# Design and Analysis of Algorithms Part IV: Graph Algorithms

Lecture 27: Minimum Spanning Trees: Prim

童咏昕

北京航空航天大学 计算机学院

## 图算法篇概述



- 在算法课程第四部分"图算法"主题中,我们将主要聚焦于如下经典问题:
  - Basic Concepts in Graph Algorithms(图算法的基本概念)
  - Breadth-First Search (BFS, 广度优先搜索)
  - Depth-First Search (DFS, 深度优先搜索)
  - Cycle Detection (环路检测)
  - Topological Sort (拓扑排序)
  - Strongly Connected Components(强连通分量)
  - Minimum Spanning Trees (最小生成树)
  - Single Source Shortest Path (单源最短路径)
  - All-Pairs Shortest Paths (所有点对最短路径)
  - Bipartite Graph Matching (二分图匹配)
  - Maximum/Network Flows (最大流/网络流)



问题背景

通用框架

Prim算法

算法实例

算法分析



• 需要修建道路连通城市,各道路花费不同





• 需要修建道路连通城市,各道路花费不同



| 方案  | 花费  |
|-----|-----|
| ¥10 | ¥74 |

花费: 10+10+10+5+20+3+3+5+3+5=74



• 需要修建道路连通城市,各道路花费不同



| 方案                                      | 花费  |
|-----------------------------------------|-----|
| ¥10<br>¥3<br>¥3<br>¥3<br>¥3<br>¥20      | ¥74 |
| VIO | ¥38 |

花费: 10 + 10 + 10 + 5 + 3 = 38



• 需要修建道路连通城市,各道路花费不同



| 方案                                                   | 花费  |
|------------------------------------------------------|-----|
| ¥10<br>¥10<br>¥10<br>¥10<br>¥10<br>¥20               | ¥74 |
| ¥10 ¥3 ¥3 ¥10 ¥10 ¥10 ¥10 ¥10 ¥10 ¥10 ¥10 ¥10 ¥10    | ¥38 |
| N10 N3 N5 N10 N3 | ¥19 |

花费: 3+3+5+3+5=19



• 需要修建道路连通城市,各道路花费不同



| 方案                                                   | 花费  |
|------------------------------------------------------|-----|
| ¥10<br>¥10<br>¥10<br>¥10<br>¥10<br>¥10<br>¥10<br>¥10 | ¥74 |
| VIO              | ¥38 |
| ¥10<br>¥10<br>¥10<br>¥10<br>¥10<br>¥10<br>¥10<br>¥10 | ¥19 |

问题: 连通各城市的最小花费是多少?



• 需要修建道路连通城市,各道路花费不同



方案 花费 ¥74 ¥38 ¥19

问题: 连通各城市的最小花费是多少?

权重最小的连通生成子图

## 图的概念回顾: 生成子图



- 子图(Subgraph)
  - 如果 $V' \subseteq V, E' \subseteq E$ ,则称图 $G' = \langle V', E' \rangle$ 是图G的一个子图
- 生成子图(Spanning Subgraph)
  - 如果 $V' = V, E' \subseteq E$ ,则称图 $G' = \langle V', E' \rangle$ 是图G的一个生成子图



## 图的概念: 生成树



- 生成树(Spanning Tree)
  - 图 $T' = \langle V', E' \rangle$ 是无向图G的一个生成子图,并且是连通、无环路的(树)



问题:连通各城市的最小花费是多少?

权重最小的连通生成子图

## 图的概念: 生成树



- 生成树(Spanning Tree)
  - 图 $T' = \langle V', E' \rangle$ 是无向图G的一个生成子图,并且是连通、无环路的(树)



问题:连通各城市的最小花费是多少?

权重最小的生成树

# 图的概念: 生成树



- 生成树(Spanning Tree)
  - 图 $T' = \langle V', E' \rangle$ 是无向图G的一个生成子图,并且是连通、无环路的(树)



# 问题定义



## 最小生成树问题

## **Minimum Spanning Tree Problem**

#### 输入

• 连通无向图 $G = \langle V, E, W \rangle$ , 其中 $w(u, v) \in W$ 表示边(u, v)的权重



#### **Minimum Spanning Tree Problem**

- 连通无向图 $G = \langle V, E, W \rangle$ , 其中 $w(u, v) \in W$ 表示边(u, v)的权重输出
- 图G的最小生成树 $T = \langle V_T, E_T \rangle$



#### **Minimum Spanning Tree Problem**

- 连通无向图 $G = \langle V, E, W \rangle$ , 其中 $w(u, v) \in W$ 表示边(u, v)的权重输出
- 图G的最小生成树 $T = \langle V_T, E_T \rangle$

$$min \sum_{e \in E_T} w(e)$$

$$s.t.$$
  $V_T = V, E_T \subseteq E$ 



#### **Minimum Spanning Tree Problem**

- 连通无向图 $G = \langle V, E, W \rangle$ , 其中 $w(u, v) \in W$ 表示边(u, v)的权重输出
- 图G的最小生成树 $T = \langle V_T, E_T \rangle$

$$min \sum_{e \in E_T} w(e)$$
 优化目标

$$s.t.$$
  $V_T = V, E_T \subseteq E$ 



#### **Minimum Spanning Tree Problem**

- 连通无向图 $G = \langle V, E, W \rangle$ , 其中 $w(u, v) \in W$ 表示边(u, v)的权重输出
- 图G的最小生成树 $T = \langle V_T, E_T \rangle$

$$min \sum_{e \in E_T} w(e)$$
 优化目标

$$s.t.$$
  $V_T = V, E_T \subseteq E$  约束条件



问题背景

通用框架

Prim算法

算法实例

算法分析



最小生成树边

非最小生成树边

A中顶点

非A中顶点

- 生成树是一个无向图中的连通、无环的生成子图
  - 新建一个空边集A,边集A可逐步扩展为最小生成树





- 生成树是一个无向图中的连通、无环的生成子图
  - 新建一个空边集A,边集A可逐步扩展为最小生成树
  - 每次向边集A中新增加一条边



— 最小生成树边

--- 非最小生成树边

A中顶点

非A中顶点



- 生成树是一个无向图中的连通、无环的生成子图
  - 新建一个空边集A,边集A可逐步扩展为最小生成树
  - 每次向边集A中新增加一条边
    - 。 需保证边集A仍是一个无环图
    - 。 需保证边集A仍是最小生成树的子集



