Calculus II Tangents and curve length

Todor Milev

2019

Outline

- Tangents to Curves
 - Tangents to Polar Curves

Outline

- Tangents to Curves
 - Tangents to Polar Curves

- Arc Length
 - Arc Length in Polar Coordinates

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Let C be the curve
$$C: \begin{vmatrix} x & = & f(t) \\ y & = & g(t) \end{vmatrix}$$
, $t \in [a, b]$.

Definition

Suppose f'(t) and g'(t) are not simultaneously equal to 0.

• We define (f'(t), g'(t)) to be the *tangent vector* to C at t.

Let C be the curve
$$C: \begin{vmatrix} x & = f(t) \\ y & = g(t) \end{vmatrix}$$
, $t \in [a, b]$.

Definition

Suppose f'(t) and g'(t) are not simultaneously equal to 0.

- We define (f'(t), g'(t)) to be the *tangent vector* to C at t.
- We define the line passing through (f(t), g(t)) with direction vector equal to the tangent vector to be tangent line to C at t. In other words, the tangent line has equation

$$(x - f(t))g'(t) = (y - g(t))f'(t)$$
.

Let C be the curve
$$C: \begin{vmatrix} x & = f(t) \\ y & = g(t) \end{vmatrix}$$
, $t \in [a, b]$.

Definition

Suppose f'(t) and g'(t) are not simultaneously equal to 0.

- We define (f'(t), g'(t)) to be the *tangent vector* to C at t.
- We define the line passing through (f(t), g(t)) with direction vector equal to the tangent vector to be tangent line to C at t. In other words, the tangent line has equation

$$(x - f(t))g'(t) = (y - g(t))f'(t)$$
.

• We say that the tangent to C at t is vertical if f'(t) = 0 (and therefore $g'(t) \neq 0$).

Let C be the curve
$$C: \begin{vmatrix} x & = f(t) \\ y & = g(t) \end{vmatrix}$$
, $t \in [a, b]$.

Definition

Suppose f'(t) and g'(t) are not simultaneously equal to 0.

- We define (f'(t), g'(t)) to be the *tangent vector* to C at t.
- We define the line passing through (f(t), g(t)) with direction vector equal to the tangent vector to be tangent line to C at t. In other words, the tangent line has equation

$$(x - f(t))g'(t) = (y - g(t))f'(t)$$
.

• We say that the tangent to C at t is vertical if f'(t) = 0 (and therefore $g'(t) \neq 0$).

Tangents to Curves 4/29

Tangents

Let C be the curve
$$C: \begin{vmatrix} x & = f(t) \\ y & = g(t) \end{vmatrix}$$
, $t \in [a, b]$.

Definition

Suppose f'(t) and g'(t) are not simultaneously equal to 0.

- We define (f'(t), g'(t)) to be the *tangent vector* to C at t.
- We define the line passing through (f(t), g(t)) with direction vector equal to the tangent vector to be *tangent line* to C at t. In other words, the tangent line has equation

$$(x - f(t))g'(t) = (y - g(t))f'(t)$$
.

• We say that the tangent to C at t is vertical if f'(t) = 0 (and therefore $g'(t) \neq 0$).

Note. When f'(t) = g'(t) = 0, for curves C with additional properties, natural definition(s) of tangent(s) do exist but are beyond Calc II.

Tangents to Curves 5/29

Example

Find the tangent to the curve

$$\gamma: \left| \begin{array}{ccc} x & = & \cos t \\ y & = & \sin t \end{array} \right|, t \in [0,2\pi) \text{ at } t = \frac{\pi}{4}, t = \frac{2\pi}{3}, t = \pi.$$

Recall
$$C: \begin{vmatrix} x & = & f(t) \\ y & = & g(t) \end{vmatrix}$$
, $t \in [a, b]$, tangent vector at t is $(f'(t), g'(t))$.

If
$$\frac{dx}{dt} \neq 0$$
, we have $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

Recall
$$C: \begin{vmatrix} x & = x(t) \\ y & = y(t) \end{vmatrix}$$
, $t \in [a, b]$, tangent vector at t is $(x'(t), y'(t))$.

If
$$\frac{dx}{dt} \neq 0$$
, we have $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

Recall
$$C: \begin{vmatrix} x & = & x(t) \\ y & = & y(t) \end{vmatrix}$$
, $t \in [a, b]$, tangent vector at t is $(x'(t), y'(t))$.

• Suppose we could eliminate the parameter t and write y = F(x) for some function F near the point (x, y) = (x(t), y(t)).

If
$$\frac{dx}{dt} \neq 0$$
, we have $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

Recall
$$C: \begin{vmatrix} x & = & x(t) \\ y & = & y(t) \end{vmatrix}$$
, $t \in [a, b]$, tangent vector at t is $(x'(t), y'(t))$.

- Suppose we could eliminate the parameter t and write y = F(x) for some function F near the point (x, y) = (x(t), y(t)).
- Suppose in $x'(t) \neq 0$ for some t.

If
$$\frac{dx}{dt} \neq 0$$
, we have $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

Recall
$$C: \begin{vmatrix} x & = & x(t) \\ y & = & y(t) \end{vmatrix}$$
, $t \in [a, b]$, tangent vector at t is $(x'(t), y'(t))$.

- Suppose we could eliminate the parameter t and write y = F(x) for some function F near the point (x, y) = (x(t), y(t)).
- Suppose in $x'(t) \neq 0$ for some t.

$$\begin{array}{rcl} y & = & F(x) \\ \frac{\mathrm{d}y}{\mathrm{d}t} & = & \frac{\mathrm{d}}{\mathrm{d}t}(F(x)) \\ & = & \frac{\mathrm{d}F}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}t} \end{array} \quad \text{apply } \frac{\mathrm{d}}{\mathrm{d}t} \\ \text{use chain rule} \\ \frac{\mathrm{d}y}{\mathrm{d}x} & = & \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} \end{array}$$

If
$$\frac{dx}{dt} \neq 0$$
, we have $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

- tangent slopes for both of these values.
- $ext{@}$ Find the points on C where the tangents are horizontal or vertical.
- \odot Find two intervals where we can write y as a function of x.

1 Show C traverses (x, y) = (3, 0) for two values of t; find the

Determine concavity intervals of the functions found in item 3.

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

1 Show *C* traverses (x, y) = (3, 0) for two values of *t*; find the tangent slopes for both of these values.

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if t =
 - $0 = y = t^3 3t = t(t^2 3)$ if $t = t(t^2 3)$

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if t =
 - $0 = y = t^3 3t = t(t^2 3)$ if t =

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if $t = \pm \sqrt{3}$.
 - $0 = y = t^3 3t = t(t^2 3)$ if t =

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if $t = \pm \sqrt{3}$.
 - $0 = y = t^3 3t = t(t^2 3)$ if t =

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if $t = \pm \sqrt{3}$.
 - $0 = y = t^3 3t = t(t^2 3)$ if t = 0 or $\pm \sqrt{3}$.

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if $t = \pm \sqrt{3}$.
 - $0 = y = t^3 3t = t(t^2 3)$ if t = 0 or $\pm \sqrt{3}$.
 - Therefore the point (3,0) is traversed when t equals $\sqrt{3}$ or $-\sqrt{3}$.

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if $t = \pm \sqrt{3}$.
 - $0 = y = t^3 3t = t(t^2 3)$ if t = 0 or $\pm \sqrt{3}$.
 - Therefore the point (3,0) is traversed when t equals $\sqrt{3}$ or $-\sqrt{3}$.

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if $t = \pm \sqrt{3}$.
 - $0 = y = t^3 3t = t(t^2 3)$ if t = 0 or $\pm \sqrt{3}$.
 - Therefore the point (3,0) is traversed when t equals $\sqrt{3}$ or $-\sqrt{3}$.

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if $t = \pm \sqrt{3}$.
 - $0 = y = t^3 3t = t(t^2 3)$ if t = 0 or $\pm \sqrt{3}$.
 - Therefore the point (3,0) is traversed when t equals $\sqrt{3}$ or $-\sqrt{3}$.

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if $t = \pm \sqrt{3}$.
 - $0 = y = t^3 3t = t(t^2 3)$ if t = 0 or $\pm \sqrt{3}$.
 - Therefore the point (3,0) is traversed when t equals $\sqrt{3}$ or $-\sqrt{3}$.

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if $t = \pm \sqrt{3}$.
 - $0 = y = t^3 3t = t(t^2 3)$ if t = 0 or $\pm \sqrt{3}$.
 - Therefore the point (3,0) is traversed when t equals $\sqrt{3}$ or $-\sqrt{3}$.

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if $t = \pm \sqrt{3}$.
 - $0 = y = t^3 3t = t(t^2 3)$ if t = 0 or $\pm \sqrt{3}$.
 - Therefore the point (3,0) is traversed when t equals $\sqrt{3}$ or $-\sqrt{3}$.

 - Plug in $t = \pm \sqrt{3}$: $\frac{dy}{dx}_{|t=\pm\sqrt{3}} = \frac{3(\pm\sqrt{3})^2 3}{2(\pm\sqrt{3})} = \frac{3(\pm\sqrt{3})^2 3}{2(\pm\sqrt{3})^2} = \frac{3(\pm\sqrt{3})^$

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if $t = \pm \sqrt{3}$.
 - $0 = y = t^3 3t = t(t^2 3)$ if t = 0 or $\pm \sqrt{3}$.
 - Therefore the point (3,0) is traversed when t equals $\sqrt{3}$ or $-\sqrt{3}$.

 - Plug in $t = \pm \sqrt{3}$: $\frac{dy}{dx}_{|t=\pm\sqrt{3}} = \frac{3(\pm\sqrt{3})^2 3}{2(\pm\sqrt{3})} = \pm \frac{6}{2\sqrt{3}} = \pm\sqrt{3}$

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

- **1** Show C traverses (x, y) = (3, 0) for two values of t; find the tangent slopes for both of these values.
 - $3 = x = t^2$ if $t = \pm \sqrt{3}$.
 - $0 = y = t^3 3t = t(t^2 3)$ if t = 0 or $\pm \sqrt{3}$.
 - Therefore the point (3,0) is traversed when t equals $\sqrt{3}$ or $-\sqrt{3}$.

 - Plug in $t = \pm \sqrt{3}$: $\frac{dy}{dx}_{|t=\pm\sqrt{3}} = \frac{3(\pm\sqrt{3})^2 3}{2(\pm\sqrt{3})} = \pm \frac{6}{2\sqrt{3}} = \pm\sqrt{3}$

Therefore the tangents at (3,0) have slopes $\pm \sqrt{3}$.

A curve C is defined by $x = t^2$, $y = t^3 - 3t$.

② Find the points on *C* where the tangents are horizontal or vertical.

Horizontal tangent:

$$\frac{dy}{dt} = 0$$

$$\frac{dx}{dt} = 0$$

A curve C is defined by $x = t^2$, $y = t^3 - 3t$.

2 Find the points on C where the tangents are horizontal or vertical.

Horizontal tangent:

$$\frac{dy}{dt} = 0$$

$$3t^2 - 3 = 0$$

$$\frac{dx}{dt} = 0$$

A curve C is defined by $x = t^2$, $y = t^3 - 3t$.

Find the points on C where the tangents are horizontal or vertical.

Horizontal tangent:

$$\frac{dy}{dt} = 0$$

$$3t^2 - 3 = 0$$

$$3t^2 - 3 = 0$$

$$3(t^2-1) = 0$$

$$\frac{dx}{dt} = 0$$

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

2 Find the points on C where the tangents are horizontal or vertical.

Horizontal tangent:

$$\frac{dy}{dt} = 0$$

$$3t^2 - 3 = 0$$

$$3(t^2 - 1) = 0$$

$$t = +1$$

$$\frac{dx}{dt} = 0$$

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

2 Find the points on C where the tangents are horizontal or vertical.

Horizontal tangent:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 0$$
$$3t^2 - 3 = 0$$

$$3t^2 - 3 = 0$$

$$3(t^2-1) = 0$$

$$t = \pm 1$$

 $\frac{dx}{dt} \neq 0$ when $t = \pm 1$, so there are horizontal tangents when $t = \pm 1$.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 0$$

A curve C is defined by $x = t^2$, $y = t^3 - 3t$.

Find the points on C where the tangents are horizontal or vertical.

Horizontal tangent:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 0$$
$$3t^2 - 3 = 0$$

$$3t^2 - 3 = 0$$

$$3(t^2-1) = 0$$

$$t = \pm 1$$

 $\frac{dx}{dt} \neq 0$ when $t = \pm 1$, so there are horizontal tangents when $t = \pm 1$.

The points are (1,2) and (1,-2).

Vertical tangent:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 0$$

A curve C is defined by $x = t^2$, $y = t^3 - 3t$.

2 Find the points on C where the tangents are horizontal or vertical.

Horizontal tangent:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 0$$
$$3t^2 - 3 = 0$$

$$3(t^2-1) = 0$$

$$t = \pm 1$$

 $\frac{dx}{dt} \neq 0$ when $t = \pm 1$, so there are horizontal tangents when $t = \pm 1$.

The points are (1,2) and (1,-2).

Vertical tangent:

$$\frac{dx}{dt} = 0$$

$$2t = 0$$

A curve C is defined by $x = t^2$, $y = t^3 - 3t$.

Find the points on C where the tangents are horizontal or vertical.

Horizontal tangent:

$$\frac{dy}{dt} = 0$$
$$3t^2 - 3 = 0$$

$$3t^2-3 = 0$$

$$3(t^2-1) = 0$$

$$t = \pm 1$$

 $\frac{dx}{dt} \neq 0$ when $t = \pm 1$, so there are horizontal tangents when $t = \pm 1$.

The points are (1,2) and (1,-2).

Vertical tangent:

$$\frac{dx}{dt} = 0$$

$$2t = 0$$

$$t = 0$$

A curve C is defined by $x = t^2$, $y = t^3 - 3t$.

2 Find the points on C where the tangents are horizontal or vertical.

Horizontal tangent:

$$\frac{dy}{dt} = 0$$

$$3t^2 - 3 = 0$$

$$3(t^2 - 1) = 0$$

 $\frac{dx}{dt} \neq 0$ when $t = \pm 1$, so there are horizontal tangents when $t = \pm 1$. The points are (1,2) and (1,-2).

Vertical tangent:

$$\frac{dx}{dt} = 0$$

$$2t = 0$$

$$t = 0$$

 $\frac{dy}{dt} \neq 0$ when t = 0, so there is a vertical tangent when t = 0.

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

2 Find the points on C where the tangents are horizontal or vertical.

Horizontal tangent:

$$\frac{dy}{dt} = 0$$

$$3t^2 - 3 = 0$$

$$3(t^2 - 1) = 0$$

 $\frac{dx}{dt} \neq 0$ when $t = \pm 1$, so there are horizontal tangents when $t = \pm 1$. The points are (1,2) and (1,-2).

Vertical tangent:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 0$$

$$2t = 0$$

$$t = 0$$

 $\frac{dy}{dt} \neq 0$ when t = 0, so there is a vertical tangent when t = 0.

The points is (0,0).

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

3 Find two intervals where we can write y as a function of x.

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

 \odot Find two intervals where we can write y as a function of x.

