Josua Kugler

03.11.2020

Theorem (Uniformisierungssatz)

Jede einfach zusammenhängende Riemann'sche Fläche ist biholomorph äquivalent zur Einheitskreisscheibe E oder zur Zahlebene \mathbb{C} oder zur Zahlkugel \mathbb{C} .

Definition

u(z) logarithmisch singulär bei $a:\Leftrightarrow u(z)+\log|z-a|$ harmonisch.

Definition

$$\mathcal{M}_a(X) := \{u \colon X \setminus \{a\} \to \mathbb{R} | \ u \ge 0, u \text{ logarithmisch singulär bei } a\}$$

Definition (Greensche Funktion)

 $\mathcal{M}_a \neq \emptyset \implies$ es existiert ein minimales Element G_a (nicht trivial) G_a heißt die Green'sche Funktion von X in Bezug auf a.

Definition (positiv berandet/nullberandet)

Eine Riemann'sche Fläche X heißt positiv berandet, wenn zu jedem Punkt $a \in X$ die Greensche Funktion $G_a : X \to \mathbb{R}$ existiert. Sonst heißt X nullberandet.

Auf nullberandeten Riemann'schen Flächen gilt der Satz von Liouville.

Lemma

Auf einer Riemann'schen Fläche existiert eine harmonische Funktion $u := u_{a,b} \colon X \setminus \{a,b\} \to \mathbb{R}$ mit folgenden Eigenschaften:

- u ist logarithmisch singulär bei a.
- −u ist logarithmisch singulär bei b.
- u ist beschränkt im Unendlichen, d.h. in $X \setminus [U(a) \cup U(b)]$, wobei U(a) und U(b) zwei beliebige Umgebungen von a, b seien.

Definition

Elementar: \Leftrightarrow Beträge meromorpher Funktionen bilden eine Garbe, d.h. aus $|f_i| = |f_i|$ auf $U_i \cap U_i \forall i, j \in I$ folgt die Existenz einer meromorphen Funktion $f: X \to \mathbb{C}$ mit $|f| = |f_i|$ auf U_i .

Theorem (Monodromiesatz)

Sei X eine einfach zusammenhängende Riemann'sche Fläche und $f: U(a) \to \overline{\mathbb{C}}$ entlang jedes von a ausgehenden Weges fortsetzbar. Dann existiert eine meromorphe Funktion $F: X \to \overline{\mathbb{C}}$ mit $F|_{U(a)}=f$.

Lemma

Einfach zusammenhängende Riemannsche Flächen sind elementar.

000000

Einfach zusammenhängende Riemannsche Flächen sind elementar.

Einfach zusammenhängende Riemannsche Flächen sind elementar.

Beweis.

- $|f_i/f_j|=1$ auf $U_i\cap U_j\implies f_i/f_j=c_{ij}$
- Setze f_i fort durch $c_{ii} \cdot f_i$
- Erhalte f mit $f/f_k = \text{const}$ auf U_k mit $|f/f_k| = 1$.

Vorgehen

- **E**s existiert eine holomorphe Funktion $F_a: X \to \mathbb{C}$ mit $|F_a(x)| = e^{-G_a(x)}$ für $x \neq a$.
- \blacksquare F_a ist injektiv.

•00000000

- Wir erhalten eine bijektive holomorphe (und damit direkt biholomorphe nach Funktheo 1) Abbildung von X auf $F_a(X)$.
- $F_a(X)$ ist beschränkt ($|F_a(x)| < 1$) und einfach zusammenhängend.
- Mit dem Riemann'schen Abbildungssatz folgt $X \cong \mathbb{E}$.

00000000

Es existiert eine holomorphe Funktion $F_a: X \to \mathbb{C}$ mit $|F_a(x)| = e^{-G_a(x)}$ für $x \neq a$, G_a : $X \setminus \{a\} \to \mathbb{R}$ Greensche Funktion.

- Greensche Funktion existiert stets.
- **E**s genügt, zu jedem Punkt b mit Umgebung U(b) eine holomorphe Funktion F mit $|F(x)| = e^{-G_a(x)} \forall x \in U(b), x \neq a$ anzugeben. Nach Garbenaxiom 2 kann man diese zusammenkleben

Es existiert eine holomorphe Funktion $F_a: U(b) \to \mathbb{C}$ mit $|F_a(x)| = e^{-G_a(x)}$ für $a \neq x \in U(b) \forall b \in X$.

■ Fall $1:b \neq a$.

- \implies OE U(b) Elementargebiet
- $\implies \exists f \text{ mit } G_2 = \text{Re } f$
- \implies Wähle $F_3 := e^{-f}$
- Fall 2: b = a.
 - \implies OE $U(b) = \mathbb{E}$
 - $\implies G_a(z) = -\log|z|$
 - \implies Wähle $F_a := z$

Es existiert eine holomorphe Funktion $F_a: X \to \mathbb{C}$ mit $|F_a(x)| = e^{-G_a(x)}$ für $x \neq a$, G_a : $X \setminus \{a\} \to \mathbb{R}$ Greensche Funktion.

