mid2

(a)
$$F = A'B'C'D' + A'BC'D + AB'CD' + ABCD$$

= ((A'B'C'D')' (A'BC'D)' (AB'CD')' (ABCD)')'

√ AB				
CD	00	01	11	10
00	1	0₽	0₽	0₽
01	0↩	10	0₽	0€
11	0₽	0₽	10	0€
10	0↩	0₽	0₽	1

	Α	В	С	D	F
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	1

(b)
$$F = (A'+C)(A+C')(B'+D)(B+D')$$

= $((A'+C)' + (A+C')' + (B'+D)' + (B+D')')'$

√ AB				
CD	00	01	11	10
00	1₽	0₽	0₽	0₽
01	0₽	1₽	0₽	0₽
11	0₽	04□	1₽	0₽
10	0₽	04	043	1₽

	Α	В	С	D	F
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	1

2. Sol:

X	Y	C_{in}	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

(a)

(b)

4. G Y, Y. $I_3 I_2 I_1$ 23 22 2, 20 Ó 0 \mathcal{O} 0 0 ව 0 O \mathcal{G} ପ O 0

6 0 (-	1010010
0	1100100
1	1 1 1 1 0 0 0
	'
⇒ ₹3 = A	
Zz = AB	

Z1 = A'B' C'D

write the Verilog code

```
module HA(a, b, sum, c_out);
input wire a, b;
output wire sum, c_out;
xor (sum, a, b);
and (c_out, a, b);
endmodule
module FA(a, b, c_in, sum, c_out);
input a, b, c_in;
output sum, c_out;
wire w1, w2, w3;
HA M1(.a(a), .b(b), .sum(w1), .c_out(w2));
HA M2(.a(w1), .b(c_in), .sum(sum), .c_out(w3));
or (c_out, w2, w3);
endmodule
```


2分

	Q ₂ ⁺ Q ₁ ⁺ Q ₀ ⁺		
Q ₂ Q ₁ Q ₀	U=1	U=0	
000	001	111	
001	010	000	
010	011	001	
011	100	010	
100	101	011	
101	110	100	
110	111	101	
111	000	110	

```
• U=1  D_{Q0} = Q_0^{+} = Q_0^{'} \quad 1 
 D_{Q1} = Q_1^{+} = Q_1 Q_0^{'} + Q_1^{'} Q_0 = Q_1 \oplus Q_0 
 D_{Q2} = Q_2^{+} = Q_2^{'} Q_1 Q_0 + Q_2 Q_1^{'} + Q_2^{'} Q_0^{'} = Q_2^{'} Q_1 Q_0 + Q_2^{'} Q_1^{'} Q_0^{'} = Q_2^{'} Q_1^{'} Q_0^{'} + Q_2^{'} Q_1^{'} Q_0^{'} = Q_2^{'} Q_1^{'} Q_0^{'} + Q_2^{'}
```

```
\begin{split} & \mathsf{D}_{\mathsf{Q}0} = \mathsf{Q}_0^{+} = \mathsf{Q}_0 \oplus \mathsf{U} = \mathsf{Q}_0^{'} & \mathbf{2} \not \widehat{)} \\ & \mathsf{D}_{\mathsf{Q}1} = \mathsf{Q}_1^{+} = \mathsf{Q}_1 \oplus (\mathsf{U} \mathsf{Q}_0 + \mathsf{U}' \mathsf{Q}_0') = \mathsf{U} \mathsf{Q}_1^{'} \mathsf{Q}_0 + \mathsf{U}' \mathsf{Q}_1^{} \mathsf{Q}_0 + \mathsf{U} \mathsf{Q}_1^{} \mathsf{Q}_0^{'} + \mathsf{U}' \mathsf{Q}_1^{'} \mathsf{Q}_0^{'} & \mathbf{2} \not \widehat{)} \\ & \mathsf{D}_{\mathsf{Q}2} = \mathsf{Q}_2^{+} = \mathsf{Q}_2 \oplus (\mathsf{U} \mathsf{Q}_1^{} \mathsf{Q}_0 + \mathsf{U}' \mathsf{Q}_1^{'} \mathsf{Q}_0^{'}) \\ & = \mathsf{U}' \mathsf{Q}_2^{} \mathsf{Q}_1^{} \mathsf{Q}_0 + \mathsf{U}' \mathsf{Q}_2^{'} \mathsf{Q}_1^{'} \mathsf{Q}_0^{'} + \mathsf{U} \mathsf{Q}_2^{} \mathsf{Q}_1^{'} \mathsf{Q}_0^{'} + \mathsf{U} \mathsf{Q}_2^{'} \mathsf{Q}_1^{} \mathsf{Q}_0 + \mathsf{Q}_2^{} \mathsf{Q}_1^{'} \mathsf{Q}_0^{'} + \mathsf{U} \mathsf{Q}_2^{} \mathsf{Q}_1^{'} \mathsf{Q}_0^{'} + \mathsf{U} \mathsf{Q}_2^{'} \mathsf{Q}_1^{} \mathsf{Q}_0^{'} + \mathsf{U} \mathsf{Q}_2^{'} \mathsf{Q}_1^{'} \mathsf{Q}_0^{'} \\ & = \mathsf{U} \mathsf{Q}_2^{} \mathsf{Q}_1^{'} + \mathsf{U}' \mathsf{Q}_2^{} \mathsf{Q}_0^{} + \mathsf{Q}_2^{} \mathsf{Q}_1^{} \mathsf{Q}_0^{'} + \mathsf{U} \mathsf{Q}_2^{'} \mathsf{Q}_1^{} \mathsf{Q}_0^{} + \mathsf{U}' \mathsf{Q}_2^{'} \mathsf{Q}_1^{'} \mathsf{Q}_0^{'} \\ & = \mathsf{U} \mathsf{Q}_2^{} \mathsf{Q}_1^{'} + \mathsf{U}' \mathsf{Q}_2^{} \mathsf{Q}_0^{} + \mathsf{Q}_2^{} \mathsf{Q}_1^{} \mathsf{Q}_0^{'} + \mathsf{U} \mathsf{Q}_2^{'} \mathsf{Q}_1^{} \mathsf{Q}_0^{} + \mathsf{U}' \mathsf{Q}_2^{'} \mathsf{Q}_1^{'} \mathsf{Q}_0^{'} \\ & = \mathsf{U} \mathsf{Q}_2^{} \mathsf{Q}_1^{'} + \mathsf{U}' \mathsf{Q}_2^{} \mathsf{Q}_0^{} + \mathsf{Q}_2^{} \mathsf{Q}_1^{} \mathsf{Q}_0^{'} + \mathsf{U} \mathsf{Q}_2^{'} \mathsf{Q}_1^{} \mathsf{Q}_0^{} + \mathsf{U}' \mathsf{Q}_2^{'} \mathsf{Q}_1^{'} \mathsf{Q}_0^{'} + \mathsf{Q}_2^{'} \mathsf{Q}_1^{'} + \mathsf{Q}_2^{'} \mathsf{Q}_1^{'} \mathsf{Q}_1^{'} + \mathsf{Q}_2^{'} \mathsf{Q}_1^{'} \mathsf{Q}_1^{'} + \mathsf{Q}_1^{'} \mathsf{Q}_1^{'} + \mathsf{Q}_2^{'} \mathsf{Q}_
```