From $x = t^2$ we have that $t = \pm \sqrt{x}$.

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

 \odot Find two intervals where we can write y as a function of x.

From $x=t^2$ we have that $t=\pm\sqrt{x}$. Therefore, when t>0, we have that $t=\sqrt{x}$.

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

 \odot Find two intervals where we can write y as a function of x.

From $x=t^2$ we have that $t=\pm\sqrt{x}$. Therefore, when t>0, we have that $t=\sqrt{x}$. Since that determines uniquely t via x, this means that for t>0 y is a function of x.

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

 \odot Find two intervals where we can write y as a function of x.

From $x=t^2$ we have that $t=\pm\sqrt{x}$. Therefore, when t>0, we have that $t=\sqrt{x}$. Since that determines uniquely t via x, this means that for t>0 y is a function of x. In other words, for t>0, the curve satisfies the vertical line test.

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

 \odot Find two intervals where we can write y as a function of x.

From $x=t^2$ we have that $t=\pm\sqrt{x}$. Therefore, when t>0, we have that $t=\sqrt{x}$. Since that determines uniquely t via x, this means that for t>0 y is a function of x. In other words, for t>0, the curve satisfies the vertical line test. Similarly we conclude that when t<0, y is a function of x.

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

Oetermine the concavity intervals of the functions found in item 3.

A curve C is defined by $x = t^2$, $y = t^3 - 3t$.

Oetermine the concavity intervals of the functions found in item 3.

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

Oetermine the concavity intervals of the functions found in item 3.

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

Oetermine the concavity intervals of the functions found in item 3.

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt}\left(\frac{3t^2-3}{2t}\right)}{\frac{dx}{dt}}$$

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

Determine the concavity intervals of the functions found in item 3.

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt}\left(\frac{3t^2-3}{2t}\right)}{\frac{dx}{dt}}$$

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

Oetermine the concavity intervals of the functions found in item 3.

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt}\left(\frac{3t^2-3}{2t}\right)}{2t}$$

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

Oetermine the concavity intervals of the functions found in item 3.

$$\frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt}\left(\frac{3t^{2}-3}{2t}\right)}{2t}$$
$$= \frac{\frac{d}{dt}\left(\frac{3}{2}\left(t-\frac{1}{t}\right)\right)}{2t}$$

A curve C is defined by $x = t^2$, $y = t^3 - 3t$.

Oetermine the concavity intervals of the functions found in item 3.

$$\frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt}\left(\frac{3t^{2}-3}{2t}\right)}{2t}$$
$$= \frac{\frac{d}{dt}\left(\frac{3}{2}\left(t-\frac{1}{t}\right)\right)}{2t} = \frac{2t}{2t}$$

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

Oetermine the concavity intervals of the functions found in item 3.

$$\frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt}\left(\frac{3t^{2}-3}{2t}\right)}{2t}$$
$$= \frac{\frac{d}{dt}\left(\frac{3}{2}\left(t-\frac{1}{t}\right)\right)}{2t} = \frac{\frac{3}{2}+\frac{3}{2t^{2}}}{2t}$$

A curve C is defined by $x = t^2$, $y = t^3 - 3t$.

Oetermine the concavity intervals of the functions found in item 3.

$$\frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt}\left(\frac{3t^{2}-3}{2t}\right)}{2t}$$

$$= \frac{\frac{d}{dt}\left(\frac{3}{2}\left(t-\frac{1}{t}\right)\right)}{2t} = \frac{\frac{3}{2}+\frac{3}{2t^{2}}}{2t}$$

$$= \frac{\frac{3t^{2}+3}{2t}}{2t}$$

A curve C is defined by $x = t^2$, $y = t^3 - 3t$.

Determine the concavity intervals of the functions found in item 3.

$$\frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt}\left(\frac{3t^{2}-3}{2t}\right)}{2t} \\
= \frac{\frac{d}{dt}\left(\frac{3}{2}\left(t-\frac{1}{t}\right)\right)}{2t} = \frac{\frac{3}{2}+\frac{3}{2t^{2}}}{2t} \\
= \frac{\frac{3t^{2}+3}{2t}}{2t} = \frac{3(t^{2}+1)}{4t^{3}}$$

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

Determine the concavity intervals of the functions found in item 3.

Find the second derivative:

$$\frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt} \left(\frac{3t^{2} - 3}{2t} \right)}{2t}$$

$$= \frac{\frac{d}{dt} \left(\frac{3}{2} \left(t - \frac{1}{t} \right) \right)}{2t} = \frac{\frac{3}{2} + \frac{3}{2t^{2}}}{2t}$$

$$= \frac{\frac{3t^{2} + 3}{2t^{2}}}{2t} = \frac{3(t^{2} + 1)}{4t^{3}}$$

Therefore y as a function of x (which is a function of t) is concave up when t > 0

11/29

A curve *C* is defined by $x = t^2$, $y = t^3 - 3t$.

Oetermine the concavity intervals of the functions found in item 3.

Find the second derivative:

$$\frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt} \left(\frac{3t^{2}-3}{2t} \right)}{2t}$$

$$= \frac{\frac{d}{dt} \left(\frac{3}{2} \left(t - \frac{1}{t} \right) \right)}{2t} = \frac{\frac{3}{2} + \frac{3}{2t^{2}}}{2t}$$

$$= \frac{\frac{3t^{2}+3}{2t^{2}}}{2t} = \frac{3(t^{2}+1)}{4t^{3}}$$

Therefore y as a function of x (which is a function of t) is concave up when t > 0 and concave down when t < 0.

- At what points is the tangent horizontal?
- At what points is the tangent vertical?

Consider the cycloid $x = r(\theta - \sin \theta)$, $y = r(1 - \cos \theta)$.

At what points is the tangent horizontal?

- At what points is the tangent horizontal?
- The slope of the tangent is $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$

- At what points is the tangent horizontal?

- At what points is the tangent horizontal?
- The slope of the tangent is $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{r \sin \theta}{dx}$

- At what points is the tangent horizontal?
- The slope of the tangent is $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{r \sin \theta}{dx}$

- At what points is the tangent horizontal?
- The slope of the tangent is $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{r \sin \theta}{r(1-\cos \theta)}$

- At what points is the tangent horizontal?
- The slope of the tangent is $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{r\sin\theta}{r(1-\cos\theta)} = \frac{\sin\theta}{1-\cos\theta}$

- At what points is the tangent horizontal?
- The slope of the tangent is $\frac{dy}{dx} = \frac{dy}{dx/d\theta} = \frac{r \sin \theta}{r(1-\cos \theta)} = \frac{\sin \theta}{1-\cos \theta}$
- The tangent is horizontal when dy/dx = 0, that is, when $dy/d\theta = 0$ and $dx/d\theta \neq 0$.

- At what points is the tangent horizontal?
 - The slope of the tangent is $\frac{dy}{dx} = \frac{dy}{dx/d\theta} = \frac{r \sin \theta}{r(1-\cos \theta)} = \frac{\sin \theta}{1-\cos \theta}$
 - The tangent is horizontal when dy/dx = 0, that is, when $dy/d\theta = 0$ and $dx/d\theta \neq 0$.
 - $r \sin \theta = dy/d\theta = 0$ if $\theta =$
 - $r(1 \cos \theta) = dx/d\theta = 0$ if $\theta =$

- At what points is the tangent horizontal?
 - The slope of the tangent is $\frac{dy}{dx} = \frac{dy}{dx/d\theta} = \frac{r \sin \theta}{r(1-\cos \theta)} = \frac{\sin \theta}{1-\cos \theta}$
 - The tangent is horizontal when dy/dx = 0, that is, when $dy/d\theta = 0$ and $dx/d\theta \neq 0$.
 - $r \sin \theta = dy/d\theta = 0$ if $\theta =$
 - $r(1 \cos \theta) = dx/d\theta = 0$ if $\theta =$

- At what points is the tangent horizontal?
 - The slope of the tangent is $\frac{dy}{dx} = \frac{dy}{dx/d\theta} = \frac{r \sin \theta}{r(1-\cos \theta)} = \frac{\sin \theta}{1-\cos \theta}$
 - The tangent is horizontal when dy/dx = 0, that is, when $dy/d\theta = 0$ and $dx/d\theta \neq 0$.
 - $r \sin \theta = dy/d\theta = 0$ if $\theta = n\pi$, where n is any integer.
 - $r(1 \cos \theta) = dx/d\theta = 0$ if $\theta =$

- At what points is the tangent horizontal?
 - The slope of the tangent is $\frac{dy}{dx} = \frac{dy}{dx/d\theta} = \frac{r \sin \theta}{r(1-\cos \theta)} = \frac{\sin \theta}{1-\cos \theta}$
 - The tangent is horizontal when dy/dx = 0, that is, when $dy/d\theta = 0$ and $dx/d\theta \neq 0$.
 - $r \sin \theta = dy/d\theta = 0$ if $\theta = n\pi$, where n is any integer.
 - $r(1 \cos \theta) = dx/d\theta = 0$ if $\theta =$

- At what points is the tangent horizontal?
 - The slope of the tangent is $\frac{dy}{dx} = \frac{dy}{dx/d\theta} = \frac{r \sin \theta}{r(1-\cos \theta)} = \frac{\sin \theta}{1-\cos \theta}$
 - The tangent is horizontal when dy/dx = 0, that is, when $dy/d\theta = 0$ and $dx/d\theta \neq 0$.
 - $r \sin \theta = dy/d\theta = 0$ if $\theta = n\pi$, where n is any integer.
 - $r(1 \cos \theta) = dx/d\theta = 0$ if $\theta = 2n\pi$, where *n* is any integer.

- At what points is the tangent horizontal?
 - The slope of the tangent is $\frac{dy}{dx} = \frac{dy}{dx/d\theta} = \frac{r \sin \theta}{r(1-\cos \theta)} = \frac{\sin \theta}{1-\cos \theta}$
 - The tangent is horizontal when dy/dx = 0, that is, when $dy/d\theta = 0$ and $dx/d\theta \neq 0$.
 - $r \sin \theta = dy/d\theta = 0$ if $\theta = n\pi$, where n is any integer.
 - $r(1 \cos \theta) = dx/d\theta = 0$ if $\theta = 2n\pi$, where n is any integer.
 - Therefore there is a horizontal tangent when $\theta = (2n+1)\pi$.

Consider the cycloid $x = r(\theta - \sin \theta)$, $y = r(1 - \cos \theta)$.

At what points is the tangent vertical?

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.
 - To see if there is a vertical tangent, use L'Hospital's Rule.

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.
 - To see if there is a vertical tangent, use L'Hospital's Rule.

$$\lim_{ heta o 2n\pi^+} rac{\mathsf{d} y}{\mathsf{d} x} = \lim_{ heta o 2n\pi^+} rac{\sin heta}{1 - \cos heta}$$

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.
 - To see if there is a vertical tangent, use L'Hospital's Rule.

$$\lim_{\theta \to 2n\pi^+} \frac{dy}{dx} = \lim_{\theta \to 2n\pi^+} \frac{\sin \theta}{1 - \cos \theta} = \lim_{\theta \to 2n\pi^+} - \cdots$$

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.
 - To see if there is a vertical tangent, use L'Hospital's Rule.

$$\lim_{\theta \to 2n\pi^+} \frac{dy}{dx} = \lim_{\theta \to 2n\pi^+} \frac{\sin \theta}{1 - \cos \theta} = \lim_{\theta \to 2n\pi^+} \frac{\cos \theta}{1 - \cos \theta}$$

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.
 - To see if there is a vertical tangent, use L'Hospital's Rule.

$$\lim_{\theta \to 2n\pi^+} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 2n\pi^+} \frac{\sin \theta}{1 - \cos \theta} = \lim_{\theta \to 2n\pi^+} \frac{\cos \theta}{1 - \cos \theta}$$

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.
 - To see if there is a vertical tangent, use L'Hospital's Rule.

$$\lim_{\theta \to 2n\pi^{+}} \frac{dy}{dx} = \lim_{\theta \to 2n\pi^{+}} \frac{\sin \theta}{1 - \cos \theta} = \lim_{\theta \to 2n\pi^{+}} \frac{\cos \theta}{\sin \theta}$$

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.
 - To see if there is a vertical tangent, use L'Hospital's Rule.

$$\lim_{\theta \to 2n\pi^+} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 2n\pi^+} \frac{\sin \theta}{1 - \cos \theta} = \lim_{\theta \to 2n\pi^+} \frac{\cos \theta}{\sin \theta} \to -$$

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.
 - To see if there is a vertical tangent, use L'Hospital's Rule.

$$\lim_{\theta \to 2n\pi^+} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 2n\pi^+} \frac{\sin \theta}{1 - \cos \theta} = \lim_{\theta \to 2n\pi^+} \frac{\cos \theta}{\sin \theta} \to \frac{1}{\sin \theta}$$

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.
 - To see if there is a vertical tangent, use L'Hospital's Rule.

$$\lim_{\theta \to 2n\pi^+} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 2n\pi^+} \frac{\sin \theta}{1 - \cos \theta} = \lim_{\theta \to 2n\pi^+} \frac{\cos \theta}{\sin \theta} \to \frac{1}{\sin \theta}$$

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.
 - To see if there is a vertical tangent, use L'Hospital's Rule.

$$\lim_{\theta \to 2n\pi^{+}} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 2n\pi^{+}} \frac{\sin \theta}{1 - \cos \theta} = \lim_{\theta \to 2n\pi^{+}} \frac{\cos \theta}{\sin \theta} \to \frac{1}{0^{+}}$$

Consider the cycloid $x = r(\theta - \sin \theta)$, $y = r(1 - \cos \theta)$.

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.
 - To see if there is a vertical tangent, use L'Hospital's Rule.

$$\lim_{\theta \to 2n\pi^+} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 2n\pi^+} \frac{\sin \theta}{1 - \cos \theta} = \lim_{\theta \to 2n\pi^+} \frac{\cos \theta}{\sin \theta} \to \frac{1}{0^+}$$

• Therefore $\lim_{\theta\to 2n\pi^+} (\mathrm{d}y/\mathrm{d}x) = \infty$.

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.
 - To see if there is a vertical tangent, use L'Hospital's Rule.

$$\lim_{\theta \to 2n\pi^+} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 2n\pi^+} \frac{\sin \theta}{1 - \cos \theta} = \lim_{\theta \to 2n\pi^+} \frac{\cos \theta}{\sin \theta} \to \frac{1}{0^+}$$

- Therefore $\lim_{\theta \to 2n\pi^+} (dy/dx) = \infty$.
- A similar argument shows $\lim_{\theta \to 2n\pi^-} (dy/dx) = -\infty$.

- At what points is the tangent vertical?
 - When $\theta = 2n\pi$ both $dy/d\theta$ and $dx/d\theta$ are 0.
 - To see if there is a vertical tangent, use L'Hospital's Rule.

$$\lim_{\theta \to 2n\pi^+} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 2n\pi^+} \frac{\sin \theta}{1 - \cos \theta} = \lim_{\theta \to 2n\pi^+} \frac{\cos \theta}{\sin \theta} \to \frac{1}{0^+}$$

- Therefore $\lim_{\theta \to 2n\pi^+} (dy/dx) = \infty$.
- A similar argument shows $\lim_{\theta \to 2n\pi^-} (dy/dx) = -\infty$.
- Therefore there is a vertical tangent when $\theta = 2n\pi$.

