

BTEO THE COPY

TECHNICAL REPORT EL-91-2

ANALYTICAL STUDY OF THE EFFECTS OF WEIGHT ON LIGHT HELICOPTER (LH) EXPOSURE TO GROUND-BASED WEAPONS

by

Charles D. Hahn, Ken G. Hall

Environmental Laboratory

DEPARTMENT OF THE ARMY

Waterways Experiment Station, Corps of Engineers 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

STATE OF THE PROPERTY OF THE P

January 1991 Final Report

Approved for Public Release; Distribution Unlimited

"Prigingl contains select places: All DTIO reproducts foun will be in black and white?"

Prepared for DEPARTMENT OF THE ARMY Laboratory Command, Survivability Management Office Adelphi, Maryland 20783-1145

91 2 26

000

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

SECURITY CLASSIFICATION OF THIS PAGE

	SSIFICATION C		DOCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188
	ECURITY CLAS	SIFICATION		1b. RESTRICTIVE MARKINGS			
Unclassi 2a. SECURITY		N AUTHORITY		3. DISTRIBUTION / AVAILABILITY OF REPORT			
2b. DECLASSI	FICATION / DOV	NNGRADING SCHEDU	PLE	Approved funlimited		release;	distribution
4. PERFORMIN	IG ORGANIZAT	TION REPORT NUMBE	ER(S)	5. MONITORING		REPORT NU	MBER(S)
Technica	l Report I	EL-91-2					
		ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORG	ANIZATION	
USAEWES			(II applicable)				
6c. ADDRESS	ental Labo (City, State, an	nd ZIP Code)	<u> </u>	7b. ADDRESS (C	ty, State, and Zi	P Code)	
	ls Ferry F g, MS 391			! !			
ORGANIZA US Army 1	Laboratory	Command	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT	IDENTIFICATION	ON NUMBER
8c. ADDRESS (Lity Mana City, State, and	gement Office		10. SOURCE OF	FUNDING NUMB	ERS	
2800 Powe	der Mill F MD 20783	Road		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
11. TITLE (Incl	ude Security C	lassification)		<u> </u>	<u> </u>		
	•		of Weight on L	ight Helicop	ter (LH) E	xposure	to Ground-
Based Wea	pons						
		Hall, Ken G.					
13a. TYPE OF		13b. TIME CO		14. DATE OF REPO		h, Day) 15.	PAGE COUNT
Final ret			g 89 то <u>Apr 9</u> 0	January 19	91		153
	from Nat	· · -	al Information	Service, 528	5 Port Roy	al Road,	Springfield,
17.	COSATI		18. SUBJECT TERMS (Continue on revers	se if necessary a	nd identify b	y block number)
FIELD	GROUP	SUB-GROUP	Helicopter				
			LH				
		•	and identify by block ne				
In support of the US Army Light Helicopter (LH) Program, the US Army Engineer Waterways Experiment Station (WES) was directed by the US Army Laboratory Command Survivability Management Office (SMO) to simulate typical LH missions using the WES Helicopter Mission Survivability (HELMS) Model and to determine the effect of increasing weight on aircraft exposure to ground-based weapons. This report describes the HELMS model and the missions simulated as well as the terrain used for the simulations. Simulation data are presented as well as the results of the study.							
	-	LITY OF ABSTRACT	DT CONTRACTOR	21. ABSTRACT SE		CATION	
22a. NAME OF			PT. DTIC USERS	22b TELEPHONE (assified Include Area Coo	de) 22c. OFF	ICE SYMBOL
ND Corn 447	2 UIN 06			<u></u>			

SECURITY CLASSIFICATION OF THIS PAGE	
]
	ł
	1
	[
	l
	l
	ľ
	l

PREFACE

This study was conducted during the period August 1989 to April 1990 for the US Army Survivability Management Office (SMO), Adelphi, MD, and was accomplished by the US Army Engineer Waterways Experiment Station (WES), Environmental Laboratory (EL), Environmental Systems Division (ESD). Mr. Ken G. Hall provided technical direction for this study. Mr. Charles D. Hahn and Mr. Hall prepared this report. Mr. Don Roberts and Mr. Mike Claffy, SMO, were Technical Monitors for the study.

Mr. Harold W. West, Chief, Environmental Analysis Group (EAG), WES, exercised general supervisory control and provided guidance. Dr. Victor E. LaGarde was Chief, ESD, and Dr. John Harrison was Chief, EL.

COL Larry B. Fulton, EN, was Commander and Director of WES. Technical Director was Dr. Robert W. Whalin.

This report should be cited as follows:

Hahn, Charles D., and Hall, Ken G. 1991. "Analytical Study of the Effects of Weight on Light Helicopter (LH) Exposure to Ground-Based Weapons," Technical Report EL-91-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

c)		
Access	ion For	
NTIS	GRA&I	12
DTIC T	rab	
Unanno	punced	
Just 11	ication_	
Ву		
Distr	ibution/	
Avai	lability	Codes
 	Avail an	d/or
Dist	Specia	1
A-1		v.

CONTENTS

	rage
PREFACE	1
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT	3
PART I: INTRODUCTION	4
Background	4 5
PART II: THE HELMS MODEL	6
PART III: AIRCRAFT, TERRAIN, AND WEAPON SIMULATIONS	9
Type of Missions	9 9 10
Weapon Characteristics	12 12 13
PART IV: SIMULATION RESULTS	16
Multi-Mode Unconstrained Flight Path Analysis	16 17 17 18
PART V: SUMMARY AND RECOMMENDATIONS	20
Summary	20 20
REFERENCES	22
TABLES 1-8	
FIGURES 1-33	
APPENDIX A: WEAPON DATA	A1
APPENDIX B: FLIGHT PERFORMANCE DATA	В1

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report may be converted to SI (metric) units, as follows:

<u>Multiply</u>	By	To Obtain
degrees (angle)	0.01745329	radians
Fahrenheit degrees	5/9	Celsius degrees or kelvins*
feet	0.3048	meters
knots (international)	0.5144444	meters per second
pounds (mass)	0.4535924	kilograms

^{*} To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following formula: C = (5/9)(F - 32). To obtain kelvin (K) readings, use: K = (5/9)(F - 32) + 273.15.

ANALYTICAL STUDY OF THE EFFECTS OF WEIGHT ON LIGHT HELICOPTER (LH) EXPOSURE TO GROUND-BASED WEAPONS

PART I: INTRODUCTION

Background

- 1. The US Army is developing a new lightweight scout attack helicopter. The Light Helicopter (LH) Development Program is managed by the US Army Aviation Systems Command, St. Louis, MO, which has responsibility for the helicopter design and development. The LH is to replace the AH-1, OH-58, and OH-6 fleets and complement the existing AH-64 fleet. The LH is being designed against a performance requirement instead of a strict materials requirement.
- 2. The new LH has two primary roles and one secondary role. In its armed reconnaissance configuration (scout mode), its requirements are to acquire first/fire first, destroy high-value targets of opportunity, secure flanks and weak areas, reconnoiter and locate the enemy, select attack routes and positions, and provide surveillance and early warning. In the light attack configuration, it will acquire first/fire first, destroy enemy armor and mechanized forces, suppress and destroy enemy air defenses, disrupt or destroy second-echelon forces, provide rear area protection, and conduct joint air attack team operations (Nelms 1989).
- 3. The US Army Survivability Management Office (SMO), Headquarters, Laboratory Command, Adelphi, MD, is conducting an evaluation of the effects of weight on aircraft performance to determine the characteristics for increased aircraft combat survivability. In this study, it was assumed that as weight is added to the aircraft, its ability to perform tactical missions would be reduced. At some point, this reduction in performance will begin to affect aircraft survivability. The LH base weight used in this study was the minimum operating weight of 8,260 lb* which included fuel reserves, a crew of two, and other operating materials.

^{*} A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 3.

Approach

4. In support of the LH Development Program, SMO wanted to evaluate the effects of increasing the LH base weight by the addition of different survivability measures such as additional armor or radar-jamming devices. The US Army Engineer Waterways Experiment Station (WES) supported SMO by calculating the differential in exposure time for a number of aircraft weights, along eight different flight paths. To do this, a flight path was selected and the WES Helicopter Mission Survivability (HELMS) Model (Trott and Hildreth 1980a, 1980b; Trott 1982) was used to calculate exposure time for the different aircraft weights. This report briefly describes the HELMS model, the terrain database used (Aviation Scenarios), aircraft performance characteristics, weapon considerations, and the Phase 1 study relating to the effects of weight on aircraft exposure time, resulting from deployed ground-based threat weapons.

PART II: THE HELMS MODEL

- 5. HELMS is a computer model for evaluating aircraft performance and the effects of terrain shielding on helicopter flights from deployed ground-based weapons. It was developed in the early 1980s by Decilog, Inc., under contract to WES. The HELMS model was used by WES in 1983 in an airframe tradeoff analysis study for the US Army Aviation Center, Directorate of Combat Developments, Fort Rucker, AL (Bailey and Goodson 1984). HELMS has two primary components; it first simulates a three-dimensional (3-D) flight path over the terrain and then evaluates the generated helicopter flight path based on the location, types, and characteristics of ground-based weapons that are deployed within the 3-D terrain area. These two components are described in the following paragraphs.
- 6. HELMS determines a flight path based on previously determined way points, flight policies between way points, and important terrain and cultural features. The way points are selected based on features that could be easily seen from the air and the type of mission. Realistic flight policies are chosen based on the threat and terrain (topography and vegetation). Additional policies and way points are then used to ensure that the helicopter can "pop up" at the desired mission pop-up locations. The flight policies consist of floor and ceiling altitudes, maximum velocity, an angular search area so that the helicopter can fly around obstacles, and an angular search increment to search that area. The flight policies also include the maximum look-ahead distance and a midpoint distance. Flights are simulated between way points by picking a midpoint and planning a route to that midpoint. From each way point the aircraft then proceeds in the direction of the next way point by repeating the above procedure. In choosing a flight path, the aircraft has no knowledge of threat weapons locations and therefore simulates a flight path that is limited by the flight policies, way points, terrain and cultural features, and other considerations.
- 7. Once the flight path has been generated, HELMS then evaluates the exposure to ground-based threat weapons described later (see paragraph 8). Each point in the 3-D flight path is evaluated against each weapon. No defensive mechanisms are assumed for the helicopter, nor does it apply any evasive techniques along the flight path when encountering a firing weapon (Trott and Hildreth 1980a, 1980b). However, evasive maneuvers may be simulated by control of input conditions (way points). Only direct-fire weapons were

considered; however, work is under way to allow analysis of smart weapons effects, by adjusting the system dispersion and the probability of kill, given a hit (Pk).

8. HELMS determines the effects of direct-fire, ground-based threat weapons by first considering the terrain and determining where the weapon has a clear (unobstructed) line of sight to the helicopter within the 3-D terrain area. In a preprocessing stage, a determination is made concerning the minimum altitude at which an aircraft would be visible for each grid cell within the acquisition range of the weapon. This altitude is determined by considering the minimum elevation angle of the weapon and any topographic, vegetation, and cultural/urban features that may block the weapon's lines of sight. These features include terrain features such as mountains and valleys as well as vegetation heights and urban features such as buildings. A summary of the input characteristics for each weapon is given below:

<u>Characteristic</u>	Definition
Firing range	Maximum firing range for that weapon
Maximum elevation angle	Maximum angle the weapon can acquire targets above horizontal
Minimum elevation angle	Minimum angle the weapon can acquire targets measured from horizontal
Height above ground	Height of weapon target acquisition system
System standard deviation	Single term used to account for targeting errors (includes wind effects as well as tracking errors)
Kill probability	Probability of a target kill, given a hit
Number rounds/ short burst	Number of rounds fired in a short burst
Number rounds/ long burst	Number of rounds fired in a long burst
Acquisition time	Minimum time aircraft must be visible for the weapon to acquire the aircraft
Acquisition range	Maximum range that the weapon can acquire the aircraft

9. A ground-based weapon fires at the helicopter whenever the aircraft is within its firing range, has been continuously visible, and meets the requirements for acquisition time of the weapon. Each weapon is assumed to have unlimited ammunition and will fire at its cyclic rate until the helicopter is either out of view of the weapon or is beyond the effective range. If the helicopter is visible for less than the acquisition time of the weapon,

the acquisition time starts again when the helicopter again becomes visible. HELMS produces a weapon report which includes data on the location, type, and class for each weapon and a second-by-second analysis report depicting when the aircraft was visible to that weapon. Also included are data about whether the weapon was able to fire at the helicopter.

10. At each point along the flight path where the aircraft is fired upon, a survivability probability can be computed. This survivability probability is based on the product of all the firing decisions for that second of the flight and the system dispersion and $P_{\mathbf{k}}$ of each weapon that was able to fire at the helicopter. If the aircraft was not fired upon, the aircraft is said to have a 100-percent chance of survival. The survivability probability is related to ability of the aircraft to use the terrain to limit its exposure to the threat weapon. The survivability probability number provides insight on how to use terrain shielding to avoid exposure to ground-based direct fire weapons. The survival index is computed as follows:

$$P_s = 1.0 \times p_s(i) \tag{1}$$

where P_s = overall aircraft survivability at that XYZ point in space $p_s(i)$ = aircraft survivability of each weapon (computed as follows):

$$p_s(i) = 1.0 - P_{hit}(i) \times P_k(i)$$
 (2)

where $P_{hit}(i)$ = Gaussian probability of a hit, given the weapon's system dispersion

 $P_{\mathbf{k}}(\mathbf{i})$ = probability of a kill, given a hit This survival index does not account for the cooperative effects between weapons nor for any countermeasures that a real helicopter may employ to avoid detection by ground-based weapons.

11. Survivability calculations were not generated during the Phase 1 study.

PART III: AIRCRAFT, TERRAIN, AND WEAPON SIMULATIONS

Type of Missions

12. Eight separate missions were selected to determine the effects of aircraft weight on exposure times. All were armed reconnaissance missions and were evaluated within an area along the eastern border region of West Germany (GE). The typical mission included several "pop-up" points where the aircraft was to stop, hover, and then pop up to view the terrain for general reconnaissance. The helicopter was then to drop down to the original altitude and continue the combat mission. These represent typical LH armed reconnaissance missions. No analysis of the pop-up locations was accomplished during the Phase 1 study; however, pop-up heights and times used were according to previous pop-up analysis (Knauf 1988). Each simulation run consisted of determining a flight path for each of the seven helicopter weights considered (see Appendix A) and then performing an analysis of the flight path against the deployed ground-based threat weapons.

Realistic Terrain Conditions

- 13. A Central European terrain area (Figure 1) was used in this study. This digital data set consisted of topographic elevation data (Figure 2) with a 50-m grid spacing as well as an associated vegetation and urban height data (Figure 3). The digital terrain data set represents a 35- by 95-km area in Central Europe in the Alsfeld region of West Germany and extending across the West German/East German border. This region has historically been considered as a major approach route to Central Europe for use by an opposing armor force (Knauff 1988).
- 14. This area (Figure 4) is known as the Fulda Gap due to the absence of rugged terrain, and is generally highly favorable for an armored attack (Knauff 1988). The terrain in this area is comprised of an undulating rolling topography with large sloping areas that are heavily forested (Hutto and West 1982). This region consists predominantly of an east-west line of hills and low mountains broken up south to north by a system of entrenched small streams and rivers with narrow floodplains (Doiron, Sabol, and Miller 1988). The topography varies from steep-sided hills and mountains to rolling plains and plateaus and narrow, relatively flat floodplains. The slopes on many of the

hills and mountains are steep (Figure 5) with rock outcrops and occasional fields of closely spaced stones and boulders (Doiron, Sabol, and Miller 1988). The combat scenario used for this study consisted of the helicopter flying armed reconnaissance missions against an opposing armored threat force located just north of Hunfeld, GE (see Figure 6). This area provided numerous river valleys and ridgelines for the helicopter to use in making an approach to important "pop-up" locations.

Flight Policies

15. The performance guidelines for the helicopter used during each leg of the flight mission are set by flight policies. A careful analysis of how the flight policies affected the flight path was conducted. The flight policies govern how high and how fast the helicopter flies and how far ahead it can plan its actual flight path. The flight policy for a particular leg is controlled by seven variables given below.

Variable	<u>Name</u>	Description
Look angle	IVEW	Maximum allowable deviation from straight path measured as total angle from left to right
Angle increment	INCVEW	Increment used when scanning left or right
Look-ahead distance	DISTLK	Maximum distance for planning flight path
Maximum distance to midpoint	RMAX	Maximum allowable distance to a midpoint
Floor	FLOOR	Minimum flight altitude above terrain features
Ceiling	CELING	Maximum flight altitude above terrain features
Maximum velocity	VMAX	Maximum airspeed on the leg

16. The flight parameters are controlled by the flight policy referred to the end way point of each leg. Also, a special flight policy was used when approaching "pop-up" locations. When the helicopter comes to a pop-up point, it must be traveling slow enough to come to a complete stop before "popping up." This means that the airspeed used in the flight policy at the way point must be quite small (5 knots or less). To prevent the helicopter crossing large terrain areas at this slow speed, an additional way point was used close

to the pop-up point to allow the helicopter to fly at a reasonable airspeed but still be able to stop at the pop-up point.

- 17. The HELMS model evaluates the effectiveness of terrain (topography and vegetation and urban feature) shielding to reduce exposure to opposing ground-based weapons. The factors that have the most effect on the mission profile are the maximum airspeed, look-ahead distance, and maximum distance to midpoints. The look-ahead distance and the midpoint distance variables control how far ahead the helicopter can plan (control) its flight path. The maximum airspeed determines whether the helicopter can make the maneuvers needed to maintain the flight envelope. As the look angle is decreased, the flight path tends to straighten out. This is considered reasonable since as the look angle decreases, the amount of deviation from the straight line is also reduced. The CELING and FLOOR altitude variables control only the size of the envelope, and unless the terrain height changes abruptly, the helicopter can usually fly within these limits.
- 18. Five flight policies were used initially in this study. Flight policy 1 was a relatively high-speed one (120 knots) staying clear of the vegetation canopy. This flight policy was used in rear areas. Flight policy 2 used a moderate speed (80 knots) and the helicopter flew at a lower altitude. This was used on the approaches and returns from the tactical areas of interest. Flight policy 3 was a medium speed (60 knots) and the helicopter flew close to the terrain. This was used to cover long distances between way points near the Forward Line of Troops (FLOT). Flight policy 4 kept the helicopter at a slow speed (20 knots) and flew it very near the terrain surface. It was used in the approaches to pop-up points. Flight policy 5 kept the helicopter very slow (5 knots) and flying with the skids just above the terrain. A sixth flight policy was added as flight policy 0. This was a very high-speed one (160 knots) and was used to evaluate the aircraft at its peak performance. A summary of the flight policies is shown below:

Policy No.	IVEW <u>deg</u>	INCVEW deg	DISTLK	RMAX _m_	FLOOR	CELING m	VMAX <u>knots</u>
0	120	10	5,000	800	0	10	160
1	120	10	5,000	800	0	10	120
2	100	5	2,500	300	0	10	80
3	90	5	2,000	300	0	5	60
4	80	5	1,200	300	0	3	20
5	60	3	800	300	0	1	5

Weapon Characteristics

19. The weapons used in this study represent a typical threat scenario in which the LH is being designed to operate. A total of 294 weapons were used and represent typical types and locations based on Soviet anti-air doctrine. The weapon data were provided by SMO and the weapons were grouped in selected range and performance classes. Each weapon was preprocessed before helicopter flight simulations were made to determine the visible areas of the terrain within the acquisition range of the weapon. Weapon data are summarized in Appendix A. The locations of the weapons are depicted in Figure 6.

Helicopter Characteristics

20. The helicopter weights used in this study were selected from a list of available performance data for typical operating weights of the LH. A weight of 8,260 lb is considered to be the minimum operating weight. A weight of 9,980 lb is considered the primary mission gross weight and 10,300 lb is the attack mission gross weight. The largest weight considered in the study was 10,860 lb and represents the maximum operating weight for the LH. In addition to these weights, three other weights were used (9,100, 10,140, and 10,580 lb). The performance data for the weights were developed by interpolating from the performance data supplied by the LH Program Management Office who obtained the data from the US Army Aviation Research and Technology Activity (ARTA), California. The aircraft performance data were used by HELMS to simulate the effect of weight and included the rate of climb, fuel flow, longitudinal acceleration, longitudinal deceleration, maximum turn rate, maximum turn radius, and descent rate. ARTA used a model developed in-house (Davis 1989) to calculate the maneuvering flight performance data based on the known engine and design parameters. The ARTA model predicts the performance of the aircraft using a nonlinear force and moment mathematical model of the aircraft (Davis 1989). The data used for this study were calculated using a "clean" helicopter (no external stores) and for 2,000 ft and 70° F (2K/70) atmospheric conditions. The ARTA helicopter performance data are included in Appendix B of this report.

Simulated Flight Paths

21. Eight flight paths were chosen initially for this study. The first represents an armed reconnaissance mission of the Hunfeld, GE, region (Figure 5) flown approximately 3-4 km from the FLOT. The second flight path was also an armed reconnaissance mission at a distance of approximately 6-8 km from the FLOT. The remaining flight paths represent armed reconnaissance missions to recon the FLOT area and then to proceed to another base station. These missions represent typical missions which the LH is expected to perform during actual combat operations. These missions are considered multi-mode unconstrained runs because the flight policy changed several times during the duration of the flight and HELMS was free to select the most appropriate flight path over the terrain.

Unconstrained flight path 1

22. Flight path 1 was an armed reconnaissance mission. This flight path was selected by aviators from both WES and SMO as a typical armed reconnaissance mission. The helicopter started from the 11th Air Cavalry Regiment airfield near Fulda, GE and then followed the Fulda River Valley north until it reached the village of Sandlofs. Then it turned east and flew to a pop-up point 1.5 km north of Grossenmoor (pop-up point A, 32UNB43001720). It then turned south to reach another pop-up location approximately 2 km east of Schlotzau (pop-up point B, 32UNB47301500). It then flew southeast to a third pop-up point approximately 0.5 km north of Rufolphsham (pop-up point C) and then east to a pop-up point in the city of Hunfeld (pop-up point D). From Hunfeld it proceeded southeast to a final pop-up point approximately 1 km north of Silges (pop-up point E). From there it turned south to Hofbieber and then returned to the 11th Air Cavalry Regiment airfield at Fulda. The length of the flight path was approximately 75.8 km. The direction of the flight is shown in Figure 7 (unconstrained flight 1). The model used 38 way points to determine the actual 3-D flight path and contained a total of five pop-up locations (Figure 7).

Unconstrained flight path 2

23. Flight path 2 was also an armed reconnaissance mission. It was in the same region as flight path 1 but did not come as close to the FLOT. The length of this flight path was 71.5 km and it contained 25 way points. This flight contained four "pop-up" locations (F, G, H, I) and in general the

flight direction was east to west along the FLOT as shown in Figure 8 (unconstrained flight 2).

Unconstrained flight paths 3-8

- 24. Six additional armed reconnaissance missions were selected in the region between Sandlofs and Hofbieber (Figures 9-14). These were one-way missions using the same five pop-up locations (A-E) used in flight path 1. Three sets of way points were chosen, varying the approach and return from each of the pop-up points, and each set of way points was evaluated going from east to west and west to east. These flight paths are shown in Figures 9-14 (unconstrained flights 3-8, one direction). These flight paths used either 19 (flight paths 4 and 5) or 23 way points (flight paths 1, 2, 3, and 6). Unconstrained flight paths 9-13
- 25. A series of single-mode unconstrained flights were also simulated. These flight paths are called single-mode unconstrained runs because only one flight policy was used for the duration of the mission and HELMS was free to choose the flight path over the terrain area. Each of these flight paths had only two way points (starting and ending points). One of these way points was located at the village of Sandlofs, while the other was located at Hofbieber. The flight policy was varied for each series of runs. Flight policy 0 was added when it became evident that the aircraft was not reaching performance limits. These flight paths are shown in Figures 15-19 (single-mode unconstrained runs).

Constrained flight paths 14 and 15

26. Additional simulations were run using flight paths from previous runs. The way points for these flight paths were determined by using a one-way path with only a starting and ending way point and placing an additional waypoint at a point equal to 10 sec of flying time along that flight path. The first flight path used 36 way points to specify the flight path. The second flight path used 38 way points. This was done to control the flight path so that as many variables as possible could be evaluated. Each of these flight paths was flown using the four helicopter weights provided by ARTA and were run using a constant flight policy with the look angle set at 100 deg and the look increment set at 10 deg. The look-ahead distance was set at 5,000 m and the midpoint distance was set at 800 m. The ceiling was set to 10 m above the terrain and the floor was set equal to terrain height. The airspeed was varied between 60 and 160 knots. The first flight path is shown

in Figure 20 (constrained flight 1) and the second flight path is shown in Figure 21 (constrained flight 2).

Constrained flight paths 16a-16d

Unconstrained flight paths 17a-17d

- 27. A third constrained flight path was used to simulate flights along and approximately parallel to the FLOT. This flight path is shown in Figure 22 (constrained flight 3). This flight path contained 51 way points (spaced approximately every 600 m) along the flight path.
- 28. A fourth flight path was used to simulate the flight of the air-

PART IV: SIMULATION RESULTS

29. The analysis of the data generated during the study was accomplished using a four-step process. The initial HELMS simulations were quite long and produced large quantities of model output data. Most of the flight path considered occurred in areas where the aircraft was not affected by the ground-based weapons. The second step consisted of a series of single-mode simulations with only beginning and ending way points to determine the effects of the different flight policies on aircraft exposure time. The third step consisted of a series of single-mode, constrained simulations whereby the aircraft flew the same controlled 3-D flight path. The fourth step in the analysis consisted of a mission deep across the FLOT so that regardless of the turn direction, the aircraft would have good exposure opportunities. Each of these steps is discussed below.

Multi-Mode Unconstrained Flight Path Analysis

- 30. The initial simulations consisted of realistic mission scenarios where the aircraft flew to specific areas and popped up at specific way points. The aircraft was also required to change airspeed and flight policy several times. Flight path 1 took between 45 min 58 sec and 46 min 28 sec to fly for the different aircraft weights. The minimum exposure time was 408 sec and the maximum exposure time was 444 sec. Flight path 2 resulted in flight times between 46 min 17 sec and 47 min 4 sec. The minimum exposure time for flight path 2 was 399 sec and the maximum exposure time was 461 sec. Table 1 lists the flight path, weight, flight time, flight length, and exposure time for each of the multi-mode unconstrained simulations.
- 31. A simple linear regression analysis was used to determine whether weight had any impact on exposure time. The analysis tested the hypothesis that weight had no effect on exposure time. This hypothesis is shown below:

$$DV = A \times WEIGHT + B \tag{3}$$

Where DV = dependent variable (flight time, flight length, or exposure time)

A = slope (or significance) of line

B = intercept

The results of that analysis are presented in Table 2. Slope number (A) is the slope coefficient and the probability number represents the significance of the slope coefficient. Data in Table 2 show the significance of weight on the indicated variable (flight time, flight length, and exposure time). The second number in each pair is the probability that weight does not affect that variable; the resulting number is due solely to random chance. When the probability number is less than 0.05, the slope is assumed to be significantly different than 0. When the probability number is greater than 0.05, the slope is believed to not be significantly different from 0. The intercept number (B) represents the value of the dependent variable at a weight equal to zero and was not used in the analysis.

Single-Mode Unconstrained Flight Path Analysis

- 32. A series of single-mode simulations were generated to analyze the effects of flight policy on exposure time. These simulations were made using the primary aircraft weights provided by LH PMO (8,260, 9,980, 10,300, and 10,860 lb) and flight policy was varied. At this point in the analysis, a new flight policy was used to examine the impact of aircraft performance on exposure time. These simulations showed flight times between 4 min 51 sec (160 knots) and 38 min 22 sec (20 knots) and exposure time varying from 8 sec (160 knots) to 12 min 10 sec (20 knots). The data produced by these simulations are summarized in Table 3.
- 33. The linear regression analysis tested the hypothesis that weight had no effect on exposure time, flight time, or flight length. The hypothesis is of the same form as the one shown in Equation 3. The results of that analysis are shown in Table 4. Only one exposure time value at one airspeed (120 knots) was considered significant. As shown in Figure 24, the aircraft were able to fly these routes and maintain the flight envelope without having to sacrifice airspeed. Only when the airspeed was increased, was the aircraft's performance reduced and then only for the heavier helicopters (Figure 25).

Constrained Flight Path Analysis

34. In the third step of the analysis, simulations were generated for a series of constrained flights using three different flight paths. These

flights were constrained by using way points spaced approximately 600 m apart along the flight path. The data resulting from these simulations are presented in Table 5.

35. The significance of these results are shown in Table 6. As shown above, weight does not have a significant effect on any of the variables tested. Each of these flight paths was over different terrain and so it appears that weight is significant only when the combination of airspeed and terrain cause the aircraft to perform at the limits of its performance capabilities. As seen in Figures 26-29, for the third flight path, the aircraft only reached its performance limits at the higher airspeeds (120 and 160 knots). At the lower airspeeds, the aircraft was easily able to perform all the required maneuvers. Figure 26 (constrained run turn rate) shows that all of the aircraft simulated were able to turn effectively, but at the higher airspeeds, the aircraft had to accelerate to make the turns. Figure 27 (constrained run descent rate) shows the opposite trend, but as the aircraft's speed increases, the aircraft was able to descend faster. Figure 28 (constrained run acceleration) shows that at the higher airspeeds, the aircraft had to accelerate to maintain airspeed. In Figure 28 it is noteworthy that the aircraft had to accelerate much more often during the flight. Figure 29 (constrained run/climb rate) shows very clearly the effects of weight on aircraft performance. At a speed of 160 knots, all aircraft had to climb at a rate near maximum.

