STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2023 LECTURE 6

1. Least squares with norm constraints

- let $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, and α be some given positive number
- we wish to solve the problem

minimize
$$||A\mathbf{x} - \mathbf{b}||_2$$

subject to $||\mathbf{x}||_2 \le \alpha$ (1)

- this problem is known as least squares with quadratic constraints
- arises in many situations:
 - ridge regression
 - Tychonov regularization
 - generalized cross-validation (GCV)
- note that if $\alpha \ge ||A^{\dagger}\mathbf{b}||_2$, the unconstrained minimum norm solution $A^{\dagger}\mathbf{b}$ would already be a solution
- so for a non-trivial solution, we assume that $\alpha < \|A^{\dagger}\mathbf{b}\|_2$ and in which case the solution \mathbf{x} to (1) must sit on the boundary of the ball of radius α , i.e., $\|\mathbf{x}\|_2 = \alpha$, and we have

minimize
$$\|A\mathbf{x} - \mathbf{b}\|_2$$

subject to $\|\mathbf{x}\|_2 = \alpha$ (2)

- prove the statement above as an exercise, i.e., when $\alpha < \|A^{\dagger}\mathbf{b}\|_2$, then (1) and (2) have the same solution
- to solve this problem, we define the Lagrangian

$$L(\mathbf{x}, \mu) = ||A\mathbf{x} - \mathbf{b}||_2^2 + \mu(||\mathbf{x}||^2 - \alpha^2)$$

where μ is called the Lagrange multiplier

• first-order condition for minimality: set derivative to zero

$$\mathbf{0} = \nabla_{\mathbf{x}} L(\mathbf{x}, \mu) = -2A^{\mathsf{T}} \mathbf{b} + 2A^{\mathsf{T}} A \mathbf{x} + 2\mu \mathbf{x}$$
$$0 = \frac{\partial}{\partial \mu} L(\mathbf{x}, \mu) = \|\mathbf{x}\|^2 - \alpha^2$$

• we obtain

$$\begin{cases} (A^{\mathsf{T}}A + \mu I)\mathbf{x} = A^{\mathsf{T}}\mathbf{b}, \\ \|\mathbf{x}\|^2 = \alpha^2 \end{cases}$$
 (3)

• note that if (\mathbf{x}_1, μ_1) and $(\mathbf{x}_2, \mu_2) \in \mathbb{R}^{n+1}$ are both solutions to (3), then

$$(A^{\mathsf{T}}A + \mu_1 I)\mathbf{x}_1 = A^{\mathsf{T}}\mathbf{b},$$

$$(A^{\mathsf{T}}A + \mu_2 I)\mathbf{x}_2 = A^{\mathsf{T}}\mathbf{b}$$
(4)

and $\|\mathbf{x}_1\|^2 = \|\mathbf{x}_2\|^2 = \alpha^2$

• left multiply the first equation in (4) by $\mathbf{x}_1^{\mathsf{T}}$ and the second equation by $\mathbf{x}_2^{\mathsf{T}}$ and subtract, we get

$$||A\mathbf{x}_2||_2^2 - ||A\mathbf{x}_1||_2^2 - \mathbf{b}^{\mathsf{T}} A(\mathbf{x}_2 - \mathbf{x}_1) = \mu_1 ||\mathbf{x}_1||^2 - \mu_2 ||\mathbf{x}_2||^2$$
(5)

• left multiply the first equation in (4) by $\mathbf{x}_2^{\mathsf{T}}$ and the second equation by $\mathbf{x}_1^{\mathsf{T}}$ and subtract, we get

$$-\mathbf{b}^{\mathsf{T}} A(\mathbf{x}_2 - \mathbf{x}_1) = -(\mu_1 - \mu_2) \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2 \tag{6}$$

• adding (5) and (6), and noting that $\|\mathbf{x}_1\|^2 = \|\mathbf{x}_2\|^2$, we get

$$||A\mathbf{x}_2 - \mathbf{b}||_2^2 - ||A\mathbf{x}_1 - \mathbf{b}||_2^2 = \frac{\mu_1 - \mu_2}{2} ||\mathbf{x}_1 - \mathbf{x}_2||_2^2$$

