In this module, you will learn:

- How the empirical relationship between two variables is affected by random sampling error
- How to use an informal test in making inferences about relationships
- How to use formal statistical tests in making inferences about relationships
- How measures of association gauge the strength of an empirical relationship
- Which measure of association to use in performing and interpreting political analysis

Tests of significance and measures of association: What's the difference?

- A test of statistical significance helps you decide whether an observed relationship between an independent variable and a dependent variable really exists in the population or whether it could have happened by chance when the sample was drawn.
- A measure of association tells the researcher how well the independent variable works in explaining the dependent variable.

Statistical Significance

- Suppose we calculate the mean Democratic rating among a female sample and a male sample
 - Female mean = 54
 - Male mean = 49
- Can we infer that, in the population, females do, in fact, rate the Democratic Party higher than do males?

Null hypothesis (H₀)

- No relationship exists in the population
 - Females and males give identical ratings to the Democratic Party. No gender difference exists.
- Any apparent relationship that we observe in a sample was produced by random sampling error
 - The 5-point gender difference is accounted for by random chance when the sample was drawn.

H_A

- "Our" hypothesis, which hypothesizes that women do, in fact, give the Democratic Party higher ratings, is a called the alternative hypothesis and labeled H_A.
- In order to have confidence in H_A, we must show that H₀'s version of events—it all happened by chance—is sufficiently implausible.

Type I and Type II Error

- Type I error occurs when the researcher infers that there is a relationship in the population when, in fact, there is none.
- Type II error occurs when the researcher infers that there is no relationship in the population when, in fact, there is.

Table 7-1 Type I and Type II Error

	In the (unseen) population, is H_0 true or is H_0 false?		
Inferential decision, based on sample data	H ₀ is true	H ₀ is false	
Do not reject H_0	Correct inference	Type II error	
Reject H_0	Type I error	Correct inference	

The .05 level of significance

- We assume the null hypothesis is true, and we set a high threshold for rejecting it.
- Ask this question: "If, in the unobserved population, H_0 is true, how often by chance will we obtain the relationship observed in the sample?"
- If the answer is, "more than 5 times out of 100," do not reject H_0 .
- If the answer is, "5 times out of 100 or less," reject H_0 .

Comparing two sample means: The confidence interval approach

- Compare the 95% confidence intervals of two (or more) sample means.
- If the intervals overlap, then we cannot reject the null hypothesis.
- If they do not overlap, then we can reject the null hypothesis.

Example: Female and Male sample means

- Female mean = 54.1
 - Standard error = .52
 - Lower 95% Cl boundary = 53.1
 - Upper 95% CI boundary = 55.1
- Male mean = 49.1
 - Standard error = .53
 - Lower 95% CI boundary = 48.1
 - Upper 95% CI boundary = 50.1

95% Cls do not overlap. Reject H₀

Figure 7-1 Error Bar Graph

Comparing two sample means: The P-value approach

- Determine the exact probability of obtaining the observed sample difference, under the assumption that the null hypothesis is correct.
- The P-value approach is based on the standard error of the difference between two sample means.

Standard error of a mean difference: 3 steps

- 1. Square each mean's standard error. The square of the female mean's standard error is equal to .27. The square of the male mean's standard error is equal to . 28.
- 2. Sum the squared standard errors. In the example: .27 + .28 = .55.
- 3. Take the square root of the sum obtained in step 2: .55 = .74.

Obtain a test statistic

- Z = (HA HO) / Standard error of the difference
- t = (HA HO) / Standard error of the difference
- Z = (5.0 0) / .74 = 6.8
- t = (5.0 0) / .74 = 6.8

The inferential question

- "If, in the population, the mean difference between females and males is equal to 0, how often by chance will we obtain a mean that is 6.8 standard errors from 0?"
- Using normal estimation: about 400 times out of a billion.
- Reject the null hypothesis.

Chi-square Test of Significance

- The chi-square test is perhaps the most commonly used statistical test in crosstabulation analysis.
- The chi-square test determines whether the observed dispersal of cases departs significantly from what we would expect to find if the null hypothesis were correct.

