

Digitized by the Internet Archive in 2023 with funding from University of Toronto

UNIVERSITY OF TORONTO
DEPARTMENT OF CIVIL ENGINEERING
Municipal and Structural

REPORT OF

JOINT BOARD OF ENGINEERS

ON

ST. LAWRENCE WATERWAY PROJECT

DATED NOVEMBER 16, 1926

OTTAWA
F. A. ACLAND
PRINTER TO THE KING'S MOST EXCELLENT MAJESTY
1927

REPORT OF

IOINT BOARD OF ENGINEERS

720

ST. LAWRENCE WATERWAY PROJECT

David November 16, 1926

THE RESTRICT THE PARTY OF STREET

CONTENTS

MAIN REPORT	
PA	
Constitution of the Board	4
Instructions to Board	4
Description of the Great Lakes System	6
Prior Reports.	9
Report of 1921 Recommendation of International Joint Commission.	11
Work done by the Joint Board of Engineers.	11
	13
	14
	15
	15
	16
	16
	17
	17
	18
	18
	18 19
	20
	20
	21
	21
	22
Niagara River	22
St. Clair River.	22
Construction period.	22
	22
	23
amprovedition of the garage and and an arrangement and arrangement arrangement and arrangement arrange	25
2 december 1 december	25
	25
	25
	26 26
	27
	27
	27
	28
	29
	29
	29
	29
Available heads—Single-Stage plan	30
Available heads—Two-Stage plan	30
Maximum installed capacities	31
	31
	31
Control of ferry operation	32
Costs	32 32
Recommendations Location of Barnhart Island dam and power houses	32
Control of flow.	33
Alternative plans considered.	33
	34
	34
	35
45827—A	

Soulanges Section—	PAGE
Description	
Prior plans. Improvement for navigation and power.	. 36
Complete river development	
Improvement for navigation alone	
Conclusions	
Lachine Section—	
Description	
Prior plans	. 39
Plan recommended by Board	
Power development	
Joint improvement for navigation and power	
St. Lawrence River at and below Montreal—	. 44
Description	. 46
Effect of diversion of water	
Restoration of navigable depths.	. 47
Control works with locks below Montreal	. 48
Findings on questions contained in the instructions to the Joint Board of Engineers.	. 49
MEMORANDUM RE APPENDICES	. 56
APPENDIX "A"	
AND A MAYOR ALL.	
FIELD AND OFFICE INVESTIGATIONS	
Investigations by Canadian Section—	
Staff	. 57
Borings	
Surveys	
Temperature measurements	
Investigation of ice jams and packs	
Experiments on strength of ice	
Discharge measurements.	. 59
Investigations by United States Section. Designs and estimates.	
Survey—Clayton to Brockville	
Survey—Chimney Point to Cardinal.	
Survey—Barnhart Island	. 60
Borings	. 60
Special Exploration of the dam site at Long Sault Rapids	. 61
Synopsis of Geological and Boring information	
Thousand Island Section.	
International Rapids Section	
Ogden Island.	. 65
Crysler Island.	
Long Sault Rapids.	. 66
Lake St. Francis Section	
Soulanges Section	
Lachine Section	. 71
APPENDIX "B"	
TATE TOMES CARD OF THE	
LAKE LEVELS AND OUTFLOWS	
Description— Areas and storage capacity	. 73
Supply	
Outflow	74
Annual fluctuation in lake levels	. 75
Temporary oscillation of lake surfaces	. 75
	. 10
Levels prior to 1860	. 75

iii

Diversions and outlets enlargements affecting lake levels—	PAGE
Diversions and regulation works, St. Marys River	76
Outlet enlargements and diversions, Lakes Michigan and Huron	79
Discharge formula, St. Clair-Detroit Rivers	79
Effect of a diversion from Lake Michigan	79 80
Black River diversions	81
Changes in discharge capacity of St. Clair River	81
Diversions, Lake Erie	82
Effect of diversions.	83
Effect of diversions, Lake Ontario	83
Summary of effect of diversions	84
Improvement of lake levels and outflows	85
Scope of investigations	85 85
Prior proposals	86
Detailed studies of lake regulation.	87
Supplies to the lakes.	88
Permissible high levels of lakes	91
Maximum discharge capacity of outlets	93
Minimum permissible discharge through outlets	95
Program of regulation to secure maximum benefits to lake levels	95
System adopted	96
Details of computation.	97
Results secured	100 100
Effects on lake levels	100
Design and cost of regulating works	102
Works on St. Clair River	102
Point Edward by-pass.	102
Stag Island contraction	102
Woodtick Island contraction	103
Contraction at delta	103
Summary—St. Clair River. Alternative plan of dam with lock.	103 104
Works in Niagara River.	104
Summary	105
Comparative cost of compensating works with dredging	105
Conclusions Regulation with partial control of the St. Clair River.	105
Regulation with partial control of the St. Clair River	107
Results secured	108 109
Combined regulation of Lakes Erie and Ontario.	109
Regulation of Lakes Michigan, Huron and Erie for the benefit of power development,	
Program directed to raising Lake Ontario levels.	111
Regulation of Lake Erie for Niagara Power	111
Compensating works—	
On Niagara River.	111
Estimated cost Effect on oscillations at Buffalo	113 113
Adaptibility to changing conditions.	113
Construction period	113
On St. Clair River	113
Construction period	114
Alternative plans,	114
Effect of ice gorging	115 115
Effect of control of lake levels on cost of interlake channels.	
Datum planes	116
Datum planes. Cost of channels from Lake Erie to Lake Superior	117
Regulation of Lake Ontario only	118
Ends secured by proposed program	118
Lake Huron corrections.	118
Results secured	120
45827—A ½	

rp. 1.1.	and the last control of the subsection of the su	PAGE
Tables-	Local supply to Lake Superior	121
1. 2.		122
	Total supply to Lake Michigan-Huron	123
3.	Local supply to Lake Michigan-Huron	124
4. 5.	Local supply to Lake Erie	125
6.	Total supply to Lake Ontario.	126
7.		127
8.	Local supply to Lake Ontario	78
9.	Effect of regulation—Lake Superior.	128
10.	Effect of regulation—Lake Michigan-Huron	143
11.	Effect of regulation—Lake Erie.	159
12.	Effect of regulation—Lake Ontario	176
13.	Partial list of damages which would result from high water in Lakes Michigan	1,0
	and Huron	192
14.	Partial list of damages which would result from high water in Lake Erie	193
15.	Partial list of damages which would result from high water in Lake Ontario	194
16.	Maximum safe stages for regulation	96
17.	Storage at determining points on storage distribution curves, for regulation	
	with complete control of St. Clair River	197
18.	Typical computation, proposed regulation of Lake Ontario only	119
19.	Effect of proposed program for regulation of Lake Ontario alone	198
20.	Details of cost of works for regulation with complete control of St. Clair River.	215
Plates-		
1.	Effect of present regulation of Lake Superior	217
2.	Mass diagram of total supply to the Great Lakes	218
3.	Stages in all lakes with probable frequency of once in 8, 20, and 50 years	219
4.	Maximum allowable discharge of St. Lawrence River.	220
5.	Predicted supplies for program of regulation	221
6.	Supply to Lake Superior, May, showing relation to supply during previous	
	month	222
7.	Typical storage distribution curves	223
Regulat	ion with complete control of St. Clair River—	
8.	Comparative levels and discharges—Lakes Superior and Michigan-Huron	224
9.	Comparative levels and discharges—Lakes Erie and Ontario	225
10.	Stage duration curves of various schemes of regulation	226
11.	Discharge duration curves of various schemes of regulation	227
Regulat	ion with partial control of St. Clair River—	
12.	Rule for controlling outflow of Lake Superior	228
13.	Rule for controlling outflow of Lake Michigan-Huron	229
14.	Rule for controlling outflow of Lake Erie	230
15.	Rule for controlling outflow of Lake Ontario	231
16.	Comparative levels and discharges—Lake Superior	232
17.	Comparative levels and discharges—Lake Michigan-Huron	233
18.	Comparative levels and discharges—Lake Erie	234
19.	Comparative levels and discharges—Lake Ontario.	235
20.	Proposed compensation works in upper St. Clair River	236
	d regulation of Lake Ontario alone—	
	Rule curve	237
22.	Duration curves of discharge and levels—Lake Ontario	238
	The state of the s	
	APPENDIX "C"	
DE	TAILED PLANS AND ESTIMATES FOR THE IMPROVEMENT OF THE	
	ST. LAWRENCE	
IInit oc	sts	239
Navigat	ion standards	240
Power	nouse design.	241
	louse design.	241
Admini	stration and contingencies	241
	planes	241
	nd Island Section	241

Contents

		PAGE
	ional Rapids Section	242
	ription	242 243
Pres	ent navigationns and villages	243
	ent power developments	243
	s for improvement.	244
	Full Single Stage Plan	244
	Two Stage Plans	250
	Ogden Island—224	250
	Crysler Island Two Stage Plan.	254
	Partial Single Stage Plan	256
	Improvement for Navigation alone	257
	Francis Section	260 261
	ex Section	261
	posed plan of improvement	262
	nomic consideration	264
	rovement for navigation alone	269
Imp	rovement for power alone	270
Lachine	Section	270
	ription	270
Plan	s for improvement	273
Plan	recommended	273
	rnative plans	275
Pow	er development	277
Alte	rnative plans for side canal	278
	Tables	
Table N		
	ional Rapids Section—	001
1.	Single Stage Scheme (242)	281
2.	Single Stage Scheme with dam at Hawkins Point	288 290
3. 4.	Single Stage Scheme with dam at Long Sault Site	290
5.	Crysler Island—Two Stage development—217.	310
υ,	See also Table No. 40 (Page 392a)	910
6.	See also Table No. 40. (Page 392a). Single Stage development—238.	319
7.	Improvement for navigation alone.	326
	Francis Section—	
	Recommended Project	330
Soulange	es Section—	
9.	Recommended Project-details	331
10.	Recommended Project—summary	341
11.	Recommended Project—over all cost, power marketed at 40,000 H.P. per year.	341
12.	Recommended Project—power marketed at 75,000 H.P. per year	342
13.	Recommended Project—power marketed at 150,000 H.P. per year	342
14.	Hungry Bay-Melocheville Project for navigation alone—details	343
15.	Hungry Bay-Melocheville Project for navigation alone—summary	346
16.	Lateral Canal on North Side of River for navigation alone—details	347 350
17. 18.	Lateral Canal on North Side of River for navigation alone—summary Navigation combined with all river development—Centre pool elev. 115—	390
10.		351
19.	details	001
15.	summary	358
20.	Navigation combined with all river development—Centre pool elev. 115—	990
20.	over all cost	358
21.	Navigation combined with all river development—Centre pool elev. 125—	000
	details	359
22.	details	
	summary	363
23.	summary Power alone as in Recommended Project—details	364
24.	Power alone as in Recommended Project—summary	368
25,	Navigation combined with partial power development—Hungry Bay-Meloche-	
	ville Route—Diversion for power—31,800 c.f.s.—details	369

ri .	C	ontents
------	---	---------

	PAGE
26. Navigation combined with partial power development—Hungry Bay-Meloche- ville Route—Diversion for power—15,500 c.f.s.—summary	374
27. Navigation combined with partial power development—Hungry Bay-Meloche-ville Route—Diversion for power—31,800 c.f.s—summary	374
Navigation combined with partial power development—Hungry Bay-Melocheville Route—Diversion for power—66,700 c.f.s.—summary 29. Over all cost of various schemes of improvement	375 375
Lachine Section— 30. Recommended Project—Navigation alone—details 31. Recommended Project—Navigation alone—summary 32. Power development, subsequent to Navigation—details 33. Power development, subsequent to Navigation—summary 34. Power development, subsequent to Navigation—over all cost 35. Navigation alone without control dam—details Power House Installations—	376 382 383 387 387 388
36. International Rapids Section. 37. Soulanges Section. 38. Lachine Section. Flooded Lands—Various schemes—	389 390 391
39. International Rapids Section	392
APPENDIX "D"	
RIVER LEVELS AND DISCHARGES AT AND BELOW MONTREAL	
Discharge Stage relation curves. Effect of Chicago Diversion on water levels. Compensation Dredging Montreal Harbour. Piers and dock walls. Summary	393 396 396 397 397 397
 Table No. Derivation of Discharge—Stage relation for Lock 5—Lachine—Period 1904 to date Derivation of Discharge—Stage relation for Lock 5—Lachine—Period 1860 to 1877 Derivation of Discharge—Stage relation for Lock 1—Lachine. Derivation of Discharge—Stage relations at Varennes and Sorel. 	398 401 401 404
APPENDIX "E"	
ICE FORMATION ON THE ST. LAWRENCE AND OTHER RIVERS	
Ice pressure 1ce formation in rapid water. Effect on power improvement. Factors affecting ice covers. Limiting velocities for advance of ice packs. Rates of ice production. Slopes through ice covered sections. Summary of conclusions.	406 407 407 407 409 409 412 414
Table No.	
 Ice formation conditions between Lanoraie and Sorel on the St. Lawrence River Conditions under which ice bridges or packs have advanced on the St. Lawrence 	415
River 3. Conditions under which ice bridges or packs have receded on the St. Lawrence River	416
Amount of frazil or slush formed under various conditions. Degree days of freezing to which water surfaces at Montreal and Kingston are exposed.	418
 Average air temperature at certain stations for winter months. Values found for "V" and "M" in Bazins formula. Values found for "V" and "M" in Bazins formula. Relation between slope in feet per mile and curvature in degrees per mile 	418 419 420
through ice packs 10. Determination of the rate of heat loss in exposed water surface, during cold weather, between various stations on the St. Lawrence River	421 422
, sources stations on the St. Danielle Hivei	166

APPENDIX "F"

EXPERIMENTS ON STRENGTH OF ICE	PAGE
Objects of tests	423
Annaratus used	424
Continuous vielding of ice under small pressure	425
Standard method of loading in compression tests. Direction of applied load, and determination of modulus of elasticity	426
Direction of applied load, and determination of modulus of elasticity	426
Compression tests at 28°F. to 30°F.	427
Compression tests at 14°F, to 16°F.	428
Compression tests at 3°F.	429
Tables showing deformations of compression blocks	429
Summary of compression tests at different loading rates at temperatures ranging from	435
about 30°F. to 3°F Deformations under sustained loads at 14°F. to 16°F	436
Bending tests—modulus of elasticity and modulus of rupture	437
Compression or crushing strength of ice	441
Miscellaneous tests.	444
Weight of ice.	444
Deflection of beam under small sustained loads	444
Deflection of beams under their own weight.	445
Acknowledgments	445
Plates	
Plates 1-7—Results of experiments on physical properties of ice	446
8—Apparatus used in experiments	453
APPENDIX "G"	
CONSTRUCTION PROGRAM	
Construction schedule	454
Thousand Islands Section.	457
International Rapids Section.	457
Improvement by Two Stage Projects	458
Crysler Island Project.	458
Lake St. Francis Section.	459
Soulanges Section.	459
Lachine Section	459
THE FOLLOWING PLATES TO ACCOMPANY APPENDICES "C", "D" AND "E"	ARE
IN THE BOX ACCOMPANYING THE REPORT	
APPENDIX "C"	
Plate No. 1. Plan and Section of Typical Lock.	
2. Diagram showing relation between Quantity of Concrete in Power Houses	and
Height-Draft Tube floor to coping.	anu
3. Diagram showing relation between cost of Generators, Turbines, Exciters Governors, and Maximum Operating Head.	and
4. Diagram showing relation between cost of switching per Horse Power and Max	imum
Operating Head. 5. Diagram showing relation between R.P.M. and cost of Generators and Exciters	
 Diagram showing relation between R.P.M. and cost of Generators and Exciters Diagram showing relation between Head and cost of Turbines and Governors. 	
7. Diagram showing relation between Head, c.f.s. per unit, and Throat Diameter.	
8. Diagram showing relation between Head, Speed and Throat Diameter.	
9. Types of Banks adopted for estimating purposes.	
10-16. Thousand Island Section—Brockville to Clayton.	
•	
International Rapids Section	
17-24. Single Stage Scheme—242.	
25. Relation between surges on Lake Ontario and Barometric Pressure.	
26-33. Two Stage Development—224.	
34-38. Two Stage Development—217—Crysler Island. 39-43. Single Stage Development—238.	
39-43. Single Stage Development—238. 44-45. Diagrams showing results of Backwater calculation.	

Contents

LAKE ST. FRANCIS SECTION

46 48. Project Recommended.

SOULANGES SECTION

- Project Recommended-1st Stage of Ile aux Vaches Project.
- 51. Subsequent Stages of Ile aux Vaches Project.
- 52 53. All River Development-Centre Pool Elev. 115.
 - All River Development—Centre Pool Elev. 125.
- 56-57. 58-59.
- Navigation and Power Combined. Hungry Bay-Melocheville Route. Alternative Navigation Project. Hungry Bay-Melocheville Route. Alternative Navigation Project. Lateral Canal on North Side. 60-61

LACHINE SECTION

- 62-64. Project Recommended.
- 65-66. Power Development Subsequent to Project Recommended.

APPENDIX "D"

- 1. Derivation of Discharge Stage relation for Lock No. 25.
- Relation between Gauge reading at Lock 25 and discharge of St. Lawrence River
- Relation between Gauge reading at Grenville, Que., and discharge of the Ottawa River.
 Relation between Gauge reading at Upper St. Annes Lock and discharge of Ottawa
 River into Des Prairies and Mille Iles Rivers.
- Relation between Gauge reading at Upper St. Annes Lock and discharge of Ottawa River into Lake St. Louis.

- Derivation of Discharge Stage for Lock No. 5, Lachine. Period 1860-1877.
 Derivation of Discharge Stage for Lock No. 5, Lachine. Period 1904 to date.
 Relation between Gauge reading at Lock No. 5, Lachine, and discharge of St.
- Lawrence River Relation between Gauge Reading at Pointe Claire, Que., and discharge of St.
- Lawrence River.

 Derivation of Discharge Stage for Lock No. 1, Lachine.
- 10.
- Typical Discharge Stage relation for Lock No. 1, Lachine. Derivation of Discharge Stage for Varennes, Que.
- Derivation of Discharge Stage for Sorel, Que.

APPENDIX "E"

- 1. Air and Water Temperature at various points. Lake Ontario to Montreal, 1921, 1922 and 1923.
- Air and Water Temperatures at various points. Lake Ontario to Montreal, 1924, 1925 and 1926.
- 3 Effect of snowfalls and cold weather on height of ice jams in St. Lawrence River, 1913, 1916 and 1920.
- 4. Effect of snowfalls and cold weather on height of ice jams in St. Lawrence River, 1918, 1922 and 1923.
- 5. Effect of snowfalls and cold weather on height of ice jams in St. Lawrence River, 1923 and 1925.
- 6. Effect of snowfalls and cold weather on height of ice jams in St. Lawrence River, 1924, 1925 and 1926.
- Relation between slope through ice packs and curvature of river.
 Slush sections, St. Lawrence River—Winter of 1923-24.
 Slush sections, St. Lawrence River—Winter of 1923-24.

REPORT OF JOINT BOARD OF ENGINEERS

ON

ST. LAWRENCE WATERWAY PROJECT

- 1. The Joint Board of Engineers appointed by the Governments of the United States and Canada presents herein its report on the improvement of the St. Lawrence River between Lake Ontario and Montreal, and on related questions referred to it by the two countries.
 - 2. The report is subdivided into the following parts:—
 - Part I—Constitution of Board; Instructions to Board; General Description of Great Lakes and St. Lawrence; Prior Reports; Work Done by Board.
 - Part II—The Great Lakes; Existing Diversions and their Effects; Remedial Measures; The Cost of Improving the Lake Channels to conform to the Improvement of the St. Lawrence.
 - Part III—Improvement of the St. Lawrence above Montreal; The Plans Recommended by the Board for Improvement for Navigation and Power.
 - Part IV—The St. Lawrence at and below Montreal; Effect of Diversions; Remedial Measures; Effect of the Proposed Improvement of the Upper St. Lawrence on the Lower River.
 - Part V—Specific Answers to Questions contained in the Instructions to the Board.

PART I

CONSTITUTION OF THE BOARD

- 3. The President of the United States appointed, on March 14, 1924, a national committee of nine members, designated as the St. Lawrence Commission of the United States, having as its chairman the Hon. Herbert Hoover, Secretary of Commerce, to act as an advisory committee to the Government on all questions that might arise in the consideration of the project for the improvement of the St. Lawrence.
- 4. The Government of Canada on May 7, 1924, appointed a National Advisory Committee of nine members, having as its chairman the Hon. George Perry Graham, Minister of Railways and Canals, to advise that Government on the matters relating to the project.
- 5. Following a recommendation of the International Joint Commission in a Report on the Improvement of the St. Lawrence River, dated December 19, 1921, it was agreed by the two countries that a Joint Board of Engineers, consisting of three members representing Canada and three members representing the United States, should be constituted to review the plans then formulated and to report on additional related matters referred to it with the mutual approval of the two countries.
- 6. The United States Government designated as members of the United States Section of the Board and as advisers to the St. Lawrence Commission of the United States, the following officers, assigned to that duty by orders of the War Department, dated April 2, 1924:—
 - Major General Edgar Jadwin, Chief of Engineers (then Colonel, Corps of Engineers).

Colonel William Kelly, Corps of Engineers.

Lieut.-Col. George B. Pillsbury, Corps of Engineers.

- 7. The Government of Canada appointed on recommendation of the Privy Council, approved by the Governor General, May 7, 1924, the following members of the Canadian Section of the Board, who also act as advisers of the National Advisory Committee of Canada:—
 - Mr. Duncan W. McLachlan, of the Department of Railways and Canals, Ottawa.
 - Mr. Olivier O. Lefebvre, Chief Engineer Quebec Streams Commission, of Montreal.

Brig.-General Charles Hamilton Mitchell, C.B., C.M.G., of Toronto.

8. Instructions to Board. The instructions to the Joint Board of Engineers were agreed to by the two Governments by an exchange of notes dated February 4 and March 17, 1925, and are as follows:—

The Governments of Canada and the United States have accepted the recommendation, made by the International Joint Commission in its report dated December 19, 1921, that the question of the development of the St. Lawrence river for navigation and for the supply of power be referred to an enlarged joint board of engineers.

It is desired that the new board should review the report dated June 24, 1921, made by the late Mr. W. A. Bowden and Col. W. P. Wooten, and that it should extend its inquiries to certain additional matters with a view to supplying the technical information

likely to be relevant to the proposals made in the report of the International Joint Commission above referred to. The new board is therefore charged at this time with reporting upon the following:—

- 1. Is the scheme for the improvement of the St. Lawrence waterway, presented by the board in its report of June 24, 1921, practicable and does it provide to the best advantage, at this time and ultimately, for the development of the capacities and possibilities of the waterway?
- 2. What alternative scheme, if any, would be better adapted to secure the ends desired, due consideration being given,—

(a) To any special international or local interests having an importance justifying

exceptional consideration; and

- (b) To the extent and character of the damage through flooding and the probable effect of the works upon the formation of ice and the consequent effect on the flow of the river?
- 3. Should the estimates of cost be revised and, if so, what are the revised estimates of cost having regard to alternative schemes?
- 4. In order to assist either Government to allocate the amounts chargeable to navigation and power, what would be the respective estimated costs for improving the river for navigation alone and for power alone?
- 5. To what extent may water levels in the St. Lawrence river at and below Montreal, as well as the river and lake levels generally, be affected by the execution of the project?
 - 6. (a) To what extent and in what manner are the natural water levels in the St. Lawrence river and on the lakes affected by diversions authorized by license by either Canada or the United States, from or in the St. Lawrence river watershed?
 - (b) By what measures could the water levels or navigable depths affected by the diversions referred to in section 6 (a) be restored, and what would be the cost thereof?
 - (c) How much power could be developed on the St. Lawrence river with the water diverted from the watershed referred to in section 6 (a) under—

(1) The plans recommended.

- (2) Alternative plans providing for a full practical development of the river?
- (d) Without considering compensation by the present relative diversions of water from the Niagara river and from lake Erie, and without prejudice to a future consideration thereof, what works, if any, could be constructed to recover on the St. Lawrence river the amount of power determined under section 6 (c), and what would be the cost of such works?
- Having regard to economy of construction and maintenance, expedition of construction and efficiency of operation,—
 - (a) Which of the works should be constructed under the technical supervision of an international board and what other works, if any, might advantageously be constructed under such supervision?
- (b) Which of the works should be maintained and operated by an international board and what other works, if any, might advantageously be so maintained and operated?
- 8. What, if any, readjustments in the location of the international boundary are necessary or desirable to place power structures belonging to either country within its borders, as recommended by the International Joint Commission?
- 9. If the board is of the opinion that it would be advantageous to provide in the first instance for channel depths other than 25 feet, but less than 30 feet, for what draft of vessel should provision be made?
- 10. Having regard to the recommendation of the International Joint Commission that the new Welland ship canal should be embodied in the scheme and should be treated as a part thereof, and to the fact that if a greater depth than 21 feet be adopted for the initial project depth of the St. Lawrence, such greater depth would not be available to the upper lake ports without further work in the navigation channels in the lakes, what would be the cost of improving the main navigation channels between and through the lakes, so as to provide, without impairing the present lake levels for (a) a depth of 25 feet and (b) for such other depth not exceeding 30 feet, as may be determined by the board to be that for which it would be most advantageous to provide on the St. Lawrence river?
- 11. What is the time required to complete the proposed works, the order in which they should be proceeded with, and the progress which should be made yearly toward the completion of each in order to secure the greatest advantage from each of the works and from the development of the waterway as a whole?

It is desired that the report be accompanied by such drawings as are necessary for showing the location and general character of the works proposed.

It is also desired that in the preparation of the report, due regard should be had to any diversions from or in the St. Lawrence River watershed which, at the date of the

report, are authorized by license by either Canada or the United States.

It is desired that the board report, from time to time, on the matters referred to it as the progress of its inquiries permits, and that these inquiries be so prosecuted that, practicable, the board should have reported on all such matters by the end of April, 1926.

9. Funds for the work of the Canadian Section of the Joint Board were voted by the House of Commons of Canada yearly as required. Funds for the American Section were provided by the Deficiency Act of March 4, 1925, which made available for that purpose, under the direction of the President, not exceeding \$275,000 of funds appropriated for maintenance and improvement of river and harbour works.

DESCRIPTION

- 10. The Great Lakes are the source of the St. Lawrence, and form with it a waterway system extending from the interior of the continent to the sea. Lake Superior, the uppermost and largest of the Great Lakes, discharges into lake Huron through the rapids of St. Marys falls and the St. Marys river. Lake Michigan is connected with lake Huron by the wide and deep straits of Mackinac. Lake Huron discharges into lake Erie through the St. Clair river, lake St. Clair, and the Detroit river. Lake Erie discharges into lake Ontario through the Niagara river. From lake Ontario, the St. Lawrence flows 533 miles northeast to Father Point, which marks its transition into the gulf of St. Lawrence. The first 115 miles of the river is on the international boundary between Canada and the United States; the remainder of its course is through Canadian territory. The city of Montreal is 183 miles downstream from lake Ontario.
- 11. The distances by the ordinary vessel routes from Duluth, Minn., and Port Arthur, Ont., at the head of lake Superior, to Kingston, Ont., at the head of the St. Lawrence, are respectively 1,160 and 1,038 statute miles. The distance from Chicago to the head of the St. Lawrence is 1,067 miles.
- 12. The fall, at mean stages, between lake Superior and lake Huron is 21 feet. Lake Michigan and lake Huron are at the same level. The fall from lake Huron to lake Erie averages 8.5 feet, taken up in the slopes of the connecting rivers. The fall from lake Erie to lake Ontario is 326 feet, of which approximately 165 feet is concentrated in the drop at Niagara falls proper. The fall from lake Ontario to Montreal harbour averages approximately 226 feet, and from Montreal to the sea about 20 feet, the latter distributed through the 160 miles of river between Montreal and Quebec.
- 13. Present Navigation. Navigation from lake Superior to lake Huron passes through the locks at St. Marys falls. Channels have been excavated through the St. Marys river above and below the locks, and through the St. Clair river, lake St. Clair, and the Detroit river, to afford a minimum depth of 20 feet at the lake levels that have been adopted as the standard for improvements. The extreme low stages reached by the lakes during the last few years have been generally below these levels, with the result that the channel depths are less than 20 feet. In the latter part of the navigation season of 1925, the depth available was 18 feet, and at no time during that year did the maximum draft that could be carried from lake Superior to lake Erie exceed 19 feet.

14. The dredged channels between lake Superior and lake Erie aggregate nearly 100 miles in length. Their cost, for capital account only, including the costs of the locks in the St. Marys river, has been as follows:—

Expended by the United States (to June 30, 1926) Expended by Canada (to March 31, 1925)	44,721,319 69 5,560,009 00
Total	\$50,281,328 69

- 15. Navigation from lake Erie to lake Ontario passes through the Welland canal, constructed and operated by the Dominion of Canada. The present Welland canal affords a depth of 14 feet at normal lake levels. The new Welland ship canal, under construction by Canada, is 25 miles in length, with 7 locks each having a lift of 46½ feet, and one guard lock. The portions of this canal first excavated were given a depth of 25 feet; the later contracts provide for a depth of 27 feet. The depth over the sills of the locks is 30 feet, to provide for subsequent enlargement of the canal reaches. The cost of the new Welland ship canal to March 31, 1925, has been \$50,772,092.77, and the estimated total cost when completed is \$114,526,484. These figures do not include interest during construction.
- 16. Navigation on the St. Lawrence river from lake Ontario to Montreal is provided by isolated channel improvements and a series of side canals around the rapids (also constructed and operated by Canada), which afford 14 feet depth.
- 17. The channels between Montreal and the sea have been dredged to a depth of 30 feet and a project to provide a 35-foot depth is about half completed.
- 18. Navigation on the Great Lakes and the St. Lawrence at the present time falls into three categories:—
 - (a) Lake navigation, operating normally on 20-foot draft, on and between all of the lakes except Ontario.
 - (b) Canal navigation, operating normally on 14-foot draft, between lake Erie ports and Montreal through the Welland canal, lake Ontario, and the St. Lawrence.
 - (c) Deep-sea navigation, from Montreal to the ocean.
- 19. The completion of the new Welland ship canal will open lake Ontario to lake navigation, which will then be separated from deep-sea navigation by the 183 miles of the St. Lawrence above Montreal.
- 20. The present lake commerce is upward of 100,000,000 tons per annum. The bulk cargoes, principally iron ore, coal, and grain, are moved in a special class of vessels developed for that purpose, of great length in proportion to their draft, so designed that they can be loaded and unloaded rapidly by special machinery installed for that purpose at terminal ports.
- 21. The present canal commerce through the Welland and St. Lawrence canals is carried by smaller vessels of similar design. These vessels are relatively high powered, to meet the swifter currents on the St. Lawrence. This commerce has been increasing rapidly in recent years; that on the St. Lawrence canals amounted to 6,206,988 tons in 1925. Nearly all of the grain reaching Montreal harbour in recent years is transported by this route.

22. Navigation Seasons. The average dates of opening and closing navigation on the inter-connecting channels of the Great Lakes and on the St. Lawrence river during the last twenty years have been as follows:—

Great Lakes above Welland canal, April 18 to December 19. Welland canal, April 18 to December 16. St. Lawrence canals above Montreal, April 26 to December 9.

The average date of the arrival of the first vessel from the sea into the port of Montreal during the last ten years has been April 28; the average date of the last departure for the sea, December 7.

- 23. The St. Lawrence. The part of the St. Lawrence with which this report is particularly concerned lies between lake Ontario and Montreal. The river here runs in deep slow-flowing reaches and lake-like expansions, readily improved for navigation, with intervening reaches of rapids and swift currents. For the first 67 miles from lake Ontario the river is a deep slow-flowing stream. It then passes through the remaining 49 miles of the international border in a succession of rapids and swift water. Leaving the border, the river expands into the quiet waters of lake St. Francis. From this lake it drops in a succession of rapids to lake St. Louis, and from lake St. Louis drops through more rapids to Montreal harbour.
- 24. As it is fed from the great reservoirs formed by the lakes, the St. Lawrence has a remarkably steady flow. The mean discharge out of lake Ontario during the past 66 years has been 246,000 cubic feet per second, the maximum average discharge for any month 318,000 cubic feet per second, and the minimum average discharge for any month 174,200 cubic feet per second. Except where affected by ice gorging in winter, the fluctuations in the river surface nowhere exceed a few feet. The bed and banks are not subject to erosion and the river is free from silt.
- 25. Geologically, the St. Lawrence is a new river. Rock surfaces exposed indicate the passage of the continental glaciers across the valley, and the bed of the swifter portions is paved with boulders from them, mingled with those formed from the country rock. The rock itself, as determined by borings, is generally uniform in contour, but is broken by valleys and ridges which strike across it northwards. These are sometimes intersected by depressions from pre-glacial drainage. In the upper reaches the rock disclosed by borings is crystalline limestone of a firm character and close texture, mostly quite suitable for supporting hydraulic structures. Between lakes St. Francis and St. Louis rock is a hard limestone and a hard sandstone, equally sound. In the lower reaches around Lachine and Montreal, there are igneous intrusions amongst limestone and shale which, while providing firm foundations, would require special protection against scouring.
- 26. The main banks and islands of the river are formed of mixtures of clay, sand, gravel, and boulders, lying or deposited on the rocky floor of the valley. These materials are mixed in strata and irregular bodies but, in general, tight enough to form fairly watertight foundations for hydraulic structures under low heads. The high points on both islands and mainland are capped with extensive but shallow boulder deposits.

PRIOR REPORTS

- 27. On the 21st of January, 1920, the Governments of the United States and Canada referred to the International Joint Commission, created by the treaty of the 11th of January, 1909, between the Governments of the United States and Great Britain, questions relating to the improvement of the St. Lawrence river between lake Ontario and Montreal for the purpose of making it navigable for deep-draft vessels, and securing the greatest beneficial use of the water for power.
- 28. Each of the Governments also designated an engineer to co-operate in the surveys necessary to plans for improvement, and in the preparation of plans and estimates. These engineers were instructed to submit the surveys, plans and estimates to the International Joint Commission.
- 29. Colonel William P. Wooten, Corps of Engineers, United States Army, was designated as the engineer for the United States, and the late Mr. W. A. Bowden, Chief Engineer, Department of Railways and Canals, was designated as the engineer for Canada, these officers receiving identical instructions from their respective Governments.
- 30. Report of 1921. Their report was submitted to the International Joint Commission on June 24, 1921. It is hereinafter referred to in this report as the Report of 1921. The salient conclusions and recommendations in that report are as follows:—
- (1) That the physical conditions (on the St. Lawrence) are favourable for improvements for navigation which will be permanent, and will have very low upkeep costs.
- (2) That improvement of the entire reach from Montreal to lake Ontario for navigation alone is feasible, but the loss of the power that can be generated as a by-product in some reaches is not warranted.
- (3) That the development of nearly all the potential power in the river, amounting to approximately 4,100,000 horse-power, can be made as co-ordinate parts of schemes for the improvement of navigation.
- (4) That the simultaneous development of such a vast quantity of power is not a sound economic procedure, as a market to take this output is not now in existence, and cannot be expected to spring into being at once.
- (5) That the sound method of procedure is to improve for navigation along those reaches where side canals and locks can most economically be used, and where the development of the power at some future time is not interfered with by the proposed improvements; and in that part of the river where the construction of locks and dams offers the most feasible means of improving navigation to provide for the development of the incidental power obtainable as a result of the heads created by the dams.
- (6) That the improvements undertaken afford a navigation channel 25 feet in depth, with lock sills 30 feet in depth, so built as to permit the eventual enlargement of the channel to that depth.
- (7) That the improvement be secured by the combined development for navigation and for power of the rapids section on the international boundary, side canals around the other rapid sections, and the necessary channel excavation elsewhere.

31. The estimated cost of the entire work to provide a 25-foot channel and to develop 1,464,000 horse-power was as follows:—

First division—side canal from Montreal Harbour to deep water in lake St. Louis.	55,783,000
Second division—side canal from deep water in lake St. Louis to deep water in lake St. Francis	36,590,000 1,158,000
Fourth division—combined navigation and power development in international section, with annual power output of 1.464,000 horse-power (total installed capacity approximately	
1,850,000 horse-power (Linear Histarie Capacity approximately 1,850,000 horse-power)	159,097,200 100,000
Total	\$252,728,200

- 32. The estimated cost of increasing the navigable depth throughout the entire stretch to 30 feet at a later date was \$17,986,180.
- 33. The report considered, but did not recommend, plans for power development in the First and Second divisions, respectively.
- 34. Of the total estimated cost of the project, \$159,097,200 was for the combined navigation and power development on the international section of the river. A head of 74 feet was to be developed by a dam across the river at the Long Sault rapids. A second dam was to be constructed 23 miles upstream at Ogden island, just upstream from Morrisburg, to provide navigation through the upper rapids of the reach, afford control over the flow of the river and insure suitable winter operation. The head of approximately 8 feet available at this dam in summer was not to be developed. The main dam and related structures were, however, to be so designed that they could be raised subsequently so as to utilize fully whatever head the operation of the works might show to be economically practicable.
- 35. It was estimated that if the improvements were carried on simultaneously it would be possible to complete them in eight years from the time the work was begun, if funds were made available as fast as needed.
- 36. The report pointed out that the construction of the upper dam proposed (at Ogden island) and the enlargement of the discharge capacity of the upper reaches of the river would afford control over the level of lake Ontario and the flow in the St. Lawrence river. This control can be so exercised as to raise the mean level of the lake without causing it to fluctuate beyond the limits previously reached. The studies made did not show, however, that any very great increase in the natural low-water flow can be made for the benefit of either power or navigation in Montreal harbour, or the ship channel below.
- 37. The engineers of the two countries united in all of the recommendations contained in the Report of 1921, except as to the program of regulation of the levels and outflow from lake Ontario which should be put into effect after the project was completed, each submitting a program regarded as most suitable to that end. The essential difference between the two was that the program proposed by the Canadian engineer provided for a greater restriction of the winter flow, with a view to creating more desirable ice conditions. With this restriction it was not possible to secure quite as favourable results from regulation as would be afforded by the program proposed by the United States engineer.
- 38. The plans presented in the Report of 1921 were made the subject of public hearings before the International Joint Commission. At these hearings

several alternative plans were presented for the consideration of the commission, especially with relation to the development of power in the International Section.

- 39. Recommendations of International Joint Commission. The report of the International Joint Commission included the following recommendations:—
- (1) That the Governments of the United States and Canada enter into an arrangement by way of treaty for a scheme of improvement of the St. Lawrence river between Montreal and lake Ontario.
- (2) That the new Welland ship canal be embodied in said scheme and treated as a part thereof.
- (3) That the proposed works between Montreal and lake Ontario be based upon the report of the engineering board—(Report of 1921)—but that before any final decision is reached the report of the board, together with such comments, criticisms and alternative plans as have been filed with the commission be referred back to the board enlarged by other leading members of the engineering profession, to the end that the whole question be given that further and complete study that its magnitude and importance demand, and that after completion the administrative features of the improvement be carried out as set forth in recommendations 7 and 8 hereof.
- (4) That there shall be an exhaustive investigation of the extent and character of the damage through flowage involved in the plan of development finally adopted.
- (5) That, assuming the adoption of the plans of the engineering board, or of other plans also involving a readjustment of the international boundary, in order to bring each of the power houses on its own side of the boundary, appropriate steps be taken to transfer to one country or the other, as the case may be, the slight acreage of submerged land involved.
- (6) That Canada proceed with the works necessary for the completion of said new Welland ship canal in accordance with the plans already decided upon by that country.
- (7) That such "navigation works" as do not lie wholly within one country or are not capable of economic and efficient construction, maintenance and operation within one country as complete and independent units, be maintained and operated by a board hereinafter called "the International Board," on which each country shall have equal representation.
- (8) That such "navigation works" as lie wholly within one country and are capable of economic and efficient construction, maintenance and operation as complete and independent units be maintained and operated by the country in which they are located with the right of inspection by the said international board to insure economy and efficiency.
- (9) That "power works" be built, installed and operated by and at the expense of the country in which they are located.
- (10) That, except as set forth in recommendation (11), the cost of all "navigation works" be apportioned between the two countries on the basis of the benefits each will receive from the new waterways: Provided, That during the period ending five years after completion of the works—and to be known as the Construction Period—the ratio fixing the amount chargeable to each country shall be determined upon certain known factors, such as the developed resources and foreign and coastwise trade of each country within the territory economically tributary to the proposed waterway, and that that ratio shall be adjusted every five years thereafter and based upon the freight tonnage of each country actually using the waterway during the previous five-year period.
- (11) That the cost of "navigation works" for the combined use of navigation and power over and above the cost of works necessary for navigation alone should be apportioned equally between the two countries.

WORK DONE BY THE JOINT BOARD OF ENGINEERS

40. A program of the field work and office investigations to be undertaken respectively by the two sections of the Board was adopted at a meeting held at Ottawa, April 13-16, 1925. This embraced surveys of the sections of the river not previously covered in detail, and borings to determine foundation

conditions at sites of proposed structures, with a special examination by shafts and borings at the site of the dam proposed in the Report of 1921 at the Long Sault rapids.

- 41. The Canadian Department of Railways and Canals, having available the data collected for the Report of 1921, continued investigations on the St. Lawrence river through the years 1922 and 1923 until the appointment of this Board in the spring of 1924. Through the remainder of that year the Canadian Section of the Board further continued these investigations, and in Aprli, 1925, after the adoption of the Board's program, both of the sections vigorously prosecuted extensive surveys and discharge meterings together with numerous borings, completing these in the summer of 1926. The United States Section devoted itself mainly to surveys and borings in the International Section, including the special work at dam sites around Long Sault rapids. The two sections together have made upwards of 400 borings covering the most critical portions of the St. Lawrence river between the Galop and Lachine rapids; these included a set of borings across the river in the swift water at the head of the Cedars rapids. The Canadian Section carried out in November and December of 1924 and 1925 an extended set of temperature measurements to determine the rate of loss of heat in the river, and in February and March, 1926, a set of experiments to determine the resistance of ice as bearing on the design of dams in the river.
- 42. Each section employed a competent and extensive engineering force in office and field to carry out its investigations. The office staff of the United States Section was maintained at the United States Lake Survey, Corps of Engineers, United States Army, at Detroit, and the Canadian, at the Department of Railways and Canals at Ottawa. The United States Section engaged the services of the engineering firm of Viele, Blackwell and Buck as consulting engineers on features relating to power development.
- 43. The Board had available for its use a large volume of data obtained from other sources. This consisted not only of topographic and hydraulic information concerning the lakes and river, but a great number of boring determinations as well as construction and price data useful for estimating purposes. The various departments of the Canadian and United States Governments contributed a large part of this. Other sources of information were the reports of the United States Board of Engineers on Deep Waterways of 1900 and the Georgian Bay Canal Survey of 1908, and data supplied by the St. Lawrence Power Company, the Canadian Light and Power Company, and the Montreal Light, Heat and Power Consolidated, and by the Hydro-Electric Power Commission of Ontario which for several years has carried on extensive investigations in the vicinity of Morrisburg and the Long Sault rapids. The Board has had a special advantage with respect to navigation cost data in the current prices established on the new Welland ship canal, a similar work now under construction. The Board has also received much valuable data from operating power companies and manufacturers of hydraulic and electrical machinery in both countries.
- 44. The Board held frequent meetings at various points on the river and Great Lakes, to study and discuss the problems involved in the improvement.
- 45. The results of these various investigations are set forth in appendices to this report.

PART II

IMPROVEMENT OF LEVELS AND OUTFLOW OF THE GREAT LAKES

- 46. This part of the report deals with,-
- (a) The extent to which the levels of the Great Lakes are affected by diversions of water (Question 6a of the instructions to this board).
- (b) The feasible measures for raising the levels of the lakes to correct the effect of authorized diversions, and to reduce the cost of improving the lake channels (Questions 6b and 10).
- (c) The extent to which the outflow from the lakes can be improved by the manipulation of their levels (Question 6d).
- (d) The cost of deepening the channels through and between the lakes (Question 10).

DESCRIPTION

- * 47. The Great Lakes serve two great economic uses; as navigation routes of vital concern to the two countries; and as a reservoir to equalize the flow of the St. Lawrence river.
- 48. The supply of water to the Great Lakes is furnished by the inflow of the many relatively small rivers of their drainage basins, increased by the rainfall on the lakes themselves, and decreased by the evaporation from the lake surfaces. The total area of the drainage basins of the lakes is approximately 300,000 square miles, of which nearly one-third is occupied by lake surface. Computations show that the average supply received from the land areas about equals that received as rainfall on the lakes, but that roughly 40 per cent of this total gross supply is lost by evaporation. The net supply varies widely. The records show rates of net supply to the whole lake system exceeding 800,000 cubic feet per second for a month; and they also show months during which the evaporation from the lakes exceeded the water received from all sources, with a consequent negative net supply. The average monthly net supply for the months of April and May is at a rate exceeding 500,000 cubic feet per second; and the average net supply for the month of November is at a rate of less than 20,000 cubic feet per second.
- 49. Notwithstanding this wide variation in supply, the monthly mean outflow from the lakes during the past 65 years has ranged between the narrow limits of 318,000 cubic feet per second and 174,000 cubic feet per second. But even this minimum was due partly to ice retardation. The minimum monthly mean discharge with open-river conditions was 194,000 cubic feet per second.
- 50. The lakes absorb the great variations in supply because of the rise and fall of their levels. When the supply is high, they rise and store water; when it is low they fall and deliver the stored water. The average annual rise and fall of the various lakes due to the seasonal variations in supply is from 1½ feet to 2 feet; but extreme variations in seasonal supply have caused fluctuations in lake levels ranging from 2.67 feet on lake Superior to over 4 feet on lake Ontario. Extreme high and low lake levels are reached at the ends of periods of excessive or deficient supply extending over several years. The maximum ranges of the montly mean levels of the various lakes since 1860 vary from 3.5 feet on lake Superior to a little more than 6 feet on lakes Michigan and Huron.

51. The period of low rainfall occurring during the past few years has brought down the levels of the lakes, and with other factors mentioned later has created record low levels on lakes Michigan, Huron and Erie. The rains of the summer of 1926 have, however, started the levels upward, and the lakes will return to their ordinary levels if the increased rainfall continues.

DIVERSIONS AND OUTLET ENLARGEMENTS AFFECTING LAKE LEVELS

- 52. It is evident that as the level of a lake falls, that of its outlet river will fall also, and the discharge capacity of the outlet river will be reduced. When water is diverted from the outlet, the lake levels will be steadily lowered with respect to their natural levels until the discharge capacity of the outlet has been reduced by an amount corresponding to the diversion, after which the effect of the diversion on lake levels ceases to increase. Thus, at mean stages of lake Erie, a fall of 6 inches in its level will reduce the discharge capacity of its outlet, the Niagara river, by 11,000 cubic feet per second. After a diversion of 11,000 cubic feet per second has lowered lake Erie by 6 inches, it will be balanced by the reduced outflow, and from then on the lake levels will remain substantially 6 inches below the levels that they would have if the diversion were not in existence.
- 53. The relation between the volume of flow of the various outlet rivers and the elevation of their water surface, or stage, has been accurately determined by repeated current-meter measurements made during the past quarter century, and the amounts by which the various existing diversions have affected the lake levels can be stated with assurance.
- 54. The time required for the decreasing outflow to reach an equilibrium with the decreased supply due to a diversion depends on the area of the lake in relation to its outlet capacity. Under present conditions, approximate equilibrium is reached on lakes Erie and Ontario in about a year, but several years are required to establish this equilibrium on the great reservoir formed by the combined areas of lakes Michigan and Huron.
- 55. It is obvious that any enlargement of the outlet channel will lower the level of a lake in the same manner as a diversion of water.
- 56. The levels of the Great Lakes have been affected by the following artificial factors:—
 - (a) The operation of the regulating works constructed to correct for the power diversions in the St. Marys river at the outlet of lake Superior.
 - (b) The diversion of the Chicago Sanitary District from lake Michigan.
 - (c) Diversions from lake Erie for power and navigation through the Welland canal and from the Niagara river.
 - (d) Changes in the discharge capacity of the St. Clair river at the outlet of lake Huron, and of the St. Lawrence river affecting lake Ontario.
- 57. Effect of Regulating Works, St. Marys River. The extensive diversions of water for power development at St. Marys falls, amounting to approximately 50,000 cubic feet per second, has made necessary the installation of gates across the river, at the head of the falls, to control the outflow and levels of lake Superior. The gates are operated and the diversions are controlled by an International Board of Control in accordance with conditions laid down by the International Joint Commission, May 26-27, 1914. Their operation substitutes artifi-

cial for natural control of the levels of lake Superior, and has, in general, increased the levels of that lake at low water, and somewhat diminished those at high water. The control of the outflow of lake Superior for power and for navigation at St. Marys falls has therefore, in general, been beneficial rather than injurious in its effect on the levels of lake Superior.

- 58. The operation of these regulating works has affected somewhat the levels of the other lakes, since the controlled discharge from lake Superior into them is at times greater than the natural discharge, and at times less. A computation shows that the maximum effect since the regulation was begun was reached in 1922 and 1923, when lakes Michigan and Huron were lowered by $4\frac{1}{2}$ inches, and lakes Erie and Ontario by 3 inches. From 1923 to 1925 the release of water from lake Superior was in excess of the outflow that would have occurred under natural conditions, with the consequence that by January, 1926, the other lakes were slightly higher than they would have been had there been no regulation of lake Superior.
- 59. DIVERSION OF CHICAGO SANITARY DISTRICT. The diversion by the Sanitary District of Chicago of an average yearly flow of 8,500 cubic feet per second from lake Michigan through the Chicago Drainage canal into the basin of the Mississippi river has been authorized by the United States under the terms of a revokable permit issued by the Secretary of War, effective March 3, 1925. The permit was issued subject to the conditions, among others, that the Sanitary District should construct extensive sewage purification works, and control works in the river, within five years, and provides that the authorization shall terminate on December 31, 1929, unless specifically extended. The estimated cost of the sewage purification works required under the permit is \$92,000,000. It is reported that these works are 46 per cent completed.
- 60. The diversion by the Sanitary District authorized by the permit is exclusive of the water pumped by the city of Chicago into its water-supply system and thence passing through the sewers into the Drainage canal. The amount so diverted in 1924 was reported as about 1,200 cubic feet per second. The permit was made contingent upon the adoption by the city of Chicago of an extensive program for metering its water service, and the execution of this program within ten years. The metering, which is estimated to cost \$15,000,000, will reduce the amount of water diverted through the city water-supply system, and will expedite the sewage purification by reducing the volume to be treated.
- 61. The official reports of the War Department show that the total diversion, including that diverted via the water-supply system, has averaged 8,660 cubic feet per second during the past five years. The Secretary of War, in issuing the permit, informed the Sanitary District that the diversion of water should be reduced to reasonable limits with utmost despatch. It was appreciated that the desired reduction could not be made instantaneously, but the conditions required under the permit were drawn with a view to making a substantial reduction by the time the permit expires.
- 62. The diversion of the Chicago Sanitary District authorized by license by the United States is taken in the present report as the diversion of 8,500 cubic feet per second specifically authorized in the permit issued by the Secretary of War.
- 63. BLACK RIVER DIVERSION. There is a small diversion from lake Huron into the Black river, which discharges into the St. Clair river below the head of the latter. Its effect on lake levels is negligible.

- 64. DIVERSIONS FROM LAKE ERIE. On the Welland canal, in addition to the water required for lockages, etc., diversions for power purposes aggregating the equivalent of a total of 2,050 cubic feet per second have been authorized by the Department of Railways and Canals of the Dominion of Canada. The best measurements available indicate a total present average flow of 3,100 cubic feet per second for both navigation and power. More water will be required for the large locks of the new deep-draft canal now under construction. The Board is informed by the Chief Engineer, Department of Railways and Canals of the Dominion of Canada that the total average flow will not exceed 5,000 cubic feet per second after the new canal is put in operation.
- 65. On the Niagara river a diversion for navigation purposes through the Black Rock canal, operated by the United States to carry lake shipping past the rapids at the head of the river, has a small effect on the levels of lake Erie. There is a diversion of approximately 1,500 cubic feet per second through the New York State Barge canal, including 275 cubic feet per second for power purposes. This water is drawn from the Niagara river at Tonawanda below the rapids at the head of the river and is discharged into lake Ontario. Its effect on lake levels is negligible. The effect of the considerable diversions for power on the Niagara river has been compensated for, at least to a large degree, by intake structures and the deposit of excavated material. The effect of the power diversions on the levels of lake Erie, if any, is also regarded as negligible.
- 66. The diversions via the Welland canal and the Black Rock canal affect not only the levels of lake Erie, but also to a small degree the levels of lakes Michigan and Huron.
- 67. Changes in St. Clair River. The St. Clair river (the outlet of lake Huron) is the one outlet of the Great Lakes system whose discharge capacity is not controlled by a natural weir of rock. The river has a sand and gravel bed. Any change in the slope of the river has an effect on the level of lake Huron. At the entrance from lake Huron it is contracted in a deep and narrow channel known as the Port Huron rapids, changes in the cross-sectional area of which have a much greater effect than those in any other similar length of the river. There is every reason to believe that this contraction was formed by the drift of beach gravel from lake Huron.
- 68. A detailed analysis of all available gauge records made by the United States Lake Survey indicates that between 1890 and 1900 discharge capacity of the St. Clair river increased possibly to the extent of 0.34 foot of stage of Huron. The question has been raised as to whether this was due to the dredging of navigation channels in the river. Most of such dredging was done, however, through the delta of the St. Clair, where the river flows with a flat slope through a number of channels into lake St. Clair, and the extent of the dredging was insufficient to produce any sensible increase of the discharge capacity of the river as a whole. A more probable explanation of the apparent increase in discharge capacities during that period is the natural erosion of the gravel bed of the Port Huron rapids.

The discharge measurements subsequent to 1899 afford a more definite basis for determining the changes in the discharge capacity of the river since that year. The shoaling caused by the wrecks of two schooners in the Port Huron rapids in 1900 reduced the discharge capacity by 0.1 foot of stage, leaving a net change of 0.24 foot to that date. No further change is indicated by the discharge measurements until after 1908.

- 69. The computations of the United States Lake Survey show that, between 1908 and 1925, the discharge capacity again enlarged to the extent of 0.38 foot of stage, and that this increase occurred in the contracted section near the head of the river. Its computations show no indication of any sensible increase in the discharge capacity except in this section. They do not show that the dredging done for the improvement of navigation during this period (embracing the removal of a shoal opposite Port Huron to the depth required for navigation), or the dredging of gravel for commercial purposes downstream from this contracted section, which has been permitted by both the United States and Canda, has sensibly affected the discharge capacity of the river.
- 70. In order to improve the navigable depth to the Point Edward docks, at the foot of the Port Huron rapids, the Department of Public Works of the Dominion of Canada authorized the licensees of the province of Ontario to dredge gravel in this contracted section. The records of the province show a total of 1,519,000 cubic yards dredged from this locality during the period. A survey made in 1925 disclosed that this dredging had been carried on by the licensees and others to such an extent as to create a material enlargement of the cross-sectional area of the river through a distance of about 6,000 feet, such enlargement for about one-half this distance amounting to more than 30 per cent of the original area. This survey showed an apparent removal of 2,400,000 cubic yards. The computed effect of the enlargement is 0.29 foot and agrees reasonably closely with the observed increase in the discharge capacity during the period. The survey showed that the narrow section above the location of the dredging had contracted during the period, leaving this dredging as the only assignable cause of the increase in the discharge capacity of the river.
- 71. From the above figures, the total effect of the enlargement of the discharge capacity of the river is taken at 0.6 foot of stage.
- 72. Precise information as to the effect of gravel dredging in the part of the river below Point Edward cannot be given at the writing of the report, but a joint survey is being made by the officers of the two countries covering the uppermost six miles of the river. From this survey further information will become available in regard to this matter.
- 73. Changes in Detroit River. The Detroit river has a wide sill of ledge rock across its lower reaches. The enlargement of the natural channels through this section of the river was commenced in 1876 and has been progressive since that time. In the lack of contemporaneous discharge measurements, the effect of the earlier excavation cannot be determined, but the amount of this excavation is insufficient to have caused any material increase in the discharge capacity of the St. Clair-Detroit outlet as a whole. In 1907 the excavation of a new straight channel, known as the Livingstone channel, was begun, but in the execution of the work the excavated material was so deposited as to compensate for the enlargement. The discharge measurements and computations made by the United States Government engineer in charge of the improvement since the opening of the channel have convinced the Board that the compensation for all channel excavation since 1901 was accomplished.
- 74. Changes in Niagara River. The Niagara river has had various minor contractions by bridge piers, shore encroachments, etc., and enlargements through the dredging of gravel for commercial purposes. Recent discharge measurements show that these have so closely balanced each other that the discharge capacity of the river has been substantially unchanged.

- 75. CHANGES IN St. Lawrence River. In the St. Lawrence river, the works undertaken by the Canadian Government in connection with the present 14-foot navigation included the closure of a minor channel at the head of the Galop rapids by what is known as the Gut Dam. This work was undertaken for the purpose of improving navigation at the rapids, but caused a reduction in the discharge capacity of the outlet of lake Ontario, which, in addition to counteracting minor channel enlargements made in the same period, raised the levels of the lake by somewhat more than 0.4 foot.
- 76. Control of Dredging Sand and Gravel in Outlet Rivers. The estimates of the cost of the channels of specified depths through and between the lakes, hereinafter presented, are based on the premise that the lake levels will not be lowered by the further enlargement of their outlets through the dredging of sand and gravel for commercial purposes. The control of this dredging to prevent injurious enlargements is now being considered in correspondence between the two countries.
- 77. Summary of Effect of Diversions and Outlet Changes. Omitting the small and varying changes resulting from the regulation of lake Superior, the effect of the various diversions and outlet changes is found to be as follows. The minus sign indicates a lowering of lake levels and the plus sign a raising of lake levels.

Cause	Amount of diversion, cubic feet	Effect, in feet, on levels of Lakes		
Cause	per	Michigan and Huron	Erie	Ontario
Authorized Diversions:— Chicago Sanitary District	8,500 2,050	-0·5 -0·025	-0·4 -0·1	-0·4 0
All present diversions and outlet changes:— Chicago Sanitary District. Welland canal. Black Rock canal. Changes in St. Clair river outlet— Prior to 1908	_,	-0·5 -0·04 -0·01	-0·4 -0·15 -0·05	-0·4 0 0
Subsequent to 1908. Gut Dam.		-0.3		
Total		-1.15	*-0.6	0.0

^{*}Upon the opening of the new Welland Ship Canal the lowering of the level of Lake Erie will be increased to $0.7\,\mathrm{feet.}$

IMPROVEMENT OF LAKE LEVELS AND OUTFLOW

- 78. Compensating and Regulating Works. The levels of the Great Lakes can be raised by works in their outlet rivers, which may be wholly in the form of fixed weirs and contractions or may be provided with sluice gates. The first of these have come to be termed compensating works, while the second are termed regulating works.
- 79. The effect of compensating works is to raise both the high and low lake levels in substantially the same degree, the fluctuation of levels remaining unchanged. After the lake levels have adjusted themselves to the new regimen of the outlet, the outflow from the lake will likewise be substantially the same as

if the compensating works had not been built. By operating the gates of regulating works, the discharge from a lake, and consequently the levels of the lake, can be controlled within limits to be discussed later.

- 80. REGULATION OF LAKE ONTARIO. The regulation of Lake Ontario is an inherent part of the plans for the improvement of the St. Lawrence river for navigation and power, proposed in Part III of this report, since these plans include a major enlargement of the rock sill at the head of the Galop rapids, which now controls the outflow from the lake, and provide for the control of outflow by sluice gates. The program for the regulation of lake Ontario recommended by the Board is presented in Appendix B.
- 81. REGULATION OF OTHER LAKES. Since regulating works are already in operation at the outlet to lake Superior, as a consequence of the large power diversions at St. Marys falls, there remains only the consideration of compensating or regulating works at the outlet of lake Huron (controlling also the levels of lake Michigan) and of lake Erie.
- 82. A widespread belief has arisen among members of the engineering profession as well as among the public at large, that a remedy for low lake levels and discharges can be found through a comprehensive system of regulation of these lakes. The Board has given the question searching study, and has turned to compensating works in the outlets of lake Huron and Erie only after it was found that the results that can be secured from regulating works are entirely incommensurate with their cost.
- 83. LIMITATIONS OF LAKE REGULATION. To many of the persons concerned in the levels of the Great Lakes, the apparent remedy for such low-water levels as are now occurring is the construction of regulating works across their outlets, with gates which can be closed at low-water periods to hold back the water which now runs out in excess of the supply, and which can be opened when the supply again becomes normal. It is the excess discharge during low-water periods, however, that furnishes the bulk of the flow of the Niagara and St. Lawrence rivers. There have been times when, for two months consecutively, practically all of the water flowing out of the lakes into the St. Lawrence came from the recession of lake levels. The lake levels would therefore have to be allowed to recede, when the rainfall is deficient, to maintain the natural low-water flow in the Niagara and St. Lawrence rivers.
- 84. Similarly, when the lakes reach high stages, it is not possible to hold back more water for storage against a future low supply, without raising the Lakes to such extent as would do great damage to industries and lands on the lake shores.
- 85. The operation of regulating works must therefore be limited to holding back water in storage when the supply is in excess of the requirements of the Niagara and St. Lawrence rivers, and the stages of the lakes are at the same time such that the water can be stored without risk of causing excessively high levels. The water stored can subsequently be used for maintaining the outflow of the Niagara and St. Lawrence during periods of deficient supply without drawing down the Lakes as far as they would fall under present conditions.
- 86. The lake levels can be raised by compensating works to the extent regarded as justifiable with respect to high lake levels. With regulating works the range of stage can be reduced, so that, with the same high levels, the low levels will be higher than those secured by compensating works.

87. Regulation for Lake Navigation. To determine the extent of the benefit, a program of regulation was formulated by the Board, which was designed to secure, with as complete a control over the outflow of the lakes as is at all practicable, the maximum improvement in lake levels, and at the same time assure a minimum discharge of 176,000 cubic feet per second out of lake Erie and 200,000 cubic feet per second into the St. Lawrence river. The natural discharge heretofore has fallen below these figures but 5 per cent and 15 per cent of the time, respectively. This program was then applied to conditions that actually occurred on the lakes during the period from 1894 to 1925, inclusive. Considering only the levels affecting navigation, and eliminating the fluctuation in the natural stages which were due to progressively increasing diversions and outlet enlargements, the results are as follows:—

Lakes	Range of stage of Lakes as regulated	Range in stage if not regulated	Gain by regulation
Superior. Michigan-Huron. Erie. Ontario.	Feet 2.4 2.4 2.8 2.8	Feet 2.8 3.5 3.3 4.2	Feet 0·4 1·1 0·5 1·4

- 88. The mnimum cost of regulating works necessary to put the program into effect is estimated at \$36,400,000. The cost of securing the same improvement in lake channels and harbours by compensating works supplemented by dredging is \$13,400,000, it being assumed that the dredging is undertaken in both cases as a part of the comprehensive project for channel enlargement. It is clear, therefore, that the construction of regulating works for the benefit of lake navigation is not economically justified.
- 89. Moreover, regulation works in the St. Clair river will necessarily be a burden to its present intensive water traffic. A preliminary investigation indicates that the control over the discharge of the river necessary to regulation could be obtained by a series of works, each with an open navigable pass having a width, depth, and current velocity suitable for navigation, and the estimate of \$36,400,000 is based on such a scheme. The scheme involves the maintenance of many miles of channel at the predetermined dimensions necessary to accomplish the result, and its practicability is not assured. It would certainly afford a waterway less convenient for navigation than are the present free channels. The somewhat more expensive plan that has been advanced, of works in which locks would be provided to pass vessels at the regulating works, would be more certain of operation, but would inflict a serious loss on present commerce through the delay of lockage. The total delay for each vessel passage, including the time lost in approaching the lock and delays awaiting lockage, would be approximately one hour. The aggregate economic loss resulting from such a delay to the great vessel movement through the waterway would be in the vicinity of \$1,000,000 per annum.
- 90. Furthermore, an analysis of the outflow from the lakes afforded by the program of regulation tested shows that, while the lowest outflow would be somewhat increased, the discharge would be held down to a lower flow than now occurs for nearly half the time, in order to build up the lake levels. As explained in Appendix B, a prolongation of the periods of low discharge disproportionate to the increase in the minimum discharge is an inevitable conse-

quence of the restricted discharge capacity of the lake systems. Aside from the effect on the future development of power, such long-continued low discharges would have serious consequences in reducing the water levels in Montreal harbour.

- 91. Various modified programs for regulation were tried out, but all with the same result; such improvement in lake levels as could be secured was at a cost greatly in excess of the saving effected in future channel and harbour dredging, and at the expense of prolonging the periods of low flow in the St. Lawrence.
- 92. Regulation for Power. While the general regulation of the Great Lakes is clearly inadvisable for the purpose of improving the lake levels for lake navigation, there remained a question whether it might be justifiable for the purpose of increasing the flow for power on the St. Lawrence. A study was made, therefore, to determine the results that could be expected if the operation of the works was directed toward that end, instead of toward reducing the fluctuations in the levels of the lakes. While the outflow could be thus redistributed to increase the primary power potentially available, no program of regulation was found that would increase materially the total output of plants with an installed capacity sufficient to utilize the mean flow of the river. The advisability of undertaking the regulation for the benefit of the power on the St. Lawrence depends, therefore, wholly on the nature of the market for power that may develop as the installation of power works proceeds. The regulation of lake Ontario alone will afford a sufficent control over the flow of that river for the advantageous development of power until at least the enormous amounts available without further regulation is absorbed. There is, therefore, no present justification for the great expenditure necessary to provide regulating works in the interest of power production.
- 93. General Aspects of Regulation. Regulation works could be administered to serve either of two divergent purposes. They could be used to decrease the fluctuations in the lake levels for the benefit of navigation and of riparian interests on the Lakes, at the expense of the outflow into the St. Lawrence; or they could be used to improve the outflow into the St. Lawrence for the benefit of power production and of navigation in the lower river, at the expense of the levels of the Lakes. The predominant interests concerned in the levels of the Great Lakes are in the United States; the predominant interests concerned in the outflow into the St. Lawrence are in Canada. Lake regulation might therefore, create points of difference between various interests in the two countries. It is not even possible to fix in advance a definite allocation of such benefits as might accrue from lake regulation, because any program of regulation must be based on past experience as to the supply of water to the lake system. If a future deficiency in supply should exceed past records in extent and duration, the question would arise whether the emergency should be met by holding back water in the lakes at the expense of the St. Lawrence, or whether the navigable depth in Montreal harbour is to be maintained at the expense of lake navigation.
- 94. The regulation of lake Superior has been satisfactory to the two countries for the reason that the fluctuations introduced in discharge from that lake are absorbed in the great reservoir formed by lakes Michigan and Huron without greatly affecting the levels of the latter or materially affecting the discharge of the Niagara and the St. Lawrence rivers. The recent great deficiency in supply to lake Superior, which was not anticipated when the program for regulation was drawn up, gave rise, therefore, to no special complications.

The regulation of lake Ontario, proposed as a necessary part of the improvement of the St. Lawrence, affects but one lake only, which has but 8 per cent of the area of the Great Lakes system. Its regulation will not affect in any substantial manner divergent national interests, and is a relatively minor problem, whose solution offers no serious difficulties. The regulation of the lakes as a whole is an entirely different matter.

- 95. Compensating Works. The investigations made by the Board show that it is advisable to construct compensating works in the Niagara and St. Clair rivers to counteract the effect of all diversions and outlet enlargements on the levels of lakes Michigan, Huron, and Erie.
- 96. Works Proposed, Niagara River. The works proposed in the Niagara river are located just above the contracted section of the river at Fort Erie, and in effect merely prolong this contracted reach. A longitudinal dyke, approximately one-half mile in length, is to be constructed to secure the required contraction. It is to be connected with the Canadian shore by a weir with its crest slightly below low-water-level, which will force practically all of the flow through the contraction at low lake levels, and a less proportion of the flow at high lake levels. The structures will not interfere with the free passage of ice, nor with such light-draft navigation as follows the river instead of using the Black Rock canal. In view of the approaching opening of the new Welland ship canal, with an increased diversion for its operation, they are designed to raise the low levels of lake Erie by 0.7 foot and the high levels by a slightly less amount. Should the amounts of the present or prospective diversions be reduced, the works can be altered at small cost to balance the reduced diversion. The cost of these works is estimated at \$700,000.
- 97. Works Proposed, St. Clair River. The works proposed on the St. Clair river are a series of submerged rock sills with crests 30 feet below the low-water stage of the river. It has been shown in paragraph 77 that present diversions and outlet enlargements have lowered the levels of lakes Michigan and Huron by 1.15 feet. The Board regards it as safe to restore them to the extent of one foot. The back-water effect of the compensating works proposed in the Niagara river is computed as 0.15 foot on lake Huron. It is estimated that 31 sills in the St. Clair river, will secure the remaining 0.85 foot of compensation proposed, at a cost of \$2,700,000.
- 98. This form of compensating works is selected primarily for the reason that the sills will not reduce the navigable width of this important waterway, nor will they increase the cost of providing a channel depth of 30 feet. While these works once built cannot be altered readily to meet a future reduction in the amount of the Chicago diversion, yet on account of the commercial value of the gravel in the river bed, it would not be costly to again enlarge the capacity of the river to meet such a reduction.
- 99. Construction Periods. To avoid an unwarranted reduction in the flow of the Niagara and St. Lawrence rivers while the lakes are being raised by the compensating works, the construction on the Niagara river should be spread over two years, and on the St. Clair river over four years' time, and the prosecution of the latter should be suspended during any extreme low-water periods that may occur at the time they are undertaken.
- 100. Compensation for Authorized Diversions Only. The proposed compensating works will counteract not only the effect of diversions authorized by license in the United States and Canada, but also the effect of outlet enlargements, diversions for navigation, and diversions not covered by license. The

lake levels could be restored by similar but less extensive works to the extent that they have been reduced by diversions authorized by license in the two countries. The cost of such works would be nearly proportional to the amount of compensation of level effected, and is estimated as follows:—

Diversion compensated for	Cost of works in Niagara River	Cost of works in St. Clair River
Chicago Sanitary District Power diversions, Welland Canal	\$ 400,000 100,000	\$ 1,350,000

COST OF DEEPENING CHANNELS THROUGH AND BETWEEN THE LAKES

- 101. An uncompensated enlargement of the navigation channels through the St. Clair and Detroit rivers would slightly increase the discharge capacity of these rivers and hence will tend to lower the levels of lakes Michigan and Huron. On the Detroit river an enlargement can be compensated by the deposit of the excavated material. On the St. Clair river some additional compensating works will probably be required. The cost of these, to counterbalance the excavation of a channel to a depth of 25 feet, is estimated at \$200,000.
- 102. The cost of improving the channels between lake Erie and lake Superior to secure a depth of 25 feet below the levels which past experience indicates will be available 99 per cent of the time during the navigation season, after compensating works have been constructed, is as follows:—

TWENTY-FIVE FOOT CHANNEL.

	Total	 	 	\$44,700,000

The present project for the new Welland ship canal, when completed, will give this depth of 25 feet between lake Erie and lake Ontario.

103. The estimates are based on the deepening of present channels, with such minor enlargements and straightening as experience with these channels has proved necessary. The lake levels on which the depths are based are:—

Lake Superior	601.0
Lakes Michigan and Huron	
	573.75

The estimates do not include a new lock in the St. Marys river, since the available depth in two locks last built by the United States, the Davis and Fourth locks, is 24 feet when lake Huron is at the level chosen as a basis for this improvement. The additional depth provided in the 25-foot channels is no more than is required for safe and convenient navigation.

104. The estimates show that a saving of approximately \$1,250,000 will be effected in providing channels 25 feet in depth through and between the lakes by including compensating works in the project as proposed, rather than by securing the depth by dredging only. The construction of these compensating works will

afford also increased depth in all the harbours, large and small, on lakes Michigan, Huron, and Erie, and will reduce the cost of improving such harbours as may be deepened to correspond with the enlarged interlake channels. Moreover, without compensating works, the low-water depth in the Davis and Fourth locks at St. Marys falls will be but 23 feet. The construction of compensating works is therefore fully justified.

105. The costs of channels 27 and 30 feet deep, respectively, through and between the lakes at the same lake levels as those on which the channel 25 feet deep is based, are as follows:—

FOR A TWENTY-SEVEN-FOOT CHANNEL

Compensating works, Niagara and St. Clair rivers	54,900,000 6,500,000 1,100,000
Total	\$66,200,000
FOR A THIRTY-FOOT CHANNEL	
Compensating works, Niagara and St. Clair rivers	3,800,000 75,900,000 6,500,000 14,100,000
Total	\$100,300,000

The studies made by the Board relating to lake levels and outflow, and to works for their control, will be given at length in Appendix B.

PART III

THE IMPROVEMENT OF THE ST. LAWRENCE RIVER

106. This part of the report sets forth the plans presented by the Board for the improvement of the St. Lawrence river for navigation and power, between lake Ontario and Montreal Harbour.

DESCRIPTION

107. For convenience of reference, the Board will use the following names to designate the five sections into which this part of the river naturally divides itself. In order downstream these are:—

The Thousand Islands Section (Fifth Division of the Report of 1921), embracing the deep, lake-like reaches of the river, 67 miles in length, from lake Ontario to the first swift water at Chimney point, 3 miles downstream from Ogdensburg, N.Y., and Prescott, Ont.

The International Rapids Section (Fourth Division of the Report of 1921), embracing the 48 miles of rapids and swift water between Chimney point and the head of lake St. Francis.

The Lake St. Francis Section (Third Division of the Report of 1921), extending 26 miles through that lake to the end of deep water at its foot.

The Soulanges Section (Second División of the Report of 1921), embracing the 18 miles of rapids and shoal water from lake St. Francis to lake St. Louis.

The Lachine Section (First Division of the Report of 1921), embracing lake St. Louis and the rapids and shoals from this lake to Montreal Harbour, a length of 23 miles.

108. The first two sections lie along the international boundary, between the province of Ontario and the state of New York. The remaining three lie in the province of Quebec. The improvement of the Thousand Islands Section and of the Lake St. Francis Section is solely a question of excavating channels for navigation. The other three sections can be improved for power in addition to navigation.

GENERAL FEATURES OF PLANS

NAVIGATION

- 109. Fundamental Principles. The plans have been prepared in accordance with the recognized principle that the interests of navigation on the St. Lawrence are paramount. A full observance of this principle does not interfere with the beneficial use of the flow of the river for power generation. On the contrary, the improvement of the rapid sections of the river for the joint benefit of navigation and power affords, as a rule, much better navigation than could be secured by the improvement now economically justifiable in the interest of navigation alone.
- 110. In accordance with its instructions, the schemes presented by the Board are designed to provide to the best advantage, at this time and ultimately, for the development of the capacities and possibilities of the waterway. The magnitude of the interests in the two countries that would be affected

by the improvements if the project be adopted have been fully considered. The Board has visualized the fullest ultimate development of the navigable capacity of the waterway commensurate with cost. The endeavour has been made to provide the maximum amount of open-river navigation, with a minimum of locks and of canal navigation. For the initial improvement it has adopted the minimum standards hereinafter set forth, but the plans are so drawn that the navigation improvements can be enlarged, at the least economic loss, as the traffic justifies further improvement. Plans that would restrict the best eventual development of the waterway for navigation have therefore been discarded.

111: CHANNEL DEPTH. Conforming to the tenor of the instructions, the estimates are based on navigation channels 25 feet in depth. The sills of all locks and fixed structures are placed at 30 feet depth to permit of the future enlargement of the waterway. The Board has given careful consideration to the question whether it would be advantageous to provide initially for a channel depth other than 25 feet (Question 9 of Instructions). A majority of the Canadian Section favour the initial excavation to a depth of 27 feet. This is the depth to which the new Welland ship canal is being carried under the present contracts, and to which the sections of the canal previously excavated can be enlarged at relatively small cost. A majority of the United States Section regard the depth of 25 feet as sufficient initially, in the view that a project for a greater depth through the interlake channels above lake Erie is not foreseen for a long period. To afford full information on which to base the determination of this broad question of economic policy, the Board presents, in the summaries at the end of this part of the report, the estimates of the additional cost of excavating the channels initially to 27 feet; of the saving effected with an initial depth of 23 feet; and of the cost of subsequently enlarging the channel from 25 feet to 30 feet. Estimates for channels 23 feet deep are included, since such channels would accommodate comfortably all shipping that can use the existing interlake channels above lake Erie. The designs herein presented, and the alignment of the channels, are not affected by the depth to which the channels are excavated initially.

112. To remove any confusion between the depth of the channels and the draft of the vessels which can use them, the Board points out that channels 25 feet in depth are suitable for safe and convenient navigation by vessels of not to exceed 23 feet salt-water draft, and channels 27 feet in depth by vessels of 25 feet salt-water draft. For vessels of this size fresh-water draft exceeds salt-water draft by from 6 to 7 inches.

113. STANDARDS FOR CHANNELS AND LOCKS. The Board recommends and

has adopted the following standards for navigation improvements:

Channels for navigation have a minimum width of 450 feet, except in canal sections, where they have a bottom width of 200 feet (at 25-foot depth). Open channels are widened where advisable on account of cross currents and at bends, and are both widened and deepened as required to afford suitable current velocities for navigation. The minimum radius of curvature of the channels is 5,000 feet.

The locks conform in dimensions with those in the new Welland ship canal, and have chambers 859 feet in length between inner quoin posts, and 766 feet between breast wall and fender. The clear width of the locks is 80 feet, and the depth over the sills 30 feet. Duplicate sets of gates are so provided that two gates may always be closed against the upper level. Fenders will afford an additional safety precaution, and guard gates or emergency dams are provided when necessary to afford a means for stopping the flow that would result

from the accidental destruction of any lock gates. The plans are so drawn that all locks can be duplicated as commerce requires additional facilities, and the estimates include the foundations for duplicating all flight locks, since these have less ultimate traffic capacity than single locks.

114. Capacity of Waterway. The 25-foot waterway as designed has an estimated traffic capacity of 24,000,000 tons per annum after any flight locks included in the adopted plans have been duplicated. Flight locks are included in alternative plans for the improvement of the Soulanges Section only. With these alternative plans the initial capacity of the waterway would be 16,000,000 tons per annum until the duplicate locks of the flight were completed, after which the traffic capacity would be 24,000,000 tons, established by the capacity of the separate lock of the system having the highest lift.

POWER

- 115. Power Installations. The plans provide for an initial construction of power plants based on conservative estimates of the rate at which power can be marketed under restrictions as to exportation. The demand for power the world over is growing rapidly and the great potential power of the St. Lawrence river may well become an important factor in the economic welfare of the two countries. The Board has therefore drawn its plans with especial view to the eventual utilization of the complete power resources of the river.
- 116. The various power houses have the capacity for the development of the maximum flow which the Board considers as utilizable in the future. The interests of navigation require that the flow down the St. Lawrence be maintained at a high degree of uniformity, and prevent the maximum use of water for power by fluctuating the hourly flow to meet the fluctuating power demand. An installed capacity well in excess of the minimum flow of the river has been provided, however, since the increasing value of power will justify its eventual development from the flow available during high-water periods only.
- 117. The ultimate installation proposed by the Board in the International Rapids Section is somewhat less than the installation proposed by some of the applicants for authority to develop power in this section. The excess installed capacity provided in the plans of these applicants would afford little return on account of the limits inherent in the regulation of flow required in the interests of navigation and of power downstream.
- 118. The initial installation of power machinery in each power house will depend on the market available when the works are put in operation. For purposes of estimating the initial expenditures required, the initial installation is taken at 50 per cent of the eventual capacity of the power houses first constructed.
- 119. Winter Power Operation. A full study has been given to the winter operation of power plants. The fundamental problem is found to be the maintenance of the winter discharge capacity of the river without excessive loss of head from gorging with ice, rather than the local problems of handling the ice at the power plants themselves.
- 120. The power sections of the river now have so rapid a current that (with an exception elsewhere noted in this report) they always run open throughout the winter. From the time that the water reaches the freezing point, in late December or early January, until the end of winter, these exposed reaches are continuously losing heat and making ice, in the form of frazil and anchor ice.

Frazil is the term applied to the particles of ice forming in water where the current prevents the formation of a surface ice sheet. These particles agglomerate in pans of soft, snow-like ice, which float down the surface of the river. Anchor ice is the ice forming on the bed of the river, due to the loss of heat by radiation. It rises to the surface when loosened by the heat of the sun, and floats downstream in masses resembling frazil ice. The term "slush ice" is often applied to both. The masses of slush ice are carried down by the current and pack under and against the ice sheet formed over the quiet water at the foot of the reach, gorging the channels to such an extent that rises in the water level of from 10 to 30 feet occur in winter at the foot of each open section.

121. The construction of a dam in any of the power sections for the dual purpose of concentrating head for power development and of improving the river for navigation will, in the general case, create a deep slow-flowing pool, certain to freeze over early in the winter. The situation to be guarded against is the throttling of the river by the gorging of the channel at the upper end of this frozen pool. It is established by the Board from measurements of the loss of heat from the river, confirmed by measurements of the ice actually formed, that, with the temperatures obtaining in the region, from 15 to 20 cubic feet of ice will be made in the course of a severe winter for every square foot of open water. It is found, however, that in all cases where the current velocity is as low as 2.25 feet per second, the frazil and anchor ice consolidates on the surface when it meets an ice sheet, and extends this sheet upstream, without the excessive gorging and throttling of the river that occur at higher current velocities. The plans for power development are therefore based on enlarging the upper reaches of the power sections by excavation where necessary to insure, with the discharges that must be maintained in winter, current velocities not exceeding 2.25 feet per second, except through short distances at the upper ends of the power reaches where the remaining area of open water could not produce enough ice to be of serious consequence. Such ice as may be formed in these short distances would be stowed in nearby enlargements of the river below

With an ice sheet extending down to the intakes of the power houses, the operation of the power plants will be nearly, if not entirely, free from ice difficulties.

- 122. Modification of Plans during Construction. In such an extensive project as that for the improvement of the St. Lawrence it is not possible, even in the time consumed by the Board in its investigations, to arrive at the best possible design of all features of the project, both for navigation and for power. The estimates are based on safe and adequate structures and channels, but it is expected that the responsible authorities in charge of the construction will exercise the usual latitude in making such alterations as are found to be desirable in consequence of more detailed studies, and the development of the art.
- · 123. Datum Plane used in Report. All elevations in this report are elevations above mean sea-level. The precise reference planes used are described in Appendix C.

THOUSAND ISLANDS SECTION

(Fifth Division of Report of 1921)

124. This section, 67 miles in length, extends from Tibbets point, taken as marking the end of lake Ontario, to Chimney point, 3 miles downstream from the towns of Ogdensburg, N.Y., and Prescott, Ont. The river is generally

broad, deep and slow flowing, with a total fall at mean stage of but about one foot. Between Clayton, N.Y. (mile 20) and Brockville, Ont. (mile 52) a number of granite reefs endanger navigation, and the narrow deep channels through the Thousand Islands and the Brockville group require some straightening for safe and convenient navigation by deep-draft vessels. The improvement proposed is the removal of twelve reefs and the cutting back of four projecting points, all to a depth of 25 feet below a datum plane corresponding to elevation 242.5 on lake Ontario. The cost, determined from a detailed survey made by the present Board, is \$1,100,000. Details of the estimate are given in Appendix C.

125. The work recommended follows the same lines as that proposed in the Report of 1921, but the estimated cost is greatly increased on account of the more accurate data secured since that report.

INTERNATIONAL RAPIDS SECTION

(Fourth Division Report of 1921)

126. Description. This section extends from Chimney point (mile 67) to Colquhoun island (mile 115), opposite St. Regis, at the head of lake St. Francis, a distance of 48 miles. The river here runs in a succession of rapids, beginning with the Galop rapids, near the head of the section, and ending with the Long Sault rapids (miles 103 to 104), with the Rapide Plat just above Morrisburg, about midway between. Swift currents predominate in the reaches between the rapids and extend to the middle of Cornwall island (mile 111). The total fall through the section at mean river stage is 92 feet, of which approximately one-third occurs in the first 18 miles above the foot of the Rapide Plat at Ogden island, and the remaining two-thirds below that point. The present 14-foot navigation on the river is carried around the rapids by a series of side canals along the Canadian shore.

127. Prior Plans. The improvement proposed in the Report of 1921 was the construction of a dam in the Long Sault rapids which would raise the water level to elevation 231, creating a pool reaching into the Rapide Plat at Ogden island. At Ogden island a second dam with a lock was to be constructed, which with suitable channel enlargements would carry navigation through the upper part of the section. A canal along the Canadian shore, 8 miles in length, with two locks, was to carry navigation from the pool formed by the lower dam back to the river at the town of Cornwall. The plan included the development of power at a Canadian and an American power house located at the foot of Barnhart island, with a head of 74 feet and a total installed capacity of 1,777,360 horse-power. In addition, a second power plant with a capacity of approximately 60,000 horse-power, located near the head of Long Sault island, was to develop the surplus head of 29 feet created in the diversion which feeds the power plant of the St. Lawrence River Power Company at Massena, N.Y. The head available at the upper dam at Ogden island, amounting to about 8 feet during the ice-free months, was not to be developed for power. It was estimated that most of this head would be absorbed in winter by the increased river slope due to ice conditions. The structures creating the lower pool were, however, to be so designed that the pool level could be raised to recover a part or all of the head lost at the Ogden island dam, if desired at a future time.

128. Plans Proposed. The present Board concurs in the opinion that the improvement of the International Rapids Section should include the development of power. Its length is such that a side canal for navigation would be extremely costly and would impose an unnecessary hindrance to shipping.

129. The Board has given extended study to various plans for improving the river for power and navigation, including those presented by the Hydro-Electric Commission of Ontario and others to the International Joint Commission in 1921 and those recently submitted by American Corporations to the Water Power Commission of the State of New York.

130. The Board is of the opinion that the plan presented in the Report of 1921, although in a general sense practicable, should be modified to secure more dependable winter operation and to assure the fullest practicable utiliza-

tion of power resources of the river.

131. Two plans meeting these requirements have been prepared by the Board, one for a single-stage development, with a dam and power houses in the vicinity of Barnhart island, at the foot of the reach, but with control gates at Galop island at the head of the reach, except across the channel provided for navigation.* The second scheme is for a two-stage development, with two pools, the upper pool formed by a dam and power house at Ogden island, just above Morrisburg, and the lower pool (at normal elevation 224) by a dam and powerhouses at Barnhart island.*

132. Navigation. With the single-stage development, navigation enters the pool through a free channel from the upper river, and passes from the lower end of the pool through a canal, with two locks, on the United States side of the river, which leads to the south channel at Cornwall island, thence a free channel leads to lake St. Francis. With the two-stage development navigation similarly enters the upper pool through a free channel, passes from the upper to the lower pool through a lock at Odgen island, and from the lower pool to the south channel at Cornwall island by a canal with two locks as in the single-stage scheme. The two-stage scheme requires one more lock than the single stage.

133. Available Heads, Single Stage Plan. The levels of the pool of the single-stage development, during the ice-free months, after the full estimated channel enlargements have been made, will vary normally between the limits of elevations 240 and 244, depending on the level of lake Ontario and the flow of water determined by the program of regulation. The tail-water elevation will be about elevation 157. Further channel enlargement below the power houses may lower the tail-water somewhat and add to the head, but the increased power made available is not considered in this report. The normal summer head at the power houses of the single-stage development will therefore be about 85 feet. The increased slope of the pool in winter due to ice retardation is expected to amount to about 6 feet, and a rise of about 4 feet in the tailwater levels is anticipated from the increased slopes below the power house, so that the net winter head expected is about 75 feet.

134. Available Heads, Two-stage Plan. With the two-stage development, the lower pool will be kept closely to elevation 224, both summer and winter, giving a summer head of 67 feet and a winter head of 63 feet. The summer levels of the upper pool at the Ogden island power houses will range between elevations 241 and 245. On account of the slopes of the lower pool, the summer head at the Ogden island power houses will be about 17 feet. A winter head of 12 feet is expected. The plans and estimates provide for the utilization of a head of 21 feet temporarily during the period between the completion of the upper and lower plants, respectively.

^{*}The plans provide for partly closing the navigable channel by control gates, leaving a free opening for navigation at least 450 feet in width.

**Attention is directed to an alternative two-stage project which was prepared after Par. 131 to Par. 166 of this Report was presented in November, 1926. In the alternative project, the upper dam is placed at Crysler Island instead of at Ogden Island. It is described in Appendix "C," Par. 120 to Par. 134.

135. Maximum Installed Capacities. The maximum flow which the Board regards as eventually utilizable at the Barnhart island power houses is 245,000 cubic feet per second at winter head. The equivalent capacity at summer head in the single-stage development will be 261,000 cubic feet per second, and in the two-stage development 252,000 cubic feet per second. The utilization of such large flows will not be economically justified at the Ogden island power houses of the two-stage development, and the ultimate installation at these power houses is based on a flow of 212,000 cubic feet per second at winter head, equivalent to 240,000 cubic feet per second at summer head. The installed capacity of the power houses of the single-stage development based on the summer head and flow, and, including spares, is 2,326,000 horse-power. The installed capacity of the two-stage development, on the same basis, is as follows:—

Lower power house, Barnhart island	
Total	2,215,000 horse-power

- 136. The fact must be appreciated that the additional capacity proposed in the single-stage development is not a measure of power which can be delivered. Except for the slightly less efficiency of the machinery of the Ogden island power houses, which would not materially affect the total, the power that can be delivered depends on the flow of water available, which will be less than the installed capacity of the plants for the considerable part of the time.
- 137. Winter Operation, Single-Stage Plan. As for winter operation, the pool formed by the single-stage development is so wide and deep as far upstream as Ogden island that an ice cover will form over it promptly. The plans and estimates provide for the eventual enlargement of the constricted portions of the river from Ogden island as far upstream as Lotus island (at the foot of the Galop rapids), to the extent necessary to secure current velocities not exceeding 2.25 feet per second, in order to assure satisfactory ice conditions in winter. The contracted section from the foot of Lotus island to the head of Galop island, 2.5 miles in length, is to be given the area required for satisfactory navigation only, and is expected to have an open channel in winter; but the extent of this open water would be too limited to be of serious consequence in winter operation.
- 138. The amount of channel enlargement required to assure satisfactory winter operation cannot be predicted in advance with certainty. It is proposed to execute initially only such enlargement as is necessary to insure satisfactory navigation conditions, and to prosecute this enlargement after the pool has been created, when dredging can be done more advantageously, until satisfactory winter operation is secured. The control of the head through the section afforded by the control gates at the Galop will afford a means for insuring the winter discharge capacity of the river during this period.
- 139. Winter Operation, Two-Stage Plan. In the two-stage development some enlargement of the channels in the 8-mile reach between Ogden island and Weavers point is required to secure the desired low current velocities to assure winter operation. Above Ogden island the enlargement required will be identical with that required in the single-stage development. This enlargement must be completed before the complete scheme is put in operation, in order to ensure control of the winter flow and provide uninterrupted power at the Ogden island plant.

- 140. Control of Ferry Operation. Is is assumed that proper control will be exercised over the ferries operating between Ogdensburg and Prescott to prevent the ice situation from being aggravated by the breaking up of the ice sheet between these towns and Galop island by these agencies.
- 141. Costs. The cost of the single-stage development, including the full channel enlargement to insure satisfactory winter operation, is estimated at \$235,000,000. The cost of the two-stage development is estimated at \$264,600,000.
- 142. Recommendations. The United States Section of the Board recommends the single-stage development as affording better navigation by eliminating one lock, and obtaining slightly more power, at a cost of \$29,600,000 less than the cost of a two-stage development.
- 143. The Canadian Section of the Board recommends the two-stage development on the ground that it can be carried out in two parts, so that the power from the upper development can be developed and marketed before the whole of the improvement is completed. It believes that for this reason its overall cost, including interest charges, will not be as greatly in excess of the single-stage development as appears from the comparative costs without interest charges. It believes that the control over the flow of the river will be better assured. The flowage of land will be reduced from about 28,000 acres to about 18,000 acres.*
- 144. Location of Barnhart Island Dam and Power Houses. Whatever plan be adopted, there is a choice of sites for the dam and power houses in the vicinity of Barnhart island that create the pool of the single-stage development, or the lower pool of the two-stage development. A suitable site for the dam exists at the foot of the Long Sault rapids, on an arc extending from the head of Barnhart island to the foot of Long Sault island and thence to the United States shore. With a dam at this site, the channel between Barnhart and Sheek islands would be utilized as a forebay channel to the power houses, which would be located at the foot of Barnhart island. This general arrangement was contemplated in the Report of 1921. For the 224 two-stage development it is proposed to supplement the capacity of this forebay channel by utilizing also the channel known as Bergen lake, between Sheek island and the Canadian shore. The low banks prevent the use of this channel for that purpose at the high levels of the single-stage development.
- 145. With the dam built at the foot of Long Sault island, the navigation canal from the pool would leave the river at the middle of Long Sault island. It would be 6.9 miles long.
- 146. The second site for the dam is across the main river at the foot of Barnhart island. The foundation rock is here quite deep. With a dam at this site the navigation canal would leave the river at Robinson's bay, and its length would be reduced to 2.9 miles. The power houses would be adjacent to the dam. Two alignments for the dam and power houses at this location are shown on the plans, either of which is regarded as satisfactory.
- 147. The United States Section prefers the location for the dam at the foot of Barnhart island, since it reduces the length of the navigation canal, reduces the chance of local ice difficulties in winter (since the section of the pool above the power houses is ample to insure a firm ice cover), and simplifies operation through the juxtaposition of the dam and power houses. The Canadian Section

^{*} The above acreages include all lands the purchase of which is contemplated in the estimates. The area of land "stually inundated at maximum emergency levels, including the inundated portions of islands, will be 2,000 acres and 12,000 acres respectively.

prefers the location at the foot of Long Sault island on account of the higher rock foundations there found, which it believes will lessen construction difficulties. The choice between the two locations is regarded as a matter of detail, to be settled by the constructing agencies after the general type of development has been determined.

- 148. The plans for the single-stage development submitted with this report show the dam across the main river channel at the foot of Barnhart island. Those for the two-stage development show it at the foot of Long Sault island. In the opinion of the Board either location can be used with either development.
- 149. Control of Flow. Whether the single-stage or the two-stage development is finally selected as best meeting the joint interests of the two countries, the Board points out that the use of water at the power houses and the operation of the sluice gates, which with the wheels control the flow of the river, should be under the control of an international board. That board should be clothed with full authority to take such measures as will insure the regularity of flow that is necessary in the interest of navigation in the lower river, and of the power houses downstream; and to insure such flows as will maintain the levels of lake Ontario within proper limits, while preserving the volume of flow required to prevent injury to navigation at and below Montreal.
- 150. ALTERNATIVE PLANS CONSIDERED. Of the various alternative plans for the improvement of the International Rapids Section submitted to the International Joint Commission in 1921, the one requiring especial consideration at this time is that for navigation and power development proposed by the Hydro-Electric Commission of Ontario and designated as Scheme "B". This provided for a two-stage development broadly on the same lines as those proposed by the Canadian Section herein, except that the lower pool was to be held at elevation 210, or 14 feet below the elevation proposed in this report. At this low elevation a large amount of excavation would be required to secure suitable channels for navigation through the lower pool; and an enlargement to secure the low velocities regarded as necessary for satisfactory ice-covered winter operation would be excessively costly, and was not contemplated by the proponents. On the other hand, the higher head at the Ogden island power plants, amounting to about 30 feet, reduced materially the cost per horse-power of development of the upper head.
- 151. The operation of this scheme was based on maintaining an open channel through the river during the winter, and only such channel enlargements were proposed as would be necessary for navigation.
- 152. The cost, on estimates paralleling those herein presented for a singlestage and two-stage development, would be \$254,000,000.
- 153. The studies of the Board, and its investigations of power plants operating under similar climatic conditions, show conclusively that it is neither feasible nor desirable to maintain an open channel through this section in winter when it is improved for power. Even with the present current velocities the ice has at various times caught across the river in the quieter reaches of the section, starting an ice pack which quickly attained large proportions and raised the river level by as much as 10 feet. The likelihood of the ice catching to form ice jams would be increased after the river has been improved, on account of the greatly reduced current velocities. It is certain that an open channel through this 35-mile stretch could not be maintained without ice breakers; and all experi-

45827-3

ence shows that a reasonable number of ice breakers could not be depended upon to keep open continuously so long a channel under these conditions. If, however, an open channel were maintained by such means, the accumulation of ice below the power houses of the lower pool at Barnhart island would raise the tailwater level at these power houses to such an extent that their output would be greatly curtailed.

154. Other alternative plans presented to the Joint Commission in 1921 were for two-stage developments with the upper dam at Crysler island (6 miles downstream from the foot of Ogden island), and at Cat island (10 miles downstream from the foot of Ogden island). The further borings made at the Crysler island site show that the foundation conditions are not as good as were first supposed,* and the proponents of the Cat island dam site now prefer a full single-stage development broadly on the lines of that proposed by the United States Section herein.

155. IMPROVEMENT FOR NAVIGATION ONLY. The least expensive method developed for improving the river for navigatoin alone is through the construction of a side canal on the American shore from the Galop rapids to Ogden island. Navigation would there enter a pool, with water level at elevation 220, to be formed by a dam at the head of the Long Sault rapids, and from this pool pass to the south channel of the river at Cornwall island through a canal on the same line as that proposed for the two-stage development. The navigation provided by such a plan would be far inferior to that provided by either the single or the two-stage developments respectively proposed. The estimated cost is \$79,000,000.

156. Summary. Two alternative schemes for the improvement of the International Rapids Section in the joint interest of navigation and power are presented by the Board as best providing for the development of the capacity and possibilities of this section.

Their respective estimated costs are as follows:-

(1) Single-stage Development—	
Works solely for navigation	22,000,000
Works common to navigation and power	106,500,000
Works primarily for power— Substructures and head and tail race excavation	42.000.000
Superstructures and machinery	64,500,000
Total cost (2,326,000 installed horse-power)	\$235,000,000
Initial cost with installation of 1,163,000 horse-power	
(remaining installation deferred awaiting growth of	
market)	\$203,000,000
Estimated initial expenditure to open navigation and provide 1,163,000 installed horse-power before channels are enlarged to ensure winter operation (See par.	
137, 138)	\$190,000,000
(0) The state of December 1.	
(2) Two-stage Development—	
Upper Pool—	
Works solely for navigation	
Works primarily for power—	
Substructures, head and tail race	
excavation	110.000.000
Machinery and superstructure 33,829,000	119,385,000

^{*&}quot;Additional borings, made since the preparation of this paragraph, have changed the conclusions of the Canadian Section of the Board, in regard to the Crysler Island dam site. See Appendix "C," Par. 120 to Par. 134."

(2)	Two-stage	Deve	opment-Concluded.
-----	-----------	------	-------------------

(2) I no stage Development Continuous	
Lower Pool—	
Works solely for navigation	
Works common to navigation and power 37,130,000	
Works primarily for power—	
Substructures, head and tail race	
excavation 36,866,000	
Machinery and superstructure 45,777,000	145,161,000
Total cost (2,215,000 installed	
horse-power)	\$264,546,000
Rounded total	\$264,600,000
77.1	
Estimated initial expenditure to open navigation and provide	
406,400 horse-power in upper plant and 756,600 horse-power	
in lower plant (remaining installation in lower plant	0000 400 000
deferred awaiting growth of market)	\$238,400,000
Estimated initial expenditure to open navigation and provide	
1,163,000 horse-power at lower plant (remaining installation	
at lower plant and all that of upper plant being deferred).	\$214,500,000
at lower plant and an onat of upper plant being deferred).	φ213,000,000

These estimates exceed those given in the Report of 1921 because they provide a fuller power development, and more elaborate measures to ensure satisfactory winter operation, besides being based on the higher unit costs indicated by the detailed studies made by the present board.

LAKE ST. FRANCIS SECTION

(Third Division of Report of 1921)

157. This section extends from Colquhoun island opposite St. Regis (mile 115) to deep water at the foot of lake St. Francis (mile 141). The currents through the lake are sluggish, and the total fall through the section is about one foot. While the lake contains many shoals, deep channels extend through it. The work proposed is the dredging necessary to secure a suitable channel. It is on substantially the same lines as was recommended in the Report of 1921. The estimated cost, for a channel 25 feet deep below a datum plane having an elevation 151.5 at the head of the lake and 150.5 at its foot, is \$980,000. The estimates differ by a small amount from those shown in the Report of 1921, principally because the limits of the section are slightly changed to conform to the modifications of the project in the International Rapids Section.

SOULANGES SECTION

(Second Division of Report of 1921)

- 158. Description. This section, 18 miles in length, extends from deep water in lake St. Francis (mile 141) to deep water in lake St. Louis (mile 159). The river falls from lake St. Francis to lake St. Louis in a succession of rapids, the Coteau rapids at the head, the Split Rock and Cascades rapids at the foot, and the Cedars rapids about midway. The total fall through the section at present mean stages of the two lakes is 83 feet.
- 159. Present 14-foot navigation passes through the Soulanges canal, paralleling the river on the north.
- 160. There are a number of existing power developments in this section, which are described in Appendix C. The most important is that at the Cedars rapids where a third of the low-water flow of the river is diverted through a headrace canal to a power house with an installed capacity of 197,000 horse-power, at 32-foot head.

45827-3}

- 161. PRIOR PLANS. The improvement proposed in the Report of 1921 was a lateral canal, 15 miles in length, for navigation only, on the south side of the river, designated as the Melocheville-Hungry Bay Route. The report outlines a plan for navigation in conjunction with complete development of power, but contains the opinion that the rate of growth of the market for the large block of 1,560,000 horse-power afforded by the development was insufficient to justify its adoption.
- 162. Improvement for Navigation and Power. The Board finds that it is practicable and advantageous to combine the improvement for navigation in this section with the development of power on a progressive program of construction of power plants, only the first part of the power development being undertaken in conjunction with the works required to carry navigation through the section.
- 163. In brief, this plan provides for a dam at the head of the Cedars rapids, which will create a pool having a level from 1½ feet to 5 feet below the level of lake St. Francis. The shores of that lake are so low that the raising of its high-water levels would destroy large areas of agricultural land and, aside from the large cost involved, is highly undesirable. The plans therefore include an extensive enlargement of the discharge capacity of the Coteau rapids to insure that the backwater slope will not raise the high levels of the lake. Navigation passes from lake St. Francis to the pool by a canal around the Coteau rapids, 3 miles in length with a low lift lock. Even with the enlargement proposed, the currents in these rapids will be too swift for safe navigation, and especially for safe passage through the draw in the railroad bridge which here crosses the river. The canal has, however, been given such an alignment that it can be converted into an open channel when the traffic justifies the large additional cost. A second canal, 5 miles in length, with two lift locks, carries navigation from the pool to lake St. Louis. These locks may be either in flight or separated by a short pool. The difference in cost in favour of the separate locks is small.
- 164. The first part of the power development is the generation of a total of 382,000 horse-power at a power house with 22-foot head incorporated in the dam. The present Cedars plant will be continued in operation, water being fed into the headrace through sluice gates.
- 165. The second part of the progressive development now envisaged is the generation of 500,000 horse-power at 75-foot head at a power house located on the shore of lake St. Louis north of Cascades point, and near the Chamberry gully. It will be supplied through a headrace canal formed, in part, by the enlargement of the navigation canal.
- 166. The third part is the construction of a dam and power house, with a 53-foot head, at the Cascades rapids, at the foot of the section, which will develop a total of 974,000 horse-power. The present Cedars plant will then be put out of commission.

167.	The	estimated	cost	of	these	works	is	as	follows:
------	-----	-----------	------	----	-------	-------	----	----	----------

First part, including navigation works Second part Third part	37,291,000
Total	\$205,052,000

168. The installed capacities in these plants, including spares, at normal summer heads are:—

Second part		545,000 horse-power
Total	***************************************	1,979,700 horse-power

- 169. If but one-half of the hydro-electric machinery is installed when the first part of the program is initially constructed, leaving the other half to be installed as the demand for power develops, the initial expenditure required to open navigation and provide 202,000 horse-power becomes \$92,000,000.
- 170. Complete River Development. An alternative scheme which affords the maximum open river navigation warrants description. In this scheme two dams with power houses would be constructed initially, the upstream dam substantially on the line of the dam proposed in the first part of the recommended scheme, and the second dam and power houses at the Cascades rapids at the site of the structure forming the third part of the progressive power development therein contemplated. Navigation would pass from lake St. Francis to the pool formed by the upstream dam as in the recommended scheme. From this pool it would pass through a short canal and lock to the pool formed by the Cascades dam and power houses, thence through a lock directly to lake St. Louis. The 5-mile canal provided in the recommended scheme between the upper pool and lake St. Louis thereby would be eliminated.
- 171. The pool of the Cascades dam would be held at elevation 115, giving a 43-foot head between this pool and lake St. Louis, instead of the 53-foot head contemplated in the third part of the recommended project. This change would reduce the difference of levels to a conservative lift for a single lock. The power houses at the upstream dam would be so located as to develop the remaining 30 feet of head available in the section.
- 172. The scheme would entail the reconstruction of the existing Cedars power plant as a part of the initial work, instead of permitting a postponement until the last part of the power development program. Arrangement would have to be made to supply the present customers during the reconstruction period.
- 173. The total cost of this alternative scheme, with a complete eventual installed capacity of 1,948,000 horse-power, would be \$194,317,000 exclusive of interest charges, or approximately \$10,700,000 less than the cost with the plans recommended. On the other hand, the initial expenditure would exceed largely the initial expenditure required with the recommended plan. The initial power installation must include, in addition to such new power as is provided, an installation of 207,000 horse-power to replace power lost at existing plants, this being 197,000 horse-power at the present Cedars plant, and 10,000 at other plants. The initial expenditure required to open navigation and to provide an installation of 404,300 horse-power of new power, together with this replacement of power at existing installations, would be \$123,400,000, against the minimum initial expenditure of \$103,945,000 required with the same installation of new power under the recommended plan. Unless power can be sold more rapidly than the Board is led to believe, the interest charges on the \$19,455,000 increased initial cost would overbalance the \$10,700,000 difference between the ultimate costs of the completed projects indicated by the foregoing estimates. The scheme makes a maximum use of the river and merits serious consideration if a market for the large amount of power can be developed within a reasonable period.

- 174. IMPROVEMENT FOR NAVIGATION ALONE. The schemes studied by the Board for providing navigation alone are:—
 - (a) A lateral canal on the south side of the river extending from Hungry bay to Melocheville, substantially as recommended in the Report of 1921. Its estimated cost is now \$33,640,000.
 - (b) A lateral canal on the north side of the river, so designed as to conform to an eventual combined improvement of the river for navigation and power on the lines recommended by the Board. Essentially, this scheme embraces the construction of the upper and lower lateral canals proposed in the combined improvement, with a land canal connecting them, the latter to be abandoned when the river is improved for power. The estimated cost of the canal, complete, is \$40,378,000.

The part of the land canal that would be abandoned for navigation would be used in part for drainage. Its estimated cost is \$6,382,000.

The estimated cost of the river connections is \$1,922,000.

- (c) A river improvement as proposed in the recommended scheme, with substructures for power plant, but without power installation. Its estimated cost is \$78,515,000.
- 175. Conclusions. The Board unites in the view that the navigation improvement combined with the progressive development of power (paragraphs 162 to 169) hereinbefore set forth better provides for the present and future development of the waterway than any scheme for navigation alone, and is therefore the desirable scheme, if arrangements are made whereby power interests bear a fair proportion of the cost of the initial expenditure required.
- 176. If it be found impossible to arrange for such co-operation in meeting the initial cost, a majority of the Canadian Section favour the construction of the lateral canal on the south side of the river (Melocheville-Hungry Bay project) which is the least expensive means for providing navigation. The United States Section submits the view that a route designed to serve so large a territory will demand eventually the freer navigation of an open river. It believes, therefore, that even if arrangements cannot be made for the participation of power development in the initial improvement, it will be better to adopt the river development (navigation scheme c) or a canal on the north side capable of conversion into a river development (navigation scheme b) rather than the Melocheville-Hungry Bay route, the investment in which would largely be lost when a river development is adopted.
- 177. A detailed description of the works proposed in the combined navigation and power project recommended, including those necessary to prevent undue flowage, with detailed estimates of cost, and a discussion of alternative schemes and their relative economic values at various rates of power consumption, are given in Appendix C. A general analysis of the estimated cost of the initial part of the recommended combined navigation and power project is as follows:—

Works solely for navigation	31,594,000 34,686,000
Works primarily for power—	34,000,000
Substructures, and head and tail race excavation	13,079,000
Superstructure and machinery	24,586,000
Total	\$103,945,000
Cost with initial installation of one-half of power machinery	\$92,000,000

LACHINE SECTION

(First Division of Report of 1921)

- 178. Description. This section extends from deep water at the head of lake St. Louis (mile 159) to Montreal harbour (mile 183). The first 11 miles are through the deep water in the upper part of the lake; the next four miles are through the shoal water at its foot. From the foot of the lake, the river runs 5 miles with swift currents, through a channel badly obstructed with rock reefs, to the Lachine rapids. It drops through these rapids to the La Prairie basin, a wide expanse of shoal water, 5 miles in length; thence falls through a mile of shoal, swift running channels, to Montreal harbour. The total fall through the section is about 48 feet, of which 9 feet is between the upper end of lake St. Louis and the head of the Lachine rapids, 24 feet through these rapids, 4 feet through the La Prairie basin, and 11 feet between the La Prairie basin and Montreal.
- 179. The course of the river from lake St. Louis to Montreal harbour describes a wide bend to the south. The present 14-foot navigation passes through the Lachine canal, which cuts through the city across this bend.
- 180. In this section the St. Lawrence begins to receive water from the Ottawa river. The Ottawa discharges into the lake of Two Mountains, which lies just north of lake St. Louis, and is at a slightly higher level. That lake discharges a part of the flow through two outlets into lake St. Louis and the remainder into the St. Lawrence below Montreal, through two rivers lying to the north of the city. On account of the widely varying flow of the Ottawa, the range in the levels of lake St. Louis is about 8 feet.
- 181. The winter rise of the river due to the ice gorging raises the water in the La Prairie basin by 10 feet or more.
- 182. PRIOR PLANS. The improvement proposed for this section in the Report of 1921 was a side canal, 9 miles in length (10 miles to the end of the Lachine breakwater), with two lift locks and one guard lock, extending from the upper entrance to the present Lachine canal across the bend in the river to a point on the shore 3 miles above Montreal harbour (avoiding the built up portion of the city), thence along the shore to the harbour. The eventual increase in depth from the 25 feet provided in that report to 30 feet was to be secured by a dam in the Lachine rapids, which would raise the low-water levels of lake St. Louis and the upper canal level by 5 feet. The report considered, but did not recommend, an alternative project for combining navigation and power by constructing a dam and power works in the Lachine rapids.
- 183. Plan Recommended by Board. The Board has examined with care the feasibility of utilizing the contracted section of the river above the Lachine rapids for navigation, in connection with power development at these rapids, but finds that, without an excessive amount of costly excavation, the currents created by the concentration of the flow in the excavated channels would be excessive for navigation, even if the railroad bridge which here crosses the river were raised, at large cost, to provide overhead clearance. A side canal affords, therefore, the most suitable route for navigation between Montreal harbour and lake St. Louis.
- 184. The westward growth of the built up sections of the city of Montreal has already encroached on a part of the route selected for the canal in the Report of 1921. It is highly advisable to build the canal on a location that will not interfere with the future growth of the city and will eliminate the difficult problem inherent to the crossing of land and water traffic with the consequent incon-

venience and delay to both. The route now proposed, therefore, follows close to the river bank throughout and consequently cuts off no area capable of urban development. Its length and its cost are substantially the same as on the route recommended in the Report of 1921. The canal has three lift locks and a guard gate, instead of the two lift locks and the guard lock proposed in that report. But 4 miles are in land cut with minimum section. The remaining 6 miles (counting the length to the end of the Lachine breakwater) have a minimum width of 300 feet. The additional lock assures the minimum alterations in sewerage and water supply systems, including the Montreal aqueduct. When the project is adopted, details can be modified to conform to any projected changes in these public utilities.

185. The excavation of the upper level of the canal, and through the long shoals at the foot of lake St. Louis, can be reduced by the construction of a control dam in the river at the head of the Lachine rapids, above Heron island, to raise the low-water levels of lake St. Louis to elevation 71 during the navigation season. Since at low stages this would back the water up into the lake of Two Mountains and slightly raise also the low-water levels of the latter, it is necessary to construct supplementary control works at the two northerly outlets of that lake (Mille Iles and des Prairies rivers) in order to preserve the present distribution of the flow of the Ottawa, and to prevent a reduction in the flow in the main channel of the St. Lawrence past Montreal. The cost of the entire system of control works is about \$2,000,000 in excess of the saving in excavation costs; but these works will reduce the cost of a future development of power at the Lachine rapids, besides being of benefit to local navigation on the two lakes. Their construction is therefore desirable, and is included in the plans of the initial improvement for navigation.

A detailed description of the improvement proposed is given in Appendix C.

Its complete cost is estimated at \$53,000,000.

186. Power Development. The Board concurs in the views expressed in the Report of 1921 that the feasible power production in this section is limited to the development of the head of a little more than 30 feet available above the foot of the Lachine rapids. The winter rises of the river drown out the remaining head, and the upper level of a power development cannot be carried below the foot of these rapids without causing widespread flood damage.

187. To assure the safe and dependable winter operation of a power development at the Lachine rapids, the discharge capacity of the contracted reaches above these rapids should be so enlarged that the maximum winter current velocities will not create ice gorging. The alternative of a development based on maintaining an open channel through the river in winter is rejected as hazardous for the same reasons that such a proposal is rejected in the International Rapids Section (paragraph 153).

188. The most feasible method of enlarging the discharge capacity of the river is found to be the construction of a deep, concrete-lined headrace canal on the south side of the river. The plans for improving the river for power provide, therefore, for a development in two parts. The first part is the construction of such a power canal along the south shore, from the foot of lake St. Louis to the Lachine rapids, designed to carry a flow of 120,000 cubic feet per second at so high a velocity that an ice cover cannot catch across to form

an ice jam. The water would be delivered to a power house on the south shore at the foot of the rapids, discharging into the La Prairie basin, and would develop 391,000 horse-power.

- 189. A control dam in the river, with auxiliary structures at the outlets of the lake of Two Mountains, is required with the first part of the development, to prevent the lowering of lake St. Louis by the large diversion, and to secure the maximum allowable head at the power-house. The main control dam in the river would be at the head of the Lachine rapids, at the same location as the dam hereinbefore proposed to regulate the levels of lake St. Louis for the benefit of navigation, and the normal regulated level of the lake would be at elevation 71 in both cases. The auxiliary control structures would be identical. The main control dam would, however, require a different design. The dam proposed in connection with navigation improvement is designed with wide openings to be left clear in winter, in order to prevent the danger of the formation of an ice jam. With the power canal in operation, the currents in the main river would be so reduced as to eliminate the danger of an ice jam, but the openings must be reduced to, such dimensions as will afford safe and convenient winter operation of the gates. A dam constructed initially for navigation purposes would therefore require alterations when the first part of the power development is undertaken. The cost of these alterations is estimated at \$281,000.
- 190. The estimated cost of this first part of the development is \$88,131,000 if no control dam has been built for navigation purposes, and \$81,247,000 if such a dam has been built, the latter figure including the necessary modifications in the dam.
- 191. The second part of the improvement for power is the development of 422,000 horse-power from the remaining flow of the river, at a power house to be constructed in the main river at the foot of the Lachine rapids, adjacent to the power house constructed in the first part of the development. The headrace to this power house would be formed by a longitudinal wall extending downstream from the control dam previously constructed, to the new power house, and by opening the portion of the control dam between this wall and the south shore. The estimated cost of the second part of the development is \$41,966,000.
- 192. Joint Improvement for Navigation and Power. If the first part of the power development be undertaken simultaneously with the navigation improvement, the estimated combined cost would be \$133,358,000.
- 193. If the first part of the power development be undertaken subsequently to the navigation improvement, requiring the alteration of the control dam initially constructed for the latter purpose, the combined cost would be \$134,247,000.
- 194. The economic saving from combining power development with the improvement of the Lachine Section for navigation is therefore but \$889,000, and this saving would be soon counterbalanced by the interest charges on the large investment necessary to secure it, unless the power could be marketed promptly at remunerative rates. For this reason, and on account of the high cost of developing power in this section as compared with its cost in the Soulanges Section, the Board does not include power development in its plans for the intial improvement of this section. The development of power can be undertaken when found economically justifiable from the standpoint of power production alone.

195. In summary, the estimates for this section are as follows:

Total, 923,000 installed horse-power..... \$129,537,000

Power subsequent to navigation-

1st part, 435,000 installed horse-power. 81,247,000 2nd part, 488,000 installed horse-power. 41,966,000

Total, 923,000 installed horse-power..... \$123,213,000

GENERAL SUMMARY

LAKE ONTARIO TO MONTREAL HARBOUR

- 196. Improvement Proposed. In summary, the plans recommended by the Board for the improvement of the river will provide to the best advantage for a navigation route through the 183 miles of river and lake from lake Ontario to Montreal harbour, with a total not exceeding 25 miles of restricted canal navigation, and with not more than nine locks. It will be crossed by but eight bridges. The plans include power houses with an ultimate installed capacity of from 2,619,000 to 2,730,000 horse-power, and permit the eventual development with installed capacity of approximately 5,000,000 horse-power which is the full power potentiality of the river.
- 197. INITIAL EXPENDITURE REQUIRED. The estimated expenditures required to open navigation with channels 25 feet in depth, with an initial power development having one-half the ultimate installed capacity of the power houses first constructed (the installation of the remainder being deferred to await the growth of the market), is as follows:—
 - (1a) Total cost of improvement if with a single-stage development in the International Rapids Section (1,365,000 horse-power initially installed) \$350,100,000 or
- 198. Cost of Works Complete. After all of the machinery in plants recommended by the Board has been installed, these costs will become respectively:—
 - (1) If with a single-stage development of the International Rapids Section (2,730,000 installed horse-power).................\$394,000,000
- 199. ALTERNATIVE PLANS. The Board has considered it advisable to present alternative plans and estimates in several instances for the reason that a choice between them rests on broad questions of policy rather than upon strictly engineering considerations.

- 200. Effect of Channel Depth on Cost. The estimated cost of additional channel excavation required to provide channels initially 27 feet deep from lake Ontario to Montreal instead of 25 feet deep is \$5,800,000.
- 201. The estimated saving in the cost of channel excavation through providing channels initially 23 feet deep instead of 25 feet deep is \$5,350,000.
- 202. The estimated cost of subsequently enlarging to 30 feet depth channels initially excavated 25 feet in depth is \$24,400,000.
- 203. Cost of Additional Works for Full Development of Power. The estimated cost of additional works required to complete the full practicable development of power in the river, with works having an installed capacity of 2,500,000 horse-power is approximately \$225,000,000. The total eventual power installation visualized is therefore approximately 5,000,000 horse-power; and the total eventual cost of developing this power, and of providing navigation with channels 25 feet in depth, is in round numbers from \$620,000,000 to \$650,000,000, depending upon the form of improvement adopted in the International Rapids Section.
- 204. Analysis of Costs. A general analysis of these costs is shown in the following tables:—

Table I

Recommended Plans with Single-Stage Development in International Power Section

(a)	(b)	(c)	(d)	(e)	(f)	(g)
Section	Cost of works sole- ly for navigation.	Cost of works primarily for power.	power and	Total cost with com- plete initial power installation.	Initial cost if one half initial power installation is deferred.	Complete installed capacity of initial works, provided in estimate column (e)
	\$:\$.	\$.	\$	\$.	h.p.
Thousand Islands	1,100,000			1,100,000	1,100,000	
International Rapids	22,000,000	106, 500, 000	106, 500, 000	235,000,000	203,000,0001	2,326,000
Lake St. Francis	980,000			980,000	980,000	
Soulanges	31,594,000	37,665,000	34,686,006	103,945,000	92,000,000	404,300
Lachine	53,000,000			53,000,000	53,000,000	
Total	108,674,000	144, 165, 000	141, 186, 000	394, 025, 000	350,080,0001	2,730,300

¹ Including \$13,000,000 for channel enlargement to assure winter operation.

Table II
Recommended plans with Two-Stage Development in International Power Section

(a)	(b)	(c)	(d)	(e)	(f)	. (g)
Section	Cost of works solely for navigation	Cost of works primarily for power	Cost of works jointly for power and navigation	Total cost with complete initial power installation	Initial cost if one half initial power installation is deferred	Complete installed capa- city of initial works provided in estimate column (e)
	\$	\$. \$	\$	\$	h.p.
Thousand Islands	1,100,000			1,100,000	1,100,000	
International Rapids	33,481,000	140,209,000	90,656,000	264, 546, 000	238, 400, 000 1	2,215,000
Lake St. Francis	980,000			980,000	980,000	
Soulanges	-31,594,000	37,665,000	34,686,000	103,945,000	92,000,000	404,300
Lachine	53,000,000			53,000,000	53,000,000	
Total	120, 155, 000	177,874,000	125,542,000	423,571,000	385, 480, 000 2	2,619,300

¹This becomes \$214,500,000 if installation is at Barnhart island powerhouses.

²This becomes \$361,580,000 if initial installation in International Rapids Section is at Barnhart island powerhouses.

TABLE III

ESTIMATED cost of additional works to complete the full practicable development of power in the river

Section	Installed Horsepower	Cost
Soulanges Section— First part included in Tables I and II	\$	\$
Second part. Lachine Section—	545,000	37,391,000 63,816,000
First part Second part	435,000 488,000	81,247,000 41,966,000
Total	2,498,000	224,420,000

TABLE IV

ESTIMATED cost of improving the river for power alone, with power development as provided in the recommended joint navigation and power improvement (14 foot navigation maintained).

Section	With the two-stage development of the International Rapids Section	With the single- stage development of the International Rapids Section
International Panids Section	\$ 231,800,000	\$ 213,000,000
International Rapids Section	77, 172, 000	77, 172, 000
Total	308,972,000	290, 172, 000

TABLE V

 $\begin{array}{c} \textbf{Estimated cost of improving the river for navigation alone, under the least} \\ \textbf{expensive alternative plan} \end{array}$

Thousand Islands Section. International Rapids Section. Lake St. Francis Section. Soulanges Section Lachine Section	980,000 33,640,000
Total	\$167,720,000

TABLE VI

Tabulated Estimates of cost of providing channels of various depths from the head of the Great Lakes to Montreal, including the installation of 1,365,000 horse-power on the St. Lawrence and the entire cost of the new Welland ship canal.

Great Lakes—	23 feet	25 feet	27 feet	30 feet
	depth	depth	depth	depth
Connecting channels. St. Marys River Locks. Compensating Works. Welland Canal St. Lawrence River to Montreal.	3,400,000 114,500,000 344,700,000	3,600,000 114,500,000	6,500,000 3,700,000 115,600,000 355,900,000	6,500,000 3,800,000 128,600,000 *374,500,000

^{*}Based on subsequent deepening from 25 feet.

PART IV

ST. LAWRENCE RIVER AT AND BELOW MONTREAL

205. This part of the report deals with the effect of the diversion of water from the Great Lakes system on the water levels at and below Montreal and with measures for restoring these levels (Question 6). It also considers the effect of the proposed improvement of the St. Lawrence on these levels (Question 5).

DESCRIPTION

206. Montreal harbour is a highly developed port, with 9 miles of improved wharf frontage, grain elevators with a total storage capacity of twelve million bushels, and an extensive warehousing system. The commerce through the port in 1925 amounted to 9,137,281 tons, including 166 million bushels of grain.

The water levels in Montreal harbour during the navigation season range generally between 18 and 28 feet above mean sea-level, depending upon the flow of the St. Lawrence and the Ottawa rivers, the higher stages being due to the spring floods in the Ottawa. In winter, the increased slope of the river due to ice retardation raises the water surface by from 10 to 20 feet, and ice jams occurring during the break-up season in April have raised the water to the stage of 52 feet above mean sea level.

207. The wharves in Montreal harbour are of exceptionally massive construction, to resist damage by ice at the high winter and spring levels. They are built typically with high masonry walls founded on wooden cribbing. The vessel berths at the wharves in the upper portion of the harbour are generally excavated in rock. Extreme low-water levels, which would expose the wooden foundations of the wharves, with consequent danger of decay, are regarded as of serious consequence; and the berths at wharves cannot be deepened readily to meet a reduction in the water levels.

208. Montreal lies 53 statute miles upstream from lake St. Peter, a wide expanse of shallow water, which is the head of the tide in the St. Lawrence. Below the city of Quebee, 160 miles downstream from Montreal, the river is a tidal estuary, with its mean level substantially at mean sea-level. The river below Montreal has been improved by dredging to afford a channel with 450 feet minimum width, 30 feet deep at water levels corresponding to a stage at the head of Montreal harbour, 18.4 feet above mean sea-level (low water of 1897 as modified). The water level rarely falls below this datum. This channel is now under enlargement to 35 feet depth. The expenditures by Canada on the improvement of the channel below Montreal, to March 31, 1925, have been as follows:—

Dredging, field cost.	17,434,683 66
Plant, shops, surveys, etc.	10,268,461 52
Total	\$27,703,145 18

EFFECT OF DIVERSION OF WATER

209. An accurate determination of the relation between the river discharge past Montreal and the river stage is complicated by the fact that these stages are modified by the varying discharge of the tributaries entering the river below Montreal, including the main part of the discharge of the Ottawa, and are affected by the long period tidal fluctuations.

210. A detailed analysis of the relation between gauge heights and discharge, given in Appendix D, shows, however, that a diminution of the flow past Montreal reduces the water levels in the harbour, at the rate of one foot for each 23,000 cubic feet per second of flow. The authorized diversion of 8,500 cubic feet per second through the Chicago Drainage canal reduces the levels in Montreal harbour, therefore, by 0.37 foot. A similar analysis shows the following effects at points below Montreal:—

Locality	Statute miles below Montreal	Amount by which levels are lowered by diversion of 8,500 cfs.
Montreal		0.37 foot
Varennes	13	0.35 "
Sorel		0.28 "
Batiscan	100	0.24 "
Lotbiniere	117	0.24 "
Platon	125	0.17 "
Quebec	160	0.03 "

RESTORATION OF NAVIGABLE DEPTHS

211. Channel below Montreal Harbour.—The navigable depths of the channels below Montreal harbour can be restored by dredging. An analysis of the gauge records shows that the dredging heretofore done has lowered the levels in Montreal harbour at the rate of 0.15 foot for each foot of navigable depth gained, and has lowered the levels of the river between Varennes and Quebec by an average of 0.06 foot for each foot of navigable depth gained. The estimated cost of increasing the effective depths of the channel below Montreal by the amounts found in the foregoing tabulation, if done as a part of the present project for a general increase in depth, and at the current costs of such dredging, is as follows:—

3,168,000 cubic yards dredging at 42.5 cents per cubic yard Plant. shops, surveys, etc.—Average proportional cost since	1,346,400
beginning of work, 60 per cent	807,600
Total	\$2,154,000

212. Montreal Harbour.—The navigable depths in Montreal harbour can be restored by similar dredging. The estimated cost of this dredging necessary to compensate for a diversion of 8,500 cubic feet per second is as follows:—

Shale rock, 87,350 cubic yards at \$3.50.	305,725
Earth, 289,000 cubic yards at \$1	289,000
Engineering and administration, approximately 10 per cent	59,275
Total	\$654,000

- 213. The unit costs are based on the execution of the work as a part of a general project for deepening the harbour. The removal, as a separate undertaking, of the 5-inch layer required to compensate for the diversion would be much more expensive.
- 214. A comprehensive project for deepening the harbour would, however, require the reconstruction of a large amount of dock wall. An estimate of the part of the cost of reconstruction chargeable to diversion of water obviously presents difficulties. This diversion is but a contributing cause to the need for enlargement, for there has been a loss of 1.15 feet in depth in the harbour since 1895 due to other causes. The older dock walls will require reconstruction in the not distant future on account of deterioration. The Canadian Section of

the Board has prepared an estimate of \$1,800,000 as the part of the cost of rebuilding dock walls due to the lowering of the levels by a diversion of 8,500 cubic feet per second, the details of which are set forth in Appendix D. The American Section accepts this estimate with the understanding that it is subject to further investigation and revision.

- 215. A study was made of the possibility of constructing contraction works in the river below Montreal harbour to compensate for the effect of such a diversion. No substantial saving was indicated by this course.
- 216. Summary. In summary, the cost of restoring the navigable depths at and below Montreal to the extent that they have been affected by the authorized diversion of 8,500 cubic feet per second is as follows:—

Dredging, Montreal Harbour	654,000
Reconstruction of dock walls, Montreal Harbour	1,800,000
Dredging, below Montreal Harbour	2,154,000
_	
Total	\$4,608,000

217. Control Works with Locks below Montreal. The suggestion has been advanced that, instead of securing the desired channel depth at and below Montreal by further dredging, control works with twin locks could be constructed in the river below Montreal to raise the water levels to the extent required for that purpose. Such a structure must be so designed that it would not aggravate ice conditions in winter, and therefore would be costly. It would afford incidentally a complete remedy for the lowering of the water in Montreal Harbour due both to channel enlargement and to the diversion of water, and also would afford an opportunity for the fuller development of power, especially in the Lachine Section, since the restrictions as to maintaining uniformity of flow could be made less stringent. The consideration of such a scheme is beyond the scope of the instructions to the Board.

EFFECT OF PROPOSED IMPROVEMENT OF THE ST. LAWRENCE RIVER

- 218. The improvement of the St. Lawrence river could affect the water levels at and below Montreal to the extent only that the works might be so operated as to modify the rate of discharge of water down the river. The program for the regulation of lake Ontario recommended by the Board (Appendix B) is so drawn as to afford mean discharges during the critical months of September, October and November at least equal to the discharges that occur in nature; and discharges in the first half of April, when the river has its maximum flood levels, no greater than those that would occur with equal frequency without regulation. There remains the possibility of the introduction of fluctuations in the discharge of the river through the fluctuations in the discharges through the power plants to meet their changing loads.
- 219. Any necessary uniformity of discharge past the various power structures can be secured by opening sluice gates as the power load and power house discharge diminishes. Power can be profitably generated at the various plants recommended by the Board without causing any greater hourly and daily fluctuations in the water levels at Montreal than now occur from natural causes, and suitable government supervision, both over the plants in the International Section and over those in the province of Quebec, can assure this result.
- 220. In short, all the works of the improvement of the St. Lawrence river must be so operated as to have no injurious effect on the water levels at and below Montreal.

PART V

FINDINGS ON QUESTIONS CONTAINED IN THE INSTRUCTIONS TO THE JOINT BOARD OF ENGINEERS

221. Answering specifically the questions contained in its instructions, the Board finds:—

QUESTION 1

"Is the scheme for the improvement of the St. Lawrence waterway, presented by the board in its report of June 24, 1921 (herein referred to as the Report of 1921), practicable and does it provide to the best advantage, at this time and ultimately, for the development of the capacities and possibilities of the waterway?"

222. Answer. The scheme as presented in the Report of 1921 is, in its broad lines, practicable; but should in the opinion of this Board be modified to provide to the best present advantage, at this time and ultimately, for the development of the capacities and possibilities of the waterway.

QUESTION 2

- "What alternative scheme, if any, would be better adapted to secure the ends desired, due consideration being given,—
- "(a) To any special international or local interests having an importance justifying exceptional consideration; and
- "(b) To the extent and character of the damage through flooding and the probable effect of the works upon the formation of ice and the consequent effect on the flow of the river?"
- 223. Answer. The plans recommended by the present Board are set forth in Part III of this report, and are described in detail in Appendix C.
- 224. The plans presented in the Report of 1921 are altered in their broader features as follows:—
- 225. In the International Rapids Section (Fourth Division of the Report of 1921) the plans now presented provide for the development of the entire power possibilities of the section, without subsequent alternations in the works. Two alternative schemes for accomplishing this result are presented, one for a two-stage development, the other for a single-stage development.
- 226. In the Soulanges Section (Second Division) the Board recommends a scheme for navigation correlated with a progressive development of power instead of a side canal for navigation only.
- 227. In the Lachine Section (First Division) the alignment of the navigation canal is changed to secure a minimum interference between land and water traffic, and a control dam to regulate the levels of lake St. Louis has been included in the initial development.
- 228. The plans proposed have been drawn with full regard to all interests concerned. Flowage damage is inseparable from a practicable development of power on the St. Lawrence, since freedom from floods has led to the occupation 45827-4

of its banks almost to the waters edge. The plans have been drawn to reduce to a minimum the flowage consequent to the plans proposed. They have been prepared with special care to meet ice conditions affecting the flow of the river.

QUESTION 3

"Should the estimates of cost be revised, and, if so, what are the revised estimates of cost having regard to alternative schemes?"

229. Answer. The estimates should be revised. The estimates of the works proposed by this Board, with hydro-electric machinery completely installed, exclusive of interest during construction, are as follows:—

(1) If a single-stage development be adopted in International Works solely for navigation. Works common to power and navigation. Works primarily for power.	108,700,000 141,200,000
Total	\$394,000,000
Installed capacity 2,730,300 horse-power.	
(2) If a two-stage development be adopted in International Works solely for navigation. Works common to power and navigation. Works primarily for power.	120,200,000 125,500,000
Total	\$423,600,000

Installed capacity 2,619,000 horse-power.

- 230. The Board considers that sound business management will dictate the initial installation of but a part of the hydro-electric machinery with its housing and accessories. With a total initial installation of 1,368,000 horse-power, the initial costs, including all features required for navigation and with complete channel enlargement for winter power operation, becomes respectively \$350,100,000 and \$385,500,000.
- 231. The plans presented by the Board outline a subsequent complete development of the power resources of the river, by the construction of additional power works with an installed capacity of approximately 2,500,000 horse-power, at an additional cost of approximately \$225,000,000.
- 232. The total ultimate development visualized on the St. Lawrence river by the Board amounts therefore to approximately 5,000,000 horse-power at a total cost of from \$620,000,000 to \$650,000,000, including navigation works. Further details of estimates are given in Part III, paragraphs 200 to 204.

QUESTION 4

- "In order to assist either Government to allocate the amounts chargeable to navigation and power, what would be the respective estimated costs for improving the river for navigation alone and for power alone?"
- 233. Answer. The estimated costs for the initial improvement of each river section, (a) on plans recommended by the Board for both power and navigation, (b) on similar plans for the development of the same amount of power without any navigation works other than to maintain the existing 14-foot navigation, and (c) on alternative plans for practicable, though inferior, navigation through the power sections, are shown in parallel columns as follows:—

(1) If a single-stage development is adopted in the International Power section—

Section	(a) Plans recommended	(b) Power alone	(c) Navigation alone
Upper International. International power. Lake St. Francis. Soulanges. Lachine	235,000,000 989,000 103,945,000	213,000,000 77,172,000	1,100,000 79,000,000 980,000 33,640,000 53,000,000
Total	\$394,025,000	\$290,172,000	\$167,720,000

(2) If a two-stage development is adopted in the International Power Section—

Section	(a) Plans Recommended	(b) Power alone	(c) Navigation alone
Upper International International power Lake St. Francis. Soulanges. Lachine	264, 546, 000 980, 000 103, 945, 000	231,800,000	1,100,000 79,000,000 980,000 33,640,000 53,000,000
Total	\$423,571,000	\$308,972,000	\$167,720,000

QUESTION 5

"To what extent may water levels in the St. Lawrence River at and below Montreal, as well as the river and lake levels generally, be affected by the execution of the project?"

234. Answer. The irresponsible operation of the power works proposed by the Board, or indeed of any power works, however designed, that develop fully the power resources of any section of the river, would affect injuriously the water levels in the St. Lawrence river at and below Montreal; but it is feasible to operate these works under Government supervision in such manner that they will neither lower the summer levels in the lower river nor raise the winter and spring levels. With such control the improvements proposed will have no injurious effect whatever on the water levels of the St. Lawrence at and below Montreal.

235. The high levels on lake Ontario, of the upper reaches of the St. Lawrence river, extending 67 miles from that lake, and of lake St. Francis and lake St. Louis, will not be raised by the improvement. The low levels of lake Ontario and of these upper reaches of the St. Lawrence will not be made lower. The low levels of lake St. Francis will be raised about a foot and of lake St. Louis about 5 feet. The dams proposed in the power reaches of the St. Lawrence will create material local changes in the levels of these reaches only.

236. The levels of the Great Lakes above lake Ontario cannot be affected by any works in the St. Lawrence proper. Works to restore the effects of channel enlargement and of diversions from lakes above lake Ontario, are dealt with under the replies to Question 6 (b) and 10.

Question 6(a)

"To what extent and in what manner are the natural water levels in the St. Lawrence river and on the lakes affected by diversions authorized by license by either Canada or the United States, from or in the St. Lawrence river watershed?"

48827—48

237. Answer. The diversion by the Chicago Sanitary District of 8,500 cubic feet per second from the lake basin through the Chicago Drainage canal, authorized by license by the United States, lowers the water levels on the Great Lakes and the St. Lawrence river as follows:—

Lake Erie).5).4).4	foot foot foot			
At Lock 25 (Iroquois) (6 At Lock 23 (Morrisburg) (7 At Lock 21 (Dickensons Landing) (7 At Lock 15 (Cornwall) (7 Lake St. Francis (7).4).6).5).4).3).2	foot foot foot foot foot foot			
St. Lawrence river at and below Montreal—					
At Varennes (At Sore) At Batiscan (Capture Control of the Con	0.35 0.28 0.24				

238. The diversion of 2,080 cubic feet per second from lake Erie via the Welland canal for power use by corporations and municipalities authorized by license by Canada lowers the levels of the Great Lakes as follows:—

239. The foregoing are the only authorized diversions found by the Board to affect appreciably the levels of the lakes and the St. Lawrence. The effect of all diversions, including those for navigation purposes, and of other factors, is described in Part II of this report.

Question 6(b)

"By what measures could the water levels of navigable depths affected by the diversions referred to in section 6(a) be restored, and what would be the cost thereof?"

240. Answer. The water levels of lakes Michigan, Huron and Erie can be restored most advantageously by compensating works in the St. Clair and Niagara rivers, which should, however, be so designed as to offset all existing diversions and outlet enlargements, as well as the diversions authorized by license. The total cost of these works is estimated at \$3,400,000. The cost of similar but less extensive works designed to restore the effect of authorized diversions only, is estimated as follows:—

- 241. The effect of the diversions on the levels of lake Ontario and of the St. Lawrence river above Montreal will be removed by the works provided for the improvement of this part of the St. Lawrence.
- 242. The effect of the authorized diversions on the levels of the St. Lawrence river at and below Montreal can be restored by dredging and accessory works at estimated costs as follows:—

Dredging Montreal harbour Reconstruction of dock walls, Montreal harbour Dredging below Montreal	1,800,000
Total	\$4,608,000

27,200

Question 6(c)

- "How much power could be developed on the St. Lawrence river with the water diverted from the watershed referred to in section 6(a) under—
 - (1) The plans recommended?

(2)

- (2) Alternative plans providing for a full practicable development of the river?"
- 243. Answer. The following amounts of 24-hour power could be developed on the St. Lawrence river with the authorized diversion of 8,500 cubic feet per second from the water shed through the Chicago Drainage canal:—
 - (1) At the average heads available at the power plants initially recommended—

	In the International Power Section (82.5 feet average head) In the Soulanges Section (22 feet average head)	70,125 18,700
	Total	88,875
)	At the average heads available at the power plant recommended for the eventual full practicable development of the river—	
	In the International Power Section (82.5 feet average head)	Horse-power 70,125

Question 6(d)

Total

In the Lachine Section (32 feet average head)......

- "Without considering compensation by the present relative diversions of water from the Niagara river and from lake Erie, and without prejudice to a future consideration thereof, what works, if any, could be constructed to recover on the St. Lawrence river the amounts of power determined under section 6(c), and what would be the cost of such works?"
- 244. Answer. The Board finds that after the St. Lawrence river has been fully developed for power production, no works can be constructed which would recover on the St. Lawrence the power lost by the diversion of water from the watershed.

QUESTION 7

- "Having regard to economy of construction and maintenance, expedition of construction, and efficiency of operation—
- "(a) Which of the works should be constructed under the technical supervision of an international board and what other works, if any, might advantageously be constructed under such supervision?
- "(b) Which of the works should be maintained and operated by an international board and what other works, if any, might advantageously be so maintained and operated?"
- 245. Answer (a) Construction of Works. All dams, embankments, power house substructures, water-passages, gates and channel enlargements within the International Sections should be designed and constructed under the technical supervision of a single international authority.
- 246. The purpose of this is to make sure that the different parts of the works will not be so prosecuted as to interfere with each other, and that safe and equitable regulation of both winter and summer flows of the river will be possible

both during and after construction; as well as to secure uniformity, economy and expedition by co-ordinating design and construction programs.

- 247. The same authority should co-ordinate for the entire river, from lake Ontario to Montreal, the programs of construction and the channel dimensions and clearances for works necessary to secure through navigation.
- 248. (b) Maintenance and Operation of Works. The Board regards it as essential that an international control board be created with full power to regulate the use of water at the power plants in the International Section in order that such use may be prevented from creating conditions harmful to navigation in any part of the St. Lawrence, and in order that the operation of the various power plants be conducted with full regard to the use of water at other power plants on the river.

All locks and other navigation structures will necessarily lie in the territory of one country or the other, and can be most advantageously maintained and

operated by the usual government agencies of the two countries.

QUESTION 8

"What, if any, readjustments in the location of the international boundary are necessary or desirable to place power structures belonging to either country within its borders, as recommended by the International Joint Commission?"

249. Answer. Readjustments in the international boundary are necessary only in the International Rapids Section and depend upon the plan adopted for

the improvement of that section.

A change in the boundary in the vicinity of Barnhart island is necessary irrespective of whether the single-stage or the two-stage scheme be adopted in this Section. If, with either of these general schemes, the dam is located at the foot of Long Sault island and both powerhouses at the foot of Barnhart island, as shown on the plans of the two-stage development, a change is necessary between Turning Points 10 and 14 to bring the power houses within the borders of the two countries. If, on the other hand, the dam and power houses are at the foot of Barnhart island, with the United States power house on the mainland of the United States, as shown on the plans of the single stage development, it is desirable to so change the boundary between Turning Points 10 and 21 as to bring all of Barnhart island into Canadian territory. This island is separated from other American territory by the main channel of the St. Lawrence. The estimates include the acquisition of the entire island in connection with power development, and the land remaining unsubmerged can, with this plan, be put to beneficial use only in connection with the Canadian power house located thereon.

250. With the two-stage scheme, a slight change is needed also in the boundary north of Ogden island, to bring the power houses at that locality within the borders of the respective countries.

251. A detailed description of the necessary changes will be given in Appendix C.

QUESTION 9

- "If the Board is of the opinion that it would be advantageous to provide in the first instance for channel depths other than 25 feet, but less than 30 feet, for what draft of vessel should provision be made?"—
- 252. Answer. As explained in paragraph 111, Part III, the Board is not agreed on the advantage of any depth other than $25\ {\rm feet}.$

QUESTION 10

"Having regard to the recommendation of the International Joint Commission that the new Welland ship canal should be embodied in the scheme and should be treated as a part thereof, and to the fact that if a greater depth than 21 feet be adopted for the initial project depth of the St. Lawrence, such greater depth would not be available to the upper lake ports without further work in the navigation channels in the Lakes, what would be the cost of improving the main navigation channels between and through the lakes, so as to provide, without impairing the present lake levels, for (a) a depth of 25 feet and (b) for such other depth not exceeding 30 feet, as may be determined by the Board to be that for which it would be most advantageous to provide on the St. Lawrence river?"

253. Answer. The cost of improving the main navigation channels between and through the lakes, so as to provide a depth of 25 feet, including all compensating works constructed in furtherance of the work, is estimated at \$44,700,000, not including the cost of the new Welland ship canal.

QUESTION 11

"What is the time required to complete the proposed works, the order in which they should be proceeded with, and the progress which should be made yearly toward the completion of each in order to secure the greatest advantage from each of the works and from the development of the waterway as a whole?"

254. Answer. It is estimated that the waterway can be opened to navigation in from seven to eight years from the time that active work has been begun. All works should be so prosecuted as to insure the completion of navigation works at the same time. A complete program for the prosecution of the work will be presented in Appendix G.

APPENDICES

255. The investigations by the Board are set forth more fully in appendices as follows:—

Appendix A-Field investigations.

B—Lake levels and outflows.

- C—Detailed plans and estimates for the improvement of the St. Lawrence.
- " D—River levels and discharges at and below Montreal,
- " E—Ice formation on St. Lawrence.
 " Experiments on strength of ice.
- " G—Construction program.

United States Section

Canadian Section

EDGAR JADWIN,

DUNCAN W. McLACHLAN,

Major General, Chief of Engineers.

WILLIAM KELLY,

OLIVIER O. LEFEBVRE,

Colonel, Corps of Engineers.

G. B. PILLSBURY,

CHARLES HAMILTON MITCHELL.

Lieut. Colonel, Corps of Engineers.

Washington, D.C., November 16, 1926.

ST. LAWRENCE WATERWAY PROJECT

Memorandum re Appendices to accompany Report of Joint Board of Engineers

Since the completion of the Main Report dated November 16, 1926, the Board has completed Appendices as follows:—

Appendix A—Field Investigations

- " B-Lake Levels and Out Flows
- " C-Detail plans, and estimates of Projects
- " D—River levels and discharges at and below Montreal
- " E—Ice formation on the St. Lawrence
- " F-Experiments on the Strength of ice
- " G-Construction program

In these Appendices alternatives are presented to those described in the main report. Attention is invited to the Crysler Island two-stage project presented by the Canadian Section for the International Rapids Section. This project is described in paragraphs 121 to 134 of Appendix C.

United States Section:

EDGAR JADWIN,
Major General, Chief of Engineers.

WILLIAM KELLY, Colonel, Corps of Engineers.

G. B. PILLSBURY,

Lieutenant Colonel, Corps of

Engineers,

DETROIT, MICHIGAN, July 13, 1927.

Canadian Section:

DUNCAN W. McLACHLAN.

OLIVIER O. LEFEBYRE.

CHARLES H. MITCHELL.

