(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-128953 (P2003-128953A)

(43)公開日 平成15年5月8日(2003.5.8)

FI デーマコート*(参考) 5 0 9 B 67/20 K 2 C 0 5 6 5 4 1 M 5/00 E 2 H 0 8 6 5 0 9 B 29/48 4 J 0 3 9 5 0 9 D 11/00 5 4 1 J 3/04 1 0 1 Y 審査請求 未請求 請求項の数5 OL (全 16 頁 71)出題人 000005201 富士写真フイルム株式会社
341M 5/00 E 2H086 609B 29/48 4J039 609D 11/00 41J 3/04 101Y 審査請求 未請求 請求項の数5 OL (全16頁 71)出願人 000005201 富士写真フイルム株式会社
309B 29/48 4J039 309D 11/00 341J 3/04 101Y 審査請求 未請求 請求項の数5 OL (全 16 頁 71)出願人 000005201 富士写真フイルム株式会社
3 0 9 D 11/00 3 4 1 J 3/04 1 0 1 Y 審査請求 未請求 請求項の数 5 OL (全 16 頁 71)出願人 000005201 富士写真フイルム株式会社
審査請求 未請求 請求項の数5 OL (全 16 頁 71)出題人 000005201 富士写真フイルム株式会社
71) 出願人 000005201 富士写真フイルム株式会社
富士写真フイルム株式会社
神奈川県南足柄市中沼210番地
72)発明者 原田 傲
神奈川県南足柄市中招210番地 富士写真
フイルム株式会社内
74)代理人 100079049
弁理士 中島 淳 (外3名)
Fターム(参考) 20056 EA13 FC02
2H086 BA55 BA60
4J039 BC40 BC55 BC73 BC74 BC76
BC77 BC79 CA06 EA17 EA35

(54) 【発明の名称】 着色組成物、インクジェット記録方法、オゾン耐性改良方法

(57)【要約】

【課題】 色相と堅牢性 (特に耐オゾン性) に優れた、印刷用のインク組成物、感熱転写型画像形成材料におけるカラーフィルター、染色液等に応用できる着色組成物を提供する。更に、上記着色組成物をインクジェット記録に使用することにより、良好な色相を有し、光及び環境中の活性ガス、特にオゾンガスに対して堅牢性の高い画像を形成することが出来るインクジェット記録方法及びオゾン耐性改良方法を提供する。

【解決手段】 最大吸収波長入maxが390nm~470nmで、酸化電位が1.0V(vs SCE)よりも貴であるアゾ色素を少なくとも一種含有することを特徴とする着色組成物、及びそれを用いたインクジェット記録方法並びにオゾン耐性改良方法。

【特許請求の範囲】

【請求項1】 最大吸収波長入maxが390nm~4 70nmで、

かつ、酸化電位が1.0V(vs SCE)よりも貴であるアゾ色素を少なくとも一種含有することを特徴とする着色組成物。

【請求項2】 最大吸収波長 λ m a x における吸光度 I (λ m a x) と、 λ m a x + 70 n m における吸光度 I (λ m a x + 70) / I (λ m a x) が 0. 2以下であることを特徴とする請求項 1 に記載の着色組成物。

【請求項3】 前記アゾ色素が下記一般式(1)で表されるアゾ色素であることを特徴とする請求項1又は2に記載の着色組成物。

【化1】

【式(1)中、R¹及びR³は、水素原子、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基またはアリール基を表す。R²は、水素原子、アルキル基、シクロアルキル基、アラルキル基、カルバモイル基、アシル基、アリール基またはヘテロ環基を表す。X及びYは、一方は窒素原子を表し、他方は一CR⁴を表す。R⁴は、水素原子、ハロゲン原子、シアノ基、アルキル基、アルキル基、アルキルスルボニル基、アルキルスルフィニル基、アルキルオキシカルボニル基、カルバモイル基、アルコキシ基、アリールスルフィニル基、アリールオキシ基またはアシルアミノ基を表す。それぞれの置換基はさらに置換基を有していてもよい。〕

【請求項4】 インクジェット記録用インクを用いて、 受像材料に画像を形成するインクジェット記録方法にお いて、

前記インクジェット記録用インクとして、請求項1~3 の何れか1項に記載の着色組成物を用いることを特徴と するインクジェット記録方法。

【請求項5】 請求項1~3の何れか1項に記載の着色 組成物を用いて画像を形成することにより耐オゾン性が 改良された着色画像を得ることを特徴とするオゾン耐性 改良方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、アゾ色素を用いた 耐オゾン性が改良された着色組成物、特にイエローイン クジェット記録用インクに適用できる、耐オゾン性が改 良され、色相の優れた着色組成物、並びに該着色組成物 を用いたインクジェット記録方法及びオゾン耐性改良方法に関する。

[0002]

【従来の技術】近年、画像記録材料としては、特にカラー画像を形成するための材料が主流であり、具体的には、インクジェット方式記録材料、感熱転写型画像記録材料、電子写真方式を用いる記録材料、転写式ハロゲン化銀感光材料、印刷インク、記録ペン等が盛んに利用されている。また、ディスプレーではLCDやPDPにおいて、撮影機器ではCCDなどの電子部品においてカラーフィルターが使用されている。

【0003】これらのカラー画像記録材料やカラーフィルターでは、フルカラー画像を再現あるいは記録する為に、いわゆる加法混色法や減法混色法の三原色の色素(染料や顔料)が使用されているが、好ましい色再現域を実現出来る吸収特性を有し、且つさまざまな使用条件に耐えうる堅牢な色素がないのが実状であり、改善が強く望まれている。一方、インクジェット記録方法は、材料費が安価であること、高速記録が可能なこと、記録時の騒音が少ないこと、更にカラー記録が容易であることから、急速に普及し、更に発展しつつある。

【0004】インクジェット記録方法には、連続的に液滴を飛翔させるコンティニュアス方式と、画像情報信号に応じて液滴を飛翔させるオンデマンド方式とが有り、その吐出方式にはピエゾ素子により圧力を加えて液滴を吐出させる方式、熱によりインク中に気泡を発生させて液滴を吐出させる方式、超音波を用いた方式、及び静電力により液滴を吸引吐出させる方式がある。また、インクジェット記録用インクとしては、水性インク、油性インク、あるいは固体(溶融型)インクが用いられる。

【0005】このようなインクジェット記録用インクに用いられる色素に対しては、溶剤に対する溶解性あるいは分散性が良好なこと、高濃度記録が可能であること、色相が良好であること、光、熱、環境中の活性ガス(NOx、オゾン等の酸化性ガスの他SOxなど)に対して堅牢であること、水や薬品に対する堅牢性に優れていること、受像材料に対して定着性が良く滲みにくいこと、インクとしての保存性に優れていること、毒性がないこと、純度が高いこと、更には、安価に入手できることが要求されている。特に、良好なイエロー色相を有し、光及び環境中の活性ガス、中でもオゾンなどの酸化性ガスに対して堅牢な色素が強く望まれている。

【0006】上記インクジェット記録用インクに用いられるイエロー色素としては、アゾ色素が代表的である。 上記アゾ色素として代表的なものは、特開昭57-5770号公報及び58-147470号公報に記載の、アミノピラゾールアゾ色素及びピラゾロンアゾキレート色素、特開昭57-642775号公報に記載のピラゾロンアゾ色素、特開平6-184481号公報に記載のピリドンアゾ色素、特開平5-255625号公報及び5 -331396号公報に記載のスチルベンアゾ色素、特開昭57-65757号公報に記載のビスアゾ染料などを挙げることができる。また、特開平2-24191号公報には熱転写用チアジアゾールーアゾービラゾール色素が開示されている。

【0007】これらの色素は、昨今環境問題として取り あげられることの多い酸化窒素ガスやオゾン等の酸化性 ガスによって変色及び消色し、同時に印字濃度も低下し てしまう。また、耐光性も必ずしも満足できない色素が 多い。

【0008】今後、使用分野が拡大して、広告等の展示物に広く使用されると、光や環境中の活性ガスに曝される場合が多くなるため、特に良好な色相を有し、光堅牢性及び環境中の活性ガス (NO_X 、オゾン等の酸化性ガスの他 SO_X など)に対する堅牢性に優れた色素及びインク組成物がますます強く望まれるようになる。しかしながら、これらの要求を高いレベルで満たすアゾ色素及びイエロー色素を捜し求めることは、極めて難しい。

【0009】これまで、耐オゾンガス性を付与したアゾ 色素及びイエロー色素は、知られていない。さらに、色 相と光及び酸化性ガス堅率性を両立させるには至ってい ないのが現状である。特に耐オゾンガス性に関しては指 針となる色素の性質について報告された例は今までに無 かった。

[0010]

