

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования «Самарский государственный технический университет»

В. А. Осянин Ю. Н. Климочкин

ОКИСЛЕНИЕ

Практикум

УДК 547.057

Окисление: Практикум / В.А. Осянин, Ю.Н. Климочкин; Самар. гос. техн. ун-т. Самара, 2006. 90с.

Рассмотрены методы окисления различных классов органических соединений. Обсуждается механизм большинства реакций окисления. Представлены характеристики основных окислителей, используемых в органическом синтезе. Приводятся методики окисления спиртов, фенолов, альдегидов, кетонов и ароматических углеводородов.

Для студентов химико-технологических и химических специальностей. SBN 5-7964-0720-1

Библиогр.: 11 назв.

Печатается по решению редакционно-издательского совета Самарского государствен-ного технического университета

Рецензент: канд. хим. наук А. В. Зимичев

ISBN 5-7964-

[©] В. А. Осянин, Ю. Н. Климочкин, 2006

[©] Самарский государственный технический университет, 2006

ОГЛАВЛЕНИЕ

Введение	4
1. Характеристика некоторых окислителей	5
2. Окисление алканов и циклоалканов	11
3. Окисление алкенов	14
3.1. синтез эпоксидов	14
3.2. Вакер-процесс	16
3.3. синтез вицинальных диолов	16
3.4. окисление с расщеплением углеродного скелета по двойной	18
связи. Озонирование	
3.5. аллильное окисление алкенов	21
4. Окисление алкинов	22
5. Окисление ароматического кольца	22
5.1. гидроксилирование аренов	23
5.2. синтез хинонов	24
5.3. окислительное расщепление аренов	27
5.4. окисление боковых цепей в ароматических соединениях	28
5.5. окислительное сочетание фенолов	32
5.6. окисление одноатомных фенолов в двухатомные	34
6. Окисление галогенпроизводных углеводородов	34
7. Окисление одноатомных спиртов	36
8. Расщепление α-гликолей и родственных соединений	42
9. Окисление альдегидов	44
10. Окисление кетонов	47
11. Окисление карбоновых кислот	53
12. Окисление простых эфиров	56
13. Окисление эпоксидов	57
14. Окисление серосодержащих соединений	58
14.1. окисление тиолов	58
14.2. окисление сульфидов	58
15. Окисление азотсодержащих соединений	60
15.1. окисление аминов	60
15.2. окисление гидразинов, гидразонов, оксимов, гидроксиламинов	63
и азобензолов	
16. Приготовление некоторых окислителей	66
17. Экспериментальная часть	69
18. Вопросы и упражнения для самоконтроля	85
Библиографический список	88

ВВЕДЕНИЕ

Под *окислением* в органической химии понимают процессы, приводящие к обеднению соединения водородом или обогащению его кислородом. При этом происходит отнятие от молекулы электронов. Соответственно, под *восстановлением* понимают отрыв от органической молекулы кислорода или присоединение к ней водорода.

В окислительно-восстановительных реакциях *окислителями* являются соединения, обладающие большим сродством к электрону (электрофилы), а *восстановителями* — соединения, имеющие склонность к отдаче электронов (нуклеофилы). Легкость окисления соединения возрастает вместе с ростом его нуклеофильности.

При окислении органических соединений, как правило, полной передачи электронов и соответственно изменения валентности атомов углерода не происходит. Поэтому понятие *степени окисления* — условного заряда атома в молекуле, вычисленного, исходя из предположения, что молекула состоит только из ионов — носит лишь условный, формальный характер.

При составлении уравнений окислительно-восстановительных реакций необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов. Как правило, коэффициенты подбирают, используя метод электронно-ионного баланса (метод полуреакций).

В этом методе рассматривают переход электронов от одних атомов или ионов к другим с учетом характера среды (кислая, щелочная или нейтральная), в которой протекает реакция. Для уравнивания числа атомов кислорода и водорода вводят или молекулы воды и протоны (если среда кислая), или молекулы воды и гидроксид-ионы (если среда щелочная).

Таким образом, при написании полуреакций восстановления и окисления нужно исходить из состава ионов, действительно имеющихся в растворе. Вещества малодиссоциирующие, плохо растворимые или выделяющиеся в виде газа следует писать в молекулярной форме.

В качестве примера рассмотрим процесс окисления этилена разбавленным водным раствором перманганата калия. В ходе данной реакции этилен окисляется до этиленгликоля, а перманганат калия восстанавливается до диоксида марганца:

$$C_2H_4 + KMnO_4 \rightarrow C_2H_6O_2 + MnO_2$$

Полуреакция восстановления: $MnO_4^- + 2H_2O + 3e \rightarrow MnO_2 + 4OH^-$ Полуреакция окисления: $C_2H_4 + 2OH^- - 2e \rightarrow C_2H_6O_2$ ЗОкончательно имеем в ионном виде:

$$2MnO_4 + 4H_2O + 3C_2H_4 + 6OH \rightarrow 2MnO_2 + 8OH + 3C_2H_6O_2$$

После проведения необходимых сокращений подобных членов, записываем уравнение в молекулярном виде:

$$3C_2H_4 + 2KMnO_4 + 4H_2O = 3C_2H_6O_2 + 2MnO_2 + 2KOH.$$

1. ХАРАКТЕРИСТИКА НЕКОТОРЫХ ОКИСЛИТЕЛЕЙ

Кислород

Кислород воздуха находит широкое применение в технологических процессах, так как является наиболее дешевым окислителем. Но окисление кислородом воздуха сопряжено с трудностями, связанными с контролем процесса, который протекает в различных направлениях. Окисление обычно проводят при высокой температуре в присутствии катализаторов.

Озон

Озон O_3 применяют для получения альдегидов и кетонов, если их затруднительно получить другими способами. Чаще всего озон применяют для установления структуры ненасыщенных соединений. Получают озон при действии тихого электрического разряда на кислород.

Перманганат калия

Перманганат калия — наиболее часто применяемый окислитель. Реактив растворим в воде (6.0% при 20°С), а также в метаноле, ацетоне и уксусной кислоте. Для окисления применяют водные (иногда ацетоновые) растворы КМпО₄ в нейтральной, кислой или щелочной среде. При проведении процесса в нейтральной среде в реакционную массу добавляют соли магния, алюминия или пропускают углекислый газ для нейтрализации выделяющегося во время реакции гидроксида калия. Реакцию окисления КМпО₄ в кислой среде чаще всего ведут в присутствии серной кислоты. Щелочную среду при окислении создает образующийся во время реакции КОН, либо его изначально добавляют в реакционную массу. В слабощелочной и нейтральной средах КМпО₄ окисляет по уравнению:

$$KMnO_4 + 3e + 2H_2O = K^+ + MnO_2 + 4OH^-$$

в кислой среде:

$$KMnO_4 + 5e + 8H^+ = K^+ + Mn^{2+} + 4H_2O$$

Перманганат калия используется для получения 1,2-диолов из алкенов, при окислении первичных спиртов, альдегидов и алкиларенов до карбоновых кислот, а также для окислительного расщепления углеродного скелета по кратным связям.

На практике обычно используется довольно большой избыток (более чем 100%) КМпО₄. Это объясняется тем, что в обычных условиях КМпО₄ частично разлагается на диокид марганца с выделением О₂. Раствор КМпО₄ в 0.08 М серной кислоте разлагается в 20 раз быстрее, чем нейтральный раствор. Однако щелочная среда, как и

присутствие диоксида марганца, также ускоряет распад.

Окислители на основе Cr(VI)

Наиболее часто используется оксид хрома (VI) и хромовая смесь. Смесь, состоящая из 1 моля дихромата, 4 молей серной кислоты и соответствующего количества воды, называется хромовой смесью Бекмана (из $K_2Cr_2O_7$) или Килиани (из $Na_2Cr_2O_7$). Окисление проводят как на холоду, так и при повышенной температуре. Окрашивание реакционной массы в зеленый цвет (Cr^{3+}) указывает на окончание реакции. 100 г хромовой смеси Бекмана (состоящей из 60 г $K_2Cr_2O_7$, 80 г конц. H_2SO_4 и 270 г воды) соответствует 2.4 г активного кислорода. Окисление дихроматами в кислой среде протекает согласно уравнению:

$$Cr_2O_7^{2-} + 14H^+ + 6e = 2Cr^{3+} + 7H_2O$$

Окисление соединениями Cr(VI) используют для синтеза ароматических кислот из соответствующих алкилбензолов, хинонов из анилинов, дигидроксибензолов, нафталинов и антраценов, карбоновых кислот из первичных спиртов и кетонов из вторичных.

Азотная кислота

Азотная кислота представляет собой бесцветную жидкость с плотностью 1.526 г/см³ при 15°С, т. пл. -42°С, т. кип. 83.8°С. При перегонке обычной продажной кислоты вначале отгоняется вода, а при 120.5°С отгоняется азеотроп (пл. 1.40), содержащий около 70% HNO₃. Усиление окисляющего действия азотной кислоты достигается прибавлением катализаторов (солей железа, ртути, солей молибденовой и ванадиевой кислот, нитритов). Окисление обычно проводят в растворителях, инертных к действию HNO₃, например, хлорбензоле, нитробензоле, дихлорметане и др. При использовании азотной кислоты необходимо иметь в виду, что наряду с реакцией окисления может иметь место и реакция нитрования.

Концентрированную (65-95%-ную) азотную кислоту применяют для окислительного расщепления кратных углерод-углеродных связей, получения соответствующих карбоновых кислот из альдегидов и первичных спиртов, синтеза двухосновных кислот из алициклических спиртов и кетонов.

Разбавленную (10-25%-ную) азотную кислоту используют при окислении метиленовой группы в диарилметанах в карбонильную, при окислении альдегидной или первичной спиртовой группы в моносахаридах в карбоксильную, превращении бензиловых спиртов в соответствующие кислоты ароматического ряда и др.

Гипохлориты, хлораты и броматы

Окисление гипохлоритами проводят обычно в щелочной среде. Раствор гипохлорита натрия приготовляют насыщением раствора NaOH хлором при 0°С или из продажного гипохлорита кальция:

$$Ca(ClO)_2 + Na_2CO_3 \rightarrow CaCO_3 \downarrow + 2 NaClO$$

Окисление происходит за счет выделяющегося атома кислорода:

$$NaOCl = NaCl + [O]$$

Из хлоратов наиболее часто используют соли натрия или калия в нейтральных или слабокислых растворах. Окисляемое вещество в виде раствора (например, в уксусной кислоте) или в виде взвеси в воде нагревают с водным раствором окислителя до температуры немного выше 40°C. В некоторых случаях окисление ведут в присутствии катализаторов (соли Cu, Fe, Cr, V, Ce, Os, Ru).

Из соединений брома в качестве окислителя часто используется бромат калия KBrO₃, например, при синтезе хинонов из двухатомных фенолов.

Персульфаты

При окислении в нейтральной среде взвесь окисляемого вещества в водном растворе персульфата нагревают до кипения при перемешивании. При окислении в щелочной среде персульфат добавляют к щелочному раствору окисляемого вещества. При окислении в кислой среде персульфат добавляют к раствору окисляемого вещества в кислоте в присутствии каталитических количеств солей серебра.

В качестве окислителей чаще всего используют персульфаты калия, натрия и аммония. Пероксодисульфат калия $K_2S_2O_8$ при температуре около 100° С начинает разлагаться с выделением кислорода, растворим в воде (5.03% при 20° С).

Кислота Каро

Кислота Каро H_2SO_5 (мононадсерная кислота) получается действием серной кислоты на персульфат калия или натрия при $0^{\circ}C$:

$$K_2S_2O_8 + H_2SO_4 + H_2O = H_2SO_5 + 2 KHSO_4$$

Водный раствор кислоты постепенно гидролизуется с образованием серной кислоты и пероксида водорода; раствор кислоты Каро в конц. серной кислоте также постепенно разлагается с выделением O_2 и O_3 .

Мононадсерную кислоту применяют для избирательного окисления ароматических аминов в нитрозосоединения, а также для окисления кетонов в сложные эфиры.

Надкислоты

Перуксусную и пермуравьиную кислоты получают реакцией 25-90%-ного пероксида водорода с соответствующей карбоновой кислотой по следующей реакции:

$$RCOOH + H_2O_2 = RCOOOH + H_2O$$

В случае уксусной кислоты это равновесие устанавливается относительно медленно, и для ускорения образования перкислоты обычно в качестве катализатора добавляют серную кислоту. Муравьиная кислота достаточно сильна сама по себе для того, чтобы обеспечить быстрое установление равновесия.

Пертрифторуксусная кислота, получаемая в смеси с трифторуксусной кислотой реакцией трифторуксусного ангидрида с 90%-ным пероксидом водорода, еще более сильный окислитель. Аналогичным образом из уксусного ангидрида и пероксида водорода можно получить перуксусную кислоту.

Особой популярностью пользуется твердая *м*-хлорпербензойная кислота, поскольку она относительно безопасна в обращении, достаточно стабильна и может храниться длительное время.

Окисление происходит за счет выделяющегося атома кислорода:

$$RCOOOH = RCOOH + [O]$$

Надкислоты применяют для получения эпоксидов из алкенов, а также лактонов из алициклических кетонов.

Тетраацетат свинца

Тетраацетат свинца получается при нагревании свинцового сурика в уксусной кислоте по уравнению:

$$Pb_3O_4 + 8CH_3COOH = Pb(CH_3COO)_4 + 2Pb(CH_3COO)_2$$

В процессе окисления тетраацетат свинца отщепляет две ацетоксигруппы:

$$Pb(CH_3COO)_4 + 2e = Pb(CH_3COO)_2 + 2 CH_3COO$$

Окисление проводят в растворе уксусной кислоты или в виде взвеси в бензоле.

Тетраацетат свинца применяют для окислительного расщепления α-гликолей в карбонильные соединения, а также для окисления по бензильному положению.

Иодная кислота и ее соли

 ${
m HIO_4\cdot 2H_2O}$ представляет собой бесцветные сильно гигроскопичные кристаллы, хорошо растворимые в воде, растворимые в этаноле и мало растворимые в диэтиловом эфире. Выше температуры плавления ($122^{\rm o}$ C) кислота разлагается. Водный раствор на воздухе желтеет и сильно пахнет озоном. Окисление обычно ведут в водных растворах или в растворе метанола, диоксана или уксусной кислоты.

Иодную кислоту, а также ее соли периодат калия KIO₄ и натрия NaIO₄ применяют в основном для окисления 1,2-диолов в соответствующие карбонильные соединения.

Диоксид селена

 SeO_2 представляет собой белое кристаллической вещество; на воздухе, соприкасаясь с пылью, окрашивается в красноватый цвет вследствие восстановления до металлического селена, гигроскопичен, выше 300° С возгоняется. Диоксид селена обладает избирательностью окислительного действия. SeO_2 растворим в органических растворителях и окисление проводят обычно в водном спирте или водном диоксане.

$$SeO_2 = Se + 2[O]$$

Окисление сопровождается выделением из реакционной массы красноватого осадка селена.

Диоксид селена избирательно окисляет активированные метильные и метиленовые группы, находящиеся по соседству с карбонильной группой или двойной связью.

Пероксид водорода

Пероксид водорода – бесцветная жидкость, смешивается с водой, этанолом и

диэтиловым эфиром. 30%-ный раствор H_2O_2 называется пергидролем. Высококонцентрированный препарат может реагировать с органическими веществами со взрывом. При хранении разлагается на кислород и воду. Стойкость пероксида водорода возрастает с разбавлением. Для окисления применяют водные растворы различной концентрации (от 3 до 90%) в нейтральной, кислой или щелочной средах.

$$H_2O_2 = H_2O + [O]$$

Действием этого реагента на α , β -непредельные карбонильные соединения в щелочной среде получают соответствующие эпоксиальдегиды и кетоны, окислением карбоновых кислот в кислой среде синтезируют надкислоты. 30%-ный раствор H_2O_2 в уксусной кислоте окисляет алкены в 1,2-диолы.

Оксид серебра

Оксид серебра (I) получают из нитрата серебра и раствора гидроксида натрия, выделившийся осадок часто затем растворяют в избытке аммиака и получают аммиачный комплекс $[Ag(NH_3)_2]OH$, растворимый в воде (реактив Толленса). Аммиачный раствор оксида серебра нельзя долго хранить, так как при стоянии образуется взрывчатый нитрид серебра Ag_3N . Окисление протекает по схеме:

$$Ag_2O = 2 Ag + [O]$$

Раствор, приготовленный из 12 г AgNO $_3$, 20 г NaOH и 52 мл 25%-ного аммиака, соответствует 0.564 г активного кислорода.

Оксид серебра применяют для превращения в соответствующие карбоновые кислоты альдегидов, содержащих помимо карбонильных другие чувствительные к окислению группировки, а также для получения хинонов из многоатомных фенолов.

Диоксид свинца

Диоксид свинца PbO₂ получают непосредственно перед применением действием хлорной извести на нитрат или ацетат свинца (II):

$$Pb(NO_3)_2 + CaOCl_2 + H_2O = PbO_2 + 2 HNO_3 + CaCl_2$$

Окисление проводят в слабокислой среде.

Ароматические амины и двухатомные фенолы окисляются диоксидом свинца в соответствующие хиноны. Чаще всего реагент используют для окисления в бензиловые спирты ди- и триарилметанов.

Диоксид марганца

Диоксид марганца MnO_2 представляет собой порошок черного цвета нерастворимый в воде. Используется в основном для селективного окисления аллиловых и пропаргиловых спиртов в альдегиды и кетоны в нейтральной среде, а также в реакциях дегидрирования и окисления азотсодержащих соединений.

Тетраоксиды рутения и осмия

Тетраоксид осмия OsO_4 — порошок от белого до бледно-желтого цвета с т. пл. 40.6°C; т. кип. 131.2°C. Возгоняется уже при комнатной температуре, растворим в воде

 $(7.47\ \Gamma\ B\ 100\ MЛ\ при\ 25°C),\ CCl_4\ (250\ \Gamma\ B\ 100\ \Gamma\ растворителя при\ 20°C).\ B\ присутствии органических соединений чернеет вследствие восстановления до <math>OsO_2$.

