

FIZIKA KAFEDRASI

Fizika I

2018

MEXANIKA

2 - ma'ruza

K.P. Abduraxmanov, V.S. Xamidov

TÁBIYIY HÁM GUMANITAR PÁNLER KAFEDRASÍ

Fizika I

2020

MEXANIKA

2 – lekciya

Qaraqalpaq tiline awdarmalagan S.G. Kaypnazarov

Lekciya rejesi

- Iymek sızıqlı hárekette tezlik hám tezleniw.
- Aylanbalı háreket kinemetikası.
- Burılıw múyeshi, múyeshlik orın awıstırıw, múyeshlik tezlik, múyeshlik tezleniw, sızıqlı tezlik, normal hám tangencial tezleniwler.
- Teń ólshewli aylanbalı háreket.
- Teń ólshewli tezleniwshi aylanbalı háreket.

lymek sızıqlı háreket

lymek sızıqlı traektoriya boylap háreketlenip atırgan materiallıq noqattıń sızıqlı tezligi hám tezleniwin kórip shıgamız.

AB iymek sızıqlı traektoriyada háreketlenip atırgan materiallıq noqat halatları \overrightarrow{V} radius-vektordın orın awıstırıwı menen belgilenedi. t waqıt momentinde materiallıq noqat $\overrightarrow{F}\overrightarrow{I}(t)$ radius-vektor M halatta boladı, Δt waqıt ótkennen son M1 noqatqa koshedi. Radius-vektor shaması hám bağıtı ozgeredi.

lymek sızıqlı háreket

Ortasha tezlik tómendegishe ańlatıladı:

$$\langle \vec{\upsilon} \rangle = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t}$$

Bul tezlik vektorlıq shama, onın bağıtı MM_1 doğa yaki kesindi bağıtı menen sáykes túsedi.

Ortasha tezliktiń Δt waqıttıń nolge umtılıwında algan shegaralıq mánisi \vec{r} radius – vektordan waqıt boyınsha alıngan tuwındıga teń boladı: $\Delta \vec{r}$

 $\vec{\upsilon} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$

bul jerde $\vec{\upsilon}$ materiallıq noqattıń iymek sızıqlı háreketindegi bir zamatlıq tezligi. Bir zamatlıq tezlik bağıtı háreketlenip atırğan materiallıq noqat trayektoriyasına urınba bağıtta boladı. Bir zamatlıq tezlik $\vec{\upsilon}$ belgilengen t waqıtqa tiyisli M noqatta iymek sızıqqa urınba boladı. Tezleniw bolsa, tezlik vektorınan waqıt boyınsha alınğan tuwındığa teń

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$
 $\vec{a} = \frac{d^2 \vec{r}}{dt^2}$

Aylanbalı háreket kinemetikası

 $d \varphi$ - elementar burılıwlar, $\Delta \varphi$ - psevdovektorlar

Aylanbalı háreketti ańlatiwda R hám φ polyus koordinatalarınan paydalanıw qolaylı. Bul jerde R — radius polyusten materialliq noqatqa shekemgi bolgan aralıq, φ — polyus múyeshi (burılıw múyeshi).

Burılıw müyeshi $\Delta \varphi$

aylanıp atırğan noqattıń basıp ótken △S doğa uzınlığınıń, R radiusqa qatnası menen ólshenetuğın,
 doğa menen radius arasındağı múyeshke teń fizikalıq shama.

$$\Delta \varphi = \frac{\Delta S}{R}$$

$$[\varphi] = [rad]$$

Múyeshlik orın awıstırıw $d \varphi$

moduli burılıw múyeshine teń bolgan,
 bagiti oń burginiń ilgerilemeli háreketi
 bagitina sáykes túsetugin vektorliq shama.

Múyeshlik tezlik

 múyeshten waqıt boyınsha alıngan birinshi tuwındıga teń vektorlıq shama

$$\vec{\omega} = \frac{d\vec{\varphi}}{dt} = \vec{\varphi}$$

$$\left[\omega\right] = \left[\frac{grad}{s}, \frac{rad}{s}, \frac{\pi}{s}\right]$$

Múyeshlik tezleniw

múyeshlik tezlikten waqıt boyınsha alıngan birinshi tuwindiga teń vektorliq shama

$$\vec{\beta} = \frac{d\vec{\omega}}{dt} = \frac{\vec{\omega}}{\vec{\omega}} = \frac{d^2\vec{\varphi}}{dt^2} = \frac{\vec{\omega}}{\vec{\varphi}}$$

$$\left[\beta\right] = \left[\frac{rad}{s^2}\right]$$

Múyeshlik tezleniw

eta vektorliq aylanıw kósheri boylap ω múyeshlik tezlik vektori ósiwi tárepine bağıtlanğan:

- tezleniwshi aylanıwda eta vektor ω vektor bağıtına sáykes túsedi;
- ásteleniwshi aylanıwda múyeshlik tezleniw vektorı ω vektor bağıtına keri bağıtlanğan.

