Istotnie, $I \subset I$, widząc $|I| \leq m_w(I)$. Z drugiej strony, jeżeli $I'_1 + ... + I'_l \subset I$ i przedziały $I'_1, ..., I'_l$ nie zachodzą na siebie, to $|I'_1| + ... + |I'_l| \leq |I|$, a zatem $m_w(I) \leq |I|$

Z określenia miary wewnętrznej \mathfrak{J} wynika wprost, że

- (2.4) Jeżeli $A \subset B$, to $m_w(A) \leqslant m_w(B)$.
- 3. Własności miary Jordana. Między miarami zewnętrzną $\mathfrak J$ a wewnętrzną $\mathfrak J$ dowolnego zbioru A zachodzi związek

$$(3.1) m_w(A) \leqslant m_z(A).$$

 $\mathbf{Dowód}$. Jeżeli $m_w(A) = 0$, nierówność (3.1) jest oczywista. W przeiwnym rezie do każdego $\varepsilon > 0$ istnieją na mocy (1.2) i (2.2) przedziały $I_1, ..., I_k$ oraz $I'_1, ..., I'_l$, czyniące zadość warunkom (ii) oraz (ii'), skąd na mocy tw. (2.2), str. 181, $|I'_1| + ... + |I'_l| \le |I_1| + ... + |I_k|$, więc $m_w(A) - \varepsilon \le m_z(A) + \varepsilon$. Stąd wobec dowolności liczby ε wynika nierówność (3.1), c.b.d.d.

Ponieważ dla każdego zbioru A mamy oczywiście $m_z(A) \ge 0$ i $m_w(A) \ge 0$, więc wnosimy stąd na mocy (3.1), że

- (3.2) Jeżeli $m_z(A) = 0$, to również $m_w(A) = 0$.
- (3.3) Dla każdej rodziny skończonej zbiorów ograniczonych $A_1, ..., A_r$ zachodzi wzór

$$m_z(A_1 + \dots + A_r) \le m_z(A_1) + \dots + m_z(A_r)$$

Dowód. Wystarczy oczywiście dowieść, że

(1)
$$m_z(A_1 + A_2) \le m_z(A_1) + m_z(A_2).$$

Do każdego $\varepsilon>0$ istnieją na mocy tw. (1.2) przedziały $I_1,...,I_k$ i $I_{k+1},...,I_k$ o własnościach:

(2)
$$A_1 \subset I_1 + ... + I_{k_1}, \quad A_2 \subset I_{k_1+1} + ... + I_{k_2},$$

(3)
$$|I_1| + ... + |I_{k_1}| < m_z(A_1) + \varepsilon$$
, $|I_{k_1+1}| + ... + |I_{k_2}| < m_z(A_2) + \varepsilon$.

Na mocy (2) jest
$$A_1 + A_2 \subset I_1 + ... + I_{k_2}$$
, skąd $m_z(A_1 + A_2) \leq |I_1| + ... + |I_{k_2}|$,

a stad na mocy (3)

$$m_z(A_1 + A_2) < m_z(A_1) + m_z(A_2) + 2\varepsilon$$

Wobec dowolności liczby ε wynika stąd nierówność (1), c.b.d.d.

(3.3') Dla każdej rodziny skończonej zbiorów ograniczonych rozłącznych $A_1, ..., A_r$ zachodzi wzór

$$m_w(A_1) + \dots + m_w(A_r) \leq m_w(A_1 + \dots + A_r).$$

Dowód. Wystarczy oczywiście dowieść, że

(1')
$$m_w(A_1) + m_w(A_2) \leqslant m_w(A_1 + A_2).$$

Do każdego $\varepsilon > 0$ istnieją na mocy (2.1) niezachodzące na siebie przedziały $I'_1, ..., I'_{l_1}$ i niezachodzące na siebie przedziały $I'_{l_1+1}, ..., I'_{l_2}$ o własnościach:

(2')
$$I'_1, ..., I'_{l_1} \subset A_1, \quad I'_{l_1+1}, ..., I'_{l_2} \subset A_1,$$

(3')
$$m_w(A_1) - \varepsilon < |I_1'| + \dots + |I_{l_1}'|, \quad m_w(A_2) - \varepsilon < |I_{l_1+1}'| + \dots + |I_{l_2}'|.$$

Wobec rozłączności zbiorów A_1 i A_2 wnosimy z (2'), że przedziały całej rodziny $I'_1, ..., I'_{l_2}$ nie zachodzą na siebie, a ponadto że $I'_1, ..., I'_{l_2} \subset A_1 + A_2$, skąd $|I'_1| + ... + |I'_{l_2}| \leq m_w(A_1 + A_2)$, a stąd na mocy (3')

$$m_w(A_1) + m_w(A_2) - 2\varepsilon < m_w(A_1 + A_2).$$

Wobec dowolności liczby ε wynika stąd nierówność (1'), c.b.d.d.

