الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي

دورة: 2024

الشعبة: علوم تجريبية

المدة: 03 سا و30 د

se - 14k - 7

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

يحتوي كيس على 11 كريّة متماثلة لا نفرّق بينها باللمس موزعة كما يلي: كريّتان بيضاوان مرقمتان بـ: 1 ، 3 وأربع كريّات حمراء مرقمة بـ: 0 ، 1 ، 1 ، 3 ، 4

I) نسحب عشوائيا وفي آن واحد 3 كريّات من الكيس ونعتبر الحوادث الآتية:

" عدد فردي المحصول على 3 كريّات من نفس اللون " ، B ، " المحصول على 3 كريّات جُداء أرقامها عدد فردي " C " المحصول على 3 كريّات جُداء أرقامها عدد زوجي "

P(C) احتمال الحادثة A و بيّن أنّ: $P(B) = \frac{56}{165}$ ثمّ استنتج P(A) احسب (1)

 $P_{\Lambda}(B)$ ب) احسب الاحتمال الشرطي ($P_{\Lambda}(B)$

X (2) X المتغيّر العشوائي الذي يرفق بكلّ عملية سحب لثلاث كريّات، عدد الكريّات التي تحمل رقما زوجيا E(X) عيّن قانون الاحتمال للمتغيّر العشوائي X ثمّ احسب أمله الرياضياتي E(X)

(X>1) احسب احتمال الحادثة

الآن من الكيس عشوائيا 3 كريّات على التوالي وبدون إرجاع.

- احسب احتمال الحادثة D: " الحصول على 3 كريّات جُداء أرقامها معدوم "

التمرين الثاني: (04 نقاط)

I) حل في مجموعة الأعداد المركبة C المعادلة ذات المجهول Z الآتية:

$$(z-1+2\sqrt{3})[z^2-2(1-\sqrt{3})z+5-2\sqrt{3}]=0$$

C و B ، A نعتبر النقط B ، A المستوي المركب المنسوب إلى المعلم المتعامد والمتجانس $(0;\overline{u},\overline{v})$ ، نعتبر النقط $z_C=\overline{z_A}$ و $z_B=1-2\sqrt{3}$ ، $z_A=1-\sqrt{3}+i$ التي لاحقاتها على الترتيب z_B ، z_B ، z_B و $z_B=1-2\sqrt{3}$ ، $z_A=1-\sqrt{3}+i$

اكتب كلّا من $z_A - 1$ ، $z_C - 1$ و z_B على الشّكل المثلثي. (1

 $\{(A;1),(B;-1),(C;1)\}$ جِد لاحقة النقطة D مرجح الجملة المثقلة (2)

3) بين أنّ الرباعي ABCD معين.

التمرين الثالث: (05 نقاط)

$$u_{n+1}=rac{4-u_n}{2+u_n}$$
 ، n المنتالية العددية المعرّفة بـ: $u_0=0$ و من أجل كلّ عدد طبيعي $u_n=0$

 $0 \le u_n \le 2$ ، n و u_3 و u_3 التراجع أنه: من أجل كلّ عدد طبيعي u_2 ، u_1 ، u_3) احسب الحدود u_1

$$v_n = \frac{u_n - 1}{u_n + 4}$$
 :ب المنتالية العددية المعرّفة على (v_n) (2)

$$n$$
 اثبت أنّ المتتالية (v_n) هندسية أساسها $\frac{2}{3}$ ثمّ اكتب عبارة v_n بدلالة (v_n)

$$\lim_{n\to +\infty} u_n$$
 بين أنه: من أجل كلّ عدد طبيعي $u_n=\frac{5}{1-v_n}-4$ ، n عدد طبيعي (ب

3) من أجل كل عدد طبيعي n ، نضع:

$$T_n = \frac{1}{4 + u_n} + \frac{1}{4 + u_{n+1}} + \dots + \frac{1}{4 + u_{n+2024}}$$

$$S_n = v_n + v_{n+1} + \dots + v_{n+2024}$$

n بدلالة n ثمّ استنتج S_n بدلالة -

التمرين الرابع: (07 نقاط)

 $g(x) = x e^{-x+1} - 2$ بـ \mathbb{R} بـ \mathbb{R} بـ و المعرّفة على \mathbb{R} بـ و المقابل تغيّرات الدّالة \mathbb{R} المعرّفة على \mathbb{R} بـ و المقابل تغيّرات الدّالة \mathbb{R}

x	∞	1	+00
g'(x)	+	0	-
g(x)	-8	g(1)	-2

$$g(x)$$
 احسب $g(1)$ ثمّ استنتج إشارة

$$f(x)=-2x+3-x\ e^{-x+1}$$
 بد: \mathbb{R} الذالة المعرّفة على \mathbb{R} بد: $f(\mathbf{\Pi}$

