Concours Banque PT 2016 Mathématiques A

Problème d'algèbre linéaire

Partie I

- 1. La matrice *A* étant symétrique à coefficients réels, elle est d'après le théorème spectral diagonalisable au moyen d'une matrice de passage orthogonale. Autrement dit, il existe une base orthonormale formée de vecteurs propres de *A*.
- 2. Notons χ_A le polynôme caractéristique de la matrice A. En développant par rapport à la première colonne,

$$\chi_{A} = \begin{vmatrix} X-2 & 1 & 0 \\ 1 & X-2 & 1 \\ 0 & 1 & X-2 \end{vmatrix} = (X-2) [(X-2)^{2} - 1] - (X-2)$$

$$= (X-2) [(X-2)^{2} - \sqrt{2}^{2}] = (X-2)(X-2-\sqrt{2})(X-2+\sqrt{2})$$

Donc Sp(A) = $\{2 - \sqrt{2}, 2, 2 + \sqrt{2}\}.$

• Recherchons maintenant une base orthonormale de vecteurs propres de A.

Posons pour cela $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et résolvons l'équation $AX = \lambda X$ pour $\lambda \in \operatorname{Sp}(A)$.

$$AX = 2X \iff y = 0 \text{ et } x + z = 0 \iff X = x \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}; AX = (2 - \sqrt{2})X \iff y = \sqrt{2}x \text{ et } x = z \iff X = x \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$$

Posons alors
$$u_1=\frac{1}{\sqrt{2}}(1,0,-1), \ u_2=\frac{1}{2}(1,\sqrt{2},1)$$
 et enfin $u_3=u_1\wedge u_2=\frac{1}{2}(1,-\sqrt{2},1).$

Par orthogonalité des sous-espaces propres, $\mathfrak{B}' = (u_1, u_2, u_3)$ est une base orthonormale de vecteurs propres.

- 3. 0 n'étant pas valeur propre de A, la matrice A est inversible.
- 4. On a $u' = P^{-1}u$ avec P la matrice de passage de la base \mathfrak{B} à la base \mathfrak{B}' . Mais comme celle-ci est orthogonale,

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = P^T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \sqrt{2} & 0 & -\sqrt{2} \\ 1 & \sqrt{2} & 1 \\ 1 & -\sqrt{2} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

5. Comme u = Pu', en posant $D = \text{diag}(2, 2 - \sqrt{2}, 2 + \sqrt{2})$, on trouve :

$$\langle Au, u \rangle = u^T Au = 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz$$

= $u'^T P^T APu' = u'^T Du' = 2x'^2 + (2 - \sqrt{2})y'^2 + (2 + \sqrt{2})z'^2$

6. Posons $\lambda = 2 - \sqrt{2}$. D'après la question précédente,

$$\langle Au, u \rangle = 2x'^2 + (2 - \sqrt{2})y'^2 + (2 + \sqrt{2})z'^2 \ge \lambda(x'^2 + y'^2 + z'^2) = \lambda||u'||^2 = \lambda||u||^2$$

car u = Pu' et une matrice de passage orthogonale conserve la norme.

- 7. Pour conclure, montrons que l'application $(\cdot, \cdot)_A$ définit bien un produit scalaire sur \mathbb{R}^3 .
 - Tout d'abord, l'application est bien à valeurs dans \mathbb{R} .
 - Elle est symétrique car pour tous $u, v \in \mathbb{R}^3$,

$$(u, v)_A = v^T A u = (v^T A u)^T = u^T A^T v = u^T A v = (v, u)_A$$

• Elle est clairement bilinéaire car pour tous $u, v, w \in \mathbb{R}^3$ et $\alpha \in \mathbb{R}$,

$$(\alpha u + v, w)_A = w^T A(\alpha u + v) = \alpha w^T A u + w^T A v = \alpha (u, w)_A + (v, w)_A$$

La linéarité à droite découlant de la linéarité à gauche par symétrie.

