UNIVERZITA KARLOVA PŘÍRODOVĚDECKÁ FAKULTA

MATEMATICKÁ KARTOGRAFIE HODNOCENÍ KARTOGRAFICKÝCH ZOBRAZENÍ S VYUŽITÍM VYRIAČNÍCH KRITÉRIÍ

Jáchym Černík, Monika Novotná 2025

1 Zadání

Na základě globálních variačních kritérií proveď te zhodnocení níže uvedených zobrazení a rozhodněte o jejich vhodnosti (či nevhodnosti) pro mapy velkých územních celků.

• Airyho kritérium:

$$h^{2}(u,v) = \frac{(a-1)^{2} + (b-1)^{2}}{2},$$

• Komplexní kritérium:

$$h^{2}(u,v) = \frac{|a-1| + |b-1|}{2} + \frac{a}{b} - 1.$$

Pro kartografická zobrazení volená v normální poloze spočtěte hodnoty lokálních kritérií $h^2(u,v)$ v uzlových bodech geografické sítě pokrývající zadané území a jeho nejbližší okolí s kroky $\Delta u = \Delta v = 10^\circ$ (resp. s polovičním krokem, je-li třeba), území by mělo být pokryto alespoň 30 uzlovými body. Při výpočtu využijte osové symetrie geografické sítě dle rovníku či základního poledníku. Z hodnot lokálních kritérií $h^2(u,v)$ v uzlových bodech určete pro každé kartografické zobrazení hodnoty globálních kritérií.

Globální variační kritérium H^2

$$H_2 = \frac{1}{(u_2 - u_1)(v_2 - v_1)} \int_{u_1}^{u_2} \int_{v_1}^{v_2} h^2(u, v) \cos u \, du \, dv,$$

nahradťe diskrétními vztahy, uvažujte nevaženu i váženou variantu

$$H_2^1 = \frac{1}{n} \sum_{i=1}^n h^2(u_i, v_i), \quad H_2^2 = \frac{\sum_{i=1}^n p_i h^2(u_i, v_i)}{\sum_{i=1}^n p_i},$$

kde váha $p_i = \cos u_i$.

Přehled analyzovaných kartografických zobrazení

- Bonneovo,
- Mercator-Sansonovo,
- Eckertovo V.,
- Winkel-Tripel,
- Hammer–Aitoffovo.

V uzlových bodech geografické sítě vypočtěte měřítkové číslo M(u,v) mapy jako funkci polohy

$$M(u,v) = \frac{M}{\max_{\forall A} m(u,v,A)} = \frac{M}{a(u,v)},$$

vygenerujte také jeho izočáry. Výchozí hodnotu měřítkového čísla volte pro formát A4, pro mapu planisféry např. $M=100\,000\,000$. Výpočty proveďte na jednotkové kouli, zeměpisnou šířku u_0 nezkreslené rovnoběžky volte tak, aby procházela (stejně jako základní poledník) středem zobrazovaného území.

V přehledných tabulkách uveďte hodnoty globálních kritérií (vážená i nevážená varianta) a rozhodněte, které z kartografických zobrazení je nejvhodnější pro znázornění zvoleného územního celku. V závěru také zhodnoťte, jaké variační kritérium dle Vašeho názoru lépe vystihuje vlastnosti kartografického zobrazení.

Výpočty proveď te s využitím programu Proj4 či skriptu v programu MATLAB.

2 Popis a rozbor problému

Pro zobrazení velkého územního celku je nutné hodnotit kvalitu zobrazení podle délkových, plošných a úhlových zkreslení především na okrajových částech území. Zároveň je důležité koukat na věrnost území. KArtografické zobrazení hodnotíme podle variačních kritérií.

