PARALLEL ALGORITHMS FOR TREES

Ahmad Khayyat Department of Electrical & Computer Engineering ahmad.khayyat@ece.queensu.ca

PARALLEL COMPUTATION: MODELS AND METHODS SELIM G. AKL CHAPTER 6

CISC 879 — Algorithms and Applications Queen's University

October 29, 2008

Outline

- Introduction
- 2 Building Euler Tours
- 3 Applications of Euler Tours
- 4 Conclusion

Outline

Introduction

- Introduction
 - Graphs
 - Euler Tours
- Applications of Euler Tours

Introduction

Graphs

- A Graph G=(V,E) is a set of vertices V connected by a set of edges E.
- If the edges have orientation, the graph is directed.
- A path is an ordered list of edges in the form $(v_i, v_j), (v_j, v_k), (v_k, v_l)$.
- A cycle is a path that begins and ends at the same vertex.
- The degree of a vertex in an undirected graph is the number of edges adjacent to the vertex.
- ullet The in-degree of a vertex v in a directed graph is the number of edges entering v,
 - The out-degree of a vertex v in a directed graph is the number of edges leaving v.

Outline

- Introduction
 - Graphs
 - Euler Tours
- Applications of Euler Tours

Euler Tour (ET)

A cycle where every edge of the graph appears in the cycle exactly once.

An undirected graph has an Euler tour if each vertex has an even degree.

Euler Tour (ET)

A cycle where every edge of the graph appears in the cycle exactly once.

An undirected graph has an Euler tour if each vertex has an even degree.

$$(v_1, v_7), (v_7, v_2), (v_2, v_3), (v_3, v_6)$$

Euler Tour (ET)

A cycle where every edge of the graph appears in the cycle exactly once.

An undirected graph has an Euler tour if each vertex has an even degree.

$$(v_1, v_7), (v_7, v_2), (v_2, v_3), (v_3, v_6)$$

 $(v_6, v_7), (v_7, v_5), (v_5, v_6)$

Euler Tour (ET)

A cycle where every edge of the graph appears in the cycle exactly once.

An undirected graph has an Euler tour if each vertex has an even degree.

$$(v_1, v_7), (v_7, v_2), (v_2, v_3), (v_3, v_6)$$

 $(v_6, v_7), (v_7, v_5), (v_5, v_6)$
 $(v_6, v_4), (v_4, v_5), (v_5, v_1)$

Euler Tour (ET)

A cycle where every edge of the graph appears in the cycle exactly once.

Euler Tour (ET)

A cycle where every edge of the graph appears in the cycle exactly once.

$$(v_1, v_2), (v_2, v_3), (v_3, v_4)$$

Euler Tour (ET)

A cycle where every edge of the graph appears in the cycle exactly once.

$$(v_1, v_2), (v_2, v_3), (v_3, v_4)$$

$$(v_4, v_2), (v_2, v_4)$$

Euler Tour (ET)

A cycle where every edge of the graph appears in the cycle exactly once.

$$(v_1, v_2), (v_2, v_3), (v_3, v_4)$$

 $(v_4, v_2), (v_2, v_4)$
 $(v_4, v_5), (v_5, v_6), (v_6, v_4), (v_4, v_6)$

Euler Tour (ET)

A cycle where every edge of the graph appears in the cycle exactly once.

$$(v_1, v_2), (v_2, v_3), (v_3, v_4)$$

 $(v_4, v_2), (v_2, v_4)$
 $(v_4, v_5), (v_5, v_6), (v_6, v_4), (v_4, v_6)$
 $(v_6, v_5), (v_5, v_1)$

Trees

Tree

An undirected graph that is connected and contains no cycles.

- A tree with n vertices has exactly n-1 edges.
- A directed tree (DT) with n vertices has 2n-2 edges.
 - \Rightarrow Its ET is a sequence of 2n-2 edges.

Data Structure

Outline

- Introduction
- 2 Building Euler Tours
 - Data Structure
 - The Algorithm
 - Analysis
- 3 Applications of Euler Tours
- Conclusion

Data Structure

Directed Trees (DT) as Linked Lists

- n linked lists, one for each vertex.
- The nodes of a list are edges leaving that vertex.

The Algorithm

Outline

- 1 Introduction
- 2 Building Euler Tours
 - Data Structure
 - The Algorithm
 - Analysis
- 3 Applications of Euler Tours
- 4 Conclusion

Algorithm Input and Output

Input:

n linked lists representing a directed tree (DT).

Output:

Compute the Euler tour (ET) for the given DT:

- Arrange all the edges of the DT in a single linked list.
- \Rightarrow Each edge (v_i, v_j) is followed by an edge (v_j, v_k) .
- ightharpoonup The first edge leaves some vertex v_l , the last edge enters v_l .