— 最小生成树边

- - - 非最小生成树边

A中顶点

非A中顶点



- 生成树是一个无向图中的连通、无环的生成子图
  - 新建一个空边集A,边集A可逐步扩展为最小生成树
  - 每次向边集A中新增加一条边
    - 。 需保证边集A仍是一个无环图
    - 。 需保证边集A仍是最小生成树的子集



问题: 如何保证边集A仍是最小生成树的子集?



- 安全边(Safe Edge)
  - A是某棵最小生成树T边的子集, $A \subseteq T$
  - $A \cup \{(u,v)\}$  仍是T边的一个子集,则称(u,v)是A的安全边





- 安全边(Safe Edge)
  - A是某棵最小生成树T边的子集, $A \subseteq T$
  - $A \cup \{(u,v)\}$ 仍是T边的一个子集,则称(u,v)是A的安全边



若每次向边集A中新增安全边,可保证边集A是最小生成树的子集



- 安全边(Safe Edge)
  - A是某棵最小生成树T边的子集, $A \subseteq T$
  - $A \cup \{(u,v)\}$  仍是T边的一个子集,则称(u,v)是A的安全边



• Generic-MST(G)

$$A \leftarrow \emptyset$$
 while 没有形成最小生成树 do   
 | 寻找 $A$ 的安全边 $(u,v)$    
 |  $A \leftarrow A \cup (u,v)$    
 end   
 return  $A$ 



- 安全边(Safe Edge)
  - A是某棵最小生成树T边的子集, $A \subseteq T$
  - $A \cup \{(u,v)\}$ 仍是T边的一个子集,则称(u,v)是A的安全边



• Generic-MST(G)

$$A \leftarrow \emptyset$$
 while 没有形成最小生成树 do   
 | 寻找 $A$ 的安全边 $(u,v)$    
 |  $A \leftarrow A \cup (u,v)$  end   
 return  $A$ 

问题: 如何有效辨识安全边?



- 割(Cut)
  - 图 $G = \langle V, E \rangle$ 是一个连通无向图, $\mathbf{1}(S, V S)$ 将图G的顶点集V划分为两部分



最小生成树边+ 本- 本非最小生成树边S中顶点

V - S中顶点



- 割(Cut)
  - 图 $G = \langle V, E \rangle$ 是一个连通无向图,割(S, V S)将图G的顶点集V划分为两部分
- 横跨(Cross)
  - 给定割(S, V S)和边(u, v),  $u \in S$ ,  $v \in V S$ , 称边(u, v)横跨割(S, V S)





- 割(Cut)
  - 图 $G = \langle V, E \rangle$ 是一个连通无向图,割(S, V S)将图G的顶点集V划分为两部分
- 横跨(Cross)
  - 给定割(S,V-S)和边(u,v), $u \in S$ ,  $v \in V-S$ ,称边(u,v)横跨割(S,V-S)
- 轻边(Light Edge)
  - 横跨割的所有边中,权重最小的称为横跨这个割的一条轻边





- 割(Cut)
  - 图 $G = \langle V, E \rangle$ 是一个连通无向图,割(S, V S)将图G的顶点集V划分为两部分
- 横跨(Cross)
  - 给定割(S,V-S)和边(u,v), $u \in S$ ,  $v \in V-S$ ,称边(u,v)横跨割(S,V-S)
- 轻边(Light Edge)
  - 横跨割的所有边中,权重最小的称为横跨这个割的一条轻边
- 不妨害(Respect)
  - 如果一个边集A中没有边横跨某割,则称该割不妨害边集A



最小生成树边 非最小生成树边 S中顶点

V - S中顶点



• 给定图 $G = \langle V, E \rangle$  是一个带权的连通无向图





• 给定图 $G = \langle V, E \rangle$  是一个带权的连通无向图,令A为边集E的一个子集,且A包含在图G的某棵最小生成树中





- 给定图 $G = \langle V, E \rangle$  是一个带权的连通无向图,令A为边集E的一个子集,且A包含在图G的某棵最小生成树中
  - 若割(S, V S)是图G中不妨害边集A的任意割





- 给定图 $G = \langle V, E \rangle$  是一个带权的连通无向图,令A为边集E的一个子集,且A包含在图G的某棵最小生成树中
  - 若割(S,V-S)是图G中不妨害边集A的任意割,且(u,v)是横跨该割的轻边





- 给定图 $G = \langle V, E \rangle$  是一个带权的连通无向图,令A为边集E的一个子集,且A包含在图G的某棵最小生成树中
  - 若割(S,V-S)是图G中不妨害边集A的任意割,且(u,v)是横跨该割的轻边
  - 则对于边集A,边(u,v)是其<mark>安全边</mark>





- 证明





- 证明
  - $\Xi(u,v) \in T$ ,由于 $A \subseteq T$ ,则 $A \cup \{(u,v)\} \subseteq T$ ,由安全边定义可证
  - 若 $(u,v) \notin T$ ,则T中必存在u到v的路径P





