VŠB – TUO Datum: 6. 12. 2023

# Diskrétní matematika Projekt 1

| Příklad | Poznámky |
|---------|----------|
| 1       |          |
| 2       |          |

Osobní číslo: BAI0033 Jméno: Kateřina Baierová

### 1 Kombinatorika

Babička peče sušenky. Když se je pokusila vyskládat na plech v řadách po čtyřech kusech, tak jí nějaké zbyly. Když se je pokusila vyskládat na plech v řadách po pěti kusech, tak jí jich zbylo dvakrát tolik. Babička si poté všimla, že pokud připeče šest sušenek navíc, tak jí ani v jednom z předchozích vyskládání nezbude žádná sušenka navíc.

- a) Najděte všechna přípustná množství sušenek, které odpovídají zadání.
- b) Kolik sušenek mohla mít původně napečených, pokud víme, že těsta měla maximálně na 50.
- c) Kolik nejméně jich mohlo původně při vyskládání po čtyřech zbýt?

-----

#### Poznámky:

Úlohu řešte jako soustavu kongruencí.

V textu je zmíněno, že babička peče sušenky, tedy budeme počítat, že jich je více než 0.

Po vyskládání původního množství po 4 sušenkách jí zbylo neznámo sušenek:

 $s \equiv X \pmod{4}$ 

Po vyskládání původního množství po 5 sušenkách jí zbylo 2x tolik sušenek:

 $s \equiv 2X \pmod{5}$ 

Když připeče 6 navíc, v obou situacích ji nebude přebývat žádná sušenka:

 $s + 6 \equiv 0 \pmod{4}$ 

 $s + 6 \equiv 0 \pmod{5}$ 

#### Výpočet a)

Najděte všechna přípustná množství sušenek, které odpovídají zadání.

#### Výpočet b)

Kolik sušenek mohla mít původně napečených, pokud víme, že těsta měla maximálně na 50.

Abychom dostali konkrétní čísla, musíme za m dosadit  $\mathbb{N}_0$ 

Další výpočty by už přesahovali množství 50 sušenek.

Možné množství sušenek je tedy 14 a 34.

#### Výpočet c)

Kolik nejméně jich mohlo původně při vyskládání po čtyřech zbýt?

Z výpočtu, kdy se vždy k dělitelnému násobku 20 přičte 14 a zbytek po dělení 14 číslem 4 je 2, plyne, že nejméně mohly zbýt 2 sušenky po původním vykládání.

## 2 Teorie grafů

Mějme libovolný souvislý graf se stupňovou posloupností (3,3,2,2,2,2,2,2,2), o kterém navíc víme, že mezi každou dvojicí vrcholů ve vzdálenosti 3 a více existuje právě jedna cesta.

- a) Může být takový graf hamiltonovský? Pokud ano, nakreslete jej. Pokud ne, pečlivě zdůvodněte proč.
- b) Nakreslete graf se stejnou stupňovou posloupností, který Hamiltonovský je.

\_\_\_\_\_

#### Zadání a)

Může být takový graf hamiltonovský? Pokud ano, nakreslete jej. Pokud ne, pečlivě zdůvodněte proč.

Podmínka hamiltonovského grafu zní: *graf musí mít takovou strukturu*, ve které existuje cesta, která prochází všemi vrcholy grafu právě jednou, aniž by se vrátila do vrcholu, kde začala (hamiltonovský cyklus).

Vzhledem k zadání, kdy je podmínkou, že *mezi každou dvojicí vrcholů ve vzdálenosti 3 a více existuje právě jedna cesta*, není možné vytvořit v zadaném grafu hamiltonovský cyklus, protože se cesta *vrací* do prvního vrcholu a to znamená, že do něj musí vést více než 1 cesta.