The Algorithm

Building the Euler Tour in Parallel

- ullet Assuming the shared-memory model, with n-1 processors.
- Each processor $P_{ij}, i < j$, is in charge of two edges: (v_i, v_j) and (v_j, v_i) .
- P_{ij} determines the position (actually, the successor) of the two nodes holding (v_i,v_j) and (v_j,v_i) (or ij and ji) in ET.

```
Successor of (v_i, v_j)

if \text{next}(ji) = jk then

\text{succ}(ij) \leftarrow jk

else

\text{succ}(ij) \leftarrow \text{head}(v_j)

end if
```

```
Successor of (v_j, v_i)

if \operatorname{next}(ij) = im then

\operatorname{succ}(ji) \leftarrow im

else

\operatorname{succ}(ji) \leftarrow \operatorname{head}(v_i)

end if
```

Successor of
$$(v_1, v_3)$$

Successor of (v_i, v_j) if next(ji) = jk then $succ(ij) \leftarrow jk$ else $succ(ij) \leftarrow head(v_i)$ end if

The Algorithm

Example: $P_{ij} = P_{13}$

Successor of (v_1, v_3)

Successor of (v_i, v_j) if next(ji) = jk then $succ(ij) \leftarrow jk$ else $succ(ij) \leftarrow head(v_i)$ end if

$$next(31) = null$$

Successor of (v_1, v_3)

Successor of (v_i, v_j)

if next(ji) = jk then $succ(ij) \leftarrow jk$ else

 $succ(ij) \leftarrow head(v_i)$ end if

 $succ(13) \leftarrow head(v_3)$

$$(v_1, v_3) \longrightarrow (v_3, v_1)$$

Successor of (v_3, v_1)

Successor of (v_i, v_i) if next(ij) = im then $succ(ji) \leftarrow im$ else $succ(ji) \leftarrow head(v_i)$ end if

Example:
$$P_{ij} = P_{13}$$

Successor of
$$(v_3, v_1)$$

Successor of
$$(v_j, v_i)$$

if $\operatorname{next}(ij) = im$ then
 $\operatorname{succ}(ji) \leftarrow im$
else
 $\operatorname{succ}(ji) \leftarrow \operatorname{head}(v_i)$
end if

$$next(13) = 14$$

Successor of (v_3, v_1)

Successor of (v_i, v_i)

$$\begin{array}{l} \textbf{if } \mathsf{next}(ij) = im \ \textbf{then} \\ \mathsf{succ}(ji) \leftarrow im \\ \textbf{else} \\ \mathsf{succ}(ji) \leftarrow \mathsf{head}(v_i) \\ \textbf{end if} \end{array}$$

$$succ(31) \leftarrow 14$$

$$(v_1, v_3) \longrightarrow (v_3, v_1) \longrightarrow (v_1, v_4)$$

Outline

- **Building Euler Tours**
 - Data Structure
 - The Algorithm
 - Analysis
- Applications of Euler Tours

Correctness

- Visits all the edges:
 - Every pair of edges is assigned to a processor.
- Produces a single cycle, not several small cycles:

$$(v_i, v_j) \longrightarrow (v_j, v_k)$$

$$v_i$$
 v_j v_k

$$next(ji) = jk$$

Correctness

- Visits all the edges:
 - Every pair of edges is assigned to a processor.
- Produces a single cycle, not several small cycles:

$$\operatorname{next}(ji) = jk$$

$$\operatorname{next}(jk) = ji, \text{ or } \operatorname{head}(v_j) = ji$$

Analysis

Complexity

•
$$t(n) = O(1)$$

•
$$p(n) = n - 1 = O(n)$$

$$\Rightarrow$$
 $c(n) = O(n)$

Utility Computations

Outline

- Introduction
- 2 Building Euler Tours
- 3 Applications of Euler Tours
 - Utility Computations
 - Simple Applications of Euler Tours
 - Computing Minima
- 4 Conclusion

Pointer Jumping

 $parent(v_i) \leftarrow parent(parent(v_i))$

Find the root of v_8 .

$$v_{1}$$
 v_{2}
 v_{3}
 v_{4}
 v_{5}
 v_{6}
 v_{7}
 v_{8}

Applications of Euler Tours **Utility Computations**

Pointer Jumping

 $parent(v_i) \leftarrow parent(parent(v_i))$

Find the root of v_8 .

Pointer Jumping

 $parent(v_i) \leftarrow parent(parent(v_i))$

Find the root of v_8 .

Applications of Euler Tours **Utility Computations**

Pointer Jumping

 $parent(v_i) \leftarrow parent(parent(v_i))$

Find the root of v_8 .