- 若 $(u,v) \in T$ ,由于 $A \subseteq T$ ,则 $A \cup \{(u,v)\} \subseteq T$ ,由安全边定义可证
- 若 $(u,v) \notin T$ ,则T中必存在u到v的路径P
  - o 不妨设路径P中,横跨割(S,V-S)的一条边为(x,y)





- $\Xi(u,v) \in T$ ,由于 $A \subseteq T$ ,则 $A \cup \{(u,v)\} \subseteq T$ ,由安全边定义可证
- 若 $(u,v) \notin T$ ,则T中必存在u到v的路径P
  - o 不妨设路径P中,横跨割(S,V-S)的一条边为(x,y)





- 若 $(u,v) \in T$ ,由于 $A \subseteq T$ ,则 $A \cup \{(u,v)\} \subseteq T$ ,由安全边定义可证
- 若 $(u,v) \notin T$ ,则T中必存在u到v的路径P
  - o 不妨设路径P中,横跨割(S,V-S)的一条边为(x,y)
  - 。  $\dot{u}(u,v)$ 是横跨割的轻边,所以 $w(u,v) \leq w(x,y)$





#### • 证明

- 若 $(u,v) \in T$ ,由于 $A \subseteq T$ ,则 $A \cup \{(u,v)\} \subseteq T$ ,由安全边定义可证
- $\dot{\pi}(u,v) \notin T$ ,则T中必存在u到v的路径P
  - o 不妨设路径P中,横跨割(S,V-S)的一条边为(x,y)
  - o 边(u,v)是横跨割的轻边,所以 $w(u,v) \le w(x,y)$
  - $\bullet$  将边(u,v)加入到T中会形成环路





#### • 证明

- 若 $(u,v) \in T$ ,由于 $A \subseteq T$ ,则 $A \cup \{(u,v)\} \subseteq T$ ,由安全边定义可证
- 若(u,v) ∉ T,则T中必存在u到v的路径P
  - o 不妨设路径P中,横跨割(S,V-S)的一条边为(x,y)
  - o 边(u,v)是横跨割的轻边,所以 $w(u,v) \le w(x,y)$
  - o 将边(u,v)加入到T中会形成环路,再去掉边(x,y)会形成另一棵树T'





- 若 $(u,v) \in T$ ,由于 $A \subseteq T$ ,则 $A \cup \{(u,v)\} \subseteq T$ ,由安全边定义可证
- $\dot{\pi}(u,v) \notin T$ ,则T中必存在u到v的路径P
  - o 不妨设路径P中,横跨割(S,V-S)的一条边为(x,y)
  - o 边(u,v)是横跨割的轻边,所以 $w(u,v) \le w(x,y)$
  - $\bullet$  将边(u,v)加入到T中会形成环路,再去掉边(x,y)会形成另一棵树T'
  - w(T') = w(T) + w(u, v) w(x, y)





#### • 证明

- $\Xi(u,v) \in T$ ,由于 $A \subseteq T$ ,则 $A \cup \{(u,v)\} \subseteq T$ ,由安全边定义可证
- $\dot{\pi}(u,v) \notin T$ ,则T中必存在u到v的路径P
  - o 不妨设路径P中,横跨割(S,V-S)的一条边为(x,y)
  - o 边(u,v)是横跨割的轻边,所以 $w(u,v) \le w(x,y)$
  - o 将边(u,v)加入到T中会形成环路,再去掉边(x,y)会形成另一棵树T'
  - $w(T') = w(T) + w(u, v) w(x, y) \le w(T)$





#### 证明

- $\Xi(u,v) \in T$ ,由于 $A \subseteq T$ ,则 $A \cup \{(u,v)\} \subseteq T$ ,由安全边定义可证
- $\Xi(u,v) \notin T$ ,则T中必存在u到v的路径P
  - o 不妨设路径P中,横跨割(S,V-S)的一条边为(x,y)
  - o 边(u,v)是横跨割的轻边,所以 $w(u,v) \le w(x,y)$
  - o 将边(u,v)加入到T中会形成环路,再去掉边(x,y)会形成另一棵树T'
  - $w(T') \leq w(T)$ ,T'也是最小生成树



最小生成树边 非最小生成树边 边集A S中顶点

V-S中顶点



- $\Xi(u,v) \in T$ ,由于 $A \subseteq T$ ,则 $A \cup \{(u,v)\} \subseteq T$ ,由安全边定义可证
- $\dot{\pi}(u,v) \notin T$ ,则T中必存在u到v的路径P
  - o 不妨设路径P中,横跨割(S,V-S)的一条边为(x,y)
  - o 边(u,v)是横跨割的轻边,所以 $w(u,v) \le w(x,y)$
  - o 将边(u,v)加入到T中会形成环路,再去掉边(x,y)会形成另一棵树T'
  - $w(T') \le w(T)$ ,T'也是最小生成树, $A \cup \{(u,v)\} \subseteq T'$ ,边(u,v)是安全边





- 生成树是一个连通、无环的生成子图
  - 新建一个空边集A,边集A可逐步扩展为最小生成树
  - 每次向边集A中新增加一条边
    - 。 需保证边集A仍是一个无环图
    - 需保证边集A仍是最小生成树的子集



- 生成树是一个连通、无环的生成子图
  - 新建一个空边集A,边集A可逐步扩展为最小生成树

添加一条轻边

- 每次向边集A中新增加一条边
  - 需保证边集A仍是一个无环图
  - 需保证边集A仍是最小生成树的子集



- 生成树是一个连通、无环的生成子图
  - 新建一个空边集A,边集A可逐步扩展为最小生成树

添加一条轻边

- 每次向边集A中新增加一条边
  - 。需保证边集A仍是一个无环图
  - 。 需保证边集A仍是最小生成树的子集

问题: 如何有效地实现此贪心策略?



