▶ **Propoziție.** Fie $P = (p_1, p_2), Q = (q_1, q_2)$ două puncte distincte din planul \mathbb{R}^2 , fie $R = (r_1, r_2)$ un punct arbitrar și

$$\Delta(P,Q,R) = \left| \begin{array}{cccc} 1 & 1 & 1 \\ p_1 & q_1 & r_1 \\ p_2 & q_2 & r_2 \end{array} \right|.$$

Atunci R este situat:

- (i) pe dreapta $PQ \Leftrightarrow \Delta(P,Q,R) = 0$ ("ecuația dreptei");
- (ii) "în dreapta" segmentului orientat $\overrightarrow{PQ} \Leftrightarrow \Delta(P,Q,R) < 0$;
- (iii) "în stânga" segmentului orientat $\overrightarrow{PQ} \Leftrightarrow \Delta(P,Q,R) > 0$.
- ▶ **Obs.** Testul de orientare se bazează pe calculul unui polinom de gradul II $(\Delta(P, Q, R))$.

Criterii numerice. Raport și test de orientare

Raport- exemple

- (ii) În \mathbb{R}^3 considerăm punctele A=(1,2,3), B=(2,1,-1), C=(0,3,7). Atunci punctele A,B,C sunt coliniare și avem $r(A,C,B)=-\frac{1}{2}$, r(B,C,A)=-2, r(C,A,B)=1, r(C,B,A)=-2.
- (iii) Fie A,B două puncte din \mathbb{R}^n și $M=\frac{1}{2}A+\frac{1}{2}B$. Atunci $r(A,M,B)=1,\ r(M,A,B)=-\frac{1}{2}$.

Graham's scan, varianta Andrew (algoritm)

Input: O mulțime de puncte \mathcal{P} din \mathbb{R}^2 .

Output: O listă \mathcal{L} care conține vârfurile ce determină frontiera acoperirii convexe, parcursă în sens trigonometric.

- 1. Sortare lexicografică, renumerotare P_1, P_2, \ldots, P_n conform ordonării
- 2. $\mathcal{L} \leftarrow (P_1, P_2)$
- 3. for $i \leftarrow 3$ to n
- 4. **do** adaugă P_i la sfârșitul lui \mathcal{L}
- while L are mai mult de două puncte and ultimele trei nu determină un viraj la stânga
- 6. **do** șterge penultimul punct
- 7. return \mathcal{L}_i
- 8. Parcurge pași analogi pentru a determina \mathcal{L}_s
- 9. Concatenează \mathcal{L}_i și \mathcal{L}_s

Algoritmi avansați - C8. Acoperiri convexe

26 / 30

Jarvis' march (algoritm)

Input: O mulțime de puncte necoliniare $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ din \mathbb{R}^2 ($n \geq 3$). **Output:** O listă \mathcal{L} care conține vârfurile ce determină frontiera acoperirii convexe, parcursă în sens trigonometric.

- 1. Determinarea unui punct din \mathcal{P} care aparține frontierei (de exemplu cel mai mic, folosind ordinea lexicografică); acest punct este notat cu A_1 .
- 2. $k \leftarrow 1$; $\mathcal{L} \leftarrow (A_1)$; $valid \leftarrow true$
- 3. while valid= true
- 4. **do** alege un pivot arbitrar $S \in \mathcal{P}$, diferit de A_k
- 5. for $i \leftarrow 1$ to n
- 6. **do if** P_i este la dreapta muchiei orientate A_kS
- 7. then $S \leftarrow P_i$
- 8. if $S \neq A_1$
- 9. then $k \leftarrow k+1$;

$$A_k = S$$

adaugă A_k la ${\mathcal L}$

- 10. **else** $valid \leftarrow false$
- 11. return \mathcal{L}

(ロ) (部) (注) (注) (注) (の)

Triangularea poligoanelor monotone

Input: Un poligon y-monoton \mathcal{P} . **Output:** O triangulare a lui \mathcal{P} .

