Machine learning

Naïve Bayes – Part 2

- * Smoothing
- * Continuous features

Lecture V

פיתוח: ד"ר יהונתן שלר משה פרידמן

'חלק ב- Naïve Bayes

- בעיית שכיחות האפס
- עבור מ"מ רציפים Naïve Bayes *

Bayes classifier in a nutshell

- 1. Learn the distribution over inputs for each value Y.
- 2. This gives $P(X_1, X_2, ... X_m / Y = v_i)$.
- 3. Estimate $P(Y=v_i)$. as fraction of records with $Y=v_i$.
- 4. For a new prediction:

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m)$$

$$= \underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v) P(Y = v)$$

Naïve Bayes classifier

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v) P(Y = v)$$

In the case of the naive Bayes Classifier this can be simplified:

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v) \prod_{j=1}^{n_{Y}} P(X_{j} = u_{j} \mid Y = v)$$

$$P(x_{1}, x_{2}, x_{D} | Y = v) =$$

$$P(x_{1} | Y = v) P(x_{2} | Y = v) P(x_{3} | Y = v) ... P(x_{m} | Y = v)$$

$$=$$

$$\prod_{i=1}^{m} P(x_{i} | Y = v)$$

Bayes classifier Pseudo Code

Train Naïve Bayes (given data for X and Y)

for each* value
$$y_k$$

estimate $\pi_k \equiv P(Y=y_k)$
for each* value x_{ij} of each attribute X_i
estimate $\theta_{ijk} \equiv P(X_i=x_{ij}|Y=y_k)$

• Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

 $Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \theta_{ijk}$

^{*} probabilities must sum to 1, so need estimate only n-1 of these...

Smoothing

Age	Hobby	Weather	Buy Computer?
Young	Sport	Cold	"Yes"
Young	Sport	Cold	"Yes"
Young	Sport	Cold	"Yes"
Old	Sport	Hot	"Yes"
Old	Sport	Hot	"Yes"
Old	Paint	Hot	"No"
Old	Paint	Cold	"Yes"
Old	Paint	Cold	"Yes"
Young	Paint	Hot	"No"
Young	Sport	Hot	"No"
	Young Young Old Old Old Old Old Old Young	Young Sport Young Sport Young Sport Old Sport Old Sport Old Paint Old Paint Old Paint Young Paint	Young Sport Cold Young Sport Cold Young Sport Cold Old Sport Hot Old Sport Hot Old Paint Hot Old Paint Cold Old Paint Cold Young Paint Hot

: נסתכל בדוגמא הבאה:

ננסה לחזות את המקרה בו (old, sport, cold)

```
P(Weather = "cold" | "no") =
P(Weather = "cold" \land "no") / P("no") =
\frac{0}{3} = 0
```

* $P("no" \mid old, sport, cold) = 0$

Smoothing solution

- * Probability estimates are adjusted or *smoothed*.
- * Assumes that each feature is given a prior probability, *p*, that is assumed to have been previously observed in a "virtual" sample of size *m*.
- * Usually, in the binary case p is simply assumed to be 0.5

$$P(X = x | Y = y) = \frac{n_c + mp}{n + m}$$

- * n = number of training examples for which <math>Y = y
- * n_c =number of examples where X=x and Y=y
- * p = a prior estimation for P(X=x|Y=y)
- * m = the equivalent sample size

לאור מה שראינו בדוגמה

```
P(Weather = "cold" | "no") = P(Weather = "cold" \land "no") / P("no") =
```

$$n = 3$$
 $n_c = 0$
 $p = 0.5$
 $m = 4$

$$P(X = x | Y = y) = \frac{n_c + mp}{n + m}$$

$$P(Weather = "cold"|"no") =$$

$$P(Weather = "cold" \land "no")/P("no") =$$

$$\frac{0 + 4 \times 0.5}{3 + 4} = \frac{2}{7}$$

פונקצית לוג

תכונות:

- פונקציית לוג של שברים תהיה שלילית, אך היא שומרת על הסדר, והיא גם מונוטונית עולה.
 - $\log(x^*y) = \log(x) + \log(y)$ •

לכן, נרצה לעבוד עם חיבור לוגים, במקום מכפלת שברים (של הסתברויות).

מדוע?

