Algebraic Geometric Codes

Soham Chatterjee sohamc@cmi.ac.in BMC202175

Shree Ganesh S J shreeganesh@cmi.ac.in MCS202219

Contents

1	Mathematics	2
	1.1 Divisors	
	1.2 Reimann-Roch Spaces	
	1.3 Differentials	2
	1.4 Reimann-Roch Theorem	
	1.5 Index of speciality	3
2	Codes from Algebraic Curves	4
	2.1 Preliminaries	
	2.2 Geometric Reed Solomon Codes	
	2.3 Geometric Goppa Codes	5
3	Bibliography	7

CHAPTER 1

Mathematics

1.1 Divisors

1.2 Reimann-Roch Spaces

Definition 1.2.1 (Reimann-Roch Spaces). For any divisor $\mathcal{D} \in \tilde{\mathfrak{D}}$

$$\mathcal{L}(\mathcal{D}) = \{ f \in \mathbb{F}(\mathcal{X})^* \mid (f) + \mathcal{D} \succcurlyeq 0 \} \cup \{ 0 \}$$

The dimension of $\mathcal{L}(\mathcal{D})$ over \mathbb{F} is denoted by $l(\mathcal{D})$

Theorem 1.2.1. (i) If $deg(\mathcal{D}) < 0$ then $l(\mathcal{D}) = 0$

(ii)
$$l(\mathcal{D}) \leq 1 + \deg(\mathcal{D})$$

Theorem 1.2.2. $\mathcal{L}(0) = \mathbb{F}$. Hence l(0) = 1

1.3 Differentials

1.4 Reimann-Roch Theorem

Theorem 1.4.1 (Reimann-Roch Theorem). \mathcal{D} is a divisor on a smooth projective curve with genus g. Then for any canonical divisor W

$$l(\mathcal{D}) - l(W - \mathcal{D}) = \deg(\mathcal{D}) - (g - 1)$$

Corollary 1.4.2. For any canonical divisor W, deg(W) = 2g - 2

Proof: Take $\mathcal{D} = W$. Then $l(W - \mathcal{D}) = l(0) = 1$ by Theorem 1.2.2. So we have

$$l(W) - 1 = \deg(W) - (g - 1)$$

. By definition l(W)=g. Hence we have $g-1=\deg(W)-(g-1)\iff \deg(W)=2g-2$.

With the help of this corollary we can finally focus on the divisors which we will actually use to define codes. The following corollary gives the dimension of the Reimann-Roch Spaces of divisors with degree more than 2g - 2.

Corollary 1.4.3. Let \mathcal{D} be a divisor on a smooth projective curve of genus g and let $deg(\mathcal{D}) > 2g - 2$. Then

$$l(\mathcal{D}) = \deg(D) - (g - 1)$$

Proof: We have $\deg(W - \mathcal{D}) = \deg(W) - \deg(\mathcal{D})$. Now by Corollary 1.4.2 $\deg(W - \mathcal{D}) < 0$. So0 $l(W - \mathcal{D}) = 0$ by Theorem 1.2.1 part (ii). So We have $l(D) = \deg(D) - (g - 1)$. ■

1.5 Index of speciality

Definition 1.5.1 (Index of speciality). Let \mathcal{D} be a divisor on a curve \mathcal{X} . We define

$$\Omega(\mathcal{D}) = \{ \omega \in \Omega(\mathcal{X}) \mid (w) - D \succcurlyeq 0 \}$$

and we denote the dimension of $\Omega(\mathcal{D})$ over \mathbb{F} by $\delta(\mathcal{D})$ called the index of speciality of \mathcal{D} .

