RESULTS DONE IN MTH206M

Monday 30th September, 2024

1. FINITE DIMENSIONAL VECTOR SPACES

(i) A non-empty subset S of \mathbb{R}^n forms a subspace iff

$$[x, y \in S \text{ and } \alpha \in \mathbb{R}] \implies [\alpha x + y \in S].$$

- (a) For a subset $A = \{x_1, ..., x_r\}$ of \mathbb{R}^n , a linear combination of the vectors in A is $\alpha x_1 + \cdots + \alpha_r x_r$ where $\alpha_1, ..., \alpha_r \in \mathbb{R}$, and $\operatorname{Sp}(A) = \{\alpha x_1 + \cdots + \alpha_r x_r \mid \alpha_1, ..., \alpha_r \in \mathbb{R}\}$. Span of an infinite set is defined as the set of all linear combinations of finitely many vectors in that set.
- (b) Sp(A) is a subspace and $A \subseteq Sp(A)$. Further, Sp(A) is the smallest subspace containing A.
- (c) $A = \operatorname{Sp}(A) \iff A \text{ is a subspace.}$
- (d) Sp(A) is called the subspace generated by A and for a subspace S, a set A is called a generating set if S = Sp(A).
- (e) $A \subseteq B \implies \operatorname{Sp}(A) \subseteq \operatorname{Sp}(B)$ and $\operatorname{Sp}(\operatorname{Sp}(A)) = \operatorname{Sp}(A)$.
- (ii) A set of vectors x_1, \ldots, x_r is linearly independent (LI) if

$$[\alpha_1,\ldots,\alpha_r=0] \implies [\alpha_r=\cdots=\alpha_r=0].$$

A set is linearly dependent if it is not linearly independent. An infinite set $A \subseteq \mathbb{R}^n$ is LI if every finite subset of A is linearly independent.

- (a) The vectors $x_1, ..., x_r$ are LI iff x_j belongs to the span of $x_1, ..., x_{j-1}$ for some j such that $1 \le j \le k$.
- (b) If *A* is LI and $y \notin A$. Then $A \cup \{y\}$ is linearly dependent iff $y \in Sp(A)$.
- (c) If $A = \{x_1, ..., x_r\}$ and $B = \{y_1, ..., y_{r+1}\}$ are LI subsets of \mathbb{R}^n , then there exists a $y_i \in B \setminus A$ such that $A \cup \{y_i\}$ is LI.
- (iii) Every subspace S of \mathbb{R}^n has a finite generating set with cardinality less or equal to n. Such a set is called a basis of S and every basis of S has the same cardinality. This cardinality is called the dimension of S, denoted by d(S).
 - (a) The vectors in a basis are LI, and adding any other vector (of the same subspace) to a basis makes the set linearly dependent.
 - (b) Every LI subset *A* of *S* can be extended to a basis of *S*, and every generating set *C* of *S* contains a basis of *S*.
 - (c) For any two subspaces S and T with $S \subseteq T$, $d(S) \le d(T)$ and the equality holds iff S = T.
- (iv) For any two subspaces S and T,

$$Sp(S \cup T) = \{x + y \mid x \in S \text{ and } y \in T\} = S + T.$$

This is called sum of *S* and *T*.

- (a) $d(S+T) = d(S) + d(T) d(S \cap T)$ (Modular law).
- (b) The sum is called a direct sum if $S \cap T = \{0\}$. If the sum is direct, any vector in S + T can be expressed in a unique way as x + y with $x \in S$ and $y \in T$.
- (c) A subspace $T \subseteq \mathbb{R}^n$ is called a complement of a subspace $S \subseteq \mathbb{R}^n$ if $S + T = \mathbb{R}^n$ and $S \cap T = \{0\}$. If T is a complement of S then clearly S is a complement of T and we say that S and T are complementary subspaces.
- (d) Every subspace has a complement, but, in general, complement is not unique. It is unique if and only if the subspace is \mathbb{R}^n or $\{0\}$.

