PROGRAMMING LANGUAGES: FUNCTIONAL PROGRAMMING

3. DEFINITION AND PROOF BY INDUCTION

Shin-Cheng Mu Oct. 15, 2020

National Taiwan University and Academia Sinica

TOTAL FUNCTIONAL PROGRAMMING

- The next few lectures concerns inductive definitions and proofs of datatypes and programs.
- While Haskell provides allows one to define nonterminating functions, infinite data structures, for now we will only consider its total, finite fragment.
- · That is, we temporarily
 - · consider only finite data structures,
 - demand that functions terminate for all value in its input type, and
 - provide guidelines to construct such functions.
- Infinite datatypes and non-termination will be discussed later in this course.

INDUCTION ON NATURAL NUMBERS

THE SO-CALLED "MATHEMATICAL INDUCTION"

- Let *P* be a predicate on natural numbers.
- We've all learnt this principle of proof by induction: to prove that P holds for all natural numbers, it is sufficient to show that
 - · P0 holds;
 - P(1+n) holds provided that Pn does.

PROOF BY INDUCTION ON NATURAL NUMBERS

 We can see the above inductive principle as a result of seeing natural numbers as defined by the datatype ¹

data
$$Nat = 0 \mid \mathbf{1}_{+} Nat$$
.

- That is, any natural number is either 0, or 1₊ n where n is a natural number.
- In this lecture, 1₊ is written in bold font to emphasise that
 it is a data constructor (as opposed to the function (+), to
 be defined later, applied to a number 1).

¹Not a real Haskell definition.

A PROOF GENERATOR

Given P0 and Pn \Rightarrow P (1₊ n), how does one prove, for example, P3?

$$P (1_{+} (1_{+} (1_{+} 0))) \\
\Leftarrow \{ P (1_{+} n) \Leftarrow Pn \} \\
P (1_{+} (1_{+} 0)) \\
\Leftarrow \{ P (1_{+} n) \Leftarrow Pn \} \\
P (1_{+} 0) \\
\Leftarrow \{ P (1_{+} n) \Leftarrow Pn \} \\
P 0 .$$

Having done math. induction can be seen as having designed a program that generates a proof — given any n :: Nat we can generate a proof of Pn in the manner above.

INDUCTIVELY DEFINED FUNCTIONS

 Since the type Nat is defined by two cases, it is natural to define functions on Nat following the structure:

$$exp$$
 :: $Nat \rightarrow Nat \rightarrow Nat$
 $exp \ b \ 0$ = 1
 $exp \ b \ (\mathbf{1}_{+} \ n) = b \times exp \ b \ n$.

· Even addition can be defined inductively

(+) ::
$$Nat \rightarrow Nat \rightarrow Nat$$

 $0 + n = n$
 $(\mathbf{1}_{+} m) + n = \mathbf{1}_{+} (m + n)$.

• Exercise: define (\times) ?

A VALUE GENERATOR

Given the definition of *exp*, how does one compute *exp b* 3?

```
exp \ b \ (1_+ \ (1_+ \ (1_+ \ 0)))
= \{ definition of exp \} 
b \times exp \ b \ (1_+ \ (1_+ \ 0))
= \{ definition of exp \} 
b \times b \times exp \ b \ (1_+ \ 0)
= \{ definition of exp \} 
b \times b \times b \times exp \ b \ 0
= \{ definition of exp \} 
b \times b \times b \times b \times 1 .
```

It is a program that generates a value, for any n :: Nat. Compare with the proof of P above.

MORAL: PROVING IS PROGRAMMING

An inductive proof is a program that generates a proof for any given natural number.

An inductive program follows the same structure of an inductive proof.

Proving and programming are very similar activities.

WITHOUT THE n + k PATTERN

• Unfortunately, newer versions of Haskell abandoned the "n + k pattern" used in the previous slides:

```
exp :: Int \rightarrow Int \rightarrow Int
exp b 0 = 1
exp b n = b × exp b (n - 1).
```

- Nat is defined to be Int in MiniPrelude.hs. Without MiniPrelude.hs you should use Int.
- For the purpose of this course, the pattern 1 + n reveals the correspondence between Nat and lists, and matches our proof style. Thus we will use it in the lecture.
- · Remember to remove them in your code.

- To prove properties about Nat, we follow the structure as well.
- E.g. to prove that $exp\ b\ (m+n) = exp\ b\ m \times exp\ b\ n$.
- One possibility is to preform induction on m. That is, prove Pm for all m :: Nat, where $Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n)$.

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).
Case m := 0. For all n, we reason:
exp \ b \ (0+n)
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).

