Queueing versus Surge Pricing Mechanism: Efficiency, Equity, and Consumer Welfare

Yueyang Zhong¹ Zhixi Wan² Zuo-Jun Max Shen³

¹Department of Operations Management University of Chicago Booth School of Business

> ²Faculty of Business and Economics University of Hong Kong

³Department of Industrial Engineering and Operations Research University of California, Berkeley

Aug 10-12, 2021

Background

Figure: DiDi ride hailing process

Background: Surge Pricing Mechanism

- Surging price to suppress demand and stimulate supply.
- Surge cap (DiDi Express): surge amount ≤ ¥29, surge multiplier≤1.5.

Problem: undisclosed surge pricing algorithm raises concerns about **demographic disparity** and **social bias**.

Background: Virtual Queueing Mechanism

- No surge pricing
- One queue in each region
- Each queue has infinite capacity
- Announce queue length and estimated waiting time in real time.

Research Questions

To compare the surge pricing mechanism and the virtual queueing mechanism in terms of

- (i) operational performance and consumer welfare;
- (ii) fairness.

Research Questions

Performance metrics	Definition
Response rate	Percentage of orders matched
Demand satisfaction rate	Percentage of demand satisfied
Unit-time GMV	Ride price × Number of orders over a unit time period
Consumer surplus per capita	Average (Service valuation – ride price – waiting cost)
Equity	Distribution of welfare among customers

Literature Review

- Dynamic pricing in queueing systems
 Naor (1969); Knudsen (1972); Yechiali (1971); Chen et al. (2015); Cachon et al. (2017); Kim and Randhawa (2017); Bai et al. (2018); Taylor (2018); Hu and Zhou (2019); Fang et al. (2019); Hu et al. (2019) ...
- Queueing systems with impatient riders
 Haight (1959); Ancker Jr and Gafarian (1963); Ward and Glynn (2003);
 Kumar (2013); Jouini et al. (2011) . . .
- Observable queues with delay announcements (analytical)
 Hassin (1986); Whitt (1999); Armony and Maglaras (2004); Guo and Zipkin (2007); Jouini et al. (2009); Hu et al. (2018) ...

- Data-Driven Model Formulation
- Mechanism Analysis
 - Virtual Queueing Mechanism
 - Surge Pricing Mechanism
- Mechanism Comparison
- Equity Analysis

Dataset

 A sample of DiDi Express within 6 randomly selected regions of Beijing, in the morning and afternoon rush hours with heavy congestion, in November 2017.

Dataset

- A sample of DiDi Express within 6 randomly selected regions of Beijing, in the morning and afternoon rush hours with heavy congestion, in November 2017.
- Data description
 - Order-related (ride price, waiting time, request timestamp, response timestamp, cancellation timestamp, completion timestamp)
 - Queue-related (queue length, queue speed)
 - Number of drivers

Data Evidence

- 1. Occurrence of rider orders: Pois(λ)
- 2. Occurrence of empty cars: $Pois(\mu)$
- 3. Riders' willingness-to-wait before reneging: $Exp(\gamma)$
- 4. Total number of cars: constant s

Data Evidence

- 1. Occurrence of rider orders: Pois(λ)
- 2. Occurrence of empty cars: Pois(μ)
- 3. Riders' willingness-to-wait before reneging: $\text{Exp}(\gamma)$
- 4. Total number of cars: constant s

Figure: Empirical birth-and-death process for one region

Model: M/M/s+M Queue

Model: Virtual Queueing Mechanism

• Rider's utility function (when queue length is n)

$$\begin{array}{c|c} \hline \text{Uniform}(R_1,R_2) \text{ valuation} & \hline & \text{Uniform}(A_1,A_2) \text{ unit waiting cost} \\ \hline \\ \textit{Utility}_1 = \begin{matrix} \bullet & \bullet \\ r - p_1 - a & \bullet \\ \bullet & \uparrow \end{matrix} & \text{(1)} \\ \hline & \text{price} & \hline & \text{Conditional expected wait time} \\ \hline \end{array}$$

Order probability:

$$\beta(n) = Prob\{Utility_1 \ge 0\}$$

Model: Virtual Queueing Mechanism

• Balance equation \Longrightarrow Stationary distribution P_i

$$\begin{split} P_i &= \frac{\lambda^i}{i!\mu^i} P_0, \qquad 0 \leq i \leq s, \\ P_i &= \frac{\lambda^i}{s!\mu^s} \left(\prod_{j=1}^{i-s} \frac{\beta(j-1)}{s\mu+j\gamma} \right) P_0, \qquad i > s, \\ \text{where } P_0 &= \left[\sum_{i=0}^s \frac{\lambda^i}{i!\mu^i} + \sum_{i=s+1}^\infty \frac{\lambda^i}{s!\mu^s} \left(\prod_{j=1}^{i-s} \frac{\beta(j-1)}{s\mu+j\gamma} \right) \right]^{-1}. \end{split}$$

