Prova I (ANN0001/ CCI122-03U)

Prof. Helder G. G. de Lima¹

Nome do(a) aluno	a	:	Data:	12/0	09/	'2017

- Identifique-se em todas as folhas.
- Mantenha o celular e os demais equipamentos eletrônicos desligados durante a prova.
- Justifique cada resposta com cálculos ou argumentos baseados na teoria estudada.
- Resolva apenas os itens de que precisar para somar 10,0 pontos.
- 1. (2,5) Seja $\overline{x} = \frac{33}{20}$.
 - (a) Obtenha a representação de \overline{x} em binário, com 8 algarismos corretos após a vírgula.
 - (b) Quantos desses algarismos (binários) são necessários após a vírgula para representar \overline{x} com erro relativo percentual inferior a 5%?
- 2. (2,5) Em relação ao método da posição falsa:
 - (a) Interprete geometricamente e deduza a fórmula recursiva utilizada a cada iteração.
 - (b) Se $f(x) = -2 + \sqrt[3]{3x}$, quantas iterações são necessárias para obter x_k tal que $|f(x_k)| < 10^{-4}$, partindo do intervalo inicial I = [2, 4]? (utilize 5 algarismos após a vírgula nos cálculos)
- 3. (2,5) A função $f(x) = 2e^x + 3x^3$ possui uma única raiz $\overline{x} \in \mathbb{R}$. Identifique um intervalo que contenha essa raiz, e partindo de uma aproximação inicial neste intervalo, aplique o método de Newton-Raphson para obter um $x_k \approx \overline{x}$ tal que $|f(x_k)| < 10^{-4}$. Ao final, estime o erro relativo percentual cometido. (utilize 5 algarismos após a vírgula nos cálculos)
- **4.** (2,5) Seja $f: \mathbb{R} \to \mathbb{R}$ a função definida por $f(x) = 4e^x + x^3$.
 - (a) Obtenha uma função de iteração φ para f, tal que se $x_0 = -1$ for a aproximação inicial, poderá garantir a convergência do método da **iteração de ponto fixo** para a raiz de f.
 - (b) Obtenha uma aproximação x_k tal que o erro absoluto estimado seja $|x_k x_{k-1}| < 0,05$, usando o item anterior. Indique os valores de x_k , $f(x_k)$ e $|x_k x_{k-1}|$ a cada iteração.
- 5. (2,5) Utilize o método da secante para obter uma raiz de $f(x) = 2\ln(x) 3\ln(x-1)$ com um erro relativo estimado de no máximo 10^{-2} .
- **6.** (2,5) O volume V de líquido em um tanque esférico de raio r está relacionado com a profundidade h do líquido por $V=\frac{\pi h^2(3r-h)}{3}$. Determine h, com erro absoluto menor do que 10^{-2} , dado que r=1 m e V=2 m^3 .

BOA PROVA!

¹ Este é um material de acesso livre distribuído sob os termos da licença Creative Commons Atribuição-CompartilhaIgual 4.0 Internacional

Respostas

1. (Solução) (a) Tem-se:

x	0,65	0,3	0,6	0,2	0,4	0,8	0,6	0,2
$2 \cdot x$	1 ,3	0,6	1 ,2	0,4	0,8	1 ,6	1,2	0,4

Logo,

$$\overline{x} = \frac{33}{20} = (1,65)_{10} = (1,10\overline{1001})_2 \approx (1,10100110)_2.$$

(b) **Solução 1**: Como se pode ver na tabela a seguir, é preciso no mínimo 3 dos algarismos da representação binária de \overline{x} para que o erro seja inferior a 5%:

\mathbf{n}	Binário	Decimal	Erro relativo percentual
0	$(1)_2$	$(1)_{10}$	39,39%
1	$(1,1)_2$	$(1,5)_{10}$	9,09%
2	$(1,10)_2$	$(1,5)_{10}$	9,09%
3	$(1,101)_2$	$(1,625)_{10}$	1,52% < 5%

Solução 2: Já que $\frac{|\overline{x}-1.65|}{|1.65|}$ equivale a $1.5675 < \overline{x} < 1.7325$, basta truncar a soma

$$\overline{x} = 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4} + 0 \times 2^{-5} + 1 \times 2^{-6} + \dots$$

$$= \underbrace{1 + 0.5 + 0 + 0.125}_{=1.625} + 0 + 0 + 0.015625 + \dots$$

assim que a soma parcial estiver no intervalo acima, isto é, na parcela 2^{-3} .

- 2. (Solução) (a) A cada iteração subdivide-se um intervalo fechado que contém a raiz em dois subintervalos, e escolhe-se um deles para uso na próxima iteração. O que muda em relação ao método da bissecção o ponto em que é feita a divisão: em vez de usar sempre o ponto médio dos extremos do intervalo [a, b], é feita uma média ponderada dessas extremidades, levando em conta o valor de f em cada uma. Geometricamente, isso corresponde a ligar os pontos (a, f(a)) e (b, f(b)) por uma reta, e encontrar a interseção desta com o eixo horizontal.
 - (b) Os primeiros termos da sequência $(x_k)_{k=0}^{\infty}$, produzida pelo método da posição falsa são obtidos como segue (com arredondamento no quinto dígito decimal a cada iteração):

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$f(a_k) \cdot f(x_k)$
0	2	4	-0.18288	0.28943	2.77441	0.02658	> 0
1	2	2.77441	-0.18288	0.02658	2.67614	0.00237	> 0
2	2	2.67614	-0.18288	0.00237	2.66749	0.00021	> 0
3	2	2.66749	-0.18288	0.00021	2.66672	0.00001	> 0
4	2	2.66672	-0.18288	0.00001	2.66668	0.00000	= 0

Como $|f(x_4)| = 0.00000 < 10^{-4}$ (ao arredondar na quinta casa decimal), conclui-se que $x_4 = 2.66672$ é uma aproximação da raiz de f com a precisão desejada. Portanto, são necessárias 4 iterações.

