Global Illumination

- Incident light arrives at x
- Calc outgoing radiance that arrives at the camera

Light Transport – Direct

Light Transport – Indirect

Classify Rendering Algorithms by Light Paths

- Paths
 - Start at a light source, L
 - End at the eye, E
- Two types of surface interactions
 - Pure diffuse, D
 - Pure specular, S
- Regular expressions L(D|S)*E describes all valid light paths

Light Path Examples – Local Illumination

- LE from light to viewer
- LDE from light to diffuse surface to viewer
- LSE light is reflected off a specular surface into the viewer's eyes (only point lights)
- L(D|S)?E light is reflected off either a diffuse surface or a specular surface or directly to the viewer

Light Path Examples – Classic Ray Tracing

- LDSE light is reflected off a diffuse surface onto a specular surface toward the viewer
- LD?S*E recursion of specular reflections optionally starting with a diffuse surface
- Simple light occlusion (hard shadows)

Light Path Examples – Path Tracer

- LSDE light is reflected off a specular surface onto a diffuse surface toward the viewer (caustics)
- LDDE light is reflected off a diffuse surface onto a diffuse surface toward the viewer (color bleeding)
- Complex light occlusion (soft shadows, ambient occlusion)

Global Illumination

The Rendering Equation

Rendering Equation [Kajiya86]

■ Total amount of light emitted from a point x along a particular viewing direction ω_o at wavelength λ and time t

$$L_{
m o}({f x},\,\omega_{
m o},\,\lambda,\,t) \,=\, L_{e}({f x},\,\omega_{
m o},\,\lambda,\,t) \,+\, \int_{\Omega} f_{r}({f x},\,\omega_{
m i},\,\omega_{
m o},\,\lambda,\,t) \, L_{
m i}({f x},\,\omega_{
m i},\,\lambda,\,t) \, (\omega_{
m i}\,\cdot\,{f n}) \,\,{
m d}\,\omega_{
m i}$$

Rendering Equation [Kajiya86]

- Emitted energy
 - Outgoing light
 - Locally emitted light
 - Reflected incoming light
 - Surface reflection (BRDF)
 - Incoming light from direction $oldsymbol{\omega_i}$ (recursion)
 - Attenuation of inward light (Lambert)

$$L_{
m o}(\mathbf{x},\,\omega_{
m o},\,\lambda,\,t) = L_{e}(\mathbf{x},\,\omega_{
m o},\,\lambda,\,t) + \int_{\Omega} f_{r}(\mathbf{x},\,\omega_{
m i},\,\omega_{
m o},\,\lambda,\,t) L_{
m i}(\mathbf{x},\,\omega_{
m i},\,\lambda,\,t) \left(\omega_{
m i}\,\cdot\,\mathbf{n}
ight) {
m d}\,\omega_{
m i}$$

Rendering Equation – Missing Aspects

- Phosphorescence, which occurs when light is absorbed at one moment in time and emitted at a different time
- Fluorescence, where the absorbed and emitted light have different wavelengths

Rendering Equation – Missing Aspects

 Interference, where the wave properties of light are exhibited

 Subsurface scattering, where the spatial locations for incoming and departing light are different

Rendering Equation – Missing Aspects

 Interference, where the wave properties of light are exhibited

 Subsurface scattering, where the spatial locations for incoming and departing light are different

Bidirectional reflectance distribution function

- Describes how light is reflected at an (opaque) surface (physical material)
- Different versions that depend on varying numbers of parameters
 - Incoming light direction ω_i
 - Outgoing light direction ω_o
 - [Surface position x (spatially varying)]
 - Many more optional parameters for scattering, wavelength change, ...

$$L_{
m o}(\mathbf{x},\,\omega_{
m o},\,\lambda,\,t) \,=\, L_{e}(\mathbf{x},\,\omega_{
m o},\,\lambda,\,t) \,+\, \int_{\Omega} \overline{f_{r}(\mathbf{x},\,\omega_{
m i},\,\omega_{
m o},\,\lambda,\,t)} L_{
m i}(\mathbf{x},\,\omega_{
m i},\,\lambda,\,t) \,(\omega_{
m i}\,\cdot\,\mathbf{n}) \;{
m d}\,\omega_{
m i}$$

Measuring BRDFs

- Using real materials
- Often only 4D

BRDF-Models

- Lambertian: perfectly diffuse (matte) surfaces with constant BRDF
- Phong: plastic-like specularity
- Cook–Torrance: specular-microfacet, Fresnel term, self-shadowing
- Ward: specular-microfacet, anisotropic
- Oren–Nayar: diffuse microfacet model

Solving the Rendering Equation – Radiosity

- Finite elements method
 - Recursive energy propagation between elements
- Soft shadows and indirect lighting
- View independent solution
- Only diffuse

Solving the Rendering Equation – Path Tracing

- Monte Carlo method
 - Numerical integration
 - Repeated random sampling
- Sample = follow one ray per pixel

