Задача 1. а) (*Теорема Лейбница*.) Пусть $a_n > 0$ при $n \in \mathbb{N}$, $\lim_{n \to +\infty} a_n = 0$ и $a_1 \geqslant a_2 \geqslant a_3 \geqslant \dots$ Докажите, что знакочередующийся ряд $a_1 - a_2 + a_3 - a_4 + a_5 - \dots$ сходится.

б) Верно ли это, если (a_n) не монотонна?

Определение 1. Ряд $\sum_{n=1}^{+\infty} a_n$ называется *абсолютно сходящимся*, если сходится ряд $\sum_{n=1}^{+\infty} |a_n|$.

Задача 2. Докажите, что а) абсолютно сходящийся ряд сходится; б) при любой перестановке слагаемых абсолютно сходящегося ряда получается ряд с той же суммой, и тоже абсолютно сходящийся.

Определение 2. Ряд $\sum_{n=1}^{+\infty} a_n$ называется *условно сходящимся*, если он сходится, но ряд $\sum_{n=1}^{+\infty} |a_n|$ расходится.

Задача 3. Пусть ряд $\sum_{n=1}^{+\infty} a_n$ сходится условно. Докажите, что

- а) ряд, составленный из его положительных (или отрицательных) членов, расходится;
- **б)** (*Теорема Римана*) ряд $\sum_{n=1}^{+\infty} a_n$ можно превратить перестановкой слагаемых как в расходящийся ряд, так и в сходящийся с произвольной наперёд заданной суммой;
- в) можно так сгруппировать члены ряда $\sum_{n=1}^{+\infty} a_n$ (не переставляя их), что ряд станет абсолютно схо-
- г)* Пусть $\sum_{n=1}^{+\infty} a_n$ ряд из комплексных чисел, S множество всех перестановок σ натурального ряда, для которых ряд $\sum_{n=1}^{+\infty} a_{\sigma(n)}$ сходится. Каким может быть множество $\left\{\sum_{n=1}^{+\infty} a_{\sigma(n)} \mid \sigma \in S\right\}$?

Задача 4*. Исследуйте на абсолютную и условную сходимость:

а)
$$\sum_{n=1}^{+\infty} \sin nx$$
, где $x \in \mathbb{R}$; б) $\sum_{n=1}^{+\infty} \sin n^2$; в) $\sum_{n=1}^{+\infty} \frac{\sin n}{n}$.

Задача
$$\mathbf{5}^{\varnothing}$$
. Пусть s — сумма ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Найдите суммы \mathbf{a}) $1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\ldots$; $\mathbf{6}$) $1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\ldots$

а)
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} = C + \ln n + \varepsilon_n$$
, где C — константа (постоянная Эйлера) и $\lim_{n \to \infty} \varepsilon_n = 0$;
б) (тождество Каталана) $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$;

6)
$$(mo)$$
 $decmbo$ $Kamanaha)$ $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n};$

B)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2.$$

Задача 7*. Найдите сумму ряда:
$$\sum_{i=1}^{\infty} \frac{(-1)^i}{2i-1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$
.

Задача 8*. Возможно ли, что ряд $\sum_{n=1}^{+\infty} a_n$ сходится, а ряд $\sum_{n=1}^{+\infty} a_n^3$ расходится?

Задача 9*. Пусть функция $f\colon \mathbb{R} \to \mathbb{R}$ такова, что для любого сходящегося ряда $\sum_{n=1}^{+\infty} a_n$ ряд $\sum_{n=1}^{+\infty} f(a_n)$ сходится. Докажите, что найдётся такое $C \in \mathbb{R}$, что f(x) = Cx в некоторой окрестности нуля

$\begin{bmatrix} 1 \\ a \end{bmatrix}$	1 6	2 a	2 6	3 a	3 6	3 B	3 Г	4 a	4 б	4 B	5 a	5 6	6 a	6 6	6 B	7	8	9