Region	Sample #	Location	Matrix
Region	Janipic #	Location	IVIALIA

8 Bakers Bridge Bakers Bridge Surface Water 8 GKMSW01_0 (GKM01 Surface Water Surface Water 8 GKMSW01_0 (GKM01 8 GKMSW01_0 { GKM01 Surface Water 8 GKMSW01_0 (GKM01 Surface Water 8 GKMSW01_0 { GKM01 Surface Water 8 GKMSW01 0 (GKM01 Surface Water Surface Water 8 GKMSW01_0 (GKM01 8 GKMSW01 0 (GKM01 Surface Water 8 GKMSW01_0 (GKM01 Surface Water 8 GKMSW01_0 (GKM01 Surface Water 8 GKMSW01_0 (GKM01 Surface Water Surface Water 8 GKMSW01_0 (GKM01 8 GKMSW01_0 (GKM01 Surface Water 8 GKMSW01 0 (GKM01 Surface Water Surface Water 8 GKMSW01_0 (GKM01 8 GKMSW01 0 (GKM01 Surface Water 8 GKMSW01_0 (GKM01 Surface Water 8GKMSW01 0{GKM01 Surface Water 8 GKMSW01_0 (GKM01 Surface Water Surface Water 8GKMSW01 0{GKM01 8 GKMSW01_0 (GKM01 Surface Water

8 GKMSW01_0{GKM01	Surface Water
8 GKMSW01_0{GKM01	Surface Water
8 GKMSW01_0{GKM01	Surface Water
8 GKMSW02_0{GKM02	Surface Water
8 GKMSW04_0{GKM04	Surface Water
8 GKMSW04_0	Surface Water
8 GKMSW04_0{GKM04	Surface Water
8 GKMSW04_0	Surface Water

8 GKMSW04_0 (GKM04	Surface Water
8 GKMSW04_0 (GKM 0 4	Surface Water
8 GKMSW04_0 (GKM 0 4	Surface Water
8 GKMSW04_0 (GKM 0 4	Surface Water
8 GKMSW04_0 (GKM 0 4	Surface Water
8 GKMSW04_0 (GKM 0 4	Surface Water
8 GKMSW05_0{GKM05	Surface Water
8 GKMSW05_0 (GKM05	Surface Water
8 GKMSW05_0{GKM05	Surface Water
8 GKMSW05_0 (GKM05	Surface Water
8 GKMSW05_0{GKM05	Surface Water
8 GKMSW05_08GKM05	Surface Water
8 GKMSW09_0{GKM09	Surface Water
8 GKMSW09_0{GKM09	Surface Water
8 GKMSW09_0{GKM09	Surface Water
8 GKMSW09_0 EGKM09	Surface Water
8 GKMSW09_0 EGKM09	Surface Water
8 GKMSW09_0{GKM09	Surface Water
8 GKMSW09_0{GKM09	Surface Water
8 GKMSW09_0{GKM09	Surface Water
8 GKMSW09_0 { GKM09	Surface Water
8 GKMSW09_0{GKM09	Surface Water
8 GKMSW09_0	Surface Water
8 GKMSW09_0 { GKM09	Surface Water
8 GKMSW09_0 { GKM09	Surface Water
8 GKMSW09_0 EGKM09	Surface Water
8 GKMSW09_0 { GKM09	Surface Water

8 GKMSW09_0{GKM09	Surface Water
8 GKMSW09_0{GKM09	Surface Water
8GKMSW09_0{GKM09	Surface Water
8GKMSW09_0{GKM09	Surface Water
8 GKMSW09_0{GKM09	Surface Water
8 GKMSW11_0{GKM11	Surface Water
8GKMSW11_0{GKM11	Surface Water
8 GKMSW11_0{GKM11	Surface Water
8GKMSW11_0{GKM11	Surface Water
8 GKMSW11_0{GKM11	Surface Water
8GKMSW11_0{GKM11	Surface Water
8GKMSW11_0{GKM11	Surface Water
8GKMSW11_0{GKM11	Surface Water
8 GKMSW11_0 (GKM11	Surface Water
8GKMSW11_0{GKM11	Surface Water
8GKMSW11_0{GKM11	Surface Water
8GKMSW11_0{GKM11	Surface Water
8 GKMSW11_0 (GKM11	Surface Water
8GKMSW11_0{GKM11	Surface Water
8GKMSW11_0{GKM11	Surface Water
8 GKMSW11_0 (GKM11	Surface Water
8 GKMSW11_0{GKM11	Surface Water
8 GKMSW11_0 (GKM11	Surface Water
8GKMSW11_0{GKM11	Surface Water
8 GKMSW11_0{GKM11	Surface Water
8GKMSW13_0{GKM13	Surface Water
8GKMSW13_0{GKM13	Surface Water
8 GKMSW13_0{GKM13	Surface Water
8 GKMSW13_0{GKM13	Surface Water
8GKMSW13_0{GKM13	Surface Water
8GKMSW13_0{GKM13	Surface Water
8GKMSW13_0{GKM13	Surface Water
8 GKMSW13_0{GKM13	Surface Water
6 Aztec Water IIAztec Water Intake	
6 Aztec Water IıAztec Water Intake	
6 Aztec Water IıAztec Water Intake	
6 Aztec Water IıAztec Water Intake	
6 Aztec Water IıAztec Water Intake	
6 Aztec Water IıAztec Water Intake	

6 Aztec Water II Aztec Water Intake 6 Aztec Water II Aztec Water Intake 6 Aztec Water II Aztec Water Intake 6 Aztec Water InAztec Water Intake 6 Aztec Water II Aztec Water Intake 6 Aztec Water I Aztec Water Intake 6 Aztec Water InAztec Water Intake 6 Aztec Water InAztec Water Intake 6 Aztec Water II Aztec Water Intake 6 Aztec Water InAztec Water Intake 6 Aztec Water II Aztec Water Intake 6 Aztec Water InAztec Water Intake 6 Aztec Water InAztec Water Intake 6 Farmington WFarmington Water Intake 6 ADW-010-15 CADW-010 6ADW-010-15CADW-010 6 ADW-010-15 CADW-010

- 6 ADW-010-15 CADW-010
- 6 ADW-010-15 CADW-010
- 6ADW-010-15CADW-010
- 6 ADW-010-15 CADW-010
- 6 ADW-010-15 CADW-010
- 6ADW-010-15CADW-010
- 6 ADW-010-15 CADW-010
- 6ADW-010-15CADW-010
- 6 ADW-010-15 CADW-010
- 6 ADW-010-15 CADW-010
- 6 ADW-010-15 CADW-010
- 6 ADW-010-15 CADW-010
- 6ADW-021-15CADW-021
- 6ADW-021-15CADW-021
- 6ADW-021-15CADW-021
- 6 ADW-021-15CADW-021
- 6ADW-021-15CADW-021
- 6ADW-021-15CADW-021
- 6 ADW-021-15CADW-021
- 6ADW-021-15CADW-021
- 6 ADW-021-15 CADW-021
- 6 ADW-021-15 CADW-021
- 6 ADW-021-15 CADW-021
- 6 ADW-021-15 CADW-021
- 6ADW-021-15CADW-021
- 6ADW-021-15CADW-021
- 6 ADW-021-15 CADW-021
- 6 ADW-021-15 CADW-021
- 6ADW-021-15CADW-021
- 6 ADW-021-15 CADW-021
- 6 ADW-021-15 CADW-021
- 6 ADW-021-15 CADW-021
- 6ADW-021-15CADW-021
- 6 ADW-021-15 CADW-021
- 6 ADW-021-15 CADW-021
- 6 ADW-021-15 CADW-021

- 6ADW-022-15CADW-022
- 6ADW-022-15CADW-022
- 6 ADW-022-15 CADW-022
- 6ADW-022-15CADW-022
- 6ADW-022-15CADW-022
- 6 ADW-022-15 CADW-022
- 6 ADW-022-15 CADW-022
- 6 ADW-022-15 CADW-022
- 6ADW-022-15CADW-022
- 6 ADW-022-15 CADW-022
- 6 ADW-022-15 CADW-022
- 6 ADW-022-15 CADW-022
- 6ADW-022-15CADW-022
- 6ADW-022-15CADW-022
- 6 ADW-022-15 CADW-022
- 6ADW-022-15CADW-022
- 6 ADW-022-15 CADW-022
- 6 ADW-022-15 CADW-022
- 6ADW-022-15CADW-022
- 6ADW-022-15CADW-022
- 6ADW-022-15CADW-022
- 6ADW-022-15CADW-022
- 6ADW-022-15CADW-022
- 6ADW-022-15CADW-022
- 6 ADWS-ARP-15 ADWS-ARP
- 6 ADWS-ARP-15ADWS-ARP
- 6 ADWS-ARP-15ADWS-ARP
- 6 ADWS-ARP-15 ADWS-ARP
- 6 ADWS-ARP-15ADWS-ARP
- 6 ADWS-ARP-15ADWS-ARP
- 6 ADWS-ARP-15 ADWS-ARP
- 6 ADWS-ARP-15ADWS-ARP
- 6 ADWS-ARP-15ADWS-ARP
- 6 ADWS-ARP-15 ADWS-ARP

- 6 ADWS-ARP-15 ADWS-ARP
- 6 ADWS-ARP-15 ADWS-ARP
- 6 ADWS-ARP-15 ADWS-ARP
- 6 ADWS-IT1-15(ADWS-IT1
- 0/10/10/11 10/10/10/10
- 6 ADWS-IT1-15(ADWS-IT1
- 6 ADWS-IT1-15(ADWS-IT1
- 6 ADWS-IT1-15(ADWS-IT1 6 ADWS-IT1-15(ADWS-IT1
- 6 ADWS-IT1-15(ADWS-IT1
- 0ADVV3-111-13(ADVV3-113
- 6 ADWS-IT1-15(ADWS-IT1 6 ADWS-IT2-15(ADWS-IT2
- 6 ADWS-IT2-15(ADWS-IT2 6 ADWS-IT2-15(ADWS-IT2
- 6 ADWS-IT2-15(ADWS-IT2
- 0/10W3 11Z 13W0W3 11Z
- 6 ADWS-IT2-15(ADWS-IT2
- 6 ADWS-IT2-15(ADWS-IT2 6 ADWS-IT2-15(ADWS-IT2
- 6 ADWS-IT2-15(ADWS-IT2
- 07/07/5 112 15/7/07/5 112
- 6 ADWS-IT2-15(ADWS-IT2 6 ADWS-IT2-15(ADWS-IT2
- 6 ADWS-IT2-15(ADWS-IT2
- 6 ADWS-IT2-15(ADWS-IT2
- 6 ADWS-IT2-15(ADWS-IT2

- 6 ADWS-IT2-15(ADWS-IT2
- 6 ADWS-IT2-15(ADWS-IT2
- 6 ADWS-IT2-15(ADWS-IT2
- 6 ADWS-IT2-15(ADWS-IT2
- 6 ADWS-IT2-15(ADWS-IT2
- 6 ADWS-IT2-15(ADWS-IT2
- 6 NSW-020-150 NSW-020
- 6 NSW-020-150NSW-020
- 6 NSW-020-150NSW-020
- 6 NSW-020-150NSW-020
- 6 NSW-020-150NSW-020
- 6 NSW-020-150 NSW-020
- 6 NSW-020-150 NSW-020
- 6 NSW-020-150NSW-020
- 6 NSW-020-150NSW-020
- 6 NSW-020-150NSW-020
- 6 NSW-020-150NSW-020
- 6 NSW-020-150 NSW-020
- 6 NSW-020-150NSW-020
- 6 NSW-020-150NSW-020
- 6 NSW-020-150NSW-020
- 0,1011 020 200,1011 020
- 6 NSW-020-150NSW-020
- 6 NSW-020-150NSW-020 6 NSW-020-150NSW-020
- 6 NSW-020-150NSW-020
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 014500 7000 1500 7000
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI

- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 NSW-ARI-150 NSW-ARI
- 6 FW-012-1508 FW-012
- 6FW-012-1508FW-012
- 6 FW-012-1508 FW-012
- 6 FW-012-1508 FW-012
- 6 FW-012-1508 FW-012
- 6 FW-012-1508 FW-012 6 FW-012-1508 FW-012
- 6514 042 4500 514 042
- 6 FW-012-1508 FW-012
- 6 FW-012-1508 FW-012
- 6 FWS-ARP2-15 FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2
- $6\,FWS\text{-}ARP2\text{-}15 \cdot FWS\text{-}ARP2$
- 6 FWS-ARP2-15 FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2
- 6FWS-ARP2-15FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2

- 6 FWS-ARP2-15 FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2
- 6 FWS-ARP2-15 FWS-ARP2
- 6FWS-ARP2-15FWS-ARP2
- 6MW-020-1508MW-020
- 6 MW-020-150 (MW-020
- 6MW-020-1508MW-020
- 6 MW-020-150 (MW-020
- 6 MW-020-150 (MW-020
- 6 MW-020-150 (MW-020
- 6MW-020-1508MW-020
- 6 MW-020-150 (MW-020
- 6MW-020-1508MW-020
- 6 MW-020-150 MW-020
- 6 MW-020-150 (MW-020
- 6 MW-020-150 MW-020
- 6 MW-020-150 (MW-020
- 6 MW-020-150 MW-020
- 010100-020-130(10100-020
- 6 MW-020-150 (MW-020
- 6 MW-020-150 (MW-020 6 MW-020-150 (MW-020-150)
- 6MW-020-1508MW-020
- 6MW-020-150{MW-020
- 6 MW-020-150 (MW-020
- 6MW-020-1508MW-020
- 6 MW-020-150 MW-020
- 6 MW-020-150 (MW-020
- 6MW-020-1508MW-020
- 6 MWSS-ARI-15 MWSS-ARI

- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 MWSS-ARI-15 MWSS-ARI
- 6 FW-040-1508 FW-040
- 6FW-040-1508FW-040
- 0. .. 0.10 13001 .. 0.10
- 6 FW-040-1508 FW-040 6 FW-040-1508 FW-040
- $6\,FWS\text{-}FDPS\text{-}15(FWS\text{-}FDPS$
- 6 FWS-FDPS-15 (FWS-FDPS
- 6 FWS-FDPS-15(FWS-FDPS
- 6 FWS-FDPS-15(FWS-FDPS
- 6 FWS-FDPS-15(FWS-FDPS
- 6 FWS-FDPS-15(FWS-FDPS

- 6 FWS-FDPS-15 (FWS-FDPS
- 6 FWS-FDPS-15(FWS-FDPS
- 6 FWS-FDPS-15 (FWS-FDPS
- 6 FWS-FDPS-15 (FWS-FDPS
- 6 FWS-FDPS-15(FWS-FDPS
- 01.110.1010.1011
- $6\,FWS\text{-}FDPS\text{-}15(FWS\text{-}FDPS$
- 6 FWS-FDPS-15(FWS-FDPS
- 6 FWS-FDPS-15 (FWS-FDPS
- 6 FWS-FDPS-15(FWS-FDPS
- 6LVW-WPI-150LVW-WPI
- 6LVW-WPI-150LVW-WPI
- 6 LVW-WPI-150LVW-WPI
- OLVVV VVII 130EV VV VVII
- 6 LVW-WPI-150 LVW-WPI
- 6 LVW-WPI-150 LVW-WPI
- 6 LVW-WPI-150LVW-WPI
- 6 LVW-WPI-150 LVW-WPI
- 6 LVW-WPI-150LVW-WPI
- 6 LVW-WPI-150 LVW-WPI
- 6 LVW-WPI-150LVW-WPI
- 6 LVW-WPI-150LVW-WPI
- 6 LVW-WPI-150LVW-WPI
- 6 LVW-WPI-150 LVW-WPI
- 6 LVW-WPI-150LVW-WPI
- 6LVW-WPI-150LVW-WPI
- 6LVW-WPI-150LVW-WPI
- 6LVW-WPI-150LVW-WPI
- 6 LVW-WPI-150 LVW-WPI
- 6 LVW-WPI-150LVW-WPI
- 6LVW-WPI-150LVW-WPI
- 6 LVW-WPI-150LVW-WPI
- 6LVW-WPI-150LVW-WPI
- 6 LVW-WPI-150LVW-WPI
- 6 LVW-WPI-150 LVW-WPI
- 6 LVW-020-150 LVW-020
- 6LVW-020-150LVW-020
- 6LVW-020-150.LVW-020

- 6 LVW-020-150 LVW-020
- 6LVW-020-150LVW-020
- 6LVW-020-150-LVW-020
- 02.00 020 1302000 020
- 6 LVW-020-150 LVW-020
- 6 LVW-020-150 LVW-020
- 6LVW-020-150LVW-020
- 6LVW-020-150LVW-020
- 6 LVW-020-150 LVW-020
- 6LVW-030-150LVW-030
- 6 LVW-030-150 LVW-030
- 6 LVW-030-150 LVW-030
- 6LVW-030-150LVW-030
- 6 LVW-030-150 LVW-030
- 6LVW-030-150.LVW-030
- 6LVW-030-150-LVW-030
- 6LVW-030-150-LVW-030
- 6LVW-030-150LVW-030
- 6LVW-030-150LVW-030
- 6LVW-030-150LVW-030
- 6LVW-030-150-LVW-030
- 6 LVW-030-150 LVW-030 6 LVW-030-150 LVW-030
- 611011020 4501101102
- 6 LVW-030-150 LVW-030
- 6LVW-030-150-LVW-030
- 6 LVW-030-150 LVW-030
- 6 LVW-030-150 LVW-030
- 6LVW-030-150LVW-030
- 6LVW-030-150LVW-030

