Workshop 2 - Introduction to CellRanger -

Valentin Voillet, Raphael Gottardo

vvoillet@fhcrc.org

Summary

- 10x Genomics Technology
- CellRanger Pipeline
- Loupe Cell Browser
- Loupe Cell Browser in live!!

10x Genomics technology

Single Cell Digital Gene Expression - 10x Genomics -

Single Cell Digital Gene Expression - 10x Genomics -

Sequencing Read	Description	Length
Read 1	Cell Barcode and UMI	26 nt
Read 2	mRNA	~98 nt (recommended)
i7 Index	Sample Index Read	8 nt

Alignment & Quantification

CellRangerTM Pipeline

From 10x Genomics presentation - Workshop, Seattle (Feb, 2017)

CellRangerTM Pipeline

- cellranger mkfastq
 - Barcode demultiplexing from .bcl (from Illumina) to .fastq files (files used for alignment)

- cellranger mkfastq
 - Barcode demultiplexing from .bcl (from Illumina) to .fastq files (files used for alignment)
- cellranger count
 - Read-level analysis of a single library
 - Alignment with STAR
 - Barcode processing
 - Gene counting
 - Produces gene/cell expression matrix
 - Produces some statistical analyses (dimension reduction, clustering and visualization)
 - Produces a .cloupe file

- cellranger mkfastq
 - Barcode demultiplexing from .bcl (from Illumina) to .fastq files (files used for alignment)
- cellranger count
 - Read-level analysis of a single library
 - Alignment with STAR
 - Barcode processing
 - Gene counting
 - Produces gene/cell expression matrix
 - Produces some statistical analyses (dimension reduction, clustering and visualization)
 - Produces a .cloupe file
- cellranger aggr
 - Aggregate cellranger count results
 - Combines data from multiple samples and normalizes for sequencing depth
 - Produces combined gene/cell expression matrix
 - Produces same outputs as cellranger count (statistical analyses and .cloupe file)

- cellranger mkfastq
 - Barcode demultiplexing from .bcl (from Illumina) to .fastq files (files used for alignment)
- cellranger count
 - Read-level analysis of a single library
 - Alignment with STAR
 - Barcode processing
 - Gene counting
 - Produces gene/cell expression matrix
 - Produces some statistical analyses (dimension reduction, clustering and visualization)
 - Produces a .cloupe file
- cellranger aggr
 - Aggregate cellranger count results
 - Combines data from multiple samples and normalizes for sequencing depth
 - Produces combined gene/cell expression matrix
 - Produces same outputs as cellranger count (statistical analyses and .cloupe file)
- cellranger reanalyze
 - Re-run expression/statistical analyses with custom parameters
 - Produces a .cloupe file

Easy to run Visualization Give standard components and file formats **CLOUPE** Run on Linux TRANSCRIPT COUNTING PIPELINE (cellranger count) Barcode **Transcript** UMI-Cell **Statistical STAR Processing** Counting Matrix **Analyses FASTQ** SAMPLE AGGREGATION PIPELINE (cellranger aggr) **Multiple outputs Combining** Depth from counting **Outputs** matrices normalization pipeline BAM Matrix HTML **CSV** Standard Pipeline Stage 10x Genomics Stages

Fig. inspired from 10x Genomics presentation - Workshop, Seattle (Feb, 2017)

System Requirements - Download -

- Cell Ranger pipelines run on Linux systems that meet these minimum requirements:
 - 8-core Intel or AMD processor (16 recommended)
 - 64GB RAM (128GB recommended)
 - 1TB free disk space
 - 64-bit CentOS/RedHat 5.5 or Ubuntu 10.04
- Fred Hutch: Rhino Compute System + Gizmo cluster (contact: helpdesk@fredhutch.org) see example below

```
vvoillet@rhino1:~$ grablargenode
and then select how much memory (GB) you would like to grab (here - 128)
```


System Requirements - Download -

- Cell Ranger pipelines run on Linux systems that meet these minimum requirements:
 - 8-core Intel or AMD processor (16 recommended)
 - 64GB RAM (128GB recommended)
 - 1TB free disk space
 - 64-bit CentOS/RedHat 5.5 or Ubuntu 10.04
- Fred Hutch: Rhino Compute System + Gizmo cluster (contact: helpdesk@fredhutch.org) - see example below

```
vvoillet@rhino1:~$ grablargenode
and then select how much memory (GB) you would like to grab (here - 128)
```

