頁次(PAGE) 1/17

Introduction to Lens Control

聯 詠 科 技 股 份 有 限 公 司 NOVATEK MICROELECTRONICS CORP.

頁次(PAGE) 2/17

Content

Rev	rision Hist	ory	3		
1.	Introduc	tion to the components of zoom lens system	4		
2.	Introduc	tion to the key parts of Lens	6		
3.		ving fundamental			
	3.1.	DC Motor	7		
	3.2.	Stepping Motor	8		
	3.3.	VCM	8		
	3.4.	BackLash	9		
4.	Lens framework				
	4.1.	Lens Framework Diagram	. 10		
	4.2.	File Tree for DRV_NT96220			
	4.3.	Introduction to the API of LensAPI.c	. 12		
	4.4.	Introduction to the API of LensCtrlTsk.c	. 14		
	4.5.	Add new lens driver	. 14		
	4.6.	Zoom initialization			
5.	Lens Calibration				
	5.1.	Focus Adjust			
	5.2.	Backlash Adjust	. 17		
	5.3.	Miss Step Test	. 17		

聯詠科技股份有限公司 NOVATEK MICROELECTRONICS CORP.

頁次(PAGE) 3/17

Revision History

Revision	Date	Author	Changes			
V1.0	2011/03/28	Chris Chung	Draft			
V1.1	2011/06/10	Chris Chung	Add 5.3 Miss Step Test.			
V1.2	2011/07/13	Chris Chung	Refine lens driver for DRV_NT96220.			

1. Introduction to the components of zoom lens system

1.1. DSP

• NT96211

DSP輸出GPIO, SIF, or I2C的指令去控制Motor driver。

1.2. Motor Driver

MD152, WT7026

Motor driver收到DSP指令後,輸出較大電流的訊號去驅動Lens。

1.3. Lens

• ST8002, ST8003

Lens 回饋 Zoom PI, Zoom PR, Focus PI..等訊號,通知 DSP 目前所在的位置

2. Introduction to the key parts of Lens

2.1. **Zoom**

• DC Motor

DSC Zoom 常使用DC Motor來控制,因爲它的成本比Stepping Motor較低。

Stepping Motor

DV Zoom 常使用Stepping Motor來控制,因爲它容易調整速度及精準定位。

2.2. Focus

• DC Motor

DSC Focus 使用DC Motor來控制較少。爲了達到較低成本的目的,聯合光電有出使用DC Motor來做Focus的2x光學變焦鏡頭ST8005 (T2085)。它只需要一顆DC Motor就可以分別去控制Zoom及Focus,因此成本上非常低。它的缺點是不易精準定位及對焦時間慢,加上小步移動需要對DC Motor做瞬間的Fwd, Brake, Off 動作,馬達容易因爲晃動產生雜波造成計數失步。

• Stepping Motor

DV/DSC Focus 常使用Stepping Motor來控制,因爲它容易調整速度及精準定位。

Voice Coil Motor (VCM)

手機 Focus 常使用 VCM 來控制,它具有尺寸小及成本低的優勢。它的缺點是如果要固定在某個對焦位置,需要保持通電(耗電)。

2.3. Shutter & Iris

VCM

DV/DSC Shutter及Iris (光圈) 常使用VCM來控制,它的控制上簡單。

Stepping Motor

亞光有出使用 Stepping Motor 來控制 Shutter & Iris 的 3x 光學變焦鏡頭 ST8002, 它將孔徑全開, 小開, 全關當作三個狀態, 透過類似 power on sequence 的方式來定位。

