

高性能计算技术

第七讲 并行程序设计基础

何克晶 kjhe@scut.edu.cn

华南理工大学计算机学院

内容概要

- 并行算法的设计例子: 矩阵乘法
 - **Canons**
 - > DNS
- 并行程序设计概述
- 并行程序设计的基本问题
- 并行程序设计模型

矩阵的划分

• 划分方法

带状划分(striped partitioning):
 one dimensional, row or column,
 block or cyclic
棋盘划分(checkerboard partitioning):
 two dimensional, block or cyclic

带状划分

• 16×16阶矩阵, p=4

列块(block)带状划分

	0	
	4	 П
	8	 P_0
	12	
	1	
	5	 D
	9	 P ₁
	13	
	2	
	6	 D
>	10	P_2
	14	
	3	
	7	 D
	11	 P_3
	15	

行循环^(b) 行循环^(cyclic) 带状划分

带状划分(2)

Striped row-major mapping of a 27×27 matrix on p=3 processors.

棋盘划分

• 8×8阶矩阵, p=16

(0,0) $(0,1)$	(0, 2) $(0, 3)$	(0,4) $(0,5)$	(0,6) $(0,7)$
\mathbf{P}_{0}	P_1	$ ho_2$	P_3
(1,0) $(1,1)$	(1, 2) $(1, 3)$	(1,4) $(1,5)$	(1,6) $(1,7)$
(2,0) $(2,1)$	(2,2) $(2,3)$	(2,4) $(2,5)$	(2,6) $(2,7)$
P_4	P_5	P_6	P ₇
(3,0) $(3,1)$	(3, 2) $(3, 3)$	(3,4) $(3,5)$	(3,6) $(3,7)$
(4,0) $(4,1)$	(4, 2) $(4, 3)$	(4,4) $(4,5)$	(4,6) $(4,7)$
P_8	P_9	P_{10}	P ₁₁
(5,0) $(5,1)$	(5,2) $(5,3)$	(5,4) $(5,5)$	(5,6) $(5,7)$
(6, 0) (6, 1)	(6, 2) (6, 3)	(6,4) $(6,5)$	(6,6) $(6,7)$
\mathbf{P}_{12}	P_{13}	P ₁₄	P ₁₅
(7,0) $(7,1)$	(7,2) $(7,3)$	(7,4) $(7,5)$	(7,6) $(7,7)$

(0, 0)	(0, 4)	(0, 1)	(0, 5)	(0, 2)	(0, 6)	(0, 3)	(0, 7)
	P_0	I	P_1		\mathbf{P}_2		\mathbf{P}_3
(4, 0)	(4, 4)	(4, 1)	(4, 5)	(4, 2)	(4, 6)	(4, 3)	(4, 7)
(1, 0)	(1, 4)	(1, 1)	(1, 5)	(1, 2)	(1, 6)	(1, 3)	(1, 7)
	P_4	I	D		P_6		\mathbf{P}_7
(5, 0)	(5, 4)	(5, 1)	(5, 5)	(5, 2)	(5, 6)	(5, 3)	(5, 7)
(2, 0)	(2, 4)	(2, 1)	(2, 5)	(2, 2)	(2, 6)	(2, 3)	(2, 7)
	\mathbf{P}_8	I	P ₉		\mathbf{P}_{10}		P ₁₁
(6, 0)	(6, 4)	(6, 1)	(6, 5)	(6, 2)	(6, 6)	(6, 3)	(6, 7)
(3, 0)	(3, 4)	(3, 1)	(3, 5)	(3, 2)	(3, 6)	(3, 3)	(3, 7)
	P ₁₂]	P ₁₃		P ₁₄		P ₁₅
(7, 0)	(7, 4)	(7, 1)	(7, 5)	(7, 2)	(7, 6)	(7, 3)	(7, 7)

(a) 棋盘划分 (b) 循环棋盘划分

棋盘划分(2)

Checkerboard mapping of a 16×16 matrix on $p = 2 \times 2$ processors.