Time Complexity

Sequential: O(n)

Parallel: $O(\log n)$

Parallel Prefix Computation for Linked Lists

Step 1: forall i do in parallel

 $\mathsf{next}(i) \leftarrow \mathsf{succ}(i)$

Step 2: $finished \leftarrow false$

Step 3: while not finished do

(3.1) $finished \leftarrow true$

(3.2) forall i do in parallel

- (i) **if** $next(i) \neq nil$ **then**
 - (a) $val(next(i)) \leftarrow val(i) \circ val(next(i))$
 - (b) $next(i) \leftarrow next(next(i))$
- (ii) if $next(i) \neq nil$ then $finished \xleftarrow{common}$ false

Input & Output

Input: A linked list

Output: Prefix computation

Parallel Prefix Computation for Linked Lists

Step 1: forall i do in parallel

 $\mathsf{next}(i) \leftarrow \mathsf{succ}(i)$

Step 2: $finished \leftarrow false$

- (3.1) $finished \leftarrow true$
- (3.2) forall i do in parallel
 - (i) if $next(i) \neq nil$ then
 - (a) $val(next(i)) \leftarrow val(i) \circ val(next(i))$
 - (b) $next(i) \leftarrow next(next(i))$
 - (ii) if $next(i) \neq nil$ then $finished \xleftarrow{common}$ false

$$x_{a-b} = x_a \circ x_{a+1} \circ \cdots \circ x_b$$

Parallel Prefix Computation for Linked Lists

```
Step 1: forall i do in parallel next(i) \leftarrow succ(i)
```

Step 2: $finished \leftarrow false$

- (3.1) $finished \leftarrow true$
- (3.2) forall i do in parallel
 - (i) if $next(i) \neq nil$ then
 - (a) $val(next(i)) \leftarrow val(i) \circ val(next(i))$
 - (b) $next(i) \leftarrow next(next(i))$
 - (ii) if $next(i) \neq nil$ then $finished \xleftarrow{common}$ false

Parallel Prefix Computation for Linked Lists

Step 1: forall i do in parallel

 $next(i) \leftarrow succ(i)$

Step 2: $finished \leftarrow false$

- (3.1) $finished \leftarrow true$
- (3.2) forall i do in parallel
 - (i) **if** $next(i) \neq nil$ **then**
 - (a) $val(next(i)) \leftarrow val(i) \circ val(next(i))$
 - (b) $next(i) \leftarrow next(next(i))$
 - (ii) if $next(i) \neq nil$ then $finished \xleftarrow{\mathsf{common}} \mathsf{false}$

$$t(n) = O(\log n)$$

$$p(n) = n$$

Parallel Suffix Computation for Linked Lists

Step 1: forall i do in parallel

 $next(i) \leftarrow succ(i)$

Step 2: $finished \leftarrow false$

- (3.1) $finished \leftarrow true$
- (3.2) forall i do in parallel
 - (i) **if** $next(i) \neq nil$ **then**
 - (a) $val(i) \leftarrow val(i) \circ val(next(i))$
 - (b) $next(i) \leftarrow next(next(i))$
 - (ii) if $next(i) \neq nil$ then $finished \xleftarrow{\mathsf{common}} \mathsf{false}$

$$t(n) = O(\log n)$$

$$p(n) = n$$

List Sequencing

List Sequencing

Computing the distance of each node from the *beginning* of the list (node position).

Input: Linked list L

Output: Sequence numbers

forall i do in parallel

$$\mathsf{val}(i) \leftarrow 1$$

Parallel-Prefix(L, +)

Utility Computations

List Sequencing

List Sequencing

Computing the distance of each node from the *beginning* of the list (node position).

Input: Linked list L

forall i do in parallel

$$\mathsf{val}(i) \leftarrow 1$$

Parallel-Prefix(L, +)

Output: Sequence numbers

List Ranking

List Ranking

Computing the distance of each node from the *end* of the list.

Input: Linked list L

Output: Node ranks

Applications of Euler Tours

forall i do in parallel

- (3.1) $\operatorname{val}(i) \leftarrow 1$
- (3.2) if $succ(i) \neq nil$ then $succ(succ(i)) \leftarrow i$

Parallel-Prefix(L, +)

List Ranking

List Ranking

Computing the distance of each node from the *end* of the list.

Input: Linked list L

Output: Node ranks

Applications of Euler Tours

forall i do in parallel

- (3.1) $\operatorname{val}(i) \leftarrow 1$
- (3.2) if $succ(i) \neq nil$ then $succ(succ(i)) \leftarrow i$

Parallel-Prefix(L, +)

Utility Computations

List Ranking

List Ranking

Computing the distance of each node from the *end* of the list.

