# Métodos numéricos Sesión 1

Universidad Externado de Colombia Programa Ciencia de Datos

202410

## Tabla de contenidos

- Matrices
- Operaciones entre matrices
- 3 Sistemas de ecuaciones lineales
- 4 Determinantes
- **5** Eigenvalores y eigenvectores
- 6 Conjuntos convexos
- $\bigcap$  Nociones de análisis en  $\mathbb{R}^n$

## Definición (Matriz)

Con  $m,n\in\mathbb{N}$ , una matriz A con valores reales es una  $m\cdot n$  — tupla de elementos  $a_{ij},\ i=1,\ldots,m,$   $j=1,\ldots,n$ , la cual está ordenado de acuerdo a un arreglo rectangular con m filas y n columnas.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- Dimensión: name.shape
- Cantidad de elementos:
   name.size

#### Matrices elementales

- 1 np.ones([m,n])
- 2 np.zeros([m,n])
- 3 np.identity(n)
- 4 np.transpose(M)

### code

import numpy as np

np.array([[4, 1, 
$$-1$$
], [2, 1,  $-2$ ], [2, 3, 2]])

A. shape Out[] : (3, 3)

A. size Out[] : 9

A[0,0] Out[]: 4

## Operaciones (Suma)

La suma de dos matrices  $A \in \mathbb{R}^{m \times n}$ ,  $B \in \mathbb{R}^{m \times n}$  se define como la suma de elementos.

$$A \pm B = \begin{bmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} & \cdots & a_{1n} \pm b_{1n} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} & \cdots & a_{2n} \pm b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} \pm b_{m1} & a_{m2} \pm b_{m2} & \cdots & a_{mn} \pm b_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

#### code

$$\begin{split} A &= \text{ np. array} \left( [ \begin{bmatrix} 0 &, & -3, & 2 \end{bmatrix}, \\ \begin{bmatrix} 1, & 1, & -1 \end{bmatrix}, \\ \begin{bmatrix} 1, & 1, & -1 \end{bmatrix} \right) \\ B &= \text{ np. array} \left( [ \begin{bmatrix} 1, & 1, & 5 \end{bmatrix}, \\ \begin{bmatrix} 0, & 3, & 0 \end{bmatrix}, \\ \begin{bmatrix} 1, & 4, & 1 \end{bmatrix} \right) \\ A &+ B \\ Out [ ] &: \text{ array} \left( [ \begin{bmatrix} 1, & -2, & 7 \end{bmatrix}, \\ \begin{bmatrix} 1, & 4, & -1 \end{bmatrix}, \\ \begin{bmatrix} 2, & 5, & 0 \end{bmatrix} \right) \end{split}$$

## Operaciones (Producto por escalar)

Sea  $A \in \mathbb{R}^{m \times n}$  y  $\lambda \in \mathbb{R}$ . Entonces  $\lambda \cdot A = \mathbb{K}$ ,

$$K_{ij} = \lambda \cdot a_{ij}$$

#### **Propiedades**

- Asociativa
  - - (λψ)C = λ(ψC)
       λ(AB) = (λB)C
- 2 Distributiva
  - (λ + ψ)C = λC + ψC
     λ(A + B) = λB + λC

#### code

$$\begin{array}{lll} A = & \text{np.array} \left( \left[ \left[ 4 \,, \, 1 \,, \, \, -1 \right], \right. \\ \left[ 2 \,, \, 1 \,, \, \, -2 \right], \\ \left[ 2 \,, \, 3 \,, \, \, 2 \right] \right] \right) \end{array}$$

In []: 2\*A

Out[] : array([[ 8, 2, 
$$-2$$
], [ 4, 2,  $-4$ ], [ 4, 6, 4]])

In []: np.pi\*A

Out[] : array([[
$$12.6$$
,  $3.1$ ,  $-3.1$ ], [  $6.3$ ,  $3.1$ ,  $-6.3$ ], [  $6.3$ ,  $9.4$ ,  $6.3$ ]])

np.round(np.pi\*A, 1)

$$c_{ij} = \sum_{l=1}^{n} a_{il} \cdot blj$$

#### **Propiedades**

- Asociativa
  - (AB)C = A(BC)
- 2 Distributiva
  - (A+B)C = AC + BC

#### code

In []: 
$$A = \text{ np.array} ([[4, 1, -1], [2, 1, -2]])$$
 
$$B = \text{ np.array} ([[4, 1], [2, 1], [1, 0]])$$
 
$$C = A@B$$
 
$$C$$
 
$$out []:$$
 
$$array ([[17, 5], [8, 3]])$$

### Definición (Inversa)

Considere una matriz cuadrada  $A \in \mathbb{R}^{n \times n}$ . Sea una matriz  $B \in \mathbb{R}^{n \times n}$  que tiene la propiedad:

$$AB = I_n = BA$$

B es llamada la inversa de A y está denotada por  $A^{-1}$ No todas las matrices tienen inversa. Si A no tiene inversa se llama singular.

