PEA-m6A User Manual (version 1.0)

- PEA-m6A is an ensemble learning framework for predicting m6A modifications at regional-scale.
- PEA-m6A consists of four modules: **Sample Preparation, Feature Encoding, Model Development and Model Assessment**, each of which contains a comprehensive collection of functions with prespecified parameters available.
- PEA-m6A was powered with an advanced packaging technology, which enables compatibility and portability.
- PEA-m6A project is hosted on http://github.com/cma2015/PEA-m6A
- PEA-m6A docker image is available at http://hub.docker.com/r/malab/peam6a
- PEA-m6A server can be accessed via http://peam6a.omstudio.cloud

Sample Preparation

This module provides seven functions (see following table for details) to prepare epittranscriptome training data.

Tools	Description	Input	Output	Reference
Sequence Data Preprocessing	Convert epitranscriptome sequencing reads from SRA to FASTQ format	Epitranscriptome sequencing reads in SRA format	Epitranscriptome sequencing reads in FASTQ format	SRA Toolkit
Assess Reads Quality	This function firstly performs quality control using FastQC and then trims low-quality reads using fastp	Epitranscriptome sequencing reads in FASTQ format	Clean reads in FASTQ format; Reads quality report in HTML format	<u>FastQC,fastp</u>
HISAT2	HISAT2 is an ultrafast spliced aligner with low memory requirements. It supports genomes of any size, including those larger than 4 billion bases	Epitranscriptome sequencing reads in FASTQ format and reference genome sequences in FASTA format	Read alignments in SAM/BAM format	Kim et al., 2015, Nature Methods
Peak Calling from the MeRIP-Seq data	Identify enriched genomic regions from MeRIP-Seq experiment	Read alignments of IP and input in SAM/BAM format and reference genome sequences in FASTA format	RNA modifications in BED format	<u>PEA</u>
RNA Modifications Annotation with Gene	Link RNA modifications to nearest genes based on genomic coordinate	RNA modifications in BED format and genome annotation in GTF/GFF3 format	Detailed RNA modifications- related genes	In-house scripts
Motif Analysis	Integrate MEME-ChIP and DREME to perform de-novo motif discovery	RNA modifications in BED format and reference genome sequences in FASTA format	Discovered motifs in HTML format	Timothy et al., 2011, Bioinformatics, Philip et al., 2011, Bioinformatics, Heinz et al., 2010, Molecular Cell
Sample Generation	Extraction postive and negative sequences for training in FASTA format	RNA modifications in BED format, reference genome sequences in FASTA format, gene and exons annotation in BED format	Postive and neagtive samples in BED format and in FASTA format	In-house scripts

Sequence Data Preprocessing

This function wrapped **fastq-dump** function implemented in SRA Toolkit. See http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software for details.

Input

• Input sra file: The sequenceing reads in SRA format. Users can upload their local SRA file or download SRA by function **Obtain Epitranscriptome Sequencing Reads** in **Data Preparation** module

Output

Sequencing dataset in FASTQ format

How to use this function

• The following screenshot shows us how to use this function to convert sequencing reads in SRA format to FASTQ format

Assess Reads Quality

In this function, two existing NGS tools **FastQC** (Andrews *et al.*, 2010) and **fastp** (Chen *et al.*, 2018) are integrated to check sequencing reads quality and obtain high-quality reads, respectively.

Input

- Input FASTQ file: single-end or paired-end raw epitranscriptome sequence reads in FASTQ format
- Adapter sequences: optional, adapter sequences in FASTA format

Output

- Clean reads in FASTQ format
- Reads quality report in HTML format

How to use this function

• The following screenshot shows us how to assess reads quality

Align reads to genome

In this function, PEA-m6A adopted HISAT2 as the aligners to map epitranscriptome reads to genome.

Input

- Epitranscriptome sequencing reads in FASTQ format
- Reference genome in FASTA format

Output

- Alignments in BAM format
- Alignment summary generated by HISAT2

How to use this function

• The following screenshot to run this function

Peak calling from the MeRIP-Seq data

Peak calling is used to identify enriched genomic regions in MeRIP-seq or ChIP-seq experiments. The function is implemented using the **peakCalling** function in PEA package (zhai *et al.*, 2018)

Input

- IP sample: The IP experiment in BAM format
- Input sample: The input control experiment in BAM format
- Reference genome: The Reference genome sequences with FASTA format
- **Reference annotation file:** The Reference genome annotation file with GTF/GFF3 format (required for methods: **exomePeak**)

Output

• The enriched peak region matrix in BED format

Chromosome	Start(1- based)	End	Bin number	Mean FDR	Max FDR	Minimum FDR	Mean Ratio	Max Ratio	Minimum Ratio
1	67476	67575	4	0.0136	0.0328	0.0001	-1.0012	-0.6334	-1.581
1	330776	330875	4	0.0215	0.0381	0.0007	-1.576	-1.4077	-1.788
1	389201	389300	4	0.0024	0.0070	0.0002	-1.115	-1.0598	-1.190

How to use this function

• The following screenshot to run this function.

RNA Modifications Annotation with Gene

This function is designed to annotate RNA modifications with genes, users can specify the minimum overlapped length with genes.

Input

- **RNA modifications:** RNA modifications in BED format which can be obtained by any function in **Identify RNA Modifications**
- Genome annotation in GTF/GFF3 format: The genome annotation in GTF/GFF3 format

Output

• **RNA_modifications_with_strand.bed**: BED6 format, the fourth and sixth columns represent gene ID and strand, respectively.

Chr	Start	End	GeneID	Un	Strand
1	49625	49751	Zm00001d027230		+
1	50925	51026	Zm00001d027231		-
1	92303	92526	Zm00001d027232		-

• RNA_modifications_gene.txt: RNA modifications-related genes (with only one column)

How to use this function

• The following screenshot to run this function.

Motif Analysis

This function integrates MEME-ChIP and DREME to perform *de-novo* motif discovery.

Input

- RNA modifications (peak regions or single nucleotide resolution) in BED format
- Reference genome sequences in FASTA format

Output

• An HTML report generated by DREME or MEME-ChIP

How to use this function

• The following screenshot to run this function

Sample Generation

This function was designed to generate positive and negative samples based RNA modification regions. To be specific, this function takes RNA modification regions in BED format, genomic sequences in FASTA format, gene and exon annotation in BED format as input, then searches consensus motif (e.g. RRACH) in the RNA modification regions and treat them as positive samples, the remaining consensus motif in the same transcript of positive samples are randomly selected as negative samples.

Input

- RNA modifications in BED format
- Reference genome sequences in FASTA format
- Genome annotation in GTF/GFF3 format are required

Output

- positive_samples.bed: positive samples in BED format with 6 columns
- positive_samples.fasta: positive samples in FASTA format
- negative_samples.bed: negative samples in BED format with 6 columns
- neagtive_samples.fasta: negative samples in FASTA format

How to use this function

• The following screenshot to run this function

