Math2001 Answer to Homework 8

Exercise 3.37

Given $r \in X$ and $s \notin X$, obviously we have $r \neq s$. If r < s, according to the definition of Dedekind cuts, r < s and $r \in X$ imply $s \in X$, contradiction! So we have r > s.

Given $r \notin X$ and s < r, if $s \in X$, according to the definition of Dedekind cuts, s < r and $s \in X$ imply $r \in X$, contradiction! So we have $s \notin X$.

Exercise 3.38

Consider $\epsilon' = \frac{\epsilon}{2}$, according to Lemma 3.6.2., there are $r \in X$ and $s \notin X$, such that $r - s = \epsilon' = \frac{\epsilon}{2} < \epsilon$.

Exercise 3.40

Given $Y \subseteq \mathbb{Q}$ with lower bound $l \in \mathbb{Q}$, i.e. l < t for all $t \in Y$. First condition: for any $s \in Y$, we have s > t for some $t \in Y$, then s > l, i.e. l is the lower bound of Y; second condition: if $r \in Y$ and s > r, $r \in Y$ implies r > t for some $t \in Y$, then s > t for same t, hence $s \in Y$; third condition: for any $s \in Y$, i.e. s > t for some $t \in Y$, consider $r = \frac{s+t}{2} < s$, then r > t implies $r \in Y$.

Exercise 3.41

$$-\sqrt{2}:=\{r\in\mathbb{Q}:r<0,r^2<2\}\cup\{r\in\mathbb{Q}:r\geq0\},\ 1-\sqrt{2}:=\{r\in\mathbb{Q}:r<1,(r-1)^2<2\}\cup\{r\in\mathbb{Q}:r\geq1\}.$$

Exercise 3.43

Suppose A is a set of real numbers (Dedekind cuts) with lower bound L, L < X for all $X \in A$, i.e. for all $X \in A$, we have $X \subset L$ and $X \neq L$. Consider $Z = \bigcup_{X \in A} X$ union of all Dedekind cuts in A, then $Z \subset L$ obviously. We will prove that Z is also a Dedekind cut and $Z = \inf A$.

Z is a Dedekind cut: first condition: L is a Dedekind cut, so there is $l \in \mathbb{Q}$ such that l < r for all $r \in L$, by $Z \subset L$, l < r for all $r \in Z$; second condition: if $r \in Z$ and r < s, $r \in Z$ implies that $r \in X$ for some $X \in A$, then $r \in X$ and r < s implies $r \in X \subset Z$ for that X is a Dedekind cut; third condition: for any $r \in Z$, then $r \in X$ for some $X \in A$, there exists $s \in X \subset Z$ such that s < r for that X is a Dedekind cut.

 $Z = \inf A$: firstly $X \subset Z$ means $Z \leq X$ for all $X \in A$, which means Z is a lower bound of A; secondly for any Y > Z, i.e. $Y \subset Z$ and $Y \neq Z$, so there exists $r_0 \in Z$ but $r_0 \notin Y$; $r_0 \in Z$ implies $r_0 \in X_0$ for some $X_0 \in A$, then $X_0 \not\subset Y$ obviously, i.e. $Y \not\prec X_0$, so Y is not a lower bound.

Exercise 3.42

Given X is a Dedekind cut and $A = \{r \in \mathbb{Q} : r > X\} = \{h(r) \in \mathbb{R} : h(r) > X\}$, where $h : \mathbb{Q} \to \mathbb{R}$ is a map which maps r to $h(r) = \{a \in \mathbb{Q} : a > r\}$.

According to previous Ex3.43, we have $\inf A = \bigcup_{h(r) \in A} h(r) = \bigcup_{h(r) > X} h(r)$. h(r) > X implies $h(r) \subset X$, so we have $\inf A = \bigcup_{h(r) \subset X} h(r) \subset X$. Conversely, for any $a \in X$, by definition of Dedekind cut, there is $r \in X$ such that r < a, then $a \in h(r) \subset \inf A$; so we have $X \subset \inf A$. Above all, $X = \inf A$.

Exercise 3.45

For $x, y, z \le 0$, then $-(x + y), -x, -y, -z \ge 0$, then

$$[-(x+y)](-z) = [(-x) + (-y)](-z) = (-x)(-z) + (-y)(-z)$$

also we have (x+y)z = [-(x+y)](-z), (-x)(-z) = xz and (-y)(-z) = yz, so (x+y)z = xz + yz.

Exercise 3.46

For X, Y > 0, X > Y, we have $X \subset Y$ and $X \neq Y$. The construction of X^{-1} and Y^{-1} is as follows: consider

$$\bar{X}^{-1} = \{ t \in \mathbb{Q} : tr > 1 \text{ for all } r \in X \}$$
$$\bar{Y}^{-1} = \{ t \in \mathbb{Q} : tr > 1 \text{ for all } r \in Y \}$$

then we can set

$$X^{-1} = \{ s \in \mathbb{Q} : s > t \text{ for some } t \in \bar{X}^{-1} \}$$

$$Y^{-1} = \{ s \in \mathbb{Q} : s > t \text{ for some } t \in \bar{Y}^{-1} \}$$

by the construction of the multiplicative inverse, we here $X^{-1}, Y^{-1} > 0$. Then $X^{-1} \neq Y^{-1}$, otherwise $X^{-1} = Y^{-1}$ implies $1 = XX^{-1} > YX^{-1} = 1$, which is a contradiction.

