This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

\mathbb{PCT}

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07K 14/36, C12N 15/31, C12P 19/56

(11) International Publication Number:

WO 96/10581

A1

(43) International Publication Date:

11 April 1996 (11.04.96)

(21) International Application Number:

PCT/F195/00537

(22) International Filing Date:

29 September 1995 (29.09.95)

(30) Priority Data:

944556

30 September 1994 (30.09.94)

FI

(71) Applicant (for all designated States except US): GALILAEUS OY [FI/FI]; Elinantie 2 A 9, FIN-20510 Turku (FI).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): YLIHONKO, Kristiina [FI/FI]; Betonimiehenkatu 13 as. 1, FIN-20780 Turku (FI). HAKALA, Juha [FI/FI]; Elinantie 2 A 9, FIN-20510 Turku (FI). MÄNTSÄLÄ, Pekka [FI/FI]; Mullintie 12, FIN-20300 Turku (FI).
- (74) Agent: OY JALO ANT-WUORINEN AB; Iso Roobertinkatu 4-6 A, FIN-00120 Helsinki (FI).

(81) Designated States: AU, CA, CZ, FI, HU, JP, KR, NO, RU, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of

(54) Title: PROCESS FOR PRODUCING ANTHRACYCLINES AND INTERMEDIATES THEREOF

(57) Abstract

The present invention pertains to a process for producing anthracyclines and intermediates thereof by expressing in a foreign Streptomyces host a DNA fragment relating to the biosynthetic pathway of anthracyclines and, if desired, the intermediates obtained are converted to anthracyclines or aglycones thereof using e.g. non-producing Streptomyces mutant strains.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
		GE	Georgia	MW	Malawi
AU	Australia	GN	Guinea	NE	Niger
BB	Barbedos	GR	Greece	NL	Netherlands
BE	Belgium			NO	Norway
BF	Burkina Faso	HU	Hungary	NZ	New Zealand
BG	Bulgaria	1E	Ireland	PL	Poland
BJ	Benin	IT	Italy	PT	Portugal
BR	Brazil	JP	Japan		Romania
BY	Belarus	KE	Kenya	RO	• • • • • • • • • • • • • • • • • • • •
CA	Caneda	KG	Kyrgysian	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CI		ü	Liechtenstein	SN	Senegal
CM	Corneroon	LK	Sri Lanka	TD	Chad
CN	China	LU	Luxembourg	TG	Togo
CS	Czechoslovakia		Larvia	TJ	Tajikistan
CZ	Czech Republic	LV		TT	Trinidad and Tobago
DE	Germany	MC	Monaco	UA	Ukraine
DK	Denmark	MD	Republic of Moldova		United States of America
ES	Spain	MG	Madagascar	US	
FI	Finland	ML	Mali ·	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

Process for producing anthracyclines and intermediates thereof

The present invention pertains to a process for producing anthracyclines and intermediates thereof by expressing in a foreign host a DNA fragment relating to the biosynthetic pathway of anthracyclines and, if desired, the intermediates obtained are converted to anthracyclines or aglycones thereof using non-producing mutant strains.

Polyketide antibiotics are a broad and variable group of compounds which are composed of poly- β -ketomethylene chain [CHRO]₄₋₂₀. A common feature of poly-ketides is their biosynthetic route which is similar to the biosynthesis of fatty acids. Katz, L. and Donadio, S. (1993) have recently published a review article concerning polyketides. As their structure the antibiotics of anthracycline group are aromatic polyketides, the common structural body of which is 7,8,9,10-tetrahydro-5,12-naphthacene kinone of the general formula (A)

15

10

5

20

25

To this structural body one or more sugars and other substituents are attached. The structural body of the molecule, to which the sugars are attached, is called an aglycone. Anthracyclines are discussed more specifically e.g. in the article of A. Fujiwara and T. Hoshino (1986). Several anthracyclines are cytostatically active and thus they are of continuous interest.

30

To find new anthracyclines screening of *Streptomyces* bacteria from the soil and mutation thereof are used. To modify known anthracyclines synthetic methods have been used, whereby chemical groups are added to or removed from either the aglycone

or the sugar moiety. Similarly, biotransformation is used, wherein in living cells molecules are modified which have been produced by other production strains or by synthetic methods. Some anthracyclines have also been produced by synthetic methods.

5

10

15

The hybrid antibiotic technology has been disclosed as a new technology in the preparation of new antibiotics. It has been established to comprise production by genetic engineering of molecules which have structural features of natural products of two strains. The process is described in the publication of H.G. Floss: "Hybrid antibiotics – the contribution of the new gene combinations" (1987). The hybrid antibiotic technology gives an opportunity to controlled production of new compounds.

Cloning of actinorhodin genes from Streptomyces coelicolor (Hopwood et al., 1985) can be considered as the pioneer work in the molecular biological study of polyketide antibiotics and at the same time of streptomycetes. In 1987 Malpartida et al. reported about the hybridization of different polyketide producers to the actI and actIII DNA fragments and thereafter genes of the polyketide synthase (PKS) domain have been identified in many Streptomyces species exploiting the homology. Sequencing of these genes has shown that the genes are strongly conserved and include three Open Reading Frames, ORF 1, 2 and 3. The products of these three genes are needed for the formation of the linear polyketide bound to the enzyme complex. For the optimal formation of the correct product encoded by the PKS-genes five ORFs are needed in tetracenomycin (Shen and Hutchinson, 1993). The sequenced aromatic PKSs are given in Table 1.

20

Table 1. Cloned and sequenced gene domains encoding polyketide synthase of aromatic polyketide antibiotics

Strain	Product	Reference
S. coelicolor	aktinorhodin	Fernandez-Moreno, M.A. et al. 1992 Hallam, S.E. et al. 1988
S. violaceoruber	granaticine	Sherman, D.H. et al. 1989
S. glaucescens	tetracenomycin	Bibb, M.J. et al. 1989
S. rimosus	oxitetracycline	Kim, E-S. et al. 1994
S. cinnamonensis	monensine	Arrowsmith, T.J. et al. 1992
S. griseus	griseusine	Yu, T-W. et al. 1994
S. roseofulvus	frenolisine	Bibb, M.J. et al. 1994

5

Polyketide synthase (PKS) is a multienzyme complex which functionally reminds the synthase of long chain fatty acids. The separate components of actinorhodin PKS are so called actORF1 ketoacyl synthase (KS); actORF2 homologous to KS may effect on the length of the polyketide chain (McDaniel, R., et al., 1993); actORF3 acyl carrier protein (ACP); actORF5 ketoreductase (KR) and actORF4 cyclase/dehydrase, which may be responsible for the aromatization of the first ring.

20

25

15

The most part of the biosynthetic anthracyclines are formed via the aklavinone intermediate phase, whereafter the compound is glycosylated or it is modified by adding e.g. hydroxyl or methyl groups. Modifications can occur also after the glycosylation. The biosynthesis of aklavinone and anthracyclines which are further formed therefrom are described e.g. in "Advances in bioconversion of anthracycline antibiotics" (1989) of U. Gräfe et al., and in the references cited therein. The

biosynthetic route of the nogalamycin aglycone being formed of ten acetates is evidently analogous to the biosynthesis of aklavinone. (Figures 1A and 1B).

Description of the invention

5

10

15

A DNA fragment cloned from Streptomyces nogalater can be used according to this invention to combine the different phases of the biosynthetic route of anthracyclines, whereby hybrid anthracyclines and precursors of anthracyclines can be produced. This happens by transferring the cloned DNA fragment to a Streptomyces strain which produces anthracyclines or, alternatively, to a non-producer of anthracyclines.

The DNA fragment of Streptomyces nogalater including in the biosynthesis of anthracycline and being cloned according to this invention caused surprisingly production of anthracycline precursors in S. lividans, a host which does not produce anthracyclines. On the basis of the structures of the compounds obtained, the DNA fragment was supposed to include most of the genes needed for the biosynthesis of anthracycline aglycones. By complementation of mutant strains, analyzing the hybrid products and sequencing the DNA fragments we have been able to show that the DNA fragment comprises

- 20 the activity responsible for the election of the starting unit which defines the side chain of the 9-position (S. galilaeus hybrid products),
 - the polyketide synthase genes,
 - the gene of the enzyme which is needed for removing the hydroxyl in 2-position, (ketoreductase),
- 25 the methyl transferase gene needed for the carboxylic acid esterification,
 - the mono-oxygenase gene.

This DNA fragment and anthracycline precursors produced by it have further been used to produce hybrid anthracyclines.

30

The present invention enables one to produce some known cytostatically active anthracyclines (auramycins) as well as prior unknown compounds. Use of the

polyketide synthase of anthracyclines in the production of hybrid anthracyclines has not been described previously, neither the change of the starting unit of polyketide synthesis by transferring genes to a foreign host. Further, there is no prior disclosure of the cloning of genes of the biosynthetic pathway of nogalamycin produced by S. nogalater, or use thereof.

The similarity of the biosynthetic genes of polyketide antibiotics disclosed by Malpartida et al. (1987) was the starting point to the discovery of the biosynthetic genes of nogalamycin. The total DNA of S. nogalater being cleaved by suitable restriction enzymes was hybridized by the Southern-techniques to the actI probe, and thus two hybridizing DNA fragments were obtained. In an optimal case a suitable probe shows one DNA fragment. The use of cross hybridization was, however, considered to be possible as a strategy in identifying the biosynthetic genes, because the signals were strong.

15

20

10

5

The strategy by which the DNA fragment according to the invention was found was the following: A fragment homologous to the actI fragment described by Malpartida et al. (1987) was isolated from S. nogalater. Said homologous fragment and flanking DNA fragments were transferred into a S. lividans strain TK24. Altogether about 20 kb (=kilobase, 1000 bases) were transferred in five fragments into a foreign host. Of these an about 12 kb DNA fragment, pSY15, causes the production of nogalamycin intermediates in S. lividans. The recombinant strain obtained was cultivated in a nutrient medium used for anthracycline producers and the product was extracted by suitable organic solvents.

25

30

DNA fragments according to the invention were transferred into *Streptomyces* strains described hereinafter as well as to *S. galilaeus* mutants H028, JH003, H061, H036 and H039 given in Table 2, and expressed in them. Said DNA fragments can correspondingly be transferred to other mutants mentioned in the table, depending on what kind of products are desired.

Streptomyces lividans 66, strain TK24, restriction-modification-free strain.

Streptomyces galilaeus ATCC 31615, produces aklacinomycin.

Mutants of Streptomyces galilaeus ATCC 31615 (cf. Table 2) (Ylihonko et al., 1994).

Table 2. The products of Streptomyces galilaeus mutants; abbreviations used:

Akn=aklavinone, aglycone moiety of aclacinomycins; Rhn=rhodosamine;

dF=deoxyfucose, CinA=Cinerulose A; Rho=rhodinose

Description of mutation Product Mustannt Mutation in PKS-domain 10 No production H028 Mutation in PKS-domain No production JH003 2-OH-Aklanone acid No removal of 2-OH H061 Methyl ester of The fourth ring does not get closed H036 aklanone ecid 1)Aklavinone Amino sugar is missing. H039 2)Alm-Rho-Rho Akn-Rhn Mutation in glycosylation 15 H038 Oxidoreductase is missing Akn-Rhn-dF-Rho H026 Mutation in the glycosylation Not identified H035 Amino sugar is missing 1)Alm-Rho-dF-CinA H054 2)Akn-dF-dF-CinA 3)Akn-Rho-dF-Rho 4)Akn-Rho-dF 5)Akm-dF-dF

When producing the starting product for biotransformation the host used is preferably S. lividans, because it does not itself produce coloured or extractable compounds in the growth conditions used.

When producing an aglycone for biotransformation the bacterial strains producing anthracyclines or non-producing mutants thereof are preferably used, most preferably

10

15

20

25

30

non-producing mutants of S. galilaeus being transformed with plasmid pSY15 (Fig. 3), carrying the above mentioned 12 kb DNA fragment.

