Calculo tarea #

1) Demostrar que las siguientes funciones son injectivas

a)
$$f(x) = 2x - 1$$

 $f(x_1) = f(x_2)$
 $2x_1 - 1 = 2x_2 - 1$
 $2x_1 = 2x_2$
 $x_1 = x_2$: $f(x)$ si es inyectiva

b)
$$f(x) = 3x^{2} + 12x + 11$$

 $f(x_{1}) = f(x_{2})$
 $3x_{1}^{2} + 12x_{1} + 11 = 3x_{2}^{2} + 12x_{2} + 11$
 $3x_{1}^{3} + 12x_{1} = 3x_{2}^{3} + 12x_{2}$
 $X_{1}^{2} = X_{2}^{3}$
 $X_{1}^{2} - X_{2}^{2} = 0$
 $(x_{1} - x_{2})(x_{1} + x_{2}) = 0$
 $X_{1} = X_{2}$
 $x_{1} \neq -x_{2}$ $\therefore f(x)$ No es inyectiva

c)
$$f(x) = x^3 - 2$$

 $x_1^3 - 2 = x_2^3 - 2$
 $x_1^3 = x^3$
 $x_1^3 - x_2^3 = 0$
 $(x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = 0$
 $x_1 = x_2$

cálculo tarea##

2) Dadas las funciones

$$f(x) = 3x+3$$
, $g(x) = \frac{1}{x^2-4}$

$$3\left(\frac{1}{x^2-4}\right)+3 \qquad Dom\{x \in \mathbb{R}\}$$

$$(3\times +3)(3\times +3)-4$$

$$\frac{1}{9x^2 + 18x + 5}$$

$$X_1 = -\frac{5}{3}$$