#### (12)特許協力条約に基づいて公開された国際出願

#### (19) 世界知的所有権機関 国際事務局



# | 1957| 1866|| | 1967|| 1867|| 1867|| 1867|| 1867|| 1867|| 1868|| 1868|| 1867|| 1867|| 1867|| 1867|| 1867|| 1867||

(43) 国際公開日 2004 年9 月16 日 (16.09.2004)

**PCT** 

## (10) 国際公開番号 WO 2004/078208 A1

(51) 国際特許分類<sup>7</sup>: A61K 39/395, 38/00, 45/00, 48/00, A61P 9/00, 25/00, 43/00, G01N 33/15, 33/50

(21) 国際出願番号:

PCT/JP2004/002774

(22) 国際出願日:

2004年3月4日(04.03.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2003-106247

特願2003-056885

2003 年3 月4 日 (04.03.2003) JF 2003 年4 月10 日 (10.04.2003) JF

(71) 出願人(米国を除く全ての指定国について): 武田薬品工業株式会社 (TAKEDA CHEMICAL INDUSTRIES, LTD.) [JP/JP]; 〒5410045 大阪府大阪市中央区道修町四丁目1番1号 Osaka (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 新谷 靖 (SHINTANI, Yasushi) [JP/JP]; 〒5600005 大阪府豊中市西緑丘2丁目9-1-501 Osaka (JP). 太田 浩之(OHTA, Hiroyuki) [JP/JP]; 〒5610874 大阪府豊中市長興寺南1丁目4-14-303 Osaka (JP). 寺尾寧子(TERAO, Yasuko) [JP/JP]; 〒6580063 兵庫県神戸市東灘区住吉山手2丁目6-1-2-E Hyogo (JP). 清田義弘 (KIYOTA, Yoshihiro) [JP/JP]; 〒6512243 兵庫県神戸市西区井吹台西町3丁目21-18 Hyogo (JP).
- (74) 代理人: 高橋 秀一,外(TAKAHASHI, Shuichi et al.); 〒5320024 大阪府大阪市淀川区十三本町2丁目17番 85号 武田薬品工業株式会社大阪工場内 Osaka (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR,

/続葉有]

(54) Title: MEDICINAL USE OF MIP-3 lpha INHIBITOR AND METHOD OF SCREENING BRAIN/NERVE CELL PROTECTIVE AGENT

(54) 発明の名称: ΜΙΡ-3α抑制薬の医薬用途および脳・神経細胞保護剤のスクリーニング方法





- a...BRAIN INFARCTION VOLUME (mm3)
- b...CONTROL ANTIBODY
- c...ANTI-MIP-3 a ANTIBODY
- d...\*p<0.05: COMPARISON WITH CONTROL ANTIBODIES (STUDENT t-test)

(57) Abstract: It is intended to provide a brain/nerve cell protective agent which contains a substance lowering the expression and/or activity of MIP-3  $\alpha$  (for example, anti-MIP-3  $\alpha$  antibody or antisense nucleic acid to MIP-3  $\alpha$ ); a diagnostic for brain/nerve cell damage which contains the above-described antibody or a nucleic acid encoding MIP-3  $\alpha$ ; a method of screening a substance having an effect of protecting brain/nerve cell with the use of MIP-3  $\alpha$  and/or CCR6, a nucleic acid encoding MIP-3  $\alpha$  or CCR6 or an antibody against MIP-3  $\alpha$  or CCR6; a kit therefor, etc.

(57) 要約:本発明は、MIP-3 $\alpha$ の発現および/または活性を低下させる物質、例えば、抗MIP-3 $\alpha$ 抗体やMIP-3 $\alpha$ のアンチセンス核酸を含有してなる脳・神経細胞保護剤、該抗体やMIP-3 $\alpha$ をコードする核酸を含有してなる脳・神経細胞傷害の診断薬、MIP-3 $\alpha$ および/またはCCR6、MIP-3 $\alpha$ またはCCR6をコードする核酸、あるいはMIP-3 $\alpha$ またはCCR6に対する抗体を用いた脳・神経細胞保護作用を有する物質のスクリーニング方法、並びにそのためのキットなどを提供する。



BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG,

KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### 添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

#### 明細書

MIP-3α抑制薬の医薬用途および脳・神経細胞保護剤のスクリーニング方法

#### 技術分野

本発明は、新規な脳・神経細胞保護剤、特に脳梗塞、脳出血、くも膜下出血などの脳血管障害、あるいは頭部外傷の予防および治療に有効な該保護剤に関する。本発明はまた、脳血管障害、頭部外傷等の脳・神経細胞傷害の診断薬に関する。さらに、本発明は、脳・神経細胞保護作用を有する物質のスクリーニング方法およびそのためのキットに関する。

10

15

20

25

5

#### 背景技術

脳血管障害は、日米欧において死因の第2~3位、また重症後遺症の原因の第1位を占める医療経済的損失の大きい疾患である。現在のところ、一部の脳塞栓症および脳血栓症患者に対して積極的原因治療(tPAなど)が行われているが、治療タイムウインドーの制限からその対象は患者全体の数パーセントにとどまっている。ほとんどの場合は、抗脳浮腫および再発・拡大抑制(抗血栓薬)を目的とした維持療法が施されるのみで根治、脳保護を目的とした有効な薬剤はない。

従来より、中枢神経系細胞が虚血ストレスに対して脆弱であることは良く認識されていることであり、脳虚血モデルを用いた基礎実験によると、神経細胞はわずか数分の虚血によっても不可逆的な障害を受けて死に至ると言われてきた。このことが脳卒中臨床の現場において大きな絶望感をもたらしてきたことは否めない。しかしながら近年、神経科学領域での精力的な研究により、虚血負荷時には個々の細胞レベルでの様々なストレス応答、神経細胞とグリア細胞間のクロストーク、さらにはプログラムされた細胞死など、解決できうる可能性を秘めた種々の側面が明らかにされてきており、より積極的な治療戦略の糸口に繋がるものとして大いに期待されている。

しかしながら、現在までに各種の作用機序を有する開発品、例えばグルタメート拮

10

15

20

25

抗薬、カルシウム拮抗薬、抗酸化剤などが多数試みられてきたが、ことごとく臨床試験に失敗している。日本国内においては、抗酸化剤であるラジカット/RADICUT(登録商標、三菱ウェルファーマ社)が承認されているが、本剤は海外で上市されておらず、ワールドワイドな脳保護薬は未だないのが現状である。

脳卒中患者の集中治療体制の充実にともない、臨床で有効性が見直された脳保護療法として脳低温療法がある。脳低温療法は、脳の温度(脳温)を32~35℃に低下させて維持するというものであり、顕著な脳保護効果があることから次第に注目を浴びるようになっている。しかし、本療法は集中治療施設と複数の医療スタッフの24時間集中管理が求められるので、一般的な治療法としての普及は難しい。

遺伝子発現を網羅的に解析するために、cDNAまたはオリゴヌクレオチドを固定化したマイクロアレイ法が開発され、疾患特異的な遺伝子発現の変化を見出す技術が普及し、その有用性が確認されている。例えば、Affymetrix社のGeneChipシステムは、癌などの疾患の診断や創薬標的遺伝子の発見に多用されつつある。実際に、脳虚血に伴って特異的に発現が亢進される遺伝子やタンパク質、あるいは特異的に発現が抑制される遺伝子やタンパク質を見出し、そこから脳血管障害に対する治療薬や診断薬を創出する試みが行われている。例えば、インターロイキン $1\beta$  ( $IL-1\beta$ )や腫瘍壊死因子 ( $TNF\alpha$ ) などの炎症性サイトカインは脳虚血時の梗塞部位で発現が上昇していることが知られており、これらサイトカインに対する受容体拮抗剤は脳血管障害急性期治療薬として検討されている。

MIP-3  $\alpha$  (LARC (liver and activation-regulated chemokine)、Exodus、ST38、CCL20とも呼ばれる。本明細書においては「MIP-3  $\alpha$ 」と表記する)は、1997年に複数の研究室から報告されたCCケモカインの1種である(例えば、非特許文献1参照)。このタンパク質のラットホモログは、脳虚血モデルの大脳皮質において発現が上昇する遺伝子として単離され、アレルギー性脳脊髄炎モデルにおいて、その発現は炎症の発症および治療効果と相関して増減することが報告されている(特許文献1、非特許文献2)。

また、 $MIP-3\alpha$ 受容体であるCCR6をノックアウトしたマウスでは腸での体液性免疫が低下することから、 $MIP-3\alpha/CCR6$ シグナル伝達系がリンパ球の輸送および活性化に関与することが示唆されている(特許文献 2)。

5 特許文献1:国際公開第98/49309号パンフレット

特許文献2:国際公開第01/17558号パンフレット

非特許文献 1:ヒエシマ (Hieshima) ら、「ジャーナル・オブ・バイオロジカル・ケミストリー (J. Biol. Chem.)」、米国、1997年、第272巻、p.5846-5853

非特許文献 2:ウータンスーシュナイツ (Utans-Schneitz) ら, 「ジャーナル・オブ
10 ・ニューロイムノロジー (J. Neuroimmunol.)」, 蘭国, 1998年, 第92巻, p.179-190

## 発明の開示

現在、脳血管障害の治療は、ほとんどの場合X線CTまたはMRI画像診断などの確定診断を待って行う必要があり、そのことが治療タイムウインドーを制限している。従って、病型を選ばず、確定診断を必要としない新規な脳血管障害予防・治療手段の確立が切望されている。

本発明の目的は、安全で優れた脳血管障害の予防・治療剤を提供することである。 また、本発明の別の目的は、脳血管障害の予防・治療効果を有する物質の簡便かつ有 効なスクリーニング方法を提供することである。

20

25

15

本発明者らは、上記の目的を達成するために、ラット脳虚血モデルを用いて低体温療法の特性を検証するとともに、マイクロアレイ法を用いて低体温療法の主作用機序を担うと考えられるターゲット遺伝子を追求した。その結果、脳虚血ラットモデルにおいて一過性局所虚血後の再灌流時に顕著に発現が増加し、かつ低体温処置を施すことによって脳保護効果と並行して発現誘導が著しく抑制される遺伝子としてMIPー3 α遺伝子を見出した。

さらに、本発明者らは、脳虚血ラットの脳室内に抗M I P - 3  $\alpha$  抗体を投与してM I P - 3  $\alpha$  の活性を抑制することにより、梗塞体積が著しく縮小することを確認した

また、本発明者らは、ラットCCR6遺伝子を新たにクローニングし、得られた c DNAの塩基配列を基にPCR法によりラット局所脳虚血モデルでの脳組織における CCR6遺伝子の発現と低体温処置による発現減少の有無を調べた結果、CCR6遺伝子は一過性局所虚血後の再灌流時に顕著に発現が増加し、低体温処置による脳保護 効果と並行して発現が著しく抑制されることを見出した。本発明者らは、これらの知見に基づいてさらに検討を重ねた結果、本発明を完成するに至った。

10 すなわち、本発明は、

5

20

- [1]配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質またはその塩を抑制する物質を含有してなる脳・神経細胞保護剤、
- [2]配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のア 15 ミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質または その塩の活性を低下させる物質を含有してなる脳・神経細胞保護剤、
  - [3] 活性を低下させる物質が、配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質もしくはその部分ペプチドまたはその塩に対する中和抗体である上記[2]記載の脳・神経細胞保護剤、
  - [4]配列番号: 2、4または6で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドをコードする遺伝子の発現を阻害する物質を含有してなる脳・神経細胞保護剤、
- [5] 発現を阻害する物質が、配列番号: 2、4または6で表されるアミノ酸配列と 同一もしくは実質的に同一のアミノ酸配列を有するポリペプチドをコードする塩基配 列に相補的な塩基配列またはその一部を含有する核酸である上記[4]記載の脳・神

経細胞保護剤、

5

15

20

- [6]配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質もしくはその部分ペプチドまたはその塩に対する抗体を含有してなる脳・神経細胞傷害の診断薬、
- [7]配列番号: 2、4または6で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドをコードする塩基配列またはその一部を含有する核酸を含有してなる脳・神経細胞傷害の診断薬、
- [8]配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のア 10 ミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質または その塩と、それに対する受容体との結合を阻害する物質を含有してなる脳・神経細胞 保護剤、
  - [9]配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質またはその塩に対する受容体の細胞刺激活性を阻害する物質を含有してなる脳・神経細胞保護剤、
    - [10]配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質またはその塩に対する受容体をコードする遺伝子の発現を阻害する物質を含有してなる脳・神経細胞保護剤、
    - [11] 受容体が、配列番号8または10で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質またはその塩である上記[8]~[10]のいずれか1項に記載の脳・神経細胞保護剤、
- [12]配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降の 25 アミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質もし くはその部分ペプチドまたはその塩を用いることを特徴とする脳・神経細胞保護作用

20

を有する物質のスクリーニング方法、

- [13]配列番号:8または10で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質もしくはその部分ペプチドまたはその塩を用いることを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング方法、
- 5 [14]配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質もしくはその部分ペプチドまたはその塩を含有することを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング用キット、
- [15]配列番号:8または10で表されるアミノ酸配列と同一もしくは実質的に同 10 一のアミノ酸配列を含有するタンパク質もしくはその部分ペプチドまたはその塩を含 有することを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング用キッ ト、
  - [16]配列番号: 2、4または6で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドをコードする塩基配列またはその一部を含有する核酸を用いることを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング方法、
  - [17] 配列番号:8または10で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドをコードする塩基配列またはその一部を含有する核酸を用いることを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング方法、
  - [18]配列番号: 2、4または6で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドをコードする塩基配列またはその一部を含有する核酸を含有することを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング用キット、
- 25 [19] 配列番号:8または10で表されるアミノ酸配列と同一もしくは実質的に同 一のアミノ酸配列を含有するポリペプチドをコードする塩基配列またはその一部を含

有する核酸を含有することを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング用キット、

[20] 脳または神経細胞の保護方法であって、それを必要とする対象に、配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質またはその塩を抑制する物質を投与することを含む方法、

[21] 脳・神経細胞保護剤を製造するための、配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質またはその塩を抑制する物質の使用、

10 などを提供する。

5

15

20

## 図面の簡単な説明

図1は、ラット脳虚血モデルの梗塞巣中心部(A)および辺縁部(B)における再 灌流後のM I P - 3  $\alpha$  遺伝子の発現の経時変化、およびそれに及ぼす低体温処置の効 果を示す図である。図中、C はコントロール、即ち無処置ラット脳由来のc DNAを 鋳型とした場合である。

図2は、ラット脳虚血モデルにおいて、中和活性を有する抗ラットMIP-3 αモノクローナル抗体の脳梗塞容積に及ぼす効果を示す図である。Aは虚血処置直前に抗体を投与したラットから虚血処置1日後に摘出した脳における梗塞容積、Bは虚血後再灌流の直後に抗体を投与したラットにおける2日後の脳梗塞容積をそれぞれ示す。図中、\*はStudent t-testにより、コントロール抗体群に対してp<0.05であることを示す。

図3は、ラット脳虚血モデルの梗塞巣中心部(NA)および辺縁部(NB)における再灌流後のMIP-3 αタンパク質の産生の経時変化、およびそれに及ぼす低体温 25 処置の効果 [梗塞巣中心部(HA),辺縁部(HB)]を示す図である。図中、Nはコントロール、即ち無処置ラット脳由来の可溶化画分を示す。

図4は、ラット脳虚血モデルの梗塞巣中心部(A)および辺縁部(B)における再 灌流後のCCR6遺伝子の発現の経時変化、およびそれに及ぼす低体温処置の効果を 示す図である。図中、Cはコントロール、即ち無処置ラット脳由来のcDNAを鋳型 とした場合である。

5

10

15

20

25

#### 発明を実施するための最良の形態

本発明は、 $MIP-3\alpha$ 抑制薬を含有してなる脳・神経細胞保護剤に関する。ここで「 $MIP-3\alpha$ 」とは、配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質をいい、「 $MIP-3\alpha$ 抑制薬」とは、 $MIP-3\alpha$ の発現および/または活性を直接的もしくは間接的に低下させる物質をいう。また、「 $MIP-3\alpha$ の発現および/または活性を直接的もしくは間接的に低下させる物質をいう。また、「 $MIP-3\alpha$ 0発現および/または神経細胞係害を受けた、あるいは受けるおそれのある脳細胞および/または神経細胞が細胞死に至るのを阻止する(もしくは少なくとも遅延させる)作用をいい、細胞傷害の原因等には特に制限されない。

配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質(以下、「本発明のMIP-3α」または単に「MIP-3α」と称することもある)は、ヒトまたは他の温血動物(例えば、モルモット、ラット、マウス、ニワトリ、ウサギ、ブタ、ヒツジ、ウシ、サルなど)の細胞[例えば、肝細胞、脾細胞、神経細胞、グリア細胞、膵臓β細胞、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、杯細胞、内皮細胞、平滑筋細胞、繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、単球)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨細胞、骨細胞、砂骨細胞、乳腺細胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もしくはガン細胞など]もしくはそれらの細胞が存在するあらゆる組織「例えば、脳、脳の各部位(例、嗅球、扁桃核、大脳基底球、海馬、視床、視床下部

10

15

20

25

、大脳皮質、延髄、小脳)、脊髄、下垂体、胃、膵臓、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管(例、大腸、小腸)、血管、心臓、胸腺、脾臓、顎下腺、末梢血、前立腺、睾丸、卵巣、胎盤、子宮、骨、関節、骨格筋など]に由来するタンパク質であってもよく、また、化学合成もしくは無細胞翻訳系で合成されたタンパク質であってもよい。あるいは上記アミノ酸配列をコードする塩基配列を有するポリヌクレオチドを導入された形質転換体から産生された組換えタンパク質であってもよい。

配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と実質的に同一のアミノ酸配列としては、配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列のいずれかと約50%以上、好ましくは約60%以上、さらに好ましくは約70%以上、より好ましくは約80%以上、特に好ましくは約90%以上、最も好ましくは約95%以上の相同性を有するアミノ酸配列などが挙げられる。

配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と実質的に同一のアミノ酸配列を含有するタンパク質としては、例えば、前記の配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と実質的に同一のアミノ酸配列を含有し、配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸配列中アミノ酸配列を含有するタンパク質と実質的に同質の活性を有するタンパク質などが好ましい。

実質的に同質の活性としては、例えば、シグナル情報伝達活性、受容体結合活性などが挙げられる。実質的に同質とは、それらの性質が性質的に(例、生理学的に、または薬理学的に)同質であることを示す。したがって、シグナル情報伝達活性または受容体結合活性が同等(例、約0.01~100倍、好ましくは約0.1~10倍、より好ましくは0.5~2倍)であることが好ましいが、これらの活性の程度、タンパク質の分子量などの量的要素は異なっていてもよい。

シグナル情報伝達活性の測定は、自体公知の方法に準じて行う。例えば、CCR6

10

15

20

25

発現細胞に対する刺激活性(例えば、CCR6を介した細胞内cAMP濃度の上昇、細胞内 $Ca^2$  + の遊離、イノシトールリン酸の産生、細胞膜電位の変動、細胞内蛋白質のリン酸化もしくは脱リン酸化、c-fosの活性化、pHo低下などを促進する活性または抑制する活性)を、公知の方法により測定する。具体的には、<math>CCR6をコードするDNAを挿入したプラスミドを、例えばチャイニーズ・ハムスター卵巣細胞(例、<math>CHO-K1細胞;ジャーナル・オブ・イクスペリメンタル・メディシン(J. Exp. Med.)108巻、945頁、1958年に記載)に導入し、CCR6を高発現させたCHO-K1細胞を、 $MIP-3\alpha$ の存在下で培養し、細胞膜上に発現したCCR6を介するシグナル情報伝達活性(例えば、細胞内cAMP濃度の上昇もしくは低下、細胞内 $Ca^{2+}$ の遊離、イノシトールリン酸の産生、細胞膜電位の変動、細胞内蛋白質のリン酸化もしくは脱リン酸化、CCR6の活性化、CCR6の活性化、CCR6の活性または抑制する活性など)を公知の方法により測定する。

受容体結合活性の測定は、自体公知の方法に準じて行うことができる。例えば、( 1)標識したMIP-3  $\alpha$  タンパク質をCCR 6 を発現する細胞または該細胞の膜画分に接触させ、標識したMIP-3  $\alpha$  タンパク質の該細胞または該膜画分に対する結合量を測定する、(2)標識したMIP-3  $\alpha$  タンパク質を、CCR 6 タンパク質をコードするDNAを含有する形質転換体を培養することによって細胞膜上に発現した該タンパク質に接触させ、標識したMIP-3  $\alpha$  の該細胞または該膜画分に対する結合量を測定することにより受容体結合活性が測定できる。

上記の活性測定で使用されるCCR6をコードするDNAとしては、配列番号8または10あるいは配列番号14で表されるアミノ酸配列と同一または実質的に同一のアミノ酸配列を含有するタンパク質をコードするDNAが挙げられる(例えば、Babaら、ジャーナル・オブ・バイオロジカル・ケミストリー(J. Biol. Chem.) 272巻、14898頁、1997年参照)。

10

20

25

(好ましくは、 $1 \sim 30$  個程度、より好ましくは $1 \sim 10$  個程度、さらに好ましくは数  $(1 \sim 5)$  個)のアミノ酸が欠失したアミノ酸配列、②配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列に、1または2 個以上(好ましくは、 $1 \sim 30$  個程度、より好ましくは $1 \sim 10$  個程度、さらに好ましくは数  $(1 \sim 5)$  個)のアミノ酸が付加したアミノ酸配列、③配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列に、1または2 個以上(好ましくは、 $1 \sim 30$  個程度、より好ましくは $1 \sim 10$  個程度、さらに好ましくは数  $(1 \sim 5)$  個)のアミノ酸が挿入されたアミノ酸配列、④配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列のうち、1または2 個以上(好ましくは、 $1 \sim 30$  個程度、より好ましくは $1 \sim 10$  個程度、さらに好ましくは数  $(1 \sim 5)$  個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、または $1 \sim 10$  ののアミノ酸配列、または $1 \sim 10$  ののアミノ酸配列。または $1 \sim 10$  ののアミノ酸配列。または $1 \sim 10$  ののアミノ酸配列。または $1 \sim 10$  ののアミノ酸配列を含有するタンパク質などのいわゆるムテインも含まれる。

上記のようにアミノ酸配列が挿入、欠失または置換されている場合、その挿入、欠 15 失または置換の位置としては、とくに限定されない。

本明細書におけるタンパク質は、ペプチド標記の慣例に従って左端がN末端(アミノ末端)、右端がC末端(カルボキシル末端)である。配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列を含有するタンパク質をはじめとする本発明のMIP-3  $\alpha$  は、C末端がカルボキシル基(-COOH)、カルボキシレート( $-COO^-$ )、アミド( $-CONH_2$ )またはエステル(-COOR)の何れであってもよい。

ここでエステルにおけるRとしては、例えば、メチル、エチル、 $n-プロピル、イソプロピル、<math>n-プチルなどのC_{1-6}$  アルキル基、例えば、シクロペンチル、シクロヘキシルなどの $C_{3-8}$  シクロアルキル基、例えば、フェニル、 $\alpha-ナフチルなどのC_{6-12}$  アリール基、例えば、ベンジル、フェネチルなどのフェニルー $C_{1-2}$  アルキル基もしくは $\alpha-ナフチルメチルなどの\alpha-ナフチルー<math>C_{1-2}$  アルキル基など

10

15

25

のCィー、4アラルキル基、ピパロイルオキシメチル基などが用いられる。

さらに、本発明で用いられるタンパク質には、N末端のアミノ酸残基(例、メチオニン残基)のアミノ基が保護基(例えば、ホルミル基、アセチル基などの $C_{1-6}$  アルカノイルなどの $C_{1-6}$  アシル基など)で保護されているもの、生体内で切断されて生成するN末端のグルタミン残基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基(例えば-OH、-SH、アミノ基、イミダゾール基、インドール基、グアニジノ基など)が適当な保護基(例えば、ホルミル基、アセチル基などの $C_{1-6}$  アルカノイル基などの $C_{1-6}$  アシル基など)で保護されているもの、あるいは糖鎖が結合したいわゆる糖タンパク質などの複合タンパク質なども含まれる。

本発明のMIP-3  $\alpha$ の好ましい具体例としては、例えば、配列番号:2で表されるアミノ酸配列中アミノ酸番号1~70で示されるアミノ酸配列からなる成熟ヒトMIP-3  $\alpha$ 、配列番号:4で表されるアミノ酸配列中アミノ酸番号1~71で示されるアミノ酸配列からなる成熟ラットMIP-3  $\alpha$ 、または配列番号:6で表されるアミノ酸配列中アミノ酸番号1~70で示されるアミノ酸配列からなる成熟マウスMIP-3  $\alpha$ などがあげられる。

20 本発明のMIP-3αの部分ペプチドとしては、前記した本発明のMIP-3αの 部分アミノ酸配列を有するペプチドであって、好ましくは、本発明のMIP-3αと 実質的に同質の活性を有するものであればいずれのものでもよい。実質的に同質の活性としては、例えば、シグナル情報伝達活性、受容体結合活性、エピトープ活性など が挙げられる。実質的に同質とは上記と同義である。

例えば、本発明の $MIP-3\alpha$ の構成アミノ酸配列のうち少なくとも20個以上、 好ましくは30個以上、さらに好ましくは40個以上、より好ましくは50個以上の

15

20

部分アミノ酸配列を有するペプチドなどが用いられる。

また、本発明のMIP-3  $\alpha$ の部分ペプチドは、そのアミノ酸配列中の1または2個以上(好ましくは、 $1\sim1$ 0個程度、さらに好ましくは数( $1\sim5$ )個)のアミノ酸が欠失し、または、そのアミノ酸配列に1または2個以上(好ましくは、 $1\sim2$ 0個程度、より好ましくは $1\sim1$ 0個程度、さらに好ましくは数( $1\sim5$ )個)のアミノ酸が付加し、または、そのアミノ酸配列に1または2個以上(好ましくは、 $1\sim2$ 0個程度、より好ましくは $1\sim1$ 0個程度、さらに好ましくは数( $1\sim5$ )個)のアミノ酸が挿入され、または、そのアミノ酸配列中の1または2個以上(好ましくは、 $1\sim1$ 0個程度、さらに好ましくは数( $1\sim5$ ) 個程度)のアミノ酸が他のアミノ酸で置換されていてもよい。

また、本発明のMIP-3  $\alpha$ の部分ペプチドはC末端がカルボキシル基(-COOH)、カルボキシレート(-COOH)、アミド( $-CONH_2$ )またはエステル(-COOR)の何れであってもよい。ここでエステルにおけるRとしては、本発明のMIP-3  $\alpha$ について前記したと同様のものが挙げられる。本発明のMIP-3  $\alpha$ の部分ペプチドがC末端以外にカルボキシル基(またはカルボキシレート)を有している場合、カルボキシル基がアミド化またはエステル化されているものも該部分ペプチドに含まれる。この場合のエステルとしては、例えば上記したC末端のエステルなどが用いられる。

さらに、該部分ペプチドには、前記した本発明のMIP-3αと同様に、N末端のアミノ酸残基(例、メチオニン残基)のアミノ基が保護基で保護されているもの、N端側が生体内で切断され生成したグルタミン残基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基が適当な保護基で保護されているもの、あるいは糖鎖が結合したいわゆる糖ペプチドなどの複合ペプチドなども含まれる。

本発明のM I P - 3  $\alpha$  の部分ペプチドは抗体作成のための抗原としても用いること 25 ができる。

本発明のMIP-3αまたはその部分ペプチドは遊離体であっても、塩の形態であ

20

25

ってもよい。塩としては、酸または塩基との生理学的に許容される塩が挙げられ、と りわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無 機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸)との塩、あるいは有機酸(例えば 、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸 、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ペンゼンスルホン酸)との塩など が用いられる。

本発明のMIP-3αまたはその塩は、前述したヒトまたは他の温血動物の細胞ま たは組織から自体公知のタンパク質の精製方法によって製造することができる。具体 的には、ヒトや他の温血動物の組織または細胞をホモジナイズした後、酸などで抽出 10 を行ない、該抽出液を逆相クロマトグラフィー、イオン交換クロマトグラフィーなど のクロマトグラフィーを組み合わせることにより精製単離することができる。

本発明のMIP-3αもしくはその部分ペプチドまたはその塩、またはそのアミド 体の合成には、通常市販のタンパク質合成用樹脂を用いることができる。そのような 樹脂としては、例えば、クロロメチル樹脂、ヒドロキシメチル樹脂、ペンズヒドリル 15 アミン樹脂、アミノメチル樹脂、4-ベンジルオキシベンジルアルコール樹脂、4-メチルベンズヒドリルアミン樹脂、PAM樹脂、4-ヒドロキシメチルメチルフェニ ルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4-(2',4'-ジメトキ シフェニルーヒドロキシメチル)フェノキシ樹脂、4-(2',4'-ジメトキシフ ェニル-Fmocアミノエチル)フェノキシ樹脂などを挙げることができる。このよ うな樹脂を用い、αーアミノ基と側鎖官能基を適当に保護したアミノ酸を、目的とす るタンパク質の配列通りに、自体公知の各種縮合方法に従い、樹脂上で縮合させる。 反応の最後に樹脂からタンパク質または部分ペプチドを切り出すと同時に各種保護基 を除去し、さらに高希釈溶液中で分子内ジスルフィド結合形成反応を実施し、目的の タンパク質もしくは部分ペプチドまたはそれらのアミド体を取得する。

上記した保護アミノ酸の縮合に関しては、タンパク質合成に使用できる各種活性化 試薬を用いることができるが、特に、カルボジイミド類がよい。カルボジイミド類と

10

15

しては、DCC、N, N'-ジイソプロピルカルボジイミド、N-エチル-N'-(3 ージメチルアミノプロリル)カルボジイミドなどが用いられる。これらによる活性化 にはラセミ化抑制添加剤 (例えば、HOBt, HOOBt) とともに保護アミノ酸を 直接樹脂に添加するかまたは、対称酸無水物またはHOBtエステルあるいはHOO Btエステルとしてあらかじめ保護アミノ酸の活性化を行なった後に樹脂に添加する ことができる。

保護アミノ酸の活性化や樹脂との縮合に用いられる溶媒としては、タンパク質縮合 反応に使用しうることが知られている溶媒から適宜選択されうる。例えば、N,N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、N-メチルピロリドンなど の酸アミド類、塩化メチレシ、クロロホルムなどのハロゲン化炭化水素類、トリフル オロエタノールなどのアルコール類、ジメチルスルホキシドなどのスルホキシド類、 ピリジン、ジオキサン、テトラヒドロフランなどのエーテル類、アセトニトリル、プ ロピオニトリルなどのニトリル類、酢酸メチル、酢酸エチルなどのエステル類あるい はこれらの適宜の混合物などが用いられる。反応温度はタンパク質結合形成反応に使 用され得ることが知られている範囲から適宜選択され、通常約−20℃~50℃の範 囲から適宜選択される。活性化されたアミノ酸誘導体は通常1.5~4倍過剰で用いら れる。ニンヒドリン反応を用いたテストの結果、縮合が不十分な場合には保護基の脱 離を行なうことなく縮合反応を繰り返すことにより十分な縮合を行なうことができる 。反応を繰り返しても十分な縮合が得られないときには、無水酢酸またはアセチルイ 20 ミダゾールを用いて未反応アミノ酸をアセチル化することによって、後の反応に影響 を与えないようにすることができる。

原料の反応に関与すべきでない官能基の保護ならびに保護基、およびその保護基の 脱離、反応に関与する官能基の活性化などは公知の基または公知の手段から適宜選択 しうる。

原料のアミノ基の保護基としては、例えば、Z、Boc、tーペンチルオキシカル 25 ボニル、イソボルニルオキシカルボニル、4-メトキシベンジルオキシカルボニル、

10

15

25

C1-Z、Br-Z、アダマンチルオキシカルポニル、トリフルオロアセチル、フタロイル、ホルミル、2-ニトロフェニルスルフェニル、ジフェニルホスフィノチオイル、Fmocなどが用いられる。

カルボキシル基は、例えば、アルキルエステル化(例えば、メチル、エチル、プロピル、プチル、tープチル、シクロペンチル、シクロペキシル、シクロヘプチル、シクロオクチル、2ーアダマンチルなどの直鎖状、分枝状もしくは環状アルキルエステル化)、アラルキルエステル化(例えば、ベンジルエステル、4ーニトロベンジルエステル、4ーメトキシベンジルエステル、4ークロロベンジルエステル、ベンズヒドリルエステル化)、フェナシルエステル化、ベンジルオキシカルボニルヒドラジド化、tープトキシカルボニルヒドラジド化、トリチルヒドラジド化などによって保護することができる。

セリンの水酸基は、例えば、エステル化またはエーテル化によって保護することができる。このエステル化に適する基としては、例えば、アセチル基などの低級(C<sub>1</sub>-6)アルカノイル基、ベンゾイル基などのアロイル基、ベンジルオキシカルボニル基、エトキシカルボニル基などの炭酸から誘導される基などが用いられる。また、エーテル化に適する基としては、例えば、ベンジル基、テトラヒドロピラニル基、tーブチル基などである。

