

ADC Calibration in LArTPC

Wenqiang Gu, Brookhaven National Laboratory for the DUNE collaboration

Workshop on Calibration and Reconstruction for LArTPCs

December 10th 2018

Evolution of ADC in LArTPC

μBooNE Warm Cold Non-commercial "domino" P1 SBND Cold Non-commercial AD7274 DUNE Cold Non-commercial AD7274

Cold ADC is essential for DUNE

How to choose an ADC?

- Dynamic range
 - 300 fC maximum ionized charge, 0.1 fC noise
 → 12-bit ADC
 - Preamp gain 4.7 mV/fC → ADC 0 ~ 1.6V
- Digitization frequency
 - Nyquist theorem: 1 MHz for 2us shaping
 - 2 MHz oversampling is helpful for improving resolution, sticky code mitigation, etc.

V. Radeka et al. **Cold electronics for 'Giant' Liquid Argon Time Projection Chambers**,

J. Phys. Conf. Ser. 308 (2011) 012021

Precise ADC determination in protoDUNE

 However, given the cold environment in LAr, two problems occur for the precise determination of ADC

ADC readout scheme in protoDUNE

- Read/write logic synchronized through five control signals
- In cold environment, an instability in bit conversion results in sticky code and nonlinearity

Procedure of sticky code mitigation

Sticky code interpolation

- Linear interpolation between "un-sticky" codes is a good first step
 - 2 MHz oversampling is helpful for interpolation
- However, linear interpolation may not be sufficient for signal region
- A correction w.r.t. the electronics response function would be better

W.r.t response function

FFT interpolation w.r.t electronics response

- However, some facts makes it difficult for using the response function
 - A few percent channel-to-channel variation in response function
 - Coupled with ADC nonlinearity (discussed shortly)
- Instead, a FFT interpolation is proposed by
 - i) Linear interpolation as a base correction
 - ii) Once a "sticky" code found in an even-binned tick, apply phase shift to odd-binned ticks to cover even-binned ticks, and *vice versa*

FT property	Time domain	Frequency domain
	f(t)	$F(\omega)$
Phase shift	$f(t-t_0)$	$F(\omega)e^{-j\omega t_0}$

Advantages of such FT interpolation

- Only the phase changed, while no changes of the magnitude in the frequency domain
 - Still respect the shape of the electronics response function

- Sometimes, good code tagged as "sticky", the FT interpolation presumably minimize the biases
 - Balance of efficiency and accuracy for sticky code tagging

Performance of the ADC mitigation

A special case

- However, when two adjacent sticky codes happens on the peak region, the mitigation does not work well
- Need to improve this special case
 - Maybe ignore the base correction from linear interpolation

ADC nonlinearity (NL)

- Low temperature degrades the electronics and read/write logics
- External clock eases NL as well as sticky code
- NL is sensitive to clock settings
- A precise determination of ADC NL is very important for the extraction of ionized electrons

Difficulties from a bench test to protoDUNE

NL is sensitive to clock settings

- (bench test) clock is tuned for each ADC
- (protoDUNE) one clock shared by four ADC circuits

ProtoDUNE

ADC calibration setup

• Similar setup as in MicroBooNE electronics calibration

Calibration scheme independent of the shape of response function

- Assume pulse voltage (η) and preamp gain (G) do not change the shape of electronics response
- NL distorts the shape differently for high ADC and low ADC

χ^2 minimization

"Best-fit" $f(A_i)$ and R(t) from simulation

- Given an initial value of NL correction function $f(A_i)$
- After a few iterations, "best-fit" NL $f(A_i)$ and effective response R(t) tends to be stable
- The spread in R(t) significantly shrinks after minimization

MC validation of the degeneracy

- Given a same charge input, the waveform predictions are close (<1 ADC) for
 - True response and NL
 - A "best-fit" effective response and NL
- NL bias in "best-fit" is not a problem!

Discussion: ADC impact on physics analysis

- ADC nonlinearity calibration is necessary for a precise extraction of ionized electrons
- Presumably, an important input for any analysis related with energy/charge
 - e.g., particle identification, TPC/light matching

Summary

Cold electronics is essential for LArTPC experiments

- Sticky code mitigation
 - An interpolation approach through FT is proposed and studied in protoDUNE
- ADC nonlinearity
 - A calibration strategy was proposed and preliminarily studied in simulation