

Government of Western Australia School Curriculum and Standards Authority

SOITAMEHTAM

3C\3D

Galculator-free

WACE Examination 2012

Marking Key

Marking keys are an explicit statement about what the examiner expects of candidates when they respond to a question. They are essential to fair assessment because their proper construction underpins reliability and validity.

When examiners design an examination, they develop provisional marking keys that can be reviewed at a marking key ratification meeting and modified as necessary in the light of candidate responses.

MARKING KEY

Section One: Calculator-free (50 Marks)

2

Question 1 (4 marks)

Let
$$f(x) = (x+3)(1-x^2)^5$$
.

The derivative of f(x) can be written in the form $f'(x) = (1-x^2)^4 (ax^2 + bx + c)$. Determine the values of a,b and c.

Solution

$$f'(x) = 1(1-x^2)^5 + (x+3)(5)(1-x^2)^4 (-2x)$$
$$= (1-x^2)^4 [(1-x^2)-10x(x+3)]$$
$$= (1-x^2)^4 (-11x^2 - 30x + 1)$$
$$a = -11, b = -30, c = 1$$

Specific behaviours

- ✓ differentiates into the form u'v+v'u
- \checkmark determines u' and v' correctly
- \checkmark correctly determines the remaining factor once $(1-x^2)^4$ is factorised out
- \checkmark simplifies to obtain values of a,b and c.

MARKING KEY 3C/3D CALCULATOR-FREE CALCULATOR-FREE

Question 2 (5 marks)

A company made 16 motorbikes of three different types.

Each type A motorbike cost \$5000 to make, while each type B motorbike cost \$2000 and each type C cost \$1000. The company spent \$65 000 making the 16 motorbike cost \$2000 and each

The number of type A motorbikes made was three times the total number of type B and C motorbikes.

Let a = n motorbikes,

b = number of type B motorbikes, and c = number of type C motorbikes.

Some of the information above is represented by the two equations:

$$9I = 3 + 42 + n2$$
$$60 = 3 + 42 + n2$$

Write down a third equation which, together with the equations above, is sufficient to determine the values of a,b and c.

Solution

$$\Im \xi + q \xi = (\Im + q) \xi = v$$

Specific behaviours

√ states correct equation

MATHEMATICS 3C/3D CALCULATOR-FREE

MARKING KEY

(b) How many of each type of motorbike were made?

(4 marks)

Solution

Since
$$a = 3(b+c)$$
 and $a+b+c=16$ $a = 12$ and $b+c=4$.

Then
$$60+2b+c=65$$
, so $2b+c=5$.

From
$$b+c=4$$
 and $2b+c=5$ we have $b=1$, and so $c=3$.

Alternatively:

$$a+b+c=16$$
 ...Eq1

$$5a + 2b + c = 65$$
 ...Eq2

$$a - 3b - 3c = 0$$
 ... Eq3

$$3b + 4c = 15$$
 ... $5 \times \text{Eq}1 - \text{Eq}2$

$$4b + 4c = 16$$
 ...Eq1 – Eq3

b=1 ...using last two equations

c = 3 ...back-substitution

a = 12 ...back-substitution

Specific behaviours

- ✓ determines that a = 12 and b + c = 4 using ratio
- ✓ substitutes to find 2b+c=5
- ✓ determines that b=1
- ✓ determines that c = 3

Alternatively:

- ✓ eliminates a variable from one equation correctly
- ✓ eliminates the same variable from another equation correctly
- √ solves for one of the remaining variables
- √ back-substitutes to solve for other variables

MARKING KEY 13 MATHEMATICS 3C/3D CALCULATOR-FREE

Question 8 (6 marks)

A continuous function f(x) is increasing on the interval 0 < x < 3 and decreasing on the interval 3 < x < 6. Some of its values are given in the table below.

х	0	1	2	3	4	5	6
f(x)	5	16	27	32	25	0	- 49

The function $F\left(x\right)$ is defined, for $0 \le x \le 6$, by $F\left(x\right) = \int\limits_{0}^{x} f\left(t\right) dt$.

(a) At which value of x in the interval $0 \le x \le 6$ is F(x) greatest? Justify your answer.

(2 marks)

Solution

x = 5

F(x) can be interpreted as the signed area under the graph of f(x) and to the right of x = 0. So long as f(x) > 0, this area will increase – which is true up until x = 5.

Specific behaviours

√ determines correct value of x

 \checkmark explains in terms of sign of f(x)

(b) At which value of x in the interval $0 \le x \le 6$ is F'(x) greatest? Justify your answer.

