MTH 301A, 2022

1 Limit Superior and Limit Inferior of a Sequence

Definition 1.1. Let $\{x_n\}$ be a sequence of real numbers. Consider $y_n = \sup\{x_n, x_{n+1}, \dots\}$. Clearly $\{y_n\}$ is a decreasing sequence i.e. $y_n \geq y_{n+1}$. Define

$$\limsup_{n \to \infty} x_n = \begin{cases} \lim_{n \to \infty} y_n & \text{if } x_n \text{if is bounded} \\ +\infty & \text{if } x_n \text{ is not bounded above} \\ -\infty & \text{if } x_n \text{ is not bounded below.} \end{cases}$$

Similarly we can define limit inferior as follows

Definition 1.2 (Limit Inferior). Let $\{x_n\}$ be a sequence of real numbers. Consider $z_n = \inf\{x_n, x_{n+1}, \dots\}$. Clearly $\{z_n\}$ is an increasing sequence i.e. $z_n \leq z_{n+1}$. Define

$$\lim_{n \to \infty} \inf x_n = \begin{cases}
\lim_{n \to \infty} z_n & \text{if } x_n \text{if is bounded} \\
+\infty & \text{if } x_n \text{ is not bounded above} \\
-\infty & \text{if } x_n \text{ is not bounded below.}
\end{cases}$$

Example 1.3. 1. Let $x_n = (-1)^n \left(1 + \frac{1}{n}\right)$. Then $\lim \sup_{n \to \infty} = 1$ and $\lim \inf_{n \to \infty} = -1$.

We can easily check the following.

Theorem 1.4. Let $\{x_n\}$ and $\{y_n\}$ be real sequences. Then

- 1. inf $x_n \leq \lim \inf_{n \to \infty} x_n \leq \lim \sup_{n \to \infty} x_n \leq \sup x_n$.
- 2. $\limsup_{n \to \infty} (x_n + y_n) \le \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n$. and $\lim_{n \to \infty} \inf (x_n + y_n) \ge \lim_{n \to \infty} \inf x_n + \lim_{n \to \infty} y_n$.
- 3. Let $\alpha > 0$. Then $\lim \sup_{n \to \infty} (\alpha x_n) = \begin{cases} \alpha \lim \sup_{n \to \infty} x_n & \text{if } \alpha \ge 0 \\ \alpha \lim \inf_{n \to \infty} x_n & \text{if } \alpha < 0. \end{cases}$
- 4. If $x_n \leq y_n$ then $\limsup_{n \to \infty} x_n \leq \limsup_{n \to \infty} y_n$ and $\liminf_{n \to \infty} x_n \leq \liminf_{n \to \infty} y_n$.

Proposition 1.1. Let $\{x_n\}$ be a sequence and $l \in \mathbb{R}$. The following are equivalent:

- 1. $\limsup_{n\to\infty} x_n = l$
- 2. For any $\epsilon > 0$ there exists a $N \in \mathbb{N}$ such that $x_n < l + \epsilon; \forall n \geq N$ and there exists a subsequence $\{x_{n_k}\}$ of the sequence $\{x_n\}$ such that

$$\lim_{k \to \infty} x_{n_k} = l.$$

Proof. Let $y_n = \sup_{k \ge n} x_k$. So we have $\lim_{n \to \infty} y_n = l$. So for every $\epsilon > 0$ there exists a $N \in \mathbb{N}$ such that

$$l - \epsilon < y_n < l + \epsilon, \ \forall n \ge N.$$

Clearly, $x_n < y_n < l + \epsilon$. For $\epsilon = 1$ we get N_1 such that $l - 1 < y_n < l + 1$, $\forall n \ge N_1$. Thus there exists a n_1 such that $l - 1 < a_{n_1} < l + 1$. Similarly for $\epsilon = \frac{1}{2}$ we get n_2 such that $l - \frac{1}{2} < a_{n_2} < l + \frac{1}{2}$. Continuing like this we get for every $k \in \mathbb{N}$ we get n_k such that

$$l - \frac{1}{k} < a_{n_k} < l + \frac{1}{k}.$$

Clearly, $\lim_{k\to\infty} a_{n_k} = l$.

For the converse, we are given that for $\epsilon > 0$ there exists a $N \in \mathbb{N}$ such that $x_n < l + \epsilon$, $\forall n \geq N$. Thus, $y_n < l + \epsilon$ for all $n \geq N$. We want to show the other side. Also, we are given that there exists a subsequence x_{n_k} which converges to l as k tends to ∞ . As $n_k \geq k$ we have $y_k \geq a_{n_k}$. Hence, the result.

Similar result can be proved for limit inferior.

Proposition 1.2. Let $\{x_n\}$ be a sequence and $l \in \mathbb{R}$. The following are equivalent:

- 1. $\liminf_{n \to \infty} x_n = l$
- 2. For any $\epsilon > 0$ there exists a $N \in \mathbb{N}$ such that $x_n > l \epsilon$; $\forall n \geq N$ and there exists a subsequence $\{x_{n_k}\}$ of the sequence $\{x_n\}$ such that

$$\lim_{k \to \infty} x_{n_k} = l.$$

For the above propositions we have the following corollaries, which we prefer to call it as a theorem.

Theorem 1.5. Let $\{x_n\}$ be a sequence. Then

$$\lim_{n \to \infty} = l$$

if and only if

$$\liminf_{n \to \infty} x_n = l = \limsup_{n \to \infty} x_n.$$

Example 1.6. 1. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers such that $\lim_{n\to\infty} (2x_{n+1}-x_n) = l$. Prove that $\lim_{n\to\infty} x_n = l$.

Soln: We first claim that x_n bounded. Let $M \in \mathbb{N}$ such that $|a_1| \leq M$ and $|2x_{n+1} - x_n| \leq M$, $\forall n$. Let $|x_n| \leq M$.

$$|x_{n+1}| = \left| \frac{x_n + (2x_{n+1} - x_n)}{2} \right|$$

 $\leq \frac{1}{2} (|x_n| + |2x_{n+1} - x_n|) \leq M.$

So,

$$\lim \sup_{n \to \infty} x_{n+1} \le \frac{\lim \sup_{n \to \infty} x_n + l}{2}.$$

This gives $\limsup_{n\to\infty} x_n \leq l$. Similarly, we can get $\liminf_{n\to\infty} x_n \geq l$. Thus we get $\lim_{n\to\infty} x_n = l$.