Backpropagation and Training

C. V. Jawahar

IIIT Hyderabad

Neuron, Perceptron and MLP

Loss or Objective

Objective: Find out the best parameters which will minimize the loss.

$$W^* = arg\min_{W} \sum_{i=1}^{N} L(x_i^n, y_i; W)$$
 Weight vector $z_i = \frac{1}{2} \parallel x_i^n - y_i \parallel_2^2$ E.g. Squared Loss

Back Propagation

Solution: Iteratively update W along the direction where loss decreases.

Each layer's weights are updated based on the derivative of its output w.r.t. input and weights

Gradient Descent

Neural Network Training

- Step 1: Compute loss for samples (on mini-batch) [F-Pass]
- Step 2: Compute gradients w.r.t parameters and update [B-Pass]

Chain Rule

Given
$$y(x)$$
 and $\frac{\partial \mathbf{L}}{\partial \mathbf{y}}$
What is $\frac{\partial \mathbf{L}}{\partial \mathbf{x}}$?

Chain Rule

Given
$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$
 and $\frac{\partial \mathbf{L}}{\partial \mathbf{y}}$

What is $\frac{\partial \mathbf{L}}{\partial \mathbf{x}}$?

For each block/parameters, we only need to find $\frac{\partial y}{\partial x}$

Key Computation: Forward-Propagation

W is the parameter, say the weights within the box.

Key Computation: Backward-Propagation

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial Z}{\partial x} \qquad \begin{cases} \frac{\partial Z}{\partial x} &, \frac{\partial Z}{\partial W} \end{cases} \qquad \frac{\partial L}{\partial W} = \frac{\partial L}{\partial z} \frac{\partial Z}{\partial W}$$

$$W \leftarrow W - \eta \frac{\partial L}{\partial W}$$

Back Propagation for MLP

Two computational blocks/steps

$$y = Wx$$
$$y = \phi(x) = \frac{1}{1 + e^{-x}}$$

• In either case we can compute easily. $\frac{\partial y}{\partial x}$

A simpler view point

Multiplication

Back Propagation (X,Y): Propagation

$$X_2 = Y_1$$

$$X_3 = Y_2$$

$$X_4 = Y_3$$

$$X_2 = Y_1$$
 $X_3 = Y_2$ $X_4 = Y_3$ $X_5 = Y_4$ $X_6 = Y_5$

$$X_6 = Y_5$$

$$Y_1 = WX_1$$
 $Y_2 = \phi(X_2)$ $Y_3 = WX_3$ $Y_4 = \phi(X_4)$ $Y_5 = WX_5$ $Y_6 = \phi(X_6)$ $Y_1 = X_2$ $Y_2 = X_3$ $Y_3 = X_4$ $Y_4 = X_5$ $Y_5 = X_6$

$$Y_4 = \phi(X_4)$$

$$Y_5 = WX_5$$

$$Y_6 = \phi(X_6)$$

$$\frac{\partial \mathsf{L}}{\partial \mathsf{L}}$$

$$\frac{\partial L}{\partial Y_2}$$

$$\frac{\partial L}{\partial Y_3}$$

$$\frac{\partial L}{\partial Y_A}$$

$$\frac{\partial L}{\partial Y_5}$$

$$\frac{\partial L}{\partial Y_6}$$

$$\frac{\partial L}{\partial Y_1} = \frac{\partial L}{\partial X_2} = \frac{\partial L}{\partial Y_2} \cdot \frac{\partial Y_2}{\partial X_1}$$

$$\frac{\partial L}{\partial Y_3} = \frac{\partial L}{\partial X_4} = \frac{\partial L}{\partial Y_4} \cdot \frac{\partial Y_4}{\partial X_4}$$

$$\frac{\partial L}{\partial Y_3} = \frac{\partial L}{\partial X_4} = \frac{\partial L}{\partial Y_4} \cdot \frac{\partial Y_4}{\partial X_4} \qquad \qquad \frac{\partial L}{\partial Y_5} = \frac{\partial L}{\partial X_6} = \frac{\partial L}{\partial Y_6} \cdot \frac{\partial Y_6}{\partial X_6}$$

