Solar Flares & CMEs Problem Set 2 Roy Smart

Clear["Global`*"]

Problem 1

Part a.

Declare the assumptions for this problem

\$Assumptions = $\lambda > 0 \& z > 0 \& b > 0 \& c > 0 \& Ics > 0 \& h > 0 \& a > 0$;

The flux function for this problem is given by

$$A[y_{-}, z_{-}] = \lambda ArcTan\left[\frac{y+b}{z}\right] - \lambda ArcTan\left[\frac{y-b}{z}\right] + \frac{Ics}{c} Log\left[\frac{y^{2} + (z+h)^{2}}{y^{2} + (z-h)^{2}}\right];$$

Plot this function to ensure that it has the correct behaviour

ContourPlot[A[y, z] /. $\{b \rightarrow 1, \lambda \rightarrow 1, h \rightarrow 1, Ics \rightarrow 0.5, c \rightarrow 1\}$, $\{y, -1, 1\}, \{z, 0, 2\}, Contours \rightarrow 50$

The reconnection flux is measured between the origin and the X-point. Find the X-point by setting the magnetic field on the y-axis equal to zero and solve for the height z. Find the magnetic field by taking a curl.

B = Cross[Grad[A[y, z], {x, y, z}], {1, 0, 0}] /. y
$$\rightarrow$$
 0 // FullSimplify $\left\{0, \frac{4 \, h \, Ics}{C \, h^2 - C \, z^2} - \frac{2 \, b \, \lambda}{b^2 + z^2}, 0\right\}$

Solve for the height of the X-point

zx = Part[Solve[B[[2]] == 0, z] // FullSimplify, 2, 1, 2]
$$\sqrt{\frac{b h \left(-2 b I c s + c h \lambda\right)}{2 h I c s + b c \lambda}}$$

Expand this solution for a high-lying rope (h >> b)

zxa = Normal[Series[zx // FullSimplify, {h, Infinity, 0}]] /.
$$\lambda \rightarrow$$
 2 Ics /c // FullSimplify $\sqrt{b\,h}$

Plug this expression into the flux function and continue the approximation

 $(\psi r = Series[A[0, zxa], \{h, Infinity, 1\}] /. \lambda \rightarrow 2 Ics /c // Normal) // FullSimplify //$ **Framed**

$$\frac{8\sqrt{\frac{h}{h}} \text{ Ics}}{c}$$

Part b.

The measured CME velocity is given as

$$v = \frac{v0}{2} \left(Tanh \left[\frac{t - 2\tau}{\tau} \right] + 1 \right) /. v0 \rightarrow b/\tau$$

$$\frac{b \left(1 + Tanh \left[\frac{t - 2\tau}{\tau} \right] \right)}{2\tau}$$

Height as a function of time is found by performing an indefinite integral over the given velocity

$$h[t_{-}] = Integrate[v, t] + const$$

$$const + \frac{b t}{2 \tau} + \frac{1}{2} b Log[Cosh[\frac{t-2 \tau}{\tau}]]$$

$$cv = Part[Solve[h[2 \tau] == 5 b, const], 1]$$

$$\{const \rightarrow 4 b\}$$

$$h[t_{-}] = h[t] /. cv$$

$$4 b + \frac{b t}{2 \tau} + \frac{1}{2} b Log[Cosh[\frac{t-2 \tau}{\tau}]]$$

So the flux function becomes

$$\frac{\psi[t_{-}] = \psi r \text{ /. } h \rightarrow h[t] \text{ /. } cv \text{ // FullSimplify}}{8 \sqrt{2} \text{ Ics } \sqrt{\frac{r}{t + 8 \text{ } t + t \text{ } \text{Log}\left[\text{Cosh}\left[2 - \frac{t}{r}\right]\right]}}{c}}$$

Plot the resulting flux function along with the velocity for τ =50sec

rules50 = $\{\tau \to 50, \text{ Ics} \to 3 \times 10^{21}, \text{ b} \to 6 \times 10^{9}, \text{ c} \to 3 \times 10^{10}\};$ Plot[$\{\psi[t] / 10^3, v\}$ /. rules50, {t, 0, 1000}, PlotRange $\rightarrow \{\{0, 1000\}, \{0, 4 \times 10^8\}\}$] 4×10^{8} 3×10^{8} 2×10^{8} 1×10^{8} 200

Plot the resulting flux function along with the velocity for τ =100sec

Part c.

