§ 5.

Differentiation

Vereinbarung: Stets in dem Paragraphen: $\emptyset \neq D \subseteq \mathbb{R}^n$, D offen und $f: D \to \mathbb{R}^m$ eine Funktion, also $f = (f_1, \ldots, f_m)$

Definition

- (1) Sei $k \in \mathbb{N}$. $f \in C^k(D, \mathbb{R}^m) : \iff f_j \in C^k(D, \mathbb{R}) \ (j = 1, \dots, m)$
- (2) Sei $x_0 \in D$. f heißt **partiell differenzierbar** in $x_0 : \iff$ jedes f_j ist in x_0 partiell differenzierbar. In diesem Fall heißt

$$\frac{\partial f}{\partial x}(x_0) := \frac{\partial (f_1, \dots, f_m)}{\partial (x_1, \dots, x_n)} := J_f(x_0) := \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \cdots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \cdots & \frac{\partial f_m}{\partial x_n}(x_0) \end{pmatrix}$$

die Jacobi- oder Funktionalmatrix von f in x_0 .

Beachte:

- (1) $J_f(x_0)$ ist eine $(m \times n)$ -Matrix.
- (2) Ist m = 1 folgt $J_f(x_0) = \text{grad } f(x_0)$.

Erinnerung: Sei $I \subseteq \mathbb{R}$ ein Intervall, $\varphi : I \to \mathbb{R}$ eine Funktion, $x_0 \in I$. φ ist in x_0 differenzierbar

$$\stackrel{\text{ANA}}{\iff} \exists a \in \mathbb{R} : \lim_{h \to 0} \frac{\varphi(x_0 + h) - \varphi(x_0)}{h} = a$$

$$\iff \exists a \in \mathbb{R} : \lim_{h \to 0} \frac{\varphi(x_0 + h) - \varphi(x_0) - ah}{h} = 0$$

$$\iff \exists a \in \mathbb{R} : \lim_{h \to 0} \frac{\varphi(x_0 + h) - \varphi(x_0) - ah}{|h|} = 0$$

Definition

(1) Sei $x_0 \in D$. f heißt **differenzierbar** (db) in $x_0 : \iff \exists (m \times n)$ -Matrix A, sodass gilt:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - Ah}{\|h\|} = 0 \tag{*}$$

(2) f heißt differenzierbar auf $D : \iff f$ ist in jedem $x \in D$ differenzierbar.

Bemerkungen:

(1) f ist differenzierbar in $x_0 \iff \exists (m \times n)$ -Matrix A:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - A(x - x_0)}{\|x - x_0\|} = 0$$

(2) Ist m=1, so gilt: f ist differenzierbar in x_0

$$\iff \exists a \in \mathbb{R}^n : \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - ah}{\|h\|} = 0$$
 (**)

(3) Aus 2.1 folgt: f ist differenzierbar in $x_0 \iff \text{jedes } f_j$ ist differenzierbar in x_0 .

Satz 5.1 (Differenzierbarkeit und Stetigkeit)

f sei in $x_0 \in D$ differenzierbar

- (1) f ist in x_0 stetig
- (2) f ist in x_0 partiell differenzierbar und die Matrix A in (*) ist eindeutig bestimmt: $A = J_f(x_0)$. $f'(x_0) := A = J_f(x_0)$ (Ableitung von f in x_0).

Beweis

Sei A wie in (*), $A = (a_{jk})$, $\varrho(h) := \frac{f(x_0+h)-f(x_0)-Ah}{\|h\|}$, also: $\varrho(h) \to 0$ $(h \to 0)$. Sei $\varrho = (\varrho_1, \ldots, \varrho_m)$. $2.1 \Longrightarrow \varrho_j(h) \to 0$ $(h \to 0)$ $(j = 1, \ldots, m)$

(1)
$$f(x_0 + h) = f(x_0) + \underbrace{Ah}_{3.50} + \underbrace{\|h\|\varrho(h)}_{\to 0 \ (h\to 0)} \to f(x_0) \ (h\to 0)$$

