Artificial Neural Networks and TensorFlow - Comprehensive Exam Notes

1. TensorFlow Overview

What is TensorFlow?

- **Definition**: Python-friendly open source library for numerical computation
- Purpose: Well-suited for large-scale machine learning and deep learning
- Key Features:
 - Define computation graphs in Python
 - Breaks graphs into chunks for parallel execution
 - Supports multiple CPU, GPU, and TPU processing

TensorFlow with Keras

- Keras is the high-level API for TensorFlow
- Provides user-friendly interface for building neural networks
- Simplifies model creation, training, and evaluation

2. Linear Threshold Unit (LTU)

Basic Structure

- **Inputs**: Numerical values (x₁, x₂, ..., x_n)
- **Weights**: Each input has an associated weight (w₁, w₂, ..., w_n)
- Computation:
 - Weighted sum: $z = w_1x_1 + w_2x_2 + ... + w_nx_n = w^Tx$
 - Output: $\hat{y} = \text{step}(z) = \text{step}(w^T x)$
- **Step Function**: step(z) = 0 if z < 0, otherwise 1

Mathematical Representation

- Vector form: z = w^T x
- Decision boundary created by step function
- Forms basis for more complex neural networks

3. Perceptron

Architecture

- Structure: Single layer of neurons
- Bias: Added as fixed input value of 1
- Neuron j computation: $z_i = w_{i1}x_1 + ... + w_{in}x_n + b = w_i^T x + b$

Activation Functions (replacing step function)

- 1. **ReLU (Rectified Linear Unit)**: ReLU(z_i) = max(0, z_i)
- 2. **Sigmoid (Logistic)**: $\sigma(z_j) = e^z_j/(1 + e^z_j) = 1/(1 + e^{-z_j})$
- 3. Hyperbolic Tangent: $tanh(z_i) = 2\sigma(2z_i) 1$

Training Process

- Weight Update: $w_{i,j}(new) = w_{i,j} \alpha \cdot \partial J(w_{j,i}b_{j})/\partial w_{i,j}$
- **Bias Update**: $b_i(new) = b_i \alpha \cdot \partial J(w_i, b_i)/\partial b_i$
- **Learning Rate**: α (step size parameter)

4. Multi-Layer Perceptron (MLP)

Architecture Components

- Input Layer: Conceptual layer that forwards inputs
- Hidden Layer(s): One or more layers between input and output
- Output Layer: Produces final predictions
- Connections: Fully connected layers (except output layer includes bias)

Key Properties

- Universal Approximation: Sufficiently large MLP can approximate any continuous function
- **Feedforward**: Information flows in one direction (input → hidden → output)
- Bias Neurons: Special neurons that always output 1

Hidden Layer Computation

- Input: $h = (h_1, ..., h_n)$ from previous layer
- Computation: $z_j = w_j^T h + b$
- Activation Functions: Sigmoid, Tanh, or ReLU

5. Output Layer Configurations

For Regression

- **Linear Output**: $\hat{y} = w_i^T h + b_i$ (no activation)
- **Bounded Output**: $\hat{y} = \sigma(w_i^T h + b_i)$ (sigmoid activation)
- Positive Output: $\hat{y} = ReLU(w_i^Th + b_i)$

For Classification

- Softmax Function:
 - Intermediate: $z_j = w_j^T h + b_j$
 - Output: $\hat{y}_j = \text{softmax}_j(z) = e^z_j / \sum_{i=1}^n e^z_i$
 - Interpretation: \hat{y}_i represents probability of class j

6. Cost Functions

Regression

- Mean Squared Error (MSE): Standard loss function for regression problems
- **Formula**: $J = (1/m) \sum_{i=1}^{m} (y_i \hat{y}_i)^2$

Classification

- Cross-Entropy Loss:
 - Single sample: cross_entropy(y_i , \hat{y}_i) = $-\Sigma_j y_{j,i} \log(\hat{y}_{j,i})$
 - Total cost: cost(y, \hat{y}) = (1/m) $\Sigma_{i=1}^{m}$ cross_entropy(y_i, \hat{y}_{i})
- Binary Classification: Binary cross-entropy with sigmoid activation

7. Training Process (Backpropagation)

Forward Pass

- 1. **Input Processing**: Feed training instance x to network
- 2. Layer-by-layer Computation: Calculate outputs for each layer
- 3. **Prediction**: Compute final output $\hat{y} = f(x)$
- 4. Error Calculation: Measure cost(y, ŷ)

Backward Pass

- 1. **Output Layer Error**: Calculate error contribution from each output neuron
- 2. Hidden Layer Error: Work backwards to measure error contribution from each hidden neuron
- 3. Gradient Calculation: Compute gradients for all weights and biases
- 4. Weight Update: Apply gradient descent to reduce error

Key Concepts

- Chain Rule: Used to compute gradients through multiple layers
- **Gradient Descent**: Iterative optimization algorithm
- **Learning Rate**: Controls step size in weight updates

8. Keras Implementation

Dataset Preparation

```
# Example: Fashion MNIST
fashion_mnist = keras.datasets.fashion_mnist
(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()

# Scaling and splitting
X_valid, X_train = X_train_full[:5000] / 255.0, X_train_full[5000:] / 255.0
y_valid, y_train = y_train_full[:5000], y_train_full[5000:]
```

Model Architecture (Sequential API)

```
model = keras.models.Sequential([

keras.layers.Flatten(input_shape=[28, 28]), # 2D to 1D conversion

keras.layers.Dense(300, activation="relu"), # Hidden layer 1

keras.layers.Dense(100, activation="relu"), # Hidden layer 2

keras.layers.Dense(10, activation="softmax") # Output layer

])
```

