Project 1

Final Report

Big Data and Cloud Computing

Grupo:

Afonso Pinto - up201503316 Edgar Carneiro - up201503784

Faculdade de Ciências da Universidade do Porto Departamento de Ciência de Computadores

April 7, 2019

1 Summary

In this project, we made use of Apache Spark to process MovieLens datasets. We wrote a number of Python functions that involve these datasets and the use of the TF-IDF and Jaccard index metrics. Beyond the requested functions, all the extra challenges were also completed (see end of notebook).

2 Technologies & Workflow

Figure 1: Technologies & Workflow Diagram

3 Development

The development of the project relies on two major concepts - TF-IDF and Jaccard index. With this in mind, we chose to follow a generic approach that would easily allow the reuse of these frequent notions.

3.1 TF-IDF

The TF-IDF metric is a numerical statistic that serves as a measure to reflect how important a word is to individual text documents in the context of a corpus of documents. In order to implement it - under def tfidf(data, term, document, debug=False) - we:

- 1. Compute the number of times $\operatorname{\mathtt{term}}$ has been used in association to $\operatorname{\mathtt{document}}$
- 2. Compute the maximum absolute frequency of any term used for document.
- 3. Calculate the term-frequency value of term for document.
- 4. Perform a join operation with the number of documents with term appearing at least once.
- 5. Calculate the inverse document frequency of term considering all document s with term.
- Effectively calculate the term frequency-inverse document frequency of term for document.

3.2 Jaccard index

Given sets A and B the Jaccard index of sets $A, B \neq \emptyset$ is given by the number of elements in $A \cap B$ divided by the number of elements in $A \cup B$. In order to implement it - under def jiSimilarity(data, col_ref, col_set, debug=False) - we:

- Structure dataframe as col_ref & Set of col_set that are related with col_ref.
- 2. Cross join different col_ref[: -1] and the respective sets of col_set.
- 3. Calculate the intersection of col_set as i.
- 4. Calculate the union of col_set as u.
- 5. Computed JI out of i and u.

3.3 Other relevant notes

- Good use of Spark primitives.
- Detailed care with both spatial and temporal performance issues.
- Good use of User-Defined Functions.
- Use of comments in the code to explain the steps in the algorithms.
- Long lines of code avoided.
- Good use of debug messages which help to explain the steps in the algorithms.

4 Expected Results / Tests

4.1 tiny1

- \boxtimes tfidfTags matches expected output.
- ⊠ recommendByTag matches expected output.
- ⊠ recommendByTags matches expected output.
- ⊠ jiMovieSimilarity matches expected output.
- ⊠ recommendBySimilarity matches expected output.

4.2 tiny2

- \boxtimes tfidfTags matches expected output.
- ⊠ recommendByTag matches expected output.
- \boxtimes recommendByTags matches expected output.
- \boxtimes jiMovieSimilarity matches expected output.
- \square recommendBySimilarity matches expected output.

4.3 tiny3

- \boxtimes tfidfTags matches expected output.
- \boxtimes recommendByTag matches expected output.
- \boxtimes recommendByTags matches expected output.
- ⊠ jiMovieSimilarity matches expected output.
- ⊠ recommendBySimilarity matches expected output.

4.4 medium1

- \boxtimes tfidfTags matches expected output.
- ⊠ recommendByTag matches expected output.
- \boxtimes recommendByTags matches expected output.
- ⊠ jiMovieSimilarity matches expected output.
- \boxtimes recommendBySimilarity matches expected output.

4.5 medium2

- \boxtimes tfidfTags matches expected output.
- ⊠ recommendByTag matches expected output.
- ⊠ recommendByTags matches expected output.
- ⊠ jiMovieSimilarity matches expected output.
- ⊠ recommendBySimilarity matches expected output.

5 Conclusions

The realization of this project provided the group with extensive learning. We were able to acquire a greater knowledge in the area of cloud computing, in particular in the area of data manipulation, more specifically using Spark techniques. We believe all the requirements were met.