Конспект по алгебре I семестр СПбГУ, факультет математики и компьютерных наук (лекции Степанова Алексея Владимировича)

Тамарин Вячеслав

December 15, 2019

Contents

1	Лин	нейная алгебра. Векторные пространства
	1.1	Лекция 1
	1.2	Лекция 2
	1.3	Лекция 3
		1.3.1 Произведение матриц
	1.4	Лекция 4
	1.5	Лекция 5
	1.6	Лекция 6
	1.7	Лекция 7
	1.8	Лекция 8
	1.9	Лекция 9
	1.10	Лекция 10
	1.11	Лекция 11
		Лекция 12
	1.13	Лекция 13
	1.14	Лекция 14
2		пала теории групп
	2.1	Лекция 15
	2.2	Лекция 16
	2.3	Лекция 17
	2.4	Лекция 18
	2.5	Лекция 19
		2.5.1 Поговорим о комутаторах
	0.0	2.5.2 Возвращаемся к матрицам
	2.6	Лекция 20
	0.7	2.6.1 Симметрическая группа
	2.7	Лекция 21
	0.0	2.7.1 Продолжаем возиться с перестановками. Четность
	2.8	Лекция 22
	2.9	Лекция 23
		2.9.1 Теорема о гомоморфизме для колец
	0.10	2.9.2 Комплексные числа
	2.10	Лекция 24
	244	2.10.1 Окончание комплексных чисел
	2.11	Лекция 25
		2.11.1 Кольца главных идеалов
	0.10	2.11.2 Китайская теорема об остатках
	2.12	Лекция 26
		2.12.1 Простые и максимальные идеалы

4 CONTENTS

2.13	Лекция 27	45
	2.13.1 Фактор кольцо по максимальному идеалу	45
	2.13.2 Единственность разложения	45
	2.13.3 Нётеровы кольца	46
	Лекция 28	47
	2.14.1 Продолжение нёторвых колец	47
	2.14.2 Факториальное кольцо	48
	Лекция 29	49
	2.15.1 Локализания кольна	49

Chapter 1

Линейная алгебра. Векторные пространства

1.1 Лекция 1

X - множество $*: X \times X \to X$ $(x,y) \mapsto x * y$

Аксиомы:

- 1. $\forall x, y, z \in X : x * (y * z) = (x * y) * z$ (ассоциативность)
- 2. $\exists e \in X \ \forall a \in X : e*a = a*e = a \ ($ нейтральный элемент)
- $3. \ \forall a \in X \ \exists a' \in X : a*a' = a'*a = e \ (обратный элемент)$
- 4. $\forall a, b \in X : a * b = b * a$ (коммутативность)

Def 1. Множество X с операцией *, удовлетворяющее аксиоме 1, называется полугруппой

Def 2. Множество X с операцией * , удовлетворяющее аксиомам 1-2, называется **моноидом**

Def 3. Множество X с операцией * , удовлетворяющее аксиомам 1-3, называется **группой**

Def 4. Множество X с операцией * , удовлетворяющее аксиомам 1-4, называется коммутативной или абелевой группой

Exs.

- 1. $(\mathbb{Z}, +)$ группа
- 2. (№, +) полугруппа
- 3. $(\mathbb{N}_0, +)$ моноид
- 4. $(\mathbb{R}\setminus\{0\},\cdot)$ группа

 $5. \ \Pi$ усть A - множество

X:= множество биективных отображений $A \to A$ id_A — нейтральный элемент Если f(x)=y, то $\tilde{f}(y)=x$ — обратная функция $(f\circ \tilde{f}=\tilde{f}\circ f=id_A)$. $f(x)=x+1,\ g(x)-2x,\ id_A(x)=x$ $f\circ g(x)=f(g(x))=f(2x)=2x+1$ $g\circ f(x)=g(f(x))=g(x+1)=2x+2\neq 2x+1$

Следовательно, (X, \circ) – не коммутативная группа

Designation.

- · мультипликативность, $1, x^{-1}$
- + аддитивность, 0, -x
- \circ относительно композиции, id, x^{-1}
- * абстрактная операция, e, x^{-1}

Пусть (R, +) – абелева группа Определим отображение

$$\cdot: R \times R \to R$$

 $(a,b) \mapsto a \cdot b$

Для $(R,+,\cdot)$ могут быть верны следующие аксиомы:

- 5. a(b+c) = ab + ac(b+c)a = ba + ca (дистрибутивность)
- 6. a(bc) = (ab)c (ассоциативность)
- 7. $\exists 1_R \, \forall a \in R : 1_R \cdot a = a \cdot 1_R = a$ (нейтральный элемент)
- 8. ab = ba (коммутативность)
- 9. $0_R \neq 1_R$
- 10. $\forall a \neq 0_R \ \exists a^{-1} : a \cdot a^{-1} = a^{-1} \cdot a = 1_R$ (обратный элемент)

Def 5. $(R, +, \cdot)$, удовлетворяющее аксиоме 5, называется **не ассоциативным кольцом без единицы**.

Def 6. $(R, +, \cdot)$, удовлетворяющее аксиомам 5-6, называется **ассоциативным кольцом без единицы**.

Def 7. $(R,+,\cdot)$, удовлетворяющее аксиоме 5-7, называется **ассоциативным кольцом с единицей**.

Def 8. $(R, +, \cdot)$, удовлетворяющее аксиомам 5-8, называется коммутативным кольцом.

Exs.

1. Z -коммутативное кольцо

- $2. \mathbb{Q}, \mathbb{R}, \mathbb{C}$ поля
- 3. Рассмотрим $\mathbb{Z}_n = 0, \dots, n-1$ с операциями $+_n, \cdot_n$: $a +_n b = (a+b)\%n$ $a \cdot_n b = (a \cdot b)\%n$ Обратимые элементы: ax = 1 + ny ax ny = 1 Если (a,n) = 1, есть решение, иначе нет. \mathbb{Z}_p поле $\Leftrightarrow p \in \mathbb{P}$

1.2 Лекция 2

Def 9. V – векторное пространство над полем F , если (V,+) – абелева группа, задано отображение $V \times F \to V$

 $(x, \alpha) \mapsto x \cdot \alpha$, удовлетворяющее аксиомам $\forall x, y \in V, \forall a, b \in F$:

5.
$$x \cdot (\alpha \cdot \beta) = (x \cdot \alpha) \cdot \beta$$

6.
$$(x + y) \cdot \alpha = x \cdot \alpha + y \cdot \alpha$$

 $x \cdot (\alpha + \beta) = x \cdot \alpha + x \cdot \beta$

7.
$$x \cdot 1_F = x$$

$$A \in M_n(F), \alpha \in F$$
$$(A, \alpha)_{ij} = a_{ij} \cdot \alpha$$
$$(AB)\alpha = A(B\alpha)$$

Exs.

1. Множество векторов в \mathbb{R}^3

2.
$$F^{n} = \left\{ \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} \mid a_{i} \in F \right\}$$
$$\begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} + \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix} = \begin{pmatrix} a_{1} + b_{1} \\ \vdots \\ a_{n} + b_{n} \end{pmatrix}$$

- 3. X множество, $F^X=\{f\mid f:X\to F\}$ $f,g:X\to F$ (f+g)(x)=f(x)+g(x) $(f\alpha)(x)=f(x)\alpha$
- 4. F[t] многочлены от одной переменной t
- 5. V абелева группа, в которой $\forall a \in V: \underbrace{a+a+\ldots+a}_{p \in \mathbb{P}} = 0$ Тогда V векторное пространство над \mathbb{Z}_p $k \cdot a = \underbrace{a+\ldots+a}_k$

1.3 Лекция 3

Def 10. Алгебра A над полем F – кольцо, являющееся векторным пространством над F ("+" операция в кольце и в векторном пространстве), такое что $(ab)\alpha = a(b\alpha)$ $a,b\in A, \alpha\in F$

Ex. $(\mathbb{R}^3, +, \times)$ - не ассоциативная алгебра на \mathbb{R}

Def 11. Матрица размера $I \times J$ (I, J - множества индексов) над множеством X - это функция

$$A: I \times J \to X, \qquad (i,j) \to a_{ij}.$$

Пусть определено умножение $X \times Y \to Z$, $(x,y) \to xy$ (Z - коммутативный моноид относительно "+")

Def 12. Строка - матрица размера $\{1\} \times J$

Столбец - матрица размера $J \times \{1\}$

 \overline{A} - строка длины J над X

B - строка длины J над Y

Тогда произведение $AB = \sum_{j \in J} a_{1j}b_{j1} \in Z$

 $x
ightarrow x_e$ - координаты вектора x

$$x \cdot y = x_e^T \cdot y_e$$

 $\underbrace{x \cdot y}_{\text{скалярное произведение}}$

Def 13. Транспонирование матрицы.

D - матрица $I \times J$ над X

$$D^T$$
 - матрица $J\times I$ над $X:(D^T)_{ij}=(D)_{ji}$

Note. Пусть в X есть элемент $0:0\cdot y=0\quad \forall y\in Y$. Все кроме конечного числа $a_i=0$. Тогда AB имеет смысл, даже когда $|J| = \infty$.

"почти все" = кроме конечного количества

Designation.

 a_{i*} - i-я строка матрицы A

 a_{*j} - j-й столбец матрицы A

1.3.1Произведение матриц

A - матрица $I \times J$ над X.

B - матрица $J \times K$ над Y.

$$AB$$
 - матрица $I \times K$ над $Z = X \cdot Y,$ $(AB)_{ik} = a_{i*} \cdot b_{*k} = \sum_{j \in J} a_{ij} \cdot b_{jk}.$

$$(x_1, \dots x_n) \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = va, \quad v \in V, a \in F.$$

1.4 Лекция 4

Def 14. (G,*), (H,#)– группа $\varphi: G \to H$ - гомоморфизм, если:

$$\varphi(g_1 * g_2) = \varphi(g_1) \# \varphi(g_2)$$

Def 15. R, S -кольца

 $\varphi:R\to S$ - гомоморфизм, если:

$$\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$$
$$\varphi(r_1 \cdot r_2) = \varphi(r_1) \cdot \varphi(r_2)$$

Для колец с $1:\varphi(1)=1$

Def 16. U, V - векторные пространства над F $\varphi: U \to V$ - линейное отображение, если:

$$\varphi(u_1 + u_2) = \varphi(u_1) + \varphi(u_2)$$

$$\varphi(u\alpha) = \varphi(u)\alpha$$

Note. Изоморфизм – биективный гомоморфизм.

Def 17. V - векторное пространство над полем F

v - строка элементов "длины" I над V

a - столбец "высоты" I, почти все элементы которого равны 0.

Тогда va - линейная комбинация набора v с коэффициентами .

Note. $U \subset V$

U является векторным пространством относительно тех же операций, которые заданы в V. Тогда U -подпространство V

Lemma. $U \subseteq V$

 $\forall u_1, u_2 \in U, \alpha \in F$:

 $u_1 + u_2 \in U, u_1 \alpha \in U$ Тогда U - подпространство. Если U - подпространство в V, то пишут $U \subseteq V$.

Def 18. $v=\{v_i|i\in I\}$, где $v_i\in V\ \forall i\in I$ $\langle v\rangle$ - наименьшее подпространство, содержащее все v_i

Lemma. $\langle v \rangle = \{va|a-cmon\delta e u \ высоты I \ над F, где почти всюду элементы равны нулю <math>\} = U$

Proof. $v_i \in \langle v \rangle \Rightarrow v_i a_i \in \langle v \rangle$

 $\Rightarrow v_{i_1}a_{i_1}a + \dots + v_{i_k}a_{i_k} \in \langle v \rangle$

 $\Rightarrow \langle v \rangle$ содержит все варианты комбинаций. $va+vb=v(a+b)\in U$

 $(va)\alpha = v(a\alpha) \in U$

 \Rightarrow множество линейных комбинаций – подпространство U - подпространство, содержащее $v_i \forall i \in I$ $\langle v \rangle$ а – наименьшее подпространство, содержащее v_i

 $\Rightarrow \langle v \rangle \subseteq U$ тогда $\langle v \rangle = U$

Def 19. Если $\langle v \rangle = V$, то v – система образующих пространство V Базис – система образующих.

Designation. F^I – множество функций из I в F = множество столбцов высоты I IV – множество строк длины I

Набор элементов из V , заиндексирванных множеством I – это функция $f:I\to V$ $i\mapsto f_c$

Def 20. $v \in {}^IV$ v – линейно независим, если $\forall a \in F^I, a \neq 0 \Rightarrow va \neq 0$

Theorem 1. $v \subseteq V$

Следующие утверждения эквивалентны:

- 1. v линейно независимая система образующих
- 2. v максимальная линейно-независимая система
- 3. v-j минимальная система образующих
- 4. $\forall x \in V \exists ! a \in F^v : x = va = \sum_{t \in v} t \cdot a_t$ (почти все элементы равны 0)

 $Proof.\ (1)\Rightarrow (4)$ – доказали ранее $(1)\Rightarrow (2)$ $x\in V\setminus v$ $x=va(a\in F^v)$ $va=x\cdot 1=0$ – линейная зависимость набора $v\cup x$ Т.о. любой набор , строго содержащий v, линейно зависим $\Rightarrow v$ – максимальный. $(1)\Rightarrow (2)$ $x\in V\setminus v\subseteq V\cup x$ —линейно зависим $va+xa_x=0$ $a\neq 0$ Если $a_x=0\Rightarrow va=0\Rightarrow a=0$?! Значит $a_x\neq 0$ $va=c\cdot (-a_x)$ $va=c\cdot (-a_x)$ $va=v\cdot \frac{a}{-a_x}\Rightarrow v$ —система образующих.

Lemma (Цорн). Пусть \mathcal{A} – набор подмножеств (не всех) множества X. Если объединение любой цепи из \mathcal{A} , принадлежащей \mathcal{A} , то в \mathcal{A} существует максимальный элемент. $M \in \mathcal{C}$ - максимальная, если $M \subseteq M' \subseteq \mathcal{A} \Rightarrow M = M'$

Theorem 2 (о существовании базиса). V – векторное пространства

X – линейное независимое подмножество V

Y – cucmeма образующих V

 $X \leq Y$

Тогда существует базис Z пространства $V: X \leq Z \leq Y$

Proof. $\mathcal{A}-$ множество всех линейно независимых подмножеств, лежащих между X и Y. $X\in\mathcal{A}$ $\mathcal{C}\leq\mathcal{A}$

 $X \le \cup C \in \mathcal{C} \le Y$

Пусть $\cup C \in \mathcal{C}$ – линейно зависимый. То есть $\exists u_1,...,u_2 \in /...$

. .

