母平均

機械学習

川田恵介 (keisukekawata@iss.u-tokyo.ac.jp)

Table of contents

1	キーワード	2
1.1	例	2
1.2	過学習/過剰適合	3
2	くじ引き	3
2.1	くじ引きの評価	3
2.2	データ分析のイメージ	4
2.3	データ収集	4
2.4	データ分析	4
2.5	まとめ	4
3	母分布	4
3.1	データ分析の根本問題と解決策	5
3.2	解決策: 母集団とサンプリング	5
4	評価	5
4.1	正答と回答	5
4.2	数值例	6
4.3	数值例	6
4.4	解決策: 評価	6
5	モデル推定	7
5.1	予測の誤差	7
5.2	完璧な予測	7
5.3	最善の予測	7
5.4	数值例	7
5.5	数値例: データ (100 事例)	8
5.6	数値例: 想像上の母平均の追記	8

	5.7	数値例: OLS との比較	9
	5.8	数値例: OLS との比較	9
6		くじ引きとしての復習	10
	6.1	数値例: データくじ結果	10
	6.2	数値例: シンプルなモデル	11
	6.3	数値例: シンプルなモデル	11
7		事例数とモデルの複雑さ	12
	7.1	数値例: OLS との比較	12
	7.2	数値例: OLS との比較	13
	7.3	数値例: OLS との比較	13
	7.4	性質: 少数事例	14
	7.5	性質: 大規模事例	14
	7.6	過学習/過剰適合	14
	7.7	まとめ	14
	7.8	実戦への示唆	15

1 キーワード

- 過学習/過剰適合
- 推定されたモデルが、事例と過剰に適合してしまう (事例から過度に学び過ぎてしまう) 現象
 - 矛盾して聞こえるが、データ分析において最も注意すべき
 - その理由とともに必ず理解を!!!

1.1 例

• Price ~ Distance (とその 11 乗まで) で OLS 推定すると?

COTOG! 1 1100 0120 1 1100 0120 1 ... 1 0120 07 117

1.2 過学習/過剰適合

- モデルを複雑化すると、データ上の平均に予測値が必ず近づく
 - データとの矛盾は減る
- 予測性能は悪化しうる!!!

2 くじ引き

- どのような回答を得られるかは、本質的に確率的に決まる ("くじ引き")、と考える
 - データを"くじ引き"(データくじ)で入手し、分析しているため
- "データくじ"はどうしようもないものとして、推定方法を工夫する

2.1 くじ引きの評価

- 仮想的な結果を想像する必要がある: くじを引いた人の半数が
 - 100 万円分の商品/残りが 10 万円の商品 (くじ A)
 - 60 万円分の商品/残りが 40 万円の商品 (くじ B)
- 「自分がどちら側になるのかわからない」ことを前提に、どちらのくじを引くのか、くじの特徴を踏ま えて考える必要がある

- くじ A の方が当たれば大きい、くじ B のばらつきが小さい、平均値(期待値)は A が 0.5×100 + 0.5×10 = 55、B が 0.5×60 + 0.5×40 = 50、なので A が大きい

2.2 データ分析のイメージ

- 不正確なイメージ:「手元にあるデータを分析する」
- 正確なイメージ: 「関心のある社会や市場から抽出されたデータを、背後にある社会や市場を理解する ために、分析する」
 - データ取集(抽出)と データ分析(推定)に分解される
 - 多くの実践は、「データ抽出は変更できないので、推定方法の工夫」を議論する必要がある

2.3 データ収集

- 本質的には運ゲー
 - 多くの公的調査は、ランダムに回答者を選んでいる
 - 昨日のコンビニに売り上げデータなども、昨日誰がコンビニを利用したかはある程度ランダムに決まる

2.4 データ分析

- 「運よく綺麗なデータを引いたら上手くいくが、それ以外では上手くいかない手法」が存在することに 注意
 - 典型例は、「事例数が少ないのに、複雑なモデルを OLS 推定する」

2.5 まとめ

- 推定方法 = イメージとしては、麻雀やトランプ (7 並べなど) の戦略
- データ = 初期の手札/配牌
- 有効な戦略 = 手札がいい時だけではなく、悪かったとしてもそこそこ機能する必要がある

3 母分布

- データ分析における「くじ引き問題」の論点整理のために、母分布を導入
 - 機械学習/統計学/計量経済学、全ての分野で用いられており、今後の講義や自学で学ぶ際に必須

- なぜ"単純すぎる"経済モデルが実用的な場面があるのか、を理解する上でも重要
 - * 直接観察できない概念であり、人間の想像力に依拠

3.1 データ分析の根本問題と解決策

- 同じ社会や市場を対象にしたとしても、研究者によって
 - 異なる予測モデルを推定する
 - モデルについて異なる評価を下す
 - * どんなモデルもまぐれあたりする可能性がある
- 解決策: 全研究者共通の正答と各人の回答を分離

3.2 解決策: 母集団とサンプリング

- 評価に用いる事例 (テストデータ) は、仮想的な集団 (母集団) からランダムに選ばれたデータから、さらにランダムに選ばれた考える
 - 母集団全体を用いた評価やモデルが正答
 - 自身のデータから計算された評価やモデルが、各人の回答(くじ引きの結果)
 - * 正答に近い回答が望ましい(賞品が良い)
- 自身の回答しかわからないので、正答を誰も知らない(賞品の価値がわからない)
 - くじ引きとは高校までの勉強とは決定的に異なる

4 評価

• ある予測モデルの性能をどのように評価するか?

