

实验报告

课程名称:

4月14日晚上 实验名称:转动惯量买装验日期: 2023

教学班级:吴**汉春老师** 学

一、实验目的

以学习创体转动惯量的方法

以用实验方法验证平行轴定理

二、实验仪器

1则体转动惯量实验似.通用电脑风笔的休.铝积、铝板、小钢柱、牵引弦码, 游标卡尺和天平等

三、字。珍原理

[则体转动惯量实验仪的结构如2—1所示。对于空实验台,转动时体系对接触 的转动惯量记为I。。年买验的待例物件为毁然绝鱼等,要则其对中O轴的转动 慢量工x.可以将其放在多约台上。这时转动件系的转动惯量记为I. I=I。+Ix, 同少工=I-Io.一般情况下Q<<<p>的过程的工作的工作的人人为组绳中引发力于Qmg。由转到定律符号: {m,gr-Mu=IB (可知连运到)所以有工= m,gr 可以查出,测出转动度量的光度。27年127年127日,可以连运动),所以有工= 10-B1,可以查出,测出转动慢量的光度。27年127年127日,可以查出,则出转动慢量的

关键是确定角力。建度β和β,在转动过程中转动体系的复数较初,所以有0=Wbt+±βt²,从同一超级 转过两个不同角位移日的。所用时间为七、七、分别代入式(2-4)习脏得

习如果角如果度(3= $\frac{2(\theta_1 t_2 - \theta_2 t_3)}{t_1^2 t_2 - t_2^2 t_1}$,到城塘南加速度的= $\frac{2(\theta_1 t_2^2 - \theta_2 t_3^2)}{t_1^2 t_2 - t_2^2 t_1}$

他式(2-5).(2-6)代入式(2-3).即可得到工。在式(2-4)中,若和角速度W6=0.则有 (=29℃,由式(2-2)可维得: In:=3日+M4=K已+M4。当日、不确定,Mu舰为常数则Mi和包呈线性关系。通过测量出,Mill关系由线即可确定转动惯量的方法积为直线版合法。

四.实验内容及操作步骤

为了产生不同的力臂, 搭轮上有5个同半径的绕线轮,从下到上分15mm,20mm 25 mm. 30 mm、35 mm失 5 控。光电闪由发光器件和光敞器件组成,发光器件的电源由亳的扩援任,它们构成一个光电探测器,光电闪将矩阵每次经过时的滤光传号转变成电脉冲信号,送到通用电脑式亳的计。亳的扩化最并存储滤光次数和每次滤光 的时刻。 注意:(1)线线不要重叠

以线与指轮轴线00季点,行图吸着滑轮槽过渡

电话: 81382088 北京理工大学良乡校区管理处监制

实验报告

课程名		实验名称:	实验日	I期:	年	月日
	级:	教学班级:	学	号:	姓	名:

1. 则够环对中心轴的转动慢量

(1)把铝环放置在逐物台上,先测工。 M, 为砝码与钩的总质是, r取25mm。亳觘讨设置 "O129"按下计时"键,然后交系统在外力矩M和摩擦力矩Mu的作用下从静止开始 转动。连急保证砝码在第9次计数应才落地。砝码落地后,系统在Mu的作用了 继续转动,直到亳彻计停止计数。

取时间值: 左:(3次一/次)、 左:(23次一21次),角位移均为2尺。 tz:(9次一1次1.tz:(29次一21次),角色畅构为8元。

发一下"ß"健: 显示"1···"得到β值; 再按一下"β"健: 显示"2···"得到β值, 链肠缝 以自ti.τi.τi.τi.πi和β.β'记录下来。重复以上步马聚,进行多次测量,一共得到了组类水泥 刈量并记录铝环的质量、内径和外径。此导转动惯量的不确定复公式进行计算

