Uniwerystet Jagielloński

Pytania do egzaminu licencjackiego na kierunku Informatyka

Małgorzata Dymek

Rok akademicki 2019/2020

Spis treści

Matematyczne podstawy informatyki

1 Zasada indukcji matematycznej.

Przykład: $2^1+2^2+\cdots+2^n=2^{n+1}-2$, Nierówność Bernoulliego $dla\ h\geqslant -1\ (1+h)^2\geqslant 1+n*h,\ \ \forall n\in\mathbb{N}^+,\ 1+2+\cdots+n=\frac{n(n+1)}{2}\forall n\in\mathbb{N}$

2 Porządki częściowe i liniowe. Elementy największe, najmniejsze, maksymalne i minimalne.

Przykłady - sprawdź czy porządek: $xRy \Leftrightarrow x|y$

3 Relacja równoważności i zbiór ilorazowy.

Przykład: $xRy \Leftrightarrow x \equiv_3 y$.

4 Metody dowodzenia twierdzeń: wprost, nie wprost, przez kontrapozycję.

5 Metody numeryczne rozwiązywania równań nieliniowych: bisekcji, siecznych, Newtona.

6 Rozwiązywanie układów równań liniowych: metoda eliminacji Gaussa, metody iteracyjne Jacobiego i Gaussa-Seidla.

6.1 Metoda eliminacji Gaussa

Obliczając rząd macierzy metodą Gaussa należy za pomocą operacji elementarnych na wierszach sprowadzić macierz do macierzy schodkowej. Wtedy wszystkie niezerowe wiersze są liniowo niezależne i można łatwo odczytać rząd macierzy.

$$\begin{bmatrix} 1 & -1 & 2 & 2 \\ 2 & -2 & 1 & 0 \\ -1 & 2 & 1 & -2 \\ 2 & -1 & 4 & 0 \end{bmatrix} \xrightarrow{w_2 - 2w_1, w_3 + w_1, w_4 - 2w_1} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 0 & -3 & -4 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 0 & -4 \end{bmatrix} \xrightarrow{w_2 \leftrightarrow w_3} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 1 & 0 & -4 \end{bmatrix} \sim$$

$$\overset{w_{4-w_{2}}}{\sim} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 0 & -3 & -4 \end{bmatrix} \overset{w_{4-w_{3}}}{\sim} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Metody iteracyjne

Ogólna postać metody iteracyjnej:

$$Ax = b$$

$$Qx^{n+1} = (Q - A)x^n + b = \tilde{b}$$

$$x^0 = (0, 0, 0)$$

$$\begin{bmatrix} 5 & -2 & 3 \\ 2 & 4 & 2 \\ 2 & -1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 5x_1 + (-2)x_2 + 3x_3 = 10 \\ 2x_1 + 4x_2 + 2x_3 = 0 \\ 2x_1 + (-1)x_2 + (-4)x_3 = 0 \end{cases}$$

6.2 Metoda iteracyjna Jacobiego

6.2.1 Algebraicznie

$$\begin{cases} x_1^{N+1} = \frac{1}{5}(10 + 2x_2^N - 3x_3^N) \\ x_2^{N+1} = \frac{1}{4}(-2x_1^N - 2x_3^N) \\ x_3^{N+1} = -\frac{1}{4}(x_2^N - 2x_1^N) \end{cases}$$

6.2.2 Macierzowo

$$Q = D$$
 (diagonalna)

6.3 Metoda iteracyjna Gaussa-Seidla

6.3.1 Algebraicznie

$$\begin{cases} x_1^{N+1} = \frac{1}{5}(10 + 2x_2^N - 3x_3^N) \\ x_2^{N+1} = \frac{1}{4}(-2x_1^N - 2x_3^{N+1}) \\ x_3^{N+1} = -\frac{1}{4}(x_2^{N+1} - 2x_1^{N+1}) \end{cases}$$

6.3.2 Macierzowo

$$Q = L + D$$
 (diagonalna i dolnotrójkątna)

Wartości i wektory własne macierzy: numeryczne algorytmy ich wyznaczania.

Interpolacja wielomianowa: metody Lagrange'a 8 i Hermite'a. Efekt Rungego.

8.1 Wzór interpolacyjny Lagrange'a

Zadanie 8.1 Znaleźć wielomiany l_i i wzór Lagrange'a dla n=3 i punktów

\boldsymbol{x}	5	-7	-6	0
y	1	-23	-54	-954

Rozwiązanie: Wielomiany l_i wyrażają się przez węzły tak:

1.

$$l_0(x) = \frac{(x+7)(x+6)x}{(5+7)(5+6)\cdot 5} = \frac{1}{660}(x+7)(x+6)x,$$

$$l_1(x) = \frac{(x-5)(x+6)x}{(-7-5)(-7+6)(-7)} = -\frac{1}{84}(x-5)(x+6)x,$$

$$l_2(x) = \frac{(x-5)(x+7)x}{(-6-5)(-6+7)(-6)} = \frac{1}{66}(x-5)(x+7)x,$$

$$l_3(x) = \frac{(x-5)(x+7)(x+6)}{(0-5)(0+7)(0+6)} = -\frac{1}{210}(x-5)(x+7)(x+6).$$

2. Stad wynika, że

$$p(x) = l_0(x) - 23l_1(x) - 54l_2(x) - 954l_3(x).$$

8.2 Interpolacja Hermite'a

Zadanie 8.2 Należy znaleźć wielomian interpolacyjny, przybliżający funkcję o

$$x_1 = 1$$
 , $x_2 = 3$

zadanych węzłach dwukrotnych: $f(x_1) = 3$, $f(x_2) = 5$ $f'(x_1) = 2$, $f'(x_2) = 6$

$$f'(x_1) = 2$$
 , $f'(x_2) = 6$

Rozwiązanie: Zapisuje się wartości w tabeli:

x_i	$f(x_i)$
1	3
1	3
3	5
3	5

Następnie w miejsce powtarzającego się węzła wstawia się wartości pochodnej, a w pozostałe miejsca (w tym przypadku jedno) wstawia się odpowiednią różnicę dzieloną:

x_i	$f(x_i)$	$R_2(x_i)$
1	3	
1	3	2
3	5	1
3	5	6

Następnie uzupełnia się do końca tabelę:

x_i	$f(x_i)$	$R_2(x_i)$	$R_3(x_i)$	$R_4(x_i)$
1	3	_	_	_
1	3	2	_	_
3	5	1	$-\frac{1}{2}$	_
3	5	6	$\frac{5}{2}$	$\frac{3}{2}$

Zatem otrzymuje się wielomian:

$$w(x) = 3 + 2(x - 1) - \frac{1}{2}(x - 1)^{2} + \frac{3}{2}(x - 1)^{2}(x - 3) = \frac{3}{2}x^{3} - 8x^{2} + \frac{27}{2}x - 4.$$

Łatwo sprawdzić, że interpoluje on dane punkty:

$$w(1) = \frac{3}{2} - 8 + \frac{27}{2} - 4 = 3$$

$$w'(1) = \frac{9}{2} - 16 + \frac{27}{2} = 2$$

$$w(3) = \frac{3}{2} \cdot 27 - 8 \cdot 9 + \frac{27}{2} \cdot 3 - 4 = 5$$

$$w'(3) = \frac{9}{2} \cdot 9 - 16 \cdot 3 + \frac{27}{2} = 6.$$

9 Zmienne losowe dyskretne. Definicje i najważniejsze rozkłady.

9.1 Rozkład dwumianowy

Zadanie 9.1 Zmienna losowa X ma rozkład dwumianowy $(X \sim Bin(n, p))$ gdzie n - ilość prób, p - prawdopodobieństwo sukcesu. Ponadto wiemy, że E(X) = np oraz Var(X) = np(1-p)

Rozwiązanie: Mamy $X \sim Bin(n=4, p=\frac{1}{2})$ oraz k=2, więc

$$P(X=2) = {4 \choose 2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^2 = 6 \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{3}{8},$$

$$E(X) = 4 \cdot \frac{1}{2} = 2, \quad Var(X) = 2 \cdot \frac{1}{2} = 1.$$

9.2 Rozkład geometryczny

Zadanie 9.2 Zmienna losowa X ma rozkład geometryczny z $p=\frac{1}{2}$. Wzór na prawdopodobieństwo $P(X=k)=(1-p)^{(k-1)}$ oraz mamy $E(X)=\frac{1}{p}, Var(X)=\frac{1-p}{n^2}$. Prawdopodobieństwo że pierwszy orzeł wypadnie w 4 rzucie:

$$P(X = 4) = \left(1 - \frac{1}{2}\right)^{(4-1)} \frac{1}{2} = \left(\frac{1}{2}\right)^3 \frac{1}{2} = \frac{1}{2},$$

$$E(X) = \frac{1}{\frac{1}{2}} = 2, \quad Var(X) = \frac{1 - \frac{1}{2}}{\left(\frac{1}{2}\right)^2} = 2.$$

9.3 Rozkład Poissona

Zadanie 9.3 Zmienna losowa X ma rozkład Posissona z parametrem $\lambda = 2, 4$. Prawdopodobieństwo, że student będzie nieobecny w ciągu semestru:

1. mniej niż 2 razy:

$$P(X < 2) = P(X = 0) + P(X = 1) =$$

$$= e^{-2.4} \cdot \frac{2.4^{0}}{0!} + e^{-2.4} \cdot \frac{2.4^{1}}{1!} = e^{-2.4} + 2.4 \cdot e^{-2.4}.$$

2. więcej niż 5 razy (jedenminus prawdopodobieństwo zdarzenia przeciwnego):

$$P(X > 5) = 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5) = 0$$

$$= 1 - e^{-2.4} - e^{-2.4} \cdot 2.4 - \frac{e^{-2.4} \cdot 2.4^2}{2} - \frac{e^{-2.4} \cdot 2.4^3}{6} - \frac{e^{-2.4} \cdot 2.4^4}{24} - \frac{e^{-2.4} \cdot 2.4^5}{120}.$$

