Titanic Survival Prediction Using Logistic Regression

In [1]: #import Libraries In [2]: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt

Load the Data

In [3]: |titanic_data = pd.read_csv("Titanic Dataset.csv")

In [4]: titanic_data

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embar
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	
413	1305	0	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	
414	1306	1	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	
415	1307	0	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	
416	1308	0	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	
417	1309	0	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN	
418 r	ows × 12 colu	ımns										

In [5]: # Length of Data len(titanic_data)

Out[5]: 418

View the data using head function which return top 5 rows

In [6]: titanic_data.head()

Out[6]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

```
In [7]: titanic_data.index
```

Out[7]: RangeIndex(start=0, stop=418, step=1)

```
In [8]: titanic_data.columns
```

summary of the DataFrame

In [9]: titanic_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 12 columns):

Ducu	COTAMM13 (COC.	ar re coramns).	
#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Survived	418 non-null	int64
2	Pclass	418 non-null	int64
3	Name	418 non-null	object
4	Sex	418 non-null	object
5	Age	332 non-null	float64
6	SibSp	418 non-null	int64
7	Parch	418 non-null	int64
8	Ticket	418 non-null	object
9	Fare	417 non-null	float64
10	Cabin	91 non-null	object
11	Embarked	418 non-null	object
dtype	es: float64(2), int64(5), obj	ect(5)

memory usage: 39.3+ KB

[10]:	titanic_data.	dtypes	
out[10]:	PassengerId	int64	
	Survived	int64	
	Pclass	int64	
	Name	object	
	Sex	object	
	Age	float64	
	SibSp	int64	
	Parch	int64	
	Ticket	object	
	Fare	float64	
	Cabin	object	
	Embarked	object	
	dtype: object	:	

In [11]: titanic_data.describe()

Out[11]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	0.363636	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.481622	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	0.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	0.000000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	0.000000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	1.000000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	1.000000	3.000000	76.000000	8.000000	9.000000	512.329200

Explaining Datasets

survival : Survival 0 = No, 1 = Yes

pclass: Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd

sex : Sex

Age: Age in years

sibsp: Number of siblings / spouses aboard the Titanic

parch # of parents / children aboard the Titanic

ticket: Ticket number fare Passenger fare cabin Cabin number

embarked : Port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton

Data Analysis

import Seaborn for visually analysing the data

Find out how many survived vs Died using countplot method of seaborn

In [12]: #countplot of survived vs not survived

```
In [13]: sns.countplot(x='Survived', data=titanic_data)
```

Out[13]: <Axes: xlabel='Survived', ylabel='count'>

Male vs Female Survival

Only Females are Survived and Male are not Survived as per the countplot

**See age group of passengeres travelled **

Note: We will use displot method to see the histogram. However some records does not have age hence the method will throw an error. In order to avoid that we will use dropna method to eliminate null values from graph

Check for null

In [16]: titanic_data.isna()

Out[16]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	False	False	False	False	False	False	False	False	False	False	True	False
1	False	False	False	False	False	False	False	False	False	False	True	False
2	False	False	False	False	False	False	False	False	False	False	True	False
3	False	False	False	False	False	False	False	False	False	False	True	False
4	False	False	False	False	False	False	False	False	False	False	True	False
413	False	False	False	False	False	True	False	False	False	False	True	False
414	False	False	False	False	False	False	False	False	False	False	False	False
415	False	False	False	False	False	False	False	False	False	False	True	False
416	False	False	False	False	False	True	False	False	False	False	True	False
417	False	False	False	False	False	True	False	False	False	False	True	False

418 rows × 12 columns

Check how many values are null

In [17]: titanic_data.isna().sum()

Out[17]: PassengerId 0 Survived Pclass 0 Name 0 0 Sex 86 Age SibSp 0 Parch 0 Ticket Fare 1 Cabin 327 Embarked dtype: int64

Visualize null values help of Heatmap

```
In [18]: sns.heatmap(titanic_data.isna())
```

Out[18]: <Axes: >

find the % of null values in age column

```
In [19]: (titanic_data['Age'].isna().sum()/len(titanic_data['Age']))*100
```

