2.4 Exercises

Conceptual

- 1. (a) When the sample size n is extremely large, and the number of predictors p is small, we would generally expect the performance of a flexible statistical learning method to be better than an inflexible method.
 - As the number of observations (n) is large, a flexible model would probably be better at capturing the numerous trends provided by the large amount of data and not overfit since a vast amount of data is available for the model, leading to a better performance overall. Also, the small number of predictors (assuming all are relevant) would also help prevent overfitting since the predictors p are all relevant (irrelevant predictors not affecting the response not considered.)
- (b) When the number of predictors p is extremely large, and the number of observations n is small, we would generally expect the performance of a flexible statistical learning method to be worse than an inflexible method.
 - As the number of observations (n) is small, a flexible model would probably overfit on the small number of training samples leading to a small training error but hight test error (as the resultant model is extremely specific to the small range of training data provided) which is what is of significance since it can be equated to real world/unseen data. Also, in the large number of predictors it is possible some of them do not affect the response but would affect the flexible model to a great extent, causing the model to overfit even more.
- (c) When the relationship between the predictors and response is highly non-linear, we would generally expect the performance of a flexible statistical learning method to be better than an inflexible method.
 - Since the relationship between the predictors and the response is highly non-linear, an inflexible model would not capture the trends well, leading to a high training and test error as opposed to a flexible model which can do a better job capturing the non-linear relationship due to a larger number of tuneable parameters.
- (d) When the variance of the error terms, i.e. $\sigma 2 = \text{Var}(")$, is extremely High, we would generally expect the performance of a flexible statistical learning method to be worse than an inflexible method.
 - Since the flexible model would tend to find patterns based on the errors too (which are inconsequential and should ideally not be considered in the model), the resulting model would tend to be based on the errors too whose high variance would adversely affect the model performance as opposed to the inflexible model which would be relatively unaffected by the high variance error terms.

3. (b) The typical (squared) bias curve representing the error introduced due to bias reduces as the flexibility (which can be represented by degrees of freedom) increases.

Bias can be thought as the error when the model, hypothetically is trained on an infinite amount of data. Higer the model flexibility, the more trends and patterns it can capture from the huge (infinite) source of hypothetical training data resulting in a lower bias.

The variance increases as the flexibility (which can be represented by degrees of freedom) increases.

Variance represents the sensitivity of the model to the training data, i.e. the model changes considerably with a small change in the training data. As the flexibility increases, a small change in the training data affects the model more strongly.

The training error decreases as the flexibility (which can be represented by degrees of freedom) increases.

As the flexibility increases, the model can better capture complex underlying patterns due to the increased number of tuneable parameters which can in turn reduce the error of the model on the training data.

In general, the test error initially decreases as flexibility increases up to a certain point, beyond which an increase in flexibility leads to an increase in test error.

This could be attributed to the fact that in in the initial phase (models with low flexibility) would probably lead to a model that has not captured all trends presented in the training data (underfitting). As the flexibility increases, the model captures more information present in the training data till it reaches the optimal flexibility. Beyond this point, the model overfits on the training data leading it to 'memorize' the training data causing large errors on test (real world/unseen) data (leading to an increase in test error with increase in flexibility.

Bayes (or irreducible) error is not affected by flexibility/ degrees of freedom of the model. Bayes/ irreducible error can be attributed to error while reading an instrument and not considering attributes pertinent to the output variable in the model.

6.

	Parametric statistical learning	Non- parametric statistical learning
	In a parametric statistical learning approach, a parametric /functional form is selected which is used to model 'nature's model' and the problem is essentially reduced to estimating the parameters of the selected functional form.	In a non-parametric statistical learning approach, no explicit assumption is made about the shape/functional form for the model allowing for a greater variety of shapes for the model potentially.
Advantages	Parametric models are generally more interpretable. Hence, when inference is key, parametric approaches might be preferred to provide clarity.	Owing to the variety in forms, non- parametric models can better capture the trends in complex relationships, especially when a large amount of training data is available as compared to parametric models.
Disadvantages	Nature's model may be complicated in many cases and a non-parametric statistical learning approach may provide a better estimate as compared to a simple parametric approach since the parametric models might not capture all trends and information (underfitting) as well as non-parametric models.	Non- parametric models have poor interpretability and are preferred when the key focus is on prediction and interpretability is secondary. They could also follow the noise in the dataset too closely, leading to high test error especially if the error variance is high. Overfitting is another potential issue with non-parametric approaches, especially when the training dataset is small causing the model to 'memorize' and leading to poor test performance.

