Gödel's Theorem Without Tears¹

Essential Incompleteness in Synthetic Computability

22nd June, 2022 TYPES 2022

Benjamin Peters

Dominik Kirst

¹Abstract title: "Strong, Synthetic, and Computational Proofs of Gödel's First Incompleteness Theorem"

Theorem

Theorem

- ► Has often been mechanised²
 - Usually using Gödel's/Rosser's original approach to incompleteness

²Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

Theorem

- ► Has often been mechanised²
 - Usually using Gödel's/Rosser's original approach to incompleteness
- Popescu and Treytel, among others, attempt to factorise incompleteness proofs

²Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

Theorem

- ► Has often been mechanised²
 - Usually using Gödel's/Rosser's original approach to incompleteness
- Popescu and Treytel, among others, attempt to factorise incompleteness proofs
- Inspired Kirst and Hermes 2021 to factorise incompleteness using another proof approach

²Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

Theorem

- ► Has often been mechanised²
 - Usually using Gödel's/Rosser's original approach to incompleteness
- Popescu and Treytel, among others, attempt to factorise incompleteness proofs
- Inspired Kirst and Hermes 2021 to factorise incompleteness using another proof approach
 - Proof using undecidability of the halting problem independently due to Kleene, Turing, and Post³

²Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

³Kleene 1936; Turing 1936; Post 1941.

Theorem

- ► Has often been mechanised²
 - Usually using Gödel's/Rosser's original approach to incompleteness
- Popescu and Treytel, among others, attempt to factorise incompleteness proofs
- Inspired Kirst and Hermes 2021 to factorise incompleteness using another proof approach
 - Proof using undecidability of the halting problem independently due to Kleene, Turing, and Post³
 - Formalised in synthetic computability, avoiding low-level reasoning about computations

²Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

³Kleene 1936; Turing 1936; Post 1941.

Theorem

- ► Has often been mechanised²
 - Usually using Gödel's/Rosser's original approach to incompleteness
- Popescu and Treytel, among others, attempt to factorise incompleteness proofs
- Inspired Kirst and Hermes 2021 to factorise incompleteness using another proof approach
 - Proof using undecidability of the halting problem independently due to Kleene, Turing, and Post³
 - Formalised in synthetic computability, avoiding low-level reasoning about computations
 - Only yields a weaker form of incompleteness

²Shankar 1994; O'Connor 2005; Harrison 2009; Paulson 2014; Popescu and Traytel 2019.

³Kleene 1936; Turing 1936; Post 1941.

⁴We were made aware of these results by Anatoly Vorobey on the Foundations of Mathematics mailing list.

⁴We were made aware of these results by Anatoly Vorobey on the Foundations of Mathematics mailing list.

We factorised both of Kleene's incompleteness proofs into two parts:

- 1. Extremely concise abstract core using computability theory
- 2. Instantiation of these abstract proofs to first-order logic using Rosser's trick

Abstract Incompleteness Proofs

Instantiation to first-order Robinson arithmetic

Synthetic Computability⁵

We work in CIC, where we can consider the function space to only contain computable functions $\frac{1}{2}$

⁵Richman 1983; Bauer 2006.

Synthetic Computability⁵

We work in CIC, where we can consider the function space to only contain computable functions

Definition

A predicate $P: X \to \mathbb{P}rop$ is

ightharpoonup semi-decidable if $\exists f: \mathbb{N} \to \mathbb{N} \to \mathbb{B}. \, \forall x. \, Px \leftrightarrow \exists k. \, fxk = \text{true}$

⁵Richman 1983; Bauer 2006.

Synthetic Computability⁵

We work in CIC, where we can consider the function space to only contain computable functions

Definition

A predicate $P: X \to \mathbb{P}rop$ is

- ▶ semi-decidable if $\exists f: \mathbb{N} \to \mathbb{N} \to \mathbb{B}. \, \forall x. \, Px \leftrightarrow \exists k. \, fxk = \text{true}$
- ▶ decidable if $\exists f: X \to \mathbb{B}. \ Px \leftrightarrow fx = \text{true}.$

⁵Richman 1983; Bauer 2006.