3. Lens driving fundamental

3.1. DC Motor

	Fwd (CW)	Bwd (CCW)	Brake	Off
Z+	Н	L	Н	L
Z-	L	Н	Н	L

DC Motor

DC Motor使用一個Channel兩個IO (Z+, Z-)訊號,控制馬達的Fwd, Bwd, Brake,及Off動作,如上表所示。

• PR and PI signals

Lens採用DC Motor會搭配PR及PI兩個訊號,回饋給DSP做同步定位使用。PR signal由Low轉High的反轉點,表示DC Motor的Home點。PI signal是馬達每走一步,就會發出一個Pulse來給DSP計數使用。在應用上,如果DSC想把Zoom推到 Wide端,若PR signal初使位置為Low,我們會Fwd馬達到PR signal反轉,此時會 把內部計數Count歸零。接著會繼續Fwd,每次收到一個PI signal就會對Count加一,直到Count到達Wide所在的步數後,Brake停止後Off。

3.2. Stepping Motor

1	2	3	4	5	6	7	8		Off
Η	Ι	Η	L	L	L	L	L		L
L	L	L	L	Н	Н	Н	L		L
L	L	Н	Н	Н	L	L	L	•	L
Н	L	L	L	L	L	Н	Н	•	L
	1 H L L	1 2 H H L L L L	H H H	H H H L L L L L	H H H L L L L L H	H H H L L L L L L H H	H H H L L L L L L L H H H	H H H L L L L L L L L L L L L L L L L L	H H H L L L L L L L L H H L L

 $CCW \leftrightarrow CW$

Stepping Motor

Stepping Motor使用兩個Channel四個IO (FA+, FA-, FB+, FB-)訊號,控制馬達的 Fwd, Bwd,及Off動作。上表表示採用1-2 phase的Stepping Motor共有八個相位。兩個Channel輸出控制訊號,由左往右相位1依序往相位8變化 (1->2->3...->8),可控制Stepping Motor Fwd (CW) 7步。由右往左相位8依序往相位1變化 (8->7->6...->1),則表示Bwd (CCW) 7步。

• PI signal

Lens採用Stepping Motor會搭配一個PI訊號,回饋給DSP做同步定位使用。在應用上,如果DSC想把Focus推到Far端,若PI signal初使位置爲Low,我們會Fwd馬達到PI signal反轉,此時會把內部計數Count歸零。接著會繼續Fwd,每次變化一個1-2 phase,就會對Count加一,直到Count到達Far所在的步數後Off。

3.3. VCM

	Open	Close	Off	
S+	Н	L	Ш	
S-	L	Н	L	

VCM是使用一個Channel兩個IO (S+, S-)訊號,來控制馬達的Open, Close,及Off動作,如上表所示。在應用上,如果DSC想打開Shutter,則會輸出Open訊號打開Shutter。經過一段短暫的時間後(ex: 30ms),需將輸出轉爲Off,以免Shutter線圈燒毀。

3.4. BackLash

• Backlash Problem

Backlash (背隙, BL)是兩個齒輪之間的間隙,如上圖所示的gap。不論是DC Motor 或Stepping Motor,只要使用到齒輪,都會存在這個間隙。若是左下的齒輪往逆時針方向轉(方向1),由於兩個齒輪間是處於頂住的狀態,因此左下的齒輪走N步,就可以帶動右上的齒輪走N步。若是左下的齒輪往順時針方向轉(方向2),則左下的齒輪需先填滿gap步數 (假設是M步),因此左下的齒輪要讓右上的齒輪走N步,共需走N+M步。

• Backlash Elimination

爲了消除Backlash問題,在應用上會統一由一個方向去補BL步數,若Zoom in的方向無需補BL,則Zoom out方向需要補BL。如上圖所示,St表示Zoom out想移動的步數,Sb表示補BL的步數,Sb只要大於等於齒輪BL的步數即可。

4. Lens framework

4.1. Lens Framework Diagram

Lens API

- This part provides public API of lens framework.
- One static object (LENS_MODULE_OBJ) records lens module state and function pointers to the tables of lens and motor drivers.
- Lens module initialization
- Lens power on/off
- Lens zoom/focus initialization and retraction
- General zoom operations
- General focus operations
- General aperture operations
- General shutter operations

Lens Driver

- This part provides static and specific functions of lens driver.
- One static function table of lens driver is declared here.
- Four static objects (ZOOM_Struct, FOCUS_Struct, IRIS_Struct and SHUTTER_Struct) are used to records current information of lens.
- Specific lens information is defined in private header file.
- Interrupt service routine (ISR) is used to handle the PI signal of DC motor.

