m15_202111_baseline -150 to 50, 200-300 ms difference wave

Load packages and define functions

This section load the packages knitr, markdown, ez, stringr readr, tidyr, and dplyr. It also define a function to compute the standard error of the mean and to calculate the mean, standard deviation and standard error for each condition. ## Load Packages

Function to calculate the standard error of the mean

```
sem = function(x)
{
    sqrt(var(x)/length(x))
}
```

Function to calculate the mean, the standard deviation and the standard error for each condition

data: a data frame varname: the name of a column containing the variable to be summariezed groupnames: vector of column names to be used as grouping variables

Analyse Affix Frequency

Read in and format the data

Then filter into two datasets, one with 2 Relatedness Factors (related, unrelated) and 2 Productivity Factors (high, low) and another with just one factors—Priming Effects for High adn Low productivity calculated by subtracting Related scores from Unrelated.

```
m15_200_300_afx <- read_csv("M15_afxfrq_200_300_bsl_150_50.csv")
m15_diff_afx <- filter(m15_200_300_afx, binlabel == "Priming_High" | binlabel == "Priming_Low")
m15_2by2_afx <- filter(m15_200_300_afx, binlabel != "Priming_High" & binlabel != "Priming_Low")
```

Add factors relatedness and productivity for the 2-factor dataframe by separating 'binlabel' variable. Recodes the difference wave dataframe by removing the "Priming" part of the binlabel.

```
m15_2by2_afx <-separate(m15_2by2_afx, binlabel, into = c("relatedness", "productivity"), sep = "_")
m15_diff_afx$productivity <- ifelse(m15_diff_afx$binlabel == "Priming_Low", "Low", "High")</pre>
m15_diff_afx$binlabel <- NULL # removes binlabel column; no longer needed
```

Separate electrode labels into multiple factors based on anteriority and laterality. tidyr::separate makes separating columns simple by allowing you to pass an integer index of split position, including negatively indexed from the end of the string.

```
m15 diff afx <- m15 diff afx %>%
  separate(chlabel, into = c('anteriority', 'laterality'), sep = -1, convert = TRUE)
m15_diff_afx <- m15_diff_afx %>%
  mutate(laterality = replace(laterality, laterality == "Z", 0)) # Replacing "Z" value with 0
#Extract 5 x 3 matrix for analysis (F3 to P4)
m15_diff_afx_subset <- filter(m15_diff_afx, laterality == 0 & anteriority!= "0" |
                                 laterality == 3 | laterality == 4)
```

Run ANOVA

```
# ezDesiqn(m15 diff afx subset, productivity, value, row = laterality, col = anteriority)
m15 diff afx aov <- ezANOVA(data = m15 diff afx subset, dv = value, wid = ERPset,
                        within = .(anteriority, laterality, productivity))
m15_diff_afx_aov
```

```
$ANOVA
```

```
Effect DFn DFd
                                                                p p<.05
2
                         anteriority 4 96 0.52834234 0.71515584
3
                                      2 48 3.99836948 0.02476761
                          laterality
4
                        productivity 1 24 0.92332786 0.34618442
5
              anteriority:laterality 8 192 1.03134578 0.41383412
6
            anteriority:productivity 4 96 0.03555546 0.99754287
7
             laterality:productivity 2 48 0.24406165 0.78440561
8 anteriority:laterality:productivity 8 192 0.28982362 0.96875324
2 7.361252e-04
3 2.860604e-03
```

- 4 1.605738e-02
- 5 6.382910e-04
- 6 6.964002e-05

```
7 2.027002e-04
8 1.258461e-04
$'Mauchly's Test for Sphericity'
                               Effect
                                                              p p<.05
2
                          anteriority 0.011651672 2.602754e-17
3
                           laterality 0.837811378 1.306718e-01
5
               anteriority:laterality 0.001129757 1.008052e-14
6
             anteriority:productivity 0.001763739 7.600652e-26
              laterality:productivity 0.836743407 1.287690e-01
7
8 anteriority:laterality:productivity 0.012148387 5.148720e-07
$'Sphericity Corrections'
                               Effect
                                                      p[GG] p[GG]<.05
                                                                            HFe
                                             GGe
                          anteriority 0.3719148 0.54172055
                                                                      0.3908021
3
                           laterality 0.8604455 0.03127412
                                                                    * 0.9206445
5
               anteriority:laterality 0.3809618 0.38461527
                                                                      0.4426265
6
             anteriority:productivity 0.3170264 0.90107429
                                                                      0.3266627
7
             laterality:productivity 0.8596556 0.75121503
                                                                      0.9196928
8 anteriority:laterality:productivity 0.4657992 0.87203290
                                                                      0.5620599
       p[HF] p[HF]<.05
2 0.55024364
3 0.02827776
5 0.39067664
6 0.90652813
7 0.76618558
8 0.90242808
```

