Collaboration and Competition

You are welcome to use this coding environment to train your agent for the project. Follow the instructions below to get started!

1. Start the Environment

Run the next code cell to install a few packages. This line will take a few minutes to run!

```
In [3]:
```

```
!pip -q install ./python
```

The environment is already saved in the Workspace and can be accessed at the file path provided below.

```
In [4]:
```

```
from unityagents import UnityEnvironment
# You are welcome to use this coding environment to train your agent for the project.
 Follow the instructions below to get started!
import numpy as np
env = UnityEnvironment(file_name="/data/Tennis_Linux_NoVis/Tennis")
INFO:unityagents:
'Academy' started successfully!
Unity Academy name: Academy
        Number of Brains: 1
        Number of External Brains: 1
        Lesson number: 0
        Reset Parameters :
Unity brain name: TennisBrain
        Number of Visual Observations (per agent): 0
        Vector Observation space type: continuous
        Vector Observation space size (per agent): 8
        Number of stacked Vector Observation: 3
        Vector Action space type: continuous
        Vector Action space size (per agent): 2
        Vector Action descriptions: ,
```

Environments contain brains which are responsible for deciding the actions of their associated agents. Here we check for the first brain available, and set it as the default brain we will be controlling from Python.

```
In [5]:
```

```
# get the default brain
brain name = env.brain names[0]
brain = env.brains[brain name]
```

2. Examine the State and Action Spaces

Run the code cell below to print some information about the environment.

In [6]:

```
# reset the environment
env_info = env.reset(train_mode=True)[brain_name]
# number of agents
num_agents = len(env_info.agents)
print('Number of agents:', num_agents)
# size of each action
action_size = brain.vector_action_space_size
print('Size of each action:', action_size)
# examine the state space
states = env_info.vector_observations
state_size = states.shape[1]
print('There are {} agents. Each observes a state with length: {}'.format(states.shape[
0], state_size))
print('The state for the first agent looks like:', states[0])
```

```
Number of agents: 2
Size of each action: 2
There are 2 agents. Each observes a state with length: 24
The state for the first agent looks like: [ 0.
                                                                       0.
0.
            0.
                         0.
                                     0.
  0.
              0.
                                                    0.
                           0.
                                                                 0.
0.
              0.
                          -6.65278625 -1.5
                                                   -0.
                                                                 0.
  6.83172083 6.
                          -0.
                                       0.
                                                  1
```

3. Take Random Actions in the Environment

In the next code cell, you will learn how to use the Python API to control the agent and receive feedback from the environment.

Note that in this coding environment, you will not be able to watch the agents while they are training, and you should set train mode=True to restart the environment.

In [7]:

```
for i in range(5):
                                                           # play game for 5 episodes
    env_info = env.reset(train_mode=False)[brain_name]
                                                           # reset the environment
    states = env_info.vector_observations
                                                           # get the current state (for
each agent)
    scores = np.zeros(num_agents)
                                                           # initialize the score (for
each agent)
   while True:
        actions = np.random.randn(num_agents, action_size) # select an action (for each
agent)
        actions = np.clip(actions, -1, 1)
                                                          # all actions between -1 and
1
        env_info = env.step(actions)[brain_name]
                                                          # send all actions to the en
vironment
        next_states = env_info.vector_observations
                                                           # get next state (for each a
gent)
                                                           # get reward (for each agen
        rewards = env info.rewards
t)
        dones = env_info.local_done
                                                           # see if episode finished
        scores += env_info.rewards
                                                           # update the score (for each
agent)
        states = next_states
                                                           # roll over states to next t
ime step
                                                           # exit loop if episode finis
        if np.any(dones):
hed
            break
    print('Total score (averaged over agents) this episode: {}'.format(np.mean(scores
)))
Total score (averaged over agents) this episode: -0.00499999888241291
Total score (averaged over agents) this episode: -0.004999999888241291
```

Total score (averaged over agents) this episode: -0.004999999888241291 Total score (averaged over agents) this episode: -0.004999999888241291 Total score (averaged over agents) this episode: -0.004999999888241291

When finished, you can close the environment.

In []:

```
env.close()
```

4. It's Your Turn!

Now it's your turn to train your own agent to solve the environment! A few **important notes**:

• When training the environment, set train_mode=True, so that the line for resetting the environment looks like the following:

```
env_info = env.reset(train_mode=True)[brain_name]
```

- To structure your work, you're welcome to work directly in this Jupyter notebook, or you might like to start over with a new file! You can see the list of files in the workspace by clicking on Jupyter in the top left corner of the notebook.
- In this coding environment, you will not be able to watch the agents while they are training. However, after training the agents, you can download the saved model weights to watch the agents on your own machine!

