Final Project IS605

Sharon Morris 5/06/2017

Kaggle.com Home Price Completion

1. You are to register for Kaggle.com (free) and compete in the House Prices: Advanced Regression Techniques competition.

House Prices: Advanced Regression Techniques competition Ask a home buyer to describe their dream house, and they probably won't begin with the height of the basement ceiling or the proximity to an east-west railroad. But this playground competition's dataset proves that much more influences price negotiations than the number of bedrooms or a white-picket fence.

With 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa, this competition challenges you to predict the final price of each home.

Load Library

Define Variables 2. Pick one of the quantitative independent variables from the training data set (train.csv), and define that variable as X. Pick SalePrice as the dependent variable, and define it as Y for the next analysis.

```
train <- read.csv(paste0("https://raw.githubusercontent.com/indianspice/IS605/master/Final%20Project/tr
#Quantitative independent variable OverallCond
X <- train$OverallCond
Y <- train$SalePrice
#Summary of independent and dependent variables
summary(X)
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                               Max.
##
             5.000
                     5.000
                             5.575
                                     6.000
                                              9.000
summary(Y)
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                               Max.
##
     34900 130000 163000 180900 214000
                                            755000
hist(train$OverallCond,
     main = "Overall Condition",
     xlab = "Overall Condition Rating",
     col = "orange")
```

Overall Condition

Overall Condition Rating

```
hist(train$SalePrice,
    main = "Sale Price",
    xlab = "Sale Price",
    col = "gold")
```

Sale Price

Probability Calculate as a minimum the below probabilities a through c. Assume the small letter "x" is estimated as the 4th quartile of the X variable, and the small letter "y" is estimated as the 2d quartile of the Y variable. Interpret the meaning of all probabilities. a. P(X > x | Y > y)

```
quantile(X)
##
     0%
         25%
              50%
                   75% 100%
##
      1
           5
                5
                      6
quantile(Y)
##
       0%
             25%
                     50%
                                   100%
                            75%
    34900 129975 163000 214000 755000
##
The probability of a house at the second quartile has an overall condition rating at the third quartile is 13.5%
(sum(Y > 163000 \& X > 6) / length(X)) / (sum(Y > 163000) / length(Y))
## [1] 0.1346154
  b. P(X > x, Y > y)
sum(X > 6 & Y > 163000) / length(X)
## [1] 0.06712329
  c. P(X < x | Y > y)
(sum(Y > 163000 \& X < 6) / length(X)) / (sum(Y > 163000) / length(Y))
## [1] 0.7568681
Count Table
#Sum rows with sales prices > 163000
(YQ2 \leftarrow sum(Y > 163000))
## [1] 728
#Count of all rows sales prices
(YTotal <- length(Y))
## [1] 1460
#Count of all rows of overall condition
(XTotal <- length(X))
## [1] 1460
#Rows greater than 163,000 and greater than 6
(Ygt <- sum(Y > 163000 & X > 6))
## [1] 98
#Rows greater than 163,000 and less than 6
(Ylt <- sum(Y > 163000 & X < 6))
## [1] 551
sum(train[,'OverallCond'] <= 6 & train[,'SalePrice'] > 163000)
## [1] 630
                  <=2nd Quartile | >2nd Quartile
                                                      Total
 <= 3rd Quartile
                                                      1,358
```