Download CellRanger and 10x reference data from https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest

cellranger mkfastq

 Run cellranger mkfastq pipeline to demultiplex an Illumina sequencing run folder into .fastq files

vvoillet@gizmog5:~\$ cellranger mkfastq --run=/path_to_bcl_files/ --samplesheet=mySampleSheet.csv

Ex: sampleSheet.csv	Lane	Sample	Index
·	1	Sample_1	SI-GA-B2
	2	Sample_1	SI-GA-B2
	1	Sample_2	SI-GA-B3

cellranger mkfastq

 Run cellranger mkfastq pipeline to demultiplex an Illumina sequencing run folder into .fastq files

vvoillet@gizmog5:~\$ cellranger mkfastq --run=/path_to_bcl_files/ --samplesheet=mySampleSheet.csv

Ex: sampleSheet.csv	Lane	Sample	Index
•	1	Sample_1	SI-GA-B2
	2	Sample_1	SI-GA-B2
	1	Sample_2	SI-GA-B3

 After mkfastq finished, the .fastq files are under <flowcell>/outs/ fastq_path

cellranger count

- Run cellranger count to produce gene/cell expression matrix
- Using the .fastq files produced by cellranger mkfastq

Path to your ref

cellranger count

- Run cellranger count to produce gene/cell expression matrix
- Using the .fastq files produced by cellranger mkfastq

```
Path to your ref

vvoillet@gizmog5:~$ cellranger count --id=Sample_1
--transcriptome=/refdata-cellranger/GRCh38
--fastqs=/HKMNCBCXY/outs/fastq_path/Sample_1
--expect-cells=1000

Path to your ref

genome

Path to your ref

genome

Path to your ref

genome

Path to your ref

genome
```

A successful run concludes with a message similar to this:

```
Outputs:
- Run summary HTML:
                                         /Sample 1/outs/web summary.html
- Run summary CSV:
                                         /Sample 1/outs/metrics summary.csv
                                         /Sample_1/outs/possorted_genome_bam.bam
- BAM:
- BAM index:
                                         /Sample_1/outs/possorted_genome_bam.bam.bai
- Filtered gene-barcode matrices MEX:
                                         /Sample 1/outs/filtered gene bc matrices
- Filtered gene-barcode matrices HDF5:
                                         /Sample 1/outs/filtered gene bc matrices h5.h5
- Unfiltered gene-barcode matrices MEX:
                                         /Sample_1/outs/raw_gene_bc_matrices
- Unfiltered gene-barcode matrices HDF5: /Sample 1/outs/raw gene bc matrices h5.h5
- Secondary analysis output CSV:
                                         /Sample_1/outs/analysis
- Per-molecule read information:
                                         /Sample_1/outs/molecule_info.h5
- Loupe Cell Browser file:
                                         /Sample 1/outs/cloupe.cloupe
Pipestance completed successfully!
```


cellranger aggr

 Combines and normalizes (for sequencing depth) libraries previously run with cellranger count

```
vvoillet@gizmo5:~$ cellranger count --id=Sample_1 ...
. . . wait for pipeline to finish . . .

vvoillet@gizmo5:~$ cellranger count --id=Sample_2 ...
. . . wait for pipeline to finish . . .
Ex: Two count pipelines
(Sample_1 and Sample_2) are run
```


cellranger aggr

 Combines and normalizes (for sequencing depth) libraries previously run with cellranger count

```
vvoillet@gizmo5:~$ cellranger count --id=Sample_1 ...
. . . wait for pipeline to finish . . .

Ex: Two count pipelines
(Sample_1 and Sample_2) are run
vvoillet@gizmo5:~$ cellranger count --id=Sample_2 ...
. . . wait for pipeline to finish . . .
```

 Construct an aggregation .csv file pointing to molecule_info.h5 output of cellarage count

	library_id	molecule_h5
Ex: aggregationFile.csv	Sample_1	Sample_1/outs/molecule_info.h5
	Sample_2	Sample_2/outs/molecule_info.h5

• Then, run cellranger aggr

A successful run concludes with a message similar to the one shown before

CellRanger Pipeline - References - mkreference

- 10x Website pre-built references
 - Human (hg19 and GRCh38)
 - Mouse
 - Human and Mouse
 - ERCC