Input: Linked list L

forall i do in parallel

- (3.1) $\operatorname{val}(i) \leftarrow 1$
- (3.2) if $succ(i) \neq nil$ then $succ(succ(i)) \leftarrow i$

Parallel-Prefix(L, +)

Output: Node ranks

Complexity

$$t(n) = O(\log n), \qquad p(n) = O(n)$$

Outline

- Introduction
- 2 Building Euler Tours
- 3 Applications of Euler Tours
 - Utility Computations
 - Simple Applications of Euler Tours
 - Computing Minima
- 4 Conclusion

An Euler Tour is a . . .

An Euler Tour returns to the root of a subtree only after all vertices in the subtree have been visited.

Depth-First Traversal

An Euler Tour returns to the root of a subtree only after all vertices in the subtree have been visited.

Finding Parents

- Recall:
 - pos(i) is node i's sequence number.
 - ightharpoonup In an Euler Tour, a node looks like (v_i, v_j) .
 - ightharpoonup If (v_i, v_i) is a node, then (v_i, v_i) is also a node.
- $pos(v_i, v_i) < pos(v_i, v_i) \Rightarrow (v_i, v_i)$ is an advance edge otherwise (v_i, v_i) is a retreat edge.

$$\begin{aligned} \mathsf{parent}(\mathsf{root}) &\leftarrow \mathit{nil} \\ \mathbf{forall} \ (v_i, v_j) &\in \mathsf{ET} \ \mathbf{do} \ \mathbf{in} \ \mathsf{parallel} \\ \mathbf{if} \ \mathsf{pos}(v_i, \, v_j) &< \mathsf{pos}(v_j, \, v_i) \ \mathbf{then} \\ \mathsf{parent}(v_j) &\leftarrow v_i \end{aligned}$$

Counting Descendants

 $des(v_i)$

- The subtree of v_i edges appear between the advance edge (parent(v_i), v_i) and the retreat edge (v_i , parent(v_i)) in ET.
- Half of these edges are advance edges and half are retreat.
- $des(v_i)$ is the number of advance edges in the subtree +1.

$$des(v_i) = \frac{pos(v_i, parent(v_i)) - 1 - pos(parent(v_i), v_i)}{2} + 1$$

Numbering Vertices

Preorder (top-down)

```
preorder(root) \leftarrow 1
forall (v_i, v_i) \in \mathsf{ET} do in parallel
    if pos(v_i, v_i) < pos(v_i, v_i) then
          val(ij) \leftarrow 1
    else
          val(ij) \leftarrow 0
Parallel-Prefix(ET, +)
forall (v_i, v_i) \in \mathsf{ET} do in parallel
    if pos(v_i, v_i) < pos(v_i, v_i) then
          preorder(v_i) \leftarrow val(ij) + 1
```


Numbering Vertices

Preorder (top-down)

```
preorder(root) \leftarrow 1
forall (v_i, v_i) \in \mathsf{ET} do in parallel
     if pos(v_i, v_i) < pos(v_i, v_i) then
          \mathsf{val}(ij) \leftarrow 1
     else
          val(ij) \leftarrow 0
Parallel-Prefix(ET, +)
forall (v_i, v_i) \in \mathsf{ET} do in parallel
     if pos(v_i, v_i) < pos(v_i, v_i) then
          preorder(v_i) \leftarrow val(ij) + 1
```


Numbering Vertices

Preorder (top-down)

```
preorder(root) \leftarrow 1
forall (v_i, v_i) \in \mathsf{ET} do in parallel
    if pos(v_i, v_i) < pos(v_i, v_i) then
          val(ij) \leftarrow 1
    else
          val(ij) \leftarrow 0
Parallel-Prefix(ET, +)
forall (v_i, v_i) \in \mathsf{ET} do in parallel
    if pos(v_i, v_i) < pos(v_i, v_i) then
          preorder(v_i) \leftarrow val(ij) + 1
```


Numbering Vertices

Preorder (top-down)

```
preorder(root) \leftarrow 1
forall (v_i, v_i) \in \mathsf{ET} do in parallel
    if pos(v_i, v_i) < pos(v_i, v_i) then
          val(ij) \leftarrow 1
    else
          val(ij) \leftarrow 0
Parallel-Prefix(ET, +)
forall (v_i, v_i) \in \mathsf{ET} do in parallel
    if pos(v_i, v_i) < pos(v_i, v_i) then
          preorder(v_i) \leftarrow val(ij) + 1
```


Numbering Vertices

Postorder (bottom-up)

The postorder number of a vertex v_i is the number of retreat edges in ET traversed before reaching v_i for the last time +1.

```
postorder(root) \leftarrow n
forall (v_i, v_i) \in \mathsf{ET} do in parallel
    if pos(v_i, v_i) < pos(v_i, v_i) then
          val(ij) \leftarrow 0
    else
          val(ij) \leftarrow 1
Parallel-Prefix(ET, +)
forall (v_i, v_i) \in \mathsf{ET} do in parallel
    if pos(v_i, v_i) > pos(v_i, v_i) then
          postorder(v_i) \leftarrow val(ij)
```