Definition (Formal system)

$$\mathcal{F} = (S, \neg, \vdash)$$
 is a formal system if:

 $ightharpoonup S: \mathbb{T}\mathrm{ype}$ is a discrete type of sentences

Definition (Formal system)

 $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:

- $ightharpoonup S: \mathbb{T}\mathrm{ype}$ is a discrete type of sentences
- $ightharpoonup \neg: S o S$ is a negation function

Definition (Formal system)

 $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:

- $ightharpoonup S: \mathbb{T}ype$ is a discrete type of sentences
- $ightharpoonup \neg: S o S$ is a negation function
- $ightharpoonup : S
 ightharpoonup \mathbb{P}$ rop is an semi-decidable provability predicate

Definition (Formal system)

 $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:

- $ightharpoonup S: \mathbb{T}\mathrm{ype}$ is a discrete type of sentences
- $ightharpoonup \neg: S o S$ is a negation function
- $ightharpoonup : S
 ightharpoonup \mathbb{P} \mathrm{rop}$ is an semi-decidable provability predicate
- ▶ \mathcal{F} is consistent: $\forall s. \neg (\mathcal{F} \vdash s \land \mathcal{F} \vdash \neg s)$

Definition (Formal system)

 $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:

- $ightharpoonup S: \mathbb{T}\mathrm{ype}$ is a discrete type of sentences
- ightharpoonup
 eg : S o S is a negation function
- $ightharpoonup : S
 ightharpoonup \mathbb{P} \mathrm{rop}$ is an semi-decidable provability predicate
- \blacktriangleright \mathcal{F} is consistent: $\forall s. \neg (\mathcal{F} \vdash s \land \mathcal{F} \vdash \neg s)$

 \mathcal{F} is complete if $\forall s. \mathcal{F} \vdash s \lor \mathcal{F} \vdash \neg s$.

Definition (Formal system)

 $\mathcal{F} = (S, \neg, \vdash)$ is a formal system if:

- $ightharpoonup S: \mathbb{T}\mathrm{ype}$ is a discrete type of sentences
- $ightharpoonup \neg: S \to S$ is a negation function
- $ightharpoonup : S
 ightharpoonup \mathbb{P} \mathrm{rop}$ is an semi-decidable provability predicate
- ▶ \mathcal{F} is consistent: $\forall s. \neg (\mathcal{F} \vdash s \land \mathcal{F} \vdash \neg s)$

 \mathcal{F} is complete if $\forall s. \mathcal{F} \vdash s \lor \mathcal{F} \vdash \neg s$.

First-order logic over a consistent and semi-decidable axiomatisation is a formal system in this sense

Decidable Formal Systems

Lemma

There is a partial function $d_{\mathcal{F}}: S \rightharpoonup \mathbb{B}$ separating provability from refutability:

$$\forall s. (d_{\mathcal{F}} s \rhd \text{true} \leftrightarrow \mathcal{F} \vdash s) \land (d_{\mathcal{F}} s \rhd \text{false} \leftrightarrow \mathcal{F} \vdash \neg s)$$

If \mathcal{F} is complete, $d_{\mathcal{F}}$ is total.

Decidable Formal Systems

Lemma

There is a partial function $d_{\mathcal{F}}: S \rightharpoonup \mathbb{B}$ separating provability from refutability:

$$\forall s. (d_{\mathcal{F}} s \rhd \text{true} \leftrightarrow \mathcal{F} \vdash s) \land (d_{\mathcal{F}} s \rhd \text{false} \leftrightarrow \mathcal{F} \vdash \neg s)$$

If \mathcal{F} is complete, $d_{\mathcal{F}}$ is total.

