Tablas de hash

Clase 13

IIC 2133 - Sección 2

Prof. Mario Droguett

Sumario

Introducción

Tablas de hash

Colisiones

Cierre

Recordatorio: Diccionarios

Definición

Un diccionario es una estructura de datos con las siguientes operaciones

- Asociar un valor a una llave
- Actualizar el valor asociado a una llave
- Obtener el valor asociado a una llave
- En ciertos casos, eliminar de la estructura una asociación llave-valor

Recordatorio: Diccionarios

Definición

Un diccionario es una estructura de datos con las siguientes operaciones

- Asociar un valor a una llave
- Actualizar el valor asociado a una llave
- Obtener el valor asociado a una llave
- En ciertos casos, eliminar de la estructura una asociación llave-valor

Los ABB fueron nuestra primera EDD para implementar diccionarios

Los ABB efectivamente soportan las operaciones de diccionario

Los ABB efectivamente soportan las operaciones de diccionario

lacktriangle La complejidad de las operaciones es $\mathcal{O}(h)$

Los ABB efectivamente soportan las operaciones de diccionario

- La complejidad de las operaciones es $\mathcal{O}(h)$
- Cuando están balanceados, $h \in \mathcal{O}(\log(n))$ para n llaves almacenadas

Los ABB efectivamente soportan las operaciones de diccionario

- La complejidad de las operaciones es $\mathcal{O}(h)$
- Cuando están balanceados, $h \in \mathcal{O}(\log(n))$ para n llaves almacenadas

Ejemplo

Podemos mantener pares (llave, valor) de la forma (rut, archivo)

Los ABB efectivamente soportan las operaciones de diccionario

- La complejidad de las operaciones es $\mathcal{O}(h)$
- Cuando están balanceados, $h \in \mathcal{O}(\log(n))$ para n llaves almacenadas

Ejemplo

Podemos mantener pares (llave, valor) de la forma (rut, archivo)

Podemos saber si un rut está en el dic. haciendo búsqueda por rut

Los ABB efectivamente soportan las operaciones de diccionario

- La complejidad de las operaciones es $\mathcal{O}(h)$
- Cuando están balanceados, $h \in \mathcal{O}(\log(n))$ para n llaves almacenadas

Ejemplo

Podemos mantener pares (llave, valor) de la forma (rut, archivo)

- Podemos saber si un rut está en el dic. haciendo búsqueda por rut
- Inserción usa rut para ubicar el nodo, balanceando si es necesario

Los ABB efectivamente soportan las operaciones de diccionario

- La complejidad de las operaciones es $\mathcal{O}(h)$
- Cuando están balanceados, $h \in \mathcal{O}(\log(n))$ para n llaves almacenadas

Ejemplo

Podemos mantener pares (llave, valor) de la forma (rut, archivo)

- Podemos saber si un rut está en el dic. haciendo búsqueda por rut
- Inserción usa rut para ubicar el nodo, balanceando si es necesario

Hay algo más que los ABB poseen y no es un requisito de los diccionarios

Los ABB no solo soportan las operaciones de diccionario

Los ABB no solo soportan las operaciones de diccionario

 La propiedad de árbol de búsqueda garantiza que los datos están ordenados

Los ABB no solo soportan las operaciones de diccionario

- La propiedad de árbol de búsqueda garantiza que los datos están ordenados
- Si el orden es importante, esto es necesario

Los ABB no solo soportan las operaciones de diccionario

- La propiedad de árbol de búsqueda garantiza que los datos están ordenados
- Si el orden es importante, esto es necesario

¿Qué es lo más importante en un diccionario?

El principal objetivo de los diccionarios es búsqueda eficiente de llaves

El principal objetivo de los diccionarios es búsqueda eficiente de llaves

 El objetivo secundario es inserción/modificación eficiente de pares llave-valor

El principal objetivo de los diccionarios es búsqueda eficiente de llaves

- El objetivo secundario es inserción/modificación eficiente de pares llave-valor
- Por esto, el orden de las llaves deja de ser relevante

El principal objetivo de los diccionarios es búsqueda eficiente de llaves

- El objetivo secundario es inserción/modificación eficiente de pares llave-valor
- Por esto, el orden de las llaves deja de ser relevante

¿Podemos buscar e insertar más rápido si nos olvidamos de mantener el orden?

Para motivar nuestra siguiente estructura, consideremos un escenario ideal

Para motivar nuestra siguiente estructura, consideremos un escenario ideal

Conjunto de llaves posibles $K = \{0, ..., 11\}$ fijo y conocido

Para motivar nuestra siguiente estructura, consideremos un escenario ideal

- Conjunto de llaves posibles $K = \{0, ..., 11\}$ fijo y conocido
- Dada una llave $k \in K$, interesa saber si esta se encuentra asociada a un valor en la EDD

Para motivar nuestra siguiente estructura, consideremos un escenario ideal

- Conjunto de llaves posibles $K = \{0, ..., 11\}$ fijo y conocido
- Dada una llave $k \in K$, interesa saber si esta se encuentra asociada a un valor en la EDD

Este escenario se puede manejar con la siguiente EDD básica

Para motivar nuestra siguiente estructura, consideremos un escenario ideal

- Conjunto de llaves posibles $K = \{0, ..., 11\}$ fijo y conocido
- Dada una llave $k \in K$, interesa saber si esta se encuentra asociada a un valor en la EDD