Numbering Vertices

Postorder (bottom-up)

The postorder number of a vertex v_i is the number of retreat edges in ET traversed before reaching v_i for the last time +1.

```
postorder(root) \leftarrow n
forall (v_i, v_i) \in \mathsf{ET} do in parallel
    if pos(v_i, v_i) < pos(v_i, v_i) then
          val(ij) \leftarrow 0
    else
          val(ij) \leftarrow 1
Parallel-Prefix(ET, +)
forall (v_i, v_i) \in \mathsf{ET} do in parallel
    if pos(v_i, v_i) > pos(v_i, v_i) then
          postorder(v_i) \leftarrow val(ij)
```


Numbering Vertices

Postorder (bottom-up)

The postorder number of a vertex v_i is the number of retreat edges in ET traversed before reaching v_i for the last time +1.

$$\begin{aligned} \operatorname{postorder}(\operatorname{root}) &\leftarrow n \\ \mathbf{forall} \ (v_i, v_j) &\in \operatorname{ET} \ \mathbf{do} \ \mathbf{in} \ \mathbf{parallel} \\ \mathbf{if} \ \operatorname{pos}(v_i, v_j) &< \operatorname{pos}(v_j, v_i) \ \mathbf{then} \\ & \operatorname{val}(ij) \leftarrow 0 \\ \mathbf{else} \\ & \operatorname{val}(ij) \leftarrow 1 \\ \end{aligned} \\ \begin{aligned} \operatorname{Parallel-Prefix}(\operatorname{ET}, +) \\ \mathbf{forall} \ (v_i, v_j) &\in \operatorname{ET} \ \mathbf{do} \ \mathbf{in} \ \mathbf{parallel} \\ \mathbf{if} \ \operatorname{pos}(v_i, v_j) &> \operatorname{pos}(v_j, v_i) \ \mathbf{then} \\ & \operatorname{postorder}(v_i) \leftarrow \operatorname{val}(ij) \end{aligned}$$

Numbering Vertices

Postorder (bottom-up)

The postorder number of a vertex v_i is the number of retreat edges in ET traversed before reaching v_i for the last time +1.

```
postorder(root) \leftarrow n
forall (v_i, v_i) \in \mathsf{ET} do in parallel
    if pos(v_i, v_i) < pos(v_i, v_i) then
          val(ij) \leftarrow 0
    else
          val(ij) \leftarrow 1
Parallel-Prefix(ET, +)
forall (v_i, v_i) \in \mathsf{ET} do in parallel
    if pos(v_i, v_i) > pos(v_i, v_i) then
          postorder(v_i) \leftarrow val(ij)
```


Tree Binary Relations

- "An Euler Tour returns to the root of a subtree only after all vertices in the subtree have been visited."
- v_i is an ancestor of v_j (v_j is a descendant of v_i) iff: $preorder(v_i) \le preorder(v_i) < preorder(v_i) + des(v_i)$

Examples:

 v_7 is an ancestor of v_2 :

$$6 \le 7 < 6 + 2 = 8$$

 v_6 is *not* an ancestor of v_2 :

$$5 \le 7 < 5 + 1 = 6$$

Levels of Vertices

 $level(v_j) = retreat edges - advance edges, following first <math>v_j$ in ET

$$\begin{split} & |\mathsf{evel}(\mathsf{root}) \leftarrow 0 \\ & \mathbf{forall} \ (v_i, v_j) \in \mathsf{ET} \ \mathbf{do} \ \mathbf{in} \ \mathbf{parallel} \\ & \mathbf{if} \ \mathsf{pos}(v_i, \, v_j) < \mathsf{pos}(v_j, \, v_i) \ \mathbf{then} \\ & \mathsf{val}(ij) \leftarrow -1 \\ & \mathbf{else} \\ & \mathsf{val}(ij) \leftarrow 1 \\ \\ & \mathsf{Parallel-Suffix}(\mathsf{ET}, \, +) \\ & \mathbf{forall} \ (v_i, v_j) \in \mathsf{ET} \ \mathbf{do} \ \mathbf{in} \ \mathbf{parallel} \\ & \mathbf{if} \ \mathsf{pos}(v_i, \, v_j) < \mathsf{pos}(v_j, \, v_i) \ \mathbf{then} \\ & \mathsf{level}(v_j) \leftarrow \mathsf{val}(ij) + 1 \end{split}$$

