R and Bioconductor Assignment

Stephen Kanyerezi

6/2/2021

Contents

1	Que	estion 1	1
	1.1	How many were cases and controls	2
	1.2	How many were males and females	3
	1.3	How many fall into each delivery route	4
	1.4	Cases and controls versus gender	5
		1.4.1 Relationship between status and gender	6
	1.5	Cases and controls versus delivery route	7
		1.5.1 Relationship between status and delivery route	8
	1.6	Cases and controls, gender plus delivery route	8
	1.7	Age	9
2	Que	estion 2	11
3	Que	estion 3	12
3	Q ue 3.1		
3	•	Alpha diversity comparing the gender in cases and controls	12
3	3.1	Alpha diversity comparing the gender in cases and controls	12
3	3.1 3.2	Alpha diversity comparing the gender in cases and controls	12 13
3	3.1 3.2	Alpha diversity comparing the gender in cases and controls	12 13 14
3	3.1 3.2 3.3	Alpha diversity comparing the gender in cases and controls Alpha diversity comparing the delivery routes in cases and controls Ordination plots 3.3.1 Case_Control and Delivery_Route 3.3.2 Case_Control and Gender	12 13 14 14
	3.1 3.2 3.3	Alpha diversity comparing the gender in cases and controls	12 13 14 14 16
	3.1 3.2 3.3	Alpha diversity comparing the gender in cases and controls Alpha diversity comparing the delivery routes in cases and controls Ordination plots 3.3.1 Case_Control and Delivery_Route 3.3.2 Case_Control and Gender cestion 4	12 13 14 14 16 17

1 Question 1

Import the data described above into R, provide descriptive summaries of the subject data (using appropriate graphics and statistical summary measures) given in the diabimmune_16s_t1d_metadata.csv file. In addition, use appropriate test(s) to check for association/independency between disease status and other variables (delivery mode, gender and age). Note that age is given in days.

```
## Load the required packages
library(tidyverse)
library(phyloseq)
library(DESeq2)

sample_metadata <- read.csv("diabimmune_16s_t1d_metadata.csv", sep = ",", header = T) # import sample d
# Explore the data and have a glimpse of it
head(sample_metadata)</pre>
```

```
##
     Sample_ID Subject_ID Case_Control Gender Delivery_Route Age_at_Collection
## 1
        G36449
                  E001463
                                control
                                          male
                                                      vaginal
        G36034
                                                                              82
## 2
                  E001463
                                control
                                          male
                                                      vaginal
## 3
        G36993
                  E001463
                                control male
                                                      vaginal
                                                                             124
## 4
        G35523
                                control male
                  E001463
                                                      vaginal
                                                                             153
## 5
        G36450
                  E001463
                                control male
                                                      vaginal
                                                                             187
        G36028
## 6
                  E001463
                                control
                                          male
                                                       vaginal
                                                                             213
tail(sample metadata)
##
       Sample_ID Subject_ID Case_Control Gender Delivery_Route Age_at_Collection
          G36938
                    T026177
                                  control female
## 772
                                                        vaginal
## 773
          G36936
                    T026177
                                  control female
                                                                               592
                                                         vaginal
## 774
          G36937
                    T026177
                                  control female
                                                         vaginal
                                                                               646
## 775
          G35535
                    T026177
                                  control female
                                                         vaginal
                                                                               677
                                                                               703
## 776
          G35536
                    T026177
                                  control female
                                                         vaginal
## 777
          G35537
                    T026177
                                  control female
                                                                               729
                                                         vaginal
dim(sample_metadata)
```

[1] 777 6

1.1 How many were cases and controls

```
case_control_count <- sample_metadata %>%
  group by(Case Control) %>%
  dplyr::summarise(Total = n(), Percentage = (Total / nrow(sample_metadata)) * 100)
case_control_count
## # A tibble: 2 x 3
     Case_Control Total Percentage
     <chr>>
                  <int>
                             <dbl>
                              33.5
## 1 case
                    260
## 2 control
                    517
                              66.5
ggplot(case_control_count, aes(x = Case_Control, y = Total, fill = Case_Control)) +
 geom bar(stat = "identity", width = 0.7) +
 theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_line(colour = "black"))
```


