1

Assignment 3

Taha Adeel Mohammed - CS20BTECH11052

Download all python codes from

https://github.com/Taha-Adeel/AI1103/blob/main/ Assignment_3/codes/assignment3.py

and latex-tikz codes from

https://github.com/Taha-Adeel/AI1103/tree/main/ Assignment_3

1 Problem (GATE 2008 (CS), Q.27)

Aishwarya studies either computer science or mathematics everyday. If she studies computer science on a day, then the probability she studies mathematics the next day is 0.6. If she studies mathematics on a day, then the probability she studies computer science the next day is 0.4. Given that Aishwarya studies computer science on Monday, what is the probablity she studies computer science on Wednesday?

2 Solution (GATE 2008 (CS), Q.27)

Consider the following parameters

Parameter	Definition	Value
S	State space (i.e possible states she can be in.)	$S = \{1, 2\}$, where 1 and 2 represents her studying CS or maths respec- tively on that day.
$\{X_0,X_1,\dots\}$	Random variables(which form a	
	markov chain) where $X_i \in S$ represents her studying CS or maths on the i th day(i =0 for Monday)	
Р	The one step state transi- tion matrix (The elements $p_{ij} = \Pr(X_{n+1} = j X_n = i)$)	$P = x_n \begin{cases} 1 & 2 \\ 2 & 0.6 \\ 0.4 & y \end{cases}$ (2.0.1)

As $X_n = 0$ and $X_n = 1$ are mutually exclusive, we can easily calculate x and y.

$$x = \Pr(X_{n+1} = 0 | X_n = 0) = 1 - \Pr(X_{n+1} = 1 | X_n = 0)$$

$$= 0.4 \qquad (2.0.2)$$

$$y = \Pr(X_{n+1} = 1 | X_n = 1) - 1 - \Pr(X_{n+1} = 0 | X_n = 1)$$

$$y = \Pr(X_{n+1} = 1 | X_n = 1) = 1 - \Pr(X_{n+1} = 0 | X_n = 1)$$

= 0.6 (2.0.3)

Markov Diagram

Given that her initial state is $X_0 = 1$ (: she studies CS on Monday(n=0)).

The $\Pr(X_{n+t} = j | X_n = i)$ is given by the (i, j)th position of P^t . Therefore $\Pr(X_2 = 1 | X_0 = 1)$ (: n=2 for Wednesday) is the (1, 1)th position of P^2 .

$$P^{2} = \begin{bmatrix} 0.4 & 0.6 \\ 0.4 & 0.6 \end{bmatrix} \times \begin{bmatrix} 0.4 & 0.6 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.4 & 0.6 \\ 0.4 & 0.6 \end{bmatrix}$$
 (2.0.4)

 \therefore The probability she studies computer science on Wednesday is $P_{11}^2 = 0.4$.

(Ans: Option (C))