• Elle est enfin définie positive car pour tout $u \in \mathbb{R}^3$,

$$(u,u)_A = \langle Au, u \rangle \geqslant \lambda ||u||^2 \geqslant 0$$
 et $(u,u)_A = 0 \Longrightarrow \lambda ||u||^2 = 0 \Longrightarrow u = 0$

 $(\cdot,\cdot)_A$ définit donc un produit scalaire sur \mathbb{R}^3 .

Partie II

- 1. J_b est une fonction définie sur \mathbb{R}^3 et à valeurs dans \mathbb{R}^+ . De plus, $J_b(0) = 0$.
- 2. J_b est une fonction de classe \mathscr{C}^2 sur \mathbb{R}^3 en tant que fonction polynomiale. En posant $b=(b_1,b_2,b_3)$, on a $J_b(x,y,z)=x^2+y^2+z^2-xy-yz-b_1x-b_2y-b_3z$. Donc,

$$\forall (x, y, z) \in \mathbb{R}^3, \quad \overrightarrow{\operatorname{grad}}(J_b)(x, y, z) = \begin{pmatrix} 2x - y - b_1 \\ 2y - x - z - b_2 \\ 2z - y - b_3 \end{pmatrix} = Au - b$$

La hessienne de J_b est :

$$H = \begin{pmatrix} \frac{\partial^{2} J_{b}}{\partial x^{2}} & \frac{\partial^{2} J_{b}}{\partial x \partial y} & \frac{\partial^{2} J_{b}}{\partial x \partial z} \\ \frac{\partial^{2} J_{b}}{\partial x \partial y} & \frac{\partial^{2} J_{b}}{\partial y^{2}} & \frac{\partial^{2} J_{b}}{\partial y \partial z} \\ \frac{\partial^{2} J_{b}}{\partial x \partial z} & \frac{\partial^{2} J_{b}}{\partial y \partial z} & \frac{\partial^{2} J_{b}}{\partial z^{2}} \end{pmatrix} \quad \text{donc} \quad H(x, y, z) = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ -1 & 0 & 2 \end{pmatrix} = A$$

REMARQUE: La hessienne d'une fonction de 3 variables n'est pas au programme.

3. D'après l'inégalité de Cauchy-Schwarz, $|\langle u, b \rangle| \le ||b|| \cdot ||u||$, donc :

$$J_b(u) = \frac{1}{2} \langle Au, u \rangle - \langle u, b \rangle \geqslant \frac{\lambda}{2} ||u||^2 - ||b|| \cdot ||u||$$

- 4. Soit $\varphi: t \mapsto \frac{\lambda}{2}t^2 \alpha t$ avec $\alpha = ||b||$. On a d'après ce qui précède $J_b(u) \geqslant \varphi(||u||)$.
 - La fonction φ est dérivable sur \mathbb{R}^+ . On obtient facilement les variations de φ (α étant positif et λ strictement positif).

t	0	α/λ	$2\alpha/\lambda$	+∞
$\varphi'(t)$	_	0	+	
$\varphi(t)$	0	$-\alpha^2/2\lambda$, +∞

La fonction φ est donc minorée mais pas majorée. Par comparaison, $J_b(u)$ est minorée et n'est pas majorée.

- 5. La borne inférieure existe car l'ensemble $\{J_b(u), u \in \mathbb{R}^3\}$ est une partie de \mathbb{R} non vide et minorée. De plus, $J_b(0) = 0$ donc $\inf_{u \in \mathbb{R}^3} J_b(u) \le 0$.
- 6. Si $||u|| \ge \frac{2||b||}{\lambda}$, $\varphi(u) \ge 0$ d'après le tableau de variations. On en déduit directement que $J_b(u) \ge 0$.
- 7. D'après la question 5, la borne inférieure est négative ; d'après la question 6, $J_b(u) \ge 0$ dès que $||u|| \ge 2||b||/\lambda$. Ainsi, $\inf_{u \in \mathbb{R}^3} J_b(u) = \inf_{u \in \overline{B}(0,r)} J_b(u)$ avec $r = 2||b||/\lambda$.
- 8. La fonction J_b étant continue sur le fermé borné $\overline{B}(0,r)$, elle est bornée et atteint ses bornes. Bref,

$$\inf_{u \in \mathbb{R}^3} J_b(u) = \inf_{u \in \overline{B}(0,r)} J_b(u) = \min_{u \in \overline{B}(0,r)} J_b(u)$$