1.2 How many were males and females

```
gender_counts <- sample_metadata %>%
  group_by(Gender) %>%
  summarise(Total = n(), Percentage = (Total / nrow(sample_metadata)) * 100)
gender_counts
## # A tibble: 2 x 3
##
     Gender Total Percentage
##
     <chr> <int>
                       <dbl>
## 1 female
              412
                        53.0
## 2 male
                        47.0
              365
ggplot(gender_counts, aes(x = Gender, y = Total, fill = Gender)) +
  geom_bar(stat = "identity", width = 0.7) +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
       panel.background = element_blank(), axis.line = element_line(colour = "black"))
```


1.3 How many fall into each delivery route

```
delivery_route_count <- sample_metadata %>%
  group_by(Delivery_Route) %>%
  summarise(Total = n(), Percentage = (Total / nrow(sample_metadata)) * 100)
delivery_route_count
## # A tibble: 2 x 3
##
     Delivery_Route Total Percentage
##
     <chr>
                               <dbl>
                    <int>
## 1 cesarian
                       66
                                8.49
                               91.5
## 2 vaginal
                      711
ggplot(delivery_route_count, aes(x = Delivery_Route, y = Total, fill = Delivery_Route)) +
  geom_bar(stat = "identity", width = 0.7) +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_line(colour = "black"))
```


1.4 Cases and controls versus gender

```
status_gender <- sample_metadata %>%
  group_by(Gender, Case_Control) %>%
  summarise(Total = n(), Percentage = (Total / nrow(sample_metadata)) * 100)
## `summarise()` has grouped output by 'Gender'. You can override using the `.groups` argument.
status_gender
## # A tibble: 4 x 4
## # Groups:
              Gender [2]
     Gender Case_Control Total Percentage
##
##
     <chr> <chr>
                        <int>
                                    <dbl>
## 1 female case
                          142
                                     18.3
## 2 female control
                          270
                                     34.7
## 3 male case
                           118
                                     15.2
## 4 male
          control
                           247
                                     31.8
ggplot(status_gender, aes(fill=Gender, y=Total, x=Case_Control)) +
 geom_bar(position="dodge", stat="identity") +
 theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
       panel.background = element_blank(), axis.line = element_line(colour = "black"))
```


1.4.1 Relationship between status and gender

Here we use the chi-square test to determine whether the status and gender are independent or dependent of each other.

Null hypothesis: Status and gender are independent

Alternate hypothesis: Status and gender relate to each other Note: We set our significance level at 0.05. So, if we get a p-value less than 0.05, we shall reject the null hypothesis, otherwise, we fail to reject it.

```
gen_mat <- table(sample_metadata$Case_Control, sample_metadata$Gender) # create a contigency table
gen_mat</pre>
```

```
##
##
             female male
##
                142
     case
                      118
##
                270
                      247
     control
chisq.test(gen_mat)
##
##
    Pearson's Chi-squared test with Yates' continuity correction
##
## data: gen_mat
## X-squared = 0.30687, df = 1, p-value = 0.5796
```

Since P-value is greater than 0.05 - our significance level, we fail to reject the null hypothesis and conclude that status and gender are related

Cases and controls versus delivery route

```
status_route <- sample_metadata %>%
  group_by(Case_Control, Delivery_Route) %>%
  summarise(Total = n(), Percentage = (Total / nrow(sample_metadata)) * 100)
## `summarise()` has grouped output by 'Case_Control'. You can override using the `.groups` argument.
status_route
## # A tibble: 3 x 4
               Case_Control [2]
## # Groups:
     Case_Control Delivery_Route Total Percentage
##
##
     <chr>
                  <chr>>
                                 <int>
                                            33.5
## 1 case
                  vaginal
                                   260
## 2 control
                  cesarian
                                    66
                                             8.49
## 3 control
                                   451
                                            58.0
                  vaginal
ggplot(status_route, aes(fill=Delivery_Route, y=Total, x=Case_Control)) +
  geom_bar(position="dodge", stat="identity") +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
        panel.background = element_blank(), axis.line = element_line(colour = "black"))
   400
```


1.5.1 Relationship between status and delivery route

Here we use the chi-square test to determine whether the status and delivery routes are independent or dependent of each other.

