Feedback — Quiz #2

Help

You submitted this quiz on **Mon 14 Apr 2014 11:41 PM PDT**. You got a score of **12.00** out of **12.00**.

Question 1

How many strings does the following grammar generate?

A o BB

B o CC

 $C
ightarrow 1 \mid 2$

Your Answer	Score	Explanation
○2		
0 4		
15		
○8		
0 7		
●16	1.00	
Total	1.00 / 1.00	

Question Explanation

The grammar will generate strings of length 4, each position can be 1 or 2. We have 2'4=16 strings in total.

Question 2

How many strings does the following grammar generate?

$$\begin{split} A &\rightarrow BB \\ B &\rightarrow CC \\ C &\rightarrow 1 \mid 2 \mid \epsilon \end{split}$$

Your Answer		Score	Explanation
15			
○32			
64			
63			
12			
●31	~	1.00	
011			
16			
Total		1.00 / 1.00	

Question Explanation

The grammar will generate 16 strings of length 4, 8 strings of length 3, 4 strings of length 2, 2 strings of length 1 and one empty string. We have 16+8+4+2+1=31 in total.

Question 3

Which of the following grammar(s) produce regular languages?

[Choose all that apply]

Your Answer		Score	Explanation
$lacksquare A o (A) \mid \epsilon$	~	0.12	
$\mathscr{D}A o Aa \mid b$	~	0.12	The grammar generates regular language of ba*.
$ ot\hspace{-1.5em} ot$	~	0.12	The grammar generates regular language of (aabaab)*aab.

			Quiz Feedback Coursera
$\mathscr{A}A o AAaab \mid \epsilon$	~	0.12	The grammar generates regular language of (aab)*.
${f ec{\mathscr{A}}}A o aA\mid b$	~	0.12	The grammar generates regular language of a*b.
$ ot\hspace{-1em} ot\hspace{-1em} A \to (A(\mid \epsilon$	~	0.12	
$m{\mathscr{C}}A ightarrow (B) \mid (BB) \ B ightarrow (CC) \mid (CCC) \ C ightarrow (DDD) \ D ightarrow ()$	~	0.12	
$\Box A ightarrow aaAb \mid \epsilon$	~	0.12	
Total		1.00 / 1.00	

Question 4

Considering the following grammar:

$$A o B \mid C$$

$$C o B + C \mid D$$

$$D \to 1 \mid 0$$

Adding which of the following will cause the grammar to be left-recursive?

[Choose all that apply]

Your Answer		Score	Explanation
${f ec{\mathscr{D}}}D o A$	~	0.17	D o A , $A o C$,and $C o D$ together cause the grammar to be left-recursive.
$\square D o B$	~	0.17	
$C \to C + B$	~	0.17	C ightarrow C + B itself causes the grammar to be left-recursive.
$\square C o 1C$	~	0.17	
${f ec{\mathscr{C}}}B o C$	~	0.17	B o C and $C o B+C$ together cause the grammar to

be left-recursive.

$\square A o D$	✓ 0.17	
Total	1.00 /	
	1.00	

Question 5

Which of the following grammars correctly removes left-recursion from:

$$S \to A\alpha \mid \delta$$

[Choose all that apply]

Your Answer		Score	Explanation
$egin{array}{l} \square S ightarrow A lpha \mid \delta \ A ightarrow \delta eta \mid A lpha eta \end{array}$	~	0.25	This grammar is still left-recursive.
$egin{aligned} \mathscr{D}S & ightarrow \delta S' \ S' & ightarrow A S' \mid \epsilon \ A & ightarrow eta lpha \end{aligned}$	~	0.25	
$egin{aligned} egin{aligned} \mathbb{S} & ightarrow \delta A lpha \mid \delta \ A & ightarrow A' A \mid \epsilon \ A' & ightarrow lpha eta \end{aligned}$	~	0.25	This grammar is not equivalent to the grammar given in the question. This grammar cannot produce string $\delta \beta \alpha$, which can be produced by the grammar in the question.
$egin{aligned} \mathscr{D}S & ightarrow Alpha \mid \delta \ A & ightarrow \deltaeta A' \ A' & ightarrow lphaeta A' \mid \epsilon \end{aligned}$	~	0.25	
Total		1.00 / 1.00	

Question 6

Consider the following grammar:

$$E \rightarrow E * E \mid E + E \mid (E) \mid int$$

How many unique parse trees are there for the string 5*3+(2*7)+4?