<u>Applied</u>

8. (a) Refer to Homework#1_Isha_Jain notebook

	8 (a	a)															
-	impor	ding data i t pandas a ge = pd.re	s pd			csv')											
]:		Unnamed: 0	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal	:
	0	Abilene Christian University	Yes	1660	1232	721	23	52	2885	537	7440	3300	450	2200	70	78	
	1	Adelphi University	Yes	2186	1924	512	16	29	2683	1227	12280	6450	750	1500	29	30	
	2	Adrian College	Yes	1428	1097	336	22	50	1036	99	11250	3750	400	1165	53	66	
	3	Agnes Scott College	Yes	417	349	137	60	89	510	63	12960	5450	450	875	92	97	
	4	Alaska Pacific University	Yes	193	146	55	16	44	249	869	7560	4120	800	1500	76	72	
	772	Worcester State College	No	2197	1515	543	4	26	3089	2029	6797	3900	500	1200	60	60	
	773	Xavier University	Yes	1959	1805	695	24	47	2849	1107	11520	4960	600	1250	73	75	
	774	Xavier University of Louisiana	Yes	2097	1915	695	34	61	2793	166	6900	4200	617	781	67	75	
	775	Yale University	Yes	10705	2453	1317	95	99	5217	83	19840	6510	630	2115	96	96	

(b) Refer to Homework#1_Isha_Jain notebook

(c) Refer to Homework#1_Isha_Jain notebook

8 (c)

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal
count	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000
mean	3001.638353	2018.804376	779.972973	27.558559	55.796654	3699.907336	855.298584	10440.669241	4357.526384	549.380952	1340.642214
std	3870.201484	2451.113971	929.176190	17.640364	19.804778	4850.420531	1522.431887	4023.016484	1096.696416	165.105360	677.071454
min	81.000000	72.000000	35.000000	1.000000	9.000000	139.000000	1.000000	2340.000000	1780.000000	96.000000	250.000000
25%	776.000000	604.000000	242.000000	15.000000	41.000000	992.000000	95.000000	7320.000000	3597.000000	470.000000	850.000000
50%	1558.000000	1110.000000	434.000000	23.000000	54.000000	1707.000000	353.000000	9990.000000	4200.000000	500.000000	1200.000000
75%	3624.000000	2424.000000	902.000000	35.000000	69.000000	4005.000000	967.000000	12925.000000	5050.000000	600.000000	1700.000000
max	48094.000000	26330.000000	6392.000000	96.000000	100.000000	31643.000000	21836.000000	21700.000000	8124.000000	2340.000000	6800.000000

(d) Refer to Homework#1 Isha Jain notebook

8 (d)

```
In [6]: small_college_df=college[['Top10perc','Apps', 'Enroll']].copy()
small_college_df.head(5)
```

Out[6]: Top10perc Apps Enroll

Alaska Pacific University

College Abilene Christian University 1660 23 721 **Adelphi University** 16 2186 512 Adrian College 1428 336 22 **Agnes Scott College** 60 417 137

```
In [7]: pd.plotting.scatter_matrix(small_college_df)
```

16

193

55

(e) Refer to Homework#1_Isha_Jain notebook

8 (e)

```
In [10]: college.Private = pd.Series(college.Private, dtype='category')
college.Private.dtype

Out[10]: CategoricalDtype(categories=['No', 'Yes'], ordered=False)

In [11]: #import subplots from matplotlib.pyplot
import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=(6, 6))
college.boxplot('Outstate', by='Private', ax=ax);
```

Boxplot grouped by Private

(f) Referring to Homework#1_Isha_Jain notebook, we see that 78 elite universities are there.