 RuO_4 представляет собой золотисто-желтые призмы с т. пл. 25.4°C, заметно возгоняется при комнатной температуре. Умеренно растворим в воде (2.03 г в 100 мл при 20°C), очень хорошо растворим в CCl_4 . Более сильный окислитель, чем OsO_4 . Выше 100°C взрывается. Как и тетраоксид осмия обладает большой токсичностью и высокой стоимостью.

Данные окислители применяются для окисления алкенов в α-гликоли в мягких условиях.

Нитрат аммония-церия (IV)

 $(NH_4)_2[Ce(NO_3)_6]$ представляет собой оранжево-красные кристаллы, хорошо растворимые в воде (58.5% при 25°C) и этаноле. Используется для окисления замещенных толуолов в бензальдегиды.

Диметилсульфоксид (ДМСО)

Диметилсульфоксид ($\mathrm{CH_3}$)₂ SO — бесцветная гигроскопичная жидкость с т. пл. 18.5°C и т. кип. 189°C. При кипячении при атмосферном давлении постепенно диспропорционирует на диметилсульфид и диметилсульфон, поэтому перегоняют его в вакууме.

ДМСО (в комбинации с различными электрофильными агентами) широко используется для окисления спиртов, алкилгалогенидов, оксиранов и др.

Диоксираны

Наиболее часто используются диметилдиоксиран и метил(трифторметил)-диоксиран.

$$H_3C$$
 CH_3
 H_3C
 CF_3
 $O-O$

Диоксираны чаще всего получают *in situ* из соответствующих кетонов и KHSO₅ (или K_2SO_4 · KHSO₄· 2KHSO₅ (оксона)) в слабощелочной среде:

Диоксираны отличаются высокой реакционной способностью, сочетающейся с хорошей селективностью, и используются для окисления неактивированных С–Н-связей в алканах, при получении эпоксидов из алкенов, для окисления аминов, оксимов, сульфидов, сульфоксидов и др.

Помимо вышеперечисленных окислителей в органическом синтезе используется и

ряд других соединений: молекулярная сера, селен, хлоранил (2,3,5,6-тетрахлор-1,4-бензохинон), 2,3-дихлор-5,6-дициано-1,4-бензохинон (в реакциях дегидрирования), пероксид никеля NiO_2 , пероксид калия K_2O_2 , пербораты, галогены, N-бромсукцинимид (NBS), соли ртути (II), меди (II) и железа (III), ацетат и нитрат таллия (III), висмутат натрия $NaBiO_3$, $Mn(CH_3COO)_3$, Ag_2CO_3 на целите и др.

2. ОКИСЛЕНИЕ АЛКАНОВ И ЦИКЛОАЛКАНОВ

Окисление алканов и циклоалканов протекает по радикальному механизму. Окисление проводят молекулярным кислородом в присутствии различных катализаторов (соли Mn, Co, Cr, Fe, V_2O_5 и др.). Первичными продуктами окисления являются гидропероксиды ROOH. Взаимодействие кислорода с молекулой алкана происходит по всем возможным направлениям, но преимущественно затрагивается третичный атом углерода. Окисление протекает по схеме:

Инициирование:
$$RH + \bullet O - O \bullet \xrightarrow{Kt} R \bullet + HOO \bullet$$
 $R \bullet + \bullet O - O \bullet \xrightarrow{ROO} ROO \bullet$ $ROO \bullet + R'H \xrightarrow{R} ROOH + R'\bullet$ Обрыв цепи: $R \bullet + R' \bullet \xrightarrow{R} R - R'$ $R' \bullet + ROO \bullet \xrightarrow{ROO} R'OOR$ $R \bullet + R'OO \bullet \xrightarrow{ROO} R'OOR$

В условиях проведения процесса окисления гидропероксиды обычно подвергаются разложению, причем первоначально происходит разрыв наиболее слабой связи О—О.

Разложение третичных гидропероксидов сопровождается отщеплением одного из радикалов и образованием кетонов:

$$R \xrightarrow{R} O \cdot \longrightarrow R \xrightarrow{R} O + R \cdot$$

Разложение вторичных гидропероксидов зависит от температурных условий. При низкой температуре образуется смесь альдегида и кетона:

$$\begin{array}{c}
R \\
R \\
H
\end{array}$$

$$\begin{array}{c}
R \\
R
\end{array}$$

при высокой температуре основными продуктами являются альдегиды:

$$R \xrightarrow{R} O \cdot \longrightarrow R \longrightarrow H O + R \cdot$$

Первичные гидропероксиды дают при разложении смесь альдегидов:

$$\begin{array}{c}
R \\
H \\
H
\end{array} O \cdot \begin{array}{c}
R \\
H
\end{array} O + H \cdot \\
H \\
O + R \cdot \\
H
\end{array}$$

Кроме карбонильных соединений при разложении гидропероксидов образуются и спирты в результате отрыва атома водорода от молекулы алкана алкоксидным радикалом:

Образующиеся карбонильные соединения и спирты могут далее окисляться до карбоновых кислот.

Природные газы и низкокипящие фракции нефти при окислении под большим давлением (10-20 МПа) в присутствии металлических катализаторов и температуре 390-400°С дают метанол в качестве главного продукта реакции:

$$CH_4 + O_2 \rightarrow CH_3OH$$

Бутан окисляют в уксусную кислоту кислородом воздуха в присутствии ацетата кобальта (II), выход уксусной кислоты составляет 50%:

$$2 \text{ CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3} + 5 \text{ O}_{2} \xrightarrow{\text{Co(OAc)}_{2}} 4 \text{ CH}_{3}\text{COOH} + 2 \text{ H}_{2}\text{O}$$

В промышленности также используют и окисление высших алканов кислородом воздуха при 100-150°С в присутствии ацетата марганца как катализатора. Окисление происходит при продувании тока воздуха через расплавленный парафин, содержащий соль марганца. В результате разрыва углерод-углеродной связи образуется сложная смесь кислот с нормальной цепью:

$$RCH_2CH_2R'$$
 $\xrightarrow{O_2}$ $RCOOH + R'COOH$

Кислоты отделяют от непрореагировавшего парафина растворением в водной щелочи с последующей нейтрализацией минеральной кислотой.

Циклоалканы окисляются в основном подобно алканам. Так, например, превращение циклогексана в циклогексилгидропероксид под действием кислорода в присутствии солей кобальта происходит по радикальному механизму, где роль инициатора цепного процесса выполняет кислород:

$$C_6H_{12} \xrightarrow{-H^{\bullet}} C_6H_{11} \xrightarrow{O_2} C_6H_{11}OO^{\bullet} \xrightarrow{C_6H_{12}}$$

$$\longrightarrow C_6H_{11}OOH + C_6H_{11}...$$

Образующийся из гидропероксида под действием соли кобальта (II) алкоксильный радикал далее превращается в циклогексанол:

или циклогексанон:

Возможны, однако, и другие реакции с участием алкоксильного радикала, например β-распад, сопровождающийся раскрытием шестичленного цикла:

Циклогексанол и циклогексанон могут также подвергаться дальнейшему окислению с раскрытием цикла и образованием, в частности, адипиновой кислоты.

С помощью диоксиранов алканы и циклоалканы могут быть селективно окислены по третичному атому углерода с образованием спиртов:

$$H_3C$$
 CH_3
 CH_3

Первичные и вторичные неактивированные С–H-связи алканов также могут подвергаться окислению по действием диоксирана в присутствии трифторуксусного ангидрида.

3. ОКИСЛЕНИЕ АЛКЕНОВ

3.1. СИНТЕЗ ЭПОКСИДОВ

Под действием перкислот (перуксусной, пермуравьиной, *м*-хлорпербензойной, пертрифторуксусной и др.) алкены окисляются в α -окиси, или оксираны (*реакция Прилежаева*). Электронодонорные заместители при двойной связи облегчают протекание реакции. Процесс окисления протекает стереоспецифично, и α -окись сохраняет ту же конфигурацию, что и исходный алкен.

Процесс носит синхронный, согласованный характер и протекает по схеме:

Альтернативный метод эпоксидирования заключается во взаимодействии алкена с нитрилом и 90%-ным пероксидом водорода:

$$RC\equiv N + H_2O_2 \longrightarrow R \longrightarrow O-OH$$
 перимидокислота

 $R^1 \longrightarrow R \longrightarrow R^1CH-CH_2 + R \longrightarrow NH_2O-OH$

Окись этилена получают прямым окислением этилена кислородом воздуха в присутствии серебра, нанесенного на оксид алюминия или карбид кремния:

$$H_2C = CH_2 + O_2 \xrightarrow{250-300^{\circ}C} \xrightarrow{Ag/Al_2O_3} \xrightarrow{H_2C - CH_2}$$

Окись этилена легко отделяется от этилена при растворении в воде с последующей перегонкой.

Все попытки получения окиси пропилена прямым окислением пропилена кислородом на серебряном катализаторе были безуспешны, поскольку окислению подвергались С-Н-связи метильной группы в аллильном положении к двойной связи. В результате был разработан альтернативный промышленный метод синтеза окиси пропилена, известный под названием *халкон-процесса*. В халкон-процессе пропилен окисляется до его оксида под действием *трет*-бутилгидропероксида. Необходимый гидропероксид образуется в результате окисления изобутана в жидкой фазе кислородом при 120-150°С и давлении 3 МПа. Далее он реагирует с пропиленом в жидкой фазе при 120-140°С и давлении 3.5 МПа в присутствии солей молибдена как катализатора.

$$(CH_3)_3$$
CH $\xrightarrow{O_2}$ $(CH_3)_3$ COOH $\xrightarrow{120-140^{\circ}C}$ CH_3 CH $\xrightarrow{CH_3}$ CH

Выход окиси пропилена в расчете на пропилен составляет 90%.

Эпоксиды могут быть получены с высоким выходом при действии на алкены

диоксиранов:

3.2. ВАКЕР-ПРОЦЕСС

В Вакер-процессе этилен окисляют в водном растворе хлористоводородной кислоты, содержащем хлориды палладия (II) и меди (II). Протекающие при этом реакции описываются следующими уравнениями:

$$\begin{aligned} \text{H}_2\text{C} = &\text{CH}_2 + \text{ PdCl}_2 + \text{ H}_2\text{ O} & \longrightarrow &\text{CH}_3\text{CHO} + \text{ Pd} + \text{ 2HCl} ; \\ & \text{Pd} + 2 \text{ CuCl}_2 & \longrightarrow &\text{PdCl}_2 + \text{ Cu}_2\text{Cl}_2 ; \\ & 2 \text{ Cu}_2\text{Cl}_2 + \text{ O}_2 + \text{ 4HCl} & \longrightarrow &\text{4 CuCl}_2 + 2 \text{ H}_2\text{ O}, \end{aligned}$$

или суммарно:

$$2 \text{ H}_2\text{C} = \text{CH}_2 + \text{O}_2 \qquad \frac{\text{PdCl}_2, \text{CuCl}_2}{125^{\circ}\text{C}, 1 \text{ M}\Pi\text{a}} \qquad 2 \text{ CH}_3\text{CHO}$$

Таким образом, в процессе окисления расходуется только кислород.

Помимо этилена многие другие монозамещенные и 1,2-дизамещенные алкены окисляются в альдегиды и кетоны хлоридом палладия. В случае 1,1-дизамещенных алкенов обычно получаются неудовлетворительные результаты.

Если вместо воды в Вакер-процессе использовать уксусную кислоту, то образуется винилацетат:

$$2 \text{ H}_2\text{C} = \text{CH}_2 + 2 \text{ CH}_3\text{COOH} + \text{O}_2 \xrightarrow{\text{PdCl}_2, \text{CuCl}_2} \rightarrow 2 \text{ CH}_3\text{COO CH} = \text{CH}_2 + 2 \text{ H}_2 \text{ O}$$

Смесь этилена и уксусной кислоты окисляется в газовой фазе в присутствии палладиевого катализатора при 200°С и давлении 10 атм, выход винилацетата достигает 90-95%.

3.3. СИНТЕЗ ВИЦИНАЛЬНЫХ ДИОЛОВ

При взаимодействии алкенов в слабощелочной среде с разбавленным раствором KMnO₄ в водных органических растворителях (ацетоне, этаноле и др.) при 0-10°C

образуются вицинальные диолы с выходами 30-75% (реакция Вагнера).

Первоначально образуется циклический эфир марганцевой кислоты, который немедленно гидролизуется до диола:

Эффективным гидроксилирующим агентом является тетраоксид осмия OsO_4 . При действии на алкены эквимолярного количества OsO_4 в абсолютном эфире, пиридине или бензоле при комнатной температуре медленно образуется продукт присоединения, который при гидролизе водным раствором $NaHSO_3$ или сероводородом дает с высокими выходами 1,2-диолы.

Тетраоксид осмия может использоваться и как катализатор в реакции окисления. Это позволяет работать лишь с незначительными его количествами, что важно вследствие высокой токсичности и стоимости данного реагента. Окисление проводят 30%-ным водным раствором пероксида водорода в *трет*-бутаноле при 0°C.

OH
$$\frac{30\% \text{ H}_2\text{O}_2, \text{ Tpet-C}_4\text{H}_9\text{OH}}{\text{OsO}_4, 0\,^{\circ}\text{C}}$$
 HO OH OH 60%

Все гликоли, полученные окислением OsO_4 или $KMnO_4$, имеют цисконфигурацию. Следует отметить, что высшие оксиды других переходных металлов $(V_2O_5,\ WO_3,\ MoO_3\ и\ др.)$ катализируют анти-гидроксилирование алкенов. Продукты

антигидроксилирования алкенов можно также получить гидролизом соответствующих эпоксидов, либо в одном процессе совместить стадии образования и расщепления эпоксида, если алкен обрабатывать водным 30-70%-ным пероксидом водорода в муравьиной или трифторуксусной кислоте:

Кроме того, продукты *транс*-присоединения к двойной связи можно получить при обработке алкена иодом и бензоатом или ацетатом серебра в безводном бензоле или ССІ₄ (*реакция Прево*). Первоначально происходит образование йодэфира, в котором иод далее замещается бензоат-ионом.

$$\text{RCH=CH}_2 + \text{I}_2 + \text{C}_6 \text{H}_5 \text{COOAg} \longrightarrow \begin{bmatrix} \text{RCH-CH}_2 \\ \text{I} \\ \text{C}_6 \text{H}_5 \text{COO} \end{bmatrix} \xrightarrow{\text{RCH-CH}_2 - \text{I}} \underbrace{ \begin{array}{c} \text{C}_6 \text{H}_5 \text{COO} \\ \text{O} \end{array} }_{\text{O}} \overset{\text{RCH-CH}_2 - \text{O}}{\text{O}} \xrightarrow{\text{Ph}} \overset{\text{O}}{\text{Ph}}$$

Последующий гидролиз дибензоата гликоля приводит к 1,2-диолу.

3.4. ОКИСЛЕНИЕ С РАСЩЕПЛЕНИЕМ УГЛЕРОДНОГО СКЕЛЕТА ПО ДВОЙНОЙ СВЯЗИ

Озонирование

Озонолиз алкенов и последующее расщепление промежуточно образующегося озонида приводит к образованию карбонильных соединений:

При взаимодействии озона (в виде 3-8%-ного раствора в воздухе) с алкенами в инертном растворителе (этилацетате, уксусной кислоте, дихлорметане) сначала происходит электрофильное присоединение озона и образуется неустойчивый мольозонид (1,2,3-триоксолан), самопроизвольно перегруппировывающийся в более устойчивый изоозонид (1,2,4-триоксолан):

Полиены более устойчивы к действию озона, сопряженные диены реагируют с озоном, как правило, по одной двойной связи.

Озониды являются неустойчивыми взрывчатыми веществами, поэтому их обычно не выделяют, а подвергают окислительному или восстановительному расщеплению. Восстановительное расщепление осуществляется с помощью цинка и уксусной кислоты, водородом в присутствии Pd или Pt, трифенилфосфином, Na_2SO_3 , диметилсульфидом и др. При этом продуктами реакции являются альдегиды и кетоны.

Если в качестве восстановителя при расщеплении озонида использовать NaBH₄, то конечными продуктами будут первичные или вторичные спирты:

Окислительное расщепление протекает под действием пероксида водорода или надкислот. В результате в зависимости от строения исходного алкена образуется либо смесь двух кетонов, либо двух карбоновых кислот, либо карбоновой кислоты и кетона.

$$R^{1}$$
 + R^{2} + $H_{2}O_{2}$ - $R^{1}COOH$ + $R^{2}COOH$

Расщепление углеродного скелета молекулы по месту двойных связей может осуществляться и под действием других окислителей: HNO_3 , $KMnO_4$, $K_2Cr_2O_7 + H_2SO_4$, $CrO_3 + AcOH$.

$$\begin{array}{c|c} & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ &$$

Один из современных препаративных методов окислительной деструкции алкенов был предложен в 1955 г. Р. Лемье. В основе этого метода лежит гидроксилирование алкенов с помощью КМпО₄ с последующим расщеплением вицинального гликоля периодатом натрия NaIO₄ при рН 7-8. Продуктами расщепления являются кетоны и карбоновые кислоты, так как альдегиды в этих условиях окисляются до карбоновых кислот. Диоксид марганца и манганат калия вновь окисляются периодатом до перманганата, что позволяет использовать только каталитические количества КМпО₄.

$$H$$
 CH_3 CH_3 CH_3 H_3C OH CH_3 CH_3 CH_3

В другой разновидности этого метода вместо KMnO₄ используют каталитические количества OsO₄ или RuO₄ и NaIO₄, что позволяет остановить окисление на стадии альдегида. Тетраоксид осмия присоединяется к двойной связи с образованием осмата, который окисляется NaIO₄ до карбонильных соединений с регенерацией тетраоксида осмия:

3.5. АЛЛИЛЬНОЕ ОКИСЛЕНИЕ АЛКЕНОВ

При обработке алкенов диоксидом селена в уксусном ангидриде или смеси последнего с уксусной кислотой образуются аллиловые спирты, которые тотчас же ацилируются уксусным ангидридом и реакция на этом заканчивается:

$$H_3C$$
 CH_3
 CH_3
 CH_3
 $CH_3COOH + (CH_3CO)_2O, 120^{\circ}C$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Окисление можно проводить эфирами надкислот (обычно *тем*-бутиловыми эфирами надбензойной и надуксусной кислот) в присутствии солей Cu(I).