【発明が解決しようとする課題】本発明は、上記従来における問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、色相と堅牢性(特に耐オゾン性)に優れた、インクジェットなどの印刷用のインク組成物、感熱転写型画像形成材料におけるインクシート、電子写真用のトナー、LCD、PDPやCCDで用いられるカラーフィルター、各種繊維を染色する染色液等に応用できる着色組成物を提供する。更に、上記着色組成物をインクジェット記録に使用することにより、良好な色相を有し、光及び環境中の活性ガス、特にオゾンガスに対して堅牢性の高い画像を形成することが出来るインクジェット記録方法及びオゾン耐性改良方法を提供することを目的とする。

[0011]

【課題を解決するための手段】本発明者らは、良好な色相と光堅牢性及びガス堅牢性(特に、オゾンガス)の高いイエロー色素誘導体を詳細に検討したところ、特定の酸化電位を有するアゾ色素により、上記課題を解決できることを見出し、本発明を完成するに至った。即ち、本発明は、

<1> 最大吸収波長 λ maxが390nm \sim 470nmで、かつ、酸化電位が1.0V(vs SCE)よりも貴であるアゾ色素を少なくとも一種含有することを特徴とする着色組成物である。

【0012】<2> 最大吸収波長 A max における吸

光度 $I(\lambda \max)$ と、 $\lambda \max + 70$ nmにおける吸光度 $I(\lambda \max + 70)$ との比 $I(\lambda \max + 70)$ / $I(\lambda \max)$ が 0.2 以下であることを特徴とする <1> に記載の着色組成物である。

【0013】<3> 前記アゾ色素が下記一般式(1)で表されるアゾ色素であることを特徴とする<1>又は <2>のに記載の着色組成物である。

[0014]

【化2】

【0015】〔式(1)中、R¹及びR³は、水素原子、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基またはアリール基を表す。R²は、水素原子、アルキル基、シクロアルキル基、アラルキル基、カルバモイル基、アシル基、アリール基またはヘテロ環基を表す。X及びYは、一方は窒素原子を表し、他方は一CR⁴を表す。R⁴は、水素原子、ハロゲン原子、シアノ基、アルキル基、アルキルチオ基、アルキルスルホニル基、アルキルスルフィニル基、アルキルスルカニル基、アリールスルフィニル基、アリールスルフィニル基、アリールスルフィニル基、アリールスルフィニル基、アリールスルフィニル基、アリールスルフィニル基、アリールオキシ基またはアシルアミノ基を表す。それぞれの置換基はさらに置換基を有していてもよい。〕

【0016】<4> インクジェット記録用インクを用いて、受像材料に画像を形成するインクジェット記録方法において、前記インクジェット記録用インクとして、<1>~<3>の何れか1つに記載の着色組成物を用いることを特徴とするインクジェット記録方法である。<5> <1>~<3>の何れか1つに記載の着色組成物を用いることを特徴とするインクジェット記録方法である。

べち> <1>~<3>の何れか1つに記載の着色組成物を用いて画像を形成することにより耐オゾン性が改良された着色画像を得ることを特徴とするオゾン耐性改良方法である。

[0017]

【発明の実施の形態】本発明の着色組成物は、最大吸収 波長 λ maxが390nm \sim 470nmで、酸化電位が 1.0V(vs SCE)よりも貴であるアゾ色素(以下、「本発明にかかるアゾ色素」という。)を少なくとも一種含有することを特徴とする。また、本発明にかかるアゾ色素は、前記最大吸収波長 λ maxにおける吸光度 I(λ max)と、該最大吸収波長 λ max+70nmにおける吸光度 I(λ max+70nm)との比 I(λ max+70nm)/I(λ max)が、0.2以下であることが好ましい。

【0018】本発明の着色組成物は、特に、着色画像を

形成するために好適に用いられる着色組成物 (着色画像 形成用組成物) として好ましい。本発明の着色組成物 は、上記のように規定された最大吸収波長 A m a x 及び 酸化電位を有するために、着色画像を形成するための組成物として用いると、得られる着色画像のオゾン耐性が 著しく改良される。又オゾン耐性が強く求められている インクジェット記録方法に好適に使用できる。以下、本 発明について詳細に説明する。

【0019】 [アゾ色素] 本発明にかかるアゾ色素は、最大吸収波長 λ maxが390nm \sim 470nmで、酸化電位が1.0V(vs SCE)よりも貴であることを特徴とし、1.05V(vs SCE)よりも貴であることが好ましく、1.1V(vs SCE)より貴であることがより好ましい。

【0020】酸化電位の値(Eox)は、試料から電極への電子の移りやすさを表わし、その値が大きい(酸化電位が貴である)ほど試料から電極への電子の移りにくい、言い換えれば、酸化されにくいことを表す。化合物の構造との関連では、電子求引性基を導入することにより酸化電位はより貴となり、電子供与性基を導入することにより酸化電位はより貴となる。

【0021】本発明の着色組成物は、電子求引性基を導入して酸化電位をより貴としたアゾ色素を少なくとも一種含有することにより、求電子剤であるオゾンとの反応性を下げることを特徴としている。つまり、本発明の着色組成物は、酸化電位が1.0V(vs SCE)よりも貴であるアゾ色素を少なくとも一種含有することにより、耐オゾン性を向上させている。

【0022】上記酸化電位は、当業者が容易に測定することができる。この方法に関しては、例えばP. Delahay著"New Instrumental Methods in Electrochemistry" (1954年 Interscience Publishers社刊) やA. J. Bard他著"Electrochemical Methods" (1980年 JohnWiley& Sons社刊)、 藤嶋昭他著"電気化学測定法" (1984年 技報堂出版社刊) に記載されている。

【0023】具体的に酸化電位は、過塩素酸ナトリウムや過塩素酸テトラプロピルアンモニウムといった支持電解質を含むジメチルホルムアミドやアセトニトリルのような溶媒中に、被験試料を1×10⁻⁴~1×10⁻⁶モル/リットル溶解して、サイクリックボルタンメトリーや直流ボーラログラフィーを用いてSCE (飽和カロメル電極)に対する値として測定する。この値は、液間電位差や試料溶液の液抵抗などの影響で、数10ミルボルト程度偏位することがあるが、標準試料 (例えばハイドロキノン)を入れて電位の再現性を保証することができる。また、用いる支持電解質や溶媒は、被験試料の酸化電位や溶解性により適当なものを選ぶことができる。用

いることができる支持電解質や溶媒については藤嶋昭他著"電気化学測定法"(1984年 技報堂出版社刊) 101~118ページに記載がある。

【0024】一方、本発明にかかるアゾ色素は、上記最大吸収波長入maxにおける吸光度 I(入max)と、該最大吸収波長入max+70nmにおける吸光度 I(入max+70nm)/ I(入max)が、0.2以下であることが好ましい。本発明で用いるアゾ色素は、吸収スペクトルの長波長側における裾切れが良好であると、色相が良好となり好ましい。このため、上記最大吸収波長入maxにおける吸光度 I(入max)と、該最大吸収波長入max+70nmにおける吸光度 I(入max)/ I(入max)が、0.2以下であることが好ましく、0.1以下であることがより好ましい。尚、ここで定義した吸収波長及び吸光度は、溶媒(水又は酢酸エチル)中での値を示す。

【0025】本発明におけるアゾ色素は、下記一般式

- (1)で表されるアゾ色素が好ましい。以下、一般式
- (1)で表されるアゾ色素について詳細に説明する。

[0026]

【化3】

【0027】一般式(1)中、R1~R3で表されるアルキル基は、置換基を有していてもよく、炭素原子数が1~30のアルキル基であることが好ましい。アルキル基が有する置換基としては、後述のアリール基の置換基と同じものが挙げられる。中でも、ヒドロキシル基、アルコキシ基、シアノ基、及びハロゲン原子、スルホ基(塩の形でもよい)及びカルボキシル基(塩の形でもよい)が好ましい。上記アルキル基の例としては、メチル基、エチル基、ブチル基、セーブチル基、ローオクチル基、エイコシル基、2-クロロエチル基、ヒドロキシエチル基、シアノエチル基及び4-スルホブチル基を挙げることが出来る。

【0028】一般式(1)中、R1~R3で表されるシクロアルキル基は、置換基を有していてもよく、炭素原子数が5~30のシクロアルキル基が好ましい。シクロアルキル基が有する置換基の例としては、後述のアリール基の置換基と同じものが挙げられる。上記シクロアルキル基の例としては、シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基を挙げることが出来る。

【0029】一般式(1)中、R1~R3で表されるアラルキル基は、置換基を有していてもよく、炭素原子数が

7~30のアラルキル基が好ましい。アラルキル基が有する置換基の例としては、後述のアリール基の置換基と同じものが挙げられる。前記アラルキル基の例としては、ベンジル基及び2-フェネチル基を挙げることが出来る。

【0030】一般式(1)中、R¹及びR³で表されるアルコキシ基は、置換基を有していてもよく、炭素原子数が1~30のアルコキシ基が好ましい。アルコキシ基が有する置換基の例としては、後述のアリール基の置換基と同じものが挙げられる。前記アルコキシ基の例には、メトキシ、エトキシ、イソプロポキシ、n-オクチルオキシ、メトキシエトキシ、ヒドロキシエトキシ及び3ーカルボキシプロポキシなどを挙げることが出来る。

【0031】一般式(1)中、R1~R3で表されるアリ ール基は、置換基を有していてもよく、炭素原子数が6 ~30のアリール基が好ましい。アリール基が有する置 換基の例としては、ハロゲン原子、アルキル基、シクロ アルキル基、アラルキル基、アルケニル基、アルキニル 基、アリール基、ヘテロ環基、シアノ基、ヒドロキシル 基、ニトロ基、カルボキシル基、アルコキシ基、アリー ルオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシ ルオキシ基、カルバモイルオキシ基、アルコキシカルボ ニルオキシ基、アリールオキシカルボニルオキシ基、ア ミノ基 (アニリノ基を含む)、アシルアミノ基、アミノ カルボニルアミノ基、アルコキシカルボニルアミノ基、 アリールオキシカルボニルアミノ基、スルファモイルア ミノ基、アルキルスルホニルアミノ基、アリールスルホ ニルアミノ基、メルカプト基、アルキルチオ基、アリー ルチオ基、ヘテロ環チオ基、スルファモイル基、スルホ 基、アルキルスルフィニル基、アリールスルフィニル 基、アルキルスルホニル基、アリールスルホニル基、ア シル基、アリールオキシカルボニル基、アルコキシカル ボニル基、カルバモイル基、イミド基、ホスフィノ基、 ホスフィニル基、ホスフィニルオキシ基、ホスフィニル アミノ基、シリル基が挙げられる。

【0032】更にアリール基が有する置換基について詳しく説明する。アリール基が有する置換基としてのハロゲン原子は、塩素原子、臭素原子、ヨウ素原子を表す。一方、アリール基が有する置換基としてのアルキル基、アルコキシ基、シクロアルキル基及びアラルキル基は、既述の一般式(1)中、R¹~R³で表されるアルキル基、アルコキシ基、シクロアルキル基及びアラルキル基と同義である。

【0033】アリール基が有する置換基としてのアルケニル基は、直鎖、分岐、環状の置換もしくは無置換のアルケニル基であり、炭素原子数が2~30のアルケニル基が好ましい。具体的には、ビニル基、アリル基、プレニル基、ゲラニル基、オレイル基、2-シクロペンテン-1-イル基、2-シクロヘキセン-1-イル基を挙げることが出来る。

【0034】アリール基が有する置換基としてのアルキニル基は、置換基を有していてもよく、炭素原子数が2~30のアルキニル基が好ましい。具体的には、エチニル基、プロパルギル基を挙げることが出来る。

【0035】アリール基が有する置換基としてのアリール基は、置換基を有していてもよく、炭素原子数が6~30のアリール基が好ましい。具体的にはフェニル基、p-トリル基、ナフチル基、m-クロロフェニル基、o-ヘキサデカノイルアミノフェニル基を挙げることが出来る。

【0036】アリール基が有する置換基としてのヘテロ環基は、5または6員の置換もしくは無置換の芳香族もしくは非芳香族のヘテロ環化合物から、一個の水素原子を取り除いた一価の基であることが好ましく、より好ましくは、炭素原子数が3~30の5もしくは6員の芳香族のヘテロ環基である。具体的には、2~フリル基、2~チエニル基、2~ピリミジニル基、2~ベンゾチアゾリル基を挙げることが出来る。

【0037】アリール基が有する置換基としてのアリールオキシ基は、置換基を有していてもよく、炭素原子数が6~30のアリールオキシ基が好ましい。具体的には、フェノキシ基、2-メチルフェノキシ基、4-t-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基を挙げることが出来る。

【0038】アリール基が有する置換基としてのシリルオキシ基は、置換基を有していてもよく、炭素原子数が3~20のシリルオキシ基が好ましい。具体的には、トリメチルシリルオキシ基、tーブチルジメチルシリルオキシ基を挙げることが出来る。

【0039】アリール基が有する置換基としてのヘテロ環オキシ基は、置換基を有していてもよく、炭素原子数が2~30のヘテロ環オキシ基が好ましい。具体的には、1-フェニルテトラゾールー5-オキシ基、2-テトラヒドロビラニルオキシ基を挙げることが出来る。

【0040】アリール基が有する置換基としてのアシルオキシ基は、ホルミルオキシ基、炭素数2~30の置換もしくは無置換のアルキルカルボニルオキシ基、炭素原子数が6~30の置換もしくは無置換のアリールカルボニルオキシ基が好ましい。具体的には、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、pーメトキシフェニルカルボニルオキシ基を挙げることが出来る。

【0041】アリール基が有する置換基としてのカルバモイルオキシ基は、置換基を有していてもよく、炭素原子数が1~30のカルバモイルオキシ基が好ましい。具体的には、N、N-ジメチルカルバモイルオキシ基、N、N-ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N、N-ジ-n-オクチルアミノカルボニルオキシ基、N-n-オクチルカルバモイルオキ

シ基を挙げることが出来る。

【0042】アリール基が有する置換基としてのアルコキシカルボニルオキシ基は、置換基を有していてもよく、炭素原子数が2~30のアルコキシカルボニルオキシ基が好ましい。具体的には、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、ローオクチルカルボニルオキシ基を挙げることが出来る。

【0043】アリール基が有する置換基としてのアリールオキシカルボニルオキシ基は、置換基を有していてもよく、炭素原子数が7~30のアリールオキシカルボニルオキシ基が好ましい。具体的には、フェノキシカルボニルオキシ基、p-x-キシフェノキシカルボニルオキシ基、p-n-ヘキサデシルオキシフェノキシカルボニルオキシ基を挙げることが出来る。

【0044】アリール基が有する置換基としてのアミノ基は、炭素原子数が1~30の置換もしくは無置換のアルキルアミノ基、炭素原子数が6~30の置換もしくは無置換のアニリノ基が好ましい。具体的には、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、Nーメチルーアニリノ基、ジフェニルアミノ基を挙げることが出来る。

【0045】アリール基が有する置換基としてのアシルアミノ基は、ホルミルアミノ基、炭素原子数が1~30の置換もしくは無置換のアルキルカルボニルアミノ基、炭素原子数が6~30の置換もしくは無置換のアリールカルボニルアミノ基が好ましい。具体的には、ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基、3,4,5ートリーnーオクチルオキシフェニルカルボニルアミノ基を挙げることが出来る。

【0046】アリール基が有する置換基としてのアミノカルボニルアミノ基は、置換基を有していてもよく、炭素原子数が1~30ののアミノカルボニルアミノ基が好ましい。具体的には、カルバモイルアミノ基、N,Nージエチルアミノカルボニルアミノ基、モルホリノカルボニルアミノ基を挙げることが出来る。

【0047】アリール基が有する置換基としてのアルコキシカルボニルアミノ基は、置換基を有していてもよく、炭素原子数が2~30のアルコキシカルボニル基アミノ基が好ましい。具体的には、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、ローオクタデシルオキシカルボニルアミノ基、Nーメチルーメトキシカルボニルアミノ基を挙げることが出来る。

【0048】アリール基が有する置換基としてのアリールオキシカルボニルアミノ基は、置換基を有していてもよく、炭素原子数が7~30のアリールオキシカルボニルアミノ基が好ましい。具体的には、フェノキシカルボ

ニルアミノ基、p-クロロフェノキシカルボニルアミノ 基、m-n-オクチルオキシフェノキシカルボニルアミ ノ基を挙げることが出来る。

【0049】アリール基が有する置換基としてのスルファモイルアミノ基は、置換基を有していてもよく、炭素原子数が0~30のスルファモイルアミノ基が好ましい。具体的には、スルファモイルアミノ基、N,N-ジメチルアミノスルホニルアミノ基を挙げることが出来る。

【0050】アリール基が有する置換基としてのアルキルスルホニルアミノ基及びアリールスルホニルアミノ基は、置換基を有していてもよく、炭素原子数が1~30のアルキルスルホニルアミノ基及び炭素原子数が6~30のアリールスルホニルアミノ基が好ましい。具体的には、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5ートリクロロフェニルスルホニルアミノ基、pーメチルフェニルスルホニルアミノ基を挙げることが出来る。

【0051】アリール基が有する置換基としてのアルキルチオ基は、置換基を有していてもよく、炭素原子数が1~30のアルキルチオ基が好ましい。具体的にはメチルチオ基、エチルチオ基、n-ヘキサデシルチオ基を挙げることが出来る。

【0052】アリール基が有する置換基としてのアリールチオ基は、置換基を有していてもよく、炭素原子数が6~30のアリールチオ基が好ましい。具体的には、フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基を挙げることが出来る。

