

3D Printing

Eun Sun Lee eunsunlee@g.ucla.edu

3D printing

•Fabrication methods used to print 3D objects, by depositing material layer by layer

Why 3D printing?

•Fast turn – around

Cost – effective!

What is 3D printing flow like?

• a.k.a Rapid Prototyping (RP), Layered Manufacturing (LM)

Object representation: .STL FILE

- STL: STereoLithography
- Representation of the surface geometry of a 3d object
- Triangles
 - For each triangle: X, Y, Z coordinates of the three vertices, and the surface normal

Source: http://www.fabbers.com/tech/STL_Format

the direction of the unit normal and the

order in which the vertices are listed.

Different types of 3D printing

- 1. Stereolithography (SLA)
- 2. Fused Deposition Modeling (FDM)
- 3. Digital Light Processing (DLP)
- 4. Selective Laser Sintering (SLS)
- 5. Binder Jetting (BJ)

1. Stereolithography

- First commercial RP
 - By 3D systems', Valencia C
- •UV Laser traces a cross-section of the part on the surface of the liquid resin
- Exposed resin solidifies and joins layer below

Image from Professor Xiaochun Li's slides, MAE298, UCLA

1. Stereolithography

•To build next layer:

- SLA's elevator platform descends by a distance equal to thickness of a single layer
- A resin-filled blade re-coats it with fresh material.

Image from Professor Xiaochun Li's slides, MAE298, UCLA

Support Structures for SLA

•SLA sometimes requires supporting structures to attach part to elevator

platform

Removed in post-processing

Source: https://arxiv.org/pdf/1705.03811.pdf

2. Fused Deposition Modeling (FDM)

- •FDM is the most common desktop 3D printing method.
- •Thermoplastic filament is heated and extruded through a head that deposits the molten plastic in X and Y coordinates
- •The build platform lowers the object layer by layer in the Z direction.

Images from Professor Xiaochun Li's slides, MAE298, UCLA

3. Selective Laser Sintering (SLS)

- •SLS is similar to SLA, but uses powdered material instead of liquid resin.
- •Laser is used to selectively sinter a layer of granules, which binds the material together to create a solid structure.
- Similar process used for metals

Chordal Error

- •Tesselation of object:
 - otiling a surface with geometric shapes such that there are no overlaps or gaps.
- Chordal error: Defect due to tesselation
- •To reduce chordal error:
 - ○Increasing number of triangles →
 increase computational complexity

Source: Taufik et al; 2014

Staircase Error

- Volumetric error
 - Between the model and printer object

(a) Slicing of facet

Source: Luo et al; 2014

Selecting orientation

Orientation affects:

- Surface quality
 - If Build direction is parallel to objects edges
 →no staircase error
- •Time needed to print object
 - •Fewer layers → shorter print time
- Amount of support structures needed
 - Orientation determines the overhang in the objects and the islands

Slicing

Uniform Slicing

- One slice thickness used throughout the whole object
- Tradeoff between accuracy and printing time

Adaptive Slicing

- Small thickness where high accuracy is needed
- Thicker sliceFaster

Source: https://arxiv.org/pdf/1705.03811.pdf

Requirements for Project

- Download software for the Formlabs 3D printer (Form1+/Form2): preform https://formlabs.com/tools/preform/
- 2. Download numpy-stl and tqdm

OSX:

sudo easy_install pip pip install numpy-stl conda install tqdm

Windows:

pip install numpy-stl conda install tqdm

Assignment: Rotate the lion

- Open Preform.
- Load SimpleLion.stl → repair
- •In the python code,
 - •Rotate the object by 90 degrees arrund X –axis
 - Save the rotated lion as rotatedLion.stl
- Load rotatedLion.stl in Preform→ repair

Project

•Required:

- Find the "best" orientation to print the object
 - Best tradeoff between printing accuracy and printing time
 - Metric: sqrt (number of layers) * ERROR
 - Find angles (x, y, x) to achieve minimum possible metric value
- •We will ignore support structures
- •Degrees of freedom:
 - •360 degrees rotation around X-axis
 - •360 degrees rotation around Y-axis
 - •360 degrees rotation around Z-axis
- •Error Calculation for one orientation only takes more than 2 minutes
 - No way to sample all possible orientations for error
 - Figure out a smart way to sample "enough" orientations
- To calculate error
 - calculateError(stlObj,0.2,5)

Pick an interesting object to print

- Lot of interesting models online for free!
- •Models available at https://all3dp.com/1/free-stl-files-3d-printer-models-3d-print-files-stl-download/

•CONSTRAINT

- ■Printing time < 75 minutes
- Check time using preform
- •We will be printing some of your objects until the end of the program
 - olt takes time!

Research/Presentation Topics

- 1. Adaptive Slicing Algorithm(s)
- 2. Orientation Selection Algorithm (s)
- 3. Algorithm(s) to generate support structures
- 4. Vector vs. Raster-based printers
- 5. Comparison between commercial printers (personal use and large scale printers)
- 6. A type of 3D printing
 - •Examples: Digital Light Processing (DLP), Binder Jetting (BJ), Continuous Liquid Interface Production (CLIP)