Informe del Proyecto Final de Estadística

Richard Alejandro Matos Arderí Mauricio Sunde Jiménez

Grupo 311, Ciencia de la Computación.

Facultad de Matemática y Computación Universidad de La Habana.

2024

Índice

1.	Intr	oducci	ón	3		
2.	Aná	lisis D	escriptivo de los datos	4		
3.	Aná	lisis de	e la distribución	5		
	3.1.	Prueba	as de Normalidad	5		
	3.2.	Estima	ción de parámetros	5		
		3.2.1.	Estimación Puntual	5		
		3.2.2.	Estimación por Intervalos	5		
	3.3.	Prueba	as de Hipótesis	5		
		3.3.1.	Pruebas de Hipótesis para una población	5		
			Pruebas de Hipótesis para dos poblaciones			
4.	Cor	relació	n e Independencia	6		

1. Introducción

Este proyecto de análisis estadístico, realizado como parte del plan de estudios de Ciencia de la Computación, se centra en el conjunto de datos "Breast Cancer Wisconsin (Diagnostics)". Este dataset, ampliamente utilizado en la investigación de aprendizaje automático y análisis de datos biomédicos, contiene información crucial para la clasificación de tumores mamarios como benignos o malignos. Nuestro objetivo es ir más allá de una simple clasificación y profundizar en un análisis estadístico exhaustivo, explorando las características de los datos y sus relaciones intrínsecas.

En una primera etapa, emplearemos técnicas de estadística descriptiva para obtener una comprensión inicial del dataset. Esto incluirá el cálculo de medidas de tendencia central (media, mediana, moda) y medidas de dispersión (desviación estándar, varianza, rango intercuartílico) para cada variable, proporcionando una visión general de la distribución de los datos. Además, analizaremos la curtosis para determinar la forma de las distribuciones y la presencia de valores atípicos.

Posteriormente, nos adentraremos en el ámbito de la estadística inferencial. Comenzaremos con la estimación puntual y por intervalos de confianza de parámetros clave, como la media y la proporción, para inferir características de la población a partir de la muestra disponible. Realizaremos pruebas de normalidad (Shapiro-Wilk, Kolmogorov-Smirnov) para determinar si las distribuciones de las variables se ajustan a una distribución normal, un requisito para muchas pruebas paramétricas. Además, llevaremos a cabo pruebas de hipótesis sobre los parámetros de la población, examinando si existen diferencias significativas entre los grupos de tumores benignos y malignos.

Un aspecto fundamental de este proyecto será el análisis de las relaciones entre variables. Emplearemos técnicas de análisis de correlación (Pearson, Spearman) para identificar la fuerza y dirección de la asociación entre las características del tumor. También realizaremos pruebas de independencia de variables (chi-cuadrado) para evaluar si existe una relación estadísticamente significativa entre variables categóricas. Finalmente, exploraremos pruebas de homogeneidad para comparar la distribución de variables entre diferentes grupos, contribuyendo a una comprensión más profunda de las diferencias entre tumores benignos y malignos.

En resumen, este proyecto pretende ofrecer un análisis estadístico completo y riguroso del dataset "Breast Cancer Wisconsin (Diagnostics)", utilizando una variedad de técnicas descriptivas e inferenciales para extraer información relevante y contribuir a una mejor comprensión de las características y relaciones entre los atributos de los tumores mamarios. Los resultados obtenidos permitirán una mejor comprensión de los datos y podrán servir como base para futuros análisis y modelos predictivos.

2. Análisis Descriptivo de los datos

A continuación se muestra un cuadro con todas las variables presentes en el dataset, de conjunto con su clasificación estadística y su escala de medición.

Se brindará especial atención a las variables en rojo para el análisis. A continuación se expone una caracterización más detallada de las mismas:

- diagnosis:
- radius mean:
- texture_mean:
- perimeter_mean:
- \blacksquare area_mean:
- smoothness mean:
- compactness mean:
- symmetry_mean:
- radius_worst:
- texture_worst:
- perimeter worst:
- area_worst:
- smoothness worst:
- compactness_worst:
- symmetry worst:

3. Análisis de la distribución

- 3.1. Pruebas de Normalidad
- 3.2. Estimación de parámetros
- 3.2.1. Estimación Puntual
- 3.2.2. Estimación por Intervalos
- 3.3. Pruebas de Hipótesis
- 3.3.1. Pruebas de Hipótesis para una población
- 3.3.2. Pruebas de Hipótesis para dos poblaciones

4. Correlación e Independencia

Cuadro 1: Descripción de Variables del Dataset Breast Cancer Wisconsin (Diagnostics)

Variable	Descripción	Clasificación Es-	Escala de Medi-
		tadística	ción
ID	Identificador único del paciente	Cualitativa	Nominal
diagnosis	Diagnóstico del tumor (1 = maligno, 0 = benigno)	Cualitativa	Nominal
radius mean	Radio medio del tumor en mm	Continua	Razón
texture mean	Textura media del tumor	Continua	Razón
perimeter_mean	Perímetro medio del tumor en	Continua	Razón
araa maan	mm Área media del tumor en mm²	Continua	Razón
area_mean	Suavidad media del tumor	Continua	Razón
smoothness_mean		Continua	Razón
compactness_mean	Compacidad media del tumor Concavidad media del tumor	Continua	Razón
concavity_mean			
concave points mean	Puntos cóncavos medios del tu- mor	Continua	Razón
symmetry mean	Simetría media del tumor	Continua	Razón
· · · · · -			
fractal dimension mean	Dimensión fractal media del tumor	Continua	Razón
		Continua	Razón
radius_se	Desviación estándar del radio del tumor		
texture_se	Desviación estándar de la tex- tura del tumor	Continua	Razón
perimeter_se	Desviación estándar del perímetro del tumor	Continua	Razón
area_se	Desviación estándar del área del tumor	Continua	Razón
smoothness_se	Desviación estándar de la sua- vidad del tumor	Continua	Razón
$compactness_se$	Desviación estándar de la compacidad del tumor	Continua	Razón
concavity_se	Desviación estándar de la con- cavidad del tumor	Continua	Razón
concave points_se	Desviación estándar de los puntos cóncavos del tumor	Continua	Razón
symmetry_se	Desviación estándar de la si- metría del tumor	Continua	Razón
fractal dimension se	Desviación estándar de la di- mensión fractal del tumor	Continua	Razón
radius_worst	Radio máximo del tumor en	Continua	Razón
texture worst	mm Textura máxima del tumor	Continua	Razón
	Perímetro máximo del tumor	Continua	Razón Razón
perimeter_worst	en mm		
area_worst	Área máxima del tumor en mm²	Continua	Razón
$smoothness_worst$	Suavidad máxima del tumor	Continua	Razón
compactness_worst	Compacidad máxima del tu- mor	Continua	Razón
concavity_worst	Concavidad máxima del tumor	Continua	Razón
concave _ worst	Puntos cóncavos máximos del	Continua	Razón
points_worst	tumor		
symmetry_worst	Simetría máxima del tum ő r	Continua	Razón
fractal dimen-	Dimensión fractal máxima del	Continua	Razón
sion_worst	tumor		