チロシンのフェノール性水酸基の保護基としては、例えば、Bz1、 $C1_2-Bz$ 1、2-ニトロベンジル、Br-Z、t-プチルなどが用いられる。

20 ヒスチジンのイミダゾールの保護基としては、例えば、Tos、4-メトキシ-2 , 3, 6-トリメチルベンゼンスルホニル、<math>DNP、ベンジルオキシメチル、Bum、Boc、Trt、Fmocなどが用いられる。

保護基の除去(脱離)方法としては、例えば、Pd-黒あるいはPd-炭素などの 触媒の存在下での水素気流中での接触還元や、また、無水フッ化水素、メタンスルホ ン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸あるいはこれらの混合液な どによる酸処理や、ジイソプロピルエチルアミン、トリエチルアミン、ピペリジン、

20

25

ピペラジンなどによる塩基処理、また液体アンモニア中ナトリウムによる還元なども用いられる。上記酸処理による脱離反応は、一般に約-20℃~40℃の温度で行なわれるが、酸処理においては、例えば、アニソール、フェノール、チオアニソール、メタクレゾール、パラクレゾール、ジメチルスルフィド、1,4ープタンジチオール、1,2-エタンジチオールなどのようなカチオン捕捉剤の添加が有効である。また、ヒスチジンのイミダゾール保護基として用いられる2,4ージニトロフェニル基はチオフェノール処理により除去され、トリプトファンのインドール保護基として用いられるホルミル基は上記の1,2-エタンジチオール、1,4ープタンジチオールなどの存在下の酸処理による脱保護以外に、希水酸化ナトリウム溶液、希アンモニアなどによるアルカリ処理によっても除去される。

原料のカルボキシル基の活性化されたものとしては、例えば、対応する酸無水物、アジド、活性エステル [アルコール (例えば、ペンタクロロフェノール、2, 4, 5 ートリクロロフェノール、2, 4ージニトロフェノール、シアノメチルアルコール、パラニトロフェノール、HONB、Nーヒドロキシスクシミド、Nーヒドロキシフタルイミド、HOB t) とのエステル] などが用いられる。原料のアミノ基の活性化されたものとしては、例えば、対応するリン酸アミドが用いられる。

タンパク質または部分ペプチドのアミド体を得る別の方法としては、例えば、まず、カルボキシ末端アミノ酸のα-カルボキシル基をアミド化して保護した後、アミノ基側にペプチド (タンパク質) 鎖を所望の鎖長まで延ばした後、該ペプチド鎖のN末端のα-アミノ基の保護基のみを除いたタンパク質または部分ペプチドとC末端のカルボキシル基の保護基のみを除去したタンパク質または部分ペプチドとを製造し、これらのタンパク質またはペプチドを上記したような混合溶媒中で縮合させる。縮合反応の詳細については上記と同様である。縮合により得られた保護タンパク質またはペプチドを精製した後、上記方法によりすべての保護基を除去し、所望の粗タンパク質またはペプチドを得ることができる。この粗タンパク質またはペプチドは既知の各種精製手段を駆使して精製し、主要画分を凍結乾燥することで所望のタンパク質または

10

15

ペプチドのアミド体を得ることができる。

タンパク質またはペプチドのエステル体を得るには、例えば、カルボキシ末端アミノ酸のα-カルボキシル基を所望のアルコール類と縮合しアミノ酸エステルとした後、タンパク質またはペプチドのアミド体と同様にして、所望のタンパク質またはペプチドのエステル体を得ることができる。

本発明のM I P-3  $\alpha$  の部分ペプチドまたはその塩は、自体公知のペプチドの合成法に従って、あるいは本発明のM I P-3  $\alpha$  を適当なペプチダーゼで切断することによって製造することができる。ペプチドの合成法としては、例えば、固相合成法、液相合成法のいずれによっても良い。すなわち、本発明のM I P-3  $\alpha$  の部分ペプチドを構成し得る部分ペプチドもしくはアミノ酸と残余部分とを縮合させ、生成物が保護基を有する場合は保護基を脱離することにより目的のペプチドを製造することができる。公知の縮合方法や保護基の脱離としては、例えば、以下の①~⑤に記載された方法が挙げられる。

- ①M. Bodanszky および M.A. Ondetti、ペプチド・シンセシス (Peptide Synthesis), Interscience Publishers, New York (1966年)
- ②SchroederおよびLuebke、ザ・ペプチド(The Peptide), Academic Press, New York (1965年)
- ③泉屋信夫他、ペプチド合成の基礎と実験、丸善(株) (1975年)
- ④矢島治明 および榊原俊平、生化学実験講座 1、 タンパク質の化学IV、205、(197720 年)
  - ⑤矢島治明監修、続医薬品の開発、第14巻、ペプチド合成、広川書店

また、反応後は通常の精製法、例えば、溶媒抽出・蒸留・カラムクロマトグラフィー・液体クロマトグラフィー・再結晶などを組み合わせて該部分ペプチドを精製単離することができる。上記方法で得られる部分ペプチドが遊離体である場合は、公知の方法あるいはそれに準じる方法によって適当な塩に変換することができるし、逆に塩で得られた場合は、公知の方法あるいはそれに準じる方法によって遊離体または他の

10

15

塩に変換することができる。

さらに、本発明の $MIP-3\alpha$ またはその部分ペプチドは、本発明の $MIP-3\alpha$ またはその部分ペプチドをコードするDNAを含有する形質転換体を培養し、得られ る培養物から本発明のMIP-3αまたはその部分ペプチドを分離精製することによ って製造することもできる。あるいは、本発明のMIP-3αまたはその部分ペプチ ドは、該DNAに対応するRNAを鋳型として、ウサギ網状赤血球ライセート、コム ギ胚芽ライセート、大腸菌ライセートなどからなる無細胞蛋白質翻訳系を用いてイン ピトロ翻訳することによっても合成することができる。あるいは、さらにRNAポリ メラーゼを含む無細胞転写/翻訳系を用いて、該DNAを鋳型としても合成すること ができる。

本発明のΜΙΡ-3αまたはその部分ペプチドをコードするポリヌクレオチドとし ては、前述した本発明のΜΙΡ-3αまたはその部分ペプチドをコードする塩基配列 を含有するものであればいかなるものであってもよい。好ましくはDNAである。ま た、ゲノムDNA、ゲノムDNAライブラリー、前記した細胞・組織由来のCDNA 、前記した細胞・組織由来のCDNAライブラリー、合成DNAのいずれでもよい。 ライブラリーに使用するベクターは、パクテリオファージ、プラスミド、コスミド・ 、ファージミドなどいずれであってもよい。また、前記した細胞・組織よりtotalRN AまたはmRNA画分を調製したものを用いて直接Reverse Transcriptase Polymeras e Chain Reaction (以下、RT-PCR法と略称する) によって増幅することもでき 20 る。

本発明のMIP-3αをコードするDNAとしては、例えば、配列番号:1、3ま たは5で表される塩基配列を含有するDNA、または配列番号:1、3または5で表 される塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を含 有し、前記した配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1 以降のアミノ酸配列を含有するタンパク質と実質的に同質の活性を有するタンパク質 25 をコードするDNAであれば何れのものでもよい。

10

15

20

配列番号: 1、3または5で表される塩基配列とハイストリンジェントな条件下でハイブリダイズできるDNAとしては、例えば、配列番号: 1、3または5で表される塩基配列と約50%以上、好ましくは約60%以上、さらに好ましくは約70%以上、より好ましくは約80%以上、特に好ましくは約90%以上、最も好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

ハイブリダイゼーションは、自体公知の方法あるいはそれに準じる方法、例えば、 モレキュラー・クローニング (Molecular Cloning) 2 nd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989) に記載の方法などに従って行なうことができる。 また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って 行なうことができる。より好ましくは、ハイストリンジェントな条件に従って行なう ことができる。

ハイストリンジェントな条件とは、例えば、ナトリウム濃度が約 $19\sim40\,\mathrm{mM}$ 、好ましくは約 $19\sim20\,\mathrm{mM}$ で、温度が約 $50\sim70\,\mathrm{C}$ 、好ましくは約 $60\sim65\,\mathrm{C}$ の条件を示す。特に、ナトリウム濃度が約 $19\,\mathrm{mM}$ で温度が約 $65\,\mathrm{C}$ の場合が最も好ましい。

より好ましくは、本発明のMIP-3 $\alpha$ をコードするDNAは、配列番号:1、3または5で表される塩基配列を含有するDNAである。

本発明のMIP-3  $\alpha$ の部分ペプチドをコードするDNAは、配列番号 2、4または 6 で表されるアミノ酸配列中アミノ酸番号 1 以降のアミノ酸配列の一部と同一もしくは実質的に同一のアミノ酸配列をコードする塩基配列を含み、前記した本発明のMIP-3  $\alpha$ と実質的に同質の活性(例、シグナル情報伝達活性、受容体結合活性、エピトープ活性など)を有するペプチドをコードするDNAであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、上記した細胞・組織由来の c DNAライブラリー、合成DNAのいずれでもよい。ライブラリーに使用するベクターは、バクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。また、上記した細胞・組織

よりmRNA画分を調製したものを用いて直接RT-PCR法によって増幅することもできる。

具体的には、本発明のMIPー3 $\alpha$ の部分ペプチドをコードするDNAとしては、例えば、(1)配列番号1、3または5で表される塩基配列を有するDNAの部分塩基配列を有するDNA、または(2)配列番号1、3または5で表される塩基配列を有するDNAとハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、該DNAにコードされるアミノ酸配列を含むタンパク質と実質的に同質の活性(例:シグナル情報伝達活性、受容体結合活性、エピトープ活性など)を有するペプチドをコードするDNAなどが用いられる。

10 配列番号:1、3または5で表される塩基配列とハイブリダイズできるDNAは、 前記と同意義を示す。

15

20

25

ハイブリダイゼーションの方法およびハイストリンジェントな条件は前記と同様の ものが用いられる。

本発明のMIP-3  $\alpha$ またはその部分ペプチドをコードするDNAは、該タンパク質またはペプチドをコードする塩基配列の一部分を有する合成DNAプライマーを用いてPCR法によって増幅するか、または適当なベクターに組み込んだDNAを、本発明のMIP-3  $\alpha$ の一部あるいは全領域をコードするDNA断片もしくは合成DNAを標識したものとハイブリダイゼーションすることによってクローニングすることができる。ハイブリダイゼーションは、例えば、モレキュラー・クローニング(Molecular Cloning)第2版(前述)に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、ハイブリダイゼーションは、該ライブラリーに添付された使用説明書に記載の方法に従って行なうことができる。

DNAの塩基配列は、公知のキット、例えば、Mutan<sup>TM</sup>-super Express Km(宝酒造 (株))、Mutan<sup>TM</sup>-K(宝酒造 (株))等を用いて、ODA-LA PCR法、Gapped duplex法、Kunkel法等の自体公知の方法あるいはそれらに準じる方法に従って変換することができる。

20

クローン化されたDNAは、目的によりそのまま、または所望により制限酵素で消化するか、リンカーを付加した後に、使用することができる。該DNAはその5、末端側に翻訳開始コドンとしてのATGを有し、また3、末端側には翻訳終止コドンとしてのTAA、TGAまたはTAGを有していてもよい。これらの翻訳開始コドンや翻訳終止コドンは、適当な合成DNAアダプターを用いて付加することができる。

本発明の $MIP-3\alpha$ またはその部分ペプチドをコードするDNAを含有する発現ベクターは、例えば、(イ)本発明の $MIP-3\alpha$ またはその部分ペプチドをコードするDNAから目的とするDNA断片を切り出し、(ロ)該DNA断片を適当な発現ベクター中のプロモーターの下流に連結することにより製造することができる。

発現ベクターとしては、大腸菌由来のプラスミド(例、pBR322, pBR325, pUC12, pUC13);枯草菌由来のプラスミド(例、pUB110, pTP5, pC194);酵母由来プラスミド(例、pSH19, pSH15); λファージなどのバクテリオファージ; レトロウイルス, ワクシニアウイルス, バキュロウイルスなどの動物ウイルス; pA1-11、pXT1、pRc/CMV、pRc/RSV、pcDNAI/Neoなどが用いられる。

プロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーター であればいかなるものでもよい。

例えば、宿主が動物細胞である場合、 $SR\alpha$ プロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、HSV-TKプロモーターなどが用いられる。なかでも、CMVプロモーター、 $SR\alpha$ プロモーターなどが好ましい。

宿主がエシェリヒア属菌である場合、t r p プロモーター、1 a c プロモーター、r e c A プロモーター、 $\lambda$   $P_L$  プロモーター、1 p p プロモーター、T 7 プロモーター ーなどが好ましい。

25 宿主がバチルス属菌である場合、SPO1プロモーター、SPO2プロモーター、penPプロモーターなどが好ましい。

10

15

20

宿主が酵母である場合、PHO5プロモーター、PGKプロモーター、GAPプロ モーター、ADHプロモーターなどが好ましい。

宿主が昆虫細胞である場合、ポリヘドリンプロモーター、P10プロモーターなどが好ましい。

発現ベクターには、上記の他に、所望によりエンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、SV40複製オリジン(以下、SV400 riと略称する場合がある)などを含有しているものを用いることができる。選択マーカーとしては、例えば、ジヒドロ葉酸還元酵素(以下、dhfrと略称する場合がある)遺伝子〔メソトレキセート(MTX)耐性〕、アンピシリン耐性遺伝子(以下、Amprと略称する場合がある)、ネオマイシン耐性遺伝子(以下、Neorと略称する場合がある、G418耐性)等が挙げられる。特に、dhfr遺伝子欠損チャイニーズハムスター細胞を用い、dhfr遺伝子を選択マーカーとして使用する場合、目的遺伝子をチミジンを含まない培地によって選択することもできる。

また、必要に応じて、宿主に合ったシグナル配列を、ネイティブなシグナル配列(例えば、配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号-1以前のアミノ酸配列など)の代わりに、本発明のMIP-3  $\alpha$ またはその部分ペプチドのN端末側に付加してもよい。宿主がエシェリヒア属菌である場合、PhoA・シグナル配列、0mpA・シグナル配列などが;宿主がパチルス属菌である場合、 $\alpha$ -アミラーゼ・シグナル配列、サブチリシン・シグナル配列などが;宿主が酵母である場合、MF  $\alpha$ ・シグナル配列、SUC2・シグナル配列などが;宿主が動物細胞である場合、インシュリン・シグナル配列、 $\alpha$ -インターフェロン・シグナル配列、抗体分子・シグナル配列などがそれぞれ用いられる。

上記のようにして得られる「本発明のMIP-3αまたはその部分ペプチドをコードするDNA」を含有する形質転換体は、公知の方法に従い、該DNAを含有する発現ベクターで、宿主を形質転換することによって製造することができる。ここで、発現ベクターとしては、前記したものが挙げられる。

10

15

20

25

宿主としては、例えば、エシェリヒア属菌、バチルス属菌、酵母、昆虫細胞、昆虫 、動物細胞などが用いられる。

エシェリヒア属菌の具体例としては、例えば、エシェリヒア・コリ (Bscherichia c oli) K12・DH1 [プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 60 巻, 160(1968)], JM103 [ヌクイレック・アシッズ・リサーチ (Nucleic Acids Research), 9巻, 309(1981)], JA221 [ジャーナル・オブ・モレキュラー・バイオロジー (Journal of Molecular Biology), 120巻, 517(1978)], HB101 [ジャーナル・オブ・モレキュラー・バイオロジー, 41巻, 459(1969)], C600 [ジェネティックス (Genetics), 39巻, 440(1954)] などが用いられる。

バチルス属菌としては、例えば、バチルス・サブチルス(Bacillus subtilis)MI
114 [ジーン, 24巻, 255(1983)], 207-21 [ジャーナル・オブ・
バイオケミストリー (Journal of Biochemistry), 95巻, 87(1984)] などが
用いられる。

酵母としては、例えば、サッカロマイセス セレビシエ (Saccharomyces cerevisia e) AH22, AH22R<sup>-</sup>, NA87-11A, DKD-5D, 20B-12、シゾ・サッカロマイセス ポンベ (Schizosaccharomyces pombe) NCYC1913, NCYC2036、ピキア パストリス (Pichia pastoris) KM71などが用いられる。

昆虫細胞としては、例えば、ウイルスがAcNPVの場合は、夜盗蛾の幼虫由来株化細胞(Spodoptera frugiperda cell; S f 細胞)、Trichoplusia niの中腸由来のMG1細胞、Trichoplusia niの卵由来のHigh Five™細胞、Mamestra brassicae由来の細胞またはBstigmena acrea由来の細胞などが用いられる。ウイルスがBmNPVの場合は、蚕由来株化細胞(Bombyx mori N 細胞; BmN細胞)などが用いられる。該S f 細胞としては、例えば、S f 9 細胞(ATCC CRL1711)、S f 2 1 細胞(以上、Vaugh n、J.L.ら、イン・ヴィボ(In Vivo)、13、213-217、(1977))などが用いられる。

15

20

25

昆虫としては、例えば、カイコの幼虫などが用いられる〔前田ら、ネイチャー(Nature), 315巻, 592(1985)〕。

動物細胞としては、例えば、サル細胞COS-7, Vero, チャイニーズハムスター細胞CHO(以下、CHO細胞と略記), dhfr遺伝子欠損チャイニーズハムスター細胞CHO(以下、CHO( $dhfr^-$ )細胞と略記), マウスし細胞, マウスAtT-20, マウスミエローマ細胞, マウスATDC5細胞, ラットGH3, ヒトFL細胞などが用いられる。

形質転換は、宿主の種類に応じ、公知の方法に従って実施することができる。 エシェリヒア属菌は、例えば、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンジイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 69巻, 2110(1972)やジーン (Gene), 17巻, 107(1982)などに記載の方法に従って形質転換することができる。

バチルス属菌は、例えば、モレキュラー・アンド・ジェネラル・ジェネティックス (Molecular & General Genetics), 168巻, 111(1979)などに記載の方法 に従って形質転換することができる。

酵母は、例えば、メソッズ・イン・エンザイモロジー(Methods in Enzymology), 194巻, 182-187 (1991)、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー(Proc. Natl. Acad. Sci. USA), 75巻, 1929(1978)などに記載の方法に従って形質転換することができる。

昆虫細胞および昆虫は、例えば、バイオ/テクノロジー (Bio/Technology),6,47-55(1988)などに記載の方法に従って形質転換することができる。

動物細胞は、例えば、細胞工学別冊8 新細胞工学実験プロトコール. 263-267 (1995) (秀潤社発行)、ヴィロロジー (Virology), 52巻, 456(1973)に記載の方法に従って形質転換することができる。

形質転換体の培養は、宿主の種類に応じ、公知の方法に従って実施することができ

る。

5

10

15

25

例えば、宿主がエシェリヒア属菌またはバチルス属菌である形質転換体を培養する場合、培養に使用される培地としては液体培地が好ましい。また、培地は、形質転換体の生育に必要な炭素源、窒素源、無機物などを含有することが好ましい。ここで、炭素源としては、例えば、グルコース、デキストリン、可溶性澱粉、ショ糖などが;窒素源としては、例えば、アンモニウム塩類、硝酸塩類、コーンスチープ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液などの無機または有機物質が;無機物としては、例えば、塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウムなどがそれぞれ挙げられる。また、培地には、酵母エキス、ビタミン類、牛長促進因子などを添加してもよい。培地のpHは、好ましくは約5~8である。

宿主がエシェリヒア属菌である形質転換体を培養する場合の培地としては、例えば、グルコース、カザミノ酸を含むM 9 培地〔ミラー(Miller),ジャーナル・オブ・エクスペリメンツ・イン・モレキュラー・ジェネティックス(Journal of Experiment s in Molecular Genetics),431-433,Cold Spring Harbor Laboratory,New York 1972〕が好ましい。必要により、プロモーターを効率よく働かせるために、例えば、 $3\beta-$ インドリルアクリル酸のような薬剤を培地に添加してもよい。

宿主がエシェリヒア属菌である形質転換体の培養は、通常約 $15\sim43$  $\mathbb{C}$ で、約 $3\sim24$ 時間行なわれる。必要により、通気や撹拌を行ってもよい。

宿主がパチルス属菌である形質転換体の培養は、通常約30~40℃で、約6~2 20 4時間行なわれる。必要により、通気や撹拌を行ってもよい。

宿主が酵母である形質転換体を培養する場合の培地としては、例えば、バークホールダー (Burkholder) 最小培地 [Bostian, K. L. ら、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci. USA), 77巻, 4505(1980)] や0.5%カザミノ酸を含有するSD培地 [Bitter, G. A. ら、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユーエスエー (Proc. Natl. Acad. Sci.

20

25

USA), 81巻, 5330(1984)〕などが挙げられる。培地のpHは、好ましくは約 $5\sim8$ である。培養は、通常約20 $\nabla\sim35$  $\nabla$ で、約 $24\sim72$ 時間行なわれる。必要に応じて、通気や撹拌を行ってもよい。

宿主が昆虫細胞または昆虫である形質転換体を培養する場合の培地としては、例えばGrace's Insect Medium (Grace, T.C.C.,ネイチャー (Nature),195,788(1962)) に非働化した 10% のかか血清等の添加物を適宜加えたものなどが用いられる。培地の p Hは、好ましくは約 6.  $2\sim6$ . 4である。培養は、通常約 2 7  $\mathbb C$  で、約  $3\sim5$  日間行なわれる。必要に応じて通気や撹拌を行ってもよい。

宿主が動物細胞である形質転換体を培養する場合の培地としては、例えば、約5~20%の胎児牛血清を含むMEM培地〔サイエンス(Science), 122巻, 501(1952)], DMEM培地〔ヴィロロジー(Virology), 8巻, 396(1959)], RPMI 1640培地〔ジャーナル・オブ・ザ・アメリカン・メディカル・アソシエーション(The Journal of the American Medical Association)199巻, 519(1967)], 199培地〔プロシージング・オブ・ザ・ソサイエティ・フォー・ザ・バイオロジカル・メディスン(Proceeding of the Society for the Biological Medicine), 73巻, 1(1950)]などが用いられる。培地のpHは、好ましくは約6~8である。培養は、通常約30℃~40℃で、約15~60時間行なわれる。必要に応じて通気や撹拌を行ってもよい。

以上のようにして、形質転換体の細胞内、細胞膜または細胞外に本発明のMIP-3αまたはその部分ペプチドを生成せしめることができる。

上記培養物から本発明のMIP-3αまたはその部分ペプチドを分離精製するには、例えば、下記の方法により行なうことができる。

本発明のMIP-3 αまたはその部分ペプチドを培養菌体あるいは細胞から抽出するに際しては、培養後、公知の方法で菌体あるいは細胞を集め、これを適当な緩衝液に懸濁し、超音波、リゾチームおよび/または凍結融解などによって菌体あるいは細胞を破壊したのち、遠心分離やろ過によりタンパク質 (ペプチド)の粗抽出液を得る

10

15

20

方法などが適宜用いられる。緩衝液の中に尿素や塩酸グアニジンなどの蛋白質変性剤や、トリトンX-100<sup>™</sup>などの界面活性剤が含まれていてもよい。培養液中にタンパク質(ペプチド)が分泌される場合には、培養終了後、それ自体公知の方法で菌体あるいは細胞と上清とを分離し、上清を集める。

このようにして得られた培養上清、あるいは抽出液中に含まれるタンパク質 (ペプチド)の精製は、自体公知の分離・精製法を適切に組み合わせて行なうことができる。これらの公知の分離、精製法としては、塩析や溶媒沈澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、およびSDSーポリアクリルアミドゲル電気泳動法などの主として分子量の差を利用する方法、イオン交換クロマトグラフィーなどの荷電の差を利用する方法、アフィニティークロマトグラフィーなどの特異的親和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、等電点電気泳動法などの等電点の差を利用する方法などが用いられる。

かくして得られるタンパク質(ペプチド)が遊離体の場合には、自体公知の方法あるいはそれに準じる方法によって塩に変換することができ、逆に塩で得られた場合には自体公知の方法あるいはそれに準じる方法により、遊離体または他の塩に変換することができる。

なお、組換え体が産生するタンパク質(ペプチド)を、精製前または精製後に適当な蛋白修飾酵素を作用させることにより、任意に修飾を加えたり、ポリペプチドを部分的に除去することもできる。蛋白修飾酵素としては、例えば、トリプシン、キモトリプシン、アルギニルエンドペプチダーゼ、プロテインキナーゼ、グリコシダーゼなどが用いられる。

かくして生成する本発明のM I P = 3  $\alpha$  またはその部分ペプチドの存在は、それらに対する特異的抗体を用いたエンザイムイムノアッセイやウエスタンブロッティングなどにより測定することができる。

10

15

20

ウサギ網状赤血球ライセート、コムギ胚芽ライセート、大腸菌ライセートなどからなる無細胞蛋白質翻訳系を用いてインピトロ翻訳することによっても合成することができる。あるいは、さらにRNAポリメラーゼを含む無細胞転写/翻訳系を用いて、本発明の蛋白質またはその部分ペプチドをコードするDNAを鋳型としても合成することができる。

後記実施例において示される通り、MIP-3 αは脳虚血時にその遺伝子発現が顕著に上昇し、低体温療法による治療効果と相関して著しく減少する。さらにMIP-3 αに対する中和抗体の投与により脳虚血モデルにおける梗塞体積が顕著に縮小することから、本発明のMIP-3 α抑制薬は、脳・神経細胞保護効果、特に脳血管障害や頭部外傷に際しての脳・神経細胞保護効果を有する。したがって、該物質は、脳細胞・神経細胞を細胞傷害から保護することが予防・治療上有効な疾患の予防・治療に有用である。かかる疾患としては、例えば、脳血管障害(例、脳梗塞、脳出血、くも膜下出血など)や頭部外傷、ならびに、同様に脳・神経細胞の障害に起因する、心停止後蘇生時の脳障害、脳手術前および後の脳機能低下、低酸素症、低血糖、脳または脊髄の外傷、薬物中毒、ガス中毒、糖尿病、抗腫瘍剤投与、アルコール等による神経系の障害;アルツハイマー病等の老年性痴呆症;パーキンソン病;ハンチントン舞踏病;プリオン病;筋萎縮性側索硬化症;脊髄小脳変性症;およびAIDSが挙げられるが、これらに限定されない。本発明のMIP-3 α抑制薬は、中でも脳血管障害(例、脳梗塞、脳出血、くも膜下出血など)や頭部外傷の予防・治療に有用である。

従って、 $MIP-3\alpha$ 抑制薬(これらの物質は塩を形成していてもよく、該塩の具体例としては、前記した本発明の $MIP-3\alpha$ の塩と同様のものが挙げられる)は、必要により薬理学的に許容し得る担体と混合して医薬組成物とした後に、M・神経細胞保護剤として用いることができる。

 $MIP-3\alpha$ 抑制薬のうち、 $MIP-3\alpha$ の活性を低下させる物質としては、例え 25 ば、 $MIP-3\alpha$ またはその部分ペプチドに対する中和抗体、 $MIP-3\alpha$ またはそ の受容体の拮抗薬、シグナル情報伝達阻害物質、受容体の発現を阻害する物質、MI

10

20

P-3  $\alpha$  の不活性化機構を刺激する物質、M I P-3  $\alpha$  の分解または代謝を亢進させる物質、あるいはそれらを活性化させる物質などが挙げられるが、それらに限定されない。

好ましい一実施態様としては、 $MIP-3\alpha$ の活性を低下させる物質は、上記した本発明の $MIP-3\alpha$ もしくはその部分ペプチドまたはその塩に対する抗体である。

本発明のMIP-3  $\alpha$ もしくはその部分ペプチドまたはその塩に対する抗体は、それらを認識し得る抗体であれば、ポリクローナル抗体、モノクローナル抗体の何れであってもよい。また、該抗体は、抗体分子そのものであってもよいし、抗体分子のF(ab')。、Fab'、Fab画分、あるいは可変領域の軽鎖と重鎖をリンカーで連結した単鎖抗体(scFv)等であってもよい。

本発明のM I P-3  $\alpha$  もしくはその部分ペプチドまたはその塩(以下、抗体の説明 においては、これらを包括して単に「本発明のM I P-3  $\alpha$  」と略記する場合がある)に対する抗体は、本発明のM I P-3  $\alpha$  を抗原として用い、自体公知の抗体または抗血清の製造法に従って製造することができる。

15 〔モノクローナル抗体の作製〕

(a) モノクローナル抗体産生細胞の作製

本発明のMIP-3  $\alpha$ は、非ヒト温血動物に対して、投与により抗体産生が可能な部位に、それ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投与は通常  $2\sim6$  週毎に 1 回ずつ、計  $2\sim1$  0 回程度行われる。用いられる非ヒト温血動物としては、例えば、サル、ウサギ、イヌ、モルモット、マウス、ラット、ヒツジ、ヤギ、ニワトリが挙げられるが、マウスおよびラットが好ましく用いられる。

モノクローナル抗体産生細胞の作製に際しては、抗原で免疫された温血動物、例え 25 ばマウスから抗体価の認められた個体を選択し最終免疫の2~5日後に脾臓またはリ ンパ節を採取し、それらに含まれる抗体産生細胞を同種または異種動物の骨髄腫細胞

10

15

20

25

と融合させることにより、モノクローナル抗体産生ハイブリドーマを調製することができる。抗血清中の抗体価の測定は、例えば、後記の標識化タンパク質と抗血清とを反応させたのち、抗体に結合した標識剤の活性を測定することにより行なうことができる。融合操作は既知の方法、例えば、ケーラーとミルスタインの方法〔ネイチャー(Nature)、256、495(1975)〕に従い実施することができる。融合促進剤としては、例えば、ポリエチレングリコール(PEG)やセンダイウィルスなどが挙げられるが、好ましくはPEGが用いられる。

骨髄腫細胞としては、例えば、NS-1、P3U1、SP2/0、AP-1などの温血動物の骨髄腫細胞が挙げられるが、P3U1が好ましく用いられる。用いられる抗体産生細胞(脾臓細胞)数と骨髄腫細胞数との好ましい比率は1:1~20:1程度であり、PEG(好ましくはPEG1000~PEG6000)が10~80%程度の濃度で添加され、20~40℃、好ましくは30~37℃で1~10分間インキュベートすることにより効率よく細胞融合を実施できる。 モノクローナル抗体産生ハイブリドーマのスクリーニングには種々の方法が使用できるが、例えば、抗原タンパク質(ペプチド)を直接あるいは担体とともに吸着させた固相(例、マイクロプレート)にハイブリドーマ培養上清を添加し、次に放射性物質や酵素などで標識した抗免疫グロブリン抗体(細胞融合に用いられる細胞がマウスの場合、抗マウス免疫グロブリン抗体が用いられる)またはプロテインAを加え、固相に結合したモノクローナル抗体を検出する方法、抗免疫グロブリン抗体またはプロテインAを吸着させた固相にハイブリドーマ培養上清を添加し、放射性物質や酵素などで標識したタンパク質(ペプチド)を加え、固相に結合したモノクローナル抗体を検出する方法などが挙げられる。

モノクローナル抗体の選別は、自体公知あるいはそれに準じる方法に従って行なうことができる。通常HAT (ヒポキサンチン、アミノプテリン、チミジン)を添加した動物細胞用培地で行なうことができる。選別および育種用培地としては、ハイブリドーマが生育できるものならばどのような培地を用いても良い。例えば、1~20%

、好ましくは10~20%の牛胎児血清を含むRPMI 1640培地、1~10%の 牛胎児血清を含むGIT培地(和光純薬工業(株))あるいはハイブリドーマ培養用 無血清培地(SFM-101、日水製薬(株))などを用いることができる。培養温 度は、通常20~40℃、好ましくは約37℃である。培養時間は、通常5日~3週 間、好ましくは1週間~2週間である。培養は、通常5%炭酸ガス下で行なうことが できる。ハイブリドーマ培養上清の抗体価は、上記の抗血清中の抗体価の測定と同様 にして測定できる。

#### (b) モノクローナル抗体の精製

モノクローナル抗体の分離精製は、自体公知の方法、例えば、免疫グロブリンの分 10 離精製法〔例、塩析法、アルコール沈殿法、等電点沈殿法、電気泳動法、イオン交換 体(例、DEAE)による吸脱着法、超遠心法、ゲルろ過法、抗原結合固相あるいは プロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合 を解離させて抗体を得る特異的精製法〕に従って行なうことができる。

〔ポリクローナル抗体の作製〕

25

15 本発明のMIP-3αに対するポリクローナル抗体は、それ自体公知あるいはそれに準じる方法に従って製造することができる。例えば、免疫抗原(タンパク質またはペプチド)自体、あるいはそれとキャリアータンパク質との複合体をつくり、上記のモノクローナル抗体の製造法と同様に温血動物に免疫を行ない、該免疫動物から本発明のタンパク質に対する抗体含有物を採取して、抗体の分離精製を行なうことにより製造することができる。

温血動物を免疫するために用いられる免疫抗原とキャリアータンパク質との複合体に関し、キャリアータンパク質の種類およびキャリアーとハプテンとの混合比は、キャリアーに架橋させて免疫したハプテンに対して抗体が効率良くできれば、どの様なものをどの様な比率で架橋させてもよいが、例えば、ウシ血清アルブミンやウシサイログロブリン、ヘモシアニン等を重量比でハプテン1に対し、約0.1~20、好ましくは約1~5の割合でカプルさせる方法が用いられる。 また、ハプテンとキャリ

