

Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification

PARIS DIDEROT

François Bachoc^{†‡}, Josselin Garnier[‡] and Jean-Marc Martinez[†] †CEA-Saclay, DEN, DM2S, STMF, LGLS, F-91191 Gif-sur-Yvette, France. ‡Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VII

Introduction

- Estimation of hyper-parameters in Kriging in case of Model misspecification.
- Goal: Comparison of Maximum Likelihood (ML) and Cross Validation (CV).

Framework

- Observation of a centered, unit variance, stationary Gaussian process Y on \mathcal{X} with covariance function C_1 .
- Vector y of observations on $x_1, ..., x_n \in \mathcal{X}$.
- Kriging metamodel $x_0 \to (\hat{y_0}, \hat{\sigma}^2(y)\sigma_{x_0}^2)$ given by the set \mathcal{C} of covariance functions:

$$\mathcal{C} = \left\{ \sigma^2 C_\theta, \sigma \in \mathbb{R}^+, \theta \in \Theta \right\}$$

with C_{θ} a stationary correlation function. $C_1 \notin \mathcal{C}$: model misspecification

• Maximum Likelihood:

$$\hat{\theta}_{ML} \in \underset{\theta \in \Theta}{\operatorname{argmin}} |R_{\theta}|^{\frac{1}{n}} y^t R_{\theta}^{-1} y \text{ and } \hat{\sigma}_{ML}^2 = \frac{1}{n} y^t R_{\hat{\theta}_{ML}}^{-1} y.$$

• Cross-Validation, with $\hat{y}_{i,-i,\theta}$, $\hat{\sigma}_{i,-i,\theta}^2$ the Kriging predictive mean and variance of y_i , with covariance function C_{θ} , based on $(y_1, ..., y_{i-1}, y_{i+1}, y_n)$:

$$\hat{\theta}_{CV} \in \underset{\theta \in \Theta}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \hat{y}_{i,-i,\hat{\theta}_{CV}})^2 \text{ and } \hat{\sigma}_{CV}^2 = \frac{1}{n} \sum_{i=1}^{n} \frac{(y_i - \hat{y}_{i,-i,\hat{\theta}_{CV}})^2}{\hat{\sigma}_{i,-i,\hat{\theta}_{CV}}^2}.$$

• Thanks to the virtual Leave One Out formulas [Dub83] we have:

$$\hat{\theta}_{CV} \in \underset{\theta \in \Theta}{\operatorname{argmin}} \ y^t R_{\theta}^{-1} diag(R_{\theta}^{-1})^{-2} R_{\theta}^{-1} y \text{ and } \hat{\sigma}_{CV}^2 = \frac{1}{n} y^t R_{\hat{\theta}_{CV}}^{-1} \left[diag(R_{\hat{\theta}_{CV}}^{-1}) \right]^{-1} R_{\hat{\theta}_{CV}}^{-1} y.$$

- Outline:
- -First step Case of the estimation of the variance hyper-parameter σ^2 . Closed form expression of $\hat{\sigma}^2$: allows for a detailed and quantitative finite sample comparison.
- -Second step General case of the estimation of the hyper-parameter θ . Numerical studies on analytical functions.

Step 1: Estimation of the variance hyper-parameter

- In this case $C_{\theta} = C_2, C_2 \neq C_1$.
- Quantity of interest for $\hat{\sigma}^2$: The Risk at x_0 :

$$R_{\hat{\sigma}^2, x_0} = \mathbb{E}\left[\left(\mathbb{E}\left[(\hat{y_0} - y_0)^2 | y\right] - \hat{\sigma}^2(y)\sigma_{x_0}^2\right)^2\right].$$

- The risk increases when the predictive variance is wrong
- Analytical expression of the risk for an estimator $\hat{\sigma}^2$ of the form $y^t M y$:

$$R_{\hat{\sigma}^2,x_0} = f(M_0, M_0) + 2c_1 tr(M_0) - 2c_2 f(M_0, M_1) + c_1^2 - 2c_1 c_2 tr(M_1) + c_2^2 f(M_1, M_1)$$

With:

$$f(A,B) = tr(A)tr(B) + 2tr(AB) \quad \text{for } A, B \ n \times n \text{ real matrices },$$

$$M_0 = (R_2^{-1}r_2 - R_1^{-1}r_1)(r_2^t R_2^{-1} - r_1^t R_1^{-1})R_1,$$

$$M_1 = MR_1,$$

$$c_1 = 1 - r_1^t R_1^{-1}r_1,$$

$$c_2 = 1 - r_2^t R_2^{-1}r_2.$$

- Case $C_1 = C_2$: ML reaches the Cramer Rao bound $(\frac{2}{n})$
- Case $C_1 \neq C_2$: Numerical evaluation of the risk formulas
- Quantities of interest for an estimator $\hat{\sigma}^2$:

Quantity of interest	Expression
Risk on Target Ratio (RTR)	$RTR(x_0) = \frac{\sqrt{R_{\hat{\sigma}^2, x_0}}}{\mathbb{E}[(\hat{y_0} - y_0)^2]}$
Integrated Risk on Target Ratio (IRTR)	$IRTR = \sqrt{\int_{\mathcal{X}} RTR^2(x_0) d\mu(x_0)}$
Bias on Target Ratio (BTR)	$BTR(x_0) = \frac{ \mathbb{E}[(\hat{y_0} - y_0)^2] - \mathbb{E}(\hat{\sigma}^2(y))\sigma_{x_0}^2 }{\mathbb{E}[(\hat{y_0} - y_0)^2]}$
Integrated Bias on Target Ratio (IBTR)	