矩阵乘法定义

矩阵乘法

- 普通串行算法(算法9.3)的运行时间为O(n³)
- 已知串行算法时间复杂度为 $O(n^x)$, $2 < x \le 3$

Matrix multiplication is the most studied parallel algorithm.

It is a good algorithm to learn because it shows many ideas about parallelism.

并行矩阵乘法

• 实现方法

- ▶ 计算结构: 二维阵列
- ▶简单分块并行算法
- > Cannon (1969年)
- > DNS (1981年)
- ▶ 其他: Fox, Systolic (时 间对准)

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
B _{0.0}	B _{0.1}	B _{0.2}	B _{0.3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
B _{1 0}	B _{1,1}	B _{1 2}	B _{1 3}
A _{2,0} B _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
	B _{2,1}	B _{2,2}	B _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}

矩阵分块

• 分块: A、B和C分成 $p = \sqrt{p} \times \sqrt{p}$ 的方块阵 $\mathbf{A}_{i,j}$ 、 $\mathbf{B}_{i,j}$ 和 $\mathbf{C}_{i,j}$ 、大小均为 $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ • p个处理器编号为 $(P_{0,0},...,P_{0,\sqrt{p-1}},...,P_{\sqrt{p-1},\sqrt{p-1}})$, $\mathbf{P}_{i,j}$ 存放 $\mathbf{A}_{i,j}$ 、 $\mathbf{B}_{i,j}$ 和 $\mathbf{C}_{i,j}$ ($\mathbf{n} >> \mathbf{p}$)

$\frac{n}{\sqrt{p}}$	P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}	
	P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	⟩ n个元素
	P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}	
	P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}	
		\sqrt{p}	个 块		

简单并行分块算法

• 分块: $A \times B$ 和C分成 $p=p^{1/2} \times p^{1/2}$ 块大小为 $(n/p^{1/2}) \times (n/p^{1/2})$ 的方块 阵 $A_{i,j} \times B_{i,j}$ 和 $C_{i,j}$,p个处理器编号为:

$$(P_{0,0}^{\mathbf{J}},...,P_{0,\sqrt{p-1}},...,P_{\sqrt{p-1},\sqrt{p-1}})$$

 $P_{i,j}$ 存放 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$

• 算法:

①通信:

每行处理器进行A矩阵块的多到多播送(得到 $A_{i,k}$, $k=0\sim p^{1/2}-1$) 每列处理器进行B矩阵块的多到多播送(得到 $B_{k,i}$, $k=0\sim p^{1/2}-1$)

②乘-加运算:
$$\mathbf{P}_{\mathbf{i},\mathbf{j}}$$
做 $C_{ij} = \sum_{k=0}^{\sqrt{p-1}} A_{ik} \cdot B_{kj}$ • 计算时间?

• 存在的问题?

内容概要

- 并行算法的设计例子: 矩阵乘法
 - **Canons**
 - **DNS**
- 并行程序设计概述
- 并行程序设计的基本问题
- 并行程序设计模型

矩阵分块的颜色表示

每个三角代表一 个矩阵块

只有相同颜色的 三角可以相乘

块的重排

Cannon算法描述

• 算法:

- ① 对准:
 - 所有块 $A_{i,j}(0 \le i, j \le \sqrt{p-1})$ 向左循环移动i步; 所有块 $B_{i,j}(0 \le i, j \le \sqrt{p-1})$ 向上循环移动j步;
- ② 所有处理器 $P_{i,i}$ 做执行 $A_{i,i}$ 和 $B_{i,i}$ 的乘-加运算;
- ③ 移位:
 - A的每个块向左循环移动一步; B的每个块向上循环移动一步;
- ④ 转②执行 $\sqrt{p-1}$ 次;

移位的结果

第一次移位后

A_{0,3} A_{0,0} B_{0,3} A_{0,1} $A_{0,2}$ B_{2,1} B_{1,0} B_{3,2} A_{1,0} $A_{1,1}$ A_{1,3} A_{1,2} B_{3,1} B_{0,2} B_{1,3} $B_{2,0}$ A_{2,1} A_{2,3} A2,2 $A_{2,0}$ B_{0,1} B_{1,2} B_{3,0} B_{2,3} A_{3,1} A_{3,3} B_{3,3} A_{3,0} A3,2 B_{0,0} B_{2,2} B_{3,1}