APPENDIX A

FIELD AND OFFICE INVESTIGATIONS

INVESTIGATIONS BY CANADIAN SECTION

- 1. The Canadian Section of the Board was appointed on May 7, 1924. On that date funds were available for the work. A central office was etsablished in Ottawa and an organization was already in the field. After May, 1924, the personnel in both field and office was increased and work was prosecuted with energy from that time until the end of 1926.
- 2. Staff. Throughout the progress of investigations a field office was maintained at Cornwall. Mr. Russell Yuill, B.Sc., was in local charge of this office and also directed all boring and survey parties at work in the field.
- 3. Mr. Guy A. Lindsay, B.Sc., supervised the preparation of detail plans and estimates in Ottawa as well as the greater part of the hydraulic computations made.
- 4. Mr. J. K. Wyman, B.Sc., developed stage relation diagrams for the St. Lawrence above and below Montreal and determined the effect of outlet changes at a number of critical points in the Great Lakes System. He developed a number of schemes for regulation of the Great Lakes, including that of Lake Ontario.
- 5. Mr. A. L. Mudge, B.Sc., had charge of the assembly and preparation of tentative lay-out plans for power houses and the assembly of data obtained from manufacturers of hydraulic and electrical machinery.
- 6. Mr. W. Chase Thomson, M.E.I.C., prepared outline plans and detail estimates for a large number of bridges at various points on the river. Other members of the staff of the Canadian Section did much useful work in connection with the compilation of data, the working out of designs, and the preparation of estimates.
- 7. Mr. D. W. McLachlan, B.Sc., Chairman of the Canadian Section, was in general charge of all investigations made by the Canadian Section.
- 8. Borings. A very important part of the work done by the Canadian Section was the borings made to determine the character of foundations.
- 9. Previous to the appointment of this Board, but subsequent to the filing of the report of 1921, the Canadian Government put down 63 borings, in the years 1922 and 1923. Almost all of these were in the International Section of the river.
- 10. During the year 1924, the Canadian Section put down 15 borings in the International Section and 15 in the Lachine Section.
- 11. For drilling in deep swift water, one strong spud scow was built at Cornwall and a lighter spud scow for drilling in quiet water was rented in the spring of 1925. The first scow was equipped with a churn drill and with a Calyx core drill and the second scow was equipped with a churn drill only. These two outfits were put to work in the Canadian Section of the river early in the summer of 1925, and worked continuously during the open season of 1925. They did much difficult work in that season in the Cedars and Lachine

- rapids. The rented scow was not used during 1926, but the specially built scow was also used throughout that season, part of the time by the United States Section in the deep swift waters at the foot of Barnhart island.
- 12. In the years 1925 and 1926, taken together, 22 borings to rock were put down in the International Section and 144 in the part of the river below lake St. Francis. In 1927, 8 borings were put down in the International Section.
- 13. The number of borings made in the Soulanges Section was 88. Of this number, 17 were along the north shore of the river between Coteau and Cascades, 14 along the south shore of the river between Clark island and St. Timothee, 25 were along the route of a canal between Hungry Bay and Melocheville, 12 were in the river at Cedars, 17 in the Ottawa arm of lake St. Louis, and 3 in Hungry bay.
- 14. The number of borings put down in the Lachine Section in 1925-26 was 51. Of these, 13 were at the foot of Lake St. Louis, 16 in the LaPrairie Basin, 18 along the north shore of the river between the town of Lachine and the shore of the river at Verdun, and 4 were on the south shore of the river above Lachine rapids.
- 15. In 1926, 5 borings to rock were made by the Canadian Section in the St. Lawrence river below Montreal.
- 16. In 1924 and 1925, the Hydro-Electric Power Commission of Ontario put down 128 borings in the International Section of the St. Lawrence.
- 17. A large number of cores were obtained in connection with the borings made. The cores obtained by the Canadian Section are being preserved at Cornwall for future reference. In almost all cases in which borings were made, solid rock was penetrated a distance of from 10 to 15 feet in order to make sure that a boulder was not mistaken for solid rock. Wash boring equipment was used only in a very few cases by the Canadian Section.
- 18. The following summary shows the linear feet of borings made by the Canadian Section in 1924, 1925, 1926, and 1927:—

Section	Borings made	Length in earth	Length Uncored	in rock Cored	Total length
Below Montreal	5 66 88 45	ft. 218 1,370 1,922 1,954	ft. 4 1,168 320 409	ft. 24 127 187	ft. 246 2,538 2,369 2,550

- 19. A detailed description of the material penetrated in each hole is on file in the Department of Railways and Canals at Ottawa. The rock elevations found and the location of all borings made are shown in the plans accompanying Appendix "C".
- 20. Surveys. In the summer of 1924, the surveying of an uncharted portion of the St. Lawrence river, between the town of Lachine and the foot of the Lachine rapids, was undertaken and partially completed. This work was originally plotted at a scale of 400 feet to 1 inch.
- 21. In the years 1925-26, contour surveys of all islands in the river between lake St. Francis and Montreal were made. Topographical information formerly obtained along the river in the Soulanges Section was greatly extended, particularly on the north shore between lake St. Francis and lake St. Louis.

- 22. In the Soulanges Section a number of water level profiles were made on both shores of the river and around the larger islands.
- 23. In a number of cases in this section, basic data from plans of power companies was secured and replotted so that the plans filed with this report show all the data extant in the section.
- 24. During 1925-26, the surveys of Lachine rapids and LaPrairie basin, begun in 1924, were completed, and topographical information formally derived was extended on both shores of the river so that all areas of interest to the St. Lawrence project were covered.
- 25. Detail plans showing all buildings and improvements in the village of Caughnawaga and in the highly developed territory between the town of Lachine and Verdun were prepared.
- 26. In the International Section of the St. Lawrence river, a number of small surveys were made by the staff of the Canadian Section. These embraced the south shore of the river between Lotus island and Iroquois point, the high portions of Ogden island, the lower part of the channel south of Long Sault island, the river bed in the Little Long Sault rapids, and a series of summer cross-sections of the river between Morrisburg and the Long Sault rapids.
- 27. A comprehensive valuation of all property and buildings affected by the proposed improvements on the Canadian side of the International Section, and in the Long Sault and Lachine Sections, was made in 1926.
- 28. Temperature Measurements.—In the autumn months of 1924, an elaborate series of water temperature measurements between lake Ontario and lake St. Louis were undertaken. This investigation extended through the early months of winter and furnished much needed data upon heat transfer between water and air in cold weather.
- 29. A series of water temperature measurements in the Ottawa river, between Grenville and the head of lake St. Louis, were completed during the month of November, 1924.
- 30. Investigation of Ice Jams and Packs. During 1925, a careful survey of the hanging dams at the head of lake St. Louis was made, and the progress of the ice packs as they built up from the foot of lake St. Peter to Montreal and from the head of lake St. Francis to the Long Sault rapids, was carefully recorded.
- 31. At the request of the Board, a special survey of an unusual ice jam in the Niagara river was made in the winter of 1924-25, by the staff of the Welland Ship Canal
- 32. During the winter of 1924-25 and the two succeeding winters, record was kept of the movements of various ice jams and packs as they occurred at many points in the St. Lawrence river, between the foot of lake Ontario and the head of lake St. Peter.
- 33. Experiment on Strength of Ice. In the winter of 1925-26, the use of two rooms in the refrigeration plant of the Harbour Commission of Montreal was secured and in these rooms a great many tests of the strength of ice were made. The information obtained from these tests is given in appendix "F".
- 34. DISCHARGE MEASUREMENTS. During the open water period of 1924, and again in 1925, many meterings of the St. Lawrence were made above Iroquois Point. During the winter of 1925, careful measurements of the flow

of the river at the head of lake St. Francis were made. These, along with measurements made in the winter of 1923 and 1924, and data compiled by the United States Lake Survey, enabled a close determination of flow out of lake Ontario to be made both for winter and for summer.

35. In addition to meterings mentioned above Iroquois Point, measurements of river flow were also made opposite the mouth of the Montreal Acqueduct, at Boucherville island, and at Vercheres island, and also on the Richelieu, Ottawa, St. Regis and Raquette rivers.

INVESTIGATIONS BY UNITED STATES SECTION

- 36. The United States Section established a field office at Ogdensburg, N.Y., continuing from April, 1925, to January, 1926. Lieut, Joseph H. Stevenson, Corps of Engineers was in charge to July, 1925, when Col. C. W. Sturtevant assumed charge. Mr. F. W. Maltby was later engaged to collaborate with Col. Sturtevant on the studies of the proposed works.
- 37. Designs and Estimates. Extensive studies of hydro-electric development in the International Rapids Section were made for the United States Section of the Board by the firm of Viele, Blackwell and Buck, engaged as consulting engineers on this feature of the improvement. Designs and estimates for various schemes for improving the International Sections of the river were prepared by a special force organized in the United States Lake Survey Office at Detroit, in the winter of 1925-26, under Mr. Roger B. McWhorter.
- 38. Survey, Clayton to Brockville. All shoal areas in this critical section of the proposed navigation route through the upper St. Lawrence were determined by sweeping with a wire drag, set at a depth of at least 33 feet. The work followed the sweeping methods developed by the United States Lake Survey, and was done by a party from the Survey. All shoal spots were sounded at 50 feet intervals. The areas swept, and the shoals found, are shown on the maps accompanying appendix "C". The detailed soundings of the shoal areas are on file in the United States Lake Survey.
- 39. Probings of the shoal spots were made with a steel rod in the course of the survey, and showed that these were principally solid rock (granite) or boulders.
- 40. Survey, Chimney Point to Cardinal. On account of the great importance of this section of the river in all plans for improvement, a detailed hydrographic survey of this territory was made and plotted on a scale of 400 feet to the inch.
- 41. Survey, Barnhart Island. A new detailed hydrographic survey was made from Robinsons' bay to Massena point, and was also plotted on a scale of 400 feet to the inch.
- 42. Borings. Under a contract entered into with Clarke Brothers, Maysville, Kentucky, 93 wash borings were made to determine the character of the material between Chimney point and Point Three points, in the upper part of the river, and 61 borings, most of which were cored, were made to determine the elevation of suitable foundations for power houses, locks, etc., at the foot of Barnhart island, near the mouth of the Grass river, and at other points. In addition, 28 holes were drilled in this region with rented drills and on a footage basis.

- 43. To determine the elevation of the rock at the dam site near the foot of the Long Sault rapids, supplementing the special investigations by test pits and horizontal borings later described, a rented diamond drill, mounted on scow, was placed with some difficulty on the mid-channel shoal at the locality, and 5 vertical holes were drilled into rock. The rock elevation at the abutments of a dam at this site were explored by 8 diamond drill borings.
- 44. It was found that the wash borings made under contract in the upper portion of the river did not afford a reliable indication of the quantity of ledge rock to be handled in the execution of the proposed improvement, and the critical areas were therefore re-examined with diamond and heavy well-drills. These further investigations showed that ledge rock lies, at a number of places, at considerably lower elevations than was indicated by the wash borings above described or those made by the Deep Waterways Board in 1898 and 1899. A few wash borings were also made in the Lake St. Francis Section.
- 45. Most of the boring operations were made during 1925, but a few supplementary borings were made in 1926 to establish the foundation conditions at sites for structures developed by the office studies. The Canadian Section put its drill barge at the disposal of the United States Section for exploring the proposed dam site near the foot of Barnhart island during the latter season.
 - 46. The following is a summary of the borings made:-

Class	Number	Total length
Borings cored into rock (total length cored approximately 1,100 feet)		5,285 1,283
Other bornigs— Reaching desired grade. Not reaching desired grade.	21 96	579 1,600
Total	243	8,767

- 47. The location of the various borings, except such wash borings as were rejected, is shown on the detailed maps accompanying Appendix "C". A detailed description of the borings is on file in the office of the United States Lake Survey at Detroit.
- 48. Special Exploration of the Dam Site at Long Sault Rapids. At this site, the river flows in two channels on either side of a midstream bar. The swift currents and heavy breaking swells in these channels render ordinary boring inordinately expensive, if not impossible. A test shaft was therefore sunk on the shore on each side, on Barnhart and Long Sault islands respectively, and horizontal borings driven under the river from the bottom of these shafts. As previously described, vertical borings were made on the bar with a diamond drill.
- 49. Barnhart Island Shaft. The Barnhart island shaft was located on a bench about thirty-five feet above the river surface, and 100 feet from the water's edge. Active work on sinking the shaft was begun July 15, 1925. The collar was set at elevation 210. A timbered shaft was carried to bed rock, which was reached July 25, at elevation 148. The shaft was continued, without timbering, to elevation 121. A sump, with a depth of nine feet, was then excavated and the whole was completed on September 9, 1925.

50. The material penetrated was as follows:---

Elevations	Description of Material
	Heavy black loam.
	Coarse sand.
206·5 to 205·5	Sand and loam. Bluish clay and sand with small rock mixed, turning to a hardpan towards the end.
173 to 150	Shile hardpan. This material was very hard, requiring shooting to loosen it up. It seemed to lay in layers and while it could be picked, much better progress was made by light charges of 40 per cent powder.
150 to i48·5	Blue limestone with large amount of fossils showing. Sloped about 1 to 12 to the south and varied in thickness from 12 to 18".
148.5 to 148	Haropan with excess sand.
148 to 145	Blue limestone with seams \(\frac{1}{2}'' \) to \(\frac{1}{2}'' \) thick of pure sand running both horizontally and vertical.
145 to 138·5	Blue limestone. Very hard with tight seams running both vertical and horizontal. Shatters easily under 60 per cent powder. There was a small open seam at elevation 141.
138 · 5 · · · · · · · · · · · · · · · · ·	Seam 3" thick of soft shale laying almost level and extending clear across the hole.
138·2 to 125	Hard blue limestone.
125 to 121	Blue limestone but softer and showing large amount of fossils. Lighter in color.
121 to bottom of sump, approx.	Hard blue limestone.

- 51. The work was done by hired labour and was under the supervision of Junior Engineer W. B. Anthony.
- 52. Long Sault Island Shaft. This shaft was located at the foot of Long Sault island, on the shore, about seventy-five feet from the water's edge. Sinking operations commenced on August 13, 1925, and were completed on September 20. The collar of the shaft was placed at elevation 183.6. The timbering was carried down from the surface and was bedded at elevation 159.2 on a limestone stratum.
- 53. It was found that this limestone stratum was about ten inches thick, underlain by a four-foot layer of shale and separated therefrom by an open seam. When this seam was penetrated, the flow of water produced in the drill hole indicated that the pumping equipment would be insufficient to handle the water if the seam was fully opened. Grouting was therefore resorted to, and the shaft was then successfully completed.

54. The material penetrated was as follows:-

From elevation	To elevation	· Description ,
180.9	171.6	River gravel and sand.
171.6	162.1	Grayish, fine-grained marine clay, containing considerable fine sand.
167.0	162 - 1	Bluish-gray, thick-bedded limestone.
		NOTE.—This formation was encountered on the west side of the shaft and extended
162 - 1	101 15	about one-quarter of the way across the shaft.
161.15		Bluish-gray, fossiliferous limestone. Bluish-gray shale.
159.25		Bluish-gray limestone.
158 - 45		Bluish-gray shale. The contact between this shale and the overlying limestone
		stratum is an open water seam and was grouted as described above. It is thought
154 - 15	4 2 4 2	that there is a change in the rock series at this contact.
151.5	$151 \cdot 5$ $147 \cdot 6$	Bluish-gray, shaly, fossiliferous limestone. Bluish-gray, fossiliferous limestone.
147.6	145.2	Light bluish-gray, crystalline limestone with shale partings.
145.2	143.1	Bluish-gray, fossiliferous limestone.
143 · 1	141.7	Bluish-gray, arenaceous limestone.
141.7	138 · 7	Bluish-gray, crystalline limestone, with shale partings.
138 · 7 135 · 9	135·9 133·9	Light-gray, dense, crystalline limestone with shale partings.
133.9	131.5	Bluish-gray, cross-bedded, shaly limestone. Gray, dense crystalline limestone.
131.6	131.2	Bluish-gray, crystalline limestone, with shale partings.
131.2	128.3	Dove-colored, dense, crystalline limestone.
128.3	126.8	Bluish-gray, coarse, crystalline limestone.
126.8	123.5	Bluish-gray, coarse, crystalline, cross-bedded limestone with shale partings, with
123.5	122.8	quartz deposition on joint planes. Bluish-gray, cross-bedded, finely crystalline limestone with shale partings.
122.8	122.7	Same as No. 21, but lower shale partings.
122.7	119.6	Bluish-gray, dense, crystalline limestone.

- 55. The work was done by hired labour, three shifts being employed. Mr. W. W. Gruber, Junior Engineer, was in local charge of the work during the period of organization and preliminary construction. Mr. E. L. Lull, Junior Engineer, was in local charge during the sinking of the shaft.
- 56. Horizontal Borings. The horizontal borings were driven under contract with the Pennsylvania Drilling Co., by diamond drills from chambers excavated near the bottom of the shaft. The deflection of the holes from the horizontal was measured every 100 feet by means of etching solution on glass tubes inserted in the holes; and the deflection in direction by compass needle in a congealing solution. It was found that all holes tended to dip downward. The boring from the Long Sault Shaft was driven 690.7 feet with a total calculated downward deflection of 15.7 feet. The first hole driven from the Barnhart Island shaft, when it had penetrated 660 feet, had such a downward inclination that it was apparent that further information from this hole would have little value. A second hole was started with an upward inclination of $1\frac{1}{2}$ per cent. This hole also dipped downward to such an extent that, at the end of 350 feet, it was deemed desirable to discontinue it. A third hole was started with an upward inclination of 3 per cent, and reached a distance of 760 feet, with the elevation at the end of the hole 4 feet below the point of starting. The end of the hole was then approximately 600 feet from proved rock established by a drilled hole on the midstream bar.
- 57. The material penetrated by all horizontal borings was limestone bedded horizontally, with tight shale seams. No evidence of vertical seams or cavities was shown by any of the holes, and the leakage from all holes was insignificant.

SYNOPSIS OF GEOLOGICAL AND BORING INFORMATION

58. As previously described, various borings, down to and into rock, have been carried out by both sections, distributed throughout the entire length of

the river under investigation.

59. In this appendix, it is thought desirable to outline more in detail the nature of the several rock formations and their over-burden, and at the same time to include some typical records of rock borings to indicate the character and arrangement of the strata of the various materials encountered in the more critical localities. These typical records have been selected from those

on file in the respective government offices at Ottawa and Detroit.

60. The country rock, apart from the river influences, displays characteristics, including striations, indicating a southerly passage of glaciers. There are in addition, indications of pre-glacial erosion and definite channels which cut across the glacier tracks in an easterly direction, not easy to trace or connect with any definite system. There are repeated series of ridges and valleys in the rock surface, cutting southerly across the present river throughout its whole course. The foregoing conditions have given rise to the statement expressed in the Main Report that "geologically the St. Lawrence is a new river" (para. 25).

61. Indications of the changes which the river has undergone are frequent. While it appears generally to have preserved its uniformly straight course from Lake Ontario to Montreal, there are frequent instances of local variations as disclosed by rock borings, which may have some bearing upon future construction on the river. Modern theories of river hydraulics may explain these variations by changes in discharge, by some rock and earth erosion, by ice gorging, etc., but this river, with its great volume of water, appears to have

kept very closely to its relatively straight course.

62. Thousand Island Section. The rock surfaces through this section, as found by hydrographic surveys are very irregular. The shoals to be excavated are granite, characteristic of this region.

63. International Rapids Section. General: The material overlying the rock throughout this section is generally a mixture of clay, sand, gravel, and boulders, with clay predominating. These are compacted into occasional masses of hardpan. Boulders occur frequently; they commonly form a pavement on the bed of the river especially where the current is swift; they are also frequently found in layers in the bodies of the islands and on the mainland, and almost invariably form the upper strata and caps of the high spots or knolls. As excavation work proceeds it is possible certain deposits of both sand and gravel may be found suitable for construction but these are likely to be limited.

64. The rock in the International Rapids Section as indicated by borings, is generally limestone of various degrees of hardness and varying thickness of strata with occasional seams of shale and sandstone. A good portion of the rock, where excavated, may be used for different classes of construction, but only a limited quantity is suitable for concrete or other uses where uniformly

hard and durable rock is required.

Geological records (Geological Survey of Canada, Ottawa and Cornwall Sheet, No. 120, 1906), show calciferous dolomite between Chimney Point and Ogden Island and at Farrans Point and in the Long Sault Rapids. They show Chazy limestone with occurrences of Chazy shale with bands of sandstone between Ogden Island and the foot of the section. No geological faults have been found in the district. All rock encountered in this section appears to be quite strong and impervious.

- 65. GALOP RAPIDS. The head of Galop Rapids is formed by a rock ridge with its uneven surface filled in by boulder pavement. This ridge, which constitutes the control for the level of Lake Ontario and virtually forms the bed of the river, may be said to vary across the two channels, between Elev. 224 and
- 66. The following boring record is given in order to present an idea of the typical character of the rock and its overburden in this general locality.

ON GALOP ISLAND

	of Galop island, near shore in large bay, about
posed chann	elow upper shore of island (on centre of pro-
Done June 16, 1926,	by United States Section with "Well" Drill
(Boring No	S. 14. Index No. P. 144).
Elevation	
255.7 to 247.6	Clav
	Normal water level
247.6 to 220.7	Hardpan with boulders
220.7	Rock surface
**************************************	Medium blue limestone
210.7	Bottom of drilled hole

- 67. Ogden Island. At Ogden Island a rock sill crosses the north channel at Elev. 202 and a similar rock sill crosses the south channel at Elev. 214. At the lower end of the island the general level of rock appears to range around Elev. 175 while further down below Canada and Clark Island, it is more irregular varying under the river bed, between Elev. 150 and 170. Extensive boring data is available in this locality.
- 68. The following boring records are herewith given as typical in this locality, the two selected being on the North shore of Ogden Island and alongside the main channel of the river.

OGDEN ISLAND

Done	Normal Water Level Sand and gravel Gravel with stones
OGDEN	ISLAND
Location	th side of Ogden Island, about 800 feet above
Done July, 1923, by	Can. Dept. of R. & C. with "Well" drill 3, Index No. 108).
Elevation	Ground Surface
	Normal water level
226.4 to 197.9 197.9 to 195.9	Sand and gravel with boulders Boulder, limestone
195.9 to 191.4	Sand and gravel
191.4 to 174.4	Sand and gravel with clay
174.4 to 173.7	Sand
173.7	Rock Surface
173.7 to 171.5	
171.5 to 164.2 164.2	Medium hard limestone Bottom of drilled hole.
45827—5	Pottoni of difficultions.

- 69. Crysler Island. At and in the vicinity of Crysler Island about forty borings have been made, this being an alternative location for a dam and power house. The borings showed marked irregularity in the underlying rock surface and water under pressure was found in several holes. The core borings made after the completion of the Main Report, however, disclose more favourable foundation conditions further down stream.
 - 70. Typical rock borings, above and below Crysler Island are as follows:--

CRYSLER ISLAND

Location	
banks of riv	er.
Done	Can. Dept. of R. & C. with "Well" drill
(Boring No.	1, Index No. 106).
Eleration	Ground surface
208.0	Normal water level
213.0 to 181.0	Hardpan with boulders
181.0 to 176.0	Hardpan with small stones
176.0 to 165.5	Clay hardpan (Boulder at 168.0)
165.5 to 159.0	Sand gravel and a little clay
159.0 to 155.7	Quicksand
155.7 to 142.0	Hardpan
142.0 to 140.2	Sand and fine gravel
140.2	Rock surface
140.2 to 139.2	Slate rock
139.2 to 135.9	Limestone rock
135.9	Bottom of drilled hole.

CRYSLER ISLAND

Location	t below lower point of Crysler Island, midway n banks of river.
Done	y Canadian Section with core drill (Boring
No. 11, Inde	ex No. 104).
Elevation	Water surface
192.5	River bed
192.5 to 183.1	Loose sand and gravel
183.1 to 174.8	Sand and loose gravel
174.8 to 167.5	Fine sand and coarse gravel
167.5 to 158.7	Sand
158.7	Rock surface
	Limestone
141.6	Bottom of cored hole.

- 71. Long Sault Rapids. The river bed forming the head of Long Sault rapids consists of a limestone sill or ridge with its crest at about Elev. 180, which it is to be observed is higher than the rock at Chrysler island, twelve miles upstream. At the proposed dam site, opposite the head of Barnhart island, the rock drops off to elevations ranging between 150 and 160. The exploration of this site, by methods hereinbefore described in detail, shows that the rock has ample bearing power for a dam structure.
- 72. The overburden in the banks and in the islands in the locality of this upper Barnhart Island Dam site, is of the usual boulder clay formation. The midstream shoal at this point is hard blue clay, with a paving of cobbles and boulders.
- 73. The proposed dam and power house site at the foot of Barnhart island was explored for foundation conditions, both in the river itself, on the mainland and on Barnhart island. Within the river, six cored borings were sunk to depths of from 10 to 30 feet into the rock. The rock, at the general elevation of from 107 to 111, was limestone and drilling records indicate it to be impervious. The overburden in the river, about 30 feet in thickness, is clay, sand,

gravel, and boulders, generally hard and dry but with some water bearing seams. On the United States mainland, on the powerhouse site, the rock ranges from Elev. 104 to 109 and on the Canadian power house site on Barnhart island, from about Elev. 110 to 125.

- 74. Considering the United States mainland, both above and below Hawkins point, much attention was paid to investigation of the overburden because upon its impermeability will depend the security of this portion of the development if water is raised by a main dam across the river at the foot of Barnhart island. Various borings were put down along the river shore which indicate that the rock is lower around Hawkins point than further down at the power house and dam site.
- 75. A study was also made of the character of this area comprising a stretch of about three miles in length and especially of that lying under the oval contour 200 extending above and below Hawkins point. Particular attention was paid to the water bearing strata as disclosed by the numerous wells on the farms in the locality. The top portions of knolls here, around Elev. 220 and 225, have the same predominating caps and shallow layers of boulders as elsewhere along the river, the boulders being embedded in a clay or hard-pan crust which holds rain and surface water in small ponds or swamps. There are sand and gravel strata below these, alternating with layers of hardpan and boulders. The water bearing strata hereabouts lie between Elev. 165, just about the surface of the water in the river, and Elev. 185, which is about the elevation of the top of the main clay or hardpan beds. Most of the water strata down river from Hawkins point are found about Elev. 165 and those above Hawkins point at Elev. 175 to 185. It is considered that for construction purposes, this long contour can be made reasonably impervious for the head that may be imposed, care being taken to secure tight connections to the main hardpan stratum at about Elev. 185.
- 76. On Barnhart island a similar situation would be created and in like manner special attention was paid to investigating both rock and overburden. The most critical portion of Barnhart island in this respect is the lower third, as it is here that the island will be called upon, under any method of power development, to act as an earth dam having a dyke on its crest to hold water above its present ground surface. Such necessity raises the question of the impervious character of the material overlying the rock.
- 77. Barnhart island is characteristic of all the St. Lawrence islands in this Section. Clay is mixed with sand, gravel, and boulders but in quite irregularly formed strata and at different levels.
- 78. Selecting 13 typical borings in the lower third of the island with special reference to the materials overlying the rock, the following several features emerge: In only one locality does water occur at an elevation above the river; this appears to come from ponds and surface sources. There is nothing in the borings or surface indications to cause a suspicion that river water finds its way in significant quantity from the higher to the lower reaches by means of underground channels either in or beneath the island. The higher levels carry boulders with coarse gravel and sand and some clay which occurs in pockets. Intermediate levels carry sand and gravel with some strata of clay; these are sometimes compacted into hardpan. The lower levels, next to rock, invariably are of sand and fine gravel interspersed with layers of coarse materials and sometimes found tightly compacted. The same conditions prevail on Sheek island where similar investigations were carried out,

79. Considering the lower portion of Barnhart island where it will be called upon to sustain water at a high level, the borings indicate that the materials overlying the rock will be satisfactory for the foundation of the earth dykes, provided they are properly prepared.

80. Borings along the navigation canal route between Robinson Bay and Grass river were made to supplement those made in 1900 by the Deep Waterways Board. Those at the Robinson Bay lock site showed continuous hardpan to rock which is at Elev. 122. Seven borings cored into rock were made at the Grass River Lock site; the overburden is soft blue marine clay, in general extending to rock which is at about Elev. 104.

81. In order to convey some idea of the characteristics of these several critical localities at and about Long Sault rapids, five typical borings in addition to the two shafts already described, have been selected and their records are as follows:—

BARNHART ISLAND AND LONG SAULT RAPIDS

Т

	1
Location	Barnhart Island near shore about 3,000 feet below possite Robinson Bay.
Done May 8, 192	23, by Canadian Dept. of R. & C. with "Well"
Elevation	oring No. 17, Index No. 48). Ground surface
196.5 to 19	4.5 Clay
194.5 to 18 187.5 to 178	
162.0	Normal water level
178.5 to 119	
119.5	Rock surface Limestone
116.5	Bottom of drilled hole.
	II
Location	ower portion of Barnhart Island 2,500 feet up from er end and in the forebay of "Two Stage" Power
	1922, by Canadian Dept. of R. & C. with "Well"
drill (B	oring No. 4, Index No. 41).
Elevation	Ground surface 2.5 Sand and gravel with boulders
182.5 to 170	0.0 Gravel with clay
170.0 to 15	
159.0 to 15- 154.0 to 15:	
152.0 to 15	1.6 Sand and gravel
151.6 to 146 146.3 to 14	
145.9	Rock surface
100.0	"Hard" limestone
133.9	Bottom of drilled hole
	III
end of	Main Channel, southeast of and opposite lower Barnhart Island, on "Single Stage" Dam and House site.
Done	by United States Section, with core drill (Boring
	1, Index No. P. 53). Water surface
Elevation	River bed
. 141.1 to 13	1.1 Sand and gravel
131.1 to 12: 122.5 to 11:	
112.8 to 110	
110.7	Rock surface
89.5	Limestone Bottom of cored hole.
0010	

IV

	s mainland, near shore in bay 3,500 feet below
Hawkins Point of	on "Single Stage" Power House site.
Done	United States Section, with core drill. (Boring
No. P. 5, Index	
Elevation	
159.0	
	Sand and clay, with boulders. Material re-
	ng at some places down to Elev. 137.0 to drive
	ng at some places down to Elev. 157.0 to drive
casing.	D1
105.8	Rock surface
105.8 to 100.8	
100.8 to 80.8	
80.8	Bottom of cored hole.
7	7
Location On Canal Line, below Robin	near Robinson Bay Lock Site about 3,000 feet
Done	TT 's i Cu t C t's 'th and Init! (Daving
No P 6 Ir	United States Section with core drill, (Boring oder No. P. 64)
No. P. 6, Ir	ndex No. P. 64).
No. P. 6, Ir Elevation	ndex No. P. 64). Ground surface
No. P. 6, In Elevation	ndex No. P. 64). Ground surface Soft clay
No. P. 6, In Elevation	ndex No. P. 64). Ground surface Soft clay
No. P. 6, Ir Elevation	ndex No. P. 64). Ground surface Soft clay Normal water level in Robinson Bay Hardpan with boulders
No. P. 6, In Elevation	ndex No. P. 64). Ground surface Soft clay Normal water level in Robinson Bay Hardpan with boulders Rock surface
No. P. 6, In 190.8 190.8 to 182.8 163.0 182.8 to 122.4	ndex No. P. 64). Ground surface Soft clay Normal water level in Robinson Bay Hardpan with boulders Rock surface Blue limestone
No. P. 6, Ir Elevation	ndex No. P. 64). Ground surface Soft clay Normal water level in Robinson Bay Hardpan with boulders Rock surface

- 82. Lake St. Francis Section. In lake St. Francis some deposits of sand were found near its head, but, in general, the material to be removed in the channels consists of soft mud overlying sand and gravel. The land area southeast of the lake consists of layers of peat overlying clay.
- 83. Soulanges Section. The material overlying the rock surface throughout this section is boulder clay in the ridges and marine clay in the flat portions. The marine clay appears to have been deposited after the boulder clay; in some cases both materials were found in the same boring.
- 84. The overburden at the upper end of this section is not very deep and in many cases the rock is close to the ground surface. This is especially so in the Coteau rapids, while at the upper end of Grande île there is much rock outcrop, and most of the wells on this island are quite shallow. The overburden on Grande île is boulder and marine clay and no sand or gravel was encountered in any of the borings except at the east end of the island.
- 85. Between Cascades point and Cascades island, and on the latter, the solid rock surface is exposed but it falls off rapidly toward the Ottawa arm of lake St. Louis.
- 86. In Coteau rapids, crystalline limestone is exposed and is of a specially hard gritty nature. In Cedars rapids, dolomite is exposed and in Cascades rapids, Potsdam sandstone.
- 87. On the south side of the river, along the line of the Hungry bay-Melocheville canal location as proposed in the report of 1921, the overburden is marine clay overlying gravel and sand, except along the St. Louis river, where rock outcrops and boulder clay ridges rise through the surface of the marine clay. The high ground between the St. Louis and St. Lawrence is heavily capped with boulder beds. At Melocheville, solid sandstone rises to the surface and has been quarried in some places.

- 88. Along the north shore of the river from Coteau to Cascades, the overburden is all marine clay although some sand and gravel is found in borings made near Coteau Landing. On île Juillet and île aux Vaches, clay, sand, and gravel overlie the rock. Some sand and gravel were also found in the borings put down in the river above île Juillet.
- 89. Boulders and boulder pavements on the river bed and the islands are frequent throughout the whole section. When the river bed was exposed during the construction of the Cedar Rapids Power works, the bed of the head canal was found to be covered with boulders.
- 90. In general the rock surface in and on the shores of the river above Coteau rapids is about elevation 126. Similarly, it is at about elevation 100 at the upper end of Cedars rapids and from elevation 80 to 85 at the top of Cascades rapids.
- 91. Four typical borings in this section have been selected as indicating the character of rock and overburden. Their records are as follows:—

COTEAU DU LAC

Т		

1			
LocationNear shore, no opposite Pris du Lac lock	soner's island (at mile 145 and on Coteau		
Done	Canadian Section with "Well" drill. (Bor-		
Elevation	Index No. 29) Ground surface		
149 0	Marmal restor larral		
146.7 to 138.7	Sand and gravel Sand and gravel Sand and gravel Sand and clay Rock surface		
131.2 to 129.4	Sand and graver with clay Sand and clay		
129.4	Rock surface Limestone ("Fairly hard")		
111.9			
ILE JU	ILLET		
II			
Location			
Done	25. by Canadian Section with core drill		
Elevation 126.4	4. Index No. 50). Water surface		
118.4	River bed Sand and coarse gravel Sand and gravel with clay Rock surface		
118.4 to 105.0 105.0 to 101.0	Sand and coarse gravel Sand and gravel with clay		
101.0	Rock surface Limestone		
84.3	Bottom of cored hole		
HEAD OF CEDARS RAPIDS			
III .			
Location	am, 300 feet north of lower end of Ile Juillet, ux Vaches. (On power house site).		
Done	1925, by Canadian Section with core drill. 6, Index No. 55)		
Elevation	Water surface (swift)		
110.1	Cand and accurate amortal with alart		

115.1 to 103.9

103.9 to 100.8 100.8

90.1

Sand and coarse gravel with clay

Sand and coarse gravel

Rock surface Limestone Bottom of cored hole.

CHAMBERRY GULLY

TV

Location	Gully, on canal location below Chamberry
Gully lock (a	
Done	
	"S", Index No. 19)
Elevation 98.0	Ground surface
98.0 to 78.5	Clay
73.5 to 62.8	Gravel
62.8	Rock surface
	Hard sandstone
54.8	Bottom of drilled hole.

92. Lachine Section. The material overlying the rock in this section is mostly of clay with small amounts of sand and gravel, usually near the rock and in comparatively thin layers. From above Lachine to the mouth of the Montreal Aqueduct and from the foot of Lachine rapids to Montreal, the river is strewn and paved with boulders. In the borings, however, especially along the shores, very few boulders were encountered.

93. The surface of the rock is exposed in many places throughout this section both on the shores and on the islands, and in the form of shoals and ridges in the river and rapids. On the north shore between Lachine and Verdun, the rock surface is above the bed of the river but it drops off east of Verdun and from there to Montreal is generally below the bed of the river.

94. The rock found in the borings in the eastern end of lake St. Louis was shale or soft limestone. There is a large outcrop of Chazy limestone along the shore at Caughnawaga, while east of this point it is Trenton limestone, also exposed. Further east this is replaced by Utica shale. In the Lachine rapids there are frequent igneous dykes or intrusions through the shale, running across the river northwesterly; these outcrop on Heron island and on both main shores. The shale disintegrates very rapidly on exposure but the igneous rock weathers well.

95. The general surface of the rock opposite Lachine is at about Elev. 50 and this approximate level holds until near the head of Lachine Rapids. The general level at the foot of Lachine rapids is between Elev. 18 and 24 which holds along the north shore to Verdun. The rock along the proposed canal route then rises following the shore until near Victoria bridge where it is about Elev. 30. Thence it rapidly falls to about Elev. minus 6 in the upper end of Montreal

96. Three typical borings have been selected for this section, the records of which are as follows:-

LACHINE RAPIDS

Location On south shore	e at head of Lachine rapids, opposite upper
end of Ile	au Diable (near dam site).
Done	25, by Canadian Section with "Well" drill.
(Index No.	
Elevation	Earth' surface
57.0	Normal water level
59.2 to 54.2	Earth and stones
54.2	Rock surface
54.2 to 52.2	Slate rock
52.2 to 47.3	Shale and slate
47.3 to 46.1	Slate rock
46.1 to 40.2	
40.2 to 38.2	
10.2 00 00.4	Tiara Blace

Shale 33.2 to 16.2 Slate 16.2 to -3.8 -3.8 to -5.3 Black shale and clay Slate -5.3 to -20.0 Black shale and clay

-20.0 to -25.5

38.2 to 33.2

Limestone Bottom of drilled hole. -25.5

LACHINE RAPIDS

Location	f river about 2,000 feet west of present house and 1,300 feet from river (near
Done	Canadian Section with "Well" drill.
Elevation	round surface ord sand nd and clay ormal water level (head canal) Ay avel and stone
54.2 to 50.0 Sla 50.0 Ro 50.0 to 39.5 Sla	aver and stone tte gravel sck surface tte rock am of sand and water (4-inch)
39.5 to 34.9 Ro 34.9 to 31.7 Ro	ick, very hard ick (softer) ttom of drilled hole.
AT VERDU	JN
Location	of Nun's Island opposite Verdun pump location, mile 180)
Done	
Elevation	ater surface (winter) ormal water level (summer) ver bed nd and gravel obck surface, shale ale
18.3 to -6.8 Sla	ock surface, slate

97. Information concerning the geology of the St. Lawrence river, between Prescott and Lachine, is contained in a "Report on Structural Materials" in this section, published by the Canadian Department of Mines, 1922. References to other geological reports are given on pages 12 and 13 of that publication.

Seam of sand Slate

Bottom of drilled hole.

-6.8 -6.8 to -11.4 -11.4

Adopted by Board, June 2, 1927.

APPENDIX B

LAKE LEVELS AND OUTFLOWS

1. This appendix sets forth the data and computations on which the conclusions relating to the Great Lakes in Part II of the Report are based.

DESCRIPTION

2. Areas and Storage Capacity. The areas of the Great Lakes are as follows:—

	Square Mile
Lake Superior (including St. Marys river above St. Marys falls)	31,820
Lake Michigan	
Lake Huron-(including St. Marys river below St. Marys falls)	
Lake St. Clair (including St. Clair river)	
Lake Erie (including Detroit river)	
Lake Ontario (including Niagara river and St. Lawrence river to	
Galop rapids)	7,540
Total	95,160

- 3. The Great Lakes form an enormous reservoir system which equalizes the flow of the St. Lawrence river. In this system lakes Michigan and Huron are a single unit, since they are joined by the broad and wide straits of Mackinac and have always substantially the same level. Lake St. Clair can be included, without material error, in the reservoir capacity of lake Erie.
- 4. The flow of water that would be furnished by drawing down the several lakes by one foot, or conversely the flow required to increase the depth on the lakes by one foot, is as follows:—

	Cis. for One Month
Lake Superior	337,100
Lakes Michigan-Huron	481,200
Lake Eric	110,200
Lake Ontario	80,000
Total	1,008,500

- 5. A draw down of one foot on the lake system as a whole would provide the entire average flow delivered to the St. Lawrence for more than four months. It is of interest to note that the entire flow of the Mississippi river past New Orleans at flood time would raise the Great Lakes at the rate of but little more than one foot per month.
- 6. Supply. The water supply of the Great Lakes is furnished by the inflow of the many relatively small rivers of their drainage basins, increased by the rainfall on the lakes themselves, and decreased by the evaporation from the lake surfaces. The total area of the drainage basin of the lakes is approximately 300,000 square miles, of which nearly one-third is occupied by the lakes themselves. Computations show that the average supply received from the land areas about equals that received as rainfall on the lakes, but that roughly 40 per cent of this total gross supply is lost by evaporation. (Table 45, pp. 367-368, Report on Diversion of Water from the Great Lakes, 1919.)
- 7. The net supply to any lake, from month to month, can be determined from the inflow from the lake above, the outflow from the lake, and the change

in level during the month. The annual supply to the entire lake basin, from 1860 to 1925, as determined by such computations (par. 72 to 89), has varied from a maximum of 342,000 cfs. per annum in 1873 to a minimum of 145,700 cfs. per annum in 1895, with an average for the entire period of 242,000 cfs.

8. The seasonal variation in supply swings between much wider limits. It is highest in the spring months of April to June, and lowest in the fall months, October to December. The average net supply of the lake basin by months from 1861 to 1925 has been as follows:—

Spring and Summer	Cfs.	Fall and Winter	Cfs.
March	367,800	August	178,600
April	533,900	September	89,200
May	538,900	October	41,300
June	445,300	November	19,700
July	304,900	December	61,400
		January	110,400
		February	208,500
Average	438,200	· Average	101,300

- 9. During the high year of 1873 the supply for the month of April was at the rate of 825,500 cfs. During the low year of 1895, the lake system as a whole lost during the two months of October and November more water from evaporation than it received from all sources, the deficiency being 51,500 cfs. per month and 35,500 cfs. per month respectively.
- 10. The monthly supplies to the individual lakes, from 1860 to 1925, are given in tables 1 to 7, appendix B.
- 11. Outflow of the Lake Basin. The average yearly outflow from the Great Lakes basin, including the outflow through the canal of the Chicago Sanitary District, has ranged from 285,400 cfs. in 1861 to 205,500 cfs. in 1895. The monthly outflow has ranged from an average of 318,000 cfs. in May, 1870, to an average of 174,200 in February, 1872. This minimum was due to ice retardation. The minimum discharge with open-river conditions was in November, 1895, and amounted to an average of 194,000 cfs. for the month. The average total outflow from 1861 to 1925 has been 246,100 cfs. The apparent discrepancy between the mean supply given in par. 7 and the mean outflow is reconciled by the relative lake levels at the beginning and end of the period.
- 12. The recorded maximum and minimum monthly outflows occurred prior to the opening of the Chicago Drainage canal, and the figures given represent, therefore, the limits of variation of discharge into the St. Lawrence.
- 13. The total outflows through the Chicago Sanitary District canal are given in the following tabulation, extracted from the Report on the Illinois River published in House Document 4, 69th Congress, 1st Session:—

Year	Yearly Mean Discharge, Cfs.	Year	Yearly Mean Discharge, Cfs.
1900	2,990 4,046 4,302 4,971 4,793 4,480	1913 1914 1915 1916 1917	7,839 7,815 7,738 8,200 8,726 8,826
1907 1908 1909 1910	4,473 5,116 6,443 6,495 6,833 6,896 6,938	1919 1920 1921 1922 1923 1924 1925	8,346 8,355 8,858 8,348 9,465

14. Annual Fluctuation in Lake Levels. The annual fluctuation of the lake levels in absorbing the seasonal irregularities of supply has been as follows:—

	Average	Maximum
	Feet	Feet
Superior	11	2.67
Michigan-Huron	14	2.58
Erie	$1\frac{1}{2}$	2.99
Ontario	2	4.17

15. Extreme Ranges of Monthly Mean Lake Levels. Extreme high and low waters are reached at the end of periods of excessive or deficient supply extending over several years. The mean highest and lowest average monthly levels of the Great Lakes between 1860 and 1925, in feet above mean sea level, are shown in the following tabulation:—

	Mean elevation	Maximum	Minimum			Range		
Superior at Marquette. Michigan at Milwaukee. Huron at Harbor Beach Erie at Cleveland. Ontario at Oswego.	581·02 581·02 572·46	583.57 (June, 583.66 (July, 574.52 (June,	1886) 1876) 1876)	577 · 47 577 · 61 570 · 39		1911) 1925) 1925) 1925) 1925) 1895)		3.54 6.10 6.05 4.13 5.45

- 16. Temporary Oscillations of Lake Surfaces. Superimposed on the rise and fall of the level surfaces of the lakes shown by the monthly mean levels, there are occasional oscillations due to wind and barometric pressure, by which the water is raised temporarily by several feet in a part of the lake, and depressed by an equivalent amount in another. Lake Erie particularly is subject to such disturbances. Its fluctuations reach their maximum at Buffalo, due to the configuration of the shore line at the east end of the lake. During a westerly gale the water has risen 8 feet above its monthly mean level at Buffalo; and the water at Buffalo has been known to fall 4 feet below its monthly mean level. While these extremes are uncommon, fluctuations of one or two feet, lasting for a few hours, are not uncommon, and more or less rythmic fluctuations of several inches, known as seiches, are nearly always occurring on all the lakes except Ontario.
- 17. Levels Prior to 1860. The systematic recording of the levels of the lakes was not begun until 1860. The gauge records prior to that date are generally not continuous, and the datum to which some are referred is not certain. The lakes reached an unusually high level in 1838, and this high water level was for years used as a reference plane for lake levels. The high water level of 1838 on lake Erie is established at 575.11, which is 0.6 feet above the highest monthly mean level since 1860; on lake Michigan, the high water of 1838 is 584.69, which is 1.1 feet above the maximum monthly mean level since 1860. The high water of 1838 on lakes Superior and Ontario was established by inference rather than by records, but has been carried as 605.32 for lake Superior, and 248.98 for lake Ontario. For Superior, this high water datum plane is 1.2 feet above the highest monthly mean level recorded since 1860; on Ontario, the monthly mean level for May, 1870, was practically at the 1838 high-water plane.

The old records further indicate that in 1819 the lakes may have been at

substantially the low levels of 1925.

18. Earth Tilt. The records of the several water-level gauges on the Great Lakes show a gradual steady rise of the earth surface on the northerly shores of the lakes relative to that on the southerly shores. This movement of the earth's surface is in the same direction as that which occurred in past ages, as shown by the levels of old beaches. The axis of the present tilting as a whole is

approximately 20 degrees north of west, and the rate of tilting is in the vicinity of one-half foot per hundred miles per hundred years, with indications of a somewhat greater rate in the northern areas.

The effect of this local tilting on the water levels and depths of water at any locality on any lake varies with the distance of this locality from an axis

drawn through the controlling sill of the outlet to the lake.

The maximum effect of this movement of the earth's surface on Great Lakes levels should be felt in the lower St. Marys river, which is some 200 miles from an axis drawn through the outlet of lake Huron. If the tilting of the earth continues at the present rate it is to be expected that the depths in the channels and in the lower entrances to the locks in that river may be reduced by one foot in a hundred years. It is to be expected that the channels and lock structures

will be deepened to meet the growing demands of commerce long before any substantial effect is felt from this slow movement of the earth's surface.

Detailed discussions of the subject are contained in an article entitled "Tilt of the Earth in the Great Lakes Region" by Mr. Sherman Moore, Assistant Engineer, United States Lake Survey, published in the Military Engineer, May-June, 1922, pages 153 et seq.; and in a paper "Recent Earth Movements in the Great Lakes Region " by Dr. G. K. Gilbert, printed in Part II of the Report of the United States Geological Survey, 1896, pages 595 to 647.

DIVERSIONS AND OUTLET ENLARGEMENTS AFFECTING LAKE LEVELS

- 19. Diversions and Regulating Works, St. Marys River. The outlet of lake Superior is the St. Marys River, the natural control section of which is the rock sill at the head of the 17 to 20-foot incline at St. Marys falls. Diversions of water into power canals, which draw water from above the falls and discharge it below the falls, was begun in 1895 and subsequently increased until at the present time nearly the entire flow of the river at low stages is drawn through the canals.
 - 20. The existing diversions are as follows:-

A—In the United States-

(1) By the Michigan Northern Power Company under leases granted under authority

of section 12, River and Harbour Act of March 3, 1999.

By lease dated May 28, 1914, and expiring June 30, 1944, 25,000 cfs. primary water and 5,000 cfs. secondary water. By lease dated September 10, 1918, and expiring June 30, 1944, 3,000 cfs. additional

secondary water

(2) By the Edison Sault Electric Company as a part of lease of power works, dated June 25, 1912, and expiring June 30, 1942, issued under authority of section 11 of River and Harbour Act of March 3, 1909; sufficient water to operate said works with additions, not exceeding an aggregate total capacity of 5,335 horsepower at 14-foot head over and above the power required by the United States for its own use.

(3) By the navigational canals and locks operated by the United States.

B-In Canada-(1) By the Great Lakes Power Company, under grant from the Department of Lands and Forests, Province of Ontario, by virtue of Orders in Council of June 20, 1914, September 4, 1914, and March 11, 1919, covering the right to use 20,000 cfs.

(2) By the Canadian Government for the operation of the navigation canal and lock,

21. The mean flows during 1925 were as follows:— Power diversion, Michigan Northern Power Co.
Power diversion, Edison Sault Electric Co.
Navigation canals, United States
Power diversion, Great Lakes Power Co.
Navigation canal, Canada
Fiver 29,983 1,411 796 19,344 106 River 4,846 56,486

- 22. Obviously these power canals have greatly enlarged the natural discharge capacity of the river. The natural capacity had previously been somewhat reduced by the construction of the piers and embankments of a railroad bridge at the head of the rapids. As the diversion for power increased, its effect on the levels of lake Superior was first compensated for by contracting the river. There was a limit however to which such contractions could be carried. The flow through the natural outlet had ranged from about 50,000 cfs. at low stages to 130,000 cfs. at high stages, and this variation in discharge must be preserved to hold lake Superior within its natural range of stages. If the channel were contracted, say to one-half, in order to permit the diversion of 25,000 cfs. without diminishing the low stages of the lake, the discharge capacity at high stages would be not far from one-half of 130,000 cfs. plus the diversion of 25,000 cfs.; a total of but 90,000 cfs. The high levels of the lake would therefore be increased.
- 23. To overcome this situation, the power companies were required to install gates by which the low-water discharge over the falls could be curtailed without curtailing the total high-water discharge. The gates now extend completely across the river. With the control gates and the power canals, the discharge from lake Superior can be varied at will from no discharge up to approximately 100,000 cfs. at low lake stages, and from no discharge up to 130,000 cfs. at high lake stages. The contractions made in the river reduce its capacity at high stages to approximately the same extent that the power canals have increased this capacity, so that the gross discharge capacity is now substantially the same at high stages as originally.
- 24. The control gates are operated under a Board of Control in accordance with conditions laid down by the International Joint Commission. Application having been made by the Michigan Northern Power Company and the Algoma Steel Corporation, respectively, for approval of the obstruction, diversion, and use of the waters of the St. Marys river, the Commission, in parallel Orders and Opinions dated May 26 and May 27, 1914, after reciting that the equal division of the water between the United States and Canada was conceded upon the hearing by their duly appointed representatives, granted the applications, subject to conditions, some of the more important provisions of which are as follows:-

All compensating works heretofore built and all such works built under this order of approval and all power canals, including their head-gates and by-passes, shall be so operated as to maintain the level of lake Superior as nearly as may be between levels 602.1 and 603.6 above said mean tide at New York, and in such manner as not to interfere with navigation. The operation of all the said works, canals, head-gastes and by-passes for the above purposes shall be under the direct control of the board hereinafter authorized, which board shall be known as "The Board of Control."

The officer of the Corps of Engineers charged with the improvement of the falls of the

St. Mary's river on the American side and an officer appointed by the Canadian Government shall form said board whose duty it shall be to formulate rules under which the compensating works and power canals and their head-gates and by-passes shall be operated so as to secure as nearly as may be the regulations of lake Superior as set forth herein. It shall be the further duty of said board to see any rules or regulations now or hereafter made by proper authority for the control of said works are duly obeyed.

To guard against unduly high stages of water in lake Superior the rules formulated by said board, when tested by the physical conditions which existed during any year of recorded said board, when tested by the physical conditions which existed during any year of recorded high water in lake Superior, when the monthly mean elevation of the lake exceeded 603.6 above said mean tide at New York shall give no monthly mean level of the lake greater than the maximum monthly mean actually experienced in said year.

To guard against unduly high stages of water in the lower St. Mary's river, the excess discharge at any time over and above that which would have occurred at a like stage of Lake Superior prior to 1887, shall be restricted so that the elevation of the water surface immediately below the locks shall not be greater than 584.5 above said mean tide.

At all times said board shall determine the amount of water available for power pursaces. Said board will equest the amount of waters available for power pursaces.

poses. Said board will cause the amount of water so used to be reduced whenever in its

opinion such reductions are necessary in order to prevent unduly low stages of water in lake Superior, and will fix the amounts of such reductions; Provided, that whenever the monthly mean level of the lake is less than 602.1 above said mean tide of New York, the total discharge permitted shall be no greater than that which it would have been at the prevailing stage and under the discharge conditions which obtained prior to 1887; provided further, before any flow of primary water on either side of the river is reduced the use of all secondary water shall be discontinued.

of all secondary water shall be discontinued.

"Primary water" as used herein shall be understood to mean the amount of water which is continuously available for use for power purposes. "Secondary water" shall be understood to mean an amount of water, over and above that designated as primary water,

is intermittently available for use for power purposes.

25. The operation of the regulating works has affected the levels of lake Superior, and also the levels of the lower lakes, since the controlled discharge out of the lake is at times greater than the natural discharge and at times less. To evaluate effect of this variation, it is necessary to know what the natural discharge would have been. Since the outflow of the St. Marys river had been modified by various works prior to its first discharge measurements, in 1896, its original discharge can be inferred only. For this reason the regulated discharges were compared with the discharge that would have taken place under conditions existing in 1902, prior to the completion and operation of the control gates, when the discharge relation was well established. On this basis of comparison, it is found that during the first period of operation of the regulation works, until 1917, an excess of water was discharged, with the consequence that the levels of lake Superior were lowered, and those of the lower lakes raised. From 1917 to 1922 water was generally held back in lake Superior, with the consequence that its levels were raised, and those of the lower lakes made lower than would otherwise have occurred. From 1923 to date the release has been again above normal, with the consequence that, by January of 1926, lakes Michigan-Huron were 3 inches, lake Erie $1\frac{1}{2}$ inches, and lake Ontario 1 inch above what they would have been without the regulation of lake Superior.

26. The results are set forth in the following tabulation, and graphically on plate 1, appendix B.

TABLE 8—EFFECT OF PRESENT REGULATION OF LAKE SUPERIOR, 1914-1925

10.17-1.020													
Changes due to	Lake	Lake	Mi	ichHu	ron	La	ke Erie		Lake Ontario				
regulation	Amount	Dat	Date A		nt	Date		Amount	Date		Amount	Dat	te
Maximum Stage with regulation Maximum Stage without Regula-	603.81	Sept.,	1916	581 9	2 J	fune,	1918	573.85	July,	1917	247.95	June,	1919
tion	604-18	Oct.,	1916	581.8	0 J	uly,	1918	573.79	June,	1919	247.84	July,	1919
Minimum Stage with Regulation. Minimum Stage	600.74	Mar.,	1925	577 - 6	1 I	Dec.,	1925	570.39	Dec.,	1925	244.22	Jan.,	1925
without Regula-	600 - 51	April,	1924	577 - 4	1 1	Dec.,	1925	570 - 29	Dec.,	1925	244.26	Nov.,	1925
Maximum Increase in Stage (ft.) Maximum		Dec.,	1922	. 0.3	7 J	fuly,	1917	0.25	Sept.,	1917	0.24	Jan.,	1918
Decrease in Stage (ft.)	0.81	July }	1917	0.3	8 1	Nov.,	1922	0.26	Dec.,	1922	0.25	April,	1923
Maximum Increase in Discharge (Sec. ft.) Maximum De- crease in Dis-		Aug. 5	1920	6,39	0 J	Tune	1917	5,420	Sept.,	1917	4,970	Jan.,	1918
charge (Sec. ft.)	18,000	Dec., Aug., July,	1918 1919 1921	}		Oct., Nov. }	1922		Dec. Jan.,	1922 1923		April.,	1923

OUTLET ENLARGEMENTS AND DIVERSIONS LAKES MICHIGAN-HURON

- 27. Description. The outlet of lakes Michigan-Huron is through the St. Clair river, lake St. Clair, and the Detroit river, into lake Erie. The total fall from lake Huron to lake Erie averages about 8.5 feet, of which 5.5 feet takes place in the St. Clair river and 3.0 feet in the Detroit river.
- 28. The St. Clair river is approximately 40 miles in length. At the entrance from lake Huron, the river is contracted in a deep and narrow channel known as the Port Huron rapids through which the mean velocity reaches to from 5 to 6 feet per second. The fall through this section is somewhat less than 1 foot in a distance of two miles. The river then flows for 25 miles with a mean depth of about 30 feet, a mean velocity of about $2\frac{1}{4}$ feet per second, and with a slope of 0.15 feet to the mile, It then divides and enters lake St. Clair through several delta channels, the one improved for navigation being 13 miles in length. The fall through the delta section of the river is about one foot. The bed and banks of the St. Clair river are generally sand and gravel. It has no controlling rock sill.
- 29. The Detroit river is about 31 miles in length. Through the upper 13 miles the river is a deep slow flowing stream. The lower part of the river is wide, split by islands, and is crossed by a wide sill of ledge rock.
- 30. Both the St. Clair and the Detroit rivers are subject to ice gorging in winter, which reduces the flow by varying amounts, not unfrequently to one half of the summer flow for the same stage and fall.
- 31. DISCHARGE FORMULA, St. CLAIR-DETROIT RIVERS. The discharge from lake Huron, during the ice free months, with the present regimen of the rivers, is given by the following formula, derived from recent studies made by the United States Lake Survey of all discharge measurements.
 - (1) Q=87.98 $[(HB-554.25)+0.8 (Cl-554.25)]^{1.8} (HB-Cl)^{0.5}$ Where Q=discharge in cubic feet per second, HB=elevation Lake Huron (Harbor Beach gage). Cl=elevation lake Erie (Cleveland gage).
- 32. Effect of a Diversion from Lake Michigan. A diversion from lake Michigan or Huron will eventually lower the levels of these lakes sufficiently to reduce the discharge capacity of the St. Clair-Detroit rivers by the amount of the diversion. The effect of such a diversion, if the diversion is small in comparison with the total flow of the rivers, can be derived directly from the discharge equation and is-
 - (2) $\triangle H = D (Q/2F + Q/R) + \triangle h (R-1.6F)/(R+2F)$ △H=effect of diversion on lake Huron,

D is the amount of the diversion.

F=fall, HB-Cl.

R = .556 (HB - 554.25) + .444 (C1 - 554.25)

△h=effect of diversion on lake Erie as determined by regimen of Niagara river. (Par. 59).

33. From equation (2) it is apparent that the effect of a given diversion from lake Michigan on the levels of lakes Michigan and Huron depends on the elevation of these lakes and of lake Erie. Three representative levels are as follows:-

	Lakes	Lake
	Michigan-Huron	Erie
Low levels	578.0	570.25
Mean levels	581.0	572.5
High levels	582.6	573.8

34. The computed effect of the authorized diversion of 8,500 cfs. from lake Michigan by the Chicago Sanitary District (par. 59-62 of Report) is then as follows:—

At	low levels	 	 	 	 0.56 foot
At	mean levels.	 	 	 	 0.49 foot
At	high levels	 	 	 	 0.45 foot

It will be noted that the influence of the lake elevations on the effect of the diversion is not great. The precise effects computed would be realized only if the lakes remained constantly at the respective elevations and in an ice free condition for several years. The levels taken as low lake levels have not extended over a sufficiently long period of time to exercise their full influence on the effect of the diversion. The greatest refinement regarded as justifiable is that the effect of a diversion of 8,500 cfs. from lake Michigan is to lower lakes Michigan and Huron by 0.5 foot, or 6 inches.

35. The actual effect of the present diversion of the Chicago Sanitary District on the levels of lakes Michigan-Huron is subject to the uncertainty as to extent to which this effect is modified by the winter ice gorging of the river. When the outflow is diminished by ice gorging, a given lowering of the levels of lake Huron probably diminishes the discharge capacity of the river by a less amount than under ice free conditions. The lowering of the levels of lake Michigan and Huron required to reduce the average annual discharge capacity of the river by the amount of a given diversion should therefore be somewhat greater than the amount computed for continuous ice free conditions. A reasonable procedure is to take the value of Q in formula (2) par. 32, as the average annual flow, as determined by the best evidence as to winter retardation. On this basis, the computed effect of the total reported diversion, during each of the past five years, if continued indefinately at the mean lake levels of those years, would be as follows:—

Year	Amount of diversion	Estimate average discharge from Lake Huron	Average of Huron	Computed effect of diversion (feet)		
1921. 1922. 1923. 1924. 1925. Average.	8,348 9,465 8,277	175,900 175,500 169,600 163,900 153,800	580·03 579·89 579·28 579·02 578·14	572·30 572·00 571·41 571·68 570·87	0·54 0·57 0·54 0·62 0·56	

The estimated present effect of the actual diversion is therefor 0.56 feet.

- 36. These results are greater than those found in earlier studies, first because they are based on lower lake levels, and second because recent low-water discharge measurements have afforded better data on the relation between the discharge of the St. Clair-Detroit rivers, their stages, and fall.
- 37. Black River Diversion. There is a minor diversion of water from lake Huron through a small canal into the Black river, which discharges into the St. Clair river at Port Huron. The diversion is for flushing sewage out of the river. It was authorized by the United States by a permit issued by the Secretary of War, May 14, 1901. A current-meter measurement made in 1926 showed a discharge of 150 cfs., and the capacity of the canal is insufficient to carry a materially greater amount. The effect of this diversion on the levels of lakes Huron and Michigan is inappreciable.

38. Effect of Diversions From Lake Erie on Levels of Michigan-Huron. The back-water effect of the diversions from lake Erie on the levels of lakes Huron and Michigan is given by the formula:—

 $\begin{array}{c} \triangle \, H \! = \! \triangle \, h \, (R \! - \! 1.6F) / (R \! + \! 2F) \\ \text{where } \triangle \, H \text{ is the effect on lake Huron-Michigan,} \\ \triangle \, h \text{ is the effect on lake Erie.} \\ R \text{ and } F \text{ are as indicated in par. } 32. \end{array}$

Within the ranges of levels normally occurring, the effect on lakes Huron-Michigan varies generally between 22 per cent and 27 per cent of the effect on lake Erie. At the average levels obtaining during the last 5 years, the percentage is 25.6. The effect of the authorized diversions through the Welland Canal (par. 52) on the levels of lakes Michigan-Huron is therefore 0.025 foot, or approximately ½ inch. The effect of all present diversions from lake Erie (par. 53) is approximately 0.05 foot, which may be increased to 0.07 foot after the new Welland ship canal is opened.

- 39. Changes in Discharge Capacity of St. Clair River. The bed of the St. Clair river is not inherently stable, and an unchanging regimen of the river cannot be taken for granted. Systematic discharge measurements of the river were not begun until 1899. Changes prior to 1899 can only be inferred.
- 40. As explained hereafter (par. 77 to 79) the derivations of the discharges from lake Huron made for the purpose of determining the supply factors during these early years, disclosed an apparent increase between 1890 and 1900 in the discharge capacity of the St. Clair river relative to the Detroit river. Since the discharge capacity of the Detroit river cannot well have decreased during this period, it must be assumed that the discharge capacity of the St. Clair increased. This increase in discharge capacity is represented by the two equations:—
 - (3) Prior to 1890; Q=100 $[(H-552.84)+0.6(h-552.84)]^{1.8}(H-h)^{0.5}$
 - (4) 1895 to 1900; Q=100 [(H−552·12)+0·6(h−552·12)]¹·8(H-h)⁰·5 Where H is the elevation of Lake Huron (Harbour Beach gage); h is the elevation of Lake St. Clair (St. Clair Flats gage).

It is found that, at representative elevations in the vicinity of 575.75 on Lake St. Clair and 581.0 on Lake Huron, the second of these equations will give the same values of Q as the first, if the value of H is decreased by from 0.3 to 0.4 feet. The two equations represent therefore an increase in discharge capacity equivalent to between 0.3 and 0.4 feet of stage on Lake Huron during the period.

- 41. The deduction just made is open to the doubt as to stability of the St. Clair gage during the period, since precise level lines on the delta of the St. Clair run subsequently to 1900 show progressive subsidence of bench marks in the locality. A reasonable assumption as to the rate of settlement prior to 1900 is in itself sufficient to explain the apparent increase in the discharge capacity of the St. Clair River above inferred. On the other hand, if an increase in the discharge capacity of the Detroit River occurred during the period, the increase in the discharge capacity of the St. Clair would be greater than was deduced in the preceding paragraph.
- 42. The changes in the discharge capacity subsequent to 1900 are discussed at some length in the body of the report where they are found to be equivalent to a decrease of 0.3 feet in the stages of Lake Huron. The changes $^{45827-6}$

in terms of changes in stage on Lake Huron are derived from the changes in the constants of the discharge formula given in paragraph 77, in the same man-

ner as indicated in paragraph 40.

The computations of the Canadian Section, based on data largely supplied by the United States Lake Survey, indicate 0.61 feet of lowering of stage of Lake Huron due to channel enlargement between the years 1899 and 1925. The computations of the Canadian Section show that 0.29 feet of this change in stage can be explained by channel enlargement in the Port Huron rapids, opposite Point Edward.

DIVERSIONS, LAKE ERIE

- 43. Description.—The outlet of lake Erie is the Niagara river. A broad sill of ledge rock extends across the entrance to the river from the lake. Below the rapids, formed by this sill, there is a reach of quietly flowing river, which terminates in the rapids just above Niagara Falls. Diversions upstream from the latter rapids have some effect on the levels of Lake Erie.
- 44. The diversion of the Chicago Sanitary District reduces the supply of Lake Erie by exactly the amount of this diversion, and lowers the lake levels correspondingly. Other diversions affecting the levels of Lake Erie are made through:

The Welland Canal, The Black Rock Canal.

45. The following diversions for power purposes have been authorized on the Welland Canal by the Department of Railways and Canals of the Dominion of Canada:—

Hamilton Cataract Power, Light and Tracti		
Corporation of St. Catharines	7	50 " 60 "
The second secon		

All of these diversions discharge into lake Ontario. In addition, diversions aggregating 260 cfs. have been authorized from the Welland Canal to the Welland river, which enters the Niagara river at the foot of the Grass Island pool. About 10 per cent of the effect of this diversion on Lake Erie levels is thereby restored.

- 46. The actual total flow from lake Erie into the present Welland Canal, for both power and navigation purposes, as determined by random discharge measuren ents made by the Department of Railways and Canals in 1922, 1923, and 1924, is approximately 3,400 cfs. during the navigation season and 2,500 cfs. during the remainder of the year, an average throughout the year of 3,100 cfs.
- 47. The new Welland Ship canal for deep-draught vessels is so designed that a flow of 6,000 cfs. can be drawn from lake Erie without interfering with its use by shipping. The Chief Engineer, Department of Railways and Canals, authorizes the statement that the diversion through the new Welland Ship Canal, including both the water required for lockage and that for power purposes, will not exceed 5,000 cfs.
- 48. The Black Rock canal is a navigation canal alongside the upper part of the Niagara river. It is operated by the United States Government to carry navigation past the rapids at the head of the river to the industries on the river below them, and to the entrance of the present New York State Barge canal at Tonawanda. The diversion from Lake Erie through this canal is approximately 1,000 cfs., much of which finds its way into the Niagara river through the river wall of the canal. The remainder is discharged into the Niagara river at the lock at the toot of the canal.

- 49. The New York State Barge canal diverts a flow estimated at 1,500 cfs. from the Niagara river at Tonawanda, the water being eventually discharged into lake Ontario. Of this total a flow of 275 cubic feet per second is classified as for power purposes. The effect of this diversion on the levels of lake Erie is negligible.
- 50. Power companies in the United States and Canada divert considerable quantities of water from the river upstream from the rapids at the heads of the Falls; under the treaty of 1909. These diversions have been compensated for, at least to a considerable degree, by intake structures and the deposit of dredged material. The remaining effect on the levels of Lake Erie is negligible. (See page 381, Report on Diversion of Water from the Great Lakes and Niagara River, 1921.)
- 51. Effect of Diversions. The discharge formula for the Niagara River is:

 $Q=3904 (H-558.37)^{1.5}$

Where H is the elevation of Lake Erie on the Buffalo gage.

From this formula it is easily shown that the rate of increase in the discharge capacity of the Niagara river per foot rise of Lake Erie, commonly called the increment for the Niagara river, is as follows:—

 At lake elevation 570.25 (low level).
 20,190 cfs.

 At lake elevation 572.5 (mean level)
 22,000 "

 At lake elevation 573.8 (high level).
 23,000 "

52. The authorized diversions have the following effect on the levels of Lake Erie:—

Effect in feet at					
lev. (ean level (elev. 572.5)	High level (elev. 573·8)			
0·42 0·10	0·39 0·09	0·37 0·09 0·46			
	0.52	0.52 0.48			

 53. The actual present diversions have the following effects on Lake Erie:—

 Chicago Sanitary District (8,660 cfs)
 .41

 Welland Canal (3,100)
 .15

 Black Rock Canal
 .04

The increased diversion required for the operation of the new Welland Ship canal is expected to bring the total to 0.68 foot.

EFFECT OF DIVERSIONS LAKE ONTARIO

54. Description.—The outlet to lake Ontario is the St. Lawrence river, the control section of which is the limestone ledge forming the sill of the Galop rapids. The Galop canal, for 14-foot navigation, lies along the river bank at these rapids.

45827-61

- 55. The levels of lake Ontario have been affected by the diversion of the Chicago Sanitary District, by diversions for power and navigation through the Galop canal, and by a contraction of the Galop rapids known as the Gut Dam. The diversions authorized by license from the Galop canal amount to 988 cfs.
- 56. Effect of Diversions.—The formula developed by the United States Lake Survey for the flow into the St. Lawrence river is as follows:—

$$Q=3428(H-229.13)^{1.5}$$

Where H is the elevation of lake Ontario (Oswego gage). The increment for the St. Lawrence has the following values:—

	CIS.
At lake elevation 244.5 (low level)	20.160
	21,120
At lake elevation 247.5 (high level)	22,040
210 lake elevation 211.0 (mgn level)	22,010

The computed back-water effect of the small diversion at the Galop is 75 per cent of the effect if made directly from lake Ontario.

57. The effect of authorized diversions on the levels of lake Ontario is therefore as follows:—

	Amount	Effect in feet at					
	of diversion	Low level (elev. 244·5)	Mean level (elev. 246·0)	High level (elev. 247.5)			
Chicago Sanitary DistrictGalop Canal	8,500 988	0·42 0·04	0·40 0·03	0·39 0·03			
Total		0.46	0.43	0.42			

58. As explained in the body of the report the Gut Dam in the Galop rapids has raised the levels of lake Ontario by somewhat more than $0.4~{\rm feet}.$

SUMMARY

59. The results are summarized as follows:-

	Amount	Effect, in feet, on levels of Lakes					
Cause	diversion, cubic feet per second	Michigan and Huron	Erie	Ontario			
Authorized diversions— Chicago Sanitary District Power diversions, Welland Canal	8,500 2,050	-0·5 -0·025	-0·4 -0·1	-0·4 0			
All present diversions and outlet changes— Chicago Sanitary District	8,660 3,100 1,000	-0·5 -0·04 -0·01	-0·4 -0·15 -0·05	-0·4 0 0			
Gravel dredging Other changes. Gut Dam				+0.5			
Total		-1.15	*-0.6	+0.1			

^{*}Upon the opening of the new Welland Ship Canal the lowering of the level of Lake Erie will be increased to 0.7 foot.

IMPROVEMENT OF LAKE LEVELS AND OUTFLOWS

- 60. Compensating Works.—As explained in the body of the report, the levels of the lakes can be raised by fixed contractions in their outlet rivers. Such works will raise the high levels substantially as much as the low levels. If the high levels of the lake are not to be increased, the works must therefore be only sufficient to correct the effect of existing diversions and outlet enlargements. They are therefore termed compensating works. After the lake levels have adjusted themselves to the new regimen of the outlet, the outflow from the lake will be substantially the same after as before compensating works have been built.
- 61. Regulating Works.—Regulating works are essentially dams with sluice gates constructed in the outlets to the lakes, so as to control the outflows and hence the lake levels.
- 62. Scope of Investigations.—Regulating works are already in operation in the St. Mary's river at the outlet to lake Superior. The regulation of lake Ontario is an inherent part of the plans for the improvement of the St. Lawrence proposed in the report. The present investigation is therefore limited to determining—
 - (a) The benefits and cost of a comprehensive system of lake regulation with works at the outlets of lake Michigan-Huron and of lake Erie.
 - (b) The benefits and cost of compensating works at these outlets.
 - (c) A suitable program for the regulation of lake Ontario alone.
- 63. Prior Proposals.—In 1900, the Board on Deep Waterways, in presenting plans and estimates for securing deep draft navigation from the Great Lakes to New York harbour (House Dec. 149, 56th Congress, 2d Session) included regulating works at the head of the Niagara river which were designed to hold lake Erie to a substantially uniform level at elevation 574.7. This proposal was reviewed by the International Waterways Commission, a joint board of Canadian and American engineers, who submitted a report in 1910 (Sessional Paper No. 19a, 3 George V, p. 775 et seq; and H. Doc. 779, 61st Cong. 2d Sess.), after an elaborate study extending over several years. This report pointed out that, on account of the irregularity of supply to the lake, it was impossible to hold lake Erie to a fixed level; but that it would be held by regulating works between the limits of 572.0 and 574.5; thereby raising the low water levels by 1.4 feet without increasing the high water levels. Such regulation would, however, have increased the fluctuations in lake Ontario and reduced the extreme recorded water level of that lake by 4 inches, with consequent reduction in the extreme low open-river discharge of the St. Lawrence. The Board recommended that the regulation of lake Erie be not undertaken, but in a supplementary report recommended the construction of compensating works in the Niagara river about a mile and a half above the rapids at the head of the falls, so designed as to raise the low levels of lake Erie by 0.45 foot, and the high levels by 0.38 foot.
- 64. In a comprehensive report on the Diversion of Water from the Great Lakes and the Niagara River, made by Col. J. G. Warren in 1919 in accordance with a resolution of the Congress of the United States, it was recommended that compensating works consisting of submerged rock sills be placed in the Niagara and St. Clair rivers to correct the results of existing diversion. In the review of this report by the Board of Engineers for Rivers and Harbours, preference was expressed for regulation works in lieu of compensating works at the outlet of lake Erie.

65. Finally, an Engineering Board of Review engaged by the Sanitary District of Chicago has presented a scheme for the regulation of the Lakes as a whole. The works proposed include a dam with gates at the foot of the Grass Island Pool in the Niagara River, for the regulation of the outflow from Lake Erie; and a dam with gates and locks in the St. Clair River, for the regulation of the outflow from Lakes Michigan-Huron. By the operation of these works, together with the operation of existing works at the outlet of Lake Superior, and of works in the St. Lawrence built in connection with the improvement of that river for navigation and power, it was proposed to hold the levels of the lakes normally between the limits shown in the subjoined tabulation. The actual maximum and minimum levels occurring since 1860 are placed in a parallel column for comparison.

Lakes	Normal regulated range proposed by Engineers for Sanitary District	Actual range of stage since 1860
Superior. Michigan-Huron. Erie. Ontario.	602604.5 581583.5 573574.5 246248.5	600.5—604.1 577.5—583.7 570.4—574.5 243.4—248.95

- 66. The report recognizes that the lakes could not be held within the limits stated during periods of extreme rainfall. At such times they would rise above the limits fixed; but it was computed that no period of high rainfall that has occurred subsequent to 1860 would raise the levels above the high-water datum of 1838. It apparently was not recognized that with the lakes normally held at such high levels, the rainfall which produced the high water of 1838 would raise the lakes above the level it then had. The report indicates, however, that the regulated levels to be finally chosen should be based on further investigation of the damages that might be caused thereby. The discharge of the Niagara river was to be kept normally between 180,000 and 200,000 cfs. with discharges of 250,000 cfs. at times of high rainfall. The monthly mean discharge of the Niagara river proper has varied between the limits of 162,000 cfs. and 253,000 cfs.
- 67. Comparison of Benefits from Regulation and Compensation. It will be noted that prior proposals for the construction of compensating works have been limited to correcting the effects of existing diversions, so that the high levels of the lake would not be raised above the levels that would occur without these diversions. Obviously, riparian interests on the Great Lakes would be injured to exactly the same extent by high levels created by regulating works, as by the same high levels created by compensating works. The benefits to be derived from regulating works in comparison with compensating works must be evaluated therefore by considering the reduction in the fluctuation of lake levels, together with the improvement of outflows, that can be secured through the operation of these works, since the reduction in fluctuation measures the amount by which the low levels of the lake can be raised without increasing the high levels.
- 68. Possibilities of Regulation Indicated by Mass Curve. On Plate 2, Appendix B, is shown a mass curve of the supply to the Great Lakes, from 1860 to 1925, under the supposition that a diversion of 8,500 cfs. were made from the lake basin during the entire period. From this diagram it can be seen that provided there were no limitation on the maximum discharge on the St. Lawrence or of the interlake rivers the following results could be obtained by a complete system of regulation:—

With a fluctuation of 5.75 feet on all the lakes a uniform discharge of 233,000 cfs. could be maintained.

With a fluctuation of 4.0 feet on all the lakes a minimum discharge of 230,000 cfs. could be maintained.

With a fluctuation of 3.0 feet on all the lakes, a minimum discharge of 220,000 cfs. could be maintained.

With a fluctuation of 2.3 feet a minimum discharge of $210,\!000$ cubic feet per second could be maintained.

With a fluctuation of 2.0 feet a minimum discharge of 200,000 cubic feet per second could be maintained.

69. The actual fluctuations of the several lakes during the period is given in paragraph 15. But it has been shown that lakes Michigan and Huron were lowered by diversions and outlet enlargements of 1·15 feet during the period between the recorded high and recorded low waters; and Lake Erie by 0·6 feet during this period. Correcting the fluctuations by these amounts, and weighting the fluctuations of the individual lakes by their areas, it is found that the weighted average fluctuation of all the lakes, exclusive of the increased fluctuations to progressive diversions and enlargements, is 4·3 feet. The apparent possibilities of regulation, except as limited by the discharge capacities of the several outlets is therefore as follows:

The low water levels could be raised by 2.3 feet and a minimum discharge of 200,000 cfs. maintained.

The low water levels could be raised by 2.0 feet and a minimum discharge of 210,000 cfs. maintained.

The low water levels could be raised by 1.3 feet and a minimum discharge of 220,000 cfs. maintained.

A minimum discharge of 230,000 cfs. could be maintained without raising the present high levels or lowering the present low levels.

70. The results given in the preceding paragraph are impossible of attainment on account of the limitations of outlet discharge. Thus, to maintain a discharge of 220,000 cfs with a fluctuation of 3 feet in the lake levels it would be necessary throughout the years 1920 and 1921 to limit the discharge to that figure. In the early months of these years the lakes would have been within 1.2 feet of their maximum levels. But if the lakes had been allowed to rise to within 1.2 feet of their maximum levels during the early months of 1912 or of 1913, then a subsequent average yearly discharge of 300,000 cfs down the St. Lawrence would not have kept the levels within the maximum. Having regard to winter limitations of discharge capacity, an average yearly discharge of 300,000 down the St. Lawrence is regarded as excessive rather than practicable. It would have been impossible to foretell in the spring of 1920 that a period of 6 years of deficient supply would occur, or prior to 1912 that a period of two years of excess supply would occur, and without this foreknowledge the apparent results derivable from regulation could not be achieved with the limited discharge capacity of the St. Lawrence. Physical limitations on the discharge capacity of the Niagara, St. Clair-Detroit and St. Marys rivers similarly curtail the results indicated by a study of a general mass curve.

71. DETAILED STUDIES OF LAKE REGULATION. To determine the true possibilities of lake regulation, it is necessary to work out in detail the results that

would be secured by the best programs of regulating the discharges of the lakes, had such programs been in effect in the past. The data required for that purpose include—

(a) The supplies to each lake from 1860 to 1925.

(b) The permissible high water levels of each lake.

(c) The maximum and minimum outflows of each outlet river physically practicable or permissible.

SUPPLIES TO THE LAKES

72. General Aspects. The total net supply to a lake for any month is the outflow corrected for the gain or loss of storage in the lake. The local supply is the total supply less the inflow from the lake above.

73. On account of the oscillation of the lake surfaces, the gage records on any day do not give the true lake level for that day. For purposes of determining the monthly gain or loss of storage in a lake, the elevation of the lake at the first of each month is taken as the mean of the monthly mean levels of

the given and preceding months.

- 74. The reliability of the determinations of total and local net supply depends upon the reliability of the computations of the monthly discharge. Systematic discharge measurements of the outflow from the various lakes were not begun before the late 90's. The earlier discharges must be based on an estimate of prior changes in the gage-discharge relation due to changes in the discharge capacity of the river.
- 75. Lake Superior. The discharges of the St. Mary's river and the monthly supplies to lake Superior from 1860 to 1907 were computed by the International Waterways Commission from measurements made between 1896 and 1902, and by a detailed analysis of the prior changes in the outlet capacity of the river (par. 25 to 58, and tables 19 and 24, of Appendix to Report of Jan. 8, 1910). These were reviewed and extended to 1909 by Messrs. Noble and Woodward, Consulting Engineers, in an unpublished report dated June 29, 1912, to the Michigan Lake Superior Power Company, which was used as a basis for the present regulation of lake Superior. Slight modifications were made in the prior determinations on account of later data regarding the capacity of the side channels at the control section of the river. The determinations of Messrs Noble and Woodward are used in the present report and are extended to 1925, inclusive, from the records of discharge through the power canals, navigation canals, and in the river, which are maintained by the United States Engineer Office at Detroit in connection with the operation of the navigation works at St. Mary's Falls, and the supervision, on the part of the United States, over the control works. The supply to lake Superior is given in table 1 of this appendix, and the discharge of the St. Mary's river in table 9.
- 76. Lakes Michigan-Huron. The discharge out of lake Huron through the St. Clair river, lake St. Clair, and the Detroit river depends upon the elevations of both lake Huron and lake Erie. The discharge measurements, which commenced in 1899, show that changes in the discharge capacity, have occurred subsequent to 1899, and gage records prior to that date indicate some instability in the regimen of the outlet. (See par. 39 to 42.)
- 77. The United States Lake Survey has made an extended study of the present and past discharges from lake Huron. This study is not yet completed, but has progressed sufficiently to warrant the modification of prior determinations.

The discharge formula for the St. Clair river while ice free, as developed from this study, is:—

(1) Q=100 [(H-B)+0.6(h-B)]^{1.8}(H-h)^{0.5}
Where Q=discharge in cubic feet per second,
H=elevation of Lake Huron (Harbour Beach gage).
h=elevation Lake St. Clair (St. Clair Flats gage).
B=is a constant.

The values of B as derived from the discharge measurements are as follows:-

To July, 1900	 552.12
August, 1900, to December, 1908	 552.38
January, 1909, to December, 1909	 552.32
January, 1910, to December, 1911	 551.96
January, 1923, to December, 1925	 551.58

No meter measurements were taken between 1911 and 1923.

78. The corresponding relation between the flow and the elevations of Lake St. Clair (St. Clair Flats gage) and Lake Erie (Cleveland gage) is

```
(2) Q=597.6 [0.5(h-555.60)+0.5(C-555.60)]^{1.8}(h-c)^{0.5}, where h is elevation on St. Clair Flats gage and C is elevation on Cleveland gage.
```

This relation is not applicable to the period between 1907 and 1912, when the regimen of the Detroit river was modified by the cofferdams of the Livingstone channel.

79. The formula for the flow prior to 1899 (ice-free months) is based on the assumption that there was no change in the regimen of the Detroit river. The values of the constant B in equation (1) corresponding to the flows derived from equation (2) are as follows:—

| 1860 to 1890 |
 | 552.84 |
|---------------|------|------|------|------|------|------|------|------|--------|
| 1891 to 1894. |
 | 552.48 |
| 1895 to 1899 |
 | 552.12 |

Equation (1) was used to determine the flow during the ice-free months except during the period 1912 to 1922, in which equation (2) was used.

80. For the period prior to the establishment of the Harbour Beach gage, in 1875, the Milwaukee gage was substituted therefor. The early elevations of the St. Clair Flats gage are the computed elevations published in the Annual Report of the Chief of Engineers for 1904.

- 81. To determine the discharge during the winter months, similar formulas were derived for each pair of consecutive gages for which records are available, the discharge for the winter months computed from every such pair, and the minimum discharge so determined was taken as the winter discharge on the assumption that in at least one of the reaches approximate open-water regimen would exist. For the period subsequent to 1900, such records are available through reaches with minimum ice retardation, and the determinations are regarded as fair. Prior to 1899, the records of only three gages are available, lake Huron, lake St. Clair, and lake Erie, so that when, as was often if not generally the case, the flow of both the St. Clair and the Detroit rivers was retarded by ice, the computed flows for the winter months are much in excess of those that actually occurred.
- 82. The warning must therefore be given that the winter discharge under natural conditions prior to 1899, shown in table 10, are too large, that the supplies to lakes Michigan-Huron during the winter months in tables 2 and 3 prior to 1899 are too large; and that the supplies to lake Erie during the winter months in tables 4 and 5 are too small by the same amounts. A comparison

of the average local supplies to lake Erie for January, February and March for the period from 1860 to 1900, with the average for the same months during the period from 1901 to 1925, shown in table 5, indicates clearly the extent of the errors introduced by the lack of data on which to base the effect of ice retardation during the earlier period.

- 83. The errors introduced by the lack of data on winter retardation in the St. Clair-Detroit rivers affect only the distribution of the supply between lake Erie and lakes Michigan-Huron. The total supply to the three lakes is not affected. In the computations hereinafter described of the effect of programs for regulation, it is assumed that the winter discharge through the regulating works would be retarded in the same percentage as is the unregulated discharge during the month. The error introduced in the computations of regulated outflow and lake levels is therefore reduced to the difference between the true and the apparent retardation applied to the difference between the regulated and natural flow, and is not regarded as of sufficient consequence to alter the conclusions.
- 84. For purposes of computing storage, the elevation of lakes Michigan and Huron was taken as the mean of the Milwaukee and Harbour Beach gages since the establishment of the latter in 1875, and the Milwaukee gage previously.
- 85. Lake Erie. Successive meterings have shown no change in the discharge capacity of the Niagara river, and the outflow from lake Erie was derived from the formula:—

 $Q=3904 (H-558.37)^{1.5}$

in which H is the elevation of lake Erie, as shown by the Cleveland gage records from 1860 to 1886, inclusive, and by the Buffalo gage records from 1887 to 1925.

To the discharge so computed the following was added as the estimated flow through the diversions via the Welland canal and the head of the Niagara river:—

1906	to	1910															3,400	66
																	4,000	66
1916	to	1925															5,500	66
	1881 1906 1911	1881 to 1906 to 1911 to	1881 to 1905 1906 to 1910 1911 to 1915	1881 to 1905	1881 to 1905. 1906 to 1910. 1911 to 1915.	1881 to 1905 1906 to 1910 1911 to 1915		1911 to 1915 4,500										

- 86. Lake Ontario. The outflow and supplies, tables 6, 7, and 12, to lake Ontario were based on a study made by Mr. D. W. McLachlan, Department of Railways and Canals, Chairman of the Canadian Section of the Board.
- 87. The storage in lake Ontario has been derived from records of the Oswego gage. The discharge values were obtained from gage readings at the various locks along the St. Lawrence canals, especially Locks No. 21, 23, 24, and 25. A deduction of 6 per cent has been made for ice retardation in all values derived for January, February, and March except those obtained from records of gage readings at Lock No. 27. For the latter an extra deduction of 6,000 cfs was made for these months.
- 88. The discharge ratings for the various lock gages were revised in March, 1926, and are based on measurements of the United States Lake Survey made in 1908, 1911, 1913 and 1914, and of the Canadian Department of Railways and Canals in 1923, 1924, and 1925
- 89. Correction for Chicago Diversion. The supplies are those which would have occurred had a diversion of 8,500 cfs. from lake Michigan taken place throughout the period. To this end the total supplies to lakes Michigan-Huron, Erie, and Ontario were diminished by 8,500 cfs less the actual diversions given in par. 13.

PERMISSIBLE HIGH LEVELS OF LAKES

- 90. An extended investigation to determine how high the various lakes might be raised without unwarranted damage to the industries, cities, and lands along their shores was made, at the request of the Board, by the District Engineers in charge of harbour works on the lakes in Canada and the United States. A tabulation of the probable damages reported is given in tables 13 to 15. A summary of the conclusions reached is given in the following paragraphs. In this summary it is convenient to use the term "flood level" to indicate the level at which material damage begins.
- 91. Lake Superior. On lake Superior the flood level was fixed at elevation 603.6 by the International Joint Commission in 1914, after hearing representatives of cities, towns, and industries on that lake; and the rules for the regulation of the lake provide that its level shall be permitted to rise above that limit only under such conditions of extraordinary rainfall as would cause such a rise without regulation.
- 92. In September, 1916, lake Superior had a mean stage of 603.88. At this time, basements of a number of warehouses and manufacturing establishments along the water front in Duluth were flooded and trouble was experienced in the sewer system of Superior, Wis. In reporting on this situation the United States District Engineer at Duluth states:—
- I am quite confident that had the monthly mean level of Lake Superior reached its maximum of 603.6 during the time that it has been under complete regulation there would have been a strong movement from many of the interests about Lake Superior to have that maximum lowered, for there is no doubt that many properties would be seriously affected not so much by that actual mean height, but the heights to which it would rise temporanily under certain wind and barometric conditions.
- 93. From plate 3 it will be seen that lake Superior will reach 603.6 about once in twenty years. This curve is based upon the records of the years 1901 to 1925 inclusive, but the result for this lake is the same if the entire period is used.
- 94. Lakes Michigan-Huron. Some damage would result on lakes Michigan-Huron at as low an elevation as 580.5. If the lakes rose above 581.0 there would be damage to docks, basements, and sewage systems in Green Bay, Wis., Alpena, Michigan, and Sarnia, Ont. The power output of the hydro-electric plant at Sault Ste. Marie would be reduced. Damage might result in Chicago and vicinity, as many of the sewers are now overloaded and flood basements during heavy rains, which flooding would be increased by any raising of the lake levels above their outlets. The ground-water levels in the city would also be raised, making construction more difficult. At lake levels above 581.6, damage would result to jetties of the Chicago district, and from sliding of high banks. Damage would result to docks in Sarnia and Port Huron, and the operation of docks and elevators of the Canadian National Railway at Port Edward and Goderich would be interfered with. Lake levels above elevation 582 would interfere with operations of plants at Port Huron and of most of the structures between the French and St. Mary's rivers, also with wharves at Alpena, Muskegon, and Green bay. Lake levels above elevation 583 would flood basements in downtown Milwaukee and Manitowoc, and would cause unwarranted damage at Alpena, Holland, and Muskegon, Mich., and Racine, Wis. Levels above elevation 583.5 would flood docks at Alpena and Mackinac Island and would interfere with operations of the municipal lighting plant at the latter place. Levels above 583.7 would flood docks in Port Huron.

- 95. In view of the foregoing information, the flood level of these lakes should not be placed above 582.2, and under the regulated condition the lakes should not exceed this level in height, frequency, or duration to a greater extent than in the past. From plate 3 it will be seen that on the basis of the records of the last 25 years, a stage of 582.2 would probably be reached once in twenty years and has the same probability as the elevation selected for lake Superior.
- 96. Lake Erie. Some damage would result on lake Erie at elevations below 573, principally through erosion on the lake shores. Above 573, the dock of the Detroit and Cleveland Navigation Co. in Detroit and the operation of the power plant of the Cleveland Electric Illuminating Co. would be inconvenienced. Lake levels above 573.5 would damage some docks in Detroit, Rondeau, and Port Stanley. Levels at 574.0 or slightly above would interfere with the operations of the Maple Leaf Milling Co. at Port Colborne, Ont., the Pittsburgh and Conneaut Dock Co. at Conneaut, Ohio, the Solvay Process Co. and the Michigan Central Railroad at Detroit, the unloading plants of the Erie Railroad at Cleveland, and the elevators of the Washburn-Crosby Co. at Buffalo. They would also damage the works of the Ohio Public Service Co. at Lorain, Ohio, interfere with the drainage works of the Bethlehem Steel Co. at Lackawanna, and flood the turn-table pit of the Canadian National Railways at Dover, and some of the docks of the Detroit Sulphite and Paper Co. at Lake levels above 574.5 would interfere with operations of the Candler Dredge and Dock Co. at Detroit. Lake levels above 575 would interfere with unloading operations of the Pennsylvania Railroad at Buffalo, Erie, Sandusky, Ashtabula, and Cleveland. of the Buffalo Creek Railroad at Buffalo, interfere with the operations of the National Tube Co. at Lorain, Ohio, and the Commercial Milling Co. at Detroit, flood some docks of the Standard Oil Co. and Candler Dredge and Dock Co. at Detroit, and damage the property of the Hammermill Paper Company at Erie.
- 97. From a consideration of the above information, elevation 573.9 was selected as the flood level, which should not be exceeded more frequently than in the past. This elevation has the same frequency probability, as shown by the records of the past 25 years, as the levels selected for the other lakes.
- 98. LAKE ONTARIO. On lake Ontario, damage below elevation 247 is uncertain but probably small. Above elevation 247, drainage of cellars in the lower part of Kingston would be affected and the dock and canning factory of the Port Millford Packing Co. at Port Millford would be flooded. Lake levels above elevation 247.5 would flood wharves, coal sheds, warehouses, etc. in Kingston, Brockville, Prescott, Port Milford, Bath, South Bay, Ogdensburg, and Charlotte. They would affect the LaSalle Causeway at Kingston and the Kingston dry dock. At lake levels above 248, damage would result as follows: Docks, storehouses, and factories in addition to those before mentioned would be flooded or interfered with in Kingston, Wellington, Port Millford, Clayton, Cape Vincent, Sacketts Harbour, Oswego, Fairhaven, Little Sodus Bay, Sodus Point, and Charlotte and on the lower Niagara river. Such levels would render less efficient or damage the breakwaters and other aids to navigation at Sacketts harbour, Little Sodus bay, Great Sodus bay, Oswego, Charlotte, and Olcott. In addition to this, damage would probably be done to a number of other docks, roads, bridges, an electric railway, and several beaches. Above 248.5, damage would be done to additional docks, coal sheds, and factories in Kingston, Rednersville, Wellington, Massagana, Northport, and Forester Lt. Lake levels above elevation 249 would seriously damage a number of other important interests in Gananoque, Kingston, Green Island, Prescott, and Ogdensburg.

- 99. After considering the foregoing information, elevation 248.1 was selected as the flood level for lake Ontario, which should not be exceeded by the regulated levels to a greater extent than was the case in the past. The data on flooding damage is more nearly complete on lake Ontario than on the other lakes and indicates that a great deal more damage would result than is shown by the data for the other lakes. Plate 3 shows that, for this elevation also, the probable frequency, indicated by the last 25 years of records, was once in 20 years.
- 100. Summary. The flood levels on the several lakes may be taken, therefore, as follows:—

Lake Superior	603.6
Lakes Michigan-Huron	582.2
Lake Erie	573.9
Lake Ontario	248.1

- 101. It will be observed that the damages, as a rule, are not due to the dead level of the lake itself, but to the temporary fluctuations above that level caused by winds and barometric pressure, to the flooding of sewers by heavy rains which may happen to occur when the high lake levels have reduced their outlet capacity, and to the raising of flood heights of streams entering the lake. The riparian interests affected are not so directly concerned with the maximum height to which the monthly mean elevations of the lakes are raised as with the frequency with which the lakes reach the levels which expose them to serious hazard of damage. As long as the frequency with which the lake levels rise above the flood levels is not increased by the construction of compensating works, or by the operation of regulating works, no damage can be considered to result from their construction or operation.
- 102. A study of the nature of the damage done by increasing the frequency of high lake levels shows that it is so widespread and diverse that compensation to the industries and individuals affected is out of the question. Communities have adjusted themselves to the lake levels that have actually existed, and cities and towns have built their sewage systems accordingly. The damages would not be met by merely paying for the flowage of such lands as might be actually flooded by the rise of lakes. It must be emphasized, moreover, that the inquiries did not bring to light all of the damages that would result from high water, for the reason that many of the citizens concerned and many of the responsible executives do not believe that a proposal to raise the high waters of the lakes will be seriously considered.

MAXIMUM DISCHARGE CAPACITY OF OUTLETS

- 103. Lake Superior. The discharge capacity of the St. Mary's river, the outlet of lake Superior, has already been enlarged by the power canals at the falls to such an extent that little benefit would be secured by further enlargement.
- 104. Lakes Michigan-Huron. The St. Clair river is nearly 40 miles in length, with a small and fairly evenly distributed slope, except at the Port Huron rapids at the head of the river. While at first glance there seems to be an opportunity to provide a considerable increase in discharge capacity by the enlargement of this contracted section detailed computations show that a by-pass canal if built with a depth of 35 feet and width of 700 feet, entailing the excavation of 7,800,000 cubic yards would increase the discharge capacity of the river by only 8,000 cfs., i.e., by about 4 per cent of its present capacity.

It may seem paradoxical that the one lake outlet that has been enlarged in recent years by the action of nature and man should be the least susceptible to further material enlargement. It will be noted, however, that the total enlargement accounted for to date effects an increase of only about 5 per cent to 8 per cent in the discharge capacity at high stages, and that this is the cumulative effect of actions taking place over a period of 35 years. As has been previously pointed out, the discharge capacity of the river is much curtailed in winter, but this is not the season when large discharges are desirable from the standpoint of regulation.

- 105. Lake Erie. A large increase of the discharge capacity of the Niagara river, at the outlet of lake Erie, can be secured, although at large cost, by the excavation through the rock sill at its head. The program for complete regulation hereinafter considered is based on an enlargement of the discharge capacity by 40,000 cfs.
- 106. St. Lawrence River. The discharge capacity of the St. Lawrence river is limited by seasonal conditions. For the purpose of testing a program for complete regulation, the limitations were taken as shown on plate 4. The reasons for these limitations are as follows:—
- (1) The discharge at any time must not exceed the amount that can be passed through the enlarged channels without creating excessive currents for navigation and without requiring a head that would scriously reduce the head available for power. This limitation restricts discharge from lake Ontario to amounts varying from 223,000 cfs. with the lake at elevation 244.0 to 330,000 cfs. with the lake a little below elevation 248.
- (2) The discharge must not create such stages in the St. Lawrence river as will cause serious damage to riparian property. The areas where such damage would occur are the lands bordering lake St. Francis and lake St. Louis. After the outlets of these lakes have been enlarged as a part of power development in the rapids below them, a maximum discharge of 330,000 cfs. should be possible.
- (3) During the period in which the Ottawa river is in flood, in May and June, the maximum discharge should be limited to 300,000 cfs. in order to prevent excessive levels in lake St. Louis.
- (4) The ice jams during the spring breakup, usually occurring in April, cause the highest rise of the water at Montreal. The higher the discharge of the St. Lawrence at such time, the higher the water is likely to rise. Large sums have been expended to prevent the flooding of the lower lying portions of the city at such times. The regulated discharge of the St. Lawrence has therefore been limited in April to an amount not exceeding the present discharge at the same stage.
- (5) During the winter months of January, February, and March, the discharge capacity of the river will be reduced to an amount materially below that possible during open-river months. The successful operation of power plants on the river requires the creation and preservation of an ice cover wherever it can be secured at reasonable expense. Since the formation of an ice cover depends upon currents of sufficiently low velocities, the proper winter operation of the power plants requires that the discharge be restricted.
- 107. The further studies, made before adopting a definite program for the regulation of lake Ontario alone, has indicated some desirable modifications of these limitations, but these modifications are insufficient to alter materially the results to be obtained from a comprehensive system of regulation of the Great Lakes.

MINIMUM PERMISSIBLE DISCHARGE THROUGH OUTLETS

108. The minimum discharges adopted in testing the programs for the complete regulation of the lakes were as follows:—

	Minimum	Natural Monthly Mean
	Regulated	Discharge with Same
	Discharge	Diversions (Summer)
St. Lawrence river	200,000	185,000
Niagara (including Welland canal) St. Clair river (except when the natural dis-	176,000	167,000
charge was less)	150,000	151,000
St. Mary's river	50,000	49,000

109. The minimum discharges for the St. Lawrence and the Niagara were set with a view to affording a reliable flow for power purposes. It is necessary to maintain an ample flow through the St. Clair and Detroit rivers to prevent the reversal of the current of the latter when storms raise its outlet into lake Erie, since such a reversal of flow would bring sewage-contaminated water to the water-supply intakes of the city of Detroit. Preliminary computations indicated that a minimum flow of 150,000 cfs. could be provided without substantial injury to the levels obtained by regulation. As later explained, an analysis of the results obtained indicates that some slight improvement in lake levels could be secured by fixing this minimum at 140,000 cfs. The minimum flow of 50,000 cfs. in the St. Mary's river is designed to maintain the full navigable depths in that river and to afford water for the existing power plants.

110. Low Water Discharge Required to Maintain Montreal Harbour Levels. The further study made before adopting a definite program for the regulation of lake Ontario alone, in connection with the improvement of the St. Lawrence, shows that a fixed minimum of 200,000 cfs. is insufficient to maintain the ordinary low levels of Montreal harbour during the summer and fall months. The actual monthly mean flow down the St. Lawrence has fallen below 200,000 cfs, but once during the navigation seasons of the past 65 years. This was in November and December, 1895, when the flow was 194,000 cfs. Even had a diversion of 8,500 cfs. occurred continuously during the past 65 years, the unregulated monthly mean flow down the St. Lawrence during the navigation season would not have fallen below 200,000 cfs. except during October, November and December, 1895, with a minimum flow of 185,000 in November and December of that year. Past records show that, for at least 70 per cent of the time, unregulated outflows down the St. Lawrence in September, October and November exceeding the following amounts are to be anticipated.

September	 	.,	 237,000	cfs.						
October	 		 228,000	66						
November.		 	 	 	 	 	 		 222,000	66

It is shown in paragraph 210 of the main report that a diminution of the flow past Montreal reduces the water levels in the harbour at the rate of one foot for each 23,000 cubic feet per second. The adoption of a minimum flow of 200,000 might therefore be expected to reduce the ordinary low water levels in the harbour by about a foot during the fall months.

PROGRAM OF REGULATION TO SECURE MAXIMUM BENEFITS TO LAKE LEVELS

111. To determine the benefit to be anticipated from a complete system of regulation of the Great Lakes, a program was drawn up which was designed to secure such result, while maintaining the minimum outflows set forth in the preceding paragraphs. The lake levels and outflows that would have resulted

from its application from 1894 to 1925 were determined, the suitability of the system being tested by applying it also to the high and fluctuating discharges recorded between 1869 and 1876.

- 112. The computations were based on the supply of water to the various lakes that would have occurred had 8,500 cfs. been diverted continuously by the Chicago Sanitary District.
- 113. System Address. The program was designed to hold the lakes at the maximum safe levels whenever the water supply permitted. The "maximum safe stage" of each lake for each month of the year was determined from a study of their seasonal fluctuations in levels, as being the stage which, on the basis of levels reached during these months during the last twenty-five years, would be reached once in 8 years, as shown on table herewith.

TABLE 16,-"MAXIMUM SAFE STAGES" FOR REGULATION

Month	Superior	Michigan- Huron	Erie	Ontario
January 1 February 1 March 1 April 1 May 1 June 1 July 1 August 1 September 1 October 1 Docember 1	602·21 602·42 602·78 603·00 603·18 603·30 603·30 603·15 602·92	580·64 580·95 581·33 581·64 581·82 581·78 581·63 581·42 581·16 580·90 580·73 580·63	572 · 20 572 · 57 573 · 25 573 · 53 573 · 37 573 · 37 573 · 15 572 · 66 572 · 53 572 · 26 572 · 20 572 · 14	246·19 246·57 247·37 247·37 247·71 247·58 247·15 246·66 246·33 246·08

When the lakes were below these stages at the beginning of a month, the outflow to the St. Lawrence was so reduced that the expected supply to the lakes during the month would bring them to the maximum safe levels at the end of the month, if this result could be accomplished without reducing the outflow below the established minimum of 200,000 cfs.; if not, the outflow was set at this minimum. Whenever the levels of the lakes were above their maximum safe stages, the outflow was increased as necessary, up to the maximum discharge capacity, to bring them back to maximum safe stages. In either case the discharge between the lakes was regulated, within the maximum and minimum limits, to secure at low levels the best equalization of the channel depths at the present improvement planes, and at high levels the distribution of excess water which would minimize the hazard of flood damage.

- 114. During high stages, therefore, the lakes were kept as nearly as possible at equal stages from the standpoint of flooding, and in times of low water at equal stages from the standpoint of navigable depth. Between high and low water a transition zone is necessary. The upper limit of this zone was taken at the highest safe stage, and the lower limit at that stage giving equal navigable depths and a total storage in all the lakes of one million second feet months less than the highest safe stage.
- 115. The discharge capacity of the various channels and the allowable minimum flows limited the regulation so that very rarely was it possible to secure the condition of highest safe stage in all the lakes at the same time, and only occasionally could the same relative stage in all five lakes be secured. When the ideal condition could not be secured, the nearest approximation to it was obtained. If, for example, the capacity of the St. Clair river was inadequate

to discharge sufficient water to bring all the lakes to the same relative level, the maximum discharge possible was allowed in the St. Clair river; the Niagara river was regulated to give the same relative stages in lakes Erie and Ontario, and the St. Marys river was regulated to give the same relative stages in lakes Superior and Michigan-Huron. Because of the danger of flooding due to run off from the local drainage area, no lake was permitted to rise above its highest safe stage if it could be prevented without raising some lower lake to a relatively higher stage. For example, more than 200,000 cfs. minimum was frequently discharged from lake Ontario during the very low period of the last few years because, although the upper lakes were much below their highest safe stages, lake Ontario, with the minimum allowable flow coming in from lake Erie, and the probable local inflow, would exceed the highest safe stage and therefore be in danger of being flooded by a heavy local inflow unless more than the minimum flow was drawn out.

116. Because of the rapidity with which the relative levels of the lakes changed with respect to each other, and because to do so would have adversely affected navigable depths, no attempt was made to draw any of the lakes below their highest safe stage in order to have space available for water from lakes higher up which were above their highest safe stage, but could not be immediately equalized with the lower lakes because of the discharge limitations of the interlake channels. For example, if lakes Michigan-Huron and Superior were too high, but could not be equalized with lakes Erie and Ontario on account of the limited capacity of the St. Clair river, lakes Erie and Ontario were not drawn down on account of the excess supply in the Michigan-Huron and Superior, but were kept as nearly as possible at their highest safe stage.

117. Details of Computations. The effect of applying this system was computed by monthly periods on the form sheet shown herewith. It was assumed that at the first of each month the elevation of each lake could be determined from gauge readings. The probable local inflows for each lake were estimated from diagrams (plate 5) constructed from past records to give the probable inflow for the month as indicated by the local inflow to that lake during the past month. It was found by a study of the past supplies (one of which is shown on plate 6) that a month of large runoff was likely to be followed by another month of high runoff, and a month of low runoff by another of low runoff, and that from the diagrams much better results could be secured than by assuming that average conditions would probably occur in any given month. The outflows of the various lakes were computed which would give at the end of the month the best distribution of the storage if the probable inflow occurred, and the gates were set to give this outflow from the lakes during that month. With the known stage and storage at the beginning of the month, and these outflows, the storage and stage were computed which would have resulted at the end of the month, with the inflows which actually occurred in that month. The steps in detail are as follows:—

118. In line (1) was entered the elevation of each lake at the first of the month, and on line (2) the corresponding storage in each lake and the total storage above an assumed datum (two feet below the present improvement plane of the lake). Units of storage equivalent to the flow of a thousand second feet for a month were used, and flows were expressed in units of a thousand second feet. In line (3) were entered the probable net local inflow into each lake for the month and the probable total inflow as determined from the inflow diagrams. Line (4) is the sum of lines (2) and (3) and represents the probable storage at the end of the month if there were no outflow. In line (5) is recorded the

TYPICAL COMPUTATION FOR REGULATION WITH COMPLETE CONTROL OF ST. CLAIR RIVER—JANUARY, 1870

		Superior	Michigan- Huron	Erie	Ontario	Total
(1) (2) (3) (4)	Elevations of lakes at first of month. Storage in lakes at first of month. Probable local inflow for month. Sum.	1,129 -3	581·30 1,777 68 1,845	572 · 79 442 66 508	246 · 60 326 75 401	3,674 206 3,880
(5)	Total storage danger stage end of month				301	3,065
(6)	Outflow to give danger stageLimits of outflow from system—Maximum					818
(7)	Limits of outflow from system—Maximum					21
(8)	Outflow selectedMinimum					20
(9) (10)	Desired distribution of storage	1 115	1 781	435 73	338	3,66
(11)	Desired net outflow	11	64	73	63	0,00
(12)	Desired distribution of storage. Desired net outflow. Desired gross outflow.	11	75	148	211	
(13)	Limiting outflow—Maximum	124	222	260	211	
(14)	Minimum	50	150	176	200	
(16)	Outflow adopted—Net. Gross.					
(-0)						
(17)	Superior-Michigan-Huron System Total storage plus inflow	1 126	1 845			2,97
(18)	Trial outflow	1,120				15
(19)	Total storage plus inflow. Trial outflow. Total storage, end of month.					2,82
(20)	Total storage, end of month		1,734			2,40
(21)	Desired distribution of storage	1,027	1,734			28
(22)	Outflow—Net	39	150			
(22)	O1055	00	100			
	Superior System		İ			
(24)	Total storage plus inflow	1,126				1,12
(25) (26)	Total storage plus inflow. Trial outflow. Total storage, end of month.					1,07
(20)	Storage in system at danger stage					95
(28)	Desired distribution of storage	1,076				1.07
(29)	Desired distribution of storageOutflow—Net	50				
(30)	Gross	50				
	Michigan-Huron-Erie System					
(31)	Total storage plus inflow. Trial outflow. Total storage, end of month.	50	1,845	508	,	2,40
(32)	Trial outflow					17
(33) (34)	Storage in system at danger stage					2,22 1,82
(35)	Desired distribution of storage		1,791	436		1,02
(36)	Outflow—Net. Gross.		54	72		
(37)	Gross	50	104	176		
	MICHIGAN-HURON SYSTEM				ļ	
(38)	Total storage plus inflow	50	1,845			1,89
(39)	Trial outflow					15
$\frac{(40)}{(41)}$	Storage in system at danger stage					1,74
(41) (49)	Desired distribution of storage		1,745			1,45 1,74
(43)	Desired distribution of storage. Outflow—Net. Gross.		100			1,1-1
(44)	Gross	50	150			
	Erie-Ontario System				-	
(45)	Total storage plus inflow	<i></i>	150	508	401	1,05
(46)	Trial outflow					21
(47)	Total storage, end of month					84
	Storage in system at danger stage			427.4	374	65 84
(48)	Desired distribution of storage			34	27	04
(49)	Outflow—Not		150	184	211	
(48) (49) (50) (51)	Outflow—Net			442	326	3,67
(49) (50) (51) (52)	Outflow—Net	1,129	1,777	1.10		
(49) (50) (51) (52) (53)	Outflow—Net. Gross. Storage, first of month. Local supply factors.	1,129	1,777	65	62	25
49) 50) 51) 52) 53) 54)	Outflow—Net. Gross. Storage, first of month Local supply factors. Sum. Outflow yet. Not	1,129 9 1,138	1,777 118 1,895	65 507	. 388	3,92
(49) (50) (51) (52) (53) (54) (55)	Outflow—Net. Gross. Storage, first of month. Local supply factors. Sum. Outflow used—Net. Storage, end of month—Approximate	1,129 9 1,138 50 1,088	1,777 118 1,895 100	65 507 34 473	388	3,92
49) 50) 51) 52) 53) 54) 55) 56)	Outflow—Net. Gross. Storage, first of month. Local supply factors. Sum. Outflow used—Net. Storage, end of month—Approximate. Stage, end of month—Approximate.	1,129 9 1,138 50 1,088 602.82	1,777 118 1,895 100 1,795 581:34	65 507 34 473 573 · 07	388 27 361	3,99
49) 50) 51) 52) 53) 54) 55) 56) 57) 58)	Outflow—Net. Gross. Storage, first of month. Local supply factors. Sum Outflow used.—Net. Storage, end of month.—Approximate. Stage, end of month.—Approximate. Discharge, end of month.—Approximate.	1,129 9 1,138 50 1,088 602.82	1,777 118 1,895 100 1,795 581 · 34	65 507 34 473 573 · 07	388 27 361 247 · 02 215	3,92
49) 50) 51) 52) 53) 54) 55) 56) 57) 58) 59)	Outflow—Net. Gross Storage, first of month. Local supply factors. Sum. Outflow used.—Net. Storage, end of month—Approximate. Stage, end of month—Approximate. Discharge, end of month—Approximate. Discharge, first of month.	1,129 9 1,138 50 1,088 602·82	1,777 118 1,895 100 1,795 581 · 34	55 507 34 473 573 · 07	388 27 361 247·02 215 211	3,92
49) 50) 51) 52) 53) 54) 55) 56) 57) 58) 60)	Outflow—Net. Gross Storage, first of month Local supply factors. Sum Outflow used—Net. Storage, end of month—Approximate. Stage, end of month—Approximate Discharge, end of month—Approximate Discharge, end of month—Approximate Discharge, first of month Mean discharge	1,129 9 1,138 50 1,088 602.82	1,777 118 1,895 100 1,795 581·34	65 507 34 473 573 · 07	388 27 361 247·02 215 211 213	3,92
(49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (60) (61)	Storage in system at danger stage Desired distribution of storage. Outflow—Net. Gross. Storage, first of month. Local supply factors. Sum. Outflow used—Net. Storage, end of month—Approximate. Stage, end of month—Approximate. Discharge, end of month—Approximate. Discharge, end of month—Approximate. Discharge, end of month—Approximate. Stage, end of month—Stage, end of month—Stage. Storage correction.	1,129 9 1,138 50 1,088 602·82	1,777 118 1,895 100 1,795 581·34	65 507 34 473 573 · 07	388 27 361 247·02 215 211 213	3,92 21 3,71
(49) (50) (51) (52) (53) (54)	Outflow—Net. Gross Storage, first of month. Local supply factors. Sum. Outflow used—Net. Storage, end of month—Approximate Stage, end of month—Approximate Discharge, end of month—Approximate Discharge, end of month—Mean discharge. Storage correction. Storage, end of month—Corrected. Stage, end of month—Corrected.	1,129 9 1,138 50 1,088 602·82 1,088 602·82	1.795	473	388 27 361 247·02 215 211 213	3,92 21

total storage in the lake system if all lakes were filled to the highest safe stage for thet month. Line (6), the difference between lines (4) and (5), is the outflow which would be necessary from the lake system to have just sufficient storage in the system at the end of the month to bring all the lakes to their highest safe stage. In line (7) is entered the maximum flow of the St. Lawrence river for the elevation of lake Ontario at the beginning of the month, as indicated by plate 4, and in line (8) the minimum flow for the scheme of regulation under consideration. A comparison of the figures in lines (6) and (7) shows that it is not possible to draw all the lakes down to their highest safe stage in this month, and therefore the nearest possible result to this will be obtained or the outflow selected, line (9), will be the maximum possible, as entered in line (7). If the figure in line (6) had been less than 200, the minimum flow of 200 would have been used in line (9), and if between the maximum and minimum, the outflow in line (6) would be used in line (9).

119. In the last column of line (10) is entered the total storage remaining in the system at the end of the month if the outflow selected (211 thousand second feet) were withdrawn. This is distributed between the lakes according to diagrams as plate 7, one for each month, which show the storage in each lake which, for any given total storage, will bring all of the Lakes to the same relative stage. From plate 7, with 3669 as the total storage, is found the storage in each of the lakes shown in the other columns of line (10). The values of the storage corresponding to the critical points on the storage distribution curves are given in Table 17. All curves go through the origin of co-ordinates as plate 7. The values of net outflow from each of the lakes, line (11), which will bring about the desired distribution of storage, are the difference between the value in lines (4) and (10), and line (12) gives the gross outflow, or the summation of net outflows. In lines (13) and (14) are entered the maximum outflow possible in the interlake channels with the enlargements and control works and with the stages of the various Lakes the first of the month. In case of ice retardation in the St. Clair River, the same per cent of reduction was applied to the maximum unobstructed discharge with the enlargements as occurred in the natural river. In line (14) are entered the minimum allowable flows, for the system of regulation under consideration.

120. By comparing the values in lines (12), (13), and (14), it will be seen that to secure the desired distribution of storage, a flow less than the minimum allowable would be necessary out of lakes Superior, Michigan-Huron, and Erie, and lines (15) and (16) cannot be used in this case. It is necessary therefore to secure as nearly as possible the desired distribution with the limitations of outflow. The difference between the desired and allowable flows is greatest in the Michigan-Huron outflow, and it therefore is probably a controlling relation. Lines (17) to (23) treat lakes Superior and Michigan-Huron as a separate system, in the same manner as the whole lake system was treated in lines (14) to (14), using the appropriate scale of ordinates on the right side of the storage distribution diagram (plate 7). The values in line (17) are the individual storages of the lakes of the Superior-Michigan-Huron system from line (4), and the inflow from lakes above (in this case zero), the sum of them being entered in the last column. The value in line (20) has no significance in this case, but has in cases where the storage in the system is near that required to fill all the lakes to their highest safe storage. The values in line (23) show that to bring Michigan-Huron and Superior to the same relative stage at the end of the 45827-71

month would require a flow less than the minimum allowable out of Lake Superior. Lake Superior is therefore treated as a separate system in lines (24) to (30), and a trial computation made in lines (31) to (37) shows that if lakes Michigan-Huron and Erie are brought to the same relative elevation with the minimum outflow necessary from Lake Superior, the outflow from Lake Michigan would be below the allowable limit. Lakes Michigan-Huron are therefore treated as a separate system in lines (39) to (44), using the minimum allowable outflow, and lines (45) to (51) show that with this outflow lakes Erie and Ontario can be brought to the same relative stage within the limitations of outflow from lake Erie. To obtain the nearest possible result to the highest safe stage in all the Lakes with the probable inflows for the month and with the flow limitations of the interlake channels and the St. Lawrence river, it is therefore necessary to take the minimum allowable flow out of Lakes Superior and Michigan-Huron and 184,000 second feet from Lake Erie, and the maximum possible out of lake Ontario. The regulating gates would therefore be held during the month to give flows of 50,000 second feet from Superior, 150,000 second feet from Michigan-Huron, 184,000 second feet from Erie and 211,000 second feet from Ontario. With these outflows, and the local inflows entered in line (53) which actually occurred during the month, the storage in each lake and the stage at the end of the month is computed on lines (56) and (57). A correction is made in lines (58) to (62) on account of the increase which is possible in the outflow of lake Ontario due to the increase in stage in that lake during the month. In lines 62) to (64) are entered the storage and stage at the end of the month and the gross outflow from all the lakes.

- 121. The example given above represents one of the more difficult cases and involves much more computation than the average. Large-scale diagrams were used to show the storage distribution relations for the various months, of which plate 7 illustrates the principle. The numerical work contains a very complete series of checks which reduce the probability of error to a minimum.
- 122. RESULTS SECURED. The lake levels and outflows resulting from this system of regulations are given in tables 9-12 and are shown graphically on plates 8 and 9. The results are best summarized, however, on plates 10 and 11, which give the relative length of time at which the levels during the navigation season, and the discharges throughout the year, would be realized.
- 123. Effects on Lake Levels. In evaluating the beneficial effects of regulation on lake levels, it is misleading to deal with the absolute minimum levels reached. Present bulk-cargo lake commerce, with its short voyages and highly organized management, is benefitted by a rise in the mean levels of the lakes to almost as great a degree as by a rise in the minimum levels; and even commerce entering the lakes from the sea, as a consequence of the improvement of the St. Lawrence, will not be vitally concerned with low levels which rarely occur. The basis of comparison adopted is therefore the level below which, on the basis of past experience a lake will not fall during more than 2 per cent of the time.
- 124. The following tabulation gives, on this basis, the range of levels of the various lakes, during the navigation season, which would be secured by the program of regulation described, during the period from 1894 to 1925, as compared with the range, on the same basis, that the lake levels would have had

during the same period with the outlets in their present condition and with the present diversions (and a total diversion of 5,000 cfs. through the Welland Canal):—

Lake		Regulated		Unregulated					
Dake	Highest	Low	Range	Highest	Low	Range			
Superior	582 · 5 574 · 3	$601 \cdot 3$ $580 \cdot 1$ $571 \cdot 5$ $245 \cdot 8$	feet 2 · 4 2 · 4 2 · 8 2 · 8	603 · 8 581 · 8 573 · 8 248 · 4	601 · 0 578 · 3 570 · 5 244 · 2	feet 2 · 8 3 · 5 3 · 3 4 · 2			

125. Since the levels of the lakes can be raised equally well by compensating works to the maximums attained by this system of regulation, without increasing the present range between maximum and low stages, the advantage of regulation, from the standpoint of navigation, lies in the reduction in the range of stage. This is as follows:—

Superior		 	 	 	0.4 feet
Michigan-Huron	١	 	 	 	1.1 "
Erie		 	 	 	0.5 "
Ontario		 	 	 	1.4 "

126. Taking the whole period from 1860 to 1925, on the assumption that the maximum stages under regulation would occur in 1870 or 1876, the total fluctuation of stage in the regulated and unregulated condition is:—

	Total fluctuation			
Lake	Regulated	Unregulated, with present diversions and outlets		
Superior Michigan-Huron. Erie. Ontario. Weighted average	3.41 3.52 3.29 3.83 3.47	3·54 4·92 3·53 5·54 4·35		

127. In paragraph 68 it was shown that a study of the mass curve of supply indicated that a minimum outflow of 200,000 cfs. could be maintained with a fluctuation of 2.0 feet on the lakes. The difference between this figure and the average fluctuation of 3.47 resulting from the detailed program of regulation, is due to the limitations imposed by the discharge capacities of the outlet.

128. Effect on outflow. An examination of plate 11 shows that the result of applying the program would have been to hold the outflow down the St. Lawrence to the minimum of 200,000 cfs. for nearly half the time in order to build up lake levels. The unregulated flow falls below 200,000 cfs. for a very small percentage of the time, but exceeds that figure most of the time. A detailed analysis of the effects of the regulated flows on the low water levels of Montreal harbour during the period 1913 to 1924 confirms the general analysis given in par. 110 that the program would lower the ordinary low water levels by approximately one foot. It is apparent, moreover, that the results secured would be unfavorable rather than beneficial from a power standpoint. A similar condition would be created in the Niagara river by the scheme studied.

DESIGN AND COST OF REGULATING WORKS

129. The design of regulating works that will satisfactorily meet ice conditions in the Niagara river, and will accomodate the great volume of shipping in the St. Clair river, offers many complications. The designs forming the basis of the estimates of the cost herein presented are intended to afford only a reliable indication of the minimum cost, which might be increased materially by elaborations deemed necessary to meet the unusual requirements.

130. Works in St. Clair River. Because of the delay which locks would cause to the heavy traffic on the St. Clair and Detroit rivers, it is desirable to control the flow in these rivers by some means in which they are not required. The studies and estimates of cost indicate that sufficient control may be obtained by channel contractions to secure substantially as good results in lake control at about the same cost as would be possible with locks and dams. The method of restricting the outflow in the St. Clair river was to select a location where the river was divided into two or more channels by islands, placing control gates across all but one channel, thus allowing the navigation to pass unobstructed through this channel. By closing the gates the entire flow could be forced through the one channel, which would restrict the flow. Where natural divisions in the river were absent or insufficient, they were artifically constructed by longitudinal dikes.

131. Point Edward By-pass. To provide additional discharge capacity in the St. Clair river, a by-pass channel was provided around the Port Huron rapids at the town of Point Edward, where the St. Clair river leaves Lake Huron. The channel would extend from the Point Edward range lights at the head of the St. Clair river to Sarnia bay, and along the west side of this bay entering the St. Clair river at Bay point. It would have a length of about 8,000 feet, a bottom width of 700 feet, and a depth of 35 feet. Investigation showed that a greater increase in size would not secure sufficient increase in St. Clair river flow to justify the additional cost. The control works would consist of concrete floor, piers, and abutments with Stoney sluice gates. As it would be necessary to provide railroad and highway access to the docks to the west of the canal, the control works would be combined with a railroad and a highway bridge. With all the gates open, this by-pass would increase the flow in the St. Clair river by about 8,000 cfs. The total cost of the canal and control works is estimated at \$2,770,000.

132. Stag Island, near the town of Marysville, about 8 miles below Lake Huron. The length of Stag Island is insufficient to give the desired reduction in flow, and dividing dikes would be extended from the upstream end of the island to opposite the town of South Park, and downstream from the Iower end of the island to Oakland Dock, about 2,400 feet below the mouth of Pine river, near the town of St. Clair, the total length of river thus divided being about 46,000 feet, or slightly more than 8 miles. The control gates would be located across the channel east of Stag island, and were similar to those on the Point Edward Canal. Navigation would pass through the west channel, which would have a minimum width of 1,080 feet. To prevent the enlargement of this channel by the higher velocities which would result from closing the regulation gates, rock sills 10 feet wide and 3 feet average thickness could be placed on the bottom extending across the river at 100-foot intervals. The Stag island control works as thus outlined, with no deepening of the present channel would increase the stage necessary in Lakes Michigan-Huron for a discharge of 180,000 cfs. by 1.54 feet and would cost about \$10,120,000.

133. Woodtick Island, near Marine City, about 22 miles below lake Huron. At this point the flow to the east of the island is so small that closing it off would cause little effect, and a dividing dike would be built in the west channel extending the entire length of the control works, from a point opposite the center of Marine City to a point opposite the plant of the Michigan Sault Manufacturing Company, a distance of about 11,000 feet. Two control gate structures would be necessary, one extending from the dike to Woodtick Island and the other across the channel east of this island. These would be similar in construction to those designed for the Point Edward Canal. The channel to the west of the dividing dike would be protected against enlargement in the same manner as proposed for Stag island. The minimum width of the navigation channel is 1,040 feet. The cost of this control is estimated at about \$3,730,000 and the effect in the lake would be about 0.51 foot.

134. Contraction at Delta. Near the town of Algonac, the St. Clair river divides into a number of mouths which pass through a delta into lake St. Clair. Where the river divides into two channels, control works would be built across one branch by which more water could be forced through the other (the south channel), thus increasing its slope and reducing the total discharge of the river. Since this channel is somewhat narrow, but must carry all the through navigation of the St. Clair river, and because of the easily eroded character of the soil, the amount of water forced through this branch would be limited to that which would produce a mean velocity of 3 feet per second. To prevent enlargement, sills of loose rock, averaging 10 feet wide and 3 feet thick, would be placed across the channel at 200-foot intervals. This mouth contains a bad bend, which would be cut off by a channel of 600 feet bottom width. The estimated cost of the works is \$6,150,000 and their effect on the level of Lakes Michigan-Huron is 1.25 feet.

135. Since all the other mouths are cut off from Lake St. Clair by bars which have formed at their outlets into this lake, the control works across their upper end would cut off the access of boats to them. A 200-foot channel would therefore be excavated through one of these bars to let navigation pass up through one of these mouths and from it into the others which are cut off.

136. Summary, St. Clair River. In summary, the contraction works designed for the control of the St. Clair river for complete regulation, and their effectiveness in feet of fall, are as follows:—

		Estimated	Increased
Location		cost	head
Stag Island		\$10,120,000	1.54
Woodthick Island	 	3,730,000	.51
		6,150,000	1.25
Total	 	\$20,000,000	3.30

The works could be operated to reduce the outflow from lake Huron by roughly 30 per cent when so desired.

137. The total length of the contracted channels in this scheme of control, counting the delta channel as 7 miles in length, is 18 miles, and the success of the scheme depends on preventing an enlargement of their sections with the increased current velocities created by the contractions. The estimates provide for what is regarded as ample protection of the bed against scour below a depth of 30 feet, but there is no precedent for determining the extent to which this protection would have to be carried.

138. Alternative Plan of Dam With Locks. An alternative is to construct control gates with locks at a suitable point in the river. Since a minimum flow of approximately 140,000 cfs. must be maintained, the gates need not entirely close the river, and a navigable pass could be left through which the lighter shipping could pass downstream. It is not believed that the lake cargo freighters (which are normally carrying their full loads downstream) could use such a pass, and the locks should be sufficient to pass all vessels of that class. In 1925, the total number of steam-vessel passages through the St. Marys falls canals, exclusive of tugs, yachts, etc., was 18,718. The number of vessel passages through the Detroit river during the same year was 18,146, exclusive of sand carriers and passenger steamers, tugs, yachts, etc. The lock capacity provided in any works in the St. Clair river should be at least equal to that which has been found necessary at the St. Marys falls canals, which is a capacity to pass six lake freighters simultaneously. Three double-length locks would therefore be required. The cost of the locks, approaches, dam and pass is estimated at not less than \$30,000,000.

139. The average time required in 1925 for passage through the United States canal, including one lock and 134 miles of canal, was 1 hour and 9 minutes. The average time, up and down bound, to pass through the canal is 17 minutes. The average time of lockage only, including delays, is therefore 52 minutes. The average freight carried per vessel passage was 4,370 tons, and the average rate per ton-mile was 1.08 mills. Assuming that a delay of 52 minutes is equivalent to 9 miles of travel, the average cost per vessel passage, light and loaded, in terms of revenue producing capacity of the vessel, becomes \$42, and for 18,146 vessel passages \$762,000 per year. The economic loss would increase with increasing traffic on the waterway. This economic loss would justify heavy maintenance costs on an open-channel scheme. Despite the uncertainty of the latter, it has been considered advisable to present it as a basis for regulation works.

140. Works in Niagara River. The works designed for controlling the outflow of lake Erie were located at the upper end of the Niagara river at Buffalo. A longitudinal dike would be built in the river, extending from Bird island, opposite the Buffalo Water Works pumping station, down the river to Ferry street, a distance of about 7,000 feet. It would be roughly parallel to the present dike along the west side of the Black Rock canal and would be on the average about 700 feet farther out in the river. It would reduce the minimum width of the river from approximately 1,600 to 1,000 feet. At the upper end of this dike, Stoney gate control works would be located by means of which the flow through the channel inside the dike could be shut off, thus reducing the flow out of lake Erie. To increase the outflow, 4,300,000 cubic yards of rock from the controlled channel and from Limekiln reef opposite its upper end would be excavated. The maximum hold-back capacity of this control on lake Erie as compared with present conditions would be 2.50 feet, and the increase in discharge which is possible as a result of the excavation is 40,000 cfs. The cost was estimated at \$13,650,000.

141. Much of the excavation could be done more economically by using the longitudinal dike as a cofferdam. However, it would not be possible to entirely close off the entire area at once, as this would raise Lake Erie too high; but another cofferdam could be built first between the location of the longitudinal dike and the bank, and a channel excavated behind this. This channel could then be opened, the longitudinal dike built, and the rock between the first cofferdam and the longitudinal dike excavated.

142. Summary. In summary, the estimated cost of the works required for the program of complete regulation is as follows:—

Niagara river. St. Clair river control works. Point Edward by-pass.	20,000,000
Total	\$36,400,000

143. It is of interest to note that the estimated cost of the works proposed by the Engineering Board of Review for the Chicago Sanitary District, as given by Mr. John R. Freeman in an appendix to that report, is as follows:—

Works Works	in in	Niagara St. Clair	river river	· ·	• • •	 	 	• • •	 	• •	 	\$ 8,174,000 25,312,000
		Total.				 	 		 		 	\$33.486.000

These estimates do not include, however, certain protective works in the Niagara river, nor the enlargement of its discharge capacity required for effecting its regulation in the lower range of levels now found necessary, and the provision made for navigation in the St. Clair river may be criticized as inadequate.

144. Comparative Cost of Compensating Works With Dredging. In comparison, the cost of securing the same increase in the navigable depths of the channels and harbours of the lakes affected, by compensating works supplemented by dredging, is hereinafter shown to be as follows:—

Cost of compensating works. Additional cost of dredging lake channels. Additional cost of dredging harbours.	5,000,000
Total	\$13,400,000

- 145. Conclusions. In view of this showing, the construction of regulating works as a means for improving navigation is regarded as economically unjustifiable. It therefore has been considered unnecessary to give to the designs on which the above estimates are based the searching study that would be required if their construction was to be recommended.
- 146. Improvements Possible in the Program for Complete Regulation. -In view of the disappointing results attained by the program for regulation that was tested, a study was made of the possibility of a program that would yield better results. It is found that the "maximum safe stages" chosen on Michigan-Huron and Erie in the preceding study were somewhat too conservaative, and that the levels on Michigan-Huron could have been raised 0.3 foot, and on Erie, 0.4 foot, without raising the regulated high-water levels above the natural high-water levels. This would not change the range in stage, except in so far as the increased discharge capacity due to the higher levels might offer the means for a reduction. Analysis of the critical periods shows that the effect on the range would be trifling. A reduction in the capacity artificially provided in the Niagara would become permissible, but further works in the St. Clair river would be required to secure the increased stages, the saving on the one hand and the cost on the other about balancing each other. The minimum discharge of 150,000 cfs. set for the St. Clair River (except when in winter the natural discharge is less) is at a few short critical periods a little more than is necessary to afford the minimum discharge set for the Niagara; but a reduction in flow during these short periods would effect but a trifling improvement in the

low levels of Michigan and Huron. By reducing the minimum set for the discharge of the St. Mary's River the range of stage on lake Superior could be decreased at the cost of increasing the range on Michigan-Huron, but no material advantage would result therefrom.

147. An entirely independent program of regulation, based on fixed rulecurves for determining the regulated monthly outflows, was tested over a portion of the period and found to give substantially the same results as those secured by the more elaborate program that has been described.

148. Finally, it may be noted that the results secured are not out of line with those predicted from the scheme of regulation advanced in the report of the Engineering Board of Review for the Sanitary District of Chicago. Putting the upper limit of the normal range of levels suggested in that report at the flood levels found in paragraph 100 of this report, the normal regulated low-water levels of the lakes under the two schemes become as follows:—

Lakes ,	Regulation proposed by Engineering Board of Review for Chicago Sanitary District	Complete program of regulation studied in this report (corrected as in par. 144)
Superior	601.1 579.7 572.4	601.0 580.4 571.8

The higher level secured in the one case on lake Erie is at the expense of a lower level on lakes Michigan-Huron. The comparison is not satisfactory, since it compares "normal" stages, which may not mean the same thing in the two cases; but this Board has not the detailed tabulation of the levels under the program of regulation had in view by the engineers for the Sanitary District on which to base a more exact comparison. While the program indicated by them afforded a higher minimum flow to the Niagara River, it did not take into consideration the limitations that must be imposed on the discharge through the St. Lawrence.

149. The program for regulation was based, as is usual, on maintaining a fixed discharge each month, determined by the lake levels at the beginning of the month. It has been thought that materially better results could be secured if the discharge were varied during the month in accordance with the lake levels that actually developed during the month. An examination of a few critical periods indicates, however, that the improvement would be slight. The difference between the actual and expected supplies may indeed result, in rare cases, in lake levels at the end of a month differing as much as six inches from those predicted at the beginning of the month. The extreme high levels are, however, the result of a period of high supply lasting for several months, during all of which the program for regulation would provide the maximum allowable discharge. The best that could be done by adjusting the discharge to the levels during a month would be the starting of the maximum discharge say two weeks earlier. Since high discharges are put in effect as the lake levels approach the maximum safe stages, the gain by starting the full maximum permissible discharge two weeks earlier would be very small. Similarly, extreme low levels occur at the ends of long periods of low supply, during which the regulated discharge is held down each month to the permissible minimum in any event. The actual experience with the regulation of lake Superior confirms the conclusion that no material improvement could be realized by the refinement of changing the discharge during a month.

- 150. REGULATION WITH PARTIAL CONTROL OF THE ST. CLAIR RIVER.—In view of the great cost of works in the St. Clair river, required to effect the degree of control over its flow, necessary to the complete program of regulation hereinbefore described, and the uncertainties as to the cost of preventing the enlargement of the many miles of contracted channel in the St. Clair river contemplated by the design, with consequent loss of effectiveness, a program of regulation was worked out which could be put in effect with less extensive works.
- 151. The works in the St. Clair river, contemplated in the modified scheme, are control structures at Stag island (8 miles below the head of the river) and at Woodtick Island (22 miles below the head of the river). The works at Stag island are similar to those proposed at this site for complete control (par 130), but the longitudinal dike extends only to the ends of the natural bar extending up and down stream from the island, giving a total length of 17,000 feet of contracted channel. Their estimated cost is \$2,560,000 and their effectiveness, with the gates closed, is measured by 0.50 foot of head on lake Huron. The works at Woodtick island are identical with those proposed for complete control (par. 131). Their estimated cost is \$3,730,000 and their effectiveness is measured by 0.51 foot on lake Huron. The total cost of the works is therefore \$6,290,000 and their total effectiveness is 1.01 feet on lake Huron. The closinng of the gates at both works would reduce the discharge capacity of the St. Clair-Detroit rivers by roughly 10 per cent.
- 152. The contemplated works for the Niagara River are similar to those considered for regulation with complete control of the St. Clair river (see paragraph 140), but with less outlet enlargement. The enlargement proposed requires the excavation of 2,100,000 cubic yards and gives an increase in discharge capacity of 25,000 cfs, as compared with 4,300,000 cubic yards and 40,000 cfs in the complete control scheme. The cost is estimated at \$8,575,000. These works if continuously closed would raise lake Erie 1.25 feet.
- 153. The program of regulation is based on the same limitations as to minimum flows and flood levels as governed that for complete regulation. The operation of the gates was, however, based on set rule curves, instead of budgeting the water between the lakes. These rules were in the form of diagrams as shown on plates 12 to 15. Plate 12, the diagram for lake Superior outflow, gives the number of gates in the control works at St. Mary falls which should be opened during each month for the various stages in the lake on the first of the month, and curves showing the discharge which such gate openings would produce. Plate 13 gives the rule by which the gates of the Stag and Woodtick Island controls in the St. Clair river would be regulated, and diagram showing the discharge of the St. Clair river for the various stages in lakes Huron and Erie, with all the gates of these two controls both open and closed. The same per cent of retardation from ice was assumed for the controlled flow as existed for the natural flow. Plates 14 and 15 give the discharge to be allowed during the month for the various stages on the first of the month in the Niagara and St. Lawrence, respectively.
- 154. This system of regulation materially changes the outflow of lake Superior, reducing the flow in the early part of the year and substantially increasing it in the fall. This causes the lakes to rise more rapidly in the early part of the year, and thus produces greater depths in the lake; and the increased flow in the fall reaches lakes Michigan-Huron at a time when their levels are beginning to drop, and thus tends to keep them up. Looking from a different angle, it may be said that the heavy inflows into lake Superior take place later

in the year than in the other lakes. By reducing the outflow during the first part of the year lake Superior is made to rise more nearly synchronously with the other lakes, and by discharging larger quantities in the latter part of the year, the falling levels are also more nearly synchronized. This tends to keep the depths of water in the navigation channels of all the lakes more nearly the same.

- 155. The application of the rule curves of the St. Clair river, is such that over long periods of years the gates remain closed, except for an adjustment period immediately after completing the work. Two of these long periods are 1863 to 1874, inclusive, and 1889 to 1903, inclusive, 12 and 15 years, respectively.
- 156. RESULTS SECURED BY REGULATION WITH PARTIAL CONTROL OF THE ST. CLAIR RIVER. The lake levels and discharges secured by this less complete control are shown in tables 9 to 12, and are shown graphically on plates 16 to 19. The results are summarized in the duration curves shown on plates 10 and 11.
- 157. Eliminating as before the low levels occurring less than 2 per cent of the time, the range in level during the navigation seasons in the period between 1894 and 1925 would have been as follows, had the system been in effect during that period:—

Lakes	High	Low	Range
Superior	582·3 574·5	600 · 6 579 · 2 571 · 3 244 · 6	2·8 3·1 3·2 3·4

158. These ranges compare as follows with those heretofore found (par. 124) for complete regulation and for the unregulated flow through the present outlets:—

	Range in stage, 1894-1925		
Lakes	With complete regulation	With partial control of the St. Clair River	Unregu- lated, with present outlets
Superior	2.4	2·8 3·1 3·2 3·4	2·8 3·5 3·3 4·2

- 159. As compared with the results secured by compensating works, the system of regulation with the works proposed for the partial control of the flow of the St. Clair river would afford, therefore, but 0.4 foot gain in the low levels on lakes Michigan-Huron and 0.1 foot on Erie, if the high levels were raised to the same elevation in the two cases.
- 160. As in the case of complete regulation this system would increase somewhat the minimum discharge of the Niagara and St. Lawrence rivers, but would prolong the period during which low discharges occur. The irregularity introduced in the flow of these rivers would not be nearly as far reaching as in the

case of the complete system of regulation. The effect on the ordinary levels of Montreal harbour, as tested from 1914 to 1924 would be a reduction of a few tenths only in the harbour levels. A slight modification of the rule curves would remedy this effect.

- 161. Works in St. Clair River only. The Board has considered a suggestion made by Mr. M. G. Barnes, Chief Engineer, Division of Waterways State of Illinois, that works similar to those just discussed be constructed in the St. Clair river only, for the purpose of raising the low water stages of lakes Michigan-Huron, without raising the high-water levels correspondingly. The control over the flow in the St. Clair river secured from the works suggested would not be far different from that secured from those proposed for the modified program of regulation pust considered. If these works were operated as proposed in that program to hold back water when it could be spared from lake Erie, the gain in the levels of Michigan-Huron could not exceed that found from the modified program described, amounting to a few tenths only in excess of the gain that can be provided by compensating works. It must be recollected that to raise lakes Michigan-Huron one inch in a month, it would be necessary to hold back a flow of 40,000 cfs. during that period, and that this would lower the level of lake Erie by 4½ inches.
- 162. The present natural retardation of the flow of the St. Clair and Detroit rivers by ice gorging in winter serves to raise the levels of lakes Michigan and Huron; and, since it occurs just prior to spring rise in Erie, does not reduce the minimum navigation levels on the latter. Since the amount of winter retardation varies from year to year, the thought has occurred to engineers who have given lake levels long study, that it would be useful to provide artificial works to insure this retardation when nature fails to effect it. A study of the discharges of the St. Clair river under the program for complete regulation, shown on plate 8, discloses that this is substantially the effect brought about by that program. But to bring it about it is necessary to construct very elaborate and expensive works on the St. Clair. The results that can be secured from less comprehensive works, which will at the same time afford free channels of the capacity required for navigation, are indicated by results predicted under the modified program of regulation hereinbefore discussed, and would amount to a gain in the levels of lakes Michigan and Huron exceeding by only a few tenths of a foot the gain that can be provided by fixed compensating works.
- 163. Combined Regulation of Lakes Erie and Ontario. An attempt was made to devise a program for the regulation of Lake Erie that could be put in effect in conjunction with the required regulation of lake Ontario to the mutual advantage of the levels and outflows of the two lakes. It was found, however, that the program arrived at after considerable study increased the maximum range of stage on lake Erie, and the fluctuations in its discharge, while at the same time the regulation of lake Ontario that could be secured with the altered flow from lake Erie was not as beneficial as that which could be secured with the natural flow. The reason for this seeming anomoly is not difficult to discover. The present natural discharge from lake Erie to lake Ontario increases gradually as lake Erie rises, and decreases gradually as it falls. Extreme fluctuations in Erie are therefore checked, while at the same time lake Ontario is not subjected to violent changes in inflow. It is not difficult to work up a program that would improve the present situation during a given sequence of unusually high or low supplies to the two lakes; but if such extremes happen to occur in a different sequence, the program is apt to aggravate rather than to

improve the situation. To devise a program that will best meet all extremes that have occurred is no small task; and it is well to recollect that such a program might not meet the combination of extreme conditions that may occur in the future. In any event, the only possible way by which the present fluctuations in the levels of lake Erie can be reduced is by intensifying the fluctuations in discharge, and such course cannot serve otherwise than to render the regulation of Ontario more difficult in the long run and to decrease the benefits derivable from the regulation of that lake.

- 164. REGULATION OF LAKES MICHIGAN-HURON AND ERIE FOR THE BENEFIT OF POWER DEVELOPMENT. The schemes for regulation of these lakes heretofore considered have been directed primarily to reducing the range of fluctuation of lake levels, in order to raise the low levels for the benefit of navigation without raising the high levels to the detriment of the cities and towns on the lake shores. It has been seen that the results attainable are small in relation to the cost of the works necessary to produce them. While it is true that the systems proposed effect at the same time a small increase in the absolute minimum flow available in the power reaches of the Niagara and the St. Lawrence, yet the systems greatly prolong the period during which low discharges occur.
- 165. A study of the levels and outflows resulting from the program of complete regulation, shown on plates 8 and 9, indicates that during the period of 32 years covered by the diagrams, a minimum flow of about 215,000 or 220,000 cfs. could have been maintained into the St. Lawrence (except during such times in winter as such a draft might be inadvisable due to ice conditions), and a minimum flow of 186,000 cfs. maintained out of lake Erie (Niagara River and Welland Canal combined) without causing a greater fluctation in the levels of the Lakes than actually occurred in their unregulated condition. Under such a program the benefit to navigation on the Great Lakes, as compared with the benefits to be secured from compensating works, would have been nil. The advantages, and disadvantages, to power on the St. Lawrence would have been roughly as follows:—
- (1) For about one-third of the time, during which the natural flows ranged from 186,000 to say 217,000 cfs. the flow would have been increased to 217,000 cfs.
- (2) For another third of the time, during which the natural flows ranged from 217,000 to 240,000 cfs., the flow would have been decreased to 217,000 cfs.
- (3) For the last third of the time the flows would have been in excess of the capacity of the power plants in either case.
- 166. Had the St. Lawrence river been fully developed for power, the output that might be classed as strictly primary would have been increased by about 15 per cent, but the total kilowatt hours that could have been delivered from hydro-electric plants with installed capacity to utilize the natural mean flow of the river would not have been increased materially if at all.
- 167. The redistribution in flow would be of doubtful benefit to Montreal harbour. Taking the critical month of October, it is found that a flow of 217,000 cfs. would raise the extreme low harbour levels occurring 10 per cent of the time, but would depress the levels occurring the remaining 90 per cent of the time.
- 168. That any program of regulation of the Great Lakes must prolong the periods of lower outflow is not generally appreciated or even suspected; but is an inevitable consequence of the restricted discharge capacity of the outlets. An ordinary storage reservoir has a spillway capacity sufficient to discharge all

of the water that reaches it in floods, so that water can be stored at pleasure. The outlets of the Great Lakes, both separately and as a whole, are insufficient to discharge the water which reaches the Lakes during periods extending over several months in each year, and enlargements possible with the expenditure of millions of dollars will increase the capacity but by a relatively small degree. To maintain lake stages within their present limits of fluctuation it is necessary, therefore, to spread an increased discharge over a range of stage so wide that it infringes on the beneficial storage resulting from the present outlet regime. The storage of water by regulation must be limited to periods when all or most of the natural outflow has some present or prospective beneficial use. But the water so stored can be put to beneficial use only if the subsequent supply is below normal. If the subsequent supply is above normal the stored water must be discharged at an accelerated rate, and has no beneficial use.

