1. 简介

数据挖掘、机器学习这些字眼,在一些人看来,是门槛很高的东西。诚然,如果做算法实现甚至算法优化,确实需要很多背景知识。但事实是,绝大多数数据挖掘工程师,不需要去做算法层面的东西。他们的精力,集中在特征提取,算法选择和参数调优上。那么,一个可以方便地提供这些功能的工具,便是十分必要的了。而 weka,便是数据挖掘工具中的佼佼者。

Weka 的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),是一款免费的,非商业化的,基于 JAVA 环境下开源的机器学习以及数据挖掘软件。它和它的源代码可在其官方网站下载。有趣的是,该软件的缩写 WEKA 也是 New Zealand 独有的一种鸟名, 而 Weka 的主要开发者同时恰好来自新西兰的 the University of Waikato。(本段摘自百度百科)。

Weka 提供的功能有数据处理,特征选择、分类、回归、聚类、关联规则、可视化等。本文将对 Weka 的使用做一个简单的介绍,并通过简单的示例,使大家了解使用 weka 的流程。本文将仅对图形界面的操作做介绍,不涉及命令行和代码层面的东西。

2. 安装

Weka 的官方地址是 http://www.cs.waikato.ac.nz/ml/weka/ 。点开左侧 download 栏,可以进入下载页面,里面有 windows ,mac os ,linux 等平台下的版本,我们以 windows 系统作为示例。目前稳定的版本是 3.6。 如果本机没有安装 java,可以选择带有 jre 的版本。下载后是一个 exe的可执行文件,双击进行安装即可。 安装完毕,打开启动 weka 的快捷方式,如果可以看到下面的界面,那么恭喜,安装成功了。

图 2.1 weka 启动界面

窗口右侧共有 4个应用,分别是

1) Explorer

用来进行数据实验、 挖掘的环境,它提供了分类,聚类,关联规则,特征选择,数据可视化的功能。(An environment for exploring data with WEKA)

2) Experimentor

用来进行实验,对不同学习方案进行数据测试的环境。 (An environment for performing experiments and conducting statistical tests between learning schemes.)

3) KnowledgeFlow

功能和 Explorer 差不多,不过提供的接口不同,用户可以使用拖拽的方式去建立实验方案。另外,它支持增量学习。(This environment supports essentially the same functions as the Explorer but with a drag-and-drop interface. One advantage is that it supports incremental learning.)

4) SimpleCLI

简单的命令行界面。 (Provides a simple command-line interface that allows direct execution of WEKA commands for operating systems that do not provide their own command line interface.)

