Regular Expression & Regular Languages

Regular Language

- A language L is known as regular if and only if it is recognized by a finite accepter (FA).
- Language L is regular if and only if it is recognized by a DFA. (??)
- Language L is regular if and only if it is recognized by an NFA. (??)
- A language L is known as regular if and only if it is described by a regular expression (RE).
- A language L is recognized by a FA if and only if L is described by a regular expression.
- NFA recognize exactly the regular languages.
- Regular expressions describe exactly the regular languages.

How to show that a given language is regular?

Regular Expression

- A regular expression consists of strings of symbols from some alphabet ∑, parentheses (), and the operators +, . and *.
- Let \(\Sigma\) be a given alphabet. Then,
- ϕ , λ and $\alpha \in \Sigma$ are all regular expressions. These are known as primitive regular expressions.
- Recursive Definition:
- If r_1 and r_2 are regular expressions (REs), then the following expressions are also regular:
- $r_1 + r_2 OR r_1 | r_2 \rightarrow (r_1 \text{ or } r_2)$
- $r_1.r_2$ **OR** r_1r_2 \rightarrow $(r_1$ followed by $r_2)$
- r₁* → (r₁ repeated zero or more times)
- •
- A strings of symbols is a regular expression if and only if it can be derived from primitive regular expressions by finite applications of recursive definition.

Precedence of Operators

Rules for REs

$$\begin{array}{ccc} \checkmark & r + \varnothing = \varnothing + r = r \\ \checkmark & r \cdot \varnothing = \varnothing \cdot r & = \varnothing \\ \checkmark & \varnothing * = \Lambda \end{array}$$

$$= I + A = A + I$$

$$r + \Lambda = \Lambda + r = r$$

$$r \cdot \Lambda = \Lambda \cdot r = r$$

$$\Lambda^* = \Lambda$$

$$(r + \Lambda)^+ = r^*$$

$$I = I(V + I)$$

$$1+S=S+J$$

$$r + s = s + r$$

$$r \cdot (s + t) = r \cdot s + r \cdot t$$

$$r \cdot (s \cdot t) = (r \cdot s) \cdot t$$

$$r\cdot(s.t)=(r\cdot s)$$
.

$$r^+ = r r^*$$

$$r^{+} = r r^{*}$$
 $r^{*} = r^{*} (r + \Lambda) = r^{*} r^{*} = (r^{*})^{*}$
 $(r^{*}s^{*})^{*} = (r + s)^{*}$

$$*(s+1) = *(*s*1)$$

• Let $\Sigma = \{a, b, c\}$

• φ, λ, α, b, c

* q * e •

a.b, b.a, a+b, (a.b)*, (b.a)*, (a+b)*

a + b is equivalent to b+a

a.b is not equivalent to b.a

• (a + b.c)*

(c+φ)

Why ?

Invalid Regular Expressions: Example

• Let Σ ={a, b, c}

*a, *b*, +a*, b*

+a.b, *b.a, .*a+b, (++a.b)*, (..*b.a***)*, (++a++b**)*

• (+a + b.c)*

(c+¢*+*) •

Why?

Some Notations

 Parentheses in regular expressions can be omitted when the order of evaluation is clear.

•
$$((0+1)^*) = (0+1)^* \neq 0+1^*$$

•
$$((0^*)+(1^*)) = 0^* + 1^*$$

For concatenation, · can be omitted.

• $r \cdot r \cdot r \cdot r$ is denoted by r^n .

Simple Examples over
$$\Sigma = \{0,1\}$$

- $\{\alpha \in \Sigma^* \mid \alpha \text{ does not contain 1's} \}$
- •
- $\{\alpha \in \Sigma^* \mid \alpha \text{ contains 1's only} \}$
- 1.(1*) (which can be denoted by (1*))
- $\{\alpha \in \Sigma^* \mid \alpha \text{ contains only 0's or only 1's} \}$
- (00*)+(11*)
- (0+1)*
- Note: $0^* + 1^* \neq (0+1)^*$