Insbesondere:

$$\lim_{x\to a} |F_a(x)| = \lim_{x\to a} e^{-G_a(x)} = 0, \text{ also } F_a(a) = 0$$

•
$$G_a(x) > 0 \implies |F_a(x)| < 1.$$

Vorgehen

- **E**s existiert eine holomorphe Funktion $F_a: X \to \mathbb{C}$ mit $|F_a(x)| = e^{-G_a(x)}$ für $x \neq a$.
- \blacksquare F_a ist injektiv.

- Wir erhalten eine bijektive holomorphe (und damit direkt biholomorphe nach Funktheo 1) Abbildung von X auf $F_a(X)$.
- $F_a(X)$ ist beschränkt ($|F_a(x)| < 1$) und einfach zusammenhängend.
- Mit dem Riemann'schen Abbildungssatz folgt $X \cong \mathbb{E}$.

F₂ ist injektiv.

000000000

Betrachte

$$F_{a,b}(x) := \frac{F_a(x) - F_a(b)}{1 - \overline{F_a(b)}F_a(x)}.$$

Diese Funktion erfüllt folgende Eigenschaften.

- $|F_{a,b}| < 1$. (Rechnung)
- \blacksquare $F_{a,b}$ ist als Quotient analytischer Funktionen meromorph. Aufgrund der Beschränktheit muss $F_{a,b}$ aber sogar analytisch in X sein.
- $|F_a(b)|^2 < 1 \implies F_{a,b}(b) = 0$, Ordnung k.
- $F_a(a) = 0 \implies F_{a,b}(a) = -F_a(b).$

000000000

Beweis.

- $u(x) := -\frac{1}{k} \log |F_{a,b}(x)|$ ist ≥ 0 und harmonisch auf $X \setminus \{b\}$ mit einer logarithmischen Singularität bei x = b.
- Greensche Funktion: $G_h(x) < u(x)$.
- \bullet $e^{G_b(x)} \leq e^{u(x)}$. Umformen ergibt $\frac{|F_{a,b}(x)|}{|F_a(x)|} \leq 1$.
- Für x = a folgt $|F_a(b)| \le |F_b(a)|$. Symmetrie $\implies \frac{|F_{a,b}(x)|}{|F_b(x)|}$ nimmt an einer Stelle ein Maximum an, nach dem Maximumprinzip erhalten wir die Behauptung.

F_a ist injektiv.

000000000

Beweis.

Betrachte

$$F_{a,b}(x) := \frac{F_a(x) - F_a(b)}{1 - \overline{F_a(b)}F_a(x)}.$$

Es gilt $|F_{a,b}(x)| = |F_b(x)| \forall x \in X$. Daraus folgt $F_{a,b} \neq 0$ für $x \neq b$, also $F_a(x) \neq F_a(b)$ für $x \neq b$. b war beliebig $\implies F_a$ injektiv.

Vorgehen

- **E**s existiert eine holomorphe Funktion $F_a: X \to \mathbb{C}$ mit $|F_a(x)| = e^{-G_a(x)}$ für $x \neq a$.
- \blacksquare F_a ist injektiv.

- Wir erhalten eine bijektive holomorphe (und damit direkt biholomorphe nach Funktheo 1) Abbildung von X auf $F_a(X)$.
- $F_a(X)$ ist beschränkt ($|F_a(x)| < 1$) und einfach zusammenhängend.
- Mit dem Riemann'schen Abbildungssatz folgt $X \cong \mathbb{E}$.

Theorem (Uniformisierungssatz)

Jede einfach zusammenhängende Riemann'sche Fläche ist biholomorph äquivalent zur Einheitskreisscheibe E oder zur Zahlebene \mathbb{C} oder zur Zahlkugel $\overline{\mathbb{C}}$.

Wir haben gezeigt:

Lemma

Jede positiv berandete einfach zusammenhängende Riemann'sche Fläche ist biholomorph äguivalent zur Einheitskreisscheibe \mathbb{E} .

Definition (positiv berandet/nullberandet)

Eine Riemann'sche Fläche X heißt positiv berandet, wenn zu jedem Punkt $a \in X$ die Greensche Funktion $G_a : X \to \mathbb{R}$ existiert. Sonst heißt X nullberandet.

Auf nullberandeten Riemann'schen Flächen gilt der Satz von Liouville.

Lemma

Auf einer Riemann'schen Fläche existiert eine harmonische Funktion $u := u_{a,b} \colon X \setminus \{a,b\} \to \mathbb{R}$ mit folgenden Eigenschaften:

- u ist logarithmisch singulär bei a.
- −u ist logarithmisch singulär bei b.
- u ist beschränkt im Unendlichen, d.h. in $X \setminus [U(a) \cup U(b)]$, wobei U(a) und U(b) zwei beliebige Umgebungen von a, b seien.

Wähle $a \neq b \in X$. Dann existiert eine holomorphe Funktion

$$f_{a,b}\colon X\setminus\{a,b\}\to\mathbb{C}$$

mit folgenden Eigenschaften

- 1 $f_{a,b}$ hat in a bzw. b eine Null- bzw. Polstelle 1. Ordnung
- 2 U(a), U(b) Umgebungen. $\exists C$ mit

$$C^{-1} \leq |f_{a,b}(x)| \leq C$$

 $f\ddot{u}r \times \neq U(a) \cup U(b)$, d.h. $f_{a,b}$ hat außer a und b weder Pole noch Nullstellen.