10 Zmienne losowe ciągłe. Definicje i najważniejsze rozkłady.

10.1 Rozkład jednostajny

Zadanie 10.1 Zmienna losowa X ma rozkład jednostajny na odcinku [2, 6]. Wykonaj polecenia:

- 1. zapisz wzór na gęstość zmiennej losowej X
- 2. oblicz prawdopodobieństwo zdarzenia że $X \in [3, 3.5]$
- 3. oblicz prawdopodobieństwo zdarzenia że $X \in (3, 3.5)$

Rozwiązanie:

1. wzór na gęstość zmiennej losowej X to

$$\chi_{[2,6]}(x) = \begin{cases} \frac{1}{4} & \text{gdy } x \in [2,6] \\ 0 & \text{gdy } x \notin [2,6] \end{cases}$$

2. prawdopodobieństwo zdarzenia, że $X \in [3, 3.5]$ to

$$P(X \in [3, 3.5]) = \int_3^{3.5} \frac{1}{4} dx = \frac{1}{4} (3.5 - 4) = \frac{1}{8}$$

3. prawdopodobieństwo zdarzenia że $X \in 3, 3.5$ to

$$P(X \in (3, 3.5)) = P(X \in [3, 3.5]) = \frac{1}{8}$$

10.2 Rozkład wykładniczy

Zadanie 10.2 Zmienna losowa X ma rozkład wykładniczy z parametrem $\lambda =$

- 1. Wykonaj polecenia:
 - 1. narysuj gęstość/ zapisz wzór na gęstość zmiennej losowej X
 - 2. na powyższym rysunku przedstaw prawdopodobieństwo zdarzenia że $X \in [0,1]$
 - 3. oblicz prawdopodobieństwo zdarzenia że $X \in [0, 1]$

Rozwiązanie:

Punkty 1 i 2:

Punkt 3 - prawdopodobieństwo zdarzenia że $X \in [0,1]$ wynosi

$$P(X \in [0,1]) = \int_0^1 f(x)dx = \int_0^1 e^{-x}dx = [-e^{-x}]_{x=0}^{x=1} = 1 - e^{-1}$$

10.3 Rozkład normalny

Zadanie 10.3 Zmienna losowa X ma rozkład normalny o parametrach $\mu=0$ oraz $\sigma=1$. Podaj prawdopodobieństwo, że X osiąga wartości dodatnie.

Rozwiązanie:

Wykres tej funkcji jest parzysty, a pole calego wykresu wynosi 1 więc z połowy jest $\frac{1}{2}$.

$$P(X > 0) = \int_0^\infty f(x)dx = \frac{1}{2}$$

10.4 Rozkład Gamma, Wzór Gamma-Poisona

Zadanie 10.4 Kompilacja programu składa się z 3 części przetwarzanych przez kompilator sekwencyjnie, jedna po drugiej. Czas przetwarzania każdej z części ma rozkład wykładniczy ze średnim czasem 5 minut, niezależnym od czasu przetwarzania pozostałych części.

- 1. oblicz wartość oczekiwaną i wariancję całkowitego czasu kompilacji
- 2. oblicz prawdopodobieństwo, że cały proces kompilacji zostanie przeprowadzony w czasie mniejszym niż 12 minut.

Rozwiazanie:

Całkowity czas kompilacji opisuje zmienna losowa o rozkładzie $Gamma(T \sim \Gamma(\alpha = 3, \lambda = \frac{1}{5}))$. Wartość oczekiwana i wariancja całkowitego czasu kompilacji to

$$E(X) = \frac{\alpha}{\lambda} = \frac{3}{\frac{1}{5}} = 15$$

$$Var(x) = \frac{\alpha}{\lambda^2} = \frac{3}{\frac{1}{25}} = 75$$

Prawdopodobieństwo, że cały proces kompilacji zostanie przeprowadzony w czasie mniejszym niż 12 minut liczymy korzystając z formuły Gamma-Poisona.

$$P(T < t) = P(X \geqslant \alpha),$$

gdzie $X \sim Poisson(\lambda * t = \frac{1}{5} * 12 = 2.4)$ oraz $\alpha = 3, t = 12$. Mamy więc:

$$P(T < 12) = P(X \ge 3) = 1 - P(0) - P(1) - P(2) = 1 - F_X(2) = 1 - 0.5697 = 0.43$$

11 Lancuchy Markowa. Rozkład stacjonarny.

Zadanie 11.1 W pewnym mieście każdy dzień jest słoneczny albo deszczowy. Po dniu słonecznym dzień słoneczny następuje z prawdopodobieństwem 0.7, a po dniu deszczowym z prawdopodobieństwem 0.4.

- 1. Narysuj łańcuch markowa oraz wyznacz macierz przejścia dla niego.
- 2. W poniedziałek padało. Stwórz prognozę na wtorek, środę i czwartek.
- 3. Meteorolodzy przewidują 80% szans na deszcz w poniedziałek. Stwórz proqnozę na wtorek, środę i czwartek.
- 4. Znajdź rozkład stacjonarny.

1. Łańcuch Markowa:

Macierz przejść:

$$\begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$

2.

Wtorek:

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.4 & 0.6 \end{bmatrix}$$

Środa:

$$\begin{bmatrix} 0.4 & 0.6 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.52 & 0.48 \end{bmatrix}$$

Czwartek:

$$\begin{bmatrix} 0.52 & 0.48 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.556 & 0.444 \end{bmatrix}$$

3.

Wtorek:

$$\begin{bmatrix} 0.2 & 0.8 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.46 & 0.54 \end{bmatrix}$$

Środa:

$$\begin{bmatrix} 0.46 & 0.54 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.538 & 0.462 \end{bmatrix}$$

Czwartek:

$$\begin{bmatrix} 0.538 & 0.462 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.5614 & 0.4386 \end{bmatrix}$$

4. Macierz przejść:

$$\begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$

Rozwiązujemy układ równań:

$$\begin{cases} \pi P = \pi \\ \pi_1 + \pi_2 = 1 \end{cases}$$

$$\pi P = \begin{bmatrix} \pi_1 & \pi_2 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.7\pi_1 + 0.4\pi_2 & 0.3\pi_1 + 0.6\pi_2 \end{bmatrix}$$

$$\begin{cases} 0.7\pi_1 + 0.4\pi_2 = \pi_1 \\ 0.3\pi_1 + 0.6\pi_2 = \pi_2 \\ \pi_1 + \pi_2 = 1 \end{cases}$$

Stąd otrzymujemy

$$\begin{bmatrix} \pi_1 & \pi_2 \end{bmatrix} = \begin{bmatrix} \frac{4}{7} & \frac{3}{7} \end{bmatrix}$$

12 Testy statystyczne: test z, test t-Studenta, test chi-kwadrat.

Generalnie:

- Z-testów używamy do sprawdzenia czy testowana próba pasuje do zadanej populacji lub do porównywania dwóch **dużych** (n > 30) prób
- T-testów używamy do porównywania dwóch **małych** (n < 30) prób testowych ze sobą
 - Próby mogą być niezależne np. wyniki sprawdzianów w dwóch grupach
 - Mogą być również zależne (dotyczyć jednej i tej samej grupy) np. waga przed zastosowaniem diety i po
 - Może również służyć do porównywania próby do zadanej wartości (np. średniej) podobnie jak Z-testy
- Chi-kwadrat używamy do ustalania goodness of fit dla próbki względem populacji lub do zbadania niezależności

12.1 **Z**-test

Zadanie 12.1 Inżynier jakości znajduje 10 wadliwych produktów w próbie 500 egzemplarzy pewnego komponentu od wytwórcy A. Wśród 400 egzemplarzy od wytwórcy B znajduje 12 wadliwych. Firma komputerowa, korzystająca z tych komponentów twierdzi, że jakość wyrobów od obu producentów jest taka sama. Sprawdź, czy na 5% poziomie istotności istnieją wystarczające dowody do odrzucenia tego twierdzenia.

 H_0 : Jakość wyrobów obu producentów jest taka sama

 H_a : Jakość wyrobów obu producentów jest różna

Obliczamy proporcje dla obu prób:

$$p_1 = \frac{10}{500} = \frac{1}{50}$$

$$p_2 = \frac{12}{400} = \frac{3}{100}$$

oraz proporcję dla próby połączonej:

$$\bar{p} = \frac{10 + 12}{500 + 400} = \frac{11}{450}$$

Następnie używamy wzoru:

$$Z = \frac{p_1 - p_2}{\sqrt{\bar{p}(1 - \bar{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$Z = \frac{\frac{1}{50} - \frac{3}{100}}{\sqrt{\frac{11}{450}(1 - \frac{11}{450})(\frac{1}{500} + \frac{1}{400})}} = \frac{-\frac{1}{100}}{\sqrt{\frac{4829}{45000000}}} \approx -0.9653$$

W naszej hipotezie mamy pytanie o równość, więc bierzemy pod uwagę obie końcówki przedziału. Mamy sprawdzić prawdziwość naszej hipotezy na 5% poziomie istotności, więc na każdą końcówkę mamy po 2.5%.

Odczytujemy z tablic dla Z-testów (tablica rozkładu normalnego) wartość dla 1 – 0.025 = 0.975 i jest to 1.959964

Następnie odczytujemy z tablic (lub wyliczamy, jeżeli nie mamy tablic z wartościami dla x < 0.5) wartość dla 0.025 i jest to -1.959964 (po prostu wartość przeciwna do poprzedniej, ponieważ funkcja gęstości rozkładu normalnego jest symetryczna względem środka)

Ponieważ nasza wartość nie mieści się w obszarze odrzucenia, nie mamy podstaw do odrzucenia hipotezy zerowej.