To find the tangent line to a polar curve $r = f(\theta)$, regard θ as a parameter and write the parametric equations as

$$x = r \cos \theta = f(\theta) \cos \theta$$
 $y = r \sin \theta = f(\theta) \sin \theta$

To find the tangent line to a polar curve $r = f(\theta)$, regard θ as a parameter and write the parametric equations as

$$x = r \cos \theta = f(\theta) \cos \theta$$
 $y = r \sin \theta = f(\theta) \sin \theta$

$$\frac{dy}{dx} =$$

To find the tangent line to a polar curve $r = f(\theta)$, regard θ as a parameter and write the parametric equations as

$$x = r \cos \theta = f(\theta) \cos \theta$$
 $y = r \sin \theta = f(\theta) \sin \theta$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}\theta}}{\frac{\mathrm{d}x}{\mathrm{d}\theta}}$$

To find the tangent line to a polar curve $r = f(\theta)$, regard θ as a parameter and write the parametric equations as

$$x = r \cos \theta = f(\theta) \cos \theta$$
 $y = r \sin \theta = f(\theta) \sin \theta$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$
$$= \frac{\frac{d}{d\theta} (f(\theta) \sin \theta)}{\frac{d}{d\theta} (f(\theta) \cos \theta)}$$

To find the tangent line to a polar curve $r = f(\theta)$, regard θ as a parameter and write the parametric equations as

$$x = r \cos \theta = f(\theta) \cos \theta$$
 $y = r \sin \theta = f(\theta) \sin \theta$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

$$= \frac{\frac{d}{d\theta} (f(\theta) \sin \theta)}{\frac{d}{d\theta} (f(\theta) \cos \theta)}$$

To find the tangent line to a polar curve $r = f(\theta)$, regard θ as a parameter and write the parametric equations as

$$x = r \cos \theta = f(\theta) \cos \theta$$
 $y = r \sin \theta = f(\theta) \sin \theta$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

$$= \frac{\frac{d}{d\theta} (f(\theta) \sin \theta)}{\frac{d}{d\theta} (f(\theta) \cos \theta)}$$

$$= \frac{f'(\theta) \sin \theta + f(\theta) \cos \theta}{\frac{d\theta}{d\theta} (f(\theta) \cos \theta)}$$

To find the tangent line to a polar curve $r = f(\theta)$, regard θ as a parameter and write the parametric equations as

$$x = r \cos \theta = f(\theta) \cos \theta$$
 $y = r \sin \theta = f(\theta) \sin \theta$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

$$= \frac{\frac{d}{d\theta} (f(\theta) \sin \theta)}{\frac{d}{d\theta} (f(\theta) \cos \theta)}$$

$$= \frac{f'(\theta) \sin \theta + f(\theta) \cos \theta}{\frac{d\theta}{d\theta} (f(\theta) \cos \theta)}$$

To find the tangent line to a polar curve $r = f(\theta)$, regard θ as a parameter and write the parametric equations as

$$x = r \cos \theta = f(\theta) \cos \theta$$
 $y = r \sin \theta = f(\theta) \sin \theta$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

$$= \frac{\frac{d}{d\theta} (f(\theta) \sin \theta)}{\frac{d}{d\theta} (f(\theta) \cos \theta)}$$

$$= \frac{f'(\theta) \sin \theta + f(\theta) \cos \theta}{f'(\theta) \cos \theta + f(\theta) (-\sin \theta)}$$

To find the tangent line to a polar curve $r = f(\theta)$, regard θ as a parameter and write the parametric equations as

$$x = r \cos \theta = f(\theta) \cos \theta$$
 $y = r \sin \theta = f(\theta) \sin \theta$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

$$= \frac{\frac{d}{d\theta} (f(\theta) \sin \theta)}{\frac{d}{d\theta} (f(\theta) \cos \theta)}$$

$$= \frac{f'(\theta) \sin \theta + f(\theta) \cos \theta}{f'(\theta) \cos \theta + f(\theta) (-\sin \theta)}$$

$$= \frac{\frac{dr}{d\theta} \sin \theta + r \cos \theta}{\frac{dr}{d\theta} \cos \theta - r \sin \theta}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}r}{\mathrm{d}\theta}\sin\theta + r\cos\theta}{\frac{\mathrm{d}r}{\mathrm{d}\theta}\cos\theta - r\sin\theta}$$

Find the points on $r = 1 + \sin \theta$ where the tangent is horizontal or vertical.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}r}{\mathrm{d}\theta}\sin\theta + r\cos\theta}{\frac{\mathrm{d}r}{\mathrm{d}\theta}\cos\theta - r\sin\theta} = \frac{\sin\theta + \cos\theta}{\cos\theta - \sin\theta}$$

Tangents to Polar Curves

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta - (1+\sin\theta)\sin\theta}$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta - (1+\sin\theta)\sin\theta}$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta}$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

- $\cos \theta (1 + 2 \sin \theta) = 0$ when $\theta =$
- $(1 + \sin \theta)(1 2\sin \theta) = 0$ when $\theta =$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

- $\cos \theta (1 + 2 \sin \theta) = 0$ when $\theta =$
- $(1 + \sin \theta)(1 2\sin \theta) = 0$ when $\theta =$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

•
$$\cos \theta (1 + 2 \sin \theta) = 0$$

when $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$.

•
$$(1 + \sin \theta)(1 - 2\sin \theta) = 0$$

when $\theta =$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

•
$$\cos \theta (1 + 2 \sin \theta) = 0$$

when $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$.

•
$$(1 + \sin \theta)(1 - 2\sin \theta) = 0$$

when $\theta =$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

•
$$\cos \theta (1 + 2 \sin \theta) = 0$$

when $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$.

•
$$(1 + \sin \theta)(1 - 2\sin \theta) = 0$$

when $\theta = \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$.

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

- $\cos \theta (1 + 2 \sin \theta) = 0$ when $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$.
 - $(1 + \sin \theta)(1 2\sin \theta) = 0$ when $\theta = \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$.
- Horizontal tangents at $(2, \pi/2)$, $(1/2, 7\pi/6)$, and $(1/2, 11\pi/6)$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}r}{\mathrm{d}\theta}\sin\theta + r\cos\theta}{\frac{\mathrm{d}r}{\mathrm{d}\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

- $\cos \theta (1 + 2 \sin \theta) = 0$ when $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$.
 - $(1 + \sin \theta)(1 2\sin \theta) = 0$ when $\theta = \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$.
- Horizontal tangents at $(2, \pi/2)$, $(1/2, 7\pi/6)$, and $(1/2, 11\pi/6)$.
- Vertical tangents at $(3/2, \pi/6)$, and $(3/2, 5\pi/6)$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}r}{\mathrm{d}\theta}\sin\theta + r\cos\theta}{\frac{\mathrm{d}r}{\mathrm{d}\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

- $\cos \theta (1 + 2 \sin \theta) = 0$ when $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$.
- $(1 + \sin \theta)(1 2\sin \theta) = 0$ when $\theta = \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$.
- Horizontal tangents at $(2, \pi/2)$, $(1/2, 7\pi/6)$, and $(1/2, 11\pi/6)$.
- Vertical tangents at $(3/2, \pi/6)$, and $(3/2, 5\pi/6)$.
- If $\theta = 3\pi/2$, top and bottom are both 0, so use L'Hospital's Rule.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}r}{\mathrm{d}\theta}\sin\theta + r\cos\theta}{\frac{\mathrm{d}r}{\mathrm{d}\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

- $\cos \theta (1 + 2 \sin \theta) = 0$ when $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$.
 - $(1+\sin\theta)(1-2\sin\theta)=0$ when $\theta=rac{3\pi}{2},rac{\pi}{6},rac{5\pi}{6}.$
- Horizontal tangents at $(2, \pi/2)$, $(1/2, 7\pi/6)$, and $(1/2, 11\pi/6)$.
- Vertical tangents at $(3/2, \pi/6)$, and $(3/2, 5\pi/6)$.
- If $\theta = 3\pi/2$, top and bottom are both 0, so use L'Hospital's Rule.

$$\lim_{\theta \to 3\pi/2^{-}} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 3\pi/2^{-}} \frac{1+2\sin\theta}{1-2\sin\theta} \cdot \lim_{\theta \to 3\pi/2^{-}} \frac{\cos\theta}{1+\sin\theta}$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

- $\begin{array}{c} \left(\frac{3}{2}, \frac{\pi}{6}\right) & \bullet & \cos\theta(1+2\sin\theta) = 0 \\ & \text{when } \theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}. \end{array}$
 - $(1 + \sin \theta)(1 2\sin \theta) = 0$ when $\theta = \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$.
- Horizontal tangents at $(2, \pi/2)$, $(1/2, 7\pi/6)$, and $(1/2, 11\pi/6)$.
- Vertical tangents at $(3/2, \pi/6)$, and $(3/2, 5\pi/6)$.
- If $\theta = 3\pi/2$, top and bottom are both 0, so use L'Hospital's Rule.

$$\lim_{\theta \to 3\pi/2^-} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 3\pi/2^-} \frac{\frac{1+2\sin\theta}{1-2\sin\theta}}{1-2\sin\theta} \cdot \lim_{\theta \to 3\pi/2^-} \frac{\cos\theta}{1+\sin\theta} =$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

- $\begin{array}{c} \left(\frac{3}{2}, \frac{\pi}{6}\right) & \bullet & \cos\theta(1 + 2\sin\theta) = 0 \\ & \text{when } \theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}. \end{array}$
 - $(1 + \sin \theta)(1 2\sin \theta) = 0$ when $\theta = \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$.
- Horizontal tangents at $(2, \pi/2)$, $(1/2, 7\pi/6)$, and $(1/2, 11\pi/6)$.
- Vertical tangents at $(3/2, \pi/6)$, and $(3/2, 5\pi/6)$.
- If $\theta = 3\pi/2$, top and bottom are both 0, so use L'Hospital's Rule.

$$\lim_{\theta \to 3\pi/2^{-}} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 3\pi/2^{-}} \frac{\frac{1+2\sin\theta}{1-2\sin\theta}}{\frac{1-2\sin\theta}{1-2\sin\theta}} \cdot \lim_{\theta \to 3\pi/2^{-}} \frac{\cos\theta}{1+\sin\theta} = -\frac{1}{3}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}r}{\mathrm{d}\theta}\sin\theta + r\cos\theta}{\frac{\mathrm{d}r}{\mathrm{d}\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

- $\begin{array}{c} \left(\frac{3}{2}, \frac{\pi}{6}\right) & \bullet & \cos\theta(1 + 2\sin\theta) = 0 \\ & \text{when } \theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}. \end{array}$
 - $(1 + \sin \theta)(1 2\sin \theta) = 0$ when $\theta = \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$.
- Horizontal tangents at $(2, \pi/2)$, $(1/2, 7\pi/6)$, and $(1/2, 11\pi/6)$.
- Vertical tangents at $(3/2, \pi/6)$, and $(3/2, 5\pi/6)$.
- If $\theta = 3\pi/2$, top and bottom are both 0, so use L'Hospital's Rule.

$$\lim_{\theta \to 3\pi/2^{-}} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 3\pi/2^{-}} \frac{1+2\sin\theta}{1-2\sin\theta} \cdot \lim_{\theta \to 3\pi/2^{-}} \frac{\cos\theta}{1+\sin\theta} = -\frac{1}{3}$$

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

- $\begin{array}{c} \left(\frac{3}{2}, \frac{\pi}{6}\right) & \bullet & \cos\theta(1+2\sin\theta) = 0 \\ \text{when } \theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}. \end{array}$
 - $(1 + \sin \theta)(1 2\sin \theta) = 0$ when $\theta = \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$.
- Horizontal tangents at $(2, \pi/2)$, $(1/2, 7\pi/6)$, and $(1/2, 11\pi/6)$.
- Vertical tangents at $(3/2, \pi/6)$, and $(3/2, 5\pi/6)$.
- If $\theta = 3\pi/2$, top and bottom are both 0, so use L'Hospital's Rule.

$$\lim_{\theta \to 3\pi/2^{-}} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 3\pi/2^{-}} \frac{1+2\sin\theta}{1-2\sin\theta} \cdot \lim_{\theta \to 3\pi/2^{-}} \frac{\cos\theta}{1+\sin\theta} = -\frac{1}{3} \lim_{\theta \to 3\pi/2^{-}} \frac{-\sin\theta}{\cos\theta}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}r}{\mathrm{d}\theta}\sin\theta + r\cos\theta}{\frac{\mathrm{d}r}{\mathrm{d}\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta}$$
$$= \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}$$

- $\begin{array}{c} \left(\frac{3}{2}, \frac{\pi}{6}\right) & \bullet & \cos\theta(1+2\sin\theta) = 0\\ & \text{when } \theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}. \end{array}$
 - $(1 + \sin \theta)(1 2\sin \theta) = 0$ when $\theta = \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}$.
- Horizontal tangents at $(2, \pi/2)$, $(1/2, 7\pi/6)$, and $(1/2, 11\pi/6)$.
- Vertical tangents at $(3/2, \pi/6)$, and $(3/2, 5\pi/6)$.
- If $\theta = 3\pi/2$, top and bottom are both 0, so use L'Hospital's Rule.

$$\lim_{\theta \to 3\pi/2^{-}} \frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\theta \to 3\pi/2^{-}} \frac{1+2\sin\theta}{1-2\sin\theta} \cdot \lim_{\theta \to 3\pi/2^{-}} \frac{\cos\theta}{1+\sin\theta} = -\frac{1}{3} \lim_{\theta \to 3\pi/2^{-}} \frac{-\sin\theta}{\cos\theta} = \infty$$

Arc Length

• What do we mean by the length of a curve?

- What do we mean by the length of a curve?
- The length of a polygon is easy to compute: add up the length of the line segments that form the polygon.

- What do we mean by the length of a curve?
- The length of a polygon is easy to compute: add up the length of the line segments that form the polygon.
- If the curve is a circle, approximate it by a polygon.

- What do we mean by the length of a curve?
- The length of a polygon is easy to compute: add up the length of the line segments that form the polygon.
- If the curve is a circle, approximate it by a polygon.
- Then take the limit as the number of segments of the polygon goes to ∞ .

- What do we mean by the length of a curve?
- The length of a polygon is easy to compute: add up the length of the line segments that form the polygon.
- If the curve is a circle, approximate it by a polygon.
- Then take the limit as the number of segments of the polygon goes to ∞ .

- What do we mean by the length of a curve?
- The length of a polygon is easy to compute: add up the length of the line segments that form the polygon.
- If the curve is a circle, approximate it by a polygon.
- Then take the limit as the number of segments of the polygon goes to ∞ .

- What do we mean by the length of a curve?
- The length of a polygon is easy to compute: add up the length of the line segments that form the polygon.
- If the curve is a circle, approximate it by a polygon.
- Then take the limit as the number of segments of the polygon goes to ∞ .