15

20

アーのカプリングには、種々の縮合剤を用いることができるが、グルタルアルデヒド やカルボジイミド、マレイミド活性エステル、チオール基、ジチオビリジル基を含有 する活性エステル試薬等が用いられる。

縮合生成物は、温血動物に対して、抗体産生が可能な部位にそれ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投与は、通常約2~6週毎に1回ずつ、計約3~10回程度行なわれる。

ポリクローナル抗体は、上記の方法で免疫された温血動物の血液、腹水など、好ま しくは血液から採取することができる。

10 抗血清中のポリクローナル抗体価の測定は、上記の抗血清中の抗体価の測定と同様 にして測定できる。ポリクローナル抗体の分離精製は、上記のモノクローナル抗体の 分離精製と同様の免疫グロブリンの分離精製法に従って行なうことができる。

本発明の抗体を含有する脳・神経細胞保護剤は低毒性であり、そのまま液剤として、または薬理学的に許容し得る担体と混合して適当な剤形の医薬組成物とした後に、ヒトまたは他の哺乳動物(例、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して経口的または非経口的(例、関節内投与)に投与することができる。

ここで、薬理学的に許容される担体としては、製剤素材として慣用の各種有機あるいは無機担体物質が用いられ、固形製剤における賦形剤、滑沢剤、結合剤、崩壊剤; 液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤などと して配合される。また必要に応じて、防腐剤、抗酸化剤、着色剤、甘味剤などの製剤 添加物を用いることもできる。

賦形剤の好適な例としては、乳糖、白糖、D-マンニトール、D-ソルピトール、 デンプン、α化デンプン、デキストリン、結晶セルロース、低置換度ヒドロキシプロ ピルセルロース、カルボキシメチルセルロースナトリウム、アラピアゴム、デキスト リン、プルラン、軽質無水ケイ酸、合成ケイ酸アルミニウム、メタケイ酸アルミン酸

が挙げられる。

マグネシウムなどが挙げられる。

滑沢剤の好適な例としては、ステアリン酸マグネシウム、ステアリン酸カルシウム 、タルク、コロイドシリカなどが挙げられる。

結合剤の好適な例としては、α化デンプン、ショ糖、ゼラチン、アラビアゴム、メ チルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリ ウム、結晶セルロース、白糖、Dーマンニトール、トレハロース、デキストリン、プ ルラン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポ リピニルピロリドンなどが挙げられる。

崩壊剤の好適な例としては、乳糖、白糖、デンプン、カルボキシメチルセルロース 、カルボキシメチルセルロースカルシウム、クロスカルメロースナトリウム、カルボ キシメチルスターチナトリウム、軽質無水ケイ酸、低置換度ヒドロキシプロピルセル ロースなどが挙げられる。

溶剤の好適な例としては、注射用水、生理的食塩水、リンゲル液、アルコール、プロピレングリコール、ポリエチレングリコール、ゴマ油、トウモロコシ油、オリーブ油、綿実油などが挙げられる。

溶解補助剤の好適な例としては、ポリエチレングリコール、プロピレングリコール、Dーマンニトール、トレハロース、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム、サリチル酸ナトリウム、酢酸ナトリウムなどが挙げられる。 懸濁化剤の好適な例としては、ステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリンなどの界面活性剤;例えばポリピニルアルコール、ポリピニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、とドロキシスチの親水性高分子;ポリソルベート類、ポリオキシエチレン硬化ヒマシ油など

15

20

等張化剤の好適な例としては、塩化ナトリウム、グリセリン、D-マンニトール、D-ソルビトール、プドウ糖などが挙げられる。

緩衝剤の好適な例としては、リン酸塩、酢酸塩、炭酸塩、クエン酸塩などの緩衝液などが挙げられる。

5 無痛化剤の好適な例としては、ベンジルアルコールなどが挙げられる。

防腐剤の好適な例としては、パラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸などが挙げられる。

抗酸化剤の好適な例としては、亜硫酸塩、アスコルビン酸塩などが挙げられる。

着色剤の好適な例としては、水溶性食用タール色素(例、食用赤色2号及び3号、食用黄色4号及び5号、食用青色1号及び2号などの食用色素、水不溶性レーキ色素(例、前記水溶性食用タール色素のアルミニウム塩など)、天然色素(例、βーカロチン、クロロフィル、ベンガラなど)などが挙げられる。

甘味剤の好適な例としては、サッカリンナトリウム、グリチルリチン酸二カリウム 、アスパルテーム、ステビアなどが挙げられる。

前記医薬組成物の剤形としては、例えば錠剤、カプセル剤(ソフトカプセル、マイクロカプセルを含む)、顆粒剤、散剤、シロップ剤、乳剤、懸濁剤などの経口剤;及び注射剤(例、皮下注射剤、皮内注射剤、静脈内注射剤、筋肉内注射剤、腹腔内注射剤、関節内注射剤など)、外用剤(例、経鼻投与製剤、経皮製剤、軟膏剤など)、坐剤(例、直腸坐剤、膣坐剤など)、ペレット、点滴剤、徐放性製剤(例、徐放性マイクロカプセルなど)等の非経口剤が挙げられ、これらはそれぞれ経口的あるいは非経口的に安全に投与できる。

医薬組成物は、製剤技術分野において慣用の方法、例えば日本薬局方に記載の方法等により製造することができる。以下に、製剤の具体的な製造法について詳述する。

25 医薬組成物中の本発明の転写調節因子の阻害物質の含量は、剤形、該化合物の投与量<sub>、</sub>などにより異なるが、例えば約0.1ないし100重量%である。 例えば、経口剤

10

20

25

は、有効成分に、賦形剤(例、乳糖、白糖、デンプン、D-マンニトールなど)、崩壊剤(例、カルボキシメチルセルロースカルシウムなど)、結合剤(例、α化デンプン、アラビアゴム、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ポリピニルピロリドンなど)または滑沢剤(例、タルク、ステアリン酸マグネシウム、ポリエチレングリコール6000など)などを添加して圧縮成形し、次いで必要により、味のマスキング、腸溶性あるいは持続性を目的として、コーティング基剤を用いて自体公知の方法でコーティングすることにより製造される。

該コーティング基剤としては、例えば糖衣基剤、水溶性フィルムコーティング基剤 、腸溶性フィルムコーティング基剤、徐放性フィルムコーティング基剤などが挙げら れる。

糖衣基剤としては、白糖が用いられ、さらに、タルク、沈降炭酸カルシウム、ゼラチン、アラビアゴム、プルラン、カルナバロウなどから選ばれる1種または2種以上を併用してもよい。

水溶性フィルムコーティング基剤としては、例えばヒドロキシプロピルセルロース

15 、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、メチルヒド
ロキシエチルセルロースなどのセルロース系高分子;ポリビニルアセタールジエチル
アミノアセテート、アミノアルキルメタアクリレートコポリマーE (オイドラギット
E (商品名)、ロームファルマ社)、ポリビニルピロリドンなどの合成高分子;プル
ランなどの多糖類などが挙げられる。

腸溶性フィルムコーティング基剤としては、例えばヒドロキシプロピルメチルセルロース フタレート、ヒドロキシプロピルメチルセルロース アセテートサクシネート、カルボキシメチルエチルセルロース、酢酸フタル酸セルロースなどのセルロース系高分子;メタアクリル酸コポリマーL [オイドラギットL (商品名)、ロームファルマ社]、メタアクリル酸コポリマーLD [オイドラギットL-30D55 (商品名)、ロームファルマ社]、メタアクリル酸コポリマーS [オイドラギットS (商品名)、ロームファルマ社]、メタアクリル酸コポリマーS [オイドラギットS (商品名)、ロームファルマ社]などのアクリル酸系高分子;セラックなどの天然物などが挙

げられる。

5

10

15

20

25

徐放性フィルムコーティング基剤としては、例えばエチルセルロースなどのセルロース系高分子;アミノアルキルメタアクリレートコポリマーRS〔オイドラギットRS(商品名)、ロームファルマ社〕、アクリル酸エチル・メタアクリル酸メチル共重合体懸濁液〔オイドラギットNE(商品名)、ロームファルマ社〕などのアクリル酸系高分子などが挙げられる。

上記したコーティング基剤は、その2種以上を適宜の割合で混合して用いてもよい。また、コーティングの際に、例えば酸化チタン、三二酸化鉄等のような遮光剤を用いてもよい。

注射剤は、有効成分を分散剤(例、ポリソルベート80,ポリオキシエチレン硬化 ヒマシ油60,ポリエチレングリコール,カルボキシメチルセルロース,アルギン酸 ナトリウムなど)、保存剤(例、メチルパラベン,プロピルパラベン,ベンジルアル コール,クロロブタノール,フェノールなど)、等張化剤(例、塩化ナトリウム,グ リセリン,D-マンニトール,D-ソルピトール,ブドウ糖など)などと共に水性溶 剤(例、蒸留水,生理的食塩水,リンゲル液等)あるいは油性溶剤(例、オリーブ油 ,ゴマ油,綿実油,トウモロコシ油などの植物油、プロピレングリコール等)などに 溶解、懸濁あるいは乳化することにより製造される。この際、所望により溶解補助剤 (例、サリチル酸ナトリウム,酢酸ナトリウム等)、安定剤(例、ヒト血清アルプミ ン等)、無痛化剤(例、ベンジルアルコール等)等の添加物を用いてもよい。注射液 は、通常、適当なアンプルに充填される。

本発明の抗体を含有する脳・神経細胞保護剤の投与量は、投与対象、対象疾患、症状、投与ルートなどによっても異なるが、例えば、成人の脳血管障害の治療・予防のために使用する場合には、本発明の抗体を1回量として、通常0.01~20mg/kg体重程度、好ましくは0.1~10mg/kg体重程度、さらに好ましくは0.1~5mg/kg体重程度を、1日1~5回程度、好ましくは1日1~3回程度、粉末吸入剤により投与するのが好都合である。他の非経口投与および経口投与の場合もこれ

に進ずる量を投与することができる。症状が特に重い場合には、その症状に応じて増 量してもよい。

 $MIP-3\alpha$ の発現を阻害する物質としては、好ましくは、本発明の $MIP-3\alpha$ をコードする塩基配列に相補的な塩基配列またはその一部を含有する核酸が挙げられ 5 る。本発明のMIP-3αをコードする塩基配列に相補的な塩基配列またはその一部 を含有する核酸(以下、「本発明のアンチセンス核酸」と略記する場合がある)とし ては、本発明のMIP-3αと完全に相補的な塩基配列または実質的に相補的な塩基 配列、あるいは該相補的な塩基配列の一部を有し、本発明の $MIP-3\alpha$ をコードす るRNAからの該蛋白質の翻訳を抑制する作用を有するものであればよい。「実質的 に相補的な塩基配列」としては、本発明のMIP-3αをコードする塩基配列と、該 蛋白質を発現する細胞の生理学的条件下でハイブリダイズし得る塩基配列、より具体 的には、本発明のMIP-3αをコードする塩基配列の相補鎖またはその部分塩基配 列との間で約70%以上、好ましくは約80%以上、より好ましくは約90%以上、 最も好ましくは約95%以上の相同性を有する塩基配列などが挙げられる。

10

15

20

25

本発明のアンチセンス核酸は、クローン化した、あるいは決定された本発明のMI P-3αをコードする核酸の塩基配列情報に基づき設計し、合成しうる。そうした核 酸は、本発明のMIP-3αをコードする遺伝子の複製または発現を阻害することが できる。即ち、本発明のアンチセンス核酸は、本発明のΜΙΡ-3αをコードする遺 伝子から転写されるRNAとハイプリダイズすることができ、mRNAの合成(プロ セッシング)または機能(蛋白質への翻訳)を阻害することができる。

本発明のアンチセンス核酸の標的領域は、アンチセンス核酸がハイブリダイズする ことにより、結果として本発明のMIP-3αの翻訳が阻害されるものであればその 長さに特に制限はなく、本発明のMIP-3αをコードするRNAの全配列であって も部分配列であってもよく、短いもので約15塩基程度、長いものでmRNAまたは 初期転写産物の全配列が挙げられる。合成の容易さや抗原性の問題を考慮すれば、約 15~約30塩基からなるオリゴヌクレオチドが好ましいがそれに限定されない。具

10

15

20

25

体的には、例えば、本発明のMIP-3  $\alpha$ をコードする遺伝子の5、端へアピンループ、5、端6-ベースペア・リピート、5、端非翻訳領域、ポリペプチド翻訳開始コドン、蛋白質コード領域、ORF翻訳開始コドン、3、端非翻訳領域、3、端パリンドローム領域、および3、端へアピンループが標的領域として選択しうるが、該遺伝子内部の如何なる領域も標的として選択しうる。例えば、該遺伝子のイントロン部分を標的領域とすることもまた好ましい。

さらに、本発明のアンチセンス核酸は、本発明のMIP-3  $\alpha$ をコードするmRNAもしくは初期転写産物とハイブリダイズして蛋白質への翻訳を阻害するだけでなく、二本鎖DNAである本発明のMIP-3  $\alpha$ をコードする遺伝子と結合して三重鎖(トリプレックス)を形成し、RNAの転写を阻害し得るものであってもよい。

アンチセンス核酸は、2-デオキシ-D-リボースを含有しているデオキシリボヌ クレオチド、D-リポースを含有しているリポヌクレオチド、プリンまたはピリミジ ン塩基のNーグリコシドであるその他のタイプのヌクレオチド、あるいは非ヌクレオ チド骨格を有するその他のポリマー(例えば、市販の蛋白質核酸および合成配列特異 的な核酸ポリマー) または特殊な結合を含有するその他のポリマー(但し、該ポリマ 一はDNAやRNA中に見出されるような塩基のペアリングや塩基の付着を許容する 配置をもつヌクレオチドを含有する)などが挙げられる。それらは、2本鎖DNA、 1本鎖DNA、2本鎖RNA、1本鎖RNA、さらにDNA:RNAハイブリッドで あることができ、さらに非修飾ポリヌクレオチド(または非修飾オリゴヌクレオチド )、さらには公知の修飾の付加されたもの、例えば当該分野で知られた標識のあるも の、キャップの付いたもの、メチル化されたもの、1個以上の天然のヌクレオチドを 類縁物で置換したもの、分子内ヌクレオチド修飾のされたもの、例えば非荷電結合( 例えば、メチルホスホネート、ホスホトリエステル、ホスホルアミデート、カルバメ ートなど)を持つもの、電荷を有する結合または硫黄含有結合(例えば、ホスホロチ オエート、ホスホロジチオエートなど)を持つもの、例えば蛋白質(ヌクレアーゼ、 ヌクレアーゼ・インヒピター、トキシン、抗体、シグナルペプチド、ポリーL-リジ

10

15

20

ンなど)や糖(例えば、モノサッカライドなど)などの側鎖基を有しているもの、インターカレント化合物(例えば、アクリジン、プソラレンなど)を持つもの、キレート化合物(例えば、金属、放射活性をもつ金属、ホウ素、酸化性の金属など)を含有するもの、アルキル化剤を含有するもの、修飾された結合を持つもの(例えば、αアノマー型の核酸など)であってもよい。ここで「ヌクレオシド」、「ヌクレオチド」および「核酸」とは、プリンおよびピリミジン塩基を含有するのみでなく、修飾されたその他の複素環型塩基をもつようなものを含んでいて良い。こうした修飾物は、メチル化されたプリンおよびピリミジン、アシル化されたプリンおよびピリミジン、あるいはその他の複素環を含むものであってよい。修飾されたヌクレオチドおよび修飾されたヌクレオチドはまた糖部分が修飾されていてよく、例えば、1個以上の水酸基がハロゲンとか、脂肪族基などで置換されていたり、あるいはエーテル、アミンなどの官能基に変換されていてよい。

アンチセンス核酸は、RNA、DNA、あるいは修飾された核酸(RNA、DNA)である。修飾された核酸の具体例としては核酸の硫黄誘導体やチオホスフェート誘導体、そしてポリヌクレオシドアミドやオリゴヌクレオシドアミドの分解に抵抗性のものが挙げられるが、それに限定されるものではない。本発明のアンチセンス核酸は次のような方針で好ましく設計されうる。すなわち、細胞内でのアンチセンス核酸をより安定なものにする、アンチセンス核酸の細胞透過性をより高める、目標とするセンス鎖に対する親和性をより大きなものにする、そしてもし毒性があるならアンチセンス核酸の毒性をより小さなものにする。こうした修飾は当該分野で数多く知られており、例えば J. Kawakani et al., Pharm Tech Japan, Vol. 8, pp. 247, 1992; Vol. 8, pp. 395, 1992; S. T. Crooke et al. ed., Antisense Research and Application s, CRC Press, 1993 などに開示がある。

アンチセンス核酸は、変化せしめられたり、修飾された糖、塩基、結合を含有して 25 いて良く、リポゾーム、ミクロスフェアのような特殊な形態で供与されたり、遺伝子 治療により適用されたり、付加された形態で与えられることができうる。こうして付 加形態で用いられるものとしては、リン酸基骨格の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞膜との相互作用を高めたり、核酸の取込みを増大せしめるような脂質(例えば、ホスホリピド、コレステロールなど)といった疎水性のものが挙げられる。付加するに好ましい脂質としては、コレステロールやその誘導体(例えば、コレステリルクロロホルメート、コール酸など)が挙げられる。こうしたものは、核酸の3、端あるいは5、端に付着させることができ、塩基、糖、分子内ヌクレオシド結合を介して付着させることができうる。その他の基としては、核酸の3、端あるいは5、端に特異的に配置されたキャップ用の基で、エキソヌクレアーゼ、RNaseなどのヌクレアーゼによる分解を阻止するためのものが挙げられる。こうしたキャップ用の基としては、ポリエチレングリコール、テトラエチレングリコールなどのグリコールをはじめとした当該分野で知られた水酸基の保護基が挙げられるが、それに限定されるものではない。

10

15

20

25

本発明のMIP-3  $\alpha$ をコードするmRNAもしくは遺伝子初期転写産物を、コード領域の内部(初期転写産物の場合はイントロン部分を含む)で特異的に切断し得るリボザイムもまた、本発明のアンチセンス核酸に包含され得る。「リボザイム」とは核酸を切断する酵素活性を有するRNAをいうが、最近では当該酵素活性部位の塩基配列を有するオリゴDNAも同様に核酸切断活性を有することが明らかになっているので、本明細書では配列特異的な核酸切断活性を有する限りDNAをも包含する概念として用いるものとする。リボザイムとして最も汎用性の高いものとしては、ウイロイドやウイルソイド等の感染性RNAに見られるセルフスプライシングRNAがあり、ハンマーヘッド型やヘアピン型等が知られている。ハンマーヘッド型は約40塩基程度で酵素活性を発揮し、ハンマーヘッド構造をとる部分に隣接する両端の数塩基ずつ(合わせて約10塩基程度)をmRNAの所望の切断部位と相補的な配列にすることにより、標的mRNAのみを特異的に切断することが可能である。このタイプのリボザイムは、RNAのみを基質とするので、ゲノムDNAを攻撃することがないというさらなる利点を有する。本発明のMIP-3  $\alpha$ をコードするmRNAが自身で二本

10

15

20

25

鎖構造をとる場合には、RNAへリカーゼと特異的に結合し得るウイルス核酸由来のRNAモチーフを連結したハイブリッドリボザイムを用いることにより、標的配列を一本鎖にすることができる [Proc. Natl. Acad. Sci. USA, 98(10): 5572-5577 (2001)]。さらに、リボザイムを、それをコードするDNAを含む発現ベクターの形態で使用する場合には、転写産物の細胞質への移行を促進するために、 tRNAを改変した配列をさらに連結したハイブリッドリボザイムとすることもできる [Nucleic Acids Res., 29(13): 2780-2788 (2001)]。

本発明のMIP-3  $\alpha$ をコードするmRNAもしくは遺伝子初期転写産物のコード領域内の部分配列(初期転写産物の場合はイントロン部分を含む)に相補的な二本鎖オリゴRNA(small interfering RNA; siRNA)もまた、本発明のアンチセンス核酸に包含され得る。短い二本鎖RNAを細胞内に導入するとそのRNAに相補的なmRNAが分解される、いわゆるRNA干渉(RNAi)と呼ばれる現象は、以前から線虫、昆虫、植物等で知られていたが、最近、この現象が哺乳動物細胞でも起こることが確認されたことから [Nature, 411(6836): 494-498 (2001)] 、リボザイムの代替技術として注目されている。

本発明のアンチセンスオリゴヌクレオチド及びリボザイムは、本発明のMIP-3  $\alpha$ をコードする c DNA配列もしくはゲノミックDNA配列情報に基づいてmRNA もしくは初期転写産物の標的領域を決定し、市販のDNA/RNA自動合成機(アプライド・バイオシステムズ社、ベックマン社等)を用いて、これに相補的な配列を合成することにより調製することができる。 s i RNAは、センス鎖及びアンチセンス鎖をDNA/RNA自動合成機でそれぞれ合成し、適当なアニーリング緩衝液中で、例えば、約90~約95℃で約1分程度変性させた後、約30~約70℃で約1~約8時間アニーリングさせることにより調製することができる。また、相補的なオリゴヌクレオチド鎖を交互にオーバーラップするように合成して、これらをアニーリングさせた後リガーゼでライゲーションすることにより、より長い二本鎖ポリヌクレオチドを調製することもできる。

10

15

20

本発明のアンチセンス核酸を含有する脳・神経細胞保護剤は、上記本発明の抗体の場合と同様に、自体公知の手法で製剤化することができる。

また、例えば、本発明のアンチセンス核酸を単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスアソシエーテッドウイルスベクターなどの適当なベクターに挿入した後、常套手段に従って、ヒトまたは哺乳動物(例、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して経口的または非経口的に投与することができる。該アンチセンス核酸は、そのままで、あるいは摂取促進のために補助剤などの生理学的に認められる担体とともに製剤化し、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与できる。あるいは、エアロゾル化して吸入剤として気管内に局所投与することもできる。

さらに、体内動態の改良、半減期の長期化、細胞内取り込み効率の改善を目的に、 本発明のアンチセンス核酸を単独またはリポゾームなどの担体とともに製剤(注射剤)化し、静脈、皮下または関節腔内等に投与してもよい。

該アンチセンス核酸の投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、急性期脳血管障害の治療の目的で本発明のアンチセンス核酸を投与する場合、一般的に成人(体重60kg)においては、一日につき該アンチセンス核酸を約0.1~100mg投与する。

さらに、本発明のアンチセンス核酸は、組織や細胞における本発明のMIP-3  $\alpha$ をコードする核酸の存在やその発現状況を調べるための診断用核酸プローブとして使用することもできる。

本発明はまた、 $MIP-3\alpha$ とその受容体との結合を阻害する物質、または $MIP-3\alpha$ の受容体のシグナル情報伝達活性を阻害する物質を含有する脳・神経細胞保護剤を提供する。このような物質としては、例えば、 $MIP-3\alpha$ またはその受容体のアンタゴニストなどが挙げられる。

MIP-3  $\alpha$  の受容体としては、MIP-3  $\alpha$  と特異的に結合してシグナル情報伝達作用を示すものであれば特に制限はないが、例えば、公知のMIP-3  $\alpha$  受容体で

あるCCR6が挙げられる。「本発明のCCR6」は、配列番号8または配列番号1 0で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタ ンパク質またはその塩である。ここで「実質的に同一のアミノ酸配列を含有するタン ·パク質」とは、上記の本発明のMIP-3αにおいて詳述したものと同義である。

 $MIP-3\alpha$ とその受容体との結合を阻害する物質は、例えば、以下の本発明のM $IP-3\alpha$ もしくはその部分ペプチドまたはその塩、および/または $MIP-3\alpha$ 受 容体(例えば、本発明のCCR6)もしくはその部分ペプチドまたはその塩を用いた スクリーニング方法によって得ることができる。

[脳・神経細胞保護作用を有する物質のスクリーニング]

5

20

本発明は、本発明の $MIP-3\alpha$ もしくはその部分ペプチドまたはその塩(以下、 10 本スクリーニングの説明において、これらを包括して単に「本発明のΜΙΡ-3α」 と略記する場合がある) および/またはΜΙΡ-3α受容体(例えば、本発明のСС R6)もしくはその部分ペプチドまたはその塩(以下、本スクリーニングの説明にお いて、これらを包括して単に「本発明のCCR6」と略記する場合がある)を用いる ことを特徴とする、本発明のMIP-3αの活性(例えば、シグナル情報伝達活性、 15 受容体結合活性など)を阻害する化合物またはその塩のスクリーニング方法を提供す る。

より具体的には、例えば、(i)試験化合物の存在下および非存在下で本発明のMI P-3αと本発明のCCR6との結合活性を測定・比較する、(ii) 本発明のMIP -3 αの存在下と本発明のMIP-3 αおよび試験化合物の存在下とで、本発明のC CR6を産生する能力を有する細胞におけるシグナル情報伝達活性を測定・比較する ことを特徴する、本発明のΜΙΡ-3αの活性を阻害する化合物またはその塩のスク リーニング方法が用いられる。

上記スクリーニング方法においては、例えば(i)と(ii)の場合において、シグナ ル情報伝達活性および受容体結合活性を自体公知の方法により測定する。 具体的に 25 は、試験化合物の存在下および非存在下において、例えば、CCR6発現細胞[本発

10

20

25

明のCCR6をコードするDNA、例えば、配列番号:7または9で表される塩基配 列を含有するDNA、または配列番号:13に示される塩基配列中塩基番号343~ 1440で表される塩基配列を含有するDNA、あるいは配列番号:7または9で表 される塩基配列を含有するDNAまたは配列番号:13に示される塩基配列中塩基番 号343~1440で表される塩基配列を含有するDNAとハイストリンジェントな 条件下でハイブリダイズすることができるDNAであって、配列番号:8または10 、あるいは配列番号:14で表されるアミノ酸配列を含有するタンパク質と実質的に 同質の活性を有するタンパク質をコードするDNA(ここで「ハイストリンジェント な条件」、「実質的に同質な活性」等は上記と同義である)を、本発明のMIP-3 αの説明において例示したと同様の発現ベクターに挿入し、該発現ベクターを本発明 の $MIP-3\alpha$ の説明において例示したと同様の宿主細胞(例、CHO-K1細胞な ど) に、同様の形質転換法を用いて導入して得られた形質転換細胞]を、本発明のM IP-3αの存在下で培養し、細胞膜上に発現したCCR6を介するシグナル情報伝 ・ 遠活性(例えば、細胞内 c A M P 濃度の上昇または低下、細胞内 C a 2 + の遊離、イノ 」 シトールリン酸の産生、細胞膜電位の変動、細胞内蛋白質のリン酸化または脱リン酸・ 化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性)を、 公知の方法により測定する。

あるいは、試験化合物の存在下および非存在下において、(1)標識した本発明の $MIP-3\alpha$ を本発明のCCR6に接触させ、標識した $MIP-3\alpha$ の該受容体に対する結合量を測定して比較する、(2)標識した本発明の $MIP-3\alpha$ を本発明のCCR6を含有する細胞(例えば、CCR6を発現することが知られているリンパ球などの免疫細胞、樹状細胞、アストロサイトなど)または該細胞の膜画分に接触させ、標識した $MIP-3\alpha$ の該細胞または該膜画分に対する結合量を測定して比較する、

(3) 標識した本発明のMIP-3αを、CCR6をコードするDNAを含有する形質転換体(例えば、上記の形質転換細胞など)を培養することによって細胞膜上に発現した該タンパク質に接触させ、標識したMIP-3αの該細胞または該膜画分に対

15

する結合量を測定して比較する。

本発明のMIP-3  $\alpha$ は単離されたタンパク質として本発明のCCR6またはそれを産生する能力を有する細胞を含む系に外部から添加してもよいし、あるいは、前述した本発明のMIP-3  $\alpha$ をコードするDNAを含有するベクターで形質転換された宿主 (形質転換体)を用いてもよい。宿主としては、例えば、マウスATDC5細胞、CHO細胞などの動物細胞が好ましく用いられる。該スクリーニングには、例えば、前述の方法で培養することによって、本発明のMIP-3  $\alpha$ を細胞外に分泌する形質転換体が好ましく用いられる。本発明のMIP-3  $\alpha$ を発現し得る細胞の培養方法は、前記した本発明の形質変換体の培養法と同様である。

10 試験化合物としては、例えばペプチド、タンパク質、非ペプチド性化合物、合成化 合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などがあげられる。

例えば、試験化合物の存在下におけるシグナル情報伝達活性または受容体結合活性が、試験化合物の非存在下に比べて、約20%以上、好ましくは30%以上、より好ましくは約50%以上減少させた場合、その試験化合物を本発明のMIP-3αの活性を阻害する化合物として選択することができる。

MIP-3αの受容体アンタゴニストは、該受容体、好ましくは本発明のCCR6と、該受容体の他のリガンド、例えば、上記スクリーニング法においてCCR6アゴニストとして選択された化合物(例、合成低分子化合物)とを用いて同様にスクリーニングすることができる。

20 また、MIP-3α受容体のインパースアゴニストもまた、本発明の脳・神経細胞 保護作用を有する物質として好ましいが、かかる物質は、上記のいずれかのスクリーニング法の他、本発明のCCR6を単独で上記の(i)または(ii)の方法に適用することによってもスクリーニングすることができる。

上記本発明のスクリーニング方法に用いられるキットは、本発明のMIP-3 α お 25 よび/または本発明のCCR6を含有するものである。シグナル情報伝達活性を指標 としてスクリーニングを行う場合、本発明のCCR6は、それを産生する能力を有す

10

15

20

る細胞として提供される。本発明のMIP-3  $\alpha$  は単離されたタンパク質として提供されてもよいし、それを産生する能力を有する細胞として提供されてもよい。また、受容体結合活性を指標とする場合は、本発明のMIP-3  $\alpha$  は標識されていることが好ましい。

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩は、上記した試験化合物、例えば、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿などから選ばれた化合物またはその塩であり、本発明のMIP-3  $\alpha$ の受容体結合活性および/またはシグナル情報伝達活性を阻害する化合物またはその塩である。該化合物の塩としては、前記した本発明のMIP-3  $\alpha$ の塩と同様のものが用いられる

本発明のMIP-3 αの受容体結合活性および/またはシグナル情報伝達活性を阻害する化合物またはその塩を含有する脳・神経細胞保護剤は、上記本発明の抗体の場合と同様にして製剤化することができる。

該脳・神経細胞保護剤の投与量は、投与対象、対象疾患、症状、投与ルートなどによっても異なるが、例えば、成人の脳血管障害の治療・予防のために使用する場合には、本発明のMIP-3 αの受容体結合活性および/またはシグナル情報伝達活性を阻害する化合物またはその塩を、1回量として、通常0.01~20mg/kg体重程度、好ましくは0.1~10mg/kg体重程度、さらに好ましくは0.1~5mg/kg体重程度、1日1~5回程度、好ましくは1日1~3回程度、粉末吸入剤により投与するのが好都合である。他の非経口投与および経口投与の場合もこれに準ずる量を投与することができる。症状が特に重い場合には、その症状に応じて増量してもよい。

本発明のMIP-3 αをコードする遺伝子は、脳虚血において発現が増加するので 25 、本発明のMIP-3をコードする遺伝子の発現を阻害する物質も、脳・神経細胞保 護作用を有する物質として使用することができる。

25

すなわち、本発明はまた、本発明のMIP-3αをコードする塩基配列またはその 一部を含有する核酸を用いることを特徴とする、脳・神経細胞保護作用を有する物質 のスクリーニング法を提供する。

該スクリーニング方法としては、試験化合物の存在下および非存在下で本発明のMIP-3を産生する能力を有する細胞を培養し、両条件下でのMIP-3 αのmRNA量を測定・比較する。

10 試験化合物および本発明のMIP-3αを産生する能力を有する細胞としては、上記と同様のものが挙げられる。

mRNA量の測定は、公知の方法、例えば、プローブとして本発明の $MIP-3\alpha$ をコードする塩基配列またはその一部を含有する核酸を用いるノーザンハイブリダイゼーション、あるいはプライマーとして本発明の $MIP-3\alpha$ をコードする塩基配列またはその一部を含有する核酸を用いるPCR法またはそれに準じる方法に従い測定することができる。

例えば、試験化合物非存在下における遺伝子発現量を、約20%以上、好ましくは30%以上、より好ましくは約50%以上阻害させる試験化合物を、本発明のMIP-3 αをコードする遺伝子の発現を阻害する化合物、したがって、脳・神経細胞保護作用を有する化合物として選択することができる。

本発明のMIP-3αをコードする遺伝子の発現量は、本発明のMIP-3αに対する抗体を用いても測定することができる。

即ち、前記本発明のMIP-3  $\alpha$ を産生する能力を有する細胞を試験化合物の存在下および非存在下で培養した後、細胞上清または細胞抽出液中に存在するMIP-3  $\alpha$  タンパク質量を、本発明のMIP-3  $\alpha$  に対する抗体を用いて、公知の方法、例えば、ウェスタン解析、ELISA法などの方法またはそれに準じる方法に従い測定す