(3.4) Dla miar \mathfrak{J} dowolnego zbioru ograniczonego A i jego pochodnej A' (p. str. 59) zachodzi wzór

$$m_w(A) \leqslant m_w(A') \leqslant m_z(A') \leqslant m_z(A).$$

Dowód. Pierwsza z nierówności wynika stąd, że jeżeli przedział jest zawarty w zbiorze, to jest zawarty także w jego pochodnej. Druga jest bezpośrednim wnioskiem z (3.1).

Niech $I_1, ..., I_k$ będą takimi przedziałami zamkniętymi, że $A \subset I_1 + ... + I_k$. Ponieważ suma tych przedziałów jest zbiorem zamkniętym, więc $A' \subset I_1 + ... + I_k$. Zatem

$$(4) m_z(A') \leqslant m_z(A).$$

Z drugiej strony, dla każdego $\varepsilon>0$ istnieją takie przedziały otwarte $J_1,...,J_r,$ że

$$(5) A' \subset J_1 + \dots + J_r,$$

$$(6) |J_1| + \dots + |J_r| < m_z(A') + \varepsilon$$

Na mocy (5) zbiór A nie ma punktów skupienia poza przedziałami $J_1, ..., J_r$, a więc poza tymi przedziałami leży co najwyżej skończona liczba punktów zbioru A. Punkty te można tedy pokryć skończoną liczbą przedziałów $J_{r+1}, ..., J_s$ o sumie przekraczającej ε . Ponieważ $A \subset J_1, ..., J_s$, więc

$$m_z(A) \leqslant |J_1|, ..., J_s \leqslant m_z(A') + 2\varepsilon$$

na mocy (6). Wobec dowolności ε mamy zatem

$$(7) m_z(A) \leqslant m_z(A').$$

Z (4) i (7) wynika równość $m_z(A') \leq m_z(A)$ c.b.d.d.

 $\mathbf{PRZYKŁADY}$. 1. Zbior liczb postaci 1/n, gdzie n=1,2,..., nie ma zewnętrzną \mathfrak{J} równą zeru, taka jest bowiem miara pochodnej tego zbioru, jako złożonej z jednego punktu (punktu 0).

2. Zbiór liczb wymiernych przedziału $\langle 0,1 \rangle$ ma miarę wewnętrzną $\mathfrak J$ równą jedności, czyli mierze tego przedziału (jako swej pochodnej), miarę zaś wewnętrzną $\mathfrak J$ równą zeru, ponieważ jest zbiorem brzegowym.

To samo dotyczy zbioru liczb niewymiernych przedziału (0,1).

- 3. Każdy zbiór gęsty w przedziałe ma mie
arę zewnętrzną ${\mathfrak J}$ równą mierze tego przedziału.
- (3.5) Jeżeli A jest zbiorem ograniczonym, a B(A) jego brzegiem, to:

$$m_w[B(A)] = 0, \quad m_z[B(A)] = m_z(A) - m_w(A)$$

 $\mathbf{Dowód}$. Pierwsza równość jest oczywista, ponieważ zbiór B(A) nie ma punktów wewnętrznych.

Na mocy (i), (ii), (i') i (ii') istnieją dla każdego $\varepsilon > 0$ przedziały $I'_i, ..., I'_l$ o własnościach:

(8)
$$I'_i + ... + I'_l \subset A \subset I_1 + ... + I_k$$

(9)
$$m_z(A) > |I_k| + \dots + |I_k|, \quad m_w(A) - \varepsilon < |I_1'| + \dots + |I_l'|.$$

(10)
$$B(A) \subset I_{k+1} + \dots + I_r$$

(11)
$$m_z[B(A)] + \varepsilon > |I_{k+1}| + \dots + |I_r|.$$

Niech I będzie przedziałem zamkniętym, zawierającym $I_1, ..., I_r$, a Δ podziałem przedziału I na takie podprzedziały, żeby $I_1, ..., I_r$ były ich sumami.

