

Электронный журнал, рег. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

Дифференциально-разностные уравнения

КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ ПОДОБИЯ И СТАБИЛИЗАЦИЯ НЕЛИНЕЙНЫХ ДИСКРЕТНЫХ СИСТЕМ УПРАВЛЕНИЯ

И.Е.Зубер

Россия, 198904, Санкт-Петербург, Петродворец, Библиотечная пл., д.2, НИИ математики и механики им. академика В.И.Смирнова Санкт-Петербургского государственного университета, e-mail: ark@gelig.usr.pu.ru

Аннотация.

Для системы $x_{k+1} = A(x_k, k)x_k + b(x_k, k)u_k$, $u_k = s^*(x_k, k)x_k$ определяются условия существования и явный вид преобразований подобия, при которых либо матрица объекта переводится в матрицу Фробениуса, либо и матрица объекта и матрица замкнутой системы переводятся в матрицу Фробениуса. Производится стабилизация преобразованной системы.

1. Введение

Задача стабилизации нелинейных и нестационарных дискретных систем остается одной из самых актуальных задач теории систем управления.

 $^{^{0}}$ Работа выполнена при поддержке РФФИ, проект 99-01-00871

Для решения этой задачи обычно используется тот или иной вид линеаризации рассматриваемой системы. Значительно реже определяется преобразование, приводящее систему к виду, для которого решение задачи стабилизации известно. Предмет предлагаемой статьи составляет определение достаточных условий существования и явный вид преобразований подобия, переводящих рассматриваемую систему в систему, матрица которой имеет вторую каноническую форму (форму Фробениуса). Такие преобразования в дальнейшем будем называть каноническими преобразованиями. Для решения задачи стабилизации будут рассмотрены два рода канонических преобразований подобия: канонические преобразования первого рода переводят матрицу объекта в матрицу Фробениуса, канонические преобразования второго рода переводят матрицу замкнутой системы в матрицу Фробениуса.

Частный вид канонического преобразования первого рода был использован для решения задачи стабилизации нелинейной дискретной системы в работе [1].

В этой работе рассматривалась система

$$x_{k+1} = A(x_k)x_k + b(x_k)u_k$$
 $u_k = s^*(x_k)x_k$.

По заданной, вполне управляемой и равномерно ограниченной паре $(A(x_k),b(x_k))$ и произвольно задаваемому вектору $g=\mathrm{const}$ определялись существования преобразования И явный вид $y_k = T_k(A(x_k), b(x_k), q)x_k$, которое переводит матрицу $A(x_k)$ в матрицу Фробениуса с последней функциональной строкой, неизвестный вектор обратной связи в первый единичный орт, вектор распределения управления в априорно задаваемый вектор q = const. Стабилизация преобразованной системы осуществлялась выбором вектора = const. При этом использовалась оценка верхней границы нормы матрицы преобразованной системы, поэтому полученное стабилизирующее управление далеко от оптимального по критерию минимума затрат. Очевидно, что целесообразно "расцепить" задачи формирования преобразования подобия и задачу стабилизации преобразованной системы.

2. Постановка задачи

Рассматривается нелинейная нестационарная система

$$x_{k+1} = A(x_k, k)x_k + b(x_k, k)u_k \quad x \in \mathbb{R}^n, \ x_0 \in \mathbb{R}^n.$$
 (1)

Задана и равномерно ограничена пара (A_k, b_k) ,

$$A_k = A(x_k, k), \quad b_k = b(x_k, k).$$

Допустимо управление вида

$$u_k = s_k^* x_k, \quad s_k = s(x_k, k).$$
 (2)

Для системы (1), (2) требуется определить достаточные условия существования и явный вид канонических преобразований первого и второго рода. Для преобразованных систем требуется решить задачу стабилизации в целом.

3. Основные результаты

Введем в рассмотрение оператор сдвига в силу системы

$$x_{k+1} = A_k x_k \tag{3}$$

с шага k на шаг k+1, $\mathcal{L}_k = \mathcal{L}_k^{(1)}$. Тогда $\mathcal{L}_k^{(j)} = \mathcal{L}_k(\mathcal{L}_k^{(j-1)})$ переводит в силу системы (3) с шага k на шаг k+j. Очевидно,

$$\mathcal{L}'_k(x_k) = A(x_k, k) x_k.$$

Таким образом, вектору x_k сопоставляется последовательность векторов $z_k^{(j)},$

$$z_k^{(0)} = x_k, z_k^{(1)} = \mathcal{L}_k^{(1)}(x_k) = L_k^{(1)}x_k, L_k^{(1)} = A(x_k, k),$$

