μΑ725

INSTRUMENTATION OPERATIONAL AMPLIFIER

FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION – The μ A725 is an instrumentation operational amplifier constructed on a single silicon chip using the Fairchild Planar* epitaxial process. It is intended for precise, low level signal amplification applications where low noise, low drift and accurate closed loop gain are required. The offset null capability, low power consumption, very high voltage gain as well as wide power supply voltage range provide superior performance for a wide range of instrumentation applications. The μ A725 is pin compatible with the popular μ A741 operational amplifier.

LOW INPUT NOISE CURRENT 0.15 pA √Hz
 HIGH OPEN LOOP GAIN 3,000,000
 LOW INPUT OFFSET CURRENT . . . 2 nA
 LOW INPUT VOLTAGE DRIFT 0.6 μV/°C
 HIGH COMMON MODE REJECTION . . . 120 dB
 HIGH INPUT VOLTAGE RANGE ±14 V

■ WIDE POWER SUPPLY RANGE ±3 V TO ±22 V

• OFFSET NULL CAPABILITY

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ±22 V Internal Power Dissipation (Note 1) 500 mW Metal Can Ceramic DIP 670 mW Differential Input Voltage (Note 2) ±22 V Input Voltage (Note 3) ±22 V Voltage Between Offset Null and V ±0.5 V Storage Temperature Range -65°C to +150°C Metal Can, Ceramic DIP Operating Temperature Range Military (312 grade) -55°C to +125°C -20°C to +85°C Instrument (333 grade)

Commercial (393 grade) 0°C to +70°C
Lead Temperature
Metal Can, Ceramic DIP (Soldering, 60 Seconds) 300°C

Notes on following pages.

CONNECTION DIAGRAM

*Planar is a patented Fairchild process.

ELECTRICAL CHARACTERISTICS (V_S = ±15 V, T_A = 25°C unless otherwise specified)

PARAMETER	TEST CONDITIONS MIN.		TYP.	MAX.	UNITS
Input Offset Voltage (Without external trim)	R _S ≤ 10 kΩ		0.5	1.0	mV
Input Offset Current	•		2.0	20	nA
Input Bias Current			42	100	nA
Input Noise Voltage	$f_O = 10 \text{ Hz}$ $f_O = 100 \text{ Hz}$ $f_O = 1 \text{ kHz}$		15 9.0 8.0		nV/ √H: nV/ √H: nV/ √H:
Input Noise Current	$f_0 = 10 \text{ Hz}$ $f_0 = 100 \text{ Hz}$ $f_0 = 1 \text{ kHz}$		1.0 0.3 0.15		pA/ √H: pA/ √H: pA/ √H:
Input Resistance			1.5		$M\Omega$
Input Voltage Range		±13.5	± 14		V
Large Signal Voltage Gain	$R_L \ge 2 k\Omega V_0 = \pm 10 V$	1,000,000	3,000,000		V/V
Common Mode Rejection Ratio	$R_{ extsf{S}} \leq 10 \text{ k}\Omega$	110	. 120 .		dB
Power Supply Rejection Ratio	${\sf R}_{\sf S} \le$ 10 k Ω		2.0	10	$\mu V/V$
Output Voltage Swing	$egin{aligned} R_{oldsymbol{L}} &\geq 10\ k\Omega \ R_{oldsymbol{L}} &\geq \ 2\ k\Omega \end{aligned}$	±12 ±10	± 13.5 ± 13.5		V V
Output Resistance			150		Ω
Power Consumption			8 0	105	mW
The following specifications apply for -55°C	\leq $T_{\mbox{\scriptsize A}} \leq$ +125 $^{\circ}\mbox{\scriptsize C}$ unless otherwise	specified:			
Input Offset Voltage (Without external trim)	R $_{ extsf{S}}$ \leq 10 k Ω			1.5	mV
Average Input Offset Voltage Drift (Without external trim)	$R_S = 50\Omega$		2.0	5.0	μV/°C
Average Input Offset Voltage Drift (With external trim)	$R_S = 50\Omega$		0.6		μV/°C
Input Offset Current	T _A = +125°C		1.2	20	nA
	$T_A = -55^{\circ}C$		7.5	40	nA
Average Input Offset Current Drift			35	150	pA/°C
Input Bias Current	T _A = +125°C T _A = -55°C		20 80	100 200	nA nA
Large Signal Voltage Gain	$R_L \ge 2 k\Omega$, $T_A = +125^{\circ}C$ $R_L \ge 2 k\Omega$, $T_A = -55^{\circ}C$	1,000,000 250,000			V/V V/V
Common Mode Rejection Ratio	$R_{S} \leq 10\;k\Omega$	100			dB
	${\sf R_S} \le {\sf 10} \; {\sf k}\Omega$			20	$\mu V/V$
	$R_L \geq 2 k\Omega$	±10			V

