Impact of Vehicles as Obstacles in Vehicular Ad Hoc Networks

Joint work with:

Mate Boban, Michel Ferreira, João Barros and Ozan Tonguz

tiago.vinhoza@ieee.org

July 5, 2010

© 2005, it - instituto de telecomunicações. Todos os direitos reservado

instituto de telecomunicações

creating and sharing knowledge for telecommunications

PORTO

Outline

- Vehicular Communications
- Impact of Vehicles as Obstacles
- Results
- Conclusions

- Main Motivations
 - In 2008, approximately 37000 persons died and 2.35 million were injured on U.S. roadways in approximately 5.8 million crashes.
 - Crashes are the leading cause of death for ages 3 through 34.

- Main Motivations
 - In 2008, approximately 37000 persons died and 2.35 million were injured on U.S. roadways in approximately 5.8 million crashes.
 - Crashes are the leading cause of death for ages 3 through 34.
 - According to the Texas Transportation Institute (TTI), U.S. highway users wasted 4.2 billion hours a year stuck in traffic in 2007.
 - Nearly one full work week for every traveler.

- Main Motivations
 - In 2008, approximately 37000 persons died and 2.35 million were injured on U.S. roadways in approximately 5.8 million crashes.
 - Crashes are the leading cause of death for ages 3 through 34.
 - According to the Texas Transportation Institute (TTI), U.S. highway users wasted 4.2 billion hours a year stuck in traffic in 2007.
 - Nearly one full work week for every traveler.
 - Fuel wasted in traffic congestion topped 2.8 billion gallons in 2007, according to TTI - three weeks' worth of gas for every traveler.

- Main Motivations
 - In 2008, approximately 37000 persons died and 2.35 million were injured on U.S. roadways in approximately 5.8 million crashes.
 - Crashes are the leading cause of death for ages 3 through 34.
 - According to the Texas Transportation Institute (TTI), U.S. highway users wasted 4.2 billion hours a year stuck in traffic in 2007.
 - Nearly one full work week for every traveler.
 - Fuel wasted in traffic congestion topped 2.8 billion gallons in 2007, according to TTI - three weeks' worth of gas for every traveler.
 - The overall cost (based on wasted fuel and lost productivity) reached USD 87.2 billion - more than USD 750 for every U.S. traveler

- Main Motivations
 - In 2008, approximately 37000 persons died and 2.35 million were injured on U.S. roadways in approximately 5.8 million crashes.
 - Crashes are the leading cause of death for ages 3 through 34.
 - According to the Texas Transportation Institute (TTI), U.S. highway users wasted 4.2 billion hours a year stuck in traffic in 2007.
 - Nearly one full work week for every traveler.
 - Fuel wasted in traffic congestion topped 2.8 billion gallons in 2007, according to TTI - three weeks' worth of gas for every traveler.
 - The overall cost (based on wasted fuel and lost productivity) reached USD 87.2 billion - more than USD 750 for every U.S. traveler
 - Data from Autoridade Nacional de Segurança Rodoviária: In 2007, traffic related accidents killed 854 people and injured 43202. And in 2008, there were 772 fatalities e 40745 injuries.

- Safety
 - Road Work Ahead

- Safety
 - Weather Conditions

- Mobility
 - Traffic Information

- Mobility
 - Dynamic Route Guidance

DRIVE-IN Project

- Distributed Routing and Infotainment through VEhicular Inter-Networking.
- Partners: Carnegie Mellon, IT-Aveiro, IT-Porto, N-Drive.
- The goal of DRIVE-IN project is to investigate how vehicle-to-vehicle communication can improve the user experience and the overall efficiency of vehicle and road utilization.

DRIVE-IN Project

- Provides feedback from extremely complex scenarios
- Enable insights, identify critical problems, and test solutions.

July 5, 2010

10 / 26

• State-of-the-art simulators used for VANETs (e.g., NS-2, JiST/SWANS/STRAW, NCTU-NS) consider the vehicles as dimensionless entities that have no influence on signal propagation.

- State-of-the-art simulators used for VANETs (e.g., NS-2, JiST/SWANS/STRAW, NCTU-NS) consider the vehicles as dimensionless entities that have no influence on signal propagation.
- Realistic propagation models (e.g., ray tracing): computationally expensive
- Mobile obstacles increase the complexity even further.

- State-of-the-art simulators used for VANETs (e.g., NS-2 , JiST/SWANS/STRAW, NCTU-NS) consider the vehicles as dimensionless entities that have no influence on signal propagation.
- Realistic propagation models (e.g., ray tracing): computationally expensive
- Mobile obstacles increase the complexity even further.
- Simplified stochastic radio models (Shadowing): rely on the statistical properties of the chosen environment and do not account for the specific obstacles in the region of interest
- Do not provide satisfying accuracy for typical VANET scenarios.

