Linear Algebra: Some Useful Existing Results

Soumyabrata Talukder

July 2020

1 Eigen-values and Left/Right Eigen-vectors

For a matrix $A \in \mathbb{R}^{n \times n}$, $v \in \mathbb{C}^n$ is called its eigen-vector if the product A.v evaluates to be a scaled version of v, say $\lambda.v$, where $\lambda \in \mathbb{C}$ is called the corresponding eigen-value.

For the purpose of understanding modal decomposition, we will consider A to have distinct eigen-values. This is realistic in the sense that the state matrix of a linearized practical system, represented by A, is unlikely to have two eigen-values exactly equal (however, complex conjugate pairs of eigen-values are common). In other words, we are assuming the matrix A to be of full rank, having n distinct eigen-values denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$, and the corresponding linearly independent eigen-vectors are denoted by v_1, v_2, \ldots, v_n . Note that the eigen-values of A and A^T are identical, and let u_1, u_2, \ldots, u_n denote the three linearly independent eigen-vectors of A^T . So, we have:

$$A.v_i = \lambda_i.v_i, \forall i \in \{1, \dots, n\},\tag{1}$$

$$A^{T}.u_{i} = \lambda_{i}.u_{i}, \forall i \in \{1, \dots, n\}, \tag{2}$$

which can be written more compactly as:

$$A.V = V.\Lambda \Rightarrow A = V\Lambda.V^{-1},\tag{3}$$

$$A^{T}.U' = U'.\Lambda \Rightarrow A = [U'^{T}]^{-1}\Lambda.U'^{T}, \tag{4}$$

where Λ is a diagonal matrix with the diagonal elements being $\lambda_1, \lambda_2, \ldots, \lambda_n$ in order, $V := [v_1, v_2, \ldots, v_n]$ and $U' := [c_1.u'_1, c_2.u'_2, \ldots, c_nu'_n]$ with c_i s being arbitrary scalars. (3) is called the *eigen-decomposition* of the matrix A. From (2), we see that $u_i'^T.A = u_i'^T.\lambda_i$ holds for all $\{1,\ldots,n\}$, which justifies u_i' s being termed as the *left* eigen-vector of A, in contrast to v_i s, called as the *right* eigen-vectors. Comparing (3) and (4), we also see that by choosing appropriate $c_i \in \mathbb{R}$ for all $i \in \{1,\ldots,n\}$, one can establish the following relation:

$$V^{-1} = U^T, (5)$$

where $U := [u_1u_2...u_n]$ with $u_i := c_i.u_i'$ for all $\{1,...,n\}$. Next, from (3) and (5) we have the following:

$$A = V.\Lambda.U^{T}$$

$$= \begin{bmatrix} v_{1} & v_{2} & \dots & v_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{n} \end{bmatrix} \begin{bmatrix} u_{1}^{T} \\ u_{2}^{T} \\ \vdots \\ u_{n}^{T} \end{bmatrix}$$

$$= \begin{bmatrix} v_{1} & v_{2} & \dots & v_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1}u_{1}^{T} \\ \lambda_{2}u_{2}^{T} \\ \vdots \\ \lambda_{n}u_{n}^{T} \end{bmatrix}$$

$$= \sum_{i \in \{1,\dots,n\}} \lambda_{i}v_{i}u_{i}^{T}$$

$$(6)$$

2 Special Case of Symmetric Matrices

Consider the special case when A is a symmetric matrix, i.e. $A^T = A$. If we perform eigen-decomposition of A and A^T , clearly it follows from (1)-(2) that U = V. This along with the relation in (5) yields $V^{-1} = U^T = V^T$, implying that V (and hence, U) is a unitary matrix and that $V = V \cdot \Lambda \cdot V^T \cdot V$. Now, we have:

$$A^{T}.A = [V.\Lambda.V^{T}]^{T}.[V.\Lambda.V^{T}]$$

$$= V.\Lambda.V^{T}.V.\Lambda.V^{T}$$

$$= V.\Lambda^{2}.V^{T}$$
(7)

Note that (7) is the eigen-decomposition of $A^T.A$ since Λ^2 is diagonal. Also, (7) is the *singular value decomposition* (SVD) of A since V is unitary. Hence, if A is symmetric, its SVD and the eigen-decomposition of $A^T.A$ are identical.

SVD is not covered in this write up but it is useful to explore and understand. It finds various applications and (i) principal component analysis (PCA) of multi-variate data, (ii) low-rank estimation of a matrix $A \in \mathbb{R}^{m \times n}$, (iii) pseudo-inverse of a matrix $A \in \mathbb{R}^{m \times n}$ are possibly the most significant ones among those.

3 Maximum and Minimum Eigen-values

The maximum and the minimum eigen-values (denoted by λ_{max} and λ_{min} resp.) of a matrix $A \in \mathbb{R}^{n \times n}$ are shown to be expressed as follows:

$$\lambda_{max} = \sup_{x \neq 0} \frac{x^T A x}{x^T x}$$

$$\lambda_{min} = \inf_{x \neq 0} \frac{x^T A x}{x^T x}$$
(8)

The above result can be used to show a few necessary conditions of positive-semidefiniteness of A (denoted by $A \succeq 0$). From (8), the following can be deduced:

$$x^{T}x.\lambda_{max} \ge x^{T}Ax \ge x^{T}x.\lambda_{min} \forall x \ne 0.$$
 (9)

If $A \succeq 0$, we have $x^TAx \ge 0$ for all $x \ne 0$. Also noting that $x^Tx > 0$ for all $x \ne 0$, it is concluded from (9) that (i) $\lambda_{max} \ge \lambda_{min} \ge 0$ and hence, (ii) $det(A) = \prod_{i \in \{1,...,n\}} \lambda_i \ge 0$, where det(A) denotes the determinant of A. These are the two necessary conditions of $A \succeq 0$. In this context, the only sufficient condition of $A \succeq 0$ is the existence of a $B \in \mathbb{R}^{n \times n}$ such that $A = B^T.B$.