8 (f)

In [13]: college['Elite'].value_counts()

Out[13]: No 699 Yes 78

Name: Elite, dtype: int64

```
In [14]: fig, ax = plt.subplots(figsize=(6, 6))
college.boxplot('Outstate', by='Elite', ax=ax);
```


(g) Refer to Homework#1_Isha_Jain notebook

8 (g)

```
In [15]: fig, ax = plt.subplots(figsize=(5, 5))
    college.hist('Apps', color='green', bins=18, ax=ax);
```


In [17]: fig, ax = plt.subplots(figsize=(5, 5))
college.hist('Enroll', color='green', bins=12, ax=ax);


```
In [19]: fig, ax = plt.subplots(figsize=(5, 5))
college.hist('Top25perc', color='green', bins=14, ax=ax);
```



```
In [21]: fig, ax = plt.subplots(figsize=(5, 5))
    college.hist('P.Undergrad', color='green', bins=10, ax=ax);
```


In [22]: fig, ax = plt.subplots(figsize=(5, 5))
college.hist('Outstate', color='green', bins=20, ax=ax);

---- ----

```
In [23]: fig, ax = plt.subplots(figsize=(5, 5))
college.hist('Room.Board', color='green', bins=20, ax=ax);
```



```
In [24]: fig, ax = plt.subplots(figsize=(5, 5))
         college.hist('Books', color='green', bins=22, ax=ax);
         fig, ax = plt.subplots(figsize=(5, 5))
         college.hist('Terminal', color='green', bins=24, ax=ax);
         fig, ax = plt.subplots(figsize=(5, 5))
         college.hist('Personal', color='green', bins=26, ax=ax);
         fig, ax = plt.subplots(figsize=(5, 5))
         college.hist('PhD', color='green', bins=28, ax=ax);
         fig, ax = plt.subplots(figsize=(5, 5))
         college.hist('S.F.Ratio', color='green', bins=29, ax=ax);
         fig, ax = plt.subplots(figsize=(5, 5))
         college.hist('perc.alumni', color='green', bins=30, ax=ax);
         fig, ax = plt.subplots(figsize=(5, 5))
         college.hist('Expend', color='green', bins=32, ax=ax);
         fig, ax = plt.subplots(figsize=(5, 5))
         college.hist('Grad.Rate', color='green', bins=10, ax=ax);
```


(h)On referring to Homework#1_Isha_Jain notebook, from the correlation matrix we can see that certain attributes such as 'apps' and 'enrolment', 'apps' and 'accept', 'enrol' and 'accept' seem to be highly correlated allowing us to drop certain attributes keeping only one to allow for quicker computation and avoid overfitting.

Also, from the boxplot of outstate students segregated by private/public; we can see that private institutions have a larger range with higher mean indicating a larger quantity of the outstate tuition is received by private institutions. This might be due to the possibility that public institutions provide waivers to instate students causing more in state students to apply to non-private institutions.

From the boxplot of outstate tuition vs the elite label built using the Top10perc attribute, we observe that Elite universities (i.e., those where the proportion of students coming from the

top 10% of their high school classes exceeds 50%) correspond to higher values of outstate tuition.

8 (h) ¶

- 9. (a)We observe that in the Auto dataset, the following attributes are quantitative: mpg, cylinders, displacement, horsepower, weight, acceleration, year and origin. Whereas name is a qualitative variable.
- (b) The range of the quantitative variables are illustrated below:

Range of mpg is 37.6
Range of cylinders is 5
Range of displacement is 387.0
Range of weight is 3527
Range of acceleration is 16.8
Range of year is 12
Range of origin is 2

9 (b)

(c) The mean and standard deviation of each quantitative predictor is illustrated below (rounded to 2 decimal places):

Mean of mpg is 23.45
Standard deviation of mpg is 7.80
Mean of cylinders is 5.47
Standard deviation of cylinders is 1.70
Mean of displacement is 194.41
Standard deviation of displacement is 104.51
Mean of weight is 2977.58
Standard deviation of weight is 848.32
Mean of acceleration is 15.54
Standard deviation of acceleration is 2.76
Mean of year is 75.98
Standard deviation of year is 3.68

9 (c)

Mean of origin is 1.58

Standard deviation of origin is 0.80

(d) The range, mean, and standard deviation of each predictor in the subset of the data that remains on removing the 10th to 85th observation (both, the 10th and 85th observation is excluded from the data) is (rounded to 2 decimal places):