- What do we mean by the length of a curve?
- The length of a polygon is easy to compute: add up the length of the line segments that form the polygon.
- If the curve is a circle, approximate it by a polygon.
- Then take the limit as the number of segments of the polygon goes to ∞ .

- What do we mean by the length of a curve?
- The length of a polygon is easy to compute: add up the length of the line segments that form the polygon.
- If the curve is a circle, approximate it by a polygon.
- Then take the limit as the number of segments of the polygon goes to ∞ .

Let γ be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

• Divide [a, b] into n subintervals with endpoints t_0, t_1, \ldots, t_n and equal width Δt .

Let γ be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

- Divide [a, b] into n subintervals with endpoints t_0, t_1, \ldots, t_n and equal width Δt .
- The points $P_i = (x(t_i), y(t_i))$ lie on the curve γ . The lengths of the segments with endpoints with consecutive indices from P_0, P_1, \ldots, P_n approximate the length of the curve γ .

Let γ be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

- Divide [a, b] into n subintervals with endpoints t_0, t_1, \ldots, t_n and equal width Δt .
- The points $P_i = (x(t_i), y(t_i))$ lie on the curve γ . The lengths of the segments with endpoints with consecutive indices from P_0, P_1, \ldots, P_n approximate the length of the curve γ .
- The length *L* of the curve γ is the limit of the lengths of these segments as $n \to \infty$.

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

- Divide [a, b] into n subintervals with endpoints t_0, t_1, \ldots, t_n and equal width Δt .
- The points $P_i = (x(t_i), y(t_i))$ lie on the curve γ . The lengths of the segments with endpoints with consecutive indices from P_0, P_1, \ldots, P_n approximate the length of the curve γ .
- The length *L* of the curve γ is the limit of the lengths of these segments as $n \to \infty$.

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

- Divide [a, b] into n subintervals with endpoints t_0, t_1, \ldots, t_n and equal width Δt .
- The points $P_i = (x(t_i), y(t_i))$ lie on the curve γ . The lengths of the segments with endpoints with consecutive indices from P_0, P_1, \ldots, P_n approximate the length of the curve γ .
- The length *L* of the curve γ is the limit of the lengths of these segments as $n \to \infty$.

Let γ be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

- Divide [a, b] into n subintervals with endpoints t_0, t_1, \ldots, t_n and equal width Δt .
- The points $P_i = (x(t_i), y(t_i))$ lie on the curve γ . The lengths of the segments with endpoints with consecutive indices from P_0, P_1, \ldots, P_n approximate the length of the curve γ .
- The length *L* of the curve γ is the limit of the lengths of these segments as $n \to \infty$.

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

- Divide [a, b] into n subintervals with endpoints t_0, t_1, \ldots, t_n and equal width Δt .
- The points $P_i = (x(t_i), y(t_i))$ lie on the curve γ . The lengths of the segments with endpoints with consecutive indices from P_0, P_1, \ldots, P_n approximate the length of the curve γ .
- The length *L* of the curve γ is the limit of the lengths of these segments as $n \to \infty$.

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

- Divide [a, b] into n subintervals with endpoints t_0, t_1, \ldots, t_n and equal width Δt .
- The points $P_i = (x(t_i), y(t_i))$ lie on the curve γ . The lengths of the segments with endpoints with consecutive indices from P_0, P_1, \ldots, P_n approximate the length of the curve γ .
- The length *L* of the curve γ is the limit of the lengths of these segments as $n \to \infty$.

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

- Divide [a, b] into n subintervals with endpoints t_0, t_1, \ldots, t_n and equal width Δt .
- The points $P_i = (x(t_i), y(t_i))$ lie on the curve γ . The lengths of the segments with endpoints with consecutive indices from P_0, P_1, \ldots, P_n approximate the length of the curve γ .
- The length *L* of the curve γ is the limit of the lengths of these segments as $n \to \infty$.

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i|$$

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i|$$

• If f has continuous derivative, we can compute the above limit.

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i|$$

If f has continuous derivative, we can compute the above limit.

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i|$$

If f has continuous derivative, we can compute the above limit.

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

• Then $|P_i P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i|$$

If f has continuous derivative, we can compute the above limit.

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

- Then $|P_i P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.
- Mean Value Theorem: there exist numbers s_i and r_i between t_{i-1} and t_i such that $x(t_i) x(t_{i-1}) = x'(s_i)(t_i t_{i-1})$ and $y(t_i) y(t_{i-1}) = y'(r_i)(t_i t_{i-1})$.

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i|$$

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

- Then $|P_i P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.
- Mean Value Theorem: there exist numbers s_i and r_i between t_{i-1} and t_i such that $x(t_i) x(t_{i-1}) = x'(s_i)(t_i t_{i-1})$ and $y(t_i) y(t_{i-1}) = y'(r_i)(t_i t_{i-1})$.
- $\Delta x = x'(s_i) \Delta t, \, \Delta y = y'(r_i) \Delta t.$

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i|$$

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

- Then $|P_i P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.
- Mean Value Theorem: there exist numbers s_i and r_i between t_{i-1} and t_i such that $x(t_i) x(t_{i-1}) = x'(s_i)(t_i t_{i-1})$ and $y(t_i) y(t_{i-1}) = y'(r_i)(t_i t_{i-1})$.
- $\Delta x = x'(s_i) \Delta t, \, \Delta y = y'(r_i) \Delta t.$

$$|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i|$$

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

- Then $|P_i P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.
- Mean Value Theorem: there exist numbers s_i and r_i between t_{i-1} and t_i such that $x(t_i) x(t_{i-1}) = x'(s_i)(t_i t_{i-1})$ and $y(t_i) y(t_{i-1}) = y'(r_i)(t_i t_{i-1})$.
- $\Delta x = x'(s_i) \Delta t, \, \Delta y = y'(r_i) \Delta t.$

$$|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x'(s_i)\Delta t)^2 + (y'(r_i)\Delta t)^2}$$

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i|$$

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

- Then $|P_i P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.
- Mean Value Theorem: there exist numbers s_i and r_i between t_{i-1} and t_i such that $x(t_i) x(t_{i-1}) = x'(s_i)(t_i t_{i-1})$ and $y(t_i) y(t_{i-1}) = y'(r_i)(t_i t_{i-1})$.
- $\Delta x = x'(s_i)\Delta t$, $\Delta y = y'(r_i)\Delta t$.

$$|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x'(s_i)\Delta t)^2 + (y'(r_i)\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \sqrt{(\Delta t)^2}$$

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_{i}|$$

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

- Then $|P_i P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.
- Mean Value Theorem: there exist numbers s_i and r_i between t_{i-1} and t_i such that $x(t_i) x(t_{i-1}) = x'(s_i)(t_i t_{i-1})$ and $y(t_i) y(t_{i-1}) = y'(r_i)(t_i t_{i-1})$.
- $\Delta x = x'(s_i) \Delta t, \, \Delta y = y'(r_i) \Delta t.$

$$|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x'(s_i)\Delta t)^2 + (y'(r_i)\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \sqrt{(\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \Delta t$$

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i| = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \Delta t$$

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

- Then $|P_i P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.
- Mean Value Theorem: there exist numbers s_i and r_i between t_{i-1} and t_i such that $x(t_i) x(t_{i-1}) = x'(s_i)(t_i t_{i-1})$ and $y(t_i) y(t_{i-1}) = y'(r_i)(t_i t_{i-1})$.

$$|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x'(s_i)\Delta t)^2 + (y'(r_i)\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \sqrt{(\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \Delta t$$

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i| = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \, \Delta t$$
$$= \int_{a}^{b} \sqrt{(x'(t))^2 + (y'(t))^2} \, dt$$

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

- Then $|P_i P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.
- Mean Value Theorem: there exist numbers s_i and r_i between t_{i-1} and t_i such that $x(t_i) x(t_{i-1}) = x'(s_i)(t_i t_{i-1})$ and $y(t_i) y(t_{i-1}) = y'(r_i)(t_i t_{i-1})$.
- $\Delta x = x'(s_i) \Delta t, \, \Delta y = y'(r_i) \Delta t.$

$$|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x'(s_i)\Delta t)^2 + (y'(r_i)\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \sqrt{(\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \Delta t$$

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i| = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \, \Delta t$$
$$= \int_{a}^{b} \sqrt{(x'(t))^2 + (y'(t))^2} \, dt$$

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

- Then $|P_i P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.
- Mean Value Theorem: there exist numbers s_i and r_i between t_{i-1} and t_i such that $x(t_i) x(t_{i-1}) = x'(s_i)(t_i t_{i-1})$ and $y(t_i) y(t_{i-1}) = y'(r_i)(t_i t_{i-1})$.
- $\Delta x = x'(s_i) \Delta t, \, \Delta y = y'(r_i) \Delta t.$

$$|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x'(s_i)\Delta t)^2 + (y'(r_i)\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \sqrt{(\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \Delta t$$

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i| = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \, \Delta t$$
$$= \int_{a}^{b} \sqrt{(x'(t))^2 + (y'(t))^2} \, dt$$

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

- Then $|P_i P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.
- Mean Value Theorem: there exist numbers s_i and r_i between t_{i-1} and t_i such that $x(t_i) x(t_{i-1}) = x'(s_i)(t_i t_{i-1})$ and $y(t_i) y(t_{i-1}) = y'(r_i)(t_i t_{i-1})$.
- $\Delta x = x'(s_i) \Delta t, \, \Delta y = y'(r_i) \Delta t.$

$$|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x'(s_i)\Delta t)^2 + (y'(r_i)\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \sqrt{(\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \Delta t$$

Let
$$\gamma$$
 be the curve γ : $\begin{vmatrix} x = x(t) \\ y = y(t) \end{vmatrix}$, $t \in [a, b]$

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i| = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \Delta t$$
$$= \int_{a}^{b} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

• Let
$$\begin{vmatrix} x_i = x(t_i) \\ y_i = y(t_i) \end{vmatrix}$$
, and $\begin{vmatrix} \Delta x = x_i - x_{i-1} = x(t_i) - x(t_{i-1}) \\ \Delta y = y_i - y_{i-1} = y(t_i) - y(t_{i-1}) \end{vmatrix}$.

- Then $|P_i P_{i-1}| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.
- Mean Value Theorem: there exist numbers s_i and r_i between t_{i-1} and t_i such that $x(t_i) x(t_{i-1}) = x'(s_i)(t_i t_{i-1})$ and $y(t_i) y(t_{i-1}) = y'(r_i)(t_i t_{i-1})$.
- $\Delta x = x'(s_i) \Delta t, \, \Delta y = y'(r_i) \Delta t.$

$$|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x'(s_i)\Delta t)^2 + (y'(r_i)\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \sqrt{(\Delta t)^2} = \sqrt{(x'(s_i))^2 + (y'(r_i))^2} \Delta t$$

The Arc Length Formula

Let
$$\gamma: \left| \begin{array}{ccc} x & = & x(t) \\ y & = & y(t) \end{array} \right|, t \in [a, b].$$

Definition

Suppose x'(t) and y'(t) (exist and) are continuous on [a, b]. Then the length of the curve γ is defined as

$$L(\gamma) = \int_{2}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

The Arc Length Formula

Let
$$\gamma: \left| \begin{array}{ccc} x & = & x(t) \\ y & = & y(t) \end{array} \right|, t \in [a, b].$$

Definition

Suppose x'(t) and y'(t) (exist and) are continuous on [a, b]. Then the length of the curve γ is defined as

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

$$= \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt \quad \text{in Leibniz notation }.$$

Arc length of graph of a function

Question

What is the length of the graph of the curve given by the graph of y = f(x)?

Arc length of graph of a function

Question

What is the length of the graph of the curve given by the graph of y = f(x)?

• The graph of y = f(x) is written as a curve as

$$\gamma: \left| \begin{array}{ccc} x & = & t \\ y & = & f(t) \end{array} \right|, t \in [a, b] .$$

Arc length of graph of a function

Question

What is the length of the graph of the curve given by the graph of y = f(x)?

• The graph of y = f(x) is written as a curve as

$$\gamma: \left| \begin{array}{ccc} x & = & t \\ y & = & f(t) \end{array} \right|, t \in [a, b] .$$

• In other words, the question asks what is the length $L(\gamma)$ of γ .

Arc length of graph of a function

Question

What is the length of the graph of the curve given by the graph of y = f(x)?

• The graph of y = f(x) is written as a curve as

$$\gamma: \left| \begin{array}{ccc} x & = & t \\ y & = & f(t) \end{array} \right|, t \in [a, b] .$$

$$L(\gamma) = \int \sqrt{(x'(t))^2 + (y'(t))^2} dt =$$

Arc length of graph of a function

Question

What is the length of the graph of the curve given by the graph of y = f(x)?

• The graph of y = f(x) is written as a curve as

$$\gamma: \left| \begin{array}{ccc} x & = & t \\ y & = & f(t) \end{array} \right|, t \in [a, b] .$$

$$L(\gamma) = \int \sqrt{(x'(t))^2 + (y'(t))^2} dt = \int \sqrt{? + (f'(t))^2} dt$$

Arc length of graph of a function

Question

What is the length of the graph of the curve given by the graph of y = f(x)?

• The graph of y = f(x) is written as a curve as

$$\gamma: \left| \begin{array}{ccc} x & = & t \\ y & = & f(t) \end{array} \right|, t \in [a, b] .$$

$$L(\gamma) = \int \sqrt{(x'(t))^2 + (y'(t))^2} dt = \int \sqrt{? + (f'(t))^2} dt$$

Arc length of graph of a function

Question

What is the length of the graph of the curve given by the graph of y = f(x)?

• The graph of y = f(x) is written as a curve as

$$\gamma: \left| \begin{array}{ccc} \mathbf{x} & = & \mathbf{t} \\ \mathbf{y} & = & f(t) \end{array} \right|, t \in [\mathbf{a}, \mathbf{b}] .$$

$$L(\gamma) = \int \sqrt{(x'(t))^2 + (y'(t))^2} dt = \int \sqrt{1 + (f'(t))^2} dt$$

The Arc Length Formula

Definition

Suppose f' exists and is continuous on [a, b]. Then the length of the curve y = f(x), $a \le x \le b$, is

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$
$$= \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \quad \text{(in Leibniz notation)} .$$

Example

- For the top half of the curve we have:
- y = and y' =

- For the top half of the curve we have:
- y = and y' =

- For the top half of the curve we have:
- $y = x^{3/2}$ and y' =

- For the top half of the curve we have:
- $y = x^{3/2}$ and y' =

- For the top half of the curve we have:
- $y = x^{3/2}$ and $y' = \frac{3}{2}x^{1/2}$.

- For the top half of the curve we have:
- $y = x^{3/2}$ and $y' = \frac{3}{2}x^{1/2}$.

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$

- For the top half of the curve we have:
- $y = x^{3/2}$ and $y' = \frac{3}{2}x^{1/2}$.

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$
$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx$$

- For the top half of the curve we have:
- $y = x^{3/2}$ and $y' = \frac{3}{2}x^{1/2}$.
- u = and du = .
- When x = 1, u = ...
- When x = 4, u = ...

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$
$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx = \int$$

- For the top half of the curve we have:
- $y = x^{3/2}$ and $y' = \frac{3}{2}x^{1/2}$.
- u = and du = .
- When x = 1, u = ...
- When x = 4, u = ...

