Legislación y regulación

Proyecto final 1

Dimensionamiento de energía

Dispositivos de fibra óptica

Sistemas de radio digital y M.O.

Instrumentación 2

0.1	Transformada de Laplace	. 7
0.2	Transformada de Fourier	11
n 3	Transformada 7	11

0.1 Transformada de Laplace

la transformada de Laplace es una transformada integral que convierte una función de variable real t (normalmente el tiempo) a una función de variable compleja s.

La transformada de Laplace de una función f(t) definida para todos los números reales $t \ge 0$, es la función F(s) definida por:

$$F(s) = \int_0^\infty e^{-st} f(t)dt \tag{1}$$

siempre y cuando la función esté definida. Para la mayoria de funciones, esta integral está tabulada, es decir, ya se ha calculado su transformada.

	f(t)	$\mathcal{L}\{f(t)\}$
1	1	$\frac{1}{s}$
2	t^n n es un entero positivo	$\frac{n!}{s^{n+1}}$
3	\sqrt{t}	$\sqrt{\frac{\pi}{4s^3}}$
4	$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$
5	e^{at}	$\frac{1}{s-a}$
6	$t^n e^{at}$ n es un entero positivo	$\frac{n!}{\left(s-a\right)^{n+1}}$
7	sen <i>kt</i>	$\frac{k}{s^2 + k^2}$
8	cos kt	$\frac{s}{s^2 + k^2}$
9	senh <i>kt</i>	$\frac{k}{s^2 - k^2}$
10	cosh <i>kt</i>	$\frac{s}{s^2 - k^2}$
11	$e^{at}\operatorname{sen}kt$	$\frac{k}{\left(s-a\right)^2+k^2}$
12	$e^{at}\cos kt$	$\frac{(s-a)}{(s-a)^2+k^2}$
13	t sen kt	$\frac{2ks}{\left(s^2+k^2\right)^2}$
14	t cos kt	$\frac{s^2 - k^2}{\left(s^2 + k^2\right)^2}$
15	sen <i>kt – kt</i> cos <i>kt</i>	$\frac{2k^3}{\left(s^2+k^2\right)^2}$
16	sen kt + kt cos kt	$\frac{2ks^2}{\left(s^2+k^2\right)^2}$

	f(t)	$\mathcal{L}\{f(t)\}$
17	senh <i>kt –</i> sen <i>kt</i>	$\frac{2k^3}{s^4 - k^4}$
18	$\cosh kt - \cos kt$	$\frac{2k^2s}{s^4-k^4}$
19	$1-\cos kt$	$\frac{2k^2s}{s^4 - k^4}$ $\frac{k^2}{s(s^2 + k^2)}$
20	kt – senkt	$\frac{k^3}{s^2(s^2+k^2)}$
21	$\frac{a \operatorname{sen} bt - b \operatorname{sen} at}{ab\left(a^2 - b^2\right)}$	$\frac{1}{\left(s^2+a^2\right)\!\left(s^2+b^2\right)}$
22	$\frac{\cos bt - \cos at}{a^2 - b^2}$	$\frac{s}{\left(s^2+a^2\right)\!\left(s^2+b^2\right)}$
23	ln t	$-\frac{\gamma + \ln s}{s}$ $\gamma \text{ es la constante de Euler}$ $(\gamma = 0.5772156)$
24	$\ln^2 t$	$\frac{\pi}{6s} + \frac{\left(\gamma + \ln s\right)^2}{s}$
25	$-(\gamma + \ln t)$	$\frac{\ln s}{s}$
26	$\left(\gamma + \ln t\right)^2 - \frac{\pi^2}{6}$	$\frac{\ln^2 s}{s}$
27	$\frac{e^{-at}-e^{-bt}}{t}$	$\ln\left(\frac{s+b}{s+a}\right)$
28	$\frac{e^{-at}-e^{-bt}}{\sqrt{4\pi t^3}}$	$\sqrt{s+b} - \sqrt{s+a}$
29	$\frac{a}{\sqrt{4\pi t^3}}e^{-a^2/4t}$	$e^{-a\sqrt{s}}$
30	$\operatorname{erf}(t)$	$\frac{e^{s^2/4}}{s} \left[1 - \operatorname{erf}\left(\frac{1}{2}s\right) \right]$
31	$\frac{\operatorname{sen} t}{t}$	$\arctan \frac{1}{s}$