• hence

$$\mu_1 > \mu_2 \implies \|A\mathbf{x}_2 - \mathbf{b}\|_2 > \|A\mathbf{x}_1 - \mathbf{b}\|_2$$

- the solution \mathbf{x} to (2) is given by the solution $(\mathbf{x}, \mu) \in \mathbb{R}^{n+1}$ to (3) with the largest μ
- to solve (3), we see that we need to compute

$$\mathbf{x} = (A^{\mathsf{T}}A + \mu I)^{-1}A^{\mathsf{T}}\mathbf{b} \tag{7}$$

where

$$\mathbf{x}^{\mathsf{T}}\mathbf{x} = \mathbf{b}^{\mathsf{T}}A(A^{\mathsf{T}}A + \mu I)^{-2}A^{\mathsf{T}}\mathbf{b} = \alpha^{2}$$

- we want to avoid actually forming $A^{\mathsf{T}}A$ for reasons that will be clear when we discuss normal equations later and to do this we use SVD
- if $A = U \Sigma V^{\mathsf{T}}$ is the full SVD of A, we let $\mathbf{c} = U^{\mathsf{T}} \mathbf{b}$, then we have

$$\begin{split} \alpha^2 &= \mathbf{b}^\mathsf{T} U \Sigma V^\mathsf{T} (V \Sigma^\mathsf{T} \Sigma V^\mathsf{T} + \mu I)^{-2} V \Sigma^\mathsf{T} U^\mathsf{T} \mathbf{b} \\ &= \mathbf{c}^\mathsf{T} \Sigma [(V \Sigma^\mathsf{T} \Sigma V^\mathsf{T} + \mu I) V]^{-1} [V^\mathsf{T} (V \Sigma^\mathsf{T} \Sigma V^\mathsf{T} + \mu I)]^{-1} \Sigma^\mathsf{T} \mathbf{c} \\ &= \mathbf{c}^\mathsf{T} \Sigma (V \Sigma^\mathsf{T} \Sigma + \mu V)^{-1} (\Sigma^\mathsf{T} \Sigma V^\mathsf{T} + \mu V^\mathsf{T})^{-1} \Sigma^\mathsf{T} \mathbf{c} \\ &= \mathbf{c}^\mathsf{T} \Sigma [(\Sigma^\mathsf{T} \Sigma V^\mathsf{T} + \mu V^\mathsf{T}) (V \Sigma^\mathsf{T} \Sigma + \mu V)]^{-1} \Sigma^\mathsf{T} \mathbf{c} \\ &= \mathbf{c}^\mathsf{T} \Sigma (\Sigma^\mathsf{T} \Sigma + \mu I)^{-2} \Sigma^\mathsf{T} \mathbf{c} \\ &= \sum_{i=1}^r \frac{c_i^2 \sigma_i^2}{(\sigma_i^2 + \mu)^2} \\ &=: f(\mu) \end{split}$$

where $\mathbf{c} = (c_1, \dots, c_m)^\mathsf{T}$

- we find all solutions of $f(\mu) = \alpha^2$, a univariate nonlinear equation, using any standard solvers, e.g., Newton–Raphson method, to get all roots μ and pick the largest one μ_*
- note the function f has poles at $-\sigma_i^2$ for $i=1,\ldots,r$, i.e., f blows up to $+\infty$ at these points and they can never be solutions of $f(\mu)=\alpha^2$
- furthermore, $\lim_{\mu\to\pm\infty} f(\mu) = 0$ so there can only be a finite number of solutions see Figure 1 for an example
- to summarize, the algorithm for solving this problem, given A, b, and α^2 , is as follows:
 - step 1: compute SVD of A to obtain $A = U\Sigma V^{\mathsf{T}}$
 - step 2: compute $\mathbf{c} = U^{\mathsf{T}}\mathbf{b}$
 - step 3: solve $f(\mu_*) = \alpha^2$ with Newton-Raphson method and select largest μ_*
 - step 4: use the SVD to compute

$$\mathbf{x} = (A^{\mathsf{T}}A + \mu I)^{-1}A^{\mathsf{T}}\mathbf{b} = V(\Sigma^{\mathsf{T}}\Sigma + \mu I)^{-1}\Sigma^{\mathsf{T}}U^{\mathsf{T}}\mathbf{b}$$

