Práctica 2

martes, 3 de septiembre de 2024

a) Construir una máquina de Turing M tal que $L(M) = \{0^n1^n / n \ge 1\}$ y mostrar la traza de computación de M para las entradas w₁ = 0011 y w₂

B D PAA B

3) Construir máquinas de Turing para computar las siguientes funciones:

a) Suma unaria. $\Sigma = \{+, 1\}$.

c) Calcular el complemento a 2 de un número binario de 8 bits $\Sigma = \{0, 1\}$

4) Sea $\Sigma = \{a\}$ y w = a. Decir cuáles son las palabras que se obtienen como resultado de aplicar las siguientes operaciones: ww, www, w^3 , w^5 , w^0 ¿Cuáles son sus longitudes? Definir Σ^* .

 $\sum^* = \{ y(cadena nula), a, aa, aaa, aaaa... \}$

Ww=aa ->2

Www=aaa->3

W³=aaa→ 3

W⁵=aaaaa →5

W⁰=y(cadena nula)→0

5) Idem al ejercicio anterior, pero con $\Sigma = \{a, b\}$ y w = aba.

 $\sum^* = \{ y(cadena nula), ab, ba, aba, ababa... \}$

Ww=abaaba →6

Www=abaabaaba ->9

W³=abaabaaba →9

W⁵=abaabaabaabaaba →15

W⁰=y(cadena nula)→0

6) Sea $\Sigma = \{a, b, c\}$, escriba las 13 cadenas más cortas de Σ^* .

7) Dar tres ejemplos de lenguajes basados en el alfabeto $\{0,1\}$

 $L(1) = \{0^{m} | n \ge 1\}$

 $L(2) = \{0^{n+1} / n \ge 1\}$ $L(3) = \{0^{n+1} / n \ge 1\}$

8) ¿Cuántas cadenas de longitud 3 hay en $\{0,1,2\}^*$, y cuántas de longitud n?

Hay 27 cadenas de longitud 3 y 3º de longitud n

```
9) Explicar la diferencia -si la hay- entre los lenguajes L1 y L2.
```

```
a) L_1 = \emptyset
                                                   L_2 = {\lambda}
b) L_1 = \Sigma^* \cup \{\lambda\}
                                                   L_2 = \emptyset \cup \Sigma^*
c) L_1 = \Sigma^* - \emptyset
                                                   L_2 = \Sigma^*
d) L_1 = \Sigma^* - \{\lambda\}
                                                   L_2 = \Sigma^*
```

- a). L1 es un lenguaje vacio mientras que L2 es un lenguaje cuyo elemento es una cadena vacia
- b) Son iguales porque Σ^* incluye al vacio $\psi \Sigma^*$ u o es Σ^*
- c) Son iguales
- d) Son diferentes
- 10) Mostrar que Σ^* es infinito contable.

```
Hay que probar que |\sum^*|=|n|
|\Sigma^*| < = |n|
f: \rightarrow \sum^* \rightarrow n \text{ in } y
```

11) Indicar cuál es el lenguaje que se obtiene al intersectar los siguientes lenguajes:

```
a) L_1 = \{a^n c^m d^m / n \ge 0, m \ge 0\} con L_2 = \{c^n / n \ge 0\}
 b) L_1 = \{a^n c^m d^n / n > 0, m \ge 0\} con L_2 = \{c^n / n \ge 0\}
 c) L_1 = \{a^n c^m d^n / n \ge 0, m > 10\} con L_2 = \{c^n / n > 5\}
 d) L_1 = \{1^n 2^m / n, m \ge 0, n \text{ par}, m \text{ impar}\}\ \text{con } L_2 = \{2^n / n \ge 0\}
 e) L_1 = \{1^n 2^m / n, m \ge 0, n \text{ par}, m \text{ impar}\}\ \text{con } L_2 = \{1^n / n \ge 0\}
a) L1 n L2={c<sup>n</sup>/n>=0}
b) L1 n L2={c<sup>n</sup>/n>0}
c) L1 n L2={c<sup>n</sup>/n>10}
d) L1 n L2={2n/n>=0, n impar}
e) L1 n L2= {1"/n>=0, n par}
```

12) Encontrar si es posible un lenguaje L1 que cumpla:

```
a) L_1 \cap \{1^k 2^m 3^n / m = k + n + 1 \text{ y } n, \ k \ge 0\} = \{1^n 2^{n+1} / n \ge 0\}
b) L_1 \cap \{1^n 2^m / n \neq m \text{ y } n, m \geq 0\} = \{1^n 2^n / n > 0\}
```

```
a) L1 n L2={c"/n>=0}
b) | 1 n | 2 = {c<sup>n</sup>/n>0}
```

13) Conteste las siguientes preguntas sobre Máquinas de Turing

a) ¿Puede el alfabeto de la cinta (Γ) ser el mismo que el alfabeto de entrada (Σ)?

b) ¿Puede una máquina de Turing tener un único estado? e) ¿Cuántos lenguajes existen definidos sobre el alfabeto $\Sigma = \{0,1\}$? ¿y sobre $\Sigma = \{1\}$?

d) ¿Cuáles de los siguientes conjuntos son lenguajes definidos sobre Σ ? \varnothing , Σ , Σ^* , $\{\lambda\}$, $\{\lambda\} \cup \Sigma$, $\{\varnothing\}$

e) Sea la siguiente máquina de Turing: $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$

 $\begin{array}{ll} Con\ Q = \{q_0,q_1,q_2,q_3\},\ \Sigma = \{a,b,c\},\ \Gamma = \{a,b,c,B\}\ y\ \delta(q,s) = (q^*,s^*,m\)\ tq \\ q \in Q \qquad q^* \in Q \cup \{q_R\} \qquad s,s^* \in \Gamma \qquad m \in \{D,I\} \end{array}$