#### code

## Definición (Sistemas de ecuaciones lineales)

La forma general de un sistema de ecuaciones lineal es:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

donde  $x_1,\ldots,x_n$  son las incógnitas del sistema. Cada n-tupla  $(x_1,\ldots,x_n)\in\mathbb{R}^n$  que satisfaga el sistema es una solución.

#### code

Out[]: 
$$\begin{pmatrix} \begin{bmatrix} 1 & 0 & -45 \\ 0 & 1 & -18 \end{bmatrix}$$
,  $(0, 1)$ 

## Operaciones (sympy)

1 Suma: 
$$A + B$$

4 Inversa: 
$$A * *(-1)$$

## Definición (Determinante)

Un determinante es un objeto matemático para el análisis y solución de sistemas de ecuaciones lineales. Solo se definen para matrices cuadradas  $A \in \mathbb{R}^{n \times n}$ .

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

- |A|
- det(A)

Tenga en cuenta que el determinante es una función que asigna a A un número real.

#### **Theorem**

Para cualquier matriz cuadrada  $A \in \mathbb{R}^{n \times n}$  se cumple que A es invertible si y solo si  $\det(A) \neq 0$ 

#### Cálculo

- Para n = 1,  $det(A) = det(a_{11}) = a_{11}$
- Para n = 2,  $det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$  $det(A) = a_{11}a_{22} - a_{12}a_{21}$
- Para n = 3,  $det(A) \rightarrow Sarrus'$  rule
- Sea T una matriz triangular,  $det(T) = \prod_{i=1}^{n} T_{ii}$

#### code

## Definición (Traza)

La traza de una matriz cuadrada  $A \in \mathbb{R}^{n \times n}$  está definida como:

$$tr(A) := \sum_{i=1}^{n} a_{ii}$$

La traza es la suma de los elementos de la diagonal de  $\cal A$ 

np.trace(matriz)

#### Propiedades

- tr(A+B) = tr(A) + tr(B)
- $tr(I_n) = n$
- tr(AB) = tr(BA)

# Definición (Polinomio característico)

Para  $\lambda \in \mathbb{R}$  y sea una matriz cuadrada  $A \in \mathbb{R}^{n \times n}$ , se define el polinomio característico como:

$$\rho_A(\lambda) := \det(A - \lambda I)$$

$$\rho_A(\lambda) := c_0 + c_1 \lambda + c_2 \lambda^2 + \dots + (-1)^n \lambda^n$$

$$c_0 = \det(A)$$
  
 $c_{n-1} = (-1)^{n-1} \cdot tr(A)$ 

### Definición (eigenvalor)

Sea  $A \in \mathbb{R}^{n \times n}$  una matriz cuadrada. Entonces  $\lambda in\mathbb{R}$  es un eigenvalor de A y  $x \in \mathbb{R}^n \setminus \{0\}$  es el correspondiente eigenvector de A si:

$$Ax = \lambda x$$

Ecuación eigenvalor

#### **Theorem**

 $\lambda \in \mathbb{R}$  es un eigenvalor de  $A \in \mathbb{R}^{n \times n}$  si y solo si  $\lambda$  es una raíz del polinomio característico  $\rho_A(\lambda)$  de A

Sea:

$$A = \begin{bmatrix} 8 & 4 \\ 2 & 6 \end{bmatrix}$$

Paso 1: Encontrar el polinomio característico

$$\det(A - \lambda I) = 0$$

Donde  $\lambda$  es el eigenvalor e I es la matriz identidad. Sustituimos A y I en la ecuación:

$$\det\left(\begin{bmatrix} 8-\lambda & 4\\ 2 & 6-\lambda \end{bmatrix}\right)=0$$

Paso 2: Se calcula el determinante, obteniendo:

$$(8 - \lambda)(6 - \lambda) - (4 \cdot 2) = 0$$

$$\lambda^2 - 14\lambda + 40 = 0$$

Paso 3: Se utiliza el fórmula cuadrática. Donde a=1, b=-14, y c=40. Se sustituye y se obtienen los eigenvalores. Por lo tanto, los eigenvalores son  $\lambda_1=10$  y  $\lambda_2=4$ .

