

Ein Überblick über Pakete für Chemiker

(6a(R),10a(R))-6,6,9-Trimethyl-3- pentyl-6a,7,8,10a- tetrahydro-6H- benzo[c]chromen-1- ol

- 1. Summenformeln und einfache Strukturformeln
 - mhchem
 - chemformula (aus chemmacros)
- 2. Strukturformeln
 - chemfig
- 3. Angabe von Stoffeigenschaften
 - Einheiten (siunitx)
 - NMR-, IR-, ... Daten
 - GHS (Gefahrensymbole, H- und P-Sätze)
- 4. Spektren und Diagramme darstellen mit gnuplottex
- 5. sonstiges Nützliches

MHCHEM ALLGEMEINES

- seit 2005 entwickelt
- aktuelle Version: 3.11 vom 3. Juni 2011
- beinhaltet:

mhchem für Formeln und Gleichungen rsphrases für R- und S-Sätze (sollten nicht mehr verwendet werden)

- einbinden als:
 - \usepackage[version=3]{mhchem}
 - \usepackage{rsphrases}

MHCHEM

BEISPIELE I

einfache Formeln:

 $\c \{ Sb203 \}$ Sb_2O_3 $\c \{ H^+ \}$ H^+

 $\cel{Cr04^2-}$ $\cce{Cr04^2-}$ $\cce{Cr04^2-}$

 $\label{eq:ceasing_loss} $\ce{[AgCl_2]^-}$$

Stöchiometrische Faktoren:

\ce{2H20} $2 H_2 O$ \ce{1/2C02} $\frac{1}{2} CO_2$

Isotope:

 $ce{^{227}_{90}Th+}$

MHCHEM

BEISPIELE II

Komplexere Formeln:

 $\label{eq:ceffcu(NH3)4} $C_1 \times C_2 \times C_3 \times C_4 \times C_4 \times C_4 \times C_4 \times C_5 \times C_4 \times C_5 \times C_4 \times C_5 \times C_5 \times C_5 \times C_6 \times C_6$

Bindungen:

\ce{C6H5-CH0} C_6H_5-CHO $\ce{X=Y\#Z}$ $X=Y\equiv Z$ $A-B=C\equiv D$ \ce{A\sbond B\dbond C\tbond D} $A-B=C\equiv D$ \ce{A\bond{-}B\bond{=}C\bond{#}D} A---B=-C \ce{A\bond{~}B\bond{~-}C} $\ce{A\bond{~=}B\bond{~~-}C\bond{~~-}D}$ A≅B≅C≡D A...B....C $ce{A \choose ...}B \choose ...}C$ $ce{A\bond{--}B\bond{<-}C}$ $A \rightarrow B \leftarrow C$

MHCHEM

BEISPIELE III

Reaktionsgleichungen:

MHCHEM

BEISPIELE IV

```
\ce{Zn^2+
<=>[\ce{+ 20H-}][\ce{+ 2H+}]
$\underset{\text{amphoteres Hydroxid}}{\ce{Zn(0H)2 v}}$
<=>C[+20H-][{+ 2H+}]
$\underset{\text{Hydroxozikat}}{\cf{[Zn(0H)4]^2-}}$}
```

$$Zn^{2+} \xrightarrow[+2\,\text{H}^+]{} Zn(\text{OH})_2 \downarrow \xrightarrow[\text{amphoteres Hydroxid}]{} \xrightarrow{+2\,\text{OH}^-} [Zn(\text{OH})_4]^{2-}$$

MHCHEM

- WEITERES
 - Schriftarten anpassen
 - Pfeilzeichnungen anpassen
 - Umgebungen für mehrere Reaktionen
 - R- und S-Sätze (nicht mehr verwenden!)

CHEMFORMULA

ALLGEMEINES

- Teil des chemmacros-Bundle
- aktuelle Version: 3.6b vom 19. April 2013
- einbinden als:
 - \usepackage{chemmacros} oder
 - \usepackage{chemformula}
- vermeidet weitestgehend den Mathematikmodus
- Syntax ähnlich dem von mhchem

Allgemeiner Befehl:

```
\ch{<}Typ1> < Typ2> < Typ3>}
```


CHEMFORMULA

BEISPIELE I

Stöchiometriefaktoren:

\ch{2}	2	
$\ch{.5}$	0.5	
$\ch{5,7}$	5.7	
$\ch{3/2}$	$\frac{\frac{3}{2}}{1\frac{1}{2}}$	
$\ch{1_1/2}$	$\bar{1}\frac{1}{2}$	
$\ch{(1/2)}$	(1/2)	Wie von IUPAC empfohlen
\ch{2 H20} \ch{1/2 H20}	2 H ₂ O ¹ / ₂ H ₂ O	

CHEMFORMULA

BEISPIELE II

Summenformeln:

Zahlen oder Leerzeichen können nicht im Befehl verwendet werden, weil sie vor dem Befehl selbst interpretiert werden!

