

# An Overview on Explainable Al using R

Gero Szepannek Statistics, Business Mathematics & ML Stralsund University of Applied Sciences



## ML vs. Traditional Statistics...



- 1. In ML the type of the relationship between dependent and independent variables is typically not pre-specified in advanced but left to the algorithm.
- 2. ...but the *search space* of potential functions is controlled by the algorithm's *hyperparameters* (*regularization*).
- 3. ... As a consequence the resulting models typically are of black box type.



## ML vs. Traditional Statistics...



- 1. In ML the type of the relationship between dependent and independent variables is typically not pre-specified in advanced but left to the algorithm.
- 2. ...but the *search space* of potential functions is controlled by the algorithm's *hyperparameters* (*regularization*).
- 3. ... As a consequence the resulting models typically are of black box type.



## Need For explainable Al

### Amazon ditched AI recruiting tool that favored men for technical jobs

Specialists had been building computer programs since 2014 to review résumés in an effort to automate the search process





**GDPR** 

"[...] the controller shall provide [...] the following information: the existence of automated decision-making and [...] meaningful information about the logic involved, as well as the significance and the envisaged consequences of such processing for the data subject."

Art. 13-15 & 22 Regulation (EU) 2016/679 https://dsgvo-gesetz.de/

https://www.theguardian.com/technology/2018/oct/10/amazon-hiring-ai-gender-bias-recruiting-engine

## Need For explainable Al

### Amazon ditched AI recruiting tool that favored men for technical jobs

Specialists had been building computer programs since 2014 to review résumés in an effort to automate the search process







"[...] the controller shall provide [...] the following information: the existence of automated decision-making and [...] meaningful information about the logic involved, as well as the significance and the envisaged consequences of such processing for the data subject."

Art. 13-15 & 22 Regulation (EU) 2016/679 https://dsgvo-gesetz.de/

https://www.theguardian.com/technology/2018/oct/10/amazon-hiring-ai-gender-bias-recruiting-engine

## Different Requirements on Explainability

### **Question:**

### Explain...

- a) entire model or
- b) single predictions?

### **Understand...**

- a) which are the most relevant variables or
- b) effect of single variables on the output?



### Overview on Packages and Functionalities

| Package      | Variable Importance | РОР     | ALE     | ICE | 2D      | surrogate trees | merging path | ПМЕ      | local regression | Shapley Values | breakdown | live |
|--------------|---------------------|---------|---------|-----|---------|-----------------|--------------|----------|------------------|----------------|-----------|------|
| randomForest | Х                   |         |         |     |         |                 |              |          |                  |                |           |      |
| gbm          | Х                   |         |         |     |         |                 |              |          |                  |                |           |      |
| xgboost      | Х                   |         |         |     |         |                 |              |          |                  |                |           |      |
| mlr          | Х                   | Х       |         |     | Х       |                 |              |          |                  |                |           |      |
| caret        | Х                   |         |         |     |         |                 |              |          |                  |                |           |      |
| DALEX        | Х                   | Х       | Х       |     |         |                 | Х            |          |                  |                | Х         | х    |
| iml          | Х                   | Х       | Х       | Х   | Х       | Х               |              |          | Х                | Х              |           |      |
| pdp          |                     | Х       |         | Х   | Х       |                 |              |          |                  |                |           |      |
| ALEPIot      |                     | Х       | Х       |     | Х       |                 |              |          |                  |                |           |      |
| ICEbox       |                     | Х       |         | х   |         |                 |              |          |                  |                |           |      |
| lime         |                     |         |         |     |         |                 |              | х        |                  |                |           |      |
| shapleyR     |                     |         |         |     |         |                 |              |          |                  | Х              |           |      |
|              | <b>↑</b>            | <u></u> | <u></u> |     | <u></u> |                 |              | <b>↑</b> |                  | <u></u>        |           |      |





### Two General Frameworks

{ DALEX } (P. Biecek, 2019)

