# COMS 4771 Lecture 14

1. Boosting



# WHAT IS BOOSTING?

**Boosting**: Using a learning algorithm that provides "rough rules-of-thumb" to construct a very accurate predictor.

# What is boosting?

**Boosting**: Using a learning algorithm that provides "rough rules-of-thumb" to construct a very accurate predictor.

#### Motivation:

Easy to construct classification rules that are correct more-often-than-not (e.g., "If  $\geq 5\%$  of the e-mail characters are dollar signs, then it's spam."), but hard to find a single rule that is almost always correct.

# WHAT IS BOOSTING?

**Boosting**: Using a learning algorithm that provides "rough rules-of-thumb" to construct a very accurate predictor.

#### Motivation:

Easy to construct classification rules that are correct more-often-than-not (e.g., "If  $\geq 5\%$  of the e-mail characters are dollar signs, then it's spam."), but hard to find a single rule that is almost always correct.

#### Basic idea:

**Input**: training data S, "weak" learning algorithm  $\mathcal A$ 

For t = 1, 2, ..., T:

- 1. Choose subset of examples  $S_t \subseteq S$  or a distribution over S).
- 2. Call weak learning algorithm to get classifier:  $f_t := \mathcal{A}(S_t)$ .

**Return** a weighted majority vote over  $f_1, f_2, \ldots, f_T$ .

1984 Valiant and Kearns ask whether "boosting" is theoretically possible (formalized in the PAC learning model).

- 1984 Valiant and Kearns ask whether "boosting" is theoretically possible (formalized in the PAC learning model).
- 1989 Schapire creates first boosting algorithm, solving the open problem of Valiant and Kearns.

- 1984 Valiant and Kearns ask whether "boosting" is theoretically possible (formalized in the PAC learning model).
- 1989 Schapire creates first boosting algorithm, solving the open problem of Valiant and Kearns.
- 1990 Freund creates an optimal boosting algorithm (Boost-by-majority).

- 1984 Valiant and Kearns ask whether "boosting" is theoretically possible (formalized in the PAC learning model).
- 1989 Schapire creates first boosting algorithm, solving the open problem of Valiant and Kearns.
- 1990 Freund creates an optimal boosting algorithm (Boost-by-majority).
- 1992 Drucker, Schapire, and Simard empirically observe practical limitations of early boosting algorithms.

- 1984 Valiant and Kearns ask whether "boosting" is theoretically possible (formalized in the PAC learning model).
- 1989 Schapire creates first boosting algorithm, solving the open problem of Valiant and Kearns.
- 1990 Freund creates an optimal boosting algorithm (Boost-by-majority).
- 1992 Drucker, Schapire, and Simard empirically observe practical limitations of early boosting algorithms.
- 1995 **Freund and Schapire** create **AdaBoost**—a boosting algorithm with practical advantages over early boosting algorithms.

- 1984 Valiant and Kearns ask whether "boosting" is theoretically possible (formalized in the PAC learning model).
- 1989 Schapire creates first boosting algorithm, solving the open problem of Valiant and Kearns.
- 1990 Freund creates an optimal boosting algorithm (Boost-by-majority).
- 1992 Drucker, Schapire, and Simard empirically observe practical limitations of early boosting algorithms.
- 1995 Freund and Schapire create AdaBoost—a boosting algorithm with practical advantages over early boosting algorithms.

#### Winner of 2004 ACM Paris Kanellakis Award:

For their "seminal work and distinguished contributions [...] to the development of the theory and practice of boosting, a general and provably effective method of producing arbitrarily accurate prediction rules by combining weak learning rules"; specifically, for AdaBoost, which "can be used to significantly reduce the error of algorithms used in statistical analysis, spam filtering, fraud detection, optical character recognition, and market segmentation, among other applications".

# ADABOOST

```
Input Training data S from \mathcal{X} \times \{\pm 1\}.
    Weak learning algorithm A (for importance-weighted classification).
```

- 1: **initialize**  $D_1(x,y) := 1/|S|$  for each  $(x,y) \in S$  (a probability distribution).
- 2: **for** t = 1, 2, ..., T **do**
- Give  $D_t$ -weighted examples to  ${\mathcal A}$  get back  $f_t\colon {\mathcal X} o \{\pm 1\}.$   $\mathsf{Dt}$  is the 3:
- Update weights:

weight for all samples

the bigger the Zt, the accurate the

$$z_t := \sum_{(x,y) \in S} D_t(x,y) \cdot y f_t(x) \in [-1,+1]$$

$$\alpha_t := \frac{1}{2} \ln \frac{1+z_t}{1-z_t} \in \mathbb{R} \quad \text{(weight of } f_t\text{)}$$

$$D_{t+1}(x,y) \propto D_t(x,y) \exp(-\alpha_t \cdot y f_t(x))$$
 for each  $(x,y) \in S$ .