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$
$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx = \int$$

- For the top half of the curve we have:
- $y = x^{3/2}$ and $y' = \frac{3}{2}x^{1/2}$.
- $u = 1 + \frac{9}{4}x$ and du =
- When x = 1, u = ...
- When x = 4, u = ...

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$
$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx = \int \sqrt{\iota}$$

- For the top half of the curve we have:
- $y = x^{3/2}$ and $y' = \frac{3}{2}x^{1/2}$.
- $u = 1 + \frac{9}{4}x$ and du =
- When x = 1, u = ...
- When x = 4, u = ...

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$
$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx = \int \sqrt{u}$$

•
$$y = x^{3/2}$$
 and $y' = \frac{3}{2}x^{1/2}$.

•
$$u = 1 + \frac{9}{4}x$$
 and $\frac{du}{du} = \frac{9}{4}dx$.

• When
$$x = 1$$
, $u = ...$

• When
$$x = 4$$
, $u = ...$

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$
$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx = \int \frac{4}{9} \sqrt{u} du$$

- For the top half of the curve we have:
- $y = x^{3/2}$ and $y' = \frac{3}{2}x^{1/2}$.
- $u = 1 + \frac{9}{4}x$ and $du = \frac{9}{4}dx$.
- When x = 1, u = ...
- When x = 4, u = ...

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$
$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx = \int \frac{4}{9} \sqrt{u} du$$

- For the top half of the curve we have:
- $y = x^{3/2}$ and $y' = \frac{3}{2}x^{1/2}$.
- $u = 1 + \frac{9}{4}x$ and $du = \frac{9}{4}dx$.
- When x = 1, $u = \frac{13}{4}$.
- When x = 4, u = 1

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$
$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx = \int_{13/4}^{4} \frac{4}{9} \sqrt{u} du$$

- For the top half of the curve we have:
- $y = x^{3/2}$ and $y' = \frac{3}{2}x^{1/2}$.
- $u = 1 + \frac{9}{4}x$ and $du = \frac{9}{4}dx$.
- When x = 1, $u = \frac{13}{4}$.
- When x = 4, u =

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$
$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx = \int_{13/4} \frac{4}{9} \sqrt{u} du$$

Find the length of the arc of $y^2 = x^3$ between (1,1) and (4,8).

- For the top half of the curve we have:
- $y = x^{3/2}$ and $y' = \frac{3}{2}x^{1/2}$.
- $u = 1 + \frac{9}{4}x$ and $du = \frac{9}{4}dx$.
- When x = 1, $u = \frac{13}{4}$.
- When x = 4, u = 10.

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$
$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx = \int_{13/4}^{10} \frac{4}{9} \sqrt{u} du$$

Find the length of the arc of $y^2 = x^3$ between (1,1) and (4,8).

•
$$y = x^{3/2}$$
 and $y' = \frac{3}{2}x^{1/2}$.

•
$$u = 1 + \frac{9}{4}x$$
 and $du = \frac{9}{4}dx$.

• When
$$x = 1$$
, $u = \frac{13}{4}$.

• When
$$x = 4$$
, $u = 10$.

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$

$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx = \int_{13/4}^{10} \frac{4}{9} \sqrt{u} du$$

$$= \frac{4}{9} \left[\frac{2}{3} u^{3/2} \right]_{13/4}^{10}$$

Find the length of the arc of $y^2 = x^3$ between (1,1) and (4,8).

- For the top half of the curve we have:
- $y = x^{3/2}$ and $y' = \frac{3}{2}x^{1/2}$.
- $u = 1 + \frac{9}{4}x$ and $du = \frac{9}{4}dx$.
- When x = 1, $u = \frac{13}{4}$.
- When x = 4, u = 10.

$$L = \int_{1}^{4} \sqrt{1 + (y')^{2}} dx$$

$$= \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx = \int_{13/4}^{10} \frac{4}{9} \sqrt{u} du$$

$$= \frac{4}{9} \left[\frac{2}{3} u^{3/2} \right]_{13/4}^{10} = \frac{8}{27} \left(10^{3/2} - \left(\frac{13}{4} \right)^{3/2} \right)$$

Find the length of the arc of the parabola $y = x^2$ from (0,0) to (1,1).

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

Find the length of the arc of the parabola
$$y = x^2$$
 from $(0,0)$ to $(1,1)$.

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + ?} dx$$

Find the length of the arc of the parabola
$$y = x^2$$
 from $(0,0)$ to $(1,1)$.

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + ?} dx$$

$$y = x^2$$
 from $(0,0)$ to $(1,1)$.

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx$$

$$y = x^2$$
 from (0,0) to (1,1).

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx$$
 Set $x = ? \tan \theta$

$$y = x^2$$
 from $(0,0)$ to $(1,1)$.

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx \quad \left| \text{ Set } x = \frac{1}{2} \tan \theta \right|$$

$$y = x^2$$
 from $(0,0)$ to $(1,1)$.

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{dx} \sqrt{1 + 4x^2} dx \quad \left| \text{ Set } x = \frac{1}{2} \tan \theta \right|$$
$$= \int_{\theta=?}^{\theta=?} \sqrt{1 + \tan^2 \theta} \ d\left(\frac{1}{2} \tan \theta\right)$$

$$y = x^{2}$$
 from $(0,0)$ to $(1,1)$.
 $\frac{dy}{dx} = 2x$

$$\int_{x=1}^{x=1} \int_{x=1}^{x=1} \int$$

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{dx} \sqrt{1 + 4x^2} dx \quad \left| \text{ Set } x = \frac{1}{2} \tan \theta \right|$$
$$= \int_{\theta=?}^{\theta=?} \sqrt{1 + \tan^2 \theta} \ d\left(\frac{1}{2} \tan \theta\right)$$

$$y = x^2$$
 from (0,0) to (1,1).

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx \quad \left| \text{ Set } x = \frac{1}{2} \tan \theta \right|$$

$$= \int_{\theta=?}^{\theta=?} \sqrt{1 + \tan^2 \theta} \ d\left(\frac{1}{2} \tan \theta\right)$$

$$y = x^2$$
 from $(0,0)$ to $(1,1)$.

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx \quad \left| \text{ Set } x = \frac{1}{2} \tan \theta \right|$$

$$= \int_{\theta=0}^{\theta=2} \sqrt{1 + \tan^2 \theta} \ d\left(\frac{1}{2} \tan \theta\right)$$

$$y = x^2$$
 from $(0,0)$ to $(1,1)$.

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx \quad \left| \text{ Set } x = \frac{1}{2} \tan \theta \right|$$
$$= \int_{\theta=0}^{\theta=2} \sqrt{1 + \tan^2 \theta} \ d\left(\frac{1}{2} \tan \theta\right)$$

$$y = x^2$$
 from (0,0) to (1,1).

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx \quad \left| \text{ Set } x = \frac{1}{2} \tan \theta \right|$$
$$= \int_{\theta=0}^{\theta=\arctan 2} \sqrt{1 + \tan^2 \theta} \ d\left(\frac{1}{2} \tan \theta\right)$$

$$y = x^2$$
 from $(0,0)$ to $(1,1)$.

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx \quad \text{Set } x = \frac{1}{2} \tan \theta$$

$$= \int_{\theta=0}^{\theta=\arctan 2} \sqrt{1 + \tan^2 \theta} d\left(\frac{1}{2} \tan \theta\right)$$

$$= \int_{\theta=\arctan 2}^{\theta=\arctan 2} \mathbf{?} \cdot \mathbf{?} d\theta$$

$$y = x^2$$
 from $(0,0)$ to $(1,1)$.

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx \quad | \text{Set } x = \frac{1}{2} \tan \theta$$

$$= \int_{\theta=0}^{\theta=0} \sqrt{1 + \tan^2 \theta} d\left(\frac{1}{2} \tan \theta\right)$$

$$=\int_{\theta=0}^{\theta=\arctan 2} \mathbf{?} \cdot \frac{1}{2} \sec^2 \theta d\theta$$

$$y = x^2$$
 from (0,0) to (1,1).

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx \quad | \text{Set } x = \frac{1}{2} \tan \theta$$

$$= \int_{\theta=0}^{\theta=\arctan 2} \sqrt{1 + \tan^2 \theta} d\left(\frac{1}{2} \tan \theta\right)$$

$$= \int_{\theta=0}^{\theta=\arctan 2} \frac{1}{2} \sec^2 \theta d\theta$$

$$y = x^2$$
 from $(0,0)$ to $(1,1)$.

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx \quad | \text{Set } x = \frac{1}{2} \tan \theta$$

$$= \int_{\theta=0}^{\theta=0} \sqrt{1 + \tan^2 \theta} d\left(\frac{1}{2} \tan \theta\right)$$

$$= \int_{\theta=0}^{3\theta=0} \sec \theta \cdot \frac{1}{2} \sec^2 \theta d\theta$$

$$y = x^2$$
 from $(0,0)$ to $(1,1)$.

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx \quad \left| \text{ Set } x = \frac{1}{2} \tan \theta \right|$$
$$= \int_{\theta=0}^{\theta=\arctan 2} \sqrt{1 + \tan^2 \theta} \ d\left(\frac{1}{2} \tan \theta\right)$$

$$\sqrt{1+\tan^2\theta} \, d\left(\frac{1}{2}\tan\theta\right)$$

$$= \int_{\theta=0}^{\theta=\arctan 2} \sec \theta \cdot \frac{1}{2} \sec^2 \theta d\theta = \frac{1}{2} \int_0^{\alpha} \sec^3 \theta \ d\theta \qquad \boxed{ Set \alpha = \arctan 2}$$

 $= \frac{1}{4} \left(\sec \alpha \tan \alpha + \ln |\sec \alpha + \tan \alpha| \right)$

Find the length of the arc of the parabola

$$y = x^2$$
 from $(0,0)$ to $(1,1)$.

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx \quad \left| \text{ Set } x = \frac{1}{2} \tan \theta \right|$$
$$= \int_{\theta=0}^{\theta=\arctan 2} \sqrt{1 + \tan^2 \theta} \ d\left(\frac{1}{2} \tan \theta\right)$$

$$= \int_{\substack{\theta = 0 \\ f\theta = \operatorname{arctan} 2}} \sqrt{1 + \tan^2 \theta} \ d\left(\frac{1}{2} \tan \theta\right)$$

$$= \int_{\theta=0}^{\theta=\arctan 2} \sec \theta \cdot \frac{1}{2} \sec^2 \theta d\theta = \frac{1}{2} \int_0^{\alpha} \sec^3 \theta \ d\theta$$
$$= \frac{1}{2} \cdot \left[\frac{1}{2} \left(\sec \theta \tan \theta + \ln |\sec \theta + \tan \theta| \right) \right]_{\theta=0}^{\theta=\alpha}$$

$$= \frac{1}{2} \cdot \left[\frac{1}{2} \left(\sec \theta \tan \theta + \ln |\sec \theta + \tan \theta| \right) \right]_{\theta=0}$$

$$= \frac{1}{4} \left(\sec \alpha \tan \alpha + \ln |\sec \alpha + \tan \alpha| \right)$$

$$=rac{7}{4}\left(?\cdot ? + \ln |? + ?|
ight)$$

Set $\alpha = \arctan 2$

$$= \int_{\theta=0}^{\theta=\arctan 2} \sec \theta \cdot \frac{1}{2} \sec^2 \theta d\theta = \frac{1}{2} \int_0^{\alpha} \sec^3 \theta \ d\theta$$
$$= \frac{1}{2} \cdot \left[\frac{1}{2} \left(\sec \theta \tan \theta + \ln |\sec \theta + \tan \theta| \right) \right]_{\theta=0}^{\theta=\alpha}$$

$$= \frac{1}{4} \left(\sec \alpha \tan \alpha + \ln |\sec \alpha + \tan \alpha| \right)$$

$$=\frac{7}{4}\begin{pmatrix}2\cdot? & +\ln|? & +2|\end{pmatrix}$$

Set $\alpha = \arctan 2$

$$= \int_{\theta=0}^{\theta=\arctan 2} \sqrt{1 + \tan^2 \theta} \, d\left(\frac{1}{2} \tan \theta\right)$$

$$= \int_{\theta=0}^{\theta=\arctan 2} \sec \theta \cdot \frac{1}{2} \sec^2 \theta d\theta = \frac{1}{2} \int_0^{\alpha} \sec^3 \theta \, d\theta$$

$$= \frac{1}{2} \cdot \left[\frac{1}{2} \left(\sec \theta \tan \theta + \ln |\sec \theta + \tan \theta| \right) \right]_{\theta=0}^{\theta=\alpha}$$

$$=\frac{1}{4}\left(\sec\alpha\tan\alpha+\ln|\sec\alpha+\tan\alpha|\right)$$

$$=rac{1}{4}\left(2\cdot ? + \ln|? + 2|
ight)$$

Set $\alpha = \arctan 2$

$$y = x^2$$
 from $(0,0)$ to $(1,1)$.

$$\begin{array}{ccc}
(1,1). & \sqrt{5} \\
= 2x & \frac{\alpha}{1}
\end{array}$$

$$L = \int_{x=0}^{x=1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{x=0}^{x=1} \sqrt{1 + 4x^2} dx$$
$$= \int_{\theta=0}^{\theta=\arctan 2} \sqrt{1 + \tan^2 \theta} dx \left(\frac{1}{2} \tan \theta\right)$$

$$\int \operatorname{Set} x = \frac{1}{2} \tan \theta$$

$$= \int_{\theta=0}^{\theta=\arctan 2} \sec \theta \cdot \frac{1}{2} \sec^2 \theta d\theta = \frac{1}{2} \int_0^{\alpha} \sec^3 \theta \ d\theta$$
$$= \frac{1}{2} \cdot \left[\frac{1}{2} (\sec \theta \tan \theta + \ln |\sec \theta + \tan \theta|) \right]_{\theta=0}^{\theta=\alpha}$$

$$\mathbf{Set}\ \alpha = \mathbf{arctan}\ \mathbf{2}$$

$$= \frac{1}{4} \left(\sec \alpha \tan \alpha + \ln |\sec \alpha + \tan \alpha| \right)$$

$$=\frac{1}{4}\left(2\cdot\sqrt{5}+\ln|\sqrt{5}+2|\right)$$

Arc Length 25/29

Example

$$\gamma: \begin{vmatrix} x(t) &=& \sqrt{t}-2t \\ y(t) &=& \frac{8}{3}t^{\frac{3}{4}} \end{vmatrix}, t \in [1,4]$$

$$\gamma: \begin{vmatrix} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{aligned}, t \in [1, 4] .$$

$$L(\gamma) = \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

Find the length of the curve γ .

$$\gamma: \left| \begin{array}{ccc} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{array} \right|, t \in [1, 4] .$$

We have that x'(t) = ? and y'(t) = ?

and
$$y'(t) =$$
?

