Unsupervised Learning

Quiz, 5 questions

1 point

1.

For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.

Given many emails, you want to determine if they are Spam or Non-
Spam emails.

Given historical weather records, predict if tomorrow's weather will
be sunny or rainy.

Given a set of news articles from many different news websites, find
out what are the main topics covered.

From the user usage patterns on a website, figure out what differer
groups of users exist.

1 point

2.

Suppose we have three cluster centroids $\mu_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=\begin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=\begin{bmatrix}4\\2\end{bmatrix}$. Furthermore, we have a training example $x^{(i)}=\begin{bmatrix}-2\\1\end{bmatrix}$. After a cluster assignment step, what will $c^{(i)}$ be?

$$c^{(i)}=1$$

$$igcap c^{(i)}=2$$

$$igcup_{c^{(i)}}=3$$

$$c^{(i)}$$
 is not assigned

Unsupervised Learning Quiz, 5 questions

2

	out in its inner-loop. Which two?	
	Move the cluster centroids, where the centroids μ_k are updated.	
	The cluster assignment step, where the parameters $c^{\left(i ight)}$ are updated.	
	The cluster centroid assignment step, where each cluster centroid μ_i is assigned (by setting $c^{(i)}$) to the closest training example $x^{(i)}$.	
	Move each cluster centroid μ_k , by setting it to be equal to the closest training example $\boldsymbol{x}^{(i)}$	
1		
point		
	se you have an unlabeled dataset $\{x^{(1)},\dots,x^{(m)}\}$. You run K-means different random	
initializations, and obtain 50 different clusterings of the		
data. W	hat is the recommended way for choosing which one of	
these 5	0 clusterings to use?	
	Compute the distortion function $J(c^{(1)},\dots,c^{(m)},\mu_1,\dots,\mu_k)$, and pick the one that minimizes this.	
	Use the elbow method.	
	Manually examine the clusterings, and pick the best one.	
	Plot the data and the cluster centroids, and pick the clustering that gives the most "coherent" cluster centroids.	
1		
point		

5.

Which of the following statements are true? Select all that apply.

