Analyse

Félix Yvonnet

27 novembre 2023

Table des matières

1	Dua	Dualité et topologie faible.	
	1.1	Espaces Hilbertiens, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .	2
	1.2	Théorème de Hahn Banach	3
	1.3	Réflexivité	3
	1.4	Formes géométriques de Hahn Banach	2
	1.5	Dualité des ensembles convexes	1
	1.6	Dualité de Legendre Fenchel des fonctions convexes)
2	Espaces de Sobolev 2		
	2.1	Convolution dans les espaces L^p)
	2.2	Convolution de distributions et espaces de Sobolev	5

1 Dualité et topologie faible.

1.1 Espaces Hilbertiens, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Définition 1. Soit \mathcal{H} (ou \mathscr{H} pour les rageux) un \mathbb{K} -ev, $\varphi:\mathcal{H}\times\mathcal{H}\to\mathbb{K}$ est sesquilinéaire si

- linéarité à droite : $\varphi(x, y + \lambda z) = \varphi(x, y) + \lambda \varphi(x, z)$
- antilinéarité à gauche : $\varphi(x + \lambda y, z) = \varphi(x, z) + \overline{\lambda}\varphi(y, z)$

On dit qu'elle est :

- symétrique si $\varphi(x,y) = \overline{\varphi(y,x)}$
- positive si $\varphi(x,x) \geq 0$
- définie positive si $\varphi(x,x)=0 \Rightarrow x=0$.

Un espace muni d'une forme sesquilinéaire symétrique définie positive est dit préhilbertien. On note $\langle x,y\rangle:=\varphi(x,y), \, \|x\|=\sqrt{\varphi(x,x)}.$

Remarque. Si \mathcal{H} est préhilbertien, alors pour tout $x, y \in \mathcal{H}$,

$$||x + y||^2 = ||x||^2 + 2Re(\langle x, y \rangle) + ||y||^2$$

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

(identité du parallélogramme)

Propriété 1 (inégalité de Cauchy Schwartz). Soit \mathcal{H} préhilbertien, alors $\forall x, y \in \mathcal{H}$,

$$|\langle x, y \rangle| \le ||x|| ||y||$$

Avec égalité si et seulement si x et y sont colinéaires.

Preuve. L'égalité est claire si x et y sont colinéaires. On suppose donc $\lambda x + \mu y \neq 0$ pour tout $\lambda, \mu \neq 0$. Soit $\alpha \in \mathbb{C}$ tel que $|\alpha| = 1$ et P strictement positif sur \mathbb{R} donc de discriminant strictement négatif. ie $|\langle x, y \rangle| \leq ||x|| ||y||$ donc ça marche. :)

Un espace de Hilbert est un espace préhilbertien complet.

Soit \mathcal{H} un Hilbert, $K \subset \mathcal{H}$ convexe fermé. Alors $P_K(x) := argmin_{y \in K} ||x-y||$ existe et est unique pour tout $x \in \mathcal{H}$. De plus on a la caractérisation :

$$P = P_k(x) \Leftrightarrow \forall y \in K, \ Re(x) \langle x - p, y - p \rangle \le 0$$

. Et la propriété $\forall x,y \in \mathcal{H}, \ \|P_K(x) - P_k(y)\|^2 \le Re\left(\langle x-y, P_K(x) - P_K(y)\rangle\right)$ ce qui implique que P_K est 1-Lipschitzienne.

Propriété 2 (Projection sur un sev fermé). Soit \mathcal{H} un Hilbert, $F \subset \mathcal{H}$, sev fermé. Alors on a la caractérisation

$$p = P_F(x) \Leftrightarrow p \in F \text{ et } \forall y \in F, \langle x - p, y \rangle = 0$$

. De plus, $P_F + P_{F^{\perp}} = Id$ où $F^{\perp} = \{ y \in \mathcal{H} \mid \forall x \in F, \langle x, y \rangle = 0 \}.$

Corollaire (Théorème de représentation de Riesz). Soit \mathcal{H} un Hilbert, alors $f: \mathcal{H} \longrightarrow \mathcal{H}^*$ est une bijection isométrique antilinéaire.

Preuve. On a $\varphi_x \in \mathcal{H}^*$ car $|\varphi_x(y)| = |\langle x, y \rangle| \leq ||x|| ||y||$. L'estimation précédente donne $||\varphi_x||_{\mathcal{H}^*} \leq ||x||$, et en choisissant y = x on obtient $\underline{|\varphi_x(x)|} = ||x||^2$. L'antilinéarité de $x \mapsto \varphi_x$ découle de la sesquili $\geq ||\varphi_x||_{\mathcal{H}^* ||x||_{\mathcal{H}}}$

néarité de f.

Montrons la surjectivité. Soit $\varphi \in \mathcal{H}^* \setminus \{0\}$, alors $F := \ker(\varphi)$ est un sev fermé. Soit $x \in \mathcal{H}$ tq $\varphi(x) = 1$, soit $p = P_f(x)$, v = x - p. Alors $\varphi(v) = \varphi(x - p) = 1$ et $\langle v, y \rangle = 0 \forall y \in F$.

De plus $\varphi(z - \varphi(z)v) = 0$ par linéarité donc $z - \varphi(z)v \in F = \ker(\varphi)$. Ainsi $\langle v, z - \varphi(z)v \rangle = 0$ et $\varphi(z)\|v\|^2 = \langle v, z \rangle$ donc $\varphi(z) = \frac{\langle v, z \rangle}{\|v\|^2}$.

Remarque. La topologie faible et la topologie *-faible correspondent sur \mathcal{H} .

1.2 Théorème de Hahn Banach

Définition 2. Un ensemble ordonné (E, \leq) est dit inductif si toute partie $F \subset E$ totalement ordonné admet un max dans E.

Lemme 1 (Zorn). Tout ensemble non vide et inductif admet un élément maximal.

Preuve. Soit \mathcal{A} un ensemble d'ensembles non vide. $\mathcal{B} = \bigcup_{A \in \mathcal{A}} A$. Soit $E = \bigcup_{A \in \mathcal{A}} A$.

 $\{f:A\to\mathcal{B}\mid A\subset\mathcal{A}, \forall a\in A,\ f(a)\in a\}$ l'ensemble des fonctions de choix partiel. $E\neq\emptyset$ car il contient $f:\emptyset\to\mathcal{B}$ l'application triviale.

Soit $f: A \to \mathcal{B}$, on dit que $f \leq f'$ si $A \subset A'$ et $f'_{|A} = f$. Si $F = (f_i)$ est

totalement ordonnée, $f:A_i\to\mathcal{B}$, on pose $A_*=\bigcup_{i\in I}A_i,\,f_*:\dfrac{A_*\longrightarrow\mathcal{B}}{x\longmapsto f_i(x)}$

où $i \in I$ to $x \in A_i$. Soit $f: A \to \mathcal{B}$ un élément maximal de E. Si par $A \cup \{\alpha\} \longrightarrow \mathcal{B}$

l'absurde $A \neq \mathcal{A}$, soit $\alpha \in \mathcal{A} \setminus A$ et $\beta \in \alpha$. On pose $f': x \in A \longmapsto f(x)$

qui prolonge strictement f et contredit la maximalité.

On suppose $\mathbb{K} = \mathbb{R}$ dans cette partie.

Définition 3. Soit E un \mathbb{R} -ev, $\rho: E \to \mathbb{R}$. ρ est dite sous linéaire si

$$\rho(x+y) \le \rho(x) + \rho(y)$$

$$\rho(\lambda x) \le \lambda \rho(x)$$

Exemple. Soit E un ev, $E \subset E$ sev, $\rho: F \to \mathbb{R}$ sous linéaire $\varphi_F: F \to \mathbb{R}$ linéaire et tq $\varphi_F \leq \rho$ sur F. Alors $\exists \varphi: E \to \mathbb{R}$ linéaire tq $\varphi_{|F} = \varphi_F$ et $\varphi \leq \rho$ sur E.

Preuve. Soit $E = \{ \varphi : G \to \mathbb{R} \mid F \subset G, G \text{sev de} E, \varphi \text{linéaire et} \varphi \leq \rho \text{sur } G \}$. E non vide sur $\varphi_F \in E$, E est ordonné par la relation (\leq) . E est inductif $\varphi_i : G_i \to \mathbb{R}$. On pose $G_* = \bigcup_{i \in G_i} \text{et } \varphi_* : \begin{cases} G_* \to \mathbb{R} \\ x \mapsto \varphi_i(x) \end{cases}$ of $\varphi_* \leq \rho$ sur G_* , $\varphi(\lambda x) = \lambda \varphi(x)$ et pour tout $x,y \in G_*$, tout $i,j \in I$ to $x \in G_i, y \in G_j$, comme (φ_i) totalement ordonné, on a $G_i \subset G_j$ ou l'inverse. Disons $G_i \supset C_j$. Alors $x,y \in G_i$, $\varphi_*(x+y) = \varphi_i(x+y) = \varphi_*(x) + \varphi_*(y)$. Soit $\varphi: G \to \mathbb{R}$ élément maximal de E, par le lemme de Zorn. Par l'absurde, $G \neq E$, soit $x \in E \setminus G$, on pose $\psi: \begin{cases} G \oplus \mathbb{R}_x \to \mathbb{R} \\ y + \lambda x \mapsto \varphi(y) + \lambda \alpha \end{cases}$ où α est bien choisi. On veut $\psi(y+\lambda x) \leq \rho(y+\lambda x)$ ie $\varphi(y) + \lambda \alpha \leq \rho(y+\lambda x)$. Donc $\sup \varphi(z) - \rho(z-x) \leq \alpha \leq \inf \rho(y+x) - \varphi(y)$. Or $\forall y, z \in G_*$, $\varphi(z) - \rho(z-x) \leq \rho(y+x) - \varphi(y) \Leftrightarrow \varphi(y) + \varphi(z) \leq \rho(y+z) + \rho(z-x)$ ce qui est vrai donc

 $\frac{}{=\varphi(y+z)} \qquad \qquad \geq \rho(y+z)$ on peut bien choisir α de sorte à respecter l'inégalité précédente.

