Project computervisie: plan van aanpak en werkverdeling

Leden

Mathias Dierckx Tim Ranson Maarten Tindemans Bjorn Vandenbussche

Opdracht

Doel: om het verst rijden in 1 minuut

- Gegeven:
 - Videoframes
 - Maskers met huidige koers & remafstanden
- Gevraagd
 - Maximale snelheid die je in elk frame durft rijden op basis van classificatie wegdek/geen wegdek
- Regels:
 - Sneller rijden dan veilig = game over
 - Nooit sneller dan 90 km/h

Planning

Planning met wekelijkse doelstellingen:

Datum	Wat?	Wie?
18/3	 Aanmaken git-repository en opzet project Planning afwerken Inlezen afbeeldingen (frames + masks) Naïeve implementatie van snelheid op 1 punt Onderzoeken verschillende classifiers voor classificatie 	Tim + Bjorn Iedereen Bjorn Maarten Tim
	 Onderzoeken mogelijkheden lijndetectie 	Mathias
25/3	 Artikels lezen: Introduction to Support Vector Machines (Dustin Boswell) Texture analysis with local binary patterns (Topi Mäenpää & Matti Pietikäinen) 	Bjorn Tim

	Distinctive Image Features from Scale-Invariant Keypoints (David G. Lowe)	Maarten
	 Pedestrian Detection: An Evaluation of the State of the Art (Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona) 	Mathias
1/4	 Lijndetectie: Canny en (Probabilistic) Hough transformation Classifiers: LBP (Local binary pattern), SVM (Support Vector Machine) implementeren Maximum snelheid bepalen uit obstakels op gekozen rijweg, de 	Mathias Tim + Bjorn Maarten
	extrapolatie van het huidig traject en de remafstand	
8/4	 Lijndetectie: Canny en (Probabilistic) Hough transformation Classifiers: LBP (Local binary pattern), SVM (Support Vector Machine) implementeren 	Mathias Tim + Bjorn
	 Maximum snelheid bepalen uit obstakels op gekozen rijweg, de extrapolatie van het huidig traject en de remafstand 	Maarten
15/4	 Lijndetectie: bevindingen in rapport opnemen Classifiers: LBP (Local binary pattern), SVM (Support Vector Machine) implementeren 	Mathias Tim + Bjorn
	 Maximum snelheid bepalen uit obstakels op gekozen rijweg, de extrapolatie van het huidig traject en de remafstand + bevindingen in rapport opnemen 	Maarten
22/4	Classifiers: trainen en optimale resultaten zoekenClassifiers: bevindingen in rapport opnemen	Tim + Bjorn
29/4	 Classifiers: trainen en optimale resultaten zoeken Samenvoegen van classifiers, lijndetectie en maximum snelheidsbepaling 	Tim + Bjorn Mathias + Maarten
6/5	 Samenvoegen van classifiers, lijndetectie en maximum snelheidsbepaling 	Iedereen
10/5	– Afwerken rapport	Iedereen
13/5	– Afwerken rapport	Iedereen
20/5	Marge	
27/5	Marge	
3/6	Einde project	