第二次移位后

	A _{0,2}	A _{0,3}	A _{0,0}	A _{0,1}	
	B _{,2,0}	B _{3,1}	B _{0,2}	B _{1,3}	
	A _{1,3}	A _{1,0}	A _{1,1}	A _{1,2}	
	B _{3,0}	B _{0,1}	B _{1,2}	B _{2,3}	
	A _{2,0} B _{0,0}	A _{2,1} B _{1,1}	A _{2,2} B _{2,2}	A _{2,3} B _{3,3}	
I	A _{3,1}	A _{3,2}	A _{3,3}	A _{3,0}	
	B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}	

第三次移位后

Cannon分块乘法

```
//输入: A_{n\times n}, B_{n\times n}; 输出: C_{n\times n}
Begin
    (1) for k=0 to p^{1/2}-1 do
            for all P<sub>i,i</sub> par-do
               (i) if i>k then
                      A_{i,i} \leftarrow A_{i,(j+1) \mod \sqrt{p}}
                    endif
               (ii) if j>k then
                      B_{i,j} \leftarrow B_{(i+1) \mod \sqrt{p}, j}
                    endif
            endfor
        endfor
     (2) for all P<sub>i,i</sub> par-do C<sub>i,i</sub>=0 endfor
```

算法9.5

(3) for k=0 to p^{1/2}-1 do for all P_{i,j} par-do (i)
$$C_{i,j}=C_{i,j}+A_{i,j}B_{i,j}$$
 (ii) $A_{i,j} \leftarrow A_{i,(j+1)\text{mod}\sqrt{p}}$ (iii) $B_{i,j} \leftarrow B_{(i+1)\text{mod}\sqrt{p}}$, j endfor endfor

复杂度分析

- 算法有 p 1/2 次循环
- 在每次循环,有 $(n/p^{1/2}) \times (n/p^{1/2})$ 的矩阵乘法: $\Theta(n^3/p^{3/2})$
- 计算复杂度: $\Theta(n^3/p)$
- 在每个循环,每个处理器发送和接收两个大小为 $(n/p^{1/2}) \times (n/p^{1/2})$ 的数据块
 - \rightarrow 每个处理器的通信复杂度: $\Theta(n^2/p^{1/2})$
- 串行算法: Θ(n³)
- 并行开销: Θ(p ^{1/2} n²)

内容概要

- 并行算法的设计例子: 矩阵乘法
 - **Canons**
 - > DNS
- 并行程序设计概述
- 并行程序设计的基本问题
- 并行程序设计模型

棋盘划分的矩阵乘法

是否可利用更多的处理器达到更高的加速比?

DNS矩阵乘法的思路

• Motivation: From a good and common idea

DNS矩阵分块

- 背景: 由Dekel、Nassimi和Sahni(1981)提出的SIMD-CC上的矩阵乘法,处理器数目为n³, 运行时间为O(logn), 是一种速度很快的算法
- 基本思想:通过一到一和一到多的播送办法,使得处理器(k,i,j)拥有a_{i,k}和b_{k,j},进行本地相乘,再沿k方向进行单点积累求和,结果存储在处理器(0,i,j)中
- 处理器编号: 处理器数p=n³= (2q)³=2³q, 处理器Pr位于位置(k,i,j), 这里r=kn²+in+j, (0≤i, j, k≤n-1)。位于(k,i,j)的处理器Pr的三个寄存器Ar,Br,Cr分别表示为A[k,i,j], B[k,i,j]和C[k,i,j], 初始时均为0

DNS矩阵乘法示例(1)

DNS矩阵乘法示例(2)

DNS矩阵乘法算法描述

- 算法: 初始时a_{i,j}和b_{i,j}存储于寄存器A[0,i,j]和B[0,i,j];
 - ①数据复制:A,B同时在k维复制(一到一播送)
 - A在j维复制(一到多播送)
 - B在i维复制(一到多播送)
 - ②相乘运算:所有处理器的A、B寄存器两两相乘
 - ③求和运算:沿k方向进行单点积累求和

