HW # 2: Planar Kinematics

- Q1: The bent flat bar rotates about a fixed axis through point O with the instantaneous angular properties indicated in the Figure 1. Determine the velocity and acceleration of point A.
- Q2. The wheel of radius r rolls without slipping, and its center O has a constant velocity v_0 to the right as shown in Figure 2. Determine expressions for the magnitudes of the velocity v and acceleration a of point A on the rim by differentiating its x- and y-coordinates.

- Q3. The rod *OB* slides through the collar pivoted to the rotating link at *A* as shown in Figure 3. If *CA* has an angular velocity $\omega = 3$ rad/s for an interval of motion, calculate the angular velocity of *OB* when $\theta = 45^{\circ}$.
- Q4. Figure 4 shows the Geneva wheel mechanism used for producing intermittent rotation. Pin P in the integral unit of wheel A and locking plate B engages the radial slots in wheel C, thus turning wheel C one-fourth of a revolution for each revolution of the pin. At the engagement position shown, $\theta = 45^{\circ}$. For a constant clockwise angular velocity $\omega_1 = 2$ rad/s of wheel A, determine the corresponding counterclockwise angular velocity ω_2 of wheel C for $\theta = 20^{\circ}$. (Note that the motion during engagement is governed by the geometry of triangle O_1O_2P with changing θ .)

Q5. A four-bar linkage is shown in the Figure 5 (the ground "link" OC is considered the fourth bar). If the drive link OA has a counterclockwise angular velocity $\omega_0 = 10$ rad/s, determine the angular velocities of links AB and BC.

Q6. Link *OA* has a counterclockwise angular velocity $d\theta/dt = 4$ rad/sec during an interval of its motion. Use method of instantaneous centre of rotation to determine the angular velocity of link AB and of sector BD for $\theta = 45^{\circ}$ at which instant AB is horizontal and BD is vertical.

Q7. For the Figure 7, determine the angular acceleration of *AB* and the linear acceleration of *A* for the position $\theta = 90^{\circ}$ if $d\theta/dt = 4$ rad/s and $d^2\theta/dt^2 = 0$ at that position.

Figure 8

Q8. The disk rotates about a fixed axis through point O with a clockwise angular velocity $\omega_0 = 20$ rad/s and a counterclockwise angular acceleration $\alpha_0 = 5$ rad/s² at the instant under consideration (see Figure 8). The value of r is 200 mm. Pin A is fixed to the disk but slides freely within the slotted member BC. Determine the velocity and acceleration of A relative to slotted member BC and the angular velocity and angular acceleration of BC.