Théorème 1 (Hahn Banach). Soit E un \mathbb{R} —ev, soit $p: E \to \mathbb{R}$, sous additive $(p(x+y) \le p(x) + p(y))$ et $p(\lambda x) = \lambda p(x), \lambda > 0$). Soit $F \subset E$ sev et $\varphi_F: F \to \mathbb{R}$ linéaire telle que $\varphi_F \le p$ sur F. Alors $\exists \varphi: E \to \mathbb{R}$ linéaire, $\varphi_{|F} = \varphi_F$ et $\varphi \le p$ sur E.

Remarque. Soit (X, \leq) un ensemble (partiellement) ordonné, $x \in X$ est $\underline{\text{maximal}}$ si $\forall y \in X, \ \neg (y > x)$. x est le plus grand élément si pour tout $y \in X, \ y \leq x$.

Corollaire (Prolongement de même norme d'une forme linéaire). Soit E un evn, $F \subset E$ sev, $\varphi_F \in F^*$. Alors il existe $\varphi \in E^*$ telle que $\varphi_{|F} = \varphi_F$ et $\|\varphi\|_{E^*} = \|\varphi_F\|_{F^*}$.

Preuve. Posons $p: E \longrightarrow \mathbb{R}$ $x \longmapsto C\|x\|_E$ avec $C = \|\varphi_F\|_{F^*} = \sup_{\substack{x \in F \\ \|x\|_E = 1}} |\varphi_F|$.

La fonction p est sous additive, et $\varphi_F \leq p$ sur F. Par théorème de Hahn Banach, il existe $\varphi: E \to \mathbb{R}$ telle que $\varphi_{|F} = \varphi_F$ et $\varphi \leq p$ sur E. Alors $|\varphi(x)| = \max(\varphi(x), \varphi(-x)) \leq \max(p(x), p(-x)) = C||x||$. Ainsi $||\varphi||_{E^*} \leq$

 $C = \|\varphi_F\|_{F^*}$ ce qui conclut car l'inégalité réciproque est évidente par $\varphi_{|F} = \varphi_F$.

Corollaire (Critère de densité). Soit E un evn et $F \subset E$ un sev. Alors F est dense ssi la seule forme linéaire $\varphi \in E^*$ s'annulant sur F est $\varphi = 0$.

Preuve.

- \Rightarrow Si F est dense et $\varphi \in E^*$ s'annule sur F alors φ s'annule sur E par continuité
- $\Leftarrow \text{ On suppose } F \text{ non dense et on obtient } x_0 \in E \backslash F. \text{ On pose } \tilde{F} := \\ \tilde{F} \longrightarrow \mathbb{R} \\ F \oplus \mathbb{R} x_0 \text{ et } \varphi : \underset{\in F}{u} + \underset{\in \mathbb{R}}{\lambda} x_0 \longmapsto \lambda \text{ est continue car } \forall u, v \in F, \ \lambda \in \mathbb{R},$

$$||u + \lambda x_0|| \ge d(u + \lambda x_0, F)$$

$$= d(\lambda x_0)$$

$$= |\lambda|d(x_0, F).$$

$$donc |\varphi(u + \lambda x_0)| = |\lambda|$$

$$\le \frac{||u + \lambda x_0||}{d(x_0, F)}.$$

$$> 0 \operatorname{car} x_0 \notin \tilde{F}$$

Par Hahn Banach, il existe $\psi \in E^*$ telle que $\|\psi\|_{E^*} = \|\varphi\|_{\tilde{F}^*}$ et $\psi_{|\tilde{F}} = \varphi$. On a bien $\psi = 0$ sur F et $\psi(x_0) \neq 0$.

Exemple. Soit E un evn. Si E^* est séparable alors E aussi.

Preuve. Soit (φ_n) une famille dense dans E^* , soit (x_n) une famille de E telle que $||x_n||_E = 1$ et $\varphi_n(x_n) \ge \frac{||\varphi_n||_{E^*}}{2}$. Posons

$$F = Vect\{x_n \mid n \in \mathbb{N}\}$$

$$= \{\sum_{n=0}^{\infty} \lambda_n x_n \mid (\lambda_n) \text{ a support presque nul}\}$$

$$= \{\sum_{n=0}^{N} \lambda_n x_n \mid N \in \mathbb{N}, \lambda_1, \cdots, \lambda_n \in \mathbb{R}\}.$$

F est séparable car $\bigcup_{N\in\mathbb{N}}\mathbb{Q}^N$ est dénombrable. Montrons que F est dense. Soit $\varphi\in E^*$ s'annulant sur F. On suppose que $\varphi\neq 0$ par l'absurde, et donc

_

on peut supposer $\|\varphi\|_{E^*} = 1$. Soit $n \in \mathbb{N}$ tq $\|\varphi_n - \varphi\|_{E^*} \le \frac{1}{4}$, alors :

$$\varphi(x_n) \ge \varphi_n(x_n) - \overbrace{\|\varphi - \varphi_n\|_{E^*}}^{\operatorname{car} \|x_n\|_E = 1}$$

$$\ge \frac{\|\varphi_n\|}{2} - \|\varphi - \varphi_n\|_{E^*}.$$

$$\ge \frac{\|\varphi\| - \|\varphi - \varphi_n\|}{2} - \|\varphi - \varphi_n\|$$

$$= \frac{\|\varphi\|}{2} - \frac{3}{2} \|\varphi - \varphi_n\|$$

$$\ge \frac{1}{2} - \frac{3}{4} \frac{1}{4}$$

$$> 0$$

On a trouvé $x_n \in F$ sur lequel φ ne s'annule pas, contradiction! Ainsi F est dense.

Corollaire (Projection sur un sev de dim finie). Soit E un evn, F un sev de dim finie. Alors $\exists p \in L(E,F)$ projection sur F. On a Im(p) = F et $p^2 = p$. linéaire continue

Remarque. Le théorème de Kadets-Snobar montre que l'on peut trouver p projection sur F tel que $||p||_{L(E)} \leq \sqrt{dim(F)}$.

Preuve. Soit e_1, \dots, e_n base de F. Soit $\varphi_1, \dots, \varphi_n$ base duale de F^* . $\varphi_i(e_j) = \delta_{i,j}$. Soit $\psi_1, \dots, \psi_n \in E^*$ telles que $\psi_{i|F} = \varphi_i$ pour tout i.

On pose $p(x) = \sum_{i=1}^{n} \psi_i(x)e_i$. On a $p \in L(E)$ et si $x = \sum_{k=1}^{n} \lambda_k e_k \in F$ alors

$$p(x) = \sum_{i=1}^{n} \psi_i(x)e_i$$
$$= \sum_{i=1}^{n} \varphi_i(x)e_i$$
$$= \sum_{i=1}^{n} \lambda_i e_i$$
$$= x.$$

1.3 Réflexivité

Propriété 3 (éléments conjugué dual). Soit E evn et $x \in E$. Alors il existe $\varphi \in E^*$ telle que $\varphi(x) = \|\varphi\|_{E^*} \|x\|_E$ et $\|\varphi\|_{E^*} = \|x\|_E$.

Preuve. Posons $F=\mathbb{R}x$ et $\varphi_F: F \longrightarrow \mathbb{R}$ $\lambda x \longmapsto \lambda \|x\|_E^2$. Par Hahn Banach, il existe $\varphi \in E^*$ telle que $\varphi_{|F}=\varphi_F$ et $\|\varphi\|_{E^*}=\|\varphi_F\|_{F^*}=\frac{|\varphi(x)|}{\|x\|_E}=\|x\|_E$ pour $x \neq 0$. On note que φ convient...

Remarque. Si E est un Hilbert, alors l'élément conjugué dual est $\varphi(.) = \langle x, . \rangle$.

Remarque. En général, pas d'unicité. Par exemple, $x=(1,0)\in (\mathbb{R}^2,\|.\|_1)$ admet les conjugués duaux : $\varphi=(1,\lambda)\in (\mathbb{R}^2,\|.\|_\infty)$, $|\lambda|\leq 1$.

Corollaire (Isométries dans le bidual). Soit E, evn. Posons $\Psi: E \to E^{**}$ définie par $\Psi(\underset{\in E}{x})(\underset{\in E^*}{\varphi}) := \varphi(x)$. C'est une injonction isométrique.

Preuve. Soit $x \in E$, $\varphi \in E^*$. Alors

$$|\Psi(x)(\varphi)| = |\varphi(x)|$$

$$\leq ||\varphi||_{E^*} ||x||_E.$$

Donc $\Psi(x) \in E^{**}$ et $\|\Psi(x)\|_{E^{**}} \le \|x\|_E$.

De plus en choisissant pour φ un élément conjugué dual de x in a l'égalité et donc $\|\Psi(x)\|_{E^{**}} = \|x\|_E$. D'où l'isométrie, et donc l'injection. (Si $\Psi(x) = 0$ alors $\|x\| = \|\Psi(x)\| = 0$).

On dit que E est réflexif si $\Psi: E \to E^{**}$ est bijective. Dans ce cas, on peut identifier E et E^{**} . (Les topologies sont les mêmes. La topologie faible sur E et la topologie *-faible sur E^{**} sont les mêmes). En particulier, la boule unité fermée de E est faiblement compacte.

Corollaire. La topologie faible sur un ev
nE est séparée.

Si $A \subset E$ est faiblement bornée $(\forall \varphi \in E^*, (\varphi(a))_{a \in A} \text{ est bornée})$, alors A est fortement bornée $(A \subset B(0, R) \text{ pour un certain } R \in \mathbb{R}^{+*})$.

Preuve. (Séparation) : soit $x_0 \in E$ sur lequel toutes les semi normes s'annulent. $(E \longrightarrow \mathbb{R})$ nulent. $(E \longrightarrow \mathbb{R})$ On choisit $\varphi \in E^*$ un conjugué dual de x_0 , alors $|\varphi(x_0)| = ||x_0||_E$ donc x = 0. Le critère de séparation est satisfait. Soit $A \subset E$ faiblement borné. Alors $\Psi(A) \subset E^{**}$ est * faiblement bornée. $(\forall \varphi \in E^*, \ (\Psi(x)(\varphi))_{x \in A}$ est bornée). Par le théorème de Banach Steinhaus, $\Psi(A)$ est borné. Par isométrie, A est borné. (Remarque : E^* est toujours complet donc est un Banach)

Théorème 2 (James, critère de réflexivité). Soit E un Banach, sont équivalents :

- (i) E est réflexif
- (ii) E^* est réflexif
- (iii) $B'_{E}(0,1)$ est faiblement compacte
- (iv) $\forall \varphi \in E^*$, $\exists x \in B'_E(0,1)$, $\varphi(x) = \|\varphi\|_{E^*}$.