Case m := 0. For all n, we reason:
exp \ b \ (0+n)
= \{ defn. of (+) \}
exp \ b \ n
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).

Case m := 0. For all n, we reason:
exp \ b \ (0+n)
= \{ defn. of (+) \}
exp \ b \ n
= \{ defn. of (×) \}
1 \times exp \ b \ n
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).
Case m := 0. For all n, we reason:
          exp b (0+n)
      = { defn. of (+) }
          exp b n
      = { defn. of (x) }
          1 \times \exp b n
      = { defn. of exp }
          \exp b 0 \times \exp b n.
```

We have thus proved P 0.

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).
Case m := \mathbf{1}_+ \ m. For all n, we reason:
exp \ b \ ((\mathbf{1}_+ \ m) + n)
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).

Case m := \mathbf{1}_+ m. For all n, we reason:
exp \ b \ ((\mathbf{1}_+ \ m) + n)
= \{ defn. of (+) \}
exp \ b \ (\mathbf{1}_+ \ (m+n))
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).
Case m := \mathbf{1}_+ m. For all n, we reason:
exp \ b \ ((\mathbf{1}_+ \ m) + n)
= \{ defn. \ of \ (+) \}
exp \ b \ (\mathbf{1}_+ \ (m+n))
= \{ defn. \ of \ exp \}
b \times exp \ b \ (m+n)
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).
Case m := 1_+ m. For all n, we reason:
           \exp b ((1 + m) + n)
      = { defn. of (+) }
           \exp b (1_{+} (m+n))
      = { defn. of exp }
           b \times \exp b (m + n)
      = { induction }
           b \times (exp \ b \ m \times exp \ b \ n)
```

```
Recall Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).
Case m := 1_+ m. For all n, we reason:
           exp b ((1+ m) + n)
      = { defn. of (+) }
           \exp b (1_{+} (m+n))
      = { defn. of exp }
           b \times \exp b (m + n)
      = { induction }
           b \times (\exp b m \times \exp b n)
      = \{ (x) \text{ associative } \}
           (b \times exp \ b \ m) \times exp \ b \ n
```

Recall $Pm \equiv (\forall n :: exp \ b \ (m+n) = exp \ b \ m \times exp \ b \ n).$

Case $m := \mathbf{1}_+ m$. For all n, we reason:

$$exp \ b \ ((1_+ \ m) + n)$$

$$= \begin{cases} defn. \ of \ (+) \end{cases}$$

$$exp \ b \ (1_+ \ (m + n))$$

$$= \begin{cases} defn. \ of \ exp \end{cases}$$

$$b \times exp \ b \ (m + n)$$

$$= \begin{cases} induction \end{cases}$$

$$b \times (exp \ b \ m \times exp \ b \ n)$$

$$= \begin{cases} (\times) \ associative \end{cases}$$

$$(b \times exp \ b \ m) \times exp \ b \ n$$

$$= \begin{cases} defn. \ of \ exp \end{cases}$$

$$exp \ b \ (1_+ \ m) \times exp \ b \ n$$

We have thus proved P(1+m), given Pm.

STRUCTURE PROOFS BY PROGRAMS

- The inductive proof could be carried out smoothly, because both (+) and *exp* are defined inductively on its lefthand argument (of type *Nat*).
- The structure of the proof follows the structure of the program, which in turns follows the structure of the datatype the program is defined on.

LISTS AND NATURAL NUMBERS

- We have yet to prove that (\times) is associative.
- The proof is quite similar to the proof for associativity of (++), which we will talk about later.
- In fact, *Nat* and lists are closely related in structure.
- Most of us are used to think of numbers as atomic and lists as structured data. Neither is necessarily true.
- For the rest of the course we will demonstrate induction using lists, while taking the properties for *Nat* as given.

AN INDUCTIVELY DEFINED SET?

- For a set to be "inductively defined", we usually mean that it is the *smallest* fixed-point of some function.
- · What does that maen?

FIXED-POINT AND PREFIXED-POINT

- A fixed-point of a function f is a value x such that fx = x.
- Theorem. f has fixed-point(s) if f is a monotonic function defined on a complete lattice.
 - In general, given f there may be more than one fixed-point.
- A prefixed-point of f is a value x such that $fx \le x$.
 - Apparently, all fixed-points are also prefixed-points.
- **Theorem**. the smallest prefixed-point is also the smallest fixed-point.