Пусть v - базис V.

$$\forall x \in V \; \exists ! x_v \in F^v : x = v \cdot x_v$$

 $v=(v_1,\ldots,v_n),\; x_v=\,$ матрица столцов альфа;

$$x = v_1 \alpha_1 + \ldots = v \cdot x_v$$

1.5 Лекция 5

1.6 Лекция 6

1.7 Лекция 7

Statement.

$$U < W \quad \exists V < W : W = U \oplus V$$

Proof. Выберем базис u в U. Дополним до базиса $u \cup v$ пространства W и положим $V = \langle v \rangle$.

$$\langle u \rangle = U \langle v \rangle = V \langle u \cup v \rangle = \langle u \rangle + \langle v \rangle = U \oplus V = W$$

 $x \in U \cap V \Rightarrow x = ua = vb \Leftrightarrow ua - vb = 0 \Rightarrow a = 0, b = 0 (u \cup v -$ линейно независимый

Corollary.

$$u-$$
 базис $U,v-$ базис $V,U,V\leq W$ $u\cup v-$ базис $W\Leftrightarrow U\oplus V$

25.09.2019

1.8 Лекция 8

$$v - (v_1, v_2, \dots v_n) \in n^V$$

 $M_n(F)$ — алгебра матриц размера $n \times n$ над F

 $GL_n(F)=M_n(F)^*$ — полная линейная группа степени n над F

Lemma.

$$v \in n^V, A \in GL_n(F)$$

v- линейно независимый $\Leftrightarrow vA-$ линейно независимый

$$\langle v \rangle = \langle vA \rangle$$

Лекция 1.8

 $Proof.\ (vA)A^{-1}=v(AA^{-1})=vE=v,$ поэтому можно доказывать только в одну строну. v - линейно независимый.

 $vAb=0\Rightarrow A^{-1}Ab=0\Rightarrow b=0,$ т.е vA - линейно независимый.

$$(vA)b = v(Ab) \in \langle v \rangle, \langle vA \rangle \leq \langle v \rangle$$

Statement. u, v - два разных базиса пространства V.

Тогда $\exists !$ матрица $A \in GL_n(F) : u = vA$

При этом $a_{*k} = (u_k)_v$ $\forall k = 1, \dots n$. Такая матрица обозначается $C_{v \to u}$ и называется матрицей перехода от $v \kappa u$.

$$C_{v \to u} C_{u \to v} = C_{v \to u} C_{u \to v} = E$$

Proof. Положим $a_{*k}=(a_k)_v\Rightarrow u_k=va_{*k}\Rightarrow u=vA.$ $vA=vB\Leftrightarrow A=B$ то есть A - единственно. Лалее:

$$u = vC_{v \to u}$$

$$v = uC_{u \to v}$$

$$uE - uC_{v \to u}C_{v \to u}$$

$$E = C_{u \to v}C_{v \to u}$$

 ${f Corollary.}\ v$ - базис V

 $f:GL_n(F) o$ множество базисов пространства V f(A)=vA - биекция.

Proof.

$$|F|=q \qquad \dim V=u$$
 $(q^n-1)(q^n-q)\dots(q^n-q^{n-1})$ — количество базисов

 \mathbb{F} - поле из q элементов.

Statement. Если матрица двусторонне обратима, то она квадратная.

Corollary. u, v - базисы V

$$x = C_{u \to v} x_v$$

Proof.

$$x = ux_u = vx_v$$

$$v = uC_{u \to v}$$

$$ux_u = uC_{u \to v}x_v \Rightarrow x_u = C_{u \to v}x_v$$

Corollary. (Матричные линейные отображения)

$$L:U\to V$$
, $u-$ базис $U,v-$ базис V

Тогда $\exists !$ матрица $L_{v,u}(L_u^v: \forall x \in UL(x)_v = L_u^v x_u$ При этом $(L_u^v)_{*k} = L(u_k)_v$

Лекция 1.8

Note.

$$u = (u_1, \dots u_n) \in n^U$$

$$L : U \to V$$

$$L(a) := (L(u_1), \dots, L(u_n))$$

$$L(ua) = L(u)a \qquad a \in F^n$$

$$\varphi_v: V \to F^n$$

$$\varphi_v(g) = y_v \qquad \forall q \in V$$

 $arphi_v$ - линейно $\Rightarrow (L(u)a)_v = L(u)_v a$

$$L(u)_v := (L(u_1)_v, \dots L(u_n))v)$$

Proof.

$$x = ux_u$$

$$L(x) = L(u)x_u$$

$$L(x)_v = L(u)_v x_u$$

Положим $L_u^v := L(u)_v$.

$$\forall x \in U : L(x)_v = L_u^v x_u$$

При
$$x = u_k : L(u_k)_v = L_u^v(u_k)_u = (L_u^v)_k$$

Note. Если $Ax=Bx \quad \forall x \in F^n, \text{ то } A=B$ 26.09.2019

1.9 Лекция 9

Exs.

 $1.\,\,V=\mathbb{R}[t]_3$ - многочлены степени не более 3

$$D(p)=p' \qquad V \to V$$

$$v=(1,t,t^2,t^3).$$

$$D(1)=0,D(t)=1,D(t^2)=2t.$$

$$D_v=\begin{pmatrix}0&1&0&0\\0&0&2&0\\0&0&0&3\\0&0&0&0\end{pmatrix}.$$

$$v^{(1)}=(1,\frac{t}{1!},\frac{t^2}{2!},\frac{t^3}{3!}).$$
 Лекция 1.9

2.
$$V = \mathbb{R}[t]$$

$$v = (1, t, \frac{t^2}{2}, \dots, \frac{t^n}{n!}, \dots).$$

$$D(v_0) = 0, D(v_k) = v_{k-1}.$$

$$\begin{pmatrix} 0 & 1 & \dots \\ 0 & 1 & \dots \\ & 0 & 1 \\ \vdots & \vdots & \ddots \end{pmatrix}$$

3.
$$V=\mathbb{R}^3$$

$$|L(a)|=|a|$$

$$\underbrace{L(a)}_{e_1} \overset{\vec{a}}{\underset{e_2}{\longleftarrow}}$$
 $\underbrace{a,L(a)}_{e}=\varphi$ $\underbrace{e=(e_1,e_2)}_{e}$ базис

$$L(e_1)_e = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$

$$L(e_2)_e = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}$$

$$L_e = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

$$a_e = \left(\begin{array}{c} \cos \psi \\ \sin \varphi \end{array}\right)$$

$$L(a)_e = \begin{pmatrix} \cos(\psi + \varphi) \\ \sin(\psi + \varphi) \end{pmatrix}.$$

$$L(a)_e = L_e \cdot a_e = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \cdot \begin{pmatrix} \cos \psi \\ \sin \psi \end{pmatrix} = \begin{pmatrix} \cos \varphi \cos \psi - \sin \varphi \sin \psi \\ \cos \varphi \sin \psi + \sin \varphi \cos \psi \end{pmatrix}.$$

Statement. $L: U \to V$

$$u, u' -$$
базис U

$$v, v'$$
 — базис V

Тогда
$$L_{u'}^{v'} = C_{v' \to v}$$
 $L_u^v C_{u \to u'}$

Proof.

$$L(x)_v = L_u^v x_u.$$

$$C_{v' \to v} L(x)_v = L(x)_{v_1} = L_{u'}^{v'} x_{u'} = L_{u'}^{v'} C_{u' \to u} x_u.$$

 $\forall x_u \in F^{dimU}$

$$L(x)_{v} = C_{v \to v'} L_{u'}^{v'} C_{u' \to u} x_{k}.$$

$$L_{u}^{v} = C_{v \to v'} L_{u'}^{v'} C_{u' \to u}.$$

Note.

Если
$$U = V$$
 $u = v, u' = v'.$ $L_{u'} = C_{u' \to u} L_u C_{u \to u'}.$

Statement. Линейное отображение однозначно определяется образом базисных векторов.

$$u = (u_1, \dots u_n) -$$
 basuc U

Для любого векторного пространства V:

$$\forall v_1, \dots v_n = V$$

 $\exists !$ линейное отображение (*) $L:U \to V:L(u_k)=v_k \quad \forall k$

Proof.

$$L(ua) := va$$

$$\forall L^* : L(ua) = L(u)a = va$$

При этом L - инъективно тогда и только тогда, когда v - линейно независимый L - сюрьективно тогда и только тогда, когда v - система образующих L - изоморфизм тогда и тоько тогда, когда v - базис.

Statement. V, v, v' – basuc V

L:V
ightarrow V - линейно

$$L(v_k) = v'_k \qquad \forall k$$

$$(L_v)_k = L(v_k)_v = (v_k')_v$$

$$L_v = C_{v \to v'}$$
.

по другому

$$(Id_{v'}^v)_k = Id(v_k')_v = (v_k')_v.$$

Тогда $L_v = C_{v o v'} = Id_{v'}^v$

Def 21. $f: X \to Y$

$$Im f = \{ f(x) \mid x \in X \}$$

 $L:U \to V$ - линейное отображение

 $\operatorname{Im} L = \{ L(x) \mid x \in U \}$

$$Ker L = L^{-1}(0) = \{x \in U \mid L(x) = 0\}$$

Lemma.

 $\operatorname{Im} L \leq V$

 $Ker L \leq U$

 $\Pi y cm b L(x) = y$

$$\forall y \in V : L^{-1} = x + \text{Ker } L$$
$$L^{-1}(y) = \{z \in U \mid L(z) = y\}$$
$$x + \text{Ker } L = \{x + z \mid z \in \text{Ker } L\}$$

Лекция 1.10

1.10 Лекция 10

Theorem 3. $L: U \to V$

 $\dim U = \dim \operatorname{Ker} L + \dim \operatorname{Im} L.$

Proof. $u = (u_1, \dots u_k)$ — базис Ker L $v = (v_1, \dots U_m)$ Дополним базис ядра до базиса U: $u \cup v$ - базис U $L(v) = (L(v_1), L(v_2), \dots L(v_m))$ - базис образа $A \in \text{Im } L \cap \exists u \in U : L(u) = x \cap u = ua + vb$

 $L(v) = (L(v_1), L(v_2), \dots L(v_m))$ - базис образа. $\forall x \in \text{Im } L \quad \exists y \in U : L(y) = x. \ y = ua + vb, \qquad a \in F^k, b \in F^m$

$$x = L(y) = \underbrace{L(u)}_{(L(u_1), \dots L(u_k)) = (0, \dots 0)} + L(v).$$

Следовательно, L(v) - система образующих.

$$L(v)c = 0, \qquad c \in F^m.$$

 $L(vc) = 0 \Rightarrow vc \in \text{Ker } L \Rightarrow vc = ud$ для некоторого $d \in F^k$.

Тогда vc-ud=0, но v и u - два базисных вектора. Следовательно, c=d=0 и L(v) - линейно незвисимый.

Theorem 4. (формула Грассмана о размерности суммы и пересечения) $U,V \leq W$

 $\dim U \cap V + \dim U + V = \dim U + \dim V.$

Proof. \triangleleft внешнюю сумму $U \oplus V$, L(u,v) = u + v

Тогда ImL = U + V. $(u, v) \in \text{Ker } L \Leftrightarrow u + v = 0 \Leftrightarrow u = -v \subset U \cap V$

 $\operatorname{Ker} L = (u, -u) \mid u \in U \cap V \cong U \cap V$

 $\dim(U \oplus V = \dim \operatorname{Ker} L + \dim \operatorname{Im} L = \dim U \cap V + \dim U + V$

08.10.2019

1.11 Лекция 11

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix} \cdot x_1 + \dots + \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix} \cdot x_n = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Простейший базис:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

 $x = vx_v, \quad x = ex_e = Ex_e$

 $eC_{e o v} = v$ — из столбцов v.

 $C_{e\to v}=v$ — матрица из столбцов $(v_1,\ldots v_n)$.

Лекция 1.11

 $L: F^m \to F^n, \qquad A \in M_{n \times m}(F) \ L(x) = Ax$

$$L(x)_e = L_0^e x_e, L(x)_e = L(x) = Ax = L_e^e x_e.$$

 $Hom(F^n, F^m) \cong M_{m \times n}(F)$ - изоморфизм векторных пространств. В дальнейшем A отождествляется с L , пишем A_u^v вместо L_u^v (A в базисе u-v).

 ${\bf Def~22.}$ Линейный оператор из V в V называется эндоморфизмом V . Множество эндоморфизмов V=End(V) - ассоциативная алгебра над f

 $+, *\alpha$ - поточечные операции, * - композиция.

 $L,M,N\in End(V): \quad L\circ (M+N)=L\circ M+L\circ N$ - следует из линейности L

 \overline{v} - базис V, $u = \dim V$

 $\theta_v: End(V) \to M_n(F)$

 $\theta_v = L_v$

Statement. θ_v - биективно.

Practice. Построить обратное θ_v

Lemma. $(M \circ L)_v = M_v \circ L_v$

Statement. θ_v - uзоморфuзм

F - алгебра

 $EndV \cong M_n(F)$

Theorem 5. $U \leq V$

 $\forall L: V \to V, \quad U \leq \text{Ker } L, \exists ! \tilde{L}: V \backslash U \to W$

 $\begin{array}{cccc} V \backslash U & \longrightarrow & W \\ \tau : & \uparrow \pi_U & & \\ V & \stackrel{L}{\longrightarrow} & W \end{array}.$

 $\tau \circ \pi_U = L$

L - эпиморфизм $\Rightarrow au$ - эпиморфизм

 $\operatorname{Ker} L = U \Rightarrow \tau$ - мономорфизм

Proof. Диаграмма коммутативна, следовательно, \tilde{L} строится однозначно. Пусть $\tilde{L}(x+U):=L(x).y\in U\in \mathrm{Ker}\ L:\ L(x+y)=L(x)+L(y)=L(x)$ \tilde{L} задано корректно (легко проверить, что оно линейно, единственность следует из коммутативности диаграммы. $\tilde{L}(x+U)=L(x)$ - необходимо и достаточно коммутативности диаграммы.

 $\tilde{L}(x+U) = 0_W \Leftrightarrow L(x) = 0 \Leftrightarrow x \in \text{Ker } L = U \Leftrightarrow x+U = 0+U = O_{V \setminus U}$

Для инъективности : Ker $\tilde{L}=0_{V\setminus U}$

Theorem 6 (О гомоморфизме). $L: V \to W$

 $V \operatorname{Ker} L \cong \operatorname{Im} L$.

