Question number	Scheme	Marks
6 (a)	$x^2 - 5x + 4 = (x - 4)(x - 1)$	M1
	A(1,0) B(4,0)	A1 A1 (3)
	Notes	
(a) M1 A1 A1	For solving the quadratic For $A(1, 0)$ For $B(4, 0)$	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 5$	M1
	When $x = 1$ $\frac{dy}{dx} = -3$	A1
	Tangents meet on the axis of symmetry of curve C so $x = \frac{1+4}{2} = \frac{5}{2}$	M1 A1
	When $x = \frac{5}{2}$ $y = -3\left(\frac{5}{2} - 1\right) = -\frac{9}{2}$	M1
	$\left(\frac{5}{2}, -\frac{9}{2}\right)$	A1
	N. 4	(6)
(b)	Notes	
M1	For $\frac{dy}{dx} = 2x - 5$ (Allow if seen in part(c))	
A1	$\frac{\mathrm{d}y}{\mathrm{d}x} = -3 \text{ when } x = 1$	
M1	For use of $\frac{x_1 + x_2}{2}$ or $\frac{-b}{2a}$ or $\frac{dy}{dx} = 0$	
A1	$x = \frac{5}{2}$	
M1	For substitution of $x = \frac{5}{2}$ into $y - y_1 = m(x - x_1)$ oe	
A1	For $\left(\frac{5}{2}, -\frac{9}{2}\right)$	

	Alternative Method	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 5$	
	When $x = 1$ $\frac{dy}{dx} = -3$ So $y = -3x + 3$	M1 A1
	When $x = 4$ $\frac{dy}{dx} = 3$ So $y = 3x - 12$	M1 A1
	Meet when $-3x + 3 = 3x - 12$	M1
	$\left(\frac{5}{2}, -\frac{9}{2}\right)$	A1 (6)
	Notes	
	Alternative	
M1	For an attempt to find the equation of the tangent of <i>C</i> at <i>A</i>	
A1	For $y = -3x + 3$	
M1	For an attempt to find the equation of the tangent of <i>C</i> at <i>B</i>	
A1	For $y = 3x - 12$	
M1	For equating the two equations	
A1	For $\left(\frac{5}{2}, -\frac{9}{2}\right)$	

(c)	Gradient of normal at $(0, 1) = \frac{1}{3}$	M1
	When $x = \frac{5}{2}$ $y = \frac{1}{3} \left(\frac{5}{2} - 1 \right) = \frac{1}{2}$	M1
	$\left(\frac{5}{2},\frac{1}{2}\right)$	A1 (3)
	Alternative Method $y = \frac{1}{3}x - \frac{1}{3}$ and $y = -\frac{1}{3}x + \frac{4}{3}$	M1
	Meet when $\frac{1}{3}x - \frac{1}{3} = -\frac{1}{3}x + \frac{4}{3}$	M1
	$\left(\frac{5}{2},\frac{1}{2}\right)$	A1 (3)
	Notes	
(c)		
M1	For Gradient of normal at $(0, 1) = \frac{1}{3}$ ft the gradient found in part	(b)
M1	For substitution of $x = \frac{5}{2}$ into $y - y_1 = m(x - x_1)$ oe	
A1	For $\left(\frac{5}{2}, \frac{1}{2}\right)$	
	Alternative	
M1	For $y = \frac{1}{3}x - \frac{1}{3}$ and $y = -\frac{1}{3}x + \frac{4}{3}$	
M1	For equating the two equations	
A1	For $\left(\frac{5}{2}, \frac{1}{2}\right)$	

(d)	Area = $\frac{1}{2}(4-1) \times \left(\frac{1}{2} + \frac{9}{2}\right) = \frac{15}{2}$	M1 M1 A1 (3)
	Alternative Method 1 $Area = \frac{1}{2} \times 3 \times \frac{1}{2} + \frac{1}{2} \times 3 \times \frac{9}{2} = \frac{15}{2}$	M1 M1 A1 (3)
	Alternative Method 2	
	$AN = \sqrt{1.5^2 + 0.5^2} = \frac{\sqrt{10}}{2}$ $AT = \sqrt{1.5^2 + 4.5^2} = \frac{3\sqrt{10}}{2}$	M1
	Area = $2 \times \frac{1}{2} \times \frac{\sqrt{10}}{2} \times \frac{3\sqrt{10}}{2} = \frac{30}{4} = \frac{15}{2}$ Alternative Method 3	M1 A1 (3)
	Area = $\frac{1}{2}\begin{vmatrix} 1 & \frac{5}{2} & 4 & \frac{5}{2} & 1 \\ 0 & -\frac{9}{2} & 0 & \frac{1}{2} & 0 \end{vmatrix} \Rightarrow \frac{1}{2}\left(-\frac{9}{2} + 2 + 18 - \frac{1}{2}\right) = \frac{15}{2}$	M1 M1 A1 (3)
	Notes	[15]
1		
(d)	Notes	
(d) M1	For $\frac{1}{2} \times AB \times NT$	
M1	For $\frac{1}{2} \times AB \times NT$	
M1 M1	For $\frac{1}{2} \times AB \times NT$ For $\frac{1}{2} (4-1) \times \left(\frac{1}{2} + \frac{9}{2}\right)$	
M1 M1 A1	For $\frac{1}{2} \times AB \times NT$ For $\frac{1}{2}(4-1) \times \left(\frac{1}{2} + \frac{9}{2}\right)$ For $\frac{15}{2}$ Alternative 1 For area of triangle ANB + area of triangle ATB	
M1 M1 A1 M1	For $\frac{1}{2} \times AB \times NT$ For $\frac{1}{2}(4-1) \times \left(\frac{1}{2} + \frac{9}{2}\right)$ For $\frac{15}{2}$ Alternative 1	
M1 M1 A1 M1 M1	For $\frac{1}{2} \times AB \times NT$ For $\frac{1}{2}(4-1) \times \left(\frac{1}{2} + \frac{9}{2}\right)$ For $\frac{15}{2}$ Alternative 1 For area of triangle ANB + area of triangle ATB For $\frac{1}{2} \times 3 \times \frac{1}{2} + \frac{1}{2} \times 3 \times \frac{9}{2}$	
M1 A1 M1 M1 A1	For $\frac{1}{2} \times AB \times NT$ For $\frac{1}{2}(4-1) \times \left(\frac{1}{2} + \frac{9}{2}\right)$ For $\frac{15}{2}$ Alternative 1 For area of triangle ANB + area of triangle ATB For $\frac{1}{2} \times 3 \times \frac{1}{2} + \frac{1}{2} \times 3 \times \frac{9}{2}$ Alternative 2	

Alternative 3

Use of area = $\frac{1}{2}\begin{vmatrix} 1 & a & 4 & c & 1 \\ 0 & b & 0 & d & 0 \end{vmatrix}$ oe where (a, b) and (c, d) are the coordinates of T and N**M1**

M1
$$\frac{1}{2} \left(-\frac{9}{2} + 2 + 18 - \frac{1}{2} \right)$$

 $\frac{15}{2}$ **A1**