Null hypothesis: Status and delivery route are independent

Alternate hypothesis: Status and delivery route relate to each other Note: We set our significance level at 0.05. So, if we get a p-value less than 0.05, we shall reject the null hypothesis, otherwise, we fail to reject it.

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: del_mat
## X-squared = 34.649, df = 1, p-value = 3.949e-09
```

Since P-value is less than 0.05 - our significance level, we reject the null hypothesis and conclude that status and delivery route are independent of each other

1.6 Cases and controls, gender plus delivery route

```
status_gender_delivery <- sample_metadata %>%
  group_by(Gender, Case_Control, Delivery_Route) %>%
  summarise(Total = n(), Percentage = (Total / nrow(sample_metadata)) * 100)
## `summarise()` has grouped output by 'Gender', 'Case_Control'. You can override using the `.groups` a
status_gender_delivery
## # A tibble: 6 x 5
               Gender, Case_Control [4]
##
     Gender Case_Control Delivery_Route Total Percentage
     <chr> <chr>
                         <chr>
                                                    <dbl>
                                         <int>
## 1 female case
                                           142
                                                    18.3
                         vaginal
## 2 female control
                         cesarian
                                            38
                                                     4.89
## 3 female control
                                                    29.9
                         vaginal
                                           232
## 4 male
            case
                         vaginal
                                           118
                                                    15.2
## 5 male
                                            28
                                                     3.60
            control
                         cesarian
## 6 male
            control
                         vaginal
                                           219
                                                    28.2
p <- ggplot(status_gender_delivery, aes(x = Gender, y = Total, fill = Delivery_Route)) +</pre>
  geom_bar(position="dodge", stat="identity") +
  theme(panel.grid.major = element_blank(),
        panel.grid.minor = element blank(), panel.background = element blank(), axis.line =
          element_line(colour = "black"), axis.text.x = element_text(angle = 45, hjust = 1))
p + facet_grid(. ~ Case_Control) + geom_text(aes(label = Total), vjust = -0.1, position =
```

```
position_dodge(width = 0.9)) +
labs(x = "Gender")
```


1.7 Age

```
# calculate the decriptive statistics of age
summary(sample_metadata$Age_at_Collection)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
##
       6.0
             229.0
                     452.0
                             482.9
                                     702.0
                                            1233.0
# find the standard deviation within age
sd(sample_metadata$Age_at_Collection)
## [1] 294.7245
# do a violin plot to show age vs case_control and fill with gender
ggplot(sample_metadata, aes(y = Age_at_Collection, x = Case_Control, fill = Gender)) +
  geom_violin(trim = FALSE) +
  theme_classic() +
  labs(title="Plot of Age within Case_Control", x="Case_Control", y = "Age")
```



```
# do a violin plot to show age vs case_control and fill with delivery_route
ggplot(sample_metadata, aes(y = Age_at_Collection, x = Gender, fill = Delivery_Route)) +
geom_violin(trim = FALSE) +
theme_classic() +
labs(title="Plot of Age within Gender",x="Gender", y = "Age")
```


2 Question 2

Using phyloseq, create a phyloseq object. This will comprise the OTU abundance, taxonomy (provided in the .txt file) and sample data (provided in the .csv file)