When converting the anthracycline precursors obtained using the plasmid pSY15 to anthracyclines or their aglycones, S. galilaeus mutants, e.g. strains JH003 or H028, which do not produce aclarubicin are preferably used.

The DNA-constructions according to the present invention can be constructed by ligating suitable DNA fragments from the domain as described to a suitable vector. Such a vector is preferably the high copy number plasmid pIJ486 capable to amplify in several strains of the genus *Streptomyces* (Ward et al., 1986).

To produce anthracyclines and their precursors strains carrying the pSY15 plasmid are grown preferably in growth media for *Streptomyces* bacteria, preferably in E1-medium, to which thiostrepton has been added to maintain the plasmid carrying strains. The strains are grown in conditions which are advantageous to the producing strain, e.g. in a shaker in bottles, or in a fermenter which is stirred and aerated. After a suitable cultivation time, preferably after 2-7 days the products are isolated according to methods described for bacterial metabolites, preferably e.g. extracting with a suitable solvent, e.g. toluene or chloroform. The extracted compounds are purified with suitable methods e.g. by using column chromatography.

Anthracycline precursors are converted to anthracyclines in strains naturally producing anthracyclines, or mutants thereof. Compounds similar to those naturally produced by the strain are thus obtained, having methyl in their 9-position and hydrogen in their 2-position. In biotransformations auramycinone produced by a S. galilaeus strain carrying the plasmid pSY15 is most suitably used as the starting compound, or methyl ester of nogalonic acid produced by a strain carrying the same plasmid which naturally does not produce anthracyclines. In biotransformations most preferably non-producing mutants of anthracycline production strains are used, e.g. mutant H028 or JH003. Biotransformation is effected most preferably by cultivating a strain in a suitable liquid production medium, e.g. in E1-medium, and by adding anthracycline precursors in

suitable amounts. After a suitable time, e.g. 6 to 48 hours, most preferably 16 to 32 hours, the anthracyclines so formed are extracted.

The strains used for transformation (cf. also Table 2) are described in the following.

5

10

15

20

25

TK24 is a S. lividans strain which in the growth conditions used does not produce coloured secondary metabolites. In other growth conditions it produces actinorhodin, which is an antibiotic differing very much from anthracyclines. The strain does not produce any anthracyclines nor their precursors. When characterizing the products of TK24/pSY15 on the basis of NMR-spectrum compound I was obtained as the primary product, which is possibly an intermediate of anthracycline biosynthesis (cf. Scheme I).

H028 is a mutant of Streptomyces galilaeus which does not as such produce anthracyclines or their precursors. However, this strain can be used in biotransformations to convert anthracycline precursors to products similar to aclarubicin. When characterizing H028/pSY15 products it was found that this strain produces auramycinone (Compound II), which is an anthracycline aglycone similar to aklavinone, as well as auramycins which are glycosides of auramycinone, e.g. Compound III. When hydrolyzing auramycins auramycinone is obtained, which also shows that the compounds produced are glycosides of auramycinone. Auramycinone is a useful precursor of anthracyclines, when new anthracyclines are produced by biotransformation. Auramycins have been described to be cytostatic anthracyclines having possible use in cancer chemotherapy. The use of H028/pSY15 for the production of these is new.

30

H061 is a Streptomyces galilaeus mutant, which produces 2-OH-aklanone acid. This is evidently due to a mutation which prevents removal of the hydroxyl in 2-position. H061/pSY15 produces aklavinone, auramycinone and their glycosides similar to aclarubicin. According to the result pSY15 complements the mutation of H061 and comprises thus the gene encoding the 2-position dehydroxylase. This is useful in

10

15

20

producing new hybrid compounds when transformed to a strain the products of which naturally have hydroxyl or a methoxy group in 2-position.

On the basis of the results pSY15 is useful in producing precursors of anthracyclines in strains which naturally do not produce anthracyclines, or when producing hybrid anthracyclines in strains which produce anthracyclines, or in mutants thereof. With it the formation of 9-position side chain can be affected so that the strains which provide a two carbon side chain at this position, do produce compounds which have a one carbon side chain at said position. Possible strains producing anthracyclines which can be modified this way are e.g. S. galilaeus, S. peucetius and S. purpurascens. The anthracycline precursors produced this way are useful in producing new anthracyclines by biotransformations. pSY15 can also be transferred to a strain which normally produces compounds which at 2-position have hydroxyl or a methoxy group. Thereby compounds are obtained which have hydrogen at this position. pSY15 enables also one to produce previously described auramycinone and its glycosides by the new method.

In the following the detailed embodiments of the invention are described as examples of isolation of the DNA fragment from S. nogalater strain ATCC 27451, production of nogalamycin precursors in S. lividans strain TK24, production of auramycinone in the mutant H028 and their modification to anthracyclines in the mutant JH003. In addition, expression of the DNA fragments according to the invention in the mutants of the strain S. galilaeus is described, as well as the compounds produced by these strains.

25

The main products of the strains TK24/pSY15, JH003/pSY15, H028/pSY15 and H061/pSY15 were characterized.

Brief description of drawings

- Fig. 1A Anthracyclines produced by Streptomyces strains, and identified precursors thereof. (Starting molecule: propionate.) The numbers of S. galilaeus mutant strains producing the intermediates are given in parentheses.
- Fig. 1B Anthracyclines produced by Streptomyces strains having acetate as the starting molecule.
- Restriction map of the 12 kb continuous DNA fragment cloned from S.

 nogalater genome. The figure discloses also the inserts contained in the pSY plasmids obtained. Plasmid pIJ486 has been used in preparing the pSY vectors. On the basis of sequence comparisons the following functions have been obtained for the open reading frames shown in the figure: 1 = ketoacylsynthase-acyltransferase, 2 = Chain Length Controlling Factor (CLF), 3 = acyl transferring protein; A and B = regulatory genes, C = mono-oxygenase, D = methyl transferase, E = ketoreductase.
 - Fig. 3 Structure of the plasmid pSY15.

20

- Fig. 4 NMR-spectrum of compound I.
- Fig. 5 NMR-spectrum of auramycinone.
- 25 Fig. 6 NMR-spectrum of auramycinone-rhodosamine-deoxyfucose.
 - Fig. 7 NMR-spectrum of auramycinone-rhodinose-deoxyfucose.

10

15

25

30

Materials used

Bacterial strains and plasmids

The strain Streptomyces nogalater ATCC 27451 was used as the donor of genes. The Streptomyces bacterial strains used in this work as hosts are listed above. The treatments of S. nogalater DNA were effected in the E. coli strain XL1-Blue (recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, lac, [F'proAB, lacIZAM15, TnIO (tet¹)] (Stratagene Cloning Systems, California). E. coli strains GM2163 (E. coli Genetic Stock Center, Department of Biology 255 OML, Yale University, New Haven, USA) and LE392 (Promega) were used in preparing the gene bank and in amplifying the phage DNA.

In E. coli the plasmids pUC18/pUC19 (Pharmacia Biotech) were used, and in Strepto-myces strains the plasmid pIJ486 was used (Ward et al., 1987; obtained from Prof. Hopwood, John Innes Centre. UK).

Nutrient media and solutions used

TRYPTONE-SOYA BROTH (TSB)

20 Per litre: Oxoid Tryptone Soya Broth powder 30 g.

YEME (Hopwood et al., 1985., p. 239)

Per litre: Yeast extract (Difco) 3 g, Bacto-peptone (Difco) 5 g, malt extract (Oxoid) 3 g, glucose 10 g and saccharose 340 g. After autoclaving 2 ml of sterile 2.5M MgCl₂ solution and 25 ml of 20% glycine are added.

SGYEME As YEME, but the amount of saccharose was 110 g per litre. To prepare protoplasts the amount of 20% glycine varies from 12 ml to 50 ml per litre depending on the strain used.

YM-agar Bacto Yeast malt extract agar, ISP-medium 2, Difco; 38 g/litre.

PCT/FI95/00537

12

ISP4 Bacto ISP-medium 4, Difco; 37 g/litre.

R2YE Hopwood et al., (1985 p. 236)

5 LB Sambrook et al., (1989, 3:A.1)

Per litre: Glucose 20 g, starch 20 g, Farmamedia 5 g, yeast extract 2.5 g, $K_2HPO_4\circ 3H_2O$ 1.3 g, $MgSO_4\circ 7H_2O$ 1 g, NaCl 3 g, CaCO₃ 3 g. Tap water is added to 1 litre and pH is adjusted to 7.4.

10

TE Tris-HCl-buffer, pH 8: 10 mM, EDTA, pH 8: 1 mM

20°SSC Per litre: NaCl 175.3 g, Na-citrate 88.2 g. pH is adjusted to 7 with NaOH.

15 DENHARDT SOLUTION (Sambrook et al., 1989, 3:B.1)

A 50° basic solution is prepared, which contains Ficoll 5 g, polyvinyl pyrrolidone 5 g, BSA (bovine serum albumin) 5 g. Distilled water is added to 500 ml and sterilized by filtrating.

20

30

- Example 1. Cloning and characterization of the genes included in the anthracycline biosynthesis of Streptomyces nogalater
- 1.1 Preparing of gene bank and cloning of anthracycline genes from S.

 25 nogalater.

Isolation of the total DNA from Streptomyces nogalater

S. nogalater (ATCC 27451) mycelia were cultivated for about 3 days in 50 ml of TSB medium, wherein 0.5% glycine had been added at 28 °C vigorously shaking. The mycelia were pelleted and the supernatant was discarded. The pellet was suspended into 10 ml of lysis buffer (15 % saccharose, 25 mM Tris, pH 8.0, 25 mM EDTA and 5 mg/ml of lysozyme) and incubated for 15 min at 37 °C. 1 mg of proteinase K and

10

25

30

1 ml of 10% SDS were added while stirring. The mixture was incubated at once for 15 min at 70 °C. The lysed pellet was subsequently cooled in ice, 1 ml of 3 M Naacetate (pH 6.0) was added and kept for a few minutes on ice bath. 5 ml of phenol balanced with 0.1 M Tris was added and stirred by turning the tube around. The phases were sentrifuged apart and the water phase was further extracted with 5 ml of chloroform. DNA was subsequently precipitated by adding 10 ml of isopropanol. DNA was spinned cautiously around a Pasteur pipette being closed by flaming, washed by dipping into 70% ethanol and DNA was loosened onto the wall of the tube. DNA was dissolved in 5 ml of TE-buffer and treated with RNase (25 μl of 10 mg/ml DNase free RNase) for about 30 min at 37 °C. The phenol and chloroform extractions were repeated. DNA was subsequently reprecipitated with isopropanol and washed as above. Finally DNA was dissolved in 1 ml of TE-buffer and it was used for subsequent steps.

Southern hybridization

The actI probe was the 0.8 kb Bg/II-fragment obtained from the plasmid pIJ2345 and the acm probe the 3 kb BamHI-fragment obtained from the plasmid pACM5 (Niemi et al., 1994). The plasmids were isolated at mini-scale (Magic Minipreps reagent series of Promega) and the probe fragments were isolated by preparative agarose gel electrophoresis after digesting them first with Bg/III and with BamHI, respectively. The probes were then labeled with 50 μCi of [α³²-P]CTP by nick-translation (Nick translation labeling reagent series of Boehringer Mannheim).

The total DNA preparations isolated as described above were digested with EcoRI enzyme and fractionated with agarose gel electrophoresis. The fractionated DNA was transferred from the gel to Hybond N membrane (Amersham) using the Vacugene apparatus (LKB 2016, Pharmacia LKB Biotechnology) according to the instructions of use. DNA was fastened into the membrane by incubating for 3 min in UV light.

