Problema 9.3.6.5: Simplificați următoarele funcții booleene de trei variabile date prin zerourile acestora, utilizând metoda lui Quine:

$$f_5(0,0,0) = f_5(1,1,0) = f_5(1,1,1) = 0$$

Metoda lui Quine se aplica formei canonice disjunctive a functiei (FCD). FCD este disjunctia mintermilor corespunzatori argumentelor pentru care functia ia valoarea 1.

m	x ₁	x ₂	X ₃	f ₅ (x)
m_0	0	0	0	0
m_1	0	0	1	1
m_2	0	1	0	1
m_3	0	1	1	1
m_4	1	0	0	1
m_5	1	0	1	1
m ₆	1	1	0	0
m ₇	1	1	1	0

 $f_5 = m_1 v m_2 v m_3 v m_4 v m_5$

$$S_{f5} = \{(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1)\}$$

Ordonam multimea suport a functiei crescator dupa numarul de valori 1 continut de fiecare triplet:

$$S_{f5} = \{(0,1,1), (1,0,1), (0,0,1), (0,1,0), (1,0,0)\}$$

Construirea tabelei:

			x1	x2	х3	
Factorizare simpla	I	٧	0	1	1	m ₃
		٧	1	0	1	m ₅
		٧	0	0	1	m₁
	ı	٧	0	1	0	m ₂
		٧	1	0	0	m ₄
			0	-	1	$m_3 v m_1 = \overline{x}_1 x_3 = max_1$
III = I + II			0	1	-	
			-	0	1	$m_3 v m_2 = \overline{x}_1 x_2 = max_2$
			1	0	-	$m_5 v m_1 = \overline{x_2} x_3 = max_3$
						$m_5 v m_4 = x_1 \overline{x_2} = max_4$

Monoamele care au participat la factorizare au fost bifate, iar cele ramase nebifate sunt monoamele maximale.

$$M(f_5) = \{\overline{x_1}x_3, \overline{x_1}x_2, \overline{x_2}x_3, x_1\overline{x_2}\} = \{\max_1, \max_2, \max_3, \max_4\}$$

Identificarea monoamelor centrale:

Monoame maximale Mintermi	max ₁	max ₂	max ₃	max ₄
m ₁	*		*	
m ₂		Ф		
m ₃	*	*		
m ₄				Ф
m ₅			*	*

Multimea monoamelor centrale este formata din monoamele care contin cel putin o steluta incercuita pe coloana.

$$C(f_5) = \{max_2, max_4\}$$

⇒ Ne aflam in cazul 2

Identificarea formelor simplificate:

$$g(x_1, x_2, x_3) = \max_2 v \max_4 = \overline{x_1} x_2 v x_1 \overline{x_2}$$

$$h_1(x_1, x_2, x_3) = max_1$$

$$h_2(x_1, x_2, x_3) = max_3$$

Daca avem doua functii h vom avea doua forme simplificate:

$$f'_1(x_1, x_2, x_3) = g(x_1, x_2, x_3) \vee h_1(x_1, x_2, x_3) = \overline{x_1} x_2 \vee x_1 \overline{x_2} \vee \overline{x_1} x_3$$

$$f'_2(x_1, x_2, x_3) = g(x_1, x_2, x_3) \vee h_2(x_1, x_2, x_3) = \overline{x_1} x_2 \vee x_1 \overline{x_2} \vee \overline{x_2} x_3$$