Lecture 3: Linear Classifiers

Reminder: Assignment 1

- http://web.eecs.umich.edu/~justincj/teaching/eecs498/assignment1.html
- Due Sunday September 15, 11:59pm EST
- We have written a homework validation script to check the format of your .zip file before you submit to Canvas:
- https://github.com/deepvision-class/tools#homeworkvalidation
- This script ensures that your .zip and .ipynb files are properly structured; they do not check correctness
- It is **your responsibility** to make sure your submitted .zip file passes the validation script

Last time: Image Classification

Input: image

This image by Nikita is licensed under CC-BY 2.0

Output: Assign image to one of a fixed set of categories

cat

bird
deer
dog
truck

Last Time: Challenges of Recognition

Viewpoint

Illumination

This image is CCO 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

Occlusion

<u>This image</u> by <u>jonsson</u> is licensed under CC-BY 2.0

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

This image is CCO 1.0 public domain

Last time: Data-Drive Approach, kNN

Today: Linear Classifiers

Neural Network

This image is CC0 1.0 public domain

Recall CIFAR10

50,000 training images each image is 32x32x3

10,000 test images.

Parametric Approach

Image

10 numbers giving class scores

parameters or weights

Parametric Approach: Linear Classifier

f(x,W) = Wx**Image**

Array of 32x32x3 numbers (3072 numbers total)

+ f(x,W)

10 numbers giving class scores

parameters or weights

Parametric Approach: Linear Classifier (3072,)

Image

(10,) (10, 3072)

f(x,W)

10 numbers giving class scores

Array of 32x32x3 numbers (3072 numbers total)

parameters or weights

Parametric Approach: Linear Classifier

(3072,)(10, 3072)

Image

Array of **32x32x3** numbers (3072 numbers total)

10 numbers giving class scores

parameters or weights

f(x,W)

Example for 2x2 image, 3 classes (cat/dog/ship)

Example for 2x2 image, 3 classes (cat/dog/ship)

Linear Classifier: Algebraic Viewpoint

Linear Classifier: Bias Trick

Add extra one to data vector; bias is absorbed into last column of weight matrix

Stretch pixels into column

Linear Classifier: Predictions are Linear!

$$f(x, W) = Wx$$
 (ignore bias)

$$f(cx, W) = W(cx) = c * f(x, W)$$

Linear Classifier: Predictions are Linear!

$$f(x, W) = Wx$$
 (ignore bias)

$$f(cx, W) = W(cx) = c * f(x, W)$$

Interpreting a Linear Classifier

Algebraic Viewpoint

$$f(x,W) = Wx + b$$

Interpreting a Linear Classifier

Algebraic Viewpoint

f(x,W) = Wx + b

Interpreting an Linear Classifier

Interpreting an Linear Classifier: Visual Viewpoint

Interpreting an Linear Classifier: Visual Viewpoint

Linear classifier has one "template" per category

bird

cat

plane

Interpreting an Linear Classifier: Visual Viewpoint

Linear classifier has one "template" per category

A single template cannot capture multiple modes of the data

e.g. horse template has 2 heads!

bird

plane

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Hard Cases for a Linear Classifier

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2:

Everything else

Class 1:

Three modes

Class 2:

Everything else

Recall: Perceptron couldn't learn XOR

Х	Υ	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	0

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

So Far: Defined a linear score function

$$f(x,W) = Wx + b$$

airplane	-3.45	
automobile	-8.87	
bird	0.09	
cat	2.9	
deer	4.48	
dog	8.02	
frog	3.78	
horse	1.06	
ship	-0.36	
truck	-0.72	

-0.51	3.42
6.04	4.64
5.31	2.65
-4.22	5.1
-4.19	2.64
3.58	5.55
4.49	-4.34
-4.37	-1.5
-2.09	-4.79
-2.93	6.14

Given a W, we can compute class scores for an image x.

But how can we actually choose a good W?

