FICHE T.D.

4

Traitement des problématiques des produits A et B

Indications préliminaires

- Objectif: En pratique, on peut être spécialement intéressé par une prise de décision qui dépend de la comparaison du paramètre d'intérêt θ inconnu par rapport à une valeur de référence θ₀ (fixée selon la problématique). Cette comparaison sera par la suite appelée assertion d'intérêt. Ne disposant que d'une estimation $\hat{\theta}(y)$ la décision conduisant à conclure que l'assertion d'intérêt est vraie à partir de l'échantillon y du jour J ne peut pas être complètement fiable. L'objectif est de construire un outil d'aide à la décision nous garantissant un risque d'erreur de se tromper dans notre décision de valider l'assertion d'intérêt n'excédant pas une valeur que nous nous sommes fixée (généralement autour des 5%).
- Paramètre d'écart standardisé: Comparer la paramètre d'intérêt θ à une valeur de référence θ_0 est strictement équivalent à comparer leur différence ou leur rapport à 0 ou 1. Dans le cadre asymptotique, l'assertion d'intérêt pourra toujours se réécrire en fonction d'un paramètre d'écart standardisé $\delta_{\theta,\theta_0} := \frac{\theta \theta_0}{\sigma_{\hat{\theta}}}$. Il est important d'apprendre à lire cette expression où le numérateur $\theta \theta_0$ a été mis en **gras** pour souligner son rôle plus important (en termes d'information pour l'utilisateur) par rapport au dénominateur $\sigma_{\hat{\theta}}$ ayant été introduit principalement pour des raisons techniques (mais toutefois indispensables dans la construction de l'outil d'aide à la décision). Il est alors direct de voir que :

$$\textbf{Assertion d'intérêt} \Longleftrightarrow \left\{ \begin{array}{lll} \theta < \theta_0 & \Longleftrightarrow & \theta - \theta_0 < 0 & \Longleftrightarrow & \delta_{\theta,\theta_0} < 0 \\ \theta > \theta_0 & \Longleftrightarrow & \theta - \theta_0 > 0 & \Longleftrightarrow & \delta_{\theta,\theta_0} > 0 \\ \theta \neq \theta_0 & \Longleftrightarrow & \theta - \theta_0 \neq 0 & \Longleftrightarrow & \delta_{\theta,\theta_0} \neq 0 \end{array} \right\}$$

En commentaire non prioritaire, on peut tout de même remarquer que l'interprétation du $\sigma_{\widehat{\theta}}$ dans l'expression de δ_{θ,θ_0} est assez naturelle : plus l'estimation de θ est fiable, se traduisant par un $\sigma_{\widehat{\theta}}$ d'autant plus faible, plus le paramètre d'écart standardisé δ_{θ,θ_0} est grand et ainsi plus facile à comparer à 0.

• Estimation du paramètre d'écart standardisé : Dépendant du paramètre d'intérêt θ inconnu, le paramètre d'écart standardisé δ_{θ,θ_0} est lui-même inconnu (en fait doublement inconnu puisque dépendant aussi de $\sigma_{\widehat{\theta}}$ inconnu). Il est facilement estimable à partir de l'échantillon \boldsymbol{y} du jour \boldsymbol{J} . Nous l'exprimons ci-dessous à partir du "futur" échantillon \boldsymbol{Y} :

$$\widehat{\delta_{ heta, heta_0}}\left(oldsymbol{Y}
ight) := rac{\widehat{ heta}\left(oldsymbol{Y}
ight) - heta_0}{\widehat{\sigma_{\widehat{oldsymbol{a}}}}\left(oldsymbol{Y}
ight)}$$

Pour mesurer les risques d'erreur de décision, nous serons tout particulièrement intéressés par la loi de probabilité de $\widehat{\delta_{\theta,\theta_0}}(\boldsymbol{Y})$ lorsque $\theta=\theta_0$. Dans ce cas très particulier, nous remarquons que lorsque n est suffisamment grand :

$$\widehat{\delta_{\theta,\theta_0}}(\boldsymbol{Y}) := \frac{\widehat{\theta}(\boldsymbol{Y}) - \boxed{\theta_0}}{\widehat{\sigma_{\widehat{\theta}}}(\boldsymbol{Y})} = \frac{\widehat{\theta}(\boldsymbol{Y}) - \boxed{\theta}}{\widehat{\sigma_{\widehat{\theta}}}(\boldsymbol{Y})} =: \delta_{\widehat{\theta},\theta}(\boldsymbol{Y}) \stackrel{approx.}{\leadsto} \mathcal{N}(0,1)$$

où $\delta_{\widehat{\theta},\theta}(\boldsymbol{Y})$ a été introduit au début de la fiche T.D. $\ref{eq:total_total_total}$