Sızıqlı tezlik

Noqattıń aylanba boylap sızıqlı tezligi müyeshlik tezlik hám traektoriya radiusı menen tómendegi ózara qatnas arqalı baylanısqan

$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{R \cdot \Delta \varphi}{\Delta t} = R \cdot \lim_{\Delta t \to 0} \frac{\Delta \varphi}{\Delta t} = \omega R$$

Aylanba boylap hárekettegi sızıqlı tezlik ańlatpasın tómendegi vektorlıq kóbeyme kórinisinde ańlatıw mumkin:

$$\vec{v} = \left[\vec{\omega}, \vec{R}\right]$$

Sızıqlı tezlik moduli

$$|v| = \omega R \sin \alpha$$

Teń ólshewli aylanbalı háreket

Eger múyeshlik tezlik ω turaqlı bolsa, aylanba boylap háreket teń ólshewli aylanbalı háreket dep ataladı. Bir márte tolıq aylanıwga ketken waqıt T aylanıw dáwiri dep esaplanadı

$$2\pi = \omega \cdot T \Rightarrow T = \frac{2\pi}{\omega}$$

$$\omega = \frac{d\varphi}{dt} = const$$

demek

$$\varphi = \omega \cdot t$$

teń ólshewli aylanbalı hárekette sızıqlı tezlik hám tezleniw bir-birine perpendikulyar boladı.

$$a_n = \frac{v^2}{R} = v\omega = \omega^2 R$$

$$a_\tau = 0$$

Teń ólshewsiz aylanbalı háreket

$$\vec{a} = \vec{a}_{\tau} + \vec{a}_{n}$$

$$\vec{a} = \sqrt{a_{n}^{2} + a_{\tau}^{2}}$$

 \vec{a}_{τ} - tangencial qurawshısı – traektoriyanıń urınbasına bağıtlanğan bolıp tezlik bağıtına sáykes keledi hám tezliktiń muğdar jağınan özgeriwi esabına payda boladı.

a
 _n - normal qurawshısı – traektoriya iymekligi orayına bağıtlanğan bolıp orayğa umtılıwshı tezleniw esaplanadı hám tezliktin bağıtı ozgeriwi esabına payda boladı.

Teń ólshewli tezleniwshi aylanbalı háreket

Múyeshlik tezleniw hám múyeshlik tezlik	$\beta = const$ $\omega = \omega_0 + \beta t$				
Múyeshlik orın awıstırıw	$d\varphi = \omega \cdot dt \Rightarrow \int_{\varphi_0}^{\varphi} d\varphi = \int_{0}^{t} (\omega_0 + \beta t) dt \Rightarrow$				
	$\varphi - \varphi_0 = \int_0^t \omega_0 t dt + \int_0^t \beta t dt = \omega_0 t + \frac{\beta t^2}{2}$				
Normal hám tangencial tezleniwler	$a_n = \frac{v^2}{R} = \frac{\omega^2 R^2}{R} = \omega^2 R;$				
	$a_{\tau} = \frac{dv}{dt} = \frac{d(\omega R)}{dt} = R\frac{d\omega}{dt} = R\beta;$				
Múyeshlik hám sızıqlı shamalardıń ózara	$s = \int_{0}^{t_{2}} v dt = \int_{0}^{t_{2}} \omega R dt = R \int_{0}^{t_{2}} \frac{d\varphi}{dt} = R\varphi$				

baylanıslılığı

Tezleniwdiń tangencial hám normal qurawshıların esapqa algan halda háreketti klassifikaciyalaw

a_{τ}	= (0	a_n	=	0	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		•	rı.			