In [8]:

```
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def hidden_init(layer):
    fan_in = layer.weight.data.size()[0]
    lim = 1. / np.sqrt(fan_in)
    return (-lim, lim)
class Actor(nn.Module):
    def __init__(self, state_size, action_size, seed, fc1_units=256, fc2_units=128):
        super(Actor, self).__init__()
        self.seed = torch.manual_seed(seed)
        self.fc1 = nn.Linear(state_size*2, fc1_units)
        self.fc2 = nn.Linear(fc1_units, fc2_units)
        self.fc3 = nn.Linear(fc2_units, action_size)
        self.reset_parameters()
    def reset_parameters(self):
        self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
        self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
        self.fc3.weight.data.uniform_(-3e-3, 3e-3)
    def forward(self, state):
        x = F.relu(self.fc1(state))
        x = F.relu(self.fc2(x))
        return torch.tanh(self.fc3(x))
class Critic(nn.Module):
    def __init__(self, state_size, action_size, seed, fcs1_units=256, fc2_units=128):
        super(Critic, self).__init__()
        self.seed = torch.manual_seed(seed)
        self.fcs1 = nn.Linear(state_size*2, fcs1_units)
        self.fc2 = nn.Linear(fcs1_units+(action_size*2), fc2_units)
        self.fc3 = nn.Linear(fc2 units, 1)
        self.reset_parameters()
    def reset parameters(self):
        self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
        self.fc2.weight.data.uniform (*hidden init(self.fc2))
        self.fc3.weight.data.uniform_(-3e-3, 3e-3)
    def forward(self, state, action):
        xs = F.relu(self.fcs1(state))
        x = torch.cat((xs, action), dim=1)
        x = F.relu(self.fc2(x))
        return self.fc3(x)
```

In [9]:

```
import numpy as np
import random
import copy
from collections import namedtuple, deque
import torch
import torch.nn.functional as F
import torch.optim as optim
BUFFER_SIZE = int(1e6) # replay buffer size
LR_ACTOR = 1e-3  # learning rate of the actor

LR_CRITIC = 1e-3  # learning rate of the critic

WEIGHT_DECAY = 0  # Learning timestep interval

LEARN_EVERY = 1  # learning timestep interval

LEARN_NUM = 5  # number of learning passes

GAMMA = 0.99  # discount factor

TAU = 8e-3  # for soft update of target parameters

OU_SIGMA = 0.2  # Ornstein-Uhlenbeck noise parameter, volatility

OU_THETA = 0.15  # Ornstein-Uhlenbeck noise parameter, speed of mean reversion

EPS_START = 5.0  # initial value for epsilon in noise decay process in Agent act
BATCH_SIZE = 128 # minibatch size
EPS_START = 5.0
                             # initial value for epsilon in noise decay process in Agent.act
()
EPS\_EP\_END = 300
                             # episode to end the noise decay process
EPS FINAL = 0
                               # final value for epsilon after decay
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent():
     def __init__(self, state_size, action_size, num_agents, random_seed):
           self.state_size = state_size
           self.action_size = action_size
           self.num agents = num agents
           self.seed = random.seed(random_seed)
           self.eps = EPS START
           self.eps_decay = 1/(EPS_EP_END*LEARN_NUM) # set decay rate based on epsilon en
d target
           self.timestep = 0
           # Actor Network (w/ Target Network)
           self.actor_local = Actor(state_size, action_size, random_seed).to(device)
           self.actor target = Actor(state size, action size, random seed).to(device)
           self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR)
           # Critic Network (w/ Target Network)
           self.critic local = Critic(state size, action size, random seed).to(device)
           self.critic_target = Critic(state_size, action_size, random_seed).to(device)
           self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC
, weight_decay=WEIGHT_DECAY)
           # Noise process
           self.noise = OUNoise((num_agents, action_size), random_seed)
           # Replay memory
           self.memory = ReplayBuffer(action size, BUFFER SIZE, BATCH SIZE, random seed)
     def step(self, state, action, reward, next state, done, agent number):
           self.timestep += 1
```

```
# Save experience / reward
       self.memory.add(state, action, reward, next_state, done)
       # Learn, if enough samples are available in memory and at learning interval set
tings
       if len(self.memory) > BATCH_SIZE and self.timestep % LEARN_EVERY == 0:
               for _ in range(LEARN_NUM):
                  experiences = self.memory.sample()
                  self.learn(experiences, GAMMA, agent_number)
   def act(self, states, add_noise):
       states = torch.from_numpy(states).float().to(device)
       actions = np.zeros((self.num_agents, self.action_size))
       self.actor_local.eval()
       with torch.no_grad():
           # get action for each agent and concatenate them
           for agent num, state in enumerate(states):
               action = self.actor_local(state).cpu().data.numpy()
               actions[agent_num, :] = action
       self.actor_local.train()
       # add noise to actions
       if add noise:
           actions += self.eps * self.noise.sample()
       actions = np.clip(actions, -1, 1)
       return actions
   def reset(self):
       self.noise.reset()
   def learn(self, experiences, gamma, agent_number):
       states, actions, rewards, next_states, dones = experiences
       # Get predicted next-state actions and Q values from target models
       actions_next = self.actor_target(next_states)
       # Construct next actions vector relative to the agent
       if agent_number == 0:
           actions_next = torch.cat((actions_next, actions[:,2:]), dim=1)
       else:
           actions_next = torch.cat((actions[:,:2], actions_next), dim=1)
       # Compute Q targets for current states (y i)
       Q_targets_next = self.critic_target(next_states, actions_next)
       Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
       # Compute critic loss
       Q_expected = self.critic_local(states, actions)
       critic loss = F.mse loss(Q expected, Q targets)
       # Minimize the loss
       self.critic optimizer.zero grad()
       critic_loss.backward()
       torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
       self.critic_optimizer.step()
       # Compute actor loss
       actions_pred = self.actor_local(states)
       # Construct action prediction vector relative to each agent
       if agent number == 0:
           actions_pred = torch.cat((actions_pred, actions[:,2:]), dim=1)
       else:
           actions_pred = torch.cat((actions[:,:2], actions_pred), dim=1)
       # Compute actor loss
       actor_loss = -self.critic_local(states, actions_pred).mean()
```

```
# Minimize the loss
       self.actor_optimizer.zero_grad()
       actor loss.backward()
       self.actor_optimizer.step()
       self.soft_update(self.critic_local, self.critic_target, TAU)
       self.soft_update(self.actor_local, self.actor_target, TAU)
       # update noise decay parameter
       self.eps -= self.eps_decay
       self.eps = max(self.eps, EPS_FINAL)
       self.noise.reset()
   def soft_update(self, local_model, target_model, tau):
       for target_param, local_param in zip(target_model.parameters(), local_model.par
ameters()):
           target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class OUNoise:
   def __init__(self, size, seed, mu=0.0, theta=OU_THETA, sigma=OU_SIGMA):
       self.mu = mu * np.ones(size)
       self.theta = theta
       self.sigma = sigma
       self.seed = random.seed(seed)
       self.size = size
       self.reset()
   def reset(self):
       self.state = copy.copy(self.mu)
    def sample(self):
       x = self.state
       dx = self.theta * (self.mu - x) + self.sigma * np.random.standard_normal(self.s
ize)
       self.state = x + dx
       return self.state
class ReplayBuffer:
   def __init__(self, action_size, buffer_size, batch_size, seed):
       self.action_size = action_size
       self.memory = deque(maxlen=buffer_size) # internal memory (deque)
       self.batch_size = batch_size
       self.experience = namedtuple("Experience", field names=["state", "action", "rew
ard", "next_state", "done"])
       self.seed = random.seed(seed)
   def add(self, state, action, reward, next_state, done):
        """Add a new experience to memory."""
       e = self.experience(state, action, reward, next state, done)
       self.memory.append(e)
   def sample(self):
       experiences = random.sample(self.memory, k=self.batch_size)
       states = torch.from numpy(np.vstack([e.state for e in experiences if e is not N
one])).float().to(device)
       actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not
None])).float().to(device)
       rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not
```