(2) Sei $j \in \{1, ..., m\}$ und $k \in \{1, ..., n\}$. Zu zeigen: f_j ist partiell differenzierbar und $\frac{\partial f_j}{\partial x_k}(x_0) = a_{jk}$. $\varrho_j(h) = \frac{1}{\|h\|} (f_j(x_0 + h) - f_j(x_0) - (a_{j1}, ..., a_{jn}) \cdot h) \to 0 \ (h \to 0)$. Für $t \in \mathbb{R}$ sei $h = te_k \implies \varrho(h) = \frac{1}{|t|} (f(x_0 + te_k) - a_{jk}t) \to 0 \ (t \to 0) \implies \left| \frac{f(x_0 + te_k) - f(x_0)}{t} - a_{jk} \right| \to 0 \ (t \to 0) \implies f_j$ ist in x_0 partiell differenzierbar und $\frac{\partial f_j}{\partial x_k}(x_0) = a_{jk}$.

Beispiele:

(1)

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{, falls } (x,y) \neq (0,0) \\ 0 & \text{, falls } (x,y) = (0,0) \end{cases}$$

Bekannt: f ist in (0,0) **nicht** stetig, aber partiell differenzierbar und grad f(0,0) = (0,0) 5.1 $\implies f$ ist in (0,0) **nicht** differenzierbar.

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} &, \text{ falls } (x,y) \neq (0,0) \\ 0 &, \text{ falls } (x,y) = (0,0) \end{cases}$$
Für $(x,y) \neq (0,0) : |f(x,y)| = (x^2 + y^2) \left| \sin \frac{1}{\sqrt{x^2 + y^2}} \right| \leq x^2 + y^2 \xrightarrow{(x,y) \to (0,0)} 0 \implies f$
ist in $(0,0)$ stetig. $\frac{f(t,0) - f(0,0)}{t} = \frac{1}{t}t^2 \sin \frac{1}{|t|} = t \sin \frac{1}{|t|} \to 0 \ (t \to 0) \implies f$ ist in $(0,0)$ partiell differenzierbar nach x und $f_x(0,0) = 0$. Analog: f ist in $(0,0)$ partiell differenzierbar nach y und $f_y(0,0) = 0$. $\varrho(h) = \frac{1}{\|h\|} f(h) \stackrel{h=(h_1,h_2)}{=} \frac{1}{\sqrt{h_1^2 + h_2^2}} (h_1^2 + h_2^2) \sin \frac{1}{h_1^2 + h_2^2} = \sqrt{h_1^2 + h_2^2} \sin \frac{1}{\sqrt{h_1^2 + h_2^2}} \to 0 \ (h \to 0) \implies f$ ist differenzierbar in $(0,0)$ und $f'(0,0) = \frac{1}{2} \cot f(0,0) = (0,0)$

$$f(x,y) := \begin{cases} \frac{x^3}{x^2 + y^2} & \text{, falls}(x,y) \neq (0,0) \\ 0 & \text{, falls}(x,y) = (0,0) \end{cases}$$

Übung: f ist in (0,0) stetig.

$$\frac{f(t,0)-f(0,0)}{t} = \frac{1}{t}\frac{t^3}{t^2} = 1 \to 1 \ (t \to 0). \ \frac{f(0,t)-f(0,0)}{t} = 0 \to 0 \ (t \to 0).$$

 $\implies f$ ist in (0,0) partiell db und grad f(0,0) = (1,0).

Für
$$h = (h_1, h_2) \neq (0, 0)$$
: $\rho(h) = \frac{1}{\|h\|} (f(h) - f(0, 0) - \text{grad } f(0, 0) \cdot h) = \frac{1}{\|h\|} (\frac{h_1^3}{h_1^2 + h_2^2} - h_1) = \frac{1}{\|h\|} \frac{-h_1 h_2^2}{h_1^2 + h_2^2} = \frac{-h_1 h_2^2}{(h_1^2 + h_2^2)^{3/2}}.$

Für $h_2 = h_1 > 0$: $\rho(h) = \frac{-h_1^3}{(\sqrt{2})^3 h_1^3} = -\frac{1}{(\sqrt{2})^3} \implies \rho(h) \nrightarrow 0 \ (h \to 0) \implies f \text{ ist in } (0,0)$ nicht db.

