

Confusion Matrix

In a two class problem, the results of the correctly and incorrectly classified samples are recorded in a confusion matrix:

	Predicted Negative	Predicted Positive
Actual Negative	TN	FP
Actual Positive	FN	TP

- TN: # of negative samples correctly classified True Negatives
- **FP**: # of negative samples incorrectly classified as positive False Positives
- FN: # of positive samples incorrectly classified as negative - False Negatives
- TP: # of positive samples correctly classified - True positives

FPR and FNR

False Positive Rate, FPR = FP / (FP + TN)

False Negative Rate FNR = FN / (TP + FN)

FPR and FNR

Both FPR and FNR vary between 0 and 1

Our goal is to minimize both FPR and FNR.

- The confusion matrix, FPR and FNR depend on a probability threshold
 - Values vary depending on the threshold we use to determine the class output

FPR and FNR

- Minimise FNR:
 - Disease diagnosis
 we want to minimise the number of sick people that we do not diagnose correctly

- Minimise FPR:
 - Drug discovery: → we want to minimise the number of drugs that we think could be beneficial, but they are not

FPR

Target	Prediction	
0	0	
0	0	
0	0	
0	1	
0	1	
0	0	
0	0	
1	0	
1	1	
1	1	

•
$$FPR = FP / (FP + TN)$$

•
$$FPR = 2 / (2+5) = 2 / 7 = 0.286$$

FNR

Target	Prediction	
0	0	
0	0	
0	0	
0	1	
0	1	
0	0	
0	0	
1	0	
1	1	
1	1	

•
$$FNR = FN / (TP + FN)$$

•
$$FNR = 1 / (1+2) = 1 / 3 = 0.33$$

FPR and FNR vs threshold

THANK YOU

www.trainindata.com