5: end for

5: end for  
6: return Final classifier 
$$f_{\text{final}}(x) := \text{sign}\left(\sum_{t=1}^{T} \alpha_t \cdot f_t(x)\right)$$
. when f(x) is  
wrong, the larger the exp(-a y f(x))

## Interpretation

# the probability for a single point!

# the larger, the better

Interpreting  $z_t$ 

$$\begin{array}{ll} \text{If} & \Pr_{(X,Y)\sim D_t}[f_t(X)=Y] \ = \ \frac{1}{2}+\gamma_t & \text{for some } \gamma_t \in [-1/2,+1/2], \\ \\ \text{then} & z_t \ = \ \sum_{(x,y)\in S} D_t(x,y)\cdot y f_t(x) \ = \ 2\gamma_t \in [-1,+1]. \end{array}$$

 $z_t = 0 \iff$  random guessing w.r.t.  $D_t$ . Zt is for  $z_t > 0 \iff$  better than random guessing w.r.t.  $D_t$ .

 $z_t < 0 \Longleftrightarrow$  better off using the opposite of  $f_t$ 's predictions.

6 / 23

#### Interpretation



Example weights  $D_{t+1}(x,y)$ 

$$D_{t+1}(x,y) \propto D_t(x,y) \cdot \exp(-\alpha_t \cdot y f_t(x))$$

# EXAMPLE: ADABOOST WITH DECISION STUMPS



Weak learning algorithm  $\mathcal{A}$ : ERM with  $\mathcal{F}=$  "decision stumps" on  $\mathbb{R}^2$  (i.e., axis-aligned threshold functions  $x\mapsto \mathrm{sign}(vx_i-t)$ ). Straightforward to handle importance weights in ERM.

(Example from Figures 1.1 and 1.2 of Schapire & Freund text.)













# EXAMPLE: FINAL CLASSIFIER FROM ADABOOST



# EXAMPLE: FINAL CLASSIFIER FROM ADABOOST



#### Final classifier

$$f_{\text{final}}(x) = \text{sign}(0.42f_1(x) + 0.65f_2(x) + 0.92f_3(x))$$
  
(Zero training error!)



## EMPIRICAL RESULTS

Test error rates of C4.5 and AdaBoost on several classification problems. Each point represents a single classification problem/dataset from UCI repository.



C4.5 = popular algorithm for learning decision trees.

(Figure 1.3 from Schapire & Freund text.)

Recall 
$$\gamma_t := \Pr_{(X,Y) \sim D_t}[f_t(X) = Y] - 1/2 = z_t/2.$$

#### Training error of final classifier from AdaBoost:

$$\operatorname{err}(f_{\mathsf{final}}, S) \leq \exp\left(-2\sum_{t=1}^{T} \gamma_t^2\right).$$

Recall 
$$\gamma_t := \Pr_{(X,Y) \sim D_t} [f_t(X) = Y] - 1/2 = z_t/2.$$

#### Training error of final classifier from AdaBoost:

$$\operatorname{err}(f_{\text{final}}, S) \leq \exp\left(-2\sum_{t=1}^{T} \gamma_t^2\right).$$

If average  $\bar{\gamma}^2:=\frac{1}{T}\sum_{t=1}^T\gamma_t^2>0$ , then training error is  $\leq\!\exp\!\left(-2\bar{\gamma}^2T\right)$ .

Recall 
$$\gamma_t := \Pr_{(X,Y) \sim D_t} [f_t(X) = Y] - 1/2 = z_t/2.$$

#### Training error of final classifier from AdaBoost:

$$\operatorname{err}(f_{\text{final}}, S) \leq \exp\left(-2\sum_{t=1}^{T} \gamma_t^2\right).$$

If average  $\bar{\gamma}^2 := \frac{1}{T} \sum_{t=1}^T \gamma_t^2 > 0$ , then training error is  $\leq \exp(-2\bar{\gamma}^2 T)$ .

#### "AdaBoost" = "Adaptive Boosting"

Some  $\gamma_t$  could be small (or even negative!)—only care about overall average  $\bar{\gamma}^2$ .