Este escenario se puede manejar con la siguiente EDD básica

■ Arreglo A[0...11] iniciado con \emptyset en cada celda

Para motivar nuestra siguiente estructura, consideremos un escenario ideal

- Conjunto de llaves posibles $K = \{0, ..., 11\}$ fijo y conocido
- Dada una llave $k \in K$, interesa saber si esta se encuentra asociada a un valor en la EDD

Este escenario se puede manejar con la siguiente EDD básica

- Arreglo A[0...11] iniciado con \varnothing en cada celda
- No almacenamos las llaves en las celdas, sino un puntero al valor asociado a la llave k en A[k]

Para motivar nuestra siguiente estructura, consideremos un escenario ideal

- Conjunto de llaves posibles $K = \{0, ..., 11\}$ fijo y conocido
- Dada una llave k ∈ K, interesa saber si esta se encuentra asociada a un valor en la EDD

Este escenario se puede manejar con la siguiente EDD básica

- Arreglo A[0...11] iniciado con \emptyset en cada celda
- No almacenamos las llaves en las celdas, sino un puntero al valor asociado a la llave k en A[k]
- Es decir, $A[k] = \emptyset \Leftrightarrow$ no hay valor asociado a k en A

¿Cuál es la complejidad de la búsqueda y la inserción en A?

En la estructura A los accesos a A[k] son accesos por índice

En la estructura A los accesos a A[k] son accesos por índice

■ Verificar si $A[k] = \emptyset$ es $\mathcal{O}(1)$

En la estructura A los accesos a A[k] son accesos por índice

- Verificar si $A[k] = \emptyset$ es $\mathcal{O}(1)$
- Insertar/modificar valor en A[k] es O(1)

En la estructura A los accesos a A[k] son accesos por índice

- Verificar si $A[k] = \emptyset$ es $\mathcal{O}(1)$
- Insertar/modificar valor en A[k] es O(1)

No solo las operaciones deseadas son súper eficientes

En la estructura A los accesos a A[k] son accesos por índice

- Verificar si $A[k] = \emptyset$ es $\mathcal{O}(1)$
- Insertar/modificar valor en A[k] es O(1)

No solo las operaciones deseadas son súper eficientes

A diferencia de un ABB, se almacena solo un puntero al valor guardado

En la estructura A los accesos a A[k] son accesos por índice

- Verificar si $A[k] = \emptyset$ es $\mathcal{O}(1)$
- Insertar/modificar valor en A[k] es O(1)

No solo las operaciones deseadas son súper eficientes

- A diferencia de un ABB, se almacena solo un puntero al valor guardado
- No se usan punteros a padres-hijos para mantener la estructura

En la estructura A los accesos a A[k] son accesos por índice

- Verificar si $A[k] = \emptyset$ es $\mathcal{O}(1)$
- Insertar/modificar valor en A[k] es O(1)

No solo las operaciones deseadas son súper eficientes

- A diferencia de un ABB, se almacena solo un puntero al valor guardado
- No se usan punteros a padres-hijos para mantener la estructura

¿Qué tan ideal es este escenario de llaves naturales K?

El escenario de llaves K puede ocurrir en aplicaciones prácticas

El escenario de llaves K puede ocurrir en aplicaciones prácticas

Rango de valores razonable

El escenario de llaves K puede ocurrir en aplicaciones prácticas

- Rango de valores razonable
- Llaves siempre naturales (para ser usadas como índices de arreglos)

El escenario de llaves K puede ocurrir en aplicaciones prácticas

- Rango de valores razonable
- Llaves siempre naturales (para ser usadas como índices de arreglos)

Ejemplo

En la universidad hay aproximadamente 25.000 estudiantes este año.

El escenario de llaves K puede ocurrir en aplicaciones prácticas

- Rango de valores razonable
- Llaves siempre naturales (para ser usadas como índices de arreglos)

Ejemplo

En la universidad hay aproximadamente 25.000 estudiantes este año.

Asignamos un $k \in \{0, \dots, 24.999\}$ a cada estudiante

El escenario de llaves K puede ocurrir en aplicaciones prácticas

- Rango de valores razonable
- Llaves siempre naturales (para ser usadas como índices de arreglos)

Ejemplo

En la universidad hay aproximadamente 25.000 estudiantes este año.

- Asignamos un $k \in \{0, ..., 24.999\}$ a cada estudiante
- Usamos cada natural como índice del arreglo A

Ejemplo

Cada estudiante ya posee un rut único

Ejemplo

Cada estudiante ya posee un rut único

Rango de rut's abarca hasta el 25.000.000

Ejemplo

Cada estudiante ya posee un rut único

- Rango de rut's abarca hasta el 25.000.000
- Cantidad de estudiantes mucho menor (25.000)

Ejemplo

Cada estudiante ya posee un rut único

- Rango de rut's abarca hasta el 25.000.000
- Cantidad de estudiantes mucho menor (25.000)
- **Problema:** solo 1/1000 celdas del arreglo *A* indexado por ruts estarán ocupadas

Ejemplo

Cada estudiante ya posee un rut único

- Rango de rut's abarca hasta el 25.000.000
- Cantidad de estudiantes mucho menor (25.000)
- Problema: solo 1/1000 celdas del arreglo A indexado por ruts estarán ocupadas

