

Electrical and Electronic Circuits

chapter 13. Operational Amplifier

Afarghadan@aut.ac.ir

Objectives of the Lecture

- > Introduction to Operational Amplifiers
 - Precise Model of Operational Amplifiers
 - > Ideal Model
 - > Applications of Operational Amplifiers
 - > Inverting Amplifier
 - Non-Inverting Amplifier
 - Voltage Follower (Buffer)
 - Multi-Stage Amplifier
 - ➤ Ideal Voltage and Current Sources
- Comparator Circuit
- > Several Examples

Operational Amplifier (Op-Amp)

- ➤ The **Operational Amplifier** (**Op-Amp**) is an integrated circuit (IC) widely utilized as an amplifier in various applications.
- ➤ Its origins date back to the 1940s when it was employed in analog computational circuits for constructing adders, sub tractors, and analog multipliers.

The Internal Circuit of a Typical Operational Amplifier

Nonlinear Behavior of the Diode

An operational amplifier (Op-Amp) is generally represented by the following symbol and includes the following pins:

- > Input Pins: Input
- > Output Pin: Output
- \triangleright Power Supply Pins: V^+, V^-
- > Offset Adjustment Pins: Offset

Op-Amp Symbol

- ✓ Let us focus on the **input** and **output pins**, assuming the other pins are connected to appropriate voltage levels.
- ✓ An operational amplifier functions as a **differential amplifier**, meaning it amplifies the difference between its input signals.

Precise Model of an Op-Amp

A circuit that operates as a voltage amplifier can be modelled using the following

This model includes:

equivalent circuit.

- \triangleright Input Resistance (R_i)
- \triangleright Output Resistance (R_o)
- > Open-Loop Gain (A)

Example: Using the Precise Model to Analyse an Inverting Amplifier

✓ In the circuit below, what is the gain of the amplifier?

>
$$KCL_1$$
: $\frac{-v_d - v_{in}}{R_1} + \frac{-v_d - v_{out}}{R_f} + \frac{-v_d}{R_i} = 0$

Example: Using the Precise Model to Analyse an Inverting Amplifier

✓ By solving the system of equations and eliminating v_d , we obtain:

$$A_v = \frac{v_{out}}{v_i} = \left[\frac{R_o + R_f}{R_o - AR_f} \left(1 + \frac{R_1}{R_f} + \frac{R_1}{R_i} \right) - \frac{R_1}{R_f} \right]^{-1}$$

Example Solution for the Inverting Amplifier Using LM741 Specifications

$$> A = 200000$$

$$> R_i = 2M\Omega$$

$$> R_o = 75\Omega$$

$$ightharpoonup$$
 If $R_f = 47$ and $R_1 = 4.7$

$$\triangleright$$
 Then: $A_v = -9.999$

Advantages of Using an Op-Amp as a Voltage Amplifier

- ✓ **High Input Resistance**:(in the range of mega-ohms to tera-ohms)
 - > To ensure that the maximum voltage of the source is applied across its input.
- ✓ Low Output Resistance:(in the range of a few ohms to a few tens of ohms)
 - > to ensure that the entire output voltage of the amplifier is delivered to the load.
- ✓ **Adjustable Gain**:(achieved by applying feedback resistance):
 - As observed in the circuit shown, provided that A is sufficiently large, the gain of the amplifier can be approximated with high accuracy as $Av \approx \frac{R_f}{R_s}$.

Ideal Model

In the ideal case, when $A=\infty$, $R_i=\infty$, and $R_o=0$, the behaviour of the operational amplifier can be described as follows:

 \triangleright Since v_{out} has a finite value (it cannot exceed the supply voltage),

$$v_d = \frac{v_{out}}{A} \approx 0$$
.

 \triangleright As a result, $i_{in} \approx 0$.

Ideal Model

Rules of the Ideal Model:

1. No current flows through the input terminals.

$$i = 0$$
 $i = 0$
 $+$

2. The voltage difference between the two input terminals is zero.

$$i = 0$$
 $i = 0$
 $+$

Inverting Amplifier

✓ By applying KVL and using the rules of the ideal operational amplifier, we have:

$$v_{out} = -\frac{R_f}{R_1} v_{in}$$

Non-Inverting Amplifier

$$v_{out} = \left(1 + \frac{R_f}{R_1}\right) v_{in}$$

Example

• $v_{in}(t) = 5\sin 3t \ mV$, $R_f = 47K\Omega$, $R_1 = 4.7K\Omega$

$$v_{out}(t) = -50 \sin 3t \, mV$$

Voltage Follower (Buffer)

$$v_{out}(t) = vin(t)$$

- 1. The output voltage of the buffer is independent of the load resistance (R_L) . The buffer can supply the required current to maintain a constant output voltage, even if R_L changes.
- 2. This circuit eliminates the effect of the source's input resistance by presenting a very high input resistance to the source and a very low output resistance to the load.