3. 数据格式

Weka 支持很多种文件格式,包括 arff、xrff、csv,甚至有 libsvm 的格式。其中, arff 是最常用的格式,我们在 这里仅介绍这一种。

Arff 全称是 Attribute-Relation File Format ,以下是一个 arff 格式的文件的例子。

```
%
    % Arff file example
    %
              'labor-neg-data'
    @relation
               ' duration ' real
    @attribute
    @attribute
               ' wage-increase-first-year ' real
    @attribute
               ' wage-increase-second-year ' real
    @attribute
               ' wage-increase-third-year ' real
    @attribute
                cost-of-living-adjustment ' { ' none ' ,'tcf ' ,'tc ' }
    @attribute
               ' working-hours ' real
                pension ' { ' none ' ,'ret_allw ' ,'empl_contr ' }
    @attribute
    @attribute
                standby-pay 'real
    @attribute
                shift-differential ' real
                education-allowance ' { ' yes ' ,'no ' }
    @attribute
    @attribute
               ' statutory-holidays ' real
               'vacation' { 'below_average', 'average', 'generous'}
    @attribute
               ' longterm-disability-assistance ' { ' yes ' ,'no ' }
    @attribute
               ' contribution-to-dental-plan ' { ' none ' ,'half ' ,'full ' }
    @attribute
    @attribute
                bereavement-assistance' { 'yes', 'no'}
               ' contribution-to-health-plan ' { ' none ' ,'half ' ,'full ' }
    @attribute
    @attribute
               ' class ' { ' bad ' , 'good ' }
    @data
    1,5,?,?,40,?,?,2,?,11,' average ',?,?,' yes ',?, ' good '
    2,4.5,5.8,?,?,35, 'ret_allw ',?,?, 'yes',11, 'below_average',?, 'full ',?, 'full ','good'
    ?,?,?,?,38,' empl_contr ' ,?,5,?,11,' generous ' ,'yes ' ,'half ' ,'yes ' ,'half ' ,'good '
    3,3.7,4,5, 'tc',?,?,?,' yes',?,?,?,' yes',?,' good'
    3,4.5,4.5,5,?,40,?,?,?,12, ' average ' ,?, ' half ' ,'yes ' ,'half ' ,'good '
    2,2,2.5,?,?,35,?,?,6, 'yes',12, 'average',?,?,?,?,' good'
    3,4,5,5, 'tc',?,' empl_contr',?,?,?,12, 'generous','yes','none','yes','half','good'
    3,6.9,4.8,2.3,?,40,?,?,3,?,12, 'below_average ',?,?,?,?,' good '
    2,3,7,?,?,38,?,12,25, ' yes ' ,11, ' below_average ' ,'yes ' ,'half ' ,'yes ' ,?, ' good '
    1,5.7,?,?, ' none ' ,40, ' empl_contr ' ,?,4,?,11, ' generous ' ,'yes ' ,'full ' ,?,?, ' good '
    3,3.5,4,4.6, 'none',36,?,?,3,?,13, 'generous',?,?,' yes', 'full', 'good'
    2,6.4,6.4,?,?,38,?,?,4,?,15,?,?,' full ',?,?,' good '
    2,3.5,4,?, ' none ' ,40,?,?,2, ' no ' ,10, ' below_average ' ,'no ' ,'half ' ,?, ' half ' ,'bad '
    这个例子来自于 weka 安装目录 data 文件下的 labor.arff 文件 ,来源于加拿大劳资谈判的案例 ,它根据工人的个
人信息,来预测劳资谈判的最终结果。
    文件中, "%"开头的是注释。剩余的可以分为两大部分,头信息(
                                                                      header information )和数据信息(
                                                                                                       data
information )
    头信息中, "@relation"开头的行代表关系名称,在整个文件的第一行(除去注释)
                                                                                 。格式是
    @relation <relation-name>
     " @attribute " 开头的代表特征,格式是
    @attribute <attribute-name> <datatype>
    attribute-name 是特征的名称,后面是数据类型,常用数据类型有以下几种
    1) numeric,数字类型,包括 integer(整数)和 real(实数)
    2) nominal,可以认为是枚举类型,即特征值是有限的集合,可以是字符串或数字。
    3) string , 字符串类型 , 值可以是任意的字符串。
    从" @data " 开始 , 是实际的数据部分。每一行代表一个实例 , 可以认为是一个特征向量。各个特征的顺序与
头信息中的 attribute 逐个对应,特征值之间用逗号分割。在有监督分类中,最后一列是标注的结果。
```

某些特征的数值如果是缺失的,可以用" ? "代替。

数据挖掘流程

使用 weka 进行数据挖掘的流程如下图

图 4.1 数据挖掘流程图

其中,在 weka 内进行的是数据预处理,训练,验证这三个步骤。

1)数据预处理

数据预处理包括特征选择,特征值处理(比如归一化) , 样本选择等操作。

2) 训练

训练包括算法选择,参数调整,模型训练。

3)验证

对模型结果进行验证。

本文剩余部分将以这个流程为主线,以分类为示例,介绍使用

weka 进行数据挖掘的步骤。

5. 数据预处理

打开 Explorer 界面,点" open file",在 weka 安装目录下,选择 data 目录里的" labor.arff"文件,将会看到如下界面。我们将整个区域分为 7部分,下面将分别介绍每部分的功能。

