Floating-point numbers

Troels Henriksen

Based on slides by Randal E. Bryant and David R. O'Hallaron. Some material by Michael Kirkedal Tomsen.

Agenda

Why are numbers exciting?

Preliminaries: biased numbers

Floating-point arithmetic
Background: Fractional binary numbers
IEEE floating-point standard
Examples and properties
Rounding, addition, and multiplication
Floating-point in C

Summary

Suppose Kerbal Space Program

The Deep Space Kraken¹

- Physics simulation of each rocket part.
- Forces from e.g. engines affect connected parts.
- If forces become too great, *boom*.

Players who travelled far from the launch site found their craft becoming increasingly fragile.

- By the end of the lecture you will understand why...
- ...and how it was fixed.

¹https://wiki.kerbalspaceprogram.com/wiki/Deep_Space_Kraken

Learning Objectives

A lot of this stuff can seem very dry.

...because it is.

Main Things You Should Understand At The End

- Non-uniform distribution of numbers.
- The consequences of roundoff.
- That it is surprisingly hard to do better.

Why are numbers exciting

Preliminaries: biased numbers

Floating-point arithmetic
Background: Fractional binary numbers
IEEE floating-point standard
Examples and properties
Rounding, addition, and multiplication
Floating-point in C

Summary

For biased numbers, raw bits are interpreted as unsigned, then a bias is subtracted.

Unsigned

Two's complement

$$Bits2N(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

$$TC2Int(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

- Typically $b = 2^{w-1} 1$
- **Examples for** w = 8, b = 127

$$B2Int(X) = Bits2N(x) - b$$

For biased numbers, raw bits are interpreted as unsigned, then a bias is subtracted.

Unsigned

Two's complement

$$Bits2N(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

$$TC2Int(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

- Typically $b = 2^{w-1} 1$
- **Examples for** w = 8, b = 127

$$B2Int(X) = Bits2N(x) - b$$

$$\begin{array}{c|c} & \text{B2U} & \text{B2I} \\ \hline \langle 00000000 \rangle & 0_{10} \end{array}$$

For biased numbers, raw bits are interpreted as unsigned, then a bias is subtracted.

Unsigned

$$Bits2N(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

TC2Int(X) =
$$-x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

■ Typically
$$b = 2^{w-1} - 1$$

$$B2Int(X) = Bits2N(x) - b$$

• Examples for
$$w = 8, b = 127$$

$$\begin{array}{c|cc} & \text{B2U} & \text{B2I} \\ \hline \langle 00000000 \rangle & 0_{10} & -127_{10} \\ \langle 01111111 \rangle & & \end{array}$$

For biased numbers, raw bits are interpreted as unsigned, then a bias is subtracted.

Unsigned

$$Bits2N(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

TC2Int(X) =
$$-x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

■ Typically
$$b = 2^{w-1} - 1$$

Biased

$$B2Int(X) = Bits2N(x) - b$$

• Examples for w = 8, b = 127

$$\begin{array}{c|cc} & \text{B2U} & \text{B2I} \\ \hline \langle 00000000 \rangle & \text{O}_{10} & -127_{10} \\ \langle 01111111 \rangle & 127_{10} \end{array}$$

For biased numbers, raw bits are interpreted as unsigned, then a bias is subtracted.

Unsigned

$$Bits2N(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's complement

$$TC2Int(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

- Typically $b = 2^{w-1} 1$
- Examples for w = 8, b = 127

$$B2Int(X) = Bits2N(x) - b$$

$$\begin{array}{c|cccc} & & \text{B2U} & \text{B2I} \\ \hline \langle 00000000\rangle & 0_{10} & -127_{10} \\ \langle 01111111\rangle & 127_{10} & 0_{10} \\ \langle 11111111\rangle & & & & \end{array}$$

For biased numbers, raw bits are interpreted as unsigned, then a bias is subtracted.