No solo los ruts son llaves posibles

Ejemplo

Cada estudiante ya posee un rut único

- Rango de rut's abarca hasta el 25.000.000
- Cantidad de estudiantes mucho menor (25.000)
- Problema: solo 1/1000 celdas del arreglo A indexado por ruts estarán ocupadas

No solo los ruts son llaves posibles

Números de teléfono

Ejemplo

Cada estudiante ya posee un rut único

- Rango de rut's abarca hasta el 25.000.000
- Cantidad de estudiantes mucho menor (25.000)
- Problema: solo 1/1000 celdas del arreglo A indexado por ruts estarán ocupadas

No solo los ruts son llaves posibles

- Números de teléfono
- Patentes de vehículos

Ejemplo

Cada estudiante ya posee un rut único

- Rango de rut's abarca hasta el 25.000.000
- Cantidad de estudiantes mucho menor (25.000)
- Problema: solo 1/1000 celdas del arreglo A indexado por ruts estarán ocupadas

No solo los ruts son llaves posibles

- Números de teléfono
- Patentes de vehículos
- ...

Ejemplo

Cada estudiante ya posee un rut único

- Rango de rut's abarca hasta el 25.000.000
- Cantidad de estudiantes mucho menor (25.000)
- Problema: solo 1/1000 celdas del arreglo A indexado por ruts estarán ocupadas

No solo los ruts son llaves posibles

- Números de teléfono
- Patentes de vehículos
- . . .

¿Cómo acercarnos a un conjunto de llaves K razonable?

☐ Comprender el concepto de función de hash

- ☐ Comprender el concepto de función de hash
- Identificar limitaciones en el almacenamiento a través de arreglos indexados

- ☐ Comprender el concepto de función de hash
- ☐ Identificar limitaciones en el almacenamiento a través de arreglos indexados
- ☐ Comprender concepto de tabla de hash

- ☐ Comprender el concepto de función de hash
- ☐ Identificar limitaciones en el almacenamiento a través de arreglos indexados
- ☐ Comprender concepto de tabla de hash
- ☐ Comprender concepto de colisión y sus posibles manejos

- ☐ Comprender el concepto de función de hash
- ☐ Identificar limitaciones en el almacenamiento a través de arreglos indexados
- ☐ Comprender concepto de tabla de hash
- ☐ Comprender concepto de colisión y sus posibles manejos
- ☐ Distinguir diferencias entre encadenamiento y direccionamiento abierto

Sumario

Introducción

Tablas de hash

Colisiones

Cierre

Definición

Dado un espacio de llaves K y un natural m > 0, una función de hash se define como

$$h: K \rightarrow \{0,\ldots,m-1\}$$

Dado $k \in K$, llamaremos valor de hash de k a la evaluación h(k).

Definición

Dado un espacio de llaves K y un natural m > 0, una función de hash se define como

$$h: K \rightarrow \{0,\ldots,m-1\}$$

Dado $k \in K$, llamaremos valor de hash de k a la evaluación h(k).

Definición

Dado un espacio de llaves K y un natural m > 0, una función de hash se define como

$$h: K \to \{0, \ldots, m-1\}$$

Dado $k \in K$, llamaremos valor de hash de k a la evaluación h(k).

Notemos que

 Una función de hash nos permite mapear un espacio de llaves a otro más pequeño (con m razonable)

Definición

Dado un espacio de llaves K y un natural m > 0, una función de hash se define como

$$h:K\to\{0,\dots,m-1\}$$

Dado $k \in K$, llamaremos valor de hash de k a la evaluación h(k).

- Una función de hash nos permite mapear un espacio de llaves a otro más pequeño (con m razonable)
- Una función de hash no necesariamente es inyectiva

Definición

Dado un espacio de llaves K y un natural m > 0, una función de hash se define como

$$h: K \to \{0, \ldots, m-1\}$$

Dado $k \in K$, llamaremos valor de hash de k a la evaluación h(k).

- Una función de hash nos permite mapear un espacio de llaves a otro más pequeño (con m razonable)
- Una función de hash no necesariamente es inyectiva
- Si m < |K|, no puede ser inyectiva

Definición

Dado un espacio de llaves K y un natural m > 0, una función de hash se define como

$$h: K \to \{0, \ldots, m-1\}$$

Dado $k \in K$, llamaremos valor de hash de k a la evaluación h(k).

- Una función de hash nos permite mapear un espacio de llaves a otro más pequeño (con m razonable)
- Una función de hash no necesariamente es inyectiva
- Si m < |K|, no puede ser inyectiva
- En la práctica, $m \ll |K|$

Definición

Dado m > 0 y un conjunto de llaves K, una tabla de hash A es una EDD que asocia valores a llaves indexadas usando una función de hash $h: K \to \{0, \dots, m-1\}$. Diremos que tal A es de tamaño m.

Definición

Dado m > 0 y un conjunto de llaves K, una tabla de hash A es una EDD que asocia valores a llaves indexadas usando una función de hash $h: K \to \{0, \dots, m-1\}$. Diremos que tal A es de tamaño m.

