Computer-Aided Reasoning for Software

Combining Theories

courses.cs.washington.edu/courses/cse507/14au/

Emina Torlak

emina@cs.washington.edu

Last lecture

• A survey of theory solvers and deciding $T_{=}$ with congruence closure

Last lecture

A survey of theory solvers and deciding T= with congruence closure

Today

Deciding a combination of theories

Last lecture

A survey of theory solvers and deciding T= with congruence closure

Today

Deciding a combination of theories

Reminders

- Email us your project topic and brief abstract by I Ipm today
- Homework 2 posted
 - Start early
 - Submit self-contained runnable code

Satisfiability Modulo Theories (SMT)

Combining T-solvers with Nelson-Oppen

Combination solver

Theory $T_1 \cup ... \cup T_n$ with signature $\Sigma_1 \cup ... \cup \Sigma_n$ and axioms $A_1 \cup ... \cup A_n$

Combining T-solvers with Nelson-Oppen

 Σ_1 -theory T_1 with axioms A_1

Theory solver

 Σ_2 -theory T_2 with axioms A_2

Theory solver

We'll see how to combine two theories. Easy to generalize to n.

Combination solver

Theory $T_1 \cup T_2$ with signature $\Sigma_1 \cup \Sigma_2$ and axioms $A_1 \cup A_2$

Combining T-solvers with Nelson-Oppen

 Σ_1 -theory T_1 with axioms A_1

Theory solver

 Σ_2 -theory T_2 with axioms A_2

Theory solver

We'll see how to combine two theories. Easy to generalize to n.

Combination solver

Theory $T_1 \cup T_2$ with signature $\Sigma_1 \cup \Sigma_2$ and axioms $A_1 \cup A_2$

The combination problem is undecidable for arbitrary (decidable) theories. It becomes decidable under Nelson-Oppen restrictions.

Nelson-Oppen restrictions

T_1 and T_2 can be combined when

- Both are quantifier-free (conjunctive) fragments
- Equality (=) is the only symbol in the intersection of their signatures
- Both are stably infinite

Nelson-Oppen restrictions

T_1 and T_2 can be combined when

- Both are quantifier-free (conjunctive) fragments
- Equality (=) is the only symbol in the intersection of their signatures
- Both are stably infinite

A theory T is stably infinite iff for every satisfiable Σ_T -formula F, there is a T-model that satisfies F and that has a universe of infinite cardinality.

 Σ_T : { a, b, = } A_T: $\forall x . x = a \lor x = b$

$$\Sigma_T$$
: { a, b, = }

Fixed width bit vectors (T_{bv})

Fixed width bit vectors (T_{bv})

Equality and uninterpreted functions (T=)

Fixed width bit vectors (T_{bv})

$$\Sigma_T$$
: { a, b, = }

Fixed width bit vectors (T_{bv})

 Σ_T : { a, b, = }

 A_T : $\forall x . x = a \lor x = b$

Equality and uninterpreted functions (T₌)

Fixed width bit vectors (T_{bv})

Arrays (T_A)

Linear real arithmetic (T_R)

Linear integer arithmetic (T_R)

Overview of Nelson-Oppen

Transforms a $(\Sigma_1 \cup \Sigma_2)$ -formula F into an equisatisfiable formula $F_1 \wedge F_2$ with F_1 in T_1 and F_2 in T_2

Transforms a $(\Sigma_1 \cup \Sigma_2)$ -formula F into an equisatisfiable formula $F_1 \wedge F_2$ with F_1 in T_1 and F_2 in T_2

Repeat until fix point:

- If f is in T_i and t is not, and u is fresh:
 F[f(..., t, ...)] *** F[f(..., u, ...)] \(\lambda \) u = t
- If p is in T_i and t is not, and v is fresh:
 F[p(..., t, ...)] *** F[p(..., v, ...)] \(\lambda \) v = t