EXAMPLE: Nat

- Recall the usual definition: Nat is defined by the following rules:
 - 1. 0 is in *Nat*:
 - 2. if n is in Nat, so is $\mathbf{1}_{+}$ n;
 - 3. there is no other Nat.
- If we define a function F from sets to sets: $FX = \{0\} \cup \{1_+ \ n \mid n \in X\}$, 1. and 2. above means that F Nat \subseteq Nat. That is, Nat is a prefixed-point of F.
- · 3. means that we want the smallest such prefixed-point.
- Thus *Nat* is also the least (smallest) fixed-point of *F*.

LEAST PREFIXED-POINT

Formally, let $FX = \{0\} \cup \{1_+ \ n \mid n \in X\}$, Nat is a set such that

$$FNat \subseteq Nat$$
, (1)

$$(\forall X : FX \subseteq X \Rightarrow Nat \subseteq X) , \qquad (2)$$

where (1) says that Nat is a prefixed-point of F, and (2) it is the least among all prefixed-points of F.

MATHEMATICAL INDUCTION, FORMALLY

- Given property *P*, we also denote by *P* the set of elements that satisfy *P*.
- That P0 and Pn \Rightarrow P (1+n) is equivalent to {0} \subseteq P and {1+ n | n \in P} \subseteq P,
- which is equivalent to $FP \subseteq P$. That is, P is a prefixed-point!
- By (2) we have $Nat \subseteq P$. That is, all Nat satisfy P!
- This is "why mathematical induction is correct."

COINDUCTION?

There is a dual technique called *coinduction* where, instead of least prefixed-points, we talk about *greatest postfixed points*. That is, largest x such that $x \le fx$.

With such construction we can talk about infinite data structures.

INDUCTION ON LISTS

INDUCTIVELY DEFINED LISTS

 \cdot Recall that a (finite) list can be seen as a datatype defined by: $^{\rm 2}$

$$data \ List \ a = [] \mid a : List \ a$$
.

• Every list is built from the base case [], with elements added by (:) one by one: [1,2,3] = 1 : (2 : (3 : [])).

²Not a real Haskell definition.

ALL LISTS TODAY ARE FINITE

But what about infinite lists?

- For now let's consider finite lists only, as having infinite lists make the *semantics* much more complicated. ³
- In fact, all functions we talk about today are total functions. No \perp involved.

³What does that mean? We will talk about it later.

SET-THEORETICALLY SPEAKING...

The type *List a* is the *smallest* set such that

- 1. [] is in *List* a;
- 2. if xs is in List a and x is in a, x : xs is in List a as well.

INDUCTIVELY DEFINED FUNCTIONS ON LISTS

 Many functions on lists can be defined according to how a list is defined:

```
sum :: List Int \rightarrow Int

sum [] = 0

sum (x : xs) = x + sum xs .

map :: (a \rightarrow b) \rightarrow List a \rightarrow List b

map f [] = []

map f (x : xs) = FX : map f xs .
```

LIST APPEND

The function (++) appends two lists into one

```
(++) :: List a \rightarrow \text{List } a \rightarrow \text{List } a

[] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys).
```

• Compare the definition with that of (+)!

PROOF BY STRUCTURAL INDUCTION ON LISTS

- Recall that every finite list is built from the base case [], with elements added by (:) one by one.
- To prove that some property P holds for all finite lists, we show that
 - P [] holds;
 - 2. forall x and xs, P(x:xs) holds provided that Pxs holds.

FOR A PARTICULAR LIST...

Given P[] and $Pxs \Rightarrow P(x:xs)$, for all x and xs, how does one prove, for example, P[1,2,3]?

```
P(1:2:3:[])

← { P(x:xs) ← Pxs } 
P(2:3:[])
← { P(x:xs) ← Pxs } 
P(3:[])
← { P(x:xs) ← Pxs } 
P[].
```

APPENDING IS ASSOCIATIVE

```
To prove that xs ++(ys ++ zs) = (xs ++ ys) ++ zs.

Let Pxs = (\forall ys, zs :: xs ++(ys ++ zs) = (xs ++ ys) ++ zs), we prove P by induction on xs.
```

Case xs := []. For all ys and zs, we reason:

We have thus proved P [].

APPENDING IS ASSOCIATIVE

Case xs := x : xs. For all ys and zs, we reason:

We have thus proved P(x:xs), given Pxs.

Do We Have To Be So Formal?

- In our style of proof, every step is given a reason. Do we need to be so pedantic?
- · Being formal helps you to do the proof:
 - In the proof of $exp\ b\ (m+n) = exp\ b\ m \times exp\ b\ n$, we expect that we will use induction to somewhere. Therefore the first part of the proof is to generate $exp\ b\ (m+n)$.
 - In the proof of associativity, we were working toward generating xs ++(ys ++ zs).
- By being formal we can work on the form, not the meaning. Like how we solved the knight/knave problem
- Being formal actually makes the proof easier!
- · Make the symbols do the work.