Figure 1: Tabla de transformada de Laplace

0.1.1 Propiedades de la transformada de Laplace

Teorema 0.1 — Producto constante. Sea *a* un valor constante que multiplica a una función, la transformada de Laplace de esta función será el valor de la constante multiplicada por la transformada de Fourier de esta función:

$$L\{a \cdot f(t)\} = a \cdot L\{f(t)\}\tag{2}$$

Ejemplo 0.1 — Producto constante.

$$L\left\{\underbrace{7}_{cte} \cdot \underbrace{\sin(8t)}_{f(t)}\right\}$$

$$7 \cdot L\left\{\sin(8t)\right\}$$

$$7 \cdot \frac{8}{s^2 + 64}$$

$$\frac{56}{s^2 + 64}$$

Teorema 0.2 — Linealidad. La transformada de la adición o sustracción de dos funciones es la suma o sustracción de sus transformadas independientes. De igual manera se aplica la propiedad anterior:

$$L\{a \cdot f(t) \pm b \cdot g(t)\} = a \cdot L\{f(t)\} \pm b \cdot L\{g(t)\}$$
(3)

Ejemplo 0.2 — Linealidad.

$$L\{3t^2 - 9t\} = L\{3t^2\} - L\{9t\}$$
 = $3 \cdot \frac{2!}{s^3} - 9 \cdot \frac{1!}{s^2} = \frac{6}{s^3} - \frac{9}{s^2}$

Teorema 0.3 — Traslación. Si una función es multiplicada por una exponencial, con un múltiplo real del tiempo, esto provocará una traslación en el plano complejo, de otra manera:

$$L\left\{e^{a\cdot t}f(t)\right\} = F(s-a), a \in \mathcal{R} \tag{4}$$

Ejemplo 0.3 — Traslación.

$$L\left\{\underbrace{e^{2t}}_{e^{at},a=2} \cdot \underbrace{\sin(3t)}_{f(t)}\right\}$$

$$L\left\{\sin(3t)\right\} = \frac{3}{s^2 + 9} = F(s) \qquad L\left\{e^{2t}\sin(3t)\right\} = F(s-2) = \frac{3}{(s-2)^2 + 9}$$

Teorema 0.4 — Derivada. Sea una función del tiempo, multiplicada por el tiempo elevado a la enésima potencia; su transformada menos uno elevado a la enésima potencia por la enésima derivada de la transformada de Laplace de la función:

$$\mathcal{L}\left\{t^n \cdot f(t)\right\} = (-1)^n F^{n'}(s) \tag{5}$$

Ejemplo 0.4 — Derivada.

$$\mathcal{L}\left\{t\cos(7t)\right\} = ?$$

$$\mathcal{L}\left\{\cos(7t)\right\} = \frac{s}{s^2 + 7^2} = F(s)$$

$$\mathcal{L}\left\{t\cos(7t)\right\} = \frac{(-1)^1 F'(s)}{(-1)^1 F'(s)}$$

$$= \left(\frac{s}{s^2 + 49}\right)' = \frac{1(s^2 + 49) - s \cdot 2s}{(s^2 + 49)^2}$$

$$= \frac{s^2 + 49 - 2s^2}{(s^2 + 49)^2} = \frac{-s^2 + 49}{(s^2 + 49)^2}$$

$$\mathcal{L}\left\{t\cos(7t)\right\} = -\left(\frac{-s^2 + 49}{(s^2 + 49)^2}\right)$$

0.1.2 Transformada de la función escalón unitario o Heaviside

Definida analíticamente como:

Figure 2: Función escalón unitario

$$f(t) = \begin{cases} \sin t > a & 1\\ \sin t \le a & 0 \end{cases} = u(t-a) = H(t-a)$$