- 6LVW-FD-1508LVW-FD
- _.....
- 6LVW-FD-1508LVW-FD

Water ICPMS Diss. Metals Barium 28.3 22 Water ICPMS Diss. Metals Cadmium 0.344 0.3 Water ICPMS Diss. Metals Chromium 1.73 1. Water ICPMS Diss. Metals Cobalt 1.73 1. Water ICPMS Diss. Metals Copper 2.44 2. Water ICPMS Diss. Metals Lead 6 6 Water ICPMS Diss. Metals Nickel 6 6 Water ICPMS Diss. Metals Nickel 6 6 Water ICPMS Diss. Metals Silver 6 6 Water ICPMS Diss. Metals Thallium 6 6 Water ICPMS Diss. Metals Thallium 6 6 Water ICPMS Diss. Metals Aluminum 45 4 Water ICPOE Diss. Metals Calcium 35200 352 Water ICPOE Diss. Metals Calcium 4380 43 Water <t< th=""><th>Lab Matrix</th><th>Analysis</th><th>Analyte</th><th>Result</th><th>Result</th><th>- ND=DL</th></t<>	Lab Matrix	Analysis	Analyte	Result	Result	- ND=DL
Water ICPMS Diss. Metals Cadmium 0.344 0.3 Water ICPMS Diss. Metals Cadmium 0.344 0.3 Water ICPMS Diss. Metals Cobalt 1.73 1. Water ICPMS Diss. Metals Cobper 2.44 2. Water ICPMS Diss. Metals Lead 0 0 Water ICPMS Diss. Metals Molybednum 0 0 Water ICPMS Diss. Metals Nickel 0 0 Water ICPMS Diss. Metals Selenium 0 0 Water ICPMS Diss. Metals Selenium 45 0 0 Water ICPMS Diss. Metals Silver 0 <td>Water</td> <td>ICPMS Diss. Metals</td> <td>Antimony</td> <td></td> <td></td> <td>0.5</td>	Water	ICPMS Diss. Metals	Antimony			0.5
Water ICPMS Diss. Metals Chromium Water ICPMS Diss. Metals Chobalt 1.73 1. Water ICPMS Diss. Metals Cobalt 1.73 1. Water ICPMS Diss. Metals Copper 2.44 2. Water ICPMS Diss. Metals Molybdenum 60 Water ICPMS Diss. Metals Solenium 60 Water ICPMS Diss. Metals Vanadium 45 Water ICPOE Diss. Metals Vanadium 45 Water ICPOE Diss. Metals Beryllium 45 Water ICPOE Diss. Metals Beryllium 4380 43 Water ICPOE Diss. Metals Iron 1 Water ICPOE Diss. Metals Manganese 444 4 Water ICPOE Diss. Metals Valuminum	Water	ICPMS Diss. Metals	Arsenic			0.5
Water ICPMS Diss. Metals Cobalt 1.73 1. Water ICPMS Diss. Metals Copper 2.44 2. Water ICPMS Diss. Metals Lead 0. Water ICPMS Diss. Metals Nickel 0. Water ICPMS Diss. Metals Nickel 0. Water ICPMS Diss. Metals Selenium Water ICPMS Diss. Metals Silver 0. Water ICPMS Diss. Metals Silver 0. Water ICPMS Diss. Metals Silver 0. Water ICPMS Diss. Metals Shuminum 45 Water ICPOE Diss. Metals Shuminum 45 Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Magnesium 4380 43 Water ICPOE Diss. Metals Manganese 444 4 Water ICPOE Diss. Metals Dotassium 2170 21 Wate	Water	ICPMS Diss. Metals	Barium		28.3	28.3
Water ICPMS Diss. Metals Copper 2.44 2. Water ICPMS Diss. Metals Copper 2.44 2. Water ICPMS Diss. Metals Lead 0 Water ICPMS Diss. Metals Molybdenum Water ICPMS Diss. Metals Silver 0 Water ICPMS Diss. Metals Aluminum 45 Water ICPOE Diss. Metals Aluminum 45 Water ICPOE Diss. Metals Calcium 35200 352 Water ICPOE Diss. Metals Iron 1 1 Water ICPOE Diss. Metals Manganese 444 4 Water ICPOE Diss. Metals Manganese 444 4 Water ICPOE Diss. Metals Sodium <td< td=""><td>Water</td><td>ICPMS Diss. Metals</td><td>Cadmium</td><td></td><td>0.344</td><td>0.344</td></td<>	Water	ICPMS Diss. Metals	Cadmium		0.344	0.344
Water ICPMS Diss. Metals Lead 2.44 2. Water ICPMS Diss. Metals Lead 6 Water ICPMS Diss. Metals Molybdenum 6 Water ICPMS Diss. Metals Nickel 6 Water ICPMS Diss. Metals Selenium 6 Water ICPMS Diss. Metals Thallium 6 Water ICPMS Diss. Metals Aluminum 45 Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Colcium 35200 352 Water ICPOE Diss. Metals Icon 1 1 Water ICPOE Diss. Metals Manganese 444 4 Water ICPOE Diss. Metals Potassium 67 6 Water ICPOE Diss. Metals Colcium 600 600 Water ICPOE Diss. Metals (ICP) Aluminum 66 6	Water	ICPMS Diss. Metals	Chromium			1
Water ICPMS Diss. Metals Molybdenum Water ICPMS Diss. Metals Molybdenum Water ICPMS Diss. Metals Nickel Water ICPMS Diss. Metals Silver Water ICPMS Diss. Metals Silver Water ICPMS Diss. Metals Thallium Water ICPMS Diss. Metals Vanadium Water ICPMS Diss. Metals Aluminum Water ICPOE Diss. Metals Aluminum Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Iron Water ICPOE Diss. Metals Iron Water ICPOE Diss. Metals Iron Water ICPOE Diss. Metals Magnesium 4380 Water ICPOE Diss. Metals Potassium 687 Water ICPOE Diss. Metals Sodium 2170 Water ICPOE Diss. Metals Cinc 61.5 Water ICPOE Diss. Metals (ICP) Aluminum 66 Water 200.7 Metals (ICP)	Water	ICPMS Diss. Metals	Cobalt		1.73	1.73
Water ICPMS Diss. Metals Molybdenum Water ICPMS Diss. Metals Nickel Water ICPMS Diss. Metals Selenium Water ICPMS Diss. Metals Silver Water ICPMS Diss. Metals Thallium Water ICPOE Diss. Metals Aluminum Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Bron Water ICPOE Diss. Metals Iron Water ICPOE Diss. Metals Iron Water ICPOE Diss. Metals Magnesium 4380 43 Water ICPOE Diss. Metals Mongnesium 4380 43 Water ICPOE Diss. Metals Mongnesium 687 66 Water ICPOE Diss. Metals Zinc 61.5 66 Water ICPOE Diss. Metals Zinc 61.5 66 Water ICPOE Diss. Metals Zinc 61.5 66 Water	Water	ICPMS Diss. Metals	Copper		2.44	2.44
Water ICPMS Diss. Metals Nickel 0 Water ICPMS Diss. Metals Selenium Water ICPMS Diss. Metals Silver 0 Water ICPMS Diss. Metals Vanadium Water ICPOE Diss. Metals Vanadium Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Iron Water ICPOE Diss. Metals Iron 1 Water ICPOE Diss. Metals Iron 1 Water ICPOE Diss. Metals Manganese 444 4 Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Zinc 61.5 66 Water ICPOE Diss. Metals Zinc<	Water	ICPMS Diss. Metals	Lead			0.1
Water ICPMS Diss. Metals Selenium Water ICPMS Diss. Metals Silver Water ICPMS Diss. Metals Thallium Water ICPMS Diss. Metals Vanadium Water ICPOE Diss. Metals Aluminum Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Magnesium Water ICPOE Diss. Metals Magnesium Water ICPOE Diss. Metals Manganese Water ICPOE Diss. Metals Potassium Water ICPOE Diss. Metals Sodium 2170 Water ICPOE Diss. Metals Sodium 2170 Water ICPOE Diss. Metals Sodium 2170 Water ICPOE Diss. Metals Codium 687 66 Water ICPOE Diss. Metals Codium 6000 6000 Water 200.7 Metals (ICP) Aluminum 66 61.5 66 Water 200.7 Metals (ICP)	Water	ICPMS Diss. Metals	Molybdenum			1
Water ICPMS Diss. Metals Silver O Water ICPMS Diss. Metals Thallium O Water ICPOE Diss. Metals Vanadium Water ICPOE Diss. Metals Aluminum 45 Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Calcium 35200 352 Water ICPOE Diss. Metals Iron 1 1 Water ICPOE Diss. Metals Magnesium 4380 43 Water ICPOE Diss. Metals Manganese 444 4 Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Zinc 61.5 66 Water 1CPOE Diss. Metals Zinc 61.5 66 Water 200.7 Metals (ICP) Aluminum 66 60 Water 200.7 Metals (ICP) Magnesium 780 78 Water </td <td>Water</td> <td>ICPMS Diss. Metals</td> <td>Nickel</td> <td></td> <td></td> <td>0.5</td>	Water	ICPMS Diss. Metals	Nickel			0.5
Water ICPMS Diss. Metals Vanadium Water ICPOE Diss. Metals Vanadium Water ICPOE Diss. Metals Aluminum 45 Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Icron 1 Water ICPOE Diss. Metals Iron 1 Water ICPOE Diss. Metals Magnesium 4380 43 Water ICPOE Diss. Metals Potassium 687 6 Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Zinc 61.5 6 Water ICPOE Diss. Metals Zinc 66.5 6 Water 200.7 Metals (ICP) Aluminum 66 6 Water 200.7 Metals (ICP)	Water	ICPMS Diss. Metals	Selenium			1
Water ICPMS Diss. Metals Vanadium 45 Water ICPOE Diss. Metals Aluminum 45 Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Iron Water ICPOE Diss. Metals Magnesium 4380 43 Water ICPOE Diss. Metals Manganese 4444 44 Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Cinc 61.5 66 Water 200.7 Metals (ICP) Aluminum 66 66 Water 200.7 Metals (ICP) Aluminum 7800 78 Water 200.7 Metals (ICP) Magnesium 7800 78 Water	Water	ICPMS Diss. Metals	Silver			0.5
Water ICPOE Diss. Metals Aluminum 45 Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Calcium 35200 352 Water ICPOE Diss. Metals Iron 1 Water ICPOE Diss. Metals Magnesium 4380 43 Water ICPOE Diss. Metals Magnesium 687 66 Water ICPOE Diss. Metals Potassium 687 66 Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Zinc 61.5 66 Water ICPOE Diss. Metals Zinc 61.5 66 Water 200.7 Metals (ICP) Aluminum 66 66 Water 200.7 Metals (ICP) Aluminum 66 66 Water 200.7 Metals (ICP) Aluminum 780 78 Water 200.7 Metals (ICP) Motals (ICP)	Water	ICPMS Diss. Metals	Thallium			0.5
Water ICPOE Diss. Metals Beryllium Water ICPOE Diss. Metals Calcium 35200 352 Water ICPOE Diss. Metals Iron 1 Water ICPOE Diss. Metals Magnesium 4380 43 Water ICPOE Diss. Metals Manganese 444 4 Water ICPOE Diss. Metals Potassium 687 6 Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Zinc 61.5 66 Water ICPOE Diss. Metals Zinc 61.5 66 Water 200.7 Metals (ICP) Aluminum 66 60 Water 200.7 Metals (ICP) Magnesium 7800 78 Water 200.7 Metals (ICP) Magnesium 7800 78 Water 200.7 Metals (ICP) Magnesium 7800 78 Water 200.8 Metals (ICP) <td< td=""><td>Water</td><td>ICPMS Diss. Metals</td><td>Vanadium</td><td></td><td></td><td>2</td></td<>	Water	ICPMS Diss. Metals	Vanadium			2
Water ICPOE Diss. Metals Calcium 35200 352 Water ICPOE Diss. Metals Iron 1 Water ICPOE Diss. Metals Magnesium 4380 43 Water ICPOE Diss. Metals Manganese 444 4 Water ICPOE Diss. Metals Potassium 687 6 Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Sodium 2170 26 Water ICPOE Diss. Metals Sodium 2170 26 Water ICPOE Diss. Metals Sodium 2170 26 Water 200.7 Metals (ICP) Aluminum 66 66 Water 200.7 Metals (ICP) Calcium 60000 6000 Water 200.7 Metals (ICP) Iron 17 7800 78 Water 200.7 Metals (ICP) Potassium 7800 78 Water 200.7 Metals (ICP) Potassium 2100 21	Water	ICPOE Diss. Metals	Aluminum		45	45
Water ICPOE Diss. Metals Iron 1 Water ICPOE Diss. Metals Magnesium 4380 43 Water ICPOE Diss. Metals Manganese 444 44 Water ICPOE Diss. Metals Potassium 687 6 Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Zinc 61.5 6 Water ICPOE Diss. Metals Zinc 61.5 6 6 6 Water 200.7 Metals (ICP) Aluminum 60 6 6 6 6 6 Water 200.8 Metals (ICP) Marsenic 0.37	Water	ICPOE Diss. Metals	Beryllium			2
Water ICPOE Diss. Metals Magnesium 4380 43 Water ICPOE Diss. Metals Manganese 444 44 Water ICPOE Diss. Metals Potassium 687 66 Water ICPOE Diss. Metals Zinc 61.5 66 Water 1CPOE Diss. Metals Zinc 61.5 66 Water 200.7 Metals (ICP) Aluminum 66 66 Water 200.7 Metals (ICP) Aluminum 666 60000 60000 Water 200.7 Metals (ICP) Iron 17 7800 78 Water 200.7 Metals (ICP) Magnesium 7800 78 Water 200.7 Metals (ICP) Potassium 2100 21 Water 200.7 Metals (ICP) Sodium 1000 100 Water 200.8 Metals (ICP/M Antimony 0.4 0.0 Water 200.8 Metals (ICP/M Barium 43 0.5 Water 200.8 Metals (ICP/M Beryllium 0.15 0.0	Water	ICPOE Diss. Metals	Calcium		35200	35200
Water ICPOE Diss. Metals Manganese 444 44 Water ICPOE Diss. Metals Potassium 687 6 Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Zinc 61.5 65 Water 200.7 Metals (ICP) Aluminum 66 6 Water 200.7 Metals (ICP) Iron 17 7 Water 200.7 Metals (ICP) Iron 17 7800 78 Water 200.7 Metals (ICP) Magnesium 7800 78 Water 200.7 Metals (ICP) Potassium 2100 21 Water 200.7 Metals (ICP) Sodium 1000 100 Water 200.8 Metals (ICP) Sodium 1000 100 Water 200.8 Metals (ICP/M Antimony 0.4 0.0 Water 200.8 Metals (ICP/M Barium 43 0.5 Water 200.8 Metals (ICP/M Beryllium 0.15 0.0 Water 200.8	Water	ICPOE Diss. Metals	Iron			100
Water ICPOE Diss. Metals Potassium 687 6 Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Zinc 61.5 65 Water 200.7 Metals (ICP) Aluminum 66 Water 200.7 Metals (ICP) Calcium 60000 6000 Water 200.7 Metals (ICP) Iron 17 780 78 Water 200.7 Metals (ICP) Magnesium 7800 78 Water 200.7 Metals (ICP) Potassium 2100 21 Water 200.7 Metals (ICP) Potassium 10000 100 Water 200.7 Metals (ICP) Sodium 10000 100 Water 200.8 Metals (ICP) Sodium 10000 100 Water 200.8 Metals (ICP/M Antimony 0.4 0.0 Water 200.8 Metals (ICP/M Beryllium 0.15 0.0 Water 200.8 Metals (ICP/M Codmium 0.054 0.0 Water 200.8 Me	Water	ICPOE Diss. Metals	Magnesium		4380	4380
Water ICPOE Diss. Metals Sodium 2170 21 Water ICPOE Diss. Metals Zinc 61.5 65 Water 200.7 Metals (ICP) Aluminum 66 Water 200.7 Metals (ICP) Calcium 60000 6000 Water 200.7 Metals (ICP) Iron 17 Water 200.7 Metals (ICP) Magnesium 7800 78 Water 200.7 Metals (ICP) Potassium 2100 21 Water 200.7 Metals (ICP) Sodium 10000 100 Water 200.7 Metals (ICP) Sodium 10000 100 Water 200.7 Metals (ICP) Sodium 10000 100 Water 200.8 Metals (ICP) Sodium 10000 100 Water 200.8 Metals (ICP/M Arsenic 0.37 0.0 Water 200.8 Metals (ICP/M Beryllium 0.15 0.0 Water 200.8 Metals (ICP/M Cadmium 0.054 0.0 Water 200.8 Metals (ICP/M Cobalt 0.2 <td>Water</td> <td>ICPOE Diss. Metals</td> <td>Manganese</td> <td></td> <td>444</td> <td>444</td>	Water	ICPOE Diss. Metals	Manganese		444	444
Water ICPOE Diss. Metals Zinc 61.5 63.5 Water 200.7 Metals (ICP) Aluminum 66 Water 200.7 Metals (ICP) Calcium 60000 6000 Water 200.7 Metals (ICP) Iron 17 Water 200.7 Metals (ICP) Magnesium 7800 78 Water 200.7 Metals (ICP) Potassium 2100 21 Water 200.7 Metals (ICP) Sodium 10000 100 Water 200.8 Metals (ICP) Sodium 10000 100 Water 200.8 Metals (ICP/M Antimony 0.4 0.0 Water 200.8 Metals (ICP/M Asenic 0.37 0.0 Water 200.8 Metals (ICP/M Beryllium 0.15 0.0 Water 200.8 Metals (ICP/M Beryllium 0.054 0.0 Water 200.8 Metals (ICP/M Cobalt 0.2 0.0 Water 200.8 Metals (ICP/M Cobalt 0.2 0.0 Water 200.8 Metals (ICP/M Lead 0.32 0.0	Water	ICPOE Diss. Metals	Potassium		687	687
Water 200.7 Metals (ICP) Aluminum 66 Water 200.7 Metals (ICP) Calcium 60000 6000 Water 200.7 Metals (ICP) Iron 17 Water 200.7 Metals (ICP) Magnesium 7800 78 Water 200.7 Metals (ICP) Potassium 2100 21 Water 200.7 Metals (ICP) Sodium 10000 100 Water 200.8 Metals (ICP) Matimony 0.4 0.0 Water 200.8 Metals (ICP/M Antimony 0.4 0.0 Water 200.8 Metals (ICP/M Barium 43 0.0 Water 200.8 Metals (ICP/M Beryllium 0.15 0.0 Water 200.8 Metals (ICP/M Cadmium 0.054 0.0 Water 200.8 Metals (ICP/M Cobalt 0.2 0.0 Water 200.8 Metals (ICP/M Copper 2.5 2.5 Water 200.8 Metals (ICP/M Lead 0.32 0.0 Water 200.8 Metals (ICP/M Molybdenum 0.94 0.0 Water 200.8 Metals (ICP/M Nickel 1 1 Water	Water	ICPOE Diss. Metals	Sodium		2170	2170
Water 200.7 Metals (ICP) Calcium 60000 6000 Water 200.7 Metals (ICP) Iron 17 Water 200.7 Metals (ICP) Magnesium 7800 78 Water 200.7 Metals (ICP) Potassium 2100 21 Water 200.7 Metals (ICP) Sodium 10000 100 Water 200.8 Metals (ICP) Sodium 10000 100 Water 200.8 Metals (ICP/M Antimony 0.4 0.4 0.0 Water 200.8 Metals (ICP/M Arsenic 0.37 0. Water 200.8 Metals (ICP/M Barium 43 0.15 0. Water 200.8 Metals (ICP/M Beryllium 0.15 0.0 Water 200.8 Metals (ICP/M Cadmium 0.054 0.0 Water 200.8 Metals (ICP/M Cobalt 0.2 0.0 Water 200.8 Metals (ICP/M Cobalt 0.2 0.0 Water 200.8 Metals (ICP/M Lead 0.32 0. Water 200.8 Metals (ICP/M Manganese 61 0.0 Water 200.8 Metals (ICP/M Nolybdenum 0.94 0. <td>Water</td> <td>ICPOE Diss. Metals</td> <td>Zinc</td> <td></td> <td>61.5</td> <td>61.5</td>	Water	ICPOE Diss. Metals	Zinc		61.5	61.5
Water 200.7 Metals (ICP) Iron 17 Water 200.7 Metals (ICP) Magnesium 7800 78 Water 200.7 Metals (ICP) Potassium 2100 21 Water 200.7 Metals (ICP) Sodium 10000 100 Water 200.8 Metals (ICP/M Antimony 0.4 0 Water 200.8 Metals (ICP/M Arsenic 0.37 0. Water 200.8 Metals (ICP/M Barium 43 Water 200.8 Metals (ICP/M Beryllium 0.15 0. Water 200.8 Metals (ICP/M Cadmium 0.054 0.0 Water 200.8 Metals (ICP/M Chromium 1 1 Water 200.8 Metals (ICP/M Cobalt 0.2 0 Water 200.8 Metals (ICP/M Copper 2.5 2 Water 200.8 Metals (ICP/M Manganese 61 0.32 0 Water 200.8 Metals (ICP/M Molybdenum 0.94 0 Water 200.8 Metals (ICP/M Selenium 0.58 0	Water	200.7 Metals (ICP)	Aluminum		66	66
Water 200.7 Metals (ICP) Magnesium 7800 78 Water 200.7 Metals (ICP) Potassium 2100 21 Water 200.7 Metals (ICP) Sodium 10000 100 Water 200.8 Metals (ICP/M Antimony 0.4 0.0 Water 200.8 Metals (ICP/M Arsenic 0.37 0. Water 200.8 Metals (ICP/M Barium 43 43 Water 200.8 Metals (ICP/M Beryllium 0.15 0.0 Water 200.8 Metals (ICP/M Cadmium 0.054 0.0 Water 200.8 Metals (ICP/M Chromium 1 1 Water 200.8 Metals (ICP/M Cobalt 0.2 0.0 Water 200.8 Metals (ICP/M Copper 2.5 0.0 Water 200.8 Metals (ICP/M Manganese 61 Water 200.8 Metals (ICP/M Molybdenum 0.94 0. Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0.	Water	200.7 Metals (ICP)	Calcium		60000	60000
Water 200.7 Metals (ICP) Potassium 2100 21 Water 200.7 Metals (ICP) Sodium 10000 100 Water 200.8 Metals (ICP/M Antimony 0.4 0 Water 200.8 Metals (ICP/M Arsenic 0.37 0. Water 200.8 Metals (ICP/M Barium 43 Water 200.8 Metals (ICP/M Beryllium 0.15 0. Water 200.8 Metals (ICP/M Cadmium 0.054 0.0 Water 200.8 Metals (ICP/M Chromium 1 1 Water 200.8 Metals (ICP/M Cobalt 0.2 0 Water 200.8 Metals (ICP/M Copper 2.5 2 Water 200.8 Metals (ICP/M Lead 0.32 0 Water 200.8 Metals (ICP/M Manganese 61 Water 200.8 Metals (ICP/M Molybdenum 0.94 0 Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0	Water	200.7 Metals (ICP)	Iron		17	17
Water 200.7 Metals (ICP) Sodium 10000 1000 Water 200.8 Metals (ICP/M Antimony) 0.4 0 Water 200.8 Metals (ICP/M Arsenic) 0.37 0. Water 200.8 Metals (ICP/M Barium) 43 Water 200.8 Metals (ICP/M Beryllium) 0.15 0.0 Water 200.8 Metals (ICP/M Cadmium) 0.054 0.0 Water 200.8 Metals (ICP/M Cobalt) 0.2 0 Water 200.8 Metals (ICP/M Copper) 2.5 0 Water 200.8 Metals (ICP/M Lead) 0.32 0 Water 200.8 Metals (ICP/M Manganese) 61 Water 200.8 Metals (ICP/M Molybdenum) 0.94 0 Water 200.8 Metals (ICP/M Nickel) 1 Water 200.8 Metals (ICP/M Selenium) 0.58 0	Water	200.7 Metals (ICP)	Magnesium		7800	7800
Water 200.8 Metals (ICP/M Antimony 0.4 0.4 Water 200.8 Metals (ICP/M Arsenic 0.37 0. Water 200.8 Metals (ICP/M Barium 43 Water 200.8 Metals (ICP/M Beryllium 0.15 0.0 Water 200.8 Metals (ICP/M Cadmium 0.054 0.0 Water 200.8 Metals (ICP/M Chromium 1 0.2 0.0 Water 200.8 Metals (ICP/M Copper 2.5 0.0 Water 200.8 Metals (ICP/M Copper 2.5 0.0 Water 200.8 Metals (ICP/M Manganese 61 Water 200.8 Metals (ICP/M Molybdenum 0.94 0.0 Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0.0	Water	200.7 Metals (ICP)	Potassium		2100	2100
Water 200.8 Metals (ICP/M Arsenic 0.37 0. Water 200.8 Metals (ICP/M Barium 43 Water 200.8 Metals (ICP/M Beryllium 0.15 0. Water 200.8 Metals (ICP/M Cadmium 0.054 0.0 Water 200.8 Metals (ICP/M Chromium 1 Water 200.8 Metals (ICP/M Cobalt 0.2 0. Water 200.8 Metals (ICP/M Copper 2.5 2.5 Water 200.8 Metals (ICP/M Lead 0.32 0. Water 200.8 Metals (ICP/M Manganese 61 Water 200.8 Metals (ICP/M Molybdenum 0.94 0. Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0.	Water	200.7 Metals (ICP)	Sodium		10000	10000
Water 200.8 Metals (ICP/M Barium 43 Water 200.8 Metals (ICP/M Beryllium 0.15 0.0 Water 200.8 Metals (ICP/M Cadmium 0.054 0.0 Water 200.8 Metals (ICP/M Chromium 1 Water 200.8 Metals (ICP/M Cobalt 0.2 0.0 Water 200.8 Metals (ICP/M Copper 2.5 2.5 Water 200.8 Metals (ICP/M Lead 0.32 0.0 Water 200.8 Metals (ICP/M Manganese 61 Water 200.8 Metals (ICP/M Molybdenum 0.94 0. Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0.	Water	200.8 Metals (ICP/N	1 Antimony		0.4	0.4
Water 200.8 Metals (ICP/M Beryllium 0.15 0.0 Water 200.8 Metals (ICP/M Cadmium 0.054 0.0 Water 200.8 Metals (ICP/M Chromium 1 Water 200.8 Metals (ICP/M Cobalt 0.2 0 Water 200.8 Metals (ICP/M Copper 2.5 2 Water 200.8 Metals (ICP/M Lead 0.32 0 Water 200.8 Metals (ICP/M Manganese 61 Water 200.8 Metals (ICP/M Molybdenum 0.94 0 Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0	Water	200.8 Metals (ICP/N	1 Arsenic		0.37	0.37
Water 200.8 Metals (ICP/M Cadmium 0.054 0.0 Water 200.8 Metals (ICP/M Chromium 1 Water 200.8 Metals (ICP/M Cobalt 0.2 0 Water 200.8 Metals (ICP/M Copper 2.5 2 Water 200.8 Metals (ICP/M Lead 0.32 0 Water 200.8 Metals (ICP/M Manganese 61 Water 200.8 Metals (ICP/M Molybdenum 0.94 0 Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0	Water	200.8 Metals (ICP/N	1 Barium		43	43
Water 200.8 Metals (ICP/M Chromium 1 Water 200.8 Metals (ICP/M Cobalt 0.2 0 Water 200.8 Metals (ICP/M Copper 2.5 2 Water 200.8 Metals (ICP/M Lead 0.32 0 Water 200.8 Metals (ICP/M Manganese 61 Water 200.8 Metals (ICP/M Molybdenum 0.94 0 Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0	Water	200.8 Metals (ICP/N	1 Beryllium		0.15	0.15
Water 200.8 Metals (ICP/M Cobalt 0.2 0.2 Water 200.8 Metals (ICP/M Copper 2.5 2.5 Water 200.8 Metals (ICP/M Lead 0.32 0. Water 200.8 Metals (ICP/M Manganese 61 Water 200.8 Metals (ICP/M Molybdenum 0.94 0. Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0.	Water	200.8 Metals (ICP/N	1 Cadmium		0.054	0.054
Water 200.8 Metals (ICP/M Copper 2.5 Water 200.8 Metals (ICP/M Lead 0.32 0. Water 200.8 Metals (ICP/M Manganese 61 Water 200.8 Metals (ICP/M Molybdenum 0.94 0. Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0.	Water	200.8 Metals (ICP/N	1 Chromium		1	1
Water 200.8 Metals (ICP/M Lead 0.32 0. Water 200.8 Metals (ICP/M Manganese 61 Water 200.8 Metals (ICP/M Molybdenum 0.94 0. Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0.	Water	200.8 Metals (ICP/N	1 Cobalt		0.2	0.2
Water 200.8 Metals (ICP/M Manganese 61 Water 200.8 Metals (ICP/M Molybdenum 0.94 0. Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0.	Water	200.8 Metals (ICP/N	1 Copper		2.5	2.5
Water 200.8 Metals (ICP/M Molybdenum 0.94 0. Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0.	Water	200.8 Metals (ICP/N	1 Lead		0.32	0.32
Water 200.8 Metals (ICP/M Nickel 1 Water 200.8 Metals (ICP/M Selenium 0.58 0.	Water	200.8 Metals (ICP/M	1 Manganese		61	61
Water 200.8 Metals (ICP/M Selenium 0.58 0.	Water	200.8 Metals (ICP/N	1 Molybdenum		0.94	0.94
· ·	Water	200.8 Metals (ICP/N	1 Nickel		1	1
Water 200.9 Metals (ICD/M.Silver 0.1	Water	•			0.58	0.58
Water 200.6 Wetais (ICF/WISHVer 0.1	Water	200.8 Metals (ICP/M	1 Silver		0.1	0.1
·	Water	•			0.1	0.1