DNS矩阵乘法示例

- 示例

$$B = \begin{pmatrix} -5 & -6 \\ 7 & 8 \end{pmatrix}$$

求
$$C = A \times B$$

$$C_{00}=1\times(-5)+2\times7=9$$

$$C_{01}=1\times(-6)+2\times8=10$$

$$C_{10} = 3 \times (-5) + 4 \times 7 = 13$$

$$C_{11} = 3 \times (-6) + 4 \times 8 = 14 \begin{pmatrix} -5 \end{pmatrix}$$

$$\begin{array}{c|c}
1 & 000 & 3 & 010 \\
-5 & P_0 & 7 & P_2
\end{array}$$

(c)A沿j维复制

(f)沿k维求和

DNS矩阵乘法算法(1)

```
//令r(m)表示r的第m位取反;
//{p, r_m = d}表示r(0 \le r \le p-1)的集合,这里r的二
//进制第m位为d;
//输入: A_{n\times n}, B_{n\times n}; 输出: C_{n\times n}
Begin //以n=2, p=8=23举例, q=1, r=(r,r,r<sub>0</sub>),
     (1)for m=3q-1 to 2q do //按k维复制A,B, m=2
            for all r in {p, r<sub>m</sub>=0} par-do //r<sub>2</sub>=0的r
              (1.1) A_{r(m)} \leftarrow A_{r} //A(100) \leftarrow A(000)等
              (1.2) B<sub>r</sub>(m) \leftarrow B<sub>r</sub> //B(100) \leftarrow B(000) 等
           endfor
        endfor
     (2)for m=q-1 to 0 do //按j维复制A, m=0
            for all r in \{p, r_m = r_{2q+m}\} par-do //r_0 = r_2的r
               A_{r(m)} \leftarrow A_r //A(001) \leftarrow A(000), A(100) \leftarrow A(101)
            endfor
                            //A(011) \leftarrow A(010), A(110) \leftarrow A(111)
         endfor
```

算法9.6

DNS矩阵乘法算法(2)

```
(3) for m=2q-1 to q do //按i维复制B,m=1
        for all r in \{p, r_m = r_{q+m}\} par-do//r_1 = r_2的r
            B_{r(m)} \leftarrow B_r //B(010) \leftarrow B(000), B(100) \leftarrow B(110)
         endfor
                          //B(011) \leftarrow B(001), B(101) \leftarrow B(111)
       endfor
  (4) for r=0 to p-1 par-do //相乘, all Pr
         C_r = A_r \times B_r
      endfor
  (5) for m=2q to 3q-1 do
                                   //求和,m=2
         for r=0 to p-1 par-do
            C_r = C_r + C_{r(m)}
         endfor
      endfor
End
```

算法9.6

非成本最优

内容概要

- 并行算法的设计例子: 矩阵乘法
- 并行程序设计概述
- 并行程序设计的基本问题
- 并行程序设计模型

并行程序设计难的原因

- 技术先行,缺乏理论指导
- 程序的语法/语义复杂,需要用户自己处理
 - ▶任务/数据的划分/分配
 - > 数据交换
 - > 同步和互斥
 - ▶性能平衡
- 并行语言缺乏代码可扩展和异构可扩展,程序 移植困难,重写代码难度太大
- 环境和工具缺乏较长的生长期,缺乏代码可扩展和异构可扩展

并行程序构造方法(1)

串行代码段

```
for ( i= 0; i<N; i++ ) A[i]=b[i]*b[i+1];
for (i= 0; i<N; i++) c[i]=A[i]+A[i+1];
```

(a) 使用库例程构造并行程序

```
id=my_process_id();
p=number_of_processes();
for ( i= id; i<N; i=i+p) A[i]=b[i]*b[i+1];
barrier();
for (i= id; i<N; i=i+p) c[i]=A[i]+A[i+1];
例子: MPI,PVM, Pthreads
```