Возможно аллильное окисление алкенов и кислородом воздуха в присутствии оксида меди (промышленный способ синтеза акролеина):

Как и в случае алканов первичным продуктом окисления здесь является гидропероксид.

При действии на пропилен кислорода и аммиака протекает так называемый окислительный аммонолиз и образуется акрилонитрил:

$$2 \,\, \mathrm{H_{2}C = CHCH_{3}} \,\, + 3 \,\mathrm{O_{2}} + 2 \,\mathrm{NH_{3}} \,\, \frac{400 \text{-} 450^{\circ}\mathrm{C}}{} \, \boldsymbol{\rightarrow} \, 2 \,\mathrm{H_{2}C = CH - CN} \, + \, 6 \,\mathrm{H_{2}O}$$

Хотя выход акрилонитрила в этом случае не превышает 70%, окислительный аммонолиз пропилена представляет собой самый дешевый и безопасный способ производства акрилонитрила. Катализатором этого процесса служит фосфомолибдат

висмута. Аналогичным образом может быть получен бензонитрил из толуола.

4. ОКИСЛЕНИЕ АЛКИНОВ

В мягких условиях алкины окисляются до 1,2-дикарбонильных соединений:

$$CH_{3}(CH_{3})_{7}C \equiv C(CH_{2})_{7}COOH \xrightarrow{KMnO_{4}} CH_{3}(CH_{3})_{7}C = C(CH_{2})_{7}COOH$$

В большинстве же случаев окисление сопровождается расщеплением тройной связи и образованием карбоновых кислот:

$$\stackrel{\text{RC}}{=} \text{CR}^2 \xrightarrow{\text{KMnO}_4} \stackrel{\text{RCOOH}}{\text{RCOOH}} + \stackrel{\text{RCOOH}}{\text{RCOOH}}$$

Озонолиз алкинов также протекает с расщеплением тройной углерод-углеродной связи:

$$H_3C$$
 $C = C$
 CH_3
 CH_2O_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Под действием кислорода воздуха в спирте, пиридине и др. растворителях или гексацианоферрата (III) калия $K_3[Fe(CN)_6]$ в диметоксиэтане или ДМФА ацетилениды меди (I) окисляются в 1,3-диины (*реакция Глазера*):

PhC
$$\equiv$$
CH + Cu₂Cl₂ $\xrightarrow{\text{NH}_3}$ PhC \equiv CCu $\xrightarrow{\text{О}_2}$ PhC \equiv C-C \equiv CPh 90%

Эглинтон предложил значительно более удобную модификацию окислительной конденсации алкинов. Алкин-1 окисляют ацетатом меди (I) в растворе пиридина при 60-70°C.

Для получения несимметричных диинов используют конденсацию галогенацетиленов с алкином-1 в присутствии солей меди (I) и первичного амина (сочетание по Кадио-Ходкевичу):

$$RC \equiv CBr + HC \equiv CR^{1} \xrightarrow{Cu_{2}Cl_{2}} RC \equiv C - C \equiv CR^{1}$$

5. ОКИСЛЕНИЕ АРОМАТИЧЕСКОГО КОЛЬЦА

Ароматические системы довольно устойчивы к действию окислителей. Обычно для окисления ароматического ядра приходится или применять достаточно энергичные окислители, или предварительно активировать ядро введением электронодонорного заместителя.

5.1. ГИДРОКСИЛИРОВАНИЕ АРЕНОВ

Бензол и его алкилпроизводные подвергаются окислительному электрофильному гидроксилированию в фенолы под действием пероксида водорода и органических перкислот в суперкислых средах:

Бензол окисляется до фенола реактивом Фентона — пероксида водорода, содержащего соли Fe(II) и Fe(III). При этом в результате восстановления H_2O_2 одноэлектронным восстановителем — ионом железа (II) — образуется гидроксильный радикал, который далее присоединяется к бензолу с образованием гидроксилциклогексадиенильных радикалов. Окисление этих радикалов ионом Fe(III) приводит к получению фенола, а при димеризации радикалов образуется 1,1',4,4'-тетрагидробифенил-4,4'-диол, который превращается в бифенил в результате дегидратации:

Fe²⁺ HO-OH
$$\longrightarrow$$
 Fe³⁺ \longleftrightarrow HO-OH \longrightarrow Fe \longleftrightarrow OH \longleftrightarrow OH \longleftrightarrow HO-OH \longleftrightarrow HO-OH

5.2. СИНТЕЗ ХИНОНОВ

Сам бензол и алкилбензолы не удается окислить в хиноны с препаративными выходами. Фенолы и первичные амины легко вступают в эту реакцию, что связано с повышением нуклеофильности ароматического ядра под влиянием электронодонорных заместителей.

Самый удобный способ получения хинонов заключается в окислении одноатомных фенолов солью Фреми — нитрозодисульфонатом калия. Эта реакция осуществляется в исключительно мягких условиях в водном спирте или ацетоне, выход обычно превышает 90%.

$$\begin{array}{c|c}
OH \\
\hline
(KO_3S)_2NO \\
\hline
H O-N(SO_3K)_2
\end{array}$$
(97%)

Приведенный на этой схеме циклогексадиеновый интермедиат был выделен, что доказывает механизм одноэлектронного окисления фенолов солью Фреми.

Незамещенный n-бензохинон кроме того получают окислением гидрохинона или анилина. В качестве окислителей используются бромат калия, хлорат натрия, дихромат калия или натрия, диоксид свинца и др. В случае анилина реакция идет через стадию образования фенилгидроксиламина, который в кислой среде перегруппировывается в n-аминофенол и затем — в монохинонимин, гидролизующийся далее в хинон:

$$\begin{array}{c|c} NH_2 \\ \hline Na_2Cr_2O_7 \\ \hline H_2SO_4 15\%, 0^{\circ}C \end{array} \begin{array}{c|c} NHOH \\ \hline \end{array} \begin{array}{c|c} NH_2 \\ \hline \end{array} \begin{array}{c|c} IH_2O \\ \hline \end{array} \begin{array}{c|c} IH_3O^{\dagger} \\ \hline \end{array} \begin{array}{c$$

В случае окисления гидрохинона процесс протекает через промежуточное образование хингидрона — молекулярного соединения, в котором оба фрагмента образуют структуру сэндвичевого типа и связаны переносом заряда и водородными связями.

Ди- и полиалкил-n-бензохиноны обычно синтезируют, используя более мягкие окислители — соли Fe(III):

о-Бензохиноны вследствие неустойчивости получают окислением соответствующих пирокатехинов свежеприготовленным оксидом серебра или диоксидом свинца в инертном растворителе (часто в эфире).

$$_{\rm H_3C}$$
 ОН $_{\rm OH}$ $_{\rm a6c.\ 9фир,\ 25^{\circ}C}$ $_{\rm H_3C}$ $_{\rm OO}$

Для получения хинонов, содержащих электроноакцепторные заместители,

применяют более жесткие окислители, например HNO₃.

Cl OH
$$\frac{65\% \text{ HNO}_3}{\text{AcOH+C}_2\text{H}_5\text{OH}, 25 °C}$$
 Cl Cl OCl $\frac{\text{Cl}}{\text{65}\%}$

Конденсированные ароматические системы окисляются до хинонов значительно легче бензола. Так нафталин окисляется в 1,4-нафтохинон CrO₃ в уксусной кислоте:

Алкил- и арилнафталины легко окисляются по замещенному ароматическому кольцу:

Хорошие результаты, как и в ряду бензола, дает окисление гидрокси- и аминопроизводных:

Ядро антрацена окисляется еще легче нафталинового:

В промышленности тот же самый результат достигается при окислении кислородом в присутствии оксида ванадия (V) как катализатора. Таким способом можно получать антрахинон и фенантренхинон:

$$+ O_2 \frac{V_2O_5}{320-390^{\circ}C}$$

5.3. ОКИСЛИТЕЛЬНОЕ РАСЩЕПЛЕНИЕ АРЕНОВ

В промышленности окислением бензола и нафталина кислородом воздуха в присутствии V_2O_5 получают соответственно малеиновый и фталевый ангидриды:

$$\begin{array}{c|c}
O_2, V_2O_5 \\
\hline
450 ^{\circ}C
\end{array}$$

$$\begin{array}{c|c}
O_2, V_2O_5 \\
\hline
O\end{array}$$

$$\begin{array}{c|c}
O_2, V_2O_5 \\
\hline
380 ^{\circ}C
\end{array}$$

$$\begin{array}{c|c}
O\\
\hline
O\\
O\end{array}$$

При взаимодействии бензола и алкилбензолов с озоном образуются триозониды, которые далее подвергают окислительному или восстановительному расщеплению:

Препаративное значение имеет также окисление нафталина $KMnO_4$, приводящее к o-формилбензойной кислоте.

$$\begin{array}{c|c}
\hline
\text{KMnO}_4, \text{OH} \\
\hline
\text{COOH} \\
\hline
\end{array}$$

В замещенных нафталинах действие окислителя направляется на кольцо с большей электронной плотностью.

5.4. ОКИСЛЕНИЕ БОКОВЫХ ЦЕПЕЙ В АРОМАТИЧЕСКИХ СОЕДИНЕНИЯХ

Окисление алкиларенов происходит в первую очередь по бензильному атому

углерода, что объясняется легкостью образования соответствующего бензильного радикала.

$$Ar-CH_2R \xrightarrow{-\overline{e}} Ar-CH_2R \xrightarrow{-\overline{e}} Ar-CHR$$
 $Ar-CHR$

Для окисления боковых цепей в алкилбензолах в карбоксильную группу применяют водный раствор KMnO₄ при нагревании, смесь Na₂Cr₂O₇ и H₂SO₄.

$$_{\rm H_3C}$$
 СН $_{\rm 3}$ СООН $_{\rm -2\,CO_2}$ СООН $_{\rm COOH}$ СООН $_{\rm 60\%}$

Следует особо отметить, что в этих условиях любая алкильная группа, содержащая атомы водорода в α-положении по отношению к бензольному кольцу, окисляется до карбоксильной.

Если алкильная группа не содержит атомов водорода в α -положении по отношению к бензольному кольцу, такая *трет*-алкильная боковая группа не окисляется под действием $Na_2Cr_2O_7$ или $KMnO_4$ в кислой или нейтральной среде. Так, например, *трет*-бутилбензол окисляется в очень жестких условиях перманганатом калия до триметилуксусной кислоты, т. е. окисляется само бензольное кольцо:

$$\begin{array}{c} & & & \\ & &$$

Однако водная азотная кислота окисляет трет-алкильные группы до карбоксильных.

Дихромат натрия и перманганат калия нерастворимы в ароматических углеводородах, поэтому окисление идет в гетерогенных условиях, что часто резко снижает выход продуктов окисления. Этого недостатка лишен метод межфазного переноса реагентов. Твердый перманганат калия частично растворяется в бензоле в присутствии 18-краун-6-полиэфира вплоть до концентрации 0.06 М. Такой раствор носит название "пурпурный (малиновый) бензол" и широко используется для окисления алкилбензолов:

$$H_{3}C$$
 — CH_{3} — $KMnO_{4}$ — $KMnO_{4}$ — CH_{3} — $CH_{$

При использовании же в качестве катализатора межфазного переноса бромида тетрабутиламмония практически весь (95%) перманганат-ион находится в органической фазе.

При синтезе аминобензойных кислот из алкиланилинов, содержащих первичную аминогруппу, используют ацильную защиту:

$$H_3C$$
 NH_2
 $(CH_3CO)_2O$
 H_3C
 $NHCOCH_3$
 $NHCOCH_$

Алкильную группу в алкилнафталинах можно окислить до карбоксильной, не затронув при этом нафталиновые ядра, если использовать в качестве окислителя нейтральный водный раствор дихромата натрия и проводить реакцию при высоких температурах в автоклаве:

Для окисления метилбензолов в альдегиды используют смесь хромового и уксусного ангидридов. При этом образующийся альдегид превращается в ацилаль, который далее не окисляется. Омылением этого производного серной кислотой получают сам альдегид. Орто-замещенные бензальдегиды получаются таким путем с низкими выходами.

$$O_2N$$
 CH_3 $CrO_3+(CH_3CO)_2O$ O_2N CH_3 CH_2SO_4 O_2N CH_3 CH_3 CH_4 $OCOCH_3$ $OCOCH_3$

Другой способ превращения метилзамещенных бензолов в бензальдегиды состоит

в их обработке хлористым хромилом в CCl_4 или CS_2 (*реакция Этара*). Вначале окисляемое вещество образует комплекс с двумя молекулами CrO_2Cl_2 , который выпадает в осадок. При обработке комплекса водой образуется альдегид.

$$CH_3$$
 CrO_2Cl_2 CS_2 , 25 C

Данный метод дает возможность окислять только одну метильную группу в присутствии других:

$$CH_3$$

$$1. CrO_2Cl_2 B CCl_4$$

$$CH_3$$

$$CHO$$

$$CH_3$$

$$H_3C$$

$$CH_3$$

$$T0\%$$

Окисление метиленового звена в алкилбензолах с образованием кетонов можно провести под действием ряда окислителей (разб. HNO_3 , SeO_2 , $Na_2Cr_2O_7$ и др.). Особенно легко окисляются диарилметаны:

Окисление жирноароматических соединений можно осуществлять таким образом, чтобы окислению кислородом воздуха подвергался карбанион, который образуется при депротонировании исходной СН-кислоты в инертной апротонной среде (ТГ Φ , диметоксиэтане). Жирноароматических соединений с р K_a ниже 33-35 можно окислить в системе КОН - 18-краун-6 - ТГ Φ до ароматических кислот, кетонов и

триарилкарбинолов:

$$O_2N$$
 — $CH_3 + O_2$ — KOH — O_2N — O_2N

Окисление кумола в гидропероксид с последующим разложением его серной кислотой приводит к образованию ацетона и фенола:

Аналогично из индана и тетралина можно получить соответствующие кетоны:

Важнейшее промышленное значение имеют реакции прямого окисления o- и n- ксилолов кислородом воздуха до фталевой и терефталевой кислот соответственно в присутствии ацетата кобальта (III) в уксуснокислом растворе:

$$H_3C$$
 \longrightarrow $CH_3 + O_2$ $\xrightarrow{(CH_3COO)_3Co, NaBr}$ \longleftrightarrow O_2 $\xrightarrow{(CH_3COOH, 150-200^{\circ}C, 40 \text{ atm})}$ \longleftrightarrow O_2 \longleftrightarrow O_3 \longleftrightarrow O_4 \longleftrightarrow O_5 \longleftrightarrow O_6 \longleftrightarrow O_7 \longleftrightarrow O_8 \longleftrightarrow

Введение ацетоксигруппы в бензильное положение алкилбензолов обычно осуществляют с помощью тетраацетата свинца. Реакцию проводят кипячением смеси реагентов в бензоле или ледяной уксусной кислоте. Процесс протекает по свободнорадикальному механизму:

Pb(OCOCH₃)₄
$$\longrightarrow$$
 Pb(OCOCH₃)₂ + 2CH₃COO•

CH₃ + CH₃COO• \longrightarrow CH₂OCOCH₃ + H•

20%

Соответствующие спирты получают последующим омылением ацетатов.

5.5. ОКИСЛИТЕЛЬНОЕ СОЧЕТАНИЕ ФЕНОЛОВ

Под действием одноэлектронных окислителей (гексацианоферрата (III) калия $K_3[Fe(CN)_6]$, PbO_2 , $FeCl_3$, Ag_2O , соли Фреми, пероксодисульфата калия $K_2S_2O_8$ и др.) фенолы окисляются в производные дигидроксидифенила или гидроксидифенилового эфира.

$$K_3[Fe(CN)_6]$$
 НО OH -группа в o - или n -положении

При этом сначала образуются феноксильные радикалы, которые далее подвергаются димеризации в результате образования новых связей С–С между *орто-орто*, *орто-пара* и *пара-пара*-положениями исходных радикалов, а также новых С–О связей между атомом кислорода одного радикала и *орто*-положением другой радикальной частицы. Всего, таким образом, образуется потенциально не менее пяти различных типов димеров, которые находятся в равновесии с исходным феноксильным радикалом. Далее димеры обычно изомеризуются в производные дигидроксидифенила или гидроксидифенилового эфира.

Выходы индивидуальных продуктов при окислительном сочетании фенолов сильно зависят от условий проведения реакции и природы исходных реагентов. Данный процесс имеет большое биологическое значение при биосинтезе лигнина и ряда алкалоидов.

5.6. ОКИСЛЕНИЕ ОДНОАТОМНЫХ ФЕНОЛОВ В ДВУХАТОМНЫЕ

Фенолы окисляются в n-дифенолы обработкой щелочным раствором пероксодисульфата калия (*реакция Элбса*). Реакция протекает через промежуточное образование гидроксифенилсульфата калия, который затем в кислой среде гидролизуется до дифенола:

Если *пара*-положение в исходном феноле уже занято, то реакция протекает по *орто*-положению, однако с меньшим выходом.

6. ОКИСЛЕНИЕ ГАЛОГЕНПРОИЗВОДНЫХ УГЛЕВОДОРОДОВ

Первичные алкилгалогениды (хлориды, бромиды, иодиды) легко окисляются в альдегиды диметилсульфоксидом *(реакция Корнблюма):*

Бензилгалогениды можно окислить в альдегиды, вводя их в реакцию с избытком гексаметилентетрамина (уротропина) с последующим гидролизом промежуточно образующейся четвертичной соли (*реакция Соммле*):

$$ArCH_{2}X + NH_{2} \longrightarrow ArCH_{2} \longrightarrow$$

Разновидностью этой реакции можно считать получение ароматических альдегидов из четвертичных солей, образующихся из бензилгалогенидов и пиридина. Эта соль при конденсации с *n*-нитрозодиметиланилином, катализируемой основанием, дает интермедиат, гидролиз которого в кислой среде приводит к альдегиду:

$$ArCH_{2}Br + \bigcap_{N} \bigcap_{CH_{2}Ar} ArCHO + HONH \bigcap_{N} N(CH_{3})_{2} + \bigcap_{N} \bigcap_{H_{2}O, H_{3}O} ArCHO + \bigcap_{N} N(CH_{3})_{2} + \bigcap_{N} \bigcap_{H_{3}O-15\%} ArCHO + \bigcap_{N} N(CH_{3})_{2} + \bigcap_{$$

Бензилгалогениды можно окислить в ароматические альдегиды и с помощью солей 2-нитропропана. Ароматические галогенметильные производные алкилируют амбидентный анион 2-нитропропана по атому кислорода:

Этот метод является общим способом получения ароматических альдегидов, содержащих самые разнообразные заместители в бензольном кольце. Исключение составляют лишь n-нитробензильные производные, алкилирующие анион 2-нитропропана по атому углерода.