- Unique interface to already existing packages (dependencies), e.g.
  - Variable importance
  - PDP & ALE (1D), merging path plots
  - breakdown, live
- ...supports models from: mlr, caret, parsnip, h2o, keras
- Based on explainer objects

...since version 0.4 additionally suggests:

- ingredients
- iBreakDown

{ <u>iml</u> } (C. Molnar, 2019)

- Reimplementation of many algorithms, e.g.
  - Variable importance
  - PDP & ALE, ICE
  - Shapley values, local regression
- ...supports models from: mlr & caret
- ...based on Predictor Objects

Interpretable Machine Learning







## 1st Step: Explainers (...example using mlr) (Bischl et al., 2016)

```
# load example data
library(DALEX)
data("titanic")
str(titanic)
titanic <- titanic[complete.cases(titanic),]</pre>
# train classifiers using mlr
library(mlr)
classif_task <- makeClassifTask(data = titanic, target = "survived", positive = "yes")</pre>
lrn_rf <- makeLearner("classif.randomForest", predict.type = "prob")
lrn_glm <- makeLearner("classif.binomial", predict.type = "prob")</pre>
lrn_svm <- makeLearner("classif.ksvm", predict.type = "prob")</pre>
classif_rf <- train(lrn_rf, classif_task)</pre>
classif_glm <- train(lrn_glm, classif_task)</pre>
classif_svm <- train(lrn_svm, classif_task)
# step 1: build explainers for subsequent analysis of the models
library(DALEX)
# define cutomized predcit function for mlr learners
custom_predict_classif <- function(object, newdata)</pre>
  return(predict(object, newdata = newdata)$data[,3])
 # function that takes two arguments: model and new data
 # ...and returns numeric vector with predictions
explainer_rf <- explain(classif_rf, data = titanic, y = titanic\survived == "yes",
                           label = "rf", predict_function = custom_predict_classif)
explainer_glm <- explain(classif_glm, data = titanic, y = titanic$survived == "yes",
                           label="glm", predict_function = custom_predict_classif)
explainer_svm <- explain(classif_svm, data = titanic, y = titanic$survived == "yes",
                           label = "svm", predict_function = custom_predict_classif)
```



https://www.geo.de/geolino/mensch/10493-rtkl-geschichte-die-letzte-nacht-auf-der-titanic

- Explainers provide unique access to different learners for further analysis, required:
  - Model
  - Data
  - Vector of true target values
- ...here: comparison of RF, SVM and logistic regression

## Different Requirements on Explainability

### **Question:**

### Explain...

- a) entire model or
- b) single predictions?

### **Understand...**

- a) which are the most relevant variables or
- b) effect of single variables on the output?



## Variable (Permutation) Importance

(Breiman, 2001)

• Idea: Compute loss in performance if a variable is randomly perturbed.



- ...biased towards # levels.
- …reflects only importance w.r.t. saturated levels
   (→ backward elimination).
- ...be aware of the effect of potential correlated predictors.





## Variable (Permutation) Importance using DALEX

```
# Variable Importance
library(ingredients)
# define customized loss function for variable importance
# ...pre-implemented: loss_root_mean_square(), loss_sum_of_squares()
# ...example: loss_func = function(observed, predicted) sum((observed - logit(predicted))^2))
auc_loss <- function(observed, predicted){</pre>
  require(pROC)
  curve <- roc(observed, predicted, levels = c("FALSE", "TRUE"), direction = "<")
  # REM: according to help: levels = c("controls", "cases"), direction = controls < cases
  1-auc(curve)
# calculate variable importance
vimp_rf <- feature_importance(explainer_rf, loss_function = auc_loss, type = "difference")</pre>
vimp_glm <- feature_importance(explainer_glm, loss_function = auc_loss, type = "difference")</pre>
vimp_svm <- feature_importance(explainer_svm, loss_function = auc_loss, type = "difference")</pre>
vimp_rf
# ...note AUC _full_model_ = _baseline_ + 0.5
plot(vimp_rf, vimp_glm, vimp_svm, bar_width = 2) #, max_vars = 20)
```



