SEQUENCE LISTING

JAP20 Rec'd PCT/PTO 04 AUG 2006

```
Eggink, Laura
<110>
       Hoober, Ken
Jacobs, Valerie
       Immunostimulatory Compositions and Uses Thereof
<120>
       04-997-PCT
<130>
       us 60/542,198
<150>
        2004-02-05
<151>
        us 60/633,825
<150>
       2004-12-07
<151>
<160>
        PatentIn version 3.3
<170>
<210>
        12
<211>
<212>
       PRT
        Artificial sequence
 <213>
<220>
        Synthetic peptide
<223>
 <400>
        1
Ala Gln Ala Leu Gly Leu Ser Ala Ile Ser Pro Arg
1 10
 <210>
        12
 <211>
 <212>
        PRT
       Artificial sequence
 <213>
 <220>
       Synthetic peptide
 <223>
 <400>
        2
 Cys Thr Asp Glu Ala Leu Tyr Thr Arg Arg Gln Cys
1 10
 <210>
         12
 <211>
<212>
        Artificial sequence
 <213>
 <220>
        Synthetic peptide
 <223>
 <400>
 Val Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg
  <210>
         12
  <211>
        PRT
  <212>
         Artificial sequence
  <213>
  <220>
  <223> Synthetic peptide
                                          Page 1
```

```
<400> 4
Glu Gln Ala Thr Pro Arg Asn His His Ser Pro Pro 1 10
<210>
       12
<211>
<212>
       PRT
       Artificial sequence
<220>
<223>
      Synthetic peptide
<400>
       5
Val Gln Ala Thr Pro Arg Leu Gln His Thr Pro Arg
1 10
<210>
       12
<211>
<212>
<213>
       PRT
       Artificial sequence
<220>
<223>
       Synthetic peptide
<400>
Ala Gln Gly Pro Pro Ser Lys Gln His Ser Pro Pro 1 10
       7
12
<210>
<211>
<212>
       PRT
<213>
       Artificial sequence
<220>
<223>
       Synthetic peptide
<400>
       7
Leu Pro Thr Thr Ile Asn Ile Ser Asn Arg Gly Ser
                                  10
<210>
       11
<211>
<212>
       PRT
<213>
       Artificial sequence
<220>
<223>
       Synthetic peptide
<400>
       8
Val Pro Phe Arg Gly Tyr Ser Pro Pro Gln Gly
1 10
<210>
       12
<211>
       Artificial sequence
<213>
<220>
```

```
<223> Synthetic peptide
<400> 9
Val Gln Ala Ile Gln Ser Asn Gln Leu Thr Pro Arg
<210> 10
<211> 12
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 10
Val Gln Ala Thr Thr Val Gln Ile Gln His Ala Pro 1 	 10
<210>
       12
<211>
<212>
       PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 11
Cys Arg Ala Ser Ile Asn Ile Thr Asn Arg Gly Ser 1 10
<210>
      12
       12
<211>
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 12
Leu Pro Ser Thr Ile Asn Ile Thr Asn Arg Gly Ser
<210>
<211>
       12
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 13
Gln Ser Thr Thr Ile Asn Ile Ile Arg Ser Gly Ser 1 10
<210> 14
<211>
       12
<212>
       PRT
<213> Artificial sequence
```

```
<220>
<223>
       Synthetic peptide
<400> 14
Glu Glu Ala Ile Ser Leu Ile Ser Ile Arg Arg 1 5 10
<210>
       15
12
<211>
<212> PRT
<213> Artificial sequence
<220>
<223>
      Synthetic peptide
<400>
       15
Val Gln Ala Gly Gln Ser Asn Ala His Thr Ala Gly 1 	 5 	 10
<210>
      12
<211>
<212> PRT
<213> Artificial sequence
<223> Synthetic peptide
<400> 16
Thr Thr Asp Glu Pro Phe Val Tyr Arg Arg Gln Pro 1 5 10
<210>
      17
<211>
       12
<212>
       PRT
       Artificial sequence
<213>
<220>
<223>
       Synthetic peptide
<400>
Val Gln Ala Arg Gln Ser Asn Gln His Thr Pro Arg
<210>
<211>
       12
<212>
       PRT
      Artificial sequence
<213>
<220>
<223>
       Synthetic peptide
<400>
Val Gln Ala Asn Gln Cys Gln Ser Ala Tyr Ala Arg
1 5 10
<210>
       19
<211>
       12
<212>
       PRT
      Artificial sequence
<213>
```

```
<220>
<223>
       Synthetic peptide
<400> 19
Val Arg Leu Leu Gln Tyr Ala His Arg Gly Arg Gly
<210>
       20
<211>
       12
<212>
       PRT
<213>
       Artificial sequence
<220>
<223> Synthetic peptide
<400>
       20
Val Gln Asn Tyr Gln Ser Asn Gln His Thr Pro Arg
5 10
<210>
       21
       11
<211>
<212>
       PRT
<213>
       Artificial sequence
<220>
<223>
      Synthetic peptide
<400>
Phe Val Ser Thr Thr Met Lys Leu Ser Asp Gly 1 10
       22
12
<210>
<211>
<212>
       PRT
<213>
       Artificial sequence
<220>
<223>
      Synthetic peptide
<400> 22
Phe Asn Ser Tyr Asp Thr Glu Ala Phe Gly Gly Ser 1 5 10
<210>
       23
<211>
       10
<212>
       PRT
<213> Artificial sequence
<220>
<223>
       Synthetic peptide
<400>
       23
Ala Glu Thr Val Glu Ser Cys Leu Ala Lys
1 10
<210>
       24
<211>
       1801
<212>
      DNA
```