- this is an example of an 'near closed form' solution: we have an analytic expression for \mathbf{x} that depends on just one unknown parameter μ_* , which is the root of a univariate nonlinear equation
- as a toy example, Figure 1 shows the intersections of the blue curve y = f(x) where

$$f(x) = \frac{4}{(1+x)^2} + \frac{3}{(2+x)^2} + \frac{2}{(3+x)^2} + \frac{1}{(4+x)^2}$$

and the red horizontal line $y = 10^2$, the right most intersection point of the red line and blue curve gives us μ_*

- a better alternative is that instead of using Newton–Raphson method on $f(\mu) = \alpha^2$ directly, we could instead solve $1/f(\mu) = 1/\alpha^2$, which is a much better strategy
- as an aside that will make sense after we discuss condition number in the future, note that if we denote the eigenvalues of $A^{\mathsf{T}}A$ by

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n \ge 0$$

• then eigenvalues of $A^{\mathsf{T}}A + \mu I$ are

$$\lambda_1 + \mu, \dots, \lambda_n + \mu$$

• if $\mu \geq 0$, then $\kappa_2(A^{\mathsf{T}}A + \mu I) \leq \kappa_2(A^{\mathsf{T}}A)$, because

$$\frac{\lambda_1 + \mu}{\lambda_n + \mu} \le \frac{\lambda_1}{\lambda_n}$$

• so $A^{\mathsf{T}}A + \mu I$ is better conditioned

2. MATRIX APPROXIMATION PROBLEMS

• we next examine problems like

$$\min_{X^{\mathsf{T}} = X} \lVert A - X \rVert_{\mathsf{F}}, \qquad \min_{X^{\mathsf{T}} X = I} \lVert A - X \rVert_{\mathsf{F}}, \qquad \min_{\mathrm{rank}(X) \leq r} \lVert A - X \rVert_{\mathsf{F}}$$

for a given $A \in \mathbb{R}^{n \times n}$

• the second and third problems are great applications of SVD

3. CLOSEST HERMITIAN/SYMMETRIC MATRIX

• this one doesn't require SVD but is interesting nonetheless

• given $A \in \mathbb{C}^{n \times n}$, find its closest Hermitian matrix

$$\min_{X^* = X} ||A - X||_{\mathsf{F}} \tag{8}$$

or its closest skew-Hermitian matrix

$$\min_{X^* = -X} ||A - X||_{\mathsf{F}} \tag{9}$$

• note that any square matrix can be written as a sum of a Hermitian matrix and a skew-Hermitian matrix

$$A = \frac{1}{2}(A + A^*) + \frac{1}{2}(A - A^*)$$

- the solutions to (8) and (9) are given by $X = \frac{1}{2}(A + A^*)$ and $X = \frac{1}{2}(A A^*)$ respectively (why?)
- for $A \in \mathbb{R}^{n \times n}$ these yield the closest symmetric and skew-symmetric matrices to A
- a more general problem is that given $A, B \in \mathbb{C}^{n \times n}$, we want X such that

$$\min_{X^* = X} \|A - BX\|_{\mathsf{F}}$$

and you will be guided through its proof in Homework 2

4. CLOSEST UNITARY/ORTHOGONAL MATRIX

- let U(n) be the set of all $n \times n$ unitary matrices
- given $A \in \mathbb{C}^{n \times n}$, we wish to find the matrix $X \in \mathrm{U}(n)$ that satisfies

$$\min_{X \in \mathcal{U}(n)} \|A - X\|_{\mathsf{F}}$$

• first note that

$$||A - X||_{\mathsf{F}}^2 = \operatorname{tr}(A^*A) + \operatorname{tr}(X^*X) - 2\operatorname{Re}\operatorname{tr}(A^*X) = ||A||_{\mathsf{F}}^2 + n - 2\operatorname{Re}\operatorname{tr}(A^*X)$$

since $X^*X = I$

- so minimizing $\|A X\|_{\mathsf{F}}^2$ is equivalent to maximizing $\operatorname{Re}\operatorname{tr}(A^*X)$
- let $A = U\Sigma V^*$ be the SVD of A
- then writing $Z = U^*XV$, we get

$$\operatorname{Re}\operatorname{tr}(A^*X) = \operatorname{Re}\operatorname{tr}(V\Sigma^*U^*X) = \operatorname{Re}\operatorname{tr}(\Sigma^*U^*XV) = \operatorname{Re}\operatorname{tr}(\Sigma^*Z) = \sum_{i=1}^p \sigma_i\operatorname{Re}(z_{ii}) \leq \sum_{i=1}^p \sigma_i$$

where the last inequality follows since Z is an orthogonal matrix and so $\text{Re}(z_{ii}) \leq |z_{ii}| \leq 1$