Flight Across FLOT

- 36. The fourth step was a flight deep across the FLOT. This series of simulations was used to eliminate any bias in choosing the 3-D flight path in respect to the deployed ground-based weapons. The flight paths generated during this step of the analysis were approximately 52 km in length. The data produced by these runs are shown in Table 7.
- 37. The results of the linear regression analysis are tabulated in Table 8. As shown above, weight had no significant effect on any of the variables tested. As shown in Figures 30-33, the aircraft were generally able to fly the route without being limited by performance. Figure 30 shows the aircraft turn rate used for the simulations. Only at a speed of 160 knots do the aircraft start to reach their performance limits. Figure 31 shows that the aircraft did have to descend at near their maximum rates, but this occurred

less than 0.2 percent of the time during the flight. At all other times, the aircraft were not required to descend. Figure 32 shows that at the lower airspeeds and on some of the flight paths, the aircraft were capable of flying the route without having to slow down to perform a maneuver. At 80 knots, all of the aircraft were able to fly the routes without having to reduce airspeed. Figure 33 shows that the aircraft did have to climb at a rate near the maximum during the flight, but in only one case (120 knots, 10,860 lb) did the aircraft have to climb at their maximum rate.

PART V: SUMMARY AND RECOMMENDATIONS

Summary

38. The results of this analytical study indicate that weight had no significant effect on aircraft performance at the four weights tested and thus, no attributable impact on exposure time from ground-based weapons simulated in the scenario. However, the weights used in the study did not exceed the design limits of the aircraft. In other words, the four weights evaluated did not cause aircraft performance to be degraded sufficiently to impact on exposure time.

Recommendations

- 39. It is recommended that additional simulations be made using the performance data for the new weights. It is also recommended to obtain data above the maximum operating gross weight to determine the "knee" of the curve where weight begins to affect LH aircraft performance.
- 40. It is also recommended that additional simulations be made where the helicopter is flown against a single ground-based threat weapon. At the point where the helicopter receives fire from that weapon, a series of new way points would be used to generate evasive maneuvers that a pilot would use when in the same situation. These evasive maneuvers will affect aircraft performance and thus impact exposure time and aircraft survivability. This will be based on several weights, several different weapons, and several different geographical locations.
- 41. WES plans to modify HELMS to include some knowledge of threat locations for use in the Path Generation module. This will allow better choices for avoiding an obstacle by detouring away from the ground-based threat weapons. The Path Evaluation module will be revised to extract hit/kill probabilities for each weapon. This data will then be used to better analyze the effects of weight on aircraft survivability. The survivability calculation, as it currently stands, is not considered useful in determining small changes in aircraft survivability. By examining aircraft survivability on a single-weapon basis, a better determination can be made of the effect of increasing weight on aircraft survivability. These data may also be useful in determining the primary threat to the aircraft so that the most effective

defensive measures may be incorporated into the overall design of the aircraft.

- 42. It is also recommended that an analysis of pop-up locations be conducted to determine the suitability for ground target acquisition. The "pop-up" points used in the initial part of this study were chosen as special areas of interest. However, the actual location chosen may not allow the best visibility of ground targets by the aircraft. This analysis will allow generation of more realistic survivability data.
- 43. It is recommended that other geographical areas be used for aircraft performance and survivability studies. Other high-resolution terrain/environmental data are available and should be valuable for a comprehensive analysis of LH aircraft survivability.

REFERENCES

- Bailey, P. D., and Goodson, R. A. 1984. "Simulation Models and Realistic Three-Dimensional Terrain Provide a New Dimension to the Army's Helicopter Design and Trade-Off Analysis," paper presented at Army Aviation Center, Fort Rucker, Alabama, 19 January 1984.
- Davis, J. M. 1989. "Engineers Manual for the Maneuver Performance Program," Draft Technical Report, US Army Aviation Research and Technology Activity, Moffet Field, California.
- Doiron, P. L., Sabol, B. M., and Miller, C. A. 1988. "Characteristics of Operational Environments for Wide-Area Mine Design and Evaluation," Miscellaneous Paper EL-88-14, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Hutto, T. D., and West, H. W. 1982. "High-Resolution Digital Terrain Data Bases for the Wide-Area Antiarmor Munitions (WAAM) Program," Technical Report EL-82-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Knauff, J. E. 1988. "An Analysis of the Proposed Design Range of the Automatic Target Recognition System Being Developed for the Army's New Light Attack Helicopter (LHX)," Master's Thesis, Naval Postgraduate School, Monterey, CA.
- Nelms, D. W. 1989 (Sept). "LHX and the Army Aviation Modernization Plan," National Defense, Vol LXXIX, No. 450, pp 38-43.
- Trott, T. 1982. "A Computer Model for Evaluating Terrain Shielding of Helicopter Flight Paths from Ground Weapons; Report 3, Survival Probabilities During Anti-Armor Attacks of Defended Targets," Technical Report EL-80-3, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Trott, T., and Hildreth, D. 1980a. "A Computer Model for Evaluating Terrain Shielding of Helicopter Flight Paths from Ground Weapons; Report 1, Exposure of a Hovering Helicopter to Ground Weapons of Unspecified Location," Technical Report EL-80-3, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- . 1980b. "A Computer Model for Evaluating Terrain Shielding of Helicopter Flight Paths from Ground Weapons; Report 2, Dynamic Survival Probabilities Along Helicopter Flight Paths Over Defended Terrain," Technical Report EL-80-3, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Table 1
Simulation Results from Multi-Mode Unconstrained Flights

		Flight	Flight	Exposure
Flight	Weight	Time	Length	Time
<u>Path</u>	<u>lb</u>	<u>sec</u>	<u>km</u>	sec_
1	8,260	2,755	75.21	408
1	9,100	2,758	74.00	432
1	9,980	2,758	73.29	435
1	10,140	2,785	75.49	426
1	10,300	2,801	77.46	433
1	10,580	2,775	75.57	426
1	10,860	2,787	75.83	444
2	8,260	2,777	71.20	450
2	9,100	3,179	71.36	452
2	9,980	2,788	71.15	399
2	10,140	2,809	71.64	440
2	10,300	2,806	71.99	461
2	10,580	3,446	72.17	451
2	10,860	2,824	71.86	453
3	8,260	1,562	36.48	355
3	9,100	2,237	36.53	429
3	9,980	1,553	36.17	356
3	10,140	1,570	36.48	369
3	10,300	1,566	35.85	373
3	10,580	1,561	36.33	376
3	10,860	1,541	35.88	371
4	8,260	1,594	38.04	519
4	9,100	2,191	39.17	471
4	9,980	1,603	38.33	489
4	10,140	1,618	38.26	492
4	10,300	1,621	38.32	496
4	10,580	1,630	38.33	539
4	10,860	1,627	38.48	499
5	8,260	1,428	32.37	383
5	9,100	1,464	33.10	418
5	9,980	1,451	32.02	354
5	10,140	1,429	31.97	354
5	10,300	1,428	31.99	375
5	10,580	1,472	32.02	386
5	10,860	1,525	32.62	336
6	8,260	1,632	32.32	515
6	9,100	1,617	32.77	545

(Continued)

Table 1 (Concluded)

		Flight	Flight	Exposure
Flight	Weight	Time	Length	Time
Path	<u>lb</u>	<u>sec</u>	<u>km</u>	sec
6	9,980	1,586	32.26	508
6	10,140	1,616	32.31	550
6	10,300	1,593	32.02	514
6	10,580	1,632	32.52	511
6	10,860	1,395	32.65	367
7	8,260	1,861	37.98	623
7	9,100	1,896	37.61	610
7	9,980	1,877	38.26	617
7	10,140	1,928	38.04	596
7	10,300	1,871	37.90	600
7	10,580	1,845	38.06	595
7	10,860	1,859	37.82	580
8	8,260	1,837	35.43	429
8	9,100	1,800	35.32	426
8	9,980	1,788	35.78	443
8	10,140	1,883	36.04	451
8	10,300	1,862	35.92	453
8	10,580	1,784	35.54	455
8	10,860	1,784	35.54	455

Table 2
Sensitivity of Dependent Variable to Weight

Flight	Flight Time		Fli; Len	•	Exposure Time	
Path	Slope	<u>Probability</u>	Slope	Probability	Slope	Probability
1	0.014036	0.0699	0.00532	0.4278	0.009272*	0.0498
2	0.04294	0.7499	0.000327	0.0563	-0.000126	0.9906
3	-0.111521	0.3813	-0.000205	0.1146	-0.003499	0.7857
4	-0.80188	0.4644	-1.3392X10 ⁻⁵	0.9422	0.002685	0.8137
5	0.019976	0.2358	-0.000175	0.4152	-0.1710	0.1780
6	-0.049157	0.2212	-5.556X10 ⁻⁶	0.9655	-0.032906	0.2709
7	-0.003683	0.7967	4.0397X10 ⁻⁵	0.7014	-0.13710*	0.0164
8	-0.008423	0.6884	0.000133	0.3059	0.12617*	0.0029

^{*} Significant at 0.05 probability limit.

Table 3
Simulation Results From Single-Mode Unconstrained Flights

Run Num	Airspeed <u>knots</u>	Weight	Flight Time _sec	Flight Length <u>km</u>	Exposure Time sec
2051	160	8,260	291	23.92	39
2053	160	9,980	305	24.54	8
2055	160	10,300	293	23.67	25
2057	160	10,860	296	23.73	80
2011	120	8,260	379	23.43	34
2013	120	9,980	373	23.04	139
2015	120	10,300	352	21.74	146
2017	120	10,860	359	22.20	145
2021	80	8,260	549	22.68	222
2023	80	9,980	569	23.51	202
2025	80	10,300	572	23.60	45
2027	80	10,860	596	24.60	173
2031	60	8,260	809	25.15	89
2033	60	9,980	807	25.16	115
2035	60	10,300	772	24.06	213
2037	60	10,860	759	24.59	120
2041	20	8,260	2,148	24.25	729
2043	20	9,980	2,279	25.66	730
2045	20	10,300	2,191	24.66	699
2047	20	10,860	2,302	25.87	676

Table 4
Sensitivity of Dependent Variable to Weight

Airspeed	Flight Time		Flight Length		Exposure Time	
knots	Slope	<u>Probability</u>	Slope	Probability	Slope	Probability
160	0.002062	0.6263	-5.9401x10 ⁻⁵	0.8327	0.008249	0.6992
120	-0.008793	0.2066	-0.000545	0.2075	0.046757*	0.0430
80	0.016037	0.0670	0.000653	0.0689	-0.34967	0.5076
60	-0.017892	0.2017	-0.000208	0.4033	0.24018	0.5037
20	0.050940	0.2141	0.000532	0.2352	-0.17757	0.2348

^{*} Significant at 0.05 probability limit.

Table 5
Simulation Results From Constrained Flights

Dun	Waish+	Flight	Flight	Exposure Time
				sec
	<u>Fli</u>	tht 1		
2,121	8,260	267	21.54	113
2,123	9,980	268	21.55	115
2,125	10,300	282	21.93	119
2,127	10,860	279	21.98	120
2,111	8,260	350	21.58	145
				135
				145
2,117	10,860	351	21.60	139
2.131	8.260	523	21.60	219
· ·				216
	-			216
2,137	10,860	524	21.62	215
2 141	8 260	697	21 68	289
				282
				282
2,147	10,860	696	21.63	282
	Flig	ght 2		
2.201	8.260	287	22.95	28
				29
				32
2,207	10,860	297	22.93	33
2.071	8 260	369	22.74	45
				41
				38
2,077	10,860	373	22.83	39
2 211	8 260	551	22 74	61
				65
				67
2,217	10,860	552	22.77	75
2.221	8.260	733	22.80	72
				83
				85
2,227	10,860	735	22.81	77
	2,123 2,125 2,127 2,111 2,113 2,115 2,117 2,131 2,133 2,135 2,137 2,141 2,143 2,145 2,147 2,201 2,203 2,205 2,207 2,071 2,073 2,075 2,077 2,211 2,213 2,215 2,217 2,221 2,223 2,225	Number 1b 2,121 8,260 2,123 9,980 2,125 10,300 2,127 10,860 2,111 8,260 2,113 9,980 2,115 10,300 2,131 8,260 2,133 9,980 2,135 10,300 2,137 10,860 2,141 8,260 2,143 9,980 2,145 10,300 2,147 10,860 Flig 2,201 8,260 2,203 9,980 2,205 10,300 2,207 10,860 2,071 8,260 2,073 9,980 2,075 10,300 2,077 10,860 2,211 8,260 2,213 9,980 2,215 10,300 2,217 10,860	Run Number Weight 1b Time sec Flight 1 2,121 8,260 267 2,123 9,980 268 2,125 10,300 282 2,127 10,860 279 2,111 8,260 350 2,113 9,980 351 2,115 10,300 352 2,131 8,260 523 2,133 9,980 523 2,135 10,300 524 2,143 9,980 696 2,143 9,980 696 2,144 8,260 697 2,143 9,980 696 2,145 10,300 696 2,147 10,860 297 2,203 9,980 298 2,205 10,300 294 2,071 8,260 369 2,075 10,300 371 2,075 10,300 373 2,211 8,260 551 </td <td>Run Number Weight 1b Time sec Length km Flight 1 2,121 8,260 267 21.54 2,123 9,980 268 21.55 2,125 10,300 282 21.93 2,127 10,860 279 21.98 2,111 8,260 350 21.58 2,113 9,980 351 21.62 2,115 10,300 352 21.66 2,117 10,860 351 21.60 2,131 8,260 523 21.60 2,133 9,980 523 21.57 2,135 10,300 524 21.62 2,137 10,860 524 21.62 2,141 8,260 697 21.68 2,143 9,980 696 21.65 2,144 9,980 696 21.65 2,145 10,300 696 21.63 Flight 2 2,201 8,260</td>	Run Number Weight 1b Time sec Length km Flight 1 2,121 8,260 267 21.54 2,123 9,980 268 21.55 2,125 10,300 282 21.93 2,127 10,860 279 21.98 2,111 8,260 350 21.58 2,113 9,980 351 21.62 2,115 10,300 352 21.66 2,117 10,860 351 21.60 2,131 8,260 523 21.60 2,133 9,980 523 21.57 2,135 10,300 524 21.62 2,137 10,860 524 21.62 2,141 8,260 697 21.68 2,143 9,980 696 21.65 2,144 9,980 696 21.65 2,145 10,300 696 21.63 Flight 2 2,201 8,260

(Continued)

Table 5 (Concluded)

Airmond	Run	II of all to	Flight	Flight	Exposure
Airspeed		Weight	Time	Length	Time
knots	Number	<u>1b</u>	sec	<u>km</u>	sec
		Fli	ght 3		
160	2,321	8,260	414	31.64	215
160	2,323	9,980	445	32.39	240
160	2,325	10,300	443	32.28	239
160	2,327	10,860	464	32.78	249
120	2,311	8,260	496	30.41	246
120	2,313	9,980	518	31.45	268
120	2,315	10,300	518	31.40	275
120	2,317	10,860	524	31.52	273
80	2,331	8,260	733	30.25	369
80	2,333	9,980	734	30.27	369
80	2,335	10,300	736	30.33	372
80	2,337	10,860	739	30.46	374
60	2,341	8,260	973	30.31	471
60	2,343	9,980	975	30.35	488
60	2,345	10,300	974	30.32	493
60	2,374	10,860	974	30.33	479

Table 6
Simulation Results From Flights Across FLOT

Airspeed	Flight Time		Flight Length		Exposure Time	
knots	Slope	Probability	Slope	Probability	Slope	Probability
		Const	trained Flight 1	Airspeed		
160	0.005043	0.2579	0.00165 s	0.2224	0.002662	0.0971
120	0.000541	0.2568	1.6297x10 ⁻³	0.4653	-0.001953	0.5531
80	0.000388	0.2478	6.1750x10 ⁻⁶	0.6815	-0.001543*	0.0074
60	-0.000422	0.0541	-1.8022x10 ⁻³ *	0.0203	-0.002954	0.541
		Const	rained Flight 2	Airspeed		
160	0.003896	0.1208	-8.0950x10 ⁻⁶	0.0525	0.001853	0.1278
120	0.001415	0.0717	3.5434x10 ⁻⁵	0.2250	-0.002583	0.0651
80	0.000388	0.2478	1.0431x10 ⁻⁵	0.2207	0.004608	0.1230
60	0.000536	0.3992	-5.57x10 ⁻⁷	0.9670	0.003273	0.3793
		Const	rained Flight 3	Airspeed		
160	0.017937*	0.0257	0.000408*	0.0337	0.12844*	0.0105
120	0.010893*	0.0099	0.000452*	0.0370	0.011461*	0.0364
80	0.002001	0.1523	6.6541x10 ⁻⁵	0.2121	0.001699	0.2228
60	0.000457	0.3734	7.936x10 ⁻⁶	0.4792	0.005359	0.3836

^{*} Significant at 0.05 probability limit.

Table 7
Simulation Results From Flights Across FLOT

			Flight	Flight	Exposure
Run	Airspeed	Weight	Time	Length	Time
Num	knots	<u>lb</u>	_sec	<u>km</u>	sec
2421	160	8,260	634	51.69	228
2423	160	9,980	687	55.65	177
2425	160	10,300	665	54.04	152
2426	160	10,860	683	54.64	174
2411	120	8,260	857	53.05	296
2413	120	9,980	872	53.92	279
2415	120	10,300	837	51.77	277
2417	120	10,860	840	51.94	286
2431	80	8,260	1,199	49.62	418
2433	80	9,980	1,288	53.26	427
2435	80	10,300	1,228	50.84	411
2437	80	10,860	1,264	52.34	429
2441	60	8,260	1,696	52.82	464
2443	60	9,980	1,677	52.17	458
2445	60	10,300	1,668	51.82	433
2447	60	10,860	1,717	53.44	455

Table 8

<u>Sensitivity of Dependant Variable to Weight</u>

Airspeed knots	Fligh Time		Flight Length		Exposure Time	
	Slope	Prob.	Slope	Prob.	Slope	Prob.
160	0.018667	0.1335	0.001250	0.1883	-0.025313	0.1179
120	-0.006325	0.5958	-0.000420	0.5327	-0.005537	0.2271
80	0.023960	0.3154	0.001000	0.3034	0.002423	0.6744
60	0.001630	0.9160	0.000024339	0.9620	0.006322	0.4763

^{*} Significant at 0.05 probability limit.

Figure 1. Location of HELMS database and study area (1:50,000 quad sheets)

Figure 2. HELMS topography data

Figure 3. Feature (urban and vegetation) height data for Hunfeld-Fulda Region

Figure 4. Fulda Gap Region

Figure 5. Slope magnitude distribution within Hunfeld-Fulda Region

- 4697 Class Class Class Class Class Class Class Class Class Weapon Weapon Weapon Weapon Weapon Weapon
- Weapon Weapon Weapon

Figure 6. Weapons locations

Multi-mode unconstrained runs armed recon flight 1 Figure 7.

Multi-mode unconstrained runs armed recon flight 2 Figure 8.

Figure 9. Flight path 3 multi-mode unconstrained runs

Figure 10. Flight path 4 multi-mode unconstrained runs

Figure 11. Flight path 5 multi-mode unconstrained runs

Figure 12. Flight path 6 multi-mode unconstrained runs

Figure 13. Flight path 7 multi-mode unconstrained runs

Figure 14. Flight path 8 multi-mode unconstrained runs

Single-mode unconstrained run, flight policy 0 Figure 15.

Figure 16. Single-mode unconstrained run, flight policy l

Figure 17. Single-mode unconstrained run, flight policy 2

Single-mode unconstrained run, flight policy 3 Figure 18.

Figure 19. Single-mode unconstrained run, flight policy 4

Figure 20. Constrained runs, flight 1 (Sheet 1 of 4)

Figure 20. (Sheet 2 of 4)

Figure 20. (Sheet 3 of 4)

Figure 20. (Sheet 4 of 4)

Constrained runs, flight 2 (Sheet 1 of 4) Figure 21.

Figure 21. (Sheet 2 of 4)

Figure 21. (Sheet 3 of 4)

(Sheet 4 of 4) Figure 21.

Figure 22. Constrained runs, flight 3 (Sheet 1 of 4)

Figure 22. (Sheet 2 of 4)

Figure 22. (Sheet 3 of 4)

Figure 22. (Sheet 4 of 4)

Figure 23. Flight across FLOT (Sheet 1 of 4)

Figure 23. (Sheet 2 of 4)

Figure 23. (Sheet 3 of 4)

Figure 23. (Sheet 4 of 4)

Figure 24. Effect of weight on exposure time, flight time, or flight length (Sheet 1 of 4)

Figure 24. (Sheet 2 of 4)

Figure 24. (Sheet 3 of 4)

Figure 24. (Sheet 4 of 4)

Figure 25. Exposure time, flight time, and flight length analyses for heavier weight helicopters (Sheet 1 of 4)

Figure 25. (Sheet 2 of 4)

Figure 25. (Sheet 3 of 4)

Figure 25. (Sheet 4 of 4)

Figure 26. Constrained run turn rate

Figure 27. Constrained run descent rate

Figure 28. Constrained run acceleration

Figure 29. Constrained run climb rate

Figure 30. Flight across FLOT turn rate

Figure 31. Flight across FLOT descent rate

Figure 32. Flight across FLOT acceleration

Figure 33. Flight across FLOT rate of climb

APPENDIX A: WEAPON DATA

WEAPON CHARACTERISTICS

					WEAPON CLASS	V CLASS				
•	-	2	8	4	သ	9	7	8	6	10
RANGE, METER	2500	4000	2000	5800	6500	11000	3500	4500	2000	8000
MAX ELE ANG, MILES	1545	1550	1334	1422	1565	480	1245	1245	1245	640
MIN ELE ANG, MILES	-88	88	-107	-89	-53	480	178	178	178	178
HT ABV GND, DECIMETERS	31	33	22	33	31	37	20	20	20	30
STD DEV-SYS	5	4	5	2	2	-	က	8	-	-
KILL PROB	0.50	0.85	0.80	0.99	0.99	0.99	0.99	0.99	0.99	0.99
#RNDS-SHT BRST	20	20	20	-	-	-	-	-	T	-
# RNDS-LNG BRST	100	150	100	1-2	1-2	1-2	-	-	-	1-2
ACQ TIME, SEC	10	8	10	σ	6	12	80	80	80	9
ACQ RANGE, METER	12000	15000	4000	6500	8000	20000	4000	4000	4000	15000

BALLISTIC TABLE

ELEVATION 15° ELEVATION (0.1 mils) WEAPON CLASS 1 RANGE (m) 2500 1708 TIME (SEC)

2 & 3	RANGE (m)	0	1000	1700	2250	2650	3050	3400	3750	4000
CLASS										
WEAPON CLASS	TIME	0	₩	Q	က	4	2	9	~	8

BALLISTIC TABLE

WEAPON CLASS 4

TIME (SEC)	RANGE (m)	TIME (SEC)	RANGE (m
0	0	G.	3750
1	104	10	4000
ત્ય	416	11	4300
က	956	12	4600
4	1497	13	4900
വ	2035	14	5200
9	2575	15	2500
۲	3115	16	5800
ω	3500		

BALLISTIC TABLE WEAPON CLASS 5 (SEC) RANGE

RANGE (m)	0	130	515	1215	1920	2625	3322	4720	5420	6122	6820
TIME (SEC)	0	1	Q	က	4	2	9	~	8	တ	10

BALLISTIC TABLE

WEAPON CLASS 6 & 10

ELEVATION	4	က	Q	1	0	-		1	1	0
RANGE (m)	4300	4850	5428	0009	6503	7000	7501	8000	8525	9050
TIME (SEC)	10	11	12	13	14	15	16	17	18	19
ELEVATION	20	20	က	Ŋ	သ	ည	4	တ	S.	S
RANGE (m) ELEVATION	0	105	422	006	1350	1800	2250	2700	3200	3750
TIME (SEC)	0		Q	က	4	က	9	2	80	6

BALLISTIC TABLE

WEAPON CLASS 7

TIME (SEC)	RANGE (m)	ELEVATION (0.1 mils)
0	0	0
1	200	€ જ
∾	009	4
ဇာ	1100	9
4	1620	8
വ	2140	10
9	2660	12
~	3180	14
8	3700	16
G	4000	18

ELEVATION (0.1 mils) WEAPON CLASS 8 BALLISTIC TABLE RANGE (m) 720 1240 1760 2280 250 2800 3320 3840 TIME (SEC)

18

4360

		ELEVATION (0.1 mils)	0	જ	4	9	80	10	12	14	16	18	20	22	24
BALLISTIC TABLE	WEAPON CLASS 9	RANGE (m)	0	150	200	1100	1700	2250	2800	3350	3900	4500	5050	5550	0009
		TIME (SEC)	0	-	ત્ય	က	4	သ	9	~	89	O.	10	11	12

see Data for the UK COEA	rfiguration)* ••	
•• Maneuvering Flight Performance Data for the LHX COEA	•• (The "HL92" Configuration)*	

3-JUL-89 ARTA

	Description		Gross	Drag
Configuration/Neight	Longbow Stotus	External Stores Status	d -	- ftee2
Minimum Operating Weight	None	None ("CLEAN")	8260	2.2
Primary Mission Gross Weight (PMGW)	None	None	anai . 8866	2.2
Attack Mission Gross Weight (AMGW)	%	e cov	16366	2.2
Max Operating Weight	None	Non	16866	2.2
Min Operating Weight	None	Installed, but Empty	9280	5.8 8.
Max Operating Weight	None	Installed, and Full	11450	3.8
Minimum Operating Weight	Installed	•coN	8680	8.2
Primary Mission Configuration	Installed	© C O N	10380	8.2
Min Operating Weight	Installed	Installed, but Empty	9620	6 0
Mox Alternate Gross Weight (MAGW)	Installed	Installed, and Full	11790	ø. 60
			_	

Atmospheric Conditions: 4000 ft / 95 deg-F (4K/95); 2000 ft / 70 deg-F (2K/70); 0 ft / 59 deg-F (SLS)

* Obtained from US Army Aviation Research and Technology Activity (ARTA), California.