Proof. Возьмем $U = \operatorname{Ker} L$ и заменим W на ImL $n = \dim \langle a_{*1}, \dots a_{*n} \rangle \leq \dim F^m = m$. Из линейной независимости строк следует, что $m \leq n$ Таким образом m = n.

n линейно независимых столбцов (строк) в n-мерном пространстве - базис и матрица A - матрица перехода $C_{e\to a}$, где $a=(a_{*1},\ldots a_{*n})$ - набор столбцов A . Следовательно, $A\in GL_n(F)$ – множество обратных матриц.

```
Def 23. Ранг: rk(v_1,v_2,\ldots,v_n)=\dim\langle v_1,\ldots v_n\rangle, rkL=\dim\operatorname{Im}\,L u_1,\ldots u_n - базис U,L:U\to V rkL=rk((L(u))=\dim\langle L(u_1),\ldots L(u_n)\rangle A\in M_{m\times n}(f) Столбцовый ранг A:rkA-rk(a_{*1},\ldots a_{*m}) Строчный ранг : rkA=rk(a_{1*},\ldots a_{n*}) или наибольшее количество независимых столбцов (строк).
```

Lemma. $A \in M_{m \times n}$

- 1. столбцы A линейно независимы \Leftrightarrow столбцовый rkA=n
- 2. столбцы A система образующих в $F^m \Leftrightarrow$ столбцовый rkA=m
- 3. строки A линейно независимы \Leftrightarrow строчной rkA=m
- 4. строки A система образующих в ${}^mF \Leftrightarrow$ строчной rkA=n
- 5. столбцы являются базисом $F^n \Leftrightarrow m=n=c$ трочной rkA
- 6. если столбиы и строки A линейно независимы $\Leftrightarrow n = m$, строки и столбиы базисы, A обратима.

Proof. (6)
из (1)
$$\Rightarrow c.rkA = n$$

 $n = \dim \langle a_{*1}, \dots a_{*n} \rangle$
10.10.2019

1.12 Лекция 12

Lemma. $L:U \to V$ - линейное отображение.

$$rkL = c.L_U^V$$

Для любых базисов u, v пространств U, V.

Proof.

$$\begin{array}{ccc} U & \stackrel{L}{\rightarrow} & V \\ \downarrow \varphi_n & \downarrow \varphi_u \\ F^n & \stackrel{L_U^V}{\rightarrow} & F^m \end{array}$$

$$A \in M_{m \times n}(F)$$

$$ImA = \{Ax \mid x \in F^m\} = \{a_{*1}x_1 + \dots a_{*n}x_n \mid x_i \in F\} = \langle a_{*1}, \dots a_{*n} \rangle.$$

rkA=c.rkA - ранг оператора умножения на А. Из диаграммы $ImL\cong {
m Im}\ L_U^V\Rightarrow rkL=c.rkL_U^V$

Lemma. $A \in M_{m \times n}(F)$ $B \in GL_m(F), C \in GL_n(F)$ rkA = rkBAC - строчной или столбцовый. Proof. $L: F^n \to F^m$ - оператор умножения на $A. A = L_e^e$.

 $B = C_{e \to v}, C = C_{e \to u},$ где u, v - базисы пространств F^m, F^n .

 $BAC=L_v^u$ Тогда c.rkA=c.rkBAC=rkL. Со столбцами все хорошо. Теперь со строками: $r.rkA^T=c.rkA$

 $r.rk(BAC)^T = r.rk(A^TB^TC^T) \ r.rk(BAC)^T = c.rkBAC$ Тогда $r.rkA^T = r.rkC^TA^TB^T$. (Заметим, что $(B^T)^{-1} = ((B^{-1})^T)$ Следовательно, B^T, C^T - произвольные обратимые матрицы.

Practice. $(AB)^T = B^T A^T$

Theorem 7 (PDQ - разложение, равенство базисов). $L: U \to V$ - линейное отображений,

U,V| - конеч η

1. Существуют базисы u, v пространств U, V такие что

$$L_u^v = \left(\begin{array}{cc} E & 0 \\ 0 & 0 \end{array}\right).$$

Pазмер E = rkL.

2.
$$\forall A \in M_{m \times n}(F) \exists P \in GL_m(F), Q = \in GL_n(F) : A = PDQ, \quad \text{ide } D = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

3. c.rkA = r.rkA

Proof. $(f_1,\ldots f_k)$ - базис Ker L. Дополним до базиса на пространства $U:g\cup f=u$. Тогда (см. Теорему о ядре и о,разе). L(g) - базис Im L. Дополним его до базиса v пространства V.

$$v = (L(g_1), \dots, L(g_l), v_{l+1}, \dots, v_n).$$

$$L(g_1)_v = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}$$

$$L(g_l)_v = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} .$$

$$L(f_i)=0$$
 таким образом $L_u^v=\left(egin{array}{cc} E & 0 \ 0 & 0 \end{array}
ight)$

Def 24. W - множество матриц-перестановок (группа Вейля).

$$a_{*i} = e_{\sigma(k)},$$
 где $\sigma: \{1, \dots n\} o \{1, \dots n\}$ -биекция.

B= - множество обратимых верхнетреугольных матриц.(борелевская подгруппа) B^- - множество обратимых нижнетругольных матриц.

Theorem 8 (разложение Брюа).

$$GL_n(F) = BWB = \{b_1wb_2 \mid b_1, b_2 \in B, w \in W\}.$$

 $w \in W : BwB$ - клетка Брюа.

Proof. $a \in GL_n(F)$

$$\exists b, c \in B : bac \in W$$
.

Индукция по n

В первом столбце а выберем низший ненулевой элемент.

$$\begin{pmatrix} 1 & * \\ 0 & 1 & \end{pmatrix}.$$

$$ua = ()$$

Пусть a' - матрица, полученная из uav вычеркиванием i-ого столбца и j-строки. Легко видеть, что ее столбцы линейно независимы. Следовательно, a' - обратима. Тогда по ПИ $\exists b',c':b'a'c'\in W_{n-1}$. Все получилось!

Proof. CM КОНСПЕКТ $GL_n(F) = BWB$ $a \in GL_n(F)$

Theorem 9 (разложение Гаусса).

$$GL_n(F) = WB^-B.$$

 $w \in W : wB^-B$ - клетка Гаусса.

Proof. Докажем, что $\forall w \in W: BwB \subset wB^-B$ $BWB = \bigcup_{w \in W} BwB \subset ...$

Lemma (1). $D = D_n(F)$ - множество обратимых диагональных матриц. $U = U_n(F)$ - множество унитреугольных матриц. Тогда B = DU = UD.

$$Practice. \ a = \left(egin{array}{ccc} lpha_i & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & 0 \end{array} \right), \qquad lpha_i
eq lpha_j, ext{ecли} \ i
eq j \ \Rightarrow \ ab = ba \Rightarrow b \in D$$

Proof.

$$\begin{pmatrix} \frac{1}{b_{11}} & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & \frac{1}{b_{nn}} \end{pmatrix}$$

Lemma (2). $U = \prod_{i < j} X_{ij}$, причем произведение берется в любом наперед заданном порядке.

Proof. Будет в теории групп

Designation. $w \in W: U_w := \prod_{i < j, \sigma(i) > \sigma(J)} X_{ij}$, где σ - перестановка соответствующая w. То есть $w^{-1}X_{ij}w = X_{\sigma(i)\sigma(j)}$.

Лекция 1.12

Theorem 10 (Приведенной разложение Брюа). $B = \bigcup_{w \in W} U_w w D U$ При этом w, а также элеметны из U_w, D, U определены по элементам из B из единственным образом.

Proof.

Corollary. $BwB \subset wB^{-1}B = w(w^{-1}U_ww)B \subset wU^-B \subset wB^-B$

Proof.
$$BwB = U_w wB$$

Statement.

$$BwB \cap Bw'B = \emptyset, \ \forall w \neq w'.$$

1.13 Лекция 13

15.10.2019 Доказательство теорем

1.14 Лекция 14

17.10.2019

Разложение Гаусса. Идея доказательства: $a \in GL_n(F)$, $wa \in U^-B$. Найдем такое w.

Def 25. Главная подматрица матрицы A- подматрица $k \times k$ стоящая в левом верхнем углу матрицы A.

Lemma. Обратимость любой главной подматрицы не зависит от умножения на U^- слева u на U справа.

 $Proof. \ a^{(k)}$ - главная подматрица $k \times k$ в a.

$$\begin{pmatrix} b & 0 \\ c & d \end{pmatrix} \begin{pmatrix} a^{(k)} & * \\ * & * \end{pmatrix} = \begin{pmatrix} ba^{(k)} & * \\ * & * \end{pmatrix}.$$

Где $b \in U^- F$ Обратимость $a^{(k)}$ равносильно обратимости $ba^{(k)},$ так как b - обратима.

Lemma. $a \in U^-B \Leftrightarrow \mathit{все}$ главные подматрицы обратимы.

 ${\it Proof.}$ Доказываем следствие влево. Индукция по n. База: n=1 - очевидно Переход:

$$a = \begin{pmatrix} a^{(n-1)} & * \\ * & a_{nn} \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 0 \\ -xa^{(n-1)} & 1 \end{pmatrix} \begin{pmatrix} a^{(n-1)} & * \\ x & a_{nn} \end{pmatrix} = \begin{pmatrix} a^{(n-1)} & * \\ 0 & * \end{pmatrix}.$$

Дальше применим предположение индукции к $a^{(n-1)}$. Она раскладывается в произведение верхне- и нижнетреугольной.

В обратную сторону следует из прошлой леммы. Действительно, у обратимой верхнетреугольной матрицы все главные подматрицы обратимы, а умножение слева на обратимые нижнетреугольные не меняет их обратимость.

Lemma. $\forall a \in GL_n(F) \exists w \in W : \textit{все подматрицы в wа обратимы. По условию <math>a^{(n-1)}$ обратима,

Proof. Индукция по k. Докажем, что существует перестановка $a \in GL_n(F)$ такая, что главные подматрицы размера не более $k \times k$ обратимы.

k = 1

$$a_{*1} = 0 \Rightarrow \exists i : a_{ij} \neq 0.$$

Меняем *і*- строку с первой.

Переход:

$$a = \left(\begin{array}{cc} a^{(k)} & * \\ * & * \end{array}\right).$$

По индукционному предположению все главные подматрицы в $a^{(k)}$ обратимы. Все столбцы линейно независимы, следовательно, ранг матрицы $\begin{pmatrix} a_{11} & \cdots & a_{1k+1} \\ & \ddots & \\ a_{n1} & \cdots a_{nk+1} \end{pmatrix} = k+1$ k+1 - мерное подпространство

U в ^{k+1}F . А первые k строк этой матрицы линейно независимы. $X=b_1,\ldots b_k, Y=b_1,\ldots b_n, \quad b_i=(a_{i1},\ldots a_{ik+1}).$

X - линейно независимый, $\langle y \rangle = U, \dim U = k+1.$

$$\exists Z: X \geq X \geq Y$$
, где Z — базис U ..

$$|Z| = k+1 \Rightarrow Z = b_1, \dots b_k, b_i, i > k...$$

Переставляем i-ю строку на k+1 место. У получившейся матрицы первые k главных подматриц равны главным подматрицам в a, а строки k+1-й строки главной подматрицы линейно независимы. Следовательно, она независима.

 $wa \in B^-B$. Домножая на B, B^- , получим, что хотели.

Theorem 11 (Кронокера-Капелли). Система линейных уравнений Ax = b Имеет хотя бы одно решение тогда и только тогда, когда rkA = rk(Ab), где (Ab) - расширенная матрица.

Proof.

$$rkA = rk(Ab) \Leftrightarrow \langle a_{*1}, \ldots \rangle = \langle a_{*1}, \ldots a_{*n}, b \rangle \Leftrightarrow b \in \langle a_{*1}, \ldots a_{*n} \rangle \Leftrightarrow$$
 система имеет решение.

Лекция 1.14

Chapter 2

Начала теории групп

2.1 Лекция 15

Def 26. Подмножество $H \subset G$ называется подгруппой, если H – группа относительно операции, заданной в G.

$$H \leq G$$
.

Lemma. $H \subset B$ H - $noderpynna \Leftrightarrow \forall h, g \in H : gh, g^{-1} \in H$.

Statement. G, H - $\epsilon pynnu$.

$$G \times H = \{(g,h) \mid g \in G, h \in H\}.$$

 $(g,h) \cdot (g',h') := (g \cdot g', h \cdot h').$

Def 27. $\varphi X \to Y, (X, *), (Y, \cdots) - .$

arphi - гомоморфизм групп, если:

$$\varphi(x_1 * x_2) = \varphi(x_1) \cdot \varphi(x_2), \quad \forall x_1, x_2 \in X.$$

Изоморфизм - биективный гомоморфизм.

Lemma. $G, H \leq F$

1.
$$G \cap H = \{1\}$$

2.
$$G \cdot H = F$$

3.
$$\forall g \in G, h \in H : gh = hg$$

Тогда $F \cong G \times H$.

Proof.
$$\varphi: G \times H \to F$$

 $\varphi(g,h) = g \cdot h$

$$\varphi((g,h)\cdot(g',h')) = \varphi(gg',hh') = gg'hh'.$$

$$\varphi(g,h)\cdot\varphi(g',h') = ghg'h'.$$

 $(1) \Leftrightarrow \varphi$ - сюрьективно.

$$\varphi(g,h) = \varphi(g',h') \Leftrightarrow gh = g'h' \Leftrightarrow g'^{-1}g = h'h^{-1} = 1 \Rightarrow g' = g,h' = h.$$

2.2Лекция 16

22.10.2019

Ex. $\ln : \mathbb{R}^*_{>0} \to (\mathbb{R}, +)$

 $\ln ab = \ln a + \ln b$ - гомоморфизм.

Def 28.

$$\varphi G \to H$$
 — гомоморфизм.

$$Im\varphi = \{\varphi(g) \mid g \in G\}.$$

$$Ker \varphi = \varphi - 1 = \{g \in G \mid \varphi(g) = 1\}.$$

Lemma. $Im\varphi \ u \ \mathrm{Ker} \ \varphi - no\partial zpynnu.$

Proof.

$$a, b \in \operatorname{Ker} \varphi$$
.

$$\varphi(ab) = \varphi(a)\varphi(b) = 1 \Leftrightarrow ab \in \operatorname{Ker} \varphi.$$

$$\varphi(a^{-1}) = \varphi(a)^{-1} = 1 \Rightarrow a^{-1} \in \text{Ker } \varphi.$$

Lemma.

$$\varphi(g) = h, \quad \varphi: G \to H$$
 — гомоморфизм.

$$\varphi^{-1} = \underbrace{g \operatorname{Ker} \, \varphi}_{\text{левый смеженый класс по } s \partial p y \varphi} = \underbrace{\operatorname{Ker} \, \varphi g}_{\text{правый}}.$$

$$\textit{Proof. } \varphi(x) = h = \varphi(g)) \Leftrightarrow \varphi\varphi^{-1} = 1 \Leftrightarrow \varphi(xy^{-1}) = 1 \Leftrightarrow xg^{-1} \in \operatorname{Ker} \varphi \Leftrightarrow x \in \operatorname{Ker} \varphi g$$

Def 29. H < G

H называется нормальной подгруппой, если gH = Hg $g \in G$. $(H \leq G)$

Note.
$$g^{-1}Hg = H \quad \forall g \in G \Leftrightarrow g^{-1}Hg \subseteq H \quad \forall g \in G$$

Lemma. $H \leq G$

$$g_1H \cap g_2H \neq 0 \Leftrightarrow g_1H = g_2H.$$

$$Proof. \ x \in g_1H \cap g_2H \Rightarrow x = g_1h_1 = g_2h_2, \quad h_1,h_2 \in H. \$$
Тогда $g_1 = g_2(h_2h_1^{-1}) \Rightarrow g_1H = g_2(h_2h-1)H.$

Corollary. $G = \bigsqcup_{g \in X} gH$, где X - множество представителей левых смежных классов по h.

$$g_1 \stackrel{H}{\sim} g_2 \Leftrightarrow g_1^{-1}g_2 \in H$$

Lemma.

$$|g_1H| = |g_2H|, \quad \forall g_1, g_2 \in G, H \le G.$$

Proof.

$$\left(\begin{array}{c} g_1H \to g_2H \\ x \mapsto g_2g_1^{-1}x \end{array}\right).$$

Обратная
$$y \mapsto g_1 g_2^{-1} y$$

Theorem 12 (Лагранж). G - конечна группа. Тогда |G| = |H||G:H|, где |G:H| - количество левых смежных классов G по H. |G:H| - индекс Hв G.

