N}_{\geq 1}$ gibt es eindeutig bestimmte Zahlen $p \in \mathbb{Z}$ und $q \in \{0, \ldots, n-1\}$ mit

$$a = p \cdot m + q$$

Die Zahl q ist der Rest bei Division von a durch m. Wir schreiben

$$q = a \mod m$$

Beweis. Existenz: Setze $p := \lfloor \frac{a}{m} \rfloor \in \mathbb{Z}$ und $q := a - p \cdot m \in \{0, \dots, m-1\}$. Eindeutigkeit: Es seien $p, p' \in \mathbb{Z}$ und $q, q' \in \{0, \dots, m-1\}$ mit

$$a = p \cdot m + q = p' \cdot m + q'$$

$$\Longrightarrow \underbrace{(p-p')}_{\in \mathbb{Z}} \cdot m = \underbrace{(q'-q)}_{\in \{-m+1,\dots,m-1\}} \Longrightarrow q-q'=0, p-p'=0$$

Die Modulo-Operation ist mit Addition und Multiplikation verträglich, d. h. für $a,b\in Z$ und $m\in \mathbb{N}_{\geq 1}$ gilt

$$(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$$

und

$$(a \cdot b) \mod m = ((a \mod m) \cdot (b \mod m)) \mod m$$

Beweis. schreibe $a = p \cdot m + q, b = p' \cdot m + q'$ mit $q, q' \in \{0, \dots, m-1\}$. Dann gilt

$$(a+b) \mod m = ((p+p') \cdot m + (q+q')) \mod m$$

Analog für Multiplikation.

Bemerkung. Die Menge $\{0, 1, \dots, m-1\}$ bildet gemeinsam mit Addition und Multiplikation mod m den Ring \mathbb{Z}_m . Ist m prim, so ist \mathbb{Z}_m sogar ein Körper.

Induktion

2.2 Zahldarstellung

Satz 2.2. es seien $b \in \mathbb{N}_{\geq 2}$ und $n \in \mathbb{N}_{\geq 1}$. Für $\ell := \lfloor \log_b n + 1 \rfloor$ existieren eindeutig bestimmte Zahlen $z_i \in \{0, \ldots, b-1\}$ für $i = 0, \ldots, \ell-1$ mit

$$n = \sum_{i=0}^{\ell-1} z_i \cdot b^i \ und \ z_{\ell-1} \neq 0$$

Bemerkung. Das Wort $z_{\ell-1}\dots z_0$ heißt die b-adische Darstellung von n. Man schreibt manchmal auch

$$n = (n_{\ell-1} \dots z_0)_b$$

Beispiel. $(24)_{10} = (11000)_2 = (220)_3 = (120)_4 = (44)_5 = (40)_6 = (33)_7 = (30)_8$ $(986)_{10} = (3\ 13\ 10)_{16} = 0x3da$

Beweis zur Existenz der b-adischen Darstellung. Induktionsanfang: Für $n \in \{1, ..., b-1\}$ gilt $\sum_{i=0}^{0} z_i b^i$ mit $z_0 := n \neq 0$

Induktionsschritt: Für ein beliebiges, aber festes $n \in \mathbb{N}_{\geq b-1}$ gebe es für alle $k \leq n$ eine solche Darstellung. Konstruiere damit Darstellung für n+1:

Es sei $k := \lfloor \frac{n+1}{b} \rfloor \le n$ und $\ell' := \lfloor \log_b k \rfloor + 1$. Also gibt es Darstellung

$$k = \sum_{i=0}^{\ell'-1} z_i' b^i$$

mit $z_i' \in \{0, \dots, b-1\}$ und $z_{\ell-1}' \neq 0$. Dann ist $\ell := \lfloor \log_b(n+1) \rfloor + 1 = \ell' + 1$ Setze $z_i := z_{i-1}'$ für $i = 1, \dots, \ell - 1$ und $z_0 := (n+1) \mod b$. Dann ist $n+1 = k \cdot b + z_0 = \sum_{i=0}^{\ell'-1} z_i' b^{i+1} + z_0$.