Corollary

Any complete formal system is decidable.

Kleene's Folklore Incompleteness Proof 6,7

Theorem

Let \mathcal{F} be complete and weakly represent $P: \mathbb{N} \to \mathbb{P}\mathrm{rop}$, i.e., there is an $r: \mathbb{N} \to S$ s.t.:

$$\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$$

Then P is decidable.

⁶Kleene 1936; Turing 1936.

⁷As mechanised by Kirst and Hermes 2021.

Kleene's Folklore Incompleteness Proof 6,7

Theorem

Let \mathcal{F} be complete and weakly represent $P: \mathbb{N} \to \mathbb{P}\mathrm{rop}$, i.e., there is an $r: \mathbb{N} \to S$ s.t.:

$$\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$$

Then P is decidable. Thus, if P is undecidable, \mathcal{F} is incomplete.

⁶Kleene 1936; Turing 1936.

⁷As mechanised by Kirst and Hermes 2021.

Church's Thesis⁹

Axiom (EPF8)

There is a function $\theta: \mathbb{N} \to \mathbb{N} \longrightarrow \mathbb{B}$ such that:

$$\forall f: \mathbb{N} \rightharpoonup \mathbb{B}. \exists c. f \equiv \theta c$$

⁸Richman 1983; Forster 2022.

⁹Kreisel 1967; Troelstra and van Dalen 1988.

Church's Thesis⁹

Axiom (EPF8)

There is a function $\theta: \mathbb{N} \to \mathbb{N} \longrightarrow \mathbb{B}$ such that:

$$\forall f: \mathbb{N} \rightharpoonup \mathbb{B}. \exists c. f \equiv \theta c$$

Definition (Self-halting problem)

The self-halting problem is defined as:

$$\mathcal{H} := \lambda x. \, \exists b. \, \theta xx \rhd b$$

⁸Richman 1983; Forster 2022.

⁹Kreisel 1967; Troelstra and van Dalen 1988.

Self-halting problem

Fact

Partial functions $f: \mathbb{N} \to \mathbb{B}$ agreeing with the halting problem $\mathcal{H} := \lambda x. \exists b. \theta xx \triangleright b$:

$$\forall x. x \in \mathcal{H} \leftrightarrow fx \rhd \text{true},$$

diverge on some input c, i.e., $\forall b. \ fc \not \triangleright b$.

Self-halting problem

Fact

Partial functions $f: \mathbb{N} \rightharpoonup \mathbb{B}$ agreeing with the halting problem $\mathcal{H} := \lambda x. \exists b. \ \theta xx \rhd b$:

$$\forall x. x \in \mathcal{H} \leftrightarrow fx \rhd \text{true},$$

diverge on some input c, i.e., $\forall b. fc \not \triangleright b$.

Proof.

Consider $a: \mathbb{N} \to \mathbb{B}$.

$$gx := \begin{cases} \text{false} & \text{if } fx \rhd \text{true} \\ \text{undefined} & \text{otherwise.} \end{cases}$$

Let c be the code of g. We have $fc \triangleright \text{true} \leftrightarrow fc \triangleright \text{false}$.

Strengthening the Folklore Proof ¹⁰

Theorem

Assume $\mathcal F$ weakly represents $\mathcal H$, i.e., there is an $r:\mathbb N\to S$ s.t.: $\forall x.\,x\in\mathcal H\leftrightarrow\mathcal F\vdash rx$ Then $\mathcal F$ has an independent sentence rc:

$$\mathcal{F} \nvdash rc \land \mathcal{F} \nvdash \neg rc$$

¹⁰Kleene 1952.

Strengthening the Folklore Proof ¹⁰

Theorem

Assume \mathcal{F} weakly represents \mathcal{H} , i.e., there is an $r: \mathbb{N} \to S$ s.t.: $\forall x. \, x \in \mathcal{H} \leftrightarrow \mathcal{F} \vdash rx$ Then \mathcal{F} has an independent sentence rc:

$$\mathcal{F} \nvdash rc \land \mathcal{F} \nvdash \neg rc$$

Proof.