Proof. Из прошлой леммы и следствия

Corollary. Если $p = |G| \in \mathbb{P}$, то $\forall g \in G \backslash 1 : G = \{1, g, \dots g^{p-1}\} \cong \mathbb{Z}_p$

Proof. $\{g^n \mid n \in \mathbb{Z}\} \leq G = \langle g \rangle$.

 $|\langle g \rangle|$ делит p и больше единицы, так как содержит единицу и $g \neq 1$. Следовательно, $|\langle g \rangle| = p$. Докажем, что все элементы $1,g,\ldots g^{p-1}$ различны. Рассмотрим $0 \leq k,l \leq p-1$. Пусть $g^k = g^l \Rightarrow g^{k-l} = 1$. При $k-l \neq 0,\ g^n = g^{m(k-l)+r} = g^r, \quad r < k-l \leq p-1$. Тогда бы $\{1,g,\ldots g^{k-l-1}\} = \langle g \rangle$. Из чего следует $|\langle g \rangle| < p$. Противоречие.

Рассмотрим $k \in [0, p-1]$. $g^p = g^k \Leftrightarrow g^{p-k} = 1 \Rightarrow k = 0 \Rightarrow g^p = 1$.

Теперь проверим изоморфность. $\varphi: \mathbb{Z}_p \to G, \varphi(k) = q^k$

Def 30. Группа, порожденная одним элементом, называется циклической.

Statement. Любая циклическая группа изоморфна \mathbb{Z} или \mathbb{Z}_n .

 $Proof. \ G = \{g^m \mid m \in \mathbb{Z}\}.$ Разберем два случая:

1. $q^m \neq 1 \ \forall m \in \mathbb{N} \Rightarrow q^m \neq 1 \ \forall m \neq 0$.

$$\varphi \mathbb{Z} \to G, \quad \varphi(m) = g^m.$$

$$\varphi(m+k) = g^{m+k} = g^m g^k = \varphi(m)\varphi(k).$$

2. Пусть n - наименьшее натуральное число, такое что $q^n = 1$.

$$\varphi: \mathbb{Z} \to G, \quad \varphi(m) = q^m$$
 сюрьективно ..

$$q^m = 1 \Leftrightarrow q^{nk+r} = 1 \Leftrightarrow q^r = 1 \Rightarrow r = 0$$

$$Ker \varphi = \{m \mid g^m = 1\} = n\mathbb{Z}.$$

Def 31. Порядок $g \in G$ - наименьшее натуральное число, такое что $g^n = 1$. ord $(g) = |\langle g \rangle|$

Statement (из теоремы Силова). $|G|=p^m,\ p\nmid m$. Тогда $\exists H\leq G: |H|=p^k\ \forall h\in H\backslash 1$. ord $(h\mid p^k),\ c$ ледовательно, $h^{pl}=1\Rightarrow (h^{p^{l-1}})^p=1$

2.3 Лекция 17

24.10.2019

G - группа.

Def 32. $S \subseteq G$

 $\langle S \rangle$ - наименьшая подгруппа содержащая S.

Statement. $\langle S \rangle = \{S_1^{n_1} \cdot \dots S_k^{n_k} \mid k \in \mathbb{N}, S_i \in S, n_i \in \mathbb{Z}\}, \$ для абелевой $: s_i \neq s_j \ npu \ j \neq j.$

Def 33.
$$s^g := g^{-1}sg$$

Note.
$$(s^g)^h = s^{g^h}$$

 $h(g_s) = h gS$

Property.

1.
$$(s_1s_2)^g = s_1^g s_2^g$$

2.
$$(s^g)^{-1} = (s^{-1})^g$$
 $s \mapsto s^g$ - автоморфизм G .

Def 34.
$$H \leq G$$

$$H^G = \langle h^g \mid h \in H, g \in G \rangle$$
 – нормальное замыкание H в G .

Нормальное замыкание равно наименьшей нормальной подгруппе в G, содержащей H. $\langle S \rangle^G$ - наименьшая нормальная подгруппа, содержащая S. $s^g = g^{-1}sg$ - сопряженный с s при помощи g.

$$H^g = \langle h^g \mid h \in H \rangle$$
 – подгруппа, сопряженная с H при помощи g .

Def 35.
$$aba^{-1}b^{-1} = [a, b]$$
 – коммутатор элементов a, b .

Note.
$$ab = ba \Leftrightarrow aba^{-1}b^{-1} = 1$$

Statement. $\varphi: G \to A$ - гомоморфизм в абелеву группу. $\varphi([g,h])=1$ Тогда $[G,G]=\langle [g,h]\mid h,g\in G\rangle\subseteq {\rm Ker}\ \varphi$ - коммутант G. $[g,h]^f=[g^f,h^f]$

Statement. $[a, b]^{-1} = [a, b]$

Def 36. Центр группы -
$$Center(G) = Z(G) := \{c \in G \mid cg = gc \forall g \in G \mid cg = gc \forall$$

Designation.

 $G/H = \{gH \mid g \in G\}$ — множество левых смежных классов. $H \backslash G = \{Hg \mid g \in G\}$ — множество левых смежных классов.

 $H \trianglelefteq G \quad (H^g = H \forall g \in G)$

Def 37. Фактор-группа G/H - множество смежных классов по H с операцией $(g_1H)(g_2H)=g_1g_2H$.

корректнсть определения.

$$g_1' \in g_1 H \Rightarrow g_1' h_1.$$

$$g_2' \in g_2 H \Rightarrow g_2' h_1.$$

$$g_1 \mid +g_2 \mid = g_1 h_1 g_2 h_2 = g_1 g_2 g_2^{-1} = (g_1 g_2)(g_2^{-1} h_1 g_2) h_2 \in g_1 g_2 H.$$

Def 38. $\pi_{\rm H}: G \to G/H, \ g \mapsto gH$ $\pi_{\rm H}$ - эпиморфизм, Ker $\pi_{\rm H} = H$

Theorem 13 (универсальное свойство факторгруппы). $H \subseteq G$

Для любого гомоморфизма $\varphi:G\to F$, такого что $H\le \mathrm{Ker}\ \varphi\exists! \bar{\varphi}:G/H\to F$ коммутативна для диаграммы

$$\begin{array}{ccc}
G & \stackrel{\pi_n}{\to} & G/H \\
\downarrow F & & \downarrow \exists! \hat{\varphi} \\
F & F
\end{array}$$

Theorem 14. $\varphi G \to F$

 $G/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi$.

Proof. Заменим F на $Im\varphi$.

$$\varphi' \to \operatorname{Im} \varphi \quad \operatorname{Ker} \varphi' = \operatorname{Ker} \varphi.$$

По прошлой теореме существует единственное:

$$\begin{array}{ccc}
G/\operatorname{Ker} \varphi & \to & \operatorname{Im} \varphi \\
\hat{\varphi} : & \uparrow \pi & & \uparrow \varphi' \\
G & & G
\end{array}.$$

 φ -сюрьективно. Следовательно, φ' - сюрьективно.

gKer $\varphi \in \text{Ker } \hat{\varphi} \Leftrightarrow p\hat{h}i(g$ Ker $\varphi) = 1 \Leftrightarrow \varphi(g) = 1 \Leftrightarrow g$ Ker $\varphi = \text{Ker } \varphi = 1_{G/\text{Ker } \varphi}$. Следовательно, $\hat{\varphi}$ - инъективно .

Ex. $\mathbb{Z} \to \mathbb{Z}_n$, $\varphi(x) \equiv x \mod n$. Ker $\varphi = n\mathbb{Z}$ $\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z}$

2.4 Лекция 18

 $\mathbf{E}\mathbf{x}$.

$$U_n(F) = \left\{ \begin{pmatrix} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix} \right\}.$$

Обозначим

$$U_n(k) = \left\{ \begin{pmatrix} 1 & 0 & \dots & 0 & \dots & * \\ 0 & 1 & 0 & \dots & & * \\ 0 & 0 & 1 & 0 & \dots & & \\ \vdots & & & & & \\ 0 & 0 & \dots & 0 & & 1 \end{pmatrix} \right\} = \{ a \mid a_{ij} = 1, a_{ij} = 0, \forall i \neq j, j - i < k \}.$$

Мартица трансвекций:

$$t_{ij}(\alpha) = \begin{pmatrix} 1 & \dots & \alpha & \dots & 0 \\ 0 & & \ddots & & 0 \\ 0 & & 0 & & 1 \end{pmatrix}.$$

Лекция 2.4

Тогда $U_n^{(k)}(F) = U_n^{(k)} = \langle t_{ij}(\alpha) \mid j-i \geq k, \alpha \in F \rangle$ - группа.

Lemma. $U_n^{(k)}\setminus U_n^{(k-1)}\cong\underbrace{F\times\ldots\times F}_{n-k},\quad F=(F,+).$ Проверим, что есть гомоморфизм, и применим

теорему о гомоморфизме.

Proof.

$$\varphi: U_n^k \to F^{n-k}, \quad \varphi(a) = (a_{i k+1}, \dots, a_{n-k n})^T.$$

Заметим, что φ - сюрьективна, $\varphi^{-1}(e) = U_n^{k+1}$.

$$a, b \in U_n^{(k)}, \qquad (a, b)_{i \ i+k} = \sum_{j=1}^n a_{ij} \cdot b_{i \ j+k} = b_{j \ i+k} + a_{i \ i+k}.$$

Тогда $\varphi(a \cdot b) = \varphi(a) + \varphi(b)$. Следовательно, φ - гомоморфизм.

Def 39. $[a,b] = aba^{-1}b^{-1}$ – коммутатор. $H, K \leq G, \quad [H,K] := \langle [h,k] \mid h \in H, k \in K \rangle$ – коммутант.

Statement. $[h, k]^g = [h^g, k^g] \Rightarrow [G, G] \leq G$.

Statement. $\varphi:G\to A$ - гомоморфизм.

A - абелева $\Longrightarrow [G,G] \subseteq \mathrm{Ker} \ \varphi$.

Proof.

$$\varphi([g,h]) = [\varphi(g), \varphi(h)] = 1.$$

Тогда

$$[g,h] \in \text{Ker } \varphi, \quad \forall g,h \in G.$$

Из этого следует, что $[G,G]\subseteq \mathrm{Ker}\ \varphi.$

Corollary. $[U_n^{(k)}, U_n^{(k)}] \le U_n^{(k+1)}$

Lemma. $[U_n^{(k)}, U_n^{(m)}] = U_n^{(m+k)}, (ecnu \ l \ge n, mo \ U_n^l := e).$

Proof.

$$[t_{ij}(lpha),t_{jh}(eta)]=t_{ih}(lphaeta),\quad i,j,h$$
 - различны.

 $\forall i, h : h - i > m :$

$$\exists j: j-i \geq k, h-j \geq m.$$

Следовательно, любая образующая (и сама группа) содержится: $U_n^{(m+k)} \subseteq [U_n^{(m)}, U_n^{(k)}]$. В обратную сторону:

$$[xy, z] = xyzy^{-1}x^{-1}z^{-1} = x(yzy^{-1}z^{-1}zx^{-1}z^{-1} = x[y, z]x^{-1}xzx^{-1}z^{-1} = [y, z]^{x^{-1}} \cdot [x, z]$$

Заметим, что

$$[t_{ij}(\alpha), t_{lh}(\beta)] = e$$
, если $j \neq l, h \neq i$.

Тогда

$$t_{ij}(\alpha) \in U_n^{(k)}, \ t_{hk}(\beta) \Longrightarrow [t_{ij}(\alpha), t_{lh}(\beta)] \in U^{(m+k)_n}.$$

Посчитаем

$$\underbrace{[t_{ij}(\alpha), t_{li}(\beta)]}_{i \neq l} = [t_{li}(\beta), t_{ij}(\alpha)]^{-1} = t_{lj}(\beta\alpha)^{-1} = t_{l}j(-\beta\alpha).$$

Так как $U_n^{(k+m)}$ - нормальная подгруппа, то есть трансвекцию во включении 2.4 можно заменить на произведение трансвекций, то есть на любые элементы $U_n^{(k)}, U_n^{(m)}$. Доказали обратное утверждение.

2.5Лекция 19

2.5.1Поговорим о комутаторах

Lemma.

$$H = \langle X \rangle \le G = \langle y \rangle.$$

Tог ∂a

$$H \subseteq G \iff x^y \in H \quad \forall x \in X, y \in Y.$$

Proof. В правую сторону очевидно (по определению), обратно: нужно доказать, что $h^g \in H \quad \forall h \in H, g \in H$ G. Разложим $g = y_1 \cdot \dots y_m, \quad y_i = U \cup Y^{-1}$.

Индукция по m. При $m = 0 : g = 1 \land h^1 = h \in H$.

Переход: $m \ge 1$. По ИП $h^{y_1...y_{m-1}} \in H$, $h = x_1...x_n$, $x_i \in X \cup X^{-1}$.

$$h^y = (h^{y_1 \dots y^{m-1}})_m^y = x_1^{y_m} \dots x_n^{y_m}.$$

 $x_i \in X \Rightarrow x_i \in H$ по условию.

$$x_i \in X^{-1} \Rightarrow ((x_i)^{-1})^{y_m} = ((x^{-1})^{y_m})^{-1} \in H.$$

Note. В определении нормальной подгруппы вместо h^g такде можно написать [g,h], так так для $h \in H, g \in H$

$$[g,h] - ghg^{-1}h^{-1} = h^{g^{-1}}h \in H \iff h^{g^{-1}} \in H.$$

 q^{-1} можно заменить на q.

Аналогично в лемме можно заменить x^y на [x, y].