4.1 正答と回答

- 正答: あるモデルの予測値 f(X) と Yとの乖離を、母集団において計算 $(Y-f(X))^2$ の母集団における平均値
- 回答: 自身のテストデータ上で、上記を計算

4.2 数值例

- 共通の予測モデルの性能を3名の研究者が調べる
 - モデルは共通だが、テストデータは独立して収集
 - テストデータの事例数は1,100,5000,または50000
- Yと X は、[0,1] の値をランダムに選ばれる
- モデルは、100 事例の訓練データを用いて、 $OLS~(Y \sim X)$ で推定される

4.3 数值例

4.4 解決策: 評価

- 理論的性質を用いて、評価の信頼性を議論できる
- **大数の法則:** テストデータの事例数が十分あれば、回答 (データ上での評価) と正答 (母集団上での評価) は十分に近い値となる
 - 全員、大当たりのくじを引ける
 - データ全体の2割程度をテストに割くのが一般的

* 誤差の範囲も計算できる (後述)

5 モデル推定

- 想定: モデル推定に用いるデータ (訓練データ) も、評価に用いるデータと同じ母集団からランダムに選ばれているとする
- 最善の予測 (正答) と完璧な予測を区別できる
 - 「最善の予測に近い予測を生み出す」をガイドラインとして、推定方法を評価できる

5.1 予測の誤差

• 予測誤差: $Y - \underbrace{f(X)}_{\text{予測值}}$

5.2 完璧な予測

- 重要: 完璧な予測はほぼ不可能
 - 完璧な予測は以下を要求: 全ての事例について

$$f(X) = Y$$

- X 内で個人差があれば、不可能
 - * $X = \{$ 年齢、学歴、性別 $\}$ から Y =賃金 を完璧に予測するためには、「同じ年齢、学歴、性別であれば、賃金が全く同じ社会」が前提だが、ありえない

5.3 最善の予測

- 最善のモデル = $(Y \underbrace{f(X)}_{\text{F测値}})^2$ の母集団における平均値を最小化するモデル
- 母集団における平均値 (母平均) が最善の予測モデル

5.4 数值例

- Yの平均値 = X^2 もし X < 0.4 ならば
- Yの平均値 = $X^2 + 2$ もし X >= 0.4 ならば

5.5 数値例: データ (100 事例)

colour • データ上の平均

5.6 数値例: 想像上の母平均の追記

• 厳重注意: 青点は、想像上の存在

5.7 数値例: OLS との比較

5.8 数値例: OLS との比較

6 くじ引きとしての復習

- データくじ \rightarrow 推定 \rightarrow 結果、を再確認
- データくじを前提に平均 (期待値) 的にいい結果を生み出せる方法が望ましい

6.1 数値例: データくじ結果

colour • 母平均

6.2 数値例: シンプルなモデル

6.3 数値例: シンプルなモデル

7 事例数とモデルの複雑さ

- 望ましい推定方法は、対象とする社会/市場とデータの収集方法に強く依存する
- ここでは事例数との関係性を確認

7.1 数値例: OLS との比較

7.2 **数値例**: OLS との比較

7.3 数値例: OLS との比較

7.4 性質: 少数事例

- 限られた事例数 (N=50) では、
 - **平均値は実用的ではない**: データ上の平均値と母平均は、大きく乖離している
 - **複雑なモデルも実用的ではない**: データ上の平均値に近づいており、母平均から乖離している
- 単純なモデルは実用的: $Y \sim X$ の OLS 推定結果は、母平均に近い
 - 問題点もある: "0.4 でジャンプする" という性質を捉えられない

7.5 性質: 大規模事例

- 事例数が増えると、複雑なモデルが実用的になる
 - 母平均とデータ上の平均が近づくので、"複雑な OLS"も、母平均に近づく
- 単純な OLS の予測精度は頭打ち
 - 母平均の乖離が、ほとんど変化しない

7.6 過学習/過剰適合

- 事例数が少ないと、データ上の平均と母平均は大きく乖離する
 - 複雑なモデルはデータ上の平均に近いが、母平均から乖離する
 - * 最善の予測モデル (母平均) を推定するという目標に対して、(データへの)過剰適合/(データから) 過学習
- 事例数が増えると、過学習/過剰適合は緩和

7.7 まとめ

事例数/モデルの複雑さ	複雑	単純
少ない	(過剰適合)	(現実的な妥協)
多い	(理想的)	(不十分なデータ活用)

• 笑顔 = より良い予測モデル

7.8 実戦への示唆

- 事例数が多ければ複雑なモデルを推定できるが、少なければ単純なモデルで妥協する必要がある
- "推定するモデルの複雑さを適切に変えるべき"
 - 具体的には?
 - * かつては人力で頑張っていたが、難しい
 - * 次のスライドでは、データ主導のアプローチ (LASSO) を紹介