The membranes were hybridized in 10 ml of hybridization solution (1% SDS, 1M NaCl, 5° Denhardt's solution, 100 µg/ml denatured carrier DNA (DNA from calf thymus, Boehringer Mannheim) at 65 °C in a hybridization oven (HB-1D Hybridiser, Techne) for about 6 h, whereafter at least 100 ng of labeled probe-DNA was added

10

15

into the hybridization tube and the inkubation was continued for further about 12 h. After this the membranes were washed at 65 °C for 2*30 min in a wash solution (2*SSC, 1% SDS or 0.2*SSC, 0.1% SDS). Autoradiography was effected by superimposing the membrane coated with a plastic film and the autoradiography film. Exposure lasted about 1 to 3 days.

Preparing of the gene bank from S. nogalater DNA

40 μg of DNA was incubated in the digestion buffer (10*A, Boehringer Mannheim) in the presence of 2.4 units of Sau3A (Boehringer Mannheim) for 5 min at 37 °C and the reaction was stopped by adding phenol. After phenol treatment DNA was purified with ethanol precipitation. DNA-fragments so obtained were run at preparative agarose gel electrophoresis (0.3 % LGT, low gelling temperature). DNA, which was 20 kb or bigger, was taken from the gel by cutting and purified by phenolization from the agarose. A commercial phage vector, λ EMBL 4, BamHI fragments (Amersham International plc, Amersham UK) were treated with alkaline phosphatase (CIAP, calf intestinal alkaline phosphatase, Promega) according to the instructions of the manufacturer. The insert DNA (Sau3A fraction) and vector so obtained were ligated by incubating for 2 h at room temperature and for 2 h at 14 °C in the presence of T4-DNA ligase (Promega) according to the recommendation of the manufacturer. The ligation mixture was packed to λ -particles using the Packagene reagent series (Promega Biotech) according to the manufacturer's instructions. Escherichia coli strain GM2163 was used as the host. The cells were prepared for infection according to the packing instructions and cells infected with the packing mixture were spread onto plates according to Promega's instructions.

25

30

20

Isolation and mapping of hybridizing clones

Phage DNA from plates with about 4000 plaques/plate was transferred to a membrane (Colony/Plaque Screen, New England Nuclear) according to the manufacturer's instructions. The membranes were hybridized as described above. Plaques which gave a signal in autoradiography, were picked up and the phages were eluted from them by incubating a plaque in 0.5 ml of SM-buffer for 2 hours. Because the plaque plates

were dense, the plaques were purified by infecting them into the host strain LE392 (Promega) and hybridizing as above.

- From the purified clones phage DNA was prepared in 20 ml scale by infecting the LE392 cells according to Promega's packing instructions. The DNA so obtained was digested with various restriction endonucleases to map the clones (Sambrook et al., 1989) and by hybridizing with different probes. The restriction map so obtained is given in Fig. 2.
- 10 Transfer of the DNA fragments to S. lividans and detection of new compounds The fragment shown in the restriction map (Fig. 2) was transferred into S. lividans as EcoRI-fragments (pSY1 and pSY6) or as a BglII-fragment (pSY15). λ-clones were digested with EcoRI or BglII-restriction enzyme and ligated to a plasmid made linear with the same enzyme and was transformed by electroporation into E. coli or by protoplast transformation into S. lividans. Most of the inserts were first cloned into the 15 plasmid pUC19 amplifying in E. coli, whereby as a host E. coli strain XL1-Blue was used. pSY15 was cloned directly into the S. lividans strain TK24. E. coli was used because by that way smaller amounts of phage-DNA could be used. The transformation efficacy of E. coli was 2°108 transformants/µg DNA, when E. coli Pulser Apparatus-electroporation device (Bio-Rad) was used with the following settings (200 20 Ohm, 25 µF, 1.4 kV). For electroporation the cells were treated as described in Dower, W.J. et al. (1988), and 0.1 cm cuvettes of Bio-Rad were used in transformation, the cell volume was 20 µl.
- S. lividans strain TK24 was used as an intermediate host as the expression was believed to be successful only in S. galilaeus strains. S. galilaeus is not at all transformable with DNA propagated in E. coli. Only the plasmid pSY15 caused modification in TK24 strain, which was noticed as brown colour on the ISP4 plate, when TK24 is normally rather colourless or blue. Only the TK24 strain carrying the plasmid pSY15 caused formation of coloured products in the E1-medium well suited for the production of anthracyclines. On the basis of thin layer chromatography the products of the recombinant strain TK24/pSY15 seemed to be alike to but not identical

with those produced by the mutant H036 (Ylihonko et al., 1994) producing the methyl ester of aklanone acid. With the eluent toluene:ethyl acetate:methanol:formic acid (50:50:15:3) the following R_f-values were obtained for these products:

5 TK24/pSY15: 0.66; 0.60; 0.50

H036: 0.67; 0.62; 0.51.

These characteristics were confirmed to come from the pSY15 plasmid by retransforming the plasmid to *S. lividans* TK24 strain. The transformants so obtained were also able to produce anthracycline precursors. When the recombinant strain was cultivated in E1 medium without selection pressure of the plasmid strain caused by thiostrepton, the production of new compounds decreased.

1.2 Localizing the PKS-genes

15

20

25

30

10

Sequencing of the hybridizing fragment

From the EcoRI-digest a 2 kb actI hybridizing fragment was obtained and it was sequenced. About 2 kb of DNA to the right according to the map (Fig. 2) was additionally sequenced. For sequencing 31 clones were prepared from restriction enzyme digestion sites to the vectors pUC18 and pUC19, being linearized with corresponding enzymes.

To isolate plasmids for the sequencing reactions Magic/WizardTM Minipreps DNA Purification System kit of Promega was used. E. coli XL1-Blue cells were cultivated overnight in 3 ml of LB-medium which contained 50 μg/ml of ampicillin, and the plasmids were isolated according to the manufacturer's instructions.

DNA-sequencing was performed by using dideoxy chain termination method. For the sequencing reactions Deaza G/A ^{T7}Sequencing TM Mixes (Pharmacia) and TaqTrack[®] Sequencing Systems, Deaza (Promega) sequencing reagent series were used. Denaturation was always performed according to the instructions in the Pharmacia kit. (Method C). When using the Pharmacia kit the primers were ligated according to the

10

Method C given in the instructions (Standard Annealing of Primer to Double-Stranded Template). When using the Promega kit the item "Sequencing Protocol Using Direct Incorporation" of the manufacturer's instructions was followed. Deviating from the primer ligation temperature (37 °C) recommended by the manufacturer the temperature of 45 °C was used to avoid the secondary structures caused by the high GC-content. The temperature was kept thereafter at 45 °C until the end of the reaction. As a radioactive label [α³5S]dATP (NEN Products Boston, MA) was used. Most of the PKS-domain was sequenced with a universal primer (5'-d(GTTTTCCCAGTCAC-GAC)-3') and with a reverse primer (5'-d(CAGGAAACAGCTATGAC)-3' (pUC/M13 17 mer Primers, Promega). When sequencing the longest fragments (500-600 bp) of the domain, and in order to define the sequences of such restriction sites which could not be "passed", six specific primers were used. The primers were prepared at the Department of Bioorganic Chemistry in the University of Turku.

The sequencing gels were run by the Macrophor-system of Pharmacia, using a 4% thickness gradient gel. Running conditions: current 20 mA, voltage 2500 V.

Sequence analysis

From the PKS domain the DNA fragment with about 4134 bases (as given in the sequence listing) was sequenced, the analysis of which was performed by GCG-software (Genetics Computer Group, GCG Package, Wisconsin USA). With the subprogram CODONPREFERENCE the open reading frames were sought from the sequence. The reading frames obtained were translated to the amino acid sequence and with the TFASTA-subprogram homologies to known sequences were sought.

25

30

20

According to the CODONPREFERENCE program the 4134 base DNA fragment as sequenced had altogether three open reading frames (ORF1, ORF2, ORF3) (ORF 1 is the fragment 359–1651 in SEQ ID NO:1 of the sequence listing, ORF2 is the fragment 1648–2877 in the SEQ ID NO:4, and ORF3 is the fragment 2937–3197 in the SEQ ID NO:1). In the beginning of each open reading frame a possible ribosome binding site was found (RBS). The functions of the genes were concluded by comparing the amino acid sequences translated from their base sequences to known sequences. So the

10

15

20

25

30

following similarities with the open reading frames of actinorhodin and tetracenomycin PKS domains were obtained: ORF1 (80%, 81%), ORF2 (74%, 77%), ORF3 (62%, 62%), and on the basis of this we present the following functions to said genes: ORF1 is ketoacylsynthase; ORF2 is the factor which effects on the chain length; ORF3 is an acyl carrier protein. These three open reading frames are needed for a functional polyketide synthase.

Upstream of the PKS domain about 6 kb DNA fragment was sequenced (kb = 1000 bases). In this domain the following gene activities have been recognized on the basis of the sequence: (Fig. 2): regulatory genes, mono-oxygenase, methyl transferase and ketoreductase.

Example 2. Transfer of the genes into the strain S. galilaeus ATCC 31615 and mutants thereof

Plasmid pSY15 was isolated from S. lividans strain TK24 and transformed into S. galilaeus mutant H039 and the DNA isolated therefrom further into other S. galilaeus mutants. The method used in the transformation of the S. galilaeus strain being modified from the transformation method used in the transformation of S. lividans has been described earlier (Ylihonko, K., Pro gradu-thesis, University of Turku, 1986). For preparing protoplasts the cells were grown in SGYEME, to which 0.8% saccharose had been added. The plasmids were transformed successfully first to the mutant H039, whereby with 2 µg of plasmid-DNA about 10 transformants were obtained. Because of a strong restriction barrier S. galilaeus is weakly transformable with foreign DNA but the transformation efficacy increases manyfold if the plasmid has been isolated from a S. galilaeus strain.

H039-transformants were first cultivated for about 5 days on an ISP4 plate, whereto thiostreptone had been added. The mycelium was inoculated in 50 ml of TSB nutrient broth (5 µg/ml of thiostreptone added) and grown in a shaker for 5 days. The plasmid was isolated as described above and transformed into other mutants. Usually 200 to

10

500 ng of plasmid was used per one transformation, whereby 10 to 100 transformants were obtained.

After regeneration the transformed mutant strains were spread onto ISP4 plates, wherefrom the mycelium was further transferred to E1 nutrient medium. To retain the plasmid thiostrepton was added to all nutrient media. E1 mycelium was incubated in a shaker (330 rpm, 30 °C) and production was followed by taking after 3 days a 0.5 ml sample of the mycelium daily for 3 to 5 days. The sample was buffered to pH 7 with phosphate buffer and extracted with methanol-toluene mixture (1:1). In addition, part of the samples were acidified with 1M HCl solution and extracted into toluene-methanol. In E1-cultivations both mutants and the S. galilaeus wild strain were used as controls. By comparing the products on TLC the effects of the plasmid on the production were seen.

The S. galilaeus mutants used in transformations are listed above. Plasmid pSY15 complemented, i.e. restored the producing ability of anthracyclines or precursors thereof in the following mutants: H028, H061 and JH003. It did not affect the production profile of the mutants H036 and H039 to any appreciable extent. JH003, which does not produce coloured compounds in the conditions used, has been mutated from the strain H054 and the transformant JH003/pSY15 was compared to the strain H054. H028 is also a non-producing mutant, which was obtained by mutating the wild strain S. galilaeus ATCC 31615. So the wild strain was used as the control of the transformant H028/pSY15. Using the eluent toluene:ethyl acetate:methanol:formic acid (50:50:15:3) the following R_f-values were obtained for the transformants and the host strains used as controls.

H028/pSY15: (0.69); <u>0.61</u>; 0.58; <u>0.01</u>

JH003/pSY15: 0.59; 0.50; 0.46; 0.35

H061/pSY15: (0.69); 0.61; 0.58; <u>0.06</u>; <u>0.01</u>

S. galilaeus ATCC 31615: 0.23; 0.14; 0.11

H054: 0.65; 0.60; 0.53; 0.48.

