Problem 1. Consider the 3-sphere as the set of unit quaternions

$${x + iy + jz + kw|x^2 + y^2 + z^2 + w^2 = 1}$$

Let $\phi: U \to \mathbb{R}^3$ be $\phi(x+iy+jz+kw) = (y,z,w) \in \mathbb{R}^3$ where

$$U = \{x + iy + jz + kw \in S^3 | x > 0\}$$

Consider ϕ as a chart. For each $q \in S^3$, define a chart ψ_q by $\psi_q(p) = \phi(q^{-1}p)$. Show that this set of charts is an atlas for a smooth structure on S^3 .

 \square

Problem 2. Let X be a copy of the real line \mathbb{R} and let $\phi: X \to \mathbb{R}$ be $\phi(x) = x^3$. Taking ϕ as a chart, this defines a smooth structure on X. Prove or disprove the following statements:

- 1. X is diffeomorphic to \mathbb{R} ;
- 2. the identity map $X \to \mathbb{R}$ is a diffeomorphism;
- 3. ϕ together with the identity map comprise an atlas;
- 4. on the one-point compactification X^+ of X, ϕ, ψ give an atlas, where $\psi(x) = 1/x$, for $x \neq 0, \infty$, and $\psi(\infty) = 0$. (ψ is defined on $X^+ \setminus \{0\}$.)

Proof.