发件人: Yulin Wu yw4923@nyu.edu

主题

日期: 2020年9月9日 下午5:10

收件人:

Aggregation

2020年8月28日 星期五 上午11:55

15个朋友给了你15个意见(model g_t), 你如何去运用你朋友的意见呢?

第一种情形:

选出一个最强的(model selection)。但若你的朋友都是弱弱的,就gg

而aggreation真正想做的是:

三个臭皮匠, 胜过一个诸葛亮

Aggregation includes: blending and bagging

Uniform Blending:

一个很直观的理论是:

g_t同质化严重,blending后的结果as good as one g; 差异大的g blending后才能有更好的效果

先直观地理解这个理论:

even simple uniform blending can be better than any single hypot

严谨地证明:

Theoretical Analysis of Uniform Blending

$$G(\mathbf{x}) = \frac{1}{T} \sum_{t=0}^{T} g_{t}(\mathbf{x})$$

$$avg ((g_t(x) - f(x))^2) = avg (g_t^2 - 2g_t f + f^2)$$

$$= avg (g_t^2) - 2Gf + f^2$$

$$= avg (g_t^2) - G^2 + (G - f)^2$$

$$= avg (g_t^2) - 2G^2 + G^2 + (G - f)^2$$

$$= avg (g_t^2 - 2g_t G + G^2) + (G - f)^2$$

$$= \operatorname{avg}((g_t - G)^2) + (G - f)^2$$

$$\operatorname{avg}(E_{\operatorname{out}}(g_t)) = \operatorname{avg}(\mathcal{E}(g_t - G)^2) + E_{\operatorname{out}}(G)$$

等式的左边:

对每一个x来看, $g_t(x)$ - f(x) 的平方代表了 g_t 这个model在预测x上的error,可以用E_out(g_t)来代替。avg(E_out(g_t))就是,所有model预测x的偏差的平均。这里的意义是,如果你每次只选择一个 g_t ,那么你能期待的表现是avg(E_out(g_t))。

等式的右边:

(G-f)的平方代表了G这一个model在预测x上的error,mG是谁呢?就是min如iform Blending后的产物,3个臭皮匠结合后的产物。(G-f)的平方就是3个臭皮匠结合后的预测。

等式说明:

blending后的预测(3个臭皮匠的结合)比每次只选择一个g来预测(臭皮匠单独预测)要好!而且要好 avg($(g_t - G)^2$)那么多。

而且! avg((g_t - G)^2) 代表了g之间的方差。

Linear Blending

其实这里的 $\alpha \ge 0$ 的限制可以去掉。

ok,now, how to 训练这个model呢?

首先,关于如何解这个目标函数,要么用linear regression的解析解,要么用gradien descent. 然后,这个blending的input和output如何构造呢?还可以用原本训练集的数据吗?

Linear Blending versus Selection in practice, often $g_1 \in \mathcal{H}_1, g_2 \in \mathcal{H}_2, \dots, g_T \in \mathcal{H}_T$ by minimum E_{in} • recall: selection by minimum E_{in} —best of best, paying $d_{\text{vc}} \left(\begin{tabular}{c} \top \\ \cup \\ \cup \\ \cup \\ \end{array} \mathcal{H}_t \right)$

1. D分为D_train & D_val, use D_train to train g₁, g₂, ..., g_T 这一步可以看作feature transform.

If use $g = [g_1^-, g_2^-, ..., g_T^-]$ directly as input, y_train as output to train the blending model (如何 将朋友的意见加权平均),what would happen?

注: model selection is a special blending, how does it work? It selects the best model based on validation error instead of in-sample error. Essentially, $[g_1^-(Dval), ..., g_T^-(Dval)]$ as input, and y_val as output, 演算法就是手动选出最接近的那个g-.

Similarly, if I use g as input and y_train as output, I will definitely choose the best model or construct a even more complicated model. (ex: $1*model_1 + 2*model_2$). So I can't do this way.

Now I throw Dtrain out. 不再使用训练集了,只剩下验证集。

- 2. 模仿model selection,用g将验证集预测出来,so I have $z_{val} = [g_1^-(Dval), g_2^-(Dval), \dots, g_T^-(Dval)]$ As input, and y_val as output. 在验证集上训练s.t. $\min_{\alpha} \sum (y_{val_n} - \alpha^T z_{val,n})^2$
- 3. Finally, obviously, 选出最优的hypothesis后(ex: the second model is uniform blending, and the first model is XGB, SVM, LASSO), 再用所有的D fit一次, 选出最优的w。

最后,如何构造g的diversity

```
learning g_t for uniform aggregation: diversity important
   • diversity by different models: \emph{g}_1 \in \mathcal{H}_1, \emph{g}_2 \in \mathcal{H}_2, \dots, \emph{g}_T \in \mathcal{H}_T
   • diversity by different parameters: GD with \eta= 0.001, 0.01, ..., 10
   • diversity by algorithmic randomness:
                  random PLA with different random seeds
   · diversity by data randomness:
                   within-cross-validation hypotheses g_{\nu}^{-}
              next: diversity by data randomness without g
```

Bagging:

```
Revisit of Bias-Variance
expected performance of A = expected deviation to consensus
                                   +performance of consensus
               consensus \bar{g} = \text{expected } g_t \text{ from } \mathcal{D}_t \sim P^N
```

最理想的情况是:

- 有无限多个g
 每个g都有新的数据来训练

但是,太理想了,现实中要妥协

- finite but large g
 use bootstrapping (resample N examples with replacement) 去生成新的数据

Bagging 的效果:

