ResolSysteme [fr]

Des outils pour des systèmes linéaires, avec xint ou lua.

Version 0.1.0 -- 6 Février 2023

Cédric Pierquet
c pierquet -- at -- outlook . fr
https://github.com/cpierquet/ResolSysteme

- ▶ Des commandes pour travailler sur des matrices carrées (2x2, 3x3 ou 4x4).
- ▶ Des commandes pour résoudre des systèmes linéaires (2x2, 3x3 ou 4x4).

Le **déterminant** de
$$A = \begin{pmatrix} -1 & 0.5 \\ \frac{1}{2} & 4 \end{pmatrix}$$
 est $\det(A) = -4.25$.

L'inverse de la matrice
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 0 \\ 1 & 1 & 1 & 1 \\ -2 & -3 & -5 & -6 \end{pmatrix}$$
 est $A^{-1} = \begin{pmatrix} -15/8 & -1/8 & 3/2 & -1 \\ 23/8 & 1/8 & 1/2 & 2 \\ -9/8 & 1/8 & -3/2 & -1 \\ 1/8 & -1/8 & 1/2 & 0 \end{pmatrix}$.

La **solution** de
$$\begin{cases} y + z + t = 1 \\ x + z + t = -1 \\ x + y + t = 1 \\ x + y + z = 0 \end{cases} \text{ est } \mathcal{S} = \left\{ \left(-\frac{2}{3}; \frac{4}{3}; -\frac{2}{3}; \frac{1}{3} \right) \right\}.$$

MEX

pdfleTEX

LualATEX

TikZ

TEXLive

MiKTFX

Table des matières

Ι	Introduction	3
1	Le package ResolSysteme 1.1 Introduction	3 3 3
II	Commandes	4
2	Une commande interne : écriture sous forme d'une fraction 2.1 La commande	
3	Calcul de déterminant 3.1 Introduction	5 5
4	Inverse d'une matrice 4.1 Introduction	6 6
5	Résolution d'un système linéaire 5.1 Introduction	7 7
II	I Historique	10

Première partie

Introduction

1 Le package ResolSysteme

1.1 Introduction

L'idée est de proposer des outils pour travailler sur des systèmes linéaires (de taille réduite!) en permettant :

- d'afficher la **solution** (si elle existe);
- d'afficher le **déterminant** et l'éventuelle **inverse** de la matrice des coefficients.

À noter que les calculs – en interne – peuvent être effectués de deux manières :

- via les packages xint* pour des formats 2x2 ou 3x3;
- via lua et le package pyluatex (à charger manuellement du fait des options spécifiques) pour des formats 2x2, 3x3 ou 4x4.

L'utilisation de lua nécessite une compilation adaptée, à savoir en LuaLATEX et en activant le mode —shell-escape.

La méthode par pyluatex utilise le module sympy, qui est donc à installer en amont!

1.2 Packages utilisés, choix de formatage

Le package est compatible avec les compilations usuelles en latex, pdflatex, lualatex (obligatoire pour le lua!!) ou xelatex.

Il charge les packages et librairies suivantes :

- xintexpr et xinttools;
- sinuitx, nicefrac et nicematrix;
- xstring et listofitems.

Les nombres sont formatés par la commande \num de sinuitx, donc les options choisies par l'utilisateur se propageront aux résultats numériques.

L'affichage des matrices est gérée par le package nicematrix, et des options spécifiques *simples* pourront être placées dans les différentes commandes.

1.3 Chargement du package, et option

Le package peut donc se charger de deux manières différentes, suivant si l'utilisateur utilise le moteur lua ou non.

À noter que les commandes classiques sont disponibles même si l'utilisateur charge l'option lua.

%chargement du package sans passer par pyluatex, calculs via xint
\usepackage{ResolSystemes}

%chargement du package pyluatex et du package avec [lua]
\usepackage[options]{pyluatex}
\usepackage[lua]{ResolSystemes}

Deuxième partie

Commandes

2 Une commande interne : écriture sous forme d'une fraction

2.1 La commande

En *interne*, le code utilise une commande pour formater un résultat sous forme fractionnaire, avec gestion des entiers et gestion du signe $\langle - \rangle$.