## Other Packages...

| Package       | Variable Importance | РОР | ALE | ICE | 2D | surrogate trees | merging path | ПМЕ | local regression | Shapley Values | breakdown | live |
|---------------|---------------------|-----|-----|-----|----|-----------------|--------------|-----|------------------|----------------|-----------|------|
| random Forest | Х                   |     |     |     |    |                 |              |     |                  |                |           |      |
| gbm           | Х                   |     |     |     |    |                 |              |     |                  |                |           |      |
| xgboost       | Х                   |     |     |     |    |                 |              |     |                  |                |           |      |
| mlr           | Х                   | Χ   |     |     | Χ  |                 |              |     |                  |                |           |      |
| caret         | Х                   |     |     |     |    |                 |              |     |                  |                |           |      |
| DALEX         | Х                   | Х   | Χ   |     |    |                 | Х            |     |                  |                | Χ         | Χ    |
| iml           | Х                   | Х   | Х   | Х   | Х  | Χ               |              |     | Х                | Χ              |           |      |
| pdp           |                     | Х   |     | Χ   | Χ  |                 |              |     |                  |                |           |      |
| ALEPIot       |                     | Х   | Χ   |     | Х  |                 |              |     |                  |                |           |      |
| ICEbox        |                     | Х   |     | Χ   |    |                 |              |     |                  |                |           |      |
| lime          |                     |     |     |     |    |                 |              | Х   |                  |                |           |      |
| shapleyR      |                     |     |     |     |    |                 |              |     |                  | Χ              |           |      |



## Different Requirements on Explainability

### **Question:**

### Explain...

- a) entire model or
- b) single predictions?

### **Understand...**

- a) which are the most relevant variables or
- b) effect of single variables on the output?





## Partial Dependency Plots (Friedman, 2001)

 Idea of PDP: Compute average prediction depending on one (or several) variable(s)  $X_i$ :

 $E_{x \setminus x_i} (\hat{f}(X_j = x))$ 

### ...in practice this is done via:

$$PD(X_j = x) = \frac{1}{n} \sum_{i=1}^n \hat{f}(x_{i1}, \dots, x_{i(j-1), i}, x, x_{i(j+1)}, \dots, x_{ip})$$

- ...only partly explains the model.
- ...averaging does not take into account for correlations between predictors. ...ALE Plots are more appropriate (Apley, 2016).







### PDP and ALE Plots using DALEX

```
# partial dependency for single variables (here: variable "age")
pdp_rf <- partial_dependency(explainer_rf, variables = "age", grid_points = 101)
pdp_glm <- partial_dependency(explainer_glm, variables = "age")
pdp_svm <- partial_dependency(explainer_svm, variables = "age")
ale_rf <- accumulated_dependency(explainer_rf, variables = "age")
ale_glm <- accumulated_dependency(explainer_glm, variables = "age")
ale_svm <- accumulated_dependency(explainer_svm, variables = "age")
plot(pdp_rf, pdp_glm, pdp_svm)
plot(ale_rf, ale_glm, ale_svm)</pre>
```