Recall 
$$\gamma_t := \Pr_{(X,Y) \sim D_t} [f_t(X) = Y] - 1/2 = z_t/2.$$

#### Training error of final classifier from AdaBoost:

$$\mathrm{err}(f_{\mathrm{final}}, S) \ \leq \ \exp\biggl(-2\sum_{t=1}^T \gamma_t^2\biggr).$$

If average  $\bar{\gamma}^2 := \frac{1}{T} \sum_{t=1}^T \gamma_t^2 > 0$ , then training error is  $\leq \exp\left(-2\bar{\gamma}^2 T\right)$ .

#### "AdaBoost" = "Adaptive Boosting"

Some  $\gamma_t$  could be small (or even negative!)—only care about overall average  $\bar{\gamma}^2$ .

What about true error?

# COMBINING CLASSIFIERS

Let  $\mathcal F$  be the function class used by the **weak learning algorithm**  $\mathcal A.$ 

### COMBINING CLASSIFIERS

Let  $\mathcal{F}$  be the function class used by the **weak learning algorithm**  $\mathcal{A}$ .

The function class used by AdaBoost is

$$\mathcal{F}_T := \left\{ x \mapsto \operatorname{sign}\left(\sum_{t=1}^T \alpha_t f_t(x)\right) : f_1, f_2, \dots, f_T \in \mathcal{F}, \alpha_1, \alpha_2, \dots, \alpha_T \in \mathbb{R} \right\}$$

i.e., "linear combinations of T functions from  $\mathcal{F}$ ". Complexity of  $\mathcal{F}_T$  grows *linearly* with T.

## Combining classifiers

Let  $\mathcal{F}$  be the function class used by the **weak learning algorithm**  $\mathcal{A}$ .

The function class used by AdaBoost is

$$\mathcal{F}_T := \left\{ x \mapsto \operatorname{sign}\left(\sum_{t=1}^T \alpha_t f_t(x)\right) : f_1, f_2, \dots, f_T \in \mathcal{F}, \alpha_1, \alpha_2, \dots, \alpha_T \in \mathbb{R} \right\}$$

i.e., "linear combinations of T functions from  $\mathcal{F}$ ". Complexity of  $\mathcal{F}_T$  grows  $\mathit{linearly}$  with T.

Theoretical guarantee: with high probability over choice of i.i.d. sample S,

$$\operatorname{err}(f) \leq \operatorname{err}(f, S) + O\left(\sqrt{\frac{T \log |\mathcal{F}_{|S|}}{|S|}}\right) \quad \forall f \in \mathcal{F}_T.$$

### Combining classifiers

Let  $\mathcal{F}$  be the function class used by the **weak learning algorithm**  $\mathcal{A}$ .

The function class used by AdaBoost is

$$\mathcal{F}_T := \left\{ x \mapsto \operatorname{sign}\left(\sum_{t=1}^T \alpha_t f_t(x)\right) : f_1, f_2, \dots, f_T \in \mathcal{F}, \alpha_1, \alpha_2, \dots, \alpha_T \in \mathbb{R} \right\}$$

i.e., "linear combinations of T functions from  $\mathcal{F}$ ". Complexity of  $\mathcal{F}_T$  grows *linearly* with T.

Theoretical guarantee: with high probability over choice of i.i.d. sample S,

$$\operatorname{err}(f) \leq \operatorname{err}(f, S) + O\left(\sqrt{\frac{T \log |\mathcal{F}_{|S|}}{|S|}}\right) \quad \forall f \in \mathcal{F}_T.$$

Theory suggests danger of over-fitting when T is very large.

### Combining classifiers

Let  $\mathcal{F}$  be the function class used by the **weak learning algorithm**  $\mathcal{A}$ .

The function class used by AdaBoost is

$$\mathcal{F}_T := \left\{ x \mapsto \operatorname{sign}\left(\sum_{t=1}^T \alpha_t f_t(x)\right) : f_1, f_2, \dots, f_T \in \mathcal{F}, \alpha_1, \alpha_2, \dots, \alpha_T \in \mathbb{R} \right\}$$

i.e., "linear combinations of T functions from  $\mathcal{F}$ ".

Complexity of  $\mathcal{F}_T$  grows *linearly* with T.

this part get bigger

Theoretical guarantee: with high probability over choice of i.i.d. sample S,

$$\operatorname{err}(f) \leq \operatorname{err}(f,S) + O\left(\frac{T}{|S|} \frac{\operatorname{og}|\mathcal{F}_{|S|}}{|S|}\right) \quad \forall f \in \mathcal{F}_T.$$
 can lead to overfitting

Theory suggests danger of over-fitting when T is very large. Indeed, this does happen sometimes  $\dots$  but often not!