Preuve. On admet $(iv) \Rightarrow (i)$ qui est pénible et constitue le cœur du théorème.

- $((i) \Rightarrow (iii))$ car $B'_{E}(0,1)$ est * faiblement compact (Banach Alaoglu) et car la topologie * faible sur $B'_{E}(0,1)$ coincide avec la topologie * faible sur $B'_{E^{**}}(0,1)$.
- $((iii) \Rightarrow (iv))$ Car $B'_E(0,1)$ est faiblement compact, et φ est faiblement continues donc atteint ses bornes. Donc $\|\varphi\|_{E^*} = \max\{\varphi(x) \mid x \in B'_E(0,1)\}$ est atteint.
- $((ii) \Rightarrow (i))$ Supposons $\Psi : E \to E^{**}$ non surjective. Comme $\Psi(E)$ est isométrique à E, il est fermé. Par le critère de densité, il existe $\varphi \in E^{***}\setminus\{0\}$, s'annulant sur $\Psi(E)$. Si par l'absurde $\varphi = \Psi_{E^*}(\varphi_0)$ avec $\varphi_0 \in E^*$, alors φ_0 s'annule sur E donc $\varphi_0 = 0$, donc $\varphi = 0$, contradiction. Ainsi φ n'est pas dans l'image de $\Psi_{E^*} : E^* \to E^{***}$ et E non réflexif.

Définition 4. Un evn E est uniformément convexe si $\forall \varepsilon > 0, \ \exists \delta > 0 \ \forall x, y \in E, \ (\|x\| = \|y\| \ \text{et} \ \|x - y\| > 0) \Rightarrow \frac{\|x + y\|}{2} \leq \delta$

Exemple. Un Hilbert est uniformément convexe car $\|x+y\|^2 + \|x-y\|^2 = 2\left(\|x\|^2 + \|y\|^2\right)$ donc $\frac{\|x+y\|^2}{4} = \frac{1}{2}\left(\|x\|^2 + \|y\|^2\right) - \frac{1}{4}\|x-y\|^2$ d'où $\|\frac{x+y}{2}\| \le \sqrt{1-\frac{\varepsilon}{4}}$ si $\|x\| = \|y\| = 1$ et $\|x-y\| = \varepsilon$.

Propriété 4. Soit E un Banach uniformément convexe, $\varphi \in E^* \setminus \{0\}$. Alors $\exists ! x \in B'_E(0,1), \ \varphi(x) = \|\varphi\|_{E^*}$. En particulier, E est réflexif (par le théorème de James).

Preuve. On peut supposer $\|\varphi\| = 1$. Soit $(x_n) \in B'_E(0,1)^{\mathbb{N}}$ telle que $\varphi(x_n) \underset{n \to +\infty}{\longrightarrow} 1 = \|\varphi\| = \sup_{\|x\| \le 1} |\varphi(x)|$. On peut supposer $\|x_n\| = 1$ quitte

à construire la suite normalisée qui satisfait la même égalité. Montrons qu'elle est de Cauchy.

Soit $\varepsilon > 0$, soit $\delta > 0$ correspondant dans l'uniforme continuité. Soit $N \in \mathbb{N}$

tel que $\forall n \geq N, \ \varphi(x_n) > 1 - \delta$. Si $m, n \geq N$ alors

$$1 - \delta < \frac{\varphi(x_m) - \varphi(x_n)}{2}$$

$$= \varphi(\frac{x_m - x_n}{2})$$

$$\leq \underbrace{\|\varphi\|}_{=1} \|\frac{x_m - x_n}{2}\|$$

 $\leq 1 - \delta$ par uniforme convexité si $||x_m - x_n|| \geq \varepsilon$.

Impossible donc $||x_m - x_n|| \le \varepsilon$, d'où le critère de Cauchy. Donc (x_n) est convergente vers x_* et $\varphi(x_*) = 1 = ||\varphi||$ par continuité. D'où l'existence d'un maximiseur. L'unicité découle de l'uniforme convergente.

Propriété 5 (Inégalité de Holder). Soit (X,μ) un espace mesuré, $f\in L^p(X)$, $g\in L^q(X)$ avec $p,q\in [1,\infty], \frac{1}{p}+\frac{1}{q}=1$ (dit exposants conjugués). Alors $fg\in L^1(X)$ et $\int fg\leq \|f\|_p\|g\|_q$ avec égalité ssi f=0 ou g=0 ou

- (cas $1) <math>f = \lambda sign(g)|g|^{\frac{q}{p}}$ avec $\lambda > 0$.
- (cas p=1) $g=\lambda sign(f)$ avec $\lambda>0$ presque partout où |f|>0 et $|g|\leq \lambda$ là où f=0.

Preuve. On suppose $1 , le cas <math>p \in \{1, \infty\}$ étant trivial (on majore

p par sa norme et intègre f). On a l'inégalité de Young : $\forall a, b \in]0, \infty[$

$$ab = \exp\left(\frac{1}{p}\ln(a^p) + \frac{1}{q}\ln(b^q)\right)$$

$$\leq \frac{1}{p}\exp\left(\ln(a^p)\right) + \frac{1}{q}\exp\left(\ln(b^q)\right)$$

$$= \frac{1}{p}a^p + \frac{1}{q}b^q.$$

On a toujours cette inégalité si $a,b\in[0,\infty[$. Par homogénéité, quitte à considérer $\frac{f}{\|f\|_p}$ et $\frac{g}{\|g\|_q}$, on peut supposer $||f||_p = ||g||_q = 1$. Le résultat est évidemment trivial pour f = 0 ou g = 0.

$$\begin{split} \int_X |fg| &\leq \int_X \frac{1}{p} |f|^p + \frac{1}{q} |g|^q \\ &= \frac{1}{p} \|f\|_p^p + \frac{1}{q} \|g\|_q^q \\ &= \frac{1}{p} + \frac{1}{q} \\ &= 1. \end{split}$$

D'où l'inégalité de Holder.

Pour le cas d'égalité, par la stricte convexité de l'exponentielle dans l'inégalité de Young, on a égalité ssi $\ln(a^p) = \ln(b^q)$, ie $a^p = b^q$, ie $a=b^{\frac{q}{p}}$. On remarque la nécessité d'avoir a,b>0. On a donc égalité dans Holder ssi $\frac{f}{\|f\|_p} = \left(\frac{g}{\|g\|_q}\right)^{\frac{q}{p}}$ et f et g sont de même signe presque partout d'où le résultat.

Propriété 6 (Inégalité de Clarkson). Soit (X, μ) un espace mesuré et $f, g \in$ L^p avec 1 . Alors:

$$\|\frac{f+g}{2}\|_p^p + \|\frac{f-g}{2}\|_p^p \le \frac{1}{2}\|f\|_p^p + \frac{1}{2}\|g\|_p^p.$$

Si $p \in \{1, 2\}$ alors :

$$\|\frac{f+g}{2}\|_p^p + \|\frac{f-g}{2}\|_p^p \le \left(\frac{1}{2}\|f\|_p^p + \|g\|_p^p\right)^{\frac{p}{q}}$$

Preuve. On prouvera seulement la première inégalité. Soit $a, b \in [0, \infty[$, $s \ge 1$. Alors $a^s + b^s \le (a + b)^s$. En effet, on peut supposer a+b=1, quitte à normaliser par (a+b). Notons que $a^s \leq a$ et $b^s \leq b$ car $a, b \le 1$. Donc $a^s + b^s \le a + b = 1 = (a + b)^s$.

On en déduit alors ponctuellement :

$$\begin{split} |\frac{f+g}{2}|^p + |\frac{f-g}{2}|^p & \stackrel{s=\frac{p}{2}\geq 1}{\leq} \left(|\frac{f+g}{2}|^2 + |\frac{f-g}{2}|^2 \right)^s \\ & = \left(\frac{1}{2}f^2 + \frac{1}{2}g^2 \right)^s \\ & \leq \frac{1}{2}|f|^p + \frac{1}{2}|g|^p \qquad \text{convexit\'e de } x \mapsto |x|^p \;. \end{split}$$

Ainsi L^p est uniformément convexe, si $1 . Par exemple, si <math>p \ge 2$,

$$||f||_p = ||g||_p = 1, ||f - g|| = \varepsilon, \text{ on a } ||\frac{f + g}{2}|| \le \left(1 - \frac{1}{2^p}\varepsilon^p\right)^{\frac{1}{p}}.$$

Théorème 3 (Dualité dans les espaces de Lebesgue). Soit (X, μ) un espace mesuré, $1 \le p \le \infty$ avec $\frac{1}{q} + \frac{1}{p} = 1$. Pour tout $g \in L^q$, $L^p \longrightarrow \mathbb{R}$

$$L^p \longrightarrow \mathbb{R}$$

posons φ_g : $f \longmapsto \int_X fg$. Alors $g \in L^q \mapsto \varphi_g \in (L^p)^*$ est une injection isométrique, bijective si

Preuve. On a $\varphi_g:L^p\to\mathbb{R}$ est linéaire, par linéarité de l'intégrale, et $\|\varphi_q\|_{(L^p)^*} = \|g\|_{L^q}$ par l'inégalité de Holder et son cas d'égalité. D'où l'injection isométrique.

Surjectivité si $1 . Notons <math>E = (L^p)^*$, $F \subset E$ l'image de L^q $(F = \{\varphi_g \mid g \in L^q\})$. F est complet car L^q est complet donc F est fermé. Soit $\varphi \in E^*$ telle que $\varphi = 0$ sur F. Montrons que $\varphi = 0$ sur E (on aura alors F dense par le critère de densité ainsi F = E car F est fermé et qui

Comme L^p est uniformément convexe par les inégalités de Clarkson, il est réflexif. Donc $\exists f \in L^p, \ \forall \psi \in (L^p)^* = E, \ \varphi(\psi) = \psi(f)$. Posons g = 0 $sign(f)|f|^{\frac{p}{q}}$, correspondant au cas d'égalité dans Holder. Alors $g \in L^q = F$, $||g||_q^p = ||f||_p^p$ et $\int fg = ||f||_p ||g||_q = ||f||_p^{1+\frac{1}{q}}$, d'où f = 0 puis $\varphi = 0$.