\ConvVersFrac(*)[option de formatage]{calcul}

Code ETEX

2.2 Utilisation

Concernant cette commande, qui est dans un bloc ensuremath :

- la version étoilée force l'écriture du signe « » avant l'éventuelle fraction;
- le premier argument, optionnel et entre [...] permet de spécifier un formatage du résultat :
 - (t) pour l'affichage de la fraction en mode tfrac;
 - (d) pour l'affichage de la fraction en mode dfrac;
 - (dec) pour l'affichage du résultat en mode décimal (sans arrondi!);
 - $\langle dec=k \rangle$ pour l'affichage du résultat en mode décimal arrondi à 10^{-k} ;
- le second argument, obligatoire, est quant à lui, le calcul en syntaxe xint.

```
%sortie par défaut (fraction avec - sur numérateur)
\ConvVersFrac{-10+1/3*(-5/16)}

%sortie avec - avant la fraction
\ConvVersFrac*{-10+1/3*(-5/16)}

%sortie en displaystyle
\ConvVersFrac*[d]{-10+1/3*(-5/16)}

%sortie en décimal arrondi à 0,0001
\ConvVersFrac[dec=4]{-10+1/3*(-5/16)}

%entier correctement formaté
\ConvVersFrac{2+91/7}
```

 $\frac{-485}{48}$ $-\frac{485}{48}$ $-\frac{485}{48}$ $-10{,}1042$ 15

Code ETEX

2.3 Interaction avec les commandes « matricielles », limitations

En *interne*, le formatage des résultats est géré par cette commande, et les options disponibles existent donc de la même manière pour les commandes liées aux systèmes linéaires.

Il ne sera par contre pas possible de spécifier des options différentes pour chacun des coefficients, autrement dit l'éventuelle option se propagera sur l'ensemble des résultats!

Les *transformations* en fraction devraient pouvoir fonctionner avec des calculs *classiques*, mais il est possible que, dans des cas *spécifiques*, les résultats ne soient pas ceux attendus!

3 Calcul de déterminant

3.1 Introduction

La première commande (matricielle) disponible est pour calculer le déterminant d'une matrice :

- **2x2** ou **3x3** pour le package *classique*;
- -2x2 ou 3x3 ou 4x4 pour le package lua.

```
%version classique

\DetMatrice(*)[option de formatage](matrice)

%version lua

\DetMatriceLUA(*)[option de formatage](matrice)
```

3.2 Utilisation

Concernant cette commande, qui est à insérer dans un environnement math :

- la version étoilée force l'écriture du signe « » avant l'éventuelle fraction;
- le premier argument, optionnel et entre [...] permet de spécifier un formatage du résultat :
 - (t) pour l'affichage de la fraction en mode tfrac;
 - (d) pour l'affichage de la fraction en mode dfrac;
 - (dec) pour l'affichage du résultat en mode décimal (sans arrondi!);
 - $\langle \mathbf{dec=k} \rangle$ pour l'affichage du résultat en mode décimal arrondi à 10^{-k} ;
- le second argument, *obligatoire* et entre (...), est quant à lui, la matrice donnée par ses coefficients a11,a12,...;a21,a22,... (syntaxe héritée de sympy).

```
%version classique Le dét. de $A=\begin{pNiceMatrix}1&2\\3&4\end{pNiceMatrix}$ est $\det(A)=\DetMatrice(1,2;3,4)$. Le dét. de A=\begin{pmatrix}1&2\\3&4\end{pmatrix} est \det(A)=-2.
```

Code MEX

%version classique
Le dét. de \$A=\begin{pNiceMatrix}-1&{0,5}\\\frac12&4\end{pNiceMatrix}\$ est
\$\det(A)=\DetMatrice[dec](-1,0.5;1/2,4)\$.

Le dét. de $A = \begin{pmatrix} -1 & 0.5 \\ \frac{1}{2} & 4 \end{pmatrix}$ est $\det(A) = -4.25$.

%version classique
Le dét. de \$A=\begin{pNiceMatrix}-1&\frac13&4\\\frac13&4&-1\\-1&0&0\end{pNiceMatrix}\$ est \$\det(A) \approx \DetMatrice[dec=3](-1,1/3,4;1/3,4,-1;-1,0,0)\$.
Le dét. de $A = \begin{pmatrix} -1 & \frac{1}{3} & 4 \\ \frac{1}{3} & 4 & -1 \\ -1 & 0 & 0 \end{pmatrix}$ est $\det(A) \approx 16,333$.