El ejemplo *ideal* que estudiamos es una tabla de hash

El ejemplo *ideal* que estudiamos es una tabla de hash

■ La función de hash es $h: K \to K$ dada por

$$h(k) = k$$

El ejemplo *ideal* que estudiamos es una tabla de hash

■ La función de hash es $h: K \to K$ dada por

$$h(k) = k$$

Las operaciones de diccionario son sencillas

El ejemplo *ideal* que estudiamos es una tabla de hash

■ La función de hash es $h: K \to K$ dada por

$$h(k) = k$$

Las operaciones de diccionario son sencillas

```
IdentityHashSearch (A, k):

return A[k]

IdentityHashInsert (A, k, v):

A[k] = v

IdentityHashDelete (A, k):

A[k] = \emptyset
```

 $A[k] = \emptyset$

El ejemplo ideal que estudiamos es una tabla de 0 Ø hash Ø 1 ■ La función de hash es $h: K \to K$ dada por puntero 2 h(k) = k3 Ø Ø 4 Las operaciones de diccionario son sencillas puntero 5 IdentityHashSearch (A, k): 6 Ø return A[k]puntero 7 IdentityHashInsert (A, k, v): 8 Ø A[k] = v9 Ø IdentityHashDelete (A, k):

10

11

Ø

puntero

Usar la misma estrategia para hashing general sería

Usar la misma estrategia para hashing general sería

```
HashSearch (A, k):

return A[h(k)]

HashInsert (A, k, v):

A[h(k)] = v

HashDelete (A, k):

A[h(k)] = \emptyset
```

Usar la misma estrategia para hashing general sería

```
HashSearch (A, k):

return A[h(k)]

HashInsert (A, k, v):

A[h(k)] = v

HashDelete (A, k):

A[h(k)] = \emptyset
```

Pero sabemos que h no necesariamente es inyectiva

Usar la misma estrategia para hashing general sería

```
HashSearch (A, k):

return A[h(k)]

HashInsert (A, k, v):

A[h(k)] = v

HashDelete (A, k):

A[h(k)] = \emptyset
```

- Pero sabemos que h no necesariamente es inyectiva
- Es decir, puede ocurrir una colisión $h(k_1) = h(k_2)$ para $k_1 \neq k_2$

Usar la misma estrategia para hashing general sería

```
HashSearch (A, k):

return A[h(k)]

HashInsert (A, k, v):

A[h(k)] = v

HashDelete (A, k):

A[h(k)] = \emptyset
```

- Pero sabemos que h no necesariamente es inyectiva
- Es decir, puede ocurrir una colisión $h(k_1) = h(k_2)$ para $k_1 \neq k_2$

Veremos formas de manejar las colisiones

Sumario

Introducción

Tablas de hash

Colisiones

Cierre

Para ejemplificar el problema de las colisiones, consideremos la siguiente función de hash

$$h(k) = k \mod m$$

Para ejemplificar el problema de las colisiones, consideremos la siguiente función de hash

$$h(k) = k \mod m$$

Se le conoce como hashing modular y corresponde al resto al dividir k entre m

Para ejemplificar el problema de las colisiones, consideremos la siguiente función de hash

$$h(k) = k \mod m$$

Se le conoce como hashing modular y corresponde al resto al dividir k entre m

■ Notemos que $h(k) \in \{0, ..., m-1\}$ para todo k

Para ejemplificar el problema de las colisiones, consideremos la siguiente función de hash

$$h(k) = k \mod m$$

Se le conoce como hashing modular y corresponde al resto al dividir k entre m

- Notemos que $h(k) \in \{0, \dots, m-1\}$ para todo k
- Todas las llaves con el mismo resto al dividir entre m generan una colisión, i.e.

$$h(k_1) = h(k_2) \Leftrightarrow k_1 \equiv_m k_2$$

Para ejemplificar el problema de las colisiones, consideremos la siguiente función de hash

$$h(k) = k \mod m$$

Se le conoce como hashing modular y corresponde al resto al dividir k entre m

- Notemos que $h(k) \in \{0, ..., m-1\}$ para todo k
- Todas las llaves con el mismo resto al dividir entre m generan una colisión, i.e.

$$h(k_1) = h(k_2) \Leftrightarrow k_1 \equiv_m k_2$$

Ejemplo

Tomando m = 100 y $K = \{0, ..., 999\}$, el hashing modular cumple

Para ejemplificar el problema de las colisiones, consideremos la siguiente función de hash

$$h(k) = k \mod m$$

Se le conoce como hashing modular y corresponde al resto al dividir k entre m

- Notemos que $h(k) \in \{0, ..., m-1\}$ para todo k
- Todas las llaves con el mismo resto al dividir entre m generan una colisión, i.e.

$$h(k_1) = h(k_2) \Leftrightarrow k_1 \equiv_m k_2$$

Ejemplo

Tomando m = 100 y $K = \{0, ..., 999\}$, el hashing modular cumple

$$h(12) = h(112) = \cdots = h(912) = 12$$

Para ejemplificar el problema de las colisiones, consideremos la siguiente función de hash

$$h(k) = k \mod m$$

Se le conoce como hashing modular y corresponde al resto al dividir k entre m

- Notemos que $h(k) \in \{0, ..., m-1\}$ para todo k
- Todas las llaves con el mismo resto al dividir entre m generan una colisión, i.e.