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{(?)^{2} + (?)^{2}} dt$$

$$\gamma: \begin{vmatrix} x(t) &=& \sqrt{t} - 2t \\ y(t) &=& \frac{8}{3}t^{\frac{3}{4}} \end{vmatrix}, t \in [1,4]$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = ?$

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(?\right)^{2}} dt$$

$$\gamma: \begin{vmatrix} x(t) &=& \sqrt{t} - 2t \\ y(t) &=& \frac{8}{3}t^{\frac{3}{4}} \end{vmatrix}, t \in [1,4]$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = ?$

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(?\right)^{2}} dt$$

$$\gamma: \begin{vmatrix} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{aligned}, t \in [1, 4] .$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}}$

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(?\right)^{2}} dt$$

$$\gamma: \left| \begin{array}{ccc} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{array} \right|, t \in [1, 4] .$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(\frac{?}{2}\right)^{2}} dt$$

Arc Length 25/29

Example

$$\gamma: \left| \begin{array}{ccc} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{array} \right|, t \in [1, 4] .$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(\frac{2t^{-\frac{1}{4}}}{4}\right)^{2}} dt$$

$$\gamma: \begin{vmatrix} x(t) &=& \sqrt{t} - 2t \\ y(t) &=& \frac{8}{3}t^{\frac{3}{4}} \end{aligned}, t \in [1,4]$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(2t^{-\frac{1}{4}}\right)^{2}} dt$$
$$= \int_{1}^{4} \sqrt{?} dt$$

$$\gamma: \left| \begin{array}{ccc} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{array} \right|, t \in [1, 4] .$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(2t^{-\frac{1}{4}}\right)^{2}} dt$$
$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + ?} dt$$

Example

$$\gamma: \begin{vmatrix} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{aligned}, t \in [1, 4] .$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(\frac{2t^{-\frac{1}{4}}}{4}\right)^{2}} dt$$
$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + \frac{2}{3}} dt$$

Example

$$\gamma: \begin{vmatrix} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \\ \end{cases}, t \in [1, 4] .$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(\frac{2t^{-\frac{1}{4}}}{4}\right)^{2}} dt$$
$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + \frac{4}{\sqrt{t}}} dt$$

Example

$$\gamma: \left| \begin{array}{ccc} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{array} \right|, t \in [1, 4] .$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(2t^{-\frac{1}{4}}\right)^{2}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + \frac{4}{\sqrt{t}}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} + \frac{2}{\sqrt{t}} + 4} dt$$

Example

$$\gamma: \left| \begin{array}{ccc} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{array} \right|, t \in [1, 4] .$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(2t^{-\frac{1}{4}}\right)^{2}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + \frac{4}{\sqrt{t}}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} + \frac{2}{\sqrt{t}} + 4} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} + 2\right)^{2}} dt$$

Example

$$\gamma: \left| \begin{array}{ccc} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{array} \right|, t \in [1, 4]$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(2t^{-\frac{1}{4}}\right)^{2}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + \frac{4}{\sqrt{t}}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} + \frac{2}{\sqrt{t}} + 4} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} + 2\right)^{2}} dt$$

$$= \int_{1}^{4} \left|\frac{1}{2\sqrt{t}} + 2\right| dt$$

Example

$$\gamma: \left| \begin{array}{ccc} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{array} \right|, t \in [1, 4]$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(2t^{-\frac{1}{4}}\right)^{2}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + \frac{4}{\sqrt{t}}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} + \frac{2}{\sqrt{t}} + 4} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} + 2\right)^{2}} dt$$

$$= \int_{1}^{4} \left(\frac{1}{2\sqrt{t}} + 2\right) dt$$

Example

$$\gamma: \begin{vmatrix} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{aligned}, t \in [1, 4] .$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(2t^{-\frac{1}{4}}\right)^{2}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + \frac{4}{\sqrt{t}}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} + \frac{2}{\sqrt{t}} + 4} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} + 2\right)^{2}} dt$$

$$= \int_{1}^{4} \left(\frac{1}{2\sqrt{t}} + 2\right) dt = \begin{bmatrix} ? & + \end{bmatrix}_{1}^{4}$$

Example

$$\gamma: \left| \begin{array}{ccc} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{array} \right|, t \in [1, 4]$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(2t^{-\frac{1}{4}}\right)^{2}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + \frac{4}{\sqrt{t}}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} + \frac{2}{\sqrt{t}} + 4} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} + 2\right)^{2}} dt$$

$$= \int_{1}^{4} \left(\frac{1}{2\sqrt{t}} + 2\right) dt = \left[\sqrt{t} + 1\right]_{1}^{4}$$

Example

$$\gamma: \left| \begin{array}{ccc} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{array} \right|, t \in [1, 4]$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(2t^{-\frac{1}{4}}\right)^{2}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + \frac{4}{\sqrt{t}}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} + \frac{2}{\sqrt{t}} + 4} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} + 2\right)^{2}} dt$$

$$= \int_{1}^{4} \left(\frac{1}{2\sqrt{t}} + 2\right) dt = \left[\sqrt{t} + \frac{2}{2}\right]_{1}^{4}$$

Example

$$\gamma: \begin{vmatrix} x(t) &=& \sqrt{t}-2t \\ y(t) &=& \frac{8}{3}t^{\frac{3}{4}} \end{vmatrix}, t \in [1,4]$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(2t^{-\frac{1}{4}}\right)^{2}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + \frac{4}{\sqrt{t}}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} + \frac{2}{\sqrt{t}} + 4} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} + 2\right)^{2}} dt$$

$$= \int_{1}^{4} \left(\frac{1}{2\sqrt{t}} + 2\right) dt = \left[\sqrt{t} + 2t\right]_{1}^{4}$$

Example

$$\gamma: \left| \begin{array}{ccc} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{array} \right|, t \in [1, 4]$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(2t^{-\frac{1}{4}}\right)^{2}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + \frac{4}{\sqrt{t}}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} + \frac{2}{\sqrt{t}} + 4} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} + 2\right)^{2}} dt$$

$$= \int_{1}^{4} \left(\frac{1}{2\sqrt{t}} + 2\right) dt = \left[\sqrt{t} + 2t\right]_{1}^{4} = \sqrt{4} + 2 \cdot 4 - \left(\sqrt{1} + 2 \cdot 1\right)$$

Example

$$\gamma: \begin{vmatrix} x(t) &=& \sqrt{t}-2t \\ y(t) &=& \frac{8}{3}t^{\frac{3}{4}} \end{vmatrix}, t \in [1,4]$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(2t^{-\frac{1}{4}}\right)^{2}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + \frac{4}{\sqrt{t}}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} + \frac{2}{\sqrt{t}} + 4} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} + 2\right)^{2}} dt$$

$$= \int_{1}^{4} \left(\frac{1}{2\sqrt{t}} + 2\right) dt = \left[\sqrt{t} + 2t\right]_{1}^{4} = \sqrt{4} + 2 \cdot 4 - \left(\sqrt{1} + 2 \cdot 1\right)$$

Example

$$\gamma: \begin{vmatrix} x(t) & = & \sqrt{t} - 2t \\ y(t) & = & \frac{8}{3}t^{\frac{3}{4}} \end{aligned}, t \in [1, 4] .$$

We have that
$$x'(t) = \frac{1}{2\sqrt{t}} - 2$$
 and $y'(t) = \frac{8}{3} \cdot \frac{3}{4}t^{-\frac{1}{4}} = 2t^{-\frac{1}{4}}$.

$$L(\gamma) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} - 2\right)^{2} + \left(2t^{-\frac{1}{4}}\right)^{2}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} - \frac{2}{\sqrt{t}} + 4 + \frac{4}{\sqrt{t}}} dt$$

$$= \int_{1}^{4} \sqrt{\frac{1}{4t} + \frac{2}{\sqrt{t}} + 4} dt = \int_{1}^{4} \sqrt{\left(\frac{1}{2\sqrt{t}} + 2\right)^{2}} dt$$

$$= \int_{1}^{4} \left(\frac{1}{2\sqrt{t}} + 2\right) dt = \left[\sqrt{t} + 2t\right]_{1}^{4} = \sqrt{4} + 2 \cdot 4 - \left(\sqrt{1} + 2 \cdot 1\right) = 7.$$

Example $((a+b)^2, (a-b)^2, 2ab = 1/2)$

$$y' =$$

Example $((a+b)^2, (a-b)^2, 2ab = 1/2)$

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$

Example $((a+b)^2, (a-b)^2, 2ab = 1/2)$

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$
$$(y')^2 = \frac{1}{4}e^{6x} - \frac{1}{4}e^{3x}e^{-3x} - \frac{1}{4}e^{3x}e^{-3x} + \frac{1}{4}e^{-6x}$$

Example $((a+b)^2, (a-b)^2, 2ab = 1/2)$

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$
$$(y')^2 = \frac{1}{4}e^{6x} - \frac{1}{4}e^{3x}e^{-3x} - \frac{1}{4}e^{3x}e^{-3x} + \frac{1}{4}e^{-6x}$$

Example $((a+b)^2, (a-b)^2, 2ab = 1/2)$

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$

$$(y')^2 = \frac{1}{4}e^{6x} - \frac{1}{4}e^{3x}e^{-3x} - \frac{1}{4}e^{3x}e^{-3x} + \frac{1}{4}e^{-6x}$$

$$= \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}.$$

Example $((a+b)^2, (a-b)^2, 2ab = 1/2)$

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$

$$(y')^2 = \frac{1}{4}e^{6x} - \frac{1}{4}e^{3x}e^{-3x} - \frac{1}{4}e^{3x}e^{-3x} + \frac{1}{4}e^{-6x}$$

$$= \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}.$$

$$L = \int_0^1 \sqrt{1 + (y')^2} dx$$

Example $((a+b)^2, (a-b)^2, 2ab = 1/2)$

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$

$$(y')^2 = \frac{1}{4}e^{6x} - \frac{1}{4}e^{3x}e^{-3x} - \frac{1}{4}e^{3x}e^{-3x} + \frac{1}{4}e^{-6x}$$

$$= \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}.$$

$$L = \int_0^1 \sqrt{1 + (y')^2} dx = \int_0^1 \sqrt{1 + \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}} dx$$

Example $((a+b)^2, (a-b)^2, 2ab = 1/2)$

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$

$$(y')^2 = \frac{1}{4}e^{6x} - \frac{1}{4}e^{3x}e^{-3x} - \frac{1}{4}e^{3x}e^{-3x} + \frac{1}{4}e^{-6x}$$

$$= \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}.$$

$$L = \int_0^1 \sqrt{1 + (y')^2} dx = \int_0^1 \sqrt{1 + \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}} dx$$

$$= \int_0^1 \sqrt{\frac{1}{4}e^{6x} + \frac{1}{2} + \frac{1}{4}e^{-6x}} dx$$

Example $((a+b)^2, (a-b)^2, 2ab = 1/2)$

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$

$$(y')^2 = \frac{1}{4}e^{6x} - \frac{1}{4}e^{3x}e^{-3x} - \frac{1}{4}e^{3x}e^{-3x} + \frac{1}{4}e^{-6x}$$

$$= \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}.$$

$$L = \int_0^1 \sqrt{1 + (y')^2} dx = \int_0^1 \sqrt{1 + \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}} dx$$

$$= \int_0^1 \sqrt{\frac{1}{4}e^{6x} + \frac{1}{2} + \frac{1}{4}e^{-6x}} dx = \int_0^1 \sqrt{\left(\frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x}\right)^2} dx$$

Example $((a+b)^2, (a-b)^2, 2ab = 1/2)$

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$

$$(y')^2 = \frac{1}{4}e^{6x} - \frac{1}{4}e^{3x}e^{-3x} - \frac{1}{4}e^{3x}e^{-3x} + \frac{1}{4}e^{-6x}$$

$$= \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}.$$

$$L = \int_0^1 \sqrt{1 + (y')^2} dx = \int_0^1 \sqrt{1 + \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}} dx$$

$$= \int_0^1 \sqrt{\frac{1}{4}e^{6x} + \frac{1}{2} + \frac{1}{4}e^{-6x}} dx = \int_0^1 \sqrt{\left(\frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x}\right)^2} dx$$

$$= \int_0^1 \left(\frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x}\right) dx$$

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$

$$(y')^2 = \frac{1}{4}e^{6x} - \frac{1}{4}e^{3x}e^{-3x} - \frac{1}{4}e^{3x}e^{-3x} + \frac{1}{4}e^{-6x}$$

$$= \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}.$$

$$L = \int_0^1 \sqrt{1 + (y')^2} dx = \int_0^1 \sqrt{1 + \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}} dx$$

$$= \int_0^1 \sqrt{\frac{1}{4}e^{6x} + \frac{1}{2} + \frac{1}{4}e^{-6x}} dx = \int_0^1 \sqrt{\left(\frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x}\right)^2} dx$$

$$= \int_0^1 \left(\frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x}\right) dx = \left[\frac{1}{6}e^{3x}\right]_0^1$$

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$

$$(y')^2 = \frac{1}{4}e^{6x} - \frac{1}{4}e^{3x}e^{-3x} - \frac{1}{4}e^{3x}e^{-3x} + \frac{1}{4}e^{-6x}$$

$$= \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}.$$

$$L = \int_0^1 \sqrt{1 + (y')^2} dx = \int_0^1 \sqrt{1 + \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}} dx$$

$$= \int_0^1 \sqrt{\frac{1}{4}e^{6x} + \frac{1}{2} + \frac{1}{4}e^{-6x}} dx = \int_0^1 \sqrt{\left(\frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x}\right)^2} dx$$

$$= \int_0^1 \left(\frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x}\right) dx = \left[\frac{1}{6}e^{3x}\right]_0^1$$

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$

$$(y')^2 = \frac{1}{4}e^{6x} - \frac{1}{4}e^{3x}e^{-3x} - \frac{1}{4}e^{3x}e^{-3x} + \frac{1}{4}e^{-6x}$$

$$= \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}.$$

$$L = \int_0^1 \sqrt{1 + (y')^2} dx = \int_0^1 \sqrt{1 + \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}} dx$$

$$= \int_0^1 \sqrt{\frac{1}{4}e^{6x} + \frac{1}{2} + \frac{1}{4}e^{-6x}} dx = \int_0^1 \sqrt{\left(\frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x}\right)^2} dx$$

$$= \int_0^1 \left(\frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x}\right) dx = \left[\frac{1}{6}e^{3x} - \frac{1}{6}e^{-3x}\right]_0^1$$

$$y' = \frac{1}{2}e^{3x} - \frac{1}{2}e^{-3x}.$$

$$(y')^2 = \frac{1}{4}e^{6x} - \frac{1}{4}e^{3x}e^{-3x} - \frac{1}{4}e^{3x}e^{-3x} + \frac{1}{4}e^{-6x}$$

$$= \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}.$$

$$L = \int_0^1 \sqrt{1 + (y')^2} dx = \int_0^1 \sqrt{1 + \frac{1}{4}e^{6x} - \frac{1}{2} + \frac{1}{4}e^{-6x}} dx$$

$$= \int_0^1 \sqrt{\frac{1}{4}e^{6x} + \frac{1}{2} + \frac{1}{4}e^{-6x}} dx = \int_0^1 \sqrt{\left(\frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x}\right)^2} dx$$

$$= \int_0^1 \left(\frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x}\right) dx = \left[\frac{1}{6}e^{3x} - \frac{1}{6}e^{-3x}\right]_0^1 = \frac{e^3 - e^{-3}}{6}.$$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 \le \theta \le 2\pi$.