• the upper bound is attained by making Z = I, i.e.,

$$X = UV^*$$

• exercise: show that $\|\cdot\|_2$ and $\|\cdot\|_F$ are unitarily invariant, i.e., satisfies

$$||UXV|| = ||X||$$

for all $X \in \mathbb{C}^{m \times n}$ whenever U and V are unitary matrices

• if we set

$$X = UV^*$$
.

then

$$||A - X||_{\mathsf{F}}^2 = ||U(\Sigma - I)V^*||_{\mathsf{F}}^2 = ||\Sigma - I||_{\mathsf{F}}^2 = (\sigma_1 - 1)^2 + \dots + (\sigma_n - 1)^2$$

• for real matrices A, one could also ask for

$$\min_{X \in \mathcal{O}(n)} \|A - X\|_{\mathsf{F}}$$

which is just a special case

• a more general problem is that given $A, B \in \mathbb{C}^{n \times n}$, we want $X \in \mathrm{U}(n)$ such that

$$\min_{X \in \mathrm{U}(n)} \|A - BX\|_{\mathsf{F}}$$

and you asked to do this in Homework 2

5. Closest rank-r matrix

- given $A \in \mathbb{C}^{m \times n}$, we want to find $X \in \mathbb{C}^{m \times n}$ of rank not more than r so that ||A X|| is minimized
- in notations, we want

$$\min_{\operatorname{rank}(X) \le r} \|A - X\| \tag{10}$$

- such an X is called a best rank-r approximation to A or a rank-r projection of A
- if $r \geq \operatorname{rank}(A)$, then clearly X = A and the problem is trivial
- so we shall always assume that r < rank(A)
- we will start with the classical case where $\|\cdot\|$ is the matrix 2-norm or spectral norm

Theorem 1 (Eckart–Young). Let the SVD of A be

$$A = \sum_{i=1}^{\operatorname{rank}(A)} \sigma_i \mathbf{u}_i \mathbf{v}_i^*, \quad \sigma_1 \ge \dots \ge \sigma_{\operatorname{rank}(A)} > 0.$$

Then for any $r \in \{1, \ldots, \operatorname{rank}(A) - 1\}$, a solution to (10) when $\|\cdot\| = \|\cdot\|_2$ is given by

$$X = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^*. \tag{11}$$

Furthermore, we have

$$\min_{\text{rank}(X) \le r} ||A - X||_2 = \sigma_{r+1}. \tag{12}$$

In matrix form, we have

$$X = U \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_r & & \\ & & & 0 & \\ & & & \ddots & \\ & & & 0 \end{bmatrix} V^*, \tag{13}$$

where $A = U\Sigma V^*$ is the SVD of A.

Proof. Suppose there is a $B \in \mathbb{C}^{m \times n}$ with $\operatorname{rank}(B) \leq r$ and $||A - B||_2 < \sigma_{r+1}$. Then by the rank-nullity theorem

$$rank(B) + dim(ker(B)) = n$$

and so

$$\dim(\ker(B)) \ge n - r$$
.

Let $\mathbf{w} \in \ker(B)$. Then $B\mathbf{w} = \mathbf{0}$ and so

$$||A\mathbf{w}||_2 = ||(A - B)\mathbf{w}||_2 \le ||A - B||_2 ||\mathbf{w}||_2 < \sigma_{r+1} ||\mathbf{w}||_2.$$
(14)

Let $\mathbf{w} \in W := \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{r+1}\}$. Then $\mathbf{w} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_{r+1} \mathbf{v}_{r+1}$. Rewriting this in matrix form

$$\mathbf{w} = V_{r+1} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_{r+1} \end{bmatrix} = V_{r+1} \boldsymbol{\alpha}$$

where $V_{r+1} = [\mathbf{v}_1, \dots, \mathbf{v}_{r+1}] \in \mathbb{C}^{n \times r}$, i.e., the first r+1 columns of V.