TYPICAL PERFORMANCE CURVES 312 GRADE

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF TEMPERATURE FOR VARIOUS SUPPLY VOLTAGES

NULLED INPUT OFFSET VOLTAGE AS A FUNCTION OF TEMPERATURE

UNNULLED INPUT OFFSET VOLTAGE AS A FUNCTION OF TEMPERATURE

333 GRADE

ELECTRICAL CHARACTERISTICS ($V_S = \pm 15 \text{ V}$, $T_A = 25^{\circ} \text{C}$ unless otherwise specified)

PARAMETER TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS	
Input Offset Voltage (Without external trim)	$R_S \le 10 \text{ k}\Omega$		0.5	1.5	mV	
Input Offset Current	0 –		2.0	20	nA	
Input Bias Current			50	100	nΑ	
Input Noise Voltage	f _o = 10 Hz		15		nV/ √Hz	
	f _O = 100 Hz		12		nV/ √Hz	
	f _o = 1 kHz		8.0		nV/ √Hz	
Input Noise Current	f _O = 10 Hz		1.0		pA/ √Hz	
	f _O = 100 Hz		8.0		pA/ √Hz	
•	$f_0 = 1 \text{ kHz}$		0.6		pA/ √Hz	
Input Resistance	-		1.5		Ω M	
Input Voltage Range		±13.5	±14		V	
Large Signal Voltage Gain	$R_L \ge 2 k\Omega$, $V_{OUT} = \pm 10 V$	500,000	3,000,000		V/V	
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	100	120		dB	
Power Supply Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$		2.0	10	$\mu V/V$	
Output Voltage Swing	$R_L \ge 10 \text{ k}\Omega$	±12	±13.5		V	
	$R_L \geq 2 \; k \Omega$	± 10	±13.5		V	
Output Resistance			150		Ω	
Power Consumption			80	120	mW	
The following specifications apply for -20°C	$1 \leq T_{A} \leq +85^{\circ}C$ unless otherwise sp	ecified:				
Input Offset Voltage (Without external trim)	$R_S \leq 10 \text{ k}\Omega$			2.5	mV	
Average Input Offset Voltage Drift (Without external trim)	$R_S = 50\Omega$		2.0	10	μV/°C	
Average Input Offset Voltage Drift (With external trim)	$R_S = 50\Omega$		0.6		μV/°C	
Input Offset Current	$T_A = +85^{\circ}C$		2.0	20	nA_{j_i}	
	$T_A = -20^{\circ}C$	**	5.0	40	nA Î	
Average Input Offset Current Drift	e e			300	pA/°C	
Input Bias Current	$T_A = +85^{\circ}C$			100	nΑ	
·	$T_A = -20^{\circ}C$			200	nA	
Large Signal Voltage Gain	$R_L \ge 2 k\Omega$, $T_A = +85^{\circ}C$	500,000			V/V	
	$R_L \ge 2 k\Omega$, $T_A = -20^{\circ}C$	250,000			V/V	
Common Mode Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$	100			dB	
Power Supply Rejection Ratio	R _S ≤ 10 kΩ			20	μV/V	
Output Voltage Swing	$R_L \ge 2 k\Omega$	±10			V	

NOTES

- Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/°C for Metal Can and 8.3 mW/°C for Ceramic DIP package.
- Rating applies for 5 ms pulses with 10% duty cycle, derate to ± 5 V for continuous operation. For supply voltages less than ± 22 V, the absolute maximum input voltage is equal to the supply voltage.

TYPICAL PERFORMANCE CURVES 333 GRADE

NULLED INPUT OFFSET

VARIOUS SUPPLY **VOLTAGES** 140 V_S = ± 20V V_S = ± 15V V_S = ±10V -号 120 LOOP VOLTAGE GAIN 40 TEMPERATURE - °C

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF TEMPERATURE FOR

393	G	R/	ע ע	E

ELECTRICAL CHARACTERISTICS (VS = ±15 V, TA	= 25	C	uniess otnerwise specified)
--	------	---	-----------------------------

PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage (Without external trim)	$R_S \le 10 \text{ k}\Omega$		0.5	2.5	mV
Input Offset Current			2.0	35	nA
Input Bias Current			42	125	nA
Input Noise Voltage	f _O = 10 Hz		15		nV/ √Hz
	f _O = 100 Hz		9.0		nV/ √Hz
	$f_0 = 1 \text{ kHz}$		8.0		nV/ √Hz
Input Noise Current	f _O = 10 Hz		1.0		pA/ √Hz
	$f_0 = 100 \text{ Hz}$		0.3		pA/ √Hz
	$f_0 = 1 \text{ kHz}$		0.15		pA/ √Hz
Input Resistance			1.5		Ω M
Input Voltage Range		±13.5	±14		V
Large Signal Voltage Gain	$R_L \ge 2 k\Omega$, $V_{OUT} = \pm 10 V$	250,000	3,000,000		v/v
Common Mode Rejection Ratio	$R_{S} \leq 10 \text{ k}\Omega$	94	120		dB
Power Supply Rejection Ratio	$R_{S} \leq 10 \text{ k}\Omega$		2.0	35	$\mu V/V$
Output Voltage Swing	$R_L \ge 10 \text{ k}\Omega$	±12	±13.5		V
	$R_{L} \geq 2 k\Omega$	±10	±13.5		V
Output Resistance			150		Ω
Power Consumption			80	150	mW
The following specifications apply for $0^{\circ}C \leq$	$T_A \le +70^{\circ}C$ unless otherwise spec	ified:			
Input Offset Voltage (Without external trim)	$R_{ extsf{S}} \leq 10 \text{ k}\Omega$			3.5	mV
Average Input Offset Voltage Drift (Without external trim)	$R_S = 50\Omega$		2.0		μV/°C
Average Input Offset Voltage Drift (With external trim)	$R_S = 50\Omega$		0.6		μV/°C
Input Offset Current	$T_A = +70^{\circ} C$		1.2	35	nΑ
	$T_A = 0^{\circ}C$		4.0	50	nA
Average Input Offset Current Drift			10		pA/°C
Input Bias Current	$T_A = +70^{\circ}C$			125	nΑ
·	$T_A = 0^{\circ}C$			250	nA
Large Signal Voltage	$R_L \ge 2 k\Omega$, $T_A = +70^\circ$	125,000			v/ v
	$R_L \ge 2 k\Omega$, $T_A = 0^{\circ}C$	125,000			v/v
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$		115		dB
Power Supply Rejection Ratio	$R_S \leq 10 \text{ k}\Omega$		20		μV/V
Output Voltage Swing	$R_{L} \geq 2 k\Omega$	±10			V

OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF TEMPERATURE FOR VARIOUS SUPPLY VOLTAGES

TYPICAL PERFORMANCE CURVES 393 GRADE

NULLED INPUT OFFSET VOLTAGE AS A FUNCTION OF TEMPERATURE

UNNULLED INPUT OFFSET VOLTAGE AS A FUNCTION OF TEMPERATURE

TYPICAL PERFORMANCE CURVES FOR ALL GRADES

OPEN LOOP VOLTAGE
GAIN AS A FUNCTION OF
FREQUENCY USING
RECOMMENDED
COMPENSATION
NETWORKS

VALUES FOR SUGGESTED COMPENSATION NETWORKS FOR VARIOUS CLOSED LOOP VOLTAGE GAINS

FREQUENCY RESPONSE FOR VARIOUS CLOSED-LOOP GAINS USING RECOMMENDED COMPENSATION NETWORKS

OUTPUT VOLTAGE SWING
AS A FUNCTION OF
FREQUENCY FOR
RECOMMENDED
COMPENSATION
NETWORKS

SLEW RATE AS A FUNCTION OF CLOSED-LOOP GAIN USING RECOMMENDED COMPENSATION NETWORKS

VOLTAGE OFFSET NULL CIRCUIT

COMPENSATION COMPONENT VALUES

AVCL	R ₁ (Ω)	C ₁ (μF)	R ₂ (Ω)	C ₂ (μF)
10,000	10 k	50 pF	_	_
1,000	470	.001	_	_
100	47	.01	-	_
10	27	.05	270	.0015
1	10	.05	39	.02

FREQUENCY COMPENSATION CIRCUIT

TRANSIENT RESPONSE TEST CIRCUIT

Pin numbers are shown for Metal Can only.

TYPICAL APPLICATIONS

PRECISION AMPLIFIER - AVCL = 1000

ACTIVE FILTER - BANDPASS WITH 60 dB GAIN

CHARACTERISTICS:

A_{VCL} = 1000 = 60 dB DC Gain Error = 0.05% Bandwidth = 1 kHz for -0.05% error Diff. Input Res. = 1 $M\Omega$

Typical amplifying capability
e_{IN} = 10 µV on V_{CMI} = 1.0 V
Caution: Minimize Stray Capacitance

ACTIVE FILTER FREQUENCY RESPONSE

OPEN LOOP VOLTAGE GAIN TEST CIRCUIT

$$A_{VO} \simeq \frac{e_0}{e_1} \left(\frac{R_2 R_i + R_1 R_i + R_1 R_2}{R_1 R_i} \right) = \frac{e_0}{e_1} 101$$

PIN PHOTODIODE AMPLIFIER

DC GAINS 10,000, 1,000, 100, AND 10 BANDWIDTH - DETERMINED BY VALUE OF C1

THERMOCOUPLE AMPLIFIER

NOTE: * Indicates ±1% Metal film resistors recommended for temperature stability.

NOTE: * Indicates ±1% metal film resistors recommended for temperature stability. INSTRUMENTATION AMPLIFIER WITH

HIGH COMMON MODE REJECTION

±100 V COMMON MODE RANGE INSTRUMENTATION AMPLIFIER

for best CMRR $R_1 = R_6 = 10R_3$

$$\frac{R_2}{R_5} = \frac{R_6}{R_7} \text{ for best CMR}$$

$$R_1 = R_4$$

Gain =
$$\frac{R_6}{R_2}$$
 (1 + $\frac{2R_1}{R_3}$