H061: 0.50 (acid).

30

The product isolated in small scale was hydrolyzed by heating in 1M hydrochloric acid at 80 °C for 0.5 h. After hydrolysis the following R_f -values were obtained for the aglycons or precursors thereof:

H028/pSY15: 0.61

JH003/pSY15: 0.61

H061/pSY15: 0.61.

Because all these mutants used have originally been produced from a S. galilaeus wild strain, aklavinone was used as comparison, being the aglycone of aclacinomycins produced by S. galilaeus. In the eluent used the R_f-value 0.69 was obtained for aklavinone. In the products of transformants small amounts of aklavinone were also detected.

Example 3. Production of anthracycline precursors

15

20

10

5

3.1 Production of TK24/pSY15 products

Ten 250 ml erlenmeyer-flasks each containing 60 ml of E1-medium were inoculated with 1 ml aliquots of the strain TK24/pSY15. The flasks were incubated in a shaker at 330 rpm at the temperature of 30 °C for about 3 days. From the finished mycelia production was confirmed by extracting 0.5 ml samples with a mixture of methanol and toluene (1:1). The products were compared to the standard by thin layer chromatography.

The flasks were emptied into two 400 ml centrifuge tubes and centrifuged for 10 min at 3000 rpm. The supernatant was recovered. The precipitate was suspended by adding to each tube 50 ml of methanol. The tubes were recentrifuged for 10 min at 3000 rpm. The methanol solution was added into the supernatant. The precipitate was discarded. The solution was extracted with 2 * 100 ml of chloroform, whereby a strongly orange-yellow chloroform solution was obtained. The water phase was discarded.

Chloroform was evaporated on a water bath in a rotary evaporator. The orange-yellow, dry product was dissolved in 2 ml of chloroform.

The chloroform solutions were pipetted into a chromatography column of glass, equipped with a glass sinter, having a diameter of 2 cm and containing about 5 cm of silica suspended in chloroform (Kieselgel 60, Merck). The column was eluted with 2.5 ml aliquots of chloroform. Each fraction was collected into a separate test tube. Samples of each fraction were dropped on a thin layer and compared to the standards. Fractions containing individual compounds were pooled and evaporated into dryness.

10

20

25

5

NMR-spectra of pure compounds were determined and the compounds were identified by comparing the spectra with analogical compounds. In Fig. 4 the H-NMR-spectrum of Compound I is given.

15 3.2 Production of an aglycone in the strain H028/pSY15

Ten 250 ml erlenmeyer-flasks each containing 60 ml of E1-medium were inoculated with 1 ml aliquots of the strain H028/pSY15. The flasks were incubated in a shaker at 330 rpm at the temperature of 30 °C for about 4 days. From the finished mycelia production was confirmed by extracting 0.5 ml samples with a mixture of methanol and toluene (1:1). The products were compared to the standards by thin layer chromatography.

The flasks were emptied into two 400 ml centrifuge tubes and centrifuged for 10 min at 3000 rpm. The supernatant was recovered. The precipitate was suspended by adding to each tube 50 ml of methanol. The tubes were recentrifuged for 10 min at 3000 rpm. The methanol solution was added into the supernatant. The precipitate was discarded. The solution was extracted with 2 ° 100 ml of chloroform, whereby a strongly yellow chloroform solution was obtained. The water phase was discarded.

30

Chloroform was evaporated on a water bath in a rotary evaporator. The yellow, dry product was dissolved in 2 ml of chloroform.

₩O 96/10581 PCT/FI95/00537

22

The chloroform solutions were pipetted into a chromatography column of glass, equipped with a glass sinter, having a diameter of 2 cm and containing about 5 cm of silica suspended in chloroform (Kieselgel 60, Merck). The column was eluted with 2.5 ml aliquots of chloroform. Each fraction was collected into a separate test tube. Samples of each fraction were dropped on a thin layer and compared to the standards. Fractions containing individual compounds were pooled and evaporated into dryness.

NMR-spectra of pure compounds were determined and the compounds were identified by comparing the spectra with analogical compounds. In Fig. 5 the H-NMR-spectrum of auramycinone (Compound II) is given.

Example 4. Biotransformation of hybrid products

4.1 Biotransformation of auramycinone in strain JH003

15

20

25

10

5

A 250 ml erlenmeyer-flask containing 60 ml of E1-medium was inoculated with 1 ml of strain JH003. The flask was incubated in a shaker at 330 rpm at the temperature of 30 °C for about 3 days. After two day's cultivation about 2 mg of auramycinone was added into the flask. At 24 hours from this the production was confirmed by extracting a 0.5 ml sample with the mixture of methanol and toluene (1:1). The products were compared to the standard by thin layer chromatography.

The flask was emptied into two 60 ml centrifuge tube and centrifuged for 10 min at 3000 rpm. The supernatant was recovered. The precipitate was suspended by adding to each tube 10 ml of methanol. The tubes were recentrifuged for 10 min at 3000 rpm. The methanol solution was added to the supernatant. The precipitate was discarded. The pooled solution was extracted with 2 ° 20 ml of chloroform, whereby a strongly yellow chloroform solution was obtained. The water phase was discarded.

Chloroform was evaporated on a water bath in a rotary evaporator. The yellow, dry product was dissolved in chloroform. On the basis of TLC the product was found to correspond to the products of the strain JH003/pSY15 (cf. Example 5.2).

₩0 96/10581

Example 5. Production of hybrid anthracyclines

5.1 Production of auramycinone-rhodosamine-deoxyfucose in strain H028/pSY15

5

10

15

25

Ten 250 ml erlenmeyer-flasks each containing 60 ml of E1-medium were inoculated with 1 ml aliquots of the strain H028/pSY15. The flasks were incubated in a shaker at 330 rpm at the temperature of 30 °C for about 4 days. From the finished mycelia production was confirmed by extracting 0.5 ml samples with a mixture of methanol and toluene (1:1). The products were compared to the standard by thin layer chromatography.

The flasks were emptied into two 400 ml centrifuge tubes and centrifuged for 10 min at 3000 rpm. The supernatant was recovered. The precipitate was suspended by adding to each tube 50 ml of methanol. The tubes were recentrifuged for 10 min at 3000 rpm. The methanol solution was added into the supernatant. The precipitate was discarded. The pooled solution was extracted with 2 * 100 ml of chloroform, whereby a strongly yellow chloroform solution was obtained. The water phase was discarded.

20 Chloroform was evaporated on a water bath in a rotary evaporator. The yellow, dry product was dissolved in 2 ml of chloroform.

The chloroform solutions were pipetted into a chromatography column of glass, equipped with a glass sinter, having a diameter of 2 cm and containing about 5 cm of silica suspended in chloroform (Kieselgel 60, Merck). The column was eluted with 2.5 ml aliquots of chloroform. Each fraction was collected into a separate test tube. Samples of each fraction were dropped on a thin layer and compared to the standards. Fractions containing individual compounds were pooled.

NMR-spectra of pure compounds were determined and the compounds were identified by comparing the spectra with analogical compounds. In Fig. 6 the H-NMR-spectrum of auramycinone-rhodosamine-deoxyfucose (Compound III) is given.

30

5.2 Production of auramycinone-rhodinose-deoxyfucose in strain JH003/pSY15

Ten 250 ml erlenmeyer-flasks each containing 60 ml of E1-medium were inoculated with 1 ml aliquots of the strain JH003/pSY15. The flasks were incubated in a shaker at 330 rpm at the temperature of 30 °C for about 4 days. From the finished mycelia production was confirmed by extracting 0.5 ml samples with a mixture of methanol and toluene (1:1). The products were compared to the standard by thin layer chromatography.

The flasks were emptied into two 400 ml centrifuge tubes and centrifuged for 10 min at 3000 rpm. The supernatant was recovered. The precipitate was suspended by adding to each tube 50 ml of methanol. The tubes were recentrifuged for 10 min at 3000 rpm. The methanol solution was added into the supernatant. The precipitate was discarded. The pooled solution was extracted with 2 ° 100 ml of chloroform, whereby a strongly yellow chloroform solution was obtained. The water phase was discarded.

Chloroform was evaporated on a water bath in a rotary evaporator. The yellow, dry product was dissolved in 2 ml of chloroform.

The chloroform solutions were pipetted into a chromatography column of glass, equipped with a glass sinter, having a diameter of 2 cm and containing about 5 cm of silica suspended in chloroform (Kieselgel 60, Merck). The column was eluted with 2.5 ml aliquots of chloroform:methanol 100:10. Each fraction was collected into a separate test tube. Samples of each fraction were dropped on a thin layer and compared to a standard. Fractions containing individual compounds were pooled and evaporated into dryness.

NMR-spectra of pure compounds were determined and the compounds were identified by comparing the spectra with analogical compounds. In Fig. 7 the H-NMR-spectrum of auramycinone-rhodinose-deoxyfucose is given.

25

Example 6. Characterization of the products

6.1 HPLC-runs

The retention times of the compounds were determined at RP-18-column, with an eluent acetonitrile:methanol:potassium dihydrogen phosphate buffer (8.00 g/l, pH 3.0) 5:2:3. The retention times of the compounds are: I: 4.63, II: 3.52, III: 4.09 and IV: 7.26. The structures of the compounds I – IV are given in the Scheme I.

6.2 NMR-spectra of the compounds

- H-NMR-spectra of some of the TK24/pSY15, H028/pSY15 and JH003/pSY15 products were determined by Brüker 400 MHz NMR spectrometer in deuterium-chloroform. The spectra given by the compounds were compared to the spectra of known compounds, e.g. aclarubicin. The spectra obtained are given in Figs. 4 to 7.
- In all of the compounds the hydrogens in 1, 2 and 3-positions bound to each other and with same transitions are found. The singlet corresponding to the hydrogen in 11-position was found in all compounds with the same transition. Additionally, the peaks given by the two aromatic hydroxyls can be seen. On the basis of the peaks of these six hydrogens the aromatic chromophore moieties are similar, and correspond e.g. the chromophore of aklavinone.

In all of the compounds a singlet of the size of three hydrogens is found at about 3.7 ppm corresponding to the methyl of methyl ester. Another singlet is found in all compounds at about 3.8 ppm, which corresponds to the 10-position hydrogen. The integral of this is of the size of one hydrogen in auramycinone and its glycosides and of the size of two hydrogens in Compound I. According to this Compound I suits to be a compound in which the fourth ring has not been closed.

The region 4.7 to 6 ppm has in anthracyclines and in compounds related thereto hydrogens at 7-position and 1-position of the sugars. Auramycinone has in this region one peak, Compounds III and IV have three peaks, but in Compound I there are no peaks in this region. According to this auramycinone has no sugars and Compounds

III and IV have two sugars, whereas Compound I has no hydrogens in this region which suits with the keto-form at position 7.

Auramycinone and its glycosides have a three hydrogen singlet between 1.39 and 1.47 ppm. This suits to be the methyl group of position 13, which is not bound to other hydrogens. This item distinguishes these compounds from aklavinone and its glycosides, wherein the side chain is ethyl.

The 8-position CH₂-hydrogens of auramycinone and its glycosides give one doublet at 2.2 ppm and a double doublet at 2.6 ppm. In addition, in the spectra of Compounds III and IV peaks corresponding to their sugars are found.

The H-NMR results match well with the structures given in the Figures.

15

20

5

Deposited microorganisms

The following microorganism was deposited in Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSM), Mascheroder Weg 1 b, D-38124 Braunschweig, Germany

	Microorganism	Deposition number	Deposition date
	Streptomyces lividans		
25	TK24/pSY15	DSM 9436	15 September 1994

Scheme I

Structural formulas of the compounds obtained

I

II

III

₩O 96/10581 PCT/FI95/00537

References

5

30

40

Arrowsmith, T.J., Malpartida, F., Sherman, D.H., Birch, A., Hopwood, D.A. and Robinson, J.A. 1992. Characterization of actI-homologous DNA encoding polyketide synthase genes from monensin producer Streptomyces cinnamonensis. Mol. Gen. Genet. 234: 254-264

Bhuyan, B.K. and Dietz, A. 1965. Fermentation, taxonomic, and biological studies of nogalamycin. Antimicrob. Agents Chemother. 1965:836-844.