 $h:=d_{\mathcal{F}}\circ r:\mathbb{N} \rightharpoonup \mathbb{B}$ agrees with the halting problem:

$$\forall x. d_{\mathcal{F}}(rx) \rhd \text{true} \leftrightarrow \mathcal{F} \vdash rx \leftrightarrow x \in \mathcal{H},$$

and therefore diverges on some input c. Thus, rc is independent in \mathcal{F} .

¹⁰Kleene 1952.

Going from Soundness to Consistency

► Consider weak representability:

$$\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$$

Going from Soundness to Consistency

Consider weak representability:

$$\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$$

Definition

A formal system \mathcal{F}' is an extension of \mathcal{F} , if

$$\forall s. \mathcal{F} \vdash s \rightarrow \mathcal{F}' \vdash s$$

Going from Soundness to Consistency

Consider weak representability:

$$\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$$

Definition

A formal system \mathcal{F}' is an extension of \mathcal{F} , if

$$\forall s. \mathcal{F} \vdash s \rightarrow \mathcal{F}' \vdash s$$

▶ Only transfers along extensions that preserve $\mathcal{F} \vdash rx \rightarrow Px$, i.e., sound extensions

Going from Soundness to Consistency

Consider weak representability:

$$\forall x. Px \leftrightarrow \mathcal{F} \vdash rx$$

Definition

A formal system \mathcal{F}' is an extension of \mathcal{F} , if

$$\forall s. \mathcal{F} \vdash s \rightarrow \mathcal{F}' \vdash s$$

- ▶ Only transfers along extensions that preserve $\mathcal{F} \vdash rx \rightarrow Px$, i.e., sound extensions
- ► Can we do better?

Recursively Inseparable Predicates

Theorem

Consider the following predicates:

$$\mathcal{I}_{\text{true}} := \lambda x. \, \theta xx \triangleright \text{true}$$
 $\mathcal{I}_{\text{false}} := \lambda x. \, \theta xx \triangleright \text{false}$

They are recursively inseparable, i.e., any partial function $f: \mathbb{N} \rightharpoonup \mathbb{B}$ s.t.

$$\forall x. (x \in \mathcal{I}_{\text{true}} \rightarrow fx \triangleright \text{true}) \land (x \in \mathcal{I}_{\text{false}} \rightarrow fx \triangleright \text{false})$$

diverges on some input.

Kleene's Improved Incompleteness Proof ¹¹

Theorem

Assume \mathcal{F} strongly separates \mathcal{I}_{true} and \mathcal{I}_{false} , i.e., there is an $r: \mathbb{N} \to S$ s.t.:

$$\forall x. \ x \in \mathcal{I}_{\text{true}} \rightarrow \mathcal{F} \vdash rx \quad \land \quad x \in \mathcal{I}_{\text{false}} \rightarrow \mathcal{F} \vdash \neg rx$$

 \mathcal{F} has an independent sentence rc:

$$\mathcal{F} \nvdash rc \land \mathcal{F} \nvdash \neg rc$$

¹¹Kleene 1951, c.f. Kleene 1952.

Kleene's Improved Incompleteness Proof ¹¹

Theorem

Assume \mathcal{F} strongly separates $\mathcal{I}_{\text{true}}$ and $\mathcal{I}_{\text{false}}$, i.e., there is an $r: \mathbb{N} \to S$ s.t.:

$$\forall x. \ x \in \mathcal{I}_{\text{true}} \rightarrow \mathcal{F} \vdash rx \quad \land \quad x \in \mathcal{I}_{\text{false}} \rightarrow \mathcal{F} \vdash \neg rx$$

 \mathcal{F} has an independent sentence rc:

$$\mathcal{F} \nvdash rc \wedge \mathcal{F} \nvdash \neg rc$$

Proof.

