Analysis of Meat Production in the United States

Group 1 – Jocelyn Hunyadi, Elizabeth Schneider, Jack Kramer, Karleshia Dorsey, & Ken Marciel

Project Objectives

Primary Goal – Investigate time series data of meat production in the US

- Have significant epidemiological events (i.e. pandemics, epidemics) influenced trends in meat production?
- Have historical and economic events (i.e. recession) influenced trends in meat production?

Secondary Goal – Analyze and compare trends in production between total red meat and total poultry production (federally inspected)

Data Overview

Time: Monthly data from January 1983 - April 2021.

Meat Types:

- 1. Red Meat Beef, Veal, Lamb & Mutton, and Pork
- 2. Poultry Broilers, Other Chicken, and Turkey

Production: Response variable - units: millions of pounds

Additional Variables: Time (months), Population (thousands), Median Income (monthly)

Red Meat & Poultry: 12-month moving average

Red Meat & Poultry: Kernel Smoother

Red Meat & Poultry: Lowess Smoother

Analysis of Red Meat Production — ARIMA Model

Transformation to Stationarity

Differencing the log production appears to improve the time series to stationarity.

DF, ADF, and PP test all had p-value < 0.01

Transformation to Stationarity

Some seasonal pattern still exists after differencing, thus a SARIMA model should be considered

Red Meat: Transformed

Preliminary TS Model Selection

ARIMA(12,1,0) model (though complex) may be appropriate for red meat based on the PACE

Model 1 - ARIMA(12,1,0)

Parameter estimates for Yule-Walker and OLS were approximately equivalent.

$$\mathbf{M_t} = -0.75_{(0.047)} \mathbf{M_{t-1}} - 0.61_{(0.058)} \mathbf{M_{t-2}} - \dots + 0.16_{(0.047)} \mathbf{M_{t-12}}$$

...where M_t is total red meat production.

AIC: -3.695

AICc:-3.694

BIC:-3.569

AR(12) Model for Red Meat Production					
YWE	OLS				
$\hat{\phi}_1 = -0.7526_{(0.0467)} ,$	$\hat{\phi}_1 = -0.7501_{(0.0473)} ,$				
$\hat{\phi}_2 = \; - \; 0.6148_{\;(0.0577)}$,	$\hat{\varphi}_2 = -0.6282_{(0.0585)}$,				
$\hat{\phi}_3 = \; - \; 0.3196_{\;(0.0611)}$,	$\hat{\varphi}_3 = -0.3297_{(0.0619)}$,				
$\hat{\phi}_4 = \; - \; 0.6084_{\;(0.0610)}$,	$\hat{\phi}_4 = -0.6168_{(0.0615)}$,				
$\hat{\phi}_5 = \; -0.3738_{\;(0.0624)}$,	$\hat{\phi}_5 = -0.3856_{(0.0626)}$,				
$\hat{\phi}_6 = \; - \; 0.5343_{\;(0.0614)}$,	$\hat{\phi}_6 = -0.5511_{\ (0.0616)} \ ,$				
$\hat{\phi}_7 = \; - \; 0.4375_{~(0.0614)}$,	$\hat{\varphi}_7 = -0.4463_{(0.0622)}$,				
$\hat{\phi}_8 = -0.5449_{(0.0624)},$	$\hat{\phi}_8 = -0.5388_{(0.0632)},$				
$\hat{\phi}_9 = - 0.3238_{ (0.0610)}$,	$\hat{\varphi}_9 = -0.3244_{(0.0610)},$				
$\hat{\phi}_{10} = \; - \; 0.4440_{\;(0.0611)}$,	$\hat{\varphi}_{10} = -0.4552_{(0.0620)},$				
$\hat{\phi}_{11} = -0.2403_{(0.0577)},$	$\hat{\varphi}_{11} = -0.2477_{(0.0604)},$				
$\hat{\phi}_{12} = 0.1599_{(0.0467)}$	$\hat{\varphi}_{12} = 0.1738_{(0.0489)}$				

Model 1 – Diagnostics

- Spike in the residuals plot in 2020
 (COVID-19)
- Significant p-values for Q-stat

Model 1 – Forecast

Analysis of Red Meat Production – SARIMA Model

Model 2 - SARIMA

The trend is removed by differencing, but the transformations do not remove the spike in variance in 2020

Possible indication of COVID impact on meat production?

Model 2 - SARIMA

The PACF appears to cut off after lag 2.

Model 2 - Model Selection Process

Based on AIC, AICc, and BIC values, the SARIMA(3,1,3) $x(1,1,1)_{12}$ is the best seasonal model choice.

