Programação Linear - Dual do Simplex

Considere o seguinte PPL

$$\max z = c^T x \tag{1}$$

$$Ax = b \tag{2}$$

$$x \ge 0 \tag{3}$$

onde $A = [B \ N]$, tal que B^{-1} exista.

- Seja $\overline{x} = (\overline{x}_B, 0)$, onde $\overline{x}_B = B^{-1}b$ é uma solução básica de (1)-(3) e tal que $\overline{u} = c_B B^{-1}$
- Se $\overline{u}^T A \ge c^T$ dizemos que B é uma base dual viável.
- Se $\overline{x}_B = B^{-1}b \ge 0$ dizemos que B é uma base primal viável.
- Se B for primal e dual viável, $\overline{x} = (x_B, 0)$ será uma solução ótima do primal e $\overline{u} = c_B B^{-1}$ é uma solução ótima do dual.

- Suponha que x̄ não esteja associado a uma base B primal viável, isto é, x_B = B⁻¹b ≥ 0.
- O método dual do simplex para resolver o problema (1)-(3) parte de uma base *B* dual viável, encontrar uma nova base dual viável, substituindo uma coluna de *B*. Esse procedimento é repetido até se encontrar uma base primal e dual viável.
- Considere

$$x_k = \overline{x}_k - \sum_{j \in J} y_{kj} x_j \tag{4}$$

onde $\overline{x}_k < 0$, para algum $k \in I$.

• Se $y_{kj} \ge 0$ para todo $j \in J$ em (4) e como $x_j \ge 0$ para todo $j \in J$, x_k nunca poderá ser não negativo, implicando que o problema primal será vazio e o dual ilimitado.

Considere o conjunto

$$L_k = \{j \in J : y_{kj} < 0\} \neq \emptyset$$

- Como $\overline{x}_k < 0$, escolhemos a coluna a_k para deixar a base e tomamos a_p associado ao índice p, tal que $y_{kp} < 0$ para fazer parte da nova base.
- O valor de p será definido por

$$\frac{z_p - c_p}{y_{kp}} = \max_{j \in L_k} \left\{ \frac{z_j - c_j}{y_{kj}} \right\} \tag{5}$$

 Pseudo-código do método para resolver o problema (1)-(3). 1: **INICIO:** Dado uma base B dual viável para o problema 2: **if** $x_B > 0$ **then** PARE /* solução primal viável */ 3: 4: else Escolha um $k \in I$ tal que $\overline{x}_k < 0$. 5. if $L_{\nu} = \emptyset$ then 6. PARE /* PPL é vazio */ 7. 8. else Tome a_p , $p \in J$, tal que $\frac{z_p - c_p}{y_{kp}} = \max_{j \in L_k} \left\{ \frac{z_j - c_j}{y_{kj}} \right\}$ 9: Troque a_k por a_p em B. /* mudança de base */ Retorne a linha 2. end if 10: 11: end if 12: **FIM**

Exemplo (1)

Resolva o PPL a seguir usando o método dual do simplex.

$$\max -4x_1 - 5x_2$$

$$x_1 + 4x_2 \ge 5$$

$$3x_1 + 2x_2 \ge 7$$

$$x_1, x_2 > 0$$