. (2 cm وحدة الطول (c_f) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس ((c_i, j))، (وحدة الطول)

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x)$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x)$$

$$+\infty$$
 عند (C_f) ين أنّ المستقيم (Δ) ذا المعادلة $y=-2x+3$ عند (Δ) عند (Δ) بيّن أنّ المستقيم (Δ) عند (C_f) والمستقيم (Δ) والمستقيم (Δ)

$$f'(x) = g(x) - e^{-x+1}$$
 ، x عدد حقیقی $g(x) = g(x) - e^{-x+1}$ ، $g(x) = g(x) - e^{-x+1}$

+) استنتج اتجاه تغيّر الدّالة f ثمّ شكّل جدول تغيّراتها.

(3) بيّن أنّ
$$(c_f)$$
 يقبل مماسا (T) موازيا لـ (Δ) ، يُطلب تعيين معادلة له.

$$(C_f)$$
 و (T) ، (Δ) ارسم (4)

f(x) = -2x + m عين بيانيا قيم الوسيط الحقيقي m التي من أجلها تقبل المعادلة

$$\int_0^1 xe^{-x+1} dx = e-2$$
 : أ) باستعمال المكاملة بالتجزئة، بين أنّ (5) باستعمال المكاملة بالتجزئة، بين أنّ

ب) استنتج بالسنتيمتر المربع A مساحة الحيّز المستوي المحدّد ب (C_f) و (Δ) والمستقيمين اللذين x=1 معادلتاهما: x=0 و x=1

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04 نقاط)

يحتوي كيس على 5 قطع كهربائية غير متمايزة ولا نفرق بينها باللمس، منها 3 قطع سليمة وقطعتان غير سليمتين. نرمز إلى القطعة السليمة بالرّمز كم وإلى القطعة غير السليمة بالرّمز كم

نسحب عشوائيا من الكيس 3 قطع على التوالي مع الإرجاع ، ونعتبر الحوادث:

" القطعة الأولى المسحوبة سليمة " B " " سحب قطعة واحدة فقط سليمة " A " القطعة الثالثة المسحوبة سليمة " C

- 1) شكّل شجرة الاحتمالات التي تُنمذج هذه التجرية.
- $P(C)=rac{3}{5}$ احسب P(A) ، P(A) احتمالي الحادثتين A و B ثمّ بيّن أنّ: P(B) ، P(A)
 - ? احسب الاحتمال الشرطي $P_{C}(A)$ ، هل الحادثتان A و A مستقلتان $P_{C}(A)$
- 4) نُرفق بكل قطعة سليمة العدد 10 وبكل قطعة غير سليمة العدد -10 ، ونعتبر X المتغير العشوائي الذي يرفق بكل عملية سحب من الكيس لثلاث قطع مجموع الأعداد المرفقة بها.
 - 10 ، 10 ، -10 ، -30 ، 30
 - E(X)عين قانون الاحتمال للمتغيّر العشوائي X ثمّ احسب أمله الرياضياتي

التمرين الثاني: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة مع التبرير في كل حالة مما يلي:

z+i عدد مركب مرافقه z ، مرافق العدد المركب z+i هو:

$$z-i$$
 ($\bar{z}+i$ ($\bar{z}-i$ ($\bar{z}-i$))

-1 (غدد المركب $(\frac{1+i}{1-i})^{2024}$ يساوي: 1 (أ يساوي: 2) العدد المركب (2)

 $z=2(1+i\sqrt{3})$ عدد مرکب حیث z (3

من أجل كل عدد طبيعي غير معدوم n ، نضع: $\left| z \right|^2 + \dots + \ln \left| z \right|^n$ ، لدينا:

$$S_n = 2\left(\frac{1-(2\ln 2)^n}{1-2\ln 2}\right)\ln 2$$
 (\Rightarrow $S_n = n(n+1)\ln 2$ (\Rightarrow $S_n = (n+1)^2\ln 2$ (\Rightarrow

 $z = \sin \frac{\pi}{8} + i \cos \frac{\pi}{8}$ عدد مركب حيث: $z = \sin \frac{\pi}{8} + i \cos \frac{\pi}{8}$ ، الشّكل المثلثي للعدد المركب z هو:

$$\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8} \quad (\Rightarrow \qquad \cos\frac{\pi}{8} + i\sin\frac{\pi}{8} \quad (\Rightarrow \qquad -\cos\frac{\pi}{8} + i\sin$$