$$h(k_1) = h(k_2) \Leftrightarrow k_1 \equiv_m k_2$$

Ejemplo

Tomando m = 100 y $K = \{0, ..., 999\}$, el hashing modular cumple

- $h(12) = h(112) = \cdots = h(912) = 12$
- $h(18) = \cdots = h(918) = 18$

Usaremos la función de hashing modular para experimentar con inserciones

Usaremos la función de hashing modular para experimentar con inserciones

Consideremos m = 7. Insertemos la llave 15 en la siguiente tabla de hash

Usaremos la función de hashing modular para experimentar con inserciones

Consideremos m = 7. Insertemos la llave 15 en la siguiente tabla de hash

• Su valor de hash es $h(15) = 15 \mod 7 = 1$

Usaremos la función de hashing modular para experimentar con inserciones

Consideremos m = 7. Insertemos la llave 15 en la siguiente tabla de hash

• Su valor de hash es $h(15) = 15 \mod 7 = 1$

)	Ø
L	Ø
2	Ø
3	Ø
1	Ø
5	Ø
5	Ø

La posición h(15) = 1 está libre y guardamos la llave

0	Ø	0	Ø	0	Ø
1	Ø	1	Ø	1	15
2	Ø	2	Ø	2	Ø
3	Ø	3	Ø	3	Ø
4	Ø	4	Ø	4	Ø
5	Ø	5	Ø	5	Ø
6	Ø	6	Ø	6	Ø

Ahora insertamos la llave 37

• Su valor de hash es $h(37) = 37 \mod 7 = 2$

0	Ø	0	Ø	0
1	15	1	15	1
2	Ø	2	Ø	2
3	Ø	3	Ø	3
4	Ø	4	Ø	4
5	Ø	5	Ø	5
6	Ø	6	Ø	6

15 37 Ø

Ø

Ahora insertamos la llave 51

• Su valor de hash es h(51) = 51 mod 7 = 2

0	Ø
1	15
2	37
3	Ø
4	Ø
5	Ø
6	Ø

0	Ø
1	15
2	37
3	Ø
4	Ø
5	Ø
6	Ø

Ahora insertamos la llave 51

• Su valor de hash es h(51) = 51 mod 7 = 2

0	Ø	
1	15	
2	37	
3	Ø	
4	Ø	
5	Ø	
6	Ø	

¿Qué hacemos con la colisión?

Primera propuesta: encadenamiento

Primera propuesta: encadenamiento

Cada valor guardado es un nodo de una lista ligada

Primera propuesta: encadenamiento

- Cada valor guardado es un nodo de una lista ligada
- Cada colisión agrega un nodo al principio/final de la lista

Primera propuesta: encadenamiento

- Cada valor guardado es un nodo de una lista ligada
- Cada colisión agrega un nodo al principio/final de la lista

0	Ø	0	Ø	0	Ø	
1	15	1	15	1	15	
2	37	2	37	2	51	→ 37
3	Ø	3	Ø	3	Ø	
4	Ø	4	Ø	4	Ø	
5	Ø	5	Ø	5	Ø	
6	Ø	6	Ø	6	Ø	

Al insertar la llave 29 seguimos la misma idea

• Su valor de hash es h(29) = 29 mod 7 = 1

Al insertar la llave 58 seguimos la misma idea

• Su valor de hash es $h(58) = 58 \mod 7 = 2$

Las operaciones de diccionario involucran la lista ligada A[h(k)]

Las operaciones de diccionario involucran la lista ligada A[h(k)]

```
ChainedHashSearch (A, k):

Buscar llave k en A[h(k)]

ChainedHashInsert (A, k, v):

Insertar (k, v) como cabeza de A[h(k)]

ChainedHashDelete (A, k):

Eliminar llave k de A[h(k)]
```

Las operaciones de diccionario involucran la lista ligada A[h(k)]

```
ChainedHashSearch (A, k):

Buscar llave k en A[h(k)]

ChainedHashInsert (A, k, v):

Insertar (k, v) como cabeza de A[h(k)]

ChainedHashDelete (A, k):

Eliminar llave k de A[h(k)]
```

 La complejidad de estas operaciones depende de qué tan largas sean las listas

Las operaciones de diccionario involucran la lista ligada A[h(k)]

```
ChainedHashSearch (A, k):

Buscar llave k en A[h(k)]

ChainedHashInsert (A, k, v):

Insertar (k, v) como cabeza de A[h(k)]

ChainedHashDelete (A, k):

Eliminar llave k de A[h(k)]
```

- La complejidad de estas operaciones depende de qué tan largas sean las listas
- Una buena función de hash repartiría las llaves de manera más o menos homogénea

Las operaciones de diccionario involucran la lista ligada A[h(k)]

```
ChainedHashSearch (A, k):

Buscar llave k en A[h(k)]

ChainedHashInsert (A, k, v):

Insertar (k, v) como cabeza de A[h(k)]

ChainedHashDelete (A, k):

Eliminar llave k de A[h(k)]
```

- La complejidad de estas operaciones depende de qué tan largas sean las listas
- Una buena función de hash repartiría las llaves de manera más o menos homogénea

Otra estrategia para colisiones

Volvamos a la inserción con colisión del 51

• Su valor de hash es $h(51) = 51 \mod 7 = 2$

0	Ø
1	15
2	37
3	Ø
4	Ø
5	Ø
6	Ø

0	Ø
1	15
2	37
3	Ø
4	Ø
5	Ø
6	Ø

Otra estrategia para colisiones

Volvamos a la inserción con colisión del 51

• Su valor de hash es $h(51) = 51 \mod 7 = 2$

0	Ø
1	15
2	37
3	Ø
4	Ø
5	Ø
6	Ø

•	~
0	Ø
1	15
2	37
3	Ø
4	Ø
5	Ø
6	Ø

¿Alguna alternativa al encadenamiento?

