

Board of the Foundation of the Scandinavian Journal of Statistics

A Probabilistic Representation of the 'Skew-Normal' Distribution

Author(s): Norbert Henze

Source: Scandinavian Journal of Statistics, Vol. 13, No. 4 (1986), pp. 271-275

Published by: Wiley on behalf of Board of the Foundation of the Scandinavian Journal of

Statistics

Stable URL: https://www.jstor.org/stable/4616036

Accessed: 30-08-2018 15:46 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

Board of the Foundation of the Scandinavian Journal of Statistics, Wiley are collaborating with JSTOR to digitize, preserve and extend access to Scandinavian Journal of Statistics

A Probabilistic Representation of the 'Skew-normal' Distribution

NORBERT HENZE

University of Hannover

ABSTRACT. In a recent paper Azzalini (1985) introduced the class $\mathscr{FN} = \{\mathscr{FN}(\lambda): \lambda \in \mathbb{R}\}$ of skew-normal probability distributions and studied its main properties. The salient features of the class \mathscr{FN} are mathematical tractability and strict inclusion of the Normal law (for $\lambda=0$). The shape parameter λ , to some extent, controls the index of skewness. It is the purpose of this note to give a probabilistic representation of the distribution $\mathscr{FN}(\lambda)$ in terms of Normal and truncated Normal laws. This representation reveals the "structure" of the class \mathscr{FN} and indicates the kind of departure from normality. The moments of a random variable Z_{λ} with the distribution $\mathscr{FN}(\lambda)$ are explicitly determined, and an efficient method for the Monte Carlo generation of Z_{λ} is shown.

Key words: normal distribution, truncated normal distribution, skewness, random number generation

1. Introduction

Let φ and Φ denote the standard Normal density and distribution function, respectively. A random variable Z_{λ} is said to have a *skew-normal* distribution with parameter λ , $-\infty < \lambda < \infty$, if the density of Z_{λ} is

$$\varphi(z;\lambda)=2\,\varphi(z)\,\Phi(\lambda z)\qquad (-\infty < z < \infty),$$
 (1)

and we write $Z_{\lambda} \sim \mathcal{SN}(\lambda)$.

The class $\mathcal{SN} = \{\mathcal{SN}(\lambda): \lambda \in \mathbb{R}\}$ was introduced by Azzalini (1985), who studied its basic properties analytically, i.e. by means of the defining density (1). The salient features of the skew-normal class are mathematical tractability (the likelihood equations for a simple random sample of size n from $Y_{\lambda} := \lambda_1 + \lambda_2 Z_{\lambda}$ ($\lambda_2 > 0$) are readily written down, and the Fisher information for $(\lambda, \lambda_1, \lambda_2)$ is easily computed) and "strict inclusion" of the Normal density (for $\lambda = 0$).

However, the class \mathscr{SN} does not meet a third "ideal" requirement, namely wide range of the indices of skewness and kurtosis. To this end, Azzalini proposed an extension of \mathscr{SN} by introducing an additional shape parameter ξ ; $-\infty < \xi < \infty$ (see also O'Hagan & Leonhard, 1976). This broader class of distributions, which will for brevity be termed $\mathscr{SNE} = \{\mathscr{SNE}(\lambda, \xi): \lambda, \xi \in \mathbb{R}\}$ is defined by the densities

$$\varphi(z;\lambda,\xi) = \varphi(z) \Phi(\lambda z + \xi) / \Phi\{\xi(1+\lambda^2)^{-1/2}\} \qquad (-\infty < z < \infty)$$
(2)

and we write $Z_{\lambda,\xi} \sim SNE(\lambda,\xi)$, if a random variable $Z_{\lambda,\xi}$ has density (2). Observe that $SN=\{SNE(\lambda,0):\lambda\in\mathbb{R}\}.$

In the following we give representation theorems for the classes \mathcal{SN} and \mathcal{SNE} in terms of Normal and truncated Normal distributions. These representations indicate the kind of departure from the Normal law and reveal the "intrinsic structure" of $\mathcal{SN}(\lambda)$ and $\mathcal{SNE}(\lambda, \xi)$ distributions. They also provide probabilistic proofs for most of the properties A–I of the family \mathcal{SN} given by Azzalini. Moreover, an explicit formula for the moments of Z_{λ} is

272 N. Henze Scand J Statist 13

obtained, and it is shown that two uniform random numbers suffice to generate Z_{λ} in Monte Carlo experiments.