As the T increases, the training error goes down!

## A TYPICAL RUN OF BOOSTING





(# nodes across all decision trees in  $f_{\mathsf{final}}$  is  $> 2 \times 10^6$ )

Training error is zero after just five rounds, but test error continues to decrease, even up to 1000 rounds!

(Figure 1.7 from Schapire & Freund text)

# BOOSTING THE MARGIN

Final classifier from AdaBoost:

$$f_{\text{final}}(x) = \operatorname{sign}\left(\frac{\sum_{t=1}^{T} \alpha_t f_t(x)}{\sum_{t=1}^{T} |\alpha_t|}\right).$$
$$g(x) \in [-1, +1]$$

Call  $y \cdot g(x) \in [-1, +1]$  the margin achieved on example (x, y).

# BOOSTING THE MARGIN

Final classifier from AdaBoost:

$$f_{\text{final}}(x) = \operatorname{sign}\left(\frac{\sum_{t=1}^{T} \alpha_t f_t(x)}{\sum_{t=1}^{T} |\alpha_t|}\right).$$
$$g(x) \in [-1, +1]$$

Call  $y \cdot g(x) \in [-1, +1]$  the margin achieved on example (x, y).

New theory [Schapire, Freund, Bartlett, and Lee, 1998]:

- ▶ Larger margins  $\Rightarrow$  better generalization error, independent of T.
- ► AdaBoost tends to increase margins on training examples.

(Similar but not the same as SVM margins.)

#### BOOSTING THE MARGIN

Final classifier from AdaBoost:

$$f_{\mathsf{final}}(x) = \mathrm{sign}\underbrace{\left(\frac{\sum_{t=1}^{T} \alpha_t f_t(x)}{\sum_{t=1}^{T} |\alpha_t|}\right)}_{g(x) \in [-1,+1]}. \quad \begin{array}{l} \text{the normlizer has} \\ \text{no effect over} \\ \text{sign!} \end{array}$$

Call  $y \cdot g(x) \in [-1, +1]$  the margin achieved on example (x, y).

New theory [Schapire, Freund, Bartlett, and Lee, 1998]:

- ▶ Larger margins  $\Rightarrow$  better generalization error, independent of T.
- ► AdaBoost tends to increase margins on training examples. actually increase

(Similar but not the same as SVM margins.)

On "letters" dataset:

large margin

a different

|                |            | T=5  | T = 100 | T = 1000 | Lind of |
|----------------|------------|------|---------|----------|---------|
| training error |            | 0.0% | 0.0%    | 0.0%     | kind of |
| test error     |            | 8.4% | 3.3%    | 3.1%     | margin  |
| % margins <    | $\leq 0.5$ | 7.7% | 0.0%    | 0.0%     | _       |
| min. marg      | in         | 0.14 | 0.52    | 0.55     | _       |

#### LINEAR CLASSIFIERS

Regard function class  ${\mathcal F}$  used by weak learning algorithm as "feature functions":

$$x \mapsto \phi(x) := (f(x) : f \in \mathcal{F}) \in \{\pm 1\}^{\mathcal{F}}$$

(possibly infinite dimensional!).

#### Linear classifiers

# IFI is the size of feature functions' colletion

Regard function class  $\mathcal F$  used by weak learning algorithm as "feature functions":

$$x \mapsto \phi(x) := (f(x) : f \in \mathcal{F}) \in \{\pm 1\}^{\mathcal{F}}$$

(possibly infinite dimensional!).

AdaBoost's final classifier is a *linear classifier* in  $\{\pm 1\}^{\mathcal{F}}$ :

$$f_{\mathsf{final}}(x) = \mathrm{sign} \left( \sum_{t=1}^{T} \alpha_t f_t(x) \right) = \mathrm{sign} \left( \sum_{f \in \mathcal{F}} w_f f(x) \right) = \mathrm{sign}(\langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle)$$

where

$$w_f := \sum_{t=1}^{T} \alpha_t \mathbb{1}\{f_t = f\} \quad \forall f \in \mathcal{F}.$$

it's interesting!

#### EXPONENTIAL LOSS

AdaBoost is a particular "coordinate descent" algorithm for

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathcal{F}}} \qquad \frac{1}{|S|} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in S} \ell_{\exp}(\boldsymbol{y} \langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{x}) \rangle)$$

# actually an algorithm for solving loss\_exp target!!!

AdaBoost is a particular "coordinate descent" algorithm for

great!!!!