Out[19]: 20.574162679425836

find the % of null values in cabin column

```
In [20]: (titanic_data['Cabin'].isna().sum()/len(titanic_data['Cabin']))*100
```

Out[20]: 78.22966507177034

find the distribution for the age column

```
In [21]: sns.displot(x='Age', data=titanic_data)
```

Out[21]: <seaborn.axisgrid.FacetGrid at 0x2303ac93910>

Data Cleaning

Fill the missing values

we will find the missing values for age. In order to fill missing values we use fillna method. For now we will fill the missing age by taking average of all age.

fill age column

```
In [22]: titanic_data['Age'].fillna(titanic_data['Age'].mean(), inplace=True)
```

verify null values

```
In [23]: titanic_data['Age'].isna().sum()
Out[23]: 0
```

Alternatively we will visualise the null value using heatmap.

we will use heatmap method by passing only records which are null.

In [24]: #visualize null values again

In [25]: sns.heatmap(titanic_data.isna())

Out[25]: <Axes: >

we can see the cabin column has a number of null values, as such we can not use it for prediction. Hence we will drop it.

In [26]: #drop cabin column
In [27]: titanic_data.drop('Cabin', axis=1, inplace=True)
In [28]: #see the content of data
In [29]: titanic_data.head()
Out[29]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	Q
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	S
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	Q
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	S
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindavist)	female	22.0	1	1	3101298	12.2875	S

Preaparing Data for Model

No we will require to convert all non-numerical columns to numeric. Please note this is required for feeding data into model. Lets see which columns are non numeric info describe method

```
In [30]: #Check for the non-numeric column
In [31]: titanic_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 418 entries, 0 to 417
         Data columns (total 11 columns):
          # Column
                          Non-Null Count Dtype
         ---
                          _____
          0
             PassengerId 418 non-null
                                          int64
                          418 non-null
          1
             Survived
                                         int64
          2
             Pclass
                          418 non-null
                                          int64
          3
             Name
                          418 non-null
                                          object
          4
              Sex
                          418 non-null
                                          object
          5
              Age
                          418 non-null
                                          float64
          6
             SibSp
                          418 non-null
                                          int64
          7
             Parch
                          418 non-null
                                          int64
          8
             Ticket
                          418 non-null
                                          object
          9
                          417 non-null
                                          float64
             Fare
          10 Embarked
                          418 non-null
                                          object
         dtypes: float64(2), int64(5), object(4)
         memory usage: 36.0+ KB
In [32]: titanic_data.dtypes
Out[32]: PassengerId
                         int64
         Survived
                         int64
         Pclass
                         int64
         Name
                        object
         Sex
                        object
                       float64
         Age
                         int64
         SibSp
         Parch
                         int64
         Ticket
                        object
         Fare
                       float64
         Embarked
                        object
         dtype: object
```

We can see, Name, Sex, Ticket and Embarked are non-numerical.It seems Name,Embarked and Ticket number are not useful for Machine Learning Prediction hence we will eventually drop it. For Now we would convert Sex Column to dummies numerical values**

```
In [33]: #convert sex column to numerical values
In [34]: gender=pd.get_dummies(titanic_data['Sex'],drop_first=True)
In [35]: titanic_data['Gender']=gender
```

```
In [36]: titanic_data.head()
#Here, in Gender male=1 & female=0
```

