Ockam Credentials

Pairing-Based Cryptography + Short Group Signatures = Secure & Private Credentials for IoT

On the internet, nobody knows you're a robot?

Enter Ockam Credentials

- Multi Message Digital Signatures
- Allows claims to be shown or withheld
- Never present actual signature
- Instead, send proof of validity

	,		The second second					4
Signer ID	no	no	no	yes	yes	yes	yes	
Revocation	no	no	no	no	yes	yes	yes	
Internal	yes	yes	yes	yes	no	no	yes	
Portable	yes	no	yes	no	yes	yes	yes	
Complexity (1-5)	1	2	2	3	4	4	5	
Size (1-5)	2	2	1	1	5	3	5	
Computation Load (1-5)	5	1	1	2	4	1	4	
Privacy (1-5)	5	3	3	1	3	5	1	
Information (1-5)	4	1	1	1	4	5	1	
Implementation (1-5)	5	3	1	2	4	1	5	

Privacy Pass

no

ves

Signatures

ves

3

SSO (Active Directory, LDAP, X.500) OpenID connect, OAuth PKI

yes

Short Group Signatures (CL, BBS+,

yes

Recommended solution Short Group Signatures for initial login, Privacy Pass afterwards

no

Username & Password Token

yes

Properties

Presenter ID

Reversible (1-5)

Group Signatures

- Designed for multiple signers
- Single public key
- Signer anonymity
- Group manager can remove anonymity

Short group signatures

- Group manager is issuer
- Use signer key as credential
- Signature over multiple messages
- Allows Proofs of Knowledge of Signatures vs Disclosing signature
- Allows selective disclosure of signed messages
- Relies on Pairings

Math Intro Elliptic Curves

- A new operation called pairing
- Curves support it Pairing friendly
- Pairing friendly curves have two fields vs one
 - Denoted as G₁ and G₂
- Denoted with e
- Mathematically works like

$$e(sH_0, m_1H_1) == e(H_0, H_1)^{sm_1}$$

 $e(sm_1H_0, H_1) == e(H_0, H_1)^{sm_1}$
 $e(H_0, sm_1H_1) == e(H_0, H_1)^{sm_1}$

- Used in verification albeit slower
- Called Bilinear Maps

Real World

- Boneh, Boyen, Shachum (BBS+)
 - Signature = 1 Group 1 element, 2 Field elements
 - Public key = Group 1 element per message + 1 extra Group 1 for blinding, 1 Group 2 element
 - Secret key = 1 Field element
- Pointcheval Saunders (PS)
 - Signature = 2 Group 1 elements
 - Public key = Group 2 elements per message + 1 extra Group 2 for blinding
 - Secret key = Field element per message + 1 extra field element
- Both can work with thresholds
 - PS is easier to do this

Setup

- Pairing friendly curve
- $P \in \mathbb{G}_1$ $\widetilde{P} \in \mathbb{G}_2$
- *p* is base point order
- *e* is pairing function

- Secret key $\alpha \stackrel{\$}{\leftarrow} p$
- Public Key $\tilde{\mathbf{Q}} = \alpha \tilde{\mathbf{P}}$
 - $^{\circ}$ $H_i = H_{\mathbb{G}_1}(\widetilde{Q}, i, 0, len(messages))$

- $\sigma = Sign(\alpha, \{m_1, \ldots, m_N\})$
- Generate H's, random s, e < p
- Compute
- $S = H_0^s \sum_{i=1}^N H_i^{m_i}$
- $A = S^{\frac{1}{\alpha+\epsilon}}$

• $\sigma = \{A, e, s\}$

- Holder
 - o Generate random s'
 - Compute $U = H_0^{s'}H_1^{m_1}$ ○ Send U to issuer
- Issuer
 - o Generate s", e
 - o Compute
 - $S = UH_0^{s''} \sum_{i=2}^{N} H_i^{m_i}$

$$A=S^{\frac{1}{\alpha+e}}$$

- Holder
 - \circ Compute s = s' + s"
 - 0

$$\sigma = \{A, e, s\}$$

$$S = H_0^s \sum_{i=1}^N H_i^{m_i}$$

$$A = S^{\frac{1}{\alpha + e}}$$

$$\widetilde{Q} = \alpha \widetilde{P}$$

$$e(A, \widetilde{Q} + e\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$$

$$S = H_0^s \sum_{i=1}^N H_i^{m_i}$$

 $A = S^{\frac{1}{\alpha + e}}$
 $\widetilde{Q} = \alpha \widetilde{P}$

$$e(A, \widetilde{Q} + e\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$$

 $e(A, \widetilde{Q} + e\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$

$$S = H_0^s \sum_{i=1}^N H_i^{m_i}$$

 $A = S^{\frac{1}{\alpha + e}}$
 $\widetilde{Q} = \alpha \widetilde{P}$

$$e(A, \widetilde{Q} + e\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$$

 $e(A, \alpha \widetilde{P} + e\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$

$$S = H_0^s \sum_{i=1}^N H_i^{m_i}$$

 $A = S^{\frac{1}{\alpha + e}}$
 $\widetilde{Q} = \alpha \widetilde{P}$

$$e(A, \alpha \widetilde{P} + e\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$$

