Synchronization of Cellular Systems

Lecturer: Dr. Rui Wang

Reference signal

Downlink PHY in LTE

- Physical channels: a set of Resource Elements carrying information originating from higher layers
 - Physical Downlink Shared Channel, PDSCH
 - Physical Broadcast Channel, PBCH
 - Physical Multicast Channel, PMCH
 - Physical Control Format Indicator Channel, PCFICH
 - Physical Downlink Control Channel, PDCCH
 - Physical Hybrid ARQ Indicator Channel, PHICH
- Physical signals: a set of Resource Elements NOT carrying information originating from higher layers
 - Reference signal: channel estimation

Initial Access

- When one mobile device is turned on, it knows the potential frequencies where there might be cellular service.
- But it does not know the bandwidth of the service, sampling frequency, the timing of frames ...

Channel bandwidth [MHz]	1.4	3	5	10	15	20
Number of resource blocks (N_{RB})	6	15	25	50	75	100
Number of occupied subcarriers	72	180	300	600	900	1200
IDFT(Tx)/DFT(Rx) size	128	256	512	1024	1536	2048
Sample rate [MHz]	1.92	3.84	7.68	15.36	23.04	30.72
Samples per slot	960	1920	3840	7680	11520	15360

Initial Access

- When one mobile device is turned on, it knows the potential frequencies where there might be cellular service.
- But it does not know the bandwidth of the service, sampling frequency, the timing of frames ...
- In WiFi, bandwidth, sampling frequency and FFT size are all fixed; so we just need to detection the arrival timing of PPDU, everything follows.

Initial Access

- Initial access procedure for LTE
 - Synchronization: find the frames via PSS (Primary synchronization signal)
 - Cell search: tell the BSs via PSS+SSS (Secondary synchronization signal)
 - System information (e.g., sampling frequency and FFT size) receiving via PBCH and etc.
 - Random access

PSS & SSS Location

- Using non-coherent detection, estimate 5msec timing and physical-layer identity
- Channel estimation information for SSS
- SSS
 - Physical-layer identity (Cell ID) is obtained
 - Mapped to one of 168 cell ID groups (168 ID groups for 504 Cell IDs)

Cell Identity (TS36.211 6.11)

"There are 504 unique physical-layer cell identities. The physical-layer cell identities are grouped into 168 unique physical-layer cell-identity groups, each group containing three unique identities."

"A physical-layer cell identity $N_{\rm ID}^{\rm cell}=3N_{\rm ID}^{(1)}+N_{\rm ID}^{(2)}$ is thus uniquely defined by a number $N_{\rm ID}^{(1)}$ in the range of 0 to 167, representing the physical-layer cell-identity group, and a number $N_{\rm ID}^{(2)}$ in the range of 0 to 2, representing the physical-layer identity within the physical-layer cell-identity group."

PSS (TS36.211 6.11.1)

- PSS is selected according to $N_{\rm ID}^{(2)}$
- PSS with length 62 is a Zadoff Chu sequence, which is generated as follows

$$d_{u}(n) = \begin{cases} e^{-j\frac{\pi u n(n+1)}{63}} & n = 0,1,...,30\\ e^{-j\frac{\pi u(n+1)(n+2)}{63}} & n = 31,32,...,61 \end{cases}$$

•	$N_{ ext{ID}}^{(2)}$ ${\scriptscriptstyle arphi}$	Root index u -
•	0₽	25₽
•	1₽	29₽
•	2₽	34.

- PSS sequences are orthogonal with respect to different u.
- PSS has small cross correlation with shifting

Assume PSS with u=34 is transmitted

- When power on, search PSS on all possible carrier frequency with sampling frequency 1.92MHz.
- Structure of CP can be used to find the timing of frames

Channel bandwidth [MHz]	1.4	3	5	10	15	20
Number of resource blocks (N_{RB})	6	15	25	50	75	100
Number of occupied subcarriers	72	180	300	600	900	1200
IDFT(Tx)/DFT(Rx) size	128	256	512	1024	1536	2048
Sample rate [MHz]	1.92	3.84	7.68	15.36	23.04	30.72
Samples per slot	960	1920	3840	7680	11520	15360

• With sample frequency = 1.92MHz

$$x_n^{128} = \sum_{k=-63}^{64} a_k e^{\frac{j2\pi kn}{128}} = \sum_{k\neq 0, k=-31}^{31} a_k e^{\frac{j2\pi kn}{128}} + \sum_{\text{other } k} a_k e^{\frac{j2\pi kn}{128}}$$

Subcarriers for PSS

• With sample frequency = 3.84MHz

$$x_n^{256} = \sum_{k=-127}^{128} a_k e^{\frac{j2\pi kn}{256}} = \sum_{k\neq 0, k=-31}^{31} a_k e^{\frac{j2\pi kn}{256}} + \sum_{\text{other } k} a_k e^{\frac{j2\pi kn}{256}}$$

