Lab 4: Magnitude Comparator

Shishir Suvarna
UBIT: shishirs
Person Number: 50290573

Objective:

- To understand the working and design of 4 Bit Magnitude Comparator
- To implement the schematic and layout versions using Cadence
- Prepare a report to summarize the results of the lab activity

4 bit Magnitude Comparator:

Schematic View:

Schematic View Simulation:

Layout View:

Extracted View:

Extracted View Simulation:

A is lesser than B(AlsB is high)

A equals B(AeqB is high)

A greater than B(AgrB is high)

LVS match between Layout and Extracted views:

Truth Table:

<u>A3</u>	<u>A2</u>	<u>A1</u>	<u>A0</u>	<u>B3</u>	<u>B2</u>	<u>B1</u>	<u>B0</u>
<u>0</u>	1	<u>0</u>	<u>1</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
<u>0</u>	<u>0</u>	1	<u>1</u>	<u>0</u>	<u>0</u>	<u>1</u>	<u>1</u>
0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>1</u>	1	<u>0</u>
1	1	1	1	1	1	1	1

Working of circuit:

- A Comparator is a digital circuit that takes two binary numbers and compares their values
- It outputs values as to whether A is greater than B, A is equal to B or A is lesser than B
- It is an important component of processors
- It is made using a combination of multi-input gates including 3,4 and 5 input versions of AND gate and 4 input version of OR gate
- Based on one of the conditions that have been achieved in output, an operation can be set to be performed. This is a useful application of the magnitude comparator

Circuit Diagram:

Inference and Conclusion:

- The working of magnitude comparator was learnt using circuit design techniques
- The schematic and Layout versions of the gates were implemented in the form of circuits in Cadence
- The correctness of the circuit design was verified using simulation tools and output was recorded
- LVS (Layout vs Schematic) check was obtained to verify that both versions of the gate matched