2.1 Variační kritéria

Variační kritéria komplexně hodnotí zobrazení na celém území. Základní charakteristikou je měřítko délek m v poledníkovém a rovnoběžkovém směru. Dalším kvantitativním je délkové zkreslení v daném bodě, které je zobrazováno Tissotovými elipsami. Poloosy a, b Tissotovy elipsy jsou vstupními parametry pro výpočet variačních kritérií.

$$a = \max(m(u, v, A_1), m(u, v, A_2)), \quad b = \min(m(u, v, A_1), m(u, v, A_2)).$$

U neortogonálních zobrazeních je potřeba znát pro výpočet Tissotových elips azimuty A_1, A_2 .

$$A_1 = \arctan\left(\frac{p}{\frac{m_p^2 - m_r^2}{2}}\right).$$

$$A_2 = A_1 + \frac{\pi}{2}.$$

Poloosa a udává maximální délkové zkreslení, poloosa b udává minimální délkové zkreslení. A, b získáme po dosazení a koeficientu p, A_1, A_2 .

$$p = \frac{2(f_u f_v + g_u g_v)}{R^2 \cos u}.$$

$$m^2(u, v, A) = m_p^2 \cos^2 A + m_r^2 \sin^2 A + p \cos A \sin A$$
,

Airyho kritériu:

$$h^{2}(u,v) = \frac{1}{2}[(a-1)^{2} + (b-1)^{2}].$$

zohledňuje délkové zkreslení.

Komplexní kritérium:

$$h^2(u,v) = \frac{1}{2}(|a-1|+|b-1|) + \frac{a}{b} - 1.$$

Při zavedení členu a, b je kritérium komplexnější s kombinací délkového a úhlového zkreslení. Druhé Airyho kritérium bere v úvahu úhlové a plošné kritérium.

$$h^2(u,v) = \frac{1}{2} \Big[\left(\frac{a}{b} - 1 \right)^2 + \left(a \, b - 1 \right)^2 \Big].$$

Globální kritérium:

$$H^2 = \frac{1}{\Omega} \int_{\Omega} h^2 d\Omega,$$

H nad oblastí Ω představuje střední hodnotu lokálního kritéria. Pro vymezenou oblast poledníky a rovnoběžkami:

$$H^2 \; = \; \frac{1}{\left(u_2-u_1\right)\left(v_2-v_1\right)} \int_{u_1}^{u_2} \int_{v_1}^{v_2} h^2 \, du \, dv.$$

Při neortogonálním zobrazení není možné vyjadřit integrál v analytickém tvaru, proto se využívá diskrétní varianta globálního variačního kritéria

$$H_1^2 = \frac{1}{n} \sum_{i=1}^n h^2(u_i, v_i).$$

Při potlačení vlivu polárních oblastí má v kritériu vliv zeměpisná šířka bodu $\mathbf{p}_i = cosu_i$:

$$H_2^2 = \frac{\sum_{i=1}^n p_i h^2(u_i, v_i)}{\sum_{i=1}^n p_i}.$$

2.2 Měřítkové číslo mapy M

Jedná se o funkci polohy, při jeho vypočtení lze v mapě hodnoty zobrazit pomocí izočar.

$$M(u,v) \; = \; \frac{M}{\max_A m(u,v,A)} \; = \; \frac{M}{a(u,v)} \, .$$

2.3 Kartografická zobrazení

2.3.1 Bonneovo zobrazení

Jedná se o nepravé kuželové zobrazení, které je ekvivalentní a ekvidistantní v rovnoběžkách. Zároveň má jednu nezkreslenou rovnoběžku u0. Zobrazení se používá pro znázornění větších územních celků

Zobrazovací rovnice:

$$x = R\left(\cos u_0 - (u_0 - u)\sin\left(\frac{v\cos u}{\cot u_0 + u_0 - u}\right)\right),$$
$$y = R(u_0 - u)\cos\left(\frac{v\cos u}{\cot u_0 + u_0 - u}\right).$$

Měřítko délek:

$$m_p = \sqrt{1 - (\varepsilon - v \sin u)^2}.$$

2.3.2 Mercator-Sansonovo zobrazení

Jedná se o nepravé válcové zobrazení, které je ekvivalentní a ekvidistantní v rovnoběžkách. Zobrazuje nezkreslený základní poledník. Zobrazení se využívá v atlasové kartografii pro velké územní celky. Zobrazení velky zkresluje v polárních oblastech.