聯 詠 科 技 股 份 有 限 公 司 NOVATEK MICROELECTRONICS CORP.

頁次(PAGE) 11/17

- Motor Driver
 - This part provides static and specific functions of motor driver.
 - One static function table of motor driver is declared here.
 - One static object (MOTOR_PVT_OBJ) is used to records current information of motor driver.
 - GPIO/SIF/I2C is used to configure and control motor driver.
- Lens Control Task
 - This part provides high priority task to handle critical lens control.

4.2. File Tree for DRV_NT96220

 $@\Include\Subsystem\Lens\$

Lens.h

LensCtrlTsk.h

 $@\LibExt\LibExt_Src\Subsystem\Lens\$

Makefile

LensInt.h

LensCmd.c/.h

LensAPI.c/.h

LensCtrlTsk.c

\LensDrv\LensDrv_ID1.c/.h (ex: ID1=ST8003)

\LensMotor\LensMotor_ID2.c/.h (ex: ID2=WT7026)

@\Project\DemoKit\SrcCode\Calibration\Lens\

CalLens.c/.h

CalLens_ID1.c (ex: ID1=ST8003)

@\Project\DemoKit\SrcCode\UIApp\Lens\

UILensObj.c/.h

UILensObj ID1.c (ex: ID1=ST8003)

4.3. Introduction to the API of LensAPI.c

• Lens State Machine Diagram v0.3

LensAPI.c

- UINT32 Lens_Module_GetState(void)
 This function is used to get the state of lens module.
- static void **Lens_Module_SetState**(LENS_MODULE_STATE state)
 This function is used to set the state of lens module.
- void Lens_Module_Init(PLENS_DEVICE_OBJ pLensDev, PLENS_TAB pLensTab, PMOTOR_TAB pMotorTab)
 This function is used by SysInit_InitLens() to initialize I/O parameters and task for lens module.
- void **Lens_OnOff**(MOTOR_POWER ON_OFF, UINT32 param1) This function is used to power on/off lens.
- INT32 Lens_Init(LENS_INIT_CATEGORY category)
 This function is used to initialize lens to three categories. The first category,
 LENS_INIT_ZOOM_PART1, can be executed in CopyRest_RunPartOne()
 for boot speed. The LENS_INIT_ZOOM_PART2 and LENS_INIT_FOCUS
 are usually executed in DevCtrl_ModePhoto() or DevCtrl_ModeMovie().
- INT32 Lens_Retract(UINT32 param)

 This function is used to retract zoom and focus to garage.
- INT32 Lens_Zoom_Goto(UINT8 section)
 This function is used to move zoom to any section.
- INT32 Lens_Zoom_In(void)

 This function is used by Zoom In key press to move zoom forward to TELE

聯 詠 科 技 股 份 有 限 公 司 NOVATEK MICROELECTRONICS CORP.

頁次(PAGE) 13/17

side until Zoom In key is released.

■ INT32 Lens_Zoom_Out(void)

This function is used by Zoom Out key press to move zoom backward to WIDE side until Zoom Out key is released.

■ INT32 Lens_Zoom_Stop(void)

This function is used to stop zoom move immediately when Zoom In/Out key is released.

- void Lens_Zoom_EnableIsr(BOOL enable)
 This function is used to enable/disable zoom PI interrupt.
- INT32 Lens_Focus_Goto(INT16 position)
 This function is used to move focus to any position.
- INT32 Lens_Focus_DoAction(FOCUS_CATEGORY category, INT32 position)

This function is an enhanced version of Lens_Focus_Goto and is used to move focus with three categories: FOCUS_PREEXC, FOCUS_RUN, and FOCUS_POSTEXC.