8 ≥ , 500 FPM, 95% IN NO CONTINGENCY

190.0 DATE: 177.3 6.6666 1.6666 6.6 6.6 6.6 0.6661 177.4 177.4 0.0 4.34 \$ Ť 0 9 4 176.8 6.8457 1.3697 3625.7 5.43 46.26 170.0 6.6272 -5.89 170.0 170.1 466. 1.6 -3.53 178.6 3538 7.45 28 4 188.6 287.2 -18394. -29.7 166.6 166.3 986. 3.5 -2.62 160.6 1.1274 1.5076 2010.6 7.70 48.45 9 2 9 169. 1499. -3.2 168. 9.861 -6.8 Ý 6.0.0 176.6 185.6 -7553. -23.7 158.0 1.2891 1.6315 1545.4 9.39 52.22 159.9 159.7 1418. 5.3 158.8 6.8958 -7.19 158.6 -0.3156 8.18 156. 1363. -2.6 POWER POWER **PO¥E** POWER 146.8 1143.6 -2.12 146.0 141.1 1791. 7.2 -1.12 166.8 171.8 -6168. -20.7 -13.68 140.6 1.3972 1.7182 1242.6 10.90 54.42 146.6 6.1287 -8.38 146.6 3.3932 8.61 LHX, 2×1800, 5 BLADE, DIA=F/O, FLAP OFFSET=3.5%, CT/S=.0874, ARMED RECON = (COMBAT, 4HF + 2S + 320) FALLOUT VIBRATION, NAININUM OPERATING WEIGHT W/O LONGBOW [WITH EXT STORES] HE: DUB4:[DAVIS.LHX.HL92]HL92.DAT;3 Ť DEG-F; .0 DEG-F 150.0 158.6 -5224. -19.0 DEG-F; DEG-F; 120.0 919.7 -1.10 1.5158 1.5158 1.8160 841.1 13.86 56.59 128.8 0.1979 -11.11 120.0 122.3 2369. 11.0 0.00 120.0 9.2936 10.14 0 • • 92.0 **•** 120.0 140.0 125.0 140.0 125.3 147.1 -3655. -4565. -7.65 -7.65 8 6 5 4 8 8 100.0 103.6 2726. 15.1 -0.09 1.5369 1.8286 578.3 16.72 56.85 8 166.6 6.2764 -15.12 199.9 -0.3118 -166. 166. 16.2. . • • • 30 đ 85.6 6.3369 -19.12 85.0 1.4854 1.7966 430.7 19.69 56.65 9 4 8 85.8 -8.3268 -85.0 89.7 2891. 18.6 Ë Ë Ë Ë **466** 4996 . 80.0 777.6 9.44 - 4686. 186.0 184.7 -3136. -17.2 86.0 85.1 2930. 19.9 1000. 80.0 1.4635 1.7726 387.2 19.98 55.66 80.0 0.3528 -20.36 ÷ 5 8 1 . . 1 9 L CAPABILITY FT •• 2: ALT AATE OF DESCENT CAPABILITY (POWER OFF)

GW = 9280. LB; DQB = 3.80 FT++2; ALT

VHZKTS,KT 40.0 60.0 80.0 85.0

VKTS,KT 45.0 66.9 85.0 89.8

VCLUB,F/AN - 54.5 - 580.7 - 2918 - 18.8

IFUS,DEG 1.31 -0.64 -3.25 -3.89 ٨L ۲ 66.9 66.9 2999. 26.3 ٨L 60.0 1.3348 1.6678 238.8 24.30 53.16 60.0 0.4470 -24.97 0.4.0 9 8 9 88.8 8.8 8.9 B CAPABILITY .80 FT ** 2; / 27.2 FT••2; FT**2; 11.17 FT••2; 9 46.6 1613.8 1.19 40.0 49.0 2870. 35.3 40.0 1.0908 1.4799 129.9 29.79 47.49 40.0 0.5364 -28.63 48.8 -8.2576 -15.88 ACCEL | 3.88 F N CAPABILITY DOB = 3.88 F 8 CAPABI 3.80 CLIMB 20.0 1284.2 1.12 20.0 0.6056 -31.16 28.8 32.8 2536. 51.4 20.0 9.8276 1.2980 42.8 45.20 39.61 20.0 -0.2512 -POWER-LIMITED HORIZONTAL GW = 9280. LB: DQB = • DECELERATION FLIGHT B: DOB POWER-LIMITED RATE OF GW = 9280. LB; DQB POWER-LIMITED TURN GW = 9280. LB; C 6.6 1521.5 6.44 9.8 15.6 1516. 98.8 -8.33 0.0 0.5662 1.1492 0.0 0.0 0.6 0.5662 -29.70 6.6 15.86 DATA FILE UNACCELERATED GW = 9288. LB ġ WHZKTS,KT TOTAL HPREQ IFUS,DEG WAZKTS.KT AY.G NZ.G RADIUS.FT RATE.D/S PHI.DEG WAZKTS, KT AX, G IFUS, DEG WHZKTS, KT WKTS, KT WCLAB, FT/AN GAMAN, DEG IFUS, DEG WHZKTS,KT AX,G -1FUS,DEG

Ì		\$
	198.6 1,886.7 56.10 6.45 2147.8 8.55 -1549.	POWER LEVEL: 0.0 0.0 0.89 0.53 0.64 0.4 0.4 0.5 0.5 0.5 0.5 0.5
	180.0 11.86.0 57.37 6.39 1836.6 19.48 -1355.	19 19 19 19 19 19 19
	170.0 170.0 1.9226 58.58 0.41 1563.4 10.52 -1232.	TDAP = 95.00 DEG-F; 170.00 180.00 170.00 180.00 2.05000 1.9956 59.72 58.71 7.70 7.11 1512.5 1762.5 10.05
	160.0 1.9872 59.72 6.58 1323.7 11.69	EMP = 95 170.0 170.0 2.0500 59.72 7.70 1512.5 16.87 -5412.
	150.0 150.0 2.0534 60.73 6.91 1114.1 13.02 -1291.	FT: T 160.0 2.1084 60.68 60.68 1291.7 1191.7
	146.6 146.6 51.79 61.79 1.46 931.4 14.54 14.54 -1467.	4666. 156.6 156.6 1.696 31.69 51.50 997.1
	120.0 120.0 2.2467 63.46 3.04 638.0 18.19 -2166.	POWER 0 2; ALT 140.0 140.0 2.2325 62.45 10.85 926.5 14.61
	198.6 2,3415 64.46 6.83 426.8 22.66 -3936.	LTITUDE. 120.0 120.0 120.0 2.3407 63.75 14.84 656.2 17.86
	85.0 85.0 2.4285 65.09 13.11 306.8 26.80 -6877.	NSTANT A DQB = 3 100.0 100.0 2.4215 64.62 23.31 467.2 207.2
	80.0 80.0 2.4425 65.09 16.64 277.4 27.89 -8256.	TURN (CON 9. LB: D 85.0 85.0 2.4568 64.82 36.25 397.4 20.25
	WHZKTS, KT VKTS, KT NZ, G PH, DEC PSI, DEC RADIUS, FT RATE, D/S XF—WIND, LB	TRANSIENT TURN (CONSTANT ALTITUDE, POWER OFF) GW = 9280. LB; DQB = 3.80 FT0.2; ALT = 1.00 FT0.2; ALT

196.0 7.13 Ť 186.6 -6.3368 7.18 DATE: 172.6 1972.1 -3.32 172.8 172.8 6.0 -3.34 172.8 9.0000 1.0000 0.00 0.00 172.7 0.0002 -3.34 7.8.6 288.8 233.4 12193. -31.8 -23.22 176. 1897. 2 ٩ 176.6 6.6675 -3.53 TIME: 14:37: 190.0 208.4 -8681. · -24.3 -16.98 160.0 7.62 168.8 1649.8 -2.64 178.6 9.3568 1.8616 7187.2 2.29 19.62 . 500 FPM, 95% M 9 ונאנו: LEVEL: 150.0 -0.2807 -8.04 158.8 1455.3 -2.16 186.6 192.8 -7668. -21.6 LEVEL: 166.6 6.7913 1.2214 3232.2 4.79 35.67 168.8 6.8346 -4.33 160.0 160.1 559. 2.0 2.0 POWER POWER POWER 150.0 0.8651 1.3223 2362.7 6.30 40.88 158.8 6.8688 -5.17 146.6 -0.2733 -8.58 148.6 1298.4 -1.78 159.6 156.3 918. 3.5 -1.70 179.6 -5854. -18.8 -11.69 ., CT/S=.0874, 5 VIBRATION, NO STORES] 3 DEG-F; 120.0 1880.6 -0.85 DEG-F: DEG-F: .0 DEG-F 160.0 167.5 -5007. -17.2 DEG-F; 140.0 0.0868 -6.08 140.0 140.5 1224. 4.9 140.0 0.9692 1.3926 1796.6 7.56 120.0 1.2730 10.23 • • 4 150.0 150.0 156.3 14434. 4X, 2x1800, 5 BLADE, DIA=F/O, FLAP OFFSET=3.5%, DIA=BD RECON — (COMBAT. 4HF 4.2 ± 3.30) FALLOUT ALTERNATE CONFIGHRATION W/O LONGBOW [WITH EXT DUB4:[DAVIS.LHX.HL92]HL92.DAT;3 8 9 120.0 0.1388 -8.13 8 166.6 -6.3636 -0-5 8 9 120.0 121.2 1688. 7.9 126.6 1.6798 1.4718 1186.7 9.83 47.21 í . . 983. • FT: TEMP 15 146.0 15 145.4 15 -3965. -44 -15.6 -1 -7.41 -1 ğ Ģ 196.6 6.1964 -16.46 85.8 983.9 0.21 166.6 161.8 1954. 16.9 6.32 1.0938 1.4820 809.5 11.95 <u>.</u> 4 8 Ë Ë Ë Ë Ë 9 **4000** 88.8 -6.3852 -**4969** 85.0 0.2258 -12.22 28.8 124.4 -3314. -15.3 -5.54 85.6 1.0517 1.4512 608.2 13.51 46.45 80.0 996.4 0.32 85.0 87.3 2009. 13.1 0.55 4000 . . . ALT POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 11450. LB; DGB = 3.80 FT++2; ALT 80.0 0.2367 -12.79 ¥. ALT 80.0 1.0315 1.4367 549.4 14.08 45.89 ٩٢ 60.8 1118.6 0.61 80.0 82.4 2000. 13.9 0.59 68.8).2782 15.88 B CAPABILITY .80 FT .. 2: 3.80 FT •• 2; 9 F1002; FT**2; 56.8 6.9892 1.3515 356.6 16.55 40.0 -0.2664 15.00 60.0 0.2757 -15.20 40.0 1379.5 0.61 60.0 62.7 1860. 17.0 0.00 3.80 3.80 CLIMB 40.0 0.6620 1.1993 214.0 18.08 33.50 40.0 0.2791 -15.43 LHX, 27 ARMED P. MAX ALT 20.0 1728.9 0.35 20.0 2656 15.00 POWER-LIMITED TURN CAPABI GW = 11450. LB; DQB = DECELERATION LB: DOB = . FL1GHT B; DOB • POWER-LIMITED RATE OF GW = 11450. LB; DOB **ب** RATE OF DESCENT CAPY
WWW = 11450. LB; DC
WHZKTS,KT 60.0
WKTS,KT 67.6
VKTS,KT 67.6
VKT 67.6
VKTS,KT 67.6
VKT 67 NAME: 28.8 8.3272 1.8522 108.2 17.87 20.0 0.1880 -10.45 9.8 -8.2853 -20.0 20.8 586. 16.1 CONFIGURATION 2148. UNACCELERATED FIGW = 11450. LB; DATA FILE VHZKTS.KT TOTAL HPREQ IFUS.DEG VHZKTS.KT AX.G IFUS.DEG WAZKTS, KT AY, G AZ, G RADIUS, FT RATE, D/S PHI, DEG MZKTS, KT AX, G IFUS, DEG WHZKTS, KT
WKTS, KT
WCLMB, FT/AN
GAMMA, DEG
I FUS, DEG

		<u>&</u>
POWER LEVEL:	198.6 198.6 1.4594 46.51 6.38 8331.9 6.86 11549.	LEVEL:
	186.6 1.5678 48.36 6.34 2556.2 6.81 -1355.	POWER 190.0 1.5757 48.58 5.91 2846.8 6.45 -5397.
TD#P = 95.0 DEG-F;	176.6 1.5582 49.96 6.37 2158.6 1.258.6	TDMP = 95.0 DEG-F; 170.0 180.0 170.0 180.0 1.6614 1.6174 51.45 50.07 6.97 6.38 2064.0 2426.9 7.96 7.17 -54125356.
D.P = 95	166.6 1.6166 51.52 51.52 6.53 1881.6 8.59 -1213.	178.8 178.8 178.8 178.8 178.8 178.8 178.8 178.9 178.9 178.9 178.8 178.9 178.8 178.9
Ë	150.0 150.43 52.97 6.83 150.9 9.65 -1291.	166.6 166.6 17.088 17.088 72.75 7.78 1749.18 8.85 -5616.
(N)	146.6 148.6 1.7187 54.32 1246.7 19.86 -1467.	R OFF) - 6 159-9 - 9 159-9 - 1 758-3 - 1
POWER ON)	120.0 1.820.0 1.820.5 56.53 2.84 13.74 13.74 -2166.	POWER (2: AL) 146.0 146.0 146.0 155.10 16.0 15.39.0 16.93 16
ALTITUDE, P 3.80 FT**2;	160.0 1.8977 57.83 5.48 56.48 561.8 17.21 -3930.	120.0 120.0 120.0 120.0 120.0 120.0 120.0 130.0
NSTANT A	85.0 85.0 1.9683 58.59 12.32 463.5 20.37 -6877.	NSTANT AL DQB = 3. 100.0 100.0 1.9626 57.66 57.66 57.66 57.66 15.17 15.35 15.35 15.39
TURN (CC	80.0 80.0 1.9796 58.51 15.62 365.9 21.15 -8256.	TURN (CON- 1. LB; E 85.0 85.0 2.082.0 57.00 57.00 14.88 14.88 14.88 -15.00
TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 11450. LB; DQB = 3.80 FT**2; ALT	WYZKTS,KT WKTS,KT NZ,G PHI,DEG PSI,DEG RADIUS,FT RATE,D/S XF-WIND,LB	TRANSIENT TURN (CONSTANT ALTITUDE, POWER OFF) WHZKTS, KT 85.0 100.0 120.0 140.0 WTS, KT 85.0 100.0 120.0 140.0 WTG, KT 85.0 100.0 120.0 140.0 WTG, C 20.35 196.6 56.75 55.10 PHI, DEC 57.00 57.66 56.75 55.10 PHI, DEC 57.00 57.66 56.75 55.10 RADIUS, FT 548.8 623.5 872.4 1239.0 14 RATE, D/S 14.98 15.51 13.30 10.93 XF-WIND, LB -1508710464778463986

DATE: ₹ 7, RUN TIME: 14:38 ON: LHX, 2xT880, 5 BLADE, DIAMF/O, FLAP OFFSET=3.5X, CT/Sm.0874, 500 FPM, 95X MRP ARMED RECON - (COMBAT, 4HF + 2S + 320) FALLOUT VIBRATION, NO CONTINGENCY WT MINIMUM OPERATING WEIGHT WITH LONGBOW [CLEAN]
NAME: DUB4:[DAVIS.LHX.HL92]HL92.DAT;3 CONFIGURATION:

3-701-69 162.1 1960.5 -6.58 162.3 162.3 0.0 -6.61 160.0 1886.8 -6.35 160.0 160.0 128. 0.5 156.0 1569.7 -5.27 158.8 158.2 788. 2.7 -5.31 POWER 148.8 1323.4 -4.28 140.0 140.5 1211. 4.9 DEG-F; DEG-F; 128.8 987.5 -2.56 120.0 121.6 2014. 9.4 -2.79 92.0 0 **9**5. 166.6 807.2 -1.15 166.6 163.6 2499. 13.9 . 85.0 748.1 -0.28 85.6 89.4 2800. 18.6 -4.59 80.0 741.0 -0.03 86.6 84.9 2888. 19.6 ALT 20 FT++2; ALT 60.0 772.5 0.73 60.0 67.5 3139. 27.3 B CAPABILITY 40.0 916.0 1.21 40.0 50.8 3178. 38.1 CLIMB 60 26.6 35.7 2997. 55.9 20.0 1161.2 1.33 UNACCELERATED FLIGHT GW = 8600. LB; DQB POWER-LIMITED RATE OF GW = 8600. LB; DQB 0.0 1379.2 0.71 9.0 22.2 2246. 90.0 NPUT DATA FILE VHZKTS,KT TOTAL HPREQ IFUS,DEG VHZKTS, KT VKTS, KT VCLAB, FT/AN GAMAA, DEG 1FUS, DEG

RATE OF DESCENT CAPABILITY (POWER OFF)

GW = 8600. LB; DQB = 8.20 F7**2; ALT = 4000. FT; TEMP = 95.0 DEG-F

VHZKTS,KT 40.0 60.0 80.0 85.0 100.0 120.0 150.0 150.0

VHZKTS,KT 52.3 67.5 86.0 90.9 106.2 127.8 151.8 165.9 188.4

VCUMB,FT/AN -3412. -3136. -3190. -3257. -3615. -4455. -5954. -7175. -10074.

GAMMA,DEG -40.1 -27.3 -27.5 -20.7 -19.6 -20.1 -22.8 -25.3 -31.9

IFUS,DEG -0.04 -2.47 -5.50 -6.14 -7.85 -10.66 -14.63 -17.53 -23.95

162.3 6.6666 1.6666 6.6 6.6 160.0 0.8019 1.2819 2826.5 5.47 38.83 150.0 1.2223 1.5793 1629.8 8.90 50.76 PO¥ER 140.0 1.4192 1.7362 1222.8 11.07 54.86 DEG-F; 1.6185 1.9025 787.8 14.73 58.30 TEMP = 95.0 100.0 1.6708 1.9472 529.9 18.25 59.10 85.6 1.6367 1.9186 396.8 21 63 58.58 Ë 4000 80.0 1.6171 1.9014 350.4 22.08 58.27 . 60.0 1.4911 1.7954 213.8 27.14 56.15 ۲ FT ** 2; 0.0 20.0 40.0 1.2436 1 1.2436 1 1.2400 1.4007 1.5958 1 0.0 53.56 33.96 35.26 35.26 35.20 N CAPABILITY DOB = 8.20 F POWER-LIMITED TURN GW = 8600. LB; D VHZKTS.KT
AY.G
AY.G
NZ.G
RADIUS.FT
RATE.D/S
PHI.DEG

POWER-LIMITED HORIZONTAL ACCEL CAPABILITY

GW = 8600. LB; DGB = 8.20 FT**2; ALT = 4000. FT; TEMP = 95.0 DEG-F; POWER LEVEL: MRP

WHZKTS,KT 0.0 20.0 40.0 60.0 80.0 85.0 100.0 120.0 140.0 150.0 160.0 16

WAX.G 0.7333 0.7293 0.6154 0.4866 0.3601 0.3314 0.2539 0.1703 0.0871 0.0472 0.0079 0.0

IFUS,DEG -36.44 -36.23 -32.76 -28.44 -23.38 -22.05 -17.76 -12.28 -9.28 -7.99 -6.81 -6

é 186.6 -6.4862 -7.37 170.0 . 4441 7.43 ۴ 160.0 -0.4134 -7.69 LEVEL: 158.8 -0.3885 -8.86 PO#ER 140.0 -0.3685 -8.56 DEG-F: 128.6 -8.3455 -18.67 6 100.0 -0.3521 -95 . 104 85.8 -0.3689 • 15.88 Ë 4666. 88.6 -8.3452 -15.88 • ٨L 60.0 1.2936 15.00 DECELERATION CAPABILITY
LB; DQB = 8.20 FT • • 2; 9 48.8 2618 15.88 9-28.8 -8.2485 -15.88 6.6 15.68 ٠<u>-</u> HORIZONTAL D VHZKTS,KT AX,G -IFUS,DEG

8		<u>\$</u>
LEVEL:	196.6 1.9468 58.85 6.37 1932.1 9.51 -1988.	POWER LEVEL: 0.0 0.0 178 178 1.1 1.8 1.9 11.1
POWER	188.8 2.0162 60.08 6.08 6.31 16.51 16.51 -1747.	F; POWER 198.8 198.8 2.1178 6.68 1851.8 1851.8 9.92 -6116.
DEG-F;	178.6 2.6767 2 61.69 6.34 1413.1 11.63 -1583.	1.0 DEG-F; 180.0 180.0 2.1752 2 61.19 7.15 1533.3 1633.3 -6033. —
TEMP = 95.0 DEG-F;	160.0 160.0 2.1461 2 62.13 0.52 1198.9 1 12.91 -1527 -	TDAP = 95.0 DEG-F; 170.0 180.0 170.0 180.0 2.2220 2.1752 62.1 61.19 7.74 7.15 1370.0 1593.9 1370.0 1693.9 -64426033.
	150.0 150.0 2.2175 2 63.10 0.86 1010.9 1 14.35 -1573.	FT: TEMP 160.0 150
4000. FT;	140.0 1 2.2900 2. 2.900 2. 64.01 6 1.56 846.4 10 16.00 1	150.0 115
		ALT = 4 ALT = 4 B. 0 10 27.4 27.4 27.4 27.4 27.4 27.4 27.4 27.4
JDE, POW T**2;	120.0 120.0 120.0 120.0 120.0 120.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 1	DE, POWER 140.0 140.0 6.0 140.0 6.0 140.0 6.0 140.0 81 64.61 81 64.61 11 142.4 11 142.4 12 6955 19 6.855
T ALTITU 8.20 F	.0 100.0 34 2.5307 34 5.5307 34 65.45 24 6.88 2.83.3 38 24.84 3413.3 56 -0.4805	ALTITUDE 8.20 FT** 8.20 FT** 9.120.0 9.25.00.0 53.14.90 53.14.90 53.14.90 77.19.44 77.19.44 9.27.2.
CONSTAN DOB =	85.0 85.0 85.0 85.0 67.0 13.2 8 27.0 29.3 8 29.3 8 29.3 9 29.3 9 29.3 9 29.3	CONSTANT DOB = 100.0 0 100.0 1 2.6409.0 5 66.64 2 23.53 2 22.77 -10969.
T TURN (2.6459 67.65 67.65 67.65 16.82 16.82 7.252.8 8.366.9886	1 TURN (C 20. LB: 85.0 2. 7367 56.35.0 36.85.0 358.6 1.25.92
TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 8600. LB; DOB = 8.20 FT++2; ALT+	VHZKTS.KT VKTS.KT NZ.G PHI.DEG PSI.DEG RADIUS.FT RATE.D/S XF-WIND.LB	TRANSIENT TURN (CONSTANT ALTITUDE, POWER OFF) CW = 8600. LB; DQB = 8.20 FT**2; ALT = 8.00 LB; DQB = 8.20 FT**2; ALT = 8.00 LB; DQB = 120.00 140.00 VKTS, KT 85.00 100.00 120.00 VKTS, KT 85.00 120.00 120.00 VKTS, KT 85.00 120.00 VKTS, KT 85.00 VKT

	10.8N (SC	NSTANT A	LTITUDE.	POWER O	ĵ.						
		GW = 18388. LB; DGB = 8.28 FT 2; ALT = 4888.	. 20 FT**	2: ALT	- 4000	Ë	TEMP = 9	TEMP = 95.0 DEG-F;	SOMES.	LEVEL:	ŝ
	80.0	85.0	166.6	120.0	140.0	150.0	160.0	170.0	180.0	190.0	
		85.8		120.0	140.0	158.6				196.6	
		61.84		69.99	58.67	26.98				51 37	
		12.67		2.89	1.29	9.8				9	
-		353.5		737.4	1082 0	1298.9				2554.6	
'n		23.25		15.74	12.51	11.17				7.19	
~		-7100.		-2381.	-1722	-1573.				-1988.	
AX,G		-6.6849		-0.2294	-6.1659	-0.1515				-6 . 1916	
	CO)	NSTANT A	LTITUDE.) AGMOd	(<u>)</u>						
9	9	GW = 16380. LB; DQB = 8.20 FT+2; ALT = 4000.	.20 FT.	2: ALT	- 4999	Ë	TEMP = 9	TEMP = 95.0 DEG-F;	: POWER	LEVEL:	<u>&</u>
_	85.0	VMZKTS,KT 85.0 100.0	120.0			160.0		150.0	196.6		
_	85.0	100.0	120.0			160.0		180.6	190.0		
()	2.2674	2.1880	2.1097			1.9967		1.8022	1.7520		
4	66.98	61.14	60.24			56.71		54.39	52.95		
(3	34.72	22.38	14.16			8.04		6.63	6.14		
_	467.8	541.8	759.8	1076.3	1278.0	1589.4	1773.8	2075.7	2434.8		
	17.57	17.85	15.27			10.25		8.39	7.55		
'n	-15642.	-16968.	-8270.			-6207.		-6033.	-6108.		
Ġ	-1.5878	-1.0567	-B. 7967			-6 5986		-6.5812	5884		

38 FPM, 95% LARP CONTINGENCY WT 80 S 3-JUL-89

ø DATE 188.8 -0.4618 -7.86 ₹ 178.8 -6.4233 -7.15 58 RUN TIME: 14:40: 157.8 157.8 6.9 -6.32 156.9 1955.4 -6.31 156.9 0.0001 -6.33 168.8 -8.3955 7.43 LEVEL: LEVEL: 150.0 0.8675 1.3240 2296.6 6.32 158.8 1718.8 -5.51 150.0 150.0 374. 1.4 159.8 9.8247 -7.85 150.0 .3731 7.83 LEVEL _ e POWER POWER POWER POWER 140.0 1.1231 1.5038 1545.2 8.76 48.36 146.0 1445.3 -4.45 140.0 0.0611 -8.20 140.0 140.3 855. 3.5 -4.74 160.0 180.0 -8342. -27.2 -19.93 148.8 -8.3556 • 8.36 LHX, 2xT800, 5 BLADE, DIA=F/O, FLAP OFFSET=3.5%, CT/S=.0874, ARMED RECON — (COMBAT, 4HF + 2S + 320) FALLOUT VIBRATION, N MININUM OPERATING WEIGHT WITH LONGBOW AND EXT STORES HE: DUB4:{DAVIS.LHX.HL92]HL92.DAT;3 DEG-F; DEG-F; DEG-F: DEG-F; .0 DEG-F 150.0 163.6 -6610. -23.5 -16.06 120.0 -0.3371 -9.93 9.8.6 120.0 1.3500 1.6801 944.4 12.29 53.49 120.0 0.1351 -10.81 120.0 121.1 1616. 7.6 -3.22 120. 1084. -2.6 95.0 92.0 0 0 0 FT: TDAP = 95.0 120.0 140.0 127.2 150.6 -4286. -5610. -19.4 -21.6 -10.13 -13.69 -95. 95. 199.9 1.4137 1.7316 626.3 15.44 54.73 95 166.6 897.1 -1.25 166.6 162.2 2117. 11.8 -2.55 166.6 6.2121 -14.29 188.6 -8.3489 -. . . ı **1**0 40 85.0 88.1 2351. 15.3 85.0 1.3869 1.7098 461.2 17.82 54.21 85.0 3596 15.00 0.88 0 8 7 842. Ë Ë 85. 0.273 -18.0 Ε. Ë Ë ٩ 4000. 4000 4666 4000. ■ 4886. 186.8 185.9 -3539. -19.3 80.0 0.2964 -19.24 89.8 838.3 -0.18 4000. 86.6 1.3697 1.6959 413.7 18.76 53.87 88.8 83.5 2416. 16.6 -3.39 3447 15.66 9 RATE OF DESCENT CAPABILITY (POWER OFF)

CW = 9620. LB; DQB = 9.80 FT**2; ALT

VHZYTS,KT 40.0 60.0 80.0 85.0

VKTS,KT 53.1 67.7 85.9 99.8

VCLMB,FT/NN -3539. -3181. -3179. -3231.

CVLMB,FT/NN -5259. -31.4 -20.6

IFUS,DEG -0.24 -2.52 -5.41 -6.90 ALT ACCEL CAPABILITY 9.80 FT ** 2; ALT 68.8 -8.2958 -15.88 60.0 896.2 0.54 ALT 60.0 65.1 2571. 22.9 -3.06 ALT 60.0 1.2537 1.6037 254.3 22.82 51.42 60.0 0.3932 -23.49 CAPABILITY 9.80 FT...2; ALT . CLIMB CAPABILITY = 9.80 FT++2; FT**2; FT**2; 40.0 0.4815 -26.66 48.8 1869.9 8.92 40.0 1.0167 1.4261 139.3 27.76 45.48 40.0 47.0 2490. 31.6 -2.09 40.0 1.2669 15.00 1LITY 9.80 88 **۾** آ 20.0 0.5408 -28.49 ø 20.0 1348.5 0.96 26.0 2554 15.00 29.3 2163. 46.9 20.0 0.7533 1.2519 47.0 41.14 36.99 ED HORIZONTAL LB: DOB = DECELERATION C. LB; DOB = 3 POWER-LIMITED TURN CAPABI GW = 9620. LB; DQB = UNACCELERATED FLIGHT GW = 9620. LB; DQB POWER-LIMITED RATE OF GW = 9620. LB; DQB 9 NAME 9.9 9.4786 1.1686 9.9 9.99 25.58 6.4 6.4785 -25.76 9.6 -8.2647 15.88 8 n 8 9.6 11.3 1146. 98.6 6.4 1598. 6.3 INPUT DATA FILE POWER-LIMITED CW = 9628. LB HORIZONTAL I GW = 9620. VHZKTS,KT TOTAL HPREQ IFUS,DEG VHZKTS, KT AY, G NZ, G RADIUS, FT RATE, D/S PHI, DEG VHŽKTS.KT AX.G IFUS.DEG VHZKTS, KT AX, G -IFUS, DEG VHZKTS, KT
VKTS, KT
VCLMB, FT/MN
GAMMA, DEG
IFUS, DEG

	<u> </u>
190.0 190.0 1.7420 54.63 0.33 2268.8 8.10 -2147.	LEVEL:
189.0 189.0 1.7982 55.98 0.27 1936.3 8.99 1989.	POWER 190.0 190.0 1.9001 56.08 6.34 2.163.0 8.47 -6372.
170.0 170.0 1.8573 57.26 6.30 1645.5 1645.5 -1777 -	DEG-F; 80.0 80.0 9521 7.34 7.34 5.81 57.5 9.37 275.
166.6 168.6 1.9193 58.46 9.48 1391.2 11.12 -1648.	EMP = 95.0 170.0 1 170.0 1 2.0023 1. 58.42 5 591.6 18 16.31 6.31 6.21
156.6 1.9836 59.59 59.59 1169.4 12.46 167.4	FT: T 160.0 160.0 2.0574 59.43 8.23 1357.6 11.70 11.70 11.70
2.9479 60.6479 60.6479 1.36 1.36 1.3.86 1.3.86 1.3.86 1.3.86	FF) 150.0 150.0 150.0 2.1157 80.40 80.40 1157.5 1157.5 12.59 12.59
120.0 120.0 2.1701 62.39 2.94 667.9 17.37 -2459.	ALTITUDE, POWER OFF) 9.80 FT+*2; ALT == 4000, 120.0 140.0 150.0 2.2879 2.1764 2.1157 62.70 61.30 60.40 14.48 10.56 9.26 685.6 971.7 1151.8 681.6 971.7 1151.8 -8477711666961
199.9 199.9 2.2637 63.44 6.69 446.4 21.66 -4296.	LTITUDE. .80 FT 120.0 120.0 2.2879 62.70 62.70 685.6 16.93.6 16.93.6
85.0 85.0 2.3523 64.09 12.91 320.8 25.62 25.62 27.81.	0000446
80.0 80.0 2.3688 64.07 16.39 290.1 26.67 -8583.	TURN (CONSTANT) LB: DQB = 85.0 100. 2.4605 2.376 53.64 22.635.64 22.418.0 489. 118.6 19.1156.0 19.1156.0 19.1156.0 19.1158
WHZKTS, KT WKTS, KT NZ, G PHI, DEG PSI, DEG RADIUS, FT RATE, D/S XF—WIND, LB	TRANSIENT T GW = 9620. VHZKTS,KT VKTS,KT NZ,G PH,DEG PSI,DEG RADIUS,FT RATE,D/S XF-WIND,S

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 9620. LB; DQB = 9.80 FT**2; ALT = 4800. FT; TEMP = 95.0 DEG-F; POWER LEVEL: MRP

198.8 -8.4321 6.89 DATE: 180.0 -0.3981 -6.96 176.0 3.3691 7.12 RUN TIME: 14:41:30 ٠ ٩ 160.9 -0.3484 -7.45 CONFIGURATION: LHX, 2×1800, 5 BLADE, DIA=F/O, FLAP OFFSET=3.5%, CT/S=.0874, 500 FPW, 95% MRP ARAED RECON — (COMBAT, 4HF 4-25 + 320) FALLOUT VIBRATION, NO CONTINGENCY WT MAX ALTERNATE GROSS WEIGHT [MAX] WITH LONGBOW AND EXT STORES RUN TIME: 14:4' INPUT DATA FILE NAME: DU84:[DAVIS.LHX.HL92]HL92.DAT;3 153. 8 170.0 180.0 186.0 205.3 -7646. -10002. -23.9 -28.8 -17.04 -21.75 POWER LEVEL: TEMP = 95.0 DEG-F; POWER LEVEL: POWER LEVEL: 150.0 1850.6 -4.44 158.8 -8.3324 -7.89 153.5 0.0000 -4.76 150.0 0.4072 1.0798 4892.2 2.97 22.21 158.8 6.8894 -5.82 140.0 1593.7 -3.59 140.0 -0.3205 -8.46 = 95.0 DEG-F; - 95.0 DEG-F; 140.0 159.0 160.0 140.0 159.0 160.0 147.7 155.3 171.6 1471. -5421. -6291. -18.6 -19.6 -21.2 -10.65 -12.24 -14.19 -= 95.0 DEG-F; 129.9 1252.3 -2.16 120.0 -0.3128 -10.14 140.0 0.7110 1.2271 2440.7 5.55 35.46 140.0 0.0376 -5.88 85.6 108.9 1058.6 1084.9 -0.41 -1.04 166.6 126.6 6.1497 6.6938 -9.99 -7.82 188.8 -8.3368 -120.0 0.9377 1.3708 1359.8 8.53 43.18 100 4888. FT; TEMP FT; TEMP 166.6 6.9981 1.4128 887.1 16.96 44.95 85.6 -8.3425 -= 4000. FT; Ë 126.0 126.0 125.8 -3831. -17.5 80.0 1966.1 -0.23 POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 11790. LB; DQB = 9.80 FT++2; ALT = 4000. 85.8 8.1884 -11.61 80.0 -0.3386 -- 4000. 85.0 0.9728 1.3951 657.6 12.50 . = 9.80 FT++2; ALT RATE OF DESCENT CAPABILITY (POWER OFF)

CM = 11799, LB; DQB = 9.86 FT**2; ALT

VHZYS,KT 68.0 88.0 85.0 106.0

VKTS,KT 68.3 85.8 90.5 106.0

VKTS,KT 68.3 85.8 90.5 105.2

CAMMA, DG -28.6 -315.0 -3329.