Water	200.8 Metals (ICP/M Vanadium	0.3	0.3
Water	200.8 Metals (ICP/M Zinc	9.7	9.7
Water	245.1 Mercury (CVA/Mercury	0.08	0.08
Water	200.7 Metals (ICP) Aluminum	72	72
Water	200.7 Metals (ICP) Calcium	43000	43000
Water	200.7 Metals (ICP) Iron	17	17
Water	200.7 Metals (ICP) Magnesium	4500	4500
Water	200.7 Metals (ICP) Potassium	770	770
Water	200.7 Metals (ICP) Sodium	2200	2200
Water	200.8 Metals (ICP/M Antimony	0.4	0.4
Water	200.8 Metals (ICP/M Arsenic	0.4	0.4
Water	200.8 Metals (ICP/M Barium	30	30
Water	200.8 Metals (ICP/M Beryllium	0.15	0.15
Water	200.8 Metals (ICP/M Cadmium	0.53	0.53
Water	200.8 Metals (ICP/M Chromium	1	1
Water	200.8 Metals (ICP/M Cobalt	1.8	1.8
Water	200.8 Metals (ICP/M Copper	3	3
Water	200.8 Metals (ICP/M Lead	0.16	0.16
Water	200.8 Metals (ICP/M Manganese	420	420
Water	200.8 Metals (ICP/M Molybdenum	0.61	0.61
Water	200.8 Metals (ICP/M Nickel	1.9	1.9
Water	200.8 Metals (ICP/M Selenium	0.58	0.58
Water	200.8 Metals (ICP/M Silver	0.1	0.1
Water	200.8 Metals (ICP/M Thallium	0.1	0.1
Water	200.8 Metals (ICP/M Vanadium	0.3	0.3
Water	200.8 Metals (ICP/M Zinc	120	120
Water	245.1 Mercury (CVA/Mercury	0.08	0.08
Water	200.7 Metals (ICP) Aluminum	34	34
Water	200.7 Metals (ICP) Calcium	64000	64000
Water	200.7 Metals (ICP) Iron	17	17
Water	200.7 Metals (ICP) Magnesium	7900	7900
Water	200.7 Metals (ICP) Potassium	2200	2200
Water	200.7 Metals (ICP) Sodium	11000	11000
Water	200.8 Metals (ICP/M Antimony	0.4	0.4
Water	200.8 Metals (ICP/M Arsenic	0.37	0.37
Water	200.8 Metals (ICP/M Barium	45	45
Water	200.8 Metals (ICP/M Beryllium	0.15	0.15
Water	200.8 Metals (ICP/M Cadmium	0.19	0.19
Water	200.8 Metals (ICP/M Chromium	1	1
Water	200.8 Metals (ICP/M Cobalt	0.41	0.41
Water	200.8 Metals (ICP/M Copper	1.9	1.9
Water	200.8 Metals (ICP/M Lead	0.38	0.38
Water	200.8 Metals (ICP/M Manganese	130	130
Water	200.8 Metals (ICP/M Molybdenum	0.97	0.97
Water	200.8 Metals (ICP/M Nickel	1.4	1.4

Water	200.8 Metals (ICP/M Selenium	0.58	0.58
Water	200.8 Metals (ICP/M Silver	0.1	0.1
Water	200.8 Metals (ICP/M Thallium	0.1	0.1
Water	200.8 Metals (ICP/M Vanadium	0.3	0.3
Water	200.8 Metals (ICP/M Zinc	60	60
Water	245.1 Mercury (CVA/Mercury	0.08	0.08
Water	200.7 Metals (ICP) Aluminum	46	46
Water	200.7 Metals (ICP) Calcium	60000	60000
Water	200.7 Metals (ICP) Iron	17	17
Water	200.7 Metals (ICP) Magnesium	7500	7500
Water	200.7 Metals (ICP) Potassium	2000	2000
Water	200.7 Metals (ICP) Sodium	10000	10000
Water	200.8 Metals (ICP/M Antimony	0.4	0.4
Water	200.8 Metals (ICP/M Arsenic	0.37	0.37
Water	200.8 Metals (ICP/M Barium	42	42
Water	200.8 Metals (ICP/M Beryllium	0.15	0.15
Water	200.8 Metals (ICP/M Cadmium	0.11	0.11
Water	200.8 Metals (ICP/M Chromium	1	1
Water	200.8 Metals (ICP/M Cobalt	0.37	0.37
Water	200.8 Metals (ICP/M Copper	1.4	1.4
Water	200.8 Metals (ICP/M Lead	0.083	0.083
Water	200.8 Metals (ICP/M Manganese	97	97
Water	200.8 Metals (ICP/M Molybdenum	0.81	0.81
Water	200.8 Metals (ICP/M Nickel	1.3	1.3
Water	200.8 Metals (ICP/M Selenium	0.58	0.58
Water	200.8 Metals (ICP/M Silver	0.1	0.1
Water	200.8 Metals (ICP/MThallium	0.1	0.1
Water	200.8 Metals (ICP/M Vanadium	0.3	0.3
Water	200.8 Metals (ICP/M Zinc	31	31
Water	245.1 Mercury (CVA/Mercury	0.08	0.08
Water	200.7 Metals (ICP) Aluminum	35000	35000
Water	200.7 Metals (ICP) Calcium	380000	380000
Water	200.7 Metals (ICP) Iron	120000	120000
Water	200.7 Metals (ICP) Magnesium	33000	33000
Water	200.7 Metals (ICP) Potassium	2700	2700
Water	200.7 Metals (ICP) Sodium	3900	3900
Water	200.8 Metals (ICP/M Antimony	0.5	0.5
Water	200.8 Metals (ICP/M Arsenic	3.7	3.7
Water	200.8 Metals (ICP/M Barium	8.9	8.9
Water	200.8 Metals (ICP/M Beryllium	11	11
Water	200.8 Metals (ICP/M Cadmium	65	65
Water	200.8 Metals (ICP/M Chromium	2.7	2.7
Water	200.8 Metals (ICP/M Cobalt	110	110
Water	200.8 Metals (ICP/M Copper	6000	6000
Water	200.8 Metals (ICP/M Lead	32	32

Water	200.8 Metals (ICP/N	/l Manganese	33000	33000
Water	200.8 Metals (ICP/N	// Molybdenum	0.84	0.84
Water	200.8 Metals (ICP/N	// Nickel	72	72
Water	200.8 Metals (ICP/N	// Selenium	1.7	1.7
Water	200.8 Metals (ICP/N	A Silver	0.1	0.1
Water	200.8 Metals (ICP/N	/IThallium	0.32	0.32
Water	200.8 Metals (ICP/N	// Vanadium	2	2
Water	200.8 Metals (ICP/N	<i>I</i> /Zinc	25000	25000
Water	ICPMS Diss. Metals	Antimony		0.5
Water	ICPMS Diss. Metals	Arsenic		0.5
Water	ICPMS Diss. Metals	Barium	38.1	38.1
Water	ICPMS Diss. Metals	Cadmium	2.93	2.93
Water	ICPMS Diss. Metals	Chromium		1
Water	ICPMS Diss. Metals	Cobalt	4.79	4.79
Water	ICPMS Diss. Metals	Copper	2.91	2.91
Water	ICPMS Diss. Metals	Lead		0.1
Water	ICPMS Diss. Metals	Molybdenum		1
Water	ICPMS Diss. Metals	Nickel	2.97	2.97
Water	ICPMS Diss. Metals	Selenium		1
Water	ICPMS Diss. Metals	Silver		0.5
Water	ICPMS Diss. Metals	Thallium		0.5
Water	ICPMS Diss. Metals	Vanadium		2
Water	ICPOE Diss. Metals	Aluminum		20
Water	ICPOE Diss. Metals	Beryllium		2
Water	ICPOE Diss. Metals	Calcium	48900	48900
Water	ICPOE Diss. Metals	Iron		100
Water	ICPOE Diss. Metals	Magnesium	5040	5040
Water	ICPOE Diss. Metals	Manganese	1620	1620
Water	ICPOE Diss. Metals	Potassium	1370	1370
Water	ICPOE Diss. Metals	Sodium	3290	3290
Water	ICPOE Diss. Metals	Zinc	804	804
Water	200.7 Metals (ICP)	Potassium	2300	2300
Water	200.7 Metals (ICP)	Sodium	120000	120000
Water	200.8 Metals (ICP/N	// Nickel	58	58
Water	200.8 Metals (ICP/N	/I Selenium	0.58	0.58
Water	200.8 Metals (ICP/N	/I Silver	0.1	0.1
Water	200.8 Metals (ICP/N	/IThallium	0.25	0.25
Water	200.8 Metals (ICP/N	/I Vanadium	0.3	0.3
Water	245.1 Mercury (CVA	\/Mercury	0.08	0.08
		Aluminum	41	41
		Antimony	0.07	0.07
		Arsenic	0.5	0.5
		Barium	75	75
		Beryllium	0.02	0.02
		Cadmium	0.03	0.03

Calcium	59100	59100
Chromium	3.6	3.6
Cobalt	0.1	0.1
Copper	1.4	1.4
Iron	3	3
Lead	0.06	0.06
Magnesium	9160	9160
Manganese	29	29
Mercury	0.07	0.07
Molybdenum	1.2	1.2
Nickel	2.2	2.2
Potassium	2330	2330
Selenium	0.6	0.6
Silver	0.03	0.03
Sodium	16000	16000
Thallium	0.1	0.1
Vanadium	1.2	1.2
Zinc	26	26
Aluminum	44	44
Antimony	0.07	0.07
Arsenic	0.6	0.6
Barium	69.8	69.8
Beryllium	0.02	0.02
Cadmium	0.02	0.02
Calcium	62000	62000
Chromium	3.5	3.5
Cobalt	0.2	0.2
Copper	1.4	1.4
Iron	3	3
Lead	0.05	0.05
Magnesium	9580	9580
Manganese	36	36
Mercury	0.03	0.03
Molybdenum	1.2	1.2
Nickel	2.1	2.1
Potassium	2540	2540
Selenium	0.7	0.7
Silver	0.03	0.03
Sodium	19800	19800
Thallium	0.1	0.1
Vanadium	1.4	1.4
Zinc	27	27
Aluminum	51	51
Antimony	0.4	0.4
Arsenic	0.37	0.37