Exemple. Exemple de non réflexivité : on peut montrer que $(l_0^{\infty})^* = l'$, $(l')^* = l^{\infty}$, $(l^{\infty})^* \neq l'$. Où $l_0^{\infty} = \{(x_n) \in \mathbb{R}^{\mathbb{N}} \mid x_n \to 0\}$, $l' = \{(x_n) \in \mathbb{R}^{\mathbb{N}} \mid \sum_{n \in \mathbb{N}} |x_n| < \infty\}$ et $l^{\infty} = \{(x_n) \in \mathbb{R}^{\mathbb{N}} \mid \sup_{n \in \mathbb{N}} |x_n| < \infty\}$.

 $12\mathrm{h}50$: "Est-ce que j'ai encore 5 minutes ?"

Jean-Marie Mirebeau

1.4 Formes géométriques de Hahn Banach

Propriété 7 (Jauge d'un convexe). Soit E un ev, $K \subset E$ un convexe contenant l'origine. On définit $P_K(x) = \inf\{t>0 \mid \frac{x}{t} \in K\}$ pour tout $x \neq 0$ et $P_K(0) = 0$. Alors $P_K : E \to [0, \infty]$ satisfait

$$P_K(x+y) \le P_K(x) + P_K(y)$$
 $\forall x, y \in E$
 $P_K(\lambda x) = \lambda P_K(x)$ $\forall x \in E, \ \forall \lambda > 0$

SSo P_K est à valeurs finies, c'est une fonction sous additive. On a $\{P_K < 1\} \subset K \subset \{P_K \le 1\}$.

 $12\mathrm{h}53\,''Bon\ on\ commence\ la\ preuve\,''$

Jean-Marie Mirebeau

Preuve. Soit $x,y\in E$ tels que $P_K(x,y)<\infty$. Soit s,t>0 telsq ie $\frac{x}{s}\in K$ et $\frac{y}{t}\in K$. Alors $\frac{x+y}{s+t}=\frac{x}{s}\frac{s}{s+t}+\frac{y}{t}\frac{t}{s+t}\in K$ par convexité. D'où $P_K(x+y)\leq P_K(x)+P_K(y)$. Les autres propriétés sont claires. Si $P_K(x)<1$, alors $\exists t<1,\frac{x}{t}\in K$ donc $x=\frac{x}{t}t+0*(1-t)\in K$ d'où l'inclusion $\{P_K<1\}\subset K$.

Lemme 2. Soit E un evn. Si K est ouvert, convexe et contient 0, alors P_K est continue

Preuve. Soit r > 0 tq $B(0,r) \subset K$, on a $x \frac{r}{\|x\|} \in B(0,r)$ pour tout $x \neq 0$. Donc $P_K(x) \leq \|x\|/2$. D'où $P_K(x) - \|k\|/2 \leq P_K(x) - P_K(-k) \leq P_K(x+k) \leq P_K(x) + P_K(k) \leq P_K(x) + \|k\|/2$. Donc P_K est $\frac{1}{2}$ -Lipschitzienne (car $-\frac{\|k\|}{2} \leq P_K(x+k) - P_K(x) \leq \frac{\|k\|}{2}$.

Théorème 4 (Séparation d'un ouvert convexe en un point). Soit E un evn, $K \subset E$ ouvert, convexe contenant 0. Soit $x \in E \backslash K$. Alors, $\exists \varphi \in E^*$ telle que $\varphi < 1$ sur K et $\varphi(x) = 1$.

12h57 : "Ne vous inquiétez pas, on a bientôt fini là"

Jean-Marie Mirebeau

Preuve. Posons $p = P_K$ est sous additive, $F = \mathbb{R}x$ et $\varphi_F : \begin{cases} F \longrightarrow \mathbb{R} \\ \lambda x \longmapsto \lambda \end{cases}$. On a $p(x) \geq 1$ puisque $x \in K$. Pour $\lambda \geq 0$, $\varphi_F(\lambda x) = \lambda \leq \lambda p(x) = p(\lambda x)$. Puis pour $\lambda < 0$ on a $\varphi_F(\lambda x) = \lambda < 0 \leq p(\lambda x)$. Ainsi par théorème de Hahn Banach, il existe $\varphi : E \to \mathbb{R}$ telle que $\varphi_{|F} = \varphi_F$ et $\varphi \leq p$ sur E. On a bien $\varphi(x) = 1$ et pour tout $y \in K$ on a $\varphi(y) \leq p(y) < 1$ car K est un ouvert.

Théorème 5 (Séparation d'un convexe compact et convexe fermé). Soit E un evn, $A \subset E$ un convexe fermé et $B \subset E$ un convexe compact tel que $A, B \neq \emptyset$ et $A \cap B = \emptyset$. Alors $\exists \varphi \in E^*$, $\sup_A \varphi < 1 < \inf_B \varphi$. Ie φ sépare A et B.

12h59 "C'est terminé là"

Jean-Marie Mirebeau

Preuve. Soit $r=\inf\{\|a-b\|\mid a\in A,b\in B\}$. On a r>0, en effet par l'absurde si $\|a_n-b_n\|\to 0$, par compacité $b_{\psi(n)}\to b_*$ comme $\|a_n-b_n\|\to 0$, on a $b_*\in \overline{A}=A$ contradiction avec $A\cap B=\emptyset$. On pose $K=\{a-b-k\mid a\in A,b\in B,\|k\|< r\}$, c'est un convexe ouvert. On a $0\not\in K$ sinon on aurait aussi a-b-k=0 d'où $\|a-b\|\leq \|k\|< r$. Soit $x_0\in K$, alors $x_0\in (K+x_0)=\{x_0+k\mid k\in K\}$. Par le résultat précédent, $\exists\varphi\in E^*,\ \varphi(x_0)=1$ et $\varphi<1$ sur $K+x_0$. Donc $\forall a,b,k,1>\varphi(a-b-k+x_0)$. Soit $\varphi(a)<\varphi(b)+\varphi(k)$. On prend $k=-\frac{x_0}{\|x_0\|}x$ alors $\varphi(k)<0$ d'où $\varphi(a)<\varphi(b)-\delta$ avec $\delta>0$.

13h02 : véritable fin du cours

Théorème 6 (Séparateur d'un convexe et d'un point). Soit E un evn, $C \subset E$ convexe ouvert contenant 0 et $x \notin C$. Alors $\exists \varphi \in E^*$, $\varphi(x) = 1$, $\varphi < 1$ sur C.

Théorème 7 (Séparateur d'un convexe fermé et compact). Soit E un evn, $A, B \subset E$ convexes fermés, B compact, $A, B \neq \emptyset$ Also $\exists \varphi \in E^*$, $\sup_A \varphi < \inf_B \varphi$. Si $0 \in A$, alors ops $\sup_A \varphi < 1 < \sup_B \varphi$.

FIGURE 1 – Forme linéaire (vert) sépare x de C.

FIGURE 2 – Forme linéaire (vert) sépare A de B.

1.5 Dualité des ensembles convexes

Définition 5. Soit E evn, $C \subset E$ non vide. L'ensemble polaire de C est

$$C^{\circ} = \{ \varphi \in E^* \mid \forall x \in C, \ \varphi(x) \le 1 \}.$$

Exemple. Si $C = B'_{E}(0,1)$, alors $C^{\circ} = B'_{E^{*}}(0,1)$.

Propriété 8 (Dualité polaire). Soit E evn et $C \subset E$ non vide. Alors $C \subset \{x \in E, \mid \forall \varphi \in C^{\circ}, \ \varphi(x) \leq 1\} = \Psi^{-1}(C^{\circ})$. Avec égalité ssi E est convexe fermé et contient 0. On a noté $\Psi: E \longrightarrow E^{*}$ l'injection isométrique canonique.

Preuve. Notons \tilde{C} l'ensemble $\Psi^{-1}(C^{\circ})$.

<u>Inclusion</u> $C \subset \tilde{C}$: Si $x \in C$, alors $\varphi(x) \leq 1$ pour tout $\varphi \in C^{\circ}$. Donc $x \in \tilde{C}$.

Supposons $C = \tilde{C}$: Alors C est convexe, fermé et contient 0, car $\tilde{C} = \bigcap_{\varphi \in C^{\circ}} \{x \in E \mid \varphi(x) \leq 1\}$ est une intersection de convexes fermés et contenant 0.

Supposons C convexe fermé et contenant 0: Soit $x_0 \in C$, par le théorème de Hahn Banach (géométrique B) il existe $\varphi \in E^*$ telle que :

$$\sup_{C} \varphi < 1 < \varphi(x_0)$$

Alors $\varphi \in C^{\circ}$, et donc $x_0 \notin \tilde{C}$. On a montré $\tilde{C} \subset C$ donc $C = \tilde{C}$.

Corollaire. Soit E un evn, $C \subset E$ convexe. Alors

C fermé $\Leftrightarrow C$ faiblement fermé.

Preuve. OPS $0 \in C$, quitte à translater.

 $\underline{(\Rightarrow)}$: Si C est fermé, alors $\tilde{C}=C$ qui est une intersection de parties faiblement fermées $\{x\in E\mid \varphi(x)\leq 1\}$. Donc C est faiblement fermé.

 (\Leftarrow) : Réciproquement, si C est faiblement fermé, alors il est fermé pour la topologie faible.

Corollaire. Soit E réflexif. Si $C \subset E$ est convexe, fermé et borné, alors il est faiblement compact.

Preuve. C est faiblement fermé par le corollaire précédent, et est inclus dans $B'_E(0,R)$ qui est faiblement compact par Banach Alaoglu. (La topologie faible sur E s'identifie à la topologie *-faible sur E^{**}). Or un fermé d'un compact est un compact dans toutes topologie car E est réflexif. \square

Définition 6. Soit (X, \mathbb{U}) un espace topologique et $f: X \to]-\infty, \infty]$. Alors, on dit que f est semie continue inférieurement (sci) si et seulement si :

$$\forall t \in \mathbb{R}, \{x \in X, f(x) \leq t\} \text{ est ferm\'e.}$$

Remarque. • Si (f_i) sont sci, alors $\sup_{i \in I} f_i$ est sci car $\{\sup_i f_i \leq t\} = \bigcap_{i \in I} \{f_i \leq t\}.$

- Si f et g sont sci, alors f+g est aussi sci car $\{f+g\leq t\}=\bigcap_{\alpha\in\mathbb{R}}\left[\{f\leq\alpha\}\cup\{g\leq\alpha\}\right].$
- f est sci ssu son surgraphe est fermé : $\mathcal{G} := \{(x,t) \mid f(x) \leq t\} = \bigcap_{\alpha \in \mathbb{R}} \left[(\{f \leq \alpha\} \times] \infty, \alpha] \right) \cup (X \times [\alpha, \infty[)].$

Propriété 9. Soit $f: E \to]-\infty, \infty]$ convexe et sci sur un espace E reflexif.