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathcal{F}}} \qquad \frac{1}{|S|} \sum_{(\boldsymbol{x}, y) \in S} \ell_{\text{exp}}(y \langle \boldsymbol{w}, \boldsymbol{\phi}(\boldsymbol{x}) \rangle)$$



#### **Exponential loss:**

$$\ell_{\exp}(z) = \exp(-z).$$

$$\mathbb{E}[\ell_{\mathrm{exp}}(Y\cdot g(x))|X=x]$$
 is minimized by

$$g(x) = \frac{1}{2} \ln \left( \frac{\eta(x)}{1 - \eta(x)} \right)$$

where 
$$\eta(x) = \Pr[Y = +1|X = x].$$

# APPLICATION: FACE DETECTION

Face detection

Problem: Given an image, locate all of the faces.



# APPLICATION: FACE DETECTION

#### Face detection

Problem: Given an image, locate all of the faces.



#### As a classification problem:

- ▶ Divide up images into patches (at varying scales, e.g.,  $24 \times 24$ ,  $48 \times 48$ ).
- ► Classify each patch as "face" or "not face".

# APPLICATION: FACE DETECTION

#### Face detection

Problem: Given an image, locate all of the faces.



#### As a classification problem:

- ▶ Divide up images into patches (at varying scales, e.g.,  $24 \times 24$ ,  $48 \times 48$ ).
- ► Classify each patch as "face" or "not face".

Many other things built on top of face detectors (e.g., face tracking, face recognizers); now in every digital camera and iPhoto/Picasa-like software.

Face detector architecture by Viola & Jones (2001): major achievement in computer vision; detector actually usable in real-time.

Face detector architecture by Viola & Jones (2001): major achievement in computer vision; detector actually usable in real-time.

▶ Think of each image patch ( $d \times d$ -pixel gray-scale) as a vector  $x \in [0,1]^{d^2}$ .

Face detector architecture by Viola & Jones (2001): major achievement in computer vision; detector actually usable in real-time.

- ▶ Think of each image patch ( $d \times d$ -pixel gray-scale) as a vector  $\boldsymbol{x} \in [0,1]^{d^2}$ .
- ▶ Used weak learning algorithm that picks linear classifiers  $f_{w,\theta}(x) = \operatorname{sign}(\langle w, x \rangle \theta)$ , where w has a very particular form:

Face detector architecture by Viola & Jones (2001): major achievement in computer vision; detector actually usable in real-time.

- ▶ Think of each image patch ( $d \times d$ -pixel gray-scale) as a vector  $x \in [0,1]^{d^2}$ .
- ▶ Used weak learning algorithm that picks linear classifiers  $f_{w,\theta}(x) = \operatorname{sign}(\langle w,x \rangle \theta)$ , where w has a very particular form:



 $\langle m{w}, m{x} 
angle =$  average pixel value in black box — average pixel value in white box

Face detector architecture by Viola & Jones (2001): major achievement in computer vision; detector actually usable in real-time.

- ▶ Think of each image patch ( $d \times d$ -pixel gray-scale) as a vector  $x \in [0,1]^{d^2}$ .
- ▶ Used weak learning algorithm that picks linear classifiers  $f_{w,\theta}(x) = \operatorname{sign}(\langle w,x \rangle \theta)$ , where w has a very particular form:



 $\langle m{w}, m{x} 
angle =$  average pixel value in black box — average pixel value in white box

Face detector architecture by Viola & Jones (2001): major achievement in computer vision; detector actually usable in real-time.

- ▶ Think of each image patch ( $d \times d$ -pixel gray-scale) as a vector  $x \in [0,1]^{d^2}$ .
- ▶ Used weak learning algorithm that picks linear classifiers  $f_{w,\theta}(x) = \operatorname{sign}(\langle w,x \rangle \theta)$ , where w has a very particular form:



 $\langle m{w}, m{x} 
angle =$  average pixel value in black box — average pixel value in white box

Face detector architecture by Viola & Jones (2001): major achievement in computer vision; detector actually usable in real-time.

- ▶ Think of each image patch  $(d \times d$ -pixel gray-scale) as a vector  $x \in [0,1]^{d^2}$ .
- ▶ Used weak learning algorithm that picks linear classifiers  $f_{w,\theta}(x) = \operatorname{sign}(\langle w, x \rangle \theta)$ , where w has a very particular form:



 $\langle m{w}, m{x} 
angle =$  average pixel value in black box - average pixel value in white box

Face detector architecture by Viola & Jones (2001): major achievement in computer vision; detector actually usable in real-time.