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta$$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 < \theta < 2\pi$.

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(y^2 + (y^2)^2)^2} d\theta$$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 < \theta < 2\pi$.

$$L = \int_0^{2\pi} \sqrt{\left(\frac{\mathsf{d}x}{\mathsf{d}\theta}\right)^2 + \left(\frac{\mathsf{d}y}{\mathsf{d}\theta}\right)^2} \mathsf{d}\theta = \int_0^{2\pi} \sqrt{(r(1-\cos\theta))^2 + (\cdots)^2} \mathsf{d}\theta$$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 < \theta < 2\pi$.

$$L = \int_0^{2\pi} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta = \int_0^{2\pi} \sqrt{(r(1-\cos\theta))^2 + (\frac{\cos\theta}{\mathrm{d}\theta})^2} \mathrm{d}\theta$$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 \le \theta \le 2\pi$.

$$L = \int_0^{2\pi} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta = \int_0^{2\pi} \sqrt{(r(1-\cos\theta))^2 + (r\sin\theta)^2} \mathrm{d}\theta$$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 \le \theta \le 2\pi$.

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(r(1-\cos\theta))^2 + (r\sin\theta)^2} d\theta$$
$$= \int_0^{2\pi} \sqrt{r^2(1-2\cos\theta + \cos^2\theta + \sin^2\theta)} d\theta$$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 \le \theta \le 2\pi$.

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(r(1-\cos\theta))^2 + (r\sin\theta)^2} d\theta$$
$$= \int_0^{2\pi} \sqrt{r^2(1-2\cos\theta + \cos^2\theta + \sin^2\theta)} d\theta = r \int_0^{2\pi} \sqrt{2(1-\cos\theta)} d\theta$$

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 < \theta < 2\pi$.

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(r(1-\cos\theta))^2 + (r\sin\theta)^2} d\theta$$
$$= \int_0^{2\pi} \sqrt{r^2(1-2\cos\theta + \cos^2\theta + \sin^2\theta)} d\theta = r \int_0^{2\pi} \sqrt{2(1-\cos\theta)} d\theta$$

Use the identity $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$.

$$\sqrt{2(1-\cos\theta)}$$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 \le \theta \le 2\pi$.

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(r(1-\cos\theta))^2 + (r\sin\theta)^2} d\theta$$
$$= \int_0^{2\pi} \sqrt{r^2(1-2\cos\theta + \cos^2\theta + \sin^2\theta)} d\theta = r \int_0^{2\pi} \sqrt{2(1-\cos\theta)} d\theta$$

Use the identity
$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$
. Then $\sqrt{2(1 - \cos \theta)} = \sqrt{4\sin^2(\theta/2)}$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 < \theta < 2\pi$.

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(r(1-\cos\theta))^2 + (r\sin\theta)^2} d\theta$$
$$= \int_0^{2\pi} \sqrt{r^2(1-2\cos\theta + \cos^2\theta + \sin^2\theta)} d\theta = r \int_0^{2\pi} \sqrt{2(1-\cos\theta)} d\theta$$

Use the identity
$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$
. Then
$$\sqrt{2(1 - \cos \theta)} = \sqrt{4\sin^2(\theta/2)} = 2|\sin(\theta/2)|$$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 \le \theta \le 2\pi$.

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(r(1-\cos\theta))^2 + (r\sin\theta)^2} d\theta$$
$$= \int_0^{2\pi} \sqrt{r^2(1-2\cos\theta + \cos^2\theta + \sin^2\theta)} d\theta = r \int_0^{2\pi} \sqrt{2(1-\cos\theta)} d\theta$$

Use the identity
$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$
. Then $\sqrt{2(1 - \cos \theta)} = \sqrt{4\sin^2(\theta/2)} = 2|\sin(\theta/2)| = 2\sin(\theta/2)$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 \le \theta \le 2\pi$.

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(r(1-\cos\theta))^2 + (r\sin\theta)^2} d\theta$$
$$= \int_0^{2\pi} \sqrt{r^2(1-2\cos\theta + \cos^2\theta + \sin^2\theta)} d\theta = r \int_0^{2\pi} \sqrt{2(1-\cos\theta)} d\theta$$

Use the identity $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$. Then $\sqrt{2(1 - \cos \theta)} = \sqrt{4\sin^2(\theta/2)} = 2|\sin(\theta/2)| = 2\sin(\theta/2)$

$$L = r \int_0^{2\pi} 2\sin(\theta/2) d\theta$$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 \le \theta \le 2\pi$.

$$\begin{split} L &= \int_0^{2\pi} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta = \int_0^{2\pi} \sqrt{(r(1-\cos\theta))^2 + (r\sin\theta)^2} \mathrm{d}\theta \\ &= \int_0^{2\pi} \sqrt{r^2(1-2\cos\theta + \cos^2\theta + \sin^2\theta)} \mathrm{d}\theta = r \int_0^{2\pi} \sqrt{2(1-\cos\theta)} \mathrm{d}\theta \end{split}$$

Use the identity
$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$
. Then
$$\sqrt{2(1 - \cos \theta)} = \sqrt{4\sin^2(\theta/2)} = 2|\sin(\theta/2)| = 2\sin(\theta/2)$$
$$L = r \int_0^{2\pi} 2\sin(\theta/2) d\theta = r \left[-4\cos(\theta/2) \right]_0^{2\pi}$$

Example

Find the length of one arch of the cycloid

$$x = r(\theta - \sin \theta), \quad y = r(1 - \cos \theta).$$

The first arch is $0 \le \theta \le 2\pi$.

$$\begin{split} L &= \int_0^{2\pi} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta = \int_0^{2\pi} \sqrt{(r(1-\cos\theta))^2 + (r\sin\theta)^2} \mathrm{d}\theta \\ &= \int_0^{2\pi} \sqrt{r^2(1-2\cos\theta + \cos^2\theta + \sin^2\theta)} \mathrm{d}\theta = r \int_0^{2\pi} \sqrt{2(1-\cos\theta)} \mathrm{d}\theta \end{split}$$

Use the identity $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$. Then $\sqrt{2(1 - \cos \theta)} = \sqrt{4\sin^2(\theta/2)} = 2|\sin(\theta/2)| = 2\sin(\theta/2)$

$$L = r \int_0^{2\pi} 2\sin(\theta/2) d\theta = r \left[-4\cos(\theta/2) \right]_0^{2\pi} = 8r$$

To find the arc length of a polar curve $r = f(\theta)$, $a \le \theta \le b$, regard θ as a parameter.

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

To find the arc length of a polar curve $r = f(\theta)$, $a \le \theta \le b$, regard θ as a parameter. Then the derivatives of the parametric equations are

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

To find the arc length of a polar curve $r = f(\theta)$, $a \le \theta \le b$, regard θ as a parameter. Then the derivatives of the parametric equations are

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

and

$$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2 \quad = \quad$$

+

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

To find the arc length of a polar curve $r = f(\theta)$, $a \le \theta \le b$, regard θ as a parameter. Then the derivatives of the parametric equations are

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

and

$$\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = \left(\frac{dr}{d\theta}\right)^2 \cos^2\theta - 2r\frac{dr}{d\theta}\cos\theta\sin\theta + r^2\sin^2\theta$$

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

To find the arc length of a polar curve $r = f(\theta)$, $a \le \theta \le b$, regard θ as a parameter. Then the derivatives of the parametric equations are

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

and

$$\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2} = \left(\frac{dr}{d\theta}\right)^{2} \cos^{2}\theta - 2r\frac{dr}{d\theta}\cos\theta\sin\theta + r^{2}\sin^{2}\theta + \left(\frac{dr}{d\theta}\right)^{2}\sin^{2}\theta + 2r\frac{dr}{d\theta}\sin\theta\cos\theta + r^{2}\cos^{2}\theta$$

The arc length is

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

28/29

To find the arc length of a polar curve $r = f(\theta)$, $a \le \theta \le b$, regard θ as a parameter. Then the derivatives of the parametric equations are

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

and

$$\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = \left(\frac{dr}{d\theta}\right)^2 \cos^2\theta - 2r\frac{dr}{d\theta}\cos\theta\sin\theta + r^2\sin^2\theta + \left(\frac{dr}{d\theta}\right)^2\sin^2\theta + 2r\frac{dr}{d\theta}\sin\theta\cos\theta + r^2\cos^2\theta$$

Ξ

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

To find the arc length of a polar curve $r = f(\theta)$, $a \le \theta \le b$, regard θ as a parameter. Then the derivatives of the parametric equations are

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

and

$$\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2} = \left(\frac{dr}{d\theta}\right)^{2} \cos^{2}\theta - 2r\frac{dr}{d\theta}\cos\theta\sin\theta + r^{2}\sin^{2}\theta + \left(\frac{dr}{d\theta}\right)^{2}\sin^{2}\theta + 2r\frac{dr}{d\theta}\sin\theta\cos\theta + r^{2}\cos^{2}\theta + \left(\frac{dr}{d\theta}\right)^{2}\right)^{2}$$

$$= \left(\frac{dr}{d\theta}\right)^{2}$$

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

28/29

Arc Length

To find the arc length of a polar curve $r = f(\theta)$, $a \le \theta \le b$, regard θ as a parameter. Then the derivatives of the parametric equations are

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

and

$$\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2} = \left(\frac{dr}{d\theta}\right)^{2} \cos^{2}\theta - 2r\frac{dr}{d\theta}\cos\theta\sin\theta + r^{2}\sin^{2}\theta + \left(\frac{dr}{d\theta}\right)^{2}\sin^{2}\theta + 2r\frac{dr}{d\theta}\sin\theta\cos\theta + r^{2}\cos^{2}\theta + \left(\frac{dr}{d\theta}\right)^{2}$$

$$= \left(\frac{dr}{d\theta}\right)^{2}$$

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

To find the arc length of a polar curve $r = f(\theta)$, $a \le \theta \le b$, regard θ as a parameter. Then the derivatives of the parametric equations are

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

and

$$\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2} = \left(\frac{dr}{d\theta}\right)^{2} \cos^{2}\theta - 2r\frac{dr}{d\theta}\cos\theta\sin\theta + r^{2}\sin^{2}\theta + \left(\frac{dr}{d\theta}\right)^{2}\sin^{2}\theta + 2r\frac{dr}{d\theta}\sin\theta\cos\theta + r^{2}\cos^{2}\theta + \left(\frac{dr}{d\theta}\right)^{2}\sin^{2}\theta + \left(\frac{dr}{d\theta}\right)^{2}\right)$$

$$= \left(\frac{dr}{d\theta}\right)^{2} + \left(\frac{dr}{d\theta}\right)^$$

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

To find the arc length of a polar curve $r = f(\theta)$, $a \le \theta \le b$, regard θ as a parameter. Then the derivatives of the parametric equations are

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

and

$$\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2} = \left(\frac{dr}{d\theta}\right)^{2} \cos^{2}\theta - 2r\frac{dr}{d\theta}\cos\theta\sin\theta + r^{2}\sin^{2}\theta
+ \left(\frac{dr}{d\theta}\right)^{2}\sin^{2}\theta + 2r\frac{dr}{d\theta}\sin\theta\cos\theta + r^{2}\cos^{2}\theta
= \left(\frac{dr}{d\theta}\right)^{2} + r^{2}$$

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

To find the arc length of a polar curve $r = f(\theta)$, $a \le \theta \le b$, regard θ as a parameter. Then the derivatives of the parametric equations are

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

and

$$\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2} = \left(\frac{dr}{d\theta}\right)^{2} \cos^{2}\theta - 2r\frac{dr}{d\theta}\cos\theta\sin\theta + r^{2}\sin^{2}\theta + \left(\frac{dr}{d\theta}\right)^{2}\sin^{2}\theta + 2r\frac{dr}{d\theta}\sin\theta\cos\theta + r^{2}\cos^{2}\theta + \left(\frac{dr}{d\theta}\right)^{2} + r^{2}$$

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta = \int_{a}^{b} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta$$

Find the length of the cardioid $r = 1 + \sin \theta$.

$$L = \int_0^{2\pi} \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta$$

$$L = \int_0^{2\pi} \sqrt{\frac{r^2}{d\theta}} + \left(\frac{dr}{d\theta}\right)^2 d\theta = \int_0^{2\pi} \sqrt{\frac{r^2}{d\theta}} + \frac{d\theta}{d\theta}$$

$$L = \int_0^{2\pi} \sqrt{\frac{r^2}{d\theta}} + \left(\frac{dr}{d\theta}\right)^2 d\theta = \int_0^{2\pi} \sqrt{\frac{(1 + \sin \theta)^2}{d\theta}} d\theta$$

$$L = \int_0^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(1 + \sin \theta)^2 + d\theta} d\theta$$

$$L = \int_0^{2\pi} \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta = \int_0^{2\pi} \sqrt{(1 + \sin\theta)^2 + \cos^2\theta} \mathrm{d}\theta$$

$$L = \int_0^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(1 + \sin \theta)^2 + \cos^2 \theta} d\theta$$
$$= \int_0^{2\pi} \sqrt{2 + 2\sin \theta} d\theta$$

$$L = \int_0^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(1 + \sin \theta)^2 + \cos^2 \theta} d\theta$$
$$= \int_0^{2\pi} \sqrt{2 + 2\sin \theta} \frac{\sqrt{2 - 2\sin \theta}}{\sqrt{2 - 2\sin \theta}} d\theta$$

$$L = \int_0^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(1 + \sin\theta)^2 + \cos^2\theta} d\theta$$
$$= \int_0^{2\pi} \sqrt{2 + 2\sin\theta} \frac{\sqrt{2 - 2\sin\theta}}{\sqrt{2 - 2\sin\theta}} d\theta = \int_0^{2\pi} \frac{\sqrt{4 - 4\sin^2\theta}}{\sqrt{2 - 2\sin\theta}} d\theta$$

$$\begin{split} L &= \int_0^{2\pi} \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta = \int_0^{2\pi} \sqrt{(1+\sin\theta)^2 + \cos^2\theta} \mathrm{d}\theta \\ &= \int_0^{2\pi} \sqrt{2+2\sin\theta} \frac{\sqrt{2-2\sin\theta}}{\sqrt{2-2\sin\theta}} \mathrm{d}\theta = \int_0^{2\pi} \frac{\sqrt{4-4\sin^2\theta}}{\sqrt{2-2\sin\theta}} \mathrm{d}\theta \\ &= \int_0^{2\pi} \frac{\sqrt{4\cos^2\theta}}{\sqrt{2-2\sin\theta}} \mathrm{d}\theta \end{split}$$

$$\begin{split} L &= \int_0^{2\pi} \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta = \int_0^{2\pi} \sqrt{(1+\sin\theta)^2 + \cos^2\theta} \mathrm{d}\theta \\ &= \int_0^{2\pi} \sqrt{2 + 2\sin\theta} \frac{\sqrt{2 - 2\sin\theta}}{\sqrt{2 - 2\sin\theta}} \mathrm{d}\theta = \int_0^{2\pi} \frac{\sqrt{4 - 4\sin^2\theta}}{\sqrt{2 - 2\sin\theta}} \mathrm{d}\theta \\ &= \int_0^{2\pi} \frac{\sqrt{4\cos^2\theta}}{\sqrt{2 - 2\sin\theta}} \mathrm{d}\theta = \int_0^{2\pi} \frac{2|\cos\theta|}{\sqrt{2 - 2\sin\theta}} \mathrm{d}\theta \end{split}$$

$$\begin{split} L &= \int_0^{2\pi} \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \mathrm{d}\theta = \int_0^{2\pi} \sqrt{(1+\sin\theta)^2 + \cos^2\theta} \mathrm{d}\theta \\ &= \int_0^{2\pi} \sqrt{2 + 2\sin\theta} \frac{\sqrt{2 - 2\sin\theta}}{\sqrt{2 - 2\sin\theta}} \mathrm{d}\theta = \int_0^{2\pi} \frac{\sqrt{4 - 4\sin^2\theta}}{\sqrt{2 - 2\sin\theta}} \mathrm{d}\theta \\ &= \int_0^{2\pi} \frac{\sqrt{4\cos^2\theta}}{\sqrt{2 - 2\sin\theta}} \mathrm{d}\theta = \int_0^{2\pi} \frac{2|\cos\theta|}{\sqrt{2 - 2\sin\theta}} \mathrm{d}\theta \\ &= \int_0^{\pi/2} \frac{2\cos\theta}{\sqrt{2 - 2\sin\theta}} \mathrm{d}\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos\theta}{\sqrt{2 - 2\sin\theta}} \mathrm{d}\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos\theta}{\sqrt{2 - 2\sin\theta}} \mathrm{d}\theta \end{split}$$