Unsigned

ed Two's complement

$$Bits2N(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

TC2Int(X) =
$$-x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

- Typically $b = 2^{w-1} 1$
- Examples for w = 8, b = 127

$$B2Int(X) = Bits2N(x) - b$$

$$\begin{array}{c|cccc} & \text{B2U} & \text{B2I} \\ \hline \langle 00000000 \rangle & 0_{10} & -127_{10} \\ \langle 01111111 \rangle & 127_{10} & 0_{10} \\ \langle 11111111 \rangle & 255_{10} & \end{array}$$

For biased numbers, raw bits are interpreted as unsigned, then a bias is subtracted.

Unsigned

$$Bits2N(X) = \sum_{i=0}^{n-1} x_i \cdot 2^i$$

Bits2N(X) =
$$\sum_{i=0}^{w-1} x_i \cdot 2^i$$
 TC2Int(X) = $-x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$

- Typically $b = 2^{w-1} 1$
- **Examples for** w = 8, b = 127

$$B2Int(X) = Bits2N(x) - b$$

$$\begin{array}{c|cccc} & \text{B2U} & \text{B2I} \\ \hline \langle 00000000 \rangle & \text{O}_{10} & -127_{10} \\ \langle 01111111 \rangle & 127_{10} & \text{O}_{10} \\ \langle 11111111 \rangle & 255_{10} & 128_{10} \\ \end{array}$$

Why are numbers exciting?

Preliminaries: biased numbers

Floating-point arithmetic
Background: Fractional binary numbers

IEEE floating-point standard Examples and properties Rounding, addition, and multiplication Floating-point in C

Summary

Integral binary numbers

We have seen that

100101012

is basically interpreted like

149₁₀

in particular "structure" is the same, just with 2 instead of 10.

Integral binary numbers

We have seen that

100101012

is basically interpreted like

149₁₀

in particular "structure" is the same, just with 2 instead of 10.

Can we do the same thing for fractional numbers?

1011.101₂

Fractional numbers

$$123.456 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 + 4 \cdot 10^{-1} + 5 \cdot 10^{-2} + 6 \cdot 10^{-3}$$

Fractional numbers

$$123.456 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 + 4 \cdot 10^{-1} + 5 \cdot 10^{-2} + 6 \cdot 10^{-3}$$

Generally

$$a_{m-1}\cdots a_0.a_{-1}\cdots a_{-n}=\sum_{i=-n}^{m-1}a_i\cdot 10^i$$

Fractional numbers

$$123.456 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 + 4 \cdot 10^{-1} + 5 \cdot 10^{-2} + 6 \cdot 10^{-3}$$

Generally

$$a_{m-1}\cdots a_0.a_{-1}\cdots a_{-n}=\sum_{i=-n}^{m-1}a_i\cdot 10^i$$

Even more generally, for radix r

$$a_{m-1}\cdots a_0.a_{-1}\cdots a_{-n} = \sum_{i=-n}^{m-1} a_i \cdot r^i$$

Fractional binary numbers

Representation

- Bits to the right of "binary point" represents fractional powers of 2.
- Represents rational number

$$\underbrace{b_{m-1}\cdots b_0}_{\text{integral part}} \cdot \underbrace{b_{-1}\cdots b_{-n}}_{\text{fraction part}} = \sum_{i=-n}^{m-1} b_i \cdot 2^i$$

Examples of fractional binary numbers

Value 5 \(\frac{3}{4} \)	Representation 101.11 ₂
$2\frac{7}{8}$	10.111 ₂
$1\frac{7}{16}$	1.0111 ₂

Observations

- Divide by 2 by logical shifting right.
- Multiply by 2 by shifting left.
- Numbers of form 0.111... are just below 1.0.
 - ► $1/2 + 1/4 + 1/8 + \cdots + 1/2^n + \cdots \sim 1.0$.
 - ▶ Use notation 1.0ϵ .

Representable numbers

Limitation #1

- Can only represent fractional part of form $x/2^k$
- Other rational numbers have repeating binary representation

Value $\frac{1}{3}$	$\begin{array}{c} \textbf{Representation} \\ 0.0101010101[01] \cdots_2 \end{array}$
<u>1</u> 5	$0.001100110011[0011] \cdot \cdot \cdot_2$
$\frac{1}{10}$	0.0001100110011[0011]2

Limitation #2

- Just one setting of binary point within the *w* bits.
 - ► Limited range of numbers—very small values? Very large?