In [10]:

```
SOLVED SCORE = 2.7
CONSEC_EPISODES = 100
PRINT EVERY = 10
ADD NOISE = True
def maddpg(n_episodes=6000, max_t=1000, train_mode=True):
    scores_window = deque(maxlen=CONSEC_EPISODES)
    scores_all = []
    moving average = []
    best_score = -np.inf
    best episode = 0
    already_solved = False
    for i_episode in range(1, n_episodes+1):
        env info = env.reset(train mode=train mode)[brain name]
                                                                       # reset the env
ironment
        states = np.reshape(env_info.vector_observations, (1,48)) # get states and comb
ine them
        agent_0.reset()
        agent_1.reset()
        scores = np.zeros(num_agents)
        while True:
            actions = get_actions(states, ADD_NOISE)
                                                              # choose agent actions a
nd combine them
            env_info = env.step(actions)[brain_name] # send both agents' acti
ons together to the environment
            next_states = np.reshape(env_info.vector_observations, (1, 48)) # combine t
he agent next states
            rewards = env_info.rewards
                                                               # get reward
            done = env_info.local_done
                                                               # see if episode finishe
d
            agent_0.step(states, actions, rewards[0], next_states, done, 0) # agent 1 L
earns
            agent_1.step(states, actions, rewards[1], next_states, done, 1) # agent 2 l
earns
                                                               # update the score for e
            scores += np.max(rewards)
ach agent
                                                               # roll over states to ne
            states = next_states
xt time step
            if np.any(done):
                                                               # exit loop if episode f
inished
                break
        ep_best_score = np.max(scores)
        scores window.append(ep best score)
        scores all.append(ep best score)
        moving_average.append(np.mean(scores_window))
        # save best score
        if ep_best_score > best_score:
            best score = ep best score
            best_episode = i_episode
          if (i_episode > 1000 and np.mean(scores_window) < 0.08):</pre>
#
              break
        # print results
        if i episode % 10 == 0:
```