12.2 T-testy

Zadanie 12.2 Posiadacz konta internetowego, w długim okresie czasu, w trakcie logowania pisze swój login i hasło z przerwami pomiędzy kolejnymi wciśnięciami klawiszy wynoszącymi 0.2s. Pewnego dnia zarejestrowane logowanie na to konto z prawidłowym hasłem, przy czym czasy odstępów pomiędzy wciśnięciami kolejnych klawiszy wynosiły:

.24, .22, .26, .34, .35, .32, .33, .29, .19, .36, .30, .15, .17, .20, .28, .40, .37, .27 sekund

Na 5% poziomie ufności zweryfikuj, czy dane te mogą być dowodem na nieautoryzowany dostęp do konta?

 H_0 : Dostęp do konta jest autoryzowany

 H_a : Dostęp do konta jest nieautoryzowany

Korzystamy ze wzoru:

$$T = \frac{\bar{x} - \mu_0}{\sigma} \sqrt{n}$$

gdzie:

- \bar{x} średnia z badanej próby
- μ_0 zakładana średnia
- σ odchylenie standardowe z próby
- n wielkość próby

W naszym przypadku:

$$\bar{x} \approx 0.28$$
 (1)

$$\mu_0 = 0.2 \tag{2}$$

$$\sigma \approx 0.07324 \tag{3}$$

$$n = 18 \tag{4}$$

Podstawiając do wzoru mamy:

$$T = \frac{0.28 - 0.2}{0.07324} \sqrt{18} \approx 4.63423341$$

Ilość naszych stopni swobody to n-1 więc w naszym przypadku 17

Odczytujemy z tablic rozkładu t-studenta wartość odpowiadającą 2.5% poziomowi ufności (5%/2) oraz 17 stopniom swobody i jest to 2.11 oraz wyliczamy tę wartość dla drugiego krańca przedziału (podobnie jak w poprzednim przypadku rozkład t-studenta ma symetryczny wykres względem środka), która jest równa -2.11

Ponieważ 4.63423341 > 2.11 mamy podstawy, aby odrzucić hipotezę zerową i przyjąć hipotezę alternatywną

12.3 Testy Chi-kwadrat

Zadanie 12.3 Producent kostki do gry deklaruje, że oczka na jego niesprawiedliwej kostce wypadają z następującym prawdopodobieństwem:

- 1 oczko $\frac{1}{2}$
- 2 oczka $\frac{1}{4}$
- $3 \ oczka \frac{1}{25}$
- $4 \ oczka \frac{1}{50}$
- 5 oczek $\frac{1}{25}$
- 6 oczek $\frac{3}{20}$

Dla 100 rzutów zaobserwowano natomiast nastepujące wyniki:

- 1 oczko 55 razy
- 2 oczka 20 razy
- 3 oczka 6 razy
- 4 oczka 3 razy
- 5 oczek 2 razy
- 6 oczek 14 razy

Przeprowadź test zgodności (goodness of fit) χ^2 i rozstrzygnij na poziomie 5% istotności, czy producent ma rację

Wyliczamy wartości oczekiwane dla każdego przedziału i zgodnie z rule of thumb w razie potrzeby je łączymy tak, aby dla każdego z nich wartość była \geqslant 5

n	Obs_n	Exp_n	X	Obs_x	Exp_x
1	55	50	1	55	50
2	20	25	2	20	25
3	6	4			
4	3	2	3	11	10
5	2	4			
6	14	15	4	14	15

Następnie, aby obliczyć χ^2 stosujemy następujący wzór (N to liczba naszych x):

$$\chi^2 = \sum_{x=1}^{N} \frac{(Obs_x - Exp_x)^2}{Exp_x}$$

W naszym przypadku $\chi^2\approx 1.6666$

Stopnie swobody obliczamy ze wzoru N-1, gdzie N to liczba naszych x-ów. W naszym przypadku liczba stopni swobody jest więc równa 3.

Następnie odczytujemy z tablicy χ^2 wartość dla 5% istotności przy 3 stopniach swobody. Jest ona równa ${\bf 7.82}$

1.6666 < 7.82 stąd nie mamy więc podstawy do odrzucenia hipotezy zerowej

13 Wzór Bayesa i jego interpretacja.

Zadanie 13.1 W firmie IT 20% wytwarzanych modułów przechodzi specjalny proces inspekcji. Z danych historycznych wiadomo, że każdy moduł poddany inspekcji nie ma defektów z prawdopodobieństwem 0.95. Dla modułu nie poddanego procesowi inspekcji prawdopodobieństwo to wynosi jedynie 0.7. Klient znalazł defekt w module. Jakie jest prawdopodobieństwo, że moduł ten przeszedł przez proces inspekcji?

Korzystamy oczywiście ze wzoru Bayesa:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 przy $P(B) > 0$

I - moduł przeszedł przez inspekcję D - moduł ma defekt

$$P(I) = \frac{20}{100} = \frac{1}{5} \qquad P(\bar{I}) = \frac{4}{5}$$

$$P(\bar{D}|I) = \frac{95}{100} = \frac{19}{20} \qquad P(D|I) = \frac{1}{20}$$

$$P(\bar{D}|\bar{I}) = \frac{70}{100} = \frac{7}{10} \qquad P(D|\bar{I}) = \frac{3}{10}$$

$$P(I|D) = \frac{P(D|I) \cdot P(I)}{P(D)} = \frac{P(D|I) \cdot P(I)}{P(D|I) \cdot P(I) + P(D|\bar{I}) \cdot P(\bar{I})} = \frac{\frac{1}{20} \cdot \frac{1}{5}}{\frac{1}{20} \cdot \frac{1}{5} + \frac{3}{10} \cdot \frac{4}{5}} = \frac{1}{25}$$

Prawdopodobieństwo, że moduł, w którym znalazł się defekt przeszedł proces inspekcji wynosi $\frac{1}{25}.$

Istnienie elementów odwrotnych względem mnożenia w strukturze (Zm,+,*) w zależności od liczby naturalnej m. Rozszerzony algorytm Euklidesa.

Zadanie 14.1 Oblicz element odwrotny do 7 w Z_{19} .

NWD(7,19) = 1, zatem element odwrotny istnieje

$$19/7 = 2 r 5$$

$$7/5 = 1 r 2$$

$$5/2 = 2 r 1$$

Zatem:

$$5 = 19 - 2 * 7$$

$$2 = 7 - 5 = 7 - (19 - 2 * 7) = -19 + 3 * 7$$

$$1 = 5 - 2 * 2 = 19 - 2 * 7 - 2 * (-19 + 3 * 7) = 3 * 19 - 8 * 7$$

Współczynnik przy 7: $-8.\ -8\ mod\ 19=11$

Liczbą odwrotną do 7 w \mathbb{Z}_{19} jest 11

Zadanie 14.2 Oblicz współczynniki Bézouta dla 240 i 46.

$$240/46 = 5 \ r \ 10$$

$$46/10 = 4 r 6$$

$$10/6 = 1 r 4$$

$$6/4 = 1 r 2$$

$$4/2 = 2 r 0$$

i	r_i	d_i	x_i	y_i
0	240	-	1	0
1	46	5	0	1
2	10	4	1 - 5 * 0 = 1	0 - 5 * 1 = -5
3	6	1	0 - 4 * 1 = -4	1 - 4 * -5 = 21
4	4	1	1 - 1 * -4 = 5	-5 - 1 * 21 = -26
5	2	2	-4 - 1 * 5 = -9	21 - 1 * -26 = 47

$$-9 * 240 + 47 * 46 = 2 = NWD(240, 46)$$

Współczynniki Bézouta wynoszą -9 i 47.

Zadanie 14.3 Pokaż, że jeśli
$$a,b \in \mathbb{N}$$
 i $d = NWD(a,b)$ to $\exists m,n:d=ma+nb$.

Mamy zbiór $S = \{ma + nb \mid m, n \in \mathbb{Z}, ma + nb > 0\}$. S nie jest puste, zatem (z zasady dobrego uporządkowania) istnieje jego najmniejszy element d.

Pokażmy, że d jest dzielnikiem a.

$$a = dq + r$$

$$r = a - dq$$

$$r = a - q(ma + nb)$$

$$r = (1 - qm)a - qnb$$

$$r = am' + bn'$$

Zatem r=0 lub $r\in S$. Skoro r jest resztą z dzielenia a przez d, to r< d. d jest najmniejszym elementem S, zatem r=0, zatem d|a. Analogiczne rozumowanie możemy przeprowadzić dla b.

Pokażmy, że d=NWD(a,b). Niech c będzie wspólnym dzielnikiem a i b. Zatem $a=cq_1$ i $b=cq_2$.

$$d = ma + nb$$
$$d = cq_1a + cq_2b$$
$$d = c(q_1a + q_2b)$$

Zatem c|d, zatem $c \leq d$, zatem d = NWD(a, b)

15 Ortogonalność wektorów w przestrzeni R_n ; związki z liniową niezależnością. Metoda ortonormalizacji Grama-Schmidta.

Zadanie 15.1 Udowodnij, że każdy ortogonalny układ wektorów jest liniowo niezależny.

Mamy układ wektorów ortogonalnych x_1, x_2, \ldots, x_n . Zatem

$$\forall i, j : i \neq j \ x_i \cdot x_j = 0$$

oraz

$$\forall i \ x_i \cdot x_i > 0$$

Istnieją skalary a_1, a_2, \ldots, a_n , takie, że:

$$a_1 * x_1 + a_2 * x_2 + \ldots + a_n * x_n = 0$$

Powyższe równanie pomnóżmy skalarnie przez x_1 .

$$a_1 * x_1 \cdot x_1 + a_2 * x_2 \cdot x_1 + \ldots + a_n * x_n \cdot x_1 = 0$$

$$a_1 * x_1 \cdot x_1 + 0 + \ldots + 0 = 0$$

$$a_1 * x_1 \cdot x_1 = 0$$

Skoro $x_1 \cdot x_1 > 0$, to $a_1 = 0$. Powyższe działania powtórzmy dla pozostałych wektorów.

$$a_1 = a_2 = \ldots = a_n = 0$$

Zatem układ wektorów jest liniowo niezależny.