```
otut_mat <- as.matrix(otut) # convert the otu table into a matrix</pre>
class(otut_mat)
## [1] "matrix" "array"
taxat mat <- as.matrix(taxat) # convert the taxa table into a matrix
class(taxat_mat)
## [1] "matrix" "array"
#head(taxat mat)
taxat_mat_sub <- gsub(";", "", taxat_mat) # remove ; from the columns of taxa table
\#head(taxat_mat_sub)
# Our row names are ending with; and this makes them different from the naming in the otu table
# so we need to remove the ;
mat_names <- row.names(taxat_mat_sub) # extract the rownames and store them in the mat_names object
new_naam <- gsub(";", "", mat_names) # remove; from the mat_names and store them to new_naam
#new_naam
row.names(taxat_mat_sub) <- new_naam # now change the row names of taxat_mat_sub to the names in "new_n
OTU <- otu_table(otut_mat, taxa_are_rows = TRUE)
TAX <- tax_table(taxat_mat_sub)</pre>
#OTU
#TAX
samp_data <- column_to_rownames(sample_metadata, var="Sample_ID")</pre>
samp_data <- sample_data(samp_data)</pre>
physeq <- phyloseq(OTU, TAX, samp_data)</pre>
physeq
## phyloseq-class experiment-level object
## otu_table()
                 OTU Table:
                                   [ 2240 taxa and 777 samples ]
## sample_data() Sample Data:
                                    [ 777 samples by 5 sample variables ]
## tax_table()
                 Taxonomy Table:
                                    [ 2240 taxa by 7 taxonomic ranks ]
```

3 Question 3

Generate Alpha diversity plots and ordination plots. Examine any observed patterns by delivery mode, gender and disease status.

3.1 Alpha diversity comparing the gender in cases and controls

3.2 Alpha diversity comparing the delivery routes in cases and controls

____Case_Control

```
plot_richness(physeq = physeq, x = "Case_Control", color = "Delivery_Route")
```


3.3 Ordination plots

3.3.1 Case_Control and Delivery_Route

```
library(plyr)
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
##
## Attaching package: 'plyr'
##
   The following object is masked from 'package:matrixStats':
##
##
       count
   The following object is masked from 'package: IRanges':
##
##
       desc
  The following object is masked from 'package:S4Vectors':
##
```

```
##
       rename
## The following objects are masked from 'package:dplyr':
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
##
       summarize
## The following object is masked from 'package:purrr':
##
##
       compact
GP.ord <- ordinate(physeq, "NMDS", "bray") # calculate the pairwise matrix
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.181114
## Run 1 stress 0.1895064
## Run 2 stress 0.1849785
## Run 3 stress 0.1886943
## Run 4 stress 0.188767
## Run 5 stress 0.1813633
## ... Procrustes: rmse 0.01358951 max resid 0.1101631
## Run 6 stress 0.1882243
## Run 7 stress 0.1925373
## Run 8 stress 0.1865819
## Run 9 stress 0.1828949
## Run 10 stress 0.1901574
## Run 11 stress 0.1926256
## Run 12 stress 0.1823703
## Run 13 stress 0.1830457
## Run 14 stress 0.1906077
## Run 15 stress 0.1843107
## Run 16 stress 0.1854504
## Run 17 stress 0.1858675
## Run 18 stress 0.1897204
## Run 19 stress 0.183785
## Run 20 stress 0.1842714
## *** No convergence -- monoMDS stopping criteria:
        6: no. of iterations >= maxit
##
##
        7: stress ratio > sratmax
##
        7: scale factor of the gradient < sfgrmin
p2 = plot_ordination(physeq, GP.ord, type="Sample_ID", color="Case_Control", shape="Delivery_Route")
p2 + geom_polygon(aes(fill=Case_Control)) + geom_point(size=5) + ggtitle("Sample_ID")
```


According to this plot, there is no clear difference among cases and controls while basing on the Delivery route

3.3.2 Case_Control and Gender

```
p2 = plot_ordination(physeq, GP.ord, type="Sample_ID", color="Case_Control", shape="Gender")
p2 + geom_polygon(aes(fill=Case_Control)) + geom_point(size=5) + ggtitle("Sample_ID")
```


According to this plot, there is no clear difference between gender

4 Question 4

Perform differential abundance using DEseq2

4.1 Differential abundance using Case_Control + Delivery_Route as the design