- 169. Program Directed to Raising Lake Ontario Levels. Power on the International Section of the St. Lawrence might also be benefited by a different program of regulation directed toward reducing the fluctuations of lake Ontario so that it could be held continuously at high levels. The head on the upper power plants could therefore be increased and better conditions realized for maintaining the winter flow without creating current velocities incompatible with the maintenance of an ice cover. Such a program would, in effect, eliminate lake Ontario from the reservoir system of the Lakes, but inasmuch as its area is but about 8 per cent of the total lake area, its loss would not curtail seriously such beneficial effects of regulation as may at some future time be regarded as worth their cost. Preliminary computations indicate that a program of regulation based on these lines is practicable.
- 170. REGULATION OF LAKE ERIE FOR NIAGARA POWER. The regulation of lake Erie for the primary purpose of restributing the daily flow of the Niagara to the best interest of the scenic beauty at the Falls and power resources of the river has been suggested, but this phase of lake regulation is outside of the purview of the present Board. It is enough to say that there are a number of difficulties to be met in effecting such regulation, and the construction of works for the purpose cannot be regarded as probable in the near future.
- 171. REGULATION OF LAKE ONTARIO ALONE. The regulation of lake Ontario alone, in connection with the improvement of the St. Lawrence for navigation and power, forms the subject of a separate study, at the end of this appendix.

COMPENSATING WORKS

- 172. Compensating Works on Niagara River. It has been shown (paragraph 59) that the present diversions from lake Erie have lowered its level by 0.6 foot, and that it may be lowered by a total of 0.7 foot after the new Welland Ship Canal is in operation. The compensating works herein proposed are designed to raise the low-water levels by 0.7 foot and the high levels a slightly less amount. The plans for the compensating works are designed to meet the winter ice conditions, and to fit in with works for regulating the outflow, should the latter be undertaken at some future time.
- 173. During the winter an ice sheet forms over the eastern end of lake Erie, up to the shoal water at the head of the Niagara river, but from these shoals to the Falls the river runs open. Winter storms telescope the ice sheet against the shores and shoals, building it up into thick masses, and occasionally

large areas of lake ice are broken up and driven into the river. The volume of ice set in motion at such times may be judged from the fact that in December, 1924, when the run of ice created by one storm jammed at the outlet of the Niagara into lake Ontario, it filled in two days the lower portion of the river to a depth of twenty feet or more for a distance of 7 miles, and backed up the water level at the upper end of the reach some 20 feet above the summer level. If a jam should form in the portion of the river above the falls during a heavy run of ice, it would cut off the water supply to existing power installations, and might so curtail the outflow from lake Erie as to cause a rise in lake levels that cause widespread flood damage. The Board regards it as essential that any compensating works now constructed in the Niagara river, and any regulating works that may be undertaken in the future, be so located and designed that the danger of an ice jam in the upper river will not be incurred.

174. Some of the plans heretofore proposed for compensating and regulating works in the Niagara River have placed these works just above the rapids at the head of the Falls. Since the level of the river at this point must be raised from 4 to 5 feet to produce the desired rise of 0.7 foot in the levels of lake Erie, the attempt to control the levels of lake Erie by works at this site would necessarily result in the slackening of the current through the pool by about 25 per cent and consequently increase the risk of an ice sheet catching across the river, with the consequent formation of an ice jam. The future development of such works into regulating works would entail a still greater slacking of the current, and further increase the hazard. Aside from the question of flowage of the low land bordering the Grass Island Pool, the works at its foot for the control of lake Erie are not regarded as advisable.

175. The construction of submerged rock sills in the narrow and swift portion of the river between Fort Erie and Squaw Island, as proposed in the Warren Report, would accomplish the desired compensation without interfering with the free passage of ice. Such works would, however, greatly increase the cost of a controlled enlargement of the discharge capacity of the river, should the installation of regulating works ever become advisable.

176. Works in Niagara River Proposed by Present Board. The site selected for the compensating works now proposed is therefore just above the contracted section at the head of the river. The construction proposed is shown on the drawing accompanying the main report. It consists of a longitudinal dike, 2,400 feet long, with a riprap weir 1,670 feet long connecting the upper end to the Canadian shore. The crest of this weir is to be but slightly below the river surface at low stages, thus securing at such stages an effective contraction by the longitudinal dike; but at high stages a considerable flow will pass over the weir, reducing the effectiveness of the contraction. The high levels of the lake will be raised by an amount somewhat less than the low levels. Four submerged rock sills are to be placed across the relatively deep hole in the main river channel opposite the dike, with crests at the ruling depth of this part of the river, which is 13 feet below the Lake Survey standard low-water datum. These sills are to have a stop width of 15 feet and side slope of 3 horizontal to 1 vertical. The works proposed will not interfere with the light-draught navigation which occasionally passes through this section. Ordinary commercial navigation will not be affected, since it passes through the Black Rock canal. There is no risk of loss of effectiveness from the scouring of the contracted channel, since the river bed at the site is generally ledge rock. The structures will not interfere with the free passage of ice, nor produce any slacking of the current in the main river channel which would tend to cause ice jams. 177. Estimated Cost of Proposed Works. The estimated cost of the proposed works is as follows:—

Longitudinal dike:	\$178,880 65,400 234,000 113,425
Engineering and contingencies, approximately 20 per cent	\$591,705 108,295
Total	\$700,000

- 178. Effect on Oscillations at Buffalo. At various times in the past, objection has been made to the construction of compensating or regulation works in the upper part of the Niagara under the theory that this portion of the river now acts as a safety valve to check an extreme rise of lake Erie at Buffalo when westerly storms pile up the water at the eastern end of the lake. Computations show that the relief afforded by the increasing discharge of the Niagara river at such times must be quite small, and since the discharge will increase a little more rapidly with the compensating works than at present, these works will raise the extreme storm levels by an amount a trifle less than that by which they raise the normal levels. The storm levels will therefore be no higher than they would have been had no diversions been made from lakes Michigan and Erie. Even if the compensating works are eventually developed into regulating works, with a free passage substantially as wide as the present restricted section of the river, the effect on increasing the storm fluctuations of level at Buffalo would be negligible, if the gates were not opened to meet the storm rise; but by opening the gates, the present situation might be somewhat improved.
- 179. Adaptability to Changing Conditions. The degree of compensation afforded by the works herein proposed can be controlled, within limits, by the elevation of the crest of the weir. The computed crest elevation required to provide the desired rise of 0.70 foot in the levels of lake Erie is approximately elevation 570, but discharge determinations made as the work proceeds will permit adjustment of the elevation of the last portion built.
- 180. Should the diversions affecting lake Erie be reduced in the future to an extent such that these works would raise unduly the high lake levels, a reduction in the amount of compensation afforded can be secured by removing a portion of the weir. Should the construction of regulating works become desirable, sluice gates can be substituted for the weir to form a part of the control structure.
- 181. Construction Period. The construction of any control works entails a reduction in the outflow from the lake while it is filling. If the construction is spread over two years, the reduction in outflow should not exceed 3,000 to 4,000 cfs. at any time; and such a reduction, if not made at the culmination of a low-water period, will have no noticeable effect on the flow and levels of the Niagara and the St. Lawrence.
- 182. Compensating Works in the St. Clair River. As previously shown (paragraph 59), the present diversions and changes in the outlet capacity of the St. Clair river have lowered the levels of lakes Michigan and Huron by approximately 1.15 feet, and future extensions of the diversions may slightly increase this figure. The lowering has been in progress for many years, and

has been in part discounted in constructions on the shores of the lake. The Board regards it as safe, however, to raise the levels of lakes Michigan and Huron by one foot.

183. The compensating works proposed in lake Erie will raise the water levels of lake St. Clair by nearly 0.4 foot, and, with the present river channels, would raise the levels of lakes Michigan and Huron by a little less than 0.2 foot. The compensating works proposed in the St. Clair river will, however, reduce this backwater effect on lakes Michigan-Huron to about 0.15 foot. In order to raise the levels of these lakes by one foot, it is necessary, therefore, to increase the fall of the St. Clair river by 0.85 foot.

184. Works Proposed on St. Clair River. Compensating works in the St. Clair river must be designed with full regard to the great volume of commerce that passes through the waterway. To this end, and to permit of the future deepening of the navigation channels to the maximum extent now foreseen, the works recommended are a series of submerged rock sills, at the general locations shown on plate 20, with crests 30 feet below the low-water stage of the river. Eight of these sills are placed in the deep section of the river just below the gorge at its head, and are intended to compensate for the enlargement caused by gravel dredging in that locality, and to stabilize conditions in this controlling section of the river. A total of 23 more sills are distributed along the river from Port Huron-Sarnia to Marine City, at localities where the depth is in excess of 30 feet. The estimated quantity of rock required for the entire construction is 1,156,000 cubic yards. Since suitable rock for their construction is produced on a large scale for fluxing purposes, and is an article of the commerce of the waterway, it can be secured and placed at moderate prices. The estimated cost of the works is \$2,700,000.

185. It is recognized that the number of sills required to produce the desired results cannot be foretold with assurance, for data on the effect of such deeply submerged weirs is meager. A study of all available data, including the actual effect of the wrecks of the two schooners sunk near the head of the river in 1900, indicates that the desired results possible may be secured with a fewer number of sills. It is not considered that conclusive data can be secured by experiments with small-scale models, or by further observations on dams in other streams when deeply submerged by floods, for existing data indicates that the effect of such weirs depends on the local conditions of flow. The construction of the sills should be prosecuted consecutively, their effectiveness determined by discharge observations as the work proceeds, such changes made in the location of the sills subsequently constructed as is dictated by the results of these observations, and the work stopped when the desired results are secured.

186. Construction Period. The filling of lakes Michigan and Huron by one foot will require a reduction in the outflow from these lakes by an amount averaging 8,000 cfs. for a period of five years. Since the full effect of the last weirs constructed will not be realized for some years after their completion, no violent reduction in outflow will occur if the work is spread over four years time. To avoid accentuating the effect on existing diversions on the lakes below and on the St. Lawrence, the construction of the compensating works should be suspended during extreme low-water periods.

187. ALTERNATIVE PLANS. The compensating works herein proposed run contrary to the controlled enlargement of the river that will be required should the regulation of its outflow be undertaken at some future time. For this reason the Board has given full consideration to a plan for effecting a part of the com-

pensation by closing one of the channels at Stag island by a dike that could be removed at relatively small cost if regulation works were undertaken. There is, however, a strong likelihood that the concentration of the flow in one channel at Stag island would result in the enlargement of that channel by scour, with consequent loss of effectiveness of the contraction originally secured; and the extent and cost of works required to prevent such enlargement can not be predicted with certainty. At the present time, north-bound traffic follows one of the channels at Stag island and south-bound traffic the other, eliminating any risk of collision at the particular locality. While it is true that the use of a single channel by both up and down commerce is not hazardous in any ordinary sense of the term, yet the volume of traffic is so great that the unnecessary introduction of any additional risk whatever is inadmissable. The desired amount of compensation of levels can be secured at substantially the same probable cost without discontinuing the present local separation of traffic, and it is clearly inadvisable to subject important present commerce to disadvantageous conditions on the slight chance that some money may be saved in the future by such a course.

188. Effect of Ice Gorging. The ice conditions on the St. Clair river are the opposite to those in the upper Niagara river. As has been pointed out, the upper Niagara river always runs open, so that no ice gorging occurs. It is essential that compensating or regulating works preserve this condition, in order that the serious consequences of an ice jam may be prevented. The St. Clair river always closes in winter, with a consequent throttling of the winter flow. The effect of the diminished outflow is a part of the normal regimen of the lakes, to which all interests have adjusted themselves. Since, after an ice cover has once formed, any increase in current velocities tends to aggravate the ice accumulations, it is to be anticipated that the compensating works, which will cause local increases in current velocities, may increase the retardation of the discharge in winter. This effect will tend to increase the effectiveness of the works, and if found at all marked, can be allowed for by omitting some of the sills included in the estimate.

189. Compensation for Enlarged Navigation Channels. The deepening of the navigation channels in the St. Clair and Detroit rivers will tend to increase their outlet capacities and consequently to draw down the levels of lakes Michigan and Huron. To counteract this effect it will be necessary to supplement the compensating works heretofore proposed, in a degree depending upon the dimensions of the channel provided for navigation. The situation does not arise on any other of the lakes, for at no other outlet does an open deep-draft navigation channel pass through the portion of the outlet that controls the level of the lake.

190. The enlargement of the discharge capacity of the St. Clair river consequent to any channel enlargement that now can be foreseen is much less than is commonly supposed. The contracted section at the head of the river, which has a major influence on the discharge capacity, affords a navigable channel exceeding 40 feet in depth. The remainder of the river has navigable depths generally exceeding 30 feet, so that dredging will be required at isolated shoal reaches only. The excavated material can be disposed of most economically by placing it in the portions of the river that are larger than need be, so that a considerable amount of compensation will be effected automatically. The slopes of the river are generally so slight, and the enlargements required for navigation at the various shoal sections are so small in proportion to the present section of

the river, that a convincing determination of the amount by which these slopes would be reduced on account of the dredging is scarcely attainable. A study shows, however, that an entirely uncompensated enlargement of the river to afford a navigable channel 30 feet deep with ample width for navigation could not lower the levels of lakes Michigan-Huron by more than 0.2 foot, and a channel 25 feet deep by more than 0.1 foot. After considering the compensation that can be effected by the dredged material itself, it is considered that the addition of 4 additional sills at a cost of \$400,000 will fully compensate for the enlargement of the St. Clair river required to produce a navigation channel 30 feet deep; a total of 3 additional sills at a cost of \$300,000 for that caused by a channel 27 feet deep; and 2 additional sills at a cost of \$200,000 for a channel 25 feet deep. The cost of compensating work becomes relatively more expensive as the amount of compensation of level increases. If the only compensation undertaken were for the increase in the present outlet capacity due to an enlargement for navigation, the cost would be but about a quarter of the above figure.

191. On the Detroit river, it will be practicable to so place the material excavated in the enlargement of the channel for navigation as to prevent any sensible increase in the discharge capacity of the river, and any consequent effect on lake levels. This course was pursued in the excavation of the Livingstone Channel, which is the most recent and the major enlargement of the river for navigation, and subsequent discharge measurements indicate that the desired result was accomplished. Most of the material to be excavated in this river is rock, so that the spoil will be suitable for the construction of contraction works, and there are sufficient sites at which such contractions can be made without creating conditions detrimental to navigation. The cost of so placing the excavated material is included in the costs of the channels hereinafter presented.

EFFECT OF CONTROL OF LAKE LEVELS ON COST OF INTERLAKE CHANNELS

192. The cost of improving the main navigation channels between and through the lakes, so as to provide the depths required in conjunction with the improvement of the St. Lawrence, obviously depends upon the levels at which the lakes are held. It is not possible to raise the lake levels sufficiently to eliminate channel dredging for this purpose; all that can be accomplished is to reduce the amount of excavation required. Furthermore, the cost of channel dredging will not be reduced in full proportion to the reduction of the yardage of material excavated, as the unit costs of dredging increase as the depth of cut decreases beyond a certain point.

193. The lake levels determined upon as datum planes for navigation channels with various systems of control are shown in the tabulation below. Those for channels secured by excavation only are the levels which would have been available during the navigation season for at least 99 per cent of the time during the past 66 years, had the present diversions and the prospective diversion through the Welland canal been running continuously during that period, and had the outlets to the lakes been in their present condition. In other words they are the monthly mean levels which past experience shows will be exceeded except during one month in a hundred and through the entire navigation seasons of eleven years out of twelve. They are based on the construction of the such relatively minor compensating works in the St. Clair river as

are necessary to preserve the present levels of lakes Michigan and Huron when that river is enlarged for navigation. The datum levels with the proposed compensating works are obtained by adding the amounts by which these works will raise the low levels of the lakes (paragraph 172 and 182). The datum levels with regulating works are obtained by again adding the reduction in the range of stage anticipated from the operation of such works (paragraph 125 and 159), it being assumed that the regulating works would be operated for the benefit of navigation under the program described and to keep the high levels of the lakes from exceeding the levels reached by the compensating works.

DATUM PLANES

	Superior	Michigan and Huron	St. Clair	Erie
Profosed Planes— Without control works. With compensating works. With complete regulation. With modified regulation. PRESENT PLANES—	601 · 4	578 · 0 579 · 0 580 · 1 579 · 4	573 · 4 573 · 75 574 · 00 573 · 8	570 · 25 571 · 0 571 · 5 571 · 1
United States datum for channel and harbour improvements. Canadian datum for channel and harbour improvements.	601.6	579·6 580·0	573.8	570·8 570·8

It will be noted that the proposed datum planes for channels without control works are generally lower than the datum planes now adopted by the two countries. The latter were fixed prior to the recent low-water period.

194. The cost of securing channels of 25, 27, and 30 feet depths, respectively, from deep water in lake Superior to deep water in lake Erie, at the lake levels indicated in the preceding paragraph, are shown in the following tabulations. These costs are based on the deepening of existing channels, with such enlargements and rectification as experience with these channels has proved necessary. The estimates for channels 27 and 30 feet deep include the cost of a new lock in the St. Marys river, with chamber 80 feet in width and 1,350 feet in length, and with 30 feet depth over the sills at the datum plane indicated. The Davis and Fourth locks, already built, will pass vessels of 23-foot draft, for which the channels 25 feet in depth are deepinged.

COST OF CHANNELS FROM LAKE ERIE TO LAKE SUPERIOR

	Cost of excavation and lock	Cost of control works	Total cost
TWENTY-FIVE FEET DEEP— 1. Without control works. 2. With compensating works. 3. With partial regulation. 4. With complete regulation.	\$45,900,000	\$ 50,000	\$ 45,950,000
	41,100,000	3,600,000	44,700,000
	39,800,000	14,900,000	54,700,000
	36,800,000	36,400,000	73,200,000
TWENTY-SEVEN FEET DEEP— 1. Without control works. 2. With compensating works. 3. With partial regulations. 4. With complete regulations.	66,500,000	100,000	66,600,000
	61,400,000	3,700,000	65,100,000
	60,000,000	14,900,000	74,900,000
	56,900,000	36,400,000	93,300,000
THIRTY FEET DEEP— 1. Without control works 2. With compensating works, 3. With partial regulation 4. With complete regulation.	80,900,000	100,000 3,800,000 14,900,000 36,400,000	88,200,000 86,200,000 95,800,000 113,800,000

195. It will be seen that the cost of compensating works will be more than counterbalanced by the saving they effect in providing the main interlake channels. Their construction will effect also a saving in the cost of such enlargement of the harbours on the lakes as is undertaken in conjunction with the provision of deeper main channels. The amount of such enlargement that will be regarded as justifiable can only be roughly forecast, but general figures indicate that the raising of the lake levels by compensating works may save \$5,000,000 in the cost of harbour works likely to be undertaken by the two countries.

REGULATION OF LAKE ONTARIO ONLY

196. Necessity for Program of Regulation. All plans for the improvement of the International Rapids Section for the benefit of deep draft navigation and power include a major enlargement of the present control section at the Galop rapids, and the control of the outflow through the wheels of the power plants and the sluice gates of the dams. A program for the regulation of the outflow is therefore requisite.

197. A number of studies have been made by several engineers on the regulation of lake Ontario in connection with the development of power on the St. Lawrence and these studies have been considered by the Board. An examination of the duration curves of outflow through the application of the several programs to past supplies to lake Ontario shows that the benefit to power operation obtained by any of them is not great. The minimum flow is increased only by decreasing the outflow available for a major proportion of the time.

198. ENDS SECURED BY PROPOSED PROGRAM. The program herein presented by the Board is drawn up to secure the following results:—

(a) To keep the fluctuations of the levels of lake Ontario within the levels that it has had in the past.

(b) To maintain, without impairment, the low water levels of Montreal

harbour.

(c) To maintain low flows during the winter period December 15 to March 31, in order that the difficulties of winter power operation may not be aggravated.

(d) To maintain flows during the first half of April no greater than would naturally occur, in order to avoid the danger of aggravating the spring

rise during the breakup of the ice below Montreal.

(e) To avoid any material increase in the amount and duration of the high discharges during May, in order not to aggravate high water heights in lake St. Louis during the Ottawa floods.

(f) To hold back the natural excess outflow during the early summer

months, in order to raise the ordinary levels of lake Ontario.

(g) To secure the maximum dependable flow throughout the year for power operation.

199. Specific Program Proposed. The rule curves on which the program is based are shown on plate 21. The regulated outflow for any monthly or half monthly period is to be determined by applying to the rule curve for the month, the level of lake Ontario at the beginning of the period, as established by several gages, the discharge so found to be modified by a correction based on the mean level of lake Huron during the previous month. The controlling sluice gates are then to be so set as to maintain during the period the required discharge out of the lake, through the turbines and sluices.

200. Lake Huron Correction. The correction based on lake Huron levels is for the purpose of applying the forecast that these levels furnish on the supply to lake Ontario. The base levels of lake Huron are as taken as follows:—

18	60 to 1888	After 1889	18	60 to 1888	After 1889
April	581.46	580.66	August	582.13	581.33
May	581.78	580.98	September	581.95	580.15
June	582.04	581.24	October	581.73	580.93
July	582.18	581.38	November	581.52	580.72

When the monthly mean level of lake Huron is above its base level for the month the regulated discharge from lake Ontario for the following month, as determined from the rule curves, is increased at the rate of 10,000 cfs. per foot of excess of lake Huron level; when the monthly mean level of lake Huron is below its base level, the regulated discharge from lake Ontario is decreased at the same rate. The correction is not applied, however, to increase the discharge during the first half of April, nor to increase the discharge during any month above 310,000 cfs. No lake Huron correction is made in the winter months, December to March inclusive, since such correction might unduly increase the flow during these months.

201. Thus, in June 1876, the mean level of lake Huron was 583.22 or 1.18 feet above the base for that month. The lake Huron correction for July, 1876 would have been 12,000 cfs. The regulated stage of lake Ontario at the end of June would have been 248.22. The discharge for July, from the diagram, would be 307,000 cfs. The correction would bring the regulated discharge to 319,000 cfs. The regulated discharge is therefore taken at the maximum of 310,000 cfs. The computations of the effect of the program of regulation are illustrated in detail in table 18, which shows the derivation of the regulated levels and outflows for the years 1860 to 1862, inclusive.

TABLE No. 18.—TYPICAL COMPUTATION, PROPOSED REGULATION OF LAKE ONTARIO ONLY

			0111111	TO OIVE				
Year	Month	Supply to Ontario	Dis- charge (b)	L. Huron correction (b)	Corrected discharge		Storage (ft.)	Level at end month
1860	June July Aug. Sept. Oct. Nov. Dec.	264 236 245 254 267 248	268 258 251 247 263 300	+11 +11 +11 +10 + 9	279 269 262 257 272 300	-15 -33 -17 - 3 - 5 -26	$ \begin{array}{r} -0.19 \\ -0.41 \\ -0.21 \\ -0.04 \\ -0.06 \\ -0.32 \end{array} $	247 · 28 7 · 09 6 · 68 6 · 47 6 · 43 6 · 37 6 · 05
1861	Jan. Feb. Mar. April May June July Aug. Sept. Oct. Nov.	229 257 270 323 350 307 282 265 273 295 276	216 210 223 242 268 293 291 310 310 288 289 288 289	+ 9 + 9 + 12 + 13 + 13 + 14 + 15 + 15	216 210 223 242 268 302 300 310 311 301 303 303 303	+16 +19 +34 +28 +28 +10 +50 -3 -36 -30 -8 -34	+0·20 +0·24 +0·42 +0·35 +0·35 +0·12 +0·62 -0·04 -0·35 -0·45 -0·38 -0·10 -0·42	6.25 6.49 6.91 7.26 7.61 7.73 8.35 8.31 7.96 7.51 7.13 7.03 6.61
1862	Jan. Feb. Mar. April May June July Aug. Sept. Oct. Nov. Dec.	259 214 242 293 355 331 297 287 249 233 235 244 257	310 218 212 224 240 272 310 310 310 310 2992 283 256 247 239	+11 +11 +11 +10 +9 +9 +14	310 218 212 224 240 272 310 310 310 310 292 265 261 239 217	$\begin{array}{c} -26 \\ +20 \\ +2 \\ 18 \\ +53 \\ +42 \\ +21 \\ -13 \\ -23 \\ -52 \\ -59 \\ -30 \\ -17 \\ +9 \\ +20 \\ \end{array}$	$\begin{array}{c} -0.32 \\ +0.25 \\ +0.02 \\ +0.60 \\ +0.52 \\ +0.60 \\ +0.52 \\ +0.28 \\ +0.28 \\ +0.26 \\ -0.16 \\ -0.29 \\ -0.65 \\ -0.74 \\ -0.38 \\ -0.21 \\ -0.11 \\ +0.25 \end{array}$	6 29 6 54 6 6 54 7 44 7 96 8 24 8 50 7 40 6 66 6 28 6 07 6 18

⁽a) In thousands of cubic feet per second. (b) In thousands of cubic feet per second per month.

202. Results Secured. The program was tested by applying it to the conditions that would have obtained from 1860 to 1925 had a diversion of 8,500 cfs. from the lake basin been continuous during the period. The resulting levels and outflows, month by month, together with the natural levels and outflows, are shown in table 19. The duration curves of outflows, and of lake levels are shown on plates 10, 11, and 22.

203. An examination of the results from the proposed program shows:—

	Without	regulation	
_	With actual diversions	With continuous diversion of 8,500 cfs.	Regulated
Maximum level Lake Ontario at end of any month. Minimum level, Lake Ontario, at end of any month. Level of Lake Ontario exceeded 90 per cent of time during navigation seasons. Number of months in 65 years in which stage of Lake Ontario exceeded 248·1 (at end of month) mean outflow. Minimum monthly mean outflow. Outflow exceeded— 90 per cent of time. 70 per cent of time. 50 per cent of time.	248·79 (May, 1870) 243·42 (Nov., 1895) 245·0 26 318,000 cfs. 174,000 cfs.	8 310,000 cfs. 166,000 cfs.	

204. The program would maintain the flow during the summer and fall months sufficiently to preserve completely the low water levels of Montreal harbour resulting from the unregulated flow. The regulated flows during the first half of April would not exceed, in amount or frequency, the unregulated outflow. The maximum regulated flow for May would not exceed that which has occurred in nature.

205. The regulation of lake Ontario, in such manner as to injure no interest, and at the same time to effect some improvement of lake levels and outflow, is therefore wholly practicable.

206. Acknowledgments. The program for the complete regulation of the lakes, described in this report, was conceived and worked up by Mr. E. W. Lane, temporarily employed as Assistant Engineer, and placed in charge of the investigations relative to regulation. The program for the regulation with partial control of the St. Clair river, and the studies looking to raising the levels of lake Ontario, were conceived and worked up by Mr. F. G. Ray, Senior Engineer, U.S. Lake Survey, assisted by Mr. Sherman Moore, Associate Engineer. Mr. Ray's intimate knowledge of the behavior of the Great Lakes, gained by his long service in the United States Lake Survey, was drawn on throughout.

207. The program for the regulation of lake Ontario was formulated by Mr. D. W. McLachlan, Chairman of the Canadian Section of the Board. Minor modifications of the program were worked out by Lt.-Col. G. B. Pillsbury, that it might rigidly meet all of the requirements set forth in the preceding paragraphs.

TABLE 1-LOCAL SUPPLY TO LAKE SUPERIOR

In Thousand Second Feet

1860						1 1100	Band D	econa .	reet					
1861. 12	and a	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Average
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1861 1862 1863 1864 1865 1864 1865 1866 1867 1868 1870 1870 1871 1872 1873 1874 1875 1876 1877 1878 1889 1880 1881 1881 1882 1883 1884 1885 1883 1889 1890 1891 1892 1892	$\begin{array}{c} 12\\ -7\\ -7\\ 29\\ -34\\ -11\\ 19\\ -45\\ 4\\ 9\\ -41\\ 16\\ 7\\ 3\\ 26\\ 17\\ -10\\ -81\\ 7\\ 6\\ 28\\ 15\\ -13\\ 36\\ 7\\ -10\\ -81\\ 15\\ 1\\ -18\\ -13\\ 36\\ 7\\ 16\\ 21\\ -18\\ -13\\ 36\\ 7\\ 16\\ 21\\ -18\\ -13\\ 25\\ -23\\ 1\\ -12\\ 4\\ 10\\ -26\\ -26\\ 10\\ -26\\ -26\\ -26\\ -26\\ -26\\ -26\\ -26\\ -26$	9 9 48 23 44 44 25 52 45 24 52 69 24 52	123 53 53 53 53 114 142 80 80 186 86 99 217 225 84 85 68 86 68 31 142 43 42 43 114 48 71 145 40 40 40 40 40 40 40 40 40 40 40 40 40	266 207 105 207 105 207 105 207 105 207 106 207 207 180 207 207 207 207 207 207 207 207 207 20	235 210 90 90 90 90 90 90 90 90 90 90 90 90 90	162 92 90 92 90 122 222 222 262 174 42 262 112 156 89 123 198 199 192 192 192 192 192 192 192 193 146 142 247 172 263 135 177 178 113 126 136 136 136 136 139 1230 113 113 1230 113 113 113 113 113 113 113 113 113 1	133 122 211 101 171 1851 185 1148 126 187 197 198 119 119 119 119 119 119 119 119 119	91 151 205 97 102 97 102 123 28 123 123 125 121 145 133 135 121 126 104 140 161 103 76 92 103 124 125 126 103 127 127 128 129 129 129 129 129 129 129 129 129 129	99 113 68 73 115 113 115 113 115 113 116 119 119 114 119 119 119 119 119 119 119	58 36 7 5 29 9 116 58 84 17 5 29 14 83 36 65 65 84 126 61 33 36 63 59 59 54 24 66 29 44 44 40 45	$\begin{array}{c} -22\\ -29\\ 6\\ 17\\ -57\\ -36\\ 1-25\\ -62\\ -102\\ -19\\ 24\\ 42\\ -29\\ -34\\ 41\\ 15\\ 40\\ 33\\ 3\\ 3\\ 3\\ 3\\ 4\\ 3\\ 3\\ 3\\ 3\\ 3\\ 4\\ 27\\ -19\\ -15\\ -9\\ 69\\ -23\\ -69\\ -7\\ 37\\ \end{array}$	-30 111 111 116 -220 63: -228 -588 -208 -208 -208 -208 -208 -208 -208 -308 -88 -88 -88 -88 -88 -88 -103 -88 -88 -103 -88 -104 -11 -17 -24 -11 -31 -31 -34 -24 -24 -37 -34 -38 -38 -38 -38 -38 -38 -38 -38 -38 -38	94-7 88-9 75-5 65-8 95-2 98-7 86-7 88-7 100-8 96-0 92-5 97-9 109-3 73-3 73-3 73-6 71-8 74-5 101-3 65-4 72-9 74-9 60-5 85-8 97-8 77-8 80-7 77-3 81-7 81-7 81-7 81-7 81-7 81-7 81-7 81-7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1860-1900	7-2	26.3	69.7	135.0	177 - 6	167.9	142.5	119.3	92.2	51.5	6.2	- 7.5	82.3
1860-1925 2.9 13.2 58.0 129.0 172.6 162.6 136.6 112.5 86.4 48.5 5.6 -12.0 75.9	1901	$\begin{array}{c} -29 \\ -28 \\ -35 \\ -6 \\ -24 \\ -6 \\ -35 \\ -22 \\ -16 \\ -31 \\ -6 \\ -43 \\ -11 \\ -1 \\ 24 \\ -28 \\ -15 \\ -29 \\ -51 \\ -32 \\ -25 \\ -35 \\ \end{array}$	$\begin{array}{c} -17 \\ -2 \\ -4 \\ 22 \\ -7 \\ -15 \\ 19 \\ 2 \\ -26 \\ -24 \\ -5 \\ -9 \\ -21 \\ -21 \\ -11 \\ -17 \\ -44 \\ -13 \\ -27 \\ -37 \\ -8 \\ \end{array}$	24 42 74 41 87 27 46 25 42 - 9 40 70 4 5 5 8 63 118 43 143 40 48 16 - 1 32	109 125 179 112 152 121 99 115 100 102 78 135 158 117 88 214 98 81 115 138 151 138 151 17	141 169 215 176 149 186 174 225 167 108 175 184 187 170 264 145 166 126 126 155 170 168 102 96 117	179 163 178 150 165 15 183 221 164 91 194 140 167 150 182 210 138 155 112 170 127 135 83 131	188 116 131 1159 113 148 146 150 84 195 118 140 121 151 143 102 111 77 117 110 115 117 108 97	81 84 103 123 145 96 167 75 118 86 155 117 103 140 88 108 45 72 78 78 72 78 133 59	62 63 106 141 129 73 131 29 63 65 77 60 133 75 140 108 72 79 35 33 20 21 54 91 43	71 55 66 108 38 40 - 8 - 57 26 37 34 69 143 60 33 72 45 1 - 23 - 12 38 26 17	11 36 -23 -25 17 -19 -23 -68 -19 -13 -1 -23 -70 28 -13 -1 -23 -13 -1 -23 -14 -15 -16 -17 -16 -17 -16 -17 -17 -18 -18 -19 -18 -19 -18 -19 -18 -19 -18 -19 -18 -19 -18 -18 -19 -18 -18 -18 -18 -18 -18 -18 -18	-41 -25 -39 -38 9 -48 -15 38 -40 12 -26 -7 -35 38 -7 -29 10 -15 -12 -52 -34 -29 -53 -49	64-9 66-5 79-3 78-5 88-1 67-9 79-1 1 77-2 41-9 72-7 67-5 82-6 56-3 90-9 102-6 49-3 65-8 41-4 48-8 48-8 38-9 38-2
									112.5	86.4	48.5	5.6	-12.0	75.9

TABLE 2—TOTAL SUPPLY TO LAKE MICHIGAN-HURON

			1					1					
	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Average
1860	202	196	225	255	262	262	200	136	102	59	96	135	177.5
1861	197	301	324	331	347	293	307	209	119	140	120	122	234.2
1862	121	198	321	297	302	221	189	195	166	103	79	153	195 · 4
1863	202	211	189	251	269	218	162	129	132	82	171	228	187 - 0
1804	112	231	192	236	317	163	128	86	23	53	110	87	144.8
000	130 52	219 129	334 287	350 331	235 290	300 313	307 260	175 164	110 128	135	-30° 95	46 106	181 · 9 190 · 8
866 867	195	242	278	314	311	310	218	112	50	5	-15	57	173 - 2
.000	128	326	324	226	301	243	111	45	67	102	96	83	171.0
809	167	117	184	347	376	408	340	235	79	77	93	131	212.8
870	204	276	349	380	313	263	213	211	145	16	15	137	210 - 2
871	212 141	303 119	390 182	336 291	305 330	232 279	164 187	- 7 166	-138 136	13 86	-53	- 1 8	152 · 9 156 · 0
872 873	179	257	378	452	467	350	214	180	142	137	130	174	255 · (
	212	244	203	167	272	284	185	148	134	43	79	115	173 - 8
875	123	189	272	366	375	294	242	222	162	133	109	142	219 - 1
876	237	276	298	405	440	423	304	197	94	108	136	80	249 - 8
877	154 146	178 168	188 219	233	183 325	242 255	210 164	138	137 134	178 157	174 111	169 48	182 · (176 · 1
878	79	119	186	223	243	231	167	130	114	95	151	196	161 - 2
000	179	162	206	292	396	383	255	142	71	60	99	126	197 - 6
	233	309	215	289	347	264	200	137	221	278	177	128	233 - 2
	130	223	294	277	288	298	265	205	103	83	88	88	195 - 2
000	140	216	222	363	427	436	362	186	88	110	162	142	237 - 8
884	110 254	201 226	301 236	325 338	292 366	236 3 0 1	175 288	114	162 155	162 122	94 1 0 4	206 182	198 · 2 234 · 7
885 886	213	226	317	342	311	216	145	136	144	126	71	101	195.7
887 1	247	333	220	236	283	247	184	95	47	41	56	117	175 - 5
888	140	217	270	336	359	286	206	151	87	114	75	80	193 - 4
309	161	147	159	193	302	347	213	126	80	39	60	159	165 - 5
08U	181	145	224	298	340	324	216	135	97	91	40	75 173	180 - 8
891	107 200	151 152	249 163	299 256	$\frac{225}{347}$	185 333	$\frac{157}{237}$	119 164	46 88	12 57	77 52	78	150 · 0 177 · 3
893	128	185	294	390	364	289	180	86	70	75	71	146	189 - 8
894	182	224	269	341	348	279	186	86	67	85	62	47	181 - 3
895	85	131	207	242	227	181	140	110	48	31	51	139	132.7
896	252	144	165	267	328	259	172	141	107	100	111	156	179 - 3
897	172	214	278	362	359	296	229	127	47	63	70	100	193 - 1
090	173 127	247 205	330 199	318	255 381	236 338	$\frac{162}{235}$	84 135	86 62	88 66	56 59	76 55	175 · 9 182 · 8
899 900	103	161	177	248	256	262	260	225	187	168	115	61	185.3
\verage-													
1860-1900	162-4	207.8	251.7	302.8	318.6	282 · 4	213 · 1	.144-5	100 · 0	90.3	84.0	113 · 4	189 - 2
901	81	134	248	283	269	248	238	165	78	58	51	45	158 - 3
902	37 96	98 189	219	279	320	324	$\frac{271}{215}$	119 194	55 189	109	90 20	64	165 - 4
903	116	183	273 313	277 386	247 376	272 316	203	160	148	85 102	29	67 57	177 · (199 · 1
905	41	101	251	348	359	344	232	177	97	61	75	125	184-8
906	200	206	226	293	297	247	206	122	73	99	143	152	188 - 7
907	138	147	224	290	316	313	206	166	135	55	58	121	180-8
008	88	137	201	373	364	304	222	82	6	-20	12	73	153 -
909	113 83	157 143	209 247	366 290	378 263	257 190	188 136	122 140	26 129	34 80	123 37	112 30	173 · 8 147 · 3
910 911	95	124	182	278	311	234	144	127	118	111	134	149	167 -
	83	122	196	333	414	308	220	240	165	129	136	106	204
	109	139	350	413	285	244	203	120	74	83	93	90	183 - 0
914	86	116	151	252	301	278	198	129	108	47	19	57	145 -
910.,.,.,,	108	178	132	173	243	239	257	194	103	72	85	104	157 - 3
916	153 102	179 147	241 280	393 352	439 373.	377 397	216 296	97 148	74 75	174 91	205 64	140 58	224 · 0 198 · 0
917	131	222	304	277	327	271	172	108	71	103	168	130	190
110	100	159	270	348	299	188	124	78	75	104	72	61	156 -
920	65	134	284	349	257	265	239	163	89	57	61	98	171 -
921	125	122	280	344	236	163	101	95	111	81	92	95	153 - 8
922	57 56	158 108	341 250	414 -328	330	$\frac{253}{257}$	202	125 119	43	2 46	-13 35	49	163 · · · · · · · · · · · · · · · · · · ·
923 924	124	108	194	-328 297	333 293	257 245	162 245	181	101 82	-13	-20	58 20	149.
925	60	153	194	189	177	198	156	87	36	39	60	100	120
verage— 1901-1925	97.9	148.1	242.5		312-3	269.3			90.4	71.6			
								138.3				86.5	170 - 8
1860-1925	138.0	185-2	248.2	308 · 2	316.2	277 - 5	209.0	142 · 2	96.4	83 · 2	79.9	103 · 2	182 - 3

TABLE 3—LOCAL SUPPLY TO LAKES MICHIGAN-HURON

	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Average
1860	108 110	108 220	138 246	162 244	160 242	156 184	94	28 96	- 4 10	$\frac{-48}{30}$	- 6 18	42 30	$\begin{array}{c} 78 \cdot 2 \\ 135 \cdot 3 \end{array}$
1861	38	120	242	218	204	122	90	92	62	0	-16	66	103.2
1000	120	132	114	176	188	138	78	30	34	-12	86	146	$103 \cdot 2$ $102 \cdot 5$
1804	38	162	122	166	240	82	44	2	-64	-28	34	16	67.8
1800	64 -20	154	272 220	278 254	148 204	204	202 162	68	4 32	-94 38	-118 6	-34 16	95·7 104·7
1866	112	62 162	202	234	228	212	112	60	-54	-98	-108	-28	81.8
1868	48	260	250	148	210	154	16	-48	-28	8	- 2	- 4	84.3
1869	86	42	120	270	286	318	240	124	-50	-40	-16	38	118.2
1870	118 138	196 232	268 326	298 268	220	174 142	118 74	116 -100	48 -232	$-78 \\ -76$	$-74 \\ -58$	-76	122·8 71·8
1871 1872	72	52	120	230	248	194	92	64	32	$-10 \\ -14$	-150	-78	71.8
18/3	102	184	304	378	380	260	114	74	34	32	30	80	164.3
18/4	130	166	128	94	190	192	84	46	32	-62	-20	18	83.2
1875	36 152	108 192	192 220	280 326	282 344	194 314	140 184	120 76	$\frac{54}{-28}$	28 6	10 28	56 -16	125·0 148·8
1876 1877	64	88	100	148	98	152	112	38	42	82	84	82	90.8
1878	64	92	146	206	246	170	76	20	54	74	30	-28	95-8
1879	12	62	134	168	180	164	94	56	42	22	82	136	96.0
1880	124 158	108 236	154 142	240 218	326 266	296 178	162 110	52 48	-22 128	$-28 \\ 174$	10 76	34	$122 \cdot 2$ $147 \cdot 3$ $110 \cdot 3$
1881 1882	48	146	220	204	206	214	172	110	10	- 8	- 2	4	110.3
1886	66	144	150	290	354	354	276	90	0	26	80	66	158.0
1884	36 178	132 152	234	$\frac{262}{271}$	220 286	162	96 196	34 147	80	78 35	8	126	122·3 152·4
1885 1886	142	159	166 250	275	233	213 135	60	48	64 59	40	18 -13	103 27	117.9
1887	178	267	155	174	212	166	94	8	-37	-47	-26	44	99.0
1888	71	156	208	274	283	190	107	52	-10	17	-18	2	
1889	89 110	81 85	92 164	126 239	224 272	$\frac{265}{244}$	126 129	39 50	- 7 14	-45 9	$-18 \\ -39$	89	106.6
1890 1891	48	90	191	237	154	115	85	47	-25	60	7	110	83.3
1892	138	97	112	202	282	261	162	89	12	-17	-16	15	111-4
1893	76	136	245	336	299	214	102	6.	- 7	- 1	- 4	81	123.6
1894 1895	121 10	165 58	212 138	277 174	265 151	191 97	96 52	$-\frac{4}{22}$	$-21 \\ -44$	$\begin{bmatrix} -4 \\ -63 \end{bmatrix}$	-25 -33	-34 58	103·3 51·7
1896	131	73	98	198	248	171	81	50	18	18	28	76	99.2
1897	97	145	208	291	280	210	138	34	-43	-24	-16	24	112-0
1898	106	185	271	256	186	159	80	0	1	5	-25	- 4	101.7
1899 1906	58 24	138 85	133 105	267 176	299 180	249 184	141 178	39 139	-38 93	$-29 \\ 73$	-33 20	$\begin{vmatrix} -34 \\ -24 \end{vmatrix}$	99·2 102·8
Average-						101	110	100	00				
1860-1900	87-8	137 · 4	183-2	232.5	237 · 8	195.5	121.0	50.5	6.0	- 2.3	- 4.4	32.7	106.5
1901	1	59	180	213	193	169	151	75	- 9	-20	-27	-26	79.9
1902	$-30 \\ 31$	36	162	218 215	254 177	254	197	43	-22	34	15	$\begin{bmatrix} - & 6 \\ - & 7 \end{bmatrix}$	96·3 104·3
1903 1904	44	128 112	213	315	300	194 234	135 118	113 73	109	11	$-61 \\ -59$	-25	119.1
1905	-37	30	184	274	279	261	144	89	8	-33	-14	41	102 · 2
1906	118	129	152	217	215	161	117	34	-15	12	58	73	. 105.9
1907	64	76 68	158 136	219 311	243 296	$\frac{234}{225}$	121 134	77 - 7	42 -80	$-34 \\ -102$	$\begin{vmatrix} -30 \\ -68 \end{vmatrix}$	39	100.8
1909	46	97	156	312	319	189	115	40	-57	-46	50	33	. 104.5
1910	12	77	185	230	201	121	64	67	55	7	-32	-32	79 - 6
1911	40 27	73 68	133 143	228 279	257 355	178 245	85 157	65 173	56 97	49 60	74 67	92 41	110·8 142·7
1912 1913	47	78	292	351	218	175	132	47	- 1	5	17	17	114-8
1914	15	48	86	188	232	206	125	54	30	-42	-68	13	71.8
1915	42	111	170	110	173	167	180	116	27	- 3	8	31	85.7
1910	83	110 59	172 194	319 262	356 281	278 306	117 209	$-\frac{8}{72}$	-43 0	55	89 -10	30	129.8
1917 1918	71	164	245	219	268	206	114	47	4	34	104	75	129.3
1919	45	106	217	295	244	135	70	26	20	49	16	.5	102.3
1920	8 72	78 68	228 228	294 291	183 188	188 117	158 47	63	8 55	$\frac{-2}{26}$	3 44	43 50	104.3
1921 1922	15	114	228	370	286	212	159	41 81	0	-45	-61	1	119.1
1923	8	59	199	277	278	203	109	66	49	- 4	-14	8	103 · 2
1924	74	97	143	245	240	195	198	131	33	−63	-71	-30	99.3
1925 Average—	8	102	144	135	122	145	103	30	-26	-27	- 3	41	64.5
Average— 1901-1925	33 - 1	85.9	182 - 4	255.5	246.3	199.9	130 · 4	64.3	16.0	- 2.5	1.1	19.1	102 - 6
1860-1925	67.1	117.9	182.9	241 · 2	241.0	197 · 2	124 · 6	55.7	9.8	- 2.3	- 2.3	27 : 6	105.0

TABLE 4-TOTAL SUPPLY TO LAKE ERIE

					-,	econa							
	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Average
1860	175	211	278	285	250	220	209	200	184	192	197	186	215-6
1861	173	206	287	310	267	229	224	228	209.	213	213	208	230 · 6
1862	203	206	275	301	257	241	222	197	188	179	194	237	225.0
1863	261	242	231	246	237	215	217	200	170	161	173	179	211.0
1864	182	215	239	276	261	208	189	187	178	173	191	178	206-4
1865	135	160	240	273	244	208	204	200	189	164	165	168	195·8 207·3
1800	160	196	242	247	233	234	208	191	204	194	190	188	207.3
1867	165	195	238	253	164	230	193	176	161	150	.46	158	194.1
1868	145	181	257	271	254	237	188	163	160	155	166	171	195.7
1869	177	203	234	245	259	256	236	199	176	157	190	235	213.9
18/0	235	213	233	270	240	227	229	210	188	175	183	185	215.7
1871	170	199	253	254	237	218	207	193	163	147	157	153	195.9
1872	162	154	179	213	232	216	194	178	166	160	148	154	179.7
1873	167	177	248	311	256	221	213	190	168	172	207	245	214.6
874	237	218	225 209	230	229	228	215	185	159	151	154	160	199.3
1875	158	175		237	247	239	218 223	202	172	161	197	207	201.8
1876	226	279	290	282	267	245	224	211	195	196	208	174	233.0
1877	175	178	208	244	230	232		202	188	179	205	214	206.6
1878	219	227	244	260 236	244	228 217	215	201	193 168	183	201	189	217.0
1879	171 230	191 211	220 222	200	223 236	226	201 212	175		158 170	172 172	230 149	196·8 201·8
1880	164	210	246	234 268	252	231	200	188 176	171 182	189	202	240	201.8
1881	241	242	261	254	255	242	226	209	187	175	162	165	218.3
1882 1883	202	224	201	241	280	285	247	209	195	185	193	199	224 · 2
1009	202	240	259	275	257	228	213	196	177	167	170	186	214.2
1884 1885	174	170	226	292	290	261	232	226	217	215	218	223	228.7
1886	186	152	242	290	253	237	220	203	195	182	187	198	212.1
1887	214	285	276	239	245	226	202	192	172	169	193	199	217.7
1888	181	182	234	257	231	230	224	186	164	188	199	202	206.5
1889	198	180	201	229	237	248	210	173	159	155	191	233	201.2
1890	248	234	249	266	266	236	184	184	189	199	199	184	219.8
1891	190	226	222	188	200	202	185	174	162	141	163	193	187.2
1892	174	161	207	266	287	269	211	179	159	152	160	159	187 · 2 198 · 7
1893	161	194	235	284	269	214	184	164	159	156	178	215	201 · 1
1894	205	182	213	238	244	224	183	172	169	164	175	166	194.6
1895	155	154	186	199	199	183	173	169	148	143	170	185	172.0
1896	175	165	188	219	222	193	197	188	155	146	160	175	181.9
1897	194	209	235	244	229	212	195	177	152	151	178	188	197.0
1897 1898	201	211	238	244	219	196	181	171	160	172	177	193	196.9
1899	187	192	224	224	221	202	181	157	154	167	164	174	187.3
1900	198	219	226	221	215	197	194	180	163	160	174	180	193.9
Average-													
1860-1900	189.7	201.7	235 · 2	254.0	244.8	226.6	206-9	189.5	174.8	169.9	181.5	190 · 9	205 · 5
1901	157	144	185	198	201	221	194	177	164	153	174	176	178.7
1902	152	158	219	236	223	244	243	188	177	182	171	172	197 · 1
1903	189	223	272	260	214	210	200	187	178	158	150	171	201.0
1904	174	222	284	289	245	233	204	188	179	169	162	165	209.5
1905	166	156	207	261	266	250	217	194	182	170	178	203	204.2
1906	206	178	200	234	228	219	210	190	177	191	216	236	207 · 1
1907 1908	221	175	216	246	246	245	213	189	196	194	189	218	212.3
1908	212	211	267	271	242	218	205	186	167	148	150	184	205 · 1
1909	189	207	226	261	277	227	199	177	146	157	170	179	201.3
1910	172	204	239	248	241	199	186	178	177	167	161	165	194.8
1911	170	177	208	229	215	187	179	176	180	165	189	198	189 · 4
1912	171	176	243	278	230	208	198	206	189	172	173	220	205.3
1913	255	228	296	324	230	214	199	179	165	179	192	196	221 · 4
1914	177	161	209	280	262	213	190	183	176	150	163	168	194.3
1910	178	198	191	197	211	213	227	213	182	161	164	202	194.8
1916 1917	238	217	222	265	265	247	200	167	158	170	179	192	210.0
1917	187	186	262	289	272	282	244	202	186	207	206	156	223.3
1918	154	216	238	195	220	232	214	204	199	189	205	206	206.0
1919	216	226	255	287	274	222	198	188	184	180	179	154	213.6
1920	126	147	222	269	249	228	222	196	175	177	193	210	201 · 2
1921	199	209	248	268	231	204	189	172	163	175	191	187	203.0
1922	167	175	247	276	244	218	196	185	168	149	151	173	195.8
1923	168	165	215	234	223	210	180	167	161	152	179	206	188.3
1924	205	179	208	245	233	223	203	178	173	146	141	162	191.3
1925	156	187	221	204	175	173	176	167	149	147	167	133	171.3
Average— 1901-1925	184.2	189 - 0	232.0	253.8	236.7	221 - 6	203 · 4	185.5	174.0	168.3	175.7	185.3	200 - 8
1860-1925	187 · 6	196.9	234.0	253 - 9	241.7	224.7	205 · 6	188.0	174.5	169.3	179 - 3	188 - 7	203.7

TABLE 5-LOCAL SUPPLY TO LAKE ERIE

In Thousand Second Feet

	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Average
1860	-31	66	92	94	45	- 2	-23	-28	-43	-17	-16	-13	10.3
1861	-23	31	76	106	57	12	2	2	-12	- 6	- 2	- 2	20.1
1862	3	46	62	97	45	27	10	-16	-27	-36	-15	32	19.0
1863	59	42	38	48	34	9	13	- 1	-30	-42	-22	-23	10.4
1864	-14	17	38	90	66	17	- 4	- 3	- 8	- 9	12	6	17.3
1865	$-22 \\ -11$	14 25	57	84 73	57	21 54	6 23	2 4	- 8 19	$-29 \\ 13$	-20	- 9	12·8 29·2
1866 1867	$-11 \\ -19$	11	69 70	66	56 75	40	- 6	-19	-34	-39	8 -38	-16	7.6
1868	29	17	69	91	75 72.	54	2	-17	-18	-21	-13	0	17.3
1869	2	41	75	75	83	72	48	4	-20	-32	1	55	17·3 33·7
1870	65	42	55	76	41	25	26	10	-20	-28	-12	2	23.5
1871	-28	34	51	50	26	8	- 5	-15	-30	-34	-26	-13	1.5
1872 1873	-12 -3	$-20 \\ 10$	5 77	40 137	53 67	34 19	8	$-5 \\ -12$	$-18 \\ -32$	$-19 \\ -29$	$\begin{vmatrix} -31 \\ + 9 \end{vmatrix}$	$\begin{bmatrix} -9 \\ 52 \end{bmatrix}$	$\frac{2 \cdot 2}{25 \cdot 7}$
1874	81	91	36	35	37	22	12	-18	-48	-51	-38	-34	10.4
1875	-35	-17	17	48	48	34	10	- 5	-39	-46	-10	15	1.7
1876	26	84	101	86	76	28	- 6	-18	-38	-29	-15	-31	22.0
1877	-30	-10	68	76	56	15	5	-15	-26	-30	- 3	8	9.5
1878	18 - 6	72 41	57 40	64 48	38 37	17 26	9	$-8 \\ -15$	-13 - 24	$-25 \\ -30$	- 7 -17	6 45	18·6 12·8
1879 1880	- 6 46	35	39	54 54	48	30	9	$-15 \\ -13$	-24 -31	$-30 \\ -26$	-24	-32	12.8 11.3
1881	-14	17	58	72	52	31	- 6	-25	-19	$-20 \\ -21$	-15	39	14.1
1882	41	56	66	56	57	37	23	5	-24	-33	-43	-29	17.7
1883	6	25	44	44	71	75	32	- 5	-24	-29	-31	-13	16.3
1884	44	70	52	63	40	13	- 5	-21	-37	-53	-46	-19	8.4
1885	$-33 \\ 12$	-44 - 1	22 48	86 90	70 28	38	$\begin{vmatrix} 5 \\ -13 \end{vmatrix}$	$\frac{-2}{-26}$	$\begin{vmatrix} -11 \\ -32 \end{vmatrix}$	$\begin{vmatrix} -10 \\ -42 \end{vmatrix}$	- 3 -34	$\begin{vmatrix} 10 \\ -11 \end{vmatrix}$	10·7 1·6
1886 1887	5	73	83	38	37	9	-19	-24	-39	-39	-10	4	9.8
1888	-11	- 9	49	62	38	18	14	-25	-44	-14	- 1	10	7.3
1889	9	13	33	58	53	54	11	-26	-39	-37	4	56	15.8
1890	68	58	77	90	87	49	-10	-12	- 4	10	13	6	36.0
1891	17	50	67	13	22 115	13	-5	-14	$-24 \\ -25$	-38	$\begin{vmatrix} -11 \\ -22 \end{vmatrix}$	21	9·3 26·8
1892 1893	8	46	59 63	98 109	93	92 24	-10	$-8 \\ -28$	-29	$\begin{bmatrix} -31 \\ -30 \end{bmatrix}$	- 22 - 6	$\begin{vmatrix} -12 \\ 38 \end{vmatrix}$	23.7
1894	24	16	33	62	57	24	-21	-27	-28	-28	-17	-16	6.6
1895	-15	-11	11	36	28	- 1	-10	-11	31	-33	0	24	-1.1
1896	12	27	38	60	60	18	21	15	-19	-24	-13	11	17.2
1897	26 29	49 64	70 69	78 72	54	25 10	- 8	$-14 \\ -16$	-36	$-32 \\ -9$	- 4 - 4	14 19	19·5 20·3
1898 1899	18	24	119	69	45 37	12	-16	-37	$-27 \\ -39$	- 9 -19	$\begin{bmatrix} -4 \\ -21 \end{bmatrix}$	- 1	12.2
1900	66	100	101	51	40	14	5	- 6	-28	-31	-19	- 3	24 · 1
Average—											1		
1860-1900	8.9	32 · 1	57 · 4	69 · 4	53.7	27.3	4.3	$-12 \cdot 0$	-25.8	$-27 \cdot 0$	-13.7	5.0	14.9
1901	1	42	59	77	31	23	- 6	-24	-32	-40	-18	23	11.3
1902	41	41	47	63	40	58	57	- 1	- 8	3	-10	1	27.7
1903	68	108	112	84	32	26	12	- 1	-12	-34	-39	16	31.0
1904 1905	39 73	95 58	140 61	112 70	54 71	35 49	13	$-14 \\ -9$	$\begin{vmatrix} -21 \\ -22 \end{vmatrix}$	$-31 \\ -30$	$-36 \\ -19$	-18 13	$ \begin{array}{r} 29.8 \\ 27.3 \end{array} $
1906	26	42	40	48	26	17		-11	-21	- 1	26	71	22 · 4
1907	82	52	52	60	49	45	6 7	-13	- 7	- 4	- 4	33	29.3
1908	92	100	161	88	46	16	- 2	-17	-32	-43	-37	0	31.0
1909	29	100	82	82	92	35	5	-14	-44	-27	-11	10	28.3
1910	47	71	59	65	53	9	- 2	- 9	- 9	-17	-21	14	21.7
1911	45 46	55 49	38 99	58 110	36 47	22	— 4 11	- 5 18	3 - 4	$-10 \\ -18$	-20	30 29	$\begin{array}{c} 22 \cdot 0 \\ 32 \cdot 4 \end{array}$
1912 1913	80	100	138	146	43	25	1	-20	-30	-11	20	13	40.6
1914	31	25	58	107	82	32	1	- 6	-16	-37	-20	7	22.0
1915	61	65	45	31	40	39	45	30	1	-18	-12	39	30.5
1916	85	94	100	116	81	55	3	-33	-40	-25	-14	7	35.8
1917	42 28	41 73	70 69	104 64	78 20	81 24	32	$-10 \\ -8$	$-21 \\ -12$	-13	10	6	$ \begin{array}{r} 36.4 \\ 21.7 \end{array} $
1918 1919	28 26	48	73	100	78	24	$\begin{bmatrix} 1 \\ -6 \end{bmatrix}$	- 8 -11	$-12 \\ -14$	-13 -13	-11	10	24.5
1920	18	29	67	81	63	37	22	- 4	-26	-13 -12	11	27	26.1
1921	18	84	86	86	51	19	- 2	-16	-26	- 9	16	18	27.1
1922	39	49	81	100	60	28	- 1	-11	-26	-37	-30	- 8	20.3
1923	27	50	50	68	40	23	- 6	-17	-32	-28	3	37	18.7
1924	57 28	58	61	84	58 11	46	24	- 4 6	-11	-29	-30	-22	$ \begin{array}{r} 27 \cdot 4 \\ 17 \cdot 5 \end{array} $
1925 Average—	28	55	71	44	11	10	11	. 0	-10	- 9	15	-22	17.5
1901-1925	45.2	63 · 4	76.8	81.9	51.3	31.3	9.0	- 8.2	-18.5	-19.6	-9.21	4.8	26.5
1860-1925	22 · 6	43.9	64.7	74 - 1	52.8	28.8	6.0	-10.6	-23.1	-24.2	-12.0	8.7	19.3
1000-1520	22.0	10.8	02.7	14.1	02-8	20 0	0.0	-10,0	20 1	- HT . Z	12.0	0.7	10.0
									-				

TABLE 6—TOTAL SUPPLY TO LAKE ONTARIO

_	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Ave	erage
1001	990	957	970	202	250	307	282	265	273	295	276	259		282 -
1861	229	257	270	323	350							257		269 -
862	214	242 239	293 268	355	331	297 283	287 249	249 243	233 245	235 234	244	244		261
863	246 198	217	259	320 323	312	292	252	235	244	246	249 263	284		262
864	260	227	243	285	288	275	244	216	218	223	222	221		243
865	189	193	224	265	250	296	298	254	247	240	244	250		245 - 8
866	219	255	301	338	330	295	250	231	217	192.	181	182		249
867 868	193	190	238	287	283	280	240	230	212	206	228	237		235
869	207	202	217	299	303	295	295	275	264	252	254	295		263
870	272	255	282	357	321	279	275	246	234	231	224	238		267
871	213	220	266	302	284	261	242	226	215	205	198	199		235
872	166	151	194	238	243	248	230	220	206	210	204	187		208 ·
873	184	193	275	346	282	262	252	230	217	217	240	272		247 -
874	266	269	270	265	268	277	263	232	210	208	200	201		244 .
875	169	164	231	273	259	252	242	228	214	211	209	229		223 -
876	252	265	293	340	322	307	280	243	234	241	236	227		270 -
877	185	211	255	283	256	254	248	222	207	208	230	240		233 .
878	226	249	268	281	280	263	259	250	240	239	279	291		260 ·
879	211	216	235	280	269	268	240	219	209	200	211	232		231.
880	234	238	244	262	269	268	239	214	219	212	234	200		235
881	163	212	252	263	260	260	241	208	202	217	226	250		229 ·
882	250	253	275	281	293	297	264	240	223	209	209	215		250 .:
883	194	196	235	291	314	325	298	254	233	233	242	247		255.
884	231	267	291	311	286	272	267	253	233	219	221	237		257 -
885	208	182	216	292	311	293	273	253	249	253	270	288		257
886	265	255	281	323	296	267	251	244	243	230	236	243		261 -
887	243	300	285	310	308	275	249	223	216	221	212	211		254
888	187	190	235	272	252	254	248	228	211	214	227	239		229
889	231	216	228	263	268	278	260	223	204	196	233	280		240 ·
890	264	258	266	292	315	306	253	230	237	246	252	229		262 ·
891	221	256	279	284	253	232	228	212	193	172	188	215		227 -
892	197	181	211	248	250	281	270	235	220	205	211	206		226 -
893	175	189	240	316	322	272	236	222	218	202	208	232		236 -
894	230	207	235	252	276	273	224	197	201	203	193	194		223 -
895	181	164	190	242	220	202	189	175	172	158	176	201		189
896	211	208	223	262	227	215	207	194	179	181	190	191		207
897	173	191	230	264	256	245	233	213	174	179	203	217		214.
.898	217	235	248	259	249	233	211	199	192	205	216	218		223
899	195	195	234	265	253	243	213	187	180	185	198	215		213 · 222 ·
900	214	216	227	268	246	236	227	206	194	195	218	225		222.
Average— 1861-1900	214:6	220 · 6	250 · 2	289 · 5	282 · 2	270 · 2	250-2	228 · 1	218.3	$215 \cdot 7$	223 · 6	232 · 5		241 ·
901	191	184	234	294	256	238	217	207	196	185	197	217		218 -
902	191	193	248	253	241	258	268	234	212	209	204	215		227 -:
903	217	237	273	286	257	256	253	232	233	207	200	191		236
904	183	229	283	329	302	284	265	245	231	218	197	196		246
905	181	181	221	276	258	276	269	246	235	219	217	234		234 ·
906	233	208	220	258	249	252	242	210	200	220	237	255		232
907	237	216	236	277	270	262	252	232	230	238	238	259		245.
908	244	241	261	320	313	286	259	229	200	197	199	197		245.
909	192	215	244	298	304	264	242	219	203	198	196	205		231 · 222 ·
.910	187	219	249	262	265	242	228	217	203	202	199	199 · ·		222 ·
911	190	196	218	248	239	228	211	195	190	194	210	222		211.
912	201	193	246	304	294	274	231	227	226	231	239	260		243
913	256	246	276	322	284	273	249	221	211	215	226	220		249
914	211	204	237	300	262	245	225	220	211	196	196	192		224 ·
915	204	214	208	217	224	219	234	239	218	204	203	216		216.
916	229	219	240	311	320	307	257	217	201	199	203	207		242 ·
917	192	201	253	296	274	295	283	247	230	243	242	220		248
918	198	233	274	279	254	248	234	223	225	229	235	238		239
919	226	218	246	301	329	297	250	231	215	216	215	204		245
920	172	181	219	254	231	234	236	222	215	217	225	239		220
921	217	219	259	282	262 278	239	220	201	195	197	199	210		225
	192	201	256	302	278	267	251	215	201	198	181	184		227
922	183 214	197	234	261	255	243	211	195	187	181	195	224		213
922		196	216	273	275 221	247 208	232 199	216 190	208 184	197 191	184 214	179 207		219
922 923 924							(uu	190	1X4	193	7.14	2117		207 -
922	163	215	249	243	221	200	100	100	101	202	211	201		
922 923 924 925 Average—	163													
1922		210.2	249 244·0 247·8	281 · 8 286 · 6	$268 \cdot 7$ $277 \cdot 0$	257·7 265·4	240·7 246·6	221·2 225·4	210·4 215·3	208·0 212·8	210.0	215·6 2226·0		231 -

TABLE 7—LOCAL SUPPLY TO LAKE ONTARIO

In Thousand Second Feet

	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Average
1861	25 -8 24 7 70 6 20 15 24 62 13 -14 11 55 -22 19 34 -18 -18 -19 -19 -19 -19 -19 -19 -19 -19	60 25 12 20 50 7 65 12 22 41 27 -22 20 54 -14 55 10 36 18 36 28 39	63 75 40 59 59 33 101 56 24 71 64 22 101 56 52 66 57 56 40 62 59 59 59 59 59 59 59 59 59 59 59 59 59	94 117 99 113 84 62 131 86 100 132 89 60 143 47 84 104 75 59 74 53 56	110 85 76 107 75 43 112 75 92 91 65 56 66 48 58 78 47 49 57	64 52 51 66 62 81 69 60 76 49 41 52 43 56 44 60 40 34 47 51 39 58	47 42 20 32 33 82 29 23 68 46 23 33 34 39 30 35 30 32 29 20 21 22 23 23 23 24 25 26 26 26 26 27 27 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	27 14 15 22 8 44 16 23 54 16 12 25 14 13 17 5 27 12 -1 -5 8	40 6 28 35 9 37 12 10 48 11 5 16 9 2 6 -1 -9 19 9	68 16 27 45 21 32 -5 16 46 10 23 16 10 14 20 1 26 4 15 14	47 32 51 66 29 39 -5 40 57 17 7 23 43 11 17 12 25 71 27	38 46 45 86 30 46 0 55 90 34 16 30 11 34 83 41 10 45	56-9 41-8 39-9 54-8 44-2 42-7 45-4 49-0 31-0 23-9 47-5 34-0 27-3 34-1 24-4 42-6 30-1 28-9 25-8 86-9 25-8
1882 1884 1885 1886 1886 1887 1889 1890 1891 1892 1892 1893 1894 1895 1896 1897 1897 1898	33 9 25 13 39 -17 25 51 19 11 -4 33 -4 36 -10 30 3 24 18.1	94 52 -10 47 87 -4 14 56 10 13 19 -7 35 15 11 31 27.0	30 74 28 77 56 41 37 52 75 36 57 45 20 57 46 55 37 38	73 80 85 99 81 65 62 72 78 119 57 68 87 67 54 73 73 81.4	96 50 90 65 75 41 65 87 52 47 110 71 38 40 51 41 57 43	89 35 60 34 37 39 63 69 31 62 50 58 18 30 38 26 40 34	59 34 40 18 16 27 44 22 23 46 18 13 7 16 28 6 13 24	15 24 19 17 0 11 9 13 13 20 17 -3 +5 -2 10 -5 -6 8	117 211 -11 1 24 -1 9 20 3 -8 -7 -21 -2 -8 -1	10 6 26 14 3 7 3 35 -15 3 8 -18 2 -7 14 4 7	27 19 43 28 7 24 42 37 4 15 13 1 12 9 16 21 18	33 38 62 36 2 30 79 20 28 12 36 - 6 30 15 28 25 35	20.9 36.0 37.4 39.4 41.3 33.5 22.1 22.1 37.0 44.3 30.3 32.7 44.3 27.4 25.9 26.3 26.3 28.6 28.6 38.6 28.6 38.6 38.6 38.6 38.6 38.6 38.6 38.6 3
1901 1902 1903 1904 1904 1905 1906 1907 1908 1909 1910 1911 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1922 1923 1924 1925 1926 1927 1927 1928	18-1 11 8 22 8 -9 28 19 26 6 2 7 11 48 9 24 23 -5 13 -12 -1 14 -5 -1 13 -1	10 24 48 46 1 13 6 34 23 41 18 31 9 8 19 11 13 8 9 8 19 11 12 47	52.9 66 77 75 90 41 31 36 51 53 59 40 68 69 52 22 41 61 70 38 42 60 70 54 74	120 70 73 114 86 62 65 97 64 64 64 102 82 99 65 78 79 65 67 101 73 80 61	79 51 44 77 57 47 58 88 55 44 46 47 38 52 52 96 29 43 64 60 71 38	50·2 50 61 40 54 59 44 39 57 42 33 31 66 34 27 80 61 25 80 61 25 19 50 43 40 47	30.7 26 58 38 38 38 46 33 26 22 21 16 23 16 23 13 32 22 21 16 23 16 23 31 42 20 18 20 21 21 21 21 21 21 21 21 21 21	13.2 18 25 26 28 21 11 8 6 18 4 19 -3 9 33 -1 12 4 12 -9 7 11 12 12	7 10 27 16 21 -3 17 -15 -1 6 7 15 0 7 15 -12 4 10 -6 9	13.3 1 6 3 10 10 19 22 -5 6 28 10 -2 -13 18 22 -13 18 22 -14 0 1 -2 4 8	25·6 16 4 -6 16 33 24 -2 6 6 16 32 17 -4 4 1 20 23 3 22 8 -15 16 -8 36	35 25 25 26 20 10 27 56 12 4 4 24 4 8 2 24 24 24 25 6 27 29	35 - 2 34 - 6 34 - 7 32 - 7 32 - 2 30 - 6 30 - 6
Average— 1901-1925 1861-1925	10·3 15·1						26·7 29·2	11·6 12·5				18.6	

TABLE 9—EFFECT OF REGULATION—LAKE SUPERIOR

Stages in Feet Above Mean Sea Level

Year—Month	occurring	onditions in past as n record	system, 8,500 cfs. at Chicag Wellan	regulation assuming diversion to and new d Canal plete	Partial regulation system, assuming 8,500 cfs. diversion at Chicago and new Welland Canal complete		
	Month	ly mean	First of mean	Monthly mean	First of mean	Monthly mean	
	Stage	Discharge	Stage	Discharge	Stage	Discharge	
(a)	(b)	(c)	(d)	(e)	(f)	(g)	
1860—							
January	602 · 69	94			602 - 80	81	
February	$602 \cdot 44$	88			602 · 61	80	
March	$602 \cdot 42$	87			602 · 48	103	
April	$602 \cdot 69$	93			602 · 56	120	
May	$602 \cdot 92$	102			602.73	122	
June	603.09	106			602.87	122	
July	$603 \cdot 05$ $603 \cdot 10$	106 108			602·88 602·96	83 109	
August September	603.10	106			602.97	109	
October	603 · 12	107			602.97	109	
November	602 · J5	102			602 - 90	106	
December	$602 \cdot 60$	93			602 · 62	103	
1861							
January	602 40	87			602 - 32	78	
February	$602 \cdot 15$ $602 \cdot 01$	81 78			602 · 13 601 · 93	76 51	
March	602.42	87			602 · 14	79	
May	603.05	105			602 - 68	122	
June	603 · 20	109			603.02	125	
July	603 · 36	113			603 · 12	126	
August	$603 \cdot 32$	113			603 · 15	127	
September	603 · 23	109			603 · 25	112	
October November	$603 \cdot 26$ $602 \cdot 92$	110			603 · 20 603 · 05	111	
December	602.52	92			602.66	103	
1862—	002 01	02			002-00	100	
January	$602 \cdot 19$	83			$602 \cdot 27$	51	
February	$602 \cdot 00$	78			602 - 09	51	
March	602 · 03	79			602.07	51	
April	$602 \cdot 09 \\ 602 \cdot 77$	79 98			$602 \cdot 20$ $602 \cdot 57$	79 120	
May June	602.76	99			602.84	120	
July	602 · 73	99			602.74	82	
August	$602 \cdot 90$	103			602 - 87	109	
September	$603 \cdot 02$	104			603.00	109	
October	602 · 95	103			603 - 00	108	
November	$602 \cdot 62$ $602 \cdot 35$	95 87			$602 \cdot 79$ $602 \cdot 45$	105 101	
December	002.99	01			002-40	101	
January	602 · 16	82 .			-602·19	51	
February	$602 \cdot 03$	79			$602 \cdot 12$	76	
March	601.86	75			$601 \cdot 95$	51	
April	601 · 90	75			601.96	51	
May	602 · 03	81			602 · 12	51	
June	$601 \cdot 95$ $602 \cdot 09$	80 84			602 · 23 602 · 34	51 52	
July August	602.71	99			602 - 82	109	
September	602 · 73	98			603 · 11	110	
October	$602 \cdot 56$. 94			603.00	108	
November	$602 \cdot 21$	85			$602 \cdot 70$	104	
December	$602 \cdot 10$	82			$602 \cdot 41$	101	
1864—	601.81	74			602 · 15	51	
January	601.60	69			601.97	51	
March	601.67	. 70			601.95	51	
April	601.69	70			602.05	51	
May	601.85	77			602 · 19	52	

Stages in Feet Above Mean Sea Level

Year—Month	Actual co occurring given in	in past as	system, 8,500 cfs. at Chicag Welland	regulation assuming diversion o and new d Canal plete	Partial regulation system, assuming 8,500 cfs. diversion at Chicago and new Welland†Canal complete		
	Monthl	y mean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	
1864—							
June	602.00	81			602 • 43	52	
July	$602 \cdot 09$	84			602 - 63	81	
August	602.10	84			602 · 69	81	
September	$602 \cdot 25$	86			602.76	106	
October	$601 \cdot 99$	81			602-64	103	
November	601.80	76			602 · 35	100	
December	$601 \cdot 65$	71			602 · 10	76	
1865—	601 · 47	66			601.93	51	
January	601.46	65			601.88	50	
March	601 - 33	62			601.84	51	
April	601.77	72			602.03	51	
May	602 · 26	87			602 - 55	121	
June	$602 \cdot 67$	96			602 - 90	125	
July	$602 \cdot 99$	105			603 · 18	127	
August	603 · 07	107			603.31	128	
September	603.08	106			603 · 30	112	
October	$602 \cdot 87$	101			603 · 17	109	
November	$602 \cdot 34$	88			$602 \cdot 78$	104	
December	$602 \cdot 03$	80			602 · 31	99	
1866—	001 74	72			601.96	51	
January	$601 \cdot 74$ $601 \cdot 53$	67			601.77	50	
February	601.53	67			601.70	50	
March	601.98	77			601.98	51	
May	602 - 23	86			602 - 40	80	
June	$602 \cdot 42$	91			602 · 64	82	
July	$602 \cdot 71$	98			602 · 90	84	
August	$602 \cdot 94$	104			603 · 21	126	
September	$602 \cdot 67$	96			603 · 12	110	
October	$602 \cdot 69$	97			602 · 95	108	
November	602 · 36	89			602.77	105	
December	$602 \cdot 47$	90			602 · 60	104	
1867—	602 · 20	83			602 · 48	79	
January	602 - 20	80			602 31	78	
March	601 · 90	76			602 · 14	77	
April	602 · 12	80			602 · 16	78	
May	602 · 12	83			602 - 21	52	
June	$602 \cdot 72$	98			602.66	83	
July	$603 \cdot 05$	106			603 · 17	127	
August	$602 \cdot 93$	104			603 - 22	126	
September	603.01	104				111	
October	602.99	104				110	
November	602 - 56	93			602 · 90 602 · 48	105 101	
December	$602 \cdot 24$	85			002.40	101	
1868—	602 · 08	80			602 · 19	. 51	
January	601.49	66				51	
March	601.85	74				51	
April	602.04	78			000 40	78	
May	602 - 44	91			000 10	80	
June	602 · 35	89			602 - 66	81	
July	602 · 57	95			$602 \cdot 74$	82	
August	602 · 49	93			602.85	108	
September	$602 \cdot 62$	95			602.84	108	

Stages in Feet Above Mean Sea Level Discharges in Thousand Second Feet

Year—Month	occurring	onditions in past as a record	system, 8,500 cfs. at Chicag Welland	regulation assuming diversion o and new d Canal plete	Partial regulation system, assuming 8,500 cfs. diversion at Chicago and new Welland Canal complete		
	Month	y mean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	
1868—							
October	$602 \cdot 59$ $602 \cdot 75$ $602 \cdot 32$	94 98 87			602 · 84 602 · 87 602 · 70	108 107 103	
January	602 · 10	81	602 · 68	78	602 · 33	78	
February	601.86 601.41	75 64	602 · 47 602 · 04	80 60	$602 \cdot 11$ $601 \cdot 74$	76 50	
April	$601 \cdot 99$	77	602 · 18	101	601.85	51	
MayJune	$602 \cdot 39$ $602 \cdot 40$	90	602 · 60 602 · 72	119 52	602 · 41 602 · 65	80 81	
July	$602 \cdot 77$	100	603.03	50	602.86	84	
August September	$603 \cdot 23$ $604 \cdot 08$	111 129	603·58 604·16	132 139	603·32 603·92	132 137	
October	$603 \cdot 56$	117	604 - 29	141	604.05	135	
November December	$603 \cdot 22$ $602 \cdot 57$	109 93	603·79 603·25	122 50	603 · 57 603 · 06	113 107	
1870							
JanuaryFebruary	$602 \cdot 32$ $602 \cdot 11$	86 80	602 · 93 602 · 82	50 55	$602 \cdot 57$ $602 \cdot 36$	79 78	
March	$602 \cdot 12$	81	602.78	96	$602 \cdot 24$	78	
April	$602 \cdot 22$ $602 \cdot 55$	82 93	602 · 79 602 · 98	94 72	$602 \cdot 31$ $602 \cdot 42$	116 80	
MayJune	$602 \cdot 36$. 89	603 · 10	50	$602 \cdot 53$	80	
July	$602 \cdot 55$ $602 \cdot 55$	95	603·22 603·44	50 50	$602 \cdot 55$ $602 \cdot 77$	52 106	
August	602.72	97	603.66	70	602.83	107	
October	$602 \cdot 56$ $602 \cdot 38$	94 89	603 · 74 603 · 52	112 125	602 · 80 602 · 59	106	
November	601.45	67	602.85	50	602.00	101 50	
1871	601.96	77.4	200 41	* 0	001 74	40	
JanuaryFebruary	601·36 600·76	74 71	602 · 41 602 · 15	50 50	$601.54 \\ 601.27$	49 49	
March	601 · 18	64	602 · 10	50	601 - 23	50	
April	601.68 602.21	68 81	602 · 60 602 · 96	119 124	$601 \cdot 73$ $602 \cdot 29$	51 52	
June	$602 \cdot 33$	90	603 · 15	127	$602 \cdot 71$	120	
July August	$602 \cdot 40$ $602 \cdot 46$	90 93	603·14 603·31	55 89	. 602·71 602·80	81 107	
September	$602 \cdot 56$	94	603 · 40	130	602.84	107	
October November	602 · 49 602 · 42	89 85	603·30 603·13	128 126	602 · 81 602 · 69	106 103	
December	601 · 68	75	602 · 69	59	602 - 22	76	
1872— January	601 · 47	69	602 · 17	62	601.75	50	
February	601.36	67	602 · 04	85	601 - 65	50	
March	601 · 24 601 · 14	62 61	601·87 601·73	71 50	$601.58 \\ 601.50$	50 50	
May	$601 \cdot 79$	82	602 · 05	70	601.81	51	
JuneJuly	602 · 17 602 · 44	85 95	602·57 603·03	50 125	$602 \cdot 42$ $602 \cdot 84$	52 83	
August	602 · 61	102	603 · 14	126	603.09	111	
September	602·77 602·67	104 100	603 · 23 603 · 18	128 121	603 · 24 603 · 24	112 111	
October November	602 • 52	. 97	603.02	125	603.08	109	
December	602 · 22	87	602 · 69	121	602 · 82	106	
1873— January	602 · 12	77	602 · 40	117	602 - 56	79	
J	-00= 12		002 10			.,	

Stages in Feet Above Mean Sea Level Discharges in Thousand Second Feet

			(
Year—Month		onditions in past as a record	system, 8,500 cfs. at Chicag Welland	regulation assuming diversion o and new d Canal plete	Partial regulation system, assuming 8,500 cfs. diversion at Chicago and new Welland Canal complete		
	Monthl	y mean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	
1873—							
February March April May June July August September October November December 1874—	601 · 80 601 · 82 601 · 87 602 · 31 602 · 61 602 · 90 603 · 08 603 · 14 603 · 04 602 · 90 602 · 60	73 74 74 87 90 . 100 106 108 105 100 94	602·07 601·87 602·00 602·32 602·78 603·12 603·32 603·41 603·37 603·31	80 50 50 50 80 93 129 111 91 92 63	602 · 35 602 · 16 602 · 18 602 · 41 603 · 81 603 · 17 603 · 23 603 · 19 603 · 05 602 · 80	78 78 80 123 125 127 112 111 109	
January February March April May June July August September October November December	603 · 03 603 · 09 602 · 91	82 78 75 73 82 92 101 102 102 105 99	602 · 83 602 · 68 602 · 73 602 · 63 602 · 58 602 · 67 603 · 10 603 · 29 603 · 31 603 · 37 603 · 25 602 · 93	53 50 121 120 89 50 113 128 107 127 128 81	602·39 602·17 602·13 602·15 602·22 602·45 602·85 603·14 603·17 603·21 603·13 602·85	78 77 77 78 52 52 83 126 112 111 110	
1875— January February March April May June July August September October November	602 · 86 602 · 85 602 · 94 603 · 17 603 · 02 602 · 88	87 81 80 86 93 100 102 102 103 99 86	602 · 82 602 · 47 602 · 37 602 · 32 602 · 32 602 · 73 602 · 93 603 · 12 603 · 42 603 · 43 603 · 26 603 · 16	85 118 117 116 50 87 54 50 122 112 74 119	602 · 51 602 · 36 602 · 34 602 · 32 602 · 32 602 · 65 602 · 87 602 · 97 603 · 11 603 · 14 602 · 98 602 · 78	79 78 101 116 79 82 83 109 111 110 109	
1876— January February March April May June July August September October November December	602 · 48 602 · 27 602 · 18 602 · 21 602 · 75 603 · 43 603 · 82 603 · 93 603 · 82 603 · 49 603 · 33 603 · 05	85 84 78 79 96 109 120 121 122 114 108 96	602 · 87 602 · 68 602 · 60 602 · 59 602 · 92 603 · 48 603 · 98 604 · 17 604 · 11 604 · 01 603 · 84 603 · 67	81 60 71 66 102 131 137 140 82 87 88 103	602 · 52 602 · 34 602 · 20 602 · 17 602 · 45 603 · 11 603 · 57 603 · 78 603 · 74 603 · 48 603 · 24 603 · 02	79 78 78 78 82 128 133 134 132 113 111 108	
1877— January. February. March. April. May. June. 45827—9½	$\begin{array}{c} 602 \cdot 69 \\ 602 \cdot 45 \\ 602 \cdot 19 \\ 602 \cdot 11 \\ 602 \cdot 10 \\ 602 \cdot 32 \end{array}$	90 91 88 85 85 90			$\begin{array}{c} 602 \cdot 67 \\ 602 \cdot 40 \\ 602 \cdot 16 \\ 602 \cdot 03 \\ 602 \cdot 08 \\ 602 \cdot 29 \end{array}$	80 78 77 51 51 52	

Stages in Feet Above Mean Sea Level

Year—Month	Actual conditions occurring in past as given in record		system, 8,500 cfs. at Chicag Wellan	regulation assuming diversion o and new d Canal plete	Partial regulation system, assuming 8,500 cfs. diversion at Chicago and new Welland Canal complete		
	Month	ly mean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharg	
			(4)	(0)	(2)	(8)	
1877— July	602.70	98			602 · 69	82	
August	602.76	100			602.96	108	
September	602 - 60	95			602 89	107	
October	602 · 60	96			602.77	105	
Nov	602 · 39	90			602 · 64	101	
Dec	602 · 32	87			602 · 46	102	
1878—							
January	$602 \cdot 20$	82			602 · 33	78	
February	$602 \cdot 32$	76			602 - 34	78	
March	$601 \cdot 55$	73			602 · 23	77	
April	$601 \cdot 52$	73			602 · 18	78	
May	$601 \cdot 79$	79			602 · 28	52	
June	$602 \cdot 07$	85			602 • 64	81	
July	$602 \cdot 14$	88			602.82	82	
August	$602 \cdot 02$	87			602.82	105	
September	601.85	80			602 · 62	104	
October	$601 \cdot 92$	83			602 - 49	102	
November	$601 \cdot 72$	81			602 · 37	100	
December	601 · 40	76			602.05	51	
1879—	001 40	077			000 01	P-1	
January	$601 \cdot 49$ $601 \cdot 46$	67 57			602·01 602·09	51	
February	601.46	52			602.23	51	
March	601.76	55			602.23	50	
April	601.01	63			601.75	50	
June	601.24	67			601.73	51	
July	601 48	73			602.00	51	
August	601 60	74			602 25	78	
September	601.49	72			602 25	78	
October	601.58	73			602 - 22	78	
November	601.50	69			602 - 21	76	
December	601 · 14	60			601.97	50	
1880—							
January	600.99	55			601 · 74	50	
February	600.98	54			601.68	50	
March	600 · 89	52			601.63	50	
April	$600 \cdot 92$	52			601.61	50	
May	$601 \cdot 52$	70			601.93	51	
June	$602 \cdot 30$	87			602 · 68	83	
July	$602 \cdot 45$	93			603 · 15	126	
August	$602 \cdot 44$	90			603 · 12	125	
September	$602 \cdot 44$	93			603.01	109	
October	602 · 39	88			602 · 94	108	
November	602 · 33	89			602.83	106	
December	$602 \cdot 07$	82			602-61	103	
	601.81	75			602 - 29		
January	601.71	73			602 · 19	51 77	
February	601.71	73			602.19	51	
April	601.53	71			602.04	51	
May	601.83	81			602.20	52	
June	602 · 27	86			602.66	82	
July	602 - 27	90			602 - 92	106	
August	602 - 38	89			602 - 93	105	
September	602 - 61	. 93			603.01	110	
October	602 - 95	104			603 - 24	113	
November	602.88	101			603 - 35	112	
December.	602 · 60	94			603 · 14	109	

Stages in Feet Above Mean Sea Level

Year-Month	occurring	onditions in past as 1 record	system, 8,500 cfs. at Chicag Welland	regulation assuming diversion o and new d Canal plete	Partial regulation system, assuming 8,500 cfs. diversion at Chicago and new Welland Canal complete		
	Monthl	y mean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	
1882—							
January February March April May	602 · 25 602 · 00 601 · 89 601 · 81 601 · 97	82 77 74 73 82			$602 \cdot 78$ $602 \cdot 49$ $602 \cdot 28$ $602 \cdot 18$ $602 \cdot 20$	81 79 78 78 51	
June. July. August. September. October.	601 · 99 602 · 44 602 · 56 602 · 60 602 · 43	84 93 95 93 91			$602 \cdot 38$ $602 \cdot 71$ $603 \cdot 03$ $603 \cdot 07$ $602 \cdot 95$	52 82 110 109 108	
November	$602 \cdot 41$ $602 \cdot 22$	90 84			602·81 602·65	106 104	
January	$601 \cdot 99$ $601 \cdot 70$ $601 \cdot 70$	74 72 72			602 · 38 602 · 11 601 · 9 4	78 76 51	
April	$601 \cdot 95$ $601 \cdot 96$ $602 \cdot 06$	73 73 82			$602 \cdot 13$ $602 \cdot 24$ $602 \cdot 36$	78 52 52	
JulyAugustSeptember	$602 \cdot 31$ $602 \cdot 33$ $602 \cdot 29$ $602 \cdot 09$	86 96 88 84			$602 \cdot 62$ $602 \cdot 77$ $602 \cdot 73$ $602 \cdot 55$	81 106 105 103	
October November December	601·94 601·83	82 76			$602 \cdot 33$ $602 \cdot 14$	100 51	
January. February. March.	601 · 80 601 · 63 601 · 54	74 69 67			$602 \cdot 14$ $602 \cdot 10$ $601 \cdot 94$	51 76 51	
April May June	601 · 32 601 · 54 601 · 74 601 · 88	63 72 74 79			601.84 601.87 602.15 602.38	51 51 51 52	
July August September October	601 · 89 602 · 16 602 · 52	80 82 84			602 · 54 602 · 68 602 · 92	80 106 109	
November	$602 \cdot 42 \\ 602 \cdot 21$	86 80			$602.98 \\ 602.75$	108 105	
January February March	601 · 98 601 · 80 601 · 72	76 74 70			$602 \cdot 46$ $602 \cdot 25$ $602 \cdot 09$	79 77 51	
April	601 · 67 602 · 00 602 · 28	67 80 88 92			$602 \cdot 09$ $602 \cdot 27$ $602 \cdot 66$ $602 \cdot 93$	51 52 82 124	
July August September October	602 · 52 602 · 64 602 · 57 602 · 40	92 97 91 87			603 · 02 603 · 01 602 · 84	109 108 106	
November. December.	$602 \cdot 25 \\ 601 \cdot 92$	86 79			$602 \cdot 62 \\ 602 \cdot 33$	103 99	
January February March	601 · 72 601 · 59 601 · 53 601 · 62	71 67 67 67			602 · 00 601 · 90 601 · 84 601 · 90	51 50 51 51	
May	601 .87	78			602 · 11	51	

Stages in Feet Above Mean Sea Level

Year—Month	Actual coccurring given in		Complete system, 8,500 cfs. at Chicag Welland comple	assuming diversion o and new d Canal	Partial regulation system, assuming 8,500 cfs. diversion at Chicago and new Welland Canal complete		
	Monthl	y mean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	
1000							
1886— June	602.01	81			602 · 39	52	
July	602.08	85			602 - 58	52	
August	601.99	88			602 · 67	81	
September	601.97	85			602 - 64	105	
October	602 - 07	86			602 · 61	104	
November	$601 \cdot 92$	84			$602 \cdot 54$	102	
December	$601 \cdot 78$	74			$602 \cdot 33$	100	
1887—							
January	$601 \cdot 47$	69			602.03	51	
February	601 · 49	66			601.95	51	
March	601.80	65			$602 \cdot 14$ $602 \cdot 35$	78	
April	601.97 601.76	62 71			602.16	115 51	
May June	601.70	81			602 · 20	52	
July	602 · 20	90			602 - 50	52	
August	602 28	87			602.79	106	
September	602 · 14	84			602.71	105	
October	$602 \cdot 07$	88			$602 \cdot 54$	102	
November	601.83	82			$602 \cdot 34$	100	
December	$601 \cdot 61$	73			602.05	51	
1888—	004 80				001.00		
January	601 50	69			601.96	51	
February	$601 \cdot 51$ $601 \cdot 44$	61 62			601·96 601·95	51	
March	601 · 44	62			601.96	51	
May	601.91	76			602.22	52	
June	602 - 69	96			602 - 92	125	
July	602 · 88	99			603.31	129	
August	$603 \cdot 02$	99			603 - 39	129	
September	$602 \cdot 97$	97			603 · 35	127	
October	602.88	97			603 · 19	110	
November	$602 \cdot 74$	93			603.03	108	
December	$602 \cdot 39$	78			602.74	104	
	602.07	72			602.33	78	
JanuaryFebruary	601.85	66			602 04	51	
March	601 - 68	67			601.88	51	
April	601 - 69	67			601.85	51	
May	602.04	78			602.07	51	
June	$602 \cdot 16$	82			602.39	52	
July	$602 \cdot 35$	87			602 · 63	82	
August September	$602 \cdot 54$	87			602 · 84	108	
September	602 - 67	87			602 94	108	
October	$602 \cdot 51$ $620 \cdot 20$	84 78			602·86 602·56	106	
November	601.90	70			602.18	51	
December	001.90	10			002.10	0.1	
January.	601.76	71			602.02	51	
January February March April	601 - 63	60			601.95	50	
March.	601.39	60			601.78	50	
April	601.36	59			601 - 67	50	
	$601 \cdot 57$	68			601.79	51	
June	$602 \cdot 02$. 80			602 · 17	52	
July	$602 \cdot 32$	87			602 · 62	81	
June July August	602 · 47	85			602.87	108	
September. October	602 - 60	83			602.94	108	

Stages in Feet Above Mean Sea Level

Year—Month	occurring	onditions in past as a record	system, 8,500 cfs. at Chicag Welland	regulation assuming diversion to and new d Canal plete	Partial regulation system, assuming 8,500 cfs. diversion at Chicago and new Welland Canal complete		
	Monthl	y mean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	
1890— November December	602·36 602·00	79 73			602·72 602·36	105 100	
1891— January February March April May June July August. September October November December	$\begin{array}{c} 601 \cdot 64 \\ 601 \cdot 51 \\ 601 \cdot 47 \\ 601 \cdot 43 \\ 601 \cdot 63 \\ 601 \cdot 68 \\ 601 \cdot 86 \\ 601 \cdot 82 \\ 601 \cdot 91 \\ 601 \cdot 79 \\ 601 \cdot 42 \\ \end{array}$	59 61 58 62 71 70 72 72 71 72 70 63			601 · 92 601 · 70 601 · 63 601 · 62 601 · 73 601 · 92 602 · 10 602 · 25 602 · 21 602 · 21 602 · 18 601 · 91	50 50 50 50 51 51 77 78 77 76 50	
January February March April May June July August September October November December	601 · 42 601 · 14 601 · 01 601 · 02 601 · 35 601 · 73 601 · 78 601 · 88 601 · 93 601 · 83 601 · 66 601 · 38	62 55 51 54 65 72 75 76 74 68 63			601·76 601·66 601·47 601·41 601·59 601·79 602·06 602·20 602·28 602·24 602·10 601·92	50 49 49 50 50 51 51 78 78 77 51 50	
1893— January February March April May June July August September October November December	601 · 10 601 · 01 601 · 06 601 · 16 601 · 16 602 · 18 602 · 48 602 · 54 602 · 42 602 · 42 602 · 26 602 · 03	52 49 49 54 65 75 80 77 76 75			601 · 68 601 · 51 601 · 47 601 · 55 601 · 86 602 · 41 602 · 88 603 · 05 602 · 95 602 · 80 602 · 61 602 · 33	50 49 50 50 51 52 83 109 108 106 103	
1894— January February March April May June July Cottober November December	601 · 85 601 · 67 601 · 76 601 · 91 602 · 69 602 · 91 602 · 97 603 · 10 603 · 02 603 · 04 602 · 99 602 · 80	61 59 57 64 83 88 90 90 88 89	602 · 69 602 · 48 602 · 43 602 · 36 602 · 70 603 · 08 603 · 12 603 · 32 603 · 32 603 · 25 603 · 27 603 · 03	70 56 119 111 120 126 56 96 99 78 128 124	602 · 03 601 · 88 601 · 84 601 · 98 602 · 48 602 · 99 603 · 02 603 · 01 602 · 98 602 · 89 602 · 82 602 · 64	51 50 51 51 81 125 125 109 109 107 106 103	
January February	602 · 50 602 · 28	75 73	602·60 602·34	92 95	602·33 602·07	77 51	

Stages in Feet Above Mean Sea Level Discharges in Thousand Second Feet

Year—Month	occurring	onditions in past as a record	system, 8,500 cfs. at Chicag Welland	regulation assuming diversion o and new d Canal plete	Partial regulation system, assuming 8,500 cfs. diversion at Chicago and new Welland Canal complete		
	Monthl	y mean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (e)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	
1895— March, April, May, June, July August, September, October, November, December,	602·11 602·01 602·38 602·70 602·90 602·95 603·09 603·14 602·85 602·52	69 68 76 84 88 88 92 94 84	602 · 06 601 · 96 602 · 16 602 · 57 602 · 73 602 · 75 602 · 75 602 · 66 602 · 57 602 · 15	60 50 50 119 121 121 121 121 120 119 79	601 · 92 601 · 84 602 · 02 602 · 45 602 · 79 602 · 94 602 · 98 603 · 02 602 · 85 602 · 48	50 51 51 52 82 109 109 109 105 101	
January February March March April May June July September Ootober November December	602 · 32 602 · 12 601 · 92 602 · 01 602 · 66 603 · 04 603 · 12 602 · 95 602 · 63 602 · 63 602 · 63 602 · 63	71 71 67 69 80 88 91 91 89 82 83 80	601 · 88 601 · 75 601 · 60 601 · 59 602 · 03 602 · 44 602 · 58 602 · 60 602 · 58 602 · 43 602 · 38 602 · 38	50 50 50 112 117 95 74 56 50 50	602 · 15 602 · 01 601 · 86 601 · 86 602 · 28 602 · 28 602 · 99 602 · 93 602 · 81 602 · 51 602 · 51 602 · 32 602 · 22	51 51 51 51 52 123 123 109 105 102 100 77	
January February March April May June July September October November December	602·39 602·16 602·08 602·11 602·45 602·78 603·08 603·20 603·14 602·94 602·64 602·21	75 69 70 71 79 86 91 93 90 87 86 76	602·33 602·12 601·93 601·94 602·21 602·63 602·95 603·07 603·13 603·07 602·84 602·57	97 60 50 50 50 86 119 80 70 78 50	602 · 08 601 · 96 601 · 84 601 · 88 602 · 12 602 · 54 602 · 86 603 · 10 603 · 08 602 · 89 602 · 57 602 · 16	51 50 50 51 51 81 83 110 109 110 102 76	
January February March April May June July September October November December	601 · 83 601 · 65 601 · 46 601 · 46 601 · 70 602 · 18 602 · 59 602 · 72 602 · 82 602 · 76 602 · 56 602 · 33	67 62 59 62 69 77 82 84 85 83 81	602·25 602·04 601·87 601·80 601·93 602·35 602·89 603·03 603·10 603·08 602·99 602·86	56 50 50 50 50 50 123 101 95 72 50	601 · 76 601 · 53 601 · 36 601 · 36 601 · 45 601 · 87 602 · 88 602 · 74 602 · 80 602 · 75 602 · 55 602 · 27	50 50 49 50 50 51 52 106 106 105 102 77	
January. February. March. April. May. June. July.	601 · 96 601 · 76 601 · 79 601 · 76 602 · 47 602 · 96 603 · 19	69 67 66 64 82 89 94	$\begin{array}{c} 602 \cdot 59 \\ 602 \cdot 31 \\ 602 \cdot 27 \\ 602 \cdot 18 \\ 602 \cdot 47 \\ 602 \cdot 95 \\ 603 \cdot 21 \end{array}$	68 50 91 92 118 124 124	601 · 98 601 · 75 601 · 70 601 · 75 602 · 12 602 · 82 603 · 07	51 50 50 51 52 123 126	

Stages in Feet Above Mean Sea Level

Year—Month	occurring	onditions in past as a record	system, 8,500 cfs. at Chicag Wellan	regulation assuming diversion go and new d Canal aplete	Partial regulation system, assuming 8,500 cfs. diversion at Chicago and new Welland Canal complete		
	Month	y mean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharg (g)	
1899—		4					
August	603.35	96	603 - 31	80	603 - 17	127	
September	$603 \cdot 51$	100	603 · 33	131	$603 \cdot 24$	112	
October	$603 \cdot 32$	95	603 - 41	2 129	603 · 19	110	
November	$603 \cdot 21$	92	603 - 17	80	603.00	108	
December	603.00	89	603.03	. 125	$602 \cdot 78$	105	
900							
January	602 · 63	79	602 · 63	70	$602 \cdot 45$	78	
February	$602 \cdot 45$	76	602 · 38	85	602 · 18	76	
March	$602 \cdot 23$	72	602 • 15	58	601.96	51	
April	$602 \cdot 13$	72	602.03	50	601.87	51	
May	$602 \cdot 30$	76	$602 \cdot 13$	50	601.96	51	
June	$602 \cdot 36$	78	602.32	50	$602 \cdot 15$	52	
July	$602 \cdot 58$	82	602.54	50	602.36	52	
August	$602 \cdot 94$	86	602.89	110	$602 \cdot 75$	108	
September	$603 \cdot 46$	94	603 · 43	131	603 · 12	112	
October	$603 \cdot 54$	95	603 · 49	131	603.36	113	
November	603 · 51	95	603 · 40	130	603.34	112	
December	603 · 13	85	603.09	75	603.08	108	
901	602.78	80	602.77	77	602.65	80	
January	602.48	75	602.45	68	602.33	78	
February	602.28	68	602-18	52	602.05	51	
April	602.22	70	602-13	50	.601.97	51	
May	602.51	76	602.24	50	602 · 14	52	
June	602.61	79	602.56	50	602 41	52	
July	603.09	87	602.94	124	602.77	83	
August	603 - 22	90	603 · 13	126	603.09	110	
September	603.04	87	603.00	50	603.01	108	
October	603.07	78	603 · 03	50	602.87	107	
November	603.00	78	603 - 10	126	602.77	105	
December	$602 \cdot 68$	72	$602 \cdot 75$	62	$602 \cdot 49$	101	
1902-							
January	602.32	67	602 · 45	50	602.07	51	
February	602 - 11	62	602.22	61	601.83	51 50	
March	601.97	57	601.98	57	601-67	51	
April	$602 \cdot 02$ $602 \cdot 34$	61	601·93 602·15	50 50	601 · 65 601 · 86	51	
May	602.64	70	602.13	63	602.22	52	
June	602.88	74	602.80	60	602.54	52	
JulyAugust	602.89	76	602.96	50	602.73	106	
September	602.93	77	603.07	59	602 - 67	104	
October	602.81	75	603.07	74	602.54	103	
November	602.81	75	603.02	50	602 · 40	101	
December	602 - 58	70	602.97	115	602 - 21	76	
903—	002 00		002 01				
January	$602 \cdot 24$	65	602.56	57	601.90	51	
February	601.98	61	602.30	50	601 - 65	50	
March	601.88	60	602 - 13	50	601 · 49	50	
April	602.07	62	602 · 22	84	601.56	50	
May	$602 \cdot 56$	70	602 · 48	118	601.93	51	
June	602.94	78	602.78	122	$602 \cdot 42$	52	
July	603 · 14	80	602.94	74	$602 \cdot 79$	82	
August	$603 \cdot 25$	81	603 · 11	50	$602 \cdot 94$	108	
September	$603 \cdot 27$	80	603 · 26	. 54	602.92	108	
October	603 · 40	81	603 · 42	87	602.91	108	
November	603 · 18	81	603.36	129	602.79	104	
December	602 · 80	74	602.90	59	602.42	100	

Stages in Feet Above Mean Sea Level $\,$

	occurring	onditions in past as	system; 8,500 cfs. at Chicag	regulation assuming diversion to and new d Canal	Partial regulation system; assuming 8,500 cfs. diversion at Chicago and new Welland Canal		
Year—Month		v mean	First	plete Monthly	First Monthly		
	MOHIM	у шезп	of month	mean	of month	mean	
(a)	Stage (b)	Discharge (e)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	
1904—			,				
January February March April May June July September October November	602·50 602·33 602·23 602·17 602·47 602·77 602·86 602·95 603·26 603·19 602·74	72 71 67 71 76 82 85 87 88 91 88	$\begin{array}{c} 602 \cdot 61 \\ 602 \cdot 41 \\ 602 \cdot 24 \\ 602 \cdot 15 \\ 602 \cdot 33 \\ 602 \cdot 70 \\ 602 \cdot 99 \\ 603 \cdot 17 \\ 603 \cdot 40 \\ 603 \cdot 48 \\ 603 \cdot 65 \\ 603 \cdot 25 \\ \end{array}$	64 78 81 50 50 50 50 115 50 133 128	602 · 00 601 · 83 601 · 75 601 · 72 601 · 89 602 · 27 602 · 55 602 · 74 602 · 79 602 · 89 602 · 89 602 · 57	51 50 51 51 51 52 52 106 107 108	
December	602 · 47 602 · 13	78 71	602·77 602·54	53 100	602·15 601·93	102 51 51	
March. April May June July August. September October November December	602 · 04 602 · 25 602 · 49 602 · 67 602 · 97 603 · 10 603 · 32 603 · 33 603 · 17 602 · 96	67 74 80 83 88 88 89 94 89	602 · 23 602 · 27 602 · 35 602 · 62 602 · 96 603 · 28 603 · 37 603 · 42 603 · 23 602 · 94	74 124 55 50 50 114 113 130 124 90	601·76 601·87 602·16 602·46 602·78 603·01 603·13 603·17 603·05 602·80	51 51 52 52 82 110 111 110 108 105	
January. February. March April May June July August. September October November December	602·72 602·43 602·22 602·15 602·48 602·78 602·90 602·93 602·95 602·84 602·66 602·45	82 77 74 76 82 86 89 88 88 87 85 79	602.\$\vert 0\\ 602.48\\ 602.21\\ 602.43\\ 602.21\\ 602.43\\ 602.76\\ 602.87\\ 603.02\\ 603.15\\ 603.13\\ 602.98\\ 602.90	69 50 50 76 122 64 50 76 83 50	$\begin{array}{c} 602 \cdot 52 \\ 602 \cdot 27 \\ 602 \cdot 27 \\ 602 \cdot 00 \\ 601 \cdot 93 \\ 602 \cdot 13 \\ 602 \cdot 53 \\ 602 \cdot 75 \\ 602 \cdot 85 \\ 602 \cdot 82 \\ 602 \cdot 72 \\ 602 \cdot 52 \\ 602 \cdot 52 \\ 602 \cdot 27 \end{array}$	79 77 51 51 52 81 82 107 106 105 102 77	
1907— January, February. March April. May June July August. September October November December	602 · 22 602 · 06 601 · 94 601 · 94 602 · 10 602 · 55 602 · 70 602 · 93 603 · 17 603 · 15 602 · 88 602 · 53	74 71 66 71 73 79 85 89 93 89 88 88	602 · 76 602 · 62 602 · 62 602 · 21 602 · 34 602 · 71 603 · 03 603 · 26 603 · 50 603 · 50 603 · 20 603 · 00	59 91 108 57 50 75 69 94 131 130 50 64	602 · 06 601 · 94 601 · 84 601 · 83 601 · 96 602 · 33 602 · 71 602 · 91 603 · 09 603 · 14 602 · 94 602 · 56	51 51 51 51 51 51 52 82 82 109 110 110 106	
January February March April May	602·10 601·87 601·72 601·63 602·03	75 69 65 62 68	$602 \cdot 66 \\ 602 \cdot 43 \\ 602 \cdot 27 \\ 602 \cdot 12 \\ 602 \cdot 30$	50 51 77 50 50	602·12 601·86 601·72 601·65 601·83	51 51 50 50 50	

Stages in Feet Above Mean Sea Level

Year—Month	Actual co occurring given in	in past as	system; 8,500 cfs. at Chicag Welland	regulation assuming diversion to and new d Canal plete	Partial regulation system; assuming 8,500 cfs. diversion at Chicago and new Welland Canal complete		
	Monthly mean		First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	
June July August September October November December	602·57 602·85 602·92 602·77 602·59 602·23 601·99	79 88 89 86 82 80 75	602 · 82 603 · 12 603 · 19 603 · 23 603 · 11 602 · 87 602 · 56	122 127 59 67 79 77 83	602·36 602·84 603·03 602·94 602·70 602·37 602·00	52 83 109 107 104 100 51	
January. February. March. April. May. June. July. August. September. October. November. December.	$\begin{array}{c} 601 \cdot 69 \\ 601 \cdot 46 \\ 601 \cdot 35 \\ 601 \cdot 29 \\ 601 \cdot 62 \\ 601 \cdot 94 \\ 602 \cdot 18 \\ 602 \cdot 40 \\ 602 \cdot 40 \\ 602 \cdot 29 \\ 602 \cdot 26 \\ 602 \cdot 26 \end{array}$	67 60 53 54 59 68 73 82 83 80 73	602 · 27 602 · 02 601 · 87 601 · 81 601 · 93 602 · 30 602 · 63 602 · 93 603 · 07 602 · 98 602 · 83 602 · 75	61 50 50 50 50 50 50 66 98 103 99 79	601 · 81 601 · 60 601 · 44 601 · 37 601 · 51 601 · 86 602 · 19 602 · 49 602 · 60 602 · 48 602 · 35 602 · 24	50 50 50 50 50 51 52 80 104 102 101 78	
January. February. March. April. May. June. July. August. September. October. November. December.	$\begin{array}{c} 602 \cdot 01 \\ 601 \cdot 74 \\ 601 \cdot 51 \\ 601 \cdot 62 \\ 601 \cdot 75 \\ 601 \cdot 90 \\ 601 \cdot 88 \\ 601 \cdot 97 \\ 601 \cdot 96 \\ 601 \cdot 96 \\ 601 \cdot 92 \\ 601 \cdot 68 \\ 601 \cdot 41 \\ \end{array}$	71 66 62 60 62 69 72 73 74 73 69 69	602 · 63 602 · 35 602 · 03 602 · 00 602 · 15 602 · 33 602 · 45 602 · 55 602 · 66 602 · 70 602 · 63 602 · 43	77 84 50 50 50 50 50 50 50 50 50 50	602·13 601·93 601·71 601·68 601·83 602·00 602·12 602·22 602·25 602·21 602·06 601·85	51 50 51 51 51 51 78 78 77 51	
1911— January. February. March. April. May June July. August. September October. November December	601 · 07 600 · 89 600 · 66 600 · 54 600 · 82 601 · 27 601 · 62 602 · 09 602 · 18 602 · 18 602 · 03 601 · 90	55 51 49 50 54 56 59 62 62 62 62 62	602·15 601·87 601·65 601·48 601·57 601·93 602·36 602·74 602·85 602·73 602·63 602·53	59 50 50 50 50 50 65 121 123 64 50	601·58 601·34 601·13 600·96 601·04 601·42 601·83 602·27 602·50 602·48 602·29 602·10	50 49 49 49 50 51 79 80 102 78	
1912— January February March April May June July August September October	601 · 76 601 · 53 601 · 43 601 · 45 601 · 90 602 · 20 602 · 35 602 · 53 602 · 65 602 · 60	56 54 53 54 59 63 63 67 68 69	602·41 602·23 602·00 601·98 602·22 602·63 602·87 603·07 603·35	50 78 50 50 50 58 50 50 50	601.99 601.82 601.66 601.63 601.87 602.27 602.53 602.73 602.76 602.68	51 50 50 50 51 52 52 106 106	

Stages in Feet Above Mean Sea Level
Discharges in Thousand Second Feet

Year—Month		onditions in past as a record	system; 8,500 cfs. at Chicag Wellan	regulation assuming diversion to and new d Canal plete	Partial regulation system; assuming 8,500 cfs. diversion at Chicago and new Welland Canal complete	
	Monthl	y mean	First of month			Monthly mean
(a)	Stage (b)	Discharge (e)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)
1912— November December	$602 \cdot 44$ $602 \cdot 20$	69 65	603·22 603·11	60 53	602 · 47 602 · 17	101 76
January February March April May June July August September October November December 1914—	601 · 89 601 · 57 601 · 51 601 · 64 602 · 07 602 · 36 602 · 64 602 · 78 603 · 83 603 · 02 602 · 88 602 · 88 603 · 07	62 61 58 62 67 69 71 73 75 78 76 73	602 · 89 602 · 52 602 · 55 602 · 57 602 · 65 603 · 05 603 · 18 603 · 36 603 · 46 603 · 56 603 · 39 603 · 07	82 50 73 50 50 125 79 73 93 131 125 67	601 · 87 601 · 59 601 · 42 601 · 48 601 · 79 602 · 20 602 · 53 602 · 80 602 · 80 602 · 80 602 · 75 602 · 50	50 50 50 50 51 52 52 106 107 107 105
January. February. March. April. May June July August. September October November December	$\begin{array}{c} 602 \cdot 40 \\ 602 \cdot 21 \\ 601 \cdot 92 \\ 601 \cdot 84 \\ 602 \cdot 23 \\ 602 \cdot 46 \\ 602 \cdot 68 \\ 602 \cdot 75 \\ 602 \cdot 81 \\ 602 \cdot 73 \\ 602 \cdot 45 \\ 602 \cdot 09 \end{array}$	71 68 65 64 69 72 73 75 78 89 87	602 · 87 602 · 59 602 · 23 602 · 08 602 · 29 602 · 63 603 · 03 603 · 16 603 · 14 603 · 07 602 · 72	82 98 52 50 59 83 50 56 74 58 99 66	602·18 602·00 601·79 601·65 601·84 602·21 602·49 602·70 602·74 602·65 602·43 602·06	51 50 51 51 51 52 52 81 105 104 100 51
January February March April May June July August September October November December	601 · 82 601 · 69 601 · 47 601 · 32 601 · 61 601 · 92 602 · 25 602 · 36 602 · 40 602 · 73 602 · 81 602 · 69	66 67 66 63 70 72 77 78 76 75 77	602·41 602·26 602·03 601·90 602·01 602·36 602·65 602·94 602·87 603·15 603·03	50 82 50 50 50 85 50 124 50 127 127	601 · 81 601 · 65 601 · 51 601 · 37 601 · 48 601 · 83 602 · 21 602 · 50 602 · 57 602 · 66 602 · 78 602 · 66	50 50 50 50 50 51 52 80 105 106 106
1916— January February March April May June July August September October November December	602 · 60 602 · 41 602 · 34 602 · 34 602 · 96 603 · 43 603 · 60 603 · 69 603 · 81 603 · 64 603 · 45 603 · 13	70 69 69 74 83 99 99 105 117 119 116	602·76 602·58 602·24 602·27 602·67 603·09 603·33 603·56 603·73 603·64 603·43 603·28	93 100 50 75 121 126 71 83 134 133 73 54	602 · 46 602 · 30 602 · 04 602 · 04 602 · 53 602 · 96 603 · 29 603 · 25 603 · 29 603 · 27 603 · 12 602 · 87	79 77 51 52 121 125 126 128 112 111 109
1917— January February	$602 \cdot 75$ $602 \cdot 42$	91 88	603·12 602·67	126 51	$\begin{array}{c c} 602 \cdot 54 \\ 602 \cdot 22 \end{array}$	79 77

Stages in Feet Above Mean Sea Level
Discharges in Thousand Second Feet

Year—Month	occurring	onditions in past as n record	system; 8,500 cfs. at Chicag Wellan	regulation assuming diversion o and new d Canal plete	Partial regulation system; assuming 8,500 cfs. diversion at Chicago and new Welland Canal complete	
	Monthly mean		First of month	Monthly mean		
(a) .	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)
1917—						
March April May June July August September October November December	602 · 33 602 · 28 602 · 38 602 · 60 602 · 65 602 · 69 602 · 73 602 · 67 602 · 46 602 · 16	86 90 92 91 87 76 74 78 74 59	602·55 602·37 602·41 602·68 602·94 603·10 603·21 603·28 603·17 602·97	119 88 50 50 50 50 50 69 55 57	$\begin{array}{c} 602 \cdot 02 \\ 602 \cdot 06 \\ 602 \cdot 19 \\ 602 \cdot 47 \\ 602 \cdot 72 \\ 602 \cdot 78 \\ 602 \cdot 63 \\ 602 \cdot 63 \\ 602 \cdot 42 \\ 602 \cdot 09 \end{array}$	51 51 52 52 81 106 105 103 100 51
January. February. March April May June July. August. September October November	601 · 93 601 · 71 601 · 61 601 · 46 601 · 74 602 · 10 602 · 26 602 · 42 602 · 54 602 · 49 602 · 55	60 58 59 58 59 65 58 61 67 69	602 · 73 602 · 46 602 · 30 602 · 20 602 · 29 602 · 63 602 · 94 603 · 11 603 · 28 603 · 27 603 · 23	72 56 50 50 50 50 53 50 82 84 103	601 · 85 601 · 65 601 · 50 601 · 41 601 · 49 601 · 84 602 · 14 602 · 32 602 · 41 602 · 32	50 50 50 50 50 51 51 79 79 102
December 101 — January. February. March. April. May June. July. August. September October. November. December.	602 · 43 602 · 28 602 · 09 601 · 90 602 · 26 602 · 46 602 · 60 602 · 50 602 · 48 602 · 50 602 · 32	55 53 53 53 53 54 52 55 55 55 56 56	603 · 08 602 · 94 602 · 65 602 · 31 602 · 29 602 · 47 602 · 68 602 · 88 602 · 96 602 · 90 602 · 89 602 · 69	90 97 50 54 50 50 50 50 50 50 50 60	602·17 601·98 601·82 601·62 601·60 601·79 602·02 602·19 602·17 602·17 602·03 601·96	51 50 50 50 51 51 51 78 77 51 51
1920— January. February. March. April. May June July. August. September. October November. December	$\begin{array}{c} 602 \cdot 07 \\ 601 \cdot 90 \\ 601 \cdot 91 \\ 602 \cdot 25 \\ 602 \cdot 39 \\ 602 \cdot 74 \\ 602 \cdot 93 \\ 602 \cdot 96 \\ 602 \cdot 68 \\ 602 \cdot 47 \\ 602 \cdot 24 \end{array}$	57 56 56 55 74 77 81 100 81 59 58	602 · 59 602 · 38 602 · 20 602 · 25 602 · 32 602 · 60 602 · 94 603 · 04 603 · 07 602 · 93 602 · 73	58 87 98 115 50 65 86 50 50 50 50	601 · 77 601 · 58 601 · 51 601 · 70 601 · 95 602 · 26 602 · 60 602 · 71 602 · 64 602 · 42 602 · 13 601 · 85	50 50 50 51 51 52 81 105 104 101 76
1921— January February March April May June July	$\begin{array}{c} 602 \cdot 07 \\ 601 \cdot 75 \\ 601 \cdot 54 \\ 601 \cdot 68 \\ 602 \cdot 11 \\ 602 \cdot 42 \\ 602 \cdot 58 \end{array}$	53 54 52 53 48 46 54	602.54 602.30 602.03 602.00 602.30 602.66 602.88	50 50 50 50 50 50 50 74	601 · 67 601 · 43 601 · 17 601 · 14 601 · 43 601 · 80 602 · 01	59 49 49 50 51 51

Stages in Feet Above Mean Sea Level $\,$

Year—Month	occurring	onditions in past as a record	system; 8,500 cfs. at Chicag Wellan	regulation assuming diversion o and new d Canal plete	Partial regulation system; assuming 8,500 cfs. diversion at Chicago and new Welland Canal complete		
	Monthly mean		First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (e)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	
1921— August September October November December 1922—	602·76 602·69 602·55 602·22 602·01	54 56 55 48 45	602.98 602.93 602.82 602.59 602.33	91 50 50 50 50 50	602·19 602·26 602·09 601·87 601·59	51 77 51 50 50	
January February March April May June July August September October November December	601 · 64 601 · 45 601 · 47 601 · 96 602 · 22 602 · 51 602 · 65 602 · 72 602 · 52 602 · 37 602 · 10	42 44 44 44 41 43 44 43 47 48 48	602 · 03 601 · 72 601 · 57 601 · 55 601 · 85 602 · 20 602 · 45 602 · 65 602 · 74 602 · 65 602 · 46 602 · 23	50 50 50 50 50 50 50 50 50 50 50	601 · 28 600 · 99 600 · 81 600 · 81 601 · 10 601 · 46 601 · 71 601 · 90 601 · 90 601 · 72 601 · 50	49 49 49 49 50 51 51 51 51 50 49	
Januar February March April May June July August September October November December 1924	601 · 88 601 · 62 601 · 47 601 · 67 601 · 69 601 · 97 602 · 08 602 · 12 602 · 09 602 · 05 601 · 80	48 49 51 51 55 54 53 53 52 50 49 50	602 · 00 601 · 75 601 · 53 601 · 43 601 · 53 601 · 67 601 · 85 602 · 04 602 · 13 602 · 04 602 · 10 601 · 94	50 50 50 50 50 50 50 50 50 50 50 50	601 · 25 601 · 01 600 · 79 600 · 70 600 · 80 600 · 96 601 · 13 601 · 33 601 · 42 601 · 43 601 · 40 601 · 25	49 49 48 48 49 49 50 50 49	
January. February. March. April. May. June. July. August. September. October. November. December.	$\begin{array}{c} 601 \cdot 58 \\ 601 \cdot 35 \\ 601 \cdot 09 \\ 601 \cdot 09 \\ 601 \cdot 04 \\ 601 \cdot 22 \\ 601 \cdot 30 \\ 601 \cdot 41 \\ 601 \cdot 67 \\ 601 \cdot 91 \\ 601 \cdot 91 \\ 601 \cdot 77 \\ 601 \cdot 52 \\ \end{array}$	50 50 51 52 53 50 47 50 49 50 51	601 · 72 601 · 44 601 · 23 601 · 09 601 · 15 601 · 30 601 · 37 601 · 57 601 · 73 601 · 93 601 · 86 601 · 67	50 50 50 50 50 50 50 50 50 50 50	601 · 02 600 · 80 600 · 55 600 · 41 600 · 48 600 · 63 600 · 73 600 · 91 601 · 16 601 · 28 601 · 21 601 · 02	49 48 48 48 48 49 49 49 49	
1925— January. February. March. April. May June July. August September October. November December	$\begin{array}{c} 601 \cdot 15 \\ 601 \cdot 00 \\ 600 \cdot 83 \\ 600 \cdot 88 \\ 600 \cdot 97 \\ 601 \cdot 25 \\ 601 \cdot 42 \\ 601 \cdot 52 \\ 601 \cdot 43 \\ 601 \cdot 41 \\ 601 \cdot 14 \\ 600 \cdot 90 \end{array}$	52 51 52 54 55 53 53 57 62 66 63 59	601·36 601·11 600·88 600·88 600·97 601·17 601·40 601·55 601·58 601·55 601·44 601·24	50 50 50 50 50 50 50 50 50 50 50 50	600 · 62 600 · 39 600 · 29 600 · 33 600 · 33 600 · 56 600 · 82 600 · 99 601 · 02 601 · 00 600 · 83 600 · 60	48 47 47 47 48 48 49 49 49 49	

TABLE 10.—EFFECT OF REGULATION—LAKE MICHIGAN-HURON

Stages in Feet above Mean Sea Level

Actual conditions cocurring in past as given in record assumed complete chicago diversion at chicago diversion at chicago and other lowerings from a complete chicago diversion at chicago and other lowerings from a complete chicago and other									
Stage	Year—Month	Actual conditions occurring in past as given in record		for presen without New Well assumed Chicago assumed a Other low data con	t regimen regulation and Canal complete diversion t 8,500 c.f.s. erings from apiled by	system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal		system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Cana	
(a) (b) (c) (d) (e) (f) (g) (h) (i) 1860— January 582-51 214 581-36 206 581-50 199 February 582-69 154 581-54 145 581-64 581-90 137 March 582-72 194 581-57 186 581-59 177 April 582-85 200 581-70 191 581-74 181 May 582-97 213 581-82 205 581-94 191 June 583-09 231 581-94 222 582-73 214 June 583-13 240 581-98 232 582-73 234 August 582-94 237 581-79 228 582-73 234 August 582-94 237 581-79 228 582-73 234 November 582-74 225 581-59 227 581-91 227 December 582-43 218 581-28 209 581-71 221 Banuary 581-83 204 580-95 213 581-83 217 Bel-march 582-91 221 580-95 213 581-38 217 Bel-march 582-91 221 580-95 213 581-38 217 Bel-march 582-91 221 580-95 213 581-81 29 June 583-13 204 581-88 209 581-13 198 Harch 582-31 219 581-16 211 581-28 April 582-41 213 581-26 204 581-48 June 582-91 228 581-84 217 581-83 June 582-92 226 581-84 217 582-90 200 June 583-29 226 581-84 217 582-29 234 August 583-36 229 581-90 221 580-20 580-20 200 June 583-20 220 581-84 217 582-20 200 June 583-20 220 581-84 217 582-20 200 June 583-20 223 581-90 221 580-20 582-21 222 June 583-36 223 581-90 221 580-20 582-22 June 583-36 223 581-90 221 582-21 223 582-22 June 583-36 223 581-90 221 582-21 223 582-22 June 583-36 223 581-90 221 582-21 223 582-22 June 582-23 228 581-85 210 582-23 233 November 582-70 223 581-80 210 581-82 January 582-88 219 581-83 210 581-82 January 582-88 220 581-90 581-33 581-44 200 June 582-89 220 581-90 221 582-20 581-90 June 582-89 220 581-90 581-33 581-44 200 June 582-89 220 581-90 581-33 581-44 200 June 582-89 220 581-77 222 582-882-882-882-882-882-882-882-882-882-									Monthly mean
January	(a)					Stage (f)			Discharge (i)
Islamary	January February March April May June July August September October November December	582.69 582.72 582.85 582.97 583.09 583.13 582.94 582.74 582.43 582.10	154 194 200 213 231 240 237 235 218 221	581·54 581·57 581·70 581·82 581·94 581·98 581·79 581·59 581·28 580·95	145 186 191 205 222 232 228 227 209 213			581·49 581·59 581·74 581·94 582·13 582·27 582·16 581·97 581·71 581·38	195 137 175 181 195 210 234 231 228 221 227 193
January	January. February. March. April. May. June. July. August. September. October. November. December.	581.92 582.31 582.41 582.83 582.99 583.12 583.36 583.05 582.93 582.70	219 213 218 226 230 235 229 228 223	58J·77 581·16 581·26 581·68 581·84 581·97 582·21 581·90 581·78 581·55	175 211 204 210 217 222 226 221 219 215			581·03 581·26 581·48 581·73 582·09 582·29 582·48 582·45 582·22 582·03	194 168 198 198 201 208 236 237 236 231 228
January 582.13 210 580.98 202 581.42 199 February 582.18 209 581.03 200 581.38 194 March 582.17 201 581.02 193 581.38 194 April 582.17 207 581.02 198 581.33 193 May 582.38 211 581.23 203 581.41 198 Jule 582.47 215 581.32 206 581.51 19 July 582.42 212 581.27 204 581.50 19 August 582.29 210 581.14 201 581.37 193 September 582.11 208 580.96 200 581.25 194	January February March April May June July August September October November December	582·18 582·48 582·64 582·89 583·02 582·92 582·91 582·84 582·73 582·34	169 221 213 220 223 220 222 222 223 224 217	581·03 581·33 581·49 581·74 581·77 581·77 581·76 581·69 581·58 581·19	160 213 204 212 214 212 213 215 215 209			581·43 581·44 581·65 581·85 582·21 582·28 582·23 582·17 582·05 581·80	194 155 200 200 204 209 232 231 228 229 224 219
November 581.58 203 580.43 195 580.95 193	January. February. March. April. May. June. July. August. September. October. November. December.	582·18 582·17 582·17 582·38 582·47 582·42 582·29 582·11 582·02 581·58	209 201 207 211 215 212 210 208 212 203	581.03 581.02 581.02 581.23 581.23 581.27 581.14 580.96 580.87 580.43	200 193 198 203 206 204 201 200 203 195			581·38 581·39 581·35 581·41 581·50 581·37 581·25 581·15 580·95	195 194 187 193 195 196 196 195 194 193 193

Year—Month	Actual conditions occurring in past as given in record		for present without in New Well assumed Chicago assumed a Other lowed data con U.S. Lak	conditions at regimen regulation and Canal complete diversion t8,500 c.f.s. erings from npiled by te Survey	Complete syst assuming divers Chica New Wella com	8,500 cfs sion at go and and Canal plete	Partial regulation system, assuming 8,500 cfs diversion at Chicago and New Welland Canal complete	
		ithly ean		ean	First of month	Monthly mean	First of month	Monthly
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
February. March April May June July. August. September October November December 1865— January February March April May June	581 · 55 581 · 80 581 · 51 582 · 02 582 · 01 581 · 91 581 · 91 581 · 46 581 · 07 580 · 90 580 · 77 580 · 66 580 · 65 580 · 82 581 · 31 581 · 47 581 · 31	207 209 195 203 200 201 199 194 191 187 181 165 155 191 198	580-40 580-65 580-36 580-87 580-86 580-76 580-58 580-31 579-92 579-75 579-62 579-62 579-62 579-62 579-62	198 201 186 195 191 193 190 186 182 179 172 157 146 183 189 187 187			580-84 580-87 580-85 580-91 581-15 581-03 580-91 580-70 580-41 580-19 580-11 579-94 579-98 580-30 580-60 580-79	190 189 185 186 188 188 188 178 176 173 152 137 179 180 182 185
July	581.94 581.96 581.84 581.60 581.04 580.73	206 207 205 202 193 186	580·79 580·81 580·69 580·45 579·89 579·58	198 198 197 193 185 177			581·09 581·38 581·38 581·21 580·84 580·43	194 197 197 192 186 179
1866— January. February. March April. May June. July. August. September. October. November. December.	580 · 47 580 · 23 580 · 28 580 · 73 580 · 91 581 · 20 581 · 46 581 · 52 581 · 37 581 · 26 581 · 17 580 · 91	179 180 181 183 185 189 193 196 193 190 190	579·32 579·08 579·13 579·58 579·76 580·05 580·31 580·37 580·22 580·11 580·02 579·76	171 171 173 174 177 180 185 187 185 181 182			580·19 579·89 579·76 579·98 580·26 580·50 580·75 580·89 580·90 580·81 580·73 580·58	176 170 171 171 175 178 184 185 187 185 185
January February. March April May June July August. September. October. November. December.	580·89 580·94 581·12 581·63 581·94 582·09 582·02 581·75 581·42 580·96 580·61	192 193 176 196 197 199 207 204 203 198 192 183	579·74 579·79 579·97 580·26 580·48 580·79 580·94 580·94 580·27 579·81 579·46	184 184 168 187 189 190 199 195 195 189 184 174			580 · 45 580 · 48 580 · 57 580 · 82 581 · 08 581 · 28 581 · 49 581 · 58 581 · 45 581 · 16 580 · 78 580 · 39	181 180 164 186 190 192 197 198 198 198 192 186 179
January February	580.45	173	579.26	164	1	1	580.17	164

Computed conditions for present regimen without regulation New Welland Canal Complete regulation Partial regulation Actual conditions system, assuming 8,500 c.f.s. system, assuming 8,500 c.f.s. assumed complete Chicago diversion assumed at 8,500 c.f.s occurring diversion at Chicago and New Welland Canal in past as diversion at Chicago and New Welland Canal given in record Other lowerings from data compiled by U.S. Lake Survey Year-Month Monthly Monthly Monthly First of Monthly First of mean Stage (b) Discharge Stage (d) Discharge Stage Discharge Stage Discharge (a) (g) 1868-March..... 581.09 196 579.94 188 580 - 29 184 579·84 580·12 580 · 55 580 · 63 April..... May.... $580 \cdot 99$ 189 581 · 27 581 · 48 190 580 - 33 184 June..... 580.87 July. 581 · 51 581 · 17 194 189 580.36 186 580.97 580.79185 580.02 August..... September.... 180 579 · 78 579 · 55 579 · 48 178 176 580.93 186 580.47 October.... November.... December.... 580 - 27 580.70 185 $\frac{177}{176}$ 580.35 180 $579 \cdot 20$ 579.99 January..... 172 $580 \cdot 25$ 183 $579 \cdot 10$ $580 \cdot 75$ 579.84 579·83 579·74 579·77 580·08 $579 \cdot 17$ $578 \cdot 91$ $579 \cdot 28$ $579 \cdot 61$ February..... March $\frac{171}{167}$ 162 159 580.74 580.60198 150 158 159 580.32 580.06 April..... May.... 580 - 43 179 170 580 - 63 108 167 580.76 176 184 581 - 17 184 203 581 - 29 $580 \cdot 14$ $580 \cdot 52$ $580 \cdot 50$ June..... 172 August... 581 · 67 581 · 93 196 204 188 195 227 225 580.95 187 192 July. 582.00 580.78 $581 \cdot 25$ September.... 581.82 204 580.67 196 582-18 238 190 October..... November.... 580.90 580.31 $581 \cdot 46 \\ 581 \cdot 34$ 581.88 580.71 580.53579.91 165 December.... 581.06 180 581 - 47 178 581·30 581·34 $580 \cdot 45 \\ 580 \cdot 50$ January..... $581\cdot 12$ $579 \cdot 97$ 170 150 178 February March April May $581 \cdot 21 \\ 581 \cdot 51$ 180 580.06 171 178 194 199 580 - 36 581.54 203 580.69 169 $581.93 \\ 582.27$ $\frac{203}{207}$ $580.78 \\ 581.12$ $581.88 \\ 582.21$ 231 175 $581 \cdot 07 \\ 581 \cdot 35$ 582·41 582·52 581 · 75 581 · 85 581 · 79 $581 \cdot 26$ $581 \cdot 37$ $582 \cdot 45$ $582 \cdot 52$ June..... 202 200 August... 244 203 203 582 43 209 200 September.... 582·57 582·17 $581.42 \\ 581.02$ 208 203 $582 \cdot 31$ $582 \cdot 05$ 241 237 581 · 84 581 · 73 581 · 37 581 · 03 $\frac{205}{201}$ 216 October..... November.... 581·77 581·42 580.62 580.27581.64 581.27230 219 192 December..... January..... 203 187 191 581 · 08 581 · 03 580.88 $581 \cdot 57$ 206 $580 \cdot 42$ 198 580 · 88 581 · 09 581 · 48 581 - 49 174 210 213 219 580.34 188 197 February..... March..... 581 · 23 581 · 56 581 · 86 580.94 April..... May.... $582 \cdot 29$ $582 \cdot 64$ $581 \cdot 14$ $581 \cdot 49$ $\frac{204}{211}$ 226 232 581 · 72 581 · 88 June..... $582 \cdot 68$ 219 220 581·53 581·56 210 212 $582 \cdot 12$ $582 \cdot 29$ 237 240 582.00 July. 582.71 581 · 90 581 · 48 August 582 - 48 581.88 233 150 204 581 · 45 580 · 94 580 · 75 580 · 55 September.... $581.81 \\ 581.12$ 201 190 $580 \cdot 66$ 193 181 580 · 83 580 · 50 October..... November.... 579.97 191 175 579 - 92 183 166 154 180 580 - 22 December.... 580.48 579.33 182 579·87 579·77 172 171 $579 \cdot 20 \\ 579 \cdot 20$ 58**0** · 15 January..... $580 \!\cdot\! 36$ 580 · 10 February..... March.... 580.35 204 $579 \cdot 62$ 45827-10

Year—Month	Actual conditions occurring in past as given in record		Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system, assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system, assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
		nthly ean		ithly ean	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
April. May June July August September October November December January February March April May June July August September October November December January February March April May June July August September October November December January February March April May June July August September October November October November December April May June July August September October November December November December November December November December	580 - 88 580 - 63 581 - 03 581 - 03 581 - 03 581 - 03 581 - 01 580 - 94 580 - 82 580 - 52 580 - 52 581 - 95 581 -	182 187 191 194 192 188 187 172 178 176 179 183 197 201 208 201 206 202 164 136 197 204 204 204 204 204 204 205 211 211 208 215 215 216 217 208 209 209 209 209 209 209 209 209	579-23 579-48 579-85 579-85 579-86 579-79-67 579-79-67 579-37-67-579-68 578-72 578-72 578-72 578-72 580-20 580-83 580-79 580-80 580-77 580-64 580-37 580-64 580-67 580-67 580-68 580-77 580-68 580-77 580-68 580-77 580-68 580-77 580-68 580-96 580-96 580-96 580-96 580-96 580-96	173 179 182 186 183 184 179 179 163 170 167 171 174 189 202 200 201 198 193 156 127 189 195 203 203 207 207 202 1942	580 · 00 580 · 21 580 · 52 580 · 52 580 · 52 580 · 77 580 · 80 580 · 80 580 · 81 580 · 81 580 · 81 580 · 81 580 · 81 580 · 81 580 · 81 581 · 70 581 · 81 581 · 95 581 ·	169 174 150 168 168 176 195 186 189 150 174 192 185 150 229 233 231 231 231 231 230 227 27 227 229 230 227 227 229 229 221 221 221 221 221 221	579-62 579-84 580-12 580-26 580-26 580-26 580-26 580-19 579-59 579-30 579-34 579-34 579-36 581-12 581-59 581-59 581-58 581-68 581-68	171 175 176 178 178 176 178 176 178 176 177 176 177 176 177 176 177 189 198 199 200 203 200 199 194 160 128 188 196 199 200 202 201 202 200 201 202 200 1995 192
January. February. March. April. May. June. July. August. September. October. November. December.	580·77 580·70 580·76 581·12 581·68 581·92 581·89 582·06 581·99 581·84 581·63 581·44	201 201 200 198 207 214 216 216 219 215 201	579·62 579·55 579·61 579·97 580·53 580·77 580·74 580·84 580·69 580·48 580·29	193 192 192 189 189 205 208 207 211 207 207 192	580·75 580·56 580·60 580·60 581·19 581·50 581·71 581·81 581·75 581·62 581·43 581·14	213 210 212 210 184 167 153 208 230 229 228 213	580 · 82 580 · 66 580 · 64 580 · 86 581 · 27 581 · 62 581 · 77 581 · 82 581 · 87 581 · 74 581 · 57 581 · 35	191 189 191 196 201 203 205 206 228 224 223 192
JanuaryFebruaryMarchApril	$581 \cdot 39$ $581 \cdot 59$ $581 \cdot 92$ $582 \cdot 12$	203 - 204 197 205	580·24 580·44 580·77 580·97	200 195 189 196	581 · 06 581 · 22 581 · 28 581 · 58	208 174 150 163	581 · 29 581 · 37 581 · 50 581 · 72	198 196 197 199

Year—Month	occu in pa	onditions arring ast as a record	Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s Other lowerings from data compiled by U.S. Lake Survey		Complete syst assuming divers Chica New Wells	regulation tem, 8,500 c.f.s sion at go and and Canal plete	Partial regulation system, assuming 8,500 c.f.s diversion at Chicago and New Welland Canal complete	
	Monthly mean		Monthly mean		First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
1876— May June July August September October November, December	582·74 583·15 583·49 583·42 583·37 582·79 582·89 582·42	199 226 237 238 241 234 231 241	581·59 582·00 582·34 582·27 582·22 581·64 581·74 581·27	191 217 229 229 233 225 223 205	582·04 582·54 582·94 583·07 582·98 582·57 582·21 581·96	214 244 252 259 255 249 243 238	582·14 582·65 583·10 583·25 583·17 582·86 582·58 582·36	192 219 251 253 252 245 242 236
1877— January. February. March April. May. June. July. August. September. October. November. December.	582 · 28 582 · 29 582 · 29 582 · 67 582 · 63 582 · 63 582 · 60 582 · 48 582 · 27 582 · 28 582 · 16 582 · 10	213 197 148 177 182 226 227 226 222 218 216 215	581·13 581·14 581·14 581·52 581·41 581·48 581·45 581·33 581·12 581·13 581·01 580·95	205 188 140 168 174 217 219 217 214 209 208 206			582·06 581·93 581·87 581·96 582·02 581·99 581·98 581·96 581·83 581·67 581·50 581·52	212 186 139 165 170 207 207 207 227 224 223 219
1878— January. February. March April May June. July. September October. November December.	581 · 98 581 · 91 582 · 07 582 · 09 582 · 39 582 · 53 582 · 54 582 · 22 582 · 02 581 · 91 581 · 78 581 · 46	209 164 195 205 214 220 219 218 214 217 216 192	580-83 580-76 580-92 580-94 581-24 581-38 581-07 580-87 580-76 580-63 580-31	201 155 187 196 206 211 211 209 206 208 208 208 183			581·45 581·35 581·37 581·47 581·65 581·86 581·96 581·70 581·61 581·52 581·33	194 152 180 197 201 203 206 204 204 222 220 199
January. January. February. March April. May. June July August. September. October. November. December.	581 · 15 581 · 16 581 · 20 581 · 19 581 · 32 581 · 32 581 · 39 581 · 48 581 · 29 581 · 17 580 · 75 580 · 76	185 159 188 197 194 200 200 199 200 197 197	580·00 580·01 580·05 580·04 580·17 580·24 580·33 580·14 580·02 579·80 579·58 579·61	177 150 180 188 186 191 192 190 192 188 189			581·00 580·78 580·70 580·78 580·84 580·94 580·99 580·80 580·66 580·49 580·49	172 168 177 185 186 187 189 188 187 189 188
1880— January February. March April May. 45827—10½	580.80 580.71 580.75 580.92 581.26	192 185 191 189 196	579 · 65 579 · 56 579 · 60 579 · 77 580 · 11	184 176 183 180 188			580·45 580·43 580·39 580·45 580·68	186 173 177 179 186

Year—Month	Actual conditions occurring in past as given in record		Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system, assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system, assuming 8,500 c.f.s, diversion at Chicago and New Welland Canal complete	
		nthly ean	Monthly mean		First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
1880—								
June July August September October November December	581.77 581.99 582.02 581.72 581.38 581.06 580.89	205 211 210 210 205 204 192	580·62 580·84 580·87 580·57 580·23 579·91 579·74	196 203 201 202 196 196 181			581·09 581·47 581·67 581·62 581·38 581·14 580·98	192 200 201 201 198 194 192
January February March April May June July August September October November December	580.90 581.11 581.40 581.31 581.82 582.05 582.02 582.02 582.02 581.79 582.12 581.95 581.85	186 "02 196 205 208 209 214 210 209 219 225 210	579·75 579·96 580·25 580·16 580·67 580·87 580·87 580·64 580·97 580·80 580·70	178 193 188 196 200 200 206 201 201 210 217 201			580 · 89 580 · 96 581 · 18 581 · 21 581 · 36 581 · 62 581 · 75 581 · 79 581 · 69 581 · 89 581 · 80	179 188 186 193 197 199 202 204 206 228 230 220
January. February. March. April. May. June. July. August. September. October. November. December.	581-63 581-99 582-12 582-22 582-49 582-62 582-81 582-69 582-28 582-07 581-74	208 195 203 207 206 214 211 213 219 217 213 203	580 · 48 580 · 47 580 · 84 580 · 97 581 · 07 581 · 34 581 · 47 581 · 66 581 · 54 581 · 54 580 · 92 580 · 92	200 186 195 198 198 205 203 204 211 208 205 194			581-65 581-50 581-55 581-77 581-93 582-05 582-17 582-28 582-26 582-03 581-76 581-51	201 188 199 201 205 205 210 233 233 227 224 219
January. February. March. April. May. June. July. August. September. October. November. December.	581·48 581·52 581·61 581·82 582·30 582·66 583·26 583·26 583·24 582·37 582·37 582·29	204 208 187 206 217 219 223 230 227 223 232 232	580·33 580·37 581·46 580·67 581·15 581·15 582·11 582·08 581·89 581·67 581·22 581·14	196 199 179 197 209 210 215 221 219 214 224 212			582 · 12	197 195 177 196 204 209 238 239 238 233 233 225
January February March April May June	582·07 582·19 582·44 582·62 582·83 582·99	166 179 215 - 221 225 224	580.92 581.04 581.29 581.47 581.68 581.84	158 170 207 212 217 215			581.66 581.74	152 165 205 206 209 210

TABLE 10.—EFFECT OF REGULATION—LAKE MICHIGAN-HURON—Continued ! Stages in Feet above Mean Sea Level

Year—Month	Actual conditions occurring in past as given in record		Actual conditions occurring in past as given in record		for present without in New Well assumed Chicago assumed a Other lower data con	conditions to regulation land Canal complete diversion ts,500 c.f.s. erings from apiled by se Survey	Complete regulation system, assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete		Partial regulation system, assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
		thly		nthly ean	First of month	Monthly mean	First of month	Monthly mean		
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)		
July	582.83 582.69 582.44 582.44 582.08 582.05	226 226 222 229 224 214	581·68 581·54 581·29 581·29 580·93 580·90	218 217 214 220 216 205			582·28 582·11 581·88 581·79 581·71 581·49	232 227 227 226 225 201		
1885— January February March April May June July August September October November	582.06 582.29 582.25 582.44 582.80 583.01 583.10 583.17 583.77 583.03 582.73 582.44	215 223 212 215 228 232 232 235 237 236 234 229 222	580-91 581-14 581-10 581-29 581-65 581-86 581-95 582-16 582-02 581-88 581-58 581-29	207 214 204 206 220 223 227 228 228 228 228 221 213			581.56 581.67 581.69 581.72 581.96 582.24 582.41 582.60 582.64 582.49 582.30 582.07	206 208 207 205 209 212 238 241 242 237 233 231		
1886— January February March April May June July August September October November	582-67 582-69 582-97 583-24 583-50 583-57 583-38 583-15 582-91 582-81 582-47 582-14	182 162 202 209 233 245 241 238 235 233 230 218	581-52 581-54 581-82 582-09 582-35 582-42 582-23 582-00 581-76 581-66 581-32 580-99	174 153 194 200 225 236 233 229 227 224 222 209			582·01 582·07 582·16 582·40 582·67 582·82 582·74 582·48 582·26 582·11 581·93 581·64	171 151 190 196 218 222 243 237 235 231 228 222		
1887— January February March April May June July September October November December	582.06 582.43 582.59 582.54 582.74 582.87 582.87 582.87 582.67 582.33 581.88 581.55	217 221 201 210 216 226 229 225 219 217 211 204	580·92 581·29 581·45 581·40 581·60 581·73 581·67 581·53 581·19 580·74 580·29	209 212 193 201 208 217 221 216 211 208 203 195			581·45 581·52 581·71 581·82 582·02 582·15 582·17 582·05 581·81 581·49 581·19 580·94	202 201 185 193 204 208 210 228 224 198 194 189		
January January March April May June July	581·25 581·20 581·38 581·59 581·97 582·24 582·25	200 200 193 204 201 221 218	580·11 580·06 580·24 580·45 580·83 581·10 581·11	192 191 185 195 193 212 210				187 185 176 188 185 198 203		

TABLE 10.—EFFECT OF REGULATION—LAKE MICHIGAN-HURON—Continued Stages in Feet above Mean Sea Level

