- **1.** [punti 4] Enunciare e dimostrare il teorema di analisi armonica per un sistema descritto da una funzione di trasferimento razionale.
- 2. [punti 5] Sia assegnato il sistema meccanico vibrante di figura



caratterizzato da due molle di costante elastica k e due corpi di massa m. Il corpo di destra sia soggetto ad una forza f e le posizioni delle due masse siano descritte dalle variabili  $x_1$  e  $x_2$  (quando il sistema è in quiete con le molle a riposo  $x_1 = x_2 = 0$ ). Si consideri il sistema dinamico  $\Sigma$  orientato da f ad  $x_1$  (posizione del corpo di sinistra).

- a) Determinare l'equazione differenziale che descrive il sistema  $\Sigma$ .
- b) Determinare la funzione di trasferimento T(s) di  $\Sigma$ .
- c) Determinare i modi di  $\Sigma$ .
- **3.** [punti 4] Determinare l'evoluzione forzata y(t) in risposta alla rampa  $u(t) = 2t \cdot 1(t)$  di un sistema con funzione di trasferimento  $G(s) = \frac{1}{(s+1)^4}$ .

Determinare inoltre il grado massimo di continuità di y(t) su  $\mathbb{R}$ .

4. [punti 4] Dimostrare la seguente relazione

$$\mathcal{Z}[H(s)P(s)] = \frac{z-1}{z}\mathcal{Z}\left[\frac{P(s)}{s}\right]$$

dove H(s) rappresenta la funzione di trasferimento del filtro di Hold.

## 5. [punti 5]

1) Tracciare il diagramma polare associato alla funzione di trasferimento

$$P(s) = \frac{10(1-s)^2}{s(s+1)^3}$$

determinando in particolare asintoti e le intersezioni con l'asse reale negativo.

2) Utilizzando il Criterio di Nyquist si studino le radici dell'equazione caratteristica 1+P(s)=0 (quante a parte reale negativa, quante puramente immaginarie, quante a parte reale positiva).

## **6.** [punti 5] Sia dato il sistema in retroazione di figura



dove 
$$P(s) = \frac{1}{(s+1)(s+5)(s+10)}$$
.

- a. Tracciare il luogo delle radici dell'equazione caratteristica del sistema retroazionato per  $K_1 > 0$  determinando in particolare gli asintoti e le radici doppie.
- b. Determinare i valori di  $K_1 \in \mathbb{R}$  per i quali il sistema retroazionato ha grado di stabilità  $G_s \geq 2 \text{ s}^{-1}$ .
- c. Determinare il valore di  $K_1$  che massimizza il grado di stabilità del sistema retroazionato:  $K_1^* = \arg\max_{K_1 \in \mathbb{R}} G_s(K_1) \,.$

## 7. [punti 5] Sia dato lo schema di sistema di controllo di figura



dove  $P(s) = \frac{4}{s+2}$ . Determinare un controllore C(s) di ordine minimo ed il blocco algebrico

 $F \in \mathbb{R}$  affinché il sistema di controllo soddisfi le seguenti specifiche:

- 1. rejezione infinita asintotica al disturbo sinusoidale  $d(t) = 3\sin(2t + 4)$ ,
- 2. sistema retroazionato con poli dominanti in  $-2 \pm j$ ,
- 3. costante di posizione  $K_p = 4$ ,
- 4. in condizioni nominali l'errore a regime in risposta ad un gradino del riferimento sia nullo.

## 8. [punti 4]

Determinare la soluzione x della seguente equazione alle differenze:  $\begin{cases} x(k+2) = x(k) + 1 \\ x(0) = 0, & x(1) = 0 \end{cases}$