CellRanger Pipeline - References - mkreference

- 10x Website pre-built references
 - Human (hg19 and GRCh38)
 - Mouse
 - Human and Mouse
 - ERCC
- If your own reference genome (ex: GRCh38 + CAR sequence) cellranger mkreference utility generates a 10x reference package from any .fasta and .gtf gene file

```
vvoillet@gizmo5:~$ cellranger mkreference ——genome=myNewReference ——fasta=myFasta.fasta ——genes=myGTF.gtf ——nthreads 12 ——specify memory (GB) STAR should use during alignment
```


CellRanger Pipeline - References - mkreference

- 10x Website pre-built references
 - Human (hg19 and GRCh38)
 - Mouse
 - Human and Mouse
 - ERCC
- If your own reference genome (ex: GRCh38 + CAR sequence) cellranger mkreference utility generates a 10x reference package from any .fasta and .gtf gene file

```
vvoillet@gizmo5:~$ cellranger mkreference ——genome=myNewReference ——fasta=myFasta.fasta ——genes=myGTF.gtf ——nthreads 12 ——specify memory (GB) STAR should use during alignment
```

A successful run concludes to with a message similar to this:

```
>>> Reference successfully created! <<<

You can now specify this reference on the command line:
cellranger -transcriptome=/path_to_your_new_ref_genome ...
```


CellRanger Pipeline - Steps -

Overview of the pipeline - CellRanger

Fig. from Zheng et al., 2017

CellRanger Pipeline - Alignment -

- Alignment performed using STAR (Spliced Transcript Alignment to a Reference)
 - Well-know, open-source, robust
 - Aligns reads to the genome and transcriptome simultaneously
- STAR memory usage
 - cellranger mkreference pipeline builds STAR reference such that it uses max 16GB of memory
- Only use confidently mapped reads aligning to transcriptome

CellRanger Pipeline - Cell barcode and UMI Filtering -

- Cell barcodes
 - From a list of known cell barcode sequences
 - May be one mismatch away from the list (if the mismatch occurs at low-quality position (the barcode is then corrected))

Expected cell barcodes AACGTCGTGAGTGC CCGCTGACTGAGTT TGCCTAGCATGTCG Cell barcodes AACGTCGTGAGTGC AACGTCGTGACTGC AACGTCGTCTGC

CellRanger Pipeline - Cell barcode and UMI Filtering -

- Cell barcodes
 - From a list of known cell barcode sequences
 - May be one mismatch away from the list (if the mismatch occurs at low-quality position (the barcode is then corrected))

- UMIs must
 - not be a homopolymer, e.g. AAAAAAAAA
 - not contain N
 - not contain bases with base quality < 10
- UMIs with one mismatch away from a higher-count UMI are corrected to that UMI if they share a cell barcode and gene

CellRanger Pipeline - Marking Duplicates -

- Using only confidently mapped reads with valid cell barcodes and UMIs
 - Correct the UMIs
 - Record which reads are duplicates of the same RNA molecule
 - Count only unique UMIs as unique RNA molecules
 - The UMI counts give us an unfiltered gene/cell expression matrix

CellRanger Pipeline - Filtering Cells -

- Select GEMs (Gel beads in EMulsion) that likely contain cells
 - Sum UMI counts for each barcode
 - Select barcodes with total UMI count >= 10% of the 99th percentile of the expected recovered cells
- Gives us a filtered gene/cell expression matrix

Fig. from 10x Genomics presentation - Workshop, Seattle (Feb, 2017)

A successful run concludes with a message similar to this:

```
Outputs:
- Run summary HTML:
                                          /Sample 1/outs/web summary.html
- Run summary CSV:
                                          /Sample 1/outs/metrics summary.csv
                                          /Sample 1/outs/possorted genome bam.bam
- BAM:
- BAM index:
                                          /Sample_1/outs/possorted_genome_bam.bam.bai
- Filtered gene-barcode matrices MEX:
                                          /Sample 1/outs/filtered gene bc matrices
- Filtered gene-barcode matrices HDF5:
                                          /Sample_1/outs/filtered_gene_bc_matrices_h5.h5
- Unfiltered gene-barcode matrices MEX:
                                         /Sample 1/outs/raw gene bc matrices

    Unfiltered gene-barcode matrices HDF5: /Sample 1/outs/raw gene bc matrices h5.h5

- Secondary analysis output CSV:
                                          /Sample 1/outs/analysis
                                          /Sample_1/outs/molecule_info.h5
- Per-molecule read information:
- Loupe Cell Browser file:
                                          /Sample 1/outs/cloupe.cloupe
Pipestance completed successfully!
```