The fixed-point dilemma

Consider
$$w = 8$$

1 bit for fraction

- **Largest number:** $11111111.1_2 = 127.5_{10}$
- Increment: $0000000.1_2 = 0.5_{10}$

7 bits for fraction

- Largest number: $1.1111111_2 = 1.9921875_{10}$
- Increment: $0.0000001_2 = 0.0078125_{10}$

4 bits for fraction

- Largest number: 1111.1111₂ = 15.9375₁₀
- Increment: $0000.0001_2 = 0.0625_{10}$

Fixed-point has same absolute precision everywhere, but this means relative precision is worse for numbers close to 0!

Why are numbers exciting?

Preliminaries: biased numbers

Floating-point arithmetic

IEEE floating-point standard
Examples and properties
Rounding, addition, and multiplication
Floating-point in C

Summary

IEEE Floating-Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating-point.
 - Many idiosyncratic formats before then.
- Supported by all major CPUs.

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow.
- Hard to make fast in hardware.
 - Numerical analysts predominated over hardware designers in defining standard.
 - ... but (later) Turing Award winner William Kahan secretly knew that Intel had figured out how.
 - ► Beware the wrath of Kahan!
 - ► http://people.eecs.berkeley.edu/~wkahan/

Floating-Point Representation

Numerical form

$$(-1)^s \cdot m \cdot 2^e$$

- **Sign bit** *s* determines whether number negative or positive.
- **Significand** *m* normally a fractional value in range [1, 2).
- **Exponent** *e* weights value by power of two.

Encoding

- Most significant bit is sign bit.
- *E* field encodes *e* (but is not equal to *e*).
- *T* field encodes *m* (but is not equal to *m*).

Ε

Why such a weird format?

The point is floating

- No fixed number of bits allocated to "fraction".
- More bits close to 0, fewer bits for numbers with large magnitude.
- Symmetric around 0.

Density of floats

https://stackoverflow.com/a/24179424/6131552

Precision options

32-bit single precision: float

64-bit double precision: double

80-bit Extended precision (Intel only, never use): long double

Normalised values when $E \neq \langle 0 \cdots 0 \rangle$ and $E \neq \langle 1 \cdots 1 \rangle$

$$v=(-1)^s\cdot m\cdot 2^e$$

1

Exponent encoded as biased value

$$e = Bits2N(E) - b$$

- $ightharpoonup b = e_{\max}$.
 - ► Single precision: 127 ($E \in [-126, 127]$).
 - ▶ Double precision: 1023 ($E \in [-1022, 1023]$).
- Significand coded with implied leading 1:

$$m = 1.xxx \cdots x_2 = 1 + \text{Bits2N}(\langle T \rangle) \cdot 2^{1-p}$$

- \triangleright xxx · · · x: bits of T.
- ► Get extra leading bit for free.
- ► Precision
 - ► Single precision: p = 24.
 - Double precision: p = 24.
- ▶ Minimum value when $T = \langle 0000 \cdots 0 \rangle$ (m = 1).
- ▶ Maximum value when $T = \langle 1111 \cdots 1 \rangle$ ($m = 2 \epsilon$).

Normalised encoding example

Denormal values

$$v = (-1)^s \cdot m \cdot 2^e$$
 $e = 1 - b$
Occur when $E = \langle 000 \cdots 0 \rangle$.

Exponent encoded as

$$e = 1 - b$$

Significand coded with implied leading 0:

$$m = 0.xxx \cdots x = \text{Bits2N}(\langle T \rangle) \cdot 2^{1-p}$$

- Cases
 - $ightharpoonup E = \langle 000 \cdots 0 \rangle, T = \langle 000 \cdots 0 \rangle$
 - ► Represents zero value.
 - ▶ Note distinct values -0, +0 why do you think that is?
 - $ightharpoonup E = \langle 000 \cdots 0 \rangle, T \neq \langle 000 \cdots 0 \rangle$
 - ► Numbers closest to 0.0.
 - ► Called subnormal numbers.
 - ► Ensure that $x \neq y \Rightarrow x y \neq 0$, i.e. avoid underflow.

