0368-3248-01-Algorithms in Data Mining

Fall 2011

Lecture 9: The power method

Lecturer: Edo Liberty

Warning: This note may contain typos and other inaccuracies which are usually discussed during class. Please do not cite this note as a reliable source. If you find mistakes, please inform me.

We give a simple algorithm for computing the Singular Value Decomposition of a matrix $A \in \mathbb{R}^{m \times n}$. We start by computing the first singular value σ_1 and left and right singular vectors u_1 and v_1 of A, for which $min_{i < j} \log(\sigma_i/\sigma_j) \ge \lambda$:

- 1. Generate x_0 such that $x_0(i) \sim \mathcal{N}(0,1)$.
- 2. $s \leftarrow \log(4\log(2n/\delta)/\varepsilon\delta)/2\lambda$
- 3. for i in [1, ..., s]:
- $x_i \leftarrow A^T A x_{i-1}$
- 5. $v_1 \leftarrow x_i / ||x_i||$
- 6. $\sigma_1 \leftarrow ||Av_1||$
- 7. $u_1 \leftarrow Av_1/\sigma_1$
- 8. return (σ_1, u_1, v_1)

Let us prove the correctness of this algorithm. First, write each vector x_i as a linear combination of the right singular values of A i.e. $x_i = \sum_j \alpha_j^i v_j$. From the fact that v_j are the eigenvectors of $A^T A$ corresponding to eigenvalues σ_j^2 we get that $\alpha_j^i = \alpha_j^{i-1}\sigma_j^2$. Thus, $\alpha_j^s = \alpha_j^0\sigma_j^{2s}$. Looking at the ratio between the coefficients of v_1 and v_i for x_s we get that:

$$\frac{|\langle x_s, v_1 \rangle|}{|\langle x_s, v_i \rangle|} = \frac{|\alpha_1^0|}{|\alpha_i^0|} \left(\frac{\sigma_1}{\sigma_i}\right)^{2s}$$

Demanding that the error in the estimation of σ_1 is less than ε gives the requirement on s.

$$\frac{|\alpha_1^0|}{|\alpha_i^0|} \left(\frac{\sigma_1}{\sigma_i}\right)^{2s} \geq \frac{n}{\varepsilon} \tag{1}$$

$$s \geq \frac{\log(n|\alpha_i^0|/\varepsilon|\alpha^0|_1)}{2\log(\sigma_1/\sigma_i)}$$

$$s \geq \frac{\log(n|\alpha_i^0|/\varepsilon|\alpha^0|_1)}{2\log(\sigma_1/\sigma_i)} \tag{2}$$

From the two-stability of the gaussian distribution we have that $\alpha_i^0 \sim \mathcal{N}(0,1)$. Therefore, $\Pr[\alpha_i^0 > t] \leq e^{-t^2}$ which gives that with probability at least $1 - \delta/2$ we have for all $i, |\alpha_i^0| \le \sqrt{\log(2n/\delta)}$. Also, $\Pr[|\alpha_1^0| \le \delta/4] \le \sqrt{\log(2n/\delta)}$. $\delta/2$ (this is because $\Pr[|z| < t] \le \max_r \Psi_z(r) \cdot 2t$ for any distribution and the normal distribution function at zero takes it maximal value which is less than 2) Thus, with probability at least $1-\delta$ we have that for all i, $\frac{|\alpha_1^0|}{|\alpha_1^0|} \le \frac{\sqrt{\log(2n/\delta)}}{\delta/4}$. Combining all of the above we get that it is sufficient to set $s = \log(4n\log(2n/\delta)/\varepsilon\delta)/2\lambda = 1$ $O(\log(n/\varepsilon\delta)/\lambda)$ in order to get ε precision with probability at least $1-\delta$.

We now describe how to extend this to a full SVD of A. Since we have computed (σ_1, u_1, v_1) , we can repeat this procedure for $A - \sigma_1 u_1 v_1^T = \sum_{i=2}^n \sigma_i u_i v_i^T$. The top singular value and vectors of which are (σ_2, u_2, v_2) . Thus, computing the rank-k approximation of A requires $O(mnks) = O(mnk\log(n/\epsilon\delta))/\lambda$ operations. This is because computing A^TAx requires O(mn) operations and for each of the first k singular values and vectors this is performed s times.

The main problem with this algorithm is that its running time is heavily influenced by the value of λ . Other variants of this algorithm are much less sensitive to the value of this parameter, but are out of the scope of this class.