A successful run concludes with a message similar to this:

```
Outputs:
- Run summary HTML:
- Run summary CSV:
- BAM:
- BAM index:
- Filtered gene-barcode matrices MEX:
- Filtered gene-barcode matrices HDF5:
- Unfiltered gene-barcode matrices MEX:
- Unfiltered gene-barcode matrices HDF5:
- Unfiltered gene-barcode matrices HDF5:
- Verample_1/outs/possorted_genome_bam.bam.bai
- Sample_1/outs/filtered_gene_bc_matrices
- Vample_1/outs/filtered_gene_bc_matrices
- Vample_1/outs/raw_gene_bc_matrices
- Vample_1/outs/raw_
```


MCC project
Tumor sample before therapy

Estimated Number of Cells 2,243

Mean Reads per Cell 15,131

Median Genes per Cell 1,557

Sequencing	
Number of Reads	33,939,573
Valid Barcodes	97.6%
Reads Mapped Confidently to Transcriptome	56.9%
Reads Mapped Confidently to Exonic Regions	60.9%
Reads Mapped Confidently to Intronic Regions	25.6%
Reads Mapped Confidently to Intergenic Regions	6.0%
Reads Mapped Antisense to Gene	3.8%
Sequencing Saturation	13.1%
Q30 Bases in Barcode	99.1%
Q30 Bases in RNA Read	87.5%
Q30 Bases in Sample Index	98.8%
Q30 Bases in UMI	99.19

Sample		
Name	GS_Tumor_9_2013_2559	
Description		
Transcriptome	hg38_merkerCellPolyomavirus_CellRanger_v2	
Chemistry	Single Cell 3' v2	
Cell Ranger Version	2.0.0	

Typical sample profile:

- >1,000 cell barcodes detected
- >10,000 UMI detected

Low number of barcodes detected

Low barcode counts (low depth..)

Fig. from 10x Genomics presentation - Workshop, Seattle (Feb, 2017)

- >1,000 cell barcodes detected
- >10,000 UMI detected

Loss of single cell behavior (e.g. lysis failure or wetting failure)

- No cliff and knee
- High number of cell barcodes
- Algorithm has trouble discerning cells from the background

Fig. from 10x Genomics presentation - Workshop, Seattle (Feb, 2017)

- Reads confidently mapped to transcriptome (<30%)
 - Reads mapped to wrong genome
 - Too short of read length
 - Custom reference may contain overlapping genes
- RNA Q30 metrics are low (<70%)
 - Sequencing issues

A successful run concludes with a message similar to this:

```
Outputs:
- Run summary HTML:
- Run summary CSV:
- BAM:
- BAM index:
- Filtered gene-barcode matrices MEX:
- Filtered gene-barcode matrices HDF5:
- Unfiltered gene-barcode matrices MEX:
- Unfiltered gene-barcode matrices HDF5:
- Unfiltered gene-barcode matrices HDF5:
- Vample_1/outs/filtered_gene_bc_matrices h5.h5
- Unfiltered gene-barcode matrices HDF5:
- Secondary analysis output CSV:
- Per-molecule read information:
- Loupe Cell Browser file:

/Sample_1/outs/analysis
/Sample_1/outs/analysis
/Sample_1/outs/molecule_info.h5
/Sample_1/outs/cloupe.cloupe
```

Same information as in previous slide - .csv file

A successful run concludes with a message similar to this:

Unfiltered gene-cell matrix - can be directly opened in R using *cellrangerRkit* R package

CellRanger Pipeline - Outputs -

A successful run concludes with a message similar to this:

Filtered gene-cell matrix - can be directly opened in R using *cellrangerRkit* R package

CellRanger Pipeline - Outputs -

A successful run concludes with a message similar to this:

```
Outputs:

- Run summary HTML:

- Run summary CSV:

- BAM:

- BAM index:

- Filtered gene-barcode matrices MEX:

- Unfiltered gene-barcode matrices MEX:

- Unfiltered gene-barcode matrices HDF5:

- Secondary analysis output CSV:

- Per-molecule read information:

- Loupe Cell Browser file:

- Sample_1/outs/web_summary.html

- /Sample_1/outs/metrics_summary.csv

- /Sample_1/outs/possorted_genome_bam.bam.bai

- /Sample_1/outs/filtered_gene_bc_matrices

- /Sample_1/outs/raw_gene_bc_matrices

- /Sample_1/outs/raw_gene_bc_matrices_h5.h5

- /Sample_1/outs/analysis

- /Sample_1/outs/molecule_info.h5

- /Sample_1/outs/cloupe.cloupe
```

Statistical analyses performed by cellranger

- Dimension reduction (PCA, tSNE)
- Clustering (k-means & graph-based clustering)
- Differential Expression Analysis (between clusters)

Black box - parameters?