图 5.1 Explorer 界面

- 1)区域 1 共 6 个选项卡,用来选择不同的数据挖掘功能面板,从左到右依次是 Preprocess(预处理)、Classify (分类)、Cluster(聚类)、Associate(关联规则)、Select attribute(特征选择)和 Visualize(可视化)。
- 2)区域 2提供了打开、保存,编辑文件的功能。打开文件不仅仅可以直接从本地选择,还可以使用 url 和 db来做数据源。 Generate 按钮提供了数据生成的功能, weka 提供了几种生成数据的方法。点开 Edit,将看到如下界面

图 5.2 arff viewer

在这个界面,可以看到各行各列对应的值,右键每一列的名字,可以看到一些编辑数据的功能,这些功能还是比较实用的。

- 3)区域 3 名为 Filter ,有些人可能会联想到特征选择里面的 Filter 方法,事实上 , Filter 针对特征 (attribute) 和样本 (instance) 提供了大量的操作方法 , 功能十分强大。
 - 4) 在区域 4, 可以看到当前的特征、样本信息, 并提供了特征选择和删除的功能。
 - 5) 在区域 4 用鼠标选择单个特征后,区域 5 将显示该特征的信息。包括最小值、最大值、期望和标准差。
- 6)区域 6提供了可视化功能,选择特征后,该区域将显示特征值在各个区间的分布情况,不同的类别标签以不同的颜色显示。

7)区域 7是状态栏,没有任务时,小鸟是坐着的,任务运行时,小鸟会站起来左右摇摆。如果小鸟站着但不转动,表示任务出了问题。

下面将通过实例介绍 Filters 的各项功能。

点开 Filter 下面的 choose 按钮,可以看到如下界面

图 5.3 filter 方法选择界面

Filters 可分为两大类, supervised 和 unsupervised。supervised 下的方法需要类别标签, 而 unsupervised 则不需要。 attribute 类别表示对特征做筛选, instance 表示对样本做选择。

1) case 1: 特征值归一化

该项功能与类别无关,且是针对 attribute 的,我们选择 unsupervised -> attribute 下面的 Normalize。点开 Normalize 所在的区域,将看到如下界面。左边的窗口,有几个参数可以选择。点击 more,将出现右边的窗口,该窗口详细介绍了此功能。

图 5.4 归一化参数设置界面

使用默认参数,点击 ok,回到主窗口。在区域 4 选好将要归一化的特征,可以是一个或多个,然后点击 apply。在可视化区域中,我们可以看到特征值从 1 到 3 被归一到了 0 到 1 之间。

图5.6 duration特征归一化之后+

2) case 2: 分类器特征筛选

该功能与类别相关,选择 supervised -> attribute 下面的 AttributeSelection。该界面有两个选项, evaluator 是评价特征集合有效性的方法, search 是特征集合搜索的方法。在这里,我们使用 InformationGainAttributeEval 作为 evaluator,使用 Ranker 作为 search,表示我们将根据特征的信息增益值对特征做排序。 Ranker 中可以设置阈值,低于这个阈值的特征将被扔掉。

图 5.7 特征选择参数

点击 apply,可以看到在区域 4里特征被重新排序,低于阈值的已被删掉。

图5.9 特征选择之后4

3) case 3: 选择分类器错分的样本

图 5.10 参数设置

6. 分类

在 Explorer 中,打开 classifer 选项卡,整个界面被分成几个区域。分别是

1) Classifier

点击 choose 按钮,可以选择 weka 提供的分类器。常用的分类器有

- a) bayes下的 Na?ve Bayes(朴素贝叶斯)和 BayesNet(贝叶斯信念网络)。
- b) functions 下的 LibLinear、LibSVM (这两个需要安装扩展包) 、Logistic Regression、Linear Regression。
- c) lazy 下的 IB1 (1-NN)和 IBK (KNN)。

- d) meta 下的很多 boosting 和 bagging 分类器,比如 AdaBoostM1。
- e) trees下的 J48 (weka 版的 C4.5) RandomForest。