1/1/2021 Tenr

```
print('\rEpisodes {:0>4d}-{:0>4d}\tMax Reward: {:.3f}\tMoving Average: {:.3
f}'.format(
                 i episode-PRINT EVERY, i episode, np.max(scores all[-PRINT EVERY:]), mo
ving_average[-1]))
               torch.save(agent_0.actor_local.state_dict(), 'checkpoint_actor_0.pth')
               torch.save(agent_0.critic_local.state_dict(), 'checkpoint_critic_0.pth')
#
               torch.save(agent_1.actor_local.state_dict(), 'checkpoint_actor_1.pth')
#
               torch.save(agent_1.critic_local.state_dict(), 'checkpoint_critic_1.pth')
#
        if i episode % 100 == 0:
             print('\r\nEpisodes {:0>4d}-{:0>4d}\tMax Reward: {:.3f}\tMoving Average:
{:.3f} \n Saved!!!\n'.format(
                 i_episode-PRINT_EVERY, i_episode, np.max(scores_all[-PRINT_EVERY:]), mo
ving_average[-1]))
            torch.save(agent_0.actor_local.state_dict(), 'checkpoint_actor_0.pth')
             torch.save(agent_0.critic_local.state_dict(), 'checkpoint_critic_0.pth')
            torch.save(agent_1.actor_local.state_dict(), 'checkpoint_actor_1.pth')
torch.save(agent_1.critic_local.state_dict(), 'checkpoint_critic_1.pth')
        # determine if environment is solved and keep best performing models
        if moving_average[-1] >= 2.5:
             if not already_solved:
                 print('\r<-- Environment solved in {:d} episodes! \</pre>
                 \n<-- Moving Average: {:.3f} over past {:d} episodes'.format(</pre>
                     i episode-CONSEC_EPISODES, moving_average[-1], CONSEC_EPISODES))
                 already_solved = True
                 # save weights
                 torch.save(agent_0.actor_local.state_dict(), 'checkpoint_actor_0.pth')
torch.save(agent_0.critic_local.state_dict(), 'checkpoint_critic_0.pth'
)
                 torch.save(agent_1.actor_local.state_dict(), 'checkpoint_actor_1.pth')
                 torch.save(agent_1.critic_local.state_dict(), 'checkpoint_critic_1.pth'
)
             elif ep best score >= best score:
                 print('\r<-- Best episode so far!\</pre>
                 \nEpisode {:0>4d}\tMax Reward: {:.3f}\tMoving Average: {:.3f}'.format(
                 i_episode, ep_best_score, moving_average[-1]))
                 # save weights
                 torch.save(agent_0.actor_local.state_dict(), 'checkpoint_actor_0.pth')
                 torch.save(agent 0.critic local.state dict(), 'checkpoint critic 0.pth'
)
                 torch.save(agent_1.actor_local.state_dict(), 'checkpoint_actor_1.pth')
                 torch.save(agent_1.critic_local.state_dict(), 'checkpoint_critic_1.pth'
)
             elif (moving average[-1]) >= 2.5:
                 # stop training if model stops converging
                   print('<-- Training stopped. Best score not matched or exceeded for 2</pre>
00 episodes')
                 break
             else:
                 continue
    return scores_all, moving_average
def get_actions(states, add_noise):
     '''gets actions for each agent and then combines them into one array'''
    action_0 = agent_0.act(states, add_noise) # agent 0 chooses an action
    action 1 = agent 1.act(states, add noise) # agent 1 chooses an action
    return np.concatenate((action_0, action_1), axis=0).flatten()
```

In [11]:

```
# initialize agents
agent_0 = Agent(state_size, action_size, num_agents=1, random_seed=0)
agent_1 = Agent(state_size, action_size, num_agents=1, random_seed=0)
# load the weights from file
# agent_0_weights = 'checkpoint_actor_0.pth'
# agent_1_weights = 'checkpoint_actor_1.pth'
# agent_0.actor_local.load_state_dict(torch.load(agent_0_weights))
# agent_1.actor_local.load_state_dict(torch.load(agent_1_weights))
# run the training loop
BUFFER_SIZE = int(1e6) # replay buffer size
BATCH_SIZE = 128  # minibatch size

LR_ACTOR = 1e-4  # Learning rate of the actor

LR_CRITIC = 2e-4  # Learning rate of the critic

WEIGHT_DECAY = 0  # L2 weight decay

LEARN_EVERY = 1  # Learning timestep interval

LEARN_NUM = 1  # number of Learning passes

GAMMA = 0.99  # discount factor

TAIL = 78-2  # for soft undate of target no
TAU = 7e-2  # for soft update of target parameters

OU_SIGMA = 0.2  # Ornstein-Uhlenbeck noise parameter, volatility

OU_THETA = 0.12  # Ornstein-Uhlenbeck noise parameter, speed of mean reversion

FPS_START = 5.5  # initial value for a content of target parameters

# initial value for a content of target parameters

# initial value for a content of target parameters

# initial value for a content of target parameters
EPS_START = 5.5
                                                        # initial value for epsilon in noise decay process in A
gent.act()
                                  # episode to end the noise decay process
EPS_EP_END = 250
EPS_FINAL = 0
                                         # final value for epsilon after decay
scores, avgs = maddpg()
```

