Triangulări

Mihai-Sorin Stupariu

Sem. I, 2019 - 2020

Triangulări 1/10

Supravegherea unei galerii de artă

Camera din P poate supraveghea A, dar nu B.

2/10

Formalizare

- ▶ O galerie de artă poate fi interpretată (în contextul acestei probleme) ca un poligon simplu \mathcal{P} (adică un poligon fără autointersecții) având n vârfuri.
- ▶ O cameră video (vizibilitate 360^0) poate fi identificată cu un punct din interiorul lui \mathcal{P} ; ea poate supraveghea acele puncte cu care poate fi unită printr-un segment inclus în interiorul poligonului.
- ▶ Problema galeriei de artă: câte camere video sunt necesare pentru a supraveghea o galerie de artă și unde trebuie amplasate acestea?

Triangulări 3 / 10

Numărul de camere vs. forma poligonului

- Se dorește exprimarea numărului de camere necesare pentru supraveghere în funcție de n (sau controlarea acestuia de către n).
- Pentru a supraveghea un spațiu având forma unui poligon convex, este suficientă o singură cameră.
- Numărul de camere depinde și de forma poligonului: cu cât forma este mai "complexă", cu atât numărul de camere va fi mai mare.
- Principiu: Poligonul considerat: descompus în triunghiuri (triangulare).

Triangulări 4 / 10

Definiții

- ightharpoonup Fie \mathcal{P} un poligon plan.
- (i) O diagonală a lui \mathcal{P} este un segment ce unește două vârfuri ale acestuia și care este situat în interiorul lui \mathcal{P} .
- (ii) O triangulare T_P a lui P este o descompunere a lui P în triunghiuri, dată de o mulțime maximală de diagonale ce nu se intersectează.
- ► **Teoremă.** Orice poligon simplu admite o triangulare. Orice triangulare a unui poligon cu n vârfuri conține exact n 2 triunghiuri.

Triangulări 5 / 10

Rezovlarea problemei galeriei de artă

- Amplasarea camerelor se poate face în vârfurile poligonului.
- Dată o pereche $(\mathcal{P}, \mathcal{T}_P)$ se consideră o 3-colorare a acesteia: fiecărui vârf îi corespunde o culoare dintr-un set de 3 culori și pentru fiecare triunghi, cele 3 vârfuri au culori distincte.
- **Observație.** Dacă \mathcal{P} este simplu, o astfel de colorare există, deoarece graful asociat perechii $(\mathcal{P}, \mathcal{T}_{\mathcal{P}})$ este arbore.

Triangulări 6 / 10

Teorema galeriei de artă

- ▶ **Teoremă.** [Chvátal, 1975; Fisk, 1978] Pentru un poligon cu n vârfuri, $\left[\frac{n}{3}\right]$ camere sunt **uneori necesare** și întotdeauna **suficiente** pentru ca fiecare punct al poligonului să fie vizibil din cel puțin una din camere.
- ▶ Despre Teorema Galeriei de Artă: J. O'Rourke, Art Gallery Theorems and Algorithms

Triangulări 7 / 10

Metode de triangulare: ear cutting / clipping / trimming

- Concepte:
 - vârf principal,
 - ear (vârf / componentă de tip E) [Meisters, 1975];
 - ▶ mouth (vârf / componentă de tip M) [Toussaint, 1991].
- Orice vârf de tip E este convex; orice vârf de tip M este concav (reflex). Reciproc nu neapărat!
- ▶ **Teoremă**. (Two Ears Theorem [Meisters, 1975]) Orice poligon cu cel puțin 4 vârfuri admite cel puțin două componente de tip E care nu se suprapun.
- Corolar. Orice poligon simplu admite (cel puţin) două diagonale.
- Găsirea unei componente de tip E: complexitate O(n) [ElGindy, Everett, Toussaint, 1993]. Se bazează pe Two Ears Theorem!
- Algoritmul de triangulare bazat de metoda ear cutting: complexitate $O(n^2)$.
- Link despre triangulări
 Link pentru algoritmul Ear cutting

Triangulări 8 / 10

Metode de triangulare: descompunerea în poligoane monotone

- Concept: poligon y-monoton
- Algoritmi de triangulare eficienți: complexitate O(n) pentru poligoane y-monotone [Garey et al., 1978].
- Descompunerea unui poligon oarecare in componente y-monotone poate fi realizată cu un algoritm de complexitate $O(n \log n)$ [Lee, Preparata, 1977].
- Există şi alte clase de algoritmi mai rapizi; [Chazelle, 1990]: algoritm liniar.
- Link pentru alte abordări
- ► Găsirea unui algoritm liniar "simplu" Problemă în *The Open Problems Project*

Triangulări 9 / 10

Triangularea poligoanelor monotone

Input: Un poligon y-monoton \mathcal{P} . **Output:** O triangulare a lui \mathcal{P} .

- 1. Lanţul vârfurilor din partea stângă și al celor din partea dreaptă sunt unite într-un singur șir, ordonat descrescător, dupa y (dacă ordonata este egală, se folosește abscisa). Fie v₁, v₂,..., v_n șirul ordonat.
- 2. Inițializează o stivă vidă S și inserează v_1, v_2 .
- 3. **for** j = 3 **to** n 1
- 4. **do if** v_i și vârful din top al lui S sunt în lanțuri diferite
- 5. **then** extrage toate vârfurile din S
- 6. inserează diagonale de la v_i la vf. extrase, exceptând ultimul
- 7. inserează v_{i-1} și v_i în S
- 8. **else** extrage un vârf din S
- 9. extrage celelalte vârfuri din $\mathcal S$ dacă diagonalele formate cu v_j sunt în interiorul lui $\mathcal P$; inserează aceste diagonale; inserează înapoi ultimul vârf extras
- 10. inserează v_i în S
- 11. adaugă diagonale de la v_n la vf. stivei (exceptând primul și ultimul)

Triangulări 10 / 10