1 Typing Rules

 $\Theta; \Delta; \Gamma \vdash e : t$ Typing rules for expressions

$$\begin{array}{c} \overline{\Theta;\Delta;\cdot,x:t\vdash x:t} & \mathrm{TY_VAR_LIN} \\ \\ \frac{x:t\in\Delta}{\Theta;\Delta;\vdash x:t} & \mathrm{TY_VAR} \\ \\ \frac{\Theta;\Delta;\Gamma\vdash e:t}{\Theta;\Delta;\Gamma',x:t\vdash e':t'} & \mathrm{TY_LET} \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,x=e\,\mathrm{in}\,e':t'} & \mathrm{TY_LET} \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,x=e\,\mathrm{in}\,e':t'} & \mathrm{TY_UNIT_INTRO} \\ \\ \Theta;\Delta;\Gamma\vdash e:\mathrm{unit} & \\ \overline{\Theta;\Delta;\Gamma\vdash \mathrm{let}\,()=e\,\mathrm{in}\,e':t}} & \mathrm{TY_UNIT_ELIM} \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash \mathrm{let}\,()=e\,\mathrm{in}\,e':t}} & \mathrm{TY_BOOL_TRUE} \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash \mathrm{let}\,()=e\,\mathrm{in}\,e':t'} & \mathrm{TY_BOOL_FALSE} \\ \hline \\ \Theta;\Delta;\Gamma'\vdash e:\mathrm{ltool} & \\ \overline{\Theta;\Delta;\Gamma'\vdash e:t'} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma'\vdash e:t'} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash e:\mathrm{lt}} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash e:\mathrm{lt}} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash e:\mathrm{lt}} & \\ \hline \\ \Theta;\Delta;\Gamma\vdash e:\mathrm{lt} & \\ \hline \\ \Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,\mathrm{Many}\,v:\mathrm{lt} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash e:t'} & \\ \hline \\ \Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,\mathrm{Many}\,x=e\,\mathrm{in}\,e':t' & \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash e:t'} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash e:t'} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,(a,b)=e_{12}\,\mathrm{in}\,e:t} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,(a,b)=e_{12}\,\mathrm{in}\,e:t} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma,\Gamma'\vdash \mathrm{let}\,(a,b)=e_{12}\,\mathrm{in}\,e:t} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash \mathrm{fun}\,x:t'\to e:t'\to t} & \\ \hline \\ \overline{\Theta;\Delta;\Gamma\vdash \mathrm{fun}\,x:t$$

$$\begin{split} \frac{\Theta, fc; \Delta; \Gamma \vdash e : t}{\Theta; \Delta; \Gamma \vdash \mathbf{fun} \, fc \to e : \forall fc.t} & \text{Ty_Gen} \\ \frac{\Theta \vdash f \, \mathsf{Cap}}{\Theta; \Delta; \Gamma \vdash e : \forall fc.t} & \frac{\Theta; \Delta; \Gamma \vdash e : \forall fc.t}{\Theta; \Delta; \Gamma \vdash e[f] : t[f/fc]} & \text{Ty_Spc} \\ \frac{\Theta; \Delta, g : t \multimap t'; \cdot, x : t \vdash e : t'}{\Theta; \Delta; \cdot \vdash \mathbf{fix} \, (g, x : t, e : t') : !(t \multimap t')} & \text{Ty_Fix} \end{split}$$