<213> Homo sapiens

	•					
<400> 24 tttaataata	attctgtgtt	gcttctgaga	ttaataattg	attaattcat	agtcaggaat	60
ctttgtaaaa	aggaaaccaa	ttacttttgg	ctaccacttt	tacatggtca	cctacaggag	120
agaggaggtg	ctgcaagact	ctctggtaga	aaaatgaaga	gggtcctggt	actactgctt	180
gctgtggcat	ttggacatgc	tttagagaga	ggccgggatt	atgaaaagaa	taaagtctgc	240
aaggaattct	cccatctggg	aaaggaggac	ttcacatctc	tgtcactagt	cctgtacagt	300
agaaaatttc	ccagtggcac	gtttgaacag	gtcagccaac	ttgtgaagga	agttgtctcc	360
ttgaccgaag	cctgctgtgc	ggaaggggct	gaccctgact	gctatgacac	caggacctca	420
gcactgtctg	ccaagtcctg	tgaaagtaat	tctccattcc	ccgttcaccc	aggcactgct	480
gagtgctgca	ccaaagaggg	cctggaacga	aagctctgca	tggctgctct	gaaacaccag	540
ccacaggaat	tccctaccta	cgtggaaccc	acaaatgatg	aaatctgtga	ggcgttcagg	600
aaagatccaa	aggaatatgc	taatcaattt	atgtgggaat	attccactaa	ttacggacaa	660
gctcctctgt	cacttttagt	cagttacacc	aagagttatc	tttctatggt	agggtcctgc	720
tgtacctctg	caagcccaac	tgtatgcttt	ttgaaagaga	gactccagct	taaacattta	780
tcacttctca	ccactctgtc	aaatagagtc	tgctcacaat	atgctgctta	tggggagaag	840
aaatcaaggc	tcagcaatct	cataaagtta	gcccaaaaag	tgcctactgc	tgatctggag	900
gatgttttgc	cactagctga	agatattact	aacatcctct	ccaaatgctg	tgagtctgcc	960
tctgaagatt	gcatggccaa	agagctgcct	gaacacacag	taaaactctg	tgacaattta	1020
tccacaaaga	attctaagtt	tgaagactgt	tgtcaagaaa	aaacagccat	ggacgttttt	1080
gtgtgcactt	acttcatgcc	agctgcccaa	ctccccgagc	ttccagatgt	agagttgccc	1140
acaaacaaag	atgtgtgtga	tccaggaaac	accaaagtca	tggataagta	tacatttgaa	1200
ctaagcagaa	ggactcatct	tccggaagta	ttcctcagta	aggtacttga	gccaacccta	1260
aaaagccttg	gtgaatgctg	tgatgttgaa	gactcaacta	cctgttttaa	tgctaagggc	1320
cctctactaa	agaaggaact	atcttctttc	attgacaagg	gacaagaact	atgtgcagat	1380
tattcagaaa	atacatttac	tgagtacaag	aaaaaactgg	cagagcgact	aaaagcaaaa	1440
ttgcctgatg	ccacacccac	ggaactggca	aagctggtta	acaagcactc	agactttgcc	1500
tccaactgct	gttccataaa	ctcacctcct	ctttactgtg	attcagagat	tgatgctgaa	1560
ttgaagaata	tcctgtagtc	ctgaagcatg	tttattaact	ttgaccagag	ttggagccac	1620
ccaggggaat	gatctctgat	gacctaacct	aagcaaaacc	actgagcttc	tgggaagaca	1680
actaggatac	tttctacttt	ttctagctac	aatatcttca	tacaatgaca	agtatgatga	1740
tttgctatca	aaataaattg	aaatataatg	caaaccataa	aaaaaaaaa	aaaaaaaaa	1800
a						1801