7. ОКИСЛЕНИЕ ОДНОАТОМНЫХ СПИРТОВ

Под действием концентрированной HNO_3 , щелочного раствора $KMnO_4$ и многих других окислителей первичные спирты окисляются в карбоновые кислоты:

При окислении первичных спиртов до альдегидов дихроматом натрия и серной кислотой образующийся альдегид, кипящий, как правило, при температуре значительно ниже, чем исходный спирт, немедленно удаляют отгонкой и тем предотвращают его дальнейшее окисление. Таким путем могут быть получены только низкокипящие альдегиды.

R OH
$$\frac{\text{Na}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{SO}_4}{60^{\circ}\text{C}}$$
 R H
$$R = \text{CH}_3, \text{ C}_2\text{H}_5, \text{ i-C}_3\text{H}_7$$

Для получения высококипящих альдегидов в качестве окислителя применяют *тем* бутиловый эфир хромовой кислоты (получается из CrO₃ и *тем*-бутанола):

$$\begin{array}{c|c}
\hline
OH & \frac{\text{CrO}_3 + (\text{CH}_3)_3\text{COH}}{20 \text{ °C}} & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
H \\
\hline$$

Для селективного окисления первичных спиртов до альдегидов в настоящее время лучшими реагентами являются комплекс CrO_3 с двумя молями пиридина: $CrO_3 \cdot 2C_5H_5N$ (реагент Саррета - Коллинза) и хлорхромат пиридиния $CrO_3 \cdot C_5H_5N \cdot HCl$ (реагент Кори) в хлористом метилене. Оба реагента обеспечивают очень высокие выходы альдегидов, однако хлорхромат пиридиния имеет важное преимущество в том отношении, что этот реагент не затрагивает двойную или тройную связь и поэтому особенно эффективен для получения ненасыщенных альдегидов:

$$RC \equiv CCH_2OH \xrightarrow{CrO_3 \cdot C_5H_5N \cdot HCl} RC \equiv C \xrightarrow{O}$$

Один из промышленных способов получения формальдегида заключается в окислении метанола кислородом воздуха на серебряном катализаторе:

$$CH_3OH + O_2 \xrightarrow{Ag, 600^{\circ}C} HCHO + H_2O$$

Аллиловые, бензиловые и пропаргиловые спирты можно окислять до альдегидов диоксидом марганца:

$$OH \longrightarrow MnO_2$$

Этот реагент окисляет в петролейном эфире или хлористом метилене ненасыщенные спирты с одной или несколькими двойными или тройными связями без изомеризации и перегруппировки.

Однако, если окисление диоксидом марганца проводить в присутствии цианидиона, то аллиловые спирты окисляются до карбоновых кислот или их сложных эфиров (в последнем случае спирты используются в качестве растворителей). В этом варианте окисления первоначально также образуется альдегид, но в присутствии цианид-иона он дает циангидрин, который содержит группировку аллилового спирта и поэтому способен окисляться далее под действием того же окислителя.

С высоким выходом бензиловый спирт может быть превращен в бензальдегид под

действием 1-хлор- или 1-бромбензотриазола.

Для превращения вторичных спиртов в кетоны используют смесь дихромата натрия и серной кислоты.

Если в молекуле спирта содержится кратная углерод-углеродная связь, то окисление ведут при комнатной или пониженной температурах в инертных неполярных растворителях строго рассчитанным количеством CrO_3 в водной серной кислоте (реагент Джонса).

Первичные спирты окисляются реагентом Джонса до карбоновых кислот:

RCH₂OH
$$CrO_3 - H_2SO_4 - H_2O$$
 R OH

В последнее время разработан целый ряд новых эффективных методов окисления первичных и вторичных спиртов с помощью ДМСО или комплексов ДМСО с различными электрофильными агентами. Тозилаты первичных спиртов, также как и бензилтозилаты, окисляются в альдегиды при нагревании в ДМСО в течение 10-30 мин при 120-150°С в присутствии гидрокарбоната натрия как слабого основания:

$$(CH_3)_2$$
S $-O$ + RCH₂OTs $150^{\circ}C$ 1

ДМСО в этой реакции выполняет роль нуклеофильного агента, который замещает тозилоксигруппу по $S_N 2$ механизму с образованием алкоксисульфониевых солей. Катион алкоксисульфония далее подвергается окислительно-восстановительному элиминированию, при этом гидрокарбонат или карбонат-ион является основанием в этой E2-реакции элиминирования, приводящей к альдегиду и диметилсульфиду.

Br
$$\longrightarrow$$
 CH₂OTs $\xrightarrow{\text{ДMCO, NaHCO}_3}$ Br \longrightarrow CHO + (CH₃)₂S 65%

Однако данный метод окисления первичных спиртов в альдегиды требует проведения дополнительной стадии превращения спирта в тозилат. Одностадийное селективное окисление достигается путем превращения слабого нуклеофильного агента ДМСО в сильный электрофильный агент, который непосредственно реагирует с первичными и вторичными спиртами в очень мягких условиях при 0°C и ниже. ДМСО Необходимую активацию проводят с помощью триоксида трифторуксусного ангидрида, уксусного ангидрида, N-хлорсукцинимида, N,Nдициклогексилкарбодиимида $C_6H_{11}N=C=NC_6H_{11}$, бромоводорода, $(COCl)_2$, хлористого тионила $SOCl_2$ и др. Во всех случаях реакционноспособного интермедиата образуется активированная алкоксисульфониевая подвергается далее внутримолекулярной окислительносоль, которая восстановительной фрагментации.

Комплекс ДМСО с SO₃ образуется при взаимодействии пиридинсульфотриоксида с ДМСО:

Наиболее часто используется комбинация ДМСО с N,N-дициклогексилкарбодиимидом *(метод Пфитцера - Моффата)*:

Диметилсульфид при взаимодействии с N-хлорсукцинимидом дает хлорсульфониевую соль, которая реагирует со спиртами уже при -30°C с образованием карбонильного соединения:

$$N-C1$$
 $CH_{3})_{2}S$ $N-S(CH_{3})_{2}$ $RCH_{2}OH$ $N-S(CH_{3})_{2}$ $RCH_{2}OH$ $N-S(CH_{3})_{2}$ $N-S(CH_{3})_{3}$ $N-S(CH_{3})_{2}$ $N-S(CH_{3})_{3}$ $N-S(CH_{3})_{2}$ $N-S(CH_{3})_{3}$ $N-S(CH_{3})_{3}$

Вторичные спирты можно превратить в кетоны под действием кетонов (обычно ацетона) и алкоголятов алюминия (*реакция Оппенауэра*). Если в систему вводить большой избыток ацетона (50-200 молей), то равновесие сдвигается в сторону образования кетона из вторичного спирта. После установления равновесия реакционную смесь обрабатывают 30%-ной серной кислотой, отгоняют избыток ацетона и образовавшийся изопропанол и выделяют продукт окисления — кетон. В качестве акцептора водорода вместо ацетона иногда берут циклогексанон (избыток до 20 молей). Катализаторами служат *трет*-бутилат алюминия или изопропилат алюминия (не менее 0.25 моля на 1 моль окисляемого соединения; лучше 1-3 моля на 1 моль). Реакцию проводят в кипящем бензоле или толуоле.

Роль алкоголята алюминия сводится к тому, что он образует комплекс с ацетоном и, действуя как кислота Льюиса, увеличивает избыточный положительный заряд на карбонильном атоме углерода. Благодаря этому в реакционном комплексе, включающем окисляемый спирт, облегчается гидридный переход от атома углерода, связанного с гидроксильной группой, что в конечном счете и приводит к превращению исходного спирта в кетон.

Окисление α-гидроксикетонов (ацилоинов) в соответствующие дикарбонильные соединения легко осуществляется при действии солей меди (II):

Третичные спирты весьма устойчивы к окислению и в жестких условиях происходит окисление с разрывом углерод-углеродных связей и образование кислот и (или) кетонов, содержащих меньше углеродных атомов, чем исходный спирт. Обычно окисление проводят в кислой среде. При этом спирт сначала дегидратируется до алкена, который далее легко расщепляется:

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 CH_3

Дегидрирование спиртов. Окисление первичных и вторичных спиртов в карбонильные соединения сводится по существу к отщеплению водорода от молекулы

исходного спирта. Такое отщепление можно осуществить не только с помощью окислителей, но и используя каталитическое дегидрирование. В качестве катализаторов обычно применяют тонкодисперсные медь и серебро, а также оксид цинка, которые для придания им структурной устойчивости наносят в тонкодисперсном состоянии на пемзу, асбест или другие инертные носители.

$$CH_3OH \xrightarrow{Cu, 630 ^{\circ}C} CH_2O$$

При дегидрировании изопропанола над медно-цинковым катализатором при 450°C или оксидом цинка при 380°C образуется ацетон:

В случае высококипящих спиртов реакцию проводят при пониженном давлении. Непредельные спирты в обычных условиях дегидрирования превращаются в соответствующие предельные карбонильные соединения. Гидрирование кратной связи осуществляется выделяющимся в процессе дегидрирования водородом.

OH
$$ZnO, 250$$
 °C H_3C

Простейшие двухатомные спирты при каталитическом дегидрировании образуют дикарбонильные соединения:

OH Ag, 390 °C
$$H_3$$
C H_3 C H_3 C O

8. РАСЩЕПЛЕНИЕ α-ГЛИКОЛЕЙ И РОДСТВЕННЫХ СОЕДИНЕНИЙ

Под действием иодной кислоты HIO_4 и ее солей, а также тетраацетата свинца $Pb(OAc)_4$ 1,2-диолы и полиолы подвергаются окислительному расщеплению с образованием альдегидов и кетонов:

$$C_2H_5$$
 C_2H_5
 C

Если в исходном полиоле три или более гидроксильных групп связаны с соседними атомами углерода, то из средних атомов углерода образуются карбоновые кислоты.

При использовании тетраацетата свинца вторичные спиртовые группы в полиолах окисляются до диоксида углерода.

Для окисления 1,2-диолов, растворимых в воде или в бинарной смеси вода — $T\Gamma\Phi$, вода — диоксан, используют HIO_4 и ее соли, для окисления нерастворимых в воде диолов — тетраацетат свинца в бензоле или в уксусной кислоте. В обоих вариантах окислительной деструкции 1,2-диолов в качестве интермедиата образуются циклические эфиры иодной или свинцовой кислоты. Циклические эфиры затем подвергаются окислительно-восстановительному элиминированию с образованием карбонильных соединений и иодат-иона или ацетата свинца (II) соответственно:

 $Pb(CH_3COO)_2 + 2 CH_3COOH$

Для окислительного расщепления 1,2-диолов используются и другие реагенты: соли церия (IV), ванадия (V), фенилиодозодиацетат $C_6H_5I(OCOCH_3)_2$, хлорохромат пиридиния и др. В некоторых случаях для окисления диолов в нейтральной среде применяют пероксид никеля NiO_2 и MnO_2 :

Такие окислители как $KMnO_4$, $Na_2Cr_2O_7$, N-иодсукцинимид также расщепляют 1,2-гликоли, но при этом вместо альдегидов образуются карбоновые кислоты.

Аналогичное расщепление наблюдается и для других соединений, содержащих атомы кислорода или азота у соседних атомов углерода: β-аминоспирты, α-гидроксиальдегиды и α-гидроксикетоны, α-дикетоны, α-кетоальдегиды, глиоксаль.

$$H_2N$$
 OH HN OH O OH O

 α -Дикетоны и α -гидроксикетоны расщепляются также под действием H_2O_2 в щелочной среде.

9. ОКИСЛЕНИЕ АЛЬДЕГИДОВ

Окисление альдегидов протекает значительно легче, чем окисление спиртов. Превращение альдегидов в карбоновые кислоты можно осуществить действием многих окислителей: HNO_3 , H_2O_2 , $KMnO_4$, $NaClO_2$, Ag_2O , щелочным раствором иода, соединениями хрома (VI). Наилучшие результаты дает обычно реагент Джонса. В этом случае окисление проводится при 0-20°C в течение короткого промежутка времени с выходами больше 80%.

$$_{\rm H_3C}$$
 — $_{\rm H}$ — $_{\rm auetoh,~0~^{\circ}C}$ $_{\rm H_3C}$ — $_{\rm 85\%}$ ОН

Однако реагент Джонса не обладает высокой избирательностью по отношению к другим функциональным группам, а кислая среда иногда приводит к изомеризации или деструкции. В таких случаях идеальным селективным окислителем является водноспиртовой раствор оксида серебра или раствор AgNO₃ в водном аммиаке (реагент Толленса). Этот реагент не затрагивает кратные углерод-углеродные связи, гидроксильную группу спиртов и ряд других функциональных групп:

Окисление уксусного альдегида в промышленности осуществляют действием кислорода в присутствии солей кобальта или марганца в качестве катализатора:

CH₃CHO
$$\frac{\text{(CH}_3\text{COO)}_2\text{Co}}{60\text{-}80\,^{\circ}\text{C}, 0.5 \text{ МПа}}$$
 CH₃COOH 95%

В химии углеводов для селективного окисления альдегидных групп применяется щелочной раствор иода. Так из D-глюкозы образуется D-глюконовая кислота:

Применяя разбавленную азотную кислоту, осуществляют окисление альдегидной группы, не затрагивая присутствующей в молекуле вторичной спиртовой группы, однако первичная спиртовая группа при этом окисляется в карбоксильную:

При обработке щелочным раствором пероксида водорода ароматических альдегидов (а также кетонов), содержащих в *орто*- или *пара*-положении NH_2 - или OH-

группу, образуются соответственно аминофенолы или двухатомные фенолы *(реакция Дакина):*

$$H_2O_2 + OH^- \longrightarrow HOO^- + H_2O$$
 $OH^- \longrightarrow HO^- \longrightarrow HO^$

Под действием SeO_2 альдегиды окисляются в α -дикарбонильные соединения:

$$H_3C$$
 $\begin{array}{c} O \\ \hline \\ H \end{array}$
 $\begin{array}{c} SeO_2 \\ \hline \\ CH_3COOH,0^{\circ}C \end{array}$
 $\begin{array}{c} O \\ \hline \\ H \end{array}$
 $\begin{array}{c} O \\ \hline \\ 70\% \end{array}$

Интересно отметить, что при окислении диоксидом селена формальдегида образуется глиоксаль:

$$2 \text{ CH}_2\text{O} \xrightarrow{\text{SeO}_2} \xrightarrow{\text{O}} \xrightarrow{\text{O}} \xrightarrow{\text{O}}$$

Альдегиды медленно окисляются кислородом воздуха при комнатной температуре до карбоновых кислот *(аутоокисление альдегидов)*.

$$2 R \stackrel{O}{\longleftarrow} + O_2 \longrightarrow 2 R \stackrel{O}{\longleftarrow} OH$$

Эта реакция ускоряется при облучении или ионами Fe(II) и представляет собой цепной радикальный процесс:

10. ОКИСЛЕНИЕ КЕТОНОВ

Окисление кетонов протекает в более жестких условиях, чем окисление альдегидов и сопровождается расщеплением углеродного скелета молекулы. Из несимметрично построенного кетона при окислении могут образоваться все четыре возможные карбоновые кислоты (правило Попова):

$$\begin{array}{c|c} I & II \\ \hline R & \\ \hline R & \\ \hline \end{array} \begin{array}{c} I & RCOOH + R'CH_2COOH \\ \hline \\ R & \\ \hline \end{array} \begin{array}{c} I & RCH_2COOH + R'COOH \\ \hline \end{array}$$

Если кетон в α-положении содержит третичный атом углерода, то в результате окисления образуется три карбоновые кислоты и новый кетон, который в зависимости от условий может или подвергнуться дальнейшему окислению, или остаться неизменным:

Кетоны, как правило, устойчивы к окислению в нейтральной среде и подвергаются расщеплению только в кислой и щелочной средах: щелочным раствором КМпО₄, горячей HNO₃, соединениями Cr(VI) в серной кислоте. В связи с этим считают, что окислению кетона предшествует его енолизация; образовавшийся енол подобно другим алкенам окисляется по кратной связи с расщеплением углеродного скелета. Поскольку несимметричные кетоны могут енолизоваться в обоих возможных направлениях, их окислительное расщепление также осуществляется по двум направлениям.

Промышленное значение имеет окисление циклогексанона, поскольку он легко доступен и при расщеплении дает только одну адипиновую кислоту. Реакцию проводят при повышенной температуре, применяя в качестве окислителя конц. HNO_3 , $CrO_3+H_2SO_4$, щелочной раствор $KMnO_4$:

При окислении азотной кислотой алициклических кетонов температура реакции может быть снижена, а выход продукта повышен, если применять более разбавленную азотную кислоту и добавлять в реакционную смесь каталитические количества V_2O_5 .