Theorem 1.5.1. $\delta(\mathcal{D}) = l(W - \mathcal{D})$

Proof: If $W = (\omega)$. Define the linear map $\varphi : \mathcal{L}(W - \mathcal{D}) \to \Omega(\mathcal{D})$ by $\varphi(f) = f\omega$.

$$f \in \mathcal{L}(W - \mathcal{D}) \implies (f) + W - \mathcal{D} \succcurlyeq 0 \iff (f) + (\omega) - \mathcal{D} \succcurlyeq \iff (f\omega) - \mathcal{D} \succcurlyeq 0 \iff f \in \Omega(\mathcal{D})$$

Hence φ is an isomorphism. Therefore $\delta(\mathcal{D}) = l(W - \mathcal{D}) \blacksquare$

Codes from Algebraic Curves

We have now came to define the Algebraic Geometric Codes.

2.1 Preliminaries

First we will define the system where we will define the codes.

- Our alphabet will be \mathbb{F}_q
- We will consider the functions $f \in \mathbb{F}_q[X_1, \dots, X_n]$. Sometimes we will write \overline{X} to denote (X_1, \dots, X_n) . n depends on the context
- If the affine curve \mathcal{X} over \mathbb{F}_q is defined by a prime ideal I in $\mathbb{F}_q[\overline{X}]$ then its coordinate ring $\mathbb{F}_q[\mathcal{X}] = \mathbb{F}_q[\overline{X}]/I$ and its function field $\mathbb{F}_q(\mathcal{X})$ is the quotient field of $\mathbb{F}_q[\mathcal{X}]$.
- It is always assumed that the curve is *absolutely irreducible*, i.e. the defining ideal is also prime in $\mathbb{F}[\overline{X}]$ where $\mathbb{F} := \overline{\mathbb{F}_q}$ i.e. \mathbb{F} is the algebraic closure of \mathbb{F}_q .

Similar adaptations are made for projective curves.

Observation. For any $F \in \mathbb{F}_q[\overline{X}]$, $F(x_1, ..., x_n)^q = F(x_1^q, ..., x_n^q)$. So if $(x_1, ..., x_n)$ is a zero of F and F is defined over \mathbb{F}_q then $(x_1^q, ..., x_n^q)$ is also a zero of F.

We can extend the *Frobenius Map*, $Fr: x \mapsto x^q$ coordinate-wise to points in affine and projective space by $Fr(x_1, \ldots, x_n) = (x_1^q, \ldots, x_n^q)$. If \mathcal{X} is a curve defined over \mathbb{F}_q and P is a point of \mathcal{X} , then Fr(P) is also a point of \mathcal{X} .

Definition 2.1.1 (Rational Divisor). A divisor \mathcal{D} on \mathcal{X} is called rational if the coefficients of P and Fr(P) is \mathcal{D} are the same for any point P of \mathcal{X} .

Remark: Now on the space $\mathcal{L}(\mathcal{D})$ will only be considered for rational divisors and as before but with the restriction of the rational functions to $\mathbb{F}_q(\mathcal{X})$

Let \mathcal{W} be an absolutely irreducible nonsingular projective curve over \mathbb{F}_q . We will define two kinds of algebraic geometry codes from \mathcal{X} , Geometric Reed Solomon Codes and Geometric Goppa Codes. Let P_1, \ldots, P_n are rational points

on \mathcal{X} and \mathcal{D} be the divisor $\mathcal{D} = P_1 + \cdots + P_n$. Furthermore \mathcal{G} is some other divisor that has support disjoint from \mathcal{D} .

Remark: We will make more restrictions on \mathcal{G} , $deg(\mathcal{G}) > 2g - 2$

2.2 Geometric Reed Solomon Codes

With the setting as above we define

Definition 2.2.1 (Geometric Reed Solomon Codes). The linear code $C(\mathcal{D}, \mathcal{G})$ of length n over \mathbb{F}_q is the image of the linear map $\alpha : \mathcal{L}(\mathcal{G}) \to \mathbb{F}_q^n$ defined by $\alpha(f) = (f(P_1), \ldots, f(P_n))$