LENGTH

· The function *length* defined inductively:

```
\begin{array}{ll} length & :: List \ a \rightarrow Nat \\ length \ [] & = 0 \\ length \ (x:xs) = \mathbf{1}_+ \ (length \ xs) \ . \end{array}
```

• Exercise: prove that *length* distributes into (++):

length(xs + ys) = length(xs + length(ys))

CONCATENATION

 While (++) repeatedly applies (:), the function concat repeatedly calls (++):

```
concat :: List (List a) \rightarrow List a concat [] = [] concat (xs : xss) = xs ++ concat xss .
```

- · Compare with sum.
- Exercise: prove $sum \cdot concat = sum \cdot map sum$.

DEFINITION BY INDUCTION/RECURSION

- Rather than giving commands, in functional programming we specify values; instead of performing repeated actions, we define values on inductively defined structures.
- Thus induction (or in general, recursion) is the only "control structure" we have. (We do identify and abstract over plenty of patterns of recursion, though.)
- To inductively define a function f on lists, we specify a value for the base case (f []) and, assuming that f xs has been computed, consider how to construct f (x : xs) out of f xs.

FILTER

• filter p xs keeps only those elements in xs that satisfy p.

```
filter :: (a \rightarrow Bool) \rightarrow List \ a \rightarrow List \ a

filter p [] = []

filter p (x : xs) | p x = x : filter p xs

| otherwise = filter p xs .
```

TAKE AND DROP

 Recall take and drop, which we used in the previous exercise.

```
take
         :: Nat \rightarrow List a \rightarrow List a
take 0 xs = []
take (1_+ n) [] = []
take (1_+ n) (x : xs) = x : take n xs.
             :: Nat \rightarrow List a \rightarrow List a
drop
drop 0 xs
          = XS
drop (1_+ n) [] = []
drop(\mathbf{1}_{+} n)(x:xs) = drop n xs.
```

• Prove: take $n \times x + drop \times n \times x = x x$, for all n and x x = x x.

TAKEWHILE AND DROPWHILE

• *takeWhile p xs* yields the longest prefix of xs such that *p* holds for each element.

```
takeWhile :: (a \rightarrow Bool) \rightarrow List \ a \rightarrow List \ a
takeWhile p [] = []
takeWhile p (x : xs) | p x = x : takeWhile p xs
| otherwise = [] .
```

· dropWhile p xs drops the prefix from xs.

```
dropWhile :: (a \rightarrow Bool) \rightarrow List \ a \rightarrow List \ a
dropWhile p [] = []
dropWhile p (x : xs) \mid p \ x = dropWhile \ p \ xs
| otherwise = x : xs.
```

• Prove: takeWhile $p \times s + dropWhile p \times s = xs$.

LIST REVERSAL

```
• reverse [1,2,3,4] = [4,3,2,1].

reverse :: List a \rightarrow List a

reverse [] = []

reverse (x : xs) = reverse xs + + [x].
```

ALL PREFIXES AND SUFFIXES

```
• inits [1, 2, 3] = [[], [1], [1, 2], [1, 2, 3]]
       inits :: List a \rightarrow List (List a)
       inits [] = []
       inits (x : xs) = [] : map(x :) (inits xs).
• tails [1,2,3] = [[1,2,3],[2,3],[3],[]]
       tails :: List a \rightarrow List (List a)
       tails [] = [[]]
       tails (x : xs) = (x : xs) : tails xs.
```

TOTALITY

· Structure of our definitions so far:

```
f[] = \dots
f(x : xs) = \dots fxs \dots
```

- Both the empty and the non-empty cases are covered, guaranteeing there is a matching clause for all inputs.
- The recursive call is made on a "smaller" argument, guranteeing termination.
- Together they guarantee that every input is mapped to some output. Thus they define total functions on lists.

VARIATIONS WITH THE BASE CASE

Some functions discriminate between several base cases.
 E.g.

```
fib :: Nat \rightarrow Nat
fib 0 = 0
fib 1 = 1
fib (2+n) = fib (1+n) + fib n.
```

 Some functions make more sense when it is defined only on non-empty lists:

```
f[x] = \dots
f(x : xs) = \dots
```

- · What about totality?
 - They are in fact functions defined on a different datatype:

$$data List^+ a = Singleton a | a : List^+ a$$
.

- We do not want to define map, filter again for List⁺ a. Thus
 we reuse List a and pretend that we were talking about
 List⁺ a
- · It's the same with Nat. We embedded Nat into Int.
- Ideally we'd like to have some form of *subtyping*. But that makes the type system more complex.