CHEMFORMULA

BEISPIELE III

Plus- und Minuszeichen am Ende werden immer als Ladung interpretiert. Stehen sie innerhalb einer Formel, werden sie als Bindung interpretiert.

Ladung und Hochstellungen:

$\ch{A+B}$	A≡B
$\ch{AB+}$	AB^+
$\ch{A^x-}$	A^{x+}
\ch{RNO2^{}}	$RNO_2^{-\bullet}$
\ch{^31H}	³ H
$\ch{^{58}_{26}Fe}$	⁵⁸ Fe
\ch{NO^*}	NO [*]
\ch{H^\fplus}	H^\oplus

CHEMFORMULA

BEISPIELE IV

Bindungen:

\ch{H3C-CH3} H_3C-CH_3 H₂C=CH₂ $\ch{H2C=CH2}$ \ch{HC+CH} HC≡CH H₂C-CH₂ \ch{H3C\bond{single/sb}CH3} H₂C=CH₂ \ch{H2C\bond{double/db}CH2} **HC**≡**CH** \ch{HC\bond{triple/tp}CH} \ch{C\bond{dotted/semisingle}C} C....C C = C\ch{C\bond{deloc/semidouble}C} C = C\ch{C\bond{tdeloc/semitriple}C} C→C \ch{C\bond{co>/coordright}C} $C \leftarrow C$ \ch{C\bond{<co/coordleft}C}

CHEMFORMULA

BEISPIELE V

Wenn chemformula einen Teil nicht interpretieren soll, kann die geschützte Eingabe genutzt werden. Immer wenn der Befehl nicht direkt in \ch{} funktioniert, kann die geschütze Eingabe helfen. Leerzeichen sind darin nicht erlaubt!

```
\ch{ 'Text' }
\ch{ "Text" }
```

geschützte Eingaben:

```
\ch{ '\ox{2,Ca}' 0} \overset{\circ}{\text{CaO}} \ch{"\chemfig{H3C-CH3-OH}"} \overset{\circ}{\text{H}_3C} \overset{\circ}{\text{CH}_3} \overset{\circ}{\text{OH}}
```


CHEMFORMULA

BEISPIELE VI

Mathematik:

Text unter Formeln:

\ch{!(0xidan)(H20)}	H_2O
\ch{!(H20)(H20)}	Oxidan H ₂ O
\ch{!(\$1\leq x < 5\$)(C_xH_{2x-1})}	$ \begin{array}{c} H_{2}O\\C_{x}H_{2x-1}\\1\leq x<5 \end{array} $

CHEMFORMULA

BEISPIELE VII

Pfeile:

```
      \ch{<->}
      →
      \ch{<-}</td>
      ←

      \ch{<->}
      →
      \ch{</-}</td>
      ←

      \ch{<->}
      →
      \ch{<>}
      ←

      \ch{<=>}
      →
      \ch{<<=>}
      ←

      \ch{<o>}
      ←
      ←
      ←
```

Pfeilbeschriftungen:

CHEMFORMULA REAKTIONSUMGEBUNGEN

```
\begin{reaction} <Chemformular-Code> \end{reaction}
\begin{reactions} <Chemformular-Codes> \end{reactions}
```

Für beide Umgebungen gibt es jeweils noch eine *-Variante, ohne Zähler. Bei der reactions-Umgebung kann mit & eine Ausrichtung der Gleichungen untereinander erfolgen

Zählerformatierung:

\renewtagform{reaction}[R]{[]{]}

Liste der Reaktionen:

\listofreactions

CHEMFORMULA

BEISPIELE VIII

$$2H_2 + O_2 \longrightarrow 2H_2O$$
 {1}

\renewtagform{reaction}[R]{[]{]}

$$HCI + H_2O \longrightarrow H^+ + CI^-$$
 [R 2]

$$HNO_3 + H_2O \longrightarrow H^+ + NO_3^-$$
 [R 3]

CHEMFIG

- aktuelle Version 1.0G vom 16. November 2012
- benötigt tikz
 - kann direkt PDF erzeugen
 - tikz berechnet Bounding Box