【0053】アリール基が有する置換基としてのヘテロ環チオ基は、置換基を有していてもよく、炭素原子数が2~30のヘテロ環チオ基が好ましい。具体的には、2 ーベンゾチアゾリルチオ基、1 - フェニルテトラゾールー5 - イルチオ基を挙げることが出来る。

【0054】アリール基が有する置換基としてのスルファモイル基は、置換基を有していてもよく、炭素原子数が0~30のスルファモイル基が好ましい。具体的には、Nーエチルスルファモイル基、Nー(3ードデシルオキシプロピル)スルファモイル基、N, Nージメチルスルファモイル基、Nーアセチルスルファモイル基、Nーベンゾイルスルファモイル基、Nー(N'ーフェニルカルバモイル)スルファモイル基を挙げることが出来る。

【0055】アリール基が有する置換基としてのアルキルスルフィニル基及びアリールスルフィニル基は、置換基を有していてもよく、炭素原子数が1~30のアルキルスルフィニル基、炭素原子数が6~30のアリールスルフィニル基が好ましい。具体的には、メチルスルフィニル基、エチルスルフィニル基、フェニルスルフィニル基、pーメチルフェニルスルフィニル基を挙げることが出来る。

【0056】アリール基が有する置換基としてのアルキルスルホニル基及びアリールスルホニル基は、置換基を有していてもよく、炭素原子数が1~30のアルキルスルホニル基、炭素原子数が6~30のアリールスルホニル基が好ましい。具体的には、メチルスルホニル基、エチルスルホニル基、フェニルスルホニル基、pーメチルフェニルスルホニル基を挙げることが出来る。

【0057】アリール基が有する置換基としてのアシル基はホルミル基、炭素原子数が2~30の置換または無置換のアルキルカルボニル基、炭素原子数が7~30の置換もしくは無置換のアリールカルボニル基、炭素原子数が4~30の置換もしくは無置換の炭素原子でカルボニル基と結合しているヘテロ環カルボニル基が好ましい。具体的には、アセチル基、ピバロイル基、2-クロロアセチル基、ステアロイル基、ベンゾイル基、p-nーオクチルオキシフェニルカルボニル基を挙げることが出来る。

【0058】アリール基が有する置換基としてのアリールオキシカルボニル基は、置換基を有していてもよく、炭素原子数が7~30の置換もしくは無置換のアリールオキシカルボニル基が好ましい。具体的には、フェノキシカルボニル基、ロークロロフェノキシカルボニル基、mーニトロフェノキシカルボニル基、pーtーブチルフェノキシカルボニル基を挙げることが出来る。

【0059】アリール基が有する置換基としてのアルコキシカルボニル基は、置換基を有していてもよく、炭素原子数が2~30のアルコキシカルボニル基が好ましい。具体的には、メトキシカルボニル基、エトキシカルボニル基、tーブトキシカルボニル基、nーオクタデシルオキシカルボニル基を挙げることが出来る。

【0060】アリール基が有する置換基としてのカルバモイル基は、置換基を有していてもよく、炭素原子数が1~30のカルバモイル基が好ましい。具体的には、カルバモイル基、N・メチルカルバモイル基、N・N・ジメチルカルバモイル基、N・N・ジーn・オクチルカルバモイル基、N・(メチルスルホニル)カルバモイル基を挙げることが出来る。

【0061】アリール基が有する置換基としてのホスフィノ基は、置換基を有していてもよく、炭素原子数が2~30のホスフィノ基、具体的には、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基を挙げることが出来る。

【0062】アリール基が有する置換基としてのホスフィニル基は、置換基を有していてもよく、炭素原子数が2~30のホスフィニル基が好ましい。具体的には、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基を挙げることが出来る。

【0063】アリール基が有する置換基としてのホスフィニルオキシ基は、置換基を有していてもよく、炭素原

子数が2~30のホスフィニルオキシ基、具体的には、 ジフェノキシホスフィニルオキシ基、ジオクチルオキシ ホスフィニルオキシ基を挙げることが出来る。

【0064】アリール基が有する置換基としてのホスフィニルアミノ基は、炭素原子数が2~30の置換もしくは無置換のホスフィニルアミノ基、具体的には、ジメトキシホスフィニルアミノ基、ジメチルアミノ基ホスフィニルアミノ基を挙げることが出来る。

【0065】アリール基が有する置換基としてのシリル基は、置換基を有していてもよく、炭素原子数が3~3 0のシリル基が好ましい。具体的には、トリメチルシリル基、セーブチルジメチルシリル基、フェニルジメチルシリル基を挙げることが出来る。

【0066】上記の官能基の中で、水素原子を有するものは、これを取り去り更に上記の官能基で置換されていてもよい。そのような官能基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アリールスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基、アーメチルフェニルスルホニルアミノカルボニル基、アセチルアミノスルホニル基、ベンゾイルアミノスルホニル基を挙げることが出来る。

【0067】一般式(1)中、R2で表されるカルバモ イル基、アシル基及びヘテロ環基は前述のアリール基の 置換基としてのカルバモイル基、アシル基及びヘテロ環 基と同義である。X及びYの一方は窒素原子を、他方は 後述する-CR⁴を表し、Xが-CR⁴、Yが窒素原子で あることが好ましい。R4で表されるハロゲン原子、ア ルキル基、アルキルチオ基、アルキルスルホニル基、ア ルキルスルフィニル基、アルコキシカルボニル基、カル バモイル基、アルコキシ基、アリール基、アリールチオ 基、アリールスルホニル基、アリールスルフィニル基、 アリールオキシ基及びアシルアミノ基は、前述のアリー ルの置換基としてのハロゲン原子、アルキル基、アルキ ルチオ基、アルキルスルホニル基、アルキルスルフィニ ル基、アルコキシカルボニル基、カルバモイル基、アル コキシ基、アリール基、アリールチオ基、アリールスル ホニル基、アリールスルフィニル基、アリールオキシ基 及びアシルアミノ基と同義である。

【0068】上記一般式(1)で表される色素の具体例を下記に示すが、本発明に用いられる色素は、下記の例に限定されるものではない。尚、酸化電位の値は、0.1 mold m^{-3} の過塩素酸テトラプロピルアンモニウムを支持電解質として含むジメチルホルムアミド中(色素の濃度は0.001 mold m^{-3})で直流ボーラログラフィーにより測定した色素の酸化電位の値(vs SC E)を示す。また、 λ max、及び I(λ max+70 nm)/I(λ max)は、色素 $1\sim21$ については水溶液中、色素 $2\sim31$ については酢酸エチル中での値

を示す。 【0069】

【表1】

A.	R	最大吸収波長 l max(nm)	1(\(\text{max} + 70nm \)	融化電位(*/)	
色素	R	第六年(北次大人1982(1981)	(() mex)	I TO ME LEVEL VI	
1	CH ₈	446	0. 05	1, 12	
2	CaHeSO3Na	441	0, 05	1. 20	
3	Н	442	0. 05	1. 15	
4	C2H4CN	440	0.05	1.18	
5	SO ₃ Na	441	0. 05	1, 17	
6	CI SO ₃ Na	442	0. 04	1. 20	
7	CI ————————————————————————————————————	445	0. 05	1, 21	
8	————соок	444	0. 08	1.16	
9	СООК	443	0. 05	1. 28	
10	SO ₃ Na SO ₃ Na	445	0. 05	1, 17	

[0070]

【表2】

色素	R	最大吸収波長 A max[nm]	I(λ max + 70nm) I(λ max)	酸化電位(V)
11	CH ₃	451	0. 05	1. 20
12	C ₄ H ₉ (t)	452	452 0. 05	
13		453 0. 08		1. 16
14	OC ₂ H ₅	435	0. 09	1. 16
		【录	₹3]	·

[0071]

(1)C₄H₅ N=N S N NH₂ SO₅Na

色素	Ŕ	最大吸収波長 λ max(nm)	I(\lambamex+70nm)	酸化吡位(٧)
15	\Diamond	450	0. 04	1. 18
16	CH8	446	0. 04	1. 19
17	9CgH₄8OgNa	452	0. 08	1, 20
18	SO2C2H4SO3Na	451	0. 05	1. 23

[0072]

【表4】

色素	R	最大吸収波長 λ max(nm)	I(\(\lambda\) max+70nm) I(\(\lambda\) max	酸化電位[V]
19	H	428	0. 03	1. 20
20	CH ₃	429	0. 03	1. 14
21	\bigcirc	449	0. 03	1. 17

【表5】

【表6】

[0073]

I(1 mex+70nm) 色素 R 最大吸収波長 \ max[nm] 粉化常位(v) 1(\lambda max) COOC₄H_p 22 435 0. 05 1. 20 CON(C4H9)2 23 440 0. 04 1.15 SO₂NHC₁₂H₂₅ 439 0. 04 1. 17 OC₆H₁₇ 25 445 0. 05 1.08

