

WHAT IS CLAIMED IS:

1. A noise determiner for use with a communications system,
2 comprising:

3 a crosstalk identifier configured to detect directly a noise
4 source in a frequency domain from observed noise associated with
5 said communications system; and

6 a crosstalk estimator coupled to said crosstalk identifier and
7 configured to provide a corresponding level of said noise source.

2. The noise determiner as recited in Claim 1 wherein said
2 crosstalk identifier considers radio frequency interference.

3. The noise determiner as recited in Claim 1 wherein said
2 crosstalk identifier considers unknown disturbers.

4. The noise determiner as recited in Claim 1 wherein said
2 crosstalk identifier places said noise source into a modeling
3 system selected from the group consisting of:

4 an American noise model,

5 an old European Technical Standards Institute (ETSI) noise
6 model, and

7 a new ETSI noise model.

5. The noise determiner as recited in Claim 1 wherein said
2 noise source has a power spectral density of a form $P_N(f) =$
3 $g(k) P_B(f)$.

6. The noise determiner as recited in Claim 1 wherein said
2 noise source is a noise selected from the group consisting of:
3 Additive White Gaussian Noise,
4 Digital Subscriber Line (DSL) Near-End Crosstalk (NEXT),
5 High Bit-Rate DSL (HDSL) NEXT,
6 T1 NEXT, and
7 European Technical Standards Institute (ETSI) defined noise.

7. The noise determiner as recited in Claim 1 wherein said
2 communications system is a digital subscriber line (DSL) system.

8. A method of determining noise in a communications system,
2 comprising:

3 directly detecting a noise source in a frequency domain from
4 observed noise associated with said communications system; and
5 providing a corresponding level of said noise source.

9. The method as recited in Claim 8 wherein said detecting
2 includes considering radio frequency interference.

10. The method as recited in Claim 8 wherein said detecting
2 includes considering unknown disturbers.

11. The method as recited in Claim 8 wherein said detecting
2 includes placing said noise source into a modeling system selected
3 from the group consisting of:

4 an American noise model,
5 an old European Technical Standards Institute (ETSI) noise
6 model, and
7 a new ETSI noise model.

12. The method as recited in Claim 8 wherein said noise
2 source has a power spectral density of a form $P_N(f) = g(k) P_B(f)$.

13. The method as recited in Claim 8 further including

2 selecting said noise source from the group consisting of:

3 Additive White Gaussian Noise,

4 Digital Subscriber Line (DSL) Near-End Crosstalk (NEXT),

5 High Bit-Rate DSL (HDSL) NEXT,

6 T1 NEXT, and

7 European Technical Standards Institute (ETSI) defined noise.

14. The method as recited in Claim 8 wherein said

2 communications system is a digital subscriber line (DSL) system.

15. A digital subscriber line (DSL) modem, comprising:

2 a front end coupled to a DSL channel;

3 a transmitter coupled to said front end that processes a

4 digital signal for analog transmission over said channel; and

5 a receiver coupled to said front end that converts an analog

6 signal received over said channel to a digital signal; and

7 a noise determiner, including:

8 a crosstalk identifier that detects directly in a

9 frequency domain a noise source from observed noise associated with

10 said channel; and

11 a crosstalk estimator coupled to said crosstalk

12 identifier that provides a corresponding level of said noise

13 source.

16. The DSL modem as recited in Claim 15 wherein said

2 crosstalk identifier considers radio frequency interference.

17. The DSL modem as recited in Claim 15 wherein said

2 crosstalk identifier considers unknown disturbers.

18. The DSL modem as recited in Claim 15 wherein said
2 crosstalk identifier places said noise source into a modeling
3 system selected from the group consisting of:

4 an American noise model,

5 an old European Technical Standards Institute (ETSI) noise
6 model, and

7 a new ETSI noise model.

19. The DSL modem as recited in Claim 15 wherein said noise
2 source has a power spectral density of a form $P_N(f) = g(k) P_B(f)$.

20. The DSL modem as recited in Claim 15 wherein said noise
2 source is a noise selected from the group consisting of:

3 Additive White Gaussian Noise,

4 Digital Subscriber Line (DSL) Near-End Crosstalk (NEXT),

5 High Bit-Rate DSL (HDSL) NEXT,

6 T1 NEXT, and

7 European Technical Standards Institute (ETSI) defined noises.

21. The DSL modem as recited in Claim 15 wherein said DSL
2 modem is an Asymmetric DSL modem.