Range of mpg is 35.6

Mean of mpg is 24.40

Standard deviation of mpg is 7.85

Range of cylinders is 5

Mean of cylinders is 5.37

Standard deviation of cylinders is 1.65

Range of displacement is 387.0

Mean of displacement is 187.24

Standard deviation of displacement is 99.52

Range of weight is 3348

Mean of weight is 2935.97

Standard deviation of weight is 810.02

Range of acceleration is 16.3

Mean of acceleration is 15.73

Standard deviation of acceleration is 2.69

Range of year is 12

Mean of year is 77.15

Standard deviation of year is 3.10

Range of origin is 2

Mean of origin is 1.60

Standard deviation of origin is 0.82

9 (d)

```
In [37]: #getting indices to keep (removing 10th to 85th observation where both the 10th and 85th observation are removed from the dataset
               i=0
               j=85
               while i<9:
                  a1.append(i)
                    i=i+1
               while j<392:
                    a2.append(j)
               print(a1,a2)
              #auto_smaller=new_Auto.iloc[a1,a2]
#auto_smaller
               [0, 1, 2, 3, 4, 5, 6, 7, 8] [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 10 7, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
               133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183,
               184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 20
9, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
               235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285,
              286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 31

1, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 36

2, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387,
In [38]: auto smaller1=new Auto.iloc[a1]
                      auto_smaller2=new_Auto.iloc[a2]
                      auto smaller = pd.concat([auto smaller1, auto smaller2], axis=0)
                      auto smaller
 In [39]:
                    for i in ('mpg','cylinders','displacement','weight','acceleration','year','origin'):
                           #arr=auto smaller[i].index.values
                           #print(type(arr))
                           range=np.max(auto smaller[i])-np.min(auto smaller[i])
                           #print(range)
                           #print('Range of', i, 'is', Auto[i].max()-Auto[i].min())
print('Range of', i, 'is', range)
                            #print(type(arr))
```

- (e) From the scatterplots and histograms, we observe the following relationships:
 - Cylinders and origin have discrete integer values.

print('Mean of', i, 'is', mean)
#print('Range of', i, 'is', range)

print('Standard deviation of', i, 'is', std)

mean=np.mean(auto_smaller[i])

std=np.std(auto smaller[i])

#print(mean)

- Mpg is negatively correlated to displacement, horsepower and weight (seemingly exponential)
- Displacements seems to have a positive correlation with horsepower and weight
- Horsepower and weight have a positive linear correlation whereas horsepower and ac celeration are negatively correlated (seemingly exponential)

9 (e)

- (f) From the correlation matrix, we can observe that the strength of correlation of the predict ors with mpg in descending order of the correlation coefficient (absolute value) is (Order in w hich predictors should be considered for a model):
 - Weight (0.83),
 - Displacement (0.8),
 - Cylinders and horsepower (0.78),
 - Year (0.58),
 - Origin (0.56),
 - Acceleration (0.42)

9 (f)

3.7 Exercises

Conceptual

The null hypothesis in table 3.4 corresponds to the various predictors (radio, TB, newspaper) and the intercept not affecting the response (sales/ number of units sold). Can be mathematically represented as H₀: β1 = β2 = β3 = 0.
 We can interpret the p value to quantify the probability of the null hypothesis (intercept and coefficients of the predictors of the multiple regression model to be equal to zero) to be true as that would imply that the predictor has no effect on the response (sales) since it would not affect the response in the equation of multiple linear regression.

From the table, we can see that the value of the coefficient for the newspaper predictor to have a small value close to zero with a p-value larger than 0.05 (i.e., less than 5% chance that the value of the coefficient was just a matter of chance), leading us to infer that there is a good chance that newspaper does not affect sales.

The value of coefficients for the other predictors (radio and tv) and the intercept to have values much larger than that for the newspaper coefficient accompanied by a p-value less than 0.05 allowing us to infer that TV and radio affect sales and also that a non-zero intercept value fits the model.