Model Compilation

```
model.compile(

loss="sparse_categorical_crossentropy", # For sparse labels

optimizer="sgd", # Stochastic Gradient Descent

metrics=["accuracy"] # Performance metric
)
```

Training

```
python
history = model.fit(
    X_train, y_train,
    epochs=30,
    validation_data=(X_valid, y_valid)
)
```

Evaluation and Prediction

```
python
# Evaluate model
model.evaluate(X_test, y_test)

# Make predictions
y_proba = model.predict(X_new)
y_pred = np.argmax(y_proba, axis=-1)
```

9. Hyperparameter Configurations

Regression Networks

Parameter	Typical Values	
Input neurons	One per feature	
Hidden layers	1-20 layers	
Neurons per layer	10x-100x input features	
Output neurons	1 per target variable	
Hidden activation	ReLU, Sigmoid, Tanh	
Output activation	None, ReLU, Sigmoid/Tanh	
Loss function	MSE	
4	•	

Classification Networks

Task	Binary	Multi-label	Multi-class
Output neurons	1	1 per label	1 per class
Output activation	Sigmoid	Sigmoid	Softmax
Loss function	Binary Cross-entropy	Binary Cross-entropy	Categorical Cross-entropy
4	•	•	

10. Advanced Techniques

Regularization

• L1 Regularization: $\tilde{J}(W) = J(W) + \lambda_1 \Sigma_i |w_i|$

• L2 Regularization: $\tilde{J}(W) = J(W) + \lambda_2 \Sigma_i w_i^2$

• Combined: $\widetilde{J}(W) = J(W) + \lambda_1 \Sigma_i |w_i| + \lambda_2 \Sigma_i w_i^2$

Implementation in Keras

```
python
keras.layers.Dense(
    4,
    activation="relu",
    kernel_regularizer=keras.regularizers.l1_l2(l1=0.01, l2=0.01)
)
```

Early Stopping

• **Purpose**: Prevent overfitting

• **Method**: Stop training when validation error stops decreasing

• Implementation: Monitor validation loss during training

11. Hyperparameter Tuning

Grid Search with Keras Tuner

```
def build_model(hp):
    n_hidden = hp.Int("n_hidden", min_value=0, max_value=8, default=2)
    n_neurons = hp.Int("n_neurons", min_value=16, max_value=256)
    learning_rate = hp.Float("learning_rate", min_value=1e-4, max_value=1e-2)

model = tf.keras.Sequential()
    model.add(tf.keras.layers.Flatten())
    for _ in range(n_hidden):
        model.add(tf.keras.layers.Dense(n_neurons, activation="relu"))

model.add(tf.keras.layers.Dense(10, activation="softmax"))

model.compile(
    loss="sparse_categorical_crossentropy",
        optimizer=tf.keras.optimizers.SGD(learning_rate=learning_rate),
        metrics=["accuracy"]
    )
    return model
```

12. Loss Functions in Keras

Common Loss Functions

- sparse_categorical_crossentropy: For integer labels (0, 1, 2, ...)
- categorical_crossentropy: For one-hot encoded labels
- binary_crossentropy: For binary classification
- mse: Mean Squared Error for regression

Selection Criteria

- Sparse labels: Use sparse_categorical_crossentropy
- One-hot labels: Use categorical_crossentropy
- Binary tasks: Use binary_crossentropy
- Regression: Use mse or other regression losses

13. Optimizers

Available Optimizers in Keras

- SGD: Standard Stochastic Gradient Descent
- Adam: Adaptive Moment Estimation
- RMSprop: Root Mean Square Propagation
- Adagrad: Adaptive Gradient Algorithm
- Adadelta: Extension of Adagrad

Choosing Optimizers

- SGD: Simple, interpretable, good baseline
- Adam: Generally good performance, adaptive learning rates
- **RMSprop**: Good for recurrent neural networks

14. Activation Functions

Available Functions

- ReLU: Most common for hidden layers
- Sigmoid: Output layer for binary classification
- Softmax: Output layer for multi-class classification
- Tanh: Alternative to sigmoid
- Linear: No activation (regression output)

Selection Guidelines

- Hidden layers: Usually ReLU
- Binary output: Sigmoid
- Multi-class output: Softmax
- Regression output: Linear or ReLU (for positive values)

15. Initialization Strategies

Available Initializers

• GlorotNormal/GlorotUniform: Good for sigmoid/tanh

- HeNormal: Good for ReLU
- Constant: Initialize to specific value
- Random: Various random initializations

Usage

python

keras.layers.Dense(10, activation="relu", kernel_initializer="he_normal")

16. Key Exam Tips

Important Concepts to Remember

- 1. **Architecture Design**: Know when to use different layer types and sizes
- 2. Activation Functions: Understand when to use each type
- 3. **Loss Functions**: Match loss function to problem type
- 4. Regularization: Understand L1/L2 regularization effects
- 5. **Training Process**: Understand forward/backward pass
- 6. Hyperparameter Tuning: Know common ranges and selection criteria

Common Exam Questions

- 1. **Design networks**: Given a problem, specify architecture
- 2. **Choose parameters**: Select appropriate loss, optimizer, activation
- 3. **Debug training**: Identify overfitting/underfitting issues
- 4. Mathematical understanding: Compute forward/backward pass
- 5. **Implementation**: Write Keras code for specific architectures

Problem-Solving Approach

- 1. **Identify problem type**: Regression vs. classification
- 2. **Design architecture**: Input → Hidden → Output layers
- 3. Choose components: Activation, loss, optimizer
- 4. **Consider regularization**: If overfitting is likely
- 5. **Plan evaluation**: Metrics and validation strategy