- 1. Supposons $\exists M \in \mathbb{R}, \ \{f \leq M\}$ est borné non vide. Alors f admet un minimiseur.
- 2. Soit g faiblement continue sur $\{f \leq M\}$, et telle que $\{f+g \leq N\} \subset \{f \leq M\}$ où $N, M \in \mathbb{R}$ et ces ensembles sont bornés non vide. Alors f+g a un minimiseur.

Preuve.

- 1. L'ensemble des minimiseurs $\bigcap_{\inf f < M' \leq M} \{f \leq M'\} \text{ est une intersection décroissante de convexes, fermés, bornés et non vides donc une intersection décroissante de compact non vide pour la topologie *-faible, donc est non vide par les compact emboités.}$
- 2. Comme f est convexe et sci et g est faiblement continue, alors f et

g sont faiblement sci sur $\{f \leq M\}$. Or l'ensemble des minimiseurs $\bigcap_{\inf(f+g) < N' \leq N} \{f+g \leq N'\} \text{ est donc une intersection décroissante de } \inf(f+g) < N' \leq N$

parties non vide faiblement fermées de $\{f \leq M\}$ qui est faiblement compact. Donc non vide.

1.6 Dualité de Legendre Fenchel des fonctions convexes

Définition 7. Soit E evn et $f:E\to]-\infty,\infty].$ On définit la fonction conjugué de Legendre-Fenchel de f la fonction

$$f^*: \begin{cases} E^* \to [-\infty, +\infty] \\ \varphi \mapsto \sup_{x \in E} \underbrace{\langle \varphi, x \rangle}_{x \in E} -f(x) \\ \text{Crochet de dualité sur } E^* \times E \end{cases}$$

Exemple. Soit $f(x) = \frac{1}{2} ||x||_E^2$. On a :

$$\begin{split} f^*(\varphi) &= \sup \{ \varphi(x) - \frac{1}{2} \|x\|_E^2 \mid x \in E \} \\ &= \sup \{ t\varphi(x) - \frac{t^2}{2} \mid t \in \mathbb{R}, \ x \in B_E'(0,1) \} \\ &= \sup \{ \frac{1}{2} \varphi(x)^2 \mid x \in B_E'(0,1) \} \\ &= \frac{1}{2} \|\varphi\|_{E^*}^2. \end{split}$$

Si $f: E \to]-\infty, \infty]$, on pose $Dom(f) := \{x \in E \mid f(x) < \infty\}$, on dit que f est propre si $Dom(f) \neq \emptyset$.

Lemme 3. Soit $f: E \to]-\infty, \infty]$ une fonction propre sur un evn.

Alors $f^*: E^* \to [-\infty, \infty]$ est convexe et sci.

De plus, f^* est propre si et seulement si f admet un minorant affine et continue. Plus précisément $f^*(\varphi) \leq -\alpha \Leftrightarrow f \geq \varphi + \alpha$.

Preuve. f^* est convexe et sei comme supremum de $\begin{bmatrix} E^* \longrightarrow \mathbb{R} \\ \varphi \longmapsto \varphi(x) - f(x) \end{bmatrix}_{x \in Dom(x)}$,

qui sont convexe et sci (car continues). Par ailleur,

$$f^*(\varphi) \le -\alpha \Leftrightarrow \forall c \in E, \ \langle \varphi, x \rangle - f(x) \le -\alpha$$
$$\Leftrightarrow \forall x \in E, \ f(x) \ge \varphi(x) + \alpha.$$

Lemme 4. Soit $f: E \to]-\infty, \infty]$, convexe et sci sur E evn. Soit $x_0 \in E$ et $t_0 < f(x_0)$, alors $\exists \alpha \in \mathbb{R}, \ \varphi \in E^*, \ f \ge \alpha + \varphi \text{ et } \alpha + \varphi(x_0) > t_0$.

Preuve. Comme f est convexe sci, son sous graphe $C = \{(x,t) \in E \times \mathbb{R} \mid f(x) \leq t\}$ est convexe et fermé. De plus $E \times \mathbb{R}$ est un evn et les formes linéaires continues sur $E \times \mathbb{R}$ s'écrivent $(x,t) \mapsto \varphi(x) - \lambda t$ où $\varphi \in E^*$ et $\lambda \in \mathbb{R}$. Par Hahn Banach, (géométrique B), il existe $\varphi \in E^*$, $\lambda \in \mathbb{R}$ tel que $\varphi(x) - \lambda t + \delta \leq \varphi(x_0) - \lambda t_0$ pour tout $(x,t) \in C$ et $\delta > 0$. Si $f(x_0) < \infty$, on choisit $x = x_0$ et $t = f(x_0)$ et on obtient $\varphi(x_0) - \xi(x_0) = \xi(x_0)$

Si $f(x_0) < \infty$, on choisit $x = x_0$ et $t = f(x_0)$ et on obtient $\varphi(x_0) - \lambda f(x_0) + \delta \le \varphi(x_0) - \lambda t_0$. Donc $0 < \underbrace{\delta}_{>0} \le \lambda \underbrace{(f(x_0) - t_0)}_{>0}$, donc $\lambda > 0$.

Ainsi $f(x) \geq \frac{\varphi(x-x_0)}{\lambda} + \frac{\delta}{\lambda} + t_0, \forall x \in E$. C'est le minorant affine souhaité. Si $f(x_0) = \infty$, soit $x_1 \in Dom(f)$, (si $f = \infty$, partout, le résultat est trivial) on a $\varphi(x_1) - \lambda t + \delta \leq \varphi(x_0) - \lambda t_0$ pour tout $t \geq f(x_1)$ donc idem $\lambda \geq 0$. Si $\lambda > 0$, on a un minorant affine comme précédemment. Sinon $\lambda = 0$, d'où $\varphi(x) + \delta \leq \varphi(x_0)$ pour tout $x \in Dom(f)$. Par ailleurs, il existe un minorant affine, par le résultat précédent appliqué en $x, f \geq \psi + \beta$, où $\psi \in E^*$ et $\beta \in \mathbb{R}$.

Alors, $\forall \mu \in [0, \infty[, \forall x \in Dom(f), f(x) \ge \psi(x) + \beta + \mu [\varphi(x - x_0) + \delta].$

Finalement, pour μ assez grand, $\psi(x_0) + \beta + \mu \left[\underbrace{\varphi(x_0 - x_0)}_{=0} + \underbrace{\delta}_{>0}\right] > t_0$

ce qui conclut.

"L'ensemble est bien droit au lieu d'être un sympathique truc penché"

Jean-Marie Mirebeau

Théorème 8 (Dualité de Legendre Fenchal). Soit $f: E \to]-\infty, \infty]$ une fonction propre sur un evn, admettant un minorant affine (c'est automatique si f est convexe, sci).

Alors f^{**} est convexe, sci propre et $f_{|E|}^{**} \leq f$ avec égalité ssi f est convexe sci.

Preuve. On a vu que $f^*: E^* \to]-\infty, \infty]$ est convexe et sci donc elle admet un minorant affine. Donc $f^{**}: E^{**} \to]-\infty, \infty]$ est convexe, sci et propre. Soit $x \in E$, alors $f^*(\varphi) \geq \varphi(x) - f(x)$ pour tout $\varphi \in E^*$, donc $f^{**}(\underbrace{x}) = \underbrace{\text{Vu comme elément de } E^{**}}$

 $\sup_{\varphi \in E^*} \underbrace{\varphi(x) - f^*(x)}_{\leq f(x)} \leq f(x)$

Supposons maintenant f convexe, sci et montrons $f_{|E}^{**} \geq f$. Soit $x_0 \in E$, soit $t_0 < f(x_0)$. Par le lemme précédent, $\exists \varphi \in E^*, \alpha \in \mathbb{R}, \ f \geq \varphi + \alpha$ et $hi(x_0) + \alpha > t_0$. Donc $f^*(\varphi) \leq -\alpha$, donc $f^{**} \geq \varphi(x_0) - f^*(\varphi) \geq \varphi(x_0) + \alpha > t_0$. D'où $f^{**}(x_0) \geq f(x_0)$.

Lemme 5. Soit E un Banach et $f: E \to]-\infty, \infty]$ sci convexe. Alors f est localement majorée sur Dom(f) $[\forall x \in Dom(f), \exists \varepsilon > 0, \exists M,$ $f_{|B(x,\varepsilon)} \le M$].

Preuve. On suppose $D \circ m(f)$ On a $D \circ m(f) = \bigcup \{f \leq n\}$ donc par Banach Steinhaus, il existe $n_0 \in \mathbb{N}$ tq $\{f \leq n_0\}$ est d'intérieur non vide. Donc $\exists x_0 \in E, r_0 > 0$ $f_{|B(x_0, r_0)} \leq n_0$. On peut, quitte à transposer, $0 \in \mathring{Dom}(f)$. Soit $\delta > 0$ tq $-\delta x_0 \in Dom(f)$. Alors $f(h) = \left(\left[x_0 + h\frac{1+\delta}{\delta}\right] \frac{\delta}{1+\delta} + (-\delta x_0) \frac{1}{1+\delta}\right) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{1}{1+\delta} f(-\delta x_0) \le \frac{\delta x_0}{1+\delta} + \frac{f(-\delta x_0)}{1+\delta} \text{ si } |h| \frac{1+\delta}{\delta} \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{1}{1+\delta} f(-\delta x_0) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{1}{1+\delta} f(-\delta x_0) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{1}{1+\delta} f(-\delta x_0) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{1}{1+\delta} f(-\delta x_0) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{1}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{1}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{1}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{1}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{1}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{1}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) \le \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right)) + \frac{\delta}{1+\delta} f(x_0 + h\left(\frac{1+\delta}{\delta}\right) + \frac{\delta}{1+$ r_0 . Donc f est majorée sur $B(0, r_0 \frac{\delta}{1+\delta})$ comme annoncé.

