Contributions to Mineralogy and Petrology manuscript No. (will be inserted by the editor)

Correction to: On the P-T- fO_2 stability of Fe₄O₅, Fe₅O₆ and Fe₄O₅-rich solid solutions

Robert Myhill · Dickson O. Ojwang · Luca Ziberna · Daniel J. Frost · Tiziana Boffa Ballaran · Nobuyoshi Miyajima

Received: date / Accepted: date

 $\textbf{Abstract} \ \ \text{Correction to: Contrib Mineral Petrol (2016) 171:51 DOI 10.1007/s00410-016-1258-4}$

There were regrettably a few typos that appeared in the published version of Myhill et al (2016). Equation 8 should have read:

$$K_D = \frac{x_{\text{Fe}}^{\text{ol}} x_{\text{Mg}}^{\text{ox}}}{x_{\text{Mg}}^{\text{ol}} x_{\text{Fe}}^{\text{ox}}}$$
(1)

There were also a number of sign errors introduced during revision and type-setting of Table 3 and Supplementary Table 1. The correct values which we used in all of our calculations are given in Tables 1 and 2. All values are reported in SI units.

Acknowledgements R.M. is extremely grateful to Alan Woodland for finding the errors in the original article.

References

Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new

R. Myhill

School of Earth Sciences, University of Bristol

 $\hbox{E-mail: bob.myhill@bristol.ac.uk}$

D. Ojwang

Inorganic and Structural Chemistry, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691, Stockholm, Sweden

L. Ziberna · D. J. Frost · T. Boffa Ballaran · N. Mijajima Bayerisches Geoinstitut, Universitt Bayreuth, D-95440 Bayreuth, Germany

Name	$\mathrm{Fe_4O_5}$	Fe_5O_6	FeO	$Fe_{2/3}O$	${ m Mg_2Fe_2O_5}$
H ₀ [J/mol]	-1.342e+06	-1.592e+06	-2.65453e+05	-2.55168e + 05	-2.008e+06
$S_0 [J/K/mol]$	2.3e + 02	3.e + 02	5.8e + 01	3.8501e + 01	1.55e + 02
$V_0 [m^3/mol]$	5.376e-05	6.633e-05	1.2239e-05	1.10701 e-05	5.305e-05
K_0 [Pa]	1.857e + 11	1.73e + 11	$1.52e{+11}$	$1.52e{+11}$	1.7e + 11
K'_0	4.e + 00	4.e + 00	4.9e + 00	4.9e+00	4.e + 00
$a_0 [1/K]$	2.38e-05	1.435e-05	3.22e-05	2.79e-05	2.38e-05
Cp (a) [J/K/mol]	306.9	351.3	42.638	54.6333	284.9
Cp (b) $[J/K^2/mol]$	0.001075	0.009355	0.00897102	0.0	0.000724
Cp (c) [JK/mol]	-3140400.0	-4354600.0	-260780.8	-752400.0	-3328800.0
Cp (d) $[J/K^{0.5}/mol]$	-1470.5	-1285.3	196.6	-219.2	-1256.0

Table 1 Thermodynamic table for the iron-bearing oxides using the Holland and Powell (2011) modified Tait equation of state. The Cp parameters represent a polynomial for the heat capacity at 1 bar: $\text{Cp} = a + bT + cT^{-2} + dT^{-0.5}$.

Name	Mo	MoO_2	Re	ReO_2
H ₀ [J/mol]	0	-5.915e + 05	0	-4.4514e + 05
$S_0 [J/K/mol]$	2.859e + 01	5.0016e + 01	3.653e + 01	4.782e + 01
$V_0 [m^3/mol]$	9.391e-06	1.9799e-05	8.862e-06	1.8779e-05
K_0 [Pa]	2.608e + 11	$1.8e{+11}$	$3.6e{+}11$	$1.8e{+11}$
K'_0	4.46e + 00	4.05e+00	4.05e+00	4.05e+00
a ₀ [1/K]	1.44e-05	4.4e-05	1.9e-05	4.4e-05
Cp (a) [J/K/mol]	33.9	56.1	23.7	76.89
Cp (b) $[J/K^2/mol]$	0.006276	0.02559	0.005448	0.00993
Cp (c) [JK/mol]	38859.7	-17.6	68.0	-1207130.0
$Cp (d) [J/K^{0.5}/mol]$	-12.0	18.9	0.0	-208.0

Table 2 Thermodynamic table for the metal-metal oxides using the Holland and Powell (2011) modified Tait equation of state. The Cp parameters represent a polynomial for the heat capacity at 1 bar: $\text{Cp} = a + bT + cT^{-2} + dT^{-0.5}$.

equation of state for solids. Journal of Metamorphic Geology 29(3):333–383, DOI 10.1111/j.1525-1314.2010.00923.x

Myhill R, Ojwang DO, Ziberna L, Frost DJ, Ballaran TB, Miyajima N (2016) On the P-T-fO₂ stability of Fe₄O₅, Fe₅O₆ and Fe₄O₅-rich solid solutions. Contributions to Mineralogy and Petrology 171:51, DOI 10.1007/s00410-016-1258-4