Oznaczmy przez $J_1, ..., J_{\mu}$ te spośród przedziałów podziału Δ , których wnętrza zawarte są w różnicy $(I_1, ..., I_k) - (I'_1, ..., I'_l)$, a przez $J'_1..., J'_{\nu}$ te, których wnętrza zawarte są w różnicy $A - (I_{k+1} + ... + I_r)$. Zatem:

$$I_1 + \dots + I_k = J_1 + \dots + J_\mu + I'_1 + \dots + I'_l,$$

 $A \subset J'_1 + \dots + J'_\nu + I_{k+1} + \dots + I_r$

i na mocy (8) i (10) po prawej stronie każdego z tych wzorów występują przedziały nie zachodzące na siebie. Na mocy (9) i (11) otrzymujemy więc:

(12)
$$m_z(A) + \varepsilon \geqslant |J_1| + \dots + |J_\mu| + m_w(A) - \varepsilon,$$

$$m_z(A) \leqslant |J_1'| + \dots + |J_\mu'| + m_z[B(A)] + \varepsilon.$$

Ponieważ zbiór B(A), jako brzeg zbioru A, jest zawarty na mocy (8) w $J_1 + ... + J_{\mu}$, więc

(13)
$$m_z[B(A)] \leq |J_1| + \dots + |J_\mu|,$$

a ponieważ wnętrza przedziałów $J'_1 + ... + J'_{\nu}$ są zawarte w A, więc

(14)
$$m_w(A) \geqslant |J_1'| + \dots + |J_v'|.$$

Z nierówności (12), (13) i (14) otrzymujemy

$$m_z(A) - m_w(A) - \varepsilon \leqslant m_z[B(A)] \leqslant m_z(A) - m_w(A) + 2\varepsilon$$

dla każdego $\varepsilon > 0$, a więc równość, c.b.d.d.

(3.6) Jeżeli A jest zbiorem ograniczonym, a W(A) jego wnętrzem, to

$$m_w[W(A)] = m_w(A).$$

Istotnie, wobec $W(A) \subset A$ mamy na mocy (1.5)

$$m_w[W(A)] \leqslant m_w(A).$$

Z drugiej strony, każdy przedział otwarty, zawarty w A, jest zawarty w W(A), skąd $m_w(A) \leq m_w[W(A)]$.

4. Zbiory mierzalne \mathfrak{J} . Zbiór ograniczony A nazywamy mierzalnym w sensie Jordana lub mierzalnym \mathfrak{J} , jeżeli jego miary zewnętrzna \mathfrak{J} i wewnętrzna \mathfrak{J} są równe, t.j. jeżeli $m_w(A) = m_z(A)$.

Wspólną wartośc obu miar nazywamy wówczas $miarq \mathfrak{J}$ zbioru A i oznaczmy przez m(A).

- **PRZYKŁADY.** 1. Każdy przedział I jest zbiorem mierzalnym \mathfrak{J} i m(I) = |I| (por. (1.3) i (2.3)).
- 2. Zbiór W liczb wymiernych przedziału (0,1) nie jest mierzalny \mathfrak{J} , gdyż $m_w(W) = 0$ i $m_w(W) = 1$ (p. przyklad 2, str. 199)
- (4.1) Jeżeli m(A) = 0, to A jest zbiorem miary \mathfrak{L} zero.

Wynika to wprost z określenia miary zewnętrznej $\mathfrak J$ i miary $\mathfrak L$ zero.

(4.2) Jeżeli $m_z(A) = 0$, to A jest zbiorem mierzalnym \mathfrak{J} i m(A) = 0.

Na mocy bowiem (3.1), str. 197, mamy wtedy $m_w(A) = 0$.

Natomiast zbiór miary $\mathfrak L$ zero może nie być mierzalny $\mathfrak J$ jak wskazuje przyklad zbioru liczb wymiernych, który nie jest mierzalny $\mathfrak L$, a jako przeliczalny jest miary $\mathfrak L$ zero.

(4.3) Każdy zbór A zamknięty, ograniczony i mieary $\mathfrak L$ zero jest mierzalny $\mathfrak J$ i m(A)=0.

Istotnie, na mozy tw. (8.2), str. 92, dla każdego $\varepsilon > 0$ istnieje wówczas skończona liczba przedziałów pokrywających zbór A, których suma miar jest mniejsza niż ε . Zatem $m_z(A) < \varepsilon$ dla każdego $\varepsilon > 0$, skąd $m_z(A) = 0$. Zatem na mocy tw. (4.1) jest m(A) = 0.

W szczególności, ponieważ brzeg przedziału jest zbiorem zamkniętym i ograniczonym o mierze \mathfrak{L} zero (tw. (7.1), str. 187), więc:

- (4.4) Miara \mathfrak{J} brzegu przedziału jest zerem.
- (4.5) Jeżeli A jest zbiorem mierzalnym \mathfrak{J} , to jego również zbiorem mierzalnym \mathfrak{J} i m(A) = m(A').