2 Operational Semantics

operational semantics

 $\langle \sigma, e \rangle \to StepsTo$

3 Interpretation

$$\begin{split} \mathcal{V}_{k}[\mathbf{bool}] &= \{(\emptyset, *)\} \\ \mathcal{V}_{k}[\mathbf{bool}] &= \{(\emptyset, true), (\emptyset, false)\} \\ \mathcal{V}_{k}[\mathbf{int}] &= \{(\emptyset, n) \mid 2^{-63} \leq n \leq 2^{63} - 1\} \\ \mathcal{V}_{k}[\mathbf{elt}] &= \{(\emptyset, f) \mid f \text{ a IEEE Float64 }\} \\ \mathcal{V}_{k}[\mathbf{f} \mathbf{mat}] &= \{(\{t \mapsto_{2^{-f}} -\}, t\}\} \\ \mathcal{V}_{k}[!(t' \multimap t'')] &= \{(\emptyset, \mathbf{Many} v) \mid (\emptyset, v) \in \mathcal{V}_{k}[t' \multimap t'']\} \\ & \cup \{(\emptyset, \mathbf{fix}(g, x: t, e: t')) \mid \forall j \leq k, (\sigma', v') \in \mathcal{V}_{j}[t']\} \\ \mathcal{V}_{k}[!t] &= \{(\emptyset, \mathbf{Many} v) \mid \neg (\exists t', t''. t = t' \multimap t'') \land (\emptyset, v) \in \mathcal{V}_{k}[t]\} \\ \mathcal{V}_{k}[\forall fc. t] &= \{(\sigma, \mathbf{fun} fc \to v) \mid \forall f. (\sigma, v[fc/f]) \in \mathcal{V}_{k}[t[fc/f]]\} \\ \mathcal{V}_{k}[t' \otimes t''] &= \{(\sigma, (v', v'')) \mid \exists \sigma', \sigma''. (\sigma', v') \in \mathcal{V}_{k}[t] \land (\sigma'', v'') \in \mathcal{V}_{k}[t''] \land \sigma = \sigma' \star \sigma''\} \\ \mathcal{V}_{k}[t \multimap t'] &= \{(\sigma, \mathbf{fun} x: t \to e) \mid \forall j \leq k, (\sigma', v') \in \mathcal{V}_{j}[t']\} \land \sigma \star \sigma' \text{ defined } \Rightarrow (\sigma \star \sigma', (\mathbf{fun} x: t \to e) v') \in \mathcal{C}_{j}[t']\} \\ \mathcal{C}_{k}[t] &= \{(\sigma_{s}, e) \mid \forall j < k, \sigma_{r}, \sigma_{s} \star \sigma_{r} \text{ defined } \Rightarrow (\sigma_{s} \star \sigma_{r}, e) \to^{j} \text{ err } \vee \exists \sigma_{f}, e'. (\sigma_{s} \star \sigma_{r}, e) \to^{j} \langle \sigma_{f} \star \sigma_{r}, e' \rangle \land (e' \text{ is a value } \Rightarrow (\sigma_{f} \star \sigma_{r}, e') \in \mathcal{V}_{k^{-j}}[t])\} \\ \mathcal{I}_{k}[\Box \theta = \{[]\} \\ \mathcal{I}_{k}[\Box \theta = \{(\emptyset, [])\} \\ \mathcal{L}_{k}[\Box \theta = \{(\emptyset, [])\} \\ \mathcal{L}_{k}[\Box \theta = \{(\emptyset, \mathbb{N}, S, \gamma, \sigma, \text{ dom}(\Theta) = \text{dom}(\theta) \land (\sigma, \gamma) \in \mathcal{L}_{k}[\Gamma] \theta \land \delta \in \mathcal{I}_{k}[\Delta] \theta \Rightarrow (\sigma, \gamma(\delta(e))) \in \mathcal{C}_{k}[\theta(t)]] \\ [\Theta; \Delta; \Gamma \vdash e: t] = \forall \theta, k, \delta, \gamma, \sigma, \text{ dom}(\Theta) = \text{dom}(\theta) \land (\sigma, \gamma) \in \mathcal{L}_{k}[\Gamma] \theta \land \delta \in \mathcal{I}_{k}[\Delta] \theta \Rightarrow (\sigma, \gamma(\delta(e))) \in \mathcal{C}_{k}[\theta(t)]] \end{cases}$$

4 Soundness Proof

$$\forall \Theta, \Delta, \Gamma, e, t. \ \Theta; \Delta; \Gamma \vdash e : t \Rightarrow \llbracket \Theta; \Delta; \Gamma \vdash e : t \rrbracket$$

PROOF SKETCH: Induction over the typing judgements.

