$\mathbf{E1}$

Using

$$C(R \bowtie S) = C(R) + C(S) + C_{\mathsf{HashJoin}}(R \bowtie S) = C(R) + C(S) + |R| + |S|$$

 $\quad \text{and} \quad$

$$C(R \times S) = C(R) + C(S) + C_{CP}(R \times S) = C(R) + C(S) + |R| \cdot |S|$$

we can calculate the following table

Subplan	Costs	Result size
Q	0	90
R	0	15
S	0	60
T	0	50
$Q \times R$	1350	1350
$Q \bowtie S$	150	50
$Q \bowtie T$	140	100
$R \bowtie S$	75	40
$R \bowtie T$	65	40
$S \times T$	3000	3000
$(Q \times R) \bowtie T$	2750	400
$(Q \bowtie S) \bowtie T$	1550	56
$(R \bowtie S) \bowtie T$	165	533
$(Q \times R) \bowtie S$	2760	33
$(Q \bowtie T) \bowtie S$	250	56
$(R \bowtie T) \bowtie S$	165	533
$(R \bowtie T) \bowtie Q$	195	400
$(Q \bowtie T) \bowtie R$	255	33
$(R \bowtie S) \bowtie Q$	205	33
$(S \times T) \bowtie Q$	6090	56
$(Q \bowtie S) \bowtie R$	290	33
$(S \times T) \bowtie R$	6015	533
$((Q \times R) \bowtie T) \bowtie S$	3210	10
$((Q \bowtie S) \bowtie T) \bowtie S$	1666	10
$((R \bowtie T) \bowtie Q) \bowtie S$	366	10
$((Q \bowtie T) \bowtie R) \bowtie S$	348	10
$((R \bowtie S) \bowtie T) \bowtie Q$	788	10
$((R \bowtie T) \bowtie S) \bowtie Q$	788	10
$((S \times T) \bowtie R) \bowtie Q$	6638	10
$((Q \times R) \bowtie S) \bowtie T$	2843	10
$((Q \bowtie S) \bowtie R) \bowtie T$	373	10
$((R \bowtie S) \bowtie Q) \bowtie T$	288	10
$((Q \bowtie T) \bowtie S) \bowtie R$	321	10
$((S \times T) \bowtie Q) \bowtie R$	6161	10

Therefore, the optimal order is $((R \bowtie S) \bowtie Q) \bowtie T$

b)

Figure 1: b)

c) Due to the large intermediate results that are included in the cost of joins, plans that involve a Cartesian product must not be considered.

E2

a) i) **Model 1**.

$$\begin{split} \sigma_{M.i \geq 182}. & -\operatorname{scan}(\mathbf{M}) = 20\ 000 \\ & -\operatorname{index}(\mathbf{M},\ \mathbf{p}) = \log_2(20\ 000) + 57 \cdot 0.01 \cdot 20\ 000 = 11414,287 \\ \sigma_{M.u=45}. & -\operatorname{scan}(\mathbf{M}) = 20\ 000 \end{split}$$

$$\begin{split} &-\operatorname{index}(\mathbf{M},\,\mathbf{p}) = \log_2(20\ 000) + 57 \cdot 0.3 \cdot 20\ 000 = 342014,2877 \\ \sigma_{O.g=56}. &-\operatorname{scan}(\mathbf{M}) = 10\ 000 \\ &-\operatorname{index}(\mathbf{M},\,\mathbf{p}) = \log_2(10\ 000) + 57 \cdot 0.1 \cdot 10\ 000 = 57013,28 \end{split}$$

Therefore, for model 1, $\sigma_{M.i \geq 182}$ should use an index access, and $\sigma_{M.u=45}$ and $\sigma_{O.g=56}$ should use a scan

The updated model tree would look like this:

Model 2.

$$\begin{split} \sigma_{M.i \geq 182}. & -\operatorname{scan}(\mathbf{M}) = 50\ 000 \\ & -\operatorname{index}(\mathbf{M},\, \mathbf{p}) = \log_2(50\ 000) + 57 \cdot 0.04 \cdot 50\ 000 = 114015,609 \\ \sigma_{M.u=45}. & -\operatorname{scan}(\mathbf{M}) = 50\ 000 \\ & -\operatorname{index}(\mathbf{M},\, \mathbf{p}) = \log_2(50\ 000) + 57 \cdot 0.2 \cdot 50\ 000 = 57015,609 \\ \sigma_{O.g=56}. & -\operatorname{scan}(\mathbf{M}) = 200\ 000 \\ & -\operatorname{index}(\mathbf{M},\, \mathbf{p}) = \log_2(200\ 000) + 57 \cdot 0.015 \cdot 200\ 000 = 171017,609 \end{split}$$

Therefore, for model 2, $\sigma_{M.i \ge 182}$ and $\sigma_{M.u=45}$ should use a scan, and $\sigma_{O.g=56}$ should use an index access.

2.

$$\begin{split} index(T,p) & \leq scan(T) \\ \log_2(|T|) + 57 \cdot sel(p) \cdot |T| & \leq |T| \\ & 57 \cdot sel(p) \cdot |T| \leq |T| - \log_2(|T|) \\ & sel(p) \leq \frac{|T| - \log_2(|T|)}{57 \cdot |T|} \\ & sel(p) \leq \frac{|T|}{57 \cdot |T|} - \frac{\log_2(|T|)}{57 \cdot |T|} \\ & sel(p) \leq \frac{1}{57} - \frac{\log_2(|T|)}{57 \cdot |T|} \end{split}$$

An index based access is worth Whenever sel(p) is smaller than $\frac{|T|-\log_2(|T|)}{57\cdot |T|}$. Increasing the size of the table, i.e. T, results in bigger values of sel(p), although it is bounded by $\frac{1}{57}$.

E3

$\mathbf{E4}$

b) If we know that the cost of a subgroup is greater than the smaller total cost, then we could prune the generation of new permutation by removing the one containing these subgroups.

Figure 2: Exercise 3