TODO

- 1. Find how garrett made charts in his manuscript
- 2. Make charts better or change input data
- 3. Do comparisons of Cl species with F species
 - (a) Garrett seems to have started doing that in lagrangian hi res mass frac.ipynb, but he doesn't include measured Cl data.

cfs2canteraPD

- 1. Get injected_species from netj_file
- 2. Get conc_cutoff from netj_file (inject conc)
- 3. Make it run PFRTP-Garrett and cfs_post if needed

cfs_post

- 1. Make trajectory selection faster
- 2. Make it run PFRTP-Garrett if needed

PFRTP-Garrett

- 1. Make interactive widget to choose run conditions
- 2. Fix thing with flame temperature estimate
- 3. Temperatures shouldn't go down then back up

Instructions

- 1. Run netj_generate.ipynb to generate input files from lists of run conditions
- 2. Run cfs_batchrun.ipynb to send the generated .netj files to CFS and run the simulations
- 3. Run PFRTP-Garrett.ipynb to use Cantera to perform the same simulations.
- 4. Run cfs_post.ipynb, and select .netj files.
- 5. Run cfs2canteraPD.ipynb to generate path diagrams using Cantera.

Problems

- 1. There are many many .ipynb files in Modeling_GPD, many of which are near duplicates of each other, scattered across folders. It is difficult to tell which ones are the most up to date and which ones are obsolete.
- 2. Residence Time column from cantera has no duplicate times. CFS will have 3-7 rows of identical times
- 3. Cantera increases time steps constantly, CFS has variable time steps
- $4. \ \ Concentrations \ of \ non-major \ species \ in \ cantera \ are \ around \ 1e-100, \ in \ CFS \ they \ are \ around \ 1e-15$
 - (a) Produces problems for reaction path diagrams because cantera can't tell which is the major species
 - (b) Concentrations are all 0 until injection, then they all instantly increase
 - i. This is probably because the transient solution solves from the injection point and then tries to work backwards to the flame. Injecting at the flame may fix this.
- 5. CF3Or has 15 reactions, CF2s has 74, CF4 15, C2F6 6. C2F6 behavior in path diagrams may be caused by incomplete reactions
 - (a) C2F6 may just not have that many reactions because it is a larger molecule, and the C-C bond is the most likely to break
- 6. Several reactions are "ambiguous" and cantera will use the designated default reaction
 - (a) Default reaction may not be conducive for simulating C2F6
- 7. Some reactions are not parsed (they may just not be relevant)

Notes

- (a) CF4 will never be destroyed at temps below 1200K, 100% DE for temps ¿1600 C
- (b) Higher values of MAXIT seem to produce more residence time steps

Table 1: Files, Paths, and Descriptions

File	Path	Description
${\it netj_generate.ipynb}$	path	Takes a set of varying run conditions and produces netj files to do all iterations
$cfs_batchrun.ipynb$	path1	Uses CFS batch method to run generated netj files, prompts user for inputs to determine simulation duration
PFRTP-Garrett.ipynb	path2	Uses a PFR simulation in Cantera to make similar results as CFS
$cfs_post.ipynb$	path3	Runs CFS in GUI mode to automate post-processing of vtk files to include species concentration
cfs2canteraPD.ipynb	$\mathrm{path}4$	Converts vtk to csv data, then produces a path diagram using Cantera for a specified trajectory, residence time, and threshold.
lagrangian hi res mass frac.ipynb	L:/Lab/AMCD_PFAS_Incineration/Modeling_GPD/ Cantera/PFR DE S Curves/	Makes plots of multiple species DE% vs Temperature
eulerian <injectant>.ipynb</injectant>	$\label{eq:L:Lab/AMCD_PFAS_Incineration/Modeling_GPD/Cantera/influent concentration/} L:/Lab/AMCD_PFAS_Incineration/Modeling_GPD/Cantera/influent concentration/$	Make multidimensional color plots for conc. vs Temperature vs DE%. Also absolute and relative yield vs conc.
paths < SR >. ipynb	$\begin{array}{c} L:/Lab/AMCD_PFAS_Incineration/Modeling_GPD/\\ Cantera/paths/ \end{array}$	Makes path diagrams for several species at specified SR
T99.ipynb	$ \begin{array}{c} L:/Lab/AMCD_PFAS.Incineration/Modeling_GPD/\\ Cantera/T99/ \end{array}$	Makes T99 plots of multiple species
lagrangian.ipynb	L:/Lab/AMCD_PFAS_Incineration/Modeling_GPD/ Cantera/PFR DE S Curves/archive/	Makes plots of species DE vs Temperature. Plots from this script don't look the same as plots in the doc, so it is probably outdated.

Table 2: Validated Path Diagrams - CFS

Table 2. (andaced Lath Blagfalls CLS													
		CHF3				C2F6							
		Por	Ports				Ports						
	1	4	6	8	1	4	6	8	1	4	6	8	
27.5 kW									×			×	
45 kW	×	√							×	×		×	

Table 3: Validated Path Diagrams - Cantera

		C1	F4			CH	IF3		C2F6				
		Ports					rts		Ports				
	1	4	6	8	1	4	6	8	1	4	6	8	
27.5 kW	×	×	×	×					√	√	√	√	
45 kW	√	√	√	√					√	√	√	√	

Table 4: CFS Executed Simulations

		CF	' 4			СН	F3		C2F6				
		Por	ts			Por	rts		Ports				
	1	4	6	8	1	4	6	8	1	4	6	8	
27.5 kW		√							√	√	√	√	
45 kW	√	✓			√	√	√		✓	✓	√	√	

Table 5: Cantera Executed Simulations

			C	F4			CH	IF3		C2F6				
			Ports				Ports							
ľ		1	4	6	8	1	4	6	8	1	4	6	8	
	$27.5~\mathrm{kW}$	√	√	√	√					√	√	√	√	
ľ	$45~\mathrm{kW}$	√	√	√	√					√	√	√	√	