Capstone project The Battle of Neighborhoods

Riccardo Angelo Giro

1. Introduction

- **Background**: relocation to a new city is not a simple task, especially in big metropolis such as San Francisco. Several factors must be considered, such as local crime rates and attractiveness factor of different districts
- **Problem statement**: is it possible to determine the best district in San Francisco from a safety and attractiveness point of view?
- Target audience: any individual who is interested in relocating to San Francisco
- Methods: unsupervised clustering of San Francisco districts, using a procedure based on HBSCAN algorithm

2. Data acquisition

Sources:

- 1. San Francisco crime dataset (2016), available at: https://www.kaggle.com/roshansharma/sanfranciso-crime-dataset;
- 2. Foursquare local venues data, obtained through API calls
- 3. San Francisco Police Department addresses, available at: https://sfgov.org/policecommission/police-district-maps;
- 4. Geographical boundaries of San Francisco districts, available at: https://data.sfgov.org/Public-Safety/Current-Police-Districts/wkhw-cjsf

3.1. Methodology – data processing

- San Francisco crime dataset (structured in a table):
 - Removal of faulty data points;
 - Selection of columns of interest;
 - Evaluation of the total number of crimes per district.
- Foursquare local venues data:
 - Association of venues to the corresponding district;
 - One-hot encoding of each venue type;
 - Grouping similar venues to a common category.
- Final merging of such processed datasets into one, named df_final

3.1. Methodology – data processing

df final In [20]: Out[20]: Sports Facilities Number of Entertainment/Culture Landscape Other **PdDistrict** Latitude Restaurants Stores/Shops Groceries Longitude BAYVIEW 37.729978 -122.398246 14303.0 CENTRAL 37.798769 -122.409932 17666.0 INGLESIDE 37.726698 -122.446569 11594.0 MISSION 37.762997 -122.421984 19503.0 NORTHERN 37.780146 -122.432471 20100.0 PARK 37.767771 -122.455166 8699.0 RICHMOND 37.760460 -122.462860 8922.0 SOUTHERN 37.772236 -122.389044 28445.0 TARAVAL 37.743731 -122.481459 11325.0 9 TENDERLOIN 37.783675 -122.412919 9941.0

3.2. Methodology – data clustering

- Unsupervised clustering of San Francisco districts using the HDBSCAN algorithm
- The columns of the dataframe df_final (except *PdDistrict*, *Latitude* and *Longitude*) are given as input to the algorithm, after having performed z-score normalization of the data

4. Results and discussion

 HDBSCAN automatically splits the districts of San Francisco into four different clusters, respectively labelled from 0 to 3 (rightmost column)

Out[33]:

	PdDistrict	Latitude	Longitude	Number of Crimes	Restaurants	Stores/Shops	Groceries	Sports Facilities	Entertainment/Culture	Landscape	Other	Labels
0	BAYVIEW	37.729978	-122.398246	14303.0	30	20	8	12	4	10	2	2
1	CENTRAL	37.798769	-122.409932	17666.0	24	25	5	8	8	10	4	1
2	INGLESIDE	37.726698	-122.446569	11594.0	36	24	9	8	0	15	2	2
3	MISSION	37.762997	-122.421984	19503.0	21	32	8	19	7	3	1	2
4	NORTHERN	37.780146	-122.432471	20100.0	20	24	11	15	9	5	2	2
5	PARK	37.767771	-122.455166	8699.0	19	26	9	8	8	21	2	3
6	RICHMOND	37.760460	-122.462860	8922.0	18	23	7	9	5	26	1	3
7	SOUTHERN	37.772236	-122.389044	28445.0	16	29	8	20	9	4	4	0
8	TARAVAL	37.743731	-122.481459	11325.0	31	27	11	10	1	14	1	2
9	TENDERLOIN	37.783675	-122.412919	9942.0	21	28	5	13	12	5	3	1

4. Results and discussion

- Interpretation of the output labels: higher values correspond the safest and most attractive districts
- As expected, areas characterized by a large number of crimes (e.g., *Southern*) are classified as "not desirable" (label value = 0)
- The presence of *landscape* elements (e.g., parks, gardens, etc.) positively impacts the desirability of a given area
- The most desirable districts (*Park* and *Richmond*) not only present the lowest number of crimes, but also have the highest number of *landscape* elements

4. Results and discussion (labelled map)

5. Conclusions and future work

- The work presented here shows how the relocation process in a new city can be aided through data-driven approaches
- In particular, the proposed method can help a person get a better understanding of the individual districts of a target city, allowing to determine the best ones, according to certain evaluation metrics (e.g., crime levels, attractiveness of each district, etc.)
- Concerning the case of San Francisco, Park and Richmond districts are identified as the best ones
- Future work: testing on other cities; evaluation of additional features (e.g., rent cost of each district, etc.)