Transformation to add a "missing" numeric feature

Regression: missing feature

We have seem an example of a missing numeric feature in the past.

Recall our example illustrating linear regression

• the first model hypothesized the relationship as

$$\mathbf{y} = \Theta_0 + \Theta_1 \mathbf{x}$$

- Error Analysis revealed a systemic error
- Causing us to add another feature (the square of the first feature)

$$\mathbf{y} = \Theta_0 + \Theta_1 \mathbf{x} + \Theta_2 \mathbf{x}^2$$

Classification: missing feature

The Logistic Regression Classifier

- is a type of Classifier
- that creates a linear surface to separate classes

But what if the data is such that a linear surface cannot separate classes?

- we can use a classifier that *does not* assume linear separability (KNN, Decision Trees)
- or we can add a feature to make the classes linearly separable
 - here: we illustrate with a numeric feature

Consider Binary Classification on the following "bulls-eye" dataset.

```
In [5]: fig, ax = plt.subplots(1,1, figsize=(6,6))
Xc, yc = svmh.make_circles(ax=ax, plot=True)
```


Visually, we can see that the classes are separable, but clearly not by a line. Here's what one linear classifier (an SVC, which we will study later) produces

```
In [6]: fig, ax = plt.subplots(1,1, figsize=(6,6))
    svm_clf = svmh.circles_linear(Xc, yc, ax=ax)
```


Let's add a new numeric feature defined by the (Gaussian) Radial Basis Function (RBF) ${\bf x}_3=e^{-\sum_j{\bf x}_j^2}$

$$\mathbf{x}_3 = e^{-\sum_j \mathbf{x}_j^2}$$

Our features are now 3 dimensional; let's look at the plot:

```
In [7]: X_w_rbf = svmh.circles_rbf_transform(Xc)
    _= svmh.plot_3D(X=X_w_rbf, y=yc )
```


Magic! The new feature enables a plane that is parallel to the $\mathbf{x}_1, \mathbf{x}_2$ plane to separate the two classes.

We can write the RBF transformation in a more general form:

$$ext{RBF}(\mathbf{x}) = e^{-||\mathbf{x} - \mathbf{x}_c||}$$

- ullet $||{f x}-{f x}_c||$ is a measure of the distance between example ${f x}$ and reference point ${f x}_c$
- In our case
 - $||\mathbf{x} \mathbf{x}_c||$ is the L2 (Euclidean) distance
 - \mathbf{x}_c is the origin (0,0)

There is an even simpler transformation we could have used.

$$\mathbf{x}_3 = -\sum_j \mathbf{x}_j^2$$

That is: the (negative) of the L2 distance.

The advantage of the RBF is that it has little effect on points far from the reference point.

Curved boundaries and Linear Classifiers

Recall the transformation of adding a higher order polynomial feature for the "curvy" dataset

$$\mathbf{y} = \Theta_0 + \Theta_1 \mathbf{x} + \Theta_2 \mathbf{x}^2$$

This equation is *still linear* in the two features \mathbf{x}_1 and \mathbf{x}_1^2 .

In Classification, we can created curved boundaries that are still linear in their features.

• But clearly not linear in raw features

The two plots below use a Classifier requiring Linear Separability of the examples

- the right plot adds a polynomial feature
- creating a curved boundary
- even though the equation is still linear in the features

/home/kjp/anaconda3/lib/python3.7/site-packages/sklearn/svm/base.py:929: Conve rgenceWarning: Liblinear failed to converge, increase the number of iteration s. "the number of iterations.", ConvergenceWarning) In [10]: fig

Out[10]:

Transformations should be motivated by logic, not magic!

Although the transformation on the "bulls-eye" dataset seems magical, we must be skeptical of magic

- There should be some logical justification for the added feature
- Without such logic: we are in danger of overfitting and will fail to generalize to test examples

For example:

- Perhaps $\mathbf{x}_1, \mathbf{x}_2$ are geographic coordinates (latitude/longitude)
- There is a distinction (different classes) based on distance from the city center $({\bf x}_1,{\bf x}_2)=(0,0)$
 - e.g. Urban/Suburban

- Left plot shows a boundary that is linear in raw features
- Right plot show a boundary that is linear in transformed features
 - plotted in the dimensions of raw features

The transformation results in a boundary shape with greater flexibility.