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \, \mathrm{d}\theta = \int_{0}^{2\pi} \sqrt{(1+\sin\theta)^2 + \cos^2\theta} \, \mathrm{d}\theta \\ &= \int_{0}^{2\pi} \sqrt{2+2\sin\theta} \frac{\sqrt{2-2\sin\theta}}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta = \int_{0}^{2\pi} \frac{\sqrt{4-4\sin^2\theta}}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2\theta}}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta = \int_{0}^{2\pi} \frac{2|\cos\theta|}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos\theta}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos\theta}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos\theta}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta \\ &= \left[-2\sqrt{2-2\sin\theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2-2\sin\theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2-2\sin\theta} \right]_{3\pi/2}^{2\pi} \end{split}$$

Find the length of the cardioid $r = 1 + \sin \theta$. The full length is given by $0 \le \theta \le 2\pi$.

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{0}^{2\pi} \sqrt{(1 + \sin \theta)^2 + \cos^2 \theta} d\theta \\ &= \int_{0}^{2\pi} \sqrt{2 + 2\sin \theta} \frac{\sqrt{2 - 2\sin \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{\sqrt{4 - 4\sin^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{2|\cos \theta|}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \left[-2\sqrt{2 - 2\sin \theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2 - 2\sin \theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2 - 2\sin \theta} \right]_{3\pi/2}^{2\pi} \\ &= -2\left(- \right) + 2\left(- \right) - 2\left(- \right) \end{split}$$

Find the length of the cardioid $r = 1 + \sin \theta$. The full length is given by $0 \le \theta \le 2\pi$.

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{0}^{2\pi} \sqrt{(1 + \sin \theta)^2 + \cos^2 \theta} d\theta \\ &= \int_{0}^{2\pi} \sqrt{2 + 2\sin \theta} \frac{\sqrt{2 - 2\sin \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{\sqrt{4 - 4\sin^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{2|\cos \theta|}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \left[-2\sqrt{2 - 2\sin \theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2 - 2\sin \theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2 - 2\sin \theta} \right]_{3\pi/2}^{2\pi} \\ &= -2\left(0 - \frac{\pi}{2}\right) + 2\left(1 - \frac{\pi}{2}\right) - 2\left(1 - \frac{\pi}{2}\right) \end{split}$$

Todor Milev

Tangents and curve length

Find the length of the cardioid $r = 1 + \sin \theta$. The full length is given by $0 \le \theta \le 2\pi$.

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{0}^{2\pi} \sqrt{(1 + \sin \theta)^2 + \cos^2 \theta} d\theta \\ &= \int_{0}^{2\pi} \sqrt{2 + 2\sin \theta} \frac{\sqrt{2 - 2\sin \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{\sqrt{4 - 4\sin^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{2|\cos \theta|}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \left[-2\sqrt{2 - 2\sin \theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2 - 2\sin \theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2 - 2\sin \theta} \right]_{3\pi/2}^{2\pi} \\ &= -2\left(0 - \frac{\pi}{2}\right) + 2\left(1 - \frac{\pi}{2}\right) - 2\left(1 - \frac{\pi}{2}\right) \end{split}$$

Todor Milev

Tangents and curve length

Find the length of the cardioid $r = 1 + \sin \theta$. The full length is given by $0 \le \theta \le 2\pi$.

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{0}^{2\pi} \sqrt{(1 + \sin \theta)^2 + \cos^2 \theta} d\theta \\ &= \int_{0}^{2\pi} \sqrt{2 + 2\sin \theta} \frac{\sqrt{2 - 2\sin \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{\sqrt{4 - 4\sin^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{2|\cos \theta|}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \left[-2\sqrt{2 - 2\sin \theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2 - 2\sin \theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2 - 2\sin \theta} \right]_{3\pi/2}^{2\pi} \\ &= -2\left(0 - \sqrt{2}\right) + 2\left(-\right) - 2\left(-\right) \end{split}$$

Find the length of the cardioid $r = 1 + \sin \theta$. The full length is given by $0 \le \theta \le 2\pi$.

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{0}^{2\pi} \sqrt{(1 + \sin \theta)^2 + \cos^2 \theta} d\theta \\ &= \int_{0}^{2\pi} \sqrt{2 + 2\sin \theta} \frac{\sqrt{2 - 2\sin \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{\sqrt{4 - 4\sin^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{2|\cos \theta|}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \left[-2\sqrt{2 - 2\sin \theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2 - 2\sin \theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2 - 2\sin \theta} \right]_{3\pi/2}^{2\pi} \\ &= -2\left(0 - \sqrt{2}\right) + 2\left(-\right) - 2\left(-\right) \end{split}$$

Find the length of the cardioid $r = 1 + \sin \theta$. The full length is given by $0 \le \theta \le 2\pi$.

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{0}^{2\pi} \sqrt{(1 + \sin \theta)^2 + \cos^2 \theta} d\theta \\ &= \int_{0}^{2\pi} \sqrt{2 + 2\sin \theta} \frac{\sqrt{2 - 2\sin \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{\sqrt{4 - 4\sin^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{2|\cos \theta|}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \left[-2\sqrt{2 - 2\sin \theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2 - 2\sin \theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2 - 2\sin \theta} \right]_{3\pi/2}^{2\pi} \\ &= -2\left(0 - \sqrt{2}\right) + 2\left(2 - \frac{1}{2}\right) - 2\left(1 - \frac{1}{2}\right) \end{split}$$

Find the length of the cardioid $r=1+\sin\theta$. The full length is given by $0\leq\theta\leq2\pi$.

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \, \mathrm{d}\theta = \int_{0}^{2\pi} \sqrt{(1+\sin\theta)^2 + \cos^2\theta} \, \mathrm{d}\theta \\ &= \int_{0}^{2\pi} \sqrt{2+2\sin\theta} \frac{\sqrt{2-2\sin\theta}}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta = \int_{0}^{2\pi} \frac{\sqrt{4-4\sin^2\theta}}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2\theta}}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta = \int_{0}^{2\pi} \frac{2|\cos\theta|}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos\theta}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos\theta}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos\theta}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta \\ &= \left[-2\sqrt{2-2\sin\theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2-2\sin\theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2-2\sin\theta} \right]_{3\pi/2}^{2\pi} \\ &= -2\left(0 - \sqrt{2} \right) + 2\left(2 - \right) - 2\left(- \right) \end{split}$$

Find the length of the cardioid $r=1+\sin\theta$. The full length is given by $0\leq\theta\leq2\pi$.

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \, \mathrm{d}\theta = \int_{0}^{2\pi} \sqrt{(1+\sin\theta)^2 + \cos^2\theta} \, \mathrm{d}\theta \\ &= \int_{0}^{2\pi} \sqrt{2+2\sin\theta} \frac{\sqrt{2-2\sin\theta}}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta = \int_{0}^{2\pi} \frac{\sqrt{4-4\sin^2\theta}}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2\theta}}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta = \int_{0}^{2\pi} \frac{2|\cos\theta|}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos\theta}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos\theta}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos\theta}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta \\ &= \left[-2\sqrt{2-2\sin\theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2-2\sin\theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2-2\sin\theta} \right]_{3\pi/2}^{2\pi} \\ &= -2\left(0 - \sqrt{2} \right) + 2\left(2 - 0 \right) - 2\left(- \right) \end{split}$$

Find the length of the cardioid $r = 1 + \sin \theta$. The full length is given by $0 \le \theta \le 2\pi$.

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{0}^{2\pi} \sqrt{(1 + \sin \theta)^2 + \cos^2 \theta} d\theta \\ &= \int_{0}^{2\pi} \sqrt{2 + 2\sin \theta} \frac{\sqrt{2 - 2\sin \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{\sqrt{4 - 4\sin^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2 \theta}}{\sqrt{2 - 2\sin \theta}} d\theta = \int_{0}^{2\pi} \frac{2|\cos \theta|}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos \theta}{\sqrt{2 - 2\sin \theta}} d\theta \\ &= \left[-2\sqrt{2 - 2\sin \theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2 - 2\sin \theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2 - 2\sin \theta} \right]_{3\pi/2}^{2\pi} \\ &= -2\left(0 - \sqrt{2}\right) + 2(2 - 0) - 2\left(-\frac{1}{2}\right) \end{split}$$

Find the length of the cardioid $r = 1 + \sin \theta$. The full length is given by $0 \le \theta \le 2\pi$.

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{0}^{2\pi} \sqrt{(1 + \sin\theta)^2 + \cos^2\theta} d\theta \\ &= \int_{0}^{2\pi} \sqrt{2 + 2\sin\theta} \frac{\sqrt{2 - 2\sin\theta}}{\sqrt{2 - 2\sin\theta}} d\theta = \int_{0}^{2\pi} \frac{\sqrt{4 - 4\sin^2\theta}}{\sqrt{2 - 2\sin\theta}} d\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2\theta}}{\sqrt{2 - 2\sin\theta}} d\theta = \int_{0}^{2\pi} \frac{2|\cos\theta|}{\sqrt{2 - 2\sin\theta}} d\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos\theta}{\sqrt{2 - 2\sin\theta}} d\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos\theta}{\sqrt{2 - 2\sin\theta}} d\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos\theta}{\sqrt{2 - 2\sin\theta}} d\theta \\ &= \left[-2\sqrt{2 - 2\sin\theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2 - 2\sin\theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2 - 2\sin\theta} \right]_{3\pi/2}^{2\pi} \\ &= -2\left(0 - \sqrt{2}\right) + 2(2 - 0) - 2\left(\sqrt{2} - \frac{1}{2}\right) \end{split}$$

Find the length of the cardioid $r = 1 + \sin \theta$. The full length is given by $0 \le \theta \le 2\pi$.

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \, \mathrm{d}\theta = \int_{0}^{2\pi} \sqrt{(1+\sin\theta)^2 + \cos^2\theta} \, \mathrm{d}\theta \\ &= \int_{0}^{2\pi} \sqrt{2+2\sin\theta} \frac{\sqrt{2-2\sin\theta}}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta = \int_{0}^{2\pi} \frac{\sqrt{4-4\sin^2\theta}}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2\theta}}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta = \int_{0}^{2\pi} \frac{2|\cos\theta|}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos\theta}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos\theta}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos\theta}{\sqrt{2-2\sin\theta}} \, \mathrm{d}\theta \\ &= \left[-2\sqrt{2-2\sin\theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2-2\sin\theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2-2\sin\theta} \right]_{3\pi/2}^{2\pi} \\ &= -2\left(0 - \sqrt{2} \right) + 2\left(2 - 0 \right) - 2\left(\sqrt{2} - \right) \end{split}$$

Find the length of the cardioid $r = 1 + \sin \theta$. The full length is given by $0 \le \theta \le 2\pi$.

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{0}^{2\pi} \sqrt{(1+\sin\theta)^2 + \cos^2\theta} d\theta \\ &= \int_{0}^{2\pi} \sqrt{2 + 2\sin\theta} \frac{\sqrt{2 - 2\sin\theta}}{\sqrt{2 - 2\sin\theta}} d\theta = \int_{0}^{2\pi} \frac{\sqrt{4 - 4\sin^2\theta}}{\sqrt{2 - 2\sin\theta}} d\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2\theta}}{\sqrt{2 - 2\sin\theta}} d\theta = \int_{0}^{2\pi} \frac{2|\cos\theta|}{\sqrt{2 - 2\sin\theta}} d\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos\theta}{\sqrt{2 - 2\sin\theta}} d\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos\theta}{\sqrt{2 - 2\sin\theta}} d\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos\theta}{\sqrt{2 - 2\sin\theta}} d\theta \\ &= \left[-2\sqrt{2 - 2\sin\theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2 - 2\sin\theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2 - 2\sin\theta} \right]_{3\pi/2}^{2\pi} \\ &= -2\left(0 - \sqrt{2}\right) + 2\left(2 - 0\right) - 2\left(\sqrt{2} - 2\right) \end{split}$$

Find the length of the cardioid $r = 1 + \sin \theta$. The full length is given by $0 \le \theta \le 2\pi$.

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_{0}^{2\pi} \sqrt{(1 + \sin\theta)^2 + \cos^2\theta} d\theta \\ &= \int_{0}^{2\pi} \sqrt{2 + 2\sin\theta} \frac{\sqrt{2 - 2\sin\theta}}{\sqrt{2 - 2\sin\theta}} d\theta = \int_{0}^{2\pi} \frac{\sqrt{4 - 4\sin^2\theta}}{\sqrt{2 - 2\sin\theta}} d\theta \\ &= \int_{0}^{2\pi} \frac{\sqrt{4\cos^2\theta}}{\sqrt{2 - 2\sin\theta}} d\theta = \int_{0}^{2\pi} \frac{2|\cos\theta|}{\sqrt{2 - 2\sin\theta}} d\theta \\ &= \int_{0}^{\pi/2} \frac{2\cos\theta}{\sqrt{2 - 2\sin\theta}} d\theta + \int_{\pi/2}^{3\pi/2} \frac{-2\cos\theta}{\sqrt{2 - 2\sin\theta}} d\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos\theta}{\sqrt{2 - 2\sin\theta}} d\theta \\ &= \left[-2\sqrt{2 - 2\sin\theta} \right]_{0}^{\pi/2} + \left[2\sqrt{2 - 2\sin\theta} \right]_{\pi/2}^{3\pi/2} + \left[-2\sqrt{2 - 2\sin\theta} \right]_{3\pi/2}^{2\pi} \\ &= -2\left(0 - \sqrt{2}\right) + 2\left(2 - 0\right) - 2\left(\sqrt{2} - 2\right) = 8 \end{split}$$