Theorem 2.2.1. The code $C(\mathcal{D}, \mathcal{G})$ has dimension

$$k = \deg(\mathcal{G}) - (g - 1)$$

and distance

$$d \ge n - \deg(\mathcal{G})$$

Corollary 2.2.2. $k + d \ge n - (g - 1)$

Proof:
$$k + n \ge \deg(G) - (g - 1) + n - \deg(G) = n - (g - 1)$$
 ■

Example 2.2.3. Let \mathcal{X} be the projective line over \mathbb{F}_{q^m} . Hence genus g=0. Let $n=q^m-1$. Define $P_0=(0:1)$, $P_\infty=(1:0)$. Let β be the primitive nth root of unity. Define $P_i=(\beta^i:1)$ for all $i\in[n]$. Define $\mathcal{D}=\sum\limits_{i=1}^n P_i$ and $\mathcal{G}=aP_0+bP_\infty$ where $a,b\geq 0$ are non-negative integers. By Corollary 1.4.3, $l(\mathcal{G})=a+b+1$ and the functions $\left(\frac{x}{y}\right)^i$ for $-a\leq i\leq b$ forms a basis of $\mathcal{L}(\mathcal{G})$. Consider the code $C(\mathcal{D},\mathcal{G})$. A generator matrix for this code has rows $(\beta^i,\beta^{2i},\ldots,\beta^{ni})$ with $-a\leq i\leq b$. IT follows that $C(\mathcal{D},\mathcal{G})$ is a Reed-Solomon Code.

2.3 Geometric Goppa Codes

We now come to the second class of algebraic geometry codes.

Definition 2.3.1. The linear code $C^*(\mathcal{D},\mathcal{G})$ of length n over \mathbb{F}_q is the image of the linear map $\alpha^*:\Omega(\mathcal{G}-\mathcal{D})\to\mathbb{F}_q^n$ defined by

$$\alpha^*(\omega) = (\operatorname{Res}_{P_1}(\eta), \dots, \operatorname{Res}_{P_n}(\eta))$$

Theorem 2.3.1. The code $C^*(\mathcal{D}, \mathcal{G})$ has dimension

$$k^* = n - \deg(\mathcal{G}) + (g - 1)$$

and distance

$$d^* \ge \deg(\mathcal{G}) - 2(g-1)$$

Corollary 2.3.2. $k^* + d^* \ge n - (g - 1)$

Proof:
$$k^* + d^* \ge n - \deg(\mathcal{G}) + (g-1) + \deg(\mathcal{G}) - 2(g-1) = n - (g-1) \blacksquare$$

Example 2.3.3. Let $L = \{\alpha_1, ..., \alpha_n\}$ be a set of n distinct elements of \mathbb{F}_{q^m} . Let g be a polynomial in $\mathbb{F}_{q^m}[X]$ which is not zero at α_i for all $i \in [n]$. The Classical Goppa Code $\Gamma(L, g)$ is defined by

$$\Gamma(L,g) = \left\{ \overline{c} \in \mathbb{F}_q^n \mid \sum_{i=1}^n \frac{c_i}{X - \alpha_i} \equiv 0 \pmod{g} \right\}$$

Let $P_i = (\alpha_i : 1)$, Q = (1 : 0) and $D = P_1 + \cdots + P_n$. If we take for E the divisor of zeros of g on the projective line, then

$$\Gamma(L,g) = C^*(\mathcal{D}, E - Q)$$

and

$$\overline{c} \in \Gamma(L,g) \iff \sum_{i=1}^n c_i X - \alpha_i dX \in \Omega(E - Q - D)$$

It is a well-known fact that the parity check matrix of the Goppa Code $\Gamma(L,g)$ is equal to the following generator matrix of a generalized RS code

$$\begin{bmatrix} g(\alpha_1)^{-1} & \cdots & g(\alpha_n)^{-1} \\ \alpha_1 g(\alpha_1)^{-1} & \cdots & \alpha_n g(\alpha_n)^{-1} \\ \vdots & \ddots & \vdots \\ \alpha_1^{r-1} g(\alpha_1)^{-1} & \cdots & \alpha_n^{r-1} g(\alpha_n)^{-1} \end{bmatrix}$$

where r is the degree of the Goppa polynomial g.

2.4 Relation Between The 2 Codes

CHAP	TER 3

Bibliography