MODEL FITTING

Prof. Alexander Huth 9/19/2017

RECAP

$$Y = f(X)$$

- * System identification
 - * Linear
 - * Linearized
 - * Nonlinear

RECAP

$$Y = f(X)$$

- * System identification
 - * Linear

 - * Linearized
 - * Nonlinear

$$Y = X\beta$$

$$Y = \mathbb{L}(X)\beta$$

$$Y = \Theta(X)$$

RECAP

- * Spatiotemporal models
 - * Space-time separable
 - * Space-time inseparable
 - * Finite impulse response (FIR) model

RESPONSE VARIABLES WEIGHTS NOISE
$$Y = X\beta + \epsilon$$

RESPONSE VARIABLES WEIGHTS NOISE
$$Y=X\beta+\epsilon$$

Loss function:

$$||Y - X\beta||_2$$

RESPONSE VARIABLES WEIGHTS NOISE
$$Y=X\beta+\epsilon$$

- * How do we solve for beta?
 - * Analytically
 - * Iteratively

ANALYTIC SOLUTION TO LINEAR REGRESSION

RESPONSE VARIABLES WEIGHTS NOISE
$$Y=X\beta+\epsilon$$

$$\beta = f(X, Y)$$

ITERATIVE SOLUTION TO LINEAR REGRESSION

RESPONSE VARIABLES WEIGHTS NOISE
$$Y=X\beta+\epsilon$$

$$\Delta \beta \propto -\frac{\partial (||Y - X\beta||_2)}{\partial \beta}$$

RESPONSE VARIABLES WEIGHTS NOISE
$$Y = X \beta + \epsilon$$

Constraining the values **beta** can take improves model performance:

REGULARIZATION

REGULARIZATION

- * Regularization can be thought of in three ways:
 - * Prior
 - * Penalty
 - * Geometry

REGULARIZATION AS PRIOR

\hat\beta = \underset{\beta} {\mbox{argmax }} P(Y|X,\beta)

\sigma^2)

Y {t,i} \sim \mathcal{N}(X\beta,

$$Y_{t,j} \sim \mathcal{N}(X\beta, \sigma^2)$$

$$\hat{\beta} = \underset{\beta}{\operatorname{argmax}} P(Y|X,\beta)$$

REGULARIZATION AS PRIOR

RESPONSE VARIABLES WEIGHTS NOISE
$$Y=X\beta+\epsilon$$

$$Y_{t,j} \sim \mathcal{N}(X\beta, \sigma^2)$$

$$\hat{\beta} = \underset{\beta}{\operatorname{argmax}} P(Y|X,\beta)P(\beta)$$

\hat\beta = \underset{\beta} {\mbox{argmax }} P(Y|X,\beta

REGULARIZATION AS PENALTY

RESPONSE VARIABLES WEIGHTS NOISE
$$Y=X\beta+\epsilon$$

$$E(\beta) = ||Y - X\beta||_2^2$$

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} E(\beta)$$

 $E(\beta) = ||Y - X\beta||_2^2$

\hat{\beta} = \underset{\beta}
{\mbox{argmin }} E(\beta)

REGULARIZATION AS PENDITY E_{pen}(be)

 $E_{pen}(\beta) = ||Y-X\beta||_2^2 + ||A||_2^2$

\hat{\beta} = \underset{\beta}
{\mbox{argmin }} E_{pen}(\beta)

RESPONSE VARIABLES WEIGHTS NOISE
$$Y=X\beta+\epsilon$$

$$E_{pen}(\beta) = ||Y - X\beta||_2^2 + \lambda ||\beta||_2^2$$

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} E_{pen}(\beta)$$

REGULARIZATION AS GEOMETRY - EARLY STOPPING

https://deeplearning4j.org/earlystopping

COMMON TYPES OF REGULARIZATION

- * Beta is small (L2-sense) = ridge = gradient descent w/ early stopping
- * Beta is small, sparse (L1-sense) = LASSO = coord. descent w/ early stopping
 - * Beta is small & sparse (L1+L2 sense) =
 elastic net
- * Beta is sparse (L0-sense) = variable
 selection

- * Multivariate normal (MVN) prior on beta
- * L2 penalty on beta
- * Gradient descent w/ early stopping

RIDGE REGRESS!

\hat\beta = \underset{\beta} {\mbox{argmin}} \left[||Y-X\beta||_2^2 + \lambda ||\beta||_2^2 \right]

\hat\beta = \underset{\beta}

$$Y = X\beta + \epsilon$$

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \ [||Y - X\beta||_2^2 + \lambda ||\beta||_2^2]$$

 Error or loss penalty

$$\hat{\beta} = (X^\top X + \lambda I)^{-1} X^\top Y$$

$$\hat{\beta} = X_{ridge}^{+} Y$$

* Efficient solution with SVD

$$\hat{\beta} = (X^\top X + \lambda I)^{-1} X^\top Y$$

(SVD)
$$X = USV^{\top}$$

$$D = \frac{S}{S^2 + \lambda^2}$$

$$\hat{\beta} = VDU^{\top}Y$$

 $\hat\beta = (X^{top X + \lambda I})^{-1}$ $X^{top Y}$

- * How to choose lambda?
- * GCV Generalized Cross Validation 👎
- * Block-wise cross-validation 👍

- * Good implementation: scikit-learn
- * Awesome implementation: http://github.com/alexhuth/ridge

LASSO

- * Laplacian prior on beta_i
- * L1 penalty on beta
- * Coordinate descent w/ early stopping

LASS0

\hat\beta = \underset{\beta} {\mbox{argmin}} \left[||Y-X\beta||_2^2 + \lambda ||\beta||_1 \right]

\hat\beta = \underset{\beta}

$$Y = X\beta + \epsilon$$

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \ [||Y - X\beta||_2^2 + \lambda ||\beta||_1]$$
 Error or loss penalty

LASS0

- * No closed form solution
- * Solved via coordinate descent, LARS (least-angle regression) or other methods
- * Sssslllllooooowwwww.....

LASSO

h/t h/t h/t h/t <a href="https://onlinecourses.gov.psu.edu/stat857/node/stat857/node/stat857/

OTHER METHODS

- * Neural networks
- * Random forests
- * Feature selection (~L0-norm)

NEXT TIME

* Tikhonov regression