Циклические 1,3-дикетоны, которые существуют в основном в моноенольной форме, расщепляются периодатом натрия NaIO₄ с потерей одного атома углерода:

Метилкетоны легко превращаются в соответствующие карбоновые кислоты при обработке их щелочными растворами гипобромита или гипохлорита натрия, т. е. смесью галогена и щелочи (галоформная реакция). Таким образом из окиси мезитила

можно, например, получить β,β-диметилакриловую кислоту:

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 OH
 CH_3
 OH

Метиларилкетоны окисляются с еще более высокими выходами. Реакция обычно проводится в водно-диоксановом растворе:

$$O$$
 CH_3
 $NaOH + Cl_2$
 OH
 OH

Механизм процесса можно представить следующим образом:

$$H_{2}O + Br_{2} \longrightarrow HOBr + HBr$$

$$HOBr + HBr + 2NaOH \longrightarrow NaOBr + NaBr + 2H_{2}O$$

$$R \longrightarrow CH_{3} \longrightarrow H_{2}O$$

$$R \longrightarrow CH_{2} \longrightarrow R$$

$$CH_{2} \longrightarrow R$$

$$CH_{2} \longrightarrow R$$

$$R \longrightarrow CH_{2}$$

$$R \longrightarrow$$

Далее под действием щелочи тригалогенметилкетон расщепляется по следующей схеме:

Под действием перкислот, а также кислоты Каро H_2SO_5 и $H_2S_2O_8$ кетоны окисляются в сложные эфиры (*реакция Байера-Виллигера*). Реакция обычно проводится при комнатной температуре в полярных органических растворителях, устойчивых к действию надкислот (хлороформ, уксусная кислота, уксусный ангидрид):

$$\begin{array}{c|c}
CH_3 & C_6H_5CO_3H \\
\hline
CHCl_3 & CO_6H_5CO_3H \\
\hline
CHCl_3 & CO_$$

Наилучшие результаты достигаются при расщеплении алифатических и циклических кетонов комплексом 90%-ного пероксида водорода и эфирата трехфтористого бора:

$$_{\rm H_3C}$$
 С $_{\rm O}$ С $_{\rm O}$ С $_{\rm O}$ С $_{\rm O}$ С $_{\rm CH_3}$

В начале под действием надкислоты, если она достаточно сильная, или каталитических количеств серной кислоты происходит протонизация карбонильного атома кислорода кетона. При этом карбонильный атом углерода приобретает избыточный положительный заряд. Затем к нему нуклеофильно присоединяется анион надкислоты. Последующий гетеролитический разрыв связи кислород-кислород, миграция одного из радикалов в виде аниона к положительно заряженному атому кислорода и отрыв протона приводят к образованию сложного эфира:

$$\bigcap_{R} + CF_3CO_3H \longrightarrow \bigcap_{O} CF_3 + CF_3COO \longrightarrow \bigcap_{R} CF_3COOH$$

Несимметричные кетоны в общем случае образуют два изомерных сложных эфира, соотношение которых зависит от относительной способности групп к миграции к атому кислорода. По способности к миграции группы располагаются в следующем ряду $H > C_6H_5 > (CH_3)_3C >> (CH_3)_2CH > RCH_2 >> CH_3$. Если две группы сильно различаются по способности к миграции, реакция характеризуется высокой региоселективностью.

Особое значение имеет реакция Байера-Виллигера для циклических кетонов, которые при окислении дают циклические сложные эфиры – лактоны:

$$\begin{array}{c}
O \\
\hline
H_2O_2, BF_3 \\
\hline
CH_2Cl_2
\end{array}$$

Метиленовая (метильная) группа в α-положении к карбонильной группе кетонов легко окисляется диоксидом селена:

Для реакции окисления кетонов, а также альдегидов диоксидом селена был предложен следующий механизм:

Вместо прямого окисления можно воспользоваться двухстадийным методом, приведенным ниже:

Алкоксисульфониевая соль, образующаяся при замещении галогена или тозилата, подвергается внутримолекулярному окислению-восстановлению с образованием кетоальдегида:

$$O_2$$
N—COCH₃ $\frac{1) \text{ Br}_2, \text{CH}_3\text{COOH}}{2) \text{ ДМСО}} \longrightarrow O_2$ N— O_2 N— O_2 N— O_3 Н

В то же время окисление α-бромкетонов диоксидом селена в спиртовой среде приводит к α-кетоэфирам:

Под действием раствора полисульфида аммония (как правило, под давлением) арилалкилкетоны превращаются в ω -арилкарбоновые кислоты с сохранением общего числа атомов углерода (реакция Вильгеродта):

$$Ar \underbrace{(CH_2)_{\overline{n}} - CH_3}_{OH} \underbrace{(NH_4)_2 S_x, H_2 O}_{OH} Ar \underbrace{(CH_2)_{\overline{n}+1}}_{OH}$$

В результате карбонильная группа кетона восстанавливается до метиленовой, а метильная окисляется до карбоксильной. Фактически сначала получают тиоамид (или амид) кислоты, который затем омыляют. С ростом числа атомов углерода в цепи (n) выходы карбоновых кислот падают.

Улучшенный вариант реакции, не требующий применения давления, заключается в применении вместо полисульфида серы и вторичного амина (обычно морфолина) (модификация Киндлера):

При обработке циклогексанонов серой или селеном протекает дегидрирование и образуются фенолы. По-видимому, реакция протекает через стадию предварительной енолизации исходных кетонов:

11. ОКИСЛЕНИЕ КАРБОНОВЫХ КИСЛОТ

При действии пероксида водорода в присутствии кислотного катализатора на карбоновые кислоты образуются перкислоты (надкислоты):

$$R \xrightarrow{O} + H_2O_2 \xrightarrow{H^+} R \xrightarrow{O} + H_2O$$

Наиболее распространенным катализатором в случае алифатических карбоновых кислот является концентрированная H_2SO_4 . Реакция обратима, и равновесие можно сместить вправо, удаляя воду или применяя избыток реагента. Для субстратов с ароматическими группами R наилучшим катализатором является метансульфокислота, которая используется и как растворитель.

Карбоновые кислоты подвергаются окислительному декарбоксилированию под действием тетраацетата свинца и в качестве продуктов в зависимости от условий получаются алканы, алкены или эфиры уксусной кислоты:

$$R \xrightarrow{\text{OH}} \frac{\text{Pb(OAc)}_4}{\text{OH}} \Rightarrow \text{RH + CO}_2 + \text{Pb(OAc)}_2 + \text{AcOH}$$

Для данной реакции предполагается следующий механизм:

$$Pb(OAc)_4 + RCOOH \longrightarrow RCOOPb(OAc)_3 + CH_3COOH$$
 $RCOOPb(OAc)_3 \longrightarrow R^{\bullet} + {}^{\bullet}Pb(OAc)_3 + CO_2$
 $R^{\bullet} + {}^{\bullet}Pb(OAc)_3 \longrightarrow R^{+} + Pb(OAc)_2 + CH_3COO^{-}$

Алканы образуются за счет отрыва атома водорода от молекул растворителя радикалом R, а алкен и сложный эфир из карбокатиона соответственно за счет отщепления протона или захвата ацетат-иона. Введение в реакционную смесь галогенид-иона практически нацело подавляет оба процесса и приводит к образованию алкилгалогенидов.

COOH
$$\frac{\text{Pb(OAc)}_4, \text{LiCl}}{\text{C}_6\text{H}_6, 80^{\circ}\text{C}} + \text{CO}_2 + \text{Pb(OAc)}_2 + \text{CH}_3\text{COOLi} + \text{CH}_3\text{COOH}}{100\%}$$

В присутствии иода и тетраацетата свинца карбоновые кислоты превращаются в соответствующие иодиды:

Из 1,2-дикарбоновых кислот под действием тетраацетата свинца образуются алкены:

Другим примером окислительного декарбоксилирования может служить окисление серебряных солей карбоновых кислот бромом в CCl_4 с образованием алкилбромидов (реакция Хунсдиккера – Бородина):

$$RCOOAg + Br_{2} \xrightarrow{CCl_{4}} RBr + CO_{2} + AgBr$$

$$CH_{3}OOC(CH_{2})_{4}COOAg + Br_{2} \xrightarrow{CCl_{4}} CH_{3}OOC(CH_{2})_{3}CH_{2}Br + AgBr + CO_{2}$$

$$68\%$$

Для успешного проведения реакции требуется применять тщательно высушенные серебряные соли карбоновых кислот, и выход алкилбромида колеблется в широких пределах в зависимости от степени очистки и обезвоживания соли. Этого недостатка лишена модификация с использованием ртутных солей, причем ртутную соль не выделяют индивидуально, а смесь карбоновой кислоты, оксида ртути (II) и брома нагревают в индифферентном растворителе. Этот метод приводит, как правило, к более высоким и воспроизводимым выходам.

$$CH_3(CH_2)_{15}CH_2COOH \xrightarrow{HgO, Br_2} CH_3(CH_2)_{15}CH_2Br + HgBr_2 + H_2O + CO_2$$
93%

Для реакции Хунсдиккера — Бородина установлен цепной радикальный механизм. Образующийся в первой стадии ацилгипобромит подвергается гомолитическому расщеплению с образованием карбоксильного радикала и атома брома. Карбоксильный радикал теряет CO_2 и превращается в алкильный радикал, который затем регенерирует цепь, отщепляя атом брома от ацилгипобромита.

Инициирование цепи: RCOOAg + Br₂
$$\longrightarrow$$
 R $\stackrel{O}{\longleftarrow}$ + AgBr RCOOBr \longrightarrow R $\stackrel{O}{\longleftarrow}$ + Br $\stackrel{O}{\longleftarrow}$

Развитие цепи:

$$R \xrightarrow{O} R \cdot + CO_{2}$$

$$R \cdot + R \xrightarrow{O} RBr + R \xrightarrow{O} CO \cdot$$

 α -Гидрокси- и α -кетокислоты не расщепляются под действием HIO4, но эта

реакция идет с тетраацетатом свинца, H_2O_2 в щелочной среде и другими реагентами. Такие реакции представляют собой окислительное декарбоксилирование. Из α -гидроксикислот получаются альдегиды или кетоны, а из α -кетокислот — карбоновые кислоты:

В то же время при использовании пероксида водорода в присутствии Fe(III) удается окислить гидроксильную группу в α-гидроксикислотах в карбонильную с сохранением карбоксильной:

Окислить алифатические карбоновые кислоты в α -гидроксикислоты удается в том случае, если кислота содержит третичный атом углерода в α -положении к карбоксильной группе. В качестве окислителя применяют щелочной раствор КМnO₄.

$$H_3C$$
 $COOH$
 H_3C
 H_3C
 $COOH$
 HO

12. ОКИСЛЕНИЕ ПРОСТЫХ ЭФИРОВ

Простые эфиры проявляют повышенную склонность к аутоокислению в присутствии кислорода с образованием гидропероксидов. Процесс протекает по цепному радикальному механизму. Эффективным катализатором аутоокисления может служить любой источник свободных радикалов. Аутоокисление простых эфиров представляет большую потенциальную опасность при работе с эфирами в качестве растворителей, поскольку гидропероксиды, накапливающиеся в остатке при перегонке, могут детонировать при слабом перегреве.

RCH₂-O-CH₂R + X
$$\longrightarrow$$
 RCH-O-CH₂R
RCH-O-CH₂R + O-O \longrightarrow RCH-O-CH₂R
O-O RCH-O-CH₂R + RCH₂-O-CH₂R \longrightarrow RCH-O-CH₂R + RCH-O-CH₂R \longrightarrow RCH-O-CH₂R

Поэтому гидропероксиды должны быть тщательно удалены до перегонки с помощью восстановителей – солей Fe(II) или Sn(II).

Простые эфиры, имеющие по крайней мере одну первичную алкильную группу, окисляются в соответствующие сложные эфиры с высокими выходами под действием RuO_4 , а также при действии CrO_3 в серной кислоте, перманганата бензилтриэтиламмония и др.:

$$R \longrightarrow R' \xrightarrow{RuO_4} R \longrightarrow R'$$

Простые эфиры енолов окисляются до сложных эфиров под действием хлорхромата пиридиния:

Под действием 1-хлорбензотриазола простые эфиры подвергаются окислительному расщеплению в альдегиды:

$$R^{1} O R^{2} + N O R^{2} + ROH +$$

13. ОКИСЛЕНИЕ ЭПОКСИДОВ

НІО₄ расщепляет эпоксиды в альдегиды и кетоны:

При окислении эпоксидов диметилсульфоксидом образуются α-гидроксикетоны или α-гидроксиальдегиды:

Сильные окислители превращают эпоксиды в кетоны и (или) карбоновые кислоты:

14. ОКИСЛЕНИЕ СЕРОСОДЕРЖАЩИХ СОЕДИНЕНИЙ

14.1. ОКИСЛЕНИЕ ТИОЛОВ

Под действием I_2 , Br_2 , H_2O_2 , $Pb(OAc)_4$, MnO_2 тиолы окисляются до дисульфидов:

$$2RSH + I_2 \rightarrow R\text{-}S\text{-}S\text{-}R$$

Перкислоты окисляют тиолы до сульфиновых кислот:

RSH +
$$CI$$
 $CH_2CI_2, -30^{\circ}C$
 $R-S$
 O
 CH
 CI
 CI

Сильные окислители – HNO_3 и $KMnO_4$ – окисляют тиолы до сульфоновых кислот:

RSH
$$\xrightarrow{\text{KMnO}_4, \text{H}_2\text{O}}$$
 $R = \text{S} \xrightarrow{\text{O}} \text{OH}$

14.2. ОКИСЛЕНИЕ СУЛЬФИДОВ

Под действием метапериодата натрия $NaIO_4$, *м*-хлорнадбензойной кислоты, *мрет*-бутилгипохлорита сульфиды окисляются в сульфоксиды. Наиболее часто применяется $0.5\,$ М водный раствор $NaIO_4$. Этот реагент селективно окисляет сульфиды до сульфоксидов практически без примеси сульфонов, если окисление проводить при 0° С в бинарной системе вода — органический растворитель (метанол, диоксан, ацетонитрил):

Механизм окисления аналогичен механизму расщепления 1,2-гликолей и включает циклический интермедиат:

$$RSR + IO_{4} \longrightarrow R - S - O_{4} \longrightarrow R S = O + IO_{3}$$

$$RSR + IO_{4} \longrightarrow R - S - O_{4} \longrightarrow R S = O + IO_{3}$$

Превращение сульфидов в сульфоксиды под действием *трет*-бутилгипохлорита можно проиллюстрировать следующим примером:

RSR +
$$(CH_3)_3C$$
-O-CI $\xrightarrow{CH_3OH}$ $\begin{bmatrix} R & CI \\ R & OC(CH_3)_3 \end{bmatrix}$ \xrightarrow{R} $\begin{bmatrix} R & CI \\ R & OC(CH_3)_3 \end{bmatrix}$

Окисление сульфидов до сульфонов осуществляется под действием более сильных окислителей (КМпО₄, HNO₃) или в более жестких условиях при 90-100°C с помощью избытка пероксида водорода или *тет*-бутилгидропероксида в уксусной кислоте:

$$CH_{3}(CH_{2})_{15}-S-(CH_{2})_{15}CH_{3} + H_{2}O_{2} \xrightarrow{90^{\circ}C} CH_{3}(CH_{2})_{15}-S-(CH_{2})_{15}CH_{3} + H_{2}O$$

$$CH_{3}(CH_{2})_{15}-S-(CH_{2})_{15}CH_{3} + H_{2}O$$

$$0$$

$$CH_{3}(CH_{2})_{15}-S-(CH_{2})_{15}CH_{3} + H_{2}O$$

$$0$$

$$98\%$$

Диоксираны селективно окисляют сульфиды до соответствующих сульфоксидов (при эквимольном соотношении реагентов) или до сульфонов (при избытке диоксирана).

15. ОКИСЛЕНИЕ АЗОТСОДЕРЖАЩИХ СОЕДИНЕНИЙ

15.1. ОКИСЛЕНИЕ АМИНОВ

Все амины сравнительно легко окисляются из-за своей основной природы. Легче всего окисляются до N-оксидов третичные амины. В качестве окислителей используют 30%-ный раствор H_2O_2 в воде, перкислоты в апротонной среде, диоксираны:

$$(C_{2}H_{3})_{3}N + H_{2}O_{2} \xrightarrow{H_{2}O} (C_{2}H_{5})_{3}^{+}N - \overline{O}$$

$$95\%$$

$$H_{3}C \xrightarrow{CH_{3}} + O \xrightarrow{OOH} H_{3}C \xrightarrow{+|_{1}} CH_{3}$$

$$CH_{2}Cl_{2} \xrightarrow{0^{\circ}C} + CH_{3}$$

$$CH_{2}Cl_{2} \xrightarrow{OOH} + O \xrightarrow{CH_{2}Cl_{2}} + O \xrightarrow{OOH} +$$

При окислении вторичных аминов вслед за образованием N-окиси происходит миграция протона с образованием N,N-диалкилгидроксиламина:

Первичные амины окисляются намного сложнее, поскольку образующееся производное гидроксиламина может далее окисляться до нитрозосоединений:

$$RNH_2 \longrightarrow RNHOH \longrightarrow RN(OH)_2 \longrightarrow RNO$$

$$H_3C \longrightarrow NH_2 \longrightarrow H_2O \longrightarrow H_3C \longrightarrow N=O$$

При наличии атома водорода при α-углеродном атоме нитрозосоединение изомеризуется в оксим:

$$NH_{2}$$
 $H_{2}SO_{5}$ CH_{3} $H_{2}SO_{5}$ CH_{3} CH_{3}

В более жестких условиях первичные амины окисляются до нитросоединений:

$$O_2$$
N — NH₂ CF_3CO_3H O_2 N — NO₂ 86% 86% R_3C CH_3 CH_3 CH_3 R_3C R_3C R_3 R_4 R_5 R

Окисление первичных аминов диметилдиоксираном протекает быстро (от нескольких минут до нескольких часов) в мягких условиях и приводит к

соответствующим нитросоединениям с высоким выходом:

Первичные амины, в которых аминогруппа соединена с третичным атомом углерода, с высоким выходом окисляются в нитросоединения перманганатом калия. Первичные амины, содержащие первичные, вторичные или третичные алкильные радикалы окисляются до нитросоединений сухим озоном, а также различными перкислотами.

