浙江大学实验报告

卓亚:	电于信息上程
姓名:	
学号:	
日期:	2024.2.29
tile H	此人进士一 200

课程名称:	电网络分析	指导老师:姚缨	<u>!英</u> 成绩:		
立验名称:	万咸参粉测完	立验类刑.	同组学生姓名:	无	

一、实验目的和要求(必填)

二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤

五、实验数据记录和处理 六、实验结果与分析(必填)

七、讨论、心得

Lab1 互感参数测定

一、 实验目的与要求

- 学习使用多种方法测量电感元件的自感系数、电阻,和电感之间的互感系数。
- 2. 设计完整的实验方案,包括实验接线图、测量数据的记录表格及误差分析的过程。
- 分析实验中的误差传递。

二、实验方案与原理

(一) 使用二次侧开路法测量

- 如上图所示,在 1,1'两端加频率为 $\frac{\omega}{2\pi}$ 交流电压源,通过电压表、电流表、功率表三表测量得到 1. 一次侧电感的电压 U_1 、电流 I_1 、有功功率 P。
- 使用万用表测量二次侧两端电压 U2。 2.
- 通过以上测量值,得到一次侧的电感、电阻,和互感系数。 3.

$$R_1 = \frac{P}{I^2}$$

$$L_1 = \frac{\sqrt{\left(\frac{U}{I}\right)^2 - R^2}}{\omega}$$

$$M_{12} = \frac{U_2}{I_1 \omega}$$

- 4. 改在二次侧加交流电压,重复上述 1~3 步,得到二次侧电阻与电感。
- 5. 可以使用万用表欧姆档验证测量电阻的大小。

(二) 正向串联/反向串联伏安法测量

- 1. 将两个电感正向串联或反向串联,在两端加压,测量电路中流过的电流大小
- 2. 结合通过方法一得到的 R₁R₂L₁L₂, 计算出串联的等效阻抗。
- 3. 将正向/反向等效阻抗进行加减得到所要测量值。

$$M_{\mathcal{E}} = 0.5 \left[\frac{\sqrt{\left(\frac{U_1}{I_1}\right)^2 - (R_1 + R_2)^2}}{2\pi f} - (L_1 + L_2) \right]$$

$$M_{\tilde{\aleph}} = 0.5 \left| \frac{\sqrt{\left(\frac{U_1}{I_1}\right)^2 - (R_1 + R_2)^2}}{2\pi f} - (L_1 + L_2) \right| \times (-1)$$

$$M_{I\!E\!I\!K} = \frac{1}{4} \left[\frac{\sqrt{\left(\frac{U_1}{I_1}\right)^2 - (R_1 + R_2)^2}}{2\pi f} - \frac{\sqrt{\left(\frac{U_2}{I_2}\right)^2 - (R_1 + R_2)^2}}{2\pi f} \right]$$

(三) 示波器测量--向量伏安法

测量输入电压与电阻两端电压,及其电压之间的相位之差,通过测量数据得到 L_1 的 R_1 和 L_1 。

$$R_1 = \frac{U_s \times \cos\varphi - U_R}{\frac{U_R}{R}}$$

$$L_1 = \frac{U_s \cdot \sin\varphi}{\frac{U_R}{R}}$$

(四) 谐振法测量电感系数

在电路中串联一个电容,通过信号源频率调节,观察示波器李萨如图像,当电路发生谐振时,李萨如图像变为一条直线。根据谐振频率等数据,计算电感的电感系数和电阻大小。

$$\because 2\pi f = \frac{1}{\sqrt{LC}}$$

$$\therefore L_1 = \frac{1}{(2\pi f)^2 C}$$

$$R_1 = \frac{U_2 - U_1}{U_1} R$$

(五) LCR 仪器直接测量法

选择 Auto 档位测量 LCR 的值,选择串联 SER 模式,并显示 ESR。直接读出电感大小和等效内阻大小。

三、 实验步骤与数据记录

(一) 使用二次侧开路法测量

- 1. 利用实验工具台上的 220V 交流电源,输入到变压器中,输出 16V 交流电压。
- 2. 准备实验所用电感,将上部螺丝按钮拧紧,以保证电感间最大耦合。
- 3. 按照下图接入电路

4. 读出电压表、电流表、功率表读数,以及万用表读数。

f/Hz	U_1/V	I/A	U	A	W	Var	VA	PF	θ	U_2/V	
50	16.00	0.533	15.6	0.533	4.7	6.9	8.2	0.57	55.2	2.697	

