

Starting At 6:30 PM

Foundations of Machine Learning: Linear Regression

Presented by; Hamza & Rahul

Introduction to the 4 part series on ML

lookup.KeyValue
f.constant(['en
=tf.constant([6
.lookup.Static\

_buckets=5)

What, who, and when?

- Second of a planned 4 part series on ML
- The next topics are not set in stone so feel free to give us cool ideas
- The next two will also be presented by the two of us
- Dates not yet set in stone, but should be decided soon for workshop 3 so monitor the socials!

Important Notice

- This workshop is largely interactive with a large emphasis on group code along exercises
- So please scan the QR code to join the UTM GDSC discord where you can download the starter code
- Now you should've downloaded 'Linear_Regression_Workshop.ipynb' this is a jupyter notebook and can be opened without an IDE by googling UofT Jupyter Hub or going to <u>jupyter.utoronto.ca/hub/login</u>

What really is Machine Learning...?

- Essentially just statistical methods that learn from a given data set
- Patterns in data features are captured in parameters
- NOTE: Parameters are measurable factors that define a system and determine its behaviour
- More technical definition: Given a simple mathematical objective (eg. the distance between your predictions and the label) we apply iterative mathematical optimization on the parameters to optimize for/minimize this objective

Simple Linear Regression

lookup.KeyValu f.constant(['e =tf.constant([.lookup.Static

buckets=5)

What is Linear Regression?

- Essentially fitting a line through points
- More technically; Models the relationship between variables via a linear equation
- Goal; best line of fit means least deviations from line
- Minimizing the difference between observed and predicted values

Why Linear Regression over more powerful forms?

- Simplicity and Interpretability:
 - a. Easy to understand and explain, even to non-technical audiences
 - b. Clear relationship between independent and dependent variables
- Efficient Computation:
 - a. Fast to compute, even with large datasets
 - b. Less computationally expensive than many complex models
- Performance in Well-Structured Data:
 - a. Highly effective with linear relationships
 - b. Can outperform complex models when data structure is straightforward

Why Linear Regression over more powerful forms? - continued

- Less Prone to Overfitting:
 - a. Simplicity reduces the risk of overfitting
 - b. Easier to generalize to new data
- Good Starting Point for Analysis:
 - a. Useful for initial analysis to understand data trends
 - b. Provides a baseline for comparison with complex models
- Flexibility with Enhancements:
 - a. Can be extended with polynomial and interaction terms
 - b. Adaptable for various types of data through transformations

Linear Regression Theory - Form

- $Y = \beta_0 + \beta_1 X + \epsilon$
- Y = independent variable
- X = dependant variable
- β_0 = Intercept
- β_1 = Slope
- ϵ = Error term
- Example: $Y = 5 + 7x + \epsilon$

Linear Regression Theory - Form

- ullet Prediction Representation Per Datapoint : $\hat{y}=\hat{eta}_0+\hat{eta}_1 x$
- Example:

TV (x)	Sales (y)
50	8
75	10

- If Y = 6 + 0.1x (Our prediction for best fit line)
- y-hat = 6 + 0.1*50 = 11 (not accurate, but this is what our equation gives us)

Linear Regression Theory - RSS

- Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction for Y based on the ith value of X. Then $e_i = y_i \hat{y}_i$ represents the ith residual
- We define the residual sum of squares (RSS) as

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2,$$

or equivalently as

RSS =
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$
.

TV (x)	Sales (y)
50	8
75	10

Lab Exercise

10 min

Collaboration is encouraged!

Standard Error and Confidence Intervals

Lookup.KeyValue f.constant(['en =tf.constant([@ .lookup.Static\ buckets=5)

Standard Error

 The standard error of an estimator reflects how it varies under repeated sampling. We have

$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

where $\sigma^2 = \text{Var}(\epsilon)$

$$\sigma^2 = \frac{SSR}{n-p} = \frac{\sum_{i=1}^{n} (e_i)^2}{n-p}$$

Confidence Intervals

• These standard errors can be used to compute *confidence* intervals. A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter. It has the form

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1)$$
.

Confidence Intervals - continued

That is, there is approximately a 95% chance that the interval

$$\left[\hat{eta}_1 - 2 \cdot \operatorname{SE}(\hat{eta}_1), \ \hat{eta}_1 + 2 \cdot \operatorname{SE}(\hat{eta}_1)\right]$$

will contain the true value of β_1 (under a scenario where we got repeated samples like the present sample)

For the advertising data, the 95% confidence interval for β_1 is [0.042, 0.053]

Lab Exercise

5 min

Collaboration is encouraged!