YearMonth	occi in p	conditions urring ast as n record	for preser without: New Well assumed Chicago assumed a Other low data con	conditions to regulation and Canal complete diversion t 8,500 c.f.s erings from a piled by the Survey	Complete regulation system, assuming 8,500 c.f.s diversion at Chicago and New Welland Canal complete		system, assuming 8,500 c. diversion at Chicago and		
		nthly ean		Monthly mean		Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge h)	
1888— August September. October. November. December. 1889— January.	582·13 581·98 581·73 581·68 581·10 581·08 581·05	220 216 211 208 201 197 176	580·99 580·84 580·59 580·54 579·96 579·94 579·91	211 208 202 200 192 189 167			581.75 581.71 581.53 581.34 581.08	203 204 220 216 189 191 166	
February March April May June July August September October November December	581.03 581.04 581.12 581.58 581.76 581.52 581.35 581.10 580.75 580.57	176 180 192 203 207 208 206 201 195 186	579.91 579.90 579.98 580.44 580.62 580.38 580.21 579.61 579.43	167 168 171 184 194 199 199 198 192 187 177			580.78 580.74 580.76 580.96 581.22 581.27 581.17 580.98 580.71 580.50	166 163 169 180 189 193 193 193 189 186 177	
January. January. February. March. April. May. June. July. August. September. October. November. December.	580-65 580-61 580-59 580-91 581-14 581-55 581-62 581-34 581-34 581-23 580-89 580-54	188 185 180 185 187 196 202 205 201 198 194 187	579·51 579·47 579·45 579·77 580·40 580·41 580·48 580·20 580·20 580·09 579·75 579·40	180 176 172 176 179 187 194 196 193 189 186 178			580 · 43 580 · 40 580 · 30 580 · 40 580 · 64 580 · 64 580 · 95 581 · 18 581 · 23 581 · 16 581 · 02 580 · 87 580 · 62	179 174 171 174 177 184 190 192 193 190 186 183	
January February March April May June July August September October November December	580 · 52 580 · 28 580 · 47 580 · 78 580 · 88 581 · 03 580 · 86 580 · 79 580 · 56 580 · 20 579 · 80 579 · 74	181 185 163 184 186 198 198 197 194 188 182 181	579·38 579·14 579·33 579·64 579·74 579·89 579·72 579·65 579·42 579·66 578·66 578·60	173 176 155 175 178 189 190 188 186 179 174 174			580·45 580·30 580·20 580·38 580·61 580·68 580·64 580·55 580·43 580·17 579·84 579·66	177 175 159 175 175 183 183 181 180 174 172	
January. Pebruary March April May June July August	579 · 86 580 · 05 579 · 95 580 · 01 580 · 43 580 · 88 580 · 89 580 · 97	174 150 156 177 180 - 186 192 196	578 · 79 578 · 98 578 · 88 578 · 94 579 · 36 579 · 81 579 · 82 579 · 90	166 141 148 168 172 177 184 187			579 · 65 579 · 70 579 · 70 579 · 74 579 · 91 580 · 25 580 · 54 580 · 62	165 142 148 169 171 173 178 180	

TABLE 10.—EFFECT OF REGULATION—LAKE MICHIGAN-HURON—Continued Stages in Feet above Mean Sea Level

Year—Month	Actual conditions occurring in past as given in record		for preser without a New Well assumed Chicago assumed a Other low data con	l conditions nt regimen regulation land Canal complete diversion t 8,500 c.f.s. erings from npiled by ke Survey	Complete syst assuming divers Chica New Wells	8,500 c.f.s. sion at go and	Partial regulation system, assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
		thly ean		nthly ean	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
1892— September October November December	580 · 77 580 · 53 580 · 26 579 · 99	192 192 190 180	579·70 579·46 579·19 578·92	184 183 182 171			580 · 60 580 · 41 580 · 16 579 · 87	182 178 176 169
1893— January February March April May	579 · 98 580 · 12 580 · 23 580 · 69 580 · 99	155 157 180 184 184	578.97 579.11 579.22 579.68 579.98	147 148 172 175 176			579 · 65 579 · 63 579 · 70 579 · 96 580 · 40	139 142 172 174 166
JuneJulyAugSeptemberOctober	581·32 581·34 581·17 580·85 580·71	199 202 201 196 195	580·31 580·33 580·16 579·84 579·70	190 194 192 188 186			580·79 580·96 580·96 580·81 580·63	183 188 189 188 189
November December 1894—	$580 \cdot 32 \\ 580 \cdot 25$	192 186	579·31 579·24	184 177			580 · 47 580 · 29	183 179
January. February March April May June July August September October November December	580·26 580·29 580·55 580·70 581·24 581·40 581·43 581·35 580·92 580·71 580·44 580·44	189 175 188 185 195 209 212 208 205 201 200 191	579·31 579·34 579·60 579·75 580·29 580·45 580·40 579·97 579·76 579·76 579·49	181 166 180 176 187 200 204 199 197 192 182	580·73 580·82 580·90 581·15 581·52 581·86 582·03 581·90 581·40 581·23 580·97	153 181 210 206 215 229 232 232 173 162 222 217	580·30 580·29 580·37 580·57 580·89 581·24 581·34 581·34 581·12 580·93 580·71	179 163 175 172 184 194 199 199 197 193 190 185
January. February March. April. May. June. July. August September. October. November. December.	579·91 579·80 579·77 579·97 580·13 580·18 580·07 579·95 579·68 579·31 579·09 578·98	178 174 183 172 179 193 191 189 187 185 178	578.99 578.885 579.05 579.21 579.26 579.15 579.03 578.76 578.39 578.76	170 165 175 163 171 184 183 180 179 176 170	580·72 580·47 580·44 580·48 580·62 580·73 580·82 580·77 580·70 580·49 580·35 579·98	213 169 181 150 150 180 192 177 181 183 204 150	580 · 47 580 · 28 580 · 12 580 · 15 580 · 27 580 · 29 580 · 20 580 · 20 580 · 11 579 · 89 579 · 62 579 · 43	182 179 178 162 168 179 178 176 175 171 168
1896— January. February. March. April. May. June. July. August. September.	579.06 579.10 579.11 579.29 579.57 579.89 579.83 579.66	171 147 158 168 170 184 184 182	578·18 578·22 578·23 578·41 578·69 579·01 578·95 578·88 578·78	163 138 150 159 162 175 176 173 174	579 · 95 580 · 02 579 · 90 579 · 90 580 · 10 580 · 52 580 · 82 580 · 81 580 · 75	150 170 150 150 150 150 150 183 150	579 · 42 579 · 46 579 · 42 579 · 60 579 · 90 580 · 15 580 · 21 580 · 18	166 137 151 163 162 172 176 175

TABLE 10.—EFFECT OF REGULATION—LAKE MICHIGAN-HURON—Continued

Stages in Feet above Mean Sea Level

Discharges in Thousand Second Feet

Year—Month	Actual conditions occurring in past as given in record		for preser without New Well assumed Chicago assumed a Other low data con U.S. Lal	Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system, assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete		Partial regulation system, assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
		Monthly mean		ean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)	
1896									
October November December	$579 \cdot 61$ $579 \cdot 39$ $579 \cdot 34$	179 181 173	578·73 578·51 578·46	170 173 164	580 · 60 580 · 37 580 · 19	170 171 169 .	580·08 579·97 579·87	174 174 168	
January February	579·33 579·41	176 169	578·48 578·56	168 160	580·20 580·21	160 187	579·85 579·80	172 169	
March	$579 \cdot 72$	173	578.87	165	$580 \cdot 25$	150	579.83	170	
April	579·89 580·38	175 183	579·04 579·53	166 175	580·47 580·87	150 153	580·03 580·38	166 173	
May June	580.65	196	579.80	187	581 - 24	183	580.73	184	
July	580.84	199	579.99	191	581 - 48	194	580.95	189	
August September	580 · 78 580 · 53	200 196	579·93 579·68	191 188	581 · 62 581 · 49	173 163	581·02 580·93	190 189	
October	580 · 24	192	579.39	183	581 - 20	178	580.68	185	
November December 1898—	579·98 579·76	190 183	579·13 578·91	182 174	580·94 580·65	174 150	580·47 580·27	182 178	
January	$579 \cdot 72$	180	578.90	172	580 - 49	150	580 - 11	176	
February	579.86	156	579.04	147	580.51	150	580.08	151	
March	580·18 580·50	177	579·36 579·68	169 172	580 · 68 581 · 04	150 210	580 · 22 580 · 54	172 172	
May	580.78	182	579.96	174	581.25	152	580.82	175	
June	580·91 580·89	195 197	580.09	186	581 - 42	150	580.95	186	
July	580.89	197	580·07 579·87	189 187	581 · 54 581 · 57	185 169	581·00 580·89	189 188	
August September	580.34	195	579.52	187	581 - 44	163	580.72	186	
October November	580·33 579·92	190 189	579·51 579·10	181 181	581·30 581·07	182 150	560·56 580·41	183 180	
December	579.58	183	578.76	174	580.82	150	580.20	175	
1899							WW0 00		
January February	579·53 579·61	177 177	578·73 578·81	169	580 · 65 580 · 57	162 166	579·99 579·87	168 166	
March	579.81	113	579.01	. 105	580 - 62	134	579.89	90	
April	580.08	164	579 28	155	580.81	150	580.09	157	
May June	580 · 52 580 · 83	192 199	579·72 580·03	184 190	581 · 24 581 · 70	204 227	580·42 580·79	181 188	
July	581.04	205	580.24	197	582.00	233	581 - 17	195	
August	580.96 580.82	203	580 · 16 580 · 02	194 193	582-07 581-82	236 232	581·33 581·26	198 196	
September October	580.49	195	579.69	186	581.53	202	581.01	190	
November	580.31	193	579.51	185	581 - 28	220	580.78	188	
December	579.81	184	579.01	175	580.92	210	580.55	186	
January	579.66	137	578.88	132	580 - 67	155	580.33	132	
February	579.77	125	578.99	119	580-54	150	580 - 27	118	
March	579 · 94 580 · 07	130 176	579·16 579·29	125 170	580·59 580·62	146 150	580·35 580·41	135 171	
May	580.31	180.	579.53	175	580.78	150	580.53	175	
June	580 42	189	579.64	183	580.95	150	580.65	182	
July	580 · 53 580 · 70	194 193	579·75 579·92	189 187	$581 \cdot 12 \\ 581 \cdot 27$	151 208	580·76 580·86	187 190	
September	580.65	196	579.87	191	581.37	201	580 - 99	193	
October	580.66	197	579.88	191	581-42	224	581.01	193	

TABLE 10.—EFFECT OF REGULATION—LAKE MICHIGAN-HURON—Continued

Stages in Feet above Mean Sea Level

Discharges in Thousand Second Feet

Year—Month			Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey		Partial regulation system; assuming 8,500 c.f.s diversion at Chicago and New Welland Can complete			
		thly ean		nthly mean	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharg (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (h)	Discharge (i)
1900— November December 1901—	580·52 580·19	198 189	579·74 579·41	193 183	581·37 581·22	224 217	581·00 580·88	193 182
JanuaryFebruaryMarchAprilMayJune	579·95 579·92 580·34 580·49 580·92 580·97	160 107 130 126 174 203	579·24 579·21 579·63 579·78 580·21 580·26	156 102 126 121 170 198	580.87 580.67 580.68 580.87 581.09 581.27	176 120 146 150 157 177	580 · 67 580 · 52 580 · 58 580 · 81 581 · 10 581 · 27	155 102 128 120 189 198
July August September October November December	$581 \cdot 06$ $581 \cdot 11$ $580 \cdot 92$ $580 \cdot 56$ $580 \cdot 23$ $579 \cdot 95$	204 206 200 198 196 158	580·35 580·40 580·21 579·85 579·52 579·24	200 210 196 193 192 153	581·36 581·57 581·53 581·25 560·98 580·77	177 215 182 156 196 155	581·31 581·39 581·37 581·17 580·95 580·71	199 198 198 198 193 191 154
January February March April May June July September October November December	579·76 579·61 579·84 579·91 580·30 580·83 580·85 580·48 580·33 580·22 579·93	115 122 176 178 187 191 190 194 189 184 185 176	579·09 578·94 579·17 579·24 579·63 579·83 580·16 580·18 579·81 579·66 579·55 579·26	111 117 172 173 183 186 186 189 185 179 181	580·53 580·32 580·28 589·42 580·66 580·98 581·30 581·53 581·41 581·17 581·08 580·85	129 134 150 150 150 164 150 150 150 150 171 210	580·55. 580·36 580·29 580·38 580·57 580·84 581·08 581·21 581·13 580·91 580·80 580·66	111 116 174 175 185 187 191 191 191 187 187
January. February. March April May June July August September October November December.	579·72 579·90 580·09 580·36 580·45 580·63 580·71 580·71 580·72 580·62 580·26 579·94	124 119 163 180 185 188 191 192 193 196 192 159	579 · 08 579 · 26 579 · 45 579 · 72 579 · 81 579 · 99 580 · 17 580 · 07 580 · 15 579 · 98 579 · 62 579 · 30	121 115 160 176 182 184 188 188 190 192 189	580-65 580-52 580-61 580-88 581-16 581-45 581-77 581-80 581-73 581-58 581-32 580-98	146 137 150 150 150 171 190 198 230 227 223 185	580·44 580·36 580·47 580·69 580·87 581·10 581·17 581·23 581·28 581·10 580·79	123 115 163 178 183 184 191 192 195 196 193 158
January. February. March. April. May June. July. September. October. November. December.	581 · 47 581 · 48 581 · 38 581 · 31 581 · 18 580 · 88	138 131 147 181 194 202 205 206 203 204 201 187	579·38 579·37 579·65 580·11 580·48 580·86 580·87 580·77 580·77 580·57 580·57 580·57 580·57	135 127 144 177 191 198 202 202 200 200 198 183	580·70 580·61 580·70 581·11 581·56 581·98 582·08 581·94 581·71 581·60 581·42 581·10	158 149 150 150 150 233 234 233 229 150 226 214	580 · 66 580 · 57 580 · 63 580 · 96 581 · 33 581 · 67 581 · 79 581 · 74 581 · 67 581 · 45 581 · 10	138 127 147 185 193 198 202 203 205 223 219 184

Year—Month	occu in pa	onditions rring sst as a record	for preser without New Well assumed Chicago assumed a Other low data con	diversion t8,500 c.f.s.	Complete regulation system; assuming 8,500 c.f.s. diversion at		Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Cana complete		
		thly ean		ithly ean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharg (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (h)	Discharge (i)	
January Jebruary March April May June July August September October November December	580·39 580·31 580·45 580·83 581·09 581·48 581·62 581·59 581·49 581·05 580·78	97 103 150 196 199 206 208 208 208 205 201	579·81 579·73 579·87 580·25 580·51 580·90 581·04 581·01 580·91 580·47 580·20 580·05	93 98 146 191 195 201 204 203 204 200 197	580·87 580·67 580·72 580·90 581·28 581·58 581·79 581·74 581·53 581·26	110 114 168 217 179 173 231 230 230 227 222 218	580·87 580·71 580·67 580·87 581·14 581·44 581·68 581·74 581·74 581·57 581·27	93 96 147 191 194 196 200 202 204 219 195	
1906— January February. March. April May June July August. September. October November. December.	580 · 61 580 · 76 580 · 91 581 · 09 581 · 35 581 · 47 581 · 48 581 · 45 581 · 10 580 · 91 580 · 75 580 · 70	184 141 164 191 206 207 208 206 202 197 194 170	580·03 • 580·18 580·33 580·51 580·77 580·89 580·90 580·87 580·52 580·33 580·17 580·12	180 136 160 186 202 202 204 201 198 192 190 165	580·83 580·89 580·98 580·98 581·13 581·37 581·57 581·63 581·47 581·23 581·08	163 156 176 196 172 190 155 159 166 164 150	580-97 581-01 581-13 581-24 581-40 581-55 581-64 581-64 581-52 581-29 581-13 581-06	181 136 158 187 199 202 201 200 195 193 167	
1907— January February March April May June July August September October November December	580 · 64 580 · 68 580 · 74 581 · 00 581 · 16 581 · 52 581 · 52 581 · 44 581 · 42 581 · 17 580 · 76 580 · 65	142 127 167 190 200 204 209 206 206 202 196 189	580·03 580·09 580·15 580·41 580·57 580·93 580·93 580·83 580·83 580·58 580·17 580·06	139 123 164 186 197 200 206 202 203 198 193 185	580.92 580.86 580.91 581.10 581.27 581.86 581.87 581.73 581.63 581.36 581.08	150 140 178 195 151 166 173 232 229 227 150 214	581·03 580·99 580·99 581·09 581·26 581·48 581·66 581·65 581·55 581·25 581·01	139 122 162 184 194 197 200 201 203 218 194 190	
January. February. March April. May June July August September. October November. December. 1909— January.	580 · 48 580 · 57 580 · 64 580 · 94 581 · 64 581 · 83 581 · 72 581 · 28 580 · 92 580 · 27 580 · 13 579 · 88	122 114 108 186 198 205 209 206 201 194 189 187	579.90 579.99 580.06 580.36 580.92 581.06 581.25 581.14 580.70 580.34 579.69 579.55	120 111 106 183 196 202 207 203 199 191 187 184	580-86 580-69 580-68 580-86 581-32 581-66 581-91 581-97 581-24 580-87 580-57	139 126 119 150 181 226 232 233 156 154 170	580·91 580·80 580·99 581·36 581·69 581·85 581·87 581·31 580·91 580·59	119 108 103 182 194 199 205 204 201 194 189 184	

Computed conditions for present regimen without regulation New Welland Canal Partial regulation Complete regulation system; assuming 8,500 c.f.s. diversion at Actual conditions system; assuming 8,500 c.f.s. occurring in past as assumed complete Chicago diversion diversion at
Chicago and
New Welland Canal
New Welland Canal assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey given in record Year-Month complete complete Monthly Monthly First of Monthly First of Monthly Mean mean month mean month mean Stage (b) Stage (d) Discharge Discharge Stage Discharge Stage Discharge (a) (e) (g) (h) 1909-February..... March.... 580.02 580 - 17 580 - 18 103 144 179 185 $580 \cdot 10 \\ 580 \cdot 36$ 146 182 $579 \cdot 53 \\ 579 \cdot 79$ $580 \cdot 22 \\ 580 \cdot 33$ 150 150 $580 \cdot 25 \\ 580 \cdot 39$ 143 180 April..... May..... 580.88 580.31 580.78 150 580.76 192 194 June..... $581.08 \\ 581.05$ 580.51 $581 \cdot 23$ $581 \cdot 42$ $\frac{150}{150}$ $581 \cdot 17$ $581 \cdot 27$ 189 191 196 580 - 48 August 581.07 194 580.50 191 581 - 45 153 179 183 581 - 23 September.... October.... November... December... 580 · 23 579 · 75 579 · 64 579 · 60 580 - 80 192 190 581 - 36 581.08 $580 \cdot 32$ 187 184 581.07 183 172 181 169 158 196 580 - 21 580.80 580 - 52 184 580 - 17 580 - 77 580.45 180 1910-126 135 January. 579.95 $579 \cdot 50$ 125 580 - 62 $\frac{143}{150}$ 580.31 118 February..... 579.49 $580 \cdot 50$ 133 580 · 19 March..... 580.01 $579 \cdot 56 \\ 579 \cdot 92$ 180 183 580 · 52 580 · 70 150 150 $580 \cdot 19$ $580 \cdot 33$ 172 176 April..... May..... 580 - 37 580.05 188 $589 \cdot 97$ 150 $580 \cdot 54$ June.... 580 - 57 102 580 - 12 190 $581 \cdot 17$ $581 \cdot 23$ $\begin{array}{c} 150 \\ 150 \end{array}$ 580.70 181 182 July .. 580 - 49 580.04 188 189 580 · 68 580 · 33 580 · 29 189 187 $579.88 \\ 579.84$ 581·15 581·08 $\frac{150}{150}$ 181 182 August. 580 - 54 September... October.... November. 580.47 580 · 10 $579 \cdot 65$ 190 178 $579 \cdot 78 \\ 579 \cdot 46$ 183 153 579·33 579·01 182 151 580 · 71 580 · 41 160 162 175 145 580.18 579.85 December... 1911-January.... February..... March... $579 \cdot 20 \\ 579 \cdot 40$ 126 124 $578 \cdot 85 \\ 579 \cdot 05$ $\frac{125}{122}$ 580 - 12 146 141 579 - 59 113 580 · 03 $579 \cdot 23$ $579 \cdot 50$ 578 · 88 579 · 15 170 171 179 150 150 $579 \cdot 54$ 164 168 $579 \cdot 98$ 580.05 579 - 59 April..... May 580.33 150 579.81 172 174 183 183 $579 \cdot 70 \\ 579 \cdot 54$ $\begin{array}{c} 150 \\ 184 \end{array}$ June..... 580.05 580 - 65 580 - 11 July
Aug
September
October
November 174 177 174 175 172 579.89 184 $580 \cdot 82$ 580 - 21 181 177 175 175 $579.85 \\ 579.75$ 183 178 $579 \cdot 50 \\ 579 \cdot 40$ 168 188 580.74 580 - 14 580.78 580.08 579·30 579·02 579·13 177 176 170 $579 \cdot 65$ $580 \cdot 75$ 580.00 $579 \cdot 37$ $579 \cdot 48$ 580 - 67 $\frac{171}{150}$ 579.95 December.... 168 579.91 580.57 1912-579 · 27 579 · 29 579 · 35 150 January.... 126 578 - 94 125 580 - 55 579 - 87 120 February..... $579 \cdot 78 \\ 579 \cdot 76$ $578 \cdot 96$ $580 \cdot 40$ 145 170 $579 \cdot 02 \\ 579 \cdot 19$ 144 168 $\frac{150}{150}$ March.... 580 - 39 580 - 48 579.88 169 April..... May.... 579.52 183 186 580.85 150 580 - 21 June. July. 580.46 580 - 13 189 $580 \cdot 71$ 580 - 53 580 · 20 580 - 94 188 August... September... October... November... 580 · 63 580 · 71 190 194 188 193 $581 \cdot 72$ $581 \cdot 81$ $\frac{175}{230}$ 580.99 580.30 581 · 18 581 · 20 581 · 14 580 - 41 580.08 190 581 - 64 194 580 - 42 104 $580 \cdot 09 \\ 579 \cdot 85$ 193 581 - 40 194 191 581.20 581.09 December..... 580 · 18 193 191 175 579.69 175 580.95 150 $580 \cdot 94$ 176 580.01 January.....

Year—Month	Actual conditions occurring in past as given in record		for presen without: New Well assumed Chicago assumed a Other low	apiled by	assuming 8 divers Chica New Well	8,500 c.f.s. sion at ago and	n; system; 00 c.f.s. assuming 8,500 c.f.s diversion at chicago and d Canal New Welland Cana		
		thly		thly ean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharg (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (h)	Discharge (i)	
1012									
1913— February. March. April. May. June July. August. September October. November. December.	579 · 84 580 · 13 580 · 82 581 · 13 581 · 26 581 · 26 581 · 26 580 · 98 580 · 75 580 · 44 580 · 30	129 158 179 187 190 198 200 195 191 190 184	579 · 52 579 · 81 580 · 50 580 · 81 580 · 94 580 · 94 580 · 94 580 · 94 580 · 43 580 · 12 579 · 98	128 158 178 187 189 198 199 195 190 190 183	580 · 89 580 · 84 581 · 28 581 · 82 582 · 07 582 · 20 582 · 08 581 · 92 581 · 61 581 · 41 581 · 24	150 150 150 150 234 236 236 234 228 224 218	580·78 580·76 581·16 581·61 581·78 581·63 581·81 581·71 581·51 581·29 581·14	127 159 183 193 197 201 202 202 219 194 192	
1914									
January. February. March. April. May. June. July. August. September. October. November. December.	580 · 07 580 · 04 579 · 99 580 · 15 580 · 36 580 · 64 580 · 79 580 · 69 580 · 49 580 · 37 579 · 82 579 · 53	146 137 151 174 180 182 189 190 192 188 183 162	579·77 579·74 579·69 579·85 580·06 580·34 580·49 580·39 580·19 580·07 579·52 579·23	146 136 151 173 180 181 189 189 189 187 183 161	580 · 96 580 · 82 580 · 78 580 · 73 580 · 91 581 · 21 581 · 56 581 · 30 581 · 30 581 · 00 580 · 70	171 158 162 150 150 150 171 162 168 178 150	580 · 99 580 · 81 580 · 73 580 · 70 580 · 81 581 · 03 581 · 18 581 · 16 581 · 05 580 · 93 580 · 67 580 · 35	150 137 151 183 184 185 190 191 192 189 185	
January. February. March April May June July. August. September October. November December.	$\begin{array}{c} 579 \cdot 45 \\ 579 \cdot 67 \\ 579 \cdot 60 \\ 579 \cdot 56 \\ 579 \cdot 73 \\ 579 \cdot 89 \\ 579 \cdot 98 \\ 580 \cdot 21 \\ 580 \cdot 01 \\ 579 \cdot 81 \\ 579 \cdot 46 \\ 579 \cdot 41 \\ \end{array}$	117 134 146 167 171 175 182 184 181 180 176	579·17 579·39 579·32 579·28 579·45 579·61 579·70 579·93 579·73 579·53 579·18 579·13	117 133 146 166 171 174 182 183 181 179 176 163	580 · 50 580 · 40 580 · 48 580 · 43 580 · 45 580 · 80 580 · 97 581 · 15 581 · 01 580 · 95 580 · 85	138 150 150 150 150 150 150 150 150 150 157 186	580·10 580·06 580·05 580·05 580·04 580·24 580·37 580,41 580·32 580·16 580·04	113 132 142 163 174 174 176 177 180 177 176 163	
January. February. March. April. May. June. July. August. September. October. November. December.	579·16 579·30 579·46 579·95 580·49 581·31 581·06 580·67 580·67 580·50 580·65 580·56	153 124 122 150 184 193 197 201 198 196 193 186	578 · 90 579 · 04 579 · 20 579 · 69 580 · 23 580 · 84 581 · 05 580 · 80 580 · 41 580 · 24 580 · 39 580 · 30	153 123 122 149 184 192 197 200 198 195 193 185	580·72 580·79 580·93 581·06 581·56 582·11 582·47 582·41 582·07 581·68 581·55	150 150 150 156 200 234 215 243 237 231 231	579 · 98 580 · 00 580 · 13 580 · 35 580 · 80 581 · 42 581 · 85 581 · 94 581 · 45 581 · 45 581 · 38 581 · 34	152 120 122 150 188 196 204 204 223 199 220 186	
1917— January February	580·44 580·36	144 145	580·22 580·14	145 145	581·26 581·20	165	581·23 581·13	142 143	

Year—Month	occu in pa	onditions rring st as a record	for preser without New Well assumed Chicago assumed a Other low data con	New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s.		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete		system; assuming 8,500 c.f.s. diversion at Chicago and	
	Mon Mo	thly	Monthly mean		First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharg (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (h)	Discharge (i)	
March April May June July August September October November December	580 · 49 580 · 85 581 · 18 581 · 63 581 · 97 581 · 91 581 · 71 581 · 39 581 · 20 580 · 77	191 185 193 201 211 212 206 203 195 150	580 · 27 580 · 63 580 · 96 581 · 41 581 · 75 581 · 69 581 · 49 581 · 17 580 · 98 580 · 55	192 185 194 201 212 212 207 203 196 150	581·09 581·28 581·55 581·83 582·09 582·20 581·97 581·57 581·27 581·00	220 222 190 230 208 239 234 228 184 168	581 · 10 581 · 22 581 · 48 581 · 78 582 · 10 582 · 29 582 · 19 581 · 93 581 · 71 581 · 44	195 184 196 199 206 230 229 223 220 149	
1918— January February March April May June July August September October November December	580·82 580·84 581·13 581·50 581·75 581·97 581·87 581·49 581·20 581·07 581·13	125 143 168 131 199 208 212 212 210 202 200 196	580·60 580·62 580·91 581·28 581·53 581·76 581·75 581·27 580·98 580·85	126 143 169 131 200 208 213 212 211 202 201 196	580 · 85 580 · 77 580 · 92 581 · 15 581 · 41 581 · 63 581 · 70 581 · 75 581 · 62 581 · 43 581 · 25 581 · 23	136 156 181 139 210 218 155 158 174 201 222 227	581·23 581·24 581·37 581·64 581·94 582·20 582·29 582·15 581·94 581·47 581·47	122 140 166 125 197 213 235 229 227 220 220 197	
1919— January February March April May June July August September October November December	580·77 580·71 580·81 581·14 581·60 581·37 581·12 580·77 580·68 580·42 580·08	189 178 181 187 195 198 203 199 197 193 189	580·56 580·50 580·60 580·93 581·25 581·39 581·16 580·91 580·56 580·47 580·21 579·87	190 178 182 187 196 198 204 199 198 193 190 154	581·05 580·91 581·06 581·16 581·48 581·68 581·66 581·49 581·33 581·17 580·85	204 163 181 205 194 150 218 152 150 173 221 173	581·35 581·18 581·12 581·33 581·66 581·89 581·86 581·70 581·50 581·29 581·29 580·84	181 172 177 182 191 200 201 199 198 195 195	
1920— January February March April May June July August September October Nov December	580·00 580·04 580·19 580·57 580·82 580·93 581·11 580·93 580·59 580·32 580·10	108 119 155 189 186 192 200 201 201 190 182 184	579·79 579·83 579·98 580·36 580·61 580·72 580·87 580·90 580·72 580·38 580·11 579·89	108 118 155 188 186 191 200 200 201 189 182 183	580·62 580·51 580·58 580·92 581·31 581·40 581·62 581·73 581·57 581·37 581·37 581·37	118 131 170 217 194 150 188 184 158 172 152 163	580·65 580·57 580·59 580·86 581·17 581·26 581·35 581·35 581·22 581·22 581·02 580·79	99 113 152 194 195 194 196 198 197 194 190 180	
1921— January February March	579·91 579·87 579·96	181 126 162	579·71 579·67 579·76	181 125 162	580·76 580·64 580·53	177 144 166	580·61 580·44 580·43	178 119 160	

Year—Month	Actual conditions occurring in past as given in record		New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s.		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		system; assuming 8,500 c.f.s. diversion at Chicago and	
		nthly ean	Monthly mean		First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (h)	Discharge (i)
1921-								
April	580 · 44 580 · 62 580 · 65 580 · 48 580 · 18	183 180 186 191 189	580 · 24 580 · 42 580 · 45 580 · 28 579 · 98	182 180 185 191 188	580 · 78 581 · 19 581 · 37 581 · 42 581 · 35	165 150 150 150 150	580 · 68 581 · 01 581 · 13 581 · 08 580 · 90	181 186 187 188 188
September October November December	580·03 579·87 579·69 579·51	189 185 175 170	579·83 579·67 579·49 579·31	189 184 175 169	581·31 581·16 580·90 580·77	180 199 150 150	580·71 580·60 580·38 580·21	186 183 179 166
January February March April	$579 \cdot 29$ $579 \cdot 26$ $579 \cdot 50$ $580 \cdot 04$	127 126 165 176	579·10 579·07 579·31 579·85	128 126 166 176	580.68 580.41 580.44 580.85	153 148 172 191	580·07 579·94 580·00 580·39	127 126 164 174
MayJuneJulyAugustSeptember	580 · 52 580 · 62 580 · 73 580 · 64 580 · 43	183 190 196 196 193	580·33 580·43 580·54 580·45 580·24	184 190 197 196	581·37 581·63 581·73 581·82 581·72	213 217 161 180 228	580 · 89 581 · 22 581 · 36 581 · 40 581 · 27	186 192 195 195 194
October November December 1923—	580.02 579.59 579.14	186 180 181	579·83 579·40 578·95	181 181 181	581 · 35 581 · 03 580 · 80	159 166 170	580·97 580·59 580·19	188 182 176
January February March April	579 · 10 578 · 83 579 · 04 579 · 27	141 116 165 167	578·91 578·64 578·85 579·08	141 115 165 166	580·41 580·17 580·15 580·33	170 135 150 150	579.93 579.76 579.74 579.93	140 112 164 165
MayJuneJulyAugustSeptember	579·70 579·90 579·96 579·79 579·69	183 188 186 185 184	579·51 579·71 579·77 579·60 579·50	183 187 186 184 184	580.70 581.07 851.28 581.20 581.09	150 150 196 171 183	580·25 580·57 580·71 580·66 580·52	180 183 185 184 183
October November December 1924—	579 · 41 579 · 09 578 · 80	181 176 170	579·22 578·90 578·61	180 176 160	580.92 580.65 580.37	176 164 150	580·35 580·07 579·79	179 174 169
JanuaryFebruaryMarchApril	578 · 54 578 · 77 578 · 75 578 · 99	146 120 145 160	578 · 40 578 · 63 578 · 61 578 · 85	148 121 147 161	580·19 580·13 580·14 580·23	150 143 150 150	579·55 579·51 579·56 579·67	145 116 143 159
MayJuneJulyAugustSeptember	579 · 29 579 · 45 579 · 53 579 · 67 579 · 55	173 176 177 181 182	579 · 15 579 · 31 579 · 39 579 · 53 579 · 41	175 177 179 182 184	580·53 580·82 581·03 581·23 581·28	150 150 150 150 150	579.94 580.20 580.34 580.50 580.51	170 171 177 179 181
October November December 1 925—	579·30 578·78 578·47	174 169 146	579·16 578·64 578·33	175 171 147	581·17 580·82 580·45	150 150 150	580·30 589·91 579·51	175 170 144
JanuaryFebruaryMarchApril	578 · 30 578 · 25 578 · 33 578 · 51	127 432 149 160	578 · 26 578 · 21 578 · 29 578 · 47	128 132 150 160	580·19 589·99 580·02 580·09	150 150 150 150	$579 \cdot 25$ $579 \cdot 11$ $579 \cdot 13$ $579 \cdot 22$	126 131 150 161

Year—Month	occu in pa	Actual conditions occurring in past as given in record		diversion t8,500 c.f.s	Complete systassuming divers Chica New Well	sion at go and	assuming diversions Chica New Well	regulation tem; 8,500 c.f.s. sion at go and and Canal plete
	Monthly mean			thly	First of month	Monthly mean	First of month	Montnly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (h)	Discharge (i)
1925— May June July August. September. October. November. December.	578 · 45 578 · 50 578 · 59 578 · 52 578 · 32 577 · 92 577 · 68 577 · 47	163 163 164 161 158 156 151 155	578·41 578·46 578·55 578·48 578·28 577·64 577·43	164 163 165 161 159 156 152 155	580·17 580·21 580·30 580·30 580·16 579·91 579·64 579·42	150 150 150 150 150 150 150 150	579 · 27 579 · 29 579 · 35 579 · 34 579 · 17 578 · 89 578 · 61 578 · 40	162 162 163 161 158 153 151 138

TABLE 11—EFFECT OF REGULATION—LAKE ERIE

Year—Month	Actual conditions occurring in past as given in record		for preser without New Well assumed Chicago assumed a Other low	apiled by	Complete syst assuming 8 divers Chics New Well	sion at ago and	Partial regulation system; assuming 8,500 c.f. diversion at Chicago and New Welland Car complete	
		thly		thly ean	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharg (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (h)	Discharge (i)
1860— January. February. March April May June July August September October November December	573 · 26 572 · 90 573 · 30 574 · 00 574 · 21 574 · 18 573 · 92 573 · 76 573 · 42 573 · 42 573 · 42 573 · 42 573 · 42	224 216 225 241 246 245 239 236 228 221 219 216	572·44 572·08 572·48 573·18 573·39 573·36 573·10 572·94 572·60 572·30 572·21 572·05	217 208 218 233 239 237 232 228 221 213 212 208			572.50 572.20 572.35 573.05 573.54 573.57 573.29 573.00 572.72 572.72 572.35 572.31	197 184 190 219 235 237 240 231 222 205 203 226
January February March	$572 \cdot 61$ $572 \cdot 33$ $572 \cdot 77$	210 204 213	571·79 571·51 572·01	203 196 206			571.88 571.82 572.02	176 176 177

Stages in Feet Above Mean Sea Level

Year—Month	occ in p	conditions urring ast as in record	without New Well assumed Chicago assumed a Other low data con	d conditions in regimen regulation land Canal system; assuming 8,500 c.f.s. diversion at Chicago and compiled by ke Survey		tem; 8,500 c.f.s. sion at ago and and Canal	system; assuming 8,500 c diversion at Chicago and	
	Mo M	nthly lean		nthly ean	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (h)	Discharge (i)
April. April. May. June. July. August. September. October November. December.	573·81 574·24 574·31 574·06 574·10 573·92 573·69 573·67 573·44	237 247 248 243 244 239 234 234 228	572 · 99 573 · 42 573 · 49 573 · 24 573 · 28 573 · 10 572 · 87 572 · 85 572 · 62	229 240 240 236 236 232 226 227 220			572 · 90 573 · 70 573 · 84 573 · 60 573 · 49 573 · 29 573 · 11 573 · 00 572 · 77	212 241 245 248 259 242 234 248 248
1862— January. February. March. April. May. June. July. August. September. October. November. December.	573 · 43 573 · 14 573 · 28 574 · 18 574 · 42 547 · 42 574 · 39 574 · 01 573 · 70 573 · 32 572 · 98 573 · 01	228 222 225 245 251 251 250 241 234 226 218 219	572.61 572.32 572.46 573.36 573.60 573.57 573.19 572.88 572.50 572.16 572.19	221 214 218 237 244 243 243 233 227 218 211			572.54 572.54 572.54 573.11 573.77 573.81 573.71 573.60 573.15 572.86 572.53 572.43	198 198 198 221 243 244 252 262 235 227 218 237
1863— January. February. March. April. May. June. July. August. September. October. November. December.	573·46 573·75 573·69 573·81 573·99 573·85 573·73 573·65 573·26 572·82 572·41 572·38	229 235 234 237 241 238 235 233 224 214 205 205	572.64 572.93 572.87 572.99 573.17 573.03 572.91 572.83 572.44 572.00 571.61 571.56	222 227 227 229 234 230 228 225 217 206 198 197			572.56 573.07 573.18 573.17 573.29 573.07 572.83 572.53 572.04 571.79 571.73	199 219 225 224 229 228 233 226 217 178 176
1864— January. February. March April. May. June July August. September. October. November. December.	572.09 572.24 572.45 572.95 573.65 573.34 573.07 572.85 572.54 572.37 572.44	198 202 206 217 233 232 226 220 215 208 205 206	571 · 27 571 · 42 571 · 63 572 · 13 572 · 83 572 · 78 572 · 52 572 · 25 572 · 03 571 · 72 571 · 55 571 · 62	191 194 199 209 226 224 219 212 208 200 198 198			571 · 68 571 · 69 571 · 96 572 · 41 573 · 14 573 · 14 573 · 14 572 · 64 572 · 27 572 · 27 572 · 05 571 · 97 572 · 06	176 176 176 192 222 231 235 220 198 178 176
January February March April	$572 \cdot 01$ $571 \cdot 43$ $571 \cdot 75$ $572 \cdot 47$	197 184 191 207	571 · 19 570 · 61 570 · 93 571 · 65	190 176 184 199			571 · 90 571 · 55 571 · 32 571 · 86	176 176 176 176

Year—Month	Actual conditions occurring in past as given in record		for preser without New Well assumed Chicago assumed a Other low data con	diversion t8,500 c.f.s.	Complete syst assuming divers Chica New Well	tem; 8,500 c.f.s. sion at go and	Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete		
		ean		ithly ean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)	
May. June. July. August. September. October. November. December.	573·05 573·03 572·99 572·91 572·87 572·57 572·19 572·05	220 219 218 216 216 209 201 198	572·23 572·21 572·17 572·09 572·05 571·75 571·37 571·23	213 211 211 208 209 201 194 190			572.65 572.99 572.89 572.62 572.43 572.23 571.93 571.83	202 216 228 219 210 194 176 176	
1866— January. February. March. April May June. July. August. September. October. November. December.	571-78 571-62 572-01 572-59 572-81 573-07 573-18 572-93 572-87 572-86 572-62 572-63	192 188 197 209 214 220 222 217 216 215 210 210	570.96 570.80 571.19 571.77 571.99 572.25 572.36 572.11 572.05 572.04 571.80 571.81	185 180 190 201 207 212 215 209 207 203 202			571.77 571.65 571.81 572.39 572.84 573.02 573.14 572.86 572.51 572.40 572.31 572.22	176 176 176 192 210 217 235 227 216 207 200 214	
1867— January. February. March. April. May June. July. August. September. October. November. December.	572·34 572·02 572·42 572·74 573·26 573·57 573·38 573·07 572·68 572·34 571·84 571·62	204 197 200 213 224 231 227 220 211 204 193 188	571 · 52 571 · 20 571 · 60 571 · 92 572 · 44 572 · 75 572 · 56 572 · 25 571 · 86 571 · 52 571 · 52 570 · 80	197 189 199 105 217 223 220 212 204 196 186 180			572·07 571·90 572·03 572·54 573·02 573·40 572·90 572·44 572·01 571·78 571·52	179 176 178 198 218 223 243 228 211 177 176	
January February March April May June July August September October November December	571 · 42 571 · 04 571 · 63 572 · 46 572 · 91 573 · 30 573 · 27 572 · 75 572 · 48 572 · 03 571 · 87 571 · 66	184 176 188 206 216 225 224 213 207 197 194 189	570 · 60 570 · 22 570 · 81 571 · 64 572 · 09 572 · 48 572 · 45 571 · 93 571 · 66 571 · 21 571 · 05 570 · 84	177 168 181 198 209 217 217 205 200 189 187			571 · 39 571 · 13 571 · 17 571 · 87 572 · 74 573 · 28 572 · 78 572 · 22 571 · 91 571 · 72 571 · 58	176 176 176 176 206 225 240 225 193 176 176	
1869— January February March April May 45827—11	571 · 65 571 · 58 572 · 06 572 · 36 572 · 91	189 187 198 204 216	570 · 83 570 · 76 571 · 24 571 · 54 · 572 · 09	182 179 191 196 209	572 · 20 572 · 06 572 · 43 572 · 67 572 · 56	180 198 199 194 176	571 · 54 571 · 50 571 · 75 572 · 35 572 · 81	176 176 176 190 210	

Stages in Feet Above Mean Sca Level

Year—Month	Actual conditions occurring in past as given in record		for preser without New Well assumed Chicago assumed a Other lowed data con	New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s.		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
		nthly ean		ithly ean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)	
1869									
June July August September October November December	573 · 30 573 · 58 573 · 48 573 · 21 572 · 76 572 · 30 572 · 65	225 232 229 223 213 203 211	572 · 48 572 · 76 572 · 66 572 · 39 571 · 94 571 · 48 571 · 83	217 225 221 216 205 196 203	573 · 55 573 · 67 573 · 63 573 · 47 573 · 23 572 · 73 572 · 77	231 279 246 245 222 210 218	573 · 22 573 · 42 573 · 33 572 · 87 572 · 33 571 · 89 571 · 98	226 243 245 227 202 176 186	
1870— January February. March. April. May. June. July. August. September. October. November. December.	572 · 89 573 · 12 572 · 89 573 · 54 573 · 75 573 · 72 573 · 76 573 · 71 573 · 46 573 · 08 572 · 78 572 · 66	216 221 216 231 235 235 236 235 229 229 220 214 211	572.07 572.30 572.07 572.72 572.93 572.94 572.89 572.64 572.64 571.96 571.84	209 213 209 223 228 227 229 227 222 212 207 203	572·79 573·07 573·09 573·45 574·13 574·20 574·13 573·95 573·57 573·04 572·61 572·45	184 190 218 231 209 225 289 242 282 256 237 248	572·42 572·86 572·80 572·94 573·41 573·46 573·37 573·29 572·99 572·56 572·10	193 210 208 214 232 233 242 238 230 217 188 200	
1871— January February March April May June July August. September. October November	572 · 45 572 · 12 572 · 57 573 · 05 573 · 32 573 · 33 573 · 33 573 · 12 572 · 95 572 · 28 572 · 10 571 · 66	206 199 209 220 226 226 221 217 203 199 189	571.63 571.30 571.75 572.23 572.50 572.51 572.30 572.13 571.46 571.28 570.84	199 191 202 212 219 218 219 213 210 195 192 181	572 · 20 571 · 98 572 · 38 572 · 77 573 · 22 573 · 41 573 · 54 573 · 15 572 · 65 572 · 11 571 · 69	201 176 229 222 239 230 248 249 176 176 176	572·03 571·88 572·03 572·67 573·08 573·15 573·06 572·76 572·43 571·98 571·56	177 176 177 203 220 222 232 232 224 210 176 176	
1872— January. February. March. April. May June July. August. September October. November December	571·58 571·34 571·25 571·45 571·89 572·26 572·25 572·22 571·99 571·82 571·49 571·26	187 182 180 185 194 202 202 201 196 193 186 181	570·76 570·52 570·43 570·63 571·07 571·44 571·40 571·17 571·00 570·67 570·44	180 174 173 177 187 194 195 193 189 185 179 173	571-60 571-25 571-15 571-20 571-50 571-95 572-01 572-02 571-98 572-00 571-90 571-53	176 198 182 176 176 176 176 176 176 176 176 176	571·43 571·27 571·05 571·04 571·35 571·82 572·11 572·10 571·98 571·83 571·64 571·41	176 176 176 176 176 176 185 184 176 176 176	
1873— January February March April May June	$571 \cdot 16$ $571 \cdot 17$ $571 \cdot 24$ $572 \cdot 52$ $573 \cdot 19$ $573 \cdot 27$	179 179 180 208 223 225	570·34 570·35 570·42 571·70 572·37 572·45	172 171 173 200 216 217	571·27 571·10 571·43 572·20 573·25 573·15	176 176 176 176 176 229 231	571·23 571·09 571·07 571·74 572·95 573·31	176 176 176 176 215 229	

TABLE 11.—EFFECT OF REGULATION—LAKE ERIE—Continued Stages in Feet above Mean Sea Level

Year—Month	occu in pa	conditions arring ast as in record	for preser without New Well assumed Chicago assumeda Other low data con	l conditions nt regimen regulation land Canal complete diversion t 8,500 c.f.s. erings from apiled by ce Survey	Complete systassuming divers Chi New Well	sion at cago and	assuming diver Chica New Well	regulation tem; 8,500 c.f.s. sion at ago and and Canal plete
		thly ean		thly ean	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
1873— July Aug September. October November. December.	573 · 25 573 · 19 572 · 79 572 · 49 572 · 29 572 · 66	224 223 214 207 203 211	572 · 43 572 · 37 571 · 97 571 · 67 571 · 47 571 · 84	217 215 207 199 196 203	573 · 30 573 · 50 573 · 11 572 · 77 572 · 55 572 · 49	225 262 237 225 244 232	573 · 18 572 · 93 572 · 55 572 · 11 571 · 98 572 · 25	237 229 217 185 176 218
1874— January February March April May June July August September October November December	573 · 05 573 · 10 573 · 13 573 · 30 573 · 39 573 · 49 573 · 33 572 · 87 572 · 43 572 · 01 571 · 80	220 221 221 225 227 229 230 226 216 206 197	572 · 23 572 · 28 572 · 31 572 · 48 572 · 57 572 · 64 572 · 67 572 · 67 572 · 61 571 · 61 571 · 61 570 · 98	213 213 214 217 220 221 223 218 209 198 190 184	572·50 573·08 573·39 573·10 573·46 573·52 573·57 573·47 573·05 572·46 572·25	198 202 218 204 180 184 256 256 223 200 201 183	572·50 572·91 572·91 572·99 573·10 573·21 573·16 572·94 572·50 571·92 571·66 571·48	197 213 213 216 221 226 235 229 216 176 176
1875— January, February, March April May June July August September October November December	571 · 57 571 · 40 571 · 54 571 · 94 572 · 41 572 · 82 572 · 96 572 · 82 572 · 33 572 · 18 572 · 40	187 184 187 195 205 215 218 218 214 204 200 205	570·75 570·58 570·72 571·12 571·59 572·02 572·14 572·00 571·51 571·36 571·58	180 176 180 187 198 207 211 210 207 196 193	572·20 571·95 571·71 572·15 572·65 573·35 573·35 573·15 572·65 572·45 572·45	207 198 201 176 176 176 191 224 248 205 219 252	571·31 571·11 571·08 571·36 571·97 572·60 572·92 572·77 572·53 572·26 572·26 572·26 572·36	176 176 176 176 176 200 228 225 217 197 179 232
1876— January, February, March, April, May, June, July, August, September, October, November, December	572·36 572·92 573·57 574·09 574·41 574·52 574·41 573·94 573·41 573·41 573·49 573·15	204 217 232 243 251 253 251 244 240 228 230 222	571 · 54 572 · 10 572 · 75 573 · 27 573 · 59 573 · 59 573 · 12 572 · 67 572 · 67 573 · 3	197 209 225 235 244 245 244 236 233 220 223 214	572 · 24 572 · 36 573 · 10 573 · 40 573 · 62 574 · 04 573 · 56 573 · 68 573 · 12 572 · 72 572 · 60	248 176 209 232 245 272 268 258 278 265 243 266	572 · 12 572 · 51 573 · 22 573 · 87 574 · 20 574 · 30 574 · 17 573 · 91 573 · 58 573 · 12 572 · 93 572 · 72	180 197 226 246 256 259 266 269 261 234 247 243
1877— January February March April May June July 45827—11½	572 · 75 572 · 59 572 · 36 572 · 79 573 · 04 573 · 12 573 · 36	213 209 204 214 219 221 226	571 · 93 571 · 77 571 · 54 571 · 97 572 · 22 572 · 30 572 · 54	206 201 197 206 212 213 219	572.06		572 · 34 572 · 24 572 · 16 572 · 41 572 · 85 572 · 99 573 · 02	190 186 183 192 211 217 231

Stages in Feet above Mean Sea Level

Year—Month	Actual conditions occurring in past as given in record		New Welland Canal		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		system; assuming 8,500 cs. diversion at Chicago and	
		nthly ean		nthly ean	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
August	573 · 22 573 · 14 572 · 74 572 · 66 572 · 74 572 · 82	223 222 213 211 213 214	572·40 572·32 571·92 571·84 571·92	215 215 205 204 205 207			572 · 83 572 · 50 572 · 35 572 · 25 572 · 24 572 · 35	226 216 203 197 237
February March April May June July August September October November December	572.96 573.09 573.51 573.77 573.77 573.77 573.53 573.40 572.85 572.93	218 220 230 236 236 236 231 227 220 215 217	572 · 14 572 · 27 572 · 69 572 · 95 572 · 95 571 · 71 572 · 58 572 · 23 572 · 03 572 · 11	210 213 222 229 228 228 229 223 220 212 208 209			572 · 54 572 · 74 573 · 02 573 · 39 573 · 31 573 · 02 572 · 68 572 · 38 572 · 28 572 · 40	198 206 218 230 233 240 231 221 206 199 235
1879— January February March April May June July August September October November December	572·51 572·37 572·40 572·76 572·91 573·00 573·03 572·81 572·48 572·48 572·48 572·48	208 205 205 213 216 218 219 214 207 202 192 197	571·69 571·55 571·58 571·94 572·09 572·18 572·21 571·99 571·66 571·43 570·96 571·22	201 197 198 205 209 210 212 206 200 194 185 189			572 · 04 571 · 93 572 · 02 572 · 37 572 · 74 572 · 78 572 · 78 572 · 78 572 · 15 571 · 93 571 · 72 571 · 63	177 176 177 191 206 212 227 218 187 176 176
I880— January. February. March. April. May June. July. August. September. October November. December.	572·54 572·58 572·72 572·88 573·15 573·26 573·35 573·11 572·88 572·44 572·36 572·02	208 209 212 216 222 224 226 221 216 206 204 197	571·72 571·76 571·90 572·06 572·33 572·44 572·53 572·29 572·06 571·62 571·54 571·20	201 201 205 208 215 216 219 213 209 198 197 189			572.86 572.50 572.07	183 200 201 206 215 221 233 227 216 181 176
January January February March April May June July	$571 \cdot 61$ $571 \cdot 72$ $572 \cdot 04$ $572 \cdot 74$ $573 \cdot 14$ $573 \cdot 38$ $573 \cdot 33$	188 190 197 213 222 227 226	570·79 570·90 571·22 571·92 572·32 572·56 572·51	182 183 191 206 216 220 220			571·73 571·61 571·85 572·47 573·09 573·34 573·32	176 176 176 195 220 230 240

Year—Month	Actual conditions occurring in past as given in record		for presen without New Well assumed Chicago assumed a Other lowed	conditions to regimen regulation and Canal complete diversion ts,500 c.f.s. erings from ompiled te Survey	syst assuming & divers Chica New Well	sion at ago and	assuming divers Chica New Well	Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
		thly ean	Monthly mean		First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)	
August September October November	573·01 572·66 572·61 572·43 572·64	219 211 210 206 210	572·19 571·84 571·79 571·61 571·82	212 205 203 200 203			572 · 90 572 · 44 572 · 21 572 · 33 572 · 43	228 211 214 202 237	
January February March April May June July August September October	573·11 573·56 573·78 573·98 574·13 574·06 573·92 573·65 573·20	221 221 231 236 241 244 243 239 233 223	572·30 572·30 572·75 572·97 573·17 573·32 573·25 573·11 572·84 572·39 572·07	215 214 225 229 235 237 237 232 227 216			572.63 572.98 573.18 573.53 573.70 573.87 573.81 573.58 573.34 572.99	202 216 225 235 241 246 255 262 245 230	
November. December. 1883— January. February. March. April. May. July. August. September. October. November. December.	572.88 572.37 572.28 572.49 572.68 573.26 573.96 574.10 573.47 573.47 573.09 573.12	216 205 202 207 211 214 224 240 245 245 229 220 221	572.07 571.56 571.48 571.69 571.88 572.00 572.46 573.16 573.30 572.99 572.67 572.29 572.29	210 198 196 200 205 207 218 233 239 237 230 222 214 214			572-64 572-22 571-99 572-22 572-51 572-72 573-02 573-93 574-01 573-65 573-18 572-84	226 214 176 185 198 205 218 237 259 271 264 237 242 237	
1884— January February. March April May June July August September October November December	572·79 573·05 573·24 573·79 574·06 574·14 573·92 573·76 573·33 573·00 572·52 572·45	214 220 224 236 243 244 239 236 226 218 208 206	572-00 572-26 572-25 573-45 573-27 573-35 573-13 572-97 572-54 572-21 571-66	208 213 218 229 237 237 233 229 220 211 202 199			572 · 21 572 · 33 572 · 71 573 · 17 573 · 55 573 · 65 573 · 50 573 · 30 572 · 95	185 190 205 225 237 239 246 243 229 218 188 195	
1855— January February March April May June July August	572 · 27 572 · 06 571 · 92 572 · 74 573 · 47 573 · 98 573 · 94 573 · 95	202 198 195 213 229 241 240 240	571·49 571·28 571·14 571·96 572·69 573·20 573·16 573·17	196 191 189 206 223 234 234 233			571.86 571.77 572.24 573.18	176 176 176 186 225 240 253 262	

Year—Month	occi in p	conditions arring ast as n record	for preser without New Well assumed Chicago assumed a Other low data con	New Welland Canal		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		system; assuming 8,500 c.f.s. diversion at Chicago and	
		nthly ean		thly ean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)	
September October November	573·80 573·70 573·58	237 234 232	573·02 572·92 572·80	231 227 226			573·37 573·18 573·19	248 225 253	
December	573 · 53 573 · 55 572 · 82 572 · 63	231 231 214 210	572.75 572.78 572.05 571.86	224 225 207 204			572.95 572.86 572.59 572.14	248 212 200 181	
March April May June July	573.51 573.81 573.91 573.89	230 237 239 239	572.74 573.04 573.14 573.12	223 231 231 232 233			572.14 572.65 573.40 573.49 573.37	202 232 234 242	
August September October November December	573 · 68 573 · 44 573 · 21 572 · 80 572 · 85	234 228 223 214 215	572.91 572.67 572.44 572.03 572.08	227 222 216 208 208			573·23 572·97 572·71 572·38 572·25	238 230 222 206 218	
January. February. March April May. June July. August. September October.	572.62 573.04 573.85 573.87 574.05 574.08 573.84 573.52 573.29 572.70	210 219 236 235 240 243 239 230 223 224	571.86 572.28 573.09 573.11 573.29 573.32 573.08 572.76 572.53 571.94	204 212 230 228 234 236 233 223 217 217			572·17 572·38 573·06 573·50 573·46 573·51 573·33 572·84 572·63 572·30	183 192 219 234 233 235 241 226 220 200	
November December	572 · 43 572 · 45	212 216	571 · 67 571 · 69	206 209			571.92 571.98	176 186	
January. February. March. April. May. June. July. August. September. October. November. December.	$\begin{array}{c} 572 \cdot 27 \\ 572 \cdot 00 \\ 572 \cdot 10 \\ 572 \cdot 73 \\ 572 \cdot 98 \\ 573 \cdot 11 \\ 573 \cdot 26 \\ 573 \cdot 16 \\ 572 \cdot 72 \\ 572 \cdot 35 \\ 572 \cdot 41 \\ 572 \cdot 29 \end{array}$	211 198 199 214 217 221 226 223 216 212 208 215	571 · 52 571 · 25 571 · 35 571 · 98 572 · 23 572 · 36 572 · 51 571 · 97 571 · 60 571 · 66 571 · 54	205 191 193 207 211 214 220 216 210 205 202 208			572.04 572.01 572.00 572.44 572.93 573.00 572.97 572.83 572.38 571.95 572.22 572.40	177 176 193 214 217 230 226 206 176 193 235	
January. February. March April May June July August September	572·31 572·15 571·99 572·34 572·52 572·95 573·15 572·84 572·45	211 206 198 206 209 220 221 219 210	571·57 571·41 571·25 571·60 571·78 572·21 572·41 572·10 571·71	205 199 192 199 203 213 215 212 204			572.05 572.22 572.16 572.28 572.63 572.91 573.15 572.84 572.29	178 185 183 188 202 214 235 226 199	

Year—Month	occu in pa	onditions rring ast as n record	for presen without New Well assumed Chicago assumed a Other low data con	conditions at regimen regulation land Canal complete diversion t8,500 c.f.s. erings from appled by te Survey	Complete syst assuming to divers Chica New Well	sion at ago and	assuming diver Chica New Well	regulation tem; 8,500 c.f.s. sion at go and and Canal plete
		nthly ean	Monthly mean		First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
October November December	572·03 571·76 572·02	199 199 206	571·29 571·02 571·28	192 193 199			571·87 571·64 571·76	176 176 176
1890— January. February. March April. May. June. July. August. September. October. November. December.	572·38 572·67 572·79 573·62 573·62 573·61 573·17 572·98 572·79 572·76 572·53	219 215 220 226 234 242 235 225 217 216 221	571.65 571.94 572.06 572.55 572.89 573.26 572.88 572.44 572.25 572.06 572.03	213 208 214 219 228 235 229 218 211 209 215 208			572·29 572·82 572·97 573·25 573·56 573·78 573·65 573·01 572·53 572·25 5.2·28 572·28	188 210 216 227 237 244 251 231 217 195 198 222
1891— January, February, March, April, May, June, July, August, September, October, November, December,	572·31 572·29 572·75 572·62 572·44 572·58 572·48 572·21 572·03 571·65 571·21 571·28	209 206 210 212 207 207 211 205 201 193 191 192	571.59 571.57 572.03 571.90 571.72 571.86 571.76 571.49 571.31 570.93 570.49 570.56	203 199 204 205 201 200 205 198 495 186 185			571.96 572.12 572.48 572.75 572.58 572.53 572.51 572.13 571.95 571.76 571.39 571.23	176 180 195 206 200 198 217 186 176 176 176
1892— January. February. March April. May. June. July. August. September. October. November. December.	571·31 571·10 571·14 571·70 572·50 573·26 573·38 573·03 572·71 572·15 571·82 571·55	190 176 180 198 207 225 230 222 216 208 200 200	570·60 570·39 570·43 570·99 571·79 572·55 572·67 572·32 572·00 571·44 571·11 570·84	184 169 174 191 201 218 224 215 210 201 194 193			571·35 571·30 571·16 571·44 572·24 573·13 573·49 573·09 572·52 571·96 571·69 571·47	176 176 176 176 186 222 245 233 217 176 176
January. February. March April May June July August. September October.	571·17 571·25 571·47 572·20 573·04 573·23 572·95 572·61 572·23 571·88	183 182 188 203 219 226 224 210 205 203	570·47 570·55 570·77 571·50 572·34 572·53 572·25 571·91 571·53 571·18	177 175 182 196 213 219 218 203 199 196			571·37 571·16 571·23 571·76 572·71 573·21 573·03 572·51 571·98 571·81	176 176 176 176 205 225 232 217 176

${\tt TABLE~11.-\!EFFECT~OF~REGULATION-\!LAKE~ERIE-\!Continued}$

Stages in Feet above Mean Sea Level

Year—Month	Actual conditions occurring in past as given in record		New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s.		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		system;	
		ean		ithly ean	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
1000								
November December 1894—	$571 \cdot 48 \\ 571 \cdot 56$	202 202	570·78 570·86	196 195		· · · · · · · · · · · · · · · · · · ·	571.60 571.60	176 176
January	571.84	202	571 · 14	196	$572 \cdot 20$	200	571.97	176
February	$571 \cdot 72$	193	571.02	186	572.00	179	572.20	185
March	$571 \cdot 75$ $572 \cdot 15$	196 200	571 · 05 571 · 45	190 193	572·16 572·51	205	572 · 13 572 · 37	181 191
May	572 - 54	211	571.84	205	573.30	237	572 . 74	206
June	572.85	220	572 - 15	213	573 - 62	263	573.05	219
July	$572 \cdot 73$	216	572.03	210	573 · 62	258	573:02	231
August	$572 \cdot 36$. 206	571.66	199	573 · 20	210	572 · 52	217
September	572 · 19	202	571 - 49	196	573 · 16	176	572:10	184
October November	571·87 571·63	202 198	571·17 570·93	195 192	572 · 88 572 · 50	176	571 · 96. 571 · 85.	176 176
December	571.66	195	570.86	188	572.25	224	571.82	176
1895—	011 00	. 100	010 00	100	012 20	224	011 02	110
January	$571 \cdot 23$	192	570.53	186	572.05	212	571 - 75	176
February	$571 \cdot 00$	177.	570.30	170	571.91	178	571.65	176
March	571.01	.176	570.31	170	571.72	182	571:58	176
April	571 · 26 . 571 · 48 .	.180	570·56 570·78	173 181	571·82 571·92	176 176	571.68 571.87	176
May June	571.57	190	570.87	183	571.92	176	572.05	176
July	571.46	190	570.76	184	571.97	176	572.05	177
August	$571 \cdot 38$	186	570 · 68	179	572.00	: 176	571.95	176
September	$571 \cdot 28$	186	570.58	180	571.93	. 180	571:84	. 176
October	570.80	182	570 - 10	175	571.66	176	571 · 64	176
November	570·70 570·86	171 176	570·00 570·16	165 169	571·42 571·30	217 176	571·29 571·20	176
December	010.00	.110	. 310.10	109	911.30	110	3/1.20	176
January	570.96	180	570.27	174	571-27	176	571.32	176
February	570.88	. 178	570 · 19	171	571 - 15	176	571:33	176
March	570.83	.171	570 · 14	165	571 · 43	176	571.21.	176
April	571.28	181	570 59	174	571.54	176	571.32.	176
May	571 · 66 571 · 93	192 192	570·97 571·24	186 185	571 · 85 572 · 15	176 176	571 · 73 572 · 15	176
JuneJuly	571.81	196	571.12	190	572.19	176	572 · 23	194
August	572.02	201	571.33	194	572 · 34	176	572 · 23	194
September	571.70	192	571.01	186	572 · 23	176	572 · 18	191
October	$571 \cdot 46$	186	570.77	179	571.82	176	571.85	176
November	571.09	186	570 · 40	180	571.56	176	571.71.	176
December	$571 \cdot 12$	182	570.43	175	571 · 40	176	571 - 56	176
January	571 - 09	190	570 - 40	184	571.43	176	571 - 59	176
February	571.29	180	570 - 60	173	571.52	218	571.78	176
March	571.66	191	. 570.97	185	571.68	176	572:12	180
April	572 - 21	203	$571 \cdot 52$	196	572 - 07	176	572 - 66	. 203
May	572 - 54	212	571.85	206	572 - 55	176	573 .02	217
June	572 64	212	571.95	205	572.83	185	573 . 10	221
July	$572 \cdot 63$ $572 \cdot 47$	211 208	571 · 94 571 · 78	205 201	573·05 573·17	183 176	572 · 96 572 · 60	230
August September	572 - 47	200	571.50	195	573.17	176	572 19	191
October	571.70	191	571.01	184	572 · 58	187	571.83	176
November	$571 \cdot 57$	192	570.88	186	572 - 21	182	571.61	176
December	$571 \cdot 54$	194	570.85	187	572 · 10	176	571 - 61	176

Stages in Feet above Mean Sea Level

Year—Month	occu in pa	onditions rring st as a record	for preser without New Well assumed Chicago assumed a Other low data of	l conditions nt regimen regulation land Canal complete diversion t8,500 c.f.s. erings from compiled ace Survey	Complete regulation system; assuming 8,500 c.f.s. diversion at		assuming divers Chica New Well	omplete of Monthly		
		thly		ean	First of month	Monthly mean	First of month			
(a)·	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)		
January. February March April May June July August September October November December	571 · 59 571 · 79 571 · 79 572 · 05 572 · 68 572 · 78 572 · 81 572 · 59 572 · 39 572 · 01 571 · 81 571 · 69 571 · 52	192 189 198 211 214 214 210 209 200 197 199 200	570·91 571·11 571·37 571·37 571·95 572·10 572·13 571·91 571·71 571·33 571·13 571·13 571·13 571·13	186 182 192 204 208 207 204 202 194 190 193	572 · 00 571 · 98 572 · 33 · 572 · 61 573 · 17 573 · 29 573 · 16 572 · 95 572 · 59 572 · 59 572 · 56 572 · 22	179 177 188 218 185 176 176 176 176 176 176	571 · 75 572 · 00 572 · 30 572 · 30 573 · 08 573 · 08 573 · 08 572 · 40 572 · 40 572 · 40 571 · 88 571 · 88 571 · 88	176 176 188 208 220 220 226 207 177 176 176		
1899— January. February. March. April. May June. July. August. September. October. November. December.	571 · 67 571 · 46 571 · 83 572 · 13 572 · 44 572 · 56 572 · 46 572 · 21 571 · 85 571 · 61 571 · 62 571 · 34	198 188 193 197 203 208 206 198 194 185 186 196	570·99 570·78 571·15 571·45 571·88 571·78 571·53 571·17 570·93 570·94 570·66	192 181 187 190 197 201 200 191 188 178 180 189	572 · 15 572 · 06 571 · 93 572 · 63 572 · 63 572 · 72 573 · 30 573 · 52 573 · 31 573 · 04 572 · 93 572 · 71 572 · 17	199 195 176 209 176 216 239 230 205 230 258 202	571 · 99 572 · 07 572 · 18 572 · 57 572 · 79 572 · 79 572 · 32 571 · 92 571 · 74 571 · 70 571 · 60	176 179 184 200 208 212 222 202 176 176 176		
January. February March April May June July August September October November December	571·36 571·57 571·92 572·23 572·39 572·47 572·34 572·31 571·99 571·49 571·45	189 188 192 200 204 205 206 203 198 199 193 192	570 · 69 570 · 90 571 · 25 571 · 56 571 · 72 571 · 80 571 · 64 571 · 64 571 · 32 571 · 08 570 · 82 570 · 78	186 184 189 196 201 201 203 199 195 186 190	572 · 25 572 · 52 572 · 82 573 · 00 572 · 76 572 · 86 572 · 76 572 · 58 572 · 76 572 · 76 572 · 76 572 · 76 572 · 52 572 · 27	191 216 226 231 176 176 176 176 176 222 233 221	571 · 59 571 · 80 572 · 02 572 · 49 572 · 72 572 · 80 572 · 88 572 · 39 572 · 15 571 · 93 571 · 79 571 · 76	176 176 177 195 205 208 221 207 188 176 176		
January February March April May June July August September October November December	571·35 571·00 570·88 571·29 571·31 571·72 571·91 571·78 571·71 571·33 571·16 571·19	183 175 171 176 179 190 194 190 191 186 183 183	570·72 570·37 570·25 570·66 570·67 571·09 571·28 571·15 571·08 570·70 570·53 570·56	181 172 169 173 177 187 192 187 189 183 181	572·20 572·05 571·92 572·13 572·59 572·70 572·91 572·87 573·00 572·77 572·23 572·23	194 176 182 176 176 176 176 176 176 176 176 177	571 · 78 571 · 59 571 · 29 571 · 40 571 · 60 571 · 81 572 · 21 572 · 20 572 · 04 571 · 71 571 · 68	176 176 176 176 176 176 176 192 191 178 176 176 176		

Discharges in Thousand Second Feet Stages in Feet above Mean Sea Level

Year—Month	Actual conditions occurring in past as given in record		for present without in New Wells assumed Chicago assumed a Other lowed data con	Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s, Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s, diversion at Chicago and New Welland Canal complete	
		thly ean		thly ean	First of month	Monthly mean	First of month	Monthly mean	
(a) ·	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)	
1000									
1902— February March April May June July August September October	570.63 570.94 571.49 571.86 572.12 572.74 572.72 572.38 572.29	171 174 186 191 198 212 210 203 205	570.05 570.36 570.91 571.28 571.54 572.16 572.14 571.80 571.71	168 172 183 189 195 210 207 201 202	572·19 571·96 572·15 572·49 572·61 573·02 573·31 572·94 572·63	199 176 176 176 176 176 190 176 176	571·49 571·30 571·71 572·26 572·59 572·99 573·14 572·70 572·33	176 176 176 187 200 230 235 221 202	
November	572.02	200	571.44	198	572.43	202	572.21	192	
December	571.82	192	571 - 24	189	572 . 04	207	572.05	194	
1903—	011 02	102	011 21	100	0.2 01	201	0.2 00	102	
January. February March April May June Jule August September October November December	571·72 571·70 572·28 573·05 573·05 573·05 572·98 572·76 572·59 572·55 571·77 571·43	196 190 200 215 215 217 218 210 208 204 197 197	571 · 18 571 · 16 571 · 74 572 · 51 572 · 55 572 · 51 572 · 44 572 · 22 572 · 05 571 · 71 571 · 23 570 · 89	195 188 199 213 214 215 217 208 207 202 196 195	572·10 572·44 572·76 573·13 573·41 573·20 573·39 573·45 573·20 572·87 572·42 572·10	176 209 217 208 204 176 195 225 254 244 219 176	571 · 89 572 · 04 572 · 39 573 · 15 573 · 48 573 · 29 573 · 11 572 · 80 572 · 48 572 · 18 571 · 91 571 · 70	176 177 192 222 234 228 234 228 224 214 190 176 176	
January	571 32	176		175	572.33		571 69	176	
February. March April May June July August September. October November December	571 · 42 572 · 01 573 · 13 573 · 33 573 · 52 573 · 41 573 · 10 572 · 84 572 · 49 572 · 12 571 · 77	182 193 216 224 230 228 221 215 210 203 199	570.93 571.52 572.64 572.84 573.03 572.92 572.61 572.35 572.00 571.63 571.28	180 192 214 223 228 227 219 214 208 202 197	572·28 572·54 573·31 573·68 573·53 573·74 573·34 573·34 573·34 572·88 572·37 572·37	216 206 220 224 245 280 243 235 176 221 197	571·70 572·09 573·09 573·76 573·79 573·68 573·22 572·76 572·18 572·18	176 179 220 242 243 252 238 245 190 190 200	
January. February. March. April. May. June. July. August. September. October. November.	571 · 52 571 · 31 571 · 18 571 · 83 572 · 46 572 · 98 573 · 06 572 · 87 572 · 63 572 · 31 571 · 93	191 180 182 192 205 218 225 220 215 211	571·07 570·86 570·73 571·38 572·01 572·53 572·61 572·42 572·18 571·86 571·48	189 177 180 189 203 215 223 217 213 208 201	572 · 08 572 · 12 571 · 58 571 · 58 571 · 58 572 · 86 573 · 53 573 · 54 573 · 30 573 · 12 572 · 88 572 · 46	179 232 185 189 176 220 271 241 240 239 227	571·79 571·73 571·50 571·80 572·56 573·16 573·34 573·07 572·69 572·31 572·29	176 176 176 176 199 224 241 233 221 201 199	
December	571.91	206	571.46	203	572.24	221	572.07	197	
January February	$571 \cdot 94$ $571 \cdot 93$	205 195	571·51 571·50	204 193	572·33 572·22	200 180	572·14 572·36	181 191	

TABLE 11.—EFFECT OF REGULATION—LAKE ERIE—Continued Stages in Feet above Mean Sea Level

Year—Month	Actual conditions occurring in past as given in record		New Welland Canal		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s, diversion at Chicago and New Welland Canal complete	
	Monthly mean			thly ean	First of Monthly mean		First of month	Monthly mean
(a)	Stage (b)	Discharge (e)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
1906— March March April. May June. July. August. September. October. November. December. 1907— January. February. March. April. May June. July. August. September. October. November. December. January. February. March. April. May June. July. August. September. October. November. December. 1908— January. February. March. April. May June. July. August. September. October. November. December. 1909— January. February. March. April. May June. July. August. September. October. November. December. 1909— January. February. March. April. May June. July. August. September. October. November. December. 1909— January. February. March. April. May June. July. August. September. October. November. September. October. November. September. October. November.	571-71 572-13 572-40 572-64 572-63 572-85 572-21 572-17 572-42 572-46 572-46 572-46 572-46 572-46 572-71 572-87 572-87 572-87 573-87 573-87 573-87 572-87 572-87 573-81 573-87 573-87 573-87 573-87 573-87 574-87	190 198 202 207 209 208 202 204 206 26 218 207 201 210 210 210 211 210 212 224 24 212 210 206 202 224 214 212 210 206 209 200 200 200 200 201 211 200 200 200 200	571-98 571-97 571-97 572-17 572-17 572-20 571-92 571-74 571-92 571-74 571-92 571-82 572-94 572-94 572-95 572-85 572-87 571-89 572-87 571-99 572-87 571-91 571-191 571-191 571-191 571-191 571-191 571-191 571-191 571-191 571-191 571-191 571-191 571-191 571-191 571-191 571-191 571-192 571-191	189 196 201 205 208 206 201 200 203 204 21 218 206 201 207 215 215 212 212 212 209 201 201 207 215 221 221 220 200 201 217 204 209 222 220 201 217 206 287 287 299 288 225 220 201 217 217 218 218 219 219 220 200 201 219 219 221 210 200 201 201 201 201 201 201 201	572 · 42 572 · 86 572 · 86 573 · 86 573 · 85 573 · 80 573 · 90 572 · 96 572 · 96 572 · 90 572 · 90 572 · 90 572 · 90 573 · 10 573 · 10 574 · 10 575 · 10 575 · 10 576 · 10 577 · 10 577 · 10 578 · 10 579 · 10 579 · 10 570 · 10 570 · 10 571 · 10 571 · 10 572 · 10 573 · 10 573 · 10 573 · 10 574 · 10 575 · 10 576 · 10 577 ·	222 189 176 176 176 176 188 241 208 217 215 16 176 176 208 247 234 240 203 234 247 234 247 235 26 273 199 228 238 246 176 176 176 176 176 176 176 17	572-21 572-25 572-25 572-87 572-89 572-89 572-19 572-12 572-19 572-12 572-19 572-12 572-19 572-12 573-00 573-03	185 186 204 212 228 221 206 186 191 237 193 200 193 201 217 217 217 226 242 232 219 206 211 288 198 200 220 228 238 241 241 241 241 245 266 176 176 176 185 188 287 243 230 213 189
December	571·39 571·25 571·16 571·66	198 183 176 187	571.05 570.97 570.88 571.38	198 185 177 189	571·79 572·17 572·20 572·25	179 187 216 183	571·83 571·95 571·87 572·01	176 176 176 177

Stages in Feet above Mean Sea Level

Year-Month	Actual conditions occurring in past as given in record		for preser without New Wel assumed Chicago assumed a Other low data cor	New Welland Canal		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
		nthly ean		nthly ean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)	
1910— April. May. June. July. August September. October. November. December.	572.08 572.57 572.61 572.40 572.22 572.02 571.88 571.46 571.34	196 209 208 205 199 193 195 190 186	571-80 572-29 572-33 572-12 571-94 571-74 571-60 571-18 571-06	197 211 209 207 200 195 196 192 187	572·48 572·83 572·07 572·93 572·42 572·35 572·03 572·00 571·67	176 176 176 176 176 176 176 176 176	572·51 572·90 573·07 572·78 572·35 572·05 571·98 571·83 571·62	197 213 220 225 204 179 176 176	
1911— January. February. March. April. May June. July. August. September. October. November. December.	571·04 571·09 571·08 571·61 571·84 571·75 571·61 571·52 571·53 571·13 571·42	180 173 176 182 192 193 193 186 181 184 192 188	570·79 570·84 570·83 571·36 571·69 571·50 571·36 571·27 571·28 570·88 571·17	183 175 179 •184 195 196 188 184 186 195 190	571.67 571.82 571.90 572.19 572.28 572.08 572.13 572.00 572.13 571.87 571.95	176 195 179 176 176 176 176 176 176 176 176 176	571-47 571-37 571-30 571-53 571-98 572-26 572-18 572-00 571-93 571-80 571-89	176 176 176 176 176 187 187 190 176 176 176 176 176	
January February March April May June July August September October: November December	571·28 571·08 571·23 572·28 572·59 572·66 572·49 572·50 572·15 571·92 571·55	186 174 174 198 206 207 205 206 206 201 201 204	571.06 570.86 571.01 572.06 572.37 572.44 572.27 572.28 571.93 571.70 571.33	189 176 177 200 209 209 208 208 208 209 203 207 203	571.99 572.05 572.70 573.29 573.44 573.44 573.44 573.44 572.45	189 199 178 194 216 176 176 199 273 256 223 226	571.98 571.91 571.88 572.45 573.19 573.14 572.97 572.66 572.55 572.29 572.01 571.98	176 176 176 194 226 222 230 220 217 205 177 186	
1913— January: February. March. April. May June. July September October. November December.	572·23 572·41 572·45 574·03 573·98 573·86 573·57 573·24 572·75 572·43 572·27 572·43	204 210 204 234 235 233 230 219 206 202 205 203	572·04 572·26 573·84 573·79 573·67 573·38 573·05 572·56 572·24 572·24 571·95	208 213 208 237 239 236 234 222 210 205 209 206	572·58 572·89 573·25 573·72 574·25 573·50 573·37 573·37 573·08 572·87 572·41	195 211 235 239 276 231 279 246 229 234 256 250	572·30 572·91 572·97 573·71 574·47 574·20 573·87 573·34 572·73 572·26 572·26 572·27	188 214 215 241 264 256 257 246 222 197 204 220	
JanuaryFebruaryMarchApril	572·05 571·71 571·48 572·18	197 191 181 197	571 · 89 571 · 55 571 · 32 572 · 02	201 194 185 200	572·27 572·17 572·05 572·45	212 196 176 176	572·10 572·11 571·93 572·24	180 180 176 186	

Year—Month	Actual conditions occurring in past as given in record		for preser without New Well assumed Chicago assumed a Other low data con	Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		regulation stem; 8,500 c.f.s. sion at go and land Canal plete
		thly ean		nthly ean	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
May. June. July August. September. October. November. December.	572·90 573·03 572·82 572·56 572·32 572·06 571·47 571·41	212 215 211 206 201 194 195 185	572·74 572·87 572·66 572·40 572·16 571·90 571·31 571·25	216 218 215 209 205 197 199 188	573·18 573·47 573·27 573·08 572·96 572·66 572·28 572·10	201 201 176 176 176 176 176 178	573 · 17 573 · 54 573 · 35 572 · 87 572 · 46 572 · 10 571 · 80 571 · 68	225 237 241 227 213 184 176
1915— January. February. March April. May. June. July. August. September. October. November. December.	571·11 571·36 571·41 571·45 571·68 571·85 572·04 572·31 572·20 571·97 571·45 571·37	176 177 181 178 185 189 196 201 199 197 195 187	570.98 571.23 571.28 571.32 571.55 571.72 571.91 572.18 572.07 571.84 571.32 571.24	180 180 185 181 189 192 200 204 203 200 199 190	571.90 571.95 572.06 572.20 572.25 572.37 572.48 572.68 572.68 572.45 572.45	194 203 180 176 176 176 176 176 176 176 176 176 176	571-61 571-61 571-80 571-91 572-07 572-38 572-55 572-58 572-47 572-16 571-65	176 176 176 176 179 192 217 218 213 201 176
January. February. March April May June. July. August. September. October November December.	571.66 571.99 571.87 572.45 572.86 573.28 573.22 572.82 572.29 571.67 571.52	198 198 191 204 214 221 220 212 205 199 194 193	571.56 571.89 571.77 572.35 572.76 573.18 573.12 572.72 572.19 571.57 571.42	203 202 196 208 219 225 225 216 210 203 199	572·44 572·64 572·86 573·03 573·49 573·51 574·10 573·49 573·25 572·86 572·65 572·25	212 221 232 235 243 243 268 255 240 230 263	571-89 572-44 572-58 572-79 573-29 573-65 573-64 573-23 572-60 572-26 572-28	176 194 200 208 228 239 249 238 219 197 179 222
1917— January. February. March. April May June July. August. September. October. November. December.	571 · 60 571 · 35 571 · 58 572 · 60 573 · 00 573 · 53 573 · 86 573 · 57 573 · 27 572 · 84 572 · 98 572 · 56	190 181 187 204 215 227 236 229 220 219 216	571·52 571·27 571·50 572·52 572·92 573·45 573·49 573·19 572·76 572·90 572·48	196 186 193 209 221 232 242 234 226 224 222 217	572·20 572·22 572·10 572·70 573·58 573·57 573·86 573·39 573·22 572·86 572·75 572·30	204 220 223 229 269 277 283 258 255 243 244	572·02 572·10 572·11 572·88 573·56 573·89 574·17 573·90 573·53 573·15 573·07 572·86	177 180 180 211 237 246 266 258 247 235 251 246
1918— January. February. March April May.	571.89 571.65 572.25 572.26 572.17	196 187 198 195 198	571.81 571.57 572.17 572.18 572.09	202 192 204 200 204	571 · 82 571 · 60 571 · 88 572 · 35 572 · 58	188 198 198 176 176	572·03 571·79 572·08 572·59 572·51	177 176 179 200 197

TABLE 11.—EFFECT OF REGULATION—LAKE ERIE—Continued Stages in Feet above Mean Sea Level

Year—Month	Actual conditions occurring in past as given in record		Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
		nthly ean		thly ean	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Disch (h)
1918—								
June July August September October November December 1919—	572.54 572.59 572.55 572.47 572.30 572.13 572.19	204 207 205 207 202 206 198	572·46 572·51 572·47 572·39 572·22 572·05 572·11	209 213 210 213 207 212 203	$573 \cdot 06$ $573 \cdot 65$ $573 \cdot 35$ $573 \cdot 11$ $572 \cdot 90$ $572 \cdot 53$ $572 \cdot 44$	177 190 176 185 231 238 253	572.68 572.97 573.01 572.80 572.69 572.65 572.60	204 230 231 225 221 227 240
January. February March April May June July August September October November December	572·18 572·21 572·59 573·05 573·68 573·77 573·44 573·14 572·75 572·47 572·22 571·87	208 201 203 215 228 230 225 221 213 205 206 198	572·11 572·14 572·42 572·98 573·61 573·37 573·37 573·07 572·68 572·40 572·15 571·80	214 206 209 220 234 235 231 226 219 210 212 203	572·27 572·45 572·52 572·77 573·43 573·62 573·37 573·29 572·97 572·61 572·47 572·18	207 203 227 232 251 199 223 176 176 176 241 187	572 · 29 572 · 46 572 · 64 573 · 08 573 · 62 573 · 88 573 · 67 573 · 14 572 · 70 572 · 34 572 · 14 572 · 08	188 195 202 220 239 246 251 235 221 203 186 198
January February March April May June July August September October November December	571 · 30 570 · 78 570 · 85 571 · 62 572 · 29 572 · 48 572 · 61 572 · 61 572 · 38 572 · 08 571 · 93 571 · 93	180 167 170 183 197 203 208 204 201 198 196 204	571 · 23 570 · 71 570 · 78 571 · 55 572 · 22 572 · 41 572 · 55 572 · 54 572 · 54 572 · 31 572 · 01 571 · 86 571 · 86	185 171 175 187 202 207 213 208 206 202 201	572.05 571.61 571.94 572.75 573.49 573.29 573.29 573.29 573.29 573.29 573.29	185 183 178 208 176 208 210 199 176 176 176 241	571 · 62 571 · 00 570 · 70 571 · 10 571 · 19 572 · 72 572 · 94 572 · 82 572 · 50 572 · 08 572 · 07 572 · 22	176 176 176 176 176 205 229 227 216 183 183 214
January. February March April May June July August September October November December	571 · 94 571 · 88 572 · 11 572 · 79 573 · 00 572 · 85 572 · 47 572 · 16 571 · 74 571 · 79 571 · 74	197 192 194 208 214 213 212 204 200 192 186 199	571 · 88 571 · 82 572 · 05 572 · 73 573 · 02 572 · 94 572 · 94 572 · 10 571 · 68 571 · 73 571 · 68	202 186 199 212 219 217 217 208 205 196 191 203	572.00 571.94 572.60 572.60 573.12 573.29 573.22 572.97 572.59 572.39 572.41 572.27	201 187 236 176 185 176 176 176 176 176 188 183 214	572·16 572·29 572·37 572·88 573·35 573·41 573·15 572·67 572·18 571·90 571·87 572·02	183 188 191 212 230 232 235 221 190 176 176 190
January. February. March. April. May. June.	571 · 50 571 · 17 571 · 39 572 · 32 572 · 74 572 · 87	189 177 177 204 208 212	$571 \cdot 45$ $571 \cdot 12$ $571 \cdot 34$ $572 \cdot 27$ $572 \cdot 69$ $572 \cdot 82$	195 182 183 209 214 217	571 · 84 572 · 05 572 · 00 572 · 50 573 · 35 573 · 47	211 202 176 176 260 245	571.96 571.83 571.76 572.37 573.20 573.38	176 176 176 189 225 231

Stages in Feet above Mean Sea Level

Year-Month	Actual conditions occurring in past as given in record		New Welland Canal		Complete syst assuming 8 divers Chica New Wells	sion at go and	Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
		Monthly Monthly mean mean		First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
July	572.74 572.50 572.32 571.88 571.42 571.11	209 203 197 193 188 180	572 · 69 572 · 45 572 · 27 571 · 83 571 · 37 571 · 06	215 208 203 198 194 185	573 · 47 573 · 33 573 · 26 572 · 83 572 · 35 571 · 08	176 176 250 176 176 176 183	573 · 25 572 · 82 572 · 43 572 · 03 571 · 77 571 · 54	239 226 211 178 176 176
January February March April May July August September October November	571 · 16 570 · 83 571 · 00 571 · 49 571 · 82 572 · 00 571 · 99 571 · 69 571 · 51 571 · 23 570 · 96	177 170 174 182 189 195 192 188 182 177 174	571·12 570·79 570·96 571·45 571·78 571·96 571·95 571·65 571·47 571·19	182 174 179 186 194 199 197 192 187 181 179	571·79 571·77 571·73 571·95 572·32 572·46 572·42 572·55 572·35 572·22 571·96	200 188 177 176 176 176 176 176 176 176 176	571.47 571.38 571.23 571.55 572.06 572.42 572.53 571.95 571.79 571.55	176 176 176 176 178 193 217 189 176 176
December 1924 January February March April May June July August September October November December December	$572 \cdot 16$ $572 \cdot 30$ $572 \cdot 44$	183 194 176 175 186 197 200 204 198 192 187 185 180	571·21 571·26 571·30 571·21 571·76 572·15 572·29 572·43 571·94 571·69 570·77	201 182 182 192 204 206 211 204 199 193 192 186	571-87 571-95 572-25 572-19 572-41 572-93 573-22 573-40 573-37 573-11 572-78 572-78	178 176 206 187 176 176 176 176 176 176 176 17	571.55 571.81 572.04 571.98 572.24 572.76 573.03 573.00 572.71 572.26 572.00 571.71 571.38	176 176 177 176 186 207 218 231 222 197 176
January. February. March. April. May. June. July. August. September. October. November. December.	570 · 62 570 · 50 570 · 92 571 · 32 571 · 31 571 · 12 571 · 08 570 · 94 570 · 60 570 · 45 570 · 39	164 162 170 175 178 177 176 172 170 169 171	570·61 570·49 570·91 571·31 571·30 571·17 571·11 570·93 570·59 570·44 570·38	170 167 176 180 184 182 182 177 176 174 177	571·67 571·45 571·69 572·07 572·26 572·12 571·97 571·82 571·65 571·33 571·01 570·91	202 180 176 176 176 176 176 176 176 176 176	571·30 571·11 571·17 571·57 571·57 571·76 571·70 571·66 571·58 571·32 571·02 570·91	176 176 176 176 176 176 176 176 176 176

TABLE 12.—EFFECT OF REGULATIONS—LAKE ONTARIO

Stages in Feet above Mean Sea, Level

Stage	Year—Month	Actual conditions occurring in past as given in record		New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey Monthly		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
(a)									Monthly mean
January	(a)								Discharge (h)
August 247-31 285 247-56 277 247-12 284 September 246·93 276 247·16 267 246·58 270 October 246·74 266 246·96 257 246·27 271 November 246·56 264 246·78 256 245·45 225 December 246·57 261 246·79 253 245·48 271	January, February March April. May June July August September October November December Is61— January, February March April. May June July August September October November December Is62— January, February March April May June July August September October November December Is62— January, February March April May June July June July June July June July August September October November December Is63— January February March April May June July June July August September October November December Is63— January February March April May June July September October	248 - 72 246 - 80 247 - 63 247 - 83 247 - 82 248 - 86 246 - 86 246 - 86 246 - 86 246 - 86 246 - 73 246 - 44 246 - 56 247 - 81 247 - 81 248 - 82 248 - 82 248 - 82 248 - 82 247 - 61 247 - 81 248 - 77 248 - 82 248 - 82 248 - 82 248 - 82 248 - 82 248 - 82 247 - 81 247 - 83 248 - 77 248 - 83 248 - 77 248 - 83 248 - 77 248 - 83 248 - 77 248 - 83 248 - 77 248 - 83 248 - 77 248 - 83 248 - 77 248 - 83 248 - 77 248 - 83 248 - 77 248 - 83 248 - 77 248 - 83 248 - 77 248 - 83 248 - 77 248 - 83 248 - 77 248 - 83 248 - 74 248 - 74 248 - 74 248 - 74	285 283 287 277 267 277 269 244 243 251 2255 305 3100 309 309 309 222 237 259 248 247 296 318 318 318 319 220 220 247 242 242 242 242 242 245 283 289 290 301 301 301 301 301 301 301 301 301 30	246-94 247-00 247-763 248-95 248-95 247-87 247-75 247-87 248-86 248-86 248-86 248-86 248-86 248-86 248-86 248-86 248-86 248-86 248-86 248-86 247-86 248-86 247-87 247-87 247-87 247-87 248-88 248-88 248-88 247-86 248-88 247-87 247-87 247-87 248-88 248-88 247-87 247-87 248-88 248-88 248-88 248-88 247-87 247-87 248-88	2777 2774 2744 269 288 264 260 235 234 243 2777 297 301 301 294 284 288 250 239 238 238 257 310 301 293 301 294 284 285 285 285 285 285 287 310 297 310 310 297 310 310 297 310 310 297 310 310 310 310 310 310 310 310 310 310			247 - 20 247 - 67 247 - 85 246 - 63 245 - 95 245 - 55 245 - 55 245 - 55 247 - 96 248 - 25 247 - 41 247 - 28 248 - 25 247 - 28 247 - 28 247 - 28 247 - 28 248 - 25 248 - 27 248 - 28 248	297 296 296 296 296 271 274 273 279 202 204 229 245 266 286 387 322 312 314 310 303 209 235 259 290 291 327 321 327 321 327 321 327 321 327 321 327 321 327 321 327 321 327 321 327 321 327 321 327 321 327 321 327 321 327 321 327 327 321 327 327 327 327 327 327 327 327 327 327

Stages in Feet above Mean Sea Level

Year—Month	Actual conditions occurring impast as given in record		Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by		Complete syst assuming 8 divers Chica New Wells	8,500 c.f.s. sion at go and and Canal	Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
	Monthly mean		U.S. Lake Survey Monthly		First of Monthly		First of Monthly	
	m	ean	mean		month	mean	month	mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
1864 February March April May June July August September October November December 1865—	246·17 246·26 246·83 247·82 248·12 247·80 247·34 246·58 246·55 246·65	228 242 270 291 301 292 283 273 266 268 272	246·37 246·46 247·06 248·09 248·40 248·07 247·59 247·59 247·04 246·80 246·77 246·87	220 233 261 281 293 284 275 274 257 260 263			244·68 244·68 245·15 246·27 247·35 247·69 247·31 246·67 246·16 245·64 245·63	196 198 215 243 270 298 294 274 265 242 279
January. February March April May June July August. September October. November December.	247·08 247·23 247·38 247·46 247·62 247·66 247·51 246·90 246·29 246·07 245·82 245·66	245 225 242 284 288 288 283 273 260 251 246 244	247·32 247·47 247·63 247·72 247·88 247·92 247·77 247·13 246·49 246·26 245·99 245·84	236 216 234 275 280 280 275 264 252 242 238 238			245·66 246·17 246·38 246·37 246·53 246·85 247·15 247·04 246·38 245·87 245·50 245·19	206 209 236 247 251 254 270 280 259 246 230 227
1866— January, February March April, May, June, July August September October November December	245 · 46 245 · 47 245 · 48 245 · 96 246 · 02 245 · 92 246 · 84 246 · 65 246 · 52 246 · 52 246 · 28 246 · 28	205 200 214 251 260 272 274 270 265 262 265 272	245·60 245·61 245·62 246·15 246·21 246·10 247·07 246·96 246·87 246·73 246·48 246·40	197 191 205 243 252 263 266 262 257 254 256 263			244·93 244·74 244·58 244·74 245·98 247·08 247·71 247·17 246·59 245·92 245·54	198 196 196 199 210 266 314 299 293 271 274
January. February. March. April. May. June. July. August. September. October. November. December.	245.95 245.92 246.62 247.52 248.21 248.48 248.11 247.48 246.98 246.33 245.59 244.83	238 238 246 283 300 307 298 285 272 256 249 234	246·14 246·10 246·84 247·78 248·49 248·78 248·36 247·74 247·22 246·53 245·74 245·12	230 229 237 274 292 299 290 277 263 248 241 225			245·37 245·34 245·81 246·46 247·36 248·20 247·54 246·77 246·77 246·66 244·99 244·66	202 203 227 258 279 286 325 306 279 258 198 195
January February	244·51 244·61	210 184	244·58 244·69	202 176			244·42 244·39	194 194

TABLE 12.—EFFECT OF REGULATION—LAKE ONTARIO—Continued Stages in Feet above Mean Sea Level

			1		[
Year—Month	Actual conditions occurring in past as given in record		for present without in New Well assumed Chicago assumed a Other lowed data com	Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
		ean	Monthly mean		First of Monthly mean		First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)	
March April May June July August September October November December	244·88 245·52 246·12 246·54 246·42 246·13 245·94 245·35 245·20 245·37	210 246 251 267 264 258 252 243 237 244	244·97 245·66 246·31 246·63 246·63 246·31 246·12 245·48 245·31 245·50	201 237 243 268 256 249 244 235 228 235			244·43 244·88 245·66 246·40 247·07 247·04 246·64 245·78 245·20 245·39	196 201 222 231 266 280 272 238 201 258	
1869— January, February, March April, May, June, July, August, September, October, November, December,	245·22 245·34 245·56 246·09 246·75 246·97 247·29 247·35 247·17 247·08 246·68 248·85	217 197 196 259 276 282 288 288 284 280 272 267	245·33 245·45 245·71 246·28 246·98 247·21 247·54 247·60 247·41 247·32 246·90 247·08	208 188 188 251 268 273 280 275 271 264 259	245-98 245-97 246-13 246-27 247-42 247-80 247-89 248-09 247-72 247-33 246-82 246-44	206 206 213 200 236 300 330 330 324 310 297 296	245·06 245·07 245·07 246·07 246·88 247·45 247·77 247·54 247·00 246·29 245·63	199 199 199 211 237 256 286 318 318 305 286 278	
1870— January. February. March April. May. June. July. August. September. October. November. December.	247·26 247·41 247·41 248·35 248·95 248·63 248·31 247·97 247·28 246·95 246·38 246·13	258 258 253 304 318 313 309 296 282 276 265 260	247·51 247·66 247·66 248·64 249.27 248·93 248·25 247·53 247·19 246·59 246·32	249 249 244 295 310 305 301 288 274 268 256 251	246·60 247·01 247·20 247·67 248·57 248·57 248·31 247·47 247·17 246·76 246·26	213 215 252 291 300 300 330 325 317 307 293 287	245·59 246·22 246·72 247·21 248·06 248·35 248·18 247·74 246·96 246·37 245·82 245·12	206 210 241 277 300 296 323 316 289 278 261 217	
1871— January, February, March April, May, June, July, August, September, October, November, December,	246·06 245·89 246·09 246·67 247·12 247·06 246·91 246·46 246·12 245·62 245·21 244·90	231 227 243 270 278 278 275 265 257 249 235 227	246·25 246·07 246·28 246·89 247·36 247·36 247·14 246·69 246·31 245·77 245·32 244·99	222 219 234 261 269 270 266 257 249 241 227	246·20 246·30 246·92 246·93 247·31 247·58 247·64 247·11 246·65 246·35 246·35	208 200 244 280 283 266 278 297 218 209 212	245 · 33 245 · 19 245 · 23 245 · 71 246 · 45 246 · 90 246 · 98 246 · 90 246 · 42 245 · 84 245 · 13 244 · 93	201 200 202 233 249 257 262 274 261 242 199	
1872— January February March	244·73 244·51 244·35	190 174 189	244·81 244·58 244·42	182 166 180	$\begin{array}{ c c c c }\hline 245.90 \\ 245.42 \\ 245.13 \\\hline \end{array}$	200 200 200 200	244·86 244·43 243·95	196 192 191	

${\bf TABLE~12.-EFFECT~OF~REGULATION-LAKE~ONTARIO-Continued}$ ${\bf Stages~in~Feet~above~Mean~Sea~Level}$

Year—Month	Actual conditions occurring in past as given in record		Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
		ean		ean First of month		Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
1872— April May June July August September October November December	244·84 244·96 245·29 245·35 245·19 244·90 244·74 244·69 244·35	222 234 241 242 237 232 227 228 211	244.93 245.06 245.41 245.48 245.30 244.99 244.82 244.77 244.42	214 225 232 234 239 224 218 220 202	245·17 245·65 246·01 246·36 246·49 246·50 246·40 246·38 245·96	200 200 200 200 200 200 200 200 234 200	244·04 244·58 245·02 245·37 245·56 245·60 245·26 245·19 245·18	193 197 200 202 206 219 205 200 226
January. February. March April May June July August September October November December	244·37 244·37 246·40 246·96 246·91 246·87 246·58 246·15 245·73 245·62 245·79	192 194 200 254 273 275 273 266 260 249 246 251	244·42 244·47 244·57 246·61 247·10 247·10 246·80 246·35 245·89 245·77 245·96	185 192 246 264 267 265 258 251 241 237 243	245·60 245·65 245·51 246·55 247·25 247·16 247·57 247·58 247·21 246·50 246·39 246·33	200 200 264 300 236 257 313 290 251 291	244·61 244·62 245·59 246·69 246·99 247·13 247·15 246·62 246·05 245·35 245·40	195 199 231 257 261 269 286 271 257 215 259
January. February. March. April. May. June. July. August. September. October. November. December.	$\begin{array}{c} 246 \cdot 37 \\ 246 \cdot 74 \\ 247 \cdot 29 \\ 247 \cdot 20 \\ 247 \cdot 17 \\ 247 \cdot 28 \\ 247 \cdot 22 \\ 246 \cdot 97 \\ 246 \cdot 34 \\ 245 \cdot 93 \\ 245 \cdot 40 \\ 245 \cdot 03 \\ \end{array}$	238 239 261 279 273 284 282 276 262 255 245 236	246·58 246·96 247·54 247·44 247·41 247·53 247·46 247·21 246·54 246·11 245·53 245·13	229 231 252 270 265 275 274 268 254 246 237 227	246·45 246·99 247·48 247·72 247·31 247·68 248·00 247·65 247·05 246·60 246·39 246·05	212 216 254 284 200 215 321 317 262 226 240 205	245·77 246·34 247·03 247·32 247·20 247·15 247·36 247·28 246·64 245·96 245·14 244·99	207 213 247 272 274 265 281 293 272 251 199 198
1875— January. February. March. April. May June. July. August. September. October. November. December.	244·72 244·38 244·65 245·41 245·70 245·87 245·75 245·75 245·27 245·27 245·10 244·90	203 177 197 238 250 253 255 260 242 238 233 229	$\begin{array}{c} 245 \cdot 00 \\ 244 \cdot 45 \\ 244 \cdot 73 \\ 245 \cdot 54 \\ 245 \cdot 86 \\ 246 \cdot 05 \\ 246 \cdot 11 \\ 245 \cdot 92 \\ 245 \cdot 70 \\ 245 \cdot 39 \\ 245 \cdot 20 \\ 244 \cdot 99 \end{array}$	195 168 188 230 242 244 246 242 234 229 224	245·96 245·92 245·71 246·39 246·70 247·55 247·75 247·65 247·10 246·60 246·04 246·05	200 200 200 200 201 204 230 285 293 235 264 281	244·91 244·52 244·12 244·55 245·33 245·69 246·17 246·65 246·41 245·94 245·47 245·09	196 194 194 198 205 206 220 261 261 294 226 211
1876— January. February March April 45827—12½	245·29 245·97 246·52 247·50	217 226 240 286	245·41 246·10 246·73 247·76	209 217 232 278	246·05 246·85 247·11 247·45	210 214 249 287	245·73 246·10 246·64 247·29	206 209 239 278

TABLE 12.—EFFECT OF REGULATION—LAKE ONTARIO—Continued Stages in Feet above Mean Sea Level

YearMonth	Actual conditions occurring in past as given in record		Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s diversion at Chicago and New Welland Canal complete	
	Monthly mean		Monthly mean		First of Monthly mean		First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
1876— May June July August September October November December 1877— January March April May June July August September October November December 1878— January June July August September October November December 1878— January March April May June July August September 1878— January February March April May June July August September 1879— January February March April July August September 1879— January February March April May June July August September 1879— January February March April May June July August September September September September Jecember Jecember July June July August September	248 · 07 248 · 29 248 · 36 247 · 91 247 · 91 247 · 91 246 · 61 246 · 61 245 · 91 245 · 63 246 · 42 246 · 42 247 · 72 248 · 24 248 · 42 248 · 68 248 · 96 248 · 96 248 · 96 248 · 96 248 · 96 248 · 80 248 · 70 248 · 80 248 · 70 248 · 81 248 ·	298 304 305 294 - 280 226 226 224 226 226 225 226 225 226 227 227 227 227 227 227 227 227 227	248.35 248.85 248.85 248.85 247.21 246.83 247.21 246.83 245.95 246.67 245.78 246.67 246.73 246.63 246.40 245.94 245.94 245.94 245.94 245.94 245.94 245.94 245.94 247.22 247.20 247.11 246.83 246.86 247.22 247.20 247.14 246.86 247.22 247.20 247.14 246.86 247.22 247.20 247.14 246.86 247.22 247.20 247.14 246.86 247.22 247.20 247.14 246.86 246.86 247.22 247.14 246.86 247.22 247.14 246.86 247.22 247.14 246.86 247.22 247.14 246.86 247.22 247.14 246.86 247.22 247.14 246.86 247.22 247.14 246.86 247.22 247.14 246.86 247.22 247.14 246.86 247.22 247.14 247.46 247.22 247.46 246.86 247.22 247.46 247.22 247.46 246.86 246.86 247.22 247.46 246.86 247.22 247.46 247.22 247.46 246.86 246.86 246.86 247.22 247.46 247.22 247.46 246.86 246.86 246.86 246.86 246.86 247.22 247.46 247.22 247.46 246.86 246.86 246.86 247.22 247.46 247.26 247.46 247.46 247.26 247.26 247.46 247.26 246.86 24	290 295 296 296 272 299 286 272 269 267 216 217 216 222 253 257 256 257 256 257 256 257 256 257 256 257 256 257 256 257 256 257 256 257 256 257 256 257 256 257 256 257 256 257 256 257 256 257 256 257 256 257 256 257 257 256 257 257 256 257 257 256 257 257 256 257 257 257 257 257 257 257 257 257 257			246-70 246-88 246-38 246-38 245-72 245-33 245-44 245-51 245-60 245-90 247-15 246-81 246-81 246-92 245-99 245-86 245-99 245-86 246-13 246-81	301 301 303 330 330 330 340 4291 282 203 199 202 225 238 230 247 272 258 261 261 261 272 272 272 272 272 272 272 27
October November December 1880— January February March April May	245·47 245·10 245·11 245·30 245·63 245·95 246·15 246·33	242 234 230 222 222 232 257 262	245·61 245·20 245·21 245·42 245·78 246·14 246·35 246·53	233 225 221 214 213 223 249 254			245·01 245·04 245·20 245·39	226 198 204 201 203 227 236 243

Year—Month	occu in pa	conditions pring ast as n record	Chicago diversion assumed at 8,500 c.f.s.		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s diversion at Chicago and New Welland Cana complete	
	Monthly mean				First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
June July. August. September. October November. December.	246·53 246·52 246·09 245·74 245·36 245·30 245·10	266 265 255 258 239 241 229	246·74 246·73 246·28 245·91 245·48 245·42 245·19	257 257 246 249 231 232 221			246·57 246·97 246·88 246·31 245·93 245·28 245·22	241 261 272 255 249 208 232
1881— January February March April May June July August September October November December	244·73 244·72 245·39 245·80 245·99 246·30 245·98 245·39 245·19 245·19 245·20	186 195 218 248 252 257 259 252 242 235 235 236	244-81 244-80 245-52 245-97 246-18 246-40 246-50 246-17 245-52 245-30 245-31	177 186 209 239 244 249 251 243 233 226 226 228			$\begin{array}{r} 246.90 \\ 246.27 \\ 245.70 \end{array}$	194 193 196 200 214 217 251 274 253 234 216 277
January. February. March. April May. June. July. August. September. October. November. December.	245·73 245·91 246·52 246·81 247·02 247·55 247·53 247·19 246·81 246·30 245·87 245·62	229 231 247 269 273 286 285 278 267 255 245 246	245·89- 246·09 246·73 247·04 247·26 247·81 247·79 247·43 247·04 246·50 246·05 245·77	221 222 238 261 264 277 277 269 258 247 237 238			245·58 245·95 246·53 246·99 247·23 247·52 247·89 247·55 247·10 246·42 245·66 245·42	205 209 238 266 274 274 308 306 296 282 245 262
January. February. March April May June July. August September October November December	245·30 245·35 245·60 246·15 246·79 247·49 248·03 247·84 247·37 246·94 246·69 246·56	211 192 213 253 268 284 293 289 279 268 265 263	245·42 245·48 245·75 246·35 247·02 247·75 248·33 248·11 247·62 247·17 246·91 246·78	203 184 204 245 260 275 284 281 270 260 257 254			247·77 247·98	198 196 197 204 227 258 302 329 314 311 284 282
January February March April May June	246·51 246·91 247·58 248·16 248·19 248·09	226 234 248 294 298 298	246·72 247·14 247·84 248·44 248·47 248·37	218 225 240 285 290 285			245·71 245·78 246·23 246·80 247·31 247·43	204 206 233 264 277 272

Stages in Feet Above Mean Sea Level

Year—Month	Actual conditions occurring in past as given in record		Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s., Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
	Monthly mean		Monthly mean		First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
1004								
1884— July. August. September. October. November. December. 1885—	$\begin{array}{c} 247 \cdot 99 \\ 247 \cdot 64 \\ 247 \cdot 22 \\ 246 \cdot 80 \\ 246 \cdot 30 \\ 246 \cdot 15 \end{array}$	293 287 275 264 256 252	248·27 247·90 247·46 247·03 246·50 246·35	285 279 267 256 248 243			247·45 247·38 247·00 246·38 245·71 245·18	286 298 290 278 250 226
January. February. March April May. June. July. August. September. October. November. December. December.	246·15 245·88 245·59 246·27 247·07 247·44 247·58 247·44 247·20 247·02 247·07 247·24	228 212 209 241 272 281 283 276 273 268 269 276	246·35 246·06 245·74 246·47 247·31 247·69 247·44 247·69 247·44 247·26 247·31 247·44	219 204 200 233 263 273 274 268 265 269 260 267			245·28 245·14 244·75 245·08 245·87 246·93 247·45 247·54 247·24 246·77 246·09 246·21	200 198 198 208 230 258 286 306 302 305 286 298
January. February. March April May. June. July. August. September. October. November. December. December.	247·60 247·67 247·81 248·43 248·65 248·41 248·04 247·59 247·24 246·83 246·51 246·44	256 256 259 298 304 300 293 284 277 268 266 261	247·86 247·93 248·08 248·72 248·95 248·70 248·32 247·85 247·48 247·06 246·72 246·65	247 247 251 290 296 291 284 276 268 260 257 253			246·37 246·87 247·27 247·39 247·67 247·61 247·18 246·77 246·77 246·42 245·86 245·48	211 215 249 279 289 281 294 287 279 282 265 271
January. February March April May June July August September October November December	246·16 246·92 247·43 247·64 248·20 248·16 247·88 247·38 246·76 246·37 246·02 245·75	233 258 264 288 296 296 289 277 265 258 246 242	246·36 247·15 247·68 247·87 248·48 248·44 248·15 247·63 246·99 246·58 246·21 245·92	224 249 256 280 288 288 281 268 250 238 233			245 · 27 245 · 52 246 · 43 246 · 92 247 · 52 247 · 83 247 · 70 247 · 18 246 · 61 245 · 89 245 · 36 244 · 94	202 206 236 268 285 285 282 298 287 261 246 217
1888— January February March April May June July	$\begin{array}{c} 245 \cdot 45 \\ 245 \cdot 30 \\ 245 \cdot 54 \\ 246 \cdot 17 \\ 246 \cdot 31 \\ 246 \cdot 28 \\ 246 \cdot 34 \end{array}$	214 194 208 253 256 258 258	245·59 245·42 245·68 246·37 246·51 246·48 246·54	205 186 200 245 248 250 250			244·81 244·37 244·12 244·42 245·20 245·85 246·46	195 193 193 197 202 207 234

Year—Month	Actual conditions occurring in past as given in record		Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete		Partial regulation system; assuming 8,500 c.f.s diversion at Chicago and New Welland Cana complete	
	Monthly mean		Monthly mean		First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
August	246 · 24 245 · 85 245 · 49 245 · 41 245 · 41	257 249 239 239 240	246 · 44 246 · 03 245 · 63 245 · 54 245 · 54	248 240 231 231 231			246·75 246·39 245·74 245·08 245·30	266 259 235 200 244
January January February March April May June July August	245 · 62 245 · 77 245 · 93 246 · 17 246 · 32 246 · 63 246 · 82 246 · 57	226 212 220 256 258 267 270 265	245·77 245·94 246·11 246·37 246·52 246·85 247·05 246·79	217 204 212 248 249 259 262 256			245 · 57 245 · 57 245 · 53 245 · 58 245 · 58 245 · 92 246 · 35 246 · 95 247 · 19	203 202 215 222 232 229 260 288
September October November December	$246 \cdot 07$ $245 \cdot 57$ $245 \cdot 18$ $245 \cdot 72$	253 239 234 245	246 · 26 245 · 72 245 · 29 245 · 88	244 230 226 237			$\begin{array}{c c} 246 \cdot 52 \\ 245 \cdot 68 \\ 245 \cdot 02 \\ 245 \cdot 25 \end{array}$	266 232 199 237
1890— January. February. March. April. May. June. July. August. September. October. November. December.	246·26 246·60 246·97 247·17 247·52 428·16 247·99 247·33 246·97 246·64 246·71 246·51	239 239 252 276 285 295 295 280 273 264 265 259	246·46 246·82 247·21 247·41 247·41 247·78 248·44 248·27 247·58 247·21 246·86 246·93 246·72	230 231 243 268 276 286 286 271 265 255 256 250			245 · 48 245 · 92 246 · 56 246 · 93 247 · 35 247 · 92 248 · 27 247 · 58 246 · 78 246 · 30 245 · 76 245 · 50	204 208 238 266 278 285 328 308 279 274 255 274
January February March April May June July August September October November December	246·19 246·45 246·99 247·47 247·24 246·83 246·55 246·11 245·68 245·04 244·44 244·43	232 233 247 283 279 268 266 255 245 230 222 221	246·39 246·66 247·23 247·73 247·48 247·06 246·77 246·30 245·84 245·14 244·51 244·50	224 224 239 274 270 260 257 247 236 221 213 212			246 · 53 245 · 83 245 · 14 244 · 68	199 201 213 246 257 244 234 254 230 198 195
1892— January. February. March. April. May. June. July. August.	244 · 51 244 · 48 244 · 61 245 · 20 245 · 25 245 · 81 246 · 33 246 · 25	202 187 190 231 234 247 260 255	244·58 244·55 244·69 245·31 245·37 245·98 246·53 246·45	193 178 182 222 225 238 252 246			244 · 50 244 · 39 244 · 61 245 · 07 245 · 47	195 194 194 197 201 206 234 287

Stages in Feet Above Mean Sea Level

Year—Month	Actual conditions occurring in past as given in record		Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete			
		nthly ean	Monthly mean		First of Monthly mean		First of month	Monthly mean		
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)		
1000										
September October November December	$\begin{array}{c} 246 \cdot 04 \\ 245 \cdot 60 \\ 245 \cdot 32 \\ 245 \cdot 20 \end{array}$	254 242 236 232	246·23 245·75 245·44 245·31	246 234 227 224			$\begin{array}{c} 246.75 \\ 246.10 \\ 245.09 \\ 244.99 \end{array}$	278 260 199 198		
January February	244·87 244·77	201 183	244·96 244·86	192 174			244·87 244·57	196 194		
March	$245 \cdot 25$ $245 \cdot 99$ $247 \cdot 13$ $247 \cdot 37$	199 249 275 282	245·37 246·18 247·37 247·62	190 240 266 274			244.50 244.96 246.05 247.04	196 208 236		
June July August September	247 · 11 246 · 57 246 · 31	262 277 262 259	247·02 247·35 246·79 246·51	268 254 250			247·04 247·20 246·91 246·41	262 273 274 262		
October November December	245.78 245.37 245.23	247 238 233	245.95 245.50 245.34	239 230 225			245·60 245·00 244·89	202 227 198 198		
1894— January	245.56	218	245.71	209	245.99	208	245.06	199		
February March April	$245.75 \\ 246.05 \\ 246.10$	197 230 251	245 · 92 246 · 24 246 · 29	188 222 243	$\begin{array}{c} 246 \cdot 28 \\ 246 \cdot 16 \\ 246 \cdot 51 \end{array}$	209 219 200	245·18 245·23 245·54	200 202 220		
May June July	$246 \cdot 27$ $246 \cdot 80$ $246 \cdot 60$	256 269 263	246 · 47 247 · 03 246 · 82	248 260 255	246 · 98 247 · 96 248 · 08	231 300 330	245 · 88 246 · 47 246 · 99	230 235 262		
August September October	246.03 245.51 245.26	250 240 234	246 · 22 245 · 65 245 · 38	241 232 225	247·32 247·00 246·75	233 200 218	$246.77 \\ 246.11 \\ 245.39$	266 245 213		
November December 1895—	244·95 244·57	229 220	245·05 244·61	220 211	246·34 245·95	265 227	245·03 244·77	198 196		
January February March April.	244 · 50 244 · 44 244 · 33 244 · 87	196 178 181 224	244·57 244·51 244·39 244·96	187 170 172 215	245 · 94 246 · 09 245 · 72 245 · 73	200 200 200 200 200	244·60 244·32 244·03 244·09	194 192 191 194		
May June July	245 · 00 244 · 89 244 · 59	229 226 220	245·10 244·98 244·77	220 218 211	246 · 27 246 · 47 246 · 39	200 200 200	244·71 244·93 244·89	197 199 196		
August September October November	244·35 244·00 243·67 243·41	217 208 200 194	244 · 42 244 · 05 243 · 70 243 · 43	108 200 192 185	246 · 18 245 · 81 245 · 48 244 · 92	200 200 200 200 200	244·73 244·43 244·12 243·73	195 193 190 189		
December 1896— January	243 · 43 243 · 80	194	243.45	185	245·30 245·37	200	243·72 243·93	190		
February March April May	244 · 27 244 · 49 245 · 41 245 · 43	188 185 233 237	244 · 33 244 · 56 245 · 54 245 · 56	180 177 225 229	$\begin{array}{r} 245.52 \\ 245.65 \\ 246.08 \\ 246.88 \end{array}$	200 200 200 200 200	244·19 244·42 244·88 245·66	193 196 201 222		
JuneJulyAugustSeptember	245·34 245·08 244·94 244·46	237 233 228 216	245 · 46 245 · 18 245 · 03 244 · 53	229 224 219 207	$\begin{bmatrix} 247 \cdot 07 \\ 247 \cdot 11 \\ 247 \cdot 00 \\ 246 \cdot 72 \end{bmatrix}$	200 200 200 200 200	245·59 245·70 245·78 245·49	203 204 216 231		

Stages in Feet Above Mean Sea Level

Discharges in Thousand Second Feet

Year—Month	occu in pa	onditions irring ast as n record	for present without in New Well assumed Chicago assumed a Other lowed data com	New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s.		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete		Partial regulation system; assuming 8,500 c.f.s, diversion at Chicago and New Welland Canal complete	
		nthly ean		thly ean	First of month	Monthly mean	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge h)	
1896— October November	244·23 243·97 243·99	209 209 204	244 · 29 244 · 02 244 · 04	200 200 195	246·31 246·06 245·85	200 200 200	245·13 244·87 244·72	198 197 196	
1897— January February March April	243.87 243.83 244.30 244.96	187 182 193 229	243·91 243·87 244·36 245·06	178 173 184 220	$\begin{array}{c c} 245.75 \\ 245.32 \\ 245.73 \\ 246.00 \end{array}$	200 200 200 200 200	244 · 66 244 · 31 244 · 29 244 · 69	194 193 194 200	
May June July August September	$245 \cdot 41$ $245 \cdot 62$ $245 \cdot 61$ $245 \cdot 60$ $245 \cdot 10$	239 245 242 242 228	245·54 245·77 245·76 245·75 245·19	231 236 233 233 220	246·52 246·89 247·18 247·30 246·98	200 200 200 211 209	245 · 58 246 · 21 246 · 69 246 · 84 246 · 33	218 222 246 270 256	
October November December 1898—	244 · 47 244 · 41 244 · 47	215 211 215	244 · 54 244 · 48 244 · 54	207 203 207	246·31 246·08 246·06	200 200 207	245 · 26 244 · 82 244 · 76	214 197 197	
January February March April May	244.64 245.08 245.48 245.92 246.07	201 210 223 244 249	244·71 245·18 245·62 246·09 246·26	193 201 214 235 241	246·00 246·21 246·30 246·41 247·10	200 208 234 223 200	244 · 85 244 · 96 245 · 31 245 · 80 246 · 18	198 199 204 232 240	
JuneJulyAugustSeptemberOctober	$246 \cdot 13$ $245 \cdot 85$ $245 \cdot 51$ $245 \cdot 09$ $244 \cdot 84$	250 244 237 228 221	246·31 246·03 245·65 245·19 244·93	241 236 229 220 213	$\begin{bmatrix} 247 \cdot 41 \\ 247 \cdot 42 \\ 247 \cdot 22 \\ 246 \cdot 86 \\ 246 \cdot 51 \end{bmatrix}$	200 200 200 200 200 200	246 · 44 246 · 59 246 · 48 245 · 66 245 · 15	234 241 251 232 199	
November December 1899—	244·88 244·90	221 224	244·97 244·99	213 215	246·40 246·08	233 215	$245.04 \\ 245.02$	198 202	
January February March April May	244 · 98 244 · 88 245 · 14 245 · 69 245 · 94 246 · 07	205 198 210 241 247 251	$\begin{array}{c} 245 \cdot 08 \\ 244 \cdot 97 \\ 245 \cdot 24 \\ 245 \cdot 85 \\ 246 \cdot 12 \\ 246 \cdot 26 \end{array}$	196 189 201 232 238 243	$\begin{array}{c} 245 \cdot 90 \\ 245 \cdot 92 \\ 246 \cdot 01 \\ 246 \cdot 30 \\ 247 \cdot 32 \\ 247 \cdot 61 \end{array}$	200 200 200 200 200 210 251	245·01 244·76 244·72 245·14 245·92 246·34	198 197 198 210 232 228	
June. July August. September. October. November.	245·92 245·46 244·95 244·55 244·42	246 234 224 215 213	246 · 10 245 · 60 245 · 05 244 · 63 244 · 59	245 238 226 216 207 205	247 · 68 247 · 40 246 · 97 246 · 68 246 · 40	251 273 259 221 255 290	246 · 64 246 · 53 245 · 79 245 · 04 244 · 82	244 254 228 198 197	
December 1900— January	244·36 244·63	215	244·43 244·71	207 193	246·22 245·96	247	244.78	197	
February	244·88 245·19 245·80 245·99 245·91 245·82	199 204 242 248 249 247	244·97 245·30 245·97 246·18 246·09 245·99	194 198 236 242 243 242	246·12 246·62 246·90 247·52 247·43 247·57	207 242 253 227 200 200	244.86 244.98 245.18 245.90 246.11 246.43	198 199 210 231 217 233	
August September	$245.54 \\ 245.12$	240 232	$\begin{array}{ c c c c c c }\hline 245 \cdot 68 \\ 245 \cdot 22 \\ \hline \end{array}$	234 227	247·53 247·00	228 209	246·59 246·06	258 242	

TABLE 12.—EFFECT OF REGULATION—LAKE ONTARIO—Continued Stages in Feet Above Mean Sea Level

Discharges in Thousand Second Feet

Year—Month	occu in pa	onditions rring st as n record	for present without in New Well assumed Chicago assumed a Other lowed at a co	conditions at regimen regulation and Canal complete diversion t8,500 c.f.s. erings from empiled by ce Survey	Complete syst assuming 8 divers Chica New Wells	sion at go and	assuming divers Chica New Well	egulation em; 8,500 c.f.s. sion at go and and Canal mplete
		nthly ean		ean thly	First of month	Monthly mean	First of month	Monthly mean
(a) ·	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
October November December January February March April May June July August September December Jugen January February March April May June July August September October November December Jugen January February March April May June July August September October November November	244·72 244·55 244·68 244·62 244·62 244·63 245·91 245·91 245·74 245·40 244·65 244·28 244·30 244·42 244·30 244·57 244·30 244·65 244·28 244·30 244·65 244·28 244·30 244·65 244·24 244·30 244·42 244·30 244·42 245·40 246 246 246 246 246 246 246 246 246 246	223 219 226 200 198 237 246 249 244 244 237 231 213 216 6 197 177 208 237 240 242 242 242 243 244 244 244 247 247 248 249 249 249 249 249 249 249 249 249 249	244 · 80 244 · 83 224 · 93 244 · 72 244 · 72 244 · 48 245 · 80 245 · 52 245 · 57 245 · 22 244 · 83 244 · 43 244 · 43 244 · 44 245 · 10 245 · 58 244 · 83 244 · 83 244 · 84 244 · 45 245 · 80 245 · 87 246 · 21 247 · 87 248	218 218 213 220 200 196 198 233 2442 245 239 230 221 219 208 217 219 204 232 232 245 245 239 245 245 245 245 245 245 245 245 245 245	246-60 246-88 245-98 245-98 245-98 247-98 247-91 247-10 247-10 246-57 246-20 246-10 246-10 246-10 246-10 246-88 246-75 247-81 246-88 246-75 247-81 246-80 247-81	247 288 281 206 200 200 200 200 208 288 2110 209 207 200 201 212 212 212 212 220 200 200 212 227 200 200 212 227 200 212 227 200 212 227 220 212 227 220 212 227 220 212 227 220 220 220 220 220 220 220 220 22	245 - 37 245 - 01 245 - 05 244 - 98 244 - 83 245 - 36 246 - 32 246 - 45 246 - 35 246 - 21 245 - 28 247 - 28 244 - 85 244 - 92 244 - 85 245 - 98 245 - 98 246 - 43 247 - 18 246 - 43 247 - 18 246 - 43 247 - 18 246 - 84 247 - 46 246 - 84 247 - 46 246 - 84 246 - 84 247 - 46 245 - 68 245 - 68	212 198 206 199 198 199 219 245 234 229 220 206 188 198 200 210 220 234 220 245 252 267 272 283 293 293 294 294 295 295 295 295 295 295 295 295 295 295
December 1903— January February March April May June July August September October November December 1904—	244·92 245·75 246·44 246·56 246·44 246·59 246·35 246·37 245·72 245·72 245·36 245·11	209 207 225 258 261 257 260 256 251 240 227 220	245·03 245·03 245·34 245·91 246·55 246·45 246·55 246·25 245·93 245·12 244·82	205 204 222 254 257 254 257 253 248 236 224 216	246·16 246·17 246·72 247·32 247·43 247·43 247·67 247·71 246·75 246·20 246·07	200 210 246 282 235 200 227 304 303 292 234 200	245 · 19 245 · 17 245 · 17 245 · 47 246 · 16 246 · 78 247 · 01 247 · 09 247 · 17 246 · 68 246 · 26 245 · 29 244 · 93	200 201 212 246 260 262 266 287 274 271 209 197
January February March April May June July August September October	247·61 247·87 247·89 247·64 247·25	192 196 207 255 270 277 279 275 266 257	244·41 244·69 245·32 246·69 247·30 247·56 247·58 247·33 246·94 246·56	188 192 203 251 266 273 275 271 262 253	245·72 245·83 • 246·50 247·25 247·90 247·94 247·91 247·77 247·17 246·60	200 207 245 286 300 300 330 317 296 217	244·61 244·47 244·80 245·65 246·87 247·56 247·84 247·65 247·04	195 196 201 235 263 275 306 312 293 296

Stages in Feet Above Mean Sea Level Discharges in Thousand Second Feet

Year—Month	Actual conditions occurring in past as given in record		New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s.		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
		nthly ean		thly	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
1904— November December	246·36 245·81	245 223	246·05 245·50	241 219	246·22 245·83	246 200	245·44 244·95	223 198
January. February. March. April May June July August. September. October November December	245·79 245·49 245·29 246·13 246·25 246·59 246·90 246·75 246·45 246·07 245·88	198 205 199 242 244 251 260 259 256 250 243 237	245·50 245·20 245·00 245·84 245·96 246·30 246·61 246·46 246·16 245·78 245·59	194 201 195 238 240 247 256 255 252 246 239 233	245.76 245.38 245.79 246.12 247.07 247.47 247.78 247.78 247.14 246.64 246.15 246.10	200 200 200 200 200 241 330 320 301 288 247 255	244·94 244·57 244·35 245·42 245·99 246·89 247·47 246·89 246·36 245·52 245·31	197 194 194 199 210 257 292 285 278 231 246
January February March April May June July August September October November December	246·13 246·10 245·91 246·25 246·36 246·41 246·58 246·27 245·81 245·52 245·71	229 221 218 243 247 249 252 245 236 233 231 229	245 · 86 245 · 83 245 · 63 245 · 98 246 · 09 246 · 14 246 · 31 246 · 00 245 · 54 245 · 25 245 · 32 245 · 44	225 217 214 238 243 245 247 240 232 229 227 225	246·07 246·31 246·13 246·42 247·08 247·65 247·65 246·49 246·42 246·10	207 208 227 200 200 200 206 243 200 200 246 282	245·07 245·20 245·25 245·44 245·85 246·14 246·62 246·85 246·26 245·64 245·34 245·47	199 200 201 217 227 218 242 270 257 229 214 270
January. February. March. April. May. June. July. August. September. October. November. December.	246·34 246·47 246·47 246·86 247·09 247·12 246·90 246·50 246·40 246·33 246·33	212 218 224 256 262 263 265 260 251 249 247 247	246·10 246·23 246·23 246·62 246·85 246·88 246·66 246·66 246·16 246·09 246·09	209 215 220 253 259 260 261 257 247 246 243 243	246·21 246·40 246·56 246·70 247·70 247·70 247·70 247·70 246·58 246·58 245·94	208 210 238 200 200 216 229 315 271 271 299 277 267	245·68 245·79 245·81 245·84 246·61 246·89 247·02 246·57 246·16 245·71 245·52	204 205 227 234 242 242 257 279 269 265 250 274
January January February March April May June July August September October November December	246·73 246·99 247·39 248·02 248·46 248·62 248·34 247·95 247·14 246·44 245·92 245·51	221 218 223 281 292 294 289 279 264 249 239 230	246-52 246-78 247-18 247-81 248-25 248-41 248-13 247-74 246-93 246-23 245-71 245-30	217 214 220 277 289 291 286 276 260 245 236 227	246·12 246·18 246·80 246·93 248·00 247·80 247·63 247·52 246·91 246·40 246·08 245·73	207 210 242 285 300 297 279 303 201 200 200 200	245·40 245·54 245·88 246·17 247·03 247·71 247·90 247·45 246·69 245·81 245·05 244·76	202 204 228 248 248 268 279 309 301 274 241 198 195

Stages in Feet Above Mean Sea Level Discharges in Thousand Second Feet

Year—Month	Actual conditions occurring in past as given in record		Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s. diversion at Ohicago and New Welland Canal complete	
		ean		ean	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
1000								
January. February. March. April. May June. July. September. October. November. December.	245·17 245·28 245·70 246·18 247·16 247·30 247·16 246·82 246·28 245·84 245·35 245·21	203 197 211 243 262 267 264 257 245 237 225 224	244·99 245·10 245·52 246·00 246·98 247·12 246·98 246·64 246·10 245·66 245·17 245·03	201 194 208 240 259 264 262 254 242 235 222 221	245·42 245·72 245·70 246·58 247·52 247·71 247·40 247·38 247·00 246·61 246·27 246·06	200 200 200 200 247 262 200 212 207 203 200 200	244·51 244·36 244·43 244·84 245·85 246·81 247·13 247·09 246·52 245·85 245·16 244·95	194 194 196 203 230 253 269 282 266 243 199 198
January February March April May June July August September October November December	244.94 245.03 245.75 245.97 246.42 246.46 246.29 246.05 245.70 245.38 245.15 244.98	198 188 214 238 249 250 247 243 232 227 221 216	244·79 244·88 245·60 245·82 246·27 246·31 246·14 245·90 245·55 245·23 245·00 244·74	195 186 212 235 246 247 244 241 230 224 218	$\begin{array}{c} 246 \cdot 02 \\ 245 \cdot 90 \\ 246 \cdot 52 \\ 246 \cdot 56 \\ 247 \cdot 02 \\ 247 \cdot 40 \\ 247 \cdot 51 \\ 247 \cdot 48 \\ 247 \cdot 19 \\ 246 \cdot 56 \\ 246 \cdot 25 \\ 246 \cdot 02 \\ \end{array}$	200 206 238 204 200 200 200 219 232 205 200 200	244.93 244.69 244.93 245.38 245.94 246.67 246.67 246.17 245.39 244.99 244.80	197 198 200 216 232 230 246 262 248 213 198 196
January. February March April May June July August September October November December	244·77 244·86 244·96 245·44 245·60 245·66 245·54 245·19 244·88 244·62 244·50 244·63	194 191 197 225 232 233 232 224 215 212 213 214	244·64 244·73 244·83 245·31 245·47 245·53 245·41 245·06 244·75 244·49 244·37 244·50	192 188 194 223 230 231 230 221 213 210 210 211	245·87 245·65 245·80 246·07 246·52 246·80 246·78 246·52 246·32 246·08 246·08	200 200 200 200 200 200 200 200 200 200	$\begin{array}{c} 244 \cdot 67 \\ 244 \cdot 52 \\ 244 \cdot 51 \\ 244 \cdot 76 \\ 245 \cdot 28 \\ 245 \cdot 50 \\ 245 \cdot 69 \\ 245 \cdot 72 \\ 245 \cdot 30 \\ 245 \cdot 05 \\ 244 \cdot 85 \\ 244 \cdot 79 \\ \end{array}$	195 194 196 198 202 203 204 214 213 198 197 198
1912— January. February. March. April. May. June. July. August. September. October. November. December. 1913— January.	244·76 244·87 245·10 246·32 246·82 247·34 247·01 246·66 246·38 246·17 246·08 246·11	192 181 189 237 254 269 259 253 248 244 242 244	244·65 244·76 244·99 246·21 246·71 247·23 246·90 246·55 246·27 246·06 245·97 .246·00	191 180 187 235 253 267 258 252 246 243 241 242	246·00 246·08 246·68 247·33 247·67 247·75 247·35 247·16 246·68 246·26	200 206 200 243 274 234 231 233 309 301 291 286	245·00 244·87 244·79 245·35 246·32 247·13 247·43 247·05 246·53 246·10 245·76 245·18	198 198 199 219 245 264 284 281 266 255 226

Stages in Feet Above Mean Sea Level Discharges in Thousand Second Feet

Year—Month	Actual conditions occurring in past as given in record of the conditions of the condition occurring in past as given in record of the conditions of the cond		t regimen regulation and Canal complete diversion t 8,500 c.f.s. erings from apiled by	Complete syst assuming 8 divers Chica New Wells	sion at go and	Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete		
		nthly ean		nthly ean	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (e)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
February March April May June July August September October November December	246·75 246·71 247·86 247·97 248·02 247·83 247·31 246·74 246·29 246·06 245·91	239 234 273 278 281 278 266 253 244 243 240	246·66 246·62 247·77 247·88 247·93 247·74 247·22 246·65 246·20 245·97 245·82	238 232 271 277 278 277 265 252 242 241 238	246·61 246·98 247·67 248·06 248·33 247·92 247·48 246·97 246·57 246·40 246·20	212 250 289 300 300 328 284 264 256 290 284	245·79 246·27 246·90 247·57 247·87 247·95 247·47 246·73 246·05 245·42 245·41	206 234 269 286 283 311 302 277 257 222 262
1914— January. February. March. April. May June. July. August. September. October. November. December.	245 · 67 246 · 75 246 · 95 246 · 91 246 · 72	214 202 203 250 257 257 253 246 241 230 227 216	245·53 245·80 245·60 246·68 246·88 246·84 246·65 246·26 246·26 246·22 245·52 245·18	213 201 202 248 256 255 251 244 240 229 226 215	245·95 246·20 246·20 246·55 247·47 247·21 247·59 247·45 247·20 246·60 246·18 245·85	200 206 200 200 269 200 200 206 222 276 200 200	245·04 244·92 244·81 245·18 246·08 246·52 246·85 246·42 245·91 245·09 244·77	198 198 198 213 237 238 254 270 261 248 198
January February February March April May June July August September October November December	245·04 245·15 245·12 245·13 245·43	199 191 208 222 222 220 222 228 229 225 219 213	244·65 244·94 245·22 244·99 245·10 245·07 245·08 245·38 245·40 245·12 244·89	198 190 207 221 221 219 221 227 228 224 218 212	245·64 245·85 246·15 246·11 246·32 246·32 246·34 246·55 246·44 246·15 245·96	200 206 211 200 200 200 200 200 200 200 203 203 200 204	244·57 244·63 244·78 244·80 244·92 245·10 245·31 245·88 246·25 245·95 245·36 244·91	195 196 197 198 198 200 203 222 252 250 216 198
1916— January February March April May June July August September October November December	245·41 245·46 246·40 247·13 247·86 247·93 247·36 246·69 246·69 246·65	205 204 201 246 262 276 278 267 254 241 231	245·02 245·38 245·43 246·37 247·10 247·83 247·90 247·33 246·66 246·03 245·62 245·34	204 203 200 245 262 275 277 266 253 240 230	246·21 246·50 246·79 247·13 247·80 248·31 248·60 248·21 247·36 246·60 246·28 246·35	209 211 245 284 300 300 330 323 289 242 258	244·94 244·95 245·08 245·58 246·58 247·49 248·05 247·60 246·70 245·85 245·11 244·88	198 198 201 230 253 274 317 309 275 243 198
1917— January February March	245.08	204 205 207	$\begin{array}{ c c c c }\hline 245 \cdot 25 \\ 245 \cdot 07 \\ 245 \cdot 16 \\\hline \end{array}$	203 205 207	$\begin{array}{ c c c }\hline 246.01 \\ 246.05 \\ 246.35 \\ \hline \end{array}$	200 207 240	245·27 244·97 244·89	199 198 200

TABLE 12.—EFFECT OF REGULATION—LAKE ONTARIO—Continued Stages in Feet Above Mean Sea Level Discharges in Thousand Second Feet

Year—Month	Actual conditions occurring in past as given in record		Computed conditions for present regimen without regulation New Welland Canal assumed complete Chicago diversion assumed at 8,500 c.f.s. Other lowerings from data compiled by U.S. Lake Survey		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and		Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
		nthly ean		nthly ean	First of month	Monthly mean	First of month	Monthly mean
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)
1917—								
April	246 · 24 246 · 51 246 · 98 247 · 46 247 · 35 246 · 93 246 · 68	243 246 258 269 269 258 254	246·23 246·50 246·97 247·45 247·34 246·92 246·67	242 245 257 268 268 258 253	246·90 247·33 247·60 248·08 248·01 247·35 246·75	280 300 300 330 323 308 283	245·40 246·35 246·89 247·52 247·75 247·17 246·57	221 246 257 289 317 299 291
November December	$246.69 \\ 246.45$	251 246	246 · 68 246 · 44	250 245	246 · 45 246 · 16	288 271	246·09 245·89	286 279
1918— January February	246·07 245·98	217 212	246·08 245·99	216 211	245·65 245·45	200 200	245·50 245·14	201 201
MarchAprilMayJune	246 · 61 247 · 17 247 · 13 247 · 01	228 259 261 260	246 · 62 247 · 18 247 · 14 247 · 02	227 258 260 259	245 · 88 246 · 64 247 · 02 247 · 35	209 223 200 200	245·31 245·88 246·41 246·42	204 236 248 233
July	246 · 85 246 · 43 246 · 20 246 · 00 246 · 00 245 · 89	258 249 244 238 240 236	246 · 86 246 · 44 246 · 21 246 · 01 246 · 01 245 · 90	257 248 243 237 239 235	247 · 57 247 · 42 247 · 15 246 · 70 246 · 44 246 · 13	213 219 230 274 287 284	246 · 55 246 · 69 246 · 45 246 · 10 245 · 90 245 · 68	239 262 262 262 260 268 279
January	246.09	226	246 · 10	225	246 · 14	208	245.61	203
February	245 · 91 246 · 01 246 · 43 247 · 27 247 · 95	222 226 252 269 279	245 · 92 246 · 02 246 · 44 247 · 28 247 · 96	221 225 251 268 278	246·32 246·35 246·71 247·62 248·20	209 235 240 300 300	$ \begin{array}{c} 245.58 \\ 245.59 \\ 245.86 \\ 246.62 \\ 247.62 \end{array} $	203 218 238 254 277
Jule July August September October November	247 · 75 247 · 33 246 · 86 246 · 35 246 · 11	275 267 256 246 241	247·76 247·34 246·87 246·36 246·12	274 266 255 246 240	247 · 90 247 · 60 247 · 03 246 · 60 246 · 36	200 225 207 200 273	248·00 247·43 246·67 245·94 245·45	314 300 274 249 225
December	245.74	236	245.75	235	246.00	200	245.00	198
January February March	$245 \cdot 31$ $245 \cdot 01$ $245 \cdot 05$	201 192 197	245·32 245·02 245·06	201 192 197	245·81 245·45 245·38	200 200 200	244 · 97 244 · 47 244 · 35	196 194 194
April	$245 \cdot 55$ $245 \cdot 60$ $245 \cdot 56$ $245 \cdot 70$ $245 \cdot 62$	232 231 230 234 231	$\begin{array}{c} 245 \cdot 56 \\ 245 \cdot 61 \\ 245 \cdot 57 \\ 245 \cdot 71 \\ 245 \cdot 63 \end{array}$	232 231 230 234 231	245 · 61 246 · 50 246 · 58 246 · 99 247 · 40	200 200 200 200 200 235	$\begin{array}{c} 244 \cdot 64 \\ 245 \cdot 18 \\ 245 \cdot 24 \\ 245 \cdot 59 \\ 246 \cdot 16 \end{array}$	198 200 202 238 236
September October November December	245 · 47 245 · 29 245 · 23 245 · 40	229 226 220 227	$\begin{array}{c} 245 \cdot 48 \\ 245 \cdot 30 \\ 245 \cdot 24 \\ 245 \cdot 41 \end{array}$	229 226 220 227	247·10 246·68 246·32 246·08	219 217 218 282	$\begin{array}{c} 246 \cdot 20 \\ 245 \cdot 89 \\ 245 \cdot 28 \\ 245 \cdot 24 \end{array}$	250 246 208 234
January. February. March April May June July.	245 · 54 245 · 46 245 · 79 246 · 38 · 246 · 68 246 · 61 246 · 37	215 210 222 247 253 252 247	245·55 245·47 245·80 246·39 246·69 246·62 246·38	215 210 222 247 253 252 247	245.96 246.11 246.10 246.83 247.03 247.40 247.32	206 202 237 233 200 200 200	245·36 245·31 245·38 245·93 246·46 246·76 246·77	201 202 207 237 250 250 250

TABLE 12.—EFFECT OF REGULATION—LAKE ONTARIO—Concluded Stages in Feet Above Mean Sea Level Discharges in Thousand Second Feet

			Computed	conditions					
Year—Month	Actual conditions occurring in past as given in record		for presen without r New Well assumed Chicago assumed at Other lowed data com	for present regimen without regulation New Welland Canal		Complete regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete		Partial regulation system; assuming 8,500 c.f.s. diversion at Chicago and New Welland Canal complete	
	Mor	thly	Mon	thly	First of month	Monthly	First of month	Monthly mean	
(a)	Stage (b)	Discharge (c)	Stage (d)	Discharge (e)	Stage (f)	Discharge (g)	Stage (i)	Discharge (h)	
1921—									
August September October November December	245 · 93 245 · 43 245 · 11 244 · 85 244 · 83	238 228 221 210 215	245·94 245·44 245·12 244·86 244·84	238 228 221 210 251	$\begin{array}{c} 247 \cdot 08 \\ 246 \cdot 68 \\ 246 \cdot 27 \\ 246 \cdot 10 \\ 246 \cdot 00 \\ \end{array}$	200 200 200 200 200 230	246·64 246·05 245·29 244·92 244·76	260 242 206 197 197	
January. February. March. April. May. June.	$244 \cdot 73$ $244 \cdot 70$ $245 \cdot 08$ $246 \cdot 06$ $246 \cdot 55$	197 188 202 244 250	$\begin{array}{c} 244 \cdot 74 \\ 244 \cdot 71 \\ 245 \cdot 09 \\ 246 \cdot 07 \\ 246 \cdot 56 \end{array}$	197 188 202 244 250	245 · 88 245 · 97 246 · 18 246 · 77 247 · 27	200 · 200 200 235 300	244·76 244·46 244·44 245·06 246·06	195 194 197 210 236	
July	$246 \cdot 75$ $246 \cdot 92$ $246 \cdot 56$ $246 \cdot 03$ $245 \cdot 61$ $245 \cdot 15$	253 258 250 239 233 220	246·76 246·93 246·57 246·04 254·62 245·16	253 258 250 239 233 220	247·57 247·74 247·61 246·87 246·60 246·30	282 221 243 270 200 200	246·72 247·13 247·19 246·50 245·80 245·04	248 269 288 265 240 197	
December	246·64 244·50	210 190	244.65	210 190	245·82 245·60	200	244·59 244·34	194	
January. February. March. April. May. June. July August. September.	244·47 244·74 245·33 245·62 245·93 245·80 245·41 245·03	188 199 227 230 236 232 226 217	244·48 244·75 245·34 245·63 245·94 245·81 245·42 245·04	188 199 227 230 236 232 226 217	$\begin{array}{c} 245 \cdot 58 \\ 245 \cdot 67 \\ 246 \cdot 03 \\ 246 \cdot 65 \\ 247 \cdot 08 \\ 247 \cdot 32 \\ 247 \cdot 21 \\ 246 \cdot 92 \end{array}$	200 200 200 200 200 200 200 200 200 200	244 · 12 244 · 16 244 · 62 245 · 25 245 · 72 246 · 11 246 · 29 245 · 64	192 194 198 201 206 217 242 220	
October November	244 · 65 244 · 34 244 · 47	208 203 206	244 · 66 244 · 35 244 · 48	208 203 206	$\begin{array}{ c c c c }\hline 246 \cdot 62 \\ 246 \cdot 25 \\ 246 \cdot 13 \\\hline \end{array}$	205 200 200	$\begin{array}{ c c c c c }\hline 245.09 \\ 244.80 \\ 244.74 \\\hline \end{array}$	198 197 197	
January. February. March. April. May.	244·77 244·85 244·88 245·36	198 192 196 224	244·81 244·89 244·92 245·40	198 192 196 224	246·30 246·07 246·22 246·48	208 206 200 200	244·92 244·81 244·71 244·87	198 197 197 201	
May. June. July. August. September. October. November. December.	246·10 246·27 246·21 246·04 245·65 245·45 244·95 244·58	239 242 242 239 230 225 218 208	246·14 246·31 246·25 246·08 245·69 245·49 244·99 244·62	239 242 242 239 230 225 218 208	$\begin{array}{c} 247 \cdot 19 \\ 247 \cdot 70 \\ 247 \cdot 56 \\ 247 \cdot 52 \\ 247 \cdot 08 \\ 246 \cdot 67 \\ 246 \cdot 40 \\ 245 \cdot 90 \end{array}$	204 229 200 223 219 200 209 200	245·69 246·38 246·73 246·79 246·38 245·71 245·03 244·67	223 230 249 267 258 234 197 194	
1925— January February	244·22 244·41	169 176	244·26 244·45	169 176	245·51 245·50 245·88	200 200 200	244·35 244·13 244·50	193 194 198	
March	245 · 20 245 · 61 245 · 65 245 · 42 245 · 21 244 · 90 244 · 56	201 226 228 225 220 215 207	245 · 24 245 · 65 245 · 69 245 · 46 245 · 25 244 · 94 244 · 60	201 226 228 225 220 215 207	246·48 246·71 246·88 247·16 247·08 246·92	219 200 200 200 200 200 207	245·15 245·55 245·53 245·77 245·64 245·38	204 216 204 204 209 207	
October November December	244·32 244·31	201 205 208	244·35 244·35 244·59	201 205 208	246·67 246·28 246·39	217 203 258	245·10 244·92 245·09	198 198 211	

TABLE 13.—REGULATION OF THE GREAT LAKES—PARTIAL LIST OF DAMAGES WHICH WOULD RESULT FROM HIGH WATER IN LAKES MICHIGAN AND HURON

Stage		Authority
580-6	This would flood some land along Main and Grand Calumet	
581.0	Rivers. Above this would seriously affect sewerage system, flood basements, flood docks of Standard Oil Co. and cause unwarranted damage at Green Bay.	Office, Chicago, Ill. District Engineer, U.S. Engineer Office, Milwaukee, Wis.
	Above this would: Seriously affect sewerage systems of Chicago and vicinity, cause excessive flooding of basements during hard rains, raise ground water level in low parts of city, reduce widths of bathing beaches, reduce clearance under bridges to the point where excessive number of openings would be necessary and thereby cause additional delay and confusion in street traffic.	Office, Chicago, Ill.
	Above this would affect operation of Great Lakes Power Co. Ltd., of Sault Ste. Marie, through loss of head, unless present head was maintained by raising Lake Superior.	Public Works, Sault Ste. Marie, Mich.
FO4 0	Above this might affect sewerage system of Naval Training Station.	District Engineer, U.S. Engineer Office, Chicago, Ill.
581·2 581·6	Station. U.S. Weather Bureau at Alpena state that this would cause unwarranted damage to riparian interests in that locality. This would partially submerge the jetties in the Chicago Engineer District and endanger riparian interests during	District Engineer, U.S. Engineer Office, Detroit, Mich. District Engineer, U.S. Engineer Office, Chicago, Ill.
	storms by causing additional sliding along high banks. Above this would interfere with operations at docks and elevators of Canadian National Rv.	Vice-President, Canadian Nat'l Rys., Montreal, Que.
582.0	Above this would interfere with operations at docks and elevators of Goderich Elev. & Transit Co., Goderich.	District Engineer, Can. Dept. Public Works, London, Ont.
502.0	Above this would seriously affect sewerage system of Menominee. Above this would necessitate raising draw bridges of Michigan Central Railroad at Michigan City and Calumet. Above this would interfere with operations at majority of structures from French River to St. Marys River. They are constructed to render greatest efficiency with mean level of 581.0.	Office, Wilwaukee, Wis. District Engineer, U.S. Engineer Office, Milwaukee, Wis. District Engineer, Can. Dept. Public Works, Sault Ste.
	U.S. States Weather Bureau at Alpena states that this would interfere with operations of navigation and commercial interests in that locality. At Alpena, this would interfere with operations at wharves of Huron Contracting Co. and cause unwarranted damage	Office, Detroit, Mich. District Engineer, U.S. Engineer
582 · 1	to riparian interests. At Muskegon, this would interfere with operations at wharves of Standard Oil Co. At Green Bay, this would interfere with operations at wharves of Standard Oil Co. Above this might damage city parks of Evanston	
582.6	of Standard Oil Co. Above this might damage city parks of Evanston.	Office, Detroit, Mich. District Engineer, U.S. Engineer
583.0	I his would affect sewarage system and hood some basements	District Engineer, U.S. Engineer
	in Manitowoc. Above this would cause unwarranted damage at Racine	Office, Milwaukee, Wis. District Engineer, U.S. Engineer
	This would cause unwarranted damage at Holland	Office, Milwaukee, Wis. District Engineer, U.S. Engineer Office, Milwaukee, Wis.
	This would cause some damage due to flooding of basements in downtown section of Milwaukee. U.S. Weather Bureau at Alpena states that this would flood	City Engineer, Milwaukee, Wis. District Engineer, U.S. Engineer
583 · 1	docks and do unwarranted damage in that locality. At Muskegon this would flood docks and do unwarranted	Office, Detroit, Mich. District Engineer, U.S. Engineer
583.5	damage to Standard Oil Co. This would flood docks and cause unwarranted damage to Huron Contracting Co., at Alpena.	Office, Detroit, Mich. District Engineer, U.S. Engineer
583.6	At Mackinae Island, this would: Flood docks and interfere with operations of Municipal Light and Power Co.	District Engineer, U.S. Engineer
583.7	Cause unwarranted damage to riparian interests. Above this, would flood docks and cause unwarranted damage and interfere with operations of Huron Transportation Co.	