	: ŷ; = x; È xi'yi' = È xi'yi'
	(A'sh) (2-10) = 0'=1
	× x: × x2
	121 8 (20-10) 3 121
	: y = @i 00 } (xi xi') yi' = } ai'yi'
0.1	(1/21 (\hat{\hat{\hat{\hat{\hat{\hat{\hat{
11901	ai'= xixi'
301	was the house of my 2 all the sular site of the last
	20
	Total continue of the state of the state of the

As per (3.4), $\hat{\beta}_{i} = \hat{\Sigma}'(\chi_{i} - \bar{\chi})(y_{i} - \bar{y}) - 0$
$\hat{\beta}_i = \hat{\Sigma} \left(\chi_i - \bar{\chi} \right) \left(y_i - \bar{y} \right) - \hat{Q}$
$\frac{\hat{z}}{z}(x_i-\bar{x})^2$
ρ̂ο= ȳ-ρ̂, x̄ - ②
when minimizing RSS using the least squares approach
y be the value of the response calculates want me
del Satisfyin (3.3) at 2 (dieser
whom minimizing RSS using the least squares approach y" be the value of the response calculated using the set satisfying 3:37 at \$ (where y" " " " " x + 60 [simple his can regression to]
======================================
E (xi-x)2
E (Ni-XX)
$ \frac{1}{y} = \beta_1 \times + (\overline{y} - \beta_1 \times) - (\overline{z} \times \overline{z}) $
y = B1 x Ty T/2 (3.000)
y = y
ce proved that in the case of somple to work the wort (2)
ce proved that in the case of simple line as regression, least squares line always passes through the point (x,y)

Applied

8. (a) i. From the scatterplot we can observe an inverse relationship between the horsepower and mpg.

ii. The value of the coefficient (representing the slope) of horsepower in the linear model is -0.1578 with a standard error of 0.006 and P>|t| (representing probability of coefficient being zero) =0, allowing us to conclude that a relationship between horsepower and mpg exists (rejecting null hypothesis of no relation between predictor and response)

iii. The relationship between the predictor and the response is negative.

```
In [48]: import numpy as np
          # defining the variables
          #x = Auto['horsepower'].tolist()
         x = pd.DataFrame({'intercept': np.ones(new_Auto.shape[0]),
            'horsepower': new_Auto['horsepower']})
          #x=x.tolist()
          print(x[:5])
         y = new_Auto['mpg']
             intercept horsepower
         0
                   1.0
                             130.0
         1
                   1.0
                             165.0
          2
                   1.0
                             150.0
          3
                   1.0
                             150.0
                   1.0
                             140.0
In [49]: model = sm.OLS(y.astype(float), x.astype(float))
In [50]: results = model.fit()
In [51]:
         summarize(results)
Out[51]:
                       coef std err
                                        t P>|t|
             intercept 39.9359
                             0.717 55.660
                                           0.0
          horsepower -0.1578 0.006 -24.489
                                           0.0
```

iv. The predicted mpg associated with a horsepower of 98 is 24.47 rounded to 2 decimal places.

The associated 95 % confidence interval rounded to 2 decimal places is 23.97 mpg to 24.96 mpg

The associated 95 % prediction interval rounded to 2 decimal places is 14.81 mpg to 34.12 mpg.

8 (a)iv.

```
In [52]: #design = MS(['horsepower'])
         new df = pd.DataFrame({'horsepower':[98]})
         newX=pd.DataFrame({'intercept': np.ones(new_df.sha
           'horsepower': new_df['horsepower']})
         #newX = design.transform(new df)
         newX
Out[52]:
             intercept horsepower
          0
                 1.0
                            98
         new predictions = results.get prediction(newX);
In [53]:
         new predictions.predicted mean
Out[53]: array([24.46707715])
In [54]: new predictions.conf int(alpha=0.05)
Out[54]: array([[23.97307896, 24.96107534]])
In [55]: new predictions.conf int(obs=True, alpha=0.05)
Out[55]: array([[14.80939607, 34.12475823]])
```

(b) Refer to Homework#1 Isha Jain notebook

8 (b)

```
In [56]: def abline(ax, b, m):
           "Add a line with slope m and intercept b to ax"
           xlim = ax.get xlim()
           ylim = [m * xlim[0] + b, m * xlim[1] + b]
           ax.plot(xlim, ylim)
In [57]: def abline(ax, b, m, *args, **kwargs):
           "Add a line with slope m and intercept b to ax"
           xlim = ax.get_xlim()
           ylim = [m * xlim[0] + b, m * xlim[1] + b]
           ax.plot(xlim, ylim, *args, **kwargs)
In [58]: ax = new_Auto.plot.scatter('horsepower', 'mpg')
         abline(ax,
           results.params[0],
           results.params[1],
            'r--',
           linewidth=2)
```

(c) The error plot suggests some non-linearity since there seems to be a trend whereas ideally the residual plot should look somewhat random. From the residual plot we can see that the

residual goes progressively from a higher positive value to a negative value to again a positive value and has somewhat of a parabolic shape.