IFUS,DG -1.85 -4.31 -4.97 -6.14 80.0 0.2001 -12.10 68.8 1188.1 8.25 POWER-LIMITED TURN CAPABILITY
GW = 11790. LB; DQB = 9.80 FT++2; ALT 80.0 0.9565 1.3838 592.4 13.06 HORIZONTAL DECELERATION CAPABILITY
GW = 11790. LB; DQB = 9.80 FT++2; ALT 68.8 -8.2935 -15.88 20.0 40.0 60.0 0.2108 0.5950 0.8434 0.1022 1.1536 1.3082 1.85 1.3082 1.15.1 1.37.9 11.51 15.35 11.90 30.75 40.15 40.0 1445.9 0.37 40.0 -0.2746 -20.0 40.0 60.0 0.0964 0.2347 0.2388 -5.40 -13.28 -13.84 6.6 26.6 2285.2 1812.6 -6.84 6.18 -0.2961 -0.2699 -UNACCELERATED FLIGHT GW = 11790. LB; DQB VHZKTS,KT TOTAL HPREQ : IFUS,DEG VHZKTS,KT AX,G IFUS,DEG VHZKTS, KT
AY, G
AY, G
NZ, G
RADIUS, FT
RATE, D/S
PHI, DEG

	<u>&</u>
190.0 190.0 1.4213 44.81 0.28 3217.5 5.71 -2146.	· LEVEL:
186.6 1.4672 46.71 0.24 2762.1 6.44 -1889.	199.0 199.0 1.5549 46.93 5.58 3614.7 6.89 -6389.
176.6 178.6 1.5155 48.48 6.27 2265.5 -1716.	.e DEG-F 188.e 1.5929 48.52 48.52 6.06 2.561.9 6.73 -6.73
166.6 1.5666 56.13 6.43 1893.4 8.17 -1646.	TDAP = 95.0 DEG-F 170.0 180.0 1.6.37 1.5929 49.89 48.52 6.66 6.06 2173.2 2561.9 7 25676275. -6.5515 -0.5322 -
150.0 150.0 1.6180 51.66 0.73 1576.0 9.20 -1675.	160.0 160.0 1.6786 51.36 51.36 1837.6 1837.6 8.42 -6419.
148.6 1.6716 53.67 1.19 1385.8 18.37 -1814.	FF) 150.0 150.0 17262 52.64 53.64 154.5 9.37 6696.
120.0 1.7707 55.38 2.73 881.5 13.16 -2459.	POWER OFF) 2: ALT = 4000 140.0 150.0 140.0 150.0 140.0 150.0 1720.2 1720.2 197.4 1547.5 10.45 10.45 -6695.
166.6 1.8471 56.74 6.25 585.8 16.51 -4266.	ALTITUDE, F 9.80 FT**2; 120.0 120.0 120.0 13.36 13.38 13.38 12.38 12.34 12.34 12.36
85.0 1.9193 57.50 12.09 420.6 19.54 -7181.	
88.6 89.6 1.9328 57.41 15.32 381.5 20.28 -8582.	TURN (CONSTANT). LB: DOB = 85.0 100 85.0 100 85.4 21. 32.44 21. 578.0 651 14.2 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3
WYZKTS.KT WKTS.KT NZ.G PHI.DEG PSI.DEG PSI.DEG RADIUS.FT RATE.D/S XF—WIND.LB	TRANSIENT T CW = 11799. WAZKTS, KT WKTS, KT WKTS, KT PRI, DEG PRI, DEG PRI, DEG RADIUS, FT RATE, DEG RATE, PER

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 11790. LB; DQB = 9.80 FT-0-2; ALT = 4600. FT; TEMP = 95.0 DEG-F; POWER LEVEL: MRP

CONFIGURATION: LHX, 2xT800, 5 BLADE, DIA-F/O, FLAP OFFSET-3.5%, CT/S-, 6674, 500 FPM, 95% MPP

UNACCELERATED FLIGHT GW = 8260. LB; DQ	9		2.20 FT2; .	ALT	- 2006. FT:		TEMP = 78	TELP = 78.8 DEG-F;		POWER LEVEL:	8			
VHZKTS,KT TOTAL HPREQ IFUS,DEG	6.6 1263.4 6.93	28.6 1855.2 1.57	48.8 825.4 1.51	68.8 784.5 1.11	86.8 682.6 6.48	85.6 690.1 0.29	186.6 743.2 -6.36	120.0 897.6 -1.25	148.8 1165.8 -2.31	158.8 1349.6 -2.85	1573.8 -3.42	170.0 1848.2 -4.02	175.9 2049.8 -4.39	
POWER-LIMITED RATE ON = 8260. LB;	17ED RATE 9. UB;	OF CLIM	OF CLIMB CAPABILITY DOB = 2.20 FT**2;	IIT ALT	- 2006.	Ë	TBJP = 78	TBJP = 70.0 DEG-F;	POWER	I LEVEL:	8			
WHZKTS, KT WKTS, KT WCLMB, FT/AN GAMMA, DEG IFUS, DEG	9.6 32.1 3246. 90.0	20.0 44.1 3985. 63.1 -1.57	40.0 57.1 4125. 45.5 -2.67	60.0 72.1 4045. 33.7 -3.28	86.6 88.5 3835. 25.3 -3.13	85.8 92.8 3763. 23.6 -2.91	166.6 165.7 3473. 18.9	128.6 123.7 3623. 14.6 1.33	140.0 141.7 2241. 9.6 -0.21	158.8 151.0 1749. 6.6	160.0 160.4 1175. 4.1 -2.24	176.6 176.1 567. 1.7 -3.48	175.9 175.9 6.9 4.38	
RATE OF DESCENT CAPABILITY GW = 8260 LB; DQB = 2. VAZKTS, KT	ESCENT CA 40.8 40.8 50.9 -3185. -36.2 1.38	PABILITY DOB = 2 60.5 66.5 -2964. -25.5	(POWER (20 FT**) 20 FT**) 20 FT**) 29 4829 4829 6	ALT 5.8 18.3 62	2666. 166.8 165.3 -3343. -18.3 -6.26	126.8 126.8 14156. -18.9	TEMP = 70.0 DEC-F 140.0 150.0 150.5 164.1 - 5599 6730. 5 -12.57 -15.17		166.6 183.6 -8989. -29.6					
POWER-LIMITED TURN GW = 8260. LB; C	17ED TURN 9. LB;	8 - 8 -	1LITY 2.20 FT••2;	ALT	- 2866.	Ë	TEMP = 70	TEMP = 78.8 DEG-F;		POWER LEVEL:	2			
VHZKTS,KT AY.G AY.G RADIUS,FT RATE.D/S PHI.DEG	9.9 1.8043 1.4173 9.8 8.80 45.13	26.0 1.2555 1.6651 28.2 68.56 51.46	40.0 1.5318 1.8293 92.5 41.83 56.86	69.0 1.7967 2.0510 178.0 32.60 50.82	292.9 26.41 62.67	85.8 1.9623 2.2024 326.8 25.21 63.86	188.8 2.2685 2.2685 436.8 22.14 63.75	120.0 2.0117 2.2465 633.8 18.31 63.57	148.8 1.8514 2.1642 937.3 14.44 61.63	158.6 1.7167 1.9815 1164.6 12.46 59.70	168.8 1.8865 1.886.5 18.27 56.41	176.6 1.1426 1.5186 2246.6 7.34 48.83	175.9 0.0000 1.0000 0.0 0.0	
POWER-LIMITED HORIZONTAL ACCEL CAPABILITY CW = 8260. LB: DGB = 2.20 FT**2: AL' VMZKTS,KT 0.0 20:0 40:0 60:0 AX,G 1.0044 0.9559 0.7943 0.5286 IFUS,DEG 45:58 43:99 -39:39 -33:86	17ED HORI 9. LB: 1.0044 45.58	ZONTAL A DOB = 2 20.0 6.9559 -43.99	CCEL CAPA .26 FT**2 40.0 6.7943 -39.39	_	= 2000. 80.0 6.4778 -27.66	FT; 85.8 -26.86	TBAP = 76 100.0 0.3556 -20.92	TEMP = 70.0 DEG-F; 100.0 120.0 0.3556 0.2555 1 -20.92 -13.01		POWER LEVEL: 0.8 0.1187 (640 0.1187 (7.57 -7.82	160.0 160.0 6.43	176.6 6.6298 -5.17	175.8 0.8061 -4.39	
HORIZONTAL GW = 8266. WHZKTS, KT	L DECELER B. LB; L	26.6	PABILIT .20 FT.	28	ALT = 2006.	: :85.	154 = 76	.e DEG-	7	POWER LEVEL:	P60.	170.0	8.	8

	8
196.6 8 196.6 8 2.2972 3 64.63 3 1.25 5 1557.5 7 11.86 7 2115.	POWER LEVEL: 00.00.00 00.00.00 00
186.6 186.6 2.3766 64.93 1.13 12.97 1864.	2. 2. 4. 9. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
176.6 176.8 2.4458 65.78 1151.3 14.28 -1694.	180.0 180.0 180.0 2.5261 65.84 7.300.7 13.00 13.30 -5949.
166.6 2.5254 66.69 1.23 981.1 15.77 15.77 -6.1999	TBP = 70.6 170.6 170.6 2.5931 6.58 6.58 1122.2 14.65 -5987.
156.6 2.6974 67.38 67.38 1.53 830.4 17.47 -1723.	166.6 166.6 2.663.8 2.653.8 67.29 9.65 9.65 16.07
146.6 2.6969 2.6969 68.11 2.66 597.6 19.41 19.41	2: ALT = 2000 140.0 150.0 140.0 150.0 140.0 150.0 68.67 67.97 11.36 19.97 19.52 7.654.
120.0 120.0 2.8487 69.35 3.66 481.6 24.10 24.10	2: AL 140.0 140.0 140.0 2:252 68.57 11.38 693.5 19.52 -7088.
199.6 199.6 2.9768 79.13 8.42 324.6 29.85 -5171.	2.20 FT**2: 2.20 FT**2: 120.0 120.0 120.0 5 2.9573 2 6 9.61 15.34 2 493.9 2 23.50 2 23.50 2 1.6397 -0
85.0 85.0 3.0866 70.56 17.05 237.5 34.61 -9318.	(CONSTANT DOB = 2 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80.0 80.0 3.1089 70.58 22.47 218.5 35.40 -11510.	TURN . LB; 85 85 85 3.26 7.9. 53 53 53 532.258
WHZKTS.KT WKTS.KT NZ.G PKI.DEG PKI.DEG RADIUS.FT RATE.D/S XF—WIND.LB	TRANSIENT T GW = 8260. WAZKTS, KT WKTS, KT WKTS, KT WAT, DEG PSI, DEG PSI, DEG PSI, DEG RADIUS, FT RATE, D/S XF-WIND, LB.

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 8260. LB, DGB = 2.20 FT**2; ALT = 2000. FT; TEMP = 70.0 DEG-F; POWER LEVEL: MRP

3-70F-89 190.0 -0.4345 7.87 DATE: 174.9 2050.0 -3.56 174.9 174.9 0.0 -3.56 175.6 6.6666 1.6666 9.6 6.66 4 \$ 176.6 1886.1 -3.28 170.0 0.7605 1.2564 3364.6 4.89 37.29 170.0 0.0208 -4.13 170.0 170.0 355. 1.2 176.6 -0.3593 7.75 2 RUN TIME: 14:34: 168.0 1621.6 -2.75 168.8 168.3 924. 3.3 160.0 1.1114 1.4951 2039.5 7.59 48.04 160.0 0.0578 -5.21 160.0 3.3356 7.96 LHY, 2xT800, 5 BLADE, DIA=F/O, FLAP OFFSET=3.5%, CT/S=.0874, 500 FPM, 95% M ARMED RECON - COMBAT. 4HF + 25 + 320) FALLOUT VIBRATION, NO CONTINCENCY - RIMARY MISSION GROSS WEIGHT [PMCN] M/O LONGBOW [CLEAN] ROW RUN TIME: 14 RUN TIME: 14 Ť POWER LEVEL: 159.6 158.6 1482. 5.3 150.0 0.0940 -6.37 150.0 1408.2 -2.26 150.0 -0.3166 8.27 170.6 187.4 -7996. -24.9 1.2998 1.6400 1.6400 1532.6 9.46 52.44 POWER POMER 128.8 148.8 6.284 -18.64 -7.66 146.6 -0.3619 -140.8 1234.5 -1.79 146.6 141.1 1816. 7.3 -6.36 160.0 171.6 -6277. -21.2 -13.24 140.0 1.4258 1.7416 1217.1 11.12 54.97 FT; TEMP = 70.0 DEG-F; DEG-F: DEG-F: DEG-F; DEG-F; .0 DEG-F 150.0 158.9 -5300. -19.2 126.8 984.3 -0.90 120.8 -8.2876 -10.04 120.0 122.4 2444. 11.4 0.88 1.5675 1.8593 1.8593 813.4 4.27 57.47 **9.9**2 0 • 6 70 85.6 166.6 6.3457 6.2836 -19.48 -14.94 **-** 70. 9 166.6 -6.3616 -1.5812 1.8769 560.0 17.27 57.69 166.6 849.4 -6.13 166.6 163.9 2848. 15.7 6.95 . 100 100 FT; TEMP 100 85.8 -8.3241 -15.88 85.0 814.0 0.34 85.0 1.5240 1.8228 419.7 19.58 56.73 85.0 96.1 3629. 19.4 Ë Ë Ë 2000 2666. 166.6 164.4 -3634. -16.7 80.0 6.3678 -20.73 2000. ALT = 2000. 2000. 80.0 1.4995 1.8624 377.9 20.47 56.30 88.6 -0.3131 -80.0 813.6 0.49 86.6 85.5 3662. 26.7 -6.98 . . . RATE OF DESCENT CAPABILITY (POWER OFF)

CW = \$980. LB; DQB = 2.26 FT**2; ALT

VMZKTS, KT 40.0 66.0 80.0 85.0

VKTS, KT 51.9 66.5 84.6 89.5

VCLWB, FT/AN - 3342, -2284, -2206, -2227,

GAMMA, DGC - 1.8 - 25.5 - 19.1 - 18.2

IFUS, DGC - 1.60 - 0.38 - 3.11 - 3.62 60.0 0.4663 -25.83 ۲ ¥ ALT 60.0 874.3 6.94 60.0 1.3717 1.6975 232.4 24.97 53.91 POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 9980. LB; DQB = 2.20 FT++2; ALT 60.8 -0.2777 -15.00 66.6 67.5 3123. 27.2 -1.52 DECELERATION CAPABILITY
. LB; DQB = 2.20 FT++2; ED TURN CAPABILITY LB; DQB = 2.20 FT++2; CLIMB CAPABILITY = 2.20 FT ** 2; FT••2: 6.6 26.6 46.6 6.632 6.8745 1.1368 1 1.1736 1.3264 1.5141 1 4.6.69 47.75 31.84 31.52 41.17 48.67 48.8 1656.5 1.12 40.0 50.0 3030. 36.8 6.6 20.0 40.0 6.6133 6.6436 6.5646 -31.98 -32.97 -36.62 46.6 7.2584 15.66 9 'n 20.0 1345.3 1.00 20.0 33.4 2763. 53.2 -6.86 20.0 1.2534 15.00 ı FLIGHT B: DOB 48 4 RATE O 6.6 1599.6 8.36 9.8 -8.2649 · 9.9 1673. 99.9 ÿ INPUT DATA FILE UNIACCELERATED F POWER-LIMITED GW = 9980. LE POWER-LIMITED ON = 9986. LB HORIZONTAL GW = 9980. VMZKTS,KT AX,G IFUS,DEG VHZKTS,KT TOTAL HPREQ IFUS,DEG VHZKTS, KT VKTS, KT VCLAB, FT/AN GAMAA, DEG 1 FUS, DEG

	Q.
190.0 190.0 1.9012 58.05 58.05 1993.9 9.22 9.22 0.2126	LEVEL
150.00 1.9616 59.20 1710.4 1710.4 1864.	190.0 190.0 190.0 2.0326 59.25 6.93 1920.5 -6003.
176.6 176.6 2.6243 66.245 1.65.6 11.26 -1694.	.0 DEG-F 180.0 2.0007 60.34 7.35 167.35 167.36 16.54 10.54 10.54
168.8 2.8981 61.33 61.33 1.18 12.48.0 12.48 -1651.	FDAP = 70.0 DEG-F; 170.0 180.0 170.0 180.0 2.1462 2.0907 61.27 05.34 7.89 7.35 14.20 2.1651.9 11.58 10.54 -5987 -0.5961
158.9 2.158.9 62.31 62.31 1.47 1946.9 13.87 -1723.	169.8 169.9 2.2964 62.16 62.16 1214.8 12.74 12.74
146.0 2.2271 63.23 1.23 1.23 1.52 876.1 15.45 -1996.	150.0 150.0 150.0 150.0 2.2696 63.02 63.02 14.04 14.04 14.04
120.0 2.357.0 64.78 3.54 601.9 19.28 -2687.	2: ALT 140.0 140.0 2.3346 63.81 10.93 873.1 15.51 15.51
166.6 2.4638 65.73 8.16 464.1 23.93 -5176.	ALTITUDE, POWER OFF 2.28 FT*-2: ALT 120.0 140.0 120.0 140.0 2.4472 2.3346 56.0 65.04 63.381 14.82 40.93 14.82 6.93 18.85 7.351 18.85 7.351 -8.885 -7.956.
85.8 85.8 2.5546 66.22 16.53 27.72 27.72 -9318.	7 60.000.000.000.000
80.0 80.0 2.5731 66.18 21.78 273.6 28.28 -11510.	TURN (CONSTANT) LB; DQB = 85.0 100 85.0
WYZKYS, KT WY, G, WY, G, PH1, DEG PS1, DEG RADIUS, FT RATE, D/S XF-WIND, LB -	TRANSIENT 1 GW = 9989. VHZKTS, KT VKTS, KT NZ, G PH1, DEG PS1, DEG RADIUS, FT RATE, D/S XF—WIND, LB AX, G

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 9980. LB; DQB = 2.20 FT**2; ALT = 2000. FT; TEMP = 70.0 DEG-F; POWER LEVEL: MRP

INPUT DATA FILE	FILE NAM	ATTACK MI	ISSION GE	ROSS WETG .HX.HL92]	HL92.DA	M] W/O LI T;3	ATTACK MISSION GROSS WEIGHT [AMON] W/O LONGBOW [CLEAN] NAME: DUB4:[DAVIS.LHX.HL92]HL92.DAT;3	CEAN]		RUN TIME:	14:35:57		RUN DATE:	3-701-6
UNACCELERATED FLIGHT GW = 10360. LB; DQ	TED FLIG		2.20 FT**2; . ALT		2000.	Ë	TEMP = 78.8 DEG-F;	DEG-F;		POWER LEVEL:	8			
VHZKTS,KT TOTAL HPREO IFUS,DEG	6.6 1669.3 6.17	28.8 1483.3 8.98	46.6 1163.9 1.65	66.6 969.7 6.98	86.6 841.1 6.48	85.6 846.6 6.34	166.6 871.7 -6.11	126.6 1663.6 -6.86	148.8 1258.8 -1.72	158.8 1421.9 -2.18	169.0 1633.5 -2.66	176.6 1896.8 -3.17	174.6 2050.0 -3.43	
POWER-LIMITED RATE GW = 10300. LB;	TED RATE	COF CLIMB CAPABILITY DOB = 2.20 FT++2;	B CAPABII .20 FT.	LITY 2: ALT	= 2666.	<u>r</u>	TEMP = 70.0 DEG-F	.0 DEG-F;	POWER	LEVEL:	2			
VHZKTS.KT VKTST	6.6 13.5	20.0 31.5 2459.	40.0 48.8 2829.	60.0 66.7 2959.	86.6 85.1 2924.	85.8 89.7 2896.	100.0 103.6 2736.	120.0 122.2 2344.	140.0 141.0 1735.	150.0 150.6 1341.	160.0 160.2 877.	176.6 176.6 322.	174.6 174.6 0.	
CAMA DEG IFUS.DEG	99.9		1.22	26.0	-6.58 8.58	18.6 -0.26	15.1	16.9 6.86	7.6	5.6 -1.85	3.1 -1.89	1.1	9.9 -3.43	
RATE OF DESCENT CAPABILITY GW = 10300. LB; DGB = 2 VHZKTS,KT 40.0 60.0 VKTS,KT 52.1 66.5 VCLMB,FT/AN -33802965. GAMMA, DEG -39.8 -25.6 IFUS, DEG 1.62 -0.31	SCENT CA 	PABILITY DQB = 2 60.0 66.5 65.5 -296525.6 -0.31	(POWER (20 FT**) 86.0 84.6 -278919.0 -2.98	ALT 85.0 89.4 2810. -18.1 -3.49	2000. 100.0 104.3 -2999. -16.5	FT: T 128.0 124.9 -3526. -16.2 -6.54	EMP = 70 140.0 146.8 -4462. -17.5 -9.05	56.6 58.3 58.3 134 18.7	168.8 178.7 -6918. -29.4	176.8 185.6 -7548 -23.7	188.8 288.7 -16694. -39.4 -21.77			
POWER-LIMITED TURN GW = 10300. LB; [Ě	CAPABIL DOB = 2	CAPABILITY XQB = 2.20 FT++2;	2; ALT	- 2000.	<u>:</u>	TEMP = 70.0 DEG-F;	. DEG-F;		POWER LEVEL:	§			
VMZKTS.KT AY.G NZ.G RADIUS.FT RATE.D/S PHI.DEG	6.6 6.5461 1.1365 6.6 6.00 28.37	20.0 6.8163 1.2871 43.7 44.25 39.02	46.6 1.6733 1.4676 132.6 29.31 47.63	60.0 1.3059 1.6448 244.1 23.77 52.56	80.0 1.4317 1.7464 395.8 19.55	85.0 1.4558 1.7662 439.4 18.71 55.52	198.8 1.5128 1.8127 585.6 16.51 56.52	120.0 1.4985 1.8016 850.8 13.64 56.29	140.0 1.3592 1.6875 1276.7 10.60 53.67	158.6 1.2349 1.5896 1613.2 8.99 51.61	168.6 1.6481 1.4487 2162.7 7.15 46.37	176.6 6.6941 1.2174 3686.3 4.46 34.80	174.6 9.0000 1.0000 9.0 9.0	
POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 10300. LB; DGB = 2.20 FT++2; AL WADWIE KT A A 20 0 40.0 60.0	7ED HOR!	IZONTAL A DOB = 2	ACCEL CAPAB) 2.20 FT++2;	AB1L1TY 2: ALT 60.0	# 2666 86.6	FT: 85.6		.8 DEG-F;	7	POWER LEVEL: He.e 156.0		170.0	174.4	
IFUS, DEG -28.84 HORIZONTAL DECELER	9.5483 -28.84 DECELER	6.5986 -38.73	9.5966 6.5278 6 -36.75 -28.28 -:	0.4402	9.3498 -19.58	9.3293 -18.28	1 6.2708 6.1968 (1.24) 1 -13.97 -16.24	-16.24 -16.24	<u>-1</u>	248 0.0898 7.37 -6.13 POWER LEVEL:	6.6548 -5.66	6.6188 -3.95	6.6669 -3.46	
VHZKTS.KT AX.G	. LB: -6.2671 15.96	20.6 -0.2553 15.90	48.8 68.8 48.8 50.0775 1 -8.2595 -8.2775 15.08 15.08	60.0 2775 15.00	88.8 6.3115 15.88	85.6 6.3221 15.86	85.0 100.0 -0.3221 -0.2984 15.00 12.51	120.0 -0.2832 10.02	7.70	150.0 -0.3094 8.22	166.6 -0.3273 7.98	176.6 -6.3586 7.69	188.8 -8.3835 7.78	196.6 -6.4221 7.78

ď.		<u>.</u>
LEVEL:	196.6 198.0 1.8422 56.90 1.16 2684.4 8.81 -2115.	POWER LEVEL: 0.0 0.0 693 693 693 6.1 6.1
POWER	188.6 1.9986 58.16 1.986 1786 1786 1.86 1.864.	: POWER 190.0 190.0 190.0 190.0 58.14 5.85 2006.1 -6002.
• DEG-F;	170.0 170.0 1.9614 59.23 1523.7 16.3 16.4 16.4	180.0 180.0 180.0 180.0 2.0258 59.28 7.27 1723.6 10.13.0 -5949.
TEMP = 70.0 DEG-F;	160.0 2.0252 60.32 60.32 1.16 1292.4 11.97 11.97 -1651.	TDAP = 70.0 DEG-F; 170.0 180.0 170.0 180.0 2.0795 2.0258 60.25 59.28 7.81 7.27 1480 7 1723.6 11.10 10.10 -59875587
·	150.0 150.0 2.0910 61.34 1.45 1089.4 13.32 -1723.	FT; TE 160.0 160.0 2.1378 61.18 61.18 8.59 1265.6 12.23 -6204.
N) = 2000. FT;	140.0 140.0 2.1579 62.30 1.91 911.8 14.85 -1966.	2000. 150.0 150.0 150.0 150.0 150.0 13.40 13.40 13.40
POWER OF	128.6 128.6 2.2845 63.91 3.52 625.8 18.54 -2687.	POWER OI 140.0 140.0 2.2621 62.90 10.85 908.6 14.90 -7056.
LT1TUDE.	198.8 198.8 2.3872 64.98 8.18 419.9 23.03 -5178.	ALITUDE, POWER OFF 2.20 FT**2: ALT = 128.0 128.0 148.0 128.0 148.0 128.0 148.0 128.0 148.0 128.0 149.0 128.0
NSTANT A	85.0 85.0 2.4753 65.40 16.42 308.2 26.67 -9318.	NSTANT A 100.0 100.0 2.4559 65.05 24.11 461.4 20.96 -11962.
708N (CO	80.0 80.0 2.4931 65.34 21.61 284.5 27.19 -11510.	IENT TURN (CON-
TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON GW = 18380. LB; DQB = 2.28 FT++2; ALT	WHZKTS.KT WKTS.KT NZ.G PNI.DEG PSI.DEG RADIUS.FT RATE.D/S XF-WIND.LB	TRANSIENT TURN (CONSTANT GW = 10300-LB; DGB = VHZKTS,KT 85.0 100.0 VKTS,KT 840.1 461.4 VKTS,LVS 110.0 VKTS,LVS 110.0 VKTS,KT 840.0 VKTS,KT 840.1 461.4 VKTS,LVS 110.0 VKTS,KT 840.0 VK