Eliminate by LPF

• 1.92MHz

$$x_n^{128} = \sum_{k=-63}^{64} a_k e^{\frac{j2\pi kn}{128}} = \sum_{k \neq 0, k=-31}^{31} a_k e^{\frac{j2\pi kn}{128}}$$

 x_0^{128} x_1^{128} ... x_{127}^{128}

• 3.84MHz

$$x_0^{256}$$
 x_1^{256} x_2^{256} x_3^{256} ... x_{254}^{256} x_{255}^{256}

$$x_n^{256} = \sum_{k=-127}^{128} a_k e^{\frac{j2\pi kn}{256}} = \sum_{k\neq 0, k=-31}^{31} a_k e^{\frac{j2\pi kn}{256}}$$

• 1.92MHz

• 3.84MHz

• 1.92MHz

• 3.84MHz

If we sample both with 1.92MHz, we have the same resulting sequences, which is the 128FFT of PSS

- No matter what sampling frequency is used
- If we get the OFDM symbol with PSS
- After LPF, if we sample with 1.92MHz, we always get the 128FFT of PSS

- When power on, search PSS on all possible carrier frequency.
- Three possible PSSs should be searched simultaneously using cross-correlation.
- For FDD, PSS locates in the last OFDM symbols of slot #0, 10.
- When a PSS is found, the user knows $N_{ID}^{(2)}$ and timing of slot #0 or 10.

Recap: PSS & SSS Location

- Using non-coherent detection, estimate 5msec timing and physical-layer identity
- Channel estimation information for SSS
- SSS
 - Physical-layer identity (Cell ID) is obtained
 - Mapped to one of 168 cell ID groups (168 ID groups for 504 Cell IDs)

PSS Helps SSS Detection

• Use PSS, we can estimate the CSI of subcarriers from -31 to 31

Since SSS symbol is next to PSS symbol, SSS can be estimated

SSS (TS36.211 6.11.2)

- SSS is generated according to subframe index and cell ID.
- Thus, by the detection of SSS, the above information can be obtained.

- When a PSS is found, the user continues to detect the SSS in one OFDM symbol before.
- Given $N_{ID}^{(2)}$, there are 168 \times 2 different possibilities of SSS in slot #0 and #10.
- The user could find which one is used, then $N_{ID}^{\left(1\right)}$ and frame timing
- Physical Cell Identities (PCI) = $3 \times N_{ID}^{(1)} + N_{ID}^{(2)}$
- Conclusion: After PSS and SSS detection, user knows the Cell ID and timing of frame

Discussion

- What does the user obtain after PSS and SSS?
- How many BSs around, what their Cell IDs are, what their signal strengths are
- Synchronize with the strongest cell
- What's the next step of receiving?

Physical Broadcast Channel (PBCH)

- Master information block (MIB) from upper layer is transmitted in PBCH
- PBCH is transmitted on every 10ms, the 0th subframe of each frame, information in PBCH is updated every 40ms (4 frames)
- 4 OFDM symbols after PSS, 72 subcarriers (we are always able to detect the symbols on the lowest 128 subcarriers without knowledge of actual bandwidth)
- 14bits MIB information, code rate = 1/3, scrambled with Cell ID, QPSK,

MIB

Master information block (MIB) of system information is transmitted on PBCH

Up to now

- PSS & SSS: Synchronize with the desired cell
- PBCH: Know the bandwidth and FFT size
- What's the next? Detect the frame head --- PDCCH
- The issue of PDCCH detection: # of OFDM symbols is variable

"The physical control format indicator channel carries information about the number of OFDM symbols used for transmission of PDCCHs in a subframe."

--- TS36.211 v13 6.7

Control Format Indicator (CFI)

- CFI is an indicator telling how many OFDM symbols are used for carrying control channel (e.g, PDCCH and PHICH) at each subframe. (TS36.212 v13 5.3.4)
- This CFI is carried by a specific physical channel called **PCFICH**. (TS36.211 v13 6.7)
- PCFICH consists of 16REs at fixed locations of the first symbol in each subframe, carrying only CFI without any other information. (TS36.211 v13 6.7.4)
- QPSK

Table 5.3.4-1: CFI codewords

CFI	CFI codeword $< b_0, b_1, , b_{31} >$
1	<0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1>
2	<1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0>
3	<1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1>
4 (Reserved)	<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

Reading & Homework (20 April)

3GPP TS 36.211

• Related part in Section 4, 5.1, 5.2, 6.1, 6.2, 6.6, 6.11

3GPP TS 38.211

• Section 4

Assignment 5