

Estimation

- Traffic estimation
 - Our system will be read-heavy.

Data model definition

Schema

- Table 1: Place
 - LocationID (8 bytes): Uniquely identifies a location.
 - Name (256 bytes)
 - Latitude (8 bytes)
 - Longitude (8 bytes)
 - Description (512 bytes)
 - Category (1 byte): E.g., coffee shop, restaurant, theater, etc.

High-level design

Solutions

- o SOL
 - Select * from Places where Latitude between X-D and X+D and Longitude between Y-D and Y+D
 - Not efficient
 - Need to use range to query 2 columns.
- Grids (Static size grid)
 - Divide the whole map into smaller grids to group locations into smaller sets.
 - Select * from Places where Latitude between X-D and X+D and Longitude between Y-D and Y+D and GridID in (GridID, GridID1, GridID2, ..., GridID8)
 - It could be a problem there are a lot of places in a single grid.
- QuadTree (Dynamic size grids)
 - Structure
 - Each node has four children.
 - If a node reaches our limit of 500 places, we will break it down to create four child nodes under it.
 - Leaf nodes represents the grids that cannot be further broken down.
 - Root node represents the whole world in one grid.
 - Traversal
 - If the current node has children, move to the child node that contains our desired location and repeat this process.
 - Find neighboring grids
 - Connect all leaf nodes with a doubly linked list.
 - Through parent nodes (each node has a pointer to access its parent).

Detailed Design