190.0 .4025 7.64 Ÿ DATE: 188.6 -0.3664 -7.57 173.8 2050.0 -3.23 173.8 6.6662 -3.23 173.8 173.8 0.0 -3.23 173.8 0.0000 1.0000 0.0 0.0 0.0 ₹ 170.0 1924.6 -3.02 176.6 6.5776 1.1546 4434.4 3.71 36.62 170.0 0.0147 -3.63 178.8 -0.3353 -7.58 170.0 170.0 252. 0.8 0.8 RUN TIME: 14:37:07 160.0 0.9421 1.3740 2405.9 6.43 43.32 166.6 -0.3145 -7.86 168.8 9.8498 -4.64 168.8 1658.9 -2.52 186.6 261.6 -9651. -26.4 -18.29 169.0 169.2 786. 2.8 -1.85 ON: LHX, 2xT800, 5 BLADE, DIA=F/O, FLAP OFFSET=3.5%, CT/S=.0874, 500 FPM, 95% MRP
ARMED RECON - (COMBAT, 4HF + 2S + 320) FALLOUT VIBRATION, NO CONTINGENCY WT
MAX OPERATING WEIGHT W/O LONGBOW [CLEAN]
NAME: DUB4:[DAVIS.LHX.HL92]HL92.DAT;3 8 8 POWER LEVEL: LEVEL e e e LEVEL: 150.6 150.5 1231. 4.6 LEVEL: LEVEL 178.8 183.3 -6946. -22.8 -14.28 150.0 1.1275 1.5071 1766.8 8.21 48.44 159.0 0.0822 -5.72 150.0 1.2982 8.13 156. 1447. -2.6 Ý POWER POWER POWER 149.8 1278.8 -1.62 160.0 169.5 -5669. -19.3 140.0 0.1152 -6.89 146.9 146.9 1667. 6.5 148.0 1.2496 1.6004 1388.8 9.75 51.34 140.0 3.2860 8.58 DEG-F; ۴ DEG-F; DEG-F; DEG-F; DEG-F; .0 DEG-F 150.0 157.6 -4884. -17.8 128.6 -0.2766 -9.99 128.6 1.3854 1.7887 928.3 12.61 54.18 120.0 0.1814 -9.58 9 50 50 120.0 121.9 2178. 10.2 0.67 126. 1637. - 70.0 0 FT; TEMP = 78.8 - 70.0 6 FT: TEMP = 70.0 120.0 140.0 124.7 146.2 -3423. -4266. -15.7 -16.7 **7**9.0 **-** 70. 166.6 6.2566 -12.77 100.0 912.9 -0.09 1.3985 1.7193 633.1 15.27 54.44 188.8 -8.2949 -12.55 166.6 163.1 2538. 14.1 **10** TEMP 100 100 85.8 1.3439 1.6751 476.8 17.27 53.35 85.0 8.3019 -16.43 85.8 -0.3198 -85.8 89.0 2671. 17.2 0.24 85.6 887.6 0.33 Ë Ë Ë Ë 2000 2000 **= 2000**. 2000. 86.6 84.3 2689. 18.4 2000. 100.0 104.2 -2949. -16.2 86.6 1.3263 1.6563 429.2 18.63 52.86 80.0 0.3198 -17.63 88.6 - 3896 -89.6 891.4 6.45 . . . • 5 6.4627 6.7863 6.9676 1.1973 1 5 1.0786 1.2288 1.3911 1.5606 1 6 8 56.6 146.5 2.66.2 5 6.06 38.24 26.41 21.89 5 21.94 35.66 44.64 56.13 7 (POWER OFF) 2.20 FT**2; ALT = 80.0 85.0 85.0 85.0 4 - 2779. -2390. -2.78 -3.30 ALT 48.6 68.9 6.4648 6.3965 -25.25 -22.84 - 2.20 FT++2; . ALT 60.0 974.5 0.82 68.6 65.6 2676. 23.8 4 POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 10860. LB; DOB = 2.20 FT**2; ALT DECELERATION CAPABILITY
. LB; DQB = 2.20 FT++2; ALT 68.8 -8.2774 -15.86 POWER-LIMITED RATE OF CLIMB CAPABILITY GW = 10860. LB; DQB = 2.20 FT++2; POWER-LIMITED TURN CAPABILITY GW = 10860. LB; DQB = 2.20 FT++2; 40.0 1190.0 0.91 40.0 -0.2615 -46.9 2481. 31.5 RATE OF DESCENT CAPABILITY (F 0. 18660 LB; DOB = 2.28 0. VHZKTS.KT 40.0 60.0 0. VKTS.KT 52.6 66.6 0. VKTS.KT 52.6 67.6 1. VKTS.KT 52.6 67.6 6.6 26.9 1864.8 1567.7 -6.66 6.71 20.0 0.4988 -26.66 28.3 28.3 2026. 45.0 -0.55 20.0 -0.2587 -15.60 UNACCELERATED FLIGHT 6.6 8.2 826. 96.6 6.6 6.4627 -22.39 9.8 -8.2729 -15.88 FILE HORIZONTAL D GW = 10860. VHZKTS.KT TOTAL HPREQ IFUS.DEG VHZKTS.KT AY.G NZ.G RADIUS.FT RATE.D/S WHZKTS,KT AX,G 1FUS,DEG WHZKTS,KT AX,G -1FUS,DEG INPUT DATA VHZKTS,KT
VKTS,KT
VCLAB,FT/AN
GAMMA, DEG
IFUS, DEG

	SE S
190.0 190.0 1.7473 6 1.7473 3 2251 3 2251.8 8 16 2 15. 6 -0.1948	POWER LEVEL: 0.0 0.0 672 672 4.2 4.2 6.49
189.6 1.8926 56.14 1.63 1925.3 9.04 -1864.	. 19 19 19 19 19 19 19 19 19 19 19 19 19
170.0 170.0 1.863.3 57.36 1.01 16.39.4 10.03 -1694.	TDAP = 70.0 DEG-F: 170.0 180.0 170.0 180.0 1.9723 1.9213 58.44 57.46 7.66 7.12 7.66 7.12 1591.2 1855.1 10.33 9.38 -59875949.
168.6 169.8 1.9268 58.52 1.14 1388.1 11.15 -1651.	TD4P = 76 170.0 1.9723 58.44 7.66 1591.2 10.33 -5987.
150.0 150.0 1.9832 59.63 1.43 1168.3 12.42 -1723.	168.8 168.8 2.8276 59.44 8.45 1358.3 11.39 -6284.
148.6 148.6 2.646.7 68.65 1.88 976.5 13.86 -1986.	ALTITUDE, POWER OFF) 120 FT**2: ALT = 2000 120 0 140 0 150 0 120 0 140 0 150 0 2.248 2.1455 2.0856 6.25 6.128 60.34 6.56 10.68 9.44 6.88 2 973 0 1122.9 6.88 2 973 0 1122.9 6.88 2 973 0 1122.9 6.88 2 973 0 1122.9 6.88 2 973 0 1122.9 6.88 2 973 0 1122.9 6.88 2 973 0 1122.9 6.88 2 973 0 1122.9 6.88 2 973 0 1122.9 6.88 2 973 0 1122.9
120.0 120.0 2.1667 62.37 3.47 668.9 17.35 –2687.	POWER (140.0 140.0 140.0 140.0 140.0 140.0 13.91 13.91 13.91 13.91 13.91
100.0 100.0 2.2641 63.42 8.00 448.4 21.57 -5176.	120.0 FT. 120.0 12
85.8 85.8 2.3476 63.93 16.22 329.2 24.97 -9318.	200000000000000000000000000000000000000
80.0 80.0 2.3646 63.85 21.33 304.3 304.3 -11510.	TURN (CC 9. LB; 85.0 2.4799 59.90 48.16 729.5 11.27 -2.2730.
WEXTS.KT WKTS.KT NZ.G NZ.G PH.DEG PSI.DEG RADIUS.FT RATE.D/S XF—WIND.LB	TRANSIENT TURN (CONSTANT) GW = 18860. LB; DQB = 1860 VHZKTS,KT 85.0 100 VKTS,KT 85.9 100 VKTS,KT 80

POWER LEVEL: MRP

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 10860. LB; DQB = 2.20 FT++2; ALT = 2000. FT; TEMP = 70.0 DEG-F; N: LHX, ZxT800, S BLADE, DIA=F/O, FLAP OFFSET=3.5%, CT/S=.0874, 500 FPM, 95% M ARMED RECON — (COMBAT, 4HF + 2S + 320) FALLOUT VIBRATION, NO CONTINCENCY MININUM OPERATING WEIGHT W/O LONGBOW [WITH EXT STORES]
NAME: DUB4:[DAVIS.LHX.HI22]HL92.DAT;3 **IGURATION**

3-701-69 176.6 6.6666 1.6666 6.6 6.6 6.8 170.6 2049.7 -4.50 178.6 0.0000 -4.50 DATE: 176.7 176.7 6.6 4.49 178.8 2026.4 -4.45 176.6 6.8829 -4.58 170.0 0.4894 1.1137 5228.3 3.14 26.14 170.0 170.0 51. 6.2 93 14:38: 168.8 1.1371 1.5145 1993.3 7.76 48.71 166.8 6.6434 -5.73 168.8 1724.2 -3.80 160.0 160.1 696. 2.5 -3.26 150.0 1476.3 -3.17 LEVEL: LEVEL: 150.0 1.3801 1.7043 1443.5 10.05 54.09 150.0 0.0836 -6.98 150.0 150.5 1244. 4.7 POWER POWER 140.0 1273.5 -2.56 140.0 0.1248 -8.37 1,5353 1,8322 1,136.4 11,98 56.94 140.0 141.0 1714. 6.9 -1.39 168.8 178.2 -7954. -26.1 -17.98 DEG-F; DEG-F; DEG-F; DEG-F; DEG-F; .0 DEG-F 150.0 162.3 -6285. -22.5 120.0 0.2078 -11.61 128.8 984.2 -1.45 120.0 122.4 2461. 11.4 0.02 120.0 1.7080 1.9793 746.5 15.55 59.66 **9.0**/ 70.0 0 0 0 FT: TEMP = 70.0 120.0 140.0 126.3 149.5 -4005. -5300. --18.2 -20.5 -8.57 -11.96 -6 76 6 166.6 164.1 2926. 16.1 -0.98 100.0 1.7351 2.0026 510.3 18.95 60.05 166.6 6.2946 -17.28 000 166. 822. . 1 . TEMP TEMP TEMP 85.0 1.6801 1.9551 380.8 21.59 59.24 85.0 770.6 0.14 85.0 0.3692 -22.04 85.0 90.6 3168. 20.2 -2.36 . E Ë Ë Ë 2000.0 100.0 105.1 -3273. -17.9 2000. 2000. 2000. 80.0 1.6555 1.9341 342.3 22.60 58.87 80.0 0.3962 -23.48 88.8 765.4 8.32 86.0 86.1 3228. 21.7 -2.59 . . ı Ħ . 7 (POWER OFF) 3.86 FT**2; ALT* 88.8 85.8 85.1 89.9 -2924, -2978, -19.1 -4.11 -4.65 ALT POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 9280. LB; DQB = 3.80 FT**2; ALT VHZKTS,KT 0.0 20.0 40.0 60.0 AX,G 0.7652 0.7626 0.6470 0.5183 IFUS, DEG -38.92 -37.62 -33.83 -29.93 ٨Ľ 4 66.8 864.7 6.98 60.0 68.7 3391. 29.2 -2.82 60.8 1.5254 1.8240 269.6 27.77 56.75 B CAPABILITY .80 FT .. 2; / FT • • 2; ILITY FT**2; FT**2; 48.8 958.7 1.23 40.0 1.2845 1.6279 110.3 35.07 52.10 40.0 52.3 3469. 40.1 N CAPABILITY DOB = 3.80 F CAPABI 3.88 8 RATE OF DESCENT CAPABILITY (F W = 9280. LB; DQB = 3.86 VMZYTS.KT 40.9 66.0 VKTS.KT 51.5 66.0 VKTS.KT 51.5 66.0 VKTS.KT 51.5 66.0 CAMARA, DEG - 13.0 - 25.8 - 15.8 - 115 - 115 CLIMB 'n 20.0 1.0203 1.4286 34.7 55.72 45.58 20.0 1222.9 1.22 20.0 37.3 3184. 57.5 . ₹. DECELERATIO UNACCELERATED FLIGHT ON = 9280. LB; DOB POWER-LIMITED RATE OF GW = 9280. LB; DGB 0.0 1456.3 0.54 POWER-LIMITED TURN GW = 9280. LB; C 9.9 9.7692 1.2616 9.8 9.9 9.0 23.1 2335. 90.0 VHZKTS,KT AX,G IFUS,DEG VHZKTS,KT VKTS,KT VCLJB,FT/AN GAMMA,DEG IFUS,DEG VHZKTS,KT TOTAL HPREQ IFUS,DEG VHZKTS, KT
AY, G
AY, G
NZ, G
RADIUS, FT
RATE, D/S
PHI, DEG

196.6 -6.4982 8.62

189.8 .4585 7.91

۴

178.6 .4889 7.87

ę.

160.0

ø.

158.8 -8.3559 -8.36

140.0

9

120.0 .3144 16.68

Ģ

188.8 -0.3286 -12.48

85.8 .3483 15.88

٠ ا

80.9 -0.3271 -15.66

60.0 2840 15.66

•

٠ ٩

20.0 2498 15.00

•

6.6 -6.2597 -15.66

3-JUL-89 198.8 -6.4118 7.45 180.0 -0.3744 -7.41 DATE: \$ 170.6 -8.3429 -168.3 6.6666 -3.52 168.3 2050.0 -3.52 168.3 168.3 0.0 -3.52 168.3 0.0000 1.0000 0.0 0.0 0.00 8 169.6 0.7114 1.2275 3186.3 4.86 35.47 160.0 0.0271 -4.30 160.0 -0.3213 · 7.66 188.0 202.7 -9456. -27.4 -19.49 160.0 1811.2 -3.05 160.0 160.1 437. 1.5 . CI/S=.0874, 500 FPM, 95% MRP VIBRATION, NO CONTINGENCY WI STORES] 150.0 0.9529 1.3813 2090.6 6.94 43.64 POWER LEVEL: 156.6 -0.3047 -8.66 150.0 1571.7 -2.52 178.8 184.1 -7161. -22.6 -15.01 158.8 8.8591 -5.32 LEVEL: 158.8 158.3 898. 3.4 POFER POWER 大学院 120.0 140.0 1550 0.0911 -8.95 -6.43 166.0 170.0 -5827. -19.8 -12.25 140.0 -0.2925 -8.47 140 1 1.09/3 1.4850 1580.8 8.56 47.58 148.8 1377.9 -2.81 140.0 140.6 1276. 5.1 -1.26 DEG-F; DEG-F: DEG-F: DEG-F: 1.0 DEG-F 150.0 157.9 -5006. -18.2 -10.45 120.0 1.2542 1.6041 1016.6 11.42 51.44 128.6 -6.2832 -9.93 120.0 1112.3 -1.09 120.0 121.4 1863. 8.7 8.7 **9.92** FT: TEMP = 78.0 = 70.0 = 78.8 X. 2×T886, S BLADE, DIA=F/O, FLAP OFFSET=3.5X, AED SECON — (COMBAT, 4HF 4-25 + 328) FALLOUT NATERNATE CONFIGURATION W/O LONGBOW [WITH EXT SUB4:[DAVIS.LHX.HL92]HL92.DAT;3 FT: TEMP = 79.0 126.0 140.0 124.9 146.5 -3504. -4367. --16.1 -17.1 -6.59 -8.93 -166.6 6.2193 -11.87 166.6 -6.3625 -12.57 1.2784 1.6231 692.6 13.96 51.97 166.6 977.6 -0.32 186.6 182.4 2228. 12.4 6.58 ğ FT; TEMP 85.0 1.2292 1.5846 520.4 15.79 50.87 85.0 0.2664 -14.65 85.6 -0.3253 -15.00 85.8 951.3 0.14 85.0 88.1 2354. 15.3 0.13 Ë Ë 2000. 100.0 104.3 -3017. -16.6 2000. 2000. 80.0 9.2820 -15.73 80.0 1.2072 1.5676 469.4 16.48 59.37 = 2000. 86.6 956.3 8.27 89.8 83.3 2368. 16.3 -9.18 **6 4** 8 15.6 ۴ • 2; ALT -85.0 89.6 89.6 -2855. -18.3 ALT: ACCEL CAPABILITY
3.80 FT •• 2; ALT 60.0 1.0887 1.4783 292.8 19.82 47.43 60.0 0.3478 -19.63 60.0 -0.2821 -15.00 66.6 1858.5 9.64 ¥ FT .. 2; ALT 60.0 64.3 2337. 21.0 -0.84 OFF) FT••2; CLIMB CAPABILITY
= 3.80 FT++2; T CAPABILITY (POWER OFF)

DOB = 3.89 FT*2:
6.9.84.8 B4.8
3.1 66.3 84.8 B8.49
40. -3633 -2845. -284
12. -26.3 -19.3 -18. 40.0 0.8603 1.3191 164.7 23.49 40.71 48.8 1286.9 0.72 40.0 0.3975 -22.04 40.0 12658 46.6 45.0 27.3 -6.83 N CAPABILITY DOB = 3.80 F 8 آ ۾ 6.8 20.0 6.2133 6.4867 6 -12.56 -21.97 20.0 -0.2628 -15.00 • 20.0 1622.4 0.51 20.0 0.5837 1.1579 60.7 31.87 30.27 20.0 25.2 1546. 37.4 -6.45 POWER-LIMITED HORIZONTAL GW = 11450. LB; DOB = 4 RATE OF (B) UNACCELERATED FLIGHT GW = 11450. LB; DQB RATE OF DESCENT CAPA GW = 11450. LB; DC VHZKTS, KT 40.0 VKTS, KT 53.1 VCLUB, FT/AN -3540. -GAMA, DEG -41.2 IFUS, DEG 1.29 9.0 2.5 254. 90.0 J. 0.0 0.2139 1.0228 0.00 9.9 -9.2789 -15.88 9.0 1969.5 -0.33 HORIZONTAL DECELET CW = 11450. LB; POWER-LIMITED TUR GW = 11450. LB; POWER-LIMITED RA GW = 11450. LB: VHZKTS, KT AY, G NZ, G RADIUS, FT RATE, D/S PHI, DEG VHZKTS,KT AX.G IFUS.DEG VHZKTS,KT TOTAL HPREQ 1FUS,DEG AX,G IFUS,DEG WHZKTS,KT WKTS,KT VCLMB,FT/MN GAMMA,DEG 1FUS,DEG

		d S
190.0 190.0 1.6587	52.61 1.07 2443.9 7.52 -2306.	FEVEL:
	54.01 0.98 2083.8 8.35 -2033.	POWER 190.0 190.0 1.7778 54.00 6.47 2345.3 7.83 -6305.
	55.33 0.96 1770.0 9.29 -1845.	TDMP = 70.0 DEG-F: 170.0 180.0 170.0 180.0 1.8765 1.8288 56.48 6.90 1716.0 2004.5 9.58 -62486232.
	56.59 1.09 1495.5 10.35 -1786.	170.0 170.0 170.0 1.8765 56.48 7.44 1716.0 9.58 —6248.
150.0 150.0 1.8816	57.77 1.37 1256.3 11.55 -1845.	FT: 1 160.0 1.9287 57.55 87.55 8.23 146.23 10.58
140.0 140.0 1.9418	58.88 1.82 1048.4 12.91 -2016.	7F) 150.0 150.0 1.9836 58.57 9.21 123.4 11.70 -6784.
120.0 120.0 2.0558	60.73 3.39 716.4 16.20 -2779.	POWER C 12: ALI 148.8 2.0404 59.52 10.45 10.45 12.96 -7274.
166.6 166.6 2.1491	61.84 7.86 479.7 20.16 ~5262. -0.4595	ALTITUDE, POWER OFF) 3.80 FT**2: ALT = 2000 120.0 140.0 150.0 120.0 140.0 150.0 2.1390 2.0404 1.950.5 60.95 59.52 58.57 14.20 10.45 9.21 15.73 12.96 11.70 -8783 -72746784.
85.0 85.0 2.2302	62.36 15.95 352.4 23.33 -9428.	000000-4
80.0 80.0 2.2476	62.24 20.97 326.1 23.72 -11634.	TURN (CC). LB: 85.0 85.0 85.0 2.3749 56.60 45.87 825.8 9.95 -230152.0100
VHZKTS,KT VKTS,KT NZ,G	PHI.DEG PSI.DEG RADIUS.FT RATE.D/S XF-WIND.LB	TRANSIENT TURN (CONSTANT GW = 11450. LB; DQB = VHZKTS,KT BS.0 100. WTS,KT BS.0 100. WTG. Z.3749 2.216 PHI,DEG 56.60 61 8 PSI,DEG 45.87 23.3 RADIUS,FT 825.8 530. RATE,D/S 9.3 18.2 XF-WIND, IB -2301512176

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON)

GW = 11450. LB; DGB = 3.80 FT**2; ALT = 2000. FT; TEMP = 70.0 DEG-F; POWER LEVEL: MRP

3-JUL-89

MINDUT DATA FILE NAME:	FILE NAM	ARMED I	RECON - (OPERATIN	AED RECON - (COMENT, 4HF + 2S + INUM OPERATING WEIGHT WITH LONGBY DUB4: [DAVIS.LHX.HL92]HL92.DAT; 3	4HF + 2 WITH LO HL92.DA	S + 320) NGBOW [C T;3	ANGE RECON - (COMBAT, 4HF + 25 + 328) FALLOUT VIBRATION, WININUM OPERATING WEIGHT WITH LONGBOW [CLEAN] EE: DUB4:[DAVIS.LHX.HL92]HL92.DAT;3	VIBRATI	9	NO CONTINGENCY WT	NCY WT 14:48:89	RUN DA
UNACCELERATED FLIGHT	189 FL16	. 00	8.20 FT.	8.20 FT**2; , ALT	- 2000.	Ë	TEMP = 70.0 DEG-F	• DEG-F :	POWER	POWER LEVEL:	ď	
VHZKTS, KT TOTAL HPREQ IFUS, DEG	9.0 1326.2 0.81	20.0 1110.0 1.40	40.0 871.8 1.22	60.0 749.0 0.64	86.8 739.7 -6.25	85.8 754.5 8.54	199.0 846.9 -1.51	128.8 1079.5 -3.12	148.8 1587.7 -5.86	158.6 1822.6 -6.18	156.1 2050.0 -6.89	
POWER-LIMITED RATE OF CLIMB CAPABILITY GW = 8600. LB; DQB = 8.20 FT**2;	FED RATE	0F CLI	IMB CAPABILIT	LITY 2: ALT	- 2000.	Ë	TEMP = 70.0 DEG-F;	DEG-F:	POWER	LEVEL:	<u>.</u>	
WHZKTS, KT WKTS, KT WCLMB, FT/AN GAMMA, DEG IFUS, DEG	9.0 29.1 2951. 98.0 -8.94	20.0 40.1 3523. 60.1	40.0 53.6 3616. 41.8 41.8	68.9 68.9 3432. 29.5 -5.69	86.6 85.6 3672. 26.8 -6.47	85.0 89.9 2958. 19.0 -6.49	168.6 163.1 2562. 14.2 -5.69	126.6 121.6 2011. 9.4 -3.18	140.0 140.4 1631. 4.2 -5.03	158.8 158.1 416. 1.6 -6.15	156.1 156.1 9.9 -6.89	
RATE OF DESCENT CAPABILITY (POWER OFF) CW = 8680. LB; DGB = 8.20 FT**2; VHZKTS,KT 40.0 68.0 88.0 88.0 VCLWB,FT/AN -22853107328933 CAMMA,DEG -39.0 -27.1 -21.9 -2 IFUS,DEG -0.42 -3.18 -6.63 -7	SCENT CA - LB; - 40.0 51.5 -3285. -39.0 -12.0	PABILITY DOB = 8 60.0 67.4 -3107.	7 (POWER OF 8.20 FT**2; 80.0 80.0 1.2559	OFF) 42: ALT 85.0 91.3 -337121.4 -7.24	2666. 166.6 167.1 -3876. -26.9	FT; T 128.6 138.6 -5868. -22.6 -13.18	TEMP = 70.0 DEG-F 140.0 158.6 -7538. -28.0	0 DEG-F				
POWER-LIMITED TURN CAPABILITY CW = 8600 LB; DQB = 8.20	-LIMITED TURN 8600. LB;	CAPABI	111TY 8.20 FT++2;	2: ALT	- 2000.	Ë	TEMP = 70.0 DEG-F	DEG-F;	: POWER	POWER LEVEL:	dy Y	
VHZKTS,KT AY,G NZ,G NZ,G RADIUS,FT RATE,D/S PHI,DEG	6.6 6.9237 1.3613 6.6 6.86 42.73	20.0 1.1731 1.5415 30.2 64.06 49.55	40.0 1.4426 1.7553 98.2 39.39 55.27	66.6 1.6896 1.9633 188.7 36.76 59.38	86.6 1.8171 2.6741 311.8 24.81 61.18	85.0 1.8394 2.0937 347.8 23.64 61.47	166.6 1.8821 2.1312 476.4 26.56 62.62	120.0 1.8993 2.0673 704.7 16.47 61.09	140.6 1.5301 1.8279 1134.1 11.94 56.87	150.0 1.2351 1.5892 1613.0 8.99 51.07	26.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 8600. LB; DGB = 8.20 FT++2; AL VHZKTS,KT 0.0 20.0 40.0 60.0 AX,C 0.9237 0.8832 0.7236 0.5520	-LIMITED HORI 8600. LB; 5,KT 0.0	20.0 20.0 20.0 20.0	ACCEL CAPAB 8.20 FT • • 2; 40.0	ABILITY 2; ALT 60.0 0.5520	= 2886. 86.6 6.3931	FT; 85.0	, in	.0 DEG-F; 120.0	POWER 148.6 0.0741	LEVEL: 150.0 0.0276	MRP 156.0 0.0001	
IFUS DEG	-43.18				-26.51	-25.01		-12.73		-7.72	-6.89	

HORIZONTAL DECELERATION CAPABILITY

GW = 8600. LB; DGB = 8.20 FT++2; ALT = 2000. FT; TEMP = 70.0 DEG-F; POWER LEVEL: MRP

GW = 8600. LB; DGB = 8.20 FT++2; ALT = 2000. FT; TEMP = 70.0 DEG-F; POWER LEVEL: MRP

WHZKTS,KT 0.0 20.0 40.0 60.0 80.0 80.0 85.0 100.0 120.0 140.0 150.0 150.0 170.0 170.0 180.0 150.0 150.0 170.0 150.0 150.0 15.00

	<u>و</u>
196.6 2.2144 62.83 1.16 11.29 -2824.	R LEVEL:
186.6 189.6 2.2823 63.79 6.39 1412.5 12.32 12.32 -2485.	198.8 198.8 198.8 2.3976 63.81 7.61 1586.9 11.58 -7138.
178.6 178.6 2.3537 64.69 6.97 1218.2 13.58 -2256.	TDAP = 70.0 DEG-F: 170.0 180.0 170.0 180.0 2.5214 2.4602 65.50 64.72 7.98 7.43 1179.9 1569.1 13.93 12.71 -69586998.
160.0 2,4293 5,4293 65.56 1,11 1030.4 15.02 -2154.	FDAP = 78 170.0 170.0 170.0 2.5214 65.56 7.98 1179.9 13.93 13.93 -6958.
156.6 156.0 2.5078 65.38 1.41 1871.5 16.64 -2175.	169.9 169.9 169.9 2.589.6 66.25 66.25 19.15 15.39 15.39
148.6 148.9 2.5888 67.15 1.89 731.7 18.59 -2314.	7 = 2000 150.0 150.0 2.6520 66.97 9.80 861.8 16.83
128.8 128.8 2.7482 68.45 3.55 584.6 23.08 -3631.	2.742 6.7442 6.7442 6.7442 6.7742 11.11 727.6 18.61 -7896.
166.6 166.8 2.8673 69.26 8.28 339.3 28.56 -5512.	ALTITUDE, POWER OFF B.20 FT2; ALT = 120.0 140.0 120.0 140.0 120.0 140.0 120.0 140.0 14.94 11.11 517.5 727.6 517.6 18.61 -93257896
85.6 85.0 2.9824 69.70 16.81 248.7 33.65 -9728.	
80.0 80.0 80.0 3.0105 69.70 22.18 229.0 33.79 -11973.	B. LB. DOB = 85.0 100 100 100 100 100 100 100 100 100 1
WTZKTS.KT WKTS.KT NZ.G PNI.DEG PSI.DEG RADIUS.FT RATE.D/S XF—WIND.LB	TRANSIENT GW & 8689 WHZKTS.KT WKTS.KT NY.G PNI.DEG PSI.DEG RADIUS.FT RATE.D/S XF-WIND.IB

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 8660. LB; DQB = 8.20 FT++2; ALT = 2000. FT; TEMP = 70.0 DEG-F; POWER LEVEL: MRP DN: LHX, 2xT800, 5 BLADE, DIAMF/O, FLAP OFFSET=3.5%, CT/S=.0874, 500 FPM, 95% MRP
ARMED RECON - (COMBAT, 4HF + 2S + 320) FALLOUT VIBRATION, NO CONTINGENCY WT
PRIMARY MISSION CONFIGURATION WITH LONGBOW [CLEAN]
NAME: DUB4:[DAVIS.LHX.HL92]HL92.DAT;3

DATE: \$ RUN TIME: 14:41:17 156.6 2049.7 -5.51 156.5 1.0000 1.0000 0.00 0.00 156.5 6.6661 -5.52 156.6 156.6 0.0 -5.51 - 70.0 DEG-F; POWER LEVEL: 150.0 1828.8 -4.89 150.0 150.0 371. 1.4 150.0 0.8564 1.3166 2326.2 6.24 40.64 158.8 0.8246 -6.26 POWER POWER POWER POMER. 140.0 0.0624 -7.49 146.6 1547.3 -3.99 146.6 1.1373 1.5145 1525.8 8.87 48.71 146.6 146.3 873. 3.5 -3.95 168.6 163.7 -9134. -29.4 DEG-F: DEG-F: DEG-F: - 70.0 DEG-F; 159.0 158.0 164.5 -6843. -24.3 120.0 1161.3 -2.43 128.8 1.3965 1.7128 916.9 12.66 54.38 126.8 6.1488 -16.33 120.0 121.1 1670. 7.8 -2.46 = 70.0 76.9 • 120.0 140.0 127.1 150.9 4252. -5711. -10.81 -13.87 -166.6 6.2213 -14.65 6 1.4552 1.7657 608.4 15.89 55.51 166.6 952.2 -1.14 166.6 162.3 2268. 12.3 -1.76 . • 9 FT: TEMP FT: TB/P 85.0 1.4174 1.7346 451.3 18.21 54.80 85.0 0.2842 -18.28 85.0 88.4 2444. 15.8 -2.90 9 8 8 88.8 Ë 2888. 1 188.8 185.6 -3451. -18.8 2000 2000 2000. 2000 80.0 1.3975 1.7184 405.5 19.08 54.42 88.6 6.3878 -19.53 = 2000. 88.6 881.3 -0.15 88.6 83.7 2583. 17.2 ı . 2; ALT 85.0 90.4 -3126. -20.0 . ALT 1 POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 10380. LB; DQB = 8.20 FT++2; ALT 68.8 6.4078 -24.23 DECELERATION CAPABILITY
. LB; DQB = 8.20 FT++2; ALT ALT 69.0 1.2829 1.6266 248.4 23.35 52.07 60.0 932.3 0.51 66.6 65.5 2657. 23.6 -3.65 CLIMB CAPABILITY = 8.20 FT**2; F1**2; FT••2; 46.6 6.5647 -27.92 46.6 1.6559 1.4543 134.2 28.83 46.56 46.6 1119.7 6.85 40.0 47.6 2613. 32.8 -2.30 N CAPABILITY DOB = 8.28 F 8.20 0.6 20.0 0.5216 0.5739 (-28.01 -30.20 20.0 1418.3 0.82 20.0 6.7942 1.2770 44.6 43.37 38.46 20.0 30.3 2301. 48.6 -1.20 . RATE OF B: DOB UNACCELERATED FLIGHT GW = 10380. LB; DQB POWER-LIMITED TURN GW = 10380. LB; D 6.6 1687.5 0.14 9.0 12.7 1288. 96.9 -6.60 9.8 6.5216 1.1278 9.8 9.99 27.55 RATE OF DESCENT C W = 10380. LB; WHZNTS, KT 52.4 WTS, KT 52.4 WLMB, FT/M -3434. GAMAN, DEG -48.1 IFUS, DEG -6.01 POWER-LIMITED RA GW = 10380. LB; INPUT DATA FILE HORIZONTAL D VHZKTS,KT TOTAL HPREQ IFUS,DEG WAZKTS, KT AY, G AY, G NZ, G RADIUS, FT RATE, D/S PHI, DEG VHZKTS.KT AX.G IFUS.DEG WHZKTS, KT WKTS, KT WCLUB, FT/AN GAMMA, DEG IFUS, DEG

Ÿ

180.0 -0.4762 -7.41

178.6 -8.4331 -7.41

160.0 -0.4021 -7.64

158.8 -8.3768 -7.97

148.6 -8.3564 -8.42

128.8 -8.3324 -9.81

199.9 -0.3387 -

85.6 -8.3595 -

89.9 -6.3446 -

50.0 .2963.

