Practica 2.

Lisardo Gayán Tremps José Luis Melo 3 June, 2019

1 - Descripción del dataset. ¿Por qué es importante y qué pregunta/problema pretende

Contents

	responder?	1		
2 ·	- Integración y selección de los datos de interés a analizar	2		
3 -	- Limpieza de datos	5		
	$3.1.\ ¿Los datos contienen ceros o elementos vacíos? ¿Cómo gestionarías cada uno de estos casos? .$	5		
	3.2. Identificación y tratamiento de valores extremos	10		
4.	Análisis de los datos.	13		
	4.1. Selección de los grupos de datos que se quieren analizar/comparar (planificación de los análisis a aplicar)	13		
	4.2. Comprobación de la normalidad y homogeneidad de la varianza	13		
	4.3. Aplicación de pruebas estadísticas para comprar los grupos de datos. En función de los datos y el objetivo del estudio, aplicar pruebas de contraste de hipótesis, correlaciones, regresiones, etc. Aplicar al menos tres métodos de análisis diferentes	13		
5 .	Representación de los reultados a apartir de tablas y gráficas.	13		
6.	3. Resolución del problema. A partir de los resultados obtenidos. ¿cuáles son las conclusiones?. ¿Los resultados permiten responder al problemas?			
7.	7. Código. Hay que adjuntar el código, preferiblemente en R, con el que se ha realizado la limpieza, análisis y represntación de los datos.			
1	- Descripción del dataset. ¿Por qué es importante y qué pr	.e-		

El dataset de Titanic: Machine Learning from Disaster se registran los datos de los pasajeros del famoso trasatlántico y se utiliza para predecir los supervivientes. Los datos estan divididos en dos dataset, uno de test y otro entrenamiento, para la creación de modelos de predicción.

gunta/problema pretende responder?

2 - Integración y selección de los datos de interés a analizar

Se importan los datos. Primero el dataset train.

```
datostrain <- read.csv("./data/train.csv", stringsAsFactors = FALSE, na.strings = c("NA", ""))</pre>
str(datostrain)
## 'data.frame':
                  891 obs. of 12 variables:
  $ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
## $ Survived
               : int 0 1 1 1 0 0 0 0 1 1 ...
## $ Pclass
               : int 3 1 3 1 3 3 1 3 3 2 ...
## $ Name
              : chr
                     "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)"
## $ Sex
              : chr "male" "female" "female" "female" ...
## $ Age
               : num 22 38 26 35 35 NA 54 2 27 14 ...
## $ SibSp
               : int 1 1 0 1 0 0 0 3 0 1 ...
## $ Parch
               : int 000000120...
## $ Ticket
               : chr "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" ...
## $ Fare
               : num 7.25 71.28 7.92 53.1 8.05 ...
## $ Cabin
               : chr NA "C85" NA "C123" ...
## $ Embarked : chr "S" "C" "S" "S" ...
```

Se observa como consta de 891 muestras y 12 variables, entre ellas Survived.

Posteiormente el dataset test.

```
datostest <- read.csv ("./data/test.csv", stringsAsFactors = FALSE, na.strings = c("NA", ""))</pre>
str(datostest)
                  418 obs. of 11 variables:
## 'data.frame':
## $ PassengerId: int 892 893 894 895 896 897 898 899 900 901 ...
## $ Pclass : int 3 3 2 3 3 3 2 3 3 ...
              : chr "Kelly, Mr. James" "Wilkes, Mrs. James (Ellen Needs)" "Myles, Mr. Thomas Franci
## $ Name
## $ Sex
                      "male" "female" "male" "male" ...
               : chr
## $ Age
               : num 34.5 47 62 27 22 14 30 26 18 21 ...
               : int 0 1 0 0 1 0 0 1 0 2 ...
## $ SibSp
## $ Parch
                : int 0000100100...
                      "330911" "363272" "240276" "315154" ...
## $ Ticket
                : chr
## $ Fare
                : num
                     7.83 7 9.69 8.66 12.29 ...
## $ Cabin
                : chr
                      NA NA NA NA ...
## $ Embarked : chr "Q" "S" "Q" "S" ...
```

Se observa como tiene 418 muestra, y 11 variables. La variable Survived no aparece porque es la que se tiene que predecir.

