Linear Algebra Exercises

1. Assuming that $B = \begin{bmatrix} 1 & 2 & -3 \\ 3 & 4 & -1 \end{bmatrix}$, $A = \begin{bmatrix} 2 & -5 & 1 \\ 1 & 4 & 5 \\ 2 & -1 & 6 \end{bmatrix}$, $y = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix}$, $z = \begin{bmatrix} -15 \\ -8 \\ -22 \end{bmatrix}$

calculate each of the following:

- (a) BA
- (b) AB^T
- (c) Ay
- (d) y^Tz (This is the inner product, or dot product, of y and z.)
- (e) yz^T (This is the outer product of y and z.)

- 2. Given that $A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$, and $b = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$
 - (a) Find A^{-1} .

Check your answer by computing AA^{-1} .

(Hint: let $B=\begin{bmatrix}a&b\\c&d\end{bmatrix}$ and solve AB=I for a,b,c and d by solving a set of four equations in four unknowns. You would learn better ways to accomplish this in a linear algebra course, but this approach only requires high-school algebra.)

(b) Use A^{-1} to solve Ax = b for x. Check your answer by computing Ax. 3. (No need to include solutions to this question in your Python code.) Given the following matrices:

$$A = \left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right], \, B = \left[\begin{array}{cc} -2 & 0 \\ 0 & 2 \end{array} \right], \, C = \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right], \, D = \left[\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right]$$

Draw and label each of the following:

Ax, Bx, Cx, Dx