Fin

Exercice 1 (Forme des Règles de Décision pour produits A et B)

- 1. Exprimer les assertions d'intérêt pour les produits A et B correspondant aux lancements des produits sur le marché en fonction des paramètres d'intérêts.
- 2. Reécrire ces assertions d'intérêt à partir des paramètres d'écart standardisé fournis dans le formulaire de cours.

- 3. Proposer les formes des Règles de décision associées aux expressions précédentes des assertions d'intérêts (via paramètres d'intérêt et d'écart standardisé).
- 4. Selon ces Règles de Décision, est-il possible pour l'industriel de ne pas se tromper dans sa décision quant au lancement de chaque produit?
- 5. Exprimez les erreurs de décision éventuelles en les illustrant par des exemples de situations réelles envisageables.

Il en ressort qu'il y a 2 risques d'erreurs de décision :

- Risque d'erreur I (ou première espèce) : risque de décider à tort l'assertion d'intérêt.
- Risque d'erreur II (ou deuxième expèce) : risque de ne pas décider à tort l'assertion d'intérêt

Comment les reformuleriez-vous dans les problématiques de l'industriel? Lequel parmi ces 2 types d'erreurs est-il plus important de controler?

6. Un statisticien informe l'industriel que la règle de décision (connue de tous les statisticiens) est de lancer le produit A si $\widehat{p^A}$ ($\mathbf{y^A}$) > 16.8573%. L'industriel pensant que son produit est tel que $p^A \geq 20\%$ se dit que cette règle de décision sera donc toujours acceptée. Qu'en pensez-vous?

Exercice 2 (Etudes expérimentales pour produits A et B)

L'expérimentateur désire mener une étude sur les outils d'aide à la décision pour les problématiques des produits A et B. Il se propose alors de construire 6 urnes U_p^A (avec p=10%, 14%, 15%, 15.1%, 16% et 20%) et 6 urnes U_μ^B (avec $\mu=0.1$, 0.14, 0.15, 0.151, 0.16 et 0.2). Pour chacune des 12 urnes il construit m=10000 échantillons (notés $\mathbf{y_{[k]}},\ k=1,\cdots,m$) de taille n=1000. Voici les caractéristiques de ces urnes : une urne U_μ^{\bullet} ($\mu\geq0$ et $\bullet=A$ ou B) contient N=2000000 boules numérotées de 0 à 3. N_i^{\bullet} désignant le nombre de boules dont le numéro est i ($i=0,\cdots,3$), les répartitions de ces urnes sont fixées de la manière suivante :

- U_p^A ($\mu = p \in [0,1]$) : $N_1^A = N \times p$ et $N_2^A = N_3^A = 0$ de sorte qu'il y a une proportion p de boules numérotées 1. La moyenne et la variance des numéros sont respectivement égaux à $\mu = p$ et $\sigma^2 = p(1-p)$
- $\begin{array}{l} \mu=p\ et\ \sigma^2=p(1-p)\\ -\ U_\mu^B\ (\mu\geq 0):\ N_1^B=N\times \mu-100000,\ N_2^B=N_3^B=20000\ de\ sorte\ que\ la\ moyenne\ des\\ numéros\ est\ égale\ \grave{a}\ \mu.\ La\ variance\ est\ égale\ \grave{a}\ \sigma^2=\mu(1-\mu)+\frac{2}{25}. \end{array}$

Notons que $N_0^{\bullet} = N - (N_1^{\bullet} + N_2^{\bullet} + N_3^{\bullet}).$

Résultats expérimentaux pour le produit A: L'expérimentateur décide d'éprouver les Règles de Décision suivantes sur tous les m = 10000 échantillons des 6 urnes U_n^A :