%version lua Le dé. de \$A=\begin{pNiceMatrix}1&2\\3&4\end{pNiceMatrix}\$ est \$\\det(A)=\DetMatriceLUA(1,2;3,4)\$. Le dé. de $A=\begin{pmatrix}1&2\\3&4\end{pmatrix}$ est $\det(A)=-2$.

Le dét. de $A=\left[pNiceMatrix]-1&\{0,5\}\right]$ est $\det(A)=\left[d(-1,0.5;1/2,4)\right]$.

Code ATEX

Le dét. de $A=\begin{pmatrix} -1 & 0,5\\ \frac{1}{2} & 4 \end{pmatrix}$ est $\det(A)=-\frac{17}{4}.$

%version lua Le dét. de \$A=\begin{pNiceMatrix}-1&\frac13&4\\\frac13&4&-1\\-1&0&0\end{pNiceMatrix}\$ est \$\det(A) \approx \DetMatriceLUA[dec=3](-1,1/3,4;1/3,4,-1;-1,0,0)\$. Le dét. de $A=\begin{pmatrix} -1 & \frac{1}{3} & 4 \\ \frac{1}{3} & 4 & -1 \\ -1 & 0 & 0 \end{pmatrix}$ est $\det(A)\approx 16,333$.

4 Inverse d'une matrice

4.1 Introduction

La deuxième commande (matricielle) disponible est pour calculer l'éventuelle inverse d'une matrice :

- **2x2** ou **3x3** pour le package *classique*;
- -2x2 ou 3x3 ou 4x4 pour le package lua.

%version classique

\MatriceInverse(*)[option de formatage]<options nicematrix>(matrice)

%version lua

\MatriceInverseLUA(*)[option de formatage]<options nicematrix>(matrice)

4.2 Utilisation

Concernant cette commande, qui est à insérer dans un environnement math :

- la version étoilée force l'écriture du signe « » avant l'éventuelle fraction;
- le premier argument, optionnel et entre [...] permet de spécifier un formatage du résultat :
 - (t) pour l'affichage de la fraction en mode tfrac;
 - (d) pour l'affichage de la fraction en mode dfrac;
 - (dec) pour l'affichage du résultat en mode décimal (sans arrondi!);
 - (dec=k) pour l'affichage du résultat en mode décimal arrondi à 10^{-k} ;
- le deuxième argument, *optionnel* et entre <...> correspond aux **(options)** à passer à l'environnement pNiceMatrix;
- le troisième argument, *obligatoire* et entre (...), est quant à lui, la matrice donnée par ses coefficients a11,a12,...;a21,a22,... (syntaxe héritée de sympy).

À noter que si la matrice n'est pas inversible, le texte Matrice non inversible est affiché.

%version classique L'inverse de $A=\left[pNiceMatrix]1\&2\3\&4\end{pNiceMatrix}\$ est $A^{-1}=\MatriceInverse\cell-space-limits=2pt>(1,2;3,4)$.

Code ETEX

L'inverse de $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ est $A^{-1} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & \frac{-1}{2} \end{pmatrix}$.

%version classique

Code $M_{E}X$

L'inverse de $A=\left[n\right]$ est $A^{-1}=MatriceInverse[n]<$ cell-space-limits=2pt>(1,2,3;4,5,6;7,8,8)\$.

L'inverse de
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 8 \end{pmatrix}$$
 est $A^{-1} = \begin{pmatrix} -8/3 & 8/3 & -1 \\ 10/3 & -13/3 & 2 \\ -1 & 2 & -1 \end{pmatrix}$.

%version lua

Code ATEX

L'inverse de \$A=\begin{pNiceMatrix}1&2\\3&4\end{pNiceMatrix}\$ est \$A^{-1}=\MatriceInverseLUA*[d]<cell-space-limits=2pt>(1,2;3,4)\$.

L'inverse de
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 est $A^{-1} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$.

%version lua

Code LTEX

L'inv. de \$A=\begin{pNiceMatrix}1&2&3&4\\5&6&7&0\\1&1&1\\-2&-3&-5&-6\end{pNiceMatrix}\$ est \$A^{-1}=\MatriceInverseLUA*[n]<cell-space-limits=2pt>(1,2,3,4;5,6,7,0;1,1,1,1;-2,-3,-5,-6)\$.

L'inv. de
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 0 \\ 1 & 1 & 1 & 1 \\ -2 & -3 & -5 & -6 \end{pmatrix}$$
 est $A^{-1} = \begin{pmatrix} -15/8 & -1/8 & 3/2 & -1 \\ 23/8 & 1/8 & 1/2 & 2 \\ -9/8 & 1/8 & -3/2 & -1 \\ 1/8 & -1/8 & 1/2 & 0 \end{pmatrix}$.

