Thurway 3. You issue PP
$$S(x,y)$$
:

 $E_{S(x,y)} = (\mathcal{D}_{3x} \cap E_{y}) \cup \{x,y\}$, $\forall x,y \in \mathbb{N}$

$$\int \{(x,y,z) = \begin{cases} z, & \text{supp} \ z \in L, \\ \bot, & \text{inarries} \end{cases}$$

Therebipule: $z \in L'' - 4P\Pi$.

 $z \in L \iff \{z \in \mathcal{D}_{3x} \ x \in E_{3y}\} \setminus \{z \in X \setminus z = y\}$
 $f(x,y,z) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in X \setminus z = y\}$
 $f(x,y) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in X \setminus z = y\}$
 $f(x,y) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in X \setminus z = y\}$
 $f(x,y) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in X \setminus z = y\}$
 $f(x,y) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in X \setminus z = y\}$
 $f(x,y) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in X \setminus z = y\}$
 $f(x,y) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in X \setminus z = y\}$
 $f(x,y) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in X \setminus z = y\}$
 $f(x,y) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in X \setminus z = y\}$
 $f(x,y) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in X \setminus z = y\}$
 $f(x,y) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in X \setminus z = y\}$
 $f(x,y) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in X \setminus z = y\}$
 $f(x,y) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in X \setminus z = y\}$
 $f(x,y) = \begin{cases} z, & \text{supp} \ z \in E_{3y} \\ \exists x, & \text{supp} \ z \in E_{3y} \end{cases} \setminus \{z \in E_{3y} \} \setminus \{z \in E_{3y}$

3a s-m-n-Th 3 PP s(x,y): $f(x,y,z) = Y_{s(x,y)}(z), \forall x,y,z \in N$ 3agoineyelle x, y (apyelleur s). Z∈ L (⇒) f(x,y,z) (→) (z) √ (=) Z ∈ $\mathcal{R}_{S(x,y)}$, zα ποδησοβοιο $\mathcal{R}_{S(x,y)} = E_{S(x,y)}$, τουμη $Z \in E_{S(x,y)}$.

Thursing. Un icnye PP s(x,y); $\mathcal{D}_{S(x,y)} = E_{x} \setminus \mathcal{D}_{y}$, $\forall x, y \in \mathbb{N}$ ZEEx LZ & Dy Bizbuelle X, y raki, 40; $F^{x} = N$ $\mathcal{D}_{y} = \mathcal{D}$ _ Le PMM $//E_{x} / Dy = N / D = D$ DSCK,y) PM

OTMe, rakoi PP ne icnye

$$\mathcal{D}_{x}$$
, \mathcal{D}_{y} — PMM

Togi icny note

 $PP S(x,y)$ to $U(x,y)$: $\forall x,y \in N$
 $\mathcal{D}_{x} \cap \mathcal{D}_{y} = \mathcal{D}_{S(x,y)}$
 $\mathcal{D}_{x} \cup \mathcal{D}_{y} = \mathcal{D}_{u(x,y)}$

$$f(x,y,z) = \begin{cases} 1, & z \in \mathcal{D}_x \cup \mathcal{D}y \\ 1, & \text{else} \end{cases}$$
 -4PP

lu icny EPP S(x,y): $\mathcal{P}_{S(x,y)} = (E_x \cap E_y) \setminus \{x^3, \forall x, y \in \mathbb{N}\}$ lu icuye PP s(x,y,z): $E_{S(x,y,z)} = (\mathcal{D}_{x} \cup \overline{E}_{y}) \cup \mathcal{D}_{z}$ 7x, y. 2 $\mathcal{D}_{x} = \phi$ $(\phi \cup \overline{v}) \cup \phi = \overline{v} - \text{He PMM}$ \$ = \alpha Eskyit1 - PMM Ey = 8 Ornee, re icuys.

3abganne na liogyis 1. Ttokazari, up 4PM. Lat. Un icny & PPs.

"
$$X \in \text{robnum } \text{ kbagparou}$$
"

 $\exists a (x=a^2) = (x+y)(x+y+1) \end{bmatrix} + x$
 $C(x,y) = [x+y)(x+y+1) \end{bmatrix} + x$
 $C^{-1}(A) \Leftrightarrow C(x,y) \in A$
 $a \in C(\mathcal{D}_{x}^{2})$
 $(B,c) \in \mathcal{D}_{x}^{2}$
 $C(b,c) = a$
 $\exists A \in C(\mathcal{D}_{x}^{2})$
 $\exists C(b,c) = a$
 $\exists C(x,y) = (E_{xy} \cup \mathcal{D}_{3y+x}) \cap \mathcal{D}_{y+3}$
 $\exists C(x,y) = E_{x+y} \cup \mathcal{D}_{x} \cup E_{y}$
 $\exists C(x,y) \in E_{x+y} \cup E_{x+y} \cup E_{y}$
 $\exists C(x,y) \in E_{x+y} \cup E_{x+y} \cup E_{y}$
 $\exists C(x,y) \in E_{x+y} \cup E_{y}$

"42 (x,y) E robrusu Kbagparou"