

无约束优化方法 Unconstrained Optimization Method

电信学院·自动化科学与技术系 系统工程研究所 吴江

Outline

- ▶ 无约束优化问题概览
- ▶ 无约束优化问题的最优性条件

无约束优化问题

▶ *n*元函数的无约束非线性规划问题:

$$\min f(x)$$

其中
$$X=(X_1, X_2, ..., X_n)^T \in R^n, f: R^n \to R^T$$

无约束优化方法

无约束优化方法概述

逼近阶数	方法名称	内存需求	迭代次数	收敛速度	结构 复杂性	总体效果
0阶	直接法	小	多	慢	简单	差
1阶	最速下降法	小	较多	慢	简单	差
[1, 2)	共轭梯度法	小	较多	较快	简单	中
	拟Newton法	较大	少	较快	较简单	较优
2阶	Newton法	较大	很少	很快	较简单	差
	信赖域法	较大	很少	快	复杂	优

无约束优化方法

▶ 设 $f: R^n \to R^1$ 在点 $\overline{x} \in R^n$ 处可微。若存在 $p \in R^n$,使 $\nabla f(\overline{x})^T p < 0$ 则向量 p 是 f 在点 \overline{x} 处的下降方向

定义3: $f: R^n \to R, \overline{x} \in R^n, p \in R^n, p \neq 0$. 若存在 $\delta > 0$ 使 $\forall t \in (0, \delta)$ 有 $f(\overline{x} + tp) < f(\overline{x})$,则向量p是f(x)在 \overline{x} 的下降方向.

与负梯度方向夹角为锐角的方向是下降方向

▶ 设 $f: \mathbb{R}^n \to \mathbb{R}^1$ 在点 $x^* \in \mathbb{R}^n$ 处可微。若 x^* 是无约束优化 问题的局部最优解,则:

$$\nabla f(x^*) = 0$$

- 无约束非线性规划问题的必要条件
- x^* 一定是其目标函数 f 的**驻点**

▶ 设 $f: R^n \rightarrow R^1$ 在点 $x^* \in R^n$ 处的Hesse矩阵存在。若: $\nabla f(x^*) = 0$,且 $\nabla^2 f(x^*)$ 正定,

则x*是无约束优化问题的严格局部最优解.

▶ $S \subset \mathbb{R}^n$ 是非空开凸集, $f: S \to \mathbb{R}^1$ 二阶连续可导, 则 f 是 S 上的严格凸函数的充要条件是 $\nabla^2 f(x)$ 在S 正定

▶ 设 $f: R^n \rightarrow R^1$ 在点 $x^* \in R^n$ 上的可微凸函数。若有:

$$\nabla f(x^*)=0$$

则x*是无约束优化问题的严格整体最优解.

▶ 例:

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

$$\nabla f(x^*) = 0 \quad \langle Ax^* + b = 0 \rangle$$

几点说明

- 同梯度方向夹角大于90度的 方向为下降方向
- 负梯度方向是一个最容易获得的下降方向,同时也是函数值下降最快的方向
- ▶ 可以用当前搜索点 x^k 的梯度 $\nabla f(x^k)$ 是否接近于0作为搜索 的终止准则之一

作业

▶ P154 13