Lemme 6. Soit E un evn, $f: E \to]-\infty, \infty]$ convexe, $x \in E$ et r > 0. Si $f(y) \le f(x) + M$ pour tout $y \in B(x,r)$ alors $|f(x) - f(y)| \le M \frac{|y - x|}{r}$ pour tout $y \in B(x,r)$. En particulier, f est $\frac{2M}{r}$ -Lipschitzienne sur $B(x,\frac{r}{3})$.

Preuve. Preuve par dessin.

Preuve point particulier : soit $y \in B(x, \frac{r}{3})$, alors $f(y) \ge f(x) - \frac{M}{3}$ par le premier point. Donc $f \le \underbrace{f(y) + \frac{4}{3}M}_{\le f(x) + M}$ sur $B(y, \frac{2r}{3} \subset B(x, r))$. Donc $|f(z) - f(y)| \le \frac{\frac{4}{3}r}{\frac{2}{3}r} = \frac{2r}{3}$ pour tout $z \in B(y, \frac{2r}{3}) \supset B(x, \frac{r}{3})$.

$$|f(z) - f(y)| \le \frac{\frac{4}{3}r}{\frac{2}{3}r} = \frac{2r}{3} \text{ pour tout } z \in B(y, \frac{2r}{3}) \supset B(x, \frac{r}{3}).$$

Théorème 9 (Sous gradient d'une fonction convexe). Soit E un Banach, $f: E \to]-\infty, \infty]$ convexe sci et $x \in Dim(f)$. Alors le sous gradient de f en x est non vide,

$$\partial f(x) = \{ \varphi \in E^* \mid \forall y \in E, \ f(y) \ge f(x) + \varphi(y - x) \}.$$

Preuve. Posons D = Dom(f). Comme $f_{|D}$ est continue, l'ensemble C = $\{(x,t) \in E \times \mathbb{R} \mid f(x) < t\}$ est ouvert. Soit $x_0 \in D$, par Hahn Banach (géométrique A), il existe $\varphi \in E^*, \lambda \in \mathbb{R}$ appliqués à C ouvert convexe et $(x_0, f(x_0))$ (quitte à translater, OPS $0 \in C$). $\varphi(x) - \lambda t < \varphi(x_0) - \lambda f(x_0)$ pour tout $x \in D, t > f(x)$. En choisissant $x = x_0$ et $t = f(x_0) + 1$, on obtient $\varphi(x_0) - \lambda (f(x_0) + 1) < \varphi(x_0) - 1$ $\lambda f(x_0)$. Donc $\lambda > 0$. Ainsi $\forall x \in D, t > f(x), \ t > \varphi(x - x_0) + f(x_0)$. D'où $f(x) \ge f(x_0) + \varphi(x - x_0)$ pour tout $x \in D$. Puis $f(x) \ge f(x_0) + \varphi(x - x_0)$ pour tout $x \in E$ car D est ouvert donc un voisinage de x_0 . [Soit $x \in E$,

$$f((1-t)x_0 + tx) \le (1-t)f(x_0) + tf(x)$$
. D'où $f(x) \ge \varphi(x-x_0) + f(x_0)$

Lemme 7. Soit E evn et $f: E \to]-\infty,\infty]$ convexe. Posons $g(x)=\lim_{y\to x}\inf f(y)=\lim_{\varepsilon\to 0}\inf_{y\in B(x,\varepsilon)}f(y)\in [-\infty,\infty]$ et son enveloppe sci $[\{g\le\lambda\}=\overline{\{f\le\lambda\}}$ pour tout $\lambda\in\mathbb{R}]$.

On a l'alternative :

- $g > -\infty$ sur E, alors $g^* = f^*$
- $\exists x \in E, \ g(x) = -\infty \text{ alors } g = -\infty \text{ sur } \overline{Dom(f)} \text{ et } g = \infty \text{ ailleurs.}$

Preuve. Exercice...

Théorème 10 (Dualité de Legendre Fenchel). Soit E, F des Banach, $f: E \to]-\infty, \infty]$ et $g: F \to]-\infty, \infty]$ convexes. Soit $A \in L(E, F)$, on suppose $[A(Dom(f))] \cap \left[\mathring{Dom}(f)\right] \neq \emptyset$.

Alors $\sup_{y \in F^*} -f^*(-A^T y) - g^*(y) = \inf_{x \in E} f(x) + g(Ax)$

Preuve. Notons α la partie gauche et β la partie droite de l'égalité. Posons $c(x,y) = \langle y,Ax \rangle + f(x) - g^*(y)$. Alors

$$\inf_{x \in E} c(x, y) = \inf_{x \in E} \left\langle A^T y, x \right\rangle + f(x) - g^*(y)$$
$$= -f^*(-A^T y) - g^*(y).$$

De même,

$$\sup_{y \in F^*} \langle y, Ax \rangle + f(x) - g^*(y) = g^{**}(\underbrace{Ax}) + f(x)$$
vu comme élément de E^{**}
$$= g(Ax) + f(x).$$

Donc $\beta=\inf_{x\in E}\sup_{y\in F^*}c(x,y),\ \alpha=\sup_{y\in F^*}\inf_{x\in E}c(x,y).$ Donc $\alpha\leq \beta.$ On veut montrer que $\alpha=\beta,$ c'est à dire qu'il n'y a pas de "saut de dualité".

OPS $\beta \neq -\infty$ sinon rien à prouver. On a $\beta \neq \infty$ car $A(Dom(f)) \cap Dom(f) \neq \emptyset$.

Définissons $\mathcal{F}:\to]-\infty,\infty]$ telle que $\mathcal{F}(u)=\inf_{x\in E}f(x)+g(Ax+u).$

"Là, la preuve devient un peu bizarre..."

Jean-Marie Mirebeau

On a $\mathcal{F}(0) = \beta \in \mathbb{R}$ et \mathcal{F} convexe. On peut montrer que $\mathcal{F}(0) = \liminf_{u \to 0} \mathcal{F}(u)$.

2 Espaces de Sobolev

2.1 Convolution dans les espaces L^p .

Propriété 10 (Inégalité de Jonsen). Soit (X, μ) un espace probabilisé, $f: \gamma \to \mathbb{R}^d$ intégrable et $g:]-\infty, \infty]$ convexe sci. Alors :

$$g\left(\int_X f(x)d\mu(x)\right) \le \int_X g(f(x))d\mu(x).$$

Preuve. Soit $\alpha \in \mathbb{R}$, $\varphi \in \mathbb{R}^d$ tq $g(x) \ge \alpha + \langle \varphi, f(x) \rangle$ pour tout $x \in \mathbb{R}^d$. Alors

$$\int g(f(x))d\mu(x) \ge \int \alpha + \langle \varphi, f(x) \rangle dx$$
$$= \alpha + \left\langle \varphi, \int f(x)dx \right\rangle$$

OPS g propre donc $g=g^{**}$ est le suprémum d'une famille de minorants affine $g(x)=\sup_{y\in\mathbb{R}^d}\langle y,x\rangle-g^*(y).$

$$\operatorname{Donc}\, \int_X g(f(x))d\mu(x) \geq g\left(\int_X f(x)d\mu(x)\right). \eqno \Box$$

Corollaire. Soit (X,μ) un espace mesuré avec $0<\mu(X)<\infty.$ Soit $1\leq p\leq q\leq\infty$ et $f\in L^q(X).$ Alors :

$$\mu(X)^{-\frac{1}{p}} \|f\|_{p} \le \mu(X)^{-\frac{1}{q}} \|f\|_{q}$$

Preuve. OPS
$$q < \infty$$
. On a
$$\left[\int_X |f(x)|^p \underbrace{\frac{d\mu(x)}{\mu(x)}}_{\text{Noyau de proba}} \right]^{\frac{p}{q}} \leq \int \left(|f(x)|^p\right)^{\frac{q}{p}\frac{d\mu(x)}{\mu(x)}}$$
puis Jensen avec $s \in R \to |s|^{\frac{q}{p}}$ qui est convexe.

Remarque. On pouvait aussi utiliser Hölder. $\int_X |f(x)|^p d\mu(x) \le |||f|^p ||_{\alpha} || \mathbb{1} ||_{\beta}$ où $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. On choisit $\alpha = \frac{q}{p}$. On obtient :

$$\int |f|^p d\mu \le \left(\int (|f|^p)^\alpha\right)^{\frac{1}{\alpha}} \left(\int \mathbb{1}^\beta\right)^{\frac{1}{\beta}}$$
$$= \left(\int |f|^p\right)^{\frac{q}{p}} \mu(X)^{1-\frac{p}{q}}.$$

On en déduit que $L^p(X,\mu)$ \supset $L^q(X,\mu)$, si $0 < \mu(X) < \infty$ et $p \le q$.

Soit $\Omega \subset \mathbb{R}^d$ ouvert et (K_n) une suite exhaustive de compact, i.e. $\bigcup_{n \in \mathbb{N}} K_n = \Omega$ et $K_n \subset_C K_{n+1}^\circ$. Alors $L_{loc}^p(\Omega)$ est un Fréchet pour la famille de semi normes $(|f|_n)$ où $|f|_n = ||f||_{L^p(K_n)}$.

Si $0 \le p \le q \le \infty$, alors :

$$L^1(\Omega) \subset L^q_{loc}(\Omega) \subset L^p_{loc}(\Omega) \subset L^1_{loc}(\Omega).$$

Par contre $L^q(\Omega)$ et $L^p(\Omega)$ ne sont pas comparable a priori si $Leb(\Omega) = \infty$.

Propriété 11 (Convolution dans L^p). Soit $f \in L^1(\mathbb{R}^d)$ et $g \in L^p(\mathbb{R}^d)$. Alors l'intégrale $(f*g)(x) := \int_{h \in \mathbb{R}^d} f(x-h)g(h)dh$ converge pour presque tout $x \in \mathbb{R}^d$ et $\|(f*g)\|_p \le \|f\|_1 \|g\|_p$. [I.e. $*: L^1(\mathbb{R}^d) \times L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d)$ est

Preuve. Supposons d'abord $f, g \ge 0$, $\int f = 1$ et $p < \infty$. Alors

$$[(f*g)(x)]^p = \left[\int_{\mathbb{R}^d} f(h)g(x-h)dh\right]^p \qquad \text{Chgt de var } h \mapsto x-h$$

$$\leq \int_{\mathbb{R}^d} f(x)g(x-h)^p dh \qquad \text{Jonsen pour } d\mu(h) = f(h)dh \text{ et } s \mapsto |s|^p \ .$$

Donc

$$\underbrace{\int (f * g) (x)^p dx}_{\|f * g\|_p^p} \le \int_{x \in \mathbb{R}^d} \int_{h \in \mathbb{R}^d} f(h) g(x - h)^p dh dx$$

$$= \int_{h \in \mathbb{R}^d} f(f) \underbrace{\int_{x \in \mathbb{R}^d} g(x - h)^p dx dh}_{\|g\|_p^p} \qquad \text{Fubini}$$

Donc $||f * g||_p^p \le \int f ||g||_p^p$ comme annoncé.

