

Philippe Brouillard ^{1,2}

Perouz Taslakian ³

Alexandre

Sébastien Lachapelle²

Alexandre Drouin¹

ServiceNow Research
Mila & DIRO, Université de Montréal
Samsung Al Center Montreal

servicenow.

SAMSUNG

Can a light bulb change the state of a switch?

Can the temperature of a city alter its altitude?

- As humans, we understand the implausibility of causal relationships between certain types of entities.
- We use prior knowledge to generalize causal relation between similar entities. [Griffiths et al., 2011, Schulz & Gopnik, 2004, Gopnik & Sobel, 2000]
- We believe that this is a key property of intelligent agents.

- As humans, we understand the implausibility of causal relationships between certain types of entities.
- We use prior knowledge to generalize causal relation between similar entities. [Griffiths et al., 2011, Schulz & Gopnik, 2004, Gopnik & Sobel, 2000]
- We believe that this is a key property of intelligent agents.
- Goal: Integrate this "common sense" to causal discovery.

Causal Discovery

Task: learn the structure of G based on observations from P_X .

X	Υ	Z	
1.21 1.50	1.58 1.84 1.07	0.33 0.51 	
0,70	2.07		p(z) p(x z) p(y z)

Markov Equivalence Class

Unfortunately, from observational data, one can only retrieve a set of equivalent DAGs called the Markov Equivalence Class (MEC).

X	Y	Z
1.21 1.50	1.58 1.84	0.33 0.51
0.96	1.07	0.11

Markov Equivalence Class

Unfortunately, from observational data, one can only retrieve a set of equivalent DAGs called the Markov Equivalence Class (MEC).

X	Υ	Z	
1.21 1.50	1.58 1.84	0.33 0.51	
:		:	(x) (y) (x) (y)
0.96	1.07	0.11	

Markov Equivalence Class

Unfortunately, from observational data, one can only retrieve a set of equivalent DAGs called the Markov Equivalence Class (MEC).

Variable types

In our proposed setting, each vertex has an associated type (possibly given by an expert). We call these graphs t-DAGs.

Types are represented by node's color.

Assumption: all edges between a pair of types are oriented in the same direction.

We call t-DAGs that satisfy this condition consistent t-DAGs.

Assumption: all edges between a pair of types are oriented in the same direction.

We call t-DAGs that satisfy this condition consistent t-DAGs.

Assumption: all edges between a pair of types are oriented in the same direction.

We call t-DAGs that satisfy this condition consistent t-DAGs.

Assumption: all edges between a pair of types are oriented in the same direction.

We call t-DAGs that satisfy this condition consistent t-DAGs.

We call the set of edges between a given pair of types a t-edge.

t-MEC: an equivalence class for consistent t-DAGs

With this assumption, the size of the MEC can be greatly reduced by removing t-DAGs that violate type consistency. We call this equivalence class a t-MEC.

Examples: beyond tiered background knowledge

Types given by an expert. More general than tiered background knowledge.

Particularly useful when it is reasonable to assume that entities interact in a directional manner.

Ambiguous tiered background knowledge

Examples: beyond tiered background knowledge

Types given by an expert. More general than tiered background knowledge.

Particularly useful when it is reasonable to assume that entities interact in a directional manner.

Theorem

For a random sequence of t-DAGs with a growing number of vertices but a fixed set of types, the number of unoriented t-edges converges to 0 exponentially fast.

At each step:

add a node with a random type

At each step:

- add a node with a random type
- add edges to the existing nodes following probabilities based on the types

At each step:

- add a node with a random type
- add edges to the existing nodes following probabilities based on the types

Proof sketch

There exists a structure, called a two-type fork, that has to be oriented due to type consistency.

Two-type fork

Proof sketch

There exists a structure, called a two-type fork, that has to be oriented due to type consistency.

Proof sketch

There exists a structure, called a two-type fork, that has to be oriented due to type consistency.

As the graph grows, the probability of observing it converges to 1 and thus all edges of the t-DAG are oriented.

Theorem

For a random sequence of t-DAGs with a growing number of vertices but a fixed set of types, the number of unoriented t-edges converges to 0 exponentially fast.

Theorem

For a random sequence of t-DAGs with a growing number of vertices but a fixed set of types, the number of unoriented t-edges converges to 0 exponentially fast.

For 10 types, we observe this with medium-sized graph (|V| > 60).

Corollary

If there are no edge between variables of the same type, then the size of the t-MEC converges to 1 exponentially fast.

The size of the t-MEC converges to 1 for medium-sized graphs.

Corollary

If there are no edge between variables of the same type, then the size of the t-MEC converges to 1 exponentially fast.

The size of the t-MEC converges to 1 for medium-sized graphs.

Open question

When intra-type edges are allowed, we observed that the ratio |t-MEC| / |MEC| seems to converge to a value that depends on the density of such edges.

Causal discovery algorithms for t-DAGs

- Since |t-MEC| < |MEC|, we want algorithms that are consistent to it, i.e. will recover the equivalence class in the population case.</p>
- PC [Spirtes et al., 2000] is consistent w.r.t. the MEC.
- We propose three extensions of PC that are t-MEC-consistent.

PC

1. Infer skeleton

Could we apply t-Propagation to the output of PC?

Could we apply t-Propagation to the output of PC?

→ With finite sample size, it may lead to inconsistent t-DAGs!

Could we apply t-Propagation to the output of PC?

With finite sample size, it may lead to inconsistent t-DAGs!

TPC-majority:

Orient t-edges based on the most frequent orientation in v-structures and two-typed forks

Typed methods improve over PC (simulated data)

Improvement in SHD over PC (lower is better) on 20-node graphs.

Typed methods improve over PC (simulated data)

Improvement in SHD over PC (lower is better) on 20-node graphs.

Typed methods improve over PC (pseudo-real data)

We artificially partition data sets from the Bayesian Network Repository into types.

Conclusion

- This work shows that our typing assumptions can help reduce the size of equivalence classes and thus improve identification in causal discovery.
- Typing assumptions are likely to be a key component of causal reasoning in intelligent agents.
- Lead to several interesting future directions of research.

Future directions: multi-task causal discovery

Multi-task causal discovery: Can we deal with multiple environments where types overlap?

Future directions: relaxing our assumptions

Latent confounders: what can we gain? Can we adapt FCI [Spirtes et al., 1995].

Future directions: relaxing our assumptions

Soft type-consistency: direction of edges between pairs of type is probabilistic.

Future directions: learning the types

Can we learn the types and the graph simultaneously from metadata?

Thank you!

Philippe Brouillard ^{1,2}

Perouz Taslakian ³

Alexandre Lacoste ¹

Sébastien Lachapelle²

Alexandre Drouin¹

Come to our **poster** to learn more about:

- our assumptions based on variable types,
- the theoretical results.
- algorithms to incorporate these assumptions in causal discovery.

References

Gopnik, A. & Sobel, D. M. (2000).

Detecting blickets: How young children use information about novel causal powers in categorization and induction. Child development. 71(5), 1205–1222.

Griffiths, T. L., Sobel, D. M., Tenenbaum, J. B., & Gopnik, A. (2011).

Bayes and blickets: Effects of knowledge on causal induction in children and adults.

Cognitive Science, 35(8), 1407-1455.

Schulz, L. E. & Gopnik, A. (2004).

Causal learning across domains.

Developmental psychology, 40(2), 162.

Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. (2000).

Causation, prediction, and search.

MIT press.

Spirtes, P. L., Meek, C., & Richardson, T. S. (1995).

Causal inference in the presence of latent variables and selection bias.

arXiv preprint arXiv:1302.4983.