12. Расчёты по формулам Блок 1. ФИПИ ПРИМЕРЫ

- **Задание 1.** В фирме «Родник» стоимость (в рублях) колодца из железобетонных колец рассчитывается по формуле $C = 6000 + 4100 \cdot n$, где n число колец, установленных при рытье колодца. Пользуясь этой формулой, рассчитайте стоимость колодца из 7 колец.
- **Задание 2.** В фирме «Эх, прокачу!» стоимость поездки на такси (в рублях) рассчитывается по формуле $C=150+12\cdot(t-5)$, где t длительность поездки, выраженная в минутах (t>5). Пользуясь этой формулой, рассчитайте стоимость 11-минутной поездки.
- **Задание 3.** Чтобы перевести значение температуры по шкале Цельсия в шкалу Фаренгейта, пользуются формулой $t_F = 1.8t_C + 32$, где t_C градусы Цельсия, t_F градусы Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует 45 градусов по шкале Цельсия?
- **Задание 4.** Чтобы перевести значение температуры по шкале Фаренгейта в шкалу Цельсия позволяет формула $t_C = \frac{5}{9}(t_F 32)$, где t_C температура в градусах Цельсия, t_F температура в градусах Фаренгейта. Скольким градусам по шкале Цельсия соответствует 113 градусов по шкале Фаренгейта?
- **Задание 5.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = I^2R$, где I сила тока (в амперах), R сопротивление (в омах). Пользуясь этой формулой, найдите сопротивление R, если мощность составляет 101,25~BT, а сила тока равна 4,5~A. Ответ дайте в омах.
- **Задание 6.** Центростремительное ускорение при движении по окружности (в м/с²) можно вычислить по формуле $a = \omega^2 R$, где ω угловая скорость (в с¹), а R радиус окружности. Пользуясь этой формулой, найдите радиус R (в метрах), если угловая скорость равна 7.5 с¹, а центростремительное ускорение равно 337.5 м/с². Ответ дайте в метрах.
- **Задание 7.** Площадь четырёхугольника можно вычислить по формуле $S = \frac{d_1 d_2 \sin \alpha}{2}$, где d_1 и d_2 длины диагоналей четырёхугольника, α угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d_2 , если d_1 =12, $\sin \alpha = \frac{7}{9}$, а S=46,2.

Блок 2. ФИПИ. Расширенная версия ПРИМЕРЫ

- **Задание 8.** Зная длину своего шага, человек может приближённо подсчитать пройденное им расстояние s по формуле s=nl, где n число шагов, l длина шага. Какое расстояние прошёл человек, если l = 60 см, n = 1300? Ответ выразите в километрах.
- **Задание 9.** Период колебания математического маятника T (в секундах) приближенно можно вычислить по формуле $T = 2\sqrt{l}$, где l длина нити (в метрах). Пользуясь этой формулой, найдите длину нити маятника (в метрах), период колебаний которого составляет 11 секунд.
- **Задание 10.** Закон Кулона можно записать в виде $F = k \frac{q_1 q_2}{r^2}$, где F сила взаимодействия зарядов (в ньютонах), q_1 и q_2 величины зарядов (в кулонах), k коэффициент пропорциональности (в $H \cdot m^2 / K \Lambda^2$), а r расстояние между зарядами (в метрах). Пользуясь формулой, найдите величину заряда q_2 (в кулонах), если $k = 9 \cdot 10^9$ $H \cdot m^2 / K \Lambda^2$, $q_1 = 0,008$ Кл, r = 400 м, а F = 0,225 H.
- **Задание 11.** Закон всемирного тяготения можно записать в виде $F = \gamma \frac{m_1 m_2}{r^2}$, где F сила притяжения между телами (в ньютонах), m_1 и m_2 массы тел (в килограммах), r расстояние между центрами масс (в метрах), а γ гравитационная постоянная, равная $6.67 \cdot 10^{-11} \; \text{H·m}^2/\text{kr}^2$. Пользуясь формулой, найдите массу тела m_1 (в килограммах), если $F = 0.64032 \; \text{H}$, $m_2 = 4 \cdot 10^9 \; \text{kr}$, а $r = 5 \; \text{m}$.
- **Задание 12.** Закон Менделеева-Клапейрона можно записать в виде $PV = \nu RT$, где P -давление (в паскалях), V -объём (в M^3), V -количество вещества (в молях), T -температура (в градусах Кельвина), а R -универсальная газовая постоянная, равная $8,31 \ Дж/(K\cdot моль)$. Пользуясь этой формулой, найдите объём V (в M^3), если $T = 300 \ K$, $P = 53 \ 848,8 \ Па, <math>\nu = 32,4 \ моль$.
- **Задание 13.** Закон Менделеева-Клапейрона можно записать в виде $PV = \nu RT$, где P давление (в паскалях), V объём (в м³), $\nu -$ количество вещества (в молях), T температура (в градусах Кельвина), а R универсальная газовая постоянная, равная $8,31 \, \text{Дж/(K·моль)}$. Пользуясь формулой, найдите температуру T (в градусах Кельвина), если $P = 70\,219,5$ Па, $\nu = 29,9$ моль, V = 2,3 м³.