Special values

Occur when
$$E = \langle 111 \cdots 1 \rangle$$
.

When
$$E = \langle 111 \cdots 1 \rangle$$
, $T = \langle 000 \cdots 0 \rangle$

- Represents $\pm \infty$.
- Typically the result of overflow.
 - Overflow can be negative!
 - Underflow is when the result becomes zero due to rounding.
- Both positive and negative.
- Examples:

$$\frac{1}{0} = \frac{-1}{-0} = \infty \qquad \frac{1}{-0} = -\infty$$

When
$$E = \langle 111 \cdots 1 \rangle, T \neq \langle 000 \cdots 0 \rangle$$

- Not A Number (NaN).
- Represents case when no numeric value can be determined.
- Examples:

$$sqrt(-1)$$
 $\infty - \infty$ $\infty \cdot 0$

The floating-point number line

$$\leftarrow \text{very positive } e \quad \text{very negative } e \rightarrow \quad \leftarrow \text{very negative } e \quad \text{very positive } e \rightarrow \\ \boxed{-\infty \quad | \text{-Normal} \quad | \text{-Subnorm} \quad | \text{-0} \quad | \text{+0} \quad | \text{+Subnorm} \quad | \text{+Normal} \quad | \text{+}\infty \quad |}$$

NaN

Note that NaNs are unordered:

NaN

NaN is different from everything even other NaNs!

- ► NaN == NaN is false.
- ► Floating-point equality is not reflexive!
- NaN > x and NaN < x is false for all x.

Why are numbers exciting?

Preliminaries: biased numbers

Floating-point arithmetic

Examples and properties Rounding, addition, and multiplication

Floating-point in C

Summary

Play the game

https://topps.diku.dk/compsys/floating-point.html

Tiny 8-bit floating-point example

8-bit floating-point representation

- Sign bit is the most significant bit (leftmost).
- The next four bits are *E* with a bias of 7.
- The last three bits are *T*.

Same general form as IEEE Format

- Normalised, denormalised.
- Representation of 0, NaN, both infinities.

Dynamic range of positive numbers

	S	Ε	Т	е	Value	
Denormalised	0	0000	000	-6	0	
	0	0000	001	-6	$1/8 \cdot 1/64 = 1/512$	closest to zero
	0	0000	010	-6	$2/8 \cdot 1/64 = 2/512$	
	• • •	0000	111	_	7/0 1/64 7/513	lavaast danava
	0	0000	111		$7/8 \cdot 1/64 = 7/512$	largest denorm
Normalised	0	0001	000	-6	$8/8 \cdot 1/64 = 8/512$	smallest norm
	0	0001	001	-6	$9/8 \cdot 1/64 = 9/512$	
	0	0110	110	-1	$14/8 \cdot 1/2 = 14/16$	
	0	0110	111	-1	$15/8 \cdot 1/2 = 15/16$	Closest to 1
	0	0111	000	0	$8/8 \cdot 1 = 1$	
	0	0111	001	0	$9/8 \cdot 9/8 = 1$	Closest to 1
	0	0111	010	0	$10/8 \cdot 10/8 = 1$	
	0	1110	110	7	$14/8 \cdot 128 = 224$	
	0	1110	111	7	$15/8 \cdot 128 = 240$	
	0	1111	000	N/A	∞	

Distribution of values

Distribution of values (zooming in)

- Note how the distribution gets denser towards zero.
- Note the big gap there would be around 0 if we did not have subnormals.
- Each of the spans with same distance between neighbors corresponds to numbers with same *E*.

S	Ε	T
1b	4b	3b

Useful properties of the IEEE encoding

S E T

- Floating-point zero same as integer zero.
 - ► All bits 0.
 - ...but negative zero is different.
- Can almost compare floats with unsigned integer comparisons.
 - Must first compare sign bit.
 - ▶ Must consider -0 = 0.
 - ► NaNs problematic:
 - Greater than any other value (because $E = \langle 111 \cdots 1 \rangle$).
 - ► What should comparison yield?
 - ► Otherwise OK:
 - Normalised and denormalised compare as expected.
 - ► Infinities ordered properly relative to finities.