#### code

A = np.array ([[8, 4], [2, 6]])x, v = np.linalg.eig (A)

# Definición (Matriz definida positiva)

Una matriz  $A \in \mathbb{S}^{n \times n}$ , real, es definida positiva si:

$$x^T A x > 0$$
 para todo  $x \in \mathbb{R}^{n \times 1}, x \neq 0$ 

# Condiciones suficientes y necesarias)

Dada una matriz simétrica, las siguientes afirmaciones son equivalentes

- A es definida positiva
- Todos los eigenvalores de A son positivos
- 3 Todos los subdeterminantes estrictamente principales son positivos
- 4 Existe una matriz W invertible tal que  $A = W^T W$

## Conjuntos convexos

#### Definición

Sea X un subconjunto de  $\mathbb{R}^n$ . Se dice que X es un conjunto convexo, si para cualquier  $x_1,x_2\in X$  y  $\lambda\in[0,1]$ 

$$\lambda \cdot x_1 + [1-\lambda] \cdot x_2 \in X$$

## Conjuntos convexos

#### Definición

Sea X un subconjunto de  $\mathbb{R}^n$ . Se dice que X es un conjunto convexo, si para cualquier  $x_1, x_2 \in X$  y  $\lambda \in [0,1]$ 

$$\lambda \cdot x_1 + [1 - \lambda] \cdot x_2 \in X$$



Figure: Conjunto convexo - conjunto no convexo

#### Teorema 1

Sean  $C_1$  y  $C_2$  dos conjuntos convexos, entonces

- 2  $C_1 + C_2 = \{x + y : x \in C_1, y \in C_2\}$
- 3  $\alpha \cdot C_1 = \{\alpha \cdot x : x \in C_1\}$  donde  $\alpha \in R$

Son conjuntos convexos

#### Definición hiperplano

Sean  $k \in \mathbb{R}^n$ ,  $k \neq 0$ ,  $\alpha \in \mathbb{R}$ , se define al **hiperplano** como:

$$H = \{ x \in \mathbb{R}^n : k^T \cdot x = \alpha \}$$

## Hiperplano



Figure: Punto - Recta - Plano

## Semi-espacio

Sean  $k \in \mathbb{R}^n, k \neq 0, \alpha \in \mathbb{R}$ , el hiperplano genera cuatro semi-espacios:

- $2 H^- = \{ x \in \mathbb{R}^n : k^T \cdot x \le \alpha \}$
- $\mathbf{3} \ \mathring{H}^+ = \{ x \in \mathbb{R}^n : k^T \cdot x > \alpha \}$
- $\mathbf{4} \ \mathring{\mathbf{H}}^{-} = \{ x \in \mathbb{R}^n : \mathbf{k}^T \cdot \mathbf{x} < \alpha \}$

## Semi-espacio



Figure: Semiespacios

#### Teorema 2

Todo hiperplano y semi-espacio es un conjunto convexo

¿De los siguientes conjuntos cuáles son convexos?

**5** 
$$\{x \in \mathbb{R}^2 : x_1 \cdot x_2 \ge 10\}$$

**6** 
$$\{x \in \mathbb{R}^2 : x + 4y \le 21; \quad 3x + y \ge 7; \quad 3x + 1.5y \le 21; \\ -2x + 6y \ge 0\}$$

#### Definición

Una norma es una función:

$$\mu: V \to \mathbb{R}$$

que cumple las siguientes propiedades

- $\mu(x) \ge 0$ , Para todo  $x \in V$
- $\mu(x) = 0$ ,

Sii 
$$x = 0$$

- $\mu(\alpha \cdot x) = |\alpha| \cdot \mu(x)$ , Para todo  $x \in V, \alpha \in \mathbb{R}$
- $\mu(x+y) \le \mu(x) + \mu(y)$ , Para todo  $x, y \in V$



## Tipos de norma

• 
$$||x||_1 = |x_1| + |x_2| + |x_3| + \dots$$
: Taxista

• 
$$||x||_2 = (x_1^2 + x_2^2 + \dots)^{1/2}$$
 : Euclídea

• 
$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
: Hölder de orden  $p$ 

• 
$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$
: Máxima

#### Definición bola abierta

Sea  $V=\mathbb{R}^n$ ,  $k\in V, r\in \mathbb{R}, r>0$ . Una bola abierta con centro en k y radio r, para una norma cualquiera, es el conjunto de puntos  $x\in V$  tales que:

$$B_{\text{norma}}(k, r) = \{x \in V : ||x - k|| < r\}$$

#### Definición bola cerrada

Sea  $V = \mathbb{R}^n$ ,  $k \in V$ ,  $r \in \mathbb{R}$ , r > 0. Una bola cerrada con centro en k y radio r, para una norma cualquiera, es el conjunto de puntos  $x \in V$  tales que:

$$\bar{B}_{\mathsf{norma}}(k,r) = \{x \in V : ||x - k|| \le r\}$$

# Ejemplo



Figure: Bolas

#### Punto interior

El punto  $\bar{x}$  es un punto interior de  $A \subseteq \mathbb{R}^n$  si existe:

$$B(\bar{x},r)\subseteq A$$

#### Interior

Sea un  $A \subseteq \mathbb{R}^n$  se define el interior como:

$$\mathring{A} = \{x : x \text{ es punto interior de } A\}$$

## Conjunto abierto

Un subconjunto de  $\mathbb{R}^n$  se llama abierto si es igual a su interior

#### Conjunto cerrado

Sea un  $A \subseteq \mathbb{R}^n$ , se dice que es cerrado si  $\mathbb{C}A$  es un conjunto abierto