Transforms a $(\Sigma_1 \cup \Sigma_2)$ -formula F into an equisatisfiable formula $F_1 \wedge F_2$ with F_1 in T_1 and F_2 in T_2

Repeat until fix point:

- If f is in T_i and t is not, and u is fresh:
 F[f(..., t, ...)] *** F[f(..., u, ...)] \(\lambda \) u = t
- If p is in T_i and t is not, and v is fresh:
 F[p(..., t, ...)] *** F[p(..., v, ...)] \(\lambda \) v = t

Purification

 Σ_{R}

 $\Sigma_{=}$

Transforms a $(\Sigma_1 \cup \Sigma_2)$ -formula F into an equisatisfiable formula $F_1 \wedge F_2$ with F_1 in T_1 and F_2 in T_2

Repeat until fix point:

- If f is in T_i and t is not, and u is fresh:
 F[f(..., t, ...)] *** F[f(..., u, ...)] \(\lambda \) u = t
- If p is in T_i and t is not, and v is fresh:
 F[p(..., t, ...)] *** F[p(..., v, ...)] \(\lambda \) v = t

$$\Sigma_R$$
 $\Sigma_=$

$$x \le u + I \wedge u = f(x)$$

Transforms a $(\Sigma_1 \cup \Sigma_2)$ -formula F into an equisatisfiable formula $F_1 \wedge F_2$ with F_1 in T_1 and F_2 in T_2

Repeat until fix point:

- If f is in T_i and t is not, and u is fresh:
 F[f(..., t, ...)] \times F[f(..., u, ...)] \times u = t
- If p is in T_i and t is not, and v is fresh:
 F[p(..., t, ...)] *** F[p(..., v, ...)] \(\lambda \) v = t

Purification

 \sum_{R}

Σ=

Transforms a $(\Sigma_1 \cup \Sigma_2)$ -formula F into an equisatisfiable formula $F_1 \wedge F_2$ with F_1 in T_1 and F_2 in T_2

Repeat until fix point:

- If f is in T_i and t is not, and u is fresh:
 F[f(..., t, ...)] *** F[f(..., u, ...)] \(\lambda \) u = t
- If p is in T_i and t is not, and v is fresh:
 F[p(..., t, ...)] *** F[p(..., v, ...)] \(\lambda \) v = t

Purification

 Σ_{R}

 $\sum_{=}$

Transforms a $(\Sigma_1 \cup \Sigma_2)$ -formula F into an equisatisfiable formula $F_1 \wedge F_2$ with F_1 in T_1 and F_2 in T_2

Repeat until fix point:

- If f is in T_i and t is not, and u is fresh:
 F[f(..., t, ...)] *** F[f(..., u, ...)] \(\lambda \) u = t
- If p is in T_i and t is not, and v is fresh:
 F[p(..., t, ...)] *** F[p(..., v, ...)] \(\lambda \) v = t

Purification

 ${\textstyle \sum\nolimits_{R}}$

$$u_1 = g(y)$$

$$u_2 = g(a)$$

$$u_3 = f(b)$$

Transforms a $(\Sigma_1 \cup \Sigma_2)$ -formula F into an equisatisfiable formula $F_1 \wedge F_2$ with F_1 in T_1 and F_2 in T_2

Repeat until fix point:

- If f is in T_i and t is not, and u is fresh:
 F[f(..., t, ...)] *** F[f(..., u, ...)] \(\lambda \) u = t
- If p is in T_i and t is not, and v is fresh:
 F[p(..., t, ...)] *** F[p(..., v, ...)] \(\lambda \) v = t

Purification

 ${\textstyle \sum\nolimits_{R}}$

$$u_1 = g(y)$$

 $u_2 = g(a)$
 $u_3 = f(b)$

Transforms a $(\Sigma_1 \cup \Sigma_2)$ -formula F into an equisatisfiable formula $F_1 \wedge F_2$ with F_1 in T_1 and F_2 in T_2

Repeat until fix point:

- If f is in T_i and t is not, and u is fresh:
 F[f(..., t, ...)] *** F[f(..., u, ...)] \(\lambda \) u = t
- If p is in T_i and t is not, and v is fresh:
 F[p(..., t, ...)] *** F[p(..., v, ...)] \(\lambda \) v = t

$$\Sigma_{\mathsf{R}}$$

$$u_4 = x + u_1$$

$$u_1 = g(y)$$

$$u_2 = g(a)$$

$$u_3 = f(b)$$

Transforms a $(\Sigma_1 \cup \Sigma_2)$ -formula F into an equisatisfiable formula $F_1 \wedge F_2$ with F_1 in T_1 and F_2 in T_2

Repeat until fix point:

- If f is in T_i and t is not, and u is fresh:
 F[f(..., t, ...)] *** F[f(..., u, ...)] \(\lambda \) u = t
- If p is in T_i and t is not, and v is fresh:
 F[p(..., t, ...)] *** F[p(..., v, ...)] \(\lambda \) v = t

$$\Sigma_{\mathsf{R}}$$

$$u_4 = x + u_1$$

$$u_1 = g(y)$$

$$u_2 = g(a)$$

$$u_3 = f(b)$$

Transforms a $(\Sigma_1 \cup \Sigma_2)$ -formula F into an equisatisfiable formula $F_1 \wedge F_2$ with F_1 in T_1 and F_2 in T_2

Repeat until fix point:

- If f is in T_i and t is not, and u is fresh:
 F[f(..., t, ...)] *** F[f(..., u, ...)] \(\lambda \) u = t
- If p is in T_i and t is not, and v is fresh:
 F[p(..., t, ...)] *** F[p(..., v, ...)] \(\lambda \) = t

$$\Sigma_{\text{R}}$$

$$u_4 = x + u_1$$

 $u_5 \le u_2 + u_3$

$$u_1 = g(y)$$

 $u_2 = g(a)$

$$u_3 = f(b)$$
$$u_5 = f(u_4)$$

Shared and local variables

A variable is *shared* if it occurs in both F_1 and F_2 , and it is *local* otherwise.

Purification

 $\Sigma_{R}\,$

$$u_4 = x + u_1$$

 $u_5 \le u_2 + u_3$

$$u_1 = g(y)$$
$$u_2 = g(a)$$

$$u_3 = f(b)$$

$$u_5=f(u_4)$$

Shared and local variables

A variable is *shared* if it occurs in both F_1 and F_2 , and it is *local* otherwise.

Shared: {u1, u2, u3, u4, u5}

Local: $\{x, y, a, b\}$

Purification

 ${\pmb \Sigma}_R$

$$u_4 = x + u_1$$

$$u_5 \leq u_2 + u_3$$

$$u_1 = g(y)$$

$$u_2 = g(a)$$

$$u_3 = f(b)$$

$$u_5 = f(u_4)$$

Overview of Nelson-Oppen

Overview of Nelson-Oppen

Equality Propagation

- Convex theories
- Non-convex theories

Convex theories

A theory T is *convex* if for every conjunctive formula F, the following holds:

If $F \Rightarrow x_1 = y_1 \lor ... \lor x_n = y_n$ for a finite n > 1, then $F \Rightarrow x_i = y_i$ for some $i \in \{1, ..., n\}$.

Convex theories

A theory T is *convex* if for every conjunctive formula F, the following holds:

If
$$F \Rightarrow x_1 = y_1 \lor ... \lor x_n = y_n$$
 for a finite $n > 1$,
then $F \Rightarrow x_i = y_i$ for some $i \in \{1, ..., n\}$.

If F implies a disjunction of equalities, then it also implies at least one of the equalities.