Find the reconnection rate

$$\begin{split} &d\psi dt = D[\psi[t],t] \text{ // FullSimplify} \\ &\frac{1}{c\,\tau} 4\,\sqrt{2}\,\,\text{Ics}\,\left(\frac{\tau}{t+8\,\tau+\tau\,\text{Log}\left[\text{Cosh}\left[2-\frac{t}{\tau}\right]\right]}\right)^{3/2}\,\left(-1+\text{Tanh}\left[2-\frac{t}{\tau}\right]\right) \end{split}$$

Find the acceleration

ah = D[v, t] // FullSimplify
$$\frac{b \operatorname{Sech} \left[2 - \frac{t}{\tau}\right]^{2}}{2 \tau^{2}}$$

Plot the reconnection rate and acceleration for τ =50 sec

Plot[
$$\{d\psi dt / 10^3, ah\}$$
 /. rules50, {t, 0, 1000}, PlotRange $\rightarrow \{\{0, 1000\}, \{-6 \times 10^5, 1.3 \times 10^6\}\}$]

Plot the reconnection rate and acceleration for τ =150 sec

Plot[
$$\{d\psi dt/10^3, ah\}$$
 /. rules150, $\{t, 0, 1000\}$, PlotRange $\rightarrow \{\{0, 1000\}, \{-6 \times 10^5, 1.3 \times 10^6\}\}$]

Find the time of maximum reconnection rate for τ =50 sec

$$(d\psi dtmin50 = Part[FindMinimum[d\psi dt /. rules50, {t, 300}], 2, 1, 2])$$
 // Framed 150.843

Find the time of maximum acceleration for τ =50 sec

(ahmax50 = Part[FindMaximum[ah /. rules50, {t, 100}] // Quiet, 2, 1, 2]) // Framed 100.

Find the time of maximum reconnection rate for τ =150 sec

 $(d\psi dtmin150 = Part[FindMinimum[d\psi dt /.rules150, {t, 300}], 2, 1, 2])$ // Framed 452.528

Find the time of maximum acceleration for τ =150 sec

(ahmax150 = Part[FindMaximum[ah /. rules150, {t, 100}] // Quiet, 2, 1, 2]) // Framed 300.

Part d.

Express the volume in terms of an initial volume VO and a change in volume ΔV

 $V = V0 + \Delta V$;

Denote the initial volume in terms of an area a and length L

V0 = ah0a h0

The change in volume is said to be proportional to the height h

$$\Delta V = a (h - h0);$$

The number density is the number of particles over volume

$$n = \frac{N}{V};$$

$$n\theta = \frac{N}{V\theta};$$

The ratio of the number density to the initial number density is then

(nR = n / n0 // FullSimplify) // Framed

Plot this ratio as a function of time

Plot[nR /. $\{h \to h[t], h0 \to h[0], L \to 1, \alpha \to 1\}$ /. rules50, $\{t, 0, 1000\}$]

The temperature is given by the adiabatic process

$$\gamma = 5 / 3$$
;

$$T = \frac{\beta}{V^{\gamma-1}};$$

$$T0 = \frac{\beta}{\sqrt{6}^{\gamma-1}}$$

The ratio of the temperature to the initial temperature is then

(TR = T / T0 // FullSimplify) // Framed

$$\left(\frac{h0}{h}\right)^{2/3}$$

Plot this ratio as a function of time

The emission measure is the square of the number density integrated over the length of the axial flux tube

EM =
$$n^2 h$$
 // FullSimplify
EM0 = $n0^2 h0$ // FullSimplify
 $\frac{N^2}{a^2 h}$
 $\frac{N^2}{a^2 h0}$

h

The ratio of the initial emission measure to the final emission measure is then

(EMR = EM / EM0 // FullSimplify) // Framed

and the plot of this ratio is

Part e.

The response function for our instrument is given as

$$G[T_{]} := Exp\left[-\frac{(T - T00)^{2}}{2 Tw^{2}}\right]$$

Evaluate at current temperature

GR = G[TR T00] /. T00
$$\rightarrow$$
 2 Tw // FullSimplify
$${}_{\mathbb{C}}^{-2} \left(-1 + \left(\frac{h\theta}{h}\right)^{2/3}\right)^2$$

Plot the counts, which is the product of the temperature sensitivity and the emission measure

Evaluate the extent of dimming when the flux rope is twice the initial height

GR EMR /. h \rightarrow 2 h[0] /. h0 \rightarrow h[0] // FullSimplify // Framed

$$\frac{1}{2} e^{-2 \left(-1 + \frac{1}{2^{2/3}}\right)^2}$$