$$||A\mathbf{w}||_{2}^{2} = ||U\Sigma V^{*}V_{r+1}\boldsymbol{\alpha}||_{2}^{2} = ||\Sigma\begin{bmatrix}I_{r+1}\\O\end{bmatrix}\boldsymbol{\alpha}||_{2}^{2} = ||\begin{bmatrix}\sigma_{1}\\&\ddots\\&&\sigma_{r+1}\\0&\cdots&0\\\vdots&&\vdots\\0&\cdots&0\end{bmatrix}\begin{bmatrix}\alpha_{1}\\\vdots\\\alpha_{r+1}\end{bmatrix}||_{2}^{2}$$
$$= \sum_{i=1}^{r+1} \sigma_{i}^{2}|\alpha_{i}|^{2} \geq \sigma_{r+1}^{2} \sum_{i=1}^{r+1} |\alpha_{i}|^{2} = \sigma_{r+1}^{2} ||\mathbf{w}||_{2}^{2}.$$

Hence if $\mathbf{w} \in W$, then

$$||A\mathbf{w}||_2 \ge \sigma_{r+1} ||\mathbf{w}||_2. \tag{15}$$

But since $\dim(\ker(B)) \ge n-r$ and $\dim(W) = r+1$, the two subspaces must intersect nontrivially, i.e., $\dim(\ker(B) \cap W)) \ge 1$ and so there exists a non-zero vector $\mathbf{w} \in \ker(B) \cap W$. Such a vector would satisfy both (14) and (15), a contradiction. Hence our original assumption is false: There is no rank-r matrix B that could beat the bound in (12). On the other hand it is easy to verify that the choice of X in (13) satisfies (12):

- the generalization of Eckart–Young theoem to any arbitrary unitarily invariant norm is due to Mirsky and this theorem is sometimes also called the Eckart–Young–Mirsky theorem
- note that the general theorem only says that (11) is the best rank-r approximation of A, the value in (12) would in general be different
- for example if we use the Frobenius norm

$$\min_{\operatorname{rank}(X) \le r} ||A - X||_{\mathsf{F}} = \sqrt{\sigma_{r+1}^2 + \dots + \sigma_{\operatorname{rank}(A)}^2}.$$

• a more general problem is to find $X \in \mathbb{C}^{n \times p}$ such that

$$\min_{\operatorname{rank}(X) \le r} \|A - BX\|_{\mathsf{F}}$$

for given $A \in \mathbb{C}^{m \times p}$ and $B \in \mathbb{C}^{m \times n}$

6. Solving total least squares problems

- assume $A \in \mathbb{C}^{m \times n}$ has full column rank, i.e., $\operatorname{rank}(A) = n \leq m$
- in ordinary least squares problem, we solve

$$A\mathbf{x} = \mathbf{b} + \mathbf{r}, \quad \|\mathbf{r}\|_2 = \min$$

• in total least squares problem, we wish to solve

$$(A + E)\mathbf{x} = \mathbf{b} + \mathbf{r}, \quad ||E||_{\mathsf{F}}^2 + \lambda^2 ||\mathbf{r}||_2^2 = \min$$

- note that if $\mathbf{b} \in \text{im}(A)$, then the solution is given by setting E = O, $\mathbf{r} = \mathbf{0}$ and choosing \mathbf{x} to be any solution of $A\mathbf{x} = \mathbf{b}$
- so assume $\mathbf{b} \not\in \operatorname{im}(A)$ and therefore

$$rank([A, \mathbf{b}]) = n + 1$$

• from $A\mathbf{x} - \mathbf{b} + E\mathbf{x} - \mathbf{r} = \mathbf{0}$ we obtain the system

$$\begin{bmatrix} A & \mathbf{b} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ -1 \end{bmatrix} + \begin{bmatrix} E & \mathbf{r} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ -1 \end{bmatrix} = \mathbf{0}$$

or

$$(C+F)\mathbf{z} = \mathbf{0} \tag{16}$$

• since

$$\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ -1 \end{bmatrix} \neq \mathbf{0} \tag{17}$$

we must have $\operatorname{nullity}(C+F) \geq 1$

• and since rank(C) = n + 1, we must have

$$\operatorname{rank}(C+F) \leq n$$

- we need the matrix C + F to have $\operatorname{rank}(C + F) \leq n$, and we want to minimize $||F||_{\mathsf{F}}$
- to solve this problem, we compute the SVD of $C \in \mathbb{C}^{m \times (n+1)}$

$$C = \begin{bmatrix} A & \mathbf{b} \end{bmatrix} = U\Sigma V^* = U \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & \\ & & \sigma_n & & \\ & & & \sigma_{n+1} \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \end{bmatrix} V^*$$