- Bibb, M.J., Sherman, D.H., Omura, S. and Hopwood, D.A. 1994 Cloning, sequencing and deduced functions of a cluster of Streptomyces genes probably encoding biosynthesis of the polyketide antibiotic frenolicin. Gene
- Bibb, M.J. Biro, S., Motamedi, H., Collins, J.F. and Hutchinson, C.R. 1989. Analysis of the nucleotide sequence of the *Streptomyces glaucescens tcmI genes* provides key information about the enzymology of polyketide antibiotic biosynthesis. EMBO J. 8: 2727-2736.
- Dower W.J., Miller, J.F. and Ragsdale, C.W. 1988. High efficiency transformation of *E. coli* by high voltage electroporation. Nucleic Acids Research 16:6127-6145.
- Fernandez-Moreno, M.A., Martinez, E., Boto, L., Hopwood, D.A. and Malpartida, F. 1992. Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J.Biol.Chem. 267: 19278-19290
 - Floss, H.G. (1987) Hybrid antibiotics the contribution of the new gene combinations. Trends in Biotech. 5:111-115.
 - Fujivara, A. and Hoshino, T. 1986. Anthracycline antibiotics. CRC critical reviews in biotechnology. 3:2:133-157.
- Gräse, U., Dormberger, K., Wagner, C and Eckards, K. 1989. Advances in bioconversion of anthracycline antibiotics. Biotech. Adv. 7:215-239.
 - Hallam, S.E., Malpartida, F. and Hopwood, D.A. 1988. Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in *Streptomyces coelicolor*. Gene 74:305–320.
 - Hopwood, D.A., M.J. Bibb, K.F. Chater, T. Kieser, C.J. Bruton, H.M. Kieser, D.J. Lydiate, C.P. Smith, J.M. Ward, and H. Schrempf. 1985. Genetic manipulations of *Streptomyces*: a laboratory manual. The John Innes Foundation, Norwich, United Kingdom.
- Katz, L., and Donadio, S. 1993. Polyketide synthesis: prospects for hybrid antibiotics. Annu. Rev. Microbiol. 47:875-912.

40

- Kim, E-S., Bibb, M.J., Butler, M.J., Hopwood, D.A. and Sherman, D.H. 1994. Nucleotide sequence of the oxytetracycline (otc) polyketide synthase genes from *Streptomyces rimosus*. Gene 141:141-142.
- Malpartida, F. and Hopwood, D.A. 1984. Molecular cloning of the whole biosynthetic pathway of a *Streptomyces* antibiotic and its expression in a heterologous host. Nature 309:462-464.
- Malpartida, F., S.E. Hallam, H.M. Kieser, H. Motamedi, C.R. Hutchinson, M.J. Butler, D.A. Sugden, M. Warren, C.McKillop, C.R. Bailey, G.O. Humphreys, and D.A. Hopwood. 1987. Homology between *Streptomyces* genes coding for synthesis of different polyketides used to clone antibiotic synthesis genes. Nature (London) 325:818-821.
- McDaniel, R., S. Ebert-Khosla, D.A. Hopwood, and C. Khosla. 1993. Engineered biosynthesis of novel polyketides. Science 262:1546-1550.
- Niemi, J., K. Ylihonko, J. Hakala, R. Pärssinen, A. Kopio, and P. Mäntsälä. 1994. Hybrid anthracycline antibiotics: production of new anthracyclines by cloned genes from Streptomyces purpurascens in Streptomyces galilaeus. Microbiol. 140:1351-1358.
 - Sambrook, J., E.F. Fritsch, and T.Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- Shen, B. and Hutchinson, R. 1993. Enzymatic synthesis of a bacterial polyketide from acetyl and malonyl Coenzyme A. Science 262:1535-1540.
- Sherman, D.H., Malpartida, F., Bibb, M.J., Kieser, H.M. and Hopwood, D.A. 1989. Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of *Streptomyces violaceoruber* Tù22. EMBO J. 8: 2717-2725.
 - Ward, J.M, G.R. Janssen, T. Kieser, M.J. Bibb, M.J. Buttner and M.J. Bibb. 1986. Construction and characterization of a series of multi-copy promoter-probe plasmid vectors for *Streptomyces* using the aminoglycoside phosphotransferase from Tn5 as indicator. Mol. Gen. Genet. 203:468-478.
 - Ylihonko, K., J. Hakala, J. Niemi, J. Lundell and P. Mäntsälä. 1994. Isolation and characterization of aclacinomycin A-nonproducing Streptomyces galilaeus (ATCC 31615) mutants. Microbiol. 140:1359-1365.
 - Yu, T.-W., Bibb, M.J., Revill, W.P. and Hopwood, D.A. 1994. Cloning, sequencing and analysis of the griseusin polyketide synthase gene cluster from *Streptomyces griseus*. J. Bacteriol. 176:2627-2634.

SEQUENCE L	ISTING
(1) GENERAL INFORMATION:	
(i) APPLICANT: (A) NAME: Galilaeus Oy (B) STREET: Elinantie 2 A 9 (C) CITY: Turku (E) COUNTRY: Suomi (F) POSTAL CODE (ZIP): FIN-20510	
(ii) TITLE OF INVENTION: Proc	ess for producing anthracyclines intermediates thereof
(iii) NUMBER OF SEQUENCES: 5	
(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS- (D) SOFTWARE: PatentIn Release	DOS 1.0, Version ∉1.25 (EPO)
(2) INFORMATION FOR SEQ ID NO: 1:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3252 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: NO	
<pre>(vi) ORIGINAL SOURCE: (B) STRAIN: Streptomyces nogalat</pre>	er ATCC 27451
<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3591651 (D) OTHER INFORMATION: /note= "O"</pre>	RF1"
<pre>(ix) FEATURE: (A) NAME/REY: CDS (B) LOCATION: 29373197 (D) OTHER INFORMATION: /note= "O")</pre>	RF3"
<pre>(ix) FEATURE: (A) NAME/REY: misc_feature (B) LOCATION: 16481651 (D) OTHER INFORMATION: /note= "o</pre>	verlapping sequence in
(with Challenger Programmers and The Ma	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

GAATTCGGCC GTACCCCGAC GGCCGATTCC TTACCCTTCC GGAGCGGCTT GCGGATCGCA 60

GGACGAAGTC CTCCCTCTCC CCCCATCGGG CGTCCGCTCT TTGTGACCGG TTCACGAGTC 120

GGGTTCCAGC GCTCCTCGAC TCAGGATCGA CCCCTTCCGC GGTAGCCGCC CCGCAGGAAC 180

CGC	DAAA	CTT	CCGC	GCCG	GT C	CCGC	CGGG	C TI	CGCC	CGCAC	ccc	TCC	ATCC	GTC	ATTGAC	C 240
TGA	TTTC	GAG	ACAG	GACG	CG C	ACTG	TCAC	C AC	GAGO	CCTG	TGC	CGGT	rgaa	GTC	ATCACO	T 300
GTC	CGCG	CAC	AGGA	ACTT	CA A	GACG	ATCA	A AG	ccc	CTAGI	GA	\GGG(CATC	TTC	GACGA	358
ATG Met	Lys	GAA Glu	TCC Ser	ATC Ile	AAC Asn	CGT Arg	CGC Arg	GTG Val	GTC Val	. Ile	ACC Thr	GG/ Gl ₃	A ATA	A GGG G Gly	ATC / Ile	406
GTC Val	GCG Ala	Pro	GAT Asp 20	Ala	ACC	GGG Gly	GTG Val	AAA Lys 25	Pro	TTC Phe	TGG	GAI Asp	CTG Leu 30	Lei	ACG Thr	454
GCC Ala	GGT Gly	CGC Arg	Thr	GCG Ala	ACC Thr	CGG Arg	ACC Thr 40	Ile	ACC Thr	GCC	TTC Phe	GAT Asp 45	Pro	TC1	CCG Pro	502
TTC Phe	CGT Arg 50	Ser	CGC	ATC Ile	GCC Ala	GCG Ala 55	GAA Glu	TGC Cys	GAT Asp	TTC Phe	GAC Asp 60	Pro	CTT Leu	GCC Ala	GAA Glu	550
GGG Gly 65	CTG Leu	ACC Thr	CCC	CAG Gln	CAG Gln 70	Ile	CGG Arg	CGT	ATG Met	GAC Asp 75	CGG Arg	GCC	ACG Thr	CAG Gln	TTC Phe 80	598
GCG Ala	GTC Val	GTC Val	AGC Ser	GCC Ala 85	CGG Arg	GAA Glu	AGC Ser	CTG Leu	GAG Glu 90	Asp	AGC Ser	GGA Gly	CTC Leu	GAC Asp 95	CTC Leu	646
GGC Gly	GCC Ala	CTG Leu	GAC Asp 100	GCC Ala	TCC Ser	CGC Arg	ACC Thr	GGC Gly 105	GTG Val	GTC Val	GTC Val	GGC Gly	AGC Ser 110	GCG Ala	GTC Val	694
GGC Gly	TGC Cys	ACC Thr 115	ACG Thr	AGC Ser	CTG Leu	GAA Glu	GAG Glu 120	GAG Glu	TAC Tyr	GCG Ala	GTC Val	GTC Val 125	AGC Ser	GAC Asp	AGC Ser	742
GGC Gly	CGG Arg 130	AAC Asn	TGG Trp	CTG Leu	GTC Val	GAC Asp 135	GAC Asp	GGC Gly	TAC Tyr	GCC Ala	GTA Val 140	CCG Pro	CAC His	CTA Leu	TTC Phe	790
GAC Asp 145	TAC Tyr	TTC Phe	GTG Val	CCC Pro	AGC Ser 150	TCC Ser	ATC Ile	GCC Ala	GCC Ala	GAG Glu 155	GTG Val	GCA Ala	CAC His	GAC Asp	CGC Arg 160	838
ATC Ile	GGC Gly	GCG Ala	GAG Glu	GGC Gly 165	CCC Pro	GTC Val	AGC Ser	CTC Leu	GTG Val 170	TCG Ser	ACC Thr	GGG Gly	TGC Cys	ACC Thr 175	TCG Ser	886
GC	CTG Leu	GAC Asp	GCC Ala 180	GTG Val	GGC Gly	CGC Arg	GCG Ala	GCC Ala 185	GAC Asp	CTG Leu	ATC Ile	GCC Ala	GAG Glu 190	GGA Gly	GCG Ala	934
GCG Ala	GAT Asp	GTG Val 195	ATG Met	CTG Leu	GCC Ala	GGT Gly	GCG Ala 200	ACC Thr	GAG Glu	GCG Ala	CCC Pro	ATC Ile 205	TCC Ser	CCC Pro	ATC Ile	982
ACC Thr	GTG Val 210	GCG Ala	TGC Cys	TTC Phe	GAT Asp	GCC Ala 215	ATC Ile	AAG Lys	GCG Ala	ACC Thr	ACC Thr 220	CCC Pro	CGC Arg	AAC Asn	GAC Asp	1030
ACG Thr 225	CCC Pro	GCC Ala	GAG Glu	GCG Ala	TCC Ser 230	CGT Arg	CCG Pro	TTC Phe	Asp GAC	CGC Arg 235	ACC Thr	AGG Arg	AAC Asn	GGG Gly	TTC Phe 240	1078