 $e(A, \alpha \widetilde{P} + e\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$

$$S = H_0^s \sum_{i=1}^N H_i^{m_i}$$

 $A = S^{\frac{1}{\alpha + e}}$
 $\widetilde{Q} = \alpha \widetilde{P}$

$$e(A, \alpha \widetilde{P} + e\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$$

 $e(A, (\alpha + e)\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$

$$S = H_0^s \sum_{i=1}^N H_i^{m_i}$$

 $A = S^{\frac{1}{\alpha + e}}$
 $\widetilde{Q} = \alpha \widetilde{P}$

$$e(A, (\alpha + e)\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$$

 $e(A, (\alpha + e)\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$

• $Verify(\tilde{Q}, \sigma, \{m_1, ..., m_N\})$

$$S = H_0^s \sum_{i=1}^N H_i^{m_i}$$

 $A = S^{\frac{1}{\alpha + e}}$
 $\widetilde{Q} = \alpha \widetilde{P}$

$$e(A, (\alpha + e)\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$$

 $e(S_{\alpha+e}^{\frac{1}{\alpha+e}}, (\alpha + e)\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$

$$S = H_0^s \sum_{i=1}^N H_i^{m_i}$$

$$A = S^{\frac{1}{\alpha + e}}$$

$$\widetilde{Q} = \alpha \widetilde{P}$$

$$e(S^{\frac{1}{\alpha+e}}, (\alpha+e)\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$$

 $e(S^{\frac{1}{\alpha+e}}, (\alpha+e)\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$

$$S = H_0^s \sum_{i=1}^N H_i^{m_i}$$

 $A = S^{\frac{1}{\alpha + e}}$
 $\widetilde{Q} = \alpha \widetilde{P}$

$$e(S^{\frac{1}{\alpha+e}}, (\alpha+e)\widetilde{P}) \stackrel{?}{=} e(S, \widetilde{P})$$

 $e(S, \widetilde{P})^{\frac{\alpha+e}{\alpha+e}} \stackrel{?}{=} e(S, \widetilde{P})$

$$S = H_0^s \sum_{i=1}^N H_i^{m_i}$$

 $A = S_{\alpha+e}^{\frac{1}{\alpha+e}}$
 $\widetilde{Q} = \alpha \widetilde{P}$

$$e(S, \widetilde{P})^{\frac{\alpha+e}{\alpha+e}} \stackrel{?}{=} e(S, \widetilde{P})$$

 $e(S, \widetilde{P})^{1} \stackrel{?}{=} e(S, \widetilde{P})$

• Prove($\{m\}, \{A, e, s\}$) = Π

 $r_3 = r_1^{-1} \mod p$

 $\overline{A} = r_1 S - eA'$

 $\hat{e} = \tilde{e} - ce$

 $\widehat{x} = \widetilde{x} - cx$

 $D = r_1 S - r_2 H_0$

 $r_1, r_2, \widetilde{r_2}, \widetilde{x}, \widetilde{e} \stackrel{\$}{\leftarrow} p$

 $\widetilde{m}_{i\in\mathcal{A}_H} \stackrel{\$}{\leftarrow} p$

 $x = s - r_2 r_3$ $T_1 = \widetilde{r_2} H_0 - \widetilde{e} A'$

 $T_2 = \widetilde{r_3}D - \widetilde{x}H_0\sum_{i=1}^{A_H}\widetilde{m_i}H_i \qquad R = P\sum_{i=1}^{A_D}m_iH_i \qquad c = \mathcal{H}(A',\overline{A},D,R,T_1,T_2)$

 $\widehat{m}_i = \widetilde{m}_i - cm_i$

 $\hat{r_2} = \tilde{r_2} - cr_2$ $\hat{r_3} = \tilde{r_3} - cr_3$

 $S = sH_0 \sum_{i=1}^{N} m_i H_i \quad A' = r_1 A$

- Verify(∏, {m} in A_D)
- Check $A' \neq 1$

$$T_{1} = c(\overline{A} - D) - \widehat{e}A'\widehat{r_{2}}H_{0}$$

$$T_{2} = cR + \widehat{r_{3}}D - \widehat{x}H_{0} - \left(\sum_{i=1}^{A_{H}}\widehat{m_{i}}H_{i}\right)$$

$$c \stackrel{?}{=} \mathcal{H}(A', \overline{A}, D, R, T_{1}, T_{2})$$

Credential Cryptography

- Short group signatures
 - Selective disclosure and proof of validity
- BLS signatures
 - Small, Aggregate, Threshold
- Accumulators
 - Anonymous set membership (check if value is in a set with disclosing the value)
- Verifiable Oblivious Pseudorandom Functions (VOPRF)
 - Anonymous or blinded tokens

Use cases

- Enrollment
- Authentication
- Authorization