Wynika to wprost z tw. (3.4).

Uwaga. Twierdzenie odwrotne byłoby fałszywe: pochodna A' może być zbiorem mierzalnym \mathfrak{J} . Np. zbiór liczb wymiernych przedziału $\langle 0,1\rangle$ nie jest mierzalny \mathfrak{J} (przyklad 2, str. 201), podczas gdy jego pochodna jest przedziałem $\langle 0,1\rangle$, a więc zbiorem mierzalnym \mathfrak{J} .

(4.6) Warunkiem koniecznym i wystarczającym na to, by zbiór ograniczony był mierzalny \mathfrak{J} , jest żeby jego brzeg był zbiorem miary \mathfrak{J} zero.

Wynika to wprost z tw. (3.6).

Uwaga. Ponieważ brzeg jest zbiorem zamkniętym, więc tw. (4.6) pozostaje prawdziwe, gdy miearę \mathfrak{J} brzegu zastąpić miarą \mathfrak{L} .

Z tw. (3.7) wynika, że

(4.7) Mierzalność $\mathfrak J$ zbioru A jest równoważna mierzalności $\mathfrak J$ jego wnętrza W(A) i

$$m(A) = m[W(A)].$$

PRZYKŁADY. 1. Wielokat jest zbiorem mierzalnym 3.

Brzeg jego jest bowiem linią łamaną, a więc zbiorem miary \mathfrak{L} zero (p. tw. (7.3), str. 188).

2. Koło $x^2 + y^2 \leq r^2$ jest zbiorem mierzalnym \mathfrak{J} .

Brzeg jego jest bowiem sumą wykresów funkcji $y = \sqrt{r^3 - x^2}$, $y = -\sqrt{r^3 - x^2}$, ciągłych w przedziale $\langle -r, r \rangle$; na mocy tw. (7.3), str. 188, jest on więc zbiorem miary $\mathfrak L$ zero.

Podobnie, kula jest zbiorem mierzalnym \mathfrak{J} .

3. Każdy wielościan w przestrzeni \mathcal{E}^n jest zbiorem \mathfrak{L} .

Brzeg wielościanu tworzą bowiem jego ściany, a każda ściana jest zbiorem miary \mathfrak{L} zero (p. str. 190).

(4.8) Suma skończonej liczby zbiorów $A_1,...,A_r$ mierzalnych $\mathfrak J$ jest zbiorem mierzalnym $\mathfrak J$ i

$$m(A_1 + ... + A_r) \leq m(A_1) + ... + m(A_r).$$

Mierzalność sumy $A_1 + ... + A_r$ wynika z tw. (4.6), ponieważ brzeg sumy zbiorów $A_1, ..., A_r$ zawarty jest w sumie brzegów tych zbiorów. Wzór zaś wynika z tw. (3.3), str. 197, przez zastąpienie w nim miary zewnętrznej \mathfrak{J} przez miarę \mathfrak{J} .

(4.9) Jeżeli zbiory $A_1, ..., A_r$ są mierzalne \mathfrak{J} i rozłączne, to

(15)
$$m(A_1 + \dots + A_r) = m(A_1) + \dots + m(A_r).$$

Istotnie, zastępując w tw. (3.3), str. 198, miarę wewnętrzną $\mathfrak J$ przez miarę $\mathfrak J$ dostajemy

(16)
$$m(A_1 + ... + A_r) \ge m(A_1) + ... + m(A_r),$$

a nierówność odwrotną mamy z tw. (4.8).

Uwaga. Tw. (4.9) zachodzi już przy założeniu, że zbiory $A_1, ..., A_r$ mierzalne \mathfrak{J} mają wnętrza rozłączne.

Mamy bowiem wobec tw. (3.3')

(17)
$$m_w[W(A_1) + ... + W(A_r)] \ge m_w[W(A_1)] + ... + m_w[W(A_r)].$$

Ponieważ na mocy tw. (3.6) jest $m_w[W(A_i)] = m_w(A_i) = m(A_i)$ dla i = 1, 2, ..., r oraz $W(A_1)_W(A_r) \subset A_1 + ... + A_r$, więc

$$m_w[W(A_1) + \dots + W(A_r)] \le m(A_1 + \dots + A_r).$$

Stąd na mocy (4.7) dostajemy (16), a z (4.9) równość (15).

(4.10) Iloczyn skończonej liczby zbiorów mierzalnych $\mathfrak J$ jest zbiorem mierzalnym $\mathfrak J.$

Wynika to z tw. (4.7), ponieważ brzeg iloczynu zbiorów jest zawarty w sumie ich brzegów.