Your Answer		Score	Explanation
0 1			
●5	~	1.00	
0 4			
8			
0 2			
07			
Total		1.00 / 1.00	

Question Explanation

Denote the parse tree like following:

Question 7

Using the grammar and string from the previous question (Question 6), which of the following rules are necessary to produce a unique parse tree for the string 5*3+(2*7)+4? [Choose all that apply]

Your Answer		Score	Explanation
✓ multiplication binds more tightly than addition	~	0.25	
parentheses bind more tightly than multiplication	~	0.25	
multiplication associates to the left	~	0.25	
	~	0.25	

Total 1.00 / 1.00

Question 8

[Choose all that apply]

Your Answer		Score	Explanation
The language " 0^n1^n , where n > 0 is an integer" is context-free but not regular.	~	0.20	
lue The language " 0^{n^2} , where n > 0 is an integer" is regular.	~	0.20	The language " 0^{n^2} , where n > 0 is an integer" is not regular.
The language " 0^{n^2} , where n > 0 is an integer" is neither context-free nor regular	~	0.20	
▼The language "strings with an even number of 0's" is both regular and context-free. ▼The language "strings with an even with an even property with a point of the language strings with an even property with a point of the language strings with an even property with a point of the language strings with an even property with a point of the language strings with an even property with a point of the language strings with an even property with a point of the language strings with a point of the language strings. The language strings with the language strings with a point of the language string	~	0.20	
■The language " $0^n1^n2^n$, where n > 0 is an integer" is context-free but not regular.	~	0.20	The language " $0^n1^n2^n$, where n > 0 is an integer" is neither context-free nor regular.
Total		1.00 / 1.00	

Question 9

Consider following 4 grammars:

G1.
$$S
ightarrow aSb \mid Sb \mid b$$

G2.
$$S o Sa \mid Sb \mid c$$

G3.
$$S o SaS \mid \epsilon$$

G4.
$$S o bT$$

$$T
ightarrow aT \mid \epsilon$$

Let n = the number of grammars where there exists a string that has at least two different leftmost derivations;

m = the number of grammars where for any string, we only have one parse tree;

k = the number of grammars that can be used with a recursive descent parser

Choose the correct value for n,m and k.

Your Answer	Score	Explanation
○n =1; m = 2; k = 1		
○n = 2; m = 2; k = 2		
○n =1; m = 1; k = 0		
○n = 1; m = 1; k = 1		
●n = 2; m = 2; k = 1	1.00	
Total	1.00 / 1.00	

Question Explanation

n is the number of ambiguous grammar. G1 and G3 are ambiguous. So n=2. m is the number of grammars that are not ambiguous. G2 and G4 are not ambiguous. So m=2. k is the number of grammars that are not left-recursive. G4 is not left-recusive. So k =1.

Question 10

How many distinct strings and parse trees can be generated by the following grammar?

$$S \to A1 \mid 1B$$

$$A
ightarrow 10 \mid C \mid \epsilon$$

$$B o C1 \mid \epsilon$$

$$C o 0 \mid 1$$

Your Answer		Score	Explanation
●5 strings, 7 parse trees	~	1.00	
○5 strings, 6 parse trees			

- ○4 strings, 6 parse trees
- ○6 strings, 7 parse trees

Total

1.00 / 1.00

Question Explanation

The grammar can generate string:

"1" with 2 parse trees, "11" with 1 parse tree, "111" with 1 parse tree, "01" with 1 parse tree, "101" with 2 parse trees.

Question 11

Which of the following grammar(s) are unambiguous and recognize the same grammar as:

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid int$$

[Choose all that apply]

Your Answer		Score	Explanation
$E ightarrow int + E \mid int - E \mid int * E \mid int/E \mid int$	~	0.20	
$egin{aligned} lacksymbol{E} & o int + E' \mid int - E' \mid int + E \mid int - E \ E' & o int * E' \mid int / E' \mid int \end{aligned}$	•	0.20	This grammar is not equivalent to the grammar given in the problem. For example, it cannot generate "int * int".
$oxed{\mathscr{E}} E ightarrow E + int \mid E - int \mid E * int \mid E/int \mid int otag$	~	0.20	
$lacksquare E o E' + E \mid E' - E \mid E' \ E' o int * E' \mid int/E' \mid int$	~	0.20	
$E ightarrow int + E \mid E - int \mid int * E \mid E/int \mid int$	~	0.20	This grammar is not equivalent to the grammar given in the problem. For example, it cannot generate "int - int * int".

Total 1.00 / 1.00

Question 12

Let T_n be the string 0^n1 , to be matched with a recursive descent parser using the following grammar:

B -> 1

Is the number of token comparisons needed to (successfully) match T_n :

Your Answer		Score	Explanation
${ullet} O(n^2)$	~	1.00	
$\bigcirc O(n)$			
$\bigcirc O(2^n)$			
$\bigcirc O(1)$			
$ullet O(n^2)$ $O(n)$ $O(2^n)$ $O(1)$ $O(n^3)$			
Total		1.00 / 1.00	

Question Explanation

The parser needs to choose S->0S for n times to match the n 0's in T_n and S->B->1 to match the last 1 in T_n .

To match each 0 and choose S->0S, the parser needs O(n) comparisons.

To match 1 and choose S->B, B->1, the parser needs O(n) comparisons.

In total, to match T_n , the parser needs O(n st n + n)= $O(n^2)$ comparisons.