Episodes 0000-0010	Max Reward: 0.5	00 Moving Average: 0.060
Episodes 0010-0020	Max Reward: 0.0	
•		5 5
Episodes 0020-0030	Max Reward: 0.0	5 5
Episodes 0030-0040	Max Reward: 0.0	00 Moving Average: 0.015
Episodes 0040-0050	Max Reward: 0.0	00 Moving Average: 0.012
Episodes 0050-0060	Max Reward: 0.0	•
		•
Episodes 0060-0070	Max Reward: 0.0	5 5
Episodes 0070-0080	Max Reward: 0.0	00 Moving Average: 0.008
Episodes 0080-0090	Max Reward: 0.0	00 Moving Average: 0.007
Episodes 0090-0100	Max Reward: 0.1	00 Moving Average: 0.007
F		8 - 8 - 1
F	M D 0 1	00 Marrian Arranana 0 007
Episodes 0090-0100	Max Reward: 0.1	00 Moving Average: 0.007
Saved!!!		
Episodes 0100-0110	Max Reward: 0.0	00 Moving Average: 0.001
Episodes 0110-0120	Max Reward: 0.0	5 5
Episodes 0120-0130	Max Reward: 0.1	5 5
Episodes 0130-0140	Max Reward: 0.1	00 Moving Average: 0.003
Episodes 0140-0150	Max Reward: 0.1	00 Moving Average: 0.006
Episodes 0150-0160	Max Reward: 0.3	•
•		
Episodes 0160-0170	Max Reward: 0.1	5 5
Episodes 0170-0180	Max Reward: 0.3	00 Moving Average: 0.017
Episodes 0180-0190	Max Reward: 0.1	00 Moving Average: 0.019
Episodes 0190-0200	Max Reward: 0.1	00 Moving Average: 0.020
-р		
Frieds 0100 0200	May Daylands O 1	OO Marriag Arranger O 020
Episodes 0190-0200	Max Reward: 0.1	00 Moving Average: 0.020
Saved!!!		
Episodes 0200-0210	Max Reward: 0.3	00 Moving Average: 0.027
Episodes 0210-0220	Max Reward: 0.4	5 5
Episodes 0220-0230	Max Reward: 0.1	5 5
Episodes 0230-0240	Max Reward: 0.1	00 Moving Average: 0.035
Episodes 0240-0250	Max Reward: 0.1	00 Moving Average: 0.034
Episodes 0250-0260	Max Reward: 0.1	5 5
•		5 5
Episodes 0260-0270	Max Reward: 0.4	•
Episodes 0270-0280	Max Reward: 0.2	00 Moving Average: 0.042
Episodes 0280-0290	Max Reward: 0.3	00 Moving Average: 0.047
Episodes 0290-0300	Max Reward: 0.3	00 Moving Average: 0.057
_p		
F : 1 0200 0200	M D I 0 3	00 4 . 4 0.057
Episodes 0290-0300	Max Reward: 0.3	00 Moving Average: 0.057
Saved!!!		
Episodes 0300-0310	Max Reward: 0.6	00 Moving Average: 0.069
Episodes 0310-0320	Max Reward: 0.4	5 5
Episodes 0320-0330	Max Reward: 0.4	5 5
Episodes 0330-0340	Max Reward: 0.3	00 Moving Average: 0.100
Episodes 0340-0350	Max Reward: 0.4	00 Moving Average: 0.111
Episodes 0350-0360	Max Reward: 0.5	
•		
Episodes 0360-0370	Max Reward: 0.4	5 5
Episodes 0370-0380	Max Reward: 0.4	00 Moving Average: 0.131
Episodes 0380-0390	Max Reward: 0.2	00 Moving Average: 0.131
Episodes 0390-0400	Max Reward: 0.9	•
_p		
Frieds 0200 0400	May Daylands O O	00 Marriag Arrange 0 145
Episodes 0390-0400	Max Reward: 0.9	00 Moving Average: 0.145
Saved!!!		
Episodes 0400-0410	Max Reward: 0.4	00 Moving Average: 0.142
F====== 0.00 0.20		5 5
Fnisodes 0/10-0/20	May Rowand 0 2	00 Moving Avanage 0 127
Episodes 0410-0420	Max Reward: 0.2	5 5
Episodes 0420-0430	Max Reward: 0.3	00 Moving Average: 0.130
Episodes 0420-0430 Episodes 0430-0440		Moving Average: 0.130 Moving Average: 0.138
Episodes 0420-0430	Max Reward: 0.3	Moving Average: 0.130 Moving Average: 0.138

/ 1/202	<u>- 1</u>					ICIIIII		
Eı	pisodes	0450-0460	Max	Reward:	0.400	Moving	Average:	0.148
	•	0460-0470		Reward:		_	Average:	
	•	0470-0480		Reward:		_	Average:	
	•							
-	-	0480-0490		Reward:			Average:	
ΕĮ	pisodes	0490-0500	Max	Reward:	0.400	Moving	Average:	0.155
F	nicodec	0490-0500	May	Reward:	0 100	Moving	Average:	a 155
	Saved!!!		nax	itewaru.	0.400	MOVING	Average.	0.155
•	Saveu:::	•						
Eı	nisodes	0500-0510	Max	Reward:	0.200	Moving	Average:	0.149
	•	0510-0520		Reward:		_	Average:	
	•			Reward:		_	_	
	•	0520-0530				_	Average:	
	•	0530-0540		Reward:		_	Average:	
	•	0540-0550		Reward:		_	Average:	
ΕĮ	pisodes	0550-0560	Max	Reward:	0.400	Moving	Average:	0.137
Εį	pisodes	0560-0570	Max	Reward:	0.400	Moving	Average:	0.149
Εı	pisodes	0570-0580	Max	Reward:	0.400	Moving	Average:	0.150
	•	0580-0590	Max	Reward:	0.100	_	Average:	
	•	0590-0600		Reward:		_	Average:	
-	producs	0330 0000	IIIX	newar a.	0.400	110 4 ±1116	Average.	0.110
Εį	pisodes	0590-0600	Max	Reward:	0.400	Moving	Average:	0.140
	Saved!!!					Ü	J	
Εį	pisodes	0600-0610	Max	Reward:	0.400	Moving	Average:	0.149
	•	0610-0620	Max	Reward:	0.400	_	Average:	
	•	0620-0630		Reward:		_	Average:	
	•	0630-0640		Reward:		_	Average:	
-						_	_	
	•	0640-0650		Reward:		_	Average:	
	•	0650-0660		Reward:		_	Average:	
	•	0660-0670	Max	Reward:	0.400	Moving	Average:	0.199
ΕĮ	pisodes	0670-0680	Max	Reward:	0.400	Moving	Average:	0.203
Εı	pisodes	0680-0690	Max	Reward:	0.400	Moving	Average:	0.221
Εį	pisodes	0690-0700	Max	Reward:	0.400	_	Average:	0.224
_		0.500 0700			0.400			
-		0690-0700	Max	Reward:	0.400	Moving	Average:	0.224
3	Saved!!!							
	nicodos	0700-0710	Max	Reward:	0 100	Moving	Λυοροσοι	a 229
	•					_	Average:	
	•	0710-0720		Reward:		_	Average:	
	•	0720-0730		Reward:		_	Average:	
ΕĮ	pisodes	0730-0740	Max	Reward:	0.400	Moving	Average:	0.245
ΕĮ	pisodes	0740-0750	Max	Reward:	0.400	Moving	Average:	0.238
Εı	pisodes	0750-0760	Max	Reward:	0.400	Moving	Average:	0.234
Ei	pisodes	0760-0770	Max	Reward:	0.400	_	Average:	
	•	0770-0780		Reward:		_	Average:	
	•	0780-0790		Reward:		_	Average:	
	•					_	_	
티	pisoaes	0790-0800	мах	Reward:	0.400	Moving	Average:	0.233
F	nisodes	0790-0800	Max	Reward:	a 400	Moving	Average:	0 233
	Saved!!!		Mux	icwai u.	0.400	HOVING	Average.	0.233
•	Javeu:::							
Eı	pisodes	0800-0810	Max	Reward:	1.500	Moving	Average:	0.249
	•	0810-0820		Reward:		_	Average:	
	•	0820-0830		Reward:		_	Average:	
	•	0830-0840		Reward:		_	_	
	•					_	Average:	
	•	0840-0850		Reward:		_	Average:	
	•	0850-0860		Reward:		_	Average:	
	•	0860-0870		Reward:		_	Average:	
	•	0870-0880	Max	Reward:	3.000	Moving	Average:	0.510
Εį	pisodes	0880-0890	Max	Reward:	2.700	Moving	Average:	0.542
Εı	pisodes	0890-0900	Max	Reward:	5.200	Moving	Average:	0.746
	-					3	J	