Barium	62	62
Beryllium	0.15	0.15
Cadmium	0.043	0.043
Calcium	60000	60000
Chromium	1	1
Cobalt	0.13	0.13
Copper	3	3
Iron	20	20
Lead	0.61	0.61
Magnesium	8700	8700
Manganese	19	19
Mercury	0.08	0.08
Molybdenum	1.2	1.2
Nickel	1.9	1.9
Potassium	2300	2300
Selenium	0.58	0.58
Silver	0.1	0.1
Sodium	15000	15000
Thallium	0.1	0.1
Vanadium	0.3	0.3
Zinc	5.4	5.4
Aluminum	36	36
Antimony	0.4	0.4
Arsenic	0.37	0.37
Barium	62	62
Beryllium	0.15	0.15
Cadmium	0.043	0.043
Calcium	61000	61000
Chromium	1	1
Cobalt	0.12	0.12
Copper	2.7	2.7
Iron	17	17
Lead	0.18	0.18
Magnesium	8900	8900
Manganese	13	13
Mercury	0.08	0.08
Molybdenum	1.2	1.2
Nickel	1.2	1.2
Potassium	2300	2300
Selenium	0.58	0.58
Silver	0.1	0.1
Sodium	14000	14000
Thallium	0.1	0.1
Vanadium	0.3	0.3
Zinc	4.6	4.6

Aluminum	39	39
Antimony	0.4	0.4
Arsenic	0.37	0.37
Barium	70	70
Beryllium	0.15	0.15
Cadmium	0.043	0.043
Calcium	65000	65000
Chromium	1	1
Cobalt	0.13	0.13
Copper	2.9	2.9
Iron	17	17
Lead	0.38	0.38
Magnesium	8900	8900
Manganese	19	19
Mercury	0.08	0.08
Molybdenum	1.1	1.1
Nickel	1.3	1.3
Potassium	2300	2300
Selenium	0.58	0.58
Silver	0.1	0.1
Sodium	13000	13000
Thallium	0.1	0.1
Vanadium	0.3	0.3
Zinc	75	75
Aluminum	24	24
Antimony	0	0
Arsenic	0.58	0.58
Barium	49	49
Beryllium	0	0
Cadmium	0	0
Calcium	61000	61000
Chromium	1	1
Cobalt	0	0
Copper	1.3	1.3
Iron	17	17
Lead	0.17	0.17
Magnesium	8100	8100
Manganese	2.9	2.9
Mercury	0	0
Molybdenum	1.5	1.5
Nickel	1.2	1.2
Potassium	2200	2200
Selenium	1	1
Silver	0	0
Sodium	14000	14000

Thallium	0	0
Vanadium	0	0
Zinc	3	3
Aluminum	24	24
Antimony	0	0
Arsenic	0	0
Barium	50	50
Beryllium	0	0
Cadmium	0	0
Calcium	60000	60000
Chromium	1	1
Cobalt	0	0
Copper	1.4	1.4
Iron	17	17
Lead	0.15	0.15
Magnesium	8100	8100
Manganese	3	3
Mercury	0	0
Molybdenum	1.3	1.3
Nickel	1.2	1.2
Potassium	2100	2100
Selenium	1	1
Silver	0	0
Sodium	13000	13000
Thallium	0.15	0.15
Vanadium	0	0
Zinc	3	3
Aluminum	24	24
Antimony	0	0
Arsenic	0.5	0.5
Barium	55	55
Beryllium	0	0
Cadmium	0	0
Calcium	57000	57000
Chromium	1	1
Cobalt	0	0
Copper	1.6	1.6
Iron	17	17
Lead	0.25	0.25
Magnesium	7800	7800
Manganese	5.6	5.6
Mercury	0	0
Molybdenum	1.2	1.2
Nickel	1.3	1.3
Potassium	2300	2300

Selenium	1	1
	1	1
Silver	12000	13000
Sodium	13000	13000
Thallium Vanadium	0 0.41	0
		0.41
Zinc	3	3
Aluminum	38	38
Antimony Arsenic	0.4	0.4
	0.38	0.38
Barium	65	65
Beryllium	0.15	0.15
Calaine	0.043	0.043
Clauseine	62000	62000
Chromium	1	1
Cobalt	0.12	0.12
Copper	2.8	2.8
Iron	17	17
Lead	0.14	0.14
Magnesium	8800	8800
Manganese	11	11
Mercury	0.08	0.08
Molybdenum	1.1	1.1
Nickel	1.6	1.6
Potassium	2300	2300
Selenium	0.58	0.58
Silver	0.1	0.1
Sodium	13000	13000
Thallium	0.1	0.1
Vanadium	0.3	0.3
Zinc	3	3
Aluminum	24	24
Antimony	0	0
Arsenic	0.62	0.62
Barium	52	52
Beryllium	0	0
Cadmium	0	0
Calcium	58000	58000
Chromium	1	1
Cobalt	0.12	0.12
Copper	1.5	1.5
Iron	17	17
Lead	0.15	0.15
Magnesium	7900	7900
Manganese	5.4	5.4
Mercury	0	0

Molybdenum	1.3	1.3
Nickel	1.3	1.3
Potassium	2200	2200
Selenium	1	1
Silver	0	0
Sodium	12000	12000
Thallium	0	0
Vanadium	0	0
Zinc	3	3
Aluminum	34	34
Antimony	0.4	0.4
Arsenic	0.37	0.37
Barium	64	64
Beryllium	0.15	0.15
Cadmium	0.043	0.043
Calcium	66000	66000
Chromium	1	1
Cobalt	0.12	0.12
Copper	2.6	2.6
Iron	17	17
Lead	0.13	0.13
Magnesium	8800	8800
Manganese	14	14
Mercury	0.08	0.08
Molybdenum	1.1	1.1
Nickel	1	1
Potassium	2200	2200
Selenium	0.58	0.58
Silver	0.1	0.1
Sodium	16000	16000
Thallium	0.1	0.1
Vanadium	0.3	0.3
Zinc	5.2	5.2
Aluminum	24	24
Antimony	0	0
Arsenic	0.38	0.38
Barium	56	56
Beryllium	0	0
Cadmium	0	0
Calcium	66000	66000
Chromium	1	1
Cobalt	0.12	0.12
Copper	1.4	1.4
Iron	17	17
Lead	0.14	0.14

Magnesium	8300	8300
Manganese	1.7	1.7
Mercury	0	0
Molybdenum	1.7	1.7
Nickel	1.4	1.4
Potassium	2200	2200
Selenium	1	1
Silver	0	0
Sodium	16000	16000
Thallium	0	0
Vanadium	0.37	0.37
Zinc	3	3
Aluminum	41	41
Antimony	0.4	0.4
Arsenic	0.37	0.37
Barium	62	62
Beryllium	0.15	0.15
Cadmium	0.043	0.043
Calcium	64000	64000
Chromium	1	1
Cobalt	0.12	0.12
Copper	2.7	2.7
Iron	17	17
Lead	0.21	0.21
Magnesium	8900	8900
Manganese	12	12
Mercury	0.08	0.08
Molybdenum	1.4	1.4
Nickel	1.3	1.3
Potassium	2300	2300
Selenium	0.58	0.58
Silver	0.1	0.1
Sodium	17000	17000
Thallium	0.1	0.1
Vanadium	0.3	0.3
Zinc	2.8	2.8
Aluminum	24	24
Antimony	0	0
Arsenic	0.52	0.52
Barium	57	57
Beryllium	0	0
Cadmium	0	0
Calcium	67000	67000
Chromium	1	1
Cobalt	0.15	0.15

Copper	1.6	1.6
Iron	17	17
Lead	0.23	0.23
Magnesium	8600	8600
Manganese	4.3	4.3
Mercury	0	0
Molybdenum	1.7	1.7
Nickel	1.9	1.9
Potassium	2200	2200
Selenium	1	1
Silver	0	0
Sodium	16000	16000
Thallium	0	0
Vanadium	0.3	0.3
Zinc	3	3
Aluminum	35	35
Antimony	0.4	0.4
Arsenic	0.43	0.43
Barium	65	65
Beryllium	0.15	0.15
Cadmium	0.043	0.043
Calcium	67000	67000
Chromium	1	1
Cobalt	0.12	0.12
Copper	2.8	2.8
Iron	17	17
Lead	0.22	0.22
Magnesium	8900	8900
Manganese	8.2	8.2
Mercury	0.08	0.08
Molybdenum	1.2	1.2
Nickel	1.2	1.2
Potassium	2200	2200
Selenium	0.58	0.58
Silver	0.1	0.1
Sodium	17000	17000
Thallium	0.1	0.1
Vanadium	0.3	0.3
Zinc	2.8	2.8
Aluminum	24	24
Antimony	0	0
Arsenic	0.76	0.76
Barium	60	60
Beryllium	0	0
Cadmium	0	0
Cadmium	U	J

Calcium	66000	66000
Chromium	1	1
Cobalt	0.14	0.14
Copper	1.6	1.6
Iron	17	17
Lead	0.2	0.2
Magnesium	8400	8400
Manganese	1.6	1.6
Mercury	0	0
Molybdenum	1.7	1.7
Nickel	1.8	1.8
Potassium	2200	2200
Selenium	1	1
Silver	0	0
Sodium	16000	16000
Thallium	0	0
Vanadium	0.36	0.36
Zinc	3	3
Aluminum	270	270
Antimony	0	0
Arsenic	0.76	0.76
Barium	70	70
Beryllium	0	0
Cadmium	0	0
Calcium	51000	51000
Chromium	1	1
Cobalt	0.18	0.18
Copper	1.5	1.5
Iron	150	150
Lead	0.36	0.36
Magnesium	6500	6500
Manganese	3.5	3.5
Mercury	0	0
Molybdenum	1.8	1.8
Nickel	1.5	1.5
Potassium	2500	2500
Selenium	1	1
Silver	0	0
Sodium	19000	19000
Thallium	0.15	0.15
Vanadium	0.68	0.68
Zinc	3	3
Aluminum	24	24
Antimony	0.4	0.4
Arsenic	0.91	0.91

Barium	76	76
Beryllium	0.15	0.15
Cadmium	0.043	0.043
Calcium	59000	59000
Chromium	1	1
Cobalt	0.13	0.13
Copper	3.1	3.1
Iron	17	17
Lead	0.06	0.06
Magnesium	7900	7900
Manganese	3.2	3.2
Mercury	0.08	0.08
Molybdenum	1.3	1.3
Nickel	1.3	1.3
Potassium	2500	2500
Selenium	0.58	0.58
Silver	0.1	0.1
Sodium	21000	21000
Thallium	0.1	0.1
Vanadium	0.73	0.73
Zinc	30	30
Aluminum	24	24
Antimony	0.4	0.4
Arsenic	0.46	0.46
Barium	78	78
Beryllium	0.15	0.15
Cadmium	0.043	0.043
Calcium	59000	59000
Chromium	1	1
Cobalt	0.13	0.13
Copper	2.1	2.1
Iron	17	17
Lead	0.06	0.06
Magnesium	7800	7800
Manganese	4.5	4.5
Mercury	0.08	0.08
Molybdenum	1.3	1.3
Nickel	1.2	1.2
Potassium	2400	2400
Selenium	0.58	0.58
Silver	0.1	0.1
Sodium	21000	21000
Thallium	0.1	0.1
Vanadium	0.71	0.71
Zinc	35	35

Aluminum	390	390
Antimony	0	0
Arsenic	0.76	0.76
Barium	81	81
Beryllium	0	0
Cadmium	0	0
Calcium	52000	52000
Chromium	1	1
Cobalt	0.23	0.23
Copper	1.7	1.7
Iron	220	220
Lead	0.5	0.5
Magnesium	6600	6600
Manganese	20	20
Mercury	0	0
Molybdenum	1.8	1.8
Nickel	1.8	1.8
Potassium	2500	2500
Selenium	1	1
Silver	0	0
Sodium	20000	20000
Thallium	0	0
Vanadium	0.73	0.73
Zinc	3	3

Units	Test Type	Detect?
ug/L	rest type	N Detect:
ug/L		N
		Y
ug/L		Υ
ug/L		
ug/L		N
ug/L		Y
ug/L		Y
ug/L		N
ug/L		Υ
ug/L		N
ug/L		Υ
ug/L		N
ug/L		Υ
ug/L		N
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	Y
ug/L	initial	N
ug/L	initial	N
ug/L	initial	N
46/ -	minual	. •

ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ

ug/L	initial	N
ug/L	initial	N
ug/L	initial	N
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	N
ug/L	initial	Ν
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	Υ

ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	Υ
ug/L	initial	Υ
ug/L		N
ug/L		N
ug/L		Υ
ug/L		Υ
ug/L		N
ug/L		Υ
ug/L		Υ
ug/L		N
ug/L		N
ug/L		Υ
ug/L		N
ug/L		Υ
ug/L		N
ug/L		Υ
ug/L	initial	N
ug/L	initial	N
ug/L	initial	Υ
ug/L	initial	N
ug/L	initial	N
ug/L		Υ
ug/L		N
ug/L		Υ
ug/L		Υ
ug/L		N
ug/L		Υ

ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N

ug/L	Y
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ

ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Y
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Y
ug/L	Y
ug/L	Y
ug/L	N
ug/L	N
ug/L	Υ

ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ

ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N

ug/L	Y
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ

ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ

ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Y
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N

ug/L	Υ
ug/L	N
ug/L	Y
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Y
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	Y
ug/L	Y
ug/L	N
ug/L	N
ug/L	N
ug/L	Υ

ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ

ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	Υ
ug/L	Υ
ug/L	N
ug/L	N
ug/L	Υ
ug/L	N
ug/L	Υ
ug/L	N

Qualifier	Lab Qualifier	MDL
U	U	0.5
U	U	0.5
		5
	j	0.1
U	U	1
		0.1
		0.5
U	U	0.1
U	U	1
U	U	0.5
U	U	1
U	U	0.5
U	U	0.5
U	U	2
J	j	20
U	U	2
		100
U	U	100
		100
		2
J	J	250
		250
U	,	10
J	J	24
	11	25
U	U	17
		33 17
U	U	480 0.4
U	U	0.37
C	O	0.14
U	U	0.15
1	J	0.043
U	U	1
J	J	0.12
		0.5
		0.06
		1.2
J	j	0.45
		0.4
U	U	0.58
U	U	0.1
U	U	0.1

U	U	0.3
J	j	2.8
U	U	0.08
J	j	24
		25
U	U	17
		33
J	J	17
		480
U	U	0.4
J	J	0.37
		0.14
U	U	0.15
		0.043
U	U	1
		0.12
		0.5
J	J	0.06
		1.2
J	J	0.45
		0.4
U	U	0.58
U	U	0.1
U	U	0.1
U	U	0.3
		2.8
U	U	0.08
J	J	24
		25
U	U	17
		33
		17
		480
	U	0.4
U	U	0.37
		0.14
U	U	0.15
		0.043
U	U	1
		0.12
		0.5
		0.06
		1.2
I	J	0.45
		0.4

U	U	0.58
U	U	0.1
U	U	0.1
U	U	0.3
		2.8
U	U	0.08
J	J	24
J	J	
		25
U	U	17
		33
		17
		480
U	U	0.4
U	U	0.37
		0.14
U	U	0.15
		0.043
U	U	1
J	J	0.12
,	J	0.5
ı	,	
J	J	0.06
		1.2
J	J	0.45
		0.4
U	U	0.58
U	U	0.1
U	U	0.1
U	U	0.3
		2.8
U	U	0.08
j-		24
J-		25
J-		17
J-		330
J-		17
J-		480
J-		0.4
J-		0.37
j-		0.14
j-		0.15
j-		0.043
J-		1
J-		0.12
J-		0.5
J-		0.06
		2.20

J-		1.2
J-		0.45
j-		0.4
UJ		0.58
UJ		0.1
J-		0.1
J-		0.3
J-		2.8
UJ	U	0.5
UJ	U	0.5
J-		5
J-		0.1
UJ	U	1
J-		0.1
J-		0.5
UJ	U	0.1
UJ	U	1
J-	J	0.5
UJ	U	1
UJ	U	0.5
UJ	U	0.5
UJ	U	2
UJ	U	20
UJ	U	2
J-	0	100
N1	U	100
J-	0	100
J-		2
J-		
		250
J- J-		250
J-		10
r		17
E		480
		0.4
U		0.58
U		0.1
		0.1
U		0.3
U		0.08
J		
U		