Zadanie 15.2 Dokonaj ortonomilizacji wektorów w \mathbb{R}_3 : $\mathbf{v}_1 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \mathbf{v}_2 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \mathbf{v}_3 = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$

$$\mathbf{u}_1 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{u}_2 = \mathbf{v}_2 - \operatorname{proj}_{\mathbf{u}_1} \mathbf{v}_2 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} - \frac{2}{2} \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{u}_3 = \mathbf{v}_3 - \operatorname{proj}_{\mathbf{u_1}} \mathbf{v}_3 - \operatorname{proj}_{\mathbf{u_2}} \mathbf{v}_3 = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} - \frac{1}{1} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

Otrzymane wektory podzielmy przez ich długość:

$$\mathbf{e}_1 = \frac{\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}}{\sqrt{2}} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \end{bmatrix}$$

$$\mathbf{e}_2 = \frac{\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}}{1} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{e}_3 = \frac{\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}}{\frac{\sqrt{2}}{2}} = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \end{bmatrix}$$

16 Liczby Stirlinga I i II rodzaju i ich interpretacja.

16.1 Liczby Stirlinga I rodzaju

Uzasadnij, że C(4,2)=11Mamy następujące permutacje dwucyklowe zbioru $\{1,2,3,4\}$

$$\begin{array}{c} (1\ 2)(3\ 4),\ (1\ 3)(2\ 4),\ (1\ 4)(2\ 3) \\ (1)(2\ 3\ 4),\ (1)(2\ 4\ 3),\ (2)(1\ 3\ 4) \\ (2)(1\ 4\ 3),\ (3)(1\ 2\ 4),\ (3)(1\ 4\ 2) \\ (4)(1\ 2\ 3),\ (4)(1\ 3\ 2) \end{array}$$

16.2 Liczby Stirlinga II rodzaju

Uzasadnij, że S(4,2) = 7

Zbiór $\{1, 2, 3, 4\}$ możemy podzielić na dwa bloki w następujący sposób

17 Twierdzenia Eulera i Fermata; funkcja Eulera.

17.1 Funkcja Eulera

- $\varphi(2025) = \varphi(3^4 \cdot 5^2) = \varphi(3^4) \cdot \varphi(5^2) = 3^3 \cdot 2 \cdot 5 \cdot 4 = 1080$
- $\varphi(1001) = \varphi(7 \cdot 11 \cdot 13) = \varphi(7) \cdot \varphi(11) \cdot \varphi(13) = 6 \cdot 10 \cdot 12 = 660$
- $\varphi(1980) = \varphi(2^2 \cdot 3^2 \cdot 5 \cdot 11) = \varphi(2^2) \cdot \varphi(3^2) \cdot \varphi(5) \cdot \varphi(11) = 2 \cdot 3 \cdot 2 \cdot 4 \cdot 10 = 480$

17.2 Twierdzenie Fermata

17.3 Twierdzenie Eulera

• Oblicz 2⁶⁴ (mod 99)

NWD(2,99)=1 zatem możemy stosować Twierdzenie Eulera

$$\varphi(99) = \varphi(11 \cdot 3^2) = \varphi(11) \cdot \varphi(3^2) = 10 \cdot 3 \cdot 2 = 60$$

Zatem z Twierdzenia Eulera

 $2^{60} \equiv 1 \pmod{99}$

$$2^{64} = 2^{60} \cdot 2^4 \equiv 2^4 \pmod{99} = 16$$

• Oblicz $99^{400} \pmod{10^3}$

NWD(99,1000)=1 zatem możemy stosować Twierdzenie Eulera

$$\varphi(10^3) = \varphi(2^3 \cdot 5^3) = \varphi(2^3) \cdot \varphi(5^3) = 2^2 \cdot 5^2 \cdot 4 = 400$$

Zatem z Twierdzenia Eulera

 $99^{400} \equiv 1 \pmod{10^3}$

18 Konfiguracje i t-konfiguracje kombinatoryczne.

Zadanie 18.1 Mamy dziewięć różnych 8-elementowych podzbiorów zbioru \mathbb{N}_{12} . Każdy element ze zbioru \mathbb{N}_{12} należy do tej samej liczby r podzbiorów zbioru \mathbb{N}_{12} .

- 1. Ile wynosi r?
- 2. Czy jest to możliwe dla dziewięciu 7-elementowych podzbiorów?

Rozwiązanie:

1. k = 8 n = 12

b - liczba k-elementowych podzbiorów Xb=9

Szukamy ile wynosi liczba takich podzbiorów korzystając ze wzoru $b = \frac{n \cdot r}{k}$

$$r = \frac{9 \cdot 8}{12} = 6$$

2. k = 7 b = 9 n = 12

Czy zachodzi $k|n \cdot r$?

$$r = \frac{b \cdot k}{n} = \frac{9 \cdot 7}{12} = \frac{21}{4} \notin \mathbb{N}$$

Zatem nie jest to możliwe.

Zadanie 18.2 Dana jest 5-konfiguracja z parametrami n=12, k=6, $r_5=1$. Wyznacz wartości r_i , dla i-konfiguracji o tym samym n i k oraz i=1,2,3,4.

Rozwiązanie: Korzystamy ze wzoru: $r_{t-1} = r_t \cdot \frac{n-t+1}{k-t+1}$

$$r_4 = r_5 \cdot \frac{12 - 5 + 1}{6 - 5 + 1} = \frac{8}{2} = 4$$

$$r_3 = r_4 \cdot \frac{12 - 4 + 1}{6 - 4 + 1} = 4 \cdot \frac{9}{3} = 12$$

$$r_2 = r_3 \cdot \frac{12 - 3 + 1}{6 - 3 + 1} = 12 \cdot \frac{10}{4} = 30$$

$$r_1 = r_2 \cdot \frac{12 - 2 + 1}{6 - 2 + 1} = 30 \cdot \frac{11}{5} = 66$$

$$r_1: (12, 6, 66)$$

 $r_2: (12, 6, 30)$
 $r_3: (12, 6, 12)$
 $r_4: (12, 6, 4)$

Zadanie 18.3 Czy może istnieć 3-konfiguracja o parametrach $n=15,\ k=6$ i $r_3=2$?

$$r_2 = r_3 \cdot \frac{n-3+1}{k-3+1} = 2 \cdot \frac{15-3+1}{6-3+1} = 2 \cdot \frac{13}{4} = \frac{13}{2} \notin \mathbb{Z}$$

Zatem nie może istnieć taka konfiguracja.

19 Cykl Hamiltona, obwód Eulera, liczba chromatyczna - definicje i twierdzenia.

Zadanie 19.1 Podaj przykład grafu, który:

- 1. Ma obwód eulera i cykl Hamiltona
- 2. ma cykl Hamiltona, ale nie ma obwodu Eulera
- 3. ma obwód Eulera, ale nie ma cyklu Hamiltona
- 4. nie ma ani cyklu Hamiltona, ani obwodu Eulera

Rozwiązanie:

Zadanie 19.2 Określ liczbę chromatyczną:

- 1. grafu zupełnego K_n
- 2. grafu cyklicznego C_{2r}
- 3. grafu cyklicznego C_{2kr+1}
- 4. drzewa

Rozwiązanie:

1.
$$\chi(X) = n$$

2.
$$\chi(X) = 2$$

3.
$$\chi(X) = 3$$

4.
$$\chi(X) = 2$$

20 Algorytm Forda-Fulkersona wyznaczania maksymalnego przepływu.

Weźmy sobie taką sieć przepływową. Chcemy wyznaczyć jej maksymalny przepływ. Musimy zacząć od jakiegoś (dowolnego) przepływu. Szukamy ścieżki rozszerzającej, która połączy źródło s z ujściem t.

Na przykład może to być ścieżka: $P = \{s \to A \to B \to t\}$.

Na ścieżce p znajdują się trzy kanały sieci rezydualnej: (s, A), (A, B)i(B, t). Przepustowość rezydualna $c_f(p)$ ścieżki jest równa najmniejszej przepustowości rezydualnej jej kanałów, czyli przepustowości kanału $(B \to t)$, dla którego $c_f(B, t) = 6$. Zatem wzdłuż krawędzi ścieżki przepływ można zwiększyć o 6 jednostek, o tyle rośnie również przepływ sieciowy, czyli $|f_{nowy}| = |f_{stary}| + c_f(p) = 0 + 6 = 6$.

Budujemy sieć rezydualną. Zwiększenie przepływu w kanale sieci pierwotnej o $c_f(p)$ odpowiada zmniejszeniu przepustowości rezydualnej tego kanału. Jednocześnie wraz z pojawieniem się przepływu w kanale sieci pierwotnej powstaje kanał przeciwny w sieci rezydualnej o przepustowości rezydualnej równej przepływowi.

Przepustowość rezydualna kanału (s, A) wynosi 3 – oznacza to, iż kanałem tym można wciąż jeszcze przesłać trzy dodatkowe jednostki przepływu. W sieci rezydualnej pojawia się kanał przeciwny (A, s) o przepustowości rezydualnej $c_f(A, s) = 6$.

Kanał (A, B) może jeszcze przesłać 1 dodatkową jednostkę przepływu. Również tutaj pojawił się kanał przeciwny o przepustowości rezydualnej równej 6.

Kanał (B,t) przestał istnieć w sieci rezydualnej, ponieważ osiągnął już swoją maksymalną przepustowość – 6 jednostek przepływu. Nie może on być dalej wykorzystywany do powiększania przepływu. Na jego miejscu mamy jednak kanał przeciwny z przepustowością rezydualną równą 6.

