We note that for Multiplicative Identity, we impose $1 \neq 0$. If we relaxed this to allow 1 = 0, prove that there is only one element in F. Then explain what the multiplicative inverse of 0 would be.

Problem Solving - What are the terms/strategies I may need? What do I know?

Field axioms: A *field* is a set F with two operations, denoted + and \cdot , that satisfy each of the following properties:

- (A1) For all $x, y, z \in F$, (x + y) + z = x + (y + z).
- (A2) For all $x, y \in F$, x + y = y + x.
- (A3) There exists an element $0 \in F$ such that for all $x \in F$ we have x + 0 = x.
- (A4) For each $x \in F$, there exists an element $-x \in F$ such that x + (-x) = 0.
- (M1) For all $x, y, z \in F$, (xy)z = x(yz).
- (M2) For all $x, y \in F$, xy = yx.
- (M3) There exists an element $1 \in F$ such that $1 \neq 0$ and for all $x \in F$ we have $x \cdot 1 = x$.
- (M4) For each $x \in F$, there exists an element $x^{-1} \in F$ such that $xx^{-1} = 1$.
- (DL) For all $x, y, z \in F$, x(y+z) = xy + xz.

Theorem for Fields:

$$0 \cdot x = 0$$

We note that for Multiplicative Identity, we impose $1 \neq 0$. If we relaxed this to allow 1 = 0, prove that there is only one element in F. Then explain what the multiplicative inverse of 0 would be.

Steps & Process – Try to answer the question writing in many steps to avoid small errors.

Let 1 = 0, and let F be a field, consider $x \in F$, we then show that x = 0 using our field axioms and/or theorems. This would show that there is indeed only one element in F.

Let $x \in F$:

```
x
= (1)(x) 
= (0)(x) 
= 0 
(M3)
= 0 
(Assuming 1 = 0 are the same element)
= 0 
(Theorem Zero Property)
```

Thus we conclude that x = 0. This means that $\{0\} = F$

In this case we see that
$$(0)(0) = 0$$
 (Theorem Zero Property)
= 1 (Assuming $0 = 1$)

Thus 0 is its own multiplicative inverse in this case.

We note that for Multiplicative Identity, we impose $1 \neq 0$. If we relaxed this to allow 1 = 0, prove that there is only one element in F. Then explain what the multiplicative inverse of 0 would be.

Solidify Understanding – Explain why the steps makes sense by connecting to math you know.

Can you prove that 0x = 0 using axioms of a field?

Why does starting with $x \in F$ then showing x = 0 proves that there is only one element in F?

For Video Please click the link below:

<u>Video</u>