Assignment 3

Name: Xiaodan Wang

Student ID: z5145114

Question 1

Question 2

1) Draw a NEC Tree of query q.

Root node selection

First, ranking every node:

 $Rank(u_0) = 1/3$

 $Rank(u_1) = 2/4$

 $Rank(u_2) = 1/4$

 $Rank(u_3) = 2/2$

 $Rank(u_4) = 2/2$

 $Rank(u_5) = 1/2$

 $Rank(u_6) = 2/1$

 $Rank(u_7) = 3/1$

 $Rank(u_8) = 3/1$

Hence, u_2 is selected as the root node.

Rewrite to NEC Tree

Performing BFS from the root node:

Merging vertices from same NEC into a single vertex:

2) Decompose the vertex set of set of query q according to Core-Forest-Leaf decomposition.

Core-Forest Decomposition

Forest-Leaf Decomposition

Core-set: $\{u_0, u_1, u_2, u_4, u_5\}$

Forest-set: $\{u_3\}$

Leaf-set: $\{u_6, u_7, u_8\}$

Question 3

1) From $v_0 \sim v_9$, v_2 , v_3 and v_9 have the largest edges. So they are more likely to generate the largest influence spreads.

If we choose v_2 as the activated seed,

$$\sum_{i=0}^{9} w(v_i)$$

 $= 0.3 + 0.1 \times 0.3 \times 0.2 + 1 + 0.1 + 0.5 \times 0.6 + 0.2 \times 0.3 + 0.2 + 0.1 \times 0.3 + 0.1 \times 0.5 \times 0.1 + 0.1 \times 0.5$

= 1.781

If we choose v_3 as the activated seed,

$$\sum\nolimits_{i=0}^{9} w(v_i)$$

 $= 0.4 \times 0.3 + 0.3 \times 0.2 + 0.4 + 1 + 0.5 \times 0.6 + 0.4 \times 0.2 \times 0.3 + 0.4 \times 0.2 + 0.3 + 0.5 \times 0.1 + 0.5$

= 2.834

If we choose v_9 as the activated seed,

$$\sum\nolimits_{i=0}^9 w(v_i)$$

 $= 0.1 \times 0.4 \times 0.3 + 0.1 \times 0.3 \times 0.2 + 0.1 \times 0.4 + 0.1 + 0.6 + 0.1 \times 0.4 \times 0.2 \times 0.3 + 0.1 \times 0.4 \times 0.2 + 0.1 \times 0.4 \times 0.$

 $0.1 \times 0.3 + 0.1 + 1$

= 1.8984

When choose v_3 as a activated seed, $\sum_{i=0}^{9} w(v_i)$ is maximum.

So v_3 can generate the largest influence spreads.