Data Science

February 27, 2023.

Decision tree

AIT-BUDAPEST

. - - -

AQUINCUM INSTITUTE OF TECHNOLOGY

Roland Molontay

Schedule of the semester

	Monday midnight	Tuesday class	Friday class
W1 (02/06)			
W2 (02/13)		HW1 out	
W3 (02/20)			
W4 (02/27)	HW1 deadline + TEAMS	HW2 out	
W5 (03/06)	PROJECT PLAN		
W6 (03/13)	HW2 deadline	HW3 out	
W7 (03/20)			MIDTERM
SPRING BREAK		SPRING BREAK	SPRING BREAK
W8 (04/03)	HW3 deadline		GOOD FRIDAY
W9 (04/10)	MILESTONE 1	HW4 out	
W10 (04/17)			
W11 (04/24)	HW4 deadline		
W12 (05/01)	MILESTONE 2		
W13 (05/08)			
W14 (05/15)		FINAL	PROJECT presentations
W15 (05/22)		PROJECT presentations	

Decision tree

- Rooted, directed (sometimes binary) tree
- Each inner node has a decision rule that assigns instances uniquely to child nodes of the actual node
- Each leaf node has a class label

Prediction with decision tree

- Decision tree is one of the oldest predictive algorithm
 - We start at root node
 - At each interior node we evaluate the decision rule, branch to the child node picked by the decision rule
 - Once a leaf node is reached, predict the label assigned to that node
- It is mainly used for classification, but also suitable for regression problems

Decision tree - learning phase

It works with continuous and categorical attributes

Training Data

Model: Decision Tree

Another tree for the same data

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Applying the model to new data

Problems

Ex 1

How many logical (Boolean, $f: \{0,1\}^N \to \{0,1\}$) functions can be generated on N binary attributes? What are the possible functions for N=2?

Ex 2

Can decision trees learn logical (Boolean) functions? How to represent the following functions with a decision tree: A OR B, A AND B, A XOR B, where A and B are logical variables.

Partitioning the feature space

The boundaries are always parallel to the axes → the decision regions are always unions of (hyper-)rectangles

How could a decision tree represent a data set on the left?

Partitioning the feature space - examples

Algorithm for building decision trees

- We consider a general algorithm
 - Special versions of the algorithm are implemented in various programs
- We do not aim to find the best tree (it is underdefined what is best) but a good enough tree
 - There are exponentially many possible trees
- With a greedy method, deciding locally, quickly
- There are various algorithms (and their variants)
 - Hunt algorithm
 - CART
 - ID3, C4.5 (J48)
 - SLIQ, SPRINT

Sketch of Hunt algorithm

- We start with one node (the root), all the records are there
 - Its label is the majority label
- Further steps: we choose a node that is worth splitting on
- End: until there is no node worth splitting on
 - In each node all the records have the same label
 - There are no good splits, e.g. in all nodes, all the records agree in each attribute (aside from the label)

Hunt algorithm - questions

- When does it terminate?
 - When no more nodes left that are worth splitting on
- When is it not worth splitting on?
 - In each node all the records have the same label
 - There are no good splits, e.g. in all nodes, all the records agree in each attribute (aside from the label)
 - If we want to avoid to have a too deep tree (more details later)
- Which node to split on if there are more possibilities?
 - E.g. traversing nodes according to BFS (breadth-first search), DFS (depth-first search)
- How to split?
 - Splitting a node should increase the homogeneity (with respect to the label) of resultant subnodes
- How to decide on the label?
 - Using majority voting

Possible splits

What defines a good split?

- It increases the homogeneity ("purity") of the target variable in the emerging child nodes compared to the parent node
- A good split creates child nodes of similar size (or at least does not create very small nodes)

Example

- The following table summarizes a data set with three binary attributes (A, B, C) and two class labels (+, -).
- Which is the best split? What attribute would you split on?

A	В	С	Number o	of instances
11	Ъ		class: +	class: -
T	Τ	T	5	0
F	${ m T}$	\mathbf{T}	0	20
\mathbf{T}	\mathbf{F}	\mathbf{T}	20	0
F	\mathbf{F}	\mathbf{T}	0	5
Τ	\mathbf{T}	\mathbf{F}	0	0
F	Τ	\mathbf{F}	25	0
\mathbf{T}	\mathbf{F}	\mathbf{F}	0	0
F	F	F	0	25

Possible splits

A	В	C	Number of instances					
A	Ь		class: +	class: -				
T F	T	T	5	0				
	\mathbf{T}	\mathbf{T}	0	20				
\mathbf{T}	F	\mathbf{T}	20	0				
F	F	\mathbf{T}	0	5				
\mathbf{T}	\mathbf{T}	\mathbf{F}	0	0				
F	\mathbf{T}	\mathbf{F}	25	0				
T	F	F	0	0				
F	F	F	0	25				

A is the best split!

How to measure the goodness of a split?

- We consider three possible metrics
- The main principle is the same for all:
 - We define a metric for a set of records that measures the degree of homogeneity (purity) of the target variable within that set
 - We consider three metrics: Gini coefficient, entropy, misclassification error
 - The goodness of a split is measured by the difference between the impurity of the parent node and the emergent child nodes
 - How much do we gain if we split the node? What is the degree of homogeneity increase?
 - We can also consider the size of the emerging child nodes, punishing the too small splits

Which split is better?