Zobrazovací rovnice:

$$x = Rv\cos u,$$
$$y = Ru.$$

Měřítko délek:

$$m_p = \sqrt{1 + v^2 \sin^2 u}.$$

2.3.3 Eckertovo V. zobrazení

Pseudokuželové a vyrovnávací zobrazení se dvěma nezkreslenými rovnoběžkami. Střední poledník je polovinou délky rovníku, póly se také zobrazují jako polovina rovníku úsečkou. X a y se počítá z Mercator-Sansonova zobrazení

$$x = R v \cos u,$$
$$y = R u$$

a Marinova válcového ekvidistantního zobrazení

$$x = R v \cos u,$$
$$y = R u.$$

2.3.4 Winkel-Tripel zobrazení

Jedná se o modifikované azimutální zobrazení. Zobrazení je vyrovnávací, střední poledník, rovník a póly se zobrazí jako úsečky. Zobrazovací rovnice vznikají z Aitoffova zobrazení

$$x = 2 R \theta \sqrt{\rho},$$
$$y = R \theta \frac{\sin u}{\sin \theta}.$$

poté

$$\theta = \arccos(\cos u \cos \frac{v}{2}),$$

$$\rho = 1 - \left(\frac{\sin u}{\sin \theta}\right)^{2}.$$

a Marinova válcového ekvidistantního zobrazení

$$x = R v,$$
$$y = R u.$$

2.3.5 Hammer-Aitoffovo zobrazení

Zobrazení spadá do kategorie modifikovaných azimutálních zobrazení, vytvořeno bylo průmětem Lambertova azimutálního ekvivalentního zobrazení na skloněnou rovinu. Zobrazovací rovnice

$$x = \frac{2R \sin u}{\sqrt{2(1 + \cos u \cos \frac{v}{2})}},$$
$$y = \frac{2\sqrt{2}R \cos u \cos \frac{v}{2}}{\sqrt{1 + \cos u \cos \frac{v}{2}}}.$$

3 Postup a výpočty

V tomto úkolu bylo cílem zobrazit velké území v 5 zobrazeních. Vybrána byla Afrika, jakožto velký kontinent. Krom programu Matlab byl zde využít i program PYthon, který využívá funkce Proj z knihovny PyProj. Proj přináší převedené souřadnice požadovaného zobrazení a hodnoty poloos Tissotových elips. V Pythonu byl vytvořen skript mk.py, ve kterém je definovaná funkce project. V MAtlabu byly následně vytvořeny skripty pro výpočet variačních kritérií a pro vykreslení izočar a samotného zájmového území. Skript graticule_proj.m využívá funkceproject a vytváří síť zobrazení.

4 Výsledky

Pro všechna zobrazení byla počítána vážená i nevážená varianta globálního kritéria, která vychází z Airyho a komplexního kritéria (viz. Tabulka 1).

	Airyho kritérium		Komplexní kritérium	
	nevážená varianta	vážená varianta	nevážená varianta	vážená varianta
Mercator-Sanson	0.42493	0.23159	2.41955	1.55031
Bonneovo	0.46205	0.40046	2.47802	2.29503
Eckertovo V.	0.22199	0.06868	1.09422	0.65704
Winkel-Tripel	0.14711	0.05617	0.92713	0.64985
Hammerovo-Aitoffovo	0.29913	0.15953	1.95157	1.25701

Tabulka 1: Porovnání globálních kritérií (nevážené a vážené)

Obrázek 1: Mercator-Sansonovo zobrazení

Obrázek 2: Bonneovo zobrazení

Obrázek 3: Eckert V. zobrazení

Obrázek 4: Winkel-Tripel

Obrázek 5: Hammer-Aitoffovo zobrazení

4.1 Závěr

Při porovnání výsledků lze říci, že nejlepší zobrazení pro Afriku je Winkel-Tripel. Nejhorším zobrazením pro znázornění tohoto území se jeví Bonneovo zobrazení.

4.2 Zdroje

Reference

- [1] BAYER, T. (2025). Hodnocení kartografických zobrazení s využitím variačních kriterií (návod na cvičení)
- [2] BAYER, T. (2025). *Přednášky Matematická Kartografie*. Dostupné z: https://web.natur.cuni.cz/~bayertom/images/courses/Adk/adk4_new.pdf
- [3] Pyšek, J (1995) *Matematická Kartografie* Západočeská Univerzita, Pedagogická fakulta, katedra Geografie