(b) 扩展串行语言

```
my_process_id,number_of_processes(), and barrier()
```

```
A(0:N-1)=b(0:N-1)*b(1:N)
c=A(0:N-1)+A(1:N)
```

例子: Fortran 90

```
(c) 加编译注释构造并行程序的方法
#pragma parallel
#pragma shared(A,b,c)
#pragma local(i)
{
# pragma pfor iterate(i=0;N;1)
for (i=0;i<N;i++) A[i]=b[i]*b[i+1];
# pragma synchronize
# pragma pfor iterate (i=0; N; 1)
for (i=0;i<N;i++)c[i]=A[i]+A[i+1];
}
例子: SGI power C, OpenMP
```

并行程序构造方法(2)

三种并行程序构造方法比较

方法	实例	优点	缺点
库例程	MPI, PVM	易于实现, 不需要新编	无编译器检查,
		译器	分析和优化
扩展	Fortran90	允许编译器检查、分析	实现困难,需要新
		和优化	编译器
编译器注释	OpenMP, HPF	介于库例程和扩展方法之间, 在串行平台	
	SGI powerC	上不起作用.	

并行编程风范

- 相并行 (Phase Parallel)
- 分治并行(Divide and Conquer Parallel)
- · 流水线并行(Pipeline Parallel)
- 主从并行 (Master-Slave Parallel)
- 工作池并行(Work Pool Parallel)

相并行 (Phase Parallel)

- 一组超级步(相)
- 步内各自计算
- 步间通信、同步
- BSP (4.2.3)
- 方便差错和性能分析
- 计算和通信不能重叠

分治并行 (Divide and Conquer Parallel)

- 父进程把负载分割并指派给子进程
- 递归
- 重点在于归并
- 分治设计技术 (6.2)
- 难以负载平衡

流水线并行 (Pipeline Parallel)

- 一组进程
- 流水线作业
- 流水线设计技术 (6.5)

主一从并行

(Master-Slave Parallel)

- 主进程: 串行、协调任务
- 子进程: 计算子任务
- 划分设计技术(6.1)
- 与相并行结合
- 主进程易成为瓶颈

工作池并行 (Work Pool Parallel)

- 初始状态: 一件工作
- 进程从池中取任务执行
- 可产生新任务放回池中
- 直至任务池为空
- 易与负载平衡
- 临界区问题(尤其消息传递)

内容概要

- 并行算法的设计例子: 矩阵乘法
- 并行程序设计概述
- 并行程序设计的基本问题
- 并行程序设计模型

进程的同构性

- 进程: 并行程序的基本计算单位
- SIMD: 所有进程在同一时间执行相同的指令
- MIMD: 各个进程在同一时间可以执行不同的 指令
 - ➤ SPMD (Single Program Multiple Data): 各个进程是同构的,多个进程对不同的数据执行相同的代码(一般是数据并行的同义语)
 - 常对应并行循环,数据并行结构,单代码
 - ➤ MPMD(Multiple Program Multiple Data):各个 进程是异构的,多个进程执行不同的代码(一般是 任务并行,或功能并行,或控制并行的同义语)
 - 常对应并行块,多代码

要为有1000个处理器的计算机编写一个完全异构的并行程序是很困难的

SPMD例子

```
main(int argc, char **argv)
    if(process is to become Master)
                 MasterRoutine(/*arguments*/)
     else /* it is worker process */
                WorkerRoutine(/*arguments*/)
```

SPMD 对比MPMD

SPMD 并行循环: 当并行块中所有进程共享相同代码时 > parbegin S1 S2 S3Sn parend S1 S2 S3Sn是相同代码 > 可以简化为: parfor $(i=1; i \le n, i++)$ S(i) **MPMD** ▶ parbegin S1 S2 S3Sn parend S1 S2 S3Sn 可以是不同的代码 ➤ 也可以用 SPMD来仿真: parfor (i=0; i<3, i++) { if (i=0) S1 if (i=1) S2 if (i=2) S3