LEXICOGRAPHIC INDUCTION

- It also occurs often that we perform *lexicographic induction* on multiple arguments: some arguments decrease in size, while others stay the same.
- E.g. the function *merge* merges two sorted lists into one sorted list:

```
merge :: List Int \rightarrow List Int \rightarrow List Int merge [] [] = []
merge [] (y : ys) = y : ys
merge (x : xs) [] = x : xs
merge (x : xs) (y : ys) | x \le y = x : merge xs (y : ys)
| otherwise = y : merge (x : xs) ys .
```

ZIP

Another example:

```
zip :: List a \rightarrow List b \rightarrow List (a, b)

zip [] [] = []

zip [] (y : ys) = []

zip (x : xs) [] = []

zip (x : xs) (y : ys) = (x, y) : zip xs ys .
```

Non-Structural Induction

- In most of the programs we've seen so far, the recursive call are made on direct sub-components of the input (e.g. f(x:xs) = ..fxs..). This is called *structural induction*.
 - It is relatively easy for compilers to recognise structural induction and determine that a program terminates.
- In fact, we can be sure that a program terminates if the arguments get "smaller" under some (well-founded) ordering.

MERGESORT

• In the implemenation of mergesort below, for example, the arguments always get smaller in size.

```
msort :: List Int \rightarrow List Int

msort [] = []

msort [x] = [x]

msort xs = merge (msort ys) (msort zs) ,

where n = length xs 'div' 2

ys = take n xs

zs = drop n xs .
```

- What if we omit the case for [x]?
- If all cases are covered, and all recursive calls are applied to smaller arguments, the program defines a total function.

A Non-Terminating Definition

• Example of a function, where the argument to the recursive does not reduce in size:

```
f :: Int \rightarrow Int

f0 = 0

fn = fn.
```

• Certainly *f* is not a total function. Do such definitions "mean" something? We will talk about these later.

INTERNALLY LABELLED BINARY TREES

• This is a possible definition of internally labelled binary trees:

```
data Tree a = Null | Node a (Tree a) (Tree a),
```

· on which we may inductively define functions:

```
sumT :: Tree Nat \rightarrow Nat

sumT Null = 0

sumT (Node x t u) = x + sumT t + sumT u .
```

Exercise: given (\downarrow) :: $Nat \rightarrow Nat$, which yields the smaller one of its arguments, define the following functions

- 1. $minT :: Tree \ Nat \rightarrow Nat$, which computes the minimal element in a tree.
- 2. $mapT :: (a \rightarrow b) \rightarrow Tree \ a \rightarrow Tree \ b$, which applies the functional argument to each element in a tree.
- 3. Can you define (\(\psi \) inductively on Nat? 4

⁴In the standard Haskell library, (\downarrow) is called *min*.

INDUCTION PRINCIPLE FOR Tree

- · What is the induction principle for *Tree*?
- To prove that a predicate P on Tree holds for every tree, it is sufficient to show that

INDUCTION PRINCIPLE FOR Tree

- · What is the induction principle for *Tree*?
- To prove that a predicate *P* on *Tree* holds for every tree, it is sufficient to show that
 - 1. P Null holds, and;
 - 2. for every x, t, and u, if P t and P u holds, P (Node x t u) holds.

INDUCTION PRINCIPLE FOR Tree

- · What is the induction principle for *Tree*?
- To prove that a predicate P on Tree holds for every tree, it is sufficient to show that
 - 1. P Null holds, and;
 - 2. for every x, t, and u, if P t and P u holds, P (Node x t u) holds.
- Exercise: prove that for all n and t, minT(mapT(n+)t) = n + minTt. That is, $minT \cdot mapT(n+) = (n+) \cdot minT$.

INDUCTION PRINCIPLE FOR OTHER TYPES

- Recall that data Bool = False | True. Do we have an induction principle for Bool?
- To prove a predicate P on Bool holds for all booleans, it is sufficient to show that

INDUCTION PRINCIPLE FOR OTHER TYPES

- Recall that data Bool = False | True. Do we have an induction principle for Bool?
- To prove a predicate P on Bool holds for all booleans, it is sufficient to show that
 - 1. P False holds, and
 - 2. P True holds.
- Well, of course.

- What about $(A \times B)$? How to prove that a predicate P on $(A \times B)$ is always true?
- One may prove some property P_1 on A and some property P_2 on B, which together imply P.
- That does not say much. But the "induction principle" for products allows us to extract, from a proof of P, the proofs P₁ and P₂.

- Every inductively defined datatype comes with its induction principle.
- · We will come back to this point later.