Why are numbers exciting?

Preliminaries: biased numbers

Floating-point arithmetic

Background: Fractional binary numbers IEEE floating-point standard Examples and properties Rounding, addition, and multiplication Floating-point in C

Summary

Basic idea behind floating-point operations

$$x +_f y = \text{Round}(x + y)$$

 $x \times_f y = \text{Round}(x \times y)$

Basic idea

- ► First *compute exact result*!
- ► Then round it to fit into desired precision.
 - Overflow if exponent too large.
 - ► *Round to fit* into *T*.

	1.40	1.60	1.50	2.50	-1.50
Towards zero					

	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	-1
Towards $-\infty$	'				

	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	-1
Towards $-\infty$	1	1	1	2	-2
Towards ∞					

	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	$\overline{-1}$
Towards $-\infty$	1	1	1	2	-2
Towards ∞	2	2	2	3	-1
Nearest even	'				

• There's more than one way to round a number, here to an integer.

	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	$\overline{-1}$
Towards $-\infty$	1	1	1	2	-2
Towards ∞	2	2	2	3	-1
Nearest even ∞	1	2	2	2	-2

• "Round to nearest, ties to even" is the default rounding mode.

Default rounding mode

- But can be changed dynamically.
 - ► https:

```
//www.gnu.org/software/libc/manual/html_node/Rounding.html
```

- ► Never do this.
- All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.

- ► When exactly halfway between two possible values:
 - Round so that least significant digit is even.
- ► E.g. rounding to nearest hundredth:
 - **7.8949999:**

Default rounding mode

- But can be changed dynamically.
 - ► https:

```
//www.gnu.org/software/libc/manual/html_node/Rounding.html
```

- ► Never do this.
- All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.

- ► When exactly halfway between two possible values:
 - Round so that least significant digit is even.
- ► E.g. rounding to nearest hundredth:
 - **7.8949999: 7.89**
 - **7.8990001:**

Default rounding mode

- But can be changed dynamically.
 - ► https:

```
//www.gnu.org/software/libc/manual/html_node/Rounding.html
```

- ► Never do this.
- All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.

- ► When exactly halfway between two possible values:
 - Round so that least significant digit is even.
- ► E.g. rounding to nearest hundredth:
 - **7.8949999: 7.89**
 - **▶** 7.8990001: 7.90
 - **7.8950000:**

Default rounding mode

- But can be changed dynamically.
 - ► https:

```
//www.gnu.org/software/libc/manual/html_node/Rounding.html
```

- ► Never do this.
- All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.

- ► When exactly halfway between two possible values:
 - Round so that least significant digit is even.
- ► E.g. rounding to nearest hundredth:
 - **7.8949999: 7.89**
 - **▶** 7.8990001: 7.90
 - **7.8950000: 7.90**
 - **►** 7.8850000:

Default rounding mode

- But can be changed dynamically.
 - ► https:

```
//www.gnu.org/software/libc/manual/html_node/Rounding.html
```

- ► Never do this.
- All others are statistically biased.
 - Biased: Sum of set of positive numbers will consistently be over- or under-estimated.

- ► When exactly halfway between two possible values:
 - Round so that least significant digit is even.
- ► E.g. rounding to nearest hundredth:
 - **7.8949999: 7.89**
 - **▶** 7.8990001: 7.90
 - **7.8950000: 7.90**
 - **▶** 7.8850000: 7.88

- Binary fractional numbers
 - ► "Even" when least significant bit is 0.
 - ightharpoonup "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value

- Binary fractional numbers
 - ► "Even" when least significant bit is 0.
 - ightharpoonup "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32				

- Binary fractional numbers
 - ► "Even" when least significant bit is 0.
 - ightharpoonup "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.00 <mark>011</mark> 2			

■ Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2-down)	2

■ Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2-down)	2
2 3/16				

■ Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2-down)	2
2 3/16	10.00 <mark>110</mark> 2			

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2-down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2-up)	2 1/4

■ Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2 - down)	2
2 3/16	10.00 <mark>110</mark> 2	10.01 ₂	(>1/2-up)	2 1/4
2 7/8				

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2 - down)	2
2 3/16 2 7/8	10.00110 ₂ 10.11100 ₂	10.01 ₂	(>1/2-up)	2 1/4

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(<1/2-down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2-up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00 ₂	(1/2-up)	3

■ Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2 - down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2-up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00 ₂	(1/2-up)	3
2 5/8				

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

		, ,		
Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2 - down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2-up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00 ₂	(1/2-up)	3
2 5/8	10.10 <mark>100</mark> 2			

Binary fractional numbers

- ► "Even" when least significant bit is 0.
- \blacktriangleright "Half way" when bits to right of rounding position are $100\cdots_2$.

Examples

Value	Binary	Rounded	Action	Rounded value
2 3/32	10.000112	10.002	(< 1/2 - down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2-up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.00 ₂	(1/2-up)	3
2 5/8	10.10 <mark>100</mark> 2	10.10 ₂	(1/2-down)	2 1/2
	2 3/32 2 3/16 2 7/8	2 3/32 10.00011 ₂ 2 3/16 10.00110 ₂ 2 7/8 10.11100 ₂	2 3/32 10.00011 ₂ 10.00 ₂ 2 3/16 10.00110 ₂ 10.01 ₂ 2 7/8 10.11100 ₂ 11.00 ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Floating-point multiplication (assuming operands are numbers)

$$((-1)^{s_3} \cdot m_3 \cdot 2^{e_3}) = ((-1)^{s_1} \cdot m_1 \cdot 2^{e_1}) \cdot ((-1)^{s_2} \cdot m_2 \cdot 2^{e_2})$$

Exact result

$$s_3 = s_1 \oplus s_2$$

$$m_3 = m_1 \cdot m_2$$

$$e_3 = e_1 + e_2$$

where \oplus is exclusive-or.

Fixing

- ▶ If $m_3 > 2$, shift m_3 right and increment e_3 .
- ▶ If e_3 out of range, overflow to ∞ .
- ightharpoonup Round m_3 to fit T precision.

Implementation

► Biggest chore is multiplying significands.

Floating-point addition (assuming operands are numbers)

$$(-1)^{s_3} \cdot m_3 \cdot 2^{e_3} = ((-1)^{s_1} \cdot m_1 \cdot 2^{e_1}) + ((-1)^{s_2} \cdot m_2 \cdot 2^{e_2})$$

Approach

- ightharpoonup Assume without loss of generality that $e_1 \geq e_2$.
- ightharpoonup Rewrite smaller number such that its exponent matches e_1 :

$$((-1)^{s_3} \cdot m_3 \cdot 2^{e_3}) = ((-1)^{s_1} \cdot m_1 \cdot 2^{e_1}) + ((-1)^{s_2} \cdot m_2' \cdot 2^{e_1})$$

Exact result

- ► Sign s_3 , significand m_3 :
 - Result of signed addition.

Fixing

- ▶ If $m_3 > 2$, shift m_3 right and increment e_3 .
- ▶ If $m_3 < 1$, shift m left k positions and decrement e_3 by k.
- ▶ If e_3 out of range, overflow to ∞ .
- Round m_3 to p bits.

$$-1^{s_3} \cdot m_3$$

Example of floating-point addition with a 2-bit significand

$$(-1.01 \cdot 2^2) + (1.1 \cdot 2^4)$$

= $(-1.01 \cdot 2^2) + (110.0 \cdot 2^2)$ Align exponents
= $(-1.01 + 110.0) \cdot 2^2$ Distributivity
= $100.11 \cdot 2^2$ Add significands
= $1.0011 \cdot 2^4$ Normalise
= $1.01 \cdot 2^4$ Perform rounding

- Compared to those of Abelian Group
 - ► Closed under addition?

- Compared to those of Abelian Group
 - ► Closed under addition? **Yes**
 - ► But may generate infinity or NaN.
 - ► Commutative?

- Compared to those of Abelian Group
 - ► Closed under addition? **Yes**
 - But may generate infinity or NaN.
 - ► Commutative? **Yes**
 - ► Associative?