Syntax

```
\chemfig{<Atom1><Bindungstyp>[<Winkel>,<B-Längenkoeff.>,
<n1>,<n2>,<tikz code>]<Atom2>}
```


EINFACHE STRUKTUREN

$$\label{eq:condition} $$ \operatorname{C-C-C-C}$ $$ C \longrightarrow C \longrightarrow C \longrightarrow C$ $$ \chemfig{H_3C-CH_2-CH_2-CH_3}$ $$ H_3C \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_3$ $$ \chemfig{H_3C-{(CH_2)}_2}-CH_3}$ $$ H_3C-(CH_2)_2-CH_3$$$

EINFACHE STRUKTUREN

Richtungsangaben

EINFACHE STRUKTUREN

Winkelangaben

[:Winkel] absoluter Winkel [::Winkel] relativer Winkel

```
\chemfig{-[:30]-[:-30]%
(-[:-90]-[:-30])-[:30]-[:-30]}
```

 $\left[-[::30] - [::-30] \right]$

(-[::-90]-[::-30])-[::30]-[::-30]}

MOLEKÜLE DREHEN

- als erste Angabe im \chemfig -Befehl
- nur absolute Winkel
- keine Auswirkungen auf absolute Winkel innerhalb des Moleküls

```
\chemfig{[:45]-[:30]-[:-30]%
(-[:-90]-[:-30])-[:30]-[:-30]}
\chemfig{[:45]-[::30]-[::-30]%
(-[::-90]-[::-30])-[::30]-[::-30]}
```


BINDUNGEN

Bdg.	Code	Ergebnis	Bindungstyp
1	\chemfig{A-B}	А — В	Einfachbindug
2	$\chemfig{A=B}$	A = B	Doppelbindung
3	$\chemfig{A^B}$	$A \equiv B$	Dreifachbindung
4	$\chemfig{A>B}$	$A \longrightarrow B$	gefüllte Cramb. rechts
5	$\chemfig{A$	$A \longrightarrow B$	gefüllte Cramb. links
6	\chemfig{A>:B}	$A \coprod B$	gepunktete Cramb. rechts
7	\chemfig{A<:B}	A ····IIIB	gepunktete Cramb. links
8	\chemfig{A> B}	$A \triangleright B$	leere Cramb. rechts
9	$\left(A$	$A \triangleleft B$	leere Cramb. links

Bindungslängen werden als zweiter Parameter hinter dem Bindungstyp als Faktor angegeben.

BINDUNGEN

```
\chemfig{C(-[5]H)(-[2]H)(<[:-70]H)(>:[:-20]H)}

H

CM
```

 $\left(A \le B - [1] C - [3, 1.5] D - [, 10] E\right)$

START- UND ENDATOME

Bei mehreren Atomen als dritter Parameter einer Bindung das Startund als vierter Parameter das Endatom angegeben werden.

```
\left[1\right]CDE-[2]F
     CDE
AB
\left[1, 2, 3\right] CDE - [2, 2]F
  CDE
AB
```

VERBINDEN ENTFERNTER ATOME

Atomen können Anker gegeben werden, womit Bindungen zwischen entfernten Atomen möglich sind.

$$\label{lemfig} $$ \left\{ -[:30] = (-[:-90] - [:-30] - [:30]) - [:-30] - [:30] \right\} $$ \left[:-30 \right] = (-[:-90] - [:-30] - [:30]?) - [:-30] - [:30]? \right\} $$$$

\chemfig{A?[a]-B(-[1]W?[a,2,red]-X?[b])(-[7]Y-% Z?[b,1,{line width=2pt}])-C?[b,{>},blue]}

IONEN

```
\left(0^{2-}\right)
O^{2-}
\left( \frac{H_3C-C(=[1]0)-[7]0^{\infty}}{1} \right)
\chemfig{-\chemabove{N}{\oplus}(=[1]0)-[7]\%}
\chembelow{0}{\ominus}}
```

LEWIS-FORMELN

```
\lewis{<n1><n2>...<ni>, <Atom>}
```

<ni> bestehen aus einer Zahl, die die Richtung um das Atom angibt (0 bis

7) und ggf. ., : oder |

$$\label{eq:chemfig} $$ \left(H-\leq (0,0)-S(=[2]\%) \right) (=[6]\leq (57,0)\% -\lewis \{26,0\}-H\} $$$$

$$\left\{4.,N0_2\right\}$$

$$\cdot NO_2$$

RINGE

Allgemeine Syntax:

<Atom>*<n>(<Code>)

\chemfig{*6(-=-=-)}

Aromatische Syntax:

<Atom>**<n>(<Code>)

