# TCP LoLa

## Congestion Control for Low Latencies and High Throughput

#### What is TCP LoLa?

A **delay-based** congestion control algorithm that supports both, **low queuing delay** and **high network utilization** in high speed wide-area networks.

# **How TCP LoLa works?**



RTT<sub>max</sub> and RTT<sub>min</sub>: maximal and minimal measured RTT respectively

 $Q_{\text{low}}$  and  $Q_{\text{target}}\!\!:$  threshold values

 $\hat{Q}_{ ext{delay}}$ : queuing delay caused by the standing queue

**Standing queue**: a small queue deliberately created by TCP LoLa; Standing queue exists => overall amount of in-flight data is sufficient to fully utilize the bottleneck link

## (a) Slow Start

TCP LoLa enters the slow start state after its initial start or after a retransmission timeout.

#### (b) Cubic Increase

Increase function used by TCP LoLa:

$$CWnd(t) = C \cdot (t - K)^3 + CWnd_{max}$$

t: time since last window reduction

C: unit-less factor (C = 0.4)

K: recalculated whenever CWnd has to be reduced

CWnd<sub>max</sub>: size of CWnd before last reduction

TCP LoLa uses this function only if the potential bottleneck link is most likely not fully utilized, i.e., no standing queue is detected.

#### (c) Fair Flow Balancing

**Basic idea**: Each flow should keep a low but similar amount of data (X) in the bottleneck queue.

To keep the overall queuing delay between the thresholds  $Q_{\text{low}}$  and  $Q_{\text{target}}\text{, }X$  has to be dynamically scaled:

$$X(t)[Byte] = (\frac{t[ms]}{\phi})^3$$

t = 0 when fair flow balancing is entered;  $\phi$  is a constant.

CWnd is adapted as follows:

$$\begin{array}{l} \textbf{if } \widehat{Q}_{data} < X(t) \textbf{ then} \\ CWnd \leftarrow CWnd + (X(t) - \widehat{Q}_{data}) \\ \textbf{else} \\ CWnd \leftarrow CWnd \\ \textbf{end if} \end{array}$$

 $\hat{Q}_{ ext{data}}$ : amount of data the flow itself has queued at the bottleneck

Fair flow balancing requires that all competing flows enter and leave it at similar points in time => design puts a strong emphasis on synchronized state changes.

#### (d) CWnd Hold

In this state, the CWnd is unchanged for a fixed amount of time  $t_{\rm sync}$  (default value = 250 ms). The hold time is necessary to ensure that all flows quit the current round of fair flow balancing.

#### (e) Tailored Decrease

Tailored decrease adjusts the CWnd reduction to the amount of congestion:

$$CWnd \leftarrow (CWnd - \widehat{Q}_{data}) \cdot \gamma$$

Each flow reduces its CWnd by  $\hat{Q}_{\text{data}}$  – this should already empty the queue. CWnd is further reduced by the factor  $\gamma$  < 1 to ensure that the queue will actually be drained completely. To achieve this, K is calculated as follows:

$$K = \sqrt[3]{\left(CWnd_{max} - \widehat{RTT}_{min} \cdot \frac{CWnd_{max}}{\widehat{RTT}_{now}} \cdot \gamma\right)/C}$$

 $R\hat{T}T_{min}$ : RTT without any queuing delays

 $R\hat{T}T_{\text{now}}$ : RTT including the standing queue

# How are queuing delay measurements done?

$$\widehat{RTT}_{now} = \min\{RTT(t_k) | t_k \in [t - t_{measure}, t]\}$$

RTT ( $t_k$ ): an individual RTT measurement at time  $t_k$ 

 $\mathbf{t}_{\text{measure}}$ : a certain time interval independent of a flow's RTT

$$\widehat{RTT}_{min} \leftarrow \min(\widehat{RTT}_{min}, \widehat{RTT}_{now})$$

$$\widehat{Q}_{delay} = \widehat{RTT}_{now} - \widehat{RTT}_{min}$$

$$\widehat{Q}_{data} = \widehat{Q}_{delay} \cdot \frac{CWnd}{\widehat{RTT}_{now}}$$

The validity of  $R\hat{T}T_{\rm min}$  is checked after tailored decrease.  $R\hat{T}T_{\rm min}$  is reset, if no  $R\hat{T}T_{\rm now}$  value close to  $R\hat{T}T_{\rm min}$  has been measured for a certain number (e.g., 100) of tailored decreases.