```
library(DESeq2)
diagdds = phyloseq_to_deseq2(physeq, ~ Case_Control + Delivery_Route)

## converting counts to integer mode

## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in

## design formula are characters, converting to factors

# calculate geometric means prior to estimate size factors

gm_mean = function(x, na.rm=TRUE){
    exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))
}

geoMeans = apply(counts(diagdds), 1, gm_mean)
diagdds = estimateSizeFactors(diagdds, geoMeans = geoMeans)
diagdds = DESeq(diagdds, fitType="local")
```

```
## using pre-existing size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 1083 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
res = results(diagdds, cooksCutoff = FALSE)
alpha = 0.01
sigtab = res[which(res$padj < alpha), ]</pre>
sigtab = cbind(as(sigtab, "data.frame"), as(tax_table(physeq)[rownames(sigtab), ], "matrix"))
head(sigtab)
            baseMean log2FoldChange
                                       lfcSE
                                                   stat
                                                             pvalue
                                                                            padj
## 3211875 20.27438 1.820295 0.5452404 3.338518 8.422642e-04 5.536848e-03
## 172777
           23.72436
                         -1.941592 0.3537056 -5.489288 4.035569e-08 8.432215e-07
                          3.064838 0.3672559 8.345239 7.107029e-17 5.374268e-15
## 189920
           66.23363
## 3275562 138.16705
                          4.405241 0.5717719 7.704543 1.313119e-14 7.723088e-13
## 184990
           8.68079
                          1.942984 0.3571946 5.439566 5.341058e-08 1.073620e-06
## 306299
                          1.992251 0.4794025 4.155695 3.243001e-05 3.198686e-04
            8.60579
                               Phylum.
                                               Class.
              Domain.
## 3211875 k__Bacteria p__Bacteroidetes c__Bacteroidia o__Bacteroidales
## 172777 k_Bacteria p_Bacteroidetes c_Bacteroidia o_Bacteroidales
## 189920 k_Bacteria p_Bacteroidetes c_Bacteroidia o_Bacteroidales
## 3275562 k__Bacteria
                         p_Firmicutes c_Clostridia o_Clostridiales
## 184990 k__Bacteria
                         p_Firmicutes c_Clostridia o_Clostridiales
## 306299 k__Bacteria
                         p__Firmicutes c__Clostridia o__Clostridiales
                     Family.
                                     Genus. Species
##
## 3211875 f_Bacteroidaceae g_Bacteroides
## 172777
           f_Bacteroidaceae g_Bacteroides
                                                 S___
## 189920
          f_Bacteroidaceae g_Bacteroides
                                                 S
## 3275562 f__Lachnospiraceae
                                                 s__
                                        g__
## 184990 f_Ruminococcaceae
                                        g__
                                                 s___
## 306299 f_Lachnospiraceae
                                                 s__
                                        g__
## Exploring OTUs that were significant
# library("ggplot2")
theme_set(theme_bw())
scale_fill_discrete <- function(palname = "Set1", ...) {</pre>
    scale_fill_brewer(palette = palname, ...)
}
# Phylum order
x = tapply(sigtab$log2FoldChange, sigtab$Phylum, function(x) max(x))
x = sort(x, TRUE)
sigtab$Phylum = factor(as.character(sigtab$Phylum), levels=names(x))
# Genus order
```

```
x = tapply(sigtab$log2FoldChange, sigtab$Genus, function(x) max(x))
x = sort(x, TRUE)
sigtab$Genus = factor(as.character(sigtab$Genus), levels=names(x))
ggplot(sigtab, aes(x=Genus, y=log2FoldChange, color=Phylum)) + geom_point(size=6) +
theme(axis.text.x = element_text(angle = -90, hjust = 0, vjust=0.5))
```


4.2 Differential abundance using Case_control + Gender