From the horsepower vs mpg scatterplot, we can see that the plot that is somewhat exponentially reducing is approximated linearly leading to the residual plot obtained.

From the leverage plot we can see that the predictor values at lower indices tend to have a higher leverage (quantifier of influence of the observed predictor on model), i.e. are further away from the other observations leading to an excessive effect on the regression model.

```
8 (c)
In [59]: ax = plt.subplots(figsize=(8,8))[1]
ax.scatter(results.fittedvalues, results.resid)
ax.set_xlabel('Fitted value')
ax.set_ylabel('Residual')
ax.axhline(0, c='k', ls='--');
```



```
In [62]: infl = results.get_influence()
           ax = plt.subplots(figsize=(8,8))[1]
           ax.scatter(np.arange(x.shape[0]), infl.hat_matrix_diag)
           ax.set_xlabel('Index')
ax.set_ylabel('Leverage')
np.argmax(infl.hat_matrix_diag)
 0.030
 0.025
 0.020
0.015
 0.010
 0.005
                     50
           ó
                              100
                                                                                           400
                                        150
                                                             250
                                                                       300
                                                   200
                                                                                  350
                                                 Index
```

9. (a) Refer to Homework#1_Isha_Jain notebook

9 (a)

(b) Refer to Homework#1_Isha_Jain notebook

9 (b)

In [64]:	<pre>new_Auto.corr(method ='pearson')</pre>										
Out[64]:	mpg		cylinders	displacement	horsepower	weight	acceleration	year	origin		
	mpg	1.000000	-0.777618	-0.805127	-0.778427	-0.832244	0.423329	0.580541	0.565209		
	cylinders	-0.777618	1.000000	0.950823	0.842983	0.897527	-0.504683	-0.345647	-0.568932		
	displacement	-0.805127	0.950823	1.000000	0.897257	0.932994	-0.543800	-0.369855	-0.614535		
	horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.416361	-0.455171		
	weight	-0.832244	0.897527	0.932994	0.864538	1.000000	-0.416839	-0.309120	-0.585005		
	acceleration	0.423329	-0.504683	-0.543800	-0.689196	-0.416839	1.000000	0.290316	0.212746		
	year	0.580541	-0.345647	-0.369855	-0.416361	-0.309120	0.290316	1.000000	0.181528		
	origin	0.565209	-0.568932	-0.614535	-0.455171	-0.585005	0.212746	0.181528	1.000000		

- (c)i. From the anova result, all predictors considered in the model (Displacement, weight, year, cylinders, horsepower, acceleration and origin) appear to have a statistically significant relationship to the response since they have Pr>|F| values less than 0.05 implying a probability greater than 95% of a relation between the predictor and response and must hence be considered.
- ii. Displacement, weight, year, cylinders, horsepower, acceleration and origin (all predictors considered in the model) appear to have a statistically significant relationship to the response since they have Pr>|F| values less than 0.05 implying a probability greater than 95% of a relation between the predictor and response (null hypothesis claiming value of coefficient corresponding to the predictor being equal to zero can be rejected).
- iii. The coefficient for the year variable (0.7508) suggests that a unit increase in year would lead to an increase of 0.7508 in mpg (subject to the other predictors being constant).

9 (c)

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.59e+04. This might indicate that there are strong multicollinearity or other numerical problems.

In [138]: anova lm(res) Out[138]: PR(>F) df sum_sq mean_sq 14403.083079 14403.083079 1300.683788 2.319511e-125 cylinders 1.0 displacement 1.0 1073.344025 1073.344025 96.929329 1.530906e-20 horsepower 403.408069 403.408069 36.430140 3.731128e-09 weight 1.0 975.724953 975.724953 88.113748 5.544461e-19 acceleration 0.087242 7.678728e-01 10 0.966071 0.966071 year 1.0 2419.120249 2419.120249 218.460900 1.875281e-39 origin 291.134494 291.134494 26.291171 4.665681e-07 Residual 384.0 11.073470 4252.212530 NaN NaN

(d) The error plot suggests some non-linearity since there seems to be a trend whereas ideally the residual plot should look somewhat random. From the residual plot we can see that the

residual goes progressively from a higher positive value to a negative value to again a positive value and has somewhat of a parabolic shape.