\chemfig{**6(----)}

\chemfig{0*5(----)}

 $\left\{ \left(N\right) \right\}$

RINGE

Erweiterte aromatische Syntax:

```
<Atom>**[<Startwinkel>,<Endwinkel>,<tikz>]<n>(<Code>)
```

 $\left\{ **[30,330]6(----) \right\}$

 $\ensuremath{\mbox{chemfig}} {**[0,270,dash\ pattern=on\ 2pt\ off\ 2pt]} 4(----)}$

KONDENSIERTE RINGE UND SUBSTITUIERTE RINGE

$$O$$
 H O CH_3 O

$$\left\{ *6(=(-0H)-(-0-[1]CH_3)=-(-(=[3]0)-[1]H)=-) \right\}$$

BEKANNTE SCHWIERIGKEITEN

$$\label{lem:chemfig} $$ \operatorname{A-B*5}(-C-D*5(-X-Y-Z-)-E-F-)$$$$

 $\left(-C-D*5(-X-Y-Z?)-E?-F-\right)$

BEKANNTE SCHWIERIGKEITEN

```
\chemfig{HSi*6(-\chembelow{Si}{H}=SiH-SiH=%\chemabove{Si}{H}-HSi=)}

HSi SiH HSi SiH

HSi SiH HSi SiH

Chemfig{HSi*6(-\chembelow{Si}{H}=SiH-SiH=%\chembove{Si}{H}-HSi=[,,2])}
```


NAMEN

\chemname{<Code>}{<Name>}

```
\chemname{\chemfig{H_3C-N?[a]-[::-30]?[b]-(-[::60]% (=[::60]0)-[::-60]0-[::60]CH_3)-[::-60](<[::-150]-% [::30,1.5,,,line width=3pt]?[a]>[::60]-[::150]?[b])% -[::60]0-[::-60](=[::-60]0)-[::60]*6(-----)}}{Kokain}
```


(S)-N-METHAMPHETAMIN

$$\label{eq:chemfig} $$ \left(-=-(--[:-30](<[2]H)(-[6,,,2]HN\% -[:-30]CH_3) -[:30]CH_3) ==) \right)$$$

Crystal Meth

TETRAHYDROCANNABINOL

```
\chemfig{*6(-(<[::-120]H)(*6(-(-[::-20]H_3C)%
(-[::-70]H_3C)-0-(*6(-=(--[:30]-[:-30]-[:30]-%
[:-30]CH_3)-=(-OH)-=))--(<:[::-120]H)-))--=(-CH_3)--)}
```

$$H_3$$
C H_3 C CH_3

THC

Strukturformeln - Chemfig

(5R,6S,9R,13S,14R)-4,5-Epoxy-N-methylmorphinan-7-en-3,6-diol

```
\setcrambond{3pt}{}{}
\chemfig{*6(?[a]-(*6(-(<[::30]-[::30,,,,%
{line width=3pt}]-[::60,,,,{line width=3pt}]%
N?[b](-[::-60]CH_3))(*6(-(<[::-20]H)(-[::-100,1.1]%
O?[a])-(>:HO)-=--))-(<[2]H)-?[b,{>}]--))=-=-(-OH)=)}
```


Morphin

SIUNITX

ALLGEMEINES

- aktuelle Version: 2.5q vom 11. März 2013
- Darstellung von Zahlen und Einheiten gemäß SI-Vorgabe
- einbinden als:
 - \usepackage{siunitx}

BEFEHLE

Nummern:

\num{123,456}	123,456
\num{2+-i}	$2\pm\mathrm{i}$
\num{.5e3}	$0.5 \cdot 10^{3}$
\num{-20,9}	-20,9

\numlist{10;20;30;40;50} 10, 20, 30, 40 und 50

\numrange{20}{50} 20 bis 50

Winkel:

\ang{10}	10°
$\ag{12,3}$	12,3°
$\ang{1;2;3}$	1°2′3′′
\ang{;;1}	1''
\ang{+10;;}	10°
\ang{-0.1.}	_0°1′

BEFEHLE

Einheiten:

 $\label{eq:sikg.m/s^2} $$ \si{g_{polymer}^mol_{Kat.}.s^{-1}} $$ \si{\kappalo}_{gram}\etre\per\square\second} $$ \kg\ m\ s^{-2} $$$

Zahlen mit Einheit

\SI\{1,23\{\candela\} 1,23 cd \SI\list\{10;40;50\{\metre\} 10 m, 40 m und 50 m \SIrange\{20\{50\}\kilo\metre\} 20 km bis 50 km

BEFEHLE

Zusatz:

