Math 342 Tutorial

May 21, 2025

Question 1. Prove every integer n with |n| > 1 is either prime or can be factored into a product of prime numbers [Hint: use the principle of strong mathematical induction].

Question 2. Use Question 1 to show there are infinitely many prime numbers [Hint. use contradiction and consider the number $N=1+p_1\cdots p_n$ where p_1,\ldots,p_n are the assumed finite number of primes].

Question 3. The gcd of a set $\{a_1, \ldots, a_n\}$ of integers is defined inductively by $(a_1, a_2, \ldots, a_n) = (a_1, (a_2, \ldots, a_n))$. Show there exists integers x_1, \ldots, x_n such that

$$(a_1, a_2, \ldots, a_n) = x_1 a_1 + \cdots + x_n a_n.$$

Question 4. Let p be a prime. Show that if $p \mid ab$ then $p \mid a$ or $p \mid b$.

Question 5. If (a, b) = 1, then (a + b, a - b) = 1 or 2.

Question 6. If (a, b) = 1, then $(a + b, a^2 - ab + b^2) = 1$ or 3.

Question 7. If (a, b) = 1, then $(a^n, b^k) = 1$ for all $n, k \ge 1$.

Question 8. If $2^n - 1$ is a prime, then n is a prime.

Question 9. If $2^n + 1$ is a prime, then n is a power of 2.

Question 10. (a) Suppose that (a, b) = (c, d) = 1 and $\frac{a}{b} + \frac{c}{d} = n$ is an integer. Show |b| = |d|. (b) Prove the sum $\sum_{k=1}^{n} \frac{1}{k}$ is not an integer for n > 1.

Question 11. Prove: (a) For every integer k the numbers 2k + 1 and 9k + 4 are relatively prime. (b) For every integer k, express the gcd of 2k - 1 and 9k + 4 as a function of k.

Question 12. Prove that for positive integers m and a we have

$$\left(\frac{a^m - 1}{a - 1}, a - 1\right) = (a - 1, m).$$