

10. In the chart below, x_1 is house area in 1000 square feet and x_2 is the number of bedrooms. Assume the coefficient vector is $\beta = (148.73, -18.85)$ and v = 54.40.

House	x_1 (area)	x_2 (beds)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.037	4	528.00	430.67
5	3.984	5	572.50	552.66

Write out the linear approximation \hat{y} given by β and v and confirm that the top entry in the last column is correct.

column is correct.

10.
$$y = \beta^{T} \cdot x + v = \begin{bmatrix} 148.73 \\ -18.85 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 54.4$$
 $= 148.73 \times_1 - 18.85 \times_2 + 54.4$

Chalc $y = 148.73(0.846) - 18.85(1) + 54.4 = 161.3758$

If area of howse increases by 1000 sq feet and # be drooms is fixed, then howse price is modelled to success by \$148,730.

If # bedrooms 1 by 1 and 39, footage is fixed, then model predicts house price 1 by \$18,850.