Math 1450, Honor Calculus Practice 2, Fall 2016.

	September 8, 2016
PŠID:	Name:
f(x) at the point wh	wing limits, determine if the limit is computing $f'(a)$ for some function here $x = a$. If it is, determine $f(x)$, a and $f'(a)$.
i. $\lim_{x \to 0} \frac{\sqrt{x+4}-2}{x}$	$= \lim_{x \to 0} \frac{(\sqrt{x+y-2})(\sqrt{x+y+2})}{x} = \lim_{x \to 0} \frac{x}{x(\sqrt{x+y+2})} = \frac{1}{4}$ $\Rightarrow so f(0) = \frac{1}{4}$
. We have $f(x)=J(x)$	$\Rightarrow so f(0) = \frac{1}{4}$
ii. $\lim_{h \to 0} \frac{\frac{2}{3+h} - \frac{1}{3}}{h}$	Assume $f(x) = \frac{2}{3+x}$, and $a=0$, but $f(0) = \frac{2}{3} + \frac{1}{3}$
	hus, this traction isn't written in a way as the
iii. $\lim_{x \to \pi} \frac{\cos(x) + 1}{x - \pi}$	$=\lim_{X\to T}\frac{-\cos(X-T)+1}{x-T}=0$
We have fox = cosis a=TT, f(a)=	$=\lim_{N\to\infty}\frac{\cos(x-\pi)+1}{x-\pi}$ $=\lim_{N\to\infty}\frac{\cos(x-\pi)+\sin(\pi)\sin(x)}{x-\pi}$ $=\lim_{N\to\infty}\frac{1-\omega_{S}(x)}{x-\omega_{S}(x)}$ $=\lim_{N\to\infty}\frac{1-\omega_{S}(x)}{x-\omega_{S}(x)}$ $=\lim_{N\to\infty}\frac{1-\omega_{S}(x)}{x-\omega_{S}(x)}$ $=\lim_{N\to\infty}\frac{1-\omega_{S}(x)}{x-\omega_{S}(x)}$
$h \rightarrow 0$ / ℓ	lin 1+2nth -1 = lin 1+2n = lin h+2 = 2
f(0)= 1 V	$\Rightarrow f(0) = 2$
v. $\lim_{x \to -1} \frac{x-1+2}{x+1}$	$\Rightarrow f(0) = 2$ $= \lim_{X \to 1} \frac{\frac{X+1}{2(X+1)}}{X+1} = \lim_{X \to 1} \frac{1}{2(X+1)} = -\frac{1}{4}.$ $\Rightarrow f(1) = \frac{1}{2}$
ナ(ー)= - ラ V) (4)- 4
vi. $\lim_{h \to 0} \frac{\sin(\pi + h)}{h} = 3$	= lm - 51Hh) = -1
e have fox = SIN(TT+X),	- (710)
a=0 ⇒f(0)=0 V	STN(T+h) = STATT (costn) + costr) sinh)
>+(0)=0 V	$=-\frac{1}{sin(h)}\left(\cos(\pi)=-1\right)$

2. Prove that $\lim_{x\to 0} x^4 \cos(\frac{2}{x}) = 0$.

Since $-1 \le \cos(\frac{2}{x}) \le 1$ for all $x \in \mathbb{R}$. Then.

times X4 on three of them, we obtain

 $-x^4 \le x^4 \cos(\frac{2}{x}) \le x^4$

By squaze thm, since lim -x4=0 and limx4=0

Thus, $\lim_{x \to 0} x^4 \cos(\frac{2}{x}) = 0$

Thinking: How to use the same theorem as question 2 to prove $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$?