ることができる。

5

15

20

25

例えば、試験化合物非存在下におけるタンパク質産生量を、約20%以上、好ましくは30%以上、より好ましくは約50%以上阻害させる試験化合物を、本発明のMIP-3 $\alpha$ をコードする遺伝子の発現を阻害する化合物、したがって、脳・神経細胞保護作用を有する化合物として選択することができる。

MIP-3αは、その受容体(例えば、CCR6)と結合して該受容体発現細胞に シグナル情報を伝達することにより生理活性を発揮していることから、受け皿となる 受容体の発現が阻害されれば活性が低下する。したがって、該受容体の発現を阻害す る物質もまた、本発明におけるMIP-3α抑制薬である。

10 したがって、本発明はまた、本発明のCCR6をコードする塩基配列またはその一部を含有する核酸、あるいは本発明のCCR6もしくはその部分ペプチドまたはその塩に対する抗体を用いることを特徴とする、脳・神経細胞保護作用を有する物質のスクリーニング法を提供する。

該スクリーニング方法としては、試験化合物の存在下および非存在下で本発明のCCR6を産生する能力を有する細胞を培養し、両条件下でのCCR6のmRNA量またはタンパク質量を測定・比較する方法が挙げられる。

mRNA量の測定は、公知の方法、例えば、プローブとして本発明のCCR6をコードする塩基配列またはその一部を含有する核酸を用いるノーザンハイブリダイゼーション、あるいはプライマーとして本発明のCCR6をコードする塩基配列またはその一部を含有する核酸を用いるPCR法またはそれに準じる方法に従い測定することができる。

タンパク質量の測定は、本発明のCCR6を産生する能力を有する細胞を試験化合物の存在下および非存在下で培養した後、細胞膜画分または細胞抽出液を単離し、本発明のCCR6に対する抗体を用いて、公知の方法、例えば、ウェスタン解析、ELISA法などの方法またはそれに準じる方法に従い行うことができる。CCR6に対する抗体は、上記MIP-3 αに対する抗体と同様の手法を用いて作製することがで

きる。

5

10

20

上記本発明のスクリーニング方法に用いられるキットは、本発明のMIP- $3\alpha$ をコードする塩基配列またはその一部を含有する核酸または本発明のMIP- $3\alpha$ に対する抗体、本発明のMIP- $3\alpha$ を産生する能力を有する細胞等、あるいは本発明のCCR6をコードする塩基配列またはその一部を含有する核酸または本発明のCCR6に対する抗体、本発明のCCR6を産生する能力を有する細胞等を含有するものである。

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩は、上記した試験化合物、例えば、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿などから選ばれた化合物またはその塩であり、本発明の $MIP-3\alpha$ または本発明のCCR6の発現を阻害する化合物またはその塩である。該化合物の塩としては、前記した本発明の $MIP-3\alpha$ の塩と同様のものが用いられる。

上記の本発明のMIP-3 αまたは本発明のCCR6の発現を阻害する化合物また はその塩を含有する脳・神経細胞保護剤は、上記本発明の抗体の場合と同様にして製 剤化することができる。

該脳・神経細胞保護剤の投与量は、投与対象、対象疾患、症状、投与ルートなどによっても異なるが、例えば、成人の脳血管障害の治療・予防のために使用する場合には、本発明のMIP-3αまたは本発明のCCR6の発現を阻害する化合物またはその塩を、1回量として、通常0.01~20mg/kg体重程度、好ましくは0.1~10mg/kg体重程度、さらに好ましくは0.1~5mg/kg体重程度、1日1~5回程度、好ましくは1日1~3回程度、粉末吸入剤により投与するのが好都合である。他の非経口投与および経口投与の場合もこれに準ずる量を投与することができる。症状が特に重い場合には、その症状に応じて増量してもよい。

10

ことができるので、被検液中の本発明のMIP-3αの定量、特にサンドイッチ免疫 測定法による定量などに使用することができる。

すなわち、本発明は、

- (i)本発明のMIP-3  $\alpha$  に対する抗体と、被検液および標識化された本発明のMIP-3  $\alpha$  とを競合的に反応させ、該抗体に結合した標識化された本発明のMIP-3  $\alpha$  の割合を測定することを特徴とする被検液中の本発明のMIP-3  $\alpha$  の定量法、および
- (ii) 被検液と担体上に不溶化した本発明のMIP-3  $\alpha$ に対する抗体および標識化された別の本発明のMIP-3  $\alpha$ に対する抗体とを同時あるいは連続的に反応させたのち、不溶化担体上の標識剤の活性を測定することを特徴とする被検液中の本発明のMIP-3  $\alpha$ の定量法を提供する。
  - 上記(ii)の定量法においては、一方の抗体が本発明のMIP-3 $\alpha$ のN端部を認識する抗体であれば、他方の抗体は本発明のMIP-3 $\alpha$ の他の部分、例えば、を認識する抗体であることが望ましい。
- 本発明のMIP-3 αに対する抗体を用いる本発明のMIP-3 αの定量法は、特に制限されるべきものではなく、被測定液中の抗原量(例えば、タンパク質量)に対応した抗体、抗原もしくは抗体-抗原複合体の量を化学的または物理的手段により検出し、これを既知量の抗原を含む標準液を用いて作製した標準曲線より算出する測定法であれば、いずれの測定法を用いてもよい。例えば、ネフロメトリー、競合法、イムノメトリック法およびサンドイッチ法が好適に用いられるが、感度、特異性の点で、後述するサンドイッチ法を用いるのが特に好ましい。
- 25 、後述するサンドイッチ法を用いるのが特に好ましい。
  - 標識物質を用いる測定法に用いられる標識剤としては、例えば、放射性同位元素、

10

15

20

25

酵素、蛍光物質、発光物質などが用いられる。放射性同位元素としては、例えば、〔¹²⁵[〕、〔¹³¹[〕、〔³H〕、〔¹⁴C〕などが用いられる。上記酵素としては、安定で比活性の大きなものが好ましく、例えば、βーガラクトシダーゼ、βーグルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素などが用いられる。蛍光物質としては、例えば、フルオレスカミン、フルオレッセンイソチオシアネートなどが用いられる。発光物質としては、例えば、ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニンなどが用いられる。さらに、抗体あるいは抗原と標識剤との結合にビオチンーアビジン系を用いることもできる。

抗原あるいは抗体の不溶化に当っては、物理吸着を用いてもよく、また通常タンパク質あるいは酵素等を不溶化、固定化するのに用いられる化学結合を用いる方法でもよい。担体としては、アガロース、デキストラン、セルロースなどの不溶性多糖類、ポリスチレン、ポリアクリルアミド、シリコン等の合成樹脂、あるいはガラス等が挙げられる。

サンドイッチ法においては、不溶化した本発明のMIP-3 $\alpha$ に対するモノクローナル抗体に被検液を反応させ(1 $\chi$ 反応)、さらに標識化した別の本発明のMIP-3 $\alpha$ に対するモノクローナル抗体を反応させ(2 $\chi$ 反応)たのち、不溶化担体上の標識剤の活性を測定することにより被検液中の本発明のMIP-3 $\alpha$ 量を定量することができる。1 $\chi$ 反応と2 $\chi$ 反応は逆の順序に行っても、また、同時に行なってもよいし時間をずらして行なってもよい。標識化剤および不溶化の方法は前記のそれらに準じることができる。また、サンドイッチ法による免疫測定法において、固相用抗体あるいは標識用抗体に用いられる抗体は必ずしも1種類である必要はなく、測定感度を向上させる等の目的で2種類以上の抗体の混合物を用いてもよい。

本発明のサンドイッチ法による本発明のMIP-3  $\alpha$ の測定法においては、1次反応と2次反応に用いられる本発明のMIP-3  $\alpha$ に対するモノクローナル抗体は、本発明のタンパク質の結合する部位が相異なる抗体が好ましく用いられる。すなわち、1次反応および2次反応に用いられる抗体は、例えば、2次反応で用いられる抗体が

10

15

20

25

本発明のMIP-3αに対するモノクローナル抗体を、サンドイッチ法以外の測定システム、例えば、競合法、イムノメトリック法あるいはネフロメトリーなどに用いることもできる。

競合法では、被検液中の抗原と標識抗原とを抗体に対して競合的に反応させたのち、未反応の標識抗原(F)と、抗体と結合した標識抗原(B)とを分離し(B/F分離)、B,Fいずれかの標識量を測定し、被検液中の抗原量を定量する。本反応法には、抗体として可溶性抗体を用い、B/F分離をポリエチレングリコール、前記抗体に対する第2抗体などを用いる液相法、および、第1抗体として固相化抗体を用いるか、あるいは、第1抗体は可溶性のものを用い第2抗体として固相化抗体を用いる固相化法とが用いられる。

イムノメトリック法では、被検液中の抗原と固相化抗原とを一定量の標識化抗体に対して競合反応させた後固相と液相を分離するか、あるいは、被検液中の抗原と過剰量の標識化抗体とを反応させ、次に固相化抗原を加え未反応の標識化抗体を固相に結合させたのち、固相と液相を分離する。次に、いずれかの相の標識量を測定し被検液中の抗原量を定量する。

また、ネフロメトリーでは、ゲル内あるいは溶液中で抗原抗体反応の結果生じた不溶性の沈降物の量を測定する。被検液中の抗原量が僅かであり、少量の沈降物しか得られない場合にもレーザーの散乱を利用するレーザーネフロメトリーなどが好適に用いられる。

これら個々の免疫学的測定法を本発明の定量方法に適用するにあたっては、特別の条件、操作等の設定は必要とされない。それぞれの方法における通常の条件、操作法に当業者の通常の技術的配慮を加えて本発明のタンパク質の測定系を構築すればよい。これらの一般的な技術手段の詳細については、総説、成書などを参照することができる。

10

15

20

例えば、入江 寛編「ラジオイムノアッセイ」(講談社、昭和49年発行)、入江 寛編「続ラジオイムノアッセイ」(講談社、昭和54年発行)、石川栄治ら編「酵素免疫測定法」(医学書院、昭和53年発行)、石川栄治ら編「酵素免疫測定法」(第2版)(医学書院、昭和57年発行)、石川栄治ら編「酵素免疫測定法」(第3版)(医学書院、昭和62年発行)、「Methods in ENZYMOLOGY」Vol. 70(Immunochemic al Techniques(Part A))、同書 Vol. 73(Immunochemical Techniques(Part B))、同書 Vol. 74(Immunochemical Techniques(Part C))、同書 Vol. 84(Immunochemical Techniques(Part B))、同中では「Part B:Monoclonal Antibodies and General Immunoassay Methods))、同書 Vol. 121(Immunochemical Techniques(Part I:Hybridoma Technology and Monoclonal Antibodies))(以上、アカデミックプレス社発行)などを参照することができる。

以上のようにして、本発明のM I P - 3  $\alpha$  に対する抗体を用いることによって、本発明のM I P - 3  $\alpha$  を感度良く定量することができる。

さらには、本発明のMIP-3 $\alpha$ に対する抗体を用いて本発明のMIP-3 $\alpha$ の濃度を定量することによって、本発明のMIP-3 $\alpha$ の濃度の増加または減少が検出された場合、脳・神経細胞傷害、例えば脳梗塞、脳出血、くも膜下出血などの脳血管障害または頭部外傷などにおける脳・神経細胞傷害を受けているか、または将来細胞傷害を受ける可能性が高いと診断することができる。

また、本発明のMIP-3  $\alpha$ に対する抗体は、体液や組織などの被検体中に存在する本発明のMIP-3  $\alpha$ を検出するために使用することができる。また、本発明のMIP-3  $\alpha$ を精製するために使用する抗体カラムの作製、精製時の各分画中の本発明のMIP-3  $\alpha$ の検出、被検細胞内における本発明のMIP-3  $\alpha$ の挙動の分析などのために使用することができる。

## [遺伝子診断薬]

25 本発明のMIP-3αをコードするDNA(以下、本項(遺伝子診断薬)および次項のDNA転移動物・ノックアウト動物の説明において、単に「本発明のDNA」と

. 10

15

略記する場合がある)は、例えば、プローブとして使用することにより、ヒトまたは他の温血動物(例えば、ラット、マウス、モルモット、ウサギ、トリ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サル、チンパンジーなど)における本発明のMIP-3 αまたはその部分ペプチドをコードするDNAまたはmRNAの異常(遺伝子異常)を検出することができるので、例えば、該DNAまたはmRNAの損傷、突然変異あるいは発現低下や、該DNAまたはmRNAの増加あるいは発現過多などの遺伝子診断薬として有用である。

本発明のDNAを用いる上記の遺伝子診断は、例えば、自体公知のノーザンハイブリダイゼーションやPCR-SSCP法(ゲノミックス(Genomics),第5巻,874~879頁(1989年)、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ユーエスエー(Proceedings of the National Academy of Sciences of the United States of America),第86巻,2766~2770頁(1989年))などにより実施することができる。

例えば、ノーザンハイブリダイゼーションにより発現過多が検出された場合やPCR-SSCP法によりDNAの突然変異が検出された場合は、脳・神経細胞傷害、例えば脳梗塞、脳出血、くも膜下出血などの脳血管障害または頭部外傷などによる脳・神経細胞傷害を受けているか、または将来細胞傷害を受ける可能性が高いと診断することができる。

## [DNA転移動物]

20 本発明は、外来性の本発明のMIP-3αをコードするDNA(以下、本発明の外来性DNAと略記する)またはその変異DNA(本発明の外来性変異DNAと略記する場合がある)を有する非ヒト哺乳動物を提供する。

すなわち、本発明は、

- (1) 本発明の外来性DNAまたはその変異DNAを有する非ヒト哺乳動物、
- 25 (2) 非ヒト哺乳動物がゲッ歯動物である第(1)記載の動物、
  - (3) ゲッ歯動物がマウスまたはラットである第 (2) 記載の動物、および

10

15

20

(4) 本発明の外来性DNAまたはその変異DNAを含有し、哺乳動物において発現 しうる組換えベクターを提供するものである。

本発明の外来性DNAまたはその変異DNAを有する非ヒト哺乳動物(以下、本発明のDNA転移動物と略記する)は、未受精卵、受精卵、精子およびその始原細胞を含む胚芽細胞などに対して、好ましくは、非ヒト哺乳動物の発生における胚発生の段階(さらに好ましくは、単細胞または受精卵細胞の段階でかつ一般に8細胞期以前)に、リン酸カルシウム法、電気パルス法、リポフェクション法、凝集法、マイクロインジェクション法、パーティクルガン法、DEAEーデキストラン法などにより目的とするDNAを転移することによって作出することができる。また、該DNA転移方法により、体細胞、生体の臓器、組織細胞などに目的とする本発明の外来性DNAを転移し、細胞培養、組織培養などに利用することもでき、さらに、これら細胞を上述の胚芽細胞と自体公知の細胞融合法により融合させることにより本発明のDNA転移動物を作出することもできる。

非ヒト哺乳動物としては、例えば、ウシ、ブタ、ヒツジ、ヤギ、ウサギ、イヌ、ネコ、モルモット、ハムスター、マウス、ラットなどが用いられる。なかでも、病体動物モデル系の作成の面から個体発生および生物サイクルが比較的短く、また、繁殖が容易なゲッ歯動物、とりわけマウス(例えば、純系として、C57BL/6系統,DBA2系統など、交雑系として、B6C3F1系統,BDF1系統,B6D2F1系統,BALB/c系統,ICR系統など)またはラット(例えば、Wistar, SDなど)などが好ましい。

哺乳動物において発現しうる組換えベクターにおける「哺乳動物」としては、上記の非ヒト哺乳動物の他にヒトなどがあげられる。

本発明の外来性DNAとは、非ヒト哺乳動物が本来有している本発明のDNAではなく、いったん哺乳動物から単離・抽出された本発明のDNAをいう。

25 本発明の変異DNAとしては、元の本発明のDNAの塩基配列に変異(例えば、突 然変異など)が生じたもの、具体的には、塩基の付加、欠損、他の塩基への置換など

物を作出することができる。

20

25

が生じたDNAなどが用いられ、また、異常DNAも含まれる。

該異常DNAとしては、異常な本発明のMIP-3  $\alpha$ を発現させるDNAを意味し、例えば、正常な本発明のMIP-3  $\alpha$ の機能を抑制するタンパク質を発現させるDNAなどが用いられる。

本発明の外来性DNAは、対象とする動物と同種あるいは異種のどちらの哺乳動物由来のものであってもよい。本発明のDNAを対象動物に転移させるにあたっては、該DNAを動物細胞で発現させうるプロモーターの下流に結合したDNAコンストラクトとして用いるのが一般に有利である。例えば、本発明のヒトDNAを転移させる場合、これと相同性が高い本発明のDNAを有する各種哺乳動物(例えば、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど)由来のDNAを発現させうる各種プロモーターの下流に、本発明のヒトDNAを結合したDNAコンストラクト(例、ベクターなど)を対象哺乳動物の受精卵、例えば、マウス受精卵へマイクロインジェクションすることによって本発明のDNAを高発現するDNA転移哺乳動

本発明のMIP-3αの発現ベクターとしては、大腸菌由来のプラスミド、枯草菌 由来のプラスミド、酵母由来のプラスミド、λファージなどのバクテリオファージ、 モロニー白血病ウィルスなどのレトロウィルス、ワクシニアウィルスまたはバキュロ ウィルスなどの動物ウイルスなどが用いられる。なかでも、大腸菌由来のプラスミド 、枯草菌由来のプラスミドまたは酵母由来のプラスミドなどが好ましく用いられる。

上記のDNA発現調節を行なうプロモーターとしては、例えば、①ウイルス(例、シミアンウイルス、サイトメガロウイルス、モロニー白血病ウイルス、JCウイルス、乳癌ウイルス、ポリオウイルスなど)に由来するDNAのプロモーター、②各種哺乳動物(ヒト、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど)由来のプロモーター、例えば、アルブミン、インスリンII、ウロプラキンII、エラスターゼ、エリスロポエチン、エンドセリン、筋クレアチンキナーゼ、グリア線

維性酸性タンパク質、グルタチオンS-トランスフェラーゼ、血小板由来成長因子β

10

15

、ケラチンK 1,K 1 0 およびK 1 4、コラーゲン I 型および I I 型、サイクリック A M P 依存タンパク質キナーゼ $\beta$  I サプユニット、ジストロフィン、酒石酸抵抗性アルカリフォスファターゼ、心房ナトリウム利尿性因子、内皮レセプターチロシンキナーゼ (一般に T i e 2 と略される)、ナトリウムカリウムアデノシン 3 リン酸化酵素 (N a,K - A T P a s e)、ニューロフィラメント軽鎖、メタロチオネイン I および I I A、メタロプロティナーゼ 1 組織インヒビター、MH C クラス I 抗原(H - 2 L)、H - r a s、レニン、ドーパミン $\beta$  - 水酸化酵素、甲状腺ベルオキシダーゼ (TPO)、ペプチド鎖延長因子 1  $\alpha$  (E F - 1  $\alpha$ )、 $\beta$  アクチン、 $\alpha$  および  $\beta$  ミオシン重鎖、ミオシン軽鎖 1 および 2、ミエリン基礎タンパク質、チログロブリン、T h y - 1、免疫グロブリン、H鎖可変部(V N P)、血清アミロイド P コンポーネント、ミオグロビン、トロポニン C、平滑筋  $\alpha$  アクチン、プレプロエンケファリン A、パソプレシンなどのプロモーターなどが用いられる。なかでも、全身で高発現することが可能なサイトメガロウイルスプロモーター、ヒトペプチド鎖延長因子 1  $\alpha$  (E F - 1  $\alpha$ ) のプロモーター、ヒトおよびニワトリ $\beta$  アクチンプロモーターなどが好適である

上記ベクターは、DNA転移哺乳動物において目的とするメッセンジャーRNAの転写を終結する配列(一般にターミネターと呼ばれる)を有していることが好ましく、例えば、ウイルス由来および各種哺乳動物由来の各DNAの配列を用いることができ、好ましくは、シミアンウイルスのSV40ターミネターなどが用いられる。

20 その他、目的とする外来性DNAをさらに高発現させる目的で各DNAのスプライシングシグナル、エンハンサー領域、真核DNAのイントロンの一部などをプロモーター領域の5'上流、プロモーター領域と翻訳領域間あるいは翻訳領域の3'下流に連結することも目的により可能である。

正常な本発明のMIP-3αの翻訳領域は、ヒトまたは各種哺乳動物(例えば、ウ 25 サギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど)由来の肝臓、腎 臓、甲状腺細胞、線維芽細胞由来DNAおよび市販の各種ゲノムDNAライブラリー

10

15

20

よりゲノムDNAの全てあるいは一部として、または肝臓、腎臓、甲状腺細胞、線維 芽細胞由来RNAより公知の方法により調製された相補DNAを原料として取得する ことが出来る。また、外来性の異常DNAは、上記の細胞または組織より得られた正 常なタンパク質の翻訳領域を点突然変異誘発法により変異した翻訳領域を作製するこ とができる。

該翻訳領域は転移動物において発現しうるDNAコンストラクトとして、前記のプロモーターの下流および所望により転写終結部位の上流に連結させる通常のDNA工学的手法により作製することができる。

受精卵細胞段階における本発明の外来性DNAの転移は、対象哺乳動物の胚芽細胞および体細胞のすべてに存在するように確保される。DNA転移後の作出動物の胚芽細胞において、本発明の外来性DNAが存在することは、作出動物の後代がすべて、その胚芽細胞および体細胞のすべてに本発明の外来性DNAを保持することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫はその胚芽細胞および体細胞のすべてに本発明の外来性DNAを有する。

本発明の外来性正常DNAを転移させた非ヒト哺乳動物は、交配により外来性DNAを安定に保持することを確認して、該DNA保有動物として通常の飼育環境で継代飼育することが出来る。

受精卵細胞段階における本発明の外来性DNAの転移は、対象哺乳動物の胚芽細胞および体細胞の全てに過剰に存在するように確保される。DNA転移後の作出動物の胚芽細胞において本発明の外来性DNAが過剰に存在することは、作出動物の子孫が全てその胚芽細胞および体細胞の全てに本発明の外来性DNAを過剰に有することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫はその胚芽細胞および体細胞の全てに本発明の外来性DNAを過剰に有する。

導入DNAを相同染色体の両方に持つホモザイゴート動物を取得し、この雌雄の動 25 物を交配することによりすべての子孫が該DNAを過剰に有するように繁殖継代する ことができる。

10

15

20

25

本発明の正常DNAを有する非ヒト哺乳動物は、本発明の正常DNAが高発現させられており、内在性の正常DNAの機能を促進することにより最終的に本発明のMIP-3  $\alpha$ の機能亢進症を発症することがあり、その病態モデル動物として利用することができる。例えば、本発明の正常DNA転移動物を用いて、本発明のMIP-3  $\alpha$ の機能亢進症や、本発明のMIP-3  $\alpha$ が関連する疾患の病態機序の解明およびこれらの疾患の治療方法の検討を行なうことが可能である。

また、本発明の外来性正常DNAを転移させた哺乳動物は、遊離した本発明のMIP-3 $\alpha$ の増加症状を有することから、本発明のMIP-3 $\alpha$ に関連する疾患に対する予防・治療剤、例えば脳梗塞、脳出血、くも膜下出血などの脳血管障害、また頭部外傷、さらには様々な炎症性疾患などの予防・治療剤のスクリーニング試験にも利用可能である。

一方、本発明の外来性異常DNAを有する非ヒト哺乳動物は、交配により外来性DNAを安定に保持することを確認して該DNA保有動物として通常の飼育環境で継代飼育することが出来る。さらに、目的とする外来DNAを前述のプラスミドに組み込んで原科として用いることができる。プロモーターとのDNAコンストラクトは、通常のDNA工学的手法によって作製することができる。受精卵細胞段階における本発明の異常DNAの転移は、対象哺乳動物の胚芽細胞および体細胞の全てに存在するように確保される。DNA転移後の作出動物の胚芽細胞および体細胞の全てに本発明の異常DNAが存在することは、作出動物の子孫が全てその胚芽細胞および体細胞の全てに本発明の異常DNAを有することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫は、その胚芽細胞および体細胞の全てに本発明の異常DNAを有する。導入DNAを相同染色体の両方に持つホモザイゴート動物を取得し、この雌雄の動物を交配することによりすべての子孫が該DNAを有するように繁殖継代することができる

本発明の異常DNAを有する非ヒト哺乳動物は、本発明の異常DNAが高発現させられており、内在性の正常DNAの機能を阻害することにより最終的に本発明のMI

P-3 αの機能不活性型不応症となることがあり、その病態モデル動物として利用することができる。例えば、本発明の異常DNA転移動物を用いて、本発明のMIP-3 αの機能不活性型不応症の病態機序の解明およびこの疾患を治療方法の検討を行なうことが可能である。

また、具体的な利用可能性としては、本発明の異常DNA高発現動物は、本発明のMIP-3  $\alpha$  の機能不活性型不応症における本発明の異常タンパク質による正常タンパク質の機能阻害(dominant negative作用)を解明するモデルとなる。

また、本発明の外来異常DNAを転移させた哺乳動物は、遊離した本発明のMIP - 3 αの増加症状を有することから、本発明のMIP-3 αまたは機能不活性型不応 症に対する予防・治療剤、例えば、脳梗塞、脳出血、くも膜下出血などの脳血管障害、また頭部外傷、さらには様々な炎症性疾患などの予防・治療剤のスクリーニング試験にも利用可能である。

また、上記2種類の本発明のDNA転移動物のその他の利用可能性として、例えば

- 15 ①組織培養のための細胞源としての使用、
  - ②本発明のDNA転移動物の組織中のDNAもしくはRNAを直接分析するか、またはDNAにより発現されたペプチド組織を分析することによる、本発明のMIP-3  $\alpha$ により特異的に発現あるいは活性化するペプチドとの関連性についての解析、
  - ③DNAを有する組織の細胞を標準組織培養技術により培養し、これらを使用して、
- 20 一般に培養困難な組織からの細胞の機能の研究、
  - ④上記③記載の細胞を用いることによる細胞の機能を高めるような薬剤のスクリーニング、および
  - ⑤本発明の変異タンパク質を単離精製およびその抗体作製などが考えられる。

さらに、本発明のDNA転移動物を用いて、本発明のMIP-3αの機能不活性型 75 不応症などを含む、本発明のMIP-3αに関連する疾患の臨床症状を調べることが でき、また、本発明のMIP-3αに関連する疾患モデルの各臓器におけるより詳細

な病理学的所見が得られ、新しい治療方法の開発、さらには、該疾患による二次的疾 患の研究および治療に貢献することができる。

また、本発明のDNA転移動物から各臓器を取り出し、細切後、トリプシンなどのタンパク質分解酵素により、遊離したDNA転移細胞の取得、その培養またはその培養細胞の系統化を行なうことが可能である。さらに、本発明のMIP-3 α産生細胞の特定化、アポトーシス、分化あるいは増殖との関連性、またはそれらにおけるシグナル伝達機構を調べ、それらの異常を調べることなどができ、本発明のMIP-3 α およびその作用解明のための有効な研究材料となる。

さらに、本発明のDNA転移動物を用いて、本発明のMIP-3 αの機能不活性型 10 不応症を含む、本発明のMIP-3 αに関連する疾患の治療薬の開発を行なうために 、上述の検査法および定量法などを用いて、有効で迅速な該疾患治療薬のスクリーニ ング法を提供することが可能となる。また、本発明のDNA転移動物または本発明の 外来性DNA発現ベクターを用いて、本発明のMIP-3 αが関連する疾患のDNA 治療法を検討、開発することが可能である。

## 15 [ノックアウト動物]

本発明は、本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞および本発明のDNA発現不全非ヒト哺乳動物を提供する。

すなわち、本発明は、

- (1) 本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞、
- 20 (2) 該DNAがレポーター遺伝子(例、大腸菌由来の $\beta$ -ガラクトシダーゼ遺伝子) を導入することにより不活性化された第(1)項記載の胚幹細胞、
  - (3) ネオマイシン耐性である第(1) 項記載の胚幹細胞、
  - (4) 非ヒト哺乳動物がゲッ歯動物である第(1) 項記載の胚幹細胞、
  - (5) ゲッ歯動物がマウスである第(4)項記載の胚幹細胞、
- 25 (6) 本発明のDNAが不活性化された該DNA発現不全非ヒト哺乳動物、
  - (7) 該DNAがレポーター遺伝子(例、大腸菌由来のβ-ガラクトシダーゼ遺伝子

10

- )を導入することにより不活性化され、該レポーター遺伝子が本発明のDNAに対するプロモーターの制御下で発現しうる第 (6) 項記載の非ヒト哺乳動物、
  - (8) 非ヒト哺乳動物がゲッ歯動物である第(6)項記載の非ヒト哺乳動物、
  - (9) ゲッ歯動物がマウスである第(8) 項記載の非ヒト哺乳動物、および
- (10) 第(7) 項記載の動物に、試験化合物を投与し、レポーター遺伝子の発現を 検出することを特徴とする本発明のDNAに対するプロモーター活性を促進または阻 害する化合物またはその塩のスクリーニング方法を提供する。

本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞とは、該非ヒト哺乳動物が有する本発明のDNAに人為的に変異を加えることにより、DNAの発現能を抑制するか、もしくは該DNAがコードしている本発明のMIP-3 $\alpha$ の活性を実質的に喪失させることにより、DNAが実質的に本発明のMIP-3 $\alpha$ の発現能を有さない(以下、本発明のノックアウトDNAと称することがある)非ヒト哺乳動物の胚幹細胞(以下、ES細胞と略記する)をいう。

非ヒト哺乳動物としては、前記と同様のものが用いられる。

- 15 本発明のDNAに人為的に変異を加える方法としては、例えば、遺伝子工学的手法により該DNA配列の一部又は全部の削除、他DNAを挿入または置換させることによって行なうことができる。これらの変異により、例えば、コドンの読み取り枠をずらしたり、プロモーターあるいはエキソンの機能を破壊することにより本発明のノックアウトDNAを作製すればよい。
- 20 本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞(以下、本発明のDNA 不活性化ES細胞または本発明のノックアウトES細胞と略記する)の具体例としては、例えば、目的とする非ヒト哺乳動物が有する本発明のDNAを単離し、そのエキ ソン部分にネオマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子を代表とする薬剤 耐性遺伝子、あるいは 1 a c Z (β-ガラクトシダーゼ遺伝子)、 c a t (クロラム フェニコールアセチルトランスフェラーゼ遺伝子)を代表とするレポーター遺伝子等を挿入することによりエキソンの機能を破壊するか、あるいはエキソン間のイントロ

ン部分に遺伝子の転写を終結させるDNA配列(例えば、polyA付加シグナルなど)を挿入し、完全なメッセンジャーRNAを合成できなくすることによって、結果的に遺伝子を破壊するように構築したDNA配列を有するDNA鎖(以下、ターゲッティングベクターと略記する)を、例えば相同組換え法により該動物の染色体に導入し、得られたES細胞について本発明のDNA上あるいはその近傍のDNA配列をプロープとしたサザンハイブリダイゼーション解析あるいはターゲッティングベクター上のDNA配列とターゲッティングベクター作製に使用した本発明のDNA以外の近傍領域のDNA配列をプライマーとしたPCR法により解析し、本発明のノックアウトES細胞を選別することにより得ることができる。

また、相同組換え法等により本発明のDNAを不活化させる元のES細胞としては、例えば、前述のような既に樹立されたものを用いてもよく、また公知 BvansとKaufm aの方法に準じて新しく樹立したものでもよい。例えば、マウスのES細胞の場合、現在、一般的には129系のES細胞が使用されているが、免疫学的背景がはっきりしていないので、これに代わる純系で免疫学的に遺伝的背景が明らかなES細胞を取得するなどの目的で例えば、C57BL/6マウスやC57BL/6の採卵数の少なさをDBA/2との交雑により改善したBDF1マウス(C57BL/6とDBA/2とのF1)を用いて樹立したものなども良好に用いうる。BDF1マウスは、採卵数が多く、かつ、卵が丈夫であるという利点に加えて、C57BL/6マウスを背景に持つので、これを用いて得られたES細胞は病態モデルマウスを作出したとき、C57BL/6マウスとバッククロスすることでその遺伝的背景をC57BL/6マウスに代えることが可能である点で有利に用い得る。

また、ES細胞を樹立する場合、一般には受精後3.5日目の胚盤胞を使用するが、 これ以外に8細胞期胚を採卵し胚盤胞まで培養して用いることにより効率よく多数の 初期胚を取得することができる。

25 また、雌雄いずれのES細胞を用いてもよいが、通常雄のES細胞の方が生殖系列 キメラを作出するのに都合が良い。また、煩雑な培養の手間を削減するためにもでき

15

20

25

るだけ早く雌雄の判別を行なうことが望ましい。

ES細胞の雌雄の判定方法としては、例えば、PCR法によりY染色体上の性決定領域の遺伝子を増幅、検出する方法が、その1例としてあげることができる。この方法を使用すれば、従来、核型分析をするのに約10<sup>6</sup>個の細胞数を要していたのに対して、1コロニー程度のES細胞数(約50個)で済むので、培養初期におけるES細胞の第一次セレクションを雌雄の判別で行なうことが可能であり、早期に雄細胞の選定を可能にしたことにより培養初期の手間は大幅に削減できる。