- (v) If *S* and *T* are complementary subspaces, then for any vector *u*, where u = x + y with $x \in S$ and $y \in T$, x is called the projection of u into S along T.
 - (a) Suppose projection into *S* along *T* is denoted by *P*, then

i.
$$P(u) = u$$
 iff $u \in S$

ii.
$$P(u) = 0$$
 iff $u \in T$

iii.
$$P(P(u)) = P(u)$$

iv.
$$P(\alpha x + y) = \alpha P(x) + P(y)$$
.

2. MATRIX THEORY

- (i) For matrices, $A_{m \times n} = ((a_{ij}))$, $B_{m \times n} = ((b_{ij}))$ and $C_{n \times p} = ((c_{ij}))$,
 - (a) αA is the matrix $((\alpha a_{ij}))$,
 - (b) A + B is the matrix $((a_{ij} + b_{ij}))$, and
 - (c) AC is the matrix $((d_{ij}))$ where $d_{ij} = \sum_{k=1}^{n} a_{ik} c_{kj}$.
 - (a) A vector $x \in \mathbb{R}^n$ is a matrix of order $n \times 1$.
 - (b) For a matrix $A_{m \times n}$, transpose of denoted by $A_{n \times m}^T$ is the matrix $((a_{ji}))$. A is symmetric if $A = A^T$.
 - (c) We have the following results involving matrix operations:

- (1) A + B = B + A (commutativity of addition)
- (2) $\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$ (associativity of addition)
- (3) 0 + A = A + 0 = A
- (4) $\mathbf{A} + (-\mathbf{A}) = (-\mathbf{A}) + \mathbf{A} = \mathbf{0}$
- (5) $\alpha(\mathbf{A} + \mathbf{B}) = \alpha \mathbf{A} + \alpha \mathbf{B}$
- (6) $(\alpha + \beta)\mathbf{A} = \alpha\mathbf{A} + \beta\mathbf{A}$
- (7) $\alpha(\beta \mathbf{A}) = (\alpha \beta) \mathbf{A}$
- $(8) 1 \cdot \mathbf{A} = \mathbf{A}$
- (9) A(BC) = (AB)C (associativity of matrix multiplication)
- (10) $\mathbf{A}(\alpha \mathbf{B}) = \alpha(\mathbf{A}\mathbf{B})$
- (11) A(B+C) = AB + AC (distributivity)
- (12) $(\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A}$ (distributivity)
- (13) $\mathbf{A} \cdot \mathbf{I} = \mathbf{A}$ where \mathbf{A} is of order $m \times n$ and \mathbf{I} is of order $n \times n$
- (14) $\mathbf{I} \cdot \mathbf{A} = \mathbf{A}$ where \mathbf{I} is of order $m \times m$ and \mathbf{A} is of order $m \times n$
- (15) $0 \cdot \mathbf{A} = \mathbf{0}$ (0 in $0 \cdot \mathbf{A}$ is a scalar)
- $(16) \ \mathbf{0} \cdot \mathbf{A} = \mathbf{0}$
- (17) $A \cdot 0 = 0$