 $\begin{array}{l} \textbf{TABLE 13.--REGULATION OF THE GREAT LAKES---PARTIAL LIST OF DAMAGES WHICH } \\ \textbf{WOULD RESULT FROM HIGH WATER IN LAKES MICHIGAN AND HURON---Concluded} \end{array}$

Stage		Authority
585.0	At Bay City, this would flood docks and do unwarranted damage and interfere with operations at wharves of Standard Oil Co.	District Engineer, U.S. Engineer Office, Detroit, Mich.
585 · 6	At Rogers, this would interfere with operations at wharves of Michigan Limestone and Chem. Co. Above this would flood considerable lands on lake shore north of Chicago.	Office, Detroit, Mich.
586.6	At Rogers, this would flood docks and cause unwarranted damage to Michigan Limestone and Chem. Co.	District Engineer, U.S. Engineer
587 • 6	At Rogers, this would cause unwarranted damage to riparian interests.	District Engineer, U.S. Engineer Office, Detroit, Mich.

TABLE 14.—PARTIAL LIST OF DAMAGES WHICH WOULD RESULT FROM HIGH WATER IN LAKE ERIE

	·	
Stage		Authority
571.6	Below this would affect operation of Erie Lighting Co's	
571-1	Plant. Below this would affect operation of Cleveland Elec. Ill. Co's Plant.	Erie Lighting Co., Erie, Pa. Assistant to President Cleveland Elec. Ill. Co., Cleveland, Ohio.
$572\cdot 3$	Above this might inconvenience car ferry, Toronto, Hamilton and Buffalo Co., Port Maitland.	District Engineer, Can. Dept. Pub. Works, London, Ont.
572.8	National Tube Co., Lorain, believe levels above this would cause unwarranted erosion of south shore of lake.	
$572 \cdot 9$	Much increase above this would affect waste water drainage system, So. Buffalo Ry., Lackawanna,	Chief Engineer, So. Buffalo Ry. Co., Lackawanna, N.Y.
573 · 1	Above this would seriously interfere with operation of power plants, Cleveland Elec. Ill. Co.	
573.5	Above this may damage property, Lake Erie Coal Co., Rondeau and Port Stanley.	District Engineer, Can. Dept. Pub. Works, London, Ont.
574.0	Above this would: Interfere with operations, Maple Leaf Milling Co., Port Colborne. Delay loading and unloading of steamers and would flood pit of power-house Pittsburgh and Conneaut Dock Co., Conneaut. Damage works, Ohio Public Service Co., Lorain, Ohio	District Engineer, Can. Dept. Pub. Works, London, Ont. General Superintendent Pitts- burgh and Conneaut Dock Co., Conneaut, Ohio. Division Manager, Ohio Public
574.0	Affect drainage system, Bethlehem Steel Co., Lackawanna Above this would interfere with operations of unloading	Co., Lackawanna, N.Y.
574.2	plants, Erie R.R., Cleveland. Above this would flood turn-table pit, Can. Nat. Ry., Port Dover.	New York, N.Y. Chief Engineer, Central Region, Can. National Rys., Toronto,
574.3	Above this would halt operation of elevators, Washburn-Crosby Co., Buffalo.	Ont. General Superintendent, Wash- burn-Crosby Co., Buffalo, N.Y.
$574 \cdot 4$	Above this might damage Larman Coal Co., Port Colborne	
575.0	Above this would: Interfere with unloading operations, Penn. R.R., Sandusky. Interfere with unloading operations, Penn. R.R. at Buffalo,	Superintendent, Toledo Division, Pennsylvania R.R., Toledo, Ohio.
	Erie, Sandusky, Ashtabula and Cleveland, Ohio.	sylvania R.R., Pittsburgh, Pa. Manager, National Tube Co., Lorain, Ohio.
	Above this would cause unwarranted damage to property of Hammerill Paper Co.	
45827—1	3	

TABLE 14.—PARTIAL LIST OF DAMAGES WHICH WOULD RESULT FROM HIGH WATER IN LAKE ERIE

Stage		Authority
575.0	Interfere with unloading operations, Buffalo, Creek Ry.,	Buffalo Creek R.R. Buffalo
	Buffalo.	N.Y.
575 · 5	This would flood docks, coal storage, etc., Erie Lighting Co.	Erie Lighting Co., Erie, Pa.
575.5	Above this would: Stop operation of Canadian Government Elevator, Port Colborne.	Can. Dept. Railways and
576.0	This would probably flood docks and yard, American Ship Bldg. Co., Lorain.	Canals, Port Colborne, Ont. General Superintendent, American Ship Bldg. Co., Lorain, Ohio.
576.8	This would flood docks, East Side Iron Elev. Co., Toledo	District Engineer, U.S. Engineer Office, Detroit, Mich.
577 - 0	This would: Interfere with operations, East Side Iron Elev. Co., Toledo. Flood docks and yard, Canadian National Ry. Port Dover.	
	Flood docks, U.S. Engineer Office, Toledo	District Engineer, U.S. Engineer Office, Detroit, Mich.
577.3	This would flood dock, National Milling Co., Toledo	District Engineer, U.S. Engineer Office, Detroit, Mich.
577 · 5	Considered by Pennsylvania R.R. as highest level which would be safe for Toledo Division.	
578.0	This would flood buildings and halt operations Hammermill Paper Co., Erie. Above this would flood yard Ganson St. Freighthouse,	Assistant Secretary, Hammer- mill Paper Co., Erie, Pa.
578.8	Erie R.R., Buffalo. This would flood docks, Red Star Navigation Co., Cleveland.	New York, N.Y.
		Office, Detroit, Mich.
579.0	Above this would flood docks and property, Erie R.R., Buffalo.	New York, N.Y.
580.0	Above this would: Cause some damage to property and overflow tracks Buffalo Creek Ry., Buffalo. Flood docks, Lehigh Valley R.R., Buffalo	Buffalo Creek R.R., Buffalo, N.Y. Superintendent, Lehigh Valley R.R. Co., Buffalo, N.Y.
580.8	This would flood docks, B. & O. R.R., Toledo	District Engineer, U.S. Engineer Office, Detroit, Mich.

TABLE 15—PARTIAL LIST OF DAMAGES WHICH WOULD RESULT FROM HIGH WATER IN LAKE ONTARIO

Stage		Authority
246·0 247·0	Above this, it is believed that numerous small private docks and boat houses on Lake Ontario and the St. Lawrence River above Galop Island would be flooded and damaged. This would flood wharf and coal shed, A. Collier, Port Milford Above this, probably some docks and buildings at Clayton, Cape Vincent, Sackett's Harbour, Oswego, Fairhaven,	District Engineer, Can. Dept. Public Works, Ottawa, Ont.
	Sodus Point, Charlotte, Olcott, Youngstown and Lewiston would be flooded and operations interfered with at others. Above this would affect Central Island Park, Toronto. This would flood dock and canning factory, Port, Milford Packing Co., Port Milford. This would seriously affect drainage of cellars in lower section of Kingston.	District Engineer, Can. Dept. Public Works, Ottawa, Ont.

TABLE 15—PARTIAL LIST OF DAMAGES WHICH WOULD RESULT FROM HIGH WATER IN LAKE ONTARIO—Continued

Stage		Authority
247.5	This would flood— Wharf and two coal sheds, Jas. Soward, Kingston; wharf and 2 coal sheds, Ault & Reynolds, Brockville; L. H. Dept., Can. Dept. of Marine, Prescott; wharf and warehouse, A. Collier, Port Milford; and wharf and siding, C.P.R. Co., Kingston; wharf, Mrs. Cooper at Bath; Farmers' wharf, South Bay.	District Engineer, Can. Dept. Public Works, Ottawa, Ont.
	Above this would damage plant of Lake Ontario Sand Co., Charlotte.	Secretary, Lake Ontario Sand Co., Charlotte, Rochester, N.Y.
	Above this would affect LaSalle Causeway, Kingston, Kingston Dry dock, and Belleville wharf. This would flood piers of Geo. Hall Corp. Shipyard, Ogdensburg, N.Y.	District Engineer, Can. Dept.
248.0	Above this, probably some docks and buildings at Ogdensburg, Morristown and Alexandria Bay would be flooded and operations interfered with at other docks. This would flood—	
	Wharf, A. Anglin & Co., Kingston; wharf, Canadian Govt., Wellington; wharf and storehouse, A. Collier, Port Milford; wharf, storehouse and evaporator, factory, D. Wattham, Waupoos; cribwork and waterworks dock, City of Kingston; wharf and freight and coal sheds, J. Swift & Co. Kingston.	
	Above this would probably flood majority of docks and seriously interfere with operations at N.Y. Central wharves at Clayton, Cape Vincent and Sacketts Harbour. Above this, breakwater at Sackett's Harbour probably could not be used for mooring vessels.	
	Above this would seriously interfere with operations at N.Y. Stage Barge Canal Terminals and 1,000,000 bush, elevator and at coal docks of N.Y.O. & W.R.R. and D.L. & W.R. R., at Oswego, N.Y.; coal dock of L.Y.R. at Fairhaven Little Sodus B; coal dock of Penn. RR. at Sodus Pt.; coal docks of N.Y.C.R. at Charlotte; and docks of Niagars Nev. Co. on Niagara River.	
	Above this, the lake would probably break through the low narrow strips of sand which have been built up between the shoreward ends of the breakwaters and the higher ground, to protect the entrances to Little Sodus and Great Sodus B.; and through the strip which separates Sterling Creek Pond from the lake.	
	Thiw sould necessitate reconstructing government piers and breakwaters at Oswego, Little Sodus Bay, Sodus Bay, Charlotte and Olcott to retain their effectiveness. Above this, Sand Point, in Sodus Bay, with numerous summer cottages of probably low value, would probably be	
	flooded. Above this would probably flood state road on strip of land which separates Irondequoit Bay from the lake. Above this would probably necessitate raising fixed steel bridges, about 100 ft. in length, which earry N.Y.C.RR. and the state highway across entrance to Irondequoit	
	Bay. Above this would probably damage numerous summer cottages and private docks in Irondequoit Bay. Above this would probably flood the greater parts of Summerville, Windsor Beach and Ontario Beach, with numerous summer cottages, at Charlotte.	
	Above this would probably affect electric railway (about 8 miles long), constructed on low strip of land across entrances to numerous small bays, between Charlotte and Manitou Beach.	
248+5	Above this would probably flood part of beach with summer cottages at Olcott. This would flood:— Dock, Hosjery Mill, Kingston: Ferry dock, Kingston:	
	Dock, Hosiery Mill, Kingston; Ferry dock, Kingston; Dock, Kingston Yacht Club, Can. Gov't. wharf, Rednerville; entrance piers, Can. Govt., Wellington; dock and 2 coal sheds, Frontenac Str. and Coal Co., Kingston; freight and passenger wharf, Massagagna; wharf, elevator	Works, Ottawa, Ont.
45827-	and coal shed, Northport; whari, Forester Lt.	

TABLE 15—PARTIAL LIST OF DAMAGES WHICH WOULD RESULT FROM HIGH WATER IN LAKE ONTARIO—Continued

Stage	_	Authority
249.0	Above this, would probably flood majority of docks at Ogdensburg and Morristown, and seriously interfere with operations at docks of N.Y. Central RR. Terminal, at docks and 500,000 bush. elevator at Rutland R.R Terminal, and at docks of Standard Oil Co., Geo. Hall Corp., Algonquin Paper Corp., and Pulp Terminal, at Ogdensburg. This would flood Central Island Park, Toronto.	
	This would flood— Town dock, Gananoque; wharf and coal shed, R. Crawford, Kingston; Cribworks, C.P.R.R.Co., Kingston; wharf, Dr. Williams, Geen Island; wharf and cattle barns, J. P. Wiser & Sons, Prescott. This, at Oswego, would probably stop operations at N.Y. Stage Barge Canal Terminals and at N.Y.O. & W.R.R. and O.L. & W.R.R. coal docks; flood some foundations along lower part of Oswego River and large portions of Diamond Match Co.'s plant and yard and Standard Oil Co.'s. Lumber yard and mill; and reduce power head from 17 ft. to 14 ft., of mills on east bank of Oswego River below Bridge St. It also would reduce power head of 12,000 H.P. plant, under construction by General Develop- ment Co. from 15 ft. to about 12 ft.	Public Works, Ottawa, Ont.
249.5	ment Co., from 15 ft. to about 12 ft. This would flood dock, L. H. Service, Rockport; 2 docks, J. Smart Mig. Co., Brockville.	District Engineer, Can. Dept. Public Works, Ottawa, Ont.
250.0	 This would flood— Water Works Pier, Corp. of Brockville; L. H. Dept. wharf, Can. Govt. Depart. Marine, Prescott; wharf, and warehouse, Plum, Prescott; wharf, Buckley, Prescott; wharf, R. Weddell & Co., Trenton; Public wharf, Can. Govt. Trenton; Public Coal Dock, Can. Govt., Trenton; Anderson Dock, Belleville; wharf, Way & Gulliver, Picton; wharf and freight shed, Adolphns Town, wharf, Emerald; wharf, Stella; wharf, coal and freight shed, Robinson, Bath; Portsmouth, Brewery wharf; wharf, Portsmouth; wharves, Ty. siding and elevator, Montreal Transp. Co., Kingston; waterworks dock, Town of Gananoque; dock and freight shed, Gananoque; wharf, Can. Govt. Public Works Dept. Mallorytown; wharf, Laing Co., Brockville. 	District Engineer, Can. Dept. Public Works, Ottawa, Ont.
	2 wharves and 2 coal sheds, B. Power & Co., Trenton, dock, C.P.RR., Trenton; Allen's dock Belleville, coal wharf, Stevens, Napanee; Lights wharf, Napanee; wharf, Rankin, Collins Bay; Breakwater, Can. Govt. Portsmouth, Entrance to Can. Govt. drydock, with 2 travelling cranes, Kingston; wharf and grain elevator, J. Richardson & Son, KingMton.	
250.5	This would flood— Wharf and coal storage bldgs. Trenton Cooperage Mills, Ltd.; public wharf, track and store house, Can. Govt. Belleville; wharf and coal sheds, G.T.RR., Belleville; Public wharves along side LaSalle Highway, Can. Govt., Dept. Public Works, Kingston wharves and boat house, Royal Militia College, Kingston; Public wharf, Can. Govt., Burnt Is.; wharf, coal and freight shed; Taylor and Green Co., Gananoque, docks, Ry. sidings and freight shed, Thousand Island Ry. Co., Gananoque; Public wharf, Can. Govt., P.W. Dept., Gananoque; Public wharf Lansdown; Carnegie wharf, Rockport- Public wharf, Can. Govt., P.W. Dept., Brockville; wharf, siding, storehouse and derrick, C.P.RR. Co., Brockville; wharves, coal shed and shed, Buckley, Prescott; wharf, tracks and freight shed, C.P.RR.Co.,	District Engineer Can. Dept. Public Works, Ottawa, Ont.
251.0	Above this would probably flood parts of railroad terminals at Ogdensburg and flood or stop operations at principal docks at Ogdensburg, Morristown, Alexandria Bay, Clayton, Cape Vincent and Sackett's Harbour. This would flood part of yard, Rutland R.R. Ogdensburg	

TABLE 15—PARTIAL LIST OF DAMAGES WHICH WOULD RESULT FROM HIGH WATER IN LAKE ONTARIO—Concluded

Stage		Authority				
251.0	Above this would flood inner wharves, Toronto. Above this would probably affect line of New York Central Railroad between Ogdensburg and Morristown.					
252 - 5	This would flood LaSalle Causeway, Kingston and Belleville wharf. This would flood—	District Engineer, Can. Dept. Public Works, Ottawa, Ont				
202+0	Private cribwood, Kingston, wharf, railway siding and oil pipe line, C.P. Railroad, Brockville.	District Engineer, Can. Dept. Public Works, Ottawa, Ont.				
253.0	This would probably flood all docks and all railroad terminals at Ogdensburg.	, , , , , , , , , , , , , , , , , , , ,				
	This would flood entire yard of Rutland Railroad, Ogdens- burg.	burg, N.Y.				
253.5	This would flood— Cribwork, Penitentiary and Gumis Taunery, Portsmouth, wharf and sheds, Can. Cement Co., Point Aune.	District Engineer, Can. Dept. Public Works, Ottawa, Ont.				
254.5	This would flood— Breakwater, Can. Govt., Portsmouth; Dock, Eastern Milk Products Co., Gananoque; wharf and grain elevator, Prescott Elevator Co., Prescott.					

TABLE 17.—REGULATION OF THE GREAT LAKES

STORAGE AT DETERMINING POINTS ON STORAGE DISTRIBUTION CURVES, FOR REGLUATION WITH COMPLETE CONTROL OF ST. CLAIR RIVER

	Upper Limit—Regulation for				Highest Safe Stage				A High Point on Curves						
Month	Equal Navigable Depth				Lower Limit—Regulation for Equal Flood Probability				Regulation for Equal Flood Probability						
MOUGH		Lake Mich- igan— Huron	Erie	Lake On- tario	Total Stor- age		Lake Mich- igan— Huron	Erie	Lake On- tario	Total Stor- age		ıgan—	철회	Lake Ontario	Total Stor- age
Jan	689	985	225	164	2,063	950	1,458	368	286	3,062	1,388	2,325	542	428	4,683
Feb	672 746	960		160	2,010 2,232	880	1,462	375 416	295	3,012 3,232	1,255	2,329 2,523	556 641		4,583 4,927
April May	877 987	1,252 1,409	286 322	234	2,623 $2,952$	950 1,071	1,795 1,945	491 519	389 413	3,625 3,948	1,242 1,357	$2,443 \\ 2,619$	641 656		4,835 5,175
July	1,041		342	248	3,114	1,208	2,030	522 505		4,114	1,290	2,398	587 562	480 466	4,755
Sept	1,017 960 880	1,453 $1,372$ $1,258$	332 313 287		3,044 2,873 2,634		1,940 1,839 1,713	480 448 412	372 332 306	4,040 3,867 3,628	1,562 1,562 1,502	2,612 2,501 2,407	590 557 524	483 440 406	5,247 5,060 4,839
Nov Dec	796 736	1,138	260 240	189	2,383		1,589	382 375	286 278	3,377	1,570	2,597	542 540	424	5,133 4,921

Note.—Datums used in computing above storages were Superior 599.6, Michigan-Huron 577.6, Erie 568.8 and Ontario 242.5. All storages in thousand second foot months.

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE

	actual d	ated with iversions records)		ted with diversion 0 c.f.s.	divers	ted with sion of c.f.s.
Year and Month (a)	Discharge 1,000's of c.f.s. (b)	Elevation Ontario (Oswego) end of month (c)	Discharge 1,000's of c.f.s.	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of period (g)
1860— June July August. September. October. November. December.	283 285 283 277 267 273 269	247·70 247·54 247·06 246·76 246·71 246·74 246·58	274 277 274 269 258 264 260	247·28 247·12 246·64 246·34 246·32 246·32 246·16	279 269 262 257 272 3001 2162	247·28 247·09 246·68 246·47 246·43 246·37 246·05 246·25
1861— January February. March. April	244 243 251 285	246·50 246·78 247·12 247·70	235 234 243 277	246·08 246·36 246·70 247·28	210 223 242 268 ¹ 302 ²	246·49 246·91 247·26 247·61 247·73
May. June July August. September October. November. December.	305 310 309 302 293 294 292 297	248·36 248·43 248·20 247·84 247·70 247·82 247·72 247·36	297 301 301 294 284 286 284 288	247-94 248-01 247-48 247-42 247-28 247-40 247-30 246-94	302 300 310 310 301 303 303 310 3101 2182	247·33 248·31 247·96 247·51 247·13 247·03 246·61 246·29 246·54
January. February. March April.	259 248 247 296	246.90 246.94 247.63 248.48	250 239 238 287	246·48 246·52 247·21 248·06	212 224 240 272 ¹	246·56 246·78 247·44 247·96
May. June. July. August. September. October. November. December.	318 312 310 301 290 279 270 264	248·75 248·67 248·49 247·94 247·34 246·90 246·68 246·70	310 303 301 293 281 270 261 256	248·33 248·25 248·07 247·52 246·92 246·48 246·26 246·28	310 ² 310 310 310 301 292 265 261 2391 217 ²	248·24 248·50 248·34 248·05 247·40 246·66 246·28 246·07 246·18 246·43
1863— January. February. March. April.	247 242 246 283	246·80 246·87 247·27 247·83	238 234 236 275	246·38 246·45 246·85 247·41	212 227 244 2691 3032	246·85 247·00 247·30 246·62
May. June July August September October November December	301 293 285 276	248·10 247·98 247·54 247·12 246·84 246·65 246·45	291 292 284 277 267 257 256 253	247·68 247·56 247·12 246·70 246·22 246·23 246·14 246·03	303** 299 307 284 263 264 260 257 2941 209**	247·72 247·88 247·58 247·14 246·65 246·65 246·33 246·23 245·92 246·14
1864— January February March April	228 242	$\begin{array}{c} 246 \cdot 25 \\ 246 \cdot 22 \\ 246 \cdot 54 \\ 247 \cdot 32 \end{array}$	214 220 233 261	245·83 245·80 246·12 246·90	209 217 217 2411	246·00 246·00 246·52 247·03
May	291	247.97	281	247.55	271 ² 277	247·35 248·05

¹ First half of month. ² Second half of month.

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE— ${\it Continued}$

	actual d	ted with iversions records)	continuous	ted with diversion 0 c.f.s.	divers	ted with sion of c.f.s.
Year and Month (a)	Discharge 1,000's of c.f.s. (b)	Elevation Ontario (Oswego) end of month (c)	Discharge 1,000's of c.f.s.	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of period (g)
1864— June. July. August. September. October. November. December.	301 292 283 273 266 268 272	247 · 96 247 · 57 247 · 08 246 · 70 246 · 56 246 · 60 246 · 86	293 284 275 274 257 260 263	247 · 54 247 · 15 246 · 66 246 · 28 246 · 14 246 · 18 246 · 44	310 291 266 263 259 273 3021 2182	247·83 247·34 246·95 246·71 246·55 246·43 246·32 246·73
865— January. February. March. April.	245 225 242 284	247·16 247·30 247·42 247·54	236 216 234 275	246·74 246·88 247·00 247·12	214 233 247 2631 2762	247·31 247·23 247·18 247·32 247·37
May. June. July. August. September. October. November. December.	288 288 283 273 260 251 246 244	247·64 247·58 247·20 246·60 246·18 245·94 245·74 245·56	280 280 275 264 252 242 238 236	247·22 247·16 246·76 246·18 245·76 245·52 245·32 245·14	273 282 270 259 249 240 235 2071 2102	247·56 247·47 247·15 246·61 246·22 246·01 245·85 245·94 246·02
January February March April	200 214	245 · 46 245 · 48 245 · 72 245 · 99	197 191 205 243	245 · 04 245 · 04 245 · 30 245 · 57	208 211 207 203 ¹	245·78 245·56 245·77 246·16
May. June. July. August. September. October. November. December.	272 274 270 265 262 265	245·97 246·38 246·79 246·70 246·58 246·40 246·24 246·08	252 263 266 262 257 254 256 263	245·55 245·96 246·37 246·28 246·16 245·98 245·82 245·66	216 ² 221 241 269 277 288 280 275 2881 215 ²	246·46 246·82 247·51 247·87 247·58 247·07 246·57 246·18 245·98 246·20
l867— January February March April	246	245 · 94 246 · 27 247 · 07 247 · 86	230 229 237 274	245 · 52 245 · 85 246 · 65 247 · 44	210 220 240 274 ¹ 208 ²	246·31 246·75 247·51 247·91 248·10
May. June. July August. September. October. November. December	307 298 285 272 256 249	248·34 248·30 247·80 247·23 246·66 245·96 245·21 244·67	292 299 290 290 263 248 241 225	247·92 247·88 247·38 246·81 246·24 245·54 244·79 244·25	310 310 305 268 265 245 228 2011 2002	248·10 248·36 248·16 247·47 247·01 246·41 245·75 245·16 245·04 244·93
1868— January February March April	184 210	$\begin{array}{c} 244.56 \\ 244.74 \\ 245.20 \\ 245.82 \end{array}$	202 176 201 237	244·14 244·32 244·78 245·40	199 200 200 205 ¹ 210 ²	244 · 85 244 · 73 245 · 21 245 · 72 246 · 20
May	251	246.33	243	245.91	2102	247.10

First half of month. Second half of month.

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE—Continued

Year and Month (a) 1868— June. July. August. September. October. November.	actual di	ted with iversions ecords)	continuous	ated with s diversion 0 c.f.s.	dive	ated with rsion of c.f.s.
June. July. August. September. October.	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month (c)	Discharge 1,000's of c.f.s. (d)	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of period (g)
December	267 264 258 252 243 237 244	246·48 246·28 246·04 245·64 245·28 245·28 245·30	268 256 249 244 235 228 235	246.06 245.85 245.62 245.22 244.86 244.88	256 268 252 246 234 226 2201 2172	247·40 247·05 246·77 246·35 246·00 246·02 246·12 246·24
1869— January February March April	217 197 196 259	245 · 28 245 · 45 245 · 82 246 · 42	208 188 188 251	244·86 245·03 245·40 246·00	210 219 217 2071 2342	246·20 245·99 245·99 246·57 246·97
May. June. July. August. September. October. November. December.	276 282 288 288 284 280 272 267	246·86 247·13 247·32 247·27 247·12 246·88 246·76 247·06	268 273 280 280 275 271 264 259	246·44 246·71 246·90 · 246·84 246·70 246·46 246·34 246·64	254 244 282 284 287 305 298 294 2961 218 ²	247·771 247·87 248·01 247·86 247·35 246·77 246·27 246·75
January. February. March. April.	258 258 253 304	247·34 247·41 247·88 248·65	249 249 244 295	246·92 246·99 247·46 248·23	214 235 255 2861	247·47 247·72 248·06 248·51
May June July August September October November December	318 313 309 296 282 276 265 260	248·79 248·47 248·14 247·62 247·12 246·66 246·26 246·10	310 305 301 288 274 268 256 251	248·37 248·05 247·72 247·20 246·70 246·24 245·84 245·68	310 ² 310 310 310 300 290 269 251 208 ¹ 217 ²	248·81 248·95 248·56 248·12 247·44 246·74 246·26 245·92 246·11 246·23
1871— January February March April	231 227 243 270	$\begin{array}{c} 245 \cdot 98 \\ 246 \cdot 00 \\ 246 \cdot 40 \\ 246 \cdot 91 \end{array}$	222 219 234 261	$\begin{array}{c} 245.56 \\ 245.58 \\ 245.98 \\ 246.49 \end{array}$	210 220 226 2531 2772	246·27 246·27 246·77 247·07 247·22
May June July August September October November December	278 278 275 265 257 249 235 227	247·09 246·98 246·68 246·29 245·87 245·42 245·06 244·82	269 270 266 257 249 241 227 218	246·67 246·56 246·26 245·87 245·45 245·00 244·64 244·40	217 ² 275 281 269 257 247 237 225 201 ¹ 201 ²	247-33 247-08 246-74 246-35 245-95 245-55 245-51 245-20 245-19
1872— January February March April	190 174 189 222	244 · 62 244 · 43 244 · 60 244 · 90	182 166 180 214	244·20 244·01 244·18 244·48	201 200 190 193 ¹ 194 ²	244·75 244·14 244·19 244·47 244·75

¹ First half of month. ² Second half of month.

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE— ${\it Continued}$

	actual d	eted with iversions ecords)		ated with diversion 0 c.f.s.	divers	ted with sion of c.f.s.
Year and Month (a)	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of period (g)
1872— June. July. August. September. October. November. December.	241 242 237 232 267 228 211	245·32 245·27 245·04 244·82 244·72 244·52 244·33	232 234 239 224 218 220 202	244·90 244·85 244·62 244·40 244·30 244·10 243·91	198 219 229 230 223 220 2021 2022	$\begin{array}{c} 245 \cdot 95 \\ 246 \cdot 09 \\ 245 \cdot 98 \\ 245 \cdot 68 \\ 245 \cdot 52 \\ 245 \cdot 32 \\ 245 \cdot 22 \\ 245 \cdot 12 \end{array}$
1873— January February March April	192 194 200 254	$\begin{array}{r} 244 \cdot 34 \\ 244 \cdot 44 \\ 245 \cdot 46 \\ 246 \cdot 73 \end{array}$	183 185 192 246	$\begin{array}{c} 243 \cdot 92 \\ 244 \cdot 02 \\ 245 \cdot 08 \\ 246 \cdot 31 \end{array}$	201 201 200 2041 2412	244 · 91 244 · 81 245 · 75 246 · 64 247 · 29
May. June. July. August. September. October. November. December.	273 275 273 266 260 249 246 251	246·96 246·90 246·74 246·39 245·96 245·66 245·70 246·07	264 267 265 258 251 241 237 243	246·54 246·48 246·32 245·97 245·54 245·24 245·28 245·65	241 265 278 268 258 253 242 237 2231 2182	247 · 29 247 · 30 247 · 10 246 · 75 246 · 30 245 · 99 246 · 03 246 · 33 246 · 67
January February March April	238 239 261 279	$\begin{array}{c} 246 \cdot 55 \\ 247 \cdot 02 \\ 247 \cdot 24 \\ 247 \cdot 18 \end{array}$	229 231 252 270	246·13 246·60 246·82 246·76	213 233 256 284 ¹	247·36 247·81 247·99 247·87
May. June. July. August. September. October. November. December.	282 276 262	247·22 247·24 247·10 246·66 246·14 245·66 245·20 244·88	265 275 274 268 254 246 237 227	246 · 80 246 · 82 246 · 68 246 · 24 245 · 72 245 · 24 244 · 78 244 · 46	310 ² 288 273 274 264 259 243 229 203 ¹ 203 ²	247·59 247·34 247·39 247·25 246·85 246·24 245·40 245·44 245·43 245·42
January January February March April	203 177 197 238	244 · 56 244 · 51 245 · 04 245 · 58	195 168 188 230	244 · 14 244 · 09 244 · 62 245 · 16	203 202 198 204 ¹ 204 ²	245·00 244·52 244·93 245·35 245·77
May. June. July. August. September. October. November. December.	250 253 255 250 242 238 233 229	245·79 245·88 245·83 245·66 245·41 245·18 244·99 245·10	242 244 246 242 234 229 224 220	245·37 245·46 245·41 245·24 244·99 244·76 244·57 244·68	204 ² 205 233 248 247 244 237 230 203 ¹ 204 ²	245·77 246·45 246·69 246·61 246·37 245·99 245·67 245·41 245·57 245·72
1876— January February March April	217 226 240 286	245 · 64 246 · 24 247 · 01 247 · 79	209 217 232 278	245·22 245·82 246·59 247·37	206 220 242 2731 2102	246·30 246·86 247·50 247·92
May	298	248 - 19	290	247.77	310 ² 310	248·11 248·26

¹ First half of month. ² Second half of month

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE— ${\it Continued}$

	actual d	ited with iversions records)	continuous	ated with s diversion 00 c.f.s.	divers	ted with sion of c.f.s.
Year and Month	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month	Discharge 1,000's of c.f.s.	Elevation Ontario end of month	Discharge 1,000's of c.f.s.	Elevation Ontario end of period
(a)	(b)	(e)	(d)	(e)	(f)	(g)
1876— June July August. September October. November. December	304 305 294 280 277 266 265	248·34 248·14 247·60 247·13 246·78 246·51 246·16	295 296 286 272 269 257 256	247·92 247·72 247·18 246·71 246·36 246·09 245·74	310 310 297 287 263 257 2131 2162	248 · 22 247 · 84 247 · 16 246 · 50 246 · 22 245 · 96 246 · 05 246 · 13
January February March April	226 224 230 262	$\begin{array}{c} 245.76 \\ 245.70 \\ 246.12 \\ 246.50 \end{array}$	217 216 222 253	245·34 245·28 245·70 246·08	209 212 212 2341 2592	245 · 83 245 · 82 246 · 36 246 · 66 246 · 81
May June July August September October November December	266 265 266 259 249 238 237 240	246·48 246·45 246·34 245·98 245·56 245·30 245·32 245·43	257 256 257 251 241 229 228 232	246·06 246·03 245·92 245·56 245·14 244·88 244·90 245·01	255 256 257 255 247 234 228 2041 2062	246·82 246·80 246·69 246·28 245·46 245·46 245·48 245·70 245·91
1878— January. February. March. April.	223 220 238 267	$\begin{array}{c} 245.58 \\ 246.04 \\ 246.52 \\ 246.81 \end{array}$	214 212 230 258	245·16 245·62 246·10 246·39	207 218 235 261 ¹ 276 ²	246 · 15 246 · 54 · 246 · 95 · 247 · 07 247 · 09
May. June. July. August. September. October. November. December.	275 274 272 272 269 261 260 276	246·98 246·95 246·89 246·72 246·46 246·27 246·62 246·92	266 264 264 264 260 253 251 267	246·56 246·53 246·47 246·30 246·04 245·85 246·20 246·50	264 264 275 268 261 263 256 263 3091 2202	247·29 247·14 247·03 246·89 246·60 246·39 246·48 246·93
January. February. March. April	243 245 234 267	246 · 63 246 · 38 246 · 50 246 · 76	234 236 226 259	246 · 21 245 · 96 246 · 08 246 · 34	216 227 240 2481 2582	246·87 246·67 246·67 246·87 247·01
May. June July August. August. October November December.	272 272 268 259 252 242 234 230	246·85 246·72 246·50 246·11 245·68 245·26 245·08 245·21	264 263 260 250 244 233 225 221	246·40 246·33 246·08 245·69 245·26 244·84 244·66 244·79	253 261 259 249 241 233 223 2051 2062	247·21 247·17 246·93 246·55 246·15 245·74 245·79 245·93
1880— January. February. March April.	222 222 232 257	245 · 46 245 · 77 246 · 03 246 · 20	214 213 223 249	245·04 245·35 245·61 245·78	207 220 233 2441	246 · 27 246 · 49 246 · 63 246 · 74
May	262	246.39	254	245.97	249 ² 240	246 · 82 247 · 18

¹ First half of month. ² Second half of month

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE—Continued

	actual d	ited with iversions records)		ted with diversion 0 c.f.s.	Regulated with diversion of 8,500 c.f.s.		
Year and Month	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month	Discharge 1,000's of c.f.s.	Elevation Ontario end of month	Discharge 1,000's of c.f.s.	Elevation Ontario end of period	
(a)	(b)	(c)	(a)	(e)	(f)	(g)	
July	266 265 255 258 239 241 229	246·52 246·30 245·90 245·52 245·29 245·18 244·92	257 257 246 249 231 232 221	246·10 245·88 245·48 245·10 244·87 244·76 244·50	259 266 255 245 235 227 2051 2052	247·29 246·95 246·44 245·99 245·65 245·63 245·61	
1881— January February March April	186 195 • 218 248	$\begin{array}{c} 244 \cdot 74 \\ 245 \cdot 06 \\ 245 \cdot 60 \\ 245 \cdot 90 \end{array}$	177 186 209 239	244·32 244·64 245·18 245·48	205 202 204 2121 2262	245·09 245·21 245·81 246·13 ·246·35	
May June July August September October November December	252 257 259 252 242 235 235 236	246·10 246·24 · 246·12 245·68 245·29 245·18 245·18 245·46	244 249 251 243 233 226 226 228	245·68 245·82 244·70 244·26 244·87 244·75 244·76 245·04	222 250 257 257 250 239 229 230 2041 2072	246 · 83 246 · 95 246 · 75 246 · 23 245 · 77 245 · 67 245 · 67 245 · 86 246 · 14	
1882— January February March April	229 231 247 269	$\begin{array}{c} 245.82 \\ 246.20 \\ 246.66 \\ 246.92 \end{array}$	221 222 238 261	245·40 245·78 246·24 246·50	209 225 244 2711 2922	246 · 65 247 · 00 247 · 39 247 · 45 247 · 37	
May. June. July. August. September. October. November. December.	273 286 285 278 267 255 245 246	$\begin{array}{c} 247 \cdot 28 \\ 247 \cdot 52 \\ 247 \cdot 36 \\ 247 \cdot 00 \\ 246 \cdot 56 \\ 246 \cdot 09 \\ 245 \cdot 74 \\ 245 \cdot 46 \end{array}$	264 277 277 269 258 247 237 238	246·86 247·10 246·94 246·58 246·14 245·67 245·32 245·04	279 287 285 270 271 251 239 2041 2052	247·55 247·67 247·41 247·03 246·43 245·91 245·61 245·61	
1883— January February March April	211 192 213 253	245·35 245·50 245·88 246·46	203 184 204 245	244·93 245·08 245·46 246·04	205 207 205 206 ¹	245·53 245·39 245·77 246·29	
May. June. July. August. September. October. November. December.	268 284 293 289 279 268 265 263	247·14 247·76 247·93 247·60 247·14 246·80 246·62 246·53	260 275 284 281 270 260 257 254	246·72 247·34 247·51 247·18 246·72 246·38 246·20 246·11	225 ² 236 284 299 288 287 273 269 294 ¹ 211 ²	246·70 247·68 248·19 248·18 247·76 247·08 246·58 246·58 245·94 246·16	
1884— January. February. March. April.	226 234 248 294 298	246·70 247·22 247·86 248·18	218 225 240 285 290	246·28 246·80 247·44 247·76	209 222 244 275 ¹ 310 ² 309	246·44 247·00 247·59 247·81 247·81 247·52	

¹ First half of month. ² Second half of month.

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE—Continued

	actual d	ted with iversions ecords)		ted with diversion 0 c.f.s.	divers	ated with sion of c.f.s.
Year and Month	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month (c)	Discharge 1,000's of c.f.s.	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of period (g)
		(0)				(6)
1884— June July. August. September October November. December	293 293 287 275 264 256 252	247·98 247·76 247·44 247·01 246·55 246·22 246·14	285 285 279 267 256 248 243	247·56 247·34 247·02 246·59 246·13 245·80 245·72	293 278 268' 270 254 247 206 ¹ 208 ²	247 · 26 247 · 12 246 · 93 246 · 47 246 · 03 245 · 71 245 · 91 246 · 09
1885— January. February. March. April.	228 212 209 241	$\begin{array}{c} 246 \cdot 00 \\ 245 \cdot 73 \\ 245 \cdot 93 \\ 246 \cdot 67 \end{array}$	219 204 200 233	245.58 245.31 245.51 245.25	209 218 208 210 ¹ 239 ²	246·08 245·63 245·73 246·24 246·56
May. June. July. August. September. October. November. December.	272 281 283 276 273 268 269 276	247 · 26 247 · 51 247 · 50 247 · 32 247 · 12 247 · 04 247 · 16 247 · 42	263 273 274 268 265 259 260 267	246·84 247·09 247·08 246·90 246·70 246·62 246·74 247·00	242 286 287 275 280 269 279 2991 218 ²	247·42 247·43 247·33 247·05 246·46 246·46 246·35 246·27 246·71
January. February. March. April	256 256 259 298	$247 \cdot 64$ $247 \cdot 74$ $248 \cdot 12$ $248 \cdot 54$	247 247 251 290	$247 \cdot 22$ $247 \cdot 32$ $247 \cdot 70$ $248 \cdot 12$	214 233 253 2841	247·35 247·63 247·98 248·23
May. June. July. August. September. October. November. December.	304 300 293 284 277 268 266 261	248 · 54 248 · 24 247 · 82 247 · 42 247 · 10 246 · 73 246 · 46 246 · 30	296 291 284 276 268 260 257 253	248·12 247·82 247·40 247·00 246·68 246·31 246·04 245·88	310 ² 310 310 294 270 264 259 251 209 ¹ 217 ²	248 · 31 248 · 13 247 · 59 247 · 05 246 · 73 246 · 71 245 · 92 246 · 13 246 · 29
January. February. March. April.	233 258 264 288	$\begin{array}{c} 246.54 \\ 247.18 \\ 247.54 \\ 247.92 \end{array}$	224 249 256 280	$\begin{array}{c} 246 \cdot 12 \\ 246 \cdot 76 \\ 247 \cdot 12 \\ 247 \cdot 50 \end{array}$	210 225 254 2851	246·70 247·64 248·03 248·18
May. June. July. August. September. October. November. December.	296 296 289 277 265 258 246 242	248 · 18 248 · 02 246 · 62 247 · 06 246 · 56 246 · 20 245 · 88 245 · 60	288 288 281 268 256 250 238 233	247·76 247·60 247·20 246·60 246·14 245·78 245·46 245·18	310 ² 310 310 291 269 255 243 237 204 ¹ 205 ²	248·18 248·16 247·72 247·20 246·62 246·13 245·85 245·54 245·59 245·63
1888— January. February March April.	214 194 208 253	$\begin{array}{c} 245 \cdot 37 \\ 245 \cdot 42 \\ 245 \cdot 86 \\ 246 \cdot 20 \end{array}$	205 186 200 245	244.95 245.00 245.44 245.72	205 205 204 208 ¹	245·41 245·22 245·61 246·01
May	256	246.26	248	245.84	219 ² 221	$246.33 \\ 246.72$

¹ First half of month. ² Second half of month.

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE—Continued

	actual d	ited with iversions records)		ted with diversion 0 c.f.s.	Regula divers 8,500	
Year and Month (a)	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month (c)	Discharge 1,000's of c.f.s. (d)	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s. (f)	Elevation Ontario end of period (g)
1888— June July August September October November December	258 258 257 249 239 239 240	$\begin{array}{c} 246 \cdot 31 \\ 246 \cdot 29 \\ 246 \cdot 04 \\ 245 \cdot 67 \\ 245 \cdot 46 \\ 245 \cdot 42 \\ 245 \cdot 52 \end{array}$	250 250 248 240 231 231 231	245·89 245·87 245·62 245·25 245·04 245·00 245·10	246 256 250 247 236 228 2061 2072	246·82 246·72 246·44 245·59 245·70 245·70 245·90 246·10
1889— January. February. March. April.	226 212 220 256	$\begin{array}{r} 245 \cdot 69 \\ 245 \cdot 84 \\ 246 \cdot 05 \\ 246 \cdot 24 \end{array}$	217 204 212 248	$\begin{array}{r} 245 \cdot 27 \\ 245 \cdot 42 \\ 245 \cdot 63 \\ 245 \cdot 82 \end{array}$	209 221 227 2321 2492	$246 \cdot 38$ $246 \cdot 32$ $246 \cdot 33$ $246 \cdot 53$ $246 \cdot 62$
May. June July August September October November December	258 267 270 265 253 239 234 245	246·48 246·72 246·70 246·29 245·79 245·37 245·46 246·00	249 259 262 256 244 230 226 237	246·06 246·30 246·28 245·87 245·37 244·95 245·04 245·58	239 256 271 263 253 239 226 204 ¹ 216 ²	246·98 247·26 247·12 246·62 246·01 245·47 245·56 246·04 246·44
1890— January. February. March. April.	239 239 252 276	246·46 246·76 247·05 247·35	230 231 243 268	246·00 246·34 246·63 246·93	212 230 251 276 ¹ 301 ²	247·09 247·44 247·63 247·73 247·68
May. June. July. August. September. October. November. December.	285 295 295 280 273 264 265 259	247·84 248·08 247·66 247·14 246·80 246·68 246·62 246·35	276 286 286 271 265 255 256 250	247·42 247·66 247·24 246·72 246·38 246·26 246·20 245·93	290 306 299 269 264 255 270 2951 2072	247·99 247·99 247·99 247·41 246·92 246·58 246·47 246·25 245·84 245·98
1891— January. February. March. April.	232 233 247 283	246·32 246·72 247·23 247·36	224 224 239 274	245·90 246·30 246·81 246·94	208 218 237 264 ¹ 276 ²	$246 \cdot 14$ $246 \cdot 62$ $247 \cdot 14$ $247 \cdot 26$ $247 \cdot 31$
May. June. July August. September. October. November. December.	268 266 255 245 230	247·04 246·69 246·33 245·90 245·36 244·74 244·42 244·46	270 260 257 247 236 221 213 212	246·62 246·27 245·91 245·48 244·94 244·32 244·00 244·04	271 259 247 241 234 222 213 1971 1982	247 · 09 246 · 75 246 · 51 246 · 15 245 · 64 245 · 02 244 · 71 244 · 82 244 · 92
1892— January February March April	187 190	244·50 244·54 244·90 245·22	193 178 182 222	244·08 244·12 244·48 244·80	199 201 199 199 ¹ 200 ²	244·90 244·65 244·80 245·10 245·40
May	234	245.53	225	245.11	199	246.04

¹ First half of month. ² Second half of month.

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE—Continued

	,		7				
	actual d	eted with iversions records)	continuous	ated with s diversion . 00 c.f.s.	divers	ulated with ersion of 500 c.f.s.	
Year and Month (a)	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month (c)	Discharge 1,000's of c.f.s.	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of period (g)	
						167	
1892— June. July. August. September. October. November. December.	247 260 255 254 242 236 232	$\begin{array}{c} 246\cdot06\\ 246\cdot28\\ 246\cdot14\\ 245\cdot82\\ 245\cdot46\\ 245\cdot26\\ 245\cdot04 \end{array}$	238 252 246 246 234 227 227	245 · 64 245 · 86 245 · 72 245 · 40 245 · 04 244 · 84 244 · 62	211 250 256 257 244 231 2061 2062	$\begin{array}{c} 246 \cdot 92 \\ 247 \cdot 17 \\ 246 \cdot 91 \\ 246 \cdot 45 \\ 245 \cdot 96 \\ 245 \cdot 71 \\ 245 \cdot 71 \\ 245 \cdot 71 \end{array}$	
1893— January	201 183 199 249	$\begin{array}{c} 244 \cdot 82 \\ 245 \cdot 00 \\ 245 \cdot 62 \\ 246 \cdot 57 \end{array}$	192 174 190 240	$\begin{array}{c} 244 \cdot 40 \\ 244 \cdot 58 \\ 245 \cdot 20 \\ 246 \cdot 15 \end{array}$	206 204 203 202 ¹ 225 ²	$245 \cdot 32$ $245 \cdot 13$ $245 \cdot 59$ $246 \cdot 30$ $246 \cdot 88$	
May. June. July. August. September. October. November. December.	275 - 282 277 262 259 247 238 233	247·26 247·24 246·84 246·44 246·04 245·58 245·30 245·39	266 274 268 254 250 239 230 225	246 · 84 246 · 82 246 · 42 246 · 02 245 · 62 245 · 16 244 · 68 244 · 97	244 297 277 257 248 238 228 2041 2062	247 · 86 247 · 55 247 · 04 246 · 60 246 · 22 245 · 77 245 · 52 245 · 70 245 · 86	
1894— January February March April	218 197 230 251	$\begin{array}{c} 245 \cdot 65 \\ 245 \cdot 89 \\ 246 \cdot 06 \\ 246 \cdot 18 \end{array}$	209 188 222 243	$\begin{array}{c} 245 \cdot 23 \\ 245 \cdot 47 \\ 245 \cdot 64 \\ 245 \cdot 76 \end{array}$	$\begin{array}{c} 207 \\ 218 \\ 217 \\ 227^1 \\ 234^2 \end{array}$	$246 \cdot 15$ $246 \cdot 01$ $246 \cdot 23$ $246 \cdot 38$ $246 \cdot 49$	
May. June. July. August. September October. November December.	256 269 263 250 240 234 229 220	$\begin{array}{c} 246 \cdot 54 \\ 246 \cdot 70 \\ 246 \cdot 31 \\ 245 \cdot 76 \\ 245 \cdot 38 \\ 245 \cdot 10 \\ 244 \cdot 76 \\ 244 \cdot 54 \end{array}$	248 260 255 241 232 225 220 211	246 · 12 246 · 28 245 · 89 245 · 34 244 · 96 244 · 68 244 · 34 244 · 12	234 ² 228 259 269 250 235 225 219 200 ¹ 200 ²	240 · 49 247 · 29 247 · 27 246 · 71 246 · 05 245 · 63 245 · 35 245 · 03 244 · 99 244 · 95	
1895— January February March April	196 178 181 224	244 · 46 244 · 38 244 · 60 244 · 94	187 170 172 215	244 · 04 243 · 96 244 · 18 244 · 52	199 199 193 198 ¹ 198 ²	244·73 244·29 244·25 244·53 244·81	
May June July. August. September October. November December.	229 226 220 217 208 200 194	244 · 94 244 · 74 244 · 46 244 · 17 243 · 83 243 · 54 243 · 42 243 · 62	220 218 211 208 200 192 185 185	244·52 244·32 244·04 243·75 243·41 243·12 243·20	198 ² 198 196 195 205 203 202 191 188 ¹ 189 ²	244-81 245-09 245-17 245-09 244-71 244-32 243-77 243-58 243-66 243-74	
1896— January February March April	187 188 185 233	244·03 244·38 244·95 245·42	179 180 177 225	243 · 61 243 · 96 244 · 53 245 · 00	182 189 194 191 ¹ 192 ²	244·10 244·34 244·70 245·14 245·58	
May	237	245.39	229	244.97	191	246.03	

¹ First half of month. ² Second half of month.

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE— ${\it Continued}$

			1			
	actual di	ted with iversions ecords)		ted with s diversion 0 c.f.s.	Regula divers 8,500	
Year and Month (a)	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month (c)	Discharge 1,000's of c.f.s. (d)	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of period (g)
1896— June. July. August. September. October. November. December.	237 233 228 216 209 209 204	245·22 245·01 244·70 244·34 244·10 243·97 243·92	229 224 219 207 200 200 195	244 · 80 244 · 59 244 · 28 243 · 92 243 · 68 243 · 55 243 · 50	204 218 219 216 208 205 1981 1972	246·17 246·03 245·72 245·26 244·92 244·73 244·68 244·64
1897— January. February. March. April.	187 182 193 229	243 · 85 244 · 07 244 · 64 245 · 18	178 173 184 220	243 · 43 243 · 65 244 · 22 244 · 76	197 194 193 194 ¹ 195 ²	244·34 244·30 244·76 245·20 245·64
May. June July August September. October. November. December.	239 245 242 242 228 215 211 215	245·50 245·61 245·60 245·35 244·78 244·44 244·44	231 236 233 233 220 207 203 207	245·08 245·19 245·18 244·93 244·36 244·02 244·02 244·14	198 198 225 240 240 235 217 211 1981 1992	246·36 246·36 246·61 246·52 246·18 245·42 244·84 244·84 244·96 245·07
1898— January. February. March. April.	201 210 223 244	244 · 86 245 · 28 245 · 70 246 · 00	193 201 214 235	244 · 44 244 · 86 245 · 28 245 · 58	200 204 209 2191	245 · 28 245 · 67 246 · 16 246 · 41
May. June. July. August. September. October. November. December.	249 250 244 237 228 221 221 221 224	246·10 245·99 245·68 245·30 244·96 244·86 244·90 244·94	241 241 236 229 220 213 213 215	245·68 245·57 245·26 244·88 244·54 244·44 244·48 244·52	231 ² 231 244 243 233 226 216 214 202 ¹ 203 ²	246·59 246·81 246·67 246·27 245·85 245·43 245·29 245·31 245·41 245·51
1899— January February March April	205 198 210 241	244 · 93 245 · 00 245 · 41 245 · 82	196 189 201 232	244·51 244·58 244·99 245·40	204 205 204 201 ¹	245·40 245·28 245·66 246·06
May. June. July August. September October. November December.	247 251 246 234 224 215 213 215	246·00 246·00 245·69 245·20 244·75 244·48 244·39 244·50	238 243 238 226 216 207 205 207	245·58 245·58 245·27 244·78 244·33 244·06 243·97 244·08	211 ² 216 244 250 239 226 216 212 1961 197 ²	246·40 246·86 246·85 246·39 245·74 245·16 244·77 244·59 244·71
1900— January. February. March. April		244·76 245·04 245·50 245·90	193 194 198 236	244 · 48 244 · 76 245 · 22 245 · 62	198 202 203 200 ¹	245 · 02 245 · 20 245 · 50 245 · 92
May	248	245.95	242	245 · 67	208 ² 212	246·30 246·72

¹ First half of month. ² Second half of month.

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE—Continued

V	,					
	actual d	Unregulated with actual diversions (from records) Unregulated with continuous diversion of 8,500 c.f.s.		divers	ted with sion of c.f.s.	
Year and Month (a)	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month (c)	Discharge 1,000's of c.f.s.	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of period (g)
	(0)	(6)	(u)	(6)	(1)	(8)
June July August September October November December	249 247 240 232 223 219 226	245·86 245·68 245·33 244·92 244·64 244·70 244·76	243 242 234 227 218 213 220	245 · 58 245 · 40 245 · 05 244 · 64 244 · 36 244 · 42 244 · 48	236 240 238 232 224 218 2021 204 ²	246·72 246·56 246·16 245·68 245·32 245·32 245·47 245·59
January. February. March. April	205 200 198 237	$\begin{array}{r} 244 \cdot 65 \\ 244 \cdot 50 \\ 245 \cdot 01 \\ 245 \cdot 77 \end{array}$	200 196 193 233	$\begin{array}{c} 244 \cdot 43 \\ 244 \cdot 28 \\ 244 \cdot 79 \\ 245 \cdot 55 \end{array}$	205 205 203 203 ¹ 218 ²	$245 \cdot 41$ $245 \cdot 15$ $245 \cdot 54$ $246 \cdot 12$ $246 \cdot 60$
May. June. July. August. September. October. November. December.	246 249 244 237 231 223 213 216	245 · 95 245 · 86 245 · 58 245 · 26 244 · 88 244 · 46 244 · 32 244 · 39	242 245 239 233 227 219 208 212	$\begin{array}{c} 245 \cdot 73 \\ 245 \cdot 64 \\ 245 \cdot 36 \\ 245 \cdot 04 \\ 244 \cdot 66 \\ 244 \cdot 24 \\ 244 \cdot 10 \\ 244 \cdot 17 \end{array}$	233 249 247 238 233 221 216 1981 1992	246 · 89 246 · 75 246 · 37 245 · 98 244 · 52 244 · 07 244 · 83 244 · 95 245 · 06
1902— January February March April	197 177 208 237	$\begin{array}{c} 244 \cdot 36 \\ 244 \cdot 62 \\ 245 \cdot 18 \\ 244 \cdot 44 \end{array}$	193 172 204 232	$\begin{array}{c} 244 \cdot 15 \\ 244 \cdot 41 \\ 244 \cdot 97 \\ 245 \cdot 23 \end{array}$	200 201 200 199 ¹ 204 ²	244 · 95 244 · 85 245 · 45 245 · 79 246 · 09
May. June July August. September October. November December.	240 242 250 251 244 237 230 225	245·51 245·76 246·04 245·88 245·54 245·24 244·97 244·90	235 238 245 247 239 233 226 221	245·30 245·55 245·83 245·67 245·33 245·03 244·76 244·69	204 204 230 247 254 255 238 228 206 ¹ 206 ²	246·55 246·50 247·16 246·91 246·91 246·01 245·71 245·76 245·81
January. February. March April.	209 207 225 258	$\begin{array}{c} 245 \cdot 04 \\ 245 \cdot 46 \\ 246 \cdot 10 \\ 246 \cdot 50 \end{array}$	205 204 222 254	$\begin{array}{c} 244.86 \\ 245.28 \\ 245.92 \\ 246.32 \end{array}$	206 215 224 2521 2622	245.95 246.23 246.84 247.05 247.20
May. June. July August. September. October. November. December.	261 257 260 256 251 240 227 220	246·50 246·52 246·47 246·21 245·90 245·54 245·24 244·92	257 254 257 253 248 236 224 216	246·32 246·34 246·29 246·03 245·72 245·36 245·06 244·76	262 260 256 257 253 251 251 236 2051 204 ²	247 · 20 247 · 16 247 · 16 247 · 11 246 · 85 246 · 63 246 · 08 245 · 54 265 · 46
January February March	192 196 207 255	244·86 245·32 246·32 247·30	188 192 203 251	$\begin{array}{c} 244 \cdot 66 \\ 245 \cdot 12 \\ 246 \cdot 12 \\ 247 \cdot 10 \end{array}$	204 203 207 2351 2632	245 · 20 245 · 52 246 · 47 247 · 06 247 · 47

¹ First half of month. ² Second half of month.

 $\begin{array}{c} \textbf{TABLE 19.--} \textbf{EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO} \\ \textbf{ALONE--} \textit{Continued} \end{array}$

	actual d	ted with iversions records)		ted with diversion 0 c.f.s.	Regulated with diversion of 8,500 c.f.s.	
Year and Month (a)	Discharge 1,000's of c.f.s. (b)	Elevation Ontario (Oswego) end of month (c)	Discharge 1,000's of c.f.s.	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of period (g)
1904— May June July August September October November December	270 277 279 275 266 257 245 223	247·74 247·88 247·76 247·44 247·06 246·62 246·08 245·80	266 273 275 271 262 253 241 219	247·54 247·68 247·56 247·24 246·86 246·42 245·88 245·60	278 293 283 269 273 256 242 2051 2042	247·77 247·66 247·44 247·14 246·62 246·14 245·58 245·53 245·48
1905— January February March April	198 205 199 242	245·64 245·39 245·71 246·19	194 201 195 238	$\begin{array}{c} 245 \cdot 44 \\ 245 \cdot 19 \\ 245 \cdot 51 \\ 245 \cdot 99 \end{array}$	204 203 201 203 ¹ 206 ²	245 · 19 244 · 91 245 · 16 245 · 61 246 · 05
May. June. July August. September. October. November. December	244 251 260 259 256 250 243 237	246·42 246·78 246·94 246·82 246·60 246·26 245·98 246·00	240 247 256 255 252 246 239 233	246·22 246·58 246·74 246·62 246·40 246·06 245·78 245·80	200° 210 242 263 262 264 255 242 2061 216°	246·05 247·07 247·15 246·95 246·59 246·14 245·83 246·01 246·12
1906— January February March April	229 221 218 243	246·11 246·00 246·08 246·32	225 217 214 238	245·89 245·78 245·86 246·10	209 222 225 2251 2382	246·42 246·24 246·18 246·38 246·50
May. June. July. August September. October. November. December.	247 249 252 245 236 233 231 229	246·40 246·49 246·42 246·04 245·64 245·53 245·66 246·04	243 245 247 240 232 229 227 225	246·18 246·27 246·20 245·82 245·42 245·31 245·44 245·82	2332 246 253 249 239 227 224 2061 2162	246·50 246·79 246·65 246·16 245·67 245·58 245·74 246·04 246·29
January February March April	212 218 224 256	246·40 246·46 246·66 246·96	209 215 220 253	246·23 246·29 246·49 246·79	210 224 235 2421 2552	246 · 63 246 · 53 246 · 54 246 · 76 246 · 90
May. June. July. August. September. October. November. December	265 260 251	247·10 247·12 247·01 246·70 246·49 246·40 246·53	259 260 261 257 247 246 243 243	246·93 246·95 246·84 246·53 246·32 246·23 246·16 246·36	253 251 262 264 259 252 247 248 2671 2162	246·90 247·14 246·99 246·65 246·37 246·26 246·14 246·09 246·37
1908— January February March April	218 223	246·86 247·19 247·71 248·24	217 214 220 277	246·70 247·03 247·55 248·08	211 226 243 269 ¹ 296 ²	246·78 246·97 247·32 247·64 247·79

¹ First half of month, ² Second half of month, 45827—14

TABLE19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE— ${\it Continued}$

	actual d	ted with iversions records)	continuous	ated with diversion 0 c.f.s.	Regulated with diversion of 8,500 c.f.s.		
Year and Month	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month	Discharge 1,000's of c.f.s.	Elevation Ontario end of month	Discharge 1,000's of c.f.s.	Elevation Ontario end of period	
(a)	(b)	(e)	(d)	(e)	(f)	(g)	
1908— May June July August. September. October. November. December.	292 294 289 279 264 249 239 230	248 · 54 248 · 48 248 · 14 247 · 55 246 · 79 246 · 18 245 · 72 245 · 34	289 291 286 276 260 245 236 227	248 · 38 248 · 32 247 · 98 247 · 39 246 · 63 246 · 02 245 · 56 245 · 18	296 309 287 269 261 238 225 2021 2022	248·00 247·71 247·36 246·86 246·10 245·59 245·27 245·25 245·23	
1909— January. February. March. April.	203 197 211 243	245 · 23 245 · 49 245 · 94 246 · 67	201 194 208 240	245·09 245·35 245·80 246·53	202 203 204 206 ¹ 229 ²	245·11 245·26 245·76 246·34 246·76	
May. June. July. August. September. October. November. December.	262 267 264 257 245 237 225 224	$\begin{array}{c} 247 \cdot 23 \\ 247 \cdot 23 \\ 246 \cdot 99 \\ 246 \cdot 55 \\ 246 \cdot 06 \\ 245 \cdot 60 \\ 245 \cdot 28 \\ 245 \cdot 08 \end{array}$	259 264 262 254 242 235 222 221	247·09 247·09 246·85 246·41 245·92 245·46 245·14 244·94	237 283 269 255 245 233 221 2021 2022	240.76 247.60 247.36 247.02 246.57 246.05 245.61 245.30 245.32 245.34	
1910— January February March April	198 188 214 238	244·98 245·39 245·86 246·20	195 186 212 235	244·85 245·26 245·73 246·07	203 203 205 2091	245·14 245·34 245·89 246·21	
May. June. July. August. September. October. November. December.	249 250 247 243 232 227 221 216	246·44 246·37 246·17 245·88 245·54 245·26 245·02 244·83	246 247 244 241 230 224 218 214	246·31 246·24 246·04 245·75 245·41 245·13 244·89 244·70	222 ² 221 250 249 238 234 226 220 203 ¹ 203 ²	246·46 247·01 246·91 246·65 246·39 246·00 245·44 245·42 245·40	
1911— January February March April	194 191 197 225	$\begin{array}{c} 244 \cdot 81 \\ 244 \cdot 91 \\ 245 \cdot 20 \\ 245 \cdot 52 \end{array}$	192 188 194 223	$\begin{array}{c} 244 \cdot 70 \\ 244 \cdot 80 \\ 245 \cdot 09 \\ 245 \cdot 41 \end{array}$	203 204 203 194 ¹ 198 ²	245·24 245·14 245·33 245·67 245·98	
May. June July August. September October November December	232 233 232 224 215 212 213 214	245 · 63 245 · 60 245 · 36 245 · 03 244 · 75 244 · 56 244 · 69	230 231 230 221 213 210 210 211	245·52 245·49 245·25 244·92 244·64 244·45 244·45	196 224 231 226 219 209 208 2031 2042	246·52 246·57 246·32 245·93 245·93 245·38 245·40 245·52 245·63	
1912— January February March April	192 181 189 237	244·81 244·98 245·71 246·57	191 180 187 235	244·74 244·91 245·64 246·50	205 207 205 2021 2312	$\begin{array}{r} 245.58 \\ 245.40 \\ 245.91 \\ 246.55 \\ 247.00 \end{array}$	

¹ First half of month. ² Second half of month.

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE—Continued

	Unregulated with actual diversions (from records)		Unregula continuous of 8,50		Regulated with diversion of 8,500 c.f.s.	
Year and Month (a)	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month (c)	Discharge 1,000's of c.f.s.	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of period (g)
1912— May June July August September October November December	254 269 259 253 248 244 242 244	247·08 247·17 246·83 246·52 246·27 246·12 246·09 246·31	253 267 258 252 246 243 241 242	$\begin{array}{c} 247 \cdot 01 \\ 247 \cdot 10 \\ 246 \cdot 76 \\ 246 \cdot 45 \\ 246 \cdot 20 \\ 246 \cdot 05 \\ 246 \cdot 02 \\ 246 \cdot 24 \\ \end{array}$	242 276 272 249 249 245 252 292 ¹ 216 ²	247·65 247·63 247·12 246·84 246·55 246·37 246·21 246·01 246·29
1913— January. February March. April	232 239 234 273	246 · 63 246 · 73 247 · 28 247 · 91	230 238 232 271	$\begin{array}{c} 246 \cdot 56 \\ 246 \cdot 66 \\ 247 \cdot 21 \\ 247 \cdot 84 \end{array}$	210 227 244 2671 2952	246·87 246·98 247·38 247·73 247·91
May. June. July. August. September October November December.	278 281 278 266 253 244 243 240	$\begin{array}{c} 248 \cdot 00 \\ 247 \cdot 92 \\ 247 \cdot 57 \\ 247 \cdot 02 \\ 246 \cdot 51 \\ 246 \cdot 17 \\ 245 \cdot 98 \\ 245 \cdot 75 \end{array}$	277 279 277 265 252 242 241 238	247·93 247·85 247·50 246·95 246·44 246·10 245·91 245·68	300 291 274 259 250 237 231 2071 2122	247·71 247·49 277·18 246·70 246·21 245·93 245·87 245·95 246·00
1914— January. February. March April.	214 202 203 250	$\begin{array}{c} 245 \cdot 73 \\ 245 \cdot 77 \\ 246 \cdot 21 \\ 246 \cdot 85 \end{array}$	213 201 202 248	$\begin{array}{c} 245 \cdot 66 \\ 245 \cdot 70 \\ 246 \cdot 14 \\ 246 \cdot 78 \end{array}$	208 217 214 2201	246 · 04 245 · 88 246 · 17 246 · 67
May. June. July. August. September. October. November. December.	257 257 253 246 241 230 227 216	246·93 246·81 246·52 246·21 245·84 245·42 245·04 244·76	256 255 251 244 240 229 226 215	246 · 86 246 · 74 246 · 45 246 · 14 245 · 77 245 · 35 244 · 96 244 · 69	243 ² 249 256 253 243 237 231 221 203 ¹ 202 ²	247·02 247·18 247·04 246·73 246·44 246·12 245·68 245·37 245·29 245·23
1915— January. February. March. April.	199 191 208 222	$\begin{array}{c} 244 \cdot 84 \\ 245 \cdot 13 \\ 245 \cdot 15 \\ 245 \cdot 09 \end{array}$	198 190 207 221	$\begin{array}{c} 244.80 \\ 245.09 \\ 245.11 \\ 245.05 \end{array}$	202 204 205 1961 1982	245 · 25 245 · 37 245 · 41 245 · 53 145 · 64
May June July August. September October November December	222 221 222 228 229 225 219 213	245·13 245·12 245·28 245·44 245·31 245·05 244·86 244·91	221 219 221 227 228 224 218 212	245·09 245·08 245·24 245·40 245·27 245·01 244·82 244·87	194 203 217 227 236 231 224 206 ¹ 206 ²	246 · 02 246 · 22 246 · 43 246 · 58 246 · 36 246 · 02 245 · 76 245 · 82 245 · 88
1916— January February March April	205 204 201 246	245 · 23 245 · 43 245 · 93 246 · 76	204 203 200 245	245·19 245·39 245·89 246·72	207 219 222 225 ¹ 250 ²	246·16 246·16 246·38 246·92 247·30

¹ First half of month. ² Second half of month. $45827 - 14\frac{1}{2}$

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE— ${\it Continued}$

	Unregulated with actual diversions (from records)		Unregula continuous of 8,50	ted with diversion 0 c.f.s.	Regulated with diversion of 8,500 c.f.s.		
Year and Month	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month (c)	Discharge 1,000's of c.f.s.	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of period	
	(b)	(6)	(a)	(6)	(1)	(g)	
1916— May June July August. September October November December	262 276 278 267 254 241 231 224	247·49 247·89 247·64 247·02 246·37 245·85 245·51 245·31	262 275 277 266 253 240 230 223	247·45 247·85 247·60 246·98 246·33 245·61 245·47 245·27	262 300 298 268 259 238 226 2041 2042	248 · 02 248 · 11 247 · 60 246 · 96 246 · 24 245 · 75 245 · 48 245 · 50	
1917— January February March April	204 205 207 243	245·17 245·12 245·70 246·38	203 205 207 242	245·13 245·08 245·66 246·34	204 205 204 2131 2362	245·35 245·30 245·91 246·43 246·81	
May. June. July. August. September October November December.	246 258 269 269 258 254 251 246	246·75 247·22 247·40 247·14 246·80 246·68 246·57 246·26	245 257 268 268 258 253 250 245	$\begin{array}{c} 246 \cdot 71 \\ 247 \cdot 18 \\ 247 \cdot 36 \\ 247 \cdot 10 \\ 246 \cdot 76 \\ 246 \cdot 64 \\ 246 \cdot 53 \\ 246 \cdot 22 \\ \end{array}$	245 245 264 280 276 281 257 266 2591 2072	247·17 247·16 247·60 247·24 246·60 246·42 246·12 245·87 245·95	
1918— January. February. March April.	217 212 228 259	246·03 246·30 246·89 247·15	216 211 227 258	245 · 98 245 · 25 245 · 84 247 · 10	208 212 220 2531	245·83 246·09 246·77 246·93	
May. June. July. August. September. October. November. December.	261 260 258 • 249 244 238 240 236	247·07 246·93 246·64 246·32 246·10 246·00 245·95 245·99	260 259 257 248 243 237 239 235	247·02 246·88 246·59 246·27 246·05 245·95 245·94	267° 262 258 259 249 242 238 233 2071 216°	247·01 246·91 246·79 246·48 246·16 245·95 245·84 245·86 246·06 246·20	
1919— January. February March. April	226 222 226 252	$\begin{array}{c} 246\cdot00 \\ 245\cdot96 \\ 246\cdot22 \\ 246\cdot85 \end{array}$	225 221 225 251	245·96 245·92 246·18 246·81	210 222 228 244 ¹ 262 ²	246·40 246·35 246·57 246·92 247·17	
May. June July August. September October. November. December.	269 279 275 267 256 246 241 236	247 · 61 247 · 85 247 · 54 247 · 10 246 · 60 246 · 23 245 · 92 245 · 53	268 278 274 266 255 246 240 235	247·57 247·81 247·50 247·06 246·56 246·19 245·88 245·49	262 ⁶ 266 306 290 263 260 241 234 207 ¹ 206 ²	247-17 247-96 247-85 247-35 246-95 246-99 246-08 245-84 245-82 245-81	
January. February. March. April.	201 192 197 232	$\begin{array}{c} 245 \cdot 16 \\ 245 \cdot 03 \\ 245 \cdot 30 \\ 245 \cdot 57 \end{array}$	201 192 197 232	245·16 245·03 245·30 245·57	206 205 203 200 ¹ 203 ²	245·39 245·09 245·29 245·63 245·95	

First half of month. ² Second half of month.

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE— ${\it Continued}$

			I			
	Unregulated with actual diversions (from records)			ted with diversion 0 c.f.s.	Regulated with diversion of 8,500 c.f.s.	
Year and Month (a)	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month (c)	Discharge 1,000's of c.f.s.	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of period (g)
1920— May. June. July. August. September. October. November. December.	231 230 234 231 229 226 220 227	245 · 58 245 · 63 245 · 66 245 · 55 245 · 38 245 · 26 245 · 32 245 · 47	231 230 234 231 229 226 220 227	245·58 245·63 245·66 245·55 245·38 245·26 245·32 245·47	206 224 233 238 236 230 226 206 ¹ 215 ²	246 · 26 246 · 38 246 · 42 246 · 22 245 · 96 245 · 80 245 · 99 245 · 99 246 · 14
921— January February March April	215 210 222 247	245 · 50 245 · 62 246 · 09 246 · 53	215 210 222 247	$\begin{array}{c} 245 \cdot 50 \\ 245 \cdot 62 \\ 246 \cdot 09 \\ 246 \cdot 53 \end{array}$	209 220 224 2421 2542	246·24 246·23 246·67 246·92 247·10
May. June. July. August. September. October. November. December.	253 252 247 238 228 221 210 215	246·65 246·49 246·15 245·68 245·27 244·98 -244·84 244·78	253 252 247 238 228 221 210 215	246·65 246·49 246·15 245·68 245·27 244·98 244·84 244·78	254 259 249 236 228 218 212 2021 2032	247 · 20 246 · 95 246 · 59 246 · 15 245 · 74 245 · 48 245 · 32 245 · 37 245 · 42
922— January February March April	197 188 202 244	$\begin{array}{c} 244 \cdot 72 \\ 244 \cdot 89 \\ 245 \cdot 57 \\ 246 \cdot 30 \end{array}$	197 188 202 244	244·72 244·89 245·57 246·30	203 204 204 2031	245 · 28 245 · 24 245 · 89 246 · 51
May. June July. August. September October. November. December	250 253 258 250 239 233 220 210	246·65 246·83 246·74 246·30 245·82 · 245·38 244·89 244·57	250 253 258 250 239 233 220 210	246·65 246·83 246·74 246·30 245·82 245·38 244·89 244·57	230 ² 244 266 265 253 244 232 220 202 ¹ 201 ²	246 · 96 247 · 38 247 · 39 247 · 21 246 · 19 245 · 77 245 · 28 245 · 17 245 · 07
923— January February March April	190 188 199 227	244·48 244·60 245·04 245·47	190 188 199 227	244·48 244·60 245·04 245·47	200 201 200 189 ¹ 191 ²	244 · 86 244 · 81 245 · 11 245 · 56 246 · 00
May. June. July August. September. October. November. December.	230 236 232 226 217 208 203 206	245·78 245·86 245·60 245·22 244·84 244·50 244·40 244·62	230 236 232 226 217 208 203 206	245·78 245·86 245·60 245·22 244·84 244·50* 244·40 244·62	194 231 242 229 222 211 205 2011 202 ²	246·76 246·91 246·52 246·10 245·66 245·28 245·16 245·31 245·45
1924— January February March April	198 192 196 224	244·81 244·86 245·12 245·73	198 192 196 224	244·81 244·86 245·12 245·73	203 208 206 189 ¹ 202 ²	245 · 59 245 · 44 245 · 56 246 · 08 246 · 52

¹First half of month. ² Second half of month.

TABLE 19.—EFFECT OF PROPOSED PROGRAM FOR REGULATION OF LAKE ONTARIO ALONE—Concluded

	Unregulated with actual diversions (from records)		Unregulated with continuous diversion of 8,500 c.f.s.		Regulated with diversion of 8,500 c.f.s.	
Year and Month	Discharge 1,000's of c.f.s.	Elevation Ontario (Oswego) end of month (c)	Discharge 1,000's of c.f.s.	Elevation Ontario end of month (e)	Discharge 1,000's of c.f.s.	Elevation Ontario end of period (g)
1924— May June July August September October November December	239 242 242 239 230 225 218 208	246·18 246·24 246·12 245·83 245·55 245·20 244·77 244·40	239 242 242 239 230 225 218 208	246·18 246·24 246·12 245·83 245·55 245·20 244·77 244·40	210 253 248 238 237 229 217 205 ¹ 203 ²	$\begin{array}{c} 247 \cdot 33 \\ 247 \cdot 25 \\ 247 \cdot 05 \\ 246 \cdot 77 \\ 246 \cdot 41 \\ 246 \cdot 01 \\ 245 \cdot 60 \\ 245 \cdot 44 \\ 245 \cdot 29 \end{array}$
January February March April.	169 176 201 226	$\begin{array}{c} 244 \cdot 32 \\ 244 \cdot 80 \\ 245 \cdot 40 \\ 245 \cdot 62 \end{array}$	169 176 201 226	$\begin{array}{r} 244 \cdot 32 \\ 244 \cdot 80 \\ 245 \cdot 40 \\ 245 \cdot 62 \end{array}$	202 200 202 1861	244·80 244·99 245·58 245·93
May. June July August September October November December	228 225 220 215 207 201 205 208	245·53 245·32 245·05 244·73 244·44 244·32 244·43 244·42	228 225 220 215 207 201 205 208	245·53 245·32 245·05 244·73 244·44 244·32 244·43 244·42	194 ² 191 214 215 211 208 201 197 207 ¹ 207 ²	246·23 246·61 246·53 246·33 246·07 245·77 245·65 245·86 245·86 245·86

¹ First half of month. ² Second half of month.

\$ 4,250,000

TABLE 20.—DETAILS OF COST OF WORKS FOR REGULATION WITH COMPLETE CONTROL OF ST. CLAIR RIVER

Control	Structure	Item	Quantity	Unit	Unit price	Cost
Pt. Edward Bypass	Canal	Excavation	7,800,000	cu. yd.	\$ cts. 0 20	\$ 1,560,000 150,000 50,000 650,000
		Engineering and contingencies			-	2,410,000 360,000 2,770,000
Stag Island	Regulating works	Concrete	21,500 5,050 72,000 2,500 2,045,000	cu.yd. lin ft. lbs.	15 00 3 00 0 85 240 00 0 08	322,500 15,150 61,200 600,000
	Longitudinal dike	Operating machinery Rock (low dike) High dike Riprap	134,000 17,200 12,200 850,000	cu. yd. lin. ft. cu. yd.	2 50 175 00 210 00 2 00	163,600 30,000 335,000 3,010,000 2,562,00 1,700,000
		Engineering and contingencies			-	8,799,45 1,320,55 10,120,00
Woodtick Island	Regulating works	Concrete	25,500 6,000 1,175,000 73,000 3,000 150,000	lbs.	15 00 3 00 0 08 0 85 210 00 0 50	382,50 18,00 94,00 40,00 62,05 630,00
	Longitudinal dike Channel protection	Dredging. High dike. Riprap. Engineering and contingencies.	12,300 183,000	eu. yd. lin. ft. eu. yd.	128 00 2 00	75,00 1,574,40 366,00 3,241,95 488,05
st. Clair Delta Control	Regulating works	Materials. Excavation Property damage Excavation Land damage	4,400,000	cu. yd.	0 25 0 25	3,730,00 593,00 1,100,00 80,00 2,800,00 81,00
	Connection with middle and north channels	ExcavationRiprap	1,020,000 220 000	46	0 25 2 00	255,00 440,00
		Engineering and contingencies	15-%			5,349,00 801,00 6,150,00
Niagara River	Longitudinal dike	Crib dike. Pumping Dry rock excavation Wet rock eacavation Relocation	850,000	cu. vd.	160 00 160 00 1 75 4 00	640,00 640,00 100,00 6,038,00 3,400,00 60,00 990,00
Total Cost for Com		Engineering and contingencies				11,868,00 1,782,00 13,650,00
plete Control	ver—Not usedCont Con Lons	rol works west of Grosse Is trol works east of Fighting gitudinal dike on bar near u trol works, Grosse Isle to le	sle Island pper end of	Grosse Isl		36,420,00 839,000 ,070,000 ,020,000 766,000

APPENDIX B-PLATE 3

St. Lawrence Waterway
REGULATION OF THE GREAT LAKES

STAGES IN ALL LAKES WITH PROBABLE FREQUENCY

8,20 and 50 Years

Based on 1901-1925 Records

To accompany Report of Joint Board of Engineers, dated Nov.16.1926
Appendix B-Plate 3

Appendix B-Plate 5

REGULATION OF THE GREAT LAKES

STAGE DURATION CURVE OF VARIOUS SCHEMES OF REGULATION PERIOD 1894 - 1925

NAVIGATION SEASON APRIL 1.TO DECEMBER 1.

To accompany Report of Joint Board of Engineers
dated Nov.16.1926 Append

APPENDIX B-PLATE II

St. Lawrence Waterway

REGULATION OF THE GREAT LAKES

DISCHARGE DURATION CURVE OF VARIOUS SCHEMES OF REGULATION PERIOD 1894 - 1925

To accompany Report of Joint Board of Engineers
dated Nov. 16, 1926 Appendix B-Plate 11

APPENDIX B - PLATE 12

APPENDIX B - PLATE 22

Appendix B-Plate 22

St. Lawrence Waterway

PROPOSED REGULATION OF LAKE ONTARIO

DURATION CURVES OF DISCHARGE FOR YEAR AND

LAKE LEVELS DURING

NAVIGATION SEASON APRIL 15, TO DECEMBER 15. PERIOD 1861 - 1925

To accompany Report of Joint Board of Engineers dated Nov. 16, 1926

APPENDIX C

DETAILED PLANS AND ESTIMATES FOR THE IMPROVEMENT OF THE ST. LAWRENCE

UNIT COSTS

- 1. The extended study made by the Board of the probable cost of the works has led to the adoption of unit costs in the several sections as follows:—
- 2. Thousand Islands Section. The material to be excavated is principally granite rock, and practically all excavation is subaqueous. The basic unit cost is taken as \$10 per cubic yard for excavation with a cutting face of at least 4 feet, suitably increased to cover the proportional amount of excavation having a less cutting face, and further increased to cover the cost of transporting the plant to and from the work.
- 3. International Rapids Section. The material overlying rock in this section is generally a mixture of clay, sand, gravel, hardpan, and boulders. The swifter portions of the river, where most of the dredging is to be done, is generally paved with boulders.
- 4. MATERIAL FOR CONCRETE. Crushed rock can be obtained from quarries on the American shore between Gouverneur and Potsdam, with a rail haul of from 30 to 50 miles; from quarries north of Cornwall, with a short rail haul, or by water from the Thousand Islands region, with about 100 miles haul. It is doubtful whether the rock obtained from excavation will be suitable for concrete, since the borings show that it contains shale.

5. Sand can be obtained from extensive deposits north of Prescott. The river bed above Ogdensburg, and sand and gravel pits which may be developed in the vicinity of the work, offer possibilities of alternative sources.

6. Unit Prices. Considering the nature of the material to be excavated, and the sources of the material for concrete, the following basic unit prices are used:—

	Per	Cubi	e Yaro
Exeavation, earth, dry	. :	\$ (35
Dredging other than rock		. (90
Rock, dry\$1.60 to	0	1 7	75
Dredging, rock		4 2	
Embankments by United States Section			75
En:bankments by Canadian Section90 and		(
Concrete, mass, in locks, etc		10 (00
Concrete, mass, in dams			
Concrete, mass, in power house		15 (00

The basic prices for excavation and fill are departed from when the special conditions, such as the disposal of excavated material, indicate that different prices should be adopted.

- 7. Lake St. Francis Section. On account of the nature of the material to be excavated in this section, and the disposal areas available, the unit price taken for soft mud overlying sand and gravel is 55 cents per cubic yard.
- 8. Soulanges and Lachine Sections. In the Soulanges Section the bulk of the material to be removed is marine clay. This material can be easily excavated by hydraulic dredges where conditions permit the use of such plant. The unit

prices adopted for the excavation of marine clay in this section varies from 35 to 55 cents per cubic yard, depending upon the conditions of disposal. The unit prices adopted for the removal of boulder clay is 65 cents per cubic yard. The unit price for excavation of rock, dry, is taken at \$1.60 per cubic yard.

- 9. In the Lachine Section the overburden is largely boulder clay, and the price adopted for earth is 65 cents per cubic yard, that adopted for the excavation of shale rock is \$1.20 per cubic yard, dry, and \$3 per cubic yard, wet. Other rock is at \$1.60 per cubic yard, and \$4.25, wet.
- 10. The work proposed in the Soulanges and Lachine Sections involves the excavation of large amounts of solid rock. Much of this rock, when crushed and washed, will be suitable for concrete. Sand can be obtained from deposits near the mouth of the Chateauguay river and in the Lake of Two Mountains.
- 11. On account of the ease with which rock and sand can be obtained in these sections, the unit price for concrete is taken at \$1 less per cubic yard than in the International Rapids Section.
- 12. Flowage. In compiling estimates of flowage damage, a detailed field examination was made of all properties affected. Liberal allowances were made in all cases, and due cognizance was taken of severance and other disabilities which owners might suffer by execution of the work proposed. No allowance has been made for water rights, but the values of leases of water-power on Government canals has been included in the estimates under the terms of surrender provided therein.

NAVIGATION STANDARDS

13. Channels. In general, navigation channels are not less than 200 feet bottom width when flanked by two embankments, not less than 300 feet when flanked by one embankment, and not less than 450 feet when both sides

of the channel are submerged.

In cases where navigation is carried through restricted stretches of river, a sectional area of 65,000 square feet is provided at mean stage. This is equivalent to a sectional area of about 70,000 square feet at high stages, and a maximum velocity somewhat less than 5 feet per second in such channels. In general, maximum velocities and channels 450 feet wide are used only in short stretches of river where the view is unobstructed and where cross-currents are not encountered. The minimum radius of curvature adopted is 5,000 feet with at least one-quarter mile of tangent between reversals. The alignment is drawn so as to eliminate cross-currents wherever possible.

- 14. Bridges. Bridges are designed to afford a least horizontal clearance of 200 feet at right angles to the channel, except where located at locks, where they span the entire channel. All bridges crossing the channel are drawbridges. In general, the draws are of the vertical lift type. The estimates are based on a lift affording 120 feet clearance, corresponding to the bridges in the New Welland Ship canal, but the clearance can be increased at any time at relatively small cost.
- 15. Locks. As stated in paragraph 113 of the Main Report, the locks conform in dimensions with those of the new Welland Ship canal, and have chambers 859 feet in length between inner quoinposts and 766 feet between breast wall and fender. Their clear width is 80 feet and the depth on the sills 30 feet. The general design of a typical lock is shown on Plate 1, Appendix C.

Power-House Design

15. The design of power-houses, for the large flow and varying heads on the St. Lawrence, was gone into with care. The conditions in general on the river call for power units of larger dimensions than have yet been built, and the Board recognizes the uncertain trend of present practice with regard to draft-tube design.

17. The Board established certain dimensional ratios and stability coefficients conforming to current practice. From tentative designs, a curve of quantities was prepared and is shown on Plate 2. This method of procedure secures a correct comparison between projects and safe estimates gen-

erally.

18. The prices used for power-house equipment are derived from curves prepared from many direct quotations coupled with actual prices of equipment recently installed in power stations. (Plates 3-8.)

19. DYKES.—The standard design for dykes adopted by the Board is shown on Plate 9.

Administration and Contingencies

20. To cover the costs of administration, engineering, and contingencies, a percentage of about $12\frac{1}{2}$ per cent has been added to all estimates, including

the estimated costs of power-house machinery.

21. The foundation conditions at the various dams cannot be definitely known until the sites are unwatered. The estimates are based on founding the structures from 3 to 8 feet below the rock surface indicated by the borings, besides providing a heel trench of ample dimensions. To cover the contingency that, when a site is unwatered, suitable foundations will be found at a somewhat lower elevation than is indicated by the borings, a special allowance of 10 per cent of the quantity of the concrete as computed on the above basis, has been added in case of each dam.

DATUM PLANES

22. The datum plane used in all plans west of Summerstown on lake St. Francis is mean sea level New York Harbour, United States 1903 adjusted levels, and the datum plane used in all plans east of that point is that of the Georgian Bay adjusted levels. The zero of the Georgian Bay adjusted datum is 0.30 foot below the Georgian Bay instrumental datum used in many published water-level records, and is 0.30 foot above United States 1903 adjusted datum at Ogdensburg.

THOUSAND ISLANDS SECTION

(Mile 0 to Mile 67)

23. As explained in the Main Report, the St. Lawrence river between Tibbetts point, at the outlet of lake Ontario, and Chimney point, at the foot of the section, is wide and deep for the greater part of the 67 miles embraced in the section. At numerous places, however, granite reefs endanger navigation. For a length of about 7 miles through the Alexandria bay narrows and for a length of about 3½ miles through the Brockville narrows, the river flows through a rocky gorge with an average velocity of about three feet per second, over a solid rock floor 150 feet below the surface at many points.

24. In this reach there are on the average about 200 hours of fog in the navigation season. Navigation through these two narrow stretches of river will be hazardous for the larger ships if a fog should close in while making the passage, since they cannot anchor on account of poor holding ground. In accordance with standards adopted, the minimum width of channels shown in these stretches is 450 feet. To enlarge the channels to a width of 600 in the Alexandria bay and Brockville narrows would be exceedingly expensive on account of the amount of solid rock requiring removal. To provide separate up and down channels would be less costly.

25. If found to be necessary, a series of landing cribs can be built along the north side of the channel at some of the points where solid rock is excavated. If this were done ships could reverse their engines and moor to these cribs on the downstream voyage should visibility be unexpectedly interfered with. As there is some doubt as to the necessity of these provisions and as landing cribs can be added when required, they are not included in the plans

attached to this report.

26. Plans of the portion of the section in which the work is located are shown on plates 10 to 16.

27. The detail estimates of the excavation are as follows:—

CHANNEL 25 FEET DEEP	
Exeavation, rock, 64,000 cu. yds. at \$12.50 Overdepth, 12,000 cu. yds. at \$12.50 Administration, inspection, and contingencies 12½ per cent	\$ 800,000 150,000 119,000
Total	\$1,069,000 1,100,000
CHANNEL 23 FEET DEEP	
Excavation, rock, 41,000 cu. yds. at \$13.25 Overdepth, 7,400 cu. yds. at \$13.25 Administration, inspection, and contingencies 12½ per cent	543,000 98,000 80,000
Total	\$ 721,000 348,000
CHANNEL 27 FEET DEEP	
Excavation, rock, 96,000 cu. yds. at \$12.00	1,152,000 210,000 170,000
Total Excess cost over channel 25 feet deep	\$1,532,000 463,000
ENLARGEMENT OF CHANNEL FROM 25-FOOT DEPTH TO 30-F	OOT DEPTH
Excavation, rock, 98,500 cu. yds. at \$12.00 Overdepth, 25,750 cu. yds. at \$12.00 Administration, inspection, and contingencies 12½ per cent	\$1,182,000 309,000 190,000
Total	\$1,681,000

INTERNATIONAL RAPIDS SECTION

(Mile 67 to Mile 115)

28. Detailed Description. At Chimney point (mile 67) the first marked contraction of the river occurs. A fall of 0.5 foot takes place in the passage through the chain of islands which here cross the river. Two and one-half miles downstream the river enters the Galop rapids, lying north and south of Galop island. There is a fall of about 8 feet through these rapids. From the foot of the Galop rapids (mile 73) to the head of Ogden island (mile 82),

strong currents are found, particularly at the contracted sections at Sparrow-hawk point, point Iroquois, point Rockway, and point Three Points. The fall from the foot of the Galop rapids to the head of the rapide Plat, at Ogden island, is about 12 feet; and through the rapide Plat about 11 feet. From the foot of the rapide Plat, at Morrisburg (mile 85), to Weavers point (mile 92) the river is generally contracted, with strong currents and a fall of approximately 5 feet. It then flows through a fairly broad reach with small slope, to the head of Croil island (mile 95). There are strong currents, and a fall of about 4 feet, through the contracted channel north of Croil island, known as the Farran Point rapids. The river then flows four miles with moderate current and slight slope to the head of the Long Sault rapids (mile 102). The Long Sault rapids, with a fall of 30 feet, are the most formidable in the section. From the foot of these rapids to the town of Cornwall (mile 111) the currents are strong and the fall about 15 feet. The total fall through the section is 92 feet at mean river stages.

- 29. Present Navigation. Present upbound navigation passes around the rapids through a series of lateral canals; the Galop canal around the Galop rapids and the swift water above the town of Iroquois; the Morrisburg canal around the rapide Plat; the Farran Point canal around the Farran Point rapids; and the Cornwall canal around the Long Sault rapids and the swift water below them. Downbound commercial navigation runs some of the rapids, and some passenger boats run them all.
- 30. Town and VILLAGES. The Canadian towns and villages on the river bank in this section, which will be affected by the improvement, are as follows:—

	Population
Cardinal, mile 73	
Iroquois, mile 79	
Morrisburg, mile 85	
Altsville, mile 95	350
Farran Point, mile 97	296

- 31. Dwellings and farm buildings are located along the river bank throughout the section.
- 32. The town of Wales, population 250, lying on Hoople creek about a mile from the river bank, is below the maximum level to which the water surface could be raised.

33. The villages of Moulinette and Mille Roches (population 829) are located on Bergen lake, and will be affected if the level of that lake is raised.

- 34. On the United States side, the only town directly affected is Waddington (mile 83), most of which lies well above the maximum level to which the water can be raised. A small collection of houses known as Louisville Landing (mile 95) is located at so low an elevation as to be affected by any substantial rise in the river levels. In general, however, dwellings and farm buildings on the United States shore affected by the raising of the river levels are far less numerous than those on the Canadian shore.
- 35. PRESENT POWER DEVELOPMENTS. Water leases have been issued by the Department of Railways and Canals of the Dominion of Canada as follows:—

	UIS.
From the Galop Canal—	
At Cardinal (Canada Starch Co.)	660
At Iroquois	329
From the Morrisburg Canal	1,630
From the Cornwall Canal—	
At foot of Bergen Lake (St. Lawrence Power Co.)	1.000
At Cornwall	1,331
827—16½	

458

36. On the United States side, a major diversion of water is made by the St. Lawrence River Power Co, through a power canal which leads from the river near the head of Long Sault island (above the Long Sault rapids) to the Grass river at Massens, where the power works are located. The water is discharged through the Grass river into the south channel of the St. Lawrence at Cornwall island. With the enlargement that has been made in the Grass River channel, the effective summer head at the power plant is a little more than 40 feet. The installed capacity at the power plant is reported as 86,000 horse-power.

37. Under an order of the International Joint Commission, dated December 6, 1922, the diversion at Massena is limited to 25,000 cfs. except when, in the opinion of a board of control constituted of two engineers, one appointed by each country, the diversion of a larger quantity will not injuriously affect

navigation.

- 38. The average diversion through the Massena power canal at the present time is about 23,000 cfs. during the summer months and 16,000 cfs. during the winter months, the flow being reduced during the latter period to secure and maintain an ice cover over the power canal, in the interest of operating conditions.
- 39. Plans for Improvement. As explained in Appendix E on ice formation, paragraphs 10 and 11, several special features must be met in the improvement of the St. Lawrence river. The river valley is shallow and restricted for many miles below Galop rapids, and water levels above the Galop Control are subjected to uncontrollable oscillation due to changes in barometric pressure and wind. A typical fluctuation of levels which barometric changes set up on the St. Lawrence is shown on plate 25. Property values along the shores of lake Ontario prevent water levels being raised high enough to secure useful ice covers between Chimney point and Morrisburg without extensive enlargements of the channels.
- 40. East of Cardinal, the general elevation of the land near the river is below the level of lake Ontario. Nearly all the towns and villages in the district are located on this low strip of territory and any substantial raise in the water levels will require readjustments at these towns.
- 41. In this section solid rock outcrops at several points, but is at a suitable elevation for foundations of dams and power houses at only a few places.
- 42. For the improvement of the International Rapids section of the St. Lawrence, the Board has closely considered the following general forms of improvement:—
 - (1) Full single-stage schemes with the Long Sault reach at maximum level and a free navigation channel at Galop rapids.
 - (2) Two stage schemes with an upper dam and power houses at either Ogden island or Crysler island, and with a lower dam and power houses at Barnhart island.
 - (3) Partial single-stage schemes with lock and control dam at Galop rapids and the Long Sault reach held at nearly maximum level with a long free spillway.
- 43. In each of these foregoing forms of improvement, navigation is provided by means of side canals and locks past the dams.
- 44. Full Single-stage Plan. As shown in paragraph 144 of the Main Report, the design of full single-stage projects can be varied in several ways. The dam at the foot of the section can be built in different locations, navigation

channels at Galop rapids can follow a number of routes, and channel enlargement between Lotus island and Morrisburg can be made by widening present

channels or excavating new ones.

45. A full-stage project with navigation channels north of Galop island and a dam at the foot of Barnhart island has been drawn up by the United States section. It will be referred to as Project No. 1-242. This plan is typical of what can be done with a single-stage development as regards cost and power capacity, but can be modified in a number of particulars. It is shown on plates 17 to 24. The estimated cost is \$235,000,000. Detail estimates will be found in table 1.

46. The chief works in this project are as follows:—

- (a) A free open channel for navigation north of Galop island with control gates in the channels north of Adams island and south of Galop island.
- (b) Such channel enlargement between Lotus island, at the foot of Galop rapids, and Morrisburg as is necessary to give 95,000 square feet sectional area at ordinary operating levels.

(c) A dam with United States and Canadian power houses at the foot of Barnhart island. These directly control the level of lake Ontario.

(d) A side canal with two locks for carrying navigation past the dam and

power houses.

(e) Such embankments and drainage works as are required to protect the villages of Iroquois, Morrisburg, Aultsville, Farran point, Dickinson landing, and Wales from the raised levels of the river.

47. At Galop rapids all the river enlargement deemed to be necessary is made in one central channel. The approach channel has a bottom elevation of 215. It is carried through the upper end of Galop island, with a width of 800 feet and bottom elevation 210, and downstream with a width of 600 feet and same depth along the north Galop channel to below Lotus island. The channel at the foot of the rapids south of Lotus island is also enlarged.

48. In the present north and south Galop channels, piers with Stoney sluice gates are placed. These gates are 50 feet in width and the sills conform generally to the natural rock surface which crosses the river at this point. Similar gates extend across a portion of the approach to the central channel,

leaving a clear opening of 500 feet with sill at elevation 215.

49. Under the proposed program for the regulation of lake Ontario, it is necessary, in about one year out of six, to discharge water at an excess rate during the first part of December, with lake Ontario at relatively low level, in order that the subsequent outflow during the winter may be restricted without incurring the danger of excessively high levels in the spring. The maximum requirement at such times is a discharge of 310,000 cfs. with lake Ontario at elevation 246.5. Under such conditions the fall at the Galop from Butternut island to the foot of Lotus island is computed by the United States section to be 3.25 feet, and the maximum velocity in the navigation channel, at the pass through the contraction works, at about 6 feet per second.

through the contraction works, at about 6 feet per second.

50. At Sparrowhawk point, Toussaint island, Rockway point, and other places between Lotus island and Morrisburg, river enlargements are shown. These are designed to give 95,000 square feet at river elevations corresponding to water level of 246.5 in lake Ontario and 210,000 cfs. flowing in the river. By the regulation of lake Ontario as submitted in Appendix B, the January discharge will give an average velocity of 2.25 feet per second in this reach.

51. Dykes are shown in front of the villages of Iroquois, Aultsville, Farran point, and Wales, and also in front of the town of Morrisburg. On both shores of the river from Weavers point to the power houses and dam at the foot of

Barnhart island, the line of dykes shown is almost continuous. The crest of the dykes is placed at 254.5 east of Weavers point and somewhat higher west of it. The tops of the dykes are $5\frac{1}{2}$ to 7 feet above the maximum level of lake Ontario.

52. The main dam and the United States and Canadian power houses in this project are at the foot of Barnhart island, just below a very deep narrow gorge in the river at this point. They are in a straight line and founded on rock which varies from elevation 104.0 to 113.0.

53. The elevation of the water surface at this point in summer is 159.7 at mean stage. In winter it rises quite frequently to elevation 180 and levels as high as 190.0 have been recorded on a number of occasions. The sectional area of the river at the site of the dam is about 38,000 square feet at mean stage, but about one mile above it is much less and the high velocities generated by this restriction carry through the part of the river where the dam is shown.

54. The open cofferdam method is intended to be used for all the work at this point, but should it be decided to use the pneumatic process for the dam

section, the estimate will not be materially increased.

55. The dam is found on rock which has been found to be about 51 feet below water level at this point. It is 2,975 feet in length. It is provided with 46 Stoney sluice gates, 50 feet in width by 25.5 feet in height, with sills at elevation 223. The piers between the gates are 15 feet in thickness. The discharge capacity of the sluices is sufficient to pass the maximum flow occurring at minimum pool level. The depth of the foundations permits of a design in which the energy of the falling water will be dissipated in the pool at the toe of the dam, without danger to the structure.

56. Power Houses. Two power houses are shown at this dam; they are at either end and in line with the dam. Each is 1,750 feet in length, and is capable of housing 22 main units and 3 auxiliary units. The main units are designed to deliver approximately 54,000 horse-power each at full summer head of 85 feet. At the predicted winter head of 75 feet, their capacity will be about 45,000 horse-power each. Sluices to carry off ice and trash are to be provided at the shore ends of the power houses. Both power houses are located outside of the main river channel. The solid rock surface on which the United States power house is to be built is about 55 feet below the water level of the river in summer and 75 feet below the water level in winter. The Canadian power house will be on rock from 10 to 50 feet higher.
57. A spur from the New York Central Railroad (Ottawa Branch) as

diverted will run to the United States power house. A spur from the Canadian

National Railway will run to the Canadian power house.

58. An alternative site for a dam and power houses at this locality is presented in the plans submitted in 1926 by the Frontier Power Corporation to the state of New York, and is indicated on plate 22. This site is at Hawkins point, about one-half mile upstream from the site above described. The foundation rock under the shore here lies from 5 to 15 feet lower than at the site downstream, but requires further exploration. The unwatering program proposed at the Hawkins point site is to divert the river through a channel excavated through Hawkins point. The dam as finally constructed will extend across both the diversion channel and the natural channel. Parallel estimates with a dam and power house at this site are given in table 2.

59. As pointed out in the Main Report (par. 144), the dam can be located at the head of Barnhart island and the power houses at the foot of that island if the foundation conditions at either site above described are regarded as unduly difficult. The estimates of cost with this arrangement are given in table 3.

- 60. The side canal used for carrying navigation past the dam at the foot of Barnhart island crosses over a tongue of land between Robinson bay and the mouth of the Grass river. It has two lift locks, but no guard lock. The lift of the upper or Robinson bay lock is about 42 feet and that of the lower or Grass river lock about 46 feet. The foundation of both these locks is carried to solid rock, which is at elevation 122 at the upper lock and 105 at the lower lock. The upper lock of this side canal is to be equipped with duplicate gates, fender chains, and an emergency wicket dam. An upper entrance pier 1,200 feet long is provided on one side and an entrance embankment 1,500 feet long on the other side.
- 61. To afford a straight river approach to the lock at Robinson bay a channel 450 feet wide is excavated across the point of land above the entrance. The Robinson Bay lock has its upper gate sills at elevation 207, lower gate sills at elevation 169, main coping at elevation 251.5, and lower coping at elevation 204.
- 62. The Grass River lock has its upper gate sills at elevation 169, lower gate sills at elevation 122, main coping at elevation 204, and lower coping at elevation 160. The upper and lower gates are in duplicate, and an unwatering gate is provided at each end of the lock outside of the service gates. No emergency dam is provided for this lock, since in the event of the failure of the lock gates the pool would be nearly drained by the time that the dam could be closed.
- 63. Water to maintain the level of the pool between the locks is to be supplied through an auxiliary culvert in the walls of the upper lock. To prevent rise in the pool, a waste weir is provided adjacent to the lock. Normal regulation of the pool is provided by 8 sluices, with sills at elevation 194, closed by crest gates 15 feet in width. Under these lie 8 submerged sluices, closed by gates 15 feet by 11.5 feet. These are to be operated only if ever necessary to discharge the great volume of water, estimated at around 60,000 cfs., which would result from a failure of the gates of the upper lock. The fall from the intermediate pool to the mouth of the Grass river is divided into two drops at the waste weir, the crest of the lower drop being at elevation 154. The waste weir is designed with pile foundations with a concrete cut-off wall extending to rock under the upper and lower weirs.

64. To prevent currents caused by a flood in the Grass river from interfering with the approach to the lower lock, the mouth of the river is to be straightened by a compensating channel, and separated from the lock approach

by a rock dyke.

65. The Ottawa branch of the New York Central railroad is to be diverted from its present crossing of the south Cornwall channel to a crossing immediately below the lower gates of the Grass River lock, where it will cross the canal by a bascule span. It will rejoin the present line by a cantilever span over Pollys Gut.

66. Highway connection with the United States power house, and to the land north of the canal, is to be afforded by a ferry across the intermediate

pool, in order to avoid an additional bridge over the canal.

67. The winter operation of power plants with the completed plan is based on the creation of an ice cover extending from Lotus island to the power houses at Barnhart island, but with an open channel, 3½ miles in length from Butternut island to the foot of Lotus island. The area of open water to be expected is about 1.8 square miles. If the accumulation of floating ice to be dealt with is limited to that produced in this open reach, no material gorging can occur. Temperature measurements show that the mean temperature of the water, as

it leaves the present ice sheet above Ogdensburg and Prescott, is slightly above the freezing point, and the amount of ice manufactured in this open reach will be reduced in consequence, since the water must be chilled to the freezing point before the manufacture of ice can begin.

- 68. To insure the conditions above outlined, the continuity of the ice sheet above Butternut island should be maintained, in order that an ice jam may not form at the foot of the relatively fast water through the Galop channels. At the present time the ice sheet between Ogdensburg and Prescott is broken up by the powerful car ferry which operates between the two towns, in order to assure the lane required for the ferry operation. At the present time, the ice so broken out is carried by the current through the entire section, adding to the great accumulation of ice which forms at the foot of the section. After the river has been improved, and an ice sheet has formed to the foot of the Lotus island, the breaking up of this ice may become a more serious matter. Proper control should therefore be exercised over the ferries to prevent them from making ice conditions worse than they would be if nature were allowed to take its course.
- 69. Between Chimney point and Butternut island, the ice situation is now variable. During some years an ice sheet forms across the river, in others an open channel leads through the section, either through the north channel or through the main channel on the south of Drummond island. After the improvement of this part of the river has been completed, conditions should be more favourable for the formation of an ice sheet because of the enlargement to be made at Chimney point.
- 70. It is proposed to deposit some of the waste rock from the excavation of the Chimney Point Channel to form artificial islands in shoal water at the sides of the natural channel opposite Drummond island, in order to assist in holding the ice sheet. Booms may also be employed to form an ice cover in this reach at the start of winter.
- 71. In executing the works shown in project No. 1-242 at Galop rapids, no large amount of unwatering of river channels is required other than that associated with the dams and control structures.
- 72. In this plan three wide sweeping curves carry navigation from Chimney point to Galop island. These can be reduced in length, but at large cost, by a cut through the sill which extends between Chimney island and Drummond island.
- 73. For the improvement of the river between Galop rapids and Morrisburg the full single-stage plan shows a sectional area of 95,000 square feet at elevation 242 at Morrisburg and 243 at Lotus island. Initially, it is intended to make this enlargement only sufficient to give 70,000 square feet at mean stage, and bring about subsequently the full enlargement to 95,000 square feet or such other section as experience indicates to be required. (See para. 138, Main Report.)
- 74. On the United States shore, the land submerged by the ponding of the river is largely waste land, and the dyking is limited to that necessary to contain the pool. From the United States power house a dyke extends to the hill at Robinson bay. This dyke ranges from 20 to 30 feet in height. The gaps in the line of hills extending from Robinson bay to Massena canal are closed by dykes. Suitable drainage ditches are provided to replace the natural drainage line cut by this line of dykes.
- 75. A concrete intake, with gates, is to be constructed to by-pass the entrance to the Massena Power canal, and after its completion the present

entrance is to be closed by a dyke. By this means, the existing power plant at Massena can be kept in operation until its load is taken over by the main power house at the foot of Barnhart island.

- 76. A dyke 20 to 30 feet in height extends from the Massena canal to the hills paralleling the river about two miles to the west. A few small dykes are required at the low points in this line of hills. An embankment is required at the head of Coles creek.
- 77. On the Canadian side of the river the value of the land justifies a more extended system of dykes. The line of dykes extends from the Canadian power house to the high land on Barnhart island, thence across the head of the channel between Barnhart island and Sheek island, across the head of the latter island and the head of Bergen lake to the Canadian shore. It extends along the line of the low hills which lie close to the river bank from the head of Bergen lake to Farran point. At Farran point, and at Aultsville, the dyke line is along the river front to afford these towns protection, its crest being about 17 feet above their main streets. The dyke line terminates on the high ground back of the river two miles west of Aultsville. The dykes along this line are of moderate height, generally less than 20 feet, and for much of the distance, their bases are above ordinary pool level.
- 78. To care for the drainage into the river cut off by these dykes, including the flow of Hoople creek, a ditch is to be constructed along the low ground back of the river, emptying into the head of Bergen lake. Concrete drops are required in this ditch at the entrance into the valley of Hoople creek, and at the outlet into Bergen lake. Concrete bridges are provided at all road crossings. Suitable dykes are to be constructed to prevent flood flows in this ditch from backing up into the low lying portions of Aultsville and Farran point, and pumping plants are to be provided to take care of the local drainage of these towns at such times.
- 79. The bottom width of the drainage ditch increases gradually from 6 feet at its head to 45 feet at its outlet into Hoople creek, and is 80 feet from Hoople creek to Bergen lake. The grade of the bottom of the ditch is at elevation 226.5 at the head, 219 at the head of the drop into Hoople creek, and 200 at the head of the section between Hoople creek and the drop to Bergen lake. The slopes range from about 0.85 to 0.6 foot to the mile, insuring velocities which will not scour.
- 80. The low lying portion of the town of Morrisburg is to be protected by a dyke along the water front, its crest being 14 feet above the lowest portion of the main street. Sewage from the town is to be collected in an intercepting sewer and pumped into the river. Drainage ditches and a pumping plant are to be provided to care for storm water drainage. Similar provision is made for the protection of the low lying portion of Iroquois,
- 81. As an alternative to the plan for dyking and draining the low lying portions of these towns, it may be found more desirable to expend the funds assigned to that purpose in moving the buildings to the high land in the immediate vicinity, under a town planning scheme worked out in co-operation with the citizens. The low lying portions of the towns, above the minimum pool levels, could then be filled to form public parks.
- 82. Massena Canal Intake. This intake is to be constructed with eleven sluices, each 16 feet in width, separated by piers 10 feet in thickness. When the pond is raised, the sluices are to be closed successively, and the weir built to crest elevation 220, the discharge during construction and after completion being controlled by gates 16 feet in width and 30 feet in height.

83. Lock at Head of Bergen Lake. To permit of the completion of the dyke line without interrupting present canal navigation, and to prevent the interruption of such navigation while the pool is being raised, a lock is to be constructed at the head of Bergen lake before the dyke crossing the present navigation route is constructed. This lock is to be 255 feet in length between quoin posts and 45 feet in width in the clear. The upper and lower gate sills are at elevation 184, permitting 14-foot navigation to pass through the lock at the present elevation of Bergen lake. The coping is at elevation 251.5. The gates at the head and foot of the lock are in duplicate. A culvert through the lock walls will provide the water supply to continue the present canal and water leases as long as may be desired.

84. Reconstruction of Railroads. It is necessary to raise the grade of the Canadian National Railway for a distance of $4\frac{1}{4}$ miles between Morrisburg and Aultsville, and for about one mile east of Iroquois. At the former location a realignment, shown on the drawings, will reduce the height of the embankment and permit the construction of the line while traffic is being carried on the present one. At the latter location, it will be desirable, for the sake of alignment, to raise the grade under traffic.

85. The terminus of the St. Lawrence Railroad, at Norwood, near Waddington, will be submerged by the proposed pool levels. It is planned, therefore, to provide a new terminus, just above the village, where the requisite navigation depth to the terminus will be afforded by the increased levels.

86. ROAD RELOCATION. On the United States shore it will be necessary to raise the present river road at a few points only between the head of the Galop and Waddington. The highway from Waddington to Massena will be reconstructed on a new straight alignment for 5.5 miles east of Waddington, and the river road thence to the head of the Massena canal will be reconstructed in places. Some road construction will be required to replace roads cut by the navigation canal.

87. On the Canadian side the highway along the river will require raising at a few low points above Iroquois. From a point about a mile above Iroquois to the head of Bergen lake, an extensive relocation of the shore highway is required. The estimates provide a concrete road. The easterly part of the relocation is on the dykes to be constructed here, the top width of the dykes,

40 feet, being ample for that purpose.

88. Two-Stage Plans. The design of two-stage projects can be varied in several ways. The upper dam and lock can be located at Ogden island near the head of the section where it will virtually act as a valve to control the flow out of lake Ontario even when the surface level above Galop rises and falls, due to changes of barometric pressure at the ends of lake Ontario. The upper dam and lock can also be located at Crysler island, farther downstream, where a higher head would be developed, but where the works would not control flows as effectively as in the upper location.

89. The two-stage project with upper dam and lock at Ogden island is mentioned in paragraph 131 of the Main Report. It will be referred to as Project No. 4-224. It is shown on plates 26 to 33. Detail estimates will be found on

table 4. The chief works in this project are as follows:-

(1) A free, open channel south of Galop island for navigation, along with a diversion through Galop island and enlargement of channels north of that island.

(2) Channel enlargement between Lotus island and Ogden island to give 95,000 sq. ft. at ordinary operating levels.

(3) A dam, lock and power house at Ogden island, where a head varying from 17 ft. in summer to 12 ft. in winter is developed.

(4) Channel enlargement to 95,000 sq. ft. at a few places between Ogden

island and Weavers point.

(5) A dam at the head of Barnhart island with power houses at the foot of that island, where a head varying from 67 feet in summer to 62 feet in winter is developed.

(6) A side canal with two lift locks and a pair of guard gates for carrying navigation past the dam. This canal is to be on the United States

side of the river.

- (7) Such embankments and drainage works as are required to protect the villages of Iroquois and Wales and the sewerage system of the town of Morrisburg.
- 90. In project No. 4-224, the power plants at Ogden island are designed to operate at about 100 per cent load factor, at least during the winter season. The power plants at the foot of Barnhart island are designed to take advantage of permissible fluctuations in the reach between Ogden island and Barnhart island. Transmission lines of the plants at Ogden island and Barnhart island must be interconnected and variation of load should be carried by the lower plant.
- 91. In this project the channel enlargement proposed between Lotus island and Ogden island gives the same sectional area as that shown in the full single-stage project No. 1-242, but the works at Galop rapids are somewhat different. The free channel provided for navigation at Galop rapids is located on the south side of Galop island and occupies the whole length of the present south channel.
- 92. The enlargement provided in this navigation channel does not give all the section required to secure low velocity and flat slope at this point. Further enlargement is required and is provided by a special diversion channel through the head of Galop island. The diversion channel is provided with piers and roller gates which can be closed to control emergency flows. This control structure is not effective enough to check surges completely and it does not cross a large enough part of the outlet channels to permit the lowering of the reach below at the beginning of winter.
- 93. This channel is to be excavated and control dam completed before cofferdams are placed around the improvements for navigation in the south Galop channel. The water should be gradually allowed to enter the diversion as it is shut out of the channel south of Galop island. When the works south of Galop island are unwatered and all excavation is completed, and when the works at Ogden island are in a condition to hold the level of lake Ontario, cofferdams can be removed and the whole works brought into use.
- 94. The dam, power house and lock at Ogden island are located on the downstream slope of a wide sill of solid rock which crosses the river at about the middle of that island. The main dam, 1,200 feet long, with 19 gates each 50 feet wide and 26 feet deep, is shown at the foot of a diversion channel which is to be excavated through a low part of Ogden island. The discharge capacity of this dam is to be supplemented by additional gates at the downstream end of a power house in the main channel of the river.
- 95. The channel south of Ogden island is to be enlarged, and a power house 1,300 feet long is to be built across it, near the mouth of Big Sucker creek just east of Waddington. A power house, 3,600 feet long, is shown in the main channel of the river, north of Ogden island.

96. In this project navigation is carried past the dam at Ogden island by making use of the channel south of Ogden island and by a lock on the shore of Ogden island north and east of the power house shown in that channel.

97. The diversion channel is excavated to a bottom elevation of 205 and a width of 500 feet. It is almost entirely in earth. The channel above the power house south of Ogden island is excavated to a bottom elecation of 210 for a width of 800 feet. Some excavation is also shown north of Ogden island.

98. The solid rock surface on which these works are located is about

98. The solid rock surface on which these works are located is about elevation 186. It is intended that the diversion channel, with dam and the enlargement of the channel south of Ogden island, should be completed before the diversion of the flow of the river is begun. For diverting the flow of the river from its main channel a partial cofferdam of rock and a pier and gate structure is proposed on the high rock sill at the head of the rapide Plat. The power house in the channel north of Ogden island has been laid out with 54 units of 5,570 horse-power each at a head of 17 feet. The power house in the channel south of Ogden island has been laid out with 19 units of 5,570 horse-power at a head of 17 feet.

99. The estimates of this project provide for a timber-crib weir to be built below the power house north of Ogden island. It is intended temporarily to hold the tail water level up to about elevation 221, thereby preventing the head from exceeding 21 feet before the dam and power houses at Barnhart island raise the water to its regulated level, which will be about 226 under average

summer conditions.

100. In project No. 4-224, the level of the reach above the dam at the head of Barnhart island is to be held to about elevation 224. With this elevation, channel enlargement is required only at a few points. These are indicated

on plate No. 29.

101. The dam at the head of Barnhart island is 3,900 feet long. It extends from the head of Barnhart island to the foot of Long Sault island and thence to the high lands on the United States mainland. It is equipped at each end with 11 gates, each 50 feet wide and 21 feet deep. The central part of this dam has a spillway section with crest elevation 224.

102. The United States and Canadian power houses are located at the foot of Barnhart island. The overall length of these two power houses is 3,200 feet. They are shown on a straight line which extends from the above lock No. 20 on the Cornwall Canal to the foot of Barnhart island. North of the Canadian power house there is a retaining wall 400 feet long and north of this a spillway 500 feet long is introduced. To the north of this spillway a lock for 14-foot navigation is shown. This lock is designed to enable the Cornwall canal to be used during the construction period and afterwards. The power houses are to be equipped with a total of 38 units, each capable of developing 47,600 horse-power at 67-foot head. In the power houses proper, submerged or penstock gates provide a discharge capacity of 50,000 cfs. under normal operating conditions. At the south end of the power house 5 sluice gates are provided, each 50 feet wide and 10 feet deep.

193. In this project it is intended to enlarge the narrow channels at the head and foot of Bergen lake and also the narrow parts of the channel between Sheek and Barnhart islands. The total minimum section provided will be 75.000

square feet at elevation 224.

104. The dam at the head of Barnhart island is shown near the foot of Long Sault rapids where the solid rock is found at elevation ranging from 145 to 160. The water at this point is quite swift and elaborate arrangements are necessary to divert the flow in order to unwater the site of the dam.

105. As in the Report of 1921, a diversion channel, 250 feet wide with a grade elevation of 167, is to be excavated through Long Sault island. The sides of the channel are to be lined with concrete to protect them from scour. The westerly end of the main dam crosses the South Sault channel below the entrance of the above diversion channel. The lower part of this section of the dam is to be built before water is let into the diversion channel, and 20 gates, 18 feet wide and 30 feet deep, are to be installed in it. The channel above and below this dam is to be enlarged so that 209,000 cfs, can be passed through the dam with water level above the structure at stage 201.

106. In order to make the diversion effective and maintain present navigation, a timber-crib dam with piers 30 feet wide and 60 feet long, is shown in the river below lock 21 at the head of the Cornwall canal. The openings between these piers are 50 feet wide and by closing the openings the water level at the head of the diversion channel may be raised to elevation 206.

107. This will ensure a diversion of 160,000 cfs. through Long Sault island, 40,000 cfs. down the South Sault channel, and 25,000 cfs. down the Massena canal. It is expected that the diversion of this amount of water from the river, toegther with the control over flow that can be exercised at Galop rapids and at Ogden island by works shown there, will enable the part of the dam which lies in the main river to be built by the ordinary cofferdam method.

108. After the dam in the main channel of the river is completed, the openings left in the section at the foot of the South Sault channel can be filled with concrete, and the timber cut down at Lock 21 will be removed.

109. In this plan No. 4-224, navigation is carried past the dam at the head of Barnhart island by means of a side canal with two lift locks and a pair of protecting guard gates. This canal leaves the raised pool opposite Dickinson Landing and crosses over a saddle in Long Sault island and thence across flat country to a junction with the river at the mouth of the Grass river. Its total length is 6.9 miles. In this length of canal there is one reach 1.0 mile long, and another 1.5 long in which a bottom width of 300 feet is provided.

110. The upper lock in the canal has a 24-foot lift and is located about a mile west of Robinson bay. The lower lock has a lift of about 46 feet and is located near where the canal enters the river north of the mouth of the Grass river. The lock walls of both locks are carried to solid rock which is found at elevation 137 at the upper lock site and elevation 104 at the lower. About one mile above the upper lock, a retaining structure with a pair of guard gates is introduced.

111. A cross-current in the South Sault channel will be prevented by depositing waste material at some point in that channel below the head of the Massena canal.

112. Should it be finally decided to build the main dam in the river at the foot of Barnhart island or at the head of the Little Long Sault rapids above Robinson bay, the side canal could be shortened to the extent of about 2.2 miles by leaving the main river just below the foot of Long Sault island. In this location it could still preserve guard-gate features.

113. The navigation works at and below the Grass River lock in this project

are practically the same as in Full Single-Stage project No. 1-242

114. A concrete intake with gates is to be constructed at the head of the Massena Power Canal as in the Full Single-Stage project No. 1-242. See paragraph 75 of this appendix.

115. In project No. 4-224, some disconnected dykes are shown between the high land west of the village of Wales, and the retaining wall at the north end

of the power houses at Barnhart island. Some dykes are also shown between Richards landing and the guard gates of the proposed canal south of Long Sault

island. These dykes are not high.

116. This project does not raise the water level of the river above the general elevation of the surrounding country and abrupt slopes that may develop locally, due to ice conditions in the river, will affect power heads rather than the flow of water through the section.

117. The estimated cost of two-stage project No. 4-224 as presented by the

Canadian section is \$264,546,000.

118. The head concentrated at Ogden island is small in winter. It can be increased by extensive enlargements of channel between Ogden island and Weavers point. This enlargement is, however, not found to be economical because of the length of restricted channel between these points. The head

predicted is vitally dependent upon the ice resistances.

119. Downstream from Ogden island the present slope of the river is 1 foot per mile to Weavers point. Below that point the surface slope is flat and present cross-sectional areas are almost large enough to permit an ice cover to form under natural conditions. Just below the foot of Ogden island at Morrisburg, the lowest points in the solid rock surface fall to about elevation 155 and borings show that this hollow in the rock surface continues downstream to Crysler island. At Crysler island the soft rock of this part of the river is overlain with a layer of sandstone and a narrow sill at about elevation 165 practically crosses the river.

120. At the time the Main Report was signed in November, 1926, this project appeared to be the best two-stage project available. Since that date, additional borings at Crysler island have disclosed more favourable rock foundations than were indicated by the borings made in 1924, and a two-stage project with upper dam and power houses at Crysler island in some major respects

appears preferable to the Ogden Island project.

121. CRYSLER ISLAND TWO-STAGE PLAN. A two-stage project with upper dam at Crysler island and lower dam at Barnhart island is mentioned in the Report of 1921. This project is now presented as an alternative two-stage project, which is regarded by the Canadian section as giving greater financial returns than project No. 4-224, although its initial cost is greater. It will be referred to as project No. 5-217. It is shown on plates 34 to 38. Its estimated cost is \$269,355,000. Detail estimates are shown on table 5.

122. The chief works in this project are as follows:-

(1) A free open channel south of Galop island for navigation.

(2) Channel enlargement between Lotus island and Morrisburg to give 95,000 square feet at ordinary levels.

(3) A dam with power house at Crysler island where a head varying from

24 feet in summer to 18.5 feet in winter is developed.

(4) A dam at the head of Barnhart island with power houses at the foot of that island, where a head varying from 60 feet in summer to 56 feet in winter is developed.

(5) A short side canal with lock at Crysler island and a side canal with two locks and a pair of guard gates for carrying navigation past the

dam at the head of Barnhart island.

(6) Retaining embankments with pumping and drainage works for preventing the inundation of the village of Iroquois and the town of Morrisburg.

123. The works at Galop rapids for this project are similar to those shown in project No. 4-224, but operate somewhat differently. As in that project

the free channel which navigation is to use is located in the channel south of Galop island and occupies its whole length. A large diversion channel is shown through Galop island and channel enlargement is also shown north of Galop island. The dam in the diversion channel is to be equipped with 50 butterfly gates and a similar dam with 16 gates is to take the place of the present embankment between Galop and Adams island. After the works north of Galop island and the diversion are completed, the channel south of Galop island is to be unwatered and the work in that channel is to be done as in project No. 4-224.

124. The works at Galop rapids are designed to pass 310,000 cfs. with a loss of head of 2.75 feet when lake Ontario stands at elevation 246.5. The velocity in navigation channels under these conditions is expected to be 4.7 feet per second. These works could be used for those shown in project No.

1-242.

125. At Iroquois, dykes and pumping works similar to those shown in other projects are required. For the town of Morrisburg, dykes and a pumping plant are provided as in project No. 1-242, but in addition to these works an egg-shaped sewer, $5\frac{1}{2}$ feet high, is to be built north of the dykes between that town and the reach below the dam at Crysler island, a total distance of about 4 miles.

126. At Crysler island, a dam 2,800 feet long is shown on a long curve, with United States and Canadian power houses each 1,500 feet long at either end. This curve is introduced to develop length and follow the most advantageous rock surface. A lock for 14-foot navigation is shown at the Crysler island end of the curved dam. This lock is designed for use until the pond above the dam is raised to above elevation 229 when 14-foot draft will become available in the new canal. Estimates provide for unwatering the control 1,500 feet of the dam at Crysler island by the pneumatic-caisson process and for the unwatering of 700 feet in shallow water by the cellular steel sheetpile trench method. The remainder of the dam and both power-house sites are to be unwatered by the open cofferdam method.

127. The side canal for carrying deep navigation past the dam is shown on the United States side of the river. It is 1.6 miles long and is provided with swing top log apparatus at the head of the lock, as well as duplicate gates and fender chains. The cost of a similar canal on the Canadian side would

be substantially the same.

128. Two-stage plan No. 5-217 shows a dam at the head of Barnhart island with power houses at the foot of that island, as in project No. 4-224. The works at the foot of the section are in general similar to the latter project and are located at the same sites. The unwatering problems are the same and it is intended that they should be met in the same way.

129. The water level to be held above the dam at the foot of the section in project No. 5-217 is 7 feet lower than in project No. 4-224. This lower level reduces the lift of the lock in the side canal west of Robinson bay and lowers the bottom elevation of the side canal above that point. This lowering of the reach level also increases the excavation required at the head and foot of Sheek island for the head race.

130. The operation of the Crysler island project presents some difficulty. These are associated with control of flow through the long restricted channel between Butternut island and the foot of Ogden island, just above Morrisburg, when levels on lake Ontario fluctuate. A rise of 2 feet in 4 hours, which sometimes has occurred opposite Prescott, would cause a large increase in flow in restricted channels while the pond between Ogden island and Crysler island, 6,700 acres in extent, is filling up.

131. The travel of surges would not interfere with the use of channels for navigation, as the increased velocities would still be within the limits of safe practice. If, however, a surge should occur in the brief period when an ice park is making upstream past Ogden island, it might increase velocities beyond 2.35 feet per second. Should the river surface be heavily burdened with ice at this time, a gorge might occur.

132. This contingency is met in the design of works at Galop island, now described with the Crysler island project, by the provision of gates for quickly throttling the flow. A somewhat similar design could be included in the full

single-stage project 1-242, at some increase in cost.

133. A series of cribs with boom is provided above point Three Points and a similar boom is provided above Butternut island. These booms would start an ice park at these points. They would be swung by tugs after the close of navigation each year and they would melt free from the ice and swing clear in the spring when released. The use of all of the above agencies should prevent gorging of any magnitude taking place with the channel enlargement shown in

the project.

134. Since the power plants at Crysler island can be completed and put in operation about two years before the works at Barnhart island can be completed, the Crysler island development is designed to operate at 34-foot head until the time when the lower level is raised. In this way about 760,000 horse-power could be made available before the lower plant is completed. This project initially furnishes about 300,000 horse-power more than project No. 4-224 in the upper stage. Computations also show that the completed project No. 5-217 will produce about 10,000 horse-power more than the Ogden island project No. 4-224 during winter.

135. Partial Single-Stage Plan. A single-stage scheme, with lock and dam control at Galop rapids and a controlled level of the reach above Barnhart island, has been considered. The Report of 1921 presented a somewhat similar project. It showed a control dam and lock at Ogden island combined with a lower pool at about elevation 231. In the designs of this project, provision was made for a future rise of seven feet in the crest of the lower dam, if ice conditions permitted such a rise to be made with safety.

136. In the Report of 1921 no mention is made of channel enlargement being necessary when the raise to higher levels in the Long Sault was to be brought about. Progressive enlargement could be made with the control dam

and lock as shown in that project.

137. The present Board finds, as stated previously, that the initial project described in the Report of 1921 should be modified to secure more dependable winter operation and develop more power. The Board also finds the size of channels provided in the project of 1921 to be too small to form an ice cover between the foot of Galop island and the foot of Ogden island and enlargement to greater dimensions is necessary to reduce frazil formation and insure more dependable flows in winter. When this enlargement is made and slopes are flattened, higher levels can be carried in the lower pool. Changes such as these might be progressively made up to the point where the full elevation provided in the project of 1921 would be made practicable. Such a project might be worked out with control dam and lock at Ogden island as shown in the report of 1921, or it might be worked out with similar control works at Galop rapids. Comparative estimates for such a project show a slight advantage for control works at Galop rapids when the lower reach is held above elevation 235.

138. In order to show the operating characteristics of a single-stage project giving about the same results as that visualized in the Report of 1921, a project

with lock and dam at Galop rapids and crest level of 238 at Long Sault dam has been worked out. It will be referred to here as No. 6-238. It is shown on plates No. 39 to 43. Detailed estimates will be found on table No. 6.

139. The channel shown in this project is enlarged to 65,000 square feet in Galop rapids and to 95,000 square feet below. This is the same enlargement as that shown in the Crysler island project and is about the same as that shown in

full single-stage scheme No. 1-242.

140. In this scheme (No. 6-238) a control dam is placed at the Galop rapids and the dam at the lower end of the section is shown at the head of Barnhart island, and the channel between Sheek and Barnhart islands is used for the headrace of the power houses at the foot of Barnhart island. This channel is to be enlarged so as to give about 87,000 square feet at elevation 238.

141. The computed head concentrated at the control dam is shown on plates 44 and 45. It would vary from month to month with the level on lake

Ontario and the discharge.

142. The estimated cost of this project is stated by the Canadian section

to be \$228,610,000.

143. In this scheme nearly, if not all, the gates in the Galop control dam would be open during flood conditions and during the latter part of the ice-covered period. During the low-flow periods of late summer and autumn some

control gates would be closed.

144. The control of flow out of lake Ontario would be governed in part by the level of the Long Sault reach and in part by the opening and closing of gates at the Galop Rapids dam. With this scheme an ice cover would pack upstream from below Ogden island without gorging of the section so long as the flow out of lake Ontario is held down to about 203,000 cfs. and the water

level at the long Sault is held up to about elevation 239.

145. A dam is shown across a diversion channel at Galop island and also across a channel on either side of a lock at Lotus Island. The latter would control the flow south of Galop island. A gated house is shown in both dams, with butterfly valves for the bulk of the openings instead of roller gates. Early in the winter there would be a head of two or three feet at the south Galop control dam and a head of three to four feet would be used up in the slopes and dam of the north Galop channels. The head in the north Galop channel together with ability to quickly close gates in the other channels can be used to prevent excess flows passing the section during surges.

146. The above-described scheme would develop all the head available in the section during the winter period, and also all that available in summer when lake Ontario is near extreme high and extreme low stages. The amount of power not developed by this project is greatest in the open-water period when lake Ontario stands about elevation 246-0. At that time the head lost would

be about 3.5 feet.

147. The control of velocity of flow in restricted channels afforded by this project is better than in other schemes because fewer gates need be opened or closed to increase or decrease the flow in the river, and the distribution of flow in channels can be better controlled. It imposes a guard lock in the path of navigation instead of the navigable pass shown in the full single-stage project.

IMPROVEMENT FOR NAVIGATION ALONE

148. The river is now actually navigated by all traffic through the four-mile reach between Iroquois and the head of the Morrisburg canal, through the ten-mile reach between Morrisburg and the head of Farran Point canal, and through the four-mile reach between Farran Point and the head of the Cornwall

Canal. The vessels used in this navigation are, however, heavily powered in proportion to their size. The only parts of this section of the river, above Cornwall island, regarded as safely and conveniently navigable in its present condition by large lake freighters and ocean vessels are the four-mile reach from Weavers Point to the Farran Point rapids, and the four-mile reach from the foot of the latter rapids to the entrance to the Cornwall canal.

149. The entire reach of river from Morrisburg to the head of the Cornwall canal can be rendered safely navigable for deep-craft vessels with a moderate amount of dredging if the water level be raised to elevation 220. At this elevation the flowage damage is not extensive. The plans for improving the river for navigation alone provide, therefore, for raising this reach by a series of dams

across the head of the Long Sault rapids.

150. The plans provide a large discharge capacity through the gates of these dams, so that the pool created can be drawn down in winter, with a view to avoiding, ordinarily, the formation of ice jams in the reaches between Morrisburg and the dams, and of holding the rise consequent to such jams to minimum levels. Under no circumstances could the back-water from such rises affect the discharge capacity of the control section at the Galop.

151. Above Ogden island, a lateral canal is a cheaper means for affording navigation than is the ponding of the river, and the ponding offers complications in assuring the winter discharge capacity. The plans for navigation alone provide, therefore, for a lateral canal on the United States shore through the

upper part of the section.

152. In detail, the plans provide for the enlargement of the channel at Chimney point on the same lines as is proposed in the two schemes for combined navigation and power development. The dyke at the head of the north channel is to be left in place. The material excavated can be so deposited as to compensate for the effect of the enlargement on the levels of lake Ontario.

153. Navigation enters the upper canal at a guard lock on the United States shore opposite the head of Galop island. The sills are at elevation 211, coping at 253. Service gates are in duplicate, unwatering gates are provided at both ends of the lock outside of the service gates, and an emergency dam is also provided. Adjacent to the lock is a weir with three gates, 20 feet in width, with sills at elevation 230, to provide the supply of water for maintaining the canal levels.

154. The canal follows close to the shore, and is formed partly in cut and partly by retaining embankments at indentations in the shore, to a point opposite Lotus island. It then cuts across the peninsula of which Sparrowhawk point is the projecting tip, thence follows generally the shore to the bay above Point Rockway. It then follows the swale back of that point, cuts across the base of Leishman point, and enters the south channel of the river at Ogden island. Suitable embankments across the entrance to this channel at the head of the island, and on the island itself, permit the water to be raised to the canal level, at elevation 241. The total length of the upper canal is 12.5 miles, of which 1.5 miles is through the pool formed in the south channel at Ogden island.

155. Navigation is carried from the canal to the river pool by a lock at Ogden island, opposite Waddington. The upper gate sills of this lock are at elevation 211, lower gate sills at elevation 190, main coping 246. Service gates are provided in duplicate, with unwatering gates outside of the service gates, but no emergency dam is provided, since in case of accident the canal can be drawn down. A weir extends from the lock to the United States shore. This weir has 20 openings, each 15 feet in width, with sills at elevation 236. Stop

logs in these openings provide control of the canal levels.

156. The river channels from the lock to the head of the lower canal, at Long Sault island, are excavated to a minimum width of 450 feet, and to grade 196 at the head of the pool, ranging down to 195 at the foot of the pool.

157. Navigation enters the lower canal through a cut across Long Sault island, with a bottom width of 200 feet at the summit cut; it crosses the South Sault channel, and is carried down to the main canal level through a lock on the United States shore about one mile inland. The upper sills of this lock are at elevation 190, lower sills at elevation 170, main coping at elevation 229. Service gates are in duplicate, with unwatering gates outside of the service gates, and an emergency dam is provided.

158. From this lock navigation passes through a canal, 4.6 miles in length, to a lock near the mouth of the Grass river. The normal operating level of this canal is at elevation 200. Navigation is carried down to the south channel of the river at Cornwall island by a lock similar to that proposed in the combined navigation and power developments, the upper sill being at elevation 170 and

coping at elevation 205.

159. An earth dyke and a waterway are constructed at the Grass River lock, as with the combined navigation and power developments, and the same measures are taken to prevent floods from the Grass river from interfering with the approach to the lock.

160. The total length of the lower canal, from the north shore of Long

Sault island to the head of the south Cornwall channel, is 7.1 miles.

161. The total length of restricted canal navigation throughout the section

is 18 miles.

162. The Ottawa branch of the New York Central railroad is to be diverted to a crossing adjacent to the Grass river lock as in the combined navigation and power development.

163. The estimates show considerably less enlargement of the south Cornwall channel than is proposed in the combined navigation and power project,

on account of the steadier flow without power development.

164. The dams creating the navigable pool which extends from Long Sault island to Ogden island are three in number; one across the main river channel, one across the diversion channel proposed to facilitate the unwatering of the main channel, and one across the South Sault.

165. The dam across the main channel is located just above the head of the Long Sault rapids, and is 1,545 feet in length. It is provided with 24 Stoney crest gates, each 50 feet in width, with sills at elevation 195. Construction must be so prosecuted as not to interfere with present navigation through the Cornwall canal, the final closure being made during the winter season. The diversion cut across Long Sault island, to facilitate the unwatering of this dam site, is of the same dimensions as is proposed in connection with the unwatering of a dam for navigation and power at the foot of the rapids. It is to be closed by 20 sluices, each 15 feet in width by 30 feet in height, with sills at elevation 165, which will be submerged after the pool is raised. The dam across the South Sault is 375 feet in length, with 6 crest gates, 50 feet in width, with sills at elevation 195.

166. The plans provide head gates at the entrance to the Massena power canal, as in the combined navigation and power schemes. A few low dykes are required along the United States shore opposite Long Sault island, and a dyke is required on the Canadian shore at the head of the swale that parallels the

river eastward from Hoople creek.

167. The estimated cost of this project is \$79,000,000. Detailed estimates are shown in Table 7.

45827—17½

LAKE ST. FRANCIS SECTION

168. This section of the St. Lawrence river covers in general the expansion of lake St. Francis. It may be taken as extending from Colquhoun island opposite St. Regis, mile 115, to deep water at the foot of lake St. Francis, mile 141, a distance of 26 miles. It embraces almost the same stretch of river as

Division No. 3 in the Report of 1921.

169. Lake St. Francis is an area of water which lies between very low flat shores. It appears to be formed from a number of delta-like channels with banks submerged about three feet at the westerly end, ten feet in the middle, and sixteen feet at the easterly end of the lake. The present depth in these channels is more than is required for 25 foot navigation in all but a few places, and the natural alignment of these submerged channels is so good that navigation can quite well follow them. The fall in the lake from Colquhoun Island to Coteau

Landing is about one foot at mean flow.

170. Beyond the immediate shores of the lake the country is low and flat and consists of layers of peat overlying clay. These flats when drained subside and burn so that now we find great areas south-east of the Hungry Bay and St. Barbe dykes at about the level of Lake St. Francis. These areas are dependent for drainage on ditches which lead sometimes to the lake and sometimes away from it. Originally a very low flat peat covered divide separated the drainage area of Lake St. Francis from that of the St. Louis River leading into Lake St. Louis. With dyking, drainage and cultivation of country no divide now exists except the Hungry Bay and St. Barbe dykes. These are the structures which prevent the waters of Lake St. Francis from finding their way to Lake St. Louis via the lowered peat lands and the St. Louis River.

171. As a consequence of these conditions the water level of lake St. Francis cannot be raised above that to which it would go in nature. In fact the dykes as now existing are not high enough to retain the high water levels of 1862-1870-1886 and 1887 should they recur, and some raising of these must be undertaken no matter what action is taken regarding the improvement of the section for

deep water navigation.

172. Lake St. Francis has a superficial area of about 90 square miles; it has a cross-sectional area of 460,000 square feet near its foot, 260,000 square feet at McKee's point near its middle and about 160,000 square feet between Colquhoun island and Hamilton island at its head. In the Hungry bay section of the lake St. Francis, the movement of the water is sluggish and it cools down and freezes over before it freezes in other parts of this lake. In the swiftest flowing parts of the lake the average velocity of the water is less than 2.0 feet per second, and as a consequence a week of zero weather can be depended upon to form a smooth ice cover over the whole of the lake without much packing or jamming of the surface.

173. In order to provide a depth of 25 feet for a width of 450 feet, it is necessary to remove projecting points at eight places between St. Regis Island and Butternut Island and also to excavate a channel 2,000 feet long opposite the village of Lancaster. The project plane for this section is 150.5 at the foot of the lake.

174. The work recommended to be done in this section is shown on Plates 46 to 48. Estimated cost of this work is \$980,000, details of which are shown in table No. 8.

175. The general features and alignment of navigation channels shown on the Board's plans in this section are substantially the same as those recommended in the Report of 1921.

SOULANGES SECTION

176. Description.—This section of the St. Lawrence river is 18 miles long and extends from deep water at the foot of lake St. Francis, mile 141, to deep water at the head of lake St. Louis, mile 159. The mean level of the water in lake St. Francis at the head of the section is elevation 151.9, and that in lake St. Louis, at the foot of the section is 68.9. The total drop in the section is 83 feet. This, the river takes in four more or less abrupt chutes, vix, the Coteau, Cedars, Split Rock, and Cascades rapids. Of this fall, 3.0 feet occurs between the Lake St. Francis and Leonard Island, 14.3 feet in the Coteau Rapids, 6.6 feet in the river between the Coteau du Lac Wharf and Isle Aux Vacres, 32 feet in Cedars Rapids, 8.1 feet between the Cedars power plant and Bisson Pt., and 19 feet between Bisson Pt. and Lake St. Louis, in what is called the Split Rock and Cascades Rapids.

177. Upstream navigation through the Cedars and Cascades Rapids is impossible and the only boats that navigate the open river on the downstream journey are the special passenger boats operated for the tourist trade. All freight boats use the present Soulanges Canal which provides for ships of 14 foot draft, and extends from Coteau Landing on Lake St. Francis to Cascades Point on Lake St. Louis. This canal is 100 feet wide on the bottom, 15 feet deep and 14 miles long. It has one guard lock at Coteau Landing and four separate locks near its lower end just above where it enters Lake St. Louis. This canal crosses three small rivers, a short distance north and east of Coteau du Lac. Power for operation of this canal is supplied from a station of its own at the mouth of the River a La Graisse, where a head of about 20 feet between the canal and the river at that point is utilized.

178. In this section of the St. Lawrence river there are four power developments now in operation. Three of these are located at the foot of Cedars rapids and one is located in the city of Valleyfield on a side channel of the St. Lawrence south of Grande isle. The largest of the power plants in the section is the Cedars Rapids plant, owned and operated by the Montreal Light, Heat and Power Consolidated. It has an installed capacity of 197,000 horse-power at a 32 foot head.

179. The next largest plant is the St. Timothee plant of the Canadian Light and Power Co., with a practicable capacity of about 22,000 horse-power. The Canadian Light and Power Company is now understood to be affiliated with the Montreal Light, Heat and Power Consolidated. This plant draws its water supply from an old abandoned navigation canal and operates under about a fifty foot head.

180. The third largest plant in this section is the Provincial Power Plant which is owned by the Montreal Light, Heat and Power Consolidated. It has a practicable capacity of 12,000 horse-power and draws its water supply from the Soulanges Canal. It operates under a head of about 52 feet.