Ť

49.6 -0.2682 ·

20.0 -0.2579 -

6.2677 15.86

WHZKTS,KT AX,G · IFUS,DEG

190.0 190.0 1.8347 56.56 1.03 2111.3 8.70 -2824.	R LEVEL:
180.0 1.8969 57.79 6.94 1807.9 9.63 -2495.	POWER 198. 8 198. 8 1.9857 57.78 6.61 28.33.7 29.33.7 -7137.
178.9 178.9 1.9588 58.94 6.92 1541.5 16.66 -2256.	189.8 189.8 2.8383 58.94 7.84 1745.8 9.97 -6997.
160.0 2.8127 56.04 1.66 136.9 11.84 -2154.	754 = 76.6 176.6 176.6 176.6 2.6896 2. 2.9896 2. 7.59 1498.6 1498.6 17 1498.6 17 1498.6 17 1498.6 17 1498.6 17
156.6 156.8 61.68 61.68 1.35 1161.1 13.17 -2175.	168.0 168.0 2.1455 66.88 68.38 1289.5 12.98 12.98
140.0 140.0 2.1442 62.05 1.81 921.3 14.69 -2314.	158.0 158.0 158.0 2.2055 61.78 9.37 1987.7 15.34 -7489.
120.0 120.0 2.2763 63.68 3.42 532.1 18.36 -3631.	POWER OFF 140.0 140.0 2.2680 2 62.63 10.63 19.53 118.5 11 14.7577 -0
188.6 2.3756 64.68 64.68 8.60 424.0 22.81 -5512.	ALTITUDE P 8.28 FT-2; 120.0
85.0 85.0 2.4709 65.17 16.25 311.1 26.42 -9728.	(CONSTANT A DGB = 80 DGB = 6 10 100.
80.0 80.0 2.4943 65.11 21.42 287.3 26.93 -11973.	108 85 2 68 62 65 65 65 65 65 65 65 65 65 65 65 65 65
WHZKTS.KT WKTS.KT NZ.G PHI.DEG PSI.DEG RADIUS.FT RATE.D/S XF—WIND.LB	TRANSIENT GW = 18386 WHZXTS.KT VKTS.KT VKTS.KT VKTS.KT VKTS.KT VKTS.KT VKTS.KT VKT-WND.LB KATE.D/S KATE.D/S AX.G

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 18380. LB; DQB = 8.28 FT++2; ALT = 2000. FT; TEMP = 70.0 DEG-F; POWER LEVEL: MRP \$ ₹

ŕ DATE: 186.6 -0.5387 -7.52 \$ 176.6 -0.4879 -27 RUN TIME: 14:42 151.8 2050.1 -6.69 151.7 151.7 0.0 6.69 160.0 -0.4512 7.72 151.7 6.0000 1.0000 1.0000 0.00 151.7 6.6861 -6.69 LHX, 2xT800, 5 BLADE, DIAmF/O, FLAP OFFSET=3.5%, CT/Sm.0874, 500 FPW, 95% is ABMD DECON — (COMBAT. 4HF + 2S + 320) FALLOUT VIBRATION, NO CONTINGENCY HINNUM OPERATING WEIGHT WITH LONGOOM AND EXT STORES RUN TIME: 14. DNB4:[DAVIS.LHX.HL92]HL92.DAT;3 150.0 -0.4204 -8.04 158.6 1981.6 -6.47 150.0 150.0 108. 0.4 -6.50 159.6 6.7786 1.2676 2558.6 5.67 38.01 150.0 0.0071 -6.90 POWER 140.0 1638.2 -5.28 140.0 140.2 688. 2.8 -5.45 148.8 0.0492 -8.24 148.6 1.2108 1.5703 1433.3 9.45 56.56 6.3949 8.48 ٩ DEG-F: DEG-F: 0EG-F: DEG-F: .0 DEG-F 150.0 173.6 -8859. -30.3 DEG-F: 120.0 1174.4 -3.23 120.0 121.1 1626. 7.6 120.0 0.1366 -11.36 1.5243 1.5243 1.8231 836.4 13.87 56.76 120.0 3619 9.83 • 0 9 TEM = 70.0 FT: TEMP = 70.0 120.0 140.0 129.0 155.2 -4788. -6778. -21.5 -25.5 6 6 70 9 100.0 0.2249 -16.51 100.0 924.7 -1.61 1.6955 1.8949 558.1 17.58 58.16 100.0 -0.3680 -188.6 182.4 2212. 12.3 -4.12 . . • . 100 100 85.8 839.7 -0.65 85.6 88.6 2538. 16.4 -5.68 85.0 1.5756 1.8662 406.0 20.25 57.60 85.0 0.3013 -21.07 85.0 .3781 15.00 Ë <u>:</u> Ë Ë Ë 9 2888. 198. 9 198. 9 196. 6 -3734. -28.2 -8.88 2000. 86.6 826.7 -0.37 80.0 1.5562 1.8498 364.1 21.25 57.28 80.0 0.3296 -22.43 86.6 84.1 2636. 18.6 -5.14 86.6 .3687 15.66 . . . ı . 4 66.6 853.2 6.47 60.0 1.4464 1.7535 221.3 26.22 55.23 POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 9620. LB; DQB = 9.80 FT++2; ALT 60.0 0.4570 -27.65 . 3037 -15.00 66.5 2987. 25.6 RATE OF DESCENT CAPABILITY (POWER OFF)

GW = 9620. LB; DGB = 9.80 FT**-2; AL.

WRZYTS, KT 40.0 60.0 80.0 83.0

WRZYS, KT 52.1 67.5 86.0 91.0

VCLMB, FT, AM - 3375. -3121. -3285. -3289.

GAMMA, DEG - -39.8 -27.2 -21.6 -21.0

IFUS, DEG - 0.59 - 3.21 - 6.41 - 6.97 B CAPABILITY .80 FT • • 2; CAPABILITY 9.80 FT..2; 9 FT••2; F1**2; 20.0 40.0 0.9481 1.2888 1.3780 1.5688 37.4 117.2 51.78 33.01 43.47 50.40 46.6 1869.7 6.96 49.0 49.7 2987. 36.4 -3.39 40.0 0.5882 -32.07 40.0 -0.2687 -15.00 4 CAPABILITY DOB = 9.80 9.80 CLIMB 20.0 0.6990 -35.42 20.0 1282.0 1.06 20.0 1.2541 · 15.00 20.0 34.1 2860. 54.1 . DECELERATION . LB: DOB = 68 UNACCELERATED FLIGHT GW = 9620. LB; DQB 4 6.6935 1.2169 6.6 6.6 34.74 POWER-LIMITED RATE GW = 9620. LB; D POWER-LIMITED TURN GW = 9620. LB; D 0.0 1524.6 0.43 0.6 0.6936 -35.20 0.0 .2622 15.00 9.0 2015. 90.0 -0.72 HORIZONTAL DE GW = 9620. L VMZKTS,KT TOTAL HPREQ 1FUS,DEG VHZKTS,KT AX,G IFUS,DEG VHZKTS, KT AY, G AY, G NZ, G RADIUS, FT RATE, D/S PHI, DEG WEKTS, KT WKTS, KT WCLUB, FT/AN GAMMA, DEG IFUS, DEG MAZKTS, KT AX G -1FUS, DEG

	£
198.6 198.6 1.9819 59.28 1.63 1986.6 9.67 -3618.	· LEVEL:
188.0 188.0 2.0420 60.38 6.93 16.31.0 16.57 -2661.	: POWER 190.0 2.1528 60.38 67.4 1834.0 10.02 -7434.
176.6 176.6 2.1654 61.43 6.1.43 1393.8 11.86 -2464.	EMF = 70.0 DEG-F; 170.0 180.0 170.0 180.0 170.0 180.0 1.43 1.
166.6 2.1729 62.42 1.05 1184.6 13.67 -2286.	170.0 170.0 170.0 17.7 1357.2 12.11 12.11
150.0 150.0 2.2429 63.37 1.35 899.4 14.51 -2295.	FT: T 160.0 2.3224 53.19 63.19 1161.3 13.32 -7352.
140.0 140.0 2.3145 64.25 1.82 837.5 16.17 -2422. -2.222.	158.8 158.8 158.8 2.3869 54.82 54.82 14.63 14.68 14.68
120.8 120.8 2.4588 65.74 3.46 575.9 20.15 -3121.	POWER 0 2: ALT 140.0 140.0 2.4541 64.79 10.78 835.2 16.21 -8077.
189.8 2.5552 56.65 8.16 386.7 25.00 -5693.	ALTITUDE, POWER OFF) 9.80 FT**2: ALT = 2000 120.0 140.0 150.0 120.0 140.0 150.0 2.5748 2.4541 2.3865 14.57 64.79 64.00 14.57 10.78 9.55 591.2 835.2 987.0 -951880777634.0
85.8 85.8 2.6704 67.12 16.47 283.7 28.98 -9836.	600-400 6
80.0 2.6972 67.09 21.73 261.5 29.58 29.58 12695.	TURN (COMSTAN) 1, [B] DOB = 85.0 100 85.0 100 85.0 100 20.0 20.0 20.0 20.0 20.0 20.0 20.
VHZKTS, KT VKTS, KT NZ, G PHI, DEG PSI, DEG RADIUS, FT RATE. D/S XF—WIND, LB	TRANSIENT T GW = 9620. WAZKTS,KT WKTS,KT WZ,G PHI.DEG PSI.DEG PSI.DEG PSI.DEG RADIUS,FT RATE.D/S XF-WIND.LB - AX,G -

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 9620. LB; DGB = 9.80 FT++2; ALT = 2000. FT; TEMP = 70.0 DEG-F; POWER LEVEL: MARP

RUN TIME: 14:43:23 158.7 2049.8 -5.16 LHX, 2xT800, 5 BLADE, DIA-F/O, FLAP OFFSET-3.5X, CT/S-.0874, 500 FPM, 95X MRP ABMED RECON - (COMBAT, 4HF + 25 + 320) FALLOUT VIBRATION, NO CONTINGENCY WT MAX ALTERNATE GROSS WEIGHT [MAGW] WITH LONGBOW AND EXT STORES FUN TIME: 14:43 RED TIME: 14:43 1712.3 • DEG-F; 129.0 1294.3 -2.54 - 78. 100.0 1082.7 -1.28 85.0 1026.6 -0.55 Ë 88.8 1824.8 -6.34 ALT 0.0 20.0 40.0 69.0 2076.8 1692.7 1346.4 1107.3 -0.50 0.36 0.48 0.26 - 9.80 FT ** 2; UNACCELERATED FLIGHT GW = 11790. LB; DQB CONFIGURATION: WHZKTS, KT TOTAL HPREG 1FUS, DEG

FT; TEMP = 70.0 DEG-F;

2000.

POWER-LIMITED RATE OF CLIMB CAPABILITY GW = 11790. LB; DQB = 9.80 FT**2; ALT

DATE:

POWER-LIMITED TURN CAPABILITY

GW = 11796. LB; DQB = 9.80 FT+0.2; ALT = 2000. FT; TDMP = 70.0 DEC-F; POWER LEVEL

VHZKTS.KT 20-0 40-0 60-0 80-0 85.0 100.0 120.0 140.0 150.0

AY.G 0.5144 0.7986 1.0233 1.1305 1.1483 1.1791 1.1012 0.8011 0.2616 0.0000

RZ G 1.1246 1.2799 1.4306 1.5804 1.5227 1.5460 1.4875 1.2813 1.0337 1.0000

RADIUS.FT 68.8 177.3 311.5 501.2 557.1 750.9 110.0 6.25 1.2813 1.0337 1.0000

RATE.D/S 28.09 21.81 18.63 15.43 14.75 12.88 10.02 6.25 1.99 0.00

PHI.DEC 27.22 38.62 45.66 48.51 46.96 49.71 47.78 38.75 14.68 0.00

POWER-LIMITED HORIZONTAL ACCEL CAPABILITY

GW = 11790. LB; DG6 = 9.80 FT.*2000. FT; TEMP = 70.0 DEG-F; POWER LEVEL: M

VHZKTS.KT 20.0 40.0 60.0 80.0 85.0 100.0 120.0 140.0 150.0 150.7

AX,G 0.3406 0.3532 0.3063 0.2389 0.2228 0.1731 0.1043 0.0361 0.0023 0.0000

IFUS,DEG -19.03 -20.22 -18.37 -14.83 -13.83 -11.50 -8.74 -6.30 -5.23 -5.16

196.6 -0.4932 7.14 186.6 -6.4486 -7.12 170.0 3.4098 7.17 ġ. . 3618 7.41 HORIZONTAL DECELERATION CAPABILITY GW = 11790. LB; DQB = 9.80 FT**2; ALT = 2000. FT; TEMP = 70.0 DEG-F; POWER LEVEL: 158.8 -0.3593 148.8 -6.3417 -8.25 120.0 -0.3242 -9.75 188.6 -6.3375 -85.6 -6.3576 -15.66 80.0 -6.3432 -15.80 60.0 -8.2988 -15.88 48.8 -8.2746 -15.88 20.0 7.2668 15.00 Ý 6.6 -6.2818 -

&		
POWER LEVEL:	198.6 1.6173 51.24 51.24 2567.1 7.16 -3918.	LEVEL:
POWER	188.6 1.6662 52.72 9.85 2184.6 7.97 4.2557	: POWER 198.0 17553 52.64 6.16 6.16 2463.2 7.46 -7429.
• DEG-F:	178.6 1779.6 1779.6 54.11 9.84 1851.6 2.88 2.888 -2484.	188.6 188.6 188.6 1.8816 54.07 6.66 2186.3 2186.3 -7271.
T54P = 70.0 DEG-F;	160.0 1.7729 55.43 6.98 1562.0 9.91 -2286.	TEMP = 70.0 DEG-F; 170.0 180.0 170.0 180.0 1.8456 1.8016 55.26 54.07 7.15 6.60 1795.0 2100.3 9.16 7.271.
FT: TE	158.8 1.8361 56.67 1.26 1310.4 11.67 -2295.	FT: TE 160.0 160.0 1.8949 56.39 56.39 7.93 1527.5 10.13 10.13
2000.	140.0 140.0 1.8885 57.83 1.71 1092.2 12.40 -2422.	2666. 156.6 156.6 156.6 159.7 11.22 7633.
POWER ON	126.6 1.9997 59.76 3.28 745.6 15.58 -3121.	POWER OF 148.0 148.0 2.0025 58.46 10.15 1088.8 12.88.8 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4
ALTITUDE, POWER ON 9.80 FT++2; ALT +	166.6 166.6 2.6931 66.91 7.76 498.5 19.46 -5682.	ALTITUDE, POWER OFF, 9.80 FT**2: ALT 120.0 140.0 120.0 140.0 120.0 140.0 2.1008 2.0025 1 5.95 58.46 5.77 10.15 757.2 1088.8 15 15.13 12.45 -05170517.
ISTANT AL	85.0 2.1789 61.42 15.68 366.2 22.45 -9836.	NSTANT AL DOB = 9. 100.0 100.0 2.1872 60.83 22.86 551.9 17.52 -12967.
TURN (CO	86.6 86.8 2.2668 61.27 26.64 339.2 22.81 -12695.	TURN (CON 85.0 85.0 2.390 54.41 44.17 888.0 9.24142.
TRANSIENT TURN (CONSTANT GW = 11790. LB; DOB =	VHZKTS, KT VKTS, KT NZ, G PHI, DEG PSI, DEG RADIUS, FT RATE, D/S XF-WIND, LB AX, G AX, G	TRANSIENT TURN (CONSTANT, GW = 11789. LB; DGB = VHZKTS,KT 85.0 100.0 VKTS,KT 85.0 100.0 VKTS,KT 85.0 100.0 PH; DEG 54.1 60.0 PH; DEG 54.1 60.0 PH; DEG 54.1 60.0 PKTE,DEG 44.17 22.00 RATE,DS 75.1 88.0 551.9 RATE,DS 74.17 24.142. L1.9999

CONFIGURATION:

DATE: ₹ 169.6 2050.0 -4.41 169.6 169.6 9.0 1.1 169.6 0.0000.1 0.0000.0 0.0000.0 RUN TIME: 14:34:17 169.0 1752.8 -3.83 160.0 160.2 737. 2.6 -3.01 1.4143 1.7321 1682.7 9.65 54.76 NN: LHX, ZxT800, 5 BLADE, DIA=F/O, FLAP OFFSET=3.5%, CT/S=.0874, 500 FPM, 95% MARMED RECON = (COMBAT, 4HF + 2S + 320) FALLOUT VIBRATION, NO CONTINGENCY MININUM OPERATING WEIGHT W/O LONGBOW [CLEAN]
NAME: DUB4:[DAVIS.LHX.HL92]HL92.DAT;3 158.8 1496.7 -3.23 150.0 1.7116 1.9824 1163.9 12.46 59.72 159.6 159.6 1393. 5.2 POWER 140.0 1276.5 -2.66 140.0 1.8995 2.1467 913.6 14.82 62.24 146.6 141.3 1953. 7.8 - 59.0 DEG-F; DEG-F; DEG-F; 120.0 960.5 -1.54 6 DEG-F 158.8 171.3 -8378. -28.9 120.0 2.1106 2.3355 604.1 19.21 64.65 120.0 123.2 2837. 13.1 1.18 0 0 FT: TEMP = 59.6 128.0 149.0 128.2 154.1 -4567 - 6527. -20.6 -24.7 -10.45 -15.40 -. 59 . 59 100.0 2.1563 2.3769 410.6 23.55 65.12 100.0 772.2 -0.52 100.0 105.4 3358. 18.3 40 154 FT; TEMP 85.8 781.8 8.15 85.0 2.0892 2.3162 306.2 26.85 64.42 85.0 92.5 3691. 23.2 -3.03 Ë Ë Ö 6 106.0 105.9 -3539. -19.3 6 80.0 2.0599 2.2899 275.1 28.12 64.11 80.0 688.5 0.35 88.3 3780. 25.0 -3.32 . . RATE OF DESCENT CAPABILITY (POWER OFF)

(M = 8266. LB; DQB = 2.26 FT-e.; ALT

VEX.TS, KT 40.0 60.0 80.0 85.0

VKTS, KT 50.4 66.5 85.4 90.4

VCLAB, FT/AN -3112. -2904. -3021. -3111.

IFUS, DGG -37.5 -25.5 -20.5 -19.9

IFUS, DGG -115 -1.37 -4.79 -5.42 ALT 60.0 695.3 1.03 ALT ALT 60.0 1.9013 2.1483 167.6 34.61 62.26 60.0 72.0 4031. 33.6 POWER-LIMITED RATE OF CLIMB CAPABILITY GW = 8260. LB; DQB = 2.20 FT++2; POWER-LIMITED TURN CAPABILITY GW = 8260. LB; DQB = 2.20 FT++2; FT**2: 6.6 20.0 40.0 1.0820 1.3376 1.6329 1 1.4733 1.6701 1.9148 2 0.0 26.5 46.59 47.26 53.22 58.52 46.6 861.4 1.51 40.0 57.2 4144. 45.6 -2.94 = 2.20 6.6 26.6 1232.1 1624.6 6.99 1.62 20.0 45.0 4084. 63.6 UNACCELERATED FLIGHT GW = 8260. LB; DQB 9.6 3429. 96.6 INPUT DATA FILE VHZKTS, KT TOTAL HPREQ IFUS, DEG VHZKTS, KT AY, G NZ, G RADIUS, FT RATE, D/S PHI, DEG VHZKTS, KT
VKTS, KT
VCUMB, FT/AN
GAMMA, DEG
1FUS, DEG

190.0 .5876 8.98 P

186.6 .5275 .8.77 •

178.6 -0.4757 -8.65

160.0 -0.4388 · 8.79

158.6 -8.4878 -9.81

-0.3446 -0.3803 -10.47 9.34

-8.3512 -8.3384 -15.66 12.62

88.6 -6.3362 -

68.8 -8.2865 -15.88

40.0 -0.2552 -15.00

20.0 .2426 15.00

Ÿ 9.9 -8.2511 -15.88

WHZKTS, KT AX, G -IFUS, DEG

Š

TEMP = 59.0 DEG-F; POWER LEVEL:

Ë

6

. ۲

HORIZONTAL DECELERATION CAPABILITY GW = 8260. LB; DQB = 2.20 FT**2;

169.4 0.0011 -4.44

160.0 0.0462 -5.63

150.0 0.0943 -7.04

140.0 0.1429 -8.61

120.0 0.2438 -12.33

160.6 6.3457 -20.28

85.0 6.4422 -26.10

80.0 0.4768 -27.81

60.0 0.6377 -34.42

0.6 20.6 40.6 1.8819 1.8894 6.8245 -47.69 -45.57 -46.53

DEG-F;

0

29

H

Ë

6

ŧ

POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 8260. LB; DQB = 2.20 FT**2; ALT

									1	Ì									
									•	2									
96.6	190.0	2.5379	66.59	1.84	1384.9	13.27	-2793.	6.3381		LEVEL:									
							-2510.	•		POWER									
							-2318	•		0EG-F:	196.0	196.0	. 7082	67.42	7.46	342.4	13.69	-6734.	.8153
							-2274	•		TEMP = 59.0 DEG-F;	180.0	_							•
							-2363.			 T						1005.4			•
_	_			_			-2578.	•	F)	•	160.0	160.0	2,9287	69.41	9.13	863.9	17.91	-6877.	-0.8325
120.0	129.0	3.1352	71.29	4.47	433.4	26.78	-3457.	-0.4185	POWER O	2; ALT	150.0	150.0	3.0119	70.02	10.12	737.2	19.68	-7245.	-6.8771
100.0	100.0	3.2840	71.99	9.6	292.7	33.03	-6591	- 6.7979 ·	ALTITUDE, POWER OFF	.20 FT••:	140.0	140.0	3,1054	70.65	11.42	623.4	21.72	-7813.	-0.9459
						_		-1.4290			120.0	120.0	3.2483	71.51	15.28	444	26.14	-9432	-1.1419
80.0	8	3.4355	72.36	27.86	206.7	37 43	-14973.	-1.8127	TURN (CO									- 1	-1.6188
VH7KTS KT	VKTA KT	27	PHIDEG	PSIDEG	RADIUS FT	PATE D/S	XF-WIND LB	AX.G	TRANSIENT	GW = 8260 LB; DQB =	VH7KTS, KT	VKTS	Z.V.	PHI DEG	PSIDEG	RADIUS FT	RATE D/S	XF-WIND IR	AX,G

0. FT; TEMP = 59.0 DEG-F; POWER LEVEL: MRP

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 8260. LB; DQB = 2.20 FT++2; ALT +

¥ ₹ DN: LHX, 2xT800, 5 BLADE, DIAMF/O, FLAP OFFSET=3.5%, CT/S=.0874, 500 FPW, 95% N ARMED RECON - (COMBAT, 4HF + 2x + 3x0) FALLOUT VIBRATION, NO CONTINGENCY PRIMARY MISSION GROSS WEIGHT [PMGW] M/O LONGBOW [CLEAN] NAME: DUB4:[DAVIS.LHX.HL92]HL92.DAT;3

DATE: **58** RUN TIME: 14:35:

168.8 2050.1 -3.58 168.8 168.8 0.0 -3.58 MRP 160.0 1786.3 -3.10 160.0 160.1 568. 2.0 -2.53 150.6 150.4 1117. 4.2 159.8 1537.8 -2.58 140.0 1333.9 -2.09 149.9 149.9 1584. 6.4 DEG-F; 120.0 1036.3 -1.13 120.0 122.2 2312. 10.8 0.79 0 0 . 59. P = 59. 166.0 163.7 2791. 15.4 1.34 100.0 867.0 -0.29 85.0 19 90.0 19 3009. 27 19.3 11 85.0 812.5 0.24 388.8 886.8 9.39 88.8 85.6 3666. 20.7 . 2; ALT 66.6 60.6 67.7 3169. 27.5 -1.71 66.6 848.7 6.91 B CAPABILITY 48.0 1013.1 1.16 40.0 50.6 3132. 37.7 CLIMB 26.6 1296.3 1.68 26.6 34.8 2883. 54.9 P 8 UNACCELERATED FLIGHT GW = 9980. LB; DQB POWER-LIMITED RATE (6.6 1546.9 6.39 9.6 15.6 1987. 99.6 VHZKTS,KT TOTAL HPREQ IFUS.DEG WHZKTS, KT
WKTS, KT
WCLMB, FT/MN
GAMMA, DEG
IFUS, DEG

160.0 176.4 -7520. -24.9 -16.55 0 DEG-F 150.0 161.4 -6033. -21.7 126.0 148.0 125.9 148.8 125.9 148.8 1357. 5169. -7.95 -11.20 -7.95 -11.20 -168.6 164.7 -3143. -17.2 -5.59 Y (POWER OFF) 2.20 FT+-2; ALT = 80.0 85.0 85.0 85.0 -2811 -2863. -19.1 -18.4 -3.78 -4.20 RATE OF DESCENT CAPABILITY (F GW = 9980. LB; DGB = 2.26 WAKYIS,KT 40.0 60.0 WKTS,KT 51.1 66.2 VCLUB,FT/NM -3215. -2840. -2 GAMM,DEG -38.4 -25.1 -IFUS,DEG 1.41 -0.77 -

168.8 6.0000 1.0000 6.0 6.0 6.0 160.0 1.0272 1.4336 2206.6 7.01 45.79 150.0 1,3006 1,6406 1531.7 9,47 52.46 POWER 1.4685 1.767 1.767 1181.8 11.46 55.76 DEG-F; 126.0 1.6542 1.9330 770.8 15.06 58.85 • 29 1.69.0 1.9572 522.6 18.50 59.45 • 100 85.8 1.6355 1.9176 391.1 21.62 58.56 Ë 6 86.6 1.6699 1.8952 352.6 21.98 58.16 . ALT 69.0 1.4701 1.7780 216.8 26.76 55.78 FT**2; 20.0 40.0 0.9543 1.2295 1 1.3823 1.5849 1 37.1 15.2 52.11 33.57 43.66 50.88 POWER-LIMITED TURN CAPABILITY GW = 9980. LB; DQB = 2.20 0.6 0.6977 1.2193 0.8 0.00 34.91 VHZKTS, KT AY, G AZ, G RADIUS, FT RATE, D/S PHI, DEG

168.8 0.0000 -3.58 168.8 8.8354 -4.55 150.0 0.0748 -5.75 140.0 0.1142 -7.06 DEG-F; 120.0 0.1946 -10.15 0 . 59 166.6 6.2788 -14.42 FT: TEMP 85.9 0.3482 -19.54 6 80.0 0.3722 -21.01 . ACCEL CAPABILITY 2.20 FT ** 2; ALT 60.0 8.4862 -26.68 40.0 0.5971 -31.50 20.0 0.6988 -35.18 ED HORIZONTAL LB: DOB = 0.0 0.6977 -35.35 POWER-LIMITED GW = 9980. LE VHŽKTS,KT AX,G IFUS,DEG

198.6 -0.4867 8.21 **•** 176.6 .3976 7.98 φ 168.6 -0.3691 • 8.16 LEVEL: 158.8 -0.3452 -8.42 148.6 -0.3259 -8.79 DEG-F; 120.0 3031 10.00 ٠ ٩ 29 166.6 -0.3683 -12.26 • 100 85.8 .3351 15.88 Ë 9 -6 88.8 -0.3226 15.88 . ¥T 68.8 -8.2823 -DECELERATION CAPABILITY
. LB; DQB = 2.20 FT++2; 46.6 -6.2592 -15.88 28.8 1.2523 15.88 ج 19 6.6 9.2629 15.60 HORIZONTAL D

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 9980. LB; DQB = 2.28 FT++2; ALT =	TURN (CC	NSTANT A	LTITUDE.	POWER 0		. FT :	TEMP = 59.0 DEG-F;	9.0 DEG-1		POWER LEVEL:	d¥ Mark
VHZKTS,KT 80.0 VKTS,KT 80.0 NZ,G 2.6431 PH1,DEG 68.37 PS1,DEG 27.10 RADIUS,FT 257.7 KATE,DES 30.02 KATE,DES 30.02	80.0 80.0 2.8431 68.37 27.10 257.7 30.02	85.0 85.0 2.8137 68.41 20.08 272.3 30.18	100.0 100.0 2.7180 68.05 9.69 362.9 26.65	120.0 120.0 2.5923 67.16 4.33 538.7 21.54	148.0 148.0 2.4530 65.83 2.65 780.0 17.36	150.0 150.0 2.3779 65.02 2.14 929.0 15.61	160.0 2.3042 64.16 1.82 1098.5 14.09	176.0 176.0 2.2331 63.25 1.66 1290.3 12.74	186.6 180.6 2.1658 62.31 1.67 1506.2 11.56	196.6 2.1664 61.36 1.76 1756.6 10.56	
AX,G -1.4994 -1.1827 -8.6684 -8.3445 -8. TRANSIENT TURN (CONSTANT ALTITUDE, POWER OFF) GW = 9980. LB; DQB = 2.20 FT**2; ALT =	AX.G -1.4994 -1.1827 IENT TURN (CONSTANT 9980. LB: DQB ==	-1.1827 NSTANT A DOB = 2	-0.6604 LTITUDE,	-0.3445 POWER 0 2: ALT	22	983 -0.2368 6. FT;		-0.2322	-0.2515 POWE	0.2798 LEVEL:	ğ
VHZKTS,KT VKTS,KT NZ,G	166.6 166.6 2.7856	120.0 120.0 6882	140.0 140.0 2.5702	158.8 158.8 2.4928		178.6 178.8 2.3585					
PHI, DEG PSI, DEG RADIUS, FT RATE, D/S XF—WIND, LB .	, DEG 68.23 DEG 25.11 S, FT 397.5 .D/S 24.33 D, LB -13370	67.42 14.87 552.1 21.02 9431.	11.09 776.6 17.43 -7813.	65.59 9.81 920.2 15.76 -7245.	8.82 8.82 1080.5 14.32 -6877.	64.64 8.65 1268.9 13.64 -6653.	53.22 7.53 1463.7 11.89 -6635.	7.13 7.13 1760.2 10.81 -6710.			

