Course introduction 2020

Mitko Veta

Eindhoven University of Technology Department of Biomedical Engineering

2019

Why machine learning?

Historical perspective

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

The course in a nutshell

- Seven topics
 - Six lectures and practicals
 - One self-study topic
- Assessment
 - 65% written exam
 - 25% practicals
 - 10% presentations of self-study topic
 - ▶ 0% mandatory Python self-assessment quiz in the first week
- GitHub repository used for material dissemination
- Canvas used for communication and submissions/grading
- ► Lectures every week (for the first six weeks of the quartile) on Wednesdays, time slots 1 and 2
- Practicals immediately after the lectures, time slots 3 and 4

Topics covered in the course

- ► Machine learning fundamentals I (Mitko Veta)
- Machine learning fundamentals II (Mitko Veta)
- Linear models (Federica Eduati)
- Deep learning I (Mitko Veta)
- Deep learning II (Jelmer Wolterink, UMCU/UvA)
- Support vector machines, random forests (Federica Eduati)
- Unsupervised machine learning (self study topic)

Study materials

- ► Main: lecture slides and practicals
- Books
 - deeplearning
 - elements
- Specific chapters and additional material (such as papers) are referenced in the lecture slides

Practicals

- Distributed as Python notebooks
- Deliverables
 - Python functions and/or classes (.py files) that implement basic functionalities (e.g. a *k*-NN classifier)
 - A single Python notebook that contains the experiments, visualization and answer to the questions and math problems.
- ► The assessment rubric for the practicals can be found in the handouts for week 1
- Use of GitHub is highly recommended
- The essential skills tutorial covers Python and git basics