 $h:=d_{\mathcal{F}}\circ r:\mathbb{N} \to \mathbb{B}$ recursively separates \mathcal{I}_{true} and \mathcal{I}_{false} , and therefore diverges on some input c. Therefore, rc is independent in \mathcal{F} .

¹¹Kleene 1951, c.f. Kleene 1952.

Kleene's Improved Incompleteness Proof ¹¹

Theorem

Assume \mathcal{F} strongly separates $\mathcal{I}_{\text{true}}$ and $\mathcal{I}_{\text{false}}$, i.e., there is an $r: \mathbb{N} \to S$ s.t.:

$$\forall x. \ x \in \mathcal{I}_{\text{true}} \rightarrow \mathcal{F} \vdash rx \quad \land \quad x \in \mathcal{I}_{\text{false}} \rightarrow \mathcal{F} \vdash \neg rx$$

Any (consistent) extension \mathcal{F}' of \mathcal{F} has an independent sentence rc :

$$\mathcal{F}' \nvdash rc \wedge \mathcal{F}' \nvdash \neg rc$$

Proof.

 $h:=d_{\mathcal{F}'}\circ r:\mathbb{N} \rightharpoonup \mathbb{B}$ recursively separates $\mathcal{I}_{\mathrm{true}}$ and $\mathcal{I}_{\mathrm{false}}$, and therefore diverges on some input c. Therefore, rc is independent in \mathcal{F}' .

¹¹Kleene 1951, c.f. Kleene 1952.

Abstract Incompleteness Proofs

Instantiation to first-order Robinson arithmetic

Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for μ -recursive functions

Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for μ -recursive functions

Lemma

 $Q' \subsetneq Q$ weakly represents any semi-decidable predicate $P : \mathbb{N} \to \mathbb{P}rop$ using a Σ_1 -formula φ :

$$\forall x. Px \leftrightarrow Q' \vdash \varphi(\overline{x})$$

Proof.

See Kirst and Hermes 2021, relying on a mechanisation of the DPRM theorem by Larchey-Wendling and Forster 2022.

Instantiating the Incompleteness Proofs

From now on: Assume θ in EPF to be an interpreter for μ -recursive functions

Lemma

 $Q' \subsetneq Q$ weakly represents any semi-decidable predicate $P : \mathbb{N} \to \mathbb{P}rop$ using a Σ_1 -formula φ :

$$\forall x. Px \leftrightarrow Q' \vdash \varphi(\overline{x})$$

Proof.

See Kirst and Hermes 2021, relying on a mechanisation of the DPRM theorem by Larchey-Wendling and Forster 2022.

Lemma (Strong Separability)

Q strongly separates any pair of semi-decidable and disjoint predicates P_1, P_2 , i.e., there is Φ s.t.:

$$\forall x. \, P_1 x \ \to \ \mathbf{Q} \vdash \Phi(\overline{x}) \quad \land \quad P_2 x \ \to \ \mathbf{Q} \vdash \neg \Phi(\overline{x})$$

Lemma (Strong Separability)

Q strongly separates any pair of semi-decidable and disjoint predicates P_1, P_2 , i.e., there is Φ s.t.:

$$\forall x. \, P_1 x \ \to \ \mathbf{Q} \vdash \Phi(\overline{x}) \quad \land \quad P_2 x \ \to \ \mathbf{Q} \vdash \neg \Phi(\overline{x})$$

Proof.

Let φ_1, φ_2 be s.t. for any x:

$$P_1x \leftrightarrow Q \vdash \exists k. \, \varphi_1(\overline{x}, k)$$

$$P_2x \leftrightarrow Q \vdash \exists k. \, \varphi_2(\overline{x}, k)$$

Lemma (Strong Separability)

Q strongly separates any pair of semi-decidable and disjoint predicates P_1, P_2 , i.e., there is Φ s.t.:

$$\forall x. P_1 x \rightarrow Q \vdash \Phi(\overline{x}) \land P_2 x \rightarrow Q \vdash \neg \Phi(\overline{x})$$

Proof.