## Other Packages...

| Package      | Variable Importance | РОР | ALE | ICE | 2D | surrogate trees | merging path | LIME | local regression | Shapley Values | breakdown | live |
|--------------|---------------------|-----|-----|-----|----|-----------------|--------------|------|------------------|----------------|-----------|------|
| randomForest | Χ                   |     |     |     |    |                 |              |      |                  |                |           |      |
| gbm          | Х                   |     |     |     |    |                 |              |      |                  |                |           |      |
| xgboost      | Χ                   |     |     |     |    |                 |              |      |                  |                |           |      |
| mlr          | Х                   | Х   |     |     | Х  |                 |              |      |                  |                |           |      |
| caret        | Х                   |     |     |     |    |                 |              |      |                  |                |           |      |
| DALEX        | X                   | Х   | Х   |     |    |                 | Х            |      |                  |                | Χ         | Х    |
| iml          | X                   | Х   | Х   | Х   | Х  | Х               |              |      | Х                | X              |           |      |
| pdp          |                     | Х   |     | Х   | Х  |                 |              |      |                  |                |           |      |
| ALEPIot      |                     | Х   | Х   |     | Х  |                 |              |      |                  |                |           |      |
| ICEbox       |                     | Х   |     | Х   |    |                 |              |      |                  |                |           |      |
| lime         |                     |     |     |     |    |                 |              | Х    |                  |                |           |      |
| shapleyR     |                     |     |     |     |    | ·               |              |      |                  | Х              |           |      |



## Different Requirements to Explainability

### **Question:**

### Explain...

- a) entire model or
- b) single predictions?

### **Understand...**

- a) which are the most relevant variables or
- b) effect of single variables on the output?





### Breaking Down Predictions

(Staniak and Biecek, 2018)

$$x = (x_s, x_c)$$
 s, c: subsets of variables.

#### PDP for on a set of variables:

$$PD(x_S) = \frac{1}{n} \sum_{i=1}^{n} \hat{f}\left(x_S, x_C^{(i)}\right)$$
$$\hat{f}(x) = PD(x) = \frac{1}{n} \sum_{i=1}^{n} \hat{f}\left(x, x_{\emptyset}^{(i)}\right)$$



...Iteratively remove variable  $X_i$  such that the difference

$$\left| PD(x_S) - PD\left(x_{S \setminus X_j}\right) \right| \to min$$



### Breaking Down Predictions using DALEX

 $x = (x_s, x_c)$  s, c: subsets of variables.

### PDP for on a set of variables:

$$PD(x_S) = \frac{1}{n} \sum_{i=1}^{n} \hat{f}\left(x_S, x_C^{(i)}\right)$$

$$\hat{f}(x) = PD(x) = \frac{1}{n} \sum_{i=1}^{n} \hat{f}\left(x, x_{\emptyset}^{(i)}\right)$$



```
# explaining a single prediction
new.obs <- titanic[1,]
predict(classif_rf, newdata = new.obs)

library(iBreakDown)
rf_brkdn <- break_down(explainer_rf, new_observation = new.obs)
plot(rf_brkdn)</pre>
```

## Other Packages...

| Package      | Variable Importance | РОР | ALE | ICE | 2D | surrogate trees | merging path | LIME | local regression | Shapley Values | breakdown | live |
|--------------|---------------------|-----|-----|-----|----|-----------------|--------------|------|------------------|----------------|-----------|------|
| randomForest | Χ                   |     |     |     |    |                 |              |      |                  |                |           |      |
| gbm          | Χ                   |     |     |     |    |                 |              |      |                  |                |           |      |
| xgboost      | Χ                   |     |     |     |    |                 |              |      |                  |                |           |      |
| mlr          | X                   | Χ   |     |     | X  |                 |              |      |                  |                |           |      |
| caret        | X                   |     |     |     |    |                 |              |      |                  |                |           |      |
| DALEX        | Χ                   | Χ   | Х   |     |    |                 | Χ            |      |                  |                | Х         | Х    |
| iml          | Χ                   | Χ   | Х   | Х   | Х  | Χ               |              |      | Х                | Х              |           |      |
| pdp          |                     | Χ   |     | Χ   | Х  |                 |              |      |                  |                |           |      |
| ALEPIot      |                     | Χ   | Χ   |     | Χ  |                 |              |      |                  |                |           |      |
| ICEbox       |                     | Χ   |     | Χ   |    |                 |              |      |                  |                |           |      |
| lime         |                     |     |     |     |    |                 |              | Х    |                  |                |           |      |
| shapleyR     |                     |     |     |     |    |                 |              |      |                  | Х              |           |      |