A continuacion, a la hora de fusionar los datos caben dos posibilidades, asignar "NA" a la variable datostest\$Survived o no considerar los datos de survived en train. Se importan, fusionan los datos y se revisa la estructura inicial de los datos.

```
datostest$Survived <- NA
datos <- rbind(datostrain, datostest)
str(datos)</pre>
```

```
## 'data.frame':
                   1309 obs. of 12 variables:
## $ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
## $ Survived
               : int 0 1 1 1 0 0 0 0 1 1 ...
## $ Pclass
                : int 3 1 3 1 3 3 1 3 3 2 ...
##
   $ Name
                : chr
                       "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)"
                : chr "male" "female" "female" "female" ...
## $ Sex
                : num 22 38 26 35 35 NA 54 2 27 14 ...
## $ Age
## $ SibSp
                : int
                       1 1 0 1 0 0 0 3 0 1 ...
##
   $ Parch
                : int
                       0 0 0 0 0 0 0 1 2 0 ...
                       "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" ...
## $ Ticket
                : chr
## $ Fare
                       7.25 71.28 7.92 53.1 8.05 ...
                : num
                       NA "C85" NA "C123" ...
## $ Cabin
                : chr
                       "S" "C" "S" "S" ...
## $ Embarked
                : chr
```

A continuación comprobamos los datos que faltan

```
# Busco primero qué variables tienen valores perdidos
missing_numbers <- sapply(datos, function(x) {sum(is.na(x))})
kable(data.frame(Variables = names(missing_numbers), Datos_faltantes= as.vector(missing_numbers))) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```

Datos_faltantes
0
418
0
0
0
263
0
0
0
1
1014
2

Podemos observar, que en Survived, salen los 418, que tenemos que predecir, por lo que todos los valores de train están informados.

A continuación se detallan las variables y su tipo inicial, este último, se modificara para su mejor analisis.

```
# datostrain1 <- datostrain[,-2]
# data <- rbind(datostrain1, datostest) # Fusion datasets
data <- datos[,-2]
str(data)</pre>
```

```
## 'data.frame':
                  1309 obs. of 11 variables:
   $ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
## $ Pclass
               : int 3 1 3 1 3 3 1 3 3 2 ...
## $ Name
                      "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)"
                : chr
                      "male" "female" "female" ...
## $ Sex
                : chr
                : num 22 38 26 35 35 NA 54 2 27 14 ...
##
   $ Age
## $ SibSp
                : int 1 1 0 1 0 0 0 3 0 1 ...
                : int 000000120 ...
## $ Parch
                : chr "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" ...
## $ Ticket
```

```
## $ Fare : num 7.25 71.28 7.92 53.1 8.05 ...
## $ Cabin : chr NA "C85" NA "C123" ...
## $ Embarked : chr "S" "C" "S" "S" ...

tipos <- sapply(data, class)
kable(data.frame(Variables = names(tipos), Tipo_Variable= as.vector(tipos))) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```

Variables	Tipo_Variable
PassengerId	integer
Pclass	integer
Name	character
Sex	character
Age	numeric
SibSp	integer
Parch	integer
Ticket	character
Fare	numeric
Cabin	character
Embarked	character

Las variables, que no tienen datos faltantes, class y sex, se convertiran a factor. La variable cabin tiene muchos datos faltantes, así que en un primer momento no se utilizará.

```
#data$Age <- as.integer(data$Age)
data$Pclass <- as.factor(data$Pclass)
data$Sex <- as.factor(data$Sex)
#data$Embarked <- as.factor(data$Embarked)
#data$Cabin <- as.factor(data$Cabin)

tipos_new <- sapply(data, class)
kable(data.frame(Variables = names(tipos_new), Tipo_Variable= as.vector(tipos_new))) %>%
    kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```

Variables	Tipo_Variable
PassengerId	integer
Pclass	factor
Name	character
Sex	factor
Age	numeric
SibSp	integer
Parch	integer
Ticket	character
Fare	numeric
Cabin	character
Embarked	character

Una vez modificadas los tipos de valores se resume que:

summary(data)