Let φ_1, φ_2 be s.t. for any x:

$$P_1 x \leftrightarrow Q \vdash \exists k. \varphi_1(\overline{x}, k)$$

 $P_2 x \leftrightarrow Q \vdash \exists k. \varphi_2(\overline{x}, k)$

Choose:

$$\Phi(x) := \exists k. \, \varphi_1(x,k) \land \forall k' \le k. \, \neg \varphi_2(x,k)$$

Instantiating the Strengthened Incompleteness Proof

Theorem

Robinson arithmetic is essentially incomplete.

$$\forall T \supseteq Q. \quad T \text{ semi-decidable } \rightarrow \quad T \nvdash \bot \quad \rightarrow \quad \exists \varphi. \ T \nvdash \varphi \land T \nvdash \neg \varphi$$

Summary

- ► Gave abstract incompleteness proofs due to Kleene in different strengths, reformulated and consolidated in synthetic computability
 - Assuming weak representability, using the halting problem
 - Assuming strong separability, using recursively inseparable predicates
 - ▶ Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result

¹²Forster et al. 2020, notably including Larchey-Wendling and Forster 2022.

¹³Kirst, Hostert, et al. 2022.

¹⁴C.f. Hostert, Koch, and Kirst 2021.

¹⁵https://github.com/uds-psl/coq-synthetic-incompleteness/tree/types2022

Summary

- Gave abstract incompleteness proofs due to Kleene in different strengths, reformulated and consolidated in synthetic computability
 - Assuming weak representability, using the halting problem
 - Assuming strong separability, using recursively inseparable predicates
 - Mechanised in only about 450 stand-alone lines of Coq, 200 for the strongest result
- ▶ Instantiated those proofs to first-order Robinson arithmetic using Rosser's trick
 - Relying on libraries of undecidability¹² and first-order logic¹³ and the first-order proofmode by Koch¹⁴
 - ► Mechanised in around 2200 lines of Coq
- ► All results have been mechanised in Cog¹⁵.

¹²Forster et al. 2020, notably including Larchey-Wendling and Forster 2022.

¹³Kirst, Hostert, et al. 2022.

¹⁴C.f. Hostert, Koch, and Kirst 2021.

¹⁵https://github.com/uds-psl/coq-synthetic-incompleteness/tree/types2022

► Church's thesis for Robinson arithmetic

- ► Church's thesis for Robinson arithmetic
- ▶ Do abstract proofs for a concrete model of computation

- ► Church's thesis for Robinson arithmetic
- ▶ Do abstract proofs for a concrete model of computation
- Avoid DPRM as dependency

- Church's thesis for Robinson arithmetic
- Do abstract proofs for a concrete model of computation
- Avoid DPRM as dependency
- ► Gödel's second incompleteness theorem

References I

- Aaronson, Scott (July 21, 2011). Rosser's theorem via Turing machines. Shtetl-Optimized. URL: https://scottaaronson.blog/?p=710 (visited on 02/28/2022).
- Bauer, Andrej (2006). "First Steps in Synthetic Computability Theory". In: Electronic Notes in Theoretical Computer Science 155, pp. 5–31.
- Forster, Yannick (2022). "Parametric Church's Thesis: Synthetic Computability Without Choice". In: *International Symposium on Logical Foundations of Computer Science*, pp. 70–89.
- Forster, Yannick et al. (2020). "A Coq Library of Undecidable Problems". In: CoqPL 2020 The Sixth International Workshop on Coq for Programming Languages.
- Harrison, John (2009). Handbook of Practical Logic and Automated Reasoning. Cambridge University Press.
- Hostert, Johannes, Mark Koch, and Dominik Kirst (2021). "A Toolbox for Mechanised First-Order Logic". In: *The Coq Workshop.* Vol. 2021.

