密钥封装算法流程如图1。

图 1 密钥封装算法流程

4.2 解封装算法及流程

4.2.1 解封装算法

用户B收到封装密文C后,为了对比特长度为klen的密钥解封装,需要执行以下运算步骤:

- B1: 验证 $C \in \mathcal{G}_1$ 是否成立,若不成立则报错并退出;
- B2: 计算群 G_T 中的元素 $w'=e(C, de_B)$, 将 w'的数据类型转换为比特串;
- B3: 将 C 的数据类型转换为比特串,计算封装的密钥 $K'=KDF(C||w'||ID_B, klen)$,若 K'为全 0 比特串,则报错并退出;
- B4: 输出密钥 K'。

4.2.2 解封装算法流程

解封装算法流程如图2。

图 2 解封装算法流程

5 公钥加密算法及流程

5.1 加密算法及流程

5.1.1 加密算法

设需要发送的消息为比特串 M, mlen 为 M 的比特长度, K_1 _len 为分组密码算法中密钥 K_1 的比特长度, K_2 _len 为函数 $MAC(K_2, Z)$ 中密钥 K_2 的比特长度。

为了加密明文M给用户B,作为加密者的用户A应实现以下运算步骤:

- A1: 计算群 G_1 中的元素 $Q_B=[H_1(ID_B||hid, N)]P_1+P_{pub-e}$;
- A2: 产生随机数 $r \in [1, N-1]$;
- A3: 计算群 G_1 中的元素 $C_1=[r]Q_B$,将 C_1 的数据类型转换为比特串;
- A4: 计算群 G_T 中的元素 $g=e(P_{pub-e}, P_2)$;
- A5: 计算群 G_T 中的元素 $w=g^r$, 按将 w 的数据类型转换为比特串;
- A6: 按加密明文的方法分类进行计算:
 - a) 如果加密明文的方法是基于密钥派生函数的序列密码算法,则
 - 1) 计算整数 $klen=mlen+K_2_len$,然后计算 $K=KDF(C_1||w||ID_B, klen)$ 。令 K_1 为 K 最左边的 mlen 比特, K_2 为剩下的 K_2 len 比特,若 K_1 为全 0 比特串,则返回 A2;