9. Le minimum en question est atteint en un point critique de l'ouvert \mathbb{R}^3 , c'est-à-dire là où le gradient s'annule. D'après les calculs précédents, $\operatorname{grad}(J_b)(u)=0$ si et seulement si Au-b=0. Comme A est inversible, cela revient à avoir $u=A^{-1}b$. La fonction J_b admet donc un seul minimum local (donc global), et ce, au point $u=A^{-1}b$. Il a pour valeur $J_b(A^{-1}b)=-1/2\langle A^{-1}b,b\rangle$ (qui est bien négatif).

Partie III

- 1. Soit *u* un vecteur de \mathbb{R}^n .
 - a) On peut, comme dans la question I]1, appliqué le théorème spectral.
 - b) La famille (e_1, \ldots, e_n) étant orthonormale, d'après le théorème de Pythagore,

$$||u||^2 = \left\|\sum_{i=1}^n \alpha_i e_i\right\|^2 = \sum_{i=1}^n \alpha_i^2 ||e_i||^2 = \sum_{i=1}^n \alpha_i^2$$

De plus, par bilinéarité du produit scalaire,

$$\langle Au, u \rangle = \left\langle \sum_{i=1}^{n} \alpha_{i} \lambda_{i} e_{i}, \sum_{j=1}^{n} \alpha_{j} e_{j} \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \alpha_{i} \alpha_{j} \langle e_{i}, e_{j} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \alpha_{i} \alpha_{j} \delta_{i,j} = \sum_{i=1}^{n} \lambda_{i} \alpha_{i}^{2} \alpha_{i}^{2} \delta_{i,j} = \sum_{i=1}^{n} \lambda_{i} \alpha_{i}^{2} \delta_{i,j} = \sum_{i=1}^{n} \lambda_{i} \alpha_{i}^{2} \delta_{i,j} = \sum_{i=1}^{n} \lambda_{i}^{2} \alpha_{i}^{2} \delta_{i,j} = \sum_{i=1}^{n$$

c) Ce qui nous conduit à écrire,

$$\langle Au, u \rangle = \sum_{i=1}^{n} \lambda_i \alpha_i^2 \geqslant \sum_{i=1}^{n} \lambda_1 \alpha_i^2 = \lambda_1 ||u||^2$$

- d) Comme λ_1 est supposé strictement positif, en supposant u non nul, on a dès lors $\langle Au, u \rangle > 0$.
- 2. Supposons la famille (v_0, \dots, v_{n-1}) constituée de vecteur deux à deux A-conjugués.
 - Montrons que la famille $(v_0, ..., v_{n-1})$ est libre. Supposons pour cela qu'il existe $\alpha_0, \dots, \alpha_{n-1} \in \mathbb{R}$ tels que $\sum_{i=1}^{n-1} \alpha_i \nu_i = 0$. En multipliant chaque membre de l'égalité à gauche par $v_i^T A$ pour $j \in [0, n-1]$, on obtient :

$$\sum_{i=0}^{n-1} \alpha_i v_j^T A v_i = 0 \quad \text{c'est-\`a-dire} \quad \sum_{i=0}^{n-1} \alpha_i \langle A v_i, v_j \rangle = \alpha_j \langle A v_j, v_j \rangle = 0$$

Comme on a démontré que $\langle Av_i, v_i \rangle \neq 0$ (les v_i sont non nuls), on en déduit que tous les α_i sont nuls!