Episodes 0890-0900 Saved!!!	Max	Reward:	5.200	Moving	Average:	0.746
F.: 0000 0010	M	D	F 300	M	A	0.046
Episodes 0900-0910		Reward:		_	Average:	
Episodes 0910-0920		Reward:		_	Average:	0.905
Episodes 0920-0930		Reward:		_	Average:	1.115
Episodes 0930-0940		Reward:		_	Average:	1.162
Episodes 0940-0950		Reward:		_	Average:	1.122
Episodes 0950-0960		Reward:		_	Average:	1.147
Episodes 0960-0970		Reward:		_	Average:	1.218
Episodes 0970-0980		Reward:		_	Average:	1.219
Episodes 0980-0990		Reward:		_	Average:	1.257
Episodes 0990-1000	Max	Reward:	3.400	Moving	Average:	1.144
Episodes 0990-1000	Max	Reward:	3.400	Moving	Average:	1.144
Saved!!!						
Episodes 1000-1010	Max	Reward:	5.200	Moving	Average:	1.088
Episodes 1010-1020	Max	Reward:	5.200	Moving	Average:	1.194
Episodes 1020-1030	Max	Reward:	4.100	Moving	Average:	1.077
Episodes 1030-1040	Max	Reward:	2.300	Moving	Average:	1.049
Episodes 1040-1050	Max	Reward:	5.100	Moving	Average:	1.110
Episodes 1050-1060	Max	Reward:	4.100	Moving	Average:	1.147
Episodes 1060-1070	Max	Reward:	4.700	Moving	Average:	1.203
Episodes 1070-1080	Max	Reward:	2.000	Moving	Average:	1.208
Episodes 1080-1090	Max	Reward:	3.700		Average:	1.276
Episodes 1090-1100	Max	Reward:	5.200	Moving	Average:	1.488
Episodes 1090-1100 Saved!!!	Max	Reward:	5.200	Moving	Average:	1.488
Episodes 1100-1110	Max	Reward:	5.200	Moving	Average:	1.659
Episodes 1110-1120	Max	Reward:	5.200	Moving	Average:	1.800
Episodes 1120-1130	Max	Reward:	5.200	Moving	Average:	1.947
Episodes 1130-1140	Max	Reward:	5.200	Moving	Average:	2.030
Episodes 1140-1150	Max	Reward:	5.200	Moving	Average:	2.094
Episodes 1150-1160	Max	Reward:	5.200	_	Average:	2.254
Episodes 1160-1170		Reward:		_	Average:	
< Environment solved				J	J	
< Moving Average: 2		•				

<-- Moving Average: 2.505 over past 100 episodes

In [13]:

```
# plot the scores
from collections import deque
import matplotlib.pyplot as plt
import numpy as np
import random
import time
import torch
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(np.arange(len(scores)), scores, label='MADDPG')
plt.plot(np.arange(len(scores)), avgs, c='r', label='moving avg')
plt.ylabel('Score')
plt.xlabel('Episode #')
plt.legend(loc='upper left');
fig.show()
fig.savefig("MADDPG_1e04__3000.png")
```

/opt/conda/lib/python3.6/site-packages/matplotlib/figure.py:418: UserWarni ng: matplotlib is currently using a non-GUI backend, so cannot show the fi gure

"matplotlib is currently using a non-GUI backend, "