р	d	q	Р	D	Q	S	DOF	AIC	AICc	BIC
0	1	0	1	1	0	12	446	-2.53752	-2.5375	-2.5196
1	1	0	1	1	0	12	445	-2.82721	-2.82715	-2.80034
2	1	0	1	1	0	12	444	-3.36642	-3.36631	-3.33059
3	1	0	1	1	0	12	443	-3.36577	-3.36557	-3.32098
4	1	0	1	1	0	12	442	-3.4008	-3.40051	-3.34706
0	1	0	1	1	0	12	446	-2.53752	-2.5375	-2.5196
0	1	1	0	0	0	12	445	-3.1483	-3.14824	-3.12143
0	1	2	1	0	0	12	444	-3.19585	-3.19574	-3.16002
0	1	3	1	0	0	12	443	-3.21393	-3.21374	-3.16914
0	1	4	1	0	0	12	442	-3.34901	-3.34872	-3.29526
0	1	0	1	0	0	12	446	-2.53752	-2.5375	-2.5196
1	1	1	1	0	0	12	444	-3.17419	-3.17408	-3.13836
2	1	2	1	0	0	12	442	-3.39004	-3.38975	-3.33629
3	1	3	1	0	0	12	440	-3.43341	-3.43287	-3.36175
0	1	0	1	0	1	12	436	-3.61918	-3.61789	-3.51169
1	1	1	1	0	1	12	436	-3.61918	-3.61789	-3.51169
2	1	2	1	0	1	12	436	-3.61918	-3.61789	-3.51169
3	1	3	1	1	1	12	439	-3.91218	-3.91148	-3.83156

Model 2 - SARIMA(3,1,3)x(1,1,1)12


```
Parameters for SARMA(3,1,3)(1,1,1)[12] model
       Estimate
               SE t.value p.value
        -1.0951 0.0675 -16.2301
                               0.0000
        -0.9267 0.0782 -11.8578 0.0000
  ar3 0.0632 0.0674 0.9371 0.3492
  ma1 0.3788 0.0468 8.0900 0.0000
  ma2 0.1141 0.0519 2.1999 0.0283
        -0.7707 0.0438 -17.5921 0.0000
  sar1
        0.1366 0.0550 2.4847 0.0133
## smal
        -0.9225 0.0278 -33.2408 0.0000
```

Note that the AR3 parameter is **not** significant.

Model 2 - Diagnostics

- Note large spike in residual plot.
- ACF of residuals mostly not significant
- Q-stats, however, are all significant indicating that the residuals are not white noise.

Model 2 - Comparison

- SARIMA(0,1,0)x(1,1,0)₁₂
- Notice multiple large and significant correlations in the ACF
- Q-stat values are all significant.

Model 2 - Forecasts

0006

7000

Forecasts predict a slight increase in red meat total production (on average) over the next 2 years.

2024

2026

May, June and July Actual vs Forecast

Total Red Meat in Millions of Pounds

	Actual	ARIMA(12,1,0)	SARIMA(3,1,3)(1,1, 1)12
Мау	4246.3	4397.2	4448.9
June	4617.8	5019.5	4941.2

Analysis of Red Meat Production – Regression with AutoCorrelated Errors

Covariates – Population & Personal Income

Covariates generally have a linear relationship with Red Meat Production with slight underlying curvature as indicated by the Loess smoother.

Covariates – Population & Personal Income

Model 3 - Initial Linear Regression

Model	k		SSE df		MSE	R2	AIC	BIC
M1		2	23268197	458	50804	0.7572	11.8444	13.7092
M2		3	23265587	457	50909	0.7572	11.8487	13.7225
M3		4	23223123	456	50928	0.7577	11.8512	13.734

M1:
$$M_t = \beta_0 + \beta_1 t + w_t$$

M2:
$$M_t = \beta_0 + \beta_1 t + \beta_2 (L_t - L_t) + w_t$$

M3:
$$M_t = \beta_0 + \beta_1 t + \beta_2 (L_t - L_t) + \beta_3 (L_t - L_t)^2 + w_t$$

Where $L_t = Population \& L. = Mean population$

Concerns

- **Model 1, 2** Q-stats indicate that even transformed red meat is not white noise; a better model is needed.
 - Alternative modeling techniques?
 - O Alternative transformations of total red meat production?
- **Model 3** Personal Income had collinearity issues; Population was not significant in the model.
 - Alternative covariates that may be related to meat production
 - Environmental variables, retail value of red meat, etc.

Discussion & Conclusion

- Despite our best efforts and fitting over 50 models, we could not achieve whiteness (even after considering more complex models) in ARIMA or SARIMA models
- Our covariates were not significant predictors of red meat production, which made investigating regression with autocorrelated errors difficult.
- Even after models were fit to account for autocorrelated variables, population did not become significant.

Questions?

Appendix

- 1. *USDA ERS Livestock & Meat Domestic Data*. https://www.ers.usda.gov/data-products/livestock-meat-domestic-data/. Accessed 13 June 2021.
- 2. Shumway, Robert, and David Stoffer. *Time Series: A Data Analysis Approach Using R (Chapman & Hall/CRC Texts in Statistical Science)*. 1st ed., Chapman and Hall/CRC, 2019.
- 3. Thornton, Philip K. "Livestock production: recent trends, future prospects." *Philosophical transactions of the Royal Society of London. Series B, Biological sciences* vol. 365,1554 (2010): 2853-67. doi:10.1098/rstb.2010.0134
- 4. US Bureau of Economic Analysis, Personal Income [PI], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PI, July 4, 2021.
- 5. US Bureau of Economic Analysis, Population [POPTHM], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/POPTHM, July 4, 2021