Figure: Birth and death process

→ □ ト → □ ト → 三 ト → 三 → つへの

Model: Surge Pricing Mechanism

Rider's utility function

Uniform
$$(R_1, R_2)$$
 valuation Surge price
$$Utility_2 = r - p_2 \quad (3)$$

Surge price: matching supply and demand

Balancedness coefficient $\lambda \cdot \beta(p_2) = \left[s \cdot \left(1 + \theta(p_2 - p_1) \right) \right] \cdot \mu \cdot \dot{\eta} \quad (3)$ Driver's sensitivity to surging price

Surge cap

$$p_2 - p_1 \leq \min\{\overline{p}, \overline{m}p_1\}.$$

Order probability

$$\beta(p_2) = Prob\{Utility_2 \ge 0\}$$

Model: Surge Pricing Mechanism

• Balance equation \Longrightarrow stationary distribution P_i

$$\begin{split} P_i &= \frac{\lambda^i}{i!\mu^i} P_0, \qquad 0 \leq i \leq s, \\ P_i &= \frac{\lambda^i}{s!\mu^s} \left(\prod_{j=1}^{i-s} \frac{\beta(p_2)}{s\mu+j\gamma}\right) P_0, \qquad i > s, \\ \text{where } P_0 &= \left[\sum_{i=0}^s \frac{\lambda^i}{i!\mu^i} + \sum_{i=s+1}^\infty \frac{\lambda_i}{s!\mu^s} \left(\prod_{j=1}^{i-s} \frac{\beta(p_2)}{s\mu+j\gamma}\right)\right]^{-1}. \end{split}$$

Figure: Birth and death process

◆ロト ◆部ト ◆注ト ◆注ト 注 り < ○</p>

- Data-Driven Model Formulation
- Mechanism Analysis
 - Virtual Queueing Mechanism
 - Surge Pricing Mechanism
- Mechanism Comparison
- 4 Equity Analysis

Mechanism Comparison

• Which mechanism performs better in four metrics?

Figure: Comparison of two mechanisms in four metrics

Mechanism Comparison: Thresholds

• What is the property of threshold?

Para	Interpretation	Metric	Threshold	Example
meter				
$\lambda \uparrow$	larger demand size	RR/DSR	<u> </u>	big cities
$\gamma \uparrow$	more outside options	RR/DSR	\uparrow	competition
$A_2 \uparrow$	higher waiting cost	RR(DSR)	↓ (↑)	work, flight
$R_2 \uparrow$	higher willingness to pay	RR/DSR	↓	rich areas

RR: response rate; DSR: demand satisfaction rate

Mechanism Comparison: Case Study

Case study: November 2017, Beijing

Table 3 Performance metrics under both mechanisms in part of the case study

	Queue A		Queue a		Queue b	
	Queue	Surge	Queue	Surge	Queue	Surge
Response rate	0.6598	0.8842	0.95296	0.95943	0.06832	0.0303
Demand satis. rate	0.1479	0.1295	0.58535	0.5879	0.01377	0.01325
Consumer surplus	1.1263	0.3636	14.8058	14.4192	0.27959	-1.4977
GMV	8102.10	9082.39	15784.1	16172.9	3715.3	5362.18
p_2	-	38.3916	-	30.5882	-	45.0000
Demand/supply	9.6667		1.6667		100.0000	

- Data-Driven Model Formulation
- Mechanism Analysis
 - Virtual Queueing Mechanism
 - Surge Pricing Mechanism
- Mechanism Comparison
- Equity Analysis

Equity Analysis

1. Gini coefficient

- A greater coefficient implies a higher degree of inequality.
- Virtual queueing is more equitable than surge pricing mechanism.

Equity Analysis

- 2. Distribution of welfare across various types of riders
 - Demand satisfaction rate, consumer surplus
 - Rider type: (1) low-WTP vs. high-WTP; (2) Patient vs. impatient.
 - Under both mechanisms: high-WTP or patient riders enjoy higher welfare.
 - The imbalance is smaller under virtual queueing.

Takeaway: Both mechanisms are inequitable, but queueing mechanism is relatively more equitable.

Sensitivity Analysis

More generalized supply functions

$$s' = s \cdot (1 + F(p_2 - p_1))$$
, where

F(x) can be any concave or convex increasing function.

- Distribution assumptions: Gaussian distribution, Uniform distribution, Two-point distribution.
- Independence assumption: when WTP and WTW are correlated.

Conclusions

The advantages of a queueing mechanism over the widely used surge pricing mechanism in heavily loaded ridesharing systems.

- Queueing outperforms pricing mechanism in consumer surplus.
- Surge pricing mechanism dominates virtual queuing in GMV.
- As congestion increases, queueing is more beneficial for higher response rate or higher demand satisfaction rate.
- Queueuing is more **equitable** than surge pricing mechanism.

Q&A

