NEWTON-RAPHSON YÖNTEMİ

YARIYA BÖLME YÖNTEMİ (Bisection)

$$f(a)*f(b) < 0 \text{ ise } c=(a+b)/2$$

$$f(a)*f(c) < 0 \text{ ise } b=c$$

$$f(a)*f(c) > 0$$
 ise a=c

f(a)*f(b) = 0 ise a veya b den biri yada herikisi de kök olabilir.

REGULA FALSİ YÖNTEMİ (False Position)

$$f(a)*f(b) \le 0$$
 ise $c=(b*f(a)-a*f(b)) / (f(a)-f(b))$

$$f(a)*f(c) < 0 \text{ ise } b=c$$

$$f(a)*f(c) > 0$$
 ise a=c

f(a)*f(b) = 0 a veya b den biri yada herikisi de kök olabilir.

Basit İterasyon Yönteminde Kökün Yakınsaması ve Iraksaması

GRAFİK YÖNTEMİ

KİRİŞ YÖNTEMİ (Secant)

$$X_{n+1}=X_0 - ((X_n-X_0)/(y_n-y_0))*y_0$$

Matrisler satır ve sütunlardan oluşan iki boyutlu dizilerdir.

Tek satır veya sütundan oluşurlarsa vektör veya dizi adını alırlar.

Matrisler genelde isimleri ile veya [] şeklinde gösterilir.

$$[A] = \begin{bmatrix} a_{1i} & a_{12} & a_{13} & \dots & a_{1j} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2j} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3j} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{ij} \end{bmatrix}$$

Alt ve Üst Üçgen Matris

- Matrisin köşegeni üstündeki elemanlar sıfır ise Alt Üçgen Matris
- Matrisin köşegeni altındaki elemanlar sıfır ise Üst Üçgen Matris denir.

$$[A] = \begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ a_{31} & a_{32} & a_{33} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & a_{i3} & \dots & a_{ij} \end{bmatrix} \quad [A] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1j} \\ 0 & a_{22} & a_{23} & \dots & a_{2j} \\ 0 & 0 & a_{33} & \dots & a_{3j} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_{ij} \end{bmatrix}$$

Birim ve Köşegen Matris

- Matrisin köşegeni üzerindeki elemanlar 1 ise Birim Matris
- Matrisin köşegeni üzerinde değer bulunan ve diğer elemanları 0 olan matrise de Köşegen Matris adı verilir.

$$[A] = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \quad [A] = \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{ij} \end{bmatrix}$$

Bant Matris

Matrisin elemanları köşegen etrafında belirli bir düzen ile yerleşmiştir. Genellikle kısmi türevli denklemlerin çözümünde kullanılır.

$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	0	0	0	0	o]	
			$a_{2,4}$	0	0	0	0	
$a_{3,1}$			$a_{3,4}$	$a_{3,5}$	0	0	0	
0	$a_{4,2}$		$a_{4,4}$	$a_{4,5}$	$a_{4,6}$	0	0	
•••	• • •	• • •	•••	•••			•••	
•••	•••	• • •	221 ***	• • •	i tere of the second	Par 👀		
	•			$a_{i-1,j-3}$	$a_{i-1,j-2}$	$a_{i-1,j-1}$	$a_{i-1,j}$	
					$a_{i,j-2}$	$a_{i,j-1}$	$a_{i,j}$	
_				•				
	0	$\begin{bmatrix} a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \\ 0 & a_{4,2} \end{bmatrix}$	$\begin{bmatrix} a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \\ 0 & a_{4,2} & a_{4,3} \end{bmatrix}$	$\begin{bmatrix} a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\ 0 & a_{4,2} & a_{4,3} & a_{4,4} \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & 0 & 0 \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} & 0 \\ 0 & a_{4,2} & a_{4,3} & a_{4,4} & a_{4,5} & a_{4,6} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i-1,j-3} & a_{i-1,j-2} \\ & & & & & & & \\ a_{i,j-2} \end{bmatrix}$	$\begin{bmatrix} a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & 0 & 0 & 0 \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} & 0 & 0 \\ 0 & a_{4,2} & a_{4,3} & a_{4,4} & a_{4,5} & a_{4,6} & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{i-1,j-3} & a_{i-1,j-2} & a_{i-1,j-1} \\ & & & & & & & & & \\ a_{i,j-2} & a_{i,j-1} \end{bmatrix}$	

Transpoze Matris

$$[A] = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$[A]^{T} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

Simetrik Matris

• Bir matrisin transpozesi kendisine eşit ise Simetrik Matris adını alır.

$$[A] = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$
$$[A]^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

Kofaktör Matris

- Bir matrisin herhangi bir elemanının bulunduğu satır ve sütun silinerek elde edilen matrisin işaretli determinantı o elemanın Kofaktörü olarak adlandırılır.
- Bu işlem bütün elemanlar için tekrarlanıp yerine konulursa elde edilen yeni matris Kofaktör Matris olarak adlandırılır.

$$[A] = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}$$

$$a_{1,1} = (-1)^{1+1} \begin{vmatrix} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{vmatrix}$$

$$kofaktör[A] = \begin{bmatrix} \alpha_{1,1} & \alpha_{1,2} & \alpha_{1,3} \\ \alpha_{2,1} & \alpha_{2,2} & \alpha_{2,3} \\ \alpha_{3,1} & \alpha_{3,2} & \alpha_{3,3} \end{bmatrix}$$

$$\alpha_{2,1} = (-1)^{2+1} \begin{vmatrix} a_{1,2} & a_{1,3} \\ a_{3,2} & a_{3,3} \end{vmatrix}$$

Adjoint (Ek) Matris

• Kofaktör matrisinin transpozesinden oluşur.

$$Adjo \text{ int}[A] = \begin{bmatrix} \alpha_{1,1} & \alpha_{2,1} & \alpha_{3,1} \\ \alpha_{1,2} & \alpha_{2,2} & \alpha_{3,2} \\ \alpha_{1,3} & \alpha_{2,3} & \alpha_{3,3} \end{bmatrix}$$

Ters Matris

• Bir matrisin Adjoint matrisinin o matrisin determinantına bölünmesiyle elde edilen matrise Ters Matris denir.

$$A^{-1} = \frac{Adj[A]}{|A|}$$