Supersymmetry (T) - physics761

Degree - M.Sc. in Physics (PO von 2014)

\overline{Module}	Elective Advanced Lectures: Theoretical Physics
Module No.	physics70c

\overline{Course}	Supersymmetry	(T)
Course No.	physics761	

		Teachi	Teaching		
Category	Type	Language hours	\mathbf{CP}	Semester	
Elective	Lecture with exercises	English 3+1	6	WT/ST	

Requirements for Participation: Quantum Field Theory I

Preparation:

Form of Testing and Examination: Individual Oral Examinations

Length of Course: 1 semester

Aims of the Course: Teach the students the basics of supersymmetric field theory and how it can be tested at the LHC.

Contents of the Course: Superfields; Supersymmetric Lagrangians; MSSM; Testing the MSSM at the LHC

Recommended Literature:

Theory and phenomenology of sparticles: An account of four-dimensional N=1 supersymmetry in high energy physics.

M. Drees, (Bonn U.), R. Godbole, (Bangalore, Indian Inst. Sci.), P. Roy, (Tata Inst.). 2004. 555pp.

Hackensack, USA: World Scientific (2004) 555 p.

Weak scale supersymmetry: From superfields to scattering events.

H. Baer, (Florida State U.), X. Tata, (Hawaii U.). 2006. 537pp.

Cambridge, UK: Univ. Pr. (2006) 537 p.