181. The fourth development of importance is at Valleyfield and consists of a group of plants largely owned by the Montreal Cotton Co. This group uses about 10,000 cfs. at a head of about 11 feet. The output may be taken at about 10,000 horse-power, all of which power is used in the adjacent mills and city. The head at this point was originally created by a dam built by the Canadian Federal Government in 1849, for the improvement of navigation in the entrance to the Beauharnois canal. The power works now in existence at Valleyfield have been brought about by a series of plant extensions extending over half a century.

182. The country on either side of the river between Lake St. Francis and Lake St. Louis is generally flat and uniform except where boulder clay ridges rise through the marine clay which generally covers the country. A large area of territory south of St. Timothee and north of the St. Louis river is occupied by these ridges but in a few places passes are left, through which the marine clay plain is continuous.

183. South of the boulder clay outcrops above described, the country slopes to the St. Louis river, but there are no creeks or water courses because the area

drained is small.

184. In the Soulanges Section, solid rock outcrops in many places and it does not appear to be far below the bed of the river throughout the section. It forms the bed of the river in the Coteau, Cedars, and Cascades rapids and can be seen at many points in the country north and south of the city of Valleyfield. It is exposed on the south side in the St. Louis river, five miles east of lake St. Francis, and on the sloping hillside at Melocheville. On the north side of the river it is exposed at Coteau du Lac, in Chamberry Gully and all along the river from Cedars to Cascades Point.

185. The chief urban centre in the section is Valleyfield, population 10,000. It is situated on a small outlet of lake St. Francis on the south side of Grande Ile. The ground level of this city is from 5 to 10 feet above the level of lake St.

Francis.

186. Other villages to be noted in this section are Coteau du Lac, Cedars and St. Timothee. Coteau du Lac, population 485, is on the north side of the St. Lawrence river about 3 miles below lake St. Francis near the foot of Coteau Rapids where the DeLisle river comes into the St. Lawrence from the north. Its ground level is about the elevation of lake St. Francis. The village of Cedars, population 536, is located on the north side of the river at the head of Cedars Rapids. Its ground level is about ten feet below the elevation of lake St. Francis. The village of St. Timothee, population 450, is located a little below Cedars on the south side of the river. Its ground level is about 25 feet below the level of lake St. Francis.

187. The floor of the river in Coteau rapids is crystalline limestone of a specially hard gritty nature. That in Cedars Rapids is dolomite, and that in

the Cascades rapids is Potsdam sandstone.

188. At the present time the river runs open in the winter throughout this whole section, from the foot of lake St. Francis to the head of lake St. Louis. In this distance fourteen square miles of water surface is exposed to the cooling influence of the air, and about 240,000,000 cubic yards of frazil is formed each winter. This is stowed under the ice cover at the head of lake St. Louis and produces a winter rise of from 10 to 15 feet in the water level at the foot of Cascades rapids near Melocheville.

189. Proposed Plan of Improvement. As shown in paragraphs 163 to 169 of the Main Report, the Board finds it practical and economical to combine improvement for navigation in the Soulanges section with improvement for power. It also finds that a combined river and overland canal project, considering interest charges, gives greater economy than any other joint navigation and power project investigated. As stated in paragraph 175 of the Main Report, this project "better provides for the present and future development of the waterway than any scheme for navigation alone, and is therefore the desirable scheme, if arrangements are made whereby power interests bear a fair proportion of the cost of the initial expenditure required." This project is called the Ile aux Vaches Three Stage Project for navigation and power. It is shown on plates 49 to 51. Its estimated cost is \$103,945,000. Detailed estimates are given on tables 9 and 10.

190. This project is similar in form to the "Cascades Point-Coteau Rapids Project" described in the Report of 1921, but its details are changed in some respects. The power features of this project are planned to be developed in three successive stages.

191. The works comprised in the navigation project and in the first stage

of the development for power are as follows:-

(a) A short submarine channel, 450 feet wide and protected by breakwaters, leading from deep water in lake St. Francis to the north shore of the river at Coteau Landing.

(b) An overland canal, 12,500 feet long and 200 feet wide, extending from the shore of the St. Lawrence river at Coteau Landing to the mouth

of the DeLisle river.

(c) A lock at the east end of this canal with lift of from 1 to 5 feet, dependupon the stage of the lake, along with an approach channel leading into what will be deep water in a Coteau du Lac-Cedars pool.

(d) A dam across the St. Lawrence river extending from above Cedars

village to Point du Domaine on Grande ile which is virtually the south shore of the river. This dam is to control the level of lake St. Francis and is to be connected with a power house at Ile aux Vaches and Ile Juillet capable of developing 382,000 horse-power at a head of about 22 feet. Embankments are provided to protect the low lands on both sides of the river.

(e) An enlargement of the river at Coteau Rapids so as to enable the level of lake St. Francis to be extended to a pool below Coteau du Lac with a loss of head of not more than $1\frac{1}{2}$ feet in periods of low discharge, and not more than 5 feet in periods of extreme flood. This is to be done by means of an enlargement at Round island and a long diversion channel, 240 feet wide on the bottom with grade Elev. 120, separate from the river and extending from above Clarke island to below Broad island, a distance of about $2\frac{1}{2}$ miles. The flow through this diversion channel can be controlled by means of 13-50 ft. gates, 20 feet deep.

(f) A side canal from the shore of the river above Cedars to the Ottawa arm of lake St. Louis, north of the outlet of Chamberry gully, along

with a submarine channel leading out into lake St. Louis.

(g) A pair of guard gates in the middle of this canal with two lift locks near its easterly end. One of the locks is located a short distance west of the point where the canal crosses Chamberry gully and the other is located near the shore of lake St. Louis. The locks in this side canal are designed to overcome a total difference in level of 80 feet.

(h) Such drainage and diversion works as are required to protect the villages of Coteau Junction and Coteau du Lac and the valleys of the Delisle, Rouge and A la Graisse rivers from the raised levels of the

192. The works comprised in the second stage of the improvement have to do with power entirely. They are as follows:-

(a) A head race canal from above Cedars village to the Ottawa arm of lake St. Louis with a power plant at the mouth of Chamberry gully capable of developing 500,000 h.p. at a head of 75 feet, with embankments, bridges, extension of syphon culverts and other works required to make available the 500,000 h.p. at that point, less 12,000 h.p. to be put out of commission at the provincial plant near Cedars.

193. The works comprised in the third stage of the development have also to do only with power. They are as follows:—

- (a) A dam across the St. Lawrence river a short distance above the village of Melocheville. This dam to be connected with a power plant on the shore of lake St. Louis north of Cascades island, capable of developing 974,000 h.p. at a head of 53 feet, but will put 212,000 h.p. out of commission at Cedars and St. Timothee.
- (b) A new road on the south side of the river from above the village of St. Timothee to Melocheville, and such other works as are necessary to adjust the community to a raised level of elevation 125 in the reach between Cedars and Melocheville.
- 194. Economic Considerations. The determination of the best method of improving a river in which power resources are to be developed depends partly upon the physical cost of improvement by various schemes and partly upon the rate at which power resources if made available, can be absorbed.
- 195. Statistics show that the province of Quebec west of Quebec city has been absorbing power at the rate of 250,000,000 kilowatt hours per year for the past six years. This is exclusive of power used in electric steam boilers which is generally off-peak power. This is equivalent to about 72,000 horse-power peak load growth per year at 50 per cent load factor. Some of the territory included in the above district is not tributary to the St. Lawrence and unless all distributing companies are prepared to exchange power it cannot be expected that all power needs for any period can come from the St. Lawrence.
- 196. Recently the Water Power Branch of the Canadian Department of the Interior predicted a growth in installed capacity of power plants in the St. Lawrence basin, of 225,000 horse-power per year. According to factors which they have developed, this would mean a growth of about 150,000 horse-power per year in base load plants such as those on the St. Lawrence river. It appears reasonable to take half of this growth as in Quebec and half in Ontario as the amount of power in use in these two provinces is about the same.
- 197. The annual growth in simultaneous peaks of the power systems now connected in the Montreal, Eastern Townships and Quebec districts, is about 50,000 horse-power and until the cheap power now undeveloped on the Ottawa and on its tributary streams is put to use, it is not likely that the whole province west of Quebec city will draw the additional power it needs from any one source.
- 198. After all cheap power sites are developed and after all the power on the International section of the St. Lawrence is put to use, the rate of absorption from the Quebec section of the St. Lawrence will probably be much greater. A rate of absorption in Canada of at least 150,000 horse-power per year for this St. Lawrence power fifteen years hence is not unreasonable.
- 199. In order to give an idea of the overall cost of various projects, rates of absorption of 40,000 horse-power, 75,000 horse-power, and 150,000 horse-power are taken and 5 per cent per year is added to the first cost to cover interest during half the construction period and during half the period required to market power, as derived from the above rates of absorption. The results are shown on tables Nos. 11 to 13 and 29.
- 200. The Soulanges section offers many opportunities for variation in designs of projects but analysis shows that those projects which can be executed in successive stages bring about greater economy than projects which require all the works connected with them to be constructed at one time.

201. A feature of the Ile aux Vaches Three Stage project which makes it more economical than any other, having in view the interest of both navigation and power, is the fact that through navigation may be secured on an economical general plan with the first stage of the power development without any expenditure for stages two and three, and without interference with the operation of the present Cedars plant.

202. The side canal between Cedars and lake St. Louis is designed so that some excavation made for it may be of use in connection with power development in stage two. This is done by joining the alignments of the power and navigation

canals about two miles east of Cedars village.

203. The estimated cost of this complete project including the power works of stages two and three is \$205,052,000. The first stage is estimated to cost \$103,945,000. In the latter amount \$11,821,000 is for a side canal from lake St. Francis to Coteau du Lac; \$19,773,000 is for a side canal between Cedars and lake St. Louis; \$9,212,000 is for the enlargement of Coteau rapids and the reduction of open water at that point; \$38,553,000 is for the dam and power house substructures at Cedars along with embankments and drainage works required to raise the water level of the river to complete the improvement for navigation. \$101,107,000 is for the work in Stages two and three.

204. The Ile aux Vaches Three Stage Project for navigation and power above described, involves the removal of the northerly part of the village of Cedars and the dyking of the village of Coteau du Lac in the first stage of improvement. It also requires the inundation of part of the village of St. Timothee and the removal of the present Cedars plant in the third stage of improvement. It requires the use of extensive dykes along the north shore of the river between Coteau du Lac and Cedars and along both sides of the navigation improvement between Cedars and Cascades Point, as well as the use of some embankments between point du Domaine on Grande ile and the high land northwest of the city of Valleyfield.

205. The project is designed to pass maximum floods without raising the level of Lake St. Francis higher than it would go under natural conditions. It is designed so as not to retard the flow in winter. It is designed so as to secure a complete ice cover from Lake St. Francis to the Coteau Bridge, and also from the foot of Broad Island to the dam to be constructed at ile aux Vaches. It is designed to secure an ice cover in the head race canal between Cedars and Chamberry gully which is part of the second stage of the improvement, and also an almost complete ice cover from ile aux Vaches to the dam at Cascades island when the works described for the third stage are built.

206. The water surface areas which are expected to remain open in winter when the improvement of the section is complete, are confined to: a stretch of river about 11,000 feet long between the present Coteau bridge and Coteau du Lac; a diversion channel varying in width from 270 to 670 feet, and extending from Clarke island to the foot of Broad island; a short stretch of river immediately below the proposed power plants at Ile aux Vaches and below the proposed

dam in Cascades rapids.

207. A lock in the side canal between Coteau Landing and Coteau du Lac is included in the plan. If there were no lock at this point, the canal would have to be 700 feet wide to give satisfactory navigation velocities. This wide channel would cost about \$16,000,000. A velocity of $4\frac{1}{2}$ feet per second in a navigation channel is not low enough for an approach to a draw bridge, and if the lock in this canal is done away with, an extra expenditure of about \$5,000,000 would be required for a new bridge in quieter water. A deduction of \$2,600,000 from this \$21,000,000 could be made if no lock is built, making an increased expenditure of \$18,400,000. As the extra power created by the wider channels

and the time saved to initial navigation will probably not justify the extra expenditure involved, open river navigation at this point is not included in the initial

project at this time.

208. Much consideration has been given to the relative advantages of single and flight locks at the foot of the overland canal between Cedars Village and the Ottawa Arm of lake St. Louis. Comparative estimates show no material advantage for either type of improvement and the conclusion is that either may be used without loss of efficiency or economy. Single locks are provided for in plans and estimates.

209. A number of locations for the power house on the ile aux Vaches dam are available. Estimates show no material difference in cost of these and the

plans filed can be varied in this regard.

- 210. A difficult feature of the ile aux Vaches project is the improvement of Coteau rapids so as to permit the raising of the Cedars pool to the height desired, without interfering with flood levels on lake St. Francis and without introducing ice jams that would endanger the continuity of the winter flow of the river. The plan of improvement shown at Coteau rapids consists in an enlargement of the river at Round Island and in the excavation of a deep smooth diversion channel, separate and distinct from the river, from above Clarke island to below Broad island. To simplify the bridging of the diversion channel, the line of the Canadian National Railway is relocated in the vicinity of Bellerive. The diversion channel is designed to divert about 52,000 c.f.s. under winter conditions. It will reduce the velocity in the river above Coteau Bridge to 1.86 feet per second with a winter flow of 230,000 c.f.s. and thereby assist in firmly holding the foot of the ice cover at the Coteau Bridge throughout the winter. This will leave the area of exposed water surface at the head of the Coteau du Lac-Cedars pool at about 45,000,000 square feet or 1.6 square miles, and about 13,000,000 cubic yards of frazil may be expected to form. As the cross-sectional area of the river just below Coteau du Lac at elevation 147 is about 145,000 square feet and as the flowing water will only occupy about 65,000 square feet, after the pack is formed, this volume of slush and frazil will create a pack about 4,400 feet long. From many observations in other sections of the St. Lawrence, it is predicted that the loss in head in January and February from this cause will vary from 1 to 2 feet, depending upon the weather.
- 211. The sectional areas of the overland power canal between Cedars and Chamberry gully, under the second stage, is made of such dimensions that 500,000 horse-power can be developed at Chamberry gully without velocities greater than 2.25 feet per second being set up. This will permit an ice cover to form in this canal.
- 212. The third stage of the Ile aux Vaches scheme for the development of power at Cascades contemplates the raising of the water surface in the Cedars rapids to a point where the average velocity of the water will be about 2.7 feet per second from the power house at Ile aux Vaches to the village of St. Timothee. This velocity is believed to be low enough to permit an ice pack to work upstream without any large quantity of frazil being carried underneath the ice cover and as a consequence no great rise of water level in the tail-race of the Ile aux Vaches plants is expected in winter.

213. An important feature in the improvement of this section is the existence of the 197,000 horse-power plant now operated by the Montreal Light, Heat and Power Consolidated, at the foot of Cedars rapids. As has been explained this plant now utilizes a head of 32 feet in the middle of a series of rapids having a total fall of 83 feet. This plant has operating difficulties on

account of ice conditions.

214. The third stage of the Ile aux Vaches development involves scrapping this plant, but all the excavation now done in the head-race and in the river will be utilized.

215. In an effort to use this plant, a three stage river development with side canals as in the Ile aux Vaches project has been considered. The first step of this improvement would be a plant with a 22 foot head at Ile aux Vaches, the second step a plant with a 32 foot head at Cedars and the third, a plant with a 20 foot head at Cascades island, all utilizing the complete flow of the river.

216. This scheme would treat the river above Ile aux Vaches from a hydraulic point of view in the same way as the Ile aux Vaches scheme, and it would preserve water levels above and below the present Cedars plant. In the designing of this kind of a scheme no difficulty is found in securing a good operating proposition in summer, but in winter a length of $7\frac{1}{2}$ miles between ile aux Vaches and lake St. Louis will run open and would form 120,000,000 cubic yards of frazil and slush ice which must be stored somewhere. The bulk of this may accumulate as it does now, at the head of lake St. Louis, in which case the operating head of the power plant at Cascades would lose about 10 feet and its output would be reduced by about 250,000 horse-power. On the other hand if this ice be accumulated above the Cascades Island power house and dam, as is probable, the old and new power plants at Cedars would have their operating head reduced to one-half that now utilized with a loss of power amounting to about 360,000 horse-power.

217. Such a project cannot economically be improved by dredging on account of the enormous yardage, a large part of which is rock, that has to be removed to make the project workable in winter. This scheme, therefore, is

out of the question from an operating and financial point of view.

218. A scheme to improve the river for power, making only partial use of the present Cedars plant, was also considered. It involves the building of a new power plant just north and east of the Cedars plant, to serve present customers while the old plant is being rebuilt to utilize a higher head. This scheme requires power plants at Cedars to operate for a time at one tail water level and afterwards at a tail water level ten feet higher. This is not a desirable feature but it was thought to be a practical solution provided 33 per cent of the flow be diverted from the river at this point and used to develop power directly from a power canal at Chamberry under a head of 78 feet. Analysis of this scheme showed its first and also its overall cost to be more than the Ile aux Vaches three-stage scheme, and as it has no operating advantages over that scheme, it need not be further considered.

219. If there were a large market for power and no vested interests in the river, the best scheme of improvement for both power and navigation would be an all river project with the reaches between Coteau du Lac and Cedars and between St. Timothee and Melocheville used as navigation pools. For such a project the level of the lower reach must be raised to at least elevation 115 in order to escape expensive submarine excavation between Cedars and Melocheville. It is shown on plates 52 and 53. Detailed estimates are given in tables 18 to 20. Its estimated cost is \$194,317,000.

220. This project, with power houses at Cedars and at Cascades, involves the raising of the whole river between Coteau and Cascades about 20 feet at the same time unless power is secured elsewhere to supply Cedars customers while the development is being made. This requires the building of one-third of the Cascades Island plant as a first part of the first-stage of the project, then installing machinery in a new power plant at Cedars as the other

part of the first stage. It involves reconstructing the present Cedars plant as the second stage and completing the Cascades Island development as the third stage of the project. This scheme proposes to take care of the present Cedars customers by transferring load to the first part of the Cascades Island development early in the spring of some selected year and then arranging during the succeeding summer for the cofferdamming of the present Cedars plant and the raising of the upper reach before the advent of the winter ice. The hazards connected with the operating of this scheme during construction would be serious.

221. When interest is considered and a growth of 75,000 horse-power is assumed, this scheme shows about the same overall economy as the Ile aux Vaches project. It would, however, in the first stage of its construction interfere with the present Cedars plant and would require a very large expenditure before any power would be produced.

222. Another project which was considered was a simple two-stage scheme with a 22 foot initial development for power opposite point a Biron, a short distance above Ile aux Vaches. Incorporated with this, was a 54 foot development at Cascades island. This scheme utilized the investment in the Cedars Rapids head-race, but required the removal of the Cedars building itself when the 54 foot plant at Cascades island would go into commission in the second stage of the improvement. It is shown on plates 54 and 55. Its estimated cost is \$203,692,000. Detailed estimates are shown on tables 21 and 22.

223. This method of developing the power in the river would leave the valley of Chamberry gully free to be occupied by navigation works as there would be no power development at Chamberry gully and no overland power canal between Cedars and that point. The first cost of this project is \$1,360,000 less than the Ile aux Vaches three-stage project, but the overall cost on the assumed growth of the power demand, is much greater due to the necessary execution of the work in two stages instead of three.

224. Another scheme which has carefully been considered is the improvement of the river for navigation and power by means of an enlarged side canal between Hungry bay and Melocheville, this work to be coupled with a river development so as to give a 4-stage power development. The first stage of this scheme consists in building a canal between Hungry bay and Melocheville and developing a certain amount of power at a 78 foot head at Melocheville. It is shown on plates 56 and 57. There would be a guard lock at Hungry bay and double flight locks at Melocheville for deep navigation as in the project recommended in the Report of 1921 together with bridges, and channels in Lake St. Francis and Lake St. Louis as in that project. The second stage of this proposition consists in developing 370,000 horse-power at Ile aux Vaches above Cedars as in the Ile aux Vaches scheme. The third stage consists in the development of a certain amount of power at a head of 78 feet at Chamberry gully. The fourth stage develops the same amount of power at Cascades island as is developed in the Ile aux Vaches scheme.

225. In this scheme of development, the capacity of the first and third stages can be varied between wide limits but the size of the second and fourth stages must remain constant as river channels planned will cover with ice only when the flow in them is limited to set amounts.

226. In order to show the effect of improving the river in the above manner, the Hungry bay-Melocheville canal has been laid out with a width of 300 feet, 400 feet and 930 feet, and with capacities of 15,500 cfs., 31,600 cfs., and 66,700 cfs. exclusive of the water required for navigation. The total net cost of

improving the whole section by each of these variations is \$213,509,000, \$223,533,000 and \$237,778,000 respectively. Detailed estimates with 31,600 cfs.

diverted are shown on table 25.

227. In the first case the average velocity of the water in the canal is taken at 2.0 feet per second. In the others it is taken at 2.25 feet per second. Analysis of the above costs shows that the development of power by means of the smallest diversion is more economical than by the larger diversions. All developments with power at Melocheville are more costly than by the recommended project. (See tables 26 to 29.)

IMPROVEMENT OF SOULANGES SECTION FOR NAVIGATION ALONE

228. If an improvement solely for navigation is desired one way it can be secured is by building an overland side canal from deep water in lake St. Francis via Hungry bay and the low flat uniform country north of the St. Louis river

to the head of lake St. Louis at Melocheville.

229. An improvement of this kind has been laid out. It has double locks in flight at its lower end where an ideal solid rock foundation is available, and it has a guard lock at its upper end to protect the long 13 mile reach from high water levels on lake St. Francis. The improvement shown is similar to that laid out and recommended in the Report of 1921. It will be referred to as the

Hungry Bay-Melocheville project, and is shown on plates 58 and 59.

230. A waterway built along this route does not require the removal of a very large amount of excavation as the ground surface is uniformly below the level of lake St. Francis and yet the retaining embankment will not be high, and no creeks or rivers are crossed at any point in the route. In this project very little solid rock has to be removed. Three combined railway and highway crossings and three crossings for highway traffic are provided in this section. The length of restricted navigation in the canal is about 13 miles, exclusive of locks.

231. The project is designed to have ultimately double flight locks at Melocheville, these together overcome a lift of 80 feet and give a traffic

capacity of 40,000,000 tons per year.

232. As the traffic capacity of one set of flight locks is about 16,000,000 tons per year, it is thought the construction of the second set may be delayed for some years and the project is laid out in that way. In order, however, to facilitate the later construction of duplicate locks, estimates and plans provide for the execution of the foundations and the construction of walls to the ordinary level of lake St. Louis.

233. The estimated cost of the Hungry Bay-Melocheville project for navigation alone is \$37,541,000 of which an expenditure of \$3,901,000 can be delayed until the completion of duplicate locks as described above. For detailed estimates see tables Nos. 14 and 15. The above estimate provides for the use of

lift bridges of 200 feet clear span.

234. An overland canal of similar design can be built on the north shore of the river. See plates 60 and 61. It would be slightly shorter and crossed by fewer bridges, but it would be more costly as three rivers are crossed and good foundations for locks are deeper. Its cost is estimated at \$40,378,000 as shown

in tables Nos. 16 and 17.

235. The length of restricted navigation in the above scheme can be reduced by the construction of a lock and dam system of river improvement. This obviously involves power potentialities and the substructure of a power-house should be incorporated with the dam required in such an improvement. If this be done it would become the first stage of the project recommended.

236. An advantage of this north canal is that it could be combined with a river improvement, subsequently made for power, by constructing two short connections to the river. The length of restricted navigation would thus be reduced. See paragraph 174b of the Main Report. The estimated cost of these two connections is \$1,922,000. See table No. 17.

IMPROVEMENT OF SOULANGES SECTION FOR POWER ALONE

237. Various projects for improving the Soulanges section for power alone were investigated. In general, the same problems presented themselves as in improvement for both navigation and power. It was found that no economical project could be laid down which would not interfere with present 14-foot navigation in the Soulanges canal, and also no project could be laid down which would not interfere, in some stage of its development, with the present Cedars plant. Analysis shows that the best form of improvement is the Île aux Vaches Three-Stage scheme with 14-foot side canals taking the place of the deep waterway shown in the recommended project. The cost of this project is estimated at \$180,711,000, as shown in tables Nos. 23 and 24.

238. Overland canal projects which carried a diversion for power all the way from the foot of lake St. Francis by the St. Louis and Chateauguay rivers to the St. Lawrence river at the head of La Prairie basin have been considered. Two methods of utilizing a diversion made in this way were investigated. One was by a single-stage scheme and the other by a double-stage scheme, placing one drop at the junction with the Chateauguay river and the other at the head of La Prairie basin. These projects appeared to the best advantage when the diversion made did not exceed 30,000 cubic feet per second, but even then were not economical when compared with improvements of the Soulanges and Lachine sections by means of other projects described.

LACHINE SECTION

239. Description. This section may be taken as extending from deep water at the head of lake St. Louis to the Alexander pier in Montreal harbour, mile 159 to mile 183. It is 24 miles long and covers the same territory as Division No. 1 in the Report of 1921. The section includes the expansion of lake St. Louis, the narrow stretch of river between Caughnawaga and Heron island with Lachine rapids at its foot, the short expansion of La Prairie basin and the swift water between Nuns island and Montreal. The total fall in the section with 242,000 c.f.s. flowing past Lachine is 48 feet. This is distributed as follows: Between Melocheville and the outlet of the Chateauguay river, the fall is three-tenths of one foot. Between the Chateauguay river and Lachine wharf, the fall is 1.1 feet. Between Lachine wharf and the head of Lachine rapids, the fall is 7.8 feet. Between a point half a mile above the head of Ile au Diable and the foot of Heron island, which may be taken as Lachine rapids, the drop is 23.5 feet. Between the foot of Lachine rapids and Victoria bridge the fall is 6.8 feet, and between Victoria bridge and Montreal harbour the fall is 9.0 feet.

240. Upstream navigation through the Lachine rapids is impossible and the only boats that navigate them on the downstream journey are the specially built passenger boats which operate for the tourist trade. All freight boats use the present Lachine canal which provides a 14-foot draft. This canal extends

from Lachine to Montreal, a distance of $8\frac{1}{2}$ miles, and has five locks.

241. Several urban centres are located along the river in the Lachine Section. The city of Lachine and the towns of St. Annes, Pointe Claire, Dorval, Beauharnois and Caughnawaga are located on the shores of lake St. Louis. The city of Verdun and the town of La Prairie are located on the shores of La Prairie basin. The city of Montreal extends along the north shore of the river from La Prairie basin to the wide and spacious river below St. Helen's island. The town of St. Lambert is located on the south shore at the end of Victoria Bridge.

242. The lands on the north side of Lake St. Louis for eight miles above Lachine are low, specially near the lake shore. In this strip of land and at the Chateauguay Basin on the south side a large investment has been made in summer homes which would be inundated should the lake surface be raised materially above its high water levels. Considerable areas east of La Prairie are often inundated when the river is breaking up in April. The low parts of the city of Verdun are dyked to protect them from inundation during the high water levels of the breakup period.

243. The Ottawa River flows into the St. Lawrence through four outlets two of which, Vaudreuil and St. Anne, flow into Lake St. Lovis; and two, the Mille Isles and Des Prairies Rivers, join the St. Lawrence at the foot of Montreal Island about fifteen miles below Montreal Harbour. The percentage of flow through each of these channels varies with the stage of lake of Two Mountains.

244. The maximum recorded flood occurred on May 17, 1876, when 195,000 c.f.s. flowed into lake St. Louis from the Ottawa river, and 550,000 c.f.s. flowed out of lake St. Louis to La Prairie basin. In three other years records of 160,000 c.f.s. in the St. Anne and Vaudreuil channels and 500,000 c.f.s. at the outlet of lake St. Louis are recorded. Records show that extreme flood levels on lake St. Louis occur between the 29th of April and the 29th of May.

245. Lake St. Louis is a relatively deep and short lake which overlies a trough in the rock surface. This trough provides a deep straight uniform channel from Melocheville to the mouth of the Chateauguay river. From this point east to the Canadian Pacific Railway bridge below Lachine, the bed is irregular and is obstructed by dykes of igneous rock which penetrate the surface and make navigation dangerous for any kind of craft. Between the Canadian Pacific Railway bridge and the head of the Lachine Rapids, a short stretch of uniform, rock floored river intervenes. From the middle of this section, the city of Montreal draws its water supply by use of a submerged pipe and intake crib. From the head of Lachine Rapids to their foot, the river gradually expands in width and igneous dykes penetrate the surface in many places, especially on the north side. Through the Lachine rapids, downstream navigation is only possible along one central channel and this is flanked by rocky projecting dykes which break up the water into innumerable cascades or abrupt falls.

246. In winter the regimen of the St. Lawrence river between the head of lake St. Louis and Montreal harbour undergoes a great change. With the advent of cold weather the water flowing out of lake Ontario gradually cools as it proceeds to the sea. The rate of this cooling is proportional to the surface area exposed and lake St. Francis, lake St. Louis and lake St. Peter are effective agents in lowering the temperature of the water. The water flowing through the lakes of the Ottawa is cooled in the same way but more rapidly than that of the St. Lawrence. Usually, about the 1st of December the water flowing into Lake St. Louis from the Ottawa will be found to be at about the freezing point and lake of Two Mountains will then be freezing over. About two weeks after lake of Two Mountains is cooled down to 32 degrees Fahrenheit, lake St. Peter, 65 miles below Montreal, reaches the freezing point and, if the weather is cold, an ice bridge immediately forms at that point. At this time, the temperature of the river at Kingston will be found to be about 6 degrees above the freezing point

and that of the water in lake St. Louis and lake St. Francis some degrees above that of lake St. Peter and below that at Kingston. If cold weather continues, lake St. Louis and lake St. Francis soon reach the freezing point and cover with ice. Usually, about 16 days after an ice cover forms on lake St. Peter, the water at the outlet of lake Ontario, opposite Kingston, is cooled down near to the freezing point and ice forms. Should warm weather intervene shortly after lake St. Peter, lake St. Louis or lake St. Francis freeze over, they may open up again, especially if winter is ushered in by a short period of very cold weather in which an ice cover is formed on these lakes, while lake Ontario is still relatively warm.

247. The ordinary flow out of lake St. Louis varies from 210,000 to 260,000 cfs, in the early part of winter. The maximum cross-sectional area of lake St. Louis, opposite Beauharnois, is about 490,000 square feet at low water. Opposite the foot of ile Perrot and opposite the mouth of the Chauteauguay river, the area is reduced to about 150,000 square feet. As will be observed from the size of the above cross-sections, the velocity of the water moving through the upper ten miles of lake St. Louis is less than 1.7 feet per second and, as may be expected, its surface area west of the mouth of the Chateauguay, 48 square miles, freezes over almost as soon as it is cooled to the freezing point at the beginning of each winter. Between the mouth of the Chateauguay river and the Lachine Wharf, the cross-sectional area of the river is about 116,000 square feet and the average velocity of the moving water in winter is over two feet per second. In this stretch of river no ice cover forms except in the shallow bays near shore. Between Lachine wharf and the head of Lachine Rapids, the sectional area is about 53,000 square feet and velocities are so high that no ice cover forms except on a narrow fringe along the shore.

248. The surface area of water ordinarily exposed in winter between ice cover in lake St. Louis and the head of La Prairie Basin is about 11 square miles and the volume of ice formed by this exposure is usually about 170,000,000 cubic yards. This ice is carried through Lachine rapids and is largely stowed in the form of hanging dams under the ice cover which forms below and in La Prairie basin. More than half of the exposed surface mentioned above is upstream from the entrance to the Lachine canal where the velocity of the water is almost low

enough to form an ice cover.

249. At the foot of Lachine rapids, the river spreads out into the shallow La Prairie basin, through which the water moves slowly for about one mile. Below this stretch of quiet water, a number of boulder ridges rise out of the water. These separate the river into three or four more or less distinct channels through which the water moves quite rapidly to the foot of the basin and on past

Victoria bridge to Montreal harbour.

250. In the early stage of winter the southerly and northerly parts of La Prairie basin cover with ice, but a central channel near Nuns island remains open until the ice pack which starts in lake St. Peter makes upstream past Montreal, under Victoria bridge, and into the basin. While the pack below Montreal is building upstream, the water level at Montreal gradually rises until the head of the pack passes that point. After that, it falls slightly and remains at a constant level until the breakup period brings down large quantities of frazil and slush and raises the water level again. The maximum January rise in Montreal harbour is ordinarily about 16 feet. With continued cold weather the water level at the head of the La Prairie basin continues to rise slowly as more and more ice is brought to it from above. In general, the highest level recorded is coincident with the last week of cold weather in February or March. Usually at that time the water level is about 11 feet above ordinary summer levels. Under these conditions, the surface slope in the ice gorged section between Lachine rapids and Montreal is about 1.6 feet per mile.

251. In April, warm rains and sun weaken the surface ice which holds the hanging dams in place and a large quantity of surface ice, frazil and slush moves from its wide berth in La Prarie basin to the narrow restricted river below Victoria bridge. This movement increases the length of the gorged section at Montreal. Under these conditions, the total surface drop becomes much greater than in the depth of winter and high water levels, 16 feet above summer stage for similar discharges are frequently found opposite the city of Verdun and in La Prairie basin generally.

252. It is believed that the operation of ice breakers below Montreal in recent years has reduced the height to which such flood levels rise. This is due to the fact that the length of ice cover in the river below the gorged section is reduced before it begins to move and a jam far down the river where it is very narrow is prevented by clearing lake St. Peter of ice at an early date in April. It is clear, however, that the length of gorged section near the City of Montreal is not

affected by the ice breakers operations.

253. The St. Lawrence river flows over a floor formed chiefly of solid rock from about a mile above Lachine to below Montreal harbour. Rock surface is exposed above the water level of the river at Lachine and Caughnawaga. It is exposed on both shores throughout the length of Lachine rapids and at many points in La Prairie basin and below Victoria bridge in the harbour of Montreal. Test borings also show the solid rock surface to be close to the river bed on the north and west sides of La Prairie basin. North and east of the river, between Lachine and Verdun, the solid rock surface is above the bed of the river, but between Verdun and Montreal harbour it is below.

254. Plans for Improvement. The Board has considered the following

plans for the improvement of the Lachine section:-

(1) A side canal with locks for navigation with control of lake St. Louis.

(2) An all river improvement for both navigation and power.

(3) A side canal with lock for navigation without control of lake St. Louis.

255. PLAN RECOMMENDED FOR PROJECT. The plan recommended by this Board is for a side canal with locks for navigation with control of lake St. Louis and is described in paragraphs 183 to 185 of the Main Report. It is shown on plates Nos. 62 to 64. Its estimated cost is \$53,000,000. Detailed estimates are given on tables Nos. 30 and 31.

256. The works comprised in this improvement may be listed as follows:—

(a) A long submarine channel extending from deep water in lake St. Louis to Lachine; this channel to be 600 feet wide for 4 miles of its length and 300 feet wide for 1.2 miles of its length.

(b) An overland canal extending from Lachine to a junction with deep water opposite the Alexandria pier in Montreal harbour.

This canal flanks the north shore of the river and is about 10 miles long. It is to be equipped with a pair of guard gates and supply weir situated 3.4 miles east of Lachine and with three lift locks. One lock is at Verdun, 5 miles east of Lachine; one is at the foot of Nuns island; and one is at the entrance of Montreal harbour, north of Victoria bridge.

(c) A dam across the St. Lawrence river at ile au Diable together with dams at the two northern outlets of Lake of Two Mountains and such other works as are required to hold the low water level of lake St.

Louis to elevation 71.

257. As currents at the outlet of lake St. Louis cross the submarine channel at a small angle with its axis, the navigation channel is given a width of 600 feet between deep water in lake St. Louis and the end of the present Lachina 45827—18

Canal breakwater. Along the inside of this breakwater the channel has a width of 300 feet. Between Dorval island and the north shore, an enbankment is provided for reduction of cross currents at this point.

258. The overland canal above described runs parallel with the river and near the north shore to a point 7,800 feet east of the present canal embankment at Lachine. It is to be separated from the river for this length by timber cribwork. This makes it possible for the excavation inside this embankment to be done in the dry. A double track vertical lift bridge is provided at the intersection of the Canadian Pacific Railway with the proposed canal at Highlands. The proposed canal leaves the shore of the river 7,800 feet east of Lachine and proceeds for a length of about one half mile in a prism 55 feet deep which is excavated in earth. East of that point it is carried in earth and rock for a length of about three miles through low flat country to the shore of the river opposite the Verdun Asylum, where a lock with a lift of 20 feet is located.

259. Retaining embankments are placed on both sides of the canal for a length of three miles above the lock at Verdun, the south embankment being connected with the north end of the dam at ile au Diable. Syphon culverts are located at the head of the Montreal aqueduct. A subway for highway traffic is provided under the canal and is located between the guard gates and the Verdun lock; it provides for two openings 25 feet wide and 15 feet high.

260. East of the Verdun lock, the canal is carried for a length of $2\frac{1}{2}$ miles in a high level basin formed by the north shore of the river on one side and an embankment on the other. In this reach the prism, 300 feet wide, is in shallow excavation. At the lower end of this basin the Nuns island lock, with a 12-foot lift, is located at the foot of the island near the north shore. Water is to be supplied to this basin by a supply weir at the Verdun lock and is discharged from it by a weir in an embankment north of the lock at Nuns island.

261. Between Nuns island lock and Victoria bridge the canal is formed in deep rock excavation in a basin which is separated from the river by a long embankment high enough to protect the reach from flood levels in the river. At Victoria bridge a weir and culvert are provided for discharging the surplus water of the canal and the local drainage into Montreal harbour. Two lift bridges are provided for the railway and highway traffic at the Montreal end of Victoria bridge.

262. About 1,500 feet below Victoria bridge the Montreal lock, with a maximum lift of 21 feet, carries navigation into Montreal harbour. Retaining walls and the upper entrance piers of the lock hold the reach level.

263. In the project recommended, a dam is located at île au Diable. This structure is of the open wicket type and is introduced to reduce the volume of excavation required in the channel which leads from deep water in lake St. Louis to the lock at Verdun. It will also reduce the velocities at the outlet of lake St. Louis and will also reduce the cost of power development when such development is undertaken. The dam proposed is to consist of large concrete piers, 160 feet centre to centre, with steel truss bridges and drop wickets for lowering in the spring of each year after the flood flows are passed. These wickets are to be opened at the end of each navigation season. The throttling effect of the piers during flood discharge is to be compensated for by means of a small diversion channel which leads from the navigation channel at the north end of the dam. It is designed to raise the low water level of lake St. Louis to elevation 71.0.

264. As this is higher than the extreme low water of Lake of Two Mountains, this rise in level will reflect on the level of that lake, and dams will be required at its two northerly outlets in order to control the distribution of outflow.

265. If flood flows in the future were to be no greater than in the past, the works described above would be all that are required to bring about the improvement. However, other complications enter. The immediate improvement of the International Section and the future improvement of the Lachine Section, place certain restrictions on maximum winter outflows. Then again power values make it desirable that winter flows be made more regular than they are in nature. Moreover, navigation interests demand some regulation of this flow. The scheme of regulation of lake Ontario submitted with the Board's report, endeavours to secure the greatest good to the greatest number of interests possible, but in doing so, it contemplates increasing the flood flows in May to the extent of about 15,000 cfs. in extreme years. The conservation works on the Ottawa, which have been recently built and others which are in progress of construction, will compensate for the proposed increase in flow out of Lake Ontario at these periods.

266. Alternative Plans. Before selecting the side canal project with the control of lake St. Louis above described, the Board carefully considered the practicability of utilizing the river channel for navigation by means of the construction of locks and dams with channel excavation. An apparently practical place for a dam and lock improvement is suggested by the nature of the river bed and the drop in water level at Lachine Rapids. Another place is suggested by the drop in water level below Victoria bridge. A dam and lock at either site might be combined with a dam and lock at the other, or either might be combined with a side canal and a number of locks above or below it. In investigating conditions, it was found that the stretch of river between Lachine wharf and Lachine rapids cannot be made safe for deep draft navigation without an enormous amount of channel enlargement, a large part of which must be secured by the excavation of solid rock.

267. To maintain the standards on which the waterway is designed, maxi; mum velocities in the navigable channels must be kept down to 5 feet per second, and a cross-sectional area of 100,000 square feet must here be provided to care for a discharge of 500,000 cfs., which is sometimes reached in the month of May. This requires a net enlargement of at least 35,000 square feet for a length of 5½ miles, or the excavation of about 37,000,000 cubic yards, the greater part of which is solid rock.

268. Obviously, no project involving such an amount of excavation can be justified as an improvement for navigation when the side canal, as described, can be built for one-third of the cost of a river enlargement between Lachine Wharf and the head of Lachine rapids.

269. If the enlargement of the river between Lachine Wharf and Lachine Rapids were carried to the point where an ice cover would be secured, the amount of excavation required would be much increased.

270. Further, conditions in this reach are especially hard to deal with because the natural depth in part of the river is 35 feet while in another part it is only 10 feet. This means a very high velocity in some parts and a very low velocity in others.

271. It is not possible to execute a project for permanently raising the level of La Prairie Basin by means of a dam at Victoria Bridge without securing an ice cover in the river above Lachine Rapids because the 170,000,000 cubic 45827-184

yards of ice must be stowed in La Prairie Basin if the river remains open above it and because a twelve-foot drop across La Prairie Basin must be available to overcome resistances in a gorged condition.

- 272. Even though the enlargement of the river above Lachine Rapids should be justifiable as a power venture and such enlargement should cut off the movement of ice from above, the building of a dam and lock at Victoria Bridge can not be justified as a navigation proposition, as comparative estimates show that it is cheaper to raise a section along the north shore of the basin than it is to raise the whole of the basin itself. This is due to the great length of dykes and other works which are necessary to protect the town of La Prairie and the low land adjacent from the raised level in the basin, as well as to the length of the dam itself.
- 273. From a power point of view, it might be suggested that the level of Lake St. Louis could be extended through Lachine Rapids and La Prairie Basin to a dam, power house and lock at Victoria Bridge where the whole head in the section would be concentrated at one point. Such a scheme would involve long and high dykes on either side of La Prairie Basin as well as extensive pumping and drainage works. As the water level in the river below Montreal would still rise a considerable amount due to ice resistance in winter, nothing very material would be gained from the large expenditures required to build the high dam and dykes above mentioned.
- 274. Preliminary estimates of the cost of the above project and the value of the extra power derived by such a scheme made it evident at once that the levels of lake St. Louis should be extended only to the head of La Prairie basin.
- 275. A dam at Victoria bridge with a power plant at that point combined with a dam and power house at the foot of Lachine rapids is not a workable proposition as the total head available, especially in winter, is too small to divide. Then again, if a power plant were located at Victoria bridge it would always be in danger of losing a part of its head through a future rise in tailwater level by a dam in the main river below Montreal.
- 276. The power problems, therefore, centre upon how power plants might be built near the foot of Lachine rapids and how water might be conducted to them with a minimum loss of head. This can be done, so far as summer conditions are concerned, by a moderate enlargement of the cross-sectional area of the river between the foot of lake St. Louis and the head of La Prairie basin, such as is shown by the Lachine Rapids project in the Report of 1921.
- 277. The Lachine Rapids project, as described in that Report, contemplates the enlargement of the river so that it will give a cross-sectional area of 83,000 square feet when lake St. Louis stands at elevation 71 at the upper entrance of the Lachine canal. Analysis of such enlargement shows that it would care for the maximum flood flows occurring in the St. Lawrence at this point in summer, namely 550,000 cubic feet per second, without raising the level of lake St. Louis above the elevation to which it has gone in nature and still leave a reasonable head for the development of power at the head of La Prairie basin. In winter, however, this relatively small sectional area would make it imperative that open water be continuously maintained between the power plant at the head of La Prairie basin and lake St. Louis in order to insure the quiet passage of expected flows without excessive damage to properties around lake St. Louis.
- 278. It is thought that this improvement cannot be operated so as always to maintain open water immediately above the power dam and power plant at the head of La Prairie basin, as there is danger of ice accumulating above the piers of the dams and power houses and making upstream so fast that an ice

jam would be formed before anything could be done to release it. If such an ice jam should form, the velocity at its head would be about 3.2 feet per second with a discharge of 265,000 cfs., which records show must be passed under certain winter conditions. As shown in appendix "E," this velocity is too high to insure the maintenance of a free and open channel underneath this ice cover and any filling up or gorging of this free and open channel between the power house shown at the head of La Prairie basin and the outlet of lake St. Louis opposite the entrance to the Lachine canal will cause a great rise in water level in lake St. Louis and damage to the property around its shores.

279. As a consequence of this situation, the Board finds that the Lachine Rapids project, as in the Report of 1921, requires modification. An enlargement of the section of the river from the foot of lake St. Louis to the power plants at the head of La Prairie basin so that it would provide a cross-sectional area of about 115,000 square feet or a velocity of $2\frac{1}{4}$ feet per second under extreme winter flood conditions would, no doubt, provide a safe and workable scheme for the development of this section of the river. This would involve an enlargement of the river to the extent of about 50,000 square feet for a length of about 6 miles, requiring the removal of about 50,000,000 cubic yards, almost all of which is rock. Such a project would be enormously costly and would be justified as a power development, only if no chaper method of improvement were available.

280. Power Development. The navigation improvement selected by this board and set forth in paragraphs 183 to 185 of the Main Report can be associated with a subsequent power improvement (paragraph 186, Main Report), which provides for a diversion of a large portion of the flow of the river, through an artificial channel which makes it possible to use the natural capacity of the river in an ice-covered condition from the outlet of lake St. Louis to the head of La Prairie basin. The artificial channel is designed to carry a large amount of water with a small area of exposure. This complete power project is intended to be constructed in two successive stages, the first of which would be completed and put into operation before the second stage is undertaken. In this way the cost of the project, including interest, would be much less than if it had all to be built and completed at one time. It is shown on plates Nos. 65 and 66. Its estimated cost when built subsequent to the improvements described for navigation is \$123,213,000. Detailed estimates are shown on tables Nos. 32 to 34.

281. The works in the first stage of the power project may be summarized as follows:—

- (a) A power house on the south shore east of Paquette island. This power house is to be equipped with 19 units of 22,900 horsepower each and is designed to develop 391,000 horsepower at a 31½-foot head.
- (b) A canal extending from the foot of lake St. Louis west of the village of Caughnawaga to the power house. The power canal is to be 1,000 feet wide on the bottom and 26 feet deep in the submarine section west of Caughnawaga, and 300 feet wide on the bottom and 40 feet deep in the overland section, east of that point. It is to be protected at the upper end by gates and lined with concrete through the solid rock section between Caughnawaga and the power house forebay.
- (c) A reconstruction of the dam, described in paragraph 263, so that it can retain and hold up the level of lake St. Louis to elevation 71 during winter conditions.

282. The works in the second stage of the power project may be summarized as follows:—

(a) A power house equipped with 19 units of 25,700 horse-power each, situated at the foot of the Lachine rapids extending into the river north of Paquette island. This power house is designed to develop

422,000 horse-power at 331 foot head.

(b) A dam extending from the north end of this power house to Heron island, thence along the axis of Heron island to its head, thence upstream along the rock outcrops of the river to a junction with the dam previously described in stage No. 1 about 1,500 feet south of its intersection with the north shore of the St. Lawrence river.

(c) The removal of about 3,500 feet of the south portion of the dam as modified for the first stage, leaving only such part of this section as

may be used for bridge piers.

283. Under this system of improvement, the natural river channel having a cross-sectional area of about 70,000 square feet would carry about 145,000 cfs, at a velocity of about $2\frac{1}{4}$ f.s. and the artificial channel having an area of 12,800 sq. ft. would carry 120,000 cfs. at a velocity of about 9.4 feet per second. Both of these channels together would carry about 265,000 cfs. with an overall fall of about $3\frac{1}{2}$ feet. This system of improvement contemplates an ice cover throughout the entire section above the power plants exclusive of the area exposed in the artificial channel. It is a much more economical system of development than a direct enlargement of the river. In order to prevent sudden changes in the level of Montreal harbour, close supervision would be required of opening and closing gates as power is thrown on and off the plants.

284. The estimated first cost of completing the first stage of this project after the control dam for navigation is built is \$81,247,000. When interest during construction and interest during marketing period determined by an annual growth in the use of power of 75,000 horse-power is added, its cost becomes \$100,227,000. The estimated first cost of completing the second stage of this project is \$41,966,000 and when interest during construction and interest during marketing period is added its total ultimate cost becomes \$46,336,000.

See table No. 34.

285. It will be noted that the ultimate cost of obtaining power from this section of the river is \$180 per horse-power while the cost of obtaining power from the Soulanges section is \$125 per horse-power. As power developed in the Lachine section is about 18 miles nearer Montreal than power in the Soulanges section, it would probably justify an additional capital expenditure. Estimates indicate, however, that power in the Soulanges section can be developed and delivered to Montreal for less than power in the Lachine section. It is, therefore, but reasonable to expect that power development in the Soulanges section will precede that in the Lachine section, and no immediate development for power in the latter need be provided for in the project adopted to give through navigation, but provision should be made for development in the future in the most economical way.

286. Alternative Plans for Side Canal. Having established that the best form of improvement for this section is by an overland canal with subsequent improvement of the river for power, the reasons for the route adopted by the Board will now be discussed.

287. The Report of 1921 recommends improving the Lachine section by means of an overland canal extending from Lachine to Verdun, together with a series of raised basins, thence to Montreal harbour.

288. From a construction point of view the location of 1921 had many desirable features, but in view of the fact that the city of Verdun is growing fast and towards the west, it is thought to be unwise to build the waterway so far inland, because some day the lands west of the canal in this location would, undoubtedly, be extensively developed and the population therein would demand either tunnels, which will be very costly, or draw bridges which will be impossible to operate without interference with navigation and without annoyance to the public.

289. An overland navigation canal between lake St. Louis and the river below Montreal, if built on the south shore would be much longer than on the north shore. It would have to care for the drainage of a number of streams which flow into La Prairie Basin from the south. If a navigation canal were built on the south side, the power canal would have to be built on the north shore. Estimates show that the cheapest combination is navigation on the

north side and power on the south side.

290. An overland project can be built quite well with lake St. Louis allowed to fluctuate as at present and if built in that way will not interfere with the future development of power. It is believed, however, that in the general interests of a future improvement of the river for power a control dam for summer use should be incorporated into the project. This will establish an open water control of the level of lake St. Louis, thereby saving 5 feet of excavation in the long submarine channel leading from deep water in lake St. Louis to Lachine and in the long overland canal extending from Lachine to the first lock at Verdun. This will not effect a saving sufficient to cover completely the cost of building a bridge and dam at the head of ile au Diable but on account of the improvement to navigation brought about by this raise in level of lake St. Louis generally and, on account of the future benefits which such a control would confer on power development, the Board believes that the improvement of the river for navigation should be made in this way.

291. The cost of improving the river for navigation without establishing a control of lake St. Louis is \$50,848,000, as shown in table No. 35. This compares with \$53,000,000, as shown in table No. 30, for the project with control.

292. In the project recommended, the drainage of the St. Pierre river and the outflow from the Montreal Water Works Pumping Station are discharged into the basin between Nuns island and the Montreal lock. From this basin it is to be discharged through two arch culverts under the approach to the Victoria bridge into Montreal harbour. In this way the water level in the basin above Victoria bridge and at the outlet of the St. Pierre river will be kept many feet lower in winter than the level of La Prairie basin opposite. In summer, however, it will be somewhat higher than it has been in nature but it will not be higher than extreme levels of La Prairie basin in May.

293. The estimated cost of this scheme is greater than a number of other projects which the Board has considered but it interferes less with vested interests than any other project that has been developed. According to the Board's standards, its estimated cost is about the same as that of the project

recommended in the report of 1921.

294. As mentioned earlier in this report, the City of Montreal draws its domestic water supply from the St. Lawrence river about 1½ miles above the head of Lachine rapids. Ordinarily, an aqueduct of quite small proportions is large enough to carry all the water required by a large city. In this case, however, the aqueduct is a large canal; its cross-sectional area is about 2,500 square feet for a length of about 4 miles and 1,500 square feet for a length of about 1 mile. It was enlarged to its present size with the idea of using it for power as

well as for a domestic water supply. The work connected with this power project has been halted for some years. The carrying capacity of the parts of the enlargement which have been completed is about 5,000 cfs. In the plan recommended, provision is made for passing 5,000 cfs. into this canal at its head and also for passing 5,300 cfs. from the basin above Victoria bridge to Montreal harbour. In this way, the recommended project is designed to permit the City of Montreal to complete their aqueduct project as originally planned.

295. The project recommended in the Report of 1921 contemplated permitting the potentialities of the power project to be realized but, in that case, a change in the location of the power-house was required and only the westerly

half of the aqueduct could be used for power.

296. A scheme for utilizing 1.6 miles of the prism of the present aqueduct for the navigation canal and developing a large terminal basin for future shipping north of Nuns island was drawn up and carefully considered. West of the C.P.R. bridge at Lachine this project is the same as the recommended project. Eastward 1,500 feet from the C.P.R. bridge the waterway in this scheme turns inland 50 degrees on a curve of one mile radius, then follows along the axis of the present aqueduct for 8,500 feet, then turns 24 degrees toward the river and passes west of the Verdun asylum. At this point, a lock which overcomes a difference in level of 20 feet is placed. Eastward from this lock the waterway proceeds in an artificial basin, as in the plan recommended, about 16 feet above the level of La Prairie basin. The lock is placed, however, at the foot of Nuns Island, but the raised basin is continued to below Victoria bridge where a lock which overcomes a maximum difference of level of 33 feet is placed. The project requires large and expensive drainage works as the outflow of the St. Pierre river and that of the sewers of Verdun have to be carried to Montreal harbour below Victoria bridge. It also involves building a special water supply conduit from a point in the river opposite the old entrance of the Montreal aqueduct to join the present aqueduct east of the point where the waterway leaves it. This artificial basin, as shown, is 3.6 miles long and is flanked by a retaining embankment of earth and rock on one side and the Verdun dyke on the other. It would afford opportunities for the development of the rock facilities in the City of Montreal.

297. The estimated cost of the project is \$1,500,000 less than the project recommended. It would, however, require co-operation from a great many divergent interests; it would require the City of Montreal to abandon the development of power from its enlarged aqueduct, and it might affect living conditions in the City of Verdun by permanently raising the ground water level to an uncomfortable extent. Its alignment is not as good as in the project recommended and the obstructed view at the turn above the upper end of the aqueduct would increase the hazard of collision. For these reasons it is not recommended.

POWER HOUSE INSTALLATIONS

298. The installed capacities of the power houses in the various projects considered are shown on tables 36 to 38.

 $\begin{array}{c} \textbf{TABLE I.-ESTIMATE OF COST INTERNATIONAL RAPIDS SECTION-SINGLE-STAGE} \\ \textbf{SCHEME} \ \ (242)-Continued \\ \textbf{(As proposed by United States Section)} \end{array}$

(As proposed by United States Section)									
Item	Quantity	Unit	Unit price	Amount	Sub-totals				
1. Dam and power houses at foot of Barnhart			\$ cts.	\$	\$				
Island— (a) Dam, except unwatering— Excavation, earth. Excavation, rock, dry. Concrete. Foundation contingencies. Gates. Towers, track, and bridge. Operating cranes. Stop logs.	615,000 163,000 1,131,000 46 46 3 6	Cu. yd. " 10% Each " Sets	7,500 00 6,300 00 16,000 00 10,000 00	492,000 367,000 13,572,000 1,357,000 345,000 290,000 48,000 60,000					
(b) Power-house substructures— United States power house— Excavation, earth. Excavation, rock. Concrete, below draft-tube floor. Concrete, above draft-tube floor Canadian power house—	1,076,000 56,000 138,600 701,800	 	0 75 2 25 10 00 15 00	807,000 126,000 1,386,000 10,527,000	16,531,000				
Excavation, earth. Excavation, rock. Concrete, below draft-tube floor Concrete, above draft-tube floor	702,000 104,000 21,300 678,700	"	0 75 2 25 10 00 15 00	527,000 234,000 213,000 10,180,000	24,000,000				
(c) Unwatering dam and power houses— General excavation, earth, dry General excavation, dredging Cofferdams and pumping	614,000 1,450,000		0 80 1 25	491,000 1,813,900 10,745,000	13,049,000				
(d) Abutments to power house— United States power house— Excavation, earth. Excavation, rock. Backfill. Concrete.	295,000 2,900 200,000 96,400	"	0 65 3 50 0 40 12 00	192,000 10,000 80,000 1,157,000	10,047,000				
Canadian power house— Excavation, earth. Excavation, rock. Backfill. Concrete.	75,500 2,000 30,000 46,500	"	0 65 3 50 0 40 12 00	49,000 7,000 12,000 558,000	2,065,000				
(e) Tail-race excavation— United States powerhouse— Dredgins. Canadian power house— Excavation, earth. Excavation, rock.	630,000	"	1 25 0 75 1 75	1,936,000 473,000 277,000					
Dredging	890,000		1 25	1,113,000	3,799,000				
house— Track. Railroad to Canadian power house— Track. Bridges			40,000	32,000 68,000 139,000					
(g) Superstructures and machinery— United States power house— Superstructure, gates, racks, cranes. Generators and turbines Switching Canadian Power house—	136,500	c.f.s. H.P.	109 20 3 70	6,000,000 14,906,000 4,303,000	239,000				
Canadian Power house— Superstructure, gates, racks, cranes			132 30 3 70	6,000,000 18,059,000 4,303,000	53,571,000				
					113,254,000				

TABLE I.—ESTIMATE OF COST INTERNATIONAL RAPIDS SECTION—SINGLE-STAGE SCHEME (242)-Continued)

Item	Quantity	Unit	Unit price	Amount	Sub-totals
Navigation works (channels 25 feet deep)— (a) Approach channel above Robinson Bay			\$ cts.	\$	\$
lock — Excavation	1	Cu. yd.	0 65	871,000	871,00
(b) Robinson Bay lock (No. 8)— Excavation, open, earth. Excavation, trench, earth. Backfill. Concrete. Gates. Operating machinery. Emergency dam. Approach walls—	274,000 575,000 429,800 6	66 66	0 65 5 00 0 40 10 00	81,000 1,370,000 230,000 4,298,000 785,000 310,000 175,000	011,50
Rockfill. Timber cribs. Concrete. Piling. Office and dwellings.	72,300 18,470	Cu. yd. "Lin. ft.	2 00 8 00 10 00 0 85	80,000 578,000 185,000 32,000 40,000	8,164,0
(c) Canal Prism, Robinson Bay lock to Grass River Lock— Excavation, earth		Cu. yd.	0 65	687,000	687,0
(d) Grass River Lock (No. 7)— Excavation, earth. Excavation, rock Backfill Concrete. Gates. Operating machinery.	13,200 576,000 332,100 6	"	0 75 3 50 0 40 10 00	678,000 46,000 230,000 3,321,000 730,000 300,000	007,00
Approach walls— Timber cribs. Piling. Concrete. Office and dwellings.	71,200 27,000	Lin. ft. Cu. yd.	8 00 0 85 10 00	330,000 61,000 270,000 40,000	
(e) Approach channel, Grass River Lock to river— Excavation, earth		Cu. yd.	0 65	227,000	6,006,0
(f) Dike at Grass River Lock— Fill, earth. Riprap slope protection	368,000		0 75 3 00	276,000 31,000	227,0
(g) Waste weir at Grass River lock— Excavation, earth, open. Excavation, earth, trench. Backfill. Piling Concrete, mass. Concrete, paving. Gates and operating machinery	16,200 46,000 60,000 25,900	" Lin. ft. Cu. yd.	0 65 5 00 0 40 0 85 12 00 15 00	87,000 81,000 18,000 51,000 311,000 161,000 48,000	307,0
(h) Drainage ditch north of Grass River lock— Excavation		Cu. yd.	0 65	2,000	757,0
(i Diversion dike and flood channel at mouth of Grass River—Dike, rockfill	63,000	Cu.yd.	2 00 0 80	126,000 182,000	2,0
(j) Diversion, Ottawa Branch, New York Central Railroad— Relocation of line. Bridge over Grass River. Bascule bridge at lock. Bridge over Pollys Gut.		Miles	50,000 00	225,000 180,000 175,000 728,000	308,0 1,308,0

TABLE I.—ESTIMATE OF COST INTERNATIONAL RAPIDS SECTION—SINGLE-STAGE SCHEME (242)—Continued

Item	Quantity	Unit	Unit price	Amount	Sub-totals
2. Navigation works, etc.—Con. (k) Dredging for navigation only, south			\$ cts.	\$	\$
channel, Cornwall Island— Dredging. Dredging over-depth. Removing old bridge.	94,000		0 80 0 80	426,000 75,000 25,000	F00 000
(l) Road relocation	3.2		30,000 00	96,000	526,000 96,000
(m) Ferry across canal				25,000	25,000
3. Dikes— (a) Canadian Shore, from 2 miles west of Aultsville to Bergen Lake— Stripping. Earth fill. Rock fill. Riprap slope protection.	285,000 3,691,000 25,000 79,000	Cu.yd.	0 65 0 75 2 00 3 00	185,000 2,768,000 50,000 237,000	3,240,000
(b) Head of Bergen Lake to head of Barn- hart Island— Stripping. Earth fill. Rock fill. Riprap slope protection	24,000 976,000 9,800 17,400	Cu. yd.	0 65 0 75 2 00 3 00	16,000 732,000 20,000 52,000	820,000
(c) Head of Barnhart Island to Canadian power house— Stripping Earth fill Riprap slope protection.	74,000 1,403,000	Cu. yd. "	0 65 0 75 3 00	48,000 1,052,000 59,000	1,159,000
(d) United States shore, Cole Creek to Massena Canal, exclusive— Stripping. Earth fill. Riprap slope protection	101,000	Cu.yd.	0 65 0 75 3 00	66,000 848,000 98,000	1,012,000
(e) Massena Canal, inclusive to foot of South Sault— Stripping. Earth fill. Rock fill. Riprap slope protection	66,000 1,121,000 50,600 18,300	"	0 65 0 75 2 00 3 00	43,000 841,000 101,000 55,000	1,012,000
(f) Foot of South Sault to Robinson Bay Lock— Stripping Earth fill Riprap.	104,000	**	0 65 0 75 3 00	68,000 2,090,000 60,000	
(g) Robinson Bay lock to United States power house— Stripping. Earth fill. Riprap.	91,000	"	0 65 0 75 3 00	59,000 1,652,000 63,000	
4. Drainage, Canadian shore—					11,263,000
Above Hoople Creek— Earth excavation Drops. Bridges	1,264,000 2 10	Cu. yd.	0 35	442,000 52,000 89,000	
Hoople Čreek to Bergen Lake— Earth excavation. Drop. Bridges.	640,000	Cu. yd.	. 0 35	224,000 39,000 51,000	
5. Drainage, United States shore				116,000	897,000

\cdot TABLE I.—ESTIMATE OF COST INTERNATIONAL RAPIDS SECTION—SINGLE-STAGE SCHEME (242)—Continued)

Item	Quantity	Unit	Unit price	Amount	Sub-totals
			\$ cts.	\$	\$
6. Protection of Iroquois— Dikes, earth fill Riprap slope protection Ditches, excavation. Sewers and pumps.	1,129,000 34,500 48,000	Cu.yd.	0 75 3 00 0 65	847,000 104,000 31,000 27,000	1,009,00
7. Protection of Morrisburg— Dikes, earth fill. Riprap slope protection. Ditches, excavation. Culverts. Sewers and pumps.	515,000 14,800 8,000	44	0 75 3 00 0 65	386,000 44,000 5,000 3,000 52,000	1,000,00
8. Storm-water pumps, Aultsville and Farran Point				65,000	490,00
9. Fourteen-foot lock at head of Bergen lake— Earth excavation Rock Back fill Concrete Gates Operating machinery	140,000 3,000 174,000 57,700 4	Cu.yd. " " Sets	0 65 3 50 0 40 10 00	91,000 11,000 70,000 587,000 58,000 70,000	65,00
0. Control works, head of Massena Power Canal (exclusive of dikes)— Excavation, earth. Excavation, rock. Dredging. Concrete. Foundation contingencies. Paving. Gate house. Gates. Operating machinery and stop logs.	922,000 8,100 96,000 81,000 7,800 332,000	" " 10% Cu. yd. Cu. ft.	0 65 3 50 0 90 12 00 12 00 0 25	599,000 28,000 86,000 972,000 97,000 94,000 83,000 73,000	2,069,00
1. Initial channel excavation— (a) At Chimney Foint— Dredging. Dredging, over depth. Dredging, rock. Dredging, rock, over depth. Dredging, removal dike.	313,000 41,000 185,000 38,000 65,000	Cu.yd.	0 80 0 80 4 25 4 25 1 50	250,000 33,000 786,000 162,000 98,000	1,329,00
(b) Galop Island to below Lotus Island— Above Island— Dredging, loose. Dredging, loose, over depth. Dredging, rock, dry. Cut through island—	1,685,000 71,000 70,000	Cu.yd.	0 80 0 80 1 75	1,348,000 57,000 123,000	1,020,00
Excavation, earth Excavation, rock	4,186,000 639,000	Cu. yd.	0 65 1 75	2,721,000 1,118,000	
Excavation, dry, rock. Unwatering rock cut.	1,359,000 655,000	Cu.,yd.	0 75 1 75	1,019,000 1,146,000	
Dredging, loose Dredging, loose, over depth Dredging, rock	4,446,000 96,000 252,000	Cu.yd.	1 25 1 25 4 25	200,000 5,558,000 120,000 1,071,000	
Channel south of Lotus-Lalonde Island— Excavation, earth, in coffer. Excavation, rock, in coffer. Unwatering. Dredging.	1,072,000 329,000 18,000	Cu. yd.	0 80 1 75 0 90	864,000 576,000 502,000 16,000	
(c) Sparrowhawk Point— Excavation, dry Dredging. Dredging, over depth.	1,433,000 742,000 36,000	Cu. yd.	0 65 1 25 1 25	931,000 928,000 45,000	1,904,00

TABLE I.—ESTIMATE OF COST INTERNATIONAL RAPIDS SECTION—SINGLE-STAGE SCHEME (242)—Continued

Item	Item Quantity		Unit price	Amount	Sub-totals
11 Initial Channel aggregation at a Con			\$ ets.	\$	\$
11. Initial Channel excavation, etc.—Con. (d) Toussaint Island Cut—	0 711 000	G 1	0.05	1 7704 000	
Excavation, dry	2,744,000 891,000	Cu. yd.	0 65 1 25 1 25	1,784,000 1,114,000	
Dredging, over depth	46,000	66	1 25	58,000	2,956,000
(e) Iroquois Point-Point Rockway— Excavation, dry	1,135,000	Cu vd	0 65	738 000	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Dredging. Dredging, over depth.	509,000	Cu.yd.	0 90	738,000 458,000	
	55,000		0 90	50,000	1,246,00
(f) Point Three Points— Excavation, dry	412,000	Cu. yd.	0 65	268,000	
Dredging	412,000 931,000 68,000	u	0 90 0 90	268,000 838,000 61,000	
	00,000		0 30		1,167,00
(g) Ogden Island— North channel—		~ ,		400 000	
Excavation, dry Dredging	281,000 1,006,000	Cu. yd.	0 65 0 90	183,000 905,000	
Dredging, over depth	124,000		0 90	112,000	
Dredging Dredging, over depth	487,000 80,000	Cu.yd.	0 90 0 90	418,000 72,000	
Dredging, over depth	80,000		0 50	12,000	1,690,00
12. Enlargement to 95,000 square feet section—					26,731,00
Sparrowhawk Point— Excavation, earth	2,169,000	Cu. yd.	0 65	1,410,000	
Dredging Iroquois Point-Point Rockway—	800,000	"	0 9.0	720,000	
Excavation, earth	3,615,000 625,000	"	0 65 0 90	2,350,000 563,000	
Dredging Point Three Points—		"			
Excavation	2,123,000 373,000	"	0 65 0 90	1,380,000 336,000	
Ogden Island— North Channel—					
Excavation, earth	2,225,000 541,000	"	0 65 0 90	1,446,000 487,000	
South Channel—		"			
Excavation, earth	2,503,000 1,160,000	**	0 65 0 90	1,627,000 1,044,000	
13. Enlargements at Cornwall Island—					11,363,00
North channel— Earth excavation	800,000	Cu.yd.	0 65	520,000	
Dredging	583,000 52,000	"	0 80 0 80	466,000 42,000	
Dredging, over depthSouth channel (additional to Item $2(k)$ —					
Earth excavation	880,000 3,174,000 237,000		0 65 0 80	572,000 2,539,000	
Dredging over depth	237,000	"	0 80	190,000	
14. Control dam at Galop—					4,329,00
Excavation, rock	32,400 120,000	Cu. yd.	3 50 12 00	114,000 1,440,000	
Concrete	61		12 00	432,000	
Towers and crane tracks	61	Spans		142,000 244,000	
Operating cranes Stop logs, fixed parts.	4	Each	15,000 00	60,000 24,000	
Stop logs, movable parts	4	Sets	8 00	39,000	
Cribs				1,610,000	
Removal of Gut Dam	42,000	Cu. yd.	1 50	63,000	4,218,00

TABLE I.—ESTIMATE OF COST INTERNATIONAL RAPIDS SECTION—SINGLE-STAGE SCHEME (242)-Continued)

Item	Quantity	Unit	Unit price	Amount	Sub-totals
4F T31			\$ cts.	. \$	\$
15. Flowage and damage— (a) Canadian shore—					
Chimney Point to Morrisburg.				295,000	
Improvements				772,000	
Town property Morrisburg to head of Bergen	Loko-			364,000	
Land directly required	and in			4 40 4 000	
severance Improvements				1,435,000 1,658,000	
Town property				1,050,000	E E74 000
(b) United States shore—					5,574,000
Chimney Point to Wadding	cton, in-				
Lands				188,000	
Improvements				175,000 488,000	
Town property Waddington to Massena Canal	_				
Lands				706,000 494,000	
Improvements Massena Canal to Massena Poi	int—				
LandsImprovements				513,000 335,000	
•					2,897,000
(c) Islands— Above Long Sault Island—					
LandsImprovements				402,000 343,000	
Long Sault Island				265,000	
Barnhart Island Sheek Island				219,000 20,000	1,249,000
		ì		275,000	
(d) Power leases				210,000	275,000
10 Dellaced selecation					9,995,000
 Railroad relocation— Norwood and St. Lawrence Railro 					
TrackBridges			35,000 00	158,000 50,000	
Station				30,000	
Canadian National Railway— Track	5.9	Miles	100,000 00	590,000	
Bridges				30,000	0,50,000
					858,000
17. Highway relocation—					
(a) Canadian shore— Johnstown to Morrisburg—					
Roads			40,000 00	428,000	
Bridges Morrisburg to Bergen Lake—		1		25,000	
Roads Bridge at Nash Creek		Miles	40,000 00	760,000 7,000	1,220,000
					2,220,000
(b) United States shore— Chimney Point to Waddington					
Raising grade Waddington to Massena Canal				37,000	
Concrete roads (including	embank-	3.577	00.000	467.00	
ment Earth roads		Miles	60,000 00 5,000 00	432,000 8,000	
Bridges				84,000	E01 000
					561,000
		I			1,781,000

TABLE I.—ESTIMATE OF COST INTERNATIONAL RAPIDS SECTION—SINGLE-STAGE SCHEME (242)—Continued

(As proposed by United States Section)

Item	Quantity	Unit	Unit price	Amount	Sub-totals
18. Clearing reservoir site	5,800	Acres	\$ cts. 100 00	\$ 580,000	\$ 580,000
Net total		12½%			209,189,000 26,148,000 235,337,000

SUMMARY

Item	Net cost	Overhead	Total
1. Dam and power houses at foot of Barnhart Island	19, 284, 000 11, 263, 000 897, 000 110, 009, 000 65, 000 887, 000 2, 069, 000 26, 731, 000 11, 363, 000 4, 218, 000 9, 995, 000 858, 000	2,411,000 1,408,000 112,000 15,000 61,000 8,000 111,000 259,000 1,420,000 541,000 1,249,000 1,27,000 223,000 72,000	21, 695,000 12, 677,000 1,009,000 131,000 1,135,000 73,000 998,000 2,328,000 30,072,000 12,783,000 4,870,000 4,745,000 11,244,000 995,000

TABLE I.—ESTIMATE OF COST INTERNATIONAL RAPIDS SECTION—SINGLE-STAGE SCHEME (242)-Continued)

Item	Quantity	Unit	Unit price				Amount	Sub-totals
FOR OTHER CHANNEL DEPTHS			\$	cts.	\$	\$		
A. Saving if navigation channel is 23 feet deep originally—								
(1) Approach channel above Robinson Bav—								
Excavation saved	104,000	Cu. yd.		0 65	68,000			
Excavation saved(3) Approach channel, Grass River lock to	157,000	£¢		0 65	102,000			
river— Excavation saved	9,000	cc		0 65	6,000			
channel, Cornwall Island— Dredging saved	224,000	**		0.80	179,000			
Over depth, saved	40,000	"		0 80	32,000			
Engineering administration and contingencies.		$12\frac{1}{2}\%$				387,000 49,000		
Total						436,000		

TABLE I.—ESTIMATE OF COST INTERNATIONAL RAPIDS SECTION—SINGLE-STAGE SCHEME (242)—Continued

(As proposed by United States Section)

Item	Quantity	Unit	Unit price	Amount	Sub-totals
B. Additional cost if channels are made 27 feet deep originally—			\$ cts.	\$	\$
(1) Approach channel above Robinson Bay— Excavation added	108,000	Cu. yd.	0 65	70,000	
Grass River lock— Excavation added	160,000	46	0 65	104,000	
to river— Excavation added(4) Dredging for navigation only, south	10,000	66	0 65	7,000	
channel, Cornwall Island— Dredging added. Over depth added. (5) Control dam at Galop—	261,000 37,000		0 80 0 80	209,000 22,000	
Additional gate and pier				38,000	450,000 56,000
Total					506,000
C.Cost of future enlargement from 25-foot depth to 30-foot depth— (1) Excavation, above Galop Island— Dredging, loose Dredging, rock. Dredging, rock, over depth (2) Revision of control works	78,000 67,000 38,000	"	0 80 6 45 6 45		
(3) Approach channel above Robinson Bay— Dredging Dredging, over depth (4) Canal prism, Robinson Bay lock to Grass River lock—	231,000 46,000		0 75 0 75	169,000 35,000	
Dredging Dredging, over depth (5) Approach channel, Grass River lock to	393,000 80,000		0 75 0 75	290,000 60,000	
shore— Dredging. Dredging, over depth. (6) Dredging for navigation only, south	24,000 5,000		0 75 0 75	18,000 4,000	
channel at Cornwall Island— Dredging Dredging, over depth	772,000 340,000		0 75 0 75		0 107 000
Engineering, administration and contingencies.		12½%			2,197,000 275,000
Total					2,472,000

TABLE 2.—SINGLE-STAGE SCHEME WITH DAM AT HAWKINS POINT

Item	Quantity	Unit	Unit price	Amount	Sub-totals
1. Dam and power houses at foot of Barnhart Island— (a) Dam, except unwatering— Excavation, earth Excavation, rock, dry. Concrete. Foundation contingencies. Gates Towers, track, and bridge	1,435,000 145,000 893,800		\$ cts. 0 65 2 25 12 00 10,000 00 6,800 00	\$ 933,000 326,000 10,726,000 1,072,000 330,000 224,000	

TABLE 2.—SINGLE-STAGE SCHEME WITH DAM AT HAWKINS POINT—Continued

Item	Quantity	Unit	Unit	Amount	Sub-totals
			price		-
1. Dam and power houses, etc.—Con.			\$ cts.	\$	\$
Operating cranes. Stop logs.	3 4	Each Sets	16,000 00 12,500 00	48,000 50,000	
Tail-race excavation below Dam— Dry earth	4,442,000	Cu. yd.	0 65	2,887,000	
Dreaging, loose	1,330,000	** .	1 25	1,663,000	18,279,000
(b) Power-house substructures— United States power house—	4 000 000		0.00	4 040 000	
Excavation, earth, dry Excavation, rock, dry	1,907,000 57,600	44	0 65 2 25	1,240,000 130,000	
Concrete, below draft-tube floor Concrete, above draft-tube floor	346,000 721,800		10 00 15,00	3,466,000 10,827,000	
Canadian power house— Excavation, earth, dry	1,378,000	66	0 65	896,000	
Excavation, rock, dry	57,600 38,000	66	2 25 10 00	130,000 380,000	
Concrete, above draft-tube floor	718,500	66	15 00	10,778,000	27,847,000
(c) Unwatering dam				2,440,000	2,440,000
(d) Abutments to power bases— United States power house—					
Excavation, earth Excavation, rock	459,000 3,000 339,000	Cu.,yd.	0 65 3 50	298,000 11,000 136,000	
Excavation, rock	339,000 120,100	66	0 40 12 00	136,000 1,441,000	
Canadian power house— Excavation, earth	276,000		0 65	179,000	
Excavation, rock Back fill	2,900 206,000	66	3 50 0 40	10,000 82,000	
Concrete	69,800	66	12 00	838,000	2,995,000
(e) Tail-race excavation— United States power house—					
Excavation, earth, dry Canadian power house—	6,504,000		0 65	4,228,000	
Excavation, earth, dry Dredging, earth	2,475,000 689,000	66	0 65 1 25	1,609,000 861,000	
Dredging, rock. Excavation, dry, rock.	43,600 122,000	66	5 00 1 75	218,000 214,000	
(f) Rail connections to power houses—	122,000				7,130,000
Railroad to United States power house, track	2.1	Miles	40,000 00	84,000	
Railroad to Canadian power house, track		"	40,000 00	108,000	
Bridges.			10,000 00	139,000	331,000
(g) Superstructure and machinery— Estimate I, item 1 (g)				53,571,000	001,000
Estimate 1, Item 1 (g)					53,571,000
2. Navigation works (channels 25 feet deep)—					112,593,000
Estimate I, item 2 (a) to (m)				19,284,000	19,284,000
 Dykes— (a) Canadian shore from 2 miles west of 					
Aultsville to Bergen Lake— Estimate I, item 3 (a)				3,240,000	
(b) Head of Bergen Lake to Head of Barn-					3,240,000
hart Island— Estimate I, item 3 (b)				820,000	
(c) Head of Barnhart Island to Canadian	i			020,000	820,000
power house— Stripping	56,200	Cu vd	0 65	37,000	
Earth fill	740,000 13,100	66	0 75 3 00	555,000 39,000	
Riprap slope protection	15,100		3 00	35,000	631,000

TABLE 2—SINGLE-STAGE SCHEME WITH DAM AT HAWKINS POINT—Continued

Item	Quantity	Unit	Unit price	Amount	Sub-totals
3. Dykes—Con.			\$ cts.	\$	\$
(d) United States Shore, Cole Creek to Massena Canal, exclusive— Estimate I, item 3 (d)				1,012,000	1,012,000
(e) Massena Canal, inclusive to foot of South Sault— Estimate I, item 3 (e)				1,040,000	1,012,000
(f) Foot of South Sault to Robinson Bay lock— Estimate I, item 3 (f)				2,218,000	
(g) Robinson Bay lock to United States power house— Stripping. Earth fill. Riprap slope protection.	41,000 935,000 8,900	"	0 65 0 75 3 00	701,000	2,218,000 755,000
4 to 18—Estimate I, items 4 to 18, inclusive				65,388,000	9,716,000
Total net costEngineering, administration, and contingencies		12½%			206,981,000 25,873,000
	J				232,854,000

Summary

Item	Net cost	Overhead	Total
Dam and power houses at foot of Barnhart Island. Navigation works (channels 25 feet deep). Dikes. to 18, inclusive.	19,284,000 9,716,000	2,411,000 1,214,000 8,174,000	10,930,000

TABLE 3.—SINGLE-STAGE SCHEME—WITH DAM AT LONG SAULT SITE

Item	Quantity	Unit	Unit price	Amount	Sub-totals
1. Dam at Long Sault and power houses at foot of Barnhart Island— (a) Dam, except unwatering— Excavation, earth. Excavation, rock. Concrete. Foundation contingencies. Gates. Towers, track, and bridge. Operating cranes. Stop logs. (b) Powerhouse substructures— United States and Canadian power	143,000 716,100 46 46 46 4	Cu. yd. " 10% Each Spans Each Sets	\$ cts. 0 70 3 50 12 00 7,100 00 6,300 00 14,000 00 4,000 00	\$887,000 501,000 8,593,000 859,000 327,000 56,000 24,000	
houses— Excavation, earth, dry. Excavation, rock, dry. Concrete, below draft-tube floor Concrete above draft-tube floor,	1,386,000 299,500 7,600	"	0 65 2 25 10 00 15 00	901,000 674,000 76,000 19,416,000	

TABLE 3.—SINGLE-STAGE SCHEME—WITH DAM AT LONG SAULT SITE—Continued

Item	Quantity	Unit	Unit price	Amount	Sub-totals
			\$ cts.	\$	
Dam at Long Sault, etc.—Con. (c) Unwatering dam and power houses— Power houses. Dam. Diversion cut across Long Sault Island—Excavation, earth. Excavation, rock. Dredeing, loose	2,472,000 125,000 707,000	Cu.yd.	0 65 1 25 0 70	2,416,000 3,527,000 1,607,000 219,000 495,000	
Excavation, rock. Dredging, loose. Concrete, lining. Compensation weir. Temporary gates at dam to control diversion.	32,000		. 12 00	384,000 400,000 100,000	9,148,000
(d) Ice sluice at end of United States power house, including abutments— Excavation, earth. Excavation, rock. Concrete. Back fill. Gates. Stop logs. Operating machinery.	479,300 19,000 199,900 200,000 4 1	Cu. yd. " " Each 'Set	0 65 3 50 12 00 0 40 6,500 00 8,000 00	312,000 67,000 2,399,000 80,000 26,000 8,000 20,000	8,140,000
(e) Ice sluice at end of Canadian power house— Excavation, earth. Excavation, rock. Concrete. Gates. Stop logs. Operating machinery.	40,000 28,400 109,300 4 1	Cu. yd. " Each Set	0 68 3 50 12 00 6,500 00 8,000 00	26,000 99,000 1,312,000 26,000 8,000 20,000	2,912,000
(f) Tail-race excavation— United States and Canadian power houses— Excavation, earth, dry Excavation, rock, dry. Dredging, loose.	3,615,000 975,300 374,000	Cu. yd.	0 65 1 75 1 25	2,350,000 1,707,000 468,000	1,491,000
(g) Forebav excavation— United States and Canadian power houses— Excavation, earth, dry Enlargement of Little River— Excavation, earth.	444,000 88,000	Cu. yd.	0 65 0 65	289,000 57,000	4,525,000
(h) Superstructures and machinery— United States and Canadian power houses— Estimate I, item 1 (g)				53,571,000	346,000
(i) Rail connections to power houses— Railroad to United States power house, track. Railroad to Canadian power house	9	Miles	40,000 00	360,000	53,571,000
trackBridges	1 54		40,000 00	62,000 139,000	561,000
(j) Ice divertor, at head of Little River— Excavation, earth. Concrete. Boom. Unwatering. Training dike: Earth fill. Riprap.	53,000 29,500 1,800 106,000 3,800	Lin. ft.	0 75 12 00 75 00 0 75 3 00	40,000 354,000 135,000 98,000 80,000 11,000	
zapa p	0,000				718,000.
2. Navigation works (channels 25 feet deep)— (a) Embankment, South Sault— Rock fill	197,000	Cu. yd.	1 00	197,000	105,876,000
45827—191	20.7,000	3.0.0.0.0	- 00		197,000

TABLE 3.—SINGLE-STAGE SCHEME—WITH DAM AT LONG SAULT SITE—Continued

(c) Upper lock (N. 8)—	\$ 832,000
(c) Upper lock (N ² , 8)— Excavation, earth. 1, 165,000 Excavation, rock. 17,500 Back fill. 736,000 Gates. 378,100 Concrete. 378,100 Concrete. 378,100 Concrete. 54,400 Pair 756,000 Pair 756,000 Cu. yd. 10 00 3,781,000 Concrete. 54,400 Piling. 198,000 Concrete. 54,400 Concrete. 54,400 Concrete. 54,400 Concrete. 198,000 Concrete. 198,00	
Approach walls- Concrete S4,400 Cu. yd. 10 00 544,000 198,000 Lin. ft. 0 85 46,000 40,000 7,6	032,000
(a) Dike, at Robinson Bay— Earth fill	032,000
Color	85,000
(f) Grass River lock (No. 7)— Excavation, earth	, 176, 000
Approach walls—	170,000
Timber cribs. 41,200 Cu. yd. 8 00 330,000 Piling 71,200 Lin. ft. 0 85 61,000 Concrete. 27,000 Cu. yd. 10 00 270,000 Office and dwellings. 40,000	007 000
(g) Approach channel, Grass River lock to river— Estimate I, item 2 (e)	227,000
(h) Dike at Grass River lock— Estimate I, item 2 (f)	307,000
(i) Waste weir at Grass River lock— Estimate I, item 2 (g)	757,000
(j) Drainage ditch, north of Grass River lock— Estimate I, item 2 (h). 2,000	2,000
(k) Diversion dike and flood channel at mouth of Grass River— Estimate I, item 2 (i)	
(1) Diversion of Ottawa Branch, New York Central Railroad— Estimate I, item 2 (j)	308,000
(m) Dredging for navigation only, south channel, Cornwall Island—	,308,000
(n) Road relocation	526,000
(c) Ferry across canal	117,000 25,000

TABLE 3—SINGLE-STAGE SCHEME—WITH DAM AT LONG SAULT SITE—Continued

	Item	Quantity	Unit	Unit price	Amount	Sub-totals
0	Dikes-			\$ cts.	\$	\$
ο,	(a) Canadian shore, from 2 miles west of Aultsville to Bergen Lake— Estimate I, item 3 (a)				3,240,000	3,240,000
	(b) Head of Bergen Lake to foot of Sheek Island— Stripping, Fill, earth Fill, rock Riprap.	97,000 2,045,000 15,000 22,100	Cu.yd.	0 65 0 75 2 00 3 00	63,000 1,534,000 30,000 66,000	0,240,000
	(c) Foot of Sheek Island to spillway at Little River— Stripping. Fill, earth. Fill, rock Riprap.	323,000 7,191,000 149,000 19,300	Cuyd.	0 65 0 75 0 50 3 00	210,000 5,399,000 75,000 58,000	1,693,000
	(d) United States shore, Cole Creek to Massena Canal, exclusive— Estimate I, item 3 (d)				1,012,000	5,742,000
	(e) Massena Canal to Long Sault dam— Stripping Earth fill. Riprap	35,000 730,000 17,000	Cu.yd.	0 65 0 75 3 00	23,000 548,000 51,000	1,012,000
	(f) Long Sault dam to United States power house— Stripping. Earth fill. Riprap	59,000 1,240,000 20,400	Cu. yd.	0 65 0 75 3 00	38,000 930,000 61,000	622,000
4.	a 14 Tetimete I itame (to 14 inclusion				59 174 000	13,338,000
	o 14. Estimate I, items 4 to 14, inclusive Flowage and damage— (a) Canadian shore— Estimate I, item 15 (a) Lands	160		1,000 00	52,174,000 5,574,000 160,000	52,174,000
	(b) United States shore— Chimney Point to Waddington, inclusive—					5,734,000
	Estimate I, item 15 (b)				849,000 1,200,000	
	Massena Canal to Massena— Lands Seepage Severance	1,720	Acres	155 00	514,000 25,000 267,000	2,855,000
	(c) Islands— Above Galop Island— Estimate I, item 15 (c) Long Sault Island—				745,000	2,655,000
	Estimate I, item 15 (c)				265,000	
	Estimate I, item 15 (c) Sheek Island— Lands	1,225	Acres	149 00	219,000 183,000	
	Scepage				25,000	1,437,000
	(d) Power leases				275,000	275,000
16.	Railroad relocation— Estimate I, item 16	,			858,000	10,361,000

TABLE 3.—SINGLE-STAGE SCHEME—WITH DAM AT LONG SAULT SITE—Continued

Item	Quantity	Unit	Unit price	Amount	Sub-totals
17. Highway relocation— United States and Canadian shores— Estimate I, item 17 (a) and (b)			\$ cts.	\$ 1,781,000	\$ 1,781,000
18. Clearing reservoir site	5,600	Acres	100 00	560,000	560,000
Engineering, administration, and contingencies		121%			206,854,000 25,857,000 232,711,000

Summary

Item	Net cost	Overhead	Total
1. Dam at Long Sault and power houses at foot of Barnhart Island 2. Navigation works (channel 25 feet deep). 3. Dikes. 4 to 14, inclusive (see Summary, estimate I). 15. Flowage and damage. 16. Railroad relocation. 17. Highway relocation. 18. Clearing reservoir site.	\$ 105,876,000 21,966,000 13,338,000 52,174,000 10,301,000 858,000 1,781,000 560,000 206,854,000	1,667,000 6,522,000 1,288,000 107,000 223,000 70,000	24,712,000 15,005,000 58,696,000 11,589,000 965,000 2,004,000

Item	Quantity	Unit	Unit price	Amount	Sub-totals
FOR OTHER CHANNEL DEPTHS			\$ cts.	\$	\$
A. Saving if navigation channel is 23 feet deep originally—					
(1) Approach channel above upper lock— Excavation saved	153,000	Cu. yd.	0 65	99,000	
Bay lock— Excavation saved		66	0 65	314,000	
to river— Estimate I, item A (3)				6,000	
Estimate I, item A (4)				211,000	000 000
Engineering, administration and contingencies.		12½%			630,000 79,000
Total B. Additional cost if channels are made 27 feet deep originally—	7				709,000
(1) Approach channel above upper lock— Excavation added	149,000	Cu. yd.	0 65	97,000	
Excavation added(3) to (5), inclusive—			0 65	,	
Estimate I, items B (3) to (5)				276,000	679,000
Engineering, administration and contingencies.		121%			85,000
Total					764,000

TABLE 3.—SINGLE-STAGE SCHEME—WITH DAM AT LONG SAULT SITE—Continued

Item	Quantity	Unit	Unit Price	Amount	Sub-Totals
FOR OTHER CHANNEL DEPTHS—Con. C. Cost of future enlargement from 25-foot depth to 30-foot depth—			\$ cts.	\$	\$
(1) Excavation above Galop Island— Estimate I, item C (1)				737,000 50,000	
(3) Approach channel above upper lock— Dredging. Dredging, over depth. (4) Canal prism, upper lock to Grass River lock—	364,000 72,000	Cu.yd.	0 75 0 75	273,000 54,000	
Dredging Dredging, over depth (5) and (6)— Estimate I, item C (5) and (6)					
Engineering, administration and contingencies.		12½%			3,000,000 375,000
Total					3,375,000

TABLE No. 4.—INTERNATIONAL RAPIDS SECTION—DETAILED ESTIMATE OF TWO-STAGE DEVELOPMENT—224
See Plates Nos. 26-33

	Total	\$ 1,340,1	0 00	5, 829. 8, 829.	7, 193, 0	8,093,0	900	185,9	0.00	186,3	
	Amount	\$ 310,100 943,200 86,850	30,000	3, 755, 800 190, 000 65, 410 7, 730 2, 030 100, 000 1175, 000 25, 000 25, 000			662, 150 104, 980 205, 560 24, 110	185,930	66,960	23,410 150,900 12,000	2,157,260
	Quantity	477, 070 1, 048, 000 96, 500	6,000	375, 580 38, 000 1, 064, 640 3, 380 1, 900 4, 510			155,800 24,700 288,400 26,790	123,950	44,640	14,630 167,670 13,330	3,318,860
	Rate	\$ cts. 0 65 0 90 0 90	5 00	.10 00 5 00 0 65 0 65 1 1 1 0 65 1 0 45 1 0 45			4 25 4 25 0 90 0 90	1 50	1 50	1 60 0 90 0 90	1 60
	Unit	Cu.,yd.	Cu. yd.	Cu.,yd.		:	Cu., yd.	Cu. yd.	Cu. yd.	Cu. yd.	Cu. yd.
	Classification	Excavation—Dry earth. Dredging. Overdepth.	Cribwork	Concrete Cribword Excavation—Earth Dry rock Dry cock Glose drilling Trench rock Glose and operating machinery. Valves and operating machinery. Feders, capstans, lighting equipment etc. Emergency gate Operating buildings, etc.	12½ per cent		Excavation—Wet rock. Wet rock overdepth Dredging overdepth	Excavation.	Excavation	Excavation—Masonry and Crib work Dredging Dredging overdepth	Excavation—Dry earthDry rock
A CONTRACTOR OF THE PROPERTY O	Item and description	UPPER POOL, WORKS SOLELY FOR NAVIGATION— 1. Approaca Channels—Ogden Island Lock	1A. Guide Pier in South Galop	2. Ogden Island Lock and Entrance Piers	3. Engineering and contingencies	4. Total	UPPER POOL, WORKS COMMON TO NAVIGATION AND POWER— 5. Chunnel Evervation— (a) Chinney Point	(b) Removal of Spencer Island Pier	(c) Removal of Gut DamExcavation.	(d) Removal of Centre Wall of Lock 27 and 28 and Canal Excavation—Masonry and Crib work Bank. Dredging. Dredging overdepth	(e) North Galop Channel to below Baycraft Island Excavation—Dry cearth

000 000 000 000	000 000	2000,000,000	809 100	2 672 050	2, 512, 940	25 660	021 110	9 359 960	080 1080	474,060	31,460,790
1,970,430 123,330 993,650 258,150	279 120 4, 010, 610 179, 950 28, 340 63, 420 91, 540 11, 250, 000	193,690 369,070 2,243,510 140,400	187, 980 421, 120	2, 592, 380 111, 660 969, 010	2,192,280 109,560 211,100	25,660	1,458,400 73,350	2,095,030 124,000 133,230	625,070 58,500 1,357,510 1,560,000	63, 690 5, 500 404, 870	_
2, 189, 360 137, 030 233, 800 60, 740	2, 506, 630 2, 506, 630 199, 940 31, 480 105, 690 20, 000	297, 990 230, 670 2, 492, 780 156, 000	289, 200	2,880,420 124,070 1,490,790	2, 435, 870 121, 730 324, 770	39,470	691,330 1,620,450 81,500	2,327,810 137,770 204,970	694, 520 65, 000 2, 088, 480 3, 900, 000	70,770 6,110 622,870	
0 90 0 90 4 4 4 25 25	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 65 0 90 0 90	0 65 1 60	0 90 0 90 0 65	0 90 0 90 0 65	0 65	0 65 0 90 0 90	0 90 0 90 0 65	0.90 0 90 0 65 0 40	0 90 0 90 0 65	
3 3 3 3	Cu. yd.	Cu. yd.	Cu.,yd.	Cu.,yd.	Cy., yd.	Cu. yd.	Cu. yd.	Cu.,yd.	Cu.,yd.	Cu. yd.	
Dredging overdepth Wet rock	Excavation—Dry earth. Dry took. Drodging, overdepth. Drodging, overdepth. Drodging, overdepth. Stripping. Cofferdams and pumping.	Excavation—Dry earth. Dry rock Dredging Dredging overdepth	Excavation—Dry earth	Excavation—Dredging Dredging overdepth Dry earth	Excavation—Dredging	Excavation—Earth	Excavation—Dry earth	Excavation—Dredging Dredging overdepth Dry earth	Excavation—Dredging	Excavation—Dredging Dredging overdepth Dry earth	
	(f) South Galop Channel—from Butternut Island to South Excavation—of Baycraft Island.	(a) South of Baycraft Island to below Lotus Island	(h) South of Lalone Island	(j) Sparrow hawk Point	(k) Galop Canal Bank, Presqu'isle and Toussaints Islands. Excavation-	(1) Above Lock 25 to River at Iroquois	(m) Point Rockway	(n) Point Three Points	(o) Channel from Above Point Rockway to below Point Excavation-Three Points.	(p) Leishman's Point	Carried forward

TABLE No. 4-INTERNATIONAL RAPIDS SECTION-DETAILED ESTIMATE OF TWO-STAGE DEVELOPMENT-224-Continued See Plates Nos. 26-33

					The state of the s	
Item and description	Classification	Unit	Rate	Quantity	Amount	Total
Brought forward			\$ cts.	:	«»	\$ 31,460,790
UPPER POOL WORKS COMMON TO NAVIGATION AND POWER—Com. 5. Channel Excavation—Com. (q) North End of Ogden Island	Excavation—Dredging	Cu. yd.	0 90 0 90 0 65	530,050 37,000 64,800	477,050 33,300 42,120	,
(7) Morrisburg Canal Bank	Excavation—Dredging	Cu. yd.	0 00 00 1 00 00	1, 126, 530 75, 700 13, 770	1,013,880 68,130 22,030	1 104 040
(s) South side of Ogden Island	Excavation—Dredging overdepth Dry earth Dry earth Dry nock	Cu, yd.	0 90 0 90 0 65 1 60	24, 170 6, 670 1, 638, 090 219, 000	21,750 6,000 1,064,760 350,400 402,500	
(t) Channel through Ogden Island	Excavation—Wet rock. Wet rock overdepth. Dry rock. Dry searth Dredging.	Ch., yd.	4 25 4 25 1 60 0 65 0 90	125,350 17,200 209,250 3,309,080 150,670	532, 740 73, 100 334, 800 2, 150, 900 135, 610	
6. Rock fill Islands above Galop Island	Rock Fill.	Cu. yd.	0 40	269, 600	107,840	3, 227, 150
7 Dam at Head of Channel through Galop Island	Concrete. Concrete. Foundation contingency Excavation—Earth Rock (footing). Rock (trench) Unwatering.	Cu.,yd.	12 00 10 00 0 65 2 40 4 10	45, 780 22, 460 43, 910 18, 530 740	224, 600 224, 600 40,000 28,540 44,470 3,040 308,700 400,000	101,040
8. Dam at North End of North Power House	Concrete	Cu. yd.	12 00 10 00 0 65 2 40	30, 070 10, 290 72, 330 7, 940	360,840 102,900 25,000 47,020 19,060 94,900	1,598,710

8. 8. 1.0 1.0	000 000	1,202,030	744 000	957 000	407,000	76 500	180,000	47,840,620 5,885,380 53,726,000
1, 302, 960 693, 600 70, 000 67, 340 7, 910 352, 790 38, 190 3, 190 300, 000	779, 620 252, 560 139, 420 49, 790 41, 000 27, 000	648,780 285,600 33,000 124,110	87,000 435,000 168,000 54,000	170,000	37,000 435,000 25,000	56,000 2,500 18,000	150,000	
108, 580 69, 360 1, 930 542, 750 8, 730 8, 730 4, 910	866, 240 252, 560 214, 490 76, 600				8.	250 180	1.5	
12 00 10 00 10 00 00 00 00 00 00 00 00 65	0 90 1 00 0 65 0 65				50,000 00	100 001	100,000 00	
Cu.yd.	Cu. yd.				Mile	Acre "	Mile	
Concrete. Concrete Controle Controle Excavation—Rock (froch) Excavation—Rock (trench) Earth Gates, towers, hoisis, etc Banks—Earth fill Stripping. Cunwatering.	Bank—Earth fill Rock fill Stripping Ditches—Excavation Highway and railroad bridges Sewers and pumping.	Improvements. Flowage. orchards. Existing power developments.	Improvements. Town property required. Farm lands	FlowageImprovements	United States shore	United States shore	Can. National Ry. at Iroquois— Relocation Bridges	124%.
9. Dam in Bay on North Side of Ogden Island	10. Protection to Iroquois	11. Property damages—Canadian side	12. Property damages—United States side	13. Property damages—Islands	14. Highway changes	15. Clearing pool.	16. Railroad changes	17. Engineering and contingencies

TABLE No. 4—INTERNATIONAL RAPIDS SECTION—DETAILED ESTIMATE OF TWO-STAGE DEVELOPMENT—224—Continued See Plates Nos. 26-33.

Total	₩ (c)		ri .	4, 611, 080 21, 099, 500 2, 637, 500	22.
Amount	\$ 577,530 1,171,820 55,270 403,450 121,000	7, 986, 000 260, 000 338, 100 886, 560 1, 831, 730 2, 760, 000	3,049,200 398,000 336,960 124,610 5,900 96,880 9,800 6,43,500		15, 272, 880 2, 476, 660 4, 358, 540 4, 050, 400 5, 376, 060 871, 420
Quantity	888, 500 1, 302, 020 61, 410 94, 930 28, 470	532, 400 9, 600 52, 000 520, 150 554, 100	203, 280 39, 800 518, 400 77, 880 1, 440 40, 750 16, 340 8, 350		
Rate	\$ cts. 0 65 0 90 0 90 0 90 4 4 25 4 25	15 00 10 00 5 00 0 65 1 60 2 40	15 00 0 05 0 65 0 0 0 0 0 0 0 65 0 65 0 6		
Unit	Cu. yd.	Cu. yd.	Cu. yd.		H.P. units
Classification	Exervation—Dry earth, Dredging, Or token, Wet rock, Wet rock, over depth.	Concrete Concrete Cribwork Exeavation—Earth Rock Gates and racks. Unwatering.	Concrete Concrete Exeavation—Earth Rock Bank—Earth fill Rock fill Stripping Gates and ricks	121%.	Generators and turbines—54-5570 H.P. units Switching Cranes and service units. Superstructure Generators and turbines—18-5570 H.P. units Switching
Item and description	UPPER POOL, WORES PRIMARLY FOR POWER: SUBSTRUCTURES, HEAD AND TAIL-RACE EXCAVATION— 19. Excavation above North power house	20. Substructure, etc.—North power house	21. Substructure, etc.—South power house	22. Enginecting and contingencies	UPPER POOL, WORKS PRIMARILY FOR POWER: MACHINERY AND SUPERSTRUCTURES— 24. North power house 25. South power house

7,911,100	30, 069, 580 3, 759, 420	33,829,000		107,780	1 749 490	001,140,400	201,100	101,000	6 630	5 15	700 E	196 000	000,001	7,162,850
1,470,480			94,050	2,823,700	1,743,430	291,200	245, 970 65, 630	181,600	6,630	79,050 270,460 49,870 76,220 24,540 157,300	281,090 214,350 95,230 41,750 9,900 152,680	126,000	54, 240 327, 300	185, 150 28, 640 10, 350
			104,500	4,359,540	2, 682, 200	364,000	307, 460 82, 030	227,000	10,200	188,210 450,770 49,870 117,250 98,150 14,300	669, 270 357, 250 146, 510 167, 010 22, 000 13, 880	63,000	4,520	37,030 44,060 3,340
			06 0	0 65 11 00	0 65	08 0	0 80	08 0	0 65	0 42 0 60 1 00 0 65 0 65 11 00	0 42 0 60 0 65 0 25 0 45 11 00	2 00	12 00 10 00	5 00 0 65 3 10
		:	Cu. yd.	Cu. yd.	Cu. yd.	Cu. yd.	Cu.,yd.	Cu. yd.	Cu. yd.	Cu. yd.	Cu.,yd. Sq.,yd. Cu. yd.	Cu. yd.	Cu. yd.	Cu. yd.
Crancs and service unitsSuperstructure	122%		Exeavation—Dredging	Excavation—Dry earth	Excavation—Dry earth	Excavation-Dredging	Excavation—Dredging. Dredging, over depth.	Excavation—Dredging	Excavation—Farth	Earth fill Earth fill Rock fill Stripping. Trimming Paving—Concrete	Farth fill Farth fill Stripping Trimming Sodding Paving—Concrete	Pock fill	Concrete	rounnation contingency Cribwork Excavation—Earth Earth, trench
	26. Engineering and contingencies	27. Total	LOWER POOL, WORKS SOLELY FOR NAVIGATION—28. Channel excavation—(a) Below Clark Island to above Long Sault Island	(b) Above Long Sault Island to Pobinson Bay lock	(c) Robinson Bay lock to Grass River lock	(d) Grass River lock to shore line	(e) At lower end of Cornwall Island	(/) At moutn of Grass River	29. Drainage ditch	30. Dykes— (a) Above Robinson Bay lock	(b) Robinson Bay lock to Grass River	(c) Rock fill—Guide dike below Grass River lock	31. Guard gate and supply weir	Carried forward

TABLE No. 4-INTERNATIONAL RAPIDS SECTION—DETAILED ESTIMATE OF TWO-STAGE DEVELOPMENT—224—Continued See Plates Nos. 26-33

				\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
0 00000		221, 640 221, 640 73, 360 974, 140 13, 200 22, 190 2, 970 348, 360	221, 640 92, 160 73, 360 974, 140 974, 140 22, 190 22, 190 22, 190 348, 360 1, 296, 950 1, 296, 950	221, 640 92, 160 92, 160 974, 140 974, 140 22, 190 22, 190 22, 190 348, 360 1, 296, 950 1, 296, 950 1, 296, 950
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07770 210 24 4 6 8868 80 60 64 17	110 00 20 00 00 00 00 00 00 00 00 00 00 00	0000 500 000 0000 500 000 0000 6000 0000 6000	00000 500 040 000 00000 000 400 000
d.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 211 100 00 000 440 000 0010 000 0010	888 800 440 500 888 800 458 888	10 840 500 88 88 888 888 888
-dimbə				
	Cu.,yd. 2	Cu.,yd. 2	Cu.yd. 240 650 Cu.yd. 065 650 Cu.yd. 1000 6500	Cu.yd. 240 Cu.yd. 10 00 Cu.yd. 10 00 65 00

1							
37.	37. Clearing pool	Clearing	Acre	100 001	150	15,000	15 000
33	38. Roads	Diversion. Improvements. New	Mile "	30,000 00 3,000 00 30,000 00	1.25 2.73 2.4	37,500 8,190 72,000	10,000
39.	39. Property damages	Flowage				330, 330	596,930
40.	40. Engineering and contingencies	12½% approximately					22, 308, 850 3, 079, 150
41.	Total				:		25,388,000
VER 42.	Poor, Works Common to Navigation and Power—Dikes— (a) Canadian shore, Wales to Moulinette	Earth fill Rock fill Stripping	Cu. yd.	0 65 0 90 65 0 65	170,670 71,560 63,690	110, 940 64, 400 41, 400	2
	(b) Canadian shore, Mille Roches to power house	Earth fill Rock fill Stripping	Cu.,yd.	0 00 0 00 0 00 0 00 0 00	778, 090 246, 750 99, 020	700,280 160,390 64,360	216,740
	(c) United States shore, Wilson Hill to Louisville Landing.	Earth fill Rock fill. Stripping.	Cu.,yd.	0 90 1 00 0 65	13,280 6,000 7,580	11,950 6,000 4,930	000,020
	(d) West and east of Massena Canal	Earth fill Rock fill Stripping.	Cu.,yd.	0 90 1 00 0 65	224, 620 78, 800 60, 960	202, 160 78, 800 39, 630	26,000
	(e) Between Massona Canal and Navigation Canal	Earth fill Rock fill Stripping.	Cu.,yd.	0 65 0 65 0 65	7,130 3,140 4,680	4, 630 3, 140 3, 040	, 000, 000
	(f) East and west end of Long Sault Dam	Earth fill Rock fill Stripping	Cu.,yd.	0 90 0 65 0 65	81,280 25,340 10,330	73,150 16,470 6,720	10,010
	(g) On Barnhart Island.	Earth fill Rock fill Stripping.	Cu.,yd.	0 90 0 65 0 65	181,860 65,770 37,520	163, 680 42, 750 24, 390	050 050
43.	Channel excavation— (a) Canada Island to Long Sault Island	Excavation—Dry earth. Dredging. Dredging, over depth	Cu.,yd.	0 65 0 90 0 90	1, 211, 300 1, 438, 120 86, 570	787,350 1,294,310 77,920	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Carried forward			_ :			3, 982, 790

TABLE No. 4.—INTERNATIONAL RAPIDS SECTION—DETAILED ESTIMATE OF TWO-STAGE DEVELOPMENT—224—Continued

26-33	
Nos. 2	
1	
Plates	
See	

						Secretary of the Secret
Item and description	Classification	Unit	Rate	Quantity	Amount	Total
Brought forward			s cts.		60	3, 982, 790
Lower Pool, Works Common to Navidation and Power—Com. 43. Channel excavation—Com. (b) North side of Cornwall Island	Excavation—Dry earth	Cu. yd.	0 65 0 80 0 80	800, 000 582, 560 52, 000	520, 000 466, 050 41, 600	2 2 3 7
(c) South side of Cornwall Island	Excavation—Dry earth	Cu. yd.	0 65 0 80 0 80	2, 932, 360 2, 18, 010	2,345,890 174,410	1,027,030
44. Supply channel and weir at Massena Canal	Concrete. Concrete Foundation contingency Excavation—Rock footings.	Cu. yd.	12 00 10 00 2 40 4 10	19, 260 31, 150 4, 590 870	231,120 311,500 23,160 11,020 3,570	7, 322, 100
	Earth. Dredging. Dredging, over depth. Paving—Concrete. Sluice gates, hoists, etc.	3 3 3 3	0 65 0 90 0 90 11 00	870, 960 43, 000 3, 000 6, 550		,
45. Diversion cut through Long Sault Island	Excavation—Dry carth Dry rock Dredging Dredging Dredging. over depth.	Cu. yd.	0 65 0 90 0 90 11 00	2, 172, 420 29, 110 287, 900 29, 600 28, 270	1, 412, 070 46, 580 259, 110 26, 640 310, 970	1, 335, 640
46. Main Long Sault Dam	Concrete Concrete Foundation contingency Excavation—Earth. Rock, footings. Rock footings.	Cu. yd.	12 00 10 00 0 65 2 40 4 10	498, 470 39, 260 908, 730 105, 300		2,000,370
47. Drainage— (a) Ditches, etc., Wales to Monlinette.	Gates, towers, hoists, etc Unwatering Excavation	Cu. vd.	0 65	378, 740	6,	12, 165, 090
	Bridges. Pump station.				30,000	294, 180

\$ 1 P	171,740		1 090 050	1,000,000	402,000	101,000	1,225,900	1,014,890	6,450,750	\$ 32,914,630 4,215,370 \$ 37,130,000
57, 070 54, 670 60, 000	1		30,800	70,000 22,000 370,000	161,000	265,000 50,000 823,500 85,000	572,000 116,220 327,600 179,520 219,120 160,430 4,000 36,000	2, 615, 720 627, 800 41, 250 52, 800 149, 160	70,380 35,490 17,970 5,200 52,000	
18,410 497 15,000	13,750 131,130	3,160 219,510 2,970 1,160		63	1,610				78, 180 35, 490 27, 650 8, 000	
110 00 4 00	12 00	5 00 0 90 2 40 4 10		35,000 00	100 00				0 90 1 00 0 65 0 65	
Cu. yd. M. ft.b.m Feet	Cu.,yd.	Cu. yd.		Mile	Асте				Cu. yd.	
Trench excayation. Sheeting and bracing. Supplying and laying 24-in. pipe	Concrete.	Cribwork Excavation—Earth Troching Rock, footings Rock, trench Lock gates, valves, operating mach-	Sluice gate, hoists, etc.	United States side, Norwood and St. L. Railroad—Relocation Norwood and St. L. Railroad— Bridges Canadian side C.N. Ry.—Relocation		United States shore—Roads Bridges Canadian shore—Roads	Improvements. FlowageUnited States shore. United States shore. Saverance. Severance. Sepage.	Improvements Flowage—Canadian shore Orbitards Sheek Island Existing power developments	Bank—Earth fill. Rock fill. Stripping. Drainage Ditch—Excavating—Earth Sewers and pumping.	12½% approximately:
(b) Sewer for paper mill at Mille Roches	8, 14-ft. lock, entrance piers and weir at Mille Roches			49. Railroad changes	50. Clearing pool	51. Highway changes	52. Property damages—United States side	53. Property damages—Canadian side	54. Protection to Morrisburg	55. Engineering and contingencies

TABLE No. 4.—INTERNATIONAL RAPIDS SECTION—DETAILED ESTIMATE OF TWO-STAGE DEVELOPMENT—224—Continued See Plates Nos. 26-83

Total	40	000 000		2,033,080		20,534,090	318,000	\$ 32,851,530 4,014,470 \$ 36,866,000
Amount	**	224, 120	2, 123, 280 1, 933, 340 2, 808, 520 252, 900	826, 560 1, 063, 500 80, 000 20, 200 33, 840 8, 980	1,093,560 600,900 100,000 719,070 32,400 2,010 74,000	15,036,600 3,592,260 1,905,230	248,000	
Quantity		249,020	3, 266, 580 1, 208, 340 3, 120, 570 281, 000	68,880 106,350 31,080 14,100 2,190	91,130 60,090 1,106,260 13,500	1,002,440		
Rate	s cts.	0 90	0 65 0 90 0 90	12 00 10 00 0 65 2 40 4 10	12 00 10 00 0 65 2 2 40 4 10	15 00		· · · · · · · · · · · · · · · · · · ·
Unit		Cu.,yd.	Cu.,yd.	Cu.,yd.	Cu.yd.	Cu. yd.		
Classification		Excavation—Earth	Excavation—Dry earth. Dry rock. Dredgingover depth	Concrete Concrete Foundation contingency Excavation—Earth Trenth	Concrete Concrete Foundation contingency Excavation-Earth Rock footings trench Gates, towers, hoists, etc.	Concrete. Gates, racks, etc. Unwatering.	Bridges Railway spur.	12½% approximately.
Item and description	LOWER POOL, WORKS PRIMARILY FOR POWER: SUBSTRUCTURES, HEAD AND TAIL-RACE EXCAVATION—	67. Head and Tail-race excavation. (a) Removal of Upper and Lower Sheek Isd. dams Excavation—Earth	(b) Tail-race	58. Spillway North of Power House	59. Ice Sluices at South end of Power House	60. Power House substructure, etc	61. Railway Spur to Power House	62. Engineering and contingencies

	40,690,220 5,086,780	\$ 45,777,000
27, 208, 000 8, 139, 600 495, 420	4,847,200	
38-47,600		
d turbines	uper structure	
ජ නර	Super struct	
Machinery and		
LOWER POOL, WORKS PRIMILARLY FOR POWER: MACHINERY AND SUPRESIDENCE. 64. Barnhart Island power house	Engineering and contingencies	Total
LOWER POOL, W. SUPREST 64. Barnhart	. 65.	.99

TABLE NO. 4.—INTERNATIONAL RAPIDS SECTION—DETAILED ESTIMATE OF TWO-STAGE DEVELOPMENT—224—Continued See Plates No. 26-33

Item and description	Classification	Unit	Rate	Saving if navigation channels made 23 ft. deep originally	ng if channels 23 ft. iginally	Additional cost if navigation channels made 27 ft. deep originally	al cost if channels 27 ft. iginally	Cost of future enlargement from 25 ft. depth to 30 ft. depth	Cost of future largement from 5 ft. depth to 30 ft. depth	
				Quantity	Amount	Quantity	Amount	Quantity	Amount	
			\$ cts.		40		60		60	
Chimney Point to above Ogden Island	Excavation—Wet rock. Wet rock over depth Dredging over depth	Cu., yd.	72 75 0 0 0 0 0 0 0 0 0 0					628,000 207,000 213,200 31,480	3,140,000 1,038,500 191,880 28,330	
Approach channels to Ogden Island lock.	Excavation-	3 3 3		54, 220 193, 000	35, 240 173, 700	54, 220 192, 000	35,240 172,800		555,790 108,810	
Below Clark Island to above Long Sault Island	Excavation-	3 3	06 0	32,110	28,900	47,700	42,930	130,900	117,810 36,230	
Above Long Sault Island to Kobinson Bay lock	Excavation—Dry earth	2 2 3	0 90	257,690	167,500	252, 790	164,310	616,160	554,540	
Kobinson Bay lock to Grass River lock	Excavation-	3 3 3		270,000	175,500	260,000	169,000	630,000	567,000	
72. Grass River lock to Shore line	Excavation—Dry earth.	2 2		9,000	5,850	10,000	6,500	:	19,200	
Lower end of Cornwall Island	Dredging over depth Excavation—Dredging Dredging over depth	3, 2, 2	000	177,960	142,370	214,540	171,630	6,000 522,240 344,400	4,800 417,790 275,520	
74. Engineering and contingencies	12½% approximately				785,660		783,310		7,277,960	
Total		:			916,000		901,000		8,197,000	

TABLE NO. 4.-INTERNATIONAL RAPIDS SECTION-DETAILED ESTIMATE OF TWO-STAGE DEVELOPMENT-224-Continued

SUMMARY

	Item No.	Amount	Total
Upper Pool—Works solely for navigation. Works common to navigation and power.	18	8,093,000 53,726,000	09
Works purnaturly for yower.— Substructure, head and tail—Race excavation. Machinery and superstructures.	27	23,737,000 33,829,000	110 385 000
Lower pool—Works solely for navigation. Works common to navigation and power.	41 56	25,388,000 37,130,000	
Works purmantly for power.— Works purmantly for power.— Wachinery and superstructure. Machinery and superstructure.	99	36,866,000	145, 161, 000
Total			264, 546, 000
Rounded Total			264, 600, 000
Estimated initial expenditure to open navigation and provide 406,400 horse-power in upper plant, and 756,600 horse-power in lower plant. (Remaining installation at lower plant deferred awaiting growth of market)			238, 400, 000
Estimated initial expenditure to open navigation and provide 1,163,000 horse-power at lower plant. (Remaining installation lower plant and all that of upper plant being deferred).	:		214,500,000
Saving if navigation channels made 23 feet deep originally	75		916,000
Additional cost if navigation channels made 27 feet deep originally	7.5		901,000
Cost of future enlargement from 25 foot depth to 30 foot depth	22		8, 197, 000
	-		

TABLE No. 5-INTERNATIONAL RAPIDS SECTION-CRYSLER ISLAND-TWO-STAGE DEVELOPMENT-217 See Plates Nos. 34-38

nt Total	30,000		, 600 , 150 , 150 , 130 , 600	728, 000 100, 000 181, 700 175, 000 95, 000	\$ 7,761,400 	8 8,732,000	20 088 730	599,800 60,000 214,450	515,820 45,000 86,460	220 647, 280
/ Amount		30 1,642,220 30 27,000 60 564,800 30 231,330 60 75,760	60 1,949,600 110 912,150 000 425,000 356,130 129,600					:		550 -9 063 320
Quantity	6,000	2,526,490 231,230 30,000 627,560 231,330 116,560	194,960 60,810 85,000 5 547,890					0 666,450 66,670 329,930	573,130 50,000 133,020	74 9E0
Rate	\$ cts.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 00 15 00 5 00 0 65					0 90 00 00 00 00 00 00 00 00 00 00 00 00	0 90	28
Unit	Cu. yd.	Cu. yd.	Cu.,yd.					Cu. yd.	Cu. yd.	Cu wd
Classification	Cribwork	Excavation—Dry earth. Dredging. Dredging. Dard fill. Bock fill. Stripping.	Concrete Concrete Cribwork Excabation—Earth.	Cates and operating machinery. Valves and operating machinery. Fenders, capstans, lighting equipment, etc. Emergency gate. Charactery gate. Charactery gate. Charactery gate. Charactery gate.	122%		See Table No. 4—Items No. 5 (a)	Excavation—Dredging Dredging over depth. Dry earth.	Excavation-	Townships Day couth
Item and description	UPPER POOL—WORKS SOLELY FOR NAVIGATION— I. Guide pier in south galop.	2. Approach channels—Bradford Pt. Lock and Dykes,	3. Bradford Point lock and entrance piers		Engineering and Contingencies	4. Total	UPPER POOL—WORKS COMMON TO NAVIGATION AND POWER:— 5. Channel excavation— (a) Above Chimney Point to below Point Three Points	(b) Leishman's Point.	(c) Opposite Leishman's Point	(4) Worth and Emith aid at Onder Island

Unwatering
Excavation-
Excavation—
Rock fill. Cribwork
Concrete Councrete Foundation contingency Excavation—Earth Rock footings Rock toungs Rock toungs The contingency Rock toungs Rock toungs The contingency The continuency The c
Earth fill Rock fill Stripping
Earth fill Rock fill Stripping
Lock and ent. piers—Concrete. Cribwork Gates, etc. Entrance chan'l—Exavation—Earth Paving—Concrete.
Concrete Caissons, sheet piling, excavation and unwatering Grouning Sluice gates, hoists, etc.

TABLE No. 5-INTERNATIONAL RAPIDS SECTION—CRYSLER ISLAND—TWO-STAGE DEVELOPMENT—217-Continued See Plates Nos. 34-38.

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
Brought forward			\$ cts.		00	\$ 52,831,260
UPPER POOL, WORES COMMON TO NAVIGATION AND POWER—Con. 11. Protection to Towns— (a) Iroquois	See Table No 4—Item No. 10		• • • • • • • • • • • • • • • • • • • •	000		1,289,390
(o) Anortisburg	Dank-Barto III Stripping Drainage ditch-Excavation-Earth ("liverts course and mumin"	Cu. ya.	0 65	470, 480 183, 250 92, 160 8, 000	428,830 183,250 59,900 5,200	
		Cu. yd. M.F.B.M. Cu. yd.	3 10 110 00 20 00	147,780 2,280 8,690		
12. Property Damages—Canadian side	Improvements Flowage Flowage orchards Existing Power Developments				1,347,290 663,000 48,000 124,110	
13. Property damages—U.S. Side	Improvements. Town property required. Farm lands. Ferm lands. Severance.				435,000 387,000 168,000 480,000 53,500 12,000	
14. Property damages—Islands. 15. Highway changes.	U. S. Shore—New roads. U. S. Shore—New roads. Canadian Shore—New roads.	Mile	60,000 00	13. 5	324,000 84,000 670,000 32,000	
16. Clearing Pool.	U.S. Shore. Canadian Shore. Islands.	Acre	100.00 100.00 100.00	2,660	266,000 32,500 72,000	1,110,000
17. Railroad changes.	Canadian National Ry., at Iroquois-Relocation. Bridges. Canadian National east of Morris-burg—Relocation.	Mile	100,000 00		150,000 30,000 365,000	

752,500	62, 209, 450 7, 776, 550	69,986,000	110000	7,113,030	052, 250	450,000	458,000		1,321,400	22,842,630 2,855,370	25,698,000		27,341,910 3,418,090	30,760,000
157,500			1,459,380 95,850	190,380 606,920 54,990	12,133,950 2,692,980 3,263,120	250,000	373,500 347,760 373,200	24, 780 24, 940 79, 140 66, 300		:		19, 223, 100 3, 919, 860 533, 860 3, 665, 080		
4-5			868,700 1,621,530 106,500	292,890 674,360 61,100	808,930	10	24,900 28,980 37,320	38,370 25,530 198						
35,000 00		:	0.00	0.65 0.90 0.90	15.00	50,000 00	15.00 12.00 10.00	0 65 3 10 110 00			:			
Mile			Cu. yd.	Cu. yd.	3 : :	Mile	Cu. yd.	Cu. yd. M.F.B.M.						
Norwood and St. Lawrence Rly.—Bridges	12½%.		Excavation—Dry earth Dredging Over depth	Excavation—Dry earth. Dredging. Over depth.	Concrete. Gates and racks. Unwatering.	New railway line	Concrete. Concrete. Concrete.	Foundation contingency Excavation—Earth Trench earth Sheeting and bracing. Gates, hoists, etc		123%		Generators and turbines .36—16,600 H.P. Units. Switching. Crance and service units. Superstructure.	12½%	
	Engineering	18. Total	PER POOL—WORKE PRIMARLY FOR POWER.—SUBSTRUCTURES, 19. Head and Tailrace excavation—North power house	20. Head and Tailrace excavation—South power house	21. Power house substructures	22. Railway connection to power houses.	23. Ice sluices and walls			24. Engineering and contingencies.	25. Total	Per Pool—Works Primarily for Power:—Machinery and Supersynucture	27. Engineering and contingencies.	28. Total

TABLE NO. 5-INTERNATIONAL RAPIDS SECTION-CRYSLER ISLAND-TWO-STAGE DEVELOPMENT-217-Continued See Plates Nos. 34-38

nt Total	\$ \$ 10,670 2,660	,190 ,240 4 071 430	6,630 6,630	68, 220 78, 780 10, 870 46, 050 18, 520 17, 300 370, 740	795,000 54,240 128,000 128,150 18,000 18,000 18,000 19,400 19,400 33,800 778,850	h
ity Amount	\$ \$ 11,850 10 2,960 2	5,894,140 21,840 3,831,190 240,240	10,200	163, 430 68 131, 300 78 10, 870 10 70, 840 46 74, 070 18 14, 300 157	4,520 32,710 32,710 37,030 44,060 5,180 119 86 119 33	જો નો
Rate Quantity	cts 0 90 0 90	0 65 5,89	0 65	0 42 1 00 1 00 1 00 0 65 0 0 25 1 1 00	10 00 10 00 10 00 10 00 11 00 10 00	10 00 200, 010 15 00 78, 700 5 00 65 1, 063, 570
Unit	Cu., yd.	3 3	Cu. yd.	3 3 3 3 3 3	Cu. yd. " " " M.F.B.M.	Cu. yd.
Classification	Excavation—Dredging	Excavation—Dry earth. Paving—Concrete	See Table No. 4.—Items No. 28 (c) to 28 (f). Excavation—Earth	Barth fill Back fill Rock fill Stripping Trimming Paving—Concrete	See Table No. 4—Item No. 30 (b) See Table No. 4—Item No. 30 (c) Concrete Concrete Concrete Concrete Concrete Concrete Concrete Concrete Concrete Exact	Concrete Control Control Control Excavation—Earth Look gates and operating machinery Look valves and operating machinery ery Emergency gate Emergency gate Fenders, captelans, lighting equip- ment, effects Suice gates, hoists, etc.
Item and description	LOWER POOL—WORKS SOLELY FOR NAVIGATION— 29. Channel excavation— (a) Morrisburg to above Long Sault Island	(b) Above Long Sault Island to Robinson Bay look	(c) Robinson Bay lock to below Cornwall Island	31. Dykes— (a) Above Robinson Bay lock	(b) Robinson Bay look to Grass River. (c) Rook fill—Guide dyke below Grass River look 32. Guard gate and supply weir.	33. Robinson Bay Lock—Entrance piers and weir

698,000 5,886,170 1,308,000 15,000 117,690 596,930	22,771,160 2,846,840	25,618,000		020, 490	156,280	137,710	6	1,555,010	1, 027, 650 2, 922, 180	6,865,790
			467, 420 110, 350 48, 660	109, 670 37, 050 9, 560	8,240 5,810 3,340	97,410 25,730 14,570	1,284,100 76,330	141, 130 283, 940 20, 070	198,720 207,500 19,870 10,870 22,230 542,250 38,700 2,700	
			519, 350 169, 770 74, 850	121,850 37,050 14,710	12,670 5,810 5,140	108, 230 39, 580 22, 420	265, 510 1, 426, 780 84, 810	217, 130 315, 490 22, 300	16,560 20,750 4,320 834,230 834,230 43,000 3,000	
	:		0 90	9 90 1 00 0 65	0 65 1 00 0 65	0 65	0 65	0 00 00 00 00 00 00 00 00 00 00 00 00 0	12 00 10 00 10 00 2 40 4 1 10 0 90 0 90 0 90	
			Cu. yd.	Cui yd.	Cu. yd.	Cu. yd.	Cu. yd.	Cu. yd.	Cu.,yd.	
See Table No. 4—Item No. 33. See Table No. 4—Item No. 34. See Table No. 4—Item No. 35. See Table No. 4—Item No. 38. See Table No. 4—Item No. 37. See Table No. 4—Item No. 39.	121%		Earth fill Rock fill Stripping	Earth fill Rock fill Stripping	Earth fill. Rock fill. Stripping.	Earth fill Rock fill Stripping.	Excavation—Dry earth	Excavation—Dry earth	See Table No. 4—Item No. 43 (b) See Table No. 4—Item No. 43 (c) Concrete Concrete Foundation contingency Excavation-Rock footings Excavation-Rock Tench Earth Dredging Overdepth	
34. Regulating werr at Robinson bay. 35. Grass River look and entrance piers. 36. N. Y. Rhy. Diversion and bridges. 37. Grant lighting and office. 38. Clearing pool. 39. Roads. 40. Property damages.	41. Enginesting and contingencies.	42. Total.	offs. Dykess—Common to Navigation and Power—(a) Mille Roche to Power House	(b) West and east of Massena Canal	(c) Between Massena Canal and Navigation Canal	(d) On Barnhart island		(b) North side of Long Sault Island	(c) North side of Comwall Island (d) South side of Cornwall Island 45. Supply channel and weir at Massena Cand.	Carried forward

TABLE No. 5.—INTERNATIONAL RAPIDS SECTION—CRYSLER ISLAND—TWO-STAGE DEVELOPMENT—217—Continued See Plates Nos. 34–38

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
Brought forward			\$ cts.		89	6,865,790
Lower Pool—Works Common to Navigation and Power—Con. 45. Supply channel and weir at Massena Canal	Concrete—Paving	ä	11 00	6,550	72,050	170 160
46. Diversion cut through Long Sault Island.	See Table No. 4—Item No. 45. Concrete Concrete.	Cu. yd.	12 00	449,240	5, 390, 880	2,055,370
	Foundation contuingency Excavation—Earth Rock footings. Rock trench Gates, towers, hoists, etc.	Cu. yd.	0 65 2 40 4 10	918, 160 103, 220 320	247,730 1,310 654,980	
10 C C C C C C C C C C C C C C C C C C C	Unwatering				3, 700, 000	11,480,590
49. Jeft. Lek, entrance piers and weir at Mille Roches.	Concrete	Cu. yd.	12 00	11,770	1, 103, 500	
	Foundation contingency Cribwork Excavation—Earth Rock footings	Cu. yd.	2000	3,160 219,510 2,750	15,800 15,800 197,560 6,600	
	Lock gates, valves, operating mach-	3	4 10		4,510	
	Sluice gates, hoists, etc.				30,800	1, 590, 130
50. Railroad changes	Canadian side C. N. Rly. at Moulinette—Raising line	mile	100,000 00	1.0	100,000	000 001
51. Clearing pool		Ace	100 00	260	26,000	76 000
52. Highway changes	United States Shore—Roads				60,000	20,000
53. Property Damages—U.S. side	Improvements. Flowage—U.S. shore.				188,000 44,160 84,000	040,000
	Long Sault Island. Barnhart Island. Other Islands.				117,480 219,120 52,000	

	Severance				20,000	797
4. Property damages—Canadian Shore	Improvements. Flowage—Canadian shore				1,109,210 260,000 12,500	016,121
	-			· · · · · · · · · · · · · · · · · · ·	149,160	1,570,470
55. Engineering and contingencies	12½ per cent					26, 332, 760 3, 291, 240
. Total						29,624,000
TER POOL-WORKS PRIMARILY FOR POWER-SUBSTRUCTURES, The Hand and July Rock EXCAVATION—					,	
(a) At Upper and Lower Sheek Island dams	Excavation—Earth Earth overdepth Masonry	Cu, yd.	0 90 0 90 4 25	727,340 46,710 530	654,610 42,040 2,260	698,910
(b) Between Sheek and Barnhart Island	Excavation—Earth	Cu. yd.	0 65	1,446,000	939,900	000 000
(c) Above power house	Excavation—Earth	Cu. yd.	0 65	975,590	634,130	203, 300
(d) Tail-race. 8. Spillway North of Power House.	See Table No 4—Item No. 57 (b) Concrete. Concrete.	Cu.,yd.	12 00	74,670 86,770	896,040 867,700	7,118,040
	Foundation contingency. Excavation—Earth. Rock footings. Rock trench.	Cu. yd.	0 65 2 40 4 10	72,700 15,910 2,100	89,610 47,260 38,190 8,610	1
Brought forward. 9. Ice sluices at south end of power house.	Concrete	Cu. yd.	12 00 10 00	81,380	976, 560 426, 500	11, 338, 390
	Foundation confugency. Excavation—Earth. Rock footings. Rock trench. Gates, towers, hoists, etc.	Cu.,yd.	0 65 2 40 4 10	740,500 12,750 880	481, 320 30, 600 3, 610 74, 000	
.0. Power house substructure, etc	Concrete Gates, racks, etc Unwatering.	Cu. yd.	15 00	840,700	12, 610, 500 3, 309, 880 1, 905, 230	2,090,250
ii. Railway Spur to power house	See Table No. 4—Item No. 61					318,000
Carried forward						31,572,250

TABLE No. 5.—INTERNATIONAL RAPIDS SECTION—CRYSLER ISLAND—TWO-STAGE DEVELOPMENT—217—Concluded See Plates Nos. 34-38

Item and description	Clearification	11-11	-			
ייייי מיים מהפכיול אומוי	Classification	Ont	Rate	Quantity	Amount	Total
Brought forward		7	\$ cts.		e/o	\$ 31,572,250
LOWER POOL—WORES PRIMARLY FOR POWER—SUBSTRUCTURES, 62. Engineering and contingencies 123 per cent						3,946,750
63 Total			:	:		35, 519, 000
Lower Pool—Works Primarly for Power—Machinery and Supersyntouties—follower house	Generators and turbines—36-44, 500 H.P. units. Switching Cranes and service units.				26,058,240 7,745,760 550,880 4,239,000	
65. Engineering and contingencies.	12½ per cent	:				38, 593, 880 4, 824, 120
66. Total						43,418,000
	SUMMARY					
UPPER POOL—Works solely for navigation and power [16m No 4] Works common to navigation and power [18]		Item No	18		8,732,000 69,986,000	
, Substructures, head and tail-race excavation. Machinery and superstructure.		* : :	2528		25, 698, 000 30, 760, 000	2 2 3 4 4
LOWER POOL—Works solely for navigation Works common to navigation and power. Works retimently for nower—		Item No	Item No. 42		25, 618, 000 29, 624, 000	135, 176, 000
Substructure, head and tail-race excavation. Machinery and superstructure.		::	63		35, 519, 000 43, 418, 000	134 179 000
Total.						269, 355, 000

TABLE No. 6-INTERNATIONAL RAPIDS SECTION—SINGLE STAGE DEVELOPMENT—238
See Plates Nos. 39—43

Total	40	1 987 140	1,001,1%0	2, 527, 830	000	1, 636, 310 795, 000 126, 000		6,170,510	11,714,330
Amount	66	471,250 272,000 1,077,220 46,670	1,468,690	6,630	142, 040 986, 710 155, 400 151, 620 43, 440 157, 300	i i i i i i i i i i i i i i i i i i i	16,910 634,500 100,000 181,700 175,000 25,000	24, 240 340, 800 54, 800 5, 400 191, 950 27, 920 10, 450 6, 710	
Quantity		725,000 170,000 1,196,910 51,850	2, 259, 520 10, 020	10, 200	338, 180 1, 644, 510 155, 400 232, 960 173, 740 14, 300	171, 070 54, 650 2, 100 363, 770		34, 080 34, 080 38, 390 42, 960 3, 370 61	
Rate	\$ cts.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 00	0 65	0 42 0 60 1 00 0 65 1 100	10 00 1 60 4 10 0 65	0	12 00 10 00 10 00 5 00 3 10 10 00	
Unit	f	Cu. yd. "	Cu.,yd.	Cu. yd.	Cu. yd. " Sq. yd. Cu. yd.	Cu. yd.	sq. ft.	Cu. yd. Cu. yd. M. ft.b.m.	
Classification		Excavation—Earth. Dry rock Dredging. Over depth.	Excavation—Dry earth	See Table No. 4—Items No. 28 (c) to 28 (f). Excavation—Earth	Earth fill Earth fill Rook fill Stripping Thrming—Consete	See Table No. 4—Item No. 30 (b) See Table No. 4—Item No. 30 (c) Concrete. Excavation—Dry rock. Excavation—Earth. Earth	Close drilling. Gates and operating machinery. Valves and operating machinery. Fonders, capstans, lighting equipment, etc. Emergency gate Denergency gate Operating buildings, etc.	Concrete Concrete Foundation contingency Cribwork. Excavation—Earth. Sheeting and bracing.	
Item and description	WORKS SOLELY FOR NAVIGATION—	sis—Lotus Island lock	(b) Above Long Sault Island to Robinson Bay lock	(c) Robinson Bay lock to below Cornwall Island 2. Drainage ditch	3. Dikes— (a) Above Robinson Bay lock	(b) Robinson Bay lock to Grass River. (c) Rock fill—Guide dike below Grass River lock. 4. Lotus Island lock and entrance piers.		5. Guard gate and supply weir above Robinson Bay lock	Carried fordwar

TABLE No. 6-INTERNATIONAL RAPIDS SECTION-SINGLE STAGE DEVELOPMENT-224-Continued

39
08
\mathbf{z}
tes
Pla

				St. Lawrence W	aterway Proje			
	Total	\$ 11,714,330		, 22, 300	6, 634, 050 698, 000 1, 308, 000 1, 308, 000 15, 000 117, 690 596, 930	3,472,030	30, 986, 730	6, 131, 720 1, 027, 650 2, 922, 180 1, 598, 710
	Amount	65	121,530 33,800	2, 816, 500 1, 629, 900 396, 600 572, 660 684, 000 175, 000 206, 700 52, 690				876, 360 85, 000
	Quantity			281, 650 108, 660 79, 320 881, 020				73, 030 8, 500
	Rate	s cts.		10 00 15 00 5 00 0 65				12 00 10 00
	Unit			Cu. yd.				Cu., yd.
	Classification		Lock gates, operating machinery, etc	Concrete Connecte Cribwork Excavation—Earth Lock gates and operating machinery Lock valves and operating machinery Emergency gate Frenders, capstans, lighting equip ment, etc. Sluice gates, hoists, etc.	See Table No. 4—Item. No. 33	121%.	See Table No. 4—Items No. 5 (a) to 5 (o) inclusive	See Table No. 5—1tems No. 5 (b) to 5 (f) inclusive— See Table No. 4—1tem No. 43 (b) Concrete Concrete Concrete
The state of the s	Item and description	Brought forward	Works Solely for Navigation—Con. 5. Guard gate and supply weir above Robinson Bay lock	6. Robinson Bay lock—Entrance piers and weir	7. Regulating wear at Robinson Bay. 8. Grass River look and entrance piers. 9. N. Y.C. Ry. diversion and bridges. 10. Canal lighting and office. 11. Clearing pool. 12. Roads. 13. Property damages.	14. Engineering and contingencies	- 0	(b) Point Three Points to below Canada Island. (c) North side of Comwall Island. (d) South side of Cornwall Island. 17. Dam at head of channel through Galop Island. 18. Dams and banks in South Galop.

		St. La	wrence	Wate	rway I	Projec	t			321
0 020 410	1 400 040	069 140	5 967 180	0,201,100	1 064 860	2,004,000	019 101	079,470	600	55, 676, 500
87,640 43,080 46,420 2,460 1,548,170 68,860 59,720 14,700	786,830 466,350 179,860	208, 950 341, 410 242, 080 69, 700	4,365,000 710,350 191,830	165,060 77,610 31,510	695,840 275,450 93,570	117,250 67,020 23,150	145,050 37,380 12,380	583, 960 222, 180 67, 330	310, 680 556, 600 31, 070 12, 510	625, 240
66, 270 19, 340 19, 340 600 114, 760 99, 540 22, 620	1,210,510 466,350 276,700	321, 460 379, 340 242, 080 107, 220	4,850,000 1,183,920 295,130	183,400 77,610 48,470	773,160 275,450 128,570	180,380 67,020 35,610	161,170 37,380 19,050	648,850 222,180 103.580	25,890 55,660 5,210	961,910
0 65 0 65 0 65 0 60 0 60 0 65	0 H 0 650 55	0 65 0 90 1 00 0 65	0 80 0 60 0 65	0 90 1 00 0 65	0 90 1 00 0 65	0 65 1 00 0 65	0 90 1 00 0 65	0 90 1 00 0 65	12 00 10 00 2 40 4 10	
Cu. yd.	Cu., yd.	Cu. yd.	Cu. yd.	Cu. yd.	Cu. yd.	Cu.,yd.	Cu. yd.	Cu. yd.	Cu. yd.	;
Foundation contingency Excavation—Barth Rock footings Rock french Gates, fowers, hoists, bridges, etc. Banks—Earth fill Stripping.	Earth fill Rock fill Stripping.	Earth fill Earth fill Rock fill Stripping	Barth fill Rock fill Stripping.	Earth fill Rock fill Stripping.	Earth fill Rock fill Stripping.	Earth fill Rock fill Stripping.	Barth fill Rock fill Stripping.	Barth fill Rook fill Stripping	Concrete. Concrete. Foundation contingency. Excavation—Rock footings.	Earth
	Dikes— (a) Canadian shore—West of Aultsville to Dickenson's Landing.	(b) East and west of 14-ft, lock at head of Sheek Island	(c) Skeek Island to power house	(d) United States shore—Wilson Hill to Louisville Landing. Earth fill Rock fill. Stripping.	(e) West and east of Massena Canal	(f) Between Massena Canal and Navigation Canal	(g) East and west of Long Sault dam	(h) On Barnhart Island	Supply channel and Weir at Massena Canal	Carried forward

20.

19.

TABLE No. 6-INTERNATIONAL RAPIDS SECTION-SINCLE STAGE DEVELOPMENT-238-Continued See Plates Nos. 34-39

Total	\$ 55,676,500	040 404	2,055,370	15, 603, 610	1,574,200	400 700	1,428,700	630,000
Amount	69	38,000 2,700 72,050 75,700	8,593,680 650,100 859,370 862,860 289,610 1,930 646,060 3,700,000	1,386,760 129,500 58,000	133,200 1,087,500 13,320 22,500 37,780 13,180 740 5,630	84,110 30,800	150,000 30,000 330,000 91,000 29,000	51,000
Quantity		43,000 3,000 6,550	716,140 65,010 1,327,470 120,670	2,133,470	11,100 108,750 4,500 41,970 4,250 180 180		1	3,740
Rate	\$ cts.	0 80 0 80 11 00	12 00 10 00 10 00 2 4 0 4 2 10 10	0 65	12 00 10 00 5 00 0 0 30 110 00		100,000 00 100,000 35,000 00	100 00
Unit		Cu.,yd.	Cu. yd.	Cu. yd.	Cu.,yd. Cu.,yd. " M.B.M.		Mile Mile	Acre
Classification		Excavation—Dredging. Over depth. Concrete paving. Gates, bridges, hoists, etc.	See Table No. 4—Item No. 45. Concrete Concrete Foundation contingency Excavation—Barth Rock forting Rock footing Rock trench Gates, towers, hoists, etc Unwatering.	Excavation—Earth Bridges Concrete drops	Concrete Concrete Concrete Concrete Cirbwork Cribwork Earth trench Rock trench Rock trench Took earles, valves, onerating rach	inery, etc	C.N.R. at Iroquois—to be raised Bridges for above C.N.R. east of Morrisburg Norwood and St. L. Railway.	Above Morrisburg
Item and description	Brought forward.	Works Solely for Navigation—Con. 20. Supply channel and weir at Massena Canal	21. Diversion cut through Long Sault Island	23. Drainage—Ditches, etc.—E. Williamsburg to Bergen Lake. Excavation—Earth	24. 14 H. Look, entrance piers and Weir at head of Sheek Island .		25. Railroad changes	26. Clearing Pool

27. Highway changes— (a) Above Morrisburg		Canadian shore. Bridges. U.S. Shore.	Mile	50,000 00	00 : :	400,000 20,000 37,000	900
(b) Below Morrisburg		Canadian shore Bridges. U.S. shore-Concrete. Bridges.	Mile Mile	50,000 00	18.2	910,000 7,000 432,000 7,500 73,000	401,000
28. Property damages—U.S. side. (a) Above Morrisburg	1	ts. ty required n severance.				64,000 411,000 128,000 3,000	1,429,500
(b) Below Morrisburg		Improvements. Flowage Flowage Severance Seepage				486,000 182,530 661,000 10,200 25,000	
29. Property damage—Islands— (a) Above Morrisburg (b) Below Morrisburg		id—Flowage —Flowage				170,000 87,000 265,320 219,120 52,800	257,000
30. Property Damages—Canadian shore- (a) Above Morrisburg	1					25,000 256,000 201,500 593,860 235,600 30,500 124,110	1,019,740
(b) Below Morrisburg						2, 274, 670 734, 000 43, 000 149, 160	984,070
31. Protection to Towns— (a) froquois		Bank-Earth fill. Rock fill. Stopping. Ditches—Excavation. Highway and R. R. Bridges. Sewers and pumping.	Cu. yd.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	772,030 229,120 207,610 76,600	701, 130 229, 120 134, 950 49, 790 41, 000 27, 000	6,200,850
Carried forward							89, 623, 030

TABLE No. 6.—INTERNATIONAL RAPIDS SECTION—SINGLE STAGE DEVELOPMENT—238—Continued See Plates Nos. 34-39

	00 10 000 11 0000 1					
Item and description	Classification	Unit	Rate	Quantity	Amount	Total
Brought forward			\$ cts.		69	\$ 89,623,030
Works Solely for Navigation—Con. 31. Protection to towns—Con. (b) Morrisburg	Bank—Earth fill Rook fill Strimine	Cu. yd.	0 90 1 20 85	255, 330 105, 550 56, 010	229,800 105,550	
	Drainage Ditch—Excavation— Earth Sewers and pumping	8		8,000		
(c) Farrans Point	Pumping plant, etc				29,000	431,960
(d) Aultsville	Pumping plant, etc			:	36,000	29,000
32. Engineering and contingencies.	12½ per cent					90,119,990 11,265,010
33. Total		:	:	:		101,385,000
Works Primarly for Power-Substructures, Head and Tail-Bace Excayation- 34. Head and tail-race excavation- (a) Between Sheek and Barnbart Island	Excavation—Dry earth Dredging Overdepth	Cu., yd.	0 62 0 80 0 80	6,916,800 424,300 72,300	4,495,920 381,870 65,070	4,942,860
(b) Tail-race	See Table No. 4—Item No. 57 (b) Concrete. Concrete.	Cu. yd.	12 00	86,860 118,350	1,042,320	7,118,040
	roundation contingency Excavation—Earth Rock footings. Rock trench	Cu. yd.	0 65 2 40 4 10	28,750 14,550 2,250	104, 230 18, 650 34, 920 9, 220	
36. Ice sluices at south end of power house	Concrete Concrete Foundation contingency	Cu.,yd.	12 00 10 00	119,470 98,570	1,433,640 985,700 143,370	2, 592, 550
	Excavation—Earth. Rock footings. Rock trench. Gates, hoists, towers, etc.	Cu. yd.	0 65 2 40 4 10	1,030,660	669,930 36,840 2,870 74,000	
	_	-	-			3,540,550

1	23,475,400	41, 593, 530 5, 448, 470	47,042,000	43 405 630	5,436,370	48,932,000
18,369,600 3,200,570 1,905,230				29, 660, 400 8, 709, 800 498, 680 4, 626, 750		
1,224,640			:			
15 00		*	:			
Cu. yd.	:		:		:	
Concrete 18, sec. Cu. yd. 15 00 1,224,640 18,380,600 Gate, racks, etc. 3,280,570 Unwatering 5,280,570 196,320	See Table No. 4—Item No. 61	12½ per cent		Generators and turbines 44-50, 600 H.P. units. Switching. Switching. Superstructure	12½ per cent	
37. Power house substructure, etc	38. Railway spur to power house	39. Engineering and contingencies.	40, Total.	Works Permarily for Power—Machinery and Superstructure—41. Barnhari Island power house	42. Engineering and contingencies.	43. Total.