In [12]:

```
## reinitialize the agents (if needed)
agent_0 = Agent(state_size, action_size, num_agents=1, random_seed=0)
agent 1 = Agent(state size, action size, num agents=1, random seed=0)
# load the weights from file
agent_0_weights = 'checkpoint_actor_0.pth'
agent 1 weights = 'checkpoint actor 1.pth'
agent 0.actor local.load state dict(torch.load(agent 0 weights))
agent 1.actor local.load state dict(torch.load(agent 1 weights))
```

In [14]:

```
CONSEC EPISODES = 50
PRINT_EVERY = 1
ADD_NOISE = False
def test(n_episodes=100, max_t=1000, train_mode=False):
    scores_window = deque(maxlen=CONSEC_EPISODES)
    scores_all = []
   moving_average = []
    for i_episode in range(1, n_episodes+1):
        env info = env.reset(train mode=train mode)[brain name] # reset the env
ironment
        states = np.reshape(env_info.vector_observations, (1,48)) # get states and comb
ine them
        scores = np.zeros(num agents)
       while True:
            actions = get_actions(states, ADD_NOISE)
                                                             # choose agent actions a
nd combine them
            env_info = env.step(actions)[brain_name] # send both agents' acti
ons together to the environment
           next_states = np.reshape(env_info.vector_observations, (1, 48)) # combine t
he agent next states
            rewards = env_info.rewards
                                                               # get reward
            done = env_info.local_done
                                                               # see if episode finishe
d
            scores += np.max(rewards)
                                                              # update the score for e
ach agent
                                                              # roll over states to ne
           states = next_states
xt time step
           if np.any(done):
                                                               # exit loop if episode f
inished
                break
        ep_best_score = np.max(scores)
        scores_window.append(ep_best_score)
        scores_all.append(ep_best_score)
       moving_average.append(np.mean(scores_window))
        # print results
        if i episode % PRINT EVERY == 0:
            print('Episodes {:0>4d}-{:0>4d}\tMax Reward: {:.3f}\tMoving Average: {:.3f}
'.format(
                i_episode-PRINT_EVERY, i_episode, np.max(scores_all[-PRINT_EVERY:]), mo
ving_average[-1]))
    return scores all, moving average
```

In [15]:

```
scores, avgs = test()
# plot the scores
from collections import deque
import matplotlib.pyplot as plt
import numpy as np
import random
import time
import torch
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(np.arange(len(scores)), scores, label='MADDPG')
plt.plot(np.arange(len(scores)), avgs, c='r', label='moving avg')
plt.ylabel('Score')
plt.xlabel('Episode #')
plt.legend(loc='upper left');
fig.savefig("MADDPG_Test2.png")
fig.show()
```

Episodes	0000-0001	Max	Reward:	3.490	Moving	Average:	3.490
Episodes	0001-0002	Max	Reward:	5.200	Moving	Average:	4.345
Episodes	0002-0003	Max	Reward:	0.600	Moving	Average:	3.097
Episodes	0003-0004	Max	Reward:	5.200	Moving	Average:	3.623
Episodes	0004-0005	Max	Reward:	5.200	Moving	Average:	3.938
Episodes	0005-0006	Max	Reward:	4.500	Moving	Average:	4.032
Episodes	0006-0007	Max	Reward:	5.100	Moving	Average:	4.184
Episodes	0007-0008	Max	Reward:	0.100	Moving	Average:	3.674
Episodes	0008-0009	Max	Reward:	1.400	Moving	Average:	3.421
Episodes	0009-0010	Max	Reward:	5.100	Moving	Average:	3.589
Episodes	0010-0011	Max	Reward:	0.100	Moving	Average:	3.272
Episodes	0011-0012	Max	Reward:	5.200	Moving	Average:	3.433
Episodes	0012-0013	Max	Reward:	5.200	Moving	Average:	3.568
Episodes	0013-0014	Max	Reward:	0.300	Moving	Average:	3.335
Episodes	0014-0015	Max	Reward:	5.100	Moving	Average:	3.453
Episodes	0015-0016	Max	Reward:	5.200	Moving	Average:	3.562
Episodes	0016-0017	Max	Reward:	0.300	Moving	Average:	3.370
Episodes	0017-0018	Max	Reward:	5.100	Moving	Average:	3.466
Episodes	0018-0019	Max	Reward:	0.100	Moving	Average:	3.289
Episodes	0019-0020	Max	Reward:	5.200	Moving	Average:	3.385
Episodes	0020-0021	Max	Reward:	2.900	Moving	Average:	3.361
Episodes	0021-0022	Max	Reward:	5.200	Moving	Average:	3.445
Episodes	0022-0023	Max	Reward:	0.100	Moving	Average:	3.300
Episodes	0023-0024	Max	Reward:	5.100	Moving	Average:	3.375
Episodes	0024-0025	Max	Reward:	0.200	Moving	Average:	3.248
Episodes	0025-0026	Max	Reward:	5.100	Moving	Average:	3.319
Episodes	0026-0027	Max	Reward:	2.600	Moving	Average:	3.292
Episodes	0027-0028	Max	Reward:	3.500	Moving	Average:	3.300
Episodes	0028-0029	Max	Reward:	5.200	Moving	Average:	3.365
Episodes	0029-0030		Reward:		Moving	Average:	3.356
Episodes	0030-0031	Max	Reward:	5.200	Moving	Average:	3.416
•	0031-0032	Max	Reward:	5.200	Moving	Average:	3.472
•	0032-0033		Reward:		_	Average:	
•	0033-0034		Reward:		_	Average:	
	0034-0035		Reward:		_	Average:	
•	0035-0036		Reward:		_	Average:	
•	0036-0037		Reward:		_	Average:	
•	0037-0038		Reward:		_	Average:	
•	0038-0039		Reward:		_	Average:	
•	0039-0040		Reward:		_	Average:	3.337
•	0040-0041		Reward:		_	Average:	
•	0041-0042		Reward:		_	Average:	
•	0042-0043		Reward:		_	Average:	
•	0043-0044		Reward:		_	Average:	
•	0044-0045		Reward:		_	Average:	
•	0045-0046		Reward:		_	Average:	
•	0046-0047		Reward:		_	Average:	
•	0047-0048		Reward:		_	Average:	
•	0048-0049		Reward:		_	Average:	
•	0049-0050		Reward:		_	Average:	
•	0050-0051		Reward:		_	Average:	3.270
•	0051-0052		Reward:		_	Average:	3.268
•	0052-0053		Reward:		_	Average:	3.270
•	0053-0054		Reward:		_	Average:	3.256
•	0054-0055		Reward:		_	Average:	3.256
•	0055-0056		Reward:		_	Average:	3.168
•	0056-0057		Reward:		_	Average:	3.068
•	0057-0058		Reward:		_	Average:	3.068
•	0058-0059		Reward:		_	Average:	
•	0059-0060		Reward:		_	Average:	
FD150065	0060-0061	мaх	Reward:	5.200	MOVING	Average:	3.226

