<u>(Two Companies)</u> Two companies are producing widgets. It costs the first company q_1^2 dollars to produce widgets and the second company $(0.75*q_2^2)$ dollars to produce widgets. If a total of q widgets are produced, consumers will pay 300 - q dollars for each widget. If the two companies want to collude in an attempt to maximize the sum of their profits, how many widgets should each company produce? (The model for this type of problem is called a *collusive duopoly model*.)

Discussion: -

Our objective in this problem is to maximize the total profit. Profit function is nonlinear because it includes a squared cost term. Generally, when we are using software there is a chance that solver can get struck at a local optimum and never find the global optimum. To overcome this, we must define our objective as convex or concave functions depending the problem we are solving. As it is a maximization problem, we must make sure our objective function is concave, and if there is any constraint make sure that it is linear. In similar way, we will define convex function for minimization problem.

Mathematical Model: -

Parameters (Inputs):

 $i \in 1,2,$ (i: Index for companies)

 $q = q_1 + q_2$ (Total number of widgets produced) P(q) : 300 - q (Amount paid by consumer for each widget)

Decision Variables:

 q_i : Widgets produced by company i

Objective:

Maximize total profit =
$$\left[\sum_{i=1}^{2} q_i * P(q)\right] - \left[q_1^2 + (0.75 * q_2^2)\right]$$

Constraints:

No Constraints

<u>Excel Implementation:</u> Please find the attached spreadsheet for solution.

Commented [YW1]: You can mention that this is the mechanism used by OPEC

	Company 1	Company 2	Total	Inputs	
Widgets produced	45	60	105	Decision variables	
				Calculated Variables	
Customers will pay	195			Constraints	
Revenue	8775	11700	20475	Objective	
Costs	2025	2700	4725		
		Profit	15750		