T.D. 5: Funciones implícitas.

Ejercicio 1

Probar que $f(x, y) = x^2 + y^4 - 5 = 0$ define en un entorno de (2, 1) las funciones implícitas y = g(x) y x = h(y).

Hallar g'(2) y g''(2). Expresar g''(x) en función de las parciales de f.

Eiercicio 2

Sea $h: \mathbb{R}^2 \to \mathbb{R}$ tal que $h(x, y) = x^2 + y^3 + xy - x^3 + ay$ con $a \in \mathbb{R}$.

- 1. ¿ Para que valores de a la relación h(x, y) = 0 define una función implícita y = f(x) de clase C^{∞} en un entorno de (0, 0)?
- 2. Misma pregunta para una función implícita x = g(y).

Ejercicio 3

Se sabe que para f diferenciable la igualdad $f(x + \frac{z}{y}, y + \frac{z}{x}) = 0$ define la función implícita z = h(x, y).

Calcular, entonces, $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$.

Ejercicio 4

Demostrar que la ecuación :

$$\ln(x) + e^{\frac{y}{x}} = 1$$

define en un entorno de (1; 0) una función implícita y = g(x) tal que g(1) = 0. Dar la ecuación de la tangente a la curva y = g(x) en 1.

Ejercicio 5

Demostrar que la función $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ tal que :

$$\phi(x, y, z) = (e^{2y} + e^{2z}, e^{2x} - e^{2z}, x - y)$$

es un difeomorfismo que se determinará.

Demostrar que la función $F: \mathbb{R}^3 \to \mathbb{R}^3$ tal que :

$$F(x, y, z) = (e^{x - y + 2z} + e^{-x + y + 2z}, e^{2x} + e^{2y} - 2\lambda e^{x - y}, e^{2x} + e^{2y} - 2e^{y - x})$$

es un difeomorfismo para $\lambda \geq 0$ (se podrá escribir $F = Go\phi$).

Ejercicio 6

Demostrar que z = g(x, y) definida implícitamente por el sistema :

$$\begin{cases} x\cos\alpha + y\sin\alpha + \ln z &= f(\alpha) \\ -x\sin\alpha + y\cos\alpha &= f'(\alpha) \end{cases}$$

donde α es de clase C^1 y f es de clase C^2 , satisface $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = z^2$.