Property (Формулы для комутаторов). 1. $[x, y] = [y, x]^{-1}$

$$2. [xy, z] = {}^x[y, z] \cdot [x, z]$$

3.
$$[x,y]^z = [x^z, y^z]$$

Lemma. $H, K \leq G, \quad [H, K] \leq \langle H \cup K \rangle$

$$h \in H, k \in K, x \in H$$
 (для $x \in K$ аналогично).

$$[h, k]^x = x^{-1}[h, k] = [h^{-1}h, k]^{-1} \cdot [x^{-1}, k]^{-1} \in [H, K].$$

2.5.2Возвращаемся к матрицам

$$U_n^{(k)}(F) = U_n^{(k)} = \{ a \in M_n(F) \mid a_{i \mid i} = 1, a_{i \mid j} \forall i \neq j, j - i < k \} = \langle t_{i \mid j}(\alpha) \mid \alpha \in F, j - i \geq k \rangle.$$

Lemma. $U_n^{(k)} \le U_n = U_n^{(1)}$

Proof. Докажем, что $a = [t_{i \ j}(\alpha), t_{h \ l}(\beta)] \in U_n^{(k)} \ \ \forall j-i \geq k. \ l > h$

Первый случай $i \neq h, i \neq l \Rightarrow a = e \in U_n^{(k)}$.

Второй случай $j=h\Rightarrow i\neq j$: $a=t_{i\;l}(\alpha\beta), l-i\geq k+1$. Тогда $a\in U_n^{(k+1)}\leq U_n^{(k)}$. Третий случай $j\neq h, i=l$: $a=[t_{h\;j}(\beta), t_{i\;j}(\alpha)]^{-1}=t_{h\;j}(\beta\alpha)^{-1}=t_{h\;j}(-\beta\alpha).$ $j-h\geq k+1\Rightarrow t_{h\;j}(-\beta\alpha)\in I$ $U_n^{(k+1)}$

Lemma. Пусть \leq - отношение линейного порядка на $P = \{(i,j) \mid 1 \leq i < j \leq n\}$.

$$U_n(F) = \{ \prod_{(i,j)\in P} t_{ij}(\alpha_{ij}) \mid \alpha_{ij} \in F \}.$$

Лекция 2.5

Note. $H \leq G$, $x, y \in G$: $xH = yH \Leftrightarrow y^{-1}x \in H \Leftrightarrow x \equiv y \mod H$

Proof. Рассмотрим элемент $h \in U_n(F)$. Докажем по индукции (по k), что

$$h \equiv \prod_{\substack{(i,j) \in P \\ 0 \le j-i < k}} t_{ij}(\alpha_{ij}) \mod U_n^{(k)}.$$

При k = 1 утверждение очевидно, доказыать нечего.

Переход: $k-1 \rightarrow k$

По предположению индукции

$$h \equiv \prod_{0 < j - i < k - 1} t_{ij}(\alpha_{ij}) \mod U_n^{(k-1)} = \prod_{0 < j - i < k - 1} t_{ij}(\alpha_{ij}) \cdot \prod_{j - i = k - 1} t_{ij}(\alpha_{ij}) U_n^{(k)}$$

Так как комутатор $[u,t_{i\ i+k-1}(\alpha)]\in U_n^{(k)}\quad \forall u\in U_n$. То есть $[u,t_{i\ i+k-1}(\alpha)]\equiv 1\mod U_n^{(k)}$. Это равосильно

$$ut_{i \ i+k-1}(\alpha) \equiv t_{i \ i+k-1} \cdot u \mod U_n^{(k)}$$
.

Получаем

$$h \equiv \prod_{0 \le i-i \le k} t_{ij} (\alpha_{ij} \mod U_n^{(k)}.$$

Введем обозначения: w - матрица перестановки.

$$\left(\begin{array}{ccc} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{array}\right) \in U.$$

$$\begin{pmatrix} \bullet & & 0 \\ & \ddots & \\ 0 & & \bullet \end{pmatrix} \in D.$$

$$B_n = D_n U_n = U_n D_n \quad (\forall d \in D_n : U_n^d = U_n).$$

 $B_nwB_n=U_nD_nwB_n$, где $U_w=\langle t_{ij}(\alpha)\mid \alpha\in F, j>i,\ t_{ij}(\alpha)^w
angle\in U_n^-$ - нижне треугольные.

$$U_w = \langle t_{ij}(\alpha) \mid j > 1, \alpha \in F, t_{ij}(\alpha)^w \in U_n \rangle.$$

Corollary. Матрица и U_n представляется в виде произведения трансвекций в любом порядке. $U_n = U_w \cdot \overline{U}_w$

Corollary (приведенное разложение Брюа). $B_n w B_{\subset} w B_n^- B_n$

$$Proof. \ B_nwB_n = U_nwB_n = wU_ww^{-1}\overline{U}_wwB_n = w\underbrace{U_w^w}_{\subseteq U_n^-} \underbrace{\overline{U}_w^wB_n}_{\subseteq U_n} \subseteq wU_n^-B_n = wB_n^-B_n$$

Лекция 2.6

2.6 Лекция 20

2.6.1 Симметрическая группа

Def 40 (Перестановка). $\sigma \in S_n \iff \sigma : \{1, \dots n\} \xrightarrow{\sim} \{1, \dots n\}$ Табличная запись перестановки:

$$\sigma = \begin{pmatrix} 1 & \dots & n \\ i_1, & \dots & i_n \end{pmatrix}, i_j \neq i_k (j \neq k).$$

Циклическая запись перестановки:

$$\tau = (j_1, \dots, j_n) \iff \tau(j_1) = j_2, \ \tau(j_2) = j_3, \ \dots, \tau(j_{n-1}) = j_n, \ \tau(j_n) = j_1, \ \tau(i) = i, \forall i \neq j_k.$$

Def 41. $(j_1...j_n)$ и $(k_1....k_m)$ независимы, если $j_h \neq j_l \quad \forall h, l$.

Lemma. Любая перестановка равна произведению независимых (композиции) циклов.

Def 42. Циклический (цикленный) тип перестановки – набор из длин независимых циклов,в произведение которых раскладывается перестановка.

Note. В определении слово "набор" подразумевает мультимножество, то есть порядок не важен, но элементы повторятся.

Ех. $(12)(345) \in S_6$ записывают 2+3.

Lemma.

$$\sigma(i_1, i_2, \dots i_k)\sigma^{-1} = (\sigma(i_1), \dots \sigma(i_k)).$$

Следовательно, сопряжение не меняет циклический тип.

Proof. $\sigma(i_1 \dots i_k) \sigma^{-1}(\sigma(t_j)) = \sigma \circ (i_1 \dots i_k) \sigma(i_{l+1 \mod 'm})$, где $\mod 'm$ - почти модуль (вместо 0 будет m).

Def 43. Отношение на группе G:

$$x \sim_c y \Leftrightarrow \exists z : x = y^z$$
.

$$x = y^z \wedge y = ab \Rightarrow x = (a^b)^z - a^{bz}$$
.

Класс эквивалентности " \sim_c " – класс сопряженных элементов.

Theorem 15. Класс сопряженных элементов в S_n состоит из всех перестановок фиксированного циклического типа.

Proof. Следует из леммы 2.6.1

Ex. Рассмотрим группу S_4 и перестановки циклического типа 2+2:

(12)(34)

(13)(24)

(14)(32)

 $\sigma(12)(34)\sigma^{-1} = (\sigma(1)\sigma(2))(\sigma(3)\sigma(4))$

Еще есть нейтральный класс е и 2, 3, 4. Двумерная группа Клейна

$$K_4 = \{e, (12)(34), (13)(24), (14)(23)\}.$$

- единственная нормальная подгруппа в S_n для любого n, индекс которой более 2.

Practice. Найти S_4/K_4 . Там 6 элементов.

Statement. ord $(ab) \mid HOK(\text{ord } (a), \text{ ord } (b))$.

Порядок перестановки равен НОКу порядков независимых циклов.

2.7 Лекция 21

2.7.1 Продолжаем возиться с перестановками. Четность.

Def 44 (Инверсия). $\sigma \in S_n$.

Инверсия в σ – пара $(i, j) : i < j \land \sigma(i) > \sigma(j)$.

Ех. Четыре инверсии:

$$\left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{array}\right).$$

Def 45 (Четность перестановки).

$$\varepsilon: S_n \to \mathbb{Z}/2\mathbb{Z}$$
.

 $\sigma \mapsto$ количество инверсий по модулю 2.

Def 46. Транспозиция – цикл длины 2.

$$\tau(i) = \tau(j), \ \tau(j) = \tau(i), \ \tau(k) = k.$$

Lemma. Любая перестановка σ раскладывается в произведении транспозиций соседних индексов.

$$S_n = \langle (12), (23) \dots (n-1 \ n) \rangle$$
.

Proof. Индукция по количеству инверсий I в $\sigma \in S_n$.

База: I=0 Это $\sigma=id$.

Переход: I>0. Заметим, что

$$\exists i : \sigma(i) > \sigma(i+1).$$

Тогда рассмотрим $\tau = \sigma \circ (i, i-1)$.

$$\tau(i) = \sigma(i+1) < \tau(i+1) = \sigma(i).$$

Так как $\tau(k) = \sigma(k) \quad \forall k \notin \{i, i+1\}$, количество инверсий стало на одну меньше, чем количество инверсий в σ . Теперь по предположению индукции полученная перестановка раскладывается, а тогда и σ раскладывается.

Lemma. $\tau = \sigma(i \ i+1) \Rightarrow |I(\tau) - I(\sigma)| = 1$

Lemma. Если $\sigma = \tau_1 \cdot \tau_2 \dots \cdot \tau_k$, $\forall i : \tau_i$ - транспозиция соседних индексов, то

$$\varepsilon(\sigma) \equiv k \mod 2$$
.

Лекция 2.7

Theorem 16. $\varepsilon: S_n \to \mathbb{Z}/2\mathbb{Z}$ - гомоморфизм группы.

Proof.

$$\sigma = \tau_1 \cdot \dots \tau_k
\rho = \tau_{k+1} \cdot \dots \tau_n \qquad \forall i : \tau_i = (j \ j+1).
\sigma \cdot \rho = \tau_1 \cdot \dots \tau_n$$

Проверим требуемые свойства:

$$\varepsilon \equiv k \mod 2, \quad \varepsilon(\rho) \equiv n - k \mod 2$$

$$\varepsilon(\sigma\rho) \equiv m \mod 2 \equiv \varepsilon(\sigma) + \varepsilon(\rho) \mod 2$$

$$\varepsilon(\rho^{-1}\sigma\rho) \equiv -\varepsilon(\rho) + \varepsilon(\sigma) + \varepsilon(\rho)$$

$$\varepsilon((i_1, \dots i_k)) = \varepsilon((1, \dots k)) \equiv k - 1 \mod 2$$

Рассмотрим кольцо $(\mathbb{Z}_n, +_n, \cdot_n)$. \mathbb{Z}_n^* - множество обратимых элементов.

 $x \in \mathbb{Z}_n$ - обратимо тогда и только тогда, когда $\gcd(x,n) = 1$.

 $\varphi|\mathbb{Z}_n^*|$ - количество чисел от 1 до n-1 взаимно простых с n. Из теоремы Лагранжа очевидно следует, что:

$$x^{\varphi(n)} \equiv 1 \mod n$$
.

Statement. A – абелева группа.

$$a, b \in A$$
, ord $(a) = m$, ord $(b) = n$, $h = \text{lcm } (m, n)$
$$(ab)^k = a^k b^k = (a^m)^x (b^n)^y = 1.$$

 $Tor \partial a \text{ ord } (ab) \mid k.$

Lemma. $\langle a \rangle \cap \langle b \rangle = \{1\} \Rightarrow \text{ord } (ab) = \text{lcm } (\text{ord } (a), \text{ord } (b))$

Proof.

$$(ab)^l = 1 \Rightarrow \underbrace{a^l}_{\in \langle b \rangle} = \underbrace{b^{-l}}_{\in \langle b \rangle} = 1.$$

Тогда

$$\begin{array}{c} \operatorname{ord} \; (a) \mid l \\ \operatorname{ord} \; (b) \mid l \end{array} \right\} \Rightarrow \operatorname{lcm} \; (\operatorname{ord} \; (s), \operatorname{ord} \; (b)) \mid l.$$

Corollary.

$$a \in A, b \in B, \quad A, B \le A \times B.$$

Тогда ord (ab) = lcm (ord (a), ord (b))

Corollary.

$$\operatorname{lcm} (\operatorname{ord} (a), \operatorname{ord} (b)) = 1.$$

Tогда ord (ab) = lcm (ord (a), ord (b))

Proof. $|\langle a \rangle \cap \langle b \rangle| = h$

$$h \mid |\langle a \rangle| \land h \mid |\langle b \rangle| \Rightarrow h \mid \gcd(\operatorname{ord}(a), \operatorname{ord}(b)) = 1 \Rightarrow h = 1.$$

Следовательно, $\langle a \rangle \cap \langle b \rangle = \{1\}.$

Corollary. Порядок перестановки равен наибольшему общему делителю полядков независимых циклв, в произведение которых она раскладывается.

Def 47 (Экспонента (показатель)). $\exp(A)$ – наименьшее натуральное число, такое что $a^n = 1 \quad \forall a \in A$.

Lemma. $\exp(A) = \lim_{a \in A} (\operatorname{ord}(a))$

Theorem 17. A - $abenesa\ rpynna.\ \exp(A) < \infty.$ $Torda\ \exists a \in A: \mathrm{ord}\ (a) = \exp(A)$

Proof. Разложим экспоненту на простые множители:

$$\exp A = p_1^{k_1} \cdot \dots \cdot p_m^{k_m}, \quad \forall i \in [1, m] : p_i \in \mathbb{P}, k_i \in \mathbb{NN}.$$

Так как $\exp(A) = \operatorname{lcm}_{x \in A}(\operatorname{ord} x)$, существует $\forall i \in [1, m] x_i : p_i^{k_i} \mid \operatorname{ord}(x_i)$.

ord
$$x_i - p_i^{k_i} \cdot n_i = \text{ord } (x_i^{n_i}) = p_i k_i.$$

Так как порядки всех $x_i^{n_i}$ взаимно просты, то

ord
$$\left(\prod_{i=1}^m x_i^{n_i}\right) = \prod_{i=1}^m = \prod p_i^{k_i} = \exp(A).$$

2.8 Лекция 22

Statement. $\varphi: G \to h$ - гомоморфизм. $g \in G$. Тогда ord $(\varphi(g))$ | ord g.

Proof. Рассмотрим сужение $\tilde{\varphi}: \langle g \rangle \to \varphi(\langle g \rangle) = \langle \varphi(g) \rangle$.

$$\langle \varphi(g) \rangle \cong \langle g \rangle / \mathrm{Ker} \ \tilde{\varphi}.$$

ord
$$\varphi(g) = |\langle \varphi(g) \rangle| = \frac{|\langle g \rangle|}{|\operatorname{Ker} \tilde{\varphi}|}.$$

Note. Можно использовать одну из доказанных лемм, тогда решение будет проще.