 $L_k^{(j)}$ — матрица оператора $\mathcal{L}_k^{(j)}$,

$$z_k^{(j)} = \mathcal{L}_k^{(j-1)}(z_k^{(j-1)}) = L_k^{(j-1)}(z_k^{(j-1)}x_k. \tag{4}$$

Рассмотрим произвольный производящий вектор r_k и сформулируем преобразование

$$y_{k+1} = T_k(A_k, b_k, r_k) x_k, (5)$$

полагая

$$y_k = (y_k^1, \dots, y_k^n)^*$$

$$y_{k+1}^1 = r_k^* x_k, y_{k+1}^2 = r_{k+1}^* L_k^1(z_k^1) x_k, \dots, y_{k+1}^n = r_{k+n-1}^* L_k^{(n-1)}(z_k^{n-1}) x_k.$$
(6)

Теорема 1. Пусть $\det T_k(A_k, b_k, r_k)$ равномерно отделим от нуля при всех $x \in \mathbb{R}^n$, $k = 0, 1, \ldots$, где T_k задано соотношениями (5),(6). Тогда преобразование (5),(6) есть каноническое преобразование первого рода.

Доказательство теоремы 1. Рассмотрим систему (1) после преобразования (5), (6).

$$y_{k+1} = P_k(y_k, k)y_k + \widetilde{b}_k u_k, \ \widetilde{b}_k = T_k b_k.$$

Сравнивая компоненты векторов y_{k+1} и y_k в силу соотношений (6), получаем $y_{k+1}^j = y_k^{j+1}$ j < n-1, откуда следует, что матрица $P_k(y_k, k) = T_k A_k T_{k-1}$ имеет форму Фробениуса с последней функциональной строкой.

Отметим, что если преобразование T_k есть каноническое преобразование первого рода, то и преобразование с матрицей $R_k = T_k^{-1}$ также является каноническим преобразованием первого рода. Рассмотрим частный вид преобразования R_k , полагая

$$y_{k+1} = R_k^{-1}(x_k)x_k, \quad R_k = |b_k, \mathcal{L}_k^{(1)}(b_k), \dots, \mathcal{L}_k^{(n-1)}(b_k).$$
 (7)

Теорема 2. Если $\det R_k$ равномерно отделим от нуля для всех $x \in R^n$, $k = 0, 1, \ldots$, то преобразование (7) приводит матрицу объекта системы (1) в матрицу Фробениуса с последней функциональной строкой, а вектор распределения управления b_k в первый единичный орт.

Доказательство теоремы 2. Рассмотрим тождество $R_k^{-1}R_k = I$, откуда $R_k^{-1}(b_k, \mathcal{L}_k^{(1)}(b) \dots \mathcal{L}_k^{(n-1)}(b_k)) = I$, т.е. $\widetilde{b}_k = R_k^{-1}b_k = e_1$. С учетом определения оператора сдвига в силу (3) для матрицы объекта преобразованной системы имеем $\widetilde{A}_k = R_k^{-1}\mathcal{L}_k^1R_{k-1}$, откуда $\widetilde{A}_k = |e_2, e_3, \dots, q_n|$, $q_n = R_k^{-1}\mathcal{L}_k^{(n-1)}(b_k)$.

Покажем теперь, что полученный вид преобразования системы (1) позволяет решить задачу стабилизации преобразованной системы, а следовательно определить стабилизирующее управление исходной системы (1), (2).

Теорема 3. Пусть в системе

$$y_{k+1} = P_k(y_k, k)y_k + e_1 u_k \quad u_k = s_0^*(y_k, k)y_k \tag{8}$$

матрица P_k есть матрица Фробениуса с последней функциональной строкой, e_1 — первый единичный орт. Тогда существует и определяется в явном виде вектор $s_0^*(y_k, k)$, обеспечивающий асимптотическую устойчивость в целом замкнутой системе (8).

Доказательство этой теоремы почти дословно повторяет доказательство теоремы 1 в [1] при замене матрицы $D_0(y_k,k) = P_k(y_k,k) + e_1 s_0^*(y_k,k)$ на $D_0^*(y_k,k)$. Замена правомерна, поскольку неравенства $D_0^*HD_0 - H < 0$ и $D_0HD_0^* - H < 0$ для постоянной H > 0 эквивалентны. Действительно, преобразование $p_k = H^{-1/2}y_k$ приводит к очевидному соотношению $\mu_{max}(D_0) = \mu_{max}(D_0^*)$, где $\mu(D_0)$ — максимальное сингулярное число матрицы D_0 [2].