- 生成树是一个连通、无环的生成子图
  - 新建一个空边集A,边集A可逐步扩展为最小生成树
  - 每次向边集A中新增加一条边
    - 。需保证边集A仍是一个无环图
    - 。 需保证边集A仍是最小生成树的子集

添加一条轻边

问题: 如何有效地实现此贪心策略?

Prim算法

Kruskal算法



- 生成树是一个连通、无环的生成子图
  - 新建一个空边集*A*,边集*A*可逐步扩展为最小生成树
  - 每次向边集A中新增加一条边
    - 。需保证边集A仍是一个无环图
    - 。 需保证边集A仍是最小生成树的子集

添加一条轻边

问题: 如何有效地实现此贪心策略?

Prim算法

Kruskal算法



问题背景

通用框架

Prim算法

算法实例

算法分析



• 算法思想

• 步骤1: 选择任意一个顶点,作为生成树的起始顶点





### • 算法思想

● 步骤1: 选择任意一个顶点,作为生成树的起始顶点

● 步骤2: 保持边集A始终为一棵树





### 算法思想

● 步骤1: 选择任意一个顶点,作为生成树的起始顶点

• 步骤2: 保持边集A始终为一棵树,选择割 $(V_A, V - V_A)$ 

树中顶点





### • 算法思想

● 步骤1: 选择任意一个顶点,作为生成树的起始顶点

• 步骤2:保持边集A始终为一棵树,选择割 $(V_A, V - V_A)$ 

• 步骤3: 选择横跨割 $(V_A, V - V_A)$ 的轻边





### 算法思想

● 步骤1: 选择任意一个顶点,作为生成树的起始顶点

• 步骤2:保持边集A始终为一棵树,选择割 $(V_A, V - V_A)$ 

• 步骤3:选择横跨割 $(V_A, V - V_A)$ 的轻边,添加到边集A中





### 算法思想

● 步骤1: 选择任意一个顶点,作为生成树的起始顶点

• 步骤2: 保持边集A始终为一棵树,选择割 $(V_A, V - V_A)$ 

• 步骤3: 选择横跨割 $(V_A, V - V_A)$ 的轻边,添加到边集A中

● 步骤4: 重复步骤2和步骤3,直至覆盖所有顶点





- 辅助数组
  - color表示顶点状态
    - 黑色顶点u已覆盖, $u \in V_A$
    - o 白色顶点u未覆盖,  $u \in V V_A$





### • 辅助数组

- color表示顶点状态
  - 黑色顶点u已覆盖, $u \in V_A$
  - o 白色顶点u未覆盖,  $u \in V V_A$
- dist记录横跨 $(V_A, V V_A)$ 边的权重
  - 。 顶点集 $V_A$ 到顶点u的最短距离, $dist[u] = min\{w(x,u)\}, \forall x \in V_A$





### • 辅助数组

- color表示顶点状态
  - 黑色顶点u已覆盖, $u \in V_A$
  - o 白色顶点u未覆盖,  $u \in V V_A$
- dist记录横跨 $(V_A, V V_A)$ 边的权重
  - 。 顶点集 $V_A$ 到顶点u的最短距离, $dist[u] = min\{w(x,u)\}, \forall x \in V_A$
  - o 轻边:  $min{dist[u]}$ ,  $\forall u \in V V_A$





### • 辅助数组

- color表示顶点状态
  - 黑色顶点u已覆盖, $u \in V_A$
  - o 白色顶点u未覆盖,  $u \in V V_A$
- dist记录横跨 $(V_A, V V_A)$ 边的权重
  - 。 顶点集 $V_A$ 到顶点u的最短距离, $dist[u] = min\{w(x,u)\}, \forall x \in V_A$
  - o 轻边:  $min{dist[u]}$ ,  $\forall u \in V V_A$
- pred表示前驱顶点
  - (pred[u], u)为最小生成树的边



问题背景

通用框架

Prim算法

算法实例

算法分析



| V     | a        | b        | C        | d        | f        | $\boldsymbol{g}$ | h        | i        | Z        |
|-------|----------|----------|----------|----------|----------|------------------|----------|----------|----------|
| color | W        | W        | W        | W        | W        | W                | W        | W        | W        |
| dist  | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$         | $\infty$ | $\infty$ | $\infty$ |
| pred  | N        | N        | N        | N        | N        | N                | N        | N        | N        |





| V     | a | b        | C        | d        | f        | $\boldsymbol{g}$ | h        | i        | Z        |
|-------|---|----------|----------|----------|----------|------------------|----------|----------|----------|
| color | В | W        | W        | W        | W        | W                | W        | W        | W        |
| dist  | 0 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$         | $\infty$ | $\infty$ | $\infty$ |
| pred  | N | N        | N        | N        | N        | N                | N        | N        | N        |





| V     | a | b | C        | d        | f        | $oldsymbol{g}$ | h | i        | Z        |
|-------|---|---|----------|----------|----------|----------------|---|----------|----------|
| color | В | W | W        | W        | W        | W              | W | W        | W        |
| dist  | 0 | 4 | $\infty$ | $\infty$ | $\infty$ | $\infty$       | 8 | $\infty$ | $\infty$ |
| pred  | N | a | N        | N        | N        | N              | a | N        | N        |





| V     | a | b | С        | d        | f        | $oldsymbol{g}$ | h | i        | Z        |
|-------|---|---|----------|----------|----------|----------------|---|----------|----------|
| color | В | W | W        | W        | W        | W              | W | W        | W        |
| dist  | 0 | 4 | $\infty$ | $\infty$ | $\infty$ | $\infty$       | 8 | $\infty$ | $\infty$ |
| pred  | N | a | N        | N        | N        | N              | a | N        | N        |