GTA CTC GGC GAG GGC GCT GCC GTG TTC GTC CTG GAG GAG TTC GAA CAC Val Leu Gly Glu Gly Ala Ala Val Phe Val Leu Glu Glu Phe Glu His 245 250 255	1126
GCG CGC CGG GGC GCG CTC GTG TAC GCG GAG ATC GCC GGG TTC GCC Ala Arg Arg Gly Ala Leu Val Tyr Ala Glu Ile Ala Gly Phe Ala 260 265 270	1174
ACT CGC TGC AAC GCC TTC CAC ATG ACC GGT CTG CGC CCG GAC GGG CGG Thr Arg Cys Asn Ala Phe His Met Thr Gly Leu Arg Pro Asp Gly Arg 275 280 285	1222
GAG ATG GCG GAG GCC ATC GGG GTG GCG CTC GCC CAG GCG GGC AAG GCG Glu Met Ala Glu Ala Ile Gly Val Ala Leu Ala Gln Ala Gly Lys Ala 290 295 300	1270
CCG GCT GAC GTC GAC TAC GTC AAC GCC CAC GGT TCC GGC ACC CGG CAG Pro Ala Asp Val Asp Tyr Val Asn Ala His Gly Ser Gly Thr Arg Gln 305 310 315 320	1318
AAT GAC CGT CAC GAG ACG GCG GCC TTC AAG CGC AGT CTC GGC GAC CAC Asn Asp Arg His Glu Thr Ala Ala Phe Lys Arg Ser Leu Gly Asp His 325 330 335	1366
GCC TAC CGG GTC CCG GTC AGC AGC ATC AAA TCC ATG ATC GGG CAC TCG Ala Tyr Arg Val Pro Val Ser Ser Ile Lyb Ser Met Ile Gly Hib Ser 340 345 350	1414
CTG GGC GCG ATC GGC TCC CTG GAG ATC GCC GCC TCC GTG CTG GCC ATC Leu Gly Ala Ile Gly Ser Leu Glu Ile Ala Ala Ser Val Leu Ala Ile 355 360 365	1462
ACA CAC GAC GTG GTG CCG CCC ACC GCC AAT CTG CAC GAG CCG GAT CCC Thr His Asp Val Val Pro Pro Thr Ala Asn Leu His Glu Pro Asp Pro 370 375 380	1510
GAG TGC GAT CTG GAC TAC GTG CCG CTG CGG GCG CGT GCG TGC CCG GTG Glu Cys Asp Leu Asp Tyr Val Pro Leu Arg Ala Arg Ala Cys Pro Val 385 390 395 400	1558
GAC ACG GTG CTC ACG GTG GGC AGC GGG TTC GGC GGT TTC CAG AGC GCC Asp Thr Val Leu Thr Val Gly Ser Gly Phe Gly Gly Phe Gln Ser Ala 405 410 415	1606
ATG GTG CTG TGC GGT CCG GGC TCG CGG GGA AGG TCG GCC GCG TGACGGCCGC Met Val Leu Cys Gly Pro Gly Ser Arg Gly Arg Ser Ala Ala 420 425 430	1658
CGTGGTGGTG ACCGGTCTCG GCGTCGTCGC CCCCACCGGT CTCGGGGTGC GGGAGCACTG	1718
GTCGAGTACG GTCCGGGGGG CGTCGGCGAT CGGACCGGTC ACCCGGTTCG ACGCCGGCCG	1778
GTACCCCAGC AAACTGGCCG GAGAGGTGCC CGGTTTCGTC CCGGAGGACC ATCTGCCCAG	1838
CCGGCTGATG CCGCAGACGG ACCATATGAC GCGCCTGGCG CTCGTCGCGG CGGACTGGGC	1898
CTTCCAGGAC GCCGCCGTGG ACCCGTCGAA GCTGCCGGAG TACGGCGTCG GCGTGGTCAC	1958
CGCGAGTTCG GCGGGGGGT TCGAATTCGG CCACCGCGAG CTGCAGAACC TGTGGAGCCT	2018
GGGCCCGCAG TACGTCAGCG CGTATCAGTC GTTCGCATGG TTCTATGCCG TGAACACCGG	2078
TCAGGTGTCC ATCCGGCACG GGCTGCGCGG CCCGGGCGGG GTGCTGGTGA CGGAACAGGC	2138
GGGCGGCCTG GACGCCCTTG GGCAGGCCCG GCGGCAGTTG CGGCGCGGAC TGCCGATGGT	2198
GGTCGCGGGA GCCGTTGACG GCTCGCCCTG CCCCTGGGGC TGGGTGGCGC AGCTCAGCTC	2258

GGG	CGGC	CTC	AGCA	CGTC	GG A	CGAC	CCGC	G CC	GGGC	CTAT	CIG	CCGI	TCG	ACGC	CGCAG	C	2318
CGG	CGGA	CAC	GTGC	CGGG	AG A	.GGGC	GGCG	c cc	TGCT	CGTC	CTG	GAGA	GCG	ACGA	.GTCGG	С	2378
CCG	GGCG	CGC	GGGG	TGAC	GC G	GTGG	TACG	G GC	GCAT	CGAT	GGG	TACG	CCG	CCAC	ATTCG	A	2438
CCC	CCCG	ccc	GGTT	CGGG	GC G	CCCG	CCGA	A CC	TGCT	GCGG	GCC	GCGC	AGG	CGGC	ACTGG.	A	2498
CGA	CGCG	GAG	GTCG	GACC	CG A	GGCG	GTCG.	A CG	TGGT	GTTC	GCG	GACG	CGT	CCGG	CACCC	С	2558
GGA	CGAG	GAC	GCGG	CGGA	GG C	CGAC	GCGG'	T GC	GGCG	CCTG	TTC	GGAC	CGT	ACGG	CGTTC	С	2618
GGT	GACG	GCG	CCGA	AGAC	CA T	GACC	GGCC	G CC	TCAG	CGCG	GGC	GGCG	CGG	CCCT	CGACG	T	2678
GGC	GACG	GCG	CTGC	TGGC	GC T	GCGC	GAGG	G CG	TCGT	CCCG	CCG	ACGG	TCA	ACGT	CTCCC	G	2738
GCC	GCGG	CCG	GAGT	ACGA	GC T	GGAC	CTGG:	T GC	TCGC	cccc	CGG	CGCA	CGC	CCCT	GGCCA	G	2798
GGC	CCTG	GTG	CTCG	CGCG	GG G	CCGG	GGCĢ	G GT	TCAA	TGCG	GCG	ATGG	TCG	TGGC	GGGC	C	2858
GCG	CGCG	GAG	ACAC	GGTG	AA G	CGGC	CCGG	C GC	AGCC	GGAG	CCG	CGGT.	AAG	AGGC	CACGG	A	2918
AGA	GAGA	GGG	ATGC	GACG	GTG Val 1	AAG Lys	CAG Gln	CAG Gln	CTG Leu 5	ACG Thr	ACG Thr	GAA Glu	CGG Arg	CTC Leu 10	ATG Met		2969
GAG Glu	ATC Ile	ATG Met	CGG Arg 15	GAG Glu	TGC Cys	GCG Ala	GGC Gly	TAC Tyr 20	GGT Gly	GAG Glu	GAC Asp	GTC Val	GAC Asp 25	GCT Ala	CTG Leu		3017
GGC Gly	GAC Asp	ACG Thr 30	GAC Asp	GGC Gly	GCC Ala	GAC Asp	TTC Phe 35	GCC Ala	GCA Ala	CTC Leu	GGC Gly	TAC Tyr 40	GAC Asp	TCG Ser	CTG Leu		3065
GCG Ala	CTC Leu 45	CTG Leu	GAA Glu	ACG Thr	GCC Ala	GGC Gly 50	CGG Arg	CTC Leu	GAG Glu	CGC Arg	GAG Glu 55	TTC Phe	GGC Gly	ATC Ile	CAG Gln		3113
CTC Leu 60	GGT Gly	GAC Asp	GAG Glu	GTG Val	GTC Val 65	GCC Ala	GAC Asp	GCC Ala	AGG Arg	ACG Thr 70	CCT Pro	GCC Ala	GAG Glu	CTG Leu	ACC Thr 75		3161
GCC Ala	CTG Leu	GTC Val	AAC	CGG Arg 80	ACG Thr	GTG Val	GCC Ala	GAG Glu	GCG Ala 85	GCC Ala	TGAC	CCGG	cc c	GCCC	ACGAG	;	3214
AGC	GGGI	GA (CGCGI	GTGI	A CO	GCAC	GGAA	CTC	CACAC	:A							3252

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 430 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Lys Glu Ser Ile Asn Arg Arg Val Val Ile Thr Gly Ile Gly Ile

Val Ala Pro Asp Ala Thr Gly Val Lys Pro Phe Trp Asp Leu Leu Thr

Ala Gly Arg Thr Ala Thr Arg Thr Ile Thr Ala Phe Asp Pro Ser Pro

Phe	Arg 50	Ser	Arg	Ile	Ala	Ala 55	Glu	Cys	Asp	Phe	Asp 60	Pro	Leu	Ala	Glu
Gly 65	Leu	Thr	Pro	Gln	Gln 70	Ile	Arg	Arg	Met	Авр 75	Arg	Ala	Thr	Gln	Phe 80
Ala	Val	Val	Ser	Ala 85	Arg	Glu	Ser	Leu	Glu 90	Asp	Ser	Gly	Leu	Asp 95	Leu
Gly	Ala	Leu	Asp 100	Ala	Ser	Arg	Thr	Gly 105	Val	Val	Val	Gly	Ser 110	Ala	Val
Gly	Сув	Thr 115	Thr	Ser	Leu	Glu	Glu 120	Glu	Tyr	Ala	Val	Val 125	Ser	Asp	Ser
Gly	Arg 130	Asn	Trp	Leu	Val	Asp 135	Авр	Gly	Tyr	Ala	Val 140	Pro	His	Leu	Phe
Asp 145	Tyr	Phe	Val	Pro	Ser 150	Ser	Ile	Ala	Ala	Glu 155	Val	Ala	His	Asp	Arg 160
Ile	Gly	Ala	Glu	Gly 165	Pro	Val	Ser	Leu	Val 170	Ser	Thr	Gly	Cys	Thr 175	Ser
Gly	Leu	Asp	Ala 180	Val	Gly	Arg	Ala	Ala 185	Asp	Leu	Ile	Ala	Glu 190	Gly	Ala
Ala	Asp	Val 195	Met	Leu	Ala	Gly	Ala 200	Thr	Glu	Ala	Pro	11e 205	Ser	Pro	Ile
Thr	Val 210	Ala	Сув	Phe	Asp	Ala 215		Lys	Ala	Thr	Thr 220	Pro	Arg	Asn	Asp
Thr 225		Ala	Glu	Ala	Ser 230	Arg	Pro	Phe	yab	Arg 235	Thr	Arg	Asn	Gly	Phe 240
Val	Leu	Gly	Glu	Gly 245		Ala	Val	Phe	Val 250	Leu	Glu	Glu	Phe	Glu 255	Hie
Ala	Arg	Arg	Arg 260		Ala	Leu	Val	Tyr 265		Glu	Ile	Ala	Gly 270	Phe	Ala
		275					280					285	Asp		
Glu	Met 290		Glu	Ala	Ile	Gly 295		Ala	Leu	Ala	Gln 300	Ala	Gly	Lys	Ala
Pro 305		Asp	Val	Asp	Tyr 310		Asn	Ala	His	Gly 315		Gly	Thr	Arg	Glr 320
Asn	Asp	Arg	His	Glu 325		Ala	Ala	Phe	Lys 330	Arg	Ser	Leu	Gly	Авр 335	His
Ala	Tyr	Arg	7 Val 340		Val	Ser	: Ser	11e 345		Ser	Met	Ile	Gly 350	His	Ser
Leu	Gly	Ala 355		Gly	Ser	Lev	Glu 360		: Ala	Ala	Ser	Val 365	Leu	Ala	Ile
Thr	His 370		Val	Val	Pro	9rc 375		Ala	Asn	Leu	His 380	Glu	Pro	Asp	Pro
Glu 385		Asi	Leu	Asp	390		. Pro	Leu	Arg	Ala 395	Arg	Ala	Сув	Pro	Va) 400
Ast	Thr	· Val	Leu	Thr 405		Gly	, Ser	Gly	Phe 410	Gly	Gly	Phe	Gln	Ser 415	Ala