2) Test options

评价模型效果的方法,有四个选项。

- a) Use training set:使用训练集,即训练集和测试集使用同一份数据,一般不使用这种方法。
- b) Supplied test set:设置测试集,可以使用本地文件或者 url,测试文件的格式需要跟训练文件格式一致。
- c) Cross-validation : 交叉验证,很常见的验证方法。 N-folds cross-validation 是指,将训练集分为 N 份,使用N-1 份做训练,使用 1 份做测试,如此循环 N 次,最后整体计算结果。
 - d) Percentage split:按照一定比例,将训练集分为两份,一份做训练,一份做测试。 在这些验证方法的下面,有一个 More options 选项,可以设置一些模型输出,模型验证的参数。

3) Result list

这个区域保存分类实验的历史,右键点击记录,可以看到很多选项。常用的有保存或加载模型以及可视化的一 些选项。

4) Classifier output

分类器的输出结果,默认的输出选项有 Run information ,该项给出了特征、样本及模型验证的一些概要信息; Classifier model ,给出的是模型的一些参数 , 不同的分类器给出的信息不同。 最下面是模型验证的结果 , 给出了 一些常用的一些验证标准的结果,比如准确率 (Precision),召回率 (Recall),真阳性率 (True positive rate),假阳性率 (False positive rate),F值(F-Measure),Roc 面积(Roc Area)等。 Confusion Matrix 给出了测试样本的分类情况,通过它,可以很方便地看出正确分类或错误分类的某一类样本的数量。

Case 1: 使用 J48 对 labor 文件做分类

- 1) 打开 labor.arff 文件,切换到 classify 面板。
- 2)选择 trees->J48 分类器,使用默认参数。
- 3) Test options 选择默认的十折交叉验证,点开 More options , 勾选 Output predictions 。
- 4) 点击 start 按钮,启动实验。
- 5) 在右侧的 Classifier output 里面,我们看到了实验的结果。

=== Run information === Scheme:weka.classifiers.trees.J48 -C 0.25 -M 2 labor-neg-data Relation: Instances: 57 Attributes: 17 duration wage-increase-first-year wage-increase-second-year wage-increase-third-year cost-of-living-adjustment working-hours pension shift-differential education-allowance statutory-holidays vacation longterm-disability-assistance contribution-to-dental-plan bereavement-assistance contribution-to-health-plan Test mode: 10-fold cross-validation

图 6.1 Run information

上图给出了实验用的分类器以及具体参数,实验名称,样本数量,特征数量以及所用特征,测试模式。

```
J48 pruned tree

Wage-increase-first-year <= 2.5: bad (15.27/2.27)

Wage-increase-first-year > 2.5

Statutory-holidays <= 10: bad (10.77/4.77)

Statutory-holidays > 10: good (30.96/1.0)

Number of Leaves : 3

Size of the tree : 5
```

图 6.2 模型信息

上图给出了生成的决策树, 以及叶子节点数、 树的节点数、 模型训练时间。 如果觉得这样不直观, 可以在 Result list 里面右键点击刚刚进行的实验,点击 Visualize Tree,可以看到图形界面的决策树,十分直观。

图 6.3 决策树

再往下是预测结果,可以看到每个样本的实际分类,预测分类,是否错分,预测概率这些信息。

```
=== Predictions on test data ===
inste,
         actual, predicted, error, probability distribution
                                           *1
            1:bad
                      2:good
                                      0
                       1:bad
                                     *0.762 0.238
            1:bad
                                      0.082 *0.918
    3
           2:good
                      2:good
    4
           2:good
                       1:bad
                                    *0.762 0.238
    5
           2:good
                      1:bad
                                     *0.762 0.238
    6
           2:good
                      2:good
                                      0
                                            *1
                      1:bad
                                     *0.85
                                            0.15
           1:bad
    2
                                            *1
           1:bad
                      2:good
                                      0
                                            *1
    3
           2:good
                      2:good
           2:good
                      2:good
                                      0.14 *0.86
           2:good
                      1:bad
                                  + *0.85
                                           0.15
           2:good
                      2:good
                                      0.14 *0.86
```