W nowej sieci rezydualnej szukamy kolejnej ścieżki rozszerzającej:

$$P = \{s \to A \to C \to t\}, \quad c_f(p) = 3.$$

Przepływ zwiększamy:

$$|f| = 6 + 3 = 9$$

i modyfikujemy przepustowości rezydualne krawędzi ścieżki rozszerzającej otrzymując nową sieć rezydualną. Znikają z niej kanały (s,A) i (A,C) – wykorzystały już swój potencjał zwiększania przepływu.

Szukamy kolejnej ścieżki rozszerzającej:

$$P = \{s \to D \to E \to t\}, \quad c_f(p) = 6$$

W nowej sieci rezydualnej zniknął kanał (D,E). Wciąż jednakże możemy znaleźć nową ścieżkę rozszerzającą:

$$P = \{s \to D \to C \to t\}, \quad c_f(p) = 3$$

Przepływ zwiększamy:

$$|f| = 15 + 3 = 18.$$

Po zmodyfikowaniu sieci rezydualnej otrzymujemy nową sieć rezydualną. W tej sieci rezydualnej **nie znajdziemy już żadnej nowej ścieżki rozszerzającej** – ze źródła s nie wychodzi żaden kanał. Oznacza to zakończenie algorytmu, zatem znaleźliśmy przepływ maksymalny. Aby otrzymać sieć przepływową wystarczy od przepustowości kanałów odjąć otrzymane przepustowości rezydualne – dla nieistniejących kanałów ich przepustowość rezydualna wynosi 0.

Poniżej nasza sieć przepływowa z uzyskanym maksymalnym przepływem:

21 Rozwiązywanie równan rekurencyjnych przy użyciu funkcji tworzących (generujących) oraz przy użyciu równania charakterystycznego.

21.1 Funkcja tworząca.

Przykład

$$u_0 = 1$$
, $u_1 = 1$, $u_{n+2} - 4u_{n+1} + 4u_n = 0$
 $u_{n+2} = 4u_{n+1} - 4u_n$
 $u_n = 4u_{n-1} - 4u_{n-2}$

$$\sum_{n=0}^{\infty} u_n x^n = 1 + 1 * x + \sum_{n=2}^{\infty} (4u_{n-1} - 4u_{n-2}) x^n = 1 + x + \sum_{n=2}^{\infty} 4u_{n-1} x^n - \sum_{n=2}^{\infty} 4u_{n-2} x^n = 1 + x + 4x \sum_{n=2}^{\infty} u_{n-1} x^{n-1} - 4x^2 \sum_{n=2}^{\infty} u_{n-2} x^{n-2} = 1 + x + 4x \sum_{n=1}^{\infty} u_n x^n - 4x^2 \sum_{n=0}^{\infty} u_n x^n = 1 + x + 4x (\sum_{n=0}^{\infty} u_n x^n - u_0) - 4x^2 \sum_{n=0}^{\infty} u_n x^n = 1 + x - (4x) * 1 + 4x \sum_{n=0}^{\infty} u_n x^n - 4x^2 \sum_{n=0}^{\infty} u_n x^n$$

$$\sum_{n=0}^{\infty} u_n x^n = 1 - 3x + (4x - 4x^2) \sum_{n=0}^{\infty} u_n x^n$$

$$\sum_{n=0}^{\infty} u_n x^n (1 - 4x + 4x^2) = 1 - 3x$$

$$\sum_{n=0}^{\infty} u_n x^n (1 - 4x + 4x^2) = 1 - 3x$$

$$\sum_{n=0}^{\infty} u_n x^n = \frac{1-3x}{1-4x+4x^2} = \frac{1-3x}{(1-2x)^2}$$

Rozkład na ułamki proste:

$$1 - 3x = A(1 - 2x) + B$$
, $1 = A + B$, $-3 = -2A$, $A = \frac{3}{2}$, $B = \frac{-1}{2}$

Stąd:

$$\sum_{n=0}^{\infty} u_n x^n = \frac{3}{2} * \frac{1}{1 - 2x} - \frac{1}{2} * \frac{1}{(1 - 2x)^2} =$$

$$\frac{3}{2} \sum_{n=0}^{\infty} \binom{n+1-1}{n} (2x)^n - \frac{1}{2} \sum_{n=0}^{\infty} \binom{n+2-1}{n} (2x)^n =$$

$$\frac{3}{2} \sum_{n=0}^{\infty} 2^n x^n - \frac{1}{2} \sum_{n=0}^{\infty} (n+1) 2^n x^n =$$

$$\sum_{n=0}^{\infty} (\frac{3}{2} - \frac{1}{2}(n+1)) 2^n x^n$$

Więc

$$u_n = (\frac{3}{2} - \frac{1}{2}(n+1))2^n$$

21.2 Równanie charakterystyczne.

Przykład 1:

$$a_0 = 0$$
, $a_1 = 1$, $a_{n+2} + a_{n+1} - 2a_n = 0$

Załóżmy, że istnieje rozwiązanie takie, że $a_n = t^n$.

$$t^{n+2} + t^{n+1} - 2t^n = 0$$

$$t^2 + t - 2 = 0$$

$$\Delta = 1 + 8 = 9$$

$$r_1 = \frac{-1+3}{2} = 1$$
, $r_2 = \frac{-1-3}{2} = -2$

Nie jest to pierwiastek podwójny $(r_1 \neq r_2)$, zatem wiemy, że:

$$\exists C, D: \quad a_n = Cr_1^n + Dr_2^n$$

Podstawiając:

$$a_n = C + D(-2)^n$$

Wyliczamy C i D na podstawie znanych pierwszych wyrazów ciągu:

$$a_0 = C + (-2)^0 D = C + D = 0$$

$$a_1 = C + (-2)^1 D = C - 2 * D = 1$$

$$C = \frac{1}{3}, \quad D = \frac{-1}{3}$$

$$a_n = \frac{1}{3} - \frac{(-2)^n}{3} = \frac{1 - (-2)^n}{3}$$

Przykład 2.

$$a_{0} = -2, \ a_{1} = 1, \ a_{n+2} - 2a_{n+1} + a_{n} = 0$$

$$t^{2} - 2t + 1 = 0$$

$$(t - 1)^{2} = 0$$

$$r = r_{1} = r_{2} = 1$$

$$a_{n} = (C + Dn)r^{n}$$

$$a_{0} = (C + D * 0) * 1^{0} = C = -2$$

$$a_{1} = (C + D * 1) * 1^{1} = C + D = D - 2 = 1$$

$$C = -2, \ D = 3$$

$$a_{n} = -2 + 3n$$

22 Ciąg i granica ciągu liczbowego, granica funkcji.

22.1 Obliczanie granicy ciągu

 $\lim_{n\to\infty}a_n=2^{-\sqrt{n}}=\frac{1}{2^{\sqrt{n}}}$ - mianownik dąży do ∞ więc całość dąży do 0

 $\lim_{n\to\infty}a_n=\sqrt[n]{10}$ - pierwiastek o coraz wyższym stopniu z jakiejś stałej dąży do 1

 $\lim_{n\to\infty}a_n=\frac{n^2+2n-5}{2n^2-n}$ - w przypadku takich ułamków dzielimy licznik i mianownik przez n w największej potędze, który znajduje się w mianowniku $\frac{n^2+\frac{2n}{n^2}-\frac{5}{n^2}}{\frac{2n^2}{n^2}-\frac{n}{n^2}}$ co po skróceniu daje nam $\frac{1+\frac{2}{n}-\frac{5}{n^2}}{2-\frac{1}{n}}$. Teraz widzimy, że $\frac{2}{n}$, $\frac{5}{n^2}$ oraz $\frac{1}{n}$ zmierzają do 0, więc ostatecznie otrzymujemy $\frac{1}{2}$.

 $\lim_{n\to\infty}a_n=\frac{n^2-2n}{13n+1}$ - na początku robimy tak jak w poprzednim przykładzie, czyli dzielimy licznik i mianownik przez n w największej potędze z mianownika $\frac{n^2-2n}{n-n}$ co po skróceniu daje $\frac{n-2}{13+\frac{1}{n}}$. Widzimy, że $\frac{1}{n}$ dąży do 0, więc całość możemy zapisać już jako $\frac{n-2}{13}$. Ponieważ licznik cały czas rośnie, a mianownik pozostaje stały to całość dąży do $+\infty$

22.2 Twierdzenie o dwóch ciągach

Używane aby wykazać rozbieżność pewnego ciągu wykorzystując inny (prostszy) ciąg

Oblicz granicę $\lim_{n\to\infty} (3\sin n - 5) \cdot n^3$

Korzystamy z faktu, że sin $n \le 1$ wtedy $(3\sin n - 5) \cdot n^3 \le (3 \cdot 1 - 5) \cdot n^3 \le -2n^3 \le -n \xrightarrow{n \to \infty} -\infty$ Więc zgodnie z twierdzeniem o 2 ciągach również $(3\sin n - 5) \cdot n^3 \xrightarrow{n \to \infty} -\infty$

22.3 Twierdzenie o trzech ciągach

Używane aby wyznaczyć granicę właściwą pewnego ciągu korzystając z dwóch innych ciągów

Oblicz granicę $\lim_{n\to\infty} \frac{n^2 + n - \cos n^2}{2 + n \sin \sqrt{n} + 3n^2}$

Podobnie jak poprzednio korzystamy z faktu, że $-1 \le \sin x \le 1$ oraz $-1 \le \cos x \le 1$ dla każdego naturalnego x Wtedy $\frac{n^2+n-1}{2+n+3n^2}\leqslant \frac{n^2+n-\cos n^2}{2+n\sin\sqrt{n}+3n^2}\leqslant \frac{n^2+n+1}{2-n+3n^2}$