 Table 7-6
 Opinions on Diplomacy versus Military Force, by Gender

	Ger	nder	Total
Favor diplomacy or force?	Female	Male	
Diplomacy	46.2%	34.4%	40.4%
	(245)	(176)	(421)
Middle	23.6%	27.8%	25.6%
	(125)	(142)	(267)
Force	30.2%	37.8%	33.9%
	(160)	(193)	(353)
Total	100.0%	100.0%	99.9% ^a
	(530)	(511)	(1,041)

Chi-square logic

- H₀ is based on the expectation that the distribution of cases down the Female column, and the distribution down the Male column, will be the same as the distribution down the Total column.
- So: 40.4% of Females and 40.4% of Males will say "Diplomacy," 25.6% will take the "Middle" position, and 33.9% will say "Force."
- Any observed departures from this expected pattern are accounted for by random sampling error.

 Table 7-7
 Chi-square for Opinions on Diplomacy versus Military Force, by Gender

Favor diplomacy or force?		Gender	
		Female	Male
Diplomacy	Observed frequency (f_0)	245	176
	Expected frequency (f_e)	214.3	206.7
	$f_{\rm o} - f_{\rm e}$	30.7	-30.7
	$(f_{\rm o} - f_{\rm e})^2$	942.5	942.5
	$(f_{\rm o} - f_{\rm e})^2 / f_{\rm e}$	4.4	4.6
Middle	Observed frequency (f_0)	125	142
	Expected frequency (f_e)	135.9	131.1
	$f_{\rm o} - f_{\rm e}$	-10.9	10.9
	$(f_{o} - f_{e})^{2}$	118.8	118.8
	$(f_{\rm o} - f_{\rm e})^2 / f_{\rm e}$.9	.9
Force	Observed frequency (f_0)	160	193
	Expected frequency (f_e)	179.7	173.3
	$f_{\rm o} - f_{\rm e}$	-19.7	19.7
	$(f_{\rm o} - f_{\rm e})^2$	388.1	388.1
	$(f_{\rm o} - f_{\rm e})^2 / f_{\rm e}$	2.2	2.2

Source: 2004 American National Election Study.

Chi-square calculations: $\chi^2 = \sum (fo - fe)^2 / fe$

- 1. Find the expected frequency for each cell. Example: Since . 339 of the total sample fall into the "force" category of the dependent variable, the expected frequency (*fe*) for the "female–force" cell would be .339 times 530, or about 180.9.
- 2. For each cell, subtract the expected frequency from the observed frequency. Example: fo for the "female-force" cell is equal to 160 and fe (from step 1) is equal to 180. Subtracting 180 from 160 yields -20.
- 3. Square this number for each cell. Example: Squaring –20 yields 400.
- 4. Divide this number by the expected frequency (*fe*). Example: 400 divided by 180 is equal to 2.2.
- 5. To arrive at the chi-square test statistic, add up all the cell-by-cell calculations.

Determining statistical significance: logic

- For the example, chi-square = 15.2
- The null hypothesis says it should have been 0, give or take random sampling error.
- How do we figure out the amount of random sampling error?

Degrees of freedom

- The size of the chi-square statistic that is needed to "beat" the null hypothesis depends on degrees of freedom.
- Degrees of freedom = (number of rows –
 1)(number of columns 1)
 - Example: (3-1)(2-1) = 2 degrees of freedom
- The number of degrees of freedom determines the shape of the distribution:

Critical values

- A critical value marks the upper plausible boundary of random error and so defines H_0 's limit.
- Example: Using .05 level and 2 d.f., critical value = 5.991.
- The calculated value of chi-square, 15.2, exceeds the critical value, so reject H_0 .

H_0 owns the area between 0 and the critical value....

Table 7-8 Critical Values of χ^2

	Area to the right of critical value			
Degrees of freedom	.10	.05	.025	.01
1	2.706	3.841	5.024	6.635
2	4.605	5.991	7.378	9.210
3	6.251	7.815	9.348	11.345
4	7.779	9.488	11.143	13.277
5	9.236	11.070	12.833	15.086
6	10.645	12.592	14.449	16.812