Theorem 18. $p \in \mathbb{P}$

$$(\mathbb{Z}/p^k\mathbb{Z})^*$$
 - циклическая, если $p \neq 2$ или $k \leq 2$. Иначе $(\mathbb{Z}/p^k\mathbb{Z})^* \cong C_2 \times C_{2^{k-2}}$

Proof. Обозначим $G = \mathbb{Z}/p^k\mathbb{Z}$

$$|(\mathbb{Z}/p^k\mathbb{Z})^*| = p^k - p^{k-1} = p^{k-1}(p-1).$$

Рассмотрим множество чисел вида 1 + px. Они не делятся на p. Чтобы эти числа были меньше $|G^*|$, ограничим x.

$$H = \{1 + px \mid x \in \{0, \dots p^{k-1} - 1\}\}.$$

Лекция 2.8

Statement. H - noderpynna.

$$(1 + px)(1 + py) = 1 + pz \in H.$$

Если

$$(1+px)(1+py) \equiv 1 \mod p^k.$$

$$a + apx + py + p^2xy \equiv 1 \mod p^k.$$

Cледовательно, a = 1 + pz. Обратный элемент:

$$(1+px)^{-1} = (1+pz+py) \in H.$$

$$|H|=p^{k-1}, |G/H|=p-1$$
- циклическая (докажем позже).

$$\exists b \in G : \text{ord } (bH) = p-1, \quad \pi(b) = bH, \pi : G \to G/H.$$

To есть p-1 | ord b. Получаем $\exists l \in \mathbb{N} : \text{ord } b^l = p-1$. (или можно сказать, p-1 | $\exp(G)$).

По следствию из теорема Лагранжа $|H| \cdot p \cdot p^{k-1} \wedge 1 + p \in H \Rightarrow (1+p)^{p^{k-1}} \equiv 1 \mod p^k$. Тогда ord $(1+p) \mid p^{k-1}$.

Осталось доказать, что

$$(1+p)^{p^{k-2}} \not\equiv 1 \mod p^k.$$

Будем доказывать по индукции. Для k=2 - очевидно. При k>2 :

$$(1+p)^{p^{k-3}} = 1 + p^n x, \quad p \nmid p.$$

По предположению индукции $1 \le n < k - 1$.

$$(1+p)^{p^{k-2}} = \left((1+p)^{p^{k-3}}\right)^p = (1+p^nx)^p = 1+p\cdot p^n + \sum_{i=2}^p C_p^i p^{ni} x^i \equiv 1+p^{n+1}x+p^{n+2}y \mod p^{n+2},$$

так как

$$(1+p)^{p^{k-2}} = 1 + p^{n+1} \underbrace{(x+py)}_{\text{не делится на } p}.$$

 $n+1 < k \Rightarrow p^k \nmid (1+p)^{p^{k-2}} - 1$

Remark.

$$C_p^i = \frac{p(p-1)!}{(p-1)! \ i!} \ i \ p.$$

Remark. Если p=2, то при i=2, n=1

$$C_p^i = 1 \Rightarrow C_p^i p^2 / p^3$$
.

Поэтому для p=2 эти рассуждения не работыют.

Теперь разберем случай p = 2.

$$|G| = 2^{k-1}, k \ge 3.$$

1. Любой элемент имеет порядок не более 2^{k-1} , то есть $(1+2x)^{2^{k-2}} \equiv 1 \mod 2^k$.

Индукция по
$$k$$
. База $k = 3$.

$$(1+2x)^2 = 1 + 4x + 4x^2 = 1 + 4x(x+1) \equiv 1 \mod 2^3$$
,

так как либо x, либо x + 1 четное.

Переход. По индукционному преднодожению

$$(1+2x)^{2^{k-3}} = 1 + 2^{k-1}y.$$

Дальше

$$(1+2x)^{2^{k-2}} = (1+2^{k-1}y)^2 = 1+2^ky+2^{2k-2}y^2 \equiv 1 \mod 2^k.$$

Доказано.

ord $_{G}5=2^{k-2}$, то есть

$$5^{2^{k-3}} \not\equiv 1 \mod 2^k.$$

Индукция по k. База k=3.

$$5 \not\equiv 1 \mod 8$$
.

Переход: по индукционному предположению

$$5^{2^{k-4}} \not\equiv 1 \mod 2^{k-1}$$
.

$$5^{2^{k-1}} = 1 + 2^n z, \quad 1 < n < k-1, \ 2 \nmid z.$$

Remark. n > 1, так как $5 \equiv 1 \mod 2^2$

Тогда

$$5^{2^{k-3}} = (1+2^n \cdot z)^2 = 1+2 \cdot 2^n \cdot z + 2^{2n} \cdot z^2 = 1+2^{n+1}(z+z^2 \cdot 2^{n-1}) \not\equiv 1 \mod 2^{n+2}$$

2.9 Лекция 23

2.9.1 Теорема о гомоморфизме для колец

 $Note. \;\;$ Воспоминания $\;\; R, R' - \;$ кольца с 1 (не обязательно коммутативные).

 $\varphi: R \to R'$ – гомоморфизм, если

$$\begin{split} & \varphi(r+s) = \varphi(r) + \varphi(s) \\ & \varphi(r \cdot s) = \varphi(r) \cdot \varphi(s) \\ & \varphi(1) = 1 \end{split} \ .$$

 $\operatorname{Im} \varphi = \{ \varphi(r) \mid r \in R \}$ – подкольцо в R'.

Кег $\varphi = \{r \mid \varphi(r) = 0\}$ – аддитивная подгруппа в R.

Def 48. I – аддитивная подгруппа в R. I называется двусторонним (правым, левым) идеалом в R тогда и только тогда, когда

 $\forall a \in R, t \in I : ar, ra \in I \quad \text{(соответственно для правого и левого } ra \in I, ar \in I\text{)}.$

Lemma. Ker φ – двусторонний идеал.

Def 49. I – двусторонний идеал, R – кольцо. Аддитивная факторгруппа R/I является кольцом относительно операции (r+I)(s+I)=rs+I

Proof. Если
$$x, y \in I$$
: $(r+x)(s+y) = rs + \underbrace{xs + sy + xy}_{\in I} \in rs + I$

Лекция 2.9

Ex. $2\mathbb{Z} \leq \mathbb{Z}$

$$4\mathbb{Z} \stackrel{\text{как множества}}{=} (0 + 2\mathbb{Z}) \cdot (0 + 2\mathbb{Z}) \stackrel{def}{=} 0 + 2\mathbb{Z}.$$

Designation. $\pi: R \to R/I$ $\pi(r) = r + I$

Theorem 19. Универсальное свойство I – udean в R. $\varphi R \to R'$, $I \subseteq \operatorname{Ker} \varphi \exists ! \psi : R / I \to R'$:

$$\begin{array}{ccc}
R & \xrightarrow{\varphi} R' \\
\downarrow \pi & \nearrow \psi \\
R/I
\end{array}$$

– коммутативна. Кег $\varphi = I \Rightarrow \psi$ – инъективна. φ – сюрьективна $\Rightarrow \phi$ – сюрьективна.

Note. Далее считаем кольца коммутативными.

Def 50. $X \subseteq R$ – кольцо. Идеал, порожденный X – наименьший идеал, содержащих X. Он равен

$$\left\{ \sum_{i=1}^{n} a_i x_i \mid a_i \in R, x_i \in X, n \in \mathbb{N} \right\}.$$

Обозначается: $\sum_{x \in X} xR = \langle X \rangle_R$

xR = (x) – главный идеал, порожденный x.

Ех. В \mathbb{Z} любой идеал главный.

 $I \subseteq \mathbb{Z}$,

$$0 < r < I, \quad r \le |s| \forall s \in I.$$

Рассмотрим $x \in I$.

$$x = rs + y, \quad 0 \le y < r.$$

 $y = x - rs \in I.$

Так как r – наименьший, то y = 0.

 $\mathbf{E}\mathbf{x}$.

$$\mathbb{Z}[\sqrt{-1}] = \{a + b\sqrt{-3} \mid a, b \in \mathbb{Z}\}.$$
$$(1 + \sqrt{-3})(1 - \sqrt{-3}) = 2 \cdot 2.$$

Идел, порожденный $1+\sqrt{-3}$ и $2((1+\sqrt{-3})R+2R)$, не является главным идеалом.

2.9.2 Комплексные числа

$$\mathbb{C} = \mathbb{R}[x] / (x^2 + 1)$$

$$i := x + (x^2 + 1)\mathbb{R}[x].$$

$$i^{2} + 1 = x^{2} + 1 + (x^{2} + 1)\mathbb{R}[x] = 0_{\mathbb{C}} \Longrightarrow i^{2} = -1.$$

 $\mathbb{R} \hookrightarrow \mathbb{R}[x] \to \mathbb{C}$ – инъективное отображение. Отождествляем $r \in R \longleftrightarrow r + (x^2 + 1)\mathbb{R}[x]$ и считаем, что $\mathbb{R} = \mathbb{C}$.

$$p \in \mathbb{R}[x]$$

$$p = (x^{2} + 1) \cdot f + (a + bx) \in a + bx + (x^{2} + 1)\mathbb{R}[x].$$
$$p + (x^{2} + 1)\mathbb{R}[x] = a + bi.$$

Таким образом

$$(a+bi) + (c+di) = (a+c) + (b+d)i.$$

 $(a+bi)(c+di) = ac - bd + i(ad+bc).$

$$\overline{a+bi} = a-bi$$
$$\forall w, z \in \mathbb{C}:$$

$$\frac{\overline{z \cdot w} = \overline{z} \cdot \overline{w}}{\overline{z + w} = \overline{z} + \overline{w}} .$$
$$\overline{\overline{z}} = z$$

 $\overline{\circ}:\mathbb{C}\to\mathbb{C}$ - автоморфизм.

 $a = \text{Re } z, \quad b = \text{Im } z$

 \mathbb{C} – векторное пространство над \mathbb{R} с базисом $\{1,i\}$

2.10 Лекция 24

2.10.1 Окончание комплексных чисел

$$\mathbb{C} := \mathbb{R}[x]/(x^2 + 1).$$
$$i := x + x(^2 + 1)\mathbb{R}[x]$$

Любое комплексное число представляется в виде a+bi, $a,b\in\mathbb{R}$, сопряжение: $\overline{a+bi}=a-bi$. Умножение на сопряженное: $(a+bi)(a-bi)=a^2+b^2$. Сложение с сопряженным: (a+bi)+(a-bi)=2a. Получили, что $z\cdot\overline{z},z+\overline{z}\in\mathbb{R}$.

Statement. Существует ровно два автоморфизма на комплексных числах, оставляющие вещественные на месте.

Proof. $f \in \mathbb{R}[x]$.

$$f(\varphi(i)) = \varphi(f(i)), \quad \alpha \in \mathbb{C}$$

так как $\varphi(\alpha^2) = \varphi(\alpha)^n$

 $\varphi(a\alpha^n) = a\varphi(\alpha)^n, a \in \mathbb{R}$. Если $f(x) = x^2 + 1, \ f(i) = 0. \ f(\varphi(i)) = \varphi(f(i)),$ то есть корень переходит в корень. Значит, нетривиальный только один. А второй — тривиальный.

$$|z| = \sqrt{a^2 + b^2} = \sqrt{z \cdot \overline{z}}.$$

 $Argz := \alpha \in \mathbb{R}/2\pi\mathbb{Z}.$

Можно выразить через аргумент:

$$\begin{aligned} a &= |z| \cdot \cos \alpha \\ b &= |z| \cdot \sin \alpha \\ z &= |z| \cdot (\cos \alpha + i \sin \alpha) - \text{тригонометрическая формула} \end{aligned} \end{aligned} \end{aligned} \end{aligned} Argz = \left\{ \begin{array}{ll} \operatorname{arctg} \frac{b}{a} + 2\pi \mathbb{Z}, & a > 0 \\ \pi + \operatorname{arcctg} \frac{b}{a} + 2\pi \mathbb{Z}, & a < 0 \\ \frac{\pi}{2} \cdot \operatorname{sign}(b), & a = 0 \end{array} \right.$$

Statement.

$$(\cos \alpha + i \sin \alpha)(\cos \beta + i \sin \beta) = \cos(\alpha + \beta) + i \sin(\alpha + \beta).$$

Statement. $\varepsilon: \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{C}^*, \quad \varepsilon(\alpha) = \cos \alpha + i \sin \alpha$ – это гомоморфизм.

$$\operatorname{Im} \varepsilon = S^1 := \{ z \in \mathbb{C} \mid |z| = 1 \}.$$

Так же:

$$\begin{split} \varepsilon(\alpha+\beta) &= \varepsilon(\alpha)\varepsilon(\beta) \\ \varepsilon(-\alpha) &= \varepsilon(\alpha)^{-1} \\ \varepsilon(\beta-\alpha) &= \frac{\varepsilon(\alpha)}{\varepsilon(\beta)} \\ \varepsilon(n\alpha) &= \varepsilon(\alpha)^n, \quad n \in \mathbb{Z} \\ (\cos\alpha+i\sin\alpha)^n &= \cos n\alpha+i\sin n\alpha - \phi ормула \ Myaврa \end{split}$$

Figure 2.1: Комплексное число на плоскости

Несколько слов о комплекснопеременных функциях

Def 51. Дифференциал:

$$f(x + \delta x) = f(x) + df(\delta x) + \overline{o(\delta x)}.$$

В случае дифференцирования функции от двух переменных, x – столбец, а df – матрица 2×2 .