```
diagdds = phyloseq_to_deseq2(physeq, ~ Case_Control + Gender)

## converting counts to integer mode

## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in

## design formula are characters, converting to factors

# calculate geometric means prior to estimate size factors

gm_mean = function(x, na.rm=TRUE){
    exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))
}

geoMeans = apply(counts(diagdds), 1, gm_mean)
diagdds = estimateSizeFactors(diagdds, geoMeans = geoMeans)
diagdds = DESeq(diagdds, fitType="local")

## using pre-existing size factors

## estimating dispersions
```

```
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 1077 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
res = results(diagdds, cooksCutoff = FALSE)
alpha = 0.01
sigtab = res[which(res$padj < alpha), ]</pre>
sigtab = cbind(as(sigtab, "data.frame"), as(tax_table(physeq)[rownames(sigtab), ], "matrix"))
head(sigtab)
##
             baseMean log2FoldChange
                                         lfcSE
                                                    stat
                                                               pvalue
## 190162
             8.913805
                           0.6581823 0.1654124 3.979038 6.919478e-05 7.611426e-04
## 134726
             5.372019
                          -1.9538615 0.5285288 -3.696793 2.183406e-04 1.930376e-03
## 679245
            11.846562
                          -2.0665739 0.4312619 -4.791923 1.651904e-06 3.064120e-05
                           0.7178517 0.1900582 3.777011 1.587219e-04 1.494039e-03
## 4390365 446.543715
## 189920
            66.233626
                           0.6842066 0.2015487 3.394746 6.869222e-04 4.726024e-03
                           1.5846228 0.3128092 5.065781 4.067296e-07 9.053323e-06
## 3275562 148.487742
                                                    Class.
                                                                           Order.
##
               Domain.
                                Phylum.
## 190162 k Bacteria
                         p__Firmicutes
                                             c Clostridia
                                                                o Clostridiales
## 134726 k__Bacteria
                          p__Firmicutes
                                                c__Bacilli
                                                              o__Lactobacillales
## 679245 k__Bacteria
                                                c__Bacilli
                                                              o__Lactobacillales
                          p__Firmicutes
## 4390365 k__Bacteria
                          p__Firmicutes c__Erysipelotrichi o__Erysipelotrichales
## 189920 k__Bacteria p__Bacteroidetes
                                            c__Bacteroidia
                                                                o__Bacteroidales
## 3275562 k__Bacteria
                          p__Firmicutes
                                             c__Clostridia
                                                                o__Clostridiales
                          Family.
                                            Genus. Species
## 190162
               f__Lachnospiraceae
                                        g__Blautia
## 134726
              f_Lactobacillaceae g_Lactobacillus
## 679245
              f_Lactobacillaceae g_Lactobacillus
## 4390365 f__Erysipelotrichaceae
                                                       s__
## 189920
                f__Bacteroidaceae
                                    g__Bacteroides
                                                       s__
## 3275562
               f__Lachnospiraceae
                                               g__
                                                       s__
## Exploring OTUs that were significant
# library("ggplot2")
theme set(theme bw())
scale_fill_discrete <- function(palname = "Set1", ...) {</pre>
    scale_fill_brewer(palette = palname, ...)
}
# Phylum order
x = tapply(sigtab$log2FoldChange, sigtab$Phylum, function(x) max(x))
x = sort(x, TRUE)
sigtab$Phylum = factor(as.character(sigtab$Phylum), levels=names(x))
# Genus order
x = tapply(sigtab$log2FoldChange, sigtab$Genus, function(x) max(x))
x = sort(x, TRUE)
sigtab$Genus = factor(as.character(sigtab$Genus), levels=names(x))
```

```
ggplot(sigtab, aes(x=Genus, y=log2FoldChange, color=Phylum)) + geom_point(size=6) +
theme(axis.text.x = element_text(angle = -90, hjust = 0, vjust=0.5))
```


4.3 Differential abundance using Case_Control + Gender + Delivery_Route as the design

