• **Set up:** What is the "equilibrium constant" for the "reaction" we're studying?

 $inside \rightleftharpoons out$

• **Predict:** what is the ratio of the time the robot spends inside versus outside the circle $(t_{inside}/t_{outside})$? The circle's radius is 20 in and the square's sides are 200 in. Once you have an answer, raise your hand and one of us will check it.

$$\frac{A_{1\lambda} = T(^2)}{A_{1}UT} = \frac{T(^2)^2}{(^2-T)(^2)^2} = \frac{T(^2)^2}{700^2-71720} = \frac{1}{200}$$

$$rac{t_{inside}}{t_{outside}} = exttt{D.632}$$

• Interpret: Circle an answer and be prepared to defend it. We think $t_{inside}/t_{outside}$ is determined by:

ENTROPY or ENTHALPY

MORE STATES OUTSIDE RELATIVE TO LASIDE. THIS IS

• **Predict:** What do you predict would happen if we introduced a "hole" of depth d inside the circle?

ROBOT MILHT GET STUCK.

• Observation. Plot t_{in}/t_{out} against d in a spreadsheet program. Fit a trend line to the data, choosing the model that best fits the data.

d	t_{in}/t_{out}
6	0.03
	0.08
2	0.19
3	0.48
4	1.20
5	2.97
6	7.39
7	18.35

• Combine the fit you just did with the equation you found in the top part. What do you think each of the terms of your fit mean?

0.03: AREA RATIO ~> d=0.6 6.90: TEMPERATURE. "KICK" GIVEN TO ROPOT. HORTOR KICK, EASIER TO ESCAPE LESS TIME "IN".

• Circle an answer and be prepared to defend it. We think the hole adds:

to the robot system.

"INTERACTION" NO CHANGE IN AREA OF STATES.

• Imagine, instead of a robot exploring a plane, we have a peptide chain exploring arrangements of bonds (conformations). (See the video on the screen). Draw a plane with a hole below. Can you label different conformations from the video on the drawing? What is the in state? What is the out state?

Our final relationship is:

$$\frac{t_{inside}}{t_{outside}} = \frac{A_{inside}}{A_{outside}} \cdot e^{d/C}$$

- d is ________: a region is more favorable for the robot, so it will spend more time there. The amount of time a molecule spends in a state depends on how favorable interactions are in that state (the depth of the hole).
- C is TENRERATURE (2T: that higher C, the robot is less likely to get stuck. If C is large, the robot can always climb out (as $C \to \infty$, $e^{d/C} \to 1$). If C is small, the robot is stuck (as $C \to 0$, $e^{d/c} \to \infty$). A molecule can break favorable interactions if the temperature is high enough.

Using simple algebra, we can turn our equation into $\Delta G = \Delta H - T\Delta S$.

1. Take the natural log of both sides:

$$ln\left(\frac{t_{inside}}{t_{outside}}\right) = ln\left(\frac{A_{inside}}{A_{outside}} \cdot e^{d/C}\right)$$

2. Use the log rule $log(A \cdot B) = log(A) + log(B)$:

$$ln\left(\frac{t_{inside}}{t_{outside}}\right) = ln\left(\frac{A_{inside}}{A_{outside}}\right) + ln\left(e^{d/C}\right)$$

3. Simplify using the log rule $ln(e^x) = x$:

$$ln\left(\frac{t_{inside}}{t_{outside}}\right) = ln\left(\frac{A_{inside}}{A_{outside}}\right) + \frac{d}{C}$$

4. Multiply both sides by -C:

$$-C \cdot ln\left(\frac{t_{inside}}{t_{outside}}\right) = -C \cdot ln\left(\frac{A_{inside}}{A_{outside}}\right) - d$$

5. From above, C = RT. Substitute this in:

$$-RT \cdot ln\left(\frac{t_{inside}}{t_{outside}}\right) = -RT \cdot ln\left(\frac{A_{inside}}{A_{outside}}\right) - d$$

6. Now we just give all of the terms in our equation special names:

$$\Delta G \equiv -RT ln \left(\frac{t_{inside}}{t_{outside}} \right)$$

$$\Delta S \equiv R ln \left(\frac{A_{inside}}{A_{outside}} \right)$$

$$\Delta H \equiv -d$$

7. Finally, we're left with:

$$\Delta G = -T\Delta S + \Delta H$$

3