12. Расчёты по формулам Блок 3. Типовые экзаменационные варианты примеры

- **Задание 14.** Высота деревянного стеллажа для книг равна h = (a+b)n + a миллиметров, где a толщина одной доски (в мм), b высота одной полки (в миллиметрах), n число таких полок. Найдите высоту книжного стеллажа из 8 полок, если a = 18 мм, b = 310 мм. Ответ выразите в миллиметрах.
- **Задание 15.** Закон Гука можно записать в виде F = kx, где F cила (в ньютонах), с которой сжимают пружину, x -абсолютное удлинение (сжатие) пружины (в метрах), а k -коэффициент упругости. Пользуясь этой формулой, найдите x (в метрах), если $F = 80 \, \text{H}$ и $k = 5 \, \frac{\text{H}}{\text{M}}$.
- **Задание 16.** Закон Джоуля–Ленца можно записать в виде $Q = I^2Rt$, где Q количество теплоты (в джоулях), I сила тока (в амперах), R сопротивление цепи (в омах), а t время (в секундах). Пользуясь этой формулой, найдите время t (в секундах), если Q = 816,75 Дж, I = 5,5 A, R = 9 Ом .
- **Задание 17.** Мощность постоянного тока (в ваттах) вычисляется по формуле $P = \frac{U^2}{R}$, где U напряжение (в вольтах), R сопротивление (в омах). Пользуясь этой формулой, найдите P (в ваттах), если R=9 Ом, U=18 B.
- **Задание 18.** Работа постоянного тока (в джоулях) вычисляется по формуле $A = \frac{U^2t}{R}$, где U напряжение (в вольтах), R сопротивление (в омах), t время (в секундах). Пользуясь этой формулой, найдите A (в джоулях), если t = 8 с, U = 6 В, R = 2 Ом.
- **Задание 19.** Кинетическая энергия тела (в джоулях) вычисляется по формуле $E = \frac{mv^2}{2}$, где m масса тела (в килограммах), а v его скорость (в метрах в секунду). Пользуясь этой формулой, найдите E (в джоулях), если $v = 5 \, \text{m/c}$ и m = $12 \, \text{kr}$.
- **Задание 20.** Энергия заряженного конденсатора W (в Дж) вычисляется по формуле $W = \frac{\text{CU}^2}{2}$, где C ёмкость конденсатора (в Ф), а U разность потенциалов на обкладках конденсатора (в В). Найдите энергию конденсатора W (в Дж) ёмкостью 10^{-4} Ф, если разность потенциалов U на обкладках конденсатора равна 8 В.

Задание 21. Площадь треугольника можно вычислить по формуле $S = \frac{abc}{4R}$, где a, b и c – стороны треугольника, а R – радиус окружности, описанной около этого треугольника. Пользуясь этой формулой, найдите S, если a = 11, b = 13, c = 20 и $R = \frac{65}{6}$.

Задание 22. Радиус вписанной в прямоугольный треугольник окружности можно найти по формуле $r = \frac{a+b-c}{2}$, где a и b – катеты, а c – гипотенуза треугольника. Пользуясь этой формулой, найдите c, если a=12, b=35 и r=5.

Задание 23. Теорему косинусов можно записать в виде $\cos \alpha = \frac{a^2 + b^2 - c^2}{2ab}$, где a, b и c – стороны треугольника, а α – угол между сторонами a и b. Пользуясь этой формулой, найдите величину $\cos \alpha$, если a = 3, b = 8 и c = 7.

Задание 24. Длина медианы m_c , проведённой к стороне с треугольника со сторонами a, b и c, вычисляется по формуле $m_c = \frac{\sqrt{2a^2 + 2b^2 - c^2}}{2}$. Найдите медиану m_c , если a = 4, b = 7 и c = 9.

Задание 25. Длина биссектрисы l_c , проведённой к стороне с треугольника со сторонами a, b и c, вычисляется по формуле $l_c = \frac{1}{a+b} \sqrt{ab((a+b)^2 - c^2)}$. Найдите длину биссектрисы l_c , если a=7, b=21 и c=26.

Задание 26. Площадь треугольника вычисляется по формуле $S = \frac{1}{2}bcsin\alpha$, где b и c – две стороны треугольника, а α – угол между ними. Пользуясь этой формулой, найдите $sin\alpha$, если b=10, c=5 и S=20.

Задание 27. Радиус описанной около треугольника окружности можно найти по формуле $R = \frac{a}{2\sin\alpha}$, где a – сторона треугольника, α – противолежащий этой стороне угол, а R – радиус описанной около этого треугольника окружности. Пользуясь этой формулой, найдите R, если a = 7, а $\sin\alpha = \frac{5}{14}$.

Задание 28. Теорему синусов можно записать в виде $\frac{\alpha}{\sin \alpha} = \frac{b}{\sin \beta}$, где a и b – две стороны треугольников, а α и β – углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите величину a, если b = 15, $\sin \alpha = \frac{4}{5}$ и $\sin \beta = \frac{12}{13}$.

Задание 29. Площадь прямоугольника можно вычислить по формуле $S = \frac{d^2 \sin \alpha}{2}$, где d – длина диагонали, α – угол между диагоналями. Пользуясь этой формулой, найдите площадь S, d = 12 и $\sin \alpha = \frac{5}{6}$.