```
## PassengerId Pclass Name Sex Age
## Min. : 1 1:323 Length:1309 female:466 Min. : 0.17
```

```
1st Qu.: 328
                    2:277
                             Class : character
                                                        :843
                                                                1st Qu.:21.00
##
                                                  male
                    3:709
##
    Median: 655
                             Mode
                                   :character
                                                                Median :28.00
##
    Mean
            : 655
                                                                Mean
                                                                        :29.88
                                                                3rd Qu.:39.00
##
    3rd Qu.: 982
##
    Max.
            :1309
                                                                Max.
                                                                        :80.00
                                                                NA's
                                                                        :263
##
                                           Ticket
##
        SibSp
                           Parch
                                                                  Fare
##
    Min.
            :0.0000
                      Min.
                              :0.000
                                        Length: 1309
                                                             Min.
                                                                     : 0.000
##
    1st Qu.:0.0000
                       1st Qu.:0.000
                                        Class : character
                                                             1st Qu.:
                                                                      7.896
##
    Median :0.0000
                      Median : 0.000
                                        Mode :character
                                                             Median: 14.454
##
    Mean
            :0.4989
                      Mean
                              :0.385
                                                             Mean
                                                                     : 33.295
    3rd Qu.:1.0000
                                                             3rd Qu.: 31.275
##
                       3rd Qu.:0.000
##
            :8.0000
                              :9.000
                                                                     :512.329
    Max.
                      Max.
                                                             Max.
##
                                                             NA's
                                                                     :1
##
       Cabin
                           Embarked
##
    Length: 1309
                         Length: 1309
##
    Class : character
                         Class : character
##
    Mode :character
                         Mode
                               :character
##
##
##
##
```

PassengerId: Variable de tipo entero que contiene el id del pasajero, no existen valores nulos o perdidos.

Pclass: Variable de tipo factor con la categoria asignada al pasajero, no existen valores nulos o perdidos.

Name: Variable de tipo texto con el nombre del pasajero, no existen valores nulos o perdidos.

Sex: Variable de tipo factor con el genero del pasajero (másculino, femenino), no existen valores nulos o perdidos.

Age: Variable de tipo numérico que especifica la edad del pasajero, existen 263 valores nulos.

SibSp: Variable de tipo entero que especifica el numero de hermanos/esposa abordo, no existen valores nulos o perdidos.

Parch: Variable de tipo entero que especifica el numero de padres/hijos abordo, no existen valores nulos o perdidos.

Ticket: Variable de tipo texto que indica el numero de ticket, no existen valores nulos o perdidos.

Fare: Variable de tipo numero que especifica la tarifa pagada, existe 1 valor nulo.

Cabin: Variable de tipo factor donde se especifica la cabina asignada, existen 1014 valores perdidos.

Embarked: Variable de tipo factor que indica el puerto de embarque, existen 2 valores perdidos.

3 - Limpieza de datos

3.1. ¿Los datos contienen ceros o elementos vacíos? ¿Cómo gestionarías cada uno de estos casos?

Volvemos a mostrar los datos que contienen ceros o elementos vacíos.

```
# Busco primero qué variables tienen valores perdidos
missing_numbers <- sapply(datos, function(x) {sum(is.na(x))})
kable(data.frame(Variables = names(missing_numbers), Datos_faltantes= as.vector(missing_numbers))) %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "left")
```

Variables	Datos_faltantes
PassengerId	0
Survived	418
Pclass	0
Name	0
Sex	0
Age	263
SibSp	0
Parch	0
Ticket	0
Fare	1
Cabin	1014
Embarked	2

De las variables existentes a continuación se espedifican aquellas que contienen valores perdido o nulos.

• Age: existen 263 valores nulos.

Para imputar valores de **edad**, hay varias opciones desde la más sencilla que sería asignar la media a otras opciones como la propuesta en http://jstatsoft.org/article/view/v045i03 Data Analysis with R, A comprehensive guide to manipulating, analyzing and visualizing data in R Pag 373 - 386

Se puede analizar si es mejor imputar por la media, mediana u otro método (rpart o mice)

Fare: existe 1 valor nulo.
 Para imputar valores Fare
 Dado que unicamente hay un valor perdido, es posible imputarlo por la media o la mediana en base al puerto de embarque "S" y la clase "3"