Décider de lancer le produit
$$A$$
 si $\widehat{p^{A}}(\boldsymbol{y}) > p_{lim}^{+}$

avec p_{lim}^+ pouvant prendre les 4 valeurs du tableau ci-dessous choisies sous le conseil du mathématicien. Voici les résultats fournis via la quantité $\gamma_m(p) = \overline{\left(\widehat{p^A}\left(\mathbf{y}_{[.]}\right) > p_{lim}^+\right)_m}$ correspondant à la proportion d'échantillons parmi les m=10000 conduisant au lancement du produit. Les valeurs entre parenthèses dans le tableau, fournies par le mathématicien, correspondent aux différentes valeurs de $\gamma_{+\infty}(p)$ (i.e. $m=+\infty$) qui, via la relation entre l'A.E.P. et l'A.M.P, est égal à $\gamma(p) := \mathbb{P}\left(\widehat{p^A}\left(\mathbf{Y}\right) > p_{lim}^+\right)$.

m	p_{lim}^+									
p	15%		16.4471%		16.8573%		17.6268%			
10%	0%	$(\simeq 0\%)$	0%	$(\simeq 0\%)$	0%	$(\simeq 0\%)$	0%	$(\simeq 0\%)$		
14%	16.57%	$(\simeq 18.11\%)$	1.45%	$(\simeq 1.29\%)$	0.52%	$(\simeq 0.46\%)$	0.05%	$(\simeq 0.05\%)$		
15%	48.06%	$(\simeq 50\%)$	10.07%	$(\simeq 10\%)$	5.17%	$(\simeq 5\%)$	0.86%	$(\simeq 1\%)$		
15.1%	51.52%	$(\simeq 53.52\%)$	11.93%	$(\simeq 11.71\%)$	6.18%	$(\simeq 6.03\%)$	1.37%	$(\simeq 1.28\%)$		
16%	78.95%	$(\simeq 80.58\%)$	34.42%	$(\simeq 34.99\%)$	22.89%	$(\simeq 22.98\%)$	7.75%	$(\approx 8.03\%)$		
20%	99.99%	$(\simeq 100\%)$	99.84%	$(\simeq 99.75\%)$	99.35%	$(\simeq 99.35\%)$	96.67%	$(\simeq 96.97\%)$		

Le tableau ci-dessous est l'équivalent du précédent pour les Règles de Décision de la forme :

Décider de lancer le produit
$$A$$
 si $\widehat{\delta_{p^A,15\%}}\left(\boldsymbol{y}\right) > \delta_{lim}^+$

Les valeurs (resp. entre parenthèses) du tableaux correspondent à $\gamma'_m(p) = \widehat{\left(\delta_{p^A,15\%}\left(\boldsymbol{y}_{[.]}\right) > \delta^+_{lim}\right)_m}$ (resp. à $\gamma'_{+\infty}(p) = \gamma'(p) := \mathbb{P}\left(\widehat{\delta_{p^A,15\%}}\left(\boldsymbol{Y}\right) > \delta^+_{lim}\right)$).

m	δ_{lim}^+									
p	0		1.281552		1.644854		2.326348			
10%	0%	$(\simeq 0\%)$	0%	$(\simeq 0\%)$	0%	$(\simeq 0\%)$	0%	$(\simeq 0\%)$		
14%	16.57%	$(\simeq 18.11\%)$	1.45%	$(\simeq 1.29\%)$	0.52%	$(\simeq 0.46\%)$	0.05%	$(\simeq 0.05\%)$		
15%	48.06%	$(\simeq 50\%)$	10.07%	$(\simeq 10\%)$	5.17%	$(\simeq 5\%)$	0.86%	$(\simeq 1\%)$		
15.1%	51.52%	$(\simeq 53.52\%)$	11.93%	$(\simeq 11.71\%)$	6.18%	$(\simeq 6.03\%)$	1.37%	$(\simeq 1.28\%)$		
16%	78.95%	$(\simeq 80.58\%)$	34.42%	$(\simeq 34.99\%)$	22.89%	$(\simeq 22.98\%)$	7.75%	$(\approx 8.03\%)$		
20%	99.99%	$(\simeq 100\%)$	99.84%	$(\simeq 99.75\%)$	99.35%	$(\simeq 99.35\%)$	96.67%	$(\simeq 96.97\%)$		

Résultats expérimentaux pour le produit B: il expérimente les Règles de Décision suivantes sur tous les m=10000 échantillons des 6 urnes U_{μ}^{B} :