WO 96/10581 PCT/F195/00537

35

Met Val Leu Cys Gly Pro Gly Ser Arg Gly Arg Ser Ala Ala 420 425

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 86 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Val Lys Gln Gln Leu Thr Thr Glu Arg Leu Met Glu Ile Met Arg Glu

Cys Ala Gly Tyr Gly Glu Asp Val Asp Ala Leu Gly Asp Thr Asp Gly 30

Ala Asp Phe Ala Ala Leu Gly Tyr Asp Ser Leu Ala Leu Leu Glu Thr

Ala Gly Arg Leu Glu Arg Glu Phe Gly Ile Gln Leu Gly Asp Glu Val

Val Ala Asp Ala Arg Thr Pro Ala Glu Leu Thr Ala Leu Val Asn Arg 80

Thr Val Ala Glu Ala Ala

- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3252 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Streptomyces nogalater ATCC 27451
 - (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 1648..2877
 - (D) OTHER INFORMATION: /note= "ORF2"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

60 GAATTCGGCC GTACCCCGAC GGCCGATTCC TTACCCTTCC GGAGCGGCTT GCGGATCGCA GGACGAAGTC CTCCCTCTCC CCCCATCGGG CGTCCGCTCT TTGTGACCGG TTCACGAGTC 120 GGGTTCCAGC GCTCCTCGAC TCAGGATCGA CCCCTTCCGC GGTAGCCGCC CCGCAGGAAC 180 CGCAAACCTT CCGCGCCGGT CCCGCCGGGC TTCGCCGCAC CCGTCCATCC GTCATTGAGC 240

TGATTTCGAG ACAGGACGCG CACTGTCACC ACGAGCCCTG TGCGGTTGAA GTCATCACCT	300
GTCCGCGCAC AGGAACTTCA AGACGATCAA AGCCCCTAGT GAAGGGCATC TTCGACGAAT	360
GAAGGAATCC ATCAACCGTC GCGTGGTCAT CACCGGAATA GGGATCGTCG CGCCCGATGC	420
CACCGGGGTG AAACCGTTCT GGGATCTGCT GACGGCCGGT CGCACCGCGA CCCGGACCAT	480
CACCGCCTTC GATCCCTCTC CGTTCCGTTC CCGCATCGCC GCGGAATGCG ATTTCGACCC	540
GCTTGCCGAA GGGCTGACCC CCCAGCAGAT CCGGCGTATG GACCGGGCCA CGCAGTTCGC	600
GGTCGTCAGC GCCCGGGAAA GCCTGGAGGA CAGCGGACTC GACCTCGGCG CCCTGGACGC	660
CTCCCGCACC GGCGTGGTCG TCGGCAGCGC GGTCGGCTGC ACCACGAGCC TGGAAGAGGA	720
GTACGCGGTC GTCAGCGACA GCGGCCGGAA CTGGCTGGTC GACGACGGCT ACGCCGTACC	780
GCACCTATTC GACTACTTCG TGCCCAGCTC CATCGCCGCC GAGGTGGCAC ACGACCGCAT	840
CGGCGCGGAG GGCCCCGTCA GCCTCGTGTC GACCGGGTGC ACCTCGGGCC TGGACGCCGT	900
GGGCCGCGC GCCGACCTGA TCGCCGAGGG AGCGGCGGAT GTGATGCTGG CCGGTGCGAC	960
CGAGGCGCCC ATCTCCCCCA TCACCGTGGC GTGCTTCGAT GCCATCAAGG CGACCACCCC	1020
CCGCAACGAC ACGCCCGCCG AGGCGTCCCG TCCGTTCGAC CGCACCAGGA ACGGGTTCGT	1080
ACTCGGCGAG GGCGCTGCCG TGTTCGTCCT GGAGGAGTTC GAACACGCGC GCCGCCGGGG	1140
CGCGCTCGTG TACGCGGAGA TCGCCGGGTT CGCCACTCGC TGCAACGCCT TCCACATGAC	1200
CGGTCTGCGC CCGGACGGGC GGGAGATGGC GGAGGCCATC GGGGTGGCGC TCGCCCAGGC	1260
GGGCAAGGCG CCGGCTGACG TCGACTACGT CAACGCCCAC GGTTCCGGCA CCCGGCAGAA	1320
TGACCGTCAC GAGACGCGG CCTTCAAGCG CAGTCTCGGC GACCACGCCT ACCGGGTCCC	1380
GGTCAGCAGC ATCAAATCCA TGATCGGGCA CTCGCTGGGC GCGATCGGCT CCCTGGAGAT	1440
CGCCGCCTCC GTGCTGGCCA TCACACACGA CGTGGTGCCG CCCACCGCCA ATCTGCACGA	1500
GCCGGATCCC GAGTGCGATC TGGACTACGT GCCGCTGCGG GCGCGTGCGT GCCCGGTGGA	1560
CACGGTGCTC ACGGTGGGCA GCGGGTTCGG CGGTTTCCAG AGCGCCATGG TGCTGTGCGG	1620
TCCGGGCTCG CGGGGAAGGT CGGCCGC GTG ACG GCC GCC GTG GTG ACC Val Thr Ala Ala Val Val Thr 1 5	1671
GGT CTC GGC GTC GCC CCC ACC GGT CTC GGG GTG CGG GAG CAC TGG Gly Leu Gly Val Val Ala Pro Thr Gly Leu Gly Val Arg Glu His Trp 10 15 20	1719
TCG AGT ACG GTC CGG GGG GCG TCG GCG ATC GGA CCG GTC ACC CGG TTC Ser Ser Thr Val Arg Gly Ala Ser Ala Ile Gly Pro Val Thr Arg Phe 25 30 35 40	1767
GAC GCC GGC CGG TAC CCC AGC AAA CTG GCC GGA GAG GTG CCC GGT TTC Amp Ala Gly Arg Tyr Pro Ser Lym Leu Ala Gly Glu Val Pro Gly Phe 45 50 55	1815
GTC CCG GAG GAC CAT CTG CCC AGC CGG CTG ATG CCG CAG ACG GAC CAT Val Pro Glu Asp His Leu Pro Ser Arg Leu Met Pro Gln Thr Asp His 60 65 70	1863

AT Me	G AC t Th	G CG r Ar	g Le	G GCC	G CTO	C GTO	GCC Ala	a Ala	G GAG	C TG	G GC P Al	C TT a Ph 8	e Gl	G GA n As	C GCC p Ala	1911
GC Al	C GTG a Va 9	T VE	C CC	G TCC	AAC Lys	G CTG Leu 95	Pro	G GAG	G TAC	G GGG	C GTG Y Va:	1 G1	C GT y Va	G GT l Va	C ACC 1 Thr	1959
GCC Ala 10	a se	T TC	G GCC r Ala	G GGC	GGG Gly 110	Phe	GAA Glu	TTO Phe	C GG(≥ Gly	CAC His	B Ar	G GA	G CT	G CA	G AAC n Asn 120	2007
CT(Let	G TG(S AGO	C CTO	G GGC Gly 125	Pro	CAG Gln	TAC	GTC Val	Ser 130	Ala	TAT Tyl	CAC Gl	G TC	G TT r Pho 13	C GCA e Ala 5	2055
TGO	Phe	TATE TYPE	GCC Ala 140	\ Val	AAC Aan	Thr	GGT Gly	Glr 145	Val	Ser	Ile	C CGC	G CAG His 150	B Gly	G CTG.	2103
Arg	GGC Gly	Pro 155	GTA	GGG Gly	GTG Val	CTG Leu	GTG Val 160	Thr	GAA Glu	CAG Gln	GCG Ala	GG(Gl ₃ 165	, Gl	CTC / Let	GAC Asp	2151
GCC Ala	CT1 Leu 170	GTA	CAG Gln	GCC Ala	CGG Arg	CGG Arg 175	CAG Gln	TTG Leu	CGG Arg	CGC Arg	GGA Gly 180	Lev	CCC Pro	ATC Met	GTG Val	2199
GTC Val 185	WIS	GGA Gly	GCC	GTT Val	GAC Asp 190	Gly	TCG Ser	CCC	TGC	CCC Pro 195	Trp	GGC	TGG	GTG Val	GCG Ala 200	2247
CAG Gln	CTC Leu	AGC Ser	TCG	GGC Gly 205	GGC Gly	CTC	AGC Ser	ACG Thr	TCG Ser 210	GAC Asp	GAC Asp	CCG Pro	CGC	CGG Arg 215		2295
TYE	Leu	Pro	220	Авр	Ala	GCA Ala	Ala	Gly 225	Gly	His	Val	Pro	Gly 230	Glu	Gly	2343
GIY	WIG	235	Leu	Val	Leu	GAG Glu	Ser 240	yab	Glu	Ser	Ala	Arg 245	Ala	Arg	Gly	2391
GTG Val	ACG Thr 250	Arg	TGG	TAC Tyr	GGG Gly	CGC Arg 255	ATC Ile	GAT Asp	GGG Gly	Tyr	GCC Ala 260	GCC Ala	ACA Thr	TTC Phe	GAC Asp	2439
Pro 265	CCG Pro	CCC Pro	GGT Gly	TCG Ser	GGG Gly 270	CGC Arg	CCG Pro	CCG Pro	AAC Asn	CTG Leu 275	CTG Leu	CGG Arg	GCC Ala	GCG Ala	CAG Gln 280	2487
GCG Ala	GCA Ala	CTG Leu	GAC Asp	GAC Asp 285	GCG Ala	GAG Glu	GTC Val	GGA Gly	CCC Pro 290	GAG Glu	GCG Ala	GTC Val	GAC Asp	GTG Val 295	GTG Val	2535
TTC Phe	GCG Ala	GAC Asp	GCG Ala 300	TCC Ser	Gly	ACC Thr	CCG Pro	GAC Asp 305	GAG Glu	GAC Asp	GCG Ala	GCG Ala	GAG Glu 310	GCC Ala	GAC Asp	2583
GCG Ala	GTG Val	CGG Arg 315	CGC Arg	CTG Leu	TTC Phe	GGA Gly	CCG Pro 320	TAC Tyr	GGC Gly	GTT Val	Pro	GTG Val 325	ACG Thr	GCG Ala	CCG Pro	2631
rys	ACC Thr 330	ATG Met	ACC Thr	GGC Gly	Arg	CTC : Leu : 335	AGC Ser	GCG Ala	GGC Gly	Gly	GCG Ala 340	GCC Ala	CTC Leu	GAC Asp	GTG Val	2679