- Compared to those of Abelian Group
 - ► Closed under addition? Yes
 - But may generate infinity or NaN.
 - ► Commutative? **Yes**
 - ► Associative? **No**
 - ► Due to overflow and inexactness of rounding.
 - \triangleright (3.14 + 1e10) -1e10 = 0
 - ightharpoonup 3.14 + (1e10-1e10) = 3.14
 - 0 is additive identity?

Algebraic properties of floating-point addition

- Compared to those of Abelian Group
 - ► Closed under addition? Yes
 - But may generate infinity or NaN.
 - ► Commutative? **Yes**
 - ► Associative? **No**
 - ► Due to overflow and inexactness of rounding.
 - \triangleright (3.14 + 1e10)-1e10 = 0
 - \triangleright 3.14 + (1e10-1e10) = 3.14
 - ► 0 is additive identity? **Yes**
 - Does every element have an additive inverse?

Algebraic properties of floating-point addition

Compared to those of Abelian Group

- ► Closed under addition? **Yes**
 - But may generate infinity or NaN.
- ► Commutative? **Yes**
- ► Associative? **No**
 - ► Due to overflow and inexactness of rounding.
 - \triangleright (3.14 + 1e10) -1e10 = 0
 - \triangleright 3.14 + (1e10-1e10) = 3.14
- ► 0 is additive identity? **Yes**
- ▶ Does every element have an additive inverse? Almost
 - Infinities and NaN do not have inverses.

Monotonicity

▶
$$a \ge b \Rightarrow a + c \ge b + c$$
?

Algebraic properties of floating-point addition

Compared to those of Abelian Group

- ► Closed under addition? Yes
 - But may generate infinity or NaN.
- ► Commutative? **Yes**
- ► Associative? **No**
 - ▶ Due to overflow and inexactness of rounding.
 - \triangleright (3.14 + 1e10) -1e10 = 0
 - \triangleright 3.14 + (1e10-1e10) = 3.14
- ► 0 is additive identity? **Yes**
- ► Does every element have an additive inverse? **Almost**
 - Infinities and NaN do not have inverses.

Monotonicity

- ▶ $a \ge b \Rightarrow a + c \ge b + c$? Almost
 - ► Infinities and NaNs are the exception.

- Compared to those of a commutative ring
 - ► Closed under multiplication?

- Compared to those of a commutative ring
 - ► Closed under multiplication? **Yes**
 - ► But may generate infinity or NaN.
 - ► Commutative?

- Compared to those of a commutative ring
 - ► Closed under multiplication? **Yes**
 - ► But may generate infinity or NaN.
 - ► Commutative? **Yes**
 - ► Associative?

Compared to those of a commutative ring

- ► Closed under multiplication? **Yes**
 - ► But may generate infinity or NaN.
- ► Commutative? **Yes**
- ► Associative? **No**
 - ▶ Due to overflow and inexactness of rounding.
 - $(1e20*1e20)*1e-20=\infty$
 - ► 1e20*(1e20*1e-20) = 1e20
- ► 1 is multiplicative identity?

Compared to those of a commutative ring

- Closed under multiplication? Yes
 - ► But may generate infinity or NaN.
- ► Commutative? **Yes**
- ► Associative? **No**
 - ► Due to overflow and inexactness of rounding.
 - $(1e20 * 1e20) * 1e-20=\infty$
 - ightharpoonup 1e20*(1e20*1e-20) = 1e20
- ► 1 is multiplicative identity? **Yes**
- Multiplication distributes over addition?

Compared to those of a commutative ring

- ► Closed under multiplication? **Yes**
 - ► But may generate infinity or NaN.
- ► Commutative? **Yes**
- ► Associative? **No**
 - ▶ Due to overflow and inexactness of rounding.
 - $(1e20 * 1e20) * 1e-20=\infty$
 - ightharpoonup 1e20*(1e20*1e-20) = 1e20
- ► 1 is multiplicative identity? **Yes**
- Multiplication distributes over addition? No
 - Overflow and rounding again.
 - ightharpoonup 1e20*(1e20-1e20) = 0.0
 - ightharpoonup 1e20*1e20 1e20*1e20 = NaN

Why are numbers exciting?