- ▶ Think of each image patch ( $d \times d$ -pixel gray-scale) as a vector  $\boldsymbol{x} \in [0,1]^{d^2}$ .
- ▶ Used weak learning algorithm that picks linear classifiers  $f_{w,\theta}(x) = \operatorname{sign}(\langle w, x \rangle \theta)$ , where w has a very particular form:



Face detector architecture by Viola & Jones (2001): major achievement in computer vision; detector actually usable in real-time.

- ▶ Think of each image patch ( $d \times d$ -pixel gray-scale) as a vector  $x \in [0,1]^{d^2}$ .
- ▶ Used weak learning algorithm that picks linear classifiers  $f_{w,\theta}(x) = \operatorname{sign}(\langle w,x \rangle \theta)$ , where w has a very particular form:



► Many possible "rules-of-thumb" of this form.

AdaBoost combines several of them to build an accurate classifier.

## VIOLA & JONES "INTEGRAL IMAGE" TRICK

#### "Integral image" trick:



For every image, pre-compute

 $s(r,c) = {\rm sum\ of\ pixel\ values\ in\ rectangle\ from\ } (0,0)\ {\rm to\ } (r,c)$  (single pass through image).

#### VIOLA & JONES "INTEGRAL IMAGE" TRICK

#### "Integral image" trick:



For every image, pre-compute

$$s(r,c) = {\rm sum\ of\ pixel\ values\ in\ rectangle\ from\ } (0,0)\ {\rm to\ } (r,c)$$
 (single pass through image).



To compute inner product

 $\langle {\pmb w}, {\pmb x} \rangle = \text{average pixel value in black box} \\ - \text{average pixel value in white box}$ 

just need to add and subtract a few  $\boldsymbol{s}(\boldsymbol{r},\boldsymbol{c})$  values.

#### VIOLA & JONES "INTEGRAL IMAGE" TRICK

#### "Integral image" trick:



For every image, pre-compute

 $s(r,c) = {\rm sum\ of\ pixel\ values\ in\ rectangle\ from\ } (0,0)\ {\rm to\ } (r,c)$  (single pass through image).



To compute inner product

 $\langle w,x 
angle =$  average pixel value in black box  $- ext{ average pixel value in white box}$ 

just need to add and subtract a few  $s(\boldsymbol{r},\boldsymbol{c})$  values.

⇒ Evaluating "rules-of-thumb" classifiers is **extremely fast**.

# VIOLA & JONES CASCADE ARCHITECTURE

Problem: severe class imbalance (most patches don't contain a face).

# VIOLA & JONES CASCADE ARCHITECTURE

Problem: severe class imbalance (most patches don't contain a face).

**Solution**: Train several classifiers (using AdaBoost), and arrange in a special kind of **decision list** called a **cascade**:



- ▶ Each  $f^{(\ell)}$  is trained (using AdaBoost), adjust threshold (before passing through sign) to minimize false negative rate.
- lackbox Can make  $f^{(\ell)}$  in later stages more complex than in earlier stages, since most examples don't make it to the end.

# VIOLA & JONES CASCADE ARCHITECTURE

Problem: severe class imbalance (most patches don't contain a face).

**Solution**: Train several classifiers (using AdaBoost), and arrange in a special kind of **decision list** called a **cascade**:



- ▶ Each  $f^{(\ell)}$  is trained (using AdaBoost), adjust threshold (before passing through sign) to minimize false negative rate.
- lackbox Can make  $f^{(\ell)}$  in later stages more complex than in earlier stages since most examples don't make it to the end.
- ⇒ (Cascade) classifier evaluation extremely fast.

# VIOLA & JONES DETECTOR: EXAMPLE RESULTS



#### More on Boosting

#### Many variants of boosting:

- AdaBoost.L and LogitBoost (replaces  $\ell_{
  m exp}$  with  $\ell_{
  m log}$ ).
- Forward-{step,stage}wise regression (replaces  $\ell_{
  m exp}$  with  $\ell_{
  m sq}$ ).
- Boosted decision trees = boosting + decision trees, often with  $\ell_{\rm sq}$ . (See ESL Chapter 10.)
- ▶ Boosting algorithms for *ranking* and *multi-class*.
- Boosting algorithms that are robust to certain kinds of noise.

#### Many connections between boosting and other subjects:

- ► Game theory, online learning
- ► Information geometry
- ► Computational complexity