Note. Для комплексных коэффициентов: умножение на $\lambda + \mu i \to \begin{pmatrix} \lambda & -\mu \\ \mu & \lambda \end{pmatrix}$

Statement. Напишем степенные ряды для тригонометрических функций:

$$e^{t} = \sum_{n=0}^{\infty} \frac{t^{n}}{n!}$$

$$\cos t = \sum_{n=1}^{\infty} \frac{t^{2k}}{(2k)!} \cdot (-1)^{k} = \sum_{k=0}^{\infty} \frac{\alpha^{2k}}{(2k)!}$$

$$\sin t = \sum_{n=1}^{\infty} \frac{t^{2k+1}}{(2k+1)!} \cdot (-1)^{k} = i \sum_{k=0}^{\infty} \frac{\alpha^{2k+1}}{(2k+1)!}$$

$$e^{i\alpha} = \sum_{n=2k} \frac{(i\alpha)^{2k}}{(2k)!} + \sum_{n=2k+1} \frac{(i\alpha)^{2k+1}}{(2k+1)!}.$$

$$e^{i\alpha} := \cos \alpha + i \sin \alpha.$$

$$\varepsilon(\alpha) = e^{i\alpha}$$

Note (Показательная форма комплексного числа).

$$z=|z|\cdot e^{i\cdot Argz}$$
 $e^{2\pi i}=\cos 2\pi + i\sin 2\pi =1.$ Лекция 2.10

 2π – период для экспоненты.

$$e^{\alpha+2\pi i}=e^{\alpha}.$$

$$a,b\in\mathbb{R}:\ e^{a+bi}=e^ae^{bi}=e^{a(\cos b+i\sin a)}.$$

На языке теории групп:

$$r \in \mathbb{R}^*_{>0}, \alpha \in \mathbb{R}/2\pi\mathbb{Z} : (r,\alpha) \mapsto r \cdot e^{i\alpha}.$$

To есть $\mathbb{R}^*_{>0} \times \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{C}^*$ – изоморфизм.

$$\mathbb{C}^* \cong \underbrace{\mathbb{R}^*_{>0} \times \mathbb{R}/2\pi\mathbb{Z}}_{\ln} \cong \mathbb{R} \times \mathbb{R}/2\pi\mathbb{Z} \cong \mathbb{C}/2\pi\mathbb{Z}.$$

$$Ln: \mathbb{C}^* \to \mathbb{C}/3\pi\mathbb{Z}.$$

 $Ln: (r, e^{i\alpha + 2\pi\mathbb{Z}}) = \ln r + i(\alpha + 2\pi\mathbb{Z}) = \ln r + i\alpha + 2\pi\mathbb{Z}.$

Statement (вычисление корня n-й степени). Вычисление корня в аддитивной группе $\mathbb{C}/2\pi\mathbb{Z}$ – решение уравнения:

$$xn \equiv 0 \mod 2\pi i \mathbb{Z}$$

$$xn = 2\pi i n, k \in \mathbb{Z}$$

$$x \equiv \frac{2\pi i k}{n} \mod 2\pi i \mathbb{Z}, \ k \in \mathbb{Z}/n\mathbb{Z}$$

 $z^n = 1$, z = Lnz, $\partial anee$

$$nx = 0 \mid 2\pi i \mathbb{Z}.$$
$$z = e^x = e^{\frac{2\pi i k}{n}}.$$

2.11 Лекция 25

$$z^n \Longleftrightarrow z = e^{rac{2\pi i k}{n}}, k \in \mathbb{Z}/n\mathbb{Z}.$$
 $\Theta_n(Z) = z^k$ – гомеоморфизм $\mathbb{C} \to \mathbb{C}^*.$ $\mu_n = \mathrm{Ker} \ \Theta_n = \{e^{rac{2\pi i k}{n}} \mid k \in \mathbb{Z}/n\mathbb{Z}\}.$

Эти числа делят окружность на n равных частей.

$$\mathbb{Z}/n\mathbb{Z} o \mu_n$$
 $k+n\mathbb{Z} \mapsto e^{rac{2\pi i k}{n}}$ – изоморфизм.

Def 52. Образующие элементы μ_n называются превообразными корнями из 1.

Corollary. $e^{\frac{2\pi ik}{n}}$ – превообразный корень тогда и только тогда, когда $\gcd(k,n)=1$.

Statement. $z^n=w=re^{i\varphi}$. Одно из решений этого уравнения: $\left(\sqrt[n]{r}\cdot e^{\frac{i\varphi}{n}}\right)^n$. А все решения можно записать:

$$\sqrt[n]{w} = \{ \sqrt[n]{r} \cdot e^{i\frac{phi + 2\pi k}{n}} \mid k \in \mathbb{Z}/n\mathbb{Z} \}, \quad z^n = w.$$

Theorem 20 (Основная теорема алгебры). $p \in \mathbb{C}[x], \deg p \geq 1$ Тогда $\exists \alpha \in \mathbb{C} : p(\alpha) = 0.$

Theorem 21 (Лиувилль). Любая ограниченная дифференцируемая функция $\mathbb{C} \to \mathbb{C}$ – константа.

2.11.1 Кольца главных идеалов

Евклидовы кольца

Def 53. Область целостности – коммутативное кольцо с единицей без делителей нуля.

Designation. R – коммутативное кольцо с 1 без делителей нуля.

Def 54. $f: R \to \mathbb{N}_0 \cup \{-\infty\}$ Обладает свойствами:

- 1. $f(0) < f(r), \forall r \in R$
- 2. $\forall a, b \in R, b \neq 0 \ \exists c, r \in R : a = bc + r \land f(r) < f(b)$

Тогда R – евклидова кольцо с евклидовой нормой f.

Theorem 22. Любой идеал евклидова кольца главный.

Proof. Пусть $I \triangleleft R$.

$$a \in I \setminus \{0\} : f(a) \le f(b) \quad \forall b \in I \setminus \{0\}.$$

$$b = ac + r, \quad f(r) < f(a).$$

$$r = \underbrace{b}_{\in I} - \underbrace{ac}_{\in I} \in I.$$

Если $r \neq 0$, то $f(a) \leq f(r) < f(a)$. Противоречие.

Note. На практике ищется с помощью алгоритма Евклида.

Statement. R - область главных идеалов. $a_i \in R$

$$\sum_{i=1}^{m} a_i R = dR.$$

 $Tor\partial a \ d := \gcd(a_i).$

Exs.
$$egin{array}{c|c} \ Kольцо & Hopмa \ \hline \mathbb{Z} & & |\cdot| \ F[x], \ F-\text{поле} & \deg \ \hline \Gamma ауссовы целые числа: $\mathbb{Z}[i] = \{a+bi \mid a,b \in \mathbb{Z}\} \ |\cdot| \ \end{array}$$$

 $\mathbf{E}\mathbf{x}$ (не евклидово число). $\mathbb{Z}[\sqrt{19}]$ – не евклидово кольцо главных идеалов.

2.11.2 Китайская теорема об остатках

Theorem 23. KTO для целых чисел $x\equiv x_1 \mod n_1$ $x\equiv x \mod n_2$: $x\equiv x_m \mod n_m$ Cy ществует единственное x по модулю произведения $n_1..n_m$, удовлетворяющее данным сравнениям

Theorem 24. KTO R – коммутативное кольцо c 1. $I_1, \ldots I_m$ – идеалы e R. $I_i+I_k=R \ \forall j\neq k$. Тогда

$$R/_{I_1} \oplus \ldots \oplus R/_{I_m} \cong R/_{I_1\ldots I_M}.$$

 $Remark. \ A, B$ — кольца. Декартово произведение

$$A \oplus B = A \times B$$
.

с покомпонентными операциями.

$$(a_1, b_1) + \cdot (a_2, b_2) = (a_1 + \cdot a_2, b_1 + \cdot b_2).$$

Statement. Идеалы I, J взаимно простые, если I + J = R.

Proof.
$$I \cap J$$
 – идеал. $I+J=\{a+b \mid a \in I, b \in J\}$ – идеал. $I\cdot J=\{\sum\limits_{i=1}^m a_ib_i \mid m \in \mathbb{N}, a_i \in I, b_i \in J\}$

Lemma. $I \cdot J \subseteq I \cap J$ верно всегда.

Lemma. $I + J = R \Longrightarrow I \cdot J = I \cap J$

$$Proof. \ \ I \cap J = (I \cap J) \cdot R = (I \cap J)(I + J) = \underbrace{(I \cap J) \cdot I}_{\in I \cdot J} + \underbrace{(I \cap J) \cdot J}_{\in I \cdot J} \subseteq I \cdot J$$

2.12 Лекция 26

I, J – идеалы в R

$$I + J = R \Leftrightarrow I, J$$
 взаимно простые.

Lemma. I + J = R. Torda

$$R/_{IJ} \cong R/_{I} \oplus R/_{J}$$
.

Proof.

$$\varphi: R \to R/_I \oplus R/_J.$$
$$r \mapsto (r+I, r+J).$$

$$\operatorname{Ker}\,\varphi\ni r\Leftrightarrow\left\{\begin{array}{ll}r+I=I\\r+J\end{array}\right.\Leftrightarrow r\in I\cap J$$

$$\operatorname{Ker} \varphi = I \cdot J.$$

$$\exists a \in I, b \in J : a + b = 1.$$

$$r = br_1 + ar_2 \equiv r_1 \mod I.$$

$$r = br_1 + ar_2 \equiv r_2 \mod J.$$

То есть $\varphi(r) = (r_1 + I, r_2 + J)$, следовательно, φ – сюрьективно. По теореме о гомоморфизме колец

$$R/_{IJ} \cong R/_{I} \oplus R/_{J}$$
.

Lemma. $J, I_1, \dots I_n$ – $u \partial eaлы \ e \ R$.

$$J + I_n = R \forall k \Longrightarrow J + I_1 \cdot \dots I_n = R.$$

Proof. Индукция. База для k = 1. Очевидно. Переход:

По предположению индукции $J+\underbrace{I_1+\ldots I_{n-1}}_I=R$. Нужно доказать , что $J+I\cdot I_n=R$.

$$R = J + I \cdot R = J + I(J + I_n) =$$

= $J + IJ + II_n = J + II_n$

Theorem 25 (Китайская теорема об остатках). $I_1, \dots I_n$ – попарно взаимно простые идеалы, то есть $\forall j \neq k: \ I_j + I_k = R.$ Тогда

$$\frac{R}{I_1 \cdot \ldots I_n} \cong \frac{R}{I} \oplus \ldots \oplus \frac{R}{I_n}.$$

Note. Здесь дробью обозначается фактор кольцо.

Proof. Индукция по n. Так как I_k взаимно просто с $I_1 \cdot \dots I_{n-1}$

$$\frac{R}{I_1 \dots I_n} \cong \frac{R}{I_1 \dots I_{n-1}} \oplus \frac{R}{I_n}.$$

Дальше по предположению индукции получаем то, что хотим.

Statement. $x \equiv x_k \mod I_k$, $k = 1, \dots n$ равносильно тому, что

$$x \equiv \sum_{k=1}^{n} x_k c_k \mod I_1 \dots I_n, \quad c_k \in \prod_{j \neq k} I_j \cap (1 + I_k).$$

Note. В целых числах:

$$x \equiv x_k \mod m_k, \quad k = 1, \dots n.$$

Чтобы найти c_k , нужно решить диофантово уравнение:

$$y \cdot m_k + z \cdot \prod_{j \neq k} m_j = 1$$

Statement (применение KTO). B F[t]:

$$p(x_k) = y_k \quad \forall k = 1, \dots, x_i \neq x_k \ \forall i \neq k$$

равносильно

$$p \equiv y_k \mod (t - x_k).$$

$$p(t) \equiv \sum_{k=1}^{n} y_k \prod \frac{t - x_i}{x_k - x_i} \mod (t - x_i) \dots (t - x_n).$$

Лекция 2.12

2.12.1 Простые и максимальные идеалы

Все кольца будут коммутативные с единицей.

Def 55. Простой идеал $P \neq R$ кольца R называется простым, если $ab \in P \Rightarrow a \in P \lor b \in P$

Note. Другими словами $R \setminus P$ замкнуто относительно умножения

Ех. В \mathbb{Z} идеал $n\mathbb{Z}$ – простой тогда и только тогда, когда n – простое.

Ex. В F[t] идеал $f \cdot F[t]$ простой тогда и только тогда, когда f – неприводимый многочлен.

Ex. Однако в $\mathbb{Z}[\sqrt{-3}] = R$ идеал 2R – не простой, хотя 2 не приводимо.

$$(1+\sqrt{-3})(1-\sqrt{-3}) = 4 \in 2R.$$

Докажем, что элементы $2,1\pm\sqrt{-3}$ неприводимы. Обозначим их за $\alpha=\beta\gamma$. Квадраты равны 4.

$$|\alpha|^2 = 4 = |\beta|^2 \cdot |\gamma|^2$$
.

$$|a+b\sqrt{-3}|^2 = a^2 + 3b^2, \ a, b \in \mathbb{Z}.$$

Либо $|\beta|^2 = 1$, либо $|\gamma|^2 = 1$, то есть β или γ обратимы.

Ex. F[x,y] = R

$$I = xR + yR.$$

- простой.

Def 56. Максимальны идеал – максимальный собственный идеал. Что равносильно тому, что это максимальный из идеалов, не содержащих единицу.

Note. Другими словами, M – максимальный идеал, если $M \neq R$ и $M \subseteq I \subseteq R \Rightarrow I = M$

Theorem 26. Любой собственный идеал содержится в каком-то максимальном.

Proof. $J \leq R$.

 \mathcal{X} – множество всех идеалов, содержащих J и не содержащих единицу.

 $\mathcal Y$ – линейно упорядоченное подмножество $\mathcal X$, то $\bigcup_{I\in\mathcal Y}\in\mathcal X$

$$a, b \in \bigcup_{I \in \mathcal{Y}} I \Longrightarrow \exists I_1, I_2 \in \mathcal{Y} : a \in I_1, b \in I_2 \land (I_1 \subseteq I_2 \lor I_2 \subseteq I_1),$$

так как \mathcal{Y} – линейно упорядочено.

$$a, b \in I_k \ (k = 1, 2) : a + b \in I_k \subseteq \bigcup_{I \in \mathcal{V}} I.$$

$$a\in\bigcup I\Longrightarrow ra\in\bigcup I,r\in R.$$

Следовательно, $\bigcup_{I \in \mathcal{Y}}$ – идеал.

$$\bigcup_{I \in \mathcal{Y}} \subseteq J \wedge \bigcup_{I \in \mathcal{Y}} \not\ni 1.$$

По лемме Цорна $\mathcal X$ содержит максимальный элемент. Пусть это M. Если $M\subset N\subset R$, $N\in\mathcal X\Rightarrow N=M$

2.13 Лекция 27

2.13.1 Фактор кольцо по максимальному идеалу

Statement. P – простой идеал в R тогда и только тогда, когда R/P – область целостности. \mathfrak{M} – максимальный тогда и только тогда, когда R/M – поле.

Proof. $ab \in P \Leftrightarrow a \in P \lor b \in P$.

Пусть
$$\overline{\cdot}: R \to R/P$$
.

Тогда предыдущее утверждение равносильно

$$\overline{a}\overline{b} \Leftrightarrow \overline{a} = 0 \lor \overline{b} = 0.$$

Обозначим $L(I, \mathfrak{R})$ – множество идеалов в R, содержащих I.

$$\overline{\cdot}: R \to R/P.$$

Докажем, что

$$\overline{\cdot}: L(R/\mathfrak{M}), \ I \mapsto \overline{I}.$$

— Образ этого идеала в R/\mathfrak{M} При эпиморфизме идеал отображается в идеал. $\overline{a} \in \overline{I}$, где $a \in I$. $\overline{r} \in R/\mathfrak{M}$, $\overline{ra} \in \overline{I}$

Обратное: $L(0,R/\mathfrak{M}) \to L(\mathfrak{M},R)$. Взятие полного прообраза $\overline{I} \mapsto I + \mathfrak{M} \triangleleft R$.

 $L(M,R) = \{\mathfrak{M}, R\} \Leftrightarrow L(\{0\}, R/M) = \{\{0\}, R/M\} \Leftrightarrow R/M$ – поле.

$$\overline{\alpha} \in R/M \land \alpha \neq 0 \Leftarrow \overline{\alpha}R/M = R/M \Leftrightarrow \overline{\alpha}$$
 – обратим.

Corollary. Любой максимальный идеал является простым.

Theorem 27. В R любой ненулевой простой идеал является максимальным.