U J U J

j

J

U

J J

U

U J

U

J

j

J U

J

J

U

U

U

j

J

U

j

U

U

U U

j

J U

U

U U

U J

U

J

U

J

U

U

U

U

J

J U

U

U

U

U

J

U

U

U U

U U

U U

j

U

U

U

U

U

J

U

U

U

U

U

U U

U

U

U

U

U

J

U

U

U

j

U U

U

U

J

U

U

U

U

U J

U

U

U

J U

j

U J

U

U

U

j

U

J

U

J

U

U

U

U J

U

U J

U

U

U

J

U

j

U U

U

U

U

J U

U

U

U

U

U

U J

U

U

U

U

U

J U

U J

U U

U

J

U

j

J U

U

U

U

j

U J

U

U

U

U

U U

U J

U

j j

U

U

U U

U

U

U J

U

U

U

J

U J

U

U

U

U

J U

J

U

J

U U

U J

U

j

U J

U

U

U

U U

U

U

J

U

J

U

j

j

U

U

U

U J

U

U J

U

U

U

j

U

U

U

J

J

U U

U

j

U

U

j

U

U

U

j

U

U

U J

U

U J

U

U

U

J

U

U

U

j

U

U

U

J

j

U

U

U

J

U

U U

U

j

MDL Units	QC Type	Event	Date_ColleReporting_Limit	Reporting_Limit_Units
ug/L		8/8/201	15; 12:00 AM	1 ug/L
ug/L		8/8/201	15; 12:00 AM	2 ug/L
ug/L		8/8/201	15; 12:00 AM	10 ug/L
ug/L		8/8/201	15; 12:00 AM	0.2 ug/L
ug/L		8/8/201	15; 12:00 AM	2 ug/L
ug/L		8/8/201	15; 12:00 AM	0.2 ug/L
ug/L		8/8/201	15; 12:00 AM	1 ug/L
ug/L		8/8/201	15; 12:00 AM	0.2 ug/L
ug/L		8/8/201	15; 12:00 AM	1 ug/L
ug/L		8/8/201	15; 12:00 AM	1 ug/L
ug/L		8/8/201	15; 12:00 AM	2 ug/L
ug/L		8/8/201	15; 12:00 AM	1 ug/L
ug/L		8/8/201	15; 12:00 AM	1 ug/L
ug/L		8/8/201	15; 12:00 AM	3 ug/L
ug/L		8/8/201	15; 12:00 AM	50 ug/L
ug/L		8/8/201	15; 12:00 AM	5 ug/L
ug/L		8/8/201	15; 12:00 AM	250 ug/L
ug/L		8/8/201	15; 12:00 AM	250 ug/L
ug/L		8/8/201	15; 12:00 AM	250 ug/L
ug/L		8/8/201	15; 12:00 AM	5 ug/L
ug/L		8/8/201	15; 12:00 AM	1000 ug/L
ug/L		8/8/201	15; 12:00 AM	1000 ug/L
ug/L		8/8/201	15; 12:00 AM	20 ug/L
ug/L		8/13/201	15; 12:15 PM	200 ug/L
ug/L		8/13/201	15; 12:15 PM	500 ug/L
ug/L		8/13/201	15; 12:15 PM	50 ug/L
ug/L			15; 12:15 PM	500 ug/L
ug/L		8/13/201	15; 12:15 PM	1000 ug/L
ug/L			15; 12:15 PM	1000 ug/L
ug/L			15; 12:15 PM	1 ug/L
ug/L			15; 12:15 PM	1 ug/L
ug/L			15; 12:15 PM	2 ug/L
ug/L			15; 12:15 PM	0.4 ug/L
ug/L			15; 12:15 PM	0.1 ug/L
ug/L			15; 12:15 PM	2 ug/L
ug/L			15; 12:15 PM	0.4 ug/L
ug/L			15; 12:15 PM	1 ug/L
ug/L			15; 12:15 PM	0.3 ug/L
ug/L			15; 12:15 PM	2.5 ug/L
ug/L			15; 12:15 PM	1ug/L
ug/L			15; 12:15 PM	1 ug/L
ug/L			15; 12:15 PM	2 ug/L
ug/L			15; 12:15 PM	1 ug/L
ug/L		8/13/201	15; 12:15 PM	0.2 ug/L

ug/L	8/13/2015; 12:15 PM	1 ug/L
ug/L	8/13/2015; 12:15 PM	20 ug/L
ug/L	8/13/2015; 12:15 PM	0.2 ug/L
ug/L	8/13/2015; 10:55 AM	200 ug/L
ug/L	8/13/2015; 10:55 AM	500 ug/L
ug/L	8/13/2015; 10:55 AM	50 ug/L
ug/L	8/13/2015; 10:55 AM	500 ug/L
ug/L	8/13/2015; 10:55 AM	1000 ug/L
ug/L	8/13/2015; 10:55 AM	1000 ug/L
ug/L	8/13/2015; 10:55 AM	1 ug/L
ug/L	8/13/2015; 10:55 AM	1 ug/L
ug/L	8/13/2015; 10:55 AM	2 ug/L
ug/L	8/13/2015; 10:55 AM	0.4 ug/L
ug/L	8/13/2015; 10:55 AM	0.1 ug/L
ug/L	8/13/2015; 10:55 AM	2 ug/L
ug/L	8/13/2015; 10:55 AM	0.4 ug/L
ug/L	8/13/2015; 10:55 AM	1 ug/L
ug/L	8/13/2015; 10:55 AM	0.3 ug/L
ug/L	8/13/2015; 10:55 AM	2.5 ug/L
ug/L	8/13/2015; 10:55 AM	1 ug/L
ug/L	8/13/2015; 10:55 AM	1 ug/L
ug/L	8/13/2015; 10:55 AM	2 ug/L
ug/L	8/13/2015; 10:55 AM	1 ug/L
ug/L	8/13/2015; 10:55 AM	0.2 ug/L
ug/L	8/13/2015; 10:55 AM	1 ug/L
ug/L	8/13/2015; 10:55 AM	20 ug/L
ug/L	8/13/2015; 10:55 AM	0.2 ug/L
ug/L	8/13/2015; 12:45 PM	200 ug/L
ug/L	8/13/2015; 12:45 PM	500 ug/L
ug/L	8/13/2015; 12:45 PM	50 ug/L
ug/L	8/13/2015; 12:45 PM	500 ug/L
ug/L	8/13/2015; 12:45 PM	1000 ug/L
ug/L	8/13/2015; 12:45 PM	1000 ug/L
ug/L	8/13/2015; 12:45 PM	1 ug/L
ug/L	8/13/2015; 12:45 PM	1 ug/L
ug/L	8/13/2015; 12:45 PM	2 ug/L
ug/L	8/13/2015; 12:45 PM	0.4 ug/L
ug/L	8/13/2015; 12:45 PM	0.1 ug/L
ug/L	8/13/2015; 12:45 PM	2 ug/L
ug/L	8/13/2015; 12:45 PM	0.4 ug/L
ug/L	8/13/20153 12:45 PM	1 ug/L
ug/L	8/13/2015; 12:45 PM	0.3 ug/L
ug/L	8/13/2015; 12:45 PM	2.5 ug/L
ug/L	8/13/2015; 12:45 PM	1 ug/L
ug/L	8/13/2015; 12:45 PM	1 ug/L

a/I	9/13/301E: 13:4E DM	2 ug/l
ug/L ug/L	8/13/2015; 12:45 PM 8/13/2015; 12:45 PM	2 ug/L
ug/L	8/13/2015; 12:45 PM	1 ug/L 0.2 ug/L
ug/L	8/13/2015; 12:45 PM	1ug/L
ug/L	8/13/2015; 12:45 PM	20 ug/L
	8/13/2015; 12:45 PM	_
ug/L	8/13/2015; 11:45 AM	0.2 ug/L
ug/L	8/13/2015; 11:45 AM	200 ug/L
ug/L		500 ug/L
ug/L	8/13/2015; 11:45 AM	50 ug/L
ug/L	8/13/2015; 11:45 AM	500 ug/L
ug/L	8/13/2015; 11:45 AM	1000 ug/L
ug/L	8/13/2015; 11:45 AM	1000 ug/L
ug/L	8/13/2015; 11:45 AM	1ug/L
ug/L	8/13/2015; 11:45 AM	1ug/L
ug/L	8/13/2015; 11:45 AM	2 ug/L
ug/L	8/13/2015; 11:45 AM	0.4 ug/L
ug/L	8/13/2015; 11:45 AM	0.1 ug/L
ug/L	8/13/2015; 11:45 AM	2 ug/L
ug/L	8/13/2015; 11:45 AM	0.4 ug/L
ug/L	8/13/2015; 11:45 AM	1 ug/L
ug/L	8/13/2015; 11:45 AM	0.3 ug/L
ug/L	8/13/2015; 11:45 AM	2.5 ug/L
ug/L	8/13/2015; 11:45 AM	1 ug/L
ug/L	8/13/2015; 11:45 AM	1 ug/L
ug/L	8/13/2015; 11:45 AM	2 ug/L
ug/L	8/13/2015; 11:45 AM	1 ug/L
ug/L	8/13/2015; 11:45 AM	0.2 ug/L
ug/L	8/13/2015; 11:45 AM	1 ug/L
ug/L	8/13/2015; 11:45 AM	20 ug/L
ug/L	8/13/2015; 11:45 AM	0.2 ug/L
ug/L	8/10/2015; 10:45 AM	200 ug/L
ug/L	8/10/2015; 10:45 AM	500 ug/L
ug/L	8/10/2015; 10:45 AM	50 ug/L
ug/L	8/10/2015; 10:45 AM	5000 ug/L
ug/L	8/10/2015; 10:45 AM	1000 ug/L
ug/L	8/10/2015; 10:45 AM	1000 ug/L
ug/L	8/10/2015; 10:45 AM	1 ug/L
ug/L	8/10/2015; 10:45 AM	1 ug/L
ug/L	8/10/2015; 10:45 AM	2 ug/L
ug/L	8/10/2015; 10:45 AM	0.4 ug/L
ug/L	8/10/2015; 10:45 AM	0.1 ug/L
ug/L	8/10/2015; 10:45 AM	2 ug/L
ug/L	8/10/2015; 10:45 AM	0.4 ug/L
ug/L	8/10/2015; 10:45 AM	1 ug/L
ug/L	8/10/2015; 10:45 AM	0.3 ug/L
- -		3, -

ug/L	8/10/2015; 10:45 AM	2.5 ug/L
ug/L	8/10/2015; 10:45 AM	1 ug/L
ug/L	8/10/2015; 10:45 AM	1 ug/L
ug/L	8/10/2015; 10:45 AM	2 ug/L
ug/L	8/10/2015; 10:45 AM	1 ug/L
ug/L	8/10/2015; 10:45 AM	0.2 ug/L
ug/L	8/10/2015; 10:45 AM	1 ug/L
ug/L	8/10/2015; 10:45 AM	20 ug/L
ug/L	8/9/2015; 12:00 AM	1 ug/L
ug/L	8/9/2015; 12:00 AM	2 ug/L
ug/L	8/9/2015; 12:00 AM	10 ug/L
ug/L	8/9/2015; 12:00 AM	0.2 ug/L
ug/L	8/9/2015; 12:00 AM	2 ug/L
ug/L	8/9/2015; 12:00 AM	0.2 ug/L
ug/L	8/9/2015; 12:00 AM	1 ug/L
ug/L	8/9/2015; 12:00 AM	0.2 ug/L
ug/L	8/9/2015; 12:00 AM	1 ug/L
ug/L	8/9/2015; 12:00 AM	1 ug/L
ug/L	8/9/2015; 12:00 AM	2 ug/L
ug/L	8/9/2015; 12:00 AM	1 ug/L
ug/L	8/9/2015; 12:00 AM	1 ug/L
ug/L	8/9/2015; 12:00 AM	3 ug/L
ug/L	8/9/2015; 12:00 AM	50 ug/L
ug/L	8/9/2015; 12:00 AM	5 ug/L
ug/L	8/9/2015; 12:00 AM	250 ug/L
ug/L	8/9/2015; 12:00 AM	250 ug/L
ug/L	8/9/2015; 12:00 AM	250 ug/L
ug/L	8/9/2015; 12:00 AM	5 ug/L
ug/L	8/9/2015; 12:00 AM	1000 ug/L
ug/L	8/9/2015; 12:00 AM	1000 ug/L
ug/L	8/9/2015; 12:00 AM	20 ug/L
ug/L	8/11/2015l5 4:20 PM	1000 ug/L
ug/L	8/11/2015l5 4:20 PM	1000 ug/L
ug/L	8/11/2015l5 4:20 PM	1 ug/L
ug/L	8/11/2015l5 4:20 PM	2 ug/L
ug/L	8/11/2015l5 4:20 PM	1 ug/L
ug/L	8/11/2015l5 4:20 PM	0.2 ug/L
ug/L	8/11/2015l5 4:20 PM	1 ug/L
ug/L	8/11/2015l5 4:20 PM	0.2 ug/L
	42222	
	42222	
	42222	
	42222	
	42222	
	42222	

.

.___,

.

.___.

.....

.....

.___ .

....

.

.

Reportable_ResulRes	sult_TypeTota	ıl_Or_DisolvSampleDate empty
TRO	G D	42224
TRO		42224
TRO		42224
TRO	G D	42224
TRO	G D	42224
TRO		42224
TRO	G D	42224
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229
Yes TRO	G D	42229

V	TDC	2	42220
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
. 55		-	

V	TDC	2	42220
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229 42229
Yes	TRG	D	
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42229
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226

Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
Yes	TRG	D	42226
	TRG	D	42225
Yes	TRG	D	42227
Yes	TRG	D	42227
Yes	TRG	D	42227
Yes	TRG	D	42227
Yes	TRG	D	42227
Yes	TRG	D	42227
Yes	TRG	D	42227
Yes	TRG	D	42227
		D	
		D	
		D	
		D	
		D	
		D	

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D D

D

D

D

D

D

D D

D

D

D

D

D

D D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D D

D

D

D

empty empty empty empty

empty empty empty

empty empty empty empty

empty empty empty

	A ready to the same
empty empty empty empty empty	Analyte
	Antimony
	Arsenic
	Barium
	Cadmium
	Chromium
	Cobalt
	Copper
	Lead
	Molybdenum
	Nickel
	Selenium
	Silver
	Thallium
	Vanadium
	Aluminum
	Beryllium
	Calcium
	Iron
	Magnesium
	Manganese
	Potassium
	Sodium
	Zinc
	Aluminum
	Calcium
	Iron
	Magnesium
	Potassium
	Sodium
	Antimony
	Arsenic
	Barium
	Beryllium
	Cadmium
	Chromium
	Cobalt
	Copper
	Lead
	Manganese
	Molybdenum
	Nickel
	Selenium
	Silver
	Thallium
	radiiluri

Vanadium

Zinc

Mercury

Aluminum

Calcium

Iron

Magnesium

Potassium

Sodium

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Cobalt

Copper

Lead

Manganese

Molybdenum

Nickel

Selenium

Silver

Thallium

Vanadium

Zinc

Mercury

Aluminum

Calcium

Iron

Magnesium

Potassium

Sodium

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Cobalt

Copper

Lead

Manganese

Molybdenum

Nickel

Selenium

Silver

Thallium

Vanadium

Zinc

Mercury

Aluminum

Calcium

Iron

Magnesium

Potassium

Sodium

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Cobalt

Copper

Lead

Manganese

Molybdenum

Nickel

Selenium

Silver

Thallium

Vanadium

Zinc

Mercury

Aluminum

Calcium

Iron

Magnesium

Potassium

Sodium

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Cobalt

Copper

Lead

Manganese

Molybdenum

Nickel

Selenium

Silver

Thallium

Vanadium

Zinc

Antimony

Arsenic

Barium

Cadmium

Chromium

Cobalt

Copper

Lead

Molybdenum

Nickel

Selenium

Silver

Thallium

Vanadium

Aluminum

Beryllium

Calcium

Iron

Magnesium

Manganese

Potassium

Sodium

Zinc

Potassium

Sodium

Nickel

Selenium

Silver

Thallium

Vanadium

Mercury

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Aluminum

Antimony

Arsenic

Barium

Beryllium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

Molybdenum

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Matrix Type QC Type	Type	Location	Edited Location
Surface Water	0D	Bakers Bridge	Bakers Bridge
Surface Water	0 D	Bakers Bridge	Bakers Bridge
Surface Water	0 D	Bakers Bridge	Bakers Bridge
Surface Water	0 D	Bakers Bridge	Bakers Bridge
Surface Water	0D	Bakers Bridge	Bakers Bridge
Surface Water	0 D	Bakers Bridge	Bakers Bridge
Surface Water	0 D	Bakers Bridge	Bakers Bridge
Surface Water	0D	Bakers Bridge	Bakers Bridge
Surface Water	0 D	Bakers Bridge	Bakers Bridge
Surface Water	0D	Bakers Bridge	Bakers Bridge
Surface Water	0D	Bakers Bridge	Bakers Bridge
Surface Water	0 D	Bakers Bridge	Bakers Bridge
Surface Water	0D	Bakers Bridge	Bakers Bridge
Surface Water	0 D	Bakers Bridge	Bakers Bridge
Surface Water	0 D	Bakers Bridge	Bakers Bridge
Surface Water	0 D	Bakers Bridge	Bakers Bridge
Surface Water	0D	Bakers Bridge	Bakers Bridge
Surface Water	0D	Bakers Bridge	Bakers Bridge
Surface Water	0 D	Bakers Bridge	Bakers Bridge
Surface Water	0 D	Bakers Bridge	Bakers Bridge
Surface Water	0D	Bakers Bridge	Bakers Bridge
Surface Water	0D	Bakers Bridge	Bakers Bridge
Surface Water	0D	Bakers Bridge	Bakers Bridge
Surface Water	0D	GKM01	GKM01
Surface Water	0D	GKM01	GKM01
Surface Water	0 D	GKM01	GKM01
Surface Water	0 D	GKM01	GKM01
Surface Water	0D	GKM01	GKM01
Surface Water	0 D	GKM01	GKM01
Surface Water	0 D	GKM01	GKM01
Surface Water	0 D	GKM01	GKM01
Surface Water	0 D	GKM01	GKM01
Surface Water	0D	GKM01	GKM01
Surface Water	0 D	GKM01	GKM01
Surface Water	0D	GKM01	GKM01
Surface Water	0D	GKM01	GKM01
Surface Water	0 D	GKM01	GKM01
Surface Water	0D	GKM01	GKM01
Surface Water	0 D	GKM01	GKM01
Surface Water	0 D	GKM01	GKM01
Surface Water	0D	GKM01	GKM01
Surface Water	0 D	GKM01	GKM01
Surface Water	0D	GKM01	GKM01
Surface Water	0 D	GKM01	GKM01

Surface Water	0D	GKM01	GKM01
Surface Water	0D	GKM01	GKM01
Surface Water	0D	GKM01	GKM01
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM02	GKM02
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	OD OD	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	OD OD	GKM04	GKM04
Surface Water Surface Water	0 D 0 D	GKM04 GKM04	GKM04 GKM04
	0D		
Surface Water	שט	GKM04	GKM04

Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM04	GKM04
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM05	GKM05
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09

Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM09	GKM09
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D		
		GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0 D	GKM11	GKM11
Surface Water	0D	GKM11	GKM11
Surface Water	0D	GKM13	GKM13
Surface Water	0D	GKM13	GKM13
Surface Water	0D	GKM13	GKM13
Surface Water	0D	GKM13	GKM13
Surface Water	0 D	GKM13	GKM13
Surface Water	0D	GKM13	GKM13
Surface Water	0D	GKM13	GKM13
Surface Water	0D	GKM13	GKM13
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0 D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake

	٥٥	A_4== \A/=&== =4= ==	A-to- VAl-to- I-tolk-
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0D	Aztec Water Intake	Aztec Water Intake
0	0 D	Aztec Water Intake	Aztec Water Intake
0	0D	Farmington Water Intake	Farmington Water Intake
0	0D	Farmington Water Intake	Farmington Water Intake
0	OD	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0D	Farmington Water Intake	Farmington Water Intake
0	0D	Farmington Water Intake	Farmington Water Intake
0	0 D	Farmington Water Intake	Farmington Water Intake
0	0 D	ADW-010	ADW-010
0	0D	ADW-010	ADW-010
0	0D	ADW-010	ADW-010
-			

0	0D	ADW-010	ADW-010	
0	0D	ADW-010	ADW-010 ADW-010	
0	0D	ADW-010	ADW-010 ADW-010	
	0D	ADW-010	ADW-010 ADW-010	
0				
0	0D	ADW-010	ADW-010	
0	0D	ADW-010	ADW-010	
0	0D	ADW-010	ADW-010	
0	0D	ADW-010	ADW-010	
0	0D	ADW-010	ADW-010	
0	0 D	ADW-010	ADW-010	
0	0D	ADW-010	ADW-010	
0	0 D	ADW-010	ADW-010	
0	0D	ADW-010	ADW-010	
0	0D	ADW-010	ADW-010	
0	0 D	ADW-010	ADW-010	
0	0D	ADW-010	ADW-010	
0	0D	ADW-010	ADW-010	
0	0D	ADW-010	ADW-010	
0	0D	ADW-010	ADW-010	
0	0 D	ADW-010	ADW-010	
Ó	0 D	ADW-010	ADW-010	
0	0 D	ADW-021	ADW-021	,
0	0D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
0	0D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
0	0D	ADW-021	ADW-021	
0	0D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
Ő	0 D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
0	0D	ADW-021	ADW-021	¥
0	0D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
0	0 D	ADW-021	ADW-021	
0	0D	ADW-021	ADW-021	
0	0D	ADW-021	ADW-021	
	_	-		

