Feuille 5,

Courbes algébriques

Ensembles Algébriques Projectifs, Anneaux de valuation discrète, Diviseurs

Exercice 1 Soit $V = \mathbb{A}^1_k$.

- 1. Pour tout $x \in V$, montrer que $k[V]_x$ est un anneau de valuation discrète et trouver une uniformisante.
- 2. Pour x=1, calculer les valuations dans $\mathsf{k}[V]_x$ des éléments suivants : $X-1, X+1, (X-1)^3, X^3-1.$
- 3. Montrer que l'anneau $\{F/G \in \mathsf{k}(V) \mid \deg(G) \geq \deg(F)\}$ est un anneau de valuation discrète, et trouver une uniformisante.

Exercice 2 Détérminer les fonctions régulières sur $U = \mathbb{P}^1 \setminus V(X^2 - Y^2)$.

Exercice 3 Soit $V = V(X^3 + X^2Z - Y^2Z) \subseteq \mathbb{P}^2$.

- 1. Montrer que C est une variété projective de dimension 1.
- 2. Quels sont les points singuliers de C?
- 3. Déterminer le domaine de définition de l'application rationnelle

$$C\to \mathbb{P}^1, \quad [x,,y,z]\to [y,z].$$

Exercice 4 Soit φ l'application rationnelle de \mathbb{P}^1 dans \mathbb{P}^3 définie par :

$$\varphi([x,y]) = [x^3, x^2y, xy^2, y^3].$$

On note C l'image de φ dans \mathbb{P}^3 .

- 1. Quel est le domaine de définition de φ ?
- 2. Montrer que C=V(I), où $I=(XT-YZ,Y^2-XZ,Z^2-YT).$
- 3. Montrer que I(C) = I.
- 4. Montrer que C est une courbe lisse.
- 5. Déterminer $V(XT YZ, Y^2 XZ)$.

Exercice 5 Trouver les points singuliers des variétés projectives suivantes.

- 1. $V = V(X^2 + Y^2 Z^2) \subseteq \mathbb{P}^2$. 2. $V = V(X^3 Y^2Z) \subseteq \mathbb{P}^2$.
- 3. $V = V(F) \subseteq \mathbb{P}^n$, où $F \in \mathsf{k}[X_0, \dots, X_n]$ est un polynôme homogène.

Exercice 6 Montrer que $\varphi:V(Y^2Z-X^3)\to \mathbb{P}^1$ donné par $\varphi([x,y,z])=[x^2,y^2]$ est un morphisme de variétés projectives.

Exercice 7 Détérminer les fonctions régulières sur $U = \mathbb{P}^1 \setminus V(X^2 - Y^2)$.

Exercice 8 Calculer les diviseurs principaux associés aux fonctions rationnelles sur \mathbb{P}^1 :

$$\frac{X^2 + XY + Y^2}{X^2 + Y^2}, \quad \frac{X^2 + XY + Y^2}{XY + Y^2}, \quad \frac{X^2 + 2XY + Y^2}{XY + Y^2}.$$

Exercice 9 Calculer $\operatorname{div}(f)$ pour $f = X/Y \in \mathsf{k}(C)$ avec :

- 2. $C = V(XY Z^2) \subseteq \mathbb{P}^2$ 3. $C = V(ZY^2 X^3 Z^3) \subseteq \mathbb{P}^2$.

Exercice 10 Montrer que tout diviseur principal de \mathbb{P}^1 est de deégré 0, puis que tout diviseur de degré 0 sur \mathbb{P}^1 est principal.

Exercice 11 Soit $C = \mathbb{P}^1$, $p \in C$ un point, D = np, $n \in \mathbb{Z}$. Trouver une base pour $\mathcal{L}(D)$.

Exercice 12 Soit k un corps algébriquement clos, de caractéristique 0. Soit $C = V(F) \subseteq \mathbb{P}^2$ donné par

$$F = Z^4 + Y^4 - X^4$$
.

- i. Montrer que C est une courbe projective lisse.
- ii. Pour $g \in \{\frac{Z}{V-V}, \frac{Y}{V-V}, \frac{X}{V-V}\} \subseteq k(C)$, calculer $\operatorname{div}_0(g)$ et $\operatorname{div}_\infty(g)$.
- Trouver tous les diviseurs effectifs D sur C tels que $\frac{Z}{X-Y} \in \mathcal{L}(D)$.
- Trouver un diviseur effectif D tel que $\frac{Z}{X-Y}, \frac{Y}{X-Y}, \frac{X}{X-Y} \in \mathcal{L}(D)$. Montrer que $\dim(D) > 3$.

