

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (original) A process for the polymerization of at least one aliphatic C₂-20 or aromatic C₄-20 hydrocarbyl mono-or multiolefin in the presence of a catalyst and a boron comprising co-catalyst, characterized in that the catalyst comprises a composition of a metal-organic reagent, a spectator ligand (SH) and optionally at least one equivalent of a hydrocarbylating agent.
2. (original) A process according to claim 1, wherein the metal-organic reagent is represented by ML_jX_p, wherein M is a metal from group 3-11, or the lanthanide series, X a monoanionic ligand bonded to M, L a neutral ligand bonded to M, j representing an integer denoting the number of neutral ligands L and p is the valence of the metal M.
3. (currently amended) Process according to claim 1 or 2, wherein the hydrocarbylating agent comprises a metal or a metalloid chosen from group 1, 2, 11, 12, 13 or 14.
4. (original) A process according to claim 3, wherein the hydrocarbylating agent comprises Li, Mg, Zn, or Al.
5. (original) Process according to claim 4, wherein the hydrocarbylating agent is a C₁-C₂₀ trihydrocarbyl aluminium or aluminoxane.
6. (currently amended) Process according to ~~claim 1-5~~ claim 1, carried out in the presence of a base other than the hydrocarbylating agent.
7. (currently amended) A process according to ~~claim 1-6~~ claim 1, wherein the spectator ligand is an imine ligand, or the HA adduct thereof, wherein HA represents an acid, of which H represents its proton and A its conjugate base.
8. (currently amended) A process according to ~~claim 2-7~~ claim 2, wherein the metal-organic reagent comprises a group 4 metal and a cyclopentadienyl comprising ligand.

9. (currently amended) A process according to ~~claim 1-5~~ claim 1, wherein the spectator ligand is represented by $(HA_1)_q\text{-Zn-(A}_2\text{H})_r$, wherein A_1 and A_2 are monoacidic cyclopentadienyl comprising ligands, with q and r representing an integer denoting the number of C_p ligands with $q+r = 1$ or 2, optionally linked by n parallel bridging groups Z , A_1 , A_2 separately, or bonded via Z together forming a bidentate diacidic spectator ligand.

10. (currently amended) A process according to ~~claim 1-5~~ claim 1, wherein the ligand is a ligand according to the formula $HA_1\text{-Z-D(H)}_b$, in which A_1 is a delocalized η^5 bonding cyclopentadienyl comprising ligand, Z is a moiety comprising boron, or a member of Group 14, and optionally also sulfur or oxygen, said moiety having up to 20 non-hydrogen atoms, and optionally A_1 and Z together form a fused ring system, D is a Lewis basic ligand bonded to Z and M , comprising a group 15 or 16 atom and having up to 20 non-hydrogen atoms, optionally D and Z together form a fused ring system and $b=0$ or 1.

11. (currently amended) A process according to claim 9 ~~or 10~~, wherein the metal is a group 4 or group 5 metal, or a metal selected from the lanthanide series.

12. (currently amended) A process according to ~~claim 1-6~~ claim 1, wherein the ligand, represented by $(Ar\text{-R})_sY(-R\text{-DR}'_n)_q$, with, Y representing an anionic moiety of S bonded to M of the metal-organic compound, R an optional bridging group between the Y moiety and the DR'_n and/or Ar group, D a hetero atom chosen from group 15 or 16, R' an optional substituent, Ar an electron-donating aryl group, n the number of R' groups bonded to D , q and s integers with $q + s \geq 1$.

13. (original) A process according to claim 12, wherein the metal is a group 4 metal with a valency of 3.

14. (currently amended) A process according to ~~claim 1-5~~ claim 1, wherein the ligand is represented by

wherein Z is a bridging group, between two donor atom containing groups (D), D a group comprising a hetero atom chosen from group 15 or 16, and R is a substituent.

15. (original) A process according to claim 14, wherein the metal is a metal from Group 7-11.

16. (currently amended) Polymer obtainable with the process of ~~claims 1-15~~
claim 1.

17. (original) Polymer obtainable with the process of claim 12, wherein Y is an imine group.

18. (original) Polymer obtainable with the process of claim 17, wherein the imine is a ketimide, phosphinimide, guanidine, or iminoimidazoline.

19. (original) Polymer obtainable with the process of claim 12 wherein D is a ketimide, phosphinimide, guanidine, or an iminoimidazoline.