<210> 25 <211> 474 <212> PR1

<213> Homo sapiens

<400> 25

Met Lys Arg Val Leu Val Leu Leu Leu Ala Val Ala Phe Gly His Ala 1 10 15

Leu Glu Arg Gly Arg Asp Tyr Glu Lys Asn Lys Val Cys Lys Glu Phe 20 25 30

Ser His Leu Gly Lys Glu Asp Phe Thr Ser Leu Ser Leu Val Leu Tyr 35 40 45

Ser Arg Lys Phe Pro Ser Gly Thr Phe Glu Gln Val Ser Gln Leu Val 50 60

Lys Glu Val Val Ser Leu Thr Glu Ala Cys Cys Ala Glu Gly Ala Asp 65 70 75 80

Pro Asp Cys Tyr Asp Thr Arg Thr Ser Ala Leu Ser Ala Lys Ser Cys 85 90 95

Glu Ser Asn Ser Pro Phe Pro Val His Pro Gly Thr Ala Glu Cys Cys 100 105 110

Thr Lys Glu Gly Leu Glu Arg Lys Leu Cys Met Ala Ala Leu Lys His 115 120 125

Gln Pro Gln Glu Phe Pro Thr Tyr Val Glu Pro Thr Asn Asp Glu Ile 130 140

Cys Glu Ala Phe Arg Lys Asp Pro Lys Glu Tyr Ala Asn Gln Phe Met 145 150 155 160

Trp Glu Tyr Ser Thr Asn Tyr Gly Gln Ala Pro Leu Ser Leu Leu Val 165 170 175

Ser Tyr Thr Lys Ser Tyr Leu Ser Met Val Gly Ser Cys Cys Thr Ser 180 185 190

Ala Ser Pro Thr Val Cys Phe Leu Lys Glu Arg Leu Gln Leu Lys His 195 200 205

Leu Ser Leu Leu Thr Thr Leu Ser Asn Arg Val Cys Ser Gln Tyr Ala 210 215 220

Ala Tyr Gly Glu Lys Lys Ser Arg Leu Ser Asn Leu Ile Lys Leu Ala 225 230 235 240

Gln Lys Val Pro Thr Ala Asp Leu Glu Asp Val Leu Pro Leu Ala Glu 245 250 255

Asp Ile Thr Asn Ile Leu Ser Lys Cys Cys Glu Ser Ala Ser Glu Asp Page 7

270

260 265

Cys Met Ala Lys Glu Leu Pro Glu His Thr Val Lys Leu Cys Asp Asn 275 280 285

Leu Ser Thr Lys Asn Ser Lys Phe Glu Asp Cys Cys Gln Glu Lys Thr 290 295 300

Ala Met Asp Val Phe Val Cys Thr Tyr Phe Met Pro Ala Ala Gln Leu 305 310 315 320

Pro Glu Leu Pro Asp Val Glu Leu Pro Thr Asn Lys Asp Val Cys Asp 325 330 335

Pro Gly Asn Thr Lys Val Met Asp Lys Tyr Thr Phe Glu Leu Ser Arg 340 345

Arg Thr His Leu Pro Glu Val Phe Leu Ser Lys Val Leu Glu Pro Thr 355 360 365

Leu Lys Ser Leu Gly Glu Cys Cys Asp Val Glu Asp Ser Thr Thr Cys 370 375 380

Phe Asn Ala Lys Gly Pro Leu Leu Lys Lys Glu Leu Ser Ser Phe Ile 385 390 395 400

Asp Lys Gly Gln Glu Leu Cys Ala Asp Tyr Ser Glu Asn Thr Phe Thr 405 410 415