- note that $\sigma_{n+1} > 0$ since rank(C) = n + 1
- we want F so that rank $(C+F) \leq n$ so need to zero out σ_{n+1} , i.e., we want

$$C + F = U \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_n & & \\ & & & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \end{bmatrix} V^*$$

$$(18)$$

or to be more precise, we want

$$\min_{\text{rank}(C+F) \le n} \|F\|_{\mathsf{F}} = \min_{\text{rank}(C+F) \le n} \|C - (C+F)\|_{\mathsf{F}} = \min_{\text{rank}(X) \le n} \|C - X\|_{\mathsf{F}}$$

and Eckhart-Young theorem tells us that X := C + F must take the form in (18)

• so pick

$$F = U \begin{bmatrix} 0 & & & & \\ & \ddots & & & \\ & & 0 & & \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \end{bmatrix} V^*$$

and note that this F would produce the effect needed for (18)

- let $V = [\mathbf{v}_1, \dots, \mathbf{v}_{n+1}] \in \mathbb{C}^{(n+1)\times(n+1)}$ where $\mathbf{v}_i \in \mathbb{C}^{n+1}$ is the *i*th column of V note that $\mathbf{v}_i^* \mathbf{v}_{n+1} = 0$ for all $i = 1, \dots, n$
- we have

$$(C+F)\mathbf{v}_{n+1} = U \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_n & & \\ & & & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \end{bmatrix} V^*\mathbf{v}_{n+1} = U \begin{bmatrix} \sigma_1 \mathbf{v}_1^* \\ \vdots \\ \sigma_n \mathbf{v}_n^* \\ \mathbf{0}^\mathsf{T} \\ \mathbf{0}^\mathsf{T} \\ \vdots \\ \mathbf{0}^\mathsf{T} \end{bmatrix} \mathbf{v}_{n+1} = U \begin{bmatrix} \sigma_1 \mathbf{v}_1^* \mathbf{v}_{n+1} \\ \vdots \\ \sigma_n \mathbf{v}_n^* \mathbf{v}_{n+1} \\ \mathbf{0}^\mathsf{T} \mathbf{v}_{n+1} \\ \vdots \\ \mathbf{0}^\mathsf{T} \mathbf{v}_{n+1} \end{bmatrix} = U \begin{bmatrix} 0 \\ \vdots \\ \vdots \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0}$$

- so the vector \mathbf{v}_{n+1} ought to be a candidate for the solution \mathbf{z} in (16) but there is one caveat the last coordinate of \mathbf{z} must be -1 by (17)
- how do we achieve that? we divide \mathbf{v}_{n+1} by the negative of its last coordinate, so

$$\begin{bmatrix} \mathbf{x} \\ -1 \end{bmatrix} = \mathbf{z} = -\frac{1}{v_{n+1,n+1}} \mathbf{v}_{n+1}$$

provided that $v_{n+1,n+1} \neq 0$

• this gives the solution

$$\mathbf{x} = -\begin{bmatrix} v_{1,n+1}/v_{n+1,n+1} \\ \vdots \\ v_{n,n+1}/v_{n+1,n+1} \end{bmatrix}$$

where the v_{ij} refers to the entries of $V = [v_{ij}]_{i,j=1}^{n+1}$

7. OTHER APPLICATIONS

- next lecture we will also look at SVD as a notion of "numerical rank"
- in the homework you see yet other uses of SVD
- here are some other uses of SVD that we didn't have time to consider:
 - least squares with linear constraints (we will discuss this under QR though)
 - least squares with quadratic constraints
 - finding angles between subspaces
 - orthonormal basis for intersection of subspaces
 - subset selection
- all these should convince you that SVD truly is a swiss army knife of matrix computations