因此,对于可扩展并行机来说,只要支持SPMD就足够了

静态和动态并行性

- 静态并行性:程序的结构 以及进程的个数在运行 之前(如编译时,连接时 或加载时)就可确定,就 认为该程序具有静态并 行性.
- 动态并行性: 否则就认为 该程序具有动态并行性. 即意味着进程要在运行 时创建和终止

静态并行性的例子: parbegin P, Q, R parend 其中P,Q,R是静态的

```
动态并行性的例子:
while (C>0) begin
fork (foo(C));
C:=boo(C);
end
```

动态并行性

• 开发动态并行性的一般方法: 分支/汇合(Fork/Join)

➤ Fork: 派生一个子进程

➤ Join: 强制父进程等待子进程

```
Process A:
begin
Z:=1
fork(B);
T:=foo(3);
end
```

```
Process B:
begin
fork(C);
X:=foo(Z);
join(C);
output(X+Y);
end
```

```
Process C:
begin
Y:=foo(Z);
end
```

进程分配

- 进程编组: 支持进程间的交互,常把需要交互的进程调度 在同一组中
- 一个进程组成员由: 组标识符+成员序号 唯一确定
- 划分与分配: 使系统大部分时间忙于计算, 而不是闲置或忙于交互; 同时不牺牲并行性(度)
- 划分: 切割数据和工作负载
- 分配:将划分好的数据和工作负载映射到计算结点(处理器)上
- 分配方式
 - ▶ 显式分配: 由用户指定数据和负载如何加载
 - ▶ 隐式分配: 由编译器和运行时支持系统决定
- 就近分配原则: 进程所需的数据靠近使用它的进程代码

并行粒度

- 并行度(Degree of Parallelism, DOP): 同时 执行的分进程数
- 并行粒度(Granularity): 两次并行或交互操作之间所执行的计算负载
 - ▶指令级并行
 - ▶块级(数据级)并行
 - ▶ 进程级(控制级)并行
 - > 任务级并行
- 并行度与并行粒度大小常互为倒数: 增大粒度会减小并行度
- 增加并行度会增加系统(同步)开销

并行层次与代码粒度(1)

并行层次与代码粒度(2)

并行层次	粒度(指令数)	并行实施	编程支持
甚细粒度指令级并行	几十条,如多指 令发射、内存交 叉存取	硬件处理器	
细粒度数据级并行	几百条, 如循环 指令块	编译器	共享变量
中粒度控制级并行	几千条,如过程 、函数	程序员(编译器)	共享变量、消 息传递
粗粒度任务级并行	数万条,如独立 的作业任务	操作系统	消息传递

进程交互

- 交互: 进程间的相互影响
- 交互的类型
 - ▶ 通信 (communication): 两个或多个进程间传送数的操作。通信方式:
 - 共享变量
 - 父进程传给子进程(参数传递方式)
 - 消息传递
 - ▶同步(synchronization):导致进程间相互等待或继续执行的操作
 - ▶聚集(aggregation):用一串超步将各分进程计算所得的部分结果合并为一个完整的结果,每个超步包含一个短的计算和一个简单的通信或/和同步

交互的模式

- 按交互模式是否能在编译时确定分为:
 - ▶静态的
 - →动态的
- 按有多少发送者和接收者参与通信分为
 - ▶ 一对一: 点到点 (point to point)
 - ▶一对多:广播(broadcast),散播(scatter)
 - ▶ 多对一: 收集(gather), 归约(reduce)
 - > 多对多:全交换(total exchange), 扫描(scan), 置换/移位(permutation/shift)

同步

- 同步方式:
 - ▶原子同步: 不可分的操 作
 - ▶控制同步(路障,临界区): 进程的所有操作均必须等待到达某一控制状态
 - ➤ 数据同步(锁,条件临界区,监控程序,事件): 使程序执行必须等待到某一数据状态
- 例子: 多进程的计数器操作

```
原子同步
    parfor (i:=1; i<n; i++) {
         atomic{x := x+1; y := y-1}
路障同步
    parfor(i:=1; i<n; i++){
         P_i
         barrier
临界区
    parfor(i:=1; i<n; i++){
         critical\{x:=x+1; y:=y+1\}
数据同步(信号量同步)
    parfor(i:=1; i<n; i++){
         lock(S);
         x := x+1;
         y := y-1;
         unlock(S)
```

