CS 383: Machine Learning

Prof Adam Poliak Fall 2024 10/30/2024

Lecture 18

Announcements

Thursday reading quiz: Duame Textbook Chapter 13

Outline

Ensemble Methods

- Bagging
- Boosting
- Weighted Entropy

Outline

Logistic Regression

Ensemble Methods

- Bagging
- Boosting
- Weighted Entropy

Quiz: recap bias and variance

Variance:

Bias:

low high

Variance:

Bias:

Variance:

Bias:

high low

Example from Ameet Soni

This is the type of classifier we want to average!

Label each picture with variance (high or low) and bias (high or low)

high

high

Ensemble Intuition

Average the results from several models with high variance and low bias

 Important that models be diverse (don't want them to be wrong in the same ways)

If n observations each have variance s^2 , then the mean of the observations has variance s^2/n (reduce variance by averaging!)

Bagging Algorithm

- * Bagging = Bootstrap Aggregation [Brieman, 1996]
- Bootstrap (randomly sample with replacement) original data to create many different training sets
- * Run base learning algorithm on each new data set independently

Desmond Ong, Stanford

Notation

T: # of models/classifiers

x: test example

 $X^{(t)}$: bootstrap training set t

 $h^{(t)}(x)$: hypothesis about x from model t

r: probability of error of individual model

R: number of votes for wrong class

Bagging Algorithm

Train

Generate $X^{(t)}$ for t = 1, ..., Tusing bootstrap sampling Train classifier $h^{(t)}$ on $X^{(t)}$

Test

for x in test data:

$$h(x) = \underset{y \in \{1,0\}}{\operatorname{argmax}} \sum_{t=1}^{I} \mathbb{I}(h^{(t)}(\vec{x}) = y)$$

Probability that R = k?

$$P(R = k) = {T \choose k} r^k (1 - r)^{T - k}$$

What is probability that ensemble is wrong?

$$P\left(R > \frac{T}{2}\right) = \sum_{k=\frac{T+1}{2}}^{T} {T \choose k} r^k (1-r)^{T-k}$$

If
$$r < \frac{1}{2}$$
, $\lim_{T \to \infty} P\left(R > \frac{T}{2}\right) = 0$

Random Forest

<u>Idea</u>: choose a different subset of features for every classifier *t* Choose weak/base classifiers

Typically use decision stumps (depth 1)

Goal: decorrelate models

In practice: choose sqrt(p) features

- Without replacement for each model
- Every model: data points and features chosen independently

Outline

Logistic Regression

Ensemble Methods

- Bagging
- Boosting
- Weighted Entropy

Boosting Algorithm

Train

Assign equal weights to all training examples $(\frac{1}{n})$

For *T* iterations:

- Learn classifier using weighted examples
- Change example weights based on training error

Test

Get predictions from T classifiers Weighted vote among T classifiers

 weight is based on how well classifier t performed during training

Handout: Round 1

Handout: Round 1

$$w_i^{(1)} = \frac{1}{10}$$
 for all $i = 1, 2, \dots, 10$.

 $\epsilon_1 = \frac{3}{10}$ (three points incorrectly classified, all with weight $\frac{1}{10}$)

$$\alpha_1 = \frac{1}{2} \ln \left(\frac{1 - \frac{3}{10}}{\frac{3}{10}} \right) = \ln \sqrt{\frac{7}{3}} \approx 0.42$$

- correctly classified: $w_i^{(2)} = c_1 \cdot \frac{1}{10} \exp\left(-\ln\sqrt{\frac{7}{3}}\right)$
- incorrectly classified: $w_i^{(2)} = c_1 \cdot \frac{1}{10} \exp\left(\ln\sqrt{\frac{7}{3}}\right)$

Handout: Round 1

$$w_i^{(1)} = \frac{1}{10}$$
 for all $i = 1, 2, \dots, 10$.

 $\epsilon_1 = \frac{3}{10}$ (three points incorrectly classified, all with weight $\frac{1}{10}$)

$$\alpha_1 = \frac{1}{2} \ln \left(\frac{1 - \frac{3}{10}}{\frac{3}{10}} \right) = \ln \sqrt{\frac{7}{3}} \approx 0.42$$

- correctly classified: $w_i^{(2)} = c_1 \cdot \frac{1}{10} \exp\left(-\ln\sqrt{\frac{7}{3}}\right)$
- incorrectly classified: $w_i^{(2)} = c_1 \cdot \frac{1}{10} \exp\left(\ln\sqrt{\frac{7}{3}}\right)$

Weights must sum to $1, \Rightarrow$

$$7 \cdot \frac{c_1}{10} \exp\left(-\ln\sqrt{\frac{7}{3}}\right) + 3 \cdot c_1 \cdot \frac{1}{10} \exp\left(\ln\sqrt{\frac{7}{3}}\right) = 1$$

$$\Rightarrow c_1 = \frac{5}{\sqrt{21}}$$

- correctly classified: $w_i^{(2)} = \frac{5}{\sqrt{21}} \cdot \frac{1}{10} \sqrt{\frac{3}{7}} = \frac{1}{14}$ decrease!
- incorrectly classified: $w_i^{(2)}=\frac{5}{\sqrt{21}}\cdot\frac{1}{10}\sqrt{\frac{7}{3}}=\frac{1}{6}$ increase! CS383 Lecture 18 ML

Handout: Round 2 & 3 (exercise!)

Handout: final classifier

$$h(\mathbf{x}) = \text{sign}\bigg(0.42 \cdot h^{(1)}(\mathbf{x}) + 0.65 \cdot h^{(2)}(\mathbf{x}) + 0.92 \cdot h^{(3)}(\mathbf{x})\bigg)$$

10/30/24