Hypothesis Testing

lookup.KeyValu f.constant(['e =tf.constant([.lookup.Statio buckets=5)

What is Hypothesis Testing?

- Statistical tool used to make inferences about a population based on sample data
- Standard Errors are used to perform hypothesis tests on the coefficients
- The most common hypothesis test involves testing the null hypothesis...

Null Hypothesis

 H_0 : There is no relationship between X and Y

versus the alternative hypothesis

 H_A : There is some relationship between X and Y.

Mathematically, this corresponds to testing

$$H_0: \beta_1 = 0$$

versus

$$H_A: \beta_1 \neq 0$$
,

since if $\beta_1 = 0$ then the model reduces to $Y = \beta_0 + \epsilon$, and X is not associated with Y.

t-statistic

• To test the null hypothesis, we compute a *t-statistic*, given by

$$t = rac{\hat{eta}_1 - 0}{\mathrm{SE}(\hat{eta}_1)},$$

• This will have a t-distribution with n-2 degrees of freedom, assuming $\beta_1 = 0$.

p-value

 Using statistical software, it is easy to compute the probability of observing any value equal to |t| or larger. We call this probability the p-value.

	Coefficient	Std. Error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

Lab Exercise

10 min

Collaboration is encouraged!

RSE, R², F-statistic

Lookup.KeyValue f.constant(['em =tf.constant([@ .lookup.Static\

RSE & R²

• We compute the Residual Standard Error Used to calculate the lack of fit

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$,

where the residual sum-of-squares is $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$.

• R-squared or fraction of variance explained is

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

where $TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$ is the total sum of squares.

RSE = actual values deviate from the true regression line by approximately RSE units TSS = measures the total variance in the response variable that we're trying to explain RSS = measures the variance in the response variable that the model does not explain

F-statistic

- Definition: The F statistic is a ratio used in statistical testing to compare the model's fit against a model with no predictors.
- Purpose: It tests whether the group of variables in a model are jointly significant. Essentially, it asks, "Is the model better than nothing?"

F-statistic - continued

- Interpretation:
 - a. A higher F statistic indicates that the model explains a significant amount of variance in the dependent variable.
 - b. A lower F statistic suggests the model does not provide a better fit than one without independent variables.
- $f_{\text{value}} = ((TSS RSS) / (p-1)) / (RSS / (n p))$

Lab Exercise

10 min

Collaboration is encouraged!

Multiple Linear Regression

Lookup.KeyValu f.constant(['e =tf.constant([.lookup.Statio buckets=5)

Multiple Linear Regression

Here our model is

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon,$$

• We interpret β_j as the average effect on Y of a one unit increase in X_j , holding all other predictors fixed. In the advertising example, the model becomes

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times newspaper + \epsilon$$
.

Interpreting Regression Coefficients

- The ideal scenario is when the predictors are uncorrelated
 — a balanced design:
 - Each coefficient can be estimated and tested separately.
 - Interpretations such as "a unit change in X_j is associated with a β_j change in Y, while all the other variables stay fixed", are possible.
- Correlations amongst predictors cause problems:
 - The variance of all coefficients tends to increase, sometimes dramatically
 - Interpretations become hazardous when X_j changes, everything else changes.

Estimation and Prediction

• Given estimates $\hat{\beta}_0, \hat{\beta}_1, \dots \hat{\beta}_p$, we can make predictions using the formula

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p.$$

• We estimate $\beta_0, \beta_1, \ldots, \beta_p$ as the values that minimize the sum of squared residuals

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

= $\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})^2$.

This is done using standard statistical software.

The values $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ that minimize RSS are the multiple least squares regression coefficient estimates.

Lab Exercise

10 min

Collaboration is encouraged!

Polynomial Regression

lookup.KeyValu f.constant(['e =tf.constant([.lookup.Static buckets=5)

Polynomial Regression Figure

Polynomial Regression

The figure suggests that

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \epsilon$$

may provide a better fit.

	Coefficient	Std. Error	t-statistic	p-value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
${\tt horsepower}^2$	0.0012	0.0001	10.1	< 0.0001

Lab Exercise (HW)

10 min

Collaboration is encouraged!

Thank you!

Lookup.KeyValue f.constant(['em =tf.constant([@ .lookup.Static\

buckets=5)