0	0D	ADW-022	ADW-022
Ŏ	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022 ADW-022
0	0D	ADW-022	ADW-022 ADW-022
7	0D	ADW-022	ADW-022 ADW-022
0	0D	ADW-022	ADW-022 ADW-022
0		ADW-022	ADW-022
0	0D 0D		
0		ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADW-022	ADW-022
0	0D	ADWS-ARP	ADWS-ARP
0	0 D	ADWS-ARP	ADWS-ARP
0	0 D	ADWS-ARP	ADWS-ARP
0	0 D	ADWS-ARP	ADWS-ARP
0	0D	ADWS-ARP	ADWS-ARP
0	0D	ADWS-ARP	ADWS-ARP
0	0 D	ADWS-ARP	ADWS-ARP
0	0D	ADWS-ARP	ADWS-ARP
0	0 D	ADWS-ARP	ADWS-ARP
0	0 D	ADWS-ARP	ADWS-ARP
0	0 D	ADWS-ARP	ADWS-ARP
0	0 D	ADWS-ARP	ADWS-ARP
0	0 D	ADWS-ARP	ADWS-ARP
0	0D	ADWS-ARP	ADWS-ARP
0	0 D	ADWS-ARP	ADWS-ARP
0	0 D	ADWS-ARP	ADWS-ARP
0	0D	ADWS-ARP	ADWS-ARP
0	0 D	ADWS-ARP	ADWS-ARP
0	0D	ADWS-ARP	ADWS-ARP
0	0 D	ADWS-ARP	ADWS-ARP
0	0D	ADWS-ARP	ADWS-ARP

0	0D	ADWS-ARP	ADWS-ARP
0	0D	ADWS-ARP	ADWS-ARP
0	0D	ADWS-ARP	ADWS-ARP
Ō	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0 D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
Ó	0 D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT1	ADWS-IT1
0	0D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2
0	0 D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2
Ó	0D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2
0	0 D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2
0	0D	ADWS-IT2	ADWS-IT2

0	0D	ADWS-IT2	ADWS-IT2	
0	0D	ADWS-IT2	ADWS-IT2	
0	0D	ADWS-IT2	ADWS-IT2	
0	0 D	ADWS-IT2	ADWS-IT2	
0	0 D	ADWS-IT2	ADWS-IT2	
0	0 D	ADWS-IT2	ADWS-IT2	
0	0D	NSW-020	NSW-020	
0	0D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	7
0	0D	NSW-020	NSW-020	
0	0 D	NSW-020	NSW-020	
0	0D	NSW-020	NSW-020	
Ö	0D	NSW-ARI	NSW-ARI	
0	0D	NSW-ARI	NSW-ARI	
0	0D	NSW-ARI	NSW-ARI	
0	0D	NSW-ARI	NSW-ARI	
0	0D	NSW-ARI	NSW-ARI	
0	0D	NSW-ARI	NSW-ARI	
	0D	NSW-ARI	NSW-ARI	
0	0D	NSW-ARI	NSW-ARI	
0	0D	NSW-ARI	NSW-ARI	
0	0D	NSW-ARI	NSW-ARI	
0	0D	NSW-ARI	NSW-ARI	
0	0D	NSW-ARI	NSW-ARI	
0	0D	NSW-ARI	NSW-ARI	
0	0D	NSW-ARI	NSW-ARI	
0	0D	NSW-ARI	NSW-ARI	

0	0D	NSW-ARI	NSW-ARI
ő	0D	NSW-ARI	NSW-ARI
0	0D	NSW-ARI	NSW-ARI
	0D 0D	NSW-ARI	NSW-ARI
0			
0	0D	NSW-ARI	NSW-ARI
0	0D	NSW-ARI	NSW-ARI
0	0D	NSW-ARI	NSW-ARI
0	0D	NSW-ARI	NSW-ARI
0	0D	NSW-ARI	NSW-ARI
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0D	FW-012	FW-012
0	0D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0 D	FW-012	FW-012
0	0D	FWS-ARP2	FWS-ARP2
0	0 D	FWS-ARP2	FWS-ARP2
0	0 D	FWS-ARP2	FWS-ARP2
0	0 D	FWS-ARP2	FWS-ARP2
0	0 D	FWS-ARP2	FWS-ARP2
0	0 D	FWS-ARP2	FWS-ARP2
0	0 D	FWS-ARP2	FWS-ARP2
0	0D	FWS-ARP2	FWS-ARP2
0	0 D	FWS-ARP2	FWS-ARP2
0	0D	FWS-ARP2	FWS-ARP2
0	0 D	FWS-ARP2	FWS-ARP2
0	0D	FWS-ARP2	FWS-ARP2

0	0 D	FWS-ARP2	FWS-ARP2
0	0D	FWS-ARP2	FWS-ARP2
0	0 D	FWS-ARP2	FWS-ARP2
Ō	0D	FWS-ARP2	FWS-ARP2
Ŏ	0D	FWS-ARP2	FWS-ARP2
0	0D	FWS-ARP2	FWS-ARP2
0	0D	FWS-ARP2	FWS-ARP2
0	0D	FWS-ARP2	FWS-ARP2
0	0D	FWS-ARP2	FWS-ARP2
Ŏ	0D	FWS-ARP2	FWS-ARP2
0	0D	FWS-ARP2	FWS-ARP2
0	0 D	FWS-ARP2	FWS-ARP2
0	0D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MVV-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0D	MW-020	MVV-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MW-020	MW-020
0	0 D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0D	MWSS-ARI	MWSS-ARI

0	0D	MWSS-ARI	MWSS-ARI
0	0D	MWSS-ARI	MWSS-ARI
0	0D	MWSS-ARI	MWSS-ARI
0	0D	MWSS-ARI	MWSS-ARI
0	0D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0 D	MWSS-ARI	MWSS-ARI
0	0D	FW-040	FW-040
0	0D	FW-040	FW-040
0	0 D	FW-040	FW-040
0	0 D	FW-040	FW-040
0	0 D	FW-040	FW-040
0	0 D	FW-040	FW-040
0	0 D	FW-040	FW-040
0	0D	FW-040	FW-040
0	0 D	FW-040	FW-040
Ō	0D	FW-040	FW-040
0	0 D	FW-040	FW-040
0	0D	FW-040	FW-040
0	0D	FW-040	FW-040
0	0D	FW-040	FW-040
0	0D	FW-040	FW-040
0	0D	FW-040	FW-040
0	0D	FW-040	FW-040
0	0D	FW-040	FW-040
Ö	0D	FW-040	FW-040
0	0D	FW-040	FW-040
Ŏ	0D	FW-040	FW-040
0	0D	FW-040	FW-040
0	0D	FW-040	FW-040
0	0 D 0 D	FW-040 FWS-FDPS	FW-040 FWS-FDPS
0			
0	0D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0 D	FWS-FDPS	FWS-FDPS

0	0D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0 D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0 D	FWS-FDPS	FWS-FDPS
0	0 D	FWS-FDPS	FWS-FDPS
0	0 D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0 D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0 D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0D	FWS-FDPS	FWS-FDPS
0	0D	LVW-WPI	LVW-WPI
0	0D	LVW-WPI	LVW-WPI
0	0 D	LVW-WPI	LVW-WPI
0	0D	LVW-WPI	LVW-WPI
0	0D	LVW-WPI	LVW-WPI
0	0 D	LVW-WPI	LVW-WPI
0	0D	LVW-WPI	LVW-WPI
0	0 D	LVW-WPI	LVW-WPI
0	0D	LVW-WPI	LVW-WPI
0	0 D	LVW-WPI	LVW-WPI
0	0 D	LVW-WPI	LVW-WPI
0	0D	LVW-WPI	LVW-WPI
0	0D	LVW-WPI	LVW-WPI
0	0D	LVW-WPI	LVW-WPI
0	0D	LVW-WPI	LVW-WPI
<u></u>	0D	LVW-WPI	LVW-WPI
0	0D	LVW-WPI	LVW-WPI
0	0D	LVW-WPI	LVW-WPI
0	0D	LVW-WPI	LVW-WPI
0	0 D	LVW-WPI	LVW-WPI
	0 D	LVW-WPI	LVW-WPI
0	0D		LVW-WPI LVW-WPI
0		LVW-WPI	
0	0D	LVW-WPI	LVW-WPI
0	0D	LVW-WPI	LVW-WPI
0	0D	LVW-020	LVW-020
0	0D	LVW-020	LVW-020
0	0 D	LVW-020	LVW-020

0	0D	LVW-020	LVW-020	
0	0D	LVW-020	LVW-020	
Ō	0 D	LVW-020	LVW-020	
Ō	0D	LVW-020	LVW-020	
0	0D	LVW-020	LVW-020	
0	0D	LVW-020	LVW-020	
Ō	0D	LVW-020	LVW-020	
0	0D	LVW-020	LVW-020	
0	0D	LVW-020	LVW-020	
0	0D	LVW-020	LVW-020	
0	0 D	LVW-020	LVW-020	
0	0D	LVW-020	LVW-020	
Ō	0D	LVW-020	LVW-020	
0	0D	LVW-020	LVW-020	
0	0 D	LVW-020	LVW-020	
0	0D	LVW-020	LVW-020	
Ō	0D	LVW-020	LVW-020	
0	0D	LVW-020	LVW-020	
0	0D	LVW-020	LVW-020	
0	0D	LVW-020	LVW-020	
0	0D	LVW-020	LVW-020	
0	0D	LVW-030	LVW-030	
0	0D	LVW-030	LVW-030	
0	0D	LVW-030	LVW-030	
0	0D	LVW-030	LVW-030	
0	0 D	LVW-030	LVW-030	
0	0D	LVW-030	LVW-030	
0	0D	LVW-030	LVW-030	
0	0D	LVW-030	LVW-030	
0	0D	LVW-030	LVW-030	
0	0D	LVW-030	LVW-030	
0	0D	LVW-030	LVW-030	
0	0 D	LVW-030	LVW-030	
0	0 D	LVW-030	LVW-030	
0	0 D	LVW-030	LVW-030	
0	0 D	LVW-030	LVW-030	
0	0D	LVW-030	LVW-030	
0	0D	LVW-030	LVW-030	
0	0 D	LVW-030	LVW-030	
0	0 D	LVW-030	LVW-030	
0	0 D	LVW-030	LVW-030	
0	0 D	LVW-030	LVW-030	
0	0 D	LVW-030	LVW-030	
0	0 D	LVW-030	LVW-030	
0	0D	LVW-030	LVW-030	

0	0D	LVW-FD	LVW-FD
0	0D	LVW-FD	LVW-FD
0	0D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0D	LVW-FD	LVW-FD
0	0D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0 D	LVW-FD	LVW-FD
0	0D	LVW-FD	LVW-FD

date	Result	Detect	ND = 1/2	ND = 0	units
8/8/2015	0.5	N	0.25	0	ug/L
8/8/2015	0.5	N	0.25	0	ug/L
8/8/2015	28.3	Υ	28.3	28.3	ug/L
8/8/2015	0.344	Ϋ́	0.344	0.344	ug/L
8/8/2015	1	N	0.5	0	ug/L
8/8/2015	1.73	Υ	1.73	1.73	ug/L
8/8/2015	2.44	Υ	2.44	2.44	ug/L
8/8/2015	0.1	N	0.05	0	ug/L
8/8/2015	.1	Ν	0.5	0	ug/L
8/8/2015	0.5	Ν	0.25	0	ug/L
8/8/2015	1	N	0.5	0	ug/L
8/8/2015	0.5	N	0.25	0	ug/L
8/8/2015	0.5	N	0.25	0	ug/L
8/8/2015	2	N	1 /	0	ug/L
8/8/2015	45	Υ	45	45	ug/L
8/8/2015	2	N	1	0	ug/L
8/8/2015	35200	Υ	35200	35200	ug/L
8/8/2015	100	N	50	0	ug/L
8/8/2015	4380	Υ	4380	4380	ug/L
8/8/2015	444	Υ	444	444	ug/L
8/8/2015	687	Υ	687	687	ug/L
8/8/2015	2170	Υ	2170	2170	ug/L
8/8/2015	61.5	N	30.75	0	ug/L
8/13/2015	66	Υ	66	66	ug/L
8/13/2015	60000	Υ	60000	60000	ug/L
8/13/2015	17	N	8.5	0	ug/L
8/13/2015	7800	Υ	7800	7800	ug/L
8/13/2015	2100	Y	2100	2100	ug/L
8/13/2015	10000	Y	10000	10000	ug/L
8/13/2015	0.4	N	0.2	0	ug/L
8/13/2015	0.37	Ν	0.185	0	ug/L
8/13/2015	43	Υ	43	43	ug/L
8/13/2015	0.15	N	0.075	0	ug/L
8/13/2015	0.054	Υ	0.054	0.054	ug/L
8/13/2015	1	N	0.5	0	ug/L
8/13/2015	0.2	Υ	0.2	0.2	ug/L
8/13/2015	2.5	Υ	2.5	2.5	ug/L
8/13/2015	0.32	Υ	0.32	0.32	ug/L
8/13/2015	61	Y	61	61	ug/L
8/13/2015	0.94	Ý	0.94	0.94	ug/L
8/13/2015	1	Y	1	1	ug/L
8/13/2015	0.58	N	0.29	0	ug/L
8/13/2015	0.1	Ν	0.05	0	ug/L
8/13/2015	0.1	N	0.05	0	ug/L

8/13/2015	0.3	N	0.15	0	ug/L
8/13/2015	9.7	Y	9.7	9.7	ug/L
8/13/2015	0.08	N	0.04	0	ug/L
8/13/2015	72	Υ	72	72	ug/L
8/13/2015	43000	Υ	43000	43000	ug/L
8/13/2015	17	N	8.5	0	ug/L
8/13/2015	4500	Υ	4500	4500	ug/L
8/13/2015	770	Y	770	770	ug/L
8/13/2015	2200	Υ	2200	2200	ug/L
8/13/2015	0.4	N	0.2	0	ug/L
8/13/2015	0.4	Y	0.4	0.4	ug/L
8/13/2015	30	Υ	30	30	ug/L
8/13/2015	0.15	N	0.075	Ó	ug/L
8/13/2015	0.53	Υ	0.53	0.53	ug/L
8/13/2015	1	N	0.5	0	ug/L
8/13/2015	1.8	Υ	1.8	1.8	ug/L
8/13/2015	3	Υ	3	3	ug/L
8/13/2015	0.16	Υ	0.16	0.16	ug/L
8/13/2015	420	Υ	420	420	ug/L
8/13/2015	0.61	Υ	0.61	0.61	ug/L
8/13/2015	1.9	Υ	1.9	1.9	ug/L
8/13/2015	0.58	N	0.29	0	ug/L
8/13/2015	0.1	N	0.05	0	ug/L
8/13/2015	0.1	N	0.05	0	ug/L
8/13/2015	0.3	N	0.15	0	ug/L
8/13/2015	120	Υ	120	120	ug/L
8/13/2015	0.08	N	0.04	0	ug/L
8/13/2015	34	Υ	34	34	ug/L
8/13/2015	64000	Y	64000	64000	ug/L
8/13/2015	17	N	8.5	0	ug/L
8/13/2015	7900	Y	7900	7900	ug/L
8/13/2015	2200	Y	2200	2200	ug/L
8/13/2015	11000	Y	11000	11000	ug/L
8/13/2015	0.4	N	0.2	0	ug/L
8/13/2015	0.37	N	0.185	0	ug/L
8/13/2015	45	Υ	45	45	ug/L
8/13/2015	0.15	N	0.075	0	ug/L
8/13/2015	0.19	Y	0.19	0.19	ug/L
8/13/2015	1	N	0.5	0	ug/L
8/13/2015	0.41	Y	0.41	0.41	ug/L
8/13/2015	1.9	Y	1.9	1.9	ug/L
8/13/2015	0.38	Y	0.38	0.38	ug/L
8/13/2015	130	Y	130	130	ug/L
8/13/2015	0.97	Y	0.97	0.97	ug/L
8/13/2015	1.4	Υ	1.4	1.4	ug/L

8/13/2015	0.58	N	0.29	0	ug/L
8/13/2015	0.1	N	0.05	Õ	ug/L
8/13/2015	0.1	N	0.05	0	ug/L
8/13/2015	0.3	N	0.15	0	ug/L
8/13/2015	60	Υ	60	60	ug/L
8/13/2015	0.08	N	0.04	0	ug/L
8/13/2015	46	Υ	46	46	ug/L
8/13/2015	60000	Υ	60000	60000	ug/L
8/13/2015	17	Ň	8.5	0	ug/L
8/13/2015	7500	Υ	7500	7500	ug/L
8/13/2015	2000	Υ	2000	2000	ug/L
8/13/2015	10000	Υ	10000	10000	ug/L
8/13/2015	0.4	N	0.2	0	ug/L
8/13/2015	0.37	N	0.185	0	ug/L
8/13/2015	42	Υ	42	42	ug/L
8/13/2015	0.15	N	0.075	0	ug/L
8/13/2015	0.11	Υ	0.11	0.11	ug/L
8/13/2015	1	N	0.5	0	ug/L
8/13/2015	0.37	Υ	0.37	0.37	ug/L
8/13/2015	1.4	Υ	1.4	1.4	ug/L
8/13/2015	0.083	Υ	0.083	0.083	ug/L
8/13/2015	97	Υ	97	97	ug/L
8/13/2015	0.81	Υ	0.81	0.81	ug/L
8/13/2015	1.3	Υ	1.3	1.3	ug/L
8/13/2015	0.58	N	0.29	0	ug/L
8/13/2015	0.1	N	0.05	0	ug/L
8/13/2015	0.1	Й	0.05	0	ug/L
8/13/2015	0.3	N	0.15	0	ug/L
8/13/2015	31	Υ	31	31	ug/L
8/13/2015	0.08	N	0.04	0	ug/L
8/10/2015	35000	Υ	35000	35000	ug/L
8/10/2015	380000	Y	380000	380000	ug/L
8/10/2015	120000	Y	120000	120000	ug/L
8/10/2015	33000	Y	33000	33000	ug/L
8/10/2015	2700	Y	2700	2700	ug/L
8/10/2015	3900	Y	3900	3900	ug/L
8/10/2015	0.5	Y	0.5	0.5	ug/L
8/10/2015	3.7	Y	3.7	3.7	ug/L
8/10/2015	8.9	Y	8.9 11	8.9 11	ug/L
8/10/2015 8/10/2015	11 65	Y	11 65	11 65	ug/L
8/10/2015	65 2.7	Y	65 2.7	65 2.7	ug/L
8/10/2015	2.7 110	Y	2.7 110	2.7 110	ug/L
8/10/2015	6000	Ϋ́Υ	6000	6000	ug/L
8/10/2015 8/10/2015	32	Υ	32	32	ug/L
0/10/2013	<u>3</u> Z	I	32	3 <u>Z</u>	ug/L