Par linéarité sur f, le résultat si $\int f \neq 1$.

Si f,g ne sont pas positives, alors comme $|f|*|g|\in L^p(\mathbb{R}^d)$ par le raisonnement précédent, on a $\underbrace{\int |f(x-h)||g(h)|dh}_{(|f|*|g|)(x)} < \infty$ pour presque tout

 $x \in \mathbb{R}^d$. Donc $h \mapsto f(x-h)g(h)$ est intégrable presque partout.

Finalement $||f * g||_p \le |||f| * |g|||_p \le |||f||_1 |||g|||_p \le ||f||_1 ||g||_p$. On a utilisé $|f| * |g|(x) \ge |f * g(x)|$.

Remarque. Si $p = \infty$, on a :

$$|f * g(x)| \le \int f(h) \underbrace{|f(x-h)|}_{\le ||g||_{\infty}} dh$$
$$\le ||f||_1 ||g||_{\infty}.$$

La convolution $L^1 \times L^p \to L^p$ est bilinéaire, continue et commutative si on restreint à $L^1 \times L^1 \to L^1$. De plus

$$supp(f * g) \subset \overline{supp(f) + supp(g)}$$
$$= \overline{\{x + y \mid x \in supp(f), y \in supp(g)\}}.$$

Si $f, g \in L^1$ alors on a l'associativité (faites les calculs).

Enfin, si $f \in L^1(\mathbb{R}^d)$ et $g \in C_c^1(\mathbb{R}^d)$, alors $\frac{\partial}{\partial x_i}(f * g) = f * \left(\frac{\partial}{\partial x_i}g\right)$ pour tout $i \in [1; d]$.

Propriété 12. Soit $f \in L^1(\mathbb{R}^d)$ telle que $f \geq 0$, $\int f = 1$ et $g \in L^p(\mathbb{R}^d)$, $p < \infty$. Alors $||f * g - g||_p^p \le \int f(h) ||\tau_h g - g||_p^p dh,$

$$||f * g - g||_p^p \le \int f(h) ||\tau_h g - g||_p^p dh$$

$$|f*g(x)-g(x)|=|\int f(h)\left[g(x-h)-g(x)\right]dh|$$

$$\leq \int f(h)|g(x-h)-g(x)|^pdh \qquad \text{Jensen}$$
 Donc
$$\int |f*g-g|^p \leq \int f(h)\underbrace{\int |g(x-h)-g(x)|^pdx}_{\|\tau_h g-g\|_p^p}.$$

Donc
$$\int |f * g - g|^p \le \int f(h) \underbrace{\int |g(x - h) - g(x)|^p dx}_{\|\tau_h g - g\|_p^p}.$$

Remarque. Faux si $p = \infty$. Considérer les fonctions suivantes :

Remarque. Rappel : Soit (X, d, μ) un espace métrique mesuré où X est localement compact et μ est une mesure borélienne régulière (c.à.d. $\forall A \subset$ X mesurable, $\sup\{\mu(k) \mid k \subset A, k \text{ compact}\} = \mu(A) = \inf\{\mu(u) \mid u \supset A\}$ A, U ouvert. Alors $C_c^0(X)$ est dense dans $L^p(X, \mu)$ pour tout $p < \infty$.

Preuve. On note $E = Vect\{\mathbb{1}_A \mid A \subset X, \text{ mesurable}\}$ l'espace vectoriel des foncions étagées. On sait que $L^p(X,\mu)$ est le complété de E par $\|.\|_p$. Il suffit donc, étant donné $A \subset X$ mesurable et $\varepsilon > 0$, de construire $f \in C_c^0(X)$ telle que $\|f - \mathbb{1}_A\|_p < \varepsilon$. On se donne donc $K \subset A \subset U$ avec K compact et U ouvert tq $\mu(U \setminus A) < \varepsilon$ et $\mu(A \setminus K) < \varepsilon$. Pour tout $x \in K$, soit $r_x > 0$ tq $B'(x, r_x)$ est compact (car X localement compact) et inclus dans U (car ouvert). Soit $U' = \bigcup_{1 \le i \le I} B(x_i, r_{x_i})$ une couverture finie de K. On note que

ouvert). Soit $U' = \bigcup_{1 \leq i \leq I} B(x_i, r_{x_i})$ une couverture finie de K. On note que $\overline{U'}$ est compact. On pose $f(x) = \frac{d(x, X \setminus U')}{d(x, K) + d(x, X \setminus U')}$. On a $f_{|K} = 1, f_{|X \setminus U'} = 0$ et $supp(f) \subset \overline{U'}$ compact. D'où $||f - 1\!\!|_A||_p^p \leq \mu(U' \setminus K) \leq \mu(U \setminus K) \leq 2\varepsilon$, ce qui conclut.

Propriété 13. Soit $\rho \in L^1(B(0,1), \mathbb{R}^d), \rho \geq 0, \int \rho = 1$. Soit $p \in [1,\infty], \varepsilon > 0$. On pose $\rho_{\varepsilon}(x) = \frac{1}{\varepsilon^d} \rho(\frac{x}{d})$. On a $\int \rho_{\varepsilon} = \int \rho = 1$ et $supp(\rho_{\varepsilon}) \subset \varepsilon supp(\rho) \subset B'(0,\varepsilon)$.

- $\varepsilon supp(\rho) \subset B'(0,\varepsilon).$ Pour toute $f \in L^p(\mathbb{R}^d)$, si $p < \infty$ $[f \in C_c^0(\mathbb{R}^d)\{f \text{ continue, } f(x) \underset{|x| \to +\infty}{\longrightarrow} 0\}$ si $p = \infty$] on a $||f * \rho_{\varepsilon} f||_p \le w_p(\varepsilon) := \sup_{|h| \le \varepsilon} ||\tau_h f \tau_h||_p$. De plus $w_p(\varepsilon) \to 0$ quand $\varepsilon \to 0$.
 - Pour tout $K \subset_C \mathbb{R}^d$ et $f \in L^p_{loc}(\mathbb{R}^d)$. Si $p < \infty$ $[f \in C^0(\mathbb{R}^d)$ si $p = \infty]$ on a $||f * \rho_{\varepsilon} \rho||_{L^p(K)} \le w_p^K(\varepsilon) := \sup_{|h| \le \varepsilon} ||\tau_h f f||_p$ et $w_p^K(\varepsilon) \to 0$ quand $\varepsilon \to 0$.

Preuve. Les inégalités découlent, si $p < \infty$, de

$$||f * \rho_{\varepsilon} - f||_{L^{p}(A)}^{p} \leq \int_{\mathbb{R}^{d}} \rho_{\varepsilon}(h) ||\tau_{h} f - f||_{L^{p}(A)}^{p} dh$$

$$\leq \underbrace{\int_{\mathbb{R}^{d}} \rho_{\varepsilon} \sup_{h \in supp(\rho_{\varepsilon})} ||\tau_{h} f - f||.$$

En choisissant $A == \mathbb{R}^d$ ou A = K. Les inégalités sont claires dans le cas $p = \infty$.

Justifions que $w_p(\varepsilon) \xrightarrow[\varepsilon \to 0]{} 0$ dans le cas $p < \infty$. (En fait non, flemme). \square

Théorème 11 (Fréchet Kolmogorov). Soit $p \in [1, \infty[, \Omega \subset \mathbb{R}^d \text{ ouvert et } \mathcal{F} \subset L^p(\Omega)$. On suppose :

- \mathcal{F} est borné : $\sup\{\|f\|_p \mid f \in \mathcal{F}\} < \infty$.
- (Masse évanescente au bord) : $\forall \varepsilon > 0, \ \exists K \subset_C \Omega, \ \sup_{f \in \mathcal{F}} \|f\|_{L^p(\Omega \setminus K)} < \varepsilon.$
- (Régularité sous transition) : $\forall K \subset_C \Omega, \exists w_K \text{ module de continuité},$

 $\forall f \in \mathcal{F}, \ \|\tau_h f - f\|_{L^p(K)} \le w_K(|h|) \text{ pour tout } |h| \le d(K, \mathbb{R}^d \setminus \Omega).$ Alors \mathcal{F} est une partie compact de $L^p(\Omega)$.

Preuve. Soit $\varepsilon > 0$ fixé comme dans la preuve. Soit $K = K(\varepsilon)$ tq $\forall f \in$ \mathcal{F} , $||f||_{L^p(\Omega\setminus K)} \leq \varepsilon$. Soit $y \in]0, d(K, \mathbb{R}^d \setminus \Omega[$, tel que $w_K(y) \leq \varepsilon$. Soit $\rho \in \mathbb{R}$

 $C^{1}(\mathbb{R}^{d}), \ \rho \geq 0, \ \int \rho = 1, \ supp(\rho) \subset B(0,y). \ \text{Posons} \ \mathcal{G} = \{f_{|K} * \rho \mid f \in \mathcal{F}\}.$ On note que $\forall f \in \mathcal{F}, \ f_{|K} * \rho \in C^{1}(\mathbb{R}^{d}) \ \text{en prolongeant par } 0.$ $\in L^{p}(K) \subset L^{1}(K) \subset L^{1}(\mathbb{R}^{d})$

$$||f_{|K} * \rho||_{\infty} \leq ||f_{|K}||_{L^{1}(\mathbb{R}^{d})} ||\rho||_{L^{\infty}(\mathbb{R}^{d})}$$

$$= ||f||_{L^{1}(\mathbb{R}^{d})} M$$

$$\leq \underbrace{|K|^{1-\frac{1}{p}}}_{\text{fixé}} ||f||_{L^{p}(\mathbb{R}^{d})}.$$

$$||\frac{\partial}{\partial x_{i}} (f_{|K} * \rho) ||_{\infty} = ||f_{|K} * \left(\frac{\partial \rho}{\partial x_{i}}\right) ||_{\infty}$$

$$\leq ||f_{|K}||_{L^{1}} ||\frac{\partial \rho}{\partial x_{i}} ||_{\infty}$$

$$\leq ||K|^{1-\frac{1}{p}} ||f||_{p} ||\frac{\partial \rho}{\partial x_{i}} ||_{\infty}.$$

On a posé abusivement $f_{|K}(x)=\left\{\begin{array}{cc} f(x) & \text{ si } x\in K\\ 0 & \text{ sinon} \end{array}\right.$. Enfin $supp(f_{|K})\subset$ $K + B'(0, \varepsilon)$ compact.