\si{\second\squared}	s^2
\si{\square\second}	s^2
\si{\second\cubed}	s^3
\si{\cubic\second}	s^3
\si{\second\tothe{5}}	s^5
\si{\raiseto{4,5}\second}	s ^{4, 5}
\si{\metre\per\second}	${ m ms^{-1}}$
\si{\gram\of{Metall}}	9 _{Metall}

Kürzen und Hervorheben:

\si{\cancel\kilogram\metre\per\cancel\kilogram}
\si{\highlight{red}\kilo\gram\metre\per\second}

kg m kg⁻¹ s⁻¹ kg m s⁻¹

SI-EINHEITEN

Einheit	Befehl	Symbol
Ampere	\ampere	Α
Candela	\candela	cd
Kelvin	\kelvin	K
Kilogramm	\kilogram	kg
Meter	\metre	m
Sekunde	\second	s
Mol	\mole	mol
Prozent	\percent	%

Unit	Macro	Symbol	Unit	Macro	Symbol
becquerel	\becquerel	Bq	newton	\newton	N
degree Celsius	\degreeCelsius	°C	ohm	\ohm	Ω
coulomb	\coulomb	C	pascal	\pascal	Pa
farad	\farad	F	radian	\radian	rad
gray	\gray	Gy	siemens	\siemens	S
hertz	\hertz	Hz	sievert	\sievert	Sv
henry	\henry	Н	steradian	\steradian	sr
joule	\joule	J	tesla	\tesla	T
katal	\katal	kat	volt	\volt	V
lumen	\lumen	lm	watt	\watt	W
lux	\lux	lx	weber	\weber	Wb

Unit	Macro	Symbol
day	\day	d
degree	\degree	0
hectare	\hectare	ha
hour	\hour	h
litre	\litre	1
	\liter	L
minute (plane angle)	\arcminute	1
minute (time)	\minute	min
second (plane angle)	\arcsecond	"
tonne	\tonne	t

Unit	Macro	Symbol
astronomical unit	\astronomicalunit	ua
atomic mass unit	\atomicmassunit	u
bohr	\bohr	a_0
speed of light	\clight	c_0
dalton	\dalton	Da
electron mass	\electronmass	$m_{\rm e}$
electronvolt	\electronvolt	eV
elementary charge	\elementarycharge	e
hartree	\hartree	$E_{\mathbf{h}}$
reduced Planck constant	\planckbar	\hbar

Unit	Macro	Symbol
ångström	\angstrom	Å
bar	\bar	bar
barn	\barn	b
bel	\bel	В
decibel	\decibel	dB
knot	\knot	kn
millimetre of mercury	\mmHg	mmHg
nautical mile	\nauticalmile	M
neper	\neper	Np

SI-VORSILBEN

Prefix	Macro	Symbol	Power	Prefix	Macro	Symbol	Power
yocto	\yocto	y	-24	deca	\deca	da	1
zepto	\zepto	Z	-21	hecto	\hecto	h	2
atto	\atto	a	-18	kilo	\kilo	k	3
femto	\femto	f	-15	mega	\mega	M	6
pico	\pico	p	-12	giga	\giga	G	9
nano	\nano	n	-9	tera	\tera	T	12
micro	\micro	μ	-6	peta	\peta	P	15
milli	\milli	m	-3	exa	\exa	E	18
centi	\centi	С	-2	zetta	\zetta	Z	21
deci	\deci	d	-1	yotta	\yotta	Y	24

ANGABE VON MESSDATEN ALLGEMEINES

- aus dem Paket chemmacros
- unterstützt bei Formatierung
- stellt nützliche Makros und Umgebungen bereit

Angabe von Stoffeigenschaften

NMR

Eigene Abkürzungen:

\DeclareChemNMR\CNMR{13,C}

\CNMR 13 C-NMR: δ

\CNMR*(400) \CNMR*(CDCl3) \CNMR*(CDCl3) \CNMR*(CDCl3)

MESSDATEN-UMGEBUNG

```
\begin{experimental}[Optionen]
  \data{Typ}[Spezifikation]
  \data*{Typ}[Spezifikation]
  \NMR{Masse, Element [Koppelder Kern]}(Frequenz,%
  Einheit)[Lösungsmittel]
  \J[Einheit]{Liste der Kopplungskonstanten}
  \#{Anzahl der Kerne}
  \pos{Nummer des Kerns}
  \val{Zahlenwert}
  \val{Zahlenwert -- Zahlenwert}
  \end{experimental}
```

