String Editing

String Editing

given two strings $X = x_1, x_2, \ldots, x_n$ and $Y = y_1, y_2, \ldots, y_m$, where $x_i, 1 \le i \le n$, and $y_j, 1 \le j \le m$, are members of a finite set of symbols known as the *alphabet*.

Example: X = REAP and Y = CREAM; n = 4 and m = 5

To transform X into Y using a sequence of *edit operations* on X. The permissible edit operations are insert, delete, and change (a symbol of X into another)

there is a cost associated with performing each.

The cost of a sequence of operations is the sum of the costs of the individual operations in the sequence. The problem of string editing is to identify a minimum-cost sequence of edit operations that will transform X into Y.

Let $D(x_i)$ be the cost of deleting the symbol x_i from X, $I(y_j)$ be the cost of inserting the symbol y_j into X, and $C(x_i, y_j)$ be the cost of changing the symbol x_i of X into y_j .

Solution

Define cost(i, j) to be the minimum cost of any edit sequence for transforming x_1, x_2, \ldots, x_i into y_1, y_2, \ldots, y_j (for $0 \le i \le n$ and $0 \le j \le m$). Compute cost(i, j) for each i and j. Then cost(n, m) is the cost of an optimal edit sequence.

For i = 0 and j = 0 (Both are empty String and hence identical) cost(i, j) = 0

For i > 0 and j = 0 (Transforming a string to empty string – transform X into Y by a sequence of deletes) $cost(i,0) = cost(i-1,0) + D(x_i)$

For i = 0 and j > 0 (Transforming an empty string to another string – transform X into Y by a sequence of insertions) $cost(0,j) = cost(0,j-1) + I(y_j)$

If (i \neq 0 and j \neq 0) and $x_i = y_j$ (characters are same – no need for edit operation) $cost(i \ j) = cost(i \ -1, \ j-1)$

If $i \neq 0$ and $j \neq 0, x_1, x_2, \ldots, x_i$ can be transformed into y_1, y_2, \ldots, y_j in one of three ways:

- 1. Transform $x_1, x_2, \ldots, x_{i-1}$ into y_1, y_2, \ldots, y_j using a minimum-cost edit sequence and then delete x_i . The corresponding cost is $cost(i-1,j) + D(\bar{x}_i)$
- 2. Transform $x_1, x_2, \ldots, x_{i-1}$ into $y_1, y_2, \ldots, y_{j-1}$ using a minimum-cost edit sequence and then change the symbol x_i to y_j . The associated cost is $cost(i-1, j-1) + C(x_i, y_j)$.
- 3. Transform x_1, x_2, \ldots, x_i into $y_1, y_2, \ldots, y_{j-1}$ using a minimum-cost edit sequence and then insert y_j . This corresponds to a cost of

$$cost(i, j-1) + I(y_j)$$

Recurrence Relation

```
\begin{aligned} cost(i,j) = \begin{cases} 0 & i = j = 0 \\ cost(i-1,0) + D(x_i) & j = 0, \ i > 0 \\ cost(0,j-1) + I(y_j) & i = 0, \ j > 0 \\ cost(i-1, | i-1) & i > 0, \ j > 0 \end{cases} \text{ and } \mathbf{x_i} = \mathbf{y_j} \\ & \min \left\{ \begin{array}{c} cost(i-1,j) + D(x_i), \\ cost(i-1,j-1) + C(x_i,y_j), \\ cost(i,j-1) + I(y_j) \end{array} \right\} \end{aligned} \quad i > 0, \ j > 0 \quad \text{and } \mathbf{x_i} \neq \mathbf{y_j} \end{aligned}
```

Example: X= REAP Y= CREAM

Let $D(x_i) = 1$

$$cost(i,j) = \begin{cases} 0 & i = j = 0 \\ cost(i-1,0) + D(x_i) & j = 0, \ i > 0 \\ cost(0,j-1) + I(y_j) & i = 0, \ j > 0 \\ cost(i-1,j-1) & i > 0, \ j > 0 \end{cases} \text{ and } \mathbf{x}_i = \mathbf{y}_j$$

$$\min \left\{ \begin{array}{c} cost(i-1,j) + D(x_i), \\ cost(i-1,j-1) + C(x_i,y_j), \\ cost(i,j-1) + I(y_j) \end{array} \right\}$$
 $i > 0, \ j > 0 \quad \text{and } \mathbf{x}_i \neq \mathbf{y}_j$

	0	C 1	R 2	E 3	A 4	M 5
0	0	_ 1	2	3	4	5
R 1	1 —	2	1 _	_ 2 _	3	4
E 2	2 _	3	2	1	2	3
A 3	3 _	4	3	2	1 _	2
P 4	4	5	4	3	2	3

Left: Insert Up: Delete Diag: Change

Edit Operations

	0	C 1	R 2	E 3	A 4	M 5
0	o -	_ 1	2	3	4	5
R 1	1	2	1	2	3	4
E 2	2	3	2	1	2	3
A 3	3	4	3	2	1	2
P 4	4	5	4	3	2	_ 3

X: REAP

REAPM (Left: insert M)

REAM (Up: Delete P)

CREAM (Left: Insert C) => Y

Exercise

• Transform String "BASKET" to "BARK" using minimum edit operations.