Glu Tyr Lys Lys Leu Ala Glu Arg Leu Lys Ala Lys Leu Pro Asp 420 425 430

Ala Thr Pro Thr Glu Leu Ala Lys Leu Val Asn Lys His Ser Asp Phe 435 440 445

Ala Ser Asn Cys Cys Ser Ile Asn Ser Pro Pro Leu Tyr Cys Asp Ser 450 460

Glu Ile Asp Ala Glu Leu Lys Asn Ile Leu 465 470

<210> 26 <211> 207

<212> DNA

<213> Homo sapiens

<220>

<221> CDS <222> (1)..(207)

<400> 26

cta tgt gca gat tat tca gaa aat aca ttt act gag tac aag aaa aaa Leu Cys Ala Asp Tyr Ser Glu Asn Thr Phe Thr Glu Tyr Lys Lys Lys 1 15

ctg gca gag cga cta aaa gca aaa ttg cct gat gcc aca ccc acg gaa Leu Ala Glu Arg Leu Lys Ala Lys Leu Pro Asp Ala Thr Pro Thr Glu 20 25 30	96										
ctg gca aag ctg gtt aac aag cac tca gac ttt gcc tcc aac tgc tgt Leu Ala Lys Leu Val Asn Lys His Ser Asp Phe Ala Ser Asn Cys Cys 35 40 45	144										
tcc ata aac tca cct cct ctt tac tgt gat tca gag att gat gct gaa Ser Ile Asn Ser Pro Pro Leu Tyr Cys Asp Ser Glu Ile Asp Ala Glu 50 55 60	192										
ttg aag aat atc ctg Leu Lys Asn Ile Leu 65	207										
<210> 27 <211> 69 <212> PRT <213> Homo sapiens											
<400> 27											
Leu Cys Ala Asp Tyr Ser Glu Asn Thr Phe Thr Glu Tyr Lys Lys 15											
Leu Ala Glu Arg Leu Lys Ala Lys Leu Pro Asp Ala Thr Pro Thr Glu 20 25 30											
Leu Ala Lys Leu Val Asn Lys His Ser Asp Phe Ala Ser Asn Cys Cys 35 40 45	-										
Ser Ile Asn Ser Pro Pro Leu Tyr Cys Asp Ser Glu Ile Asp Ala Glu 50 60											
Leu Lys Asn Ile Leu 65											
<210> 28 <211> 249 <212> DNA <213> Artificial sequence											
<220> <223> Synthetic oligonucleotide											
<220> <221> CDS <222> (1)(249)											
<pre><400> 28 cta tgt gca gat tat tca gaa aat aca ttt act gag tac aag aaa aaa Leu Cys Ala Asp Tyr Ser Glu Asn Thr Phe Thr Glu Tyr Lys Lys 1 10 15</pre>	48										
ctg gca gag cga cta aaa gca aaa ttg cct gat gcc aca ccc caa gct Leu Ala Glu Arg Leu Lys Ala Lys Leu Pro Asp Ala Thr Pro Gln Ala 20 25 30	96										
aca caa tca aat caa cat aca cca cgt ggt ggt ggt tca gaa ctg gca Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Gly Ser Glu Leu Ala Page 9	144										

