CALCULATING A SKEW-NORMAL APPROXIMATION

Although easier with a computer program, calculating estimates for μ , σ , and λ by hand is perfectly possible.

By far the biggest battle is λ .

By far the biggest battle is λ .

By far the biggest battle is λ .

$$\left(\frac{1+\lambda^2}{\lambda^2} - \frac{2}{\pi}\right)^3 \left(\frac{\pi^3}{2(4-\pi)^2}\right) = \frac{np(1-p)}{(1-2p)^2} \tag{1}$$

By far the biggest battle is λ .

$$\underbrace{\left(\frac{1+\lambda^{2}}{\lambda^{2}}-\frac{2}{\pi}\right)^{3}\left(\frac{\pi^{3}}{2(4-\pi)^{2}}\right)}_{f(\lambda)} = \frac{np(1-p)}{(1-2p)^{2}} \tag{1}$$

By far the biggest battle is λ .

$$\underbrace{\left(\frac{1+\lambda^2}{\lambda^2} - \frac{2}{\pi}\right)^3 \left(\frac{\pi^3}{2(4-\pi)^2}\right)}_{f(\lambda)} = \underbrace{\frac{np(1-p)}{(1-2p)^2}}_{k_{n,p}} \tag{1}$$

By far the biggest battle is λ .

We'll use a simplified version of equation (??):

$$\underbrace{\left(\frac{1+\lambda^2}{\lambda^2} - \frac{2}{\pi}\right)^3 \left(\frac{\pi^3}{2(4-\pi)^2}\right)}_{f(\lambda)} = \underbrace{\frac{np(1-p)}{(1-2p)^2}}_{k_{n,p}} \tag{1}$$

The closed form solution to (1) is pretty hideous, so we'll take a numerical approach.

CALCULATING A SKEW-NORMAL APPROXIMATION: FINDING λ

By far the biggest battle is λ .

We'll use a simplified version of equation (??):

$$\underbrace{\left(\frac{1+\lambda^2}{\lambda^2} - \frac{2}{\pi}\right)^3 \left(\frac{\pi^3}{2(4-\pi)^2}\right)}_{f(\lambda)} = \underbrace{\frac{np(1-p)}{(1-2p)^2}}_{k_{n,p}} \tag{1}$$

The closed form solution to (1) is pretty hideous, so we'll take a numerical approach.

Our goal is to find λ such that $f(\lambda)$ is within a certain margin of error (e) of $k_{n,p}$.

Recall that the sign of λ is determined independently of the value.

Recall that the sign of λ is determined independently of the value.

It is possible to show, by taking its derivative, that f is monotonically decreasing for positive λ .

CALCULATING A SKEW-NORMAL APPROXIMATION: FINDING λ

Recall that the sign of λ is determined independently of the value.

It is possible to show, by taking its derivative, that f is monotonically decreasing for positive λ .

This convenient fact allows us to find lower and upper bounds for λ and repeatedly bisect our interval until we are within e of $k_{n,p}$.

For this demonstration, we will take n = 25 and p = 0.1.

For this demonstration, we will take n = 25 and p = 0.1.

Since we're doing this by hand, we'll take our error margin *e* to be a modest 0.1.

Step 1: Find $k_{n,p}$.

Step 1: Find $k_{n,p}$.

Our value:
$$k_{n,p} = \frac{25 \cdot 0.1 \cdot 0.9}{(1 - 2 \cdot 0.1)^2} = 3.5156.$$

Step 1: Find $k_{n,p}$.

Our value:
$$k_{n,p} = \frac{25 \cdot 0.1 \cdot 0.9}{(1 - 2 \cdot 0.1)^2} = 3.5156.$$

Step 2: Find a and b such that $f(a) > k_{n,p} > f(b)$.

Step 1: Find $k_{n,p}$.

Our value:
$$k_{n,p} = \frac{25 \cdot 0.1 \cdot 0.9}{(1 - 2 \cdot 0.1)^2} = 3.5156.$$

Step 2: Find a and b such that $f(a) > k_{n,p} > f(b)$.

Our values: a = 1, b = 3.

Step 3: Repeatedly bisect (a, b) until f(c) is within e of $k_{n,p}$.

Step 3: Repeatedly bisect (a, b) until f(c) is within e of $k_{n,p}$.

Calculate
$$c = \frac{a+b}{2}$$
.

Step 3: Repeatedly bisect (a, b) until f(c) is within e of $k_{n,p}$.

Calculate
$$c = \frac{a+b}{2}$$
.

▶ If $f(c) \le k_{n,p} - 0.01$, we need a small value of c, so we take our new interval to be (a, c).

Step 3: Repeatedly bisect (a, b) until f(c) is within e of $k_{n,p}$.

Calculate
$$c = \frac{a+b}{2}$$
.

- ▶ If $f(c) \le k_{n,p} 0.01$, we need a small value of c, so we take our new interval to be (a, c).
- ▶ If $f(c) \ge k_{n,p} + 0.01$, we need a larger value of c, so we take our new interval to be (c, b).

Step 3: Repeatedly bisect (a, b) until f(c) is within e of $k_{n,p}$.

Calculate
$$c = \frac{a+b}{2}$$
.

- ▶ If $f(c) \le k_{n,p} 0.01$, we need a small value of c, so we take our new interval to be (a, c).
- ▶ If $f(c) \ge k_{n,p} + 0.01$, we need a larger value of c, so we take our new interval to be (c, b).