Proof. Обозначим простой идеал pR и предположим, что он содержится в каком-то идеале $mR \neq R$. Тогда $p = mr \Longrightarrow m \in pR \lor r \in pR$. В первом случае mR = pR, а втором r = pa, то есть $p = map \Longrightarrow 1 = ma \Longrightarrow mR = R$. Противоречие.

2.13.2 Единственность разложения

R – кольцо с 1.

Def 57. $p \in R$ – простой, если pR – простой.

Def 58. $a, b \in R$ ассоциированные тогда и только тогда, когда aR = bR

Lemma. R- область целостности. a,b - ассоциированные тогда и только тогда, когда $a=b\varepsilon$ для некоторого $\varepsilon\in\mathbb{R}^*$

Proof.
$$aR = bR \Rightarrow a = b \cdot \varepsilon, b = a\delta \Rightarrow a = a\delta\varepsilon \Leftrightarrow a(1 - \delta\varepsilon) = 0 \Rightarrow \varepsilon$$
 обратим

Def 59. $a \in R$ приводим, если $a = bc \wedge aR \neq bR \wedge aR \neq cR$. Иначе a называется неприводимым.

Lemma. Простой элемент неприводим. В ОГИ неприводимый является простым.

Proof. pR – простой идеал, следовательно,

$$ab = p \Rightarrow \begin{bmatrix} a \in pR \\ b \in pR \end{bmatrix} \Rightarrow \begin{bmatrix} aR \subset pR \\ bR \subset pR \end{bmatrix}.$$

Но pR ⊂ aR ∩ bR. Тогда

$$\begin{bmatrix} aR = pR \\ bR = pR \end{bmatrix}.$$

Получаем, что p – неприводим.

Теперь в обратную сторону.

R – область главных идеалов, p – неприводим. $ab \in pR$.

 $aR + bR = cR \Longrightarrow p = cd \Longrightarrow c, d \in R^*$

Если $d \in R^* \Longrightarrow cR = pR \Longrightarrow aR \subset pR$, если $c \in R^* \Longrightarrow aR + pR = R$, домножим на $b : \underbrace{abR + pbR}_{G^*R} = R$

 $bR \Longrightarrow bR \subset pR$

Def 60. Для колец $\dim R$ — размерность Крулля кольца или максимальная длина цепочки строго вложенных простых идеалов.

Ex. dim $F[x_1, \dots x_n] = n$

2.13.3 Нётеровы кольца

Def 61. R – нётерово тогда и только тогда, когда любое линейно упорядоченное множество идеалов содержит наибольший элемент.

ACC – ascending chain condition (условие обрыва возрастающих цепей)

Def 62. Артиново кольцо – аналогично, но заменить наибольший, на наименьший.

DCC – descending chain condition (условие обрыва убывающих цепей)

Lemma. R – нётерово тогда и только тогда, когда любой идеал в R конечно порожден.

Proof. Пусть R – нётерово, $I \triangleleft R$. Возьмем $a_1 \in I$.

$$a_1R = I_1 \neq I \Longrightarrow \exists a_2 \in I \setminus R, I_2 := a_1R + a_2R \dots$$

Получаем цепочку, которая на может быть бесконечной, значит она где-то оборвется и мы получим, что любой идеал порожден этим набором.

В обратную сторону.

 ${\cal A}$ – линейно упорядоченное множество идеалов.

$$\bigcup_{I \in \mathcal{A}} I = a_1 R + \ldots + a_n R.$$

(так как оно конечно порожден) $\exists I_1, \dots I_n \in \mathcal{A}$, такие что $a_k \in I_k$. Так как \mathcal{A} – линейно упорядочено, существует наибольший из I_k , пусть I_j .

$$a_1, \ldots a_n \in I_i \Longrightarrow a_1 R + \ldots + a_n R = I_i$$
.

 I_i – наибольший из ${\cal A}$

Theorem 28. R – нётерово. Тогда любой элемент раскладывается в произведение неприводимых.

2.14 Лекция 28

Отступление

p — неприводим тогда и только тогда, когда pR — максимальный среди собственных главных идеалов. R — область целостности.

$$pR \subseteq aR \Longrightarrow p = ar \Longrightarrow \begin{bmatrix} a \in R^* \\ r \in R^* \end{bmatrix}$$

Тогда либо aR = R или aR = pR.

Если R не область целостности, из p = ar следует, что

$$\begin{bmatrix}
aR = pR \\
rR = pR
\end{bmatrix}$$

Тогда $r = px \land p = apx$, дальше p(ax - 1).

Теперь придумаем контрпример:

$$R = \mathbb{Z}[a, p, x] /_{(p(ax-1))}.$$

Хотим доказать, что p неприводим и $\overline{p}R \subsetneq \overline{a}R \subsetneq R$. Профакторизуем: \overline{p} – образ p в R,

$$R/_{(\overline{p})} \cong \mathbb{Z}[a,p,x]/_{(p,p(ax-1))}.$$

Это изоморфно

$$\mathbb{Z}[a,p,x]/_{(p)} \cong \mathbb{Z}[a,x].$$

Statement. $I, J \triangleleft R, \pi_I : R \rightarrow R/I$

$$R/(I+J) \cong (R/I)/_{\pi_I(J)} \cong (R/J)/_{\pi_J(I)}.$$

Тогда $\overline{p}R$ – простой идеал, следовательно, p – неприводим. В фактор кольце $R/(\overline{p}): \overline{p}R \to 0, \ \overline{a}R \to$ не 0 и не все кольцо

Ex.
$$\mathbb{Z}[i]/(7) \cong (\mathbb{Z}[x]/(x^2+1))/(7) \cong (\mathbb{Z}[x]/(7))/(x^2+1) \cong (\mathbb{Z}/7\mathbb{Z})[x]/(x^2+1).$$
 x^2+1 неприводим в $\mathbb{Z}/7\mathbb{Z}$ Значит, $\mathbb{Z}[i]/(7) \cong \mathbb{F}_{49}$.

Statement. Рассмотрим кольцо R, A – R-алгебра. Тогда

$$\forall a_1, \dots a_n \in A : \exists ! \varphi_{a_1, \dots a_n} : R[x_1, \dots x_n] \to A : \varphi_{a_1, \dots a_n}(x_i) = A.$$

Это гомоморфизм подстановки ("eval").

2.14.1 Продолжение нёторвых колец

Theorem 29 (Теорема Гильберта о базисе). R – нётерово (коммутативное кольцо с единицей). Тогда R[x] – нётерово.

Note. $b \mid a \Leftrightarrow aR \subseteq bR$

Theorem 30. R – неторова область целостности. Любой необратимый элемент раскладывается в произведение неприводимых.

Proof. $a \in R \setminus R^*$

- 1. Докажем, что существует такое p, что $p \mid a$ для неприводимого p. Если a неприводим, все отлично, иначе он предстваляется в виде $a = r_1 a_1$. При этом $a_1 R \neq a R$ и тогда $a R \subsetneq a_1 R \subsetneq a_2 R \subsetneq \ldots \subsetneq a_n R$. Эта цепочка точно оборвется, так как R неторово. Причем $p = a_n$ неприводим, иначе он не может быть последним. Значит $p \mid a$.
- 2. $p = p_1$ неприводим. $a = p_1 c_1$

Если $c_1 \in \mathbb{R}^*$, то p_1c_1 – неприводим. Иначе $p_1c_1 == p_1p_{22} = \ldots = p_1p_2 \ldots p_mc_m$.

$$c_m \mid c_{m-1} \dots \mid c_1$$
 и $c_1 R \subsetneq c_2 R \subsetneq \dots c_m R$

$$c_i = p_{i+1}c_{i+1}.$$

Так как p_i необратим, то $c_i R \neq c_{i+1} R$. Цепочка обрывается, так как R неторово.

2.14.2 Факториальное кольцо

Def 63. Кольцо называется факториальным, если любой необратимый элемент единственным образом раскладывается в произведение неприводимых с точностью до ассоциированности.

Lemma. Факториальное кольцо – область целостности.

Proof. Если $p_1\cdot\ldots\cdot p_m=0$, то $p_1^2\cdot p_2\cdot\ldots\cdot p_m=0$ – другое разложение.

Единственность означает: $p_1 \cdot \dots p_m = q_1 \cdot \dots q_n$, где p_i, q_j – необратимые $\Longrightarrow m = n \land \exists \sigma \in S_m : p_i$ ассоциировано с $\sigma(i)$.

Theorem 31. B R любой элемент раскладывается в произведение неприводимых и любой неприводимый элемент является простым. Тогда R – факториально.

Note. Верно и обратное

Proof. Tycth $p_1 \cdot p_2 \dots \cdot p_m = q_1 \dots q_n$.

Индукция по $\max(n, m)$.

База m = n = 1.

Переход: $\max(n, m) > 1$

Пусть n > 1.

$$q_1 \cdot \dots q_n \in p_1 R \stackrel{p_1 R \text{ - простое}}{\Longrightarrow} p_1 \mid q_i$$
 для некоторого i .

тогда $q_i \in p_i R \Longrightarrow q_i = p_i r_i$. Так как q_i неприводим, r_i – обратим, следовательно, q_i ассоциирует с p_1 .

$$q_1 \dots q_{i-1} r_1 q_{i+1} \dots q_n = p_1 \dots p_m$$
.

По предположению индукции p_i ассоциировано с сомножителями левой части (и m-1=n-1).

Corollary. Область главных идеалов является факториальным кольцом.

Theorem 32. R – факториальное кольцо. Тогда R[x] – тоже факториально.

2.15 Лекция 29

2.15.1 Локализация кольца

 $s\in R\stackrel{\varphi}{\longrightarrow} A,\, \varphi(s)^e$ — обратный. Если $r\cdot s=0,\,$ то $\varphi(r)=0.$

Def 64. $S \subseteq R$, S – мультипликативное подмножество, если:

- $1 \in S$
- $\forall s_1, \dots s_2 \in S : s_1 s_2 \in S$

Def 65. Локализация кольца R в мультипликативном подмножестве S – кольцо $S^{-1}R$ вместе с гоморфизмом $\lambda_S: R \to S^{-1}R$, такое что:

- $\lambda_S(s)$ обратимо в $S^{-1}R$ $\forall s \in S$
- $\forall \varphi: R \to A: \varphi(s)$ обратимо в $A \ \forall s \in S \ \exists !$ гомоморфизм $\psi: S^{-1R \to A}$ такое что: $\varphi = \psi \circ \lambda_S$

$$R \xrightarrow{\lambda_S} S^{-1}R$$

Построение:

 $R \times S$, введем отношение эквивалентности: $(r_1, s_1)(r_2, s_2) \Leftrightarrow \exists s \in S : sr_1s_2 = sr_2s_1$ Докажем, что это отношение эквивалентности.

- Рефлексивность: очевидно
- Симметричность: очевидно
- Транзитивность: $(r_1, s_1) \sim (r_2, s_2) \sim (r_3, s_3) \Longrightarrow \exists s, s' \in S : sr_1s_2 = sr_2s_1 \land s'r_2s_3 = s'r_3s_2$ Домножим на s, потом на s3 первое равенство, второе на s1.

$$s_3s'sr_1r_2 = s'sr_2s1s3 = s_1ss'r_2s_3 = ss'r_3s_2s_1.$$

 $(s'ss_2)r_1s_3 = (s'ss_2)r_3r_1.$

Тогда $(r_1, s_1) \sim (r_3, s_3)$.

 $S^{-1}R:=R imes S/_\sim$ Класс пары (r,s) обозначим $rac{r}{s}.$

$$\lambda_S: R \to S^{-1}R: \quad \lambda_S(r) = \frac{r}{1}.$$

Сложение и умножение:

 $\bullet \ \frac{r_1}{s_1} \cdot \frac{r_2}{s_2} = \frac{r_1 r_2}{s_1 s_2}$

Несложно доказать, что это определение не зависит от выбора представителей классов.

 $\bullet \ \frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1 s_2 + r_2 s_1}{s_1 s_2}$

Известно: $\frac{r_1'}{s_1'} = \frac{r_1}{s_1} \Leftrightarrow r_1' s_1 s = r_1 s_1' s \quad (\exists s \in S)$. Также

$$\frac{r_1'}{s_1'} + \frac{r_2}{s_2} = \frac{r_1's_2 + r_1s_1'}{s_1's_2} \Longleftrightarrow \frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1s_2 + r_2s_1}{s_1s_2}.$$

Тогда $(r_1s_2+r_2+s_1)s_1's_2=(r_1's_2+r_2s_1')s_1s_2s$. Сокращаем, получаем, что не зависит от выбора элемента класса.

$$\begin{split} \lambda_S(x_1) + \lambda_S(r_1) &= \frac{r_1}{1} + \frac{s_2}{1} = \frac{r_1 + r_2}{1} = \lambda_S(r_1 + r_2) \\ \lambda_s(s) &= \frac{s}{1} \text{ обратим: } \frac{s}{1} \frac{1}{s} = \frac{s}{s} = 1 \\ \text{Таким образом, } S^{-1}R - \text{ кольцо.} \\ \varphi &: RroA, \ \exists \varphi(s)^{-1} \quad \forall s \in S \\ \psi &: S^{-1}R \to A \\ \varphi(\frac{r}{s)}) &:= \varphi(r)\varphi(s)^{-1} \text{ Если } \frac{r'}{s'} = \frac{r}{s}, \text{ то есть } \exists s'' \in S : s''r's = s''rs'. \\ \varphi(s')\varphi(s)\varphi(r:) &= \varphi(s'')\varphi(s')\varphi(r). \\ \varphi(s)\varphi(r')^{-1} &= \varphi(r)\varphi(s)^{-1}. \\ \psi(\frac{r'}{s'}) &= \psi(\frac{r}{s}). \end{split}$$

Построенное $R \times S /_{\sim}$ вместе с λ_S удовлетворяет второму из определения локализации.

 $Note. \ \psi$ задается единственным образом.

Lemma. λ_S – интекция тогда и только тогда, когда в S нет делителей нуля.

$$Proof.$$
 $\frac{r_1}{1}\frac{r_2}{1}\Leftrightarrow \exists s\in S: s(r_1-r_2)=0\Leftrightarrow r_1=r_2\Leftrightarrow \$ в S нет делителей нуля

Ех. R – область целостности. $S = R \setminus \{0\}$ Тогда $S^{-1}R$ – поле частных.

Statement. Любая область целостности вкладывается в поле.

Ex. S – множество всех неделителей нуля. $S^{-1}R$ – полное кольцо частных.

Ex. P – простой идеал. $S = R \setminus P$ – мультипликативное подмножество. $R_P := (R \setminus P)^{-1}R$ – локализация в простом идеале.

Ex.
$$P = 2\mathbb{Z}, R = \mathbb{Z}$$

 $\mathbb{Z}_{(2)} := R_p = \{ \frac{m}{n} \mid n \in \mathbb{Z}, 2 \not| m \}$

Def 66. Главная локализация –
$$R_S l = \langle s \rangle^{-1} R$$
 $\langle s \rangle := \{1, s, s^2 \ldots\}, \ s \in R$