《大学物理 AII》作业 No.03 波的干涉

班级	学号	姓名	成绩	
*****	*********	r章教学要求 *** *	:******	****
 理解波的 理解驻波 区别。 	、波节、波腹等概念	连播原理。 差、波程差等概念, ;掌握驻波形成条件 定端反射)和全波反	片、驻波的特征。理角	解驻波与行波的
关半波损失的	的计算问题。			
一、填空题				
1、根据波	的叠加原理,	几列波相遇, 在	相遇区域内每一	点的振动等
于			。因此波	的叠加实质就
是	o			
件的两列波	条件包括: 在空间相遇,波的 见象就称为波的干涉。	、 强度在空间上是。	和分布	_。满足相干条 ,在时间上是
3、形成驻波	的条件是	。振		; 驻波的主
	置称为。两波	。据 节之间各点振动相位		
4. 机械波在分	介质中传播,当一介	质质元的振动动能的	J 相位是 $\pi/4$ 时,它的	
位是	o			
5. 一个点波泡	原位于 O 点, 以 O カ	为圆心作两个半径分别	引为 R_1 和 R_2 的同心玩	求面。在两个球
面上分别取村	目等的面积 ΔS_1 和 ΔS	2 ,则通过它们的平均	匀能流之比 $\overline{P_1}/\overline{P_2}=$ _	o

6. 如图所示, S_1 和 S_2 为同相位的两相干波源,相距为L,P点距 S_1 为r; 波源 S_1 在P

点引起的振动振幅为 A_1 ,波源 S_2 在P点引起的振动

振幅为 A_2 ,两波波长都是 λ ,则P点的振幅A

二、选择题

1. S_1 和 S_2 是波长均为 λ 的两个相干波的波源,相距 3 λ /4, S_1 的相位比 S_2 落后 π /2。若 两波单独传播时,在过 S_1 和 S_2 的直线上各点的强度相同,不随距离变化,且两波的强度 都是 I_0 ,则在 S_1 、 S_2 连线上 S_1 外侧和 S_2 外侧各点,合成波的强度分别是

- [] (A) $4I_0$, $4I_0$. (B) 0, 0.

 - (C) 0, $4I_0$. (D) $4I_0$, 0.

2. 沿着相反方向传播的两列相干波,其波动方程分别为 $y_1 = A \cos 2\pi (vt - x / \lambda)$ 和 $y_2 = A \cos 2\pi (vt + x / \lambda)$ 。在叠加后形成的驻波中,各处的振幅是

[] (A) A;

- (B) 2A;
- (C) $2A\cos(2\pi x/\lambda)$; (D) $|2A\cos(2\pi x/\lambda)|$.

3. 图示为 t 时刻的某驻波波形曲线。若此时 A 点处媒质质元的振动动能在减小, 则 A 点处媒质质元的振动势能和 B 点处媒质质元的振动动能分别在。

-] (A)增大,减小;
- (B) 增大,减小:
- (C) 减小,减小; (D) 增大,增大。

4. 有两列沿相反方向传播的相干波,其波动方程分别为 $y_1 = A\cos 2\pi (vt - x/\lambda)$ 和 $y_2 = A\cos 2\pi (vt + x/\lambda)$ 。叠加后形成驻波,其波节位置的坐标为:

- [] (A) $x = \pm k\lambda$ (B) $x = \pm (2k+1)\lambda/2$ (

其中的 $k = 0, 1, 2, 3 \cdots$ 。

5. 在弦线上有一简谐波,其表达式为
$$y_1 = 2.0 \times 10^{-2} \cos \left[100 \pi \left(t + \frac{x}{20} \right) - \frac{\pi}{3} \right]$$
 (SI)

为了在此弦线上形成驻波,并且在 x=0 处为一波腹,此弦线上还应有一简谐波,其表达式应为:

[] (A)
$$y_2 = 2.0 \times 10^{-2} \cos \left[100\pi \left(t - \frac{x}{20} \right) + \frac{\pi}{3} \right]$$
 (SI)

(B)
$$y_2 = 2.0 \times 10^{-2} \cos \left[100\pi \left(t - \frac{x}{20} \right) + \frac{4\pi}{3} \right]$$
 (SI)

(C)
$$y_2 = 2.0 \times 10^{-2} \cos \left[100 \pi \left(t - \frac{x}{20} \right) - \frac{\pi}{3} \right]$$
 (SI)

(D)
$$y_2 = 2.0 \times 10^{-2} \cos \left[100\pi \left(t - \frac{x}{20} \right) - \frac{4\pi}{3} \right]$$
 (SI)

三、计算题

1. 如图所示, S_1 , S_2 为两平面简谐波相干波源. S_2 的相位比 S_1 的相位超前 $\pi/4$,波长 $\lambda = 8.00$ m, $r_1 = 12.0$ m, $r_2 = 14.0$ m, S_1 、 S_2 在 P 点引起的振动振幅分别为 0.30 m、 0.20 m,求 P 点的合振幅.

2. 设入射波的方程式为 $y_1 = A\cos 2\pi \left(\frac{x}{\lambda} + \frac{t}{T}\right)$, 在 $x = \frac{\lambda}{2}$ 处发生反射,反射点为固定端。

设反射时无能量损失,求:

- (1) 反射波的方程式;
- (2) 合成的驻波的方程式;
- (3) 波腹和波节的位置。

3. 如图所示,一平面简谐波沿 x 轴正方向传播,BC 为波密介质的反射面。波在 P 点反射, $OP = 5\lambda/4$, $DP = \lambda/8$ 。在 t = 0 时,O 处质点的合振动是经过平衡位置向正方向运动。求(1)驻波方程;(2)D 点处的合振动方程。(设入射波和反射波的振幅皆为 A,频率为 v。)

