Machine Learning in Python (Linear Regression and Classifier Algorithms)

Keith Letourneau

Northeastern Univ.

```
In [3]:
          #import libraries
          import pandas as pd
          from pandas import DataFrame
          import matplotlib.pyplot as plt
          import numpy as np
          from sklearn import metrics
          from sklearn.linear model import LogisticRegression
          from sklearn.linear_model import LinearRegression
          from sklearn.model_selection import train_test_split
          plt.style.use('ggplot')
          #Load data for NBA
In [32]:
          nba = pd.read csv(r'C:\Users\keith\Downloads\NBA.csv')
          bos = DataFrame(nba[nba['Team'] == 'Boston Celtics'])
          bos.head()
          bos.plot(x='SeasonEnd', y='W', kind='line', color='#007A33')
          plt.ylabel('Wins')
          plt.xlabel('Season')
          plt.title('Boston Celtics Season Wins')
          plt.show()
```

Boston Celtics Season Wins


```
In [33]: #linear regression model
    celtics = DataFrame(bos, columns=['PTS','W'])
    lm = LinearRegression()

x = celtics['PTS'].values.reshape(-1,1)
y = celtics['W'].values.reshape(-1,1)
```

Boston Celtics Points and Wins Regression

Predicted amount of wins for the season with [[8523]] points: [[47.63110388]]

```
In [19]:
          #logistic regression on whether or not 50 games will be won
          #create binary outcome column for classifier
          bos['50 wins'] = ['Yes' if i > 50
                       else 'No' for i in bos['W']]
          x = bos[['PTS', 'AST', '3P', 'oppPTS']]
          y = bos['50 wins']
          x_train, x_test, y_train, y_test = train_test_split(x2, y2, random_state=4)
          glm = LogisticRegression()
          glm.fit(x_train, y_train)
          prediction = glm.predict(x_test)
          accuracy = metrics.accuracy_score(y_test, prediction)
          accuracy_percentage = 100 * accuracy
          print('Model accuracy is:', accuracy_percentage)
          season_x = glm.predict((np.array([8669, 1753, 589, 7914]).reshape(1, -1)))
          print('Will we win atleast 50 games this season?',
                season_x)
```

Look into why model accuracy is 100. Data is broken up into train and test so why not sure what is going on there.

Bootstrap Aggregating

Practice building ensemble model ultilizing bagging method:

- Create random samples of the training data set (sub sets of training data set)
- Build a model for each sample
- Results of these multiple models are combined using average or majority voting

```
#Load data
In [20]:
          data = pd.read_csv(r'C:\Users\keith\Downloads\programmers.csv')
          df = DataFrame(data, columns=['experience', 'score', 'salary'])
          print(df.head())
          df['score'].mean()
             experience score
                                salary
         0
                                  48.0
                            78
         1
                      7
                           100
         2
                            86
                                  47.4
                      1
         3
                                  68.6
                      5
                            82
         4
                     10
                            84
                                  76.0
Out[20]: 82.6666666666667
```

```
In [21]: #histogram of salaries
h = DataFrame(data, columns=['score'])
h.plot.hist(edgecolor='black')
df.plot(y='salary', x='experience', kind='scatter')
```


The predicted salary is: [[52.67205872]]

```
experience score salary job
0
           4
                78
                      48.0
                            No
           7
1
                      86.0 Yes
                100
2
           1
                86
                      47.4
                            No
3
           5
                82
                      68.6 Yes
                84
          10
                      76.0 Yes
Will he/she get the job? ['Yes']
```

