QMRA model to assess the human exposure to ESBL *E. coli* from poultry production through different environmental pathways

Subhasish Basak1, Nunzio Sarnino2, Roswitha Merle2, Lucie Collineau1 1. ANSES – Laboratoire de Lyon, France 2. Freie Universität Berlin, Germany

CONTEXT

PROJECT ENVIRE

CONSORTIUM AND FUNDING

- Project duration: 2022-2025
- Germany, France, Lithuania, Poland, Tunisia
- Funded by the European Transnational Programme JPIAMR-ACTION

OBJECTIVES

- Reduce antimicrobial-resistant (AMR) bacteria spread from broiler chickens
- Investigate the potential of various on-farm intervention measures
- Reduce transmission and human exposure to ESBL *E. coli* from broiler chicken

WORKFLOW – WP 3

Quantitative Risk Assessment with pathways:

FOOD-BORNE

ENVIRONMENTAL

OCCUPATIONAL

Incorporate on-farm intervention measures

MATERIALS & METHODS ENVIRONMENTAL PATHWAYS

Decay

Agricultural irrigation

WATERSHED CONTAMINATION

DYNAMICS of ESBL *E. coli* in environment

Poultry manure 🏎 is used in agricultural lands 🌾 🚅 Surface runoff carries ESBL *E. coli* 🦠 to nearby watershed ໕ Watershed is contaminated from manure c.f. Sowah et al. (2020) NO evidence: soil to fresh harvest www.contamination NO evidence: soil to ground water ____ contamination

DYNAMICS of ESBL *E. coli* in manure soil watershed

Bacteria decay in soil Merchant et al. (2012), Phang et al. (2020) Bacteria transport from soil to watershed Neitsch et al. (2011) ! Work in Progress: Anaerobic digestion of poultry manure

TRANSMISSION PATHWAYS

Dynamics of ESBL *E. coli* in contaminated watershed Mancini (1978)

Decay in ESBL *E. coli* population due to environmental factors

Decay rate k := f (temperature, radiation, salinity, light extinction, water depth)

Final *E. coli* concentration is based on time elasped before water usage

Transmission pathways:

c.f. O'Flaherty et al. (2018, 2019)

- Drinkng water treatement
- Swimming in bathing sites
- Agricultural harvest irrigation

Human exposure to ESBL *E. coli*:

- 100 ml of tap water consumption
- 1h of swimming (accidental ingestion)
- 100 g of fresh lettuce consumption

Probability of human ESBL *E. coli* carriage

PDR: Dose-response Furusawa et al. (2024)

RESULTS & PERSPECTIVES

Relative impact of different environmental pathways

1000 Monte Carlo simulations estimated the different pathway exposure

- Recreational swimming has highest exposure among all 3 pathways
- Tap water & lettuce consumption has much less exposure

NB: Soil – watershed dynamics of ESBL *E. coli* uses Sowah et al. (2020) Based on a simplified version of Neitsch et al. (2011) SWAT model

QRA module perspectives

Validation: Compare to existing literature O'Flaherty et al. (2018, 2019)

Robustness: Application of a **SWAT** model for user defined geography Future work: Integration of anaerobic digestion experimental data

www.envire-project.de