[0074]

色素	R	R'	最大吸収波長 λ max(nm)	<u>I(λ max+70nm)</u> <u>I(λ max</u>)	酸化電位[V]
26	CON(C4H9)2	Н	435	0. 04	1. 20
27	COOC ₈ H ₁₇	Н	438	0. 05	1. 21
28	CON(C4H9)2	ON(C4H9)2 - 440 0.04		0. 04	1. 21
29	CON(C4Hg)2	CH ₃	437	0. 04	1. 19
30	Н	$-\langle \rangle$	442	0. 05	1. 15
31	Н	8C ₈ H ₁₇	441	0. 05	1. 13

【0075】上記一般式(1)で表される色素は特開平 2-24191号公報に記載の方法により合成すること ができる。

【0076】本発明の着色組成物は、画像、特にカラー画像を形成するための材料として用いることが出来る。 具体的には、インクジェット記録用インク、感熱転写型 画像記録材料、感圧記録材料、電子写真方式を用いる記録材料、転写式ハロゲン化銀感光材料、印刷インク、記録ペン、米国特許4808501号、特開平6-351 82号などに記載されているLCDやCCDなどの固体 撮像素子で用いられているカラーフィルター、各種繊維 の染色のための染色液等として用いることが出来、イン クジェット記録用インク、感熱転写型画像記録材料、電 子写真方式を用いる記録材料として用いることが好まし く、インクジェット記録用インクとして用いることがよ り好ましい。本発明の着色組成物は、用いる色素の置換 基をその用途に適した溶解性、熱移動性などの物性に合 わせて調整して使用する。また、本発明の着色組成物 は、用いる色素を用いられる系に応じて均一な溶解状態、乳化分散のような分散された溶解状態、固体分散状態で使用することが出来る。

【0077】[インクジェット記録用インク] インクジェット記録用インクは、親油性媒体や水性媒体中に前記色素を溶解及び/又は分散させることによって作製することができる。好ましくは、水性媒体を用いる場合である。また、必要に応じてその他の添加剤を本発明の効果を害しない範囲内において含有してもよい。上記その他の添加剤としては、例えば、乾燥防止剤(湿潤剤)、褪色防止剤、乳化安定剤、浸透促進剤、紫外線吸収剤、防腐剤、防飲剤、pH調整剤、表面張力調整剤、消泡剤、粘度調整剤、分散剤、分散安定剤、防錆剤、キレート剤等の公知の添加剤が挙げられる。これらの各種添加剤は、水溶性インクの場合にはインク液に直接添加する。油溶性染料を分散物の形で用いる場合には、染料分散物の調製後分散物に添加するのが一般的であるが、調製時に油相または水相に添加してもよい。

【0078】上記乾燥防止剤はインクジェット記録方式 に用いるノズルのインク噴射口において該インクジェット用インクが乾燥することによる目詰まりを防止する目 的で好適に使用される。

【0079】上記乾燥防止剤としては、水より蒸気圧の 低い水溶性有機溶剤が好ましい。具体的な例としてはエ チレングリコール、プロピレングリコール、ジエチレン グリコール、ポリエチレングリコール、チオ基ジグリコ ール、ジチオ基ジグリコール、2-メチル-1,3-プ ロパンジオール、1,2,6-ヘキサントリオール、ア セチレングリコール誘導体、グリセリン、トリメチロー ルプロパン等に代表される多価アルコール類;エチレン グリコールモノメチルエーテル、エチレングリコールモ ノエチルエーテル、ジエチレングリコールモノメチルエ ーテル、ジエチレングリコールモノエチルエーテル、ト リエチレングリコールモノエチルエーテル、トリエチレ ングリコールモノブチルエーテル等の多価アルコールの 低級アルキルエーテル類:2-ピロリドン、N-メチル -2-ピロリドン、1,3-ジメチル-2-イミダゾリ ジノン、N-エチルモルホリン等の複素環類;スルホラ ン、ジメチルスルホキシド、3-スルホレン等の含硫黄 化合物;ジアセトンアルコール、ジエタノールアミン等 の多官能化合物;尿素誘導体が好ましく、中でもグリセ リン、ジエチレングリコール等の多価アルコールがより 好ましい。また上記の乾燥防止剤は単独で用いても良い し2種以上併用しても良い。これらの乾燥防止剤はイン ク中に10~50質量%含有することが好ましい。

【0080】上記浸透促進剤は、インクジェット記録用インクを紙によりよく浸透させる目的で好適に使用される。上記浸透促進剤としてはエタノール、イソプロパノール、ブタノール、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、

1,2-ヘキサンジオール等のアルコール類;ラウリル 硫酸ナトリウム、オレイン酸ナトリウムやノニオン性界 面活性剤等が好ましい。上記浸透促進剤は、インクジェット記録用インク中に5~30質量%含有すれば通常充分な効果があり、印字の渗み、紙抜け(プリントスルー)を起こさない添加量の範囲で使用することが好ましい。

【0081】上記紫外線吸収剤は、画像の保存性を向上 させる目的で使用される。上記紫外線吸収剤としては特 開昭58-185677号公報、同61-190537 号公報、特開平2-782号公報、同5-197075 号公報、同9-34057号公報等に記載されたベンゾ トリアゾール系化合物、特開昭46-2784号公報、 特開平5-194483号公報、米国特許第32144 63号等に記載されたベンゾフェノン系化合物、特公昭 48-30492号公報、同56-21141号公報、 特開平10-88106号公報等に記載された桂皮酸系 化合物、特開平4-298503号公報、同8-534 27号公報、同8-239368号公報、同10-18 2621号公報、特表平8-501291号公報等に記 載されたトリアジン系化合物、リサーチディスクロージ ャーNo. 24239号に記載された化合物やスチルベ ン系、ベンズオキサゾール系化合物に代表される紫外線 を吸収して蛍光を発する化合物、いわゆる蛍光増白剤も 用いることができる。

【0082】上記褪色防止剤は、画像の保存性を向上さ せる目的で使用される。上記褪色防止剤としては、各種 の有機系及び金属錯体系の褪色防止剤を使用することが できる。有機の褪色防止剤としてはハイドロキノン類、 アルコキシフェノール類、ジアルコキシフェノール類、 フェノール類、アニリン類、アミン類、インダン類、ク ロマン類、アルコキシアニリン類、ヘテロ環類などがあ り、金属錯体としてはニッケル錯体、亜鉛錯体などがあ る。より具体的にはリサーチディスクロージャーNo. 17643の第VIIのIないしJ項、同No. 151 62、同No. 18716の650頁左欄、同No. 3 6544の527頁、同No. 307105の872 頁、同No. 15162に引用された特許に記載された 化合物や特開昭62-215272号公報の127頁~ 137頁に記載された代表的化合物の一般式及び化合物 例に含まれる化合物を使用することができる。

【0083】上記防徴剤としてはデヒドロ酢酸ナトリウム、安息香酸ナトリウム、ナトリウムビリジンチオ基ンー1ーオキシド、pーヒドロキシ安息香酸エチルエステル、1、2ーベンズイソチアゾリンー3ーオン及びその塩等が挙げられる。これらはインクジェット記録用インク中に0.02~1.00質量%含有されていることが好ましい。

【0084】上記pH調整剤としては、有機塩基、無機 アルカリ等の中和剤を用いることができる。上記pH調 整剤は、インクジェット記録用インクの保存安定性を向上させる目的で、該インクジェット用インクが、pH6~10となるように添加することが好ましく、pH7~10となるように添加することがより好ましい。

【0085】上記表面張力調整剤としてはノニオン、カ チオンあるいはアニオン界面活性剤が挙げられる。尚、 本発明におけるインクジェット記録用インクの表面張力 は25~70mN/mが好ましく、25~60mN/m が好ましい。また本発明のインクジェット用インクの粘 度は30mPa·s以下が好ましh、20mPa·s以 下がより好ましい。上記界面活性剤の例としては、脂肪 酸塩、アルキル硫酸エステル塩、アルキルベンゼンスル ホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキ ルスルホコハク酸塩、アルキルリン酸エステル塩、ナフ タレンスルホン酸ホルマリン縮合物、ポリオキシエチレ ンアルキル硫酸エステル塩等のアニオン系界面活性剤: ポリオキシエチレンアルキルエーテル、ポリオキシエチ レンアルキルアリルエーテル、ポリオキシエチレン脂肪 酸エステル、ソルビタン脂肪酸エステル、ポリオキシエ チレンソルビタン脂肪酸エステル、ポリオキシエチレン アルキルアミン、グリセリン脂肪酸エステル、オキシエ チレンオキシプロピレンブロックコポリマー等のノニオ ン系界面活性剤が好ましい。また、アセチレン系ポリオ キシエチレンオキシド界面活性剤であるSURFYNO LS (AirProducts&Chemicals 社)も好ましく用いられる。更に、N, N-ジメチルー N-アルキルアミンオキシドのようなアミンオキシド型 の両性界面活性剤、特開昭59-157,636号の第 (37)~(38)頁、リサーチ・ディスクロージャー No. 308119 (1989年) 記載の界面活性剤と して挙げたものも好ましく用いることができる。

