CSE 15 Discrete Mathematics

Lecture 19 – Mathematical Induction (3)

Announcement

- ▶ HW #8
 - Due **5pm** 11/21 (Wed).
- Reading assignment
 - ∘ Ch.6.1 6.3 of textbook

Well-Ordering Property

- Well-ordering property: Every nonempty set of nonnegative integers has a least element.
- The well-ordering property can be generalized.
 - Definition: A set is well ordered if every subset has a least element.
 - **N** is well ordered under ≤ (≤ means standard ordering).
 - The set of finite strings over an alphabet using lexicographic ordering is well ordered.

Recursive Definitions and Structural Induction (Ch. 5.3)

- Recursively Defined Functions
- Recursively Defined Sets and Structures
- Structural Induction
- Generalized Induction

Definition: A recursive or inductive definition of a function consists of two steps:

- BASIS STEP: Specify the value of the function at zero.
- RECURSIVE STEP: Give a rule for finding its value at an integer from its values at smaller integers.
- A function f(n) is the same as a sequence a_0 , a_1 , ... where $f(i) = a_i$.

Example: Suppose *f* is defined by:

$$f(0) = 3,$$

 $f(n + 1) = 2f(n) + 3$
Find $f(1), f(2), f(3), f(4)$

Solution:

•
$$f(1) = 2f(0) + 3 = 2 \cdot 3 + 3 = 9$$

•
$$f(2) = 2f(1) + 3 = 2 \cdot 9 + 3 = 21$$

•
$$f(3) = 2f(2) + 3 = 2 \cdot 21 + 3 = 45$$

•
$$f(4) = 2f(3) + 3 = 2.45 + 3 = 93$$

Example: Give a recursive definition of the factorial function n!:

Solution:

$$f(0) = 1$$

$$f(n + 1) = f(n) \cdot (n + 1)$$

Example: Give a recursive definition of:

$$\sum_{k=0}^{n} a_k.$$

Solution: The first part of the definition is

$$\sum_{k=0}^{0} a_k = a_0.$$

The second part is

$$\sum_{k=0}^{n+1} a_k = \left(\sum_{k=0}^{n} a_k\right) + a_{n+1}.$$

Recursively Defined Sets and Structures

- Recursive definitions of sets have two parts:
 - The basis step specifies an initial collection of elements.
 - The recursive step gives the rules for forming new elements in the set from those already known to be in the set.

Recursively Defined Sets and Structures

Example: Subset of Integers *S.*

BASIS STEP: $3 \in S$.

RECURSIVE STEP: If $x \in S$ and $y \in S$, then x + y is in S.

• Initially 3 is in *S*, then 3 + 3 = 6, then 3 + 6 = 9, etc.

Example: The natural numbers **N**.

BASIS STEP: $0 \in \mathbb{N}$.

RECURSIVE STEP: If n is in \mathbb{N} , then n + 1 is in \mathbb{N} .

▶ Initially 0 is in *S*, then 0 + 1 = 1, then 1 + 1 = 2, etc.

Strings

Definition: The set Σ* of *strings* over the alphabet Σ:

BASIS STEP: $\lambda \in \Sigma^*$ (λ is the empty string)

RECURSIVE STEP: If w is in Σ^* and x is in Σ , then $wx \in \Sigma^*$.

Example: If $\Sigma = \{0,1\}$, the strings in Σ^* are the set of all bit strings, λ , 0, 1, 00, 01, 10, 11, etc.

Example: If $\Sigma = \{a,b\}$, show that aab is in Σ^* .

- Since $\lambda \in \Sigma^*$ and $\alpha \in \Sigma$, $\alpha \in \Sigma^*$.
- Since $a \in \Sigma^*$ and $a \in \Sigma$, $aa \in \Sigma^*$.
- Since $aa \in \Sigma^*$ and $b \in \Sigma$, $aab \in \Sigma^*$.

String Concatenation

Definition: Two strings can be combined via the operation of *concatenation*.

Let Σ be a set of symbols and Σ^* be the set of strings formed from the symbols in Σ .

We can define the concatenation of two strings, denoted by ·, recursively as follows:

BASIS STEP: If $w \in \Sigma^*$, then $w \cdot \lambda = w$.

RECURSIVE STEP: If $w_1 \in \Sigma^*$ and $w_2 \in \Sigma^*$ and $x \in \Sigma$, then $w_1 \cdot (w_2 x) = (w_1 \cdot w_2)x$.

- Often $w_1 \cdot w_2$ is written as $w_1 w_2$.
- If $w_1 = abra$ and $w_2 = cadabra$, the concatenation $w_1 w_2 = abracadabra$.

Length of a String

Example: Give a recursive definition of l(w), the length of the string w.

Solution: The length of a string can be recursively defined by:

$$I(\lambda) = 0;$$

 $I(wx) = I(w) + 1 \text{ if } w \in \Sigma^* \text{ and } x \in \Sigma.$

Well-Formed Formulae in Propositional Logic

Definition: The set of well-formed formulae in propositional logic involving **T**, **F**, propositional variables, and operators from the set $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$.

BASIS STEP: **T**,**F**, and *s*, where *s* is a propositional variable, are well-formed formulae.

RECURSIVE STEP: If E and F are well formed formulae, then $(\neg E)$, $(E \land F)$, $(E \lor F)$, $(E \to F)$, $(E \leftrightarrow F)$, are well-formed formulae.

Examples: $((p \lor q) \to (q \land F))$ is a well-formed formula. $pq \land$ is not a well formed formula.

Rooted Trees

Definition: The set of *rooted trees,* where a rooted tree consists of a set of vertices containing a distinguished vertex called the *root,* and edges connecting these vertices, can be defined recursively by these steps:

BASIS STEP: A single vertex *r* is a rooted tree.

RECURSIVE STEP: Suppose that T_1 , T_2 , ..., T_n are disjoint rooted trees with roots r_1 , r_2 ,..., r_n , respectively.

Then the graph formed by starting with a root r, which is not in any of the rooted trees T_1 , T_2 , ..., T_n , and adding an edge from r to each of the vertices r_1 , r_2 ,..., r_n , is also a rooted tree.

Building Up Rooted Trees

 Next we look at a special type of tree, the full binary tree.

Full Binary Trees

Definition: The set of *full binary trees* can be defined recursively by these steps.

BASIS STEP: There is a full binary tree consisting of only a single vertex *r*.

RECURSIVE STEP: If T_1 and T_2 are disjoint full binary trees, there is a full binary tree, denoted by $T_1 \cdot T_2$, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T_1 and the right subtree T_2 .

Building Up Full Binary Trees