Первичные, вторичные и третичные алифатические амины расщепляются, давая альдегиды, кетоны или карбоновые кислоты, под действием бромной воды, N-бромсукцинимида, нейтрального раствора KMnO₄, нитробензола (для бензиламинов), PdCl₂, AuCl₃, водного раствора NaOCl в условиях межфазного катализа:

$$RCH_{2}-NH_{2} \xrightarrow{NBS} R \xrightarrow{O} + NH_{3}$$

$$RCH_{2}-N \xrightarrow{R'} NBS \xrightarrow{NBS} R \xrightarrow{O} + H-N \xrightarrow{R'}$$

Первичные алифатические амины окисляются в альдегиды или кетоны при взаимодействии с Ag(II), полученным *in situ* обработкой нитрата серебра персульфатом натрия. Амин сначала дегидрируется до имина, который далее подвергается гидролизу:

Соли бензиламинов дают бензальдегиды или арилкетоны при нагревании в ДМСО:

$$\begin{array}{c|c} R \\ N \\ R' \end{array} \bullet HCl \qquad \begin{array}{c} (CH_3)_2SO \\ \hline -(CH_3)_2S, -R_2'NH \end{array}$$

R, R' = Н или алкил

Дегидрирование первичной аминогруппы, соединенной с первичным атомом углерода, приводит к образованию нитрилов. Реакция осуществлена под действием ряда реагентов: IF_5 , $Pb(OAc)_4$, $CuCl - O_2$ – пиридин, $NBS - (C_2H_5)_3N$ и др.

$$RCH_2NH_2 \xrightarrow{1. IF_5} RCN$$

$$2. H_2O$$

Вторичные амины в этих условиях, а также под действием палладиевой черни часто дегидрируются до иминов. Далее имин взаимодействует с молекулой исходного или иного амина, давая аминаль, который теряет аммиак или RNH_2 , и в результате получается первичный или третичный амин.

Ароматические первичные амины под действием MnO_2 , $Pb(OAc)_4$, $Ba(MnO_4)_2$, O_2 в присутствии основания окисляются до азосоединений:

$$2 ArNH_2 \xrightarrow{MnO_2} Ar-N=N-Ar$$

15.2. ОКИСЛЕНИЕ ГИДРАЗИНОВ, ГИДРАЗОНОВ, ОКСИМОВ, ГИДРОКСИЛАМИНОВ И АЗОБЕНЗОЛОВ

N,N'-Диарилгидразины (гидразосоединения) окисляются в азосоединения при действии ряда окислителей, включая NaOBr, HgO, $K_3[Fe(CN)_6]$ в условиях межфазного катализа, MnO_2 (этот реагент приводит к *цис*-азобензолам), $CuCl_2$, а также кислород воздуха в присутствии NaOH. Реакция применима также и к N,N'-диалкил- и N,N'-диацилгидразинам.

$$Ar-NH-NH-Ar \xrightarrow{NaOBr} Ar-N=N-Ar$$

Гидразины (как алкильные, так и арильные), монозамещенные только с одной

стороны, также дают азосоединения, однако последние неустойчивы и разлагаются на азот и углеводород:

$$Ar-NH-NH_2 \longrightarrow [Ar-N=NH] \longrightarrow ArH+N_2$$

При окислении гидразонов HgO, Ag₂O образуются диазосоединения:

$$\begin{array}{c}
R \\
N-NH_2
\end{array}
\xrightarrow{HgO}
\begin{array}{c}
R \\
N=N
\end{array}$$

Гидразоны ароматических альдегидов взаимодействуют с HgO в таких растворителях, как диглим или этанол, давая нитрилы:

$$\begin{array}{c}
H \\
N-NH_2 \\
Ar
\end{array}
\xrightarrow{HgO} ArCN$$

Окисление дигидразонов 1,2-дикарбонильных соединений является одним из лучших современных методов синтеза замещенных ацетиленов. В качестве окислителей используют HgO, Pb(OAc)₄, O₂ в присутствии CuCl и др.:

$$\begin{array}{c|c} H_2N \\ \hline \\ N \\ NH_2 \end{array} \begin{array}{c} O_2/\operatorname{CuCl} \\ \hline \\ -2 & H_2O \end{array} \end{array} \begin{array}{c} \vdots \\ \vdots \\ N^- \\ \vdots \\ N^- \end{array}$$

Ароматические гидроксиламины легко окисляются в нитрозосоединения чаще всего под действием Cr(VI) в кислой среде:

$$Ar-NH-OH \xrightarrow{CrO_3} Ar-N=O$$

Окисление оксимов кетонов с помощью трифторперуксусной кислоты в ацетонитриле приводит к нитросоединениям. Первоначально при окислении оксимов образуется аци-форма нитросоединения, которая в кислой среде изомеризуется в нитросоединение:

NOH
$$\frac{(CF_3CO)_2O , H_2O_2}{CH_3CN}$$
 NO₂

При окислении кетоксимов диметилдиоксираном также с высоким выходом образуются соответствующие кетоны:

При действии N-бромсукцинимида на оксимы образуются геминальные бромнитрозосоединения *(реакция Иффланда)*, которые далее могут быть окислены в бромнитросоединения под действием водного раствора гипохлорита, озона, HNO₃ и др.:

Продукты аналогичного строения могут быть получены в одну стадию при галогенировании кетоксимов бромом или хлором в щелочной среде:

Азосоединения окисляются в азоксипроизводные перкислотами или гидропероксидами в присутствии комплексов молибдена:

$$Ar-N=N-Ar$$
 CH_3CO_3H $Ar-N=N-Ar$ O

16. СИНТЕЗ НЕКОТОРЫХ ОКИСЛИТЕЛЕЙ

16.1. ДИХРОМАТ ПИРИДИНИЯ

$$2CrO_3 + 2C_5H_5N + H_2O \rightarrow (C_5H_5NH)_2Cr_2O_7$$

К 200 г (2.00 моль) оксида хрома (VI) в 200 мл воды прикапывают при перемешивании и охлаждении льдом 158 г (2.00 моль, 161 мл) пиридина. После этого прибавляют 800 мл ацетона и смесь охлаждают до -20°С. Через 3 ч выпавшие оранжевые кристаллы отфильтровывают, промывают их ацетоном и сушат при комнатной температуре под вакуумом, получая 312 г (82%) продукта с т. пл. 149°С.

Дихромат пиридиния — удобный в обращении нейтральный окислитель, использование которого позволяет превращать спирты в альдегиды и карбоновые кислоты.

16.2. ХЛОРХРОМАТ ПИРИДИНИЯ

25 г (0.25 моль) оксида хрома (VI) при интенсивном перемешивании вносят в 46 мл 6 М соляной кислоты. Через 3 мин раствор охлаждают до 0°С и в течение 10 мин при перемешивании прикапывают 19.7 г (0.25 моль, 20 мл) пиридина. Хлорхромат пиридиния, выпавший в виде оранжевых игл, быстро отфильтровывают на стеклянном фильтре и сушат 1 ч под вакуумом над оксидом фосфора, получая 45.2 г (84%) продукта. Реагент необходимо хранить в темноте без доступа влаги.

Хлорхромат пиридиния – хороший реагент для окисления первичных и вторичных спиртов до альдегидов и кетонов соответственно, обладает слабокислыми свойствами.

16.3. ХЛОРИСТЫЙ ХРОМИЛ

$$CrO_3 + 2 HCl = CrO_2Cl_2 + H_2O$$

К раствору 50 г (0.5 моль) CrO_3 и 170 мл конц. HCl при охлаждении льдом прибавляют порциями по 20 мл 100 мл конц. H_2SO_4 . Смесь жидкостей переливают в делительную воронку; через 20 мин сливают нижний слой CrO_2Cl_2 в круглодонную колбу со шлифом. Через жидкость в течение нескольких минут пропускают сухой воздух и затем перегоняют неочищенный CrO_2Cl_2 при атмосферном давлении в хорошо высушенном приборе на шлифах.

Хлористый хромил (диоксид-дихлорид хрома(VI)) — темно-красная жидкость, сильно дымящая во влажном воздухе. Хранят ее в запаянных стеклянных сосудах в темноте; т. пл. -96.5°C, т. кип. 117°C, d_4^{25} 1.91; растворим в CCl₄, CHCl₃, C_6H_6 , POCl₃.

16.4. ТЕТРААЦЕТАТ СВИНЦА

 $Pb_3O_4 + 8 CH_3COOH = Pb(CH_3COO)_4 + 2 Pb(CH_3COO)_2$

В двухлитровой трехгорлой колбе с мешалкой и термометром нагревают до 40° С смесь 850 мл ледяной уксусной кислоты и 170 мл уксусного ангидрида, при сильном перемешивании вносят 343 г (0.5 моль) свинцового сурика Pb_3O_4 . Температура при этом не должна подниматься выше 65° С. Затем продолжают перемешивать при $60-65^{\circ}$ С до образования прозрачного раствора. При охлаждении выкристаллизовывается тетраацетат свинца. Его отфильтровывают, перекристаллизовывают из ледяной уксусной кислоты, сушат в вакуум-эксикаторе. Выход ~ 160 г.

 $Pb(CH_3COO)_4$ легко гидролизуется с образованием диоксида свинца и уксусной кислоты, поэтому при кристаллизации и фильтровании его надо защищать от влаги воздуха.

16.5. ДИОКСИД СЕЛЕНА

В фарфоровой чашке нагревают на песчаной бане 50 мл концентрированной азотной кислоты и осторожно, небольшими порциями, вводят 30 г (0.38 моль) селена. Каждую новую порцию прибавляют после того, как закончилась реакция с предыдущей. При перемешивании смесь упаривают досуха, охлаждают, измельчают в порошок.

Активирование SeO_2 . Неочищенный диоксид селена помещают в фарфоровую чашку, приливают концентрированную азотную кислоту до образования густой "кашицы". Чашку накрывают перевернутой воронкой и нагревают на песчаной бане. Сначала испаряются летучие продукты, затем при 315° С возгоняется на стенки воронки SeO_2 . Скорость возгонки следует отрегулировать так, чтобы SeO_2 не улетучивался через носик воронки. Для возгонки 40 г SeO_2 требуется ~ 2.5 ч. Диоксид селена гигроскопичен.

Внимание! Диоксид селена очень токсичен, может вызывать поражение кожи.

16.6. АКТИВНЫЙ ДИОКСИД МАРГАНЦА

 $2 \text{ KMnO}_4 + 3 \text{ MnSO}_4 + 2 \text{ H}_2\text{O} = 5 \text{ MnO}_2 + \text{ K}_2\text{SO}_4 + 2 \text{ H}_2\text{SO}_4$

1 способ. В колбу, снабженную капельной воронкой и механической мешалкой, вносят 250 мл 5%-ного раствора MnSO₄ и при 50-60°C приливают 200 мл 5%-ного раствора KMnO₄ в течение 2 ч при перемешивании. Смесь нагревают при 60°C еще 2 ч, после чего оставляют на сутки при 30-35°C. Выпавший осадок отфильтровывают,

промывают водой до удаления SO_4^{2-} и сушат 8-10 ч при 110-120°С. Выход 17 г (почти 100%).

 $2\ cnoco\delta$. В стакане готовят суспензию 15 г тонко измельченного MnSO₄ в 14 мл воды и при энергичном перемешивании медленно прибавляют 67.5 г 93%-ной H₂SO₄. Реакционная смесь разогревается. Температуру снижают до 50°C и в течение 2 мин вносят небольшими порциями 15 г растертого KMnO₄, следя, чтобы температура смеси не превышала 75°C. Через 10 мин реакционную смесь выливают при перемешивании в сосуд с 2.5 л воды. Осадок диоксида марганца промывают водой сначала декантацией, затем на воронке до полного удаления SO_4^{2-} и сушат 6 ч, постепенно повышая температуру до 180°C. Выход около 28 г (почти 100%).

16.7. ФЕНИЛИОДОЗОДИАЦЕТАТ

$$\begin{array}{c|c}
& SO_2Cl_2 \\
\hline
-SO_2
\end{array}$$

$$\begin{array}{c|c}
& +2 \text{ AcOH} + 2 \text{ py} \\
\hline
-2 \text{ py} \cdot HCl
\end{array}$$
OAc

Иодбензол 20.4 г (0.1 моль, 11.2 мл) смешивают с 50 мл 98%-ной уксусной кислоты, при комнатной температуре приливают 20.25 г (0.15 моль, 12.2 мл) хлористого сульфурила. Смесь оставляют при комнатной температуре на 1 ч, выделившийся осадок фенилиодозохлорида фильтруют, на фильтре промывают петролейным эфиром. Выход 92%, т. пл. 117-119°С.

При перемешивании растворяют 27.5 г (0.1 моль) фенилиодозохлорида в 65 мл пиридина, и раствор охлаждают до 0-5°С. Сохраняя эту температуру, постепенно из капельной воронки приливают 125 мл уксусной кислоты, потом 200 мл воды. Реакционную смесь перемешивают при 5-10°С еще полчаса, затем фильтруют образовавшийся фенилиодозодиацетат, на фильтре промывают петролейным эфиром. Выход 24 г (75%). Продукт переосаждают из хлороформа петролейным эфиром, т. пл. 157-158°С.

16.8. ПЕРМАНГАНАТ КАЛИЯ НА ОКСИДЕ АЛЮМИНИЯ

В 5 мл воды растворяют $2.2~\Gamma$ (14.0~ммоль) тщательно растертого $KMnO_4~\text{и}$ добавляют при перемешивании $8.8~\Gamma$ оксида алюминия (активность по Брокману I). Смесь сушат на воздухе при комнатной температуре в течение суток.

16.9. ОКСИД СЕРЕБРА (I)

$$2 AgNO_3 + 2 NaOH = Ag_2O + 2 NaNO_3 + H_2O$$

Насыщенный раствор 10 г нитрата серебра обрабатывают в конической колбе раствором 2.5 г гидроксида натрия в 100 мл воды. Полученный темно-коричневый осадок тщательно промывают водой методом декантации, отжимают на воронке Бюхнера и сушат на воздухе при 60-80°С. Выход количественный.

Выше 100° С, а также на свету реактив разлагается на Ag и O_2 .

16.10. «МАЛИНОВЫЙ БЕНЗОЛ»

Тонко растертый КМпО₄ суспендируют при комнатной температуре в бензоле и прибавляют эквимолярное количество дициклогексано-18-крауна-6. Раствор, приготовленный таким образом, можно довести упариванием до концентрации 0.06 моль/л.

16.11. 1-ХЛОРБЕНЗОТРИАЗОЛ

К раствору 95.84 г (0.80 моль) бензотриазола в 380 мл 50%-ной уксусной кислоте добавляют по каплям при перемешивании 1280 мл (0.96 моль) 5%-ного водного раствора NaOCl. После завершения добавления раствор перемешивают еще 2 ч, выпавший осадок отфильтровывают, промывают его водой до нейтральной среды и сушат в вакуум-эксикаторе. Выход 119 г (97%), т. пл. 103-105°С.

17. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

17.1. *n*-БЕНЗОХИНОН

3 HO OH + KBrO₃
$$\longrightarrow$$
 3 O OH + KBr + 3 H₂O

Реактивы Посуда и приборы

гидрохинон 5 г плоскодонная колба на 100 мл

5%-ный раствор H_2SO_4 $2.5 \ \text{мл}$ термометр бромат калия $2.75 \ \text{г}$ колба Бунзена воронка Бюхнера

Внимание! п-Бензохинон токсичен, вызывает раздражение слизистых оболочек!

В плоскодонной колбе емкостью 100 мл растворяют 5 г (45.5 ммоль) гидрохинона в 50 мл воды, нагретой до 50°С. Раствор охлаждают до 20°С и медленно при перемешивании по каплям прибавляют 2.5 мл 5%-ного раствора серной кислоты (катализатор). Затем в реакционную смесь вносят осторожно 2.75 г (16.5 ммоль) бромата калия, помещают термометр и нагревают на водяной бане до 60°С. Начинается реакция окисления с образованием в качестве промежуточного продукта зеленоваточерного осадка хингидрона. Смесь выдерживают при 60°С в течение 20 мин. Реакция

окисления считается законченной, как только черный цвет реакционной массы изменится до ярко-желтого цвета n-бензохинона. В случае, если цвет не изменится полностью, следует добавить еще около 0.25 г бромата калия. Реакционную массу нагревают до полного растворения бензохинона (80° C), затем охлаждают до 0° C. Выпавший n-бензохинон отфильтровывают на воронке Бюхнера, промывают на фильтре небольшим количеством холодной воды и сушат на воздухе между листами фильтровальной бумаги.

Выход 4.75 г (97 %).

n-Бензохинон — кристаллическое вещество золотисто-желтого цвета, с характерным запахом; мало растворим в холодной воде (0.7% при 5°C, 1.5% при 30°C), хорошо — в горячей воде, спирте, эфире, бензоле. Летуч на воздухе, легко возгоняется, перегоняется с водяным паром, т. пл. 115-116°C.

17.2. БЕНЗОЙНАЯ КИСЛОТА (ИЗ ТОЛУОЛА)

$$\begin{array}{c} \text{CH}_{3} \\ + 2 \text{ KMnO}_{4} \\ \end{array} + 2 \text{MnO}_{2} + \text{KOH} + \text{H}_{2}\text{O} \\ \\ \text{COOK} \\ + \text{HCl} \\ \end{array}$$

5.75 мл

17 г

Реактивы

толуол перманганат калия конц. соляная кислота (d 1.19)

Посуда и приборы

колба круглодонная на 500 мл холодильник шариковый стакан на 750 мл колба коническая на 250 мл колба Бунзена воронка Бюхнера

В круглодонной колбе, снабженной шариковым холодильником, кипятят в течение 4 ч 5.75 мл (5 г, 54.1 ммоль) толуола с 350 мл воды и 17 г (107.6 ммоль) мелкорастертого КМпО₄. После завершения реакции раствор в колбе над осадком диоксида марганца должен быть бесцветным. Если реакционная смесь остается окрашенной, обесцвечивания достигают прибавлением 1 мл спирта или 0.5 г щавелевой кислоты при нагревании.

Горячий раствор фильтруют через складчатый фильтр, осадок диоксида марганца промывают небольшим количеством горячей воды. Фильтрат упаривают в стакане до

объема 50-100 мл и отфильтровывают от вновь выпавшего диоксида марганца. Промыв осадок 5 мл горячей воды, объединенный фильтрат подкисляют концентрированной соляной кислотой до кислой реакции по индикаторной бумаге. При этом осаждается бензойная кислота, которую отфильтровывают, промывают небольшим количеством холодной воды и сушат.

Выход 5 г (75%).

Бензойная кислота — бесцветное кристаллическое вещество в виде пластинок, т. возг. 100° С, т. пл. 122.4° С, т. кип. 249° С. Растворимость при 25° С (г в 100 г растворителя): в воде — 0.34 (1.77 при 70° С), абс. этаноле — 58.4, эфире — 40.8, бензоле — 12.2.