【0086】上記消泡剤としては、フッ素系、シリコーン系化合物やEDTAに代表されるキレート剤等も必要に応じて使用することができる。

【0087】本発明における色素を水性媒体に分散させる場合は、特開平11-286637号公報、特願平2000-78491号明細書、同2000-80259号明細書、同2000-62370号明細書に記載のように色素と油溶性ポリマーとを含有する着色微粒子を水性媒体に分散したり、特願平2000-78454号明細書、同2000-78491号明細書、同2000-203857号明細書に記載のように、本発明における色素を高沸点有機溶媒に溶解し、分散させることが好ましい。

【0088】本発明における色素を水性媒体に分散させる場合の具体的な方法,使用する油溶性ポリマー、高沸点有機溶剤、添加剤及びそれらの使用量は、特開平11-286637号公報、特顯平2000-78491号明細書、同2000-80259号明細書、同2000-78454号明細

書、同2000-78491号明細書、同2000-2 03856号明細書、同2000-203857号明細 書に記載されたものを好ましく使用することができる。 【0089】また、本発明における色素を固体のまま微 粒子状態に分散してもよい。分散時には、分散剤や界面 活性剤を使用することができる。分散装置としては、簡 単なスターラーやインペラー撹拌方式、インライン撹拌 方式、ミル方式(例えば、コロイドミル、ボールミル、 サンドミル、アトライター、ロールミル、アジテーター ミル等)、超音波方式、高圧乳化分散方式(高圧ホモジ ナイザー; 具体的な市販装置としてはゴーリンホモジナ イザー、マイクロフルイダイザー、DeBEE2000 等)を使用することができる。上記のインクジェット記 録用インクの調製方法については、先述の特許以外にも 特開平5-148436号公報、同5-295312号 公報、同7-97541号公報、同7-82515号公 報、同7-118584号公報、特開平11-2866 37号公報、特願2000-87539号明細書に詳細 が記載されていて、本発明におけるインクジェット記録 用インクの調製にも利用できる。

【0090】上記水性媒体は、水を主成分として、所望 により、水混和性有機溶剤を添加した混合物を用いるこ とができる。上記水混和性有機溶剤としては、アルコー ル(例えば、メタノール、エタノール、プロパノール、 イソプロパノール、ブタノール、イソブタノール、se cーブタノール、tーブタノール、ペンタノール、ヘキ サノール、シクロヘキサノール、ベンジルアルコー ル)、多価アルコール類(例えば、エチレングリコー ル、ジエチレングリコール、トリエチレングリコール、 ポリエチレングリコール、プロピレングリコール、ジプ ロピレングリコール、ポリプロピレングリコール、ブチ レングリコール、ヘキサンジオール、ペンタンジオー ル、グリセリン、ヘキサントリオール、チオ基ジグリコ ール)、グリコール誘導体(例えば、エチレングリコー ルモノメチルエーテル、エチレングリコールモノエチル エーテル、エチレングリコールモノブチルエーテル、ジ エチレングルコールモノメチルエーテル、ジエチレング リコールモノブチルエーテル、プロピレングリコールモ ノメチルエーテル、プロピレングリコールモノブチルエ ーテル、ジプロピレングリコールモノメチルエーテル、 トリエチレングリコールモノメチルエーテル、エチレン グリコールジアセテート、エチレングリコールモノメチ ルエーテルアセテート、トリエチレングリコールモノメ チルエーテル、トリエチレングリコールモノエチルエー テル、エチレングリコールモノフェニルエーテル)、ア ミン(例えば、エタノールアミン、ジエタノールアミ ン、トリエタノールアミン、N-メチルジエタノールア ミン、N-エチルジエタノールアミン、モルホリン、N ーエチルモルホリン、エチレンジアミン、ジエチレント リアミン、トリエチレンテトラミン、ポリエチレンイミ

ン、テトラメチルプロピレンジアミン)及びその他の極性溶媒(例えば、ホルムアミド、N, Nージメチルホルムアミド、N, Nージメチルスルホキシド、スルホラン、2ーピロリドン、Nーメチルー2ーピロリドン、Nービニルー2ーピロリドン、2ーオキサゾリドン、1,3ージメチルー2ーイミダゾリジノン、アセトニトリル、アセトン)が挙げられる。尚、前記水混和性有機溶剤は、二種類以上を併用してもよい。

【0091】本発明におけるインクジェット記録用インク100質量部中に、上記本発明における色素が0.2質量部以上10質量部以下含有されていることが好ましい。また、本発明のインクジェット記録用インクには、上記色素とともに、他の色素を併用してもよい。2種類以上の色素を併用する場合は、色素の含有量の合計が上記範囲となっていることが好ましい。

【0092】本発明におけるインクジェット記録用イン クは、単色の画像形成のみならず、フルカラーの画像形 成に用いることができる。フルカラー画像を形成するた めに、マゼンタ色調インク、シアン色調インク、及びイ エロー色調インクを用いることができ、また、色調を整 えるために、更にブラック色調インクを用いてもよい。 【0093】更に、本発明におけるインクジェット記録 用インクは、上記本発明における色素の他に別のイエロ ー染料を同時に用いることが出来る。他のイエロー染料 . としては、任意のものを使用する事が出来る。例えばカ ップリング成分(以降カプラー成分と呼ぶ)としてフェ ノール類、ナフトール類、アニリン類、ピラゾロンやピ リドン等のようなヘテロ環類、開鎖型活性メチレン化合 物類、などを有するアリールもしくはヘテリルアゾ染 料;例えばカプラー成分として開鎖型活性メチレン化合 物類などを有するアゾメチン染料;例えばベンジリデン 染料やモノメチンオキソノール染料等のようなメチン染 料:例えばナフトキノン染料、アントラキノン染料等の ようなキノン系染料などがあり、これ以外の染料種とし てはキノフタロン染料、ニトロ・ニトロソ染料、アクリ ジン染料、アクリジノン染料等を挙げることができる。 【0094】適用できるマゼンタ染料としては、任意の ものを使用する事が出来る。例えばカプラー成分として フェノール類、ナフトール類、アニリン類などを有する アリールもしくはヘテリルアゾ染料:例えばカプラー成 分としてピラゾロン類、ピラゾロトリアゾール類などを 有するアゾメチン染料;例えばアリーリデン染料、スチ リル染料、メロシアニン染料、シアニン染料、オキソノ ール染料などのようなメチン染料;ジフェニルメタン染 料、トリフェニルメタン染料、キサンテン染料などのよ うなカルボニウム染料、例えばナフトキノン、アントラ キノン、アントラピリドンなどのようなキノン染料、例 えばジオキサジン染料等のような縮合多環染料等を挙げ ることができる。

【0095】適用できるシアン染料としては、任意のものを使用する事が出来る。例えばカプラー成分としてフェノール類、ナフトール類、アニリン類などを有するアリールもしくはヘテリルアゾ染料;例えばカプラー成分としてフェノール類、ナフトール類、ピロロトリアゾールのようなヘテロ環類などを有するアゾメチン染料;シアニン染料、オキソノール染料、メロシアニン染料などのようなポリメチン染料;ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料などのようなカルボニウム染料;フタロシアニン染料;アントラキノン染料;インジゴ・チオ基インジゴ染料などを挙げることができる。

【0096】前記の各染料は、クロモフォアの一部が解離して初めてイエロー、マゼンタ、シアンの各色を呈するものであっても良く、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。適用できる黒色材としては、ジスアゾ、トリスアゾ、テトラアゾ染料のほか、カーボンブラックの分散体を挙げることができる。

【0097】[インクジェット記録方法] 本発明のインクジェット記録方法は、前記インクジェット記録用インクにエネルギーを供与して、公知の受像材料、即ち普通紙、樹脂コート紙、例えば特開平8-169172号公報、同8-27693号公報、同2-276670号公報、同7-276789号公報、同9-323475号公報、特開昭62-238783号公報、特開平10-153989号公報、同10-217473号公報、同10-235995号公報、同10-337947号公報、同10-217597号公報、同10-337947号公報等に記載されているインクジェット専用紙、フィルム、電子写真共用紙、布帛、ガラス、金属、陶磁器等に画像を形成する。

【0098】画像を形成する際に、光沢性や耐水性を与えたり耐候性を改善する目的からポリマーラテックス化合物を併用してもよい。ラテックス化合物を受像材料に付与する時期については、着色剤を付与する前であっても、後であっても、また同時であってもよく、したがって添加する場所も受像紙中であっても、インク中であってもよく、あるいはポリマーラテックス単独の液状物として使用してもよい。具体的には、特願2000-363090号、同2000-315231号、同2000-354380号、同2000-343944号、同2000-268952号の各明細書に記載された方法を好ましく用いることが出きる。