	M ED
180.0 190.0 2.0982 2.0351 61.34 60.25 1.65 11.74 1568.6 1824.7 11.19 10.07 -25102792.	POWER LEVEL:
170.0 2.1638 62.32 1342.8 12.24 -2318.	190.0 190.0 2.1634 61.25 7.07 1771.4 10.37 -6710.
160.0 160.0 2.2326 63.26 1.80 1142.5 13.54 -2274.	TDM = 59.0 180.0 180.0 2.222 2 62.29 1.47 1523.6 11.42 -66356
150.0 150.0 2.3040 64.16 2.13 2.13 965.7 15.02 -2363.	FT; 170.0 170.0 170.0 63.14 7.98 1311.8 12.53 -6653.
140.0 140.0 2.3768 65.00 2.63 810.3 16.71 16.71 -2578.	169.0 169.0 169.0 2.3486 63.96 63.96 1123.5 13.77 13.77
120.0 120.0 2.5118 66.39 4.30 559.2 20.75 20.75 -3438.	2: ALT 150.0 150.0 2.4154 64.75 97.74 956.3 15.17
100.0 100.0 2.6336 67.30 9.64 376.6 25.68 25.68 -6590.	ALTITUDE, POWER OFF 2.20 FT**2; ALT = 140.0 150.
85.0 85.0 2.7263 67.67 19.97 282.7 29.07 11803.	(CONSTANT A DOB = 2 DOB = 2 0 120.0 84 2.6947 47 66.64 97 14.78 97 14.78 96 573.3 42 20.24 99431.
80.0 2.7548 67.61 26.94 267.8 267.8 26.94 26.94 26.94 26.94 26.94 26.94 26.94 26.94	TURN (CO 169.0 160.0 2.6984 67.47 27.47 23.42 -13376.
VHZKTS.KT VKTS.KT NZ.G PNI.DEG PSI.DEG PSI.DEG RADIUS.FT RATE.D/S XF—WIND.LB	TRANSIENT TURN (GW = 10300. LB: WHZKTS, KT 100. WKTS, KT 100. WG 0. 2.699 PHI, DEG 67.4 PHI, DEG 67.4 RADIUS, FT 413.7 RATE, D/S 23.4 XF-WIND, LB -13378 AX, G -1.296

8. FT; TEMP = 59.0 DEG-F; POWER LEVEL: MRP

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 10300. LB; DQB = 2.20 FT**2; ALT =

DATE: ₹ 168.6 0.0000 1.0000 0.0 0.0 168.6 168.6 9.9 9.9 000 RUN TIME: 14:36:45 160.0 160.1 535. 1.9 160.0 0.9641 1.3890 2351.1 6.58 43.97 LHX, 2xT800, 5 BLADE, DIA-F/O, FLAP OFFSET-3.5%, CT/S-.0874, 500 FPM, 95% MANUED RECON - (COMBAT. 4HF + 25 + 320) FALLOUT VIBRATION, NO CONTINGENCY ATTACK MISSION GROSS WEIGHT (AMOW) W/O LOWGBOW [CLEAN]
RUN TIME: 14 158.6 158.4 1967. 4.8 178.6 197.4 -10160. -30.5 -21.73 158.0 1549.2 -2.49 158.0 1.2356 1.5896 1612.2 9.00 51.03 140.0 1347.1 -2.01 149.8 1529. 6.1 6.1 160.0 174.7 -7112. --23.7 -15.51 140.0 1.4012 1.7215 1238.5 10.93 54.50 DEG-F: DEG-F; DEG-F: .0 DEG-F 150.0 160.6 -5804. -20.9 120.0 1052.7 -1.08 120.0 122.0 2221. 10.4 0.72 1.5836 1.5836 1.8729 805.1 14.41 57.73 0 0 FT; TEMP = 59.0 TEMP = 59.0 FT; TEMP = 59.6 126.6 146.6 125.6 148.2 -3767. -4933. -7.62 -19.66 -- 59. 59 166.6 887.6 -0.26 166.6 163.5 2687. 14.9 1.68 1,6227 1,9061 545.6 17.72 58.36 • FT; TEMP 85.8 835.9 0.24 85.0 1.5653 1.8575 408.7 20.11 57.43 85.0 89.6 2885. 18.5 <u>..</u> Ë 6 6 100.0 104.6 -3095. -17.0 6 80.0 1.5402 1.8364 367.9 21.03 57.01 • 80.0 831.5 0.39 88.6 85.1 2938. 19.9 -6.61 . . 68.8 888.6 8.87 ٨L RATE OF DESCENT CAPABILITY (POWER OFF)

CW = 10300. LB; DQB = 2.20 FT**2; ALT
VHZYTS,KT 40.0 60.0 80.0 85.0
VKTS,KT 51.2 66.2 84.6 89.5
VCLAB,FT/AN -3244. -2842. -2791. -2837.
CAMAA, DEG -38.7 -25.1 -19.0 -18.2
IFUS, DEG -1.44 -0.69 -3.63 -4.94 69.0 1.4028 1.7228 227.2 25.54 54.52 60.0 67.0 3015. 26.4 -1.43 FT ** 2; ALT L CAPABILITY FT ** 2; ALT CLIMB CAPABILITY = 2.20 FT •• 2; FT ** 2; 40.0 1056.5 1.09 40.0 1.1653 1.5356 121.6 31.82 49.37 40.0 49.5 2947. 36.0 ACCEL 2.20 F CAPABILITY DOB = 2.20 = 2.20 20.0 1350.6 0.98 20.0 0.8909 1.3393 39.8 48.65 POWER-LIMITED HORIZONTAL GW = 10300. LB; DQB = POWER-LIMITED RATE OF GW = 19309. LB; DQB NAME: UNACCELERATED FLIGHT GW = 10300. LB; DQB POWER-LIMITED TURN GW = 10300. LB; D 9.6 1668.4 9.27 6.6 1.1815 1.1815 6.6 9.66 32.18 9.6 17.81. 98.9 -9.66 VHZKTS,KT TOTAL HPREQ IFUS,DEG WHZKTS, KT WKTS, KT WCLMB, FT/MN GAMMA, DEG IFUS, DEG

ø

180.0 -0.4267 7.97

178.8 -8.3856 -7.98

168.8 -8.3593 -8.88

158.6 -0.3366 -8.35

148.6 -0.3184 -8.72

128.8 -0.2976 -9.95

100.0 -0.3046 -

85.0 .3328 15.00

٩

80.0 -0.3207 -

60.6 .2818 15.66

9

48.8 -8.2681 -15.88

28.0 .2541 15.00

P

9.8 -0.2651 -

FT; TEMP = 59.0 DEG-F;

6

.

HORIZONTAL DECELERATION CAPABILITY
GW = 10300. LB; DQB = 2.20 FT++2; ALT

168.6 0.0000 -3.46

168.8 9.8333 -4.37

158.8 8.8714 -5.53

140.6 0.1094 -6.80

120.0 0.1865 -9.78

100.0 0.2676 -13.49

85.8 9.3328 -18.46

80.0 0.3550 -19.88

60.8 6.4549 -25.24

20.0 40.0 0.6469 0.5603 -33.11 -29.84

0.0 0.6292 -32.62

DATE: 168.1 2050.0 -3.26 168.1 168.1 9.0 -3.26 9 RUN TIME: 14:37 169.0 1814.5 -2.84 160.0 160.1 476. 1.7 1.7 **3** ₹ ON: LHX, 2xT800, 5 BLADE, DIA=F/O, FLAP OFFSET=3.5%, CT/S=.0874, S00 FPM, 95% NAME OF SECON - (COMBAT, 4HF + 2x + 320) FALLOUT VIBRATION, NO CONTINGENCY NAX OPERATING WEIGHT W/O LONGOW [CLEAN]
NAME: DUB4:[DAVIS.LHX.HL92]HL92.DAT;3 150.0 1571.1 -2.35 156.6 156.3 981. 3.7 LEVEL: 170.0 190.0 -8603. -26.6 POWER 140.0 1372.0 -1.88 140.0 140.7 1410. 5.7 -0.65 172.6 172.6 -6554. -22.8 DEG-F; DEG-F: .0 DEG-F 150.0 159.4 -5466. -19.8 120.0 1083.2 -1.60 120.0 121.7 2069. 9.7 0.60 6 0 120.0 140.0 125.2 147.5 125.2 147.5 147.5 16.6 18.3 17.10 19.89 **=** 59. 54P = 59.0 100.0 1.5060 1.8078 587.9 16.45 56.42 89 100.0 923.9 -0.23 166.6 163.6 2566. 13.9 1.41 . FT: TEMP FT; TEMP 85.9 878.7 0.24 85.0 89.0 2679. 17.3 0.32 Ë 188.8 184.4 -3826. -16.6 -5.84 φ. 80.0 876.7 0.38 6 86.0 84.4 2720. 18.6 -0.09 6 , 7 (POWER OFF) 2.20 FT*2: ALT = 80.0 85.0 85.0 84.5 94.5 -2801. -2765. -2801. -18.8 -18.9 -3.40 -3.80 ALT. - 2.20 FT++2; . ALT 60.8 939.2 6.81 60.0 65.9 2752. 24.4 -8.99 B CAPABILITY FT••2; 40.0 1135.4 0.97 40.0 47.7 2626. 33.0 POWER-LIMITED TURN CAPABILITY GW = 10860. LB; DQB = 2.20 RATE OF DESCENT CAPABILITY (F GW = 10860. LB; DQB = 2.26 WHZKYS,KT 40.0 60.0 WKTS,KT 51.6 66.3 VCLMB FT/NN -3301. -2853. -7 GAMM, DEG -39.2 -25.2 -IFUS, DEG 1.50 -0.56 -POWER-LIMITED RATE OF CLIMB GW = 10860. LB; 0QB = 2.3 20.0 1448.2 0.80 20.0 29.9 2257. 48.1 -0.69 UNACCELERATED FLIGHT GW = 10860. LB; DQB 9.0 1724.5 0.08 9.9 11.8 1195. 90.6 DATA FILE VHZKTS,KT TOTAL HPREQ IFUS,DEG VHZKTS, KT VKTS, KT VCLMB, FT/MN GAMMA, DEG IFUS, DEG

Ť 188.6 -6.4967 -7.82 170.0 -0.3694 7.77 168.8 -8.3439 · 7.95 LEVEL: 150.6 -0.3232 -8.23 DEG-F; POWER 148.8 -0.3868 -8.62 120.0 -0.2892 -9.88 59.0 166.6 -6.2994 -12.22 TEMP = 85.6 -0.3296 15.66 Ë 6 88.6 -8.3176 -68.6 -6.2813 -DECELERATION CAPABILITY
. LB; DOB = 2.20 FT++2; ALT 48.8 -0.2618 -20.0 15.00 9 9.9 -8.2691 -HORIZONTAL DE WHZKTS, KT AX,G IFUS, DEG

160.0 0.0296 -4.07

150.0 0.0655 -5.17

140.0 0.1012 -6.37

120.0 0.1731 -9.17

85.0 100.0 0.3069 0.2478 (-16.65 -12.54

80.0 0.3265 -17.99

69.0 9.4128 -22.93

0.8 20.0 40.0 0.5056 0.5584 0.4989 -27.26 -29.36 -26.96

VHZKTS, KT AX, G I FUS, DEG

POWER LEVEL:

POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 10860. LB; DQB = 2.20 FT**2; ALT == 0. FT; TEMP = 59.0 DEG-F;

168.1 0.0000 1.0000 1.0000 0.0 0.0

166.6 6.8592 1.3188 2638.0 5.87 46.71

1.1282 1.5077 1765.8 8.21 48.46

140.0 1.2906 1.6327 1344.7 10.07 52.24

120.0 1.4681 1.7763 868.5 13.36 55.75

85.0 1.4503 1.7617 441.1 18.64 55.42

86.6 1.4259 1.7417 397.4 19.47 54.96

60.0 1.2922 1.6339 246.7 23.52 52.27

20.0 40.0 0.7831 1.0586 1.2701 1.4562 45.2 133.6 42.77 28.90 38.06 46.63

6.8 6.5656 1.1265 6.6 6.98

VHZKTS, KT
AY, G
NZ, G
NZ, G
RADIUS, FT
RATE, D/S
PHI, DEG

ğ		<u>Q.</u>
POWER LEVEL:	196.6 1.936.6 1.936.5 58.56 1.71 1960.6 9.37 -2792.	POWER LEVEL:
POWER	188.6 1.9963 59.63 1.63 1682.3 1682.3 19.35 -2518.	_
TEMP = 59.0 DEG-F;	170.0 170.0 2.0522 60.68 1.62 1438.1 11.43 -2318.	TDMP = 59.0 DEG-F; 180.0 190.0 2.1123 2.0514 60.63 59.51 7.35 6.95 1632.3 1901.1 10.66 9.66 -65357808.
DAP = 59.	166.0 168.0 2.1175 61.68 1.78 1222.1 12.22.1 2.274.	180.8 180.8 180.0 2.1123 60.6 7.35 1632.3 10.66 -6635.
Ë	150.0 150.0 2.1852 62.64 2.10 1031.8 14.06 -2363.	FT: 170.0 2.1674 61.54 61.54 7.87 1403.9 11.71 6653.
6 2 1	140.0 140.0 1.254.0 53.54 2.55 865.0 15.65 15.65 -2578.	66.69.69.69.69.69.69.69.69.69.64.22.88.54.75.88.64.53.32.88.53.32.69.69.69.69.69.69.69.69.69.69.69.69.69.
2: ALT	120.0 120.0 2.3822 65.02 65.02 4.26 596.1 19.47 -3438.	POWER O 150.0 150.0 150.0 2.2908 63.26 9.61 14.20 14.20 -7245.
2.20 FT •• 2;	168.6 2.4978 65.98 9.54 461.2 24.10 -6590.	140.0 140.0
008 = 2	85.8 85.8 2.5857 66.35 19.76 301.4 27.27 -11803.	NSTANT A DOB = 2 120.0 120.0 120.0 2.4701 65.26 65.26 65.26 65.26 14.62 61.15 18.19 -9429.
	80.0 80.0 2.6128 66.26 26.66 285.9 27.06 -14967.	TURN (CONF. 1980) 1 1980 6 1 1 1980 8 1 1 1980 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
GW = 10869. LB; DQB = 2.20 FT++2; ALT =	WAZKTS,KT VKTS,KT NZ,G PH1,DEG PS1,DEG RADIUS,FT RATE,D/S XF—WIND,LB	TRANSIENT TURN (CONSTANT ALTITUDE, POWER OFF) GW = 18860. LB; DOB = 2.20 FT**2; ALT = VHZKTS, KT 1800.0 120.0 140.0 150.0 1 VKTS, KT 1800.0 120.0 140.0 150.0 1 NZ, G 2.5592 2.4701 2.3561 2.2908 2. PHI, DEC 66.11 65.26 64.05 63.26 6 PSI, DEC 24.70 14.62 10.85 9.61 RADIUS, FT 440.8 611.5 863.6 1921.6 12 KATE, D/S 21.94 18.98 15.68 14.20 1 KATE, D/S 21.94 18.98 15.68 14.20 1 KFM, LB - 13369942977827456. Ax, G - 1.23100.8682 -0.71660.6672 -0.

3-701-89 DATE: \$ 164.2 0.0000 1.0000 0.0 0.0 202 164.2 164.2 9.0 4.52 4 RUN TIME: 14:38: 160.0 1913.0 -4.24 166.6 0.9666 1.3968 2345.0 6.60 160.0 160.0 292. 1.0 -3.98 N: LHX, 2xT800, 5 BLADE, DIA-F/O, FLAP OFFSET-3.5X, CT/S-.0674, 500 FPM, 95X MRP
ARMED RECON - (COMBAT, 4HF + 2S + 320) FALLOUT VIBRATION, NO CONTINGENCY WT
MINIMAL OPERATING WEIGHT W/O LONGOW [WITH EXT STORES]
NAME: DUG4:[DAVIS.LHX.HL92]HL92.DAT;3 156.6 156.3 918. 3.5 -2.81 158.8 1624.8 -3.58 156.6 1.3579 1.6865 1467.1 9.89 53.66 POWER POWER POWER 146.6 1387.8 -2.94 1.5686 1.8693 1196.3 12.24 57.50 146.0 148.7 1453. 5.9 -1.79 DEG-F: DEG-F; .0 DEG-F 150.0 167.3 -7514. -26.3 -17.75 120.0 1045.8 -1.74 120.0 122.1 2361. 16.7 -0.14 1.7948 2.0547 710.4 16.34 60.88 0 = 59.0 **59.0** EMP = 59.1 140.0 152.3 -6965. -23.2 -14.41 59 186.8 846.9 -0.67 1.8519 2.1946 478.1 20.23 61.64 166.6 163.8 2832. 15.6 . 120.0 14 127.5 15 -4363. -60 -19.8 -2 -10.04 -14 TEMP 8 400 85.6 775.5 6.61 85.6 90.4 3118. 19.9 85.0 1.7959 2.0556 356.2 23.08 60.89 Ë Ë Ë 6 6 166.6 165.6 -3431. -18.7 . • 86.0 765.0 0.20 80.0 1.7704 2.0333 320.1 24.17 60.54 86.6 86.6 3199. 21.5 . . 69.6 1.6275 1.9162 195.8 29.63 58.43 - 3.80 FT .. 2; . ALT 66.6 786.7 6.85 ¥ 68.8 68.8 3465. 29.3 -3.12 ALT CLIMB CAPABILITY = 3.80 FT++2; POWER-LIMITED TURN CAPABILITY GW = 9280. LB; DQB = 3.80 FT+2; 20.0 40.0 1.0998 1.3795 1.4865 1.7039 32.2 102.7 60.06 37.67 47.72 54.06 40.0 923.6 1.25 40.0 52.7 3467. 40.6 -2.58 20.0 1181.7 1.28 20.0 38.4 3323. 58.6 -1.52 POWER-LIMITED RATE OF GW = 9280. LB; DQB UNACCELERATED FLIGHT GW = 9280. LB; DQB 6.8 6.8483 1.3113 6.0 6.00 46.31 9.8 1414.5 0.63 9.6 25.6 2597. 98.9 RATE OF DESCENT C (W = 9280. LB; VHZTS, KT 40.8 VKTS, KT 50.9 VCLMB, FT/AN -3181. CAMAN, DEG -38.1 I FUS, DEG 0.88. INPUT DATA FILE VHZKTS.KT TOTAL HPREQ IFUS, DEG VHZKTS,KT AY,G NZ,G RADIUS,FT RATE,D/S PHI,DEG VHZKTS, KT VKTS, KT VCLAB, FT/AN GAMA, DEG IFUS, DEG

198.6 -0.5593 8.39

186.6 -0.5635 -8.23

178.6 -0.4548 -8.13

168.8 .4198 · 8.38

۴

158.8 -8.3983 -8.55

140.0 -0.3659 -

128.8 -8.3348 -

188.6 -6.3314 -

85.0 3532 15.00

9

88.8 -8.3384 -15.88

> 46.6 -6.2681 -

28.8).2491 15.88

4

8.8 -8.2581 -

WAZKTS.KT AX.G -IPUS.DEG

= 59.0 DEG-F; POWER LEVEL:

B. FT; TEMP

60.0 -0.2897 -

HORIZONTAL DECELERATION CAPABILITY GW = 9280. LB; DGB = 3.80 FT++2;

164.2 0.0000 -4.52

166.6 6.6181 -5.62

158.8 0.0615 -6.29

146.6 6.1651 -7.71

120.0 6.1948 -11.04

166.6 6.2872 -16.72

85.0 0.3683 -22.14

86.8 6.3978 -23.71

60.0 0.5292 -29.72

40.0 0.6776 -35.16

20.0 0.8159 -39.54

6.8 6.8483 -46.75

WHZKTS, KT AX, G IFUS, DEG

- 59.0 DEG-F;

9. FT; TEMP

.

POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 9280. LB; DQB = 3.80 FT++2; ALT

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 9280. LB; DQ8 = 3.80 FT++2; ALT =	TURN (CC	NSTANT DOB =	ALTITUDE,	POWER C	6 2.	Ë	TDAP = 5	TEMP = 59.0 DEG-F;		POWER LEVEL:	Š
VHZKTS,KT	80.00	80.85		120.0	140.0	150.0				196.0	
NZ, G 3. 8669	3.0669	3.0324	2.9258	2.7892	2.6392	2.5584	2.4793	2.4031	2.3311	2.2614	
PSI.DEG	27.37	20.26		4.36	2.65	2.15				1.76	
RADIUS, FT	236.3	250.2		495.0	715.6	851.6				1596.4	
KF-WIND, LB	-15127.	-11944.		-3545	-2705.	-2503				-3011	
AX.G	-1.6301	-1.2871		-0.3820	-6.2915	-0.2698				9.3244	
TRANSIENT TURN (CONSTANT GW = 9286. LB; DQB =	108N (α 9. LB;	MSTANT DOB =	ALTITUDE, POWER OFF) 3.80 FT**2; ALT =	POWER C)FF) ■ 9.	Ë	TEMP = 5	TEMP = 59.0 DEG-F;		POWER LEVEL:	8
VHZKTS,KT	186.6	120.6	140.0	150.0	160.0	178.8					
WKTS, KT	186.0	129.6	140.0	150.0	160.0	176.0					
NZ.G	3.8675	2.899	2.7714	2.6882	2.6144	2.5444					
PHI, DEG 69.87	69.87	69.68	68.12	67.40	66.71	65.98	65.22	64.31			
PS1, DEG	25.34	14.96	11.18	9.89	8.90	8.12					
RADIUS, FT	364.7	596.9	712.8	843.8	986.0	1154.2					
RATE.D/S	26.52	22.85	18.99	17.19	15.63	14.24					
XF-WIND, LB	-13608.	-9647	-8851	-7497	-7144.	-6939					
Y V	-1 4664	-1 639	A AR76	A 8078	7600	A 7478					

2xT888, 5 BLADE, DIA=F/O, FLAP OFFSET=3.5%, CT/S=.8874, 588 FPM, 95% MRP RECON - (COMBAT, 4HF + 2S + 328) FALLOUI VIBRATION, NO CONTINGENCY WT

-JUL-89

UNACCELERATED FLIGHT GW = 11450. LB; DQB = 3.80 FT**2; . ALT = 0. FT; WHZKTS.KT 0.00 20.00 40.00 60.00 80.00 85; TOTAL HPREQ 1859.2 1554.9 1223.6 1008.4 936.6 937; IFUS.DEG -0.14 0.61 0.78 0.64 0.20 0. POWER-LIMITED RATE OF CLIMB CAPABILITY GW = 11450. LB; DQB = 3.80 FT**2; ALT = 0. FT;	5. 60 5. 60 5. 60 5. 60 5. 60 5. 60 5. 60 5. 60 5. 60 5. 60 5. 60 5. 60 5. 60 5. 60 5. 60 5. 60 5. 60 5. 60 5.	TDAP = 59.0 DEG-F; 100.0 120.0 985.9 1158.2 -0.47 -1.31 TDAP = 59.0 DEG-F; 100.0 120.0 102.3 121.3 2195.		POWER LEVEL: 0.0 150.0 1.30 -2.84 POWER LEVEL:		162.8 -3.56 -3.56 162.8 162.8	
9.9 29.9 40.0 60.0 80.0 1859.2 1554.9 1223.6 1908.4 936.6 -0.14 0.61 0.78 0.64 0.20 TED RATE OF CLIMB CAPABILITY 1. LB: DOB = 3.89 FT**2: ALT = 0. F		85.9 1158.6 8.47 -1.31 8.47 -1.31 8.49 DEG- 89.0 129.6 82.3 121.1 195. 1761.1	± <u> </u>	159.0 1695.6 -2.84		662.8 959.4 -3.56 62.8 62.8	
ATE OF CLIMB CAPABILITY DOB = 3.89 FT**2; ALT =	9.7.6	= 59.0 DEG- 80.0 120.0 82.3 121.3 195. 1761.	2.2	LEVEL:	6	162.8 162.8 8	
						162.8 162.8	
6.6 26.8 46.6 66.6 86.9 6.5 26.8 45.8 64.6 83.5				150.0 150.1		6	
2257. 2424. 2407. 29.1 21.8 16.5 -1.84 -1.82 -8.22				2.5 2.5 -2.35	154. 8.5 -3.28	-3.0.0 .55	
<u> </u>							
1.80 FT++2: ALT = 0. F			1. P	478			
52.1 66.6 84.7 89.6 104.5		147.8 159.		9.6			
-33782916282128573887.	'	•	-6742.	-8929			
GAMMA, DEG -39.8 -25.6 -19.2 -18.4 -17.0 - IFUS, DEG 1.11 -0.97 -3.80 -4.19 -5.45 -	-16.9	-18.7 -29.2 -10.44 -12.31		-27.5			

162.7 0.0000 1.0000 0.0 0.0 160.0 0.5202 1.1273 4357.5 3.55 27.52 150.0 0.9316 1.3668 2138.4 6.78 140.0 1.1281 1.5076 1538.3 8.80 48.46 120.0 1.3314 1.6652 957.6 12.12 53.10 1.3819 1.7857 640.7 15.69 54.11 80.0 85.0 1.398 1.325 1.660 1.660 1.728 1.660 1.728 1.528 1.528 1.528 1.528 1.528 1.528 1.7.12 3.80 FT**2; ALT *
40.0 60.0
6.9519 1.1819 1.3806 1.5482 148.8 269.7 25.59 49.77 20.0 0.6716 1.2046 52.7 36.68 33.88 9.9 9.3698 1.9628 9.9 9.99 VMZKTS, KT AY, G NZ, G RADIUS, FT RATE, D/S PHI, DEG

160.0 0.0095 -3.82 150.0 0.0441 -4.86 FT; TEAP = 59.0 DEG-F; POWER 85.0 100.0 120.0 140.0 0.2718 0.2174 0.1469 0.0783 0 -14.93 -11.72 -8.60 -5.99 . 80.9 9.2894 9 -16.17 -POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 11450. LB; DQB = 3.80 FT • • 2; ALT 60.0 6.3550 -20.62 20.0 40.0 0.4656 0.4342 -25.14 -23.94 9.0 6.3600 -20.24 VHZKTS, KT AX, G IFUS, DEG

198.6 -6.4569 7.78 180.0 -0.4139 -178.8 -0.3763 -7.58 160.0 -0.3564 -7.77 FDAP = 59.0 DEG-F; POWER LEVEL: 100.0 120.0 140.0 150.0 -0.3061 -0.2952 -0.3128 -0.3294 --12.19 9.78 8.48 8.057 HORIZONTAL DECELERATION CAPABILITY
GW = 11450. LB; DQB = 3.80 FT++2; ALT == 0. FT; TEMP
GW = 11450. LB; DQB = 3.80 FT++2; ALT == 0. FT; TEMP
WHZKTS,KT 0.0 20.0 40.0 60.0 80.0 85.0 10
AX.G =0.2734 =0.2612 =0.2660 =0.2860 =0.3238 =0.3357 =0.3
IFUS,DEG 15.00 15.00 15.00 15.00 15.00 12.00

TDAP = 59.0 DEG-F; POWER LEVEL:	166.6 176.8 188.6 198.6 198.6 198.6 198.6 198.6 198.8 198.8	58.98 57.77 1.56 1.56	1544.2 1869.4 10.65 9.62	-2764.	DEG-F; POWER LEVEL:	190.0 190.0 1.9618 5.77 5.77 2034.9 9.03 -7071.
	166.0 176.0 186.0 166.0 176.0 186.0	58.98 57.77 1.56 1.56	1544.2 1869.4 10.65 9.62	-2764.	_	66.6 6618 6618 7.77 7.77 7.77 44.9 14.9
TEMP = 59.0 DEG-F;	160.0 170.0 160.0 170.0	58.98 1.56	1544.2		DEG-F;	6.6 6.6 6.6 7.77 7.77 84.9 9.03
TDAP = 59	166.6				•	22.20.80.20
_		٧	1316		TDAP = 59.0 DEG-F;	180.6 180.6 2.010.7 58.83 7.16 1754.0 9.92 -6946.
Ë	150.6	61.01	13.13	-2503. -e.2186	Ë	176.6 176.6 2.0622 59.622 7.68 1506.4 10.91 -6939.
ei ⊋!	140.0 140.0	61.97	925.0 14.64	-2705. -0.2363	FF)	160.0 160.0 2.1188 60.78 8.45 1287.3 12.02 -7144.
POWER 0	120.0	63.58 4.20	635.7 18.26	-3561. -0.3110	POWER 0 2; ALT	158.6 158.6 2.1787 61.66 9.42 1893.6 13.26 -7497.
ALTITUDE, POWER ON) 3.80 FT ** 2; ALT ==	166.6				LTITUDE.	140.0 140.0 2.2407 62.50 10.65 923.6 14.66 -8019.
	85.0				NSTANT A	120.0 120.0 2.3498 63.79 14.36 653.0 17.77 -9647.
70. TURN (80 .	80.08	64.79 26.29	385.9	-15134. -1.3217	TURN (SO	100.0 100.0 2.4374 64.65 24.32 471.3 20.52 -13607.
TRANSIENT TURN (CONSTANT ON = 11450. LB; DOB =	WHZKTS,KT VKTS,KT	PHI, DEG	RADIUS, FT RATE, D/S	XF-WIND, LB -	TRANSIENT TURN (CONSTANT ALTITUDE, POWER OFF) GW = 11456. LB; DQB = 3.80 FT++2; ALT =	WAZKTS, KT WKYS, KT NZ, G PHI, DEG PSI, DEG RADIUS, ST RATE, US, ST AK, G,

198.8 -8.7135 8.45 -0.5755 -0.6482 -DATE: ₹ RUN TIME: 14:48:49 160.0 -0.5286 8.35 156.1 2058.0 -6.95 158.8 6.8887 -6.97 158.1 158.1 8.9 6.8 156.2 6.8666 1.8661 0.6 6.86 CONFIGURATION: LHX, 2x1800, 5 BLADE, DIA=F/O, FLAP OFFSET=3.5%, CT/S=.8874, 500 FPM, 95% MRP ARMED RECON - (COMBAT, 4HF + 2s + 320) FALLOUT VIBRATION, NO CONTINGENCY WT MINIMUM OPERATING WEIGHT WITH LONGBOW [CLEAN]
NEWLY DATA FILE NAME: DUB4:[DAVIS.LHX.HL92]HL92.DAT;3 8 158.0 2043.8 -6.93 POWER LEVEL: 8. FT; TEMP = 59.0 DEG-F; POWER LEVEL: 150.0 -0.4874 -8.59 159.0 159.0 12. 0.0 -6.93 158.6 8.9575 1.3845 2088.6 6.97 43.85 150.0 0.0007 -6.97 140.0 1675.0 -5.73 140.0 140.2 700. 2.8 -5.65 146.6 1.5185 1.8115 1148.9 11.78 56.53 146.6 6.6562 -8.56 85.0 100.0 120.0 140.0 -0.3972 -0.3846 -0.4621 -0.4524 15.00 12.30 10.11 8.95 = 59.0 DEG-F; ■ 59.0 DEG-F; FT; TEMP = 59.0 DEG-F; - 59.0 DEG-F; 128.8 1164.5 -3.68 DEG-F 120.0 0.1535 -12.09 128.8 121.3 1796. 8.4 -3.55 128.6 1.8855 2.1342 676.2 17.16 62.08 • 166.6 879.1 -1.85 100.0 2.0002 2.2362 442.7 21.85 63.44 8 166.6 6.2516 -19.46 166.6 162.8 2419. 13.4 -5.75 . FT: TEMP = 120.0 | 132.7 | -5735. | -25.3 | -15.63 6. FT; TEMP FT: TEMP 100 85.0 769.2 -0.78 85.0 1.9588 2.1993 326.6 25.17 62.96 85.0 0.3498 -25.08 85.0 89.6 2857. 18.4 -6.98 9. FT; 86.6 1.9359 2.1796 292.7 26.43 62.69 RATE OF DESCENT CAPABILITY (POWER OFF)

CW = 8600. LB; DQB = 8.26 FT-e.; ALT = 0.