Preliminaries: biased numbers

Floating-point arithmetic

Background: Fractional binary numbers IEEE floating-point standard Examples and properties Rounding, addition, and multiplication Floating-point in C

Summary

Floating-point in C

C guarantees two types

- ► float: 32-bit single precision.
- ► double: 64-bit single precision.

Conversions/casting

- ► Casting between int, float, and double changes bit represensation.
- ▶ double/float to int
 - ► Truncates fractional part.
 - ► Like rounding toward zero.
 - ▶ Not defined when out of range or NaN: generally sets to TMin.
- ▶ int to double
 - Exact conversion as long as int fits in 53 bits.
- ▶ int to float
 - Will round according to rounding mode.

Floating-point is exciting!

First "flight" of the Ariane 5 in 1996.

Floating-point is exciting!

First "flight" of the Ariane 5 in 1996.

- A double storing horizontal velocity of the rocket was converted to a 16-bit signed integer.
- The number was larger than 32767 so the conversion failed, causing an exception, crashing the guidance module.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = \dots; float f = \dots; double d = \dots;
```

Assume neither d nor t is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

$$x == (int) (float) x$$

```
int x = \dots; float f = \dots; double d = \dots;
```

Assume neither d nor t is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
\blacksquare x == (int) (float) x
```

$$\blacksquare$$
 x == (int) (double) x

```
int x = \dots; float f = \dots; double d = \dots;
```

Assume neither d nor t is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = \dots; float f = \dots; double d = \dots:
```

Assume neither d nor t is NaN.

```
x == (int) (float) x
x == (int) (double) x
f == (float) (double) f
```

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = \dots; float f = \dots; double d = \dots;
```

Assume neither d nor t is NaN.
Assume int is 32 bits.

```
x == (int) (float) x
x == (int) (double) x
f == (float) (double) f
d == (double) (float) d
```

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = \dots; float f = \dots; double d = \dots;
```

Assume neither d nor t is NaN.
Assume int is 32 bits.

```
x == (int) (float) x
x == (int) (double) x
f == (float) (double) f
d == (double) (float) d
f == -(-f)
```

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = \dots; float f = \dots; double d = \dots;
```

Assume neither d nor t is NaN.

```
x == (int) (float) x
x == (int) (double) x
f == (float) (double) f
d == (double) (float) d
f == -(-f)
2/3 == 2/3.0
```

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

int
$$x = \dots$$
; float $f = \dots$; double $d = \dots$;

Assume neither d nor t is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

int
$$x = \dots$$
; float $f = \dots$; double $d = \dots$;

Assume neither d nor t is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

int
$$x = \dots$$
; float $f = \dots$; double $d = \dots$;

Assume neither d nor t is NaN.

For each of the following C expressions, either

- Argue that it is true for all argument values.
- Explain why it's not.

```
int x = \dots
float f = \dots:
double d = \dots:
```

Assume neither d nor + is NaN. Assume int is 32 bits.

- (d+f)-d == f

Why are numbers exciting

Preliminaries: biased numbers

Floating-point arithmetic
Background: Fractional binary numbers
IEEE floating-point standard
Examples and properties
Rounding, addition, and multiplication
Floating-point in C

Summary

Summary

- IEEE floating-point has clear properties.
 - ► But they may not match your intuition.
- Represents numbers of the form $(-1)^s \cdot m \cdot 2^e$.
- One can reason about operations independent of implementation.
 - Computed with perfect precision and then rounded.
 - ▶ But rounded after *every* "primitive" operation (e.g. addition, multiplication).
- Not the same as \mathbb{Q}/\mathbb{R} arithmetic.
 - Violates associativity and distributivity, mostly due to rounding.
 - Sometimes makes life difficult for heavy-duty numerical programming.
 - ▶ But carefully designed such that "naive" use mostly does what one expects.

```
Also try this tool: https://evanw.github.io/float-toy/
And read this: https://moyix.blogspot.com/2022/09/
someones-been-messing-with-my-subnormals.html
```