また、第二次セレクションとしては、例えば、G-バンディング法による染色体数の確認等により行うことができる。得られるES細胞の染色体数は正常数の100%が望ましいが、樹立の際の物理的操作等の関係上困難な場合は、ES細胞の遺伝子をノックアウトした後、正常細胞(例えば、マウスでは染色体数が2n=40である細胞)に再びクローニングすることが望ましい。

このようにして得られた胚幹細胞株は、通常その増殖性は大変良いが、個体発生できる能力を失いやすいので、注意深く継代培養することが必要である。例えば、ST O繊維芽細胞のような適当なフィーダー細胞上でLIF(1-10000U/ml)存在下に炭酸ガス培養器内(好ましくは、5%炭酸ガス、95%空気または5%酸素、5%炭酸ガス、90%空気)で約37℃で培養するなどの方法で培養し、継代時には、例えば、トリプシン/EDTA溶液(通常0.001-0.5%トリプシン/0.1-5mM EDTA、好ましくは約0.1%トリプシン/1mM EDTA)処理により単細胞化し、新たに用意したフィーダー細胞上に播種する方法などがとられる。このような継代は、通常1-3日毎に行なうが、この際に細胞の観察を行い、形態的に異常な細胞が見受けられた場合はその培養細胞は放棄することが望まれる。

ES細胞は、適当な条件により、高密度に至るまで単層培養するか、または細胞集塊を形成するまで浮遊培養することにより、頭頂筋、内臓筋、心筋などの種々のタイプの細胞に分化させることが可能であり [M. J. Evans及びM. H. Kaufman, ネイチャー (Nature) 第292巻、154頁、1981年; G. R. Martin プロシーディングス・オブ・

20

25

ナショナル・アカデミー・オブ・サイエンス・ユーエスエー (Proc. Natl. Acad. Sci. U.S.A.) 第78巻、7634頁、1981年; T.C. Doetschman ら、ジャーナル・オブ・エンブリオロジー・アンド・エクスペリメンタル・モルフォロジー、第87巻、27頁、1985年]、本発明のES細胞を分化させて得られる本発明のDNA発現不全細胞は、インピトロにおける本発明のMIP-3αの細胞生物学的検討において有用である。

本発明のDNA発現不全非ヒト哺乳動物は、該動物のmRNA量を公知方法を用いて測定して間接的にその発現量を比較することにより、正常動物と区別することが可能である。

該非ヒト哺乳動物としては、前記と同様のものが用いられる。

10 本発明のDNA発現不全非ヒト哺乳動物は、例えば、前述のようにして作製したターゲッティングベクターをマウス胚幹細胞またはマウス卵細胞に導入し、導入によりターゲッティングベクターの本発明のDNAが不活性化されたDNA配列が遺伝子相同組換えにより、マウス胚幹細胞またはマウス卵細胞の染色体上の本発明のDNAと入れ換わる相同組換えをさせることにより、本発明のDNAをノックアウトさせることができる。

本発明のDNAがノックアウトされた細胞は、本発明のDNA上またはその近傍のDNA配列をプローブとしたサザンハイブリダイゼーション解析またはターゲッティングベクター上のDNA配列と、ターゲッティングベクターに使用したマウス由来の本発明のDNA以外の近傍領域のDNA配列とをプライマーとしたPCR法による解析で判定することができる。非ヒト哺乳動物胚幹細胞を用いた場合は、遺伝子相同組換えにより、本発明のDNAが不活性化された細胞株をクローニングし、その細胞を適当な時期、例えば、8細胞期の非ヒト哺乳動物胚または胚盤胞に注入し、作製したキメラ胚を偽妊娠させた該非ヒト哺乳動物の子宮に移植する。作出された動物は正常な本発明のDNA座をもつ細胞と人為的に変異した本発明のDNA座をもつ細胞との両者から構成されるキメラ動物である。 該キメラ動物の生殖細胞の一部が変異した本発明のDNA座をもつ場合、このようなキメラ個体と正常個体を交配することによ

10

15

20

25

り得られた個体群より、全ての組織が人為的に変異を加えた本発明のDNA座をもつ 細胞で構成された個体を、例えば、コートカラーの判定等により選別することにより 得られる。このようにして得られた個体は、通常、本発明のMIP $-3\alpha$ のヘテロ発現不全個体であり、本発明のMIP $-3\alpha$ のヘテロ発現不全個体同志を交配し、それ らの産仔から本発明のMIP $-3\alpha$ のホモ発現不全個体を得ることができる。

卵細胞を使用する場合は、例えば、卵細胞核内にマイクロインジェクション法でDNA溶液を注入することによりターゲッティングベクターを染色体内に導入したトランスジェニック非ヒト哺乳動物を得ることができ、これらのトランスジェニック非ヒト哺乳動物に比べて、遺伝子相同組換えにより本発明のDNA座に変異のあるものを選択することにより得られる。

このようにして本発明のDNAがノックアウトされている個体は、交配により得られた動物個体も該DNAがノックアウトされていることを確認して通常の飼育環境で飼育継代を行なうことができる。

さらに、生殖系列の取得および保持についても常法に従えばよい。すなわち、該不活化DNAの保有する雌雄の動物を交配することにより、該不活化DNAを相同染色体の両方に持つホモザイゴート動物を取得しうる。得られたホモザイゴート動物は、母親動物に対して、正常個体1,ホモザイゴート複数になるような状態で飼育することにより効率的に得ることができる。ヘテロザイゴート動物の雌雄を交配することにより、該不活化DNAを有するホモザイゴートおよびヘテロザイゴート動物を繁殖継代する。

本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞は、本発明のDNA発現 不全非ヒト哺乳動物を作出する上で、非常に有用である。

また、本発明のDNA発現不全非ヒト哺乳動物は、本発明のMIP- $3\alpha$ により誘導され得る種々の生物活性を欠失するため、本発明のMIP- $3\alpha$ の生物活性の不活性化を原因とする疾病のモデルとなり得るので、これらの疾病の原因究明及び治療法の検討に有用である。

15

20

25

(a) 本発明のDNAの欠損や損傷などに起因する疾病に対して治療・予防効果を有する化合物のスクリーニング方法

本発明のDNA発現不全非ヒト哺乳動物は、本発明のDNAの欠損や損傷などに起因する疾病に対して治療・予防効果を有する化合物のスクリーニングに用いることができる。

すなわち、本発明は、本発明のDNA発現不全非ヒト哺乳動物に試験化合物を投与し、該動物の変化を観察・測定することを特徴とする、本発明のDNAの欠損や損傷などに起因する疾病に対して治療・予防効果を有する化合物またはその塩のスクリーニング方法を提供する。

10 該スクリーニング方法において用いられる本発明のDNA発現不全非ヒト哺乳動物 としては、前記と同様のものがあげられる。

試験化合物としては、例えば、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿などがあげられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

具体的には、本発明のDNA発現不全非ヒト哺乳動物を、試験化合物で処理し、無処理の対照動物と比較し、該動物の各器官、組織、疾病の症状などの変化を指標として試験化合物の治療・予防効果を試験することができる。

試験動物を試験化合物で処理する方法としては、例えば、経口投与、静脈注射などが用いられ、試験動物の症状、試験化合物の性質などにあわせて適宜選択することができる。また、試験化合物の投与量は、投与方法、試験化合物の性質などにあわせて適宜選択することができる。

例えば、脳梗塞、脳出血、くも膜下出血などの脳血管障害、また頭部外傷、さらに は様々な炎症性疾患などに対して治療・予防効果を有する化合物をスクリーニングす る場合、本発明のDNA発現不全非ヒト哺乳動物に試験化合物を投与し、該動物の行 動や梗塞体積などを経時的に観察し、上記疾患の症状を観察する。 該スクリーニン グ方法において、試験動物に試験化合物を投与した場合、該試験動物の上記疾患症状

25

が約10%以上、好ましくは約30%以上、より好ましくは約50%以上改善した場合、該試験化合物を上記の疾患に対して治療・予防効果を有する化合物として選択することができる。

該スクリーニング方法を用いて得られる化合物は、上記した試験化合物から選ばれ た化合物であり、本発明のMIP-3αの欠損や損傷などによって引き起こされる疾 患に対して治療・予防効果を有するので、該疾患に対する安全で低毒性な予防・治療 剤などの医薬として使用することができる。さらに、上記スクリーニングで得られた 化合物から誘導される化合物も同様に用いることができる。

該スクリーニング方法で得られた化合物は塩を形成していてもよく、該化合物の塩としては、生理学的に許容される酸(例、無機酸、有機酸など)や塩基(例、アルカリ金属など)などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸など)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンス15 ルホン酸、ベンゼンスルホン酸など)との塩などが用いられる。

該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、前記した本発明の $MIP-3\alpha$ を含有する医薬と同様にして製造することができる。 このようにして得られる製剤は、安全で低毒性であるので、例えば、ヒトまたは哺乳動物(例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サルなど)に対して投与することができる。

該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、該化合物を経口投与する場合、一般的に成人(体重60kgとして)の脳血管障害患者においては、一日につき該化合物を約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mg投与する。非経口的に投与する場合は、該化合物の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、該化合物を注射剤の形で通常成人(60kgとして)の脳血管障害

の患者に投与する場合、一日につき該化合物を約 $0.01\sim30$  mg程度、好ましくは約 $0.1\sim20$  mg程度、より好ましくは約 $0.1\sim10$  mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60 kg当たりに換算した量を投与することができる。

5 (b) 本発明のDNAに対するプロモーターの活性を促進または阻害する化合物をスクリーニング方法

本発明は、本発明のDNA発現不全非ヒト哺乳動物に、試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする本発明のDNAに対するプロモーターの活性を促進または阻害する化合物またはその塩のスクリーニング方法を提供する

上記スクリーニング方法において、本発明のDNA発現不全非ヒト哺乳動物としては、前記した本発明のDNA発現不全非ヒト哺乳動物の中でも、本発明のDNAがレポーター遺伝子を導入することにより不活性化され、該レポーター遺伝子が本発明のDNAに対するプロモーターの制御下で発現しうるものが用いられる。

15 試験化合物としては、前記と同様のものがあげられる。

レポーター遺伝子としては、前記と同様のものが用いられ、 $\beta$ ーガラクトシダーゼ 遺伝子(1 a c Z)、可溶性アルカリフォスファターゼ遺伝子またはルシフェラーゼ 遺伝子などが好適である。

本発明のDNAをレポーター遺伝子で置換された本発明のDNA発現不全非ヒト哺 20 乳動物では、レポーター遺伝子が本発明のDNAに対するプロモーターの支配下に存 在するので、レポーター遺伝子がコードする物質の発現をトレースすることにより、 プロモーターの活性を検出することができる。

例えば、本発明のMIP-3  $\alpha$ をコードするDNA領域の一部を大腸菌由来の $\beta$ -ガラクトシダーゼ遺伝子(lacZ)で置換している場合、本来、本発明のMIP- 3  $\alpha$ の発現する組織で、本発明のMIP-3  $\alpha$ の代わりに $\beta$ -ガラクトシダーゼが発現する。従って、例えば、5-プロモー4-クロロー3-インドリルー $\beta$ -ガラクト

15

ピラノシド(X-ga1)のような $\beta-$ ガラクトシダーゼの基質となる試薬を用いて染色することにより、簡便に本発明の $MIP-3\alpha$ の動物生体内における発現状態を観察することができる。具体的には、本発明の $MIP-3\alpha$ 欠損マウスまたはその組織切片をグルタルアルデヒドなどで固定し、リン酸緩衝生理食塩液(PBS)で洗浄後、X-ga1を含む染色液で、室温または37℃付近で、約30分ないし1時間反応させた後、組織標本を1mM EDTA/PBS溶液で洗浄することによって、 $\beta-$ ガラクトシダーゼ反応を停止させ、呈色を観察すればよい。また、常法に従い、1a c Z をコードするm R N A を検出してもよい。

上記スクリーニング方法を用いて得られる化合物またはその塩は、上記した試験化 10 合物から選ばれた化合物であり、本発明のDNAに対するプロモーター活性を促進ま たは阻害する化合物である。

該スクリーニング方法で得られた化合物は塩を形成していてもよく、該化合物の塩としては、生理学的に許容される酸(例、無機酸など)や塩基(例、有機酸など)などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸など)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など)との塩などが用いられる。

本発明のDNAに対するプロモーター活性を促進または阻害する化合物またはその 20 塩は、本発明のMIP-3 αの発現の調節、該タンパク質の機能を調節することがで きるので、例えば、脳梗塞、脳出血、くも膜下出血などの脳血管障害、また頭部外傷、さらには様々な炎症性疾患などの予防・治療剤として有用である。

さらに、上記スクリーニングで得られた化合物から誘導される化合物も同様に用いることができる。

25 該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、前記した 本発明のMIP-3αまたはその塩を含有する医薬と同様にして製造することができ

る。

5

10

15

20

25

このようにして得られる製剤は、安全で低毒性であるので、例えば、ヒトまたは哺乳動物 (例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、プタ、ウシ、ウマ、ネコ、イヌ、サルなど) に対して投与することができる。

該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、本発明のDNAに対するプロモーター活性を阻害する化合物を経口投与する場合、一般的に成人(体重60kgとして)の脳卒中患者においては、一日につき該化合物を約0.1~100mg、好ましくは約1.0~50mg、より好ましくは約1.0~20mg投与する。非経口的に投与する場合は、該化合物の1回投与量は投与対象、対象疾患などによっても異なるが、例えば、本発明のDNAに対するプロモーター活性を阻害する化合物を注射剤の形で通常成人(60kgとして)の脳卒中患者に投与する場合、一日につき該化合物を約0.01~30mg程度、好ましくは約0.1~20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

このように、本発明のDNA発現不全非ヒト哺乳動物は、本発明のDNAに対するプロモーターの活性を促進または阻害する化合物またはその塩をスクリーニングする上で極めて有用であり、本発明のDNA発現不全に起因する各種疾患の原因究明または予防・治療剤の開発に大きく貢献することができる。

また、本発明のMIP-3 $\alpha$ のプロモーター領域を含有するDNAを使って、その下流に種々のタンパクをコードする遺伝子を連結し、これを動物の卵細胞に注入していわゆるトランスジェニック動物(遺伝子移入動物)を作成すれば、特異的にそのタンパク質を合成させ、その生体での作用を検討することも可能となる。さらに上記プロモーター部分に適当なレポーター遺伝子を結合させ、これが発現するような細胞株を樹立すれば、本発明のMIP-3 $\alpha$ そのものの体内での産生能力を特異的に促進もしくは抑制する作用を持つ低分子化合物の探索系として使用できる。

10

20

25

本発明のMIP-3 α抑制薬は、他の活性成分と併用してもよい。かかる活性成分 としては、例えば、血栓溶解剤(例、ティシュープラスミノーゲンアクチベーター、 ウロキナーゼ等)、抗凝固剤(例、アルガトロパン、ワーファリン等)、第10因子阻 害剤、トロンボキサン合成酵素阻害剤(例、オザグレル等)、抗酸化剤(例、エダラ ポン等)、抗浮腫剤(例、グリセロール、マンニトール等)、神経新生・再生促進薬 (例、Akt/PKB活性化剤、 $GSK-3\beta$ 阻害剤など)、アセチルコリンエステラーゼ阻害剤 (例、ドネペジル、リパスチグミン、ガランタミン、ザナペジル等)、βアミロイド 蛋白産生、分泌、蓄積、凝集および/または沈着抑制剤[βセクレターゼ阻害剤(例.WO 98/38156記載の化合物、WO 02/2505、WO 02/2506、WO 02/2512記載の化合物、OM 9 19-2 (WO 01/00663))、 $\gamma$ セクレターゼ阻害作用剤、 $\beta$ アミロイド蛋白凝集阻害作 用剤(例、PTI-00703、ALZHEMED(NC-531)、PPI-36 8 (特表平11-514333)、PPI-558(特表平2001-500852)、SKF-746 5 2 (Biochem. J. (1999) , 340 (1) , 283-289) ) 、βアミロイドワクチン、βア ミロイド分解酵素等]、脳機能賦活薬(例、アニラセタム、ニセルゴリン等)、他のパ ーキンソン病治療薬[(例、ドーパミン受容体作動薬(L-ドーパ、プロモクリプテン 、パーゴライド、タリペキソール、プラシペキソール、カベルゴリン、アダマンタジ ン等)、モノアミン酸化酵素 (MAO) 阻害薬(デプレニル、セルジリン(セレギリン) 、レマセミド (remacemide), リルゾール (riluzole) 等)、抗コリン剤 (例、トリヘ キシフェニジル、ビペリデン等)、)、COMT阻害剤(例、エンタカポン 等)]、筋萎 縮性側索硬化症治療薬(例、リルゾール等、神経栄養因子等)、コレステロール低下 薬等の高脂血症治療薬[スタチン系 (例、プラバスタチンナトリウム、アトロバスタチ ン、シンパスタチン、ロスバスタチン等)、フィブラート(例、クロフィブラート等) 、スクワレン合成酵阻害剤]、痴呆の進行に伴う異常行動、徘徊等の治療薬(例、鎮静 · all 、抗不安剤等)、アポトーシス阻害薬(例、CPI-1189、IDN-6556、CEP-1347等)、 神経分化·再生促進剤(レテプリニム(Leteprinim)、キサリプローデン(Xaliproden ; SR-57746-A) 、 SB-216763等) 、降圧剤、糖尿病治療薬、抗うつ剤、抗不安薬、非

10

15

ステロイド性抗炎症薬(例、メロキシカム、テオキシカム、インドメタシン、イププロフェン、セレコキシブ、ロフェコキシブ、アスピリン、インドメタシン等)、疾患修飾性抗リウマチ薬(DMARDs)、抗サイトカイン薬(TNF阻害薬、MAPキナーゼ阻害薬など)、ステロイド薬(例、デキサメサゾン、ヘキセストロール、酢酸コルチゾン等)、性ホルモンまたはその誘導体(例、プロゲステロン、エストラジオール、安息香酸エストラジオール、等)、副甲状腺ホルモン(PTH)、カルシウム受容体拮抗薬、等が挙げられる。該その他の活性成分と本発明のMIP-3 α抑制薬とは、自体公知の方法に従って混合し、ひとつの医薬組成物(例、錠剤、散剤、顆粒剤、カプセル剤(ソフトカプセルを含む)、液剤、注射剤、坐剤、徐放剤等)中に製剤化して併用してもよく、それぞれを別々に製剤化し、同一対象に対して同時に又は時間差を置いて投与してもよい。

また、本発明のMIP-3 α抑制薬は、薬剤に限らず、他の治療法とも併用できる。例えば、脳血管障害であれば、低体温ないし低脳温療法、脳血栓・脳塞栓除去手術等と併用できるし、アルツハイマー病、パーキンソン病等の神経変性疾患であれば、神経幹細胞移植等の治療法と併用できるが、これらに限定されない。

本明細書において、塩基やアミノ酸などを略号で表示する場合、IUPAC-IU B Commission on Biochemical Nomenclature による略号あるいは当該分野における 慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体が あり得る場合は、特に明示しなければし体を示すものとする。

20 DNA : デオキシリボ核酸

c D N A : 相補的デオキシリボ核酸

A: アデニン

T : チミン

G: グアニン

25 C : シトシン

RNA : リポ核酸

mRNA :メッセンジャーリボ核酸

dATP : デオキシアデノシン三リン酸

d T T P : デオキシチミジン三リン酸

dGTP : デオキシグアノシン三リン酸

5 dCTP : デオキシシチジン三リン酸

ATP : アデノシン三リン酸

EDTA :エチレンジアミン四酢酸

SDS :ドデシル硫酸ナトリウム

Gly :グリシン

10 Ala : アラニン

Val : バリン

Leu :ロイシン

Ile : イソロイシン

Ser :セリン・

15 Thr : スレオニン

Cys:システイン

Met:メチオニン

Glu:グルタミン酸:

Asp:アスパラギン酸

20 Lys :リジン

Arg:アルギニン・

His :ヒスチジン

Phe :フェニルアラニン

Tyr : チロシン

25 Trp : トリプトファン

Pro :プロリン

Asn

: アスパラギン

Gln

: グルタミン

pGlu

: ピログルタミン酸

Sec

: セレノシステイン (selenocysteine)

また、本明細書中で繁用される置換基、保護基および試薬を下記の記号で表記する 5

Ме

: メチル基

Εt

:エチル基

Вu

: プチル基

10 Ρh :フェニル基

TC

: チアゾリジン-4(R)-カルボキサミド基

Tos

: p - トルエンスルフォニル

CHO

:ホルミル

Bz1

:ペンジル

 $Cl_2 - Bzl$ 15

: 2, 6-ジクロロベンジル

Bom

:ベンジルオキシメチル

Z

: ベンジルオキシカルボニル

C1-Z:2-クロロベンジルオキシカルボニル

Br-Z

:2-プロモベンジルオキシカルポニル

20 Вос : t ープトキシカルポニル

DNP

: ジニトロフェニル

Trt

: トリチル

Bum

: tープトキシメチル

Fmoc

: N-9-フルオレニルメトキシカルポニル

25

HOBt :1-ヒドロキシペンズトリアゾール

HOOB t

: 3,4-ジヒドロ-3-ヒドロキシ-4-オキソー

1,2,3-ペンゾトリアジン

HONB: 1-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド

DCC : N, N' - ジシクロヘキシルカルボジイミド

本願明細書の配列表の配列番号は、以下の配列を示す。

5 〔配列番号:1〕

ヒトMIP-3αのcDNAの塩基配列を示す。

〔配列番号:2〕

ヒト $MIP-3\alpha$ の前駆ポリペプチドのアミノ酸配列を示す。

〔配列番号:3〕

10 ラットMIP-3αのcDNAの塩基配列を示す。

〔配列番号:4〕

ラットMIP-3αの前駆ポリペプチドのアミノ酸配列を示す。

〔配列番号:5〕

マウスMIP-3αのcDNAの塩基配列を示す。

15 〔配列番号: 6〕

マウス $MIP-3\alpha$ の前駆ポリペプチドのアミノ酸配列を示す。

〔配列番号:7〕

ヒトCCR6のcDNAの塩基配列を示す。

〔配列番号:8〕

20 ヒトCCR6のアミノ酸配列を示す。

〔配列番号:9〕

マウスCCR6のcDNAの塩基配列を示す。

〔配列番号:10〕

マウスCCR6のアミノ酸配列を示す。

25 〔配列番号:11〕

ラットMIP-3α遺伝子転写産物の断片を増幅するためのプライマーとして機能

すべく設計されたオリゴヌクレオチドの塩基配列を示す。

[配列番号:12]

ラットMIP-3α遺伝子転写産物の断片を増幅するためのプライマーとして機能 すべく設計されたオリゴヌクレオチドの塩基配列を示す。

5 〔配列番号:13〕

ラット腎臓由来CCR6 cDNAの塩基配列を示す。

[配列番号:14]

.ラットCCR6のアミノ酸配列を示す。

[配列番号:15]

10 ラット肝臓由来CCR6・cDNAの塩基配列を示す。

[配列番号:16]

ラット腎臓由来CCR6 cDNAを増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチドの塩基配列を示す。

[配列番号:17]

15 ラット腎臓またはラット肝臓由来CCR6 cDNAを増幅するためのプライマーと して機能すべく設計されたオリゴヌクレオチドの塩基配列を示す。

[配列番号:18]

ラット肝臓由来CCR6 cDNAを増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチドの塩基配列を示す。

20 〔配列番号:19〕

ラットCCR6遺伝子産物の断片を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチドの塩基配列を示す。

[配列番号:20]

ラットCCR6遺伝子産物の断片を増幅するためのプライマーとして機能すべく設 25 計されたオリゴヌクレオチドの塩基配列を示す。

[配列番号:21]

15

20

25

ラットCCR6遺伝子産物の断片を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチドの塩基配列を示す。

以下において、実施例により本発明をより具体的にするが、この発明はこれらに限 5 定されるものではない。

実施例1 ラット脳虚血モデルにおけるMIP-3 α遺伝子の発現増加と低体温処置による発現減少

ラット局所脳虚血モデルでの脳組織におけるΜΙΡ-3α遺伝子の発現増加と低体 温処置による発現減少の有無を調べた。脳虚血モデルとしては、8週齢SD系雄性ラ ット(日本チャールズ・リバー社)を用いて中大脳動脈閉塞モデルを作成した(清田ら 、エクスペリメンタル・プレイン・リサーチ (Experimental BrainResearch)、95巻 、388-396頁、1993年)。すなわち、ハロセン麻酔下でシリコンコーティ ングした栓子を右側総頸動脈より中大脳動脈基始部まで挿入し、120分間閉塞した 。その後、栓子除去による再潅流開始から0、2、4、6、8、24、48、96時 間後に、一群あたり5匹のラットを屠殺・全脳を摘出、梗塞中心部および辺縁部を分 取した後、各群ごとに1サンプルとしてまとめた。低体温処置群も同様に局所脳虚血 に供した後、再潅流開始と同時に低温処置(ケージ内を冷風で冷やすことにより脳温 が35度を保つように維持)を開始し、虚血群と同様に2、4、6、8、24、48 、96時間後に全脳を摘出、各群ごとに1サンプルとしてまとめた。上記の各脳組織 サンプルを液体窒素下で粉砕した後、粉砕湿組織よりアイソジェン(ニッポンジーン 社)を用いて添付書記載の方法に従ってトータルRNAを精製した。メッセージクリ ーンキット(ジーン・ハンター社)を用いて混入したゲノムDNAを除去した後、サー モクリプトRT-PCRキット(GIBCO BRL社)を用いて1本鎖cDNAを合 成した。得られたcDNAを基に、MIP-3 α遺伝子の定量的PCRによる発現量 解析を行った。すなわちプライマー・エクスプレス(アプライド・バイオシステムズ 社) を用いてΜΙΡ-3α遺伝子の定量的PCRプライマーセットを設計し、選択し

10

15

20

25

た 2 種類のオリゴヌクレオチド(配列番号11:5'-AGAATGGCCTGCAA GCATCT-3':配列番号12:5'-TGCAGAGGTAAGCCAGCAGT A-3') を合成(プロリゴ・ジャパン社に委託) した。上記のプライマーセットを用 いて増幅したMIP-3α遺伝子断片は定量のための基準配列とした。定量的PCR の反応系には、上記プライマーセットおよびPCRクュアンティテック・サイバーグ リーンPCRマスターキット(キアジェン社)を使用した。一反応あたりポリA+RN A 0. 8 ngに由来する前述ラットcDNA、または 0 から 1 0 allーの標準MI  $P-3\alpha$ 遺伝子を鋳型として用い、ABIプリズム7000(アプライド・バイオシ ステムズ社)を用いて解析を行なった。ΜΙΡ-3α遺伝子発現量は、標準ΜΙΡ-3 α遺伝子からの算出した検量線から、各サンプル内のΜΙΡ-3 α c D N A コピー 数を算出することによって求めた。各サンプル間の値を補正するために、タックマン ローデントGAPDH・コントロールリージェントVICプローブ(アプライド・バ イオシステムズ社)を用いて算出した同サンプル内のGAPDHコピー数をコントロ ールとし、鋳型 cDNA中のGAPDH1コピーあたりの $MIP-3\alpha$ 遺伝子コピー 数として算出した。その結果、図1に示すように、梗塞中心部、辺縁部両部位とも、 再灌流開始2時間後からΜΙΡ-3α遺伝子の発現量が増加することが示された。梗 塞中心部では再灌流開始から24時間後に、辺縁部では8時間後にMIP-3α遺伝 子発現量は最大に達し、以後発現量は減少した。またこれらの発現は梗塞中心部、辺 縁部いずれにおいても、低体温処置により抑制されることが判明した。以上の結果か ら、MIP-3αが虚血後の再灌流に伴い著しく発現誘導され、かつ低体温処置によ り顕著に抑制される遺伝子であることが示された。

実施例2 抗ΜΙΡ-3α抗体によるラット脳虚血モデルにおける脳保護効果

ラット局所脳虚血モデルの脳梗塞容積に対する、中和活性を有する抗ラットMIP - 3 α モノクローナル抗体(以下、抗MIP-3 α 抗体と表記する)の脳室内投与による抑制作用を調べた。脳虚血モデルとしては、8 週齢 S D 系雄性ラット(日本チャールズリパー社)を用いて中大脳動脈閉塞モデルを作成した(清田ら、エクスペリメンタ

10

15

20

25

ル・プレイン・リサーチ (Experimental Brain Research)、95巻、388-396 頁、1993年)。すなわち、ハロセン麻酔下にシリコンコーティングをした栓子を右側総頸動脈より中大脳動脈起始部まで挿入し120分間の閉塞をした。実験1では、中大脳動脈閉塞直前にハロセン麻酔下にラットを脳定位固定装置に取り付け、虚血側側脳室(AP:-0.8、ML:-1.6、DV:-4.0、但し硬膜から)に、抗MIP-3  $\alpha$ 抗体(IgG1:ゲンザイム・テクノ社、カタログ番号:43540;20 $\mu$ g/10 $\mu$ l)、またはコントロール抗体(IgG1:ゲンザイム・テクノ社、カタログ番号:43002;20 $\mu$ g/10 $\mu$ l)を注入した。虚血処置1日後にラット脳を摘出し、厚さ2mmの前顎断スライスを作製、TTC染色像から画像解析により脳梗塞容積を測定したところ、抗MIP-3  $\alpha$ 抗体投与群の梗塞容積は対照群と比較して有意に(P $\langle 0.05\rangle$  小さかった(図2A)。実験2として、中大脳動脈閉塞再灌流直後に上記と同様の方法でコントロール抗体または抗MIP-3  $\alpha$ 抗体投与群で有意に(P $\langle 0.05\rangle$  筋梗塞容積が小さかった(図2B)。以上の結果はMIP-3  $\alpha$ の機能を抑制することにより、脳梗塞抑制作用があることを示す。

ラット局所脳虚血モデルでの脳組織におけるMIP-3  $\alpha$  タンパク質の産生増加と低体温処置による産生減少の有無を調べた。脳虚血モデルとしては、8週齢SD系雄性ラット(日本チャールズ・リパー社)を用いて中大脳動脈閉塞モデルを作成した(清田ら、エクスペリメンタル・ブレイン・リサーチ(Experimental Brain Research)、95巻、388-396頁、1993年)。すなわち、ハロセン麻酔下で、シリコンコーティングした栓子を右側総頸動脈より中大脳動脈基始部まで挿入し、120分間閉塞した。その後、栓子除去による再灌流開始から0、4、8、24、48、96時間後に、一群あたり5匹のラットを屠殺・全脳を摘出、梗塞中心部および辺縁部を分取した後、各群ごとに1サンプルとしてまとめた。低体温処置群も同様に局所脳虚

10

15

20

25

血した後、再潅流開始と同時に低温処置(ケージ内を冷風で冷やすことにより脳温が 35℃を保つように維持)を開始し、虚血群と同様に4、8、24、48、96時間 後に全脳を摘出、各群ごとに1サンプルとしてまとめた。上記の各脳組織サンプルを 液体窒素下で粉砕した後、セルリティック-MT・ママリアン・ティッシュ・リシス/イ クストラクション・リージェント(CellLytic-MT Mammalian Tissue Lysis/Extractio n Reagent;シグマ社) にプロテアーゼインヒビター・カクテル (P8340;シグマ社) を100分の1量添加した溶解液を、脳粉砕組織各50mgに対して1m1ずつ添加 し、ポリトロンにより可溶化した。その後、各可溶化組織液を4℃で5分間、12, 000回転で遠心し、不溶画分を除去した上清液をサンプル液とした。このサンプル 液を下記に述べるラットMIP-3 αサンドイッチELISAに供し、脳組織タンパ ク質1mgあたりのMIP-3αタンパク質量として図3に表した。サンプル液中の タンパク質量はBCAプロテイン・アッセイ・キット(ピアース社)を用いて添付の マニュアルに従って定量した。尚、ラットΜΙΡ-3 αサンドイッチELISAは市 販の抗ラット $MIP-3\alpha$ 抗体(43540;ジェンザイム・テクネ社)、およびビオチン 標識抗ラットΜΙΡ-3αポリクローナル抗体(44540;ジェンザイム・テクネ社)を 用いて実施した。すなわち、抗ラットMIP-3 $\alpha$ 抗体(43540)をリン酸緩衝液(P BS) で2μg/m1の濃度になるように希釈し、これを96穴ELISAプレート に100μ1ずつ分注した。室温で2時間放置の後、洗浄緩衝液(0.05% Twe en 20を含有したPBS、pH7.2)にて3回洗浄したプレートにブロック緩衝 液(1%牛胎児血清、5%シュークロース、0.05%アジ化ナトリウムを含有した PBS) を各ウエルあたり300μ1添加し、室温で1時間放置した。その後、洗浄 緩衝液で3回洗浄し、各希釈サンプル液およびラットMIP-3 αスタンダード液を 100μ1ずつ添加、2時間室温で放置した。3回洗浄緩衝液で洗浄した後、PBS で50ng/mlに希釈したピオチン標識抗ラットMIP-3αポリクローナル抗体 (44540) を100μ1ずつ添加し、室温にて2時間放置した。洗浄した後は、プロテ イン・ディテクターELISAキット(protein detector ELISA kit; KPL社)に添付