```
data[is.na(data$Fare),]
##
        PassengerId Pclass
                                         Name Sex Age SibSp Parch Ticket
## 1044
               1044
                         3 Storey, Mr. Thomas male 60.5
                                                            0
        Fare Cabin Embarked
## 1044
          NA <NA>
M_fare<- subset(data,data$Pclass == '3' & data$Embarked == 'S')
mean(M_fare$Fare, na.rm = T)
## [1] 14.43542
median(M_fare$Fare, na.rm = T)
## [1] 8.05
ggplot(M_fare, aes(x = Fare)) +
  geom_density(fill = 'grey', alpha=0.4) +
  geom_vline(aes(xintercept=median(Fare, na.rm=T)),
    colour='blue', linetype='dashed', lwd=1) +
  geom vline(aes(xintercept=mean(Fare, na.rm=T)),
  colour='red', linetype='dashed', lwd=1)
```


Observamos como al realizar la gráfica nos dice que hay un valor nulo.

La tarifa de 8.05 coincide con la mediana de los pasajeros de tercera clase que embarcaron en S, por lo que se podría imputar este valor.

```
data$Fare[c(1044)] <- 8.05
data[1044,]
```

Volviendo a representar

```
M_fare<- subset(data,data$Pclass == '3' & data$Embarked == 'S')
ggplot(M_fare, aes(x = Fare)) +
  geom_density(fill = 'grey', alpha=0.4) +
  geom_vline(aes(xintercept=median(Fare, na.rm=T)),
     colour='blue', linetype='dashed', lwd=1) +
  geom_vline(aes(xintercept=mean(Fare, na.rm=T)),
  colour='red', linetype='dashed', lwd=1)</pre>
```


Ahora ya no sale que haya un valor nulo en fare.

- Cabin: existen 1014 valores perdidos.
 - Para imputar valores Cabin

Esta variable tiene muchos valores perdidos, se podria conseguir predecir la cubierta asignada al pasajero pero es un dato que poco beneficio podría traer ya que se puede realizar el analisis con la combinación entre la tarifa y la clase del pasajero.

• Embarked: existen 2 valores perdidos. Para imputar valores **Embarked**

Mostramos los valores perdidos

data[is.na(data\$Embarked),]

```
##
       PassengerId Pclass
                                                                   Name
                                                                            Sex
## 62
                 62
                                                   Icard, Miss. Amelie female
## 830
                830
                         1 Stone, Mrs. George Nelson (Martha Evelyn) female
##
       Age SibSp Parch Ticket Fare Cabin Embarked
        38
                0
## 62
                      0 113572
                                  80
                                       B28
                                                <NA>
## 830
        62
                0
                      0 113572
                                  80
                                       B28
                                                <NA>
```

Al ser unicamente dos valores perdidos, se podría sustituir los valores por la media, en base a otros pasajeros de la misma clase y tarifa (Fare). Los pasajeros han pagado una tarifa de 80 y pertenecian a primera clase.

```
embarked_pass_1 <- data %>%
  filter(PassengerId != 62 & PassengerId != 830 & Pclass == 1)
ggplot(embarked_pass_1, aes(x = Embarked, y = Fare, fill = factor(Pclass))) +
  geom_boxplot() +
  geom_hline(aes(yintercept=80),
      colour='blue', linetype='dashed', lwd=1)
```


La tarifa de 80 coincide con la media de los pasajeros de primera clase que embarcaron en C, por lo que se podría imputar este puerto.

```
data$Embarked[c(62, 830)] <- 'C'
```

Otra opción, sería considerar también el sexo, ya que principios del siglo XX, no se caracterizaba por una igualdad de hombres y mujeres.