- Cette famille libre comporte n vecteurs, ce qui est exactement la dimension de \mathbb{R}^n . On a bien une base de \mathbb{R}^n .
- 3. On a $(\alpha M + \beta N)^T = \alpha M^T + \beta N^T$ et $(MN)^T = N^T M^T$.
- 4. Avec les notations de l'énoncé, v^Tv est un scalaire et vv^T est une matrice carrée d'ordre n.
- 5. Là encore, en utilisant les notations de l'énoncé, $v^T B u$ étant une matrice de taille 1,

$$\langle Bu, v \rangle = v^T Bu = (v^T Bu)^T = u^T B^T v = \langle u, B^T v \rangle$$

- a) La matrice C_k est symétrique car par linéarité, $C_k^T = \left[\sum_{i=0}^{k-1} \frac{v_i v_i^T}{\langle A v_i, v_i \rangle}\right]^T = \sum_{i=0}^{k-1} \frac{(v_i v_i^T)^T}{\langle A v_i, v_i \rangle} = \sum_{i=0}^{k-1} \frac{v_i v_i^T}{\langle A v_i, v_i \rangle} = C_k$.
 - b) $C_k A w = \sum_{i=0}^{k-1} \frac{v_i v_i^T A w}{\langle A v_i, v_i \rangle} = \sum_{i=0}^{k-1} \frac{v_i \langle A^T v_i, w \rangle}{\langle A v_i, v_i \rangle} = \sum_{i=0}^{k-1} \frac{\langle A v_i, w \rangle}{\langle A v_i, v_i \rangle} v_i$ par symétrie de A.
 - c) Ainsi, pour $w = v_j$, on trouve $C_k A v_j = \sum_{i=0}^{k-1} \frac{\langle A v_i, v_j \rangle}{\langle A v_i, v_i \rangle} v_i = \frac{\langle A v_j, v_j \rangle}{\langle A v_j, v_j \rangle} v_j = v_j$ car les v_i sont A-conjugués.

 - d) On a immédiatement $D_k v_j = v_j C_k A v_j = 0$. De plus, $D_k^T A v_j = (I_n C_k A)^T A v_j = A v_j A C_k A v_j = 0$. e) (v_0, \dots, v_{n-1}) est une base de \mathbb{R}^n et on vient de montrer que pour tout $j \in [0, n-1]$, $D_n v_j = 0$. On en déduit que la matrice D_n est nulle. Cela implique que $I_n C_n A = 0$, autrement dit que C_n est l'inverse de A.

Exercice de probabilités

1. N correspond au nombre de lancers nécessaires pour obtenir un premier succès dans une succession d'épreuves de Bernoulli indépendantes. N suit donc une loi géométrique de paramètre p. On a $N(\Omega) = \mathbb{N}^*$ et pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(N=n) = pq^{n-1}$ où l'on a posé q=1-p.

On compte ensuite le nombre de succès dans une succession d'épreuves de Bernoulli indépendantes, donc pour tout $k \in \llbracket 0, n \rrbracket$

$$\mathbb{P}(X = k | N = n) = \binom{n}{k} p^k q^{n-k}$$

2. Soit $(k, n) \in X(\Omega) \times N(\Omega)$.

$$\mathbb{P}(X = k, N = n) = \mathbb{P}(X = k | N = n) \times \mathbb{P}(N = n) = \binom{n}{k} p^k q^{n-k} p q^{n-1} = \binom{n}{k} p^{k+1} q^{2n-k-1}$$

où, par convention, $\binom{n}{k} = 0$ si k > n.

3. Rappelons que pour tout $x \in]-1,1[, f(x) = \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$.

La fonction f est de classe \mathscr{C}^{∞} sur] -1,1[et on montre facilement par récurrence que :

$$\forall x \in]-1,1[f^{(k)}(x) = \frac{k!}{(1-x)^{k+1}}$$

Par ailleurs, en dérivant terme à terme la somme de la série entière sur l'intervalle ouvert de convergence,

$$\forall x \in]-1,1[f^{(k)}(x) = \frac{k!}{(1-x)^{k+1}} = \sum_{n=k}^{+\infty} n(n-1)\cdots(n-k+1)x^{n-k}$$

En divisant chaque membre de l'égalité par *k*!, on trouve alors

$$\forall x \in]-1,1[\quad \frac{1}{(1-x)^{k+1}} = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!k!} x^{n-k} = \sum_{n=k}^{+\infty} \binom{n}{k} x^{n-k}$$