Satz 5.2 (Stetigkeit aller partiellen Ableitungen)

Sei $x_0 \in D$ und alle partiellen Ableitungen $\frac{\partial f_j}{\partial x_k}$ seien auf D vorhanden und in x_0 stetig $(j=1,\ldots,m,\ k=1,\ldots,n)$. Dann ist f in x_0 db.

Beweis

O.B.d.A: m = 1 und $x_0 = 0$. Der Übersicht wegen sei n = 2.

Für $h = (h_1, h_2) \neq (0, 0)$:

$$\rho(h) := \frac{1}{\|h\|} (f(h) - f(0,0) - (\underbrace{h_1 f_x(0,0) + h_2 f_y(0,0)}_{= \text{grad } f(0,0) \cdot h}))$$

$$f(h) - f(0) = f(h_1, h_2) - f(0, 0) = \underbrace{f(h_1, h_2) - f(0, h_2)}_{=:\Delta_1} + \underbrace{f(0, h_2) - f(0, 0)}_{=:\Delta_2}$$

$$\varphi(t) := f(t, h_2), t \text{ zwischen } 0 \text{ und } h_1 \implies \Delta_1 = \varphi(h_1) - \varphi(0), \ \varphi'(t) = f_x(t, h_2)$$

Aus dem Mittelwertsatz aus Analysis I folgt: $\exists \xi = \xi(h)$ zw. 0 und $h_1 : \Delta_1 = h_1 \varphi(\xi) = h_1 f_x(\xi, h_2)$ $\exists \eta = \eta(h)$ zw. 0 und $h_2 : \Delta_2 = h_2 \varphi(\eta) = h_2 f_x(\eta, h_2)$

$$\implies \rho(h) := \frac{1}{\|h\|} (h_1 f_x(\xi, h_2) - h_2 f_y(0, \eta) - (h_1 f_x(0, 0) + h_2 f_y(0, 0)))$$

$$= \frac{1}{\|h\|} h(\underbrace{f_x(\xi, h_2) - f_x(0, 0), f_y(0, \eta) - f_y(0, 0)}_{=:v(h)}) = \frac{1}{\|h\|} h \cdot v(h)$$

$$\implies |\rho(h)| = \frac{1}{\|h\|} |h \cdot v(h)| \stackrel{\text{CSU}}{\leq} \frac{1}{\|h\|} \|h\| \|v(h)\| = \|v(h)\|$$

$$f_x, f_y \text{ sind stetig in } (0,0) \implies v(h) \to 0 \ (h \to 0) \implies \rho(h) \to 0 \ (h \to 0)$$

Folgerung 5.3

Ist $f \in C^1(D, \mathbb{R}^m) \implies f$ ist auf D db.

Definition

Sei $k \in \mathbb{N}$ und $f \in C^k(D, \mathbb{R}^m)$. Dann heißt f auf D k-mal stetig db.

Beispiele:

Generalize (1)
$$f(x,y,z) = (x^2 + y, xyz)$$
. $J_f(x,y,z) = \begin{pmatrix} 2x & 1 & 0 \\ yz & xz & xy \end{pmatrix} \implies f \in C^1(\mathbb{R}^3, \mathbb{R}^2)$

 $\stackrel{5.3}{\Longrightarrow} f$ ist auf \mathbb{R}^3 db und $f'(x,y,z) = J_f(x,y,z) \ \forall (x,y,z) \in \mathbb{R}^3$.

(2) Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ linear, es ex. also eine $(m \times n)$ -Matrix A: f(x) = Ax $(x \in \mathbb{R}^n)$.

Für
$$x_0 \in \mathbb{R}^n$$
 und $h \in \mathbb{R}^n \setminus \{0\}$ gilt:

$$\rho(h) = \frac{1}{\|h\|} (f(x_0 + h) - f(x_0) - Ah) = \frac{1}{\|h\|} (f(x_0) + f(h) - f(x_0) - f(h)) = 0.$$

Also: f ist auf \mathbb{R}^n db und $f'(x) = A \ \forall x \in \mathbb{R}^n$. Insbesondere ist $f \in C^1(\mathbb{R}^n, \mathbb{R}^m)$.