Transformation to add a "missing" categorical feature

Recall the dataset where training examples formed two distinct groups

• samples at different points in time

In [12]: fig

Out[12]:

How do we pool data that is similar intra-group but different across groups?

In the above example, it appears that

- The groups are defined by examples gathered at different times: $time_0$, $time_1$
- There is a linear relationship in each group in isolation
- There slope of the relationship is the same across time
- But the intercept differs across groups
 - Perhaps this reflects a tax or rebate that is independent of price.

If we are correct in hypothesizing that each group is from the same distribution except for different intercepts

• the following set of equations describes the data (separately for each of the two groups):

$$\mathbf{y}_{(ext{time}_1)} = \Theta_{(ext{time}_1)} + \Theta_1 * \mathbf{x}$$

Trying to fit a line (Linear Regression) as a function of the combined data will be disappointing.

• systematic errors

We can derive a single equation describing both groups

- by adding a categorical feature
 - separate intercept per group

$$\operatorname{Is}_{j}^{(\mathbf{i})} = egin{cases} 1 & \operatorname{if} \mathbf{x}^{(\mathbf{i})} & \operatorname{is in group} j \\ 0 & \operatorname{if} \mathbf{x}^{(\mathbf{i})} & \operatorname{is NOT in group} j \end{cases}$$

For example:

ullet if example i is from the time 0 group

$$\mathrm{Is}_0^{\mathbf{(i)}}=1$$

$$\operatorname{Is}_1^{(\mathbf{i})} = 0$$

Because I_{S_0} and I_{S_1} are complementary

• The following single equation combines the two groups without losing the distinction

$$\mathbf{y} = \Theta_{(\mathrm{time}_0)} * \mathrm{Is}_0 + \Theta_{(\mathrm{time}_1)} * \mathrm{Is}_1 + \Theta_1 * \mathbf{x}$$

Effectively, the equation allows each group to have its own intercept!

This transformation caused examples

- that appear different at the surface level
- to become similar by revealing the deeper relationship

Here's what the design matrix \mathbf{X}'' looks like when we add the two indicators:

$$\mathbf{X}'' = egin{pmatrix} \mathbf{Is}_0 & \mathbf{Is}_1 & \mathbf{other\ features} \ 1 & 0 & \dots \ 0 & 1 & \dots \ dots \ dots \end{pmatrix} egin{pmatrix} ext{time}_0 \ ext{time}_1 \ dots \end{pmatrix}$$

- Examples from the first time period look similar to the first row
- Examples from the second time period look similar to the second row

Because \mathbf{Is}_0 and \mathbf{Is}_1 are complementary

- we have an instance of the Dummy Variable Trap
- we need the usual solution of dropping one binary indicator
 - resulting in

$$\mathbf{y} = \Theta_0 + \Theta'_{(\mathrm{time}_1)} * \mathrm{Is}_1 + \Theta_1 * \mathbf{x}$$

- \blacksquare the intercept term Θ_0 captures the contribution to \boldsymbol{y} of examples in group 0
- the coefficient $\Theta'_{(time_1)}$ captures the *incremental* contribution to y of being in group 1 rather than group 0

Cross features

In our EDA for the Titanic Classification problem we discovered

- being a Female seemed to increase the chances of being in the Survived class
- but <u>deeper analysis (Classification_and_Non_Numerical_Data.ipynb#Conditional-survival-probability-(condition-on-multiple-attributes)</u>) should this to be true *conditional* on not being in Third Class

It seems that we need to identify a group defined by the intersection of two conditions

• Is_{Female} and Is_{PClass}

That is, we want to create a feature FNTC (Female Not Third Class)

- that is True
- ullet only for examples whose features are Sex $\,=\,$ Female and PClass eq 3

We can create a binary indicator that is the intersection of two binary indicators by multiplication

$$\mathrm{FNTC} = \mathrm{Is}_{\mathrm{Female}} * \mathrm{Is}_{\mathrm{PClass}
eq 3}$$

This is called a cross feature or a cross term.