التمرين الثالث: (05 نقاط)

$$f(x) = \frac{x+1}{2x}$$
 : كما يلي: $f(x) = \frac{x+1}{2x}$ كما يلي: $f(x) = \frac{x+1}{2}$

اختبار في مادة: الرياضيات // الشعبة: علوم تجريبية // بكالوريا 2024

$$u_n=rac{n}{2^n}$$
: ب $n\geq 2$ ، n ، عدد طبیعی n ، $n\geq 2$ ، n بن أنه: من أجل كل n من n ، $n\geq 2$ ، n فإن $n\geq 2$ ، n من n من $n\geq 2$ ، n فإن $n\geq 2$

$$\frac{u_{n+1}}{u_n} \le \frac{3}{4}$$
 فإن $n \ge 2$ ، \mathbb{N} من n کل n من أجل کل n من أجل کل n من أجل کل أ

$$\lim_{n \to +\infty} u_n$$
 ثمّ استنتج $u_n \leq \frac{1}{2} imes \left(\frac{3}{4}\right)^{n-2}$ فإنّ $n \geq 2$ ، \mathbb{N} من n من أجل كل n من $n \geq 1$ فإنّ $n \geq 1$ فإنّ $n \geq 1$

$$S_n = \frac{u_2}{2} + \frac{u_3}{3} + \dots + \frac{u_n}{n}$$
 : $n \ge 2$ ، \mathbb{N} نضع من أجل كل n من $n \ge 2$ ، $n \ge 2$

$$S_n = \frac{511}{1024}$$
 حتى يكون $n = \frac{511}{2} \left(1 - \left(\frac{1}{2}\right)^{n-1}\right)$ حتى يكون $n = \frac{511}{2} \left(1 - \left(\frac{1}{2}\right)^{n-1}\right)$ جين أنّ:

التمرين الرابع: (07 نقاط)

. و الدّالة المعرّفة على
$$]0;+\infty$$
 [كما يلي: $2 - \ln x + \frac{1}{2}$ $g(x) = \frac{1}{2} x^3 + \frac{1}{2} - \ln x$ تمثيلها البياني كما في الشّكل $g(x)$

- بقراءة بيانية ، عين إشارة (g(x)

$$f(x)=-x-\frac{\ln x}{x^2}:$$
الذالة المعرّفة على $f(x)=0$ باذالة المعرّفة على $f(x)=0$

تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد (C_f)

والمتجانس $(0; \vec{i}, \vec{j})$ ، (وحدة الطول 2cm).

$$\lim_{x\to 0} f(x) = \lim_{x\to +\infty} f(x)$$
 $\lim_{x\to +\infty} f(x)$

$$f'(x) = \frac{-2g(x)}{x^3}$$
 اَ بِین أَنَّه من أَجِل كُلُ x من x من x من أَجِل كُلُ x من أَجِل كُلُ x من x من أَجِل كُلُ x من أَجْل كُلُ أَدُ مِنْ أَدُلُ أَدُل

+) استنتج اتجاه تغيّر الدّالة f ثمّ شكّل جدول تغيراتها.

$$\alpha < 0.71$$
 تقبل حلا وحيدا α حيث $\alpha = 0.7$ تقبل حلا وحيدا α حيث $\alpha = 0.7$

. (Δ) أ) بيّن أنّ المنحني (c_f) يقبل مستقيما مقاربا مائلا (Δ) ، يطلب تعيين معادلة له.

$$(\Delta)$$
 ادرس الوضع النسبي للمنحني (C_f) والمستقيم

4) بيّن أنّ المنحني (c_f) يقبل مماسا (T) معامل توجيهه -1 ، يطلب تعيين معادلة له.

$$(C_f)$$
 أ $)$ ارسم كلّا من (Δ) ، (Δ) و $(5$

$$m$$
 وسيط حقيقي، عين بيانيا قيم m التي من أجلها تقبل المعادلة: $m = \frac{\ln x}{x^2}$ حلين مختلفين.

]0;+∞ على
$$h:x\mapsto \frac{\ln x}{x^2}$$
 على $h:x\mapsto \frac{\ln x}{x}$ على)) أ) أثبت أنّ الدّالة $h:x\mapsto \frac{\ln x}{x}$ هي دالة أصلية للذّالة $h:x\mapsto \frac{\ln x}{x}$

$$(C_f)$$
 المساحة بالسنتيمتر المربع للحيّز المستوي المحدّد بالمنحني (C_f) والمستقيمات $\mathcal{A}(\alpha)$

$$x=1$$
 ، $x=\alpha$ ، $y=-x$ التي معادلاتها:

$$\mathcal{A}(\alpha) = 4(\alpha^2 - \frac{1}{\alpha} + 1)$$
 : بین آن -

