

UNIVERSIDAD ESTATAL A DISTANCIA ESCUELA DE CIENCIAS EXACTAS Y NATURALES CARRERA INGENIERÍA INFORMÁTICA CATEDRA DESARROLLO DE SISTEMAS 00823 - Organización de Computadores Primer cuatrimestre 2023

Tarea 1

Tipo: individual Valor del trabajo en la nota: 10%

OBJETIVO

Aplicar los conocimientos adquiridos en el Tema 1 y 2, para la simplificación de ecuaciones (suma de productos) utilizando el Mapa de Karnaugh.

DESARROLLO — Diseño de ecuación original, su simplificación y creación de un circuito en Digital Works

Consideraciones:

- Se tiene la siguiente secuencia de números [10, 5, 8, 4, 15, 7, 13 y 6].
- La ecuación tendrá como resultado un 1 binario, cuando en la entrada se presenten un número dentro de la secuencia y se indicará encendiendo un led de color azul.
- Cuando además de presentarse un número de la secuencia y este sea par, se encenderá un led verde y rojo si es impar.

La solución presentada debe contener:

- a) Definición de la ecuación original, correspondiente a la secuencia de números indicada.
- b) Tabla de verdad de la ecuación original, con la identificación de cada término.
- c) Mapa de Karnaugh con todos términos de la ecuación original, la indicación de las agrupaciones establecidas para la simplificación y la explicación del término resultante de cada agrupación.
- d) Ecuación simplificada.
- e) Tabla de verdad de la ecuación simplificada, con la inclusión de cada término y ésta debe coincidir en su resultado con la ecuación original.
- f) Circuito generado en Digital Works de la ecuación simplificada, el cual debe cumplir con lo siguiente:
 - i. Solo puede existir una entrada para cada variable, si se ocupase su valor negado, éste se obtiene utilizando la compuerta NOT y no creando otra variable.
 - ii. Cada variable de la ecuación se representará con un generador de secuencia (Sequence Generator) el con su valor correspondiente a la Tabla de Verdad creada.
 - iii. El resultado de la ecuación o salida del circuito se representará como un LED azul con la etiqueta F1. El led verde debe tener una etiqueta que diga PAR y el led rojo una que diga IMPAR.
 - iv. Tanto las variables como los resultados deben incluirse en el Logic History.

UNIVERSIDAD ESTATAL A DISTANCIA ESCUELA DE CIENCIAS EXACTAS Y NATURALES CARRERA INGENIERÍA INFORMÁTICA CATEDRA DESARROLLO DE SISTEMAS 00823 - Organización de Computadores Primer cuatrimestre 2023

ENTREGABLES

La solución del ejercicio debe incluir dos archivos:

- El documento con la solución del proyecto. El cual debe incluir la explicación de los pasos realizados para obtener la ecuación simplificada por medio del Mapa de Karnaugh y el resultado de cada agrupación de términos del Mapa de Karnaugh.
- El archivo .DWM generado por Digital Works, correspondiente al circuito de la ecuación simplificada.

Si la plataforma solo permite un archivo, se generará un archivo comprimido (.ZIP) con los dos archivos.

MATRIZ DE EVALUACIÓN

Rubo por calificar	Detalle	Porcentaje
Documento con la explicación de la solución		60%
Portada	1%	
Índice	1%	
Introducción (no menos de media página)	1%	
Desarrollo		
Diseño correcto de la ecuación original	8%	
Tabla de verdad de la ecuación original	8%	
Mapa de Karnaugh con todos los términos de la ecuación original	16%	
Explicación de la agrupación de términos adyacentes y su resultado	15%	
Tabla de verdad de la ecuación simplificada	5%	
Imagen del circuito resultante	3%	
Conclusión (al menos 3 conclusiones)	1%	
Bibliografía en formato APA	1%	
Circuito en Digital Works de la ecuación simplificada		40%
Utiliza un solo generador de secuencia para cada variable	1%	
Establece correctamente los valores de cada generador de secuencia	1%	
Establece correctamente los colores y etiquetas de los leds	6%	
Cada variable de entrada y la salida se incluyen en el Logic History	7%	
El circuito corresponde a la ecuación simplificada correcta	25%	
TOTAL:	100%	100%