Segunda propuesta: direccionamiento abierto

Segunda propuesta: direccionamiento abierto

Buscamos sistemáticamente una celda vacía

Segunda propuesta: direccionamiento abierto

- Buscamos sistemáticamente una celda vacía
- Puede producir nuevas colisiones no previstas por h

Segunda propuesta: direccionamiento abierto

- Buscamos sistemáticamente una celda vacía
- Puede producir nuevas colisiones no previstas por h

Una forma de buscar: el sondeo lineal inserta en la primera celda vacía a la derecha de la colisión

Segunda propuesta: direccionamiento abierto

- Buscamos sistemáticamente una celda vacía
- Puede producir nuevas colisiones no previstas por h

Una forma de buscar: el sondeo lineal inserta en la primera celda vacía a la derecha de la colisión

15 37 Ø Ø

0	Ø	0
1	15	1
2	37	2
3	Ø	3
4	Ø	4
5	Ø	5
6	Ø	6

0	Ø
1	15
2	37
3	51
4	Ø
5	Ø
6	Ø

Al insertar la llave 29 seguimos la misma idea del sondeo lineal

• Su valor de hash es $h(29) = 29 \mod 7 = 1$

0	Ø	0	Ø
1	15	1	15
2	37	2	37
3	51	3	51
4	Ø	4	Ø
5	Ø	5	Ø
6	Ø	6	Ø

0	Ø
1	15
2	37
3	51
4	Ø
5	Ø
6	Ø

0	Ø
1	15
2	37
3	51
4	29
5	Ø
6	Ø

Si las inserciones son con sondeo lineal, la búsqueda debe tenerlo en cuenta

Si las inserciones son con sondeo lineal, la búsqueda debe tenerlo en cuenta

No necesariamente k está guardado en A[h(k)]

Si las inserciones son con sondeo lineal, la búsqueda debe tenerlo en cuenta

- No necesariamente k está guardado en A[h(k)]
- Debemos revisar esa celda, y si no corresponde, buscar hacia adelante

Si las inserciones son con sondeo lineal, la búsqueda debe tenerlo en cuenta

- No necesariamente k está guardado en A[h(k)]
- Debemos revisar esa celda, y si no corresponde, buscar hacia adelante

Por ejemplo, al buscar la llave 29 comenzamos la búsqueda en la pos. 1

Si las inserciones son con sondeo lineal, la búsqueda debe tenerlo en cuenta

- No necesariamente k está guardado en A[h(k)]
- Debemos revisar esa celda, y si no corresponde, buscar hacia adelante

Por ejemplo, al buscar la llave 29 comenzamos la búsqueda en la pos. 1

0	Ø	0	Ø
1	15	1	15
2	37	2	37
3	51	3	51
4	29	4	29
5	Ø	5	Ø
6	Ø	6	Ø

0	Ø
1	15
2	37
3	51
4	29
5	Ø
6	Ø

0	Ø
1	15
2	37
3	51
4	29
5	Ø
6	Ø

Si las inserciones son con sondeo lineal, la búsqueda debe tenerlo en cuenta

- No necesariamente k está guardado en A[h(k)]
- Debemos revisar esa celda, y si no corresponde, buscar hacia adelante

Por ejemplo, al buscar la llave 29 comenzamos la búsqueda en la pos. 1

0	Ø	0	Ø	
1	15	1	15	
2	37	2	37	
3	51	3	51	
4	29	4	29	
5	Ø	5	Ø	
6	Ø	6	Ø	

0	Ø
1	15
2	37
3	51
4	29
5	Ø
6	Ø

0	Ø
1	15
2	37
3	51
4	29
5	Ø
6	Ø

La búsqueda sigue la misma secuencia que la inserción

¿Cómo detectamos si la llave no está?

¿Cómo detectamos si la llave no está?

lacksquare Comenzamos la búsqueda en A[h(k)]

¿Cómo detectamos si la llave no está?

- Comenzamos la búsqueda en A[h(k)]
- Si al buscar a la derecha llegamos a un Ø significa que no está

¿Cómo detectamos si la llave no está?

- Comenzamos la búsqueda en A[h(k)]
- Si al buscar a la derecha llegamos a un Ø significa que no está

Por ejemplo, al buscar la llave 10, tal que $h(10) = 10 \mod 7 = 3$

¿Cómo detectamos si la llave no está?

- Comenzamos la búsqueda en A[h(k)]
- Si al buscar a la derecha llegamos a un Ø significa que no está

Por ejemplo, al buscar la llave 10, tal que $h(10) = 10 \mod 7 = 3$

0	Ø
1	15
2	37
3	51
4	29
5	Ø
6	Ø

0	Ø
1	15
2	37
3	51
4	29
5	Ø
6	Ø

0	Ø
1	15
2	37
3	51
4	29
5	Ø
6	Ø

¿Cómo detectamos si la llave no está?