Auf einer beliebigen Riemann'schen Fläche existiert eine harmonische Funktion $u := u_{a,b} : X \setminus \{a,b\} \to \mathbb{C}$ mit folgenden Eigenschaften:

- u ist logarithmisch singulär bei a.
- −u ist logarithmisch singulär bei b.
- u ist beschränkt im Unendlichen, d.h. in $X \setminus [U(a) \cup U(b)]$, wobei U(a) und U(b) zwei beliebige Umgebungen von a, b seien.

- Lokal ist $u_{a,b}$ Realteil einer analytischen Funktion f.
- Wähle also $f_{a,b} = e^f$ für eine Umgebung U(c) mit $c \notin \{a,b\}$.
- X elementar, also $f_{a,b}: X \setminus \{a,b\} \to \mathbb{C}$ analytisch.
- $u_{a,b}$ ist beschränkt auf $X \setminus [U(a) \cup U(b)]$. Folglich gilt $e^{-C} < f_{a,b} < e^{C}$ auf $X \setminus [U(a) \cup U(b)]$.
- $f_{a,b}$ hat in a eine Nullstelle und in b eine Polstelle (jeweils 1. Ordnung), sonst aber werde Pol- noch Nullstellen.

emma

f_{a,b} ist injektiv.

Als Quotient analytischer Funktionen ist

$$g(z) := \frac{f_{a,b}(z) - f_{a,b}(c)}{f_{c,b}(z)}.$$

meromorph und beschränkt außerhalb einer gewissen Umgebung um a, b, c.

- Wegen $\lim_{z \to c} g(z) = \lim_{z \to c} \frac{f_{a,b}(z) f_{a,b}(c)}{f_{c,b}(z)} = \text{const}$ ist g analytisch und beschränkt auf ganz X und damit nach dem Satz von Liouville für nullberandete RF konstant.
- $f_{a,b}(z) f_{a,b}(c) = \lambda f_{c,b}(z)$. Insbesondere hat $f_{a,b}(z) f_{a,b}(c)$ genau eine Nullstelle bei z = c, d.h. $f_{a,b}$ ist injektiv.

- Wir erhalten eine bijektive holomorphe (und damit direkt biholomorphe nach Funktheo 1) Abbildung von X auf $f_{a,b}(X) \subset \overline{\mathbb{C}}$.
- $f_{a,b}(X)$ nicht kompakt $\implies f_{a,b}(X) \neq \overline{\mathbb{C}}$ OE $f_{a,b}(X) \subset \mathbb{C}$. Riemann'scher Abbildungssatz $\implies X \cong \mathbb{C}$ oder $X \cong \mathbb{E}$
- $X \cong \mathbb{E} \implies X$ positiv berandet f, weil G_0 existiert und die konformen Selbstabbildungen von \mathbb{E} transitiv operieren.

- Einfach zusammenhängende Flächen ✓
- allgemeine Flächen: $X \cong \tilde{X}/\Gamma$, \tilde{X} einfach zshgd.
- $\Gamma \subset \mathsf{Bihol}(\tilde{X}, \tilde{X})$ operiert frei auf \tilde{X}

Universelle Überlagerung C

- konforme Selbstabbildungen: Möbiustransformationen
- Möbiustrafos haben stets Fixpunkt auf ℂ
- Gruppen von Möbiustrafos operieren nicht frei, außer die triviale Gruppe
- $\implies X \simeq \overline{\mathbb{C}}$

Universelle Uberlagerung C

- **v** konforme Selbstabbildungen: $z \mapsto az + b$ (Funktionentheorie I VL)
- Besitzen für $a \neq 1$ einen Fixpunkt, also a = 1.
- Es gibt drei Möglichkeiten für eine frei operierende Gruppe.
 - $\{0\}, X \cong \mathbb{C}.$
 - lacksquare zyklische Untergruppen $L=\{z\mapsto z+ ilde{b}, ilde{b}\in\mathbb{Z}b\}.$ Dann ist $\mathbb{C}/L \xrightarrow{z \mapsto e^{2\pi i z/b}} \mathbb{C}^*$ eine konforme Äquivalenz.
 - L ist ein Gitter, d.h. L wird von den Abbildungen $z \mapsto z + 1$ und $z \mapsto z + \tau$ erzeugt $\implies \mathbb{C}/L$ ist ein Torus.
 - **Z**wei Tori sind äquivalent gdw $i(\tau)$ gleich ist

Universelle Überlagerung $\mathbb{E} \cong \mathbb{H}$

- konforme Selbstabbildungen: $SL(2,\mathbb{R})/\pm E$
- freie Operation ⇔ Γ diskret und fixpunktfrei
- $\mathbb{H}/\Gamma \cong \mathbb{H}/\Gamma' \Leftrightarrow \Gamma = L\Gamma'L^{-1} \text{ mit } L \in SL(2,\mathbb{R}).$