【0099】以下に、本発明のインクを用いてインクジェットプリントをするのに用いられる記録紙及び記録フィルムについて説明する。記録紙及び記録フィルムにお

ける支持体は、LBKP、NBKP等の化学パルプ、GP、PGW、RMP、TMP、CTMP、CMP、CGP等の機械パルプ、DIP等の古紙パルプ等からなり、必要に応じて従来公知の顔料、バインダー、サイズ剤、定着剤、カチオン剤、紙力増強剤等の添加剤を混合し、長網抄紙機、円網抄紙機等の各種装置で製造されたもの等が使用可能である。これらの支持体の他に合成紙、プラスチックフィルムシートのいずれであってもよく、支持体の厚みは10~250μm、坪量は10~250g/m²が好ましい。

【0100】支持体には、そのままインク受容層及びバックコート層を設けてもよいし、デンプン、ポリビニルアルコール等でサイズプレスやアンカーコート層を設けた後、インク受容層及びバックコート層を設けてもよい。更に支持体には、マシンカレンダー、TGカレンダー、ソフトカレンダー等のカレンダー装置により平坦化処理を行ってもよい。本発明では支持体として、両面をポリオレフィン(例えば、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリブテン及びそれらのコポリマー)でラミネートした紙及びプラスチックフィルムがより好ましく用いられる。ポリオレフィン中に、白色顔料(例えば、酸化チタン、酸化亜鉛)又は色味付け染料(例えば、コバルトブルー、群青、酸化ネオジウム)を添加することが好ましい。

【0101】支持体上に設けられるインク受容層には、 顔料や水性バインダーが含有される。顔料としては、白 色顔料が好ましく、白色顔料としては、炭酸カルシウ ム、カオリン、タルク、クレー、珪藻土、合成非晶質シ リカ、珪酸アルミニウム、珪酸マグネシウム、珪酸カル シウム、水酸化アルミニウム、アルミナ、リトポン、ゼ オライト、硫酸パリウム、硫酸カルシウム、二酸化チタ ン、硫化亜鉛、炭酸亜鉛等の白色無機顔料、スチレン系 ピグメント、アクリル系ピグメント、尿素樹脂、メラミ ン樹脂等の有機顔料等が挙げられる。インク受容層に含 有される白色顔料としては、多孔性無機顔料が好まし く、特に細孔面積が大きい合成非晶質シリカ等が好適で ある。合成非晶質シリカは、乾式製造法によって得られ る無水珪酸及び湿式製造法によって得られる含水珪酸の いずれも使用可能であるが、特に含水珪酸を使用するこ とが望ましい。

【0102】インク受容層に含有される水性バインダーとしては、ボリビニルアルコール、シラノール変性ボリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、ボリアルキレンオキサイド、ボリアルキレンオキサイド誘導体等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。これらの水性バインダーは単独又は2種以上併用して用いることができる。本発明においては、これらの中

でも特にポリビニルアルコール、シラノール変性ポリビニルアルコールが顔料に対する付着性、インク受容層の 耐剥離性の点で好適である。

【0103】インク受容層は、顔料及び水性結着剤の他に媒染剤、耐水化剤、耐光性向上剤、界面活性剤、その他の添加剤を含有することができる。

【0104】インク受容層中に添加する媒染剤は、不動 化されていることが好ましい。そのためには、ポリマー 媒染剤が好ましく用いられる。ポリマー媒染剤について は、特開昭48-28325号、同54-74430 号、同54-124726号、同55-22766号、 同55-142339号、同60-23850号、同6 0-23851号、同60-23852号、同60-2 3853号、同60-57836号、同60-6064 3号、同60-118834号、同60-122940 号、同60-122941号、同60-122942 号、同60-235134号、特開平1-161236 号の各公報、米国特許2484430号、同25485 64号、同3148061号、同3309690号、同 4115124号、同4124386号、同41938 00号、同4273853号、同4282305号。同 4450224号の各明細書に記載がある。特開平1-161236号公報の212~215頁に記載のポリマ 一媒染剤を含有する受像材料が特に好ましい。同公報記 載のポリマー媒染剤を用いると、優れた画質の画像が得 られ、かつ画像の耐光性が改善される。

【0105】上記耐水化剤は、画像の耐水化に有効であり、これらの耐水化剤としては、特にカチオン樹脂が望ましい。このようなカチオン樹脂としては、ポリアミドポリアミンエピクロルヒドリン、ポリエチレンイミン、ポリアミンスルホン、ジメチルジアリルアンモニウムクロライド重合物、カチオンポリアクリルアミド、コロイダルシリカ等が挙げられ、これらのカチオン樹脂の中で特にポリアミドポリアミンエピクロルヒドリンが好適である。これらのカチオン樹脂の含有量は、インク受容層の全固形分に対して1~15質量%が好ましく、特に3~10質量%であることが好ましい。

【0106】上記耐光性向上剤としては、硫酸亜鉛、酸化亜鉛、ヒンダードアミン系酸化防止剤、ベンゾフェノン系やベンゾトリアゾール系の紫外線吸収剤等が挙げられる。これらの中で特に硫酸亜鉛が好適である。

【0107】上記界面活性剤は、塗布助剤、剥離性改良剤、スペリ性改良剤あるいは帯電防止剤として機能する。界面活性剤については、特開昭62-173463号、同62-183457号の各公報に記載がある。界面活性剤の代わりに有機フルオロ化合物を用いてもよい。有機フルオロ化合物は、疎水性であることが好ましい。有機フルオロ化合物の例には、フッ素系界面活性剤、オイル状フッ素系化合物(例えば、フッ素油)及び固体状フッ素化合物樹脂(例えば、四フッ化エチレン樹

脂)が含まれる。有機フルオロ化合物については、特公昭57-9053号(第8~17欄)、特開昭61-20994号、同62-135826号の各公報に記載がある。その他のインク受容層に添加される添加剤としては、顔料分散剤、増粘剤、消泡剤、染料、蛍光増白剤、防腐剤、pH調整剤、マット剤、硬膜剤等が挙げられる。尚、インク受容層は1層でも2層でもよい。

【0108】記録紙及び記録フィルムには、バックコー ト層を設けることもでき、この層に添加可能な成分とし ては、白色顔料、水件バインダー、その他の成分が挙げ られる。バックコート層に含有される白色顔料として は、例えば、軽質炭酸カルシウム、重質炭酸カルシウ ム、カオリン、タルク、硫酸カルシウム、硫酸バリウ ム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サ チンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カ ルシウム、珪酸マグネシウム、合成非晶質シリカ、コロ イダルシリカ、コロイダルアルミナ、擬ベーマイト、水 酸化アルミニウム、アルミナ、リトポン、ゼオライト、 加水ハロイサイト、炭酸マグネシウム、水酸化マグネシ ウム等の白色無機顔料、スチレン系プラスチックピグメ ント、アクリル系プラスチックピグメント、ポリエチレ ン、マイクロカプセル、尿素樹脂、メラミン樹脂等の有 機顔料等が挙げられる。

【0109】バックコート層に含有される水性バインダーとしては、スチレン/マレイン酸塩共重合体、スチレン/アクリル酸塩共重合体、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。バックコート層に含有されるその他の成分としては、消泡剤、抑泡剤、染料、蛍光増白剤、防腐剤、耐水化剤等が挙げられる。

〔インク液Aの組成〕

色素(例示化合物-9) ジエチレングリコール

グリセリン

ジエチレングリコールモノブチルエーテル

2-ピロリドン

トリエタノールアミン

ベンゾトリアゾール

サーフィノールTG

PROXEL XL2 (ゼネカ製)

【0115】色素(例示化合物-9)を下記表7に示す例示化合物に変更した以外は、インク液Aの調製と同様にして、インク液B及びCを作製した。更に、比較用のインク液として、色素(例示化合物-9)を下記比較色素A及びBに変更した以外は、インク液Aの調製と同様にして、インク液101及び102を作製した。尚、色

【0110】インクジェット記録紙及び記録フィルムの構成層(バックコート層を含む)には、ボリマーラテックスを添加してもよい。ボリマーラテックスは、寸度安定化、カール防止、接着防止、膜のひび割れ防止のような膜物性改良の目的で使用される。ボリマーラテックスについては、特開昭62-245258号、同62-1316648号、同62-110066号の各公報に記載がある。ガラス転移温度が低い(40℃以下の)ポリマーラテックスを媒染剤を含む層に添加すると、層のひび割れやカールを防止することができる。また、ガラス転移温度が高いボリマーラテックスをバックコート層に添加しても、カールを防止することができる。