- $(18) (\mathbf{A} + \mathbf{B})^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}} + \mathbf{B}^{\mathsf{T}}$
- $(19) \ (\alpha \mathbf{A})^{\mathrm{T}} = \alpha \mathbf{A}^{\mathrm{T}}$
- $(20) (\mathbf{A}\mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}$
- $(21) (\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$
- (d) Product of two upper triangular matrices is upper triangular and product of two lower triangular matrices is lower triangular.
- (e) For a square matrix $A_{n\times n}$, $\operatorname{tr}(A) = \sum_{i=1}^n a_{ii}$. If AB and BA are both defined, then $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- (ii) For a matrix $A_{m \times n}$, ith row is denoted by a_i and jth column is denoted by $a_{\cdot j}$. Further, $\mathcal{R}(A)$ is the row space of A where $\mathcal{R}(A) = \operatorname{Sp}(\{a_1, \dots, a_m \cdot\}) = \{x^T A \mid x \in \mathbb{R}^m\}$. Similarly, column space of A is $\mathcal{C}(A) = \operatorname{Sp}(\{a_{\cdot 1}, \dots, a_{\cdot n}\}) = \{Ax \mid x \in \mathbb{R}^n\}$. Note that $\mathcal{R}(A) \subseteq \mathbb{R}^n$ and $\mathcal{C}(A) \subseteq \mathbb{R}^m$.
 - (a) For two matrices $A_{m \times n}$ and $B_{n \times p}$, $\mathcal{R}(AB) \subseteq \mathcal{R}(B)$ and $\mathcal{C}(AB) \subseteq \mathcal{C}(A)$. Also, $\mathcal{C}(AB) = \{ABx \mid x \in \mathbb{R}^p\} = \{Ax \mid x \in \mathcal{C}(B)\}.$
 - (b) For two matrices $A_{m \times n}$ and $B_{n \times p}$, $AB = [Ab_{\cdot 1} \cdots Ab_{\cdot p}]$, i.e., the columns of AB are $Ab_{\cdot 1}, \dots, Ab_{\cdot p}$. Similarly, rows of AB are $a_1.B, \dots, a_m.B$.
 - (c) $a_{ij} = Ae_j$ and $a_{ii} = e_i^T A$
 - (d) For two matrices A and B,

$$[C(A) \subseteq C(B)] \iff [A = BC \text{ for some matrix } C], \text{ and }$$

$$[\mathcal{R}(A) \subseteq \mathcal{R}(B)] \iff [A = CB \text{ for some matrix } C].$$

- (e) The rank of a matrix A, denoted by $\rho(A)$, is the common value of $d(\mathcal{R}(A))$ and $d(\mathcal{C}(A))$, i.e., $\rho(A) = d(\mathcal{R}(A)) = d(\mathcal{C}(A))$.
- (f) For a matrix *A* and every submatrix *B* of *A*, $\rho(A) \ge \rho(B)$.
- (g) $\rho(AB) \leq \min{\{\rho(A), \rho(B)\}}$.
- (iii) The inverse of a square matrix $A_{n\times n}$ is defined as a matrix $B_{n\times n}$ such that $BA = I_n$ (or $AB = I_n$).
 - (a) Inverse exists if and only if the matrix has full rank. Further, if exists, it is unique. For a square matrix A, we denote it's inverse (if exists) by A^{-1} .
 - (b) $(A^{-1})^{-1} = A$ and $(AB)^{-1} = B^{-1}A^{-1}$.
 - (c) $\rho(A) = \rho(AB)$ if *B* is non-singular, i.e., inverse of *B* exists.
- (iv) The null space of a matrix $A_{m \times n}$ is $\mathcal{N}(A) = \{x \in \mathbb{R}^n \mid Ax = 0\}$. $\mathcal{N}(A)$ is a subspace and $d(\mathcal{N}(A)) = n \rho(A)$. For matrices $A_{m \times n}$ and $B_{n \times p}$,
 - (a) $\mathcal{R}(A) = (\mathcal{N}(A))^{\perp}$,
 - (b) $\mathcal{N}(B) \subseteq \mathcal{N}(AB)$, and
 - (c) $\rho(AB) = \rho(B) d(\mathcal{C}(B) \cap \mathcal{N}(A))$ and $\rho(AB) \ge \rho(A) + \rho(B) n$.
- (v) For two complementary subspaces S and T of \mathbb{R}^n , we call a matrix $P_{n \times n}$ a projector matrix (into S along T) if Px is the projection of x into S along T. A matrix $P_{n \times n}$ is a projection matrix if there exist two complementary subspaces S and T such that P is a projector into S along T.
 - (a) Given *S* and *T*, Projector matrix always exists and is unique.
 - (b) P is a projection matrix if and only if it is idempotent. Further, it projects into C(P) along $C(I_n P)$ (= $\mathcal{N}(P)$).
 - (c) For a subspace S, a matrix P is called the orthogonal projector if it projects into S along S^{\perp} . In general, an $n \times n$ matrix P is called an orthogonal projection matrix if it is the orthogonal projector into S for some subspace $S \subseteq \mathbb{R}^n$.
 - (d) A matrix Q is an orthogonal projection matrix if and only if $Q^TQ = Q$. Note that this is stronger than Q is idempotent.

