The Other Trig Functions

Chase Mathison¹

Shenandoah University

2 February 2024

Announcements

- Homework in M.O.M.
- Quiz due tonight
- 3 Office hours today: 10am 11am

The Other Trig Functions

If (x, y) is the point on the unit circle associated with the angle θ , then:

- $tan(\theta) =$
- $2 \cot(\theta) =$
- \mathbf{o} $\csc(\theta) =$

Find all of the trig functions evaluated at $\theta=\frac{\pi}{6}$ radians.

Find all of the trig functions evaluated at $\alpha=\frac{\pi}{4}$ radians.

The Trig Functions in Quadrant I

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
	or 0°				or 90°
$sin(\theta)$					
$\cos(\theta)$					
$tan(\theta)$					
$\cot(\theta)$					
$sec(\theta)$					
$\csc(\theta)$					

Using Reference Angles

To find the trig functions in the other quadrants, just remember to use reference angles and that: All Students Take Calculus

Find:

- sec(120°)
- 2 csc $\left(\frac{7\pi}{6}\right)$ 3 tan $\left(\frac{7\pi}{4}\right)$
- \bullet cot(390°)

Even and Odd Functions

Even and Odd Functions

A function f(x) is called

$$_{-}\text{ if }f(-x)=f(x).$$

A function f(x) is called if

$$\overline{f(-x)=-f(x)}.$$

The following trig functions are even:

The following trig functions are odd:

Suppose $cos(\beta) = \frac{3}{7}$. Then what is $cos(-\beta)$?

Fundamental Identities

It's important to recognize how the trig functions are all related to each other: They really are all based off of $sin(\theta)$ and $cos(\theta)$!

Fundamental Identities

•
$$\tan \theta =$$

$$2 \cot \theta =$$

$$\mathbf{4} \operatorname{csc} \theta =$$

Suppose $\sin(\gamma) = \frac{1}{3}$, and $\frac{\pi}{2} \le \gamma \le \pi$. Find the other 6 trig functions at γ .

Suppose $\sec(\theta) = -10$ and $\pi \le \theta \le \frac{3\pi}{2}$. Find the other 6 trig functions at θ .