References II

- Kirst, Dominik and Marc Hermes (2021). "Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Cog". In: *ITP 2021*.
- Kirst, Dominik, Johannes Hostert, et al. (2022). "A Coq Library for Mechanised First-Order Logic". In: *The Coq Workshop*.
- Kleene, Stephen C. (1936). "General Recursive Functions of Natural Numbers". In: *Mathematische Annalen* 112, pp. 727–742.
- (1943). "Recursive Predicates and Quantifiers". In: *Transactions of the American Mathematical Society* 53, pp. 41–73.
- (1951). "A Symmetric Form of Gödel's theorem". In: *The Journal of Symbolic Logic* 16.2, p. 147.
- (1952). Introduction to Metamathematics. North Holland.
- (1967). Mathematical Logic. Dover Publications.
- Kreisel, Georg (1967). "Mathematical Logic". In: Journal of Symbolic Logic 32.3, pp. 419–420.

References III

- Larchey-Wendling, Dominique and Yannick Forster (2022). "Hilbert's Tenth Problem in Coq (Extended Version)". In: Logical Methods in Computer Science 18.
- O'Connor, Russell (2005). "Essential Incompleteness of Arithmetic Verified by Coq". In: *Theorem Proving in Higher Order Logics*, pp. 245–260.
- Paulson, Lawrence C. (2014). "A Machine-Assisted Proof of Gödel's Incompleteness Theorems for the Theory of Hereditarily Finite Sets". In: *The Review of Symbolic Logic* 7.3, pp. 484–498.
- Popescu, Andrei and Dmitriy Traytel (2019). "A Formally Verified Abstract Account of Gödel's Incompleteness Theorems". In: Automated Deduction CADE 27. Springer International Publishing, pp. 442–461.
- Post, Emil L. (1941). "Absolutely Unsolvable Problems and Relatively Undecidable Propositions Acount of an Anticipation". In: Springer, pp. 375–441.
- Richman, Fred (1983). "Church's Thesis Without Tears". In: *The Journal of Symbolic Logic* 48.3, pp. 797–803.

References IV

- Shankar, Natarajan (1994). *Metamathematics, Machines and Gödel's Proof.*Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.
- Troelstra, Anne S. and Dirk van Dalen (1988). Constructivism in Mathematics, Vol 1. ISSN. Elsevier Science.
- Turing, Alan M. (1936). "On Computable Numbers, with an Application to the Entscheidungsproblem". In: *Proceedings of the London Mathematical Society* 2.42, pp. 230–265.
- user21820 (Dec. 31, 2021). Computability Viewpoint of Godel/Rosser's Incompleteness Theorem. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/2486349 (visited on 03/22/2022).
- Vorobey, Anatoly (2022). First Incompleteness via Computation: an Explicit Construction. Foundations of Mathematics mailing list. URL: https://cs.nyu.edu/pipermail/fom/2021-September/022872.html (visited on 02/21/2022).

Church's thesis

$$\forall f: \mathbb{N} \to \mathbb{N}. \, \exists \varphi \in \Sigma_1. \, \forall xy. \, fx \rhd y \, \leftrightarrow \, Q \vdash \forall y'. \, \varphi(\overline{x}, y') \, \leftrightarrow \, y = y'$$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow Q \vdash \exists k. \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow Q \vdash \exists l. \varphi_2(\overline{x}, l)$$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow Q \vdash \exists k. \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow Q \vdash \exists l. \varphi_2(\overline{x}, l)$$

$$P_1 x \rightarrow Q \vdash \exists k. \, \Phi_1(\overline{x}, k)$$
 $P_2 x \rightarrow Q \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow Q \vdash \exists k. \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow Q \vdash \exists l. \varphi_2(\overline{x}, l)$$