聚集

- 聚集方式:
 - ➤ 归约(reduction)
 - ▶扫描 (scan)

例子: 计算两个向量的内积

```
parfor(i:=1; i<n; i++){
    X[i]:=A[i]*B[i]
    inner_product:=aggregate_sum(X[i]);
}</pre>
```

通信模式(1)

(a) 点对点(一对一): P1发送一个值给P3

(b) 广播(一对多): P1发送一个值给全体

(c) 散播(一对多): P1向每个节点发送一个值

(d) 收集(多对一): P1从每个节点接收一个值

通信模式(2)

(e) 全交换(多对多): 每个节点向 每个节点发送一个不同的消息

(g) 归约(多对一): P1得到和1+3+5=9

(f) 移位(置换, 多对多): 每个节点向下一个节点发送一个值并接收来自上一个节点的一个值.

(h) 扫描(多对多): P1得到1, P2得到1+3=4, P3得到1+3+5=9

内容概要

- 并行算法的设计例子: 矩阵乘法
- 并行程序设计概述
- 并行程序设计的基本问题
- 并行程序设计模型

并行程序设计模型

- 隐式并行(Implicit Parallel)模型
- 数据并行(Data Parallel)模型
- 共享存储(Shared Memory)/共享变量(Shared Variable)模型
- 消息传递(Message Passing)模型

隐式并行和显式并行

• 隐式并行

- ▶程序员用熟悉的串行语言编程,编译器或运行支持 系统自动转化为并行代码,并实施计算的调度和数 据和安排
- ▶特点: 语义简单,可移植性好,单线程,易于调试和验证正确性,效率很低

• 显式并行

- ▶由程序员复杂并行化的主要工作,包括任务分解、 映射任务到处理器,通信结构等
- >类型:数据并行,共享存储,消息传递

计算圆周率的样本程序

$$\pi = \int_0^1 \frac{4}{1+x^2} dx \approx \sum_{0 \le i < N} \frac{4}{1+(\frac{i+0.5}{N})^2} \cdot \frac{1}{N}$$

计算圆周率的c语言代码段

```
#define N 1000000
main() {
   double local, pi = 0.0, w;
   long i;
   w=1.0/N;
   for (i = 0; i<N; i ++) {
        local = (i + 0.5)*w;
        pi = pi + 4.0/(1.0 + local * local);
   printf("pi is %f \n", pi *w);
```

编程模型:数据并行

- 包含并行操作的单系列线程控制,并行操作应用到全部的数据或其中的子集
- 并行操作的通信是隐含的
- 简单,容易理解
- 缺点: 不是所有问题都可以用这种模型解决

A = array of all data fA = f(A) s = sum(fA)

数据并行模型概述

• 概况:

- ➤ SIMD的自然模型,也可运行于SPMD、MIMD机器上
- ▶局部计算和数据选路操作
- ▶适合于使用规则网络,模板和多维信号及图像数据集 来求解细粒度的应用问题
- ▶数据并行操作的同步是在编译时而不是在运行时完成的

• 特点:

- ▶单线程
- ▶并行操作于聚合数据结构(数组)
- ▶松散同步
- > 单一地址空间
- ▶ 隐式交互作用,显式数据分布

计算π的数据并行程序代码

```
main(){
      long i, j, t, N=100000;
        double local [N], temp [N], pi, w;
   A: w=1.0/N;
   B: forall (i=0; i< N; i++)
      P: local[i]=(i+0.5)*w;
      Q: temp[i]=4.0/(1.0+local[i]*local[i]);
   C: pi = sum (temp);
        printf ("pi is %f \ n", pi * w );
  } / *main() * /
```

编程模型: 共享存储

共享存储代码

• 计算和

Thread 1 [s = 0 initially] local_s1= 0 for i = 0, n/2-1 local_s1 = local_s1 + f(A[i]) s = s + local_s1

```
Thread 2

[s = 0 initially]
local_s2 = 0
for i = n/2, n-1
local_s2= local_s2 + f(A[i])
s = s +local_s2
```

What could go wrong?

