Review

* Chapter 5

- 存储器
 - > 存储器层次结构
 - ▶存储器
 - 基本结构: 有哪些信号线?
 - 种类: SRAM和DRAM
 - 工作原理
 - ▶主存与CPU的连接
 - 位扩展(data width)
 - 地址线扩展: 译码器+片选
 - 上面两种方式联合
 - ▶地址分配与片选

Exe.10

*低位地址A0-A11接到内存芯片地址引脚上, A12-A19 按照下图进行片选, 且低电平有效, 针对下面的译码电路, 不属于此译码空间的是()

- * CS=取反(A19(A18+A17)A15A13A12)
- *将高8位带入进去,发现D不满足

Exe.11

*处理器按照字节寻址,地址按照0x90000到0xCFFFF, 用存储容量16K*8位芯片构成内存,至少需要芯片数目 是多少?

- *地址空间: 0xCFFFF- 0x90000+1=0x40000 (256KB)
- ***** 256/16=8

课程主要内容

* Chapter 5

- 高速缓冲存储器
 - ▶存储局部性原理
 - ➤ Cache基本结构
 - **≻ Cache**基本工作原理
 - **≻ Cache**与主存的映射方式
 - 直接映射
 - 全相连映射
 - 组相连映射
 - 替换算法
 - Cache写策略
 - » Write-through
 - » Write-back
 - **≻ Cahce性能评估**
 - 局部命中率和全局命中率
 - 平均访存延迟时间
 - 停顿周期数

Exe.12

13. 【2016 统考真题】有如下 C 语言程序段:

```
for (k=0; k<1000; k++)

a[k] = a[k] + 32;
```

若数组 a 和变量 k 均为 int 型,int 型数据占 4B,数据 Cache 采用直接映射方式,数据区大小为 1KB、块大小为 16B,该程序段执行前 Cache 为空,则该程序段执行过程中访问数组 a 的 Cache 缺失率约为()。

每次装载16B, 也就是每次可以装载4个a数组元素, 每一次循环

要访问cache两次,一次读一次写,也就说每个a有2次cache访问

每次可以装载4个a数组元素,8次访问cache,第一次是miss, 其余全部是hit,因此:缺失率=12.5%

Ex.13

有一主存-Cache 层次的存储器, 其主存容量为 1MB, Cache 容量为 16KB, 每块有 8 个字, 每字 32 位, 采用直接地址映像方式, 若主存地址为 35301H, 且 CPU 访问 Cache 命中,则在 Cache 的第()(十进制表示)字块中(Cache 起始字块为第 0 字块)。

Block size: 8*4=32 ->5bit

Index: 16KB/(8*4)=512 ->9bit

主存地址:0011 1001 0011 0000 0001

故为:152

Ex.16

【2016 统考真题】某计算机采用页式虚拟存储管理方式,按字节编址,虚拟地址为32位,物理地址为24位,页大小为8KB;TLB采用全相联映射;Cache数据区大小为64KB,按2路组相联方式组织,主存块大小为64B。存储访问过程的示意图如下。

Ex16

回答下列问题:

- 1)图中字段 A~G的位数各是多少? TLB标记字段 B中存放的是什么信息?
- 2) 将块号为 4099 的主存块装入 Cache 时, 所映射的 Cache 组号是多少? 对应的 H 字段内容是什么?
- 3) 是 Cache 缺失处理的时间开销大还是缺页处理的时间开销大? 为什么?
- 4) 为什么 Cache 可以采用直写策略,而修改页面内容时总是采用回写策略?

虚拟地址32位, 页大小8K(2^13)

格式:虚页号是19 (32-13=19),页内偏移是13,因此A=19

物理地址24位

格式:虚页号是11 (24-13=11),页内偏移是13,因此C=11, D

TLB是全相连, Tag=19bit B=19

Cache 深度: 64KB/64B/2=512 (index需要9bit) F=9 G=

Tag 长度: E=24-9-6=9

Ex16

- *(2) 块号:不包含块的信息
- * 4099=00 0001 0000 0000 0011 (加上6位块内偏移)
- * 也就说4099 只包含E和F的内容
- *F=3 因此: 0 0000 0011
- *00 0001 000为Tag, 因此H字段为8
- *(3)缺页需要访问磁盘, cache miss只需要访问主存
- *(4) 直写需要同时写快存储器和慢存储器, 写磁盘太慢, 应尽量减少写磁盘, 因此主存-外存层次用写回。

EX17

【2011 统考真题】某计算机存储器按字节编址、虚拟(逻辑)地址空间大小为 16MB, 主存(物理)地址空间大小为 1MB, 页面大小为 4KB; Cache 采用直接映射方式, 共 8 行; 主存与 Cache 之间交换的块大小为 32B。系统运行到某一时刻时, 页表的部分内容。

行到某一时刻时,页表的部分内容和 Cache 的部分内容分别如下面的左图和右图所示,图中页框号及标记字段的内容为十六进制形式

虚页号	有效位	1960			
0	1	06	944		
1	1	04	1994		
2	1	15	***		
3	1	02	***		
4	0	-	CALL.		
5	1	2B			
6	0		***		
7	1	32	***		

行号	有效位	bis ict	144
0	1	020	***
1	0		749
2	1	01D	140
3	1	105	447
4	1	064	149
5	1	14D	1931
6	0	-	144
7	1	27A	***

回答下列问题:

- 1)虚拟地址共有几位,哪几位表示虚页号?物理地址共有几位,哪几位表示页框号(物理页号)?
- 2) 使用物理地址访问 Cache 时,物理地址应划分成哪几个字段?要求说明每个字段的位数及在物理地址中的位置。
- 3)虚拟地址 001C60H 所在的页面是否在主存中?若在主存中,则该虚拟地址对应的物理地址是什么?访问该地址时是否 Cache 命中?要求说明理由。
- 4)假定为该机配置一个四路组相联的 TLB, 共可存放 8个页表项, 若其当前内容 (十六进制)如下图所示,则此时虚拟地址 024BACH 所在的页面是否存在主存中?要求说明理由。

			HE FI	有效位	标记	页框号	有效位	标记	页框号	有效位	标记	页框号
组号	有效位	标记	页框号	有双拉	001	15	0	-	-	1	012	1F
0	0	-	-	1	001	10	1	008	7E	0	-	
1	1	013	2D	0	-						-	

以 以 加 一 书 前在处理机上执行的某个进程的页表见

- *(1) 16MB=2^24 4KB=2^12 1MB=2^20
- * 虚拟地址: 12-12
- *物理地址:8-12
- * (2) Cache
- * Tag-index-block
- * Block: 5bit
- * Index: 3
- * Tag: 20-5-3=12
- *(3) 001C60: 001为虚页号, 命中
- *物理地址:04C60,那么:index=011 block=00000
- * 04C不等于105

- ***** (4)11-1-12
- * 0x024BAC
- * 0xBAC-页内偏移
- * 0-index
- * 0x012-Tag

