$ \begin{array}{c} \sigma_{1}^{\#1} \\ \sigma_{1}^{\#2} \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{matrix} \sigma_1^{\#2} \\ \sigma_1^{\#2} \\ 0 \end{matrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \sigma_{1}^{\#1} & \\ 0 & \\ 0 & \\ \frac{2}{k^2 (r_3 + 2 r_5)} \end{array} $		$\begin{bmatrix} t_1^{\#1} \\ 0 \end{bmatrix}$	
	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
	0	0	0	0	0	0
	0	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$

				ďώ	kt3		
$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3}$ \bar{l} kt_3	$\frac{1}{3}\vec{l}\sqrt{2}.$	0	$\frac{2k^2t_3}{3}$
$f_{1^{ ext{-}}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	٤ <u>3</u>	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_1^{\#1}{}_{\alpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 <i>ikt</i> 3 3
$f_{1}^{\#1}_{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{+}\alpha\beta$	0	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#2} + ^{\alpha\beta}$	$f_{1}^{\#1} + \alpha\beta$	$\omega_1^{\#_1} +^\alpha$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} \dagger^{lpha}$

Unitarity conditions
$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} r_5 > -2 r_3) r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$

(No massive particles)

Lagrangian density

	#	1	τ	1	3	3	3	3	2	2	25
Source constraints	SO(3) irreps	$\sigma_{0}^{#1} == 0$	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_1^{\#1}{}^{\alpha\beta} == 0$	$\sigma_{1+}^{\#2}\alpha\beta==0$	$\sigma_{2^{-}}^{\#1}\alpha\beta\chi == 0$	$\tau_{2+}^{\#1}\alpha\beta=0$	Total #:

 $^{\alpha}_{}\partial^{\lambda}\omega^{\theta\kappa}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2^+}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

 $\sigma_{2}^{\#1}$ $aeta_{\chi}$

0

0

	$\omega_{0}^{\#1}$	0	0	0	0	
	$f_{0}^{\#2}$	0	0	0	0	
	$f_0^{\#1}$	-i $\sqrt{2}$ kt ₃	$2k^2t_3$	0	0	
$^{lphaeta\chi}$ $\sigma_{lphaeta\chi}$	$\omega_{0}^{\#1}$	t_3	<u>i</u> √2 kt₃	0	0	
Added source term: $\left f^{lphaeta}\; \iota_{lphaeta} + \omega^{lphaeta\chi}\; \sigma_{lphaeta\chi} ight $		$\omega_{0}^{\#1}\dagger$	$f_{0}^{#1}$ †	$f_0^{#2} +$	$\omega_{0}^{\#1}\dagger$	
$\left\ f^{\alpha eta} \right\ $			$\sigma_0^{\!\#}$	1+		$\tau_0^{\#_2}$
term	$\sigma_{0}^{\#1}$	+ -	$\frac{1}{1+2k^2}$	$(2)^2 t_3$	- (1-	i √2 +2 k
source	$ au_{0}^{\#1}$		$i \sqrt{2}$ $1+2k^2$	$\frac{2}{k}$ $(t_3)^2 t_3$	(1+	$2k^2$
ged s	$ au_0^{\#2}$ $\sigma_0^{\#1}$	†	0			0
Adc	$\sigma_0^{\#1}$	+	0			0

	\sim	1 411						
$f_{0}^{\#1}$	-i √2 k	$2 k^2 t_{\bar{z}}$	0	0		$\tau_{2}^{\#1}_{\alpha\beta}$	0	
$\omega_{0}^{\#1}$	t_3	$i\sqrt{2}kt_3$	0	0		$\sigma_{2}^{\#1}$	$\alpha\beta$ - $\frac{2}{2}$	3 k ² r ₃
	$\omega_{0}^{\#1}$ \dagger	+	$f_{0}^{#2} +$	$\omega_{0^-}^{\#1} \dagger$			$\sigma_{2+}^{*1} + \alpha$	z''
	_	$\sigma_0^{\!\#}$	·1 +		$\tau_{0}^{\#1}$		$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$	+	$\frac{1}{(1+2k^2)}$	$(2)^2 t_3$	- (1-	<i>i</i> √2 ⊦2 k ²	$\frac{k}{(t_3)^2 t_3}$	0	0
$\tau_{0}^{\#1}$	†	$i\sqrt{2}$ $(1+2k^2)$		(1+	$2k^2$ $2k^2$)	2 _{t2}	0	0

_	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$	
r ₀ #1 †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0	
-#1 0+ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	
t ₀ ^{#2} †	0	0	0	0	
r#1 +	0	0	0	0	