共享存储模型概述

- 概况:
 - ➤ PVP, SMP, DSM的自然模型
- 特点:
 - ▶ 多线程: SPMD, MPMD
 - ▶异步
 - > 单一地址空间
 - ▶显式同步
 - ▶隐式数据分布
 - ▶ 隐式通信(共享变量的读/写)

计算π的共享存储程序代码

```
# define N 100000
 main (){
       double local, pi=0.0, w;
       long i;
 A : w=1.0/N;
 B: # Pragma Parallel
       # Pragma Shared (pi, w)
       # Pragma Local (i, local)
        # Pragma pfor iterate(i=0; N; 1)
        for (i=0; i<N, i++){
        P: local = (i+0.5)*w;
        Q: local=4.0/(1.0+local*local);
       # Pragma Critical
       pi =pi +local;
        printf ("pi is %f\n", pi *w);
 D:
     }/ *main() */
```

编程模型:消息传递

消息传递编程例子

• 在每个处理器上计算 s = x(1) + x(2)

Processor 1
send xlocal, proc2
[xlocal = x(1)]
receive xremote, proc2
s = xlocal + xremote

Processor 2
receive xremote, proc1
send xlocal, proc1
[xlocal = x(2)]
s = xlocal + xremote

消息传递模型概述

• 概况:

- ➤ MPP, COW的自然模型,也可应用于共享变量多机系统,适合开发大粒度的并行性
- ▶广泛使用的标准消息传递库MPI和PVM

• 特点:

- 多线程
- ▶异步并行性
- > 分开的地址空间
- ▶显式相互作用
- ▶显式数据映射和负载分配
- ▶常采用SPMD形式编码

计算π的消息传递程序代码

```
# define N 100000
 main (){
    double local=0.0, pi, w, temp=0.0;
    long i, taskid, numtask;
 A: w=1.0/N;
    MPI_ Init(&argc, & argv);
    MPI_Comm_rank (MPI_COMM_WORLD, &taskid);
    MPI_Comm_Size (MPI_COMM_WORLD, &numtask);
 B: for (i= taskid; i< N; i=i + numtask){
    P: temp = (i+0.5)*w;
    Q: local=4.0/(1.0+temp*temp)+local;
 C: MPI_Reduce (&local,&pi,1,MPI_Double,MPI_MAX,0,
                 MPI COMM WORLD);
 D: if (taskid = =0) printf("pi is %f \ n", pi* w);
    MPI_Finalize();
    } / * main ()*/
```

三种显式并行程序设计模型主要特性

特性	数据并行	消息传递	共享存储
控制流 (线)	单线程	多线程	多线程
进程间操作	松散同步	异步	异步
地址空间	单一地址	多地址空间	单地址空间
相互作用	隐式	显式	显式
数据分配	隐式或半隐式	显式	隐式或半隐式

课程小结

- 并行算法的设计例子: 矩阵乘法
- 并行编程风范
 - ▶相并行,分治并行,流水线并行,主从并行,工作 池并行
- 并行化问题
 - ▶进程同构: SPMD
 - ▶静态、动态: fork/join
 - > 进程编组和并行粒度
 - ▶ 进程交互:通信、同步、聚集
- 并行编程模型
 - > 隐式并行,数据并行,消息传递,共享存储

推荐阅读

- 《并行计算》
 - ▶ 第9章: 稠密矩阵运算
 - ▶ 第12章: 并行程序设计基础

- P.-Z. Lee. Parallel matrix multiplication algorithms on hypercube multicomputers. International Journal of High Speed Computing, 7(3):391-406, Sep. 1995.
- 十个利用矩阵乘法解决的经典题目 http://www.matrix67.com/blog/article.asp?id=324

下一讲

- 共享存储编程
 - 》《并行计算一结构、算法、编程》第13章