(vi) A system of linear equations is of the form

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

where a_{ij} 's and b_i 's are known and x_j 's are unknown. A solution to this system of linear equations is a point $x \in \mathbb{R}^n$ such that is satisfies all the equation.

- (a) The above system can be written as Ax = b where $A_{m \times n} = ((a_{ij}))$ and $b^T = (b_1, \dots, b_m)$.
- (b) A system of linear equations may have no solution, or a unique solution, or infinitely many solutions.
- (c) A system of linear equations Ax = b is said to be consistent if it has at least one solution, and insonsistent if there is NO solution.
- (d) If Ax = b is consistent, then by general solution we mean an expression which gives all possible solutions, while a specific solution is called a particular solution.
- (e) A system of linear equations is called homogeneous if $b = 0_{m \times 1}$. A homogeneous system is always consistent and the set of all solutions is $\mathcal{N}(A)$. It has a unique solution if and only if $\mathcal{N}(A) = \{0\}$.
- (f) A general system of equations is consistent iff $b \in C(A)$. This is equivalent to $\rho(A) = \rho(A \mid b)$ where $[A \mid b]_{m \times n+1} = [a_{\cdot 1} \cdots a_{\cdot n} \ b]$.
- (g) The set of all solutions to Ax = b, denoted by $S_b^A = \{x \mid Ax = b\}$, is given by $u + \mathcal{N}(A)$ where $u_{n \times 1}$ is particular solution to Ax = b, i.e., Au = b.
- (h) A general system has
 - i. no solution if $\rho(A) < \rho(A \mid b)$,
 - ii. a unique solution if $\rho(A) = \rho(A \mid b) = n$, and
 - iii. infinitely many solutions if $\rho(A) = \rho(A \mid b) < n$.
- (i) A matrix $F_{m \times n}$ with $\rho(F) = r$ is said to be in Reduced Echelon Form (REF) if

- i. the first *r* rows of *F* are non-null and the remaining rows are null,
- ii. the first non-null element in the ith row occurs at the p_i th position for i = 1(1)r with $p_1 < p_2 < \cdots < p_r$, and
- iii. $f_{.p_i} = e_i^m$.
- (j) Every matrix can be transformed into a matrix in REF by performing a set of row operations on the matrix. There are three types of row operations
 - i. R_{ij} : swapping the *i*th row with the *j*th row,
 - ii. $R_i(\alpha)$: multiplying the *i*th row by α for some $\alpha \neq 0$,
 - iii. $R_{ij}(\beta)$: replace the *i*th row by sum of *i*th row and β times the *j*th row.
- (k) Each row operation is equivalent to pre-multiply the matrix by a matrix, called an elementary matrix. The elementary matrices for the row operations R_{ij} , $R_i(\alpha)$, and $R_{ij}(\beta)$ are E_{ij} , $E_i(\alpha)$, and $E_{ij}(\beta)$, respectively where

$$E_{ij} = egin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \ dots & dots & dots & dots & dots & dots & dots \ 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \ dots & dots & dots & dots & dots & dots & dots \ 0 & \cdots & 1 & \cdots & 0 & \cdots & 0 \ dots & dots & dots & dots & dots & dots & dots \ 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \ \end{pmatrix},$$

$$E_i(\alpha) = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \alpha & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \cdots & 1 \end{bmatrix},$$

and
$$E_{ij}(\beta) = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & \cdots & \beta & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