\end{experimental}

MESSDATEN-UMGEBUNG BEISPIEL

```
\begin{experimental}
  \data*{Ausbeute} \SI{17}{\milli\gram} schwarzes Öl
  (SI\{0.04\}\{\min\min\}, SI\{13\}\{\operatorname{percent}\}).
  \MR(600)[CDC13] \val{2,4} (s, \#{3}, \pos{3}),
  \text{val}\{1,3\}\ (t, \#\{1\}, pos\{1\}), val\{0,8\}\ (m, \#\{3\},\%)
  \pos{2}).
  \data{IR}[KBr] \val{3443} (w), \val{3010} -- 2800} (s).%
  \val{1700} (s).
  \data*{Quantenausbeute} $\Phi = \val{0.74+-0.1}$.
```


MESSDATEN-UMGEBUNG

BEISPIEL I

Ausbeute 17 mg schwarzes Öl (0,04 mmol, 13%). $^1\text{H-NMR}$ (600 MHz, CDCl₃): δ 2,4 (s, 3 H, H-3), 1,3 (t, 1 H, H-1), 0,8 (m, 3 H,H-2). IR (KBr) 3443 (w), 3010 bis 2800 (s),1700 (s). Quantenausbeute $\Phi=0.74(10)$.

MESSDATEN-UMGEBUNG OPTIONEN

unit= Einheit für das NMR, Standard MHz

format= Zur Formatierung, bsp: \bfseries

pos-number= side oder sub

parse= true oder false, wird das Lösungsmittel von chemmacros geparst oder nicht

delta= wird nach δ eingefügt

use-equal= true oder false, Gleichheitszeichen nach \NMR oder

\data einsetzen

MESSDATEN-UMGEBUNG BEISPIEL II

delta=(ppm), pos-number=sub, use-equal=true,
format=\bfseries

Ausbeute: 17 mg schwarzes Öl (0,04 mmol, 13 %). 1 H-NMR (600 MHz, CDCl₃): δ (ppm) = 2,4 (s, 3 H, H₃), 1,3 (t, 1 H, H₁), 0,8 (m, 3 H,H₂). IR (KBr) = 3443 (w), 3010 bis 2800 (s),1700 (s). Quantenausbeute: Φ = 0,74(10).

MESSDATEN-UMGEBUNG

BEISPIEL III

delta=(ppm), use-equal=true, format=\color{red}\itshape

```
Ausbeute: 17 mg schwarzes Öl (0,04 mmol, 13%).  
^{1}H-NMR (600 MHz, CDCl<sub>3</sub>): \delta (ppm) = 2,4 (s, 3 H, H-3), 1,3 (t, 1 H, H-1), 0,8 (m, 3 H,H-2).  
IR (KBr) = 3443 (w), 3010 bis 2800 (s),1700 (s).  
Quantenausbeute: \Phi = 0,74(10).
```

GLOBALLY HARMONIZED SYSTEM

ALLGEMEINES

- Paket ghsystem aus dem Bundle chemmacros
- beinhaltet alle H-, EUH- und P-Sätze auf Englisch, Deutsch und Italienisch
- stellt Piktogramme zur Verfügung

Befehle:

```
\ghs[optionen]{Typ}{Nummer}
\ghspic[optionen]{name}
```


GHS

BEISPILE

\ghs{h}{201} H201: Explosiv, Gefahr der Massenexplo-

sion.

\ghs{euh}{201A} EUH201A: Achtung! Enthält Blei.

\ghs{p}{235} P235: Kühl halten.

\ghs{p}{301+330+331} P301 + P330 + P331: BEI VER

SCHLUCKEN: Mund ausspülen. KEIN Er-

brechen herbeiführen.

GHS PLATZHALTER

Es gibt vier Arten von Platzhaltern, die in den Optionen angegeben und somit gefüllt werden können:

- Expositionsweg exposure=
- Effekt effect=
- Organe organs=
- sensibilisierende Stoffe substance=

GHS PLATZHALTER

 $\ghs[fill-in]{euh}{208}$

EUH208: Enthält < Name des sensibilisierenden Stoffes > . Kann allergische Reaktionen hervorrufen.

\ghs[substance=Freiberger ABC]{euh}{208}

EUH208: Enthält Freiberger ABC. Kann allergische Reaktionen hervorrufen.