(a) Conversion of J-K to T (b) Conversion of D to T

沒用gate_level 扣3分

```
9.

input [3:0] bcd; 1分

output [3:0] ex3; 1分

wire cd,c_d_0,c_d,b_0; 1分
```

wire temp1,temp2,temp3;

```
not n1(ex3[0],bcd[0]);//(1)
and a1(cd,bcd[1],bcd[0]);//(2)
or o1(c_d,bcd[1],bcd[0]);//(3)
not n3(b 0,bcd[2]);//(4)
not n2(c_0 d_0, c_0 d); //(5)
or o2(ex3[1],cd,c d 0);//6
and a2(temp1, bcd[2], c_d_0); //(7)
and a3(temp2,b 0,c d);//(8)
and a4(temp3,bcd[2],c d);//(9)
or o3(ex3[2],temp1,temp2);//(10)
or o4(ex3[3],temp3,bcd[3]);//(11)
```

6分(一個0.5) 1分(標1-11gate)

```
reg [3:0] t_bcd; 1分
wire [3:0] t_ex3; 1分
integer i;
```

BCD_to_EX3 bcdex3(.bcd(t_bcd), .ex3(t_ex3)); 1分

Excess-3			BCD				
W	X	у	Z	Α	В	С	D
0	0	0	0	X	X	X	X
0	0	0	1	X	X	X	X
0	0	1	0	X	X	X	X
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	0	0	0	1	1
0	1	1	1	0	1	0	0
1	0	0	0	0	1	0	1
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	1
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	1
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

```
initial
initial
                                      1分
                            begin
begin
                                i=0;
   i=0:
                               t_bcd = 4'd7;
   t_bcd = 4'd7;
                                #0.1;
   #0.1;
                               t_bcd = 4'd9;
   t_bcd = 4'd9;
   #0.1;
                                #0.1;
   t_bcd = 4'd0;
                               t\_bcd = 4'd0;
   #0.3;
                                #0.1;
   t_bcd = 4'd2;
                                for(i=0; i<10; i=i+2)
                                                             5分
   #0.2;
                                begin
   t_bcd = 4'd4;
                                 t_bcd = i;
   #0.2;
                                  #0.2;
   t_bcd = 4'd6;
                                end
   #0.2;
                                t_bcd = 4'd8;
   t_bcd = 4'd8;
                                #0.1;
   #0.3;
                                t_bcd = 4'd3;
   t_bcd = 4'd3;
                                #0.1;
   #0.1;
                                $finish; 1分
   $finish
                            end
end
```