(2 marks)

Solution

v - ?

F'(x) = f(x), and the maximum value of f(x) occurs when x = 3.

Specific behaviours

√ determines correct value of x

 \checkmark explains in terms of the maximum value of f(x)

(c) Use the values of f(x) in the table to show that $48 \le F(3) \le 75$. (2 marks)

Solution

The area under the graph of f(x) between x = 0 and x = 3 is bounded by rectangles defined by x = 0, 1, 2, 3 and y = f(0), f(1), f(2), f(3).

The lower bounding rectangles have an area of 5 + 16 + 27 = 48

The upper bounding rectangles have an area of 16 + 27 + 32 = 75

So $48 \le F(3) \le 75$

Specific behaviours

 \checkmark explains that the area corresponding to F(3) is bounded by rectangles.

✓ shows the calculation of the lower and upper bounds determined by the rectangles.

MARKING KEY 5 MATHEMATICS 3C/3D CALCULATOR-FREE

Question 3

Let A, B, C, D, E, F and G be points on the graph of a continuous function f(x). The table below contains information about the sign of f(x), f'(x) and f''(x) at these

9	4	3	а	o o	8	A	Juio 9
Þ	7	ı	0	l-	£-	7 –	x
+	+	+	0	_	0	+	(x)f
+	0	+	+	0	-	ı	(x), f
+	0	_	0	+	+	+	$(x)_{\mathfrak{u}}f$

There are no other points at which f(x) , f'(x) or f''(x) are equal to zero.

(1 mark) (1 mark)

	✓ identifies correct point
Specific behaviours	
	Э
Solution	

(b) Describe the nature of the graph at point F. (2 marks)

s that F is a point of inflection sithat $f(x)$ is horizontal at F				
Specific behaviours				
Horizontal point of inflection				
noituloS				

MATHEMATICS 3C/3D 12 MARKING KEY CALCULATOR-FREE

2) Sketch on the same axes the graph of $y = -a - be^{-cx}$. (3 marks)

 ✓ y-intercept located correctly ✓ x-intercept located correctly ✓ graph has horizontal asymptote in correct location
Specific behaviours
Shown on axes above
Solution

MATHEMATICS 3C/3D CALCULATOR-FREE

MARKING KEY

c) Sketch the function on the axes below.

(4 marks)

6

- ✓ sketches local minimum at C and horizontal point of inflection at F, as per Part (a)
- ✓ sketches x-intercepts at -3 and 0
- ✓ sketches a point of inflection at x = 0
- √ completes graph correctly

Question 4 (7 marks)

Two events A and B have the following properties.

$$P(A \cup B) = 0.8$$

$$P(A \cap B) = 0.3$$

$$P(A) = 0.6$$

(a) Calculate:

(i) P(B). (1 mark)

Solution				
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$. So $P(B) = 0.5$				
Specific behaviours				
✓ determines the value of P(B)				

MARKING KEY 11 MATHEMATICS 3C/3D CALCULATOR-FREE

Question 7 (6 marks)

Part of the graph of $y = a + be^{cx}$, where a, b and c are constants, is shown below.

Which of the constants a, b and c are positive, and which are negative? Justify your answers. (3 marks)

Solution

From the graph of $y=e^x$, this graph has been reflected in the *y*-axis, since it has a horizontal asymptote as $x\to\infty$, rather than as $x\to-\infty$. So c<0.

From the graph of $y=e^x$, this graph has also been reflected in the *x*-axis, since it tends to $-\infty$, rather than ∞ , as $x\to -\infty$. So b<0.

As $x \to \infty$, $y \to a$. From the location of the asymptote, a > 0. So a is positive and b and c are both negative.

Specific behaviours

- \checkmark states sign of a, with justification
- \checkmark states sign of b, with justification
- \checkmark states sign of c, with justification

CALCULATOR-FREE	
COLOR COLLYMATITIVIA	,
MATHEMATICS 3C/3D	<u> </u>

10 MARKING KEY

CALCULATOR-FREE MATHEMATICS 3C/3D

 $.(\mathsf{A} \cap \overline{\mathsf{A}})\mathsf{q} \quad \text{(ii)}$ (z marks)

 $(A \cap A) + E.0 = 2.0$ P(B) = P(A \cap B) + P(A \cap B) (or draw Venn diagram to show this)

Specific behaviours $(A \cap \overline{A}) = 0.0$

(A ∩ A) P Tot sevior √ widentifies that P(B) = P(A \cap B) + P(A \cap B) through equation or diagram

For a third event C, $P(C \mid B) = 0.4$. (q)

MARKING KEY

(1 mark) (i) Calculate P(B \cap C).