Analog Summing Circuit

Y This circuit performs the addition of input signals and amplifies the result by a factor of $-\frac{R_f}{R_1}$.

Cascading Multiple Operational Amplifiers

- ✓ The output voltage of each stage is independent of the subsequent stage. (Why?)
- ✓ As a result, **Op-Amp** can be cascaded without any alteration in their individual gains.

Op-Amp as an Ideal Voltage Source

$$v_{out} = \left(1 + \frac{R_f}{R_1}\right) V_Z$$

This circuit resembles the voltage regulator using a Zener diode, which we have encountered before.

Op-Amp as an Ideal Current Source

 \triangleright Using a reference voltage V_{ref} and a resistor V_{ref} , an ideal current source can be constructed with a current:

$$I_S = rac{V_{ref}}{R_{ref}}$$

 \triangleright This current is independent of the load resistance R_L ,

Power Supplies for Op-Amp

- An operational amplifier requires power to function and perform amplification. Therefore, it must be connected to a power supply.
- Typically, equal and opposite voltage values are applied to the V^+ and V^- terminals. These voltage levels usually range between $\pm 5 \text{V}$ and $\pm 24 \text{V}$.
- The ground of the power supplies must be connected to the input and output ground reference of the circuit to ensure proper operation and signal integrity.

Output Saturation

- ✓ If the input signal is such that the amplified output exceeds V^+ or falls below V^- , the output will saturate.
- ✓ In this state, the output voltage remains clamped at V^+ or V^- , depending on the direction of the input signal.

The output signal enters saturation and becomes clipped

Role of Negative Feedback

- The role of negative feedback is to transform a large and undefined gain into a fixed, controlled gain.
- ➤ Why Don't We Apply Feedback to the Positive Terminal?

$$v_+ \uparrow \rightarrow v_d \uparrow v_{out} = Av_d \rightarrow v_{out} \uparrow \rightarrow v_- \uparrow \rightarrow v_d \downarrow \dots$$

 \succ Thus, the negative feedback stabilizes the operation by keeping v_d close to zero

Voltage Comparator

An operational amplifier can be used as a voltage comparator when operated in open-loop configuration (without feedback). (12 $v_{in} < 2.5$)

$$v_{out} = egin{cases} v_{in} < 2.5 \ -12 & v_{in} < 2.5 \end{cases}$$

Example

Assume we have a temperature sensor that generates a voltage ranging from 0 to 5 volts for temperatures between 0 and 100 degrees Celsius. Design a circuit that provides a logical output of 1 when the temperature is below 60 degrees.

Similarity of Non-Inverting Amplifier to a Lever

Similarity of Non-Inverting Amplifier to a Lever

Similarity of Non-Inverting Amplifier to a Lever

$$V_{out} = 4(V_{in})$$

Similarity of Inverting Amplifier to a Lever

$$V_1$$
=?

$$V_{out} = ?$$

$$V_{out} = ?$$

$$v_{\text{out}} = -\frac{1}{R_1 C_f} \int_0^t v_s \, dt' - v_{C_f}(0)$$

$$V_{out} = ?$$

$$v_{out} = -C_1 R_f \frac{dv_s}{dt}$$

$$v_x = ?$$

If the initial voltage across the capacitor at time t = 0 is 10 volts, determine the output voltage v_o .

$$v_s = 10u(t)mV, R_1 = R_2 = 10K\Omega, C_1 = 20\mu F, C_2 = 100\mu F$$

$$\triangleright v_o = ?$$

- $v_s = \cos(t)mV, R_1 = R_2 = 10K\Omega, C_1 = 20\mu F, C_2 = 100\mu F$
- $\triangleright v_o = ?$ (Use phasors).

If $v_{in} = \sin(200\pi t)$, plot the output voltage v_{out} .

 \triangleright Plot the diagram of v_{out} as a function of v_{in} .

 \triangleright Plot the diagram of v_{out} as a function of v_{in} .

This is an active filter (using an op-amp in a frequency filter). Calculate:

- ✓ The type of filter
- ✓ The filter gain
- ✓ The cut-off frequency

Thanks