【0111】本発明のインクジェット記録方法における記録方式は、制限はなく、公知の方式、例えば静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して、放射圧を利用してインクを吐出させる音響インクジェット方式、及びインクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット方式等に用いられる。インクジェット記録方式には、フォトインクと称する濃度の低いインクを小さい体積で多数射出する方式、実質的に同じ色相で濃度の異なる複数のインクを用いて画質を改良する方式や無色透明のインクを用いる方式が含まれる。

[0112]

【実施例】以下、本発明の実施例を説明するが、本発明 はこれらの実施例に何ら限定されるものではない。

【0113】(実施例1)下記の成分に脱イオン水を加え1リッターとした後、30~40℃で加熱しながら1時時間撹拌した。その後KOH 10mo1/LにてpH=9に調製し、平均孔径0.25μmのミクロフィルターで減圧沪過しイエロー用インク液を調製した。

[0114]

	8.	9	g	
2	0		g	
12	0		g	
23	0		g	
8	0		g	
1	7.	9	g	
	0.	0	6	g
	8.	5	g	
	1.	8	g	

素を変更する場合は、色素の添加量がインク液Aに対して等モルとなるように使用した。

[0116]

【化4】

比較色素A

比較色素B

【0117】(画像記録及び評価)以上の各実施例(インク液A~C)及び比較例(インク液101、102)のインクジェット用インクについて、下記評価を行った。その結果を表7に示した。なお、表7において、「色調」、「紙依存性」、「耐水性」、「耐光性」、「湿熱保存性」及び「耐オゾンガス性」は、各インクジェット用インクを、インクジェットプリンター(EPSON(株)社製:PM-700C)でフォト光沢紙(EPSON社製PM写真紙<光沢>(KA420PSK、EPSON)に画像を記録した後で評価したものである。

【0118】 <色調>色調については、目視にてA(最良)、B(良好)及びC(不良)の3段階で評価した。また、390~730nm領域のインターバル10nmによる反射スペクトルをGRETAG SPM100ー II(GRETAG社製)を用いて測定した最大吸収波長入maxの値も併記した。また、吸光度比 $I(\lambda max+70)/I(\lambda max)$ も併記した。

【0119】 <紙依存性>前記フォト光沢紙に形成した

画像と、別途にPPC用普通紙に形成した画像との色調を比較し、両画像間の差が小さい場合をA(良好)、両画像間の差が大きい場合をB(不良)として、二段階で評価した。

【0120】<耐水性>前記画像を形成したフォト光沢 紙を、1時間室温乾燥した後、10秒間脱イオン水に浸 潰し、室温にて自然乾燥させ、滲みを観察した。滲みが 無いものをA、滲みが僅かに生じたものをB、滲みが多 いものをCとして、三段階で評価した。

【0121】<耐光性>前記画像を形成したフォト光沢紙に、ウェザーメーター(アトラスC. I65)を用いて、キセノン光(850001x)を7日間照射し、キセノン照射前後の画像濃度を反射濃度計(X-Rite310TR)を用いて測定し、色素残存率として評価した。なお、前記反射濃度は、1、1.5及び2.0の3点で測定した。何れの濃度でも色素残存率が70%以上の場合をA、1又は2点が70%未満をB、全ての濃度で70%未満の場合をCとして、三段階で評価した。

【0122】<耐オゾン性>上記画像を形成したフォト光沢紙を、オゾンガス濃度が0.5±0.1ppm、室温、暗所に設定されたボックス内に7日間放置し、オゾンガス下放置前後の画像濃度を反射濃度計(X-Rite310TR)を用いて測定し、色素残存率として評価した。なお、前記反射濃度は、1、1.5及び2.0の3点で測定した。ボックス内のオゾンガス濃度は、APPLICS製オゾンガスモニター(モデル:OZG-EM-01)を用いて設定した。何れの濃度でも色素残存率が70%以上の場合をA、1又は2点が70%未満をB、全ての濃度で70%未満の場合をCとして、三段階で評価した。

【0123】表7中の酸化電位の値は、既述の方法により測定した色素の酸化電位の値(vs SCE)を示す

【0124】 【表7】

試料	色素	酸化電位(V)	色額 (入 _{mex})	I(λmax+70) I(λmax)	紙依存性	耐水性	耐光性	耐オゾン性
Α	9	1. 28	A (445nm)	0. 05	Α	Α	Α	A
В	12	1. 20	A (460nm)	0. 06	Α	Α	Α	A
С	15	1. 18	A (458nm)	0. 04	A	Α	A	Α
101	比較色素A	0. 97	B (423nm)	0. 16	В	Α	A	С
102	比较色素B	0. 95	C (471nm)	0. 17	В	8	С	С

【0125】表7から明らかなように、本発明のインクジェット用インクは色調に優れ、紙依存性が小さく、耐水性及び耐光性並びに耐オゾン性に優れるものであった。特に耐光性、耐オゾン性等の画像保存性に優れることは明らかである。

【0126】(実施例2)実施例1で作製した同じインクを、実施例1の同機にて画像を富士写真フイルム製インクジェットペーパーフォト光沢紙EXにプリントし、実施例1と同様な評価を行ったところ、実施例1と同様な結果が得られた。

【0127】(実施例3)実施例1で作製した同じインクを、インクジェットプリンターBJ-F850(CANON社製)のカートリッジに詰め、同機にて同社のフォト光沢紙GP-301に画像をプリントし、実施例1と同様な評価を行ったところ、実施例1と同様な結果が得られた。

【0128】(実施例4)色素(例示化合物-26) 3.75g、ジオクチルスルホコハク酸ナトリウム7. 04gを、下記高沸点有機溶媒(s-2)4.22g、 下記高沸点有機溶媒(s-11)5.63g及び酢酸エ チル50m1中に70℃にて溶解させた。この溶液中に 500mlの脱イオン水をマグネチックスターラーで撹 拌しながら添加し、水中油滴型の粗粒分散物を作製し た。次にこの粗粒分散物を、マイクロフルイダイザー (MICROFLUIDEX INC) & 7600ba rの圧力で5回通過させることで微粒子化を行った。更 にでき上がった乳化物をロータリーエバポレーターにて 酢酸エチルの臭気が無くなるまで脱溶媒を行った。こう して得られた疎水性染料の微細乳化物に、ジエチレング リコール140g、グリセリン50g、SURFYNO L465 (AirProducts&Chemical s社)7g、脱イオン水900mlを添加してインク液 Dを作製した。

[0129]

【化5】

【0130】色素(例示化合物-26)を等量の表8に記載の色素に変更した以外は、インク液Dと同様にして、インク液Eを作製した。更に、比較例として色素(例示化合物-26)を等量の下記色素Cに変更した以外は、インク液Dと同様にして、比較試料103を作製した。

[0131]

【化6】

比較色素C

【0132】(画像記録及び評価)インク液D、E及び 比較用インク液103について下記評価を行った。その 結果を下記表8に示す。尚、表8において、「色調(入 max)」、「吸光度比 I(入max+70)/I (入max)」「紙依存性」、「耐水性」、「耐光 性」、「耐オゾンガス性」及び「酸化電位」の内容はそれぞれ実施例1で述べたものと同じである。

[0133]

【表8】

試料	色素	酸化键位(V)	色調 (入 _{mps})	I(λ max+70) I(λ max)	級依存性	耐水性	耐光性	耐オゾン性
D	26	1. 20	A (448nm)	0. 04	Α	A	A	Α
E	28	1. 21	A (452nm)	0. 04	A	Α	Α	Α
103	比较色素C	0. 97	B (430nm)	0. 18	В	В	С	С

【0134】表8から明らかなように、本発明のインクジェット用インクは発色性、色調に優れ、紙依存性が小さく、耐水性及び耐光性に優れるものであった。

【0135】(実施例5)実施例4で作製した同じカートリッジを、実施例4の同機にて画像を富士写真フイルム製インクジェットペーパーフォト光沢紙EXにプリントし、実施例4と同様な評価を行ったところ、実施例4と同様な結果が得られた。

【0136】(実施例6)実施例4で作製した同じインクを、インクジェットプリンターBJ-F850(CANON社製)のカートリッジに詰め、同機にて同社のフォト光沢紙GP-301に画像をプリントし、実施例4と同様な評価を行ったところ、実施例4と同様な結果が

得られた。

[0137]

【発明の効果】本発明によれば、色相と堅牢性(特に耐オゾン性)に優れた、インクジェットなどの印刷用のインク組成物、感熱転写型画像形成材料におけるインクシート、電子写真用のトナー、LCD、PDPやCCDで用いられるカラーフィルター、各種繊維を染色する染色液等に応用できる着色組成物を提供する。更に、上記着色組成物をインクジェット記録に使用することにより、良好な色相を有し、光及び環境中の活性ガス、特にオゾンガスに対して堅牢性の高い画像を形成することが出来るインクジェット記録方法及びオゾン耐性改良方法を提供することが出来る。