Examples of (non-)convex theories

Linear arithmetic over integers (T_Z)

Examples of (non-)convex theories

Linear arithmetic over integers (T_Z)

$$1 \le x \land x \le 2 \Rightarrow x = 1 \lor x = 2$$
 but
not $1 \le x \land x \le 2 \Rightarrow x = 1$
not $1 \le x \land x \le 2 \Rightarrow x = 2$

Examples of (non-)convex theories

Linear arithmetic over integers (T_Z)

$$1 \le x \land x \le 2 \Rightarrow x = 1 \lor x = 2$$
 but
not $1 \le x \land x \le 2 \Rightarrow x = 1$
not $1 \le x \land x \le 2 \Rightarrow x = 2$

Equality and uninterpreted functions (T=)

Linear real arithmetic (T_R)

NELSON-OPPEN-CONVEX(F)

I. Purify F into $F_1 \wedge F_2$

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable

Nelson-Oppen-Convex(F)

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable

Is F satisfiable if both F_1 and F_2 are satisfiable?

Nelson-Oppen-Convex(F)

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable

Is F satisfiable if both F_1 and F_2 are satisfiable? No:

$$x = I \wedge 2 = x + y \wedge f(x) \neq f(y)$$

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that $F_i \Rightarrow x = y$ but F_j does not
 - I. $F_i \leftarrow F_i \land x = y$
 - 2. Go to step 2.

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that $F_i \Rightarrow x = y$ but F_j does not
 - I. $F_i \leftarrow F_i \land x = y$
 - 2. Go to step 2.
- 4. Return SAT

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that $F_i \Rightarrow x = y$ but F_j does not

I.
$$F_j \leftarrow F_j \wedge x = y$$

- 2. Go to step 2.
- 4. Return SAT

$$f(f(x) - f(y)) \neq f(z) \land x \leq y$$

 $\land y + z \leq x \land 0 \leq z$

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that $F_i \Rightarrow x = y$ but F_j does not

1.
$$F_j \leftarrow F_j \wedge x = y$$

- 2. Go to step 2.
- 4. Return SAT

$$f(f(x) - f(y)) \neq f(z) \land x \leq y$$

$$\land y + z \leq x \land 0 \leq z$$

$$x \leq y \land \qquad f(w) \neq f(z) \land$$

$$y + z \leq x \land \qquad u = f(x) \land$$

$$0 \leq z \land \qquad v = f(y)$$

$$w = u - v$$

$$\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \sum_{k=1}^$$

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that $F_i \Rightarrow x = y$ but F_j does not

I.
$$F_i \leftarrow F_i \land x = y$$

- 2. Go to step 2.
- 4. Return SAT

$$f(f(x) - f(y)) \neq f(z) \land x \leq y$$

$$\land y + z \leq x \land 0 \leq z$$

$$x \leq y \land \qquad f(w) \neq f(z) \land$$

$$y + z \leq x \land \qquad u = f(x) \land$$

$$0 \leq z \land \qquad v = f(y)$$

$$w = u - v$$

$$x = y \land \qquad x = y \land$$

$$\Sigma_{R}$$

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that $F_i \Rightarrow x = y$ but F_j does not

I.
$$F_j \leftarrow F_j \wedge x = y$$

- 2. Go to step 2.
- 4. Return SAT

$$f(f(x) - f(y)) \neq f(z) \land x \leq y$$

$$\land y + z \leq x \land 0 \leq z$$

$$x \leq y \land \qquad f(w) \neq f(z) \land$$

$$y + z \leq x \land \qquad u = f(x) \land$$

$$0 \leq z \land \qquad v = f(y)$$

$$w = u - v$$

$$x = y \land \qquad u = v \land$$

$$u = v \land$$

$$\Sigma_{R}$$

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that $F_i \Rightarrow x = y$ but F_j does not

$$I. F_j \leftarrow F_j \land x = y$$

- 2. Go to step 2.
- 4. Return SAT

$$f(f(x) - f(y)) \neq f(z) \land x \leq y$$

$$\land y + z \leq x \land 0 \leq z$$

$$x \leq y \land \qquad f(w) \neq f(z) \land$$

$$y + z \leq x \land \qquad u = f(x) \land$$

$$0 \leq z \land \qquad v = f(y)$$

$$w = u - v$$

$$x = y \land \qquad u = v \land$$

$$u = v \land \qquad w = z \land$$

$$\Sigma_{R}$$

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that $F_i \Rightarrow x = y$ but F_j does not