2. Results

In what follows we write $V \sim \mathcal{N}(\mu, \sigma^2)$ if the random variable V is normally distributed with mean μ and variance σ^2 . $\mathcal{T}(c)$ denotes the distribution of a standard Normal random variable truncated from below at c, $-\infty < c < \infty$, i.e. a random variable $T \sim \mathcal{T}(c)$ has density $\{1-\Phi(c)\}^{-1}\varphi(t)$ ($c \le t < \infty$).

Theorem 1

Let U, V be independent standard Normal random variables. Then

$$Z_{\lambda}\!:=\frac{\lambda}{\sqrt{1+\lambda^2}}\,|U|+\,\frac{1}{\sqrt{1+\lambda^2}}\,V\!\!\sim\!\!\mathcal{SN}(\lambda).$$

First proof (analytical). Letting

$$a = \lambda (1 + \lambda^2)^{-1/2}, \quad b = (1 + \lambda^2)^{-1/2},$$
 (3)

we have

$$P(Z_{\lambda} \leq z) = E[P(Z_{\lambda} \leq z \mid |U|)]$$

$$= \int_{0}^{\infty} P\{V \leq (z - au)/b\} 2\varphi(u) du$$

$$= 2 \int_{0}^{\infty} \Phi\{(z - au)/b\} \varphi(u) du,$$

and from the relation $a^2+b^2=1$ it easily follows that

$$\frac{d}{dz} P(Z_{\lambda} \le z) = 2\varphi(z) \int_0^{\infty} (2\pi b^2)^{-1/2} \exp\left\{-b^{-2}(u - az)\right\} du$$
$$= 2\varphi(z) \left\{1 - \Phi\left(-\frac{a}{b}z\right)\right\}$$
$$= 2\varphi(z) \Phi(\lambda z).$$

Second proof (probabilistic). Let X and Y be independent standard Normal random variables. Then (this was the starting point in Azzalini's paper!) $\mathcal{FN}(\lambda)$ is the distribution of Y conditionally on

$$X < \lambda Y$$
. (4)

Upon performing the rotations

$$R = (1 + \lambda^{2})^{-1/2} (X - \lambda Y)$$

$$S = (1 + \lambda^{2})^{-1/2} (\lambda X + Y),$$
(5)

R and S are independent standard Normal random variables, and (4) is equivalent to the condition R < 0. Since

$$Y = (1 + \lambda^2)^{-1/2} (-\lambda R + S)$$
 (6)

and the conditional distribution of -R given that R<0 equals that of |U| figuring in the statement of theorem 1, we are done.

An efficient method for generating a random variable with distribution $\mathcal{SN}(\lambda)$ is given by the following corollary.

Corollary 2

Let W_1 , W_2 be independent random variables, each with uniform distribution in (0, 1), and let a, b be as in (3). Then

$$a\{-2 \log (W_1)\}^{1/2} \sin (\pi W_2) + b(-2 \log (W_1))^{1/2} \cos (\pi W_2) \sim \mathcal{SN}(\lambda).$$

Proof. Observe that the two summands are independent, with

$$(-2 \log (W_1))^{1/2} \sin (\pi W_2) \sim |U|$$

$$(-2 \log (W_1))^{1/2} \cos (\pi W_2) \sim V$$

(U, V figuring in the statement of theorem 1).

Theorem 1 provides probabilistic proofs for most of the properties of the family \mathcal{SN} given by Azzalini (1985) (properties A, B, C, E, H and I of his paper). For example, we have the following result.

Corollary 3

Assume $Z\sim\mathcal{FN}(\lambda)$, $W\sim\mathcal{N}(0, \sigma^2)$, and let Z and W be independent. Then

$$(1+\sigma^2)^{-1/2}(Z+W)\sim \mathcal{SN} \{\lambda(1+\sigma^2+\lambda^2\sigma^2)^{-1/2}\}.$$

Proof. Let U, V_1 , V_2 be independent standard Normal random variables, let a, b as in (3), and put $\tau = (1 + \sigma^2)^{1/2}$. By theorem 1,

$$\frac{1}{\tau} (Z+W) \sim \frac{a}{\tau} |U| + \frac{1}{\tau} (bV_1 + \sigma V_2)$$
$$= \frac{a}{\tau} |U| + \frac{1}{\tau} (b^2 + \sigma^2)^{1/2} V,$$

where

$$V=(b^2+\sigma^2)^{-1/2}(bV_1+\sigma V_2)\sim \mathcal{N}(0,1),$$

and U and V are independent. Solving the equation $\eta(1+\eta^2)^{-1/2}=a/\tau$, the result follows.

