Arquitetura de Computadores e Sistemas Operacionais

O que um bit?

- Contração de binary digit (dígito binário)
- ou 1 (em arquitetura) usados para representar informação
- Menor unidade de informação armazenada eletronicamente

• O que um byte?

- Conjunto de 8 bits
- 256 combinações diferentes (2⁸, 0 a 255, 00000000₂ a 11111111₂, 0x00 a 0xFF)
- Surgiu por convenção pela necessidade de representar informações como letras do alfabeto (A...Z, a...z), algarismos (0...9), símbolos gráficos (´, @, -, !, ?, à, ï, ¬, \$,...)

Byte

Uma das representações convencionais para estes símbolos é a tabela ASCII

• E uma palavra?

- word (em uma arquitetura de um processador)?
- Quantidade de bits que a CPU processa de uma vez
- Hoje, a maioria das CPUs processa de 32 a 64 bits

• Obs: notação dos números em diferentes bases

- Em Python, imprima os números 127, 1025, 555 nas bases binária, octal e hexadecimal
- Efetue também as somas:
- $-362_8 + 75_{16}$
- 2A1₁₆ + 1100111₂
- $-48_{10} + 100111_2 + 3C_{16}$

- Por que um bit?
 - Representam dois estados nos circuitos lógicos (eletrônicos)
 - Representações frequentes:
 - Posição de chaves (aberta e fechada)
 - Ligado e desligado
 - Valores lógicos (Verdadeiro e Falso) ou '0' e '1'
 - Tensão elétrica
 - 0 (zero) Volts \rightarrow 0
 - 3,3 Volts ou 5 V \rightarrow 1
 - Também pode ser menor; 1,5V; 1,25V (memória DDR3U)

• Circuitos combinacionais – têm as seguintes propriedades:

- São circuitos cujos sinais de saída dependem exclusivamente das combinações dos sinais de entrada (ou seja, eles não tem nenhum tipo de memória)
- Construídos a partir das portas lógicas digitais
- Especificação funcional que determina o valor lógico de cada saída para cada uma das combinações das entradas
- A portas lógicas implementam a funções dos operadores lógicos (conjunção ^, disjunção v, negação ¬ e seus complementos)
- Uma ou mais entradas digitais
- Uma ou mais saídas digitais

Circuitos combinacionais e a Lógica Matemática

- Os operadores conjunção (∧), disjunção (∨), complemento (¬) e bicondicional (↔), e as portas lógicas AND, OR, NOT e XNOR, respectivamente, executam a mesma operação lógica sobre as variáveis de entrada
- O operador condicional (→) pode ser implementado a partir de um circuito combinacional (mais de uma porta lógica)
- As proposições simples correspondem às entradas de um circuito lógico
- Uma proposição composta pode ser entendida como a saída de uma porta ou circuito lógico combinacional

Portas lógicas

- Simulador online de circuitos lógicos: https://logic.ly/demo/
- (Exemplos com chaves http://www.falstad.com/circuit/)
- Tabela-verdade

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

- OR (OU)
 - Símbolo (+)
 - Simula uma soma binária de um bit
- Tabela-verdade

Entr	adas	Saída
Α	В	Y=A+B
0	0	0
0	1	1
1	0	1
1	1	1

- AND (E)
 - Símbolo (⋅)
 - Simula uma multiplicação binária de um bit
- Tabela-verdade

Α	В	Y=A·B
0	0	0
0	1	0
1	0	0
1	1	1

- NOT (Inversora/Negação)
 - Símbolo (Barra sobre a variável de entrada \overline{A} , ou $^{\sim}A/^{-}A/A'$)
 - Inverte o valor lógico da entrada
- Tabela-verdade

Α	Y = Ā (~A/¬A)
0	1
1	0

• NAND (E)

- É a negação da operação AND (o resultado da AND é negado, não as entradas)
- Símbolo (barra sobre a operação AND, como exemplo $\overline{A \cdot B}$, ou $\neg (A \cdot B)$)
- $(\overline{A \cdot B})$ é diferente de $(\overline{A} \cdot \overline{B})$, com outra simbologia, (AB) é diferente de $(-A \cdot -B)$

• Tabela-verdade

Α	В	A·B
0	0	1
0	1	1
1	0	1
1	1	0

- NOR (Não-OU)
 - É a negação da operação OR (o resultado da OR é negado)
 - Símbolo (barra sobre a operação OR, como exemplo $\overline{A+B}$, ou $\neg(A+B)$)
 - $\overline{A+B}$) é diferente de $\overline{A+B}$), com outra simbologia, $\overline{A+B}$) é diferente de $\overline{A+B}$
- Tabela-verdade

Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

- XOR (OU-eXclusivo)
 - É o mesmo que uma disjunção exclusiva (v)
 - Símbolo (⊕, como exemplo A⊕B)
- Tabela-verdade

Α	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

- XNOR (Não-OU-eXclusivo/coincidência)
 - É o mesmo que uma bicondicional
 - Símbolo ⊙, como exemplo A⊙B
- Tabela-verdade

Α	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

• Resumo

Função Lógica Básica	Símbolo Gráfico da Porta	Equação Booleana
AND	A	Y = A.B
OR	A	Y = A+B
XOR	A	$Y = A \oplus B$
NOT	А — У	$Y = \overline{A}$
NAND	В О У	$Y = \overline{A.B}$
NOR	A	$Y = \overline{A+B}$

Exercícios

- Obter as expressões lógicas dos seguintes circuitos:
 - a)

• b)

• d)