$$I. F_j \leftarrow F_j \land x = y$$

- 2. Go to step 2.
- 4. Return SAT

$$f(f(x) - f(y)) \neq f(z) \land x \leq y$$

$$\land y + z \leq x \land 0 \leq z$$

$$x \leq y \land \qquad f(w) \neq f(z) \land$$

$$y + z \leq x \land \qquad u = f(x) \land$$

$$0 \leq z \land \qquad v = f(y)$$

$$w = u - v$$

$$x = y \land \qquad u = v \land$$

$$u = v \land \qquad u = v \land$$

$$w = z \land \qquad UNSAT$$

$$\Sigma_{R}$$

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that $F_i \Rightarrow x = y$ but F_j does not

I.
$$F_i \leftarrow F_i \land x = y$$

- 2. Go to step 2.
- 4. Return SAT

$$1 \le x \land x \le 2 \land$$
$$f(x) \ne f(1) \land f(x) \ne f(2)$$

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that $F_i \Rightarrow x = y$ but F_j does not

I.
$$F_j \leftarrow F_j \wedge x = y$$

- 2. Go to step 2.
- 4. Return SAT

$1 \le x \land x \le 2 \land$		
$f(x) \neq f(1) \land f(x) \neq f(2)$		
I ≤ x ∧	$f(x) \neq f(z_1) \wedge$	
x ≤ 2 ∧	$f(x) \neq f(z_1) \land f(x) \neq f(z_2)$	
$z_1 = I \wedge$		
$z_2 = 2$		
Σ_{Z}	Σ=	

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that $F_i \Rightarrow x = y$ but F_j does not

1.
$$F_j \leftarrow F_j \wedge x = y$$

- 2. Go to step 2.
- 4. Return SAT

$f(x) \neq f(1) \land f(x) \neq f(2)$		
I ≤ x ∧	$f(x) \neq f(z_1) \wedge$	
x ≤ 2 ∧	$f(x) \neq f(z_1) \land f(x) \neq f(z_2)$	
$z_1 = I \wedge$		
$z_2 = 2$		
SAT	SAT	
Σ_{Z}	Σ=	

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that $F_i \Rightarrow x = y$ but F_j does not
 - I. $F_i \leftarrow F_i \land x = y$
 - 2. Go to step 2.
- 4. Return SAT

Nelson-Oppen-Convex(F)

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T₁-solver on F₁ and T₂-solver on F₂ and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that $F_i \Rightarrow x = y$ but F_j does not
 - I. $F_i \leftarrow F_i \land x = y$
 - 2. Go to step 2.
- 4. Return SAT

If T is non-convex, it may imply a disjunction of equalities without implying any single equality.

We have to propagate disjunctions as well as individual equalities. Why is this possible? How do we propagate disjunctions to theory solvers which only reason about conjunctions?

Nelson-Oppen(F)

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T_1 -solver on F_1 and T_2 -solver on F_2 and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that F_i \Rightarrow x = y but F_j does not
 - I. $F_j \leftarrow F_j \wedge x = y$
 - 2. Go to step 2.
- 4. If $F_i \Rightarrow x_1 = y_1 \lor ... \lor x_n = y_n$ but F_j does not, then if Nelson-Oppen($F_i \land F_j \land x_k = y_k$) outputs SAT for any k, return SAT. Otherwise, return UNSAT.
- 5. Return SAT

Nelson-Oppen(F)