```
embarked_pass_2 <- data %>%
  filter(PassengerId != 62 & PassengerId != 830 & Pclass == 1 & Sex == "female")
ggplot(embarked_pass_2, aes(x = Embarked, y = Fare, fill = factor(Pclass))) +
  geom_boxplot() +
  geom_hline(aes(yintercept=80),
      colour='blue', linetype='dashed', lwd=1)
```


En este caso cualquiera de los 3 puertos tendría una media cercana a 80. Como no creemos que el puerto de embarque este correlacionado con la supervivencia, podemos dejar "C"

3.2. Identificación y tratamiento de valores extremos.

Los valores extremos tendrían sentido en los campos Fare y Age

```
# Referencia:
{\it \# https://www.r-bloggers.com/identify-describe-plot-and-remove-the-outliers-from-the-dataset/}
outlierKD <- function(dt, var) {</pre>
     var_name <- eval(substitute(var),eval(dt))</pre>
     na1 <- sum(is.na(var name))</pre>
     m1 <- mean(var_name, na.rm = T)</pre>
     par(mfrow=c(2, 2), oma=c(0,0,3,0))
     boxplot(var_name, main="With outliers")
     hist(var_name, main="With outliers", xlab=NA, ylab=NA)
     outlier <- boxplot.stats(var_name)$out</pre>
     mo <- mean(outlier)</pre>
     var_name <- ifelse(var_name %in% outlier, NA, var_name)</pre>
     boxplot(var_name, main="Without outliers")
     hist(var_name, main="Without outliers", xlab=NA, ylab=NA)
     title("Outlier Check", outer=TRUE)
     na2 <- sum(is.na(var name))</pre>
     cat("Outliers identified:", na2 - na1, "n")
     cat("Propotion (%) of outliers:", round((na2 - na1) / sum(!is.na(var_name))*100, 1), "n")
```

```
cat("Mean of the outliers:", round(mo, 2), "n")
m2 <- mean(var_name, na.rm = T)
cat("Mean without removing outliers:", round(m1, 2), "n")
cat("Mean if we remove outliers:", round(m2, 2), "n")
response <- readline(prompt="Do you want to remove outliers and to replace with NA? [yes/no]: ")
if(response == "y" | response == "yes"){
    dt[as.character(substitute(var))] <- invisible(var_name)
    assign(as.character(as.list(match.call())$dt), dt, envir = .GlobalEnv)
    cat("Outliers successfully removed", "n")
    return(invisible(dt))
} else{
    cat("Nothing changed", "n")
    return(invisible(var_name))
}
</pre>
```

outlierKD(data, Age)

Outlier Check

With outliers

Without outliers

Outliers identified: 9 nPropotion (%) of outliers: 0.9 nMean of the outliers: 72.17 nMean without ref

```
outlierKD(data, Fare)
```

Outlier Check

With outliers

Without outliers

Without outliers

Outliers identified: 171 nPropotion (%) of outliers: 15 nMean of the outliers: 135.25 nMean without : ## Nothing changed n

Como es perfectamente aceptable las edades y que haya gente que pagara mucho más por su billete, al ser el primer viaje del transatlántico más grande de la epoca, no se cambia ningún valor

- 4. Análisis de los datos.
- 4.1. Selección de los grupos de datos que se quieren analizar/comparar (planificación de los análisis a aplicar)
- 4.2. Comprobación de la normalidad y homogeneidad de la varianza.
- 4.3. Aplicación de pruebas estadísticas para comprar los grupos de datos. En función de los datos y el objetivo del estudio, aplicar pruebas de contraste de hipótesis, correlaciones, regresiones, etc. Aplicar al menos tres métodos de análisis diferentes.
- 5. Representación de los reultados a apartir de tablas y gráficas.
- 6. Resolución del problema. A partir de los resultados obtenidos. ¿cuáles son las conclusiones?. ¿Los resultados permiten responder al problemas?
- 7. Código. Hay que adjuntar el código, preferiblemente en R, con el que se ha realizado la limpieza, análisis y represntación de los datos.