\$ 31,251,000 101,385,000	47,042,000	\$ 228,610,000	
Item No. 15	" 40 " 43		
Works solely for mavigation. Works common to navigation and power.	Works primarily for power. Substructures, head and tail-race excavation, etc. Machinery and superstructure.	Total	

TABLE 7.—IMPROVEMENT OF INTERNATIONAL RAPIDS SECTION FOR NAVIGATION ALONE (CHANNEL 25-FEET DEEP)

Item	Quantity	Unit	Unite price	Amount	Subtotals
			\$ ets.	\$	\$
Channel excavation, Chimney Point: Dredging. Dredging over depth. Dredging rock. Dredging, rock, over depth.	513,000 41,000 185,000 38,000	Cu. yd.	0 80 0 80 4 25 4 25	250,000 33,000 786,000 162,000	1,231,000
Approach channel to upper lock— Excavation, earth Excavation, rock. Dredging. Dredging over depth. Riprap dike.	149,000 179,000 268,000 23,000 260,000	66 66 ,66 60	0 65 1 75 0 80 0 80 1 00	97,000 313,000 214,000 18,000 260,000	
3. Guard lock at Galop (Lock 10):— Excavation, earth. Excavation, rock. Back fill. Concrete. Gates. Operating machinery. Emergency dam. Approach walls—	505,000 714,300 120,000 141,700	66	0 65 • 1 75 0 40 10 00	328,000 305,000 48,000 1,417,000 524,000 200,000 175,000	902,000
Concrete. Cribbing. Office and dwellings.	56,900	66	10 00 8 00	277,000 455,000 40,000	9 760 000
4. Sluiceway at guard lock— Excavation, earth. Excavation, rock. Back fill. Concrete. Gates and operating machinery.	900 8,000 3,400	66 66 66	0 65 3 50 0 40 10 00	260,000 3,000 3,000 34,000 4,000	3,769,000
5. Canal, Lock 10 to Lock 9— Excavation, earth Excavation, rock Dikes, rock fill Dikes, earth fill Concrete, bank protection Lighting.	$17,893,000 \\ 1,407,000 \\ 402,800 \\ 1,734,000 \\ 90,000 \\ 12\cdot 2$	" " " Lin. ft. Miles	0 65 1 75 2 00 0 75 9 00 2,000 00	11,630,000 2,462,000 806 000 1,301,000 810,000 24,000	17 000 000
6. Lock at Ogden Island (Lock 9)— Unwatering. Excavation, earth. Excavation, rock. Back fill. Concrete. Gates. Operating machinery. Approach walls, concrete. Approach walls, cribbing.	118,000 153,000 170,000 131,000	et	0 65 1 75 0 40 10 00 10 00 8 00	390,000 77,000 268,000 68,000 1,310,000 542,000 300,000 225,000 346,000	17,033,000 3,526,000
7. Weir and abutment at Lock 8— Excavation, earth Excavation trench Excavation, rock Back fill Concrete Stop logs and bridge	33,000 1,000 8,000 8,000 27,400	Cu. yd.	0 65 5 00 3 50 0 40 10 00	22,000 5,000 28,000 3,000 274,000 17,000	
8. Navigation channel, Lock 9 to Long Sault Island— (a) Lock 9 to Murphy Island— Excavation, earth. Excavation, rock, dry. Dredging. Dredging. Dredging, rock. Dredging, rock, over depth	980,000 20,000 956,000 86,000 187,000	.60 60 60	0 65 1 75 0 90 0 90 4 25 4 25	637,000 35,000 860,000 77,000 795,000 145,000	349,000

TABLE 7.—IMPROVEMENT OF INTERNATIONAL RAPIDS SECTION FOR NAVIGATION ALONE (CHANNELS 25-FEET DEEP)—Continued

Item	Quantity	Unit	Unit price	Amount	Subtotals
8. Navigation channel, Lock 9 to Long Sault Island—Con. (b) Murphy Island to Weavers Point Dredging Dredging over depth	369,000 57,000	Cu. yd.	\$ cts.	\$ 332,000 51,000	
(c) Weavers Point to entrance Long Sault Canal— Dredging. Dredging, over depth.	378,000 28,000	ec ec	0 90 0 90	340,000 25,000	383,000
9. Channel, Long Sault Island to Lock 8 Excavation, earth Concrete bank protection. Lighting.	3,773,000 13,000 11	Lin. ft. Miles	0 65 9 00 2,000 00	2,452,000 117,000 2,000	3,297,000
10. Lock 8— Excavation earth. Excavation, rock Back fill. Concrete. Gates.		66 66	0 65 3 50 0 40 10 00	600,000	2,571,00
Operating machinery. Emergency dam Approach walls, concrete. Approach walls, piling. Office and dwellings.	52,500 187,000		12 00 0 85	300,000 175,000 630,000 159,000 40,000	
11. Canal prism, Lock 8 to Grass River lock— Estimate III, item 2 (e)		!		4,176,000	
12. Dike at Robinson Bay— Estimate III, item 2 (d)				85,000	4,176,00 85,00
13. Lock 7, Grass River— Estimate III, item 2 (f)				6,067,000	
14. Approach channel, Grass River lock to river— Estimate I, item 2 (e)				227,000	00 700
15. Dike at Grass River lock— Estimate I, item 2 (f)				307,000	307,00
16. Waste weir at Grass River lock— Estimate I, item 2 (g)				757,000	
 Drainage ditch, north of Grass River lock— Estimate I, item 2 (h) 				2,000	2,0
18. Diversion dike and flood channel at mouth of Grass River— Estimate I, item 2 (i)				307,000	
19. Diversion of Ottawa Branch, New York Central Railroads— Estimate I, item 2 (1)				1,308,000	
20. Channel excavation, Lake St. Francis to mouth of Grass River— Dredding Dredging over depth	1,990,000	Cu. yd.	0 60 0 80		1,308,0

TABLE 7.—IMPROVEMENT OF INTERNATIONAL RAPIDS SECTION FOR NAVIGATION ALONE (CHANNEL 25-FEET DEEP)—Continued

Item	Quantity	Unit	Unit price	Amount	Subtotals
21. Dam across main river channel a head of Long Sault Rapids—	at		\$ ets.	\$	\$
Dam— Excavation, earth Excavation, rock	54,000	66	0 80 3 50	71,000 190,000	
Concrete Foundation contingencies Gates, stop logs, bridge, cranes	144,000	10%	12 00	1,728,000 173,000 387,000	
Unwatering				3,000,000	
Excavation, trench Excavation, rock Back fill	4 000	66	5 00 3 50 0 40	20,000 8,000 14,000	
Concrete	22,100	"	10 00	221,000	5,845,00
across long Sault Islands— Cut—		"	0.05	4 804 000	
Excavation, earth Excavation, rock Excavation, dredging	. 125,000 70,7000	ee ee	0 65 1 75 0 70	1,521,000 219,000 495,000	
Concrete lining Control works— Excavation, rock	4,400	ee ·	12 00 3 50	384,000 15,000	
Concrete	32,300	10%	12 00	368,000 39,000 224,000	
Abutments— Excavation, earth Excavation, trench	45,000	66	0 65 5 00	29,000 16,000	
Excavation, rock	4,600	66	3 50 0 40 10 00	16,000 13,000 205,000	
3. Dam across South Sault— Dam—					3,564,00
Excavation, earth Excavation rock Concrete	13,900	66	0 80 3 50 12 00	2,000 49,000 516,000	
Foundation contingencies. Gates, stop logs, bridge, cranes. Unwatering.		10%		52,000 112,000 500,000	
Abutments— Excavation, earth Excavation, trench	66, 400	Cu. vd.	0 65 5 00	43,000 26,000	
Excavation, rock	2,800	cc	3 50 0 40 10 00	10,000 12,000 441,000	
4. Control works, head of Massena Canal—					1,763,00
Excavation, earth. Excavation, rock. Dredging. Concrete.	3,700	Cu.yd.	0 65 3 50 0 90	599,000 13,000 86,000	
Foundation contingencies		10% Cu. yd.	12 00 12 00 0 25	282,000 28,000 94,000	
Paving. Gate house. Gates. Operating machinery and stop logs.	. 332,000	Cu. yd. Cu. ft.	0 25	94,000 83,000 60,000 37,000	
5. Dikes— (a)Massena Canal, inclusive, to dam					1,282,00
Earth fill. Rock fill. Riprap slope protection	. 170,000 50,600	Cu.yd.	0 75 2 00 3 00	128,000 101,000 6,000	
(b) At Hoople Creek— Earth fill. Riprap slope protection		ee	0 75	49,000	
raprap stope protection	2,000	-	3 00	6,000	290,00

TABLE 7.—IMPROTEMENT OF INTERNATIONAL RAPIDS SECTION FOR NAVIGATION ALONE CHANNEL 25-FEET DEEP—Concluded

	Item	Quantity	Unit	Unit price	Amount	Sub-totals
26.	Flowage and damages—					
	Canal right of way— Galop to Waddington				646,000	
	Canadian shore— Flowage				150,000	
	Improvements				874,000	
	Flowage and severance Improvements				158,000 371,000	
	Islands— Flowage Improvements Canal right of way, etc., Long Sault				117,000 139,000	
	Island to Grass River— Lands				581,000 270,000	
7.	Highway relocation— Canadian shore—					3,306,00
	Roads, concrete		Miles	40,000 00	272,000 31,000	
	Canal— Roads, concrete Roads, earth	2		40,000 00 6,000 00		
	Bridges United States shore, below Massena			0,000 00		
	Canal— Roads				118,000	565.00
8.	Clearing pools	550	Acres	100 00	55,000	
						70,323,00
	Engineering, administration and contingencies		12½%			8,790,00
	Total					79,113,00

TABLE 8,-LAKE ST. FRANCIS SECTION-RECOMMENDED PROJECT

See Plates Nos. 46–48

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
			\$ cts.		49	6/9
(A) Depth of Navidation Charnel—25 Fr.— 1. Glengarry Point to Hamilton Island	Excavation—Earth	Cu.,yd.	0 55	762,940 86,460	419,620	120
2. Hamilton Island to Squaw Island	Excavation—Earth Earth, over depth	Cu.,yd.	0 55	200,300	110,170	150 510
3. Lancaster Bar.	Excavation—Earth.	Cu.,yd.	0 55	398,700 54,170	219,290 29,790	940 000
4. East of Hay Point.	Excavation—Earth Earth, over depth	Cu. yd.	0 55	6,210 2,410	3,420	4,740
5. Engineering and contingencies	121%					871,500 108,500
Total			:			980,000
(B) Decrease in Cost for 23-yr. Depth— Decrease	Excavation—Earth Earth, over depth	Cu., yd.	0 0	418,110	229,960	259. 230
Engineering and contingencies	12½%		:			32,770
Total decrease		:				292,000
(C) Increase in Cost for 27-ft. Depth—Increase.	Excavation—Earth. Earth, over depth	Cu.,yd.	0 55	506, 130 60, 050	278,370 33,030	311 400
Engineering and contingencies	123%					38,600
Total increase		:		:		350,000
(D) Cost to Deepen from 25 ft. to 30 ft. Depth	Excavation—Earth Earth, over depth	Cu.,yd.	0 55	1,350,200	742, 610 190, 690	933, 300
Engineering and contingencies	122%					116,700
Total cost to deepen						1,050,000

TABLE 9.—SOULANGES SECTION—RECOMMENDED PROJECT—NAVIGATION COMBINED WITH THE DEVELOPMENT OF POWER (THREE STAGE DEVELOPMENT)

See Plates Nos. 49-51

	10000000000000000000000000000000000000					
Item and description	Classification	Unit	Rate	Quantity	Amount	Total
t. Francis to b			\$ cts.			69
	Excavation—Earth, over depth. Day rock. Wet rock. Wet rock. Wet rock. Chlowork.	Cu. yd.	0 65 0 4 4 4 1 0 65 0 55 0 7 0 0 7	3,775,050 187,890 903,300 45,480 16,800 45,210 11,900	3,453,780 122,130 1,445,280 71,400 71,400 72,340 32,130	60 S
(b) At Leonard Island	Excavation—Earth Dry rock Wet rock Wet rock, over depth. Unwatering	Cu. yd.	0 65 1 60 4 25 4 25	133,910 196,950 30,360 740	87,040 315,120 129,030 3,150 238,100	4, 030, 000
(c) Canal, P.L.H. & P. Co. head-race to Chamberry Gully lock.	Excavation—Earth	Cu. yd.	0 55	1,183,890	651,140	772,440
(d) Chamberry Gully lock to Cascades lock	Excavation—Earth	Cu.,yd.	0 55	2,365,400	1,300,970	1 950 790
(e) Below Cascades lock	Excavation—Earth Earth, over depth	Cu.,yd.	0 65	1,036,600	673,790	742,040
2. Dikes— (a) Breakwaters, Lake St. Francis	Exeavation—Barth. Rook fill. Concrete. Cribwork	Cu.,yd.	0 4 1 0 70 72 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	106, 780 5, 330 415, 430 6, 470 86, 280	69,410 22,650 747,770 58,230 431,400	1 290 460
(b) Above Coteau du Lac	Earth fill Rock fill Stripping	Cu.,yd.	0 42 0 60 0 65	468, 660 191, 820 103, 590	196,840 115,090 67,340	270 970
(c) Cedars Village to Chamberry Gully lock	Barth fill. Barth fill	Cu., yd.	0 42	1,266,320	531,850 825,330	013,210
Carried forward						9,623,420

TABLE 9.—SOULANGES SECTION—RECOMMENDED PROJECT—NAVIGATION COMBINED WITH THE DEVELOPMENT OF POWER (THREE STAGE DEVELOPMENT)—Continued

See Plates Nos. 49-51.

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
Brought forward			\$ cts.		60	9,623,420
Works Solely for Navigation—Con. 2. Dikes—Con. (c) Cedars Village to Chamberry Gully lock—Con	Rock fill Stroot fill Stripping Trimming Sodding Pavnig—Convete	Cu. yd. Sq. "yd. Cu. yd.	0 80 1 00 0 65 0 65 0 45 11 00	38,160 110,820 368,230 110,660 11,500 8,150	30,530 110,820 239,350 27,670 5,180 89,650	900
(4) Chamberry Gully lock to Cascades lock	Earth fill Stripping Trimming.	Cu.,yd.	0 42 0 65 0 25	52,580 6,980 7,650	22,090 4,540 1,920	000,000,44
3. Coteau du Lac guard lock and Entrance piers	Concrete Excavation—Earth. Cribwork. Rock. Close drilling. Lock adves and operating machinery. Lock radves and operating machinery. Emergency gate. Fenders. capstans, lighting equipment, efc. Unwardering.	Cu, yd.	9 00 0 65 1 1 60 0 5 0 0 0 4 45	129, 160 8, 630 169, 120 35, 000 99, 900	1, 162, 440 5, 610 270, 590 1770, 590 44, 960 591, 000 175, 000 206, 700 72, 500	000
4. Guard gate, Entrance piers and weir	Concrete Concrete Foundation contingency Cribwork Excavation—Earth Rock footings Rock footings Rock strench Gates, operating piles	Cu, yd. Cu, yd. " " Lin. ft.	11 00 9 00 5 00 0 65 2 40 4 10 0 85	12,320 78,880 55,440 398,390 2,880 750 87,600	135,520 709,920 13,550 277,200 258,950 6,680 74,460 449,800	2,800,800
5. Chamberry Gully lock, Entrance piers and weir	Concrete. Concrete. Concrete. Foundation contingency. Cribwork	Cu. yd.	11 00 9 00 14 00 5 00	14,850 159,970 120,270 73,890	1,439,730 1,683,780 16,340 369,450	1, 929, 040

	20. 23007070	oo m allonaa	9 1 101	000				000
5, 921, 840		4,914,670	345,280	134,000	35,000	487,040	28,083,320	31, 594, 000
21, 820 1,013, 570 131, 520 7, 380 2, 340 100, 000 110, 000	78, 650 2, 274, 570 7, 870 557, 000 19, 460 643, 420 186, 090 5, 280 1, 030		283,440 61,840	24,000	35,000.	405,040		:
48,480 1,559,340 82,200 3,080 5,700 2,880	7,150 252,730 111,400 43,240 989,870 116,340 2,200 2,500			9-0				
0 445 0 655 0 655 0 82 1 60 0 85 0 85	11 00 9 00 5 00 0 45 0 65 1 60 2 2 50 4 10			40,000 00				
Sq. ft. Cu. yd. " " Lin ft.	Cu. yd. S.f. Cu. yd. ".			Mile				
Close drilling. Excavation—Earth, dry Rock, dry Rock, dry Rock, fordings Rock, fordings Rock stock and operating machinery Lock gates and operating machinery Lock valves and operating machinery Fenders, capstans, lighting equip- ment, etc. Sluice gates, hoists, etc.	Concrete. Concrete. Concrete. Foundation confingency Cribwork. Close drilling. Excavation—Earth. Dry rock. Rock fronths.	Unwatering Look gates and operating machinery Look valves and operating machinery Fenders, anapstans, lighting equip- ment, etc. Sluice gates, Hoists, etc.	SuberstructureSubstructure	New roads. Bridge.		Improvements. Lands.	12½ per cent	
	6. Cascades Lock, entrance piers and weir		7. Railway bridge for C.N.Ry. at Coteau	8. Highway changes	9. Canal lighting and offices	10. Property damages above Pointe au Diable	11. Engineering and contingencies	12. Total

TABLE 9.—SOULANGES SECTION—RECOMMENDED PROJECT—NAVIGATION COMBINED WITH THE DEVELOPMENT OF POWER (THREE STAGE DEVELOPMENT)—Continued

See Plates Nos. 49-51

	Total	& Ab		1, 183, 290	395, 950	CEY	1,131,410	010,000	1,026,630
	Amount	\$ 1,429,460 36,700 2,081,670 1,404,080	i i	368,830 27,100	1,042,360	688,890 328,260 180,320	369,280 144,680 59,570	300,410 57,150 30,040 8,060 30,320 381,800 218,850	5, 683, 480 530, 640 2, 515, 500 568, 350 568, 350 12, 210 4, 064, 100 684, 300
	Quantity	2, 199, 160 56, 450 1, 301, 040 330, 370 99, 200		670,600	1,895,200	918, 520 410, 320 277, 410	410,310 172,240 91,640	27, 310 6, 350 12, 400 12, 635	516,680 58,960 83,850 11,054,140 3,940 1,000
	Rate	\$ cts. 0 65 0 65 1 60 4 255		0 55	0 55	0 75 0 80 0 65	0 90 0 84 0 65	11 00 9 00 0 65 2 40	11 00 9 00 30 00 10 05 10 55 4 10
	Unit	Cu.,yd.	Cu.,yd.	Cu. yd.	Cu. yd	cu. yd.	cu. yd.	eu. yd.	cu. yd.
See I laves 1705, \$5 -01	Classification	Excavation—Earth Farth Party rock Dry rock Wet rook Wet rook Wet rook Wet rook was a week was been was been was been been been been been been been bee	Excavation—Earth	Excavation—EarthExcavation—Earth overdepth	Exeavation—Earth	Earth fill. Rock fill Stripping.	Barth fill Rock fill Stripping.	Concrete Concrete Concrete Evandation contingency Exavation—Barth Rook footings Unwatering Gates, towers, hoists, etc.	Concrete Concrete Concrete Courerete Exervation—Earth trench Exervation—Earth trench Exervation—Earth trench Farth trench Rock footings Rock trench Gates, towers, hoists, etc
	Item and description	Works Common to Navigation and Power— 13. Channel excavation— (a) Coteau Rapids above Clarke's Island to below Broad Excavation— (s) Island.	(b) Round Island Channel	(c) Pointe a Biron	(d) Cedars to P.L.H. and P. Co. Head-Race	14. Dykes— (a) Coteau du Lao to Cedars	(b) Grande Ile	15. Dams at Clark's Island	16. Cedars Dam

418,030	10.090		1,100,040	1,000,200	1,100,000	480,000	30,834,500 3,851,500	34,686,000	L L C	750,080	\$ 11,625,630 1,453,370 \$ 13,079,000
363,030	10,020	453,750 583,310 18,210 1,890 42,920 3,860	308,000 751,230	711,080	85,000 847,600	480,000	:	ee	6, 312, 180 802,680 1, 497,600 300,000 1, 944,940	750,080	60 60
558, 500	15,420	41, 250 897, 400 28, 020 1, 180 50, 490			1.7	H.P. 2 Yrs.			450,870 1,459,420 33,000 936,000	1,153,960	
0 65	0 65	11 00 0 65 0 65 1 60 0 85			50,000 00	20 00		:	14 00 0 55 0 55 1 60	0 65	
cu. yd.	cu. yd.	cu. yd. " " " lin. ft.			mile	H.P. Yrs.			Cu. yd.	Cu. yd.	
Excavation—Earth.	Exeavation—Earth	Concrete Excavation—Earth Excavation—Earth overdepth Earth overdepth Round bearing piles	New roads	Improvements	New line Bridges.		12½%		Concrete Excavation—Earth Earth overdepth Dry rock Unwatering Gales and racks	Excavation—Earth	121.0%
17. Drainago— (a) Diversion River Delislo	(b) Ditch. Cedars to P. L. H. and P. Co. Head-Race	(c) Culverts for Rivers Graisse, Rouge, Delisle, including Concrete excavation Soulanges Canal and existing culverts. Round be Accessoria	18. Highway changes	19. Property damages.	20. Railroad r-location. C.N.Ry. at Bellerive	21. Interruption in operation of P.L.H. and P. Co	22. Engineering and Contingencies	23, Total	FIRST STAGE OF POWER DEVELOPMENT—He aux Vaches-404, 300 installed H.P. (A) Works Permann for Power: Substructures, Head, and Jahr-Race Excavanon— 24. Power House Substructures, etc., He aux Vaches	25. Channel through Grande Ile	26. Engineering and contingencies

TABLE 9.—SOULANGES SECTION—RECOMMENDED PROJECT—NAVIGATION COMBINED WITH THE DEVELOPMENT OF POWER (THREE STAGE DEVELOPMENT)—Continued

	See Plates Nos. 49-51					
Item and description	Classification	Unit	Rate	Quantity	Amount	Total
(B) Works Primarily for Power: Machinery & Superstruc-			\$ cts.		69	546
28. Power house machinery and superstructure	Generators and turbines, 26—15,550 h.p. units. Switching. Service units and cranes.		,		15,901,600 2,683,200 477,110	
29. Engineering and contingencies	Supersturcture				2, 192, 400	21,854,370 2,731,630
30. Total			:			\$24,586,000
SECOND STAGE OF POWER DEVELOPMENT:—Power House North of Cascades Point—545,000 installed h.p. (A) Works, Primarily for Power: Substructures, Head and Tall—Race Excavarion—31, Head-Race, Cedars to power house.	Excavation—Earth.	Cu. yd.	0 50	15,512,800	8,532,040	8,532,040
32. Tail-race and power house excavation	Excavation—Earth coverdepth Dry rock Wet rock Transfering	33333	0 0 1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1, 939, 700 107, 000 14, 500 22, 300 7, 800	1,066,840 58,850 23,200 94,780 33,150 450,800	
33. Dykes, above power house	Earth fill Rock fill Strinbing	Cu., yd.	0 42 1 05 0 65	3,536,610 185,000 372,100		
34. Ice sluices and walls at power house	Concrete Concrete Connoration confinement	Cu. yd.	11 00	33,320 85,190		1,921,500
		Cu., yd. ,, M ft. b.m.	0 65 3 10 2 40 4 10 110 00	273,990 22,550 6,860 1,300	178,040 69,910 16,460 5,330 21,670	
35. Power house substructure		Cu. yd.	14 00	304,130	4,-,	1,551,290

36. Bridges				:	442,000	
37. Property damages	Improvements				507,710	442,000
			•		101,100	692,110
38. Engineering and contingencies	12½%.					20, 136, 530 2, 517, 470
39. Total						22,654,000
(B) Works Primarity for Power: Machinery and Superbythuc- 40. Power house machinery and superstructure	Generators and turbines, 10-54,500 h.p. units. Switching. Service units and cranes.				8, 789, 700 2, 220, 000 219, 640	
41. Engineering and contingencies.	121%					13,010,910 1,626,090
42. Total		:				14,637,000
THIRD STACE OF POWER DEVELOPMENT:—Dam and Power House at Casacdes Rapidea, 1,630,460 installed h.p.— (A) Works Primariar for Powers: Stresurcuress, Head h.p.—Tall-race Equavoritor— 43. Removal of present Cedars power house.					480,000	
	1	,				480,000
44. Dam at Cascades Island	Concrete Concrete Evendation contingency Excavation—Earth Townstering Rock footings. Earth fill Rock fill Skripping Gafes, hoists, etc.	Cu. yd.	11 900 900 900 900 900 900 900 900 900 9	413,770 132,560 22,580 171,850 153,350 62,280 36,100	4, 551, 470 1, 193, 040 456, 150 14, 680 12, 926, 940 2, 926, 940 124, 560 23, 470 735, 200	040 7 E M
45. Power house and tail-race excavation	Excavation—Earth. Earth, over depth Dry rock	Cu.,yd.	0 55 0 55 1 60	797,660 45,710 1,020,800	438,710 25,140 1,633,280	000, 210, 010
46. Highway changes	New roads	Mile	35,000 00	6.2	227,500	2,097,130
47. Property damages	Improvements				1,056,280	1 384 280
Carried forward						14,763,880

TABLE 9.—SOULANGES SECTION—RECOMMENDED PROJECT—NAVIGATION COMBINED WITH THE DEVELOPMENT OF POWER See Plates Nos. 49-51

49-51	
Nos.	
ates	
e Pl	

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
Brought forward.			\$ cts.		0.0	14, 763, 880
THIRD STACE OF POWER DEVELOPMENT, ETC.—Con. (A) Works Primarly for Power: Substructures, Head and Tail-rane Excavation—Con. 48. St. Timothee power house	Reconstruction Interruption in operation.	H.P. yrs.	20 00	20 00 27,000 h.p. 1	1,000,000	
49. Power house substructure	Concrete	Cu. yd.	14 00		8,260,000	1,540,000
50. Enginecring and contingencies.						27, 138, 230 3, 392, 770
						30,531,000
(B) Works Primarily for Power: Machinery and Superstructure. 52. Power house machinery and superstructure	Generators and turbines, 28-26,800 h.p. units. Switching. Service units and cranes. Superstructure.				21, 016, 800 5, 107, 200 308, 440 3, 153, 600	
53. Engineering and contingencies	12½%.					29, 586, 040 3, 698, 960
Total		:				33, 285, 000

Cost of future enlargement from 25 ft, to 30 ft.	Quantity Amount Quantity Amount Quantity Amount	1, 213, 060 198, 140 452, 090 101, 250 276, 400 53, 000	00 605,000 332,750 115,000 63,250 184,700 101,580 33,400 18,370 509,110 330,920 105,000 68,250	90 4,365,260 90 545,740 1,911,000
Additional cost if navigation channels made 27 ft. deep originally	y Amount		20 41,920 0 135,320	1,124,720
Additio navigat made ori	Quantity	478, 145, 29, 20, 97,	250,000 76,220 208,190	
aving to navigation if channels made 23 ft. deep originally	Amount		143,000 43,650 138,640	1,137,450 142,550 1,280,000
Saving to navigation if channels made 23 ft. deep originally	Quantity	542,020 150,550 40,720 13,400 98,100	79,360	
Rate		№ 00∺4400	000000000000000000000000000000000000000	
Unit		Cu.yd.	Cu.,yd.	
Classification		Excavation—Earth, over depth. Day rock. Wet rock. Wet rock, over depth. Excavation—Earth, over depth.	Earth, over depth. Earth, over depth. Earth, over depth. Earth, over depth.	12½% approximately
Item and Description		55. Deep water in Lake St. Francis to below Pointe au Diable	58. Chamberry Gully to Cascades lock 59. Below Cascades lock	60. Engineering and contingencies

TABLE 9.—SOULANGES SECTION—RECOMMENDED PROJECT—NAVIGATION COMBINED WITH THE DEVELOPMENT OF POWER (THREE STAGE DEVELOPMENT)—Concluded

SUMMARY

TABLE No. 10.—SOULANGES SECTION—RECOMMENDED PROJECT—(ILE AUX VACHES THREE STAGE)—For details, see Table No. 9

Power—1st stage—Ile aux Vaches. 2nd "North of Cascades Point. 3rd "Cascades Rapids 1st Stage— Works solely for navigation. Works primarily for power substructures, head and tail-race excavation. Machinery and superstructures.	488,000 h.p. 762,000 h.p. \$ 31,594,000 34,686,000 13,079,000
2ND STAGE-	\$103,945,000
Substructure, head and tail-race excavation	22,654,000 14,637,000
3RD Stage— Substructure, head and tail-race excavation	30,531,000
Machinery and superstructure	33,285,000 63,816,000
Total	\$205,052,000
Cost of 1st stage with 50 per cent of complete installation. Cost with double locks in flight. Cost with single locks in flight. Saving if navigation channels made 23 ft. deep originally. Additional cost if navigation channels made 27 ft. deep originally. Cost of future enlargement from 25 ft. depth to 30 ft. depth.	207,210,000 204,044,000 1,280,000 1,265,000
Power House Installations	
1st stage—26—15,550 h.p. units (22 ft. head) 2nd " 10—54,500 " (75·5 ft. head) 3rd " 28—36,800 " (53 ft. head)	545,000 h.p.
Total	

TABLE No. 11.—SOULANGES SECTION—TABLE SHOWING OVERALL COST OF PROJECT RECOMMENDED—(ILE AUX VACHES THREE STAGE PROJECT)

Power marketed at 40,000 h.p. per year.

Interest during construction and marketing period—5 per cent.

Construction program planned for expenditure of \$10,000,000 per year.

	First cost	Half con- struc- tion period	Half market period	· Ii	nterest
Recommended Project— Navigation	31,594,000	2.39		0.124	3,920,000
1st stage—382,000 h.p	47,765,000 24,586,000			0.418	20,000,000
2nd stage—488,000 h.p	22,654,000	1.13	6.10	0.423	9,600,000
3rd stage—762,000 h.p	14,637,000 30,531,000 33,285,000	1.53	9.53	0.715	21,800,000
Add first cost	205,052,000				55,320,000 205,052,000
Total					\$260,372,000

TABLE No. 12.—SOULANGES SECTION—TABLE SHOWING OVERALL COST OF PROJECT RECOMMENDED—(ILE AUX VACHES THREE STAGE PROJECT)

Power marketed at 75,000 h.p. per year.

Interest during construction and marketing period—5 per cent.

Construction program planned for expenditure of \$10,000,000 per year.

	First cost	Half con- struc- tion period	Half market period	I	nterest
RECOMMENDED PROJECT— Navigation 1st stage—382,000 h.p. 2nd stage—488,000 h.p. 3rd stage—762,000 h.p.	31,594,000 47,765,000 24,586,000 22,654,000 14,637,000 30,531,000 33,285,000	2.39 1.13	2·55 3·26	0·124 0·272 0·239 0·381	3,920,000 13,000,000 5,410,000 11,630,000
Add first cost				• •	33,960,000 205,052,000 \$239,012,000

TABLE No. 13.—SOULANGES SECTION—TABLE SHOWING OVERALL COST OF PROJECT RECOMMENDED—(ILE AUX VACHES THREE STAGE PROJECT)

Power marketed at 150,000 h.p. per year.

Interest during construction and marketing period—5 per cent.

Construction program planned for expenditure of \$10,000,000 per year.

	First cost	Half con- struc- tion period	Half market period	Iı	nterest
Recommended Project-					
Navigation	31,594,000	2.39		0.124	3,920,000
1st stage—382,000 h.p	47,765,000 24,586,000	2.39			9,360,000
2nd stage—488,000 h.p		1.13	1.63	0.145	3,290,000
3rd stage—762,000 h.p	30,531,000	1.53	2.54	0.220	6,710,000
	205,052,000				23,280,000
Add first cost					205,052,000
Total					\$228,332,000

TABLE No. 14.—SOULANCES SECTION—HUNGRY BAY—MELOCHEVILLE PROJECT FOR NAVIGATION ALONE See Plates Nos. 58-59

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
. Channel excavation— (a) Deep water in Lake St. Francis to below Hungry Bay Guard Lock	Excavation-	Cu.,yd.	\$ cts.	1,194,570	\$ 418,100 57,170	00
(b) Weir Channel at Hungry Bay Guard LockExcavation-	Earth. Dry rock. Excavation—Earth. Dry rock.	Cu. yd.	0 65 0 35 0 65 0 65 0 65 0 65 0 65	725, 540 122, 580 499, 220 96, 240 9, 450		1,143,000
(c) Below Hungry Bay Guard Lock to above Melocheville Excavation—Earth Flight locks. Dry rock.	Excavation—Earth. Dry rock.	Cu. yd.	0 45 0 65 1 60	10,716,250 1,351,940 415,600	4,	
(d) Above Flight Locks to Deep Water in Lake St. Louis Exravation—	Excavation—Dry rock	Cu. yd.	1 4 4 25 4 25 55 55 55 55 55 55 55 55 55 55 55 55	902, 910 57, 390 6, 600	1,444,660 243,910 28,050	6,366,040
2. Dikes— (a) Breakwater, Lake St. Francis.	Rock fill	Cu. yd.	1 80	747,500	1,345,500	1,716,620
(b) Above Hungry Bay Guard Lock	Earth fill Rock fill Stripping	Cu. yd.	0 42 0 60 0 65	119,660 52,830 32,900	50,260 31,700 21,390	1,345,500
(c) Hungry Bay Guard Lock to Flight Locks	Barth fill Path fill Stripping Trimming Sodding—	Cu. yd. Sq. yd. Cu. yd.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6,300,040 422,000 1,066,540 1,232,750 155,430 118,740	2, 646, 020 253, 200 693, 250 308, 190 69, 950 1, 306, 140	103, 350
3. Supply Weir at Guard Lock	Concrete. Concrete. Foundation contingency. Excavation-Earth, trench.	Cu, yd.	11 00 9 00 0 65 3 10	3,190 3,500 9,560 870	35,090 31,500 3,510 6,220 2,700	5,276,750
Carried forward						16.203.670

TABLE No. 14-SOULANGES SECTION-HUNGRY BAY-MELOCHEVILLE PROJECT FOR NAVIGATION ALONE-Continued See Plates Nos. 58-59

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
Brought forward			\$ cts.		60	\$ 16,203,670
3. Supply Weir at Guard Lock—Con	Excavation—Rock footings. Rock trench. Sheeting and bracing. Gates, hoists, etc.	Cu.,yd. M.F.B.M.	2 40 4 10 110 00	1,650	3,960 780 2,550 37,600	60
4. Hungry Bay Guard Lock and Entrance Pier	Concrete. Close drilling. Lock gates and operating Machine. Lock valves and operating machine. Freders, capstans, lighting equip. ment, etc.	Cu. yd. Sq. ft.	9 00 45	123,880	1, 114, 920 12, 270 372, 000 100, 000 206, 700	·
5. Flight locks (single flight) and Entrance Piers	Concrete. Close drilling. Lock valves and operating machine. Lock valves and operating machine. Emergency gate. Fenders. capstans, lighting equipment of the concrete of	Cu. yd. Sq. ft.	0 45	645,790	5,812,110 143,760 982,000 112,500 175,000 350,400	1,000,030
6. Railroad diversions					271,240	971 940
Bridges		:			2,312,000	9 919 000
8. Highway changes	Third class roads	Lin. ft. Sq. yd.	2 2 00	6,600	13,200 106,000	410 900
	Excavation—EarthBridges	Cu. yd.	0 35	1,156,960	404,940	119,200
10. Fences	Fencing.	Rod	3 50 18 00	9,500	33,250 3,030	36,280
11. Property damages	Improvements	: :	: :		259,050 610,000	080 080
12. Canal lighting and office.		:	:		40,000	40,000
						29.902.120

13. Engineering and contingencies.	12½ per cent				<u>:</u> ::				3,737,880
14. Total					:				33,640,000
15. Additional cost to provide double flight locks at Melocheville.	ocks at Melocheville.				:			:	3,901,000
Item and Description	Classification	Unit	Rate	Saving if naviga- tion channels made 23 ft, deep origin- ally	naviga- els made p origin-	Additional consvigation chamade 27 ft. consignally	Additional cost if navigation channels made 27 ft. deep originally	Cost of future en- largement from 25 ft. to 30 ft. depth	from 25 t. depth
				Quantity Amount	Amount	Quantity	Amount	Quantity Amount Quantity	Amount
16. Deep water in Lake St. Francis to deep water in Lake St. Louis	Excavation—Earth. Earth. Earth over depth. Wet rock. Wet rock.	Cu., yd.	\$ cts. 0 355. 0 0 355. 0 0 455. 0 4 4 255.	346,480 675,400 383,970 150,310 15,260	\$121,270 303,936 249,580 240,500 64,860 122,860 \$11,103,000	359, 190 628, 000 350, 500 1132, 200 14, 890	222, 600 222, 600 227, 830 211, 520 63, 280 8910, 950 113, 050 81, 024, 000	919,066 1,500,866,986,946,006 165,006 323,676 474,276 113,700	321, 676, 380, 608, 820, 608, 820, 608, 820, 830, 900, 82, 930, 930, 930, 930, 930, 930, 930, 930

St. Lawrence Waterway Project

TABLE 15.—SOULANGES SECTION—NAVIGATION ALONE.—HUNGRY BAY—MELOCHEVILLE ROUTE

For details—See Table No. 14

Canal excavation. Earth dykes. Hungry Bay guard lock and weir. Melocheville Locks (single flight).	\$9,478,070 6,725,600 1,929,800 7,684,440 869,050
Property damages Bridges Roads, railways and miscellaneous Engineering and contingencies—12½%	903, 160 3, 737, 880
Total. Additional cost to provide double flight locks Saving if Navigation Channels made 23 ft. deep originally. Additional cost if Navigation Channels made 27 ft. deep originally. Cost of future enlargement from 25 ft. depth to 30 ft. depth.	\$3,901,000 1,103,000 1,024,000

TABLE No. 16-SOULANGES SECTION-LATERAL CANAL ON NORTH SIDE OF RIVER-FOR NAVIGATION ALONE See Plates Nos. 60-61

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
			\$ cts.		99	*
1. Channel Excavation— (a) Deek water in Lake St. Francis to Coteau du Lac Guard Excavation— Lock.	Excavation—Earth. Dry rock Drodging Drodging Oredging Wet rock Wet rock Wet rock	Cu. yd.	0 65 0 65 0 65 0 65 4 4 25 4 25	1,087,950 960,920 462,550 75,360 118,030 14,010	707, 170 1, 537, 470 300, 660 48, 980 501, 630 59, 540	2.00 mg 1.00 m
(b) Guard Lock to Chamberry Gully Lock	Excavation—Dry earth	Cu.,yd.	0 55	12, 327, 060 574, 840	6,779,880	7 600 690
(c) Chamberry Gully Lock to Cascades Lock	Excavation—Earth. Paving—Concrete.	Cu., yd.	0 55 11 00	2,365,400 5,250	1,300,970	1 252 790
(4) Below Cascades Lock	Excavation—Earth	Cu.,yd.	0 65 0 65	1,036,600	673, 790 68, 250	742,040
2. Dykes— (a) Breakwaters—Lake St. Francis	Exeavation—Earth Criboork Concrete.	Cu. yd.	0 65 1 80 9 00 9 00	10,960 415,430 38,730 2,360	7,120 747,770 193,650 21,240	060 780
(b) Above Coteau de Lac Guard Lock	Earth fill Rock fill Stripping Paving—Concrete.	Cu. yd.	0 42 0 60 0 65 11 00	106,210 30,260 23,660 8,560	44, 610 18, 160 15, 380 94, 160	179 910
* (c) Guard Lock to Chamberry Gully Lock	Earth fill Rook face Stripping Trimming Sodding Paving—Omerete	Cu. yd.	0 42 0 90 0 65 0 25 0 25 11 00	3, 248, 890 530, 580 566, 310 110, 660 11, 500 8, 150	1, 364, 530 477, 520 368, 100 27, 670 5, 180 89, 650	2,332,650
(d) Chamberry Gully Lock to Cascades Lock	Earth fill. Stripping. Trimming.	Cu. yd. Sq. yd.	0 42 0 65 0 25	52, 580 6, 980 7, 650	22, 090 4, 540 1, 920	28,550
Carried forward					<u> </u>	16,459,120

TABLE No. 16.—SOULANGES SECTION—LATERAL CANAL ON NORTH SIDE OF RIVER—FOR NAVIGATION ALONE—Continued

See Plates Nos. 60-61

	Total	\$ 16,459,120	2, 452, 940	1 090 240						c		9	\$35,891,630 4,486,370	\$40,378,000	\$1,922,000	\$6,382,000
	Amount	69	30,250 1,365,540 3,030 7,620 591,000 100,000 175,000 206,700	1,929,340	5,921,840	4,914,670	T, 000, 000	10,020	345,280	2,202,130	37,000	619,290				
	Quantity		2,750 145,060					15,420							,	
	Rate	\$ cts.	000 000					0 65				:	1			
	Unit		Cu. yd.	:		:		Cu. yd.		:	:		0			
See Plates Nos. 60-61	Classification		Concrete Concrete Foundation contingency Exercation—Rook, earth, etc. Lock gates and operating machinery Bluice gates, hoists, etc. Emergency dam. Fenders, capstans, lighting equipment, etc.	Same as Item No. 4—Table No. 9	Same as Item No. 5—Table No. 9	Same as Item No. 6—Table No. 9		Excavation—Earth	Same as Item No. 7—Table No. 9				$12\frac{1}{2}\%$			
	Item and description	Brought forward	3. Coteau du Lac Guard Lock, Entrance piers and weir	4. Guard gate, entrance piers and weir.	5. Chamberry Gully Lock, entrance piers and weir	6. Cascades Lock, entrance piers and weir	7. Drainage— (a) Culverts for Rivers Graisse, Rouge and Delisle	(b) Ditch—Cedars to P.L.H. & P. Co. head-race	8. Railway bridge for C.N. Ry, at Coteau	9. Highway changes	10. Canal lighting and offices	11. Property damages	12. Engineering and contingencies	13. Total	14. Cost to divert canal into river when power is developed	15. Cost of portion that would be abandoned when canal is diverted into river.

future ant from 30 ft.	Amount	60		4, 365, 260	545,740	4,911,000
Cost of future enlargement from 25 ft. to 30 ft. depth	Quantity Amount Quantity Amount Quantity Amount					
Additional cost if mayigation channels made 27 ft. deep Originally	Amount	69	242,800 460,870 326,370 84,150		1,114,190	1,255,000
	Quantity		373, 540 837, 940 203, 980 19, 800	:		
Saving if naviga- tion channels made 23 ft. deep Originally	Amount	69	227, 990 480, 940 309, 250 70, 380		\$1,088,560 136,440	1,225,000
Saving i tion chan 23 ft. Origi	Quantity		350, 750 874, 440 193, 280 16, 560			
Rate		\$ cts.	0 65 0 55 1 60 25 25	1		
Unit	i		Cu.yd.	. :		
Classification			Excavation—Earth. Earth. Dry rock. Wet rock.	Same as Item Nos. 55-59-Table	123%	1,225,000
Item and Description			 Lake St. Francis to Lake St. Louis 	17. Enlargement to 30-foot depth, assuming Same as Item Nos. 55-59-Table it is done after Canal is diverted to No 9	river. 18. Engineering and contingencies	19. Total

TABLE 17.—SOULANGES SECTION—NAVIGATION ALONE—LATERAL CANAL ON NORTH SIDE OF RIVER

For details—See Table No. 16

anal excavation		\$	12,955,83
Carth dykes			3,503,29
oteau du Lac guard lock and weir			2,452,94
duard gate and weir			1,929,34
Chamberry Gully lock and weir			5,921,84
ascades lock and weir			4,914,67
roperty damages. Roads, bridges, and miscellaneous.			619, 29
Roads, bridges, and miscellaneous.			3,594,43
Ingineering and contingencies—12½ per cent			4,486,37
		-	
Total		. \$	40,378,00
ost with double locks in flight			
cost with single locks in flight			
aving if navigation channels made 23 feet deep originally			1,225,00
dditional cost if navigation channels made 27 feet deep originally			1,255,00
ost of future enlargement from 25 feet depth to 30 feet depth assuming it is done after	cana	al	
is diverted to river.			4,911,00
ost to divert canal into river when power is developed			1,922,00
ost of portion of canal that would be abandoned when canal is diverted into river		-1	6,382,00

TABLE No. 18,—SOULANGES SECTION—NAVIGATION COMBINED WITH ALL RIVER DEVELOPMENT—CENTRE POOL ELEVATION 115
See Plates Nos. 52-53

Total	\$ 4,390,350 772,440	1 037 300	1,001,000	1, 329, 460 379, 270	145,900	2,803,800		4, 420, 700	16,380,530
Amount		177, 650 664, 620 195, 030	296, 230 168, 630 541, 960 94, 430		111,330 15,540 19,030	2, 124, 180 567, 150 24, 610 319, 220 108, 900	705,000 100,000 175,000	3, 013, 560 41, 520 374, 290 9, 840 806, 000 100, 000	
Quantity		323,000 156,380 45,890	538,600 105,390 127,520 22,220		265,060 14,800 29,270	236, 020 113, 430 54, 680 491, 100		334,840 92,270 233,930 2,400	
Rate	& cts.	0.55 4 .25 4 .25	0.55 1 60 4 25 4 25		0 42 1 05 0 65	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	9 00 0 45 1 60 4 10	
Unit		cu.,yd.	cu. yd.		cu. yd.	cu. yd. sq. ft. cu. yd.		cu. yd. sq. ft. cu. yd.	
Classification	See Table No. 9—Item No. 1 (a) See Table No. 9—Item No. 1 (b)	Excavation—Earth. Wet rock. Wet rock overdepth	Excavation—Earth Dry rock Wet rock Wet rock overdepth	See Table No. 9—Item No. 2 (a) See Table No. 9—Item No. 2 (b)	Earth fill Rock fill Stripping.	See Table No. 9—Item No. 3. Concrete Cribwork Close drilling Excavation—Earth	Gates and operating machinery. Valves and operating machinery. Emergency gate Fenders, capstans, lighting equipment, etc.	Concrete (Tose drilling Care Excavation— Rock trench Rock trench (actes and operating machinery.	
Item and description	Works Solety ror Navigation— (a) Deep water in Lake St. Francis to below Pointe au See Table No. 9—Item No. 1 (a). (b) At Leonard Island. (c) At Leonard Island.	(c) Approaches to Cedars Lock	(a) Approaches to Melocheville Lock	2. Dykes— (a) Breakwater—Lake St. Francis (b) Abrove Cortean du Lac.	(c) Above Cedars Lock—south side.	Coteau du Lac Guard Lock and entrance piers. Cedars Lock and entrance piers.		5. Melocheville Lock and entrance piers	Carried forward

TABLE No. 18—SOULANGES SECTION—NAVIGATION COMBINED WITH ALL RIVER DEVELOPMENT—CENTRE POOL See Plates Nos. 52—53

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
			\$ cts.		69	66
Brought foreard						16,380,530
Works Solely for Navigation—Con. 5. Melocheville Lock and entrance piers—Con	Emergency gate Fenders, capstans, lighting equip- ment, etc. Unwatering				175,000 206,700 604,050	
6. Railway Bridge for C.N.Ry. at Coteau 7. Highway Manges 8. Canal lighting and offices 9. Property damages above Pointe au Diable.						5,330,960 345,280 134,000 35,000 487,040
:	12½ per cent					22,712,810 2,857,190
11. Total				:		25,570,000
(a) Inrough Coteau Kapids. (b) Pointe a Biron.	See Table No. 9—Items No. 13 (a) and (b) . See Table No. 9—Item No. 13 (c)					6, 229, 650 395, 930
(a) Coteau du Lac to Cedars Power House	Earth fill Earth fill Earth fill Bock ''l Rock fill Striping	cu. yd.	0 42 0 60 0 75 0 75 0 80 0 80 0 65	410, 950 135, 200 918, 520 43, 970 410, 320 354, 470	172,600 81,120 688,890 43,970 328,260 230,410	
(b) Grande He (c) East end of Cedars Dam to Power House.	See Table No. 9—Item No. 14 (b) Earth fill Rock fill.	cu. yd.	0 60	1,318,630	791,180	1,545,250
(d) At St. Timothee	Barth fill Rock fill Stripping.	cu. yd.	0 90 1 80 0 65	77 780 35,010 37,240	70,000 63,020 24,210	993,570
	_	-	_			157,230

14. Dams at Clarke's Island	See Table No. 9—Item No. 15 Concrete. Concrete.	eu. "yd.	9 00 00	631,880	6,950,680	1,026,630
	Foundation contingency Excavation—Earth trench Book footings Rock trench Unwatering Gates, towers, hofsts, etc.	cu. yd.	0 55 3 10 2 40 4 10	860,140 3,940 185,160 1,000	695,070 473,080 12,210 444,380 4,100 4,064,680 453,700	6
16. Cascades Dam	Concrete. Concrete.	Cu.,yd.	11 00 9	319,820 45,540	3,518,020	15, 175, 140
	Poulastino contages Exervation Rock footings. Earth fill Rock fill Striping. Cates, hoists, etc.	Cu., yd.	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	132, 150 22, 580 810, 280 229, 270 8, 110	317,160 12,420 729,250 458,540 735,200 735,200	
	CII Watching				0001	8,546,000
17. Drainage or river Delisle		Cu. yd.	1 60 0 65 0 65	622, 220	1,440 404,440 18,210 50,000	418, 030
18. Highway changes	New roads				247,120	400,000
19. Property damages.	Improvements				2,412,090 646,400	407,000
20. Railroad relocation—C.N. Rly. at Bellerive. 21. Interruption in operation of P.L.H. & P. Co.	See Table No. 9—Item No. 20	H.Pyrs.	20 00	00 12,000 h.p.—	480,000	932,600
				5,000 h.p.—	700,000	
22. St. Timothee Power House	See Table No. 9—Item No. 48					1,180,000 1,540,000
23. Engineering and contingencies	12½ per cent					40,726,140 5,110,860
24, Total						45,837,000

TABLE No. 18—SOULANGES SECTION—NAVIGATION COMBINED WITH ALL RIVER DEVELOPMENT—CENTRE POOL ELEVATION 115—Continued See Plates Nos. 52-53.

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
WORKS PRIMARILY FOR POWER—FIRST STAGE— 272,000 installed h.p. at Cascades. 631,800 installed h.p. at Cedars.			s cts.		60	60
(A) Substructures, Head and Tail-Race Excavation, etc.—25. Channel excavation—(a)_He aux Vaches.	Tail-Race Excavation, fig.— Excavation—Earth Excavation—Earth	Cu.,yd.	0 55 55	1,915,700	1,053,630	
(b) Headrace and power house—Cedars	Excavation—Barth Earth overdepth Dry rock	Cu.,yd.	0 55 0 55 1 60	9,878,320 108,810 134,540	5,433,080 59,850 215,260	
(c) At St. Timothee	Excavation-	Cu.,yd.	1 00	516,090	516,090	09,708,190
(d) Tail-race—Cascades plant	Excavation—Dry rock. Earth. Earth, over depth	Cu.,yd.	1 60 0 55 0 55	478,470 274,270 21,910	765,550 150,850 12,050	
26. Ice sluices, etc., at Cedars power house	Concrete Concrete Foundation contingency Excavation—Earth Rock trench Rock trench Gates, hoists, etc.	Cu. yd.	11 00 9 00 0 65 0 65 2 40	49,720 27,500 77,750 11,440	546, 920 247, 500 54, 690 50, 540 4, 000 27, 460	928, 450
27. Power house substructure—Cedars	Concrete. Gates and racks. Unwatering.	Cu. yd.	14 00	578,330	8,096,620 1,709,220 650,900	
28. Power house substructure—Cascades	Concrete Gates and racks.	Cu. yd.	14 00	220,780	3,090,920	3,939,080
29. Engineering and contingencies	12½ per cent					23,757,600 2,969,400
30. Total						26,727,000

		10010"	., 0,100	,, 000, 00				0010"
2 2 2 2 3	8,946,380	34, 101, 650 4, 262, 350 38, 364, 000			2,104,100	5,038,580	5; 668, 000	7,696,710 962,290 8,659,000
16,833,600 3,872,960 314,860 4,133,850	5, 730, 800 1, 428, 000 356, 550 1, 431, 030			720,000 137,600 246,500 1,000,000	2,408,560		5,228,800	
				180,000 86,000 58,000	172,040			
				4 00 1 60 4 25	14 00			
				Cu.,yd.	Cu. yd.			
Generators and turbines—26-24300 h.p. units Switching: Service Units and cranes.	Generators and turbines—8-34000 h.p. units Switching Service units and cranes Superstructure	12½ per cent		Excavation—Concrete	Concrete	123.%	Generators and turbines—8-24,300 h.p. units.	Outobaracians
(B) MACHINERY AND SUPERSTRUCTURES— 31. Cedars power house	32. Cascades power house	33. Engineering and contingencies	SECOND STAGE—Remodelling present Cedars Plant—194,400 installed h.p.—	(A) Substructure, Head and Tail-hace Excavation—35. Removal of present Cedars power house	36. Power house substructure, etc	Engineering and contingencies	38. Total. (B) Machinery and Superstructure— 39. Power house machinery, etc	40. Engineering and contingencies 41.

TABLE No. 18—SOULANGES SECTION—NAVIGATION COMBINED WITH ALL RIVER DEVELOPMENT—CENTRE POOL ELEVATION 115—Concluded See Plates Nos. 52-53

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
			\$ cts.		66	69
(A) Substructure, Head and Tail-race Excavation— 42. Excavation and unwatering	Excavation—Earth. Earth.	Cu. yd.	0 65 0 55 0 55	990, 390 548, 530 43, 830	643,750 301,690 24,110	
	Dry rock.	*	1 60	953, 200	1,525,120	000 000 0
43. Completion of dam, walls, etc	Concrete Excavation—Rock, footings	Cu. yd.	9 00 2 40	37,850	340,650	905 770
44. Power house substructure, etc	Concrete	Cu. yd.	14 00	463,000	6, 482, 000 1, 696, 310	8,178,310
45. Engineering and contingencies.	123%					11,953,740
46. Total						13,448,000
(B) Machinery and Superstructure	Generators and turbines—25-34,000 h.p.unifs. Switching Superstructure.		- · · · · · · · · · · · · · · · · · · ·		17,950,000 4,462,500 4,293,070	
48. Engineering and contingencies						3, 338, 430
49. Total						30,044,000

11 22

25, 570, 000 45, 837, 000	200		,	\$	\$123,400,000
	26,727,000 38,364,000	5,668,000 8,659,000	13,448,000 30,044,000		
Item No. 11 24	. 30	" 38 41	" 46 " 49		
Works solely for navigation Works solely for navigation and power. Works mirnarily for nower—	First Stage—Total installed capacity—903, 800 h.p. Substructures, head and tail-race excavation, etc Machinery and superstructures.	Second Stage—Total installed capacity, 194,400 h.p. Substructures, head and tail-race excavation, etc Machinery and superstructures.	Third Stage—Total installed capacity—850,000 h.p. Substructure, head and tail-race excavation, etc Machinery and superstructure.	Torar—Total installed capacity—1,948,200 h.p.	Cost to open navigation and provide an installation of 404, 300 h.p. of new power together with replacement of power lost at existing plants, i.e. 197,000 h.p. at present Cedars plant and 10,000 h.p. at other plants.

Nore.—404,300 h.p.—Total installation in first stage of recommended project.

TABLE 19.—SOULANGES SECTION—NAVIGATION AND POWER—ALL RIVER DEVELOPMENT—CENTRE POOL ELEVATION 115

For details—See Table 18

Power—1st Stage—One-quarter of Cascades Rapids and portion of Cedars 2nd Stage—Reconstruction of present Cedars plant		638,000 h.p. 180,000 h.p. 806,000 h.p.
1st Stage— Works solely for navigation Works common to navigation and power. Works primarily for power—	25,570,000 45,837,000	
Substructures, head and tail-race excavation	26,727,000 38,364,000	136,498,000
2ND STAGE— Substructure, head and tail-race excavation	5,668,000 8,659,000	
3RD STAGE— Substructure, head and tail-race excavation	13,448,000	14,327,000
Machinery and superstructure	30,044,000	43,492,000
Total		\$194,317,000
Cost to open navigation and provide an installation of new power equal to that of recommended project, i.e., 404,300 h.p		\$123,400,000
Powerhouse Installations		
	272,000 631,000	
2nd Stage, 8-24,300 h.p. units (32·5 ft. head)		903,800 h.p. 194,400 h.p. 850,000 h.p.
Total	1	1,948,200 h.p.

TABLE 20.—SOULANGES SECTION—TABLE SHOWING OVERALL COST OF ALL RIVER DEVELOPMENT—CENTRE POOL ELEVATION 115

Power marketed at 75,000 h.p. per year. Interest during construction and marketing period, 5 per cent. Construction program planned for expenditure of \$10,000,000 per year.

	First cost	Half Con- struction period	Half Market period	I	nterest
Navigation. 1st Stage—638,000 h.p. 2nd Stage—180,000 h.p. 3rd Stage—806,000 h.p.	\$ 25,570,000 72,564,000 38,364,000 5,668,000 8,659,000 13,448,000 30,044,000	3.58 3.63 0.28 0.67	4·25 1·20 5·37	0·192 0·469 0·075 0·343	\$ 4,910,000 34,050,000 425,000 4,610,000
Add first cost	194,317,000			• •	43,995,000 194,317,000 238,312,000

TABLE No. 21.—SOULANGES SECTION—NAVIGATION COMBINED WITH—ALL RIVER DEVELOPMENT—CENTRE POOL ELEVATION 125 See Plates Nos. 54-55

Total	\$ 4,390,350 772,440	2, 183, 500 1, 358, 720 742, 040 1, 329, 460 379, 270		2, 381, 650 28, 550 2, 803, 340 1, 929, 340 5, 921, 840 4, 914, 670 345, 280	1,039,830 35,000	487,040	31, 235, 900 3, 904, 100 35, 140, 000
Amount	60	4	737, 650 173, 240 173, 240 314, 670 43, 950 3, 810 196, 460	174,000 865,830	10,020	57,500	
Quantity	000 040 6	:::::	2,1/1,110 1,229,420 173,240 484,110 175,780 8,460 17,860		15,420		
Rate	cts		00000000000000000000000000000000000000		0 65		
Unit	3		Sq.,yd.		Cu. yd.		
Classification	See Table No. 9—Item No. 1 (a)	See Table No. 9—Item No. 1 (e) " " " 2 (a) " " 2 (a) " " 2 (b)	Darth fill Earth fill Rook fill Stripping Trimming Sodding Paving—Concrete	See Table No. 9—Item No. 2 (4) " " 4 " " 5 " " 5 " " 6 " " 6 " " 6 " " 6 " " 7 " New roads	Excavation—Earth	See Table No. 9—Item No. 10 Improvements Lands.	12½ per cent.
Item and description	Works Solenty for Navigation— (a) Deep water in Lake St. Francis to below Pointe au See Table No. 9—Item No. 1 (a). (b) At Leonard Island (c) At Leonard Island (d) (e) The Description of the Pointe of the Poi	Above I oline a billion to Chamberry Cauly Look. Chamberry Gully Look to Cascades Look Bellow Cascades Look. Breatwaters—Lake St. Francis. Above Coreau du Lac Look	(c) Fonce a Dion to Chamberry Guly Lock	2 Coteau du Lac Guard Lock to Cascades Lock. 4 Guard Cate, entrance piers and weir. 5 Clamberry Gully Lock, entrance piers and weir. 6 Cascadea Lock, entrance piers and weir. 7 Railway bridge for C.N. Riy, at Coreau. 8 Highway changes.	9. Canal lighting and offices. 10. Drainage ditch. Excavation—Earth.	11. Property damages: (a) Above Pointe au Diable. (b) Pointe à Biron to Cascades Point.	12. Engineering and contingencies

TABLE No. 21.—SOULANGES SECTION—NAVIGATION COMBINED WITH ALL RIVER DEVELOPMENT—CENTRE POOL ELEVATION 125 See Plates Nos. 54-55

Item and description
Common to Power and Navigation— Channel excavation— Through Coteau Rapids See Table No. 9—Item No. 13 (a)
(9) Earth fill Rock fill Stripping
(b) Gradde IIe
See Table No. 9—Item No. 15. Cancrete. Concrete. Foundation contingency. Excavation—Barth. Rock footings. Rock trench.
Cates, towers, hoists, etc
Drainage. (a) Diversion—River Delisle (b) Rivers, Graisse, Rouge and Delisle Highway changes Property damages Lands Lands
21. Railroad relocation—C.N. Rly. at Bellerive
23. Engineering and contingencies

	11, 390, 430 11, 429, 400	22,819,830 2,852,170	25,672,000		3,752,100	33,774,000	480.000		5,000		0 10 10 10 10 10 10 10 10 10 10 10 10 10	0,581,650	2,854,200 227,500 1,384,280 1,540,000	17,077,630
304,450 1,200,070 6,166,490 114,070 340,740 1,561,550 366,680	8, 736, 420 2, 692, 980	2	67	22, 017, 600 3, 715, 200 536, 740 3, 752, 360				4, 594, 480 1, 165, 410	409, 440 14, 680	735, 200 2, 926, 940	138,020 124,560 23,470	452,540 36,160 2,365,500		
468, 390 7, 200, 070 7, 708, 110 1114, 070 425, 920 975, 970	624,030				:	:		417,680	170,600		153,360 62,280 36,100	822,800 65,740 1,478,440		
0 65 1 00 0 80 1 00 1 60 1 60	14 00							11 00 9 00	2 40 0 65		0 00 00 00 00 00 00 00 00 00 00 00 00 0	0 55 0 55 1 60		
22222	Cu. yd.							Cu.,yd.	Cu.,yd.		Cu. yd.	Cu. yd.		
Earth. Earth. Earth. Earth, overdepth. Earth, over depth. Dry roke. Unwatering.	Concrete	12½ per cent		Cenerators and turbines—36-15,550 h.p. units Switching Service units and cranes Superstructure	12½ per cent			Concrete Concrete	Excavation—Rock footings. Earth	Gates, hoists, etc	Barth fill. Rock fill Stripping	Excavation—Earth	See Table No. 9—Item No. 46	
	26. Power house substructure	27. Engineering and contingencies	28. Total	(B) Machinery and Suderstructures— 29. Machinery, etc.	30. Engineering and contingencies	31. Total	SECOND STAGE—Cascades Island—1,398,400 installed h.p.— (A) Supernoveness, Hana Any Tara-Arca Excavarion, 27c.— 32. Removal of present Cedars power house.	33. Dam at Cascades Island				34. Power house and tail-race excavation	35. Highway changes. 38. Property damages. 37. St. Timothee power house.	Carried forward

TABLE 21.—SOULANGES SECTION—NAVIGATION COMBINED WITH ALL RIVER DEVELOPMENT—CANTRE POOL ELEVATION 125—Concluded

See Plates Nos. 54-55

Them and description	Classification	Trnit	Rate	Ougntity	Amount	Total
***************************************			e oto		8	9
Brought forward.		:				17,077,630
(A) SUFSTRECTURES HEAD AND TALL-RACE EXCAVATION, ETC.—Con. 38. Power house substructure	Concrete	Cu. yd.	14 00	797,750	11,168,500	
						14,662,280
39. Engineering and contingencies.	$12\frac{1}{2}\%$:			\$ 31,739,910 3,967,090
40. Total						\$ 35,707,000
(B) Machinery and Superstructure— 41. Machinery, etc.	Generators and turbines—38-36,800 h.p. units Switching Svritching Sprince units and cranes Superstructure.				28, 522, 800 6, 931, 200 366, 950 4, 336, 200	
42. Engineering and contingencies	122%					5,019,850
43. Total						45, 177, 000
	SUMMARY					
Works solely for navigation Works common to navigation and power Works common in navigation and power			Item No. 13			35,140,000 28,222,000
First Stage—Total installed capacity—559,800 h.p. First Stage—Total installed capacity—559,800 h.p. Substructures, head and tail-race excavation, etc. Machinery and superstructures			3 3	31	25, 672, 000 33, 774, 000	50 446 000
Second Stage—Total installed capacity—1,388,400 h.p. Second Stage—Total installed capacity—1,388,400 h.p. Substructures, Ined and tail-race excavation, etc. Machinery and superstructures			3 3	43	35, 707, 000 45, 177, 000	000, T±0, 000
					-	80,884,000
Total installed capacity—1,958,200 h.p.				:		\$203,692,000
Cost to open navigation and provide an installation of 404, 300 h.p. of new power	f new power					\$113,687,000

Norm.—404, 300 h.p.—Total installation in first stage of recommended project.

TABLE 22.—SOULANGES SECTION—NAVIGATION AND POWER—ALL RIVER DEVELOPMENT—CENTRE POOL ELEVATION 125

For details—See Table 21

Power—1st Stage—Pointe à Biron	516,000 h.p. 1,113,000 h.p.
18T STAGE— Works solely for navigation \$35,140 Works common to navigation and power 28,222 Works primarily for power—	
Substructures, head and tail-race excavation. 25,672 Machinery and superstructures. 33,774	,000
2ND STAGE-	\$122,808,000
Substructure, head and tail-race excavation. \$ 35,707 Machinery and superstructure 45,177	
Total	
Cost to open navigation and provide an installation of new power equal to that in 1st Stag recommended project, i.e., 404,300 h.p.	
Power House Installations	
Ist Stage—36-15,500 h.p. units (22 ft. head). 2nd Stage—38-36,800 h.p. units (53 ft. head).	. 559,800 h.p. 1,398,400 h.p.
Total	. 1,958,200 h.p.

TABLE 23.—SOULANGES SECTION—POWER ALONE—AS IN RECOMMENDED PROJECT (ILE AUX VACHES THREE STAGE DEVELOPMENT)

Total	6/9	5,046,260 1,183,350 1,026,630 932,600 50,000	8,238,880	9,268,000	1 770 600	1, (18, 080		. 000 080	740,000	1,092,500		769, 180
Amount	o-9		:		1,586,330	27,720 81,000 2,770	29,500 20,900	18,900	887,760 99,600 105,000	121,550 464,760 12,150	24,770 24,770 13,970	000,00
Quantity					2,440,500 120,850	2,520	8,800 6,520 34,710 209		98,640	11,050	2,550 1,360 133,500 7,990 127	
Rate	\$ cts.		:	:	0 65 1 60	11 00 9 00	5 00 0 65 0 85 100 00		9 00	11 00 9 00	1 60 4 10 0 65 3 10 110 00	
Unit					Cu.,yd.	Cu.,yd.	Cu.,yd. lin. ft. tons		Cu. yd.	Cu. yd.	Cu.,yd. M ft. B.M.	
Classification		See Table No. 9—Item No. 13 (s). See Table No. 9—Item No. 13 (d). See Table No. 9—Item No. 15. See Table No. 9—Item No. 20	12½%		Excavation—EarthDry rock	Concrete	Curbwork Excavation—Earth Round bearing piles Steel Sheet Piling	Lock gaves, etc	Concrete Cribwork Gates, etc	Concrete	Excavation—Book Book trench. Earth. Earth trench.	Gates, noists, etc
Item and description	FIRST STAGE—He aux Vaches—404,300 installed h.p.	(A) COTEAU RAPIDS ENTARGEMENT— (B) COTEAU (From above Clarke's Island to below Broad Island. See Table No. 9—Item No. 13 (c). 2. Round Island channe. 3. Dams at Clarke's Island. 4. Railroad relocation C.N. Ry. at Bellerive. 5. Property Damages.	6. Engineering and contingencies	7. Total.	(B) Revision of 14 pr. Navigation— 8. Exceptation for Canal	9. Guard gate and weir above Chamberry Gully LockC			10. Chamberry Gully and Cascades Locks	11. Regulating weirs.		

		De	Lawier	ice in acciae	ig I TO	jeci			305
2,323,010	150,000	6,410,270 801,730 7,212,000	395, 930 750, 080	1,197,470 573,530 15,205,030 1,531,990 1,581,000	$\begin{array}{c} 926,980 \\ 480,000 \\ 10,875,550 \end{array}$	32,094,560	36, 106, 000 24, 586, 000	9, 574, 400 1, 727, 620	11,302,020
1,747,960 52,250 76,320 261,440 43,950 3,810 137,280	56,000			603.580	323,400			9,574,400	
2, 913, 260 49, 760 76, 320 402, 210 175, 780 8, 460 12, 480						:		17,408,000	
0000 11000 11000 11000 11000			: :			:		0 55	
cu. yd. " Sq.,yd. Cu. yd.		4						Cu. yd.	<u>:</u>
Earth fill Rock fill Rock fill Stripping Trimming Sodding Payling—Concrete	Lands	12,19%	See Table No. 9—Item No. 13 (c) See Table No. 9—Item No. 25	See Table No. 9—Item No. 14 (a) See Table No. 4—Item No. 14 (b) See Table No. 4—Item No. 16. See Table No. 9—Item No. 16. (b) and (c). (b) and (c). Invocements	Lands. See Table No. 9—Item No. 21. See Table No. 9—Item No. 24.	121%	See Table No. 9—Item No. 30	Excavation—Earth	
12. Dykes	13. Bridges. 14. Property damages.	15. Engineering and contingencies	щ -	18. Dykes- Coteau du Lao to Cedars. (b) Grand II. 19. Cedars da. 20. Drainage. 21. Highway quages.		25. Engineering and contingencies	26. Total. (D) Machinery and Superstructure— 27. Total.	SECOND STAGE—Power House North of Cascades Pt.— 554,000 installed h.p.— (A) Substructures, Heab and Tail-rage Excavarion— 28. Head-race—Cedars to Power House	Carried forward

TABLE 23.—SOULANGES SECTION—POWER ALONE—AS IN RECOMMENDED PROJECT (ILE AUX VACHES THREE STAGE DEVELOPMENT)—Concluded

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
Carried forward			\$ cts.		69	\$ 11,302,020
SECOND STAGE, Etc.—Con. (A) Substructure Hald and Tatarace Excavation, etc.—Con. 30. Dykes—Cedars to power house	Earth fill Rook fill Rook fill Stripping.	Cu. yd.	0 42 1 10 1 00 0 65	5,010,620 51,770 277,250 600,300	2, 104, 470 56, 950 277, 250 390, 200	
31. Ice sluices and walls at power house. 32. Power house substructure. 33. Highway changes.	See Table No. 9—Item No. 34. See Table No. 9—Item No. 35. New roads.				150,000	2,828,870 1,551,290 5,269,970
34. Property damages	Improvements	acre	200 000	945	565, 210 189, 000	292,000
Engineering	123%					22, 298, 360 2, 787, 640
(B) Machinery and Supersyraucture— 37. Total No. 9—Item No. 42.	See Table No. 9—Item No. 42			,		25,086,000
THIRD STAGE—Dam and Power House at Cascades Rapids—1,080,400 installed h.p.— 3. Substructure, Head and Tall-race Excavaron, free, 754	apids- N. Erc. See Table No. 9—Item No. 51			:		30,531,000
(B) Machinery and Superstructure— 39. Total Total	See Table No. 9—Item No. 54					33, 285, 000

UMMAR

	77,172,000	39, 723, 000	8 180,711,000
\$ 9,268,000 7,212,000 36,106,000 24,586,000	25, 086, 000 14, 637, 000	30, 531, 000 33, 285, 000	
Item No. 7 \$ 9,268,000 " 16 7,212,000 " 26 36,100 " 27,22,000 " 28,586,000	Item No. 36	Item No. 38	
FIRST STACE—Power at Ile aux Vaches—Installed capacity 404,300 h.p.— Coteau Rapids enlargement. Revision of 14-th, navigation Substructures, dam, head and tail-race excavation, etc Machinery and superstructure	SECOND SPAGE—Power north of Cascades Point—Installed capacity 545,000 h.p.—Substructures, head and tail-race excavation, etc. Machinery and superstructure	THER STAGE—Power at Cascades Rapids—Installed capacity 1,030,400 h.p.— Substructures, head and tail-race excavation, etc. Machinery and superstructure.	Toral—Total installed capacity—1,979,700 h.p.

TABLE 24.—SOULANGES SECTION—POWER ALONE—ILE AUX VACHES—THREE-STAGE PROJECT

For details—See Table 23

1st Stage—Ile aux Vaches. 382,000 h.p. 2nd Stage—North of Cascades Point. 488,000 h.p. 3rd Stage—Cascades Rapids. 762,000 h.p.
1st Stage— \$ 9,268,000 Coteau Rapids enlargement. 7,212,000 Revision of 14-ft. navigation. 36,106,000 Substructures, dams, head and tail-race excavation. 36,106,000 Machinery and superstructures. 24,586,000 **77.172.000
2ND STAGE —
3RD STAGE— \$30,512,000 Substructure, head and tail-race excavation. \$30,531,000 Machinery and superstructure. 33,285,000 63,816,000
Total\$180,711,000
Power House Installations
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Total

TABLE No. 25.—SOULANGES SECTION—NAVIGATION COMBINED WITH PARTIAL POWER DEVELOPMENT—HUNGRY BAY—BAY—Balance of Power as in Recommended Project—(He sux Yaches Three Stage)

Now—Navigation and 1st States of Power Development Shown on Plates 55.75

	Total	& C.		7,7,7,	40,000	16,904,600 2,113,400	19,018,000	15 417 410		21,018,650
	Amount	\$ 515,090 57,170 486,730 211,120	405,900 1,720,340 243,910 28,050	161,010		:		10,081,760 3,404,480 1,931,170	2, 778, 210 253, 200 36, 360 729, 930 313, 780 1, 418, 780	
	Quantity	1,471,670 163,340 748,810 131,950	902,000 1,075,210 57,390 6,600					22, 403, 910 5, 237, 650 1, 206, 980	6, 614, 770 422, 000 60, 590 1, 122, 960 1, 255, 130 1, 255, 130 1, 255, 130 1, 255, 130	
) c-d	Rate	\$ cts. 0.35 0.35 1.60	0 45 1 60 4 25 4 25		:			0 45 0 65 1 60	0 42 0 60 0 65 0 65 0 25 0 45 11 00	
on Flates of	Unit	cu. yd.	cu. yd.					cu. yd.	cu. yd.	
Norg.—Navigation and 1st Stage of Power Development Shown on Plates 30-5/	Classification	Excavation—Earth over depth Earth over depth Dry rock.	Excavation—Earth Dry rock Wet rock Wet rock over depth	See Table No. 14—Item No. 2 (a) See Table No. 14—Item No. 4. See Table No. 14—Item No. 5. Improvements		12½ per cent		Excavation—Earth. Dry rock.	Barth fill Barth fill Rook fill Stripping Trimming Sodding Paving—concrete	
C 18. Day avigation and 18. C	Item and description	Works Soleny for Navigation— 1. Channel excavation— (a) Deep water in Lake St. Francis to below Hungry Bay Excavation— guard lock.	(b) Above flight locks to deep water in Lake St. Louis Excavation—Earth. Dry rock Wet rock Wet rock over depth	Breakwater, Lake St. Francis. Hugry Bay guard lock and entrance piers. Hight locks (single flight) and entrance piers. Bridges. Property damages.	7. Canal lighting and office	8. Engineering and contingencies	9. Total.	Works Comaon то Navigation and Power— 10. Channel excavation— Below Hungry Bay guard lock to above flight locks	11. Dykes—Below gnard lock to above flight lock	Carried forward

TABLE 25-SOULANGES SECTION-NAVIGATION COMBINED WITH PARTIAL POWER DEVELOPMENT-HUNGRY BAY-MELOCHEVILLE ROUTE-Continued

Balance of Power as in Recommended Project—(Ile aux Vaches Three Stage) Norn—Navigation and 1st Stage of Power Development Shown on Plates 56-57

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
Brought forward			\$ cts.		640	\$ 21,018,650
Works Common to Navigation and Power—Con. 12. Supply weit south of guard lock	Concrete	eu. yd.	11 9 00	18,480 9,150	203, 280	
		cu. yd. " ". M.F.B.M.	0 65 2 40 3 10 4 10 110 00	15,000 6,600 4,050 880 108	15,840 12,560 3,610 11,880	
13. Railroad diversions.	Gates, hoists, etc.				132, 900	
14. Highway changes. 15. Ditches. 16. Fences. 17. Property damages.					98,040	119, 200 436, 440 36, 280
					506,000	604,040
18. Engineering and contingencies	12½ per cent					22, 982, 050 2, 872, 950
19. Total						25,855,000
Works Primarily for Power—Firry Stage—Melocheville— Installed capacity, 283,800 h.p.— (A) Subsprecynsh, Hald and Tail-race Excavation, frc.— 9) Channel everychin—						
(a) Deep water in Lake St. Francis to below supply weir. Excavation—	Excavation—Earth. Earth. Earth over depth. Dry rock. Wet rock.	cu. yd.	0 0 0 1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,555,390 1,555,390 30,560 550,460 798,670	1,011,000 19,860 880,740 3,394,250	
Wet rock over depth (b) Above flight locks to power house. Excavation—Earth	Wet rock over depth Excavation—Earth.	cu. yd.	4 25			5,611,010
	EarthDry Rock	3 3	0 65	1,075,210	1,720,340	9 774 360

	2,366,890			620, 290	000	996, 900	2, 406, 280 215, 540 126, 450	15,057,120 1,882,880 16,940,000	[[1	7,617,000	4,846,000
1,316,580 960,290 90,020	154,440	22, 470 3, 900	151,400 60,000 200,400	129,360	5,520 37,700	1,981,980	26,450		4, 551, 120 1, 152, 000 11, 152, 000 11, 152, 000			
822,860 225,950 21,180	14,040	9,360	12,000	11,760	3,450	141, 570						
1 60 4 25 4 25	11 00 9 00	2 40 0 65	5 00	11 00 9	1 60	14 00					:	
cu.,yd.	Cu.,yd.	Cu. yd.	Cu. yd.	cu. yd.	Cu. yd.	Cu. yd.			00			
Excavation—Dry rock. Wet rock Over depth.	Concrete	Excavation—Rock footings	Gates, hoists, etc. Cribwork. Unwatering.	Concrete	Excavation—Dry rock Gates, hoists, etc.	Concrete	Improvements. Lands	12% per cent	Generators and turbines—6—47,3 00 b. mils. Switching. Switching. Service units and cranes.	12½ per cent.		
(c) Tail-race	21. Control works in Coteau Rapids			22. Ice sluices and walls at power house		23. Power house substructure	24. Bridge aobe power house	26. Engineering and contingencies	CHINERY AN Machinery,	Engineering	30. Total. SECOND STAGE—ILE AUX VACHES—404,300 Installed h.p.	(A) COTEAU RATIDS ENLARGEMENT—31. Same as Table No. 23—Item No. 7, less \$4,422,000

TABLE No. 25—SOULANCES SECTION—NAVIGATION COMBINED WITH PARTIAL POWER DEVELOPMENT—HUNGRY BAY—MELOCHEVILLE ROUTE—Concluded

Balance of Power as in Recommended in Project—(The Blages)
Norw—Navigation and 1st Stage of Power Development Shown on Plates 56-57.

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
SECOND STAGE, Etc.—Con. (B) Substructures, Dam, Head and Tail-Race Excavation, 32. Same as Table No. 23—Item No. 26, less \$558,000 due to decrease in cost of unwatering Cedars Dam.			s cts.		60	\$ 35, 548, 000
(C) MACHINERY AND SUPERSTRUCTURE— 33. See Table No. 9—Item No. 30						24, 586, 000
THIRD STAGE—NORTH OF CASCADES POINT—327,000 (A) SURBINGUCINE, HEAD AND TAIL-RACE EXCAVATION—34. Head-race, Cadars to power house	Excavation—Earth	Cu. yd.	0 55	8, 435, 640	4, 639, 600	000 000 1
35. Tail-race and power house excavation. Excavation—Barth. Dry rock. Wet rock. Wet rock. Wet rock. Unwaterink.	Excavation—Earth over depth. Dry rock. Wet rock. Wet rock over depth.	Cu.,yd.	0 55 0 55 1 60 4 4 25 4 25	1,210,000 67,000 8,900 14,000 4,800	665, 500 36, 850 14, 240 59, 500 20, 400 450, 800	
36. Dikes—above power house	See Table No. 23—Item No. 30 See Table No. 9—Item No. 34 Concrete	Cu. yd.	14 00	190,080	2, 661, 120	1,247,290 2,828,870 1,551,290
39. Highway changes 40. Property damages						3, 268, 410 592, 000 754, 210
41. Engineering and contingencies.	12½ per cent					14,881,670 1,860,330
42. Total		:				16,742,000
(B) Machinery and Superstructure	Generators and turbines—6-54,500 h.p. units Switching Service units and cranes Superstructure.				1, 332, 000 1, 332, 000 219, 640 1, 113, 480	7.938.940

. 992,060	8,931,000	30, 165, 000	. 33, 285, 000				60 430 000				223, 533, 000
	:					19,018,000 25,855,000	16, 940, 000 7, 617, 000	4, 846, 000 35, 548, 000 24, 586, 000	16, 742, 000 8, 931, 000	30, 165, 000 33, 285, 000	
-						No. 9	30	No. 31	No. 42	No. 46	
	-					. Item	* *	Item.	. Item	Item.	
. 12½ per cent		TB O		SUMMARY	AND POWER VIA HUNGRY BAY-MELOCHEVILLE-Installed	power. Item No. 9		ILE AUX VACHES—Installed capacity 404,300 h.p.— e excavation, etc	ed capacity—327,000 h.p—	alled capacity—1,030,400 h.p.—	
44. Engineering and contingencies	45. Total	FOURTH STAGE—CASCADES RAPIDS—1,030,400 installed h.p.— (A) SUBSTRUCTURE, HEAD AND TAIL-RACE EXCAVATION— 46. Same as Table No. 9—1tem No. 51, less \$366,000 due to decrease in cost of unwatering Cascades Dam	(B) Machinery and Superstructure— 47. See Table No. 9—1tem No. 54.		FIRST STAGE—NAVIGATION AND POWER VIA HU	and	Works primarily for gover	SECOND STAGE—POWER AT ILE AUX VACHES—Installed capacity 404,300 h.p.— Corean rapids enlargement. Substructures, head and tail-race excavation, etc Machinery and superstructure.	THIRD STAGE—POWER AT CASCADES POINT—Installed capacity—327,000 h.p— Substructure, head and tail-race excavation, etc. Machinery and superstructure.	FOURTH STAGE—POWER AT CASCADES ISLAND—Installed capacity—1,030,400 h.p.— Substructure, head and tail-race excavation, etc	Total installed capacity—2,045,500 h.p.

TABLE 26.—SOULANGES SECTION—NAVIGATION AND PARTIAL POWER DEVELOPMENT VIA HUNGRY BAY-MELOCHEVILLE—BALANCE OF POWER AS IN RECOMMENDED PROJECT

Diversion to Melocheville for Power, 15,500 c.f.s.

NAVIGATION—Via Hungry Bay—Melocheville route. 116,000 h.p. Power—Four-stage development— 116,000 h.p. 1st Stage—Melocheville 370,000 h.p. 2nd Stage—He aux Vaches. 384,000 h.p. 3 Stage—North of Cascades Point. 384,000 h.p. 4th Stage—Cascades Rapids. 762,000 h.p.).).
1st Stage— Works solely for navigation (single flight locks) \$ 19,676,000 Works common to navigation and power 17,048,000 Works primarily for power— Substructure, head and tail-race excavation 9,199,000 Machinery and superstructure 3,945,000	
\$49,868,00 \$7,108,000 \$0.00 \$1,000 \$1,	
3RD STAGE— \$ 20,734,000 Substructure, head and tail-race excavation. \$ 20,734,000 Machinery and superstructure. 11,742,000 - 32,476,00	
### Stage— Substructure, head and tail-race excavation. \$ 30,352,000 Machinery and superstructure. \$ 33,285,000 —————————————————————————————————	
Total\$213,509,00	0
Power House Installations	=
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
Total	٠.
TABLE 27.—SOULANGES SECTION—NAVIGATION AND PARTIAL POWER DEVELOP MENT VIA HUNGRY BAY-MELOCHEVILLE—BALANCE OF POWER AS IN RECOMMENDED PROJECT	-
Diversion to Melocheville for Power, 31,800 c.f.s.	
For details—See Table 25	
NAVIGATION—Via Hungry Bay-Melocheville route. 239,000 h.p. POWER—Four-stage development— 239,000 h.p. 1st Stage—Melocheville. 230,000 h.p. 2nd Stage—Ile aux Vaches 370,000 h.p. 3rd Stage—North of Cascades Point 261,000 h.p. 4th Stage—Cascades Rapids 762,000 h.p.	- -
18T STAGE— Works solely for navigation	0
2ND STAGE— \$ 4,846,000 Coteau Rapids enlargement \$ 4,846,000 Substructures, head and tail-race excavation, etc. 35,548,000 Machinery and superstructures 24,586,000	
STAGE	
4TH STAGE— \$ 30,165,000 Substructure, head and tail-race excavation. \$ 30,165,000 Machinery and Superstructure. 33,285,000 63,450,000	

Total.....\$223,533,000

TABLE 27-Con.-Power House Installations

2nd Stage—26-15,550 h.p. units 3rd Stage—6-54,500 h.p. units	(77-5 ft. head) (22 ft. head) (75-5 ft. head) (53 ft. head).	404,300 h.p. 327,000 h.p.
Total		2,045,500 h.p.

TABLE 28.—SOULANGES SECTION—NAVIGATION AND PARTIAL POWER DEVELOP-

1st AND 3rd STAGES OF RECOMMENDED PROJECT
Diversion to Melocheville for Power, 66,700 c.f.s.
NAVIGATION—Via Hungry Bay-Melocheville route. POWER—Three-stage development— 500,000 h.p. 1st Stage—Melocheville. 500,000 h.p. 2nd Stage—He aux Vaches 370,000 h.p. 3rd Stage—Cascades Rapids 762,000 h.p.
1st Stage— Works solely for navigation
Substructure, head and tail-race excavation. 33,719,000 Machinery and superstructure. 15,143,000 2ND STAGE— \$113,329,000
Coteau Rapids enlargement
Substructure, head and tail-race excavation. 29,879,000 Machinery and superstructure. 33,285,000 63,164,000
Total\$237,778,000
Power House Installations
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Total

TABLE No. 29.—SOULANGES SECTION—TABLE SHOWING RELATIVE OVERALL COST OF SCHEMES OF IMPROVEMENT

Interest during construction and marketing period at 5%. Construction program planned for expenditure of \$10,000,000 per year.

Construction program planned for expenditure of \$10,000,000 per year.

"A"—Recommended Project—He aux Vaches Three Stage Project. (See Tables Nos. 9, 10, 11, 12 and 13.)

"B"—Separate Navigation & Power Works. Navigation via Hungry Bay—Melochville Route.

Power as in Recommended Scheme—He aux Vaches Three Stage Project.

"C"—Four Stage Project—15,500 c.f.s. via Hungry Bay—Melocheville (Canal 300' x 25'—Vel. 2·0 f.s.),

Balance of Power as in Recommended Project. (See Table No. 26).

"D"—Four Stage Project—31,800 c.f.s. via Hungry Bay—Melocheville (Canal 360' x 35'—Vel. 2½ f.s.),

Balance of Power as in Recommended Project (See Table No. 27).

"E"—Three Stage Project—60,700 c.f.s. via Hungry Bay—Melocheville (Canal 790' x 35'—Vel. 2½ f.s.),

Balance of Power as in 1st and 3rd Stages of Recommended Project. (See Table No. 28).

deministration	"A"	"B"	"C,	"D"	"E"
1. Assuming no transfer of power between Provinces—					
(a) Power marketed at 40,000 h.p. per					
year	260, 372, 000	263, 239, 000	265, 629, 000	276, 293, 000	319,958,000
(b) Power marketed at 75,000 h.p. per year	239,012,000	241,869,000	246, 159, 000	256,713,000	290,888,000
year	228, 332, 000	231,069,000	236, 379, 000	246,843,000	276, 198, 000
2. Assuming Quebec supplied with 200,000 h.p. from International Section—					
(a) Power marketed at 40,000 h.p. per year.	281,042,000	265, 239, 000	267,629,000	278, 293, 000	321,958,000
(b) Power marketed at 75,000 h.p. per year	249, 512, 000	243,869,000	248, 159, 000	258,713,000	292,888,000
(c) Power marketed at 150,000 h.p. per year	234, 102, 000	233,069,000	238, 379, 000	248,843,000	278, 198, 000

Note.—\$2,000,000 has been added to Schemes "B," "C," "D," and "E" as the difference in value of the navigation canal via Hungry Bay-Melocheville over that of the Recommended Project.
\$2,000,000 has been added to all Schemes under No. 2 to cover cost of renewing generators in Barn-Island Power House from 60 cycles to 25 cycles.

TABLE No. 30.—LACHINE SECTION—RECOMMENDED PROJECT—NAVIGATION ALONE See Plates Nos. 62-64

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
1 Chample or consisted			\$ cts.		40	60
(a) Deep water in Lake St. Louis to Lachine Wharf	Excavation—Earth, over depth. Earth, over depth. Wet rock, over depth. Wet rock, over depth. Wet rock, over depth.	Cu., yd.	00000000000000000000000000000000000000	3, 728, 700 257, 680 294, 100 33, 340 221, 500 56, 510	2, 423, 660 167, 490 882, 300 100, 020 941, 380 240, 170	11 to 12 to
(b) Lachine Wharf to Verdun Lock	Excavation—Earth. Dry rock. Dry rock. Wet rock. Wet rock. Wet rock. Wet rock.	Cu.,yd.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5, 907, 980 122, 010 274, 700 91, 570 62, 300 79, 300	3,840,190 1,005,160 1,95,220 824,100 889,170 264,770 35,690	•
(c) Above guard gate to control dam	Excavation—Earth	Cu. yd.	0 65	889,200 163,000	577,980 195,600	0,394,300
(d) Verdun Lock to Nun's Island Lock	Excavation—Earth Rock Close drilling	Cu. yd. Sq. ft.	0 65 1 20 0 45	645,820 255,120 38,630	419,780 306,140 17,380	742 300
(e) Nun's Island Lock to Montreal Lock	Excavation—Earth Rock Close drilling. Unwatering	Cu. yd. Sq. ft.	0 65 1 20 0 45	372,120 972,550 161,140	241,880 1,167,060 72,510 547,400	(
(f) Below Montreal Lock.	Excavation—Dry rock	Cu., yd.	1 20 3 00 3 00 0 45	558, 140 211, 490 10, 000 37, 230	669,770 634,470 30,000 16,750	2,028,850
2. Dykes and walls— (a) Rock fill north of Dorval Island	Rock fill.	Cu. yd.	0 25	718,270	179,570	170 870
(b) Lachine Wharf to Verdun Lock	Concrete Concrete paving Cribwork Earth fill Stripping	Cu. yd.	11 00 5 00 0 42 0 60 0 65	16,680 54,300 148,200 1,288,570 108,900 239,630	150, 120 597, 300 741, 000 541, 200 65, 340 155, 760	1(8) 910

0 400 440	1,709,500	1,105,000	11 500	410 410	0111	5, 105, 150	27, 582, 970
36,690 6,300 166,460	253, 730 130, 790 1, 004, 000 52, 960 28, 000 135, 300 39, 940 58, 780	1,072,890 339,100 38,620 33,870 13,150	5,450	152,100 13,650 13,650 235,000 3,060 15,000	74,430 1,468,280 146,830 6,580 3,410 149,260 2,970 5,000 1,684,700 1,559,250	453,510 32,670 32,270 32,150 18,740 18,740 2,930	
146,760	390, 350 311, 400 11, 434, 280 111, 990 12, 300 61, 440 778, 370	119, 210 521, 690 193, 100 52, 110 52, 610	4,950	8,450 2,000 4,700 3,4	8, 270 133, 480 10, 120 1, 100 62, 190 1, 200 1, 200 27 50	50,390 2,970 6,430 15,620 1,630	
0 25 0 45	0 65 0 26 0 26 0 26 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 00 0 20 0 65 0 65 0 65	1 10 2 20	18 00 3 00 0 30 50 00 90 00 5,000 00	9 00 11 00 65 0 65 3 10 2 40 2 40 110 00 100 00	9 00 11 00 5 00 1 20 1 80	
Sq.,yd.	Cu. yd.	Cu.,yd. Sq. yd.	Cu.,yd.	Cu., yd. " Lin. ft. M.F.B.M. Each	Cu.,yd. Cu.,yd. " M.F.B.M. Ton	Cu. yd.	:
Trimming. Sodding. Unwatering	Exervation—Earth Earth fill Earth fill Rock fill Trimming Stone tee paving Stone tee verdum Dyke.	Concrete Earth fill Excet fill Stone face Trimming	Earth fill. Rock fill.	Concrete Excavation—Rock Earth fill Coffeedam Stop logs Stop logs	Concrete. Concrete Foundation contingency Exeavation—Earth Earth, trench Earth, trench Rock footings. Sheeting and bracing Reminoring steel. Superstructure and gastes. Unwatering.	Concrete Concrete Foundation contingency Cribwork Excavation—Rock	
	(c) Verdun Lock to Nun's Island Lock	(d) Nun's Island Lock to Montreal Lock	(e) South end of control dam	. Control works—Lake of Two Mountains	Control dam at Ile au Diable	Guard gate, entrance piers and weir	Carried forward

TABLE No. 30—LACHINE SECTION—RECOMMENDED PROJECT—NAVIGATION ALONE—Continued

See Plates Nos. 62—64

Total	\$ 27,582,970	St	Lawrence Waterway Project	
Amount	69	1,370 1,890 1,210 1,510 265,000 33,800	1,861,470 91,960 91,960 87,950 87,950 87,950 161,500 161,500 1,500 6,490 641,500 106,1	1,330,740 51,810 51,810 13,570 13,570 228,730 3,1040 1,040 42,730 42,730 42,730 72,280
Quantity		3,360	206,830 8,360 13,450 15,370 134,580 6,410 134,580 1,410 91,760 91,760	147,860 4,710 20,870 190,610 1,740 94,960 2,480
Rate	\$ cts.	3 70 3 10 110 00 0 45	9 00 11 00 0 65 0 65 1 20 1 20 1 1 20 1 1 1 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 000 11 000 11 120 11 000 11 000
Unit		Cu.,yd. M.F.B.M. Sq. ft.	Cu.,yd. Cu.,yd. " " " M.F.B.M.	Cu. yd. Cu. yd. " " Sq. ft. M. F. B. M.
Classification		Exeavation—Rock trench. Earth trench. Sheeting—Braeing. Close drilling. Lock gates, operating machinery, etc. Sluice gates, hoists, etc.	Concrete Concrete Contracte paying Foundation contingency Foundation contingency Concrete paying Excavation—Earth Excavation—Earth Rook footings Rook footings Rook trench Rook trench Look gates and operating machinery Look gates and operating machinery Look valves and operating machinery Look valves and operating machinery Enders, capstans, lighting equipment, etc. Emergency look gate Investigate of the contraction of the contr	Concrete Concrete Foundation contingency Excavation—Earth trench Rock footings Rock trench Sloeed drilling Sheebing and bracing
Item and description	Brought forward	5. Guard gate entrance, etc.—Com	6. Verdun Lock, entrance piers and weir	7. Nun's Island Lock, entrance piers and weir

3,721,470		3, 038, 080		303, 520	41,485,300
582,000 100,000 42,200 196,700 1,095,950 1,572,660 342,240 83,830	24,750 650,500 100,000 196,700 88,550	20,530 20,930 42,040 27,120 3,110 26,400 26,400 6,210 15,600 15,600	161,920 14,960 51,640 56,520 56,520 12,630 5,000	403, 260 588,000 27, 600 39, 730 16, 560 3, 480 23, 200 86, 550 13, 380	
174, 740 285,200 130, 900	2,250	51,050 32,200 13,560 22,600 2,800 1,800 13,800	14,720 7,480 79,450 47,100 230 28,070	36,666 89,250 8,900 33,110 9,200 51,560 300	
9 00 1 2 2 0 0 0 1 2 2 0 0 0 1 2 2 0 0 0 1 2 2 0 0 0 1 2 2 0 0 0 1 2 2 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 0	00 : : : :	11 00 0 65 3 10 1 20 1 20 1 10 0 45 0 45	08102000	11 00 0 65 3 10 1 20 1 20 1 20 1 20 1 10 0 45 1 10 00	
	Cu. yd.	Cu. yd. " " " M ft. b.m. Sq. ft.	Cu. yd. Sq. yd. Cu. yd.	Cu., yd., ". Sq.,ft. M.ft.,b.m.	
Lock gates and operating machinery. Lock valves and operating machinery Sluice gates, hotse, etc. Sluice gates, hotse, etc. Fenders, capstans, lighting equipment, etc. Unwatering. Concrete.	Concrete paving Concrete paving Lock gates and operating machinery. Lock valves and operating machinery. Fenders, capstans, lighting equipment, etc. Unwatering	Concrete Excavation—Earth Earth trench Rock Rock Rock shorten Rock trench	Concrete Concrete Macedam Exeavation—Earth. Close drilling. Pumping equipment	Concrete Excavation—Earth Earth trench Rock Rock Rock Sheeting and bracing Sheeting and bracing Girders, etc., for maintaining traffic.	
Montreal Lock		Oulverts under canal for Montreal aqueduct	. Subway above Verdun lock	Culverts at west end of Victoria Bridge	Carried forward

TABLE No. 30.—LACHINE SECTION—RECOMMENDED PROJECT—NAVIGATION ALONE—Concluded See Plates Nos. 62-64

A contract of the state of the	Total	\$ 41,485,300	000	1 157 470	040,000	040,000	120, 200	0 00 170	000,000,7	110,000	47,107,200 5,892,800 \$ 53,000,000	\$ 50,848,000
	Amount	6/9	224,000 536,740	200,000	240,000	88,000 182,500	42,400	20,000 1,363,000 1,443,170	112,960 23,860	10,000		\$ 50,848,000
	Quantity					4,400	38,900					
	Rate	\$ cts.				20 00 25 00	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					
	Unit				. :	lin. ft.	lin. ft. Sq. yd.					
	Classification		Substructure	Substructure		5 ft. diam. pipe	First class roads	Local water supply below Lachine Bridge Right-of-Way—Lands.	Right of Way—LandsImprovements	Office Lighting	12}%	
	Item and description	Carried forward	12. Bridges:— (a) C.P. Ry. Vertical lift at Lachine	(b) Victoria bridge	13. Removal of Lachine hydraulic plant	14. Water supply to Verdun and Westmount	15. Highway changes	16. Property damages— (a) North Shore	(b) South Shore	17. Canal office and lighting	18. Engineering and contingencies	20. If the Control Dam to raise the low water level of Lake St. Louis is not included, the total cost for improvement for navigation alone becomes.

Ost if Cost of Future annels enlargement from deep 25 ff. to 30 ft. by Mount Quantity Amount	\$ 441,320 1,671,000 1,086,150 333,400 216,950 37,300 1,386,300 38,40,840 38,440 38,770 172,650 383,440 48,770 172,650 383,440	183, 010 183, 010 186, 230 187, 840 187, 110 187, 110 187, 120 187, 1	10, 17,
Additional Cost if navigation channels made 27 ft. deep originally Quantity Amount	678,960 37,150 139,510 76,570 274,350 15,660 98,900 89,900	194, 200 86, 990 135, 200 40, 130 31, 830	6, 6,
Saving if Naviga- tion channels made 23 ft. deep origin- ally Quantity Amount	\$		2, 267, 090 249, 910 2, 517, 000
Saving in tion chan 23 ft. de al	571,530 60,010 108,950 123,580 224,590 17,000 94,920		
Rate	00 0 0 0 0 0 4 4 0 1 1 0 0 4 66 0 0 68 8 8 9 0 6		
Unit	Cu., yd.	Cu. yd.	
Classification	Excavation—Earth Earth overdepth Met rook overdepth. Wet rook overdepth. Wet rook overdepth. Excavation—Earth Dry rock Wet rook Wet rook Wet rook Wet rook Wet rook		12½% approximately.
Item and Description	21. Deep water in Lake St. Louis to Lachine Excavation—Earth	23. Verdun lock to Nun's Island lock Excavation- 24. Nun's Island lock to Montreal lock Excavation- 25. Below Montreal lock	28. Engineering and contingencies 123% approximately 7 datas.

TABLE No. 31.—LACHINE SECTION—NAVIGATION ALONE—RECOMMENDED PROJECT For details—see Table No. 30

Lake of Two Mountains control. \$ 419,410 Navigation works—Lake St. l ouis to Montreal. 40,809,660 Control dam. 5,878,730 Engineering and contingencies—12½ per cent. 5,892,800	53,000,000
Saving if navigation channels made 23 ft. deep originally	

TABLE No. 32,—LACHINE SECTION—POWER DEVELOPMENT—SUBSEQUENT TO NAVIGATION AS IN RECOMMENDED PROJECT See Plates Nos. 65-66

ount Total	2, 050, 490 2, 200, 400 2, 252, 480 578, 160	1,540,800 20,212,960 2,079,210	742, 820 655, 220 306, 000 73, 450	29,700 467,610 46,760 44,470 289,900	2,101,000 2,101,000 222,160 83,260 44,400 1,085,600	74,880 119,960 119,880 2,050 1,520	49 669 880
Quantity Amount	3,154,600 2,02 400,000 28 1,407,800 2,22	1,284,000 1,54 12,633,100 20,21 3,198,780 2,07	1,142,800 762,000 154,170 672,000 113,000	3,300 42,510 18,530	656,770 5,9 191,000 2,10 2,000 11 68,000 11 138,760 68,300 1,000	8,320 17,360 6,200 490	
Rate	0 65 1 60 1 60	1 20 1 60 0 65	0 65 1 60 1 4 25 0 65 0 65	9 00 11 00 2 40	9 00 11 00 2 40 0 60 0 60 0 65	11 00 11 00 2 40 3 10	
Unit	Cu. yd.	Cu. yd.	Cu. yd.	Cu. yd.	Cu., yd.	Cu.,yd.	
Classification	Excavation—Earth. Excavation—Earth over depth. Dry rock. Unwatering.	Excavation—Dry rock. Dry rock Earth	Excavation—Earth. Dry rock. Wet rock. Wet rock over depth Earth.	Concrete. Concrete. Countain contingency. Excevation—Rock footings. Gates, hoists, etc.	Concrete Controle Foundation contingency Exervation—Rock footings Exervation—Rock footings Surppup Footing Footing Footing	Concrete Concrete Foundation contingency Excavation—Rock footings Bock trench Earth trench	
Item and description	IST STAGE—POWER FROM CANAL ON SOUTH SHORE— Total installed capacity, 435,000 h.p. (A) Substructure, Head and Tax-rage Excavation, exc.— 1. Channel excevation— (a) In Lake St. Louis above control weir	(b) Control weir to power house	(c) Power house tailrace	2. Control weir at Caughnawaga	3. Dykes and walls—Control weir to power house	4. Ice sluices at power house	Common Common on Contraction of Cont

TABLE No. 32—LACHINE SECTION—POWER DEVELOPMENT—SUBSEQUENT TO NAVIGATION AS IN RECOMMENDED PROJECT—Continued

-
10
9
08
ž
tes
18
(1)
see

Item and description	Classification	Unit	Rate	Quantity	Amount	Total
Brought forward			\$ cts.		69	\$ 42,669,880
IST STAGE, Erc.—Con. (A) Substructure, Head and Tail-bace Excavation, frc.—Con. 4. Ice sluices at power house—Con	Sheeting and bracing	M.F.B.M.	110 00	10	1,100	000
5. Transforming movable dam in river with cribs and stop logs Cribwork Stop logs Hoists, etc		Cu. yd. M.F.B.M.	110.00	24,930	124, 650 74, 360 50, 000	989, 690
6. Revision at C.P.Rly.—Bridge at Caughnawaga	Bridge—Substructure Superstructure Railway relocation. Subway				150,000 256,000 242,420 50,000	010,027
7. Power house substructure	Concrete. Gates and racks. Unwatering.	Cu. yd.	14 00	370, 260	5, 183, 640 1, 353, 820 961, 400	030,400
8. Roads and property damages	Roads—New Macadam on banks. Property—Right of way Improvements.	Lin. ft. Sq. yd.	. 5 00	18,000	144,000 20,440 215,280 1,624,200	
9. Engineering and contingencies	12} per cent					53, 519, 480 6, 689, 520
10. Total (B) MACHYERY AND SUPERSTRUCTURE— 11. Machinery and superstructure.	Generators and turbines, 19-22,900 h.p. units.				12,304,020	60,209,000
12. Engineering and contingencies	Cranes and service units. Superstructure. 12½ per cent.				3,354,800	18,700,810 2,337,190
13. Total.						21,038,000

6	453, 180	704 800	0, 704, 600	11, 445, 150	18, 602, 930 2, 325, 070	20, 928, 000	0,000,000	2, 337, 190	21,038,000
453,180	282, 780 3, 029, 950 303, 000 165, 430 14, 230	151, 510 151, 510 56, 280 28, 900 1, 634, 720 689, 000	5, 161, 100 1, 353, 820 8802, 880 1, 219, 200 1, 181, 500 297, 500 72, 150	1	1		12, 304, 020 2, 783, 310 258, 680 3, 354, 800		
106,630	31,420 275,450 68,930 3,470	252, 520 252, 520 93, 470 44, 460	368, 650 1, 235, 200 762, 000 278, 000 70, 000						
4 25	00 00 11 00 2 4 0 10 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 00 0 65 1 60 1 4 25 4 4 25 6 55			:	1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	
Cu. yd.	Cu. yd.	3 3 3	Cu. yd.		:				
Excavation	Concrete Concrete Foundation confingency Excavation—Rock footings. Rock trench.	Earth fill Earth Rock fill Rock fill University Earthplug Unwatering Gates, hoists, etc.	Concrete Gates and racks. Excavation—Earth. Dry rock. Wet rock. Wet rock. Forth rock roter depth.	Unwatering	12½ per cent		Generators and turbines—19-25,700 h.p. units Switching Cranes and service units.	12½ per cent	
AND STAGE—POWER IN RIVER AT FOOT OF LACHINE RAPIDS—Total installed capacity, 488,000 h.p. (A) Senserrourens. Halo, hav Tall-acte Excavarios, Free 14. Removal of movable dams and cribs.	15. Dam.		16. Power house substructure		17. Engineering and contingencies	18. Total	(B) Machinery and Superstructure	20. Engineering and contingencies	21. Total

TABLE No. 32—LACHINE SECTION—POWER DEVELOPMENT—SUBSEQUENT TO NAVIGATION AS IN RECOMMENDED PROJECT—Concluded

SUMMARY

••	81 947 000	10 17	123, 213, 000	88, 131, 000
66	60, 209, 000 21, 038, 000	20,928,000 21,038,000		
	Item No. 10	Item, No. 18		
In STACE—Installed canonity 435 000 hn	, eto	2KD STACE—Installed capacity 488,000 h.p.— Substructure, head and tail-race excavation, etc. Machinery and superstructure.	Total—Total installed capacity 923,000 h.p.	Cost of 1st stage of development if no control dam is built for navigation.

TABLE No. 33.—LACHINE SECTION—POWER SUBSEQUENT TO NAVIGATION

For details—see Table No. 32

1st Stage—Power house on south shore. 2nd Stage—Power house in river. 1st Stage—	391,000 h.p. 422,000 h.p.
Substructure, head and tail-race excavation. 60,209,00 Machinery and superstructure. 21,038,00	0 0 -\$ 81,247,000
2ND STAGE— \$ 20,928,00 Substructure, head and tail-race excavation. \$ 20,928,00 Machinery and superstructure. 21,038,00	,,
Total	.\$123,213,000
Power House Installations	
1st Stage—19-22,900 h.p. units (31 ft. head)	435,000 h.p. 488,000 h.p.
Total	923,000 h.p.

TABLE No. 34—LACHINE SECTION—TABLE SHOWING OVER ALL COST OF POWER DEVELOPMENT SUBSEQUENT TO NAVIGATION

Interest during construction and marketing period, 5 per cent. Power marketed at 75,000 h.p. per year.

Construction program planned for expenditure of \$10,000,000 per year.

	1st cost	Half construction period		I	nterest
1st Stage—391,000 h.p	60, 209, 000 21, 038, 000 20, 928, 000 21, 038, 000	1.05	2·60 2·81	0·315 0·209	18,980,000 4,370,000
Add first cost	\$123, 213, 000				\$ 23,350,000 123,213,000 \$146,563,000

TABLE No. 35.—LACHINE SECTION—NAVIGATION ALONE WITHOUT CONTROL DAM

Total	6/9	70 012	8,348,830	4,123,140	170 870	11(3)	2, 378, 490 3, 201, 130 848, 050 11, 288, 070 704, 760 1, 918, 210 270, 500 120, 500 110, 000 110, 000
Amount	6/0	3, 509, 810 216, 910 1, 223, 190 64, 440 2, 459, 900 343, 440	3, 952, 410 1, 729, 250 226, 560 1, 541, 580 264, 770 35, 690		179,570	140 040 597,300 669,400 541,200 65,340 155,760 36,690 6,300 166,460	
Quantity		5, 399, 700 333, 700 407, 730 21, 480 578, 800 80, 810	6, 080, 630 1, 441, 040 141, 600 513, 860 140, 840 62, 300 779, 300		718, 270	15,560 54,300 1,288,570 108,900 208,200 14,000	
Rate	s cts.	0 65 0 65 3 00 4 25 4 25 25	0 65 1 20 1 60 3 00 8 20 4 25 0 45 0 45	:	0 25	9 00 11 00 5 00 0 62 0 65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Unit		Cu. yd.	Cu. yd.	:	Cu. yd.	Cu, yd.	
Classification		Excavation—Earth over depth Earth, over depth Wet rock over depth Wet rock over depth Wet rock over depth	Excavation—Earth. Dry rock. Dry rock. Wet rock. Wet rock. Wet rock over depth. Close drilling.	See Table No. 30—Item No. 1 (d), (e), (f).	Rock fill	Concrete Concrete paving Cribwork Earth fill Rock fill Stripping Trimming Sodding Unvalering	See Table No. 30—Item No. 2 (c) (d) " " " " " " " " " " " " " " " " " " "
Item and description	, J	(a) Deep water in Lake St. Louis to Lachine Wharf	(b) Lachine Wharf to Verdun Lock		2. Dikes and walls— (a) Rock fill north of Dorval Island	(b) Lachine Wharf to Verdun Lock	(c) Verdun Lock to Montreal Lock. 3. Guard gate, entrance piers and weir. 4. Verdun Lock, Nurs I shand Lock, and Montreal Lock. 5. Culverts under Canal for Montreal Aqueduct. 6. Subway above Verdun Lock. 7. Culverts at west end Viterria Bridge. 8. Bridges. 9. Bridges. 10. Highway changes. 11. Property damages. 12. Canal office and lighting.

5,651,	50,848,0	11, 388, (3, 774,
			:
:	:	:	:
<u>:</u>			:
:		- :	:
:			
per cent			
		opth to 30 feet depth—	
		eet depth to 30 fe	opment
13. Engineering and contingencies.	Total	Cost of future enlargement from 25 feet depth to 30 feet depth— (a) Prior to power development	(b) Subsequent to power development
Engineering and	Tota	Cost of future en (a) Prior to	besqnS (q)
13.	14.		

000 000

TABLE 36-INTERNATIONAL RAPIDS SECTION-POWER HOUSE INSTALLATIONS

Site			Flow								Insta	Installation			
Site	Heads	ls	excl. of		Unit E	Unit Rating			-			1			
			spares					Units	Н	Н.Р.	, c	-	Total	Servio	Service Units
	W.L's	H		H	H.P.	c.f.s.		No. (a)				H	Н.Р.	No.	H.P.
Ogden Isd. 224 N.S.			230,	16	5,190	3,240	Д	70+3	17	5,570	3,280	17	406,610		1,000
Barnhart Isd. 224 N.S.			252,000 245,000b	63	43,520	6,800	F	36+2	63	47,600 43,520	7,000	63	1,808,800 1,653,760	9	1,500
Max. O. Crysler Isd. 217 N.S. N.S. May O.			231,200 218,000b	50	12,800	6,450	<u>a</u>	34+2	24.5	16,600	6,800	24.5	597, 600 450, 000	9	1,200
Barnhart Isd. 217 N.S. N.S. N.W.			245,820 240,000b	09	44,500	7,300	E E	34+2	26	44,500	7,300	56	1,602,000	9	1,500
Max. O Min. O Min. O Sarnhart Isd. 238 N.S. N.W. Max. O	217-163 238-167 236-161 239-155	84 84	259,980 250,000b	75	45,100	5,950	Eq.	42+2	81 75	50, 600 45, 100	6,190	75	2, 226, 400 1, 984, 400	9	1,500
Min. 0 Min. 0 N.S. N.W. Max. 0 Max. 0 Min. 0		75 75 72 72	266,280 250,000b	75	45,100	5,950	<u> </u>	42+2	75.	54,400	6,340	722	2,393,600	9	1,500

P.—Propellor wheel. Nors.—(b) Denotes flow on which installation is based. (a) Last figure equals number of spares.

N.S.—Normal Summer. N.W.—Normal Winter. Max. O.—Maximum Operating. Min. O.—Minimum Operating.

F.—Francis wheel.

TABLE 37.—SOULANGES SECTION—POWER HOUSE INSTALLATIONS

6 77-5 47,300 6,000 77-5 283,380 1 1,000 77-0 284,000 1 1,000 74-0 284,000 1 2,800 1 1,000 22 404,300 5 1,200
77.5 47.300 6.000 77.5 283,800 74.0 44,000 5.850 74.0 284,000
77.5 47.300 6.000 77.5 283,800 74.0 44,000 5.850 74.0 284,000
77.5 47,300 6,900 77.5 74.0 44,000 5,830 74.0 22
77.5 47,300 6,900 77.5 74.0 44,000 5,830 74.0 22
77.5 47,300 6,000
77.5 47,300
77.5 47,300
77.5
77.5
9 : :
<u> </u>
2,900
10
45,000
45
75
33,600
83
77.5
7.4.8
5-72 8-74 5-71
149.5–72 148–74 149.5–71
Melocheville N.S. Max. O. Ile aux Vaches—As in 1st Stage of Recommended Project.
M M M
S—A nme
ille.
chev x V; of E
Melocheville Lie aux Vaches—Ar Stage of Recomme ject.
2. 1. No.

1,000		1,500	sel.
23		ಣ	r Wh
327,000	291, 600	1,030,400	Propellor Wheel
75.5	0.07	53	
7,020	0, 700		ing spares
75-5 54,500	40,000		(a) No. of Units including sp
	0.07		of Uni
9			(a) No.
F			ng.
7,000			m Operati
54,000			Max. O.—Maximum Operating.
75		:	Max.
35,000			/inter.
			N.WNornal Winter.
3. Chamberry Gully—Heads as: in Recommended Scheme	4. Cascades Isd.—As in 3rd Stage of Recommended Pro-	ject	Nore.—N.S.—Normal Summer. F.—Francis Wheel.

TABLE 38.—LACHINE SECTION—POWER HOUSE INSTALLATIONS

		Service Units	Н.Р.	1,500	1,500
		Servic	No.	60	ಣ
		Total	H.P.	435, 100 366, 700 300, 200	488, 300 391, 400 300, 200
	Installation	T	Н	31 23 23	22 23 23 53 53 54 54 55 55 55 56 57
Tactoli		4	S. I.S.	7,350 7,110 6,830	7,500 7,200 6,830
		ап		22,900 19,300 15,800	25,700 20,600 15,800
		Þ		31 27 23	23 8 33 52 55 52 55
		TImite	No. (a)	81+1	18+1
				4	A.
	ating)	c.f.s.	7,300	7,300
	Unit Rating		H.P.	22,000	22,000
			Н	30	30
	Flow	excl. of	c.f.s.	132,000	135,000
	ds		Н	31 27 23 23	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Heads		W.L's	68-37 68-41 70-36 68-45	70.5-37 69.5-41 70.5-36 68-45
				N.S. N.W. Max. O. Min. O.	N.S. N.W. Max. O. Min. O.
		Site		Lachine—Canal	Lachine—River

Norn.—(a) Last figure equals number of spares. N.S.—Normal Summer. N.W.—Normal Winter. Max. O.—Maximum Operating. Min. O.—Minimum Operating. P.—Propellor Wheel.

TABLE No. 39.—ACREAGE OVERFLOWED AT MAXIMUM LEVELS BY VARIOUS ALTERNATIVE PROJECTS IN INTERNATIONAL RAPIDS SECTION

_	Single stage Project No. 1-242	Ogden Island Project No. 4-224	Crysler Island Project No. 5-217	Single stage controlled Project No. 6-238
	acres	acres	acres	acres
In Canada (Mainland). In United States (Mainland). On slands.	4,952 11,359 5,542	3,258 4,434 4,295	4,471 5,444 3,465	3,493 7,421 5,308
Total	21,853	11,987	13,380	16, 222

 U_{i}

 L_{ℓ}

*TABLE NO. 40.—INTERNATIONAL RAPIDS SECTION—CRYSLER ISD.—TWO-STAGE DEVELOPMENT—217

Cost to develop power at Crysler Island and to carry navigation through to Lake St. Francis, including works necessary to raise lower pool to elevation 217 at Long Sault.

	J	
pper Pool-		
Works solely for Navigation	8,732,000 69,986,000	
Substructures, Head and Tailrace Excavation	25,698,000 30,760,000	135,176,000
ower Pool—		100,110,000
Works solely for Navigation	25,618,000	
Permanent Works	14,180,000	
Dam north of L. Sault Isd. including bank and Unwatering	4,750,000	44,548,000
Total	-	\$179,724,000
SUBSEQUENT COST TO DEVELOP POWER AT BARNE Works common to Navigation and Power	13,153,000 35,519,000	ND
Machinery and Superstructures	43,418,000	
Total	,	\$ 92,090,000
Grand Total— Total cost of development of all power in International Rapids Section by this method of Procedure	=	\$271,479,000

^{*}Prepared by Canadian Section. Not checked by United States Section.

APPENDIX D

RIVER LEVELS AND DISCHARGES AT AND BELOW MONTREAL

1. The manner in which regulation of outflow from lake Ontario changes water levels in Montreal harbour has been dealt with in part IV and appendix B of this report. A summary of the extent to which diversions from the Great Lakes system and from the St. Lawrence river above Montreal, lower water levels at and below Montreal has been given in the main report. This appendix gives the basic data and computations from which the conclusions were drawn.

2. To determine the effect of diversion, it is necessary to obtain the relation between gauge height and discharge at a number of points in the river. In this study, relations were first established for governing points and then relations were extended from these to other points in this River. The governing points chosen were lock 25 at Iroquois in the International Section and the upper reach at Grenville on the Ottawa river.

3. The flow of the St. Lawrence River near lock 25 has been measured by approved methods on many occasions and throughout a wide range of stage. The U.S. Lake Survey made many measurements at Point Three Points in the years 1901, 1902, 1908, 1911, 1913 and 1914. The Public Works Department duplicated most of this work in the years 1918, 1919 and 1920, and in recent years the Canadian Department of Railways and Canals extended and checked this work by meterings above Iroquois Point. From all these measurements a reliable relation between discharge and gauge height at Lock 25 has been established, (plates Nos. 1 and 2). By simultaneous gauge readings this relation has been extended to all gauges upstream to Lake Ontario and downstream to Lock 21, at the head of the Long Sault Rapids. By use of rating stations on the St. Regis and Grass rivers, established years ago, and by records on other streams the relation between discharge and stage at the outlet of lake St. Francis has also been derived.

4. A relation between discharge and stage at Grenville on the Ottawa river has been established (plate No. 3), in part from measurements made above and below that point by the Public Works Department in the years 1907-18, in part by the measurements made by the Department of Railways and Canals and in part by the use of weir formulae applied to the spillway dam at Carillon. Stage relation diagrams extending over a wide range have have also been established from meterings by the Public Works Department for the several outlets of Lake of Two Mountains (plate Nos. 4 and 5). They have been closely checked with discharge at Grenville during periods of low precipitation.

5. By selection of periods during which local precipitation was low and during which no high wind occurred and by use of gauge discharge relations in tributary streams, records of flow in all streams leading to the foot of Lake St. Louis were accumulated and by correction for local storage, a relation was derived for lock No. 5, Lachine (plates 6, 7 and 8). The relation established in this way was checked by meterings opposite the mouth of the Montreal Aqueduct a few miles below Lock No. 5. The direct measurements made below Lachine do not cover a wide range of stage but check discharge relations derived by the method above described.

6. In establishing the gauge discharge relations at Lock 5, Lachine, two

indirect methods were used.

7. In the first method, the total flow for selected storm-free periods for Lock 25 on the St. Lawrence and for Upper Grenville on the Ottawa was read off adopted curves. To this was added the run-off of the drainage area from Lock 25 to Lock 5 on the St. Lawrence and from Upper Grenville to Upper St. Annes on the Ottawa. From the total discharge thus obtained the flow through the Mille Iles and Des Prairie rivers, as read from curves, was deducted. This gave the discharge in the main river past Lachine. During these periods, the run-off from this drainage area was approximated from the rate of flow per unit of drainage area in near-by rivers where the area and outflow were available from established ratings.

8. In the second method the total flow past lock 5, Lachine, was derived by adding the discharge of the St. Lawrence west of lock 25 to that of the two outlets of Lake of Two Mountains which lead into lake St. Louis and adding to this again, the run-off of the drainage area between lock 25 and lock 5 Lachine, derived proportionally from other local streams as in the first case described. The flow out of Lake of Two Mountains in this case was taken as independent

of the level of Lake St. Louis.

9. The results obtained by the two methods were found to be in close agreement. Those established by the latter method were used in the discharge gauge relation adopted for lock No. 5, Lachine. Table No. 1 showing the computations for the relation adopted for the period 1904 to date is attached to this Appendix.

The discharge gauge relation is shown on Plate No. 7.

10. The discharge gauge relation for the period 1860 to 1877 is not based on extensive data and is probably not as reliable as that for the later period. In some cases the determinations made were somewhat round-about due to gauge records at all stations not being complete. Computations for this period are shown on Table No. 2 and the discharge is shown on Plate No. 6.

11. The discharge relation for the period of 1884 to 1895 was derived from continuous comparisons of a number of gauge readings and known changes in the

outlet of Lake St. Louis, and is shown on Plate No. 8.

12. A discharge gauge relation for Pointe Ste. Clair gauge on lake St. Louis is also attached to this appendix, plate No. 9. It has been derived by continuous comparison of the readings at this point with those at lock No. 5, Lachine. The readings of the gauge at lock No. 5, Lachine, fluctuate due to changes in flow in the canal while the readings of the gauge at Pointe St. Claire are not subject to such changes.

13. Gauge relations in Montreal harbour and below show that water levels as far up as the foot of the Lachine canal vary with the spring and neap tides as well as with the relative flow in the Ottawa and St. Lawrence rivers and changes of wind. Accordingly, only neap tide weeks and periods of little wind were used in compiling data for the determination of discharge stage relations

at and below Montreal.

14. It is not possible to derive a simple discharge relation for the water level in Montreal harbour, due to the back-water effects of the flow from the Mille Iles, Des Prairies and other rivers which enter the main river below Montreal. The stage of the Ottawa and other rivers entering the St. Lawrence is often high when that of the St. Lawrence at Lachine is relatively low. Meterings of the St. Lawrence below Montreal do not give much information because of the interference of the tide and the sensitiveness of the river to changes of the wind. The back-water effect of the inflow from the rivers downstream from the Des Prairies outlet of the Ottawa river is noticeable in Montreal harbour but its magnitude is small, except when the lower tributaries are in flood.

- 15. In order to develop discharge stage relations that would enable the effect of given diversions to be dealt with, a series of discharge stage relations were derived at a number of points at and below Montreal from diagrams for Lachine, plate No. 8, and Pointe Claire, plate No. 9, based on periods during which the discharges down the Mille Iles and Des Prairies rivers were constant.
- 16. In the preparation of diagrams a series of periods during which the water levels at Upper St. Annes varied between 69.6 and 70.0, 70.0 and 70.4. 70.4 and 70.8, etc., were grouped together and a diagram of discharges and stages for lock No. 1, Montreal harbour produced for each series. The plotted results in two of the series used are attached to this Appendix, plate No. 11, along with the table (No. 3) from which they were obtained. The result of all the computations, plate No. 10, shows that, as the general discharge stage relations are expressed by straight lines, the amount of change in stage for a given change in flow is constant, regardless of the stage of the river at Lock No. 1, Montreal. With a rise or fall of 1 foot on the Lock 1 gauge, the level of Lake of Two Mountains remaining constant, the increase or decrease of flow in the St. Lawrence may be taken as 23,000 cubic feet per second. Conversely, if the flow in the St. Lawrence be reduced by 23,000 cubic feet per second, the lowering of the water level at Lock No. 1 will be 1 foot. By proportion, a reduction of flow of 8,500 cubic feet per second (which is the present authorized diversion at Chicago) lowers the water level in the harbour to the extent of 0.37 feet.
- 17. The determination of the discharge stage relation at Varennes is simpler than the determination of this relation in Montreal harbour, because the flow past the point in this case is the factor which largely governs in the relation. However, the volume of inflow from rivers below Varennes still influences stages at Varennes. The determination of the precise manner in which changes in flow in each stream affects the stage at Varennes would be a long and futile task as the number of points where water enters is very large and the effect of many is so small that they cannot be detected in gauge relations which are also affected by tide and wind.
- 18. The best that can be done is to approximate from the Chezy formulæ the back-water effect of one or two of the larger rivers and assume that a certain percentage of the flow in these would produce the actual stages found if it were added to the flow past the point.
- 19. In this way, the diagram, plate No. 12, attached to this appendix, was developed. The discharge taken as governing the relation is: That of the main river, derived from the pointe Claire gauge, plus the discharge for the Mille Iles and Des Prairies rivers derived from the Upper St. Annes gauge, plus that estimated for the tributary area between these gauges and Varennes, plus one-half the flow of the Richelieu river and one-third of the St. Maurice to cover an amount that would produce the same effects at the gauge as that which does actually enter the St. Lawrence below Varennes. The inflow from the tributary area between lake St. Louis and Lake of Two Mountains and Varennes was taken as a proportion of the St. Maurice river. The computations are shown on Table No. 4.
- 20. The discharge stage relation for Sorel, plate No. 13, was obtained by taking the governing flow as that of the main river plus that of the Mille Iles, Des Prairies and Richelieu rivers, plus that of the drainage area between Sorel and the outlets of lake St. Louis, Lake of Two Mountains and lake Champlain, plus the flow of the St. Francis river and a portion of the flow of the St. Maurice. Computations are included in Table No. 4.

21. The curves of discharge stage relation shown on plates Nos. 12 and 13, are so drawn in the lower range as to be parallel to lines connecting series of observations in which the flow of the St. Maurice stood constant. In this way the slope of the lower part of the curve is more accurately shown than

might appear from the points on the diagram.

22. From table No. 4, it may be seen that at low stages a change in flow of 24,500 cubic feet per second causes a change of stage of 1 foot at Varennes, or a diminution of 8,500 cubic feet per second in flow lowers the level at that point to the extent of 0.35 foot, and at Sorel, 31,000 cubic feet per second represents a change of stage of 1 foot or a diminution in flow of 8,500 cubic feet per second causes a lowering in water level of 0.28 foot.

23. In a way similar to that above described, the effect of a reduction in flow of 8,500 cubic feet per second at Batiscan was found to be equivalent to 0.24 foot of stage. At points further down, the effect of the diversion was taken as proportional to the relative change in level as shown on published

charts.

24. The effect of a diminution in flow of 8,500 cubic feet per second at various points in the lower St. Lawrence may be summarized as follows:—

	Feet
Montreal Harbour	0.37
Varennes	
Sorel	
Batiscan	
Letbiniere	
Pt. Platon	
Oueliec	0.03

25. Compensation. The losses in stage summarized in the last paragraph can be restored by dredging Montreal harbour and the river channel to a greater depth and lowering the foundations of docks and wharves in the harbour

accordingly.

The amount of dredging required would be the amount of losses shown with an addition of about 15 per cent in the case of Montreal harbour and an average of 6 per cent in the channel between Varennes and Quebec, this additional amount being necessary to compensate for the further recession resulting from this dredging. The probability of dredging for compensation being done as a special work is not entertained as this would be an expensive undertaking. It seems reasonable to assume that it would be incorporated in a general program and the rates used in the estimate of cost are based on this assumption. The programs of the past have been for deepening from 27½ to 30 feet and a later program, now about half completed, is for deepening from 30 to 35 feet. The following table shows the yardage involved in deepening the channel to the extent of 5 feet from Montreal to deep water above Quebec, with an estimate of the further quantities to be removed to compensate for a diversion from the river above Montreal of 8,500 cubic feet per second.

	Cubic Yards To excavate from 30 to 35 feet	Cubic Yards Required to compensate
Montreal to Sorel	16,571,961	1,330,000
Sorel to Bastiscan	24,938,875	1,380,000
Batiscan to Lotbiniere	6,595,441	364,000
Lotbiniere to St. Augustin	2,601,766	94,000
Total		3,168,000
3,168,000 cu. yds. at 42.5 cents per cu. yd Plant, shops, surveys, etc., average, proportion		\$1,346,400
ning of works, 60 per cent		807,600
Total		\$2,154,000

26. Dredging Montreal Harbour. The dredged area in Montreal harbour at the present time is about 18,364,000 square feet in earth and 5,540,000 square

feet in shale rock.

A loss in depth of about 1.15 feet has occurred in this harbour since 1899, from causes other than the Chicago diversion. A deepening of the whole harbour to the extent of 3 feet probably represents what will be done as regards some parts and what has already been done in others.

The estimated cost of such deepening over and above what was and is

required to preserve original works is as follows:-

Shale rock dredging 5,540,000 x $\%$ ₂₇ = 616,000 c.y. at $\$3.50$ Earth dredging 18,364,000 x $\%$ ₂₇ =2,040,000 c.y. at 1.00	\$2,160,000 2,040,000
The cost, total	\$4,200,000 420,000
Total	\$4,620,000

Of this 3 feet, the portion chargeable to the Chicago Diversion is 0.37 foot, increased by 15% = 0.425 foot. The amount chargeable to Chicago Diversion therefor will be $0.425 \times 4,620,000 = \$654,000$.

3

27. Piers and Dock Walls. To restore all losses due to lowered water levels in Montreal is a large undertaking. There are at present 46,000 lineal feet of high dock wall, all of which are solid retaining crib construction, below the bottom level of which excavation cannot be carried without danger of collapse. Some of it is founded on shale rock and some of it has only an earth foundation. The dock walls which were built before 1901 are all of timber construction throughout, while those recently built are timber in the lower 30 feet of their height, and concrete above. The upper 24 feet of the older work is subject to decay, and reconstruction of this will be required before long.

28. The estimate prepared by the Canadian section (see paragraph 214, main report) assumes that the newer docks were built deep enough to care for the loss in depth due to the diversion at Chicago and that the older docks will

require to be rebuilt to a greater depth in the near future.

The cost of reconstruction of docks for an increase in depth of 3 feet will be:—

30 feet and over, 30,720 lin. feet, 1,164,000 c.y. at \$7.00	\$ 8,148,000 2,870,000 406,000
Total	\$11,424,000 1,143,000
Total	\$12,567,000

As in the case of harbour dredging, the portion chargeable to Chicago diversion is in the ratio of 0.425 feet to 3.0 feet, which is, say \$1,800,000.

29. Summary. The total estimated cost of increasing the depth in Montreal harbour and the St. Lawrence ship channel, to compensate for a diversion of 8,500 cubic feet per second, will be as follows:—

Dredging ship channel, Montreal to St. Augustine	654,000
Grand total	\$4,608,000

Adopted by the Board, June 2, 1927.

OD 1904 TO DATE
TO
904
PERIOD 1
GAUGE.
LACHINE
50,
LOCK
FOR
SLATION
K BI
STA
DISCHARGE STAGE RELATION FOR LOCK 5, 1
OF
DERIVATION
NO. 1SHOWING
40.
ABLE N

.aloD. Goal Distort (#1+(II)+(#)	17	371,500 286,860 275,840 286,860 286,710 286,730 284,730 234,660 234,360 234,300 403,100 463,100 463,100 367,800
Total Disch. Cols. (12) - (12) - (12)	16	253 990 253 990 273 990 273 990 284 990 284 990 284 180 285 180
Lock 5, Lachine W.Elev.	15	70.48 67.552 67.520 66.92 66.92 66.17 66.34 66.34 71.49
Upper St. Annes (Vaudreuil) Disch.	14	85,000 16,500 16,500 17,100 77,100 25,500 14,000 111,300 111,500 134,000 17,000 111,500 17,000 11,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,00
Grenville Disch.	13	157,000 45,500 30,000 23,200 23,200 18,000 102,000 102,000 18,500 18,500 225,000 225,000
Des Prairies R. Disoh.	12	90,50 31,000 23,000 20,300 20,300 39,500 116,000 119,500 119,500 84,000
Lock 25 Disch.	11	281,600 282,200 284,700 284,700 284,700 284,900 281,900 281,900 281,900 284,200 284,200 284,200 284,200
Disch. of Drainage A, Grenville to St. Annes=1, 186 S.M. + That shown in Col. (9) Q=6,986 x Col. 8	10	2 889 2 489 1 1,740 1 1,340 1 1,340 2 3,050 2
Disch. of Drainage A.L. 25-L.5= 5,800 S.M.Q.=5,800 x Col. (8) Col. (7)	8	2,490 11,440 11,110 11,110 11,110 12,530 12,530 12,460 119,400 110,000
ogradoaid latoT	00	4,061 1,704 1,197 1,197 1,197 1,190 1,007 1,008
For A Spanier U letoT	2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	9	
St. Regis R. Disoh. (Drainage A.=621 S.M.)	ro	828 3225 258 258 258 258 258 258 259 259 259 259 259 259 259 259 259 259
Paquette R. Disch. (Drainage A1,170 S.M.)	4	1,540 659 859 859 180 1,460 1,460 1,170 1,170 1,150 2,500 2,600
.dosiG. H. bidotsgewsO (.M.E 088, I=.A eganistG)	eo	992 600 600 600 600 600 600 600 600 600 60
S. Nation R. Disch. (Drainage A,=1,436 S.M.)	23	700 1200 1200 1300 1300 1600 1644 1648 1648 16600 1690 1690 1690 1690 1790 1890 1690 1690 1790 1890 1990 1990 1990 1990 1990 1990 19
Date	1	May 1913 July 1913 Aug. 1913 Sept. 1913 June 1914 Oct. 1914 Oct. 1914 Oct. 1916 Oct. 1916 Oct. 1916 Oct. 1916 Oct. 1916 Oct. 1916 Nov. 1916 Sept. 1916 Aug. 1916 Oct. 1916 Nov. 1916 Sept. 1916 June 1916 Oct. 1916 Nov. 1916 Sept. 1916 Nov. 1916 Nov. 1916 Sept. 1916 Nov. 1916 Nov. 1916 Sept. 1916 Nov. 1916 Nov. 1916 Nov. 1916 Sept. 1916 Nov. 1916

Nors.—Cols. (16) and (17) give discharge by alternative methods of calculation. The results are in fair agreement, but as those in Col. (17) appear more consistent, they have been selected to establish the curve.

TABLE NO. 1.-SHOWING DERIVATION OF DISCHARGE STAGE RELATION FOR LOCK 5, LACHINE GAUGE. PERIOD 1994 TO DAITE-Continued

Total Disch. Cols. (9) + (11) + (14)	17	337,300 345,150 325,370 276,460 337,780 311,670 267,420
Total Disch. Cols. (11) + (11) + (12)	91	325,400 334,400 317,600 274,990 328,250 300,110 264,800
Look 5, Lachine W.Elev.	15	69-66 69-82 69-19 67-70 68-18 68-181 67-33
Upper St. Annes (Vaudreuil) Disch.	14	81,000 75,000 51,400 16,000 64,000 43,500 16,000
Grenville Disch.	13	154,000 144,000 104,500 124,000 86,000 42,800
Des Prairies R. Disch.	13	87,000 82,000 82,000 30,500 72,000 35,500 30,000
Lock 25 Disch.	11	245,500 259,000 269,100 257,900 261,600 261,100 248,600
Disch. of Drainage A, Grenville to Gard. A. That St. Annes=1,186 S.M. + That shown in Col. (9) Q=6,886 x Col. 8 Col. 7	10	12,900 13,400 5,860 3,090 14,650 8,510 3,400
Disch. of Drainage A.L. 25.L.53. 6,800 S.M.Q.=5,800 x Col. (8) (7) .loO	6	10,800 11,150 4,870 2,560 12,180 7,070 2,820
egradesiG lateT	œ	6,931 8,541 1,967 1,967 8,019 4,661
gentange Area	2	3,820 3,820 3,820 3,820
North R. Disch, (M.S 907=A eganist())	9	1,700 1,030 1,030 1,590 860 590
St. Regis R. Diach, (M.S 123-A.)	20	1,380 1,340 467 376
Paquette R. Disch., O'Esinege A.=723 S.M.)	4	3,110 3,020 1,180 1,180 3,340 1,780 632
Oswegstchie H. Diach., (.M.E 198=.A. SanisrU)	03	1,760 2,090 2,090 1,630 1,630 502
S, Wation R. Disch. (Drainage A,=1,436 S.M.)	2	681 3917 1159 459 391 135
Date	1	May 1917. June 1917. July 1917. Sept. 1917. May 1918. June 1918.

NOTE_COIS. (16) and (17) give discharge by alternative methods of calculations. The results are in fair agreement, but as those in Col. (17) appear more consistent, they have been selected to establish the curve.

TABLE NO. 1.—SHOWING DERIVATION OF DISCHARGE STAGE RELATION FOR LOCK 5, LACHINE GAUGE. PERIOD 1904 TO DATE—Concluded

St. Lar	0101	nce Waterw
Total Disch. Cols. (9) + (11) + 14)	17	410,750 433,000 222,000 238,400 217,500
Total Disch, Cols. (11) + (11) + (12)	16	5, 240 288, 900 121,000 225,000 121,000 225,000 121,000 71.465 388,140 410,756 15, 000 228,000 271,000 135,500 135,500 136,900 65,29 222,000
Lock 5, Lachine W.Elev.	15	71.46 71.99 65.69 66.21 65.73
Upper St. Annes (Vaudreuil) Disch.	14	121,000 135,500 10,400 19,000 12,000
.daid ollivari	13	225,000 271,000 31,500 41,000 34,000
Des Prairies R. Disch.	12	121,000 132,000 24,000 33,500 25,500
Lock 25 Disch.	111	268,900 278,300 208,500 215,300 202,100
Disch. of Drainage A. Grenville to St. Annes=1, 186 S.M. + That shown in Col. (9) Q=6,986 x Col. 8	10	25,240
Disch, of Drainage A.L. 25-L.55 5,800 S.M.Q.=5,800 x Col. (8) Col. (7)	8	20.850 2 190 21,200 2 3,100 4,100 8,400
egradosiG fatoT	00	
sərA əganistC İstoT	2	9,342
Madawaska R. Disch. (Drainage A=3,210 S.M.)	. 9	19,230
Mississippi R. Disch. (Drainage A.1=.,400 S.M.)	25	4,290
Hideau R. Disch (M.S 915,1=.A egsener(I))	4	4,490
Houge H. Diach. (M.S 087, 1=, A sgartist (C)	8	12,230 8,370
S, Nation R. Disch. (M.S 384, I=, A 938 S.M.)	5	2,110
Date	I	May 1919. 2,110 1 June 1919. 1,180 0ct. 1923. Sept. 1923. Nov 1923.