45 40 aag ctg gtt aac aag cac tca gac ttt gcc tcc aac tgc tgt tcc ata Lys Leu Val Asn Lys His Ser Asp Phe Ala Ser Asn Cys Cys Ser Ile 50 55 60 192 aac tca cct cct ttac tgt gat tca gag att gat gct gaa ttg aag Asn Ser Pro Pro Leu Tyr Cys Asp Ser Glu Ile Asp Ala Glu Leu Lys 65 70 75 80 240 249 aat atc ctg Asn Ile Leu 29 <210> 83 <211> <212> PRT Artificial sequence <220> Synthetic Construct <223> <400> 29 Leu Cys Ala Asp Tyr Ser Glu Asn Thr Phe Thr Glu Tyr Lys Lys 1 10 15 Leu Ala Glu Arg Leu Lys Ala Lys Leu Pro Asp Ala Thr Pro Gln Ala 20 25 30 Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Gly Ser Glu Leu Ala 35 40 45 Lys Leu Val Asn Lys His Ser Asp Phe Ala Ser Asn Cys Cys Ser Ile 50 55 60 Asn Ser Pro Pro Leu Tyr Cys Asp Ser Glu Ile Asp Ala Glu Leu Lys 65 70 75 80 Asn Ile Leu <210> 30 1031 <211> <212> DNA Artificial sequence <220> Synthetic oligonucleotide <220> <221> **CDS** (214)..(486)<400> 30 60 aaagatttta aaaataaact tttttaatct tttatttatt ttttctttt tatggcaatg cgtactccag aagaacttag taatcttatt aaagatttaa ttgaacaata cactccagaa 120 gtgaaaatgg tagatttcgg tatcgttttc caagtaggtg acggtattgc tcgtatttat 180

ggtt	taga	aa a	agca	atgt	c ag	gtga	atta	ctt	atg Met 1	tta Leu	tgt Cys	gct Ala	gat Asp 5	t tat D Tyr	tca Ser	234
gaa Glu	aat Asn	aca Thr 10	ttt Phe	aca Thr	gaa Glu	tat Tyr	aaa Lys 15	aaa Lys	aaa Lys	tta Leu	gct Ala	gaa Glu 20	cgt Arg	tta Leu	aaa Lys	282
gct Ala	aaa Lys 25	tta Leu	cca Pro	gat Asp	gct Ala	aca Thr 30	cca Pro	caa Gln	gct Ala	aca Thr	caa Gln 35	tca Ser	aat Asn	caa Gln	cat His	330
aca Thr 40	cca Pro	cgt Arg	ggt Gly	ggt Gly	ggt Gly 45	tca Ser	gaa Glu	tta Leu	gct Ala	aaa Lys 50	tta Leu	gtt Val	aat Asn	aaa Lys	cat His 55	378
tca Ser	gat Asp	ttt Phe	gct Ala	tca ser 60	aat Asn	tgt Cys	tgt Cys	tca Ser	att Ile 65	aat Asn	tca Ser	cca Pro	cca Pro	tta Leu 70	tat Tyr	426
tgt Cys	gat Asp	tca Ser	gaa Glu 75	att Ile	gat Asp	gct Ala	gaa Glu	tta Leu 80	aaa Lys	aat Asn	att Ile	tta Leu	cat ніs 85	cat His	cat His	474
	cat His		taa	ttc	caag	cat '	tatc	taaaa	at a	ctct	gcag	g cat	tgca	agct		526
agc	ttgt	act	caage	ctcg	ta a	cgaa	ggtc	g tga	accti	tgct	cgt	gaag	gtg	gcga	cgtaat	586
tcg	ttca	gct ·	tgtaa	aatg	gt c	tcca	gaac	t tg	ctgc	tgca	tgt	gaag [.]	ttt	ggaa	agaaat	646
taa	attc	gaa	tttg	atac	ta t	tgac	aaac	t tt	aatt	ttta	ttt	ttca [.]	tga	tgtt	tatgtg	706
aat	agca	taa	acat	cgtt	tt t	attt	ttat	g gt	gttt	aggt	taa	atac	cta	aaca	tcattt	766
tac	attt	tta	aaat	taag [.]	tt c	taaa	gtta	t ct	tttg [.]	ttta	aat	ttgc	ctg	tctt	tataaa	826
tta	cgat	gtg	ccag	aaaa	at a	aaat	ctta	g ct	tttt	atta	tag	aatt	tat	cttt	atgtat	886
tat	attt	tat	aagt	tata	at a	aaag	aaat	a gt	aaca [.]	tact	aaa	gcgg	atg	tagc	gcgttt	946
atc	ttaa	cgg	aagt	ctag	ag g	catc	gaat	t cc	tgca	gccc	ggg	ggat	cca	ctag	ttctag	1006
agc	ggcc	gcc	accg	cggt	gg a	gctc			-							1031
<21 <21 <21 <21	1> 2>	31 90 PRT Arti	fici	al s	eque	nce							,			