CellRanger Pipeline - Outputs -

A successful run concludes with a message similar to this:

```
Outputs:

- Run summary HTML:
- Run summary CSV:
- BAM:
- BAM index:
- Filtered gene-barcode matrices MEX:
- Unfiltered gene-barcode matrices MEX:
- Unfiltered gene-barcode matrices MEX:
- Unfiltered gene-barcode matrices HDF5:
- Secondary analysis output CSV:
- Per-molecule read information:
- Loupe Cell Browser file:

/Sample_1/outs/web_summary.html
/Sample_1/outs/metrics_summary.csv
/Sample_1/outs/possorted_genome_bam.bam.bai
/Sample_1/outs/filtered_gene_bc_matrices
/Sample_1/outs/raw_gene_bc_matrices
/Sample_1/outs/raw_gene_bc_matrices_h5.h5
/Sample_1/outs/analysis
/Sample_1/outs/molecule_info.h5
/Sample_1/outs/cloupe.cloupe
```

.cloupe file - can be directly opened using Loupe Cell Browser

CellRanger Pipeline - Conclusion -

- CellRanger Pipeline easy to run
- It is long to run (especially if many samples to analyze and aggregate)
- System requirements: Linux, min 64GB RAM Run it on Gizmo
- Outputs easy to understand and analyze .cloupe file

LoupeTM Cell Browser

Loupe Cell Browser - Overview -

- Loupe Cell Browser is a desktop application for Windows and MacOS that allows you to quickly and easily visualize and analyze 10x Chromium Single-Cell 5' and 3' gene expression data
- It opens .cloupe file produced by CellRanger and
 - Explore single-cell data interactively, no programming needed
 - Find significant genes from different clusters and conditions
 - Identify functional subgroups through gene expression tools
 - Create and save custom clusters, list of genes, etc.
 - Export screenshots and data for publication and further analysis
- Useful for exploratory analysis before going deeper in the analysis

Black box - What parameters it uses? etc...

System Requirements - Download -

- Windows or Mac
 - 4GB RAM
 - SSD storage highly recommended
- Download directly from https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
- Software comes with a tutorial!
- Public CellRanger 1.3 datasets include .cloupe files

Loupe Cell Browser - Visualization -

- Principal Component Analysis (PCA) is performed to reduce dimensionality of the data from about 35,000 genes to 10 Principal Components (PCs)
- t-SNE (t-Distributed Stochastic Neighbor Embedding) is then used to visualize PCA results (# cells vs 10 PCs) in two dimensions
- Each dot is a cell

MCC project

Tumor samples - before & after therapy

Loupe Cell Browser - Visualization -

K-means

Experimental conditions

Graph-based clustering

Gene expression level

Loupe Cell Browser - Finding Significant Genes -

- Determine genes that uniquely characterize at the press of a button
- Significant Genes allows us to find genes that distinguish cluster from entire population or other selected clusters

Loupe Cell Browser - Finding Significant Genes -

- Determine genes that uniquely characterize at the press of a button
- Significant Genes allows us to find genes that distinguish cluster from entire population or other selected clusters

Heatmap - Top up-regulating genes per cluster

Loupe Cell Browser - Finding Significant Genes -

- Determine genes that uniquely characterize at the press of a button
- Significant Genes allows us to find genes that distinguish cluster from entire population or other selected clusters

Significant gene information in a tabular view

Loupe Cell Browser - Identifying Cell Types -

- Look at well-know markers to identify cell types
- Refine functional subgroup by filtering by expression level

Loupe Cell Browser - Exploring Substructure -

- Creating subgroups by expression level
- Modifying subgroups with manual selection

Lasso/rectangular select points to create new categories and clusters/types

Loupe Cell Browser - Import/Export Functionality -

- Import: possible to import a .csv file with list of genes
 - Ensembl ID and/or gene name, list name
 - Ensembl/name must match value in transcriptome reference used in CellRanger Pipeline
- Export:
 - .csv gene list
 - Distinguishing genes data table
 - Distinguishing genes heatmap (.png with gene names)
 - tSNE plot screenshot (.png)
- Save your work inside .cloupe file

LoupeTM Cell Browser in live!!

CURES START HERE

THANK YOU