$$P_1 x \rightarrow Q \vdash \exists k. \Phi_1(\overline{x}, k)$$

$$P_2 x \rightarrow Q \vdash \neg \exists k. \Phi_1(\overline{x}, k)$$

$$\varphi_1(x,-)$$
 \swarrow

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow Q \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow Q \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

$$P_1 x \rightarrow Q \vdash \exists k. \Phi_1(\overline{x}, k)$$

$$P_2 x \rightarrow Q \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$$

$$\varphi_1(x,-) \qquad \qquad k$$

$$\varphi_2(x,-) \qquad \qquad \checkmark$$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow Q \vdash \exists k. \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow Q \vdash \exists l. \varphi_2(\overline{x}, l)$$

$$P_1 x \to Q \vdash \exists k. \, \Phi_1(\overline{x}, k)$$
 $P_2 x \to Q \vdash \neg \exists k. \, \Phi_1(\overline{x}, k)$

$$\varphi_1(x,-) \qquad \qquad k$$

$$\varphi_2(x,-) \qquad \qquad \checkmark$$

$$\Phi_1(x,k) := \varphi_1(x,k) \land \forall k' \le k. \, \neg \varphi_2(x,k')$$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow Q \vdash \exists k. \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow Q \vdash \exists l. \varphi_2(\overline{x}, l)$$

$$P_{1} x \rightarrow Q \vdash \exists k. \Phi_{1}(\overline{x}, k) \qquad P_{2} x \rightarrow Q \vdash \neg \exists k. \Phi_{1}(\overline{x}, k)$$

$$\downarrow k$$

$$\varphi_{1}(x, -) \qquad \downarrow \checkmark$$

$$\varphi_{2}(x, -) \qquad \downarrow \downarrow$$

$$\Phi_1(x,k) := \varphi_1(x,k) \land \forall k' \le k. \, \neg \varphi_2(x,k')$$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow Q \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow Q \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

$$\Phi_1(x,k) := \varphi_1(x,k) \land \forall k' \le k. \, \neg \varphi_2(x,k')$$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow Q \vdash \exists k. \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow Q \vdash \exists l. \varphi_2(\overline{x}, l)$$

$$P_{1} x \rightarrow Q \vdash \exists k. \, \Phi_{1}(\overline{x}, k) \qquad \qquad P_{2} x \rightarrow Q \vdash \neg \exists k. \, \Phi_{1}(\overline{x}, k)$$

$$k \qquad \qquad \qquad k$$

$$\varphi_{1}(x, -) \qquad \qquad \checkmark \qquad \qquad \checkmark$$

$$\varphi_{2}(x, -) \qquad \qquad \qquad \checkmark$$

$$l$$

$$\Phi_1(x,k) := \varphi_1(x,k) \land \forall k' \le k. \, \neg \varphi_2(x,k')$$

Let P_1, P_2 be semi-decidable and disjoint predicates, and $\varphi_1, \varphi_2 \in \Delta_0$ such that:

$$P_1 x \leftrightarrow Q \vdash \exists k. \, \varphi_1(\overline{x}, k) \qquad P_2 x \leftrightarrow Q \vdash \exists l. \, \varphi_2(\overline{x}, l)$$

$$P_{1} x \rightarrow Q \vdash \exists k. \, \Phi_{1}(\overline{x}, k) \qquad \qquad P_{2} x \rightarrow Q \vdash \neg \exists k. \, \Phi_{1}(\overline{x}, k)$$

$$k \qquad \qquad k \qquad \qquad k$$

$$\varphi_{1}(x, -) \qquad \boxed{\checkmark} \qquad \boxed{\checkmark}$$

$$\varphi_{2}(x, -) \qquad \qquad l$$

$$\Phi_1(x,k) := \varphi_1(x,k) \land \forall k' \le k. \, \neg \varphi_2(x,k')$$