Regression Analysis of Boston House Prices

Purpose

- Determine which factors predict a higher home value for a construction company.
- Also determine which factors predict a lower value.

Creating a Model

- Choose predictors and target variable
 - Target: median home values (MEDV)
- Look for correlations
- Check for normality

- 0.9

- 0.6

- 0.3

- 0.0

- -0.3

- -0.6

Base Model Predictors

Base Model Results

Dep. Variable:		MEDV		R-squared:		ed:	0.639	
Model:		OLS		Adj. R-squared:		ed:	0.637	
Method:		Least Squares		F-statistic:		tic:	444.3	
	Date:	Wed, 02	Oct 2019	Prob (F-statistic):		tic): 7	.01e-112	
Time:		14:30:58		Log-Likelihood:		od:	-1582.8	
No. Observations:			506 AIC:		IC:	3172.		
Df Residuals:		503			BIC:		3184.	
Df Model:			2					
Covariance Type:			nonrobust					
	coef	std err	t	P> t	[0.025	0.975		
Intercept	-1.3583	3.173	-0.428	0.669	-7.592	4.875	5	
RM	5.0948	0.444	11.463	0.000	4.222	5.968	3	
LSTAT	-0.6424	0.044	-14.689	0.000	-0.728	-0.556	5	
Omnibus: 14		45.712	Durbin-Watson:		0.834			
Prob(Omnibus):		0.000	Jarque-Bera (JB):		457.690			
Skew:		1.343	Prob(JB):		4.11e-100			
Kurtosis:		6.807	Cond. No.		202.			

This means that 64% of the variance in our target variable (median values) can be explained by our predictors.

Not bad, but we can do better!

Improving Our Model

Removed all values with std > 0.25

Improving Our Model (contd.)

Final Results

In general, a higher R-squared means that the model is a better fit.

Coefficients are the values that multiply the predictor variables.

Recommendations

- Number of rooms is the greatest positive predictor for home values
- Crime rate, low socioeconomic status, and a high student-to-teacher ratio are negative predictors