FOUNDATIONS OF REPRESENTATION THEORY

6. Exercise sheet

Jendrik Stelzner

November 21, 2013

Exercise 21:

We will assume that V is an artinian module. V is uniform, because $S \neq 0$ is contained in every non-zero submodule of V. This implies that V is indecomposable. For all $f \in \operatorname{End}(V)$ we have $\operatorname{img} f_{|S} \subseteq S$: If $f_{|S} = 0$ this is trivial. Otherwise $\operatorname{img} f_{|S} \subseteq V$ is a non-zero submodule, so $S \subseteq \operatorname{img} f_{|S}$. Because S is non-zero, $f_{|S}^{-1}(S) \subseteq S$ is a non-zero submodule. Because S is simple we get $S = f_{|S}^{-1}(S)$ and thus $\operatorname{img} f_{|S} = S$.

This allows us to define $\varphi: \operatorname{End}(V) \to \operatorname{End}(S), f \mapsto f_{|S}$. It is obvious that φ is a ring homomorphism. By assumption φ is surjective. We know show that

$$\ker \varphi = \{ f \in \operatorname{End}(V) : f \text{ is not invertible} \}.$$

It is clear that

$$\ker \varphi \subseteq \{ f \in \operatorname{End}(V) : f \text{ is not invertible} \}.$$

Let $f\in \operatorname{End}(V)$ be not injective. Because $\ker f\neq 0$ is a submodule we have $S\subseteq \ker f$, so $f_{|S}=0$. Let $g\in \operatorname{End}(V)$ be injective but not surjective. We get a descending chain

$$V \supseteq \operatorname{img} g \supseteq \operatorname{img} g^2 \supseteq \operatorname{img} g^3 \supseteq \dots$$

of submodules of V. By assumption this chain eventually stabilizes, i.e. there exists some $N \in \mathbb{N}$ with $\operatorname{img} g^n = \operatorname{img} g^{n+1}$ for all $n \geq N$. Because g is injective we also have $\operatorname{ker} g^n = \operatorname{ker} g^{n+1}$ for all $n \in \mathbb{N}$. This implies that

$$V = \ker g^N \oplus \operatorname{img} g^N$$
.

Because V is indecomposable this implies that $\ker g^n=0$ and $\operatorname{img} g^N=V$ or $\ker g^N=V$ and $\operatorname{img} g^N=0$. So g is either not injective or surjective, which is contradicts either the injectivity or non-surjectivity of g. So g has to be non-injective and thus contained in $\ker \varphi$.

Because

$$\ker \varphi = \{ f \in \operatorname{End}(V) : f \text{ is not invertible} \}$$

is an ideal in End(V), we get that End(V) is local. so

$$J(\text{End}(V)) = \{ f \in \text{End}(V) : f \text{ is not invertible} \} = \ker \varphi$$

and thus

$$\operatorname{End}(V)/J(\operatorname{End}(V))=\operatorname{End}(V)/\ker\varphi\cong\operatorname{img}\varphi=\operatorname{End}(S).$$