- 極塞中心部、辺縁部いずれにおいても再灌流開始24時間後には脳組織中MIP-3αタンパク質量は最大値に達することがわかった。またこれらの産生は低体温処置により著しく抑制されることが示された。以上の結果から、MIP-3αタンパク質が虚血後の再灌流に伴い著しく産生誘導され、かつ低体温処置により顕著に抑制されることが明らかとなった。
- 10 実施例4 CCケモカイン受容体6 (CCR6)をコードするcDNAのクローニングと塩基配列の決定

ラット腎臓由来CCR6およびラット肝臓由来CCR6を各々コードするcDNAをクローニングし、塩基配列を決定した。下記にそれぞれのクローニングとその塩基配列決定について示す。

まず、ラット腎臓Marathon-Ready cDNA (Clontech社) を鋳型とし、2種類のプライマー、プライマー1 (下記参照) およびプライマー2 (下記参照) を用いてPCR反応を行った。該反応における反応液の組成は、上記cDNA5μ1を鋳型として使用し、Advantage 2 Polymerase Mix (Clontech社) を4μ1、プライマー1およびプライマー2を各0.4μM、dNTP mixtureを200μM、10×cDNA PCR Reaction Buffe r (Clontech社) を20μ1加え、200μ1の液量とした。PCR反応は、94℃で1分間熱処理後、94℃で30秒、67℃で30秒、68℃で2分のサイクルを35回繰り返して行った。アガロースゲル電気泳動で増幅断片を確認後、PCR反応産物をTOPO TA Cloning Kit (Invitrogen社) の処方に従いプラスミドベクターpCR 2.1-TOPO (Invitrogen社) ヘサプクローニングした。このプラスミドで大腸菌TOP10を形質転換し、cDNAが導入されたクローンをカナマイシンを含むLB寒天培地上で選択した。個々のクローンの塩基配列を解析した結果、ラットCCR6をコードするcDN

15

20

25

A配列 (配列番号 13) を得、そのプラスミドDNAをrCCR6-kidneyと名づけた。さらに、そのプラスミドDNAで大腸菌DH5 $\alpha$  (Invitrogen社) を形質転換し、その形質転換体をDH5 $\alpha$ /rCCR6-kidneyと命名した。

次に、ラット肝臓Marathon-Ready cDNA(Clontech社)を鋳型とし、2種類のプライマー、プライマー2(下記参照)およびプライマー3(下記参照)を用いてPCR反応を行った。該反応における反応液の組成は、上記 c DNA 5 μ 1 を鋳型として使用し、Pyrobest DNA Polymerase(タカラバイオ社)を1 μ 1、プライマー 2 およびプライマー 3 を各 0. 4 μ M、dNTP mixtureを 2 0 0 μ M、10×Pyrobest II buffer(タカラバイオ社)を 2 0 μ 1 加え、2 0 0 μ 1 の液量とした。 PCR反応は、9 4 ℃で3 0 秒 1 を 2 0 μ 1 加え、2 0 0 μ 1 の液量とした。 PCR反応は、9 4 ℃で3 0 秒 1 を 2 で 2 分のサイクルを 4 0 回繰り返して行った。アガロースゲル電気泳動で増幅断片を確認後、PCR反応産物を 2 ero Blunt TOPO PCR Cloning Kit(Invitrogen社)の処方に従いプラスミドベクター pCR-Blunt II-TOPO(Invitrogen社)へサブクローニングした。このプラスミドで大腸菌TOP10を形質転換し、c DNAが導入されたクローンをカナマイシンを含む LB寒 天培地上で選択した。個々のクローンの塩基配列を解析した結果、ラット CCR 6 を コードする c DNA配列(配列番号 1 5)を得、そのプラスミド DNAを rCCR6-liver と名づけた。さらに、そのプラスミド DNAで大腸菌DH5 α(Invitrogen社)を形質転換し、その形質転換体を DH5 α/rCCR6-liverと命名した。

ラット腎臓由来CCR6 cDNAとラット肝臓由来CCR6 cDNAは、タンパク質コード領域の塩基配列において完全に一致しており、366アミノ酸からなるアミノ酸配列(配列番号14)を有するタンパク質をコードしていた。該アミノ酸配列の疎水性プロット解析の結果は、このタンパク質が7回膜貫通ドメインを有することを示唆していた。

プライマー1: 5'-TGTATTGAAGACAGAACACTTGTGG-3'(配列番号16)

プライマー2: 5'-TCACATGTAATAGCAAGTTTCACAAAGG-3'(配列番号17)

プライマー3: 5'-GCATCTCACTACCCGTCTCTC-3'(配列番号18)

実施例 5 ラット脳虚血モデルにおける C C R 6 遺伝子の発現増加と低体温処置によ る発現減少

ラット局所脳虚血モデルでの脳組織におけるCCR6遺伝子の発現増加と低体温処 置による発現減少の有無を調べた。脳虚血モデルとしては、8週齢SD系雄性ラット( 日本チャールズ・リバー社)を用いて中大脳動脈閉塞モデルを作成した(清田ら、エク 5 スペリメンタル・プレイン・リサーチ (Experimental Brain Research)、95巻、3 88-396頁、1993年)。すなわち、ハロセン麻酔下で、シリコンコーティン グした栓子を右側総頸動脈より中大脳動脈基始部まで挿入し、120分間閉塞した。 その後、栓子除去による再潅流開始から0、2、4、6、8、24、48、96時間 後に、一群あたり5匹のラットを屠殺・全脳を摘出、梗塞中心部および辺縁部を分取 した後、各群ごとに1サンプルとしてまとめた。低体温処置群も同様に局所脳虚血に 供した後、再潅流開始と同時に低温処置(ケージ内を冷風で冷やすことにより脳温が 35℃を保つように維持)を開始し、虚血群と同様に2、4、6、8、24、48、 96時間後に全脳を摘出、各群ごとに1サンプルとしてまとめた。上記の各脳組織サ ンプルを液体窒素下で粉砕した後、粉砕湿組織よりアイソジェン(ニッポンジーン社 15 ) を用いて添付書記載の方法に従ってトータルRNAを精製した。メッセージ・クリ ーンキット(ジーン・ハンター社)を用いて混入したゲノムDNAを除去した後、サー モスクリプトRT-PCRキット(GIBCO BRL社)を用いて1本鎖cDNAを合成した。 得られた c D N A を鋳型として、定量的 P C R による C C R 6 遺伝子の発現量解析を 行った。すなわち、実施例4(前項)でクローニングしたラットCCR6遺伝子配列 をもとに2種類のオリゴヌクレオチド(配列番号19:5'-GGACGATGCGTTGTCATTTTC-3' ;配列番号20:5'-CCGCAGCTGCAGCGCCGAGAAA-3'、いずれもプロリゴ・ジャパン社に 合成委託)を用いてラットCCR6遺伝子断片を増幅し、定量のための基準配列とし た。定量的PCRの反応系には、プライマー・エクスプレス(アプライド・バイオシ ステムズ社)を用いて設計した定量的PCR用プライマーセット(配列番号19:5'-25 GGACGATGCGTTGTCATTTTC-3'、配列番号21:5'-GTGCCCGGGTTTACTCAGAA-3'、いずれも

10

15

プロリゴ・ジャパン社により委託合成)およびPCRクュアンティテック・サイバーグリ ーンPCRマスターキット(キアジェン社)を使用した。一反応あたりポリA\* RNA 0.8 ng量に相当する各ラットcDNAサンプル、または0から10<sup>6</sup> コピーの標 準CCR6遺伝子断片を鋳型として用い、ABIプリズム7000(アプライド・パイオシス テムズ社)を用いて解析を行なった。 ССR 6 遺伝子発現量は、同一サンプル内の G APDH遺伝子発現量により標準化した。すなわち標準CCR6遺伝子から作成した 検量線から、各サンプル内のCCR6 CDNAコピー数を算出すると同時に、タック マンローデントGAPDH・コントロールリージェントVICプロープ(アプライド・バイオ システムズ社)を用いて同サンプル内のGAPDH cDNAコピー数を算出し、GA PDH cDNA 1コピーあたりのCCR6 cDNAコピー数として算出した。その 結果、図5に示すように、再灌流開始後、梗塞中心部では4時間から、辺縁部では6 時間からCCR6遺伝子の発現量が増加することが示された。またCCR6遺伝子発 現量は梗塞中心部、辺縁部ともに再灌流開始から48時間後に最大に達し、以後発現 量は減少した。さらに、これらの発現は梗塞中心部では8時間後から、辺縁部では2 4時間後から、低体温処置により抑制されることが判明した。以上の結果から、 C C R6遺伝子は虚血後の再灌流に伴い著しく発現が誘導され、かつ低体温処置により顕 著に抑制されることが示された。

## 産業上の利用可能性

20 本発明のMIP-3αは、脳・神経細胞傷害、例えば、脳血管障害の診断マーカーであり、したがって、該タンパク質の活性を阻害する物質、例えば、該タンパク質に対する中和抗体、該タンパク質の遺伝子発現を阻害する物質、例えば、本発明のアンチセンス核酸は、脳・神経細胞保護剤、特に脳梗塞、脳出血、くも膜下出血などの脳血管障害または頭部外傷時の脳・神経細胞保護剤として有用である。

87

## 請求の範囲

- 1. 配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質またはその塩を抑制する物質を含有してなる脳・神経細胞保護剤。
- 2. 配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質またはその塩の活性を低下させる物質を含有してなる脳・神経細胞保護剤。
- 3. 活性を低下させる物質が、配列番号: 2、4または6で表されるアミノ酸配列中 7ミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含 有するタンパク質もしくはその部分ペプチドまたはその塩に対する中和抗体である請 求項2記載の脳・神経細胞保護剤。
- 4. 配列番号: 2、4または6で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドをコードする遺伝子の発現を阻害する物質を 15 含有してなる脳・神経細胞保護剤。
  - 5. 発現を阻害する物質が、配列番号: 2、4または6で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を有するポリペプチドをコードする塩基配列に相補的な塩基配列またはその一部を含有する核酸である請求項4記載の脳・神経細胞保護剤。
- 20 6.配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質もしくはその部分ペプチドまたはその塩に対する抗体を含有してなる脳・神経細胞傷害の診断薬。
- 7.配列番号: 2、4または6で表されるアミノ酸配列と同一もしくは実質的に同一 25 のアミノ酸配列を含有するポリペプチドをコードする塩基配列またはその一部を含有 する核酸を含有してなる脳・神経細胞傷害の診断薬。

25

- 8. 配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質またはその塩と、それに対する受容体との結合を阻害する物質を含有してなる脳・神経細胞保護剤。
- 9.配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質またはその塩に対する受容体の細胞刺激活性を阻害する物質を含有してなる脳・神経細胞保護剤。
- 10.配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のア ミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質または その塩に対する受容体をコードする遺伝子の発現を阻害する物質を含有してなる脳・ 神経細胞保護剤。
  - 11. 受容体が、配列番号8または10で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質またはその塩である請求項8~10のいずれか1項に記載の脳・神経細胞保護剤。
  - 12. 配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質もしくはその部分ペプチドまたはその塩を用いることを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング方法。
- 20 13.配列番号:8または10で表されるアミノ酸配列と同一もしくは実質的に同一 のアミノ酸配列を含有するタンパク質もしくはその部分ペプチドまたはその塩を用い ることを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング方法。
  - 14.配列番号:2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質もしくはその部分ペプチドまたはその塩を含有することを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング用キット。

20

- 15.配列番号:8または10で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するタンパク質もしくはその部分ペプチドまたはその塩を含有することを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング用キット
- 5 16.配列番号:2、4または6で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドをコードする塩基配列またはその一部を含有する核酸を用いることを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング方法。
- 17. 配列番号:8または10で表されるアミノ酸配列と同一もしくは実質的に同一 のアミノ酸配列を含有するポリペプチドをコードする塩基配列またはその一部を含有 する核酸を用いることを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング方法。
  - 18.配列番号: 2、4または6で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドをコードする塩基配列またはその一部を含有する核酸を含有することを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング用キット。
    - 19. 配列番号:8または10で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポリペプチドをコードする塩基配列またはその一部を含有する核酸を含有することを特徴とする脳・神経細胞保護作用を有する物質のスクリーニング用キット。
    - 20. 脳または神経細胞の保護方法であって、それを必要とする対象に、配列番号: 2、4または6で表されるアミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一 もしくは実質的に同一のアミノ酸配列を含有するタンパク質またはその塩を抑制する 物質を投与することを含む方法。
- 25 21. 脳・神経細胞保護剤を製造するための、配列番号: 2、4または6で表される アミノ酸配列中アミノ酸番号1以降のアミノ酸配列と同一もしくは実質的に同一のア

WO 2004/078208 PCT/JP2004/002774

90

ミノ酸配列を含有するタンパク質またはその塩を抑制する物質の使用。

図 1

Α





\* C: コントロール、無処置ラット脳由来c DNA

 $\mathbf{B}$ 

## 梗塞辺縁部



\* C: コントロール、無処置ラット脳由来cDNA

図 2 **A** 





図 3



図 4





1/31

## SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.

5 <120> Pharmaceutical Use of MIP-3 lpha Suppressing Substance and Screening for Brain or Nerve Cell Protecting Substance

<130> 3158WOOP

10 <150> JP 2003-056885

<151> 2003-03-04

<150> JP 2003-106247

<151> 2003-04-10

15

<160> 21

<170> PatentIn version 3.1

20 <210> 1

<211> 288

<212> DNA

<213> Homo sapiens

25 <220>

<221> CDS

WO 2004/078208 PCT/JP2004/002774

2/31

<222> (1)..(288)

<223>

<220>

5 <221> sig\_peptide

⟨222⟩ (1).. (78)

<223>

<220>

10 <221> mat\_peptide

⟨222⟩ (79)..()

<223>

**<400>** 1

15 atg tgc tgt acc aag agt ttg ctc ctg gct gct ttg atg tca gtg ctg

Met Cys Cys Thr Lys Ser Leu Leu Leu Ala Ala Leu Met Ser Val Leu

-25 -20 -15

cta ctc cac ctc tgc ggc gaa tca gaa gca gca agc aac ttt gac tgc 96
Leu Leu His Leu Cys Gly Glu Ser Glu A'la Ala Ser Asn Phe Asp Cys

20 -10 -5 -1 1 5

tgt ctt gga tac aca gac cgt att ctt cat cct aaa ttt att gtg ggc 144

Cys Leu Gly Tyr Thr Asp Arg Ile Leu His Pro Lys Phe Ile Val Gly

10 15 20

ttc aca cgg cag ctg gcc aat gaa ggc tgt gac atc aat gct atc atc 192

25 Phe Thr Arg Gln Leu Ala Asn Glu Gly Cys Asp Ile Asn Ala Ile Ile

25 30 35

PCT/JP2004/002774 WO 2004/078208

3/31

ttt cac aca aag aaa aag ttg tct gtg tgc gca aat cca aaa cag act 240 Phe His Thr Lys Lys Leu Ser Val Cys Ala Asn Pro Lys Gln Thr

50 45 40

tgg gtg aaa tat att gtg cgt ctc ctc agt aaa aaa gtc aag aac atg 288 Trp Val Lys Tyr Ile Val Arg Leu Leu Ser Lys Lys Val Lys Asn Met 5 60 65 70. 55

<210> 2

<211> 96

<212> PRT 10

<213> Homo sapiens

**<400>** 2

15

25

55

Met Cys Cys Thr Lys Ser Leu Leu Leu Ala Ala Leu Met Ser Val Leu -15-25-20

Leu Leu His Leu Cys Gly Glu Ser Glu Ala Ala Ser Asn Phe Asp Cys -1 1 5 -10-5

Cys Leu Gly Tyr Thr Asp Arg Ile Leu His Pro Lys Phe Ile Val Gly 20 10 15

Phe Thr Arg Gln Leu Ala Asn Glu Gly Cys Asp Ile Asn Ala Ile Ile 20 30 35 25

Phe His Thr Lys Lys Leu Ser Val Cys Ala Asn Pro Lys Gln Thr 40 · 45 50

Trp Val Lys Tyr Ile Val Arg Leu Leu Ser Lys Lys Val Lys Asn Met 70 65 60

96

<210> 3

**<211>** 288

<212> DNA

<213> Rattus norvegicus

5

<220>

<221> CDS

<222> (1).. (288)

<223>

10

<220>⋅

<221> sig\_peptide

<222> (1).. (75)

<223>

15

<220>

<221> mat\_peptide

⟨222⟩ (76)..()

<223>

20

**<400>** 3

atg gcc tgc aag cat ctg ccc ttc ctg gct ttg gcg ggg gta ctg ctg Met Ala Cys Lys His Leu Pro Phe Leu Ala Leu Ala Gly Val Leu Leu

-25 -20 -15 -10

25 gct tac ctc tgc agc cag tca gaa gca agc aac ttt gac tgc tgc
Ala Tyr Leu Cys Ser Gln Ser Glu Ala Ala Ser Asn Phe Asp Cys Cys

WO 2004/078208 PCT/JP2004/002774

5/31

5 -1 1 -5 ctc acg tac aca aag aac gtg tat cat cat gcg aga aat tit gtg ggt 144 Leu Thr Tyr Thr Lys Asn Val Tyr His His Ala Arg Asn Phe Val Gly 20 15 10 ttc aca aca cag atg gcc gac gaa gct tgt gac att aat gct atc atc 192 Phe Thr Thr Gln Met Ala Asp Glu Ala Cys Asp Ile Asn Ala Ile Ile 25 30 35 240 ttt cac ctg aag tcg aaa aga tcc gtg tgc gct gac cca aag cag atc Phe His Leu Lys Ser Lys Arg Ser Val Cys Ala Asp Pro Lys Gln Ile 50 55 45 40 tgg gtg aaa agg att ttg cac ctc ctc agc cta aga acc aag aag atg 288 Trp Val Lys Arg Ile Leu His Leu Leu Ser Leu Arg Thr Lys Lys Met

65

70

15 <210> 4

5

10

<211> 96

<212> PRT

<213> Rattus norvegicus

60

20 <400> 4

Met Ala Cys Lys His Leu Pro Phe Leu Ala Leu Ala Gly Val Leu Leu
-25 -20 -15 -10
Ala Tyr Leu Cys Ser Gln Ser Glu Ala Ala Ser Asn Phe Asp Cys Cys
-5 -1 1 5

25 Leu Thr Tyr Thr Lys Asn Val Tyr His His Ala Arg Asn Phe Val Gly

10 15 20

WO 2004/078208 PCT/JP2004/002774

6/31

Phe Thr Thr Gln Met Ala Asp Glu Ala Cys Asp Ile Asn Ala Ile Ile

25 30 35

Phe His Leu Lys Ser Lys Arg Ser Val Cys Ala Asp Pro Lys Gln Ile

40 45 50 55

5 Trp Val Lys Arg Ile Leu His Leu Leu Ser Leu Arg Thr Lys Lys Met

60 65 70

<210> 5

<211> 291

10 <212> DNA

<213> Mus musculus

<220>

<221> CDS

15 <222> (1)..(291)

<223>

<220>

<221> sig\_peptide

20 <222> (1)..(81)

<223>

<220>

<221> mat\_peptide

25 <222> (82)..()

<223>

7/31

|     | <400 | > 5  | i    |     |     |       |     |     |      |     |     |     |     |     |     |     |     |
|-----|------|------|------|-----|-----|-------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|
|     | atg  | gcc  | tgc  | ggt | ggc | aag   | cgt | ctg | ctc  | ttc | ctt | gct | ttg | gca | tgg | gta | 48  |
|     | Met  | Ala  | Cys  | Gly | Gly | Lys   | Arg | Leu | Leu  | Phe | Leu | Ala | Leu | Ala | Trp | Val |     |
| 5   |      |      | -25  |     |     |       |     | -20 |      |     |     |     | -15 |     |     |     |     |
|     | ctg  | ctg  | gc t | cac | ctc | tgc   | agc | cag | gca  | gaa | gca | gca | agc | aac | tac | gac | 96  |
|     | Leu  | Leu  | Ala  | His | Leu | Cys   | Ser | Gln | Ala  | Glu | Ala | Ala | Ser | Asn | Tyr | Asp |     |
|     |      | -10  |      |     |     |       | -5  |     |      |     | -1  | 1   |     |     |     | 5 . |     |
|     | tgt  | tgc- | ctc  | tcg | tac | a:t a | cag | acg | ċc t | ctt | cct | tcc | aga | gct | att | gţg | 144 |
|     | Cys  | Cys  | Leu  | Ser | Tyr | Ile   | Gln | Thr | Pro  | Leu | Pro | Ser | Arg | Ala | Ile | Val |     |
|     | •    |      |      |     | 10  |       |     |     |      | 15  |     |     |     |     | 20  |     |     |
|     | ggt  | ttc  | aca  | aga | cag | atg   | gcc | gat | gaa  | gct | tgt | gac | att | aat | gct | atc | 192 |
|     | Gly  | Phe  | Thr  | Arg | Gln | Met   | Ala | Asp | Glu  | Ala | Cys | Asp | Ile | Asn | Ala | Ile |     |
|     |      |      |      | 25  |     |       |     |     | 30   |     |     |     |     | 35  |     |     |     |
| 1 5 | atc  | ttt  | cac  | acg | aag | aaa   | aga | aaa | tct  | gtg | tgc | gct | gat | cca | aag | cag | 240 |
|     | Ile  | Phe  | His  | Thr | Lys | Lys   | Arg | Lys | Ser  | Val | Cys | Ala | Asp | Pro | Lys | Gln |     |
|     |      |      | 40   |     |     |       |     | 45  |      |     |     |     | 50  |     |     |     |     |
|     | aac  | tgg  | gtg  | aaa | agg | gct   | gţg | aac | ctċ  | ctc | agc | cta | aga | gtc | aag | aag | 288 |
|     | Asn  | Trp  | Val  | Lys | Arg | Ala   | Val | Asn | Leu  | Leu | Ser | Leu | Arg | Val | Lys | Lys |     |
| 20  |      | 55   |      |     |     |       | 60  |     |      |     |     | 65  |     |     |     |     |     |
|     | atg  |      |      |     |     |       |     |     |      |     |     |     |     |     |     |     | 291 |
|     | Met  |      |      |     |     |       |     |     |      |     |     |     |     |     |     |     |     |
|     | 70   |      |      |     |     |       |     |     |      |     |     |     |     |     |     |     |     |
|     |      |      |      |     |     |       |     |     |      |     |     |     |     |     |     |     |     |

25 <210> 6 <211> 97 ·

8/31

<212> PRT

<213> Mus musculus

<400> 6

5 Met Ala Cys Gly Gly Lys Arg Leu Leu Phe Leu Ala Leu Ala Trp Val

-25 -20 -15

Leu Leu Ala His Leu Cys Ser Gln Ala Glu Ala Ala Ser Asn Tyr Asp

-10 -5 -1 1 5

Cys Cys Leu Ser Tyr Ile Gln Thr Pro Leu Pro Ser Arg Ala Ile Val

10 10 15 20

Gly Phe Thr Arg Gln Met Ala Asp Glu Ala Cys Asp Ile Asn Ala Ile

25 30 35

Ile Phe His Thr Lys Lys Arg Lys Ser Val Cys Ala Asp Pro Lys Gln

40 45 50

15 Asn Trp Val Lys Arg Ala Val Asn Leu Leu Ser Leu Arg Val Lys Lys

55 60 65

Met

70

20 <210> 7

<211> 1122

<212> DNA

<213> Homo sapiens

25 <220>

<221> CDS

WO 2004/078208 PCT/JP2004/002774

9/31

<222> (1)..(1122)

<223>

|     | <400> 7 |       |       |     |     |     |      |     |     |     |     |     |     |     |     |       |     |
|-----|---------|-------|-------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|
| 5   | atg     | agc   | ggg   | gaa | tca | atg | aat  | ttc | agc | gat | gtt | ttc | gac | tcc | agt | gaa   | 48  |
|     | Met     | Ser   | Gly   | Glu | Ser | Met | Asn  | Phe | Ser | Asp | Val | Phe | Asp | Ser | Ser | Glu . |     |
|     | 1       |       |       |     | 5   |     |      |     |     | 10  |     |     |     |     | 15  |       |     |
|     | gat     | tat   | ttt   | gtg | tca | gtc | aat. | act | tca | tat | tac | tca | gtt | gat | tct | gag   | 96  |
|     | Asp     | Tyr   | Phe   | Val | Ser | Val | Asn  | Thr | Ser | Tyr | Tyr | Ser | Val | Asp | Ser | Glu   |     |
| 10  |         |       |       | 20  |     |     |      |     | 25  |     |     |     |     | 30  |     |       |     |
|     | atg     | t t a | c·t g | tgc | tcc | ttg | cag  | gag | gtc | agg | cag | ttc | tcc | agg | cta | ttt   | 144 |
|     | Met     | Leu   | Leu   | Cys | Ser | Leu | Gln  | Glu | Val | Arg | Gln | Phe | Ser | Arg | Leu | Phe   |     |
|     |         | •     | 35    |     |     |     |      | 40  |     |     |     |     | 45  |     |     |       |     |
|     | gta     | ccg   | att   | gcc | tac | tcc | ttg  | atc | tgt | gtc | ttt | ggc | ctc | ctg | ggg | aat   | 192 |
| 1.5 | Val     | Pro   | Ile   | Ala | Tyr | Ser | Leu  | Ile | Cys | Val | Phe | Gly | Leu | Leu | Gly | Asn   |     |
|     |         | 50    |       |     |     |     | 55   |     |     |     |     | 60  |     |     |     |       |     |
|     | att     | ctg   | gţg   | gtg | atc | acc | ttt  | gct | ttt | tat | aag | aag | gcc | agg | tct | atg   | 240 |
|     | Ile     | Leu   | Val   | Val | Ile | Thr | Phe  | Ala | Phe | Tyr | Lys | Lys | Ala | Arg | Ser | Met   |     |
|     | 65      |       |       |     |     | 70  |      |     |     |     | 75  |     |     |     |     | 80    | •   |
| 20  | aca     | gac   | gtc   | tat | ctc | ttg | aac  | atg | gcc | att | gca | gac | atc | ctc | ttt | gtt   | 288 |
|     | Thr     | Asp   | Val   | Tyr | Leu | Leu | Asn  | Met | Ala | Ile | Ala | Asp | Ile | Leu | Phe | Val   |     |
|     |         |       |       |     | 85  |     |      |     |     | 90  |     |     |     |     | 95  |       |     |
|     | ctt     | act   | ctc   | cca | ttc | tgg | gca  | gţg | agt | cat | gcc | act | ggt | gcg | tgg | gtt   | 336 |
|     | Leu     | Thr   | Leu   | Pro | Phe | Trp | Ala  | Val | Ser | His | Ala | Thr | Gly | Ala | Trp | Val   |     |
| 25  |         |       |       | 100 |     |     |      |     | 105 |     |     |     |     | 110 |     |       |     |
|     | ttc     | agc   | aat   | gcc | acg | tgc | aag  | ttg | cta | aaa | ggc | atc | tat | gcc | atc | aac   | 384 |

10/31

|    | Phe   | Ser | Asn | Ala  | Thr | Cys | Lys | Leu | Leu | Lys | Gly | Ile | Tyr | Ala | Ile | Asn  |     |
|----|-------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|
|    |       |     | 115 |      |     |     |     | 120 |     |     |     |     | 125 |     |     |      |     |
|    | t t t | aac | tgc | ggg  | atg | ctg | ctc | ctg | act | tgc | att | agc | aig | gac | cgg | tac  | 432 |
|    | Phe   | Asn | Cys | Gly  | Met | Leu | Leu | Leu | Thr | Cys | Ile | Ser | Met | Asp | Arg | Tyr  | •   |
| 5  | -     | 130 |     |      |     |     | 135 |     |     | •   |     | 140 |     |     |     |      |     |
|    | atc   | gcc | atţ | gta  | cag | gcg | act | aag | tca | ttc | cgg | ctc | cga | tcc | aga | aca  | 480 |
|    | Ile   | Ala | Ile | Val  | Gln | Ala | Thr | Lys | Ser | Phe | Arg | Leu | Arg | Ser | Arg | Thr  |     |
|    | 145   |     |     |      |     | 150 |     |     |     |     | 155 |     | ·   |     |     | 160  |     |
|    | cta   | ccg | cgc | agc  | aaa | atc | atc | tgc | ctt | gtt | gtg | tgg | ggg | ctg | tca | gtc  | 528 |
| 10 | Leu   | Pro | Arg | Ser  | Lys | Ile | Ile | Cys | Leu | Val | Val | Trp | Gly | Leu | Ser | 'Val |     |
|    |       |     |     |      | 165 |     |     |     |     | 170 |     |     |     |     | 175 |      |     |
|    | atc   | atc | tcc | agc  | tca | act | ttt | gtc | ttc | aac | caa | aaa | tac | aac | acc | caa  | 576 |
|    | Ile   | Ile | Ser | Ser  | Ser | Thr | Phe | Val | Phe | Asn | Gln | Lys | Tyr | Asn | Thr | Gln  |     |
|    |       |     |     | 180  |     |     |     |     | 185 |     |     |     |     | 190 |     |      |     |
| 15 | ggc   | agc | gat | gtc  | tgt | gaa | ccc | aag | tac | cag | act | gtc | tcg | gag | ccc | atc  | 624 |
|    | Gly   | Ser | Asp | Val  | Cys | Glu | Pro | Lys | Tyr | Gln | Thr | Val | Ser | Glu | Pro | Ile  |     |
|    |       |     | 195 |      |     |     |     | 200 |     |     |     |     | 205 |     |     |      |     |
|    | agg   | tgg | aag | ctg  | ctg | atg | ttg | ggg | ctt | gag | cta | ctc | ttt | ggt | ttc | ttt  | 672 |
|    | Arg   | Trp | Lys | Leu  | Leu | Met | Leu | Gly | Leu | Glu | Leu | Leu | Phe | Gly | Phe | Phe  |     |
| 20 |       | 210 |     |      |     |     | 215 |     |     |     |     | 220 |     |     |     |      |     |
| ,  | atc   | cct | ttg | atg  | ttc | atg | ata | ttt | tgt | tac | acg | ttc | att | gtc | aaa | acc  | 720 |
|    | Ile   | Pro | Leu | Met  | Phe | Met | Ile | Phe | Cys | Tyr | Thr | Phe | Ile | Val | Lys | Thr  |     |
|    | 225   |     |     |      |     | 230 |     |     |     |     | 235 |     |     |     |     | 240  |     |
|    | ttg   | gtg | caa | gc t | cag | aat | tct | aaa | agg | cac | aaa | gcc | atc | cgt | gta | atc  | 768 |
| 25 | Leu   | Val | Gln | Ala  | Gln | Asn | Ser | Lys | Arg | His | Lys | Ala | Ile | Arg | Val | Ile  |     |
|    |       |     |     |      | 245 |     |     |     |     | 250 |     |     |     |     | 255 |      |     |

WO 2004/078208 PCT/JP2004/002774

11/31

|    | - 4 - | ~ a t | ~ 4 ~ | ~ + ~ |     | a t a |     | a t a | an t | tat | cac | 2 † † | cct  | cat | 220  | a t or | 816  |
|----|-------|-------|-------|-------|-----|-------|-----|-------|------|-----|-----|-------|------|-----|------|--------|------|
|    |       |       |       |       |     |       |     | ctg   |      |     |     |       |      |     |      |        | 010  |
|    | Ile   | Ala   | Val   | Val   | Leu | Val   | Phe | Leu   | Ala  | Cys | Gln | He    | Pro  | His | Asn  | Met    |      |
|    |       |       |       | 260   |     |       |     |       | 265  |     |     |       |      | 270 |      |        |      |
|    | gtc   | ctg   | ctt   | gtg   | acg | gct   | gca | aat   | ttg  | ggt | aaa | atg   | aac  | cga | tcc  | tgc    | 864  |
| 5  | Val   | Leu   | Leu   | Val   | Thr | Ala   | Ala | Asn   | Leu  | Gly | Lys | Met   | Asn  | Arg | Ser  | Cys    |      |
|    |       |       | 275   |       |     |       |     | 280   |      |     |     |       | 285  |     |      |        | •    |
|    | cag   | agc   | gaa   | aag   | cta | a t t | ggc | tat   | acg  | aaa | act | gtc   | aca  | gaa | gtc  | ctg    | 912  |
|    | Gln   | Ser   | Glu   | Lys   | Leu | Ile   | Gly | Tyr   | Thr  | Lys | Thr | Val   | Thr  | Glu | Val  | Leu    |      |
|    |       | 290   |       |       |     |       | 295 |       |      |     |     | 300   |      |     |      |        |      |
| 10 | gc t  | ttc   | ctg   | cac   | tgc | tgc   | ctg | aac   | cct  | gtg | ctc | tac   | gc t | ttt | att  | ggg    | 960  |
|    | Ala   | Phe   | Leu   | His   | Cys | Cys   | Leu | Asn   | Pro  | Val | Leu | Tyr   | Ala  | Phe | Ile  | Gly    |      |
|    | 305   |       |       |       |     | 310   |     |       |      |     | 315 |       |      |     |      | 320    |      |
|    | cag   | aag   | ttc   | aga   | aac | tac   | ttt | ctg   | aag  | atc | ttg | aag   | gac  | ctg | t gg | tgt    | 1008 |
|    | Gln   | Lys   | Phe   | Arg   | Asn | Tyr   | Phe | Leu   | Lys  | Ile | Leu | Lys   | Asp  | Leu | Trp  | Cys    |      |
| 15 |       |       |       |       | 325 |       |     |       |      | 330 |     |       |      |     | 335  |        |      |
|    | gtg   | aga   | agg   | aag   |     | aag   | tcc | tca   | ggc  | ttc | tcc | tgt   | gcc  | ggg | agg  | tac    | 1056 |
|    |       |       |       |       |     |       |     | Ser   |      |     |     |       |      |     |      |        |      |
|    | 141   | Λις   | MI 6  | 340   | 131 | Дуб   | 001 | 501   | 345  |     |     | 0,0   |      | 350 | 0    | -3-    | •    |
|    |       |       |       |       |     |       |     |       |      |     |     |       |      |     |      |        | 1104 |
|    |       |       |       |       |     |       |     | acc   |      |     |     |       |      |     |      |        | 1104 |
| 20 | Ser   | Glu   | Asn   | Ile   | Ser | Arg   | Gln | Thr   | Ser  | Glu | Thr | Ala   | Asp  | Asn | Asp  | Asn    |      |
|    |       |       | 355   |       |     |       |     | 360   | :    |     |     |       | 365  |     |      |        |      |
|    | gcg   | tcg   | tcc   | ttc   | act | atg   |     |       |      |     |     |       |      |     |      |        | 1122 |
|    | Ala   | Ser   | Ser   | Phe   | Thr | Met   |     |       |      |     |     |       |      |     |      |        |      |
|    |       | 370   |       |       |     |       |     |       |      |     |     |       |      |     |      |        |      |
|    |       |       |       |       |     |       |     |       |      |     |     |       |      |     |      |        |      |