- (2.1) n = m und f(x) = x = Ix ($I = (m \times n)$ -Einheitsmatrix). Dann: $f'(x) = I \ \forall x \in \mathbb{R}^n$.
- (2.2) m = 1: $\exists a \in \mathbb{R}^n : f(x) = ax \ (x \in \mathbb{R}^n)$ (Linearform). $f'(x) = a \ \forall x \in \mathbb{R}^n$.

(3)

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} &, \text{ falls}(x,y) \neq (0,0) \\ 0 &, \text{ falls}(x,y) = (0,0) \end{cases}$$

Bekannt: f ist in (0,0) db. Übungsblatt: f_x, f_y sind in (0,0) nicht stetig.

- (4) Sei $I \subseteq \mathbb{R}$ ein Intervall und $g = (g_1, \dots, g_m) : I \to \mathbb{R}^m; g_1, \dots, g_m : I \to \mathbb{R}$. g ist in $t_0 \in I$ db $\iff g_1, \dots, g_m$ sind in $t_0 \in I$ db. In diesem Fall gilt: $g'(t_0) = (g'_1(t_0), \dots, g'_m(t_0))$.
- $(4.1) \ m = 2 : g(t) = (\cos t, \sin t), \ t \in [0, 2\pi]. \ g'(t) = (-\sin t, \cos t).$
- (4.2) Seien $a, b \in \mathbb{R}^m$, g(t) = a + t(b a), $t \in [0, 1]$, g'(t) = b a.

Satz 5.4 (Kettenregel)

f sei in $x_0 \in D$ db, $\emptyset \neq E \subseteq \mathbb{R}^m$, E sei offen, $f(D) \subseteq E$ und $g: E \to \mathbb{R}^p$ sei db in $y_0 := f(x_0)$. Dann ist $g \circ f: D \to \mathbb{R}^p$ db in x_0 und

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$
 (Matrizenprodukt)

Beweis

 $A := f'(x_0), B := g'(y_0) = g'(f(x_0)), h := g \circ f.$

$$\tilde{g}(y) = \begin{cases} \frac{g(y) - g(y_0) - B(y - y_0)}{\|y - y_0\|} & \text{, falls } y \in E \setminus \{y_0\} \\ 0 & \text{, falls } y = y_0 \end{cases}$$

g ist db in $y_0 \implies \tilde{g}(y) \to 0 \ (y \to y_0)$. Aus Satz 5.1 folgt, dass f stetig ist in $x_0 \implies f(x) \to f(x_0) = y_0 \ (x \to x_0) \implies \tilde{g}(f(x)) \to 0 \ (x \to x_0)$

Es ist
$$g(y) - g(y_0) = ||y - y_0|| \tilde{g}(y) = B(y - y_0) \ \forall y \in E$$
.

$$\frac{h(x) - h(x_0) - BA(x - x_0)}{\|x - x_0\|} = \frac{1}{\|x - x_0\|} (g(f(x)) - g(f(x_0)) - BA(x - x_0))$$

$$= \frac{1}{\|x - x_0\|} (\|f(x) - f(x_0)\| \tilde{g}(f(x)) + B(f(x) - f(x_0)) - BA(x - x_0))$$

$$= \underbrace{\|f(x) - f(x_0)\|}_{=:D(x)} \underbrace{\tilde{g}(f(x))}_{\to 0} + B(\underbrace{\frac{f(x) - f(x_0) - A(x - x_0)}{\|x - x_0\|}}_{f \to 0 \ (x \to x_0)})$$

Noch zu zeigen: D(x) bleibt in der "Nähe" von x_0 beschränkt.

$$0 \le D(x) = \frac{\|f(x) - f(x_0) - A(x - x_0) + A(x - x_0)\|}{\|x - x_0\|}$$

$$= \underbrace{\frac{\|f(x) - f(x_0) - A(x - x_0)\|}{\|x - x_0\|}}_{\rightarrow 0} + \underbrace{\frac{\|A(x - x_0)\|}{\|x - x_0\|}}_{\le \|A\|}.$$