Assume: 1. Arbitrary $\Theta, \Delta, \Gamma, e, t$ such that $\Theta; \Delta; \Gamma \vdash e : t$.

- 2. Arbitrary $\theta, k, \delta, \gamma, \sigma$ such that:
 - a. $dom(\Theta) = dom(\theta)$
 - b. $(\sigma, \gamma) \in \mathcal{L}_k \llbracket \Gamma \rrbracket \theta$
 - c. $\delta \in \mathcal{I}_k \llbracket \Delta \rrbracket \theta$.
- 3. W.l.o.g., all variables are distinct/dom(Δ) and dom(Γ) are disjoint.
- 4. And so that over expressions $\gamma \circ \delta = \delta \circ \gamma$.
- 5. By construction, $dom(\Delta) = dom(\delta)$ and $dom(\Gamma) = dom(\gamma)$.
- 6. ??? $\mathcal{V}_k[\![\theta(t)]\!] \subseteq \mathcal{C}_k[\![\theta(t)]\!]$

PROVE: $(\sigma, \gamma(\delta(e))) \in \mathcal{C}_k[\![\theta(t)]\!].$

 $\langle 1 \rangle 1$. Case: Ty_Var_Lin.

PROVE: $(\sigma, \gamma(\delta(x))) \in \mathcal{C}_k[\![\theta(t)]\!].$

- $\langle 2 \rangle 1$. $\Gamma = \{x : t\}$ by assumption of Ty_VAR_LIN.
- $\langle 2 \rangle 2$. SUFFICES: $(\sigma, \gamma(x)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$ by 3.
- $\langle 2 \rangle 3$. By 2b, there exist $(\sigma_x, v_x) \in \mathcal{V}_k[\![\theta(t)]\!]$, such that $\sigma = \sigma_x$ and $\gamma = [x \mapsto v_x]$.
- $\langle 2 \rangle 4$. ??? Hence, $(\sigma_x, v_x) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$, by 6.
- $\langle 1 \rangle 2$. Case: Ty_Var.

PROVE: $(\sigma, \gamma(\delta(x))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.

- $\langle 2 \rangle 1.$ $x: t \in \Delta$ and $\Gamma = \emptyset$ by assumption of Ty_VAR.
- $\langle 2 \rangle 2$. Suffices: $(\emptyset, \delta(x)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$ by 3 and 2b.
- $\langle 2 \rangle 3$. By 2c, there exists v_x such that $(\emptyset, v_x) \in \mathcal{V}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 4$. ??? Hence, $(\emptyset, v_x) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$, by 6.
- $\langle 1 \rangle 3$. Case: Ty_Let.

PROVE: $(\sigma, \gamma(\delta(\mathbf{let} x = e \mathbf{in} e'))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket.$

- $\langle 2 \rangle 1$. SUFFICES: $(\sigma, \mathbf{let} \ x = \gamma(\delta(e)) \mathbf{in} \ \gamma(\delta(e'))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 2$. By induction, $\llbracket \Theta; \Delta; \Gamma \vdash e : t \rrbracket$ and $\llbracket \Theta; \Delta; \Gamma', x : t \vdash e' : t' \rrbracket$.
- $\langle 2 \rangle 3$. By 2b and induction on Γ' , we know there exist $\sigma_{e'}$, $(\sigma_e, \gamma_e) \in \mathcal{L}_k[\![\Gamma]\!]$, such that $\sigma = \sigma_e \star \sigma_{e'}$.
- $\langle 2 \rangle 4$. So, using them, θ, k, δ , and 3 we have $(\sigma_e, \gamma_e(e)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 5$. By 3, $(\sigma_e, \gamma(\delta(e))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 6$. By definition of $\mathcal{C}_k \llbracket \cdot \rrbracket$ and $\langle 2 \rangle 3$, we choose a j < k and $\sigma_{e'}$ to conclude that $\langle \sigma, \gamma(\delta(e)) \rangle$

either reduces to err or another heap and expression.

