import the libraries and load the dataset

```
import pandas as pd
In [1]:
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         %matplotlib inline
         cc=pd.read csv('C:\\Users\\DELL\\Downloads\\DS- Data Sets\\Simple linear regression\\calories consumed.csv')
In [2]:
         cc.head()
Out[2]:
           Weight gained (grams) Calories Consumed
         0
                          108
                                          1500
                          200
                                          2300
         2
                          900
                                          3400
         3
                          200
                                          2200
                          300
                                          2500
In [3]:
         #column rename
         df=pd.DataFrame(cc)
         df.head()
           Weight gained (grams) Calories Consumed
Out[3]:
                                          1500
         0
                          108
                          200
                                          2300
         2
                          900
                                          3400
         3
                          200
                                          2200
         4
                          300
                                          2500
         df.rename(columns = {'Weight gained (grams)':'weightgained','Calories Consumed':'caloriesconsumed'}, inplace = True)
```

```
df.rename
Out[4]: <bound method DataFrame.rename of</pre>
                                                 weightgained caloriesconsumed
                       108
                                         1500
                       200
         1
                                         2300
                      900
                                         3400
                       200
                                         2200
         4
                       300
                                         2500
                       110
                                         1600
         6
                       128
                                         1400
                        62
                                         1900
                                         2800
         8
                       600
         9
                      1100
                                         3900
         10
                      100
                                         1670
         11
                                         1900
                       150
         12
                       350
                                         2700
         13
                       700
                                         3000>
         df.info()
In [5]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 14 entries, 0 to 13
        Data columns (total 2 columns):
                                 Non-Null Count Dtype
              Column
              weightgained
                                 14 non-null
                                                  int64
              caloriesconsumed 14 non-null
                                                  int64
         dtypes: int64(2)
        memory usage: 352.0 bytes
        correlation
         df.corr
In [6]:
Out[6]: <bound method DataFrame.corr of</pre>
                                               weightgained caloriesconsumed
         0
                       108
                                         1500
                       200
                                         2300
                       900
                                         3400
         3
                       200
                                         2200
                       300
                                         2500
         5
                       110
                                         1600
         6
                      128
                                         1400
                                         1900
                       62
         8
                       600
                                         2800
                      1100
                                         3900
```

10	100	1670
11	150	1900
12	350	2700
13	700	3000>

In [7]: sns.distplot(cc['weightgained'])

C:\Users\DELL\anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level functi
on with similar flexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[7]: <AxesSubplot:xlabel='weightgained', ylabel='Density'>

In [8]: sns.distplot(cc['caloriesconsumed'])

C:\Users\DELL\anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated fu nction and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='caloriesconsumed', ylabel='Density'>

new model and fitting it

```
In [9]: import statsmodels.formula.api as smf
model=smf.ols('weightgained~caloriesconsumed',data=df).fit()

In [10]: sns.regplot(x='weightgained',y='caloriesconsumed',data=df)

Out[10]: <AxesSubplot:xlabel='weightgained', ylabel='caloriesconsumed'>
```



```
#parameters B0 and B1
In [11]:
          model.params
Out[11]: Intercept
                             -625.752356
         caloriesconsumed
                                0.420157
         dtype: float64
In [12]:
          #t and p values
          model.tvalues ,'\n', model.pvalues
Out[12]: (Intercept
                               -6.206449
          caloriesconsumed
                               10.211269
          dtype: float64,
          '\n',
          Intercept
                              4.542203e-05
          caloriesconsumed
                              2.855864e-07
          dtype: float64)
          #rsquared and adj rsquared values
In [13]:
          model.rsquared_model.rsquared_adj
         (0.8967919708530552, 0.8881913017574764)
Out[13]:
In [16]:
          model.summary()
```

C:\Users\DELL\anaconda3\lib\site-packages\scipy\stats\stats.py:1603: UserWarning: kurtosistest only valid for n>=20
... continuing anyway, n=14
warnings.warn("kurtosistest only valid for n>=20 ... continuing "

Out[16]:

OLS Regression Results									
Dep. Variable:	we	ightgained		R-sq	uared:	0.897			
Model:		OLS	Adj.	R-sq	uared:	0.888			
Method:	Leas	st Squares		F-sta	atistic:	104.3			
Date:	Fri, 21	May 2021	Prob (F-sta	tistic):	2.86e-07			
Time:		21:37:14	Log-	Likel	ihood:	-84.792			
No. Observations:		14			AIC:	173.6			
Df Residuals:		12			BIC:	174.9			
Df Model:		1							
Covariance Type:		nonrobust							
	,	coef std	l err	t	P> t	[0.025	0.975]		
	,	Joei Stu	GII		r~ t	[0.023	0.97.3]		
Intercept	-625.7	7524 100.	823 -6	.206	0.000	-845.427	-406.078		
caloriesconsumed				.206	0.000	-845.427 0.331	-406.078 0.510		
			.041 10						
caloriesconsumed	0.4 3.394	-202 0. Durbin-\	.041 10 Watson:		0.000 2.537				
Omnibus: Prob(Omnibus):	3.394 0.183	202 0. Durbin-\ Jarque-Be	041 10 Watson: era (JB):	.211	0.000 2.537 1.227				
Omnibus: Prob(Omnibus):	0.4 3.394	202 0. Durbin-\ Jarque-Be	.041 10 Watson:	.211	0.000 2.537				

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.28e+03. This might indicate that there are strong multicollinearity or other numerical problems.