Come dimostrare che un certo linguaggio sia context-free

Gabriel Rovesti

Sostanzialmente, si tratta di assumere che se un certo linguaggio è contextfree, esiste una grammatica che lo genera e tale grammatica sia in forma normale di Chomsky.

Come tale, ne rispetta le regole con un alfabeto, non avendo regole unitarie o regole vuote ma sempre conducendo ad una transizione definita.

3. (12 punti) Dimostra che se $L \subseteq \Sigma^*$ è un linguaggio context-free allora anche il seguente linguaggio è context-free:

$$dehash(L) = \{dehash(w) \mid w \in L\},\$$

dove dehash(w) è la stringa che si ottiene cancellando ogni # da w.

Soluzione: Se L è un linguaggio context-free, allora esiste una grammatica $G = (V, \Sigma, R, S)$ che lo genera. Possiamo assumere che questa grammatica sia in forma normale di Chomsky. Per dimostrare che dehash(L) è context-free, dobbiamo essere in grado di definire una grammatica che possa generarlo. Questa grammatica è una quadrupla $G' = (V', \Sigma', R', S')$ definita come segue.

- L'alfabeto tutti i simboli di Σ tranne #: $\Sigma' = \Sigma \setminus \{\#\}$.
- L'insieme di variabili è lo stesso della grammatica G: V' = V.

Figure 1: Conversione context-free

3. (12 punti) Dimostra che se $L\subseteq \Sigma^*$ è un linguaggio context-free allora anche il seguente linguaggio è context-free:

$$dehash(L) = \{dehash(w) \mid w \in L\},\$$

dove dehash(w) è la stringa che si ottiene cancellando ogni # da w.

Soluzione: Se L è un linguaggio context-free, allora esiste una grammatica $G = (V, \Sigma, R, S)$ che lo genera. Possiamo assumere che questa grammatica sia in forma normale di Chomsky. Per dimostrare che dehash(L) è context-free, dobbiamo essere in grado di definire una grammatica che possa generarlo. Questa grammatica è una quadrupla $G' = (V', \Sigma', R', S')$ definita come segue.

- L'alfabeto tutti i simboli di Σ tranne #: $\Sigma' = \Sigma \setminus \{\#\}$.
- L'insieme di variabili è lo stesso della grammatica G: V' = V.

Figure 2: Conversione context-free

- 2. (8 punti) Per ogni linguaggio L, sia $prefix(L) = \{u \mid uv \in L \text{ per qualche stringa } v\}$. Dimostra che se L è un linguaggio context-free, allora anche prefix(L) è un linguaggio context-free.
 - Se L è un linguaggio context-free, allora esiste una grammatica G in forma normale di Chomski che lo genera. Possiamo costruire una grammatica G' che genera il linguaggio prefix(L) in questo modo:
 - per ogni variabile V di G, G' contiene sia la variabile V che una nuova variabile V'. La variabile V' viene usata per generare i prefissi delle parole che sono generate da V;
 - tutte le regole di G sono anche regole di G';
 - per ogni variabile V di G, le regole $V' \to V$ e $V' \to \varepsilon$ appartengono a G;
 - per ogni regola $V \to AB$ di G, le regole $V' \to AB'$ e $V' \to A'$ appartengono a G';
 - se S è la variabile iniziale di G, allora S' è la variabile iniziale di G'.

Figure 3: Conversione context-free