Another consequence of theorem 1 is the following formula for the odd moments of a random variable $Z_{\lambda} \sim \mathcal{FN}(\lambda)$ (the even moments are of no interest because Z_{λ}^2 has the chi-square distribution χ_1^2).

Corollary 4

Let
$$Z_{\lambda} \sim \mathcal{SN}(\lambda)$$
. Then, for $k=0, 1, 2, \ldots$,

$$E[Z_{\lambda}^{2k+1}] = \sqrt{\frac{2}{\pi}} \lambda (1+\lambda^2)^{-(k+1/2)} 2^{-k} (2k+1)! \sum_{\nu=0}^{k} \frac{\nu! (2\lambda)^{2\nu}}{(2\nu+1)! (k-\nu)!}$$

274 N. Henze Scand J Statist 13

Proof. By theorem 1,

$$E[Z_{\lambda}^{2k+1}] = E[(a|U|+bV)^{2k+1}]$$

$$= \sum_{j=0}^{2k+1} {2k+1 \choose j} a^{j}b^{2k+1-j}E[|U|^{j}] E[V^{2k+1-j}].$$

Now use

$$E[V^{2r+1}]=0,$$

$$E[V^{2r}] = \frac{(2r)!}{2^r r!}$$

$$E[|U|^{2r+1}] = \sqrt{\frac{2}{\pi}} r! 2^r \quad \text{for } r=0, 1, 2, \dots$$

To obtain a representation for the class SNE we first prove

Lemma 5

Assume X and Y are independent standard Normal random variables, and let λ , $\xi \in \mathbb{R}$. Then the distribution of Y, conditionally on

$$X < \lambda Y + \xi$$
 (7) is $SNE(\lambda, \xi)$.

Proof. The assertion follows immediately from

$$P(Y \le t | X < \lambda Y + \xi) = P(Y \le t, X < \lambda Y + \xi) \{ P(X - \lambda Y < \xi) \}^{-1}$$

$$= \int_{-\infty}^{t} \Phi(\lambda y + \xi) \varphi(y) \ dy \ [\Phi\{\xi(1 + \lambda^{2})^{-1/2}\}]^{-1}$$

and (2) by differentiation.

Theorem 6

Let T, V be independent random variables, $V \sim \mathcal{N}(0, 1)$, $T \sim \mathcal{T}\{-\xi(1+\lambda^2)^{-1/2}\}$. Then

$$\frac{\lambda}{\sqrt{1+\lambda^2}} T + \frac{1}{\sqrt{1+\lambda^2}} V \sim \mathcal{SNE}(\lambda, \xi).$$

Proof. A "formal" proof would be the same as the first proof of theorem 1. For a probabilistic proof use lemma 5 and the transformation (5). Since (7) is equivalent to the condition $R < \xi(1+\lambda^2)^{-1/2}$, and since the distribution of -R conditionally on $R < \xi(1+\lambda^2)^{-1/2}$ is that of T, theorem 6 follows from (6).

Note that theorem 1 is a special case of theorem 6.

Corollary 7

Let $Z_{\lambda,\xi} \sim SNE(\lambda,\xi)$, and let T, V as in the statement of theorem 6. Then

$$E[Z_{k,\xi}] = \sum_{i=0}^{r} {j \choose r} a^{i} b^{r-j} E[T^{i}] E[V^{r-j}]$$

with a, b given in (3).

The problem of computing the moments of the distribution $SNE(\lambda, \xi)$ thus reduces to the problem of calculating the integral

$$\int_{c}^{\infty} t^{j} \varphi(t) dt \qquad (c = -\xi(1+\lambda^{2})^{-1/2})$$

which may be done recursively using the equation

$$\frac{d}{dt}\,\varphi(t) = -t\varphi(t).$$

Finally, theorem 6 implies that the class \mathcal{SNE} (just like \mathcal{SN}), after rescaling, is closed with respect to convolution with a centred Normal distribution (property I' of Azzalini's paper).

References

Azzalini, A. (1985). A class of distributions which includes the Normal ones. *Scand. J. Statist.* 12, 171–178. O'Hagan, A. & Leonhard, T. (1976). Bayes estimation subject to uncertainty about parameter constraints. *Biometrika* 63, 201–202.

Received October 1985, in final form December 1985

Norbert Henze, Universität Hannover, Institut für Mathematische Stochastik, Welfengarten 1, D-3000 Hannover 1, W. Germany