TABLE NO. 2.—SHOWING DERIVATION OF DISCHARGE STAGE RELATION FOR LOCK 5, LACHINE GAUGE. PERIOD 1860-1877

Date .	Discharge at Ste. Annes and Vaudreuil into Lake St. Louis	Discharge Coteau Landing	Discharge Richelieu River	Allowance for Drainage Area between Coteau Landing and Lock 5. 1,300 x 8,200 (4)	Total Discharge at Lock 5, Lachine Cols. (2) +(3)+(5)	Water Surface Elevation at Lock 5, Lachine
1	2	3	4	5	6	7
Sept. 6, 1872. June 1, 1873. Sept. 12, 1873. Oct. 31, 1873. June 1, 1874. May 17, 1876. May 26, 1877. Oct. 26, 1877.	10,000 151,700 10,000 37,000 121,000 212,700 42,000 10,200	239,700 292,000 270,400 267,000 298,000 323,000 270,300 233,300	19,500 26,000 11,200 14,200 27,100 37,600 13,200 4,100	3,300 4,400 1,900 2,500 4,800 6,300 2,300 800	253,000 448,100 282,300 306,500 423,800 542,000 314,600 244,300	65·90 71·67 67·27 67·49 71·07 73·74 68·72 66·15

TABLE NO. 3.—SHOWING DERIVATION OF DISCHARGE—STAGE RELATION FOR LOCK NO. 1. LACHINE

W.L. AT UPPER ST. ANNES BETWEEN 69.6 AND 70.0

Date			Pt. Claire Discharge	Lock 1 Gauge
	1	2	3	4
	1923	66·73 67·93	217,900 252,000	18·01 19·68
Sept. 29-30, Oct. 1-4,	1922. 1922.	67·72 67·65	245,800 243,400	19·31 19·16
Oct. 30-31,	1922 1922	67.30	242,500 233,500	19·10 18·73
Aug. 27-30,	1921 1921 1920		253,400 245,500 241,000	19·75 19·09 18·94
	1920	67.56	241,000	19.13

W.L. at Upper St. Annes between $70 \cdot 0$ and $70 \cdot 4$

Sept.	8-10,	1924	67.83	249,000	19.59
Oct.		1923	66.94	223,500	18.34
Oct.		1923	66.75	218, 200	18.28
Oct.		1923	66.73	217,800	18.01
Aug.		1922	68 · 45	267,500	20.27
		1922	68 - 33	264,000	20.19
Aug.		1922	68 · 05	255,800	19.96
		1922	68.08	256,800	19.79
		1922	67.94	252,200	19.69
		1922	67.88	250,200	19.60
		1922	67.70	245,000	19.42
		1922	67 · 62	243,000	19.14
Oct.		1922	$67 \cdot 22$	231,200	18.74
Nov.		1922	$67 \cdot 25$	232,000	18.76
July		1921	68 · 26	261,900	19.96
July		1921	68 · 25	267,500	19.91
July	30-31.	1921	68-23	260,800	. 19.81
Aug.		1921	68 · 16	258,900	19.87
Oct.		1921	67 - 57	. 241,300	. 19.56
Nov.	14,	1921	67 · 10	. 228,000	18.63
Aug.		1920	$67 \cdot 79$	247,600	19-42
Aug.	26,	1920,	67 - 66	244,000	19.29
Sept.	5- 9,	1920	67 · 70.	245,000	19.35
Sept.		1920	67 · 70.	. 245,000	19.24
Oct.	5- 6,	1920	$67 \cdot 82$	248,800	19.91
Nov.	4,	1920	67.78	247,600	19.39

45827—26

St. Lawrence Waterway Project

FABLE NO. 3.—SHOWING DERIVATION OF DISCHARGE—Continued W.L. at Upper St. Annes between 70-4 and 70-8

Date	Pt. Claire Gauge	Pt. Claire Discharge	Lock Gauge
1	2	3	4
Av. 09 05 1004	68.03	055 000	19.9
Aug. 23–25, 1924 Aug. 16–28, 1924	68.11	255,000 257,100	19.99
Sept. 12, 1924.	67.81	248,300	20.1
Aug. 5-8, 1923	67.68	244,600	19.3
Aug. 9-11, 1923	$67 \cdot 57$	241,300	19.1
Aug. 23–24, 1923	67.57	241,300	19.2
Sept. 3, 1923	$67 \cdot 46 \\ 67 \cdot 36$	238,000 235,200	19·1 18·9
Sept. 8- 9, 1923 Oct. 4, 1923	67.09	227,500	18.7
Nov. 1- 4, 1923.	66.90	222,200	18.4
Nov. 5- 7, 1923	66.89	222,000	18.5
Nov. 16, 1923	66.72	217,500	18.3
Aug. 4-5, 1922	68 · 56	271,000	20.6
June 28-29, 1921	68.54	270,400	20.4
July 1-4, 1921 July 13-15, 1921	68 · 41 68 · 34	266,300 264,200	20·2 20·2
Oct. 26–29, 1921.	67.31	234,000	19.2
Aug. 22–23, 1920	$67 \cdot 79$	247,700	19.4
Aug. 27–28, 1920	67 - 67	244,100	19.2
Nov. 6-7, 1920	$67 \cdot 73$	246,200	19.4
Aug. 7–10, 1924. Aug. 11–13, 1924. Sept. 22–24, 1924. Setp. 27, 1924.	$68 \cdot 22$ $68 \cdot 32$ $67 \cdot 92$ $67 \cdot 61$	260,300 263,500 251,400 242,200	20 · 4: 20 · 4: 19 · 9: 19 · 5:
July 24-26, 1923.	67.93	252,000	19.8
Sept. 17-19, 1923	67-40	236,300	19.2
Sept 23, 1923	67.16	229,300	18.9
July 17–19, 1922	68.98	284,000	20.9
July 20-21, 1922 July 31-Aug. 2, 1922	68 · 98 68 · 65	284,000 273,900	21·03 20·8
June 17-19, 1921.	68.77	277, 500	21.0
July 5-7, 1920.	68 · 16	258,300	20.29
Aug. 6- 9, 1920	68.02	254,400	19.8
	68 · 03	255,000	
Aug. 10–12, 1920	00 00	200,000	19.8
W.L. AT UPPER St. Annes between 71		200,000	19.8
W.L. AT UPPER ST. ANNES BETWEEN 71	2 AND 71.6	270,200	20.8
W.L. AT UPPER ST. ANNES BETWEEN 71	2 AND 71.6		

				1	t	1
July	24-30.	1924	 	 68 · 54	270,200	20.83
Oct.					260,200	
July		1002	 			
					257,500	
July	1-7,	1922	 	 69.50	300,900	22.39
July	22-23,	1922	 	 68.93	282,500	21.06
June	14-17,	1921	 	 68.93	282,500	21.25
June	24-26,	1920	 	 68.22	260,200	20.32
June	29-30,	1920	 	 68 · 17	259,000	20.10
July	2- 3.	1920	 	 68.05	257,800	20.12
July	23-29.	1920	 	 68 - 29	262,800	20.41
July	20-25,	1919	 	 69 - 47	.300,000	21.64
Oct.	7- 8.	1919	 	 68 - 85	280,000	21.12
July	30-31.	1918	 	 69.05	286,800	21.49
Aug.	1- 5.	1918	 	 68.75	276,800	20.97
Sent	30-Oct	3 1018	 	 68 - 64	273,500	20.99
	07 21	1017	 	 00.04		
Aug.	21-31,	1917	 	 69 · 28	293,600	21.60
Sept.	9-11,	1917	 	 68.90	281,800	20.97
Nov.	5- 8.	1917	 	 69.09	287,400	21.82
	,			 		

TABLE No. 3.—SHOWING DERIVATION OF DISCHARGE—Concluded W.L. at Upper St. Annes between 71.6 and 72.0

	1	1 (
Date	Pt. Claire Gauge	Pt. Claire Discharge	Lock 1 Guage
1	2	3	4
Tul- 0 1004	00 70	977 400	01.00
July 9, 1924 July 12–15, 1924	68·70 68·61	275,400 272,600	$21.09 \\ 20.73$
Oct. 5. 1924.		277,000	22.16
Oct. 7-10, 1924	68 · 40	266,000	21.35
July 10-12, 1923		266,000	20.49
June 20, 1922. July 1, 1922.	69.42	298,200 302,600	$22 \cdot 64$ $22 \cdot 72$
June 13, 1921.		287,000	21.34
June 15, 1920.		266,800	20.72
July 9–12, 1919		311,000	22.06
Oct. 16-18, 1919		280,200	21.28
Oct. 19–22, 1919. Nov. 16–17, 1919.		276,200 283,000	$20.94 \\ 21.35$
July 30-31, 1918.		286,700	21.50
Oct. 12-15, 1918.	69.00	285,000	21.66
Oct. 16-18, 1918		276,000	21.28
Aug. 16, 1917		301,900	22·10 21·69
Aug. 25–28, 1917. July 21–22, 1916.		295,000 307,000	21.09
June 9-11, 1915.		256,100	20.11
June 19-22, 1915	68.04	255,800	20.31
June 23-25, 1915		253,100	20.41
July 5-8, 1915	67.94	252,400	19.93
W.L. AT UPPER ST. ANNES BETWEEN 7.	1	1 1	
June 21-22, 1923		283,200	21.73
June 5- 3, 1922 May 30-31, 1921		298,700 301,900	$22.05 \\ 22.03$
June 1-3, 1921		298,300	21.88
July 6, 1919		320,000	22.80
June 17-23, 1918		305,800	22.44
Aug. 2, 1917. July 7-10, 1916.		320,700 363,600	23·00 23·20
June 5, 1915.		260,100	20 59
June 13-15, 1924	69.77	310,000	23.06
May 18–20, 1921	70.17	324,000	23.30
May 14-17, 1920		300,200 346,000	22·95 23·86
June 24–26, 1919. June 1–3, 1918.		334,000	23.29
June 28-29, 1916.		349,000	24.45
W.L. AT UPPER St. Annes between	74.8 AND 75.	2	
	1		
May 2, 1924		330,000	24-67
May 23-25, 1922		344,800 346,000	24 · 40 25 · 12
April :30-May 2, 1921. May 15-19, 1917.		340,000	24.81
May 30-31, 1917	70.44	332,700	24.07
June 1-4, 1917	. 70.64	340,800	24-04
June 12-13, 1916	. 71.40	368 · 000	25-58

TABLE No. 4.—SHOWING DERIVATION OF DISCHARGE STAGE RELATIONS AT VARENNES AND SOREL

Gauge at Sorel	18.94 21.02 116.95 14.37 14.37 114.37 113.59 113.93	19. 20. 38. 12. 20. 38. 12. 20. 20. 38. 12. 20. 20. 20. 20. 20. 20. 20. 20. 20. 2	19.73 17.91 15.92 17.45 16.20 14.53 14.48
25 . X			
Total flow at Sorel 2+3+4+5	503, 800 635, 200 575, 700 443, 000 341, 600 371, 800 330, 500 328, 400 314, 600	546, 800 606, 800 606, 800 606, 800 600 600 600 600 600 600 600 600 600	563,300 494,500 402,100 405,500 425,800 334,700 317,300
Gauge at Varennes	22 24.06 23.4.06 20.3.4.06 17.50 11.45 16.69 16.69	23. 23. 28. 28. 28. 28. 28. 28. 28. 28. 28. 28	23.47 21.76 19.40 20.07 19.47 17.81 17.60
Total flow at Varennes 2+6+7+8	438, 200 533, 500 411, 600 325, 400 350, 800 306, 900 292, 900 287, 500 293, 900	525.000 504,700 340,700 340,800 322,500 278,500 278,500 277,700 273,70	508,900 458,800 376,300 382,700 389,300 315,700
One-third St. Maurice discharge	18,900 45,400 27,100 11,800 6,300 8,100 8,200 10,000 10,000 8,700	21, 48 20, 600 600, 600	18,700 12,500 12,7,800 6,800 6,800 15,400
One-half Richelieu discharge	117,800 17,300 12,300 18,900 18,900 18,900 18,000 18,000 18,000 18,000 18,000 18,000	14,100 14,100 12,300 12,300 11,800 11,800 11,500 11,500 11,500 11,500	15,800 11,700 8,700 10,200 10,600 7,500 4,200
1,850 16,200 St. Maurice discharge	6,500 15,500 9,300 22,200 22,800 17,700 3,400 3,000	11,700 2,300 1,500	6,4,2,2,2,4,00 2,3,800 2,3,800 4,000 4,000
Dis- charge St. Maurice	56, 800 136, 100 18, 300 18, 300 35, 400 24, 200 24, 700 14, 500 30, 000 26, 000	300 65,300 102,200 65,300 15,000 15,800 15,800 18,100 18,100 18,100 18,100 18,100 18,100 19,100 10 10 10 10 10 10 10 10 10 10 10 10	26, 200 24, 100 24, 100 23, 300 24, 300 20, 500 16, 200
Dis- charge St. Francis	6,9,4,5,1,4,5,00 6,9,4,5,1,4,5,00 6,000 6	22 11,000 10,000	7,500 1,500 1,500 1,500 1,500 1,500
Dis- charge Richelieu	28, 34, 600 17, 800 17, 800 17, 800 17, 800 18, 300 19, 4, 4, 4, 4, 4, 4, 000 19, 900 19, 900 19, 900 19, 900 19, 900	3300 6,0	31,600 23,400 17,400 20,300 21,100 114,900 10,500 8,300
Discharge Pt. Claire and Des Prairies River	398, 000 465, 300 465, 300 465, 600 386, 900 336, 900 293, 500 284, 400 272, 100 280, 000	457, 100 465, 100 465, 100 463, 100 326, 400 321, 600 270, 500 270,	468,000 430,300 356,800 342,000 367,800 317,200 301,100 289,300
Date	1924 22th April to 2nd May 11th May to 17th May 28th May to 18th May 28th June to 18th June 28th July to 18th July 7th August to 20th July 23rd August to 13th August, 23rd August to 13th August, 24th September to 12th September 21st September to 12th September 21st September to 12th September	22rd April to 29th April 8th May to 14th May 7th June to 18th May 7th June to 18th June 21st June to 27th June 31st June to 28th June 32th Mayers to 18th August, 33th August to 28th August, 33th August to 28th August, 34th August to 28th August, 35th August to 28th August, 35th August to 28th August, 37th October to 9th October 31th October to 9th October 31th October to 3th October 31th October to 22th October	4th May to 10th May 19th May to 55th May 2nd June to 6th June. 17th June to 23rd June 1st July to 23rd July 1fth July to 23rd July 31st July to 6th August. 15th August to 21st August.

13 · 64 13 · 43 13 · 00 12 · 83 12 · 59	10.33 17.14 17.14 18.13 18.23	19.00 17.26 14.21 14.21 13.65
306, 200 311, 000 288, 600 297, 900 279, 000	573, 600 382, 500 382, 500 351, 600 314, 100 308, 400 281, 600 281, 600 281, 600 281, 600 281, 600 281, 600 311, 500 276, 200 305, 100	521 469, 600 428, 500 328, 500 338, 500 338, 500 338, 500 308, 500 286, 300 286, 300 286, 300 286, 300 286, 300 308, 500 308, 500 3
16.80 16.58 16.19 16.00 15.73	22.76 20.87 18.89 17.35 17.135 16.51 16.52 16.54 16.54 15.66 15.66 15.94	22.11 20.66 19.72 18.22 17.28 17.45 17.61 16.56 16.56 16.56 16.56
290,800 289,600 276,000 277,800 264,300	495, 300 423, 800 862, 400 331, 900 331, 900 284, 400 272, 900 285, 400 282, 400 282, 400	439, 200 414, 100 382, 100 310, 500 310, 600 310, 700 311, 700 314, 500 227, 800 277, 800 271, 100 271,
10,100 6,000 9,400 6,500	37, 900 11, 200 1, 200 8, 400 6, 500 10, 500 10, 500 6, 600 10, 600 6, 600 10,	22, 300 119, 800 11, 600 10, 900 6, 900 6, 900 7, 100 7, 1
3,000 2,400 1,800 1,800 900	10,400 7,700 22,600 22,600 11,900 11,800 11,800 100 500 500	115,200 115,200 11,500 11,500 11,500 12,500 12,500 12,500 13,500
2,500 2,500 2,100 2,200 2,200	88000000000000000000000000000000000000	600 600 600 600 600 600 600 600 600 600
17,700 30,300 18,000 28,200 19,400	22, 500 21, 600 21, 600 21, 600 21, 600 22, 500 22, 500 22, 500 23, 500 24, 500 25, 500 26, 500 27, 500 27, 500 28, 50	66,800 60,300 577,300 20,800 20,800 21,400 113,800 113,400 113,400 113,400 113,400 113,400 113,400 113,400 113,400 113,400 113,400 113,400 113,400 113,400
2,700 1,900 3,700 3,200	### 1	2,200 6,5100 6,100 1,200
2,900 3,600 1,700	20 115,100 111,300 111,300 17,100 25,200 22,500 1,400 1,400 4,600 4,600	38, 300 30, 300 153, 300 10, 300 10, 800 10, 8
279,900 273,600 265,100 263,400 254,700	434,000 401,200 347,200 317,000 288,100 284,000 287,300 247,600 251,400 251,400 269,300	389 371,900 371,900 374,000 374,000 292,400 285,700 285,700 286,000 286,000 286,000 281,300 281,300 271,000
30th August to 5th September. 13th September to 19th September. 2sth September to 4th October. 13th October to 19th October. 2sth October to 3rd November.	30th April to 6th May 14th May to 26th May 14th May to 5th June 13th June to 16th June 13th June to 16th June 12th July to 18th July 12th July to 18th July 17th August to 17th August 17th August to 17th August 17th August to 17th August 17th August to 17th August 18th October to 18th August 18th November to 18th November 18th November to 18th November 18th November to 18th November 18th November to 18th November 18th November 10 18th November 18th November 10 18th November 18th November 10 18th November 18th November 10 18th November 18th November 10 18th November	25th April to 1st May 11th May to 17th May 25th May to 31st May 8th June to 15th June 22th June to 20th June 22th June to 20th June 23th July to 29th July 6th August to 12th August 5th September to 11th September 5th September to 11th September 5th September to 11th October 5th October to 10th October 20th October to 10th October 20th October to 26th October

APPENDIX E

ICE FORMATION ON THE ST. LAWRENCE AND OTHER RIVERS

- 1. When the problem of preparing plans for the improvement of the St. Lawrence river was first undertaken, particularly by the Canadian Government, about ten years ago, there was a great deficiency of basic data on which to predicate designs. Since that time systematic surveys have been made of ice covers, packs and gorges, as they occur, and as a result of these, much exact knowledge is now available. This data is presented in summary in this appendix.
- 2. ICE PRESSURE. In northern latitudes a solid covering of ice forms on quiet river and lake surfaces in winter. This melts away with the advent of warm weather. The thickness of ice cover varies with the coldness of the climate. A thickness of about 2.5 feet is found in latitude 45 and 5.5 feet in latitude 57 in the eastern half of North America. Sheet ice as formed on lakes and rivers is made up of great numbers of crystals standing with axes vertical and closely packed side by side. As the air with which ice is in contact changes in temperature from day to day, the temperature of ice on rivers and lakes changes also. In cases where the ice surface is free from snow, the amplitude of this change at mid depth is about one-half that of the air so long as the temperature of the air is below freezing. If an ice sheet is covered with snow this change in amplitude is less than one-half that of the air.

3. As ice heats and cools it expands and contracts. Daily expansion and contraction of ice sheets is noticeable on lakes and rivers in northern regions. In some cases cracks have been observed to open or close as much as ten feet in a period of several days and these usually occur in the same places year after

year.

4. The coefficient of free unrestrained expansion of ice is given by many authorities as about .00004 per degree Fahrenheit change in ice temperature per unit of length. On this basis a sheet of ice one mile long, with a temperature change of 5 degrees, would expand or contract to the extent of one foot. Actually, movements of two feet per mile have been observed at free ends of ice sheets on large lakes and rivers during extreme changes of weather. On small lakes and rivers, the movement of the ice is believed to be restrained by the shores at least to a sufficient extent to prevent it being much noticed.

5. There are records of failure of some light dams and structures which were due to ice action but the fact that dams of dimensions not sufficient to resist theoretical ice action are in place, proves that the full crushing strength of ice

is not applied to them.

- 6. In order to set up a more definite value for probable ice pressure on dams, a series of tests were carried out by Professor Ernest Brown of McGill University and the engineering staff of the Department of Railways and Canals in the winter of 1925-26. These show that sheets of ice flow or slowly change their shape as some as subjected to pressures in excess of about 100 pounds per square inch. A special report giving details of tests made in this connection is given in appendix "F".
- 7. In view of the foregoing, the Board has reached the conclusion that ice pressure will not exceed 22,000 pounds per linear foot on the upstream side of dams under weather conditions to be expected in the St. Lawrence region.

- 8. ICE FORMATION IN RAPID WATER. As is well known, the precipitous rapids of northern rivers remain open in winter and solid smooth ice covers form on the gently flowing sections; thus, open and closed conditions alternate with one another. The laws or conditions governing the location of the boundaries between an open and closed surface are not well known. Observations of the behaviour of rapids and open stretches of river show that they are subjected to much cooling in winter, but they do not freeze over because the ice crystals formed in preserving the heat equilibrium, attach themselves to the bottom or are carried off by the turbulent water before they have time to connect to one another or bridge the stream. As the water with its burden of ice moves downstream it ultimately reaches a river or lake expansion where its velocity and turbulence moderate and where the ice and slush move quietly on its surface. Under these conditions ice bridges form across the river or lake and then the pack, as it is called, advances upstream until it reaches a point where the velocity becomes so great that ice is carried under the surface of the pack and is deposited there in the form of a "hanging dam". These hanging dams continue to increase in length as long as the temperature of the air is below about 20 degrees Fahrenheit, or while snow is falling and as long as large open surfaces remain in the river above. As soon, however, as the temperature of the air rises above 20 degrees Fahrenheit or the area of the water surface exposed above reduces in size, the length and steepness of the water slope through these dams becomes less, and in the warm weather of approaching spring the jam melts away. The formation of an ice cover on a stream acts as a blanket and prevents the formation of frazil in the water beneath.
- 9. Sometimes ice gorges cause the inundation of large areas above them as in the vicinity of Montreal and sometimes they greatly reduce the flow of water as in the St. Clair river.
- 10. Effect on Power Improvement. In the improvement of northern rivers for power it is usually possible to establish water surface levels high enough to secure low velocities and eliminate or reduce to small proportions all water surface areas remaining open in winter. This opportunity is generally available because most rivers have deep wide valleys with small winter flows compared with those of summer.
- 11. Much difficulty is found in reducing open water areas on the St. Lawrence river to small proportions. The river carries a large winter flow which must be maintained, the river valley is relatively narrow and the water level at the head of the rapids sections cannot be raised on account of property values involved in flooding.
- 12. As a consequence of this situation a number of investigations were made to determine the facts with regard to the following matters:—
 - (a) Conditions under which smooth ice covers, ice packed covers, and hanging dams may be expected to form.
 - (b) The amount of ice formed by a given open water exposure in a given locality.
 - (c) The loss in head due to ice covers and packs of various kinds, or the effect of such packs on the flow of water under them.
- 13. FACTORS AFFECTING ICE COVERS. Whether an ice cover forms or does not form across a river depends upon the temperature of the air, the temperature of the water, the velocity of the wind, and the velocity and turbulence of the water.
- 14. Actual observations at a number of points on the St. Lawrence show little variation in what takes place at a given point from year to year. For

instance, an ice cover always forms on lake St. Louis at a point where the average velocity is about one foot per second and gradually makes downstream to a point where the average velocity is close to two feet per second. An ice cover forms at the lower end of lake St. Peter at a point where the average velocity is from 1.0 to 1.25 feet per second. At the foot of Vercheres Island where the average velocity of the water is about 1.4 feet per second, ice covers do not form until the ice pack reaches this point from below. At other points on the river, such as the sections at Croil island, Cat island and at Drummond island, ice covers do form at from 1.30 to 1.40 feet per second, under extremely cold weather conditions. After an ice cover has started in quiet water near shore it will extend into swifter water. The actual surface velocities along the edge of an ice sheet have been observed to be as high as 2.5 feet per second.

15. The term "average velocity" as herein used is the velocity determined by dividing the river discharge by the area of the cross section at the water level. The term "surface velocity", where used, is the observed velocity determined by surface floats. The surface velocity at a section may be as much as

50 per cent in excess of the average velocity.

16. It is not probable that an ice cover would always form on a section of the St. Lawrence early in winter unless provision is made for reduction of the

average velocity in the section to about 1.25 feet per second.

17. After ice covers are formed and attain some thickness it is found that average velocities can be increased up to 2.5 feet per second without danger of breaking up the ice sheet. This is current practice in the operation of power canals in the St. Lawrence district.

18. Near the immediate outlet of large lake expansions and in some rivers in Ontario large openings or air holes are sometimes found where the velocity is below one foot per second. This phenomenon is apparently caused by heat accumulated remaining in the water underneath the ice. Not many cases of this are found in the St. Lawrence where the velocity is so low, but the phenomenon is noticeable at the outlet of Rice lake on the River Trent and in other places.

19. In stretches of river where average velocities exceed 1.40 feet per second, ice covers will not form from shore to shore but after a bridge is formed below, ice and slush will pack upstream against an average velocity up to 2.25 feet per second without the floating slush or crystals being carried underneath the advancing ice bridge. This fact permits channels of reasonable size to be used for power works in northern latitudes, and is of economic importance in reducing the cost of improving rivers to obtain the power available in them.

20. The formation of the ice pack which forms each winter at the foot of lake St. Peter and gradually builds up to Montreal has been watched for many years, because it furnishes information of special value in connection with ice packs. Gauges were established in this stretch of river twelve years ago and water level records are available which show the change in slope which occurs

in this reach as the ice pack advances from day to day.

21. From the above records and direct observations, the conditions under which the ice pack failed to advance have been clearly defined. If slush or frazil is carried underneath an ice bridge and is deposited in the form of a hanging dam its presence is reflected in steep slopes which continue throughout the winter. If the ice bridge advances without slush or frazil being carried underneath the cover, the section will not show any slush in place and surface slopes in succeeding winters will be moderate and uniform.

22. The observed data are shown on table No. 1. This table shows that frazil is likely to be carried under the ice cover and deposited if the average

velocity exceeds 2.25 feet per second, but is not ordinarily carried under unless the velocity exceeds that figure. The section chosen at Lanoraie is one in which the conditions are as adverse as can be expected anywhere.

- 23. On account of the need for reliable information on this matter an effort has been made to obtain corroborative data in other parts of the river. This search has only been partly successful as no other section is available which is naturally suited to furnishing such information. In the International Section of the St. Lawrence river and on the Niagara river, records show ice packs advancing upstream under velocities which may vary from 2.4 to 3.2 feet per second depending upon the temperature of the air and the amount of frazil and slush ice carried in the water (table 2). These velocities may also depend to some extent on the crookedness of the river as records in general show higher velocities at the head of advancing packs in the International Section than in the St. Lawrence below Montreal. Records also show the average velocity of the water at the point where deposits of frazil and slush cease at the lower ends of hanging dams to be about 2 feet per second. It is probable that some ice is generally carried under sections when the ice pack is advancing, but obviously the point where it would cease to be carried under is near at hand else the pack would not advance. Again, the fact that water does not carry ice under a cover at a velocity less than 2 feet per second suggests that velocities of less than 2.25 feet per second would not cause it to submerge. Records of receding ice jam is during the breakup period (table 3) indicate that the average velocity of the water at the head of the jam in these cases varies from 2.2 to 2.5 feet per second.
- 24. The deduction made from this information is that an average velocity of less than 2.25 feet per second must be provided to ensure an unobstructed section, especially in mild weather immediately following cold periods.
- 25. LIMITING VELOCITIES FOR ADVANCE OF ICE PACKS. In the improvement of the St. Lawrence it is important to define conditions under which a stretch of river will remain open and free from ice covers of all kinds. River channels were cross-sectioned in winter and re-cross-sectioned in summer; flows were metered in winter and in summer, and every effort was made to ascertain the truth in each case which appeared to furnish typical information. A variation is found in the velocity and temperature required to produce a bridge in different sections of the river. This is shown by table 2.
- 26. An examination of data accumulated shows that with velocities between 2.7 and 3.3 feet per second ice covers, if formed, will go and come with changes of weather but, with velocities in excess of about 3.3 feet per second, surfaces will generally remain open under all winter conditions on the St. Lawrence.
- 27. Rates of Ice Production. In addition to determining the water velocity conditions under which ice covers and packs of various kinds are formed, the volume of ice in the form of frazil made by a given exposure to cold is important because it is not always possible to arrange for the whole of a river to be ice covered. Two methods for determining this volume are available.
- 28. The actual contents of hanging dams in lake St. Louis, lake St. Francis, and above Croil island have been measured by cross-sections under the ice at these points. The measurements made when related to the water surface exposed show the production of from 8 to 15 cubic feet of ice per square foot of exposure. These variations depend upon the place of measurement and the coldness of the winter in the year in question.

29. Another method of arriving at the volume of ice formed is by the establishment of the rate at which a water surface loses heat previous to its being cooled down to the freezing point in the fall of each year and the application of the rate found to later exposures. The temperature of both air and water was recorded at Kingston, Brockville, Drummond Island, Dickinson's Landing, Cornwall, Hamilton island and Coteau, for periods of about two months previous

to the actual formation of ice in the years 1924 and 1925.

30. By relating heat losses to differences in temperature found between air and water, the rate of transfer of heat between surfaces was established with a fair degree of accuracy. An examination of the statement attached (table 10) shows that this rate may be taken at about 95 British Thermal Units transferred per day per square foot per degree difference in temperature between air and water, and is independent of the character of the river sections in question. That is, the surface of rapids, the surface of lakes and the surface of smooth sections of river all give about the same cooling coefficient or rate of heat transfer.

31. As shown from an inspection of diagrams which have been prepared, the coefficient derived from these measurements is affected in some degree by snowfall, rainfall and wind. A correction for the effect of snowfall and rainfall has been made in the results given but the effect of wind cannot easily be taken into account. As its effect is small compared to the general difference in temperature between air and water it may be disregarded in the use of this data.

32. As one pound of ice is formed by water at 32° Fahr. giving up 144 British Thermal Units, the total amount of ice formed by a given length of the river in a given time can be approximately determined from temperature records. During the winter of 1924-25, for a period of 80 days the average temperature of the air in the vicinity of Montreal was 17.6° Fahr. below the freezing point, making an aggregate of 1,410 degree days. Taking the cooling coefficient of 95 British Thermal Units per degree day given in paragraph 30, it will be found that this exposure accounts for 16.3 cubic feet of ice per square foot of surface. Actually, 14.4 cubic feet of slush per square foot of surface exposed was found by measurement under the solid ice cover at the head of lake St. Louis at the end of that winter, as shown on table 4. Similarly, in the year 1923 the water surface area exposed in the vicinity of Ogdensburg was subjected to 1,246 degree days of freezing which should form theoretically 14.2 cubic feet per square foot of surface exposed. Cross-section measurements made at the head of lake St. Francis show a deposit of 13.0 cubic feet per square foot of surface exposed between lake St. Francis and Ogdensburg. Other measurements in other years indicate similar relations, as shown on table 4.

33. An approximation of the volume of ice formed by a given exposure can also be made from the rate at which ice packs make upstream from Lanoraie to Longue Pointe below Montreal in zero weather. If cold weather comes on gradually in winter lake St. Peter freezes over a few days before lake St. Louis or lake St. Francis and the area of water at the freezing point can be approximated from temperature measurements at a number of points in this section of

the river.

34. In the year 1925-26 specially good means were provided for estimating the area forming ice because lake St. Francis in that year froze three days before lake St. Louis, and lake St. Louis was open while the pack advanced from Lanoraie to Longue Pointe. In that year the temperature of the water coming down the river reached the freezing point at Cedars about the time the ice pack reached Sorel coming up, but a high west wind kept lake St. Louis open while the pack advanced up stream to Vicker's dry-dock, just below Montreal. The

actual travel of the pack upstream during the two days with 27 degrees of freezing was fifteen miles. With ice taken as fifteen inches thick 25,500,000, cubic yards would be formed or accumulated in one day in this section of the river. This gives about the same volume as is derived by the use of 95 as the cooling coefficient and 77 square miles as the area of surface exposed at that

35. An inspection of tables No. 5 and 6 indicates that the degree days of freezing to which water surfaces are exposed in the vicinity of Kingston, after they reach a freezing temperature, is only about 80 per cent, and at Ogdensburg 90 per cent of that to which similar areas are exposed at Montreal. This difference is due to the moderating influence of lake Ontario on the temperatures of both air and water in the upper river as well as to differences in latitude.

36. The general seasonal variations in temperature of the air and water all along the St. Lawrence from lake Ontario to Montreal are shown in a number of diagrams which are attached to this Appendix (plates I and 2). These show the manner in which the great volume of water held in lake Ontario lengthens the season of open water to a decreasing extent all the way down the river from Kingston to Montreal. On account of the proximity of lake Ontario water, temperatures opposite Kingston at the beginning of winter are still 9 degrees above the freezing point when the inflow from the Ottawa river at the head of lake St. Louis reaches the freezing point. The temperature of the water at Kingston is generally about 6 degrees above the freezing point when the water at the foot of lake St. Peter, 65 miles below Montreal, reaches the freezing point. Usually ice begins to form opposite Kingston at the head of the St. Lawrence about sixteen days after the ice begins to form on lake St. Peter below Montreal and almost a month after ice begins to form on lake of Two Mountains at the outlet of the Ottawa river.

37. Early in the spring of the year, warmer water from the depths of lake Ontario makes itself felt and ice generally disappears in the stretch of river above Ogdensburg about two weeks before a through channel is available at the head of lake St. Louis and lake St. Peter. However, as soon as lake St. Louis and lake St. Peter are clear of ice the temperature of the water at these points rises rapidly and is soon found to be higher than that flowing out of lake Ontario. Throughout the early summer months the temperature of the water

downstream from lake Ontario is tolerably uniform at all points.

38. As a consequence of the above conditions the winter or ice-covered period in the St. Lawrence at the head of the International section is about one

month shorter than that of the river in the vicinity of Montreal.

39. In addition to considering the amount of frazil created by a given exposure, consideration should be given to the fact that water which flows for any great length of time underneath an ice cover, even in winter, accumulates a certain amount of heat from some source. Temperature measurements of the water at the foot of lake St. Francis and at the foot of Bergan lake show that the water flowing out of these ice-covered sections is about 0.03 of a degree warmer than freezing throughout the whole winter period from the time the ice is formed until soft slush makes its appearance on the surface of the ice in March. Measurements also show the temperature of the water under the ice is about 0.16 of a degree warmer than freezing opposite Clayton and 0.08 of a degree warmer than freezing at Prescott during the coldest part of the winter. This heat has an important bearing on the design of works, especially at Galop rapids. If the flow of the river in winter be taken at 200,000 cfs. and the average temperature of the weather as 20 degrees below freezing, it will require an exposure of 45,000,000 square feet to cool the water to the freezing point.

This means that three miles of open water may exist at this point and yet no frazil on the average accumulate, as cold weather is always succeeded by warmer spells and the average temperature for winter months seldom falls below $+12^{\circ}$ Fahrenheit.

40. Slopes through Ice Covered Sections. Gauge relations show that even the smoothest forms of ice covers impose resistance to the flow of water in the sections which they cover. This is easily seen by comparison of summer and winter slopes between Summerstown and Coteau, on lake St. Francis, Ottawa and Grenville, on the Ottawa river, Peterborough and Hastings, on the Trent, and the slopes in certain canals where the discharge is known.

41. The data gathered with regard to the resistance of this form of ice cover indicate that it is comparable to the resistance of concrete surfaces. In canals where a value of "M" in Bazin formula, of 4.0 satisfied summer conditions a value of 2.3 will satisfy winter conditions, the ice cover being taken as part of the wetted perimeter. A value of "M"=1.0 averaged with the value established for open water conditions will give its value close enough for practical purposes.

42. The resistance to flow caused by an ice cover formed by the accumulation of slush and frazil at the head of an advancing ice bridge is of great importance in the design of the St. Lawrence Project, and elaborate arrangements

were made to establish values for this form of resistance.

- 43. Special gauges were established at Varennes, Repentigny and Lavaltrie on the St. Lawrence river below Montreal. These were read winter and summer for two years and slopes were related to discharges derived from gauges farther up river. Through this section of the river no deposits of frazil are found and average summer velocities vary from 2 to 2.6 feet per second while winter velocities vary from 1.3 to 1.6 feet per second, depending upon the state and discharge of the river. From these relations and actual cross-sections of the river made winter and summer, values of "M" in the Bazin formula were obtained. These are shown on table No. 7.
- 44. Gauge readings between Lanoraie and Sorel and discharge relations were also used to determine values for these years in which it was apparent no frazil or slush was carried into the section (table 8). The values obtained in this way check closely with those obtained in the section first described. In this reach velocities vary from 2 to 3.4 feet per second in summer, to 1.6 to 2 feet per second in winter.
- 45. The data above described indicate that winter slopes on the St. Lawrence river may safely be figured with a value of "M" in the Bazin formula taken as the average between that applicable to summer conditions and 5.5 for January and 4.5 for February and March. All the values of "M" derived from gauge readings show a gradual smoothing of the ice cover as the season advances from the time it is first formed until it begins to melt out in the month of March.
- 46. The foregoing results apply to ice covers when formed as a packed surface without hanging deposits. The slopes occurring when all kinds of ice are carried underneath the section and lodged in the form of hanging dams, jams or gorges require consideration.
- 47. A number of ice jams or gorges occur on the St. Lawrence each winter. One of these is at the head of lake St. Francis; one is at the head of lake St. Louis; and one is opposite the city of Montreal between the foot of Lachine rapids and Longue Pointe. In addition to these, occasional jams occur between Morrisburg and Croil island and in the Niagara river.

48. The gorge at the head of lake St. Francis has been watched with care for a number of years and slopes obtained in this section are interesting but, as the river is divided at this point by Cornwall island, deductions from records

must be made with care.

49. The gorges which occurred in the river between Morrisburg and the foot of Croil island were especially instructive. Those which occurred at this point in 1887 and in 1905 also furnish information of value, though the records of these jams are not complete. When the jam of 1923 occurred the Department of Railways and Canals placed a large staff of men at recording the phenomena, and records of great value were obtained.

50. In 1925 an extensive gorge occurred in the lower Niagara river. This jam was especially instructive in view of the straight uniform character of the river. The water level at the head of this jam and the volume of the ice in the section were carefully determined by surveys carried out by the Department

of Railways and Canals.

51. The surface slopes opposite Montreal have been recorded for a number of years. Many cross-sections of jams near Montreal were made by the Montreal Flood Commission in 1887. The gorge at the head of lake St. Louis was cross-sectioned by the staff of the Canadian section of this Board in 1925.

52. From the surface irregularity of ice jams it might appear that no prediction could be made as to the form which such jams take or as to the slope of the water surface flowing through them. Many cross-sections, however, disclose the fact that these hanging dams tend to assume a definite shape with ribbons of clear water of uniform sectional area flowing underneath the jam.

53. Just after an ice movement or a consolidation of a jam the underlying ribbon of water is often irregular but it soon changes to the typical and regular form. The average velocity of the water in the resultant section is generally about three feet per second but does reach four feet per second in some cases and also falls to two feet per second at the foot of gorges in mild weather.

Typical sections of jams are shown on plates 12 and 13.

54. Observations of gorges during formation show that frequently there is a series of pushes in the upper part of the gorge in which the cover at the head is telescoped and on-coming ice from the upper part plunges under the lower part in a continuous stream which sometimes keeps moving for a full day at a time. These partly compressed coverings of ice in pushing down the river bend around curves and change their shape with difficulty. Ice coverings appear to make upstream against higher velocities in crooked channels than they do in straight reaches.

55. The observed slopes of the St. Lawrence through ice jams are shown on table 9. These are plotted on plate No. 7. This plate shows that surface slope in feet per mile is always greater after heavy snowfalls than even during periods

of intensely cold weather.

56. Records as plotted on plates 3 to 6 show that the advent of moderate weather succeeding cold periods or periods of snowfall always produces some lowering of water level at the head of the jam. These often show a rise in the lower portions of the jam indicating a movement of ice from the upper to the lower parts. Continuous moderate weather also produces openings at specially narrow points in the river. These openings, when they break out, generally show velocities in excess of 7 fet per second and in some cases velocities as high as 9 feet per second. This shows that, for a time at least, the ice deposited in a jam or gorge will resist velocities as great as 7 feet per second.

57. Plate No. 7 shows that in general the slope of an ice jam can be taken at about 1.6 feet per mile if there is no snow and very little curvature in the river,

while a slope of about 2.7 feet per mile under the same conditions will maintain with recent snowfall. This 'diagram also shows that if the river is so crooked that it turns 120 degrees per mile, a slope of about 3 feet per mile will be set up in ordinary winter weather by an ice jam and 4.6 feet per mile in such a reach after a snowfall. What slope would be set up if by some chance the water level at the foot of a jam should be lowered is not known and there seems to be no way of determining it.

58. The fact that open slits break out at narrow points in the river with velocities of 7 to 9 feet per second indicates that such velocities are close to the maximum to be expected under ice jams under any conditions. Further indications of the truth of this statement are given in the fact that certain power canals which operate without ice covers find velocities of about 7 feet per second much more satisfactory than velocities of 4 feet per second, because velocities of 7 feet per second prevent adherence of anchor ice to the floor of the canal.

59. In addition to the diagrams shown on plates 3 to 6 many others have been prepared which show changes in water level from day to day at various points in the jams as these form below the Lachine rapids, at Montreal, and at the foot of the Long Sault rapids and at the head of lake St. Francis. Strangely, the highest winter levels opposite Montreal are associated with warm, not cold, winters. This is due to the fact that in warm winters a channel remains open through La Prairie Basin until a late date and large amounts of ice periodically move down from there into the section below Montreal, filling that section of the river with frazil and chuck ice before the advent of spring brings down the final consignment from La Prairie Basin in the breakup period.

60. In summary, the conclusions arrived at by the Board as a result of this

study may be stated as follows:-

 Sheets of ice in the latitude of the St. Lawrence River may, under certain conditions, exert a pressure of about 22,000 pounds per linear foot of dam.

 Smooth ice covers may be expected to form in rivers with velocities up to 1.25 feet per second in zero weather provided there is no high wind preventing such action.

3. Ice covers may be expected to pack upstream up to a velocity of 2.25 feet per second without danger of ice going under the cover.

4. Water surface slopes through ice jams on the St. Lawrence river can be taken as 1.6 feet per mile if there is no snow and 2.7 feet with recent snowfall if the stretch is comparatively straight.

5. The amount of frazil to be expected from a given area of water exposed to cooling action of air can be calculated from the following formula: Volume of ice formed per day=95 x Aver. Diff. in temperature between air and water x sq. ft. of water exposed divided by 144 x 57.4.

6. For obtaining winter slopes under ice covers formed by packing upstream, the value of "M" in the Bazin formula may be taken as 5.5 for January and 4.5 for February and March, averaged with ordinary values applicable to the stretch in question in summer, the wetted perimeter being taken as including the ice cover.

Prepared by D. W. McLachlan.

Adopted by Board, July 5, 1927.

TABLE I—ICE FORMATION CONDITIONS BETWEEN LANDRAIE AND SOREL ON THE ST. LAWRENCE RIVER (SECTION TAKEN AS 110,700 SQUARE FEET AT 12-6 AT LANDRAIE)

STATEMENT SHOWING CONDITIONS UNDER WHICH FRAZIL WAS CARRIED UNDER THE ICE COVER

Date, ·	Tempera- ture of air	Drop in water level after bridge formed	Average velocity derived from Grenville and Lock 25	Average velocity derived from Coteau and Grenville	Average velocity derived from Montreal Aqueduct and Des Prairies River
	feet	feet per sec.	feet per sec.	feet per sec.	feet per sec.
Dec. 25, 1912. Jan. 11, 1913. Jan. 9, 1913. Jan. 3, 1916.	+32°F. + 5°F.	4·2 4·2 4·2 5·9	2.56 2.33 2.40 2.02	2.60 2.43 (Not representa- tive)	2·57 2·31 2·27 heavy local rain
Jan. 6, 1916	+40°F.	5.9	(Not repre-	2.07	2·24+rain
Dec. 19, 1916. Dec. 11, 1917. Jan. 4, 1919. Dec. 18, 1919. Dec. 17, 1924.	0°F. +12°F. +10°F.	$3.0 \\ 3.6 \\ 3.9 \\ 4.0 \\ 2.6$	sentative) 2 · 25 2 · 28 2 · 35 2 · 74 2 · 24	$2 \cdot 26$ $2 \cdot 41$ $2 \cdot 43$	2·33 2·28 2·47 2·49 2·38

Statement Showing Conditions under which Ice Covers formed without Frazil being carried under the Ice Cover

Dec. 18, 1914	−3°F.	$2 \cdot 1 \\ 1 \cdot 7 \\ 1 \cdot 6$	2.36		2.28
---------------	-------	---------------------------------------	------	--	------

Statement Showing Conditions under which only very Slight Amounts of Frazil were carried under Ice Cover

Dec. 28, 1925. Dec. 17, 1924.	+ 9°F. +11°F.	2·6 2·6	2 · 24	2.43	2·26 2·38

TABLE No. 2.—STATEMENT SHOWING CONDITIONS UNDER WHICH ICE BRIDGES OR PACKS HAVE ADVANCED ON ST. LAWERNCE RIVER.

	Remarks	Estimated mild, average of 2 sections. To Diserved next day, probably O.K. To Ohigh, some water—Barnhart Island packed through. Sections appear to be about 1,000 feet too
	V. Velocity in ft. per second at head of pack	4824888888888888944 4444 48488888888888844 4444
	Q. 1 Discharge C.F.S.	206,000 106,000 106,000 1199,000 1199,000 1199,000 1199,000 1199,000 1199,000 1193,000 1193,000 1193,000 1193,000 1193,000 1193,000 1193,000 1193,000
E MIVER	Area of Section sq. ft.	5448874488868444888888888888888888888888
SI LAWERINCE ALVER	Water	219-0 229-0 229-0 229-0 220-0 200-0
10	Tempera- ture of air	+4.2°F. 0.4 -2.0°F. -2.3 +8.0 -2.3 +9.0 +6.7 +2.5 +2.2°F. -10°F. on 23rd & 24th 10°F.
	Date	February 9 1965 February 7 1965 February 13, 1965 February 13, 1965 February 18, 1923 February 9, 1923 February 9, 1923 February 19, 1923 February 1, 1922 February 2, 1922 February 2, 1925 February 2, 1926 February 2, 1925 February
	Location	Cock 23

TABLE No. 3.—STATEMENT SHOWING CONDITIONS UNDER WHICH ICE BRIDGES OR PACKS HAVE RECEDED ON ST. LAWRENCE RIVER

Remarks	Opened South Cornwall Island and stayed Stayed open. Filled a second time. Allows for average of 10 sections and winter retardation. Allow for winter retardation and piers of bridges. Perhaps some water comes in from tributaries near La Prairie. Breakup.
Velocity in feet per second at head of pack	400000 4000000000000 0 000 000 000 000
Q. Discharge C.F.S.	194,000 188,000 176,000 176,000 176,000 209,000 209,000 209,000 174,000 355,000 352,000 352,000 386,000
Area of section sq. ft.	83,000 64,400 71,000 67,000 66,200 66,200 66,200 67,500 77,100 132,000 112,000 115,000 115,000 115,000
Water	1711 1188:5 1188:0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tempera- ture of air	+ + 28°F. + + 24°F. + + 3°°F. + + 25°F. Mild
Date	February 29, 1924. January 29, 1824. January 4, 1925. January 7, 1925. January 19, 1925. January 19, 1925. April 9, 1923. April 19, 1923. April 11, 1923. January 21, 1925. March 31, 1925. April 20, 1887. April 21, 1887. April 21, 1887.
Location	Lock 19. Cornwall Island Cornwall Island Cornwall Island Cornwall Island Cornwall Island South Cornwall Island Willard Creek Lock 23. Below Weavers Point Head Barnhart Island Balow Weavers Point Head Barnhart Island Wassena Point Below Lanoraie Victoria Bridge Victoria Bridge Ile Ronde. Fort St. Helen's Island

TABLE No. 4.—STATEMENT SHOWING THE AMOUNT OF FRAZIL OR SLUSH FORMED UNDER VARIOUS CONDITIONS

Place	Area	Volume of		days of zing	Volume formed per sq. foot of exposure		
	exposed			Ogdens- burg	By actual measure- ment	Calculated with cooling coefficient of 95 cu. ft.	
	sq. ft.	cu. ft.			cu. ft.		
Lake St. Louis, 1925 Lake St. Francis, 1924 1923 1922 Above foot Croil Island	460,000,000 320,600,000	6,355,700,000 3,721,000,000 4,160,000,000 3,950,000,000 1,394,000,000	1,410 817 1,357 1,029 916	1,200 738 1,246 890 826	$ \begin{array}{r} 14.4 \\ 8.1 \\ 13.0 \\ 8.5 \\ 7.33 \end{array} $	16·3 8·45 14·2 10·3 9·5	

TABLE No. 5.—STATEMENT SHOWING DEGREE DAYS OF FREEZING TO WHICH WATER SURFACES AT MONTREAL AND KINGSTON ARE EXPOSED BETWEEN THE TIMES LAKE ST. FRANCIS AND LAKE ST. LOUIS FREEZE OVER AND THE HIGHEST REACHED WATER LEVEL AT MELOCHEVILLE TAKEN AT THE END OF THE WINTER

Year	Date of freezing of Lake St. Louis	Date of freezing of River at foot of Cornwall Island (B)	Date of highest water level. Head of Lake St. Louis (C)	Degree days of freezing for period	Degree days of freezing for period
1924—25 1923–24 1922–23 1921–22 1919–20 1918–19 1917–18 1916–17 1915–16 1914–15 1913–14 1912–13 1911–12 1910–11 1910–11	Dec. 16 Jan. 4 Dec. 18 Dec. 22 Dec. 22 Dec. 25 Dec. 29 Dec. 20 Jan. 11 Jan. 13 Jan. 1 Jan. 12 Jan. 29	Dec. 21 Jan. 21 Dec. 28 Dec. 31 Dec. 29 Jan. 7 Dec. 15 Dec. 29 Jan. 12 Dec. 22 Jan. 11 Jan. 3 Jan. 4 Dec. 18 Dec. 30	Mar. 5 Feb. 28 Feb. 28 Mar. 16 Feb. 20 Feb. 9 Mar. 10 Mar. 5 Feb. 25 Mar. 10 Mar. 6 Feb. 25 Mar. 10 Mar. 6 Feb. 24 Feb. 23	M 1,410 K 1,070 M 1,046 K 777 M 1,481 K 1,199 M 1,240 M 1,606 M 853 M 1,672 M 1,458 M 1,285 M 1,606 M 883 M 1,672 M 1,458	1,200 920 817 659 1,357 After Jan. 19, 916 1,029 1,535 582 1,672 1,458 1,013 1,137 1,147 883 1,588

M = Montreal records.

K = Kingston records

TABLE No. 6.—STATEMENT SHOWING AVERAGE AIR TEMPERATURE AT CERTAIN STATIONS FOR WINTER MONTHS Fabrenheit Thermometer

Year	Month	Canton	Moira	Ogdens- burg	Chezy	Montreal	Kingston	Ottawa
1923–24	Dec Jan Feb	31·7 17·9 10·1	31·2 17·0 10·8	32·8 19·0 12·8	31·9 18·8 10·0	29·7 14·3 11·8	$34.0 \\ 21.0 \\ 14.0$	31·0 12·5 9·7
	Mean	19.9	19.7	21.5	20.2	18.6	23.0	17.7
1922–23	Dec Jan Feb Mar	21·4· 10·8 9·2 20·6	18·8 10·7 7·8 20·1	23·3 13·2 10·8 21·7	$\begin{array}{c} 21 \cdot 8 \\ 12 \cdot 2 \\ 10 \cdot 6 \\ 22 \cdot 2 \end{array}$	18·5 11·2 9·7 19·2	24·0 14·0 13·0 22·0	17·0 8·0 6·0 17·2
	Mean	15.5	14.4	17.3	16.7	14.7	18.2	12.0

TABLE No. 6-STATEMENT SHOWING AVERAGE AIR TEMPERATURE, Etc.-Concluded

Year	Month	Canton	Moira	Ogdens- burg	Chezy	Montreal	Kingston	Ottawa
1921–22	Dec Jan Feb March	21·8 12·8 20·1 32·0	20·2 13·3 19·2 31·8	20·6 15·6 20·6 32·0	$\begin{array}{c} 21 \cdot 2 \\ 14 \cdot 2 \\ 20 \cdot 2 \\ 32 \cdot 6 \end{array}$	19·8 13·2 16·6 30·6	26·0 16·0 21·0 30·0	17·5 9·5 13·5 27·5
	Mean	21.7	21 · 1	22 · 2	22.0	20.0	23 · 2	17-0
1920-21	Dec Jan Feb	23 · 2 20 · 9 20 · 9	$22 \cdot 6$ $20 \cdot 6$ $20 \cdot 6$	$24 \cdot 4$ $21 \cdot 5$ $23 \cdot 2$	$24 \cdot 0$ $21 \cdot 8$ $21 \cdot 2$	22·1 18·0 18·9	$27 \cdot 0$ $25 \cdot 0$ $25 \cdot 0$	$20.5 \\ 15.5 \\ 17.0$
	Mean	21.7	21.3	23.0	22.3	19.7	25.7	17.7
1919–20	Dec Jan Feb	21·4 4·1 15·4	18·8 4·3 14·8	23·3 6·7 15·6	21·8 5·4 16·0	16·0 4·9 14·5	20·0 7·5 17·0	12·5 0·5 11·0
	Mean	13.6	12.6	15.2	14.3	11.8	14.8	8.0

TABLE No. 7

Values found for V and M in Bazin's Formula $V = \frac{157 \cdot 6}{1}$ S½ R½ in Summer and in Winter $1 + \frac{1}{m}$ Thickness $1 + \frac{1}{m}$

Thickness of Ice allowed for at 2 feet
VARENNES TO LAVALTRIE—DISTANCE 85,200 FEET

_	Q Discharge C.F.S.	R Hydraulic radius	V Velocity ft. per sec.	F Fall feet	С	М
Open water—Mean flow		26·0 29·1 19·6	2·46 2·62 1·94	2·03 1·99 2·09	97·7 100·6 88·1	3·12 3·05 3·46
Average open water						3.21
Jan. 5-7, 1925. Jan. 1-15, 1925. Jan. 16-31, 1925. Feb. 1-14, 1925. Feb. 15-28 1925. Mar. 6-8, 1925. Mar. 1-15, 1925. Mar. 16-31, 1925.	201,640 239,710 247,640 253,150	12.6 12.0 11.3 11.8 12.8 12.9 13.0 14.8	1·34 1·39 1·31 1·28 1·40 1·44 1·47	3.94 3.78 3.25 2.94 2.75 2.80 2.76 2.58	56·5 60·1 63·0 63·5 68·9 69·9 71·6 75·0	6·34 5·60 5·03 5·08 4·61 4·51 4·32 4·21
Average under ice cover						4.96
Repen	TIGNY TO LA	valtrie—Dis	STANCE 69,000) FEET]	
Open water—Mean flow	508,000 253,000	25·9 29·4 19·8	2·48 2·62 1·93	1·42 1·42 1·39	107·4 106·3 96·3	2·37 2·52 2·82
Average open water						2 · 57
Jan. 5-7, 1925 Jan. 1-15, 1925 Jan. 16-31, 1925 Feb. 1-14, 1925 Feb. 15-28, 1925 Mar. 6-8, 1925 Mar. 1-15, 1925 Mar. 16-31, 1925	253,150	12·5 12·2 11·3 11·9 12·8 13·0 14·8	1·36 1·39 1·31 1·28 1·42 1·44 1·47	2·81 2·78 2·40 2·12 1·99 2·05 1·92 1·82	$\begin{array}{c} 60 \cdot 3 \\ 62 \cdot 5 \\ 66 \cdot 0 \\ 66 \cdot 9 \\ 73 \cdot 9 \\ 72 \cdot 1 \\ 77 \cdot 1 \\ 80 \cdot 3 \end{array}$	5·70 5·30 4·66 4·68 4·05 4·25 3·75 3·69
Average under ice cover						4.51
45097 971	1					

45827-271

TABLE No. 8

Values found for V and M in Bazin's formula $V=157\cdot 6$ S $\frac{1}{2}$ R $\frac{1}{2}$ in summer and in winter

$$1+\frac{m}{\sqrt{R}}$$

Thickness of ice allowed for 2 feet

LANORAIE TO SOREL—DISTANCE = 46,000 FEET

	Q Discharge C.F.S.	R Hydraulic radius	V Velocity feet per sec.	Fall feet	С	М
OPEN WATER Average for October, 1914. Average for October, 1915. June 10, 1919. Average for June, 1919. Average for October, 1920. Average for October, 1920. Average for October, 1921. Average for October, 1922. Average for November, 1924. October 26, 1925. October 27, 1925. Average for October, 1925.	275,500 465,100 477,800 261,300 253,600 264,600 266,500 250,200 249,100	33·0 33·3 38·9 39·2 33·4 33·3 33·5 33·5 33·6 33·7 33·5	1.98 2.15 3.10 3.17 2.03 1.97 2.07 2.07 1.94 1.92 1.96	0·46 0·52 0·74 0·76 0·43 0·34 0·46 0·48 0·38 0·35 0·32	109·1 111·0 124·0 124·5 114·9 126·2 113·5 113·2 116·4 120·0 128·5	2·52 2·43 1·68 1·66 2·15 1·43 2·26 2·28 2·05 1·02
Average open water						1.96
ICE COVER January 8, 1915 January 8, 1915 January 8, 1921 January 18, 1921 January 24, 1921 January 29, 1922 January 29, 1922 January 27, 1925 January 27, 1925 January 26, 1926 January 26, 1926		17·3 16·9 18·0 17·6 17·6 17·4 17·3 17·0 18·2 17·7	1·71 1·82 2·00 1·90 1·86 1·79 1·71 1·45 1·80	2.06 1.78 2.12 1.83 1.45 1.17 2.00 1.37 2.56 2.06	61.5 71.1 69.5 71.9 79.0 85.0 62.3 64.5 56.5 61.1	5.99 4.95 5.36 4.96 4.15 3.55 6.35 5.49 7.63 6.61
Average for January						5.51
February 23, 1915. February 9, 1921. February 28, 1921. February 22, 1922. February 10, 1925. February 24, 1925. February 9, 1926. February 27, 1926.	230,000 249,200 239,200 218,800 204,400 223,800 216,100 215,100	17·2 17·1 16·8 17·7 17·8 18·6 17·3 17·7	1·74 1·09 1·85 1·60 1·50 1·56 1·62 1·58	1·74 1·60 1·28 0·96 1·61 1·59 1·72 1·75	68·2 77·5 85·5 83·2 60·1 61·5 63·6 60·9	5·41 4·27 3·45 3·75 6·82 6·16 6·15 6·68
Average for February						$5 \cdot 34$
March 4, 1915 March 20, 1915 March 16-25, 1915 March 7, 1921 March 12-17, 1921 March 12, 1922 March 27, 1922 March 20-29, 1922 March 27, 1925 March 7, 1925 March 27, 1925 March 27, 1925 March 27, 1925 March 27, 1925 March 27, 1925 March 20-21, 1925 March 20-20, 1926 March 20-20, 1926	249,200 248,500 248,200 245,600 259,800 251,600 282,900 289,500 249,600 321,900 325,200 214,500 213,200 213,500	18-1 17-1 17-2 17-2 18-9 18-5 18-4 18-8 18-6 21-0 21-1 17-5 17-3	1.79 1.89 1.88 1.85 1.99 1.76 2.00 2.00 1.74 1.98 2.00 1.59 1.60 1.61	1 · 29 1 · 50 1 · 36 1 · 50 1 · 74 0 · 98 0 · 96 0 · 98 1 · 54 1 · 86 1 · 92 1 · 62 1 · 67 1 · 59	79·5 80·0 83·3 78·1 74·5 88·5 102·0 99·6 67·9 67·9 64·0 63·9 66·0	4·18 4·01 3·70 4·20 4·82 3·34 2·33 2·51 5·28 6·03 6·14 6·10 6·08 5·75
Average for March						4.61
	1					

TABLE NO. 9.—SHOWING RELATION BETWEEN SLOPE IN FEET PER MILE AND CURVATURE IN DEGREES PER MILE THROUGH ICE PACKS

		GILLES I EIL	MADD .	111100.	311 101	7 111011		
				Dist	Fall	Curv	ature	
No.	Station to Station	Date	Fall Feet	Dist- ance Miles	Feet Per Mile	Total Degrees	Degrees Per Mile	Remarks
1 2 3 4	Lock 15 to Dickerson's Isd Hd. Cornwall Isd. to Lock 15 Hd. Cornwall Isd. to Lock 15 Ft. Barnhart Isd. to Head	Jan. 30, 1922 Jan. 30, 1922 Feb. 16, 1922	10·0 7·8 6·1	6·45 2·50 2·50	1.55 3.00 2.40	203 288 288	31·5 115·0 115·0	Mean Conditions. New Pack. Mean Conditions.
	Cornwall Isd	Jan. 26, 1922	4.7	2.00	2.35	200	100-0	New Pack.
6	Ft. Barnhart Isd. to Head	Feb. 16, 1922	3.2	2.00	1.60	200	100.0	Mean Conditions.
7 8 9	Cornwall Isd	Feb. 27, 1922 Feb. 4, 1922 Jan. 30, 1922	5.5 10.5 12.5	2·00 4·60 4·60	2·75 2·30 2·72	200 483 483	100·0 105·0 105·0	Snow. Mean Conditions.
10	Isd Ft. Barnhart Isd. to Lock 15	Jan. 27, 1922 Feb. 28, 1922	10·6 11·2	3·70 4·60	2·87 2·45	285 483	77·0 105·0	Temporary.
11 12 13 14 15 16 17	Hd. Barnhart Isd. to Lock 15. Hd. Barnhart Isd. to Lock 15. Hd. Cornwall Isd. to Lock 15. Lock 15 to Dickerson's Isd Ft. Barnhart Isd. to Lock 15 Ft. Barnhart Isd. to Lock 15 Weaver's Pt. to Upper Farrans	Jan. 29, 1918. Feb. 4, 1918. Feb. 25, 1918. Feb. 4, 1923. Feb. 4, 1923. Feb. 9, 1923.	35.5 17.6 9.0 9.0 12.0 8.7	8·80 8·80 2·94 6·45 4·60 4·60	4·00 2·00 3·06 1·44 2·60 1·89	826 826 335 203 483 483	94·0 94·0 115·0 31·5 105·0 105·0	6 inches Snow. Mean. Cold 0°F. Mean Conditions. Mean Conditions. New Pack. Mean 19°F Conditions
18	Weaver's Pt. to Upper Farrans	Feb. 9, 1923	7.4	3.60	2.05	136	38.0	New Pack.
19 20 21 22 23	Pt. Lock 23 to Weaver's Pt. Lock 23 to Weaver's Pt. Hd. to Ft. Cornwall Isd. Hd. to Ft. Cornwall Isd. Hd. to Ft. Cornwall Isd.	Feb. 21, 1923 Feb. 18, 1923 Mar. 2, 1923 Feb. 8, 1926 Mar. 11, 1926 Feb. 16, 1924	5·7 9·3 11·0 14·8 13·4 12·5	3·60 6·25 6·25 5·50 5·50 5·50	1.58 1.50 1.76 2.80 2.42 2.27	136 325 325 368 368 368	38·0 52·0 52·0 67·0 67·0	Mean Conditions. Mean, No Snow 0°F. Snow 24°F. Mean, No Snow Conditions.
24 25 26	Robinson Bay to Hd. Cornwall Isd No. 5 to Ft. Cornwall Isd Hd. Cornwall Isd. to Lock 15	Feb. 9, 1924 Feb. 8, 1926 Feb. 15, 1924	13·5 4·5 7·5	3·70 2·46 2·50	3.65 1.83 3.00	285 120 288	77·0 49·0 115·0	Snow, Temporary. Mean Conditions. Mean Conditions.
27 28 29 30	Hd. Cornwall Isd. to Lock 15 Lock 15 to Ft. Cornwall Isd Lock 15 to Ft. Cornwall Isd Ft. Barnhart Isd. to Hd. Corn-	Feb. 8, 1924 Feb. 6, 1926 Feb. 24, 1924	9-0 5-0 6-0	2·50 3·00 3·00	3·60 1·70 2·00	288 100 100	115·0 33·0 33·0	Mean Conditions. Mean Conditions.
31	wall Isd	Feb. 5, 1925	4.5	2.00	2.20	200	100.0	Mean, No Snow.
32	wall isd	Feb. 13, 1925	7.0	2.00	3.50	200	100.0	Mean, No Snow Con- ditions.
33 34 35	Cornwall Isd	Jan. 19, 1925 Jan. 6, 1925 Jan. 27, 1925	12·0 12·0 10·6	4·40 2·50 2·50	2·73 4·80 4·24	378 288 288	86·0 115·0 115·0	New Pack. Snow. Steady Snow.
36	Ft. Barnhart Isd. to Head Cornwall Isd	Jan. 18, 1925	8.5	2 · 10	4.00	200	100-0	Newly formed Snow.
37	Cornwall Isd Ft. Barnhart Isd. to Head	Feb. 13, 1925	6.5	2.0	3.24	200		Thaw.
38 39 40 41 42 43 44	Cornwall Isd. Hd. to foot Barnhart Isd. Lock 23 to Upper Farrans Pt. Nisgara River. Nisgara River. Lock 15 to Dickerson's Isd. Lock 15 to Dickerson's Isd. Hd. to Ft. Barnhart Isd.	Jan. 31, 1925. Jan. 31, 1925. Feb. 15, 1925. Jan. 3, 1925. Jan. 15, 1925. Jan. 15, 1925. Feb. 6, 1925. Feb. 26, 1924. Feb. 22, 1924.	4·8 19·0 17·5 18·2 9·3 11·4 10·7 16·7	2·0 4·7 9·8 6·4 6·45 6·45 4·70	2·40 4·00 1·73 2·84 1·45 1·77 1·66 3·55	200 410 402 176 176 203 203 410	87·0 41·0 27·5	Mid-winter. Snow, Temporary. Cold. Snow. Cold. A few small air holes.
	Anderson's Ferry to Grass Isd. Monument No. 3 to Grass Isd. Y. 3 to Ft. Cornwall Isd. Y. 3 to Ft. Cornwall Isd. Hd. to Ft. Pollys Gut. Hd. to Ft. Pollys Gut. Hd. to Ft. ro Strawberry Isd. Hoasic Cr. to Strawberry Isd.	Feb. 15, 1923. Feb. 15, 1922. Feb. 24, 1922. Feb. 14, 1922. Feb. 15, 1924. Feb. 25, 1924. Feb. 21, 1924. Feb. 8, 1924. Feb. 18, 1923. April 9, 1923.	4.06 5.8 6.6 7.5 9.7 9.0 3.5 6.7 5.9	1·54 4·20 4·20 5·00 5·25 5·25 1·29 1·29 3·20 3·20	2·78 1·38 1·57 1·50 1·85 1·71 2·72 5·20 1·84 2·50	110 105 105 197 194 194 146 146 210 210	71·0 25·0 25·0 39·0 37·0 37·0 113·0 113·0 66·0 66·0	Snow. Snow. Prescott ice 23.5 F. Day before 33.9°F.
55 56 57 58 59	Lock 1 to Vickers No. 3 to No. 5 Sth. Cornwall	Feb. 9, 1913 Feb. 15, 1916 Dec. 28, 1924 Feb. 4, 1913	7-20 8-8 9-0 11-0	4·00 4·00 5·60 4·00	1·80 2·20 1·60 2·75	84 84 106 84		New Pack.
60	No 2 to No 5 5th Cornwall	Jan. 25, 1926	8-4	2.30	3.65	145		Snow.
	Isd	Feb. 8, 1926 Jan. 29, 1926 Feb. 8, 1926	6·4 7·0 4·0	2·30 1·80 1·80	2·80 3·90 2·20	145 146 146	63·0 81·0 81·0	Mean Conditions. Snow. Mean conditions.

TABLE NO. 10.—TABLE SHOWING DETERMINATION OF RATE OF HEAT LOSS IN EXPOSED WATER SURFACE DURING COLD WEATHER BETWEEN VARIOUS STATIONS ON THE ST. LAWRENCE RIVER—YEARS 1924 AND 1925

Mean Value of "C"	9.76	108.9	101.9	79.3	92.6	91.9	8-66	0.96
Value of "C"	120.7 97.4 97.6	93-1 1111-9 121-7	94.5 124.5 86.6	79.6	. 85.8 . 91.4 100.5	988 93.0 93.9	107.5 83.2 108.8	
Formula for "C" in Br. Ther. Units	4,873,600 [76,830,000 [18,067,000 [2:4 x V x D] 9-787 x A x (M-T)]	62.4 x V x D 10.9 x A x (M-T)	62.4 x V x D 0.793 x A x (M-T)	62.4 x V x D	62.4 x V x D 11.0 x A (M-T)	62.4 x V x D 11.85xAx(M-T)	62.4 x V x D 1.634 x A x (M-T)	Mean
River Discharge 1,000 cu.fr. per day	18,067,000	18,230,000	18,020,000	18, 260, 000	18,000,000	17, 900, 000	18,060,000	
River Volume between Stations 1,000cu.ft.	176,830,000	5,314,000 [198,800,000 [18,230,000	14,300,000	1,993,500 29,765,000 18,260,000	5,403,600 206,202,000 18,000,000	5,917,000 212,085,000 17,900,000	1,994,000 29,516,000 18,060,000	
River Area between Stations 1,000sq.ft.	4,873,600	5,314,000	602,600	1,993,500	5,403,600	5,917,000	1,994,000	
X.,	10·3 17·5 21·3	9.65 7.45 9.50	18.54 32.74 23.34	15.10	13.45 10.25 10.55	11.85 10.60 10.50	15.55 16.35 13.00	
"T", Mean Air Temp's.	27.80 19.80 14.90	30.95 32.00 28.40	19.65 3.23 10.80	22.75	24.05 26.00 24.90	25.55 25.75 24.60	18-60 17-45 20-25	
Centre date of period Days	11.89 14.89 17.89	5.45 8.45 11.45	10.83 14.79 18.77	4.70	13.00 16.00 19.00	11.92 15.92 19.92	14.39 16.02 17.66	
"Diff. of Water Temp's.	6.33	4.20 3.90 5.40	0.94 2.18 1.08	2.10	5.55 4.50 5.10	6.20 4.65 5.25	2.95 2.40 2.50	
"M", Mean of Water Temp's.	38-12 37-31 36-23	40.60 39.45 37.90	38.19 36.10 34.14	37.85	37.50 36.25 35.45	37-40 36-35 35-10	34.15 23.80 33.25	
Lower Water Temp.	35.43 33.62 32.79	38.50 37.50 35.20	37.72 34.92 33.60	36.80	34.75 34.00 32.90	34.30 34.05 32.50	32.70 32.60 32.00	
Upper Water Temp.	40.82 41.00 39.67	42.70 41.40 40.60	38.66 37.10 34.68	38.90	40.30 38.50 38.00	40.50 38.70 37.75	35.65 35.00 34.50	
Time of passage Days	9.787	10.940	0.793	1.630	11 .00	11.850	1.634	
Date passing Upper Station	Dec. 1924 7, 12:01 a.m. 10, 12:01 a.m. 13, 12:01 a.m.	North Nov. Dec. 1924 30, 12:01 a.m. 3, 12:01 a.m. 6, 12:01 a.m.	Dec. 1924 10, 10:20 a.m. 14, 9:28 a.m. 18, 8:49 a.m.	Dec. 1924 3, 9:21 p.m.	Dec. 1925 7, noon 10, noon	Dec. 1925 6, 12:01 a.m. 10, 12:01 a.m. 14, 12:01 a.m.	Dec. 1925 13, 1:44 p.m. 15, 4.57 a.m. 16, 8:10 p.m.	
Station to Station	Kingston to Brock- ville.	Kingston to North Channel.	North Channel to Massena Pt.	Massena Point to Soulanges.	Kingston to Cardinal.	Kingston to Massena Point.	Massena Point to Soulanges.	

APPENDIX F

EXPERIMENTS ON STRENGTH OF ICE

McGill University, Montreal, Que., May 20, 1926.

To D. W. McLachlan, Esq., Chairman, Canadian Section, Joint Board of Engineers, St. Lawrence Waterways Project, 317 West Block, Ottawa, Ont.

Sir,—I have the honour to submit the following report on tests to determine the physical properties of ice at different temperatures.

GENERAL

The tests herein described were made under general instructions received from you, and were carried out during the months of February and March. 1926, at the Cold Storage Warehouse of the Harbour Commissioners of Montreal, where rooms which could be kept at uniform temperatures ranging from 0° F. to 32° F., were available. A supply of river ice of excellent quality was obtained through the City Ice Co., of Montreal, from their ice cutting field in the LaPrairie basin of the St. Lawrence river, off Verdun. It was noticeably free from flaws, cracks, air bubbles or foreign material, and the upper layer of white ice was only about one inch thick. The blocks were cut under special supervision and handled with the greatest care during transportation to the warehouse so as to avoid risk of damage, and were stored in a room at a temperature of about 30° F. where the necessary specimens were prepared for test. It was proposed to carry out tests at different temperatures, and as the work of cutting specimens could be carried out more conveniently at a temperature near the freezing point than at a temperature near zero, it was decided to cut and store all specimens at about 30° F., removing them to other rooms at lower temperatures as required for testing. It was found later that ice splinters considerably when sawn at temperatures near to 0° F. but at 30° F. the sawing was accomplished with comparatively little difficulty. A series of special mitre boxes was made by which compression specimens 5 inches by 5 inches by 5 inches and 5 inches by 5 inches by 10 inches, and beams 3 inches by 2 inches by 50 inches long were prepared, using ordinary carpenters saws and planes, on the rough specimens cut with ice saws from the larger blocks. (See blueprint attached). All specimens were marked to denote the direction of the crystals.

OBJECTS OF TESTS

The primary object of the tests was to determine the behaviour of ice at different temperatures when compressed normally to the crystals, as may occur under natural conditions above dams, power houses, bridges and such structures. The deformation of the ice was to be measured by the use of mirror extensometers, and its elastic properties and strength determined. Tests were to be made also on beams, to find the modulus of rupture and the modulus of elasticity,

"E", by observation of the deflection under load. The scope of the tests could not be defined in advance, as the field of investigation and method of compression testing proposed were new, very little information having been published regarding the properties of ice at different temperatures.

The complete series of tests includes the following:—

(a) Compression tests at about 30°F., 16°F. and 3°F. with definite load increments corresponding to about 10 pounds per square inch applied at regular time intervals ranging from 5 seconds to 320 seconds.

(b) Crushing strength of ice at the above temperatures under loads applied

uniformly, and suddenly.

(c) Observations on the continuous yielding of ice in compression at about

30°F, under loads as low as 20 pounds per square inch.

(d) The yielding of ice in compression at 14°F, under sustained loads of different intensities from 100 pounds per square inch to 400 pounds per square inch.

(e) Bending tests at about 30°F, and 16°F, at four different rates of load-

ing.

(f) Miscellaneous tests.

APPARATUS USED

The apparatus used was loaned from the Strength of Materials Laboratory at McGill University, and included an Olsen Testing Machine of 10,000 pounds capacity, Martens' Mirror Extensometers, Telescopes and Scales, for compression tests; apparatus for supporting beams for bending tests, weights, deflec-

tion scales and sundry minor accessories.

The Martens' Extensometer was adopted on account of its peculiar adaptability to such tests, experience in the laboratories at McGill University having demonstrated its sensitiveness and accuracy. Two Extensometers were used in each compression test, being held against opposite faces of the specimens. (See blueprint.) To provide bearing for the sharp edges of the Extensometer, flat pieces of galvanized iron about ½ inch square with small projecting points soldered to them, were pressed by hand against the faces of the specimens and frozen in place. This arrangement proved entirely satisfactory. Some initial difficulty in maintaining the Extensometers in place without slipping was overcome by stretching a heavy rubber band over four vertical bars screwed into the base of the testing machine outside the four corners of the specimen, and placing short pieces of wood between the Extensometer bars and the stretched rubber band, so as to exert a pressure between the Extensometers and the ice block, The gauge length of the Extensometers was 2 inches, and a change of 0.001 inch produced a movement of one main scale division, or ten small divisions, amounting to 0.5 inch, on the scale. Readings were made, as usual, by telescope, fractions of the small scale divisions being easily estimated. Each main scale division corresponds to a compression of 0.001 inch, and an estimated

division to 0.00001 inch, so that a strain of $\frac{1}{200,000}$ could be measured. The yielding on opposite faces of compression specimens of materials such as concrete, stone, etc., is rarely the same, and the mean of a number of readings taken around the specimen is essential if a proper measure of deformation is to be obtained. In the tests described, two Extensometers were used, and the mean of the two readings was used to determine the yielding. From these mean readings curves showing the relation between deformation and load can be plotted, and the properties of the ice determined.

To secure uniform bearing and load distribution a heavy iron plate with planed faces was slightly warmed above room temperature and passed over the loading faces so as to melt the ice slightly. The resulting moisture was wiped off and the block set on a thin sheet of blotting paper placed on the lower loading faces of the machine. The heavy iron plate was then placed on the upper face of the block, and a steel washer was inserted between it and another plate directly under the upper loading face. When a small compressive load (250 pounds) had been applied, shims were placed between the two plates. The loading was then continued as required. The load was uniformly distributed by this means. The tool marks of the loading plate could be seen clearly on the blocks after a test was over, and the print of the circular marks on the lower face of the testing machine provided for centering the specimens were also transferred completely to the paper under the block. Details of these arrangements are shown in the attached blueprint.

CONTINUOUS YIELDING OF ICE UNDER SMALL PRESSURES

After the preliminary work necessary in finding suitable means of securing Extensometers and loading the blocks as noted above, tests were made on the recovery of the ice when compression was applied and removed. A block 4.9 inches by 4.9 inches by 4.65 inches high was loaded at 28° F. with 250 pounds sustained for five minutes and there was complete recovery on removal of the load. After second and third applications of this load, sustained as before, recovery was not complete. The shortening in the latter cases was 0.00005 inch in 2 inch gauge length, and 0.00002 inch remained on removal of the load. A load of 500 pounds was then applied and sustained 3 minutes during which time the shortening increased from 0.00006 inch to 0.00008 inch, and 0.00003 inch remained on removal of the load. There was thus a definite "creep" of the Extensometers, and permanent set, at this small load of about 20 pounds per square inch. A similar condition was found with a load of 750 pounds and it was decided to observe the behaviour of a block under a sustained load of 500 pounds. The results are shown in plate 1. It will be seen that the block yielded continuously for 3 hours 30 minutes, the load intensity being 20.8 pounds per square inch. The yield is shown for both sides of the block. On one side the total was 0.00182 inch of which only 0.00009 inch, about 5 per cent, was recovered when the load was removed. On the other side the total yield was 0.00047 inch, and recovery 0.00005 inch-about 10 per cent. The ice is therefore "plastic" under very small load at this temperature, viz. 29° F. As the block yielded, the screws operating the loading head had to be turned slightly to maintain the floating lever of the testing machine in mid position. Movement had practically ceased when the test ended, one extensometer showing no change during the last 15 minutes, and the other a change of 0.00001 inch only in that time. Readings were taken every 5 minutes and were very regular. The deformations were noticeably different on the two sides. The mean of the two is taken as measuring the deformation due to the load. This continued yielding is evidently of the greatest importance in considering the question of ice pressure against structures. If the mean total deformation, 0.00023 inch, during the first 10 minutes be used in computing the modulus of

elasticity (E), it would be $\frac{20.8 \text{ pounds per square inch by 2 inches}}{0.00023 \text{ inch}} = 180,800$

pounds per square inch whereas if the mean total deformation of 0.00114 inch during the whole 3 hours 30 minutes to be used, E would be 36,500 pounds per square inch. The value of E corresponding to the mean total deformation during

the first minute in which the load was sustained, was 489,000 pounds per square inch. As already noted, the block recovered only very slightly when the load was removed.

STANDARD METHOD OF LOADING IN COMPRESSION TESTS

The results of the test just described showed that it was necessary to adopt some standard rate of loading, as the movements of the extensometers due to any load increment will depend largely on the length of time during which the load is sustained before readings are taken. It was decided to apply the load in all cases in increments of 250 pounds. One operator moved the balance weight along the beam, while another operator kept the beam floating by rotating the screws of the machine. Extensometer readings were taken at different time intervals, there being one observer for each extensometer. Four persons were thus employed on each test, one of the machine operators giving the time signals to those reading the extensometers, and then adding load as soon as the readings were taken. In this way readings were made as follows:—

At temperatures 28° F. to 30° F.—Intervals of 5, 10, 20, 40 and 80 secs. At temperatures 14° F. to 16° F.—Intervals of 5, 10, 20, 40, 80 and 160 secs.

At temperatures 3° F.—Intervals of 5 and 320 secs.

The reasons for making tests at 3° F. at only two loading rates were (a) that less importance was attached to tests at this temperature than at the higher temperatures; (b) that time was limited, and the tests were intended primarily to determine whether the general conclusions drawn from the more extended series of tests at the higher temperatures would be supported by tests at the lower temperature. For these reasons the longer intervals of loading were used, and the tests bore out the conclusions already reached.

DIRECTION OF APPLIED LOAD, AND DETERMINATION OF MODULUS OF ELASTICITY

The loads were applied normally to the axis of the crystals, this being the direction in which pressure would act in a natural ice cover. The ice is not elastic except for extremely small loads, and as the loading progressed at any one rate, the deformation corresponding to a given load increment was found to increase. It follows that strictly speaking, there is no definite modulus of elasticity, and that values of E calculated from the deformations resulting from successive increments of load, as if the deformations were elastic, will decrease as the loading progresses. Furthermore, as the deformation under any load increases as the load is sustained, the values of E corresponding to any given range of load will decrease as the length of the loading interval increases.

In order to obtain comparative results the following standard procedure was adopted:—

The loading block was shimmed as described above when the load was 250 pounds. All specimens were approximately 5-in. by 5-in., so that 250 pounds load corresponds to about 10 pounds per square inch. Most of the specimens were approximately cubes, but a few were about 10 inches long. These were noted in the Tables. The determinations in the 2 inch gauge lengths corresponding to successive increments of 1,000 pounds applied in four equal amounts of 250 pounds with time intervals as noted, were found, and values of E calculated from the mean increments. By plotting these values as ordinates on a base line

representing 1st, 2nd, 3rd, etc., increments of 1,000 pounds the variations of E, both with stage of load and with rate of loading, can be easily seen. The results of the tests at different temperatures are now submitted, after which notes are given of the general behaviour of the blocks.

COMPRESSION TESTS AT 28°F. TO 30°F.

(a) Modulus of Elasticity—E

Plate 2 shows the results at the different leading rates, and it will be seen that apart from the running together of the curves for 20 sections and 40 sections rates at the higher loads, the values of E are progressively lower as the time interval of loading increases, and as the actual load increases. Each point plotted represents the average of 7, 8 or 9 tests, as will be seen from Tables of actual deformations in each test, and of average deformations quoted later on Pages 15-18. From these tables it is clear that at the higher loads the deformations in individual tests, depart more from the average for all tests, than they do at the lower loads. This may explain in part the overlapping of curves as noted above as the ice "flows" more rapidly as the intensity of loading increases. It should be emphasized that the averages of all completed tests are shown. No process of selection was used. Occasionally tests failed, as for example by displacement of extensometers due to local cracking of the ice, but the only tests rejected were for these or similar reasons. These remarks apply to tests made at all temperatures, and to both compression and bending tests. While therefore the actual values of E might be altered somewhat if a larger number of tests could have been made at each rate of loading, it is improbable that the changes would be great, and that the general laws of variation would be invalidated. Tests at the lower temperatures gave similar results, and served to emphasize the extreme importance of the time factor.

(b) General Behaviour under Test—Compressive Strength—Recovery after Load.

The blocks were remarkably clear and free from flaws—so clear that ordinary book print could be easily read through them. The first outward signs of yielding occurred at loads from 2,500 pounds to 5,000 pounds. They were both audible and visible, and the term "crackling" was applied to them. Suddenly a slight noise would be heard, and one or more spots of a slaky appearance would develop in the block. These appeared to be due to breakdown between the crystals, and spread gradually, through the block. When they became numerous, the block was no longer transparent, but was described as "clouded." During this stage the blocks yielded fairly rapidly, and the compression head had to be kept moving to preserve the weighing beam in the floating position. This was described as "following." Had the loading been maintained without further increment after "clouding" was well developed, the yielding would have been both continuous and rapid, but the predetermined rate of loading was maintained, and the ice "flowed" continuously. Sometimes the loadings were continued up to the capacity of the machine. 10,000 pounds, but no value can be assigned for the compression strength of ice under such conditions, as owing to the flow (even at the 5 seconds loading rate) the area under load was continuously increasing. Blocks originally 5 inches by 5 inches would flow beyond the edges of the loading plate, 6 inches square, and a length of 5 inches was frequently and rapidly reduced to about 31 inches under sustained high load at the end of a test. When specimens failed under such conditions the pieces showed a tent-like appearance, the horizontal crystals piling up to form a ridge parallel to the loaded faces.

In tests made at lower temperatures the deformations were not so great, and the recovery was noted when the load was reduced to zero after reaching the capacity of the machine. At the temperature of 28°F, to 30°F, at which the first series of tests was carried out, the clouded appearance of the blocks, and the large deformations showed that recovery would be negligibly small. In many cases the blocks crushed after becoming thoroughly clouded, but as stated above no compressive strength can be quoted on account of the "flow" of the ice.

COMPRESSION TESTS AT 14°F. TO 16°F.

Modulus of Elasticity and General Behaviour: Plate 3 shows the results of tests similar to those described in detail for temperature 28°F to 30°F. They are the averages of from 6 to 8 tests at each loading rate, and show the same characteristic with regard to the time influence as was shown at the higher temperature. The values of E corresponding to a particular stage of a given loading rate are higher than at 28°F, to 30°F, and the curve for the 5 seconds

and 10 seconds loading rates are practically straight lines.

At these loading rates the ice "crackled" as at the higher temperature, but to a lesser extent and generally at higher loads, so that in general the blocks were not clouded-when the maximum load of 10,000 pounds was reached None of the blocks failed under that load and only when the load was removed did they become clouded—faintly and fairly uniformly as a rule. The appearance of the blocks was very noticeably different from that at the higher temperatures, and it was only at the slower rates of loading that the characteristic behaviour noted at all loading rates at 28° F, to 30° F, was found.

At these slower rates of loading the blocks were clouded during application of the load, and on removal of load the recovery was much less than in the tests at the 5 seconds and 10 seconds loading rates. (See tables on page 19 to 21). There is some overlapping or apparent irregularity in the curves for 40 seconds and 80 seconds loading rates, after loads of 4,000 pounds to 5,000 pounds were reached. It must be remembered that this is the stage at which deformations are considerable, and that the average of 6 or 8 tests only is available. The curve for the 160 seconds loading rate falls well below all the others, and bearing in mind the nature of the material and the limitations regarding the number of tests made, the results generally are reasonably consistent. Special reference is made on Page 25 to yielding of blocks at 14° F. to 16° F. under sustained loads of different intensities. A load of about 200 pounds per square inchwhich is approximately that to which reference has just been made—may be a critical load, and the point will be discussed further. The values of "E" for small loads seem to be of the same order for all loading rates up to 40 seconds, the curves being bunched irregularly, for the first 1,000 pounds increment of load. This is perhaps not surprising. Deformations at these loads are much more nearly elastic than at higher loads, and are small. For loads longer maintained, greater deformations result, as the ice has a greater tendency to flow. Values of "E" for the first 1,000 pound load increment are about 1,000,000 pounds per square inch for loading rates up to 40 seconds but for the loading rates of 80 seconds and 160 seconds the values drop to 700,000 pounds per square inch and 500,000 pounds per square inch respectively.

The general evidence of these results is the same as that found from tests at 28° F. to 30° F .: - That the value of "E" decreases as the load increases, for all rates of loading; and that for any given range of loading, the value of "E" decreases as the length of the loading interval increases. Furthermore, the corresponding "E" values are higher at 14° F. to 16° F. than at 28° F. to 30° F. Thus for the 7th increment of 1,000 pounds (corresponding to a stress intensity of about 280 pounds square inch) and a loading rate of 5 seconds for 250 pounds, "E" is 450,000 pounds square inch at 14° F. and 150,000 pounds square inch at 28° F. Values of "E" at 14° F. for the loading rate of 160 seconds are consistently higher than those at 28° F. for a loading rate of 80 seconds. Other comparisons substantiating the general conclusions drawn are readily made from the Plates, and are strengthened by the results of tests made at 3° F. as described below.

COMPRESSION TESTS AT 3° F.

Modulus of Elasticity and General Behaviour. Tests were made at two rates of loading: 5 seconds for 250 pounds and 320 seconds for 250 pounds and the results are shown in Plate 4. The curve for the former rate is approximately a straight line, the values of "E" differing but slightly from those at 14° F. The general behaviour was similar to that of the specimens tested at the same loading rate at 14° F., but at the loading rate of 320 seconds the characteristic "flowing" took place, as had been anticipated, and values of "E" are much lower than at the 5 seconds rate. They are, however, much higher than corresponding values, at 14° F. In fact, the curve for a loading rate of 160 seconds at 14° F. is almost the same as that for the loading rate of 320 seconds at 3° F. The figures for the 5 seconds rate are the averages of 7 tests, those at 320 seconds rate being the averages of 5 tests. These results confirm the conclusions already drawn from the other tests. The time factor is the all-important quantity at all temperatures.

TABLES SHOWING DEFORMATIONS OF COMPRESSION BLOCKS REFERRED TO ABOVE

The following tables are submitted in detail to emphasize the general results already given, and to show how widely the deformations vary, particularly at the higher loads. The departure of individual readings from the group averages is much greater at high loads than at low loads, and at 30° F. than at 14° F. or 3° F., and yet the averages point clearly to the well-defined laws enumerated. The increase of deformation for each successive load increment of 1,000 pounds at any particular loading rate and temperature is clearly seen, as also the increase in deformation with lengthening loading interval for corresponding load increments. These comparisons are facilitated by the Summary Table on page —. It may be worth pointing out that the readings given are the deformations in a 2-inch gauge length corresponding to definite ranges of load. Owing to minor variations in the sizes of the blocks, the stress intensities for these ranges are not the same in all cases, so that a comparison of the deformations of any two blocks is not a true comparison of the values of "E". A general comparison is, however, both valid and instructive.

N.B.—In the tables, the deformations in a gauge length of 2 inches, corresponding to a successive load increments of 1,000 pounds are shown, the unit of deformation being $\frac{1}{1000}$ of an inch. The initial load was 250 pounds in all cases.

28° F. то 30° F.

5 sec. Rate		Deformations in 2" gauge length Uni									
Load Incr.	Specimen Number										
of 1,000 lb.	10	11	35+	36	45	46	49+	Average			
1st	0·085 0·110 0·165 0·275 0·465 0·575 0·975 1·645 2·405		0·115 0·160 0·205 0·280 0·350 0·515 1·530 4·85 x 4·85	0·100 0·111 0·125 0·160 0·170 0·195 0·245 0·285 0·295 4·90 x 5·05	0·060 0·110 0·180 0·375 0·520 0·725 0·950 1·330 2·070 5·00 x 5·02	0.055 0.100 0.130 0.200 0.275 0.355 0.490 	0·135 0·150 0·200 0·300 0·365 0·495 1·030 	0·087 0·120 0·165 0·249 0·337 0·454 0·708			

10 Sec. Rate.		Deforma	tions in	2" gauge	length			Unit=0.001"		
Load Incr.	Specimen Number									
of 1000 lb.	13	27	30	32+	38	39	40	48+	Average	
1st	0·180 0·270 0·410 0·550 0·780 0·960 1·275 1·825 2·870	$\begin{array}{c} 0 \cdot 105 \\ 0 \cdot 125 \\ 0 \cdot 160 \\ 0 \cdot 270 \\ 0 \cdot 530 \\ 0 \cdot 840 \\ 1 \cdot 385 \\ 2 \cdot 670 \\ 5 \cdot 105 \end{array}$	$\begin{array}{c} 0.090 \\ 0.170 \\ 0.360 \\ 0.590 \\ 0.725 \\ 0.795 \\ 1.050 \\ 1.645 \\ 3.225 \end{array}$	0·145 0·180 0·245 0·310 0·665 1·080 1·765 4·410	0·100 0·100 0·120 0·160 0·200 0·215 0·275 0·355 0·815	0.115 0.180 0.220 0.500 0.695 1.185 2.020 3.385 5.750	$\begin{array}{c} 0.080 \\ 0.080 \\ 0.250 \\ 0.545 \\ 0.825 \\ 0.950 \\ 1.075 \\ 1.055 \\ 1.000 \end{array}$	$\begin{array}{c} 0.800 \\ 0.110 \\ 0.125 \\ 0.145 \\ 0.175 \\ 0.195 \\ 0.215 \\ 0.260 \\ 0.300 \end{array}$	0·112 0·152 0·236 0·384 0·574 0·777 1·133	
Size of Specimen, Inches	4·90 x 4·90	4·90 x 5·00	4·90 x 4·93	4.95 x 5.00	5·00 x 5·03	5·00 x 5·00	4·98 x 5·02	4·87 x 4·91		
Per cent recovery								49		

⁺Specimens noted thus were approximately 10" high, all others being approximately 5" high.

28° F. ro 30° F.

20 Sec. Rate		Deformations in 2" gauge length							
Load Incr. of 1,000 lb.	Specimen Number								
Load Ther. of 1,000 fb.	14	16	29	34+	41	42	43	47+	Average
let		0·120 0·170 0·285 0·440 0·575 0·685 0·875 1·040 1·295	4.90 x	0·135 0·335 0·700 1·335 2·535 5·295 		0·220 0·335 0·475 0·575 0·670 0·865 1·800 4·620 14·50 4·96 x 5·05	0·185 0·275 0·445 0·580 0·800 1·370 2·560 6·700 	0·090 0·135 0·180 0·245 0·295 0·410 0·605 1·520 4·95 x	0·155 0·266 0·448 0·71: 1·28: 1·986

28° F. то 30° F.

40 Sec. Rate			Deform	nations in	1 2" gaug	e length			Unit	t = 0.001
T 1 T	Specimen Number									
Load Incr. of 1,000 lb	50	51	52	163	164	165	166	167	168	Average
1st	0·230 0·465 0·595 0·675 0·710 0·795 0·875 1·025 1·225	0·400 0·935 1·465 2·385 5·215	0·120 0·260 0·380 0·545 0·675 0·850 1·135 1·410 1·835	0·105 0·185 0·335 0·460 0·630 0·665 1·080 2·180 9·280	0·185 0·360 0·595 0·815 1·145 1·925 4·840 22·13	$\begin{array}{c} 0 \cdot 125 \\ 0 \cdot 240 \\ 0 \cdot 340 \\ 0 \cdot 425 \\ 0 \cdot 470 \\ 0 \cdot 515 \\ 0 \cdot 630 \\ 0 \cdot 685 \\ 0 \cdot 970 \end{array}$	0·195 0·335 0·535 0·880 1·705 3·815 14·78	0·105 0·235 0·380 0·615 1·080 1·710 3·380 11·37	0·085 0·150 0·240 0·280 0·340 0·880 4·350	0·17 0·35 0·54 0·78 1·33
Size of Specimen, Inches	5·00 x 5·02	4.89 x 4.97	4·98 x 4·98	4.98 x 5.00	4·90 x 5·00	4.95 x 5.06	4.93 x 5.00 x	4·97 x 4·99	4·92 x 5·05	
Per cent recov'd.						26				

⁺Specimens noted thus were approximately 10" high, all others being approximately 5" high.

80 Sec. Rate		Uı	nit=0.001"								
T 1 T		Specimen Number									
Load Incr. of 1,000 lb.	169	170	171	172	173	174	175	Average			
1st		0.175 0.330 0.465 0.605 0.810 1.005 1.415 4.155	0·130 0·385 1·035 2·675 5·810 4·87 x 5·00	0·215 0·545 1·015 1·085 3·545 15·45 4·99 x 5·02	0·145 0·270 0·455 0·745 1·425 3·485	0·245 1·165 1·400 2·125 4·900 4·97 x 5·04		0·181 0·505 0·881 1·579 3·249			

SUMMARY OF TESTS AT 28° F. TO 30° F.

Landing Date	Average of Deformations due to									
Loading Rate	1st 1,000	2nd 1,000	3rd 1,000	4th 1,000	5th 1,000	6th 1,000	7th 1,000			
5 secs. 10 secs. 20 secs. 40 secs. 80 secs.	0·087 0·112 0·153 0·172 0·181	$\begin{array}{c} 0.120 \\ 0.152 \\ 0.269 \\ 0.352 \\ 0.505 \end{array}$	0·165 0·236 0·448 0·541 0·881	0·249 0·384 0·711 0·787 1·579	0.337 0.574 1.281 1.330 3.249	0·454 0·777 1·986	0·708 1·133			

This summary table shows how the deformation corresponding to any given range of load increases as the loading rate becomes longer, and how the deformation corresponding to equal successive increments of load increases as the load increases, at any prescribed loading rate.

14° to 16° F.

5 Sec. Rate		Deform	nations in	a 2" gaug	e length			Uni	it $=0.001$
T 1 ! 6 1 000 II	Specimen Number								
Load incr. of 1,000 lb.	70	71	72	73	74	75	85+	87+	Average
1st 2nd 3rd 4th 5th 6th 7th 8th	0.080 0.080 0.100 0.110 0.120 0.145 0.165 0.190 0.230	0.080 0.090 0.120 0.125 0.135 0.170 0.195 0.140 0.240	0.085 0.105 0.110 0.130 0.145 0.045 0.020 0.070 0.005	0·105 0·105 0·120 0·130 0·150 0·170 0·195 0·225 0·275	0·075 0·105 0·125 0·155 0·205 0·180 0·290 0·315 1·135	0·085 0·090 0·090 0·110 0·120 0·125 0·135 0·170 0·165	0.080 0.090 0.090 0.100 0.115 0.125 0.150 0.170 0.215	0.090 0.110 0.120 0.130 0.160 0.190 0.215 0.265 0.305	0·085 0·097 0·109 0·124 0·139 0·139 0·171 0·193 0·321
Size of Specimen, Inches	4·95 x 5·00	4·91 x 5·00	5·02 x 5·03	4·95 x 4·95	4·90 x 5·00	4·87 x 5·00	4·91 x 4·96	4·91 x 4·93	
Per cent Recovery	70.0	67.0	95.0	31.0	49.5	77.5	58.8	65.8	64.3

10 Sec. Rate	Deformations in 2" gauge length Un									
T 1 T 61 000 lb	Specimen Number									
Load Incr. of 1,000 lb.	57	68	69	76	77	78	84+	88+	Average	
1st. 2nd 3rd 4th 5th 6th 7th 8th 9th 9th 9th	$\begin{array}{c} 0.055 \\ 0.075 \\ 0.080 \\ 0.110 \\ 0.120 \\ 0.135 \\ 0.120 \\ 0.120 \\ 0.180 \end{array}$	$\begin{array}{c} 0.115 \\ 0.140 \\ 0.180 \\ 0.210 \\ 0.270 \\ 0.235 \\ 0.275 \\ 0.565 \\ 0.765 \end{array}$	$\begin{array}{c} 0.060 \\ 0.080 \\ 0.125 \\ 0.150 \\ 0.165 \\ 0.180 \\ 0.200 \\ 0.375 \\ 0.900 \end{array}$	0·065 0·080 0·090 0·070 0·095 0·080 0·130	$\begin{array}{c} 0 \cdot 100 \\ 0 \cdot 115 \\ 0 \cdot 115 \\ 0 \cdot 145 \\ 0 \cdot 170 \\ 0 \cdot 195 \\ 0 \cdot 230 \\ 0 \cdot 270 \\ 0 \cdot 315 \end{array}$	0·065 0·085 0·105 0·135 0·145 0·165 0·185 0·205 0·250	0·130 0·180 0·255 0·330 0·485 0·690 0·880 1·205 1·590	$\begin{array}{c} 0 \cdot 100 \\ 0 \cdot 115 \\ 0 \cdot 155 \\ 0 \cdot 175 \\ 0 \cdot 220 \\ 0 \cdot 275 \\ 0 \cdot 340 \\ 0 \cdot 495 \\ 0 \cdot 665 \end{array}$	0.086 0.109 0.138 0.166 0.209 0.244 0.295 0.462 0.666	
Size of Specimen, Inches	5.00 x 5.00	4.88 x 4.93	4·97 x 4·98	4.85 x 4.98	4·85 x 4·88	4·89 x 4·91	4.93 x 4.94	4.93 x 4.94		
Per cent Recovery		26.0	27.7		62.6	63 · 9	10.8	39.3	. 38.4	

⁺Specimens noted thus were approximately 10" high, all others being approximately 5" high.

20 Sec. Rate	Deformations in 2" gauge length Unit=0.001"								
Load Incr. of 1,000 lb.	Specimen Number								Average
	64	65	66	80	81	82	83+	89+	Average
1st	0·100 0·130 0·120 0·130 0·175 0·240 0·285 0·350 0·370 4·90 x 4·93	0·115 0·110 0·255 0·455 0·680 0·800 	0.070 0.135 0.245 0.445 0.730 0.790 0.885 1.120 1.780 4.93 x 4.97	0·075 0·090 0·135 0·165 0·190 0·210 360 0·645 0·975 5·00 x 5·00	0.085 0.140 0.185 0.255 0.330 0.550 0.830 1.140 1.810	0·095 0·105 0·140 0·180 0·385 0·530 0·685 1·095 1·480 4·85 x 5·00	0·110 0·130 0·180 0·215 0·285 0·380 0·475 0·655 0·905 	0.090 0.120 0.140 0.190 0.225 0.260 0.295 0.320 0.370 4.87 x 4.87 x	0.093 0.120 0.175 0.254 0.375 0.470 0.545 0.761 1.100
Per cent Recovery	52.5			19-4	23.6	18.3	30.8	70.6	30-7

14° F. то 16°F.

40 Sec. Rate	Defor	mations i	n 2" gau	ge length			Un	it = 0.001
Load Incr. of 1,000 lb.	Specimen Number							
Load Incr. of 1,000 fb.	90	91	92	115	127	128	129	Average
ist	0.030 0.060 0.065 0.095 0.340 0.785 2.185 6.065	0·150 0·260 0·405 0·495 1·085 2·355 4·375 11·56	$\begin{array}{c} 0.110 \\ 0.220 \\ 0.320 \\ 0.410 \\ 7.10 \\ 0.780 \\ 1.650 \\ 2.285 \\ 4.645 \end{array}$	0.060 0.095 0.165 0.210 0.465	$\begin{array}{c} 0.200 \\ 0.320 \\ 0.475 \\ 0.660 \\ 0.870 \\ 1.230 \\ 2.305 \\ 5.615 \\ 15.77 \end{array}$	$\begin{array}{c} 0.110 \\ 0.210 \\ 0.355 \\ 0.520 \\ 0.790 \\ 1.350 \\ 2.090 \\ 4.225 \\ 10.30 \end{array}$	$\begin{array}{c} 0.065 \\ 0.075 \\ 0.100 \\ 0.105 \\ 0.140 \\ 1.555 \\ 0.185 \\ 0.205 \\ 0.220 \end{array}$	0-103 0-177 0-269 0-356
Size of Specimen, Inches	4.93 x 5.02	4.87 x 5.05	5.00 x 5.02	5.00 x 5.00	4.99 x 5.00	5·00 x 5·00	4.98 x 5.02	
Per cent Recovery			2.2				72.0	

80 Sec. Rate	Defor	mations	in 2" gau	ge length			Ur	it=0.001"
Load Incr. of 1,000 lb.	Specimen Number							
Load Ther. of 1,000 fb.	126	130	131	132	149	150	152	Average
1st	$\begin{array}{c} 0.125 \\ 0.205 \\ 0.270 \\ 0.380 \\ 0.420 \\ 0.545 \\ 0.935 \\ 1.460 \\ 2,470 \end{array}$	$\begin{array}{c} 0.140 \\ 0.200 \\ 0.230 \\ 0.275 \\ 0.285 \\ 0.310 \\ 0.215 \\ 0.265 \\ 1.100 \end{array}$	0.060 0.125 0.170 0.265 0.290 0.355 0.450 3.545 0.825	0·155 0·245 0·400 0·535 0·590 0·555 0·585 0·685 0·775	0·200 0·310 0·440 0·560 0·635 0·660 0·755 0·915 0·980	0.080 0.190 0.230 0.270 0.335 0.400 0.560 0.665 0.955	0·175 0·215 0·220 0·225 0·195 0·225 2·630 5·340	0·134 0·213 ·2800 0·359 0·392 0·436 0·583 1·024 1·065
Size of Specimen, Inches	4.83 x 5.05	4·94 x 5·04	4.90 x 4.97	4.96 x 4.97	4·91 x 4·93	4.92 x 5.00	4.93 x 5.02	
Per cent Recovery	13.3	18.8	32.0	12.0	25.0	39.5		23.5

160 Sec. Rate Deta	Usec. Rate Deformations in 2" gauge length Usec.									
Load Incr. of 1,000 lb.	Specimen Number						Average			
	133	151	153	154	158	159				
1st	0·185 0·250 0·255 0·270 0·325 0·320 0·385						0·195 0·372 0·532 0·669 1·809			
70 (70	4.91	4.94	4.99	5.02	5.03	5.02				
Per cent Recovery	28.2									

⁺Specimens noted thus were approximately $10^{\prime\prime}$ high, all others being approximately $5^{\prime\prime}$ high, 45827-28

SUMMARY OF TESTS AT 14° F. TO 16° F.

Loading Rate	Average of Deformations due to								
Loading Trace	1st 1,000	2nd 1,000	3rd 1,000	4th 1,000	5th 1,000	6th 1,000	7th 1,000	8th 1,000	9th 1,000
5 secs. 10 secs. 20 secs.	0·085 0·086 0·093	0·097 0·109 0·120	0·109 0·138 0·175	0·124 0·166 0·254	0·139 0·209 0·375	0·139 0·244 0·470	0·171 0·295	0.193	0.321
40 secs	0·103 0·134 0·995	$0.177 \\ 0.213 \\ 0.372$	0·269 0·280 0·532	0·356 0·359 0·669	$ \begin{array}{c c} 0.629 \\ 0.392 \\ 1.809 \end{array} $	0.436	0.583	1.024	1.065

This table shows the same general results as those noted already at 28° F. to 30° F. There is, however, some irregularity in the deformations at the 80-seconds rate. These increase continuously for successive load increments, but the deformations for the 5th and 6th thousands of load do not fit in with the general law shown by the other columns as read vertically, being less than those noted at the 40-seconds rate. Whether this is the chance result of averages or not cannot be stated definitely, but it may be noted that it occurs at a loading stage (about 200 pounds per square inch) at which certain peculiarities seem to arise very frequently. Reference will be made to this later, when considering the effect of sustained loads of different intensities at this temperature. The reduction in the rate at which deformation increases as the loading increases is so marked at the 5-seconds loading rate that the average for the 6th thousand of load is the same as for the 5th thousand.

2° 'F. TO 3° F.

5 Sec. Rate Def	ormations	in 2" gs	uge leng	th.			Unit=0.001"		
T 1 T 1 000 lb	1	Specimen Number							
Load Incr. of 1,000 lb.	182	184	185	186	187	188	189	Average	
1st. 2nd 3nd 4th 5th 6th 6th 7th 8th 9th Size of Specimen, Inches	0.070 0.085 0.085 0.110 0.110 0.150 0.130 0.150	0·110 0·115 0·125 0·130 0·140 0·185 0·470 0·295 0·200 4·96 x 4·96	0.080 0.075 0.095 0.095 0.115 0.140 0.145 0.180 0.185 4.95 x	0·105 0·110 0·125 0·185 0·210 0·370 0·355 1·530 4·87 x 5·00	0.060 0.075 0.090 0.105 0.125 0.150 0.315 0.200 0.340 4.92 x 4.96	0.070 0.085 0.085 9.095 0.125 	0·075 0·070 0·110 0·105 0·130 0·140 0·120 0·045 0·170 4·93 x 4·98	0·08: 0·08: 0·10: 0·11: 0·13: 0·18: 0·28: 0·20: 0·42:	
Per cent Recovery	68.0	73.0	70.0		41.0		66.0	63.6	

320 Secs. Rate	Deformation	s in 2" g	auge leng	th .		Ur	nit = 0.001''
Load Incr. of 1.	000 11-	Specimen Number					A
Load Incr. of 1,	000 16.	196	196 197 201			203	Average
1st. 2nd 3rd 4th. 5th 6th 7th 8th 9th		0·115 0·190 0·215 0·245 0·355 0·475 0·515 0·680 2·050			0·220 0·375 0·500 0·630 0·690 0·980 1·520		0·187 0·364 0·538 0·733 1·178 2,167
Size of Specimen, Inches		4.92 x 4.98	4.94 x 4.97	4.87 x 4.95	4.93 x 4.98	4.95 x 4.95	
Per cent Recovery							

These results show the same characteristics as were found at the higher temperatures. Deformations (average) increase progressively as the loading increases at the 5 seconds and 320 seconds loading rates, and are much greater at the latter than at the former. There is some irregularity at about 8,000 pounds load at 5 seconds, similar to that noted at 14° F. to 16° F. at loads of 5,000 pounds to 6,000 pounds. The deformations are noticeably less for the 8th thousand than for the 7th in five cases out of six, and this effect is well marked in the average column. It is possible that there is a critical stress at about this load at this temperature, and that such a critical stress exists at all temperatures well below 32° F., increasing in value as the temperature is reduced. The evidence of the above tests, and of others, at sustained loads at 14° F. to 16° F. tends to support such a view.

SUMMARY OF COMPRESSION TESTS AT DIFFERENT LOADING RATES AT TEMPERATURES RANGING FROM ABOUT 30° F. TO 3° F.

The results of the above tests are conveniently summarized for comparison in the following table. Average deformations of all tests under each particular condition are tabulated, firstly for different loading rates at a given temperature, and secondly for the same loading rates at different temperatures. Apart from the irregularities at certain loads referred to above, the deformations at any given temperature and stage of loading increase as rate of loading becomes slower, and at any given loading rate they decrease at any given stage of loading as the temperature drops.

Deformations in $2^{\prime\prime}$ Gauge Length Unit=0.001 $^{\prime\prime}$

Loading Rate Secs.			Inc	crements	of 1,000	lbs. load				Temp.
Decs.	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	remp.
5	0·087 0·112 0·153 0·172 0·181	0·120 0·152 0·269 0·352 0·505	0·165 0·236 0·448 0·541 0·881	0·249 0·384 0·711 0·787 1·579	0·337 0·574 1·281 1·330 3·249	0.454 0.777 1.986				28° F to 30° F
5. 10. 20. 40. 80.	0.085 0.086 0.093 0.103 0.134 0.195	0.097 0.109 0.120 0.177 0.213 0.372	0.109 0.138 0.175 0.269 0.280 0.532	0.124 0.166 0.254 0.356 0.359 0.669	0·139 0·209 0·357 0·629 0·392 1·809	0·139 0·244 0·470 0·436	0·171 0·295 0·583	0·193 1·024	0·321 1·065	14° F to 16° F
5 320	0·083 0·187	0·086 0·364	0·102 0·538	0·114 0·733	0·136 1·178	0·183 2,167	0.288	0.201	0.429	2° F to 3° F
5 5 5	0·087 0·085 0·083	1·120 0·970 0·086	0·165 0·109 0·102	0·249 0·124 0·114	0·337 0·139 0·136	0·454 0·139 0·183	0·708 0·171 0·288	0·193 0·201	0·321 0·429	28° F 14° F. 2° F
10	0·112 0·086	0·152 0·109	0·236 0·138	0·384 0·166	0·574 0·209	$0.777 \\ 0.244$	1·133 0·295			28° F 14° F
20	0·153 0·093	0·269 0·120	0·448 0·175	$0.711 \\ 0.254$	1·281 0·357	1.986 0.470				28° F 14° F
40	0·172 0·103 0·181 0·134	0·352 0·177 0·505 0·213	0·541 0·269 0·881 0·280	0.787 0.356 1.579 0.359	1·330 0·629 3·249 0·392				• • • • • • • •	28° F 14° F 28° F 14° F

45827-281

The great deformations at 28° F. as compared with those under corresponding conditions at 14° F. are very obvious, as also is the fact that the deformations at 28° F. increase much more as the rate of loading becomes slower than do the corresponding deformations at 14° F. These results are of great significance in considering the pressure which ice can exert against such structures as dams.

DEFORMATIONS UNDER SUSTAINED LOADS AT 14° F. TO 16° F.

A series of tests was made to determine the deformation under sustained compressive loads of different intensities, ranging from about 100 pounds per square inch to 400 pounds per square inch. The load required to produce these conditions was applied in all cases at the rate of 250 pounds per 5 seconds, and the deformations then read at regular intervals under sustained load, the weighing beam of the testing machine being kept floating by rotating the screws as the blocks yielded. The mean of the readings of two extensometers was taken, as in all previous tests, and the curves showing deformations plotted against the time during which the loads were sustained are very regular. (See Plate 5.) Only a sufficient number of points are plotted to enable curves to be drawn. All

deformations were measured in 2-inch gauge length.

A load of 103 pounds per square inch maintained for 3½ hours caused a total deformation of 0.0016 inches, and a load of 300 pounds per square inch caused a total deformation of 0.022 inches in about 8 minutes. The curve for a load of 400 pounds per square inch could not be plotted on the same time scale, being practically coincident with the deformation axis. The form of the curves for loads of 103 pounds per square inch and 300 pounds per square inch suggested that there might be some particular load intensity for which the curve would be a straight line, and several tests were made to investigate this point. Curves are shown for load intensities of 150, 175, 190 and 198 pounds per square inch. It will be seen that these curves fall in regular order, and that there is a large field open between the curves for 190 pounds per square inch and 198 pounds per square inch. This is specially interesting in view of the results already noted in the tests under loads applied at different rates, when it was found that deformations per 1,000 pounds of load increment were frequently less for, say, the 6th thousand than for the 5th thousand. This peculiarity or irregularity was generally observed at a load of about 200 pounds per square inch and the sustained load tests showed that for load intensities of this order the informations vary greatly. Thus at 190 pounds per square inch the total deformations in 1½ hours was 0.0066 inches, and at 198 pounds per square inch it was 0.027 inches in about 45 minutes. Reference to the tables for progressive loading at different rates at this temperature shows that the deformations for the higher loads varied very greatly, the departure of individual readings from the average being distinctly greater, at large loads than at small loads. The curves shown for sustained loads are for single tests only, but it is improbable that the regular order in which they lie is the result of chance. The evidence points towards the view that at a load intensity of about 200 pounds per square inch the ice is in a critical condition. There may be some inter-crystalline slip or cleavage at this load, followed by yielding of very variable rate, which cannot be predicted from the appearance of the ice as seen by the eye. It is also interesting to note that the modulus of rupture found from the beam tests described later was of the order of 200 pounds per square inch.

Irregularities in the deformation per 1,000 pounds of load increment were also noted at 3° F., but at higher loads. No sustained load tests were possible at this temperature, but it may well be that there is a critical load at this temperature, of a higher value than that suggested by the tests at 14° F.

BENDING TESTS—MODULUS OF ELASTICITY AND MODULUS OF RUPTURE

A number of bending tests were made at the same temperatures as in the compression tests described above, and at different loading rates. In all cases, the beams were approximately 3 inches wide by 2 inches deep, and the span was 41 inches. Glass or brass bearing plates were placed between the beam and the supports to distribute the pressure, and the load was applied in increments of 1 pound at each of two loading sections 14 inches from the supports. Half-round wooden-bearing blocks were placed across the beam, and cords were passed over the top and notched ends of these, being kept vertical and close to the faces of the beam by wooden spacing bars at a convenient distance below the beam. A cord attached to the centre of the spacer bars carried a circular piece of wood on which the slot weights were placed, to load the beams. The supports were carried on a heavy lathe bed, on which was set a telescope by which the central deflections were read on a small steel scale attached to the face of the beam by freezing in place under a small pressure. The deflections were estimated to 0·001 inches. (The general arrangement is shown in the blue print at the beginning of the report.)

Preliminary tests showed that the recovery was not complete even for very small loads, and that the deflection increased continuously over long periods under sustained load. It was decided to make the tests at different loading

rates, the procedure being as follows:-

After the zero reading of the scale had been taken, each of two operators added 1 pound load at his stirrup, and the deflection was read say 5 seconds later. Similar loads were added and deflections read every 5 seconds until the beam broke. Tests were made in the same way with loading intervals of 10, 20 and 40 seconds at temperatures approximately 14°F. and 28°F. Time did not permit making tests at 3°F.

In all cases the deflections per pound increment of load increased as the loading proceeded, so that values of the modulus of elasticity computed for successive stages of loading would show continuously decreasing values. Approximations to the form of the load-deflection curves were made by drawing two straight lines, representing the first and second stages of loading, the latter extending to the point of fracture. This was deemed to be sufficient, as the results cannot be compared as simply as those for the compression tests. In the latter the blocks were all approximately 5 inches by 5 inches, so that deformations due to a given load were comparable. But in the case of the beams, the specimens could not be prepared so easily to a definite size, and variations in breadth and depth, particularly the latter, affect the stress due to any given load. All the beams broke suddenly and fracture occurred at or near the loading point. The modulus of rupture and values of "E" corresponding to the two stages of loading defined above were computed for all beams, and the results are shown in the tables appended, and in plates 6 and 7. Tests were made with crystals horizontal and vertical, the average of three tests being given, except in cases where only two tests were made.

Examination of the results shows in general:-

(1) That values of "E" are somewhat greater when the crystals are vertical than when they are horizontal.

(2) That values of "E" are greater at 14°F, than at 28°F, under similar

conditions.

(3) That values of "E" decrease as the load increases under all conditions and generally as the length of the loading time interval increases for

both stages of loading.

(4) That the modulus of rupture is about the same value for crystals horizontal and crystals vertical, but is much greater at 14°F, than at 28°F., the average of all tests at these temperatures being 226 pounds per square inch and 171 pounds per square inch respectively.

(5) That the modulus of rupture does not vary much at the different load-

ing rates.

Other comparisons may appear from a study of the results, but it is worth suggesting that there may be a connection between the modulus of rupture and the load intensity at which certain peculiarities were noted, particularly at 14°F., during the compression tests. These have also been referred to in describing the results of tests at 14°F. under sustained loads, and the evidence suggests that a critical condition, possibly related to inter-crystalline displacements, exists at a load intensity of about 200 pounds per square inch. The average modulus of rupture for 24 beams at this temperature was 226 pounds

per square inch.

In the compression tests at 28°F, to 30°F, the deformation increased continuously for successive load increments of 1,000 pounds. There were no cases similar to those at 14°F., in which the actual deformations for certain of the later increments of load were less than those for earlier increments. But the tables show that in many cases, such for example as Specimens 36, 45 and 49 at the five seconds loading rate (page 16), the increases in the deformations per 1,000 pounds of added load were less between the 4th and 5th thousands than between the 3rd and 4th. The average modulus of rupture of 21 beams was 171 pounds per square inch, which corresponds to a load of about 4,250 pounds on a 5-inch by 5-inch cube.

This distinct lagging in the deformations at higher loads was noted also in some of the compression tests at 3°F., and occurred at higher loads than those at which it was noted at 14°F. No beam tests were made at 3°F., so that modulus of rupture values are not available, but the evidence so far as it goes is consistent and interesting. Tests on the compressive or crushing strength of ice showed that it becomes greater as the temperature is lowered. (See page

441.) This also is consistent with the results just described.

BEAM TESTS AT TEMPERATURES FROM 28°F. TO 30°F.

Test				First	Stage	Second	l Stage	1 lb. load
No.	В	D	Crystals	Bending stress	_	Modulus of rupture		at each stirrup in
	ins.	ins.		lb. per sq. in.	E lb. per sq. in.	lb. per sq. in.	E lb. per sq. in.	
98 99	2·89 2·99	1.97 1.99	Hor	84·5 81·8	836,000 745,000	167 190	555,000 622,000	5 secs.
			Mean	83.0	790,000	178	588,000	
18 19 20	2·90 2·90 3·00	1.90 1.95 1.95	Vert	81·0 101·0 61·0	750,000 602,000 670,000	177 200 134	429,000 316,000 462,000	· 5 secs.
1111111			Mean	81.0	674,000	170	402,000	
96 97	2·89 2·92	1.86 1.93	Hor	76·2 94·0	686,000 533,000	160 187	386,000 330,000	10 secs.
			Mean	85.0	610,000	173	358,000	
21 22 23	2·86 2·90 2·90	1·93 1·90 1·92	Vert	$72 \cdot 0$ $105 \cdot 0$ $79 \cdot 5$	790,000 682,000 780,000	143 210 158	566,000 423,000 450,000	10 secs.
			Mean	85.5	751,000	170	480,000	

N.B.—All beams were supported freely on a span of 41 inches, and loaded equally at sections 14 inches from each support. E was computed from the central deflection.

BEAM TESTS AT TEMPERATURES FROM 28°F. TO 30°F.—Continued

Test				First	Stage	Second	l Stage	1 lb. load
No.	В	D	Crystals	Bending stress		Modulus of rupture	Woodstell	at each stirrup in
	ins.	ins.		lb. per sq. in.	E lb. per sq. in.	lb. per sq.	E lb. per sq. in.	
94 95	3·00 2·99	1·93 1·98	Hor	69·6 81·0	473,000 427,000	129·5 138·5	247,000 256,000	
			Mean	75.3	450,000	134.0	251,000	20 secs.
24 25 26	2·92 2·90 3·04	1.95 1.95 1.94	Vert	100·0 116·0 83·0	640,000 830,000 513,000	229·0 306·0 193·0	434,000 579,000 227,000	
			Mean	100.0	661,000	243 · 0	413,000	20 secs.
176 177 178	2·86 2·90 2·97	1.93 1.86 1.93	Hor	87·3 84·5 77·8	415,000 335,000 315,000	158·0 135·0 131·0	164,000 163,000 150,000	
			Mean	83.2	355,000	141.0	159,000	40 secs.
179 180 181	2·85 2·83 2·98	1.98 1.95 1.85	Vert	99·4 71·5 75·3	218,000 473,000 531,000	197·0 126·0 133·0	127,000 191,000 239,000	
			Mean	82 · 1	441,000	152.0	186,000	40 secs.

N.B.—All beams were supported freely on a span of 41 inches, and loaded equally at sections 14 inches from each support. E was computed from the central deflection.

BEAM TESTS AT TEMPERATURES FROM 14°F. TO 16°F.

Test				First	Stage	Second	l Stage	1 lb. load
No.	В	D	Crystals	Bending stress	_	Modulus of rupture		at each stirrup in
	ins.	ins.		lb. per sq. in.	E lb. per sq. in.	lb. per sq.	E lb. per sq. in.	
61 63 140	$2.89 \\ 3.00 \\ 2.92$	1.90 1.75 1.96	Hor	$113.5 \\ 119.0 \\ 129.0$	690,000 975,000 866,000	210·0 232·0 253·0	582,000 695,000 770,000	5 secs.
			Mean	127.0	844,000	232 · 0	682,000	
62 141 142	2.91 2.89 2.85	1.84 1.90 1.93	Vert	94·5 113·5 112·0	877,000 787,000 761,000	205·0 178·0 191·0	713,000 692,000 660,000	5 secs.
			Mean	107.0	808,000	191.0	688,000	
58 59	2·90 2·89 2·88	1.87 1.96 1.94	Hor	115·5 84·5 94·0	721,000 685,000 637,000	266·0 213·0 172·0	614,000 541,000 472,000	10 secs.
			Mean	95.0	681,000	217-0	542,000	
60 38 39	2·89 2·85 2·78	1·92 1·95 1·86	Vert	119·0 102·0 104·0	874,000 672,000 714,000	237·0 203·0 209·0	643,000 554,000 490,000	10 secs.
			Mean	108.0	753,000	216.0	562,000	

N.B.-All beams were supported freely on a span of 41 inches, and loaded equally at sections 14 inches from each support. E was computed from the central deflection.

BEAM TESTS AT TEMPERATURES FROM 14°F. TO 16°F.—Continued

Test				First	Stage	Second	l Stage	1 lb. load
No.	В	D	Crystals	Bending stress	-	Modulus of rupture	-	at each stirrup in
	ins.	ins.		lb. per sq. in.	E lb. per sq. in.	lb. per sq.	E lb. per sq. in.	
55 134 135	2·90 2·88 2·90	1.90 1.97 2.00	Hor Mean	101·0 136·5 125·0	586,000 598,000 692,000 625,000	209·0 256·0 219·0 228·0	299,000 387,000 524,000 403,000	20 secs.
56 57 136	2·94 2·86 2·89	1.85 1.87 1.99	Vert "" Mean	107·0 93·0 112·0	670,000 637,000 653,000	201·0 202·0 222·0 208·0	400,000 345,000 447,000 397,000	20 secs.
143 144 145	2·86 2·96 2·84	1·96 1·96 2·01	Hor " Mean	109·0 121·0 105·0 112·0	526,000 608,000 710,000 615,000	246·0 301·0 296·0 281·0	352,000 424,000 522,000 432,000	40 secs.
146 147 148	2·90 2·91 2·91	1·95 1·90 1·93	Vert " " Mean	93·0 105·0 100·0 99·0	566,000 712,000 948,000 742,000	230·0 177·0 311·0 240·0	274,000 465,000 558,000 432,000	40 secs.

N.B.—All beams were supported freely on a span of 41 inches, and loaded equaliy at sections 14 inches rom each support. E was computed from the central deflection.

COMPRESSION OR CRUSHING STRENGTH OF ICE

The tests described above show that the term "compression or crushing strength of ice" is meaningless in itself. The behaviour of ice in compression is different at the same rates of loading at different temperatures, and at different rates of loading at the same temperature. The time-factor is the all important quantity. To obtain characteristic compression fractures the load must be applied rapidly, so that the ice has no opportunity to "flow", and tests were made at different temperatures with this principle in mind. After preliminary experimenting it was found that two operators, one moving the balance weight along the lever and the other rotating the screws of the machine, could apply the load continuously, at the rate of 1,000 pounds in 2 seconds. This was the most rapid rate which could be controlled, and was adopted as a standard. In some cases the blocks did not fail under 10,000-pound load (approximately 400 pounds per square inch) applied at this rate, and tests were made in which, the balance weight having been set at a given reading, the screws were rotated as rapidly as possible so as to apply the load quickly. Sometimes the blocks carried 400 pounds per square inch applied in 1½ seconds and in other cases the blocks failed before the beam floated, so that the load carried was not known. When the 5 inch by 5 inch blocks did not fail at the full capacity load of the machine, smaller specimens were cut from other 5 inch by 5 inch blocks and tested at the standard loading rate. A summary of tests made at temperatures about 14° F, 2° F, and 28° F is appended, this being the order in which tests were made.

 $$14^{\circ}\text{F}$.$ Loads applied at rate of 1,000 pounds in 2 seconds normally to crystals

Number	Size	Maximum load	Pound per square inch at failure	Remarks
	inches	lb.		
101	4.90 x 4.94	10,000	Not fail	Faint crackling 8,250 pounds. Flowing under maximum load.
102	5.02 x 5.01	10,000	"	Crackling, medium clouding when load was removed.
103	4.82 x 5.00	10,000	. "	Crackling. Heavy clouding with 10,000 pounds sustained.
104 107		10,000 10,000	"	Light clouding upper part after unloading. Faint crackling.
113		10,000	"	""
116	3.99 x 4.00	10,000	¢¢.	Loud crackling. Load 625 pounds per square inch.
117	4.00 x 4.16	10,000	66	Loud crackling. Load 600 pounds per square inch.
119	3.06 x 3.39	7,250	672	Typical compression failure.
120	3.41 x 3.37	3,250	282	"
121	3·41 x 3·39	8,250	715	66 66

Note.—All specimens were approximately 5 inches high. Numbers 119, 120 and 121 were cut from the same block.

14°F.
LOADS APPLIED SUDDENLY (TIMES AS STATED) NORMALLY TO CRYSTALS

Number	Size	Pound per Maximum load	square inch at failure	Time	Remarks
	inches	lb.		secs.	
105	4.78 x 5.00 4.78 x 5.00 4.78 x 5.00 4.78 x 5.00 4.78 x 5.00 4.78 x 5.00 4.78 x 5.00 4.98 x 5.00	10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000	Not fail	3.2 3.0 2.4 1.8 1.4 1.4 1.4 1.2	Load applied suddenly 7 times. No sign of failure. Slightly clouded on removal of load. The block has been loaded previously to 10,000 pounds at standard rate. Number 104 in table above. Faint uniform clouding upper part. Tested previously at standard rate. Much clouding under sustained maxi-
113	4·45 x 4·49	10,000	501	2.0	mum load. Tested previously at standard rate. Typical compression failure.
118 122		8,250 10,000	502 Not fail	1·4 1·2	Typical compression failure. Typical compression failure. This block had been used in sustained load tests, 150 pounds per square inch. (Plate 5). Cleavage plane developing from top to bottom and parallel to crystals.

Note,—All specimens were approximately 5 inches high.

LOADS APPLIED AT RATE OF 1,000 POUNDS IN 2 SECONDS. 2°F.

Number	Size	Load to crystals	Maximum load	Pound per square inch at failure	Remarks
190 +191 +192	inches 2 · 98 x 2 · 96 2 · 95 x 3 · 00 2 · 92 x 2 · 95 2 · 95 x 3 · 00 2 · 92 x 2 · 95 2 · 93 x 2 · 93 2 · 97 x 3 · 00 2 · 91 x 2 · 85 2 · 99 x 3 · 00	Normal " Parallel " Normal "	1b. 8,500 6,500 5,750 8,250 6,750 10,000 5,000 7,250 9.250	735 617 932 776	Typical fracture. Like tent with ridge. Conical. Split from top to bottom. """ Cleavage planes developing. Typical failure. Like tent with ridge. """ """

N.B.-All specimens were approximately 5 inches high.

Specimens 191 and 192 probably had crystals parallel to load. Types of fracture were quite distinct for the two cases. All original blocks 5 inches by 5 inches were carefully marked to show direction of crystals, and in cutting these down to ensure failure at loads within the capacity of the machine, some error may have arisen. Blocks were brittle and difficult to saw without chipping at this low temperature.

BLOCKS AT 28°F. 1,000 POUNDS IN 2 SECONDS

Number	Size	Load to crystals	Maximum load	Pound per sugare inch at failure	Remarks
	inches		lb.		
204 205 206 207 208 209 210	4.86 x 5.03 5.00 x 5.00 4.04 x 4.06 4.03 x 4.06 3.92 x 4.03 3.95 x 4.15 3.93 x 4.05	Normal " " " " "	10,000 10,000 5,250 3,500 4,750 5,000 4,350	214 300 305 273	Crackling at 2,250 pounds. Clouded. Clouded and flowed very rapidly. Typical fracture. Flowed rapidly. Typical fracture. Ridge parallel to crystals. "" ""
211	4·05 x 5·10 4·00 x 4·00 3·98 x 4·03 5·00 x 5·00	Parallel " Normal	6,800 4,000 10,000 8,000	329 250 Not fail 320	Typical fracture. Conical. "" Typical fracture. Ridge parallel to
216 217	5·00 x 5·00 4·82 x 4·84	"	9,750 10,000	390 Not fail	crystals.

LOADS APPLIED SUDDENLY, TIMES AS STATED, 28°F.

204 213 217	3.98 x 4.03	Parallel	8,000 in. 1.2 secs. 8,000 in.	498	Load applied immediatly after standard loading in table above. (Ridge fracture.) Table above. Conical fracture. Table above. Ridge fracture.
			1 sec.		3

N.B.-All specimens were approximately 5 inches high.

Most of the tests were made with the load normal to the crystals, but a few were included with the load parallel to the crystals. In the former, the typical failure was tent-like, the horizontal crystals forming a ridge parallel to the loaded faces, while in the latter distinctly conical fractures resulted. There appears to be little difference between the strengths at failure under these two conditions, and there was considerable variation in results at each temperature.

At 28° F. the average ultimate strength of nine specimens which failed under the standard rate of loading was 300 pounds per square inch. Three others which had not failed under the standard rate of loading were broken immediately afterwards by suddenly applied loads, the average strength being 417 pounds per square inch. The load in two cases was of less intensity than

had been sustained previously.

At 14° F. the loads carried were higher than at 28° F. none of the specimens measuring approximately 5 inches by 5 inches failing at a load of 10,000 pounds even when this was applied suddenly. One specimen No. 105, withstood this sudden load seven times after being loaded previously to 10,000 pounds at the standard rate. Of three specimens Nos. 119, 120 and 121 which failed at the standard rate of loading, No. 120 failed unaccountably at a much lower load than the other two. All were cut from the same block. The mean of the two higher results is 693 pounds per square inch, which compares rationally with 600 pounds per square inch and 625 pounds per square inch for Nos. 116 and 117 respectively, these being loads which did not cause failure. Of six blocks tested under suddenly applied loads, only two failed, at approximately 500 pounds per square inch.

At 2° F. eight out of nine blocks tested failed under the standard loading rate, and the average ultimate strength was 811 pounds per square inch. The other block, with crystals vertical, carried over 1,165 pounds per square inch applied at the standard rate without failure. The strengths were approximately the same for both conditions of loading.

The tests show that the crushing strengths of the given blocks loaded at

the rate of 1,000 pounds in 2 seconds were as follows:-

Temp.	F.			Crushing strength, lb./sq. in.
28		 	 	300
14		 	 	693
2		 	 	811

For other loading rates different figures would be obtained. It has been shown that the time element is probably the greatest factor in determining the pressure of ice against a structure. Conclusions drawn from the crushing strength alone are of no value. The crushing strength itself at any given temperature depends on the rate of loading.

MISCELLANEOUS TESTS

Weight of Ice.—By measuring and weighing a block of ice approximately 5 inches by 5 inches by 10 inches at a temperature of 28° F., the weight per cubic foot was found to be 57.4 pounds. This figure was used in the calculations for the modulus of rupture in the beam tests.

Deflection of Beam under Small Sustained Loads. A beam 2.90 inches wide by 1.95 inches deep was loaded on a span of 41 inches by equal weights placed 14 inches from each support, as in the tests for modulus of rupture. Each load was 4 pounds and the bending stress, including that due to the beam itself and the stirrups, was about 55 pounds per square inch. The deflections were read at intervals for several days, and on the first day the recovery when the load was removed was observed for about 4\frac{3}{4} hours. There was about 0.025 inch recovery in a total deflection of 0.158 inch and under sustained load the deflection increased steadily to 0.585 inch in 6 days when the test was stopped. The temperature during the test was from 28° F. to 30° F. The following table shows the results:—

Date	Hour	Load at each loading point	Deflection in inches
February 19	5.55 p.m.	Stirrup only	
February 20	5.55 p.m. 10.00 a.m. 10.05 a.m.	Stirrup and 4 lbs Stirrup only	$ \begin{array}{c c} 0.002 \\ 0.158 \\ 0.145 \end{array} $
	10.15 a.m. 11.30 a.m.	"	0·134 0·133)
	1.15 p.m. 2.45 p.m. 2.50 p.m.	Stirrup and 4 lbs	0·132} Steady 0·133 0·141
February 22	2.00 p.m. 4.45 p.m.	66 46	0·349 0·358
February 23	10·15 a.m. 1.15 p.m.	66 66 66 66	0·418 0·428
February 24	4.00 p.m. 10.00 a.m.	60 60	0.435
February 25.	1.00 p.m. 4.30 p.m. 9.00 a.m.	66 66	0·500 0·509 0·567
Tondary 20	noon 4.00 p.m.	66 66	0·572 0·585

Deflection of Beams under their Own Weight. Two beams approximately 3 inches wide by 2 inches deep were supported side by side with their

ends free, and allowed to bend under their own weight.

One, with crystals horizontal, had a span of 54.5 inches, and after 20 days had deflected $9\frac{1}{4}$ inches or 17 per cent of the span, resembling a letter "V". The other, with crystals vertical, had a span of $51\frac{1}{2}$ inches, and deflected only 1 inch, or about 2 per cent of the span in the same period.

Another beam of the same dimensions with crystals horizontal, was set so as to project 40 inches as a horizontal cantilever and allowed to deflect under its own weight. The vertical deflection at the free end after 16 days was 13.

inches, or 34 per cent of the cantilever length.

The room temperature was from 28° F. to 30° F., during these tests, and the results show clearly the plastic nature of ice under small loads at this temperature.

ACKNOWLEDGMENTS. Thanks are due to the Harbour Commissioners of Montreal for allowing the use of suitable rooms at the Cold Storage Warehouse, and to the staff at the warehouse who were directly concerned in the control of room temperatures. The author of this report, under whose direction the tests were carried out, wishes to pay special tribute to the invaluable assistance received from Mr. E. D. McIntosh, of the Department of Railways and Canals, and the members of his staff engaged in the preparation and testing of specimens. It is largely due to Mr. McIntosh's enthusiasm and skill in supervising the testing, that so much work was accomplished in the time available for the tests.

(Sgd.) E. Brown.

Appendix "F" - Plate No. 8

APPENDIX G

CONSTRUCTION PROGRAM

- 1. The works required for the improvement of the St. Lawrence are divided into five sections. The works proposed in each section are independent of those proposed in other sections, but the program of construction has been prepared on the basis that through navigation be completed in all sections seven years after the beginning of the works.
- 2. The time required to complete the through navigation project is largely dependent upon the works in the International Rapids Section, as there the expenditure is larger than in other sections and the works are more difficult to execute.
- 3. The opening of the St. Lawrence to through deep-draught navigation, with the power works initially connected therewith, under the various plans presented by the Board, will require, in round figures, the following:—

	Cubic yards
Concrete	7,000,000
Earth excavation, dry	80,000,000
Earth excavation, dredging40,000,000 to	50,000,000
Rock excavation, dry	
Rock excavation, subaqueous	2,300,000

The execution of this work will require the acquisition of considerable new plant which will have relatively little value after the completion of the work. As a consequence, the value of the plant used must be absorbed in the cost of the work. This, along with interest accumulations during the progress of the work, indicates that maximum economy will be secured by choosing a construction period of about seven years for the heaviest part of the work.

4. A detailed construction program, based on these premises, follows. This program is intended to show a sequence of operations by which the work can be executed in seven years, but it is not designed to circumscribe the operations of the engineers in charge of the actual construction. The program is based on completion in seven years after actual construction is begun, with the understanding that unforeseen conditions may force an extension of the time.

CONSTRUCTION SCHEDULE

Item	Year							
T(CIII	1	2	3	4	5	X	7	
Thousand Island Section					x	x	x	
Construction railroads, camps, construction plant, etc. Excavation power houses. Concreting power houses.			Y	x	*	x	х	
Superstructures and installations machinery. Construction of dam, to closure. Closure of dam and raising pool.		X	x	x	x	x x	X x	
Tail-race excavation		1	x	x	x	x	x	

CONSTRUCTION SCHEDULE—Continued

*.				Year			
Item	1	2	3	4	5	6	7
Innternational Power Section—Con.							
Navigation Works-							
Approach channel above Robinson Bay lock		· · · · · ·		X	X X	X	
Robinson Bay lock			x	X	x		
Grass River lock and wasteway	1	1		x	X	X	x
Approach channel, Grass River lock to river Dike at Grass River lock						x	X
Diversion dike and flood channel, mouth of Grass						_	
Approach channel, Grass River lock to river. Dike at Grass River lock Diversion dike and flood channel, mouth of Grass River. Diversion—Ottawa Branch, New York Central Rail- road. Dredging, south Cornwall Island channel. Excavation, north Cornwall Island channel. Road relocation for canal. Dykes and drainage ditches. Protection Iroquois. Protection Morrisburg. Fourteen-foot lock at Bergen Lake. Control works, head of Massena power canal. Initial channel excavation—						X	X
Tradging south Cornwall Island channel				· · · · · ·		X	X
Excavation, north Cornwall Island channel	x	x					l
Road relocation for canal	X						
Protection Iroquois	X	X	X	x	X	X	
Protection Morrisburg					x	x	
Fourteen-foot lock at Bergen Lake			x				
Initial channel excavation—					X	X	
At Chimney Point					X	x	' X
Above Galop Island. Cut through Island. Channel below cut. Channel below Lalone-Lotus Islands.	x	x					
Channel below cut.	x	x	x	X	x		
Channel below Lalone-Lotus Islands					x	x x	
Sparrowhawk Point to Ogden Island Control works at Galop. Railroad relocation. Highway relocation.			x	X	x	x	X
Railroad relocation			X		X	× ×	
Highway relocation				x	x	x	
Clearing pool.						x	
Ogden Island Project No. 4-224-							
Channel enlargement north of Galop Island	x	x					
Excavation at Chimney Point		X	× ×				
Cofferdams, south Galop channel			x				
Excavation of south Galop channel			X	x			
Ogden Island Project No. 4-224— Channel enlargement north of Galop Island. Dam in channel north of Galop Island. Excavation at Chimney Point. Cofferdams, south Galop channel. Excavation of south Galop channel. Removal of cofferdams. Excavation, Sparrowhawk Point to Ogden Island. Diversion at Orden Island and channel south of Orden			× ×		X		
Excavation, a Ogden Island and channel south of Ogden Island. Dam in diversion at Ogden Island Lock at Ogden Island. Power house south of Ogden Island. Cofferdam north of Ogden Island.		,	-	-			
Island	X	X					
Lock at Orden Island	x	X					
Power house south of Ogden Island	x	X					
Cofferdam north of Ogden Island		X					
Diversion through Long Sault Island	X	X	X	Δ			
Dam in south Sault channel		x					
Dam at head of Barnhart Island				X	X	X	
Excavation at foot of Barnhart Island				X	X	X X	X
Excavation of Grass River lock		x	x				
Cofferdam north of Ogden Island. Power house substructure north of Ogden Island. Diversion through Long Sault Island. Dam in south Sault channel. Dam at head of Barnhart Island. Power houses at foot of Barnhart Island. Exeavation at foot of Barnhart Island. Exeavation of Grass River lock. Concrete in Grass River lock. Exeavation of channel, Robinson Bay lock to Grass River.				X	X		
River			.	x	x		
Concrete in Robinson Bay lock and guard gates						x	x
Excavation of channel above Robinson Bay lcok					X	X X	X X
Lock for 14-foot navigation, Canadian mainland				A		X	X
Diversion of Ottawa and New York Railroad					X	x	
Excavation of channel, Robinson Bay lock to Grass River Concrete in Robinson Bay lock and guard gates Excavation of channel above Robinson Bay look Excavation north and south of Cornwall Island Lock for 14-foot navigation, Canadian mainland Diversion of Ottawa and New York Railroad. Dykes and drainage ditches, Morrisburg to Barnhart Island				x	v		
Island. New Massena Canal intake.				x		X	
Dykes, United States side						X	x
Chrysler Island Project No. 5-217							
Channel enlargement at Chimney Point		x	x	x			
Channel enlargement north of Galop Island	X	x					

CONSTRUCTION SCHEDULE—Continued

	Year								
Item	1	1 2	1 3	rear	1 5 1 6				
	1	Z		4		- b	7		
Chrysler Island Project No. 5-217—Con. Dam in channel north of Galop Island		x							
Cofferdams above and below channel south of Galop Island			x						
Excavation of material in south Galop channel			X	Х	x				
Enlargement of channels, Sparrowhawk Point to Morris-			x	x					
burg Cofferdams at sites of United States and Canadian			X	X					
power houses Chrysler Island	X	x	х	х					
Island North 2,200 feet of dam at Crysler Island	X	X	x	x					
Excavation of sites for lock opposite Weavers Point Construction of above lock	X	x	x						
Excavation of material in channel above and below lock opposite Weavers Point			, x	v					
Diversion of Grand Trunk Railway and building of			-	^					
dykes, Iroquois to Crysler Island Excavation of head-race North, Crysler Island power			Х	х					
'house Excavation of tail-race rock, Crysler Island power house			X	x	x				
Diversion through Long Sault Island	X	X	x						
Dam at head of Barnhart Island.				x	x	x			
Power houses at foot of Barnhart Island. Excavation at foot of Barnhart Island. Excavation of Grass River lock.				X	X	X X	X		
Concrete in Grass River lock		X	X	x	x				
Excavation of channel, Robinson Bay lock to Grass				x	x				
River						х	x		
Excavation of channel above Robinson Bay lock Excavation north and south of Cornwall Island			1	×	X X	X X	x		
Lock for 14-foot navigation, Canadian mainland Diversion of Ottawa and New Railroad Dykes and drainage ditches, Morrisburg to Barnhart					х	X X			
Island				x	x	x			
New Massena Canal intake				x	X	x	x		
Lake St. Francis Section					x	x	x		
Soulanges Section—Ile aux Vaches Project—1st Stage—									
Diversion of Riviere Delisle west of Coteau Junction Excavation of site of Coteau du Lac lock									
Construction of lock at Coteau du Lac		x							
du Lac, with breakwater at Coteau Landing			x						
Construction of lock at Cascades Point		X	х	x					
Removal of materials required for side canal, Chamberry lock to Cascades lock, and construction of									
dyke adjacent. Removal of material in side canal, Cedars to Cham-		X	X						
berry Gully lock			x	x	x	****	*****		
river. Construction of control works at Clark Island and excavation of diversion channels, Clark Island to Broad		X	X						
Island; relocation and reconstruction of Canadian National Railway on Clark Island and Grand Ile Excavation of diversion channels east end of Grand Ile	X		x	х	x	x			
Construction of dam and substructures of power house, Ile Juillet to Ile aux Vaches	x	x	x						
Construction of dam, Ile aux Vaches to Cedars, with substructures of power houses				x	x	x			

CONSTRUCTION SCHEDULE-Concluded

Item	Year								
	_1	2	3	4	5	6	7		
oulanges Section—Con. Construction of dam, Grande Ile to Ile Juillet						x			
Construction of dam, Grande He to He Juniet						X	X		
on Grande Ile		x	x	х	x				
Deepening of Soulanges Canal and closing of the present									
outlets of Delisle, Rouge, and A la Graisse Rivers Completion of entrance channels at the head and foot of						X	X		
the Section and enlargement of Coteau Rapids at									
Round Island					x	x	x		
achine Section—									
Removal of material in submarine channel, deep water									
Lake St. Louis to old lock No. 5, Lachine				x	x	. x	X		
Construction of syphon culverts at head of the aqueduct									
of the City of Montreal Excavation of sites for locks at Montreal. Nuns Island		X	X						
Construction of locks at Montreal and Verdun			x	x	×				
Construction of new intakes for Verdun and The Montreal									
Water and Power Co		X	X						
Canadian Pacific Railway, New Highlands			x	x					
Excavation of material in overland canal, Lachine to									
Verdun			X	x	X	X			
Excavation of site of Verdun lock and preparation of foundation for dykes, Verdun to Nuns Island				x					
Construction of lock at Verdun and guard gates above					X	x	X		
Construction of dykes, Verdun to Nuns Island					x	x			
Removal of material in prism, Verdun to Nuns Island.					X	X			
Construction of culverts under Canadian National Railway embankment at Point St. Charles			v				-		
Removal of material in prism, Nuns Island to Montreal			Α						
lock				x	X	X			
Construction of walls and dykes, Nuns Island to the									
lock at Montreal						X	X		
to Verdun shore						x	x		
Construction of dam at Ile au Diable					x	x	x		
Construction of high level bridges at the Canadian									
Pacific Railway intersection at Highlands and the Canadian National Railway intersection at Victoria									
Bridge						x	x		

- 5. The following remarks explain the foregoing program:-
- 6. Thousand Islands Section. The plans for this section show material to be removed at about a dozen places. The work to be done at each of these places could be allotted to a separate construction agency, but lower prices will be obtained if the number of such agencies is reduced to one or two, as larger plant will then be utilized and overhead expenses will be proportionately small. In this section the material to be removed is not large and can be done by one dredging outfit in three years. The plant required is not special and would not have to be built for this work. As a consequence, this work need not be commenced until three years before the time chosen for the completion of through navigation.
- 7. International Rapids Section. As explained in Appendix C, there are a number of proposals for the improvement of the International Rapids Section.

8. In the single-stage project with the main dam and power houses on deep foundations at the foot of Barnhart island, the time required for the construction of these structures determines the time within which the project can be built. The time chosen, however, gives maximum economy for the general excavation work.

9. If the alternative is chosen of placing the main dam at the head of Barnhart island, it will be necessary to construct diversion works before work on the dam is begun, and no substantial saving in time of construction is antici-

pated.

10. Improvement by Two-stage Projects. With either of the two-stage projects, a diversion at Galop rapids is required to be completed before the channel south of Galop island is unwatered, or work is begun on the improvements shown in that channel. This requires shifting of plant, and concentration of forces on three works, one after the other. Estimates show that the work at Galop rapids can be done with a moderate amount of plant in four or five years. The excavation at Galop island cannot, however, be quite completed without a reference to condition of works at Ogden island, or at Crysler island, as the case may be. The cofferdam at the head of the south Galop channel cannot be removed before the water level below is raised.

11. With project No. 4-224, the dam, power house, and lock at Ogden island can be built without special regard to what is done at Barnhart island, but the completion of all channel enlargement between Lotus island and Ogden island is required before the plant at Ogden island begins to operate. In this project the works at the foot of Barnhart island must be built simultaneously with, or subsequent to, the works at Ogden island. They should not be built before the works at Ogden island, as difficulties would then arise in constructing

the upper works, and in dealing with ice conditions,

12. In this project the excavation of a diversion channel through Ogden island is required before the main channel of the river can be cofferdammed and before the construction of the power house at that point can be begun. This involves some shifting of plant, but it will not involve loss of time, as large quantities of excavation have to be done between Lotus island and Ogden island which can be delayed until the diversion channels at Ogden island are completed. The unwatering of the sites of the power house at Ogden island should not prove difficult after the diversion channel is completed, as the solid rock surfaces are not far below the water level at that point.

13. The work at Barnhart island and at the foot of the section in this project are generally the same as in the single-stage project with the dam at the head of Barnhart island, but on a smaller scale, and involve the same construc-

tion problems.

- 14. With the two-stage development, the lock and canal at Ogden island are closely associated with the works to be built in the river and both should be completed at the same time. However, the locks and side canal required for carrying navigation past the lower dam and power house at the foot of the section are not closely associated and the construction of the lock can be delayed. A lock for passing 14-foot navigation is required north of Sheek island in order to connect the water level as it is raised with the present Cornwall canal.
- 15. Crysler Island Project. With project No. 5-217, a construction program much the same as that above described for project No. 4-224 is required at Galop rapids and at Barnhart island. At Crysler island the works proposed are different from those proposed at Ogden island and a different procedure is required. A lock for passing 1-foot navigation is required in the dam at the outset.

- 16. The side canal and lock at this point can be built without special reference to the dam and power houses. Some economy is, however, obtained by bringing the lock and side canal into use when the water level in the river is raised above elevation 229. Estimates are prepared on this basis. The elevation of water passages in power houses at Crysler island will permit water to be passed through them after their construction, if desired.
- 17. Lake St. Francis Section. The execution of the work in this section requires the dredging of 1,584,000 cubic yards. This can be done by one dredge in three years.

18. Soulanges Section. In the Ile aux Vaches project, progress must be well arranged in advance, as the several works are dependent upon one another.

- 19. To prevent flooding of the lands north of the Ile aux Vaches pool, the water can not be raised above elevation 140 before the present Soulanges canal is utilized as a drainage outlet, and consequently abandoned for navigation. A new waterway must then be ready to pass ships of 14-foot draft at elevation 140. At this stage the canal and enlargement of the river at Coteau rapids and the dam at Cedars must be practically completed. The side canal from Cedars to the Ottawa arm of lake St. Louis must be ready to hold water at elevation 140.
- 20. At the beginning of the winter chosen for the transfer of 14-foot navigation from the present Soulanges canal to the new canal, arrangements must be made for the closing of the Soulanges canal above Coteau du Lac and the joining of this canal with the syphon culverts just east of the Provincial power house. This must be followed by the lowering of the water level in the Soulanges canal and the deepening of that canal to the extent of about 9 feet. This is to be done to enable the old canal to carry the spring discharge of the Delisle, Rouge and A la Graisse river.

21. During the open-water period after the Cedars reach is raised to elevation 140, the various works will have to be put in shape for a higher level, as winter conditions will require a rise to about 148 in order to operate with safety. This will require the completion of works at Cedars eight months after the

Soulanges canal begins to act as a drainage canal.

22. Lachine Section. The project for the Lachine section can be built without interfering with the power development and without interfering with

1-foot navigation.

23. The works proposed in this section can be separated into many parts, each of which can be built and completed without regard to others. Before the works between Nuns island and Victoria bridge can be completed, it is necessary to build culverts at the north end of Victoria bridge to care for drainage. It is also necessary to change the intake works of the Montreal Water and Power Co. and those of the city of Verdun from the river to the Montreal aqueduct.

24. Before the 25-foot canal for improved navigation can be built across the aqueduct of the city of Montreal, it will be necessary to divert the flow at

the point and to construct syphon culverts under the new canal.

25. In the project presented, a dam is to be built across the river at Ile au Diable. This can be constructed by ordinary methods, as the solid rock at that point is close to the present water surface and the river is not deep.

26. The work in the Lachine section can be economically done in about

six years.

Adopted by Board July 13, 1927.