Вернемся к исходной системе (1), (2) и преобразованиям подобия общего вида (5), (6). Определим достаточные условия, при которых каноническое преобразование подобия первого рода (5), (6) переходит в канонические преобразования второго рода, т.е. обеспечивают форму Фробениуса матрице преобразованной замкнутой системы

$$y_{k+1} = \widetilde{D}_k(y_k, k)y_k, \quad \widetilde{D}_k(y_k, k) = \widetilde{A}_k(y_k, k) + \widetilde{b}_k(y_k, k)\widetilde{s}_k^*(y_k, k).$$
$$\widetilde{A}_k = T_{k+1}A_kT_k^{-1}, \ \widetilde{b}_k = T_{k+1}b_k, \ \widetilde{s}_k^* = s_k^*T_k^{-1}.$$

Очевидно, что матрица \widetilde{D}_k , полученная преобразованием (5), (6), будет матрицей Фробениуса тогда и только тогда, когда выполняется хотя бы одно из условий: $\widetilde{b}_k = e_n$ или $\widetilde{s}_k = e_n$. Предполагая заданной пару (A_k, b_k) , определим достаточные условия существования и явный вид производящего вектора r_k в соотношениях (5), (6), при котором выполняется соотношение

$$\widetilde{b}_k = T_{k+1} b_k = e_n. (9)$$

Рассмотрим последовательность соотношений (9) с учетом (5) для шагов $k,k-1,\ldots,k-n+1.$ Тогда для вектора r_k имеем n соотношений

$$r_k^* b_k = 0, \ r_k^* L_{k-1}^1(z_{k-1}^1) b_{k-1} = 0, \dots, r_k^* L_{k-n+1}^{n-1}(z_{k-n+1}^{n-1}) b_{k-n+1} = 1.$$

Таким образом, доказана следующая

Теорема 4. Пусть det $B_k(x_k, x_{k-1}, \ldots, x_{k-n+1}), x \in \mathbb{R}^n, k = 1, 2, \ldots$ равномерно отделим от нуля, где

$$B_k(x_k, x_{k-1}, \dots, x_{k-n+1}) = |b_k, L_{k-1}^1 b_{k-1}, \dots, L_{k-n+1}^{n-1} b_{k-n+1}|.$$

Тогда существует и определяется соотношением

$$r_k = B_k^{-1} e_n \tag{10}$$

производящий вектор r_k , для которого соотношения (5), (6) задают каноническое преобразование второго рода и обеспечивают выполнение соотношения (9).

З а м е ч а н и е 1. Рассуждения проводились в предположении заданности пары (A_k, b_k) . Если задана пара (A_k, s_k) , то определяется производящий вектор r_k , такой, что $s_k^* T_k^{-1} = e_n^*$.

Предположим, что условия теоремы 4 выполнены и рассмотрим систему (1), (2), преобразованную каноническим преобразованием подобия второго рода, т.е. систему вида (8), где $P_k = \widetilde{A}_k$ есть матрица Фробениуса с последней функциональной строкой, а вектор распределения управления \widetilde{b}_k $\widetilde{b}_k = e_n$.

Зададимся числом $\alpha > 0$ и введем в рассмотрение квадратичную форму

$$V_k(y_k) = y_k^* H y_k, H = \text{diag}\{h_1, \dots, h_n\}, h_i > (1+\alpha)h_{i-1}, h_i > 0.$$
 (11)

Выпишем приращение $V_k(y_k)$ в силу системы (8)

$$V_{k+1}(y_{k+1}) - V_k(y_k) = y_k^* M_k(y_k) y_k,$$

$$M_k = C_k + \widetilde{A}_k^* H e_n \widetilde{s}_k^* + \widetilde{s}_k e_n^* H \widetilde{A}_k + \widetilde{s}_k e_n^* H e_n s_k^*, \tag{12}$$

где $C_k = \widetilde{A}_k^* H \widetilde{A}_k - H$, т.е. матрица приращения V_k в силу системы (8) при отсутствии управления.

Задача стабилизации системы (8) сводится к определению вектора \tilde{s}_k , для которого выполняется для выбранного $\alpha > 0$ соотношение

$$M_k < -\alpha H. \tag{13}$$

В соответствии с [3], вектор $\widetilde{b}_k = e_n$ назовем допустимым вектором распределения управления для пары (\widetilde{A}_k, H) , если существует вектор обратной связи s_k , при котором выполняется условие (13). Тогда, согласно с [3], необходимые и достаточные условия допустимости $\widetilde{b}_k = e_n$ задаются соотношением

$$C_k^{\alpha} - \Lambda_k \Lambda_k^* < 0$$
, где $C_k^{\alpha} = C_k + \alpha H$. (14)
 $\Lambda_k = A_k^* H e_n (e_n^* H e_n)^{-1/2}$.