Examples over
$$\Sigma = \{0,1\}$$

- Strings of even length, L={00,01,10,11} *
- (00+01+10+11) * or
- ((0+1)(0+1))*
- Strings of length 6, L= $\{lpha\!\in\!\Sigma^*|$ the length of lpha is $\mathbf{6}\}$
- 0000000+....+1111111
- \bullet (0+1)(0+1) (0+1)(0+1) (0+1)(0+1) = (0+1)⁶
- Strings of length 6 or less, L= $\{\alpha \in \Sigma^* \mid \text{the length of } \alpha \text{ is less than or }$ equal to 6}
- λ +0+1+00+01+10+11....+111111
- $(0+1+\lambda)^6$

Examples over
$$\Sigma = \{0,1\}$$

- $\{\alpha \in \Sigma^* \mid \alpha \text{ is a binary number divisible by 4} \}$
- (0+1)*00
- $\{\alpha \in \Sigma^* \mid \alpha \text{ does not contain } 11\}$
- (0+10)* $(1+\lambda)$
- $\{\alpha \in \Sigma^* \mid \alpha \text{ contains odd number of 1's} \}$
- 0*(10*10*)*10*
- $\{\alpha \in \Sigma^* \mid \text{any two 0's in } \alpha \text{ are separated by three 1's} \}$
- 1*(0111)*01*+1*

 All strings of 1s and 0s (0 | 1)* • All strings of 1s and 0s beginning with a 1 $1(0|1)^*$

 All strings containing two or more 0s (1|0)*0(1|0)*0(1|0)* All strings containing an even number of 0s

 $(1^*01^*01^*)^* \mid 1^*$

All strings containing an even number of 0s and even number of 1s Assume that (00 | 11) is X
 X* | (X* (01 | 10) X* (01 | 10) X*)*

CR

```
(00|11)^*((01|10)(00|11)^*(01|10)(00|11)^*)^*
```

• All strings of alternating **0**s and **1**s $(\lambda \mid 1)(01)^* (\lambda \mid 0)$

- Strings over the alphabet {a, b} in which substrings ab and ba occur an unequal number of times
 - $(a^+b^+)^+ | (b^+a^+)^+$

• Strings over the alphabet {0, 1} with no consecutive 0's

(1 | 01)* (0 | E)

• 1*(01*)*(0|E)

• 1*(011*)*(0 | E)

Strings over the alphabet {a, b} with exactly three b's

a*ba*ba*ba*

Strings over the alphabet {a, b, c} containing (at least once) bc

• (a|b|c)*bc(a|b|c)*

- (1 | 10)*
- all strings starting with "1" and containing no "00"
- $(0 | 1)^*011$
- all strings ending with "011"
- *L*O
- all strings with no "0" after "1"
- 00*11*
- all strings with at least one "0" and one "1", and no "0" after "1"

What languages do the following RE represent?

• ((0 | 1)(0 | 1))* | ((0 | 1)(0 | 1)(0 | 1))*

Regular Languages

- Each RE has an equivalent regular language (RL).
- A language L is regular if there is a regular expression r such that L = L(r).
- The language L(r) denoted by any regular expression r is defined by the following rules.
- Φ is a regular expression. $L(\Phi) = \{\} = \Phi$
- λ is a regular expression. $L(\lambda) = \{\lambda\}$
- $a \in \Sigma$ are all regular expressions. $L(a) = \{a\}$

Regular Languages: Cont..

• If r_1 and r_2 are regular expressions (REs).

$$ullet r_1 + r_2$$
 is R.E., then $L(r_1 + r_2) = L(r_1) \cup L(r_2)$ $L(r_1) \cup L(r_2) = \{w \mid w \in L(r_1) ext{ or } w \in L(r_2)\}$

 \bullet $r_1.r_2$ is R.E., then

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

 $L(r_1).L(r_2) = \{w_1.w_2 : w_1 \in L(r_1) \text{ and } w_2 \in L(r_2)\}$

ullet r_1^* is R.E., then

$$L(r_1^*) = (L(r_1))^*$$

 $(L(r_1))^* = L(r_1)^0 \cup L(r_1)^1 \cup L(r_1)^2 \cup L(r_1)^3 \cup ...$

• (r_1) is R.E., then

$$L((n_1)) = L(n_1)$$

Regular Expression to Regular Language

Regular Expression:
$$(a+b) \cdot a *$$

$$L((a+b) \cdot a *) = L((a+b))L(a *)$$

$$= L(a+b)L(a *)$$

$$= (L(a) \cup L(b))(L(a)) *$$

$$= (\{a\} \cup \{b\})(\{a\}) *$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