(2)把铝环取下,测量工

心量上。的特象同心量工。根据式(2-1/得到上。用理论公式计算铝环的转动惯量 并与实验结果进行比较。在三十分1个十分,其中的是程界的质量,1个个的人是能够 的内半径如外半径。

2.则铝盘对中心轴的转动惯量

印测量工

把超盘放在外的台上,用位约定为8元,统线轮牛往取1=25mm, M.值取15g. 2ey. 27g.-80g 5.8个值分别用亳州计划出时间值t, 进意为使W。=0.件新由静止一开始运动就 要针对很好是光矩棒的位置。测出四十一关系曲线,用直线为程拟合,可得斜率人 讲而求出I=kgr/10

(1)松)量 [

把铝盘从承物台上取下实验给聚及数据处理与心相同。

(3)计算转动惯型。

根据式了一门计算也能量对中心轴的转动恢复工,并与理论结果进行的较。

3. 验证平行轴定理

平行轴定理: Id= Ic+md2式中. Id为物件结较轴的转动惯量. Ic为转轴通过

均作伤心时的转动便量,d为物件的伤心到转轴的距离。

把两个同质量M。的小钢柱分别放在多约台的1升2年2分。一两个小钢柱体系的像心在转 动轴上心门绕轴转的时的转动慢量记为工。用则锡罗转动慢量的同样方法可染出:工工,并正。然后再把两个小钢柱放倒和3(或1/和3指数图器上位明图个小钢柱

> 电话: 81382088 北京理工大学良乡校区管理处监制

实验报告

果程名称:	实验名称:	实验日期:	年 姓		H .
版心和转轴的	教学班級: 引近高変打み、周7	d表示)和性体系	and the second s		惨争
机停件的乃法	(R) 4: I2=I2+T2				
平行轴定理:	Id=Ic+ 2mod2, 72	· 工-工=2md2.份	到测生	I, Z, Mo	#2d. 3
行轴定班。		L s s		, _,	
259 6	次	i数据			
				5 7	.,401
2.34337	2.43159 23	4856 2 3492	5)21	121	4950
-0.23892 -	-0.24364 -0.2	4045 -0.22975	U (2)))	176	t
25.12	-220	0.2217	-0.25	637 -0.60	1502
0.58917 0.			0.6026	>5	形.
-0.35991 -0	05883 -0.054	44 -0.05515	-0,055	9	8058
	and the second				0070
15/2 509	1 19個月前				
6. 8608	1 402 cg 9 4	525 3.9326	3.565	2 3.324	7 4
12.3317	1 1 1 1	492 7.7684		6.6886	1 7
	A Direction	1172 1.1001	7.1 [05	0.0000	1932
2292 3.0180	t/=/v/				
4047 4.927	2/				
Lann	and and and				
	T. 12.				
Zit.		461	导教师签字:		

北京理工大学良乡校区管理处监制 电话: 81382088

实验二 刚体的转动惯量

1. 铝环对中心轴转动惯量:

铝环半径: $R_{\mbox{\tiny M}} = 105.00(0.02) \, \mbox{mm}$, $R_{\mbox{\tiny M}} = 120.00(0.02) \, \mbox{mm}$ 砝码+钩质量: $m_1 = 25.0(0.5) \, \mbox{g}$, 塔轮半径: $r = 25.00(0.02) \, \mbox{mm}$, 包含因子 K = 1.645

	t ₁ /s	t ₂ /s	β/rad·s ⁻²	t'1/s	t'2/s	β' /rad·s ⁻²
1			0.58917			-0.05996
2			0. 58396			-0.05883
3			0.60075			-0.05444
4			0.60230			-0.055/5
5			0.60268			-0.05038
6			0.60607			- o. o6 o S8
平均	值 <i>β</i> = ().	59749	rad.s-2	$\bar{\beta}' = -$	0.05739	
不确定度 A 类分量 u _A = 0.004 rod·s ⁻²			不确定度 A 类分量 u _A = 0. 201 / rad·5 ⁻²			
β(u)	$\beta(u) = 0.597 (0.004) \text{ rad.s}^{-2}$				-0.057	4(0.0011) rad-5-2