Choosing a good W

$$f(x,W) = Wx + b$$

3.42

4.64

2.65

5.1

2.64

5.55

-4.34

-1.5

-4.79

6.14

airplane	-3.45
automobile	-8.87
bird	0.09
cat	2.9
deer	4.48
dog	8.02
frog	3.78
horse	1.06
ship	-0.36
truck	-0.72

-0.51	
6.04	
5.31	
-4.22	
-4 . 19	
3.58	
4.49	
-4.37	
-2.09	
-2.93	

TODO:

- 1. Use a **loss function** to quantify how good a value of W is
- Find a W that minimizes the loss function (optimization)

Loss Function

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Loss Function

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc

Loss Function

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss Function

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $oldsymbol{x_i}$ is image and $oldsymbol{y_i}$ is (integer) label

Loss for a single example is

$$L_i(f(x_i, W), y_i)$$

Loss Function

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss for a single example is

$$L_i(f(x_i, W), y_i)$$

Loss for the dataset is average of per-example losses:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

"The score of the correct class should be higher than all the other scores"

"The score of the correct class should be higher than all the other scores"

Highest score among other classes

"The score of the correct class should be higher than all the other scores"

2W

"The score of the correct class should be higher than all the other scores"

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let
$$s=f(x_i,W)$$
 be scores

Then the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$S_j - S_{y_i'} + 1$$
 $w_{i imes x} - w_{y_i imes x} + 1$

cat

3.2

1.3

2.2

car

frog

2.0

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

NXC 1 0 -1

cat

car

5.1

frog

Loss

3.2

-1.7

2.9

1.3

2.2

2.5

4.9

2.0 -3.1 Given an example (x_i,y_i) (x_i is image, y_i is label)

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$

 $+ \max(0, -1.7 - 3.2 + 1)$

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

2.2

2.5

-3.1

cat **3.2**

car 5.1

frog -1.7

Loss 2.9

1.3

4.9

2.0

0

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s=f(x_i,W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 1.3 - 4.9 + 1)$

 $+\max(0, 2.0 - 4.9 + 1)$

 $= \max(0, -2.6) + \max(0, -1.9)$

= 0 + 0

= 0

cat

car

3.2

1.3

5.1

4.9

frog

Loss

-1.7

2.0

2.9

3 2.2

2.5

-3.1

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 2.2 - (-3.1) + 1)$

 $+\max(0, 2.5 - (-3.1) + 1)$

= max(0, 6.3) + max(0, 6.6)

= 6.3 + 6.6

= 12.9

cat **3.2**

1.3 2.2

car 5.1

4.9 2.5

frog -1.7

2.0 **-3.1**

Loss 2.9

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s=f(x_i,W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over the dataset is:

$$L = (2.9 + 0.0 + 12.9) / 3$$

= 5.27

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

2.0

-3.1

Loss 2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s=f(x_i,W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to the loss if the scores for the car image change a bit?

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

2.0

-3.1

Loss 2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s=f(x_i,W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q2: What are the min and max possible loss?

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

2.0

-3.1

Loss 2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s=f(x_i,W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q3: If all the scores were random, what loss would we expect?

cat **3.2**

1.3 2.2

car 5.1

4.9 2.5

frog -1.7

2.0 **-3.1**

Loss 2.9

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s=f(x_i,W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: What would happen if the sum were over all classes? (including $i = y_i$)

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

2.0

-3.1

Loss 2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if the loss used a mean instead of a sum?

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

2.0

-3.1

Loss 2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used this loss instead?

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

$$f(x, W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

Q: Suppose we found some W with L = 0. Is it unique?

$$f(x, W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

Q: Suppose we found some W with L = 0. Is it unique?

No! 2W is also has L = 0!