- I. Purify F into $F_1 \wedge F_2$
- 2. Run T_1 -solver on F_1 and T_2 -solver on F_2 and return UNSAT if either is unsatisfiable
- 3. If there are shared variables x and y such that F_i \Rightarrow x = y but F_j does not
 - I. $F_j \leftarrow F_j \wedge x = y$
 - 2. Go to step 2.
- 4. If F_i ⇒ x₁ = y₁ ∨ ... ∨ x_n = y_n but F_j does not, then if Nelson-Oppen(F_i ∧ F_j ∧ x_k = y_k) outputs SAT for any k, return SAT. Otherwise, return UNSAT.
- 5. Return SAT

Propagate a *minimal* disjunction.

$$1 \le x \land x \le 2 \land$$

$$f(x) \ne f(1) \land f(x) \ne f(2)$$

$$\begin{array}{c|c} I \leq x \wedge x \leq 2 \wedge \\ f(x) \neq f(1) \wedge f(x) \neq f(2) \\ \hline I \leq x \wedge & f(x) \neq f(z_1) \wedge \\ x \leq 2 \wedge & f(x) \neq f(z_2) \\ z_1 = I \wedge & \\ z_2 = 2 \\ \hline \end{array}$$

$$\begin{aligned} & | \leq x \wedge x \leq 2 \wedge \\ & f(x) \neq f(1) \wedge f(x) \neq f(2) \end{aligned}$$

$$\begin{aligned} & | \leq x \wedge x \leq 2 \wedge \\ & | f(x) \neq f(z_1) \wedge \\ & | x \leq 2 \wedge x \leq 2 \wedge x \leq 2 \wedge x \leq 2 \end{aligned}$$

$$z_1 = | x \wedge x \leq 2 \wedge$$

$$\begin{array}{c|c} I \leq x \wedge x \leq 2 \wedge \\ f(x) \neq f(1) \wedge f(x) \neq f(2) \\ \hline I \leq x \wedge & f(x) \neq f(z_1) \wedge \\ x \leq 2 \wedge & f(x) \neq f(z_2) \\ z_1 = I \wedge & \\ z_2 = 2 \\ \hline (x = z_1 \vee x = z_2) \wedge \\ \Sigma_Z & \Sigma_= \end{array}$$

$ \begin{array}{c} I \leq x \land \\ x \leq 2 \land \\ z_1 = I \land \\ z_2 = 2 \end{array} $	$f(x) \neq f(z_1) \land f(x) \neq f(z_2)$
$x = z_1$	$x = z_1 \wedge UNSAT$

$1 \le x \land x \le 2 \land$		
$f(x) \neq f(1) \land f(x) \neq f(2)$		
$I \leq x \wedge$	$f(x) \neq f(z_1) \wedge$	
x ≤ 2 ∧	$f(x) \neq f(z_1) \land f(x) \neq f(z_2)$	
$z_1 = I \wedge$		
$z_2 = 2$		
$(x=z_1 \lor x=z_2) \land$		
Σ_{Z}	Σ=	

I ≤ x ∧	$f(x) \neq f(z_1) \wedge$
x ≤ 2 ∧	$f(x) \neq f(z_1) \land f(x) \neq f(z_2)$
$z_1 = I \wedge$	
$z_2 = 2$	
$x = z_1$	$x = z_1 \wedge$
	UNSAT
I ≤ x ∧	$f(x) \neq f(z_1) \wedge$
x ≤ 2 ∧	$f(x) \neq f(z_2)$
$z_1 = I \wedge$	
$z_2 = 2$	
$x = z_2$	$x = z_2 \wedge$
	UNSAT

Complexity of Nelson-Oppen

If decision procedures for convex theories T_1 and T_2 have polynomial time complexity, so does their Nelson-Oppen combination.

If decision procedures for convex theories T_1 and T_2 have NP time complexity, so does their Nelson-Oppen combination.

Summary

Today

- Sound and complete procedure for a combination of restricted theories
- Stably infinite, conjunctive, quantifier-free,
 signatures disjoint except for =

Next lecture

 Deciding satisfiability of arbitrary boolean combinations of quantifier-free first-order formulas