- Procedure: We take $\mathcal{X} = [0, 1]^d$ with uniform measure. We generate n_p designs $(x_1, ..., x_n)$ using the LHS-Maximin technique, compute each time the four criteria above (analytical formulation and Monte Carlo for integration) and plot the average.
- Setting for the figures:

Figure	C_1, C_2	n	d	n_p	x_0
Influence model error	Isotropic Matern (l_c, ν)	70	5	50	Integration
(regularity parameter)	$l_{c,1} = l_{c,2} = 1.2, \ \nu_1 = 1.5, \ \nu_2 \text{ varying}$				
Influence model error	Isotropic Matern (l_c, ν)	70	5	50	Integration
(correlation length)	$\nu_1 = \nu_2 = 1.5, l_{c,1} = 1.2, l_{c,2}$ varying				
Influence n	Isotropic Matern (p, l_c)	varying	5	1600	center
	$l_{c,1} = l_{c,2} = 1.2, \ \nu_1 = 1.5, \ \nu_2 = 1.8$				
Influence x_0	Isotropic Matern (p, l_c)	70	5	500	varying
	$l_{c,1} = l_{c,2} = 1.2, \ \nu_1 = 1.5, \ \nu_2 = 1.8$				

• Plot of the Quantities of interest:

Top left: Influence model error (regularity parameter). Top right: Influence model error (correlation length) Bot left: Influence n. Bot right: Influence x_0 , x_0 has nb_x component at 0.1 and $5 - nb_x$ at 0.5, plot of BTR and RTR as a function of nb_x .

Step 2: Estimation of the correlation hyper-parameters

Procedure

- Function f on $[0,1]^d$
- Building of a Kriging Model with training sample $(x_{a,1},...,x_{a,n})$, with the exponential, Gaussian and Matern covariance function, and with two different cases for the hyper-parameters estimation:
- Case 2.i: Estimation of an isotropic correlation length, and of the regularity parameter for the Matern case.
- Case 2.a: Estimation of d correlation lengths, and of the regularity parameter for the Matern case.
- Quantities of interest on a Monte Carlo test sample $(x_{t,1},...,x_{t,n_t})$, with $\hat{y}_{t,i}(y_a)$ and $\sigma_{t,i}^2(y_a)$ the predictive mean and variance at $x_{t,i}$ of the built Kriging model:
- Mean Square Error (MSE): $\frac{1}{n_t} \sum_{i=1}^{n_t} (y_{t,i} \hat{y}_{t,i}(y_a))^2$
- -Predictive Variance Adequation (PVA): $\left| \log \left(\frac{1}{n_t} \sum_{i=1}^{n_t} \frac{(y_{t,i} \hat{y}_{t,i}(y_a))^2}{\sigma_{t,i}^2(y_a)} \right) \right|$. The PVA increases when the predictive variance is wrong.
- ullet Quantities of interest are averaged over n_p LHS Maximin designs.

Results

- We consider the Ishigami (d = 3) and Morris (d = 10) functions:
- Ishigami: $\sin(\pi(2x_1-1)) + 7\sin(\pi(2x_2-1))^2 + 0.1\sin(\pi(2x_1-1)).(\pi(2x_3-1))^4$
- Morris: An anisotropic function.
- Results:

Function	Correlation model	MSE	PVA
Ishigami	exponential case 2.i	ML: 1.99 CV: 1.97	ML: 0.35 CV: 0.23
Ishigami	exponential case 2.a	ML: 2.01 CV: 1.77	ML: 0.36 CV: 0.24
Ishigami	Gaussian case 2.i	ML: 2.06 CV: 2.11	ML: 0.18 CV: 0.22
Ishigami	Gaussian case 2.a	ML: 1.50 CV: 1.53	ML: 0.53 CV: 0.50
Ishigami	Matern case 2.i	ML: 2.19 CV: 2.29	ML: 0.18 CV: 0.23
Ishigami	Matern case 2.a	ML: 1.69 CV: 1.67	ML: 0.38 CV: 0.41
Morris	exponential case 2.i	ML: 3.07 CV: 2.99	ML: 0.31 CV: 0.24
Morris	exponential case 2.a	ML: 2.03 CV: 1.99	ML: 0.29 CV: 0.21
Morris	Gaussian case 2.i	ML: 1.33 CV: 1.36	ML: 0.26 CV: 0.26
Morris	Gaussian case 2.a	ML: 0.86 CV: 1.21	ML: 0.79 CV: 1.56
Morris	Matern case 2.i	ML: 1.26 CV: 1.28	ML: 0.24 CV: 0.25
Morris	Matern case 2.a	ML: 0.75 CV: 1.06	ML: 0.65 CV: 1.43

• With inappropriate non-smooth correlation functions family: CV performs better than ML. ML performs better when the correlation functions family is well-specified. Enforcing an isotropic correlation functions family has more negative influence on ML when the real function is anisotropic.

Conclusion

- In our studies: When the model misspecification becomes important, CV performs better than ML.
- Possible extension: Studying other Cross Validation estimation methods.

References

[Dub83] O. Dubrule. Cross validation of kriging in a unique neighborhood. *Mathematical Geology*, 15, 1983.