Underflow Prevention

- אותנו יכול להוביל אותנו (הסתברויות) יכול להוביל אותנו של הרבה איברים שכולם בין 0 ל-1 (הסתברויות) יכול להוביל אותנו של-underflow-ל-
 - ? מה נעשה כאשר יש לנו מאות מאפיינים
- * $log(xy) = log(x) + log(y) \rightarrow summing logs of probabilities rather than multiplying probabilities.$
- Class with highest final un-normalized log probability score is still the most probable.

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} \left(\log P(Y = v) + \sum_{j=1}^{n_{Y}} \log P(X_{j} = u_{j} \mid Y = v) \right)$$

תרגיל – השלימו את החישוב – בעזרת Jog

$$\left[\log P\left("yes"\right) + \sum_{i \in \mathcal{I}} \log P\left(x_i|"yes"\right)\right] =$$

חוק בייס והנחת חוסר התלות - תזכורת

בגלל הנחת חוסר התלות בין המאפיינים:

$$P(x_1,x_2,....x_D \mid c) = P(x_1 \mid c) P(x_2 \mid c) P(x_3 \mid c) ... P(x_D \mid c) = \prod_{i=1}^D P(x_i \mid c)$$
 אבל, איך יודעים לחשב פבור מ"מ רציף?

התפלגות נורמלית – פונקצית צפיפות

t-val-הערה חשובה: אנחנו נחשב סטיית תקן במדגם ואת ה-

או עקומת (Gaussian) התפלגות נקראת גם גאוסיאן פעמון.

פונקציית צפיפות סמטרית.

התפלגות בו תת קבוצה של התפלגות נורמלית בו התוחלת/הממוצע=0 וסטיית התקן=1.

z כל התפלגות נורמלית ניתן להפוך להתפלגות

z-val= (x-μ)/σ) ב מהתפלגות נורמלית להתפלגות ערך מאורע אורע ערך מאורע

$$\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

פונקצית צפיפות:

סטיית תקן

What if features are continuous?

Gaussian Naïve Bayes (GNB):
$$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x-\mu_{ik})^2}{2\sigma_{ik}^2}}$$

Different mean and variance for each class *K* and each attribute i

Sometimes assume variance

- is independent of Y (i.e., σ_i),
- or independent of X_i (i.e., σ_k)
- or both (i.e., σ)

Example: P(A, B, C)

A	В	С	Class
0.1	0.3	0.04	1
0.12	0.4	0.99	1
0.13	0.9	0.01	1
0.44	0.86	0.93	1
0.67	0.45	0.34	0
0.77	0.55	0.75	0
.88	.79	0.09	0
.89	.82	.81	0

Continuous Params Estimation

$$h_{NB}(\mathbf{x}) = \arg\max_{y} P(y) \prod_{i} P(X_i = x_i | y)$$

 $\approx \arg\max_{k} \hat{P}(Y = k) \prod_{i} \mathcal{N}(\hat{\mu}_{ik}, \hat{\sigma}_{ik})$

$$\widehat{\mu}_{MLE} = \frac{1}{N} \sum_{j=1}^{N} x_j$$

$$\hat{\mu}_{MLE} = \frac{1}{N} \sum_{j=1}^{N} x_j \left| \hat{\sigma}_{unbiased}^2 = \frac{1}{N-1} \sum_{j=1}^{N} (x_j - \hat{\mu})^2 \right|$$

Gaussian NB Pseudo Code

• Train Naïve Bayes (examples) for each value y_k estimate* $\pi_k \equiv P(Y=y_k)$ for each attribute X_i estimate $P(X_i|Y=y_k)$

ullet class conditional mean μ_{ik} , standard deviation σ_{ik}

• Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$
$$Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \mathcal{N}(X_i^{new}; \mu_{ik}, \sigma_{ik})$$

^{*} probabilities must sum to 1, so need estimate only n-1 parameters...

נאיב בייס - סיכום

יתרונות: ♦

- * קל להבנה/"למידה"
 - ♦ קל למימוש
- אינטואיטיבי ומבוסס על סטטיסטיקה וסבירות
- "קל לשימוש/"הפעלת ה"מכונה" על נתונים חדשים"
 - * זול (יחסית) חישובית

מסרונות:

- underflow- להזהר מ
- ... זכרו את הנחת אי-התלות במידה ולא נכונה יש לחשוב שוב..

נתראה בתרגול ©