5 Résolution d'un système linéaire

5.1 Introduction

La deuxième commande (matricielle) disponible est pour déterminer l'éventuelle solution d'un système linéaire qui s'écrit matriciellement $A \times X = B$:

- **2x2** ou **3x3** pour le package *classique*;
- -2x2 ou 3x3 ou 4x4 pour le package lua.

%version classique

Code ETEX

\SolutionSysteme(*)[opt de formatage]<opts nicematrix>(matriceA)(matriceB)[opt Matrice]

%version lua

\SolutionSystemeLUA(*)[opt de formatage]<opts nicematrix>(matriceA)(matriceB)[opt Matrice]

5.2 Utilisation

Concernant cette commande, qui est à insérer dans un environnement math:

- la version étoilée force l'écriture du signe « » avant l'éventuelle fraction;
- le premier argument, optionnel et entre [...] permet de spécifier un formatage du résultat :
 - (t) pour l'affichage de la fraction en mode tfrac;
 - (d) pour l'affichage de la fraction en mode dfrac;
 - (dec) pour l'affichage du résultat en mode décimal (sans arrondi!);
 - $\langle \mathbf{dec} = \mathbf{k} \rangle$ pour l'affichage du résultat en mode décimal arrondi à 10^{-k} ;
- le deuxième argument, *optionnel* et entre <...> correspond aux **(options)** à passer à l'environnement pNiceMatrix;
- le troisième argument, *obligatoire* et entre (...), est quant à lui, la matrice A donnée par ses coefficients a11,a12,...;a21,a22,... (syntaxe héritée de sympy);
- le quatrième argument, *obligatoire* et entre (...), est quant à lui, la matrice B donnée par ses coefficients b11;b21;... (syntaxe héritée de sympy);
- le dernier argument, optionnel et entre [...], permet grâce à (Matrice) de présenter le vecteur solution.

À noter que si la matrice n'est pas inversible, le texte Matrice non inversible est affiché.

%version classique La solution de \$\systeme{3x+y-2z=-1,2x-y+z=4,x-y-2z=5}\$ est \$\mathcal{S}=% \left\\\ \solutionSysteme*[d](3,1,-2;2,-1,1;1,-1,-2)(-1,4,5) \right\\\\ \alpha = -1 \\ 2x-y+z=4 \\ x-y-2z=5 \\ x-y-2z=5 \\ \end{array}.

%version lua
La solution de \$\systeme{x+y+z=-1,3x+2y-z=6,-x-y+2z=-5}\$ est \$\mathcal{S}=% \\ \left\lbrace \SolutionSystemeLUA(1,1,1;3,2,-1;-1,-1,2)(-1,6,-5) \right\rbrace\$.
La solution de $\begin{cases} x+y+z=-1 \\ 3x+2y-z=6 & \text{est } \mathcal{S}=\{(2;-1;-2)\}. \\ -x-y+2z=-5 \end{cases}$

%version lua
La solution de \$\systeme[xyzt] {x+2y+3z+4t=-10,5x+6y+7z=0,x+y+z+t=4,-2x-3y-5z-6t=7}\$ est \$\mathcal{S}=\% \left\lbrace \solutionSystemeLUA\% [dec]<cell-space-limits=2pt>\% (1,2,3,4;5,6,7,0;1,1,1,1;-2,-3,-5,-6)(-10,0,4,7)\% [Matrice] \right\rbrace\$.

%pas de solution
La solution de \$\systeme{x+2y=-5,4x+8y=1}\$ est \$\mathcal{S}=\% \left\lbrace \SolutionSystemeLUA(1,2;4,8)(-5,1) \right\rbrace\$.

La solution de \$\frac{x+2y+3z+4t=-10}{5x+6y+7z} = 0 \ x+y+z+t=4 \ -2x-3y-5z-6t=7 \end{array} est \$S = {\begin{array}{c} 17,75 \ -1,75 \ 0,75 \end{array}} \ 0,75 \end{array}.

La solution de \$\frac{x+2y=-5}{4x+8y=1}\$ est \$S = {\begin{array}{c} 17,75 \ -1,75 \ 0,75 \end{array}} \ 0,75 \end{array}} \}.

Troisième partie

Historique

v0.1.0: Version initiale