Levels of Vertices

 $level(v_j) = retreat edges - advance edges$, following first v_j in ET

 $level(root) \leftarrow 0$ forall $(v_i, v_i) \in \mathsf{ET}$ do in parallel if $pos(v_i, v_i) < pos(v_i, v_i)$ then $val(ij) \leftarrow -1$ else $val(ij) \leftarrow 1$ Parallel-Suffix(ET, +) forall $(v_i, v_i) \in \mathsf{ET}$ do in parallel if $pos(v_i, v_i) < pos(v_i, v_i)$ then $level(v_i) \leftarrow val(ij) + 1$

Levels of Vertices

 $level(v_j) = retreat edges - advance edges, following first <math>v_j$ in ET

 $level(root) \leftarrow 0$ forall $(v_i, v_i) \in \mathsf{ET}$ do in parallel if $pos(v_i, v_i) < pos(v_i, v_i)$ then $val(ij) \leftarrow -1$ else $val(ij) \leftarrow 1$ Parallel-Suffix(ET, +) forall $(v_i, v_i) \in \mathsf{ET}$ do in parallel if $pos(v_i, v_i) < pos(v_i, v_i)$ then $level(v_i) \leftarrow val(ij) + 1$

Levels of Vertices

level
$$(v_j)$$
 = retreat edges - advance edges, following first v_j in ET = advance edges - retreat edges, up to first v_j in ET

$$\begin{aligned} \mathsf{level}(\mathsf{root}) &\leftarrow 0 \\ \mathbf{forall} \ (v_i, v_j) &\in \mathsf{ET} \ \mathbf{do} \ \mathbf{in} \ \mathsf{parallel} \\ \mathbf{if} \ \mathsf{pos}(v_i, \, v_j) &< \mathsf{pos}(v_j, \, v_i) \ \mathbf{then} \\ & \mathsf{val}(ij) \leftarrow -1 \\ \mathbf{else} \\ & \mathsf{val}(ij) \leftarrow 1 \\ \mathsf{Parallel-Suffix}(\mathsf{ET}, \, +) \\ \mathbf{forall} \ (v_i, v_j) &\in \mathsf{ET} \ \mathbf{do} \ \mathbf{in} \ \mathsf{parallel} \\ \mathbf{if} \ \mathsf{pos}(v_i, \, v_j) &< \mathsf{pos}(v_j, \, v_i) \ \mathbf{then} \\ & \mathsf{level}(v_j) \leftarrow \mathsf{val}(ij) + 1 \end{aligned}$$

Outline

- Introduction
- 2 Building Euler Tours
- 3 Applications of Euler Tours
 - Utility Computations
 - Simple Applications of Euler Tours
 - Computing Minima
- 4 Conclusion

The Interval Minima Problem

$$S = \{s_k : k = \mathsf{preorder}(v_i) \Rightarrow s_k = \mathsf{val}(v_i)\}\$$

Example:

$$3 = preorder(v_5), s_3 = 6$$

 $S = \{10, 5, 6, 7, 3, 4, 2, 1\}$

The Interval Minima Problem

$$S = \{s_k : k = \mathsf{preorder}(v_i) \Rightarrow s_k = \mathsf{val}(v_i)\}$$

$$S_{v_i} = \{s_k, s_{k+1}, \dots, s_\ell\}, \quad \ell = k + \mathsf{des}(v_i) - 1$$

Example:

$$3 = \mathsf{preorder}(v_5), s_3 = 6$$

$$S = \{10, 5, 6, 7, 3, 4, 2, 1\}$$

$$S_{v_2}: k = 2, \ell = 2 + 5 - 1 = 6$$

$$S_{v_2} = \{5, 6, 7, 3, 4\}$$

The Interval Minima Problem

$$S = \{s_k : k = \mathsf{preorder}(v_i) \Rightarrow s_k = \mathsf{val}(v_i)\}$$

$$S_{v_i} = \{s_k, s_{k+1}, \dots, s_\ell\}, \quad \ell = k + \mathsf{des}(v_i) - 1$$

find $\min(S_{v_i}) \quad \forall v_i$

Example:

$$3 = \mathsf{preorder}(v_5), s_3 = 6$$
 $S = \{10, 5, 6, 7, 3, 4, 2, 1\}$ $S_{v_2}: k = 2, \ell = 2 + 5 - 1 = 6$ $S_{v_2} = \{5, 6, 7, 3, 4\}$

The Interval Minima Tree

Prefix Minima (PM)

The prefix minima of a sequence $\{a_1, a_2, \dots, a_n\}$ are given by a sequence $\{b_1, b_2, \dots, b_n\}$ where $b_i = \min(a_1, a_2, \dots, a_i)$.

Suffix Minima (SM)

The suffix minima of a sequence $\{a_1, a_2, \ldots, a_n\}$ are given by a sequence $\{d_1, d_2, \ldots, d_n\}$ where $d_i = \min(a_i, a_{i+1}, \ldots, a_n\}$.

