Machines in increasing order of complexity

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe machines in increasing order of complexity.

The paper ends with "The End"

Introduction

Machines, both simple and complex, exist in many economies. In this paper, I describe machines in increasing order of complexity.

Algorithmic machines

Algorithmic machines can be described by

$$O = A[I]$$

$$I = A^{-1}[O]$$

where

I is the input

A is the algorithm

O is the output

 ${\cal A}^{-1}$ is the reverse-algorithm

Kingdom machines

Kingdom machines can be described by

$$f(K,Q) = 0$$

$$K = M[I, O]$$

$$Q = N[O, I]$$

where

f is the function

K is the king

Q is the queen

M is the map

I is the input

O is the output

N is the reverse-map

Regular machines

Regular machines can be described by

$$O = X[I, C]$$

$$C = Y[O, I]$$

$$I=Z[C,O]$$

where

I is the input

 ${\cal C}$ is the control

O is the output

X is the actuator

Y is the connection

Z is the feedback

Irregular machines

Irregular machines can be described by

$$R = \Delta_1 \left[I_1, C_1, O_1 \right]$$

$$R = \Delta_2 \left[I_2, C_2, O_2 \right]$$

where

R is the resistance

 Δ_1 is the primary daemon

 I_1 is the primary input

 C_1 is the primary control

 O_1 is the primary output

 Δ_2 is the secondary daemon

 I_2 is the secondary input

 C_2 is the secondary control

 O_2 is the secondary output

Generative machines

Generative machines can be described by

$$N_1 = E_1 [I_1, C_1, O_1, N_2]$$

$$N_2 = E_2 [I_2, C_2, O_2, N_1]$$

where

 E_1 is the primary economics

 I_1 is the primary input

 C_1 is the primary control

 O_1 is the primary output

 N_1 is the primary numeriare

 E_2 is the secondary economics

 I_2 is the secondary input

 C_2 is the secondary control

 O_2 is the secondary output

 N_2 is the secondary numeriare

Empirical machines

Empirical machines can be described by

$$M = M_{1,2} = M_{2,1}$$

$$N_1 = E_1 [I_1, C_1, O_1, N_2, M, Y_1]$$

$$N_2 = E_2 [I_2, C_2, O_2, N_1, M, Y_2]$$

 $_{
m where}$

M is the market common to both the primary and secondary economies $M_{1,2}$ is the primary market in the secondary economy $M_{2,1}$ is the secondary market in the primary economy

 E_1 is the primary economics I_1 is the primary input C_1 is the primary control O_1 is the primary output N_1 is the primary numenaire Y_1 is the primary information E_2 is the secondary economics I_2 is the secondary input C_2 is the secondary output O_2 is the secondary output O_2 is the secondary numenaire O_2 is the secondary numenaire O_2 is the secondary information

Complete machines

Complete machines can be described by

$$\lim_{t \to \infty} F_{1 \to 2}(t) = \lim_{t \to \infty} F_{2 \to 1}(t) = \infty$$

$$M = M_{1 \to 2} = M_{2 \to 1}$$

$$N_1 = \mathfrak{E}_1 \left\{ E_1 \left[F_{2 \to 1}(t), I_1, C_1, O_1, N_2, m_1, M, Y_1 \right] \right\}$$

$$N_2 = \mathfrak{E}_2 \left\{ E_2 \left[F_{1 \to 2}(t), I_2, C_2, O_2, N_1, m_2, M, Y_2 \right] \right\}$$

where

 $F_{1\to 2}(t)$ is the primary economy's financing of the secondary economy $F_{2\to 1}(t)$ is the secondary economy's financing of the primary economy M is the market common to both the primary and secondary economies $M_{1\to 2}$ is the primary market in the secondary economy $M_{2\to 1}$ is the secondary market in the primary economy

 \mathfrak{E}_1 is the primary engineering E_1 is the primary economics I_1 is the primary input C_1 is the primary control O_1 is the primary output N_1 is the primary numeriare m_1 is the primary memory Y_1 is the primary information \mathfrak{E}_2 is the secondary engineering E_2 is the secondary economics I_2 is the secondary input C_2 is the secondary control O_2 is the secondary output N_2 is the secondary numeriare m_2 is the secondary memory Y_2 is the secondary information

The End