系统加铝环转动惯量: $I(u_I) = 0.00935(0.00019) \text{ kg-m}^2$

无铝环时:

	t ₁ /s	t ₂ /s	β/rad·s ⁻²	t'1/s	ť ₂ /s	β′ /ra	d·s⁻²	
1			2.34337			-0.23892		
2			2.43159			-0.24364		
3			2.34856			-0.24048		
4			2.34925			-0.2297.	S	
5			2.35176			-0.1363	8	
6			2.34954			-0.2502	6	
平均	平均值 β = 2.36234 rad·s ⁻²				13990	rove	1.5-2	
不确定	不确定度 A 类分量 UA = O.Ol 4 rcd·S ⁻²				不确定度 A 类分量 u _A = 0.0028			
β(u)	= 2.36	2 (0.014) rad.s-2	$\beta'(u) =$	-0.2399	(0.00)A)	rod.s-2	

系统转动惯量: $I_0(u_{I_0}) = 0.0023S(0.0000S)$ kg-m

铝环对中心轴的的转动惯量: (注意有效数字、科学计数法和单位)

实验值: $I_x = I - I_0$, $u_{I_x} = \sqrt{u_I^2 + u_0^2}$, $I_x(u_{I_x}) = 0.0070 (0.001)$ kg·n²

理论值: $I_{\underline{u}} = m_2(R_{\underline{h}}^2 + R_{\underline{h}}^2)/2$, $I_{\underline{u}}(u_{I_{\underline{u}}}) = 0.006356(0.00008) kg m^2$

2. 铝盘对中心轴转动惯量:

铝盘半径: R = 120.00(0.02) mm, 绕线轮半径: r = 25.00(0.02) mm

有铝盘时: $ω_0 = 0$, θ = 8π, 铝盘质量: $m_3 = 468$ (1) g

m/g	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0
t/s	12.3317	9.3492	8.5492	7.7684	7.1965	6.6836	5.4047	4.9275
(1/t²)/s-²								

\$\frac{1}{2} = 32.5 \tilde{1}{5} \\
\tilde{X}y = 0.7934 \\
\tilde{X} = 0.02074 \\
\tilde{X} = 0.000430]

用最小二乘法拟合 m~1/t2 曲线 (不作图)

直线方程: $M(kq) = 1.0072 \cdot 72 + 0.011609$ 斜率 k = 1.0072

系统加铝盘转动惯量: $I = kgr/(2\theta) = 0.004910 \text{ Kg·m}^2$

无铝盘时: $ω_0 = 0$, $\theta = 8π$

m /g	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0
								3.0184
(1/t²) /s-²	0.0124	002439	0.03364	0.06466	0.07867	0.09047	0.9889	0.10976

用最小二乘法拟合 m~1/t2 曲线 (不作图)

直线方程: M(kg)=0.3482·七+0.009924

斜率 k = 0.3482

系统转动惯量: $I_0 = k_0 gr/(2\theta) = 0.001697$ Kg·m²

铝盘对中心轴的转动惯量: (注意有效数字、科学计数法和单位)

理论值: $I_{\text{H}} = m_3 R^2/2 = 0.00337$ Kg m²

思考题: 1, 2

$$I = \frac{T_{a}r}{r_{a}}$$

 $\{\hat{x}\}$ $\{\hat{x}\}$ $\{\hat{x}\}$ $\{\hat{x}\}$ $\{\hat{x}\}\}$ $\{\hat{x}\}$ $\{\hat{x}\}\}$ $\{\hat{x}\}$ $\{\hat{x}\}\}$ $\{\hat{x}\}$ $\{\hat{x}\}\}$ $\{\hat{x}\}$ $\{\hat{x}\}\}$ $\{\hat{x}\}$ $\{\hat{x$