Ponieważ $\lim_{n\to\infty}\frac{n^2+n-1}{2+n+3n^2}=\frac{1}{3}$ oraz $\lim_{n\to\infty}\frac{n^2+n+1}{2-n+3n^2}=\frac{1}{3}$ więc z twierdzenia o trzech ciągach wiemy również, że i $\lim_{n\to\infty}\frac{n^2+n-\cos n^2}{2+n\sin\sqrt{n}+3n^2}=\frac{1}{3}$

22.4Funkcje

Oblicz granice funkcji

$$f(x) = \begin{cases} \left| \frac{1}{x+2} \right| & \text{dla x mniejszego od 0} \\ \sin x & \text{dla x większego bądź równego 0} \end{cases}$$

w punktach $x_1 = -2, x_2 = 0, x_3 = \pi$ oraz w $+\infty$ i $-\infty$

Liczymy granice prawo i lewo stronne dla punktów, w których funkcja jest nie ciągła:

$$\lim_{x \to -2^{-}} f(x) = \lim_{x \to -2^{-}} \left| \frac{1}{x+2} \right| = +\infty$$
$$\lim_{x \to -2^{+}} f(x) = \lim_{x \to -2^{+}} \left| \frac{1}{x+2} \right| = +\infty$$

Ponieważ granice prawo i lewo stronne sa sobie równe to granica w punkcie -2 istnieje i jest równa $-\infty$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left| \frac{1}{x+2} \right| = \frac{1}{2}$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to -2^{+}} \sin x = 0$$

Ponieważ granice prawo i lewo stronne nie są sobie równe to granica w punkcie 0 nie istnieje

W punkcie π nasza funkcja jest ciągła, wiec jej granice możemy obliczyć podstawiając π bezpośrednio do wzoru:

$$\lim_{x \to \pi} f(x) = f(\pi) = 0$$

 $\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} \left|\frac{1}{x+2}\right| = 0$ - mianownik jest coraz większy (biorąc pod uwagę jego wartość bezwzględną) więc funkcja dąży do 0

 $\lim_{x\to+\infty} f(x) = \lim_{x\to+\infty} \sin x$ - nie istnieje, ponieważ $\sin x$ jest funkcją okresową i nie dąży do żadnej konkretnej wartości

Granice specjalne

Oblicz granicę funkcji $\lim_{x\to -5}\frac{\sin(x+5)+\ln(x+6)}{x+5}$ Skorzystamy z granic specjalnych $\lim_{x\to 0}\frac{\sin x}{x}=1$ oraz $\lim_{x\to 0}\frac{\ln(x+1)}{x}=1$

$$\lim_{x \to -5} \frac{\sin(x+5) + \ln(x+6)}{x+5} \stackrel{\left[\frac{0}{0}\right]}{=} \lim_{x \to -5} \frac{\sin(x+5)}{x+5} + \frac{\ln((x+5) + 1)}{x+5}$$

Ponieważ granica dąży do -5 to wyrażenia w nawiasach dążą do 0 więc możemy zastosować wspomniane granice specjalne. Możemy to zapisać również jako:

$$\lim_{x \to 0} \frac{\sin x}{x} + \frac{\ln(x+1)}{x}$$
 z granic specjalnych $1+1=2$

Regula de L'Hospitala

Oblicz granicę funkcji $\lim_{x\to 0} \frac{\sin x}{x^2+5x}$

Spróbujemy zastosować regułę de L'Hospitala. Aby to zrobić musimy sprawdzić czy granice funkcji z licznika i mianownika z osobna są równe 0 oraz czy funkcja z mianownika w otoczeniu x_0 nie jest równa 0

$$\lim_{x \to 0} \sin x = 0$$
$$\lim_{x \to 0} x^2 + 5x = 0$$

Możemy do tego zauważyć, że $x^2 + 5x$ w okolicach $x_0 \neq 0$ więc możemy zastosować regułę de L'Hospitala:

$$\lim_{x\to 0} \frac{\sin x}{x^2 + 5x} = \lim_{x\to 0} \frac{(\sin x)'}{(x^2 + 5x)'} = \lim_{x\to 0} \frac{\cos x}{2x + 5} = \frac{1}{5}$$

23 Ciągłość i pochodna funkcji. Definicja i podstawowe twierdzenia.

23.1 Ciągłość funkcji

Zad 1

Zbadaj ciągłość funkcji

$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{dla } x \neq 0 \\ 0 & \text{dla } x = 0 \end{cases}$$

Interesuje nas oczywiście punkt 0 i to dla niego musimy policzyć granicę (funkcja w pozostałych punktach jest ciągła, jako że składa się z funkcji elementarnych):

 $\lim_{x\to 0} f(x) = \lim_{x\to 0} x \sin(\frac{1}{x})$ - możemy to zrobić z twierdzenia o 3 funkcjach:

Korzystając tradycyjnie z warunku $-1 \le \sin x \le 1$ możemy zauważyć, że:

$$-x\leqslant x\sin(\frac{1}{x})\leqslant x$$
a z kolei $\lim_{x\to 0}x=\lim_{x\to 0}-x=0$ więc i $\lim_{x\to 0}x\sin(\frac{1}{x})=0$

Mamy więc $\lim_{x\to 0} f(x) = f(0)$ więc ta funkcja jest ciągła

Zad 2

Zbadaj ciągłość funkcji

$$f(x) = \begin{cases} x+2 & \text{dla } x < 0 \\ 0 & \text{dla } x = 0 \\ -x+2 & \text{dla } x > 0 \end{cases}$$

Oczywiście tak jak i poprzednio interesuje nas punkt 0. Musimy policzyć granice lewo i prawo stronne:

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} x + 2 = 2$$
$$\lim_{x\to 0^{+}} f(x) = \lim_{x\to 0^{+}} -x + 2 = 2$$

Granice prawo i lewo stronne są sobie więc równe, ale nie są one równe wartości funkcji w badanym punkcie. Stąd też ta funkcja nie jest ciągła w punkcie 0.

Twierdzenie Barboux

23.2 Pochodna

Istnienie pochodnej w punkcie z definicji

Zbadaj istnienie pochodnej funkcji

$$f(x) = \begin{cases} x^2 \cdot \sin \frac{1}{x} & \text{dla } x \neq 0 \\ 0 & \text{dla } x = 0 \end{cases}$$

dla punktu $x_0 = 0$

Aby stwierdzić czy funkcja ma pochodną w punkcie x_0 musimy obliczyć jej prawo i lewo stronną pochodną z definicji:

$$f'_{-}(x_0) \stackrel{def}{=} \lim_{\Delta x \to 0^{-}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{(\Delta x)^2 \cdot \sin \frac{1}{\Delta x} - 0}{\Delta x} = \lim_{\Delta x \to 0^{-}} \Delta x \cdot \sin \frac{1}{\Delta x} = 0$$
 - można to pokazać z twierdzenia o 3 funkcjach

Analogiczny wywód możemy zrobić dla pochodnej prawostronnej - wynik również będzie $\boldsymbol{0}$

Ponieważ pochodne prawo i lewo stronne są równe to pochodna tej funkcji w punkcie x_0 istnieje

Obliczanie przybliżonej wartości funkcji za pomocą różniczki

Oblicz przybliżoną wartość liczby $\sqrt[3]{8.2}$

Korzystamy ze wzoru $f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x$

W naszym przypadku:

$$f(x) = \sqrt[3]{x}$$

$$x_0 = 8$$

$$\Delta x = 0.2$$

$$f'(x) = \frac{1}{3\sqrt[3]{x^2}}$$

Obliczamy więc:

$$f(8) = 2$$

$$f'(8) = \frac{1}{12}$$

Więc
$$\sqrt[3]{8.2} \approx 2 + \frac{1}{12} \cdot 0.2 = \frac{121}{60}$$

24 Ekstrema funkcji jednej zmiennej. Definicje i twierdzenia.

Zadanie 24.1 Korzystając z definicji uzasadnij, że funkcja

$$f(x) = \begin{cases} 1 - x^2 & x \neq 0 \\ 0 & x = 0 \end{cases}$$

ma ekstremum lokalne w punkcie $x_0 = 0$.

f(0) = 0. Dla każdego punktu $x \in (-1,1) \setminus \{0\}$ f(x) > 0. Zatem x jest właściwym minimum lokalnym (sąsiedztwo S(0,1)).

Zadanie 24.2 Znajdź najmniejszą i największą wartość funkcji $f(x) = x^2 - 2x + 3$ na przedziałe [-2, 5]

$$f'(x) = 2x - 2$$
$$f'(x) = 0 \Leftrightarrow x = 1$$

Wartość pochodnej jest ujemna na przedziale [-2,1) i dodatnia na przedziale (1,5], zatem istnieje minimum lokalne w punkcie 1.

Wartość najmniejsza funkcji f(x) na przedziale [-2,5] wynosi 2, wartość największa: 18.

Zadanie 24.3 Znajdź wszystkie ekstrema lokalne funkcji $f(x) = \frac{x}{x^2+4}$

$$f'(x) = \frac{x^2 + 4 - x * 2x}{(x^2 + 4)^2} = \frac{-x^2 + 4}{(x^2 + 4)^2}$$

f'(x) = 0 dla punktów w których $-x^2 + 4 = 0$, tzn. 2 i -2. Sprawdźmy znak pochodnej pomiędzy jej miejscami zerowymi:

Widzimy, że pochodna zmienia znak zarówno w -2 jak i 2. Zatem funkcja f'(x) ma minimum lokalne (równe $-\frac{1}{4}$) w punkcie -2, oraz maksimum lokalne (równe $\frac{1}{4}$) w punkcie 2.

