Machine Learning Overview

After this video you will be able to...

- Explain what machine learning is
- List three applications of machine learning encountered in everyday life

What is Machine Learning?

...learning from data

- ... learning from data
- ... no explicit programming

- ... learning from data
- ... no explicit programming
- ... discovering hidden patterns

- ... learning from data
- ... no explicit programming
- ... discovering hidden patterns
- ... data-driven decisions

Machine Learning (ML) is an Interdisciplinary Field

Example Application of Machine Learning

Credit card fraud detection

Example Application of Machine Learning

Handwritten digit recognition

Example Application of Machine Learning

Recommendations on websites

More Applications of Machine Learning

- Targeted ads on mobile apps
- Sentiment analysis
- Climate monitoring
- Crime pattern detection
- Drug effectiveness analysis

What's in a Name?

Machine learning

Data mining

Predictive analytics

Data science

Machine Learning Models

- Learn from data
- Discover patterns and trends
- Allow for data-driven decisions
- Used in many different applications

Categories of Machine Learning Techniques

After this video you will be able to...

- Describe the main categories of machine learning techniques
- Summarize how supervised learning differs from unsupervised learning

Categories of Machine Learning Techniques

- Classification
- Regression
- Cluster Analysis
- Association Analysis

Classification

Classification Examples

- Classify tumor as benign or malignant
- Predict if it will rain tomorrow
- Determine if loan application is high-, medium-, or low-risk
- Identify sentiment as positive, negative, or neutral

Regression

Goal: Predict numeric value

Regression Examples

- Estimate demand for a product based on time of year
- Predict score on a test
- Determine likelihood of drug effectiveness for patient
- Predict amount of rain

Cluster Analysis

Goal: Organize similar items into groups.

Adults

Presenter

Image source: http://www.monetate.com/blog/the-intrinsic-value-of-customer-segmentation

Cluster Analysis Examples

- Identify areas of similar topography (desert, grass, etc.)
- Categorize different types of tissues from medical images
- Determine different groups of weather patterns
- Discover crime hot spots

Presenter

Association Analysis

Association Analysis Examples

- Recommend items based on purchase/browsing history
- Have sales on related items often purchased together
- Identify web pages accessed together

Categories of Machine Learning Techniques

Classification

Regression

Cluster Analysis

Association Analysis

Supervised vs. Unsupervised

- Supervised Approaches
 - Target (what model is predicting) is provided
 - 'Labeled' data
 - Classification & regression are supervised.

Supervised vs. Unsupervised

- Unsupervised Approaches
 - Target is unknown or unavailable
 - 'unlabeled' data
 - Cluster analysis & association analysis are unsupervised.

Categories of Machine Learning Techniques

Machine Learning Process

After this video you will be able to...

 Identify the steps in the machine learning process

 Discuss why the machine learning process is iterative

Step 1: Acquire Data

Identify data sources

Collect data

Integrate data

Step 2: Prepare Data

Step 2-A: Explore

Step 2-B: Pre-process

Step 2-A: Explore Data

Preliminary analysis

Understand nature of data

Step 2-B: Pre-process Data

Clean

Select

Transform

Step 3: Analyze Data

Select analytical techniques

Build models

Assess results

Step 4: Communicate Results

ACQUIRE PREPARE ANALYZE REPORT ACT

Step 5: Apply Results

Iterative process

Goals and Activities in the Machine Learning Process

After this video you will be able to...

Explain the goals of each step in the machine learning process

List key activities in each step in the process

ACQUIRE PREPARE ANALYZE REPORT ACT

Goal: Identify and obtain all data related to problem

Acquire Data

Identify data sources
Collect data
Integrate data

ACQUIRE PREPARE ANALYZE REPORT ACT

Step 2-B: Pre-process

Step 2-A: Explore

Why Explore?

Goal: Understand your data

Why Explore?

Outliers

Describe Your Data

Visualize Your Data

Data Cleaning

- Missing values
- Duplicate data
- Inconsistent data
- Noise
- Outliers

Feature Selection

Feature Transformation

Goals:

- Build model
- Evaluate results

Analyze

Select technique

Build model

Evaluate

Classification
Regression
Cluster Analysis
Association
Analysis

Analyze

Select technique

Build model

Evaluate results

Goal: Communicate results and recommend actions

Present

Report

with

using

Goal: Determine actions based on insights

Act

Determine action

Implement

Assess impact

Iterative process

Cross Industry Standard Process for Data Mining (CRISP-DM)

After this video you will be able to...

- Summarize what CRISP-DM is
- List the phases of CRISP-DM
- Describe the goals of each phase

CRISP-DM

CRoss Industry Standard Process for Data Mining

CRISP-DM Phases

- Business Understanding
- Data Understanding
- Data Preparation
- Modeling
- Evaluation
- Deployment

Phase 1 – Business Understanding

- Define problem or opportunity
- Assess situation
- Formulate goals

Phase 2 – Data Understanding

- Data acquisition
- Data exploration

Phase 3 – Data Preparation

- Prepare data for modeling
- Address quality issues, select features to use, process data for modeling

Phase 4 – Modeling

- Determine type of problem
- Select modeling technique(s) to use
- Build model

Phase 5 – Evaluation

- Assess model performance
- Evaluate model results with respect to success criteria

Phase 6 – Deployment

- Produce final report
- Deploy model
- Monitor model

Tools Used in This Course

After this video you will be able to...

- Describe what KNIME is
- Describe what Spark MLlib is
- Contrast KNIME and ML as machine learning tools

Tools for This Course

KNIME Analytics Platform

 Platform for data analytics, reporting, and visualization

- GUI-based approach with drag-and-drop interface
- Nodes provide functionality
- Nodes are assembled to create workflows

File Reader Partitioning Decision Tree Predictor Train model Statistics Read iris.csv Split data 60/40 Apply model Calculates statistic measures: mean, max, min, variance, median, etc.

KNIME Workflow

- Visual representation of steps in analysis process
- Workflow is composed of nodes

KNIME Node

Node implements specific operation

output port

Node Repository

Contains nodes organized by category

Expand category to see subcategories and nodes

KNIME

- GUI-based
- Drag-and-drop
- Interactive
- For small datasets

- Scalable machine learning library
- Runs on Spark
 - Distributed computing platform

Write code to implement machine learning operations

Read and parse data

Provides APIs for

- Distributed platform
- Scalable algorithms & techniques
- For large datasets
- Requires coding

KNIME & Spark MLlib

