

Many of the slides in this lecture are either from or adapted from slides provided by the authors of the textbook "Computer Systems: A Programmer's Perspective." 2^{nd} Edition and are provided from the website of Carnegie-Mellon University, course 15-213, taught by Randy Bryant and David O'Hallaron in Fall 2010. These slides are indicated "Supplied by CMU" in the notes section of the slides.

Fractional binary numbers

• What is 1011.101₂?

CS33 Intro to Computer Systems

IX-2

Representable Numbers

- Limitation #1
 - can exactly represent only numbers of the form n/2k
 - » other rational numbers have repeating bit representations
 - value representation
 - » 1/3 0.01010101[01]...2
 - » 1/5 0.001100110011[0011]...2
 - » 1/10 0.0001100110011[0011]...2
- Limitation #2
 - just one setting of decimal point within the w bits
 - » limited range of numbers (very small values? very large?)

CS33 Intro to Computer Systems

IX-4

IEEE Floating Point

- IEEE Standard 754
 - established in 1985 as uniform standard for floating point arithmetic
 - » before that, many idiosyncratic formats
 - supported by all major CPUs
- · Driven by numerical concerns
 - nice standards for rounding, overflow, underflow
 - hard to make fast in hardware
 - » numerical analysts predominated over hardware designers in defining standard

CS33 Intro to Computer Systems

IX-5

Floating-Point Representation

Numerical Form:

- sign bit s determines whether number is negative or positive
- significand M normally a fractional value in range [1.0,2.0)
- exponent E weights value by power of two
- Encoding
 - MSB s is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

s	ехр	frac

On x86 hardware, all floating-point arithmetic is done with 80 bits, then reduced to either 32 or 64 as required.

"Normalized" Values

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = Exp Bias
 - exp: unsigned value exp
 - bias = 2^{k-1} 1, where k is number of exponent bits
 - » single precision: 127 (Exp: 1...254, E: -126...127)
 - » double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac
 - minimum when frac=000...0 (M = 1.0)
 - maximum when frac=111...1 ($M = 2.0 \epsilon$)
 - get extra leading bit for "free"

CS33 Intro to Computer Systems

IX-8

Normalized Encoding Example • Value: float F = 15213.0; $-15213_{10} = 11101101101101_2$ = 1.1101101101101₂ x 2¹³ Significand $M = 1.1101101101101_2$ frac = Exponent E = 13 bias = 127 **140 =** 10001100₂ exp = Result: 110110110110100000000000 frac exp **CS33 Intro to Computer Systems** IX-9

Denormalized Values

- Condition: exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0:

 $M = 0.xxx...x_2$

- xxx...x: bits of frac
- Cases
 - $\exp = 000...0, frac = 000...0$
 - » represents zero value
 - » note distinct values: +0 and -0 (why?)
 - $-\exp = 000...0$, frac $\neq 000...0$
 - » numbers closest to 0.0
 - » equispaced

CS33 Intro to Computer Systems

IX-10

Special Values

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - represents value ∞ (infinity)
 - operation that overflows
 - both positive and negative
 - $e.g., 1.0/0.0 = -1.0/-0.0 = +\infty, 1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - not-a-number (NaN)
 - represents case when no numeric value can be determined
 - e.g., sqrt(-1), ∞ ∞ , $\infty \times 0$

CS33 Intro to Computer Systems

IX-11

Tiny Floating-Point Example

- · 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- · Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

CS33 Intro to Computer Systems IX-13

Dynamic Range (Positive Only)					
	s exp	frac	E	Value	
	0 0000	000	-6	0	
	0 0000	001	-6	1/8*1/64 = 1/512	
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512	closest to zero
numbers					
	0 0000	110	-6	6/8*1/64 = 6/512	
	0 0000	111	-6	7/8*1/64 = 7/512	largest denorm
	0 0001	. 000	-6	8/8*1/64 = 8/512	smallest norm
	0 0001	. 001	-6	9/8*1/64 = 9/512	
	0 0110	110	-1	14/8*1/2 = 14/16	
	0 0110	111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 0111	. 000	0	8/8*1 = 1	
numbers	0 0111	. 001	0	9/8*1 = 9/8	closest to 1 above
	0 0111	. 010	0	10/8*1 = 10/8	
		110	7	14/8*128 = 224	
	0 1110		7	15/8*128 = 240	largest norm
	0 1111	. 000	n/a	inf	
CS33 Intro to	Computer	Systems		IX-14	

- · 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - bias is 3

s	exp	frac		
1	3-bits	2-bits		

What number is represented by 0 011 10?

