
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2009; month=5; day=28; hr=9; min=44; sec=18; ms=344;]

Validated By CRFValidator v 1.0.3

Application No: 10524198 Version No: 5.1

Input Set:

Output Set:

Started: 2009-05-28 09:39:21.820

Finished: 2009-05-28 09:39:22.563

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 743 ms

Total Warnings: 4

Total Errors: 0

No. of SeqIDs Defined: 6

Actual SeqID Count: 6

Error code		Error Description									
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEO	ID	(6)

SEQUENCE LISTING

<110>	-	jten, Petrus sen, Selma N							
<120>	Streptococcus Uberis Protein, Nucleic Acid Sequence Encoding the same and its use a Mastitis Vaccine								
<130>	2002.013 US								
	10524198								
<141>	2005	5-02-10							
<150>	EP 02078325.4								
<151>	2002-08-12								
<150>	PCT/EP2003/008704								
<151>	2003-08-06								
<160>	6								
<170>	PatentIn version 3.3								
<210>	1								
<211>	603								
<212>									
<213>									
<400>	1								
	_	ttttaaagcg	tgttgtttt	ctagcttttc	tgattttttg	tttttatcaa	60		
gcttata	ataa	cacatcaaaa	tgtacaaaat	gtcatgcaat	acaaaccaat	ggttgaaaaa	120		
accttgg	gctg	aaaatgatac	gactgccaat	gtcaatttag	ttttagcaat	gatctacaca	180		
gaaacaa	aaag	gtggtcaggc	agatgtcatg	caatctagcg	aaagtagtag	tggtgtgact	240		
aactcaa	atta	ccgacagtca	atctagtatt	caacacggtg	tcaaactctt	gtctgagaat	300		
ttgactt	tag	ctgagaaagc	tggagtagac	tcttggactg	cagtacaagc	ttacaatttt	360		
ggaacao	gctt	acattgatta	tgtggcaaaa	aatggtggtg	acaacactat	ctctttggct	420		
agtcatt	att	ctaaaagtgt	tgtagctcca	agtttaggga	ataaggatgg	aaaaatgtat	480		
ttatatt	acc	atccaattgc	cctcctctat	ggcggtaaac	tttatcaaaa	tggtggtaat	540		
atttatt	att	cacgagaagt	tcattttaat	tattacctca	tacaattatt	atctaaattt	600		
taa							603		

<210> 2 <211> 200 <212> PRT

<213> Streptococcus uberis

Met Phe Lys Phe Leu Lys Arg Val Val Phe Leu Ala Phe Leu Ile Phe 1 5 10 15

Cys Phe Tyr Gln Ala Tyr Ile Thr His Gln Asn Val Gln Asn Val Met 20 25 30

Gln Tyr Lys Pro Met Val Glu Lys Thr Leu Ala Glu Asn Asp Thr Thr 35 40 45

Ala Asn Val Asn Leu Val Leu Ala Met Ile Tyr Thr Glu Thr Lys Gly 50 60

Gly Gln Ala Asp Val Met Gln Ser Ser Glu Ser Ser Gly Val Thr
65 70 75 80

Asn Ser Ile Thr Asp Ser Gln Ser Ser Ile Gln His Gly Val Lys Leu 85 90 95

Leu Ser Glu Asn Leu Thr Leu Ala Glu Lys Ala Gly Val Asp Ser Trp 100 105 110

Thr Ala Val Gln Ala Tyr Asn Phe Gly Thr Ala Tyr Ile Asp Tyr Val 115 120 125

Ala Lys Asn Gly Gly Asp Asn Thr Ile Ser Leu Ala Ser His Tyr Ser 130 135 140

Leu Tyr Tyr His Pro Ile Ala Leu Leu Tyr Gly Gly Lys Leu Tyr Gl
n 165 170 175

Asn Gly Gly Asn Ile Tyr Tyr Ser Arg Glu Val His Phe Asn Tyr Tyr 180 185 190

Leu Ile Gln Leu Leu Ser Lys Phe 195 200

<210> 3 <211> 40

<212> DNA

```
<213> Artificial sequence
<220>
<223> Streptococcus uberis
<400> 3
catgccatgg ggcatatgta tataacacat caaaatgtac
                                                                     40
<210> 4
<211> 31
<212> DNA
<213> Artificial sequence
<220>
<223> Streptococcus uberis
<400> 4
                                                                     31
gcgggatcca aatttagata ataattgtat g
<210> 5
<211> 299
<212> DNA
<213> Artificial
<220>
<223> Expression construct
<400> 5
atcgagatct cgatcccgcg aaattaatac gactcactat agggagacca caacggtttc
                                                                     60
cctctagaaa taattttgtt taactttaag aaggagatat accatgggca gcagccatca
                                                                    120
tcatcatcat cacagcagcg gcctggtgcc gcgcggcagc catatgatat cgaattcaag
                                                                    180
cttggtaccg ctagcactag tgagctcacc ggtctcgagc ggccgcggat cccaccatca
                                                                    240
ccatcaccat caccatcacc attaatcgat gataagctgt caaacatgag cttgaagac
                                                                    299
<210> 6
<211> 53
<212> PRT
<213> Artificial
<220>
<223> Expression product of expression construct
<400> 6
Met Gly Ser Ser His His His His Cys Ser Ser Gly Leu Val Pro
               5
                                   10
```

Arg Gly Ser His Met Ile Ser Asn Ser Ser Leu Val Pro Leu Ala Leu 20 25 30

Val Ser Ser Pro Val Ser Ser Gly Arg Gly Ser His His His His His as 35 40 45

His His His His His

50