25 Całka Riemanna funkcji jednej zmiennej.

Zadanie 25.1 Korzystając z wzoru Newtona - Leibniza oblicz wartość całki

$$\int_0^2 \frac{3x+1}{3x-1} dx$$

$$\int \frac{3x-1}{3x+1} dx = \left| u = 3x+1 \quad u' = 3 \right| = \frac{1}{3} \int \frac{u-2}{u} du = \frac{1}{3} \int du - \frac{2}{3} \int \frac{1}{u} du = \frac{u-2ln(u)}{3} + C = \frac{3x+1-2ln(3x+1)}{3} + C = x - \frac{2ln(3x+1)}{3} + C$$

$$\int_0^2 \frac{3x-1}{3x+1} dx = \left[x - \frac{2ln(3x+1)}{3} \right]_0^2 = 2 - \frac{2}{3}(ln(7) + ln(1)) = 2 - \frac{2ln(7)}{3}$$

Zadanie 25.2 Korzystając z definicji całki Riemanna uzasadnij równość

$$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right) = \frac{\pi}{4}$$

$$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \frac{n^2}{n^2 + i^2} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \frac{1}{1 + (\frac{i}{n})^2}$$

Korzystamy z definicji całki Riemanna ([a,b] = [0,1], $f(x) = \frac{1}{1+x^2})$

$$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right) = \int_0^1 \frac{1}{1 + x^2} = \left[arctg \ x \right]_0^1 = \frac{\pi}{4}$$

Zadanie 25.3 Korzystając z definicji oblicz całkę

$$\int_0^1 2^x dx$$

Korzystając ze wzoru

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} f(a+i\frac{b-a}{n})$$

uzyskujemy

$$\int_0^1 2^x \, dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n 2^{\frac{i}{n}} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n (\sqrt[n]{2})^i$$

Suma n wyrazów ciągu geometrycznego jest równa $a_1\frac{q^n-1}{q-1}$

$$\lim_{n \to \infty} \frac{1}{n} \cdot \sqrt[n]{2} \cdot \frac{(\sqrt[n]{2})^n - 1}{\sqrt[n]{2} - 1} = \lim_{n \to \infty} \sqrt[n]{2} \cdot \frac{1}{n \cdot (\sqrt[n]{2} - 1)} = \lim_{n \to \infty} \frac{\sqrt[n]{2}}{\frac{\sqrt[n]{2} - 1}{\frac{1}{n}}} = \frac{\lim_{n \to \infty} \sqrt[n]{2}}{\lim_{n \to \infty} \frac{2^{\frac{1}{n}}}{\frac{1}{n}}} = \frac{\lim_{n \to \infty} \sqrt[n]{2}}{\lim_{k \to 0} \frac{2^{k}}{k}} = \frac{1}{\ln 2} = \log_2 e$$

26 Pochodne cząstkowe funkcji wielu zmiennych; różniczkowalność i różniczka funkcji.

 Korzystając z definicji zbadać, czy istnieją pochodne cząstkowe rzędu pierwszego podanych funkcji

$$f(x,y) = x \cdot \sin xy, (x_0, y_0) = (\pi, 1)$$

$$\frac{\partial f}{\partial x}(\pi, 1) \stackrel{def}{=} \lim_{\Delta x \to 0} \frac{f(\pi + \Delta x, 1) - f(\pi, 1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(\pi + \Delta x)\sin((\pi + \Delta x)) - \pi\sin(\pi)}{\Delta x} = \lim_{\Delta x \to 0} \left[(\pi + \Delta x) \frac{-\sin\Delta x}{\Delta x} \right] = -\pi$$
(5)

- Obliczyć pochodne cząskowe pierwszego rzędu podanych funkcji $f(x,y) = e^{x^2 \sin y}$

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(e^{x^2 \sin y} \right) = \left(e^{x^2 \sin y} \right) \cdot 2x \sin y \tag{6}$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left(e^{x^2 \sin y} \right) = \left(e^{x^2 \sin y} \right) \cdot x^2 \cos y \tag{7}$$

- Obliczyć pochodne cząstkowe drugiego rzędu podanych funkcji $f(x,y) = xy + \tfrac{x^2}{y^3}$

Początkowo wyliczamy pochodne pierwszego rzędu

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(xy + \frac{x^2}{y^3} \right) = y + \frac{2x}{y^3} \tag{8}$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left(xy + \frac{x^2}{y^3} \right) = x + \frac{3x^2}{y^4} \tag{9}$$

Następnie wyliczamy pochodne cząstkowe drugiego rzędu

$$\frac{\partial f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(y + \frac{2x}{y^3} \right) = \frac{2}{y^3} \tag{10}$$

$$\frac{\partial f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial x} \left(x - \frac{3x^2}{y^4} \right) = 1 - \frac{6x}{y^4} \tag{11}$$

$$\frac{\partial f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} \left(y + \frac{2x}{y^3} \right) = 1 - \frac{6x}{y^4} \tag{12}$$

$$\frac{\partial f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(x - \frac{3x^2}{y^4} \right) = \frac{12x^2}{y^5}$$
 (13)

 Korzystajc z definicji zbadać różniczkowalnośc podanych funkcji we wskazanych punktach

$$f(x,y) = x^2 - y^2$$
 w punkcie $(x_0, y_0) = (1, -2)$

Korzystając z definicji, wiemy, żę funkcja jest różniczkowalna jeżeli zachodzi poniższa równość

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) - \frac{\partial f}{\partial x}(x_0, y_0) \Delta x - \frac{\partial f}{\partial y}(x_0, y_0) \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$
(14)

Najpierw policzymy potrzebne pochodne cząstkowe we wskazanych punktach

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(x^2 - y^2) = 2x$$
 $\frac{\partial f}{\partial x}(1, -2) = 2x|_{(1, -2)} = 2$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(x^2 - y^2) = 2y$$
 $\frac{\partial f}{\partial y}(1, -2) = 2y|_{(1, -2)} = 4$

Nastepnie sprawdzimy równość z definicji

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{(1 + \Delta x)^2 - (-2 + \Delta y)^2 - (1 - 4) - 2\Delta x - 4\Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} =$$

$$= \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{1 + 2\Delta x + (\Delta x)^2 - (4 - 4\Delta y + (\Delta y)^2) - 2\Delta x - 4\Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} =$$

$$= \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{(\Delta x)^2 - (\Delta y)^2}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{(\Delta x)^2 + (\Delta y)^2 - 2(\Delta y)^2}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} =$$

$$= \lim_{(\Delta x, \Delta y) \to (0,0)} \left[\sqrt{(\Delta x)^2 + (\Delta y)^2} \right] - \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{2(\Delta y)^2}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}$$

$$= \lim_{(\Delta x, \Delta y) \to (0,0)} \left[\sqrt{(\Delta x)^2 + (\Delta y)^2} \right] - \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{2(\Delta y)^2}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}$$
(15)

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \left[\sqrt{(\Delta x)^2 + (\Delta y)^2} \right] = 0$$

Oraz z twierdzenia o trzech ciągach

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{2(\Delta y)^2}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

Zatem cała granica wynosi 0 oraz funkcja jest różniczkowalna w punkcie (1,-2).

27 Ekstrema funkcji wielu zmiennych. Definicje i twierdzenia.

• Zbadać czy podana funkcja ma ekstrema lokalne oraz jeśli tak to podać je

$$f(x,y) = 3(x-1)^2 + 4(y+2)^2 = 3(x^2 - 2x + 1) + 4(y^2 + 4y + 4) = 3x^2 - 6x + 3 + 4y^2 + 16y + 4$$

Korzystamy z warunku wystarczającego na istnienie ekstremum lokalnego funkcji dwóch zmiennych

Najpierw liczymy pochodne cząstkowe

$$\frac{\partial f}{\partial x}(x,y) = \frac{\partial}{\partial x} \left(3x^2 - 6x + 3 + 4y^2 + 16y + 4 \right) = 6x - 6$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{\partial}{\partial y} \left(3x^2 - 6x + 3 + 4y^2 + 16y + 4 \right) = 8y + 16$$
(16)

Funkcja f może mieć ekstrema tylko w miejscu zerowania się pochodnych

$$\begin{cases} \frac{\partial f}{\partial x}(x_0, y_0) = 0\\ \frac{\partial f}{\partial y}(x_0, y_0) = 0 \end{cases}$$

$$\begin{cases} 6x_0 - 6 = 0\\ 8y_0 + 16 = 0 \end{cases}$$
(17)

Zatem punkt zerowania się pochodnych, w którym funkcja może mieć ekstrema to $P(x_0,y_0)=P(1,-2)$

Wyliczamy pochodne cząstkowe drugiego rzędu oraz badamy znak macierzy Jacobi'ego

$$\det \begin{bmatrix} \frac{\partial^2 f}{\partial^2 x}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) & \frac{\partial^2 f}{\partial^2 y}(x_0, y_0) \end{bmatrix}$$
(18)

$$\frac{\partial f}{\partial x^2}(x,y) = \frac{\partial}{\partial x} (6x - 6) = 6$$

$$\frac{\partial f}{\partial x \partial y}(x, y) = \frac{\partial}{\partial x} (8y + 16) = 0$$

$$\frac{\partial f}{\partial y \partial x}(x, y) = \frac{\partial}{\partial y} (6x - 6) = 0$$

$$\frac{\partial f}{\partial y^2}(x,y) = \frac{\partial}{\partial x} (8y + 16) = 8$$

$$\det \begin{bmatrix} 6 & 0 \\ 0 & 8 \end{bmatrix} = 6 \cdot 8 = 48 > 0$$

Zatem funkcja f
 ma ekstremum lokalne w punkcie (1,-2) oraz $\frac{\partial f}{\partial x^2}(x_0,y_0)>0$ zatem jest to minimum lokalne właściwe.