■ INT32 Lens_Focus_GotoHome(void)

This function is used to search and move focus to home position.

- INT32 Lens_Aperture_Move(unsigned short NewPosition)
 This function is used to move Aperture(IRIS) to big, small or other position.
- INT32 Lens_Shutter_Move(unsigned char open)
 This function is used to open/close shutter.

4.4. Introduction to the API of LensCtrlTsk.c

• LensCtrlTsk.c

- ER LensCtrl_Open(PLENSCTRL_APPOBJ pLensCtrlObj)
 This function is used to open Lens Control task.
- ER LensCtrl_Close(void)
 This function is used to close Lens Control task.
- PLENSCTRL_APPOBJ LensCtrl_GetObject(void)
 This function is used to get the pointer of LENSCTRL_APPOBJ that records the information for Lens Control task.
- void LensCtrl_GetParam(PLENSCTRL_PARAMOBJ
 pLensCtrlParamObj)
 This function is used to get/copy all the data of LENSCTRL_PARAMOBJ
 that records the information for lens and motor driver settings.
- ER LensCtrl_SetParam(PLENSCTRL_PARAMOBJ pLensCtrlParamObj)
 This function is used to set/store all the data of LENSCTRL_PARAMOBJ.
- ER LensCtrl_WaitCmdFinish(UINT32 TimeOut)
 This function is used to wait Lens Control task to FLGLENS_IDLE state.
- ER LensCtrl_WaitCmdTypeFinish(UINT32 TimeOut,UINT32 cmd_type)
 This function is used to wait Lens Control task to cmd_type state.

4.5. Add new lens driver

- Lens Driver ST8003
 - ST8003 與 ST8002 是很相似的 3x lens,可以先從
 LensDrv ST8002.c/.h 複製成 LensDrv ST8003.c/.h 後開始修改。
 - 2. 依照 Lens 的規格,先改寫 LensDrv_ST8003.h 裡的 definition,Ex: ZOOM_POS_WIDE, ZOOM_POS_TELE, ZOOM_SECTION_TELE..等。接著再改寫 LensDrv_ST8003.c 裡的其他定義,Ex: Zoom Section Steps, Fno, FL, or Focus Phase..等。
 - 3. 檢查每個基本控制 function 的內容, Ex: Zoom Fwd/Bwd/Brake/Off, Focus Fwd/Bwd/Off, Shutter On/Off, and Iris Big/Small..等,是否符合該馬達種類控制方式。例如,ST8002的 Shutter是 Stepping Motor,ST8003的 Shutter是 VCM,因此需要修改ST8003 Shutter的控制程序。
- Motor Driver WT7026
 - 1. 雖然 WT7026 與 MD152 的控制方式差別很大,但是直接拿 LensMotor_MD152.c./h 來複製一份 LensMotor_WT7026.c/.h,這樣開始 改比較快。
 - 2. 依照實際 Application Circuit 的內容,改寫 motorWT7026_init(),將 IO Mapping 的變數一一塡對應。
 - 3. 檢查一些基本控制 function 的內容, Ex: Zoom Fwd/Bwd/Brake/Off, Focus Fwd/Bwd/Off, Shutter On/Off, and Iris Big/Small..等,依照該 Motor driver 的控制方式,做對應的修改。例如:,MD152的 Zoom 是透過 GPIO 設定做控制,而 WT7026是透過 SIF Command 來控制。

LensCmd.c

- 1. 若新的 Lens driver 及 Motor driver 已經加好,接著可以到 Lens Cmd.c 填好實際的 IO 設定,然後在串口下 Command 做基本測試。
- 2. 一般常用的測試 Command 如下:

lens init --> lens 初始化,一定要先執行這個才能執行其他 cmd

lens info --> 查看一些 IO 資訊

lens zfw --> lens zoom forward

lens zbw --> lens zoom backward

lens ffw --> lens focus forward

lens fbw --> lens focus backward

lens ab --> lens aperture big

lens as --> lens aperture small

lens so --> lens shutter open

lens sc --> lens shutter close

4.6. Zoom initialization

• Zoom State Machine Diagram v0.2

Zoom initialization flow

由於Zoom的初始化有較多狀態上的轉換,我們以State Machine的方式來表現,如上圖所示。Zoom的初使化流程如下:

- **1.** 當DSC應用層執行Zoom Init Part1,會呼叫lensXX_zoom_initPart1()進而呼叫lensXX_zoom_changeState()來啓動State Machine的狀態轉換。
- 2. lensXX_zoom_changeState()會檢查Zoom PR訊號是在Inside(Low) or Outside(High),此時將Zoom的狀態由Null轉換成InsideInit or OutsideInit。
- **3.** 如果是OutsideInit狀態,則會執行Zoom Bwd到Inside後,再將狀態轉換成InsideInit。
- 4. 如果是InsideInit狀態,則會執行Zoom Fwd到Outside。當Zoom PR訊號由Low轉換成High時,將Zoom Count歸零,接著會將Zoom的轉態轉換成InitPart1。此時Zoom Fwd仍然是保持前進,Zoom Count持續收到PI pulse做加一。當它接近Wide端時提前(Over-run 步數)煞車停止,最後將Zoom的狀態轉換成InitPart2。
- 5. DSC應用層接著執行Zoom Init Part2,如果Zoom的狀態已經跑到 InitPart2,則將它在轉換成Idle狀態。如果Zoom的狀態一直停在其他狀態Timeout以後,則將它轉換成Fail狀態。
- **6.** 如果Zoom的狀態成功進入Idle後,DSC應用層即可對它操作Zoom In/Out/Stop/Goto/Retract...等動作。

5. Lens Calibration

5.1. Focus Adjust

Far Focus Adjust

Far Focus Adjust 建議是採用模擬無窮遠的治具,將 Lens 各 Zoom section 都校正 出無窮遠最清晰的步數,保存到 DSC 的內存。若是沒有模擬無窮遠的治具,可 以採用校正 2 or 3m 的方式,然後依據 Lens 規格補償到無窮遠的步數。

• Near Focus Adjust

Near Focus Adjust 是採用校正 0.5m 的方式,將 Lens 各 Zoom section 都校正出 0.5m 最清晰的步數,保存到 DSC 的內存。

5.2. Backlash Adjust

Backlash Adjust

一般 Lens 規格都會提供 Zoom 及 Focus 的 Backlash 步數。若是 Lens 沒有提供此 規格時,需要採用 Backlash 校正的方式取得。Backlash 校正的方式如下:

- 1. Zoom or Focus 馬達縮回到 Inside 位置。
- 2. Fwd Zoom or Focus 馬達,當經過 Home 點,將 Count1 歸零。
- **3.** 繼續 Fwd 並且 Count1++ 直到 Count1 = N 煞車停止。(Ex: N = 200)
- 4. 將 Count2 歸零。
- **5.** Bwd Zoom or Focus 馬達並且 Count2++。當經過 Home 點後,即不再對 Count2++,然後煞車停止。
- 6. Backlash 等於 (Count2 Count1)。

5.3. Miss Step Test

Miss Step Test

爲了確認 Lens 馬達的品質,我們會在工程模式增加馬達的失步測試程序,確認是否會有失步現象。測試的方法如下:

- 1. 馬達大步數 Fwd 到 Outside位置 (PI = 1)。
- 2. 馬達小步數(N) Bwd 直到 PI 訊號反轉 (PI=0),將 Count 歸 0。
- 3. 馬達移動到Outside位置,然後做任意且多次的來回移動。
- **4.** 馬達再次小步數(N) Bwd 直到 PI 訊號反轉 (PI = 0),檢查 Count 如果在正負(N)步左右,表示沒有失步。