4 Real Vector-space Decomposition Induced by a Matrix

For a matrix $A \in \mathbb{R}^{m \times n}$, the range-space $\mathcal{R}(A)$ is defined as:

$$\mathcal{R}(A) := \{ A.x | x \in \mathbb{R}^n \},\tag{10}$$

which is a subspace of \mathbb{R}^m of dimension equal to the rank of $A (\leq \text{minimum of } m \text{ and } n)$. The nullspace $\mathcal{N}(A)$ is defined as:

$$\mathcal{N}(A) := \{ x \in \mathbb{R}^n | A.x = 0 \},\tag{11}$$

which is a subspace of \mathbb{R}^n of dimension equal to the minimum of m and n less the rank of A.

For a set $V \subseteq \mathbb{R}^n$, its vertical complement is defined as:

$$\mathcal{V}^{\perp} := \{ z \in \mathbb{R}^n | z^T . x = 0, x \in \mathcal{V} \}. \tag{12}$$

By basic algebra it can be shown that $\mathcal{R}(A^T)$ is the verical complement of $\mathcal{N}(A)$, and consequently we have:

$$\mathbb{R}^n = \mathcal{N}(A) \oplus \mathcal{R}(A^T), \tag{13}$$

which is called the decomposition of \mathbb{R}^n induced by A.

5 Modal Decomposition of Linearized Systems

We discuss modal decomposition of transient response of linearized autonomous systems of the form $\dot{x} = A.x$, where $x \in \mathbb{R}^n$ denotes the dynamic state vector. Considering x_0 as the initial state, the transient response of the system is known to be as follows:

$$x(t) = e^{At}.x_0, (14)$$

where $t \in \mathbb{R}_{\geq 0}$ denotes the progressing time.

Note that using (6), the system state equation can be rewritten as:

$$\dot{x} = V.\Lambda.U^{T}.x,$$

$$\Rightarrow V^{-1}\dot{x} = \Lambda.U^{T}.x,$$

$$\Rightarrow \dot{z} = \Lambda.z, \qquad \text{(using (5) and letting } z := U^{T}.x = V^{-1}x),$$

and the transient response in the changed coordinate $z \in \mathbb{R}^n$ is given by:

$$z(t) = e^{\Lambda t}.z_{0},$$

$$\Rightarrow V^{-1}.x(t) = e^{\Lambda t}.U^{T}x_{0}, \quad \text{(back to the original coordinate system)}$$

$$\Rightarrow x(t) = V.e^{\Lambda t}.U^{T}x_{0},$$

$$\Rightarrow x(t) = \begin{bmatrix} v_{1} & v_{2} & \dots & v_{n} \end{bmatrix} \begin{bmatrix} e^{\lambda_{1}t} & 0 & \dots & 0 \\ 0 & e^{\lambda_{2}t} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{\lambda_{n}.t} \end{bmatrix} \begin{bmatrix} u_{1}^{T} \\ u_{2}^{T} \\ \vdots \\ u_{n}^{T} \end{bmatrix} x_{0}$$

$$\Rightarrow x(t) = \sum_{i \in \{1,\dots,n\}} [e^{\lambda_{i}t}u_{i}^{T}x_{0}]v_{i}.$$

$$(16)$$

The above expression of x(t) is called its *modal decomposition*.

The modal decomposition provides useful insight about the system's transient behavior. Each term under the summation of the modal decomposition corresponds to a distinct eigen-value and hence, the i^{th} term is called as the i^{th} mode of the transient response x(t), natural frequency of oscillation and attenuation rate of which are governed by the i^{th} eigenvalue alone. In particular, if the i^{th} eigen-value is $\lambda_i = \sigma_i + j\omega_i$, then the natural frequency of oscillation of the i^{th} mode of x(t) is ω_i rad./sec and the exponential attenuation rate is σ_i . Hence, $\sigma_i \leq 0$ (resp. $\sigma_i < 0$) for all $i \in \{1, \ldots, n\}$ guarantee stability (resp. asymptotic stability), and $\sigma_i > 0$ for any i implies unstable behavior of the system. This argument regarding stability holds globally for a linear system, whereas that for a nonlinear system linearized around an equilibrium holds locally within an infinitesimally small neighborhood around the equilibrium.

For each mode i of the transient response, the term within the square bracket (i.e. $e^{\lambda_i t} u_i^T x_0$) is a scalar which determines the amplitude (with an exponential attenuation with time) of oscillation of the mode. However, not all states equally exhibit this amplitude; rather the i^{th} right eigenvector determines the relative effect of the amplitude on the n states. Higher (resp. lower) the value of the j^{th} element of v_i indicates that higher is the impact of the i^{th} mode on the j^{th} state. This could be insightful to identify the states that are important to be controlled, under a given unstable mode of oscillation.