Su transformada de Laplace de un escalón unitario es:

$$\mathscr{L}\left\{u(t-a)\right\} = \frac{e^{-a \cdot s}}{s}$$

Calculando la transformada de Laplace de H(t-3):

$$\mathscr{L}\left\{H(t-3)\right\} = \frac{e^{-3\cdot s}}{s}$$

Hasta esta parte resulta fácil, sin embargo se suele mezclar más funciones escalón unitario para crear un pulso rectangular, haremos ambos casos:

0.1.2.1 Pulso rectangular

Figure 3: Función pulso rectangular: caso 1

Para entender el como se caracteriza esta función usando pulsos unitarios, vamos a empezar analizando desde 0 hasta el infinito. Tenemos un punto de cambio en 3, para números menores a 3 la función vale cero, mientras que para pulsos mayores a 3 debería valer 1; sin embargo en la gráfica se muestra valor constante en 7. Esto se soluciona multiplicando la función escalón unitario por 7; si lo hacemos, para números menores antes de 3 tendremos o (7×0) y para mayores a 3 tendremos 7 (7×1) . Por

lo tanto tenemos:

$$7 \cdot u(t-3)$$

El comportamiento visto sería al infinito positivo, pero notamos que en 5 se hace cero. Lo analizamos de la siguiente manera, para antes del 5 es 7, que ya fue caracterizado, por lo tanto no debemos alterar nada; mientras que para números mayores a 5 vale 0, cosa que cambia pues fue caracterizada como 7. Bajo estas ideas podemos restar una función escalón unitario a la función ya hecha, ojo que esta función a restar deber ser escalada por 7, si no la escalamos tendríamos solo 7-1=6, cuando debería ser 7-7=0:

$$f(t) = 7 \cdot u(t-3) - 7 \cdot u(t-5)$$

De esta manera se ha caracterizado la función pulso rectangular usando funciones heaviside, ahora se puede calcular su transformada de Laplace:

$$\begin{split} \mathcal{L}\left\{7\cdot u(t-3) - 7\cdot u(t-5)\right\} &= \mathcal{L}\left\{7\cdot u(t-5)\right\} - \mathcal{L}\left\{7\cdot u(t-5)\right\} \\ &= 7\cdot \mathcal{L}\left\{u(t-5)\right\} - 7\cdot \mathcal{L}\left\{u(t-5)\right\} \\ &= 7\cdot \frac{e^{-3s}}{s} - 7\cdot \frac{e^{-5s}}{s} \end{split}$$

Para el caso 2, sabiendo como es la función escalón unitario, nos dice que para antes de 2 debe valer 3 y para valores después de 2 debe ser 0. Para caracterizarlo, empezamos con una función constante 3:

$$t \le 2 \rightarrow 3 - 0 = 3$$
$$t > 2 \rightarrow 3 - 1 = 2$$

Nota que a la función constante 3 le estamos restando una función escalón unitario, sin embargo despues de 2 NO nos da 0, nos da 2. Esto se arregla escalando la función Heaviside:

$$t \le 2 \rightarrow 3 - 3 \cdot 0 = 3$$

 $t > 2 \rightarrow 3 - 3 \cdot 1 = 0$

Analíticamente:

$$f(t) = 3 - 3 \cdot u(t - 2)$$

Ahora para el punto 4, solo debemos sumar una función heaviside simple, escalada en 3 y desplazada hasta t=4, por lo tanto:

$$f(t) = 3 - 3 \cdot u(t - 2) + 3 \cdot u(t - 4)$$

Ahora se resuelve la transformada de esta función:

$$\mathcal{L}\{f(t) = 3 - 3 \cdot u(t - 2) + 3 \cdot u(t - 4)\}$$

$$\mathcal{L}\{3\} - 3\mathcal{L}\{u(t - 2)\} + 3\mathcal{L}\{u(t - 4)\}$$

$$= \frac{3}{s} - 3\frac{e^{-2s}}{s} + 3\frac{e^{-4s}}{s}$$

Figure 4: Función pulso rectangular: caso 2

0.2 Transformada de Fourier

0.3 Transformada Z