1. 计算得到 L_1 、 R_1 、M 的值

$$L_{1} = \frac{\sqrt{\left(\frac{U}{I}\right)^{2} - R^{2}}}{\omega} \quad 0.0773$$

$$R1 = \frac{P}{I^{2}} \qquad 16.54$$

$$M_{12} = \frac{U_{2}}{I_{1}\omega} \qquad 0.0161$$

2. 左右交换一次侧二次侧电路,测量得到 L_2 、 R_2 、M 的值

f/Hz	U_1/V	I/A	U	A	W	Var	VA	PF	θ	U_2/V
50	5.60	0.217	5.2	0.217	1.1	0.3	1.1	1	0	1.118

$$L_{2} = \frac{\sqrt{\left(\frac{U}{I}\right)^{2} - R^{2}}}{\omega} \quad 0.0203$$

$$R2 = \frac{P}{I^{2}} \qquad 23.36$$

$$M_{21} = \frac{U_{2}}{I_{1}\omega} \qquad 0.0164$$

(二) 正向串联/反向串联伏安法测量

1. 将两个电感正向串联,在1,2'两端加压,测量电路中流过的电流大小。

U/V	I/A	U	A	W	Var	VA	PF	θ
10.89	0.181	10.5	0.181	1.3	1.3	1.8	0.727	43.1

1. 通过三表读数得到 M_E 大小为:

$$M_{IE} = 0.5 \left[\frac{\sqrt{\left(\frac{U_1}{I_1}\right)^2 - (R_1 + R_2)^2}}{2\pi f} - (L_1 + L_2) \right] = 0.0144H$$

2. 将两个电感反向串联,在1,2两端加压,测量电路中流过的电流大小。

U/V	I/A	U	A	W	Var	VA	PF	θ
10.87	0.230	10.5	0.230	2.1	1.1	2.3	0.909	24.7

$$M_{\bar{\chi}} = 0.5 \left[\frac{\sqrt{\left(\frac{U_1}{I_1}\right)^2 - (R_1 + R_2)^2}}{2\pi f} - (L_1 + L_2) \right] \times (-1) = 0.0157H$$

3. 利用正向、反向测量结果,计算 M_{EE} 反

(三) 示波器测量——向量伏安法

1. 连接下图电路,使用信号源作为电压源,输入 4Vpp1kHz 正弦交流电源。

1. 使用示波器 Measure 档位测量 Channel2 与 Channel1 的相位差,并记录 CH2 与 CH1 的峰值。

CH1/V	CH2/V	θ
1.36	1.92	-41.5

1. 根据公式计算 R_1 , L_1 的值

$$R_1 = \frac{U_s \times \cos\varphi - U_R}{\frac{U_R}{R}} = 29.25\Omega$$

$$L_1 = \frac{U_S \cdot \sin\varphi}{\frac{U_R}{R}} = 0.0759H$$

(四) 谐振法测量电感系数

1. 连接下图电路,以 4Vpp 的正弦交流电源作为输入,调节输入频率大小。

1. 使用示波器李萨如图像(Acquire->XY),观察 CH2 与 CH1,当屏幕显示一条直线时,记录此时的频率、CH1、CH2 的峰值。

谐振频率/Hz CH2/V CH1/V 819.3 1.82 1.76

2. 计算得到 L_1 , R_1 的值

$$L_1 = \frac{1}{(2\pi f)^2 C} = 0.0803H$$

$$R_1 = \frac{U_2 - U_1}{U_1} R = 16.81\Omega$$

(五) LCR 仪器直接测量法

- 1. 将电感接入 LCR 测量仪器
- 2. 选择 Auto 档位测量 LCR 的值,选择串联 SER 模式,并显示 ESR。
- 3. 直接读出电感大小和等效内阻大小。

L1		L2			
L_1 R_1		L_2	R_2		
77.89mH	16.6Ω	24.75mH	29.1Ω		

四、 数据处理与结论

使用上述软件界面对结果进行分析,得到如下结果汇总(没有标注单位即为国际标准单位):

方法	测量值	数据	精度/误差	数据
万田丰泖县中阳	R_1	16.5	0.8%+3 字	
万用表测量电阻	R_2	23.4	0.8%+3 字	
	U_1	16	0.5	
	I	0.533	0.5	
二次侧开路法(二次侧开路)	U_2	2.697		
	L_1	0.078	dL_1	0.003
	M_1	0.0161	dM_1	0.0003
	U_2	5.6	0.5	
	I	0.217	0.5	
二次侧开路法(一次侧开路)	U_1	1.118	0.5	
	L_2	0.021	dL_2	0.005
	M_1 '	0.0164	dM_1 '	0.0003
	U	10.89	0.5	
正向串联	I	0.181	0.5	
正阿中联	R	39.9	0.8%+3字	
	M_2	0.015	dM_2	0.006
	U	10.87	0.5	
反向串联	I	0.23	0.5	
及門甲歇	R	39.9	0.8%+3 字	
	M_3	0.016	dM_3	0.006
M4	M_4	0.0156	dM_4	0.003
	L_1	77.89mH		
LCR 测量	R_1	16.6		
LUN 例 里	L_2	24.75mH		
	R_2	29.1		

通过上述结果可以发现:

- 使用二次侧开路法的数据精度最高。由于数据都是通过读表直接读出,没有间接计算的过程,所以准确度较高。
- 使用正向串联和反向串联测得的互感系数精度很低,需要通过同
- 时使用两组数据得到的平均值(即 M_4 的计算方法),所得最终结果比较精确,减少了间接测量所得值(L_1,L_2)造成的影响。

最终结果可以确定为:

Lab1 3220104119 冯静怡

$$L_1 = (78 \pm 3)mH$$

$$R_1 = (16.5 \pm 0.5) \Omega$$

$$L_2 = (21 \pm 5)mH$$

$$R_2 = (23.4 \pm 0.6)\Omega(不准确,不同情况下变化较大)$$

$$M = (16.1 \pm 0.3)mH$$