Measuring inhomogeneity

- Let t be the node of a decision tree (i.e. a set of records), we aim to measure its homogeneity with respect to a target variable that has c possible values
- Let p(i|t) denote the relative frequency of records with label i in node t

Misclassification error

Misclassification error or classification error:

Classification error
$$(t) = 1 - \max_{i}[p(i|t)]$$

- Its maximal value is: 1-1/c, when the records are distributed equally in all classes
- Its minimal value is 0, when all the records have the same label

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Error = 1 - max(0, 1) = 1 - 1 = 0$

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Error = 1 - max (1/6, 5/6) = 1 - 5/6 = 1/6$

C1	2
C2	4

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Error = 1 - max (2/6, 4/6) = 1 - 4/6 = 1/3$

Gini coefficient

Gini coefficient

Gini
$$(t) = 1 - \sum_{i=1}^{c} p(i|t)^2$$

- Its value ranges between 0 and 1 - 1/c
- Usually Gini is default setting for splitting criterion

C1	0
C2	6

P(C1) =
$$0/6 = 0$$
 P(C2) = $6/6 = 1$
Gini = $1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

P(C1) =
$$2/6$$
 P(C2) = $4/6$
Gini = $1 - (2/6)^2 - (4/6)^2 = 0.444$

Outlook – Gini coefficient in economics

A similar concept but not the same, do not mix them

• It is used to measure the inequality in income or wealth distribution of a

nation's residents

Cumulative share of people from lowest to highest incomes

Entropy

Entropy(t) =
$$-\sum_{i=1}^{c} p(i|t) \log_2 p(i|t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0$

Its value ranges
 between 0 and log₂c

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Entropy = -(1/6) log_2 (1/6) - (5/6) log_2 (5/6) = 0.65$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Entropy = -(2/6) log_2(2/6) - (4/6) log_2(4/6) = 0.92$

Comparing homogeneity metrics

For binary target variable (c=2)

The goodness of a split – the gain

- How much do we gain by the split?
 - Gain (Δ)

$$\Delta = I(parent) - \sum_{i=1}^{k} \frac{n_i}{n} I(child_i)$$

- *I():* one of the three inhomogeneity metrics
- n_i: number of records in child node *i*, *n*: number of records in the parent node
 - We weight the inhomogeneity of the child nodes by their relative size

Problem

- The following table summarizes a data set with three binary attributes (A, B, C) and two class labels (+, -).
- Using misclassication error as inhomogenity measure, calculate the gains for splitting on each attribute. Which attribute gives the best split?

A	В	С	Number o	of instances
Λ	Ь		class: +	class: –
T	Τ	T	5	0
F	${ m T}$	${ m T}$	0	20
\mathbf{T}	\mathbf{F}	\mathbf{T}	20	0
F	\mathbf{F}	\mathbf{T}	0	5
\mathbf{T}	${ m T}$	\mathbf{F}	0	0
F	\mathbf{T}	\mathbf{F}	25	0
\mathbf{T}	F	F	0	0
F	F	F	0	25

Splitting by a continuous attribute

- Where to split?
- Sort the records according to the attribute values
- Calculate the inhomogeneity metric one by one increasing the value of the cut point
 - Which cut-point corresponds to the highest gain?

	Class	ı	No No		N	No Yes		Ye	s	Yes 1		N	0	No		No		No					
		Annual Income																					
Sorted Va		60 70)	75 85				90 9			5	100 1		12	20 12		25		220			
Split Posi	tions→	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	0	12	2	17	72	23	80
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	=	/	<=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini		0.4	20	0.400		0.375		0.343		0.417		0.400		<u>0.300</u>		0.343		0.375		0.400		0.420	

Should we split on ID?

- Δ gain would the highest if we split on ID
- The method thus prefers to split the parent node to many small nodes
- It is usually not favorable
 - E.g. if we split on ID, that is useless
 - If the emergent child nodes are too small the model is more likely to have a worse generalization ability
- Possible solutions
 - Only allow for binary splits
 - Filter out those attributes that are not reasonable to split on
 - Instead of Δ gain use an other method to measure the goodness of split: gain ratio

Building a decision tree

- Relatively fast, easy to interpret
- After building the decision tree, it is fast to predict new labels for unseen data points
- There are not many hyperparameter to set (but there are some)
 - What is the measure of inhomogeneity?
 - Do we allow for multi-split or just for binary?
 - How to traverse nodes?

Termination criteria

- If every node is homogeneous
 - Or every node is quasi-homogeneous (almost homogeneous)
- All the records agree in each attribute (aside from the label)
- Global termination criteria:
 - Bound for the number of leaf nodes
 - Bound for the number of levels (depth of the tree)
- We do not search for the "best" tree
 - It is not practical since it is just the "best" on the training data set

Advantages of decision tree

- Easy to interpret
- It works with a similar approach as human decision process
- Easy to visualize
- Insensitive to irrelevant attributes
- It can be used for a wide variety of problems (for classification/regression, with numerical/categorical attributes)

Acknowledgement

- András Benczúr, Róbert Pálovics, SZTAKI-AIT, DM1-2
- Krisztián Buza, MTA-BME, VISZJV68
- Bálint Daróczy, SZTAKI-BME, VISZAMA01
- Judit Csima, BME, VISZM185
- Gábor Horváth, Péter Antal, BME, VIMMD294, VIMIA313
- Lukács András, ELTE, MM1C1AB6E
- Tim Kraska, Brown University, CS195
- Dan Potter, Carsten Binnig, Eli Upfal, Brown University, CS1951A
- Erik Sudderth, Brown University, CS142
- Joe Blitzstein, Hanspeter Pfister, Verena Kaynig-Fittkau, Harvard University, CS109
- Rajan Patel, Stanford University, STAT202
- Andrew Ng, John Duchi, Stanford University, CS229