Out[36]:

```
Passengerld Survived Pclass
                                       Name
                                                 Sex Age SibSp Parch
                                                                             Ticket
                                                                                        Fare Embarked Gender
                                     Kelly, Mr.
0
           892
                        0
                                3
                                                                            330911
                                                                                      7.8292
                                                                                                      Q
                                                male
                                                      34.5
                                                                 0
                                                                        0
                                                                                                                1
                                       James
                                      Wilkes,
                                         Mrs.
                                                                                                      S
1
           893
                        1
                                3
                                       James
                                              female 47.0
                                                                 1
                                                                        0
                                                                            363272
                                                                                      7.0000
                                                                                                               0
                                       (Ellen
                                      Needs)
                                    Myles, Mr.
2
           894
                        0
                                2
                                      Thomas
                                                male 62.0
                                                                 0
                                                                            240276
                                                                                      9.6875
                                                                                                      Q
                                                                                                               1
                                      Francis
                                     Wirz, Mr.
3
           895
                        0
                                                male 27.0
                                                                 0
                                                                            315154
                                                                                      8.6625
                                                                                                      S
                                                                                                               1
                                       Albert
                                    Hirvonen,
                                         Mrs.
                                                                                                      S
4
           896
                        1
                                                                                                               0
                                    Alexander
                                              female 22.0
                                                                 1
                                                                        1 3101298 12.2875
                                     (Helga E
                                    Lindqvist)
```

```
In [37]: #drop the column which are not require
```

```
In [38]: titanic_data.drop(['Name','Sex','Ticket','Embarked'], axis=1, inplace=True)
```

In [39]: |titanic_data.head()

Out[39]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare	Gender
0	892	0	3	34.5	0	0	7.8292	1
1	893	1	3	47.0	1	0	7.0000	0
2	894	0	2	62.0	0	0	9.6875	1
3	895	0	3	27.0	0	0	8.6625	1
4	896	1	3	22.0	1	1	12.2875	0

```
In [40]: titanic_data.isna().sum()
```

Out[40]: PassengerId 0 Survived 0 **Pclass** 0 Age 0 SibSp 0 Parch 0 Fare 1 Gender 0

dtype: int64

```
In [43]: # Fill null value with average in Fare Column
titanic_data['Fare'].fillna(titanic_data['Fare'].mean(), inplace=True)
```

In [44]: #Seperate Dependent and Independent variables

```
In [45]: x=titanic_data[['PassengerId','Pclass','Age','SibSp','Parch','Fare','Gender']]
y=titanic_data['Survived']
```

```
In [46]: x
```

Out[46]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare	Gender
0	892	3	34.50000	0	0	7.8292	1
1	893	3	47.00000	1	0	7.0000	0
2	894	2	62.00000	0	0	9.6875	1
3	895	3	27.00000	0	0	8.6625	1
4	896	3	22.00000	1	1	12.2875	0
413	1305	3	30.27259	0	0	8.0500	1
414	1306	1	39.00000	0	0	108.9000	0
415	1307	3	38.50000	0	0	7.2500	1
416	1308	3	30.27259	0	0	8.0500	1
417	1309	3	30.27259	1	1	22.3583	1

418 rows × 7 columns

Data Modeling

Building Model using Logistic Regression

Build the model

```
In [48]: #import train test split method
In [49]: from sklearn.model_selection import train_test_split
In [50]: #train test split
In [51]: X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
In [52]: #import logistic Regression
In [53]: from sklearn.linear_model import LogisticRegression
In [54]: #fit Logistic Regression
```

Testing

See how our model is performing

```
#print confusion matrix
In [60]:
         from sklearn.metrics import confusion_matrix
In [61]:
In [62]:
         pd.DataFrame(confusion_matrix(y_test,predict),columns=['Predicted No','Predicted Yes'],
                       index=['Actual No','Actual Yes'])
Out[62]:
                    Predicted No Predicted Yes
           Actual No
                             92
          Actual Yes
                              0
                                         46
         #import classification report
In [63]:
In [64]:
         from sklearn.metrics import classification_report
In [65]: print(classification_report(y_test, predict))
                        precision
                                      recall f1-score
                                                          support
                     0
                              1.00
                                        1.00
                                                   1.00
                                                               92
                     1
                              1.00
                                        1.00
                                                   1.00
                                                               46
                                                   1.00
                                                              138
              accuracy
                             1.00
                                        1.00
                                                   1.00
                                                              138
             macro avg
          weighted avg
                              1.00
                                        1.00
                                                   1.00
                                                              138
```

Precision is fine considering Model Selected and Available Data. Accuracy can be increased by further using more features (which we dropped earlier) and/or by using other model

Note:

Precision: Precision is the ratio of correctly predicted positive observations to the total predicted positive observations Recall: Recall is the ratio of correctly predicted positive observations to the all observations in actual class F1 score - F1 Score is the weighted average of Precision and Recall.