Transformado de durivada		La transformada de Laplace
Tenemo I:		La transformada de Laplace Dada una función $f(t)$ definida para toda $t \ge 0$, la trans-
$2\int_{0}^{\infty} \frac{1}{t^{2}} dt = \int_{0}^{\infty} \frac{e^{-tt}}{t^{2}} \int_{0}^{\infty} \frac{1}{t^{2}} dt = \frac{e^{-tt}}{t^{2}} \int_{0}^{\infty} \frac{1}{t^{2}} dt$	f=0 - 100 (-21) 6-24 f(4) Off	formada de Laplace de f es la función F definida como
u v u v	<u>u'</u> .v .	$F(s) = \mathcal{L}\lbrace f(t)\rbrace = \int_{0}^{\infty} e^{-st} f(t) dt$
e^{-st} f(t) - f(o) + 5 $\int_{0}^{\infty} e^{-st}$ f(t) ott = -f(0) + 5 If f(f) g para todos valores 5	para todo valor de \boldsymbol{s} en los cuales la integral impropia converge.
tal gu		La transformada inversa
		Si $F(s) = \mathcal{L}\{f(t)\}$, tenemos
Pova este cáludo usamos:		$f(t) = \mathcal{L}^{-1}\{F(s)\}$ la transformada inversa de Laplace.
1) f ⁽ (t) es continua pos bamos	para definir concetamente la 199 integral	
2) f(t) es continua para uzar integración p	n points.	
3) f(t) es de ordun exponencial para que l	a siguunda intigral convenge	
* Derivar en thempo = multipliar en La Place"		
	uprions	
Transformada de derivadas	ⁿ⁻¹⁾ (t) continua, suave por tramo: y de oro	den exponencial
Funciones suave por tramos La función f se lla- ma suave por tramos en el intervalo acotado [a, b] si es	f(n)(e) } = 21 & f(n-1)(e) = 1	
continua por tramos en $[a, b]$ y derivable salvo en ciertos puntos finitos, siendo $f'(t)$ continua por tramos en $[a, b]$.		
La función f es suave por tramos para $t \ge 0$ si es suave por tramos en cualquier subintervalo acotado de $[0, \infty)$.	[\{ \dagger g' (\epsilon) \}	
5	I (966) 7 - 9 (0)	
1. continua para $t \ge 0$,	g(t) = f'(t) sen certinos, sua ous per tramos	y de orden exponencial.
2. suave por tramos para $t \ge 0$, y	= I f & 1 (6) } = I f g (8) } = S. G(5) - g(0)	
3. de orden exponencial cuando $t\to\infty.$	= 2] ((4) / - (0)	
Entonces, la transformada $\mathcal{L}\{f'(t)\}$ existe para $s>c,$ y	$= S \left(S \chi_{\{f(t)\}} - f(0) - f'(0) \right)$	
$\mathcal{L}\{f'(t)\} = sF(s) - f(0).$	= 2x + (c) - 2 + (o) - 1 + (o)	
Transformada de derivadas de orden		
superior	tjemplo 1.	
Si $f^{(n-1)}(t)$ continua, suave por tramos y de orden expo-	$\begin{cases} x''(t) - x'(t) - 2x(t) = 0 \\ x(0) = 4 \end{cases}$	
nencial, entonces	$(x^{1}(0) = 3)$	" EDO " La Place" en " amboj "
$\mathcal{L}\left\{f^{(n)}\right\} = s\mathcal{L}\left\{f^{(n-1)}\right\} - f^{(n-1)}(0).$	$x''(t) - \alpha'(t) - 2x(t) = 0$	
Toorome Surángese que to des les funciones $f(t)$ $f'(t)$	I dix"(t) = x'(t) - 2x(t) = I fot	
Teorema Supóngase que todas las funciones $f(t)$, $f'(t)$, $f''(t)$,, $f^{(n-1)}(t)$ son	Q 4 x (0) = 10 (0)	- Linealdad
1. continuas para $t \geq 0$,	7 5 x" (+) }] f x' (+) }- 2] (x(+) } = 0	cle La Place
2. suaves por tramos para $t \geq 0$, y		teorema de denvadas
3. de orden exponencial con los mismos valores: exis-	52 X(5) - 5 X(6) - x/10) 3	
ten constantes no negativas M , c y T tales que	- (5 x (5) - xxx)	
$ f^{(k)}(t) \le Me^{ct}$ para $t \ge T$	- 2 X(1) = 6 in cognita e x(1)	
y todos $k = 0, 1, 2, \dots, n - 1$.	condicions inicials	
Entonces, la transformada $\mathcal{L}\{f^{(n)}(t)\}$ existe y	52X(1) - 5 -3 -5X(1) + 1-2X(1)=0 X(1) in adjuly	
$\mathcal{L}\left\{f^{(n)}(t)\right\} = s^n F(s) - s^{n-1} f(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$	(52-5-x) X (5) - 5 - 2 = 0	
para $s > c$.	$\chi(S) = \frac{S+2}{S} \qquad S^2 - S \sim \lambda \neq 0$	
Transformada de Laplace de funciones comúnes	52-5-2	
$f(t) = \mathcal{L}^{-1}\{F(s)\}$ $F(s) = \mathcal{L}\{f(t)\}$	$\chi(L) = \int_{-1}^{1} \left\{ \chi'(I) \right\}_{I} = \int_{-1}^{1} \left\{ \frac{I+2}{I^2 J-2} \right\}_{I}$	
1 $\frac{1}{s}(s>0)$	Fracciones parcialla	
$t = \frac{1}{s^2}(s > 0)$	$S^2 - S - 2 = (S+1)(S-2)$	
$t^n \ (n \geq 0 \ {\rm entero}) \qquad \frac{n!}{s^{n+1}} \ (s > 0) \qquad \qquad . \qquad . \qquad . \label{eq:tn}$	$\frac{s+2}{a} = A + B$	
$t^a \; (a>-1 \; \mathrm{real}) \qquad \frac{\Gamma(a+1)}{s^{a+1}} \; (s>0)$		
$e^{at} \qquad \qquad \frac{1}{s-a} \; (s>\Re(a)) \qquad \qquad \cdot \qquad \cdot \qquad \cdot$	$\frac{54\lambda}{} = \frac{\Delta (5-2) + B (141)}{} = \frac{\Delta}{}$	5+2 = A(5-2) + B(5+1)
$\cos(at) \qquad \qquad \frac{s}{s^2+a^2} \left(s > 0 \right) \qquad \qquad \cdot \qquad \cdot \qquad \cdot \qquad \cdot \qquad \cdot$		5+2 = 5(A+B) + (-AA+B)
$\operatorname{sen}(at) \qquad \qquad \frac{a}{s^2 + a^2} \left(s > 0 \right) \qquad \qquad \cdot \qquad \cdot \qquad \cdot \qquad \cdot$	igualar potraar de S	
$H(t-a)$ $\frac{1}{s}e^{-as} (s > 0, a \ge 0)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4=-1/3
	2A =	-1 B= 4/3

 $\times (4) = 2^{-1} \begin{cases} -\frac{1/3}{5+1} + \frac{4/3}{5-2} \end{cases} \Rightarrow \text{Procionly}$