Wichtigster Fall $g = g(x_1, ..., x_m)$ reellwertig,

$$h(x) = h(x_1, ..., x_n)$$

= $g(f_1(x_1, ..., x_n), f_2(x_1, ..., x_n), ..., f_m(x_1, ..., x_n))$
= $(g \circ f)(x)$

$$h_{x_j}(x) = g_{x_1}(f(x)) \frac{\partial f_1}{\partial x_j}(x) + g_{x_2}(f(x)) \frac{\partial f_2}{\partial x_j}(x) + \dots + g_{x_m}(f(x)) \frac{\partial f_m}{\partial x_j}(x)$$

Beispiel

$$g = g(x, y, z), h(x, y) = g(xy, x^2 + y, x \sin y) = g(f(x, y)).$$

$$h_x(x,y) = g_x(f(x,y))y + g_y(f(x,y))2x + g_z(f(x,y))\sin y.$$

$$h_y(x,y) = g_x(f(x,y))x + g_y(f(x,y))1 + g_z(f(x,y))x\cos y.$$

Hilfssatz

Es sei A eine $(m \times n)$ -Matrix (reell), es sei B eine $(n \times m)$ -Matrix (reell) und es gelte

- (i) $BA = I(= (n \times n)$ -Einheitsmatrix) und
- (ii) $AB = \tilde{I}(=(m \times m)\text{-Einheitsmatrix})$

Dann: m = n.

Beweis

 $\Phi(x) := Ax(x \in \mathbb{R}^n). \text{ Lin. Alg.} \implies \Phi \text{ ist linear, } \Phi : \mathbb{R}^n \to \mathbb{R}^m. \stackrel{\text{(i)}}{\Longrightarrow} \Phi \text{ ist injektiv, also } Kern\Phi = 0. \text{ (ii) Sei } z \in \mathbb{R}^m, x := Bz \stackrel{\text{(ii)}}{\Longrightarrow} z = ABz = Ax = \Phi(x) \implies \Phi \text{ ist surjektiv. Dann: } n = \dim \mathbb{R}^n \stackrel{\text{LA}}{=} \dim \operatorname{Kern} \Phi + \dim \Phi(\mathbb{R}^n) = m.$

Satz 5.5 (Injektivität und Dimensionsgleichheit)

 $f: D \to \mathbb{R}^m$ sei db auf D, es sei f(D) offen, f injektiv auf D und $f^{-1}: f(D) \to \mathbb{R}^n$ sei db auf f(D). Dann:

- $(1) \ m = n$
- (2) $\forall x \in D : f'(x)$ ist eine invertierbare Matrix und $f'(x)^{-1} = (f^{-1})'(f(x))$

Beachte:

- (1) Ist D offen und $f:D\to\mathbb{R}^m$ db, so muss i. A. f(D) nicht offen sein. Z.B.: $f(x)=\sin x, D=\mathbb{R}, f(D)=[-1,1]$
- (2) Ist D offen, $f: D \to \mathbb{R}^m$ db und injektiv, so muss i.A. f^{-1} nicht db sein. Z.B.: $f(x) = x^3, D = \mathbb{R}, f^{-1}$ ist in 0 nicht db.

Beweis

von 5.5:
$$g := f^{-1}; x_0 \in D, z_0 := f(x_0) (\Longrightarrow x_0 = g(z_0))$$
 Es gilt: $g(f(x)) = x \forall x \in D, f(g(z)) = z \forall z \in f(D) \stackrel{5.4}{\Longrightarrow} g'(f(x)) \cdot f'(x) = I \forall x \in D; f'(g(z)) \cdot g'(z) = \tilde{I} \forall z \in f(D) \Longrightarrow \underbrace{g'(z_0)}_{=:B} \cdot \underbrace{f'(x_0)}_{=:A} = \underbrace{f'(x_0)}_{=:A} = \underbrace{f'(x_0)}_{=:A} \cdot \underbrace{f'(x_0)}_{=:A} = \underbrace{f'(x_$

$$I, f'(x_0) \cdot g'(z_0) = \tilde{I} \stackrel{5.5}{\Longrightarrow} m = n \text{ und } f'(x_0)^{-1} = g'(z_0) = (f^{-1})'(f(x_0)).$$