Reading Stata Regression Outputs

Introductory Econometrics I
Spring 2024

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
.

Source	SS	df	MS	Number of obs F(2, 97)	s = =	100 145.15
Model	22.5515771	2	11.2757885		=	0.0000
Residual	7.53516674	97	.077682131	. R-squared	=	0.7496
				- Adj R-squared	= t	0.7444
Total	30.0867438	99	.303906503	Root MSE	=	. 27872
у	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]
×1	1.529383	.0907477	16.85	0.000 1.3492	274	1.709492
x2	.2283016	.0965735	2.36	0.020 .03662	299	.4199732
_cons	.3704453	.074674	4.96	0.000 .22223	381	.5186526

Source	SS	df	MS
Model Residual	22.5515771 7.53516674	2 97	11.2757885 .077682131
Total	30.0867438	99	.303906503

- Source This is the source of variance, Model, Residual, and Total.
- SS –Sum of Squares

Total SS = Model SS + Residual SS,

$$\sum_{i} (y_i - \overline{y})^2 = \sum_{i} (\widehat{y}_i - \overline{y})^2 + \sum_{i} \widehat{u}_i^2.$$

• Residual MS: $\frac{1}{N-k-1}\sum_{i} \widehat{u_i}^2$

- F and Prob > F F statistics and p-values if all slope coefficients are zero. In this example, the F-stat associated with testing the null hypothesis: $\beta_1 = \beta_2 = 0$ against the alternative that it is not true.
- R-squared R^2

$$R^2 = \frac{Model \, SS}{Total \, SS}.$$

Root MSE – estimated standard deviation of the error term

Root
$$MSE = \sqrt{Residual\ MS} = \sqrt{\frac{1}{N-k-1} \sum_{i} \widehat{u_i}^2}$$
.

у	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x1	1.529383	.0907477	16.85	0.000	1.349274	1.709492
x2	.2283016	.0965735	2.36	0.020	.0366299	.4199732
_cons	.3704453	.074674	4.96	0.000	.2222381	.5186526

- Coef. Values of $\hat{\beta}s$
- Std. Err. Standard errors associated with the coefficients.
- t and P>|t| These columns provide the t-value and 2-tailed p-value used in testing the null hypothesis that the coefficient (parameter) is 0.
- [95% Conf. Interval] This shows a 95% confidence interval for the coefficient.