| V     | a | b | C        | d        | f        | $oldsymbol{g}$ | h | i        | Z        |
|-------|---|---|----------|----------|----------|----------------|---|----------|----------|
| color | В | В | W        | W        | W        | W              | W | W        | W        |
| dist  | 0 | 4 | $\infty$ | $\infty$ | $\infty$ | $\infty$       | 8 | $\infty$ | $\infty$ |
| pred  | N | a | N        | N        | N        | N              | a | N        | N        |





| V     | a | b | C | d        | f        | g        | h | i        | Z        |
|-------|---|---|---|----------|----------|----------|---|----------|----------|
| color | В | В | W | W        | W        | W        | W | W        | W        |
| dist  | 0 | 4 | 8 | $\infty$ | $\infty$ | $\infty$ | 1 | $\infty$ | $\infty$ |
| pred  | N | a | b | N        | N        | N        | b | N        | N        |





| V     | a | b | C | d        | f        | g            | h | i        | Z        |
|-------|---|---|---|----------|----------|--------------|---|----------|----------|
| color | В | В | W | W        | W        | $\mathbf{W}$ | W | W        | W        |
| dist  | 0 | 4 | 8 | $\infty$ | $\infty$ | $\infty$     | 1 | $\infty$ | $\infty$ |
| pred  | N | a | b | N        | N        | N            | b | N        | N        |





| V     | a | b | C | d        | f        | g        | h | i        | Z        |
|-------|---|---|---|----------|----------|----------|---|----------|----------|
| color | В | В | W | W        | W        | W        | B | W        | W        |
| dist  | 0 | 4 | 8 | $\infty$ | $\infty$ | $\infty$ | 1 | $\infty$ | $\infty$ |
| pred  | N | a | b | N        | N        | N        | b | N        | N        |





| V     | a | b | <b>c</b> | d        | f        | $oldsymbol{g}$ | h | i | Z        |
|-------|---|---|----------|----------|----------|----------------|---|---|----------|
| color | В | В | W        | W        | W        | W              | В | W | W        |
| dist  | 0 | 4 | 8        | $\infty$ | $\infty$ | 1              | 1 | 7 | $\infty$ |
| pred  | N | a | b        | N        | N        | h              | b | h | N        |





| V     | a | b | C | d        | f        | $\mid g \mid$ | h | i | Z        |
|-------|---|---|---|----------|----------|---------------|---|---|----------|
| color | В | В | W | W        | W        | W             | В | W | W        |
| dist  | 0 | 4 | 8 | $\infty$ | $\infty$ | 1             | 1 | 7 | $\infty$ |
| pred  | N | a | b | N        | N        | h             | b | h | N        |





| V     | a | b | C | d        | f        | g | h | i | Z        |
|-------|---|---|---|----------|----------|---|---|---|----------|
| color | В | В | W | W        | W        | В | В | W | W        |
| dist  | 0 | 4 | 8 | $\infty$ | $\infty$ | 1 | 1 | 7 | $\infty$ |
| pred  | N | a | b | N        | N        | h | b | h | N        |





| V     | a | b | C | d        | f | $\boldsymbol{g}$ | h | i | Z        |
|-------|---|---|---|----------|---|------------------|---|---|----------|
| color | В | В | W | W        | W | В                | В | W | W        |
| dist  | 0 | 4 | 8 | $\infty$ | 2 | 1                | 1 | 4 | $\infty$ |
| pred  | N | а | b | N        | g | h                | b | g | N        |





| V     | a | b | C | d        | f                | $\boldsymbol{g}$ | h | i                | Z        |
|-------|---|---|---|----------|------------------|------------------|---|------------------|----------|
| color | В | В | W | W        | $\mathbf{W}$     | В                | В | W                | W        |
| dist  | 0 | 4 | 8 | $\infty$ | 2                | 1                | 1 | 4                | $\infty$ |
| pred  | N | a | b | N        | $\boldsymbol{g}$ | h                | b | $\boldsymbol{g}$ | N        |





| V     | a | b | C | d        | f                | $oldsymbol{g}$ | h | i                | Z        |
|-------|---|---|---|----------|------------------|----------------|---|------------------|----------|
| color | В | В | W | W        | В                | В              | В | W                | W        |
| dist  | 0 | 4 | 8 | $\infty$ | 2                | 1              | 1 | 4                | $\infty$ |
| pred  | N | a | b | N        | $\boldsymbol{g}$ | h              | b | $\boldsymbol{g}$ | N        |





| V     | a | b | C | d  | f | $oldsymbol{g}$ | h | i                | Z  |
|-------|---|---|---|----|---|----------------|---|------------------|----|
| color | В | В | W | W  | В | В              | В | W                | W  |
| dist  | 0 | 4 | 4 | 14 | 2 | 1              | 1 | 4                | 10 |
| pred  | N | a | f | f  | g | h              | b | $\boldsymbol{g}$ | f  |





| V     | a | b | C | d  | f | $oldsymbol{g}$ | h | i              | Z  |
|-------|---|---|---|----|---|----------------|---|----------------|----|
| color | В | В | W | W  | В | В              | В | W              | W  |
| dist  | 0 | 4 | 4 | 14 | 2 | 1              | 1 | 4              | 10 |
| pred  | N | a | f | f  | g | h              | b | $oldsymbol{g}$ | f  |





| V     | a | b | C | d  | f | $oldsymbol{g}$ | h | i                | Z  |
|-------|---|---|---|----|---|----------------|---|------------------|----|
| color | В | В | W | W  | В | В              | В | В                | W  |
| dist  | 0 | 4 | 4 | 14 | 2 | 1              | 1 | 4                | 10 |
| pred  | N | a | f | f  | g | h              | b | $\boldsymbol{g}$ | f  |





