

# EMIR: Optimizador de posicionado de CSU Proyectos Fin de Máster

F. Garzón
IP EMIR
14 de junio de 2012



### **EMIR**



# \*EMIR es una cámara y espectrógrafo multiobjeto, de uso común en GTC.

| Spectral Range    | 0.9-2.5μm[1.1-2.5μm]         | MOS mode    |                                                               |
|-------------------|------------------------------|-------------|---------------------------------------------------------------|
| Top priority      | MOS in K band                | FOV         | 6,7x4 arcmin (55 slitlets)                                    |
| Spectral Resol.   | 5000,4250,4000 (JHK)         | Sensitivity | K~20.1 in 2h @ S/N=5 (continuum)                              |
| Spectral coverage | 1 single window/exp.         |             | 1.4×10 <sup>-18</sup> erg/s/cm <sup>2</sup> /Å @ 5/N=6 (line) |
| Detector          | HAWAI2 2048 <sup>2</sup>     | Image mode  |                                                               |
| Plate Scale       | 0.2 arcsec/px                | FOV         | 6.7×6.7 arcmin                                                |
| Image quality     | θ <sub>80</sub> < 0.3 arcsec | Sensitivity | K~22.8 in 1h @ 5/N=5 in 0.6 arcsec aperture                   |





### OSP: concepto

- \*Optimizador de apuntado EMIR y posicionado de rendijas de la CSU
- \* Apuntado:  $(a,\delta)_0 + PA$
- \*CSU:
  - +posiciones de las 55 rendijas:





### Sistemas de coordenadas (II)



$$\sigma = \tan \rho$$



$$\xi = \tan \rho \sin \theta$$
$$\eta = \tan \rho \cos \theta$$



## Sistemas de coordenadas (III)



$$\xi = \frac{\cos \delta \sin \Delta \alpha}{\sin \delta \sin \delta_o + \cos \delta \cos \delta_o \cos \Delta \alpha}$$

#### Standard from Equatorial:

$$\eta = \frac{\sin \delta \cos \delta_o - \cos \delta \sin \delta_o \cos \Delta \alpha}{\sin \delta \sin \delta_o + \cos \delta \cos \delta_o \cos \Delta \alpha}$$

$$\tan \Delta \alpha = \frac{\xi}{\cos \delta_o - \eta \sin \delta_o}$$

#### **Equatorial from Standard:**

$$\sin \delta = \frac{\sin \delta_o + \eta \cos \delta_o}{\sqrt{1 + \xi^2 + \eta^2}}$$





### Sistemas de coordenadas (IV)

\*Pero tener en cuenta PA→giro del sistema

\* + errores en centrado y alineamiento del detector

$$\xi = a_1 x + a_2 y + a_3 + a_4 x^2 + a_5 xy + a_6 y^2 + a_7 x^3 + a_8 x^2 y + a_9 xy^2 + a_{10} y^3 + a_{11} m + a_{12} CI + \dots$$

$$\eta = b_1 y + b_2 x + b_3 + b_4 y^2 + b_5 y x + b_6 x^2 + b_7 y^3 + b_8 y^2 x + b_9 y x^2 + b_{10} x^3 + b_{11} m + b_{12} CI + \dots$$





### Definición del problema







### Beam switching



Signal=
$$(A-B)_{nod1} - (A-B)_{nod2}$$

→ Stringent reqs. on stability and repeteability





### Resultados

- \* Lista de apuntados  $((a,\delta)_0 + PA)$  y posiciones de rendija (Y+W)
  - + lista obj pri\_i por apuntado

#### Varias opciones

- \* maximizar N\_obj de alta prioridad minimizando N\_apuntados
- \* apuntados en orden de prioridad decreciente hasta cubrir todos los obj.
- \* Opciones de prioridades / pesos
  - + pesos definidos por usuario
  - + pesos preestablecidos
  - **+** ...





### Propuesta

- \* Comenzar por listas (x,y) generadas aleatoriamente
- \* desarrollar motor de optimización
  - +adquirir objetos
  - +colocarlos en pos. determinadas
- \* jugar con esquema de prioridades / pesos
- \* introducir coordenadas estándares
- \* desarrollar IF de usuario (¿GUI?)
- \* ...