3. (Solução) Sendo f contínua, $f(-1) = \frac{2}{e} - 3 \approx -2.3 < 0$ e f(0) = 2 > 0, pode-se concluir que há uma raiz de f no intervalo I = (-1,0). Escolhendo como aproximação inicial da raiz o ponto $x_0 = -1/2$, estas são as iterações do método de Newton-Raphson, com arredondamento no quinto dígito decimal a cada iteração:

k	x_{k-1}	$f(x_{k-1})$	$f'(x_{k-1})$	$\frac{f(x_{k-1})}{f'(x_{k-1})}$	$x_k = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}$
1	-0.50000	0.83806	3.46306	0.242	-0.742
2	-0.74200	-0.27323	5.9074	-0.04625	-0.69575
3	-0.69575	-0.01297	5.35401	-0.00242	-0.69333
4	-0.69333	-0.00005	_	_	-

Assim, a aproximação $x_4 \approx -0.69333$ satisfaz $|f(x_4)| < 10^{-4}$ e estima-se que

$$\varepsilon_{\text{per}} \approx \frac{|x_4 - x_3|}{|x_4|} \times 100\% = \frac{|-0.69333 - (-0.69575)|}{|-0.69333|} \times 100\% = \frac{0.00242}{0.69333} \times 100\% \approx 0.3490\%.$$

4. (Solução) (a) A equação $f(x) = 4e^x + x^3 = 0$ é equivalente a $x = -\sqrt[3]{4e^x} = -\sqrt[3]{4}e^{x/3}$. Definindo $\varphi(x) = -\sqrt[3]{4}e^{x/3}$, tem-se uma função contínua em \mathbb{R} e $|\varphi'(x)| = \frac{\sqrt[3]{4}}{3}e^{x/3}$. Então $|\varphi'(x)| < 1$ equivale a $e^{x/3} < \frac{3}{\sqrt[3]{4}}$, ou ainda, $x < 3\ln\left(\frac{3}{\sqrt[3]{4}}\right) \approx 1.90954$.

Então para qualquer aproximação inicial $x_0 < 1.9$, o método da iteração de ponto fixo com esta função de iteração φ produzirá uma sequência convergente, cujo limite será a raiz de f. Em particular, isso vale para $x_0 = -1$.

(b) Usando a função de iteração escolhida anteriormente, os primeiros termos da sequência $(x_k)_{k=0}^{\infty}$, definida por $x_0 = -1$ e $x_k = -\sqrt[3]{4}e^{(x_{k-1})/3}$ para $k \ge 1$ são os seguintes (arredondados no quinto dígito decimal a cada iteração).

k	x_k	$f(x_k)$	$ x_k - x_{k-1} $
0	-1.000	0,472	_
1	-1,137	-0,187	0,137
$\boxed{2}$	-1,087	0,065	0,05
3	-1,105	-0,024	0,018

Como $|x_3 - x_2| \approx 0.018 < 0.05$, conclui-se que $x_3 = -1.105$ é uma aproximação da raiz de f com a precisão desejada.

5. (Solução) Atribuindo alguns valores para x, obtém-se:

x	2	3	4	5
f(x)	1.4	0.1	-0.5	-0.9

Assim, no intervalo I = [3, 4] deve existir uma raiz de f.

Estas são as primeiras iterações do método da secante com aproximações iniciais $x_{-1} = 3$ e $x_0 = 4$, com arredondamento no quarto dígito decimal a cada iteração:

		-	_		,
k	x_{k-1}	x_k	$x_k - x_{k-1}$	$f(x_k)$	$\frac{ x_k - x_{k-1} }{ x_k }$
-1	_	3.0000	_	0.1178	_
0	3.0000	4.0000	-0.8163	-0.5233	0.2500
1	4.0000	3.1837	-0.0444	-0.0270	0.2564
2	3.1837	3.1393	0.0087	0.0066	0.0141
3	3.1393	3.1480	0.0001	-0.0001	0.0028

Nesta etapa, obtém-se a aproximação $x_3=3.1393,$ com $|x_3-x_2|/|x_3|\approx 0.0028<10^{-2}.$

6. (Solução) Substituindo os valores de r e V, obtém-se a equação $2=\frac{\pi h^2(3-h)}{3}$, que deve ser satisfeita por algum valor $h\in[0,2r]=[0,2]$ (já que a altura nunca é negativa, e nem pode ultrapassar o diâmetro do tanque). Buscar uma solução para essa equação é equivalente a procurar um zero da função

$$f(x) = \frac{\pi x^2(3-x)}{3} - 2 = -\frac{\pi}{3}x^3 + \pi x^2 - 2.$$

Para isso, pode ser utilizado qualquer um dos métodos estudados. Por exemplo, por Newton-Raphson, obtém-se:

k	x_{k-1}	$f(x_{k-1})$	$f'(x_{k-1})$	$\frac{f(x_{k-1})}{f'(x_{k-1})}$	$x_k = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}$
1	1.0000	0.0944	3.1416	0.0300	0.9700
2	0.9700	0.0002	3.1388	0.0001	0.9699

Neste ponto, o erro absoluto é $\varepsilon_{abs} \approx |x_2 - x_1| = 0.0001 < 10^{-2}$.