GHS LÜCKEN

Es gibt verschiedene Lücken, die in den Optionen angegeben und somit gefüllt werden können:

- unsichtbare Lücken, die einem Doppelpunkt folgen text=
- Lücken, die durch ... angezeigt werden dots=
- fehlende Temperaturen C-temperature= und F-temperature=
- fehlende Massen kg-mass= und 1bs-mass=

GHS LÜCKEN

```
\ghs{p}{301}
```

P301: BEI VERSCHLUCKEN:

\ghs[text=Arzt hinzuziehen.]{p}{301} P301: BEI VERSCHLUCKEN: Arzt hinzuziehen

 $\ghs{p}{401}$

P401: ... aufbewahren.

\ghs[dots=Unter Schutzgas]{p}{401}

P401: Unter Schutzgas aufbewahren.

GHS LÜCKEN

 $\ghs{p}{413}$

P413: Schüttgut in Mengen von mehr als kg bei Temperaturen von nicht mehr als °C aufbewahren.

```
\ghs[kg-mass=5.0, lbs-mass=11,%
C-temperature=50, F-temperature=122]{p}{413}
```

P413: Schüttgut in Mengen von mehr als 5,0 kg bei Temperaturen von nicht mehr als 50°C aufbewahren.

Angabe von Stoffeigenschaften

GHS GEFAHRENSYMBOLE

\ghspic{skull}

\ghspic[scale=2]{skull}

\ghspic[includegraphics={angle=90}]{skull}

GHS GEFAHRENSYMBOLE

GNUPLOTTEX

ALLGEMEINES

- aktuelle Version: 0.5 vom 3. Juni 2013
- benutzt gnuplot um Diagramme zu zeichnen
- gnuplot: openSource komandozeilengesteuerter
 Funktionsploter zur Darstellung wissenschaftlicher Daten
- benötigt -shell-escape=enable beim kompilieren
- einbinden als:
 - \usepackage{gnuplottex}
- Alternative wäre pgfplots

BEFEHLE

Direkt alle Befehle im <u>LTEX-Dokument</u>:

Skripte einbinden:

```
\gnuplotloadfile[terminal=pdf]{example.gnuplot}
```


GNUPLOT – DIE WICHTIGSTEN BEFEHLE

plot Ausgabe des Diagramms

fit fitten von Messdaten über Funktionen

set xrange dargestellten Definitionsbereich definieren

set yrange dargestellten Wertebereich festlegen

set xlabel Beschriftung der X-Achse set ylabel Beschriftung der Y-Achse

set grid Raster anzeigen set key Legende erstellen

set label Text im Diagramm erzeugen set arrow Pfeile und Linien zeichnen

BEISPIEL

```
\begin{gnuplot}[terminal=epslatex,%
terminaloptions=solid color]
set size 0.9,0.7
set xrange [4000:400]
set ylabel "Transmission in \\%"
set xlabel "Wellenzahl in \\si{\\per\\centi\\metre}"
set arrow from 1495,42 to 1495,32 nohead
set label "\\rotatebox{90}{1495}" at 1550,22
plot "MH-01b.csv" with lines title %
"Dibenzylaminodimethylsilan"
\end{gnuplot}
```


BEISPIEL

Vordefinierte Befehle:

\Hpl	H ⁺	\Hyd	OH
\HtO	H_3O^+	\water	H_2
\el	e ⁻	\prt	p [∓]
\ntr	n^0	\Nu	Nυ
\E1	E^+	\ba	ba¯
\fplus	\oplus	\fminus	\ominus
\transitionstatesymbol	#	\standardstate	0
\Chemalpha	α	\Chembeta	β
\Chemgamma	γ	\Chemdelta	δ
\Chemepsilon	ε	\Chemeta	η
\Chemkappa	K	\Chemmu	μ
\Chemnu	ν	\Chemrho	ρ
\Chempi	π	\Chemsigma	σ
\Chemomega	w	\ChemDelta	Δ

IUPAC-Namen können sehr lang werden. Daher stellt Chemmacros den Befehl \iupac{} zur Verfügung. Dabei zählt \| als potenzielle Trennstelle, \- als Bindestrich und \^ kann zum hochstellen genutzt werden. Weitere Befehle nur innerhalb von \iupac{} sind:

griechische Buchstaben: (benötigt Paket upgreek)

\a	α	\b	β
\g	γ	\d	δ
\k	K	$\mbox{\em m}$	μ
\n	η	\w	w

Heteroatome:

\H	Н	\0	0
\N	Ν	\Sf	S
\P	Р		

Cahn-Ingold-Prelog:

 \R (R) \S (S) \cip{R,S} (R,S)

Absolute Konfiguration:

\Rconf (R) \Sconf (S) \Rconf[] (S)

Fischer:

cis/trans...:

\tert fert

ortho, meta, para:

\ortho o \meta m

\para p

Koordinations-Chemie:

\bridge{3} μ_3 - \hapto{5} η^5 -

Weiterhin gibt es auch außerhalb des \iupac{}-Befehls:

Lateinische Ausdrücke:

\insitu in situ \abinitio ab initio

\invacuo in vacuo

Neue Einheiten für Slunitx:

\si{\atmosphere}	atm	$\si{\Delta m}$	atm
\si{\calory}	cal	$si{cal}$	cal
$\si\{\cmc\}$	cm ³	\si{\molar}	$ m moldm^{-3}$
\si{\moLar}	$molL^{-1}$	\si{\Molar}	M
$\si{\MolMass}$	$gmol^{-1}$	\si{\normal}	Ν
\si{\torr}	torr		

Säuren und Basen:

\pH	рН	\pOH	рОН
\Ka	$K_{ m S}$	\Kb	K_{B}
\Kw	$K_{ m W}$	$p{Kw}$	р $K_{ m W}$
\pKa[1]	р $K_{ m S1}$	\pKb[1]	р $K_{ m B1}$

Ionenladungen:

Na\pch N α^+ Ca\pch[2] C α^{2+} F\mch F $^-$ S\mch[2] S $^{2-}$

Formalladungen:

\fpch $\stackrel{\oplus}{\ominus}$ \fpch[4] $^{4\oplus}$ \fmch[3] $^{3\ominus}$

Oxidationszahlen:

Partialladungen und Ähnliches:

Gutes Zusammenspiel mit chemfig:

```
\stackrel{\delta-}{\operatorname{Br}} \stackrel{\delta+}{\operatorname{H}}
```


Reaktionsmechanismen:

\mech	S_N
$\mbox{mech[1]}$	$S_N 1$
$\mathrm{mech}[2]$	$S_N 2$
\mech[se]	S_{E}
\mech[1e]	$S_E 1$
\mech[2e]	$S_E 2$
\mech[ar]	$Ar-S_E$
\mech[e]	Е
\mech[e1]	E1
\mech[e2]	E2
\mech[cb]	E1 _{cb}

REDOXREAKTIONEN

```
\ch{ 2 "\OX{o1,\ox{0,Na}}" + "\OX{r1,\ox{0,Cl}}"%
{}2 -> 2 "\OX{o2,\ox{+1,Na}}"%
\pch{} + 2 "\OX{r2,\ox{-1,Cl}}" \mch }
\redox(o1,o2)[draw=red,->]{\small OX: $- 2\el$}
\redox(r1,r2)[draw=blue,->][-1]{\small RED: $+ 2\el$}
\OX: -2e^-
2 \Na + \Cl_2 \rightarrow 2 \Na^+ + 2 \Cl^-
\RFD: +2e^-
```


THERMODYNAMIK

Thermodynamische Größen:

\Enthalpy{123}	$\Delta H^{\scriptscriptstyle \oplus} = 123\mathrm{kJ}\mathrm{mol}^{-1}$
\Enthalpy(R){123}	$\Delta_{R} H^{\circ} = 123kJmol^{-1}$
\Enthalpy[unit=\kilo\joule]{123}	$\Delta H^{\circ} = 123\mathrm{kJ}$
\Entropy{123}	$S^{\circ} = 123{ m JK^{-1}mol^{-1}}$
\Entropy[delta=\Delta, exponent=]{123}	$\Delta S = 123{ m JK^{-1}mol^{-1}}$
\Gibbs{123}	$\Delta G^{\scriptscriptstyle \oplus} = 123\mathrm{kJ}\mathrm{mol}^{-1}$
\Gibbs[delta=false]{123}	$G^{\circ}=$ 123 kJ mol $^{-1}$

Zustandsgrößen:

\State{A}	$\Delta A^{\scriptscriptstyle \oplus}$
\State{G}{f}	$\Delta_{f}G^{\scriptscriptstyle{\oplus}}$
\State[subscript-left=false]{E}{\ch{Na}}	$\Delta E_{Na}^{\scriptscriptstyle{\hspace{1pt}\ominus}}$
\State[exponent=\SI{1000}{\celsius}]{H}	ΔH^{1000} °C

BIBLATEX-STIL BIBLATEX-CHEM

- aktuelle Version: 1.1k vom 11. Februar 2013
- beinhaltet den Zitierstil verschiedener Zeitschriften, z.B.
 - Angewandte Chemie
 - Biochemestry
 - Chemical Communications
 - Chemistry A European Journal
 - Dalton Transactions
 - JACS
 - Organic & Biomolecular Chemistry