Lecture1

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Welcome!

- Computational Microelectronics (계산전자공학)
 - Code: EC7114
 - Lecture 3, no experiment, credit 3

- Instructor, Sung-Min Hong
 - School of EECS

Resources

Presentation materials & Homework submission

https://github.com/hi2ska2/cm2020f

https://github.com/hi2ska2/cm2018f (Archived)

YouTube channel

https://www.youtube.com/SungMinHong

Or, type "Sung-Min Hong" in the YouTube search tab.

Evaluation

- Attendance (20%)
- Homework (50%)
- Final presentation (30%)
 - Your own presentation
- For students from Department of PPS or MSE school
 - No advantage/disadvantage rule

Infinite potential well (1)

- A particle in an infinite potential well
 - Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} = E\psi(x), \qquad 0 < x < a$$

– Boundary conditions:

$$\psi(0) = \psi(a) = 0$$

It's an eigenvalue problem.

$$\frac{d^2\psi(x)}{dx^2} = -\frac{2mE}{\hbar^2}\psi(x) = -k^2\psi(x)$$

Infinite potential well (2)

Sine and cosine functions can be solutions.

$$\psi(x) = A_1 \cos kx + A_2 \sin kx$$

- Cosine term cannot satisfy the boundary condition at x = 0.

$$\psi(a) = A_2 \sin ka = 0$$

Then, we have

$$ka = \pi n$$
 An integer

Therefore, allowed values of k are quantized.

Infinite potential well (3)

- Energy levels
 - The eigen-energy is written as $E_n = \frac{\hbar^2}{2m} \left(\frac{\pi n}{a}\right)^2$
- Wavefunctions
 - The eigen-function is written as $\psi_n = A_2 \sin\left(\frac{\pi n}{a}x\right)$

Homework#1

- Due: AM08:00, September 7
- Problem#1
 - Log-in into the GitHub site.
 - "Watch" and "Star" our hi2ska2/cm2020f repository.
 - Make a pull request with a file including your student ID.
 - Check hi2ska2/cm2020f/S20000000. There, you can find how to do the first Homework.