8/10/2015	33000	Υ	33000	33000	ug/L
8/10/2015	0.84	Ÿ	0.84	0.84	ug/L
8/10/2015	72	Ý	72	72	ug/L
8/10/2015	1.7	Ň	0.85	0	ug/L
8/10/2015	0.1	N	0.05	0	ug/L
8/10/2015	0.32	Y	0.32	0.32	ug/L
8/10/2015	2	Ÿ	2	2	ug/L
8/10/2015	25000	Ÿ	25000	25000	ug/L
8/9/2015	0.5	, N	0.25	0	ug/L
8/9/2015	0.5	N	0.25	0	
8/9/2015	38.1	Y	38.1	38.1	ug/L
8/9/2015	2.93	Y	2.93	2.93	ug/L
8/9/2015 8/9/2015					ug/L
8/9/2015	1 70	N Y	0.5	0	ug/L
	4.79		4.79	4.79	ug/L
8/9/2015	2.91	Y	2.91	2.91	ug/L
8/9/2015	0.1	N	0.05	0	ug/L
8/9/2015	1	N	0.5	0	ug/L
8/9/2015	2.97	Y	2.97	2.97	ug/L
8/9/2015	1	N	0.5	0	ug/L
8/9/2015	0.5	N	0.25	0	ug/L
8/9/2015	0.5	N	0.25	0	ug/L
8/9/2015	2	N	1	0	ug/L
8/9/2015	20	N	10	0	ug/L
8/9/2015	2	N	1	0	ug/L
8/9/2015	48900	Y	48900	48900	ug/L
8/9/2015	100	N	50	0	ug/L
8/9/2015	5040	Υ	5040	5040	ug/L
8/9/2015	1620	Υ	1620	1620	ug/L
8/9/2015	1370	Υ	1370	1370	ug/L
8/9/2015	3290	Υ	3290	3290	ug/L
8/9/2015	804	Y	804	804	ug/L
8/11/2015	2300	Υ	2300	2300	ug/L
8/11/2015	120000	Υ	120000	120000	ug/L
8/11/2015	58	Υ	58	58	ug/L
8/11/2015	0.58	Ν	0.29	0	ug/L
8/11/2015	0.1	N	0.05	0	ug/L
8/11/2015	0.25	Υ	0.25	0.25	ug/L
8/11/2015	0.3	Ν	0.15	0	ug/L
8/11/2015	80.0	N	0.04	0	ug/L
8/6/2015	41	Y	41	41	12/31/99 0:00
8/6/2015	0.07	N	0.035	0	12/31/99 0:00
8/6/2015	0.5	Υ	0.5	0.5	12/31/99 0:00
8/6/2015	75	Υ	75	75	12/31/99 0:00
8/6/2015	0.02	N	0.01	0	12/31/99 0:00
8/6/2015	0.03	Υ	0.03	0.03	12/31/99 0:00

8/6/2015	59100	Ÿ	59100	59100	12/31/99 0:00
8/6/2015	3.6	Υ	3.6	3.6	12/31/99 0:00
8/6/2015	0.1	Υ	0.1	0.1	12/31/99 0:00
8/6/2015	1,4	Υ	1.4	1.4	12/31/99 0:00
8/6/2015	3	N	1.5	0	12/31/99 0:00
8/6/2015	0.06	Υ	0.06	0.06	12/31/99 0:00
8/6/2015	9160	Υ	9160	9160	12/31/99 0:00
8/6/2015	29	Υ	29	29	12/31/99 0:00
8/6/2015	0.07	Υ	0.07	0.07	12/31/99 0:00
8/6/2015	1.2	Υ	1.2	1.2	12/31/99 0:00
8/6/2015	2.2	Υ	2.2	2.2	12/31/99 0:00
8/6/2015	2330	Υ	2330	2330	12/31/99 0:00
8/6/2015	0.6	Υ	0.6	0.6	12/31/99 0:00
8/6/2015	0.03	N	0.015	0	12/31/99 0:00
8/6/2015	16000	Υ	16000	16000	12/31/99 0:00
8/6/2015	0.1	Υ	0.1	0.1	12/31/99 0:00
8/6/2015	1.2	Υ	1.2	1.2	12/31/99 0:00
8/6/2015	26	Υ	26	26	12/31/99 0:00
8/6/2015	44	Υ	44	44	12/31/99 0:00
8/6/2015	0.07	N	0.035	0	12/31/99 0:00
8/6/2015	0.6	Υ	0.6	0.6	12/31/99 0:00
8/6/2015	69.8	Υ	69.8	69.8	12/31/99 0:00
8/6/2015	0.02	Ν	0.01	0	12/31/99 0:00
8/6/2015	0.02	Υ	0.02	0.02	12/31/99 0:00
8/6/2015	62000	Υ	62000	62000	12/31/99 0:00
8/6/2015	3.5	Υ	3.5	3.5	12/31/99 0:00
8/6/2015	0.2	Y	0.2	0.2	12/31/99 0:00
8/6/2015	1.4	Υ	1.4	1.4	12/31/99 0:00
8/6/2015	3	Ν	1.5	0	12/31/99 0:00
8/6/2015	0.05	Υ	0.05	0.05	12/31/99 0:00
8/6/2015	9580	Υ	9580	9580	12/31/99 0:00
8/6/2015	36	Υ	36	36	12/31/99 0:00
8/6/2015	0.03	Υ	0.03	0.03	12/31/99 0:00
8/6/2015	1.2	Υ	1.2	1.2	12/31/99 0:00
8/6/2015	2.1	Υ	2.1	2.1	12/31/99 0:00
8/6/2015	2540	Υ	2540	2540	12/31/99 0:00
8/6/2015	0.7	Υ	0.7	0.7	12/31/99 0:00
8/6/2015	0.03	Ν	0.015	0	12/31/99 0:00
8/6/2015	19800	Υ	19800	19800	12/31/99 0:00
8/6/2015	0.1	Υ	0.1	0.1	12/31/99 0:00
8/6/2015	1.4	Y	1.4	1.4	12/31/99 0:00
8/6/2015	27	Υ	27	27	12/31/99 0:00
8/11/2015	51	Υ	51	51	12/31/99 0:00
8/11/2015	0.4	Ν	0.2	0	12/31/99 0:00
8/11/2015	0.37	N	0.185	0	12/31/99 0:00

8/11/2015	62	Y	62	62	12/31/99 0:00
8/11/2015	0.15	N	0.075	0	12/31/99 0:00
8/11/2015	0.043	N	0.0215	0	12/31/99 0:00
8/11/2015	60000	Υ	60000	60000	12/31/99 0:00
8/11/2015	1	Ń	0.5	0	12/31/99 0:00
8/11/2015	0.13	Υ	0.13	0.13	12/31/99 0:00
8/11/2015	3	Υ	3	3	12/31/99 0:00
8/11/2015	20	Υ	20	20	12/31/99 0:00
8/11/2015	0.61	Υ	0.61	0.61	12/31/99 0:00
8/11/2015	8700	Υ	8700	8700	12/31/99 0:00
8/11/2015	19	Υ	19	19	12/31/99 0:00
8/11/2015	0.08	N	0.04	0	12/31/99 0:00
8/11/2015	1.2	Υ	1.2	1.2	12/31/99 0:00
8/11/2015	1.9	Υ	1.9	1.9	12/31/99 0:00
8/11/2015	2300	Υ	2300	2300	12/31/99 0:00
8/11/2015	0.58	N	0.29	0	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	15000	Y	15000	15000	12/31/99 0:00
8/11/2015	0.1	N	0.05	Ó	12/31/99 0:00
8/11/2015	0.3	N	0.15	0	12/31/99 0:00
8/11/2015	5.4	Υ	5.4	5.4	12/31/99 0:00
8/11/2015	36	Υ	36	36	12/31/99 0:00
8/11/2015	0.4	N	0.2	0	12/31/99 0:00
8/11/2015	0.37	N	0.185	0	12/31/99 0:00
8/11/2015	62	Υ	62	62	12/31/99 0:00
8/11/2015	0.15	N	0.075	0	12/31/99 0:00
8/11/2015	0.043	N	0.0215	0	12/31/99 0:00
8/11/2015	61000	Υ	61000	61000	12/31/99 0:00
8/11/2015	1	N	0.5	0 %	12/31/99 0:00
8/11/2015	0.12	Υ	0.12	0.12	12/31/99 0:00
8/11/2015	2.7	Υ	2.7	2.7	12/31/99 0:00
8/11/2015	17	Ň	8.5	0	12/31/99 0:00
8/11/2015	0.18	Υ	0.18	0.18	12/31/99 0:00
8/11/2015	8900	Υ	8900	8900	12/31/99 0:00
8/11/2015	13	Υ	13	13	12/31/99 0:00
8/11/2015	0.08	N	0.04	0	12/31/99 0:00
8/11/2015	1.2	Y	1.2	1.2	12/31/99 0:00
8/11/2015	1.2	Y	1.2	1.2	12/31/99 0:00
8/11/2015	2300	Y	2300	2300	12/31/99 0:00
8/11/2015	0.58		0.29	0	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	14000	Y.	14000	14000	12/31/99 0:00
8/11/2015	0.1		0.05	0	12/31/99 0:00
8/11/2015	0.3		0.15	0	12/31/99 0:00
8/11/2015	4.6	Υ	4.6	4.6	12/31/99 0:00

8/11/2015	39	Ý	39	39	12/31/99 0:00
8/11/2015	0.4	N	0.2	0	12/31/99 0:00
8/11/2015	0.37	N	0.185	0	12/31/99 0:00
8/11/2015	70	Υ	70	70	12/31/99 0:00
8/11/2015	0.15	Ν	0.075	0	12/31/99 0:00
8/11/2015	0.043	N	0.0215	0	12/31/99 0:00
8/11/2015	65000	Υ	65000	65000	12/31/99 0:00
8/11/2015	1	Ν	0.5	0	12/31/99 0:00
8/11/2015	0.13	Υ	0.13	0.13	12/31/99 0:00
8/11/2015	2.9	Υ	2.9	2.9	12/31/99 0:00
8/11/2015	17	N	8.5	0	12/31/99 0:00
8/11/2015	0.38	Υ	0.38	0.38	12/31/99 0:00
8/11/2015	8900	Υ	8900	8900	12/31/99 0:00
8/11/2015	19	Υ	19	19	12/31/99 0:00
8/11/2015	0.08	N	0.04	0	12/31/99 0:00
8/11/2015	1.1	Υ	1.1	1.1	12/31/99 0:00
8/11/2015	1.3	Υ	1.3	1.3	12/31/99 0:00
8/11/2015	2300	Υ	2300	2300	12/31/99 0:00
8/11/2015	0.58	Ν	0.29	0	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	13000	Υ	13000	13000	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	0.3	Ν	0.15	0	12/31/99 0:00
8/11/2015	75	Υ	75	75	12/31/99 0:00
8/8/2015	24	N	12	0	12/31/99 0:00
8/8/2015	0	Ν	0	0	12/31/99 0:00
8/8/2015	0.58	Υ	0.58	0.58	12/31/99 0:00
8/8/2015	49	Υ	49	49	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	61000	Υ	61000	61000	12/31/99 0:00
8/8/2015	1	N	0.5	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	1.3	Υ	1.3	1.3	12/31/99 0:00
8/8/2015	17	N	8.5	0	12/31/99 0:00
8/8/2015	0.17	Υ	0.17	0.17	12/31/99 0:00
8/8/2015	8100	Υ	8100	8100	12/31/99 0:00
8/8/2015	2.9	Υ	2.9	2.9	12/31/99 0:00
8/8/2015	0	Ν	0	0	12/31/99 0:00
8/8/2015	1.5	Υ	1.5	1.5	12/31/99 0:00
8/8/2015	1.2	Y	1.2	1.2	12/31/99 0:00
8/8/2015	2200	Υ	2200	2200	12/31/99 0:00
8/8/2015	1	N	0.5	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	14000	Υ	14000	14000	12/31/99 0:00

8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	3	N	1.5	0	12/31/99 0:00
8/8/2015	24	N	12	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	50	Y	50	50	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0	N	0 ;	0	12/31/99 0:00
8/8/2015	60000	Υ	60000	60000	12/31/99 0:00
8/8/2015	1	N	0.5	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	1.4	Y	1.4	1.4	12/31/99 0:00
8/8/2015	17	N	8.5	0	12/31/99 0:00
8/8/2015	0.15	Ý	0.15	0.15	12/31/99 0:00
8/8/2015	8100	Υ	8100	8100	12/31/99 0:00
8/8/2015	3	Υ	3	3	12/31/99 0:00
8/8/2015	0	N	Ó	0	12/31/99 0:00
8/8/2015	1.3	Y	1.3	1.3	12/31/99 0:00
8/8/2015	1.2	Υ	1.2	1.2	12/31/99 0:00
8/8/2015	2100	Y	2100	2100	12/31/99 0:00
8/8/2015	1	Ň	0.5	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	13000	Υ	13000	13000	12/31/99 0:00
8/8/2015	0.15	Υ	0.15	0.15	12/31/99 0:00
8/8/2015	0	Ň	0	0	12/31/99 0:00
8/8/2015	3	N	1.5	0	12/31/99 0:00
8/8/2015	24	N	12	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0.5	Y	0.5	0.5	12/31/99 0:00
8/8/2015	55	Υ	55	55	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	57000	Υ	57000	57000	12/31/99 0:00
8/8/2015	1	Ν	0.5	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	1.6	Υ	1.6	1.6	12/31/99 0:00
8/8/2015	17	N	8.5	0	12/31/99 0:00
8/8/2015	0.25	Υ	0.25	0.25	12/31/99 0:00
8/8/2015	7800	Υ	7800	7800	12/31/99 0:00
8/8/2015	5.6	Y	5.6	5.6	12/31/99 0:00
8/8/2015	0	N	7	0	12/31/99 0:00
8/8/2015	1.2	Υ	1.2	1.2	12/31/99 0:00
8/8/2015	1.3	Υ	1.3	1.3	12/31/99 0:00
8/8/2015	2300	Υ	2300	2300	12/31/99 0:00

8/8/2015	1	Ň	0.5	0	12/31/99 0:00
8/8/2015	0	N	0	Ö	12/31/99 0:00
8/8/2015	13000	Υ	13000	13000	12/31/99 0:00
8/8/2015	0	Ν	0	0	12/31/99 0:00
8/8/2015	0.41	Υ	0.41	0.41	12/31/99 0:00
8/8/2015	3	N	1.5	0	12/31/99 0:00
8/11/2015	38	Υ	38	38	12/31/99 0:00
8/11/2015	0.4	N	0.2	0	12/31/99 0:00
8/11/2015	0.38	Υ	0.38	0.38	12/31/99 0:00
8/11/2015	65	Υ	65	65	12/31/99 0:00
8/11/2015	0.15	N	0.075	0	12/31/99 0:00
8/11/2015	0.043	N	0.0215	0	12/31/99 0:00
8/11/2015	62000	Υ	62000	62000	12/31/99 0:00
8/11/2015	1	N	0.5	0	12/31/99 0:00
8/11/2015	0.12	Υ	0.12	0.12	12/31/99 0:00
8/11/2015	2.8	Υ	2.8	2.8	12/31/99 0:00
8/11/2015	17	N	8.5	0	12/31/99 0:00
8/11/2015	0.14	Υ	0.14	0.14	12/31/99 0:00
8/11/2015	8800	Υ	8800	8800	12/31/99 0:00
8/11/2015	11	Υ	11	11	12/31/99 0:00
8/11/2015	0.08	Ν	0.04	0	12/31/99 0:00
8/11/2015	1.1	Υ	1.1	1.1	12/31/99 0:00
8/11/2015	1.6	Υ	1.6	1.6	12/31/99 0:00
8/11/2015	2300	Υ	2300	2300	12/31/99 0:00
8/11/2015	0.58	N	0.29	0	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	13000	Υ	13000	13000	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	0.3	N	0.15	0	12/31/99 0:00
8/11/2015	3	Υ	3	3	12/31/99 0:00
8/8/2015	24	N	12	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0.62	Υ	0.62	0.62	12/31/99 0:00
8/8/2015	52	Υ	52	52	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	58000	Υ	58000	58000	12/31/99 0:00
8/8/2015	1	N	0.5	0	12/31/99 0:00
8/8/2015	0.12	Υ	0.12	0.12	12/31/99 0:00
8/8/2015	1.5	Υ	1.5	1.5	12/31/99 0:00
8/8/2015	17	N	8.5	0	12/31/99 0:00
8/8/2015	0.15	Υ	0.15	0.15	12/31/99 0:00
8/8/2015	7900	Y	7900	7900	12/31/99 0:00
8/8/2015	5.4	Y	5.4	5.4	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00

8/8/2015	1.3	Υ	1.3	1.3	12/31/99 0:00
8/8/2015	1.3	Υ	1.3	1.3	12/31/99 0:00
8/8/2015	2200	Υ	2200	2200	12/31/99 0:00
8/8/2015		N	0.5	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	12000	Ý	12000	12000	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0	N	0	Ó	12/31/99 0:00
8/8/2015	3	N	1.5	0	12/31/99 0:00
8/11/2015	34	Υ	34	34	12/31/99 0:00
8/11/2015	0.4	N	0.2	0	12/31/99 0:00
8/11/2015	0.37	N	0.185	0	12/31/99 0:00
8/11/2015	64	Υ	64	64	12/31/99 0:00
8/11/2015	0.15	N	0.075	0	12/31/99 0:00
8/11/2015	0.043	Ν	0.0215	0	12/31/99 0:00
8/11/2015	66000	Υ	66000	66000	12/31/99 0:00
8/11/2015	1	N	0.5	0	12/31/99 0:00
8/11/2015	0.12	N	0.06	0	12/31/99 0:00
8/11/2015	2.6	Υ	2.6	2.6	12/31/99 0:00
8/11/2015	17	N	8.5	0	12/31/99 0:00
8/11/2015	0.13	Υ	0.13	0.13	12/31/99 0:00
8/11/2015	8800	Υ	8800	8800	12/31/99 0:00
8/11/2015	14	Υ	14	14	12/31/99 0:00
8/11/2015	0.08	N	0.04	0	12/31/99 0:00
8/11/2015	1.1	Υ	1.1	1.1	12/31/99 0:00
8/11/2015	1	Υ	1	1	12/31/99 0:00
8/11/2015	2200	Υ	2200	2200	12/31/99 0:00
8/11/2015	0.58	N	0.29	0	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	16000	Υ	16000	16000	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	0.3	N	0.15	0	12/31/99 0:00
8/11/2015	5.2	Υ	5.2	5.2	12/31/99 0:00
8/8/2015	24	N	12	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0.38	Υ	0.38	0.38	12/31/99 0:00
8/8/2015	56	Υ	56	56	12/31/99 0:00
8/8/2015	0	Ν	0	0	12/31/99 0:00
8/8/2015	0	Ν	0	0	12/31/99 0:00
8/8/2015	66000	Υ	66000	66000	12/31/99 0:00
8/8/2015	1	N	0.5	0	12/31/99 0:00
8/8/2015	0.12	Y	0.12	0.12	12/31/99 0:00
8/8/2015	1.4	Υ	1.4	1.4	12/31/99 0:00
8/8/2015	17	N	8.5	0	12/31/99 0:00
8/8/2015	0.14	Υ	0.14	0.14	12/31/99 0:00