- 1. Lanțul vârfurilor din partea stângă și al celor din partea dreaptă sunt unite într-un singur șir, ordonat descrescător, dupa y (dacă ordonata este egală, se folosește abscisa). Fie v_1, v_2, \ldots, v_n șirul ordonat.
- 2. Inițializează o stivă vidă S și inserează v_1, v_2 .
- 3. **for** j = 3 **to** n 1
- 4. **do if** v_i și vârful din top al lui S sunt în lanțuri diferite
- 5. **then** extrage toate varfurile din S
- 6. inserează diagonale de la v_i la vf. extrase, exceptând ultimul
- 7. inserează v_{j-1} și v_j în S
- 8. **else** extrage un vârf din S
- 9. extrage celelalte vârfuri din S dacă diagonalele formate cu v_j sunt în interiorul lui P; inserează aceste diagonale; inserează înapoi ultimul vârf extras
- 10. inserează v_i în S
- 11. adaugă diagonale de la v_n la vf. stivei (exceptând primul și ultimul)

Tipuri de vârfuri

Elemente ale unei triangulări

- ▶ Dată o mulțime de puncte \mathcal{P} și o triangulare \mathcal{T}_P a sa: vârfuri, muchii, triunghiuri.
- ► Legătură cantitativă între aceste elemente?
- ▶ **Propoziție.** Fie \mathcal{P} o mulțime de n puncte din plan nesituate toate pe o aceeași dreaptă. Notăm cu k numărul de puncte de pe frontiera acoperirii convexe $Conv(\mathcal{P})$. Orice triangulare a lui \mathcal{P} are (2n k 2) triunghiuri și (3n k 3) muchii.
- **Exemplu:** Cazul unui (unor puncte care formează un) poligon convex: un poligon convex cu n vârfuri poate fi triangulat cu (n-2) triunghiuri, având (2n-3) muchii.

Muchii ilegale

- Criteriu numeric / analitic pentru a testa dacă o muchie este ilegală.
 - Pentru puncte $A = (x_A, y_A), B = (x_B, y_B), C = (x_C, y_C), D = (x_D, y_D)$:

$$\Theta(A, B, C, D) = \begin{vmatrix} x_A & y_A & x_A^2 + y_A^2 & 1 \\ x_B & y_B & x_B^2 + y_B^2 & 1 \\ x_C & y_C & x_C^2 + y_C^2 & 1 \\ x_D & y_D & x_D^2 + y_D^2 & 1 \end{vmatrix}$$

(i) Punctele A, B, C, D sunt conciclice $\Leftrightarrow \Theta(A, B, C, D) = 0$. (ii) Fie A, B, C astfel ca ABC să fie un viraj la stânga. Un punct D este situat în interiorul cercului circumscris $\triangle ABC \Leftrightarrow \Theta(A, B, C, D) > 0$.

Structura unei diagrame Voronoi

- Fie $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ o mulțime de situri (puncte) din planul \mathbb{R}^2 .
- Celula asociată unui punct este o intersecție de semiplane:

$$\mathcal{V}(P_i) = \bigcap_{j \neq i} h(P_i, P_j),$$

unde $h(P_i, P_j)$ este semiplanul determinat de mediatoarea segmentului $[P_iP_j]$ care conține punctul P_i . În particular: fiecare celulă este o mulțime convexă. Aplicabilitate: algoritm (lent) de determinare a diagramei Voronoi.

- Dacă toate punctele sunt coliniare, atunci diagrama Voronoi asociată Vor(P) conţine n − 1 drepte paralele între ele (în particular, pentru n ≥ 3, ea nu este conexă).
- ▶ În caz contrar, diagrama este conexă, iar muchiile sale sunt fie segmente, fie semidrepte (cui corespund acestea?).
- Propoziție. Fie o mulțime cu n situri. Atunci, pentru diagrama Voronoi asociată au loc inegalitățile

$$n_{v}\leq 2n-5, \quad n_{m}\leq 3n-6,$$

unde n_v este numărul de vârfuri ale diagramei și n_m este numărul de muchii al acesteia.