Lecture 4 - Independence

Independence - definition

Two events A and B are called independent, if:

$$P(A \cap B) = P(A)P(B)$$

- Notation: $A \perp B$
- Remark: If $P \perp B$ then P(A|B) = P(A) and vice versa
- The independence relation is symmetric
- ullet Two disjoint events can be independent if and only if P(A)=0 or P(B)=0
- An event can be independent from itself if and only if P(A)=0 or P(A)=1
- Any event is independent with events Ω and \emptyset .
- If $A \perp B$ then $A' \perp B$, $A \perp B'$ and $A' \perp B'$

More than two independent events

• Consider three events A_1, A_2, A_3 for which:

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$

- Does it also hold $A_1 \perp A_2$, $A_1 \perp A_3$, $A_2 \perp A_3$?
- Answer: No
- If it holds that $A_1\perp A_2$, $A_1\perp A_3$, $A_2\perp A_3$ then $P(A_1\cap A_2\cap A_3)=P(A_1)P(A_2)P(A_3)$?
- · Answer: also no
- Events A_1,A_2,\ldots,A_n are mutually independent, if for every subset of indices $S\subseteq\{1,2,\ldots,n\}$

Lecture 4 - Independence

$$P(igcap_{i \in S} A_i) = \prod_{i \in S} P(A_i)$$

ullet Example: Events A_1,A_2,A_3 are independent if

$$egin{aligned} P(A_1 \cap A_2) &= P(A_1)P(A_2) \ P(A_1 \cap A_3) &= P(A_1)P(A_3) \ P(A_2 \cap A_3) &= P(A_2)P(A_3) \ P(A_1 \cap A_2 \cap A_3) &= P(A_1)P(A_2)P(A_3) \end{aligned}$$

Conditional independence

• Events A and B are called conditionally independent given event C if:

$$P(A \cap B|C) = P(A|C)P(B|C)$$

- Notation $A \perp B|C$
- Meaning: Is event C happened then the occurrence of B(A) does not influence the probability of the occurrence of A(B).
- The conditional independence of two events $A\perp B|C$ does not imply the independence $A\not\perp B$, and vice versa, independence $A\perp B$ does not imply the conditional independence $A\not\perp B|C$

Product spaces

- Consider n probabilistic spaces $(\Omega_i, \mathcal{F}_i, P_i)$, $i=1,\ldots,n$, concerning n **independent** trials of a random experiment
- A product space is a probabilistic space (Ω, \mathcal{F}, P) , where:

$$\circ \ \Omega = \Omega_1 imes \Omega_2 imes \ldots imes \Omega_n$$

 \circ ${\mathcal F}$ is a σ -algebra of events generated from events of the form $A_1 imes \ldots imes A_n$, $A_i \in {\mathcal F}_i$

2

$$\circ \ P(A_1 \times \ldots \times A_n) = P_1(A_1) \cdot P_2(A_2) \cdot \ldots \cdot P_n(A_n)$$

- From the definition, events concerning different trials in the experiment, e.g., $A_1 imes \Omega_2 imes \ldots imes \Omega_n$
- · Example: We roll two dice
- $\Omega_1 = \Omega_2 = \{1, 2, 3, 4, 5, 6\}$
- $P_1 = P_2$, $P_1(\{j\}) = \frac{1}{6}$, $j = 1, \ldots, 6$
- $\Omega = \Omega_1 \times \Omega_2$, $\Omega = \{(i,j): i,j=1,\ldots,6\}$
- $P(\{(i,j)\}) = P_1(\{i\})P_2(\{j\}) = \frac{1}{6} \cdot \frac{1}{6}$
- An event concerning the first die $A=A_1 imes\Omega_2$
- E.g. A we rolled 6 on the 1st die
- $A = \{6\} \times \Omega_2 = \{(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$
- ullet An event concerning the second die $B=\Omega_1 imes A_2$

$$P(A) = P(A_1 imes \Omega_2) = P_1(A_1) \cdot P_2(\Omega_2) = P_1(A_1) \ P(B) = P(\Omega_1 imes A_2) = P_1(\omega_1) \cdot P_2(A_2) = P_2(A_2) \ P(A \cap B) = P(A_1 imes A_2) = P_1(A_1) \cdot P_2(A_2)$$

• So $P(A \cap B) = P(A)P(B) \implies A \perp B$

System reliability

• If each of n independent components of a system can fail with probability p_i , $i=1,\dots,n$, what is the probability of failure of the entire system?

- System fails if there is no path between the source (left) and the sink (right),
 which is free of any failed components.
- A series system fails if at least one of the components fails

- A_i ith component failed
- A system failed, $A=A_1\cup\ldots\cup A_n$

$$P(A)=1-(1-p_1)\cdot\ldots\cdot(1-p_n)$$

- (Because those events are independent)
- · A parallel system fails if all components fail

- ullet A_i ith component failed
- A system failed, $A=A_1\cap\ldots\cap A_n$

$$P(A) = p_1 \cdot \ldots \cdot p_n$$

Bernoulli scheme

- We perform a series of independent trials (experiments) each of which ends with success with probability p and failure with probability 1-p. Calculate the probability of k successes in n trials.
- We code a success by 1 and failure as 0
- $\Omega = \{(b_1, \ldots, b_n) : b_i \in \{0, 1\}\}$

• If $k=b_1+b_2+\ldots+b_n$ is the number of successes then:

$$P(\{(b_1,\ldots,b_n)\}) = \underbrace{p\cdot\ldots\cdot p}_{k}\cdot\underbrace{(1-p)\cdot\ldots\cdot (1-p)}_{n-k} = p^k(1-p)^{n-k}$$

• If A_k — k successes in n trials, then:

$$P(A_k) = inom{n}{k} p^k (1-p)^{n-k}$$

Random walks

- It is sometimes reasonable to have no predefined number of trials n
- Random walk: We move left or right with probability $\frac{1}{2}$. What is the chance that we ever move more than 10 steps away from the starting point?
- Example: There are n steps from a bar to home. A student is k steps from home. With probability $\frac{1}{2}$ he moves a step towards home or a bar. If he goes back to bar, he will never leave •. What is the chance of getting home?
- S_k student will come home when starting k steps from it
- ullet H_+ first step towards home
- H_- first step towards bar
- Since $H_+ \cup H_- = \Omega$ and $H_+ \cap H_- = \emptyset$

$$P(S_k) = P(S_k|H_+)P(H_+) + P(S_k|H_-)P(H_-)$$

- ullet And also $P(S_k|H_+)=P(S_{k-1})$ and $P(S_k|H_-)=P(S_{k+1})$
- Let $s_k = P(S_k)$ and multiplying by 2, we get a recurrence:
- ullet $2s_k=s_{k-1}+s_{k+1}$ with boundary conditions $s_0=1$ and $s_n=0$
- It reduces to $s_k s_{k-1} = s_{k+1} s_k$
- ullet Consecutive differences $r=s_{k+1}-s_k$ are identical for all k!

- So, $s_1 = s_0 + r, s_2 = s_0 + 2r, \ldots, s_n = s_0 + nr$
- And since $s_n=0$ and $s_0=1$ then $r=-rac{1}{n}$
- Therefore $P(S_k) = 1 rac{k}{n}$
- ullet But, when $p
 eq rac{1}{2}$, then $P(S_k)=rac{r^k-r^n}{1-r^n}$, where $r=rac{p}{1-p}$