 $f(x,W) = Wx \ L_i = \sum_{j
eq y_i} \max(0,s_j-s_{y_i}+1)^2$

cat

car

3.2

5.1

frog -1.7

Loss 2.9

1.3

4.9

2.0

0

2.2

2.5

-3.1

12.9

Original W:

 $= \max(0, 1.3 - 4.9 + 1)$ $+ \max(0, 2.0 - 4.9 + 1)$

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

Using 2W instead:

 $= \max(0, 2.6 - 9.8 + 1)$

 $+\max(0, 4.0 - 9.8 + 1)$

 $= \max(0, -6.2) + \max(0, -4.8)$

= 0 + 0

= 0

f(x,W) = Wx $L_i = \sum_{j
eq y_i} \max(0,s_j-s_{y_i}+1)^2$

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog -1.7

2.0

-3.1

Loss 2.9

0

12.9

How should we choose between W and 2W if they both perform the same on the training data?

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$$

Data loss: Model predictions should match training data

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1} \qquad \lambda_{\text{.}} = \text{regularization strength}$$
 (hyperparameter)

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$
 λ = regularization strength (hyperparameter)

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization:
$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L1 regularization:
$$R(W) = \sum_k \sum_l |W_{k,l}|$$

Elastic net (L1 + L2):
$$R(W) = \sum_k \sum_l eta W_{k,l}^2 + |W_{k,l}|$$

More complex:

Dropout

Batch normalization

Cutout, Mixup, Stochastic depth, etc...

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1} \qquad \lambda \text{. = regularization strength (hyperparameter)}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Purpose of Regularization:

- Express preferences in among models beyond "minimize training error"
- Avoid **overfitting**: Prefer simple models that generalize better
- Improve optimization by adding curvature

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

$$w_1^T x = w_2^T x = 1$$

L2 Regularization

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = \left[0.25, 0.25, 0.25, 0.25\right]$$

$$w_1^T x = w_2^T x = 1$$

L2 Regularization

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L2 regularization likes to "spread out" the weights

The model f₁ fits the training data perfectly The model f₂ has training error, but is simpler

Regularization pushes against fitting the data too well so we don't fit noise in the data

Regularization pushes against fitting the data too well so we don't fit noise in the data

Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

cat **3.2**

car 5.1

frog -1.7

Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax function

3.2 cat

5.1 car

frog -1.7

Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax function

cat

3.2

car

5.1

frog

-1.7

Unnormalized logprobabilities / logits

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax function

Want to interpret raw classifier scores as probabilities

Softmax

Want to interpret raw classifier scores as probabilities

probabilities / logits

probabilities

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$oxed{s=f(x_i;W)} egin{aligned} P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}} \end{aligned} ext{ Softmax function}$$

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

cat **3.2**

car 5.1

frog -1.7

Q: What is the min /

max possible loss L_i?

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car 5.1

frog -1.7

Q: What is the min / max possible loss L_i ?

A: Min 0, max +infinity

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car 5.1

frog -1.7

Q: If all scores are small random values, what is the loss?

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Q: If all scores are small random values, what is the loss?

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[10, -2, 3]

[10, 9, 9]

[10, -100, -100]

and $y_i =$

Q: What is cross-entropy loss? What is SVM loss?

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

$$[10, -2, 3]$$

$$[10, -100, -100]$$

$$y_i = 0$$

Q: What is cross-entropy loss? What is SVM loss?

A: Cross-entropy loss > 0 SVM loss = 0

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

$$[10, -2, 3]$$

$$[10, -100, -100]$$

and
$$y_i =$$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[10, -2, 3]

[10, 9, 9]

[10, -100, -100]

and $y_i =$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

A: Cross-entropy loss will change; SVM loss will stay the same

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

$$[10, -2, 3]$$

$$[10, -100, -100]$$

and
$$y_i = 0$$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[10, -2, 3]

[10, 9, 9]

[10, -100, -100]

and $y_i = 0$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

A: Cross-entropy loss will decrease, SVM loss still 0

Recap: Three ways to think about linear classifiers

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Recap: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a **score function:**
- We have a loss function:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 Softmax SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

$$s = f(x; W) = Wx$$

Linear classifier

Recap: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a **score function**:
- We have a loss function:

Q: How do we find the best W?

$$s = f(x; W) = Wx$$

Linear classifier

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 Softmax SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

Next time: Optimization