(4.11) Dopełnienie zbioru mierzalnego $\mathfrak J$ do przedziału jest zbiorem mierzalnym $\mathfrak J.$

 $\mathbf{Dowód}$. Jeżeli zbiór A jest zawarty w przedziałe I, to brzeg zbioru I-A jest zawarty w sumie brzegu zbioru A i brzegu przedziału I. Ponieważ oba brzegi są zbiorami miary \mathfrak{J} zero na mocy tw. (4.1) i (4.6), więc ich suma, a tym bardziej brzeg zbioru I-A jest więc mierzalny \mathfrak{J} .

(4.12) Jeżeli zbiory A i B są mierzalne, to różnica A-B jest zbiorem mierzalnym \mathfrak{J} .

Jeżeli ponadto $B \subset A$, wówczas

$$m(A - B) = m(A) - m(B).$$

 $\mathbf{Dowód}$. Niech I będzie przedziałem zawierającym A+B. Wówczas $A-B=A\cdot (I-B)$ i różnica A-B jest zbiorem mierzalnym $\mathfrak J$ na mocy tw. (4.10), jako iloczyn zbiorów A i I-B, z których pierwszy jest mierzalny $\mathfrak J$ z założenia, a drugi na mocy tw. (4.11).

Jeżeli ponadto $B \subset A$, wówczas A = B + (A - B), skąd

$$m(A) = m[B + (A - B)] = m(B) + m(A - B),$$

gdyż zbiory A i A - B są rozłączne.

5. Przesunięcie równoległe. Niech E będzie dowolnym zbiorem ograniczonym w \mathcal{E}^n , a $(a_1, ..., c_n)$ dowolnym układem n liczb. Niech każdemu punktowi $p' = (x'_1, ..., x'_n)$ za pomocą równań

(18)
$$x_i' = x_i + a_i \qquad (i = 1, 2, ..., n)$$

Przyporządkowanie to jest odwzorowaniem wzajemnie jednoznacznym i ciągłym zbioru E na zbiór E' punktów p'.

Odwzorowanie (18) nazywamy przesunięciem (równoległym).

Z określenia wynika, że odwzorowanie odwrotne

(19)
$$x_i = x_i' + a_i \qquad (i = 1, 2, ..., n)$$

jest przesunięciem (równoległym) zbioru E' na zbiór E.

Przez Przesunięcie równoległe przedział $I = \langle a_1, ..., a_n; b_1, ..., b_n \rangle$ przechodzi na przedział $I' = \langle a_1 + a_1, ..., a_n + a_n; b_1 + a_1, ..., b_n + a_n \rangle$ i miara przedziału zostaje zachowana, t.j. |I| = |I'|. Ogólnie:

(5.1) eżeli zbiór ograniczony E przechodzi przez przesunięcie równoległe w zbiór E', to

$$m_w(E) = m_w(E'), \quad m_z(E) = m_z(E').$$

 $\mathbf{Dowód}$. Niech $E \subset I_1 + \ldots + I_m$. Zbiór E' jest oczywiście zawarty w sumie przedziałów I_1', \ldots, I_m' , na które przejdą przedziały I_1, \ldots, I_m przez przesunięcie (18). Ponieważ przesunięcie równoległe zachowuje miarę przedziałów , więc $|I_1| + \ldots + |I_m| = |I_1'| + \ldots + |I_m'|$, skąd $m_z(E) \geqslant m_z(E')$. Na odwtót, ponieważ przez przesunięcie (19) E' przechodzi na E, więc dostajemy $m_z(E') \geqslant m_z(E)$. Zatem $m_z(E) = m_z(E')$.

Podobnie dowodzi się równości miar wewnętrznych.

Wynika stad od razu twierdzenie następujące:

- (5.2) eśli zbiór E jest mierzalny \mathfrak{J} , to jego przesunięcie E' jest również zbiorem mierzalnym \mathfrak{J} i miary \mathfrak{J} obu zbiorów są równe.
- 6. Całka \Re funkcji w zbiorze. Niech E będzie zbiorem ograniczonym w \mathcal{E}^n , a f(p) funkcją ograniczoną, określoną w E.

Oznaczmy przez f^* funkcje, która jest przedłużeniem funkcji f na całą przestrzeń \mathcal{E}^n , przyjmując $f^*(p) = 0$ dla p nie należących do E. Zatem funkcja $f^*(p)$ jest określona w całej przestrzeni \mathcal{E}^n i ograniczona w tej przestrzeni.