GCG Ala 345	ACG Thr	GCG Ala	CTG Leu	CTG Leu	GCG Ala 350	CTG Leu	CGC Arg	GAG Glu	GGC Gly	GTC Val 355	GTC Val	CCG Pro	CCG Pro	ACG Thr	GTC Val 360	2727
AAC Asn	GTC Val	TCC Ser	CGG Arg	CCG Pro 365	CGG Arg	CCG Pro	GAG Glu	TAC Tyr	GAG Glu 370	CTG Leu	GAC Asp	CTG Leu	GTG Val	CTC Leu 375	GCC Ala	2775
CCC Pro	CGG Arg	CGC Arg	ACG Thr 380	CCC	CTG Leu	GCC Ala	AGG Arg	GCC Ala 385	CTG Leu	GTG Val	CTC Leu	GCG Ala	CGG Arg 390	GGC Gly	CGG Arg	2823
GCGC	GGG Gly	TTC Phe 395	Asn	GCG Ala	GCG Ala	ATG Met	GTC Val 400	Val	GCG Ala	GGG	CCG Pro	CGC Arg 405	GCG Ala	GAG Glu	ACA Thr	2871
CGG Arg	TGA 410		GCC	CGGC	GCAG	CC G	GAGC	CGCG	G TA	AGAG	GCCA	CGG	aaga	GAG		2924
AGG	GATG	CGA	CGGI	GAAG	CA G	CAGC	TGAC	G AC	GGAA	CGGC	TCA	TGGA	GAT	CATG	CGGGAG	2984
TGC	GCGG	GCT	ACGG	TGAG	GA C	GTCG	ACGC	T CT	GGGC	GACA	CGG	ACGG	CGC	CGAC	TTCGCC	3044
GCA	CTCG	GCT	ACGA	CTCG	CT G	GCGC	TCCT	G GA	AACG	GCCG	GCC	GGCT	CGA	GCGC	GAGTTC	3104
GGC	ATCC	AGC	TCGG	TGAC	GA G	GTGG	TCGC	C GA	CGCC	AGGA	CGC	CTGC	CGA	GCTG	ACCGCC	3164
CTC	GTC	ACC	GGAC	GGTG	GC C	GAGG	CGGC	C TG	ACCC	GGCC	GGC	CCAC	GAG	AGCG	GGGTGA	3224
CGC	GTGI	CTA	CGG	CACGO	AA C	TCAC	ACA									3252

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 409 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
- Val Thr Ala Ala Val Val Val Thr Gly Leu Gly Val Val Ala Pro Thr
- Gly Leu Gly Val Arg Glu His Trp Ser Ser Thr Val Arg Gly Ala Ser 20 25 30
- Ala Ile Gly Pro Val Thr Arg Phe Asp Ala Gly Arg Tyr Pro Ser Lys 35 40 45
- Leu Ala Gly Glu Val Pro Gly Phe Val Pro Glu Asp His Leu Pro Ser 50 55 60
- Arg Leu Met Pro Gln Thr Asp His Met Thr Arg Leu Ala Leu Val Ala 65 70 75 80
- Ala Asp Trp Ala Phe Gln Asp Ala Ala Val Asp Pro Ser Lys Leu Pro 85 90 95
- Glu Tyr Gly Val Gly Val Val Thr Ala Ser Ser Ala Gly Gly Phe Glu 100 105 110
- Phe Gly His Arg Glu Leu Gln Asn Leu Trp Ser Leu Gly Pro Gln Tyr 115 120 125

Val Ser Ala Tyr Gln Ser Phe Ala Trp Phe Tyr Ala Val Asn Thr Gly Gln Val Ser Ile Arg His Gly Leu Arg Gly Pro Gly Gly Val Leu Val Thr Glu Gln Ala Gly Gly Leu Asp Ala Leu Gly Gln Ala Arg Arg Gln 165 Leu Arg Arg Gly Leu Pro Met Val Val Ala Gly Ala Val Asp Gly Ser Pro Cys Pro Trp Gly Trp Val Ala Gln Leu Ser Ser Gly Gly Leu Ser Thr Ser Asp Asp Pro Arg Arg Ala Tyr Leu Pro Phe Asp Ala Ala Ala Gly Gly His Val Pro Gly Glu Gly Gly Ala Leu Leu Val Leu Glu Ser Asp Glu Ser Ala Arg Ala Arg Gly Val Thr Arg Trp Tyr Gly Arg Ile 245 Asp Gly Tyr Ala Ala Thr Phe Asp Pro Pro Pro Gly Ser Gly Arg Pro 265 Pro Asn Leu Leu Arg Ala Ala Gln Ala Ala Leu Asp Asp Ala Glu Val Gly Pro Glu Ala Val Asp Val Val Phe Ala Asp Ala Ser Gly Thr Pro 295 Asp Glu Asp Ala Ala Glu Ala Asp Ala Val Arg Arg Leu Phe Gly Pro Tyr Gly Val Pro Val Thr Ala Pro Lys Thr Met Thr Gly Arg Leu Ser Ala Gly Gly Ala Ala Leu Asp Val Ala Thr Ala Leu Leu Ala Leu Arg Glu Gly Val Val Pro Pro Thr Val Asn Val Ser Arg Pro Arg Pro Glu 360 Tyr Glu Leu Asp Leu Val Leu Ala Pro Arg Arg Thr Pro Leu Ala Arg 375 380 Ala Leu Val Leu Ala Arg Gly Arg Gly Gly Phe Asn Ala Ala Met Val 395 Val Ala Gly Pro Arg Ala Glu Thr Arg

405

40 INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism reference on page 26, line	erred to in the description 25								
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet								
Name of depositary institution									
Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSM)									
Address of depositary institution (including postal code and country)									
Mascheroder Weg 1 b, D-38124	Braunschweig, Germany								
Date of deposit 15 September 1994	Accession Number DSM 9436								
C. ADDITIONAL INDICATIONS (leave blank if not applicable	ble) This information is continued on an additional sheet								
In respect of those designations in which a European patent or a patent in Finland or Norway is sought, a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or the corresponding information concerning the patent in Finland or Norway or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC and the corresponding regulations in Finland and Norway).									
D. DESIGNATED STATES FOR WHICH INDICATE	ONS ARE MADE (if the indications are not for all designated States)								
E. SEPARATE FURNISHING OF INDICATIONS (Ica	rve blank if not applicable)								
•	al Bureau later (specify the general nature of the indications e.g., *Accession								
	For International Bureau use only								
For receiving Office use only This sheet was received with the international application									
Authorized officer Nila Telillosle	Authorized officer								

WO 96/10581

41

Indications relating to deposited microorganisms

Continuation to C. ADDITIONAL INDICATIONS

DSM 9436

When designating Australia, in accordance with regulation 3.25 of the Patents Regulations (Australia Statutory Rules 1991 No. 71), samples of materials deposited in accordance with the Budapest Treaty in relation to this Patent Request are only to be provided before: the patent is granted on the application; or the application has lapsed or been withdrawn or refused; to a person who is: a skilled addressee without an interest in the invention; and nominated by a person who makes a request for the furnishing of those samples.

5

20

Claims

- 1. Isolated and purified DNA-fragment, which is a gene fragment of the anthracycline biosynthetic pathway of the bacterium *Streptomyces nogalater* being included in an *actI*-hybridizing 12 kb *BgI*II-fragment of *S. nogalater* genome.
- 2. DNA-fragment according to claim 1, which comprises the nucleotide sequence given in SEQ ID NO:1 or a functional part thereof.
- 3. Recombinant-DNA-construction, which comprises the DNA-fragment according to claim 1 or 2, included in a plasmid which can be transferred into a *Streptomyces*-bacterium and is copied therein.
- 4. Recombinant-DNA-construction according to claim 3 which is the plasmid pSY15, the structure of which is given in Fig. 3, and which was deposited in S. lividans strain TK24/pSY15 with the deposition number DSM 9436.
 - 5. Process for the production of anthracyclines and precursors thereof, comprising transferring the DNA-fragment according to claim 1 or 2 into a foreign *Streptomyces* host, cultivating the recombinant strain obtained, and isolating the products formed.
 - 6. Process according to claim 5, wherein the Streptomyces host is S. lividans or S. galilaeus.
- 7. Process according to claim 5 for producing auramycinone or glycosides thereof, comprising transferring the DNA-fragment according to claim 2 into Streptomyces galilaeus host or a mutant thereof, cultivating the recombinant strain so obtained and isolating auramycinone or a glycoside thereof as formed.
- 30 8. Process according to claim 7, wherein the Streptomyces galilaeus host is the mutant strain H028 of S. galilaeus ATCC 31615.

9. An anthracycline precursor which is obtainable according to claim 5 and has the following formula I

A) (starting unit: propionate)

2-OH-aklanone acid (H061)

Methyl ester of aklanone acid (H036)

Daunorubicin

ε-rhodomycinone

Betaclamycin (H038/EB3)

Rhodomycin

Fig. 1A/2

B) (starting unit: acetate)

Nogalamycin

COOCH₃

COOCH₃

COOCH₃

CH₃

OCH₃

S. nogalater

OCH₃

Fig. 1B

= pIJ486 (6.2 kb) = pSY15 insert (12 kb)

Fig. 3

International application No. PCT/FI 95/00537

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: C07K 14/36, C12N 15/31, C12P 19/56
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: CO7K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

MEDLINE, BIOSIS, EMBASE, WPI, WPIL, US PATENT FULLTEXT DATABASES, SCISEARCH

Category®	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	Proc.Natl.Acad.Sci., Volume 86, May 1989, Kim J. Stutzman-Engwall et al, "Multigene families for anthracycline antibiotic production in Streptomyces peucetius", page 3135 - page 3139, page 3135 left column; page 3136 right column	1
A		2-9
×	₩O 9216629 A1 (LEIRAS OY), 1 October 1992 (01.10.92), page 6, line 6 - line 17; page 8, line 35 - page 9, line 5	1
A	the claims	2-9
	_ - _	

X Further documents are listed in the continuation of Bo	DX C. X See patent family annex.
 Special categories of cited documents: 	To lotter document with the A. O. ot in
"A" document defining the general state of the art which is not considered to be of particular relevance	the principle or theory underlying the invention
"E" ertier document but published on or after the international filing date	"X" document of particular relevance: the claimed invention cannot be
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	considered novel or connot be considered to involve an inventive step when the document is taken alone
"O" document referring to an oral disclosure, use, exhibition or other means	"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is
"P" document published prior to the international filing date but later than the priority date claimed	combined with one or more other such documents, such combination being obvious to a person skilled in the art
and priority date claumed	"&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report 0.7 -02- 1236
29 January 1996	9 / 9 6 6 6 6
Name and mailing address of the ISA/	Authorized officer
Swedish Patent Office	· · · · · · · · · · · · · · · · · · ·

Carolina Palmcrantz

Telephone No. +46 8 782 25 00

Facsimile No. +46 8 666 02 86 Form PCT/ISA/210 (second sheet) (July 1992)

Box 5055, S-102 42 STOCKHOLM

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No. PCT/FI 95/00537

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No." Citation of document, with indication, where appropriate, of the relevant passages Category 1-8 P,X EMBL, Accession No:S52400, Ylihonko et al: "Characterization of the polyketide synthase gene cluster from the nogalamycin producer Streptomyces nogalater", & submitted to the EMBL Data Library, February 1995

International application No. PCT/FI 95/00537

Box I	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)	_
This inte	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons	 :
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
-	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: see extra sheet	
	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	$\frac{1}{1}$
	national Searching Authority found multiple inventions in this international application, as follows:	$\frac{1}{2}$
		l
		ĺ
. 🗀 .		
1. A	s all required additional search fees were timely paid by the applicant, this international search report covers all carchable claims.	
2. A of	s all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment any additional fee.	
3. As	s only some of the required additional search fees were timely paid by the applicant, this international search report vers only those claims for which fees were paid, specifically claims Nos.:	
-		
	Í	
· No	required additional search fees were timely paid by the applicant. Consequently, this international search report is tricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
emark on I	Protest The additional search fees were accompanied by the applicant's protest.	
	No protest accompanied the payment of additional search fees.	

International application No. PCT/FI 95/00537

The wording "... a gene fragment... included in an act I-hybridizing 12 kb Bgl II fragment of S. nogalater genome" of claim 1 is not considered to sufficiently characterize the intended DNA-fragment.

Therefore, claims 1,3,5,6 are not considered to fulfil the requirement of clarity and consideress according to PCT, Article 6.

Information on patent family members

05/01/96

International application No.

PCT/FI 95/00537

Patent document cited in search report		Publication date		t family nber(s)	Publication date		
₩O-A1-	9216629	01/10/92	AU-A- FI-B,C-	1446192 93860	21/10/92 28/02/95		

Form PCT/ISA/210 (patent family annex) (July 1992)

THIS PAGE BLANK (USPTO)