- (l) The elementary matrices are non-singular, and $(E_{ij})^{-1} = E_{ij}$, $(E_i)(\alpha)^{-1} = E_i(\frac{1}{\alpha})$, and $(E_{ij}(\beta))^{-1} = E_{ij}(-\beta)$.
- (m) Suppose performing a set of row operations $R_1, R_2, ..., R_q$, a matrix A can be reduced to a matrix in REF, F. Then

$$E_q \cdots E_1 A = F$$

where E_l is the corresponding elementary matrix for R_l . Further, to solve a system of linear equations Ax = b is equivalent to solving Fx = d where $d = E_q \cdots E_1 b$.

- (n) To solve Fx = d, we first find a particular solution u of Fx = d and then find $\mathcal{N}(F)$. Finally, the set of all solution to Ax = b is $u + \mathcal{N}(F)$.
- (o) Further, the non-null rows of F will give us a basis of $\mathcal{R}(A)$, and the p_1 th, p_2 th,..., p_r th columns of A (**not the columns of** F) will give us a basis of $\mathcal{C}(A)$.
- (p) If $\rho(A) = n$,

$$F = \left[\frac{I_n}{0_{m-n \times n}} \right]$$

and if $\rho(A) = m$,

$$F = \left[I_m \mid 0_{m \times n - m} \right].$$

(vii) For a square matrix $A_{n\times n}$, det(A) is defined as

$$det(A) = \sum (-1)^{\sigma_n\{(1,j_1),...,(n,j_n)\}} a_{1j_1} \cdots a_{nj_n},$$

where the sum is over all possible values of $\{j_1, \ldots, j_n\}$, i.e., all possible permutations of $\{1, \ldots, n\}$.

(a) In the definition, $\sigma_n\{(1,j_1),\ldots,(n,j_n)\}$ denotes the number of negative pairs out of

the nC_2 that can be formed by the elements of the set $\{(1,j_1),\ldots,(n,j_n)\}$. A pair $\{(i,j_i),(k,j_k)\}$ is a negative pair if either i < k and $j_i > j_k$ or i > k and $j_i < j_k$. Note that as $\{j_1,\ldots,j_n\}$ is a permutation of $\{1,\ldots,n\}$, $j_i \neq j_k$.

- (b) $det(A) = det(A^T)$.
- (c) det(U) where U is triangular matrix is the product of diagonal matrices.
- (d) Interchanging two rows (or columns) of A reverses the sign of det(A).
- (e) $\det(A)$ is linear in rows (or columns): fix $i \in \{1, ..., n\}$. Let ith row of A be $a_i = \alpha x + y$ where $x, y \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, i.e.,

$$A = \begin{bmatrix} a_1 \\ \vdots \\ a_{i-1} \\ \alpha x + y \\ a_{i+1} \\ \vdots \\ a_n \end{bmatrix}.$$

Then $det(A) = \alpha det(B) + det(C)$ where

$$B = \begin{bmatrix} a_1 \\ \vdots \\ a_{i-1} \\ x \\ a_{i+1} \\ \vdots \\ a_n \end{bmatrix}$$

and

$$C = \begin{bmatrix} a_1 \\ \vdots \\ a_{i-1} \\ y \\ \vdots \\ a_{n+1} \\ \vdots \\ a_n \end{bmatrix}.$$

- (f) Let A be a matrix such that $a_{i\cdot}=0$ (or $a_{\cdot i}=0$) for some $i=\{1,\ldots,n\}$. Then $\det(A)=0$.
- (g) Let A be a matrix such that $a_{i\cdot}=a_{k\cdot}$ (or $a_{\cdot i}=a_{\cdot k}$) for some $i\neq k$. Then $\det(A)=0$.
- (h) det(A) = 0 iff A is non-singular.
- (i) Let A and B be two square matrices of order n. Then, det(AB) = det(A)det(B).
- (j) If A is non-singular, then $det(A^{-1}) = (det(A))^{-1}$.