PM	2	1	1	1	1	1
Seq.	2	1	3	4	5	6
SM	1	1	3	4	5	6

The Interval Minima Tree

Prefix Minima (PM)

The prefix minima of a sequence $\{a_1, a_2, \dots, a_n\}$ are given by a sequence $\{b_1, b_2, \dots, b_n\}$ where $b_i = \min(a_1, a_2, \dots, a_i)$.

Suffix Minima (SM)

The suffix minima of a sequence $\{a_1, a_2, \ldots, a_n\}$ are given by a sequence $\{d_1, d_2, \ldots, d_n\}$ where $d_i = \min(a_i, a_{i+1}, \ldots, a_n\}$.

A complete binary tree such that:

- Leaves are s_1, s_2, \ldots, s_n .
- Each internal node x contains two sequences:
 the prefix minima (PM) and suffix minima (SM) of the values held by leaves in the subtree rooted at x.

Constructing the Tree

Constructing the Tree

 $\{\min(l_p, r_i)\}$ PM: $\{\min(r_1, l_i)\}$ SM: R

R r_1, r_2, \ldots, r_p

Constructing the Tree

 $\{\min(l_p, r_i)\}$ PM: L $\{\min(r_1, l_i)\}$ SM: R

 l_1, l_2, \ldots, l_p

R r_1, r_2, \ldots, r_p

Constructing the Tree

 $\{\min(l_p, r_i)\}$ PM: $\{\min(r_1, l_i)\}$ SM: R

R l_1, l_2, \ldots, l_p r_1, r_2, \ldots, r_p

R

R

Computing Minima

Constructing the Tree

Constructing the Tree

Constructing the Tree

 $\{\min(l_p, r_i)\}$ R

> R r_1, r_2, \ldots, r_p

 $\widehat{v_5}$

Computing Minima

Finding the Minima Using the Tree

An Example: S_{v_2}

$$k = 2, \qquad \ell = k + 5 - 1 = 6 \qquad \Rightarrow \\ \hline \begin{array}{c} \mathsf{PM} = 10, 5, 5, 5, 3, 3, 2, 1 \\ \mathsf{SM} = 1, 1, 1, 1, 1, 1, 1, 1 \end{array} \\ \hline \mathsf{PM} = 10, 5, 5, 5 \\ \mathsf{SM} = 5, 5, 6, 7 \end{array} \qquad \begin{array}{c} \mathsf{PM} = 3, 3, 2, 1 \\ \mathsf{SM} = 1, 1, 1, 1 \end{array} \\ \hline \\ \mathsf{PM} = 10, 5 \\ \mathsf{SM} = 5, 5 \end{array} \qquad \begin{array}{c} \mathsf{PM} = 6, 6 \\ \mathsf{SM} = 6, 7 \end{array} \qquad \begin{array}{c} \mathsf{PM} = 3, 3 \\ \mathsf{SM} = 3, 4 \end{array} \qquad \begin{array}{c} \mathsf{PM} = 2, 1 \\ \mathsf{SM} = 1, 1 \end{array}$$

$$\begin{array}{c|c}
 & 1 \\
\hline
v_1 \\
\hline
10 \\
7 \\
\hline
v_3 \\
\hline
2 \\
\hline
\end{array}$$

$$\begin{array}{c|c}
 & 8 \\
\hline
v_4 \\
\hline
1 \\
\hline
\end{array}$$

 $\widehat{v_6}$

 $S_{v_2} = \{s_2, \dots, s_6\}$

Finding the Minima Using the Tree

An Example: S_{v_2}

$$k = 2, \qquad \ell = k + 5 - 1 = 6 \qquad \Rightarrow \qquad S_{v_2} = \{s_2, \dots, s_6\}$$

$$w \longrightarrow \begin{array}{c} \mathsf{PM} = 10, 5, 5, 5, 3, 3, 2, 1 \\ \mathsf{SM} = 1, 1, 1, 1, 1, 1, 1, 1 \\ \mathsf{SM} = 5, 5, 6, 7 \end{array}$$

$$\begin{array}{c} \mathsf{PM} = 3, 3, 2, 1 \\ \mathsf{SM} = 1, 1, 1, 1, 1 \\ \mathsf{SM} = 1, 1, 1, 1, 1 \end{array}$$

$$\begin{array}{c} \mathsf{PM} = 10, 5, 5, 5 \\ \mathsf{SM} = 5, 5, 6, 7 \end{array}$$

$$\begin{array}{c} \mathsf{PM} = 3, 3, 2, 1 \\ \mathsf{SM} = 1, 1, 1, 1, 1 \end{array}$$

$$\begin{array}{c} \mathsf{PM} = 10, 5, 5, 5 \\ \mathsf{SM} = 5, 5, 6, 7 \end{array}$$

