西南交通大学 2017-2018 学年第(1)学期中期考试试卷

课程代码 6010400 课程名称 线性代数 A 考试时间 90 分钟

(请考生注意,本试卷共四页,14道题)

题	_	=	三				四	总
目			10	11	12	13	14	分
得								
分								

阅卷教师签字:

മ

銰

、单项选择题(每小题5分,共25分)。

1、 己知
$$D = \begin{vmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 1 & 3 & 1 \\ 1 & 2 & 1 & 3 \end{vmatrix} = 12$$
,则 $3A_{41} + 6A_{42} + 3A_{43} + 9A_{44} = (B)$,

其中 A_{ii} 表示D的第i行j列的代数余子式。

2、方程
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & x & 2 & -1 \\ 1 & x^2 & 4 & 1 \\ 1 & x^3 & 8 & -1 \end{vmatrix} = 0$$
的根为 (A)。

- (A) 1,-1,2; (B) 1,-1,-2; (C) 3,4,5; (D) 2,4,8.

- 3、设下列说法正确的是(D)。
- (A) $A, B \in n$ 阶方阵,则必有|A + B| = |A| + |B|;

(B)
$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |A||D| - |B||C|$$
, 其中 $A, B, C, D \in n$ 阶方阵;

- (C) $A \in n$ 阶方阵,k 为非零实数,则 $|kA| = |k|^n |A|$;
- (D) $A, B \in n$ 阶方阵,则必有|AB| = |BA|。

- 4、设下列说法正确的是(B)。
- (A) $A = B 为 n 阶方阵, 则必有 <math>(A + B)^2 = A^2 + 2AB + B^2$;
- (B) A 与 B 为 n阶方阵且 A + B = E,则必有 AB = BA,其中 E 为 n阶单位阵;
- (C) 若 $A^2 = A$,则 A = O或 A = E,其中 O为零矩阵、E为单位阵;
- (D) 若 A 可逆且 AB = CA, 则必有 B = C。
- 5、设 A 是 5×3 矩阵,且 A 的秩 R(A) = 2,又 $B = \begin{pmatrix} 1 & -2 & 0 \\ 4 & 7 & 0 \\ 0 & 0 & -6 \end{pmatrix}$,则 R(AB) = (A)。
 - (A) 2; (B) 3; (C) 1; (D) 无法确定。

二、填空题(每小题6分,共24分)。

- 6、 已知 A 为三阶方阵,且 |A|=2,那么 $\left|\left(\frac{1}{4}A\right)^{-1}-5A^*\right|=$ _______,其中 A^* 是 A 的伴随矩阵。
- 7、若方程组 $\begin{cases} x_1 + 2x_2 2x_3 = 0 \\ 2x_1 x_2 + kx_3 = 0 \text{ 有非零解,则 } k = \underline{\qquad \qquad 1} \\ 3x_1 + x_2 x_3 = 0 \end{cases}$

$$\begin{vmatrix} 2 & 3 & 0 & 0 \\ 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} \cdot (-1)^{1+2+1+2} \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 0 \\ 1 & 3 \end{vmatrix} \cdot (-1)^{1+2+1+2} \begin{vmatrix} 1 & 3 \\ 0 & 2 \end{vmatrix} + \begin{vmatrix} 2 & 0 \\ 1 & 0 \end{vmatrix} \cdot (-1)^{1+2+1+4} \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = ----$$

$$+\begin{vmatrix}3 & 0 \\ 2 & 3\end{vmatrix}\cdot (-1)^{1+2+2+3}\begin{vmatrix}0 & 3 \\ 0 & 2\end{vmatrix} + \begin{vmatrix}3 & 0 \\ 2 & 0\end{vmatrix}\cdot (-1)^{1+2+2+4}\begin{vmatrix}0 & 2 \\ 0 & 1\end{vmatrix} + \begin{vmatrix}0 & 0 \\ 3 & 0\end{vmatrix}\cdot (-1)^{1+2+3+4}\begin{vmatrix}0 & 1 \\ 0 & 0\end{vmatrix}$$

9、若
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, 那么 $P^{2017}AP^{2018} = \underline{\qquad \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}}$

三、解答下列各题(每小题11分,共44分)。(解法不唯一,仅供参考)

$$10、求行列式 $D_n = \begin{vmatrix} 1+a_1 & 1 & \cdots & 1 \\ 1 & 1+a_2 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1+a_n \end{vmatrix}$ 的值,其中 $a_1a_2\cdots a_n \neq 0$ 。$$

$$D_{n} \underline{r_{i} - r_{1}; i = 2, \cdots, n} \begin{vmatrix} 1 + a_{1} & 1 & 1 & \cdots & 1 \\ -a_{1} & a_{2} & 0 & \cdots & 0 \\ -a_{1} & 0 & a_{3} & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -a_{1} & 0 & 0 & \cdots & a_{n} \end{vmatrix}$$

$$\begin{vmatrix} C_1 + \frac{a_1}{a_j} C_j, j = 2, \dots, n \\ \hline & & \\ & & \\ \hline & & \\$$

$$= a_1 a_2 \cdots a_n \left(1 + \sum_{j=1}^n \frac{1}{a_j} \right)$$

$$\int 2x_1 - 4x_2 + 5x_3 = 0$$

11、a 取何值时线性方程组 $\begin{cases} 3x_1 - 6x_2 + 4x_3 = c \text{ 有唯一解,并求出唯一解。} \\ 4x_1 - ax_2 + 3x_3 = 0 \end{cases}$

解 线性方程组系数行列式 $D = \begin{vmatrix} 2 & -4 & 5 \\ 3 & -6 & 4 \\ 4 & -a & 3 \end{vmatrix} = 7(8-a)$,故当 $a \neq 8$ 时,方程有唯一解