Ainsi \mathcal{G} est constitué de fonctions :

- a support dans un compact fixé.
- bornée uniformément.
- Lipschitzienne uniformément.

Donc $\overline{\mathcal{G}}$ est compact pour $\|.\|_{\infty}$ par le théorème d'Ascoli. Donc il existe $f_1, \dots, f_I \in \mathcal{F}$ tels que $\forall f \in \mathcal{F}, \ \exists i \in [1; I], \ \|f_{|K} * \rho - f_{i|K} * \rho\|_{\infty} < \varepsilon$. Finalement, soit $f \in \mathcal{F}$, soit $i \in [1; I]$ comme ci dessus, alors :

$$\|f - f_i\|_{L^p} \leq \underbrace{\|f - f_{|K}\|_p}_{\leq \varepsilon \text{ par ii}} + \underbrace{\|f_{|K} - f_{|K} * \rho\|_p}_{\leq w_K(\varepsilon) \leq \varepsilon \text{ par ii}} + \underbrace{\|f_{|K} * \rho - f_{i|K} * \rho\|_p}_{\leq \varepsilon \text{ par Ascoli et i}} + \underbrace{\|f_{i|K} * \rho - f_{i|K}\|_p}_{\leq w_K(\cdots) \leq \varepsilon \text{ par ii}} + \underbrace{\|f_{i|K} - f_{i|K}\|_p}_{\leq \varepsilon \text{ par iii}} + \underbrace{\|f_{i|K} - f_{i|K}\|_p}_{\leq \varepsilon \text{ par iii}$$

D'où $\overline{\mathcal{F}}$ est compact. (Note du traducteur : $\delta = \varepsilon = y =: \eta$)

Exemple. Soit
$$K \in L^2([0,1])$$
, posons $\mathcal{K}: L^2 \longrightarrow \mathcal{K}: L^2$
$$f, x \longmapsto \int_{y=0}^1 K(x,y) f(y) dy$$

Alors, K est un opérateur compact.

Preuve. Posons $I_{\varepsilon} = [\varepsilon, 1 - \varepsilon]$ et I = [0, 1]. Alors:

i
$$(\mathcal{K}(f)(x))^2 \leq \int_0^1 K(x,y)^2 dy \int_0^1 f(y)^2 dy$$
 par Cauchy Schwartz. Donc $\|K(f)\|_2^2 \leq \|K\|_{L^2(I^2)}^2 \|f\|_2^2$.

ii
$$\int_{x \in I \setminus I_{\varepsilon}} \mathcal{K}(f)(x)^{2} dx \leq \underbrace{\|K\|_{L^{2}((I \setminus I_{\varepsilon}) \times I)}^{2} \|f\|_{2}^{2}}_{\underset{\varepsilon \to 0}{\longrightarrow 0}}$$

iii
$$|\mathcal{K}(f)(x) - \mathcal{K}(f(x+h))| \le \int_0^1 (K(x,y) - K(x+h,y))^2 dy \int_0^1 f(y)^2 dy$$
. Soit $\varepsilon > 0, |h| < \varepsilon$.

$$\int_{x \in I_{\varepsilon}} (\mathcal{K}(f)(x) - \mathcal{K}(f)(x+h))^{2} dx \le \int_{x \in I_{\varepsilon}} \int_{y=0}^{1} (K(x,y) - K(x+h,y))^{2} dx dy \int_{x=0}^{\infty} f(y)^{2} dy = \underbrace{\|K - \tau_{(h,0)} K\|_{L^{2}(I_{\varepsilon} \times I)}^{2} \|f\|_{2}^{2}}_{=0}.$$

[Densité des fonctions continues dans $L^2(I)$]. $\{\mathcal{K}(f) \mid f \in L^2, ||f|| \le$ 1) est précompact par Fréchet Kolmogorov.

2.2Convolution de distributions et espaces de Sobolev

Définition 8 (Distribution associée à une fonction). Soit $\Omega \subset \mathbb{R}^d$ un ouvert et $f \in L^1_{loc}(\Omega)$, on définit pour tout $\varphi \in D(\Omega)$, $U_f(\varphi) = \int_{\Omega} f \varphi$.

Alors $U_f \in D(\Omega)^*$ est une distribution d'ordre 0 et $f \in L^1_{loc} \to U_f$ est continue et injective.

Preuve. Soit $K \subset_C \Omega$ compact et $\varphi \in D_K(\Omega) = \{ \psi \in D(\Omega) \mid supp(\psi) \subset A \}$ $K\}. \text{ Alors } U_f(\varphi) \leq \|f\|_{L^1(K)} \|\varphi\|_{L^\infty(K)}.$ $\text{bornée car } f \in L_{\text{bas}} \text{ de dérivée } \text{ de } \varphi$ $\text{La topologie sur } D(\Omega)^* \text{ est celle de la cv * faible.}$

Injectivité : Soit $K \subset \Omega$ compact et $\varepsilon > 0$ tq $K' := K + B't_0, \varepsilon) \subset \Omega$. Soit

 $\rho \in D(\mathbb{R}^d), p \geq 0, \int p = 1.$ Alors pout tout $\varphi \in D_K(\Omega), \rho_{\varepsilon} * \varphi \in D_{K'}(\Omega)$

et

$$\begin{split} U_f(\rho_\varepsilon * \varphi) &= \int f(x) \left(\rho_\varepsilon * \varphi \right)(x) dx \\ &= \int \int f(x) \rho_\varepsilon(x-h) \varphi(h) dh dx \\ &= \int \left(f * \overline{\rho_\varepsilon} \right)(h) \varphi(h) dh \qquad \quad \text{où } \overline{\rho_\varepsilon}(z) = \rho_\varepsilon(-z) \ . \end{split}$$

Si $U_f = 0$ en tant que distribution, alors $U_f(\rho_{\varepsilon} * \varphi) = 0$ peut importe le $\varphi \in D_K(\Omega)$. Donc $\int (f * \overline{\rho_{\varepsilon}}) (h) \varphi(h) dh = 0$ puis $f * \overline{\rho_{\varepsilon}}$ est nul sur K. Comme $f * \overline{\rho_{\varepsilon}} \to f$ dans L^1_{loc} on obtient que f = 0. CQFD.

Définition 9 (Dérivation d'une distribution). Soit $\Omega \subset \mathbb{R}^d$ un ouvert. Si $T \in D(\Omega)^*$, on définit $\langle \partial_{\alpha} T, \varphi \rangle = (-1)^{|\alpha|} \langle T, \partial_{\alpha} \varphi \rangle$. Cette définition est continue sur les distributions et prolonge la distribution des fonctions usuelle $\partial_{\alpha} U_f = U_{\partial_{\alpha} f}$ pour $f \in C^k(\Omega)$ et $|\alpha| \leq k$.

est est représentée par un choix de L^p qui est unique car précédent. (???) Muni de la norme $||f||_W^p := \sum_{|\alpha| \le s} ||\partial_{\alpha} f||_{L^p(\Omega)}$. $[||f||_{W^{s,\infty}} = \max ||\partial_{\alpha} f||_{\infty}$.

Propriété 14. $W^{s,p}(\Omega)$ est un Banach pour tout s et p. Si p=2, c'est un Hilbert.

Preuve. Soit $f_n \in W^{s,p}$, une suite de Cauchy. Alors $\partial_{\alpha} f$ est aussi une suite de Cauchy pour tout $|\alpha| \leq s$. On note f^{α} sa limite. Alors $f_n \to f^0$, $\partial_{\alpha} f_n \to f^{\alpha}$ dans L^p , donc aussi dans L^1_{loc} puis dans $D(\Omega)^*$. Or $\partial_{\alpha} f_n \to \partial_{\alpha} f^0$ dans $D(\Omega)^*$ par continuité de la dérivation. Donc $\partial_f^0 = f^{\alpha}$ dans $D(\Omega)^*$ donc dans les autres aussi. Ainsi $f^0 \in W^{s,p}(\Omega)$ et $||f_n - f^0|| \to 0$.

Propriété 15 (Convolution d'une distribution). Soit $T \in D(\mathbb{R}^d)^*$ et $\varphi, \psi \in D(\mathbb{R}^d)$. On définit $(T * \varphi) (\psi) := T(\overline{\varphi} * \psi)$ où $\overline{\varphi}(z) = \varphi(-z)$. Alors $T * \varphi$ est une distribution et cette définition prolonge la convolution des fonctions : $\partial_{\alpha}(T * \varphi) = (\partial_{\alpha}T) * \varphi = T * (\partial_{\alpha}\varphi)$. De plus, $T * \varphi$ est représentée par la fonction $C^{\infty} x \in \mathbb{R}^d \mapsto T(\varphi(x-.))$

Propriété 16. Si $f \in W^{s,p}(\mathbb{R}^d)$ et $\rho \in D(\mathbb{R}^d)$ tel que $\rho > 0$ et $\int \rho = 1$.

Alors $f * \rho_{\varepsilon} \xrightarrow[\varepsilon \to 0]{} f$ dans $W^{s,p}$. On en déduit que $D(\mathbb{R}^d)$ est dense dans $W^{s,p}(\mathbb{R}^d)$. **Preuve.** D'une part $\|\partial_{\alpha} (f * \rho_{\varepsilon}) - \partial_{\alpha} f\|_{p} = \|(\partial_{\alpha}) * \rho_{\varepsilon} - \partial_{\alpha} f\|_{p} \xrightarrow[\varepsilon \to 0]{} 0$. Posons $H \in C^{\infty}(\mathbb{R})$ tq H = 0 sur $] - \infty, 0]$ et H = 1 sur $[1, \infty[$.