8/8/2015	8300	Υ	8300	8300	12/31/99 0:00
8/8/2015	1.7	Υ	1.7	1.7	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	1.7	Υ	1.7	1.7	12/31/99 0:00
8/8/2015	1.4	Υ	1.4	1.4	12/31/99 0:00
8/8/2015	2200	Y	2200	2200	12/31/99 0:00
8/8/2015	1	N	0.5	Ö	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	16000	Υ	16000	16000	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0.37	Υ	0.37	0.37	12/31/99 0:00
8/8/2015	3	N	1.5	0	12/31/99 0:00
8/11/2015	41	Υ	41	41	12/31/99 0:00
8/11/2015	0.4	N	0.2	0	12/31/99 0:00
8/11/2015	0.37	N	0.185	0	12/31/99 0:00
8/11/2015	62	Υ	62	62	12/31/99 0:00
8/11/2015	0.15	N	0.075	0	12/31/99 0:00
8/11/2015	0.043	N	0.0215	0	12/31/99 0:00
8/11/2015	64000	Υ	64000	64000	12/31/99 0:00
8/11/2015	1	N	0.5	Ó	12/31/99 0:00
8/11/2015	0.12	N	0.06	0	12/31/99 0:00
8/11/2015	2.7	Υ	2.7	2.7	12/31/99 0:00
8/11/2015	17	N	8.5	0	12/31/99 0:00
8/11/2015	0.21	Υ	0.21	0.21	12/31/99 0:00
8/11/2015	8900	Υ	8900	8900	12/31/99 0:00
8/11/2015	12	Υ	12 🖟	12	12/31/99 0:00
8/11/2015	0.08	N	0.04	0	12/31/99 0:00
8/11/2015	1.4	Υ	1.4	1.4	12/31/99 0:00
8/11/2015	1.3	Y	1.3	1.3	12/31/99 0:00
8/11/2015	2300	Υ	2300	2300	12/31/99 0:00
8/11/2015	0.58	N	0.29	0	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	17000	Υ	17000	17000	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	0.3	N	0.15	0	12/31/99 0:00
8/11/2015	2.8	N	1.4	0	12/31/99 0:00
8/8/2015	24	N	12	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0.52	Υ	0.52	0.52	12/31/99 0:00
8/8/2015	57	Υ	57	57	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	67000	Y	67000	67000	12/31/99 0:00
8/8/2015	1	N	0.5	0_	12/31/99 0:00
8/8/2015	0.15	Υ	0.15	0.15	12/31/99 0:00

8/8/2015	1.6	Ý	1.6	1.6	12/31/99 0:00
8/8/2015	17	Ν	8.5	0	12/31/99 0:00
8/8/2015	0.23	Ý	0.23	0.23	12/31/99 0:00
8/8/2015	8600	Υ	8600	8600	12/31/99 0:00
8/8/2015	4.3	Υ	4.3	4.3	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	1.7	Υ	1.7	1.7	12/31/99 0:00
8/8/2015	1.9	Υ	1.9	1.9	12/31/99 0:00
8/8/2015	2200	Y	2200	2200	12/31/99 0:00
8/8/2015	1	Ν	0.5	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	16000	Υ	16000	16000	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0.3	Υ	0.3	0.3	12/31/99 0:00
8/8/2015	3	N	1.5	0	12/31/99 0:00
8/11/2015	35	Υ	35	35	12/31/99 0:00
8/11/2015	0.4	N	0.2	0	12/31/99 0:00
8/11/2015	0.43	Υ	0.43	0.43	12/31/99 0:00
8/11/2015	65	Υ	65	65	12/31/99 0:00
8/11/2015	0.15	N	0.075	0	12/31/99 0:00
8/11/2015	0.043	N	0.0215	0	12/31/99 0:00
8/11/2015	67000	Y	67000	67000	12/31/99 0:00
8/11/2015	1	N	0.5	0	12/31/99 0:00
8/11/2015	0.12	Υ	0.12	0.12	12/31/99 0:00
8/11/2015	2.8	Υ	2.8	2.8	12/31/99 0:00
8/11/2015	17	Ν	8.5	0	12/31/99 0:00
8/11/2015	0.22	Υ	0.22	0.22	12/31/99 0:00
8/11/2015	8900	Υ	8900	8900	12/31/99 0:00
8/11/2015	8.2	Υ	8.2	8.2	12/31/99 0:00
8/11/2015	0.08	N	0.04	0	12/31/99 0:00
8/11/2015	1.2	Υ	1.2	1.2	12/31/99 0:00
8/11/2015	1.2	Υ	1.2	1.2	12/31/99 0:00
8/11/2015	2200	Υ	2200	2200	12/31/99 0:00
8/11/2015	0.58	N	0.29	0	12/31/99 0:00
8/11/2015	0.1	Ν	0.05	0	12/31/99 0:00
8/11/2015	17000	Υ	17000	17000	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	0.3	Ν	0.15	0	12/31/99 0:00
8/11/2015	2.8	Ń	1.4	0	12/31/99 0:00
8/8/2015	24	N	12	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0.76	Υ	0.76	0.76	12/31/99 0:00
8/8/2015	60	Υ	60	60	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00

8/8/2015	66000	Ý	66000	66000	12/31/99 0:00
8/8/2015	1	N	0.5	0	12/31/99 0:00
8/8/2015	0.14	Υ	0.14	0.14	12/31/99 0:00
8/8/2015	1.6	Υ	1.6	1.6	12/31/99 0:00
8/8/2015	17	N	8.5	0	12/31/99 0:00
8/8/2015	0.2	Υ	0.2	0.2	12/31/99 0:00
8/8/2015	8400	Y	8400	8400	12/31/99 0:00
8/8/2015	1.6	Υ	1.6	1.6	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	1.7	Υ	1.7	1.7	12/31/99 0:00
8/8/2015	1.8	Υ	1.8	1.8	12/31/99 0:00
8/8/2015	2200	Υ	2200	2200	12/31/99 0:00
8/8/2015	1	N	0.5	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	16000	Υ	16000	16000	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0.36	Υ	0.36	0.36	12/31/99 0:00
8/8/2015	3	N	1.5	0	12/31/99 0:00
8/8/2015	270	Υ	270	270	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0.76	Υ	0.76	0.76	12/31/99 0:00
8/8/2015	70	Υ	70	70	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	51000	Υ	51000	51000	12/31/99 0:00
8/8/2015	1	Ν	0.5	0	12/31/99 0:00
8/8/2015	0.18	Υ	0.18	0.18	12/31/99 0:00
8/8/2015	1.5	Υ	1.5	1.5	12/31/99 0:00
8/8/2015	150	Υ	150	150	12/31/99 0:00
8/8/2015	0.36	Υ	0.36	0.36	12/31/99 0:00
8/8/2015	6500	Υ	6500	6500	12/31/99 0:00
8/8/2015	3.5	Υ	3.5	3.5	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	1.8	Υ	1.8	1.8	12/31/99 0:00
8/8/2015	1.5	Υ	1.5	1.5	12/31/99 0:00
8/8/2015	2500	Υ	2500	2500	12/31/99 0:00
8/8/2015	1	N	0.5	0	12/31/99 0:00
8/8/2015	0	N	0	0	12/31/99 0:00
8/8/2015	19000	Υ	19000	19000	12/31/99 0:00
8/8/2015	0.15	Y	0.15	0.15	12/31/99 0:00
8/8/2015	0.68	Y	0.68	0.68	12/31/99 0:00
8/8/2015	3	N	1.5	0	12/31/99 0:00
8/11/2015	24	N	12	0	12/31/99 0:00
8/11/2015	0.4	N	0.2	0	12/31/99 0:00
8/11/2015	0.91	Υ	0.91	0.91	12/31/99 0:00

8/11/2015	76	Υ	76	76	12/31/99 0:00
8/11/2015	0.15	N	0.075	0	12/31/99 0:00
8/11/2015	0.043	N	0.0215	0	12/31/99 0:00
8/11/2015	59000	Υ	59000	59000	12/31/99 0:00
8/11/2015	1	N	0.5	0	12/31/99 0:00
8/11/2015	0.13	Y	0.13	0.13	12/31/99 0:00
8/11/2015	3.1	Y	3.1	3.1	12/31/99 0:00
8/11/2015	17	N	8.5	0	12/31/99 0:00
8/11/2015	0.06	N	0.03	0	12/31/99 0:00
8/11/2015	7900	Υ	7900	7900	12/31/99 0:00
8/11/2015	3.2	Υ	3.2	3.2	12/31/99 0:00
8/11/2015	0.08	N	0.04	0	12/31/99 0:00
8/11/2015	1.3	Υ	1.3	1.3	12/31/99 0:00
8/11/2015	1.3	Υ	1.3	1.3	12/31/99 0:00
8/11/2015	2500	Υ	2500	2500	12/31/99 0:00
8/11/2015	0.58	Ν	0.29	0	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	21000	Υ	21000	21000	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	0.73	Υ	0.73	0.73	12/31/99 0:00
8/11/2015	30	Υ	30	30	12/31/99 0:00
8/11/2015	24	N	12	0	12/31/99 0:00
8/11/2015	0.4	N	0.2	0	12/31/99 0:00
8/11/2015	0.46	Y	0.46	0.46	12/31/99 0:00
8/11/2015	78	Y	78	78	12/31/99 0:00
8/11/2015	0.15	N	0.075	0	12/31/99 0:00
8/11/2015	0.043	N	0.0215	0	12/31/99 0:00
8/11/2015	59000	Υ	59000	59000	12/31/99 0:00
8/11/2015	1	N	0.5	0	12/31/99 0:00
8/11/2015	0.13	Υ	0.13	0.13	12/31/99 0:00
8/11/2015	2.1	Υ	2.1	2.1	12/31/99 0:00
8/11/2015	17	N	8.5	0	12/31/99 0:00
8/11/2015	0.06	N	0.03	0	12/31/99 0:00
8/11/2015	7800	Υ	7800	7800	12/31/99 0:00
8/11/2015	4.5	Υ	4.5	4.5	12/31/99 0:00
8/11/2015	0.08	N	0.04	0	12/31/99 0:00
8/11/2015	1.3	Y	1.3	1.3	12/31/99 0:00
8/11/2015	1.2	Y	1.2	1.2	12/31/99 0:00
8/11/2015	2400	Y	2400	2400	12/31/99 0:00
8/11/2015	0.58	N	0.29	0	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	21000	Y	21000	21000	12/31/99 0:00
8/11/2015	0.1	N	0.05	0	12/31/99 0:00
8/11/2015	0.71	Y	0.71	0.71	12/31/99 0:00
8/11/2015	35	Y	35	35	12/31/99 0:00

8/8/2015	390	Y	390 390	12/31/99 0:00
8/8/2015	0	Ν	0 0	12/31/99 0:00
8/8/2015	0.76	Υ	0.76 0.76	12/31/99 0:00
8/8/2015	81	Υ	81 81	12/31/99 0:00
8/8/2015	0	N	0 0	12/31/99 0:00
8/8/2015	0	N	0 0	12/31/99 0:00
8/8/2015	52000	Υ	52000 5200	0 12/31/99 0:00
8/8/2015	1	Ν	0.5 0	12/31/99 0:00
8/8/2015	0.23	Υ	0.23 0.23	12/31/99 0:00
8/8/2015	1.7	Υ	1.7 1.7	12/31/99 0:00
8/8/2015	220	Υ	220 220	12/31/99 0:00
8/8/2015	0.5	Y	0.5 0.5	12/31/99 0:00
8/8/2015	6600	Y	6600 6600	12/31/99 0:00
8/8/2015	20	Υ	20 20	12/31/99 0:00
8/8/2015	0	N	0 0	12/31/99 0:00
8/8/2015	1.8	Υ	1.8 1.8	12/31/99 0:00
8/8/2015	1.8	Υ	1.8 1.8	12/31/99 0:00
8/8/2015	2500	Υ	2500 2500	12/31/99 0:00
8/8/2015	1	N	0.5 0	12/31/99 0:00
8/8/2015	0	N	0 0	12/31/99 0:00
8/8/2015	20000	Υ	20000 2000	0 12/31/99 0:00
8/8/2015	0	N	0 0	12/31/99 0:00
8/8/2015	0.73	Υ	0.73 0.73	12/31/99 0:00
8/8/2015	3	N	1.5 0	12/31/99 0:00

date (All)
Matrix Type (All)
QC Type (All)
Type D

Average of ND = $1/2$	Column La	bels					
Row Labels	Bakers Bridge		GKM01	GKM02	GKM04	GKM05	GKM09
Aluminum		45	66	72	34	46	35000
Antimony		0.25	0.2	0.2	0.2	0.2	0.5
Arsenic		0.25	0.185	0.4	0.185	0.185	3.7
Barium		28.3	43	30	45	42	8.9
Beryllium		1	0.075	0.075	0.075	0.075	11
Cadmium		0.344	0.054	0.53	0.19	0.11	65
Calcium		35200	60000	43000	64000	60000	380000
Chromium		0.5	0.5	0.5	0.5	0.5	2.7
Cobalt		1.73	0.2	1.8	0.41	0.37	110
Copper		2.44	2.5	3	1.9	1.4	6000
Iron		50	8.5	8.5	8.5	8.5	120000
Lead		0.05	0.32	0.16	0.38	0.083	32
Magnesium		4380	7800	4500	7900	7500	33000
Manganese		444	61	420	130	97	33000
Mercury			0.04	0.04	0.04	0.04	
Molybdenum		0.5	0.94	0.61	0.97	0.81	0.84
Nickel		0.25	1	1.9	1.4	1.3	72
Potassium		687	2100	770	2200	2000	2700
Selenium		0.5	0.29	0.29	0.29	0.29	0.85
Silver		0.25	0.05	0.05	0.05	0.05	0.05
Sodium		2170	10000	2200	11000	10000	3900
Thallium		0.25	0.05	0.05	0.05	0.05	0.32
Vanadium		1	0.15	0.15	0.15	0.15	2
Zinc		30.75	9.7	120	60	31	25000

GKM11	GKM13	Aztec Water Intake	Farmington Water Intake	ADW-010	ADW-021	ADW-022	ADWS-ARP
10		41	44	51	36	39	12
0.25		0.035	0.035	0.2	0.2	0.2	0
0.25		0.5	0.6	0.185	0.185	0.185	0.58
38.1		75	69.8	62	62	70	49
1		0.01	0.01	0.075	0.075	0.075	0
2.93		0.03	0.02	0.0215	0.0215	0.0215	0
48900		59100	62000	60000	61000	65000	61000
0.5		3.6	3.5	0.5	0.5	0.5	0.5
4.79		0.1	0.2	0.13	0.12	0.13	0
2.91		1.4	1.4	3	2.7	2.9	1.3
50		1.5	1.5	20	8.5	8.5	8.5
0.05		0.06	0.05	0.61	0.18	0.38	0.17
5040		9160	9580	8700	8900	8900	8100
1620		29	36	19	13	19	2.9
	0.04	0.07	0.03	0.04	0.04	0.04	0
0.5		1.2	1.2	1.2	1.2	1.1	1.5
2.97	58	2.2	2.1	1.9	1.2	1.3	1.2
1370	2300	2330	2540	2300	2300	2300	2200
0.5	0.29	0.6	0.7	0.29	0.29	0.29	0.5
0.25	0.05	0.015	0.015	0.05	0.05	0.05	0
3290	120000	16000	19800	15000	14000	13000	14000
0.25	0.25	0.1	0.1	0.05	0.05	0.05	0
1	0.15	1.2	1.4	0.15	0.15	0.15	0
804		26	27	5.4	4.6	75	1.5

ADWS-IT1	ADWS-IT2	NSW-020	NSW-ARI	FW-012	FWS-ARP2	MW-020	MWSS-ARI	FW-040	FWS-FDPS
12	. 12	38	12	34	12	41	. 12	35	12
C) 0	0.2	. 0	0.2	0	0.2	. 0	0.2	. 0
C	0.5	0.38	0.62	0.185	0.38	0.185	0.52	0.43	0.76
50	55	65	52	64	56	62	57	65	60
C) 0	0.075	0	0.075	0	0.075	0	0.075	0
C) 0	0.0215	0	0.0215	0	0.0215		0.0215	0
60000	57000	62000	58000	66000	66000	64000	67000	67000	66000
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
C) 0	0.12	0.12	0.06	0.12	0.06	0.15	0.12	0.14
1.4	1.6	2.8	1.5	2.6	1.4	2.7	1.6	2.8	1.6
8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
0.15	0.25	0.14	0.15	0.13	0.14	0.21	0.23	0.22	0.2
8100	7800	8800	7900	8800	8300	8900	8600	8900	8400
3	5.6	11	5.4	14	1.7	12	4.3	8.2	1.6
C) 0	0.04	. 0	0.04	0	0.04	. 0	0.04	. 0
1.3	3 1.2	1.1	1.3	1.1	1.7	1.4	1.7	1.2	1.7
1.2	1.3	1.6	1.3	1	1.4	1.3	1.9	1.2	1.8
2100	2300	2300	2200	2200	2200	2300	2200	2200	2200
0.5	0.5	0.29	0.5	0.29	0.5	0.29	0.5	0.29	0.5
C) 0	0.05	0	0.05	0	0.05		0.05	0
13000	13000	13000	12000	16000	16000	17000	16000	17000	16000
0.15	5 0	0.05	0	0.05	0	0.05	0	0.05	0
C	0.41	0.15	0	0.15	0.37	0.15	0.3	0.15	0.36
1.5	1.5	3	1.5	5.2	1.5	1.4	1.5	1.4	1.5

LVW-WPI	LVW-020	LVW-030	LVW-FD
270	12	. 12	390
C	0.2	0.2	. 0
0.76	0.91	0.46	0.76
70	76	78	81
C	0.075	0.075	0
C	0.0215	0.0215	0
51000	59000	59000	52000
0.5	0.5	0.5	0.5
0.18	0.13	0.13	0.23
1.5	3.1	. 2.1	1.7
150	8.5	8.5	220
0.36	0.03	0.03	0.5
6500	7900	7800	6600
3.5	3.2	4.5	20
C	0.04	0.04	0
1.8	1.3	1.3	1.8
1.5	1.3	1.2	1.8
2500	2500	2400	2500
0.5	0.29	0.29	0.5
C	0.05	0.05	0
19000	21000	21000	20000
0.15	0.05	0.05	0
0.68	0.73	0.71	0.73
1.5	30	35	1.5

Dissolved Zinc in Surface Water

Bakers Bridge	1 8/8/20158/8
GKM01	2 8/13/2015 8/13
Farmington Water Intake	3 8/6/20158/6
GKM02	4 8/13/2015 8/13
GKM05	5 8/13/2015 8/13
GKM04	6 8/13/2015 8/13
GKM09	7 8/10/2015 8/10
GKM11	8 8/9/20158/9
GKM13	9 8/11/2015 8/11
ADWS-IT2	10 8/8/20158/8
ADW-022	11 8/11/20158/11
NSW-020	12 8/11/2015 8/11
NSW-ARI	13 8/8/20158/8
ADWS-IT1	14 8/8/20158/8
ADW-021	15 8/11/2015 8/11
ADW-010	16 8/11/20158/11
ADWS-ARP	17 8/8/20158/8
Aztec Water Intake	18 8/6/20158/6
FW-012	19 8/11/2015 8/11
FWS-ARP2	20 8/8/20158/8
MW-020	21 8/11/2015 8/11
MWSS-ARI	22 8/8/20158/8
FW-040	23 8/11/2015 8/11
FWS-FDPS	24 8/8/20158/8
LVW-WPI	25 8/8/20158/8
LVW-020	26 8/11/2015 8/11
LVW-FD	27 8/8/20158/8
LVW-030	28 8/11/2015 8/11