Décider de lancer le produit
$$B$$
 si $\widehat{\mu^{B}}(\boldsymbol{y}) > \mu_{lim}^{+}$

 $avec \ \mu_{lim}^{+} \ pouvant \ prendre \ les \ 4 \ valeurs \ du \ tableau \ ci-dessous fournissant \ les \ différentes \ quantités \\ \gamma_m(\mu) = \overline{\left(\widehat{\mu^B}\left(\mathbf{y}_{[.]}\right) > \mu_{lim}^{+}\right)_m} \ (et \ \gamma_{+\infty}(\mu) = \gamma(\mu) := \overline{\left(\widehat{\mu^B}\left(\mathbf{Y}\right) > \mu_{lim}^{+}\right)_m}).$

,,	μ_{lim}^+									
μ	0.15		0.168461		0.173694		0.183511			
0.1	0.01%	$(\simeq 0.01\%)$	0%	$(\simeq 0\%)$	0%	$(\simeq 0\%)$	0%	$(\simeq 0\%)$		
0.14	23.39%	$(\simeq 24\%)$	2.55%	$(\simeq 2.22\%)$	1.13%	$(\simeq 0.87\%)$	0.14%	$(\simeq 0.11\%)$		
0.15	47.92%	$(\simeq 50\%)$	9.95%	$(\simeq 10\%)$	5.35%	$(\simeq 5\%)$	1.29%	$(\simeq 1\%)$		
0.151	50.72%	$(\simeq 52.77\%)$	10.95%	$(\simeq 11.27\%)$	5.61%	$(\simeq 5.76\%)$	1.25%	$(\simeq 1.2\%)$		
0.16	74.24%	$(\simeq 75.27\%)$	27.85%	$(\simeq 28.17\%)$	17.56%	$(\simeq 17.48\%)$	5.99%	$(\simeq 5.42\%)$		
0.2	99.96%	$(\simeq 99.94\%)$	98.43%	$(\simeq 97.91\%)$	96.45%	$(\simeq 95.53\%)$	86.35%	$(\simeq 85.64\%)$		

Le tableau ci-dessous est l'équivalent du précédent pour les Règles de Décision de la forme :

Décider de lancer le produit
$$B$$
 si $\widehat{\delta_{\mu^{B},0.15}(\boldsymbol{y}) > \delta_{lim}^{+}}$.

Il fournit toutes les quantités
$$\gamma_m'(\mu) = \widehat{\left(\delta_{\mu^A,0.15}\left(\mathbf{y}_{[.]}\right) > \delta_{lim}^+\right)_m}$$
 (ainsi que $\gamma_{+\infty}'(\mu) = \gamma'(\mu)$: $\widehat{\left(\delta_{\mu^A,0.15}\left(\mathbf{Y}\right) > \delta_{lim}^+\right)_m}$).

,,	δ_{lim}^+									
μ	0		1.281552		1.644854		2.326348			
0.1	0.01%	(≈ ?????)	0%	(≈ ?????)	0%	(≈ ?????)	0%	<i>(</i> ∼ ?????)		
0.14	23.39%	$(\simeq ?????)$	12.86%	$(\simeq ?????)$	10.15%	$(\simeq ?????)$	6.71%	$(\simeq ?????)$		
0.15	47.92%	$(\simeq 50\%)$	8.31%	$(\simeq 10\%)$	3.66%	$(\simeq 5\%)$	0.51%	$(\simeq 1\%)$		
0.151	50.72%	$(\simeq ?????)$	9.02%	$(\simeq ?????)$	3.81%	$(\simeq ?????)$	0.54%	$(\simeq ?????)$		
0.16	74.24%	$(\simeq ?????)$	59.05%	$(\simeq ?????)$	53.52%	$(\simeq ?????)$	45.56%	$(\simeq ?????)$		
0.2	99.96%	$(\simeq ?????)$	98.57%	$(\simeq ?????)$	96.46%	$(\simeq ?????)$	85.37%	<i>(</i> ≃ ?????)		