- $\langle 2 \rangle$ 7. In first case, by op sem, reduces to err as well.
- $\langle 2 \rangle 8$. In second case, ...
- $\langle 1 \rangle 4$. Case: Ty_Unit_Intro. Prove: $(\sigma, \gamma(\delta(\cdot))) \in \mathcal{C}_k \llbracket \theta(\mathbf{unit}) \rrbracket$.
- $\langle 1 \rangle$ 5. Case: Ty_Unit_Elim. Prove: $(\sigma, \gamma(\delta(\mathbf{let}() = e \, \mathbf{in} \, e'))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
- $\langle 1 \rangle 6$. Case: Ty_Bool_True. Prove: $(\sigma, \gamma(\delta(\mathbf{true}))) \in \mathcal{C}_k[\![\theta(\mathbf{bool})]\!]$.
- $\langle 1 \rangle 7.$ Case: Ty_Bool_False, Ty_Int_Intro, Ty_Elt_Intro. Similar to Ty_Bool_True.
- $\langle 1 \rangle 8$. Case: Ty_Bool_Elim. Prove: $(\sigma, \gamma(\delta(\mathbf{if} \ e \ \mathbf{then} \ e_1 \ \mathbf{else} \ e_2))) \in \mathcal{C}_k[\![\theta(t)]\!]$.
- $\langle 1 \rangle$ 9. Case: Ty_Bang_Intro. Prove: $(\sigma, \gamma(\delta(\mathbf{Many}\,e))) \in \mathcal{C}_k[\![\theta(!t)]\!]$.
- $\langle 1 \rangle 10$. Case: Ty_Bang_Elim. Prove: $(\sigma, \gamma(\delta(\mathbf{let} \mathbf{Many} \ x = e \mathbf{in} \ e'))) \in \mathcal{C}_k[\![\theta(t)]\!]$.
- $\langle 1 \rangle 11$. Case: Ty_Pair_Intro. Prove: $(\sigma, \gamma(\delta((e, e')))) \in \mathcal{C}_k[\![\theta(t \otimes t')]\!]$.
- $\langle 1 \rangle 12$. Case: Ty_Pair_Elim. Prove: $(\sigma, \gamma(\delta(\mathbf{let}(a, b) = e \, \mathbf{in} \, e'))) \in \mathcal{C}_k[\![\theta(t)]\!]$.
- $\langle 1 \rangle 13$. Case: Ty_Lambda. Prove: $(\sigma, \gamma(\delta(\mathbf{fun}\,x:t'\to e))) \in \mathcal{C}_k[\![\theta(t'\multimap t)]\!]$.
- $\langle 1 \rangle 14$. Case: Ty_App. Prove: $(\sigma, \gamma(\delta(ee'))) \in \mathcal{C}_k[\![\theta(t)]\!]$.
- $\langle 1 \rangle 15$. Case: Ty_Gen. Prove: $(\sigma, \gamma(\delta(\mathbf{fun} \ fc \to e))) \in \mathcal{C}_k \llbracket \theta(\forall \ fc. \ t) \rrbracket$.

 $\langle 1 \rangle 16$. Case: Ty_Spc.

Prove: $(\sigma, \gamma(\delta(e[f]))) \in C_k[\![\theta(t[fc/f])]\!].$

 $\langle 1 \rangle 17$. Case: Ty_Fix.

 $\text{Prove:} \quad (\sigma, \gamma(\delta(\mathbf{fix}(g, x: t, e: t')))) \in \mathcal{C}_k[\![\theta(!(t \multimap t'))]\!].$