且为

$$\begin{bmatrix} x_1 = \frac{\begin{vmatrix} 0 & -4 & 5 \\ c & -6 & 4 \\ 0 & -a & 3 \end{vmatrix}}{D} = \frac{(12 - 5a)c}{7(8 - a)}, \quad x_2 = \frac{\begin{vmatrix} 2 & 0 & 5 \\ 3 & c & 4 \\ 4 & 0 & 3 \end{vmatrix}}{D} = \frac{2c}{a - 8} x_3 = \frac{\begin{vmatrix} 2 & -4 & 0 \\ 3 & -6 & c \\ 4 & -a & 0 \end{vmatrix}}{D} = \frac{(16 - 2a)c}{7(8 - a)}$$

批注[微软用户1]:5分

批注 [微软用户2]: 10 分

批注 [微软用户3]: 11 分

批注 [微软用户4]: 5 分

批注 [微软用户5]: 11 分

12、
$$A,B$$
为三阶可逆矩阵满足 $A^{-1}B+4E-B=O$,其中 O 为零矩阵,若 $B=\begin{pmatrix} 1 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,求 A .

$$A^{-1}B + 4E - B = O \Rightarrow A^{-1}B = B - 4E \Rightarrow A^{-1} = (B - 4E)B^{-1} \Rightarrow A = B(B - 4E)^{-1}$$

批注 [微软用户6]: 3 分

$$(B-4E,E) = \begin{pmatrix} -3 & -2 & 0 & 1 & 0 & 0 \\ 1 & -2 & 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 \leftrightarrow r_1, \frac{1}{2}r_3} \begin{pmatrix} 1 & -2 & 0 & 0 & 1 & 0 \\ -3 & -2 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{2} \end{pmatrix}$$

$$A = B(B - 4E)^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

13、设
$$A = \begin{pmatrix} 3 & 1 & 1 & 4 \\ \lambda & 4 & 10 & 1 \\ 1 & 7 & 17 & 3 \\ 2 & 2 & 4 & 3 \end{pmatrix}$$
, 求矩阵 A 的秩。

$$\widehat{\mathsf{MR}} \left[A = \begin{pmatrix} 3 & 1 & 1 & 4 \\ 0 & 4 & 10 & 1 \\ 1 & 7 & 17 & 3 \\ 2 & 2 & 4 & 3 \end{pmatrix} \underbrace{r_1 \leftrightarrow r_3}_{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 7 & 17 & 3 \\ \lambda & 4 & 10 & 1 \\ 3 & 1 & 1 & 4 \\ 2 & 2 & 4 & 3 \end{pmatrix} \underbrace{r_2 - \lambda r_1, r_3 - 3r_1, r_4 - 2r_1}_{r_2 \to r_1, r_3 \to r_1, r_4 \to r_1} \right]$$

$$\underbrace{r_1 \leftrightarrow r_3}_{0} \begin{pmatrix} 1 & 7 & 17 & 3 \\ 0 & 4 - 7\lambda & 10 - 17\lambda & 1 - 3\lambda \\ 0 & -20 & -50 & -5 \\ 0 & -12 & -30 & -3 \end{pmatrix} \underbrace{-\frac{1}{5} r_3, -\frac{1}{3} r_4}_{0} \begin{pmatrix} 1 & 7 & 17 & 3 \\ 0 & 4 - 7\lambda & 10 - 17\lambda & 1 - 3\lambda \\ 0 & 4 & 10 & 1 \\ 0 & 4 & 10 & 1 \end{pmatrix}$$

批注 [微软用户8]: 11 分

$$\underline{r_4 - r_3} \begin{pmatrix} 1 & 7 & 17 & 3 \\ 0 & 4 - 7\lambda & 10 - 17\lambda & 1 - 3\lambda \\ 0 & 4 & 10 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \underline{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 7 & 17 & 3 \\ 0 & 4 & 10 & 1 \\ 0 & 4 - 7\lambda & 10 - 17\lambda & 1 - 3\lambda \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\frac{r_3 - \frac{4 - 7\lambda}{4} r_2}{\frac{1}{2} \begin{pmatrix} 1 & 7 & 17 & 3 \\ 0 & 4 & 10 & 1 \\ 0 & 0 & \frac{\lambda}{2} & -\frac{5}{4}\lambda \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

批注 [微软用户9]: 7 分

故当 $\lambda = 0$ 时A变为阶梯形为 $\begin{pmatrix} 1 & 7 & 17 & 3 \\ 0 & 4 & 10 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, 此时A的秩为2;

故当 $\lambda \neq 0$ 时A变为阶梯形为 $\begin{pmatrix} 1 & 7 & 17 & 3 \\ 0 & 4 & 10 & 1 \\ 0 & 0 & \frac{\lambda}{2} & -\frac{5}{4}\lambda \\ 0 & 0 & 0 & 0 \end{pmatrix}, \text{ 此时} A \text{ 的秩为 3}$

批注 [微软用户10]:9分

批注 [微软用户11]: 11 分

四、(7分)(解法不唯一,仅供参考)

14、设方阵 A 不可逆矩阵,证明 A 的伴随矩阵 A*也不可逆。

证明: A不可逆,则 $A^*A = |A|E = O$ (1),

批注[微软用户12]:2分

假设 A^* 可逆,则(1)可知

A = O

批注[微软用户13]:4分

若A=O,则 $A^*=O$,

批注[微软用户14]:6分

这与 A^* 可逆矛盾,故假设错误,这说明 A^* 不可逆。

批注 [微软用户15]: 7 分