$$\frac{\partial L}{\partial Y_2} = \frac{\partial L}{\partial X_3} = \frac{\partial L}{\partial Y_3} \cdot \frac{\partial Y_3}{\partial X_3}$$

$$\frac{\partial L}{\partial Y_4} = \frac{\partial L}{\partial X_5} = \frac{\partial L}{\partial Y_5} \cdot \frac{\partial Y_5}{\partial X_5}$$

Back Propagation (X,Y): Also Learning

$$X_2 = Y_1$$

$$X_3 = Y_2$$

$$X_4 = Y_3$$

$$X_2 = Y_1$$
 $X_3 = Y_2$ $X_4 = Y_3$ $X_5 = Y_4$ $X_6 = Y_5$

$$X_6 = Y_5$$

$$Y_1 = WX_1$$
 $Y_2 = \phi(X_2)$ $Y_3 = WX_3$ $Y_4 = \phi(X_4)$ $Y_5 = WX_5$ $Y_6 = \phi(X_6)$ $Y_1 X_2$ $Y_2 X_3$ $Y_3 X_4$ $Y_4 X_5$ $Y_5 X_6$

$$Y_4 = \phi(X_4)$$

$$Y_6 = \phi(X_6)$$

$$\frac{\partial L}{\partial Y_1}$$

$$\frac{\partial L}{\partial Y_1} = \frac{\partial L}{\partial X_2} = \frac{\partial L}{\partial Y_2} \cdot \frac{\partial Y_2}{\partial X_2}$$

$$\frac{\partial L}{\partial Y_2}$$

$$\frac{\partial L}{\partial Y_3}$$

$$\frac{\partial L}{\partial Y_2} \qquad \frac{\partial L}{\partial Y_3} \qquad \frac{\partial L}{\partial Y_4}$$

$$\frac{\partial L}{\partial Y_A}$$

$$\frac{\partial L}{\partial Y_{E}}$$

$$\frac{\partial L}{\partial Y_6}$$

$$\frac{\partial L}{\partial Y_3} = \frac{\partial L}{\partial X_4} = \frac{\partial L}{\partial Y_4} \cdot \frac{\partial Y_4}{\partial X_4} \qquad \qquad \frac{\partial L}{\partial Y_5} = \frac{\partial L}{\partial X_6} = \frac{\partial L}{\partial Y_6} \cdot \frac{\partial Y_6}{\partial X_6}$$

$$\frac{\partial L}{\partial Y_2} = \frac{\partial L}{\partial X_3} = \frac{\partial L}{\partial Y_3} \cdot \frac{\partial Y_3}{\partial X_3} \qquad \qquad \frac{\partial L}{\partial Y_4} = \frac{\partial L}{\partial X_5} = \frac{\partial L}{\partial Y_5} \cdot \frac{\partial Y_5}{\partial X_5}$$

$$\frac{\partial L}{\partial Y_4} = \frac{\partial L}{\partial X_5} = \frac{\partial L}{\partial Y_5} \cdot \frac{\partial Y_5}{\partial X_5}$$

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_1} \cdot \frac{\partial Y_1}{\partial W}$$

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_3} \cdot \frac{\partial Y_3}{\partial W}$$

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_5} \cdot \frac{\partial Y_5}{\partial W}$$

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_3} \cdot \frac{\partial Y_3}{\partial W} \qquad \qquad \frac{\partial L}{\partial W} = \frac{\partial L}{\partial Y_5} \cdot \frac{\partial Y_5}{\partial W} \qquad W^{n+1} = W^n - \eta \frac{dL}{dW}$$

Summary

• Step 0:

Initialize the Network, weights

• Step 1:

- Do forward pass for a batch of randomly selected samples.
- Predict outputs with the existing weights.

