ДОМАШНЯЯ РАБОТА №2

Тема:

«Случайные величины и их распределения»

Составил: к.ф.-м.н, доц. Булычев В.А.

Задача 1. Одновременно подбрасывают две игральные кости; x - число очков на первом кубике, y - на втором. Для заданной в каждом варианте функции f(x,y) найдите: **a)** закон распределения случайной величины $\xi = f(x,y)$; **б)** математическое ожидание $E(\xi)$; **b)** дисперсию $D(\xi)$ и стандартное отклонение $\sigma(\xi)$.

Задача 2. Непрерывная случайная величина ξ имеет плотность распределения p(x). Для случайной величины ξ найдите: **a)** функцию распределения F(x) и постройте графики p(x) и F(x); **б)** вероятность попадания случайной величины в интервал $(\alpha; \beta)$; **в)** математическое ожидание, дисперсию и стандартное отклонение.

Задача 3. Известно, что математическое ожидание случайной величины X равно m, а дисперсия d. Найдите математическое ожидание и дисперсию случайной величины Y = aX + b.

Задача 4.

На рисунке изображён график плотности распределения случайной величины X (параметр a задан для каждого варианта).

- **а)** Запишите формулу для плотности распределения.
- **б)** Найдите функцию распределения этой величины и постройте её график.
- **в)** Вычислите математическое ожидание, дисперсию и стандартное отклонение.

Задача 5. Из партии, содержащей n изделий, среди которых k — высшего сорта, для контроля последовательно выбирают наугад m изделий. Случайная величина X равна числу деталей высшего сорта среди выбранных. Найдите её математическое ожидание, дисперсию и стандартное отклонение при условии, что выборка производится: **a)** с возвращением (выбранное изделие после проверки возвращается обратно в партию); **б)** без возвращения (выбранное изделие в партию не возвращается).

Задача 6. Деталь, изготовленная автоматом, считается годной, если отклонение X контролируемого размера от номинала не превышает δ . Точность работы станка характеризуется стандартным отклонением σ . Считая, что X нормально распределена, определите, сколько процентов годных деталей изготавливает автомат.

Задача 7. Карандаш длиной L случайным образом ломают на две части. Случайная величина ξ равна длине большей из двух частей. Найдите её математическое ожидание и дисперсию.

Задача 8. На окружности радиуса r случайно выбирают две точки. Случайная величина ξ равна расстоянию между ними. Найдите её математическое ожидание.

No	Задача 1	Задача 2	Задача З						
вар	f(x, y)	p(x)	λ	α	β	m	d	а	b
1	<i>x-y</i>		0,5	-3	3	-2	2	2	-4
2	<i>y</i> – <i>x</i>		0,4	-2	4	-3	3	-2	4
3	/x-y/	$p(x) = \begin{cases} \lambda e^{\lambda x}, x \le 0\\ 0, x > 0 \end{cases}$	0,3	-3	5	-4	4	3	-5
4	/y-x/	$p(x) = \begin{cases} \lambda e^{-x}, x \leq 0 \end{cases}$	0,2	-2	6	-5	5	-3	5
5	<i>x</i> –2 <i>y</i>	$\left(0,x>0\right)$	0,1	-4	7	-6	6	5	-4
6	2y-x		0,6	-5	4	-5	5	-5	4
7	2x-y		0,7	-2	3	-4	4	4	-5
8	y-2x		0,8	-3	5	-5	3	-4	5
9	min(x,y)		0,9	-4	4	-2	2	6	-4
10	max(x,y)		1	-5	3	-3	3	-6	4
11	<i>x</i> - <i>y</i>		1	-2	5	-4	6	7	-5
12	<i>y</i> – <i>x</i>		2	-1	4	-7	5	-7	5
13	/x-y/	$p(x) = \begin{cases} \frac{\lambda - x }{\lambda^2}, x \le \lambda \\ 0, x > \lambda \end{cases}$	3	-1	5	-2	7	3	-4
14	/y-x/	$n(x) = \int \frac{\lambda^{2}}{\lambda^{2}}, x \leq \lambda$	1	-1	4	-3	3	-3	4
15	<i>x</i> –2 <i>y</i>	$p(x) = \begin{cases} \lambda & \\ 0 & x > 2 \end{cases}$	2	-1	5	-4	8	5	-5
16	2y-x	$(0, X >\lambda$	3	-1	4	-5	3	-5	5
17	2x-y		1	-1	5	-4	6	8	-4
18	y-2x		2	-2	5	-3	5	-8	4
19	min(x,y)		3	-1	6	-4	4	9	-5
20	max(x,y)		1	-2	4	-7	5	-9	5
21	<i>x</i> - <i>y</i>		1	-2	1	-2	6	3	-4
22	<i>y</i> – <i>x</i>		2	-1	1	-5	3	-3	4
23	/x-y/	$n(x) = \lambda e^{-\lambda x }$	3	-1	1	-4	4	5	-5
24	/y-x/	$I/(\lambda) = \frac{I}{\lambda}$	1	-1	2	-6	5	-5	5
25	<i>x</i> –2 <i>y</i>	2	2	-2	1	-2	7	4	-4
26	2y-x		3	-1	2	-3	3	-4	4
27	2 <i>x</i> - <i>y</i>		1	-1	1	-4	2	6	-5
28	y-2x		2	-1	2	-7	5	-6	5
29	min(x,y)		3	-2	1	-6	3	7	-5
30	max(x,y)		1	-2	2	-5	5	-7	5

№	Задача 4	Задача 5			Задач	ча 6	Задача 7	Задача 8
вар	а	n	k	m	δ	σ	L	r
1	2	12	6	6	6	10	25	14
2	8	12	6	6	12	7	30	27
3	6	12	6	6	9	7	32	24
4	5	12	6	6	5	10	17	31
5	2	12	7	6	8	10	19	37
6	3	12	7	6	12	8	12	18
7	2	12	7	6	10	8	16	14
8	8	12	7	6	8	9	24	11
9	4	12	7	6	11	10	25	33
10	6	12	8	6	8	10	28	40
11	5	12	8	6	6	6	21	20
12	5	12	8	6	14	10	14	24
13	2	12	8	6	12	7	30	13
14	5	12	9	6	5	8	12	31
15	3	12	9	6	7	5	17	17
16	2	12	10	6	6	7	23	37
17	5	12	6	5	8	8	29	38
18	5	12	6	5	5	10	24	13
19	3	12	6	5	8	6	18	18
20	7	12	7	5	9	5	19	28
21	4	12	7	5	13	8	27	40
22	2	12	7	5	14	5	30	28
23	5	12	7	5	12	9	15	38
24	8	12	8	5	8	7	28	27
25	6	12	8	5	12	6	28	18
26	6	12	8	5	9	10	22	18
27	2	12	8	5	8	9	18	20
28	8	12	9	5	15	5	16	18
29	5	12	9	5	12	9	22	30
30	8	12	9	5	6	8	14	13