```
diagdds = phyloseq_to_deseq2(physeq, ~ Case_Control + Delivery_Route + Gender)

## converting counts to integer mode

## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in

## design formula are characters, converting to factors

# calculate geometric means prior to estimate size factors

gm_mean = function(x, na.rm=TRUE){
    exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))
}

geoMeans = apply(counts(diagdds), 1, gm_mean)
diagdds = estimateSizeFactors(diagdds, geoMeans = geoMeans)
diagdds = DESeq(diagdds, fitType="local")

## using pre-existing size factors

## estimating dispersions

## gene-wise dispersion estimates
```

```
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 833 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
res = results(diagdds, cooksCutoff = FALSE)
alpha = 0.01
sigtab = res[which(res$padj < alpha), ]</pre>
sigtab = cbind(as(sigtab, "data.frame"), as(tax_table(physeq)[rownames(sigtab), ], "matrix"))
head(sigtab)
##
             baseMean log2FoldChange
                                         lfcSE
                                                                pvalue
                                                    stat
                                                                               padj
## 190162
                           1.0276821 0.1760778 5.836522 5.330184e-09 1.707597e-07
            12.055226
## 134726
             6.325778
                          -2.3081915 0.5322393 -4.336755 1.446018e-05 1.859769e-04
                          -2.2175788 0.4330141 -5.121262 3.034980e-07 6.218179e-06
## 679245
            13.244243
## 4390365 446.543715
                           0.7107917 0.1897622 3.745698 1.798931e-04 1.460699e-03
                           1.7768729 0.3074224 5.779906 7.474222e-09 2.310452e-07
## 3275562 148.487742
## 4446902 14.718753
                          -0.9203260 0.1450865 -6.343293 2.249052e-10 1.132237e-08
                                                 Class.
##
               Domain.
                             Phylum.
                                                                        Order.
## 190162 k Bacteria p Firmicutes
                                          c__Clostridia
                                                             o__Clostridiales
## 134726 k_Bacteria p_Firmicutes
                                             c__Bacilli
                                                           o Lactobacillales
## 679245 k__Bacteria p__Firmicutes
                                             c Bacilli
                                                           o__Lactobacillales
## 4390365 k_Bacteria p_Firmicutes c_Erysipelotrichi o_Erysipelotrichales
## 3275562 k__Bacteria p__Firmicutes
                                          c__Clostridia
                                                             o__Clostridiales
## 4446902 k__Bacteria p__Firmicutes
                                                                o__Gemellales
                                             c__Bacilli
##
                          Family.
                                            Genus. Species
              f__Lachnospiraceae
                                        g__Blautia
## 190162
## 134726
              f_Lactobacillaceae g_Lactobacillus
## 679245
              f_Lactobacillaceae g_Lactobacillus
                                                       s__
## 4390365 f__Erysipelotrichaceae
                                                       s__
## 3275562
              f__Lachnospiraceae
                                               g__
                                                       s__
## 4446902
                   f__Gemellaceae
                                               g___
                                                       S___
## Exploring OTUs that were significant
# library("ggplot2")
theme set(theme bw())
scale fill discrete <- function(palname = "Set1", ...) {</pre>
    scale_fill_brewer(palette = palname, ...)
}
# Phylum order
x = tapply(sigtab$log2FoldChange, sigtab$Phylum, function(x) max(x))
x = sort(x, TRUE)
sigtab$Phylum = factor(as.character(sigtab$Phylum), levels=names(x))
# Genus order
x = tapply(sigtab$log2FoldChange, sigtab$Genus, function(x) max(x))
x = sort(x, TRUE)
sigtab$Genus = factor(as.character(sigtab$Genus), levels=names(x))
ggplot(sigtab, aes(x=Genus, y=log2FoldChange, color=Phylum)) + geom_point(size=6) +
 theme(axis.text.x = element_text(angle = -90, hjust = 0, vjust=0.5))
```