| V     | a | b | C | d  | f | $oldsymbol{g}$ | h | i | Z  |
|-------|---|---|---|----|---|----------------|---|---|----|
| color | В | В | W | W  | В | В              | В | В | W  |
| dist  | 0 | 4 | 2 | 14 | 2 | 1              | 1 | 4 | 10 |
| pred  | N | a | i | f  | g | h              | b | g | f  |





| V     | a | b | <b>c</b> | d  | f | $\boldsymbol{g}$ | h | i | Z  |
|-------|---|---|----------|----|---|------------------|---|---|----|
| color | В | В | W        | W  | В | В                | В | В | W  |
| dist  | 0 | 4 | 2        | 14 | 2 | 1                | 1 | 4 | 10 |
| pred  | N | a | i        | f  | g | h                | b | g | f  |





| V     | a | b | C | d  | f | $oldsymbol{g}$ | h | i | Z  |
|-------|---|---|---|----|---|----------------|---|---|----|
| color | В | В | B | W  | В | В              | В | В | W  |
| dist  | 0 | 4 | 2 | 14 | 2 | 1              | 1 | 4 | 10 |
| pred  | N | a | i | f  | g | h              | b | g | f  |





| V     | a | b | C | d | f | $oldsymbol{g}$ | h | i | Z  |
|-------|---|---|---|---|---|----------------|---|---|----|
| color | В | В | В | W | В | В              | В | В | W  |
| dist  | 0 | 4 | 2 | 7 | 2 | 1              | 1 | 4 | 10 |
| pred  | N | a | i | C | g | h              | b | g | f  |





| V     | a | b | C | d | f | $oldsymbol{g}$ | h | i | Z  |
|-------|---|---|---|---|---|----------------|---|---|----|
| color | В | В | В | W | В | В              | В | В | W  |
| dist  | 0 | 4 | 2 | 7 | 2 | 1              | 1 | 4 | 10 |
| pred  | N | a | i | С | g | h              | b | g | f  |





| V     | a | b | C | d | f | $oldsymbol{g}$ | h | i | Z  |
|-------|---|---|---|---|---|----------------|---|---|----|
| color | В | В | В | В | В | В              | В | В | W  |
| dist  | 0 | 4 | 2 | 7 | 2 | 1              | 1 | 4 | 10 |
| pred  | N | a | i | C | g | h              | b | g | f  |





| V     | a | b | C | d | f | $oldsymbol{g}$ | h | i | Z |
|-------|---|---|---|---|---|----------------|---|---|---|
| color | В | В | В | В | В | В              | В | В | W |
| dist  | 0 | 4 | 2 | 7 | 2 | 1              | 1 | 4 | 9 |
| pred  | N | a | i | С | g | h              | b | g | d |





| V     | a | b | C | d | f | $oldsymbol{g}$ | h | i | Z            |
|-------|---|---|---|---|---|----------------|---|---|--------------|
| color | В | В | В | В | В | В              | В | В | $\mathbf{W}$ |
| dist  | 0 | 4 | 2 | 7 | 2 | 1              | 1 | 4 | 9            |
| pred  | N | a | i | С | g | h              | b | g | d            |





| V     | a | b | C | d | f | $oldsymbol{g}$ | h | i | Z |
|-------|---|---|---|---|---|----------------|---|---|---|
| color | В | В | В | В | В | В              | В | В | В |
| dist  | 0 | 4 | 2 | 7 | 2 | 1              | 1 | 4 | 9 |
| pred  | N | a | i | С | g | h              | b | g | d |





| V     | a | b | C | d | f                | $oldsymbol{g}$ | h | i                | Z |
|-------|---|---|---|---|------------------|----------------|---|------------------|---|
| color | В | В | В | В | В                | В              | В | В                | В |
| dist  | 0 | 4 | 2 | 7 | 2                | 1              | 1 | 4                | 9 |
| pred  | N | a | i | C | $\boldsymbol{g}$ | h              | b | $\boldsymbol{g}$ | d |



$$W(T) = 0 + 4 + 2 + 7 + 2 + 1 + 1 + 4 + 9 = 30$$



问题背景

通用框架

Prim算法

算法实例

算法分析



```
输入: 图G = \langle V, E, W \rangle
输出: 最小生成树T
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
 //初始化
for u \in V do
                                              初始化各个辅助数组
    color[u] \leftarrow WHITE
   dist[u] \leftarrow \infty
   pred[u] \leftarrow NULL
\operatorname{end}
dist[1] \leftarrow 0
```



```
输入: 图G = \langle V, E, W \rangle
输出: 最小生成树T
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
//初始化
for u \in V do
    color[u] \leftarrow WHITE
    dist[u] \leftarrow \infty
    pred[u] \leftarrow NULL
end
                                         选择任意顶点作为起点
dist[1] \leftarrow 0
```



#### $\bullet$ MST-Prim(G)

```
川执行最小生成树算法
for i \leftarrow 1 to |V| do
  -minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
        end
    end
    for u \in G.Adj[rec] do
        if w(rec, u) < dist[u] then
            dist[u] \leftarrow w(rec, u)
            pred[u] \leftarrow rec
        end
    end
    color[rec] \leftarrow BLACK
end
```

#### 依次添加其他顶点



### $\bullet$ MST-Prim(G)

```
//执行最小生成树算法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
  -rec - 0 -
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
        end
    end
    for u \in G.Adj[rec] do
        if w(rec, u) < dist[u] then
            dist[u] \leftarrow w(rec, u)
           pred[u] \leftarrow rec
        end
    end
    color[rec] \leftarrow BLACK
end
```