- Comenzamos la búsqueda en A[h(k)]
- Si al buscar a la derecha llegamos a un Ø significa que no está

Por ejemplo, al buscar la llave 10, tal que $h(10) = 10 \mod 7 = 3$

0	Ø	0	Ø	0	Ø
1	15	1	15	1	15
2	37	2	37	2	37
3	51	3	51	3	51
4	29	4	29	4	29
5	Ø	5	Ø	5	Ø
6	Ø	6	Ø	6	Ø

Concluimos que 10 no está almacenada

Para eliminar llaves guardadas tenemos un problema

Para eliminar llaves guardadas tenemos un problema

■ Si borramos una llave, la reemplazamos por Ø

Para eliminar llaves guardadas tenemos un problema

■ Si borramos una llave, la reemplazamos por Ø

Por ejemplo, si borramos el 51 y buscamos el 29 con $h(29) = 29 \mod 7 = 1$

Para eliminar llaves guardadas tenemos un problema

■ Si borramos una llave, la reemplazamos por Ø

Por ejemplo, si borramos el 51 y buscamos el 29 con $h(29) = 29 \mod 7 = 1$

Ø
15
37
51
29
Ø
Ø

,-	
15	
37	
Ø	
29	
Ø	
Ø	
	37 Ø 29

0	Ø
1	15
2	37
3	Ø
4	29
5	Ø
6	Ø

0	Ø
1	15
2	37
3	Ø
4	29
5	Ø
6	Ø

Para eliminar llaves guardadas tenemos un problema

■ Si borramos una llave, la reemplazamos por Ø

Por ejemplo, si borramos el 51 y buscamos el 29 con $h(29) = 29 \mod 7 = 1$

0	Ø	0	Ø	0	Ø	0	Ø
1	15	1	15	1	15	1	15
2	37	2	37	2	37	2	37
3	51	3	Ø	3	Ø	3	Ø
4	29	4	29	4	29	4	29
5	Ø	5	Ø	5	Ø	5	Ø
6	Ø	6	Ø	6	Ø	6	Ø

Concluimos que 29 no está almacenado...

Para eliminar llaves guardadas tenemos un problema

■ Si borramos una llave, la reemplazamos por Ø

Por ejemplo, si borramos el 51 y buscamos el 29 con $h(29) = 29 \mod 7 = 1$

0	Ø	0	Ø	0	Ø	0	Ø
1	15	1	15	1	15	1	15
2	37	2	37	2	37	2	37
3	51	3	Ø	3	Ø	3	Ø
4	29	4	29	4	29	4	29
5	Ø	5	Ø	5	Ø	5	Ø
6	Ø	6	Ø	6	Ø	6	Ø

Concluimos que 29 no está almacenado...

Si necesitamos eliminación, es mejor usar encadenamiento

Sondeo lineal

Sondeo lineal

■ Si h(k) = H, para alguna constante d buscamos en

$$H$$
, $H + d$, $H + 2d$,...

Sondeo lineal

Si h(k) = H, para alguna constante d buscamos en

$$H$$
, $H + d$, $H + 2d$,...

Se debe cumplir d = 1 o que d y m son primos relativos

Sondeo lineal

Si h(k) = H, para alguna constante d buscamos en

$$H$$
, $H + d$, $H + 2d$,...

Se debe cumplir d = 1 o que d y m son primos relativos

Sondeo cuadrático

Sondeo lineal

Si h(k) = H, para alguna constante d buscamos en

$$H$$
, $H + d$, $H + 2d$,...

Se debe cumplir d = 1 o que d y m son primos relativos

Sondeo cuadrático

Si h(k) = H, buscamos en

$$H, H+1, H+4, H+9, ...$$

Sondeo lineal

Si h(k) = H, para alguna constante d buscamos en

$$H$$
, $H + d$, $H + 2d$,...

Se debe cumplir d = 1 o que d y m son primos relativos

Sondeo cuadrático

Si h(k) = H, buscamos en

$$H, H+1, H+4, H+9, \dots$$

Doble hashing

Sondeo lineal

Si h(k) = H, para alguna constante d buscamos en

$$H$$
, $H + d$, $H + 2d$,...

Se debe cumplir d = 1 o que d y m son primos relativos

Sondeo cuadrático

Si h(k) = H, buscamos en

$$H, H+1, H+4, H+9,...$$

Doble hashing

■ Usamos dos funciones de hash h_1 y h_2 y buscamos en

$$h_1(k), h_1(k) + h_2(k), h_1(k) + 2h_2(k), \dots$$

Sondeo lineal

Si h(k) = H, para alguna constante d buscamos en

$$H$$
, $H + d$, $H + 2d$,...

