

Ultra-Low V_{CE(sat)} IGBT with Diode

IXGH 38N60U1

600 V **V**_{CES}

Combi Pack

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	600	V	
V _{CGR}	$T_J = 25^{\circ}C$ to 150°C; $R_{GE} = 1 \text{ M}\Omega$	600	V	
V _{GES}	Continuous	±20	V	
V _{GEM}	Transient	±30	V	
I _{C25}	T _c = 25°C	76	A	
I _{C90}	T _C = 90°C	38	Α	
I _{CM}	$T_{\rm C} = 25^{\circ} \rm C$, 1 ms	152	Α	
SSOA (RBSOA)	V_{GE} = 15 V, T_{VJ} = 125°C, R_{G} = 10 Ω Clamped inductive load, L = 100 μH	I _{CM} = 76 @ 0.8 V _{CES}	А	
P _c	T _c = 25°C	200	W	
T _J		-55 + 150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
M _d	Mounting torque (M3)	1.13/10	Nm/lb.in.	
Weight		6	g	
	ad temperature for soldering 62 in.) from case for 10 s	300	°C	

TO-247 AD	
G	
CE	

G = Gate, C = Collector, E = EmitterTAB = Collector

Features

- · International standard package JEDEC TO-247 AD
- · IGBT and anti-parallel FRED in one package
- 2nd generation HDMOS[™] process
- Low V_{CE(sat)}
 for minimum on-state conduction losses
- MOS Gate turn-on
 - drive simplicity
- Fast Recovery Epitaxial Diode (FRED)
 - soft recovery with low I_{RM}

Characteristic Values (T₁ = 25°C, unless otherwise specified)

		(1 _J = 20 0; arricos etriorwice epecinica)			
		min.	typ.	max.	
BV _{CES}	$I_{C} = 750 \mu\text{A}, V_{GE} = 0 \text{V}$	600			V
V _{GE(th)}	I_{C} = 250 μ A, V_{CE} = V_{GE}	2.5		5.5	V
I _{CES}	$V_{CE} = 0.8 \cdot V_{CES}$ $V_{GE} = 0 V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$		500 8	μA mA

$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$ ±100 nΑ IGES $I_{C} = I_{C90}, V_{GE} = 15 \text{ V}$ $\mathbf{V}_{_{\text{CE(sat)}}}$ 1.8 ٧

Applications

- · AC motor speed control
- DC servo and robot drives
- · DC choppers
- Uninterruptible power supplies (UPS)
- · Switch-mode and resonant-mode power supplies

Advantages

- · Space savings (two devices in one package)
- · Easy to mount with 1 screw (isolated mounting screw hole)
- · Reduces assembly time and cost
- High power density

Test Conditions

Symbol

Symbol	Test Conditions Ch $(T_{_{\! J}}=25^{\circ}\text{C, unless of min.})$		istic Va se speci max.	
g _{fs}	$I_{_{C}}=I_{_{C90}};~V_{_{CE}}=10~V,$ 15 Pulse test, t \leq 300 μs , duty cycle \leq 2 %	20		S
C _{ies} C _{oes} C _{res}		2500 270 70		pF pF pF
Q _g Q _{ge} Q _{gc}		125 23 50	150 35 75	nC nC nC
$\mathbf{t}_{ ext{d(on)}}$ $\mathbf{t}_{ ext{ri}}$ $\mathbf{t}_{ ext{d(off)}}$ $\mathbf{t}_{ ext{f}_{ ext{i}}}$ $\mathbf{E}_{ ext{off}}$	Inductive load, T_J = 25°C $I_C = I_{C90}, V_{GE} = 15 \text{ V}, L = 100 \mu\text{H}, \\ V_{CE} = 0.8 V_{CES}, R_G = R_{off} = 10 \Omega$ Remarks: Switching times may increase for V_{CE} (Clamp) > 0.8 • V_{CES} , higher T_J or increased R_G	30 150 600 500 9	1200 700 15	ns ns ns ns mJ
t _{d(on)} t _{ri} E _{on} t _{d(off)} t _{fi} E _{off}	$\label{eq:local_local} \left\{ \begin{array}{l} \text{Inductive load, T}_{\text{J}} = 125^{\circ}\text{C} \\ I_{\text{C}} = I_{\text{C90}}, V_{\text{GE}} = 15 \text{V}, L = 100 \mu\text{H} \\ V_{\text{CE}} = 0.8 V_{\text{CES}}, R_{\text{G}} = R_{\text{off}} = 10 \Omega \\ \text{Remarks: Switching times may increase} \\ \text{for } V_{\text{CE}} \text{(Clamp)} > 0.8 \bullet V_{\text{CES}}, \text{higher T}_{\text{J}} \text{or} \\ \text{increased R}_{\text{G}} \end{array} \right.$	40 160 1 800 1000 15		ns ns mJ ns ns ms
R _{thJC}		0.25	0.62	K/W K/W

Reverse Diode (FRED)

Characteristic Values

(T₁ = 25°C, unless otherwise specified) **Symbol Test Conditions** min. typ. max. $I_{_F}=I_{_{C90}},~V_{_{GE}}=0~V,$ Pulse test, $t\leq 300~\mu s,$ duty cycle d $\leq 2~\%$ ٧_۶ 1.6 V $I_{_F} = I_{_{C90}}, \ V_{_{GE}} = 0 \ V, \ -di_{_F}/dt = 240 \ A/\mu s$ $V_{_R} = 360 \ V$ 10 I_{RM} 15 Α 150 ns $I_F = 1 \text{ A}$; -di/dt = 100 A/ μ s; $V_R = 30 \text{ V T}_J = 25^{\circ}\text{C}$ 35 50 ns 1 K/W