#### 记录最小权值



#### $\bullet$ MST-Prim(G)

```
//执行最小生成树算法
for i \leftarrow 1 to |V| do
  -minDist \leftarrow \infty
    rec \leftarrow 0
  for \overline{\jmath} \leftarrow T to V \uparrow do
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
        end
    end
    for u \in G.Adj[rec] do
        if w(rec, u) < dist[u] then
            dist[u] \leftarrow w(rec, u)
            pred[u] \leftarrow rec
        end
    end
    color[rec] \leftarrow BLACK
end
```

#### 记录安全边的端点



#### $\bullet$ MST-Prim(G)

```
//执行最小生成树算法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
   for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
        end
    for u \in G.Adj[rec] do
        if w(rec, u) < dist[u] then
            dist[u] \leftarrow w(rec, u)
            pred[u] \leftarrow rec
        end
    end
    color[rec] \leftarrow BLACK
end
```

#### 记录新增的安全边



#### $\bullet$ MST-Prim(G)

```
//执行最小生成树算法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
        end
   _end
    for u \in G.Adj[rec] do
        if w(rec, u) < dist[u] then
            dist[u] \leftarrow w(rec, u)
            pred[u] \leftarrow rec
        end
    color[rec] \leftarrow BLACK
end
```

#### 更新dist数组

end



#### $\bullet$ MST-Prim(G)

```
//执行最小生成树算法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
        end
    end
    for u \in G.Adj[rec] do
        if w(rec, u) < dist[u] then
            dist[u] \leftarrow w(rec, u)
            pred[u] \leftarrow rec
        end
   color[rec] \leftarrow BLACK
```

标记顶点处理完成



```
输入: 图G = \langle V, E, W \rangle
输出: 最小生成树T
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
//初始化
for u \in V do
   color[u] \leftarrow WHITE
   dist[u] \leftarrow \infty
                                   O(|V|)
   pred[u] \leftarrow NULL
end
dist[1] \leftarrow 0
```



O(|V|)

 $O(\deg(u))$ 

```
//执行最小生成树算法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
        end
    end
    for u \in G.Adj[rec] do
        if w(rec, u) < dist[u] then
            dist[u] \leftarrow w(rec, u)
            pred[u] \leftarrow rec
        end
    end
    color[rec] \leftarrow BLACK
end
```



### $\bullet$ MST-Prim(G)

```
//执行最小生成树質法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
        end
    end
    for u \in G.Adj[rec] do
        if w(rec, u) < dist[u] then
            dist[u] \leftarrow w(rec, u)
            pred[u] \leftarrow rec
        end
    end
    color[rec] \leftarrow BLACK
end
```

```
O(|V|)
O(|V| \cdot |V|) = O(|V|^2)
```

 $O(\deg(u))$ 



```
//执行最小生成树質法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
        end
    end
    for u \in G.Adj[rec] do
        if w(rec, u) < dist[u] then
            dist[u] \leftarrow w(rec, u)
            pred[u] \leftarrow rec
        end
    end
    color[rec] \leftarrow BLACK
end
```

```
O(|V|)
O(|V| \cdot |V|) = O(|V|^2)
```

$$O(\deg(u))$$

$$\sum_{u\in V} \deg(u) = 2|E|$$

end



```
//执行最小生成树算法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
                                                                         O(|V|)
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
                                                                                              O(|V|^2 + |E|)
        end
    end
    for u \in G.Adj[rec] do
        if w(rec, u) < dist[u] then
                                                                          O(\deg(u))
            dist[u] \leftarrow w(rec, u)
            pred[u] \leftarrow rec
        end
    end
    color[rec] \leftarrow BLACK
                                                 O(|V|^2)
```

end



```
//执行最小生成树算法
for i \leftarrow 1 to |V| do
   minDist \leftarrow \infty
   rec \leftarrow 0
   for j \leftarrow 1 to |V| do
                                                                     O(|V|)
       if color[j] \neq BLACK and dist[j] < minDist then
           minDist \leftarrow dist[j]
           rec \leftarrow j
                                                                                        O(|V|^2 + |E|)
       end
   end
   for u \in G.Adj[rec] do
       if w(rec, u) < dist[u] then
                                                                     O(\deg(u))
           dist[u] \leftarrow w(rec, u)
           pred[u] \leftarrow rec
       end
   end
   color[rec] \leftarrow BLACK
                                                                  问题: 能否进一步优化?
                                              O(|V|^2)
```



#### $\bullet$ MST-Prim(G)

```
//执行最小生成树算法
for i \leftarrow 1 to |V| do
    minDist \leftarrow \infty
    rec \leftarrow 0
    for j \leftarrow 1 to |V| do
        if color[j] \neq BLACK and dist[j] < minDist then
            minDist \leftarrow dist[j]
            rec \leftarrow j
        end
    end
    for u \in G.Adj[rec] do
        if w(rec, u) < dist[u] then
            dist[u] \leftarrow w(rec, u)
            pred[u] \leftarrow rec
        end
    end
    color[rec] \leftarrow BLACK
                                                   O(|V|^2)
end
```



数据结构加速最小值查询

数据结构: 优先队列



### 优先队列

队列中每个元素有一个关键字,依据关键字大小离开队列





- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列





#### 优先队列

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列





除最底层,第h层有 $2^{h-1}$ 个顶点



#### 优先队列

- 队列中每个元素有一个关键字、依据关键字大小离开队列
- 通过二叉堆来实现优先队列



除最底层,第h层有 $2^{h-1}$ 个顶点



- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()







- 队列中每个元素有一个关键字、依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()





- 队列中每个元素有一个关键字、依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()





- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()







- 队列中每个元素有一个关键字、依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()







- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()
  - o Q.ExtractMin()







- 队列中每个元素有一个关键字、依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()
  - o Q.ExtractMin()









- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()
  - o Q.ExtractMin()







- 队列中每个元素有一个关键字、依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()
  - o Q.ExtractMin()







- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()
  - o Q.ExtractMin()







- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()
  - o Q.ExtractMin()







- 队列中每个元素有一个关键字、依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()
  - o Q.ExtractMin()
  - o Q.DecreaseKey()







- 队列中每个元素有一个关键字、依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()
  - o Q.ExtractMin()
  - 0 Q.DecreaseKey()







- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()
  - o Q.ExtractMin()
  - o Q.DecreaseKey()







- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - o Q.Insert()
  - o Q.ExtractMin()
  - o Q.DecreaseKey()





- 队列中每个元素有一个关键字、依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - 。 Q. Insert() 时间复杂度O(logn)
  - 。 Q. ExtractMin() 时间复杂度O(logn)
  - Q.DecreaseKey() 时间复杂度O(logn)





## 优先队列

- 队列中每个元素有一个关键字,依据关键字大小离开队列
- 通过二叉堆来实现优先队列
  - Q. Insert() 时间复杂度O(logn)
  - Q. ExtractMin() 时间复杂度O(logn)
  - Q.DecreaseKey() 时间复杂度O(logn)



使用优先队列,高效查找的安全边



```
输入: 图G = \langle V, E, W \rangle
输出: 最小生成树T
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
新建空优先队列Q
//初始化
for u \in V do
                                                        初始化辅助数组
   color[u] \leftarrow WHITE
   dist[u] \leftarrow \infty
   pred[u] \leftarrow NULL
end
dist[1] \leftarrow 0
Q.Insert(V, dist)
```

## 伪代码



```
输入: 图G = \langle V, E, W \rangle
输出: 最小生成树T
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
新建空优先队列Q
//初始化
for u \in V do
   color[u] \leftarrow WHITE
   dist[u] \leftarrow \infty
   pred[u] \leftarrow NULL
end
dist[1] \leftarrow 0
                                                         选择任意起点
Q.Insert(V,dist)
```

## 伪代码



```
输入: 图G = \langle V, E, W \rangle
输出: 最小生成树T
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
新建空优先队列Q
//初始化
for u \in V do
    color[u] \leftarrow WHITE
    dist[u] \leftarrow \infty
    pred[u] \leftarrow NULL
end
\begin{array}{c} dist[1] \leftarrow 0 \\ Q.Insert(V, dist) \end{array}
                                                                   初始化优先队列
```



```
//执行最小生成树箕法
while 优先队列Q非空 do
\neg \mid \neg v \leftarrow Q.ExtractMin()
    for u \in G.Adj[v] do
       if color[u] = WHITE and w(v, u) < dist[u] then
           dist[u] \leftarrow w(v, u)
           pred[u] \leftarrow v
           Q.DecreaseKey((u, dist[u]))
        end
    end
    color[v] \leftarrow BLACK
end
```

#### 依次添加其他顶点



```
//执行最小生成树算法
while 优先队列Q非空 do_
   v \leftarrow Q.ExtractMin()
  for u \in G.Adj[v] do
       if color[u] = WHITE and w(v, u) < dist[u] then
          dist[u] \leftarrow w(v, u)
          pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
       end
   end
   color[v] \leftarrow BLACK
end
```

#### 选择安全边



```
//执行最小生成树算法
while 优先队列Q非空 do
   v \leftarrow Q ExtractMin()
   for u \in G.Adj[v] do
      if color[u] = WHITE and w(v, u) < dist[u] then
          dist[u] \leftarrow w(v, u)
          pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
       end
   color[v] \leftarrow BLACK
end
```

更新距离数组,调整优先队列



```
//执行最小生成树算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
   for u \in G.Adj[v] do
       if color[u] = WHITE and w(v, u) < dist[u] then
           dist[u] \leftarrow w(v, u)
          pred[u] \leftarrow v
           Q.DecreaseKey((u, dist[u]))
       end
   color[v] \leftarrow BLACK
\mathbf{end}
```

标记顶点处理完成



```
输入: 图G = \langle V, E, W \rangle
输出: 最小生成树T
新建一维数组color[1..|V|], dist[1..|V|], pred[1..|V|]
新建空优先队列Q
//初始化
for u \in V do
   color[u] \leftarrow WHITE
                                   O(|V|)
   dist[u] \leftarrow \infty
   pred[u] \leftarrow NULL
end
dist[1] \leftarrow 0
Q.Insert(V, dist)
```



```
//执行最小生成树算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
                                                              O(\log|V|)
   for u \in G.Adj[v] do
       if color[u] = WHITE and w(v, u) < dist[u] then
          dist[u] \leftarrow w(v, u)
          pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u])) - - - O(log|V|)
       end
   end
   color[v] \leftarrow BLACK
end
```



```
//执行最小生成树算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
                                                               O(\log |V|)
   for u \in G.Adj[v] do
       if color[u] = WHITE and w(v, u) < dist[u] then
          dist[u] \leftarrow w(v, u)
                                                              O(\deg(u)\log|V|)
          pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
                                         - - -O(\log |V|)
       end
   end
   color[v] \leftarrow BLACK
end
```











```
//执行最小生成树算法
while 优先队列Q非空 do
   v \leftarrow Q.ExtractMin()
   for u \in G.Adj[v] do
       if color[u] = WHITE and w(v, u) < dist[u] then
          dist[u] \leftarrow w(v, u)
          pred[u] \leftarrow v
          Q.DecreaseKey((u, dist[u]))
       end
   end
   color[v] \leftarrow BLACK
                                          O(|E| \cdot \log |V|)
end
```



| 通用框架   | Prim算法 |
|--------|--------|
| 判断是否成环 | 保持树的结构 |





| 通用框架   | Prim算法 |
|--------|--------|
| 判断是否成环 | 保持树的结构 |
| 高效寻找轻边 | 使用优先队列 |