Episodes	0061-0062	Max	Reward:	5.200	Moving	Average:	3.226
Episodes	0062-0063	Max	Reward:	3.300	Moving	Average:	3.188
Episodes	0063-0064	Max	Reward:	5.200	Moving	Average:	3.286
Episodes	0064-0065	Max	Reward:	5.200	Moving	Average:	3.288
Episodes	0065-0066	Max	Reward:	4.100	Moving	Average:	3.266
Episodes	0066-0067	Max	Reward:	5.100	Moving	Average:	3.362
Episodes	0067-0068	Max	Reward:	0.500	Moving	Average:	3.270
Episodes	0068-0069	Max	Reward:	5.100	Moving	Average:	3.370
Episodes	0069-0070	Max	Reward:	0.100	Moving	Average:	3.268
Episodes	0070-0071	Max	Reward:	5.100	Moving	Average:	3.312
Episodes	0071-0072		Reward:		Moving	Average:	3.212
Episodes	0072-0073		Reward:		Moving	Average:	3.242
Episodes	0073-0074	Max	Reward:	1.100	Moving	Average:	3.162
Episodes	0074-0075		Reward:		Moving	Average:	3.160
Episodes	0075-0076		Reward:		Moving	Average:	3.162
Episodes	0076-0077	Max	Reward:	5.200	Moving	Average:	3.214
•	0077-0078	-	Reward:		_	Average:	
•	0078-0079		Reward:		_	Average:	
•	0079-0080		Reward:		_	Average:	
•	0080-0081	Max	Reward:	5.200	_	Average:	
•	0081-0082	Max	Reward:	4.600	_	Average:	
•	0082-0083	Max	Reward:	5.100	_	Average:	
•	0083-0084	Max	Reward:	0.000	_	Average:	
•	0084-0085	-	Reward:			Average:	
•	0085-0086		Reward:		_	Average:	
•	0086-0087		Reward:		_	Average:	
•	0087-0088		Reward:		_	Average:	
•	0088-0089		Reward:		_	Average:	
•	0089-0090		Reward:		_	Average:	
•	0090-0091		Reward:		_	Average:	
•	0091-0092		Reward:		_	Average:	
•	0092-0093		Reward:		_	Average:	
•	0093-0094		Reward:		_	Average:	
•	0094-0095		Reward:		_	Average:	
	0095-0096		Reward:		_	Average:	
	0096-0097		Reward:			Average:	
	0097-0098		Reward:		_	Average:	
•	0098-0099		Reward:		_	Average:	
Episodes	0099-0100	Мах	Reward:	5.200	Moving	Average:	3.314

/opt/conda/lib/python3.6/site-packages/matplotlib/figure.py:418: UserWarning: matplotlib is currently using a non-GUI backend, so cannot show the figure

[&]quot;matplotlib is currently using a non-GUI backend, "

In [16]:

```
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(np.arange(len(scores)), scores, label='MADDPG')
plt.plot(np.arange(len(scores)), avgs, c='r', label='moving avg')
plt.ylabel('Score')
plt.xlabel('Episode #')
plt.legend(loc='upper left')
fig.savefig("MADDPG_Test2.png")
fig.show()
```

/opt/conda/lib/python3.6/site-packages/matplotlib/figure.py:418: UserWarni ng: matplotlib is currently using a non-GUI backend, so cannot show the figure

"matplotlib is currently using a non-GUI backend, "


```
In [17]:
#PERFORMANCE iMPROVEMENT
# LEARNING RATE WITH 1E-5 OR LESS
# KEEPING LEARING RATE DIFFERENT BETWEEN 2 AGENTS
# INCREASE EPOCHS
# DENSE NETWORK
In [ ]:
```

In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	

In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	

In []:	
In []:	
In []:	
In []:	
In [].	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
L 1*	
Tn [].	
In []:	
In []:	

In []:		
In []:		
In []:		
In []:		
In []:		
In []:		
In []:		