 $= \{a, aa, aaa, ..., b, ba, baa, ...$

RE to RL

$$r = (a+b)*(a+bb)$$

$$L(r) = \{a, bb, aa, abb, ba, bbb, ...\}$$

$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

$$r = (0+1)*00(0+1)*$$

 $L(\Gamma) = \{$ all strings containing substring 00 $\}$

ullet λ^* is RE, then the language

$$L(\lambda \ ^{\ast })=\{\lambda \}^{\ast }=\{\lambda \}$$

ullet ϕ^* is RE, then the language

$$\mathsf{L}(\phi^*) = \{\phi\}^* = \{\ \}$$

0* is RE, then the language

$$L(0^*) = \{0\}^* = \{\lambda, 0, 00, 000, 0000, ...\}$$

 $L((0+1),(00+11)) = \{0,1\}\{00,11\} = \{000,011,100,111\}$ • (0+1).(00+11) is RE, then the language

```
L((10+01)^*) = \{10, 01\}^* = \{\lambda, 10, 1010, 101010, ..., 01, 0101, 010101, ...,
                                                                                              0110, 011010, 01101010, ...}
                                                                                        1001, 100101, 10010101, ...,
• (10+01) * is RE, then the language
```

• Let L be a language over {a, b}, each string in L contains the substring bb

L = {a, b}*{bb}{a, b}*

L is regular language (RL). Why?

• {a} and {b} are RLs

(a) arra (a).

• {a, b}* is RL

 $\{b\}\{b\} = \{bb\} \text{ is also RL}$

Then L = {a, b}*{bb}{a, b}* is RL

- Let L be a language over {a, b}, each string in L
- begins and ends with an a AND contains at least one b
- $L = \{a\}\{a, b\}^*\{b\}\{a, b\}^*\{a\}$
- L is regular language (RL). Why?
- {a} and {b} are RLs
- {a, b} is RL
- {a, b}* is RL
- Then $L = \{a\}\{a, b\}^*\{b\}\{a, b\}^*\{a\}$ is RL

RL - Example

- The RE (b + ab*a)*ab* represents the strings over {a, b} with an odd number of a's
- Note: this is a set equality; to prove it you have to show the following:
- strings with an odd number of a's are in this language; and
- any string in this language has an odd number of a's.

• Let $\Sigma = \{a, b\}$

• RE a|b

↓ $L = \{a, b\}$

• RE (a|b)(a|b)

→ L = {aa, ab, ba, bb}

• RE aa | ab | ba | bb

same as above

• RE **a***

 \blacktriangleright L = { λ , a , aa, aaa, ...}

• RE (a | b)*

 \clubsuit L = set of all strings of a's and b's including λ → same as above

• RE (a*b*)*

• RE a | a*b

→ L = {a,b,ab,aab,aaab, ...}

RE & RL

i.e., all 0 and 1 strings containing a "00"

EQUIVALENT RES

 Two regular expressions r and s are equivalent (r=s), if and only if r and s represent/generate the same language.

Example-:

• RE = $(a) | ((b)^*(c))$ is equivalent to $a + b^*c$

EQUIVALENT RES

Examples,

$$*(q+p) = *(*q*p)$$

•
$$(a+b)*ab(a+b)*+b*a* = (a+b)*$$

- First equality rather clear.
- strings that contain the substring ab and the second half describes those that don't; the +either contains ab or it doesn't; the first half of the left-hand expression describes the For the second equality, note that $(a+b)^*$ denotes strings over a and b, that a string says "take the union".

Regular Expressions: Exercise

- Construct a RE over ∑={0,1} such that
- It does not contain any string with two consecutive "0"s
- It has no prefix with two or more "0"s than "1" nor two or more "1"s than "0"
- The set of all strings ending with "00"
- The set of all strings with 3 consecutive 0's
- The set of all strings beginning with "1", which when interpreted as a binary no., is divisible by 5
- The set of all strings with a "1" at the 5th position from the right
- The set of all strings not containing 101 as a sub-string
- Construct a RE for the set {aⁿb^m: n >=3, m is even}.
- Construct a RE for the set {aⁿb^m: n >=4, m <= 3}.
 - Construct a RE for the set {w: |w| mod 3 =0}.
- Construct a RE for the set {w: |w| mod 3 = 1}