$$\begin{array}{c} \mathsf{PM} = 3, 3 \\ \mathsf{SM} = 3, 4 \end{array}$$

$$\begin{array}{c} \mathsf{PM} = 2, 1 \\ \mathsf{SM} = 1, 1 \end{array}$$

$$\begin{array}{c} \mathsf{SM} = 1, 1 \\ \mathsf{SM} = 1, 1 \end{array}$$

$$\begin{array}{c} \mathsf{SM} = 1, 1 \\ \mathsf{SM} = 1, 1 \end{array}$$

Finding the Minima Using the Tree

An Example: S_{v_2}

$$k = 2, \qquad \ell = k + 5 - 1 = 6 \qquad \Rightarrow \qquad S_{v_2} = \{s_2, \dots, s_6\}$$

$$w \longrightarrow \begin{array}{c} \mathsf{PM} = 10, 5, 5, 5, 3, 3, 2, 1 \\ \mathsf{SM} = 1, 1, 1, 1, 1, 1, 1, 1 \end{array}$$

$$x \longrightarrow \begin{array}{c} \mathsf{PM} = 10, 5, 5, 5 \\ \mathsf{SM} = 5, 5, 6, 7 \end{array}$$

$$\begin{array}{c} \mathsf{PM} = 3, 3, 2, 1 \\ \mathsf{SM} = 1, 1, 1, 1, 1 \end{array}$$

$$\begin{array}{c} \mathsf{PM} = 10, 5 \\ \mathsf{SM} = 5, 5 \end{array}$$

$$\begin{array}{c} \mathsf{PM} = 3, 3 \\ \mathsf{SM} = 5, 5 \end{array}$$

$$\begin{array}{c} \mathsf{PM} = 2, 1 \\ \mathsf{SM} = 3, 4 \end{array}$$

$$\begin{array}{c} \mathsf{PM} = 2, 1 \\ \mathsf{SM} = 1, 1 \end{array}$$

$$\begin{array}{c} \mathsf{NM} = 3, 3 \\ \mathsf{NM} = 3, 4 \end{array}$$

$$\begin{array}{c} \mathsf{NM} = 2, 1 \\ \mathsf{NM} = 1, 1 \end{array}$$

$$\begin{array}{c} \mathsf{NM} = 3, 3 \\ \mathsf{NM} = 3, 4 \end{array}$$

$$\begin{array}{c} \mathsf{NM} = 2, 1 \\ \mathsf{NM} = 1, 1 \end{array}$$

$$\begin{array}{c} \mathsf{NM} = 2, 1 \\ \mathsf{NM} = 1, 1 \end{array}$$

$$\begin{array}{c} \mathsf{NM} = 2, 1 \\ \mathsf{NM} = 1, 1 \end{array}$$

$$\begin{array}{c} \mathsf{NM} = 3, 3 \\ \mathsf{NM} = 3, 4 \end{array}$$

$$\begin{array}{c} \mathsf{NM} = 2, 1 \\ \mathsf{NM} = 1, 1 \end{array}$$

$$\begin{array}{c} \mathsf{NM} = 1, 1 \\ \mathsf{NM} = 1, 1 \end{array}$$

O(1) ET \leftarrow Parallel-Euler-Tour(T)

The Interval Minima Algorithm

```
Input: A tree T
                                      Output: \min(S_{v_i}) for all v_i \in T
```

```
O(\log n) Parallel-Preorder(ET)
O(\log n) Parallel-Descendants(ET)
O(\log n) T' \leftarrow Interval-Minima-Tree(T)
          forall v_i \in T do in parallel
          k \leftarrow \mathsf{preorder}(v_i), \ \ell \leftarrow k + \mathsf{des}(v_i) - 1
   O(1)
O(\log n) w \leftarrow \text{Lowest-Common-Ancestor}(s_k, s_\ell) \text{ in } T'
```

 $\min(S_{v_{\varepsilon}}) \leftarrow \min(\mathsf{SM}_{L}^{(x)}, \mathsf{PM}_{\ell}^{(y)})$

Complexity:

O(1)

O(1)

$$t(n) = O(\log n)$$
 $p(n) = O(n)$ \Rightarrow $c(n) = n \log(n)$

 $x \leftarrow \mathsf{Left}\text{-}\mathsf{Child}(w), \ y \leftarrow \mathsf{Right}\text{-}\mathsf{Child}(w);$

Parallel Algorithms for Trees • 37

Outline

- Applications of Euler Tours
- Conclusion
 - Summary
 - Questions

Summary

Summary

Summary

Thank You

Thank You!

Outline

- Applications of Euler Tours
- 4 Conclusion
 - Summary
 - Questions

Questions

Questions

???