From the leverage plot we can see that 2 predictors at lower indices (between 0 and 50) have a higher leverage (quantifier of influence of the observed predictor on model), i.e. are further away from the other observations leading to an excessive effect on the regression model.

9 (d) In [109]: ax = plt.subplots(figsize=(8,8))[1] ax.scatter(results.fittedvalues, results.resid) ax.set xlabel('Fitted value') ax.set_ylabel('Residual') ax.axhline(0, c='k', ls='--') Out[109]: <matplotlib.lines.Line2D at 0x1d8de6d5370> 10 5 Residual -5 -10

10

5

15

25

20

Fitted value

30

35

0.000

ò

50

100

```
In [110]: infl = results.get influence()
           ax = plt.subplots(figsize=(8,8))[1]
          ax.scatter(np.arange(x.shape[0]), infl.hat_matrix_diag)
          ax.set xlabel('Index')
          ax.set ylabel('Leverage')
          np.argmax(infl.hat_matrix_diag)
Out[110]: 13
  0.175
  0.150
  0.125
  0.100
  0.075
  0.050
  0.025
```

(e) Referring to the interactions created in Homework#1_Isha_Jain notebook, we can conclude:

150

• In the first model created with cylinders, weight and cylinders*weight as the interaction term, the cylinder*weight as the interaction term has a P>|t| value of zero implying statistical significance, however the coefficient of the interaction term is 0.0011 which is relatively small implying a weak relation between the interaction term (cylinder*weight) and the response (mpg).

200

Index

250

300

350

400

• In the second model created with cylinders, weight, acceleration, cylinders *weight, cylinders *acceleration and weight *acceleration, among the interaction terms, only the

cylinder*weight among the interaction term has a P>|t| value less than 0.05, implying statistical significance, however the coefficient of the interaction term is 0.001300 which is relatively small implying a weak relation between the interaction term (cylinder*weight) and the response (mpg). The other 2 interaction terms (cylinders*acceleration and weight*acceleration) have a P>|t| value greater than 0.05 which validates the null hypothesis (no relation between the interaction terms and response-mpg).

• In the third model created with cylinders, weight, acceleration, cylinders*acceleration, weight*acceleration, weight*acceleration*cylinders and cylinder*weight, the weight*acceleration is the only statistically significant interaction erm having a P>|t| value of 0.05, however the coefficient of the interaction term is 0.0012 which is relatively small implying a weak relation between the interaction term (cylinder*weight) and the response (mpg). The other 3 interaction terms (cylinders*acceleration, cylinders*weight and weight*acceleration*cylinders) have a P>|t| value greater than 0.05 which validates the null hypothesis (no relation between the interaction terms and response-mpg).

9 (e) In [78]: X = MS(['cylinders'],'Weight', ('cylinders', 'weight')]).fit_transform(new_Auto) model_interaction1 = sm.OLS(y, X) summarize(model_interaction1.fit()) Out[78]: coef std err intercept 65.3865 3.733 17.514 0.0 cylinders -4.2098 0.724 -5.816 0.0 weight -0.0128 0.001 -9.418 0.0 cylinders:weight 0.0011 0.000 5.226 0.0 ('cylinders', 'weight'),('cylinders', 'acceleration'),('weight', 'acceleration')]).fit_transform(new_Auto) model_interaction2 = sm.OLS(y, X) summarize(model_interaction2.fit()) Out[79]: intercept 63.220400 8.519 7.421 0.000 cylinders -3.937700 1.337 -2.946 0.003 weight -0.015700 0.004 -3.613 0.000 acceleration 0.300000 0.344 0.871 0.384 cylinders:weight 0.001300 0.000 4.821 0.000 cylinders:acceleration -0.040600 0.091 -0.448 0.654 weight:acceleration 0.000085 0.000 0.418 0.676 In [80]: X = MS(['cylinders'],'weight', 'acceleration', ('cylinders', 'weight'),('cylinders', 'acceleration'),('weight', 'ac summarize(model_interaction3.fit()) Out[80]: coef std err intercept 114.1277 27.665 4.125 0.000 cylinders -13.0743 4.910 -2.663 0.008 weight -0.0334 0.010 -3.292 0.001 acceleration -3.0013 1.742 -1.723 0.086 cylinders:weight 0.0043 0.002 2.754 0.006 0.5837 0.335 1.741 0.082 weight:acceleration 0.0012 0.001 1.963 0.050