图 6.4 预测结果

最下面是验证结果, 整体的 accuracy 是 73.68%, bad 类准确率是 60.9%, 召回率 70.0%, good 类准确率是 82.4%, 召回率 75.7%。

```
=== Stratified cross-validation ===
=== Summary ===
                                                     73.6842 %
Correctly Classified Instances
                                                     26.3158 %
Incorrectly Classified Instances
                                     15
Kappa statistic
                                     0.4415
Mean absolute error
                                      0.3192
Root mean squared error
                                     0.4669
Relative absolute error
                                     69.7715 %
Root relative squared error
                                     97.7888 %
Total Number of Instances
--- Detailed Accuracy By Class ---
              TP Rate FP Rate Precision Recall F-Measure ROC Area Class
               0.7
                         0.243
                                   0.609 0.7
                                                      0.651
                                                                0.695
                                                                         bad
                0.757
                         0.3
                                   0.824
                                             0.757
                                                      0.789
                                                                0.695
                                                                         good
Weighted Avg.
               0.737
                         0.28
                                   0.748 0.737 0.74
                                                                0.695
--- Confusion Matrix ---
 a b <-- classified as
14 6 | a = bad
 9 28 1 b = good
```

图 6.5 模型效果评估结果

7. 可视化

打开 Explorer 的 Visualize 面板,可以看到最上面是一个二维的图形矩阵, 该矩阵的行和列均为所有的特征 (包括类别标签),第 i 行第 j 列表示特征 i 和特征 j 在二维平面上的分布情况。图形上的每个点表示一个样本,不同的 类别使用不同的颜色标识。

下面有几个选项, PlotSize 可以调整图形的大小, PointSize 可以调整样本点的大小, Jitter 可以调整点之间的距离,有些时候点过于集中,可以通过调整 Jitter 将它们分散开。

图 7.1 plot matrix 二维图

上图是 duration 和 class 两个特征的图形,可以看出, duration 并不是一个好特征,在各个特征值区间, good 和 bad 的分布差不多。

单击某个区域的图形,会弹出另外一个窗口,这个窗口给出的也是某两个特征之间分布的图形,不同的是,在 这里,通过点击样本点,可以弹出样本的详细信息。

可视化还可以用来查看误分的样本,这是非常实用的一个功能。分类结束后,在 Result list 里右键点击分类的记录,选择 Visualize classify errors ,会弹出如下窗口。

图 7.2 误分样本可视化

这个窗口里面,十字表示分类正确的样本, 方块表示分类错误的样本, X 轴为实际类别, Y 轴为预测类别, 蓝色为实际的 bad, 红色为实际的 good。这样,蓝色方块就表示实际为 bad, 但为误分为 good 的样本, 红色方块表示实际为 good, 被误分为 bad 的样本。单击这些点,便可以看到该样本的各个特征值,分析为什么这个样本被误分了。

再介绍一个比较实用的功能,右键点击 Result list 里的记录,选择 Visualize threshold curve ,然后选好类别,可以看到如下图形

图 7.3 阈值曲线

该图给出的是分类置信度在不同阈值下, 分类效果评价标准的对比情况。 上图给出的是假阳性比率和真阳性比率在不同阈值下的对比,其实给出的就是 ROC 曲线。我们可以通过选择颜色,方便地观察不同评价标准的分布情况。 如果 X 轴和 Y 轴选择的是准确率和召回率,那我们可以通过这个图,在这两个值之间做 trade-off,选择一个合适的阈值。

其它的一些可视化功能,不再一一介绍。

8. 小结

本文仅仅针对 weka 的 Explorer 界面的某些功能做了介绍, Explorer 其它的功能,比如聚类、关联规则、特征选择,以及 Experimentor 和 KnowledgeFlow 界面使用,可以参考 weka 的官方文档。

另外, weka 支持扩展包,可以很方便地把 liblinear、libsvm 这样的开源工具放进来。

在 Linux 下面,可以使用 weka 的命令行进行实验,具体的使用方法,也请参考 weka 官方文档。 有这样一款开源、免费、强大的数据挖掘工具,你还在等什么呢?没有用过 行动吧。

weka 的数据挖掘工程师们,赶紧