Sentinel-1 Soil Moisture Estimation

a practical exercise with SEPAL

Log in to SEPAL

Start a Cloud Computer #2

Start a Cloud Computer #2

Make a directory

~\$ mkdir smm_test

Enter into the new directory

~\$ cd smm_test

Make a <u>virtual environment</u>

~\$ virtualenv -p python2.7 env --system-site-packages

A virtual environment let's us experiment without messing up everything.

Activate the virtual environment

~\$ source env/bin/activate

Activating a virtual environment means you are using the tools within that environment to process

Install python soil moisture monitor pysmm

~\$ pip install pysmm

pip - is a python installer.

Update pysmm with improved files

~\$ wget https://goo.gl/JZLCo9

wget - get's files from a URL

Re-name downloaded file

~\$ mv JZLCo9 pysmm_upgrade.zip

Replace old files with updates

```
~$ unzip pysmm_upgrade.zip -d env/lib/python2.7/site-packages
(A)11
```

Install a jupyter kernel

~\$ python -m ipykernel install --user --name=env

Download the Jupyter Notebook

~\$ wget https://goo.gl/NbpUWr

Re-name the Jupyter Notebook

~\$ mv NbpUWr run_pysmm.ipynb

Exit the Virtual Environment

~\$ deactivate

to re-activate a virtual environment:

~\$ source env/bin/activate

Open the Jupyter Notebook in SEPAL

Open the Jupyter Notebook in SEPAL

Run the Jupyter Notebook in SEPAL

Go back to SEPAL

Extend the time your computer will run

Extend the time your computer will run

What are we doing?

- 1. Running Python code to pre-process Sentinel-1 RADAR
- 2. Combining S1 data with GLDAS data
- 3. And a model trained on International Soil Moisture Network
- 4. To create 100m surface soil moisture estimates in kg/m2

Limitations

- 1. These are estimates based on training data from far away.
- 2. C-band SAR is affected by vegetation canopy
- 3. So...tree areas are not suitably monitored by this method
- 4. There are a lot of other limitations...

Sources:

- 1. https://www.mdpi.com/2072-4292/7/12/15841
- 2. https://journals.ametsoc.org/doi/pdf/10.1175/BAMS-85-3-381
- 3. https://ieeexplore.ieee.org/abstract/document/7005430
- 4. https://ieeexplore.ieee.org/abstract/document/6723717
- 5. https://pubs.geoscienceworld.org/vzj/article-abstract/15/6/vzj2015.03.0048/315717/from-point-to-pixel-scale-an-upscaling-approach?redirectedFrom=fulltext

Download the Results from Google Drive

Open a GIS

PYSMM Soil Moisture Mapping Algorithm from:

Greifeneder et. al. Submitted

and code documentation here: https://pysmm.readthedocs.io/en/latest/

with edits and improvements made by SEPAL team