(f) On referring to Homework#1 Isha Jain notebook:

weight:acceleration:cylinders -0.0002 0.000 -1.933 0.054

- The first model has horsepower and weight as the predictors with mpg as the response. The predictor horsepower is having degree 2. The resulting model has all terms (intercept, horsepower, horsepower**2) being statistically significant. The values of the coefficient are displayed in the notebook.
- The second model the log of horsepower as the predictors with mpg as the response. The resulting model has the predictor {log(horsepower)} being statistically significant. The value of the coefficient is displayed in the notebook.
- The third model has horsepower raised to the power 0.5 as the predictor with mpg as the response. The resulting model has the predictor {square root(horsepower)} being statistically significant The values of the coefficient are displayed in the notebook.
- The fourth model has acceleration and weight as the predictors with mpg as the response. The predictor acceleration is having degree 3. The resulting model has the intercept, displacement and acceleration**2 being statistically significant. The values of the coefficient are displayed in the notebook.

From the Anova, we can see the first non-linear transformation has the lowest ssr(6201.609295) while the fourth model has the lowest df_resid (387). The Pr(>F) value is extremely small (less than 0.05) allowing us to reject the null hypothesis that the added complexity does not affect model performance and conclude that the fourth model is the best among the options.

9 (f)

```
In [83]: X_nonlin1 = MS([poly('horsepower', degree=2),'weight']).fit_transform(new_Auto)
    model_nonlin1 = sm.OLS(y, X_nonlin1)
    results_nonlin1 = model_nonlin.fit()
    summarize(results_nonlin1)
```

Out[83]:

	coef	std err	t	P> t
intercept	36.7952	1.529	24.069	0.0
poly(horsepower, degree=2)[0]	-55.0379	8.402	-6.551	0.0
poly(horsepower, degree=2)[1]	30.2436	4.296	7.040	0.0
weight	-0.0045	0.001	-8.809	0.0

```
In [90]: X_log = np.log(new_Auto['horsepower'].values.reshape(-1,1))
#X_nonlin2 = MS([poly('horsepower', degree=math.log), 'weight']).fit_transform(new_Auto
model_nonlin2 = sm.OLS(y,X_log))
results_nonlin2 = model_nonlin2.fit()
summarize(results_nonlin2)
```

Out[90]: coef std err t P>|t|

x1 9.9574 0.204 48.897 0.0

```
In [91]: x_pow_half = new_Auto.apply(lambda row: row.horsepower**0.5, axis =1 )
    model_nonlin3 = sm.OLS(y,x_pow_half )
    results_nonlin3 = model_nonlin3.fit()
    summarize(results_nonlin3)
```

Out[91]: coef std err t P>|t|

x1 7.1897 0.151 47.474 0.0

In [96]: X_nonlin4 = MS([poly('acceleration', degree=3), 'displacement']).fit_transform(new_Auto)
 model_nonlin4 = sm.OLS(y, X_nonlin4)
 results_nonlin4 = model_nonlin4.fit()
 summarize(results_nonlin4)

Out[96]:

	coef	std err	t	P> t
intercept	36.1916	0.591	61.236	0.000
poly(acceleration, degree=3)[0]	-8.4362	5.519	-1.528	0.127
poly(acceleration, degree=3)[1]	22.2761	4.857	4.586	0.000
poly(acceleration, degree=3)[2]	-1.3544	4.541	-0.298	0.766
displacement	-0.0656	0.003	-23.389	0.000

In [115]: anova_lm(results_nonlin1,results_nonlin2,results_nonlin3,results_nonlin4)

Out[115]:

	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)
0	388.0	6201.609295	0.0	NaN	NaN	NaN
1	391.0	33635.101846	-3.0	-27433.492551	445.735208	NaN
2	391.0	35378.002783	-0.0	-1742.900937	inf	NaN
3	387.0	7939.513134	4.0	27438.489649	334.362300	4.068276e-124