28 Twierdzenie o zmianie zmiennych w rachunku całkowym; współrzędne walcowe i sferyczne.

Zadanie 28.1 Wprowadzając współrzędne walcowe obliczyć podaną całkę po wskazanych obszarach:

$$\iiint_U (x^2+y^2)\,dx\,dy\,dz,\quad gdzie\ U:\sqrt{x^2+y^2}\leqslant z\leqslant 1$$

Rozwiązanie:

Obszar całkowania U jest stożkiem o wysokości 1 i promieniu podstawy 1. Stożek U i jego rzut na płaszczyznę xOy przedstawiony na rysunkach:

Obszar D_{xy} jest określony we współrzędnych biegunowych przez nierówności

$$0 \leqslant \varphi \leqslant 2\pi, \quad 0 \leqslant \varrho 1.$$

Dla ustalonego kąta φ rysujemy przekrój obszaru U półpłaszczyzną przechodzącą przez oś Oz i przez ramię kąta φ (na rysunku). Z rysunku odczytujemy zakres zmienności h. Mamy $\varrho \leqslant h \leqslant 1$. Ostatecznie obszar U we współrzędnych walcowych jest określony nierównościami:

$$0 \leqslant \varphi \leqslant 2\pi$$
, $0 \leqslant \rho \leqslant 1$, $\rho \leqslant h \leqslant 1$.

Dokonując teraz zamiany zmiennych w całce potrójnej na współrzędne walcowe otrzymujemy:

$$\iiint_{U} (x^{2} + y^{2}) dx dy dz = \int_{0}^{2\pi} d\varphi \int_{0}^{1} d\varrho \int_{\varrho}^{1} (\varrho^{2} \cos^{2}\varphi + \varrho^{2} \sin^{2}\varphi \varrho) dh
= \int_{0}^{2\pi} d\varphi \int_{0}^{1} d\varrho \int_{\varrho}^{1} \varrho^{3} dh = \int_{0}^{2\pi} d\varphi \int_{0}^{1} d \left[\varrho^{3} h \right]_{h=\varrho}^{h=1} d\varrho
= \int_{0}^{2\pi} d\varphi \int_{0}^{1} (\varrho^{3} - \varrho^{4}) d\varrho = \left(\int_{0}^{2\pi} d\varphi \right) \left(\int_{0}^{1} (\varrho^{3} - \varrho^{4}) d\varrho \right)
= \left[\varphi \right]_{0}^{2\pi} \cdot \left[\frac{\varrho^{4}}{4} - \frac{\varrho^{5}}{5} \right]_{0}^{1} = 2\pi \cdot \left(\frac{1}{4} - \frac{1}{5} \right) = \frac{\pi}{10}$$

Zadanie 28.2 Wprowadzając współrzędne sferyczne obliczyć podaną całkę po wskazanych obszarach:

$$\iiint_{U} (x^2 + y^2 + z^2) \, dx \, dy \, dz, \quad gdzie \ U : -\sqrt{4 - x^2 - y^2} \leqslant z \leqslant 0$$

Rozwiązanie: Obszar całkowania U jest dolną półkulą o promieniu R=2. Półkulę U i jej rzut D_{xy} na płaszczyznę xOy przedstawiony na rysunkach:

Na podstawie rzutu D obszaru U ustalamy zakres zmienności kąta φ we współrzędnych sferycznych (φ, ψ, ϱ) . Mamy $0 \leqslant \varphi \leqslant 2\pi$. Aby określić zakres zmienności kąta ψ i promienia wodzącego rysujemy (dla ustalonego kąta φ) przekrój obszaru U półpłaszczyzną przechodzącą przez oś Oz i przez ramię kąta φ . Z rystunku odczytujemy te zakresy:

$$-\frac{\pi}{2}\leqslant\psi\leqslant0,\quad 0\leqslant\varrho\leqslant2.$$

Ostatecznie obszar U we współrzędnych sferycznych opisany jest układem nierówności postaci:

$$0 \leqslant \varphi \leqslant 2\pi, \quad -\frac{\pi}{2} \leqslant \psi \leqslant 0, \quad 0 \leqslant \varrho \leqslant 2.$$

W rozważanej całce dokonujemy zamiany zmiennych na współrzędne sferyczne. Mamy:

$$\begin{split} \iiint_{U}\mu(x^{2}+y^{2}+z^{2})\,dx\,dy\,dz \\ &= \int_{0}^{2\pi}d\varphi\int_{-\frac{\pi}{2}}^{0}d\psi\int_{0}^{2}(\varrho^{2}cos^{2}\varphi cos^{2}\psi + \varrho^{2}sin^{2}\varphi cos^{2}\psi + \varrho^{2}sin^{2}\psi)\varrho^{2}cos\psi d\varrho \\ &= \int_{0}^{2\pi}d\varphi\int_{-\frac{\pi}{2}}^{0}d\psi\int_{0}^{2}\varrho^{4}cos\psi d\varrho \\ &= \left(\int_{0}^{2\pi}d\varphi\right)\left(\int_{-\frac{\pi}{2}}^{0}cos\psi d\psi\right)\cdot\left(\int_{0}^{2}\varrho^{4}d\varrho\right) \\ &= \left[\psi\right]_{0}^{2\pi}\cdot\left[sin\psi\right]_{-\frac{pi}{2}}^{0}\cdot\left[\frac{\varrho^{5}}{5}\right]_{0}^{2} = 2\pi\cdot1\cdot\frac{32}{5} = \frac{64}{5}\pi \end{split}$$

Teoretyczne podstawy informatyki

- 29 Metody dowodzenia poprawności pętli.
- 30 Odwrotna Notacja Polska: definicja, własności, zalety i wady, algorytmy.
- 31 Modele obliczen: maszyna Turinga.
- 32 Modele obliczen: automat skończony, automat ze stosem.

33 Złożoność obliczeniowa - definicja notacji: $O,\Omega,\Theta.$

34 Złożoność obliczeniowa - pesymistyczna i średnia.

- 35 Metoda "dziel i zwyciężaj"; zalety i wady.
- 36 Lista: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.
- 37 Kolejka i kolejka priorytetowa: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.

38 Algorytmy sortowania QuickSort i MergeSort: metody wyboru pivota w QS; złożoności.

39 Algorytm sortowania bez porównań (sortowanie przez zliczanie, sortowanie kubełkowe oraz sortowanie pozycyjne).

40 Reprezentacja drzewa binarnego za pomocą porządków (preorder, inorder, postorder).

- 41 Algorytmy wyszukiwania następnika i poprzednika w drzewach BST; usuwanie węzła.
- 42 B-drzewa: operacje i ich złożoność.
- 43 Drzewa AVL: rotacje, operacje z wykorzystaniem rotacji i ich złożoność.
- 44 Algorytmy przeszukiwania wszerz i w głąb w grafach.
- 45 Algorytmy wyszukiwania najkrótszej ścieżki (Dijkstry oraz Bellmana-Forda).
- 46 Programowanie dynamiczne: podział na podproblemy, porównanie z metodą "dziel i zwyciężaj".
- 47 Algorytm zachłanny: przykład optymalnego i nieoptymalnego wykorzystania.
- 48 Kolorowania wierzchołkowe (grafów planarnych) i krawędziowe grafów, algorytmy i ich złożoności.
- 49 Algorytmy wyszukiwania minimalnego drzewa rozpinającego: Boruvki, Prima i Kruskala.
- Najważniejsze algorytmy wyznaczania otoczki wypukłej zbioru punktów w układzie współrzędnych (Grahama, Jarvisa, algorytm przyrostowy (quickhull)).
- 51 Problemy P, NP, NP-zupełne i zależności między nimi. Hipoteza P vs. NP.
- 52 Automat minimalny, wybrany algorytm mini-

- 58 Reprezentacja liczb całkowitych; arytmetyka.
- 59 Reprezentacja liczb rzeczywistych; arytmetyka zmiennopozycyjna.
- 60 Różnice w wywołaniu funkcji statycznych, niestatycznych i wirtualnych w C++.
- 61 Sposoby przekazywania parametrów do funkcji (przez wartość, przez referencję). Zalety i wady.
- Wskaźniki, arytmetyka wskaźników, różnica między wskaźnikiem a referencją w C++.
- 63 Podstawowe założenia paradygmatu obiektowego: dziedziczenie, abstrakcja, enkapsulacja, polimorfizm.
- 64 Funkcje zaprzyjaźnione i ich związek z przeładowaniem operatorów w C++.
- 65 Programowanie generyczne na podstawie szablonów w języku C++.
- 66 Podstawowe kontenery w STL z szerszym omówieniem jednego z nich.
- 67 Obsługa sytuacji wyjątkowych w C++.
- 68 Obsługa plików w języku C.
- 69 Model wodospadu a model spiralny wytwarzania oprogramowania.
- 70 Diagram sekwencji i diagram przypadków użycia w języku UML.

- Relacyjny model danych, normalizacja relacji (w szczególności algorytm doprowadzenia relacji do postaci Boyce'a-Codda), przykłady.
- 77 Indeksowanie w bazach danych: drzewa B+, tablice o organizacji indeksowej, indeksy haszowe, mapy binarne.
- 78 Podstawowe cechy transakcji (ACID). Metody sterowania współbieżnością transakcji, poziomy izolacji transakcji, przykłady.
- 79 Złączenia, grupowanie, podzapytania w języku SQL.
- 80 Szeregowalność harmonogramów w bazach danych.
- 81 Definicja cyfrowego układu kombinacyjnego przykłady układów kombinacyjnych i ich implementacje.
- 82 Definicja cyfrowego układu sekwencyjnego przykłady układów sekwencyjnych i ich implementacje.
- 83 Minimalizacja funkcji logicznych.
- 84 Programowalne układy logiczne PLD (ROM, PAL, PLA).
- 85 Schemat blokowy komputera (maszyna von Neumanna).
- 86 Zarządzanie procesami: stany procesu, algorytmy szeregowania z wywłaszczaniem.