VICTS, KT 40.0 66.0 80.0 85.0 100.0

VICTS, KT 51.1 67.4 86.6 91.8 108.0

VCLUB, FT/AN - 2217. -3118. -3567. -3511. -4141.

GAMAR, DEC - 27.2 - 22.6 - 22.2

IFUS, DEC - 0.77 - 3.84 - 7.58 - 8.30 - 10.7 6 6 80.0 0.3867 -26.72 88.6 -8.3771 -80.0 748.5 -0.46 86.6 85.3 2987. 26.2 -7.61 ı HORIZONTAL DECELERATION CAPABILITY
GW = 8600. LB; DQB = 8.20 FT ** 2; ALT == T 0.0 20.0 40.0 60.0 1.00.1 1.2540 1.5411 1.7957 1.0 1.4150 1.6639 1.8371 2.6554 2.5 0.0 1.7957 1.0 0.0 6.8 48 42.08 32.69 5.0 45.03 51.43 57.02 60.89 6 60.0 738.1 0.54 ALT + CAPABILITY DOB = 8.20 FT ** 2; ALT D HORIZONTAL ACCEL CAPABILITY LB; DQB = 8.29 FT++2; ALT 5 -0.2669 -0.3162 -15.66 15.66 UNACCELERATED FLIGHT GW = 8600. LB; DQB = 8.20 FT++2; ALT 60.0 68.8 3400. 29.2 -6.24 20.0 40.0 60.0 0.9357 0.7512 0.5575 -43.61 -38.82 -33.01 POWER-LIMITED RATE OF CLIMB CAPABILITY CW = 8600. LB; DQB = 8.20 FT**2; 28.6 49.6 1675.6 844.7 1.44 1.26 40.0 53.7 3628. 41.9 20.0 -0.2473 -20.0 40.9 3618. 60.8 9.0 1.0011 -45.48 POWER-LIMITED TURN GW = 8600. LB: D 9.0 31.2 3160. 90.6 VHZKTS,KT 0.0 TOTAL HPREQ 1291.3 IFUS,DEG 0.87 9.9 -8.2535 -POWER-LIMITED GW = 8600. LB WAZKTS, KT WCLAB, FT/AN GAMMA, DEG 1FUS, DEG WHZKTS, KT AY, G NZ, G RADIUS, FT RATE, D/S PHI, DEG AX,G 1FUS, DEG WHZKTS,KT AX,G -IFUS,DEG VHZKTS.KT

	\$
198.8 2.4488 65.52 1.68 1455.7 12.62 -3684.	LEVEL:
188.8 2.5219 66.37 1.59 1255.8 13.86 -3232.	POWER
170.0 170.0 2.5982 67.16 1.59 1078.2 15.25 -2962.	.0 DEG-F; 190.0 190.0 2.6438 66.37 7.17 1411.4 13.02 -7981.
160.0 2.6797 67.92 1.75 919.9 16.82 -2852.	180.0 19 180.0 19 180.0 19 2.7047 2.6 7.51 66 7.51 66 7.52 14.23 14.23 -0.9650 -0.9
150.0 2.7647 68.64 2.09 779.5 18.61 -2885.	FT: T 170.0 170.0 2.7710 57.81 8.97 1055.8 15.57 -7716.
148.6 148.6 2.8518 69.33 2.61 28.65 28.65 -3652. -352.	FF) 169.0 169.0 2.8449 68.48 68.48 17.07
120.0 120.0 3.0171 70.48 4.35 453.6 25.58 -3857. -0.4485	POWER 0 159.8 159.8 159.8 2.9237 69.12 9.86 772.9 18.77 -8179.
3,1656 71.21 9.79 366.3 31.58 -7993.	ALTITUDE, POWER OFF) 8.26 FT**2: ALT = 148.0 158.0 158.0 158.0 158.0 159.0 15
85.0 85.0 3.2914 71.55 20.33 229.4 35.84 35.84 -12328.	
80.0 80.0 3.3379 71.56 27.54 216.4 35.75 35.75	TURN (CONSTANT) LB: DOB = 160.0 120. 3.2828 3.152 7.11 70.6 25.39 14.9 334.0 464. 25.39 14.9 -1425610235.
WHZKTS, KT WKTS, KT NZ, G PHI, DEG PSI, DEG RADIUS, FT RATE, D/S XF-#IND, LB	TRANSIENT 1 GW = 8660. WHZKTS.KT WKTS.KT WZ.G PH.DEG PS.L.DEG PS.L.DEG RADIUS.FT KATE.D/S XF-WIND.LB AX.G -

8. FT; TEMP = 59.0 DEG-F; POWER LEVEL: MRP

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 8600. LB; DQB = 8.20 FT++2; ALT =

₹ THE THE STREAM SELADE, DIAMEFO, FLAP OFFSET=3.5%, CT/S=.8874, 588 FPM, 95% MRP ARMED FECON - (COMBAT, 4HF +25 +328) FALLOUT VIBRATION, NO CONTINGENCY WI PRIMARY MISSION CONFIGURATION WITH LONGBOW [CLEAN] RUN TIME: NEW-TIME: 14:41

3-101-89

DA CE:

RUN TIME: 14:41:59 158.8 158.8 9. 6.9 POWER LEVEL: 150.0 2021.5 --5.50 150.0 150.0 47. 0.2 -5.49 PO¥ER 140.0 1689.8 -4.52 140.0 140.1 614. 2.5 -4.44 - 59.0 DEG-F; ■ 59.0 DEG-F; 1232.3 -2.82 120.0 120.9 1512. 7.1 186.6 977.6 -1.46 9. FT; TEMP e. FT; TEMP 85.8 888.2 -0.55 85.8 88.3 2408. 15.6 -3.13 80.0 874.8 -0.30 86.6 83.7 2486. 17.1 -3.38 - 8.20 FT .. 2; . ALT 66.6 963.6 9.46 68.8 65.6 2698. 23.9 RATE OF CLIMB CAPABILITY
3: DQB = 8.20 FT**2; 40.0 1071.7 0.87 40.0 48.2 2717. 33.9 -2.66 20.0 1364.7 8.90 26.6 31.7 2485. 56.8 UNACCELERATED FLIGHT OW = 10380. LB; DQB VMZKTS,KT 0.0 TOTAL HPREQ 1625.3 IFUS, DEG 0.25 POWER-LIMITED RA GW = 10380. LB; INPUT DATA FILE WAZKTS, KT WKTS, KT WCLUMB, FT/AN GAMMA, DEG IFUS, DEG

1.0 DEG-F 150.0 171.2 -8366. -28.8 RATE OF DESCENT CAPABILITY (POWER OFF)
(W = 10330. LB; DOB = 8.26 FT**2; ALT
(W = 10340. LB; DOB = 8.26 FT**2; ALT
(W = 10340. LB; DOB = 8.26 9.6
(W XTS,KT 51.7 67.8 85.6 90.6
(VCLMB,FT/AN - 3310. - 3029. - 3095. - 3183.
(TMA,DEG - 9.26.5 - 2.84 - 5.99 - 6.52

150.8 0.0000 1.0000 0.0 0.0 150.0 0.5615 1.1469 3547.7 4.09 29.40 POWER 140.0 1.1192 1.5009 1550.6 8.73 48.26 = 59.0 DEG-F; 66.6 86.6 85.6 160.6 120.6 1.3784 1.5636 1.5232 1.5596 1.4583 1.7029 1.8653 1.8221 1.8527 1.7682 231.2 377.0 426.0 567.7 874.3 25.69 26.52 19.57 17.63 13.27 54.64 56.37 56.72 57.34 55.58 9. FT; TEMP . POWER-LIMITED TURN CAPABILITY GW = 10380. LB; DQB = 8.20 FT++2; ALT 40.0 1.1475 1.5222 123.5 31.33 48.93 20.0 0.8751 1.3288 40.5 47.79 WAZKTS,KT 0.0 AY,G 0.6119 0 NZ,G 1.1724 1 RADIUS,FT 0.0 RATE,D/S 0.00 PHI,DEG 31.46

158.7 6.6981 -5.57 158.8 6.8831 -5.66 = 59.0 DEG-F; POWER 129.0 140.0 1.1270 0.0438 -9.88 -6.93 85.0 100.0 0.2832 0.2148 0 -18.47 -13.60 8. FT; TEMP 86.6 6.3079 -19.87 . POWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 10380. LB; DQB = 8.20 FT**2; ALT 9.8 20.6 40.0 60.0 6.6119 0.6399 6.5352 9.4192 -31.91 -32.61 -29.51 -25.08 VHZKTS,KT AX,G IFUS,DEG

190.0 -0.5979 7.76 180.0 -0.5299 -178.6 -8.4787 -7.68 168.0 -0.4421 -7.79 HORIZONTAL DECELERATION CAPABILITY GW = 10380. LB; DQB = 8.20 FT**2; ALT = 0. FT; TEMP = 59.0 DEG-F; POWER LEVEL: 166.6 126.6 146.6 156.6 -0.3479 -0.3511 -0.3851 -0.4116 12.64 9.72 8.47 8.68 85.8 -8.3737 -88.6 -0.3576 -60.0 -0.3025 -48.9 -8.2696 -20.0 -0.2569 -15.00 9.8 -9.2656 -AX,G IFUS, DEG

	d
198.6 198.6 2.6288 59.99 1.60 1.86.8 9.95 -3684.	ונאפר:
188.6 188.6 2.0894 61.65 1.52 1586.7 10.97 -3232.	POWER
178.8 178.8 2.1526 2 62.86 1.52 1357.6 12.11 -2962. -8.2854 -8	. 59. 0 DEC-F; 1.0 190. 0 1.2 1918 192 60. 92 23 6. 93 21 174. 4 29 10. 24 447954.
160.0 160.0 2.2202 63.02 1.69 1154.6 13.40 -2852.	TEMP = 59 180.0 180.0 1.22412 61.98 61.98 1.542.1 11.29 -7784.
158.6 158.6 2.296 63.92 2.02 975.6 14.87 -2885.	FT; 170.0 17
140.0 140.0 2.3627 64.78 2.52 818.4 16.54 7.3052.	160.6 160.6 160.6 2.3570 63.76 8.53 1136.1 13.62 -7870.
120.0 120.0 2.4971 66.18 4.20 564.6 20.55 -3837.	2. ALT = 150.0 150.0 150.0 2.4224 2 64.224 2 9.52 9.66.7 1 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15
166.6 166.6 2.627 3.10 9.52 386.2 25.44 25.44 -7663.	ALTITUDE, 8.20 FT
85.0 85.0 2.7269 67.46 19.77 285.3 28.81 -12327.	
86.6 86.6 86.6 67.38 26.72 276.72 276.3 28.62	TURN (CO 169.6 169.6 2.7197 67.22 24.65 416.9 23.20 23.20 -14255.
WAZKTS, KT WK, C NZ, KT PHI, DEG PHI, DEG PSI, DEG RADIUS, FT RADIUS, FT RATE, D/S XF—WIND, LB -	TRANSIENT TURN (CONSTANT GW = 19380. LB: DGB = WHZKTS, KT 180.0 120. WTS, KT 180.0 120. NG, G, 2.7197 2.617 PHI, DGG 67.22 66.4 PSI, DGG 24.65 14.4 PSI, DGG 24.65 14.4 RADIUS, FT 416.9 578. RATE, D/S 23.20 20.8 XF-WIND, LB = 1425519238

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON)

GW = 10380. LB; DGB = 8.20 FT++2; ALT = 0. FT; TEMP = 59.0 DEG-F; POWER LEVEL: MRP

		KININGK	MININUM OPERATING WEIGHT WITH LONGBOW AND EXT STORES	S WELCH		V 1000	Z Z 2	33	•	1			•
IMPUT DATA FILE NAME: DUB4:[DAVIS.LHX.HL92]HL92.DAT;3	FILE NA	ξ. 909	t:[DAVIS.	LHX . HL92	!]HL92.D/	VT;3			Œ	RUN TIME:	14:43:03	RUN DATE:	፲
UNACCELERATED FLIGHT GW = 9620. LB; DQ	TED FL16 . UB;		9.80 FT.+2; . ALT	2; · ALT	6 1	Ë	TEMP = 59.0 DEG-F	.0 DEG-F;	POWER	POWER LEVEL:	d T		
VHZKTS,KT TOTAL HPREQ IFUS,DEG	6.6 1476.4 6.49	20.0 1237.1 1.12	40.0 971.1 0.96	60.0 832.9 0.39	86.6 828.9 -6.57	85.6 848.1 -0.88	166.6 958.8 -1.94	126.6 1259.4 -3.71	140.0 1813.1 -5.98	146.1 2050.0 -6.76			
POWER-LIMITED RATE OF CLIMB CAPABILITY GW = 9620. LB; DQB = 9.80 FT**2;	TED RATE . LB;	TE OF CLIN	IMB CAPABILIT 9.80 FT.+2;	LITY 2: ALT	, .	Ë.	TEMP = 59.0 DEG-F;	.e DEG-F;		POWER LEVEL:	d. F		
WHZKTS, KT WKTS, KT VCLMB, FT/MN GAMMA, DEG I FUS, DEG	9.08 23.8 23.84. 90.6	20.0 35.2 2938. 55.4	40.0 50.1 3656. 37.0	68.8 65.5 2986. 25.6 -5.14	86.6 83.9 2576. 17.6	85.9 88.4 2466. 16.9 -5.49	100.0 102.1 2105. 11.7	120.0 120.8 1424. 6.7	140.0 140.1 387. 1.6 -6.05	146.1 146.1 0.0 -6.76			
RATE OF DESCENT CAPABILITY (POWER OFF) GW = 3620. LB; DQB = 9.80 FT**2; VHZKTS,KT 44.0 66.0 80.0 83.0 VKTS,KT 51.4 67.4 86.3 9 VCLUB,FT/AM -32773100327634 GAMMA,DEC -39.0 -27.0 -22.0 -2 IFUS,DEC -0.92 -3.82 -7.25 -7	DF DESCENT CA 9620. LB: 5,KT 40.0 5,KT 51.4 7/AN -3277. ,DEG -39.0	PABILITY DOB = 9 60.0 67.4 -3180.	TY (POWER OFF 9.80 FT**2: 86.8 1 86.3 -32762 -22.8	OFF) 2; ALT 85.0 91.4 -3400. -21.6 -7.90	188.8 187.3 187.3 -3948. -21.3	FT: 120.0 130.8 -5281. -23.5	TEMP = 59.0 DEG-F 140.0 162.7 -8389. -30.6	.0 DEG-F					
POWER-LIMITED TURN CAPABILITY GW = 9620. LB; DGB = 9.80	TED TURN . LB;	CAPABII	UTY 9.80 FT••2;	2: ALT	esi •	Ë	TEMP = 59.0 DEG-F;	.0 DEG-F;		POWER LEVEL:	Q.		
VHZKTS, KT AY.G NZ.G RADIUS, FT RATE.D/S PH1, DEG	6.6 6.7748 1.2656 6.6 6.8 37.77	20.0 1.0275 1.4338 34.5 56.11 45.78	40.6 1.3022 1.6419 108.8 35.56 52.48	60.0 1.5392 1.8355 207.1 28.02 56.99	88.6 1.6656 1.9428 340.7 22.74 59.63	85.0 1.6853 1.9597 379.6 21.66 59.32	100.0 1.7168 1.9868 515.7 18.75 59.79	120.0 1.5888 1.8773 802.5 14.46 57.84	148.0 1.1541 1.5271 1583.6 9.00 49.16	7.66.1 6.0666 7.0666 7.0666 8.0 8.0			
FOWER-LIMITED HORIZONTAL ACCEL CAPABILITY GW = 9620. LB: DGB = 9.80 FT**2: AL VHZKTS,KT 0.0 20.0 40.0 60.0 AX.G 0.7745 0.7525 3.6171 0.4649 IFUS,DEG -38.20 -37.48 -33.48 -28.40	TED HORI . LB; 0.0 0.7745 -38.20	ZONTAL A DQB = 9 20.0 0.7525 -37.48	ACCEL CAPABI 9.80 FT**2; 40.0 3.6171 8.	ABILITY 2; ALT 60.0 9.4649 -28.40	80.0 9.3262 -22.72	FT; 85.0 0.2961 -21.23	TEMP = 59.0 DEG-F; 100.0 120.0 0.2145 0.1204 -16.01 -10.83	.0 DEG-F; 120.0 0.1204 -10.83	4 8 7	POWER LEVEL: 10.0 146.1 2275 0.0001	d.		
HORIZONTAL DECELERATION CAPABILITY	DECELER	ATTON C	PARTI ITY										

VHZKTS.KT 6.6 20.6 40.6 60.0 80.0 85.0 100.0 120.0 140.0 150.0 160.0 170.0 180.0 190.0 190.0 AX.G -0.2605 -0.2534 -0.2708 -0.3111 -0.3751 -0.3945 -0.3732 -0.3552 -0.4293 -0.4699 -0.4983 -0.5414 -0.6013 -0.6687 IFUS.DEC 15.00 15.

d Y		8
LEVEL:	196.6 196.6 2.1923 62.38 1.69 1673.3 10.98 -3817.	LEVEL:
POWER	188.6 188.3 2.2569 53.35 1.52 1446.3 12.69 -3423.	POWER
ü		
TEMP # 59.0 DEG-F;	170.0 170.0 2.3246 64.26 1.23 1234.3 13.32 -3132.	TEMP = 59.0 DEG-F; 180.0 190.0 180.0 190.0 2.4280 2.3656 64.19 63.22 7.32 6.92 1401.7 16.27 12.42 11.29 -8085 -8281.
59	23. 23. 23. 23. 23. 23. 23. 23. 23. 23.	20 00 00 00 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19
a a	166.6 168.6 2.3972 65.13 1.68 1051.3 14.72 -364.	EMP = 55 180.0 180.0 2.4280 64.19 7.32 1401.7 12.42 -8854
ا :	2.4736 55.36 55.36 2.92 2.92 889.4 16.31 -3623.	176.0 176.0 176.0 2.4859 64.99 7.84 1267.7 13.61 1267.7
6 -	140.0 2.5507 66.74 2.53 747.0 18.12 -3177.	68.0 68.0 55.14 55.14 88.63 11.38 11.38
POWER OF	120.0 120.0 2.6959 68.02 4.23 516.2 22.48 -3943. 0.4099	POWER OF 150.0 150.0 150.0 2.6216 6.48 9.62 881.6 16.45 -8456 -
LTITUDE, .80 FT2	166.6 166.6 2.8327 68.87 9.61 347.9 27.86 -7112.	LITTUDE, 148.0 148.0 148.0 2.7015 2.7015 16.91 744.3 18.19 -9280 –
NSTANT A	85.0 85.0 2.9487 69.22 19.32 260.8 31.52 -12466.	NSTANT AI DQB == 9 120.0 2.8277 68.27 68.27 14.58 528.6 528.6 21.95 -10440
ENT TURN (CO 9620. LB;	80.0 80.0 2.9928 69.18 27.04 27.04 31.37 -1538.	16M TURN (CO 9629. LB: 5.KT 100.0 5.KT 100.0 NZ.G 2.9470 NZ.G 2.9470 DEG 69.02 DEG 69.
TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 9620. LB; DQB = 9.80 FT**2; ALT =	WHZKTS.KT WKTS.KT NZ.G PHI.DEG PSII.DEG RADIUS.FT RATE.D/S XF—WIND.LB	TRANSIENT TURN (CONSTANT ALLITUDE, POWER OFF) WEXTS, KT 180.0 120.0 140.0 150.0 150.0 17.5 KT 180.0 120.0 140.0 150.0 150.0 140.0 150.0

DATE: \$ 8 RUN TIME: 14:43 CONFIGURATION: LHX, 2xT800, 5 BLADE, DIA=F/O, FLAP OFFSET=3.5%, CT/S=.0874, 500 FPM, 95% MRP ARMED RECON = (COMEAT, 4HF + 2s + 320) FALLOUT VIBRATION, NO CONTINGENCY WT MAX ALTERNATE GROSS WEIGHT [MAXMS] WITH LONGBOW AND EXT STORES RUN TIME: 14:4: 11 NPUT DATA FILE NAME: DU04:[DAVIS.LHX.HL92]HL92.DAT;

3-70r-8 POWER LEVEL: 146.0 2049.6 -5.26 145.9 6.6661 -5.26 146.0 146.0 0.0 0.0 -5.26 146.0 0.0000 1.0000 0.0 0.0 0.0 0.0 POWER POWER 1846.0 1846.0 14.66 140.0 0.7433 1.2461 2334.6 5.80 36.69 146.0 146.0 364. 1.2 -4.70 - 59.0 DEG-F; DEG-F; DEG-F: = 59.0 DEG-F; 128.0 1359.7 -2.91 120.0 1.1603 1.5318 1698.9 10.56 49.27 120.0 0.0940 -8.43 120.6 120.5 1127. 5.3 0 0 120.0 140.0 127.5 151.8 127.5 151.8 127.5 151.8 121.8 121.8 121.8 121.8 161.76 14.90 1 85.6 160.6 1.2477 1.2759 1.5996 1.6211 512.7 594.6 16.83 13.92 51.29 51.92 85.0 100.0 1015.1 1097.9 -0.70 -1.51 85.9 100.0 0.2257 0.1686 (-14.17 -11.39 29 59 166.6 161.4 1691. 9.5 . 9. FT; TEMP TEP FT; TEMP 85.0 87.2 1951. 12.8 -1.70 6 166.6 185.8 -3495. -19.6 80.0 1005.5 -0.45 80.8 0.2437 -15.33 6 6 80.0 1.2300 1.5852 460.7 16.79 50.90 80.0 82.4 1998. 13.9 POWER-LIMITED HORIZONTAL ACCEL CAPABILITY
GW = 11790. LB; DQB = 9.80 FT**2; ALT = FTee2; ALT = ALT. 60.0 1062.3 0.24 FT .. ALT 60.0 0.3219 -19.45 60.0 1.1149 1.4977 285.9 20.30 48.11 68.6 63.5 2691. 19.6 CLIMB CAPABILITY = 9.80 FT++2; 40.8 1279.7 6.53 46.6 6.8913 1.3395 159.8 24.34 41.71 40.0 0.3838 -22.24 46.6 44.5 1967. 25.9 - 9.80 POWER-LIMITED TURN CAPABILITY GW = 11790. LB; DQB = 9.80 29.0 1618.3 8.46 28.8 25.8 1518. 36.9 20.0 0.6972 1.1699 58.3 33.16 UNACCELERATED FLIGHT GW = 11790. LB; DQB POWER-LIMITED RATE OF GW = 11790. LB; DQB 6.6 1945.3 -8.28 6.6 6.2561 1.6325 6.6 6.86 9.6 3.5 352. 98.8 RATE OF DESCENT C. GW = 11790 . LB; WRXTS, KT 40 WKTS, KT 52.6 VCLMB, FT/AN -3457. GAMAN, DEG -44.5 I FUS, DEG -64.5 VHZKTS, KT TOTAL HPREQ IFUS, DEG VHZKTS, KT AY, G AY, G NZ, G RADIUS, FT RATE, D/S PHI, DEG VHZKTS,KT VKTS,KT VCLAB,FT/AN GAMAA,DEG IFUS,DEG

198.8 .5462 7.33 4

188.8 -8.4942 -7.27

170.0 -0.4484 7.26

169.9 -0.4156 -7.48

158.8 -6.3883 -7.88

140.0 -0.3660 -8.22

120.0 -0.3389 -9.57

188.8 -0.3426 -

85.6 -0.3784 -

86.6 -0.3547 -

68.6 -8.3842 -15.88

40.0 -0.2753 -

20.0 -0.2652 -15.00

0.0 -0.2764 -

VHZKTS, KT AX, G -IFUS, DEG

DEG-F; POWER LEVEL:

ŝ

.

6

CAPABILITY 9.80 FT**2; ALT

DECELERATION . LB; DOB =

20.0 6.4096 -22.56

9.9 9.2557 -14.78

VHZKTS, KT AX, G I FUS, DEG

140.0 0.0215 -5.93

									<u> </u>									
196.0	1.7888	55.37	1.49	2208.4	8.32	-3817.	-0.3237		R LEVEL:									
180.0	1.8415	56.65	1.42	1888.7	9.22	-3423.	-0.2903		. POWER									
170.0	1.8968	57.84	1.43	1609.6	10.21	-3132.	-0.2657		59.0 DEG-F	190.0	190.0	1.9374	56.60	6.48	2127.4	8.64	-8306.	-0.7045
160.0	1.9559	58.97	1.59	1364.2	11.34	-3004	-9.2548		TEMP = 59	186.6	186.0	1.9811	17.73	6.87	1831.0	9.51	-8085.	-0.6857
150.0	2.0178	60.04	1.92	1149.1	12 62	-3023	-0.2564			170.0	170.0	2.0283	58.75	7.40	1570.6	10.47	-7993.	-0.6780
140.0	2.0813	61.04	2.41	961.3	14.08	-1176	-0.2694	í	ه اي	160.0	160.0	2.6817	59.74	8.17	1340.7	11.54	-8130.	-0.6896
120.0	2 2018	62.72	4.08	659 7	17 60	2000	-6.3359		POWER C	150.0	150.0	2.1390	69.68	41.0	1137.9	12.75	-8423	-0.7144
100.0	166.6 3114	63 75	40.0	0 277		21.13	-0.6033		ALTITUDE, POWER OFF) 9.80 FT:42; ALT =	140.0	140.0	2 1998	61.56	10 17	960.2	14.10	-RR95	-0.7545
85.0	85.6	54 A9	10.10	2 2 2 2	9.5	70.47	-1.0573			128.8	128.6	2 1069	62 59	14.05	677 8	17, 12	10438	-0.8853
80.0	80.0	7744.7	36.00			24.50	-1.3356		전 전 1. EB :								- (-1.2287
VHZKTS, KT	VKTS,KT	9.7N	20.170	20,150	KADIOS, F.	KATE, U/S	XF-WIND, LB		TRANSIENT TURN (CONSTANT GW = 11790. LB; DQB =	TY STYCEN	TA STAN	12.57	מילה דעם	230.150	130,157 T2 311049	PATE 5/6		S, XA

0. FT; TEMP = 59.0 DEG-F; POWER LEVEL: MRP

TRANSIENT TURN (CONSTANT ALTITUDE, POWER ON) GW = 11790. LB; DQB = 9.80 FT++2; ALT =