Machine Learning Lab Report

Team 7

Rahibur Rahman	(211-115-004)
Ahad Bin Zaman Jibon	(211-115-009)
Sanjib Kumar Singha	(201-115-132)
Sree Himel Debonath	(191-115-053)

Topic

Algorithm 1	Algorithm 2	
K_Nearest_Neighbour	Logistic _Regression	

INTRODUCTION

Introduction to Loan Prediction with KNN and Logistic Regression:

In the realm of financial decision-making, predicting loan approvals accurately is essential. Two powerful machine learning algorithms, K-Nearest Neighbors (KNN) and Logistic Regression, play a crucial role in this process.loan prediction can be applied to both Logistic Regression and K-Nearest Neighbors (KNN) algorithms. Both algorithms are commonly used for classification tasks, and they can be suitable for predicting whether a loan will be approved or denied based on various features such as credit score, income, and other relevant factors.

K-Nearest Neighbors (KNN):

KNN classifies loan applications based on their similarity to neighboring instances. Considering factors like credit score and income, KNN determines approval by the majority class of the k-nearest neighbors. Its flexibility suits complex decision boundaries.

Logistic Regression:

Logistic Regression assesses the relationship between independent variables and the probability of loan approval. It uses a logistic function to constrain output between 0 and 1, offering insights into the impact of each feature on loan decisions.

MATERIALS

- 1. PC,Internet connection
- 2. Jupyter Notebook to write code
- 3. Dataset (.CSV format)
- 4. language:Python (version 3)

PROCEDURE

- 1. We select Algorithm _1: K_Nearest_Neighbour
- 2. We select Dataset: loan_data_set.csv
- 3. Then we open jupyter notebook and give the Title name:

Loan prediction using _K Nearest Neighbors

- 4. Then we started Implementing code and training, testing and Predicting
- 5. Total Process from building model to predicting

Importing dependencies

Reading dataset

Setting the value for dependent and independent variables

Checking for missing values

Imputation of missing values

Implementing the KNN Mode

Feature scaling

Fitting Mode

Prediction on the test set

Evaluating the Model

Getting Graphical Representation By Implementing ROC_AUC curve

Testing the knn model by giving inputs manually

- 6. We select Algorithm _2: Logistic_Regression
- 7. We select Dataset: loan data set.csv
- 8. Then we open jupyter notebook and give the Title name:

Loan_prediction Using Logistic_Regression

9. Total Process from building model to predicting

Importing dependencies

Reading dataset

Setting the value for dependent and independent variables

Checking for missing values

Imputation of missing values

Exploratory data analysis

Model Building

Converting some object data type to int

Setting the value for dependent and independent variables

Splitting the dataset into train and test set

Fitting the Logistic regression model

Prediction on the test set

Evaluating the Model

Getting Graphical Representation By Implementing ROC_AUC curve

Testing the logistic regression model by giving inputs manually

DATASET FEATURES

Our dataset has those below features:

 $Loan_ID, Gender, Married, Dependents, Education, Self_Employed, ApplicantIncome, CoapplicantIncome \\ LoanAmount_Loan_Amount_Term, Credit_History, Property_Area, Loan_Status$

RESULTS

By predicting the dataset using two different algorithms we got two difference accuracy results

From **K_Nearest_Neighbour** we get the accuracy 74% or 0.74

And from **Logistic_Regression** we get the accuracy 78% or 0.78

After that we also tested the model by giving it manual input.

Logistic_Regression

0.76

1

precision recall f1-score support

0 0.89 0.33 0.48 48

accuracy		0.7	8 154	Į.
macro avg	0.83	0.66	0.67	154
weighted avg	0.80	0.78	0.74	154

0.98

0.86

106

K_Nearest_Neighbour

precision recall f1-score support

0 1	0.66 0.75	0.33 0.92	0.44 0.83	58 127
accura	су		0.74	185
macro avg	0.70	0.62	0.63	185
weighted avg	0.72	0.74	0.70	185

Above The confusion matrix we can see the total number of true value and predicted value for both algorithms where for Logistic_Regression TP(True positive)=16,TN(True Negative)=104,FP(False positive)=2,FN(False negative)=32,

For K_Nearest_neighbour TP=19,TN=117,FP=10,FN=39

Getting Graphical Representation By Implementing ROC_AUC curve

CONCLUSION

In conclusion, upon applying Logistic Regression and K-Nearest Neighbors (KNN) algorithms to the same dataset, it is evident that Logistic Regression outperforms KNN, yielding superior prediction accuracy. That means Logistic gives better results than KNN.

REFERENCES

- 1. https://en.wikipedia.org/wiki/Confusion matrix (Confusion Matrix)
- 2. https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/#:~:text=AUC%20ROC%20stands%20for%20%E2%80%9CArea.summary%20of%20the%20ROC%20curve. (Roc_Auc curve)
- 3. https://www.pythonkitchen.com/logistic-regression-vs-k-nearest-neighbors-in-machine-learning/ (logistic vs KNN)