17.3. БЕНЗОЙНАЯ КИСЛОТА (ИЗ БЕНЗАЛЬДЕГИДА)

Реактивы

Посуда и приборы

		3
бензальдегид	5.75 г	колба круглодонная на 500 мл
перманганат калия	7.9 г	обратный холодильник
конц. соляная кислота (д 1.19)		фарфоровая чашка
вода	350 мл	колба Бунзена
этанол	10 мл	воронка Бюхнера

В круглодонную колбу на 500 мл помещают 350 мл воды, 7.9 г (0.05 моль) перманганата калия и 5.5 мл (54.2 ммоль, 5.75 г) бензальдегида, присоединяют обратный холодильник и кипятят на воздушной бане в течение 1 ч, предварительно поместив в колбу кипелки. Обесцвечивание фиолетовой окраски указывает на окончание реакции. Если реакционная смесь остается окрашенной, обесцвечивание достигается добавлением 1-2 мл этанола и нагреванием в течение 10 мин. Реакционную массу охлаждают, отфильтровывают на воронке Бюхнера диоксид марганца, осадок на воронке промывают дважды теплой водой (по 10-15 мл). Фильтрат упаривают до объема 50-75 мл, охлаждают и подкисляют конц. соляной кислотой до кислой реакции среды. Осадок отфильтровывают, промывают на фильтре небольшим количеством холодной воды и сушат на воздухе. Очищают бензойную кислоту перекристаллизацией из воды.

17.4. АЦЕТОН

$$3 \qquad \overset{\text{H}_{3}\text{C}}{\underset{\text{OH}}{\bigvee}} \overset{\text{CH}_{3}}{\longleftrightarrow} + \text{Na}_{2}\text{Cr}_{2}\text{O}_{7} + 4 \text{ H}_{2}\text{SO}_{4} \longrightarrow 3 \qquad \overset{\text{H}_{3}\text{C}}{\longleftrightarrow} \overset{\text{CH}_{3}}{\longleftrightarrow} + \text{Cr}_{2}(\text{SO}_{4})_{3} + 7 \text{ H}_{2}\text{O} + \text{Na}_{2}\text{SO}_{4} = 0$$

Реактивы Посуда и приборы

изопропанол 12 мл круглодонная колба на 100 мл $Na_2Cr_2O_7 \cdot 2H_2O$ 9 г обратный холодильник конц. серная кислота (d 1.84) 11 мл коническая колба на 100 мл установка для простой перегонки

В круглодонную колбу на 100 мл помещают 12 мл (9.4 г, 0.157 моль) изопропанола. и колбу соединяют с обратным холодильником. В конической колбе растворяют 9 г (0.03 моль) дихромата натрия (в виде дигидрата) в 36 мл воды и осторожно приливают к этому раствору 11 мл (20.2 г, 0.207 моль) концентрированной серной кислоты. Полученную хромовую смесь по каплям приливают через холодильник в реакционную колбу. Каждую следующую порцию окислителя добавляют, дождавшись окончания реакции (кипение в колбе должно прекратиться). Колбу нагревают на водяной бане после прибавления всего количества окислителя в течение 30 мин, охлаждают, отсоединяют колбу от обратного холодильника и собирают установку для простой перегонки, используя реакционную колбу в качестве перегонной. Ацетон отгоняют из реакционной массы, собирая фракцию, кипящую до 58°С. Приемник закрывают ватой.

Выход около 4.5 г (50%).

Ацетон — бесцветная жидкость с характерным запахом, т. кип. 56.1° C, d_4^{20} 0.7920, n_D^{20} 1.3588. Смешивается с водой и большинством органических растворителей.

17.5. АДИПИНОВАЯ КИСЛОТА

Реактивы Посуда и приборы

перманганат калия 9.15 г круглодонная колба на 250 мл

циклогексанон 2.95 г термометр

10%-ный раствор NaOH 0.6 мл обратный холодильник

конц. соляная кислота колба Бунзена

воронка Бюхнера фарфоровая чашка

К раствору 9.15 г (0.057 моль) перманганата калия в 75 мл воды прибавляют 2.95 г (0.030 моль, 3.1 мл) циклогексанона, смесь нагревают до 30°C, добавляют 0.6 мл 10%ного NaOH. В результате начавшейся экзотермической реакции температура смеси поднимается до 45°C, после чего смесь выдерживают 20 мин при этой температуре (при необходимости охлаждать). В результате реакции исчезает фиолетовая окраска и выпадает пиролюзит (MnO2). Для полного протекания реакции и коагуляции пиролюзита реакционную смесь немного кипятят (капельная проба не должна давать фиолетовую окраску, в противном случае избыток перманганата калия разлагают, добавляя немного сульфита натрия).

Осадок диокида марганца отфильтровывают, промывают водой, а фильтрат упаривают до ~ 20 мл. Горячий раствор подкисляют конц. соляной кислотой. При охлаждении до 0°C выкристаллизовывается адипиновая кислота. Через 14 ч ее отфильтровывают, промывают небольшим количеством ледяной воды и сушат на воздухе.

Выход 2.3 г (52%).

Адипиновая кислота – бесцветное кристаллическое вещество с т. пл. 153°C, т. кип. 265° С/10 мм рт. ст., легко возгоняется. Растворимость в воде (г на 100 г): 1.44 (15°С), 5.12 (40°С), 34.1 (70°С). Растворима в этаноле.

17.6. БЕНЗИЛ

Реактивы

Посуда и приборы круглодонная колба на 50 мл бензоин 7.5 г 18 г водяная баня медный купорос

пиридин 17 мл механическая мешалка

четыреххлористый углерод колба Бунзена воронка Бюхнера

Нагреванием на кипящей водяной бане готовят раствор 18 г (0.072 моль) $CuSO_4 \cdot 5H_2O$ в 17 мл пиридина и 14 мл H_2O , добавляют 7.5 г (0.035 моль) бензоина и смесь перемешивают 2 ч при нагревании на паровой бане. Реакционная смесь становится темно-зеленой, а образующийся бензил отделяется в виде жидкости (верхняя фаза).

Реакционную отфильтровывают смесь охлаждают, затвердевший промывают его водой и сушат на воздухе. Продукт перекристаллизовывают из CCl₄. Выход 6.4 г (85%).

Бензил — желтое кристаллическое вещество с т. пл. 94°C, т. кип. 346-348°C (с разл.), 183°C/10 мм рт. ст. Растворимость: (г в 100 г растворителя): в воде — 0.033 (100°C), этаноле — 4.89 (25°C), 89.6 (66°C), бензоле — 59 (25°C).

17.7. (±)2,2'-ДИГИДРОКСИ-1,1'-БИНАФТИЛ

$$_{2}$$
 $_{OH}$ + $_{2}$ FeCl $_{3}$ $_{OH}$ + $_{2}$ FeCl $_{2}$ + $_{2}$ HCl

Реактивы

 β -нафтол FeCl $_3\cdot 6H_2O$ этанол или толуол

Посуда и приборы

круглодонная колба на 500 мл

капельная воронка колба Бунзена воронка Бюхнера механическая мешалка

К кипящему раствору $2.0~\Gamma~(13.9~\text{ммоль})~\beta$ -нафтола в 250~мл воды при перемешивании медленно прикапывают раствор $3.79~\Gamma~(14.0~\text{ммоль})$ гексагидрата хлорида железа (III) в 25~мл воды. При этом образуется белый осадок бинафтола. Затем в этом же растворе растворяют еще $2.0~\Gamma~(13.9~\text{ммоль})~\beta$ -нафтола и снова прикапывают раствор $3.79~\Gamma~(14.0~\text{ммоль})~\text{FeCl}_3\cdot 6\text{H}_2\text{O}$ в 25~мл воды.

Реакционную смесь перемешивают 30 мин при 100° С, осадок бинафтола отфильтровывают и кипятят его в 250 мл воды для удаления непрореагировавшего β нафтола. После фильтрования продукт перекристаллизовывают из водного этанола или из толуола.

Выход 3.5 г (87%).

 $(\pm)2,2'$ -Дигидрокси-1,1'-бинафтил — бесцветные иглы с т. пл. 215° С.

4 г

7.58 г

17.8. ЩАВЕЛЕВАЯ КИСЛОТА

Реактивы

сахароза азотная кислота (*d* 1.38)

Посуда и приборы

коническая колба на 100 мл 29 мл фарфоровая чашка колба Бунзена воронка Бюхнера

химический стакан на 50 мл

Внимание! Во время реакции выделяются ядовитые оксиды азота, работать в вытяжном шкафу.

5 г

В конической колбе нагревают 5 г (14.6 ммоль) растертого в порошок сахара с 29 мл концентрированной азотной кислоты (d 1.38). Как только начнется выделение бурых паров NO₂, нагревание прекращают. Реакция окисления самопроизвольно протекает еще некоторое время. Затем, когда выделение бурых паров заканчивается, жидкость выливают в фарфоровую чашку и упаривают на водяной бане до небольшого объема. При охлаждении из раствора выкристаллизовывается щавелевая кислота. Ее отфильтровывают и перекристаллизовывают из воды.

Выход 2 г, считая на безводную кислоту (25%).

<u> Шавелевая кислота</u> – бесцветное вещество, кристаллизующееся с двумя молекулами воды, т. пл. дигидрата 101.5°C. Растворимость дигидрата (г в 100 мл растворителя): вода -9.5 (15°C), 120 (90°C), этанол -23.7 (15°C), диэтиловый эфир -1.37 (20°С); не растворим в хлороформе, бензоле, петролейном эфире.

Безводная щавелевая кислота плавится в запаянном капилляре при 189.5°C с разложением, возгоняется при 125°C. Растворимость (г в 100 мл растворителя): вода – 6.6, этанол -33.7, диэтиловый эфир -16.9.

17.9. п-ТОЛУИЛОВАЯ КИСЛОТА

Реактивы

Посуда и приборы

		<i>y</i> 1 1
<i>n</i> -метилацетофенон	1.1 г	плоскодонная колба на 100 мл
гидроксид натрия	5 г	круглодонная колба на 100 мл
бром	4 мл	обратный холодильник
конц. соляная кислота		химический стакан на 100 мл
		колба Бунзена
		воронка Бюхнера

Готовят раствор гипобромита натрия, смешивая 5 г (0.125 моль) твердого

гидроксида натрия, 28 мл воды, 25 г толченого льда и 4 мл (12.4 г, 77.6 ммоль) брома. Приготовленный раствор переносят в круглодонную колбу емкостью 100 мл и вносят туда 1.1 г (8.2 ммоль) n-метилацетофенона. Колбу снабжают обратным холодильником (можно воздушным) и помещают в водяную баню, нагретую до 50° С. Реакционную массу выдерживают при этой температуре, непрерывно встряхивая, в течение 30 мин. Затем содержимое колбы выливают в стакан и подкисляют конц. соляной кислотой до кислой реакции среды. Выпавшую в осадок n-толуиловую кислоту отфильтровывают, промывают на фильтре небольшими порциями холодной воды и высушивают на воздухе.

Выход около 1 г (90%).

п-Толуиловая кислота — бесцветное кристаллическое вещество с т. пл. 178-178.5°C, хорошо растворима в этаноле, хлороформе, диэтиловом эфире, ацетоне, плохо — в воде.

17.10. ИЗОМАСЛЯНЫЙ АЛЬДЕГИД

Реактивы Посуда и приборы

2-метилбутанол 40 мл трехгорлая колба на 500 мл Na₂Cr₂O₇·2H₂O 36.8 г капельная воронка

 $Na_2Cr_2O_7 \cdot 2H_2O$ 36.8 г капельная воронка серная кислота (d 1.84) 28 мл механическая мешалка

оная кислота (а 1.84) — 28 мл механическая мешалка глицериновый затвор насадка Вюрца

термометр холодильник Либиха

холодильник Либиха

алонж колба-приемник

круглодонная колба

В трехгорлую колбу, снабженную механической мешалкой с глицериновым затвором, капельной воронкой, насадкой Вюрца, к которой присоединен прямой холодильник Либиха с алонжем и приемником, помещают 40 мл (32 г, 0.42 моль) изобутилового спирта, нагревают до кипения и при интенсивном перемешивании в течение 30-40 минут по каплям приливают окислительную смесь, приготовленную из 36.8 г (0.12 моль) двухводного дихромата натрия, 28 мл (51.5 г, 0.53 моль) концентрированной серной кислоты и 250 мл воды.

Приемник охлаждают смесью снега с солью, так как отгоняющийся в процессе реакции изомасляный альдегид очень летуч. После прибавления всей окислительной смеси реакционную массу нагревают еще 20 мин. Дистиллят, собравшийся в приемнике, перегоняют, собирая фракцию от 59 до 69°С. Эту фракцию перегоняют еще

раз, собирают альдегид с т. кип. 61.5-62.5°С.

Выход около 19 г (61%).

Изомасляный альдегид — бесцветная жидкость с характерным запахом, т. пл. - 66° С, т. кип. $64.2\text{-}64.6^{\circ}$ С, d_4^{20} 0.7938, n_D^{20} 1.3730. Смешивается с органическими растворителями, растворимость в воде 10% при 20°С. Образует азеотропную смесь с водой (т. кип. 60.5° С, 5° % воды по массе).

17.11. ПИРОСЛИЗЕВАЯ КИСЛОТА

$$\begin{array}{c} \text{CHO} + 2 \text{ NaOH} + \text{Br}_2 \\ \text{COOH} \end{array} + \begin{array}{c} 2 \text{ NaBr} + \text{H}_2\text{O} \\ \text{COOH} \end{array}$$

Реактивы Посуда и приборы

фурфурол 9.6 г трехгорлая колба на 100 мл гидроксид натрия 15 г механическая мешалка

бром 5.6 мл термометр

конц. соляная кислота капельная воронка колба Бунзена воронка Бюхнера

В трехгорлой колбе с мешалкой и термометром растворяют 15 г (0.375 моль) твердого гидроксида натрия в 50 мл воды. Охлаждают раствор до 0°С смесью льда и соли и добавляют по каплям при перемешивании 5.6 мл (17.4 г, 0.109 моль) брома (температура реакционной смеси не должна превышать +5°С). К полученному раствору гипобромита в течение 1 ч добавляют по каплям 9.6 г (8.3 мл, 0.1 моль) свежеперегнанного фурфурола, поддерживая температуру ниже +5°С. Продолжают перемешивание 2 ч при той же температуре и осторожно подкисляют реакционную массу предварительно охлажденной до 0°С концентрированной соляной кислотой до кислой реакции среды. Отфильтровывают выпавший осадок, промывают его холодной подкисленной HCl водой и высушивают сначала на воздухе, а затем в вакуумэксикаторе над прокаленным хлористым кальцием.

Выход 8 г (65%).

Пирослизевая (фуран-2-карбоновая кислота) — бесцветное кристаллическое вещество с т. пл. 126-128°C, возгоняется.

17.12. АНТРАХИНОН

$$+ 2 \text{ CrO}_3 + 6 \text{ CH}_3 \text{COOH} \longrightarrow + 2 \text{ Cr(CH}_3 \text{COO)}_3 + 4 \text{H}_2 \text{O}$$

Реактивы Посуда и приборы

антрацен 1.25 г круглодонная колба на 250 мл уксусная кислота 75 мл двурогий форштос хромовый ангидрид 5 г обратный холодильник капельная воронка колба Бунзена воронка Бюхнера

В круглодонной колбе, снабженной двурогим форштосом с обратным холодильником и капельной воронкой, растворяют при кипячении 1.25 г (7 ммоль) тонко растертого антрацена в 55 мл ледяной уксусной кислоты. В течение 1 ч при постоянном кипячении прибавляют из капельной воронки раствор 5 г (50 ммоль) хромового ангидрида в 5 мл воды и 20 мл ледяной уксусной кислоты. После охлаждения реакционную смесь разбавляют 140 мл воды. Через 1 ч отфильтровывают выпавший антрахинон, промывают его водой, разбавленным раствором соды, снова водой и сушат на воздухе. Полученный сырой антрахинон перекристаллизовывают из ледяной уксусной кислоты.

Выход 1 г (70%).

Антрахинон – светло-желтые кристаллы с т. пл. 287°С. Растворимость: в этаноле – 5% (18°С), 22.5% (78°С), толуоле – 1.92% (15°С), 25.6% (100°С), воде – 0.006% (50°С).

17.13. ОКТАНАЛЬ

$$H_{3}C$$
OH
$$CrO_{3}C\overline{l}$$
 $H_{3}C$
OO

Реактивы Посуда и приборы

хлорхромат пиридиния	32.3 г	круглодонная колба на 500 мл
абс. дихлорметан	220 мл	двурогий форштос
октанол-1	13 г	механическая мешалка
абс. диэтиловый эфир	350 мл	установка для простой перегонки
силикагель	20 г	установка для перегонки в вакууме

К суспензии 32.3 г (0.15 моль) хлорхромата пиридиния в 200 мл безводного дихлорметана при тщательном перемешивании в один прием прибавляют 13 г (0.1 моль) октанола-1, растворенного в 20 мл дихлорметана. Смесь перемешивают при комнатной температуре 1.5 ч.

Затем к смеси прибавляют 200 мл безводного диэтилового эфира, эфирный раствор декантируют, черный осадок промывают эфиром (3 раза по 50 мл). Объединенные эфирные фазы фильтруют через 20 г силикагеля. Растворитель отгоняют на водяной бане, а остаток фракционируют под вакуумом водоструйного насоса на колонке Вигре длиной 20 см, собирая фракцию 63-64°С/12 мм рт. ст. Выход 10.7 г (84%).

Октаналь — бесцветная жидкость с резким запахом, при сильном разбавлении приобретает апельсиновый запах, т. пл. -27°C, т. кип. 173°C, 81°C/32 мм рт. ст., d_4^{20} 0.8211, n_D^{20} 1.4217. Растворим в большинстве органических растворителей, не растворим в воде.