Выпишем подробнее C_k^{α} и $\Lambda_k\Lambda_k^*$. Имеем

$$C_k^{\alpha} = \begin{vmatrix} a_1^2 h_n - (1+\alpha)h_1 & a_1 a_2 h_n & \dots & a_1 a_n h_n \\ a_1 a_2 h_n & h_1 - (1+\alpha)h_2 + a_2^2 h_n & \dots & a_2 a_n h_n \\ \vdots & & \dots & \ddots & \vdots \\ a_1 a_n h_n & \dots & \dots & h_{n-1} - (1+\alpha)h_n + a_n^2 h_n \end{vmatrix},$$

$$\Lambda_k \Lambda_k^* = \left| \begin{array}{ccccc} a_1^2 h_n & a_1 a_2 h_n & \dots & a_1 a_n h_n \\ \dots & a_2^2 h_n & \dots & a_2 a_n h_n \\ \dots & \dots & \ddots & \dots \\ a_1 a_n h_n & \dots & a_n^2 h_n \end{array} \right|,$$

т.е. $C_k^{\alpha} - \Lambda_k \Lambda_k^* = \text{diag}\{h_{i-1} - (1+\alpha)h_i\} < 0$. Допустимость вектора $\widetilde{b}_k = e_n$ проверена. Тогда, согласно [3], общий вид вектора обратной связи \widetilde{s}_k , для которого выполняется соотношение (13), задается соотношением

$$\widetilde{s}_k = h_n^{-1}(-\Lambda_k + \gamma_k), \tag{15}$$

где γ_n — произвольный вектор, удовлетворяющий соотношению

$$\gamma_k \gamma_k^* + C_k^\alpha + \Lambda_k \Lambda_k^* < 0.$$

Возвращаясь к системе (1), (2), получаем вид стабилизирующего управления (2), где

$$s_k^* = T_k \widetilde{s}_k^*, \tag{16}$$

 T_k — матрица канонического преобразования второго рода (5), (6), (9).

Таким образом, доказана следующая

Теорема 5. При выполнении условий существования канонического преобразования второго рода для системы (1) замкнутая система (1), (2) асимптотически устойчива в целом при векторе s_k , заданном соотношениями (16), (15).

Положим теперь в соотношении (15) вектор

$$\gamma_k = \text{const} = (\gamma_1, \dots, \gamma_n)^*,$$
 (17)

где γ_i — коэффициенты гурвицева полинома. Тогда

$$\widetilde{D}_k = \widetilde{A}_k + e_n \widetilde{s}_k^* = \begin{vmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & \dots \\ \gamma_1 & \dots & \dots & \gamma_n \end{vmatrix},$$

т.е. преобразованная система имеет постоянную гурвицеву матрицу и, следовательно, устойчива. Таким образом , доказана

Теорема 6. При выполнении условий существования канонического преобразования второго рода для системы (1) существует и в явном виде

(15)–(17) определяется вектор обратной связи, при котором рассматриваемая система (1), (2) подобна линейной стационарной системе.

Замечание 2. В работе [3], результаты которой использовались для доказательства теоремы 6, рассматривались только линейные стационарные системы. Однако приведенные там условия допустимости вектора распределения управления и явный вид вектора обратной связи для нелинейных нестационарных систем получаются почти дословными повторениями рассуждений, проведенных в [3].

Заключение. Получены достаточные условия существования и явный вид канонических преобразований подобия первого и второго рода, переводящих, соответственно, матрицу объекта и матрицу замкнутой системы в матрицы Фробениуса. Для системы с матрицей Фробениуса получено в явном виде решение задачи стабилизации. При этом обнаружилась возможность выбором вектора обратной связи сделать рассматриваемую замкнутую систему подобной линейной стационарной системе, что позволяет переходить к постановке и решению оптимизационных задач для широкого класса нелинейных нестационарных систем управления.

Список литературы

- [1] Зубер И.Е. Стабилизация дискретных систем управления на основе специального преобразования подобия // Электронный журнал "Дифференциальные уравнения и процессы управления", 1998, №4.
- [2] Гантмахер Р.Ф. Теория матриц. М.: Наука, 1966, 575 с.
- [3] Зубер И.Е. К вопросу об оптимальной структуре обратных связей монотонно стабилизируемой импульсной системы //Сб."Управляемые системы", Институт кибернетики СОАН СССР, 1969, вып.3, с.23–32.