25

Val Pro Ile Ala Tyr Ser Leu Ile Cys Val Phe Gly Leu Leu Gly Asn

Ile Leu Val Val Ile Thr Phe Ala Phe Tyr Lys Lys Ala Arg Ser Met

Thr Asp Val Tyr Leu Leu Asn Met Ala Ile Ala Asp Ile Leu Phe Val

Leu Thr Leu Pro Phe Trp Ala Val Ser His Ala Thr Gly Ala Trp Val

Phe Ser Asn Ala Thr Cys Lys Leu Leu Lys Gly Ile Tyr Ala Ile Asn

Phe Asn Cys Gly Met Leu Leu Leu Thr Cys Ile Ser Met Asp Arg Tyr

Ile Ala Ile Val Gln Ala Thr Lys Ser Phe Arg Leu Arg Ser Arg Thr

Leu Pro Arg Ser Lys Ile Ile Cys Leu Val Val Trp Gly Leu Ser Val

| • • •           | <b>-</b> | .,   |      |      |     |     |     |     |     |     |     |     |     |     |     |
|-----------------|----------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                 |          |      |      |      |     | ٠   |     | 12  | /31 |     |     |     |     |     |     |
| <b>&lt;211</b>  | > :      | 374  |      |      |     |     |     |     |     |     |     |     |     |     |     |
| <212            | !> 1     | PRT  |      |      |     |     |     |     |     |     |     |     |     |     |     |
| <b>&lt;21</b> 3 | 3> 1     | Homo | sapi | iens |     |     |     |     |     |     |     |     |     |     |     |
| <400            | )>       | 8    |      |      |     |     |     |     |     |     |     |     |     |     |     |
| Met             | Ser      | Gly  | Glu  | Ser  | Met | Asn | Phe | Ser | Asp | Val | Phe | Asp | Ser | Ser | Glu |
| 1               |          |      |      | 5    |     |     |     |     | 10  |     |     |     |     | 15  |     |
| Asp             | Tyr      | Phe  | Val  | Ser  | Val | Asn | Thr | Ser | Tyr | Tyr | Ser | Val | Asp | Ser | Glu |
|                 |          | •    | 20   |      |     |     |     | 25  |     |     |     |     | 30  |     |     |
| Me t            | Leu      | Leu  | Cys  | Ser  | Leu | Gln | Glu | Val | Arg | Gln | Phe | Ser | Arg | Leu | Phe |

|    |     |     |     |     |     |     |     |     |     | •   |     |     |     |     |     |      |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|    |     |     |     |     | 165 |     |     |     |     | 170 |     |     |     |     | 175 |      |
|    | Ile | lle | Ser | Ser | Ser | Thr | Phe | Val | Phe | Asn | Gln | Lys | Tyr | Asn | Thr | Gln  |
|    |     |     |     | 180 |     |     |     |     | 185 |     |     |     |     | 190 | ,   |      |
|    | Gly | Ser | Asp | Val | Cys | Glu | Pro | Lys | Tyr | Gln | Thr | Val | Ser | Glu | Pro | Ile  |
| 5  |     |     | 195 |     |     |     |     | 200 |     |     |     |     | 205 |     |     |      |
|    | Arg | Trp | Lys | Leu | Leu | Met | Leu | Gly | Leu | Glu | Leu | Leu | Phe | Gly | Phe | Phe  |
|    | •   | 210 |     |     |     |     | 215 |     |     |     |     | 220 |     |     |     |      |
|    | Ile | Pro | Leu | Met | Phe | Met | Ile | Phe | Cys | Tyr | Thr | Phe | Ile | Val | Lys | Thr  |
|    | 225 |     |     |     |     | 230 | ,   |     |     |     | 235 |     |     |     |     | 240  |
| 10 | Leu | Val | Gln | Ala | Gln | Asn | Ser | Lys | Arg | His | Lys | Ala | Ile | Arg | Val | Ile  |
|    |     |     |     |     | 245 |     |     |     |     | 250 |     | ٠.  |     |     | 255 |      |
|    | Ile | Ala | Val | Val | Leu | Val | Phe | Leu | Ala | Cys | Gln | Ile | Pro | His | Asn | Me t |
|    |     |     |     | 260 |     |     |     |     | 265 |     |     |     |     | 270 |     |      |
|    | Val | Leu | Leu | Val | Thr | Ala | Ala | Asn | Leu | Gly | Lys | Met | Asn | Arg | Ser | Cys  |
| 15 |     |     | 275 |     |     |     |     | 280 |     |     |     |     | 285 |     |     |      |
|    | Gln | Ser | Glu | Lys | Leu | Ile | Gly | Tyr | Thr | Lys | Thr | Val | Thr | Glu | Val | Leu  |
|    |     | 290 |     |     |     |     | 295 |     |     |     |     | 300 |     |     |     |      |
|    | Ala | Phe | Leu | His | Cys | Cys | Leu | Asn | Pro | Val | Leu | Tyr | Ala | Phe | Ile | Gly  |
|    | 305 |     |     |     |     | 310 |     |     |     |     | 315 |     |     |     |     | 320  |
| 20 | Gln | Lys | Phe | Arg | Asn | Tyr | Phe | Leu | Lys | Ile | Leu | Lys | Asp | Leu | Trp | Cys  |
|    |     |     |     |     | 325 |     |     |     |     | 330 |     |     | •   |     | 335 |      |
|    | Val | Arg | Arg | Lys | Tyr | Lys | Ser | Ser | Gly | Phe | Ser | Cys | Ala | Gly | Arg | Туі  |
|    |     |     |     | 340 |     |     |     |     | 345 |     |     |     |     | 350 |     |      |
|    | Ser | Glu | Asn | Ile | Ser | Arg | Gln | Thr | Ser | Glu | Thr | Ala | Asp | Asn | Asp | Asr  |
| 25 |     |     | 355 |     |     |     |     | 360 |     |     |     |     | 365 | •   |     |      |
|    | Ala | Ser | Ser | Phe | Thr | Met |     |     |     |     |     |     |     |     |     |      |

PCT/JP2004/002774

15

14/31

370

<210> 9

<211> 1101

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (1)..(1101) 10

<223>

<400> 9

50

25

1

48 atg aat too aca gag too tac iti gga acg gat gat tat gac aac aca Met Asn Ser Thr Glu Ser Tyr Phe Gly Thr Asp Asp Tyr Asp Asn Thr 15

5

gag tat tat tct att cct cca gac cat ggg cca tgc tcc cta gaa gag 96 Glu Tyr Tyr Ser Ile Pro Pro Asp His Gly Pro Cys Ser Leu Glu Glu

10

20 25 30

gtc aga aac ttc acc aag gta ttt gtg cca att gcc tac tcc tta ata 144 20 Val Arg Asn Phe Thr Lys Val Phe Val Pro Ile Ala Tyr Ser Leu Ile

> 40 45 35

> > 55

tgt gtc ttt ggc ctc ctg ggc aac att atg gtg gtg atg acc ttt gcc 192

Cys Val Phe Gly Leu Leu Gly Asn Ile Met Val Val Met Thr Phe Ala

ttc tac aag aaa gcc aga tcc atg act gac gtc tac ctg ttg aac atg 240

60

|    | Phe | Tyr | Lys | Lys   | Ala | Arg | Ser | Met | Thr   | Asp | Val | Tyr | Leu | Leu  | Asn | Met |      |
|----|-----|-----|-----|-------|-----|-----|-----|-----|-------|-----|-----|-----|-----|------|-----|-----|------|
|    | 65  |     |     |       |     | ·70 |     |     |       |     | 75  |     |     |      |     | 80  | ,    |
|    | gcc | atc | aca | gac   | ata | ctc | ttt | gtc | ctc   | acc | cta | ccg | ttc | t gg | gca | gtt | 288  |
|    | Ala | Ile | Thr | Asp   | Ile | Leu | Phe | Val | Leu   | Thr | Leu | Pro | Phe | Trp  | Ala | Val |      |
| 5  |     |     |     |       | 85  |     |     |     |       | 90  |     |     |     |      | 95  |     |      |
|    | act | cat | gcc | acc-  | aac | act | tgg | gtt | itc   | agc | gat | gca | ctg | tgt  | aaa | ctg | 336  |
|    | Thr | His | Ala | T,h r | Asn | Thr | Trp | Val | Phe   | Ser | Asp | Ala | Leu | Cys  | Lys | Leu |      |
|    |     |     |     | 100   |     |     |     |     | 105   |     |     |     |     | 110  |     |     |      |
|    | atg | aaa | ggc | aca   | tat | gcg | gtc | aac | ttt   | aac | tgt | ggg | atg | ctg  | ctc | ctg | 384  |
| 10 | Met | Ļys | Gly | Thr   | Tyr | Ala | Val | Asn | Phe   | Asn | Cys | Gly | Met | Leu  | Leu | Leu |      |
|    |     |     | 115 |       |     |     |     | 120 |       | •   |     |     | 125 |      |     |     |      |
|    | gcc | tgt | atc | agc   | atg | gac | cgg | tac | a t t | gcc | atc | gtc | cag | gca  | acc | aaa | 432  |
|    | Ala | Cys | Ile | Ser   | Met | Asp | Arg | Tyr | Ile   | Ala | Ile | Val | Gln | Ala  | Thr | Lys |      |
|    | •   | 130 |     |       |     |     | 135 |     | •     |     |     | 140 |     |      |     |     |      |
| 15 | tct | ttc | cgg | gta   | cgc | tcc | aga | aca | ctg   | acg | cac | agt | aag | gtc  | atc | tgt | 480  |
|    | Ser | Phe | Arg | Val   | Arg | Ser | Arg | Thr | Leu   | Thr | His | Ser | Lys | Val  | Ile | Cys |      |
|    | 145 |     |     |       |     | 150 |     |     |       |     | 155 |     |     |      |     | 160 |      |
|    | gtg | gca | gtg | tgg   | ttc | atc | tcc | atc | atc   | atc | tca | agc | cct | aca  | ţtt | atc | 528  |
|    | Val | Ąla | Val | Trp   | Phe | Ile | Ser | Ile | Ile   | Ile | Ser | Ser | Pro | Thr  | Phe | Ile |      |
| 20 |     |     |     |       | 165 |     |     |     |       | 170 |     |     |     |      | 175 |     |      |
|    | ttc | aac | aag | aaa   | tac | gag | ctg | cag | gat   | cgt | gat | gtc | tgt | gag  | cca | cgg | 57,6 |
|    | Phe | Asn | Lys | Lys   | Tyr | Glu | Leu | Gln | Asp   | Arg | Asp | Val | Cys | Glu  | Pro | Arg |      |
|    |     |     |     | 180   |     |     |     |     | 185   |     |     |     |     | 190  |     |     |      |
|    | tac | agg | tct | gtc   | tca | gag | ccc | atc | acg   | tgg | aag | ctg | ctg | ggt  | atg | gga | 624  |
| 25 | Tyr | Arg | Ser | Val   | Ser | Glu | Pro | Ile | Thr   | Trp | Lys | Leu | Leu | Gly  | Met | Gly |      |
|    |     |     | 195 |       |     |     |     | 200 |       |     |     |     | 205 |      |     |     |      |

|     | cta  | σασ   | cta | ttc | +++ | ggg   | ttc | ttc | асс  | cct | ttg   | ctg   | ttt  | atg   | gtg   | ttc  | 672  |
|-----|------|-------|-----|-----|-----|-------|-----|-----|------|-----|-------|-------|------|-------|-------|------|------|
|     |      |       |     |     |     | Gly   |     |     |      |     |       |       |      |       |       |      |      |
|     | ren  |       | Leu | rne | rne | GIY   |     | THE | 1111 | 110 | LCu   |       | 1110 | inc t | , uı  | inc  |      |
|     |      | 210   |     |     |     |       | 215 |     |      |     |       | 220   |      |       |       | ·    | 700  |
|     |      |       |     |     |     | atc   |     |     |      |     |       |       |      |       |       |      | 720  |
| 5   | Cys  | Tyr   | Leu | Phe | Ile | Ile   | Lys | Thr | Leu  | Val | Gln   | Ala   | Gln  | Asn   | Ser   | Lys  |      |
|     | 225  |       |     |     |     | 230   |     |     |      |     | 235   |       | •    |       |       | 240  |      |
|     | agg  | cac   | aga | gcc | atc | cga   | gtc | gtg | atc  | gct | gtg   | gtt   | ctc  | gtg   | ttc   | ctg  | 768  |
|     | Arg  | His   | Arg | Ala | Ile | Arg   | Val | Val | Ile  | Ala | Val   | Val   | Leu  | Val   | Phe   | Leu  |      |
|     |      |       |     |     | 245 |       |     |     |      | 250 |       |       |      |       | 255   |      |      |
| 10  | gct  | tgt   | cag | atc | cct | cac   | aac | atg | gtc  | ctc | ctc   | gtg   | act  | gcg   | gtc   | aac  | 816  |
|     | Ala  | Cys   | Gln | Ile | Pro | His   | Asn | Met | Val  | Leu | Leu   | Val   | Thr  | Ala   | Val   | Asn  |      |
|     |      |       |     | 260 |     |       |     |     | 265  |     |       |       |      | 270   |       |      |      |
|     | acg  | ggc   | aaa | gtg | ggc | cgg   | agc | tgc | agc  | acc | gag   | aaa   | gtc  | ctc   | gcc   | tac  | 864  |
|     |      |       |     |     |     | Arg   |     |     |      |     |       |       |      |       |       |      |      |
| 1 6 | 1111 | u i j | 275 |     | 01, | *** 0 |     | 280 |      |     |       | _,_   | 285  |       |       | ·    |      |
| 15  |      |       |     |     |     |       |     |     | an t | ++0 | a t a | a a t |      | t ac  | c t c | 220  | 912  |
|     |      |       |     |     |     | gag   |     |     |      |     |       |       |      |       |       |      | 312  |
|     | Thr  | Arg   | Asn | Val | Ala | Glu   |     | Leu | Ala  | Phe | Leu   |       | Cys  | Cys   | Leu   | ASII |      |
|     | •    | 290   |     | ٠   |     |       | 295 |     |      |     |       | 300   |      |       |       |      |      |
|     | ccc  | gţg   | ttg | tat | gcg | .ttt  | att | gga | cag  | aaa | ttc   | aga   | aac  | tac   | ttc   | atg  | 960  |
| 20  | Pro  | Val   | Leu | Tyr | Ala | Phe   | Ile | Gly | Gln  | Lys | Phe   | Arg   | Asn  | Tyr   | Phe   | Met  |      |
|     | 305  |       |     |     |     | 310   |     |     |      |     | 315   |       |      |       |       | 320  |      |
|     | aag  | atc   | atg | aag | gat | gtg   | tgg | tgt | atg  | aga | agg   | aag   | aat  | aag   | atg   | cct  | 1008 |
|     | Lys  | Ile   | Met | Lys | Asp | Val   | Trp | Cys | Met  | Arg | Arg   | Lys   | Asn  | Lys   | Met   | Pro  |      |
|     |      |       |     |     | 325 |       |     |     |      | 330 |       |       |      |       | 335   |      |      |
| 25  | ggc  | ttc   | ctc | tgt | gcc | cgg   | gtt | tac | tcg  | gaa | agc   | tac   | atc  | tcc   | agg   | cag  | 1056 |
|     |      |       |     |     |     |       |     |     |      |     |       |       |      |       |       | Gln  |      |

17/31

acc agt gag acc gtc gaa aat gat aat gca tcg tcc ttt acc atg 1101
Thr Ser Glu Thr Val Glu Asn Asp Asn Ala Ser Ser Phe Thr Met ...
355 360 365

<211> 367

<210> 10

<212> PRT

<213> Mus musculus

10

5

<400> 10

Met Asn Ser Thr Glu Ser Tyr Phe Gly Thr Asp Asp Tyr Asp Asn Thr

1 5 10 15

Glu Tyr Tyr Ser Ile Pro Pro Asp His Gly Pro Cys Ser Leu Glu Glu

15 20 25 30

Val Arg Asn Phe Thr Lys Val Phe Val Pro Ile Ala Tyr Ser Leu Ile

35 40 45

Cys Val Phe Gly Leu Leu Gly Asn Ile Met Val Wal Met Thr Phe Ala

50 55 60

20 Phe Tyr Lys Lys Ala Arg Ser Met Thr Asp Val Tyr Leu Leu Asn Met

65 70 75 80

Ala Ile Thr Asp Ile Leu Phe Val Leu Thr Leu Pro Phe Trp Ala Val

85 90 95

Thr His Ala Thr Asn Thr Trp Val Phe Ser Asp Ala Leu Cys Lys Leu

25 100 105 110

Met Lys Gly Thr Tyr Ala Val Asn Phe Asn Cys Gly Met Leu Leu

|    |      |      | 115 |      |     |     |     | 120 |     |     |     |     | 125 |                   |     |     |
|----|------|------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------------|-----|-----|
|    | Ala  | Cys  | Ile | Ser  | Met | Asp | Arg | Tyr | Ile | Ala | Ile | Val | Gln | Ala               | Thr | Lys |
|    |      | 130  |     |      |     |     | 135 |     |     |     |     | 140 |     |                   |     |     |
|    | Ser  | Phe. | Arg | Val  | Árg | Ser | Arg | Thr | Leu | Thr | His | Ser | Lys | Val               | Ile | Cys |
| 5  | 145  |      |     |      |     | 150 |     |     |     |     | 155 |     |     |                   |     | 160 |
| •  | Val  | Ala  | Val | rp   | Phe | Ile | Ser | Ile | Ile | Ile | Ser | Ser | Pro | Thr               | Phe | Ile |
|    |      |      |     |      | 165 |     |     |     |     | 170 |     |     |     |                   | 175 |     |
|    | Phe  | Asn  | Lys | Lys  | Tyr | Glu | Leu | Gln | Asp | Arg | Asp | Val | Cys | Glü               | Pro | Arg |
|    |      |      |     | 180  |     |     |     |     | 185 |     |     |     |     | 190               |     |     |
| 10 | Tyr  | Arg  | Ser | Val  | Ser | Glu | Pro | Ile | Thr | Trp | Lys | Leu | Leu | Gly               | Met | Ģly |
|    |      |      | 195 |      |     |     |     | 200 |     |     |     |     | 205 |                   |     |     |
|    | Leu  | Glu  | Leu | Phe  | Phe | Gly | Phe | Phe | Thr | Pro | Leu | Leu | Phe | Met               | Val | Phe |
|    |      | 210  |     |      |     |     | 215 |     |     |     |     | 220 |     |                   |     |     |
|    | .Cys | Tyr  | Leu | Phe  | Ile | Ile | Lys | Thr | Leu | Val | Gln | Ala | Gln | Asn               | Ser | Lys |
| 15 | 225  |      |     | •    |     | 230 |     |     |     |     | 235 |     |     |                   |     | 240 |
|    | Arg  | His  | Arg | Ala  | Ile | Arg | Val | Val | Ile | Ala | Val | Val | Leu | Va <sup>-</sup> l | Phe | Leu |
|    |      |      |     |      | 245 |     |     |     | •   | 250 |     |     |     | •                 | 255 |     |
| -  | Ala  | Cys  | Gln | Ile  | Pro | His | Asn | Met | Val | Leu | Leu | Val | Thr | Ala               | Val | Asn |
|    |      |      |     | 260  |     |     |     |     | 265 |     |     |     |     | 270               |     |     |
| 20 | Thr  | Gly  | Lys | Val  | Gly | Arg | Ser | Cys | Ser | Thr | Glu | Lys | Val | Leu               | Ala | Tyr |
|    |      |      | 275 |      |     |     |     | 280 |     |     |     |     | 285 |                   |     |     |
|    | Thr  | Arg  | Asn | Val  | Ala | Glu | Val | Leu | Ala | Phe | Leu | His | Cys | Cys               | Leu | Asn |
|    |      | 290  |     |      |     |     | 295 |     |     |     |     | 300 |     |                   |     |     |
|    | Pro  | Val  | Leu | Tyr  | Ala | Phe | Ile | Gly | Gln | Lys | Phe | Arg | Asn | Tyr               | Phe | Met |
| 25 | 305  |      |     | •    |     | 310 |     |     |     |     | 315 |     |     |                   |     | 320 |
|    | Ive  | Tla  | Met | Į.vs | Asn | Val | Trn | Cvs | Met | Arg | Arg | Lvs | Asn | Lvs               | Met | Pro |

19/31

325 330 335

Gly Phe Leu Cys Ala Arg Val Tyr Ser Glu Ser Tyr Ile Ser Arg Gln

340 345 350

Thr Ser Glu Thr Val Glu Asn Asp Asn Ala Ser Ser Phe Thr Met

5 355 360 365

<210> 11

<211> 20

<212> DNA

10 <213> Artificial

<220>

<221> misc\_feature

<223> Oligonucleotide designed to act as primer for amplifying fragment
of rat MIP-3  $\alpha$  gene transcript.

<400> 11

agaatggcct gcaagcatct 20

20 <210> 12

<211> 21

<212> DNA

<213> Artificial

25 <220>

<221> misc\_feature

| VA 2004/078208 | PCT/.IP2004/00277 |
|----------------|-------------------|
|                |                   |

| ດ / | ١. | /ก | 1 |
|-----|----|----|---|
| 20  | "  | េរ | Ы |

| <223> | Oligonucleotide de | signed to act as | primer for | amplifying | fragment |
|-------|--------------------|------------------|------------|------------|----------|
|       | of rat MIP-3α gen  | e transcript.    |            |            |          |

**<400>** 12

5 tgcagaggta agccagcagt a 21

<210> 13

<211> 1502

<212> DNA

10 <213 Rattus norvegicus (kidney)

<220>

<221> CDS

**<222>** (343).. (1443)

15 <223>

20

25

<400> 13

tgtattgaag acagaacact tgtggtaaga cacccaccc cgggagggcg aagaacaagc 60
cacacactgc tttgaagagt ccagccccaa gcagaactgc aagggcagac actgttctgg 120
ccacctgcag tttgaagtca tcactttcaa tccccctgtg actagggcca gggtcttcac 180
acctgcgaga ggaagcaaag atctaagcaa tctgaatttt aagagagaaa ctgcagctgt 240
cggtttgtgg gccggaacat tattggactg gagcctggac aagcactaag gcgggggtac 300
ctggccagcc cacttcggag ctcagcgttt ccttgggaaa cg atg aat ttc acc 354
Met Asn Phe Thr

•

gag gcc aac tac gga atg gaa gat tat act ggc tca gat tac tct atg 402

1

|    | Glu                      | Ala               | Asn               | Tyr                      | Gly                      | Met                      | Glu                      | Asp               | Tyr                 | 1111                     | GIY                      | Ser               | ASP               | lyr                      | Ser                      | Met                      |            |
|----|--------------------------|-------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------|---------------------|--------------------------|--------------------------|-------------------|-------------------|--------------------------|--------------------------|--------------------------|------------|
|    | 5 .                      |                   |                   |                          |                          | 10                       |                          |                   |                     |                          | 15                       |                   |                   | •                        |                          | 20                       |            |
|    | ttt                      | cca               | gag               | acc                      | gag                      | cca                      | tgc                      | tct               | ctg                 | caa                      | gag                      | gtc               | aga               | gac                      | ttc                      | acc                      | 450        |
|    | Phe                      | Pro               | Glu               | Thr                      | Glu                      | Pro                      | Cys                      | Ser               | Leu                 | Gln                      | Glu                      | Val               | Arg               | Asp                      | Phe                      | Thr                      |            |
| 5  |                          |                   |                   |                          | 25                       |                          |                          |                   |                     | 30                       |                          |                   |                   |                          | 35                       |                          |            |
|    | aag                      | gtg               | ttc               | gtg                      | cca                      | atc                      | gcc                      | tac               | tcc.                | tta                      | atc                      | tgt               | gtc               | t t t                    | ggc                      | ctc                      | 498        |
|    | Lys                      | Val               | Phe               | Val                      | Pro                      | Ile                      | Ala                      | Tyr               | Ser                 | Leu                      | Ile                      | Cys               | Val               | Phe                      | Gly                      | Leu ·                    |            |
|    |                          |                   |                   | 40                       |                          |                          |                          |                   | 45                  |                          |                          | •                 |                   | 50                       |                          |                          |            |
|    | ctt                      | ggc               | aat               | att                      | atg                      | gtg                      | gţg                      | ata               | acc                 | ttt                      | gcc                      | ttc               | tac               | aag                      | aaa                      | gcc                      | 546        |
| 10 | Leu                      | Gly               | Asn               | Ile                      | Met                      | Val                      | Val                      | Ile               | Thr                 | Phe                      | Ala                      | Phe               | Tyr               | Lys                      | Lys                      | Ala                      |            |
|    |                          |                   | 55                |                          |                          |                          | ,                        | 60                |                     |                          |                          |                   | 65                |                          |                          |                          |            |
|    | agg                      | tcc               | atg               | act                      | gac                      | gtc                      | tac                      | cta               | ttg                 | aac                      | atg                      | gcc               | atc               | aca                      | gac                      | ata                      | 594        |
|    | Arg                      | Ser               | Met               | Thr                      | Asp                      | Val                      | Tyr                      | Leu               | Leu                 | Asn                      | Met                      | Ala               | Ile               | Thr                      | Asp                      | Ile                      |            |
|    |                          | 70                |                   |                          |                          |                          | 75                       |                   |                     |                          |                          | 80                |                   |                          |                          | •                        |            |
| 15 | ctc                      | ttt               | gtc               | ctc                      | acc                      | cta                      | cca                      | ttc               | tgg                 | gca                      | gtt                      | act               | cat               | gcc                      | act                      | gac                      | 642        |
|    | Leu                      | Phe               | Val               | Leu                      | Thr                      | Leu                      | Pro                      | Phe               | Trp                 | Ala                      | Val                      | Thr               | His               | Ala                      | Thr                      | Asp                      |            |
|    |                          |                   |                   |                          |                          |                          |                          |                   |                     |                          |                          |                   |                   |                          |                          |                          |            |
|    | 85                       |                   |                   |                          |                          | 90                       |                          |                   |                     |                          | 95                       |                   |                   |                          |                          | 100                      |            |
|    |                          | tgg               | atc               | ttt                      | ggc                      | 90<br>aac                | acg                      | atg               | tgt                 | aaa                      |                          | atg               | aaa               | ggc                      | acg                      |                          | 690        |
|    | ac t                     |                   |                   |                          |                          |                          |                          |                   | •                   |                          | ctg                      |                   |                   |                          |                          | tat                      | 690        |
| 20 | ac t                     |                   |                   |                          |                          | aac                      |                          |                   | •                   |                          | ctg                      |                   |                   |                          |                          | tat                      | 690        |
| 20 | act<br>Thr               | Trp               | Ile               | Phe                      | Gly<br>105               | aac                      | Thr                      | Met               | Cys                 | Lys<br>110               | ctg<br>Leu               | Met               | Lys               | Gly                      | Thr<br>115               | tat<br>Tyr               | 690<br>738 |
| 20 | act                      | Trp<br>gtc        | Ile<br>aac        | Phe                      | Gly<br>105<br>aac        | aac<br>Asn               | Thr                      | Met<br>atg        | Cys                 | Lys<br>110<br>ctc        | ctg<br>Leu<br>ctg        | Met               | Lys<br>tgt        | Gly<br>atc               | Thr<br>115<br>agc        | tat<br>Tyr<br>atg        |            |
| 20 | act                      | Trp<br>gtc        | Ile<br>aac        | Phe                      | Gly<br>105<br>aac        | aac<br>Asn<br>tgt        | Thr                      | Met<br>atg        | Cys                 | Lys<br>110<br>ctc        | ctg<br>Leu<br>ctg        | Met               | Lys<br>tgt        | Gly<br>atc               | Thr<br>115<br>agc        | tat<br>Tyr<br>atg        |            |
| 20 | act<br>Thr<br>gcg<br>Ala | Trp<br>gtc<br>Val | Ile<br>aac<br>Asn | Phe<br>ttt<br>Phe<br>120 | Gly<br>105<br>aac<br>Asn | aac<br>Asn<br>tgt        | Thr<br>ggg<br>Gly        | Met<br>atg<br>Met | Cys ctg Leu 125     | Lys<br>110<br>ctc<br>Leu | ctg<br>Leu<br>ctg<br>Leu | Met<br>gcc<br>Ala | Lys<br>tgt<br>Cys | Gly<br>atc<br>Ile<br>130 | Thr<br>115<br>agc<br>Ser | tat<br>Tyr<br>atg<br>Met |            |
| 20 | act Thr gcg Ala          | Trp<br>gtc<br>Val | Ile<br>aac<br>Asn | Phe ttt Phe 120 att      | Gly<br>105<br>aac<br>Asn | aac<br>Asn<br>tgt<br>Cys | Thr<br>ggg<br>Gly<br>gtc | Met<br>atg<br>Met | Cys ctg Leu 125 gcg | Lys 110 ctc Leu acc      | ctg<br>Leu<br>ctg<br>Leu | Met<br>gcc<br>Ala | Lys tgt Cys       | Gly atc Ile 130 cgg      | Thr 115 agc Ser          | tat<br>Tyr<br>atg<br>Met | 738        |

|    | tcc | aga | aca | ctg | acg  | cac | agt | aag   | gţc | atc | tgt | ctg | acg | gtg | t gg | ttc | 834  |
|----|-----|-----|-----|-----|------|-----|-----|-------|-----|-----|-----|-----|-----|-----|------|-----|------|
|    | Ser | Arg | Thr | Leu | Thr  | His | Ser | Ĺys   | Val | Ile | Cys | Leu | Thr | Val | Trp  | Phe |      |
|    |     | 150 |     |     |      |     | 155 |       |     |     |     | 160 |     |     |      |     |      |
|    | gtt | tcc | atc | atc | atc  | tca | agc | ccc   | aca | ttc | ttc | ttc | aac | aag | caa  | tac | 882  |
| 5  | Val | Ser | Ile | Ile | Ile  | Ser | Ser | Pro   | Thr | Phe | Phe | Phe | Asn | Lys | Gln  | Tyr |      |
|    | 165 |     |     |     |      | 170 | •   |       |     |     | 175 |     |     |     |      | 180 |      |
|    | aag | ctg | cag | ggc | cgt  | gat | gtc | t gc- | gag | cct | cag | tac | aag | ctc | gtc  | tcg | 930  |
|    | Lys | Leu | Gln | Gly | Arg  | Asp | Val | Cys   | Glu | Pro | Gln | Tyr | Lys | Leu | Val  | Ser |      |
|    |     |     |     |     | 185  |     |     |       |     | 190 |     |     |     |     | 195  |     |      |
| 10 | gag | ccc | atc | acg | t gg | aaa | ctg | ctg   | ggc | atg | gga | ctc | gag | ctg | ctc  | ttt | 978  |
|    | Glu | Pro | Ile | Thr | Trp  | Lys | Leu | Leu   | Gly | Met | Gly | Leu | Glu | Leu | Leu  | Phe |      |
|    |     |     |     | 200 |      |     |     |       | 205 |     |     |     |     | 210 |      | •   |      |
|    | ggc | ttc | ttc | atc | cct  | ttg | ctg | ttt   | atg | gţg | ttc | tgt | tac | ctg | ttc  | atc | 1026 |
|    | Gly | Phe | Phe | Ile | Pro  | Leu | Leu | Phe   | Met | Val | Phe | Cys | Tyr | Leu | Phe  | Ile |      |
| 15 |     |     | 215 |     |      |     |     | 220   |     | •   |     |     | 225 |     |      |     |      |
|    | atc | aag | acc | ttg | gtg  | cag | gcc | cag   | aat | tcc | aag | agg | cac | aga | gcc  | atc | 1074 |
|    | Ile | Lys | Thr | Leu | Val  | Gln | Ala | Gln   | Asn | Ser | Lys | Arg | His | Arg | Ala  | Ile |      |
|    |     | 230 |     |     |      |     | 235 |       |     |     |     | 240 |     |     |      |     |      |
|    | cga | gtc | gtg | att | gct  | gtg | gtt | ctc   | gţg | ttc | ctg | gċt | tgt | cag | atc  | cct | 1122 |
| 20 | Arg | Val | Val | Ile | Ala  | Val | Val | Leu   | Val | Phe | Leu | Ala | Cys | Gln | Ile  | Pro |      |
|    | 245 |     |     |     |      | 250 |     |       |     |     | 255 |     |     |     |      | 260 |      |
|    | cac | aac | atg | gtc | ctc  | ctc | gtg | act   | gca | gcc | aac | acg | ggc | aaa | atg  | ggc | 1170 |
|    | His | Asn | Met | Val | Leu  | Leu | Val | Thr   | Ala | Ala | Asn | Thr | Gly | Lys | Met  | Gly |      |
|    |     |     |     |     | 265  |     |     |       |     | 270 |     |     |     |     | 275  |     |      |
| 25 | cgc | agc | tgc | agc | gcc  | gag | aaa | gcc   | ctc | gcc | tac | gcc | agg | aat | gtg  | gct | 1218 |
|    | Arg | Ser | Cvs | Ser | Ala  | Glu | Lvs | Ala   | Leu | Ala | Tvr | Ala | Arg | Asn | Val  | Ala |      |