Plot Means

Summarise the data

```
productivity laterality anteriority
                                         value
                                                     sd
                                    C -1.14896 1.740337 0.6153020
1
          High
                        0
2
          High
                        0
                                   CP -1.05168 1.660167 0.5869578
3
                        0
                                   F -1.12052 1.675466 0.5923668
          High
4
                        0
                                   FC -1.26984 1.846025 0.6526684
          High
5
                                    P -1.17448 1.962697 0.6939183
          High
                        0
6
          High
                        3
                                    C -0.96772 1.392343 0.4922676
```

Barplot with SD error bars

The function geom_errorbar() can be used to produce the error bars

Priming as a function of Productivity and Scalp Topography

Analyse Stem to Wholeword Frequency Ratio (Median Split)

Read in and format the data

Then filter into two datasets, one with 2 Relatedness Factors (related, unrelated) and 2 Productivity Factors (high, low) and another with just one factors—Priming Effects for High adn Low productivity calculated by subtracting Related scores from Unrelated.

```
m15_200_300_med <- read_csv("m15_medsplt_200_300_bsl_150_50.csv")
m15_diff_med <- filter(m15_200_300_med, binlabel == "Priming_High" | binlabel == "Priming_Low")
m15_2by2_med <- filter(m15_200_300_med, binlabel != "Priming_High" & binlabel != "Priming_Low")</pre>
```

Add factors relatedness (and productivity for 2 x 2 df) by recoding 'binlabel' variable

```
m15_2by2_med <-separate(m15_2by2_med, binlabel, into = c("relatedness", "productivity"), sep = "_")
m15_diff_med$productivity <- ifelse(m15_diff_med$binlabel == "Priming_Low", "Low", "High")
m15_diff_med$binlabel <- NULL # removes binlabel column; no longer needed</pre>
```

Separate electrode labels into multiple factors based on *anteriority* and *laterality*. tidyr::separate makes separating columns simple by allowing you to pass an integer index of split position, including negatively indexed from the end of the string.

##Run ANOVA

```
$ANOVA
```

```
Effect DFn DFd
                                                     F
                                                                 p p<.05
2
                         anteriority 4 96 0.6184925 0.650394969
3
                          laterality
                                       2 48 4.2035920 0.020785652
4
                        productivity 1 24 2.2567575 0.146076777
5
              anteriority:laterality 8 192 0.8014123 0.602026767
            anteriority:productivity 4 96 0.2716869 0.895566173
6
7
             laterality:productivity 2 48 6.7881028 0.002534426
8 anteriority:laterality:productivity 8 192 0.1267136 0.998073554
2 0.0010198224
3 0.0036956664
4 0.0267036177
5 0.0006047989
6 0.0006234518
7 0.0065631882
8 0.0001110054
$'Mauchly's Test for Sphericity'
```

```
Effect W p p<.05
2 anteriority 0.012195836 4.162116e-17 *
3 laterality 0.777065993 5.498774e-02
5 anteriority:laterality 0.001126735 9.866613e-15 *
```

```
6
             anteriority:productivity 0.001339990 4.224460e-27
              laterality:productivity 0.741431943 3.204940e-02
7
8 anteriority:laterality:productivity 0.002873556 1.505431e-11
$'Sphericity Corrections'
                                                       p[GG] p[GG]<.05
                               Effect
                                             GGe
                                                                             HFe
                          anteriority 0.3720926 0.498405052
                                                                       0.3910119
3
                           laterality 0.8177056 0.028932244
                                                                     * 0.8693493
5
               anteriority:laterality 0.3847704 0.499819178
                                                                       0.4478221
6
             anteriority:productivity 0.2953861 0.645200830
                                                                       0.3017143
7
              laterality:productivity 0.7945538 0.005313739
                                                                     * 0.8417266
8 anteriority:laterality:productivity 0.3969128 0.950650850
                                                                       0.4644879
       p[HF] p[HF]<.05
2 0.505848480
3 0.026340768
5 0.515669559
6 0.650055229
7 0.004480493
8 0.966393027
##Plot Means ### Summarise the data
df2_med <- data_summary(m15_diff_med_subset, varname="value",</pre>
                    groupnames=c("productivity", "laterality", "anteriority"))
# df2 med$sem <- NULL
head(df2_med)
  productivity laterality anteriority
                                         value
                                                      sd
                                                               sem
1
          High
                        0
                                    C -1.13792 2.103095 0.7435563
2
          High
                        0
                                   CP -1.03312 1.959312 0.6927215
3
          High
                        0
                                   F -1.18348 2.066630 0.7306640
4
                        0
                                   FC -1.21304 2.210276 0.7814506
          High
5
                                    P -1.19672 1.976511 0.6988022
          High
                        0
                        3
                                    C -0.78644 1.736572 0.6139709
          High
```

Barplot with SD error bars

The function geom_errorbar() can be used to produce the error bars

Planned Comparisons

This section explores the significant "Laterality x Parsability" interaction obtained for the "m15_diff_med_subset" df above, by doing a one-factor ANOVA test (high vs low parsability) for each of the three levels of laterality.

Effect of Parsability in the LH

Effect of Parsability at the Midline

Effect of Parsability in the RH

\$ANOVA

```
Effect DFn DFd F p p<.05 ges 2 productivity 1 24 0.2955651 0.591691 0.00362955
```