Repeat this step until f(c) is within e of $k_{n,p}$, or more precisely $k_{n,p} - 0.01 < f(c) < k_{n,p} + 0.01$.

(Step 3)

The following table shows our iterations:

Iteration a b c f(c) $f(c) \le k_{n,p} - 0.01$ $f(c) \ge k_{n,p} + 0.01$

(Step 3)

Iteration	а	b	С	f(c)	$f(c) \leq k_{n,p} - 0.01$	$f(c) \geq k_{n,p} + 0.01$
1	2.00	3.000	2.5000	3.0164	True	False

(Step 3)

Iteration	а	b	С	f(c)	$f(c) \leq k_{n,p} - 0.01$	$f(c) \geq k_{n,p} + 0.01$
1	2.00	3.000	2.5000	3.0164	True	False
2	2.00	2.500	2.2500	3.7129	False	True

(Step 3)

Iteration	а	b	С	f(c)	$f(c) \leq k_{n,p} - 0.01$	$f(c) \geq k_{n,p} + 0.01$
1	2.00	3.000	2.5000	3.0164	True	False
2	2.00	2.500	2.2500	3.7129	False	True
3	2.25	2.500	2.3750	3.3252	True	False

(Step 3)

Iteration	а	b	С	f(c)	$f(c) \leq k_{n,p} - 0.01$	$f(c) \geq k_{n,p} + 0.01$
1	2.00	3.000	2.5000	3.0164	True	False
2	2.00	2.500	2.2500	3.7129	False	True
3	2.25	2.500	2.3750	3.3252	True	False
4	2.25	2.375	2.3125	3.5076	False	False

CALCULATING A SKEW-NORMAL APPROXIMATION: FINDING λ

(Step 3)

The following table shows our iterations:

Iteration	а	b	С	f(c)	$f(c) \leq k_{n,p} - 0.01$	$f(c) \geq k_{n,p} + 0.01$
1	2.00	3.000	2.5000	3.0164	True	False
2	2.00	2.500	2.2500	3.7129	False	True
3	2.25	2.500	2.3750	3.3252	True	False
4	2.25	2.375	2.3125	3.5076	False	False

We take the last value of c: 2.3125.

Step 5: Find the sign of (1 - 2p).

Step 5: Find the sign of (1 - 2p).

Our $p = 0.1 \Rightarrow (1 - 2 \cdot 0.1) = 0.8 \Rightarrow$ positive.

Step 5: Find the sign of (1 - 2p).

Our
$$p = 0.1 \Rightarrow (1 - 2 \cdot 0.1) = 0.8 \Rightarrow$$
 positive.

Step 6: Final answer: {sign of (1 - 2p)} λ

Step 5: Find the sign of (1 - 2p).

Our $p = 0.1 \Rightarrow (1 - 2 \cdot 0.1) = 0.8 \Rightarrow$ positive.

Step 6: Final answer: {sign of (1-2p)} λ

Our final answer: $\lambda = 2.3125$.

Once we have λ , we can easily find σ :

Once we have λ , we can easily find σ :

$$\sigma = \sqrt{\frac{np(1-p)}{1-\frac{2}{\pi}\cdot\frac{\lambda^2}{1+\lambda^2}}} = \sqrt{\frac{25\cdot 0.1\cdot 0.9}{1-\frac{2}{\pi}\cdot\frac{2.3125^2}{1+2.3125^2}}} = 2.2029.$$

And with λ and σ , we can also find μ :

And with λ and σ , we can also find μ :

$$\mu = np - \sigma \cdot \sqrt{\frac{2}{\pi}} \cdot \frac{\lambda}{\sqrt{1 + \lambda^2}}$$

$$= 25 \cdot 0.1 - 2.2029 \cdot \sqrt{\frac{2}{\pi}} \cdot \frac{2.3125}{\sqrt{1 + 2.3125^2}}$$

$$= 0.8867.$$

BIBLIOGRAPHY I

- B. C. Arnold and G. D. Lin. Characterizations of the skew-normal and generalized chi distributions. *Sankhy: The Indian Journal of Statistics*, 66(4):593–606, 2004.
- Adelchi Azzalini. A class of distributions which includes the normal ones. *Scandinavian Journal of Statistics*, 12: 171–178, 1985.
- Adelchi Azzalini. The skew-normal distribution and related multivariate families. *Scandinavian Journal of Statistics*, 32: 159–188, 2005.
- Lee J. Bain and Max Engelhardt. *Introduction to Probability and Mathematical Statistics*. Duxbury, 2nd edition, 1992.
- Ching-Hui Chang, Jyh-Jiuan Lin, Nabendu Pal, and Miao-Chen Chiang. A note on improved approximation of the binomial distribution by the skew-normal distribution. *American Statistical Association*, 62(2):167–170, May 2008.

BIBLIOGRAPHY II

- A. K. Gupta, T. T. Nguyen, and J. A. T. Sanqui. Characterization of the skew-normal distribution. *Annals of the Institute of Statistical Mathematics*, 56:351–360, 2004.
- A. O'Hagan and Tom Leonard. Bayes estimation subject to uncertainty about parameter constraints. *Biometrika*, 63: 201–203, 1976.
- Arthur Pewsey. Problems of inference for azzalini's skew-normal distribution. *Journal of Applied Statistics*, 27(7): 859–870, 2000.
- Martin Schader and Friedrich Schmid. Two rules of thumb for the approximation of the binomial distribution by the normal distribution. *American Statistical Association*, 43(1):23–24, February 1989.