4. La dernière question nous permet de retrouver la loi marginale de *X* . D'après la formule des probabilités totales, appliquée au système complet d'événements $(N=n)_{n\in\mathbb{N}^*}$,

$$\mathbb{P}(X=k) = \sum_{n=1}^{+\infty} \mathbb{P}(X=k, N=n)$$

• Commençons par traiter le cas où k=0.

$$\mathbb{P}(X=0) = \sum_{n=1}^{+\infty} pq^{2n-1} = \sum_{n=0}^{+\infty} pq^{2n+1} = pq \sum_{n=0}^{+\infty} q^{2n} = \frac{pq}{1-q^2} = \frac{1-p}{2-p}$$

• Supposons maintenant k > 0.

$$\mathbb{P}(X=k) = \sum_{n=1}^{+\infty} \mathbb{P}(X=k, N=n) = \sum_{n=1}^{+\infty} \binom{n}{k} p^{k+1} q^{2n-k-1} = p^{k+1} q^{k-1} \sum_{n=1}^{+\infty} \binom{n}{k} q^{2(n-k)} = \frac{p^{k+1} q^{k-1}}{(1-q^2)^{k+1}} = \frac{(1-p)^{k-1}}{(2-p)^{k+1}} = \frac{(1-p)^{k-1}}{(2-p)^{k+1}} = \frac{p^{k+1} q^{k-1}}{(2-p)^{k+1}} = \frac{p^{k+1} q^$$

- 5. Soient $U \hookrightarrow \mathcal{B}(\lambda)$ et $V \hookrightarrow \mathcal{G}(\lambda)$ indépendantes.
 - a) Comme U et V sont indépendantes, $\mathbb{E}(Y) = \mathbb{E}(UV) = \mathbb{E}(U)\mathbb{E}(V) = \lambda/\lambda = 1$.
 - b) Comme ((U=0),(U=1)) est un système complet d'événements, d'après la formule des probabilités totales,

$$\forall k \in \mathbb{N}, \quad \mathbb{P}(Y=k) = \mathbb{P}(UV=k) = \mathbb{P}(UV=k|U=0)\mathbb{P}(U=0) + \mathbb{P}(UV=k|U=1)\mathbb{P}(U=1)$$

Ainsi, $\mathbb{P}(Y = 0) = \mathbb{P}(UV = k | U = 0)\mathbb{P}(U = 0) = \mathbb{P}(U = 0) = 1 - \lambda \operatorname{car} \mathbb{P}(V = 0) = 0.$ Par ailleurs, pour $k \neq 0$, $\mathbb{P}(Y = k) = \mathbb{P}(V = k | U = 1)\mathbb{P}(U = 1) = \lambda^2 (1 - \lambda)^{k-1}$ car $\mathbb{P}(UV = k | U = 0) = 0$. c) D'après la formule de Kœnig-Huygens, $\mathbb{V}(Y) = \mathbb{E}(Y^2) - \mathbb{E}(Y)^2 = \mathbb{E}(Y^2) - 1$. Par ailleurs, U^2 et U^2 sont indépendent U^2 et U^2 sont indépendent U^2 et $U^$

dantes donc,

$$\begin{split} \mathbb{V}(Y) &= \mathbb{E}(U^{2}V^{2}) - 1 = \mathbb{E}(U^{2})\mathbb{E}(V^{2}) - 1 = (\mathbb{V}(U) + \mathbb{E}(U)^{2})(\mathbb{V}(V) + \mathbb{E}(V)^{2}) - 1 \\ &= \left(\lambda(1-\lambda) + \lambda^{2}\right) \left(\frac{1-\lambda}{\lambda^{2}} + \frac{1}{\lambda^{2}}\right) - 1 = 2 \times \frac{1-\lambda}{\lambda} \end{split}$$

6. $X(\Omega) = Y(\Omega) = \mathbb{N}$. Il suffit ensuite de prendre $\lambda = \frac{1}{2-n}$ pour constater que X a même loi que Y.

FIN DE L'ÉPREUVE