Current options to index, represent, and visualize annotations in a pangenome with the vg toolkit

MIGGS workshop

Jean Monlong

Pangenome graph from assemblies

Built by aligning high-quality genomes, saved as paths through the pangenome.

Human Pangenome Reference Consortium (HPRC)

Annotations could be paths through the pangenome

Reference genome

Reference pangenome

How to represent those paths and index them efficiently?

(doing a minimum amount of work)

GAM format

- Reads aligned to a pangenome graph.
- Used by vg, GraphAligner, ...
- Binary/protobuf format, indexable but unwieldy.

Graph Alignment Format (GAF)

Text format describes mapping between sequences and a graph.

- First, query information: name, size, aligned range.
- Then, target information: path, size, aligned range.
- Finally, additional information: MAPQ, CIGAR, ...

Indexing genomic files with HTSlib

https://github.com/samtools/htslib

- Index text format on the genomic coordinates,
 e.g. chr:start-end.
 - For example: VCF, BED, SAM/BAM, GFF
- Sorted by chr, then start, then end.
- Compressed with BGZIP (~block gzip).
- Fast extraction of slices.

Indexing using minimum/maximum node IDs

Assumes node IDs are sorted integers.

```
read_name_9 100 0 100 + <3222<3221<3220<3219 128 18 117 100 1
```

- "genomic range": 3219-3222.
- Same as current strategy for GAM files.
- Modified HTSlib (bgzip/tabix) to index based on min/max ID.
- Modified vg gamsort to sort GAFs based on min/max ID.

New commands available

Sorting a GAF file

```
vg gamsort -G reads.gaf.gz | bgzip > reads.sorted.gaf.gz
```

Indexing sorted bgzipped GAF

tabix -p gaf reads.sorted.gaf.gz

Extracting a node interval

```
tabix reads.sorted.gaf.gz {node}:20034-20158
```

Sorting short sequencing reads

Illumina 30x short reads for HG002, aligned to the HPRC pangenome with vg giraffe.

Format	Time (H:M:S)	Max. memory used (Kb)	File size (Gb)
GAM	11:46:58	6,236.60	108
GAF	6:50:28	1,904.83	52

Faster, less memory, and smaller files using GAF.

Projecting annotation to the pangenome

Input annotation relative to one haplotype (BED or GFF), present in the pangenome (path)

```
vg annotate -x pg.gbz -f genes.hapH.gff -F > genes.hapH.gaf
```

Application

Projected the HPRC v1 assemblies' annotations:

- ~4M gene annotations in ~16 mins
- ~5.5M repeats from RepeatMasker in ~9 mins

Visualization with the sequenteTubemap

Interactively query a subgraph and aligned reads.

Recently modified to accept indexed GAF files.

https://github.com/vgteam/sequenceTubemap

Coding sequence (CDS) for two haplotypes in the HPRC pangenome.

Haplotypes: CHM13 (purple), HG00621 (greys). Annotated CDS for HG00621 hap 1 (reds) and 2 (blues).

Visualization with Bandage?

BandageNG can color nodes by paths, **present in the input** graph (GFA).

https://github.com/asl/BandageNG

- 1. Optional: extract subgraph for the region of interest.
 - vg chunkorodgi extract
- 2. Add the external annotation as paths in the graph file.
 - vg augment -BF subgraph.pg annot.gaf.gz
 - vg convert -f augmented.pg > augmented.gfa
- 3. Open with BandageNG, search path by name, color nodes.

Mobile element insertion

Node color: *blue* for the reference path, *orange* for the AluYa5 transposon.

Projecting variants to the pangenome

Custom scripts to (try to) find and annotate known variants in the pangenome.

Application

- GWAS hits and eQTLs from GTEx
 - ~500Mb bgzipped GAF file for ~75M variants
- Genotype calls from short reads.

Annotating the GWAS catalog and eQTLs

black: Reference path (GRCh38), *pale colors*: other human haplotypes, *reds*: GWAS catalog, *blues*: eQTLs across tissues (GTEx)

Annotating genotype calls

E.g. to investigate supporting reads.

yellow/green: annotation paths from vg call genotypes. reds/blues: short sequencing reads

Summarizing read coverage

E.g. for epigenomics tracks.

On the linear genome:

Summarizing read coverage

- Re-analyzing ENCODE ATAC-seq data across a few tissues.
- Implemented a naive approach to bin read coverage.
 - 1. Split the coverage in bins, e.g. (0, 5, 30, +)
 - 2. Extend them to create paths of contiguous bins.

Coverage of ATAC-seq data from ENCODE

Reads from 7 cell types aligned with vg giraffe to the HPRC pangenome.

Compressed view (no sequence shown, node size not to scale).

Reference paths CHM13/GRCh38 (*black/grey*) and ATAC-seq coverage track for different tissues (*colors*). Opacity represents coverage level.

Conclusion

GAF files can now be sorted/indexed, and then queried fast.

Limitations

- Indexing relies on integer compact node IDs
 - Output of Minigraph-Cactus/PGGB, otherwise convert with vg/odgi
- Designed for short paths
- Ugly metadata handling: all in a name
- Requires annotations of the input genomes
- In general, we need more efficient visualization tools

Acknowledgments

Adam M. Novak, Dickson Chung, Glenn Hickey, Sarah Djebali, Toshiyuki T. Yokoyama, Erik Garrison, Benedict Paten.

Manuscript in preparation + analysis + talk:

https://github.com/jmonlong/manu-vggafannot

Questions?

Compact sorted node IDs through graph sorting

Graph sorting aims to find the best node order for a 1D and 2D layout.

https://odgi.readthedocs.io/en/latest/rst/tutorials/sort_layout.html