

Investigation of methods for semantic segmentation on 3D images

Presenter: M. Tamjidi

Supervisor: Dr. A. Mousavinia

Adviser: Dr. B. Nasihatkon

March 2024

outline

- Introduction
- 2D Segmentation
- 3D Semantic Segmentation
- Future Trends
- Conclusion

Why segmentation?

- Scene understanding
- Medical scans
- Remote sensing

Which one is semantic?

- Semantic VS Others
 - Processing uncountable stuff
 - Annotating All pixels
 - Analyzing upon perception

Outline

- Introduction
- 2D Segmentation
 - Traditional Approaches
 - Deep Learning based methods
- 3D Semantic Segmentation
- Future Trends
- Conclusion

Traditional Approaches

Probabilistic graphical models

- Unable to extract local feature
- Limited Modeling Capability
- Used in conjunction with deep learning

¹⁻ Zheng, Chen, and Leiguang Wang. "Semantic segmentation of remote sensing imagery using object-based Markov random field model with regional penalties." IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8.5 (2014): 1924-1935.

Deep learning based methods

outline

- Introduction
- 2D Segmentation
- Semantic segmentation on 3D images
 - Emerging 3D Applications
 - 3D Data & Point Cloud
 - Point cloud semantic segmentation
- Future Trends

Emerging 3D Applications

Robot Perception

source: Scott J Grunewald

Augmented Reality

source: Google Tango

Shape Design

source: solidsolutions

3D Representation

3D Representation

Point cloud is close to raw sensor data

Usually preferred over other representation

Point Cloud

- Non-grid structure data
- Unordered
- In continuous space
- Permutation invariant

Point cloud visualization by OPEN3D library

How to apply convolution on point cloud?

Point cloud semantic segmentation

Recent Deep learning based methods

https://pointcloudproject.com/the-future-of-3d-point-clouds-a-new-perspective

Projection-based methods

- Multi-view and Spherical Representation
 - Deep projective 3D semantic segmentation (Lawin et al.)
 - Tangent Convolution
 - Squeezeseg

What is the attribute of a specific view?

Volumetric-based methods

- Mapping points to voxel grids
 - Huang et al.
 - Graham et al.

- Challenges
 - Quantization error
 - Heavy computation of 3D convolution

PointNet

Classification Network

PointNet++

Graph based

PointWeb

DGCNN

Adaptation of convolution on 3D Point Cloud

- PCNN
- PointCNN
- PCCN
- PointConv
- KPConv

Point-wise MLP

Point Cloud Transformer (PCT)

Point Transformer

Figure 3. Point transformer networks for semantic segmentation (top) and classification (bottom).

Graph based

Point Transformers

Point-based methods

Point-wise MLP

Point Transformer V2

Point-BERT

Point-based methods

Graph based

Point Transformers

28/36

outline

- Introduction
- 2D Segmentation
- 3D Semantic Segmentation
- Future Trends
 - Incremental learning
 - Test-time Training on 3D point cloud
 - Test-time domain adaptation
 - Zero-shot and few-shot segmentation
- Conclusion

Incremental learning

- Incrementally acquire and retain knowledge
- Preserving previously learned information

Test-Time Training on 3D point cloud

Masked Auto Encoders are online 3D learners

Test-Time Domain Adaptation

- The need for adopting model to the target dataset
- Source dataset is no longer available

Zero-shot and Few-shot segmentation

What happens if confronting new classes?

¹⁻ Cheraghian, Ali, et al. "Zero-shot learning on 3d point cloud objects and beyond." International Journal of Computer Vision 130.10 (2022):

²⁻ Zhao, Na, Tat-Seng Chua, and Gim Hee Lee. "Few-shot 3d point cloud semantic segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

outline

- Introduction
- 2D Segmentation
- 3D Semantic Segmentation
- Future Trends
- Conclusion

Conclusion

Semantic segmentation on point cloud is challenging!

Method	mAcc	mIOU
PointNet	48.98	41.09
PointNet++	59.8	-
DGCNN	84.1	56.1
PointCNN	63.86	57.27
PCCN	67.0	58.0
PointWeb	66.64	60.28
PCT	67.01	61.33
KPConv	72.8	67.1
Point Transformer	76.5	70.4
Point Transformer V2	78.0	71.6

Evaluation metrics of methods on S3DIS

Thanks for your attention

Scan this QR code to access the presentation materials

Feel free to contact me

Mehrant.0611@gmail.com Telegram: @Mttnt