Se debe cumplir d = 1 o que d y m son primos relativos

Sondeo cuadrático

Si h(k) = H, buscamos en

$$H, H+1, H+4, H+9,...$$

Doble hashing

Usamos dos funciones de hash h_1 y h_2 y buscamos en

$$h_1(k), h_1(k) + h_2(k), h_1(k) + 2h_2(k), \dots$$

Todos ellos presentan el problema de la eliminación

Dado que las colisiones impactan la tabla, nos interesa medir cuántos datos tenemos almacenados

Dado que las colisiones impactan la tabla, nos interesa medir cuántos datos tenemos almacenados

Definición

Dada una tabla de hash A de tamaño m con n valores almacenados, se define su factor de carga como

$$\lambda = \frac{n}{m}$$

Dado que las colisiones impactan la tabla, nos interesa medir cuántos datos tenemos almacenados

Definición

Dada una tabla de hash A de tamaño m con n valores almacenados, se define su factor de carga como

$$\lambda = \frac{n}{m}$$

El factor de carga es una medida de qué tan llena está la tabla

Dado que las colisiones impactan la tabla, nos interesa medir cuántos datos tenemos almacenados

Definición

Dada una tabla de hash A de tamaño m con n valores almacenados, se define su factor de carga como

$$\lambda = \frac{n}{m}$$

El factor de carga es una medida de qué tan llena está la tabla

Según la estrategia de resolución de colisiones

Dado que las colisiones impactan la tabla, nos interesa medir cuántos datos tenemos almacenados

Definición

Dada una tabla de hash A de tamaño m con n valores almacenados, se define su factor de carga como

$$\lambda = \frac{n}{m}$$

El factor de carga es una medida de qué tan llena está la tabla

Según la estrategia de resolución de colisiones

■ Encadenamiento: es aceptable $\lambda \approx 1$

Dado que las colisiones impactan la tabla, nos interesa medir cuántos datos tenemos almacenados

Definición

Dada una tabla de hash A de tamaño m con n valores almacenados, se define su factor de carga como

$$\lambda = \frac{n}{m}$$

El factor de carga es una medida de qué tan llena está la tabla

Según la estrategia de resolución de colisiones

- Encadenamiento: es aceptable $\lambda \approx 1$
- Direccionamiento abierto: $\lambda > 0.5$ resulta en inserciones y búsquedas muy lentas

Si λ es grande y ya no es aceptable, las operaciones se vuelven costosas

Si λ es grande y ya no es aceptable, las operaciones se vuelven costosas Una solución es hacer rehashing

Si λ es grande y ya no es aceptable, las operaciones se vuelven costosas

Una solución es hacer rehashing

Se crea una nueva tabla más grande

Si λ es grande y ya no es aceptable, las operaciones se vuelven costosas

Una solución es hacer rehashing

- Se crea una nueva tabla más grande
- Aproximadamente del doble del tamaño original

Si λ es grande y ya no es aceptable, las operaciones se vuelven costosas

Una solución es hacer rehashing

- Se crea una nueva tabla más grande
- Aproximadamente del doble del tamaño original
- Como el espacio de índices ya no es de tamaño m, se define una nueva función de hash

Si λ es grande y ya no es aceptable, las operaciones se vuelven costosas

Una solución es hacer rehashing

- Se crea una nueva tabla más grande
- Aproximadamente del doble del tamaño original
- Como el espacio de índices ya no es de tamaño m, se define una nueva función de hash
- Mover los datos a la nueva tabla

Si λ es grande y ya no es aceptable, las operaciones se vuelven costosas

Una solución es hacer rehashing

- Se crea una nueva tabla más grande
- Aproximadamente del doble del tamaño original
- Como el espacio de índices ya no es de tamaño m, se define una nueva función de hash
- Mover los datos a la nueva tabla

Esta es una operación costosa para tablas de hash

Si λ es grande y ya no es aceptable, las operaciones se vuelven costosas

Una solución es hacer rehashing

- Se crea una nueva tabla más grande
- Aproximadamente del doble del tamaño original
- Como el espacio de índices ya no es de tamaño m, se define una nueva función de hash
- Mover los datos a la nueva tabla

Esta es una operación costosa para tablas de hash

Es $\mathcal{O}(n)$ para n datos insertados

Si λ es grande y ya no es aceptable, las operaciones se vuelven costosas

Una solución es hacer rehashing

- Se crea una nueva tabla más grande
- Aproximadamente del doble del tamaño original
- Como el espacio de índices ya no es de tamaño m, se define una nueva función de hash
- Mover los datos a la nueva tabla

Esta es una operación costosa para tablas de hash

- **E**s $\mathcal{O}(n)$ para n datos insertados
- No obstante, es infrecuente

Sumario

Introducción

Tablas de hash

Colisiones

Cierre

Hashing

- Atributos generales
 - Operaciones
 - O(1)
 - Hashing
 - + Encadenamiento: Hans Peter Luhn – 1953
 - + Direccionamiento Abierto lineal: Gene Amdahl
- La idea se desarrolló de forma independiente en varios lugares
 - Andrey Yershov desarrolló también Direccionamiento abierto lineal

☐ Comprender el concepto de función de hash

- ☐ Comprender el concepto de función de hash
- Identificar limitaciones en el almacenamiento a través de arreglos indexados

- ☐ Comprender el concepto de función de hash
- Identificar limitaciones en el almacenamiento a través de arreglos indexados
- ☐ Comprender concepto de tabla de hash

- ☐ Comprender el concepto de función de hash
- ☐ Identificar limitaciones en el almacenamiento a través de arreglos indexados
- ☐ Comprender concepto de tabla de hash
- ☐ Comprender concepto de colisión y sus posibles manejos

- ☐ Comprender el concepto de función de hash
- Identificar limitaciones en el almacenamiento a través de arreglos indexados
- Comprender concepto de tabla de hash
- Comprender concepto de colisión y sus posibles manejos
- ☐ Distinguir diferencias entre encadenamiento y direccionamiento abierto