• Step 2:

• Compute Loss for the set of samples.

Summary

- Step 3:
 - Update all the weights using gradient descent.

$$\mathbf{W} \leftarrow \mathbf{W} - \eta \frac{\partial \mathbf{L}}{\partial \mathbf{W}}$$

- Step 4:
 - Repeat all steps till the Loss is less than a threshold.

Loss Functions

- For Classification
 - Binary Cross Entropy
 - Hinge Loss

- Mean Square Error / Quadratic Loss / L2 Loss
- Mean Absolute Error / L1 Loss

$$L = -\frac{1}{m} \sum_{i=1}^{m} (y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i))$$

$$L = \max(0, 1 - y * f(x))$$

$$L = -\frac{1}{m} \sum_{i=1}^{m} y_i \cdot \log(\hat{y}_i)$$

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (\hat{Y_i} - Y_i)^2$$

$$ext{MAE} = rac{\sum_{i=1}^{n} |y_i - x_i|}{n}$$

Loss Functions

- For Comparing Structured Data
 - Strings
 - Graphs
 - Trees

- For Comparing Multiple Samples
 - Contrastive Learning
 - Siamese Learning
 - Triplet Loss

Why Challenging?

Saddle Point

Saddle Point

Vanishing and Exploding Gradients

The Vanishing Gradient Problem:

When gradient is too small, the repetitive multiplication results in vanishing gradient When gradient is too high, the repetitive multiplication results in exploding gradient

Solution: Better Estimate of the Gradient

Ideal optimizer:

- Finds minimum fast and reliably well
- Doesn't get stuck in local minima, saddle points, or plateau region

Vanilla Gradient Descent: One step for the entire dataset

Stochastic Gradient Descent: One step for each stochastically chosen sample

Mini-batch Gradient Descent: One step for each mini-batch of samples chosen stochastically

chosen stochastically


```
import torch.optim as optim

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0)
```

Solution: Better Update Equation

Gradient Descent with Momentum

Intuitively, this helps us to come out of local minima

$$v_t = \underbrace{\gamma \ v_{t-1}}_{\text{$+$}} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$$

$$\theta = \theta - v_t$$
 import torch.optim as optim optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

Solution: Better Optimizers

Other Variants:

- RMSprop
- Adagrad
- Adam
- Adadelta
- etc.

```
import torch.optim as optim

optimizer = optim.RMSprop(model.parameters(), lr=0.01, alpha=0.99)

import torch.optim as optim

optimizer = optim.Adagrad(model.parameters(), lr=0.01)

import torch.optim as optim

optimizer = optim.Adam(model.parameters(), lr=0.01, betas=(0.9, 0.999))

import torch.optim as optim

optimizer = optim.Adadelta(model.parameters(), lr=0.01, rho=0.9)
```

Simplified View: Variable Learning Rates for Features/Dimensions

Solution: Better Weight Initialization

- All zero initialization
 - Initializing all the weights with zeros leads the neurons to learn the same features during training.
- Random initialization
 - Gaussian
 - Xavier
 - uniform
 - normal
 - Kaiming
 - uniform
 - normal

```
import torch

w = torch.empty(3, 5)

torch.nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')
```

Regularization of the Network

- Input Level
 - Data Augmentation
- Activation level
 - Dropout
 - Dropconnect
- Feature statistics level
 - Batch normalization
 - Layer normalization
 - Group normalization

- Decision level
 - Ensemble
- Constraining network weights
 - ℓ_1 norm, ℓ_2 norm
- Terminating early based of the performance on validation set
 - Early stopping

Summary

- Data Normalization
- Data Augmentation
- Weight Initialization
- Optimization Algorithms
- Regularizer
- Batch Norm
- Dropout

- Better Learning/Optimization
- Better
 Generalization/Regularization
- Better Loss Functions
- BP as a General Algorithm
- Abstraction of layers and ease in defining layers
- Good implementations

Thank you!

Questions?