17.14. ТЕРЕФТАЛЕВАЯ КИСЛОТА

COOK
$$+ 2 \text{ KMnO}_4$$
 $+ 2 \text{ MnO}_2$ $+ 2 \text{ H}_2\text{O}$ $+ 2 \text{ COOK}$

1 г 2.4 г

10 мл

Реактивы

п-толуиловая кислота перманганат калия 10%-й раствор КОН этанол конц. соляная кислота

Посуда и приборы

круглодонная колба на 100 мл двурогий форштос капельная воронка обратный холодильник колба Бунзена воронка Бюхнера коническая колба на 100 мл

В круглодонной колбе, снабженной двурогим форштосом с капельной воронкой и обратным холодильником, растворяют 1 г (7.4 ммоль) *п*-толуиловой кислоты в разбавленном растворе гидроксида калия и при кипячении постепенно прибавляют из капельной воронки раствор 2.4 г (15.2 ммоль) КМпО₄ в 50 мл воды. Смесь кипятят 3 ч.

Если малиновый цвет раствора $KMnO_4$ не исчезнет после продолжительного кипячения, то к нему по каплям добавляют этанол. Осадок MnO_2 отфильтровывают,

дважды промывают его на фильтре горячей водой (по 5 мл). Объединенные фильтраты нагревают в конической колбе почти до кипения и терефталевую кислоту осаждают из раствора, прибавляя конц. соляную кислоту до кислой реакции среды. Терефталевую кислоту отфильтровывают, промывают на фильтре водой и высушивают.

Выход около 1.1 г (90%).

Терефталевая кислота — бесцветное кристаллическое вещество, при температуре выше 300°С возгоняется, т. пл. 427°С (в запаянном капилляре). Растворимость при 25°С (г в 100 г растворителя): в воде — 0.0019, $CH_3COOH = 0.035$, $CH_3OH = 0.1$, ДМФA = 6.7, ДМСO = 20.0, $H_2SO_4 = 2.0$.

17.15. ДЕГИДРОДИВАНИЛИН

CHO CHO CHO CHO CHO
$$_{2}$$
 $_{CH_{3}O}$ $_{OH}$ $_{OH}$ $_{OCH_{3}}$ $_{OCH_{3}}$ $_{OCH_{3}}$ $_{OCH_{3}}$ $_{OCH_{3}}$ $_{OCH_{3}}$ $_{OCH_{3}}$ $_{OCH_{3}}$ $_{OCH_{3}}$

Реактивы Посуда и приборы

 ванилин
 3 г
 круглодонная колба на 500 мл

 FeSO₄·7H₂O
 0.1 г
 механическая мешалка

 персульфат натрия
 2.5 г
 колба Бунзена

 5%-ный раствор NaOH
 20 мл
 воронка Бюхнера

 соляная кислота
 химический стакан на 100 мл

В круглодонной колбе на 500 мл, снабженной механической мешалкой, растворяют при нагревании 3 г (19.7 ммоль) ванилина в 200 мл воды, раствор охлаждают до комнатной температуры и при энергичном перемешивании прибавляют сначала $0.1~\mathrm{FeSO_4\cdot7H_2O}$, потом $2.5~\mathrm{r}$ (10.5 ммоль) $\mathrm{Na_2S_2O_8}$. Через 30 мин выпавший осадок отфильтровывают и еще влажным растворяют в 20 мл 5%-ного раствора гидроксида натрия. Из полученного раствора (при необходимости фильтруют) подкислением соляной кислотой высаживают дегидродиванилин.

Выход 2.9 г (97%).

Дегидродиванилин (2,2'-дигидрокси-3,3'-диметокси-5,5'-диформилдифенил) — бесцветные кристаллы, плохо растворимые в воде и большинстве органических растворителей, т. пл. 305°C (в запаянном капилляре 315°C).

17.16. БЕНЗАЛЬДЕГИД

$$\begin{array}{c|c} CH_2OH & O \\ \hline \\ \hline \\ \hline \\ \end{array}$$

Реактивы		Посуда и приборы
бензиловый спирт	10.8 г	колба круглодонная, трехгорлая на 500
		МЛ
бензол (толуол)	160 мл	холодильник шариковый
дихромат калия	29.4 г	глицериновый затвор
насыщенный раствор NaHCO3		механическая мешалка
		двурогий форштос
		капельная воронка
		делительная воронка
		установка для фракционной перегонки

В трехгорлую колбу, снабженную обратным холодильником, капельной воронкой и термометром, помещают 10.8 г (0.1 моль) бензилового спирта, 100 мл бензола (либо толуола) и 20 мл воды. При перемешивании в течение 30 мин при 70-75°С прибавляют раствор 29.4 г (0.1 моль) дихромата калия в 100 мл воды. Смесь перемешивают при 70-75°С еще в течение 8 ч. Органическую фазу отделяют, водную экстрагируют бензолом (3 раза по 20 мл). Бензольные растворы объединяют, промывают последовательно водой, насыщенным раствором гидрокарбоната натрия, снова водой и экстракт сушат сульфатом магния. Смесь разгоняют с дефлегматором, фракция с т. кип. 176-180°С представляет собой бензальдегид, выход 9.1 г (86%).

Бензальдегид – бесцветная жидкость с запахом горького миндаля, т. пл. -26°C, т. кип. 179°C, d_4^{20} 1.046, n_D^{20} 1.5460. Растворим в спирте, плохо – в воде (~0.3%), на воздухе быстро окисляется в бензойную кислоту.

17.17. ТРИМЕТИЛУКСУСНАЯ КИСЛОТА

$$3 \stackrel{(CH_3)_3C}{\longrightarrow} \stackrel{CH_3}{\longrightarrow} + 8 \text{ CrO}_3 + 24 \text{ CH}_3\text{COOH} \longrightarrow 3 \text{ (CH}_3)_3C \stackrel{O}{\longrightarrow} + 3 \text{ CO}_2 + 8 \text{ Cr(CH}_3\text{COO)}_3 + 15 \text{ H}_2\text{O}$$

Реактивы		Посуда и приборы
пинаколин	29 г	колба круглодонная, трехгорлая на 500
		МЛ
уксусная кислота	45 мл	обратный холодильник
CrO_3	20 г	механическая мешалка

глицериновый затвор делительная воронка установка для перегонки с водяным паром установка для перегонки в вакууме

Раствор 29 г (0.29 моль) пинаколина в 15 мл ледяной уксусной кислоты помещают в трехгорлую колбу емкостью 500 мл, снабженную механической мешалкой, обратным холодильником и термометром. Затем нагревают содержимое колбы до 100°С (при 50-80°С окисление вообще не идет) и по каплям прибавляют через обратный холодильник в течение 30 мин заранее приготовленный раствор CrO₃ в водной уксусной кислоте (20 г (0.2 моль) CrO₃ растворяют в 10 мл воды и, когда растворение закончится, добавляют 25 мл ледяной уксусной кислоты). Реакционную смесь разбавляют 200 мл воды, нейтрализуют концентрированным раствором NaOH и подвергают перегонке с водяным паром. Полученную кислоту отделяют в делительной воронке, сушат над безводным CaCl₂ и перегоняют в вакууме, собирая фракцию с т. кип. 75-78°С при 20 мм рт. ст. Выход около 23 г (75%).

Триметилуксусная (пивалиновая) кислота — бесцветное кристаллическое вещество, т. пл. 35.5°C, т. кип. 164°C. Растворима в воде, спирте, диэтиловом эфире.

17.18. п-НИТРОАЦЕТОФЕНОН

Реактивы		Посуда и приборы
<i>n</i> -нитроэтилбензол	15.1 г	колба круглодонная, трехгорлая на 500
		МЛ
$Mg(NO_3)_2 \cdot 6H_2O$	50 г	механическая мешалка
перманганат калия	25 г	колба Бунзена
		воронка Бюхнера

В круглодонную трехгорлую колбу емкостью 500 мл, снабженную мешалкой, термометром и обратным холодильником, помещают раствор 50 г (0.194 моль) гексагидрата нитрата магния в 200 мл воды и 15.1 г (0.1 моль) n-нитроэтилбензола. Смесь подогревают до температуры 60° С и, при энергичном перемешивании, небольшими порциями добавляют к ней 25 г (0.16 моль) хорошо измельченного перманганата калия, прибавляя каждую следующую порцию только после

обесцвечивания раствора. По окончании добавления перманганата смесь перемешивают при температуре 60°С еще в течение 2 ч, затем повышают температуру до 90°С и быстро фильтруют горячей через воронку Бюхнера. Осадок диоксида марганца тщательно промывают небольшим количеством кипящей воды. Из фильтрата выделяется масло, которое при охлаждении затвердевает. Выделившиеся кристаллы отфильтровывают и сушат на воздухе. Выход ~ 7 г (42%).

n-Нитроацетофенон — светло-желтое кристаллическое вещество с т. пл. 78-80°С, т. кип. 138°С при 1.5 мм рт. ст.

17.19. ЦИКЛОГЕКСАНОН

Реактивы		Посуда и приборы
циклогексанол	12.5 г	колба круглодонная, трехгорлая на 500
		МЛ
диэтиловый эфир	65 мл	капельная воронка
дихромата натрия дигидрат	11.5 г	стакан на 250 мл
конц. серная кислота	10 мл	механическая мешалка
карбонат калия		колба Бунзена
_		воронка Бюхнера
		установка для простой перегонки

В трехголую колбу вместимостью 500 мл, снабженную мешалкой, капельной воронкой и термометром, помещают 12.5 г (0.125 моль, 13.3 мл) циклогексанола и 15 мл диэтилового эфира. Содержимое колбы охлаждают до 0-5°C в бане со льдом. Отдельно в стеклянном стакане растворяют 11.5 г (0.039 моль) дихромата натрия (в виде дигидрата) в 125 мл воды. К полученному раствору осторожно приливают 10 мл (18.4 г, 0.188 моль) концентрированной серной кислоты. Окислительную смесь охлаждают до 4°C, переносят в капельную воронку и постепенно при перемешивании раствору циклогексанола. Температуру реакционной прибавляют поддерживают в интервале 3-5°C. После прибавления всего количества окислителя перемешивание продолжают в течение 3 ч при комнатной температуре. Затем смесь переносят в делительную воронку и экстрагируют диэтиловым эфиром 2 раза по 25 мл. Эфирные вытяжки объединяют, встряхивают с небольшим количеством безводного карбоната калия, фильтруют через слой карбоната калия и сушат сульфатом натрия.

Высушенный раствор переносят в колбу Вюрца и отгоняют эфир на водяной бане. Затем на воздушной бане с воздушным холодильником перегоняют циклогексанон,

собирая фракцию с т. кип. 153-156°C.

этилацетат

Циклогексанон — бесцветная маслянистая жидкость с резким запахом, т. кип. 156° C, d_4^{20} 0.9478, n_D^{20} 1.4507; растворим в этаноле, диэтиловом эфире, мало растворим в воде.

17.20. 1-АЗА-8,9-БЕНЗЦИКЛОНОНЕНДИОН-2,7

$$+ 2 \text{ NaIO}_4 + 2 \text{ NaIO}_3$$

Реактивы Посуда и приборы 1,2,3,4-тетрагидрокарбазол 2.52 г колба плоскодонная на 250 мл этанол 75 мл делительная воронка метапериодат натрия 6.92 г установка для простой перегонки дихлорметан колба Бунзена

Раствор 2.52 г (14.7 ммоль) тетрагидрокарбазола в 75 мл этанола добавляется к раствору 6.92 г (3.23 ммоль) метапериодата натрия в 35 мл воды. При этом раствор становится теплым и начинает выпадать иодат натрия в виде бесцветных игл. Через 2.5

ч водный раствор экстрагируют хлористым метиленом, экстракт сушат безводным Na_2SO_4 , растворитель отгоняют на водяной бане. Остаток перекристаллизовывают из этилацетата. Выход $2.38\ \Gamma$ (80%).

1-Аза-8,9-бензциклононендион-2,7 — бесцветное кристаллическое вещество, т. пл. 156-157°C.

17.21. БЕНЗИМИДАЗОЛ-2-СУЛЬФОКИСЛОТА

воронка Бюхнера

Реактивы	Посуда и приборы

2-меркаптобензимидазол 7.5 г колба круглодонная, трехгорлая на 100 мл

мешалка

NaOH 4 г капельная воронка

30%-ный раствор H_2O_2 $30\ мл$ термометр конц. соляная кислота колба Бунзена ацетон воронка Бюхнера

В трехгорлой колбе, снабженной мешалкой, термометром и капельной воронкой (Не допускать герметичности прибора!), растворяют 7.5 г (0.05 моль) 2-меркаптобензимидазола в растворе 4 г (0.1 моль) NaOH в 200 мл воды. Полученный раствор охлаждают до 20° С и прибавляют к нему по каплям при энергичном перемешивании и охлаждении ледяной водой 30 мл 30° -ного раствора H_2O_2 с такой скоростью, чтобы температура реакционной массы не поднималась выше $37\text{-}40^{\circ}$ С. Первые 10-15 мл пероксида водорода необходимо добавлять особенно осторожно, так как вследствие сильного разогревания возможен выброс реакционной массы. По окончании прибавления H_2O_2 смесь перемешивают при комнатной температуре еще 4 ч, а затем оставляют на ночь. Далее раствор при необходимости фильтруют и подкисляют конц. HCl до pH 1-2. Белоснежный осадок бензимидазол-2-сульфокислоты отфильтровывают из охлажденного раствора, тщательно промывают ледяной водой, ацетоном и высушивают при $100\text{-}120^{\circ}$ С.

Выход около 7 г (70%), т. пл. 365-368°C.

18. ВОПРОСЫ И УПРАЖНЕНИЯ ДЛЯ САМОКОНТРОЛЯ

1. Составьте уравнения реакций:

a)
$$OH$$

$$+ HNO_{3}$$

$$KOHII$$

$$+ Na_{2}Cr_{2}O_{7} + H_{2}SO_{4}$$

$$+ Na_{2}Cr_{2}O_{7} + H_{2}SO_{4}$$

$$+ CH_{3}$$

$$+ SeO_{2}$$

$$+ CH_{3}$$

$$+ CH_{3}$$

$$H_{3}C$$

$$OH$$

$$CH_{3}$$

$$CH_{3}$$

$$H_{4}C$$

$$OH$$

$$CH_{3}$$

$$H_{5}C$$

$$OH$$

$$CH_{3}$$

$$H_{5}C$$

$$H_{5}C$$

$$H_{5}C$$

$$H_{5}C$$

$$H_{5}C$$

$$H_{5}C$$

$$H_{5}C$$

$$H_{5}C$$

$$H_{5}C$$

$$H_{7}C$$

$$H_{7$$

- 2. Почему акролеин превращается в эпоксид под действием надкислот значительно медленнее и в более жестких условиях, чем пропен?
 - 3. Расположите соединения в ряд по увеличению скорости в реакции Прилежаева:

4. Из каменноугольной смолы выделен углеводород состава C_9H_8 , который взаимодействует с водным раствором брома с образованием дибромида $C_9H_8Br_2$; вступает в реакцию с озоном в мольном соотношении 1:4, образуя тетраозонид; при восстановительном гидролизе последнего получены следующие вещества:

Установите строение углеводорода.

- 5. Почему аутоокисление простых эфиров протекает в α-положение к атому кислорода?
- 6. Почему муравьиная кислота легко окисляется, отличаясь этим от других карбоновых кислот? Напишите схему реакции.
- 7. Какие из приведенных ниже соединений будут подвергаться галоформному расщеплению под действием I₂ в присутствии водного раствора Na₂CO₃:

- 8. Какие продукты образуются при действии аммиачного раствора оксида серебра на бутилформиат?
 - 9. Почему фенол и анилин темнеют на воздухе, а бензол не темнеет?
- 10. Назовите несколько способов превращения первичного спирта в альдегид с тем же числом атомов углерода. Почему окисление первичного спирта бекмановской смесью применимо для получения альдегидов C_2 - C_5 и мало пригодно для получения, например, альдегида C_{10} ?
 - 11. Из n-ацетилэтилбензола получите: а) n-диацетилбензол и б) n-этилбензойную

кислоту.

- 12. Установите строение вещества $C_7H_{12}O$, если при его окислении диоксидом селена образуется смесь двух веществ $C_7H_{10}O_2$, а при действии горячей концентрированной азотной кислоты смесь 2- и 3-метиладипиновых кислот.
 - 13. Предложите механизм следующей реакции:

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Реутов О.А., Курц А.Л., Бутин К.П.* Органическая химия. В 4-х ч. М.: Изд-во БИНОМ. Лаборатория знаний, 2004.
- 2. Шабаров Ю.С. Органическая химия: 3-е изд., испр. М.: Химия, 2000.
- 3. *Травень В.Ф.* Органическая химия: Учебник для вузов: В 2 т. М.: Академкнига, 2004.
- 4. *Титце Л.Ф., Айхер Т.* Препаративная органическая химия /Пер. с нем. М.: Мир, 1999. 704 с.
- 5. *Юрьев Ю.К.*, *Левина Р.Я.*, *Шабаров Ю.С*. Практические работы по органической химии. Выпуск IV. М.:Изд. МГУ, 1969. 255 с.
- 6. *Марч Д*. Органическая химия: В 4-х т./Пер. с англ. М.: Мир, 1987. Т. 4. 470 с.
- 7. Терней А. Современная органическая химия: В 2-х т. М.: Мир, 1981.
- 8. Органикум: Практикум по органической химии: В 2 т. / Пер. с нем. М.: Мир, 1979.
- 9. Хейнс А. Методы окисления органических соединений: Алканы, алкены, алкины и арены: Пер. с англ. М.: Мир, 1988.
- 10. Препаративная органическая химия: Пер. с польского М.: ГХИ, 1959.
- 11. Бюлер К., Пирсон Д. Органические синтезы. М.: Мир, 1973. Ч.1, 620 с. Ч.2, 591 с.

Учебное издание

ОСЯНИН Виталий Александрович КЛИМОЧКИН Юрий Николаевич

ВОССТАНОВЛЕНИЕ

Редактор С. И. Костерина Технический редактор В. Ф. Елисеева Оригинал-макет Е. Э. Парсаданян

Подп. в печать 02.05.06 Формат 60х84 1/16. Бумага офсетная. Печать офсетная. Усл.п.л. 4,88. Усл.кр.-отт. 4,88. Уч.-изд.л. 4,79 Тираж 100 экз. С.-115

Государственное образовательное учреждение высшего профессионального образования «Самарский государственный технический университет»

443100. г. Самара, ул. Молодогвардейская, 244. Главный корпус Отпечатано в типографии Самарского государственного технического университета 443100. г. Самара, ул. Молодогвардейская, 244. Корпус №8