- 1. En vous rappelant que pour un paramètre de moyenne μ , la loi de probabilité de son estimateur $\widehat{\mu}(\mathbf{Y})$ est $N(\mu, \frac{\sigma}{\sqrt{n}})$, donner les instructions \mathbf{R} qui ont permis au mathématicien de déterminer les valeurs de $\gamma(p)$ et $\gamma(\mu)$ dans les tableaux relatifs aux paramètres d'intérêt p^A et μ^B .
- 2. A quoi correspondent les instructions suivantes :
- > p<-c(.1,.14,.15,.151,.16,.2)
- > 100*pnorm(.169,p,sqrt(p*(1-p)/1000))
- 3 [1] 100.0000000 99.5890332 95.3780337 94.4054974 78.1221075 0.7127646
- 4 > mu<-p
- > 100*pnorm(.169,mu,sqrt((mu*(1-mu)+2/25)/1000))
- 6 [1] 99.99994 97.974752 90.641532 89.388901 73.060810 2.269396

- 3. En vous appuyant sur les résultats du formulaire de cours, indiquer les instructions R permettant de déterminer les valeurs de $\gamma(15\%)$ et $\gamma(0.15)$ pour les tableaux relatifs aux paramètres d'écart standardisé $\delta_{p^A,15\%}$ et $\delta_{\mu^B,0.15}$.
- 4. A quoi correspond l'instruction suivante :
- > 100*pnorm(1.645)
- 2 [1] 95.00151

Exercice 3 (Finalisation des Règles de Décision)

A partir des résultats expérimentaux de l'exercice précédent, on se propose de finaliser les Règles de Décision (μ pouvant être remplacé par p pour le produit A). Les quantités p_{lim}^+ , μ_{lim}^+ et δ_{lim}^+ sont ici appelés <u>seuils limites</u>.

- 1. Evaluer (approximativement en fonction de $\gamma_m(\mu)$) les risques d'erreurs de décision de type I (notés $\alpha(\mu)$) et de type II (notés $\beta(\mu)$). Exprimez-les en fonction de $\gamma(\mu)$ ou $\gamma'(\mu)$.
- 2. Quelle est la plus grande valeur possible de la somme des deux risques de type I et II? Peut-on proposer une Règle de Décision permettant de controler simultanément tous les risques d'erreurs I et II? Quel risque sera alors à controler?
- 3. Quelles sont les situations (i.e. valeurs de μ) à envisager pour générer une erreur de décision de type I? Elles seront appelées **Mauvaises situations** en opposition aux **Bonnes situations** qui correspondent aux valeurs de μ pour lesquelles l'assertion d'intérêt est vraie.
- 4. Pour quelle valeur de μ le risque de type I est-il maximal? Quelle est alors la pire des (mauvaises) situations qui permet de controler simultanément tous les risques de type I? Les urnes U^{*}_μ correspondant à cette pire des situations sont-elles uniques?
- 5. Proposer des Règles de Décision associées à un risque maximal de type I, noté α , fixé à (ou n'excédant pas) 5%. Même question pour $\alpha = 1\%$, $\alpha = 10\%$.
- 6. Dans la pire des situations, combien en proportion d'estimations (du paramètre d'intérêt ou du paramètre d'écart standardisé selon le cas étudié) sont plus petit que les seuils limites. Comment peut-on alors définir directement ces seuils limites? En déduire les instructions R permettant de les obtenir.
- 7. Dans le cas où la pire des situations correspond à plusieurs urnes, est-il possible de finaliser une unique Règle de Décision associée à α = 5% basée sur le paramètre d'intérêt? Même question pour la Règle de Décision basée sur le paramètre d'écart standardisé. Quelles conclusions en tirez-vous sur les différentes Règles de Décision proposées précédemment?

Exercice 4 (Rédaction standard et abrégée)

L'industriel est disposé à acheter deux échantillons y^A et y^B pour lesquels il obtient mean(yA)=0.204, mean(yB)=0.172, sd(yB)=0.5610087. Nous proposons les **rédactions standard** des corrections pour les questions :

Est-ce que le produit est rentable au risque maximal de type I fixé à $\alpha = 5\%$?

En vous appuyant sur la construction des outils d'aide à la décision proposés dans les exercices précédents, expliquer les différents ingrédients de ces rédactions standard. Notamment, à quoi correspondent $\mathbf{H_1}$, non $\mathbf{H_1}$ et $\mathbf{H_0}$? Ces rédactions représentent-elles de bons résumés des principales informations relatives aux outils d'aide à la décision pour les produits A et B?