### Shapley Values

(Strubelj and Kononenko, 2010)

- Conceptually similar to breakdown plots.
- Originates from game theory.

$$PD(x_S) = \sum_{i=1}^{n} \hat{f}\left(x_S, x_C^{(i)}\right)$$

$$\Delta_j(x_S) = PD\left(x_{S \cup X_j}\right) - PD(x_S)$$

...increase in explanation by variable  $X_j$  for a realization  $x_S$  of a variable set  $S \ni j$ .

$$SV_j(x) = \sum_{S \subseteq X \setminus X_j} \frac{|S|! (|F| - |S| - 1)!}{|F|!} \Delta_j(x_S)$$

...with F being the set of all variables.



...average increase  $\Delta_j(x_S)$  over all possible variable sets where variable j is added.



### Shapley Values using iml





### Local Explanation (LIME)

(Ribeiro, Singh and Guestrin, 2016)

- 1. Permute observation x n times.
- 2. Predict outcome for all permutations.
- 3. Calculate similarity (distance) of permutations to x.
- 4. (Discretize Variables.)
- 5. Select m best features (e.g. using LASSO).
- Fit a simple local (additive) model to the permuted data weighted by similarity.





### Local Explanation using lime





### Note on Explaining Tree Ensembles

(Saabas, 2014)



#### Decomposition of a single tree...

$$\hat{f}(x) = 18.11 = 22.6 \ (\bar{y}) - 2.64 (RM) - 5.04 (LSTAT) + 3.2 (NOX)$$

$$= y_{root} + \sum_{j} contrib(x, j)$$



...of a random forest:

$$\hat{f}(x) = \frac{1}{B} \sum_{b=1}^{B} y_{root,b} + \sum_{j} \frac{1}{B} \sum_{b=1}^{B} contrib_{b}(x,j)$$

...for xgboost this is offered by argument predcontrib = TRUE of the predict.xgb.Booster or the package xgboostExplainer (Foster, 2018).

### Takeaways

- Different Requirements on 'explainability'.
- A lot of packages providing different functionalities.
- Most popular methods
  - Variable importance
  - PDP and ALE Plots
  - LIME and Shapley values
- Two general frameworks: DALEX and iml.
- Open issues: Which method to chose? Are available approaches sufficient? There is an obvious need for explanation. ...there is still work to be done!







### References

- Apley, D. (2016): Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models, arXiv:1612.08468. (ALE plots)
- Biecek, P. (2018): DALEX: Explainers for Complex Predictive Models in R, JMLR 19, 1-5. (DALEX)
- Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G. and Jones Z. (2016): mlr Machine Learning in R, JMLR 17, 1–5. (mlr)
- Breiman, L. (2001): Random Forests, Machine Learning 45(1), 5 32. (Variable Importance)
- Foster, D. (2018): xgboostExplainer. https://github.com/AppliedDataSciencePartners/xgboostExplainer.
- Friedman, J. (2001): Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29:1189–1232. (PDP)
- Molnar, C., Casalicchio, G. and Bischl, B. (2018): iml: An R package for Interpretable Machine Learning. J. Open Source Software 3 (26): 786. (iml)
- Ribeiro, M., Singh, S. and Guestrin, C. (2016): Why Should I Trust You?. ACMPress, 2016. doi: 10.1145/2939672.2939778. URL: https://arxiv.org/abs/1602.04938. (LIME)
- Saabas, A. (2014): Interpreting Random Forests. https://blog.datadive.net/interpreting-random-forests/,
- Staniak, M. and Biecek, P. (2018): Explanations of Model Predictions with live and breakDown Packages, R Journal 10/2, 395-409.
- Strubelj, E. and Kononenko, I. (2010): An Efficient Explanation of Individual Classifications using Game Theory, JMLR 11, 1-8. (Shapley Values)

## Thank You