Met Leu Cys Ala Asp Tyr Ser Glu Asn Thr Phe Thr Glu Tyr Lys Lys 1 10 15

Lys Leu Ala Glu Arg Leu Lys Ala Lys Leu Pro Asp Ala Thr Pro Gln 20 25 30

Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Ser Glu Leu 35 40 45

<220> <223> Synthetic Construct

<400> 31

Ala Lys Leu Val Asn Lys His Ser Asp Phe Ala Ser Asn Cys Cys Ser 50 60

Ile Asn Ser Pro Pro Leu Tyr Cys Asp Ser Glu Ile Asp Ala Glu Leu 65 70 75 80

Lys Asn Ile Leu His His His His His His 90

- 32 18 <210>
- <211> <212>
- PRT <213> Artificial sequence
- <220>
- Synthetic peptide <223>
- <400>
- Val Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Gly Ser 1 5 10 15

Lys Trp

- <210> 33
- <400> 33 000
- <210> 34
- <211> 4 <212> PRT
- <213> Artificial sequence
- <220>
- <223> Synthetic peptide
- <400> 34
- Gly Gly Gly Ser
- <210> 35
- <400> 35
- 000
- <210> 36
- 11 <211>
- <212> **PRT**
- <213> Artificial sequence
- <220>
- <223> Synthetic peptide
- <400> 36
- Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg
 1 5 10

<210> 37

```
15
<211>
<212>
       Artificial sequence
<220>
<223>
       Synthetic peptide
<400>
       37
Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Ser
1 5 10 15
<210>
<211>
       38
       16
<212>
       PRT
       Artificial sequence
<220>
<223>
       Synthetic peptide
<400>
Val Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Gly Ser 1 10 15
<210>
<211>
       39
12
<212>
       PRT
       Artificial sequence
<220>
<223>
       Synthetic peptide
<400>
       39
Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Lys
1 10
<210>
<211>
       40
       13
<212>
       PRT
      Artificial sequence
<220>
<223>
       Synthetic peptide
<400>
Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Lys Trp
                                        10
<210>
       41
<211>
       16
<212>
       PRT
<213>
       Artificial sequence
<220>
<223>
       Synthetic peptide
<400>
Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Gly Ser Lys
10 15
```

```
42
17
<210>
<211>
<212>
<213>
       A:
            ficial sequence
<220>
       Synthetic peptide
<223>
<400> 42
Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Ser Lys
1 10 15
Trp
<210>
       43
<211>
<212>
       13
       PRT
<213> Artificial sequence
<220>
      Synthetic peptide
<223>
<400> 43
val Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Lys
1 5 10
<210>
       44
<211>
<212>
       14
       PRT
       Artificial sequence
<213>
<220>
       Synthetic peptide
<223>
<400>
Val Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Lys Trp
5 10
<210>
<211>
       45
17
<212>
       PRT
      Artificial sequence
<220>
       Synthetic peptide
<223>
<400> 45
Val Gln Ala Thr Gln Ser Asn Gln His Thr Pro Arg Gly Gly Gly Ser
1 10 15
Lys
```