Tuwrı sızıqlı teń ólshewli háreket

$$a_{\tau} = a = const$$
  $a_n = 0$ 

Tuwrı sızıqlı teń ólshewli tezleniwshi háreket

$$a_{\tau} = f(t)$$
,  $a_n = 0$ 

Ózgermeli tezleniwli tuwrı sızıqlı háreket

$$a_{\tau} = 0$$
,  $a_n = const = \frac{v^2}{R}$ 

Teń ólshewli aylanbalı háreket

$$a_{\tau} = 0$$
,  $a_n = f(t)$ 

Teń ólshewli ózgermeli iymek sızıqlı háreket

$$a_{\tau} = const \quad a_n \neq 0$$

lymek sızıqlı teń ólshewli háreket

$$a_{\tau} = f(t), \quad a_n \neq 0$$

Ózgermeli tezleniwli iymek sızıqlı háreket

#### PAYDALANÍLGAN ÁDEBIYATLAR

- 1. Q.P.Abduraxmanov, V.S.Xamidov, N.A.Axmedova. FIZIKA. Darslik. Toshkent. "Aloqachi nashriyoti". 2018 y. OʻzR OOʻMTV 2017.24.08 dagi "603"-sonli buyrugʻi.
- 2. B.A.Ibragimov, G.Q.Atajanova. "FIZIKA". Oqıwlıq. Tashkent. 2018 j.
- 3. Q.P.Abduraxmanov, O'.Egamov. "FIZIKA". Darslik. Toshkent. O'quv-ta'lim metodika" bosmaxonasi. 2015 y. O'zROO'MTV 2009.26.02. dagi "51"-sonli buyrug'i.
- 4. Douglas C. Giancoli. Physics. Principles with Applicathions. 2004 USA ISBN-13 978-0-321-62592-2.
- 5. Physics for Scientists and Engineers, Raymond A. Serway, John W. Jewett. 9th Edition, 2012.
- 6. "Umumiy Fizika fani boʻyicha taqdimot multimediali ma'ruzalar toʻplami". Elektron oʻquv qoʻllanma. Toshkent. 2012 y. OʻzR OOʻMTV 2012.15.08 dagi "332/1"-sonli buyrugʻi.
- 7. "Fizika-1 kursi boʻyicha taqdimot multimediali ma'ruzalar toʻplami". Elektron oʻquv qoʻllanma. Toshkent. 2019 y. OʻzR OOʻMTV 2019.04.10 dagi "892"-sonli buyrugʻi.





- Interactive Physics Design
   Simulation Technologies
- Dástúr fizikaliq proceslerdi janlı kóriniste súwretlew imkanın berip, onda tezleniw, orın awıstırıw, kúsh hám tezlik vektorlarınıń bağıtların, tezliktiń, tezleniwdiń, kúshtiń hám basqa shamalardıń waqıt boyınsha ózgeriw grafigin súwretlew múmkin.

https://www.design-simulation.com/IP/index.php

 https://phet.colorado.edu/en/simulation/lega cy/rotation



 https://phet.colorado.edu/en/simulation/lega cy/ladybulg-motion-2d



 https://phet.colorado.edu/en/simulation/lega cy/motion-2d



**1.5-másele.** [1]. *Aylanıp atırğan toptıń tezleniwi.* Jiptiń ushına baylanğan 150 g massalı top 0,6 m radiuslı aylanba boylap teń ólshewli súwrette kórsetilgenindey háreketlenbekte. Top sekundına 2 márte aylanadı. Onıń orayğa umtılıwshı tezleniwi qanday?

Jantasıw. Orayga umtılıwshı tezleniw  $a_n = \frac{\sigma^2}{r}$ . Bizge r berilgen hám biz berilgen radius hám jiyilikten toptıń tezligin anıqlawımız múmkin.

Sheshim. Eger top sekundina 2 márte toliq aylansa, ol halda 0,5 s waqıt intervalinda, T dáwirde 1 márte toliq aylanadı. Bunda basıp ótilgen aralıq aylanbanın uzınlığı ge ten, b $2\pi r$ rde r aylanbanın radiusı. Ol halda toptin tezligi tómendegige ten boladı  $v = \frac{2\pi r}{T} = 7,54m/s$ .

Orayga umtılıwshi tezleniw tomendegige ten boladı

$$a_n = \frac{v^2}{r} = 94.7 \text{ m/s}^2$$

- 1.6-másele. [1]. *Tezleniwdiń eki qurawshısı.* Báygi avtomobili garajdan háreketin baslap, 500 m radiuslı aylanba traektoriya boylap háreketlendi hám teń ólshewli tezlesip 35 m/s tezlikke 11 s ta eristi. Tangencial tezleniwdi turaqlı dep oylap, tezlik 15 m/s bolgan waqıt momentinde tangencial hám normal tezleniwdi tabıń.
- Jantasıw. Tangencial tezleniw avtomobil tezliginiń ózgeriwine baylanıslı hám  $a_t = \Delta v/\Delta t$  ańlatpadan tabıladı. Normal tezleniw tezlik vektorı bağıtınıń ózgeriwine baylanıslı hám ańlatpadan  $a_n = v^2/r$  tabıladı.
- Sheshim. 11 sekundlıq waqıt intervalında tangencial tezleniwdi turaqlı dep oylaymız. Onıń mánisi tómendegige teń:

$$a_t = \Delta v/\Delta t = (35-0)/11 = 3.2m/s^2$$
.

v = 15m/s bolganda orayga umtiliwshi tezleniw tómendegige teń boladi:

$$a_n = v^2/r = 15^2/500 = 0.45 m/s^2$$
.