Then to prove $X^{-1} < Y^{-1}$, we only need to prove that $Y^{-1} \subset X^{-1}$: given $s \in Y^{-1}$, we have $s > t_0$ for some t_0 satisfies $t_0 r > 1$ for all $r \in Y$; by $X \subset Y$, $t_0 r > 1$ for all $r \in X$, which means $s \in X^{-1}$, hence $Y^{-1} \subset X^{-1}$.

Exercise 3.53

The equation can be written as $z^2 + z + 1 = (z + \frac{1}{2})^2 + \frac{3}{4} = 0$, i.e. $(z + \frac{1}{2})^2 = -\frac{3}{4}$, the solutions will be $z_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, $z_2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$.

Note that $z^3 - 1 = (z - 1)(z^2 + z + 1)$, so $z^3 = 1$ have solutions $z_0 = 1$, $z_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ and $z_2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$.

Exercise 3.54(2)

Suppose $z_1 = r_1 e^{i\theta_1}$, $z_2 = r_2 e^{i\theta_2}$, for $r_1, r_2 \ge 0$. Let $\gamma = \theta_2 - \theta_1$, then

$$|z_1 + z_2| = |e^{i\theta_1}| |r_1 + r_2 e^{i\gamma}|$$

$$= 1 \cdot \sqrt{(r_1 + r_2 \cos \gamma)^2 + r_2^2 \sin^2 \gamma}$$

$$= \sqrt{r_1^2 + r_2^2 + 2r_1 r_2 \cos \gamma}$$

$$\leq \sqrt{r_1^2 + r_2^2 + 2r_1 r_2}$$

$$= r_1 + r_2 = |z_1| + |z_2|.$$

Exercise 3.54(5)

Note that $z\bar{z} = |z|^2$, then

$$|z_1 + z_2|^2 + |z_1 - z_2|^2$$

$$= (z_1 + z_2)(\overline{z_1 + z_2}) + (z_1 - z_2)(\overline{z_1 - z_2})$$

$$= (z_1 + z_2)(\overline{z_1} + \overline{z_2}) + (z_1 - z_2)(\overline{z_1} - \overline{z_2})$$

$$= 2z_1\overline{z_1} + 2z_2\overline{z_2} = 2(|z_1|^2 + |z_2|^2).$$

Exercise 3.55

The equation can be written as $(z+1)^4 = -i(z+2)^4$, if z+2=0, then $(z+1)^4=0$ which means z+1=0, contradiction with z+2=0, so we have $z+2\neq 0$. So we will have

$$\left(\frac{z+1}{z+2}\right)^4 = -i = e^{-i\frac{\pi}{2}}$$

then we have

$$1 + \frac{1}{z+1} = \frac{z+2}{z+1} = e^{i\alpha}$$

for $\alpha = \frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8}$. Then $z = \frac{1}{e^{i\alpha} - 1} - 1$ for $\alpha = \frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8}$.

Exercise 3.56

Suppose $z = re^{i\theta}$ for $r \ge 0$, then $z^2 = r^2e^{2i\theta}$ and $\bar{z} = re^{-i\theta}$, then $z^2 = \bar{z}$ can be written as

$$r^2 e^{2i\theta} = re^{-i\theta}$$

take modulus, we get $r^2=r$, so r=0 or r=1. r=0 implies z=0. If r=1, then $e^{2i\theta}=e^{-i\theta}$, i.e. $z^3=e^{3i\theta}=1$, then $z=1,-\frac{1}{2}+\frac{\sqrt{3}}{2}i$, or $-\frac{1}{2}-\frac{\sqrt{3}}{2}i$ by previous exercise.

Above all, $z = 0, 1, -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$.

Exercise 3.58

Let $z = 1 + \sqrt{3}i = 2(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = 2e^{\frac{\pi}{3}i}$, then $z^{10} = 2^{10}e^{\frac{10\pi}{3}i} = 2^{10}e^{\frac{4\pi}{3}i} = 2^{10}(-\frac{1}{2} - \frac{\sqrt{3}}{2}i) = -2^9(1 + \sqrt{3}i)$.

Exercise 3.59

For |z|=1, we have $z\bar{z}=|z|^2=1$, so $\frac{1}{z}=z^{-1}=\bar{z}$. Then

$$\left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = |\bar{z}_1 + \bar{z}_2 + \bar{z}_3| = |\overline{z_1 + z_2 + z_3}| = |z_1 + z_2 + z_3| = 1.$$

Exercise 3.60

Firstly, we have $|z+3|=|(z+1)+2|\leq |z+1|+2\leq 4$. Let z=1, then |z+1|=|1+1|=2, and |z+3|=|1+3|=4. So the maximum of |z+3| is 4.