Preliminar notes on maximum-flow problem solved in FCPP. Notation:

- \bullet G will denote the directed weighted graph of capacities, s and t will denote respectively source and sink of our graph.
- For a path \mathfrak{p} we will denote with $|\mathfrak{p}|$ its length.

When it will be convenient, we will treat a directed weighted graph G as a function $G: V \times V \to \mathbb{R}_+$, where V is its set of vertices. With a little abuse of notation we will say that the edge from a node δ to a node δ' is in G, or $(\delta, \delta') \in G$, in place of $G(\delta, \delta') \neq 0$.

Likewise we will say that a path \mathfrak{p} is contained in G, or $\mathfrak{p} \subset G$, if every edge in \mathfrak{p} is in G.

• For a field Φ , \mathcal{R}_{Φ} will denote the directed weighted graph of residual capacities respect to Φ :

$$\mathcal{R} = \begin{cases} G + \Phi & \text{where } \Phi < 0\\ 0 & \text{otherwise} \end{cases} \tag{1}$$

 $\bullet \;$ We define a dmissible path respect to Φ a path γ in G from source to sink such that

$$\Phi|_{\gamma} < G|_{\gamma}$$

• We say that a flow Φ is maximal if there are no admissible paths in G respect to Φ .

Proposizione 0.1. Φ is a maximum flow iff \mathcal{R}_{Φ} does not have paths from source to sink.

Proof. Let's show that a path γ in G is admissible iff γ is a path in \mathcal{R}_{Φ} . On every edge e in G we have

$$0 < \mathcal{R}_{\Phi}(e) \Leftrightarrow \begin{cases} \Phi(e) \le 0 < \mathcal{R}_{\Phi}(e) = G(e) & \text{or} \\ 0 < \mathcal{R}_{\Phi}(e) = G(e) - \Phi(e) \end{cases}$$
$$\Leftrightarrow \Phi(e) < G(e) \text{ and } 0 < G(e)$$

Hence

$$0 < \mathcal{R}_{\Phi}|_{\gamma} \Leftrightarrow \Phi|_{\gamma} < G|_{\gamma} \text{ and } 0 < G|_{\gamma}$$

This is what we wanted to prove.

For a field-value f in δ we define $|f| := \sum_{\delta \mapsto \delta'} f(\delta')$.

For a pre-flow Φ we define

$$\|\Phi\| := \sum_{\substack{\delta \text{ connected to} \\ t \text{ in } \mathcal{R}_{\Phi}}} |\mathcal{R}_{\Phi}(\delta)|$$

Lemma 0.2. Let Φ be a pre-flow. Then $\|\mathbf{update}(\Phi)\| \leq \|\Phi\|$ with equality holding iff $\mathbf{update}(\Phi) = \Phi$.