23/31

290 280 285 gag gtc ctg gct ttc ctg cac tgc tgt ctc aac ccc gtg ttg tat gcc 1266 Glu Val Leu Ala Phe Leu His Cys Cys Leu Asn Pro Val Leu Tyr Ala 300 305 295 ttc att gga cag aaa ttc aga agc tac ttc atg aag atc atg aag gat 1314 Phe Ile Gly Gln Lys Phe Arg Ser Tyr Phe Met Lys Ile Met Lys Asp 315 310 320 gtg tgg tgt atg agg agg aag agc aag gtg cct acc ttc tgt gcc 1362 Val Trp Cys Met Arg Arg Lys Ser Lys Val Pro Thr Phe Phe Cys Ala 325 330 335 cgg gtt tac tca gaa agc tac atc tcc agg cag acc agt gag act gta 1410 Arg Val Tyr Ser Glu Ser Tyr Ile Ser Arg Gln Thr Ser Glu Thr Val 355 345 350 gaa aat gac aac gca tcg tcc ttt acc atg taa cacgagagca caaagcagca 1463 Glu Asn Asp Asn Ala Ser Ser Phe Thr Met 360 365

tgccccgaaa gcctttgtga aacttgctat tacatgtga 1502

<210> 14

20 <211> 366

5

10

15

<212> PRT

<213> Rattus norvegicus

**<400> 14** 

25 Met Asn Phe Thr Glu Ala Asn Tyr Gly Met Glu Asp Tyr Thr Gly Ser

1 5 10 15

|    | Asp | Tyr   | Ser   | Met   | Phe   | Pro | Glu   | Inr   | GIU         | Pro | Cys   | 261 | ren  | GIII  | Giu | 4 <b>a</b> 1 |  |
|----|-----|-------|-------|-------|-------|-----|-------|-------|-------------|-----|-------|-----|------|-------|-----|--------------|--|
|    |     |       |       | 20    |       |     |       |       | <b>25</b> . |     |       |     |      | 30    |     |              |  |
|    | Arg | Asp   | Phe   | Thr   | Lys   | Val | Phe   | Va l  | Pro         | Ile | Ala   | Tyr | Ser  | Leu   | Ile | Cys          |  |
|    |     |       | 35    |       |       |     | •     | 40    | •           |     |       |     | 45   |       |     |              |  |
| 5  | Val | Phe   | Gly   | Leu   | Leu   | Gly | Asn   | Ile   | Met         | Val | `Val  | Ile | Thr  | Phe   | Ala | Phe          |  |
|    |     | 50    |       |       |       |     | 55    |       |             |     |       | 60  |      |       |     |              |  |
|    | Tyr | Lys   | Lys   | Ala   | Arg   | Ser | Met   | Thr   | Asp         | Val | Tyr   | Leu | Leu  | Asn   | Met | Ala          |  |
|    | 65  |       |       |       | •     | 70  |       |       |             |     | 75    |     |      |       |     | 80           |  |
|    | Ile | Thr   | Asp   | Ile   | Leu   | Phe | Val   | Leu   | Thr         | Leu | Pro   | Phe | Trp  | Ala   | Val | Thr          |  |
| 10 |     |       |       |       | 85    |     |       |       |             | 90  |       |     |      | ٠.    | 95  |              |  |
|    | His | Ala   | Thr   | Asp   | Thr   | Trp | Ile   | Phe   | Gly         | Asn | Thr   | Met | Cys  | Lys   | Leu | Met          |  |
|    |     |       |       | 100   |       |     |       |       | 105         |     |       |     |      | 110   |     |              |  |
|    | Lys | Gly   | Thr   | Tyr   | Ala   | Val | Asn   | Phe   | Asn         | Cys | Gly   | Met | Leu  | Leu   | Leu | Ala          |  |
|    |     |       | 115   |       |       |     |       | 120   |             |     |       |     | 125  |       |     |              |  |
| 15 | Cys | Ile   | Ser   | Met   | Asp   | Arg | Tyr   | Ile   | Ala         | Ile | Val   | Gln | Ala  | Thr   | Lys | Ser          |  |
|    |     | 130   |       | •     |       |     | 135   |       |             |     |       | 140 |      |       |     |              |  |
|    | Phe | Arg   | . Val | Arg   | Ser   | Arg | Thr   | Leu   | Thr         | His | Ser   | Lys | Val  | Ile   | Cys | Leu          |  |
|    | 145 |       |       |       | ,     | 150 |       |       |             |     | 155   |     |      |       |     | 160          |  |
|    | Thr | Val   | Trp   | Phe   | Val   | Ser | Ile   | Ile   | Ile         | Ser | Ser   | Pro | Thr  | Phe   | Phe | Phe          |  |
| 20 |     |       |       | •     | 165   |     |       |       |             | 170 | 1     |     |      |       | 175 |              |  |
|    | Asn | Lys   | Glr   | ı Tyr | Lys   | Leu | Gln   | Gly   | Arg         | Asp | Val   | Cys | Glu  | Pro   | Gln | Tyr          |  |
|    | •   |       |       | 180   |       |     |       |       | 185         |     |       |     | •    | 190   | 1   |              |  |
|    | Lys | Lei   | ı Val | Ser   | Glu   | Pro | Ile   | Thr   | Trp         | Lys | Leu   | Leu | Gly  | Met   | Gly | Leu          |  |
|    |     |       | 198   |       |       |     |       | 200   |             |     |       |     | 205  | _     |     |              |  |
| 25 | Glu | ı Lei |       |       | : Gly | Phe | . Phe | : Ile | e Pro       | Let | ı Leu | Phe | e Me | t Val | Phe | Cys          |  |
|    |     | 21    |       |       |       |     | 215   |       |             |     |       | 220 |      |       |     |              |  |
|    |     |       |       |       |       |     |       |       |             |     |       |     |      |       |     |              |  |

25/31

Tyr Leu Phe Ile Ile Lys Thr Leu Val Gln Ala Gln Asn Ser Lys Arg

225 230 235 240

His Arg Ala Ile Arg Val Val Ile Ala Val Val Leu Val Phe Leu Ala

245 250 255

5 Cys Gln Ile Pro His Asn Met Val Leu Leu Val Thr Ala Ala Asn Thr

260 265 270

Gly Lys Met Gly Arg Ser Cys Ser Ala Glu Lys Ala Leu Ala Tyr Ala

275 . 280 285

Arg Asn Val Ala Glu Val Leu Ala Phe Leu His Cys Cys Leu Asn Pro

10 290 295 300

Val Leu Tyr Ala Phe Ile Gly Gln Lys Phe Arg Ser Tyr Phe Met Lys

305 310 315 320

Ile Met Lys Asp Val Trp Cys Met Arg Arg Lys Ser Lys Val Pro Thr

325 330 335

15 Phe Phe Cys Ala Arg Val Tyr Ser Glu Ser Tyr Ile Ser Arg Gln Thr

340 345 350

Ser Glu Thr Val Glu Asn Asp Asn Ala Ser Ser Phe Thr Met

355 360 365

20 <210> 15

<211> 1309

<212> DNA

<213> Rattus norvegicus (liver)

25 <220>

<221> CDS

PCT/JP2004/002774 **WO 2004/078208** 

26/31

<222> (150)..(1250)

<223>

|    | <400>  | 15     |       |      |      |       |      |     |      |       |      |       |       |      |       |     |
|----|--------|--------|-------|------|------|-------|------|-----|------|-------|------|-------|-------|------|-------|-----|
| 5  | gcatct | cact   | acccg | tctc | t ca | atga  | gcac | cgo | tggt | tgt   | gcct | gtca  | iac a | gaat | agtcc | 60  |
|    | tctcac | actt   | aggac | tgga | g cc | t gga | caag | cac | taag | gcg   | gggg | gtaco | tg g  | ccag | cccac | 120 |
| •  | ttcgga | gctc   | agcgt | ttcc | t tg | ggaa  | acg  | atg | aat  | t t c | acc  | gag   | gcc   | aac  | tac   | 173 |
|    |        |        |       |      |      | •     |      | Met | Asn  | Phe   | Thr  | Glu   | Ala   | Asn  | Tyr   |     |
|    |        |        |       |      |      |       |      | 1   |      |       |      | 5     |       |      |       |     |
| 10 | gga at | g gaa  | gat   | tat  | ac t | ggc   | tca  | gat | tac  | tct   | atg  | ttt   | cca   | gag  | acc · | 221 |
| •  | Gly Me | t Glu  | Asp   | Tyr  | Thr  | Gly   | Ser  | Asp | Tyr  | Ser   | Met  | Phe   | Pro   | Glu  | Thr   |     |
|    | 10     | ١      |       |      |      | 15    |      |     |      |       | 20   |       |       |      |       |     |
|    | gag cc | a tgc  | tct   | ctg  | caa  | gag   | gtc  | aga | gac  | ttc   | acc  | aaġ   | gtg   | ttc  | gtg   | 269 |
|    | Glu Pr | o Cys  | Ser   | Leu  | Gln  | Glu   | Val  | Arg | Asp  | Phe   | Thr  | Lys   | Val   | Phe  | Val   |     |
| 15 | 25     |        | •     | •    | 30   | •     |      |     |      | 35    |      |       |       |      | 40    |     |
|    | cca at | c gcc  | tac   | tcc  | tta  | atc   | tgt  | gţc | ttt. | ggc   | ctc  | ctt   | ggc   | aat  | att   | 317 |
|    | Pro Il | e Ala  | ı Tyr | Ser  | Leu  | Ile   | Cys  | Val | Phe  | Gly   | Leu  | Leu   | Gly   | Asn  | Ile   |     |
|    |        |        |       | 45   |      |       |      |     | 50   |       |      |       | •     | 55   |       |     |
|    | atg gi | ggtg   | g ata | acc  | ttt  | gcc   | ttc  | tac | aag  | aaa   | gcc  | agg   | tcc   | atg  | act   | 365 |
| 20 | Met Va | ıl Val | llle  | Thr  | Phe  | Ala   | Phe  | Tyr | Lys  | Lys   | Ala  | Arg   | Ser   | Met  | Thr   |     |
|    |        |        | 60    |      |      |       |      | 65  |      |       |      |       | 70    |      |       |     |
|    | gac g  | ic tac | c cta | ·ttg | aac  | atg   | gcc  | atc | aca  | gac   | ata  | ctc   | ttt   | gtc  | ctc   | 413 |
|    | Asp Va | ıl Tyn | r Leu | Leu  | Asn  | Met   | Ala  | Ile | Thr  | Asp   | Ile  | Leu   | Phe   | Val  | Leu   |     |
|    |        | 75     |       |      |      |       | 80   |     |      |       |      | 85    |       |      |       | •   |
| 25 | acc c  | ta cca | a ttc | tgg  | gca  | gtt   | act  | cat | gcc  | act   | gac  | ac t  | tgg   | atc  | ttt   | 461 |
|    | Thr L  | eu Pro | o Phe | Trp  | Ala  | Val   | Thr  | His | Ala  | Thr   | Asp  | Thr   | Trp   | Ile  | Phe   |     |

|    |     | 90  |     |     |       |     | 95  |     |      |      |     | 100 |     |     |     |     |     |
|----|-----|-----|-----|-----|-------|-----|-----|-----|------|------|-----|-----|-----|-----|-----|-----|-----|
|    | ggc | aac | acg | atg | tgt   | aaa | ctg | atg | aaa  | ggc  | acg | tat | gcg | gtc | aac | ttt | 509 |
|    | Gly | Asn | Thr | Met | Cys   | Lys | Leu | Met | Lys  | Gly  | Thr | Tyr | Ala | Val | Asn | Phe |     |
|    | 105 |     |     | •   |       | 110 |     |     |      |      | 115 |     |     |     |     | 120 |     |
| 5  | aac | tgt | ggg | atg | ctg   | ctc | ctg | gcc | tgt  | atc  | agc | atg | gac | cgg | tac | att | 557 |
|    | Asn | Cys | Gly | Met | Leu   | Leu | Leu | Ala | Cys  | Ile  | Ser | Met | Asp | Arg | Tyr | Ile |     |
|    | ·   |     |     |     | 125   |     |     |     |      | 130  |     |     |     |     | 135 |     |     |
|    | gcc | atc | gtc | cag | gcg   | acc | aaa | tct | ttc  | cgg  | gta | cgc | tcc | aga | aca | ctg | 605 |
|    | Ala | Ile | Val | Gln | Ala   | Thr | Lys | Ser | Phe  | Arg  | Val | Arg | Ser | Arg | Thr | Leu |     |
| 10 |     |     |     | 140 |       |     |     |     | 145  |      |     |     |     | 150 |     |     |     |
|    | acg | cac | agt | aag | gtc   | atc | tgt | ctg | acg  | gţg  | tgg | ttc | gtt | tcc | atc | atc | 653 |
|    | Thr | His | Ser | Lys | Val   | Ile | Cys | Leu | Thr  | 'Val | Trp | Phe | Val | Ser | Ile | Ile |     |
|    |     |     | 155 |     |       |     |     | 160 |      |      |     |     | 165 |     |     |     |     |
|    | atc | tca | agc | ccc | aca   | ttc | ttc | ttc | aac  | aag  | caa | tac | aag | ctg | cag | ggc | 701 |
| 15 | Ile | Ser | Ser | Pro | Thr   | Phe | Phe | Phe | Asn  | Lys  | Gln | Tyr | Lys | Leu | Gln | Gly |     |
|    |     | 170 |     |     |       |     | 175 |     |      |      |     | 180 |     |     |     |     |     |
|    | cgt | gat | gtc | tgc | gag   | cct | cag | tac | aag  | ctc  | gtc | tcg | gag | ccc | atc | acg | 749 |
|    | Arg | Asp | Val | Cys | Glu   | Pro | Gln | Tyr | Lys  | Leu  | Val | Ser | Glu | Pro | Ile | Thr |     |
|    | 185 |     |     |     |       | 190 |     |     |      |      | 195 |     |     |     |     | 200 |     |
| 20 | tgg | aaa | ctg | ctg | ggc   | atg | gga | ctc | gag  | ctg  | ctc | ttt | ggc | ttc | ttc | atc | 797 |
|    | Trp | Lys | Leu | Leu | Gly   | Met | Gly | Leu | Glu  | Leu  | Leu | Phe | Gly | Phe | Phe | Ile |     |
|    |     |     |     |     | 205   |     |     |     |      | 210  |     |     |     |     | 215 |     |     |
|    | cct | ttg | ctg | ttt | atg   | gtg | ttc | tgt | tac  | ctg  | ttc | ato | ato | aag | acc | ttg | 845 |
|    | Pro | Leu | Leu | Phe | Met   | Val | Phe | Cys | .Tyr | Leu  | Phe | Ile | lle | Lys | Thr | Leu |     |
| 25 |     |     |     | 220 | ) .   |     |     |     | 225  |      | ,   |     |     | 230 | l   |     |     |
|    | gtg | cag | gcc | cag | ; aat | tcc | aag | agg | cac  | aga  | gcc | ato | cga | gtc | gte | att | 893 |

|      | Val   | Gln | Ala | Gln | Asn | Ser | Lys | Arg | His  | Arg | Ala  | Ile  | Arg  | Val  | Val  | Ile |      |
|------|-------|-----|-----|-----|-----|-----|-----|-----|------|-----|------|------|------|------|------|-----|------|
|      |       |     | 235 |     |     |     |     | 240 |      |     |      |      | 245  |      |      |     |      |
|      | gc t  | gtg | gtt | ctc | gtg | ttc | ctg | gct | tgt  | cag | atc  | cct  | cac  | aac  | atg  | gtc | 941  |
|      | Ala   | Val | Val | Leu | Val | Phe | Leu | Ala | Cys  | Gln | Ile  | Pro  | His  | Āsn  | Meţ  | Val |      |
| 5    |       | 250 |     |     |     |     | 255 |     |      |     | •    | 260  |      |      |      |     |      |
|      | ctc   | ctc | gtg | act | gca | gcc | aac | acg | ggc  | aaa | atg  | ggc  | cgc  | agc  | tgc  | agc | 989  |
|      | Leu   | Leu | Val | Thr | Ala | Ala | Asn | Thr | Gly  | Lys | Met  | Gly  | Arg  | Ser  | Cys  | Ser |      |
|      | 265   |     |     |     |     | 270 |     |     |      |     | 275  |      |      |      |      | 280 |      |
|      | gcc   | gag | aaa | gcc | ctc | gcc | tac | gcc | agg  | aat | gtg  | gct  | gag  | gtc  | ctg  | gct | 1037 |
| 10 · | Ala   | Glu | Lys | Ala | Leu | Ala | Tyr | Ala | Arg  | Asn | Va l | Ala  | Glu  | Val  | Leu  | Ala |      |
|      |       |     |     |     | 285 |     |     |     |      | 290 |      |      |      |      | 295  |     |      |
|      | t t c | ctg | cac | tgc | tgt | ctc | aac | ccc | gtg  | ttg | tat  | gcc  | ttc  | att  | gga  | cag | 1085 |
|      | Phe   | Leu | His | Cys | Cys | Leu | Asn | Pro | Val  | Leu | Tyr  | Ala  | Phe  | Ile  | Gly  | Ġln |      |
|      |       |     |     | 300 |     |     |     |     | 305  |     |      |      |      | 310  |      |     |      |
| 15   | aaa   | ttc | aga | agc | tac | ttc | atg | aag | atc  | atg | aag  | gat  | gţg  | tgg  | tgt  | atg | 1133 |
|      | Lys   | Phe | Arg | Ser | Tyr | Phe | Met | Lys | Ile  | Met | Lys  | Asp  | Val  | Trp  | Cys  | Met |      |
|      |       |     | 315 |     |     |     |     | 320 |      |     |      |      | 325  |      |      |     |      |
|      | agg   | agg | aag | agc | aag | gtg | cct | acc | ttc  | ttc | tgt  | gcc  | cgg  | gtt  | tac  | tca | 1181 |
|      | Arg   | Arg | Lys | Ser | Lys | Val | Pro | Thr | Phe  | Phe | Cys  | Ala  | Arg  | Val  | Tyr  | Ser |      |
| 20   |       | 330 |     |     |     |     | 335 |     |      |     |      | 340  |      |      |      |     |      |
|      | gaa   | agc | tac | atc | tcc | agg | cag | acc | agt  | gag | act  | gta  | gaa  | aat  | gac  | aac | 1229 |
|      | Glu   | Ser | Tyr | Ile | Ser | Arg | Gln | Thr | Ser  | Glu | Thr  | Val  | Glu  | Asn  | Asp  | Asn |      |
|      | 345   |     |     |     |     | 350 |     |     |      |     | 355  |      |      |      |      | 360 |      |
|      | gca   | tcg | tcc | ttt | acc | atg | taa | cac | gaga | gca | caaa | gcag | ca t | gccc | cgaa | a   | 1280 |
| 25   | Ala   | Ser | Ser | Phe | Thr | Met |     |     |      |     |      |      |      |      |      |     |      |

29/31

gcctttgtga aacttgctat tacatgtga

1309

- <210> 16
- **<211> 25**
- 5 <212> DNA
  - <213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying CCR6
cDNA derived from rat kidney.

<400> 16

tgtattgaag acagaacact tgtgg

25

- 15 <210> 17
  - <211> 28
  - <212> DNA
  - <213> Artificial
- 20 <220>
  - <223> Oligonucleotide designed to act as primer for amplifying CCR6 cDNA derived from rat kidney or rat liver.

**<400> 17** 

30/31

<210> 18

<211> 21

<212> DNA

<213> Artificial

5

<220>

<223> Oligonucleotide designed to act as primer for amplifying CCR6 cDNA derived from rat liver.

10 <400> 18

gcatctcact acceptetet c

21

<210> 19

<211> 21

15 <212> DNA

<213> Artificial

<220>

20

<223> Oligonucleotide designed to act as primer for amplifying fragment of rat CCR6 gene transcript.

**<400>** 19

ggacgatgcg ttgtcatttt c

21

25 <210> 20

<211> 22

PCT/JP2004/002774

31/31

<212> DNA

<213> Artificial

<220>

5 <223> Oligonucleotide designed to act as primer for amplifying fragment of rat CCR6 gene transcript.

<400> 20

ccgcagctgc agcgccgaga aa

22

10

<210> 21

<211> 20

<212> DNA

<213> Artificial

15

<220>

<223> Oligonucleotide designed to act as primer for amplifying fragment of rat CCR6 gene transcript.

20 <400> 21

gtgcccgggt ttactcagaa

20

International application No.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PCT/JP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 004/002//4                               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|
| A. CLASSIFICATION OF SUBJECT MATTER Int.Cl <sup>7</sup> A61K39/395, 38/00, 45/00, 48/ G01N33/15, 33/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | '00, A61P9/00, 25/00, 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3/00,                                    |  |  |
| According to International Patent Classification (IPC) or to both national                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l classification and IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |  |  |
| B. FIELDS SEARCHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |  |  |
| Minimum documentation searched (classification system followed by classification system followed by classifi | assification symbols)<br>100, A61P9/00, 25/00, 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/00,                                    |  |  |
| Documentation searched other than minimum documentation to the exten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |  |  |
| Electronic data base consulted during the international search (name of department) MEDLINE, CAPLUS, EMBASE, BIOSIS (STN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | data base and, where practicable, search te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rms used)                                |  |  |
| C. DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |  |  |
| Category* Citation of document, with indication, where ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relevant to claim No.                    |  |  |
| X JP 2002-500509 A (F. Hoffman<br>08 January, 2002 (08.01.02),<br>Page 19, line 18 to page 28,<br>& WO 98/49309 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-19,21                                  |  |  |
| A Utans-Schneitz U et al., 'A n chemokine, identified by targ display, is upregulated in br J.Neuroimmunol., 01 December, 92(1-2):179-90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | geted differential rain inflammation.',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-19,21 .                                |  |  |
| A JP 2002-540068 A (SCHERING C 26 November, 2002 (26.11.02), Full text & WO 00/46248 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-19,21                                  |  |  |
| Further documents are listed in the continuation of Box C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | See patent family annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                 |  |  |
| Special categories of cited documents:     "A" document defining the general state of the art which is not considered to be of particular relevance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "T" later document published after the int<br>date and not in conflict with the applic<br>the principle or theory underlying the i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eation but cited to understand invention |  |  |
| "E" earlier application or patent but published on or after the international filing date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "X" document of particular relevance; the considered novel or cannot be considered to the considered t | dered to involve an inventive            |  |  |
| "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | step when the document is taken alone  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is such considered to provide an inventive step when the documents such combination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |  |  |
| "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | combined with one or more other such documents, such combination being obvious to a person skilled in the art  "&" document member of the same patent family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |  |  |
| Date of the actual completion of the international search 25 May, 2004 (25.05.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date of mailing of the international search report 08 June, 2004 (08.06.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |  |  |
| Name and mailing address of the ISA/ Japanese Patent Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Authorized officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |  |  |
| Facsimile No. Form PCT/ISA/210 (second sheet) (January 2004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Telephone No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |  |  |

International application No.
PCT/JP2004/002774

| C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT |                                                                                                   |                       |  |  |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
| Category*                                             | Citation of document, with indication, where appropriate, of the relevant passages                | Relevant to claim No. |  |  |  |
| A                                                     | WO 01/17558 A2 (SCHERING CORP.),<br>15 March, 2001 (15.03.01),<br>Full text<br>& JP 2003-508496 A | 1-19,21               |  |  |  |
|                                                       |                                                                                                   |                       |  |  |  |
|                                                       |                                                                                                   |                       |  |  |  |
|                                                       |                                                                                                   |                       |  |  |  |
|                                                       |                                                                                                   |                       |  |  |  |
|                                                       |                                                                                                   |                       |  |  |  |
|                                                       |                                                                                                   |                       |  |  |  |
|                                                       |                                                                                                   |                       |  |  |  |
|                                                       |                                                                                                   |                       |  |  |  |
|                                                       |                                                                                                   |                       |  |  |  |
|                                                       | ·                                                                                                 |                       |  |  |  |

International application No. PCT/JP2004/002774

| Box No. II                                                                | Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. X Claims becaus Claim 20 thus rela is not re Rule 39. 2. Claims becaus | I search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:  Nos.: 20  e they relate to subject matter not required to be searched by this Authority, namely:  O pertains to methods for treatment of the human body by therapy and ates to a subject matter which this International Searching Authority equired, under the provisions of Article 17(2)(a)(i) of the PCT and 1(iv) of the Regulations under the PCT, to search.  Nos.:  e they relate to parts of the international application that do not comply with the prescribed requirements to such an that no meaningful international search can be carried out, specifically: |
| 3. Claims becaus                                                          | s Nos.:<br>se they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Box No. III                                                               | Observations where unity of invention is lacking (Continuation of item 3 of first sheet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                           | al Searching Authority found multiple inventions in this international application, as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| claims                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                           | searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of ditional fee.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3. As onl                                                                 | y some of the required additional search fees were timely paid by the applicant, this international search report covers nose claims for which fees were paid, specifically claims Nos.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4. No rec<br>restric                                                      | quired additional search fees were timely paid by the applicant. Consequently, this international search report is ted to the invention first mentioned in the claims; it is covered by claims Nos.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Remark on Pro                                                             | The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

International application No.

PCT/JP2004/002774

<Subject of search>

Claims 1, 2, 4 to 11 and 21

Claim 1 relates to a brain/nerve cell protective agent which contains as the active ingredient a compound defined by a desired property "a substance inhibiting ··· a protein of SEQ ID NO:2, 4 or 6 or its salt". Although claim 1 involves any compounds having the above property in its scope, it is recognized that only small part of the claimed compounds are disclosed in the meaning within PCT Article 5 and thus this claim is not disclosed by the description in the meaning within PCT Article 6.

Although the common technical knowledge at the point of the application is taken into consideration, the scope of the compounds having the property as "a substance inhibiting · · · a protein of SEQ ID NO:2, 4 or 6 or its salt" cannot be specified. Thus, claim 1 does not comply with the requirement of clearness as specified in PCT Article 6 too.

Similarly, claims 2, 4 to 11 and 21 are not supported by the disclosure of the description in the meaning within PCT Article 6 and do not comply with the requirement of clearness in the meaning within PCT Article 6.

Such being the case, the search was made on the relationship between "a protein of SEQ ID NO:2, 4 or 6 or its salt" and protection of brain/nerve cell, and a remedy for brain/nerve cell containing anti-MIP-3 $\alpha$  antibody as the active ingredient particularly described in the description.

発明の属する分野の分類(国際特許分類(IPC)) Int. Cl' A61K39/395, 38/00, 45/00, 48/00, A61P9/00, 25/00, 43/00, G01N33/15, 33/50 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl A61K39/395, 38/00, 45/00, 48/00, A61P9/00, 25/00, 43/00, G01N33/15, 33/50 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) MEDLINE CAPLUS EMBASE BIOSIS (STN) 関連すると認められる文献 関連する 引用文献の 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 カテゴリー\* JP 2002-500509 A (エフ ホフマン ラ ロシュ アーゲー) 1-19.21X 2002.01.08, 第19ページ18行-第28ページ4行 & WO 98/49309 A1 1-19, 21Utans-Schneitz U et al. 'A novel rat CC chemokine, identified by targeted Α differential display, is upregulated in brain inflammation.' J Neuroimmunol. 1998 Dec 1;92(1-2):179-90. JP 2002-540068 A (シェーリング コーポレイション) 1-19, 21Α 2002.11.26, 全文 & WO 00/46248 A1 □ パテントファミリーに関する別紙を参照。 |X| C欄の続きにも文献が列挙されている。 の日の後に公表された文献 \* 引用文献のカテゴリー 「T」国際出願日又は優先日後に公表された文献であって 「A」特に関連のある文献ではなく、一般的技術水準を示す 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの 「E」国際出願日前の出願または特許であるが、国際出願日 「X」特に関連のある文献であって、当該文献のみで発明 以後に公表されたもの の新規性又は進歩性がないと考えられるもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当業者にとって自明である組合せに 文献(理由を付す) よって進歩性がないと考えられるもの 「O」口頭による開示、使用、展示等に言及する文献 「&」同一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 08. 6. 2004 国際調査報告の発送日 国際調査を完了した日 25. 05. 2004 9829 特許庁審査官(権限のある職員) 4 C 国際調査機関の名称及びあて先

川口 裕美子

電話番号 03-3581-1101 内線 3452

日本国特許庁(ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

| C (続き).         | 関連すると認められる文献                                                        | 関連する     |
|-----------------|---------------------------------------------------------------------|----------|
| 引用文献の<br>カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                   | 請求の範囲の番号 |
| A               | WO 01/17558 A2 (SCHERING CORP) 2001.03.15, 全文<br>& JP 2003-508496 A | 1-19, 21 |
|                 |                                                                     |          |
|                 |                                                                     |          |
|                 |                                                                     |          |
|                 |                                                                     |          |
|                 |                                                                     |          |
| ·               |                                                                     |          |
|                 |                                                                     |          |
|                 |                                                                     |          |
|                 | ·                                                                   |          |

| 第Ⅱ欄<br>法第8条<br>成しなか | 請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)<br>第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作いった。                                                                           |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. 🗓                | 簡求の範囲 20 は、この国際調査機関が調査をすることを要しない対象に係るものである。<br>つまり、<br>請求の範囲 20は、治療による人体の処置方法に関するものであって、PCT第17条(2)<br>(a)(i)及びPCT規則39.1(iv)の規定により、この国際調査機関が国際調査を行うことを<br>要しない対象に係るものである。 |
| 2.                  | 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、                                                                                                            |
| 3. 🗌                | 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に<br>従って記載されていない。                                                                                                               |
| 第Ⅲ橌                 | 発明の単一性が欠如しているときの意見(第1ページの3の続き)                                                                                                                                           |
| 次に並                 | さべるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。<br>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                             |
| 1. 🗌                | 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求<br>の範囲について作成した。                                                                                                       |
| 2. 🗌                | 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追<br>加調査手数料の納付を求めなかった。                                                                                                  |
| 3.                  | 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。                                                                                                |
| 4.                  | 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。                                                                                             |
| 追加調查                | E手数料の異識の申立てに関する注意                                                                                                                                                        |
|                     | ] 追加調査手数料の納付と共に出願人から異議申立てがあった。                                                                                                                                           |
| L                   | <b>〕 追加調査手数料の納付と共に出願人から異議申立てがなかった。</b>                                                                                                                                   |

# <調査の対象について>

# 請求の範囲1,2,4-11,21について

請求の範囲1は、「配列番号:2、4、または6・・・タンパク質またはその塩を抑制する物質」という所望の性質により定義された化合物を有効成分とする脳・神経細胞保護剤に関するものである。そして、請求の範囲1は、そのような性質を有するあらゆる化合物を包含するものであるが、PCT第5条の意味において開示されているのは、クレームされた化合物のごくわずかな部分にすぎず、PCT第6条の意味での明細書の開示による裏付けを欠くものと認められる。

また、「配列番号:2、4、または6・・・タンパク質またはその塩を抑制する物質」は、出願時の技術常識を勘案してもそのような性質を有する化合物の範囲を特定できないから、請求の範囲1は、PCT第6条における明確性の要件も欠いている。

請求の範囲2,4-11,21についても、同様に、PCT第6条の意味での明細書の開示による裏付けを欠くものと認められ、また、PCT第6条における明確性の要件も欠いている。

よって、調査は、「配列番号:2、4、または6・・・タンパク質またはその塩」と脳・神経細胞の保護との関係について、及び、明細書に具体的に記載されている抗 $MIP-3\alpha$ 抗体を有効成分とする脳・神経細胞治療剤について行った。