We can use a cross-feature to help with our "bulls-eye" dataset

• rather than adding a numeric term

The group that we want to identify are examples with near-zero values for features \boldsymbol{x}_1 and \boldsymbol{x}_2

Here we create a cross feature that is True if two simpler features hold simultaneously

- $\begin{array}{l} \bullet \ \, \mathrm{Is}_{\mathrm{near\ zero}\ \mathbf{x}_1} \ \, \mathrm{near\ zero\ indicator:} = -\epsilon \leq \mathbf{x}_1 \leq \epsilon \\ \bullet \ \, \mathrm{Is}_{\mathrm{near\ zero}\ \mathbf{x}_2} \ \, \mathrm{near\ zero\ indicator:} = -\epsilon \leq \mathbf{x}_2 \leq \epsilon \\ \end{array}$

The cross feature that identifies examples near (0,0) is

• $Is_{near(0,0)} = Is_{near zero x_1} * Is_{near zero x_2}$

```
In [13]: X_w_sq = svmh.circles_square_transform(Xc)
    _= svmh.plot_3D(X=X_w_sq, y=yc)
```


Cross-features can be abused

Cross terms are very tempting but can be abused when over-used.

Cross features are powerful enough to create one indicator for each training example

• memorizing the training data: will fail to generalize

Here's a picture of the "per example" indicator

First, construct an indicator which is true

• if an example's feature j value is equal to the feature j value of example i:

$$ext{Is}_{\mathbf{x}_j^{(\mathbf{i})}} = (\mathbf{x}_j = \mathbf{x}_j^{(\mathbf{i})})$$

Now construct a cross feature that combines the indicators for all j and a single example i:

$$ext{Is}_{ ext{example }i} \;\; = \;\; (\mathbf{x}_1 = \mathbf{x}_1^{(\mathbf{i})}) * (\mathbf{x}_2 = \mathbf{x}_2^{(\mathbf{i})})$$

This cross feature will be true on example i.

We can construct such a cross feature that recognizes any single example.

And here's the design matrix \mathbf{X}'' with a separate intercept per example.

 \mathbf{X}'' has m intercept columns, one for each example, forming a diagonal of 1's

$$\mathbf{X}'' = egin{pmatrix} \mathbf{const} & \mathrm{Is_{example \, 1}} & \mathrm{Is_{example \, 2}} & \mathrm{Is_{example \, 3}} & \dots & \mathbf{other \, features} \\ 1 & 1 & 0 & 0 & \dots \\ 1 & 0 & 1 & 0 & \dots \\ 1 & 0 & 0 & 1 & \dots \\ \vdots & & & & & \end{pmatrix}$$

We can do the same for $\Theta_1,\Theta_2,\dots,\Theta_n$ resulting in a design matrix \mathbf{X}'' with m*n indicators

• One per example per parameter

Here's a design matrix \mathbf{X}'' with one set of parameters per example: \ \mathbf{X}''

=	$\stackrel{=}{/}\operatorname{\mathbf{const}}$	${ m Is}_{ m example~1}$	$(I_{S_{ ext{example }1}}*\mathbf{x}_1)$	$(\mathrm{Is}_{\mathrm{example}1}*\mathbf{x}_2)$	• • •	${ m Is}_{ m example\ 2}$	$(\mathrm{Is}_{\mathrm{e}},$
	1	1	$\mathbf{x}_1^{(1)}$	$\mathbf{x}_2^{(1)}$		0	
İ	1	0	0	0	• • •	1	
1	(:						

Using this as the design matrix in Linear Regression

- Will get a perfect fit to training examples
- Would likely **not generalize** well to out of sample test examples.

When truly justified a small number of complex cross terms are quite powerful.

```
In [14]: print("Done")
Done
```