¿Reconoce el lenguaje $\{\lambda\}$? Si no es así indique cuál es el lenguaje que reconoce

- a) El alfabeto de cinta tiene siempre el B y el de entrada siempre está incluido en el de la cinta. No estoy segura si se considera el blanco como el vacío del alfabeto de entrada
- b) Si
- c) Infinitos
- ØlemptysetØ (El conjunto vacio):
 - Si es un lenguaje. El conjunto vacio es un lenguaje que no contiene ninguna cadena. Aunque no contiene elementos, sigue siendo un subconjunto de $\Sigma *$ \Sigma^* Σ *, por lo que es un lenguaje
- Σ\SigmaΣ:
 - Si es un lenguaje Σ\SigmaΣ es el conjunto de símbolos individuales del alfabeto, y cualquier subconjunto de Σ*\SigmaΣ*E* es un lenguaje, incluyendo Σ \SigmaΣ.
- Σ*\Sigma^*Σ*
 - Si es un lenguaje Σ*\Sigma^*Σ* es el conjunto de todas las cadenas finitas posibles que se pueden formar con los símbolos de Σ\SigmaΣ. Es el lenguaje más grande que se puede definir sobre Σ \Sigma Σ , e incluye todas las posibles cadenas (incluida la cadena vacía λ \lambda λ).
- {λ]\{\lambda\}{\lambda\}{\lambda\}}
 - Si es un lenguaje {λ}\{\anbda\}{\anbda\}{\anbda}\} es el lenguaje que contiene únicamente la cadena vacía λ\lambda\. Dado que λεΣ*\lambda \in \Sigma^*λεΣ*, esto es un lenguaje sobre Σ \Sigma Σ
- {λ]UΣ\{\lambda\} \(\text{cup \\ \text{Sigma}\}\)UΣ:
 - Si es un lenguaje Este es el conjunto que contiene la cadena vacía λ\lambdaλ y todos los símbolos individuales del alfabeto Σ\SigmaΣ. Como es una unión de dos lenguajes sobre $\Sigma \$ igma Σ , es un lenguaje sobre $\Sigma \$ igma Σ .
- {Ø}\{\emptyset\}{Ø}.
 - No es un lenguaje. {Ø]}{\temptyset\]}{\temptyset\]}{\temptyset\]} es un conjunto que contiene al conjunto vacio como su único elemento. Sin embargo, Ø\emptysetØ no es una cadena; por lo tanto, $\{\emptyset\}\$ emptyset\} $\{\emptyset\}$ no es un subconjunto de $\Sigma*\$ igma $^*\Sigma*$ ψ , por lo tanto, no es un lenguaje sobre Σ \\$ igma Σ .
- d) Eh?

```
14) Sea M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle, en cada caso asumir que los \delta( ) no especificados son los
que hacen detener la MT en q_R, determinar L(M)
         a) Q = \{q_0, q_1\}; \Sigma = \{0,1\}; \Gamma = \{0,1,B\}
                 \delta(q_0, 0) = (q_0, 0, 1)
                 \delta(q_0, B) = (q_0, B, D)
                \delta(q_0, 1) = (q_1, 1, D)
          L(m)=\emptyset
\begin{array}{ll} b) & Q = \{q_0,\,q_1\};\, \Sigma = \{0,1\};\, \Gamma = \{0,\,1,\,B\} \\ & \delta(q_0,\,0) = (\,q_1,\,B,\,D\,) \end{array}
```

```
\begin{array}{ll} b) & Q = \{q_0,q_1\}; \, \Sigma = \{0,1\}; \, \Gamma = \{0,1,B\} \\ \delta(q_0,0) = (\,q_1,B,D) \\ \delta(q_1,B) = (\,q_x,B,D) \\ \delta(q_1,0) = (\,q_x,0,D) \\ \delta(q_1,1) = (\,q_x,1,D) \end{array}
```

L(m)={w/w arranca con 0}

$$\begin{split} c) & \quad Q = \{q_0, q_1\}; \, \Sigma = \{0, 1\}; \, \Gamma = \{0, 1, B\} \\ \delta(q_0, 0) = (\, q_0, 0, 1\,) \\ \delta(q_0, B) = (\, q_0, B, D\,) \\ \delta(q_0, 1) = (\, q_0, B, D\,) \\ \delta(q_1, 0) = (\, q_0, B, 1\,) \\ \delta(q_1, B) = (\, q_0, B, D\,) \end{split}$$

$L(m) = \emptyset$

 $\begin{aligned} d) && Q = \{q_0\}; \Sigma = \{0,1\}; \, \Gamma = \{0,1,B\} \\ \delta(q_0,1) = (\,q_0,B,1\,) \\ \delta(q_0,0) = (\,q_A,B,1\,) \\ \delta(q_0,B) = (\,q_0,B,D\,) \end{aligned}$

L(m)={w/w tiene un 0}

 $\begin{aligned} e) \quad &Q = \{q_0,q_1\}; \, \Sigma = \{0,1\}; \, \Gamma = \{0,1,B\} \\ &\delta(q_0,0) = (\,q_1,B,D\,) \\ &\delta(q_1,0) = (\,q_1,1,D\,) \\ &\delta(q_1,1) = (\,q_1,0,D\,) \\ &\delta(q_1,B) = (\,q_A,1,D\,) \end{aligned}$

L(m)={w/w arranca en 0}

Q3, O Q3, O, I

Q3, 1 Q3, 1, I

Q3, B Q4, B, D

Q4, B

qa, B, D

Q4, 1 qr, 1, D

Q4, O Q1, B, D