Desired VANET Propagation Model

- Realistic
 - Modeling both static and dynamic obstacles
 - Static: buildings, trees, overpasses, hills, parked vehicles,...
 - Mobile: other vehicles on the road
- As topology/location independent as possible
- Computationally tractable
 - Propagation model is only one of several simulated models in VANETs (mobility, MAC, routing, application,...)
 - Modeling vehicles is only one part of propagation modeling
 - Has to execute within certain time, otherwise is not useful

Results: Measurement Campaign in Pittsburgh, PA

Measurement Campaign in Pittsburgh, PA

Measurement Campaign in Pittsburgh, PA

Model for evaluating the impact of vehicles

- Impact on line of sight (LOS)
- Impact on signal propagation
- Time complexity of the model

Problem Setup

- Spatial characteristics of vehicular networks that are of interest:
 - Exact position of each vehicle and the inter-vehicle spacing
 - Vehicle dimensions (height, width, length)
 - Speed distribution of vehicles

How do we evaluate probability of LOS?

Computational Complexity

- The described model can be regarded as a special case of geometric intersection problem
- Well know problem in computational geometry.
- Red-Blue intersection problem:
 - Given a set of red line segments r and blue line segments b in the plane, report all K intersections of red with blue segments
 - Time complexity of the algorithm: $O(N^{4/3} \log N + K)$
 - N = r + b
 - Additional time for multiple knife-edge: O(K)
 - Overall $O(N^{4/3} \log N + K)$

What results do we get?

- Effect on line of sight
 - Per-link probability of LOS → Average probability of LOS for a given vehicle → Macroscopic probability of LOS behavior.
- Effect on received signal power
 - Obstructing vehicles are approximated as knife-edge obstacles;
 - Additional attenuation due to multiple knife-edge obstacle calculation.

Back to problem setup

- Spatial characteristics of vehicular networks that are of interest:
 - Exact position of each vehicle and the inter-vehicle spacing
 - Vehicle dimensions (height, width, length)
 - The speed distribution of vehicles
 - To obtain this data, we used stereoscopic aerial photography

July 5, 2010

Back to problem setup

- Spatial characteristics of vehicular networks that are of interest:
 - Exact position of each vehicle and the inter-vehicle spacing
 - Vehicle dimensions (height, width, length)
 - The speed distribution of vehicles
 - To obtain this data, we used stereoscopic aerial photography
- Widths and heights of vehicles?

Back to problem setup

- Spatial characteristics of vehicular networks that are of interest:
 - Exact position of each vehicle and the inter-vehicle spacing
 - Vehicle dimensions (height, width, length)
 - The speed distribution of vehicles
 - To obtain this data, we used stereoscopic aerial photography
- Widths and heights of vehicles?
 - Automotive Association of Portugal
 - 18 brands comprising 92% of vehicles
 - Both H & W normally distributed

Results: Probability of LOS

- Macroscopic probability of LOS.
- Data from A28 and A3 collected by FCUP group.
- A28: 404 vehicles on a 12 km highway strip; A3: 55 vehicles over 7.5 km.
- A28: 32.3 vehicles/km, A3: 7.3 vehicles/km.

	Transmission Range (m)		
Highway	100	250	500
A3	0.8445	0.6839	0.6597
A28	0.8213	0.6605	0.6149

Results: Obstructed Neighbors

- Neighbors with unobstructed and obstructed LOS
- Half of the neighbors will not have LOS due to vehicles only at 500 m of observed range.

Results: Received Signal Power

 $P_T = 20$ dBm, $G_T = G_R = 1$ dBi, Tx Range = 750 m.

Results: Packet Reception

PHY layer effect: RSS is optimistic

- PHY layer effect: RSS is optimistic
- Link layer effects:

- PHY layer effect: RSS is optimistic
- Link layer effects:
 - Overestimation of contention
 - Overestimation of network reachability

- PHY layer effect: RSS is optimistic
- Link layer effects:
 - Overestimation of contention
 - Overestimation of network reachability
- Network layer effects:

- PHY layer effect: RSS is optimistic
- Link layer effects:
 - Overestimation of contention
 - Overestimation of network reachability
- Network layer effects:
 - Overly optimistic hop count
 - End-to-end delay incorrectly calculated

- PHY layer effect: RSS is optimistic
- Link layer effects:
 - Overestimation of contention
 - Overestimation of network reachability
- Network layer effects:
 - Overly optimistic hop count
 - End-to-end delay incorrectly calculated
- Credibility of simulation results

- PHY layer effect: RSS is optimistic
- Link layer effects:
 - Overestimation of contention
 - Overestimation of network reachability
- Network layer effects:
 - Overly optimistic hop count
 - End-to-end delay incorrectly calculated
- Credibility of simulation results
 - 5 dB attenuation and 20% packet loss on average are far from negligible!
 - If vehicles dimensions are not accounted for, optimistic results are obtained
 - In reality, routing protocols will behave worse, network reachability will be reduced, delay will be incorrect.