1 Recursions

1.1 Definitions

 S^1, S^2 target and query sequences i_1, j_1, i_2, j_2 interaction boundaries si_1, sj_1, si_2, sj_2 seed boundaries N the maximum interaction length (~ 150) M the enclosed unpaired positions in one loop (~ 15) General energy computation:

$$E(^{i_1,j_1}_{i_2,j_2}) = E^{seed}_h(^{i_1,j_1}_{i_2,j_2}) + ED_1(^{i_1}_{j_1}) + ED_2(^{i_2}_{j_2})$$

Optimization task:

$$\min_{\substack{seed \\ j_2-i_2 \leq N}} \min_{\substack{j_1-i_1 \leq N \\ j_2-i_2 \leq N}} \left(E_h^{seed}(^{i_1,j_1}_{i_2,j_2}) \right)$$

1.2 Initialization

$$\begin{array}{c} \forall E_h^{seed}(^{i_1,j_1}_{i_2,j_2}) = \infty \\ si_1 \leq i_1 \leq j_2 \leq sj_2 \end{array}$$

$$E_h^{seed}(_{si_2,sj_2}^{si_1,sj_1}) = E_{seed}$$

with E_{seed} including E_{init} .

1.3 Recursion 1 $(O(N^4) \text{ space} + \text{time})$

1.4 Recursion 2 $(O(N^2) \text{ space} + O(N^4) \text{ time})$

$$E_h^{seed}(_{i_2,j_2}^{i_1,j_1}) = \begin{cases} \infty \\ : \text{ if } j_1 - i_1 > N \text{ oder } j_2 - i_2 > N \\ \left(E_L(_{i_2}^{i_1}) + E_{seed} + E_R(_{j_2}^{j_1}) \right) \\ : \text{ otherwise.} \end{cases}$$

$$\forall \sum_{\substack{si_1 - N \leq i_1 \leq si_1 \\ si_2 - N \leq i_2 \leq si_2}} E_L(_{i_2}^{i_1}) = \begin{cases} \infty \\ \text{: if no matching base pair} \\ \min_{\substack{l_1 - i_1 - 1 \leq M \\ l_2 - i_2 - 1 \leq M}} \left(E_{loop}(_{i_2, l_2}^{i_1, l_1}) + E_L(_{l_2}^{l_1}) \right) \\ \text{: otherwise.} \end{cases}$$

$$\forall E_{R}(_{j_{2}}^{j_{1}}) = \begin{cases} \infty \\ : \text{ if no matching base pair} \\ \min_{\substack{j_{1}-r_{1}-1 \leq M \\ j_{2}-r_{2}-1 \leq M}} \left(E_{R}(_{r_{2}}^{r_{1}}) + E_{loop}(_{r_{2},j_{2}}^{r_{1},j_{1}}) \right) \\ : \text{ otherwise.} \end{cases}$$

1.5 Recursion 3 $(O(N^2) \text{ space} + O(N^2) \text{ time})$

First find j1 and j2 that minimize right side. Call them j_{1opt} and j_{2opt} .

$$\underset{j1,j2}{\operatorname{arg\,min}} \left(E_{seed} + E_R(s_{j_2,j_2}^{sj_1,j_1}) \right)$$

with E_R defined as in Recursion 2.

Then minimize over entire interaction up to j_{1opt} and j_{2opt} .

$$\forall \underset{si_{1}-N\leq i_{1}\leq j_{2opt}}{\forall E_{h}^{seed}\binom{i_{1},j_{1opt}}{i_{2},j_{2opt}}} = \begin{cases} \infty \\ : \text{ if no matching base pair} \\ \min\limits_{\substack{l_{1}-i_{1}-1\leq M\\l_{2}-i_{2}-1\leq M}} \left(E_{loop}\binom{i_{1},l_{1}}{i_{2},l_{2}}\right) + E_{h}^{seed}\binom{l_{1},j_{1opt}}{l_{2},j_{2opt}}\right) \\ : \text{ otherwise.} \end{cases}$$