Solution

Specific behaviours

 \checkmark determines the value of P(B \cap C)

(3 marks) exclusive, determine the value of $P(A \cup C)$. (ii) If events B and C above are independent, and events A and C are mutually

Solution

Since A and C are mutually exclusive, $P(A \cup C) = P(A) + P(C) = 1$ Since B and C are independent, $P(C) = P(C \mid B) = 0.4$

Specific behaviours

- √ determines the value of P(C)
- √ uses independence and mutual exclusivity in calculations $^{\checkmark}$ determines the value of P(A ∪ C)

Specific behaviours

- ✓ identifies all critical points
- \checkmark specifies the interval x > 0 as a solution

(6 marks) Question 6

(2 marks) Express $\frac{5}{x+x} - \frac{2}{x+x}$ in the form $\frac{ax+b}{(x+x)(x+x)}$, where a and b are constants. (a)

Solution

Specific behaviours

√ simplifies numerator correctly ✓ forms a single fraction with the correct denominator

 $\frac{(z+x)(z+x)}{x\xi} =$

 $\frac{(\zeta+x)(\zeta+x)}{(\zeta+x)\zeta-(\zeta+x)\zeta} = \frac{\zeta+x}{\zeta} - \frac{\zeta+x}{\zeta}$

(4 marks) Using your answer to Part (a) or otherwise, solve the inequality $\frac{5}{x+x} > \frac{2}{x+x}$. (q)

Solution

$$0 < \frac{x\xi}{(x+\lambda)(x+\lambda)}$$
 Critical points at $x = -5, -2, 0$

+	_	+	-	$\frac{x\xi}{(z+x)(z+x)}$
0 < x	0 > x > 2 -	7->x>5-	$\varsigma - > x$	x

$$(\infty,0)\cup(\Delta-,\lambda-)$$
 : Alternative notation: $(\Delta-,\lambda-)$ o $\Delta-\lambda-\lambda-$

v specifies the interval -5 < x > -2 as a solution

√ includes no other interval as a solution

MATHEMATICS 3C/3D CALCULATOR-FREE

MARKING KEY

Question 5 (9 marks)

8

(a) Evaluate
$$\int_{0}^{1} 8x(2x^{2}-1)^{7} dx$$
. (3 marks)

$$\int_{0}^{1} 8x (2x^{2} - 1)^{7} dx = \left[\frac{(2x^{2} - 1)^{8}}{4} \right]_{0}^{1}$$
$$= \frac{1}{4} - \frac{1}{4}$$
$$= 0$$

Specific behaviours

Solution

- ✓ integrates to the form $k(2x^2-1)^8$
- ✓ determines that $k = \frac{1}{4}$
- ✓ evaluates the integral correctly
- (b) If $\frac{dy}{dx} = \frac{2}{x^2} + 4x$, and y = 3 when x = 2, determine the value of y when x = 5. (3 marks)

Solution

$$\frac{dy}{dx} = 2x^{-2} + 4x$$

$$y = -2x^{-1} + 2x^{2} + c = \frac{-2}{x} + 2x^{2} + c$$

$$3 = \frac{-2}{2} + 2(2^{2}) + c$$

$$-4 = c$$

$$y|_{x=5} = \frac{-2}{5} + 2(5^{2}) - 4 = 45\frac{3}{5} = 45.6$$

Specific behaviours

- √ integrates correctly
- ✓ determines the value of the constant of integration
- ✓ evaluates y correctly when x = 5

MARKING KEY 9 MATHEMATICS 3C/3D CALCULATOR-FREE

(c) Evaluate
$$\int_{1}^{2} \frac{d}{dx} \left(\frac{x^3}{x^2 + 1} \right) dx$$
. (3 marks)

Solution $\int_{1}^{2} \frac{d}{dx} \left(\frac{x^{3}}{x^{2} + 1} \right) dx = \left[\frac{x^{3}}{x^{2} + 1} \right]_{1}^{2}$ $= \frac{8}{5} - \frac{1}{2}$ $= \frac{11}{10}$ = 1.1

Specific behaviours

- √ uses the Fundamental Theorem of Calculus
- √ substitutes limits of integration correctly
- √ simplifies correctly