 $R\'{e}daction\ Standard\ pour\ Produit\ A$

Hypothèses de test : \mathbf{H}_0 : $p^A = 15\%$ vs \mathbf{H}_1 : $p^A > 15\%$ Statistique de test sous \mathbf{H}_0 :

$$\widehat{\delta_{p^A,15\%}}\left(\boldsymbol{Y^A}\right) = \frac{\widehat{p^A}\left(\boldsymbol{Y^A}\right) - 15\%}{\sqrt{\frac{15\% \times (1 - 15\%)}{1000}}} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de décision : Accepter \mathbf{H}_1 si $\widehat{\delta_{p^A,15\%}}\left(\mathbf{y^A}\right) > \delta_{lim,5\%}^+$ Conclusion : puisqu'au vu des données,

$$\widehat{\delta_{p^A,15\%}} \left({\pmb{y^A}} \right) \stackrel{\it R}{=} ({\tt mean}({\tt yA}) - {\tt 0.15})/{\tt sqrt}({\tt 0.15}*(1-{\tt 0.15})/{\tt length}({\tt yA})) \simeq 4.78232 \\ > \delta_{lim,5\%}^+ \stackrel{\it R}{=} {\tt qnorm}({\tt 1-.05}) \simeq 1.644854$$

on peut plutôt penser (avec un risque de 5%) que le produit A est rentable.

Rédaction Standard pour Produit B

Hypothèses de test : \mathbf{H}_0 : $\mu^B = 0.15$ vs \mathbf{H}_1 : $\mu^B > 0.15$ Statistique de test sous \mathbf{H}_0 :

$$\widehat{\delta_{\mu^B,0.15}}\left(\boldsymbol{Y^B}\right) = \frac{\widehat{\mu^B}\left(\boldsymbol{Y^B}\right) - 0.15}{\widehat{\sigma_{\widehat{\mu^B}}}\left(\boldsymbol{Y^B}\right)} \overset{approx.}{\leadsto} \mathcal{N}(0,1)$$

Règle de décision : Accepter \mathbf{H}_1 si $\widehat{\delta_{\mu^B,0.15}}\left(\mathbf{y}^B\right) > \delta_{lim,5\%}^+$ Conclusion : puisqu'au vu des données,

$$\widehat{\delta_{\mu^B,0.15}}\left(\boldsymbol{y^B}\right) \stackrel{\text{R}}{=} (\text{mean}(\text{yB}) - \text{0.15})/\text{seMean}(\text{yB}) \simeq 1.24009$$

$$\geqslant \delta_{lim.5\%}^+ \stackrel{\text{R}}{=} \text{qnorm}(\text{1} - .05) \simeq 1.644854$$

on ne peut pas plutôt penser (avec un risque de 5%) que le produit B est rentable. **Rédactions Abrégées :** commenter les rédactions abrégées plus axées sur la pratique :

Rédaction Abrégée pour Produit A

Assertion d'intérêt : $\mathbf{H}_1: p^A > 15\%$

Application numérique : puisqu'au vu des données,

$$\begin{split} \widehat{\delta_{p^A,15\%}}\left(\boldsymbol{y^A}\right) &\stackrel{\text{R}}{=} (\text{mean}(\text{yA}) - \text{0.15})/\text{sqrt}(\text{0.15}*(1-\text{0.15})/\text{length}(\text{yA})) \simeq 4.78232 \\ &> \delta_{lim.5\%}^+ \stackrel{\text{R}}{=} \text{qnorm}(\text{1}-.\text{05}) \simeq 1.644854 \end{split}$$

on peut plutôt penser (avec un risque de 5%) que le produit A est rentable.

Rédaction Abrégée pour Produit B

Assertion d'intérêt : $\mathbf{H}_1 : \mu^B > 0.15$

Application numérique : puisqu'au vu des données,

$$\widehat{\delta_{\mu^B,0.15}}\left(\boldsymbol{y^B}\right) \stackrel{\text{R}}{=} (\text{mean}(\text{yB}) - \text{0.15})/\text{seMean}(\text{yB}) \simeq 1.24009$$

$$\geqslant \delta_{lim.5\%}^{+} \stackrel{\text{R}}{=} \text{qnorm}(\text{1} - .05) \simeq 1.644854$$

on ne peut pas plutôt penser (avec un risque de 5%) que le produit B est rentable.