Particle spectrograph

Wave operator and propagator

	$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\sigma_{1}^{\#2}{}_{+} \alpha eta$	$\tau_{1}^{\#1}_{+}\alpha_{\beta}$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}{}_{lpha}$	$\tau_{1^-}^{\#1}{}_{\alpha}$	$\tau_{1^{-}\alpha}^{\#2}$
$^{t_1}_{+}$ $+$ $^{\alpha\beta}$		$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
^{t2} † αβ	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{t_1 + 4t_2}{3(1 + k^2)^2 t_1 t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$^{t_1}_{+}$ †	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$r_1^{\#_1} + \alpha$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$\frac{12ik}{(3+4k^2)^2t_1}$
$r_{1}^{\#2} + \alpha$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$
$\frac{\pi^{1}}{1^{-1}} + \alpha$	0	0	0	0	0	0	0
μ	0	0	0	$-\frac{12ik}{(3+4k^2)^2t_1}$	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$

aße IX dt	$f_{1}^{\#1}{}_{\alpha} \qquad f_{1}^{\#2}{}_{\alpha}$	0 0	0 0	0 0	$\begin{array}{c c} 0 & \frac{ikt_1}{3} \end{array}$	$0 \frac{1}{3} \overline{i} \sqrt{2} k t_1$	0 0	$\frac{2k^2t_1}{3}$
^{αβι} -2 r ₂ θ,ω , z]ďz ďy σ	$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	£ <u>1</u> 3	0	$-\frac{1}{3}\overline{\imath}kt_1-\frac{1}{3}\overline{\imath}\sqrt{2}kt_1$
$\int_{1}^{1} d\alpha \partial^{\theta} \omega^{\alpha}$	$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	9 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \vec{i} kt_1
$\omega^{\alpha\beta'} + 4 r_2 \partial_\beta u$ $\partial_\theta \omega_{\alpha'\beta} \partial^\theta \omega^{\alpha\beta'}$	$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\overline{l}k(t_1+t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$8r_2 \partial_\beta \omega_{\alpha_I\theta} \partial^\theta \omega^{\alpha\beta_I} - 4r_2 \partial_\beta \omega_{\alpha\theta_I} \partial^\theta \omega^{\alpha\beta_I} + 4r_2 \partial_\beta \omega_{_I\theta\alpha} \partial^\theta \omega^{\alpha\beta_I} - 2r_2 \partial_I \omega_{\alpha\beta\theta}$ $\partial^\theta \omega^{\alpha\beta_I} + 2r_2 \partial_\theta \omega_{_{\alpha\beta_I}} \partial^\theta \omega^{\alpha\beta_I} - 4r_2 \partial_\theta \omega_{_{\alpha_I\beta}} \partial^\theta \omega^{\alpha\beta_I}) [t, x, y, z] dz dy dx dt$	$\omega_1^{\#_2^2}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0
$\omega_{\alpha l \theta} \partial^{\theta} \omega^{\alpha \beta l}$ + $2 r_2 \partial_{\theta} \omega_{\alpha \beta}$	$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
$8 r_2 \partial_{\beta^1}$ $\partial^{\theta} \omega^{\alpha \beta_1}$		$\omega_{1}^{\#1} + \alpha^{eta}$	$\omega_{1}^{\#2} + \alpha^{eta}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

 $2(t_1+t_2) \omega_{\alpha l \theta} (\omega^{\alpha l \theta}+2 \partial^{\theta} f^{\alpha l})+2 \omega_{\alpha \theta l} ((t_1-2 t_2) \omega^{\alpha l \theta}+2 (2 t_1-t_2) \partial^{\theta} f^{\alpha l})+$

l				$k^2 r$		$\sigma_0^{\!\scriptscriptstyle \#}$	¹ τ ₀ [#]	$\tau_{+}^{1} \tau_{0}^{\#2}$	Ξ σ	#1 0	$\omega_2^{\#}$			7	
l	0	0	0	0	$\sigma_{0^{+}}^{\#1}$					0	$f_2^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0	
l	0	0	0	0	,, ,	t o	0	0		0	$\alpha\beta$ f				
l	0	0	0	0	"-	t 0	0	0		0	$\omega_{2}^{\#1}{}_{\alpha\beta}$	<u>t1</u> 2	$\frac{ikt_1}{\sqrt{2}}$	0	
•	$\omega_0^{\#1}$ \dagger	$f_{0}^{\#1}$ †	$f_0^{\#2} +$	$\omega_{0}^{\#1}$ \dagger	"1	† 0	0	0	$\frac{1}{k^2}$	1 2+t2		$\omega_2^{\#1} + ^{lphaeta}$	$f_{2}^{\#1} + \alpha \beta$	$\omega_{2}^{\#1} +^{lphaeta\chi}$	
		f	f	3					, , , , , , , , , , , , , , , , , , ,	Z 1°Z		$\omega_2^{\#_1}$	$f_{2}^{#}$	$\omega_{2}^{\#1}$	
sueracors	Multiplicities										$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$	i
ande de	Multip	П	н	П	т	М	3	m	0 5	20	$\tau_{2}^{\#1}_{+}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
source constraints/daude denerators	rreps				$2ik \sigma_{1}^{\#1}\alpha == 0$	_	: $\sigma_1^{\#2}{}^{lpha}$	$-ik \sigma_1^{\#2}\alpha\beta == 0$	$-2ik \ \sigma_2^{\#1}\alpha\beta == 0$	Total constraints:	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
מסתוכע	SO(3) irreps	$\tau_{0}^{\#2} == 0$	$\tau_{0}^{\#1} == 0$	$\sigma_{0}^{\#1} == 0$	+	$\tau_{1}^{\#1\alpha} ==$	$\sigma_{1}^{\#1\alpha} ==$	$\tau_1^{\#1}\alpha\beta$ +	$\tau_2^{\#1}\alpha\beta$	Total co		$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_2^{\#1} + \alpha \beta$	$r_{2}^{\#1} + \alpha \beta \chi$	

2 t1

0

0

0

0

Massive and massless spectra

(No massless particles)

Quadratic (free) action

 $\text{Iff}(\frac{1}{6}\left(2\,t_{1}\;\omega^{\alpha\prime}_{\alpha}\;\omega_{'\;\theta}^{\;\theta}+6\,f^{\alpha\beta}\;\tau_{\alpha\beta}+6\;\omega^{\alpha\beta\chi}\;\sigma_{\alpha\beta\chi}-4\,t_{1}\;\omega_{\alpha\;\theta}^{\;\theta}\;\partial_{,f}^{\alpha\prime}+4\,t_{1}\;\omega_{'\;\theta}^{\;\theta}\right)$

Unitarity conditions