Exercice 13 On suppose que k est un corps de caract'eristique nulle. Soit $C = V(Y^2Z - X^3 - XZ^2) \subset \mathbb{P}^2.$

1. Déterminer la dimension de C et le lieu singulier de C. Pour $[\lambda, \mu, \nu] \in \mathbb{P}^2$, on note $L_{\lambda\mu\nu}$ la droite d'equation $\lambda X + \mu Y + \nu Z = 0$. Si $p \in C$ est un point, on note $v_p(L_{\lambda\mu\nu})$ la valuation de $\lambda X + \mu Y + \nu Z$ au point p, c'est-à-dire sa valuation dans l'anneau de valuation discrète $k[C]_p$. On note $D_{[\lambda,\mu,\nu]}$ le diviseur suivant:

$$D_{[\lambda,\mu,\nu]} = \sum_{p \in C} v_p(L_{\lambda\mu\nu})p.$$

- 2. Déterminer les diviseurs $D_{[1,0,0]}$, $D_{[0,1,0]}$, $D_{[0,0,1]}$. Quels sont leurs degrés ?
- 3. Montrer que tous les $D_{[\lambda,\mu,\nu]}$ sont tous égaux à un diviseur principal près.
- 4. Montrer que dim $\mathcal{L}(D_{[1,0,0]}) \geq 3$. Que peut-on déduire sur le genre de C?
- 5. Soit $f = X/Z \in \mathsf{k}(C)$. Déterminrer le degré $[\mathsf{k}(C) : \mathsf{k}(f)]$.

Exercice 14 Soit k un corps. On considère l'application

$$\mathbb{P}^2 \times \mathbb{P}^1 \to \mathbb{P}^5, ([x_0, x_1, x_2], [y_0, y_1]) \mapsto [z_{00}, z_{01}, z_{10}, z_{11}, z_{20}, z_{21}],$$

où $z_{ij} = x_i y_j$, avec $i \in \{0, 1, 2\}$, $j \in \{0, 1\}$. On identifie $\mathbb{P}^2 \times \mathbb{P}^1$ avec son image Z dans \mathbb{P}^5 . L'ensemble Z est un ensemble projectif algébrique avec equations $z_{ij} z_{ab} = z_{ib} z_{aj}$ $(i, a \in \{0, 1, 2\}, j, b \in \{0, 1\})$. On considère $\mathbb{A}^2 \times \mathbb{P}^1 \subseteq \mathbb{P}^2 \times \mathbb{P}^1$ avec la topologie de Zariski induite. Soit

$$X = \{ ((x_1, x_2), [y_0, y_1]) \in \mathbb{A}^2 \times \mathbb{P}^1 \mid x_1 y_1 = x_2 y_0 \},$$

$$U_0 = \{ ((x_1, x_2), [y_0, y_1]) \in X \mid y_0 \neq 0 \} \subseteq X,$$

$$U_1 = \{ ((x_1, x_2), [y_0, y_1]) \in X \mid y_1 \neq 0 \} \subseteq X.$$

Soit $\pi: X \to \mathbb{A}^2$ l'application $\pi((x_1, x_2), [y_0, y_1]) = (x_1, x_2)$. On dénote $p = (0, 0) \in \mathbb{A}^2$, $E = \pi^{-1}(p)$.

- i. Montrer que U_0 et U_1 sont isomorphes à \mathbb{A}^2 .
- ii. Montrer que π est une application régulière en montrant que les restrictions $\pi_{|U_0}$ et $\pi_{|U_1}$ sont des applications régulières.
- iii. Montrer que $\pi: X \setminus E \to \mathbb{A}^2 \setminus \{p\}$ est un isomorphisme.
- iv. Montrer que l'application rationnelle inverse $\pi^{-1}:\mathbb{A}^2\dashrightarrow X$ n'est pas régulière en p.
- v. Montrer qu'il y a une bijection entre l'ensemble des droites dans \mathbb{A}^2 qui passent par p et les points de E.
- vi. Soit $f \in k[x_1, x_2]$ le polynôme $f(x_1, x_2) = x_2 x_1 + x_1^2$. Soit $C = V(f) \subseteq \mathbb{A}^2$. Montrer que C est une courbe lisse. Soit $\tilde{C} \subseteq X$ l'adhérence de $\pi^{-1}(C \setminus \{p\})$. Montrer que $\pi^{-1}(C) = \tilde{C} \cup E$ et que \tilde{C} est isomorphe à C.
- vii. Soit $f \in k[x_1, x_2]$ le polynôme $f(x_1, x_2) = x_2^2 x_1^2 + x_1^3$. Soit $C = V(f) \subseteq \mathbb{A}^2$. Montrer que C est une courbe singulière. Soit $\tilde{C} \subseteq X$ l'adhérence de $\pi^{-1}(C \setminus \{p\})$. Montrer que \tilde{C} n'est pas isomorphe à C.