- a) 12
- b) 1.5
- c) .5
- d) none of the above

CS33 Intro to Computer Systems

IX-17

Copyright © 2017 Thomas W. Doeppner. All rights reserved.

Floating-Point Operations: Basic Idea

- $x +_f y = Round(x + y)$
- $x \times_f y = Round(x \times y)$
- · Basic idea
 - first compute exact result
 - make it fit into desired precision
 - » possibly overflow if exponent too large
 - » possibly round to fit into frac

CS33 Intro to Computer Systems

IX-18

Rounding

· Rounding modes (illustrated with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	- \$1.50
towards zero	\$1	\$1	\$1	\$2	- \$1
round down (−∞)	\$1	\$1	\$1	\$2	-\$2
round up (+∞)	\$2	\$2	\$2	\$3	- \$1
nearest integer	\$1	\$2	?	?	?
nearest even (default)	\$1	\$2	\$2	\$2	-\$2

CS33 Intro to Computer Systems

IX-19

Postnormalize

- Issue
 - rounding may have caused overflow
 - handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
13	1.101	3		13
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000*26	64

CS33 Intro to Computer Systems IX-23

Floating-Point Multiplication

- (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}
- Exact result: (-1)s M 2E

sign s: s1 ^ s2
 significand M: M1 x M2
 exponent E: E1 + E2

- Fixing
 - if $M \ge 2$, shift M right, increment E
 - if E out of range, overflow (or underflow)
 - round M to fit frac precision
- Implementation
 - biggest chore is multiplying significands

CS33 Intro to Computer Systems

IX-24

Supplied by CMU.

Note that to compute E, one must first convert \exp_1 and \exp_2 to E_1 and E_2 , then add them them together and check for underflow or overflow (corresponding to $-\infty$ and $+\infty$), and then convert to \exp .

Note that, by default, overflow results in either $+\infty$ or $-\infty$.

Floating Point in C

- · C guarantees two levels
 - -float single precision
 - -double double precision
- · Conversions/casting
 - -casting between int, float, and double changes bit representation
 - $-double/float \rightarrow int$
 - » truncates fractional part
 - » like rounding toward zero
 - » not defined when out of range or NaN: generally sets to TMin
 - $-int \rightarrow double$
 - » exact conversion, as long as int has ≤ 53-bit word size
 - $-int \rightarrow float$
 - » will round according to rounding mode

CS33 Intro to Computer Systems

IX-26

Quiz 2

Suppose f, declared to be a float, is assigned the largest possible floating-point positive value (other than $+\infty$). What is the value of g = f+1.0?

- a) f
- b) +∞
- c) NAN
- d) 0

CS33 Intro to Computer Systems

IX-27

Copyright © 2017 Thomas W. Doeppner. All rights reserved.

Float is not Rational ...

```
· Floating addition
```

CS33 Intro to Computer Systems

IX-28

Copyright © 2017 Thomas W. Doeppner. All rights reserved.

Note that the floating-point numbers in this and the next two slides are expressed in base 10, not base 2.

Float is not Rational ...

Multiplication

commutative: a *f b = b *f a
yes!
associative: a *f (b *f c) = (a *f b) *f c
no!
1e20 *f (1e20 *f 1e-20) = 1e20

• (1e20 *f 1e20) *f 1e-20 = +∞

CS33 Intro to Computer Systems

IX-29

Copyright © 2017 Thomas W. Doeppner. All rights reserved.

Float is not Rational ...

- More ...
 - multiplication distributes over addition:

```
a *f (b +f c) = (a *f b) +f (a *f c)

» no!

» 1e20 *f (1e20 +f -1e20) = 0

» (1e20 *f 1e20) +f (1e20 *f -1e20) = NaN
```

– loss of significance:

```
x=y+1
z=2/(x-y)
z==2?
```

- » not necessarily!
 - · consider y = 1e20

CS33 Intro to Computer Systems

IX-30

Copyright © 2017 Thomas W. Doeppner. All rights reserved.